Corrigé du devoir maison 7.

Exercice 1

 $\mathbf{1}^{\circ}$) Soit $n \in \mathbb{N}^*$.

La fonction f_n est continue sur $[1, +\infty[$, qui est un intervalle.

De plus, f_n dérivable par produit et somme et :

$$\forall x \in [1, +\infty[, f'_n(x) = nx^{n-1}\ln(x) + x^n \frac{1}{x} = x^{n-1}(n\ln(x) + 1).$$

Or pour tout $x \in [1, +\infty[$, $\ln(x) \ge 0$ et $x^{n-1} > 0$ donc $f'_n(x) > 0$. Ainsi f_n est strictement croissante sur $[1, +\infty[$.

Donc, par le théorème de la bijection, f_n réalise une bijection de $[1, +\infty[$ sur $f_n([1, +\infty[)$. Or $f_n(1) = -1$ et $\lim_{x \to +\infty} f_n(x) = +\infty$, donc f_n réalise une bijection de $[1, +\infty[$ sur $[-1, +\infty[$.

Comme $0 \in [-1, +\infty[$, 0 admet un unique antécédent x_n dans $[1, +\infty[$, ce qui revient à dire que l'équation $f_n(x) = 0$ admet une unique solution x_n dans $[1, +\infty[$].

Remarque: Ainsi, pour tout $n \in \mathbb{N}^*$, $x_n^n \ln x_n = 1$.

 $\mathbf{2}^{\circ}$) Soit $n \in \mathbb{N}^*$.

 $f_{n+1}(x_n) = x_n^{n+1} \ln(x_n) - 1 = x_n x_n^n \ln(x_n) - 1 = x_n - 1$ puisque $x_n^n \ln(x_n) = 1$.

Comme $x_n \ge 1$, on en déduit : $f_{n+1}(x_n) \ge 0$

Or $f_{n+1}(x_{n+1}) = 0$ donc $f_{n+1}(x_n) \ge f_{n+1}(x_{n+1})$.

Comme f_{n+1} est strictement croissante, nécessairement, $x_n \ge x_{n+1}$ (si on avait $x_n < x_{n+1}$, la stricte croissance de f_{n+1} imposerait $f_{n+1}(x_n) < f_{n+1}(x_{n+1})$).

Ainsi, la suite (x_n) est décroissante

 3°) (x_n) est décroissante et minorée par 1 donc elle converge.

Notons ℓ sa limite; comme pour tout $n \in \mathbb{N}^*$, $x_n \ge 1$, on a $\ell \ge 1$.

Par l'absurde, supposons que $\ell>1.$

On sait que pour tout $n \in \mathbb{N}^*$, $x_n^n \ln(x_n) = 1$.

Pour tout $n \in \mathbb{N}^*$, $x_n^n = \exp(n \ln(x_n))$.

Comme $\ell > 1 > 0$, ln est continue en ℓ , donc $\ln(x_n) \xrightarrow[n \to +\infty]{} \ln(\ell) > 0$.

D'où, par produit de limites, $n \ln(x_n) \xrightarrow[n \to +\infty]{} +\infty$.

Par composition de limites, $\exp(n \ln(x_n)) \xrightarrow[n \to +\infty]{} +\infty$.

Par produit avec $\ln(x_n)$ qui tend vers $\ln(\ell) > 0$, on obtient que $x_n^n \ln(x_n) \xrightarrow[n \to +\infty]{} +\infty$.

Pourtant, pour tout $n \in \mathbb{N}^*$, $x_n^n \ln(x_n) = 1$, donc $x_n^n \ln(x_n) \xrightarrow[n \to +\infty]{} 1$: contradication de l'unicité de la limite.

Donc $x_n \xrightarrow[n \to \infty]{1}$.

4°) Pour tout $n \in \mathbb{N}^*$, $f_n(1) = -1 \neq 0$, donc $x_n \neq 1$.

Ainsi, pour tout $n \in \mathbb{N}^*$, $\ln(x_n) \neq 0$, ce qui nous permet d'écrire : $x_n^n = \frac{1}{\ln(x_n)}$.

Or $x_n \xrightarrow[n \to \infty]{} 1$ et pour tout $n \in \mathbb{N}^*$, $x_n > 1$, donc $\ln(x_n) \xrightarrow[n \to \infty]{} 0$ et pour tout $n \in \mathbb{N}^*$, $\ln(x_n) > 0$;

on en déduit que $x_n \xrightarrow[n \to \infty]{} + \infty$.

Exercice 2

- 1°) Posons, pour tout $n \in \mathbb{N}$, P_n : "les réels x_n et y_n existent et $1 < x_n < y_n$ ".
 - P_0 est vraie car x_0 et y_0 existent et vérifient bien $1 < x_0 < y_0$ par hypothèse.
 - Supposons P_n vraie pour un $n \in \mathbb{N}$ fixé. Comme $y_n > x_n > 1$, les réels x_n et y_n sont positifs donc $\sqrt{x_n}$ et $\sqrt{y_n}$ existent, donc x_{n+1} et y_{n+1} existent bien.

On a également $\sqrt{y_n} > \sqrt{x_n} > 1$ par stricte croissance de la fonction racine, d'où :

$$x_{n+1} = \frac{1}{2}(x_n + \sqrt{y_n}) > \frac{1}{2}(1+1) = 1 \text{ et } y_{n+1} = \frac{1}{2}(\sqrt{x_n} + y_n) > \frac{1}{2}(1+1) = 1$$

Enfin,

$$y_{n+1} - x_{n+1} = \frac{1}{2} (y_n - x_n + \sqrt{x_n} - \sqrt{y_n})$$

$$= \frac{1}{2} ((\sqrt{y_n} + \sqrt{x_n})(\sqrt{y_n} - \sqrt{x_n}) - (\sqrt{y_n} - \sqrt{x_n}))$$

$$= \frac{1}{2} (\sqrt{y_n} + \sqrt{x_n} - 1) (\sqrt{y_n} - \sqrt{x_n})$$

Comme $\sqrt{y_n} > \sqrt{x_n}$, on a $\sqrt{y_n} - \sqrt{x_n} > 0$, et on a aussi $\sqrt{x_n} > 1$ et $\sqrt{y_n} > 1$ donc $\sqrt{y_n} + \sqrt{x_n} - 1 > 1 > 0$. Ainsi, $y_{n+1} - x_{n+1} > 0$.

On a bien montré que $y_{n+1} > x_{n+1} > 1 : P_{n+1}$ est vraie.

- Conclusion: les suites (x_n) et (y_n) sont bien définies, et pour tout $n \in \mathbb{N}$, $1 < x_n < y_n$.
- **2°)** Supposons que (x_n) converge. Notons ℓ sa limite. On a alors $x_{n+1} \xrightarrow[n \to +\infty]{} \ell$, donc $\sqrt{y_n} = 2x_{n+1} - x_n \xrightarrow[n \to +\infty]{} 2\ell - \ell = \ell$, d'où $y_n \xrightarrow[n \to +\infty]{} \ell^2$. Ainsi, la suite (y_n) converge aussi.

On a aussi, pour tout $n \in \mathbb{N}$, $\sqrt{x_n} = 2y_{n+1} - y_n$, donc $x_n = 4y_{n+1}^2 + y_n^2 - 4y_{n+1}y_n$. Par passage à la limite, on obtient $\ell = 4(\ell^2)^2 + (\ell^2)^2 - 4\ell^2\ell^2 = \ell^4$.

Comme pour tout $n \in \mathbb{N}$, $x_n > 1$, par passage à la limite, $\ell \geq 1$. En particulier $\ell \neq 0$ donc on a $1 = \ell^3$, et comme ℓ est un réel, $\ell = 1$. On a donc $\ell^2 = 1$.

Finalement, si (x_n) converge, alors (x_n) et (y_n) convergent toutes les deux vers 1.

- Dans le raisonnement ci-dessus, on n'a pas utilisé le fait que $x_0 < y_0$. Comme les relations de récurrences vérifiées par les deux suites sont symétriques, les rôles des deux suites sont symétriques dans le raisonnement ci-dessus, donc en échangeant les rôles de (x_n) et de (y_n) on obtient que si (y_n) converge, alors (x_n) et (y_n) convergent toutes les deux vers 1.
- Conclusion : si l'une converge, alors l'autre aussi, et alors elles convergent toutes les deux vers 1.
- **3**°) Soit $n \in \mathbb{N}$, on a $y_{n+1} y_n = \frac{1}{2}(\sqrt{x_n} y_n)$.

Or $x_n > 1$ donc $\sqrt{x_n} \le x_n$, et d'après la question 1, $x_n \le y_n$, donc $\sqrt{x_n} \le y_n$. Ainsi, $y_{n+1} - y_n \le 0$.

Ceci pour tout $n \in \mathbb{N}$ donc (y_n) est décroissante.

De plus (y_n) est minorée (par 1, d'après la question 1), donc (y_n) converge.

D'après la question 2, on peut conclure que $x_n \xrightarrow[n \to +\infty]{} 1$ et $y_n \xrightarrow[n \to +\infty]{} 1$.

4°) Comme (y_n) est décroissante, si (x_n) et (y_n) étaient adjacentes, (x_n) serait croissante et puisque 1 est la limite commune à (x_n) et (y_n) , on aurait, pour tout $n \in \mathbb{N}$, $x_n \leq 1 \leq y_n$.

Ce n'est pas possible d'après la question 1.

Donc (x_n) et (y_n) ne sont pas adjacentes.

5°) Pour tout $n \in \mathbb{N}$, $x_{n+1} - x_n = \frac{1}{2}(\sqrt{y_n} - x_n)$.

Posons, pour tout $n \in \mathbb{N}$, $Q_n : y_n \leq x_n^2$.

• Q_0 est vraie puisque $y_0 \leq x_0^2$.

• Supposons Q_n vraie pour un $n \in \mathbb{N}$ fixé.

$$x_{n+1}^2 = \frac{1}{4}(x_n^2 + y_n + 2x_n\sqrt{y_n}).$$

Or, par hypothèse de récurrence, $x_n^2 \ge y_n$, donc

$$x_{n+1}^2 \ge \frac{1}{4}(2y_n + 2x_n\sqrt{y_n}) = \frac{1}{2}(y_n + x_n\sqrt{y_n})$$

Or $x_n > 1$ donc $x_n \ge \sqrt{x_n}$, et $\sqrt{y_n} > 1$ donc par produit, $x_n \sqrt{y_n} \ge \sqrt{x_n}$. On obtient bien :

$$x_{n+1}^2 \ge \frac{1}{2}(y_n + \sqrt{x_n}) = y_{n+1}.$$

• Conclusion : pour tout $n \in \mathbb{N}$, $y_n \le x_n^2$, donc $\sqrt{y_n} \le x_n$. Donc pour tout $n \in \mathbb{N}$, $x_{n+1} - x_n = \frac{1}{2}(\sqrt{y_n} - x_n) \le 0$. Donc (x_n) est décroissante.