Logistic Regression

Foundations of Data Analysis

April 5, 2022

Logistic Regression: Estimating the parameters of a logistic model.

Regression problem:

Given *X* (independent variable), predict *Y* (dependent variable).

Regression problem:

Given x (independent variable), predict y (dependent variable).

Classification problem: Given X (features),

predict y (labels).

What if given x, we wanted to predict p(y = 1 | x)?

Linear fit to p(y = 1 | x) goes outside [0,1]!

We want to use a nonlinear function with outputs in [0, 1].

This is logistic regression.

Logistic Function

$$\sigma(t) = \frac{1}{1 + e^{-t}}$$

Linear Predictor Inside Logistic Function

a.k.a. Sigmoid function $p(y|x) = \sigma(\beta_0 + \beta_1 x) = \frac{1}{1 + e^{-\beta_0 - \beta_1 x}}$

β1 : "slope"

β₀: "intercept"

Example (from Wikipedia)

Pass/fail of exam (y) vs. Hours spent studying (x)

Multivariate Predictor

If *x* is multivariate:
$$x = (x^{(1)}, x^{(2)}, \dots, x^{(d)}),$$

$$p(y|x) = \sigma(\beta_0 + \beta_1 x^{(1)} + \beta_2 x^{(2)} + \dots + \beta_d x^{(d)})$$
$$= \frac{1}{1 + e^{-\beta_0 - \beta_1 x^{(1)} - \beta_2 x^{(2)} - \dots - \beta_d x^{(d)}}}$$

(Note: just multivariate linear regression inside σ)

Multivariate Predictor

Data matrix X with n data points (rows):

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} \dots x_{1d} \\ 1 & x_{21} & x_{22} \dots x_{2d} \\ \vdots & \vdots & \ddots \\ 1 & x_{n1} & x_{n2} \dots x_{nd} \end{pmatrix}$$

Logistic regression evaluated for the i-th data point (i-th row vector):

$$p(y | X_{i \bullet}) = \sigma(X_{i \bullet} \beta)$$

(Note: $X_{iullet}eta$ is the dot product between i-th row and eta)

How To Estimate Parameter β ?

Maximize likelihood:

- 1. Compute derivative (gradient) of likelihood w.r.t. β
- 2. Solve for β that makes this derivative zero

Likelihood Function

Use Bernoulli likelihood:

$$L(\beta; X, y) = \prod \sigma(X_{i \bullet} \beta)^{y_i} (1 - \sigma(X_{i \bullet} \beta)^{1 - y_i})$$

Log-Likelihood Function

$$l(\beta; X, y) = \ln L(\beta; X, y)$$

$$= \sum_{i=1}^{n} (y_i - 1)X_{i \bullet}\beta - \ln(1 + e^{-X_{i \bullet}\beta})$$

Gradient of Log-Likelihood Function

$$\nabla \ell(\beta; X, y) = \begin{bmatrix} \frac{\partial \ell}{\partial \beta_0} \\ \frac{\partial \ell}{\partial \beta_1} \\ \vdots \\ \frac{\partial \ell}{\partial \beta_d} \end{bmatrix}$$

$$\frac{\partial \ell}{\partial \beta_k} = \sum_{i=1}^n \left[(y_i - 1) - \frac{e^{-X_i \cdot \beta}}{1 + e^{-X_i \cdot \beta}} \right]$$

Problem! Can't solve for that makes this zero!

Gradient Ascent / Descent

Take a small step (learning rate) in the gradient direction Repeat until the gradient is zero

Gradient Ascent / Descent

Optimization of Functions With Local Min/Max

Algorithm for Logistic Regression

Set ϵ = small threshold Set δ = step size (learning rate) along gradient Initialize β

While
$$\|\nabla \ell\| > \epsilon$$

Update $\beta \leftarrow \beta + \delta \, \nabla \ell(\beta)$

Effects of Learning Rate

