FONCTIONS D'UNE VARIABLE RÉELLE, APPLICATIONS

Solution 1

Soit $x \in \mathbb{R}$.

Si x < f(x) alors $f(x) \le f(f(x)) = x$. Contradiction!

Si x > f(x) alors $f(x) \ge f(f(x)) = x$. Contradiction!

Donc f(x) = x.

Solution 2

Soit f une telle application (si elle existe). On va montrer par récurrence que f(n) = n pour tout $n \in \mathbb{N}$. Soit HR(n) l'hypothèse de récurrence : $\forall k \in [0, n], \ f(k) = k$.

On a $f(0) + f^2(0) + f^3(0) = 3 \times 0 = 0$. Or f(0), $f^2(0)$ et $f^3(0)$ sont des entiers naturels; en particulier, ils sont positifs. On a donc f(0) = 0. Supposons HR(n) pour un certain $n \in \mathbb{N}$. On a $f(n+1) + f^2(n+1) + f^3(n+1) = 3(n+1)$. Supposons par l'absurde que $f(n+1) \neq n+1$. Un des trois entiers f(n+1), $f^2(n+1)$ et $f^3(n+1)$ est nécessairement strictement inférieur à n+1. Examinons les trois cas.

- Si f(n+1) < n+1. Notons k = f(n+1). Puisque $k \le n$, $f^2(n+1) = f(k) = k$ en utilisant HR(n). De même, $f^3(n+1) = k$. Ainsi $f(n+1) + f^2(n+1) + f^3(n+1) = 3k < 3(n+1)$, ce qui est impossible.
- Si $f^2(n+1) < n+1$. Notons $k = f^2(n+1)$. Puisque $k \le n$, $f^3(n+1) = f(k) = k$ en utilisant HR(n). De même, $f^4(n+1) = k$. Ainsi $f^2(n+1) + f^3(n+1) + f^4(n+1) = 3k$. Mais on a également $f^2(n+1) + f^3(n+1) + f^4(n+1) = 3f(n+1)$. Donc f(n+1) = k. Mais alors $f(n+1) + f^2(n+1) + f^3(n+1) = 3k < 3(n+1)$, ce qui est impossible.
- Si $f^3(n+1) < n+1$. Notons $k = f^3(n+1)$. Puisque $k \le n$, $f^4(n+1) = f(k) = k$ en utilisant HR(n). De même, $f^5(n+1) = k$. Ainsi $f^3(n+1) + f^4(n+1) + f^5(n+1) = 3k$. Mais on a également $f^3(n+1) + f^4(n+1) + f^5(n+1) = 3f^2(n+1)$. Donc $f^2(n+1) = k$. Mais alors $f^2(n+1) + f^3(n+1) + f^4(n+1) = 3k$. On a également $f^2(n+1) + f^3(n+1) + f^4(n+1) = 3f(n+1)$ donc f(n+1) = k. Finalement, $f(n+1) + f^2(n+1) + f^3(n+1) = 3k < 3(n+1)$, ce qui est impossible.

On a donc nécessairement f(n + 1) = n + 1 et donc HR(n + 1) est vraie.

On a donc montré que si f vérifiait la condition de l'énoncé, alors f était nécessairement l'identité. Réciproquement, la fonction identité vérifie bien la condition recherchée.

Solution 3

- **1.** D'après l'énoncé, f(0 + f(0)) = f(f(0)) + f(0) donc f(0) = 0.
- **2.** A nouveau d'après l'énoncé, pour tout $n \in \mathbb{N}$

$$f(f(n)) = f(0 + f(n)) = f(f(0)) + f(n) = f(0) + f(n) = f(n)$$

puisque f(0) = 0. On a donc $f \circ f = f$.

3. Procédons par double inclusion.

Soit $a \in \text{Im } f$. Il existe donc $b \in \mathbb{N}$ tel que a = f(b). Ainsi f(a) = f(f(b)) = f(b) = a d'après la question précédente. Ainsi $a \in \mathcal{F}$. Ceci prouve que $\text{Im } f \subset \mathcal{F}$.

Soit $a \in \mathcal{F}$. Alors $a = f(a) \in \text{Im } f$. Ceci prouve que $\mathcal{F} \subset \text{Im } f$.

Par double inclusion, Im $f = \mathcal{F}$.

4. Soit $a \in \mathcal{F}$. Alors f(a) = a. Par conséquent

$$f(a + 1) = f(1 + f(a)) = f(f(1)) + f(a) = a + f(1) = a + 1$$

 $\operatorname{car} f(1) = 1$ par hypothèse.

5. Puisque f(0) = 0, $0 \in \mathcal{F}$ et la question précédente permet de montrer par récurrence tout entier naturel appartient à \mathcal{F} , c'est-à-dire que $\mathcal{F} = \mathbb{N}$. Ceci signifie que f(n) = n pour tout $n \in \mathbb{N}$ i.e. $f = \mathrm{Id}_{\mathbb{N}}$.

Solution 4

① Puisque $f_1(1) = f_1(3)$, f_1 n'est pas injective. On a clairement $-1 \notin f_1(\mathbb{R})$ donc f_1 n'est pas surjective.

- ② Puisque $f_2(4 \pm 2\sqrt{3}) = 1/4$, f_2 n'est pas injective. On a $1 \notin f_2(\mathbb{R})$ donc f_2 n'est pas surjective.
- ③ Puisque $\forall x \ge 0$,

$$f_3(x) = \frac{3}{4} - \frac{1}{16x + 4},$$

la fonction f_3 est injective. Puisque $3/4 \notin f_3(\mathbb{R})$, la fonction f_3 n'est pas surjective.

- 4 La fonction f_4 est une bijection d'après le cours sur les fonctions usuelles.
- ⑤ Puisque tout nombre complexe admet au moins une racine cubique, f_5 est surjective. Puisque $f_5(1) = f_5(j)$ et $j \neq 1$, f_5 n'est pas injective.

Solution 5

- 1. a. On a $\Psi(\emptyset) = (\emptyset \cap A, \emptyset \cap B) = (\emptyset, \emptyset)$.
 - **b.** On a $\Psi(\overline{A \cup B}) = \Psi(\overline{A} \cap \overline{B}) = (\overline{A} \cap \overline{B} \cap A, \overline{A} \cap \overline{B} \cap B) = (\emptyset, \emptyset).$
 - c. Supposons Ψ injective. Comme $\Psi(\emptyset) = \Psi(\overline{A \cup B})$, on en déduit $\overline{A \cup B} = \emptyset$ i.e. $A \cup B = E$. Réciproquement, supposons $A \cup B = E$. Soient $X, Y \in \mathcal{P}(E)$ tels que $\Psi(X) = \Psi(Y)$. On a donc $X \cap A = Y \cap A$ et $X \cap B = Y \cap B$. Ainsi $(X \cap A) \cup (X \cap B) = (Y \cap A) \cup (Y \cap B)$ i.e. $X \cap (A \cup B) = Y \cap (A \cup B)$. Comme $A \cup B = E$, on en déduit X = Y. D'où l'injectivité de Ψ .
- 2. a. Supposons que (\emptyset, B) admette un antécédent X par Ψ . Alors $X \cap A = \emptyset$ et $X \cap B = B$ i.e. $B \subset X$. Donc $B \cap A = \emptyset$. Réciproquement, si $A \cap B = \emptyset$, $\Psi(B) = (\emptyset, B)$. Ainsi (\emptyset, B) admet un antécédent si et seulement si $A \cap B = \emptyset$.
 - **b.** La question précédente montre que si Ψ est surjective, alors $A \cap B = \emptyset$. Supposons $A \cap B = \emptyset$. Soient $(X, Y) \in \mathcal{P}(A) \times \mathcal{P}(B)$. On a alors $(X \cup Y) \cap A = (X \cap A) \cup (X \cap B)$. Comme $X \subset A, X \cap A = X$. De plus, $A \cap B = \emptyset$ donc $X \cap B = \emptyset$. Ainsi $(X \cup Y) \cap A = X$. De même, $(X \cup Y) \cap B = Y$. D'où $\Psi(X \cup Y) = (X, Y)$. Ainsi Ψ est surjective.

Solution 6

Pour tout $m \in \mathbb{N}$, on a

$$f(2m) = 2m$$
, $f(2m+1) = m+1$.

Ainsi f(2) = f(3) = 2 donc f n'est pas injective. En revanche, f(0) = 0 et, pour tout $n \in \mathbb{N}^*$, on a

$$n = f(2n - 1).$$

L'application f est donc surjective.

Solution 7

1. Par distributivité de \cap sur \cup , on a :

$$(X \cup A) \cap (X \cup B) = (X \cap X) \cup (X \cap A) \cup (X \cap B) \cup (A \cap B)$$

Or $X \cap X = X$, $X \cap A \subset X$, $X \cap B \subset X$ et $A \cap B = \emptyset$. Donc $(X \cup A) \cap (X \cup B) = X$.

- **2. a.** Pour tout $X \in \mathcal{P}(E)$, $A \subset X \cup A$ et $B \subset X \cup B$. Si $A \neq \emptyset$ ou $B \neq \emptyset$, alors (\emptyset, \emptyset) n'admet pas d'antécédent par f. Si $A = \emptyset$ et $B = \emptyset$, alors f(X) = (X, X). Puisque $E \neq \emptyset$, (\emptyset, E) n'admet pas d'antécédent par f. Dans les deux cas, f n'est pas surjective.
 - **b.** Supposons que $A \cap B = \emptyset$. Soient $X, Y \in \mathcal{P}(E)$ tels que f(X) = f(Y). On a donc $X \cup A = Y \cup A$ et $X \cup B = Y \cup B$. Par conséquent, $(X \cup A) \cap (X \cup B) = (Y \cup A) \cap (Y \cup B)$. En utilisant la première question, on a donc X = Y. Ceci prouve que f est injective. Supposons que f soit injective. On a $f(A \cap B) = f(\emptyset) = (A, B)$. Par injectivité de f, on en déduit que $A \cap B = \emptyset$.

Solution 8

On a $f(0) \ge 0$. Or $f(0) \in \mathbb{N}$ donc f(0) = 0.

Soit $n \in \mathbb{N}$. Supposons que f(k) = k pour tout $k \in [0, n]$. Notons k = f(n+1). D'après l'énoncé, $k \le n+1$. Si k < n+1, alors f(k) = k par hypothèse de récurrence et donc f(n+1) = f(k), ce qui contredit l'injectivité de f. Ainsi f(n+1) = n+1. Par récurrence forte, f(n) = n pour tout $n \in \mathbb{N}$.

- 1. Soit $z \in \mathbb{U}$. Alors $|\overline{\alpha}z| = |\overline{\alpha}| \neq 1$. On ne peut donc avoir $\overline{\alpha}z = -1$ sinon on aurait $|\overline{\alpha}z| = |-1| = 1$. Ceci prouve que $\overline{\alpha}z + 1 \neq 0$ et donc que f est définie sur \mathbb{U} .
- 2. On peut écrire les équivalences suivantes :

$$|f(z)| = 1$$

$$\Rightarrow |z + \alpha| = |\overline{\alpha}z + 1|$$

$$\Rightarrow |z + \alpha|^2 = |\overline{\alpha}z + 1|^2$$

$$\Leftrightarrow (z + \alpha)(\overline{z} + \overline{\alpha}) = (\overline{\alpha}z + 1)(\alpha\overline{z} + 1)$$

$$\Leftrightarrow |z|^2 + |\alpha|^2 + \alpha\overline{z} + \overline{\alpha}z = |\alpha|^2|z|^2 + \overline{\alpha}z + \alpha\overline{z} + 1$$

$$\Leftrightarrow (1 - |\alpha|^2)|z|^2 = 1 - |\alpha|^2$$

$$\Leftrightarrow |z|^2 = 1 \qquad \text{car } 1 - |\alpha|^2 \neq 0$$

$$\Rightarrow |z| = 1$$

On a donc bien montré que $z \in \mathbb{U} \iff f(z) \in \mathbb{U}$.

3. Tout d'abord, d'après la question précédente, $f(\mathbb{U}) \subset \mathbb{U}$. Soit $Z \in \mathbb{U}$ et $z \in \mathbb{C}$ tel que $\overline{\alpha}z + 1 \neq 0$. On a les équivalences suivantes

$$Z = f(z)$$

$$Z = \frac{z + \alpha}{\overline{\alpha}z + 1}$$

$$\Leftrightarrow \qquad Z(\overline{\alpha}z + 1) = z + \alpha$$

$$\Leftrightarrow \qquad z(Z\overline{\alpha}z - 1) = \alpha - Z$$

Puisque $Z \in \mathbb{U}$, on prouve comme à la première question que $Z\overline{\alpha} - 1 \neq 0$. L'équation f(z) = Z d'inconnue z admet une unique solution. De plus, si z est solution de cette équation, $f(z) = Z \in \mathbb{U}$ et d'après la question précédente $z \in \mathbb{U}$. Ceci prouve que f induit une bijection de \mathbb{U} sur \mathbb{U} .

Solution 10

Supposons f injective. Soit $(A, B) \in \mathcal{P}(E)^2$. On sait déjà que $f(A \cap B) \subset f(A) \cap f(B)$. Montrons alors que $f(A) \cap f(B) \subset f(A \cap B)$. Soit donc $y \in f(A) \cap f(B)$. Il existe donc $(a,b) \in A \times B$ tel que y = f(a) = f(b). Mais par injectivité de f, a = b de sorte que $a = b \in A \cap B$. On en déduit que $y \in f(A \cap B)$. On a donc bien montré que $f(A) \cap f(B) \subset f(A \cap B)$ puis, par double inclusion, que $f(A \cap B) = f(A) \cap f(B)$. Supposons maintenant que $f(A \cap B) = f(A) \cap f(B)$ pour tout couple $f(A, B) \in \mathcal{P}(E)^2$. Soit $f(A) \in E^2$ tel que $f(A) \in E^2$ tel que $f(A) \in E^2$. Posons $f(A) \in E^2$ tel que $f(A) \in E^2$ tel que $f(A) \in E^2$. En particulier, $f(A) \cap f(B)$ est non vide. Puisque $f(A) \cap f(B)$ est également non vide. Il s'ensuit que $f(A) \cap F(B)$ est non vide et donc que $f(A) \cap f(B)$ est prouve l'injectivité de $f(A) \cap f(B)$ est destinant que $f(A) \cap f(B)$ est est non vide et donc que $f(A) \cap f(B)$ est prouve l'injectivité de $f(A) \cap f(B)$ est prouve l'injectivité de

Solution 11

1. Puisque $f = g \circ f \circ g$ est injective, g l'est également.

Remarquons maintenant que $f \circ g \circ f \circ f \circ g = f$. Soit alors $y \in E$. Alors $f(y) = f \circ g \circ f \circ f \circ g(y)$ mais comme f est injective, $y = g \circ f \circ f \circ g(y)$. Ainsi y admet un antécédent par g, à savoir $f \circ f \circ g(y)$. f est donc surjective. Par conséquent, $g \circ f \circ g$ est surjective et donc g l'est également.

2. Puisque $g = f \circ g \circ f$ est surjective, f l'est également. Soit $(x_1, x_2) \in E^2$ tel que $g(x_1) = g(x_2)$. Puisque f est surjective, il existe $(y_1, y_2) \in E^2$ tel que $x_1 = f(y_1)$ et $x_2 = f(y_2)$. Alors $g \circ f(y_1) = g \circ f(y_2)$ puis $f \circ g \circ f(y_1) = f \circ g \circ f(y_2)$ i.e. $g(y_1) = g(y_2)$. Par conséquent, $g \circ f \circ g(y_1) = g \circ f \circ g(y_2)$ i.e. $g(y_1) = g \circ f \circ g(y_2)$ i.e. $g(y_1) = g \circ f \circ g(y_2)$ ou encore $g(y_1) = g \circ g \circ g(y_2)$ i.e. $g(y_1) = g \circ g(y_2)$ i.e

1. Soit $Z \in \mathbb{C}$. Pour tout $z \in \mathbb{C} \setminus \{2\}$,

$$f(z) = Z \iff 2z^2 - (1+Z)z + 2Z = 0$$

Cette équation du second degré admet toujours au moins une solution forcément distincte de 2 (on vérifie aisément que 2 n'est pas solution). Ceci prouve que f est surjective et donc \mathcal{T} également. De plus, le discriminant de cette équation est $1 - 14Z + Z^2$ n'est pas nul pour Z = 1 par exemple. Ceci prouve que 1 admet deux antécédents par f. Ainsi f n'est pas injective et \mathcal{T} ne l'est pas non plus.

- 2. On résout l'équation f(z) = z. On trouve aisément que les seules solutions sont 0 et 1. Les points invariants par \mathcal{T} sont donc les points d'affixes 0 et 1.
- 3. Deux points m et m' d'affixes respectifs z et z' sont associés si et seulement si f(z) = f(z'). Ceci équivaut à

$$z + \frac{3}{z - 2} = z' + \frac{3}{z' - 2}$$

ou encore

$$(z - z') \left(1 - \frac{3}{(z - 2)(z' - 2)} \right) = 0$$

On en déduit bien que m et m' sont associés si et seulement si z=z' ou (z-2)(z'-2)=3.

4. Notons g la restriction de f à $\mathbb{R} \setminus \{2\}$. La fonction g est dérivable sur $\mathbb{R} \setminus \{2\}$ et pour tout $x \in \mathbb{R} \setminus \{2\}$, $f'(x) = 2 - \frac{6}{(x-2)^2} = \frac{2(x^2-4x+1)}{(x-2)^2}$.

x	$-\infty$ $2-\sqrt{3}$	$2 \qquad 2 + \sqrt{3} \qquad +\infty$
Signe de $f'(x)$	+ 0 -	- 0 +
Variations de f	$7 - 4\sqrt{3}$ $-\infty$	$+\infty$ $+\infty$ $7+4\sqrt{3}$

On en déduit que $f(\mathbb{R} \setminus \{2\}) = \left] -\infty, 7 - 4\sqrt{3} \right] \cup \left[7 + 4\sqrt{3}, +\infty \right[$. Autrement dit, $\mathcal{F}(\mathcal{E}) = (\mathcal{E} \setminus [BC]) \cup \{B, C\}$.

5. Posons $\alpha = 7 - 4\sqrt{3}$ et $\beta = 7 + 4\sqrt{3}$. Soit $m \in \mathcal{P} \setminus \{A\}$ d'affixe $z \in \mathbb{R} \setminus \{2\}$.

Si $m \in \mathcal{F}^{-1}([BC])$, alors $f(z) \in [\alpha, \beta]$. En particulier, f(z) est réel de sorte que $f(z) = \overline{f(z)} = f(\overline{z})$. D'après la question 3, $z = \overline{z}$ ou $(z-2)(\overline{z}-2)=3$ donc $z \in \mathbb{R}$ ou $|z-2|^2=3$. Si $z \in \mathbb{R}$, les variations de g étudiées à la question 4 montrent que $z=2-\sqrt{3}$ ou $z=2+\sqrt{3}$ puisque $f(z) \in [\alpha,\beta]$. On a donc également $|z-2|^2=3$ dans le cas où $z \in \mathbb{R}$. On a finalement montré que $\mathcal{F}^{-1}([BC]) \subset \mathcal{C}$, où \mathcal{C} est le cercle de centre A et de rayon $\sqrt{3}$.

Réciproquement, si $m \in \mathcal{C}$, alors $|z-2|^2 = 3$ et donc $(z-2)(\overline{z}-2) = 3$ donc $f(z) = \overline{f(z)} = \overline{f(z)}$ d'après la question 3. On a donc $f(z) \in \mathbb{R}$. Par ailleurs, $f(z) - 7 = 2\left(z-2+\frac{3}{z-2}\right)$ mais puisque $|z-2|^2 = 3$, $\frac{3}{z-2} = \overline{z-2}$ de sorte que

$$|f(z) - 7| = 4|\operatorname{Re}(z - 2)| \le 4|z - 2| = 4\sqrt{3}$$

Donc $f(z) \in [\alpha, \beta]$ et $m \in \mathcal{F}^{-1}([BC])$. On a donc montré que $\mathcal{C} \subset \mathcal{F}^{-1}([BC])$. Par double inclusion, $\mathcal{F}^{-1}([BC]) = \mathcal{C}$.

Solution 13

1. Puisque $f(0) = f(2i\pi) = 2$, f n'est pas injective. Soit $Z \in \mathbb{C}$. L'équation f(z) = Z d'inconnue $z \in \mathbb{C}$ équivaut à $u^2 - Zu + 1 = 0$ en posant $u = e^z$. Cette équation du second degré possède toujours au moins une solution complexe. De plus, cette solution n'est pas nulle (on vérifie aisément que 0 n'est pas solution). Puisque tout complexe non nul admet un antécédent par l'exponentielle, l'équation

f(z) = Z admet une solution. L'application f est donc surjective.

On vérifie sans peine que la restriction de f à \mathbb{R} est continue et strictement croissante sur \mathbb{R}_+ . Puisque f(0) = 2 et $\lim_{t \to \infty} f_{|\mathbb{R}} = +\infty$, $f(\mathbb{R}_+) = [2, +\infty[$. Par parité de $f_{|\mathbb{R}}$, on a également $f(\mathbb{R}_-) = [2, +\infty[$. Finalement, $f(\mathbb{R}) = f(\mathcal{R}_- \cup \mathbb{R}_+) = f(\mathbb{R}_-) \cup f(\mathbb{R}_+) = [2, +\infty[$. Via une relation d'Euler, $f(i\mathbb{R}) = 2\cos(\mathbb{R}) = [-2, 2]$.

2. Puisque $f(0) = f(2i\pi) = 0$, f n'est pas injective. Soit $Z \in \mathbb{C}$. L'équation f(z) = Z d'inconnue $z \in \mathbb{C}$ équivaut à $u^2 - Zu - 1 = 0$ en posant $u = e^z$. Cette équation du second degré possède toujours au moins une solution complexe. De plus, cette solution n'est pas nulle (on vérifie aisément que 0 n'est pas solution). Puisque tout complexe non nul admet un antécédent par l'exponentielle, l'équation f(z) = Z admet une solution. L'application f est donc surjective. On vérifie sans peine que la restriction de f à \mathbb{R} est continue et strictement croissante sur \mathbb{R} . Puisque $\lim_{-\infty} f_{\mathbb{R}} = -\infty$ et $\lim_{+\infty} f_{\mathbb{R}} = +\infty$, $f(\mathbb{R}) = \mathbb{R}$. Via une relation d'Euler, $f(i\mathbb{R}) = 2i\sin(\mathbb{R}) = \{\lambda i, \lambda \in [-2, 2]\}$.

Solution 14

Montrons que f est surjective. Soit $N \in \mathbb{N}^*$. Notons m le plus grand entier naturel tel que 2^m divise N. Alors il existe $k \in \mathbb{N}^*$ tel que $N = 2^m k$. De plus, k est nécessairement impair, sinon 2^{m+1} diviserait N, ce qui contredirait la définition de m. Ainsi il existe $n \in \mathbb{N}$ tel que k = 2n + 1 et alors N = f(m, n).

Montrons maintenant que f est injective. Soit donc $(k, l, m, n) \in \mathbb{N}^4$ tel qye f(k, l) = f(m, n). Ainsi $2^k(2l+1) = 2^m(2n+1)$. Puisque 2^k et 2n+1 sont premiers entre eux, le lemme de Gauss permet d'affirmer que 2^k divise 2^m . On montre de même que 2^m divise 2^k . Ainsi $2^m = 2^k$ puis m = k puisque $2 \neq 1$. On en déduit ensuite que 2l+1 = 2n+1 et donc que l = n. Finalement, (k, l) = (m, n).

Solution 15

1.
$$f(I) = \left[-\frac{27}{6}, +\infty \right]$$
.

3.
$$f(I) =]-\infty, -1].$$

2.
$$f(I) = \left[\frac{1}{2}, +\infty\right]$$
.

4.
$$f(I) = [0; +\infty[$$
.

5.
$$f(I) = \mathbb{R}$$
.

Solution 16

- 1. Supposons que pour tout $A \in \mathcal{P}(E)$, $f^{-1}(f(A)) = A$. Soient $x, y \in E$ tel que f(x) = f(y). On a alors $f^{-1}(f(\{x\})) = \{x\}$ et $f^{-1}(f(\{y\})) = \{y\}$. Mais $f(\{x\}) = f(\{y\})$ donc $\{x\} = \{y\}$ i.e. x = y. Ainsi f est injective. Supposons que f soit injective. Soit $A \in \mathcal{P}(E)$. On a toujours $A \subset f^{-1}(f(A))$ puisque les éléments de A ont leurs images dans f(A). Soit $x \in f^{-1}(f(A))$. On a donc $f(x) \in f(A)$. Il existe donc $a \in A$ tel que f(x) = f(a). Par injectivité de f, x = a et donc $x \in A$. Donc $f^{-1}(f(A)) \subset A$.
- 2. Supposons que pour tout $B \in \mathcal{P}(F)$, $f(f^{-1}(B)) = B$. En particulier, $f(f^{-1}(F)) = F$. Comme $f^{-1}(F) \subset E$, $F = f(f^{-1}(F)) \subset f(E) \subset F$. Donc f(E) = F et f est surjective. Supposons que f soit surjective. Soit $G \in \mathcal{P}(F)$. On a toujours $f(f^{-1}(B)) \subset G$ puisque $f^{-1}(G)$ est l'ensemble des éléments de G qui ont leurs images dans G. Soit G est surjective, il existe G est tel que G est up. On a donc G est G est G est G est up. Donc G est G es

Solution 17

Il suffit de lire le tableau de variation de la fonction $x \mapsto x^2 \dots$

1.
$$f(\mathbb{R}) = \mathbb{R}_+$$
;

2.
$$f([-3,2]) = [0,9]$$
;

3.
$$f([-3,3]) = [0,9];$$

4.
$$f^{-1}([9,10]) = [-\sqrt{10}, -\sqrt{9}] \cup [\sqrt{9}, \sqrt{10}];$$

5.
$$f^{-1}([-5, -3]) = \emptyset$$
;

6.
$$f^{-1}([-4,4[)=]-2,2[;$$

7.
$$f^{-1}(f([0,1])) = [-1,1];$$

- **8.** $f(f^{-1}([-1,4])) = [0,4];$
- **9.** $f(f^{-1}(\mathbb{R}_{-})) = \{0\}.$

- 1. f est injective mais pas surjective.
- 2. a. E est le cercle de centre le point d'affixe 1 et de rayon 1. Son équation cartésienne est donc $(x-1)^2 + y^2 = 1$ ou encore $x^2 2x + y^2 = 0$. F est la droite d'équation $x = \frac{1}{2}$.
 - **b.** Soit $z = x + iy \in E \setminus \{0\}$. On a donc $x^2 + y^2 = 2x$. Or $f(z) = \frac{1}{z} = \frac{\overline{z}}{|z|^2} = \frac{x iy}{x^2 + y^2}$. Donc $Re(f(z)) = \frac{x}{x^2 + y^2} = \frac{1}{2}$. Donc $f(z) \in F$. Ainsi $f(E \setminus \{0\}) \subset F$.
 - **c.** La restriction de f à $E \setminus \{0\}$ est injective comme restriction d'une application injective.

Tirons partie du fait que $f \circ f(z) = z$. Montrons que $f(F) \subset E \setminus \{0\}$. Soit $z = \frac{1}{2} + iy \in F$. Alors $f(z) = \frac{\overline{z}}{|z|^2} = \frac{\frac{1}{2} - iy}{\frac{1}{4} + y^2} = \frac{1}{2} + iy$

 $\frac{2}{1+4y^2} - \frac{4iy}{1+4y^2} = x' + iy'. \text{ On v\'erifie que } (x', y') \text{ v\'erifie l'\'equation du cercle E. De plus, } \frac{1}{z} \neq 0 \text{ donc } f(z) \in E \setminus \{0\}.$

Ceci signifie que tout élément de F admet un antécédent (égal à f(z) puisque $f \circ f(z) = \overline{z}$) dans $E \setminus \{0\}$. L'application de $E \setminus \{0\}$ dans F induite par f est donc surjective.

Solution 19

1. On sait que $A\Delta B = (A \cap \bar{B}) \cup (B \cap \bar{A})$. Par conséquent,

$$\begin{split} \mathbb{1}_{A\Delta B} &= \mathbb{1}_{(A\cap \bar{B})\cup (B\cap \bar{A})} \\ &= \mathbb{1}_{A\cap \bar{B}} + \mathbb{1}_{A\cap \bar{B}} - \mathbb{1}_{A\cap \bar{B}\cap B\cap \bar{A}} \\ &= \mathbb{1}_{A\cap \bar{B}} + \mathbb{1}_{A\cap \bar{B}} \quad \text{car } A\cap \bar{B}\cap B\cap \bar{A} = \emptyset \\ &= \mathbb{1}_{A}(1-\mathbb{1}_{B}) + \mathbb{1}_{B}(1-\mathbb{1}_{A}) \\ &= \mathbb{1}_{A} + \mathbb{1}_{B} - 2\mathbb{1}_{A}\mathbb{1}_{B} \end{split}$$

2. On pourrait raisonner directement sur les ensembles mais il est peut-être plus simple de raisonner sur les fonctions indicatrices.

$$\begin{split} \mathbb{1}_{(A \cap B)\Delta(A \cap C)} &= (\mathbb{1}_{A \cap B} - \mathbb{1}_{A \cap C})^2 \\ &= (\mathbb{1}_A \mathbb{1}_B - \mathbb{1}_A \mathbb{1}_C)^2 \\ &= (\mathbb{1}_A)^2 (\mathbb{1}_B - \mathbb{1}_C)^2 \\ &= \mathbb{1}_A \mathbb{1}_{B \Delta C} \\ &= \mathbb{1}_{A \cap (B \Delta C)} \end{split}$$

Par conséquent, $A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$.

3. Raisonnons à nouveau sur les fonctions indicatrices.

$$\begin{split} \mathbf{1}_{(A\Delta B)\Delta C} &= (\mathbf{1}_{A\Delta B} - \mathbf{1}_{C})^{2} \\ &= \mathbf{1}_{A\Delta B}^{2} + \mathbf{1}_{C}^{2} - 2\mathbf{1}_{A\Delta B}\mathbf{1}_{C} \\ &= \mathbf{1}_{A\Delta B} + \mathbf{1}_{C} - 2\mathbf{1}_{A\Delta B}\mathbf{1}_{C} \\ &= (\mathbf{1}_{A} - \mathbf{1}_{B})^{2} + \mathbf{1}_{C} - 2(\mathbf{1}_{A} - \mathbf{1}_{B})^{2}\mathbf{1}_{C} \\ &= \mathbf{1}_{A} + \mathbf{1}_{B} - 2\mathbf{1}_{A}\mathbf{1}_{B} + \mathbf{1}_{C} - 2(\mathbf{1}_{A} + \mathbf{1}_{B} - 2\mathbf{1}_{A}\mathbf{1}_{B})\mathbf{1}_{C} \\ &= \mathbf{1}_{A} + \mathbf{1}_{B} + \mathbf{1}_{C} - 2(\mathbf{1}_{A}\mathbf{1}_{B} + \mathbf{1}_{A}\mathbf{1}_{C} + \mathbf{1}_{B}\mathbf{1}_{C}) + 4\mathbf{1}_{A}\mathbf{1}_{B}\mathbf{1}_{C} \end{split}$$

La dernière expression est invariante par permutation de A, B et C. Par conséquent,

$$\mathbb{1}_{(A\Delta B)\Delta C} = \mathbb{1}_{(B\Delta C)\Delta A}$$

Finalement, $(A\Delta B)\Delta C = (B\Delta C)\Delta A = A\Delta (B\Delta C)$.

- 1. On trouve sans difficulté que $\mathbb{1}_X = \mathbb{1}_A + \mathbb{1}_B \mathbb{1}_C \mathbb{1}_A \mathbb{1}_B \mathbb{1}_C$ et $\mathbb{1}_Y = \mathbb{1}_A \mathbb{1}_C + \mathbb{1}_B \mathbb{1}_C \mathbb{1}_A \mathbb{1}_B \mathbb{1}_C$.
- $\textbf{2.} \ \ X = Y \Leftrightarrow \mathbb{1}_{X} = \mathbb{1}_{Y} \iff \mathbb{1}_{A} = \mathbb{1}_{A}\mathbb{1}_{C} \iff \mathbb{1}_{A}(1 \mathbb{1}_{C}) = 0 \iff \mathbb{1}_{A \setminus C} = 0 \iff A \setminus C = \emptyset \iff A \subset C.$

Solution 21

 Généralement pour calculer des limites faisant intervenir des sommes racines carrées, il est utile de faire intervenir "l'expression conjuguées":

$$\sqrt{a} - \sqrt{b} = \frac{(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})}{\sqrt{a} + \sqrt{b}} = \frac{a - b}{\sqrt{a} + \sqrt{b}}.$$

Les racines au numérateur ont "disparu" en utilisant l'identité $(x - y)(x + y) = x^2 - y^2$. Appliquons ceci : pour tout x > -1, on a

$$\sqrt{1+x} - \sqrt{1-x} = \frac{2x}{\sqrt{1+x} + \sqrt{1-x}}$$

et donc

$$\frac{\sqrt{1+x} - \sqrt{1-x}}{x} = \frac{2}{\sqrt{1+x} + \sqrt{1-x}}.$$

Il est alors clair que

$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} = 1$$

par les opérations usuelles sur les limites.

2. On reconduis la même méthode.

$$f(x) = \frac{\sqrt{1 + x^m} - \sqrt{1 - x^m}}{x^n}$$

$$= \frac{(\sqrt{1 + x^m} - \sqrt{1 - x^m})((\sqrt{1 + x^m} + \sqrt{1 - x^m}))}{x^n(\sqrt{1 + x^m} + \sqrt{1 - x^m})}$$

$$= \frac{1 + x^m - (1 - x^m)}{x^n(\sqrt{1 + x^m} + \sqrt{1 - x^m})}$$

$$= \frac{2x^m}{x^n(\sqrt{1 + x^m} + \sqrt{1 - x^m})}$$

$$= \frac{2x^{m-n}}{\sqrt{1 + x^m} + \sqrt{1 - x^m}}$$

Et nous avons

$$\lim_{x \to 0} \frac{2}{\sqrt{1 + x^m} + \sqrt{1 - x^m}} = 1.$$

Donc l'étude de la limite de f en 0 est la même que celle de la fonction $x \mapsto x^{m-n}$.

Distinguons plusieurs pour la limite de f en 0.

- Si m > n alors x^{m-n} et donc f(x) tend vers 0.
- Si m = n alors x^{m-n} et f(x) vers 1.
- Si m < n alors $x^{m-n} = \frac{1}{x^{n-m}} = \frac{1}{x^k}$ avec k = n m un exposant positif. Si k est pair alors les limites à droite et à gauche de $\frac{1}{x^k}$ sont $+\infty$. Pour k impair la limite à droite vaut $+\infty$ et la limite à gauche vaut $-\infty$. Conclusion pour k = n m > 0 pair, la limite de f en 0 vaut $+\infty$ et pour k = n m > 0 impair k = n -

3. On a, pour tout $x \neq 0$,

$$\sqrt{1+x+x^2} - 1 = \frac{x+x^2}{\sqrt{1+x+x^2} + 1}$$

et donc

$$\frac{1}{x} \left(\sqrt{1 + x + x^2} - 1 \right) = \frac{1 + x}{\sqrt{1 + x + x^2} + 1}$$

d'où

$$\lim_{x \to 0} \frac{1}{x} \left(\sqrt{1 + x + x^2} - 1 \right) = \frac{1}{2}$$

par les opérations usuelles sur les limites.

Solution 22

- 1. La limite à droite vaut +2, la limite à gauche -2 donc il n'y a pas de limite au point 2.
- 2. Comme

$$\forall x \neq 0, \ \frac{x^2 + 2|x|}{x} = x + 2 \text{signe de } x$$

avec $x \mapsto 2$ signe de x bornée, on trouve $-\infty$.

3. Comme

$$\forall x \neq 2, \ \frac{x^2 - 4}{x^2 - 3x + 2} = \frac{x + 2}{x - 1},$$

On trouve 4.

4. Comme

$$\frac{\sin^2(x)}{1 + \cos(x)} = \frac{(2\sin(x/2)\cos(x/2))^2}{2\cos^2(x/2)} = 2\sin^2(x/2),$$

on trouve 2.

5. Pour x > -1, on a

$$\frac{\sqrt{1+x} - \sqrt{1+x^2}}{x} = \frac{x - x^2}{x(\sqrt{1+x} + \sqrt{1+x^2})}$$
$$= \frac{1 - x}{\sqrt{1+x} + \sqrt{1+x^2}},$$

on trouve ainsi $\frac{1}{2}$.

6. Comme pour x > -5, on a

$$\sqrt{x+5} - \sqrt{x-3} = \frac{2}{\sqrt{x+5} + \sqrt{x-3}},$$

on trouve 0.

7. En utilisant que $a^3 - 1 = (a - 1)(1 + a + a^2)$ pour $a = \sqrt[3]{1 + x^2}$, on obtient pour tout $x \neq 0$,

$$\frac{\sqrt[3]{1+x^2}-1}{x^2} = \frac{1}{1+a+a^2}.$$

On trouve donc $\frac{1}{3}$.

8. L'énoncé n'a de sens que pour $n \ge 1$. Pour $x \ne 1$, on a

$$\frac{x^n - 1}{x - 1} = \sum_{k=0}^{n-1} x^k$$

Ainsi, on trouve $\frac{1}{n}$.

- 1. Si f est paire, alors pour tout $x \in \mathbb{R}$, f(-x) = f(x). En dérivant cette relation, on obtient que -f'(-x) = f'(x) pour tout $x \in \mathbb{R}$. Autrement dit, f' est impaire. On prouve de la même manière que f' est paire lorsque f est impaire. Par récurrence, on prouve alors que, si f est paire, $f^{(n)}$ a la parité de n et que, si f est impaire, $f^{(n)}$ a la parité contraire de celle de n.
- 2. Soit T une période de f. Alors pour tout $x \in \mathbb{R}$, f(x+T) = f(x). En dérivant cette relation, on obtient que f'(x+T) = f'(x) pour tout $x \in \mathbb{R}$. Autrement dit, f' est également périodique de période T. Par récurrence, on prouve que $f^{(n)}$ est périodique de période T.

Solution 24

1. $x \mapsto x^4 - x^2$ est dérivable sur]1, $+\infty$ [à valeurs dans \mathbb{R}_+^* et $x \mapsto \sqrt{x}$ est dérivable sur \mathbb{R}_+^* . Ainsi f est dérivable sur]1, $+\infty$ [. Par parité, f est également dérivable sur $]-\infty,-1[$.

f n'est pas définie sur] – 1, 1[donc pas dérivable sur] – 1, 1[.

Pour x > 1, $\frac{f(x) - f(1)}{x - 1} = x\sqrt{\frac{x + 1}{x - 1}}$ donc $\lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = +\infty$. Ainsi f n'est pas dérivable en 1. Par parité, f n'est pas dérivable en

Pour tout $x \in]-\infty, -1[\cup]1, +\infty[$,

$$f'(x) = \frac{2x^3 - x}{\sqrt{x^4 - x^2}}$$

- $x \mapsto x^2 + x + 1$ est dérivable sur \mathbb{R} à valeurs dans $\left[\frac{3}{4}, +\infty\right]$
 - $x \mapsto \sqrt{x}$ est dérivable sur $\left[\frac{3}{4}, +\infty\right]$ à valeurs dans \mathbb{R}
 - $x \mapsto e^x$ est dérivable sur \mathbb{R}

Ainsi g est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$,

$$g'(x) = \frac{2x+1}{2\sqrt{x^2+x+1}}e^{\sqrt{x^2+x+1}}$$

- $x \mapsto x^2 1$ est dérivable sur $]\sqrt{2}, +\infty[$ à valeurs dans $]1, +\infty[$.
 - $x \mapsto \sqrt{x} 1$ est dérivable sur $]1, +\infty[$ à valeurs dans \mathbb{R}_+^*
 - $x \mapsto \ln x$ est dérivable sur \mathbb{R}^*_+

Ainsi h est dérivable sur $]\sqrt{2}, +\infty[$. Par parité, h est également dérivable sur $]-\infty, -\sqrt{2}[$. h n'est pas définie sur $[-\sqrt{2}, \sqrt{2}]$ donc pas dérivable sur $[-\sqrt{2}, \sqrt{2}]$.

Pour tout $x \in]-\infty, -\sqrt{2}[\cup]\sqrt{2}, +\infty[$

$$h'(x) = \frac{1}{\sqrt{x^2 - 1} - 1} \times \frac{x}{\sqrt{x^2 - 1}} = \frac{x}{x^2 - 1 - \sqrt{x^2 - 1}}$$

- 4. Tout d'abord i est 2π -périodique et paire donc on peut se contenter d'étudier la dérivabilité sur $[0,\pi]$. Sur cet intervalle, i n'est définie que sur $\left[0, \frac{\pi}{2}\right]$.
 - cos est dérivable sur $\left[0, \frac{\pi}{2}\right]$ à valeurs dans $\left[0, 1\right]$
 - $x \mapsto 1 \sqrt{x}$ est dérivable sur]0,1[à valeurs dans]0,1[
 - $x \mapsto \ln x$ est dérivable sur]0,1[

Ainsi i est dérivable sur $\left]0,\frac{\pi}{2}\right[$. Pour $x\in\left]0,\frac{\pi}{2}\right[$, posons $h=\frac{\pi}{2}-x$ de sorte que

$$\frac{f(x) - f\left(\frac{\pi}{2}\right)}{x - \frac{\pi}{2}} = -\frac{\ln\left(1 - \sqrt{\sin h}\right)}{h} = \frac{\ln(1 - \sqrt{\sin h})}{-\sqrt{\sin h}} \sqrt{\frac{\sin h}{h}} \frac{1}{\sqrt{h}}$$

Ainsi

$$\lim_{x \to \frac{\pi}{2}^{-}} \frac{f(x) - f\left(\frac{\pi}{2}\right)}{x - \frac{\pi}{2}} = \lim_{h \to 0^{+}} \frac{\ln(1 - \sqrt{\sin h})}{-\sqrt{\sin h}} \sqrt{\frac{\sin h}{h}} \frac{1}{\sqrt{h}} = +\infty$$

Ainsi *i* n'est pas dérivable en $\frac{\pi}{2}$.

Par parité et périodicité, i est dérivable sur $A = \left(\left| -\frac{\pi}{2}, 0 \right| \cup \left| 0, \frac{\pi}{2} \right| \right) + 2\pi \mathbb{Z}$ et pour tout $x \in A$

$$i'(x) = \frac{1}{1 - \sqrt{\cos x}} \times \frac{\sin x}{2\sqrt{\cos x}} = \frac{\sin x}{2\left(\sqrt{\cos x} - \cos x\right)}$$

Solution 25

1. On prouve après mise au même dénominateur et identification des coefficients que

$$a = \frac{1}{2}$$
, $b = -\frac{1}{2}$.

2. On prouve par une récurrence sans difficulté que

$$x \mapsto \frac{1}{1+x}$$

est de classe C^n sur $\mathbb{R} \setminus \{-1\}$, et que sur cet ensemble,

$$\left(\frac{1}{1+x}\right)^{(n)} = \frac{(-1)^n n!}{(1+x)^{n+1}}.$$

On en déduit que la fonction

$$x \mapsto \frac{1}{1-x}$$

est de classe \mathcal{C}^{∞} sur $\mathbb{R} \setminus \{1\}$, et que sur cet ensemble,

$$\left(\frac{1}{1-x}\right)^{(n)} = \frac{n!}{(1-x)^{n+1}}.$$

La fonction f est donc de classe \mathcal{C}^{∞} sur $\mathbb{R} \setminus \{\pm 1\}$, et sur cet ensemble,

$$f^{(n)}(x) = \frac{n!}{2(1-x)^{n+1}} + \frac{(-1)^n n!}{2(1+x)^{n+1}}.$$

Solution 26

Comme x et α sont $r\acute{e}els$,

$$e^{x\cos(\alpha)}\cos(x\sin(\alpha)) = \Re(e^{x\cos(\alpha)}e^{ix\sin(\alpha)})$$
$$= \Re(e^{xe^{i\alpha}})$$

Par conséquent,

$$\frac{d^n e^{x \cos(\alpha)} \cos(x \sin(\alpha))}{dx^n}$$

$$= \Re\left(\frac{d^n e^{x e^{i\alpha}}}{dx^n}\right)$$

$$= \Re(e^{in\alpha} e^{x e^{i\alpha}})$$

$$= e^{x \cos(\alpha)} \cos(n\alpha + x \sin(\alpha)).$$

1. L'étude ne pose aucun problème.

x	-∞		-1		1	+∞
f'(x)		+	0	-	0	+
f(x)	-∞		2		-2	+∞

2.

$$(x,y) \in \mathcal{C}_f$$

$$\Leftrightarrow \qquad \qquad y = f(x)$$

$$\Leftrightarrow \qquad \qquad y+1 = f((x-2)+2)-1$$

$$\Leftrightarrow \qquad \qquad y+1 = g(x-2)$$

$$\Leftrightarrow \qquad \qquad (x-2,y+1) \in \mathcal{C}_g$$

La courbe représentative de g est l'image de celle de f par une translation de vecteur de coordonnées (-2,1).

$$(x,y) \in \mathcal{C}_f$$

$$\Leftrightarrow \qquad \qquad y = f(x)$$

$$\Leftrightarrow \qquad \qquad 2y = 2f\left(\frac{2x}{2}\right)$$

$$\Leftrightarrow \qquad \qquad 2y = h(2x)$$

$$\Leftrightarrow \qquad \qquad (2x,2y) \in \mathcal{C}_h$$

La courbe représentative de h est l'image de celle de f par une homothétie de centre l'origine et de rapport 2.

$$(x,y) \in \mathcal{C}_f$$

$$\Leftrightarrow \qquad \qquad y = f(x)$$

$$\Leftrightarrow \qquad \qquad \frac{1}{2}y + 1 = \frac{1}{2}f\left(2\left(\frac{x}{2} + 1\right) - 2\right) + 1$$

$$\Leftrightarrow \qquad \qquad \frac{1}{2}y + 1 = i\left(\frac{x}{2} + 1\right)$$

$$\Leftrightarrow \qquad \qquad \left(\frac{x}{2} + 1, \frac{1}{2}y + 1\right) \in \mathcal{C}_i$$

La courbe représentative de i est l'image de celle de f par une homothétie de centre l'origine et de rapport $\frac{1}{2}$ suivie d'une translation de vecteur de coordonnées (1,1).

Solution 28

Il est équivalent de montrer que l'équation f'(x) = 1 admet 1 pour unique solution. On calcule pour x > 0:

$$f'(x) = \frac{1 - 2\ln x}{x^3}$$

Par conséquent, $f'(x) = 1 \Leftrightarrow x^3 + 2 \ln x - 1 = 0$. Posons $g(x) = x^3 + 2 \ln x - 1$ pour x > 0. On a facilement :

$$\forall x > 0, \ g'(x) = 3x^2 + \frac{2}{x} > 0$$

Par conséquent, g est strictement croissante sur]1; $+\infty$ [. De plus, g(1) = 0 donc la seule solution de l'équation f'(x) = 1 est 1.

Solution 29

Posons $f(x) = x \ln x$ pour x > 0. f est dérivable sur \mathbb{R}_+^* et pour tout x > 0, $f'(x) = 1 + \ln x$. On en déduit que f est strictement décroissante sur $[0, e^{-1}]$ et strictement croissante sur $[e^{-1}, +\infty[$. De plus, $\lim_0^+ f = 0$ donc f(x) < 0 < 1 pour $x \in]0, e^{-1}]$. Ainsi l'équation f(x) = 1 n'admet pas de solution sur $[0, e^{-1}]$. Enfin, f est continue et strictement croissante sur $[e^{-1}, +\infty[$, $f(e^{-1}) = -e^{-1}$ et $\lim_{+\infty} f = +\infty$, donc f induit une bijection de $[e^{-1}, +\infty[$ sur $[-e^{-1}, +\infty[$. Comme $1 > e^{-1}$, l'équation f(x) = 1 admet une unique solution sur $[e^{-1}, +\infty[$. En conclusion, l'équation f(x) = 1 admet une unique solution sur \mathbb{R}_+^* .

La fonction f est un produit de fonctions strictement croissantes et strictement positives sur]0, 1[, f est donc strictement croissante sur cet intervalle; f étant de plus continue, elle réalise une bijection de [0, 1] sur l'intervalle [f(0), f(1)] = [0, 2e].

Solution 31

- **1.** f n'est ni injective, ni surjective.
- 2. f est une bijection de $[1, +\infty[$ sur $]0, \frac{1}{2}]$.

Solution 32

f est clairement définie sur \mathbb{R} . On remarque également que f est paire.

Montrons que f est dérivable sur $\mathbb{R} \setminus \{-1, 1\}$.

D'abord, $x \mapsto x^2 - 1$ est dérivable sur $]-\infty, -1[$ à valeurs dans $\mathbb{R}_+^*, x \mapsto |x|$ est dérivable sur \mathbb{R}_+^* à valeurs dans \mathbb{R}_+^* et $x \mapsto \sqrt{x}$ est dérivable sur \mathbb{R}_+^* . Il s'ensuit que $x \mapsto \sqrt{|x^2 - 1|}$ est dérivable sur $]-\infty, -1[$.

De même, $x \mapsto x^2 - 1$ est dérivable sur]1, $+\infty$ [à valeurs dans \mathbb{R}_+^* , $x \mapsto |x|$ est dérivable sur \mathbb{R}_+^* à valeurs dans \mathbb{R}_+^* et $x \mapsto \sqrt{x}$ est dérivable sur \mathbb{R}_+^* . Il s'ensuit que $x \mapsto \sqrt{|x^2 - 1|}$ est dérivable sur]1, ∞ [.

Enfin, $x \mapsto x^2 - 1$ est dérivable sur]-1,1[à valeurs dans \mathbb{R}_+^* , $x \mapsto |x|$ est dérivable sur \mathbb{R}_+^* à valeurs dans \mathbb{R}_+^* et $x \mapsto \sqrt{x}$ est dérivable sur \mathbb{R}_+^* . Il s'ensuit que $x \mapsto \sqrt{|x^2 - 1|}$ est dérivable sur]-1,1[.

Finalement, f est bien dérivable sur $dR \setminus \{-1, 1\}$.

Pour tout $x \in]-\infty, -1[\cup]1, +\infty[, f(x) = \sqrt{x^2 - 1}$ et donc

$$f'(x) = \frac{x}{\sqrt{x^2 - 1}}$$

Pour tout $x \in]-1, 1[, f(x) = \sqrt{1-x^2}$ et donc

$$f'(x) = -\frac{x}{\sqrt{1 - x^2}}$$

f est donc décroissante sur [0,1] et croissante sur $[1,+\infty[$. Par parité, f est croissante sur [-1,0] et décroissante sur $]-\infty,-1]$. De plus, la courbe représentative de f admet une tangente horizontale en le point d'abscisse 0. Pour $x \in [0,1[$,

$$\frac{f(x) - f(1)}{x - 1} = -\sqrt{\frac{x + 1}{1 - x}} \xrightarrow[x \to 1^{-}]{} -\infty$$

et pour $x \in]1, +\infty[$,

$$\frac{f(x) - f(1)}{x - 1} = \sqrt{\frac{x + 1}{x - 1}} \underset{x \to 1^+}{\longrightarrow} + \infty$$

La courbe représentative de f admet donc une tangente verticale au point d'abscisse 1. Par parité, elle admet également une tangente verticale au point d'abscisse -1.

Pour $x \ge 1$

$$\frac{f(x)}{x} = \sqrt{1 - \frac{1}{x^2}} \underset{x \to +\infty}{\longrightarrow} 1$$

et

$$f(x) - x = -\frac{1}{\sqrt{x^2 - 1} + x} \xrightarrow[x \to +\infty]{} 0$$

Ainsi la courbe représentative de f admet la droite d'équation y = x pour asymptote en $+\infty$ et est située en-dessous de celle-ci sur $[1, +\infty[$. Par parité, elle admet la droite d'équation y = -x pour asymptote en $-\infty$ et elle est également située en-dessous de celle-ci sur $]-\infty, -1]$. On en déduit le tracé suivant.

1. Par définition, $x^x = e^{x \ln x}$ donc f est définie sur \mathbb{R}_+^* . $x\mapsto x\ln x$ est dérivable sur \mathbb{R}_+^* comme produit de fonctions dérivables sur cet intervalle et exp est dérivable sur \mathbb{R} donc, par composition, f est dérivable sur \mathbb{R}_+^* . Pour tout $x\in\mathbb{R}_+^*$, $f'(x)=(\ln x+1)x^x$. Ainsi f' est positive sur $\left[0,\frac{1}{e}\right]$ et négative sur $\left[\frac{1}{e},+\infty\right[$. Puisque $x\ln x\xrightarrow[x\to 0^+]{}0$, $f(x)\xrightarrow[x\to +\infty]{}+\infty$. On en déduit le tableau de variations suivant :

x	0	$\frac{1}{e}$	+∞
f'(x)		- 0	+
f(x)		$e^{-\frac{1}{e}}$	+∞

Enfin, $\frac{f(x)}{x} = e^{(x-1)\ln x} \longrightarrow +\infty$ donc le graphe de f admet une branche parabolique de direction (Oy). On laisse au lecteur de tracer le graphe de f.

Le tableau de variations nous apprend que Im $f = \left[e^{-\frac{1}{a}}, +\infty\right]$.

s'annule. Pour tout $x \in \mathbb{R}_+^*$, $f'(x) = \frac{1 - \ln x}{x^2}$ donc f' est positive sur]0,e] et négative sur $[e,+\infty[$. On a sans problème $f(x) \xrightarrow[x\to 0^+]{} -\infty$. Par croissances comparées, $f(x) \xrightarrow[x\to +\infty]{} 0$. En particulier, le graphe de f admet une asymptote horizontale d'équation $f(x) \xrightarrow[x\to 0^+]{} 0$. 2. f est définie sur \mathbb{R}_+^* et dérivable sur cet intervalle comme quotient de fonctions dérivables sur cet intervalle dont le dénominateur ne

On en déduit le tableau de variations suivant :

x	0	е	+∞
f'(x)		+ 0	_
f(x)	-∞	$\frac{1}{e}$	0

On a clairement Im $f = \left] -\infty, \frac{1}{e} \right]$.

3. Puisque pour tout $x \in \mathbb{R}$, $1 + x^2 \ge 0$, f est définie sur \mathbb{R} . f est clairement paire donc il suffit de procéder à une étude sur \mathbb{R}_+ . $x \mapsto 1 + x^2$ est dérivable sur \mathbb{R} à valeurs dans \mathbb{R}_+^* donc f est dérivable sur \mathbb{R} . Pour tout $x \in \mathbb{R}$, $f(x) = \frac{x}{\sqrt{1+x^2}}$.

On a clairement $= \lim f = +\infty$.

On en déduit le tableau de variations suivant :

On a clairement Im $f = [1, +\infty[$.

4. f est clairement définie sur \mathbb{R} . De plus, f est impaire et 2π -périodique donc on peut l'étudier sur $[0,\pi]$. f est dérivable sur $[0,\pi]$ et pour tout $x \in [0,\pi]$, $f'(x) = \cos(x) - \cos(3x) = 2\sin(2x)\sin(x)$. Comme sin est positive sur $[0,\pi]$, f'(x) est du signe de $\sin(2x)$ pour $x \in [0,\pi]$. f' est donc positive sur $\left[0,\frac{\pi}{2}\right]$ et négative sur $\left[\frac{\pi}{2},\pi\right]$. On en déduit le tableau de variations suivant :

x	0		$\frac{\pi}{2}$		π
f'(x)	0	+	0	_	0
f(x)	0		$\frac{4}{3}$		· 0

On trace ensuite le graphe de f sur $[0,\pi]$ qu'on complète par une symétrie par rapport à l'origine puis par 2π -périodicité. On a clairement $f([0,\pi])=\left[0,\frac{4}{3}\right]$ puis $f([-\pi,\pi])=\left[-\frac{4}{3},\frac{4}{3}\right]$ car f est impaire et finalement $\mathrm{Im}\, f=\left[-\frac{4}{3},\frac{4}{3}\right]$ par 2π -périodicité.

- 1. Le discriminant du trinôme $x \mapsto x^2 + x + 1$ est strictement négatif donc $x \mapsto x^2 + x + 1$ est positif sur \mathbb{R} . Ceci prouve que f est définie sur \mathbb{R} .
- 2. On trouve f(-1-x)=f(x) pour tout $x\in\mathbb{R}$. On en déduit que \mathcal{C}_f admet la droite d'équation $x=-\frac{1}{2}$ comme axe de symétrie.

3. $x \mapsto x^2 + x + 1$ est dérivable sur \mathbb{R} à valeurs dans $\left[\frac{3}{4}, +\infty\right[$ et $x \mapsto \sqrt{x}$ est dérivable sur $\left[\frac{3}{4}, +\infty\right[$ donc f est dérivable sur \mathbb{R} . Pour tout $x \in \mathbb{R}$,

$$f'(x) = \frac{2x+1}{2\sqrt{x^2+x+1}}$$

Ainsi f est décroissante sur $\left]-\infty,-\frac{1}{2}\right]$ et croissante sur $\left[-\frac{1}{2},+\infty\right[$. De plus, $\lim_{-\infty}f=\lim_{+\infty}f=+\infty$.

X	$-\infty$ $-\frac{1}{2}$ $+\infty$
f'(x)	- 0 +
f(x)	$+\infty$ $+\infty$ $\frac{\sqrt{3}}{2}$

4. Pour tout x > 0,

$$\frac{f(x)}{x} = \sqrt{1 + \frac{1}{x} + \frac{1}{x^2}}$$

Ainsi $\lim_{x \to +\infty} \frac{f(x)}{x} = 1$. Puis pour tout x > 0,

$$f(x) - x = \frac{x+1}{\sqrt{x^2 + x + 1} + x} = \frac{1 + \frac{1}{x}}{\sqrt{1 + \frac{1}{x} + \frac{1}{x^2} + 1}}$$

Ainsi $\lim_{x\to +\infty} f(x) - x = \frac{1}{2}$. \mathcal{C}_f admet donc pour asymptote en $+\infty$ la droite d'équation $y = x + \frac{1}{2}$. Par symétrie, la droite d'équation $y = -x - \frac{1}{2}$ est asymmtote à \mathcal{C}_f en $-\infty$.

5. Pour tout $x \in \mathbb{R}$,

$$\sqrt{x^2 + x + 1} = \sqrt{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}} \ge \sqrt{\left(x + \frac{1}{2}\right)^2} = \left|x + \frac{1}{2}\right|$$

Par conséquent, pour tout $x \in \mathbb{R}$,

$$f(x) \ge x + \frac{1}{2}$$
 et $f(x) \ge -x - \frac{1}{2}$

On en déduit que \mathcal{C}_f est au-dessus de ses asymptotes.

6.

Soit $f_n: x \in \mathbb{R}_+^* \mapsto x^n \ln x$. f_n est clairement dérivable sur \mathbb{R}_+^* et pour tout $x \in \mathbb{R}_+^*$,

$$f'_n(x) = nx^{n-1} \ln x + x^{n-1} = x^{n-1} (n \ln x + 1)$$

Par croissance comparées, $\lim_{x\to 0^+} x^n \ln x = 0$ et, par produit, $\lim_{n\to +\infty} x^n \ln x = +\infty$.

On en déduit le tableau de variations suivant :

Si $-\frac{1}{ne} > -\frac{1}{n^2}$, autrement dit si n < e, les variations de f_n montrent que l'équation $f_n(x) = -\frac{1}{n^2}$ ne peut avoir de solution.

On ne peut avoir $-\frac{1}{ne} = -\frac{1}{n^2}$ car *e* n'est pas un entier.

Enfin, si $-\frac{1}{ne} < -\frac{1}{n^2}$, autrement dit, si n > e, le corollaire du théorème des valeurs intermédiaires montre que l'équation $f_n(x) = -\frac{1}{n^2}$ admet une solution sur $\left]0, e^{-\frac{1}{n}}\right[$ et une solution sur $\left]e^{-\frac{1}{n}}, +\infty\right[$. En effet, f_n est continue et strictement monotone sur ces deux intervalles et $\lim_{0+} f_n > -\frac{1}{n^2} > f_n(e^{-\frac{1}{n}})$ et $f_n(e^{-\frac{1}{n}}) < -\frac{1}{n^2} < \lim_{n \to \infty} f_n$.

En conclusion, l'équation $f_n(x) = -\frac{1}{n^2}$ admet deux solutions si $n \ge 3$ et aucune si $n \le 2$.

Solution 36

Posons $f_k: x \in \mathbb{R} \mapsto e^x - 1 - kx$. f_k est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $f_k'(x) = e^x - k$.

Par somme, $\lim_{-\infty} f_k = +\infty$ et par croissances comparées, $\lim_{+\infty} f_k = +\infty$.

On en déduit le tableau de variations suivant :

X	$-\infty$ $\ln k$ +0	∞
$f'_k(x)$	- 0 +	
$f_k(x)$	$+\infty$ $k-1-k\ln k$	∞

La question est alors de connaître le signe de $k-1-k\ln k$. Pour cela, on étudie la fonction $x \in \mathbb{R}_+^* \mapsto x\ln x - x + 1$. g est dérivable sur \mathbb{R}_+^* et pour tout $x \in \mathbb{R}_+^*$, $g'(x) = \ln x$. On en déduit que g est strictement décroissante sur]0,1] et strictement croissante sur]0,1]. Puisque g(1) = 0, g(k) > 0 pour tout $k \in \mathbb{R}_+^* \setminus \{1\}$.

Si $k \neq 1$, on a donc $k-1-k\ln k = -g(k) < 0$. Puisque f_k est continue et strictement monotone sur $]0, \ln k[$ et sur $]\ln k, +\infty[$ et que $\lim_{-\infty} f_k = \lim_{+\infty} f_k = +\infty$, le corollaire du théorème des valeurs intermédiaires permet d'affirmer que l'équation $f_k(x) = 0$ admet une unique solution sur chacun de ces deux intervalles et donc deux solutions en tout.

Si k = 1, les variations de f_1 montrent que l'équation $f_1(x) = 0$ admet une unique solution (à savoir 0).

Remarque. Si l'on remarque que $f_k(0) = 0$, on peut se passer de l'étude de la fonction g.

Si k > 1, alors $\ln k > 0$ i.e. $0 \in]-\infty$, $\ln k[$. Comme f_k est strictement décroissante sur $]-\infty$, $\ln k[$, f_k ne s'annule qu'en 0 sur cet intervalle. De plus, la stricte décroissance de f_k sur cet intervalle nous aprend que $f(\ln k) < f(0) = 0$. On applique alors le corollaire du théorème des valeurs intermédiaires sur $]\ln k$, $+\infty$ pour affirmer que f_k ne s'annule qu'une fois sur cet intervalle.

Dans le cas où k < 1, on procède de manière similaire. La stricte croissance de f_k sur l'intervalle $] \ln k, +\infty[$ montre à nouveau que f_k ne s'annule qu'en 0 sur cet intervalle et le corollaire du théorème des valeurs intermédiaires montre que f_k s'annule une unique fois sur $] -\infty, \ln k[$.

Solution 37

1. La fonction f est définie sur $\mathbb{R} \setminus \{1/2\}$.

Variations. Après un petit calcul on trouve

$$f'(x) = \frac{2(x-2)(x+1)}{2x-1}.$$

Par l'étude du signe de f' on déduit que f est strictement croissante sur $]-\infty,-1]$ et sur $[2,\infty[$, et strictement décroissante sur [-1,1/2[et sur]1/2,2].

Asymptotes. On a

$$\lim_{x \to 1/2} |f(x)| = \infty.$$

Cela montre que f possède une asymptote verticale d'équation $x = \frac{1}{2}$.

Pour trouver des asymptotes non-verticales on remarque que le terme dominant de f(x) est $\frac{x^2}{2x} = \frac{x}{2}$. On cherche donc $b \in \mathbb{R}$ tel que

(*)
$$\lim_{x \to \infty} (f(x) - (x/2 + b)) = 0.$$

On calcule

$$f(x) - (x/2 + b) = \frac{(x+1)^2 - (x/2 + b)(2x - 1)}{2x - 1}$$
$$= \frac{(5/2 - 2b)x + 1 + b}{2x - 1}.$$

Pour avoir (*) il faut donc prende b = 5/4. Ainsi la droite d'équation

$$y = x/2 + 5/4$$

est une asymptote ∞ , et aussi en $-\infty$.

Voici une méthode plus systématique pour obtenir cette asymptote. La fonction f est une fraction rationnelle (quotient de deux polynômes). On procède donc à la division polynomiale du numérateur $x^2 + 2x + 1$ par le dénominateur 2x - 1:

$$\begin{array}{r}
\frac{1}{2}x + \frac{5}{4} \\
2x - 1) \overline{)x^2 + 2x + 1} \\
\underline{-x^2 + \frac{1}{2}x} \\
\underline{-\frac{5}{2}x + 1} \\
\underline{-\frac{5}{2}x + \frac{5}{4}} \\
\underline{-\frac{9}{4}}
\end{array}$$

Le reste est $\frac{9}{4}$ et le quotient est $\frac{1}{2}x + \frac{5}{4}$. Autrement dit,

$$f(x) = \frac{x^2 + 2x + 1}{2x - 1} = \frac{1}{2}x + \frac{5}{4} + \frac{9/4}{2x - 1}.$$

En faisant tendre x vers l'infini dans cette expression on retrouve l'asymptote.

2. On soupçonne que le point d'intersection I des deux asymptotes est un centre de symétrie de la courbe \mathcal{C}_f . Prouvons-le! On constate que la courbe \mathcal{C}_f est symétrique par rapport à I si et seulement si la « fonction décalée » g définie par

$$g(x) = f(x + x_{I}) - y_{I}$$

est impaire. Les coordonnées de I étant $(\frac{1}{2}, \frac{3}{2})$ on a

$$g(x) = f\left(x + \frac{1}{2}\right) - \frac{3}{2} = \frac{\left(x + \frac{3}{2}\right)^2}{2x} - \frac{3}{2} = \frac{x^2 + \frac{9}{4}}{2x}.$$

La fonction g est clairement impaire, et ainsi \mathcal{C}_f est bien symétrique par rapport au point I.

Solution 38

Posons $f(x) = \cos x - 1 + \frac{x^2}{2}$ pour tout $x \in \mathbb{R}$. f est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $f'(x) = -\sin x + x$.

f' est elle-même dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $f''(x) = 1 - \cos x \ge 0$.

f' est donc croissante sur \mathbb{R} . Puisque f'(0) = 0, f' est négative sur \mathbb{R}_+ et positive sur \mathbb{R}_+ .

On en déduit que f est décroissante sur \mathbb{R}_- et croissante sur \mathbb{R}_- . Puisque f(0) = 0, f est positive sur \mathbb{R} et on en déduit l'inégalité demandée.

Solution 39

On pose $f(x) = 2 \sin x + \tan x - 3x$. Il suffit donc de montrer que f est positive sur $\left[0, \frac{\pi}{2}\right]$.

f est clairement dérivable sur $\left[0, \frac{\pi}{2}\right]$ et pour tout $x \in \left[0, \frac{\pi}{2}\right]$

$$f'(x) = \frac{2\cos^3 x - 3\cos^2 x + 1}{\cos^2 x} = \frac{(\cos x - 1)^2(2\cos x + 1)}{\cos^2 x}$$

Ainsi $f' \ge 0$ sur $\left[0, \frac{\pi}{2}\right[$ et f est donc croissante sur $\left[0, \frac{\pi}{2}\right[$. Puisque f(0) = 0, f est positive sur $\left[0, \frac{\pi}{2}\right[$ et on en déduit l'inégalité demandée.

Solution 40

On étudie la fonction $f: x \mapsto 6x - 8\sin x + \sin 2x$. f est clairement dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$,

$$f'(x) = 6 - 8\cos 2x + 2\cos 2x = 4\cos^2 x - 8\cos x + 4 = 4(\cos x - 1)^2 \ge 0$$

Ainsi f est croissante sur \mathbb{R} . Puisque f(0) = 0, f est positive sur \mathbb{R}_+ et on en déduit l'inégalité demandée.

Solution 41

1. Pour $n \in \mathbb{N}$,

$$f\left(\frac{\pi}{2} + 2n\pi\right) = e^{\frac{\pi}{2} + 2n\pi} \longrightarrow_{n \to +\infty} +\infty$$

donc f n'est pas majorée sur \mathbb{R} . Elle n'est donc pas bornée sur \mathbb{R} a fortiori.

Pour $n \in \mathbb{N}$,

$$f\left(-\frac{\pi}{2} + 2n\pi\right) = -e^{-\frac{\pi}{2} + 2n\pi} \xrightarrow[n \to +\infty]{} -\infty$$

donc f n'est pas minorée sur \mathbb{R} .

2. Pour tout $x \in \mathbb{R}$,

$$|g(x)| = \frac{|2\sin x + 3\cos x^2|}{|1 + e^x|}$$

$$= \frac{|2\sin x + 3\cos x^2|}{1 + e^x}$$

$$\leq |2\sin x + 3\cos x^2| \qquad \text{car } e^x \geq 0$$

$$\leq 2|\sin x| + 3|\cos x^2| \qquad \text{par inégalité triangulaire}$$

$$\leq 5$$

Ainsi g est bornée sur \mathbb{R} donc majorée et minorée sur \mathbb{R} .

3. Pour tout $x \in \mathbb{R}$, $1 + \sin x \ge 0$ et $\ln(1 + x^2) \ge 0$ donc $h(x) \ge 0$. Ainsi h est minorée sur \mathbb{R} . De plus, pour tout $n \in \mathbb{N}$,

$$h\left(\frac{\pi}{2} + 2n\pi\right) = 2\ln\left(1 + \left(\frac{\pi}{2} + 2n\pi\right)^2\right) \underset{n \to +\infty}{\longrightarrow} +\infty$$

donc h n'est pas majorée sur \mathbb{R} .

4. Pour tout $x \in \mathbb{R}$, $|i(x)| = e^{-x^2} |\sin x|$. Or pout tout $x \in \mathbb{R}$, $e^{-x^2} \le 1$ et $|\sin x| \le 1$ donc $|i(x)| \le 1$. Ainsi i est bornée sur \mathbb{R} .

- 1. Pour tout $x \in \mathbb{R}$, $f(x) \le 1$ et f(0) = 1 donc f admet un maximum en 0 valant 1. Si m est un minorant de f, alors $m \le \lim_{x \to +\infty} f(x) = 0$. Or f ne prend pas de valeurs négatives donc f n'admet pas de minimum sur \mathbb{R} .
- 2. Une étude de fonction montre que g admet un maximum en e valant $\frac{1}{e}$. Puisque $\lim_{x\to 0^+} f(x) = -\infty$, f n'est pas minorée et n'admet donc pas de minimum sur \mathbb{R} .
- 3. h est clairement positive et h(0) = 0 donc h admet un minimum en 0 valant 0. Une étude de fonction montre que h admet un maximum en $\frac{1}{2}$ valant $\frac{1}{\sqrt{2e}}$.
- **4.** On a $\lim_{x\to 0^+} i(x) = +\infty$ ou encore $\lim_{x\to +\infty} i(x) = +\infty$ donc i n'est pas majorée sur $\mathbb R$: elle n'y admet donc pas de maximum. De plus, i est dérivable sur $\mathbb R_+^*$ et pour tout $x\in\mathbb R_+^*$, $i'(x)=1-\frac{a}{x^2}$. On en déduit que i admet un minimum en \sqrt{a} valant $2\sqrt{a}$.