સંમેય સખ્યાઓ

9.1 પરિચય

તમારી આસપાસની વસ્તુઓની ગણતરી કરીને તમે સંખ્યાઓ શીખવાનું શરૂ કર્યું. આ અભ્યાસ માટે ઉપયોગમાં લેવાતી સંખ્યાઓ ગણતરીની સંખ્યાઓ અથવા પ્રાકૃતિક સંખ્યાઓ કહેવાય છે. તેઓ 1, 2, 3, 4, ... છે. આ પ્રાકૃતિક સંખ્યાઓમાં આપણે 0 નો સમાવેશ કરીને પૂર્ણ સંખ્યાઓ મેળવી. દા.ત. 0, 1, 2, 3, ... ત્યાર પછી ઋણનો સમાવેશ પૂર્ણ સંખ્યામાં કરી પૂર્ણાંક સંખ્યાઓ મેળવી. જેમકે,... –3, –2, –1, 0, 1, 2, 3, ... સંખ્યાઓ. આમ, આપણે સંખ્યા પદ્ધતિને પ્રાકૃતિક સંખ્યાઓથી પૂર્ણ સંખ્યાઓ સુધી અને પૂર્ણ સંખ્યાઓથી પૂર્ણાંક સંખ્યાઓ સુધી વિસ્તારી.

તમે અપૂર્જાકોથી પણ માહિતગાર છો. આ સંખ્યાઓ છેદ ના સ્વરૂપમાં હોય છે. જ્યાં અંશ 0 અથવા ધન પૂર્જાક સંખ્યા છે અને છેદ ફક્ત ધન પૂર્જાક સંખ્યા છે. તમે બે અપૂર્જાક સંખ્યાઓની સમતુલ્ય સંખ્યાઓ મેળવી અને પાયાની ચાર ક્રિયાઓ સરવાળો, બાદબાકી, ગુણાકાર અને ભાગાકારનો અભ્યાસ કર્યો.

આ પ્રકરણમાં આપણે સંખ્યા પદ્ધતિને વધારે વિસ્તૃત કરીશું. આપણે સંમેય સંખ્યાઓની સંકલ્પના કરીશું અને તેની સાથે સંમેય સંખ્યાઓના સરવાળા, બાદબાકી, ગુણાકાર અને ભાગાકારની ક્રિયાઓનો અભ્યાસ કરીશું.

9.2 સંમેય સંખ્યાઓ (Rational Numbers)ની આવશ્યકતા

આપણે જોઈ ગયાં છીએ કે કેવી રીતે સંખ્યાઓ માટેની વિરુદ્ધ પરિસ્થિતિ દર્શાવવા પૂર્ણાંકોનો ઉપયોગ કરી શકાય છે. ઉદાહરણ તરીકે, એક સ્થળની જમણી બાજુ 3 કિમીના અંતરને 3 થી દર્શાવવામાં આવે તો તે જ સ્થળની ડાબી બાજુ 5 કિમીના અંતરને –5 દ્વારા દર્શાવી શકાય છે. તેવી રીતે જો ₹ 150 નો નફો 150 તરીકે દર્શાવવામાં આવે તો ₹ 100ની ખોટને –100 તરીકે લખી શકાય છે.

આવી પરિસ્થિતિઓ જેવી અનેક પરિસ્થિતિઓ છે કે જેમાં અપૂર્શાંક સંખ્યાનો સમાવેશ થાય છે. તમે દરિયાની સપાટીથી ઉપર 750 મી અંતરને $\frac{3}{4}$ કિમી તરીકે વ્યક્ત કરી શકો છો. શું આપણે દરિયાની સપાટીથી નીચે 750 મી અંતરને કિમી દ્વારા દર્શાવી શકીએ ? શું આપણે દરિયાની સપાટીથી નીચે $\frac{3}{4}$ કિમીની ઊંડાઈને $\frac{-3}{4}$ વડે દર્શાવી શકીએ ? આપણે જોઈ શકીએ છીએ કે $\frac{-3}{4}$ એ પૂર્શાંક નથી કે અપૂર્શાંક સખ્યા નથી. આવી સંખ્યાઓને સમાવિષ્ટ કરવા માટે સંખ્યા પદ્ધતિને વિસ્તારિત કરવાની આપણને જરૂર પડે.

9.3 સંમેય સંખ્યા એટલે શું ?

સંકલ્પના 'સંમેય'નો ઉદ્ભવ થાય છે શબ્દ 'ગુણોત્તર' પરથી. તમે જાણો છો કે ગુણોત્તર 3:2ને $\frac{3}{2}$ ની રીતે પણ લખી શકીએ. અહીં, 3 અને 2 પ્રાકૃતિક સંખ્યાઓ છે.

એવી જ રીતે બે પૂર્ણાંકો p અને q $(q \neq o)$ નો ગુણોત્તર એટલે કે p:q ને $\frac{p}{q}$ તરીકે લખી શકાય છે. આ રીતે અહીંયા સંમેય સંખ્યાઓ દર્શાવવામાં આવે છે.

સંમેય સંખ્યાને એવી સંખ્યાના રૂપમાં વ્યાખ્યાયિત કરવામાં આવે છે કે જે $\frac{p}{q}$ ના રૂપમાં દર્શાવી શકાય, જ્યાં p અને q પૂર્શીક છે અને $q \neq 0$.

શું $\frac{-3}{4}$ પણ એક સંમેય સંખ્યા છે ? હા, કારણ કે p=-3 અને q=4 એ પૂર્શાંક છે. તમે $\frac{3}{8}, \frac{4}{8}, 1\frac{2}{3}$ વગેરે જેવાં અનેક અપૂર્શાંક જોયા હશે. બધા અપૂર્શાંકો સંમેય સંખ્યાઓ

હોય છે. શું તમે એનું કારણ જણાવી શકો ?

દશાંશ સંખ્યાઓ 0.5, 2.3 વગેરે માટે શું કહી શકાય ? આવા પ્રકારની સંખ્યાઓને સામાન્ય રીતે અપૂર્ણાંક તરીકે લખી શકાય અને આથી તેઓ સંમેય સંખ્યાઓ છે. ઉદાહરણ તરીકે, $0.5 = \frac{5}{10}$, $0.333 = \frac{333}{1000}$ વગેરે.

પ્રયત્ન કરો

- 1. શું સંખ્યા $\frac{2}{-3}$ એ સંમેય સંખ્યા છે ? એના વિશે વિચાર કરો.
- 2. દસ સંમેય સંખ્યાઓની યાદી બનાવો.

અંશ અને છેદ :

 $\frac{p}{q}$ માં પૂર્ણાંક p એ અંશ છે અને પૂર્ણાંક $q(\neq 0)$ એ છેદ છે.

આમ, $\frac{-3}{7}$ માં અંશ -3 અને છેદ 7 છે. આવી પાંચ સંમેય સંખ્યાઓ જણાવો કે જેમાં,

- (a) અંશ એક ઋણ પૂર્શાંક અને છેદ એક ધન પૂર્શાંક છે.
- (b) અંશ એક ધન પૂર્ણાંક અને છેદ એક ઋણ પૂર્ણાંક છે.
- (c) અંશ અને છેદ બંને ઋણ પૂર્ણાંક છે.
- (d) અંશ અને છેદ બંને ધન પૂર્ણાંક છે.
- શું પૂર્ણાંકો એ સંમેય સંખ્યાઓ છે ?

કોઈ પણ પૂર્ણાંકને સંમેય સંખ્યા કહી શકાય છે. ઉદાહરણ તરીકે, અંશ -5 એ સંમેય સંખ્યા છે. કારણ કે, તમે એને $\frac{-5}{1}$ લખી શકો છો. પૂર્ણાંક 0ને પણ $0 = \frac{0}{2}$ અથવા $\frac{0}{7}$ વગેરે સ્વરૂપમાં લખી શકીએ છીએ. આથી, એ પણ એક સંમેય સંખ્યા છે. આમ, સંમેય સંખ્યાઓમાં પૂર્ણાંકો અને અપૂર્ણાંકો સમાવિષ્ટ છે.

સમાન સંમેય સંખ્યાઓ :

સંમેય સંખ્યાને વિવિધ અંશ અને છેદ વડે લખી શકાય છે, ઉદાહરણ તરીકે સંમેય સંખ્યા $\frac{-2}{3}$ છે.

$$\frac{-2}{3} = \frac{-2 \times 2}{3 \times 2} = \frac{-4}{6}$$
. આપણે જોઈ શકીએ છીએ કે $\frac{-2}{3}$ અને $\frac{-4}{6}$ સમાન છે.

એવી જ રીતે,
$$\frac{-2}{3} = \frac{(-2)\times(-5)}{3\times(-5)} = \frac{10}{-15}$$
. આથી $\frac{-2}{3}$ અને $\frac{10}{-15}$ પણ સમાન છે.

આમ, $\frac{-2}{3} = \frac{-4}{6} = \frac{10}{-15}$ આવી રીતે જે સંમેય સંખ્યાઓ એકબીજા સાથે સરખી હોય તેને સમાન સંમેય સંખ્યાઓ કહેવાય.

ફરીથી,
$$\frac{10}{-15} = \frac{-10}{15}$$
 (કેવી રીતે ?)

સંમેય સંખ્યાના અંશ અને છેદને સમાન શૂન્યેતર પૂર્ણાંક સાથે ગુણવાથી, આપણને આપેલી સંમેય સંખ્યા જેવી જ બીજી સંમેય સંખ્યા મળે છે. એ પણ સમાન અપૂર્ણાંક પ્રાપ્ત કરવા જેવું જ છે.

ગુણાકારની જેમ, અંશ અને છેદને સમાન શૂન્યેતર પૂર્ણાંક વડે ભાગવાથી પણ આપણને સમાન સંમેય સંખ્યા મળે છે.

પ્રયત્ન કરો

ખાલી જગ્યા પૂરો :

(i)
$$\frac{5}{4} = \frac{\Box}{16} = \frac{25}{\Box} = \frac{-15}{\Box}$$

(ii)
$$\frac{-3}{7} = \frac{\square}{14} = \frac{9}{\square} = \frac{-6}{\square}$$

ઉદાહરણ તરીકે,

$$\frac{10}{-15} = \frac{10 \div (-5)}{-15 \div (-5)} = \frac{-2}{3}, \qquad \frac{-12}{24} = \frac{-12 \div 12}{24 \div 12} = \frac{-1}{2}$$

$$\frac{-2}{3}$$
 ને આપણે $-\frac{2}{3}$, $\frac{-10}{15}$ ને $-\frac{10}{15}$ વગેરે તરીકે લખી શકીએ.

9.4 ધન અને ઋણ સંમેય સંખ્યાઓ

સંમેય સંખ્યા $\frac{2}{3}$ વિચારો. જેમાં અંશ અને છેદ બન્ને સંખ્યાઓ ધન પૂર્ણાંક છે. આવી સંમેય સંખ્યાને **ધન સંમેય સંખ્યા** કહેવાય. તો, $\frac{3}{8}$, $\frac{5}{7}$, $\frac{2}{9}$ વગેરે ધન સંમેય સંખ્યાઓ છે.

-3/5 માં અંશ ઋણ પૂર્ણાંક અને તેનો છેદ ધન પૂર્ણાંક છે. આવી સંમેય સંખ્યાને ઋણ સંમેય સંખ્યા કહેવાય.

આમ,
$$\frac{-5}{7}$$
, $\frac{-3}{8}$, $\frac{-9}{5}$ વગેરે ઋણ સંમેય સંખ્યાઓ છે.

પ્રયત્ન કરો

- 1. શું 5 એ એક ધન સંમેય સંખ્યા છે ?
- ધન સંમેય સંખ્યાની પાંચ યાદી બનાવો.

ગણિત

પ્રયત્ન કરો

- 1. શું –8 એ એક ઋણ સંમેય સંખ્યા છે ?
- 2. પાંચ ઋણ સંમેય સંખ્યાની યાદી બનાવો.

- શું $\frac{8}{-3}$ એ ઋણ સંમેય સંખ્યા છે ? આપણે જાણીએ છીએ કે $\frac{8}{-3} = \frac{8 \times -1}{-3 \times -1} = \frac{-8}{3}$ અને $\frac{-8}{3}$ એ ઋણ સંમેય સંખ્યા છે, તો $\frac{8}{-3}$ એ પણ ઋણ સંમેય સંખ્યા જ છે. એવી જ રીતે, $\frac{5}{-7}$, $\frac{6}{-5}$, $\frac{2}{-9}$ વગેરે. ઋણ સંમેય સંખ્યાઓ છે. નોંધો કે એમના અંશ ધન છે અને છેદ ઋણ છે.
- સંખ્યા 0 એ ધન કે ઋણ સંમેય સંખ્યા નથી.
- $\frac{-3}{-5}$ માટે શું કહી શકાય ?

તમે જોશો કે $\frac{-3}{-5} = \frac{-3 \times (-1)}{-5 \times (-1)} = \frac{3}{5}$ થાય. તો, $\frac{-3}{-5}$ એ ધન સંમેય સંખ્યા છે. આમ, $\frac{-2}{-5}$, $\frac{-5}{-3}$ વગેરે ધન સંમેય સંખ્યાઓ છે.

પ્રયત્ન કરો

- 1. નીચેનામાંથી કઈ સંખ્યાઓ ઋણ સંમેય સંખ્યાઓ છે ?
- (i) $\frac{-2}{3}$ (ii) $\frac{5}{7}$ (iii) $\frac{3}{-5}$ (iv) 0 (v) $\frac{6}{11}$
- (vi) $\frac{-2}{-9}$

9.5 સંમેય સંખ્યાનું સંખ્યારેખા પર નિરૂપણ

તમે પૂર્શાંક સંખ્યાનું સંખ્યારેખા પર નિરૂપણ કરતાં શીખી ગયાં છો. ચાલો એવી એક સંખ્યારેખા દોરીએ.

શૂન્યની જમણી બાજુનાં બિંદુઓને + ચિહ્ન વડે દર્શાવાય છે અને તેઓ ધન પૂર્ણાંક છે. શૂન્યની ડાબી બાજુનાં બિંદુઓને – ચિહ્ન વડે દર્શાવાય છે. અને તેઓ ઋણ પૂર્શાંક છે. તમે અપૂર્શાંકોનું સંખ્યારેખા પર નિરૂપણ કરતાં શીખી ગયાં છો.

ચાલો આપણે જોઈએ કે સંમેય સંખ્યાઓ કેવી રીતે સંખ્યારેખા પર નિરૂપિત કરી શકાય છે.

ચાલો, આપણે સંખ્યારેખા પર $-\frac{1}{2}$ નું નિરૂપણ કરીએ.

ધન પૂર્શાંકોની જેમ ધન સંમેય સંખ્યાઓને 0ની જમણી બાજુએ દર્શાવાશે અને ઋણ સંમેય સંખ્યાઓને 0ની ડાબી બાજુએ દર્શાવાશે.

 $-\frac{1}{2}$ ને તમે 0 ની કઈ બાજુએ દર્શાવશો ? ઋણ સંમેય સંખ્યા હોવાથી તેને શૂન્યની ડાબી બાજુએ દર્શાવી શકાય છે.

તમે જાણો છો કે સંખ્યારેખા પર પૂર્ણાંકોને દર્શાવવા માટે બધા ક્રમિક પૂર્ણાંકોને સમાન અંતરે દર્શાવવામાં આવે છે. તેમ જ, 1 અને –1 બંને 0 થી સમાન અંતરે આવેલા છે. એવી જ રીતે, 2 અને – 2, 3 અને –3 બંને 0 થી સમાન અંતરે આવેલા હોય છે.

એવી જ રીતે, સંમેય સંખ્યાઓ $\frac{1}{2}$ અને $-\frac{1}{2}$ પણ 0 થી સમાન અંતરે આવેલી હશે.

આપણે જાણીએ છીએ કે સંમેય સંખ્યા $\frac{1}{2}$ ને કેવી રીતે દર્શાવી શકાય છે. તેને 0 અને 1 બિંદુની વચ્ચે અડધા અંતરે દર્શાવી શકાય છે. આથી $-\frac{1}{2}$ ને 0 અને -1 બિંદુની વચ્ચે અડધા અંતરે આવેલા બિંદુએ દર્શાવી શકાય.

 $\frac{3}{2}$ ને સંખ્યારેખા પર કેવી રીતે દર્શાવી શકાય તે આપણે જાણીએ છીએ. એને 0ની જમણી બાજુ 1 અને 2ની વચ્ચે અડધા અંતરે દર્શાવી શકાય છે. ચાલો, હવે સંખ્યા રેખા પર $-\frac{3}{2}$ ને દર્શાવીએ. એ 0ની ડાબી બાજુ એટલા જ અંતરે દર્શાવી શકાય કે જેટલું અંતર 0 થી $\frac{3}{2}$ વચ્ચેનું અંતર હોય.

ઘટતાં જતાં ક્રમમાં $\frac{-1}{2}, \frac{-2}{2}$ (= -1), $\frac{-3}{2}, \frac{-4}{2}$ (= -2). આથી, આ દર્શાવે છે કે, $\frac{-3}{2}$ સંખ્યા -1 અને -2ની વચ્ચે છે. આમ, $\frac{-3}{2}$ સંખ્યા -1 અને -2 ની વચ્ચે અડધા અંતરે આવે છે.

$$\frac{-4}{2} = -2 \quad \frac{-3}{2} \quad \frac{-2}{2} = -1 \quad \frac{-1}{2} \quad \frac{0}{2} = (0) \quad \frac{1}{2} \quad \frac{2}{2} = (1) \quad \frac{3}{2} \quad \frac{4}{2} = (2)$$

એવી રીતે $\frac{-5}{2}$ અને $\frac{-7}{2}$ ને દર્શાવો.

એવી જ રીતે, $-\frac{1}{3}$ એ શૂન્યથી ડાબી બાજુ એટલા જ અંતરે હશે કે જેટલા અંતરે $\frac{1}{3}$ શૂન્યથી જમણી બાજુ હશે. સંખ્યારેખા પર $-\frac{1}{3}$ ને ઉપર જણાવ્યા પ્રમાણે દર્શાવી શકાય. એક વખત આપણને સંખ્યારેખા પર $-\frac{1}{3}$ ને દર્શાવતાં આવડી જાય, તો આપણે $-\frac{2}{3}$, $-\frac{4}{3}$, $-\frac{5}{3}$ અને એવી ઘણી સંખ્યાઓને સંખ્યારેખા પર નિરૂપિત કરી શકીએ. જુદા જુદા છેદવાળી બાકી બધી સંમેય સંખ્યાઓને પણ આવી જ રીતે નિરૂપિત કરી શકાય છે.

9.6 પ્રમાણિત સ્વરૂપમાં સંમેય સંખ્યા (Rational Numbers in Standard Form)

સંમેય સંખ્યાઓ જુઓ $\frac{3}{5}, \frac{-5}{8}, \frac{2}{7}, \frac{-7}{11}$

આ બધી સંમેય સંખ્યાઓમાં છેદ ધન પૂર્ણાંક છે અને અંશ અને છેદમાં ફક્ત 1 એ એક જ સામાન્ય અવયવ છે. વધુમાં, આ સંમેય સંખ્યામાં ફક્ત અંશમાં જ ઋણ ચિહ્ન છે.

આવી સંમેય સંખ્યાઓ **પ્રમાણિત સ્વરૂપ**માં કહેવાય છે.

કોઈ સંમેય સંખ્યા ત્યારે પ્રમાણિત સ્વરૂપમાં કહેવાય જ્યારે તેનો છેદ એ ધન પૂર્શાંક હોય અને અંશ અને છેદમાં 1 સિવાય બીજા સામાન્ય અવયવ ન હોય.

જો કોઈ સંમેય સંખ્યા પ્રમાણિત સ્વરૂપમાં ન હોય તો તેને પ્રમાણિત સ્વરૂપમાં ફેરવી શકાય છે.

યાદ કરો કે અપૂર્શાંકને તેના અતિ સંક્ષિપ્ત સ્વરૂપમાં ફેરવવા, આપશે તેના અંશ અને છેદને સમાન શૂન્યેતર ધન પૂર્શાંકથી ભાગી દેતા હતા. આપશે આ રીતનો ઉપયોગ સંમેય સંખ્યાઓને તેના પ્રમાણિત સ્વરૂપમાં દર્શાવવા માટે કરીશું.

 $\frac{-45}{30}$ ને પ્રમાશિત સ્વરૂપમાં ફેરવો.

$$\frac{-45}{30} = \frac{-45 \div 3}{30 \div 3} = \frac{-15}{10} = \frac{-15 \div 5}{10 \div 5} = \frac{-3}{2}$$

આપણે બે વાર ભાગાકાર કર્યોં પહેલી વખત 3 વડે અને બીજી વખત 5 વડે, એને આ પ્રમાણે પણ કરી શકાય.

$$\frac{-45}{30} = \frac{-45 \div 15}{30 \div 15} = \frac{-3}{2}$$

આ ઉદાહરણમાં જુઓ કે 15 એ 45 અને 30 નો ગુ.સા.અ. છે.

આમ, સંમેય સંખ્યાને પ્રમાણિત સ્વરૂપમાં ફેરવવા માટે આપણે અંશ અને છેદને ઋણ ચિહ્ન જો હોય તો ધ્યાનમાં લીધા વગર તેના ગુ.સા.અ. વડે ભાગાકાર કરીએ. (શા માટે ઋણ ચિહ્નને ધ્યાનમાં ન લઈએ તેનું કારણ આગલા ધોરણમાં શીખીશું.)

છેદમાં ઋશ ચિહ્ન હોય તો તેને '- ગુ.સા.અ.' વડે ભાગવું.

ઉદાહરણ 2 પ્રમાશિત સ્વરૂપમાં ફેરવો :

(i)
$$\frac{36}{-24}$$

(ii)
$$\frac{-3}{-15}$$

ઉકેલ

36 અને 24નો ગુ.સા.અ. 12 છે. આમ, –12 વડે ભાગવામાં આવે તો પ્રમાણિત સ્વરૂપ મળે છે.

$$\frac{36}{-24} = \frac{36 \div (-12)}{(-24) \div (-12)} = \frac{-3}{2}$$

(ii) 3 અને 15નો ગુ.સા.અ. 3 છે.

$$\text{Wit, } \frac{-3}{-15} = \frac{-3 \div (-3)}{-15 \div (-3)} = \frac{1}{5}$$

પ્રયત્ન કરો

- (i) $\frac{-18}{45}$ (ii) $\frac{-12}{18}$ ના પ્રમાણિત રૂપ મેળવો.

9.7 સંમેય સંખ્યાની સરખામણી

(Comparison of Rational Numbers)

બે પૂર્ણાંક અથવા બે અપૂર્શાંકની સરખામણી કેવી રીતે કરી શકાયએ આપણે જાણીએ છીએ અને તે પૈકીનો કયો નાનો અને કયો મોટો છે તેય જાણીએ છીએ. હવે આપણે જોઈએ કે સંમેય સંખ્યાની સરખામણી કેવી રીતે કરી શકાય.

- $\frac{2}{3}$ અને $\frac{5}{7}$ આ બે ધન સંમેય સંખ્યાની સરખામણી એવી જ રીતે કરી શકાય જે રીતે આપણે પહેલાં અપૂર્ણાંક માટે કર્યું.
- મેરીએ બે ઋણ સંમેય સંખ્યાઓ $-\frac{1}{2}$ અને $-\frac{1}{5}$ ની સરખામણી સંખ્યારેખા દ્વારા કરી. તે જાણતી હતી કે જે પૂર્ણાંક જમણી બાજુ આવે તે મોટો પૂર્ણાંક છે.

ઉદાહરણ તરીકે, સંખ્યારેખા પર પૂર્ણાંક 5 પૂર્ણાંક 2ની જમણી બાજુ છે અને 5 > 2. સંખ્યારેખા પર પૂર્ણાંક –2 પૂર્ણાંક –5ની જમણી બાજુ છે અને –2 > –5.

તેણે સંમેય સંખ્યાઓ માટે પણ આ પદ્ધતિનો ઉપયોગ કર્યો. તેને ખબર હતી કે સંખ્યારેખા પર સંમેય સંખ્યા કેવી રીતે દર્શાવી શકાય છે. તેણે $-\frac{1}{2}$ અને $-\frac{1}{5}$ ને આ પ્રમાણે દર્શાવ્યા.

શું તેણે બંને બિંદુઓ સાચાં દર્શાવ્યાં ? તેણે કેમ અને કેવી રીતે $-\frac{1}{2}$ ને $-\frac{5}{10}$ અને $-\frac{1}{5}$ ને $-\frac{2}{10}$

માં બદલ્યા ? તેણે શોધ્યું કે $-\frac{1}{5}$ એ $-\frac{1}{2}$ ની જમણી બાજુ છે. આમ, $-\frac{1}{5} > -\frac{1}{2}$ અથવા $-\frac{1}{2} < -\frac{1}{5}$.

શું તમે $-\frac{3}{4}$ અને $-\frac{2}{3}$ ની સરખામણી કરી શકો ? તથા $-\frac{1}{3}$ અને $-\frac{1}{5}$ ની સરખામણી કરી શકો ?

આપણે અપૂર્શાંકના અભ્યાસ પરથી જાણીએ છીએ કે $\frac{1}{5}<\frac{1}{2}$ છે અને મેરીએ $-\frac{1}{2}$ અને $-\frac{1}{5}$ માટે શું પ્રાપ્ત કર્યું ? શું આ તેનાથી સંપૂર્ણ વિરુદ્ધ ન હતું ?

તમે જાણશો કે, $\frac{1}{2} > \frac{1}{5}$ પરંતુ $-\frac{1}{2} < -\frac{1}{5}$ છે.

શું તમે $-\frac{3}{4}$, $-\frac{2}{3}$ અને $-\frac{1}{3}$, $-\frac{1}{5}$ માટે પણ આવું જ કહી શકો ?

મેરીને યાદ આવ્યું કે તેમણે પૂર્ણાંકોમાં 4 > 3 પણ -4 < -3, 5 > 2 પણ -5 < -2 વગેરેનો અભ્યાસ કર્યો હતો.

 ઋણ સંમેય સંખ્યાઓનાં યુગ્મોની સ્થિતિ પણ એવા જ પ્રકારની હોય છે. બે ઋણ સંમેય સંખ્યાની સરખામણી કરવા માટે આપણે તેનાં ચિહ્નોને ધ્યાનમાં લેતાં નથી અને પછી તેમનો ક્રમ ઉલટાવીએ છીએ.

ઉદાહરણ તરીકે, $-\frac{7}{5}$ અને $-\frac{5}{3}$ ની સરખામણી કરવા માટે પહેલાં આપણે $\frac{7}{5}$ અને $\frac{5}{3}$ ની સરખામણી કરીએ. આપણને $\frac{7}{5} < \frac{5}{3}$ મળે છે અને અનુમાન મેળવીએ કે $-\frac{7}{5} > -\frac{5}{3}$ છે.

આવા પાંચ યુગ્મો લઈ તેમની સરખામણી કરો.

$$-\frac{3}{8}$$
 કે $-\frac{2}{7}$ આમાંથી કઈ સંખ્યા મોટી છે ? $-\frac{4}{3}$ કે $-\frac{3}{2}$ આમાંથી કઈ સંખ્યા મોટી છે ?

 ઋજ્ઞ અને ધન સંમેય સંખ્યાની સરખામજ્ઞી સ્પષ્ટ છે. સંખ્યારેખા પર ઋજ્ઞ સંમેય સંખ્યા 0ની ડાબી બાજુ હોય છે તથા ધન સંમેય સંખ્યા 0ની જમજ્ઞી બાજુએ હોય છે. ઋજ્ઞ સંમેય સંખ્યાઓ હંમેશા ધન સંમેય સંખ્યાઓ કરતાં નાની હોય છે.

આમ,
$$-\frac{2}{7} < \frac{1}{2}$$
.

• સંમેય સંખ્યા $\frac{-3}{-5}$ અને $\frac{-2}{-7}$ ની સરખામણી કરવા માટે તેને પ્રમાણિત સ્વરૂપમાં ફેરવી પછી તેની સરખામણી કરો.

ઉદાહરણ 3 શું $\frac{4}{-9}$ અને $\frac{-16}{36}$ એ સરખી સંમેય સંખ્યા દર્શાવે છે ?

ઉકેલ હા, કારણ કે
$$\frac{4}{-9} = \frac{4 \times (-4)}{(-9) \times (-4)} = \frac{-16}{36}$$
 તથા $\frac{-16}{36} = \frac{-16 \div -4}{36 \div -4} = \frac{4}{-9}$.

9.8 બે સંમેય સંખ્યાની વચ્ચે સંમેય સંખ્યાઓ

રેશમા 3 અને 10ની વચ્ચે પૂર્શ સંખ્યાની ગણતરી કરવા ઇચ્છતી હતી. આગળના ધોરણમાં શીખી હતી તે તેને બરોબર યાદ હતું કે 3 અને 10ની વચ્ચે 6 પૂર્શ સંખ્યા હોય. એવી જ રીતે તે –3 અને 3ની વચ્ચેની બધી જ પૂર્ણાંક સંખ્યા યાદ કરવા માંગતી હતી. –3 અને 3ની વચ્ચે પૂર્ણાંક –2, –1, 0, 1, 2 આવે. આમ, –3 અને 3ની વચ્ચે 5 પૂર્ણાંક સંખ્યા આવે.

શું –3 અને –2 ની વચ્ચે કોઈ પૂર્ણાંક હોય શકે ? ના, –3 અને –2 ની વચ્ચે કોઈ પૂર્ણાંક નથી. બે ક્રમિક પૂર્ણાંકની વચ્ચે આવતાં પૂર્ણાંકની સંખ્યા 0 હોય છે.

સંમેય સંખ્યાઓ

181

આમ, આપણે જોયું કે બે પૂર્ણાંકોની વચ્ચે આવતાં પૂર્ણાંકોની સંખ્યા મર્યાદિત હોય છે. શું સંમેય સંખ્યાઓમાં પણ આવું બની શકે ?

રેશમાએ બે સંમેય સંખ્યા $\frac{-3}{5}$ અને $\frac{-1}{3}$ લીધી.

તેણે તેને સમાન છેદ વાળી સંમેય સંખ્યામાં ફેરવી નાખી.

તેથી,
$$\frac{-3}{5} = \frac{-9}{15} \text{ અને } \frac{-1}{3} = \frac{-5}{15}$$

આવી રીતે રેશમા $\frac{-3}{5} \text{ અને } \frac{-1}{3} \text{ ની વચ્ચે સંમેય સંખ્યાઓ } \frac{-8}{15} < \frac{-7}{15} < \frac{-6}{15} \text{ મેળવી શકી.}$

આપણી પાસે,
$$\frac{-3}{5} = \frac{-18}{30} \text{ અને } \frac{-8}{15} = \frac{-16}{30}$$

અને
$$\frac{-18}{30} < \frac{-17}{30} < \frac{-16}{30}. \ \ \text{તે થી, } \ \frac{-3}{5} < \frac{-17}{30} < \frac{-8}{15}$$

$$\frac{-3}{5} < \frac{-17}{30} < \frac{-8}{15} < \frac{-7}{15} < \frac{-6}{15} < \frac{-1}{3}$$

પરિણામે, આપણે $\frac{-3}{5}$ અને $\frac{-1}{3}$ ની વચ્ચે વધુ એક સંમેય સંખ્યા મેળવી શક્યા. આ જ રીતે, આપણે બે ભિન્ન સંમેય સંખ્યાની વચ્ચે ઘણી સંમેય સંખ્યાઓ ઉમેરી શકીએ છીએ.

ઉદાહરણ તરીકે,
$$\frac{-3}{5} = \frac{-3 \times 30}{5 \times 30} = \frac{-90}{150}$$
 અને $\frac{-1}{3} = \frac{-1 \times 50}{3 \times 50} = \frac{-50}{150}$

આપણે $\frac{-90}{150}$ અને $\frac{-50}{150}$ ની વચ્ચે એટલે કે, $\frac{-3}{5}$ અને $\frac{-1}{3}$ ની વચ્ચે 39 સંમેય સંખ્યા

 $\left(\frac{-89}{150},...,\frac{-51}{150}\right)$ મેળવી શકીએ છીએ. તમે બધાં એ જાણશો કે આ યાદી નો કોઈ અંત નથી.

તમે $\frac{-5}{3}$ અને $\frac{-8}{7}$ ની વચ્ચે આવતી પાંચ સંમેય સંખ્યાની યાદી બનાવી શકશો ? આપણે કોઈ પણ બે સંમેય સંખ્યાની વચ્ચેની અનંત સંમેય સંખ્યાઓ શોધી શકીએ છીએ.

પ્રયત્ન કરો

 $\frac{-5}{7}$ અને $\frac{-3}{8}$ ની વચ્ચે આવતી પાંચ સંમેય સંખ્યા શોધો.

ઉદાહરણ 4 -2 અને -1 ની વચ્ચે ત્રણ સંમેય સંખ્યાઓ લખો.

ઉકેલ ચાલો –1 અને –2ને છેદમાં 5 આવે તેવી સંમેય સંખ્યાઓના રૂપમાં લખીએ. (શા માટે ?)

આપણી પાસે,
$$-1 = \frac{-5}{5}$$
 અને $-2 = \frac{-10}{5}$

$$\mathsf{Will}, \ \frac{-10}{5} < \frac{-9}{5} < \frac{-8}{5} < \frac{-7}{5} < \frac{-6}{5} < \frac{-5}{5} \ \ \mathsf{wall} \ \ -2 < \frac{-9}{5} < \frac{-8}{5} < \frac{-7}{5} < \frac{-6}{5} < -1$$

-2 અને -1 ની વચ્ચે ત્રણ સંમેય સંખ્યા $\frac{-9}{5}$, $\frac{-8}{5}$, $\frac{-7}{5}$ હશે.

 $(\frac{-9}{5}, \frac{-8}{5}, \frac{-7}{5}, \frac{-6}{5}$ માંથી કોઈ પણ ત્રણ સંખ્યા લો.)

ઉદાહરણ 5 પેટર્ન મુજબ વધુ ચાર સંખ્યાઓ લખો.

$$\frac{-1}{3}, \frac{-2}{6}, \frac{-3}{9}, \frac{-4}{12}, \dots$$

ઉકેલ અહીં,

$$\frac{-2}{6} = \frac{-1 \times 2}{3 \times 2}, \frac{-3}{9} = \frac{-1 \times 3}{3 \times 3}, \frac{-4}{12} = \frac{-1 \times 4}{3 \times 4}$$

અથવા,
$$\frac{-1\times 1}{3\times 1} = \frac{-1}{3}, \frac{-1\times 2}{3\times 2} = \frac{-2}{6}, \frac{-1\times 3}{3\times 3} = \frac{-3}{9}, \frac{-1\times 4}{3\times 4} = \frac{-4}{12}$$

આમ, આપણે આ સંખ્યાઓના સ્વરૂપનું નિરીક્ષણ કરીએ.

અન્ય સંખ્યાઓ
$$\frac{-1\times5}{3\times5} = \frac{-5}{15}, \frac{-1\times6}{3\times6} = \frac{-6}{18}, \frac{-1\times7}{3\times7} = \frac{-7}{21}$$

સ્વાધ્યાય 9.1

- 1. નિમ્નલિખિત સંમેય સંખ્યાઓની વચ્ચે આવતી પાંચ સંમેય સંખ્યાઓ લખો :
 - (i) -1 અને 0 (ii) -2 અને -1 (iii) $\frac{-4}{5}$ અને $\frac{-2}{3}$ (iv) $-\frac{1}{2}$ અને $\frac{2}{3}$
- 2. પેટર્નમાં વધુ ચાર સંમેય સંખ્યાઓ લખો.
 - (i) $\frac{-3}{5}, \frac{-6}{10}, \frac{-9}{15}, \frac{-12}{20}, \dots$ (ii) $\frac{-1}{4}, \frac{-2}{8}, \frac{-3}{12}, \dots$

(iii)
$$\frac{-1}{6}$$
, $\frac{2}{-12}$, $\frac{3}{-18}$, $\frac{4}{-24}$, ... (iv) $\frac{-2}{3}$, $\frac{2}{-3}$, $\frac{4}{-6}$, $\frac{6}{-9}$, ...

(iv)
$$\frac{-2}{3}$$
, $\frac{2}{-3}$, $\frac{4}{-6}$, $\frac{6}{-9}$, ...

- 3. નીચેના માટે ચાર સમાન સંમેય સંખ્યા લખો.

 - (i) $\frac{-2}{7}$ (ii) $\frac{5}{-3}$ (iii) $\frac{4}{9}$
- 4. સંખ્યારેખા દોરો અને નીચે આપેલી સંમેય સંખ્યાઓનું તેની પર નિરુપણ કરો.
- (i) $\frac{3}{4}$ (ii) $\frac{-5}{8}$ (iii) $\frac{-7}{4}$ (iv) $\frac{7}{8}$
- 5. બિંદુઓ P, Q, R, S, T, U, A અને B સંખ્યારેખા પર એવી રીતે આવેલા છે કે જ્યાં TR = RS = SU અને AP = PQ = QB થાય. P, Q, R અને S વડે દર્શાવાતી સંમેય સંખ્યા લખો.

- 6. નીચે આપેલી જોડીઓમાંથી કઈ જોડી સમાન સંમેય સંખ્યાઓનું નિરૂપણ કરે છે ?

 - (i) $\frac{-7}{21}$ અને $\frac{3}{9}$ (ii) $\frac{-16}{20}$ અને $\frac{20}{-25}$ (iii) $\frac{-2}{-3}$ અને $\frac{2}{3}$
- - (iv) $\frac{-3}{5}$ અને $\frac{-12}{50}$ (v) $\frac{8}{-5}$ અને $\frac{-24}{15}$ (vi) $\frac{1}{3}$ અને $\frac{-1}{9}$

- $(vii) \frac{-5}{-9}$ અને $\frac{5}{-9}$
- 7. નીચે આપેલી સંમેય સંખ્યાઓને અતિ સંક્ષિપ્ત સ્વરૂપે ફરીથી લખો.
- (i) $\frac{-8}{6}$ (ii) $\frac{25}{45}$ (iii) $\frac{-44}{72}$
- (iv) $\frac{-8}{10}$
- 8. >, < અને = માંથી યોગ્ય સંકેત પસંદ કરી ખાલી જગ્યામાં ભરો.

 - (i) $\frac{-5}{7}$ \square $\frac{2}{3}$ (ii) $\frac{-4}{5}$ \square $\frac{-5}{7}$
- (iii) $\frac{-7}{8}$ $\frac{14}{-16}$
- (iv) $\frac{-8}{5}$ $\frac{-7}{4}$ (v) $\frac{1}{-3}$ $\frac{-1}{4}$
- (vi) $\frac{5}{-11}$ $\frac{-5}{11}$

- 9. નીચેના દરેકમાં કઈ સંખ્યા મોટી છે ?
 - (i) $\frac{2}{3}$, $\frac{5}{2}$
- (ii) $\frac{-5}{6}$, $\frac{-4}{3}$

(iii) $\frac{-3}{4}$, $\frac{2}{-3}$

- (iv) $\frac{-1}{4}, \frac{1}{4}$
- (v) $-3\frac{2}{7}$, $-3\frac{4}{5}$
- 10.નીચે આપેલી સંમેય સંખ્યાઓને ચડતા ક્રમમાં લખો.
 - (i) $\frac{-3}{5}$, $\frac{-2}{5}$, $\frac{-1}{5}$
- (ii) $\frac{1}{3}, \frac{-2}{9}, \frac{-4}{3}$
- (iii) $\frac{-3}{7}, \frac{-3}{2}, \frac{-3}{4}$

9.9 સંમેય સંખ્યાઓ પરની ક્રિયાઓ

તમે જાશો છો કે પૂર્શાંક અને અપૂર્શાંકોના સરવાળા, બાદબાકી, ગુશાકાર અને ભાગાકાર કેવી રીતે કરવા. ચાલો, હવે સંમેય સંખ્યાઓ પર આ મૂળભૂત ક્રિયાઓનું અધ્યયન કરીએ.

9.9.1 સરવાળો (Addition)

• ચાલો આપણે સમાન છેદ ધરાવતી બે સંમેય સંખ્યાઓ $\frac{7}{3}$ અને $\frac{-5}{3}$ નો સરવાળો કરીએ.

આપણે
$$\frac{7}{3} + \left(\frac{-5}{3}\right)$$
 નો જવાબ શોધીએ.

જે સંખ્યારેખા પર મળે છે.

બે ક્રમિક બિંદુઓ વચ્ચેનું અંતર $\frac{1}{3}$ છે. હવે, $\frac{7}{3}$ માં $\frac{-5}{3}$ ઉમેરવાનો અર્થ એ થાય છે કે $\frac{7}{3}$ ની ડાબી બાજુ 5 કૂદકા મારવા, આપણે ક્યાં પહોંચ્યાં ? આપણે $\frac{2}{3}$ પર પહોંચ્યાં.

$$\operatorname{with}, \quad \frac{7}{3} + \left(\frac{-5}{3}\right) = \frac{2}{3}$$

ચાલો, હવે આ રીતે કરવાનો પ્રયત્ન કરીએ,

$$\frac{7}{3} + \left(\frac{-5}{3}\right) = \frac{7 + \left(-5\right)}{3} = \frac{2}{3}$$

આપણને અહીં સમાન જવાબ જોવા મળે છે.

 $\frac{6}{5} + \frac{(-2)}{5}, \frac{3}{7} + \frac{(-5)}{7}$ ને બંને રીતે ચકાસો અને સમાન ઉકેલ મળે છે કે નહિ તે તપાસો.

આ રીતે $\frac{-7}{8} + \frac{5}{8}$ થઈ શકશે.

તમે શું મેળવ્યું ?

વળી
$$\frac{-7}{8} + \frac{5}{8} = \frac{-7+5}{8} = ?$$
 બંને કિંમત સરખી છે ?

પ્રયત્ન કરો

$$\frac{-13}{7} + \frac{6}{7}, \frac{19}{5} + \left(\frac{-7}{5}\right)$$
 શોધો.

આ રીતે આપણે જોઈએ છીએ કે સમાન છેદવાળી સંમેય સંખ્યાઓનો સરવાળો કરતી વખતે આપણે છેદને અચળ રાખી અંશોનો સરવાળો કરી લઈએ છીએ.

અહીં,
$$\frac{-11}{5} + \frac{7}{5} = \frac{-11+7}{5} = \frac{-4}{5}$$

 આપણે ભિન્ન છેદવાળી બે સંમેય સંખ્યાઓને કેવી રીતે ઉમેરી શકીએ ? અપૂર્ણાંકોની જેમ પહેલાં આપણે તેમના છેદની સંખ્યાઓનો લ.સા.અ. લઈશું. હવે, આ લ.સા.અ. જેટલો છેદ મળે તેવી આપેલ સંમેય સંખ્યાઓને સમાન સંમેય સંખ્યા મેળવીશું. પછી, તે બે સંમેય સંખ્યાઓનો સરવાળો કરીશું.

ઉદાહરણ તરીકે, $\frac{-7}{5}$ અને $\frac{-2}{3}$ નો આપણે અહીં સરવાળો કરીએ.

5 અને 3નો લ.સા.અ. 15 થશે.

$$\vec{\text{cll}}, \qquad \frac{-7}{5} = \frac{-21}{15} \text{ with } \frac{-2}{3} = \frac{-10}{15}$$

અહીં,
$$\frac{-7}{5} + \frac{(-2)}{3} = \frac{-21}{15} + \frac{(-10)}{15} = \frac{-31}{15}$$

વિરોધી સંખ્યા:

$$\frac{-4}{7} + \frac{4}{7} = ?$$
 શું હોઈ શકે ?

$$\frac{-4}{7} + \frac{4}{7} = \frac{-4+4}{7} = 0$$
 $2\pi = 0$ $3\pi = 0$

પ્રયત્ન કરો

શોધો :

(i)
$$\frac{-3}{7} + \frac{2}{3}$$

(ii)
$$\frac{-5}{6} + \frac{-3}{11}$$

$$\mathfrak{Ala}, \quad \frac{-2}{3} + \frac{2}{3} = 0 = \frac{2}{3} + \left(\frac{-2}{3}\right)$$

આવા પૂર્ણાંકોના કિસ્સામાં આપશે જાણીએ છીએ કે –2 નો વિરોધી ઘટક 2 થાય અને 2 નો વિરોધી ઘટક –2 થાય છે.

234 સંમેય સંખ્યાઓ માટે આપણે કહી શકીએ કે, $\frac{4}{7}$ નો વિરોધી $\frac{-4}{7}$ અને $\frac{-4}{7}$ નો વિરોધી $\frac{4}{7}$ છે.

એવી જ રીતે $\frac{-2}{3}$ નો વિરોધી $\frac{2}{3}$ અને $\frac{2}{3}$ નો વિરોધી ઘટક $\frac{-2}{3}$ થશે.

પ્રયત્ન કરો

$\frac{-3}{9}$, $\frac{-9}{11}$, $\frac{5}{7}$ નો વિરોધી ઘટક શો થશે ?

ઉદાહરણ 6 સતપાલ કોઈ એક સ્થાન P પાસેથી પૂર્વ દિશામાં $\frac{2}{3}$ કિમી ચાલે છે અને ત્યાંથી

 $1\frac{5}{7}$ કિમી પશ્ચિમ દિશામાં જાય છે હવે તેનું P થી સ્થાન ક્યાં હશે ?

ઉકેલ ચાલો, પૂર્વ દિશામાં કાપેલાં અંતરને ધન ચિહ્ન વડે દર્શાવીએ જેથી પશ્ચિમ દિશામાં કાપેલા, અંતરને ઋણ ચિહ્ન વડે દર્શાવી શકાય.

આ રીતે બિંદુ P થી સતપાલે કાપેલું અંતર,

$$\frac{2}{3} + \left(-1\frac{5}{7}\right) = \frac{2}{3} + \frac{\left(-12\right)}{7} = \frac{2\times7}{3\times7} + \frac{\left(-12\right)\times3}{7\times3}$$

$$=\frac{14-36}{21}=\frac{-22}{21}=-1\frac{1}{21}$$

અહીં મૂલ્ય ઋણ મળે છે તેથી સતપાલ P થી પશ્ચિમ દિશામાં $1\frac{1}{21}$ કિમીના અંતરે છે.

9.9.2 બાદબાકી (Subtraction)

સિવતાએ બે સંમેય સંખ્યાઓ $\frac{5}{7}$ અને $\frac{3}{8}$ વચ્ચેનો તફાવત આ રીતે મેળવ્યો,

$$\frac{5}{7} - \frac{3}{8} = \frac{40 - 21}{56} = \frac{19}{56}$$

ફરીદા જાણતી હતી કે બે પૂર્ણાંક a અને b માટે a-b=a+(-b) લખી શકાય.

સંમેય સંખ્યાઓ

187

તેણે આ સંમેય સંખ્યા માટે પણ કર્યું અને મેળવ્યું કે, $\frac{5}{7} - \frac{3}{8} = \frac{5}{7} + \frac{(-3)}{8} = \frac{19}{56}$

બંને ને સમાન તફાવત મળે છે.

બંને રીતો વડે $\frac{7}{8} - \frac{5}{9}$, $\frac{3}{11} - \frac{8}{7}$ નો ઉકેલ મેળવવાનો પ્રયત્ન કરો.

શું બંને રીતે સમાન ઉત્તર મળશે ?

અહીં આપણે કહી શકીએ કે બે સંમેય સંખ્યાઓની બાદબાકી કરવા માટે આપણે જે સંખ્યા બાદ કરવાની હોય તેનો વિરોધી ઘટક લઈ તેને પહેલી સંખ્યામાં ઉમેરીએ.

એવી રીતે,
$$1\frac{2}{3} - 2\frac{4}{5} = \frac{5}{3} - \frac{14}{5} = \frac{5}{3} + \left(\frac{14}{5} + i\right)$$
 વિરોધી ઘટક) $= \frac{5}{3} + \frac{(-14)}{5}$

$$=\frac{-17}{15}=-1\frac{2}{15}$$
.

પ્રયત્ન કરો

શોધો :

બ શું આવી શકે ? (i)
$$\frac{7}{9} - \frac{2}{5}$$

$$\frac{2}{7} - \left(\frac{-5}{6}\right)$$
 નો જવાબ શું આવી શકે ?

$$\frac{2}{7} - \left(\frac{-5}{6}\right) = \frac{2}{7} + \left(\frac{-5}{6}\right) + \left(\frac{-5}{6}\right) + \left(\frac{-5}{6}\right) = \frac{2}{7} + \frac{5}{6} = \frac{47}{42} = 1\frac{5}{42}$$

9.9.3 ગુણાકાર (Multiplication)

ચાલો તો સંમેય સંખ્યા $\frac{-3}{5}$ નો 2 વડે ગુણાકાર કરવો છે એટલે કે $\frac{-3}{5} \times 2$ ની કિંમત શોધવી છે.

સંખ્યારેખા પર તેમનો અર્થ એવો થાય, 0ની ડાબી બાજુએ બે ક્રમ $\frac{3}{5}$ જેટલું આગળ વધવું.

આપણે ક્યાં આવ્યાં ? તો આપણે $\frac{-6}{5}$ પર પહોંચ્યાં.

તો ચાલો એને જ અપૂર્ણાંકની રીતે શોધવાનો પ્રયત્ન કરીએ.

$$\frac{-3}{5} \times 2 = \frac{-3 \times 2}{5} = \frac{-6}{5}$$

આપણે તે જ સંમેય સંખ્યા પર પહોંચી ગયાં.

બંને રીતના ઉપયોગ વડે $\frac{-4}{7} \times 3$, $\frac{-6}{5} \times 4$ ઉકેલો. તમે શું નોંધ્યું ?

ગણિત 188

અહીં આપણે તારવ્યું કે જ્યારે એક સંમેય સંખ્યાને કોઈ એક ધન પૂર્ણાંક સાથે ગુણાકાર કરતાં આપણે અંશને તે પૂર્ણાંક સાથે ગુણાકાર કરી લઈએ અને છેદને એમ જ (અચળ) રાખીએ છીએ.

ચાલો, તો હવે એક સંમેય સંખ્યાને ઋણ પૂર્ણાંક સાથે ગુણીએ,

$$\frac{-2}{9} \times -5 = \frac{-2 \times (-5)}{9} = \frac{10}{9}$$

પ્રયત્ન કરો

જવાબ શો આવી શકે ?

(i)
$$\frac{-3}{5} \times 7$$

જવાબ શો આવી શકે ?
(i)
$$\frac{-3}{5} \times 7$$
 (ii) $\frac{-6}{5} \times (-2)$

યાદ રાખો,
$$-5$$
 ને $\frac{-5}{1}$ પણ લખી શકાય.
અહીં, $\frac{-2}{9} \times \frac{-5}{1} = \frac{10}{9} = \frac{-2 \times (-5)}{9 \times 1}$

$$\frac{3}{11} \times (-2) = \frac{3 \times (-2)}{11 \times 1} = \frac{-6}{11}$$

આ અવલોકનને આધારે,આપણે આ તારણ કાઢી શકીએ, $\frac{-3}{8} \times \frac{5}{7} = \frac{-3 \times 5}{8 \times 7} = \frac{-15}{56}$

એવી રીતે આપણે અપૂર્શાંકો માટે પણ કર્યું હતું. બે સંમેય સંખ્યાઓનો ગુણાકાર નીચે દર્શાવેલ રીતે કરી શકાય.

પ્રયત્ન કરો

પગથિયું 1 બંને સંમેય સંખ્યાઓના અંશનો ગુણાકાર કરો.

પગથિયું 2 બંને સંખ્યાઓના છેદનો ગુણાકાર કરો.

(i) $\frac{-3}{4} \times \frac{1}{7}$ (ii) $\frac{2}{3} \times \frac{-5}{9}$ પગથિયું 3 ગુણનફળને પગથિયું $\frac{1}{4}$ માંથી પ્રાપ્ત પરિણામ ના રૂપમાં લખો.

અહીં,
$$\frac{-3}{5} \times \frac{2}{7} = \frac{-3 \times 2}{5 \times 7} = \frac{-6}{35}$$

તે જ રીતે,
$$\frac{-5}{8} \times \frac{-9}{7} = \frac{-5 \times (-9)}{8 \times 7} = \frac{45}{56}$$

9.9.4 ભાગાકાર

આગળ આપણે અપૂર્ણાંકોના વ્યસ્ત માટેનો અભ્યાસ કર્યો. $\frac{2}{7}$ નો વ્યસ્ત શું થાય ? તે $\frac{7}{2}$ થશે. આપણે આ વિચારને વિસ્તારી શૂન્યેતર સંમેય સંખ્યાઓના વ્યસ્ત માટે લાગુ પાડીએ.

$$\frac{-2}{7}$$
 નો વ્યસ્ત $\frac{7}{-2}$ (એટલે કે $\frac{-7}{2}$) થશે; $\frac{-3}{5}$ નો વ્યસ્ત $\frac{-5}{3}$ થશે.

પ્રયત્ન કરો

$\frac{-6}{11}$ અને $\frac{-8}{5}$ ની વ્યસ્ત સંખ્યા કઈ થશે ?

વ્યસ્તનો ગુણાકાર

કોઈ સંખ્યાનો તેમના વ્યસ્ત સાથેનો ગુણાકાર હંમેશા 1 થાય છે.

ઉદાહરણ તરીકે,
$$\frac{-4}{9} \times \left(\frac{-4}{9}$$
નો વ્યસ્ત)

$$= \frac{-4}{9} \times \frac{-9}{4} = 1$$

તેવી જ રીતે,
$$\frac{-6}{13} \times \frac{-13}{6} = 1$$

થોડાં બીજાં ઉદાહરણો દ્વારા આ અવલોકનની પુષ્ટિ કરીએ.

સવિતા એક સંમેય સંખ્યા $\frac{4}{9}$ નો $\frac{-5}{7}$ વડે ભાગાકાર કરે છે તો,

$$\frac{4}{9} \div \frac{-5}{7} = \frac{4}{9} \times \frac{7}{-5} = \frac{-28}{45}$$

તેણે અપૂર્ણાંકોના વ્યસ્ત માટેની રીત અપનાવી.

અર્પિતે પહેલાં $\frac{4}{9}$ ને $\frac{5}{7}$ વડે ભાગતાં $\frac{28}{45}$ મેળવ્યાં.

અંતમાં તેણે કહ્યું કે $\frac{4}{9} \div \frac{-5}{7} = \frac{-28}{45}$. તેણે એવું કઈ રીતે મેળવ્યું ?

તેણે ઋણ ચિહ્ન છોડીને બંનેને અપૂર્ણાંકની રીતે ભાગાકાર કરી પરિશામની સાથે ઋણ ચિહ્ન જોડી દીધું.

બંનેએ સરખો ઉત્તર $\frac{-28}{45}$ મેળવ્યો. $\frac{2}{3}$ નો $\frac{-5}{7}$ વડે ભાગાકાર બંને પ્રક્રિયા દ્વારા ઉકેલો અને બંનેમાં સમાન ઉકેલ મળે કે કેમ તે ચકાસો.

આ બતાવે છે કે એક સંમેય સંખ્યાને અન્ય શૂન્યેતર સંમેય સંખ્યા વડે ભાગાકાર કરવા માટે આપણે તે સંમેય સંખ્યાને અન્ય સંમેય સંખ્યાના વ્યસ્ત સાથે ગુણીએ છીએ.

આવી રીતે,
$$\frac{6}{-5} \div \frac{-2}{3} = \frac{6}{-5} \times \left(\frac{-2}{3}\right)$$
 નો વ્યસ્ત $=\frac{6}{-5} \times \frac{3}{-2} = \frac{18}{10}$

પ્રયત્ન કરો

શોધો :

(i)
$$\frac{2}{3} \times \frac{-7}{8}$$

(i)
$$\frac{2}{3} \times \frac{-7}{8}$$
 (i) $\frac{-6}{7} \times \frac{5}{7}$

સ્વાધ્યાય 9.2

(i)
$$\frac{5}{4} + \left(\frac{-11}{4}\right)$$
 (ii) $\frac{5}{3} + \frac{3}{5}$

(ii)
$$\frac{5}{3} + \frac{3}{5}$$

(iii)
$$\frac{-9}{10} + \frac{22}{15}$$

$$(iv) \frac{-3}{-11} + \frac{5}{9}$$

(iv)
$$\frac{-3}{-11} + \frac{5}{9}$$
 (v) $\frac{-8}{19} + \frac{(-2)}{57}$

(vi)
$$\frac{-2}{3}$$
 + 0

(vii)
$$-2\frac{1}{3} + 4\frac{3}{5}$$

2. શોધો :

(i)
$$\frac{7}{24} - \frac{17}{36}$$

(ii)
$$\frac{5}{63} - \left(\frac{-6}{21}\right)$$

(ii)
$$\frac{5}{63} - \left(\frac{-6}{21}\right)$$
 (iii) $\frac{-6}{13} - \left(\frac{-7}{15}\right)$

(iv)
$$\frac{-3}{8} - \frac{7}{11}$$

(v)
$$-2\frac{1}{9}-6$$

3. ગુણાકાર શોધો :

(i)
$$\frac{9}{2} \times \left(\frac{-7}{4}\right)$$

(ii)
$$\frac{3}{10} \times (-9)$$

(iii)
$$\frac{-6}{5} \times \frac{9}{11}$$

(iv)
$$\frac{3}{7} \times \left(\frac{-2}{5}\right)$$

(v)
$$\frac{3}{11} \times \frac{2}{5}$$

(vi)
$$\frac{3}{-5} \times \frac{-5}{3}$$

4. કિંમત શોધો :

(i)
$$(-4) \div \frac{2}{3}$$

(ii)
$$\frac{-3}{5} \div 2$$

(iii)
$$\frac{-4}{5} \div (-3)$$

(iv)
$$\frac{-1}{8} \div \frac{3}{4}$$

(v)
$$\frac{-2}{13} \div \frac{1}{7}$$

(vi)
$$\frac{-7}{12} \div \left(\frac{-2}{13}\right)$$

$$(vii) \frac{3}{13} \div \left(\frac{-4}{65}\right)$$

આપણે શી ચર્ચા કરી ?

- 1. જે સંખ્યાને $\frac{p}{q}$ સ્વરૂપમાં દર્શાવી શકાય, જ્યાં p અને q પૂર્ણાંકો તેમજ $q \neq 0$ થાય તેને સંમેય સંખ્યા કહે છે. સંખ્યાઓ $\frac{-2}{7}, \frac{3}{8}, 3$ વગેરે સંમેય સંખ્યાઓ છે.
- 2. બધા પૂર્ણાંક અને અપૂર્ણાંક એ સંમેય સંખ્યા છે.
- 3. જો કોઈ સંમેય સંખ્યાના અંશ અને છેદને શૂન્યેતર પૂર્ણાંક વડે ગુણવામાં કે ભાગવામાં આવે તો આપણને એક સંમેય સંખ્યા મળે છે જેને આપેલી સંમેય સંખ્યાઓની સમાન સંમેય સંખ્યા કહેવાય છે. ઉદાહરણ તરીકે $\frac{-3}{7} = \frac{-3\times2}{7\times2} = \frac{-6}{14}$ અહીં આપણે કહી શકીએ કે $\frac{-6}{14}$ એ $\frac{-3}{7}$ ને સમાન છે. આગળ નોંધીએ તો $\frac{-6}{14} = \frac{-6 \div 2}{14 \div 2} = \frac{-3}{7}$.
- 4. સંમેય સંખ્યાઓને ધન અને ઋણ સંમેય સંખ્યાઓનાં રૂપમાં વર્ગીકૃત કરી શકાય છે. જો અંશ અને છેદ બંને ધન પૂર્ણાંક હોય અથવા બંને ઋણ પૂર્ણાંક હોય તો તે સંખ્યા ધન સંમેય સંખ્યા કહેવાય છે. જો અંશ અથવા છેદ બેમાંથી કોઈ પણ એક ઋણ પૂર્ણાંક હોય તો તે સંખ્યાને ઋણ સંમેય સંખ્યા કહે છે. $\frac{3}{8}$ એક ધન સંમેય સંખ્યા છે તેમજ $\frac{-8}{9}$ એ ઋણ સંમેય સંખ્યા છે.
- 5. 0 એ ધન કે ઋશ સંમેય સંખ્યા નથી.
- 6. સંમેય સંખ્યાને તેનાં પ્રમાણિત સ્વરૂપમાં ત્યારે ગણી શકાય જ્યારે તેમનો છેદ ધન પૂર્ણાંક હોય તેમજ અંશ અને છેદનો સામાન્ય અવયવ 1 સિવાય બીજો ન હોય. સંખ્યાઓ $\frac{-1}{3}$, $\frac{2}{7}$ વગેરે પ્રમાણિત સ્વરૂપમાં છે.
- 7. બે સંમેય સંખ્યાઓની વચ્ચે અનંત સંમેય સંખ્યાઓ હોય છે.
- 8. સમાન છેદવાળી બે સંમેય સંખ્યાઓનો સરવાળો કરવા માટે છેદને સામાન્ય રાખી અંશનો સરવાળો કરી શકીએ. બે ભિન્ન છેદવાળી સંખ્યાઓનો સરવાળો કરવા માટે પહેલાં બંને છેદનો લ.સા.અ. લઈ ત્યાર બાદ બંને સંમેય સંખ્યાઓનાં લ.સા.અ. જેટલા છેદવાળી બે સમાન સંખ્યામાં ફેરવી સરવાળો કરવામાં આવે છે. ઉદાહરણ તરીકે $\frac{-2}{3} + \frac{3}{8} = \frac{-16}{24} + \frac{9}{24} = \frac{-16+9}{24} = \frac{-7}{24}$ અહીં 3 અને 8 નો લ.સા.અ. 24 છે.
- 9. બે સંમેય સંખ્યાઓની બાદબાકી કરવા બાદ કરવાની સંમેય સંખ્યાનો વિરોધી ઘટક લઈ બીજી સંખ્યામાં ઉમેરવામાં આવે છે.

આ રીતે,
$$\frac{7}{8} - \frac{2}{3} = \frac{7}{8} + \left(\frac{2}{3} \text{ તો વિરોધી ઘટક}\right) = \frac{7}{8} + \frac{(-2)}{3} = \frac{21 + (-16)}{24} = \frac{5}{24}$$

192 ગણિત

10.બે સંમેય સંખ્યાઓનો ગુણાકાર કરવા માટે અંશ અને છેદનો અલગ-અલગ ગુણાકાર કરીએ અને

11.એક સંમેય સંખ્યાનો બીજી શૂન્યેતર સંમેય સંખ્યા સાથે ભાગકાર કરવા માટે આપણે એક સંમેય સંખ્યાને બીજી શૂન્યેતર સંમેય સંખ્યાના વ્યસ્ત સાથે ગુણાકાર કરીએ છીએ.

એવી રીતે,
$$\frac{-7}{2} \div \frac{4}{3} = \frac{-7}{2} \times \left(\frac{4}{3} \text{ Ti } \text{ cuta}\right) = \frac{-7}{2} \times \frac{3}{4} = \frac{-21}{8}$$

