Problem 2.14

$$f(w, x, y, z) = \Sigma(0, 2, 8, 10) + \Sigma_d(12,14)$$

K-map:

	TX ga				
YZ	00	01	11	10	-/
WX 00	1)			1	_
01				d	-
	<u>d</u>)		À .	1	
10	1/	1			

Minimal SOP

[b] g(a,b,e,d) = \(\(\(\) \) (5,7,13,15) + \(\) \(\) (6,14)

				10
cd	00		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
ab 00		*		1
01		1	(1)	1 d
11		1	1	1 de
To		AK.		

Minimal SOP:

Problem 2-24

Design pos expression for the 2-to-1 Mux in Fig 2.31

Kmap:

Solexpression: r= sy+sx

$$=(\overline{s}y).(\overline{s}x)$$

$$= (3+\overline{y}).(\overline{5}+\overline{x})$$

Sol of $\overline{r} = 5.\overline{5} + 5.\overline{x} + \overline{y}.\overline{5} + \overline{y}.\overline{x}$

Dual of F = (S+X) (Y+S) (Y+X)

pos expression of r = (5+x) (y+x)

Problem 2.27

for an entropy of the second o

corryout (not overflow bit)

A: [111 1000 + B: 1111 1000 (arryout = 1 (not overflow bit)

$$\begin{array}{c}
(B) \\
-(B) \\
-(B) \\
2s = 111111101
\end{array}$$

A: 1000 0010

+ B: 4111101

[1011111]

Carryout = 1 (aut overflow bit)

$$\frac{A:011111010}{-B:11111010}$$

$$\frac{(B)_{1S} = 00000101}{+ 1}$$

$$\frac{(B)_{2S} = 00000110}{-(B)_{2S}}$$

A: 01111101 B:00000110

 $\triangle CPA(n) = (n-1)*\Delta FAc+\Delta FAS$

With $\Delta FAC = 0.5 nS$, $\Delta FAS = 0.3 nS$

We have $\triangle CPA(8) = \triangle CPA(4) + \triangle CPA(4)$ = $\left[(4-1)(0.5ns) + 0.3ns \right] + \left[(4-1)(0.5ns) + 0.3ns \right]$

_ 3.6 ns

Problem 3.5

Vatio of
$$\triangle (PA(8)) = \frac{1.7ns}{0.8ns} = 2.125$$

=> The CLA(8) is more than 2 times faster than the CPACE)

SOP expression for FA:
$$Si = Pi \oplus Ci-1$$

b $C-1$

Problem 3.9

DALU(8) = DNAND +D OR + DMUX +DAM
+DMASK + DMAP

=(0.1ns)+(0.8ns)

= 0.gns

Represent 6.725 to IEEE Floating Point a) Single Precision
6.725 = (110.1011100)₂

= (110. (011100)2 x 2°

 $=(1.101011100)_{2} \times 2^{2}$

 $=(1.10101100), x2^{2+127}$

 $=(1.101011100)_{2} \times 2^{129}$

Sign 1 bit = 0

8 bit biased exponent E=129= (1000 0001),

+> 23-bit fraction F= 101011100 1100 1100 110011

I EEE Floating Point:

1000 0001 1010110011001100110011

× 40 D 7 3 3 3 3

Double precision

6.725 =
$$(110.1011100)_2$$

= $(110.1011100)_2 \times 2^0$

= $(1.1011100)_2 \times 2^0$

In double precision: bias = 1023

$$= (1.101011100)_{2} \times 2^{2}$$

$$= (1.101011100)_{2} \times 2^{1023}$$

$$= (1.101011100)_{2} \times 2$$

4> Signbit = 0

e7 11 bit biased exponent E = 1025=(100 0000 0001),

I LEE Floating Point:

100 0000 0001 101011100 110

Represent IEEE single precision FP 0x4100 0000 in Aecimal

0 x 4100 0000

L J J J J

0100 0001 1101 1101 0000 0000 0000

=> (0,100000011,1011101000000000000000)

with single precision, we have bias = 127

The biased 8 bit exponent = (100000011)2 = 131

Exponent = (biased exponent-bias) = 131 - 127

50, $(1.1011101) \times 2 = (1.1011101) \times 2$

 $= (14011101)_2 \times 2^4 = (11011 \cdot 101)_2 \times 2^0$

 $|1011.101 = 27 + (0.001)_2$ $= 27 + \frac{1}{2} + \frac{1}{8}$

= 27 + 0.5+ 0.125

Decimal = 27.625