SF1694: Föreläsning 1

Vektorer

Definition

En vektor är en storhet som har både storlek och riktning

Norm

Vektorns storlek representeras av *normen*, som noteras följande för en vektor \vec{v} :

 $\|\vec{v}\|$

Den finns med formeln:

$$\|\vec{v}\| = \sqrt{v_x^2 + v_y^2}$$

Komponentform

En vektor kan representeras av dess ortogonala komponenter med följande syntax:

$$\vec{v} = \begin{pmatrix} v_x \\ v_y \end{pmatrix}$$

Parallella vektorer

En vektor \vec{v} är parallell med en vektor \vec{u} omm $t\vec{u} = \vec{v}$ där $t \in \mathbb{R}$

Algebra med vektorer

Låt
$$\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$
 samt $\vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$

Addition

$$\vec{v} + \vec{u} = \begin{pmatrix} v_1 + u_1 \\ \vdots \\ v_n + u_n \end{pmatrix}$$

Subtraktion

$$\vec{v} - \vec{u} = \vec{u} + (-\vec{v})$$

Multiplikation

Skalär-vektor multiplikation

$$\begin{array}{l} \text{Låt } t \in \mathbb{R} \\ t \vec{v} = \begin{pmatrix} t v_1 \\ \vdots \\ t v_n \end{pmatrix} \end{array}$$

Vektor-vektor multiplikation

1. Skalärprodukt

Skalärprodukt noteras med \cdot , och heter just skalärprodukt då svaret är en skalär (\mathbb{R}) Det finns två definitioner för skalärprodukt:

Definition 1.

$$\vec{v} \cdot \vec{u} = \|\vec{v}\| \cdot \|\vec{u}\| \cos(\theta)$$

Där θ är vinkeln mellan \vec{v} och \vec{u} , samt $\theta \in [0, \pi]$

Definition 2.

$$\vec{v}\cdot\vec{u}=v_1u_1+v_2u_2+\ldots+v_nu_n$$

2. Vektorprodukt

Detta gås inte igenom den här föreläsningen.

Projektion

Projektionen av \vec{u} på \vec{v} är vektorn

$$\mathrm{proj}_{\vec{v}}\vec{u} = \vec{u}_v = \frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^2} \cdot \vec{v} = (\vec{u} \cdot \hat{v}) \cdot \hat{v} \text{ där } \hat{v} = \frac{\vec{v}}{\|\vec{v}\|}$$

Definition.

Att \vec{u}_v är *projektionen* betyder att $\vec{u}-\vec{u}_v$ är det kortaste avståndet mellan punkten $P=\left(u_x,u_y\right)$ och linjen parallell med \vec{v} , d.v.s. $(\vec{u}-\vec{u}_v)$ och \vec{u}_v är vinkelräta.