

$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$t_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#2}{}_{\alpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1^-}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+4k^2)^2t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1} -$	$\frac{1}{(1+k^2)^2 t_1} \frac{ik}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1} \left \frac{k^2}{(1+k^2)^2t_1} \right $	0 0	0 0	0 0	0 0
	$-\frac{\sqrt{2}}{t_1+k^2t_1} -$			0 0 0 σ	\downarrow^{α} 0 0 0 \downarrow^{α}	0 0 0	0 0 0

$f_{1^-}^{\#2} \alpha$	0	0	0	<u>ikt1</u> 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t1</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	1 1 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \bar{l} kt_1
$f_{1}^{\#1}$ $\alpha\beta$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	- t 1 - 2	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
,	$\omega_1^{#1} + \alpha \beta$	$\omega_1^{\#2} + ^{lphaeta}$	$f_{1+}^{#1} + ^{\alpha\beta}$	$\omega_{1}^{\#_1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1-}^{\#2} +^{\alpha}$

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_2^{\#1}_{lpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_{2^+}^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

Source constraints		
SO(3) irreps	#	
$\tau_{0+}^{\#2} == 0$	1	
$\tau_{0}^{\#1} == 0$	1	
$\tau_1^{\#2\alpha} + 2 i k \sigma_1^{\#1\alpha} == 0$	3	
$\tau_1^{\#1\alpha} == 0$	3	(
$\sigma_{1}^{\#1\alpha} = \sigma_{1}^{\#2\alpha}$	3	ŗ
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3	ŗ
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5	
Total #:	19	

	$\omega_{2}^{\#1}{}_{\alpha\beta}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1} \dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{i k t_1}{\sqrt{2}}$	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2^{-}}^{\sharp 1}\dagger^{lphaeta\chi}$	0	0	<u>t</u> 1 2

t ₁ t ₀ [#] + t ₀ [#] + t ₀ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
⊢ +
τ [#] ₀ 0 0 0 0 0 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
+ + + 0 + + 0 + + 0 + + 0 + + 0 + 1 + 0 -

Massive particle		
Pole residue:	$-\frac{1}{r_2} > 0$	
Polarisations:	1	
Square mass:	$\frac{t_1}{r_2} > 0$	
Spin:	0	
Parity:	Odd	
	Pole residue: Polarisations: Square mass: Spin:	

Unitarity conditions	

 $r_2 < 0 & t_1 < 0$

(No massless particles)