

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

2025-07-08

ICLR 2014

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio

Content

- □ Introduction
 - What is a Recurrent Neural Network?
 - Types of a Recurrent Neural Network
 - Long-Term Dependency Problem
- □ Gated Recurrent Neural Networks
 - Long Short-Term Memory (LSTM)
 - Gated Recurrent Unit (GRU)
- Experiments
- □ Conclusion

What is a Recurrent Neural Network?

- □ An extension of a conventional feedforward neural network, which is able to handle a variable-length sequence input
 - Text, Music, Stock price, ...

What is a Recurrent Neural Network?

$$\square \ x = (x_1, x_2, \dots, x_T)$$

Input sequence

- $\Box h_t = g(Ux_t + Wh_{t-1})$
 - Recurrent hidden state (state vector)
 - Contain information about the history of all the past elements of the sequence

$$\square \ y = (y_1, y_2, \dots, y_T)$$

Output (optional)

Types of Recurrent Neural Networks

- ☐ Many to One
 - \blacksquare e.g., Emotional analysis

Types of Recurrent Neural Networks

- ☐ Many to Many
 - e. g., Named Entity Recognition

Types of Recurrent Neural Networks

- ☐ One to Many
 - \blacksquare e.g., Image Captioning

Long-Term Dependency Problem

- □ Difficult to train RNNs to capture Long-Term Dependencies
 - The gradients tend to either vanish or explode

Long-Term Dependency Problem

- □ Solution
 - Devise a better learning algorithm
 - \Box e.g., Clip gradients above a given threshold

Long-Term Dependency Problem

- ☐ Solution
 - Use gate units
 - ☐ Perform well in tasks that require capturing long-term dependencies

Long Short-Term Memory (LSTM)

☐ Memory cell

- Explicitly store information up to this time
- Updated by
 - 1) Partially forgetting the existing memory
 - 2) Adding a new memory content

□ Output

- The activation of the LSTM unit

Long Short-Term Memory (LSTM)

- □ Forget gate
 - Modulate the extent to which the existing memory is forgotten

- □ Input gate
 - Modulate the degree to which the new memory content is added to the memory cell
- □ Output gate
 - Modulate the amount of memory content exposure

Gated Recurrent Unit (GRU)

- ☐ Have no separate memory cells
- ☐ Linear interpolation
 - \blacksquare The previous activation h_{t-1}^j
 - lacksquare The candidate activation $ilde{h}_t^j$

Gated Recurrent Unit (GRU)

- □ Update gate
 - Decide how much the unit updates its activation, or content

$$z_t^j = \sigma(W_z x_t + U_z h_{t-1})^j$$

□ Reset gate

- Determine the percentage of oblivion to past information based on
 - 1) Information of the current timestamp
 - 2) Past information

Gated Recurrent Neural Networks

- □ Similarities
 - Keep the existing content and add the new content on top of it
- Differences
 - Control of the amount of information to the next timestamp
 - Oblivion and renewal of information
- □ Advantages
 - Easy for each unit to remember the existence of a specific feature in the input stream
 - Reduce the difficulty due to vanishing gradients via the addition

- □ Tasks
 - Sequence modeling
 - ☐ Aim at learning a probability distribution over sequences
 - → Maximize the log-likelihood of a model!
 - $\square \max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \log p(x_t^n | x_1^n, \dots, x_{t-1}^n; \theta)$

Datasets

- Music Datasets
 - Polyphonic music modeling
 - ☐ Nottingham, JSB Chorales, MuseData, Piano-midi
- Ubisoft Datasets
 - □ Speech signal modeling
 - ☐ Ubisoft A, Ubisoft B

- ☐ Models
 - Make models have approximately the same number of parameters

Unit	# of Units	# of Parameters				
Polyphonic music modeling						
LSTM	36	$\approx 19.8 \times 10^3$				
GRU	46	$\approx 20.2 \times 10^3$				
anh	100	$\approx 20.1 \times 10^3$				
Speech signal modeling						
LSTM	195	$\approx 169.1 \times 10^3$				
GRU	227	$\approx 168.9 \times 10^3$				
anh	400	$\approx 168.4 \times 10^3$				

Table 1: The sizes of the models tested in the experiments.

- ☐ The average negative log-probabilities of the training and test sets
 - GRU-RNN outperformed all the others on all the datasets except for the Nottingham

			tanh	GRU	LSTM
Music Datasets	Nottingham	train	3.22	2.79	3.08
		test	3.13	3.23	3.20
	JSB Chorales	train	8.82	6.94	8.15
		test	9.10	8.54	8.67
	MuseData	train	5.64	5.06	5.18
		test	6.23	5.99	6.23
	Piano-midi	train	5.64	4.93	6.49
-	T failo-filldi	test	9.03	8.82	9.03
Ubisoft Datasets	Ubisoft dataset A	train	6.29	2.31	1.44
		test	6.44	3.59	2.70
	Ubisoft dataset B	train	7.61	0.38	0.80
		test	7.62	0.88	1.26

☐ Learning curves of the best validation runs

Conclusion

- What is a Recurrent Neural Network?
 - Address sequence data
 - Many to One, Many to Many, One to Many
 - Long-Term Dependency Problem
- ☐ Gated Recurrent Neural Network
 - Use several gates to catch long term dependencies
- Experiments
 - Gated Neural Networks outperform traditional RNN