

Concert Ticket Industry

SIZE

\$5.5BnUS Revenue, 2017*

STRUCTURE

Primary

axs[®]

Secondary

ISSUES

Tickets sell out instantly on primary market

Hard to navigate aftermarket options

Artists want fans to be able to purchase at reasonable prices

Stop scalpers from reaping profits

Project Goal: Consumer Ticket Application

Project Goal: Consumer Ticket Application

Data Engineering

Data Sources

	<i>ticketmaster</i> ®	StubHub	■ r SeatGeek	Spotify*
Upcoming Event Details	✓	✓	✓	Artist information such as genres, followers, images,
Individual Ticket Listings		✓		and popularity
Daily API Limit	5k requests	~15k requests	Unknown	None (50 artists per request)

ticketmaster®

amazon S3

End-to-End Process

API

Wrote scripts to:

- Make API calls to obtain jsons
- Extract fields of interest from jsons
- Compile into pandas dataframes and then send CSV to S3

S3

Simple Cloud Storage Service

- Stored raw data collected from APIs as CSVs

Redshift

Fully Managed Data Warehouse

- Upload S3 data to cluster
- Fast query performance with SQL-based tools

S3 - Simple Storage Service

At end of each Python script:

Push CSVs to S3 cloud

S3 stores raw data -- >
Redshift clusters will be shut down

Redshift - Relational Database Warehouse

- Python scripts to create and update tables in Redshift SQL database
- Schema to organize the tables:
 - > Ticketmaster, Stubhub, Seatgeek

NAME ▲	TYPE ▲	CATALOG ▲	SCHEMA ▲
artist_details	TABLE	dev	ticketmaster
event_details	TABLE	dev	ticketmaster
presales_details	TABLE	dev	ticketmaster
price_areas	TABLE	dev	ticketmaster
prices	TABLE	dev	ticketmaster

NAME ▲	TYPE ▲	CATALOG ▲	SCHEMA ▲
events_df	TABLE	dev	stubhub
events_perf	TABLE	dev	stubhub
events_scores	TABLE	dev	stubhub
events_ticket_summary	TABLE	dev	stubhub
tickets_deliv_method	TABLE	dev	stubhub
tickets_deliv_type	TABLE	dev	stubhub
tickets_df	TABLE	dev	stubhub
tickets_listing_attr	TABLE	dev	stubhub
tickets_splits	TABLE	dev	stubhub
venues_df	TABLE	dev	stubhub

NAME ▲	TYPE ▲	CATALOG ▲	SCHEMA ▲
events_df	TABLE	dev	seatgeek
prices_df	TABLE	dev	seatgeek
venues_df	TABLE	dev	seatgeek

Redshift - Relational Database Warehouse

Events, performers, venues, only need to be updated if new events are added to API

- Ticket listings to be appended to table each day
 - Need to track if ticket is listed or sold

```
# fill into original table
engine.execute(text("""ALTER TABLE stubhub.events_ticket_summary APPEND FROM
working.events_ticket_summary;""").execution_options(autocommit=True))
```


Setting Up Our Virtual Machine with EC2

5. Add Tags

1. Choose AMI

2. Choose Instance Type

Configure Instance

4. Add Storage

- Amazon Elastic Compute Cloud (EC2) is a cloud-computing platform where users can rent virtual machines (VM)
- We wanted to run our Python scripts and process the data in the cloud

6. Configure Security Group

7. Review

Interacting With Our Virtual Machine

- We can access the terminal of our VM using an SSH client (PuTTY)
- Similarly, we can use an FTP client (FileZilla) to access its directories

Scheduling

Since our VM's operating system was Ubuntu, we took advantage of *cron* to schedule our scripts to run in the middle of the night

Data Overview

Data Used for Modeling			
Source	StubHub only		
Dates Collected	9/8/2018 - 9/12/2018 5 days observed → 3 days training data + 1 day holdout data + 1 day lost as reference		
Cities	New York, Boston, Chicago, Washington D.C., San Francisco		

1.2M

Observations

4.9K

Concerts

2.5K

Performers

345

Venues

Feature Exploration

Model Evaluation

<u>Default Cut-Off (p = 0.5)</u>

- Great accuracy! (.89)
- However, places observations almost entirely in the majority class
 - Not terribly useful

Bayesian Decision Boundary (p = 0.1)

- Substantial decrease in accuracy (.69)
 - Much better classification to minority class

AUC Metric

- We will analyze the area under the Receiver Operating Characteristic (AUC)
- The ROC curve plots TPR against FPR as cut-off threshold varies
- Seek to maximize AUC

Model Comparison: AUC

Tree-based models:

- Highest AUC in both training and holdout
- Prone to overfitting
- Long training times

Probabilistic models:

- Reasonable AUC results
- Still some overfitting
- Much faster training

Gradient Boosting

Random Forest

- Cross-validation scores were not always indicative of holdout performance
- Best-performing models on the holdout set (according to AUC) were still substantially overfit on the training set

Random Forest

- Overfit models tended to make predictions at either extreme of the probability spectrum
- A smoother distribution of predicted probabilities gives us more control down the line when we set threshold values to determine predicted classes

Naive Bayes with Mixed Features

Build Separate Models

497 features 0.75 training AUC 0.73 holdout AUC

15 features 0.73 training AUC 0.70 holdout AUC

Estimate Probabilities

ID	Predicted P	Actual	
	Bernoulli	Gaussian	Class
0	0.03 0.12	0.05 0.14	0 1
			.
	•		
	•		.
			.
	•		

Ensemble

JC JC

Loss Score Matrix: Use Case

- User views a ticket listing. They are interested in buying the ticket. Our product predicts that the
 ticket will still be available tomorrow. User displays no sense of urgency in purchasing the ticket
 as a result. User returns tomorrow to find that the ticket listing is no longer available.
 - Frustrating user experience
- Need to institute harsh penalty on false negatives
 - 1 = listing unavailable following day
 - 0 = listing still available following day
- Custom Loss Matrix

$$LM = \left[\begin{array}{cc} 0 & 1 \\ 15 & 0 \end{array} \right]$$

Model Score = Sum(Loss Matrix * Confusion Matrix)

Model Score Function

- Implemented recursive binary search to find optimal probability cut-off given custom loss matrix
 - Best model minimizes model score
 - Can run into issues due to local behavior

Model Results: Custom Loss Matrix

- We found similar results using our custom loss matrix -gradient boosting was the most effective, but also displayed some overfitting
- Model tuning and prediction speed may also be a factor that could push us towards Naive Bayes, although predictions would likely be batched overnight rather than real-time

Gradient Boosting: Results

Conclusion and Next Steps

Conclusions

- Imbalanced classification problems can be tricky (domain-specific tradeoff)
- Gear feature engineering towards model choice

Next Steps

- Add additional days of data and cross-validate using days as folds
- Re-tune individual models using loss-function minimization rather than ROC
- Explore features that account for availability and price of similar tickets
- Include time-lagged variables to account for time series effect
- Incorporate TicketMaster, SeatGeek, and Spotify data using fuzzy matching
- Tier price predictions (High Risk, Moderate Risk, Low Risk)

