Отчет по лабораторной работе №7

Модель распространения рекламы - вариант 23

Хамарнех Мая Ясер НПИбд-02-18

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы 3.1 Теоретические сведения	6 6 8
4	Выводы	13

List of Figures

3.1	График решения уравнения модели Мальтуса
3.2	График логистической кривой
3.3	График для случая 1
	График для случая 2
	График для случая 3

1 Цель работы

Изучить модель эффективности рекламы

2 Задание

- 1. Изучить модель эфеективности рекламы
- 2. Построить графики распространения рекламы в заданных случайх
- 3. Определить для случая 2 момент времени, в который скорость распространения рекламы будет максимальной

3 Выполнение лабораторной работы

3.1 Теоретические сведения

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, N - общее число потенциальных платежеспособных покупателей, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей,

еще не знающих о нем, это описывается следующим образом $\alpha_1(t)(N-n(t))$, где $\alpha_1>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$. эта величина увеличивается с увеличением потребителей узнавших о товаре.

Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t))$$

При $\alpha_1(t) >> \alpha_2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид

Figure 3.1: График решения уравнения модели Мальтуса

В обратном случае $\alpha_1(t) << \alpha_2(t)$ получаем уравнение логистической кривой

Figure 3.2: График логистической кривой

3.2 Задача

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.51 + 0.000099n(t))(N - n(t))$$

2.
$$\frac{dn}{dt} = (0.000019 + 0.99n(t))(N - n(t))$$

$$\begin{aligned} &1. \ \ \frac{dn}{dt} = (0.51 + 0.000099n(t))(N - n(t)) \\ &2. \ \ \frac{dn}{dt} = (0.000019 + 0.99n(t))(N - n(t)) \\ &3. \ \ \frac{dn}{dt} = (0.99t + 0.3\cos(4t)n(t))(N - n(t)) \end{aligned}$$

При этом объем аудитории N=945, в начальный момент о товаре знает 13 человек.

Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

import numpy as np from scipy. integrate import odeint import matplotlib.pyplot as plt import math

$$t0 = 0$$

$$x0 = 12$$

$$N = 945$$

```
a1 = 0.51
a2 = 0.000099
t = np.arange(t0, 20, 0.1)
def syst(dx, t):
    x = dx
    return (a1 +x*a2)*(N-x)
y = odeint(syst, x0, t)
fig1 = plt.figure(facecolor='white')
plt.plot(t, y, linewidth=2, label="решение")
plt.xlabel("t")
plt.ylabel("численность")
plt.grid(True)
plt.legend()
plt.show()
fig1.savefig('03.png', dpi = 600)
a1 = 0.000019
a2 = 0.99
t = np.arange(t0, 0.1, 0.01)
y = odeint(syst, x0, t)
dy = (a1 + y*a2)*(N-y)
```

```
fig2 = plt.figure(facecolor='white')
plt.plot(t, y, linewidth=2, label="решение")
plt.plot(t, dy, linewidth=2, label="производная")
plt.xlabel("t")
plt.ylabel("численность")
plt.grid(True)
plt.legend()
plt.show()
fig2.savefig('04.png', dpi = 600)
def a1(t):
    a1 = 0.99 *t
    return a1
def a2(t):
    a2 = 0.3*math.cos(4*t)
    return a2
t = np.arange(t0, 0.2, 0.01)
def syst2(dx, t):
    x = dx
    return (a1(t) + x*a2(t))*(N-x)
y = odeint(syst2, x0, t)
fig3 = plt.figure(facecolor='white')
plt.plot(t, y, linewidth=2, label="решение")
```

```
plt.xlabel("t")
plt.ylabel("численность")
plt.grid(True)
plt.legend()
plt.show()
fig3.savefig('05.png', dpi = 600)
```


Figure 3.3: График для случая 1

Figure 3.4: График для случая 2

Figure 3.5: График для случая 3

4 Выводы

В ходе выполнения лабораторной работы была изучена модель эффективности рекламы и построены графики.