Question 1.

Analysis - "nr" database, (100 results),

- E value = 0.0, for all the results
- 23 results have 100% Query coverage
- There is 1 result with 100% identity
- 66.96% is the Lowest percentage identity

Analysis - "Swiss PROT" database, (100 results)

- One E-value is 0.0, E-value increases till it reaches 8.4 for one result.
- Query coverage maximum value = 98% (only 1 result) and goes to min of 6%.
- No result has 100% identity.
- 22.07% is the Lowest percentage identity observed.

Question 2.

General parameters displayed:

- 1. Max target sequences
- 2. Expected threshold
- 3. Word size
- 4. Maximum matches in a query range

Scoring Parameters

- 1. Matrix
- 2. Gap costs
- 3. Compositional alignments

Filter and Masking

- 1. Filter
- 2. Mask

Question 3:

RscC [Pseudomonas fluorescens]

Sequence ID: AAK81929.1 Length: 713 Number of Matches: 1

Range 1: 22 to 690 GenPept Graphics

V Next Match A Previous Match

Score Expect Method Identities Positives Gaps

F30 bits (1366) 0.0 Compositional matrix adjust 202/676/4396) 416/676/6196) 29/676/496)

Score		Expect	Method		Identities	Positives	Gaps
530 bit	ts(136	6) 0.0	Composition	nal matrix adjust	. 292/676(43%)	416/676(61%)	28/676(4%)
Query	8	RCRLLGA R +	ALLMLCATLPA +L+ C PA	GAQTPADWKEQ Δ PΔ+WK	SYAYSADRTPLST\ +YAY AD PL \		LG 64
Sbjct	22			HNLLAAIPAEWKNT			IE 81
Query	65			AFLDRLALEHHFQW + LDRL +EH FQW			PD 124 D
Sbjct	82			SMLDRLGVEHRFQW			
Query	125			GELPDDGVVLVTGP GELP+DGVVLV+GP			
Sbjct	142			GELPEDGVVLVSGP			
Query	185			IPGVATMLNELMNG			TQ 243
Sbjct	202			VPGVANILRGLLEP			GN 261
Query	244	TLLSRLS		GRDNEI			YS 295 Y
Sbjct	262			QLDTGPTVTPRAPV			
Query	296			VILDIDRTALNRLE +ILDI+RT L			FK 355
Sbjct	319			IILDIERTQLREFG			
Query	356			IVANPSVLTLENQP +V+NPSVLTLENQP			
Sbjct	379			MVSNPSVLTLENQP			
Query	415	LQVTPRA LOV PR		LMIDIEDGHV-QTN L++DIEDG++ +TN		TVSTQALISENRAL VSTOA++ E R+L	
Sbjct	438			VVDIEDGNLDETN			
Query	472			LGDIPWLGQ-LFSS			
Sbjct	498			LGDIPLLGKTLVSS			
Query	531	TADNRQQ D++ +		RHSSVNQHDV R+S + + D+			EV 586
Sbjct	558		LQAALTPLAR	RYSPHQPVIKRSDI			
Query	587	CRSTPAL		SSSTNGVQLSVGVV + V +V V+			
Sbjct	617				YNVAVVVLRNQFKRNVRIDEKE		
Query	647		AEVYLAMDP AEV++AM P	662			
Sbjct	675		AEVFIAMRP	690			

Enter the accession number in the first box select "Align 2 or multiple sequences" from the drop-down menu.

Type the accession number of the second one, select BLAST.

Result - 43.20%

Question: 4

Score

Query 1

Sbjct 1

Query 61

Range 1: 1 to 147 Graphics

Expect Method

```
Identities
                                                                  Positives
                                                                                  Gaps
221 bits(564) 1e-80 Compositional matrix adjust. 102/147(69%) 121/147(82%) 0/147(0%)
              MVHWTAEEKQLITGLWGKVNVAECGAEALARLLIVYPWTQRFFASFGNLSSPTAILGNPM
              MVH T EEK +T LWGKVNV E G EAL RLL+VYPWTQRFF SFG+LS+P A++GNP
             MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTÖRFFESFGDLSTPDAVMGNPK
             VRAHGKKVLTSFGDAVKNLDNIKNTFSQLSELHCDKLHVDPENFRLLGDILIIVLAAHFS
V+AHGKKVL +F D + +LDN+K TF+ LSELHCDKLHVDPENFRLLG++L+ VLA HF
Sbjct 61 VKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG
```

▼ Next Match ▲ Previous Match

- Query 121 KDFTPECQAAWQKLVRVVAHALARKYH 147 K+FTP QAA+QK+V VA+ALA KYH Sbjct 121 KEFTPPVQAAYQKVVAGVANALAHKYH
 - Get both sequences from uniprot.
 - Blast both the sequences and their uniprot IDs(prior query)4
 - Identity is not the same as similarity.
 - Nature / properties of two Amino acids.

Question 5:

h(sequence1) =

'MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVK AHGKKVLGAFS D

GLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGV ANALAHKYH' c(sequence2) =

'MVHWTAEEKQLITGLWGKVNVAECGAEALARLLIVYPWTQRFFASFGNLSSPTAILGNPMVRA **HGKKVLTSFGD**

AVKNLDNIKNTFSQLSELHCDKLHVDPENFRLLGDILIIVLAAHFSKDFTPECQAAWQKLVRVVAH ALARKYH'

```
human= "MVHI TPEFKSAVTAI WGKVNVDEVGGEAI GRI I VVYPWTOREFESEGDI STPDAVMGNPKVKAHGKKVI GAESDGI AHI DNI KGTEATI SEI HCDKI HVDPENERI I GNVI VCVI AHHEGKEETPPVOAAYOKVVAGVANAI AHKYH
chicken= "MVHNTAEEKQLITGLWKKVNIVAECGAEALARLLIVYPWTQRFFASFGNLSSPTAILGNPMVRAHGKKVLTSFGDAVKNLDNIKNTFSQLSELHCDKLHVDPENFRLLGDILITVLAAHFSKDFTPECQAAWQKLVRVVAHALARKYH"

def match(human,chicken):
       human_seq_len= len(human)
      human_seq_len= len(human)
chicken_seq_len= len(chicken)
occurence_h= [0 for i in range(human_seq_len-4)]
occurence_c=[0 for i in range(chicken_seq_len-4)]
for i in range(human_seq_len-4):
    penta_p= human[i:i+5]
    for j in range(human_seq_len-4):
        if human[j:j+5]=menta_p:
            occurence_h[i]+=1
        if chicken[i:i+5] meneta_p:
              if chicken[j:j+5]==penta_p:
    occurence_c[i]+=1
if occurence_h[i]>0 and occurence_c[i]>0:
    print("The occurrence of sequence",pe
                                                                              nce",penta_p,"in human sequence:", occurence_h[i],"in chicken sequence:", occurence_c[i])
match(human,chicken)
```

The occurrence of sequence LWGKV in human sequence: 1 in chicken sequence: 1 The occurrence of sequence WGKVN in human sequence: 1 in chicken sequence: 1 The occurrence of sequence GKVNV in human sequence: 1 in chicken sequence: 1 The occurrence of sequence VYPWT in human sequence: 1 in chicken sequence: 1 The occurrence of sequence YPWTQ in human sequence: 1 in chicken sequence: 1 The occurrence of sequence PWTQR in human sequence: 1 in chicken sequence: 1 The occurrence of sequence WTQRF in human sequence: 1 in chicken sequence: 1 The occurrence of sequence TQRFF in human sequence: 1 in chicken sequence: 1

The occurrence of sequence AHGKK in human sequence: 1 in chicken sequence: 1 The occurrence of sequence HGKKV in human sequence: 1 in chicken sequence: 1 The occurrence of sequence GKKVL in human sequence: 1 in chicken sequence: 1 The occurrence of sequence LSELH in human sequence: 1 in chicken sequence: 1 The occurrence of sequence SELHC in human sequence: 1 in chicken sequence: 1 The occurrence of sequence ELHCD in human sequence: 1 in chicken sequence: 1 The occurrence of sequence LHCDK in human sequence: 1 in chicken sequence: 1 The occurrence of sequence HCDKL in human sequence: 1 in chicken sequence: 1 The occurrence of sequence CDKLH in human sequence: 1 in chicken sequence: 1 The occurrence of sequence DKLHV in human sequence: 1 in chicken sequence: 1 The occurrence of sequence KLHVD in human sequence: 1 in chicken sequence: 1 The occurrence of sequence LHVDP in human sequence: 1 in chicken sequence: 1 The occurrence of sequence HVDPE in human sequence: 1 in chicken sequence: 1 The occurrence of sequence VDPEN in human sequence: 1 in chicken sequence: 1 The occurrence of sequence DPENF in human sequence: 1 in chicken sequence: 1 The occurrence of sequence PENFR in human sequence: 1 in chicken sequence: 1 The occurrence of sequence ENFRL in human sequence: 1 in chicken sequence: 1 The occurrence of sequence NFRLL in human sequence: 1 in chicken sequence: 1 The occurrence of sequence FRLLG in human sequence: 1 in chicken sequence: 1

Question 7:

Entry	Entry name	Status	Protein names	Gene names	Organism	Length
Q9Y5J7	TIM9_HUMAN	reviewed	Mitochondrial import inner membrane translocase subunit Tim9	TIMM9 TIM9 TIM9A TIMM9A	Homo sapiens (Human)	89
P87108	TIM10_YEAST	reviewed	Mitochondrial import inner membrane translocase subunit TIM10 (Mitochondrial intermembrane protein MRS11)	TIM10 MRS11 YHR005C-A YHR005BC	Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast)	93
P62072	TIM10_HUMAN	reviewed	Mitochondrial import inner membrane translocase subunit Tim10	TIMM10 TIM10	Homo sapiens (Human)	90
060220	TIM8A_HUMAN	reviewed	Mitochondrial import inner membrane translocase subunit Tim8 A (Deafness dystonia protein 1) (X-linked deafness dystonia protein)	TIMM8A DDP DDP1 TIM8A	Homo sapiens (Human)	97
074700	TIM9_YEAST	reviewed	Mitochondrial import inner membrane translocase subunit TIM9	TIM9 YEL020W-A YEL020BW	Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast)	87
			Mitochondrial import inner membrane translocase subunit TIM13	TIM13 YGR181W G7157	Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast)	105
Q9Y5L4	TIM13_HUMAN	reviewed	Mitochondrial import inner membrane translocase subunit Tim13	TIMM13 TIM13B TIMM13A TIMM13B	Homo sapiens (Human)	95
P57744	TIM8_YEAST	reviewed	Mitochondrial import inner membrane translocase subunit TIM8	TIM8 YJR135W-A YJR135BW	Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast)	87
Q9Y5J9	TIM8B_HUMAN	reviewed	Mitochondrial import inner membrane translocase subunit Tim8 B (DDP-like protein) (Deafness dystonia protein 2)	TIMM8B DDP2 DDPL TIM8B	Homo sapiens (Human)	83
Q17754	TIM9_CAEEL	reviewed	Mitochondrial import inner membrane translocase subunit Tim9	tin-9.1 tim9a tin-9 C06G3.11	Caenorhabditis elegans	90
Q9WV98	TIM9_MOUSE	reviewed	Mitochondrial import inner membrane translocase subunit Tim9	Timm9 Tim9 Tim9a Timm9a	Mus musculus (Mouse)	89
Q9Y0V6	TIM10_CAEEL	reviewed	Mitochondrial import inner membrane translocase subunit Tim10	tin-10 tim-10 Y66D12A.22	Caenorhabditis elegans	86
Q9WVA1			Mitochondrial import inner membrane translocase subunit Tim8 A (Deafness dystonia protein 1 homolog)	Timm8a Ddp1 Tim8a	Rattus norvegicus (Rat)	97
Q9WV97			Mitochondrial import inner membrane translocase subunit Tim9	Timm9 Tim9 Tim9a Timm9a	Rattus norvegicus (Rat)	89
Q9XH48	TIM13_ARATH	reviewed	Mitochondrial import inner membrane translocase subunit TIM13	TIM13 At1g61570 T25B24.8 T25B24_16	Arabidopsis thaliana (Mouse-ear cress)	87
Q9N408	TIM8_CAEEL	reviewed	Mitochondrial import inner membrane translocase subunit Tim8	ddp-1 tim-8 Y39A3CR.4	Caenorhabditis elegans	83
			Mitochondrial import inner membrane translocase subunit TIM9 (Protein EMBRYO DEFECTIVE 2474)	TIM9 EMB2474 At3g46560 F12A12.80	Arabidopsis thaliana (Mouse-ear cress)	93
Q9WVA2	TIM8A_MOUSE	reviewed	Mitochondrial import inner membrane translocase subunit Tim8 A (Deafness dystonia protein 1 homolog)	Timm8a1 Ddp1 Tim8a Timm8a	Mus musculus (Mouse)	97
P62073	TIM10_MOUSE	reviewed	Mitochondrial import inner membrane translocase subunit Tim10	Timm10 Tim10	Mus musculus (Mouse)	90
Q9XGY4	TIM8_ARATH	reviewed	Mitochondrial import inner membrane translocase subunit TIM8	TIM8 At5g50810 K7B16.3	Arabidopsis thaliana (Mouse-ear cress)	77

Question 8:

Residue 2-14 is a domain named PRK05447 which is conserved across many organisms. BLAST results show this sequence is commonly found in - Escherichia coli, Klebsiella pneumoniae.

100 sequences, only 10% of the sequences have very minimal E value.

Highest E value is 28, this sequence has 57% query coverage and 75% identity with the given sequence.