Minden is összefoglalva

Tétel:

Ha F fa, >= 2 csúcsú, akkor van benne legalább két 1 fokú csúcs.

Tétel:

Legyen G gráf n csúcsú és m élű, ekkor:

- HA G összefüggő, akkor m >= n-1.
- HA G körmentes, akkor m <= n-1.
- HA G fa, akkor m = n-1.

Tétel:

HA G-ben van feszítőfa, akkor G pontosan összefüggő.

Tétel:

G legyen összefüggő, ekkor:

- 1) Akkor és csak akkor létezik Euler-séta, ha két csúcs kivételével minden csúcs foka páros.
- 2) Akkor és csak akkor létezik Euler-körséta, ha minden csúcs foka páros.

Tétel:

G gráf, k >= 1 egész, ekkor:

- 1) G-ben létezik Hamilton-kör, akkor, ha bárhogyan **k** csúcsot törölve a kapott gráfnak maximum **k** komponense van.
- 2) G-ben létezik Hamilton-út, akkor, ha bárhogyan k csúcsot törölve a kapott gráfnak maximum k+1 komponense van.

Tétel:(Dirac)

G egyszerű gráf és $n \ge 3$ csúcsú és minden csúcs foka $\ge n/2$, ekkor G-ben létezik Hamilton-kör.

Tétel:(Ore)

G egyszerű gráf és n \geq 3 csúcsú és bármely u, v csúcsokra, amik nem szomszédosok, d(u)+d(v) \geq n, ekkor létezik Hamilton-kör G-ben.

Tétel:

Ha G páros, akkor pontosan nincs benne páratlan kör.

Tétel:

A mohó eljárás maximum a gráfban lévő legnagyobb fokszám + 1 színt használ.

Tétel:

Legyen G gráf, ekkor a G-beli klikkszám alsóbecslése G kromatikus szá mának.

Tétel:

A Krushal algoritmus mindig minimális összsúlyú feszítőfát ad.

Tétel:

Ha G intervallumgráf, akkor balvégpontja szerinti növekvő sorrendben a mohó színezés $\chi(G)$ színnel színezi G-t.

Tétel:

 $\alpha(G) + \tau(G) = n$.

	független	lefogó
	max	min
élhalmaz	ν(G)	ρ(G)
csúcshalmaz	α(G)	τ(G)

Tétel:(Gallai)

G n db csúcsú, nincs izolált pont: $v(G) + \rho(G) = n$:

- 1) Ha létezik k élű párosítás, akkor létezik =<n-k élű lefogó élhalmaz.
- 2) Ha létezik k élű lefogó élhalmaz, akkor létezik >=n-k élű párosítás.

Tétel:

 $v(G) \le \tau(G) \le \alpha(G) \le \rho(G)$. (keresztszabály)

Tétel:(Hall)

Létezik F-et fedő párosítás, akkor és csak akkor, ha minden F-beli X-re: |N(X)| >= |X|

Tétel:(Frobenius)

G = (F, L, E) páros, akkor és csak akkor létezik teljes párosítás, ha:

- |F|=|L|
- minden F-beli X-re: |N(X)| >= |X|

Tétel:

Ha G páros gráfban minden csúcs foka d>=1, akkor G-ben létezik teljes párosítás.

Tétel:(Kőnig)

Ha G páros gráf, akkor $v(G) = \tau(G)$.

Tétel:

Hurokélmentes gráf estén: $\Delta(G) \le \chi_e(G)$.

Tétel:(Vizing)

Minden egyszerű G gráfra: $\Delta(G) \le \chi_e(G) \le \Delta(G) + 1$.

Tétel:(Shannon)

Minden G gráfhoz $\chi_e(G) \le 3/2 \cdot \Delta(G)$.

Tétel:(Kőnig)

G páros gráfra $\chi_e(G) = \Delta(G)$.

Tétel:

Ha f-re nézve nincs javítóút, akkor f maximális folyam.

Tétel:(Edmonds-Karp, Dinitz)

Ha a segédgráfban mindig (élszámát tekintve) a legrövidebb s->t utak egyikét választjuk javítóútnak, akkor az algoritmus megáll <= n*m javítás után.

Tétel:(Ford-Fulkerson)

max flow = min cut

Tétel:(Egészértékűségi – lemma)

Ha minden $e: c(e) \in \mathbf{Z}$, akkor létezik, olyan max folyam: minden $e: f(e) \in \mathbf{Z}$.