Prim's

Minimum Spanning Tree

A spanning tree of a graph is a tree that has all the vertices of the graph connected by some edges.

A graph can have one or more number of spanning trees.

If the graph has **N vertices** then the spanning tree will have **N-1 edges**.

A minimum spanning tree (MST) is a spanning tree that has the minimum weight than all other spanning trees of the graph.

PRIMS ALGORITHM

Here is our graph

And this represents the weight of the edge

This represents an edge

Step 1: Remove all the loops

Note! Any edge that 11 starts and ends at the same Loop vertex is a loop. 10 Loop

Step 2: Remove all parallel edges between two vertex except the one with least weight

Note!
In this graph, vertex A and C are connected by two parallel edges having weight 10 and 12 respectively.
So, we will remove 12 and keep 10.

Step 3: Create table

As our graph has 4 vertices, so our table will have 4 rows and 4 columns

These are the columns Α В Note! Α Row and Column В name is same as the name of the vertex. These are the rows And this represent a cell CD. Where C is the Row name and 11 D is the column name. Similarly, this represent a cell DB. Where D is the Row name 5 and B is the column name.

		Α	В	С	D
We will now fill the other cells.	Α	0			
	В		0		
	С			0	
	D				0

Now, put 0 in cells having same row and column name.

Find the edge that directly connects vertex A and C.

In this case, we have an edge of weight 10 that directly connect A and C.

Find the edge that directly connects vertex A and D.

∞ denotes Infinity.

So we will write ∞

in the cell AD and

DA.

Α

В

D

In this case, we don't have an edge that directly connects A and

Find the edge that directly connects vertex B and C.

In this case, we have an edge of weight 4 that directly connect B and C.

Find the edge that directly connects vertex B and D.

In this case, we have an edge of weight 11 that directly connect B and D.

DC.

Find the edge that directly connects vertex C and D.

In this case, we have an edge of weight 5 that directly connect C and D.

Our table is completely filled, so our next job is to find the MST.

As we connected vertex A and B in the previous step, so we will now find the smallest value in the A-row and B-row.

Note!
We will not
consider 0 as it will
correspond to the
same vertex.

the A-row and B-row.
So, we will mark

4 is the smallest

unmarked value in

Smallest value in cell BC

So, we will mark the edge connecting vertex B and C As vertex A-B and B-C were connected in the previous steps, so we will now find the smallest value in A-row, B-row and C-row.

5 is the smallest unmarked value in the A-row, B-row and C-row.

So, we will mark the edge connecting vertex C and D

Tick 5 in CD and DC cell.

Note!
We will not
consider 0 as it will
correspond to the
same vertex.

Smallest value in cell CD

As we have marked all the 4 vertices, so we will stop here.

Note!
A spanning tree with
4 vertices will have 3
edges.

Our required Minimum Spanning Tree (MST) is

Weight of the MST

= 5+4+5

= 14 unit

Prims Algorithm Example

Vt → Represents the vertices that are already Visited.

Et → Represents all the edges that are already visited.

V belongs to set of visited vertex.
U belongs to set of unvisited vertex.

Add new vertex {U} to visited vertex Vt

Add new edge e to visited edge.

Algorithm Prim(G) Vt \leftarrow {v0} //Set of visited vertices Et $\leftarrow ^{\phi}$ for i ← 1 to |V| -1 do find minimum edge e between vertices v and u such that v is in Vt and u is in V - Vt //Add u to Vt $Vt \leftarrow Vt \cup \{u\}$ //Add the edge to the spanning tree Et \leftarrow Et U $\{e\}$

Prims Algorithm

Prims Algorithm

ANALYSIS

Prim's Algorithm produces a minimum spanning tree of G.

Proof.

- For Prim's Algorithm, it is also very easy to show that it only adds edges belonging to every minimum spanning tree.
- Indeed, in each iteration of the algorithm, there is a set $S \subseteq V$ on which a partial spanning tree has been constructed, and a node v and edge e are added that minimize the quantity
- min $e=(u,v):u\in S$ ce.
- By definition, e is the cheapest edge with one end in S and the other end in V-S, and so by the Cut Property (4.17) it is in every minimum spanning tree.
- It is also straightforward to show that Prim's Algorithm produces a spanning tree of *G*, and hence it produces a minimum spanning tree.