Importing required modules

In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
```

Reading csv file

In [2]:

```
1 df=pd.read_csv('Mall_Customers.csv')
2 df.head()
```

Out[2]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

In [3]:

```
1 df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):
```

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Genre	200 non-null	object
2	Age	200 non-null	int64
3	Annual Income (k\$)	200 non-null	int64
4	Spending Score (1-100)	200 non-null	int64

dtypes: int64(4), object(1)
memory usage: 7.9+ KB

There will be 200 records and 5 columns not having null values.

In [4]:

1 df.describe()

Out[4]:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50,200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

We will performing clustering by taking two features 'Annual Income (k\$)' & 'Spending Score (1-100)'

Scatterplot graph of 'Annual Income (k\$)' & 'Spending Score (1-100)'

In [5]:

```
plt.scatter(df['Annual Income (k$)'],df['Spending Score (1-100)'])
plt.show()
```


So, we want to form clusters according similarities and difference.

Feature Scaling

In [6]:

```
from sklearn.preprocessing import MinMaxScaler
mm = MinMaxScaler()
df['Annual Income (k$)'] = mm.fit_transform(df[['Annual Income (k$)']])
df['Spending Score (1-100)'] = mm.fit_transform(df[['Spending Score (1-100)']])
```

In [7]:

```
1 df.head()
```

Out[7]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	0.000000	0.387755
1	2	Male	21	0.000000	0.816327
2	3	Female	20	0.008197	0.051020
3	4	Female	23	0.008197	0.775510
4	5	Female	31	0.016393	0.397959

In [8]:

```
1 x = df[['Annual Income (k$)','Spending Score (1-100)']]
2 x
```

Out[8]:

Annual Income (k\$) Spending Score (1-100)

0	0.000000	0.387755
1	0.000000	0.816327
2	0.008197	0.051020
3	0.008197	0.775510
4	0.016393	0.397959
195	0.860656	0.795918
196	0.909836	0.275510
197	0.909836	0.744898
198	1.000000	0.173469
199	1.000000	0.836735

200 rows × 2 columns

Hierarchical graph of x

In [9]:

```
import scipy.cluster.hierarchy as sch
plt.figure(figsize=(8,8))
lk = sch.linkage(x,method = 'ward')
ddg = sch.dendrogram(lk)
```


By observation, In Hierarchical graph there will be 5 vertical big lines observed. So we can take no. of clusters is 5

In [10]:

```
from sklearn.cluster import AgglomerativeClustering
ac = AgglomerativeClustering(n_clusters = 5)
yhc = ac.fit_predict(x)
yhc
```

Out[10]:

We will creating new feature to form clusters

In [11]:

```
1 df['HLables'] = yhc
```

In [12]:

```
1 df.head()
```

Out[12]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)	HLables
0	1	Male	19	0.000000	0.387755	4
1	2	Male	21	0.000000	0.816327	3
2	3	Female	20	0.008197	0.051020	4
3	4	Female	23	0.008197	0.775510	3
4	5	Female	31	0.016393	0.397959	4

In [13]:

```
plt.scatter(df['Annual Income (k$)'],df['Spending Score (1-100)'], c = ac.labels_)
```

Out[13]:

<matplotlib.collections.PathCollection at 0x277b402ecd0>

So there will be 5 clusters form properly