Corruption in the lab

Fedor Anna, Mokos Judit 19/12/2018

Description of the experiment

Sequential dyadic die-rolling task Two-by-two design: * Game: simple game or charity game * Partner: simulated honest partner or simulated dishonest partner

Participants are randomly assigned to one of the four conditions: * SH: simple game with honest partner * SD: simple game with dishonest partner * CH: charity game with honest partner * CD: charity game with dishonest partner

Each participant plays 20 rounds of the game. A round of game consists of the following steps: 1. Participant learns the reported number of the supposed partner 2. Participant throws a dice 3. Participant reports the number 4. Both players get paid according to the reported numbers 5. In the charity game a charity foundation gets a small amount of donation

Data frame column names (each row is a dice roll): * ID: random ID of participant * Game: simple or charity (S/C) * Partner: honest or dishonest (H/D) * Index: index of round of game * ValueA: value of simulated dice roll * ValueB: value of participant's reported dice roll * Q1: answer to first questionnaire quiestion * Q2: answer to second questionnaire question * Fingerratio: ratio of two fingers * Saliva: NO IDEA

Dummy data

##	[1] "ID"	"Game"	"Partner"	"Index"	"ValueA"
##	[6] "ValueB"	"Q1"	"Q2"	"Fingerration	o" "Saliva"

Figures

Scatter plots of individual behavior

These should be based on Weisel & Shalvi, 2015, Fig. S10. One plot per participant. Plots from the same condition should be compiled into one composite figure.

Heat map to demonstrate the distribution of reported numbers

Like Weisel & Shalvi, 2015, Fig. 2, but instead of circles, each rectangle should be color coded according the number of observations within them. One figure per condition.

Box plots of the mean number of doubles

One box for each condition on the same figure

Box plots of the mean reports: NINCS ÉRTELME

One box for each condition on the same figure

Statistics

Distribution of reported numbers

Kolmogorov-Smirnov One per condition

The number of doubles

Each participant ("dyad"") is a single observation: the number of reported doubles Wilcoxon signed-rank U test Expected value: 3.33 doubles/20 trials (16.7%; 20*1/6) Separately for each condition

Mean reports: VAN ENNEK ÉRTELME NÁLUNK? NINCS

Each participant ("dyad"") is a single observation: the mean of the reported numbers Wilcoxon signed-rank U test Expected value: 3.5 Separately for each condition

Compare the number of doubles in pairs of conditions

Mann-Whitney U test

Effect size

To estimate the effect size of the honest-dishonest treatment let's compare the choices of participant Bs, who were paired with an honest A vs. a chaeting A Data: from the supplementary material of Weisel&Shalvy, 2015 and from Wouda et al., 2015

Linear regression to test the effect of predictors

Dependent variable: number of reported doubles (interval) Predictors: game (binary), partner (binary), finger length (interval), hormone levels (interval)

random or non-random, khi square

LM?