Introduction

This dataset consists of placement data of students in xyz campus. It includes secondary and higher secondary school percentage and specialization. It includes degree specialization, type, and work experience and salary offers to the placed students. The purpose of this analysis is to analyze the data and build a classifier using machine learning techniques such as decision tree and random forest, logstic regression to classify the student status into being placed a job or not being placed a job. The analysis will use different classification techniques and compare which classifier make the best prediction for this dataset.

The second part of the analysis will perform a regression analysis using only the students that get job to find out some of the key factors that influence the salary of an offer. The analysis are performed in Python using Jupyter Notebook. V

Loading data and libraries

The analysis starts with loading data and necessary library.

```
In [1]: # This Python 3 environment comes with many helpful analytics libraries installed
        # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-py
        # For example, here's several helpful packages to load
        import numpy as np # linear algebra
        import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
        import seaborn as sns
        import matplotlib.pyplot as plt
        sns.set_theme(color_codes=True)
        C:\Users\Aishwarya\anaconda3\lib\site-packages\pandas\core\computation\expressions.p
        y:21: UserWarning: Pandas requires version '2.8.4' or newer of 'numexpr' (version '2.
        8.3' currently installed).
          from pandas.core.computation.check import NUMEXPR INSTALLED
        C:\Users\Aishwarya\anaconda3\lib\site-packages\pandas\core\arrays\masked.py:60: UserW
        arning: Pandas requires version '1.3.6' or newer of 'bottleneck' (version '1.3.5' cur
        rently installed).
          from pandas.core import (
In [2]: df = pd.read_csv("/Users/Aishwarya/Desktop/data scientist/Placement_Data_Full Class.cs
        df.head()
```

Out[2]:		sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	degree_t	workex	etest_p
	0	1	М	67.00	Others	91.00	Others	Commerce	58.00	Sci&Tech	No	55.0
	1	2	М	79.33	Central	78.33	Others	Science	77.48	Sci&Tech	Yes	86.5
	2	3	М	65.00	Central	68.00	Central	Arts	64.00	Comm&Mgmt	No	75.0
	3	4	М	56.00	Central	52.00	Central	Science	52.00	Sci&Tech	No	66.0
	4	5	М	85.80	Central	73.60	Central	Commerce	73.30	Comm&Mgmt	No	96.8

Out[3]:		sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	degree_t	workex	etest_
	0	1	М	67.00	Others	91.00	Others	Commerce	58.00	Sci&Tech	No	55
	1	2	М	79.33	Central	78.33	Others	Science	77.48	Sci&Tech	Yes	86
	2	3	М	65.00	Central	68.00	Central	Arts	64.00	Comm&Mgmt	No	75
	3	4	М	56.00	Central	52.00	Central	Science	52.00	Sci&Tech	No	66
	4	5	М	85.80	Central	73.60	Central	Commerce	73.30	Comm&Mgmt	No	96
	•••								•••	•••		
	210	211	М	80.60	Others	82.00	Others	Commerce	77.60	Comm&Mgmt	No	91
	211	212	М	58.00	Others	60.00	Others	Science	72.00	Sci&Tech	No	74
	212	213	М	67.00	Others	67.00	Others	Commerce	73.00	Comm&Mgmt	Yes	59
	213	214	F	74.00	Others	66.00	Others	Commerce	58.00	Comm&Mgmt	No	70
	214	215	М	62.00	Central	58.00	Others	Science	53.00	Comm&Mgmt	No	89

215 rows × 15 columns

In [4]: df.describe()

Out[4]:		sl_no	ssc_p	hsc_p	degree_p	etest_p	mba_p	salary
	count	215.000000	215.000000	215.000000	215.000000	215.000000	215.000000	148.000000
	mean	108.000000	67.303395	66.333163	66.370186	72.100558	62.278186	288655.405405
	std	62.209324	10.827205	10.897509	7.358743	13.275956	5.833385	93457.452420
	min	1.000000	40.890000	37.000000	50.000000	50.000000	51.210000	200000.000000
	25%	54.500000	60.600000	60.900000	61.000000	60.000000	57.945000	240000.000000
	50%	108.000000	67.000000	65.000000	66.000000	71.000000	62.000000	265000.000000
	75%	161.500000	75.700000	73.000000	72.000000	83.500000	66.255000	300000.000000
	max	215.000000	89.400000	97.700000	91.000000	98.000000	77.890000	940000.000000
n [5]:	<pre>#checking null values df.isnull().sum()</pre>							
ut[5]:	sl_no gender ssc_p ssc_b hsc_p hsc_b hsc_s degree_p degree_t workex etest_p specialisation mba_p status salary dtype: int64		0 0 0 0 0 0 0 0 0					
[6]:	df.sh	ape						
t[6]:	(215,	15)						

Data Preprocessing Part 1

```
In [7]: #Check the number of unique value from all of the object datatype
        df.select_dtypes(include='object').nunique()
        gender
                          2
Out[7]:
                          2
        ssc b
                          2
        hsc_b
        hsc_s
                          3
        degree_t
                          2
        workex
                          2
        specialisation
        status
        dtype: int64
In [8]: # Drop sl_no column because its only identifier column
        df.drop(columns='sl_no', inplace=True)
```

df.head() Out[8]: gender ssc_p ssc_b hsc_p hsc_b hsc_s degree_p degree_t workex etest_p specia 0 58.00 55.0 67.00 Others 91.00 Others Commerce Sci&Tech No 1 78.33 Science 77.48 86.5 79.33 Central Others Sci&Tech Yes 2 68.00 Central 64.00 Comm&Mgmt 75.0 65.00 Central Arts No 3 56.00 Central 52.00 Central Science 52.00 Sci&Tech No 66.0 73.30 Comm&Mgmt 96.8 4 M 85.80 Central 73.60 Central Commerce No

Data Preprocessing Part 2

```
In [9]:
          #Check missing value
          check missing = df.isnull().sum() * 100 / df.shape[0]
          check_missing[check_missing > 0].sort_values(ascending=False)
                     31.162791
          salary
 Out[9]:
          dtype: float64
          df.shape
In [10]:
          (215, 14)
Out[10]:
          # fill null value in 'salary' column with median because the outlier is pretty ba
In [11]:
          df['salary'] = df['salary'].fillna(df['salary'].mean())
          df.head()
                            ssc_b hsc_p
Out[11]:
             gender ssc p
                                          hsc b
                                                     hsc s degree p
                                                                         degree t workex etest p specia
          0
                           Others
                                   91.00
                                         Others Commerce
                                                              58.00
                                                                         Sci&Tech
                                                                                             55.0
                 M 67.00
                                                                                      No
                     79.33
                           Central
                                   78.33
                                         Others
                                                   Science
                                                              77.48
                                                                         Sci&Tech
                                                                                             86.5
                                                                                      Yes
          2
                     65.00 Central
                                   68.00 Central
                                                      Arts
                                                              64.00
                                                                    Comm&Mgmt
                                                                                      No
                                                                                             75.0
          3
                     56.00
                           Central
                                   52.00 Central
                                                   Science
                                                              52.00
                                                                         Sci&Tech
                                                                                      No
                                                                                             66.0
          4
                 M 85.80 Central 73.60 Central Commerce
                                                              73.30 Comm&Mgmt
                                                                                      No
                                                                                            96.8
In [12]:
          #Check missing value
          check_missing = df.isnull().sum() * 100 / df.shape[0]
          check_missing[check_missing > 0].sort_values(ascending=False)
          Series([], dtype: float64)
Out[12]:
```

Label Encoding for each Object datatype

```
# Loop over each column in the DataFrame where dtype is 'object'
In [13]:
         for col in df.select_dtypes(include=['object']).columns:
              # Print the column name and the unique values
              print(f"{col}: {df[col].unique()}")
         gender: ['M' 'F']
         ssc b: ['Others' 'Central']
         hsc_b: ['Others' 'Central']
         hsc_s: ['Commerce' 'Science' 'Arts']
         degree_t: ['Sci&Tech' 'Comm&Mgmt' 'Others']
         workex: ['No' 'Yes']
         specialisation: ['Mkt&HR' 'Mkt&Fin']
         status: ['Placed' 'Not Placed']
In [14]: from sklearn import preprocessing
         # Loop over each column in the DataFrame where dtype is 'object'
         for col in df.select dtypes(include=['object']).columns:
              # Initialize a LabelEncoder object
             label encoder = preprocessing.LabelEncoder()
              # Fit the encoder to the unique values in the column
             label encoder.fit(df[col].unique())
              # Transform the column using the encoder
             df[col] = label_encoder.transform(df[col])
              # Print the column name and the unique encoded values
              print(f"{col}: {df[col].unique()}")
         gender: [1 0]
         ssc_b: [1 0]
         hsc_b: [1 0]
         hsc_s: [1 2 0]
         degree_t: [2 0 1]
         workex: [0 1]
         specialisation: [1 0]
         status: [1 0]
```

Train Test Split

```
In [15]: from sklearn.model_selection import train_test_split
    # Select the features (X) and the target variable (y)
    X = df.drop('status', axis=1)
    y = df['status']

# Split the data into training and test sets
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=)

In [16]: from sklearn.linear_model import LogisticRegression
    logreg_model=LogisticRegression(solver='lbfgs', max_iter=4000)
    logreg_model.fit(X_train,y_train)
    y_pre=logreg_model.predict(X_train)
    y_pred=logreg_model.predict(X_test)
    y_pred1=logreg_model.predict_proba(X_test)
```

```
In [17]: from sklearn.metrics import accuracy_score,roc_auc_score
    from sklearn.model_selection import cross_val_score
    print("Training Accuracy_score: {}".format(accuracy_score(y_train,y_pre)*100))
    print("Testing Accuracy_score: {}".format(accuracy_score(y_test,y_pred)*100))
    print("roc_auc_score: {}".format(roc_auc_score(y_test,y_pred1[:,1])*100))
    print("CV_score: {}".format(cross_val_score(logreg_model, X, y, cv=10, scoring='accurated Training Accuracy_score: 89.7196261682243
    Testing Accuracy_score: 77.777777777777
    roc_auc_score: 84.30047694753577
    CV_score: 79.06926406926408
In []:
```