Backpropagation in Feed Forward Artificial Neural Networks

Perceptron model

0

• Takes several binary inputs and produces single binary output

Ordered set of weights w

$$\sum_{i} w_j x_j = \vec{w} \cdot \vec{x} > b$$

Output determined if

greater than threshold value

- 1 if W•x + b > 0 where b is bias term (threshold moved to lhs)
 - Bias is how easy it is for perceptron to fire or activate
 - Positive bias means easier to fire, negative bias means harder to fire
- Network of perceptrons allow for subtle decision making

Neural Network

- o Set of Nodes: Input, Hidden, Output
- Set of weights between nodes

- 0
 - "Learns" by feeding training data through network and then correcting weights appropriately by working back through the network => Backpropagation
 - Feed forward → no loops, loops in recurrent neural networks that have certain neurons that recurrently fire for some duration and slowly die out, lots of use in natural language processing where context is relevant
- Perceptron model uses binary output, so crossing a threshold might change that perceptron for the better but it may drastically change the rest of the network in unwanted ways

• Sigmoid Neuron

o Continuous inputs and continuous output

- Output is $\sigma(w \cdot x+b)$ where σ is the sigmoid or logistic function
 - "Activation function"

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\Delta \text{output} = \sum \frac{\partial \text{output}}{\partial w_j} \Delta w_j + \frac{\partial \text{output}}{\partial b} \Delta b$$

- How to learn
 - o Backpropagation
 - Adjust weights to optimize output ⇒ Need to define a loss/cost/objective function
 - How to minimize cost function
 - Why not just do some FOCs and SOCs? C is a function of many, many variables; doing FOCs and SOCs for single variable is fine, doing it for 2 or 3 is harder, doing it for more... fuhgettaboutit
- Gradient Descent
 - o Imagine you're on a hilly terrain and you want to get down to the bottom before sun down, but it's super foggy so you can't see far ahead. How do you do so?
 - Move in random directions
 - This is bad because you might end up moving up the hill!
 - o Randomly place your foot until it is downward from your first foot
 - Better, but still not great
 - o If only you could figure out which direction to move in... you want to move in direction of quickest descent (away from direction of quickest ascent)... gradient!

$$\Delta C = \frac{\partial C}{\partial v_1} \Delta v_1 + \frac{\partial C}{\partial v_2} \Delta v_2 \dots \Rightarrow \Delta C = \nabla C \cdot \Delta v$$

- $\circ \quad \Delta v = -\alpha \nabla C$
 - lacktriangleright α is hyperparameter learning rate

$$\Delta C = -\alpha \nabla C \cdot \nabla C = -\alpha ||\nabla C||^2$$

- Since gradient is squared, the change in the cost function will always be negative (down)
- Update: $v' = v \alpha \nabla C$

- Note on selecting a learning rate: Too small and it takes forever, too large and you might overshoot
- In a ANN, you want to update your weights and biases to minimize C:

- Question: How do you compute the gradient in practice?
 - Compute partial for each variable and take average ⇒ long and computationally expensive
 - Solution: Stochastic gradient descent
- Stochastic gradient descent
 - Randomly select some variables and compute partials with respect to those variables and average
 - Set of selected variables called mini-batch of size m
 - (This is based on an assumption about C that we will discuss in a second when we define C)

- One iteration of learning on training inputs called "Epoch"
 - Number of epochs used in training, mini-batch size, and learning rate are all hyperparameters which can be optimized separately
- Backpropagation
 - o Notation:
 - is the activation of the neuron in the layer
 - is the weight from the neuron in the layer to the neuron in the layer
 - Activation of a neuron is related to the sum of its inputs, which is related to the activations of the neurons in the previous layer

•

- is a weight matrix containing weights, is a vector containing biases⇒
- Weighted input vector
- Cost function
 - Could define function like number of correct responses, but you want a continuous function so that you can make small adjustments to your weights
 - Mean Squared Error (Quadratic Cost Function)
 - Extra ½ doesn't affect the optimization but simplifies computation later on
- This holds true for the MSE loss function, but this is not true for all the loss functions you encounter in the wild
- Note: only a function of since y is a fixed parameter associated with training data
- Objective: Understand how changing the weights (and biases) in a network affect the cost function
 - is the error term in neuron in the layer, so is vector with error terms
 - , then the effect on the cost function would be
- Error in the output layer:
 - By definition of the error term, the output error term can be found as
 - Summing over all output neurons,

•	Remember that	is a function of	if	, so if	, the partials term	
	how much derivative sthat point (s sense as the partia a change in the act shows how fast the the weighted input e components are f	ivation af activation of the ou	fects the number of the fects the fects of t	cost. The sigmoid n is changing at ation)	
	0					
	0					
	o Sid	e note:				
where A(x) is a matrix who has x along its diagonal and zeroes everywhere else • Error in a layer in terms of error in the subsequent layer:						
•	By definition,					
	Expanding,					
•	Given	, the error terr	n in <i>l</i> can	be rewrit	tten as	
•	By definition,			, so differ	rentiating yields	
■ ○ Partial	Back into the origi	-	s that			

		■ Applying the chain rule:	
		■ Simplifying:	
		■ Definition:	
		■ Substituting back into the initial equation:	
		 Given the definition of Remember that only one of the activations in a layer is affected by 	, so
		it can be rewritten as z^L_j	
	0	Partial of Cost with respect to biases	
)	Applic descer	cation of fundamental equations to backpropagation (using stochastic gradient at)	
	0	1. Input x (compute for input layer)	
	0	2. Feedforward (For each subsequent layer <i>l</i> for 2, 3 through L, computing	
		and)	
	0	3. Output error (compute)	
	0	4. Backpropagate Error (for every <i>l</i> before L, compute)	
	0	5. Output (gradient of cost is and).6. Update weights and biases moving along gradient of cost	
	Ü	o. openie weights and oraces moving along gradient of cost	

■ Definition:

- Modern uses
 - \circ "Deep learning" \Rightarrow ANNs with many hidden layers, often 10-15
 - o "Convolutional Neural Networks"
 - Break problem further into sub-problems, thus "convoluting" within hidden layers
 - Super useful for computer vision, image compression, stock market prediction, even really good estimation of travelling salesman's problem
 - GPU speed up allows parallel training of the network
 - We used sigmoid activation function, which is nice because it makes the math (relatively) simple and easy to understand. Often not recommended because it saturates neurons very quickly (goes to either 1 or 0) which makes it like a perceptron
 - Solved with variety of methods, including varied activation functions
 - Rectified Linear Unit (ReLU) accelerates SGD by factor of 6 compared to sigmoid or tanh activation functions because it saturates less and uses less computationally expensive operations
 - ReLUs can die, making large parts of the network inactive
 - Solved with Leaky ReLUs

Sources accessed:

- Stanford CS231n (http://cs231n.stanford.edu/)
- Backpropagation derivation (http://neuralnetworksanddeeplearning.com/chap2.html)