

Ideas claves. Sea \overline{BC} un segmento de recta y \mathbf{A} un punto exterior a ella. Llámese \mathcal{C} : \mathbf{H} a la circunferencia de centro \mathbf{B} y radio BC, trácese el segmento \overline{AB} .

De la proposición I, halle el punto \mathbf{D} (ayuda: construya dos circunferencias de radio AB con centro en \mathbf{A}

A continuación desde \mathbf{D} trácese dos rectas que pasen por \mathbf{B} y \mathbf{A} respectivamente. El punto de intersección con la circunferencia \mathcal{C} : \mathbf{H} será llamado \mathbf{G} . Con centro en \mathbf{D} trácese la circunferencia \mathcal{C} : \mathbf{K} de radio DG. Luego, el punto \mathbf{L} es la intersección de

Con centro en **D** trácese la circunferencia \mathcal{C} : **K** de radio \overline{DG} . L \mathcal{C} : **K** y el segmento \overline{DE} . Así obtenemos los segmentos $\overline{BC} \cong \overline{AL}$.

y B respectivamente, la intersección será el punto en cuestión).

extremo en un punto dado.