Algorithmes stochastiques

Martingales

A. Godichon-Baggioni

I. Martingales réelles

DÉFINITION

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé.

Définition

- ► On appelle filtration $(\mathcal{F}_n)_{n\geq 0}$ de $(\Omega, \mathcal{A}, \mathbb{P})$ une suite croissante de sous-tribus de \mathcal{A} .
- ▶ On dit qu'une suite de v.a (X_n) est adaptée à la filtration (\mathcal{F}_n) si pour tout n, X_n est \mathcal{F}_n -mesurable.

Définition

Soit $M=(M_n)_{n\geq 0}$ une suite de v.a. On dit que M est une martingale adaptée à la filtration $\mathcal{F}=(\mathcal{F}_n)$ si pour tout $n\geq 0$, M_n est \mathcal{F}_n -mesurable et

$$\mathbb{E}\left[M_{n+1}|\mathcal{F}_n\right]=M_n.$$

THÉORÈME DE ROBBINS-SIEGMUND

Théorème (Robbins-Siegmund)

Soit (V_n) , (A_n) , (B_n) , (C_n) trois suites de variables aléatoires positives adaptées à une filtration (\mathcal{F}_n) . On suppose que

$$\mathbb{E}\left[V_{n+1}|\mathcal{F}_n\right] \le (1+A_n)\,V_n + B_n - C_n$$

et que les suites (A_n) et (B_n) vérifient

$$\sum_{n\geq 0} A_n < +\infty \quad p.s \qquad et \qquad \sum_{n\geq 0} B_n < +\infty \quad p.s.$$

Alors V_n converge presque sûrement vers une variable aléatoire finie et

$$\sum_{n>0} C_n < +\infty \quad p.s.$$

ESTIMATION EN LIGNE DES QUANTILES

On considère x_p le quantile d'ordre $p \in (0,1)$ de X. On peut construire l'estimateur en ligne

$$m_{n+1} = m_n - \gamma_{n+1} \left(\mathbf{1}_{X_{n+1} \le m_n} - p \right)$$

avec

$$\sum_{n\geq 1} \gamma_n = +\infty \qquad \text{et} \qquad \sum_{n\geq 1} \gamma_n^2 < +\infty.$$

Si la fonction de répartition F_X est strictement croissante au voisinage de x_p , alors

$$m_n \xrightarrow[n \to +\infty]{p.s} x_p$$
.

ESTIMATION EN LIGNE DES QUANTILES

FIGURE – Evolution de l'estimation des quantiles d'ordre 0.25 (à gauche) et 0.75 à droite pour la loi exponentielle de paramètre 1.

LOIS DES GRANDS NOMBRES

Définition

Soit (M_n) une martingale de carré intégrable. On appelle processus croissant associé à (M_n) la suite $(\langle M \rangle_n)$ définie par $\langle M \rangle_0 = 0$ et pour tout $n \geq 0$ par

$$\langle M \rangle_{n+1} = \langle M \rangle_n + \mathbb{E}\left[\left(M_{n+1} - M_n \right)^2 | \mathcal{F}_n \right].$$

Soit $\xi_{k+1} = M_{k+1} - M_k$, on a

$$\langle M \rangle_n = \sum_{k=1}^n \mathbb{E} \left[\xi_k^2 | \mathcal{F}_{k-1} \right].$$

1ère loi des grands nombres

Théorème (1ère loi des grands nombres)

Soit (M_n) une martingale de carré intégrable.

- 1. $Si \lim_{n \to +\infty} \langle M \rangle_n < +\infty$ presque sûrement, alors (M_n) converge presque sûrement vers une variable aléatoire finie M_{∞} .
- 2. $Si \lim_{n \to +\infty} \langle M \rangle_n = +\infty$, alors $\left(\frac{M_n}{\langle M \rangle_n}\right)$ converge presque sûrement vers 0.

APPLICATION AU BANDIT À DEUX BRAS

On considère une machine à sous avec deux bras A et B.

- Le bras A permet un gain de 1 ou 0 avec probabilité $\theta_A \in (0,1)$ ou $1-\theta_A$.
- Le bras *B* permet un gain de 1 ou 0 avec probabilité $\theta_B \in (0,1)$ ou $1-\theta_B$.

Au temps n:

- ► Choix d'un levier : $U_n = A$ ou B.
- ▶ On note X_n le gain au temps n.

Objectif: Maximiser le gain moyen asymptotique, i.e trouver une stratégie (U_n) telle que

$$G_n := \frac{1}{n} \sum_{k=1}^n X_k \xrightarrow[n \to +\infty]{p.s} \max \{\theta_A, \theta_B\}.$$

APPLICATION AU BANDIT À DEUX BRAS

- 1. Donner la loi de $X_n|U_n$.
- 2. Soient $N_{A,n} = \sum_{k=1}^{n} \mathbf{1}_{U_k=A}$, $N_{B,n} = \sum_{k=1}^{n} \mathbf{1}_{U_k=B}$ et

$$M_n = \sum_{k=1}^n X_k - \theta_A N_{A,n} - \theta_B N_{B,n}.$$

- 2.1 Montrer que M_n est une martingale par rapport à la filtration (\mathcal{F}_n) avec $\mathcal{F}_n = \sigma(X_1, \dots, X_n, U_1, \dots, U_{n+1})$.
- 2.2 Calculer le crochet de M_n . Que pouvez-vous en déduire?
- 3. Soient l_A, l_B tels que $\frac{N_{A,n}}{n} \xrightarrow[n \to +\infty]{p.s} l_A$ et $\frac{N_{B,n}}{n} \xrightarrow[n \to +\infty]{p.s} l_B$. Montrer que

$$G_n \xrightarrow[n \to +\infty]{p.s} \theta_A l_A + \theta_B l_B$$

VITESSE DE CONVERGENCE

Application du théorème de Robbins-Siegmund : Soit (ξ_k) une suite de différences de martingale et $M_n = \sum_{k=1}^n \xi_k$. Si il existe C tel que pour tout k, $\mathbb{E}\left[\xi_k^2|\mathcal{F}_{k-1}\right] \leq C$, alors

$$M_n^2 = o\left(n\left(\ln n\right)^{1+\delta}\right) \quad p.s$$

APPLICATION AU BANDIT À DEUX BRAS

Rappel:

$$M_n = \sum_{k=1}^n X_k - \theta_A N_{A,n} - \theta_B N_{B,n}$$

Montrer que pour tout $\delta > 0$

$$M_n = o\left(\frac{\ln n^{1+\delta}}{n}\right)$$
 p.s.

THÉORÈME CENTRAL LIMITE

Théorème (TLC simplifié)

Soit (M_n) une martingale de carré intégrable. On suppose que les hypothèses suivantes sont vérifiées :

1. Il existe σ^2 tel que

$$n^{-1}\langle M\rangle_n \xrightarrow[n\to+\infty]{\mathbb{P}} \sigma^2.$$

2. Condition de Lindeberg : pour tout $\epsilon > 0$,

$$\frac{1}{n}\sum_{k=1}^{n}\mathbb{E}\left[\left(M_{k}-M_{k-1}\right)^{2}\mathbf{1}_{|M_{k}-M_{k-1}|\geq\epsilon\sqrt{n}}|\mathcal{F}_{k-1}\right]\xrightarrow[n\to+\infty]{\mathbb{P}}0.$$

Alors

$$\frac{1}{\sqrt{n}}M_n \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0, \sigma^2\right)$$

CONDITION DE LYAPUNOV

Condition de Lyapunov : Il existe a > 2 tel que

$$\frac{1}{n^{\frac{a}{2}}}\sum_{k=1}^{n}\mathbb{E}\left[\left|M_{k}-M_{k-1}\right|^{a}\left|\mathcal{F}_{k-1}\right]\xrightarrow[n\to+\infty]{\mathbb{P}}0.$$

Condition de Lyapunov \Longrightarrow condition de Lindeberg.

Exercice : On note $\xi_k = M_k - M_{k-1}$. Montrer que si il existe a > 2, $C_a \ge 0$ tels que pour tout $k \ge 1$,

$$\mathbb{E}\left[\left|\xi_{k}\right|^{a}\left|\mathcal{F}_{k-1}\right]\right]\leq C,$$

alors la condition de Lindeberg est vérifiée.

APPLICATION AU BANDIT À DEUX BRAS

On considère les estimateurs

$$\theta_{A,n} = \frac{1}{N_{A,n}} \sum_{k=1}^{n} \mathbf{1}_{X_k=1,U_k=A}$$
 et $\theta_{B,n} = \frac{1}{N_{B,n}} \sum_{k=1}^{n} \mathbf{1}_{X_k=1,U_k=B}$

et

$$M_{A,n} = \sum_{k=1}^{n} \mathbf{1}_{X_k=1,U_k=A} - \theta_A N_{A,n}$$

- 1. Montrer que $M_{A,n}$ est une martingale de carré intégrable.
- 2. Calculer son crochet. Que pouvez-vous en déduire?
- 3. On suppose $\frac{N_{A,n}}{n} \xrightarrow[n \to +\infty]{p.s} l_A > 0$.
 - 3.1 Appliquer le TLC.
 - 3.2 Que pouvez-vous en déduire?

Bandit à deux bras et efficacité asymptotique

On considère

- ▶ Une suite strictement croissante d'entiers (c_n) .
- $\blacktriangleright I_c = \{c_n, n \in \mathbb{N}\} \subset \mathbb{N}.$

On considère la stratégie suivante :

$$U_n = \begin{cases} A & \text{si } \theta_{A,n-1} \ge \theta_{B,n-1} \text{ et } n \notin I_c \\ B & \text{si } \theta_{B,n-1} > \theta_{A,n-1} \text{ et } n \notin I_c \\ A & \text{si } \exists k \ge 1, n = c_{2k} \\ B & \text{si } \exists k \ge 0, n = c_{2k+1} \end{cases}$$

Montrer que $\theta_{A,n}$ et $\theta_{B,n}$ sont consistants.

BANDIT À DEUX BRAS ET EFFICACITÉ ASYMPTOTIQUE

On suppose $\theta_A > \theta_B$.

- 1. On suppose $n = o(c_n)$.
 - 1.1 Montrer que $\frac{N_{B,n}}{n} \xrightarrow[n \to +\infty]{p.s} 0$.
 - 1.2 Que pouvez vous en conclure?
- 2. On suppose $n^2 = o(c_n)$ et on rappelle

$$G_n - l_A \theta_A - l_B \theta_B = \frac{1}{n} M_n - \theta_A \left(\frac{N_{A,n}}{n} - l_A \right) - \theta_B \left(\frac{N_{B,n}}{n} - l_B \right).$$

- 2.1 Appliquer le TLC à M_n .
- 2.2 Montrer que $\frac{N_{B,n}}{\sqrt{n}} \xrightarrow[n \to +\infty]{p.s} 0$.
- 2.3 Conclure.

II. Martingales vectorielles

DÉFINITION

Définition

Soit $\mathcal{F} = (\mathcal{F}_n)$ une filtration.

 $ightharpoonup (M_n)$ est une martingale de carré intégrable si

$$\mathbb{E}\left[M_{n+1}|\mathcal{F}_n\right]=M_n.$$

► Le crochet de (M_n) est le processus $(\langle M \rangle_n)$ défini par $\langle M \rangle_0 = M_0 M_0^T$ et $\langle M \rangle_n = \langle M \rangle_{n-1} + \Delta_n$ avec

$$\Delta_n = \mathbb{E}\left[\left(M_n - M_{n-1}\right)\left(M_n - M_{n-1}\right)^T \middle| \mathcal{F}_{n-1}\right]$$

=
$$\mathbb{E}\left[M_n M_n^T \middle| \mathcal{F}_{n-1}\right] - M_{n-1} M_{n-1}^T.$$

VITESSE DE CONVERGENCE

Théorème

Soit (ξ_k) une suite de différences de martingales et $M_n = \sum_{k=1}^n \xi_k$. Si il existe une constante positive C telle que pour tout k,

$$\mathbb{E}\left[\left\|\xi_{k}\right\|^{2}|\mathcal{F}_{k-1}\right]\leq C, alors pour tout \delta>0,$$

$$\left\|\frac{1}{n}M_n\right\|^2 = o\left(\frac{(\ln n)^{1+\delta}}{n}\right) \quad p.s.$$

THÉORÈME CENTRAL LIMITE

Théorème (Théorème Central Limite)

Soit (M_n) une martingale de carré intégrable et on suppose qu'il existe une matrice Γ telles que

1.
$$n^{-1}\langle M\rangle_n \xrightarrow[n\to+\infty]{\mathbb{P}} \Gamma$$
,

2. *la condition de Lindeberg est satisfaite, i.e pour tout* $\epsilon > 0$ *,*

$$n^{-1} \sum_{k=1}^{n} \mathbb{E} \left[\|M_k - M_{k-1}\|^2 \mathbf{1}_{\|M_k - M_{k-1}\| \ge \epsilon \sqrt{n}} \right] \xrightarrow[n \to +\infty]{\mathbb{P}} 0.$$

Alors

$$\frac{1}{\sqrt{n}}M_n \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0,\Gamma\right).$$

THÉORÈME CENTRAL LIMITE

Corollaire

Soit $M_n = \sum_{k=1}^n \xi_k$, où (ξ_n) est une suite de différences de martingale adaptée à la filtration. On suppose que les hypothèses suivantes sont vérifiées :

1. Il existe une matrice Γ telle que

$$\frac{1}{n} \sum_{k=1}^{n} \mathbb{E} \left[\xi_k \xi_k^T | \mathcal{F}_{k-1} \right] \xrightarrow[n \to +\infty]{\mathbb{P}} \Gamma$$

2. Il existe des constantes positives a > 2 et C_a telles que $\mathbb{E}\left[\|\xi_k\|^a |\mathcal{F}_{k-1}\right] \leq C_a$.

Alors

$$\frac{1}{\sqrt{n}}M_n \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0,\Gamma\right).$$