Lycée Thiers

Formulaire MPSI-MPII

FORMULES DE SOMMATION

Si p, n sont deux entiers naturels tels que $p \le n$ et si x_p, \dots, x_n sont des nombres complexes, la somme $x_p + \dots + x_n$ est notée $\sum_{k=p}^n x_k$.

Le symbole $\sum_{k=p}^{n} x_k$ se lit "somme des x_k pour k variant de p jusqu'à n". Cette expression ne dépend évidemment pas de la lettre k, qui pourrait être remplacée par toute autre lettre non utilisée dans le contexte. On dit que k est l'indice de sommation (ou plus simplement : l'indice).

Les trois formules suivantes seront couramment utilisées. Les deux premières vous sont déjà familières, la troisième sera étudiée dès la rentrée.

Somme des n premiers entiers

Pour tout
$$n \in \mathbb{N}^*$$
: $\sum_{k=1}^n k = \frac{n(n+1)}{2}$

Sommes géométriques

Pour tout
$$n \in \mathbb{N}$$
 et pour tout $q \in \mathbb{C} - \{1\}$: $\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$

Formule du binôme

Pour tout
$$(a,b) \in \mathbb{C}^2$$
 et pour tout $n \in \mathbb{N}$: $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$

Le symbole $\binom{n}{k}$ se lit "k parmi n". Les nombres $\binom{n}{k}$ sont les coefficients binomiaux, définis par :

Pour tout
$$(n,k) \in \mathbb{N}^2$$
 tel que $k \le n : \binom{n}{k} = \frac{n!}{k! (n-k)!}$