FISEVIER

Contents lists available at ScienceDirect

Economic Modelling

journal homepage: www.elsevier.com/locate/ecmod

Climate change and economic growth: An intertemporal general equilibrium analysis for Egypt

Abeer Elshennawy ^a, Sherman Robinson ^b, Dirk Willenbockel ^{c,*}

- ^a American University in Cairo, New Cairo 11835, P.O. Box 74, Egypt
- ^b International Food Policy Research Institute, 2033K St NW, Washington, DC 20006-1002, USA
- ^c Institute of Development Studies at the University of Sussex, Brighton BN1 9RE, UK

ARTICLE INFO

Article history:
Accepted 3 October 2015
Available online 19 October 2015

JEL classification:

C68

D58

D90 E17

044

Q54

Keywords:
Climate change adaptation
Computable general equilibrium analysis
Scenario analysis
Dynamic CGE
Forward-looking models
Intertemporal optimisation

ABSTRACT

This study advances the state of the art in country-level computable general equilibrium analysis for climate change impact and adaptation analysis by incorporating forward-looking expectations. The analytic framework is used to explore the long-run growth prospects for Egypt in a changing climate. Based on a review of existing estimates of climate change impacts on agricultural productivity, labour productivity and the potential losses due to sea-level rise for the country, the model is used to simulate the effects of climate change on aggregate consumption, investment and income up to 2050. Available cost estimates for adaptation investments are employed to explore adaptation strategies.

The simulation analysis suggests that in the absence of policy-led adaptation investments, real GDP towards the middle of the century will be 6.5% lower than in a hypothetical baseline without climate change. A combination of adaptation measures, that include coastal protection investments for vulnerable sections along the low-lying Nile delta, support for changes in crop management practices and investments to raise irrigation efficiency, could reduce the GDP loss in 2050 to around 2.6%.

Further work along these lines for developing countries in climate change hotspot regions deserves a high priority on the research agenda in economic modelling.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Unmitigated climate change poses potentially serious threats to the economic growth and poverty reduction prospects of developing countries with high exposure to biophysical impacts and limited adaptive capacity. Even under optimistic assumptions about the level and success of future global mitigation efforts, it is essential for these countries to integrate adaptation plans into their national development strategies to cope with the likely consequences of already unavoidable climate change. Rational adaptation planning requires a forward-looking quantitative assessment of climate change impacts on economic performance at sectoral and economy-wide level to enable comparisons of the prospective benefits and costs of conceivable adaptation measures.

To facilitate such economy-wide cost-benefit assessments of alternative adaptation strategies and to assess impacts in the absence of policy-

led adaptation action, a number of country-specific recursive-dynamic multi-sector computable general equilibrium models for a range of developing countries have been developed and applied in recent years. Examples include Arndt et al. (2011) and Robinson et al. (2012) for Ethiopia, Arndt et al. (2012) and Arndt and Thurlow (2015) for Mozambique, Thurlow et al. (2012) for Bangladesh, World Bank (2010a) for Ghana, and Strzepek and Yates (2000) for Egypt.

Multisectoral CGE models allow translating long-run projections of the various biophysical climate change impacts into sectorally and regionally disaggregated economic shocks to model parameters. Their unique advantage is that the simulated economic responses take systematic account of intersectoral spillover effects and macroeconomic feedback effects arising from economy-wide input-output linkages and economy-wide system constraints. Moreover, the simulated results capture market-mediated endogenous autonomous adaptation responses by consumers and producers to the changes in relative prices and real incomes triggered by the climate shocks. The CGE approach also facilitates multi-scenario simulations to address the uncertainties surrounding long-run projections of climate change impacts.

Models of this type have been (and will be) used to inform assessments of total adaptation funding needs for developing countries

 $^{^{\}ast}$ Corresponding author: Institute of Development Studies at the University of Sussex, Library Road, Brighton BN1 9RE, UK. Tel.: $+44\,1273\,915700.$

E-mail addresses: ashenawy@aucegypt.edu (A. Elshennawy), s.robinson@cgiar.org (S. Robinson), d.willenbockel@ids.ac.uk (D. Willenbockel).

under the emerging post-2015 global climate finance architecture (World Bank, 2010b), and the further development of these tools deserves a high priority on the research agenda in economic ex-ante modelling.

However, a recurring criticism of recursive-dynamic CGE models is that their treatment of investment and saving behaviour lacks rigorous theoretical micro-foundations. While intra-temporal (within-period) decisions of consumers and producers are based on static optimizing behaviour and respond optimally to changes in intra-temporal relative prices, their intertemporal saving and investment decisions are not derived from forward-looking intertemporal optimizing behaviour, and thus ignore information about expected future economic conditions. A related weakness of recursive-dynamic CGE models is that the intertemporal stock-flow linkage between temporal current account imbalances and the intertemporal evolution of the net foreign asset position is commonly ignored.

The present study overcomes these shortcomings of existing country-level CGE models for climate change impact analysis by adopting an intertemporal general equilibrium approach with forward-looking agents. In contrast to the standard recursive-dynamic approach, in which climate shocks hit agents in the model by surprise, the intertemporal approach pursued here takes account of endogenous anticipative adaptation responses to expected future climate change impacts.

To demonstrate the practical feasibility of this advanced approach, the model is used to analyse the long-run growth prospects of Egypt in a changing climate. Due to the high concentration of economic activity along the low-lying coastal zone of the Nile delta and its dependence on Nile river streamflow, Egypt's economy is highly exposed to adverse climate change. With an estimated per-capita income of US\$ 3200 and 25% of the population living below the national poverty line, vulnerability is likewise high.

The following section outlines the model and its numerical calibration to a social accounting matrix that reflects the observed current structure of the Egyptian economy. Drawing on a review of existing estimates of climate change impacts on agricultural productivity, labour productivity and the potential losses due to sea-level rise for Egypt, Section 3 specifies and motivates the climate change impact simulation scenarios. Section 4 presents simulation results in the absence of policyled adaptation investments. Section 5 considers stylized adaptation scenarios, Section 6 reflects briefly on sensitivity and limitations of the analysis, and Section 7 concludes.

2. The model

The determination of intertemporal saving and investment decisions in the model is essentially a multi-sector open-economy extension of neoclassical optimal growth theory in the Ramsey–Cass–Koopmans tradition, while intratemporal allocation decisions across sectors are determined by a standard static small open economy CGE model as described in full technical detail in Robinson et al. (1999). The operational model design draws upon the contributions to intertemporal CGE analysis and its applications by Go (1994), Mercenier and Sampaio de Souza (1994), Diao and Somwaru (2000), Elshennawy (2011) and Roe et al. (2010), but extends this class of applied models by incorporating population growth and technical progress.

In line with its theoretical pedigree, the long-run steady-state growth rate of the model is governed by labour force growth and the rate of technical progress, while climate impacts that affect savings and investment entail *level* shifts in the time paths of GDP, consumption and other macroeconomic aggregates without affecting the long-run trend growth rate.

The model distinguishes six sectors of economic activity: agriculture, oil, industry, construction, electricity and services. The sectoral disaggregation is governed by the corresponding aggregation structure of the empirical benchmark data set to which the model is numerically calibrated. Output is produced using intermediate inputs and primary factors of production which include labour and capital. To capture the impact of different policy scenarios on the labour market, two skill categories of labour are distinguished, production and nonproduction labour. For simplicity, the role of government is confined to tax collection. Tax revenue is redistributed to the household sector and government expenditure is treated as part of household consumption. The agents in the model are a representative household with infinite planning horizon, a representative firm in each of the production sectors, and the rest of the world, which is linked to the domestic economy via trade, transfer and capital flows. Markets are perfectly competitive. What follows is a description of the dynamic components of the model.

2.1. Consumption behaviour

The representative household receives labour and dividend income from firms as well as net transfer income from the rest of the world and the re-transfer of tax revenue. The household chooses the path of consumption that maximizes the intertemporal utility function

$$U_{0} = \sum_{t=0}^{\infty} N_{t} \ln \left(\frac{C_{t}}{N_{t}} \right) \frac{1}{(1+\rho)^{t}} = N_{0} \sum_{t=0}^{\infty} \ln \left(\frac{C_{t}}{N_{t}} \right) \left(\frac{1+n}{1+\rho} \right)^{t}$$
(1)

subject to the intertemporal budget constraint

$$\sum\nolimits_{t=0}^{\infty} R_t P_t C_t \leq \sum\nolimits_{t=0}^{\infty} R_t [w p_t L P_t + w n_t L N_t + T R_t + T X_t] + W_0 \tag{2}$$

and a no-Ponzi-game transversality condition, where C is an index of aggregate real consumption, N = LP + NP is household size with LP and NP denoting production and non-production labour respectively, n is the rate of population and labour force growth, ρ is the pure rate of time preference, 3P is the implicit consumer price index dual to C, P0 and P1 with a rether wage rates for production and non-production labour, P1 denotes net transfer income from the rest of the world, P2 is tax revenue, P3 is initial financial net wealth of the household sector, which is equal to the total market value of the firms owned by the representative household minus the initial external debt owed to the rest of the world, and

$$R_t = \prod_{s=0}^t 1/(1+r_s) \tag{3}$$

is the discount factor where r denotes the world interest rate.

The first-order conditions for the maximization of Eq. (1) subject to Eq. (2) and the transversality condition, which ensures that the given initial debt does not exceed the present value of future current account surpluses, take the form

$$\frac{P_{t+1}C_{t+1}}{P_tC_t}\frac{1+\rho}{1+n} = 1 + r_t. \tag{4}$$

The economic intuition behind condition (4) is straightforward: Along the optimal path the household is indifferent between consuming

¹ For explicit statements of this criticism of the recursive-dynamic approach see inter alia Srinivasan and Go (1998), Babiker et al (2009), Lecca et al (2013), Fisher-Vanden et al (2013), and Bröcker and Korzhenevych (2013) who conclude that "these models lack internal consistency". Fankhauser and Tol (2005) and Lecocq and Shalizi (2007) provide systematic conceptual discussions of the channels through which climate change potentially affects aggregate economic growth in Solow-type growth models, Cass-Koopmans-type optimal growth models and endogenous growth models.

² World Bank WorldData Bank, accessed September 2014.

³ See Willenbockel (2008) for a detailed discussion of the relationship between the subjective pure time preference rate of households and the pure social time preference rate in a utilitarian social welfare function within an overlapping generations setting. Much of the confusion in the recent controversy about the "appropriate" choice of the social discount rate in cost–benefit analyses of climate change mitigation efforts suffer from a clear conceptual distinction between these rates, as Stern (2008) points out correctly.

a marginal unit of income in t (additional real consumption of $1/p_t$) and saving this unit at rate r for one period to raise real consumption by $((1+r_t)/p_{t+1}$ in t+1, given that in welfare terms a unit of percapita consumption in t is equivalent to $(1+\rho)/(1+n)$ units in t+1 according to 1.

2.2. Investment behaviour

In each model sector s, firms are aggregated into one representative firm which finances all of its investment through retained earnings and thus the number of equity shares issued remains constant. Managers seek to maximize the value of the firm. Assuming perfect capital markets, asset market equilibrium requires equal rates of returns (adjusted for risk) on all assets. This implies that firm's equity must earn an expected rate of return equal to that of a safe asset like foreign bonds as reflected in the condition

$$r = \frac{DIV_s}{V_s} + \frac{\Delta V_s}{V_s} \tag{5}$$

where DIV is dividends, V is the value of the firm, $\Delta V_s = V_{s,t} - V_{s,t-1}$ is the expected annual capital gain on firm equity and r is the interest rate on foreign bonds.

Solving the above difference Eq. (5) forward yields

$$V_t = \sum_{\nu=t}^{\infty} R_t DIV_t. \tag{6}$$

The market value of the firm equals the discounted stream of future dividends. Dividends distributed to the household sector equal operating surplus minus investment expenditure:

$$DIV_{S,t} = PVA_{S,t}f[bLP_{S,t}, bLN_{S,t}, K_{S,t}] - wp_tLP_{S,t} - wn_tLN_{S,t} - PI_{S,t}I_{S,t} - ADC_{S,t},$$
(7)

where, $f[\cdot]$ is a CES production function, K is capital, PI is the price per unit of gross investment I, PVA is the value added price (output price net of indirect production taxes and intermediate input unit costs) and ADC represents adjustment costs associated with the installation of new capital:

$$ADC_{S,t} = PIA_{S,t}\varphi \frac{I_{S,t}^2}{K_{S,t}}.$$
(8)

Due to the presence of these adjustment costs, the capital stock does not adjust instantaneously to its new optimal long-run level following exogenous shocks that affect the return to capital. Adjustment costs to investment are assumed to be internal to the firm. For any given level of the capital stock these costs are strictly increasing in investment and decreasing in the capital stock for any given level of investment. As a result, firms will find it optimal to increase the capital stock gradually over time in order to reach the optimal long run capital intensity. The adjustment cost function is linear-homogeneous in investment and capital. Along with the assumption of constant returns to scale in production, the linear homogeneity of the adjustment cost function entails that Tobin's marginal q equals Tobin's average q (Hayashi, 1982). In the general equilibrium model, the real adjustment costs take the form of purchases of installation services, which are a Leontief composite of the construction and industry commodities, and PIA is the unit price of this composite.

The model incorporates labour-augmenting technical progress. The labour efficiency parameter b in Eq. (7) grows at the uniform exogenous rate g.

In each sector producers maximize the value of the firm subject to the capital accumulation constraint

$$K_{S,t+1} = (1-\delta)K_{S,t} + I_{S,t},$$
 (9)

where δ is the rate of depreciation. Differentiating the Lagrangian for this optimization problem with respect to the control variable I yields

$$q_{S,t} = PI_{S,t} + 2PIA_{S,t}\varphi \frac{I_{S,t}}{K_{S,t}},$$
(10)

which determines the shadow price of capital q. Condition (10) states that the firm invests until the cost of installing an additional unit of capital – which is equal to the price of a unit of investment plus marginal adjustment costs – is equal to the increase in the value of the firm due to this last unit of capital. Differentiating with respect to the state variable K yields the no arbitrage condition

$$PVA_{S,t}f_K + PIA_{S,t}\varphi\left(\frac{I_{S,t}}{K_{S,t}}\right)^2 + (1-\delta)q_{S,t} - (1+r)q_{S,t-1} = 0.$$
 (11)

According to Eq. (11), the value of the marginal product of capital PVA f_K plus the marginal reduction in adjustment costs brought by the increase in capital plus the capital gain q_t-q_{t-1} minus depreciation δq must equal the bond returns rq foregone by choosing to accumulate this extra unit of capital. For simplicity, there is no differentiation between government and private investment in the model. $I_{S,t}$ is a Cobb–Douglas composite good over commodity groups demanded for investment purposes,

$$I_{S,t} = AK_S \prod_{S'} INVD_{S',S}^{\theta_{S',S}}, \sum_{S'} \theta_{S',S} = 1,$$

$$(12)$$

where $INVD_{S',S}$ is investment demand by sector S for goods of type S' and AK_S and $\theta_{S',S}$ are constant parameters. $PI_{S,t}$ is the investment price index dual to $I_{S,t}$.

2.3. Current account dynamics

The current account dynamics associated with the optimal consumption and investment path is described by

$$D_{t+1} - D_t = r_t D_t + TB_t + TROW_t, \tag{13}$$

where TB_t is the trade balance surplus in t, D_t is the foreign asset position in t and TROW denotes exogenous net transfers from abroad. Letting Y denote aggregate GDP, $TB_t = Y_t - P_tC_t - \sum_S PI_{S,t}I_{S,t}$. The no-Ponzigame condition invoked in the derivation of the optimal consumption path described by Eq. (4) entails that the initial debt inherited from the past constrains the future path of domestic absorption, so that $D_0 = PV(Y_t + TROW_t) - PV(P_tC_t) - PV(\sum_S PI_{S,t}I_{S,t})$, where PV(x) denotes the present value of a stream x_t discounted at rate r. In other words, the initial debt must be matched by a corresponding positive present value of future primary account surpluses.

2.4. Intratemporal general equilibrium

Embedded in this dynamic structure is a standard within-period general equilibrium model that determines intratemporal relative prices, the sectoral allocation of labour and the commodity composition of consumption, imports and exports.

Producers in the model are price takers in output and input markets and use constant returns to scale technologies described by constant elasticity of substitution (CES) value added functions and a Leontief fixed-coefficient technology for intermediate input requirements by commodity group. The decision of producers between production for domestic and foreign markets is governed by constant elasticity of transformation (CET) functions that distinguish between exported and domestic goods in each traded commodity group. Under the small-country assumption, Egypt faces perfectly elastic world demand for its exports at fixed world prices. The profit-maximizing equilibrium ratio

of exports to domestic goods in any traded commodity group is determined by the relative prices for these two commodity types.

On the demand side, imported and domestic goods are treated as imperfect substitutes in both final and intermediate demand. In line with the small-country assumption, Egypt faces an infinitely elastic world supply at fixed world prices. The equilibrium ratio of imports to domestic goods is determined by the optimizing decisions of domestic agents based on the relative tax-inclusive prices of imports and domestic goods.

2.5. Properties of the steady-state equilibrium growth path

Technically the dynamic system described by Eqs. (1) to (13) can be reduced to a saddlepoint-stable system in the state variable K and costate variable q. K_0 is predetermined while q_0 is a jump variable. In the absence of shocks to the exogenous parameters of the model, the system can be shown to converge to a steady-state equilibrium, in which q and the sectoral capital stocks per effective labour unit (K_S / (b(LN + LP))) are stationary, while aggregate income, consumption, investment and other macro aggregates grow at the steady-state growth rate z = g + n + gn, provided that (using asterisks to denote steady-state levels of variables) $r^* = \rho + g + \rho g$.

The steady-state investment ratio in each sector is

$$\frac{I_{S,t}^*}{K_{St}^*} = \delta + z. \tag{14}$$

The net foreign asset positions along the steady-growth path evolves according to

$$(r^* - z)D_t^* = TB_t^* + TROW_t^*. (15)$$

The steady-state growth path market value of the firm in each sector obeys

$$(r^* - z)V_{St}^* = DIV_t^*. (16)$$

2.6. Data and calibration

The model is calibrated using the 2006/2007 Social Accounting Matrix (SAM) for Egypt. Fig. 1 displays the initial sector composition of GDP and export revenue according to the SAM. Assuming that the initial data represents an economy evolving along a steady state growth path, parameters are calibrated so that the model generates a path with a starting point that replicates the observed benchmark data set in the absence of anticipated future climate shocks. This dynamic baseline path

serves as the benchmark for comparison for the climate change scenarios considered in the following sections.

Calibration of all parameters for the intratemporal part of the model follows the standard methods used in comparative-static CGE models. The dynamic calibration proceeds as follows. Based on the UN medium population growth projections for Egypt from 2010 to 2050, the average annual labour force growth rate is set to n=0.007 and the growth rate of labour-augmenting technical progress is set to g=0.025, hence the steady-state growth rate z=0.0322. The rate of capital depreciation is set to $\delta=0.04$. Total dividend payments are calculated as the difference between the observed value of capital income (gross operating surplus) and the observed value of total investment in the SAM. In order for the model to replicate these observed magnitudes, the pure rate of time preference is set to $\rho=0.16$, and the adjustment cost parameter is set to $\phi=1$. These settings jointly determine the initial real capital stock by sector (K_S) , q_S and Pl_S via the steady-state equilibrium conditions, and the parameters AK_S in (12) follow residually.

3. Simulation scenarios

Scenario S0 simulates the counterfactual steady-state equilibrium growth path in the absence of any climate change impacts and serves as the baseline for comparison with the climate change impact and adaptation scenarios.

Scenario S1 considers the economy-wide consequences of adverse climate change impacts on agricultural productivity. According to the 2007 SAM, the agricultural sector contributes 13.2% to Egypt's GDP at factor cost while it currently provides livelihoods for more than 30% of the population. Agricultural activity is largely confined to a small strip along the banks of the Nile river basin and the coastal zone of the Nile delta. More than 90% of Egypt's crop production is irrigated and the Nile supplies 95% of the country's total water needs (Agrawala et al., 2004). Precipitation over Egypt itself is low and does not significantly contribute to Nile streamflow, and hence future water supplies depend critically upon climate change impacts on rainfall and evapotranspiration – and adaptation responses to it – in the upstream East African Nile riparian regions. Since the completion of the Aswan Dam in 1972 which helps to cope with periodic upstream droughts, Egypt has been reasonably well adapted to current climate variability but remains vulnerable to multi-year droughts (Agrawala et al., 2004; Robinson et al.,

Simulations towards 2100 with a hydrology model by Strzepek et al. (2001) across different GCM scenarios suggest "modest" to "dramatic" reductions in Nile flow into Egypt in eight of the nine climate scenarios under consideration and reductions towards 2040 in all of the scenarios. A more recent hydrological study by Beyene et al. (2010) likewise concludes that Egyptian agricultural water supplies could be negatively

Fig. 1. Baseline composition of GDP and export revenue by sector 2007.

impacted by climate change, especially in the second half of the 21st century.

Met Office (2011) and EEAA (2010a, 2010b) review existing studies of climate change impacts on crop yields for Egypt based on crop model simulations. For the country's main staple crops – maize, rice and wheat – these studies suggest yield reductions on the order of -11 to -19% by 2050 and by -20 to -36% by 2100. Livestock productivity is also expected to be adversely affected due to harmful heat stress and yield reductions for fodder crops under climate change (Met Office, 2011).

On the basis of these projections, scenario S1 assumes a gradual anticipated linear reduction in agricultural total factor productivity (TFP) over the period 2010 to 2100 by 0.25 percentage-points per year relative to the baseline, so that agricultural TFP is 10% below baseline in 2050 and 22.5% below baseline in 2100. The selection of yield reductions at the lower end of the spectrum of existing crop model projections makes allowance for a degree of autonomous adaptation responses by Egyptian farmers. It is worth emphasizing that due to the assumption of exogenous labour-augmenting progress in the agricultural sector as in other sectors, this scenario does *not* assume that agricultural productivity declines over time — rather, at each point in time from 2010 onwards, productivity is lower than in the baseline scenario, but continues to rise over time due to the presence of labour-augmenting technical progress.

Scenario S2 considers potential impacts of sea-level rise (SLR) on the growth prospects for the Egyptian economy. As the coastal zone of the Nile delta coast hosts a number of highly populated including Alexandria, Port Said, Rosetta, and Damietta, which are import centres of economic activity (Agrawala et al., 2004), global impact studies identify Egypt as one of the most vulnerable countries to SLR (Dasgupta et al., 2009, 2011; Met Office, 2011). Based on DIVA model simulations, Hinkel et al. (2012) estimate annual SLR damage costs for Egypt in the absence of protective adaptation investments on the order of 0.06% of GDP in 2100 for a +64 cm SLR scenario, and on the order of 0.18% of GDP for a + 126 cm SLR scenario. In contrast, Dasgupta et al. (2009) estimate a considerably higher SLR loss of 6.4% GDP for Egypt under a + 100 cm SLR scenario. We simulate disruptions to economic activity due to SLR in the absence of coastal protection investments as anticipated adverse shocks to TFP across all sectors that rise linearly in strength from 0 before 2015 to -2% of baseline productivity in 2100.

Scenario S3 simulates the impact of an anticipated increase in the frequency of extreme coastal storm surges on top of the impacts due to mean sea level rise, as contemplated by Dasgupta et al. (2011) and envisaged in EEAA (2010a). A further motivation for this scenario is provided by Hanson et al. (2011) who identify Alexandria - which generates a significant fraction of Egypt's GDP -, as one of the 20 port cities globally with the highest levels of exposure to extreme storm surges. This speculative scenario serves to illustrate the model responses to anticipated temporary shocks. The scenario assumes that extreme storm surges that destroy productive capital in all sectors occur every ten years from 2030 onwards through to 2100. The shocks are implemented through temporary one-off increases in the rate of capital depreciation by one percentage-point.

Scenario S4 considers impacts of thermal stresses on labour productivity in a changing climate. This potential impact channel is generally neglected in economic climate change impact assessments. Hsiang (2010) provides a strong argument in favour of the inclusion this channel and points to evidence from meta-studies that suggest that beyond a temperature threshold of 27 °C labour productivity drops by around 2% per 1 °C increase in temperature. A recent econometric study by Graff Zivin and Neidell (2014) for the USA suggests impacts of high temperatures on effective labour supply beyond a 27 °C threshold of a similar magnitude. Given daytime temperatures in Egypt beyond this threshold for around 6 months per year and GCM temperature projections for the country on the order of 3 to 3.5 °C compared to a 1960–90 baseline (Met Office, 2011), this scenario assumes a gradual linear drop in labour productivity relative to the baseline growth path from 2010 towards -1.3% in 2050 and to -3% in 2100.

Table 1
List of scenarios.

Code	Scenario description
SO	Baseline without climate change impacts
	Climate change impact scenarios without adaptation measures
S1	Climate change impacts on agricultural productivity
S2	Impacts of sea-level rise on total factor productivity
S3	Impacts of sea-level rise on total factor productivity and impacts of
	increased frequency of extreme coastal storm surges on real capital stock
S4	Climate change impacts on labour productivity
S5	Joint impact of climate change shocks considered in scenarios S1, S3 and S4
	Climate change impact scenarios with adaptation measures
S1A	S1 with agricultural adaptation investments
S3A	S3 with additional investments in coastal protection infrastructure
S4A	S4 with additional investments in air-conditioning equipment

Scenario S5 simulates the joint impact of the climate shocks considered in isolation in S1 to S4. Table 1 provides a concise overview of all scenarios under consideration. The adaptation scenarios S1A to S5A and their underlying assumptions are further described in Section 5.

S5 with all adaptation investments considered in scenarios S1A to S4A

4. Climate change impact simulations

In the counterfactual no-climate-change baseline scenario, the economy grows steadily at the long-run equilibrium growth rate of 3.22%. This entails that aggregate income and real income double by 2030 relative to initial levels and are 3.8 times their initial levels by 2050. Percapita income doubles by 2035 and is 2.9 times its 2007 level by 2050. These figures need to be kept in mind to maintain a proper perspective on the climate change impact results presented below.

Scenario S1 considers adverse climate impacts on agricultural productivity that gradually increase in strength over time from 2010 onwards. The time path of these future productivity shocks, as described in the previous section, is disclosed at the start of the simulation horizon, and agents in the present perfect foresight setting revise their intertemporal consumption and investment plans in response to the bad news. The first column of Table 2 reports the resulting percentage deviations from the baseline growth path for macroeconomic aggregates in 2030 and 2050.⁵ The anticipated future productivity shocks lower the present value of expected GDP and require a corresponding reduction in the present value of domestic absorption - that is the sum of domestic consumption and investment expenditure - to obey the intertemporal external balance constraint. As households have a preference for a smooth consumption expenditure growth path over time,⁶ nominal consumption drops by 0.1% immediately after the announcement of the shocks, but then continues to grow smoothly at the unchanged steady-state growth rate z from this lower level. However, since the price index of consumption P rises over time as a result of increases in the supply prices for domestic agricultural goods (Table 2), aggregate real consumption levels drop significantly relative

 $^{^4}$ Due to the instabilities in the wake of the 2011 "revolution", the actual annual real GDP growth was around 2% for 2012 to 2014 according to World Bank (World Databank, accessed September 2014) estimates.

 $^{^5}$ While the model is technically solved at annual resolution for 150 time steps up to the year 2157 and is assumed to evolve along the new steady-state growth path beyond that point (i.e. 57 years after the shocked parameters have settled on their new steady-state paths) ad infinitum, the presentation of results focuses on the period up to 2050. As illustrated by Srinivasan and Go (1998), invoking the steady-state conditions too early in infinite-horizon models yields misleading results. In the present simulations, variables effectively settle on their new steady-state paths after 130 periods (i.e., deviations from steady-state levels drop below 0.01% for t > 130 — see Fig. 4 below) and a reduction of the terminal period to t = 130 has virtually no impact on the solution. For further discussion of the selection of the terminal period in finite approximations of infinite-horizon models and alternative numerical solution approaches see Mercenier and Michel (1994), Bröcker and Korzhenevych (2013), and Van Ha and Kompas (2015).

 $^{^6}$ Recall that since $r=\rho+g+\rho g,$ condition (4) entails smooth nominal consumption expenditure growth at the rate g+n+gn.

Table 2Climate change impacts on macro aggregates (Percentage deviations from baseline growth path).

	S1	S2	S3	S4	S5
Real consumption ₀	-0.09	-0.05	-0.08	-0.04	-0.21
Real consumption ₂₀₃₀	-0.59	-0.19	-0.48	-0.16	-1.21
Real consumption ₂₀₅₀	-1.10	-0.43	-0.84	-0.30	-2.26
Real investment ₀	-0.09	-0.03	-0.04	-0.06	-0.18
Real investment ₂₀₃₀	-0.96	-1.22	-1.31	-0.96	-3.19
Real investment ₂₀₅₀	-1.70	-2.36	-2.21	-1.67	-5.41
Nominal consumption ₂₀₅₀	-0.13	-0.07	-0.11	-0.06	-0.30
Consumer price index ₂₀₅₀	0.98	0.36	0.73	0.23	2.00
Real capital stock ₂₀₅₀	-1.19	-1.58	-3.45	-1.18	-5.69
Real GDP ₂₀₅₀	-2.13	-1.99	-3.26	-1.26	-6.54

S1: agricultural yield impacts. S2: SLR impacts. S3: SLR impacts as in S2 plus decadal coastal storm surge damages. S4: Thermal stress impacts on labour productivity S5: Joint S1 and S3 and S5 impacts.

to the baseline with the passage of time as the adverse climate change impacts on agricultural yields become more severe over the decades. By 2050, aggregate real consumption is 1.1% below its baseline equilibrium level for the same year.

Associated with these macroeconomic adjustments to the yield shocks is an increase in the country's net foreign asset position over time. As domestic absorption drops immediately while the negative income impacts materialize later, the current account balance rises initially and the external debt level grows at a lower rate than along the baseline steady-state growth path. As a result debt service payments in subsequent periods are lower than in the baseline, thus allowing to maintain a smooth consumption expenditure growth path as the climate change impacts become more pronounced. Put differently, the no-Ponzi game condition effectively entails that international lenders become more cautious as expectations about Egypt's capacity to generate future trade balance surpluses are revised downwards due to the anticipation of adverse climate change impacts. As a result, Egypt's external net debt must drop relative to the baseline path. This feature of the macroeconomic adjustment is entirely absent in recursive-dynamic models with myopic agents. Essentially the same intertemporal macro adjustment patterns emerge for scenarios S2 to S5.

Looking at the sectoral results for Egyptian agriculture under scenario S1, net imports of agricultural commodities rise strongly under this scenario, with real AGR imports in 2050 rising by 12% above base line level and Egypt's real AGR exports dropping 47% below baseline level towards the middle of the century. Agricultural output in 2050 is 8.8% below base (but still more than three times as large as in the initial 2007 equilibrium). Interestingly, the 2050 agricultural capital stock is slightly larger than in the baseline (Table 3) despite a significant drop in Egypt's agricultural output (Table 4), as the producer price increase for domestic AGR output is sufficiently strong to make additional net investment in the sector profitable.⁷

Scenarios S2 and S3 consider SLR impacts on economic activity without and with additional real capital losses due to extreme storm surges. The significant adverse impacts on aggregate real investment and the aggregate capital stock well before the middle of the century displayed in Table 3 may look surprising at first sight, given that the bulk of the adverse physical SLR impacts are assumed to materialize only in the second half of the century. However, it is precisely the anticipation of these future impacts beyond 2050 that reduce the expected returns to domestic durable capital and thus discourage domestic investment in favour of the alternative to invest in foreign assets at the given world market interest rate or to reduce the foreign debt. From an economywide perspective, the aggregate domestic capital stock must drop relative to the baseline growth path until the expected value of the marginal product of capital has risen sufficiently to restore asset equilibrium. This

Table 3Impacts on sectoral capital stocks 2050
(Percentage deviations from baseline growth path).

	S1	S2	S3	S4	S5
AGR	1.67	-0.98	-2.56	-0.83	-1.59
IND	-4.12	-1.46	-3.24	-1.09	-8.18
OIL	-1.99	-3.26	-6.33	-1.51	-9.60
CON	-2.06	-2.10	-3.02	-1.51	-6.38
SER	-0.44	-1.04	-2.57	-1.18	-4.18

S1: agricultural yield impacts. S2: SLR impacts. S3: SLR impacts as in S2 plus decadal coastal storm surge damages. S4: Thermal stress impacts on labour productivity. S5: Joint S1 and S3 and S5 impacts

AGR: agriculture, IND: industry; OIL: Oil; CON: construction; and SER: other services.

anticipation effect is completely absent in standard recursive-dynamic general equilibrium impact assessment models, and the present illustrative simulations indicate that its impact on economic growth can be quite significant.

Scenario S4 considers direct thermal stress impacts on labour productivity. As noted earlier, this potential impact channel on economic performance has been commonly neglected in previous economic climate change assessment studies. The simulation results in Table 2 suggest a noticeable impact on aggregate economic outcomes. Under the stated assumptions, real GDP in 2050 is projected to be 1.3% lower than in the baseline and the aggregate capital stock drops by 1.2% below base, which is due to the impact of lower labour productivity on the expected returns to domestic investment.

Finally scenario S5 simulates the joint occurrence of the climate shocks considered under S1, S3 and S4. Under this comprehensive impact scenario, real GDP in 2050 is projected to be 6.5% below the 2050 baseline level, the aggregate capital stock drops by 5.7% and aggregate consumption drops by 2.3% below baseline in the absence of adaptation investments. Such investments are briefly explored in the following section.

It should be noted that in reality changes in the aggregates of the size orders reported here may mask far larger adverse impacts for particularly vulnerable households. Unfortunately the present model cannot capture inter-household heterogeneity, but this point needs to be borne in mind in the interpretation of the results.

5. Stylized climate change adaptation scenarios

This section considers a range of adaptation investment options that aim to address the adverse climate change impacts considered in Section 4. EEAA (2010b) identifies a set of priority actions for the agricultural sector including investments to improve surface irrigation system efficiency and support for changes in crop and livestock management practices. The study provides cost estimates for these measures over the period 2010 to 2035, amounting to USD 3 billion, the bulk of which (USD 2.1 billion) represents irrigation improvement measures. A casual

Table 4 Impacts on sectoral output 2050 (Percentage deviations from baseline growth path).

	S1	S2	S3	S4	S5
AGR	-8.76	-1.69	-3.11	-0.86	- 12.29
IND	-3.81	-1.98	-3.39	-1.15	-8.09
OIL	-1.93	-4.03	-7.01	-1.53	-10.22
CON	-1.26	-2.16	-1.81	-1.65	-4.58
SER	0.00	-1.43	-2.43	-1.26	-3.70

S1: agricultural yield impacts. S2: SLR impacts as in S2 plus decadal coastal storm surge damages. S4: thermal stress impacts on labour productivity. S5: joint S1 and S3 and S5 impacts

⁷ Here and in the following, nominal prices are expressed relative to the import price index, i.e. the numeraire of the model is the associated basket of import goods.

AGR: agriculture, IND: industry; OIL: oil; CON: construction; SER: other Services.

Table 5Climate change impacts on macro aggregates with adaptation (Percentage deviations from baseline growth path).

	S1A	S3A	S4A	S5A
Real consumption ₀	-0.09	-0.02	-0.04	-0.15
Real consumption ₂₀₃₀	-0.33	-0.11	-0.13	-0.57
Real consumption ₂₀₅₀	-0.58	-0.18	-0.21	-0.96
Real investment ₀	-0.02	-0.01	-0.02	-0.04
Real investment ₂₀₃₀	-0.47	-0.26	-0.64	-1.36
Real investment ₂₀₅₀	-0.83	-0.46	-1.07	-2.33
Nominal consumption	-0.12	-0.03	-0.05	-0.21
Consumer price index ₂₀₅₀	0.44	0.12	0.15	0.71
Real capital stock ₂₀₅₀	-0.59	-0.71	-0.77	-2.04
Real GDP ₂₀₅₀	-1.05	-0.67	-0.86	-2.58

S1A: agricultural yield impacts with adaptation. S2: SLR impacts. S3A: SLR impacts with adaptation.

S4: thermal stress impacts on labour productivity. S5: joint S1 and S3 and S5 impacts.

glance at the relation of this cumulated undiscounted cost figures to the cumulated economic losses under scenario 1 suggests that this adaptation option is potentially promising from a cost–benefit perspective.

In simulation scenario S1A, we assume that the irrigation investments are entirely domestically financed, while the research, extension, training and capacity building services required to induce change in farming practices are provided in kind by external experts and financed by international donors without notable additional demands on domestic real resources. Following EEAA (2010b), it is assumed that the capital investments are spread over the period 2010 to 2020, while maintenance and repair costs arise in subsequent periods. The financing of the investment reduces the investible funds available for other uses in the economy and the general equilibrium model takes consistent account of this knock-on effect for other sectors. It is assumed that the set of agricultural adaptation measures succeeds in reducing the adverse productivity shocks simulated under scenario S1 by 50% at each point in time from 2020 onwards, and thus this scenario allows for a considerable amount of residual damage. A comparison of the aggregate results for S1A with the corresponding figures for S1 in suggests a noticeable net beneficial impact of the agricultural adaptation measures (Fig. 2 and Table 5).

For protective coastal adaptation measures EEAA (2010b:24) estimates investment costs on the order of USD 10,000 per meter of vulnerable coastline along the Nile Delta, and deems 200 km of coastline in need of protection, concluding (erroneously) that "this would amount to about 2 million US\$". In scenario S3A we employ the algebraically correct figure of USD 2 billion, which also appears to be more closely

Fig. 2. Real GDP and consumption 2050. (Percentage deviations from 2050 baseline levels).

in line with the annualized coastal adaptation cost estimates for Egypt reported in Brown et al. (2010). This sizable figure amounts to circa 1.5% of Egypt's total GDP in 2007. Scenario S3A assumes that these investment costs are distributed over a 10-year interval from 2020 to 2030 and adds annual maintenance and replacement expenses equal to 5% of the initial investment expenditure subsequently. We assume in this stylized scenario that under a medium-range SLR scenario on the order of \pm 50 cm the protective measures are sufficient to avoid 80% of the economic losses simulated under the S3 scenario from 2030 onwards.

The comparison of results for S3A with results for S3 suggests substantial net benefits for investments in coastal protection investments (Fig. 2). The GDP loss in 2050 is reduced by over 2.5 percentage-points in relation to the no-adaptation scenario, and the drop in 2050 real consumption is reduced from -0.8 to -0.4% of the 2050 baseline level (Table 5).

As an adaptation measure towards labour productivity losses from heat stresses, we consider in scenario S4A the subsidised installation of additional cooling equipment in industry and the services sector as a conceivable adaptation strategy. This raises the demand for electricity and raises power prices for all sectors and households, and the model takes account of this intersectoral spillover effect. It is assumed that the annualized investment cost is on the order of 0.5% of the baseline investment expenditure for the two sectors and that electricity demand in industry and services rises by 2.5% per unit of output. We further assume that these investments reduce the labour productivity losses imposed under S4 by 80% in industry and by 60% in the service sector.

From an economy-wide perspective, the aggregate real consumption losses under S4A remain very close to the losses under S4 (Fig. 2). This indicates that the gains due to higher labour productivity associated with these adaptation measures are largely cancelled out by the additional investment costs and the spillover effects of higher energy prices.

Finally, scenario S5A simulates the joint implementation of all adaptation measures considered in this section in the presence of all climate shocks analysed in Section 4. Fig. 3 compares the annual time profile of GDP deviations from the baseline path up to 2050 under this scenario with the no-adaptation scenario S5. Fig. 4 displays the convergence path of de-trended GDP to its new stationary steady-state level over the entire simulation horizon.

6. Sensitivity of results and limitations of the analysis

Given the highly stylized nature of the model employed in this study, a cautious interpretation of the analysis would view the simulation results as a mere numerical illustration of the underlying theory with a particular focus on an exploration of the role of forward-looking expectations. However, as the share parameters have been calibrated to an empirical data set that reflects the observed initial structure of the Egyptian economy and the size orders for the assumed climate shocks and adaptation costs are based on country-specific expert estimates that reflect the respective current state of knowledge, it may be argued that the model is capable of generating reasonable policy-relevant indications for the general order of magnitude of the effects under investigation.

Under either interpretation of the results the question arises how sensitive the reported results are to variations in parameter assumptions. Obviously, the per-capita *levels* of the key variables are particularly sensitive to the assumed exogenous growth rate of labour-augmenting technical progress, while the key parameter determining the speed of adjustment to exogenous shocks is the capital stock adjustment cost parameter ϕ . However, our prime interest is in the percentage *deviations* of variables from the baseline growth path as a result of climate shocks, and both the signs and the broad orders of magnitude of these percentage deviations are robust to variations in these parameters. The direction of the reported intertemporal consumption smoothing responses to anticipated shocks are likewise insensitive to behavioural parameter constellations,

Fig. 3. Time profile of real GDP deviations from baseline path — S5 and S5A. (Percentage deviations from baseline GDP with and without adaptation measures).

given the assumption that the Egyptian economy can respond to shocks to the returns to physical domestic capital via adjustments in the net foreign asset position at a fixed world market interest rate.

This study analyses only a limited set of stylized adaptation options, leaving plenty of scope for more detailed future research to compare a wider set of carefully costed adaptation measures. Other potentially fruitful avenues for further research are the incorporation of uncertainty about climate shocks to relax the perfect foresight assumption, the replacement of the counterfactual assumption of exponential population growth at a constant rate by a logistic population growth specification along the lines of Guerrini (2010), and extensions of the model to include endogenous growth features. For example, an incorporation of the link between human capital formation and labour productivity growth would allow the consideration of adaptation strategies that aim to reduce the vulnerability to climate change effects across the whole economy via accelerated investments in education and training to spur economic growth.

7. Conclusions

To advance the state of the art in CGE modelling for climate change impact analysis, this study develops a multisectoral intertemporal general equilibrium model with forward-looking agents, population growth and technical progress to analyse the long-run growth prospects of Egypt in a changing climate. Based on a review of existing

Fig. 4. Convergence of de-trended GDP to the new steady state. (Index: GDP(t) / (1 - z)t / GDP(1)).

estimates of climate change impacts on agricultural productivity, labour productivity and the potential losses due to sea-level rise for the country, the model is used to simulate the effects of climate change on aggregate consumption, investment and income up to 2050. Available cost estimates for adaptation investments are employed to explore adaptation strategies.

The simulation analysis suggests that in the absence of policy-led adaptation investments, real GDP towards the middle of the century will be around 6.5% lower than in a hypothetical baseline without climate change. A combination of adaptation measures, that include coastal protection investments for vulnerable sections along the low-lying Nile delta, support for changes in crop management practices and investments to raise irrigation efficiency, could reduce the GDP loss in 2050 to around 2.6% below base.

In contrast to existing recursive-dynamic computable general equilibrium models for climate change impact assessment, the analysis takes expectation effects into account, and this adds an important additional dimension to the assessment of households' and firms' autonomous adaptation to climate change. Since current consumption and investment decisions depend on expectations about the future, a dynamic climate change impact analysis up to 2050 must take account of anticipations of future climate change beyond 2050, and this is what the present study does.

In the small open-economy setting considered here, the anticipation of future adverse climate change impacts beyond 2050 reduces the expected returns to domestic durable capital and thus discourage domestic investment in favour of the alternative to invest in foreign assets at the given world market interest rate or – equivalently – to reduce the foreign debt. As a result, domestic capital accumulation slows down well before the severe climate change impacts envisaged for the second half of the 21st century. This anticipation effect is completely absent in standard recursive-dynamic general equilibrium impact assessment models, and the simulations presented in this study indicate that its impact on economic growth can be quite significant.

Acknowledgement

Research for this study has been funded by the Forum Euroméditerranéen des Instituts de Sciences Économiques — FEMISE (Agreement No. FEM34-23). The helpful comments by anonymous reviewers of our original FEMISE Report and by two anonymous referees for this journal as well as by the editor are gratefully acknowledged.

References

- Agrawala, S., Moehner, A., El Raey, M., Conway, D., van Aalst, M., Hagenstad, M., Smith, J., 2004. Development and climate change in Egypt: focus on coastal resources and the Nile. OECD Environment Directorate. Paris.
- Arndt, C., Thurlow, J., 2015. Climate uncertainty and economic development: evaluating the case of Mozambique to 2050. Clim. Chang. 130, 63–75.
- Arndt, C., Robinson, S., Willenbockel, D., 2011. Ethiopia's growth prospects in a changing climate: a stochastic general equilibrium approach. Glob. Environ. Chang. 21, 701–710
- Arndt, C., Chinowsky, P., Strzepek, K., Thurlow, J., 2012. Climate change, growth and infrastructure investment: the case of Mozambique, Rev. Dev. Econ. 16, 463–475.
- Babiker, M., Gurgel, A., Paltsev, S., Reilly, J., 2009. Forward-looking versus recursivedynamic modelling in climate policy analysis. Econ. Model. 26, 1341–1354.
- Beyene, T., Lettenmaier, D.P., Kabat, P., 2010. Hydrologic impacts of climate change on the Nile river basin: implications of the 2007 IPCC scenarios. Clim. Chang. 100, 433–461.
- Bröcker, J., Korzhenevych, A., 2013. Forward looking dynamics in spatial CGE modelling. Econ. Model. 31, 389–400.
- Brown, S., Kebede, A.S., Nicholls, R.J., 2010. Sea-Level Rise and Impacts in Africa, 2000 to 2100. University of Southampton, Southampton.
- Dasgupta, S., Laplante, B., Meisner, C., Wheeler, D., Yan, J., 2009. The impact of sea level rise on developing countries: a comparative analysis. Clim. Chang. 93, 379–388.
- Dasgupta, S., Laplante, B., Murray, S., Wheeler, D., 2011. Exposure of developing countries to sea-level rise and storm surges. Clim. Chang. 106, 567–579.
- Diao, X., Somwaru, A., 2000. An inquiry on general equilibrium effects of MERCOSUR an intertemporal world model. J. Policy Model 22, 557–588.
- EEAA, 2010a. Egypt Second National Communication under the United Nations Framework Convention on Climate Change. Egyptian Environmental Affairs Agency, Cairo.
- EEAA, 2010b. Egypt National Environmental, Economic and Development Study (NEEDS) for Climate Change. Egyptian Environmental Affairs Agency, Cairo.
- Elshennawy, A., 2011. The Transitional Costs to Trade Liberalization: An Intertemporal General Equilibrium Model for Egypt. Society of Policy Modeling (EconModels.com).
- Fankhauser, S., Tol, R.S.J., 2005. On climate change and economic growth. Resour. Energy Econ. 27, 1–17.
- Fisher-Vanden, K., Sue Wing, I., Lanzi, E., Popp, D., 2013. Modeling climate change feed-backs and adaptation responses: recent approaches and shortcomings. Clim. Chang. 117, 481–495.
- Go, D., 1994. External shocks, adjustment policies, and investment in a developing economy: illustrations from a forward-looking CGE model of the Philippines. J. Dev. Econ. 44, 229–261.
- Graff Zivin, J., Neidell, M., 2014. Temperature and the allocation of time: implications for climate change. J. Labor Econ. 32, 1–16.
- Guerrini, L., 2010. A closed-form solution to the Ramsey model with logistic population growth. Econ. Model. 27, 1178–1182.
- Hanson, S., Nicholls, R., Ranger, N., Hallegatte, S., Corfee-Morlot, J., Herweijer, C., Chateau, J., 2011. A global ranking of port cities with high exposure to climate extremes. Clim. Chang. 104, 89–111.
- Hayashi, F., 1982. Tobin's marginal q and average q: a neoclassical interpretation. Econometrica 50, 675–693.

- Hinkel, J., Brown, S., Exner, L., Nicholls, R.J., Vafeidis, A.T., Kebede, A.S., 2012. Sea-level rise impacts on Africa and the effects of mitigation and adaptation: an application of DIVA. Reg. Environ. Chang. 12, 207–224.
- Hsiang, S.M., 2010. Temperatures and cyclones strongly associated with economic production in the Caribbean and Central America. Proc. Natl. Acad. Sci. U. S. A. 107, 15367–15372.
- Lecca, P., McGregor, P.G., Swales, J.K., 2013. Forward-looking and myopic regional computable general equilibrium models: how significant is the distinction? Econ. Model. 31, 160–176.
- Lecocq, F., Shalizi, Z., 2007. How might climate change affect economic growth in developing countries? A review of the growth literature with a climate lens. World Bank Policy Research Working Paper No. 4315
- Mercenier, J., Michel, P., 1994. Discrete-time finite horizon approximation of infinite horizon optimization problems with steady-state invariance. Econometrica 62, 635–656.
- Mercenier, J., Sampaio de Souza, M.d.C., 1994. Structural adjustment and growth in a highly indebted market economy: Brazil. In: Mercenier, J., Srinivasan, T.N. (Eds.), Applied General Equilibrium Analysis and Economic Development: Present Achievements and Future Trends. University of Michigan Press, Ann Arbor, pp. 281–315.
- Met Office, 2011. Climate: Observations, Projections and Impacts. Egypt. Met Office, Exeter.
- Robinson, S., Yunez-Naude, A., Hinojosa-Ojeda, R., Lewis, J.D., Devarajan, S., 1999. From stylized to applied models: building multisectoral CGE models for policy analysis. N. Am. J. Econ. Financ. 10, 5–38.
- Robinson, S., Strzepek, K., El-Said, M., Lofgren, H., 2008. The high dam at Aswan. In: Bhatia, R., Cestti, R., Scatasta, M., Malik, R.P.S. (Eds.), Indirect Impact of Dams: Case Studies from India, Egypt and Brazil. World Bank and Academic Foundation, Washington, DC, and New Delhi, pp. 227–273.
- Robinson, S., Willenbockel, D., Strzepek, K., 2012. A dynamic general equilibrium analysis of adaptation to climate change in Ethiopia. Rev. Dev. Econ. 16, 489–502.
- Roe, T.L., Smith, R.B.W., Sirin Saracoglu, D., 2010. Multisector Growth Models: Theory and Application. Springer, New York.
- Srinivasan, S., Go, D.S., 1998. The simplest dynamic general-equilibrium model of an open economy. J. Policy Model 20, 677–714.
- Stern, N., 2008. The economics of climate change. Am. Econ. Rev. 98 (2), 1-37.
- Strzepek, K.M., Yates, D.N., 2000. Responses and thresholds of the Egyptian economy to climate change impacts on the water resources of the Nile river. Clim. Chang. 46, 339–356.
- Strzepek, K., Yates, D., Yohe, G., Tol, R., Mader, N., 2001. Constructing 'not implausible' climate and economic scenarios for Egypt. Integr. Assess. 2, 139–157.
- Thurlow, J., Dorosh, P., Yu, W., 2012. A stochastic simulation approach to estimating the economic impacts of climate change in Bangladesh. Rev. Dev. Econ. 16, 412–428.
- Van Ha, P., Kompas, T., 2015. Solving intertemporal CGE models in parallel using a singly bordered block diagonal ordering technique. Econ. Model. http://dx.doi.org/10.1016/ j.econmod.2015.07.011.
- Willenbockel, D., 2008. Social time preference revisited. J. Popul. Econ. 21, 609–622.
- World Bank, 2010a. Economics of Adaptation to Climate Change: Ghana. The World Bank, Washington, DC.
- World Bank, 2010b. Economics of Adaptation to Climate Change: Synthesis Report. The World Bank, Washington, DC.