Notes sur la Théorie de la Mesure

Charaf ZGUIOUAR
zgcharaf@gmail.com
Université Paris 1 Panthéon-Sorbonne
Ecole d'économie de la Sorbonne
M2 Finance, Technology, Data

May 18, 2024

Théorie de la Mesure

Ensembles Mesurables

L'objectif de la théorie de la mesure est d'assigner à chaque sous-ensemble d'un ensemble donné une probabilité non nulle (ou volume réel).

Il n'est pas possible de définir une mesure sur un ensemble des sous-ensembles d'un ensemble donné.

Définitions

- Un espace mesurable est un ensemble E et une tribu \mathcal{F} .
- Une tribu $\mathcal F$ sur un ensemble E est une famille de sous-ensembles de E qui vérifie les trois propriétés suivantes :
 - 1. $\emptyset \in \mathcal{F}$ et $E \in \mathcal{F}$.
 - 2. Si $A \in \mathcal{F}$ alors $A^c \in \mathcal{F}$.
 - 3. Si $\{A_i\}$ est une suite dénombrable de sous-ensembles de E appartenant à \mathcal{F} , alors $\bigcup A_i \in \mathcal{F}$.

Remarques

- Si $A, B \in \mathcal{F}$ alors $A \cap B \in \mathcal{F}$.
- Si on prend deux tribus \mathcal{F} et \mathcal{G} , $\mathcal{F} \cap \mathcal{G}$ va rester une tribu.
- \bullet Les éléments de ${\mathcal F}$ sont appelés mesurables.
- Une tribu est un ensemble, elle est elle-même constituée d'ensembles.

Conséquences

- $\emptyset \in \mathcal{F}$.
- Si $A_i \in \mathcal{F}$, alors $\bigcap A_i \in \mathcal{F}$.
- \bullet ${\mathcal F}$ est un ensemble de sous-ensembles de E et est une tribu fermée par intersection.

Tribus Engendrées

- Soit E un sous-ensemble de $\mathcal{P}(E)$, alors il existe une plus petite tribu sur E contenant E.
- Cette tribu se note $\sigma(E)$ et s'appelle tribu engendrée par E.

Définition

Si E est un espace topologique, la classe des ouverts de E existe. On la note \mathcal{G} .

- La tribu $\sigma(\mathcal{G})$ engendrée par \mathcal{G} est appelée tribu borélienne.
- Les éléments de $\sigma(\mathcal{G})$ sont appelés boréliens de E.
- $\beta(E)$ est un ensemble constitué de sous-ensembles de E.

Définition (Tribu Produit)

Soient (E_1, \mathcal{F}_1) et (E_2, \mathcal{F}_2) deux espaces mesurables. La tribu produit est la tribu sur $E_1 \times E_2$ définie par le produit cartésien :

$$\mathcal{F}_1 \otimes \mathcal{F}_2 = \sigma \left(A_1 \times A_2 : A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2 \right)$$

Mesure Positive et Propriétés

Définition: Une mesure positive sur (E, \mathcal{F}) est une fonction $\mu : \mathcal{F} \to [0, \infty]$ munie de l'infini.

- 1. $\mu(\emptyset) = 0$
- 2. Pour toute famille $\{A_n\}_{n\in\mathbb{N}}$ de parties, si $\{A_n\}$ est une famille des éléments de la tribu \mathcal{F} , alors:

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}\mu(A_n) \quad (\sigma\text{-additivit\'e})$$

Propriétés: les six définitions qui découlent d'une mesure positive

- 1. Si $A \subseteq B$, alors $\mu(A) \le \mu(B)$
- 2. Si $A \subseteq B$ et $\mu(A) < \infty$, alors $\mu(B \setminus A) = \mu(B) \mu(A)$
- 3. Si $\{A_i\}$ est une suite, alors $\mu(\bigcup A_i) = \sum \mu(A_i)$
- 4. Si $\{A_n\}$ est une suite telle que $\forall n \in \mathbb{N}, A_n \subseteq A_{n+1}$, alors:

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\lim_{n\to\infty}\mu(A_n)$$
 (limite croissante)

5. Si $\{B_n\}$ est une suite telle que $\forall n \in \mathbb{N}, B_{n+1} \subseteq B_n$ et $\mu(B_1) < \infty$, alors:

$$\mu\left(\bigcap_{n\in\mathbb{N}}B_n\right)=\lim_{n\to\infty}\mu(B_n)$$
 (limite décroissante)

6. Si $\{C_n\}$ est une suite, alors:

$$\mu\left(\bigcup_{n=1}^{\infty} C_n\right) \le \sum_{n=1}^{\infty} \mu(C_n)$$

a. Si les C_n sont disjoints, alors on retrouve la σ -additivité et on retrouve l'égalité:

$$\mu\left(\bigcup_{n=1}^{\infty} C_n\right) = \sum_{n=1}^{\infty} \mu(C_n)$$

b. Si les C_n ne sont pas disjoints, on a:

$$\mu\left(\bigcup_{n=1}^{\infty} C_n\right) \le \sum_{n=1}^{\infty} \mu(C_n)$$

Autres Définitions

- Si $\mu(E) < \infty$ alors μ est dite finie.
- La mesure $\mu(E)$ s'appelle la masse totale de E.
- μ est une mesure de probabilité si $\mu(E) = 1$.
- μ est σ -finie s'il existe une suite croissante de parties mesurables (E_n) telle que $E = \bigcup E_n$ et $\mu(E_n) < \infty$.
- $A \subset E$ est un atome de μ si $\mu(A) > 0$.
- μ est dite diffuse si elle n'a pas d'atome.

Mesure Positive

1. Si $B = A \cup (B \setminus A)$ (union disjointe d'éléments de A), alors :

$$\mu(B) = \mu(A) + \mu(B \setminus A)$$

2. Si $A \subseteq B$ et $\mu(A) < \infty$, alors :

$$\mu(B) = \mu(A) + \mu(B \setminus A)$$

3. Si $A = (A \setminus B) \cup (A \cap B)$ et $B = (B \setminus A) \cup (A \cap B)$, alors :

$$A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$$

et par conséquent :

$$\mu(A \cup B) = \mu(A \setminus B) + \mu(A \cap B) + \mu(B \setminus A)$$

En ajoutant $\mu(A \cap B)$ des deux côtés, nous obtenons :

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A \setminus B) + \mu(A \cap B) + \mu(B \setminus A) + \mu(A \cap B)$$

Simplifiant, cela donne :

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$$

C'est le principe d'inclusion-exclusion.

4. Pour $n \in \mathbb{N}$, définissons $D_n = A_n \setminus A_{n-1}$. Alors :

$$\bigcup_{n} D_n = \bigcup_{n} A_n$$

Si $\{D_n\} \in \mathcal{F}$ est une suite de parties mesurables disjointes, alors :

$$\mu\left(\bigcup_{n} D_{n}\right) = \sum_{n} \mu(D_{n})$$

$$\mu\left(\bigcup_{n} D_{n}\right) = \mu\left(\bigcup_{n} A_{n}\right)$$

$$\sum_{n} \mu(D_n) = \mu\left(\bigcup_{n} A_n\right)$$

Pour tout $n \in \mathbb{N}$, si $A_n = \bigcup_{k=0}^n D_k$, alors :

$$\mu(A_n) = \sum_{k=0}^{n} \mu(D_k)$$

et

$$\lim_{n \to \infty} \mu(A_n) = \mu\left(\bigcup_{k=0}^{\infty} D_k\right)$$

Exemple 1

•
$$A = \{1, 2, 3, 4, 5, 6, 7\}$$

•
$$A_{n-1} = \{1, 2, 3, 4, 5\}$$

•
$$A_n = \{4, 3, 8\}$$

•
$$P_n = A_n \setminus A_{n-1} = \{1, 2, 3\}$$

•
$$D_n = A_n \cap A_{n-1} = \{2\}$$

•
$$\bigcup_n D_n = \{3, 5, 4\}$$

Suite Croissante

1. Pour tout $n \in \mathbb{N}$, $E_n = B_0 \setminus B_n$

$$(E_n)$$
 est une suite croissante. Ainsi $\mu\left(\bigcup_{n\in\mathbb{N}}E_n\right)=\lim_{n\to\infty}\mu(E_n)$

De plus, pour tout $n \in \mathbb{N}$, $E_n \cup B_n$ est disjoint

$$\mu(E_n \cup B_n) = \mu(E_n) + \mu(B_n)$$

$$\mu(B_0) = \mu(E_n) + \mu(B_n) \le +\infty$$

$$\bigcup_{n} E_{n} = \bigcup_{n} (B_{0} \setminus B_{n}) = B_{0} \setminus \left(\bigcap_{n} B_{n}\right)$$

D'où,

$$\mu\left(\bigcap_{n}B_{n}\right)<\infty$$

Exemple 2

- $B_0 = [0, 1]$
- $B_n = \left[\frac{1}{n+1}, 1\right]$
- $E_n = B_0 \setminus B_n = \left[0, \frac{1}{n+1}\right)$
- E_n est croissante $E_1 = \left[0, \frac{1}{2}\right)$ $E_2 = \left[0, \frac{1}{3}\right) \dots$
- $\bigcup_n E_n = [0,1)$
- $\bigcap_n B_n = \{1\}$
- $\mu(B_0) = \mu([0,1]) = 1$
- $\mu(B_n) = 1 \frac{1}{n+1}$

- $\mu(E_n) = \frac{1}{n+1}$
- $\mu\left(\bigcup_n E_n\right) = 1$
- $\mu(\bigcap_n B_n) = \mu(\{1\}) = 0$

Propriétés Additionnelles de la Mesure

(vi) Pour tout $n \in \mathbb{N}$, $F_n = E_0 \cup \bigcup_{k=0}^n C_k$. Ainsi,

$$\bigcup_{n} F_n = \bigcup_{n} C_n$$

Par σ -additivité,

$$\mu\left(\bigcup_{n} F_{n}\right) = \mu\left(\bigcup_{n} C_{n}\right) \leq \sum_{n} \mu(C_{n})$$

Explication Détaillée

- 1. Séquences d'Ensembles: Soit une suite d'ensembles $\{C_n\}$. Une autre suite d'ensembles $\{F_n\}$ est définie en termes de $\{C_n\}$ et d'un ensemble fixe E_0 .
 - 2. Définition de F_n : Pour chaque $n \in \mathbb{N}$:

$$F_n = E_0 \cup \bigcup_{k=0}^n C_k$$

Cela signifie que F_n est l'union de l'ensemble fixe E_0 et de l'union des n+1 premiers ensembles dans la suite $\{C_k\}$.

3. Union de F_n : - L'union de tous les F_n sur n:

$$\bigcup_{n} F_n$$

Par définition de F_n , cela équivaut à l'union de tous les ensembles dans $\{C_n\}$:

$$\bigcup_{n} F_{n} = \bigcup_{n} \left(E_{0} \cup \bigcup_{k=0}^{n} C_{k} \right)$$

Comme E_0 est fixe et inclus dans chaque F_n , l'union se simplifie à :

$$\bigcup_{n} F_n = E_0 \cup \bigcup_{n} C_n$$

4. Mesure de l'Union: - Par la propriété des mesures (σ -additivité), la mesure de l'union des ensembles F_n est :

$$\mu\left(\bigcup_{n}F_{n}\right)$$

Puisque $\bigcup_n F_n = E_0 \cup \bigcup_n C_n$, cela devient :

$$\mu\left(\bigcup_{n} F_{n}\right) = \mu\left(E_{0} \cup \bigcup_{n} C_{n}\right)$$

5. σ -additivité et Mesure: - La propriété de σ -additivité des mesures stipule que la mesure d'une union dénombrable d'ensembles disjoints est égale à la somme de leurs mesures. Cependant, dans ce contexte, nous n'assumons pas la disjonction mais nous pouvons dire :

$$\mu\left(\bigcup_{n} C_{n}\right) \leq \sum_{n} \mu(C_{n})$$

Cette inégalité tient car la mesure d'une union d'ensembles est inférieure ou égale à la somme de leurs mesures (qu'ils soient disjoints ou non).

Exemple pour Illustrer le Concept

Considérons un exemple concret pour clarifier cela :

Exemple

- 1. Ensembles: Soit $E_0 = \{0\}$. Soit $C_n = \left\{\frac{1}{n+1}\right\}$.
 - 2. Construction de F_n : Pour chaque n:

$$F_n = \{0\} \cup \left\{\frac{1}{1}, \frac{1}{2}, \dots, \frac{1}{n+1}\right\}$$

3. Union de F_n : - L'union de tous les F_n :

$$\bigcup_{n} F_n = \{0\} \cup \left\{ \frac{1}{k} : k \in \mathbb{N} \right\}$$

- Cela est simplement l'ensemble contenant 0 et tous les réciproques positifs des nombres naturels.
- 4. Mesure: En supposant une mesure où chaque point a une mesure de 1 (pour simplifier, considérons une mesure discrète),

$$\mu(C_n) = 1$$
 pour chaque n

- La mesure de l'union $\bigcup_n C_n$ serait $\sum_n \mu(C_n)$.

Ainsi, la mesure de l'union de F_n sera bornée par la somme des mesures de C_n , illustrant le principe décrit.