

THÉORIE DES BASES DE DONNÉES ET DE CONNAISSANCES HAI933I

Jean-François BAGET (Inria)

David CARRAL (Inria)

Marie-Laure MUGNIER (Univ. Montpellier)

Equipe GraphIK (LIRMM & Inria)

https://team.inria.fr/graphik/

PROBLÈME CENTRAL : INTERROGATION DE BASES DE CONNAISSANCES

Exploiter les connaissances du domaine modélisé lors de l'accès aux données

Requête Q

Formalisation en logique du premier ordre

Ontologie décrite par un langage plus ou moins expressif (logiques de description, règles, ...)

Recherche de « bons » compromis entre l'expressivité du langage et la complexité des raisonnements

Problèmes fondamentaux

- Consistance / Satisfiabilité : (D,O) a-t-elle un modèle ?
- Interrogation : trouver toutes les réponses à Q qui sont conséquences de (\mathcal{D}, O)

« ontology-mediated query answering »

Base de connaissances

CONTENU DU MODULE

Prérequis : module « représentation de connaissances » de M1 (ou module équivalent pour les étudiants extérieurs)

- ◆ Rappels : Notions fondamentales (conséquence logique, problème d'interrogation de bases de connaissances, requêtes conjonctives, règles datalog, contraintes négatives)
- Règles existentielles (alias Datalog+)
- ◆ Liens entre règles existentielles et logiques de description
- ◆ Datalog avec négation
- **♦** Answer Set Programming (ASP)
- **♦** [Interrogation tolérante aux inconsistances]

Etude des fondations théoriques de ces langages, pas de TP!

1. Brefs rappels de logique

INTERPRÉTATIONS

- Vocabulaire: $\mathcal{V} = (\mathcal{P}, C)$, où $\mathcal{P} = \text{ensemble fini de prédicats (ou relations)}$ chacun ayant une arité (nombre d'arguments) C = ensemble de constantes (peut être infini)
 - ⇒ les formules sont construites sur ce vocabulaire
 - ⇒ un **atome** est de la forme $p(e_1, ..., e_k)$ où $p \in \mathcal{P}$ et chaque e_i (**terme**) est une constante de C ou une variable
- Interprétation de V: $I = (D_I, .^I)$, où

 $D_I \neq \emptyset$ (le **domaine** de l'interprétation) pour tout $c \in C$, $c^I \in D_I$ pour tout $p \in \mathcal{P}$ d'arité k, $p^I \subseteq D_I^k$

$$\mathcal{V} = (\{p_{/2}, r_{/3}\}, \{a, b\})$$

$$I: \qquad D_I = \{d_1, d_2, d_3\}$$

$$a^I = d_1, b^I = d_2$$

$$p^I = \{ (d_2, d_1), (d_2, d_3), (d_3, d_2) \}$$

$$r^I = \{ (d_3, d_3, d_3) \}$$

Hypothèse simplificatrice sur les interprétations

On va adopter une hypothèse couramment faite qui simplifiera nos notations :

- hypothèse du nom unique (Unique Name Assumption):
 deux constantes différentes désignent forcément des objets différents
- ⇒ dans toute interprétation, deux constantes différentes s'interprètent par deux éléments de domaine différents
- ⇒ on peut donc simplier les notations en appelant par le même nom une constante et l'élément du domaine qui l'interprète (« toute constante s'interprète par elle-même »)

```
 \mathcal{V} = (\{p_{/2}, r_{/3}\}, \{a, b\}) 
 I: \quad D_I = \{d_1, d_2, d_3\} 
 a^I = d_1, b^I = d_2 
 p^I = \{ (d_2, d_1), (d_2, d_3), (d_3, d_2) \} 
 r^I = \{ (d_3, d_3, d_1) \} 
 p^I = \{ (d_3, d_3, d_3) \} 
 p^I = \{ (d_3, d_3, d_3) \}
```

INTERPRÉTATIONS (AVEC HYPOTHÈSE UNA)

- Vocabulaire: $\mathcal{V} = (\mathcal{P}, C)$, où $\mathcal{P} = \text{ensemble fini de prédicats}$ C = ensemble de constantes (peut être infini)
- Interprétation de \mathcal{V} : $I = (D_I, .^I)$, où $D_I \neq \emptyset \text{ (le domaine de l'interprétation)}$ $C \subseteq D_I \text{ (et pour tout } c \in C, c^I = c)$ pour tout $p \in \mathcal{P}$ d'arité k, $p^I \subseteq D_I^k$
- ullet I est un modèle d'une formule close f (construite sur $\mathcal V$) si f est vraie pour I

I:
$$D_I = \{a, b, d_3\}$$

$$p^I = \{ (b, a), (b, d_3), (d_3, b) \}$$

$$r^I = \{ (d_3, d_3, a) \}$$

 $\mathcal{V} = (\{p_{/2}, r_{/3}\}, \{a, b\})$

$$f_1 = \exists x \exists y (p(b,x) \land r(x,x,y))$$
 oui

$$f_2 = p(a,b) \wedge p(b,a)$$
 non

$$f_3 = \exists x \ p(x,y)$$
 pas close

On n'interprétera que des formules closes

CONSÉQUENCE LOGIQUE

```
Etant données deux formules (closes) f et g, f \models g (g est conséquence de f) signifie que tout modèle de f est un modèle de g
```

(« dans toute situation où f est vraie, g est forcément vraie aussi »)

$$f_1: p(a) \land \forall x (p(x) \rightarrow q(x))$$

$$f_1 \models f_2, f_3$$

$$f_2$$
: $q(a)$

$$f_4 \models f_1, f_2, f_3$$

$$f_3: p(a) \land \exists x q(x)$$

$$f_4: p(a) \land \neg q(a) \land \forall x (p(x) \rightarrow q(x))$$

2. Notions fondamentales sur les bases de connaissances

Cadre étudié en M1

- Base de connaissances (KB) composée :
 - o d'une base de faits

 (qu'on peut voir comme une base de données relationnelle)
 - d'une base de règles positives et conjonctives (Datalog)
- Requêtes conjonctives
 (correspondant à des requêtes de base en SQL / SPARQL)
- Problème fondamental : interrogation de la KB
 (calculer toutes les réponses à une requête conjonctive sur la KB)
- **Techniques** : chaînage avant, chaînage arrière, réécriture de requête

Extensions

- Contraintes négatives
- Mappings pour extraire une partie d'une base de données relationnelle et la traduire en une base de faits

EXAMPLE

Knowledge Graph

(could be seen as RDF triples)

Factbase

```
∃x (
    Prof(Bob)
    PHS(#1)
    Comp(C)
    Pest(x)
    involvedIn(Bob,#1) ∧
    fundedBy(Bob,C)
    about(#1,P)
    produces(C,x)
    contains(x,P)
```

Basic ontological knowledge

PublicHealthStudy **subclass of** PublicInterestStudy fundedBy **subproperty of** relatedTo

```
\forall x (PHS(x) \rightarrow PIS(x))
\forall x \forall y \text{ (fundedBy}(x,y) \rightarrow \text{relatedTo}(x,y))
```

allows to infer: PIS(#1), relatedTo(Bob,C)

EXAMPLE: How to Infer Conflicts of Interest (CoI)?

Query: "Find all x, y, z such that x has a conflict for study y because of its relationships with company z"

q(x,y,z) = ConflictOfInterest(x,y,z)

Col pattern

What kind of **ontological knowledge** would allow to represent the notion of « conflict of interest »?

FACTBASE

Vocabulary : (\mathcal{P} , \mathcal{C}) where

 \mathcal{P} is a finite set of predicates

C is a possibly infinite set of constants

[Arity of a predicate = its number of arguments]

```
P = \{ Prof/1, PHS/1, involvedIn/2, ... \}

C = \{ Bob, #1, 456, ... \}
```

Fact : a ground atom p(e1 ... ek) with p $\in \mathcal{P}$ and ei $\in \mathcal{C}$ [ground = no variables] involvedIn(Bob,#1)

Factbase: usually a set of ground atoms on the vocabulary

F = { Prof(Bob), PHS(#1), involvedIn(Bob,#1) }

logically seen as the **conjunction** of these atoms

 $Prof(Bob) \land PHS(#1) \land involvedIn(Bob,#1)$

RELATIONAL DATABASE SEEN AS A FACTBASE, AND VICE VERSA

A relational database may naturally be viewed as a factbase

Relational **schema**: finite set R of k-ary relations \rightarrow k-ary predicates

infinite domain of values \rightarrow constants

Instance of a relation $r \in R$: finite set of k-tuples on $r \rightarrow atoms$ on r

Database instance = { instance for each r in R } → factbase

And reciprocally: a **factbase** can be seen as (stored in) a relational database

FACTBASES CAN BE EXTENDED TO UNKNOWN VALUES

An unknown value is logically seen as an **existentially quantified variable**Then a factbase is logically seen as the existential closure of the conjunction of its atoms

Relational database

Movie		Actor		Play		
m_id		a_id		m_id a_id		
m1		a	 	a	m1	
m2		b		a	m2	
?x	•••	С		С	?x	

Factbase

```
{ movie(m1), movie(m2), movie(x), actor(a), actor(b), actor(c), play(a,m1), play(a,m2), play(c,x) }
```

Logical formula assigned to the factbase

```
\exists x \ (movie(m1) \land movie(m2) \land movie(x) 

actor(a) \land actor(b) \land actor(c)

play(a,m1) \land play(a,m2) \land play(c,x))
```

CONJUNCTIVE QUERIES (CQ)

```
q(x) = \exists y \text{ (movie(y) } \land \text{ play(x, y))} \quad \text{``find all those who play in a movie "}
      q() = \exists y (movie(y) \land play(b, y)) « does b play in a movie? » (b is a constant)
      A CQ is an existentially quantified conjunction of atoms
      The free variables are the answer variables
      If closed formula: Boolean CQ
Simplified notation
         q(x) = \{ movie(y), play(x,y) \}
Rule notation
          ans(x) \leftarrow movie(y), play(x, y)
                                                  classical Datalog notation
          movie(y), play(x, y) \rightarrow ans(x) alternative notation
Basic SQL queries (on relational databases)
         SELECT ... FROM ... WHERE <equalities: restrictions and joins>
Basic SPARQL (on RDF triples)
          SELECT ... WHERE <basic graph pattern>
```

Answering CQs on a factbase

$$q(x) = \exists y (movie(y) \land play(x, y))$$

movie(y) play(x, y)

movie(m1)

movie(m2)

movie(m3)

actor(a)

actor(b)

actor(c)

play(a,m1)

play(a,m2)

play(c,m3)

Homomorphism
$$h$$
 from q to F : substitution of $var(q)$ by $terms(F)$ such that $h(q) \subseteq F$

$$h1: x \rightarrow a$$

 $y \rightarrow m1$

$$h1(q) = movie(m1) \land play(a, m1)$$

$$h2: x \rightarrow a$$

 $y \rightarrow m2$

$$h2(q) = movie(m2) \land play(a, m2)$$

$$h3: x \rightarrow c$$

 $y \rightarrow m3$

$$h3(q) = movie(m3) \land play(c, m3)$$

Answers: obtained by restricting the domains of homomorphisms to answer variables

x = a

Answers to a Conjunctive Query

Let F be a factbase.

- The **answer** to a Boolean CQ q in F is yes if $F \models q$ yes = ()
- Let the CQ $q(x_1,...,x_k)$. A tuple $(a_1,...,a_k)$ of constants is an **answer** to q on a factbase F if $F \models q[a_1,...,a_k]$, where $q[a_1,...,a_k]$ is the Boolean CQ obtained from $q(x_1,...,x_k)$ by replacing each x_i by a_i

Let F and q be seen as sets of atoms. A **homomorphism** h from q to F is a mapping from variables(q) to terms(F) such that $h(q) \subseteq F$

```
F \models q() iff q can be mapped by homomorphism to F
```

 $(a_1, ..., a_k)$ is an answer to $q(x_1, ..., x_k)$ on F iff there is a homomorphism from q to F that maps each x_i to a_i

HOMOMORPHISME ET CONSÉQUENCE LOGIQUE

Etant données deux formules f et g,

 $f \models g$ (g est conséquence de f) signifie que tout modèle de f est un modèle de g

Base de faits *F* vues comr CQ booléenne q() d'atomes

vues comme des ensembles

 $F \models q()$ ssi il existe un homomorphisme de q dans F

Pourquoi?

Modèles d'une base de faits (sans variables)

$$F = \{ p(a,b), p(b,c),q(c) \}$$

Si une interprétation *I* est un modèle de *F*, que contient-elle *forcément* ?

p^I contient forcément (a,b) et (b,c) q^I contient forcément c

Qu'y a-t-il de commun à *tous* les modèles de F?

$$p^{I} = \{ (a,b), (b,c) \}$$

 $q^{I} = \{ c \}$

Un **plus petit modèle** d'une formule f est un modèle de f qui n'est plus un modèle si on enlève un élément de l'interprétation d'un prédicat

Une base de faits (sans variables) a un unique plus petit modèle

$$I:$$
 $D_I = \{a,b,c, ...\} = C$ Et toute constante du vocabulaire $p^I = \{ (a,b), (b,c) \}$ s'interprète par elle-même $q^I = \{ c \}$

Modèle canonique d'une base de faits (sans variables)

Vocabulaire $\mathcal{V} = (\mathcal{P}, C)$ Base de faits F (sans variables) sur \mathcal{V}

Modèle canonique de F

M:
$$D^M = C$$

pour tout $p \in \mathcal{P}$ d'arité k , $p^M = \{ (c_1, ..., c_k) \mid p(c_1, ..., c_k) \in F \}$

Le modèle canonique de *F* correspond à l'**intersection** de tous les modèles de *F*

$$\mathcal{V} = (\{r_{/3}, p_{/2}, q_{/1}\}, \{a, b, c, d, e\})$$

$$F = \{ p(a,b), p(b,c), q(c) \} \qquad \mathcal{M}: \qquad D_{\mathcal{M}} = \{ a,b,c,d,e \}$$

$$p^{M} = \{ (a,b), (b,c) \}$$

$$q^{M} = \{ c \}$$

$$r^{M} = \emptyset$$

CES FORMULES (SANS VARIABLES) ONT-ELLES UN UNIQUE PLUS PETIT MODÈLE?

$$f = p(a) V p(b)$$

2 plus petits modèles
$$M_1$$
 et M_2 avec $p^{M1} = \{a\}$ $p^{M2} = \{b\}$

$$f = p(a) \rightarrow p(b)$$

$$\equiv \\ \neg p(a) \lor p(b)$$

1 plus petit modèle M avec $p^M = \emptyset$

$$f = p(a) \land (p(a) \rightarrow p(b))$$

1 plus petit modèle M avec $p^M = \{a,b\}$

$$f = p(a) \rightarrow \neg p(a)$$

1 plus petit modèle M avec $p^M = \emptyset$

$$f = p(a) \wedge \neg p(a)$$

pas de modèle (insatisfiable)

Qu'est-ce q'un modèle d'une CQ Booléenne?

$$q() = \exists x \exists y \exists z (p(x,y) \land p(y,z) \land r(x,z,a))$$

I:
$$D_I = \{a,b,c\}$$

 $p^I = \{ (a,b), (b,c) \}$
 $r^I = \{ (a,b,c), (b,c,a) \}$

I n'est pas un modèle de q

Une interprétation *I* est un modèle de *q* si :

il existe une application f des termes de q() dans D_I telle que :

- 1. f(c) = c pour toute constante c
- 2. pour tout atome $p(e_1,...,e_k)$ de q, on a $(f(e_1),...,f(e_k)) \in p^l$

HOMOMORPHISME ET CONSÉQUENCE LOGIQUE

```
Base de faits F
CQ booléenne q()
F \models q() ssi il existe un homomorphisme de q dans F
```

Pourquoi?

- (⇒) Supposons que F ⊨ q, c'est-à-dire « tout modèle de F est un modèle de q »
 Prenons en particulier le modèle de canonique de F (soit M)
 M est un modèle de q
 Il existe donc une application f des termes de q dans D_M
 telle que :
 - 1. f(c) = c pour toute constante c
 - 2. pour tout atome $p(e_1,...,e_k)$ de q, $(f(e_1),...,f(e_k)) \in p^M$

f définit un homomorphisme de q dans F

(⇐) Soit h un homomorphisme de q dans F
 h montre que le modèle canonique de F est un modèle de q
 donc tout modèle de F est un modèle de q
 c'est-à-dire F ⊨ q

Règles positives a la Datalog (« range-restricted »)

 $\forall x_1 ... \forall x_n (B \rightarrow H)$ B for Body, H for Head

où:

- B est une conjonction d'atomes (hypothèse, prémisses, condition, corps)
- H est un atome (conclusion, tête)
- x₁ ...x_n sont les variables du corps B
- o toutes les variables de H apparaissent dans B

 $R_1: \forall x \forall y \forall z \text{ (produces}(x,y) \land \text{contains}(y,z) \rightarrow \text{hasInterest}(x,z) \text{)}$

 R_2 : $\forall x \forall y \forall z \forall u \ (involvedIn(x,y) \land PIS(y) \land about(y,u) \land relatedTo(x,z) \land Company(z) \land hasInterest(z,u) <math>\rightarrow$ Col(x,y,z)) Datalog

R'₂: $\forall x \forall y \forall z \forall u \text{ (involvedIn(x,y) } \land PIS(y) \land about(y,u) \land pas Datalog relatedTo(x,z) <math>\land Company(z) \land hasInterest(z,u) \rightarrow \exists o \text{ (CoI(o)} \text{ (" règle existentielle ")} \land in(x,o) \land on(o,y) \land with(o,z))$

Notation simplifiée : sans ∀ et des virgules à la place des ∧

QUERY ANSWERING ON A KB

Knowledge Base

Query answering problem: given a KB K and a query Q, find the set of all answers to Q in K (notation: Q(K))

The answer to a Boolean CQ Q in K is yes if $K \models Q$

A tuple $(a_1, ..., a_k)$ of *constants* is an answer to $Q(x_1, ..., x_k)$ with respect to K if $K \models Q[a_1, ..., a_k]$,

where $Q[a_1,...,a_k]$ is obtained from $Q(x_1,...,x_k)$ by replacing each x_i by a_i .

In our framework: K = (F, R) where:

F is a (ground) factbase R is a set of rules

K is logically seen as the conjunction of F and all rules in R

Modèles d'une KB (base de faits, règles Datalog)

K = (F, R) est vue d'un point de vue logique comme la conjonction de F et de toutes les règles de R

donc : un modèle de K est un modèle de chaque fait de F et chaque règle de R

```
K = (F, \mathcal{R})
F = \{p(a,b), p(b,c) \}
\mathcal{R} = \{R_1, R_2\} \text{ avec } R_1 : p(x,y) \rightarrow q(y)
R_2 : q(x), p(x,y) \rightarrow r(y) \}
```

I est un modèle de K ssi:

- I modèle de F : (a,b) ∈ pl et (b,c) ∈ pl
- I modèle de R₁: pour tout couple (d₁,d₂) ∈ p¹, on a d₂ ∈ q¹
- I modèle de R₂: pour tout d₁ ∈ q¹ et (d₁,d₂) ∈ p¹, on a d₂ ∈ r¹

EXEMPLE

```
K = (F, \mathcal{R})
F = \{p(a,b), p(b,c)\}
\mathcal{R} = \{R_1, R_2\} \text{ avec } R_1 : p(x,y) \rightarrow q(y)
R_2 : q(x), p(x,y) \rightarrow r(y)\}
```

```
 I = (D, .I) \ avec \ D = \{ \ a, \ b, \ c, \ e \ \}   p^I = \{ \ (a,b), \ (b,c) \ \}   q^I = \{ \ b, \ c \ \}   r^I = \{ \ a,c \ \}  I est-elle un modèle de K ?
```

Propriété du plus petit modèle unique

Toute base de connaissances $K = (F, \mathbb{R})$ où \mathbb{R} est un ensemble de règles Datalog possède un unique plus petit modèle M:

pour tout modèle I de K, pour tout prédicat p, on a $p^M \subseteq p^I$

```
F = {p(a,b), p(b,c)}

\mathcal{R} = {R<sub>1</sub>,R<sub>2</sub>} avec R<sub>1</sub>: p(x,y) \rightarrow q(y)

R<sub>2</sub>: q(x), p(x,y) \rightarrow r(y)}
```

Quel est son plus petit modèle?

M = (D, .M) avec D = { a, b, c }

$$p^{M} = \{ (a,b), (b,c) \}$$

 $q^{M} = \{ b, c \}$
 $r^{M} = \{ c \}$

Etant donnée une CQ booléenne q, pour déterminer si $K \models q$ il suffit donc de vérifier si le plus petit modèle de K est un modèle de K :

- si oui, tout modèle de K contient ce modèle, c'est donc un modèle de q
- si non, on a un modèle de K qui n'est pas un modèle de q

How to actually compute this model?

Idea: starting from the canonical model of F, we add all the tuples that are mandatory to satisfy the rules

⇒ Forward chaining: starting from F, iteratively add the atoms that are consequences of F and the rules

F = { fundedBy(Bob,C), Company(C) }
R =
$$\forall x \forall y$$
 (fundedBy(x,y) \rightarrow relatedTo(x,y))
F,R \models relatedTo(Bob,C)

A rule $R: B \rightarrow H$ is applicable to a factbase F if there is a homomorphism h from B to F

Applying R to F according to h consists of adding h(H) to F

$$\begin{array}{c} h: body(R) \rightarrow F \\ x \mapsto Bob \\ y \mapsto C \end{array}$$

PROPERTIES OF DATALOG RULES

• $K = (F, \mathcal{R})$ where

F is a set of (ground) facts

 ${\mathcal R}$ is a set of Datalog rules

By applying rules from \mathcal{R} starting from F, a unique result is obtained:

the saturation of F by \mathcal{R} (denoted here by F^*)

F* is finite since no new variable is created

F* allows to compute the **answers** to a CQ on K:

 $(a_1, ..., a_k)$ is an answer to $q(x_1, ..., x_k)$ on K iff there is a homomorphism from q to F^* that maps each x_i to a_i

If k=0: () is an answer means « yes »

Why? Because the canonical model of the saturated factbase F* is the **unique smallest model** of *K*

SI ON AJOUTE DES CONTRAINTES NÉGATIVES

Def: Une contrainte négative est de la forme

$$\forall X (Condition[X] \rightarrow \bot)$$

où *Condition* est une conjonction d'atomes et ⊥ le symbole absurde

$$\forall x \text{ (Film(x)} \land \text{Personne (x)} \rightarrow \bot)$$

 Def: Une base de faits F satisfait une contrainte négative C s'il n'y a pas d'homomorphisme de la condition de C dans F (autrement dit, C vue comme une règle n'est pas applicable)

Remarque : $F \cup \{C\}$ est consistante (satisfiable) ssi F satisfait C

• Prop: Une base de connaissances $K = (F, \mathcal{R}, C)$ où C est un ensemble de contraintes négatives est consistante (satisfiable) ssi F^* (la saturation de F par \mathcal{R}) satisfait toutes les contraintes de C

EXERCICE (APPLICATION DIRECTE DU COURS)

```
Soit la KB \mathcal{K} = (F, \mathcal{R}, C)

F = \{ r(a,b), r(b,c), r(c,a) \}

\mathcal{R} = \{ r(x,y) \rightarrow s(x,y) ; s(x,y) \land s(y,z) \rightarrow s(x,z) \}

C = \{ s(x,y) \land s(y,x) \rightarrow \bot \}
```

L'interprétation I :

```
D = {a,b,c, d,e}

r^{I} = {(a,b), (b,c), (c,a), (d,e)}

s^{I} = D x D

est-elle un modèle de (F,R)?
```

- Quel est le plus petit modèle de (F, \mathcal{R}) ?
- F satisfait-elle C? \mathcal{K} satisfait-elle C?
- \circ \mathcal{K} est-elle consistante (satisfiable) ?
- Soit $q() = \exists x | apin(x)$. \mathcal{K} répond-t-elle oui à q?

Interrogation de KBs avec contraintes négatives

Soit une base de connaissances K = (F, R, C)

1. K est-elle satisfiable?

On calcule F^* la saturation de F par R Puis on teste si F^* satisfait C

2. Interrogation de *K*

Si K n'est pas satisfiable, le problème d'interrogation « trivialise »

Sinon, les réponses à une CQ q sont données par les homomorphismes de q dans F^*