The capacity of String Duplication Systems

F. Farnoud, M. Schwartz, and J. Bruck

California Institute of Technology
Ben-Gurion University of Negev

Repeated Sequences in Human Genome

- * The majority of the human genome consists of repeated sequences.
 - * Tandem repeats: TCATCATGCA
 - * Transposon-driven repeats (interspersed repeats): TCATGCCATA
- Repeats provide a record of evolution and may cause chromosome fragility, expansion diseases, gene silencing, etc.

- Transposons-driven repeats
- Tandem repeats
- Other repeats
- Unique

Expressive Power of Repetitions

* "Much of the remaining 'unique' DNA must also be derived from ancient transposable element copies that have diverged too far to be recognized as such." [Lander et al. Nature 2001]

* We investigate the possibility of generating a diverse family of sequences using repetitions.

* We take an information theoretic point of view by studying the capacity of *string duplication systems*.

String Duplication Systems

- * A string system S is identified by the tuple (s,F):
 - * *F*: family of duplication rules
 - * s: starting string on some alphabet A e.g., $A = \{0,1\}$ or $A = \{G,C,A,T\}$
 - * δ (s) is the number of distinct symbols in *s*.
- * The system S contains all sequences obtained by starting with s and applying functions $f \in F$
- * The *capacity* of *S* is given by

$$\operatorname{cap}(S) = \limsup_{n \to \infty} \frac{\log_2 |S \cap A^n|}{n \log_2 \delta(s)}$$

* Note that $0 \le \operatorname{cap}(S) \le 1$.

Duplication Rules

- Four types of duplications
 - ***** End duplication: T<u>CAT</u>GC→ T<u>CAT</u>GC<u>CAT</u>
 - * Tandem duplication: T<u>CAT</u>GC → T<u>CATCAT</u>GC
 - **Reversed tandem duplication:** T<u>CAT</u>GC→ T<u>CATTAC</u>GC
 - ♦ Duplication with a gap: T<u>CAT</u>GC → T<u>CAT</u>GCATC
- * Parameters: length of duplicate *k*, gap *k'*
- * We find the capacity or bounds on the capacity of string systems with above duplication rules.

End Duplication Has Capacity 1

- * Let $F_{k,end}$ denote the set of functions that duplicate a k-substring and append it to the end
 - * $TCATGC \rightarrow TCATGCCAT (k=3)$
- * End duplication is relatively simple and easy to analyze.

Theorem: For any positive integer k, and $S=(s,F_{k,end})$, we have cap(S)=1

End Duplication Has Capacity 1: Proof

Theorem: For any positive integer k, and $S=(s,F_{k,end})$, we have cap(S)=1

- * Proof outline:
 - * First, form a string with a substring of length $k\delta(s)^k$ that contains all possible k-substrings in a finite number of steps.
 - * For s=AGT, and k=2: ...AAAGATGAGGGTTATGTT...
 - * Then, in each duplication step any *k*-substring can be duplicated.
 - * For s=AGT, and k=2: ...AAAGATGAGGGTTATGTT...AT

Tandem Duplication Has Capacity 0

- * Let $F_{k,\text{tan}}$ denote the set of functions that duplicate a k-substring and insert the duplicate immediately after the original copy.
 - * $TCATGC \rightarrow TCATCATGC (k=3)$
- * Capacity of tandem-duplication systems is in complete contrast to end-duplication systems:

Theorem: For any positive integer k, and $S=(s,F_{k,\text{tan}})$, we have $\operatorname{cap}(S)=0$.

Tandem Duplication Has Capacity 0: Proof

Theorem: For any positive integer k, and $S=(s,F_{k,tan})$, cap(S)=0.

* View a string of length n as a sequence of n-k+1 overlapping *circular* k-substrings (*super-symbols*).

* With this mapping, every duplication is equivalent to adding *k* identical super-symbols.

$$GCATCATGC \longrightarrow A C A C A C A C A C G$$

* The number of possible sequences can be shown to grow only polynomially.

Tandem Duplication with Non-uniform Length

- * Let $F_{\geq k, \text{tan}}$ denote the set $\{F_{i, \text{tan}}: i \geq k\}$.
 - * $TCATGC \rightarrow TCATCATGC \rightarrow TCATCTCATGC (k=2)$
- * Unlike tandem duplication with fixed length, the capacity is nonzero.

Theorem: For a nontrivial string s, let $S=(s,F_{\geq k, \tan})$ and $S'=(s,F_{\geq 1, \tan})$. We have $\frac{\operatorname{cap}(S')>0}{\operatorname{cap}(S')\geq \log_2(r+1)/\log_2\delta(s)}$, where r is the largest (real) root of

$$x^{\delta(s)} - \sum_{i=0}^{\delta(s)-2}$$

Tandem Duplication with Non-uniform Length

- * Outline of proof for $S' = (s, F_{\geq 1, tan})$:
 - * We show that S' has a regular language as a subset.
 - * The capacity of this regular language is a lower bound for the capacity of *S'*

Finite-state automaton representing the regular language.

- * The number length *n* words in the regular language is the number of length *n* paths in the automaton.
- * The capacity of the regular language is the largest eigenvalue of the adjacency matrix of the finite-state automaton.

Reverse Tandem Duplication has Nonzero Capacity

- * Let $F_{k,rt}$ denote the set of functions that duplicate a k-substring and insert it immediately after the original copy in reverse.
 - * $TCATGC \rightarrow TCATTACGC (k=3)$
- * While allowing reversing the copy is seemingly a small change, unlike tandem duplication, reverse tandem duplication has nonzero capacity.

Theorem: For any positive integer k, and $S=(s,F_{k,\mathrm{rt}})$, we have $\frac{\mathrm{cap}(S)>0}{0}$, unless $\delta(s)=1$. Furthermore, capacity depends on s, only through $\delta(s)$.

(Reverse) Tandem Duplication

* The main difference between tandem and reverse tandem duplication is that the former leads to nearperiodic behavior with period *k*, but the latter does not.

Duplication with Gap

- * Let $F_{k,k',gap}$ denote the set of functions that duplicate a ksubstring and insert it *k* positions after the original copy.
 - * $TCATGC \rightarrow TCATGCATC (k=3,k'=1)$

Results on Duplication with Gap

Theorem: The capacity of $S=(s, F_{k,k',gap})$ is zero if and only if s is periodic with period gcd(k,k').

Theorem: There are non-trivial strings s such that for $S=(s, F_{k,k',gap})$ we have 0 < cap(S) < 1.

Theorem: If gcd(k,k')=1, then the capacity of $S=(s, F_{k,k',gap})$ depends on s only through $\delta(s)$.

Conclusion

- * We studied the expressive power of languages generated by different duplication rules from an information theoretic point of view.
- * We showed rules that can produce nearly any sequence and rules that can produce a small set of sequences.
- * These results *suggest* that it is plausible to have diverse genomic sequences solely using repetition.
- * Rules that lead to interspersed repeats (end, gap) are generally more powerful than rules leading to tandem repeats (with fixed length/gap).
- * Ongoing work: a probabilistic framework leading that takes into account the probabilities of different sequences and not only their count.