Math Logic: Assignment 4

Nov 7, 2022

Attention: To get full credits, you *must provide explanations to your answers*! You will get at most 1/3 of the points if you only present the final results.

- 1. (4pt) Given the wff $(A \leftrightarrow B) \leftrightarrow C$ where A, B and C are sentence symbols,
 - (2pt) Compute its disjunctive normal form by using the truth table method;
 - (2pt) Compute its conjunctive normal form from its disjunctive normal form.
- 2. (3pt) Given a formula α and a set Σ of wffs, assume $\Sigma \cup \{\neg \alpha\}$ is not satisfiable. Show that there exists some finite set Δ such that $\Delta \subseteq \Sigma$ and $\Delta \models \alpha$.
- 3. (3pt) Let Σ be an effectively enumerable. Assume that for each wff α , either $\Sigma \vDash \alpha$ or $\Sigma \vDash \neg \alpha$. Show that the set of semantic consequences of Σ is effectively decidable.
- 4. (12pt) Construct proof trees for the following wffs (Hint: some of them may only be constructed by using the Law of Excluded Middle):

Notice: you must clearly mark the name of each inference rule in your proof trees.

- (4pt) $A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$;
- (4pt) $\neg(\neg A \land \neg B) \rightarrow A \lor B$;
- (4pt) $((P \rightarrow Q) \rightarrow P) \rightarrow P$;
- 5. (8pt) Prove the soundness of natural deduction for the inductive cases when the bottom rule is $\neg I$ and $\neg E$. Remember the soundness theorem is stated as follows:

If
$$\Sigma \vdash \alpha$$
 then $\Sigma \vDash \alpha$.

The proof proceeds by induction on the height of the partial proof tree for $\Sigma \vdash \alpha$. You need to show the following:

• (4pt) Assume $\alpha = \neg \beta$ and the tree looks like

$$\gamma_1 \quad \dots \quad \gamma_n \quad [\beta] \\
\vdots \\
\frac{\delta \land \neg \delta}{\neg \beta} \neg I$$

where $\{\gamma_1, \ldots, \gamma_n\} \subseteq \Sigma$. Assume soundness holds for proof trees with a smaller height, prove $\Sigma \vDash \neg \beta$.

• (4pt) Assume the tree looks like

$$\gamma_1 \quad \dots \quad \gamma_n \quad \sigma_1 \quad \dots \quad \sigma_m$$
 $\vdots \qquad \qquad \vdots$
 $\beta \qquad \qquad \neg \beta$
 $\neg -E$

where $\{\gamma_1, \dots, \gamma_n\} \subseteq \Sigma$ and $\{\sigma_1, \dots, \sigma_m\} \subseteq \Sigma$. Assume soundness holds for proof trees with a smaller height, prove $\Sigma \vDash \alpha$.

1