Chương 3: Tầng mạng – Internet Layer

Giảng viên: Ngô Hồng Sơn Khoa CNTT- ĐHBK Hà Nội Bộ môn Truyền thông và Mạng máy tính

- Tuần trước...
 - Vì sao phải phân tầng
 - Kiến trúc phân tầng, mô hình OSI/TCP
 - Khái niệm về địa chỉ IP, địa chỉ MAC, số hiệu cổng, tên miền.
- Tuần này
 - Giao thức tầng mạng Internet Protocol
 - Địa chỉ IP và khuôn dạng gói tin IP
 - Giao thức thông báo điều khiển- ICMP

Giới thiệu về giao thức tầng mạng IP

Khái niệm cơ bản Nguyên lý lưu-và-chuyển tiếp Đặc điểm giao thức IP

- Là một giao thức ở tầng mạng
- Hai chức năng cơ bản
 - Chọn đường (Routing): Xác định đường đi của gói tin từ nguồn đến đích
 - Chuyển tiếp (Forwarding): Chuyển dữ liệu từ đầu vào tới đầu ra của bộ định tuyển (router)
 - VD

Chọn đường và chuyển tiếp gói tin

Nhắc lại: Network layer vs. Transport layer

- network: Giữa các máy trạm hoặc các bộ định tuyến (Hosts)
- transport: Giữa các tiến trình trên máy trạm (Processes)

- Không tin cậy / nhanh
 - Truyền dữ liệu theo phương thức "best effort"
 - IP không có cơ chế phục hồi lỗi
 - Khi cần, sẽ sử dụng dịch vụ tầng trên để đảm bảo độ tin cậy (TCP)
- Giao thức không liên kết
 - Các gói tin được xử lý độc lập

Địa chỉ IP

Lớp địa chỉ IP

CIDR – Địa chỉ IP không phân lớp

Mạng con và mặt nạ mạng

Các địa chỉ IP đặc biệt

Địa chỉ IP (IPv4)

- Địa chỉ IP: Một số 32-bit để định danh giao diện máy trạm, bộ định tuyến
- Mỗi địa chỉ IP được gán cho một giao diện
- Địa chỉ IP có tính duy nhất

0 – 255 integer

Sử dụng 4 phần 8 bits để miêu tả một địa chỉ 32 bits

3417476964

- Địa chỉ IP có hai phần
 - Host ID địa chỉ máy trạm
 - Network ID địa chỉ mạng

- Làm thế nào biết được phần nào là cho máy trạm, phần nào cho mạng?
 - Phân lớp địa chỉ
 - Không phân lớp CIDR

Phân lớp địa chỉ IP

	_	8bits				8bits	8bits	8bits
Class A	0		7bit			Н	Н	Н
Class B	1	0	6bit		N	Н	Н	
Class C	1	1	0		5bit	N	N	Н
Class D	1	1	1	0	Multicast			
Class E	1	1	1	1	Reserve for future use			

	# of network	# of hosts		
Class A	128	2^24		
Class B	16384	65536		
Class C	2^21	256		

- Lãng phí không gian địa chỉ
 - Việc phân chia cứng thành các lớp (A, B, C, D, E) làm hạn chế việc sử dụng toàn bộ không gian địa chỉ

Cách giải quyết ...

- CIDR: Classless Inter Domain Routing
 - Phần địa chỉ mạng sẽ có độ dài bất kỳ
 - Dạng địa chỉ: a.b.c.d/x, trong đó x (mặt nạ mạng) là số bit trong phần ứng với địa chỉ mạng

- Mặt nạ mạng chia một địa chỉ IP làm 2 phần
 - Phần ứng với máy trạm
 - Phần ứng với mạng
- Dùng toán tử AND
 - Tính địa chỉ mạng
 - Tính khoảng địa chỉ IP

- 255.255.255.224
- /27
- 0xFFFFFe0

 Sẽ là một trong các số:

128 252

192 254

224 255

240

Cách tính địa chỉ mạng

IP Address

Netmask (/27)

AND

Network address

203.178.142.128/27

Mặt nạ mạng và kích thước mạng

255

255

255

192

- Kích thước
 - Theo lũy thừa 2
- RFC1878

- Trong trường hợp /26
 - Phần máy trạm = 6 bits
 - $2^6 = 64$
 - Dải địa chỉ có thể gán:
 - 0 63
 - 64 127
 - 128 191
 - 192 255

Địa chỉ mạng hay máy trạm (1)

Địa chỉ mạng hay máy trạm (2)

- Địa chỉ mạng
 - Địa chỉ IP gán cho một mạng
- Địa chỉ máy trạm
 - Địa chỉ IP gán cho một card mạng
- Địa chỉ quảng bá
 - Địa chỉ dùng để gửi cho tất cả các máy trạm trong mạng
 - Toàn bit 1 phần ứng với địa chỉ máy trạm

Địa chỉ IP và mặt nạ mạng

- Địa chỉ nào là địa chỉ máy trạm, địa chỉ mạng,
 địa chỉ quảng bá?
- (1) 203.178.142.128 /25
- (2) 203.178.142.128 /24
- (3) 203.178.142.127 /25
- (4) 203.178.142.127 /24
- Lưu ý: Với cách địa chỉ hóa theo CIDR, địa chỉ
 IP và mặt nạ mạng luôn phải đi cùng nhau

Mang con - subnet

- Là một phần của một mạng nào đó
 - ISP thường được gán một khối địa chỉ IP
 - Một vài mạng con sẽ được tạo ra
- Tạo subnet như thế nào
 - Sử dụng một mặt nạ mạng dài hơn

Mạng với 3 mạng con

Ví dụ: Chia làm 2 subnets

```
11001000 00010111 00010000 00000000
          23.
200.
                     16.
                                       /24
11001000 00010111 00010000 00000000
200.
        23.
                    16.
                                       /25
11001000 00010111 00010000 10000000
        23.
200.
                    16.
                             128
                                       /25
```


- Mang với mặt na /24
- Cần tạo 4 mạng con
 - Mạng với 14 máy tính
 - Mạng với 30 máy tính
 - Mạng với 31 máy tính
 - Mạng với 70 máy tính

/28	/27	/26	/25		
/24					

- Theo lý thuyết
 - Có thể là 0.0.0.0 ~ 255.255.255.255
 - Một số địa chỉ đặc biệt
- Địa chỉ IP đặc biệt (RFC1918)

	10.0.0/8		
Private address	172.16.0.0/12		
	192.168.0.0/16		
Loopback address	127.0.0.0		
Multicast address	224.0.0.0		
Mullicast address	~239.255.255.255		

Địa chỉ liên kết nội bộ: 169.254.0.0/16

- Internet đang sử dụng IPv4: 32 bits
 - 133.113.215.10 (IPv4)
- IPv6 đã và sẽ được sử dụng rộng rãi hơn:
 128bits
 - 2001:200:0:8803::53 (IPv6)
- IPv6 sẽ được đề cập kỹ hơn sau.

Q: Làm thế nào để máy có địa chỉ IP?

- Do người quản trị gán trực tiếp
 - Windows: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- DHCP: Dynamic Host Configuration Protocol: Giao thức cấu hình địa chỉ động
 - "plug-and-play"

Mục đích: Cho phép máy trạm nhận một địa chỉ IP động khi kết nối vào mạng

- Có thể "renew", "release"
- Hỗ trợ người dùng hay phải di chuyển (mobile)

Tổng quan về DHCP:

- Máy trạm quảng bá thông điệp "DHCP discover"
- Máy chủ DHCP trả lời với "DHCP offer"
- Máy trạm xin địa chỉ với : "DHCP request"
- Máy chủ DHCP cấp địa chỉ với: "DHCP ack"

Hoạt động của DHCP client-server

DHCP client-server scenario

Q: Một mạng con lấy địa chỉ IP từ đâu?

A: Chia ra từ không gian địa chỉ của ISP (Internet Service Provider)

ISP's block	11001000	00010111	00010000	00000000	200.23.16.0/20
Organization 0	11001000	00010111	00040000	0000000	200 22 46 0/22
Organization 0	11001000	00010111	0001000	00000000	200.23.16.0/23
Organization 1	<u>11001000</u>	00010111	<u>0001001</u> 0	0000000	200.23.18.0/23
Organization 2	11001000	00010111	<u>0001010</u> 0	0000000	200.23.20.0/23
Organization 7	11001000	00010111	<u>0001111</u> 0	00000000	200.23.30.0/23

Quản lý đ/c IP

Q: ISP lấy địa chỉ IP từ đâu?

A: ICANN: Internet Corporation for Assigned Names and Numbers

- Cấp phát địa chỉ
- Quản DNS....

Khuôn dạng gói tin IP

Phần đầu gói tin IP

total datagram length (words)

for

number header length (bytes)

IP protocol version

QoS support

max number remaining hops (decremented at each router)

> upper layer protocol to deliver payload to

(variable length,

typically a TCP

or UDP segment)

E.g. timestamp, record route taken, specify list of routers

fragmentation/

reassembly

to visit.

IP header (1)

- Phiên bản giao thức (4 bits)
 - IPv4
 - IPv6
- Độ dài phần đầu: 4bits
 - Tính theo từ (4 bytes)
 - Min: 5
 - Max: 60

- DS (Differentiated Service : 8bits)
 - Tên cũ: Type of Service
 - Hiện tại được sử dụng trong quản lý QoS
 - Diffserv

- Độ dài toàn bộ, tính cả phần đầu (16 bits)
 - Theo bytes
 - Max: 65536
- ID Số hiệu gói tin
 - Dùng để xác định một chuỗi các gói tin của một gói tin bị phân mảnh
- Flag Cò
- Fragmentation offset Vị trí gói tin phân mảnh trong gói tin ban đầu

- TTL, 8 bits Thời gian sống
 - Độ dài đường đi gói tin có thể đi qua
 - Max: 255
 - Router giảm TTL đi 1 đơn vị khi xử lý
 - Gói tin bị hủy nếu TTL bằng 0
- Protocol giao thức tầng trên
 - Giao thức giao vận phía trên (TCP, UDP,...)
 - Các giao thức tầng mạng khác (ICMP, IGMP, OSPF) cũng có trường này

IP header (4)

- Checksum Mã kiểm soát lỗi
- Địa chỉ IP nguồn
 - 32 bit, địa chỉ của trạm gửi
- Địa chỉ IP đích
 - 32 bit, địa chỉ của trạm đích

Phân mảnh gói tin (1)

- Đường truyền có một giá trị MTU (Kích thước đơn vị dữ liệu tối đa)
- Các đường truyền khác nhau có MTU khác nhau
- Một gói tin IP lớn quá MTU sẽ bị
 - Chia làm nhiều gói tin nhỏ hơn
 - Được tập hợp lại tại trạm đích

- Trường Identification
 - ID được sử dụng để tìm các phần của gói tin
- Flags cò (3 bits)
 - Dự phòng
 - Không được phép phân mảnh
 - Còn phân mảnh
 - Dùng để tập hợp gói tin

- Độ lệch Offset
 - Vị trí của gói tin phân mảnh trong gói tin ban đầu
 - Theo đơn vị 8 bytes

- Mã kiểm soát lỗi cho phần đầu
- Tại bên gửi
 - Đặt checksum = 0
 - Tổng theo các số 16 bits
 - Đảo bit tất cả
- Tại bên nhận
 - Tổng tất cả theo các số 16 bit
 - Phải thu được toàn các bit 1
 - Nếu không, gói tin bị lỗi

Tùy chọn

- Dùng để thêm vào các chức năng mới
 - Có thể tới 40 bytes

Copy:

0: copy only in first fragment

1: copy into all fragment

Class:

00: Datagram control

01: Reserved

10: Debugging and measurement

11: Reserved

Number:

00000: End of option

00001: No operation

00011: Loose source route

00100: Timestamp

00111: Record route

01001: Strict source route

Internet Control Message Protocol

Tổng quan Khuôn dạng gói tin Ping và Traceroute

- IP là giao thức không tin cậy, không liên kết
 - Thiếu các cơ chế hỗ trợ và kiểm soát lỗi
- ICMP được sử dụng ở tầng mạng để trao đổi thông tin
 - Báo lỗi: báo gói tin không đến được một máy trạm,
 một mạng, một cổng, một giao thức.
 - Thông điệp phản hồi

- Cũng là giao thức tầng mạng, song "phía trên" IP:
 - Thông điệp ICMP chứa trong các gói tin IP
- ICMP message: Type, Code, cùng với 8 bytes đầu tiên của gói tin IP bị lỗi

ICMP message

IP header ICMP message

Nhắc lại: IP header và trường Protocol

Ver	HLEN	DS	Total Length		Protocol:	
Identification			Flags	Fragmentation offset	1: ICMP	
ТТ	L	Protocol	Head	er Checksum	2: IGMP	
		6: TCP				
		17: UDP 89: OSP				

Có thể xem số hiệu giao thức tại

/etc/protocols
C:\WINDOWS\system32\drivers\etc\protocols

- Type: dang gói tin ICMP
- Code: Nguyên nhân gây lỗi
- Checksum
- Mỗi dạng có phần còn lại tương ứng

0	7	8 15	16	31		
	Type	Code	Checksum			
Rest of the header						
Data						

Một số dạng gói tin ICMP

ICMP Message Type	Error-reporting messages	3	Destination Unreachable
		4	Source quench
		5	Redirection
		11	Time exceeded
		12	Parameter problem
	Query messages	8 or 0	Echo reply or request
		13 or 14	Time stamp request or reply
		17 or 18	Address mask request or reply
		9 or 10	Router advertisement or solicitation

- ICMP luôn hoạt động song trong suốt với người sử dụng
- NSD có thể sử dụng ICMP thông qua các công cụ debug
 - ping
 - traceroute

- ping
 - Sử dụng để kiểm tra kết nối
 - Gửi gói tin "ICMP echo request"
 - Bên nhận trả về "ICMP echo reply"
- Mỗi gói tin có một số hiệu gói tin
- Trường dữ liệu chứa thời gian gửi gói tin
 - Tính được thời gian đi và về RTT (round-trip time)

C:\Documents and Settings\hongson>ping www.yahoo.co.uk

Pinging www.euro.yahoo-eu1.akadns.net [217.12.3.11] with 32 bytes of data:

Reply from 217.12.3.11: bytes=32 time=600ms TTL=237

Reply from 217.12.3.11: bytes=32 time=564ms TTL=237

Reply from 217.12.3.11: bytes=32 time=529ms TTL=237

Reply from 217.12.3.11: bytes=32 time=534ms TTL=237

Ping statistics for 217.12.3.11:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 529ms, Maximum = 600ms, Average = 556ms

Traceroute: Công cụ dò vết đường đi


```
C:\Documents and Settings\hongson>tracert www.jaist.ac.jp
```

Tracing route to www.jaist.ac.jp [150.65.5.208] over a maximum of 30 hops:

```
1 1 ms <1 ms <1 ms 192.168.1.1
2 15 ms 14 ms 13 ms 210.245.0.42
3 13 ms 13 ms 13 ms 210.245.0.97
4 14 ms 13 ms 14 ms 210.245.1.1
5 207 ms 230 ms 94 ms pos8-2.br01.hkg04.pccwbtn.net [63.218.115.45]
6 * 403 ms 393 ms 0.so-0-1-0.XT1.SCL2.ALTER.NET [152.63.57.50]
7 338 ms 393 ms 370 ms 0.so-7-0-0.XL1.SJC1.ALTER.NET [152.63.55.106]
8 402 ms 404 ms 329 ms POS1-0.XR1.SJC1.ALTER.NET [152.63.55.113]
9 272 ms 288 ms 310 ms 193.ATM7-0.GW3.SJC1.ALTER.NET [152.63.49.29]
10 205 ms 206 ms 204 ms wide-mae-gw.customer.alter.net [157.130.206.42]
11 427 ms 403 ms 370 ms ve-13.foundry2.otemachi.wide.ad.jp [192.50.36.62]
12 395 ms 399 ms 417 ms ve-4.foundry3.nezu.wide.ad.jp [203.178.138.244]
13 355 ms 356 ms 378 ms ve-3705.cisco2.komatsu.wide.ad.jp [203.178.136.193]
14 388 ms 398 ms 414 ms c76.jaist.ac.jp [203.178.138.174]
15 438 ms 377 ms 435 ms www.jaist.ac.jp [150.65.5.208]
```

Trace complete.

Traceroute và ICMP: Cơ chế hoạt động

- Bên gửi truyền gói tin cho bên nhận
 - Gói thứ nhất có TTL =1
 - Gói thứ 2 có TTL=2, ...
- Khi gói tin thứ n đến router thứ n:

 - Gửi trả lại một gói tin ICMP (type 11, code 0)
 - Có chứa tên và địa chỉ IP của router
- khi nhận được gói tin trả lời, bên gửi sẽ tính ra RTT

Điều kiện kết thúc

- Gói tin đến được đích
- Đích trả về gói tin ICMP "host unreachable" (type 3, code 3)
- Khi nguồn nhận được gói tin ICMP này sẽ dừng lại
- Mỗi gói tin lặp lại 3 lần

Traceroute: Ví dụ


```
C:\Documents and Settings\hongson>tracert www.jaist.ac.jp
```

Tracing route to www.jaist.ac.jp [150.65.5.208] over a maximum of 30 hops:

```
1 1 ms <1 ms <1 ms 192.168.1.1
2 15 ms 14 ms 13 ms 210.245.0.42
3 13 ms 13 ms 13 ms 210.245.0.97
4 14 ms 13 ms 14 ms 210.245.1.1
5 207 ms 230 ms 94 ms pos8-2.br01.hkg04.pccwbtn.net [63.218.115.45]
6 * 403 ms 393 ms 0.so-0-1-0.XT1.SCL2.ALTER.NET [152.63.57.50]
7 338 ms 393 ms 370 ms 0.so-7-0-0.XL1.SJC1.ALTER.NET [152.63.55.106]
8 402 ms 404 ms 329 ms POS1-0.XR1.SJC1.ALTER.NET [152.63.55.113]
9 272 ms 288 ms 310 ms 193.ATM7-0.GW3.SJC1.ALTER.NET [152.63.49.29]
10 205 ms 206 ms 204 ms wide-mae-gw.customer.alter.net [157.130.206.42]
11 427 ms 403 ms 370 ms ve-13.foundry2.otemachi.wide.ad.jp [192.50.36.62]
12 395 ms 399 ms 417 ms ve-4.foundry3.nezu.wide.ad.jp [203.178.138.244]
13 355 ms 356 ms 378 ms ve-3705.cisco2.komatsu.wide.ad.jp [203.178.136.193]
14 388 ms 398 ms 414 ms c76.jaist.ac.jp [203.178.138.174]
15 438 ms 377 ms 435 ms www.jaist.ac.jp [150.65.5.208]
```

Trace complete.

Tổng kết

- Giao thức IP
 - Địa chỉ và khuôn dạng gói tin
 - Mạng con, mặt nạ mạng
- Giao thức ICMP
 - Khuôn dạng gói tin
 - Ping, Traceroute

Tuần tới: tiếp tục về tầng mạng

- Vấn đề chọn đường
- Bộ định tuyến, bảng chọn đường
- Chọn đường tĩnh và chọn đường động