

Subject: Math (LS)
Duration: 90 minutes

المادة: الرباضيات (علوم الحياة) المدة: ساعة و نصف

Exercise 1:

In the following table, only one of the proposed answers to each question is correct. Write the number of each question and give, with justification, the answer that corresponds to it.

N	Question	Answers		
		А	В	С
1)	$\lim_{x \to 0} \frac{1}{x^3 lnx}$	+∞	-∞	1
2)	x is a real number. The number of solutions of the equation: $ln^2(x) + 3 ln(x) + 2 = 0$ is:	0	1	2
3)	Let f(x)=In(1-Inx) then f	is strictly decreasing	is strictly increasing	is not monotonic
4)	$\lim_{x \to +\infty} x \ln\left(1 + \frac{1}{x}\right)$	+∞	0	1
5)	Let f be a function defined on IR by: $f(x)=x^4-4x^3+6x^2$ then f	Has a single inflection point	Has a double inflection point	Don't has inflection point
6)	The domain of definition of the function f, such that $f(x) = \ln(4 - x^2)$, is:] – ∞; –2[∪]2; +∞[]-2;2[] - ∞; 2] ∪ [2; +∞[
7)	$\lim_{x \to +\infty} x^3 - x \ln x + 2$	+∞	+2	-8

Exercise2:

Part (A):

Let g be a function defined over]0; $+\infty$ [by: $g(x) = 1+x - x \ln x$.

- 1) Calculate the limits of g(x) at 0 and $+\infty$.
- 2) Calculate g'(x) then construct the table of variation of g.
- 3) Show that the equation g(x) = 0 admits a unique solution α and verify that $3.59 \le \alpha \le 3.6$.
- 4) Study the of sign of g(x).

Part (B):

Consider the function f defined over]0; + ∞ [by $f(x) = 1 + \frac{2\ln x}{x+1}$, where (C) is its representative curve in an orthonormal system .

- 1) Verify that $f(\alpha) = 1 + \frac{2}{\alpha}$
- 2) Calculate $\lim_{x\to 0} f(x)$. Deduce an asymptote to (C).
- 3) a. Show that the line (d) of equation y = 1 is an asymptote to (C).
 - b. Study the relative position of (C) and (d).
- 4) Verify that $f'(x) = \frac{2g(x)}{x(x+1)^2}$ and set up the table of variation of f.
- 5) Determine the equation of (T), the tangent to (C) at a point A of abscissa 1.
- 6) Draw (d), (T) and (C). (take α = 3.6)