CLAIMS

WHAT IS CLAIMED IS:

1	1. A method of aligning a first waveguide and a second waveguide, the first and
2	second waveguides each having a core, the first and second waveguides comprised of
3	dissimilar materials, the method comprising:
4	applying a first alignment dot to an end surface of the core of the first
5	waveguide;
6	applying a second alignment dot to an end surface of the core of the second
7	waveguide;
8	positioning the first alignment dot in proximity to the second alignment dot;
9	and
10	melting the first and second alignment dots together.
1	2. The method of claim 1, wherein the first waveguide is an optical fiber.
1	3. The method of claim 1, wherein the second waveguide is a planar waveguide.
1	4. The method of claim 1, wherein applying the first alignment dot to an end
2	surface of the core of the first waveguide further comprises:
3	applying a photo sensitive optical material to an end surface of the first
4	waveguide;

. 5	exposing the photo sensitive optical material to a light beam traveling
6	through the core of the first waveguide, the light beam having a
7	wavelength that cures the photo sensitive optical material to create a
8	first portion of the photo sensitive optical material that is cured and a
9	second portion of the photo sensitive optical material that is not cured;
10	removing the second portion of the photo sensitive optical material that is
11	not cured.
1	5. The method of claim 4, wherein removing the second portion of the photo
2	sensitive optical material that is not cured further comprises:
3	using a solvent to remove the second portion of the photo sensitive optical
4	material that is not cured.
1	6. The method of claim 4, wherein removing the second portion of the photo
2	sensitive optical material that is not cured further comprises:
3	using an etch to remove the second portion of the photo sensitive optical
4	material that is not cured.
1	7. The method of claim 1, wherein applying the first alignment dot to an end
2	surface of the core of the first waveguide further comprises:
3	applying a mask to an end surface of the first waveguide;
4	ablating a portion of the mask by exposing the mask to a high energy light
5	beam traveling through the core of the first waveguide to create a mask
6	opening; and

7	filling the mask opening with an optical material to form the first alignment
8	dot.
1	8. The method of claim 7 further comprising:
2	removing the mask from the end surface of the first waveguide.
1	9. The method of claim 1, wherein the first alignment dot comprises a polymer, a
2	sol-gel, or a glass.
1	10. The method of claim 1 further comprising:
2	using alignment dots to align an array of optical waveguides.
1	11. A method of aligning an optical fiber to a planar waveguide, the optical fiber
2	and the planar waveguide each having a core, the method comprising:
3	applying a first alignment dot to an end surface of the core of the optical
4	fiber;
5	applying a second alignment dot to an end surface of the core of the planar
6	waveguide;
7	coupling the first alignment dot to the second alignment dot; and
8	melting the first and second alignment dots together.
1	12. The method of claim 11 further comprising:
2	allowing the optical fiber or the planar waveguide to move while melting the
3	first and second alignment dots together.

1	13. The method of claim 12 further comprising:
2	applying an additional bonding agent between or around the optical fiber and
3	the planar waveguide.
1	14. The method of claim 11, wherein the first alignment dot comprises a polymer,
2	a sol-gel, or a glass.
1	15. The method of claim 11, wherein the second alignment dot comprises a
2	polymer, a sol-gel, or a glass.
1	16. A method of aligning a first waveguide and a second waveguide, the first
2	waveguide having a core, the core of the first waveguide having a first alignment dot
3	attached to it, the second waveguides having a core, the core of the second waveguide
4	having a second alignment dot attached to it, the first and second waveguides having
5	different cross-sectional shapes, the method comprising:
6	positioning the first alignment dot in proximity to the second alignment dot;
7	and
8	melting the first and second alignment dots together.
1	17. The method of claim 16 further comprising:
2	allowing the first waveguide or the second waveguide to move while melting
3	the first and second alignment dots together.

1	18. The method of claim 17 further comprising:
2	applying a bonding agent over the first and second alignment dots to better
3	adhere the first and second waveguides together.
1	19. The method of claim 17 further comprising:
2	applying a curable polymer over the first and second alignment dots to better
3	adhere the first and second waveguides together.
1	20. The method of claim 17 further comprising:
2	using alignment dots to align multiple waveguides at substantially the same
3	time.
1	21. The method of claim 20 further comprising:
2	using the alignment dots to align a fiber ribbon.
1	22. A method of forming a self-aligning alignment dot on an end surface of a
2	waveguide, the method comprising:
3	applying a mask to an end surface of the waveguide;
4	ablating a portion of the mask by exposing the mask to a high energy light
5	beam traveling through the waveguide to create a mask opening; and
6	filling the mask opening with an optical material.
1	23. The method of claim 22 further comprising:
2	removing the mask from the end surface of the waveguide.

1	24. The method of claim 22, wherein ablating a portion of the mask further
2	comprises:
3	ablating the portion of the mask with an ablating light.
1	25. The method of claim 24 further comprising:
2	coupling an optical probe to the waveguide to provide the ablating light.
1	26. The method of claim 25 further comprising:
2	positioning the optical probe in a probe region above the waveguide, the
3	probe region having a waveguide upper cladding that has been at least
4	partially removed.
1	27. The method of claim 25 further comprising:
2	positioning the optical probe in a probe region above the waveguide, the
3	probe region having an upper cladding of approximately 0-3 microns.
1	28. The method of claim 25, wherein the ablating light is an UV light.
1	29. The method of claim 22, wherein the waveguide is an optical fiber.
1	30. The method of claim 29 further comprising:
2	aligning a far end of the optical fiber to a light source;

3	forming the self-aligning alignment dot on an opposite end of the optical
4	fiber;
5	cutting off a segment of optical fiber with the self-aligning alignment dot;
6	and
7	forming another self-aligning alignment dot on the opposite end of the
8	optical fiber without re-aligning the far end of the optical fiber.
1	31. The method of claim 22, wherein the waveguide is a planar waveguide.
1	32. The method of claim 22, wherein the optical material comprises a polymer or
2	a sol-gel.
1	33. A method of forming a self-aligning alignment dot on an end surface of a
2	waveguide, the method comprising:
3	applying a photo sensitive optical material to an end surface of the
4	waveguide;
5	exposing the photo sensitive optical material to a light beam traveling
6	through the waveguide, the light beam having a wavelength that cures
7	the photo sensitive optical material to create a cured portion of the
8	photo sensitive optical material and an uncured portion of the photo
9	sensitive optical material; and
10	removing the uncured portion of the photo sensitive optical material.

1	34. The method of claim 33, wherein removing the uncured portion of the photo
2	sensitive optical material further comprises:
3	using a solvent to remove the uncured portion of the photo sensitive optical
4	material.
1	35. The method of claim 34, wherein removing the uncured portion of the photo
2	sensitive optical material further comprises:
3	using an etch to remove the uncured portion of the photo sensitive optical
4	material.
1	36. The method of claim 33 further comprising:
2	coupling an optical probe to the waveguide to provide the light beam
3	traveling through the waveguide.
1	37. The method of claim 33, wherein the waveguide is an optical fiber.
1	38. The method of claim 37 further comprising:
2	aligning a far end of the optical fiber to a light source;
3	forming the self-aligning alignment dot on an opposite end of the optical
4	fiber;
5	cutting off a segment of optical fiber with the self-aligning alignment dot;
6	and
7	forming another self-aligning alignment dot on the opposite end of the
8	optical fiber without re-aligning the far end of the optical fiber.

- 1 39. The method of claim 37, wherein the waveguide is a planar waveguide.
- 1 40. The method of claim 33, wherein the photo sensitive optical material
- 2 comprises a polymer or a sol-gel.