UNIVERSIDADE FEDERAL DO MARANHÃO DEPARTAMENTO DE MATEMÁTICA

DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL III PROF: GREICIANE CURSO:CIÊNCIA DA COMPUTAÇÃO

1º AVALIAÇÃO DE CÁLCULO DIFERENCIAL E INTEGRAL III

- 1. Verifique se a sequência $a_n = \frac{3n^2}{n^2 + 2}$ é monótona e limitada.
- 2. Verifique se as sequências são convergentes e calcule o limite caso exista.

a)
$$a_n = \frac{3-4^n}{2+7.4^n}$$

b)
$$a_n = \sqrt{n+3} - \sqrt{n}$$

c)
$$a_n = n^2(\sqrt[3]{n^3 + 1} - n)$$

d)
$$a_n = \cos\left(\frac{n^8 + 9n^2 - 3n}{7n^8 - 9n}\right) + e^{\frac{-4n^6 + n^3 + 2}{10n^8}}$$

- 3. Calcule a soma da série $\sum_{n=1}^{\infty} 2^n 5^{1-n} \frac{4}{(4n-3)(4n+1)}.$
- 4. Verifique se as séries são convergentes ou divergentes.

a)
$$\sum_{n=1}^{\infty} \frac{(n!)^2 a^n}{2^{n^2}}$$
.

b)
$$\sum_{n=1}^{\infty} \frac{n^{n+1/n}}{(an+1/n)^n}, a>0.$$

c))
$$\sum_{n=1}^{\infty} \frac{n^7 (2n+3)^n}{(5n)^n}$$
.

d)
$$\sum_{n=1}^{\infty} (-1)^n \frac{-3n^2 + n}{(6n^2 + 1)^n}$$

- 5. Marque verdadeiro ou falso.
 - a) Toda sequência crescente e limitada é convergente.
 - b) Uma sequência não limitada sempre diverge para infinito. V
 - c) A soma de duas séries divergentes é uma série divergente. F
 - d) Toda sequência limitada e convergente é monótona.
 - e) Existe uma sequência convergente não limitada e não monótona.
 - f) Se os termos de uma série convergem para zero, então a série converge.