

FOUNDATIONS OF STATISTICAL ANALYSIS & MACHINE LEARNING

Amric Trudel

amric.trudel@epita.fr

COURSE PROGRAM

Structure

PREPARATION	Data exploration				
	Data preprocessing				
DECRESSION	Linear regression with one variable				
REGRESSION	Multiple and polynomial regression				
	Logistic regression				
CLASSIFICATION	Classification model assessment				
	k-NN, Decision Tree, SVM				
CLUSTERING	k-means, hierarchical clustering				
DIMENSIONALITY REDUCTION	Principal Components Analysis				
ALL NOTIONS	Final assignment				

Problem statement

Target = Categories (Discrete values)

General approach

- 1. Get some intuition from data inspection (visualization, correlation, etc.)
- 2. Choose a model
- 3. Find the parameters that minimize a criteria (cost function)
- 4. Evaluate the performance

Data inspection

Distribution comparison

Distribution visualization

Model choice

- Logistic regression
- Discriminant analysis
- k-Nearest Neighbors
- Decision Tree
- Support Vector Machines
- •
- Data transformation

Performance evaluation

- Confusion matrix
- Accuracy, precision, recall
- ROC curve, AUC

Model definition

• Rather than modeling the response *Y* directly, the objective is to model the probability that *Y* belongs to a particular category.

Model definition

• The linear regression model is not (directly) usable here:

$$p(x) = \beta_0 + \beta_1 x$$

Model definition

- We encapsulate the function $z = \beta_0 + \beta_1 x$ so to map [0,1].
- Logistic function: $p(x) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$

Model fitting

- Maximum Likelihood Method: $\hat{\beta}_0$ and $\hat{\beta}_1$ are chosen such that the predicted probability $\hat{p}(x_i)$ of the response for each individual corresponds as closely as possible to the individuals's observed response status.
- Sample elements are assumed to be independent Bernoulli variables:

$$Y = \begin{cases} 1, & \text{with probability} & p \\ 0, & \text{with probability} & 1 - p \end{cases}$$

or equivalently:

$$P[Y = y] = p^y (1 - p)^{1-y} \text{ with } y \in \{0,1\}$$

Model fitting

• Likelihood function to maximize: $L(\beta_0, \beta_1) = \prod_{i=1}^m p(x_i)^{y_i} (1 - p(x_i))^{1-y_i}$

with
$$p(x_i) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_i)}}$$

$$L(\beta_0, \beta_1) = (1 - p(x_1)) \times (1 - p(x_2)) \times p(x_3) \times (1 - p(x_4)) \times p(x_5) \times \cdots$$

Model fitting

• Cost function:
$$J(\beta_0, \beta_1) = -\frac{1}{m} \sum_{i=1}^{m} Y_i \log(p(x_i)) + (1 - Y_i) \log(1 - p(x_i))$$

- Optimization method: Gradient Descent
- Arbitrary start $(\hat{\beta}_0, \hat{\beta}_1)$
- Computation of the gradient at that position to determine the position (direction + range) of the next position
- Iteration until a stopping criterion is reached

Python implementation

Feature scaling is important for classification!

• Training the model:

```
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression()
classifier.fit(X_train, y_train)
```

Using the model for predicting:

```
y_proba = classifier.predict_proba(X_test) # probabilities
y_pred = classifier.predict(X_test) # class predictions
```

Example of implementation

- Data set: user profiles and sales information
- Objectives:
 - Train a logistic regression to predict purchase based on profile information

	Purchased	EstimatedSalary	Age	Gender	User ID	
,	no	19000	19	Male	15624510	1
,	no	20000	35	Male	15810944	2
,	no	43000	26	Female	15668575	3
,	no	57000	27	Female	15603246	4
,	no	76000	19	Male	15804002	5
,	no	58000	27	Male	15728773	6
,	no	84000	27	Female	15598044	7
	yes	150000	32	Female	15694829	8
,	no	33000	25	Male	15600575	9
,	no	65000	35	Female	15727311	10
	no	80000	26	Female	15570769	11
1	no	52000	26	Female	15606274	12
,	no	86000	20	Male	15746139	13

Student practice

- Data set: breast cancer diagnosis based on tumor characteristics
- Objectives:
 - Train logistic regressions
 - Visualize results (probability, predictions)

mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension
14.69	13.98	98.22	656.1	0.10310	0.18360	0.14500	0.06300	0.2086	0.07406
13.17	18.66	85.98	534.6	0.11580	0.12310	0.12260	0.07340	0.2128	0.06777
12.95	16.02	83.14	513.7	0.10050	0.07943	0.06155	0.03370	0.1730	0.06470
18.31	18.58	118.60	1041.0	0.08588	0.08468	0.08169	0.05814	0.1621	0.05425
15.13	29.81	96.71	719.5	0.08320	0.04605	0.04686	0.02739	0.1852	0.05294
16.16	21.54	106.20	809.8	0.10080	0.12840	0.10430	0.05613	0.2160	0.05891
19.19	15.94	126.30	1157.0	0.08694	0.11850	0.11930	0.09667	0.1741	0.05176
18.08	21.84	117.40	1024.0	0.07371	0.08642	0.11030	0.05778	0.1770	0.05340

benign
malignant
benign
malignant
malignant
malignant
malignant
malignant
malignant

Foundations of Statistical Analysis & Machine Learning - Amric Trudel- EPITA