# The Complexity of Several Realizability Problems for Abstract Topological Graphs

Jan Kynčl

Charles University, Prague

**Graph:** 
$$G = (V, E), |V| < \infty, E \subseteq \binom{V}{2}$$

Topological graph: a drawing of a graph in the plane

vertices = points

edges = simple curves

- edges do not pass through any vertices other than their end-points
- any two edges have only finitely many common points
- any intersection point of two edges is either a common end-point or a crossing (no touching allowed)
- at most two edges can intersect in one crossing

simple: any two edges have at most one common point

complete:  $E = \binom{V}{2}$ 





topological graph

simple complete topological graph

#### **Abstract topological graph (AT-graph):**

$$A=(G,R)$$
;  $G=(V,E)$  is a graph,  $R\subseteq {E\choose 2}$ 

in a topological graph  $T \dots R_T = \text{set of crossing pairs of edges}$ 

AT-graph A is

realizable if there exists a topological graph T which is a drawing of G and  $R_T=R$ .

simply realizable ... T is simple

 $\begin{array}{c} \textbf{rectilinearly realizable} \ \dots \ \textbf{edges of} \ T \ \textbf{are straight-line} \\ \textbf{segments} \\ \end{array}$ 

weakly realizable ...  $R_T \subseteq R$ 

## **Example:** $A = (K_4, \{\{\{1,3\}, \{2,4\}\}\})$



realization



simple realization



weak realization

#### (simple, weak, rectilinear) realizability:

instance: AT-graf A

question: is A (simply, weakly, rectilinearly) realizable?

Theorem: [J. Kratochvíl, 1991]

The realizability and the weak realizability are NP-hard.

Theorem: [J. Pach, G. Tóth, 2002;

M. Schaefer, D. Štefankovič, 2004]

The realizability and the weak realizability are decidable.

**Theorem:** [M. Schaefer, E. Sedgwick, D. Štefankovič, 2004]

The realizability and the weak realizability are in NP.

|                   | AT-graphs | complete AT-graphs |
|-------------------|-----------|--------------------|
| realizability     |           |                    |
| weak r.           |           |                    |
| simple r.         |           |                    |
| weak simple r.    |           |                    |
| weak rectilin. r. |           |                    |

|                   | AT-graphs                | complete AT-graphs |
|-------------------|--------------------------|--------------------|
| realizability     | NP-complete [K91, SSŠ04] |                    |
| weak r.           | NP-complete [K91, SSŠ04] |                    |
| simple r.         |                          |                    |
| weak simple r.    |                          |                    |
| weak rectilin. r. |                          |                    |

|                   | AT-graphs                | complete AT-graphs |
|-------------------|--------------------------|--------------------|
| realizability     | NP-complete [K91, SSŠ04] |                    |
| weak r.           | NP-complete [K91, SSŠ04] |                    |
| simple r.         | NP-complete              |                    |
| weak simple r.    | NP-complete              |                    |
| weak rectilin. r. |                          |                    |

|                   | AT-graphs                | complete AT-graphs |
|-------------------|--------------------------|--------------------|
| realizability     | NP-complete [K91, SSŠ04] |                    |
| weak r.           | NP-complete [K91, SSŠ04] |                    |
| simple r.         | NP-complete              |                    |
| weak simple r.    | NP-complete              |                    |
| weak rectilin. r. | NP-hard                  |                    |

|                   | AT-graphs                | complete AT-graphs |
|-------------------|--------------------------|--------------------|
| realizability     | NP-complete [K91, SSŠ04] | NP-complete        |
| weak r.           | NP-complete [K91, SSŠ04] | NP-complete        |
| simple r.         | NP-complete              |                    |
| weak simple r.    | NP-complete              |                    |
| weak rectilin. r. | NP-hard                  |                    |

|                   | AT-graphs                | complete AT-graphs |
|-------------------|--------------------------|--------------------|
| realizability     | NP-complete [K91, SSŠ04] | NP-complete        |
| weak r.           | NP-complete [K91, SSŠ04] | NP-complete        |
| simple r.         | NP-complete              |                    |
| weak simple r.    | NP-complete              | NP-complete        |
| weak rectilin. r. | NP-hard                  | NP-hard            |

|                   | AT-graphs                | complete AT-graphs |
|-------------------|--------------------------|--------------------|
| realizability     | NP-complete [K91, SSŠ04] | NP-complete        |
| weak r.           | NP-complete [K91, SSŠ04] | NP-complete        |
| simple r.         | NP-complete              | P                  |
| weak simple r.    | NP-complete              | NP-complete        |
| weak rectilin. r. | NP-hard                  | NP-hard            |

### **NP-hard problems**

#### main idea of the proof:

reduction from the planar 3-connected 3-SAT [J. Kratochvíl, 1991] which is an NP-complete problem [J. Kratochvíl, 1994]



# example of variable and clause gadgets for the simple realizability:



## Simple realizability of complete AT-graphs

#### **Proposition:**

- (1) A complete AT-graph determines the extended rotation system of its simple realization (up to inversion).
- (2) For every edge e of a simple complete topological graph T and for each pair of edges  $f, f' \in E(G)$  that have a common end-point and cross e, the AT-graph of T uniquely determines the order of crossings of e with the edges f and f'.

## star-cut representation:

## star-cut representation:



## star-cut representation:





#### **Algorithm:**

- for each induced subgraph on 5 vertices: the rotation system
- the extended rotation system of the whole graph
- for a chosen vertex v, for each non-incident edge e: the order in which e crosses the edges of the star S(v)
- a (partial) star-cut representation
- the order of the end-points of the pseudochords on the perimeter minimizing the total number of crossings
- the order of crossings of pseudochords with other pseudochords