

Recently a new nomenclature has been proposed which systematically classifies the Cry proteins based upon amino acid sequence homology rather than upon insect target specificities. This classification scheme is summarized in Table 1.

TABLE 1
REVISED *B. THURINGIENSIS* δ-ENDOTOXIN NOMENCLATURE^A

New	Old	GenBank Accession #
Cry1Aa	CryIA(a)	M11250
Cry1Ab	CryIA(b)	M13898
Cry1Ac	CryIA(c)	M11068
Cry1Ad	CryIA(d)	M73250
Cry1Ae	CryIA(e)	M65252
Cry1Ba	CryIB	X06711
Cry1Bb	ET5	L32020
Cry1Bc	PEG5	Z46442
Cry1Bd	CryE1	U70726
Cry1Ca	CryIC	X07518
Cry1Cb	CryIC(b)	M97880
Cry1Da	CryID	X54160
Cry1Db	PrtB	Z22511
Cry1Ea	CryIE	X53985
Cry1Eb	CryIE(b)	M73253
Cry1Fa	CryIF	M63897
Cry1Fb	PrtD	Z22512
Cry1Ga	PrtA	Z22510
Cry1Gb	CryH2	U70725
Cry1Ha	PrtC	Z22513
Cry1Hb		U35780
Cry1Ia	CryV	X62821

New	Old	GenBank Accession #
Cry1Ib	CryV	U07642
Cry1Ja	ET4	L32019
Cry1Jb	ET1	U31527
Cry1K		U28801
Cry2Aa	CryIIA	M31738
Cry2Ab	CryIIB	M23724
Cry2Ac	CryIIC	X57252
Cry3A	CryIIIA	M22472
Cry3Ba	CryIIIB	X17123
Cry3Bb	CryIIIB2	M89794
Cry3C	CryIID	X59797
Cry4A	CryIVA	Y00423
Cry4B	CryIVB	X07423
Cry5Aa	CryVA(a)	L07025
Cry5Ab	CryVA(b)	L07026
Cry5B		U19725
Cry6A	CryVIA	L07022
Cry6B	CryVIB	L07024
Cry7Aa	CryIIIC	M64478
Cry7Ab	CryIIICb	U04367
Cry8A	CryIIIE	U04364
Cry8B	CryIIIG	U04365
Cry8C	CryIIIF	U04366
Cry9A	CryIG	X58120
Cry9B	CryIX	X75019
Cry9C	CryIH	Z37527
Cry10A	CryIVC	M12662
Cry11A	CryIVD	M31737

New	Old	GenBank Accession #
Cry11B	Jeg80	X86902
Cry12A	CryVB	L07027
Cry13A	CryVC	L07023
Cry14A	CryVD	U13955
Cry15A	34kDa	M76442
Cry16A	cbm71	X94146
Cry17A	cbm71	X99478
Cry18A	CryBP1	X99049
Cry19A	Jeg65	Y08920
Cyt1Aa	CytA	X03182
Cyt1Ab	CytM	X98793
Cyt1B		U37196
Cyt2A	CytB	Z14147
Cyt2B	CytB	U52043

^aAdapted from: http://epunix.biols.susx.ac.uk/Home/Neil_Crickmore/Bt/index.html

1.2.3 CRYSTAL PROTEINS FIND UTILITY AS BIOINSECTICIDES

The utility of bacterial crystal proteins as insecticides was extended when the first isolation of a coleopteran-toxic *B. thuringiensis* strain was reported (Krieg *et al.*, 1983; 5 1984). This strain (described in U. S. Patent 4,766,203, specifically incorporated herein by reference), designated *B. thuringiensis* var. *tenebrionis*, is reported to be toxic to larvae of the coleopteran insects *Agelastica alni* (blue alder leaf beetle) and *Leptinotarsa decemlineata* (Colorado potato beetle).

10 U. S. Patent 5,024, 837 also describes hybrid *B. thuringiensis* var. *kurstaki* strains which showed activity against lepidopteran insects. U. S. Patent 4,797,279 (corresponding to EP 0221024) discloses a hybrid *B. thuringiensis* containing a plasmid from *B. thuringiensis* var. *kurstaki* encoding a lepidopteran-toxic crystal protein-encoding gene and a plasmid from *B. thuringiensis tenebrionis* encoding a coleopteran-toxic crystal protein-encoding gene. The hybrid *B. thuringiensis* strain produces crystal proteins 15