EE230-02 RFIC II Fall 2018

Lecture 4: Impedance Matching

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Series & Parallel Resonance

$$Z(\omega_0) = R$$

$$Z(\omega_0) = R$$

$$Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR}$$

$$|V_L| = |V_C| = Q \cdot |V_{in}|$$

$$I_{in} \bigoplus L \bigoplus C \geqslant R$$

$$Q = \frac{R}{\omega_0 L} = \omega_0 RC$$

$$|I_L| = |I_C| = Q \cdot |I_{in}|$$

Impedance Matching

- Impedance matching is a major problem in highfrequency circuit design.
- It is concerned with matching one part of a circuit to another in order to achieve maximum power transfer between the two parts.

Maximum Power Transfer Theorem

$$Z_{S} = R_{S} + jX_{S}$$
$$Z_{L} = R_{L} + jX_{L}$$

$$Z_L = R_L + jX_L$$

Maximum power is delivered when $R_L = R_S \& X_L = -X_S$

The Problem

Given a load R, find a circuit that can match the driving resistance R' at frequency ω_0 .

Obviously, the matching circuit must contain L and C in order to specify the matching frequency.

Simple Matching

L matching circuit (single LC section) π matching circuit T matching circuit

Impedance Transformation

- RF input and output impedances are standardized at 50 Ω (75 Ω for TV)
- 50 Ω is approximate tradeoff between max.
 power handling capability and min. loss
- On-chip : don't use 50 Ω impedances as large power is needed to drive 50 Ω
- Match at LNA input and PA output

Impedance Matching

Traditional microwave techniques:

λ/4 transformer

$$Z_{in} = \frac{Z_o^2}{Z_L}$$

Stub matching
 Use open and short T-lines to obtain the desired Z_{in}

In RFIC, we use L-matching with lumped components

Series-Parallel Transformation

Neither series nor parallel

Make series-parallel conversion at resonance.

$$R_s + j\omega_0 L_s = \frac{R_p \cdot j\omega L_p}{R_p + j\omega L_p}$$

$$Q_p = \frac{R_p}{\omega_0 L_p} \qquad Q_s = \frac{\omega_0 L_s}{R_s}$$

$$Q_p = Q_s = Q$$

Remember this!

$$R_p = R_s (1 + Q^2)$$

$$L_p = L_s \frac{1 + Q^2}{Q^2}$$

Series-Parallel Transformation

Neither series nor parallel

Make series-parallel conversion at resonance.

$$R_p = R_s (1 + Q^2)$$

$$C_p = \frac{C_s \cdot Q^2}{1 + Q^2}$$

Series-Parallel Transformation

R_p is always larger than R_s

$$R_p = R_s (1 + Q^2)$$

$$X_p = X_s \frac{1 + Q^2}{Q^2}$$

$$L_p = L_s \frac{1 + Q^2}{Q^2}$$

$$C_p = C_s \frac{Q^2}{1 + Q^2}$$

 $R_L = 200 \text{ ohm}$

Transform Equations

$$R_p = R_s(1 + Q^2) \implies Q = \sqrt{\frac{R_p}{R_s} - 1}$$

$$Q = \frac{R_p}{\omega_0 L_p} \qquad \Longrightarrow \quad L_p = \frac{R_p}{\omega_0 Q}$$

$$L_s = L_p \frac{Q^2}{1 + Q^2}$$

$$C = \frac{1}{L_p \omega_o^2}$$

Example:

Match 50 Ω to 200 Ω at 2.4GHz

$$R_s = 50 \Omega$$

 $R_p = 200 \Omega$
 $\omega_0 = 2\pi \cdot 2.4 GHz$

$$Q = \sqrt{\frac{200}{50} - 1} = \sqrt{3} = 1.73$$

$$L_p = \frac{200}{2\pi \cdot 2.4 GHz \cdot 1.73} = 7.67 \ nH$$

$$L_S = 7.67 \frac{1.73^2}{1+1.73^2} = 5.75 \, nH$$

$$C = \frac{1}{7.67\omega_0^2} = 0.573 \text{ pF}$$

 $R_L = 200 \text{ ohm}$

Transform Equations

$$R_p = R_s(1 + Q^2) \implies Q = \sqrt{\frac{R_p}{R_s} - 1}$$

$$Q = \omega_0 C_p R_p \implies C_p = \frac{Q}{\omega_0 R_p}$$

$$C_s = C_p \frac{1 + Q^2}{Q^2}$$

$$L = \frac{1}{C_p \omega_o^2}$$

Example:

Match 50 Ω to 200 Ω at 2.4GHz

$$R_s = 50 \Omega$$

$$R_p = 200 \Omega$$

$$\omega_0 = 2\pi \cdot 2.4 GHz$$

$$Q = \sqrt{\frac{200}{50}} - 1 = \sqrt{3} = 1.73$$

$$C_p = \frac{1.73}{2\pi \cdot 2.4 GHz \cdot 200} = 0.574 \ pF$$

$$C_S = 0.574 \frac{1+1.73^2}{1.73^2} = 0.765 \ pF$$

$$C = \frac{1}{0.574pF \cdot \omega_0^2} = 7.66 \text{ nH}$$

Example:

Match 200 Ω to 50 Ω at 2.4GHz

$$R_s = 50 \Omega$$

$$R_p = 200 \Omega$$

$$\omega_0 = 2\pi \cdot 2.4 GHz$$

$$Q = \sqrt{\frac{R_p}{R_s} - 1} = \sqrt{\frac{200}{50} - 1} = \sqrt{3} = 1.73$$

$$Q = \frac{1}{\omega_0 R_s C_s} \implies C_s = \frac{1}{\omega_0 R_s Q} = \frac{1}{2\pi \cdot 2.4 GHz \cdot 50 \cdot 1.73} = 0.329 \ pF$$

$$C_p = C_s \frac{Q^2}{1 + Q^2} = 0.246 \ pF$$

$$L = \frac{1}{C_s \omega_o^2} = \frac{1}{0.246 p F \cdot \omega_o^2} = 2.46 \text{ nH}$$

Example:

Match 200 Ω to 50 Ω at 5.6GHz

$$R_s = 50 \Omega$$

$$R_p = 200 \Omega$$

$$\omega_0 = 2\pi \cdot 5.6 GHz$$

$$Q = \sqrt{\frac{R_p}{R_s} - 1} = \sqrt{\frac{200}{50} - 1} = \sqrt{3} = 1.73$$

$$Q = \frac{\omega_0 L_S}{R_S} \implies L_S = \frac{QR_S}{\omega_0} = \frac{1.73x50}{2\pi \cdot 5.6GHz} = 2.46 \ nH$$

$$L_p = L_s \frac{Q^2 + 1}{Q^2} = 2.46nH \frac{1.73^2 + 1}{1.73} = 3.28nH$$

$$C = \frac{1}{L_s \omega_o^2} = 0.328 \text{ pF}$$

L-Match Summary

4-types of L-match

Once
$$R_s$$
, R_p , ω_0 \Longrightarrow $Q = \sqrt{\frac{R_p}{R_s} - 1}$ is fixed is known

T-Match

To design for a different Q, i.e. different Bandwidth for a given ω_0 We need another degree of freedom

$$Q = Q_L + Q_R$$

$$= \sqrt{\frac{R_M}{R_{IN}} - 1} + \sqrt{\frac{R_M}{R_L} - 1}$$

$$R_M > R_L$$

$$R_M > R_{IN}$$

π-Match

$$Q = Q_L + Q_R$$

$$= \sqrt{\frac{R_{IN}}{R_M} - 1} + \sqrt{\frac{R_L}{R_M} - 1}$$

$$R_M < R_I$$

$$R_M < R_L$$

 $R_M < R_{IN}$

Criteria in choosing Matching networks

- 1. Q choose between L-match and T- or π -match
- 2. Lowpass or Highpass
- 3. Area
 - Number of components
 - Number of inductors
 - Values of L's and C's

Basic Receiver

Challenges for Receiver

- Amplify weak desired signals
- Remove unwanted signals (interferers)
- Maximize Signal-to-Noise ratio (Minimize noise)

Low Noise Amplifier: increase signal amplitude

Basic Receiver

Filter before LNA

- Reduce interferers & noise for Rx
- Attenuate signal due to insertion loss

Filter after LNA

LNA must deal with all inputs (signal, noise, interferers)

Basic Receiver Types

- Direct conversion (homodyne or Zero IF)
- Intermediate-conversion (heterodyne)
- Two-stage conversion (super-heterodyne)

Filters

- Insertion loss
 - Attenuation in the passband
- Selectivity
 - How well can they select a single channel
 - Measured by quality factor of the filter
- The quality factor is inversely proportional to the fractional bandwidth of the filter
 - Fractional bandwidth is $\Delta f = \frac{BW}{f_c}$ where f_c is the center frequency
 - In order to have a small BW at high f_c , a very high Q filter is needed

Filter Bandwidth

- Filters have a fractional BW
 - ▶ Doesn't change with f_{center} for a given filter type
- The absolute BW does change
- Lower f_{center} results in a narrower absolute BW

Channel Selection

- We have learnt that most communication systems divide the frequency <u>band</u> into several narrower <u>channels</u>
- The receiver should select each channel for detection
 - Need for very sharp filter response (high quality filter)
 - Need for variable filter (Tunnable filter)

RX – Frequency Conversion

 Frequency of a signal can be shifted by multiplying it with another sinusoidal signal

$$x(t) = A \cos \omega_{in} t$$

$$s(t) = \cos \omega_{LO} t$$

$$x(t) \times s(t) = \frac{A}{2} \cos(\omega_{in} - \omega_{LO}) t + \frac{A}{2} \cos(\omega_{in} + \omega_{LO}) t$$

Homodyne Receiver (Zero IF)

- Uses same carrier as Tx to down convert signal
- Provide coherent detection
- Translates spectrum around carrier to DC

Homodyne Receiver

- Benefits:
 - Reduced system complexity
 - Baseband signal is readily available
 - ▶ High-selectivity
- Disadvantages
 - ▶ LO leakage causes self mixing that leads to large DC offset
 - Need to generate a precise coherent LO
- Most practical today due to software radios
 - Baseband is sampled by ADC and mixing, filtering done digitally