Time is on your side: Semantic enrichment of time series

Bojan Božić

Dublin Institute of Technology

What is a time series?

- ▶ What we need: value(s) + time stamp
- What would be grand: constant time interval
- ▶ Mathematically: values $Y_1, Y_2, ...$ of a variable Y at points in time $t_1, t_2, ...$ Therefore: Y = F(t)

Example

Air quality sensor measuring carbon monoxide and ozone concentrations in air (in ppm), and sending in values every 10 minutes.

Subdisciplines and Goals

We distinguish:

- Time Series Analysis: Analysing time series data in order to extract meaningful statistics and other characteristics of the data.
- ▶ Time Series Forecasting: Estimating many future aspects of a business or other operation based on the current time series.

Which aim at:

- Identifying the nature of the phenomenon represented by the sequences of operations.
- Predicting future values of the time series variables.

Decomposition

Figure 1: Decomposed births time series.

Mathematical Models

Additive Model:

- 1. Assume data is sum of components: $Y_t = T + S + C + I$
- 2. If one of the components is not contained the value is zero, therefore: $Y_t = T + S + I$
- 3. Seasonal component is independent of trend \implies magnitude of seasonal swing is constant

Multiplicative Model:

- 1. Assume data is product of components: $Y_t = T * S * C * I$
- 2. If one of the components is missing, the value is assumed to be 1: $Y_t = T * S * I$
- 3. Seasonal factor is a ratio to the trend \implies magnitude increases or decreases according to trend

Smoothing

- Removes random variation and shows trends and cycles
- ► Two methods:
 - 1. Averaging Smoothing: e.g. $SMA_i = \frac{\sum_{k=i-n}^{i} x_k}{n}$
 - 2. Exponential Smoothing: e.g. $EMA_i = EMA_{i-1} + \alpha * (x_i EMA_{i-1})$ $\alpha = \frac{2}{n+1}$

Figure 2: Smoothed forecasts for rainfall using Holt-Winters (Simple Exponential Smoothing)

Why add Semantics?

- Experts in different fields have to deal with time series (environment, finance, etc.)
- ► Time series represent measurements with a lot of data (values for years with measurements for every second)
- ► A lot of time and expert knowledge required to find the right part of a time series
- Time series processors are highly customized and developed exclusively for one purpose

Expressions

Expression	Meaning
< [n].sin * 2 + 3 >	Calculation is applied to all slots.
A, B < A[n] + 2 * B[n] >	Combination of two time series
	(aggregation).
<pre>< [n] > every 2 hours</pre>	Projection to a fixed time grid.
< (t t-2).mean >	Sliding mean value.
every 1 hour	
< [n]->hot if	Filtering, classification.
[n].temperature > 100	
otherwise [n]->cold >	

Table 1: An overview of most commonly used time series processing expressions.

Semantic Time Series

- ► Enrichment of time series with meta-information (annotations)
- Reduction of processor and language complexity
- Usage of ontologies to define the domain of interest
- Usage of reasoning to generate new meta-information

Comparison

Figure 3: Difference between one-dimensional data, time series, and semantic time series

Sample Semantic Expression

```
Sample regular Time Series Processing expression: MeteoTS < warning if precipitation > 1000 1/m^2 or temperature > 40°C or wind > 56 knots ... >
```

Semantic Time Series Processing expression: MeteoTS < warning if value > allowed >

Ontologies

- 1. Definition of all common classes and properties, which are valid for all possible time series ontologies.
- 2. Extraction of a bridge ontology which can be used as a common interface for all domain ontologies.
- Every individual domain ontology needs to inherit from the bridge ontology (it has to define all classes which are also defined in the bridge ontology).
- 4. Therefore, an ontology graph can be constructed, which has the bridge ontology in the center.

Time Series Ontology

Figure 4: The Time Series Bridge Ontology for connecting domain knowledge.

Contact

Bojan Božić

CeADAR Research Fellow Email: bojan.bozic@dit.ie

Twitter: @bojan_bozic

TimeSeries data: robjhyndman.com/tsdldata/

Images: suwalls.com, patterncooler.com