## Egzamin, termin III

| imię i nazwisko                                              | dyn |
|--------------------------------------------------------------|-----|
| liczba punktów/ 10                                           |     |
| dokument klasy <b>B1</b> , archiwizować do <b>2020-01-01</b> |     |

W programie zdefiniowano następujące typy:

Korzystając z nich można utworzyć strukturę danych, której przykład jest przedstawiony na rys. 1. Bakterie (struktury **stBakteria**) tworzą listę jednokierunkową. Każda bakteria ma genom zapisany w postaci listy jednokierunkowej cyklicznej. Genom nie może być pusty – musi zawierać przynajmniej jeden gen (jeden element listy cyklicznej).

## Zadanie

Proszę zdefiniować funkcje:

void dodaj (stGenom \* & pGenom, stGenom \* pFragment);

(3 punkty) Funkcja dodaje do genomu bakteryjnego o głowie p<br/>Genom fragment o adresie p Fragment. Fragment jest dodawany na początek genomu, tzn. że po dodaniu głowa listy cyklicznej wskazuje na nowo dodany fragment. Przykład dodawania do genomu przedstawia rys. 2.

2. **stGenom** \* wytnij (**stGenom** \*& pGenom, **int** ile);

(3 punkty) Funkcja wycina z genomu o głowie pGenom fragment o długości ile . Funkcja zwraca adres wyciętego fragmentu. Genom bakteryjny po wycięciu nadal jest kolisty. Przykład wycinania do genomu przedstawia rys. 2.

3. **void** znajdzNajlepszaNajgorszaBakterie (**stBakteria** \* pGlowa, **stBakteria** \* & pNajgorsza, **stBakteria** \* & pNajlepsza);

(2 punkty) Funkcja wyszukuje bakterie najlepszą i najgorszą ze względu na uzyskaną wartość funkcji ocen, która jest zdefiniowana w programie i ma nagłówek: **double** ocen (**stGenom** ∗ pGenom); Funkcji tej nie trzeba definiować!

4. **void** krzyzuj (**stBakteria** \* pGronkowiec, **stBakteria** \* pPaciorkowiec);

(2 punkty) Krzyżowanie dwóch bakterii polega na wymianie fragmentów genów tych bakterii. Odbywa się to w następujący sposób: Z obu bakterii wycinane są fragmenty od długości  $\lfloor \frac{n}{2} \rfloor$ , gdzie n to liczba genów bakterii, a następnie zamieniane. Długości wymienianych fragmentów nie muszą być jednakowe. Funkcja korzysta z funkcji zdefiniowanych w punktach 1 i 2.

**Ułatwienie:** W programie zdefiniowana jest funkcja wyznaczająca liczbę genów w genomie, tzn. liczbę elementów struktury **stGenom** w liście cyklicznej. Nagłówek funkcji: **int** ile (**stGenom** \* pGenom); Funkcji tej nie trzeba definiować!

**Wskazówka:** Funkcja  $podloga \lfloor x \rfloor$  oznacza największą liczbę całkowitą nie większą od x, tzn.  $\lfloor x \rfloor = \max\{k \in \mathbb{Z} : k \leqslant x\}$ , np.  $|\pi| = 3$ .



Rysunek 1: Przykładowa struktura danych przechowująca bakterie i ich genomy.



Rysunek 2: Dodawanie fragmentu do genomu i wycinanie fragmentu z genomu.