EE24BTECH11060 - Sruthi Bijili

Question:

Find a point which is equidistant from the points (-5,4) and (-1,6). How many such points are there ?

solution:

Variable	Description	formula
A(-5,4)	coordinates of first point	_
B(-1,6)	coordinates of second point	_
С	midpoint of A and B	_
k	ratio in which \mathbf{c} divides the line joining AB	$\frac{\mathbf{B}+k\mathbf{A}}{k+1}$

TABLE 0: Variables Used

$$\|\mathbf{C} - \mathbf{A}\| = \|\mathbf{C} - \mathbf{B}\| \tag{0.1}$$

$$\implies \|\mathbf{C} - \mathbf{A}\|^2 = \|\mathbf{C} - \mathbf{B}\|^2 \tag{0.2}$$

$$\implies \|\mathbf{C}\|^2 - 2\mathbf{C}^T\mathbf{A} + \|\mathbf{A}\|^2 = \|\mathbf{C}\|^2 - 2\mathbf{C}^T\mathbf{B} + \|\mathbf{B}\|^2$$
 (0.3)

$$\implies (A - B)^T \mathbf{C} = \frac{\|\mathbf{A}\|^2 - \|\mathbf{B}\|^2}{2} \tag{0.4}$$

$$\implies \left(\binom{-5}{4} - \binom{-1}{6} \right)^T \binom{x}{y} = \frac{\sqrt{(-5)^2 - (4)^2}}{2} \tag{0.5}$$

$$\implies \begin{pmatrix} -4 \\ 10 \end{pmatrix}^T \begin{pmatrix} x \\ y \end{pmatrix} = \frac{\sqrt{9}}{2} \tag{0.6}$$

$$\implies (-4, 10) \begin{pmatrix} x \\ y \end{pmatrix} = \frac{3}{2} \tag{0.7}$$

$$\implies 2x + y = -1 \tag{0.8}$$

$$if x = -3 \tag{0.9}$$

$$\implies y = 5 \tag{0.10}$$

$$\mathbf{C} = \begin{pmatrix} -3\\5 \end{pmatrix} \tag{0.11}$$

There are infinitely many points that are equidistant from the points (-5,4) and (-1,6)

1

Fig. 0.1: line passing through the midpoint of AB