

■ Planning with State-space search

9

- Partial-order planning
- Planning with propositional logic
- Analysis of planning approaches

What is Planning

- ☐ States, actions and goals
- Search for solution over abstract space of plans.
- Classical planning environment: fully observable, deterministic, finite, static and discrete.
- Assists humans in practical applications
 - □ design and manufacturing
 - □ military operations
 - □ games
 - □ space exploration

Difficulty of real world problems

□Which actions are relevant?

□Exhaustive search vs. backward search

□What is a good heuristic functions?

□Good estimate of the cost of the state?

 \square Problem-dependent vs, -independent

☐ How to decompose the problem?

☐Most real-world problems are *nearly* decomposable.

Planning language

- What is a good language?
 - ☐ Expressive enough to describe a wide variety of problems.
 - □ Restrictive enough to allow efficient algorithms to operate on it.
 - $\hfill\square$ Planning algorithm should be able to take advantage of the logical structure of the problem.
- STRIPS and ADL
 - ☐ STanford Research Institute Problem Solver
 - □ Action Description Language

General language features

☐ Propositional literals: Poor ∧ Unknown

□ FO-literals (grounded and function-free): At(Plane1, Melbourne) ∧ At(Plane2, Sydney)

- □ Closed world assumption
- Representation of goals
 - $\hfill \square$ Partially specified state and represented as a $\it conjunction\ of\ positive\ ground$
 - ☐ A goal is *satisfied* if the state contains all literals in goal.

Û

General language features

Representations of actions

☐ Action = PRECOND + EFFECT

Action(Fly(p,from, to),

 $\textit{PRECOND: At(p,from)} \land \textit{Plane(p)} \land \textit{City(from)} \land \textit{City(to)}$

EFFECT: ¬AT(p,from) ∧ At(p,to))

= action schema (p, from, to need to be instantiated)

☐ Action name and parameter list

☐ Precondition (conj. of function-free literals)

 $\hfill \Box$ Effect (conj of function-free literals and P is True and not P is false)

□ Add-list vs delete-list in Effect

Language semantics?

■ How do actions affect states?

□An action is applicable in any state that satisfies the precondition.

□For FO action schema applicability involves a substitution θ for the variables in the PRECOND.

 $At(P1,Melb) \land At(P2,Syd) \land Plane(P1) \land Plane(P2) \land City(Melb)) \land$

Satisfies : $At(p,from) \land Plane(p) \land City(from) \land City(to)$

With $\theta = \{p/P1, from/Melb, to/Syd\}$

Thus the action is applicable.

Language semantics?

■ The result of executing action a in state s is the state s'

□s' is same as s except

 \square Any positive literal P in the effect of a is added to s'

 \square Any negative literal $\neg P$ is removed from s'

EFFECT: ¬AT(p,from) \(\Lambda \) At(p,to):

 $At(P1,Melb) \land At(P2,Syd) \land Plane(P1) \land Plane(P2) \land City(Melb) \land City(Syd)$

□STRIPS assumption: (avoids representational frame

every literal NOT in the effect remains unchanged

Expressiveness and extensions

d

■ STRIPS is simplified

☐ Important limit: function-free literals

☐ Allows for propositional representation

☐ Function symbols lead to infinitely many states and actions

■ Recent extension: Action Description language (ADL)

Action(Fly(p:Plane, from: City, to: City), $PRECOND: At(p, from) \land (from \neq to)$ EFFECT: $\neg At(p, from) \land At(p, to))$

Standardization: Planning domain definition language (PDDL)

Example: air cargo transport

Init(At(C1, Melb) \(\times At(C2,Syd) \(\times At(P1,Melb) \(\times At(P2,Syd) \(\times Cargo(C1) \(\times Cargo(C2) \(\times Plane(P1) \(\times Plane(P2) \(\times City(Syd) \(\times City(Melb) \)

Goal(At(C1,Syd) ∧ At(C2,Melb)) Action(Load(c.p.a)

PRECOND: $At(c,a) \land At(p,a) \land Cargo(c) \land Plane(p) \land City(a)$

EFFECT: ¬At(c,a) ~In(c,p))

Action(Unload(c,p,a)

PRECOND: $In(c,p) \land At(p,a) \land Cargo(c) \land Plane(p) \land City(a)$

EFFECT: At(c,a) ∧ ¬ln(c,p))

Action(Flv(p.from.to)

PRECOND: $At(p,from) \land Plane(p) \land City(from) \land City(to)$

EFFECT: $\neg At(p,from) \land At(p,to)$)

[Load(C1,P1,Melb), Fly(P1,Melb,Syd), Load(C2,P2,Syd), Fly(P2,Syd,Melb)]

Example: Spare tire problem

PRECOND: At(Spare, Trunk)

EFFECT: ¬At(Spare, Trunk) ^ At(Spare, Ground))

Action(Remove(Flat,Axle)

PRECOND: At(Flat, Axle)

FFFFCT: ¬At(Flat.Axle) \(\triangle At(Flat.Ground)) Action(PutOn(Spare,Axle)

PRECOND: At(Spare, Groundp) A-At(Flat, Axle) EFFECT: At(Spare,Axle) A ¬At(Spare,Ground))

Action(LeaveOvernight PRECOND:

EFFECT: \neg Al(Spare, Ground) $\land \neg$ Al(Spare, Axle) $\land \neg$ Al(Spare, trunk) $\land \neg$ Al(Flat, Ground) $\land \neg$ Al(Flat, Axle)

nple goes beyond STRIPS: negative literal in pre-condition (ADL description)

Example: Blocks world Init(On(A, Table) \land On(B, Table) \land On(C, Table) \land Block(A) \land Block(B) \land Block(C) \land Clear(A) \land Clear(B) \land Clear(C)) Goal(On(A,B) \land On(B,C)) Action(Move(b,x,y) PRECOND: On(b,x) \land Clear(b) \land Clear(y) \land Block(b) \land (b \neq x) \land (b \neq y) \land (x \neq y) EFFECT: On(b,y) \land Clear(x) \land \neg On(b,x) \land \neg Clear(y)) Action(MoveTo Table(b,x) PRECOND: On(b,x) \land Clear(b) \land Block(b) \land (b \neq x) EFFECT: On(b,Table) \land Clear(x) \land \neg On(b,x)) Spurious actions are possible: Move(B,C,C)

Heuristics for state-space search

- Neither progression or regression are very efficient without a good heuristic.
 - ☐ How many actions are needed to achieve the goal?
 - □ Exact solution is NP hard, find a good estimate
- Two approaches to find admissible heuristic:
 - $\hfill\square$ The optimal solution to the relaxed problem.
 - ☐ Remove all preconditions from actions
 - ☐ The subgoal independence assumption:

The cost of solving a conjunction of subgoals is approximated by the sum of the costs of solving the subproblems independently.

Partial-order planning

- Progression and regression planning are totally ordered plan search forms.
 - ☐ They cannot take advantage of problem decomposition.
 - □ Decisions must be made on how to sequence actions on all the subproblems
- Least commitment strategy:
 - □ Delay choice during search

Shoe example

Init()

Action(LeftSock,

Action(RightShoe, PRECOND: RightSockOn

EFFECT: RightShoeOn)

Action(RightSock, PRECOND:

EFFECT: RightSockOn)
Action(LeftShoe, PRECOND: LeftSockOn

EFFECT: LeftShoeOn)
PRECOND:

EFFECT: LeftSockOn)

Planner: combine two action sequences (1)leftsock, leftshoe (2)rightsock, rightshoe

Partial-order planning(POP)

Any planning algorithm that can place two actions into a plan without which comes first is a PO plan.

- ☐ The empty plan contains only start and finish actions.
- Each plan has 4 components:
 - ☐ A set of actions (steps of the plan)
 - ☐ A set of ordering constraints: A < B (A before B)
 - \square Cycles represent contradictions.
 - \square A set of causal links $A \xrightarrow{p} B$
 - ☐ The plan may not be extended by adding a new action C that conflicts with the causal link. (if the effect of C is ¬p and if C could come after A and before B)
 - \square A set of open preconditions.
 - ☐ If precondition is not achieved by action in the plan.

Example of final plan

- Actions={Rightsock, Rightshoe, Leftsock, Leftshoe, Start, Finish}
- Orderings={Rightsock < Rightshoe; Leftsock < Leftshoe}
- Links={Rightsock->Rightsockon -> Rightshoe, Leftsock->Leftsockon-> Leftshoe, Rightshoe->Rightshoeon->Finish, ...}
- Open preconditions={}

POP as a search problem

- A plan is *consistent* iff there are no cycles in the ordering constraints and no conflicts with the causal
- A consistent plan with no open preconditions is a solution.
- A partial order plan is executed by repeatedly choosing any of the possible next actions.
 - □This flexibility is a benefit in non-cooperative environments.

Solving POP

- Assume propositional planning problems:
 - ☐ The initial plan contains Start and Finish, the ordering constraint Start < Finish, no causal links, all the preconditions in Finish are open.
 - □ Successor function :
 - \square picks one open precondition p on an action B and
 - ☐ generates a successor plan for every possible consistent way of choosing action A that achieves \dot{p} .
 - □ Test goal

Enforcing consistency

- When generating successor plan:
 - \Box The causal link $A \rightarrow p \rightarrow B$ and the ordering constraint A < B is added to the plan.
 - □If A is new also add start < A and A < B to the plan
 - □Resolve conflicts between new causal link and all existing actions
 - □Resolve conflicts between action A (if new) and all existing causal links.

Process summary

- Operators on partial plans
 - ☐ Add link from existing plan to open precondition.
 - ☐ Add a step to fulfill an open condition.
 - ☐ Order one step w.r.t another to remove possible conflicts
- Gradually move from incomplete/vague plans to complete/correct plans
- Backtrack if an open condition is unachievable or if a conflict is irresolvable.

Example: Spare tire problem

Init(At(Flat, Axle) ∧ At(Spare,trunk)) Goal(At(Spare, Axle)) Action(Remove(Spare, Trunk)

PRECOND: At(Spare, Trunk)

EFFECT: ¬At(Spare, Trunk) ∧ At(Spare, Ground))

Action(Remove(Flat,Axle)

PRECOND: At(Flat,Axle)

EFFECT: ¬At(Flat, Axle) ^ At(Flat, Ground)) Action(PutOn(Spare,Axle)

PRECOND: At(Spare, Groundp) A-At(Flat, Axle) EFFECT: At(Spare,Axle) A ¬Ar(Spare,Ground))

Action(LeaveOvernight PRECOND:

 $EFFECT: \neg Al(Spare, Ground) \land \neg Al(Spare, Axle) \land \neg Al(Spare, Irunk) \land \neg Al(Flat, Ground) \land \neg Al(Flat, Axle))$

Planning with propositional logic

- Planning can be done by proving theorem in situation calculus.
- Here: test the *satisfiability* of a logical sentence:

initial state \land all possible action descriptions \land goal

- Sentence contains propositions for every action occurrence.
 - $\hfill \square$ A model will assign true to the actions that are part of the correct plan and false to the others
 - ☐ An assignment that corresponds to an incorrect plan will not be a model because of inconsistency with the assertion that the goal is true.
 - ☐ If the planning is unsolvable the sentence will be unsatisfiable.

Analysis of planning approach

- Planning is an area of great interest within Al
 - ☐ Search for solution
 - ☐ Constructively prove a existence of solution
- Biggest problem is the combinatorial explosion in states.
- Efficient methods are under research

 □ E.g. divide-and-conquer

