Lesson 12: Inference for Two Means (Paired Data)

Preparation

Solutions

Problem	Part	Solution
1	-	Usually matched pairs are data taken from one population where a pair of observations is drawn on the same individuals selected for the sample, such as a pre-test and post-test.
2	-	open ended
3	A	After implementing the new loading/unloading procedure, is the mean wait time different than the wait time before?
3	В	$H_o: \mu_d = 0$ $H_a: \mu_d \neq 0$
4	-	The researcher collected assembly times (in minutes) from 9 factory workers before the change. Then he collected the assembly times for those same 9 workers after the change in procedure had been implemented.

Problem	Part	Solution
5	-	The paragraph should include: - $\bar{d} = \pm 1.056$ (depending on difference taken) - $s_d = 2.596$ - $n = 9$

- One histogram of the differences and one histogram for each of the original data sets with clear lab

Histograms of Differences

Post Assembly Changes

Pre Assembly Changes

Problem	Part	Solution
6	A	A two tailed paired-sample t-test for means is the appropriate hypothesis test to
6	В	perform. That the sample mean of the differences comes from a normal distribution and we
U	Ъ	assume a simple random sample of the population.
6	\mathbf{C}	We assume a simple random sample of the population, $n < 30$ so we would need to look back at

Histograms of Differences

The differences may not by normally distributed, it is hard to tell with such a small sample size. We

6	D	t = 1.22 or t = -1.22
6	\mathbf{E}	df = 8
6	\mathbf{F}	P -value = 0.257 P -value > α
6	G	P-value $> \alpha$, therefore we fail to reject the null hypothesis the null hypothesis.
6	Η	We have insufficient evidence to say that the time to make 100 products is any
		different after the implementation of the new assembly procedure.
6	I	We would create a 95% confidence interval using the t-distribution. (-0.9397,3.0508)
		or (-3.0508,0.9397) depending on difference calculated
7	-	You should describe how they need to find another way to reduce the time, because
		this particular plan did not make a statistically significant difference.