Bayesian Data Analysis, class 5a

Andrew Gelman

Chapter 5: Hierarchical models (part 2)

- ▶ Theory problem
- Computing problem
- Applied problem

- Theory problem
- Computing problem
- Applied problem

- Theory problem
- Computing problem
- Applied problem

- Theory problem
- Computing problem
- Applied problem

Theory problem

- Normal approximation to the posterior distribution from Cauchy data
- Second derivative, plotting the normal density

Theory problem

- Normal approximation to the posterior distribution from Cauchy data
- Second derivative, plotting the normal density

Theory problem

- Normal approximation to the posterior distribution from Cauchy data
- Second derivative, plotting the normal density

Computing problem

▶ Poisson regression: check that posterior inferences are consistent with true parameter values

Computing problem

► Poisson regression: check that posterior inferences are consistent with true parameter values

- ▶ Basketball shooting again: θ_i is improvement in success probability for person i
- Prior distribution for mean and standard deviation of θ_i in the population
- Sidestepping causal questions

- ▶ Basketball shooting again: θ_i is improvement in success probability for person i
- ightharpoonup Prior distribution for mean and standard deviation of $heta_i$ in the population
- Sidestepping causal questions

- ▶ Basketball shooting again: θ_i is improvement in success probability for person i
- ightharpoonup Prior distribution for mean and standard deviation of $heta_i$ in the population
- Sidestepping causal questions

- ▶ Basketball shooting again: θ_i is improvement in success probability for person i
- ightharpoonup Prior distribution for mean and standard deviation of $heta_i$ in the population
- Sidestepping causal questions

- ► The 8 schools example
- Meta-analysis
- Weakly informative priors for hierarchical variance parameters

- ► The 8 schools example
- Meta-analysis
- Weakly informative priors for hierarchical variance parameters

- ► The 8 schools example
- Meta-analysis
- Weakly informative priors for hierarchical variance parameters

- ► The 8 schools example
- Meta-analysis
- Weakly informative priors for hierarchical variance parameters

Estimates conditional on the group-level variance

	Estimated	Standard error
School	treatment effect, y_j	of effect estimate, σ_j
A	28	15
В	8	10
$^{\mathrm{C}}$	-3	16
D	7	11
\mathbf{E}	-1	9
F	1	11
G	18	10
$_{\mathrm{H}}$	12	18

Posterior uncertainties

	Estimated treatment	Standard error of effect
School	effect, y_j	estimate, σ_j
A	28	15
В	8	10
$^{\mathrm{C}}$	-3	16
D	7	11
\mathbf{E}	-1	9
F	1	11
G	18	10
$_{\mathrm{H}}$	12	18

Inference for the group-level variance

School	Estimated treatment effect, y_j	Standard error of effect estimate, σ_j
A	28	15
В	8	10
$^{\mathrm{C}}$	-3	16
D	7	11
\mathbf{E}	-1	9
\mathbf{F}	1	11
\mathbf{G}	18	10
Η	12	18

A couple of qois

-20 0 20 40 60 Largest Effect

How do these differ?

Some lingering questions

- ▶ What if the model were applied not to 8 schools but to 8 unrelated objects?
- Inference for μ

Some lingering questions

- What if the model were applied not to 8 schools but to 8 unrelated objects?
- ▶ Inference for μ

Some lingering questions

- What if the model were applied not to 8 schools but to 8 unrelated objects?
- ▶ Inference for μ

- ► Transform $\frac{y_2}{n_2} \frac{y_1}{n_1}$ to log-odds with approximately normal errors
- ► Apply 8-schools model
- ► Three levels of inference:

Write the notation for each inference

- ► Transform $\frac{y_2}{n_2} \frac{y_1}{n_1}$ to log-odds with approximately normal errors
- ► Apply 8-schools model
- ► Three levels of inference:
 - Effect in a single study (existing or new)
 Prediction for a new person (in an existing over
- Write the notation for each inference

- ► Transform $\frac{y_2}{n_2} \frac{y_1}{n_1}$ to log-odds with approximately normal errors
- Apply 8-schools model
- ► Three levels of inference:
 - Average effect
 - Effect in a single study (existing or new)
 - Prediction for a new person (in an existing or new string)
- Write the notation for each inference

- ► Transform $\frac{y_2}{n_2} \frac{y_1}{n_1}$ to log-odds with approximately normal errors
- Apply 8-schools model
- ▶ Three levels of inference:
 - Average effect
 - ► Effect in a single study (existing or new)
 - Prediction for a new person (in an existing or new study)
- Write the notation for each inference

- ► Transform $\frac{y_2}{n_2} \frac{y_1}{n_1}$ to log-odds with approximately normal errors
- Apply 8-schools model
- ▶ Three levels of inference:
 - ► Average effect
 - Effect in a single study (existing or new)
 - Prediction for a new person (in an existing or new study)
- Write the notation for each inference

- ► Transform $\frac{y_2}{n_2} \frac{y_1}{n_1}$ to log-odds with approximately normal errors
- Apply 8-schools model
- Three levels of inference:
 - ► Average effect
 - Effect in a single study (existing or new)
 - Prediction for a new person (in an existing or new study)
- Write the notation for each inference

- ► Transform $\frac{y_2}{n_2} \frac{y_1}{n_1}$ to log-odds with approximately normal errors
- Apply 8-schools model
- Three levels of inference:
 - ► Average effect
 - Effect in a single study (existing or new)
 - Prediction for a new person (in an existing or new study)
- Write the notation for each inference

- ► Transform $\frac{y_2}{n_2} \frac{y_1}{n_1}$ to log-odds with approximately normal errors
- Apply 8-schools model
- ▶ Three levels of inference:
 - Average effect
 - Effect in a single study (existing or new)
 - Prediction for a new person (in an existing or new study)
- ▶ Write the notation for each inference

5.7. Weakly informative priors for hierarchical variance parameters

Result of the uniform prior distribution, $p(\tau) \propto 1$, for $\tau \in (0, \infty)$:

Prior distributions for the hierarchical variance parameter

▶ What is a good "weakly informative prior"?

```
► \log \tau \sim \text{Uniform}(-\infty, \infty)

► \tau \sim \text{Uniform}(0, \infty)

► \tau \sim \text{Inverse-gamma}(0.001, 0.001)

► \tau \sim \text{Cauchy}^{\top}(0, A)
```

Polson and Scott (2011):

"The half-Cauchy occupies a sensible 'middle ground' . . . it performs very well near the origin, but does not lead to drastic compromises in other parts of the parameter space."

Prior distributions for the hierarchical variance parameter

▶ What is a good "weakly informative prior"?

```
▶ \log \tau \sim \text{Uniform}(-\infty, \infty)
▶ \tau \sim \text{Uniform}(0, \infty)
▶ \tau \sim \text{Inverse-gamma}(0.001, 0.001)
▶ \tau \sim \text{Cauchy}^{\pm}(0, A)
```

Polson and Scott (2011):

"The half-Cauchy occupies a sensible 'middle ground' . . . it performs very well near the origin, but does not lead to drastic compromises in other parts of the parameter space."

- What is a good "weakly informative prior"?
 - ▶ $\log \tau \sim \mathsf{Uniform}(-\infty, \infty)$
 - $au \sim \mathsf{Uniform}(0,\infty)$
 - $au \sim ext{Inverse-gamma}(0.001, 0.001)$
 - $ightharpoonup au \sim \mathsf{Cauchy}^+(0,A)$
- Polson and Scott (2011):

"The half-Cauchy occupies a sensible 'middle ground' . . . it performs very well near the origin, but does not lead to drastic compromises in other parts of the parameter space."

- What is a good "weakly informative prior"?
 - ▶ $\log \tau \sim \mathsf{Uniform}(-\infty, \infty)$
 - $\tau \sim \mathsf{Uniform}(0,\infty)$
 - $au \sim ext{Inverse-gamma}(0.001, 0.001)$
 - $ightharpoonup au \sim \mathsf{Cauchy}^+(0,A)$
- ▶ Polson and Scott (2011):
 - "The half-Cauchy occupies a sensible 'middle ground' ... it performs very well near the origin, but does not lead to drastic compromises in other parts of the parameter space."

- ▶ What is a good "weakly informative prior"?
 - ▶ $\log \tau \sim \mathsf{Uniform}(-\infty, \infty)$
 - $\tau \sim \mathsf{Uniform}(0,\infty)$
 - $au \sim \mathsf{Inverse}\mathsf{-gamma}(0.001, 0.001)$
 - $au \sim \mathsf{Cauchy}^+(0,A)$
- ▶ Polson and Scott (2011):
 - "The half-Cauchy occupies a sensible 'middle ground' . . . it performs very well near the origin, but does not lead to drastic compromises in other parts of the parameter space."

- What is a good "weakly informative prior"?
 - ▶ $\log \tau \sim \mathsf{Uniform}(-\infty, \infty)$
 - $\tau \sim \mathsf{Uniform}(0,\infty)$
 - $au \sim \text{Inverse-gamma}(0.001, 0.001)$
 - $\tau \sim \mathsf{Cauchy}^+(0, A)$
- ▶ Polson and Scott (2011):

"The half-Cauchy occupies a sensible 'middle ground' . . . it performs very well near the origin, but does not lead to drastic compromises in other parts of the parameter space."

- What is a good "weakly informative prior"?
 - ▶ $\log \tau \sim \mathsf{Uniform}(-\infty, \infty)$
 - $\tau \sim \mathsf{Uniform}(0,\infty)$
 - $au \sim \mathsf{Inverse}\mathsf{-gamma}(0.001, 0.001)$
 - $au \sim \mathsf{Cauchy}^+(0, A)$
- ▶ Polson and Scott (2011):

"The half-Cauchy occupies a sensible 'middle ground' ... it performs very well near the origin, but does not lead to drastic compromises in other parts of the parameter space."

Problems with inverse-gamma prior

► Inv-gamma prior cuts off at 0

Problems with inverse-gamma prior

Inv-gamma prior cuts off at 0

Problems with uniform prior

3 schools: posterior on σ_{α} given uniform prior on σ_{α}

3 schools: posterior on σ_{α} given half–Cauchy (25) prior on σ_{α}

Uniform prior doesn't cut off the long tail

Problems with uniform prior

3 schools: posterior on σ_{α} given uniform prior on σ_{α}

3 schools: posterior on σ_{α} given half–Cauchy (25) prior on σ_{α}

Uniform prior doesn't cut off the long tail

- ► Variance parameters indistinguishable from 0
- ▶ 8 schools
- 3 schools
- ▶ 1 or 2 schools??

- Variance parameters indistinguishable from 0
- ▶ 8 schools
- ▶ 3 schools
- ▶ 1 or 2 schools??

- Variance parameters indistinguishable from 0
- ▶ 8 schools
- ▶ 3 schools
- ▶ 1 or 2 schools??

- Variance parameters indistinguishable from 0
- ▶ 8 schools
- ▶ 3 schools
- ▶ 1 or 2 schools??

- Variance parameters indistinguishable from 0
- ▶ 8 schools
- ▶ 3 schools
- ▶ 1 or 2 schools??

- Estimate hyperparameters from data
- Partial pooling
- Exchangeability and going beyond
- Difficulties when #groups is small

- Estimate hyperparameters from data
- Partial pooling
- Exchangeability and going beyond
- Difficulties when #groups is small

- Estimate hyperparameters from data
- Partial pooling
- Exchangeability and going beyond
- Difficulties when #groups is small

- Estimate hyperparameters from data
- Partial pooling
- Exchangeability and going beyond
- ▶ Difficulties when #groups is small

- Estimate hyperparameters from data
- Partial pooling
- Exchangeability and going beyond
- Difficulties when #groups is small