Alumno: NL:

Duración: dos horas. Una condición suficiente de aprobación es la resolución completa y justificada de dos ejercicios cualesquiera No se consideran cálculos dispersos o sin comentarios, ni diagramas sin la identificación completa de sus elementos.

1. En el conjunto $B = \{\alpha, a, b, c, d, e, f, \omega\}$ donde se ha introducido un orden parcial (\leq) que produce el diagrama de Hasse de la figura, se definen las operaciones suma $x + y \stackrel{\text{def}}{=} \sup(x, y)$ y producto $xy \stackrel{\text{def}}{=} \inf(x, y)$.

Definir una operación unaria $':B\to B$ y los elementos ${\bf 0},{\bf 1}$ en B de modo que la séxtupla $(B,+,\cdot\,,',{\bf 0},{\bf 1})$ resulte un álgebra de Boole y determinar todas sus subálgebras de Boole. Hallar además todos los x pertenecientes a B que satisfacen las tres siguientes condiciones:

$$\begin{cases} ax' \le b \\ b'x + c = \omega \\ fx + e'x' + dx \ge \alpha \end{cases}$$

- 2. Para cualquier natural n hay 4^n palabras de longitud n construidas con los cuatro dígitos 0, 1, 2, 3. Plantear y resolver la ecuación de recurrencia para determinar la cantidad x_n de palabras de longitud n, de esos cuatro dígitos, que tienen una cantidad impar de unos. Ahora probar por inducción que, para cualquier natural n mayor que 4, se verifica: $x_n > 3^n$.
- 3. Probar que si \mathcal{S} y \mathcal{T} son dos relaciones binarias en A, se cumple $(\mathcal{S} \circ \mathcal{T})^{-1} = \mathcal{T}^{-1} \circ \mathcal{S}^{-1}$ y mostrar (exhibiendo las operaciones parciales) el cumplimiento de la igualdad para las relaciones en el conjunto $A = \{a_1, a_2, a_3, a_4\}$ definidas por los digraphs de la figura. Para la clausura transitiva ¿vale que $(\mathcal{S} \circ \mathcal{T})^* = \mathcal{T}^* \circ \mathcal{S}^*$?

4. Sean A,B,C tres subconjuntos fijos del universal I. Determinar las condiciones necesarias y suficientes sobre A,B,C para que tenga solución el sistema de ecuaciones en la incógnita $X\subset I$ dado por $AX'\subset B,B'X+C=I$ y resolverlo (en función de A,B,C,I). En particular, dar la solución minimal para $I=\{1,2,3,4,6,8,9,12,18\}$ ordenado con $x\leq y$ sii $x\mid y, A=\{x\in I:6\leq x\}, B=\{x\in I:x\leq x+3\}, C=\{x\in I:x+1\leq 12\}$ y determinar si es acotada.