# Competing risks and the Fine-Gray model

Terry Therneau

March 2023

# Free light chain



```
# create a factor (class) variable (hidden)
```

```
table(fdata$state)
censor CVD Cancer Resp Other
 5694 731 565 242 608
```

```
# Aalen-Johansen
fsurv <- survfit(Surv(years, state) ~1, data=fdata, id=id)
# Multi-state hazard model
fcox <- coxph(Surv(years, state) ~ age + sex + flc10,</pre>
```

```
data= fdata, id = id)
```



The coxph call produces a multi-state hazard model fit. One set of

| coefficients for each transition (arrow) in the diagram |            |            |            |            |  |  |
|---------------------------------------------------------|------------|------------|------------|------------|--|--|
|                                                         | CVD        | Cancer     | Resp       | Other      |  |  |
| age                                                     | 1.13(28.5) | 1.06(12.8) | 1.12(16.8) | 1.14(27.1) |  |  |

male 1.52(5.6) 1.46(4.4) 1.73(4.1) 1.23(2.5) FLC 2.32(9.1) 1.92(5.4) 1.63(2.7) 2.29(7.9)

## What is the effect of FLC on cancer death?

```
Create predicted curves based on the fitted model.
```

```
data states 16 5
```



|     |     |                | 7 | year | 14 | year |  |
|-----|-----|----------------|---|------|----|------|--|
| Age | 50, | ${\tt Female}$ |   | 1.29 |    | 2.65 |  |
| Age | 50, | Male           |   | 1.86 |    | 3.74 |  |

Age 60, Male 3.06 5.59 Age 70, Female 3.36 5.27 Age 70, Male 4.50 6.22 Age 80, Female 4.05 3.57 Age 80, Male 4.68 3.13

But the investigator wants a 1 number summary.

Age 60, Female 2.16 4.16

#### Additive models

- The three most popular models in statistics
  - Linear:  $E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$
  - GLM:  $E(y) = g(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ...)$
  - Cox:  $\lambda(t) = \exp(\beta_0(t) + \beta_1 x_1 + \beta_2 x_2 + ...)$
- Why? Simplicity.
  - ▶ If x1= FLC+, then  $\beta_1$  is *THE* effect of FLC, independent of any other variables in the model.
  - Statisticians like this.
  - Investigators really like this (a single p-value)
- (Generalized additive models will replace one of the  $\beta x$  terms with s(x), but retain the separability.)

#### 3 criteria for a successful statistical model

- 1. Simplicity: in the sense described above, leading to simple explanations for the effect of key predictors.
- Statistical validity: the model must describe the data adequately. "All models are wrong. The practical question is whether a model is wrong enough to not be useful." George Box
- 3. Numerical stability: the code to fit a model does not require hand-holding or fiddling with tuning parameters: it just runs.

The transform g gets chosen to fit criteria 3; if it helps with criteria 2 that is mostly luck. (It nearly always impedes interpretability).

# Fine-Gray: key idea

For an ordinary 2 state Cox model:

$$P(death) = g(\beta_0(t) + \beta_1 x_1 + \beta_2 x_2 + ...)$$

where g = complementary log-log

Assume that for outcome k

$$p_k(t) = g(\beta_{k0}(t) + \beta_{k1}x_1 + \beta_{k2}x_2 + \ldots)$$

Issues - how to fit this (censored data) - is it a sensible model?

# **Transforms**



# Example



### Predictors of dementia and death

- ▶ 6258 subjects
- ▶ 726 dementia, 1990 deaths, 1/2 the dementias occur after active participation
- Taken from the MCSA, an age/sex stratified random sample from Olmsted County, Minnesota
- REP infrastructure
- Covariates
  - ► APOE e4 allele: risk factor for amyloidosis
  - CMC score: 0-7, count of morbidities



# Multistate





# Competing risks





## Fine-Gray

- ► The effect of sex on P(dementia) depends on the levels of all the other covariates, and on time.
- There is no single p-value.
- Model the two outcomes directly:
  - ▶ P(dementia before death) =  $g(\beta_0(t) + X\beta)$
  - ▶ P(death before dementia) =  $g(\alpha_0(t) + X\alpha)$
  - $ightharpoonup g = ext{the complimentary log log}$
- Technical challenge.
  - ► Treating survival as binomial

► Create a special data set for each outcome.

- Create a special data set for each outcome.
- Subjects who are censored persist, but with diminished case weights.

- Create a special data set for each outcome.
- Subjects who are censored persist, but with diminished case weights.
- ▶ Weights decrease based on F(t) and G(t).

- Create a special data set for each outcome.
- Subjects who are censored persist, but with diminished case weights.
- ▶ Weights decrease based on F(t) and G(t).
- ► (You can't have time-dependent covariates.)

- Create a special data set for each outcome.
- Subjects who are censored persist, but with diminished case weights.
- ▶ Weights decrease based on F(t) and G(t).
- (You can't have time-dependent covariates.)
- Apply an ordinary Cox model program to the new data set.

- Create a special data set for each outcome.
- Subjects who are censored persist, but with diminished case weights.
- ▶ Weights decrease based on F(t) and G(t).
- (You can't have time-dependent covariates.)
- Apply an ordinary Cox model program to the new data set.
- Advantage: all the Cox model checks are available.

- Create a special data set for each outcome.
- Subjects who are censored persist, but with diminished case weights.
- ▶ Weights decrease based on F(t) and G(t).
- (You can't have time-dependent covariates.)
- ▶ Apply an ordinary Cox model program to the new data set.
- Advantage: all the Cox model checks are available.
- ► For the dementia dataset, subjects who die also persist, but with diminished case weights.

#### Geskus

```
fdata1 <- finegray(Surv(age1, age2, state) ~., data=data3,
                   id= clinic, etype= "dementia")
fdata2 <- finegray(Surv(age1, age2, state) ~., data=data3,
                   id= clinic, etype= "death")
#
rbind(data3 = dim(data3), fdata1 = dim(fdata1), fdata2= dim
         [,1] [,2]
data3 12110 13
fdata1 334555 14
fdata2 293461 14
fcox1 <- coxph(Surv(fgstart, fgstop, fgstatus) ~ apoepos +
               male + cmc + edu4, weight = fgwt, fdata1)
fcox2 <- coxph(Surv(fgstart, fgstop, fgstatus) ~ apoepos +
               male + cmc + edu4, weight = fgwt, fdata2)
```

|                  |          |           |           | apoepos | male   | cmc   | edu4   |
|------------------|----------|-----------|-----------|---------|--------|-------|--------|
|                  | multi, ( | CU:dement | ia        | 0.651   | 0.114  | 0.230 | -0.100 |
|                  | multi, ( | CU:death  |           | 0.009   | 0.313  | 0.394 | -0.102 |
|                  | FG, deme | entia bef | ore death | 0.501   | -0.096 | 0.047 | -0.115 |
|                  | FG, deat | th before | dementia  | -0.326  | 0.164  | 0.143 | -0.099 |
| cox.zph on fcox1 |          |           |           |         |        |       |        |
|                  |          | chisq d   | f p       |         |        |       |        |
|                  | apoepos  | 14.137    | 1 0.00017 |         |        |       |        |
|                  | male     | 5.680     | 1 0.01716 |         |        |       |        |
|                  | cmc      | 20.329    | 1 6.5e-06 |         |        |       |        |
|                  | edu4     | 0.751     | 1 0.38622 |         |        |       |        |
|                  | GLOBAL   | 37.154    | 4 1.7e-07 |         |        |       |        |

#### How well does it work?

- If cause 2 has low prevalence (< 1/4) and/or cause 2 has no strong covariates, then all is well for the cause 1 model
  - ► Coefficients for outcome 1 hardly change from the Cox model
  - ▶ The predicted curves have the same shape, but are attenuated
- Examples
  - Revision after hip fracture
  - Epidemic

#### Otherwise

- 1. The model often does not fit very well. It fails our 'good enough' criteria.
- 2. There is no physical system that satisfies the FG model.
- Users interpret coefficients as though it were a Cox model, and it is not.
- 4. It encourages bad science: most examples (and users) fit only one of the endpoints, ignoring the other.
- 5. If there are moderately strong covariates, and > 80% reach one of the two endpoints, it is common to have  $\hat{P}(\text{dementia before death}) + \hat{P}(\text{death before dementia}) > 1$  for high risk subjects.
- In the guts of the code, people who die are still at risk for dementia.

#### What to do?

- 1. Intentionally report both hazards and absolute risk
  - ▶ Biology + the consequences of that biology
  - A two number summary of (APOE hazard, APOE risk), true for all time, for all combinations of other covariates, is an impossible dream.
  - For absolute risk, choose 1 (or 2) timepoints of interest.
  - Use pseudovalues or marginal estimates for those time points.

#### 2. Marginal estimates

- ► If APOE is the variable of interest, average over the others
  - dummy data set with n rows, everyone APOE-
  - get all n predicted curves, take the average
  - ► repeat for APOE+
- g-estimation
- 3. Pseudovalues
  - From the appropriate KM or Aalen-Johansen (CI) curve
  - Select one or more time points, and create the matrix of pseudovalues
  - Essentially, the influence of each observation on p(t)
  - Use these in a regression model

```
ajfit <- survfit(Surv(age1, age2, state) ~ 1, id = clinic,
                  data=data3, start.time = 65)
pdat \leftarrow pseudo(ajfit, times= c(70, 80, 90, 100))
dim(pdat)
[1] 6157 4 3
d100 <- pdat[,4,2] # influence on dementia at age 100
# data with one obs per subject
base <- subset(data3, !duplicated(clinic))</pre>
pfit1 \leftarrow glm(d100 ~ apoepos + male + cmc +edu4, base,
            family= gaussian(link = blogit()))
```

pfit2 <- glm(d100 ~ apoepos + male + cmc +edu4, base,

family= gaussian(link = bcloglog()))



|                 | (Intercept) | apoepos | ${\tt male}$ | cmc   | edu4  |  |
|-----------------|-------------|---------|--------------|-------|-------|--|
| pseudo, logit   | -0.60       | 0.67    | -0.09        | -0.07 | -0.03 |  |
| pseudo, cloglog | -0.83       | 0.54    | -0.09        | -0.05 | -0.02 |  |
| FineGray, dem   |             | 0.50    | -0.10        | 0.05  | -0.12 |  |
| multistate HR   |             | 0.65    | 0.11         | 0.23  | -0.10 |  |

# Multiple time points

- ► For multiple time points at once:
  - A bit more work to set up.
  - Add factor(time) to the fit: one intercept per time point.
  - Robust variance is necessary, fit using GEE instead of glm.
- Closely related to ordinal logistic regression
- With many time points, result will approach the FG
  - Coefficients will be nearly identical, se a small bit larger
  - Adding time\*covariate interactions is a test for 'proportional cloglog'
  - A good way to more deeply understand the Fine Gray model

#### Final

- Multi-state models are important
  - ▶ No one outcome is dominant
  - Want to understand the trajectory of disease
  - Both rates and outcomes are necessary summaries
- We like additive models.
- ightharpoonup Additive on hazard scale  $\neq$  additive on absolute risk scale
- ► FG was an early attempt to address this. Credible at the time, but has not aged well.
- It works when you don't need it, and fails when you do.



