

Sujets de l'année 2004-2005

1 Devoir à la maison

Exercice 1

Soit *M* la matrice réelle 3×3 suivante :

$$M = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$$

- 1. Déterminer les valeurs propres de M.
- 2. Montrer que *M* est diagonalisable.
- 3. Déterminer une base de vecteurs propres et *P* la matrice de passage.
- 4. On a $D = P^{-1}MP$, pour $k \in \mathbb{N}$ exprimer M^k en fonction de D^k , puis calculer M^k .

Correction ▼ [002563]

Exercice 2

Soit *E* un espace vectoriel sur un corps K ($K = \mathbb{R}$ ou \mathbb{C}), on appelle *projecteur* un endomorphisme p de E vérifiant $p \circ p = p$. Soit p un projecteur.

- 1. Montrer que $\mathrm{Id}_E p$ est un projecteur, calculer $p \circ (\mathrm{Id}_E p)$ et $(\mathrm{Id}_E p) \circ p$.
- 2. Montrer que pour tout $\vec{x} \in \text{Im } p$, on a $p(\vec{x}) = \vec{x}$.
- 3. En déduire que $\operatorname{Im} p$ et $\ker p$ sont supplémentaires.
- 4. Montrer que le rang de *p* est égal à la trace de *p*. (On rappelle que la trace de la matrice d'un endomorphisme ne dépend pas de la base dans laquelle on exprime cette matrice.)

Correction ▼ [002564]

Exercice 3

Soit $A = (a_{ij})_{1 \le i,j \le n}$ une matrice carrée $n \times n$. On veut démontrer le résultat suivant dû à Hadamard : Supposons que pour tout $i \in \{1, \dots, n\}$, on ait

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$$

alors A est inversible.

- 1. Montrer le résultat pour n = 2.
- 2. Soit B, la matrice obtenue en remplaçant, pour $j \ge 2$, chaque colonne c_j de A par la colonne

$$c_j - \frac{a_{1j}}{a_{11}}c_1,$$

Calculer les b_{ij} en fonction des a_{ij} . Montrer que si les coefficients de A satisfont les inégalités ci-dessus, alors pour $i \ge 2$, on a

$$|b_{ii}| > \sum_{j=2, j\neq i}^{n} |b_{ij}|.$$

Correction ▼ [002565]

2 Partiel

Exercice 4

Soit

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}$$

Démontrer que A est diagonalisable et trouver une matrice P telle que $P^{-1}AP$ soit diagonale.

Correction ▼ [002566]

Exercice 5

Soit

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Factoriser le polynôme caractéristique de A. La matrice A est-elle diagonalisable dans \mathbb{R} ? dans \mathbb{C} ?

Correction ▼ [002567]

Exercice 6

Soit

$$A = \begin{pmatrix} a & c \\ c & d \end{pmatrix} \in M_2(\mathbb{R})$$

Démontrer que A est diagonalisable dans \mathbb{R} .

Correction ▼ [002568]

Exercice 7

Soit A la matrice suivante

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Calculer A^2 et vérifier que $A^2 = A + 2I_3$. En déduire que A est inversible et donner son inverse en fonction de A.

Correction ▼ [002569]

Exercice 8

Soit *A* une matrice carrée d'ordre *n*. On suppose que *A* est inversible et que $\lambda \in \mathbb{R}$ est une valeur propre de *A*.

- 1. Démontrer que $\lambda \neq 0$.
- 2. Démontrer que si \vec{x} est un vecteur propre de A pour la valeur propre λ alors il est vecteur propre de A^{-1} de valeur propre λ^{-1} .

Correction ▼ [002570]

Exercice 9

Soit f un endomorphisme de E vérifiant $f^2 = \text{mathrmId}_E$.

1. Démontrer que les seules valeurs propres possibles de f sont 1 et -1.

2. Vérifier que pour tout $\vec{x} \in E$, on a

$$f(\vec{x} - f(\vec{x})) = -(\vec{x} - f(\vec{x}))$$
 et $f(\vec{x} + f(\vec{x})) = (\vec{x} + f(\vec{x}))$

et en déduire que f admet toujours une valeur propre.

- 3. Démontrer que si 1 et -1 sont valeurs propres, alors E est somme directe des sous-espaces propres correspondants.
- 4. Traduire géométriquement sur un dessin dans le cas n = 2.

Correction ▼ [002571]

3 Examen

Exercice 10

(9 points) Soit A la matrice de $M_3(\mathbb{R})$ suivante :

$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$

- 1. Démontrer que les valeurs propres de A sont 1 et 2.
- 2. Déterminer les sous-espaces propres de *A*. La matrice *A* est-elle diagonalisable ?
- 3. Déterminer les sous-espaces caractéristiques de A.
- 4. Déterminer une base de \mathbb{R}^3 dans laquelle la matrice de l'endomorphisme associé à A est

$$B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

En déduire la décomposition de Dunford de *B*.

5. Résoudre le système différentiel

$$\begin{cases} x' = x + z \\ y' = -x + 2y + z \\ z' = x - y + z \end{cases}$$

[002572]

Exercice 11

(7 points) On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0, u_1=1$ et par la relation de récurrence

$$u_{n+1} = \frac{1}{2}(u_n + u_{n-1}).$$

1. Déterminer une matrice $A \in M_2(\mathbb{R})$ telle que pour tout $n \ge 1$ on ait

$$\begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix} = A^n \begin{pmatrix} u_1 \\ u_0 \end{pmatrix}.$$

Justifier.

- 2. Déterminer le polynôme caractéristique $P_A(X)$ de A et calculer ses racines λ_1 et λ_2 .
- 3. Soit $R_n(X) = a_n X + b_n$ le reste de la division euclidienne de X^n par $P_A(X)$. Calculer a_n et b_n (on pourra utiliser les racines λ_1 et λ_2).

4. Montrer que $A^n = a_n A + b_n I_2$, en déduire que la matrice A^n converge lorsque n tend vers $+\infty$ vers une limite A_∞ que l'on déterminera. Calculer $\lim_{n \to +\infty} u_n$.

[002573]

Exercice 12

(5 points) Soit A une matrice carrée, $A \in M_n(K)$ ($K = \mathbb{R}$ ou \mathbb{C}). On rappelle que la trace d'une matrice est la somme de ses coefficients diagonaux et que $\operatorname{tr}(BAB^{-1}) = \operatorname{tr}A$.

Démontrer que $det(expA) = e^{trA}$ dans les cas suivants :

- 1. A diagonalisable.
- 2. A triangulaire supérieure ayant une diagonale de zéros.
- 3. A trigonalisable.
- 4. A quelconque.

[002574]

4 Rattrapage

Exercice 13

(7 points) On considère la suite $(u_n)_{n \in \mathbb{N}}$ définie par $u_0 = 0$, $u_1 = 1$ et par la relation de récurrence

$$u_{n+1} = \frac{1}{2}(u_n + u_{n-1}).$$

1. Déterminer une matrice $A \in M_2(\mathbb{R})$ telle que pour tout $n \ge 1$ on ait

$$\begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix} = A^n \begin{pmatrix} u_1 \\ u_0 \end{pmatrix}.$$

Justifier.

- 2. Déterminer le polynôme caractéristique $P_A(X)$ de A et calculer ses racines λ_1 et λ_2 .
- 3. Soit $R_n(X) = a_n X + b_n$ le reste de la division euclidienne de X^n par $P_A(X)$. Calculer a_n et b_n (on pourra utiliser les racines λ_1 et λ_2).
- 4. Montrer que $A^n = a_n A + b_n I_2$, en déduire que la matrice A^n converge lorsque n tend vers $+\infty$ vers une limite A_∞ que l'on déterminera. Calculer $\lim_{n \to +\infty} u_n$.

[002573]

Exercice 14

(5 points) Soit A une matrice carrée, $A \in M_n(K)$ ($K = \mathbb{R}$ ou \mathbb{C}). On rappelle que la trace d'une matrice est la somme de ses coefficients diagonaux et que $\operatorname{tr}(BAB^{-1}) = \operatorname{tr}A$.

Démontrer que $det(expA) = e^{trA}$ dans les cas suivants :

- 1. A diagonalisable.
- 2. A triangulaire supérieure ayant une diagonale de zéros.
- 3. A trigonalisable.
- 4. A quelconque.

[002574]

Exercice 15

(4 points) On suppose qu'une population x de lapins et une population y de loups sont gouvernées par le système suivant d'équations différentielles :

$$(S) \begin{cases} x' = 4x - 2y \\ y' = x + y \end{cases}$$

1. Diagonaliser la matrice

$$A = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}.$$

- 2. Exprimer le système (S) et ses solutions dans une base de vecteurs propres de A.
- 3. Représenter graphiquement les trajectoires de (S) dans le repère (Oxy).
- 4. Discuter graphiquement l'évolution de la population des lapins en fonction des conditions initiales.

Correction ▼ [002575

Exercice 16

(9 points) Soit u l'endomorphisme de \mathbb{R}^3 , dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

- 1. Calculer les valeurs propres de A. L'endomorphisme u est-il diagonalisable ?
- 2. Calculer $(A I)^2$. Montrer que $A^n = nA + (1 n)I$ en utilisant la formule du binôme de Newton.
- 3. Soient $P(X) = (X 1)^2$ et $Q \in \mathbb{R}[X]$. Exprimer le reste de la division euclidienne de Q par P en fonction de Q(1) et Q'(1), où Q' est le polynôme dérivé de Q. En remarquant que P(A) = 0 et en utilisant le résultat précédent avec un choix judicieux du polynôme Q, retrouver A^n .
- 4. (a) Montrer que l'image de \mathbb{R}^3 par l'endomorphisme u-mathrmId est un sous-espace vectoriel de dimension 1, on notera ε_2 une base.
 - (b) Déterminer un vecteur ε_3 tel que $u(\varepsilon_3) = \varepsilon_2 + \varepsilon_3$. Déterminer un vecteur propre ε_1 de u non colinéaire à ε_2 .
 - (c) Montrer que $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est une base de \mathbb{R}^3 . Ecrire la matrice de u dans cette base, ainsi que les matrices de passage.
 - (d) Retrouver A^n .

Correction ▼ [002576]

Exercice 17

(7 *points*) Soient M et A deux matrices de $\mathcal{M}_n(\mathbb{R})$ telles que MA = AM. On suppose que M admet n valeurs propres distinctes.

- 1. Soit x un vecteur propre de M de valeur propre λ , montrer que $MAx = \lambda Ax$, en déduire que les vecteurs x et Ax sont colinéaires, puis que tout vecteur propre de M est un vecteur propre de A.
- 2. On note maintenant $\lambda_1, \dots, \lambda_n$ les valeurs propres de M et μ_1, \dots, μ_n celles de A.
 - (a) Montrer par récurrence sur *n* l'égalité suivante :

$$\begin{vmatrix} 1 & \lambda_1 & \cdots & \lambda_1^{n-1} \\ \vdots & & \vdots \\ 1 & \lambda_n & \cdots & \lambda_n^{n-1} \end{vmatrix} = \prod_{1 \leq i < j \leq n} (\lambda_i - \lambda_j).$$

En déduire que le système suivant

$$\begin{cases} \mu_1 = \alpha_0 + \alpha_1 \lambda_1 + \dots + \alpha_{n-1} \lambda_1^{n-1} \\ \vdots \\ \mu_n = \alpha_0 + \alpha_1 \lambda_n + \dots + \alpha_{n-1} \lambda_n^{n-1} \end{cases}$$

admet une unique solution $(\alpha_0, \dots, \alpha_{n-1}) \in \mathbb{R}^n$.

(b) Soient M' et A' les matrices diagonales suivantes :

$$M' = egin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \ddots & & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}, \ A' = egin{pmatrix} \mu_1 & 0 & \cdots & 0 \\ 0 & \ddots & & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & 0 & \mu_n \end{pmatrix}.$$

Montrer qu'il existe des réels $\alpha_0, \cdots, \alpha_{n-1}$ tels que

$$A' = \sum_{k=0}^{n-1} \alpha_k M'^k$$

et en déduire qu'il existe des réels $\alpha_0, \cdots, \alpha_{n-1}$ tels que

$$A = \sum_{k=0}^{n-1} \alpha_k M^k.$$

Correction ▼ [002577]

Soit M la matrice réelle 3×3 suivante :

$$M = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$$

1. Déterminons les valeurs propres de M.

Ce sont les racines du polynôme caractéristique

$$P_M(X) = \begin{vmatrix} -X & 2 & -1 \\ 3 & -2 - X & 0 \\ -2 & 2 & 1 - X \end{vmatrix} = -1 \begin{vmatrix} 3 & -2 - X \\ -2 & 2 \end{vmatrix} + (1 - X) \begin{vmatrix} -X & 2 \\ 3 & -2 - 2X \end{vmatrix}$$
 (1)

$$= (1 - X)(X^2 + 2X - 8) \tag{2}$$

$$= (1-X)(X+4)(X-2). (3)$$

La matrice M admet donc trois valeurs propres distinctes qui sont : 1,2, et -4.

2. Montrons que M est diagonalisable.

Nous venons de voir que M, matrice réelle 3×3 , admet trois valeurs propres réelles distinctes, cela prouve que M est diagonalisable.

3. Déterminons une base de vecteurs propres et P la matrice de passage.

Les trois sous-espaces propres distincts sont de dimension 1, il suffit de déterminer un vecteur propre pour chacune des valeurs propres.

 $\lambda = 1$: Le vecteur \vec{u} de coordonnées (x, y, z) est un vecteur propre pour la valeur propre 1 si et seulement si

$$\begin{cases} 2y - z = x \\ 3x - 2y = y \iff \begin{cases} -x + 2y - z = 0 \\ 3x - 3y = 0 \iff \begin{cases} x = y \\ x = z \end{cases} \end{cases}$$

Le sous-espace propre associé à la valeur propre $\lambda = 1$ est la droite vectorielle engendrée par le vecteur $\vec{e_1}$ de coordonnées (1,1,1).

 $\lambda = 2$: Le vecteur \vec{u} de coordonnées (x, y, z) est un vecteur propre pour la valeur propre 2 si et seulement si

$$\begin{cases}
-2x + 2y - z = 0 \\
3x - 4y = 0 \\
-2x + 2y - z = 0
\end{cases} \iff \begin{cases}
3x - 4y = 0 \\
-2x + 2y - z = 0
\end{cases}$$

Le sous-espace propre associé à la valeur propre $\lambda=2$ est la droite vectorielle engendrée par le vecteur $\vec{e_2}$ de coordonnées (4,3,-2).

 $\lambda = -4$: Le vecteur \vec{u} de coordonnées (x,y,z) est un vecteur propre pour la valeur propre -4 si et seulement si

$$\begin{cases}
-4x + 2y - z = 0 \\
3x + 2y = 0 \iff \begin{cases}
x - z = 0 \\
2y + 3x = 0
\end{cases}$$

Le sous-espace propre associé à la valeur propre $\lambda = -4$ est la droite vectorielle engendrée par le vecteur $\vec{e_3}$ de coordonnées (2, -3, 2).

Les vecteurs $\vec{e_1}$, $\vec{e_2}$ et $\vec{e_3}$ forment une base de E composée de vecteurs propres, la matrice de passage P est égale à

$$P = \begin{pmatrix} 1 & 4 & 2 \\ 1 & 3 & -3 \\ 1 & -2 & 2 \end{pmatrix}$$

4. Exprimons M^k en fonction de D^k , puis calculons M^k .

On a

$$D = P^{-1}MP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -4 \end{pmatrix}$$

pour $k \in \mathbb{N}$, on a

$$D^k = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^k & 0 \\ 0 & 0 & (-4)^k \end{pmatrix},$$

et $M^k = PD^kP^{-1}$.

Calculons donc la matrice P^{-1} : on a $P^{-1} = \frac{1}{\det P} (\text{comP})^{\text{t}}$. Or

$$\det P = \begin{vmatrix} 1 & 4 & 2 \\ 1 & 3 & -3 \\ 1 & -2 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 6 & 2 \\ 1 & 0 & -3 \\ 1 & 0 & 2 \end{vmatrix} = -6 \begin{vmatrix} 1 & -3 \\ 1 & 2 \end{vmatrix} = -30,$$

et

$$comP = \begin{pmatrix} 0 & -5 & -5 \\ -12 & 0 & 6 \\ -18 & 5 & -1 \end{pmatrix}$$

d'où

$$P^{-1} = -\frac{1}{30} \begin{pmatrix} 0 & -12 & -18 \\ -5 & 0 & 5 \\ -5 & 6 & -1 \end{pmatrix}.$$

On a donc

$$M^{k} = PD^{k}P^{-1} = -\frac{1}{30} \begin{pmatrix} -5.2^{k+2} - 10(-4)^{k} & -12 + 12(-4)^{k} & -18 + 5.2^{k+2} - 2(-4)^{k} \\ -15.2^{k} - 15(-4)^{k} & -12 - 18(-4)^{k} & -18 + 5.2^{k+1} + 3(-4)^{k} \\ 5.2^{k+1} - 10(-4)^{k} & -12 + 12(-4)^{k} & -18 - 5.2^{k+1} - 2(-4)^{k} \end{pmatrix}$$

Correction de l'exercice 2 A

Soit E un espace vectoriel sur un corps K ($K = \mathbb{R}$ ou \mathbb{C}), on appelle *projecteur* un endomorphisme p de E vérifiant $p \circ p = p$. Soit p un projecteur.

1. Montrons que $\operatorname{Id}_E - p$ est un projecteur et calculons $p \circ (\operatorname{Id}_E - p)$ et $(\operatorname{Id}_E - p) \circ p$. On a $(\operatorname{Id}_E - p) \circ (\operatorname{Id}_E - p) = \operatorname{Id}_E - p - p + p^2 = \operatorname{Id}_E - p$, car $p^2 = p$, ce qui prouve que $\operatorname{Id}_E - p$ est un projecteur.

Par ailleurs, on a

$$p \circ (\mathrm{Id}_E - p) = p - p^2 = p - p = 0 = (\mathrm{Id}_E - p) \circ p$$

donc pour tout $\vec{x} \in E$, on a $p(\vec{x} - p(\vec{x})) = \vec{0}$.

2. Montrons que pour tout $\vec{x} \in \text{Im } p$, on a $p(\vec{x}) = \vec{x}$. Soit $\vec{x} \in \text{Im } p$, il existe $\vec{y} \in E$ tel que $\vec{x} = p(\vec{y})$, on a donc $p(\vec{x}) = p^2(\vec{y}) = p(\vec{y}) = \vec{x}$.

3. On en déduit que Im p et ker p sont supplémentaires.

Soit $\vec{x} \in E$, on peut écrire $\vec{x} = p(\vec{x}) + \vec{x} - p(\vec{x})$, considérons $\vec{x} - p(\vec{x})$, on a $p(\vec{x} - p(\vec{x})) = 0$ ce qui prouve que $\vec{x} - p(\vec{x}) \in \ker p$. Ainsi tout élément de E s'écrit comme somme d'un élément de $\operatorname{Im} p$, $p(\vec{x})$, et d'un élément de $\ker p$, $\vec{x} - p(\vec{x})$, il nous reste à démontrer que la somme est directe. Soit $\vec{x} \in \operatorname{Im} p \cap \ker p$, on a, d'une part $p(\vec{x}) = \vec{x}$ d'après la question 2) car $\vec{x} \in \operatorname{Im} p$ et, d'autre part $p(\vec{x}) = \vec{0}$

Soit $\vec{x} \in \text{Im } p \cap \ker p$, on a, d'une part $p(\vec{x}) = \vec{x}$ d'après la question 2) car $\vec{x} \in \text{Im } p$ et, d'autre part $p(\vec{x}) = 0$ car $\vec{x} \in \ker p$, d'où $\vec{x} = \vec{0}$. On a donc

$$E = \operatorname{Im} p \oplus \ker p$$
.

(Sachant que $\dim E = \dim \ker p + \dim \operatorname{Im} p$, on pouvait se contenter de démontrer que $\operatorname{Im} p \cap \ker p = \vec{0}$, ici nous avons explicitement la décomposition.)

4. Montrons que le rang de p est égal à la trace de p.

Notons n la dimension de E et considérons une base de E de la forme

$$(\vec{e_1},\cdots,\vec{e_k},\vec{e_{k+1}},\cdots,\vec{e_n})$$

où $(\vec{e_1}, \dots, \vec{e_k})$ est une base de $\operatorname{Im} p$ et (e_{k+1}, \dots, e_n) une base de $\operatorname{ker} p$. dans une telle base, la matrice de p s'écrit

$$M = \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix}$$

où I_k désigne la matrice identité $k \times k$, et les 0 des blocs de zéros. Le rang de p est égal à la dimension de Im p c'est-à-dire ici à k et on a bien k = TrM = Trp.

Correction de l'exercice 3

Soit $A = (a_{ij})_{1 \le i,j \le n}$ une matrice carrée $n \times n$. On veut démontrer le résultat suivant dû à Hadamard : Supposons que pour tout $i \in \{1, \dots, n\}$, on ait

$$|a_{ii}| > \sum_{j=1, j\neq i}^{n} |a_{ij}|$$

alors A est inversible.

1. Montrons le résultat pour n = 2.

Dans ce cas, la matrice A s'écrit

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

et les hypothèses deviennent

$$|a_{11}| > |a_{12}|$$
 et $|a_{22}| > |a_{21}|$.

La matrice A est inversible si et seulement si son déterminant est non nul, or

$$\det A = a_{11}a_{22} - a_{12}a_{21},$$

et, compte tenu des hypothèses,

$$|a_{11}a_{22}| = |a_{11}||a_{22}| > |a_{12}||a_{21}| = |a_{12}a_{21}|,$$

ainsi $|a_{11}a_{22}| > |a_{12}a_{21}|$ donc $a_{12}a_{21} \neq a_{12}a_{21}$ et le déterminant est non nul.

2. Soit B, la matrice obtenue en remplaçant, pour $j \ge 2$, chaque colonne c_j de A par la colonne

$$c_j - \frac{a_{1j}}{a_{11}}c_1,$$

Calculons les b_{ij} en fonction des a_{ij} . Montrons que si les coefficients de A satisfont les inégalités cidessus, alors pour $i \ge 2$, on a

$$|b_{ii}| > \sum_{j=2, j \neq i}^{n} |b_{ij}|.$$

On a

$$b_{ij} = a_{ij} - \frac{a_{1j}a_{11}}{a_{i1}}$$
 si $j \ge 2$ et $b_{i1} = a_{i1}$.

par l'inégalité triangulaire, on a

$$\begin{split} \sum_{j=2, j \neq i} |b_{ij}| &= \sum_{j=2, j \neq i} |a_{ij} - \frac{a_{1j}}{a_{11}} a_{i1}| \\ &\leq \sum_{j=2, j \neq i} |a_{ij}| + \frac{|a_{1j}||a_{11}|}{|a_{11}|} a_{i1}| \\ &= \sum_{j=2, j \neq i} |a_{ij}| + \frac{|a_{i1}||a_{11}|}{\sum_{j=2, j \neq i}} |a_{1j}|. \end{split}$$

Mais, par hypothèse, pour i = 1, on a

$$\sum_{j=2}^{n} |a_{1j}| < |a_{11}|,$$

donc

$$\sum_{j=2, j\neq i}^{n} |a_{1j}| < |a_{11}| - |a_{1i}|.$$

D'où, en remplaçant dans l'inégalité précédente

$$\sum_{j=2, j \neq i} |b_{ij}| < \sum_{j=2, j \neq i} |a_{ij}| + |a_{i1}| - \frac{|a_{i1}||a_{11}|}{|a_{1i}|} a_{1i}|$$

$$= \sum_{j=1, j \neq i} |a_{ij}| - \frac{|a_{i1}||a_{11}|}{|a_{1i}|} a_{1i}|$$

$$< |a_{ii}| - \frac{|a_{i1}||a_{11}|}{|a_{1i}|} a_{1i}|$$

$$\le |a_{ii} - \frac{a_{i1}a_{11}}{|a_{1i}|} = |b_{ii}|.$$

3. Démontrons le résultat de Hadamard pour n quelconque.

Soit $A = (a_{ij})_{1 \le i,j \le n}$ une matrice carrée $n \times n$, vérifiant pour tout $i \in \{1, \dots, n\}$,

$$|a_{ii}| > \sum_{j=1, j\neq i}^{n} |a_{ij}|$$

On veut démontrer que A est inversible.

Le résultat est vrai pour n = 2, d'après la question 1). Soit n arbitrairement fixé, supposons le résultat vrai pour n - 1 et démontrons le pour n.

On a $\det A = \det B$ où B est la matrice construite dans la question 2)

$$B = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ \vdots & & (b_{ij}_{(2 \le i, j \le n)}) & \\ a_{n1} & & \end{pmatrix}$$

Or, la matrice $(b_{ij}_{(2 \le i,j \le n)})$ est une matrice carrée d'ordre n-1 qui vérifie les hypothèses de Hadamard, d'après la question 2). Elle est donc inversible par hypothèse de récurrence. Et, par conséquent, la matrice A est inversible car $a_{11} \ne 0$.

Correction de l'exercice 4

Soit

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}$$

Démontrons que A est diagonalisable et trouvons une matrice P telle que $P^{-1}AP$ soit diagonale. Commençons par calculer le polynôme caractéristique de A:

$$P_A(X) = \begin{vmatrix} 1 - X & 0 & 0 \\ 0 & 1 - X & 0 \\ 1 & -1 & 2 - X \end{vmatrix} = (1 - X)^2 (2 - X)$$

Les racines du polynôme caractéristique sont les réels 1 avec la multiplicité 2, et 2 avec la multiplicité 1. Déterminons les sous-espaces propres associés : Soit E_1 le sous-espace propre associé à la valeur propre double 1.

$$E_1 = \{ V(x, y, z) \in \mathbb{R}^3 / A.V = V \},$$

$$V \in E_1 \iff \begin{cases} x = x \\ y = y \iff x - y + z = 0 \\ x - y + z = 0 \end{cases}$$

 E_1 est donc un plan vectoriel, dont les vecteurs $e_1 = (1,1,0)$ et $e_2 = (0,1,1)$ forment une base. Soit E_2 le sous-espace propre associé à la valeur propre simple 2. $E_2 = \{V(x,y,z) \in \mathbb{R}^3 / A.V = 2V\},$

$$V \in E_2 \iff \begin{cases} x = 2x \\ y = 2y \iff x = 0, y = 0 \\ x - y + 2z = 2z \end{cases}$$

 E_2 est donc une droite vectorielle, dont le vecteur $e_3 = (0,0,1)$ est une base.

Les dimensions des sous-espaces propres sont égales à la multiplicité des valeurs propres correspondantes, la matrice A est donc diagonalisable. Dans la base (e_1, e_2, e_3) l'endomorphisme représenté par A (dans la base canonique) a pour matrice.

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

la matrice de passage

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

vérifie $P^{-1}AP = D$.

Correction de l'exercice 5

Soit

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Factorisons le polynôme caractéristique de A.

$$P_A(X) = \begin{vmatrix} 1 - X & 1 & -1 \\ 0 & 1 - X & 0 \\ 1 & 0 & 1 - X \end{vmatrix} = (1 - X)^3 + (1 - X) = (1 - X)((1 - X)^2 + 1) = (1 - X)(X^2 - 2X + 2)$$

factorisons maintenant le polynôme X^2-2X+2 , le discriminant réduit $\Delta'=1-2=-1$, ce polynôme n'admet donc pas de racines réelles, mais deux racines complexes conjuguées qui sont : 1+i et 1-i. On a $P_A(X)=(1-X)(1-i-X)(1+i-X)$.

La matrice A n'est pas diagonalisable dans \mathbb{R} car son polynôme caractéristique n'a pas toutes ses racines dans \mathbb{R} , elle est diagonalisable dans \mathbb{C} car c'est une matrice 3×3 qui admet trois valeurs propres distinctes.

Correction de l'exercice 6

Soit

$$A = \begin{pmatrix} a & c \\ c & d \end{pmatrix} \in M_2(\mathbb{R})$$

Démontrons que A est diagonalisable dans \mathbb{R} . Le polynôme caractéristique $P_A(X)$ est égal à

$$P_A(X) = \begin{vmatrix} a - X & c \\ c & d - x \end{vmatrix} = (a - X)(d - X) - c^2 = X^2 - (a + d)X + ad - c^2,$$

déterminons ses racines : calculons le discriminant :

$$\Delta = (a+d)^{2} - 4(ad - c^{2})$$

$$= a^{2} + d^{2} + 2ad - 4ad + 4c^{2}$$

$$= a^{2} + d^{2} - 2ad + 4c^{2}$$

$$= (a-d)^{2} + 4c^{2} \ge 0$$

On a $\Delta = 0 \iff a - d = 0$ et c = 0, mais, si c = 0, la matrice A est déjà diagonale. Sinon $\Delta > 0$ et le polynôme caractéristique admet deux racines réelles distinctes, ce qui prouve que la matrice est toujours diagonalisable dans \mathbb{R} .

Correction de l'exercice 7

Soit A la matrice suivante

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Calculons A^2 et vérifions que $A^2 = A + 2I_3$. On a

$$A^{2} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} = A + 2I_{3}.$$

On a donc $A^2 - A = 2I_3$, c'est-à-dire $A(A - I_3) = 2I_3$, ou encore $A \cdot \frac{1}{2}(A - I_3) = I_3$. Ce qui prouve que A est in versible et que son inverse est $A^{-1} = \frac{1}{2}(A - I_3)$

Correction de l'exercice 8 A

Soit *A* une matrice carrée d'ordre *n*. On suppose que *A* est inversible et que $\lambda \in \mathbb{R}$ est une valeur propre de *A*.

- 1. Démontrons que $\lambda \neq 0$. Si $\lambda = 0$ est valeur propre de A, alors $\ker A \neq \{0\}$, donc A n'est pas injective et sa matrice ne peut pas être inversible. Par conséquent, $\lambda \neq 0$.
- 2. Démontrons que si \vec{x} est un vecteur propre de A pour la valeur propre λ alors il est vecteur propre de A^{-1} de valeur propre λ^{-1} .

Comme A est inversible, on a $A\vec{x} = \lambda \vec{x} \iff A^{-1}(A\vec{x}) = A^{-1}(\lambda \vec{x}) \iff \vec{x} = \lambda A^{-1}\vec{x}$, d'où $A^{-1}\vec{x} = \lambda^{-1}\vec{x}$. Ce qui prouve que \vec{x} est vecteur propre de A^{-1} de valeur propre λ^{-1} .

Correction de l'exercice 9 A

Soit f un endomorphisme de E vérifiant $f^2 = \text{mathrmId}_E$.

1. Démontrons que les seules valeurs propres possibles de f sont 1 et -1.

Si λ est une valeur propre de f, il existe un vecteur non nul $\vec{x} \in E$ tel que $f(\vec{x}) = \lambda \vec{x}$. On a donc

$$f^2(\vec{x}) = f(\lambda \vec{x}) = \lambda f(\vec{x}) = \lambda^2 \vec{x}.$$

Mais, $f^2 = \text{mathrmId}_E$ donc si \vec{x} est un vecteur propre associé à la valeur propre λ on a

$$\vec{x} = f^2(\vec{x}) = \lambda^2 \vec{x}$$

d'où $\lambda^2 = 1$, c'est-à-dire (dans \mathbb{R} ou \mathbb{C}), $\lambda = 1$ ou $\lambda = -1$. ce qui prouve que les seules valeurs propres possibles de f sont 1 et -1.

2. Vérifions que pour tout $\vec{x} \in E$, on a

$$f(\vec{x} - f(\vec{x})) = -(\vec{x} - f(\vec{x}))$$
 et $f(\vec{x} + f(\vec{x})) = (\vec{x} + f(\vec{x}))$

Soit $\vec{x} \in E$, on a

$$f(\vec{x} - f(\vec{x})) = f(\vec{x}) - f^2(\vec{x}) = f(\vec{x}) - \vec{x} = -(\vec{x} - f(\vec{x}))$$

$$f(\vec{x} + f(\vec{x})) = f(\vec{x}) + f^2(\vec{x}) = f(\vec{x}) + \vec{x}$$

Nous allons en déduire que f admet toujours une valeur propre.

Supposons que 1 ne soit pas valeur propre de f, alors, $\vec{x} = f(\vec{x}) \Rightarrow \vec{x} = \vec{0}$. Or, pour tout $\vec{x} \in E$, on a $f(\vec{x} + f(\vec{x})) = f(\vec{x}) + \vec{x}$, donc pour tout $\vec{x} \in E$, on a $f(\vec{x}) + \vec{x} = \vec{0}$, c'est-à-dire, $f(\vec{x}) = -\vec{x}$. Ce qui prouve que -1 est valeur propre de f. On a même dans ce cas $f = -\text{mathrmId}_E$.

Si -1 n'est pas valeur propre de f, on montre par un raisonnement analogue que pour tout $\vec{x} \in E$ on a $f(\vec{x}) - \vec{x} = \vec{0}$. Ce qui prouve que 1 est valeur propre de f, et dans ce cas $f = \text{mathrmId}_E$.

3. Démontrons que si 1 et -1 sont valeurs propres, alors E est somme directe des sous-espaces propres correspondants.

Supposons maintenant que 1 et -1 sont valeurs propres de f. Ce sont alors les seules et on a, pour tout $\vec{x} \in E$,

$$\vec{x} = \frac{1}{2}(\vec{x} + f(\vec{x})) + \frac{1}{2}(\vec{x} - f(\vec{x}))$$

Et, quelque soit $\vec{x} \in E$, $f(\vec{x} - f(\vec{x})) = -(\vec{x} - f(\vec{x}))$ et $f(\vec{x} + f(\vec{x})) = (\vec{x} + f(\vec{x}))$, c'est-à-dire $\vec{x} + f(\vec{x})$ est dans le sous-espace propre associé à la valeur propre 1 et $\vec{x} - f(\vec{x})$ est dans le sous-espace propre associé à la valeur propre -1. Par ailleurs on sait que les sous-espaces propres sont en somme directe (on peut le vérifier également puisque leur intersection est l'ensemble des vecteurs \vec{x} tels que $\vec{x} = -\vec{x}$, donc réduite au vecteur nul). par conséquent E est bien somme directe des sous-espaces propres correspondants aux valeurs propres 1 et -1.

4. Traduisons géométriquement le cas n = 2.

Rappelons que si il n'y a qu'une valeur propre, f est l'identité ou son opposée. Dans le cas où 1 et -1 sont valeur propres, leurs sous-espaces propres sont des droites vectorielles. Soit u un vecteur propre tel que f(u) = u et v un vecteur propre tel que f(v) = -v, alors si w = au + bv, f(w) = au - bv.

Correction de l'exercice 15 ▲

On suppose qu'une population x de lapins et une population y de loups sont gouvernées par le système suivant d'équations différentielles :

$$(S) \begin{cases} x' = 4x - 2y \\ y' = x + y \end{cases}$$

1. On diagonalise la matrice

$$A = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}.$$

Pour cela on détermine ses valeurs propres :

$$\det(A - \lambda I) = \begin{vmatrix} 4 - \lambda & -2 \\ 1 & 1 - \lambda \end{vmatrix} = (4 - \lambda)(1 - \lambda) + 2 = \lambda^2 - 5\lambda + 6 = (\lambda - 2)(\lambda - 3).$$

Ainsi, la matrice A admet deux valeurs propres distinctes, qui sont $\lambda_1 = 2$ et $\lambda_2 = 3$. Elle est diagonalisable. Déterminons une base de vecteurs propres :

$$\begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x \\ 2y \end{pmatrix} \iff x = y,$$

d'où le vecteur propre $u_1 = (1,1)$ associé à la valeur propre $\lambda_1 = 2$.

$$\begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3x \\ 3y \end{pmatrix} \iff x = 2y,$$

d'où le vecteur propre $u_2=(2,1)$ associé à la valeur propre $\lambda_2=3$. Dans la base (u_1,u_2) , la matrice s'écrit

$$A' = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}.$$

On a $A = PA'P^{-1}$ où

$$P = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \text{ et } P^{-1} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}.$$

2. Exprimons le système (S) et ses solutions dans une base de vecteurs propres de A. Dans la base (u_1, u_2) , le système (S) devient

$$(S') \begin{cases} X' = 2X \\ Y' = 3Y \end{cases}$$

Ses solutions sont les fonctions

$$\begin{cases} X(t) = X(0)e^{2t} \\ Y(t) = Y(0)e^{3t} \end{cases}$$

3. Pour représenter graphiquement les trajectoires de (S) dans le repère (Oxy), on trace d'abord le repère (O,u_1,u_2) dans le repère (Oxy), puis, on trace les courbes

$$Y = \frac{Y(0)}{X(0)}X^{3/2}$$

dans le repère (O, u_1, u_2) (ou OXY).

4. On voit sur le dessin que si Y(0) est strictement positif, alors la population des lapins, x(t) tend vers $+\infty$ quand t tend vers $+\infty$. Si Y(0) est strictement négatif alors la populations des lapins s'éteint dans la mesure ou x(t) dans ce cas tendrait vers $-\infty$.

Correction de l'exercice 16 ▲

Soit u l'endomorphisme de \mathbb{R}^3 , dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

1. Calculons les valeurs propres de *A*.

$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 2 & -2 \\ -1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} = (\lambda - 1)^3.$$

La matrice A admet une valeur propre triple qui est $\lambda = 1$, elle ne peut pas être diagonalisable sinon son sous-espace propre serait de dimension 3 or, $A \neq I$.

2. Calculons $(A-I)^2$.

$$(A-I)^2 = \begin{pmatrix} 2 & 2 & -2 \\ -1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Montrons que $A^n = nA + (1 - n)I$ en utilisant la formule du binôme de Newton.

$$A^{n} = (A - I + I)^{n} = \sum_{k=0}^{n} C_{n}^{k} (A - I)^{k} I^{n-k} = C_{n}^{0} I^{n} + C_{n}^{1} (A - I) = I + n(A - I) = nA + (1 - n)I.$$

Car, pour $k \ge 2$, on a $(A - I)^k = 0$.

3. *Soient* $P(X) = (X - 1)^2$ *et* $Q \in \mathbb{R}[X]$.

Exprimons le reste de la division euclidienne de Q par P en fonction de Q(1) et Q'(1), où Q' est le polynôme dérivé de Q.

14

Il existe des polynômes S et R, avec $d^{\circ}R < d^{\circ}P$ ou R = 0, tels que

$$Q(X) = S(X)(X-1)^2 + R(X).$$

Notons R(X) = aX + b (R(X) est de degré 1 car P est de degré 2) et dérivons, on obtient

$$Q'(X) = S'(X)(X-1)^2 + 2(X-1)S(X) + a,$$

on a donc Q(1) = R(1) = a + b et Q'(1) = a, c'est-à-dire a = Q'(1) et b = Q(1) - Q'(1) d'où

$$R(X) = Q'(1)X + (Q(1) - Q'(1)).$$

D'après la question 2), on remarque que P(A) = 0, en choisissant le polynôme $Q(X) = X^n$ on a Q(1) = 1 et Q'(1) = n, donc

$$Q(A) = A^n = R(A) = Q'(1)A + (Q(1) - Q'(1))I = nA + (1 - n)I.$$

4. (a) Montrons que l'image de \mathbb{R}^3 par l'endomorphisme (A-I) est un sous-espace vectoriel de dimension 1.

$$\forall (X,Y,Z) \in Im(A-I), \exists (x,y,z) \in \mathbb{R}^3, \ (A-I) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix},$$

c'est-à-dire

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = (x+y-z) \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}.$$

Ce qui prouve que Im(A-I) est la droite vectorielle engendrée par le vecteur $\varepsilon_2 = (2,-1,1)$.

(b) Déterminons un vecteur ε_3 tel que $u(\varepsilon_3) = \varepsilon_2 + \varepsilon_3$. On pose $\varepsilon_3 = (x, y, z)$,

$$u(\varepsilon_3) = \varepsilon_2 + \varepsilon_3 \iff A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \begin{pmatrix} x \\ y \\ z \end{pmatrix},$$

c'est-à-dire

$$\begin{cases} 3x + 2y - 2z = x + 2 \\ -x + z = y - 1 \iff \begin{cases} 2(x + y - z) = 2 \\ -1(x + y - z) = -1 \iff x + y - z = 1. \\ (x + y - z) = +1 \end{cases}$$

On prends, par exemple $\varepsilon_3 = (1,0,0)$.

Déterminons un vecteur propre ε_1 de u non colinéaire à ε_2 .

$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \iff \begin{cases} 3x + 2y - 2z = x \\ -x + z = y \iff x + y - z = 0. \\ x + y = z \end{cases}$$

On peut prendre le vecteur $\varepsilon_1 = (0, 1, 1)$ qui n'est pas colinéaire à ε_2 .

(c) Ecrivons la matrice de u dans la base $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$, ainsi que les matrices de passage. On a $u(\varepsilon_1) = \varepsilon_1, u(\varepsilon_2) = \varepsilon_2$ et $u(\varepsilon_3) = \varepsilon_2 + \varepsilon_3$ d'où la matrice de u dans la base $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$

$$A' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

La matrice de passage P est égale à

$$P = \begin{pmatrix} 0 & 2 & 1 \\ 1 & -1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

et son inverse

$$P^{-1} = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 0 & -1/2 & 1/2 \\ 1 & 1 & -1 \end{pmatrix}.$$

(d) Pour retrouver A^n , on écrit A' = I + N, où

$$N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

et $N^2 = 0$. Par ailleurs, on a $A = PA'P^{-1}$, d'où

$$A^{n} = PA^{\prime n}P^{-1} = P(I+N)^{n}P^{-1} = P(I+nN)P^{-1} = P\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}P^{-1}$$

$$= \begin{pmatrix} 2n+1 & 2n & -2n \\ -n & 1-n & n \\ n & n & 1-n \end{pmatrix} = n\begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} + (1-n)\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = nA + (1-n)I.$$

Correction de l'exercice 17 ▲

Soient M et A deux matrices de $\mathcal{M}_n(\mathbb{R})$ telles que MA = AM. On suppose que M admet n valeurs propres distinctes.

1. Soit x un vecteur propre de M de valeur propre λ .

Montrons que $MAx = \lambda Ax$.

On a $Mx = \lambda x$, donc $AMx = A\lambda x = \lambda Ax$. Mais, AM = MA, donc $MAx = AMx = \lambda Ax$. Ce qui prouve que le vecteur Ax est un vecteur propre de M pour la valeur propre λ , et comme les valeurs propres de M sont supposées distinctes, les sous-espaces propres sont de dimension 1, donc Ax est colinéaire à x. Ainsi, il existe un réel μ tel que $Ax = \mu x$, donc x est un vecteur propre de x.

- 2. On note maintenant $\lambda_1, \dots, \lambda_n$ les valeurs propres de M et μ_1, \dots, μ_n celles de A.
 - (a) Montrons l'égalité suivante :

$$\begin{vmatrix} \lambda_1 & \cdots & \lambda_1^{n-1} \\ \vdots & & \vdots \\ 1 & \lambda_n & \cdots & \lambda_n^{n-1} \end{vmatrix} = \prod_{1 \leq i < j \leq n} (\lambda_j - \lambda_i).$$

Il s'agit du déterminant de Vandermonde. Notons le $V(\lambda_1, \dots, \lambda_n)$. La démonstration se fait par récurrence sur n. Pour n=2, c'est évident. Supposons le résultat vrai pour n-1. Dans $V(\lambda_1, \dots, \lambda_n)$, retranchons à chaque colonne λ_1 fois la précédente (en commençant par la dernière colonne). On obtient

$$\begin{vmatrix} 0 & 0 & \cdots & 0 \\ 1 & \lambda_2 - \lambda_1 & \lambda_2^2 - \lambda_1 \lambda_2 & \cdots & \lambda_2^{n-1} - \lambda_1 \lambda_2^{n-2} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \lambda_n - \lambda_1 & \lambda_n^2 - \lambda_1 \lambda_n & \cdots & \lambda_n^{n-1} - \lambda_1 \lambda_n^{n-2} \end{vmatrix} = \begin{vmatrix} \lambda_2 - \lambda_1 & \lambda_2^2 - \lambda_1 \lambda_2 & \cdots & \lambda_2^{n-1} - \lambda_1 \lambda_2^{n-2} \\ \vdots & \vdots & & \vdots \\ \lambda_n - \lambda_1 & \lambda_n^2 - \lambda_1 \lambda_n & \cdots & \lambda_n^{n-1} - \lambda_1 \lambda_n^{n-2} \end{vmatrix}.$$

16

On factorise alors chaque ligne par $(\lambda_i - \lambda_1)$ et on obtient

$$V(\lambda_1, \dots, \lambda_n) = (\lambda_2 - \lambda_1) \dots (\lambda_n - \lambda_1) \begin{vmatrix} 1 & \lambda_2 & \dots & \lambda_2^{n-2} \\ \vdots & & \vdots \\ 1 & \lambda_n & \dots & \lambda_n^{n-2} \end{vmatrix}$$
$$= \prod_{i=2}^n (\lambda_i - \lambda_1) V(\lambda_2, \dots, \lambda_n) = \prod_{1 \le i < j \le n} (\lambda_i - \lambda_j)$$

car $V(\lambda_2, \cdots, \lambda_n) = \prod_{1 \le i < j \le n} (\lambda_j - \lambda_i)$ par hypothèse de récurrence.

Ce déterminant est le déterminant du système suivant,

$$\left\{egin{aligned} \mu_1 &= lpha_0 + lpha_1 \lambda_1 + \dots + lpha_{n-1} \lambda_1^{n-1} \ &dots \ \mu_n &= lpha_0 + lpha_1 \lambda_n + \dots + lpha_{n-1} \lambda_n^{n-1} \end{aligned}
ight.$$

or $V(\lambda_1, \dots, \lambda_n) \neq 0$ puisque les λ_i sont supposés distincts, c'est donc un système de Cramer, il admet donc une unique solution $(\alpha_0, \dots, \alpha_{n-1}) \in \mathbb{R}^n$.

(b) Soient M' et A' les matrices diagonales suivantes :

$$M'=egin{pmatrix} \lambda_1 & 0 & \cdots & 0 \ 0 & \ddots & & 0 \ dots & & & dots \ 0 & \cdots & 0 & \lambda_n \end{pmatrix}, \ A'=egin{pmatrix} \mu_1 & 0 & \cdots & 0 \ 0 & \ddots & & 0 \ dots & & & dots \ 0 & \cdots & 0 & \mu_n \end{pmatrix}$$

Montrons qu'il existe des réels $\alpha_0, \dots, \alpha_{n-1}$ tels que

$$A' = \sum_{k=0}^{n-1} \alpha_k M'^k.$$

Compte tenu des matrices A' et M' l'existence de réels tels que

$$A' = \sum_{k=0}^{n-1} \alpha_k M'^k$$

est équivalente à l'existence d'une solution pour le système précédent, d'où le résultat.

On en déduit qu'il existe des réels $\alpha_0, \dots, \alpha_{n-1}$ tels que

$$A = \sum_{k=0}^{n-1} \alpha_k M^k.$$

La matrice M admet n vecteurs propres linéairement indépendants qui sont également vecteurs propres de la matrice A. Par conséquent il existe une même matrice de passage P telle que $M = PM'P^{-1}$ et $A = PA'P^{-1}$, d'où l'égalité

$$A = \sum_{k=0}^{n-1} \alpha_k M^k.$$