Association Rule

Frequent Pattern Approach

FP Growth Algorithm

- NO candidate Generation
- A divide-and-conquer methodology: decompose mining tasks into smaller ones
- Requires 2 scans of the Transaction DB
- 2 Phase algorithm
 - Phase I
 Construct FP tree (Requires 2 TDB scans)
 - Phase II
 see FP tree (TDB is not used)
 FP tree contains all information about FIs

FP Tree Construction

- Item Prefix Tree
- FI Header Table
- Dependent on ordering of items
- Sort items in decreasing order of support count
 Non FIs are ignored
- Each Tr. is viewed as a list of FIs in descending order of support count

Construct FP-tree from a Transaction DB

TID	Items bought (ord	lered) frequent items	
100	{f, a, c, d, g, i, m, p}	$\{f, c, a, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	min_support = 0.5
300	{b, f, h, j, o}	{ f , b }	
400	$\{\mathbf{b}, \mathbf{c}, \mathbf{k}, \mathbf{s}, \mathbf{p}\}$	$\{\mathbf{c}, \mathbf{b}, \mathbf{p}\}$	
500	{a, f, c, e, l, p, m, n}	{f, c, a, m, p}	

Steps:

- 1. Scan DB once, find frequent 1-itemset (single item pattern)
- 2. Order frequent items in frequency descending order
- 3. Scan DB again, construct FP-tree

Major Steps to Mine FP-tree

- Construct conditional pattern base for each node in the FP-tree
- 2. Construct conditional FP-tree from each conditional pattern-base
- 3. Recursively mine conditional FP-trees and grow frequent patterns obtained so far
 - If the conditional FP-tree contains a single path, simply enumerate all the patterns

Step 1: From FP-tree to Conditional Pattern Base

- Starting at the frequent header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item
- Accumulate all of transformed prefix paths of that item to form a conditional pattern base

Conditional pattern bases			
item	cond. pattern base		
c	f:3		
a	fc:3		
b	fca:1, f:1, c:1		
m	fca:2, fcab:1		
p	fcam:2, cb:1		

Step 2: Construct Conditional FP-tree

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

Mining Frequent Patterns by Creating Conditional Pattern-Bases

Item	Conditional pattern-base	Conditional FP-tree
р	{(fcam:2), (cb:1)}	{(c:3)} p
m	{(fca:2), (fcab:1)}	{(f:3,c:3,a:3)} m
b	{(fca:1), (f:1), (c:1)}	Empty
а	{(fc:3)}	{(f:3, c:3)} a
С	{(f:3)}	{(f:3)} c
f	Empty	Empty

Principles of Frequent Pattern Growth

- Pattern growth property
 - Let α be a frequent itemset in DB, B be α 's conditional pattern base, and β be an itemset in B. Then $\alpha \cup \beta$ is a frequent itemset in DB iff β is frequent in B.
- "abcdef" is a frequent pattern, if and only if
 - "abcde" is a frequent pattern, and
 - "f" is frequent in the set of transactions containing "abcde"

Why Is FP-Growth Fast?

- Our performance study shows
 - FP-growth is an order of magnitude faster than Apriori
- Reasoning
 - No candidate generation, no candidate test
 - Use compact data structure
 - Eliminate repeated database scan
 - Basic operation is counting and FP-tree building

Multiple-Level Association Rules

- Items often form hierarchy.
- •Items at the lower level are expected to have lower support.

•Rules regarding itemsets at appropriate levels could be quite useful.

milk ⇒ bread [20%, 60%]

2% milk \Rightarrow wheat bread [6%, 50%].

Multiple-Level Association Rules

mining multilevel association rules.

2% milk ⇒ wheat bread

2% milk ⇒ bread

Multi-level Association: Uniform Support vs. Reduced Support

- Uniform Support: the same minimum support for all levels
 - + One minimum support threshold. No need to examine itemsets containing any item whose ancestors do not have minimum support
 - Lower level items do not occur as frequently. If support threshold
 - too high ⇒ miss low level associations
 - too low ⇒ generate too many high level associations
- Reduced Support: reduced minimum support at lower levels
 - There are 4 search strategies:
 - Level-by-level independent
 - Level-cross filtering by k-itemset
 - Level-cross filtering by single item
 - Controlled level-cross filtering by single item

Uniform Support

Level 1 min_sup = 5%

Milk

[support = 10%]

Level 2 min_sup = 5%

2% Milk

[support = 6%]

Skim Milk

[**support** = **4**%]

Reduced Support

Level 1 min_sup = 5%

Milk

[support = 10%]

Level 2 min_sup = 3%

2% Milk

[support = 6%]

Skim Milk

[support = 4%]

Multi-level Association: Redundancy Filtering

- Some rules may be redundant due to "ancestor" relationships between items.
- Example
 - milk ⇒ wheat bread [support = 8%, confidence = 70%]
 - 2% milk ⇒ wheat bread [support = 2%, confidence = 72%]
- We say the first rule is an ancestor of the second rule.
- A rule is redundant if its support is close to the "expected" value, based on the rule's ancestor.

Multi-Dimensional Association: Concepts

Single-dimensional rules:

```
buys(X, "milk") \Rightarrow buys(X, "bread")
```

- Multi-dimensional rules: O 2 dimensions or predicates
 - Inter-dimension association rules (no repeated predicates)
 age(X,"19-25") ∧ occupation(X,"student") ⇒ buys(X,"coke")
 - hybrid-dimension association rules (repeated predicates)
 age(X,"19-25") ∧ buys(X, "popcorn") ⇒ buys(X, "coke")
- Categorical Attributes
 - finite number of possible values, no ordering among values
- Quantitative Attributes
 - numeric, implicit ordering among values

Techniques for Mining MD Associations

- Search for frequent k-predicate set:
 - Example: {age, occupation, buys} is a 3-predicate set.
 - Techniques can be categorized by how age are treated.
- 1. Using static discretization of quantitative attributes
 - Quantitative attributes are statically discretized by using predefined concept hierarchies.
- 2. Quantitative association rules
 - Quantitative attributes are dynamically discretized into "bins"based on the distribution of the data.
- 3. Distance-based association rules
 - This is a dynamic discretization process that considers the distance between data points.

Static Discretization of Quantitative Attributes

- Discretized prior to mining using concept hierarchy.
- Numeric values are replaced by ranges.
- In relational database, finding all frequent k-predicate sets will require k or k+1 table scans.
- Data cube is well suited for mining.
- The cells of an n-dimensional cuboid correspond to the predicate sets.
- Mining from data cubes can be much faster.

Quantitative Association Rules

- Numeric attributes are dynamically discretized
 - Such that the confidence or compactness of the rules mined is maximized.

70-80K

60-70K

50-60K

40-50K

30-40K

20-30K

<20K

• 2-D quantitative association rules: $A_{quan1} \land A_{quan2} \Rightarrow A_{cat}$

age(X,"30-34") ∧ income(X,"24K - 48K")

 \Rightarrow buys(X,"high resolution TV")

