Comunicação segura

Nuno Neves
Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

© 2018 DI-FCUL. Reprodução proibida sem autorização prévia.

1

Comunicação segura

- Propriedades
- Concretização genérica
- Comunicação segura nas várias camadas
- ❖ SSL/TLS
- ❖ IPSec
- ❖ SSH

© 2018 DI-FCUL. Reprodução proibida sem autorização prévia.

Comunicação segura

- Propriedades
 - Confidencialidade
 - · Chaves de sessão
 - Autenticidade
 - Integridade
- Concretização genérica
 - Criptografia simétrica
 - > Criptografia assimétrica

© 2018 DI-FCUL. Reprodução proibida sem autorização prévia.

3

Comunicação segura nas várias camadas

- Aplicação S/MIME, OpenPGP, SSH
- Transporte SSL/TLS
- ❖ Rede IPSec
- Ligação de dados IEEE 802.11, Bluetooth
- Físico Circuito Físico Seguro
- Comunicação segura entre extremos
 - Aplicação, transporte, rede
- Comunicação em troços
 - Ligação de dados (MAC), físico

© 2018 DI-FCUL. Reprodução proibida sem autorização prévia.

Comunicação segura em troços / extremos

© 2018 DI-FCUL. Reprodução proibida sem autorização prévia.

7

SSL - Secure Sockets Layer & TLS - Transport Layer Security

Breve histórico:

- > SSL v2 criado pela Netscape em 1994
- ➤ Versão 3.0 surgiu em 1996 corrigindo uma série de falhas da v2
- > Evolução normalizada e aberta: TLS (RFC 4346)
- Inicialmente concebido para ser usado com HTTP

Características

- Comunicação segura sobre o nível transporte com ligação
 - · Exemplo: TCP
 - Transporte seguro sobre um protocolo de transporte inseguro
 - confidencialidade
 - autenticação
 - integridade
 - e ainda compressão de dados

© 2018 DI-FCUL. Reprodução proibida sem autorização prévia.

Autenticação: suporte para vários métodos

- Nenhuma (interações anónimas)
 - Chave de sessão gerada através de Diffie-Hellman
- Autenticação do servidor
 - Certificado X.509
 - Chave de sessão
 - Gerada pelo cliente e enviada para o servidor cifrada com a sua chave pública <u>ou</u>
 - · Diffie-Hellman
- Autenticação mútua
 - Certificado X.509
 - Chave de sessão
 - Gerada pelo cliente e enviada para o servidor cifrada com a sua chave pública <u>ou</u>
 - Diffie-Hellman

© 2018 DI-FCUL. Reprodução proibida sem autorização prévia.

Parâmetros

- Cliente e servidor criam um pre-master-secret
- Valores calculados a partir de pre-master-secret e de nonces trocados entre cliente e servidor
 - > Duas Chaves secretas para MACs
 - · Servidor -> cliente
 - · Cliente -> Servidor
 - > Duas chaves de cifra
 - Servidor -> cliente
 - · Cliente -> Servidor
 - Vectores de inicialização se modo de cifra CBC
- Estes valores são calculados com funções de síntese

© 2018 DI-FCUL. Reprodução proibida sem autorização prévia.

16

Protocolo Record

- * Responsável pela comunicação segura
- Faz fragmentação, compressão e cifra
- Garante autenticação e integridade das mensagens
- Encapsula protocolos de nível superior como HTTP, Telnet, FTP, etc.
- Corre sobre TCP/IP ou outros protocolos de transporte

© 2018 DI-FCUL. Reprodução proibida sem autorização prévia.

MACs MD5 ou SHA-1 Cifra simétrica IDEA, DES, 3DES, AES (128, 256), Padding ISO10126

Algoritmos

© 2018 DI-FCUL. Reprodução proibida sem autorização prévia.

Exemplos de utilização do SSL

- ❖O HTTP quando corre sobre SSL é chamado HTTPS
 - ➤ URLs do tipo https://.../index.html
 - O servidor tem o certificado gerado por uma CA fiável contendo a sua chave pública
 - Cliente quer ter certeza que está a aceder ao servidor correto, e portanto o servidor deve provar a sua identidade
 - A autenticação dos clientes é geralmente feita através de *login* e senha na aplicação Web (como nos bancos)
- Outros exemplos
 - >SMTPS porto 465
 - ➤ LDAPS porto 663
 - ➤ IMAPS porto 993

© 2018 DI-FCUL. Reprodução proibida sem autorização prévia.