RWorksheet_Animas#4a

Marvin Anthony Y. Animas

2024-10-14

##	Shoe	size	Height	Gender
## 1		6.5	66.0	F
## 2		9.0	68.0	F
## 3		8.5	64.5	F
## 4		8.5	65.0	F
## 5		10.5	70.0	M
## 6		7.0	64.0	F
## 7		9.5	70.0	F
## 8		9.0	71.0	F
## 9		13.0	72.0	M
## 10)	7.5	64.0	F
## 11	L	10.5	74.5	M
## 12	2	8.5	67.0	F
## 13	3	12.0	71.0	M
## 14	Į	10.5	71.0	M
## 15	5	13.0	77.0	M
## 16	3	11.5	72.0	М
## 17	7	8.5	59.0	F
## 18	3	5.0	62.0	F
## 19)	10.0	72.0	M
## 20)	6.5	66.0	F
## 21	_	7.5	64.0	F
## 22	2	8.5	67.0	М
## 23	3	10.5	73.0	M
## 24		8.5	69.0	F
## 25		10.5	72.0	М
## 26		11.0	70.0	М
## 27	7	9.0	69.0	М
## 28	3	13.0	70.0	M

#a.

#The table contains data on shoe sizes, heights, and genders for a group of individuals

```
Males <- subset(Household, Gender == "M", select = c("Shoe size", "Height", "Gender"))</pre>
Males
##
      Shoe size Height Gender
## 5
                70.0
          10.5
## 9
          13.0
                72.0
                           М
## 11
          10.5
                 74.5
                           М
## 13
          12.0
                 71.0
                           Μ
## 14
          10.5
                 71.0
                           Μ
## 15
          13.0
                77.0
                          Μ
## 16
          11.5
                72.0
                           М
## 19
          10.0
                72.0
                           М
## 22
          8.5
                67.0
                          Μ
## 23
         10.5
                73.0
## 25
          10.5
                 72.0
                          Μ
## 26
          11.0
                 70.0
                          M
## 27
          9.0
                 69.0
                           Μ
## 28
          13.0
                 70.0
                           Μ
Females <- subset(Household, Gender == "F", select = c("Shoe size", "Height", "Gender"))
Females
     Shoe size Height Gender
## 1
           6.5 66.0
## 2
           9.0
                 68.0
                           F
                         F
## 3
           8.5 64.5
## 4
           8.5
                 65.0
                         F
                           F
## 6
           7.0
                 64.0
## 7
           9.5
                70.0
                          F
                          F
## 8
           9.0
                71.0
           7.5
                 64.0
                          F
## 10
## 12
           8.5
                 67.0
                          F
                         F
## 17
           8.5
                 59.0
                         F
## 18
           5.0
                 62.0
## 20
           6.5
                 66.0
                          F
## 21
           7.5
                 64.0
                           F
## 24
           8.5
                 69.0
                           F
MeanShoe <-mean(ShoeSize)</pre>
MeanShoe
## [1] 9.410714
MeanHeight <-mean(Height)</pre>
MeanHeight
```

[1] 68.57143

```
#1
```

#Yes, there is likely a relationship between shoe size and height. Taller individuals tend to have larger feet, which means they usually wear larger shoe sizes.

```
#2
months_vector <- c("March", "April", "January", "November", "January", "September", "October", "September", "Nov
factor_months_vector<-factor(months_vector)</pre>
factor_months_vector
   [1] March
                  April
                             January
                                        November January
                                                             September October
## [8] September November August
                                                             November February
                                        January
                                                  November
                   August
                             July
## [15] May
                                        December August
                                                             August
                                                                        September
## [22] November February
                             April
## 11 Levels: April August December February January July March May ... September
#3
SumMonths<-summary(months_vector)</pre>
SumMonths
##
      Length
                  Class
                             Mode
##
          24 character character
SumFactor<-summary(factor_months_vector)</pre>
SumFactor
##
                                                                                   May
       April
                August December February
                                               January
                                                             July
                                                                      March
##
                      4
                                           2
                                                      3
                                                                                     1
               October September
##
   November
##
           5
                      1
#4
direction<- c("East", "West", "North")</pre>
frequency < c(1,4,3)
new_order_data <- factor(direction, levels = c("East","West","North"))</pre>
new_order_data
## [1] East West North
## Levels: East West North
DirectFreq <- data.frame(Direction = direction, Frequency = frequency)</pre>
DirectFreq
     Direction Frequency
##
## 1
          East
                        1
## 2
          West
                        4
                        3
## 3
         North
```

```
#5
#a
data <- read.table("import_march.csv", header = TRUE, sep = ",", stringsAsFactors = FALSE)
#b
data <- read.table("import_march.csv", header = TRUE, sep = ",", stringsAsFactors = FALSE)
data</pre>
```

##		${\tt Students}$	Strategy.1	Strategy.2	Strategy.3
##	1	Male	8	10	8
##	2		4	8	6
##	3		0	6	4
##	4	Female	14	4	15
##	5		10	2	12
##	6		6	0	9