LINQ for Geometry - VORLÄUFIGES DOKUMENT

Implementierung der Half-Edge Datenstruktur zu Manipulation und Handling Dreidimensionaler Meshes insbesondere durch den Einsatz von LINQ und LAMBA Ausdrücken in Microsofts C#

Dominik Steffen

Erstbetreuer: Prof. Christoph Müller, Fakultät DM

Zweitbetreuer: Prof. Wilhelm Walter, Fakultät DM

18. März 2013

Inhaltsverzeichnis

1	Einleitung					
	1.1	Fragestellung				
	1.2	Warum C# ?	1			
	1.3	Die halfedge data structure (kurz HES) als Algorithmus	1			
		1.3.1 Die Basis der HES	1			
		1.3.2 Speicherverbrauch im Gegensatz zu Face basierten Lösungen $$	1			
		1.3.3 Vorteile der HES	1			
	1.4	Aktueller Forschungsstatus	1			
	1.5	Probleme der aktuellen Forschung				
	1.6	Einführung zu LINQ in C#	1			
	1.7	Einführung zu Lambda in C#	1			
2	Hau	Hauptteil 2				
	2.1	Gegenüberstellung nativer (OpenMesh.org) und gemanagter HES	3			
	2.2	Geschwindigkeitsunterschiede von nativem und Code in der C# Umgebung	3			
	2.3	Implementierung und Funktion der Handler für die einzelnen Komponen-				
		ten der HEDS	3			
		2.3.1 Edges und Handler	3			
		2.3.2 Half-Edges und Handler	3			
		2.3.3 Vertices und Handler	3			
		2.3.4 Faces und Handler	3			
	2.4	LINQ und Lambda Ausdrücke und ihre Stärken und Schwächen bei der				
		Selektierung großer Datenmengen	3			
	2.5	Stern- und Umlaufenumeratoren (Iteratoren)	3			
		2.5.1 Verwendete "Design-Patterns" und Softwarelösungen	3			
		2.5.2 Linq und Lambda Ausdrücke in den Enumeratoren	3			
	2.6	Der Import von Geometriedaten im "Wavefront Object" Format	3			
		2.6.1 Warum das Wavefront Object Format	3			

Li	teratı	urverze	ichnis	5		
	3.3	Zukür	aftige Entwicklung	4		
		3.2.1	Wie groß sind die Unterschiede Tatsächlich ausgefallen	4		
	3.2	Absch	ließender Vergleich von Native und Managed Code	4		
		3.1.2	Welche Schnittstellen müssen noch geschaffen werden	4		
		3.1.1	In wie weit ist das Programm produktiv Nutzbar	4		
	3.1	Ergeb	nis der Arbeit	4		
3	Schluss					
		onsalg	orithmen	3		
	2.8	beispielhafte Implementierung von Standard Geometriemanipulati-				
		2.7.3	Manipulation von Faces	3		
		2.7.2	Manipulation von Kanten	3		
		2.7.1	Manipulation von Vertices	3		
	2.7	Manip	oulation von Mesh Daten in der Datenstruktur	3		
		2.6.2	Importer für das Wavefront Format	3		

1 Einleitung

1.1 Fragestellung

Ist es möglich die "halfedge data structure" (kurz HES) in einer gemanagten Programmiersprache wie C# unter der Berücksichtigung von Linq und Lambda Ausdrücken so performant zu gestalten dass damit grundlegende Geometriemanipulation in der Computergrafik erfolgen kann?

1.2 Warum C# ?

1.3 Die halfedge data structure (kurz HES) als Algorithmus

1.3.1 Die Basis der HES

Verbindungen und Beziehungen in der HES

- 1.3.2 Speicherverbrauch im Gegensatz zu Face basierten Lösungen
- 1.3.3 Vorteile der HES
- 1.4 Aktueller Forschungsstatus
- 1.5 Probleme der aktuellen Forschung
- 1.6 Einführung zu LINQ in C#
- 1.7 Einführung zu Lambda in C#

2 Hauptteil

- 2.1 Gegenüberstellung nativer (OpenMesh.org) und gemanagter HES
- 2.2 Geschwindigkeitsunterschiede von nativem und Code in der C# Umgebung
- 2.3 Implementierung und Funktion der Handler für die einzelnen Komponenten der HEDS
- 2.3.1 Edges und Handler
- 2.3.2 Half-Edges und Handler
- 2.3.3 Vertices und Handler
- 2.3.4 Faces und Handler
- 2.4 LINQ und Lambda Ausdrücke und ihre Stärken und Schwächen bei der Selektierung großer Datenmengen
- 2.5 Stern- und Umlaufenumeratoren (Iteratoren)
- 2.5.1 Verwendete "Design-Patterns" und Softwarelösungen
- 2.5.2 Linq und Lambda Ausdrücke in den Enumeratoren
- 2.6 Der Import von Geometriedaten im "Wavefront Object" Format
- 2.6.1 Warum das Wavefront Object Format
- 2.6.2 Importer für das Wavefront Format

Face hasierter Import - Edge hasiertes Handling

3 Schluss

- 3.1 Ergebnis der Arbeit
- 3.1.1 In wie weit ist das Programm produktiv Nutzbar
- 3.1.2 Welche Schnittstellen müssen noch geschaffen werden
- 3.2 Abschließender Vergleich von Native und Managed Code
- 3.2.1 Wie groß sind die Unterschiede Tatsächlich ausgefallen
- 3.3 Zukünftige Entwicklung

Literaturverzeichnis