Расчётно-графическая работа №1

Студенты 1-го курса бакалавриата КТиУ, СУиР Овчинников П.А., Румянцев А.А., Чебаненко Д.А.

26 июня 2023 г.

Определение δ -функции Дирака

Дельта-функция — распределение, введённое физиком Полем Дираком, с помощью которого можно записать точечное воздействие или показать плотность физических величин, сосредоточенных или приложенных в одной точке. Формально эта обобщённая функция представляет собой линейный функционал, который отображает функцию только в её нулевом значении. Также известен символ δ Кронекера, который по сути является дискретным аналогом символа δ Дирака и часто применяется в линейной алгебре.

Рис. 1: Одномерный график дельта-функции

Определим дельта-функцию через финитные бесконечно дифференцируемые функции.

Финитные бесконечно дифференцируемые и обобщённые функции

Функция, определённая во всём пространстве R^m и равная нулю во всех достаточно удалённых точках R^m , т.е. в точках, удовлетворяющих условию |x| > M, где M — некоторое положительное число, называется обычно финитной функцией в R^m . Класс финитных бесконечно дифференцируемых в R^m функций (т.е. основных функций) обозначается через $C_0^\infty(R^m)$ (его ещё обозначают как D). Число M для различных функций u(x) этого класса может быть, естественно, различным. Рассмотрим функцию u(x), суммируемую по всему пространству R^m , т.е. u(x) из $L_1(R^m)$. Обозначим через $u_{(M)}(x)$ функцию,

совпадающую с u(x) в шаре |x| < M и равную нулю в остальных точках R^m . Так как $u \in L_1(R^m)$, то:

$$\int \left| u(x) - u_{(M)}(x) \right| dx = \int_{|x| > M} |u(x)| dx \to 0 \text{ при } M \to \infty.$$

Формально **обобщённая функция** или, другими словами, распределение $f(\varphi)$ определяется как линейный непрерывный функционал над тем или иным векторным пространством основных функций.

Определение дельта-функции через финитные бесконечно дифференцируемые

Пусть $\varphi(x)$ — финитная бесконечно дифференцируемая функция и $x \in \mathbb{R}$. Тогда $\varphi(x) \in C_0^{\infty}$. Дельта-функцией Дирака называется линейная непрерывная обобщённая функция, действующая на функции $\varphi(x)$ по правилу $\hat{\delta}\varphi = \varphi(0)$ или, по другому говоря:

$$\int_{-\infty}^{+\infty} \delta(x)\varphi(x)dx = \varphi(0).$$

Действие дельта-функции согласно такому простому правилу расширяется на все функции $\varphi(x)$, определённые и непрерывные в некоторой окрестности нуля. Поскольку результат действия дельта-функции определяется только значением $\varphi(x)$ в нуле, то:

$$\int_{a}^{b} \delta(x)\varphi(x)dx = \varphi(0) \qquad \int_{a}^{b} \delta(x)\varphi(x)dx = 0,$$

$$a < 0 < b \qquad 0 \notin [a, b]$$

Символ $\delta(x)$ не является функцией в обычном смысле слова — дельта-функция, как и всякая обобщённая функция, является оператором и задаётся исключительно способом её действия на основные функции $\varphi(x)$. δ -функция может выражаться через пределы:

$$\delta(x) = \lim_{\alpha \to \infty} \frac{\sin \alpha x}{\pi x} \qquad \delta(x) = \frac{1}{\sqrt{\pi}} \lim_{\alpha \to 0} \alpha e^{-x^2/\alpha^2} \qquad \delta(x) = -\lim_{\alpha \to 0} \frac{e^{x/\alpha}}{\alpha (e^{x/\alpha} + 1)^2}$$

Свойства δ -функции

Фильтрующее свойство функции

Рассмотрим интеграл $\int \delta(x-x_0)\varphi(x)dx$, $\varphi(x) \in D$ и сделаем в нём замену переменной $t=x-x_0$:

$$\int \delta(x - x_0)\varphi(x)dx = \int \delta(t)\varphi(t + x_0)dt = \varphi(x_0).$$

Таким образом $\int \delta(x-x_0)\varphi(x)dx = \varphi(x_0)$.

Чётность δ -функции

Рассмотрим интеграл $\int \delta(-x)\varphi(x)dx = \varphi(0), \quad \varphi(x) \in D$ и вновь сделаем замену t=-x:

$$\int \delta(-x)\varphi(x)dx = -\int \delta(t)\varphi(-t)dt = \int \delta(x)\varphi(-x)dx = \varphi(0).$$

Таким образом $\int \delta(-x)\varphi(x)dx = \varphi(0) = \int \delta(x)\varphi(-x)dx \Rightarrow \delta(-x) = \delta(x).$

Первообразная δ -функции. Функция Хевисайда

Ступенчатая функция Хевисайда является обобщённой первообразной дельта-функции. Её уравнение довольно незамысловато:

$$\theta(x) = \begin{cases} 0, & x < 0, \\ 1, & x > 0. \end{cases}$$

Покажем взаимосвязь этих функций:

$$\int_{-\infty}^{+\infty} \theta'(x)\varphi(x)dx = \theta(x)\varphi(x)|_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} \theta(x)\varphi'(x)dx = -\int_{0}^{+\infty} \varphi'(x)dx = \int_{0}^{+\infty} \varphi'(x)$$

$$= -\varphi(x)|_{0}^{+\infty} = \varphi(0) = \int_{-\infty}^{+\infty} \delta(x)\varphi(x)dx.$$

Это и означает, что $\theta'(x) = \delta(x)$, т.е. дельта-функция является обобщённой производной функции Хевисайда.

Рис. 2: График первообразной функции Хевисайда

Приложения

Дельта-функция крайне полезна и удобна для описания различных физических явлений, в которых приходится иметь дело с точечными объектами и источниками

Плотность распределения тепла

Пусть функция f(x,t) описывает плотность распределения источников тепла на прямой, т. е. определяет, какое количество тепла выделяется в точке x в момент времени t. Такие свойства

1. Если в точке x_0 непрерывный источник тепла мощности Q, то функцию f(x,t) запишем в виде $Q\delta(x-x_0)$.

- 2. Если в точке x_1 в момент времени t_1 мгновенно выделяется количество тепла Q, тогда $f(x,t) = Q\delta(x-x_1)\delta(t-t_1)$.
- 3. Пусть в точке x_1 находится непрерывно-действующий источник мощности Q_1 , в точке x_2 источник, который выделяет в момент времени t_2 количества тепла, равное Q_2 , тогда $f(x,t)=Q_1\delta(x-x_1)+Q_2\delta(x-x_2)\delta(t-t_2)$.

Плотность тока

Плотность тока, который создает при своем движении единственный электрон, можно записать в виде: $\vec{j} = \rho \vec{v}$, где \vec{v} - скорость электрона, а $\rho = e \delta(\vec{r} - \vec{r_0})$ - плотность его заряда.

$$\int_{\mathbb{R}_n} \delta(x) dx = \lim_{\varepsilon \to 0} \int_{\mathbb{R}_n} \delta_{\varepsilon}(x) dx = 1$$

Физический смысл этого интеграла — распределение плотности (единичного заряда, единичной массы и пр.) в виде импульса с носителем в начале координат.

Nota bene. Более строго функцию Дирака следовало бы определить как ядро интегрального преобразования.

Теория вероятности

Дельта-функция часто применяется для представления дискретного распределения и вычисления плотности вероятности в статистике. Плотность вероятности дискретного распределения, состоящего из точек $x = \{x_1, x_2, \dots, x_n\}$ с вероятностями p_1, p_2, \dots, p_n , может быть записана в виде:

$$P(x) = \sum_{i=1}^{n} p_i \delta(x - x_i).$$