Odevzdání: 14.12.2015

Vypracoval(a): UČO: Skupina:

- 2. [2 body] Nechť Σ je libovolná abeceda a $L,R\subseteq\Sigma^*$ jsou libovolné jazyky nad touto abecedou. O každém z následujících tvrzení rozhodněte, zda je pravdivé, a vaše tvrzení dokažte:
 - a) $L \leq_m R$ a L není triviální $\Longrightarrow R$ není triviální
 - b) $L \leq_m R$ a $R \leq_m L \implies L = R$

Připomeňme, že jazyk nad abecedou Σ je triviální, jestliže je roven \emptyset nebo Σ^* .

a) Tvrzení **platí**.

 $D\mathring{u}kaz$. Nechť L,R jsou libovolné jazyky splňující předpoklad (tedy $L \leq_m R$ a L není triviální). Z netriviality jazyka L plyne existence slov $w \in L, \overline{w} \notin L$. Neboť $L \leq_m R$, tak existuje funkce $f: \Sigma^* \to \Sigma^*$ taková, že pro každé $x \in \Sigma^*$ platí $x \in L \Leftrightarrow f(x) \in R$. Tedy platí $f(w) \in R$ a $f(\overline{w}) \notin R$. Zřejmě tedy $R \neq \emptyset$ (neboť obsahuje slovo f(w)) a $R \neq \Sigma^*$ (neboť neobsahuje slovo $f(\overline{w})$). Tedy R není triviální.

b) Tvrzení **neplatí** a vyvrátíme jej protipříkladem.

 $D\mathring{u}kaz$. Nechť $\Sigma = \{a,b\}, L = \{a\}$ a $R = \{b\}$. Ukážeme, že $L \leq_m R, R \leq_m L$, ale zřejmě $L \neq R$.

Definujme funkci $f:\Sigma^*\to\Sigma^*$ následovně:

$$f(w) = \begin{cases} b, & \text{jestliže } w = a, \\ bb & \text{jinak} \end{cases}$$

Ukážeme, že f je redukcí z L do R.

Buď $w \in \Sigma^*$ libovolné. Platí $w \in L \Leftrightarrow w = a \Leftrightarrow f(w) = b \Leftrightarrow f(w) \in R$. Funkce f je zřejmě totálně vyčíslitelná. Tedy platí, že $L \leq_m R$.

Nyní uvažme funkci $f': \Sigma^* \to \Sigma^*$, kde

$$f'(w) = \begin{cases} a, & \text{jestliže } w = b, \\ aa & \text{jinak} \end{cases}$$

Ukážeme, že f' je redukcí z R do L.

Buď $w \in \Sigma^*$ libovolné. Platí $w \in R \Leftrightarrow w = b \Leftrightarrow f'(w) = a \Leftrightarrow f'(w) \in L$. Funkce f' je totálně vyčíslitelná, a tedy $R \leq_m L$.

Tvrzení tedy neplatí, neboť jsme nalezli dva jazyky takové, že $L \leq_m R, R \leq_m L$ a zároveň $L \neq R$.