Kernelizations

David Rosenberg

New York University

November 1, 2015

Linear SVM

The SVM prediction function is the solution to

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n (1 - y_i [w^T x_i + b])_+.$$

• Found it's equivalent to solve the dual problem to get α^* :i

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \quad i = 1, \dots, n.$$

• Notice: x's only show up as inner products with other x's.

Kernelization

Definition

We say a machine learning method is **kernelized** if all references to inputs $x \in \mathcal{X}$ are through an inner product between pairs of points $\langle x, y \rangle$ for $x, y \in \mathbf{R}^d$.

So far, we've only partially kernelized SVM

We've shown that the training portion is kernelized. Later we'll show the prediction portion is also kernelized.

SVM Dual Problem

• x's only show up in pairs of inner products: $x_i^T x_i = \langle x_j, x_i \rangle$:

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle x_{j}, x_{i} \rangle$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \in \left[0, \frac{c}{n}\right] i = 1, \dots, n.$$

Then primal optimal solution is given as:

$$w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$$

and for any $\alpha_i \in (0, \frac{c}{n})$,

$$b^* = v_i - x_i^T w^*.$$

SVM: Kernelizing b

• We found that for any j with $\alpha_j \in (0, \frac{c}{n})$:

$$b^* = y_j - x_j^T w^*$$

$$= y_j - x_j^T \left(\sum_{i=1}^n \alpha_i^* y_i x_i \right).$$

$$= y_j - \sum_{i=1}^n \alpha_i^* y_i \langle x_j, x_i \rangle.$$

What about kernelizing w*?

$$w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$$

- Not obvious...
- But we really only care about kernelizing the predictions $f^*(x)$.

SVM: Kernelizing Predictions $f^*(x)$

• For any j with $\alpha_j \in (0, \frac{c}{n})$:

$$f^{*}(x) = x^{T} w^{*} + b^{*}$$

$$= x^{T} \left(\sum_{i=1}^{n} \alpha_{i}^{*} y_{i} x_{i} \right) + b^{*}$$

$$= \sum_{i=1}^{n} \alpha_{i}^{*} y_{i} \langle x_{i}, x \rangle + \left(y_{j} - \sum_{i=1}^{n} \alpha_{i}^{*} y_{i} \langle x_{j}, x_{i} \rangle \right)$$

- We now have a fully kernelized version of SVM.
- Can we kernelize the primal version of the SVM?

Kernelizing the SVM Primal Problem

Primal SVM

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n (1 - y_i [w^T x_i + b])_+.$$

• From our study of the dual, found that

$$w^* = \sum_{i=1}^n \alpha_i^* y_i x_i.$$

- So w^* is a linear combination of the input vectors.
- Restrict to optimization to w of the form

$$w = \sum_{i=1}^{n} \beta_i x_i.$$

Some Vectorization

• Design matrix $X \in \mathbb{R}^{n \times d}$ has input vectors as rows:

$$X = \begin{pmatrix} -x_1 - \\ \vdots \\ -x_n - \end{pmatrix}.$$

• The contraint on w looks like

$$w = \begin{pmatrix} w_1 \\ \vdots \\ w_d \end{pmatrix} = \begin{pmatrix} | & \cdots & | \\ x_1 & \cdots & x_n \\ | & \cdots & | \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} = X^T \beta.$$

• So replace all w with $X^T\beta$, with $\beta \in \mathbb{R}^n$ unrestricted.

The Kernel Matrix (or the Gram Matrix)

Definition

For a set of $\{x_1, \ldots, x_n\}$ and an inner product $\langle \cdot, \cdot \rangle$ on the set, the **kernel** matrix or the **Gram matrix** is defined as

$$K = (\langle x_i, x_j \rangle)_{i,j} = \begin{pmatrix} \langle x_1, x_1 \rangle & \cdots & \langle x_1, x_n \rangle \\ \vdots & \ddots & \cdots \\ \langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle \end{pmatrix}.$$

Then for the standard Euclidean inner product $\langle x_i, x_i \rangle = x_i^T x_i$, we have

$$K = XX^T$$

Some Vectorization

Regularization Term:

$$||w||^2 = w^T w = \beta^T X X^T \beta = \beta^T K \beta$$

• Prediction on training point x_i:

$$f(x_i) = b + x_i^T w$$

$$= b + x_i^T \left(\sum_{j=1}^n \beta_j x_j \right)$$

$$= b + \sum_{j=1}^n \beta_j K_{ij}$$

Kernelized Primal SVM

Putting it together, kernelized primal SVM is

$$\min_{\beta \in \mathbb{R}^n, b \in \mathbb{R}} \frac{1}{2} \beta^T K \beta + \frac{c}{n} \sum_{i=1}^n \left(1 - y_i \left[b + \sum_{j=1}^n \beta_j K_{ij} \right] \right)_+.$$

We can write this as a differentiable, constrained optimization problem:

minimize
$$\frac{1}{2}\beta^{T}K\beta + \frac{c}{n}\mathbf{1}^{T}\xi$$

subject to
$$\xi \succeq 0$$

$$\xi \succeq (\mathbf{1} - Y[b + K\beta]),$$

where $Y = \text{diag}(y_1, ..., y_n)$, 1 is a column vector of 1's, and \succeq represent element-wise vector inequality.

Kernelized Primal SVM: Kernel Trick

Kernelized primal SVM is

$$\min_{\beta \in \mathbf{R}^n, b \in \mathbf{R}} \frac{1}{2} \beta^T K \beta + \frac{c}{n} \sum_{i=1}^n \left(1 - y_i \left[b + \sum_{j=1}^n \beta_j K_{ij} \right] \right)_+.$$

- We derived this with $K = XX^T$, which corresponds to the linear kernel.
- Suppose we have another kernel defined in terms of a map ϕ , i.e.

$$k(w,x) = \langle \phi(w), \phi(x) \rangle$$
,

then we can just plug in the corresponding kernel matrix K_{Φ} to the optimization problem above.

• What kernels can be written as an inner product of feature vectors?

Ridge Regression

Recall the ridge regression objective:

$$J(w) = ||Xw - y||^2 + \lambda ||w||^2.$$

• Differentiating and setting equal to zero ,we get

$$(X^TX + \lambda I) w = X^T y$$

On board to review?

Kernelizing Ridge Regression

• So we have, for $\lambda > 0$:

$$(X^{T}X + \lambda I)w = X^{T}y$$

$$\lambda w = X^{T}y - X^{T}Xw$$

$$w = \frac{1}{\lambda}X^{T}(y - Xw)$$

$$w = X^{T}\alpha$$

for
$$\alpha = \lambda^{-1}(y - Xw) \in \mathbb{R}^n$$
.

• So w is "in the span of the data":

$$w = \begin{pmatrix} | & \dots & | \\ x_1 & \cdots & x_n \\ | & \cdots & | \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \alpha_1 x_1 + \cdots + \alpha_n x_n$$

Kernelizing Ridge Regression

• So plugging in $w = X^T \alpha$ to

$$\alpha = \lambda^{-1}(y - Xw)$$

$$\lambda \alpha = y - XX^{T} \alpha$$

$$XX^{T} \alpha + \lambda \alpha = y$$

$$(XX^{T} + \lambda I) \alpha = y$$

$$\alpha = (\lambda I + XX^{T})^{-1} y$$

• So we have α . How to do prediction?

$$Xw = X(X^{T}\alpha)$$

= $(XX^{T})(\lambda I + XX^{T})^{-1}y$

• To predict on new data, need the "cross-kernel" matrix, between new and old data.

Positive Semidefinite Matrices

Definition

A real, symmetric matrix $M \in \mathbb{R}^{n \times n}$ is **positive semidefinite (psd)** if for any $x \in \mathbb{R}^n$,

$$x^T M x \geqslant 0.$$

Theorem

The following conditions are each necessary and sufficient for M to be positive semidefinite:

- M has a "square root", i.e. there exists R s.t. $M = R^T R$.
- All eigenvalues of M are greater than or equal to 0.

Positive Semidefinite Function

Definition

A symmetric kernel function $k: \mathcal{X} \times \mathcal{X} \to \mathbf{R}$ is **positive semidefinite (psd)** if for any finite set $\{x_1, \dots, x_n\} \in \mathcal{X}$, the kernel matrix on this set

$$K = (k(x_i, x_j))_{i,j} = \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \cdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix}$$

is a positive semidefinite matrix.

Mercer's Theorem

Theorem

A symmetric function k(w,x) can be expressed as an inner product

$$k(w,x) = \langle \phi(w), \phi(x) \rangle$$

for some ϕ if and only if k(w,x) is **positive semidefinite**.

• If we start with a psd kernel, can we generate more?

Additive Closure

- Suppose k_1 and k_2 are psd kernels with feature maps ϕ_1 and ϕ_2 , respectively.
- Then

$$k_1(w,x)+k_2(w,x)$$

is a psd kernel.

• Proof: Concatenate the feature vectors to get

$$\phi(x) = (\phi_1(x), \phi_2(x)).$$

Then ϕ is a feature map for $k_1 + k_2$.

Closure under Positive Scaling

- Suppose k is a psd kernel with feature maps ϕ .
- Then for any $\alpha > 0$,

 αk

is a psd kernel.

Proof: Note that

$$\phi(x) = \sqrt{\alpha}\phi(x)$$

is a feature map for αk .

Scalar Function Gives a Kernel

• For any function f(x),

$$k(w,x) = f(w)f(x)$$

is a kernel.

• Proof: Let f(x) be the feature mapping. (It maps into a 1-dimensional feature space.)

$$\langle f(x), f(w) \rangle = f(x)f(w) = k(w, x).$$

Closure under Hadamard Products

- Suppose k_1 and k_2 are psd kernels with feature maps ϕ_1 and ϕ_2 , respectively.
- Then

$$k_1(w,x)k_2(w,x)$$

is a psd kernel.

• Proof: Take the outer product of the feature vectors:

$$\phi(x) = \phi_1(x) \left[\phi_2(x)\right]^T.$$

Note that $\phi(x)$ is a matrix.

Continued...

Closure under Hadamard Products

Then

$$\begin{split} \langle \varphi(x), \varphi(w) \rangle &= \sum_{i,j} \varphi(x) \varphi(w) \\ &= \sum_{i,j} \left[\varphi_{1}(x) \left[\varphi_{2}(x) \right]^{T} \right]_{ij} \left[\varphi_{1}(w) \left[\varphi_{2}(w) \right]^{T} \right]_{ij} \\ &= \sum_{i,j} \left[\varphi_{1}(x) \right]_{i} \left[\varphi_{2}(x) \right]_{j} \left[\varphi_{1}(w) \right]_{i} \left[\varphi_{2}(w) \right]_{j} \\ &= \left(\sum_{i} \left[\varphi_{1}(x) \right]_{i} \left[\varphi_{1}(w) \right]_{i} \right) \left(\sum_{j} \left[\varphi_{2}(x) \right]_{j} \left[\varphi_{2}(w) \right]_{j} \right) \\ &= k_{1}(w, x) k_{2}(w, x) \end{split}$$