NPDE 第 2 次实验报告

朱浩然 PB21000234

October 10, 2024

问题描述 1

求下述偏微分方程初值问题在时刻 t = 0.3 的近似解:

$$\left\{ \begin{array}{ll} u_t = u_x, & -\infty < x < \infty, t > 0, \\ u(x,0) = sin(2\pi x), & -\infty < x < \infty, \\ \text{周期性边界条件, 且周期为:1} \end{array} \right.$$

$\mathbf{2}$ 方法

该方程的精确解为 $u(x,t) = sin(2\pi(x+t))$, 对时空区域 $[0,1] \times [0,1]$ 剖分 (均分) 如下:

时间: $t_n = n \cdot \Delta t, n = 0, 1, 2, ..., N$, 时间步长 $\Delta t = \frac{1}{N}$ 。 空间: $x_j = j \cdot \Delta x, j = 0, 1, 2, ..., J$, 时间步长 $\Delta x = \frac{1}{J}$ 。 定解条件: 初始条件: $v_j^0 = \sin(2\pi x_j)$, 边界条件: $v_j^n = v_{j+J}^n$ 。 记 $v_j^n \approx u(x_j, t_n)$,时间导数用 $u_t \approx \frac{u(x, t + \Delta t) - u(x, t)}{\Delta t}$ 近似,空间导数分别用 前差 $u_x \approx \frac{u(x + \Delta x, t) - u(x, t)}{\Delta x}$ 和中心差 $u_x \approx \frac{u(x + \Delta x, t) - u(x - \Delta x, t)}{2\Delta x}$ 近似。

离散方程 A:
$$v_j^{n+1} = v_j^n + \frac{\Delta t}{\Delta x} (v_{j+1}^n - v_j^n),$$

离散方程 B:
$$v_j^{n+1} = v_j^n + \frac{\Delta t}{2\Delta x}(v_{j+1}^n - v_{j-1}^n)$$
.

即分别为 FTFS 格式和 FTCS 格式的离散方程。

文件 HW2.cpp 使用 c++ 编程计算,文件 HW2_plot.m 使用 MATLAB 绘 图。

3 结果

问题 1: 取 $\Delta x = 0.02$, $\Delta t = 0.01$, 分别用离散方程 A 和离散方程 B 求上述偏微分方程初值问题在时刻 t = 0.3 的近似解和精确解。

Figure 1: 问题 1 的解图像和误差图像

问题 2: 取 $\Delta x = 0.02$, $\Delta t = 0.03$, 分别用离散方程 A 和离散方程 B 求上述偏微分方程初值问题在时刻 t = 0.3 的近似解和精确解。

Figure 2: 问题 2 的解图像和误差图像

4 总结

FTCS 格式比 FTFS 格式稳定,且 dt/dx 越大,FTFS 格式越不稳定。