Times Series Multivariate Analysis of the Federal Funds Rate

By Jeff Miller, <u>J_miller42@u.pacific.edu</u>

University of the Pacific, School of Engineering and Computer Science In fulfilment of the requirements for the degree of Master of Science in Analytics

Data Sources:

(https://fred.stlouisfed.org/series/FEDFUNDS), Federal Funds rate (http://research.stlouisfed.org/fred2/series/CPILFESL), Consumer Price Index (http://research.stlouisfed.org/fred2/series/UNRATE), US unemployment rate (https://fred.stlouisfed.org/series/INDPRO), US Industrial Production rate

Section 1: Multivariate analysis

- 1. The federal funds rate is the overnight interest on loans between banks. It is the key interest rate that our Federal Reserve uses to control the economy.
- . twoway (line ip time) (line infl time), name(IP_INFL, replace)

FFNDS VARIABLE

. dfuller ffnds

MacKinnon approximate p-value for Z(t) = 0.3444

- . gen ffdif=d.ffnds
- . dfuller ffdif

MacKinnon approximate p-value for Z(t) = 0.0000

IP VARIABALE

. dfuller ip

MacKinnon approximate p-value for Z(t) = 0.8774

. gen gy=d.ip

(1 missing value generated)

. dfuller gy

MacKinnon approximate p-value for Z(t) = 0.0000

INFL VARIABLE

. dfuller infl

MacKinnon approximate p-value for Z(t) = 0.6328

- . gen pidif=d.infl
- . dfuller pidif

MacKinnon approximate p-value for Z(t) = 0.0000

UNRATE VARIABLE

. dfuller unrate

MacKinnon approximate p-value for Z(t) = 0.5438

- . gen udif=d.unrate
- . dfuller udif

MacKinnon approximate p-value for Z(t) = 0.0000

INDEPENDANT VARIABLES ARE NOW STATIONARY AT GROWTH RATES

REGRESSING FFDIF WITH LAGS OF FFDIF

. reg ffdif 1	reg ffdif l(1,2,4).ffdif								
Source	SS	df	MS		er of obs		692 50, 24		
Model Residual				6 R-sq	688) > F uared R-squared	=	0.0000 0.1797 0.1761		
Total	189.857904	691	.27475818		MSE	=			
ffdif	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]		
L2.		.0374285	-4.37 -2.46	0.000 0.014	1531254	1	0900928 0173383		
. estat durbir	nalt								
Durbin's alternative test for autocorrelation									
lags(p)	chi	2	df		Prol	>	chi2		
1	0.1	01	1		0.	750	08		
	HO: no serial correlation								

Growth rate of federal funds is significantly explained by its lags 1,2, and 4, and there is no auto correlation.

Adjusted r squared - how close the data are to the fitted regression line - is not very good (.179)

INTRODCING GY, LOG GROWTH OF INDUSTRIAL PRODUCTION

reg ffdif 1(1,	eg ffdif l(1,2,4).ffdif l(3).gy									
Source	SS	df	MS		ber of obs	=	692 39.26			
Model Residual	35.3235312 154.534373	4 687	8.83088279 .224940863	Prol R-s	, 687) b > F quared R-squared		0.0000 0.1861			
Total	189.857904	691	.274758183		t MSE	=	.47428			
ffdif	Coef.	Std. Err.	t	P> t	[95% Con	f.	Interval]			
ffdif L1. L2. L4.	.4384589 1681988 0869334	.0374526 .0373639 .0344781	-4.50	0.000 0.000 0.012	.3649236 2415599 1546286		.5119943 0948376 0192383			
gy L3.	.0874005	.0377637	2.31	0.021	.0132544		.1615466			
_cons	0128867	.0186137	-0.69	0.489	0494333		.02366			
936.3857 959	9.0836									

INTRODCING PIDIF, GROWTH IN THE INFLATION RATE

reg ffdif l(1,2).ffdif l(3).gy l(1).pidif									
	Source	55	df	MS		per of obs	=	693 41.02	
	Model Residual	36.6007433 153.4803		.223081831	R-s	, 688) > F quared R-squared		0.1926	
	Total					t MSE	=	.47232	
	ffdif	Coef.	Std. Err.	t	P> t	[95% Con	F.	Interval]	
	ffdif L1. L2.	.4384738 1600935	.0372213		0.000 0.000	. 3653928 2333364		.5115548 0868506	
	gy L3.	.0715706	.037707	1.90	0.058	0024641		.1456052	
	pidif L1.	.243372	.0689759	3.53	0.000	.1079435		.3788004	
	_cons	0098821	.0185208	-0.53	0.594	0462461		.0264819	
	931.9806 954.6857								

After including pidif, the pvalue of gy was > .05 and thus insignificant and removed reg ffdif 1(1,2).ffdif 1(1).pidif

Source Model Residual	35.7932519 154.289556 190.082807	690	MS 11.931084 .223608051 .274289765	Number of (F(3, 690) Prob > F R-squared Adj R-squar Root MSE	= = =	0.1883 0.1848
ffdif	Coef.	Std. Err.	t F	> t [959	% Conf.	Interval]
ffdif L1. L2.	.4403072 155458	.0372509			71684 85216	.5134459 0823944
pidif L1.	.2550161	.0687847			99637	. 3900684
_cons 933.9599 952	0010553 2.1298	.0179502	-0.06 0	0.953036	52989	.0341882

INTRODCING UDIF, GROWTH IN UNEMPLOYMENT

. reg ffdif 1((1,2).ffdif l(1).pidif l	(3).udif				
Source	SS	df	MS		ber of obs , 688)		693
Model Residual	37.5855389 152.495504		9.39638473 .221650442	Prol R-s	, 666) b > F quared R-squared	=	0.0000 0.1977 0.1931
Total	190.081043	692	.274683588		t MSE	=	.4708
ffdif	Coef.	Std. Err.	t	P> t	[95% Con	f.	Interval]
ffdif L1. L2.	.4380181 1567205	.0370977 .0371172		0.000	.3651798 229597		.5108564 0838439
pidif L1.	. 2352944	.0688331	3.42	0.001	.1001461		.3704426
udif L3.	2742921	.0965617	-2.84	0.005	4638831		0847011
_cons	0015057	.0178848	-0.08	0.933	0366211		.0336096
927.5197 950). 2248						

Lowest estat ic and increased adjusted r squared (but still not great)

. estat durbinalt	:		
Durbin's alternat	ive test for autoco	orrelation	
lags(p)	chi2	df	Prob > chi2
1	0.491	1	0.4835
	HO: no seria	al correlation	

This model gives the lowest BIC and exhibits no autocorrelation.

PREDICT RESIDUALS

- . predict resid, resid
- . tsline resid

(looks heteroscedastic)

RESIDUAL ANALYSIS

few outside of bands. not white noise yet.

ARIMA MODELS

arima ffdif 1(1,2).ffdif 1(1).pidif 1(3).udif, nolog ARIMA regression Number of obs = Wald chi2(4) = Prob > chi2 = Sample: 1958m5 - 2016m1 Log likelihood = -458.7598 ffdif | OPG ffdif | Coef. Std. Err. z P>|z| [95% Conf. Interval] ffdif
 ffdif
 .4380181
 .0168522
 25.99
 0.000
 .4049884
 .4710478

 L2.
 -.1567205
 .016717
 -9.37
 0.000
 -.1894851
 -.1239558
pidif .2352944 .0452887 5.20 0.000 .1465302 .3240585 udif -.2742921 .1072661 -2.56 0.011 -.4845298 -.0640544 _cons -.0015057 .0215168 -0.07 0.944 -.0436779 .0406664 .004121 113.83 0.000 .4771732 /sigma | .4690962 .4610192 . estat ic 929.5197 956.7658

First version with gy=d.log(ip) . reg ffdif l(1,2,4).ffdif l(1,3).pidif l(3).udif ADJRSQ 0.2045 918.4742 950.2513

Second version with gy=d.ip (Plots and models shown above)

. reg ffdif l(1,2).ffdif l(1).pidif l(3).udif

ADJRSQ 0.1931

927.5197 950.2248

Using gy=d.ip gives slightly better BIC but slightly worst adjusted r squared.

2. Forecast with 95% confidence bands.

- . reg ffdif l(1,2,4).ffdif l(1,3).pidif l(3).udif
- . predict pred_ffdif, xb
- . gen fe=ffdif- pred_ffdif
- . tsline fe

CONFIDENCE INTERVAL CALCULATION

- . predict se_cycle, stdp
- . gen L_confint=pred_ffdif-1.96*se_cycle
- . gen U_confint=pred_ffdif+1.96*se_cycle
- . tsline L_confint U_confint pred_ffdif

Section 2: Vector auto regression (VAR)

1) VAR to obtain IRF's as a stationary series.

Variable Stationarity: (testing and correction)

HOUSEP

. dfuller housep

MacKinnon approximate p-value for Z(t) = 0.1475

- . gen log_housep=log(housep)
- . dfuller log_housep

MacKinnon approximate p-value for Z(t) = 0.0038

FFR (Federal Funds Rate)

. dfuller ffr

MacKinnon approximate p-value for Z(t) = 0.4455

- . gen ffrdif=d.ffr
- . dfuller ffrdif

MacKinnon approximate p-value for Z(t) = 0.0000

IP (Industrial Production)

. dfuller ip

MacKinnon approximate p-value for Z(t) = 0.8496

- . gen ipdif=d.ip
- . dfuller ipdif

MacKinnon approximate p-value for Z(t) = 0.0000

VARSOC to pick number of lags. varsoc ffrdif ipdif log_housep

Sampl	le: 2000m6	- 2016m5				Number of	obs	= 1
lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-48.283				.000342	.534198	.554812	. 585096
1	641.071	1378.7	9	0.000	2.9e-07	-6.55282	-6.47036	-6.34923
2	857.103	432.06	9	0.000	3.3e-08*	-8.7094*	-8.5651*	-8.35311
3	862.496	10.787	9	0.291	3.4e-08	-8.67184	-8.46569	-8.16285
4	872.92	20.847*	9	0.013	3.4e-08	-8.68666	-8.41868	-8.02498

BIC indicates 2 lags (as do FPE, ACI, and HQIC)

<u>Impulse response function (IRF):</u>

- . quietly var ffrdif ipdiff grwth_housep, lags(12)
- . irf create houseptest, set(houseptest, replace) step(12) order(ffrdif ipdiff grwth_housep)
- . irf graph oirf, set(houseptest) irf(houseptest) impulse(ffrdif) response(grwth_housep) yline(0)

A shocked difference in Federal funds rate (d.ffr) has a statistical significance correlation with log of housing prices.

. irf graph oirf, set(houseptest) irf(houseptest) impulse(ffrdif) response(ipdiff) yline(0)

A shocked difference in Federal funds rate (d.ffr) has a statistical significance correlation with change in industrial production from months 2 to 12.

irf graph oirf, set(houseptest) irf(houseptest) impulse(ipdiff) response(grwth_housep) yline(0)

A shock to change in industrial production (ipdiff) has no statistical significance correlation with the log of housing prices.

irf graph oirf, set(houseptest) irf(houseptest) impulse(ipdiff) response(ffrdif) yline(0)

A shock to change in industrial production has a statistical significance correlation with the change in federal funds rate for the first three months.

irf graph oirf, set(houseptest) irf(houseptest) impulse(grwth_housep) response(ffrdif) yline(0)

Impulse of the log of house price has a statistical significance correlation with the change in federal funds rate

Impulse of the log of house price has a statistical significance correlation with the change in industrial production.

2) Re ordering variables and reinterpretation of IRF.

From the above impulse response exploration with the order (ffrdif ipdiff grwth_housep) it was seen that a shock to the difference in federal funds rate (d.ffr) has a statistical significance correlation with the log of housing prices.

In addition, a shocked difference in industrial production (d.ip) has a statistical significance correlation with the difference in federal funds rate in months 1 to 3, while a shocked difference in federal funds rate (d.ffr) has a statistical significance correlation with the change in industrial production from months 2 to 12 after the shock.

Based on these finding, a Choleski ordering of (ipdiff ffrdif grwth_housep) was chosen for further exploration.

Appears identical to the same plot with order (ffrdif ipdiff grwth_housep).

Conveys the same statistically significance correlation as the plot when ordered (ffrdif ipdiff grwth_housep), however there are differences in the confidence boundaries at time zero.

irf graph oirf, set(houseptest) irf(houseptest) impulse(ipdiff) response(grwth_housep) yline(0)

As in the prior ordering, a shock to change in industrial production has no statistical significance correlation with the log of housing prices.

irf graph oirf, set(houseptest) irf(houseptest) impulse(ipdiff) response(ffrdif) yline(0)

A shock to change in industrial production has a statistical significance correlation with the change in federal funds rate except for a fraction of a period between period 1 and 2.

 $. irf graph oirf, set (houseptest) irf (houseptest) impulse (grwth_housep) \ response (ffrdif) \ yline (0) \\$

Impulse of the log of house price has a statistical significance correlation with the change in federal funds rate and appears unaffected by the different ordering.

Impulse of the log of house price has a statistical significance correlation with the change in industrial production and appears unaffected by the different ordering.

Re ordering with industrial production last is appropriate since the IRF plots indicate that it has the least correlation with housing and federal funds in either of the two prior order explorations.

The causal relationship between change in federal funds rate and log of house prices should determine which is ordered first. The Granger Causality Test can be used to get an indication of the direction of this relationship.

3) Granger causality test for ordering of impulse response functions.

Granger causality test for grwth_housep ffrdif:

. quietly var grwth_housep ffrdif, lags(2)

•	vai gi aligei					
	Granger causality Wald	tests				_
	Equation	Excluded	chi2	df P	rob > chi2	Ţ
	grwth_housep grwth_housep	ffrdif ALL	58.525 58.525	1 1	0.000 0.000	
	ffrdif ffrdif	grwth_housep ALL	3.0169 3.0169	1	0.082 0.082	1
١.	T					

H0: grwth_housep granger causes ffrdif can be rejected (Prob of H0 rejection > .05) and Ha: ffrdif granger causes grwth_housep can be accepted.

Thus the we can conclude that the change in the federal funds rate granger causes growth rate in housing prices and the best ordering is (ffrdif grwth_housep ipdiff).