CNRS Audition

Alexandre Vigny

Universität Bremen, Germany

March 21, 2023

- \rightarrow 31 years old, born in 1992.
- → PhD defense September 2018 (5 years ago).
- → Living in Bremen, Germany.
- → Master in University Paris Diderot, 2015. Logique Mathématique et Fondement de l'Informatique (LMFI).
- → PhD in University Paris Diderot. (3 years) With Arnaud Durand & Luc Segoufin
- → Post-doc in Warsaw. (1 year) With Szymon Toruńczyk & Mikołaj Bojańczyk
- → Post-doc in Bremen. (3 years) With Sebastian Siebertz

Summary

Area of Research

- → Logic
- → Graph theory
- → Distributed computing

Highlights

- → Publication in J.ACM
- → 2 Upcoming journal papers
- → 9 Conference papers
- \rightarrow Co-organizer of a workshop

PODC-DARe: Distributed Algorithms on

REalistic network models

Summary

Area of Research

- \rightarrow Logic
- → Graph theory
- → Distributed computing

Highlights

- → Publication in LACM
- → 2 Upcoming journal papers
- → 9 Conference papers
- → Co-organizer of a workshop

PODC-DARe: Distributed Algorithms on

RFalistic network models

Teaching

- \rightarrow In Paris (3 years) $\sim 180 h$
- \rightarrow In Bremen (3 years) $\sim 270h$

Highlights

- → Creation of syllabuses
- → Responsible for two courses
- → Including master level

Given a graph G and a property P: "Does G satisfy P?"

 \rightarrow Is G planar?

Algorithmic graph theory

Given a graph G and a property P: "Does G satisfy P?"

- \rightarrow Is G planar?
- \rightarrow Does G have a k-dominating set?

Algorithmic graph theory

Given a graph G and a property P: "Does G satisfy P?"

- \rightarrow Is G planar?
- \rightarrow Does G have a k-dominating set?
- \rightarrow Is G connected?

Goal: Efficient algorithms ...

... at least for restricted graph classes and/or simple properties.

Logic

First-order (FO) logic

- \rightarrow Can express k-independent set: There are k vertices, that are not adjacent $\exists x_1 \ldots \exists x_k \bigwedge_{i < i} (\neg E(x_i, x_j) \land x_i \neq x_j)$
- \rightarrow Cannot express : connectivity, planarity, 2-colorability, ...

Logic

First-order (FO) logic

- \rightarrow Can express k-independent set: There are k vertices, that are not adjacent $\exists x_1 \ldots \exists x_k \bigwedge_{i < i} (\neg E(x_i, x_j) \land x_i \neq x_j)$
- \rightarrow Cannot express : connectivity, planarity, 2-colorability, ...

Monadic second-order (MSO) logic

- \rightarrow More general than FO
- → Can express : 3-colorability: $\exists X_1 \exists X_2 \exists X_3 \ (\forall x \bigvee_{i < 3} x \in X_i) \land (\forall x \forall y \ E(x, y) \rightarrow \bigwedge_{i < 3} (x \notin X_i \lor y \notin X_i))$

Logic & Meta theorems

Problems can be expressed in logic. (FO, MSO,...)

The \mathcal{L} , \mathcal{C} model-checking problem: Given $\varphi \in \mathcal{L}$ and $G \in \mathcal{C}$, does $G \models \varphi$?

Goal: fixed parameter tractable algorithms $O(f(\varphi) \cdot |G|^c)$

Problems can be expressed in logic. (FO, MSO,...)

The \mathcal{L} , \mathcal{C} model-checking problem: Given $\varphi \in \mathcal{L}$ and $G \in \mathcal{C}$, does $G \models \varphi$?

Goal: fixed parameter tractable algorithms $O(f(\varphi) \cdot |G|^c)$

Courcelle's Theorem (1990):

for $\varphi \in MSO$ and treewidth $(G) \leq k$, in time $O(f(\varphi, k) \cdot |G|)$

→ Generalize many known results, ex: Arnborg, Proskurowski 1989: independent sets, dominating sets, graph coloring, Hamiltonian, ... are linear on partial k-tree.

Previously, computation with Turing machine. There are others!

Previously, computation with Turing machine. There are others!

Local model

- → Different notion of efficient
- → Time needed VS Information needed

Previously, computation with Turing machine. There are others!

Local model

- → Different notion of efficient
- → Time needed VS Information needed

Previously, computation with Turing machine. There are others!

Local model

- → Different notion of efficient
- → Time needed VS Information needed

- → Can you decide locally?
- → Still reaching for meta theorems

· ENUMERATION FO QUERIES

-> 1900s 2018 SACM 2022

· ENUMERATION FO QUERIES

-> PODS 2018 SACM 2022

. DISTRIBUTED DOMINATION

ON SPARSE GRAPH CLASSES -> SÍROCCO ZOZI/ZOZZ

-> EUR. J. COMB. (TO APPEAR)

· ENUMERATION FO QUERIES

-> PODS 2018 SACM 2022

• DISTRIBUTED DOMINATION ON SPARSE GRAPH CLASSES

-> SIROCCO ZOZZ/ZOZZ

-> EUR. J. COMB.

PARAMETERIZED DISTRIBUTED COMPLEXITY THEORY: A LOGICAL APPROACH

-> ARXIV

Monotone graph classes

GENERALITY

Monotone graph classes

GENERALITY

Monotone graph classes

FO + conn

Schirrmacher, Siebertz, Vigny '21 and Bojanczyk '21

Syntax

 \rightarrow Uses : FO and $conn_k(x, y, z_1, \dots, z_k)$

Meaning

 $\rightarrow x$ and y are connected after the deletion of z_1, \ldots, z_k .

Expressive power of FO + conn

→ connectivity

$$\forall x \forall y \text{ conn}_0(x, y)$$

→ cycle

$$\varphi_{\textit{cycle}} := \exists x \exists y \exists z (E(x, y) \land E(y, z) \land z \neq x \land \text{conn}_1(z, x, y))$$

→ Not expressible planarity, bipartiteness, Hamiltonicity, ...

Main result

Theorem: Pilipczuk, Schirrmacher, Siebertz, Torunczyk, Vigny

- ightarrow Model-checking for properties in FO + conn over graph classes excluding a topological minor is solvable in time FPT.
- → Model-checking is not FPT for more general graph classes. Under complexity assumptions

Graph theory tools

Cygan, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh '19:

For every G there is a tree decomposition of G such that:

- → Adjacent bags have "small" intersections.
- \rightarrow Every bag is unbreakable.

Unbreakable

 \rightarrow A graph G is (q, k)-unbreakable if for all sets S with $|S| \le k$:

for all separations
$$A, B$$
 of $G \setminus S$ either $|A| \leq q$ or $|B| \leq q$

- → Example 1: Cliques
- \rightarrow Example 2: $m \times m$ grids are (k^2, k) -unbreakable.

Focus

If G is (q, k)-unbreakable, then $conn_k()$ solvable in time O(q + k).

Take x, y, z_1, \ldots, z_k :

- \rightarrow Depth-first search in $G \setminus \{z_1, \ldots, z_k\}$ around x:
 - \rightarrow Stop after q+1 new vertices.
 - 1) Found *y*?
 - 2) Explored the whole component of *x*?
 - 3) Then x is in "The big component".

If G is (q, k)-unbreakable, then $conn_k()$ solvable in time O(q + k).

- \rightarrow Depth-first search in $G \setminus \{z_1, \dots, z_k\}$ around y:
 - \rightarrow Stop after q+1 new vertices.
 - 1) Found *x*?
 - 2) Explored the whole component of *y*?
 - 3) Then y is in "The big component".
- \rightarrow We can conclude $conn_k(x, y, z_1, \dots, z_k)$

Research project

Research project

First (short term) goal: new logics

Beyond FO + conn

- → What can be added?
- → What do we want to express?
- ightarrow Example: a path of even length, using only blue nodes, ...

Keeping in mind algorithmic applications

DENSITY

Characterization of graph classes

Direction on edges

- → More general
- → Problems are harder E.g. Directed Dominating Set is NP-complet on DAGs
- → Some problems do not care about orientation

Reconfiguration problems

- → No need to find a set
- → Here, the orientation matters!

Distributed computing & Certification

Local computing

- → Other notion of efficient
- → Still looking for meta theorems

Compact certification

- → Feuilloley, Bousquet, Pierron What Can Be Certified Compactly? Compact local certification of MSO properties in tree-like graphs. In PODC'22
- → Fraigniaud, Montealegre, Rapaport, Todinca

 A Meta-Theorem for Distributed Certification. In SIROCCO'22

Integration

Bordeaux (LaBRI, UMR 5800)

- → Combinatoire et Algorithmique
 M. Bonamy, A. Casteigts, C. Gavoille
- → Méthodes et Modèles Formels J. Ochremiak, D. Figueira

Lyon (LIRIS, UMR 5205)

→ Graphes, algOrithmes et AppLications (GOAL)
 N. Bousquet, L. Feuilloley and T. Pierron

Montpellier (LIRMM, UMR 5506)

→ Algorithmes, Graphes et Combinatoire (AIGCo)
 D. Thilikos, I. Sau, G. Stamoulis

Thank you!

- → 2019-2023: Postdoc, University of Bremen. With Sebastian Siebertz
- → 2018-2019: Postdoc, University of Warsaw. With Szymon Toruńczyk & Mikołaj Bojańczyk
- ightarrow 2015-2018: Thesis, University Paris Diderot. With Arnaud Durand & Luc Segoufin

Info:

- ightarrow 1 Journal: J.ACM (TOCL & Eur. J. Comb. to appear)
- ightarrow 9 Conferences: ICDT, PODS, MFCSx2, SIROCCOx2, ISSAC, CSL, ICALP.
- → 1 Workshop (co-organizer): https://podc-dare.github.io/.
- → 1 Popularization: La gazette du GDR-IM.