ΕΡΓΑΣΙΑ ΕΞΑΜΗΝΟΥ

ΕΠΩΝΥΜΟ	ONOMA	AM	EMAIL
ΚΑΤΟΠΗΣ	ΔΗΜΗΤΡΙΟΣ	2124	int02124@uoi.gr

Παρακάτω παρουσιάζεται ένα μπλοκ το οποίο δείχνει 4 εισόδους που αντιπροσωπεύουν 1 αριθμό με κώδικα bcd και έχει 7 εξόδους (led) οι οποίοι σχηματίζουν τον αριθμό σε κανονική μορφή.

Ο πίνακας αληθείας του παραπάνω μπλοκ για κάθε αριθμό από το 0 έως το 9 ,δηλαδή για κάθε αριθμό του κώδικα bcd . (ενεργοποιούμε δηλαδή κάθε φορά τα αντιστοιχα led για να σχηματιστεί ο κάθε αριθμός)

Ψηφία	A	В	С	D	а	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1

Χάρτες Karnaugh για κάθε έξοδο.

			С							
â	AB	CD 00	01	11	10					
	00	1	0	1	1					
	01	0	1	1	1					
	11	х	x	х	х	В				
Α -	10	1	1	x	x	_				
				Υ						

I_			_			
b	AB	CD 00	01 11		10	ı
	00	1	1	1	1	
	01	1	0	1	0	
	11	Х	Х	Х	х	B
Α -	10	1	1	х	х	٦
				Υ		

a=A+C+BD+B'D'

$$c=B+C'+D$$

$$d = A + B'D' + B'C + CD' + BC'D$$

e= B'D'+CD'		

F= A+BC'+BD'+C'D'

g= A+BC'+B'C+CD'

2Η ΑΣΚΗΣΗ

- Εδώ θα χρησιμοποιήσουμε 2 πίνακες με είσοδο τους αριθμούς 0 έως 9 (κώδικας BCD) έναν αθροιστή και ένα κύκλωμα ώστε να έχει σωστές εξόδους για να μπορεί να εμφανιστεί σωστά σε 2 displays και ο αριθμός 18 αφού είναι ο μεγαλύτερος που μπορεί να εμφανιστεί έχοντας συγκεκριμένο εύρος τιμών.
- Εδώ να σημειωθεί ότι για το κύκλωμα το οποίο στέλνει σωστά σήματα στα displays χρησιμοποιήθηκε πίνακας και χάρτες Karnaugh των 5 μεταβλητών.
- Επίσης για διευκόλυνση στην εύρεση εξισώσεων χρησιμοποιήθηκε και εφαρμογή με χάρτες καρνο για 5 μεταβλητές.

3Η ΑΣΚΗΣΗ

- Εδώ έχουμε ακριβώς το ίδιο κύκλωμα με την 2^η άσκηση αλλά αναμεσά στον αθροιστή και στο κύκλωμα που στέλνει σωστά τα σήματα στα displays παρεμβάλλεται ένα ακόμα κύκλωμα το οποίο στέλνει πιο σωστά τα σήματα ώστε να δουλεύει η αφαίρεση έως και το -8 αφού έχουμε ορισμένο εύρος τιμών
- Επιπλέον χρησιμοποιούνται πύλες XOR για το Σ2 ώστε να γίνεται αφαίρεση και ένα κύκλωμα για την εμφάνιση του συμβόλου για τους αρνητικούς αριθμούς.
- Χρησιμοποιθηκε και σε αυτό το κυκλωμα πινακας και χαρτες των 5 μεταβλητων. Ουσιαστικα (με την βοηθεια leds στο αποτελεσμα του αθροιστη)καταφεραμε τους αριθμους 23 εως 31 να τους εμφανιζει ως -1
 - -2 κτλ αντιστοιχα.

Για την επιλογη της αφαιρεσης ενεργοποιουμε το Cin στον Adder.

Dig	а	b	С	d	е	a	b	С	d	е	
0	0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	1	0	0	0	0	1	
2	0	0	0	1	0	0	0	0	1	0	
3	0	0	0	1	1	0	0	0	1	1	
4	0	0	1	0	0	0	0	1	0	0	
5	0	0	1	0	1	0	0	1	0	1	
6	0	0	1	1	0	0	0	1	1	0	
7	0	0	1	1	1	0	0	1	1	1	
8	0	1	0	0	0	0	1	0	0	0	
9	0	1	0	0	1	0	1	0	0	1	
10	0	1	0	1	0	0	1	0	1	0	
11	0	1	0	1	1	0	1	0	1	1	
12	0	1	1	0	0	0	1	1	0	0	
13	0	1	1	0	1	0	1	1	0	1	
14	0	1	1	1	0	0	1	1	1	0	
15	0	1	1	1	1	0	1	1	1	1	
16	1	0	0	0	0	1	0	0	0	0	

17	1	0	0	0	1		1	0	0	0	1	
18	1	0	0	1	0		1	0	0	1	0	
-1	1	1	1	1	1	31	0	0	0	0	1	
-2	1	1	1	1	0	30	0	0	0	1	0	
-3	1	1	1	0	1	29	0	0	0	1	1	
-4	1	1	1	0	0	28	0	0	1	0	0	
-5	1	1	0	1	1	27	0	0	1	0	1	
-6	1	1	0	1	0	26	0	0	1	1	0	
-7	1	1	0	0	1	25	0	0	1	1	1	
-8	1	1	0	0	0	24	0	1	0	0	0	
-9	1	0	1	1	1	23	0	1	0	0	1	

ΠΗΓΕΣ

- https://www.electricaltechnology.org/2018/05/bcd-to-7-segment-display-decoder.html
- https://www.geeksforgeeks.org/4-bit-binary-adder-subtractor/
- https://www.electronicshub.org/binary-adder-and-subtractor/