office: Delta 856 ext: 62340 email:ychuang@ee.nthu.edu.tw

EE214000 Electromagnetics, Fall 2020

Your name:	ID:	Sep. 21, 2020

EE214000 Electromagnetics, Fall, 2020 Quiz #3-1, Open books, notes (32 points), due 11 pm, Wednesday, Sep. 23, 2020 (email solutions to 劉峰麒 alex851225@gmail.com)

Late submission won't be accepted!

- 1. Given a vector, \vec{A} , how do you calculate its unit vector? (1 point) Suppose $\vec{B} = 2\hat{a}_x + 4\hat{a}_y + 4\hat{a}_z$, what is its unit vector? (1 point)
- 2. In the x-y plane, assume $\vec{A} = \hat{a}_x + 3\hat{a}_y$ and $\vec{B} = 2\hat{a}_x + \hat{a}_y$. Explain that the calculation $\vec{C} = \vec{A} + \vec{B} = (1+2)\hat{a}_x + (3+1)\hat{a}_y = 3\hat{a}_x + 4\hat{a}_y$ is consistent with the head-to-tail construction for \vec{C} in the x-y plane. (5 points)

3. What is the physical meaning of the scalar product of a vector \vec{A} and an unit vector \hat{a}_u or $\vec{A} \cdot \hat{a}_u$? Use graph illustration to explain it. (3 points)

4. What is the area of the parallelogram expanded by the two vectors, $\vec{l}_A = \hat{a}_x + 3\hat{a}_y$

(m) and
$$\vec{l}_B = 2\hat{a}_x + \hat{a}_y$$
 (m) ? (3 points)

EE214000 Electromagnetics, Fall 2020

- 9. Use vector calculus to calculate the surface area of a sphere with radius of *a*. (2 points)
- 10. Use vector calculus to calculate the volume of a sphere with radius a. (2 points)