Intro to Ergodic Markov Processes Math 758: Ergodic Theory

Benjamin Braiman

University of Wisconsin - Madison

Spring 2025

Certain standard constructions in measure theory are given special names in probability theory:

Definition

Certain standard constructions in measure theory are given special names in probability theory:

Definition

In a probability measure space $(\Omega, \mathcal{F}, \mu)$:

1 The set Ω is called the *sample space*,

Certain standard constructions in measure theory are given special names in probability theory:

Definition

- **1** The set Ω is called the *sample space*,
- \odot elements of the σ -algebra \mathcal{F} are called *events*,

Certain standard constructions in measure theory are given special names in probability theory:

Definition

- **1** The set Ω is called the *sample space*,
- **2** elements of the σ -algebra \mathcal{F} are called *events*,
- **3** measurable functions $X : \Omega \to \mathbb{R}$ are called *random variables*

Certain standard constructions in measure theory are given special names in probability theory:

Definition

- **1** The set Ω is called the *sample space*,
- **2** elements of the σ -algebra \mathcal{F} are called *events*,
- **1** measurable functions $X : \Omega \to \mathbb{R}$ are called random variables
- The Lebesgue integral of a random variable is called the expected value:

$$\mathbb{E}[X] := \int_{\Omega} X \, d\mu.$$

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $X : \Omega \to \mathbb{R}^n$ be a random variable.

1 X defines a Borel probability measure on \mathbb{R}^n via its push-forward:

$$\mu := X_* \mathbb{P}.$$

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $X : \Omega \to \mathbb{R}^n$ be a random variable.

1 X defines a Borel probability measure on \mathbb{R}^n via its push-forward:

$$\mu := X_* \mathbb{P}.$$

② We say that the *distribution* of X is μ , denoted by $X \sim \mu$.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $X : \Omega \to \mathbb{R}^n$ be a random variable.

1 X defines a Borel probability measure on \mathbb{R}^n via its push-forward:

$$\mu := X_* \mathbb{P}.$$

- ② We say that the *distribution* of X is μ , denoted by $X \sim \mu$.
- **3** Given any Borel probability measure μ on \mathbb{R}^n , we can find a probability measure space $(\Omega, \mathcal{F}, \mathbb{P})$ and a random variable on Ω such that $X \sim \mu$.

Let $\mathcal{G} \subset \mathcal{F}$ be a sub σ -algebra.

Let $\mathcal{G} \subset \mathcal{F}$ be a sub σ -algebra.

• Given a random variable $X \in L^1(\mathbb{P})$, the conditional expectation $\mathbb{E}[X \mid \mathcal{G}]$ is the unique \mathcal{G} -measurable random variable such that

$$\int_A \mathbb{E}[X \mid \mathcal{G}] d\mathbb{P} = \int_A X d\mathbb{P} \quad \text{ for all } A \in \mathcal{G}.$$

Let $\mathcal{G} \subset \mathcal{F}$ be a sub σ -algebra.

• Given a random variable $X \in L^1(\mathbb{P})$, the conditional expectation $\mathbb{E}[X \mid \mathcal{G}]$ is the unique \mathcal{G} -measurable random variable such that

$$\int_A \mathbb{E}[X \mid \mathcal{G}] d\mathbb{P} = \int_A X d\mathbb{P} \quad \text{ for all } A \in \mathcal{G}.$$

② Always exists: either a Radon-Nikodym derivative or the orthogonal projection of X onto the space of \mathcal{G} -measurable random variables.

Let $\mathcal{G} \subset \mathcal{F}$ be a sub σ -algebra.

• Given a random variable $X \in L^1(\mathbb{P})$, the conditional expectation $\mathbb{E}[X \mid \mathcal{G}]$ is the unique \mathcal{G} -measurable random variable such that

$$\int_A \mathbb{E}[X \mid \mathcal{G}] d\mathbb{P} = \int_A X d\mathbb{P} \quad \text{ for all } A \in \mathcal{G}.$$

- ② Always exists: either a Radon-Nikodym derivative or the orthogonal projection of X onto the space of \mathcal{G} -measurable random variables.
- **3** The conditional probability on \mathcal{G} of an event $A \in \mathcal{F}$ is the (random) measure

$$\mathbb{P}[A \mid \mathcal{G}] := \mathbb{E}[\mathbf{1}_A \mid \mathcal{G}].$$

Markov Chains

Definition

A *Markov Process* in \mathbb{R}^n with probability measures $\{\mathbb{P}_x : x \in \mathbb{R}^n\}$ on a measure space (Ω, \mathcal{F}) is a family of random variables $\{X_t : t \geq 0\}$ satisfying

Markov Chains

Definition

A Markov Process in \mathbb{R}^n with probability measures $\{\mathbb{P}_x : x \in \mathbb{R}^n\}$ on a measure space (Ω, \mathcal{F}) is a family of random variables $\{X_t : t \geq 0\}$ satisfying

1
$$\mathbb{P}_{x}[X_{0} = x] = 1$$

Markov Chains

Definition

A Markov Process in \mathbb{R}^n with probability measures $\{\mathbb{P}_x : x \in \mathbb{R}^n\}$ on a measure space (Ω, \mathcal{F}) is a family of random variables $\{X_t : t \geq 0\}$ satisfying

- **1** $\mathbb{P}_{x}[X_{0} = x] = 1$
- ② (Markov Property) For every $x \in \mathbb{R}^n$ and $t, s \ge 0$ and Borel measurable A,

$$\mathbb{P}_{\mathsf{x}}[X_{t+s} \in A \,|\, \mathcal{F}_{\mathsf{s}}] = \mathbb{P}_{X_{\mathsf{s}}}[X_t \in A]$$

 \mathcal{F}_t denotes the smallest sub- σ -algebra of \mathcal{F} where X_s is measurable for each $0 \le s \le t$.

Given a Markov process $\{X_t : t \ge 0\}$, we can define a family of *transition kernels* by

$$p_t(x, A) := \mathbb{P}_x[X_t \in A].$$

Given a Markov process $\{X_t : t \ge 0\}$, we can define a family of *transition kernels* by

$$p_t(x,A) := \mathbb{P}_x[X_t \in A].$$

• Each $\{p_t(x,\cdot)\}$ is a Borel probability measure on \mathbb{R}^n satisfying the *Chapman-Kolmogorov* property:

$$p_{t+s}(x,A) = \int_{\mathbb{R}^n} p_t(y,A) p_s(x,dy).$$

Examples: Brownian Motion

The transition kernels defined by

$$p_t(x, A) := \frac{1}{(2\pi t)^{n/2}} \int_A \exp\left(-\frac{1}{2t}|y - x|^2\right) dy$$

correspond to the Markov process known as Brownian motion.

Examples: Brownian Motion

1 The transition kernels defined by

$$p_t(x, A) := \frac{1}{(2\pi t)^{n/2}} \int_A \exp\left(-\frac{1}{2t}|y - x|^2\right) dy$$

correspond to the Markov process known as Brownian motion.

② Brownian motion is a continuous Markov process with many applications. For example, in 1827 Robert Brown discovered the phenomena when observing the irregular movement of pollen grains suspended in water.

Example:

Figure: Five samples paths of a 1d Brownian Motion started at 0

Do Markov Processes Exist?

$\mathsf{Theorem}$

Let $\{p_t(x,\cdot): x \in \mathbb{R}^n, t \geq 0\}$ be a family of probability measures on \mathbb{R}^n with the Chapman-Kolmogorov property

$$p_{t+s}(x,A) = \int p_t(y,A)p_s(x, dy).$$

Then there exists a probability space (Ω, \mathcal{F}) , a family of probability measure $\{\mathbb{P}_x : x \in \mathbb{R}^n\}$ and random variables $(X_t)_{t \geq 0}$ such that $(X_t)_{t \geq 0}$ is a Markov process with transition kernels $\{p_t(x,\cdot) : x \in \mathbb{R}^n, t \geq 0\}$.

Sketch of Proof.

1 Let $\Omega = (\mathbb{R}^n)^{[0,\infty)}$ with the product topology and \mathcal{F} be the associated Borel σ -algebra.

Sketch of Proof.

- Let $\Omega = (\mathbb{R}^n)^{[0,\infty)}$ with the product topology and \mathcal{F} be the associated Borel σ -algebra.
- ② Define a premeasure \mathbb{P}_{x} on cylinders by

$$\mathbb{P}_{x}[(\omega_{t})_{t\geq0}:\omega_{t_{1}}\in A_{1},\ldots,\omega_{t_{n}}\in A_{n}]=$$

$$\int_{A_{1}}\cdots\int_{A_{n}}p_{t_{n}-t_{n-1}}(x_{n-1},dx_{n})\cdots p_{t_{2}-t_{1}}(x_{1},dx_{2}) p_{t_{1}}(x,dx_{1})$$

for
$$0 \le t_1 < \cdots < t_n$$
.

Sketch of Proof.

- Let $\Omega = (\mathbb{R}^n)^{[0,\infty)}$ with the product topology and \mathcal{F} be the associated Borel σ -algebra.
- **2** Define a premeasure \mathbb{P}_x on cylinders by

$$\mathbb{P}_{x}[(\omega_{t})_{t\geq 0}: \omega_{t_{1}} \in A_{1}, \dots, \omega_{t_{n}} \in A_{n}] = \int_{A_{1}} \dots \int_{A_{n}} p_{t_{n}-t_{n-1}}(x_{n-1}, dx_{n}) \dots p_{t_{2}-t_{1}}(x_{1}, dx_{2}) p_{t_{1}}(x, dx_{1})$$

for
$$0 \le t_1 < \cdots < t_n$$
.

§ Since $(\mathbb{R}^n)^{[0,\infty)}$ is locally compact Hausdorff, \mathbb{P}_x extends to a probability measure on \mathcal{F} .

Sketch of Proof.

- 2 By construction,

$$\mathbb{P}_{x}[X_{t} \in A] = \mathbb{P}_{x}[(\omega_{t})_{t \geq 0} : \omega_{t} \in A] = p_{t}(x, A).$$

The Chapman-Kolmogorov property implies

$$\mathbb{P}_{\mathsf{x}}[X_{t+s} \in A \,|\, \mathcal{F}_{\mathsf{s}}] = \mathbb{P}_{X_{\mathsf{s}}}[X_t \in A]$$

for any $0 \le s < t$.

- **1** In light of the Markov existence theorem, we can always assume that $\Omega = (\mathbb{R}^n)^{[0,\infty)}$ and $X_t(\omega) = \omega_t$.
- ② For a probability measure π on \mathbb{R}^n define

$$\mathbb{P}_{\pi}[A] := \int_{\mathbb{R}^n} \mathbb{P}_{x}[A] d\pi(x).$$

- In light of the Markov existence theorem, we can always assume that $\Omega = (\mathbb{R}^n)^{[0,\infty)}$ and $X_t(\omega) = \omega_t$.
- **2** For a probability measure π on \mathbb{R}^n define

$$\mathbb{P}_{\pi}[A] := \int_{\mathbb{R}^n} \mathbb{P}_{x}[A] d\pi(x).$$

Question: Is there a Borel probability measure π on \mathbb{R}^n (called a *stationary measure*) such that

$$\mathbb{P}_{\pi}[X_t \in A] = \mathbb{P}_{\pi}[X_0 \in A] = \pi(A)$$

for all $t \ge 0$?

• For each $s \geq 0$, let $\sigma_s : (\mathbb{R}^n)^{[0,\infty)} \to (\mathbb{R}^n)^{[0,\infty)}$ be the map $\sigma_s((\omega_t)_{t\geq 0}) = (\omega_{s+t})_{t\geq 0}$.

- For each $s \geq 0$, let $\sigma_s : (\mathbb{R}^n)^{[0,\infty)} \to (\mathbb{R}^n)^{[0,\infty)}$ be the map $\sigma_s((\omega_t)_{t\geq 0}) = (\omega_{s+t})_{t\geq 0}$.

- For each $s \geq 0$, let $\sigma_s : (\mathbb{R}^n)^{[0,\infty)} \to (\mathbb{R}^n)^{[0,\infty)}$ be the map $\sigma_s((\omega_t)_{t\geq 0}) = (\omega_{s+t})_{t\geq 0}$.
- **3** The existence of a stationary measure π is equivalent to finding a measure where \mathbb{P}_{π} is invariant under σ_t for every t > 0.

- For each $s \geq 0$, let $\sigma_s : (\mathbb{R}^n)^{[0,\infty)} \to (\mathbb{R}^n)^{[0,\infty)}$ be the map $\sigma_s((\omega_t)_{t\geq 0}) = (\omega_{s+t})_{t\geq 0}$.
- **3** The existence of a stationary measure π is equivalent to finding a measure where \mathbb{P}_{π} is invariant under σ_t for every $t \geq 0$.
 - Just check $(\sigma_t)_\sharp \mathbb{P}_\pi = \mathbb{P}_\pi$ on cylinder sets using Chapman-Kolmogorov

Consider a Markov sub-shift on n letters (e.g., a Markov process in discrete time discrete space) generated by the stochastic matrix P.

- Consider a Markov sub-shift on n letters (e.g., a Markov process in discrete time discrete space) generated by the stochastic matrix P.
- ② A stationary measure always exists since $\{x_1, \dots, x_n\}^{\mathbb{N}}$ is compact
- **3** Determined by entries of a vector x satisfying x = xP.

- Consider a Markov sub-shift on n letters (e.g., a Markov process in discrete time discrete space) generated by the stochastic matrix P.
- ② A stationary measure always exists since $\{x_1, \dots, x_n\}^{\mathbb{N}}$ is compact
- **3** Determined by entries of a vector x satisfying x = xP.
- Issue: For a general Markov process, the state space is not compact.

Markov process with no invariant measure

- Unfortunately, a stationary measure does not always exist.
- Example: Brownian motion

$\mathsf{Theorem}$

A Brownian motion B_t with transition kernels

$$p_t(x,A) := \frac{1}{(2\pi t)^{n/2}} \int_A \exp\left(-\frac{1}{2t}|y-x|^2\right) dy$$

does not have a stationary measure.

Brownian Motion has no stationary measure

Proof.

1 Suppose π is a stationary measure.

Brownian Motion has no stationary measure

Proof.

- **1** Suppose π is a stationary measure.
- ② If $\phi \in C_c^{\infty}(\mathbb{R}^n)$ is a test function,

$$\mathbb{E}_{\mathsf{x}}[\phi(B_t)] = \phi * \mathsf{G}_t(\mathsf{x})$$

where $G_t(x) = \frac{1}{(2\pi t)^{n/2}} \exp\left(-\frac{1}{2t}|x|^2\right)$ is the Gaussian kernel.

Brownian Motion has no stationary measure

Proof.

- **1** Suppose π is a stationary measure.
- ② If $\phi \in C_c^{\infty}(\mathbb{R}^n)$ is a test function,

$$\mathbb{E}_{\mathsf{x}}[\phi(\mathsf{B}_t)] = \phi * \mathsf{G}_t(\mathsf{x})$$

where $G_t(x)=rac{1}{(2\pi t)^{n/2}}\exp\left(-rac{1}{2t}|x|^2
ight)$ is the Gaussian kernel.

3 G_t satisfies the heat equation $\partial_t G_t = \triangle G_t$. Thus $\partial_t (\phi * G_t) = \triangle (\phi * G_t)$.

• Since π is stationary,

$$0 = \partial_t \mathbb{E}_{\pi}[\phi(B_t)] = \int \triangle(\phi * G_t) d\pi.$$

1 Since π is stationary,

$$0 = \partial_t \mathbb{E}_{\pi}[\phi(B_t)] = \int \triangle(\phi * G_t) d\pi.$$

2 Taking $t \rightarrow 0$:

$$0 = \int \triangle \phi \, d\pi$$

• Since π is stationary,

$$0 = \partial_t \mathbb{E}_{\pi}[\phi(B_t)] = \int \triangle(\phi * G_t) \, d\pi.$$

② Taking $t \rightarrow 0$:

$$0 = \int \triangle \phi \, d\pi$$

3 A theorem of Weyl says the (Schwarz) distribution $\phi \mapsto \int \phi \, d\pi$ is a harmonic function u.

• Since π is stationary,

$$0 = \partial_t \mathbb{E}_{\pi}[\phi(B_t)] = \int \triangle(\phi * G_t) d\pi.$$

② Taking $t \rightarrow 0$:

$$0 = \int \triangle \phi \, d\pi$$

- **3** A theorem of Weyl says the (Schwarz) distribution $\phi \mapsto \int \phi \, d\pi$ is a harmonic function u.
- $d\pi = u \, dx$ is a probability measure, so $u \ge 0$ and $\triangle u = 0$ implies u is constant.

• Since π is stationary,

$$0 = \partial_t \mathbb{E}_{\pi}[\phi(\mathcal{B}_t)] = \int \triangle(\phi * \mathcal{G}_t) \, d\pi.$$

② Taking $t \rightarrow 0$:

$$0 = \int \triangle \phi \, d\pi$$

- **3** A theorem of Weyl says the (Schwarz) distribution $\phi \mapsto \int \phi \, d\pi$ is a harmonic function u.
- **4** $d\pi = u \, dx$ is a probability measure, so $u \ge 0$ and $\triangle u = 0$ implies u is constant.
- No probability measure is a constant multiple of the Lebesgue measure!

Sometimes there are stationary measures

The Ornstein-Uhlenbeck (OU) process:

$$X_t = X_0 + \sqrt{2}B_t - \int_0^t X_s \, ds$$

where B_t is a Brownian motion.

The OU process has stationary distribution

$$\pi(A) = \frac{1}{(2\pi)^{n/2}} \int_A \exp\left(-\frac{|x|^2}{2}\right) dx.$$

Tight Probability Measures

Definition

Let X be a locally compact Hausdorff space. A family of probability measures $\mathcal{P} \subset \mathcal{M}(X)$ is tight if for any $\epsilon > 0$ there is a compact $K \subset X$ where

$$\mu(K) \ge 1 - \epsilon$$

for all $\mu \in \mathcal{P}$.

Theorem (Prokhorov)

Let X be a locally compact Hausdorff space, and suppose that $\mathcal{P} \subset \mathcal{M}(X)$ is a weak-* closed and tight family of probability measures. Then \mathcal{P} is weak-* compact.

Theorem (Prokhorov)

Let X be a locally compact Hausdorff space, and suppose that $\mathcal{P} \subset \mathcal{M}(X)$ is a weak-* closed and tight family of probability measures. Then \mathcal{P} is weak-* compact.

Proof.

1 A routine application of Banach-Alauglu and Riesz-Markov shows that any sequence in $\mathcal P$ has a subsequence which weak-* converges to a measure μ .

Theorem (Prokhorov)

Let X be a locally compact Hausdorff space, and suppose that $\mathcal{P} \subset \mathcal{M}(X)$ is a weak-* closed and tight family of probability measures. Then \mathcal{P} is weak-* compact.

Proof.

- **1** A routine application of Banach-Alauglu and Riesz-Markov shows that any sequence in \mathcal{P} has a subsequence which weak-* converges to a measure μ .
- 2 Tightness of \mathcal{P} implies that μ is a probability measure.

Theorem (Prokhorov)

Let X be a locally compact Hausdorff space, and suppose that $\mathcal{P} \subset \mathcal{M}(X)$ is a weak-* closed and tight family of probability measures. Then \mathcal{P} is weak-* compact.

Proof.

- **1** A routine application of Banach-Alauglu and Riesz-Markov shows that any sequence in \mathcal{P} has a subsequence which weak-* converges to a measure μ .
- **2** Tightness of \mathcal{P} implies that μ is a probability measure.
- **3** Shows that \mathcal{P} is weak-* sequentially compact.

Markov-Kakutani Fixed Point Theorem

Theorem (Markov-Kakutani Fixed Point Theorem)

Let X be a locally convex topological vector space, and suppose that $K \subset X$ is a nonempty compact convex subset of X. If \mathcal{H} is a family of continuous commuting affine operators mapping K to itself, then there exists $x_0 \in K$ such that $Tx_0 = x_0$ for all $T \in \mathcal{H}$.

Proof.

For the proof, see Conway 1990 Theorem 10.1.

Theorem

Let $(X_t)_{t\geq 0}$ be a Markov process with transition kernels $p_t(x,\cdot)$ such that $x\mapsto p_t(x,\cdot)$ is weak-* continuous. Suppose further that there exists $x\in\mathbb{R}^n$ such that the family $\{p_t(x,\cdot):t\geq 0\}$ is tight. Then there is a stationary measure π for the process $(X_t)_{t\geq 0}$.

Theorem

Let $(X_t)_{t\geq 0}$ be a Markov process with transition kernels $p_t(x,\cdot)$ such that $x\mapsto p_t(x,\cdot)$ is weak-* continuous. Suppose further that there exists $x\in\mathbb{R}^n$ such that the family $\{p_t(x,\cdot):t\geq 0\}$ is tight. Then there is a stationary measure π for the process $(X_t)_{t\geq 0}$.

If there is a function $V:\mathbb{R}^n o\mathbb{R}$ such that $V(x) o\infty$ as $|x| o\infty$, and

$$\sup_{t\geq 0}\mathbb{E}_{\mathsf{x}}[V(X_t)]<\infty$$

for some x, then the conditions of the theorem are satisfied.

Proof.

• Let $K \subset \mathcal{M}(\mathbb{R}^n)$ be the closed convex hull of the measures $\{p_t(x,\cdot): t \geq 0\}$.

Proof.

- Let $K \subset \mathcal{M}(\mathbb{R}^n)$ be the closed convex hull of the measures $\{p_t(x,\cdot): t \geq 0\}$.
- **2** Let $P_t^* \mu = \int p_t(y, \cdot) d\mu(y)$.

Proof.

- Let $K \subset \mathcal{M}(\mathbb{R}^n)$ be the closed convex hull of the measures $\{p_t(x,\cdot): t \geq 0\}$.
- 2 Let $P_t^*\mu = \int p_t(y,\cdot) d\mu(y)$.
- **4** For $s \ge 0$:

$$P_t^* p_s(x,\cdot) = \int p_t(y,\cdot) p_s(x, dy) = p_{t+s}(x,\cdot).$$

Proof.

- Let $K \subset \mathcal{M}(\mathbb{R}^n)$ be the closed convex hull of the measures $\{p_t(x,\cdot): t \geq 0\}$.
- 2 Let $P_t^* \mu = \int p_t(y, \cdot) d\mu(y)$.
- **4** For $s \ge 0$:

$$P_t^*p_s(x,\cdot)=\int p_t(y,\cdot)p_s(x,\,dy)=p_{t+s}(x,\cdot).$$

3 Since P_t^* is affine and weak-* continuous, $P_t^*: K \to K$.

Proof.

• $\{p_t(x,\cdot): t \geq 0\}$ is tight means K is tight.

Proof.

- $\{p_t(x,\cdot): t \geq 0\}$ is tight means K is tight.
- 2 By Prokhorov's theorem, K is weak-* compact.

Proof.

- $\{p_t(x,\cdot): t \geq 0\}$ is tight means K is tight.
- 2 By Prokhorov's theorem, K is weak-* compact.
- $P_t^*P_s^* = P_s^*P_t^* = P_{t+s}^*$ by Chapman-Kolmogorov.

Proof.

- **1** $\{p_t(x,\cdot): t \geq 0\}$ is tight means K is tight.
- 2 By Prokhorov's theorem, K is weak-* compact.
- $P_t^*P_s^* = P_s^*P_t^* = P_{t+s}^*$ by Chapman-Kolmogorov.
- **1** By Markov-Kakutani fixed point theorem, $\exists \pi \in K$ such that

$$P_t^*\pi = \pi$$

for all t > 0.

Proof.

- **1** $\{p_t(x,\cdot): t \geq 0\}$ is tight means K is tight.
- By Prokhorov's theorem, K is weak-* compact.
- $P_t^*P_s^* = P_s^*P_t^* = P_{t+s}^*$ by Chapman-Kolmogorov.
- **9** By Markov-Kakutani fixed point theorem, $\exists \pi \in K$ such that

$$P_t^*\pi=\pi$$

for all t > 0.

1 π is a stationary measure, since

$$\mathbb{P}_{\pi}[X_t \in A] = P_t^*\pi(A) = \pi(A)$$

for all Borel $A \subset \mathbb{R}^n$.

Ergodic Stationary Measures

- In general, deducing the existence of a measure π so that \mathbb{P}_{π} is ergodic for the flow σ_t is done on a case-by-case basis.
- Not surprising: Cannot even be done for Markov subshifts since not every stochastic matrix is irreducible!

Perron-Frobenius for Markov Operators

• For $f \in C_b(\mathbb{R}^n)$ let

$$P_t f(x) = \mathbb{E}_x [f(X_t)].$$

Perron-Frobenius for Markov Operators

• For $f \in C_b(\mathbb{R}^n)$ let

$$P_t f(x) = \mathbb{E}_x [f(X_t)].$$

② The process X is Feller if $P_t: C_b(\mathbb{R}^n) \to C_b(\mathbb{R}^n)$ and $P_t f \to f$ uniformly as $t \to 0$.

Perron-Frobenius for Markov Operators

Theorem (Perron-Frobenius for Markov Processes)

Suppose that X is a Feller process. Suppose that there is a stationary measure π such that for any $x \in \mathbb{R}^n$, it holds $p_t(x,\cdot) \to \pi$ in the weak-* sense as $t \to \infty$. Then π is the unique stationary distribution and \mathbb{P}_{π} is mixing, i.e.,

$$\lim_{t\to\infty}\mathbb{P}_{\pi}[\sigma_t^{-1}A\cap B]=\mathbb{P}_{\pi}[A]\mathbb{P}_{\pi}[B]$$

for all events A and B.

Proof.

Uniqueness of π :

1 Suppose μ is another stationary measure.

Proof.

Uniqueness of π :

- **1** Suppose μ is another stationary measure.
- ② For any $f \in C_0(\mathbb{R}^n)$, it holds

$$\int f d\mu = \lim_{t\to\infty} \iint f(y) p_t(x, dy) d\mu(x) = \int f d\pi$$

by the assumptions of the theorem and the fact μ is stationary.

Proof.

Uniqueness of π :

- **1** Suppose μ is another stationary measure.
- ② For any $f \in C_0(\mathbb{R}^n)$, it holds

$$\int f d\mu = \lim_{t\to\infty} \iint f(y) p_t(x, dy) d\mu(x) = \int f d\pi$$

by the assumptions of the theorem and the fact μ is stationary.

Proof.

Mixing:

① Enough to check that for any bounded continuous function $f:(\mathbb{R}^n)^m \to \mathbb{R}$

$$\lim_{s\to\infty} \mathbb{E}_{\pi}[f(X_{t_1},\ldots,X_{t_m})f(X_{t_1+s},\ldots,X_{t_m+s})]$$

$$= \mathbb{E}_{\pi}[f(X_{t_1},\ldots,X_{t_m})]^2$$

Proof.

By Markov property,

$$\mathbb{E}_{\pi}[f(X_{t_1},\ldots,X_{t_m})f(X_{t_1+s},\ldots,X_{t_m+s}) | \mathcal{F}_s]$$

$$= f(X_{t_1},\ldots,X_{t_m})\mathbb{E}_{X_s}[f(X_{t_1},\ldots,X_{t_m})]$$

for $s > t_m$.

Proof.

By Markov property,

$$\mathbb{E}_{\pi}[f(X_{t_1},\ldots,X_{t_m})f(X_{t_1+s},\ldots,X_{t_m+s}) | \mathcal{F}_s]$$

$$= f(X_{t_1},\ldots,X_{t_m})\mathbb{E}_{X_s}[f(X_{t_1},\ldots,X_{t_m})]$$

for $s > t_m$.

2 Let

$$g(x) = \mathbb{E}_x[f(X_{t_1},\ldots,X_{t_m})].$$

Perron-Frobenius Analogue

Proof.

By Markov property,

$$\mathbb{E}_{\pi}[f(X_{t_1},\ldots,X_{t_m})f(X_{t_1+s},\ldots,X_{t_m+s}) | \mathcal{F}_s]$$

= $f(X_{t_1},\ldots,X_{t_m})\mathbb{E}_{X_s}[f(X_{t_1},\ldots,X_{t_m})]$

for $s > t_m$.

2 Let

$$g(x) = \mathbb{E}_x[f(X_{t_1},\ldots,X_{t_m})].$$

g is continuous, so

$$\lim_{s\to\infty}\int g(x_{m+1})p_{s-t_m}(x_m,\,dx_{m+1})=\int g\,d\pi.$$

Perron-Frobenius Analogue

Proof.

By DCT,

$$\lim_{s\to\infty} \iint f(x_1,\ldots,x_m) \int g(x_{m+1}) p_{s-t_m}(x_m,dx_{m+1})$$

$$d(X_{t_1},\ldots,X_{t_m})_* \mathbb{P}_x d\pi(x)$$

$$= \int g d\pi \iint f(x_1,\ldots,x_n) d(X_{t_1},\ldots,X_{t_m})_* \mathbb{P}_x d\pi(x)$$

$$= \mathbb{E}_{\pi} [f(X_{t_1},\ldots,X_{t_m})]^2$$

Proof.

But:

$$\iint f(x_1,...,x_m) \int g(x_{m+1}) p_{s-t_m}(x_m, dx_{m+1}) d(X_{t_1},...,X_{t_m})_* \mathbb{P}_x d\pi(x) = \mathbb{E}_{\pi}[f(X_{t_1},...,X_{t_m})f(X_{t_1+s},...,X_{t_m+s})].$$

Let X be a Feller process and

$$P_t f(x) = \mathbb{E}_x [f(X_t)].$$

(Infinitesimal Generator) Let A be the unbounded operator

$$Af := \lim_{h \to 0} \frac{P_h f - f}{h}$$

functions $f \in C_b(\mathbb{R}^n)$ where the limit exists and is uniform.

1 All Feller process stationary measures satisfy $\int Af \ d\pi = 0$.

- **1** All Feller process stationary measures satisfy $\int Af \ d\pi = 0$.
- Example: generator of OU process is the Ornstein-Uhlenbeck Operator:

$$A\phi(x) := -x \cdot \nabla \phi(x) + \triangle \phi(x), \quad \phi \in C_b^2(\mathbb{R}^n).$$

- **1** All Feller process stationary measures satisfy $\int Af \ d\pi = 0$.
- Example: generator of OU process is the Ornstein-Uhlenbeck Operator:

$$A\phi(x) := -x \cdot \nabla \phi(x) + \triangle \phi(x), \quad \phi \in C_b^2(\mathbb{R}^n).$$

3 Assume that $d\pi = \phi \, dx$ for some $\phi \geq 0$. Then:

$$A^*\phi(x) := \operatorname{div}(x\phi(x)) + \triangle\phi(x) = 0.$$

- **1** All Feller process stationary measures satisfy $\int Af \ d\pi = 0$.
- Example: generator of OU process is the Ornstein-Uhlenbeck Operator:

$$A\phi(x) := -x \cdot \nabla \phi(x) + \triangle \phi(x), \quad \phi \in C_b^2(\mathbb{R}^n).$$

3 Assume that $d\pi = \phi \, dx$ for some $\phi \geq 0$. Then:

$$A^*\phi(x) := \operatorname{div}(x\phi(x)) + \triangle\phi(x) = 0.$$

1 The Gaussian $d\pi = \frac{1}{(2\pi)^{n/2}} \exp(-|x|^2/2) dx$ is unique stationary measure for OU process.

Recap

- For continuous time Markov processes in \mathbb{R}^n , stationary measures give rise to shift invariant measures on $(\mathbb{R}^n)^{[0,\infty)}$.
- 2 Stationary measures may or may not exist

Recap

- For continuous time Markov processes in \mathbb{R}^n , stationary measures give rise to shift invariant measures on $(\mathbb{R}^n)^{[0,\infty)}$.
- Stationary measures may or may not exist
- When they exist, one usually has to compute the infinitesimal generator and solve a PDE to find the stationary distribution

Recap

- For continuous time Markov processes in \mathbb{R}^n , stationary measures give rise to shift invariant measures on $(\mathbb{R}^n)^{[0,\infty)}$.
- Stationary measures may or may not exist
- When they exist, one usually has to compute the infinitesimal generator and solve a PDE to find the stationary distribution
- More advanced techniques are required to determine properties such as mixing

References I

- Conway, John B. (1990). A Course in Functional Analysis. 2nd. Vol. 96. Graduate Texts in Mathematics. New York: Springer-Verlag. ISBN: 0387972455. URL: https://link.springer.com/book/10.1007/978-1-4757-4383-8.
- Furman, Alex (2011). "What is a ... stationary measure?" In: Notices of the American Mathematical Society 58.9, pp. 1276-1277. URL: https://www.ams.org/notices/201109/rtx110901276p.pdf.
- Hairer, Martin (2018). Ergodic Properties of Markov Processes.

 Lecture notes given at the University of Warwick on July 29,

 2018. URL: https://www.hairer.org/notes/Markov.pdf.

References II

- Schnaubelt, Klaus (2022). "Lp-spectrum of degenerate hypoelliptic Ornstein-Uhlenbeck operators". In: Institute of Analysis, Karlsruhe Institute of Technology. URL: https://www.math.kit.edu/iana3/~schnaubelt/media/ouspectrum.pdf.
- Stroock, Daniel W. (2008). "Weyl's Lemma, one of many". In: Groups and Analysis: The Legacy of Hermann Weyl. Ed. by Katrin Tent. Cambridge University Press, pp. 164-173. URL: https://www.cambridge.org/core/books/groups-and-analysis/weyls-lemma-one-of-many/BA28FB09928F3CBAC3891CF62D61D56F.