Dilard's Business Project

Hanxi (Elsie) Lin, Judy Zhu, Yuanzhu (Zoe) Li & Xenia Vrettakou

<u>Agenda</u>

- 1 Business Question
 - 2 Exploratory Data Analysis (EDA)
 - 3 Feature Engineering
 - 4 Data Modeling
 - 5 ROI
 - 6 Conclusion

Business Question

Project Scope:

Return rates serve as a critical indicator of the effectiveness of product selection strategies and the alignment of products with consumer demands. Our business focus employs sophisticated data analysis techniques to predict the probability of a return with the focus to reduce Dillard's total return costs.

Descriptive Statistics

- Date range: 01/08/2004 01/08/2005
- Number of samples: 66 million
- Number of states represented: 29
- Number of purchase for each transaction: 1

Return rates across Months

- Date range: 01/08/2004 -01/08/2005
- Peak: July,higher return in first half of the year

Return rate across States

- Total 29 States
 - Highest: TX
 - Second highest: FL

Feature Engineering

Binning and Categorization

Feature: BRAND_dummy

Process: Bin 'ORGPRICE' into 'Cheap', 'Affordable',

'Luxury' using quartiles.

Purpose: Categorize price ranges for analysis or

modeling.

Filtering Data

Process: Remove rows where 'ORGPRICE' > 1000.

Purpose: Focus on specific price range and remove

outliers for improved analysis.

Date Manipulation

Feature: Salemonth

Process: Convert 'SALEDATE' to datetime and

extract month.

Purpose: Enable seasonality analysis and recognize

monthly patterns.

Calculating Differences

Features: amt_diff, retail_diff

Process: Difference between 'AMT',

'RETAIL', and 'ORGPRICE'.

Purpose: Understand pricing strategies and

customer behavior.

Calculating Return Rate

Feature: Return rate

Process: Calculate return rate by state,

using 'Stype' for purchase/return.
Purpose: Analyze return variations

geographically.

Data Preparation

1. Subset data:

- Random sample selection (100k).
 - Reducing future effect of computationally intensive operations.

2. Applied Holdout CV

- Train set (80%)
- Test set (20%)

3. Train set

- Further subset the data by:
 - Randomly sample 15k where Returns = 0 (Purchase)

4. Resolved class imbalance issues

- Applied SMOTe methodology to balance our target feature.
 - Oversampled minority class: Returns = 1 (Return) to reach 15k.
- SMOTe was applied on the training set only.
 - Aimed to train our model to best classify the 2 classes.
 - Then applied the trained model to our test set to evaluate the model's performance.

<u>Data Modeling</u>

Logistic Regression

Model 1

Model with features

- 1. Salemonth
- 2. Original Price
- 3. Amount
- 4. Amount Difference
- 5. Retail Difference
- 6. Brand Dummy Affordable
- 7. Brand Dummy Luxury
- 8. Return Rate (per State)

Observations

- First 4 variables are insignificant.
- Multicollinearity between ORGPRICE, AMT, & amt_diff.
- 4/8 features are significant.
- Salemonth is still not significant.

Logit Regression Results						
Dep. Variable:	Retui	rns No. 0	bservations:	:	30000	
Model:	Log	git Df Re	esiduals:		29992	
Method:	1	1LE Df Mo	del:		7	
Date: Thu	ı, 07 Dec 20	923 Pseud	lo R-squ.:		0.02019	
Time:	18:49:	:23 Log–L	ikelihood:		-20375.	
converged:	Fa	lse LL - Nu	ıll:		-20794.	
Covariance Type:	nonrobu	ust LLR p	-value:		5.035e-177	
	coef	std err	z 	P> z	[0.025	0.975]
Salemonth	-0.0022	0.004	-0.605	0.545	-0.009	0.005
ORGPRICE	-0.0019	1.17e+04	-1.63e-07	1.000	-2.3e+04	2.3e+04
AMT	0.0043	1.17e+04	3.66e-07	1.000	-2.3e+04	2.3e+04
amt_diff	0.0064	1.17e+04	5.46e-07	1.000	-2.3e+04	2.3e+04
retail_diff	-0.0048	0.001	-6.489	0.000	-0.006	-0.003
BRAND_dummy_Affordable	0.4248	0.032	13.479	0.000	0.363	0.487
BRAND_dummy_Luxury	0.5401	0.047	11.412	0.000	0.447	0.633
ReturnRate	-6.6285	0.455	-14.583 	0.000	-7.519 	-5.738

<u>Data Modeling</u>

Logistic Regression

Model 2

Model with 5 features

- 1. Salemonth
- 2. Original Price
- 3. Brand Dummy Affordable
- 4. Brand Dummy Luxury
- 5. Return Rate (per State)

Observations

- Remove highly correlated features with ORGPRICE.
- 4/5 features are significant.
- Salemonth is still not significant.

Logit Regression Results						
Dep. Variable:	 Return	s No. Ob	servations:		30000	
Model:	Logi	t Df Res	iduals:		29995	
Method:	ML	E Df Mod	lel:		4	
Date: Thu	ı, 07 Dec 202	3 Pseudo	R-squ.:		0.01589	
Time:	18:58:0	1 Log-Li	kelihood:		-20464.	
converged:	Tru	e LL–Nu1	l:		-20794.	
Covariance Type:	nonrobus	t LLR p-	-value:		9.816e-142	
=======================================	coef	std err	z	P> z	======== [0.025	0.975]
Salemonth	-0.0059	0.004	-1.664	0.096	 -0.013	0.001
ORGPRICE	0.0029	0.000	6.631	0.000	0.002	0.004
BRAND_dummy_Affordable	0.4518	0.031	14.440	0.000	0.390	0.513
BRAND_dummy_Luxury	0.6136	0.046	13.345	0.000	0.523	0.704
ReturnRate	-6.4078	0.453	-14.161	0.000	-7.295	-5.521

Logistic Regression

Key Takeaways:

- Using logistic regression as our baseline model does not perform well.
 - Pseudo R² extremely low for both models.
 - Consider other metrics for evaluating the two models.
 - Confusion matrix.

Solutions:

- Remove highly correlated variables from model 1.
 - Feature significance improved in Model 2.
 - Evaluation metrics worsen.
- Use Random Selection instead of SMOTe for class balance issues.
 - From 100k dataset randomly select 15k of minority class instead of imputing them.
 - We observed worse evaluation metrics.
- Implement different model: Random Forest.

Evaluation Metrics

Observations:

- All of the metrics are better in model 1 than model 2.
 - Despite the highly correlated features in model 1.
- Accuracy is relative good for model 1.
 - Accuracy is not a good metric for imbalanced data.
- Low Precision & F1 for minority class.
 - Logistic models not good predictors for probability of return.
- High Recall
 - Models are good at identifying positive instances.

Overall:

Models 1 & high likelihood of false positives.

Model 1

Model 2

Confusion Matrix: [[7803 10634] [415 1148]]

Classification Report:							
	precision	recall	f1-score	support			
0	0.95	0.42	0.59	18437			
1	0.10	0.73	0.17	1563			
accuracy			0.45	20000			
macro avg	0.52	0.58	0.38	20000			
weighted avg	0.88	0.45	0.55	20000			

Data Modeling Random Forest

Model with features & Importance:

- Salemonth: most important, specific months or seasonal trends
- Return Rate (per State): important, possibly derived from historical return data or customer behavior
- Amount & Original Price: transactional attributes maintain notable importance
- Retail Difference & Amount Difference: moderate importance, potentially related to discounts or fluctuations
- Brand Dummy Affordable & Brand Dummy
 Luxury: minimal importance

Model:

RandomForestClassifier

Random Forest Performance

• AUC: 0.5926

Accuracy: 0.77025

Precision: 0.1071

• Recall: 0.2642

• F1: 0.1524

<u>Summary</u>

- 1. Strength in overall predictions
- 2. Potential for false positives
- 3. May capture more actual return cases

Conclusions

- The correlation between seasonal trends, specific months, and return rates underscores the pivotal role of timing in precise return predictions.
- Aligned with insights from Exploratory Data Analysis (EDA), evident seasonal return trends in June, July, and December were identified.
- This temporal pattern coincides with promotional activities, notably during the Christmas season.
- Leveraging the Random Forest model and key features, a concise ROI analysis was conducted.

Strategic Recommendation

Seasonal Inventory Management

Strategy: Adjust inventory levels based on projected return rates during distinct seasons or specific months.

Dynamic Pricing Strategies:

Strategy: Implement dynamic pricing based and adjust pricing during high-return periods to account for potential returns, ensuring profitability even if returns occur.

Thank you!