

On-the-Fly Load Data Value Tracing in Multicores

Mounika Ponugoti, Amrish K. Tewar, and Aleksandar Milenković
ECE Department, The University of Alabama in Huntsville
Email: mp0046@uah.edu

Web: http://lacasa.uah.edu

Outline

- □ Background and Motivation
- □ Proposed Trace Module mlvCFiat
- Experimental Environment
- Results
- Conclusions

- Society increasingly relies on embedded systems: communication, transportation, medicine, military, ...
- Forces shaping embedded systems
 - Technology trends: Integration \uparrow , Miniaturization \uparrow , Cost \downarrow
 - Application trends: Functionality \uparrow , Complexity \uparrow , Mobility \uparrow
 - Market trends: Proliferation \uparrow , Diversification \uparrow , Time-to-market \downarrow
- **Implications**

- SW development cost exceeds 80% of the total cost
- Developers spend 50%-75% of time in debugging; increases as we transition to multicores
- Estimated cost of SW bugs and glitches: \$20-\$60 billion annually
- Need for better tools to help SW/HW developers find bugs faster

Tracing and Debugging Challenges

- What is my system doing now?
- Limited visibility of internal signals
 - High operating frequencies
 - High system complexity
 - Limited bandwidth for debugging
- Traditional approach to debugging
 - Typically done through a JTAG port: stop the processor & examine or change the system state
 - Slow and expensive
 - May change the sequence of events
- Include dedicated on-chip trace and debug infrastructure

□ IEEE Nexus 5001 standard

mlvCFiat

- Class 1: Run-control debugging: run, stop, single-step, examine memory or register contents, set values
- Class 2: Captures controlflow traces in near real time
- Class 3: Captures data traces in near real time
- Class 4: Emulating memory and I/O through a trace port

- □ Software debugger can replay program offline using
 - Instruction set simulator
 - Program binary
 - Initial state of GPRs/SPRs
 - Exception traces and load data value traces
- ☐ For each memory read emit a trace message that includes: [Timestamp, Core ID, Load Data Value]
- Evaluate the average trace port bandwidth [TPB]: the number of bits traced through the trace port
- Metrics: the average bpi and bpc
 - Average bpi = $\frac{Total\ trace\ size\ in\ bits}{Total\ number\ of\ executed\ instructions}$
 - Average bpc = $\frac{Total\ trace\ size\ in\ bits}{Execution\ time\ measured\ in\ clock\ cycles}$

Data Tracing Challenges

Total TPB [bpi]							
N = 1	N = 2	N = 4	N = 8				
12.34	12.63	12.89	13.17				

Total TPB [bpc]						
N = 1	N = 2	N = 4	N = 8			
4.92	8.76	15.61	25.64			

mlvCFiat

- mlvCFiat multicore load value cache first access tracking
 - Hardware/software mechanism for filtering load data value traces
- □ Target platform: L1 data caches are augmented to include first-access tracking bits (FA bits)
- □ Software debugger maintains software copies of L1 data caches
 - Same updating policies, same cache organization as in hardware
 - Instruction set simulator requires load data values from the target platform only for reads that cannot be inferred

- First-access tracking bits track whether a particular sub-block is accessed for the first time
 - Previously reported sub-blocks are not reported again
 - Hardware overhead depends on granularity
- fahCnt: First Access Hit Counter
- Logic for encoding time stamps

Operations On Target Platform

Operations in Software Debugger

Encoding of Trace Messages

- □ In mlvCFiat length of LV field depends on granularity
- Encoding parameters (h0,h1) = (4, 2), (i0, i1) = (2, 2)

Legend:
dCC Clock Cycle (differential enc.)
Ti Thread/Core ID - \[log₂N \] bits
LV Load Value
fahCnt First Access Hit Counter
h0, h1 Chunk Sizes for CC
i0, i1 Chunk Sizes for fahCnt

(b) mlvCFiat baseline encoding (CF_b) (c) mlvCFiat variable encoding (CF_e)

Experimental Environment

Multicore Model

CS16:

L1D/L1I cache size: 16 KB L2 cache size: N*64 KB

CS32:

L1D/L1I cache size: 32 KB L2 cache size: N*128 KB

L1D/L1I hit time: 4 cc

L1D/L1I associativity: 4-way

L2 hit time: 12 cc

L2 associativity: 16-way Cache block size: 32 B

First-access granularity: 4 B

Memory latency: 100 cc

Trace Port Bandwidth [bpi]

- □ NX_b (CS16):
 - 12.34 bpi (N=1)
 - 13.17 bpi (N=8)
- mlvCFiat:
 - CF_b(CS16) 0.88 bpi (N=1), 1.0 bpi (N=8)
 - CF_b(CS32) 0.40 bpi (N=1), 0.71 bpi (N=8)
 - CF_e(CS16) 0.80 bpi (N=1), 0.92 bpi (N=8)
 - CF_e(CS32) 0.37 bpi (N=1), 0.66 bpi (N=8)

Where Do Bits Go?

LV field requires 68 – 78%, dCC requires 13 – 16%, fahCnt 8 – 15%, Ti 0-5% of total trace port bandwidth

Trace Port Bandwidth [bpc]

- □ NX b (CS16)
 - 4.92 bpc (N=1)
 - 25.64 bpc (N=8)

- → mlvCFiat:
 - CF_b(CS16) 0.35 bpc (N=1), 1.95 bpc (N=8)
 - CF_b(CS32) 0.17 bpc (N=1), 1.40 bpc (N=8)
 - CF_e(CS16) 0.32 bpc (N=1), 1.79 bpc (N=8)
 - CF_e(CS32) 0.16 bpc (N=1), 1.29 bpc (N=8)

Speedup (Trace Reduction Ratio)

# Cores		N	=1			N	 =2			N	=4			N	=8	
Mech.	NX_	b.gz	CF	_e	NX_	b.gz	CF _.	_e	NX_	b.gz	CF _.	_e	NX_	b.gz	CF_	_e
Config	Unif	Split	CS16	CS32	Unif	Split	CS16	<i>CS32</i>	Unif	Split	CS16	CS32	Unif	Split	CS16	<i>CS32</i>
barnes	1.4	2.1	6.8	19.1	1.3	1.8	6.7	13.1	1.2	1.7	6.5	10.6	1.3	1.6	6.5	9.0
cholesky	1.7	6.7	8.2	20.4	1.7	3.4	12.5	20.4	1.9	2.3	16.7	25.5	2.5	1.7	25.7	35.1
fft	1.4	1.9	4.2	7.2	1.4	1.8	4.1	7.2	1.3	1.7	4.2	7.3	1.4	1.7	4.2	7.3
fmm	1.9	4.9	24.2	37.8	1.9	3.7	24.1	37.2	1.6	3.0	24.2	36.7	1.6	2.7	24.4	36.6
lu	1.6	5.9	20.5	20.7	1.5	3.6	19.8	21.3	1.4	3.1	19.8	21.2	1.8	3.0	19.2	27.6
radiosity	1.6	3.9	47.7	128.8	1.5	2.4	22.3	27.6	1.4	2.1	22.6	28.4	1.5	1.9	19.8	23.4
radix	2.0	4.2	17.9	24.8	1.8	3.1	8.4	9.6	1.5	2.1	8.1	9.3	1.4	2.0	8.1	9.3
raytrace	1.5	3.9	14.3	44.2	1.5	2.6	12.1	25.4	1.3	2.3	11.4	22.1	1.4	2.1	10.4	17.9
water-ns	1.4	2.7	21.7	47.4	1.4	2.1	20.8	42.8	1.3	1.9	19.7	28.0	1.3	1.9	20.0	26.6
water-sp	1.4	3.0	168.1	210.3	1.4	2.4	158.5	189.4	1.3	2.1	147.3	170.9	1.4	2.0	136.9	156.2
Total	1.5	3.3	15.3	33.4	1.5	2.5	13.7	22.3	1.4	2.1	13.9	21.0	1.5	2.0	14.3	20.1

- Unified NX_b as input to gzip
- Split Two streams (dCC, Ti), (LV) compressed separately

Dynamic Trace Port Bandwidth Analysis

NX_b	(CS16)	CF_e(CS32)			
Avg	Peak	Avg	Peak		
42.7	61.5	2.6	4.9		

NX_b	(CS16)	CF_e(CS32)			
Avg	Peak	Avg	Peak		
43.5	56.4	1.60	6.0		

Conclusions

- Need for trace modules that can guarantee
 - Unobtrusive program tracing in real-time
 - High compression (low trace port bandwidth)
 - Low complexity: narrow trace ports and small trace buffers
- mlvCFiat multicore load value Cache First-access tracking mechanism for filtering load data values
 - Trace out only data cache read misses or data cache read hits that occur for the first-time
 - Relatively low-complexity: only storage for first-access bits
 - Significant reduction in load data value trace: from 15 to 33 times when N = 1 and from 14 to 20 times when N = 8
- Variable encoding mechanism
 - Reduces the trace port bandwidth 8-9% relative to base encoding

