A10 LCD 调试手册 Revision 1.0

Record of Revision

Ver.	Revise Date	Page	Content	Author
V1.0	Nov, 18th 2011		First draft	Part 1,3,5 by dlp dulianping@allwinnerme.com Part 2,4 by danling danling@allwinnertech.com
				daining @ anwinner tech.com

目录

1.	整包	▶介绍		3
2.	软件	中配置说明	月	4
	2.1.	屏文作	牛说明	4
	2.2.	开关原	昇流程	5
		2.2.1.	开关屏步骤函数说明	6
		2.2.2.	开关屏流程函数说明	8
	2.3.	对屏的	勺初始化	9
		2.3.1.	IO模拟串行接口初始化	9
		2.3.2.	CPU屏 8080 总线初始化	10
	2.4.	其它图	6数	12
		2.4.1.	用户自定义函数	12
		2.4.2.	GPIO操作函数	13
		2.4.3.	延时函数	15
	2.5.	fex文化	件	16
		2.5.1.	电源控制IO的定义	16
		2.5.2.	模拟串行接口的IO定义	17
		2.5.3.	LCD IO定义	17
3.	TCC	ON参数说	i明	19
	3.1.	接口参	>数说明	19
		3.1.1.	lcd_if	19
		3.1.2.	lcd_hv_if	19
		3.1.3.	lcd_hv_srgb_seq0	19
		3.1.4.	lcd_hv_srgb_seq1	20
		3.1.5.	lcd_hv_syuv_seq	20
		3.1.6.	lcd_hv_syuv_fdly	20
		3.1.7.	lcd_cpu_if	20
		3.1.8.	lcd_lvds_ch	21
		3.1.9.	lcd_lvds_bitwidth	21
		3.1.10.	lcd_lvds_mode	21
		3.1.11.	lcd_frm	21
	3.2.	时序参	>数说明	22
		3.2.1.	lcd_x	22
		3.2.2.	lcd_y	22
		3.2.3.	lcd_ht	23
		3.2.4.	lcd_hbp	23
		3.2.5.	lcd_vt	23
		3.2.6.	lcd_vbp	23
		3.2.7.	lcd_hv_hspw	23
		3.2.8.	lcd_hv_vspw	24
		3.2.9.	lcd_dclk_freq	24
		3.2.10.	lcd_io_cfg0	24

P	W	Ally	winner Technology CO., Ltd.	2
	3.3.		参数说明	_ 24
		3.3.1.	lcd_pwm_not_used	24
		3.3.2.	lcd_pwm_ch	25
		3.3.3.	lcd_pwm_freq	25
		3.3.4.	lcd_pwm_pol	25
		3.3.5.	lcd_gamma_correction_en	25
		3.3.6.	lcd_gamma_tbl	25
4.	操作	=指南		26
	4.1.	sys_c	onfig1.fex配置	26
	4.2.	boot	阶段LCD配置	27
	4.3.	linux	阶段LCD配置	30
	4.4.	调试.		32
5.	附录			
	5.1.	屏接口	口说明	
		5.1.1.	HV RGB同步屏接口	33
		5.1.2.	CPU/8080 屏接口	
		5.1.3.	LVDS屏接口	35
	5.2.	A10 -	与屏的连接说明	
		5.2.1.	LCD IO PORT定义	
		5.2.2.	HV Parallel RGB屏参考连接图	
		5.2.3.	HV Serial RGB屏参考连接图	
		5.2.4.	CPU Parallel RGB666 屏参考连接图	
		5.2.5.	LVDS 2 Single Link屏参考连接图	
		5.2.6.	LVDS Dual Link屏参考连接图	
	5.3.		牛实例	
		5.3.1.	sys_config1.fex	
		5.3.2.	hv_800x480.c	
		5.3.3.	hv_800x480_td043.c	49

5.4. LCD CHECK LIST.....63

5.3.4.

5.3.5.

1.整体介绍

A10 有两路显示系统,支持双屏输出,并行像素数据输出的接口形式,LCD0 从 PD 口输出,LCD1 从 PH 口输出,LVDS0 和 LVDS1 都是从 PD 口输出,如表1-1 所示。

如果一路输出使用 Dual Link LVDS,占用了 LVDS 的所有引脚,另外一路只能使用其他接口形式输出;其他接口形式组合的双屏输出都支持。

表 1-1 中列出了 A10 支持的接口形式及支持的最大分辨率, LCD0 与 LCD1 完全一致。

	Interface	Solutions	LCD0	LCD1
	Parallel RGB	1920 × 1080		
同步 RGB 接口	Serial RGB	1280 × 720		
	CCIR656	1280 × 720		
	Parallel RGB666	1280 × 720	PD	PH
CPU/80	Parallel RGB565	1280 × 720		
接口	Serial RGB666	1280 × 720		
	Serial RGB565	1280 × 720		
LVDS	Single Link	1920 × 1080	PD0-PD9	PD10-PD19
接口	Dual Link	1920 × 1080	PDO)-PD19

表 1-1 A10 LCD 输出 IO 口

注: Dual Link LVDS 从 PD 口输出,另一屏显只能选择非 LVDS 从 PH 输出

屏的各种接口说明可参见附录 5.1,各接口与 A10 引脚的连接可以参考附录 5.2。

2. 软件配置说明

2.1. 屏文件说明

在目录...\linux-2.6.36\drivers\video\sun4i\disp\de_bsp\lcd,有 lcd0_panel_cfg.c 和 lcd1_panel_cfg.c 两个文件,分别对应 LCD0 和 LCD1 的配置,这两个文件中,定义了 TCON 的参数,开关屏的流程,还有对屏的初始化操作。

对 IO 位置的定义,包括电源控制,配屏使用的 GPIO,以及 LCD 控制器 IO 的定义在 sys_config.fex 中。

lcd0_panel_cfg.c 和 lcd1_panel_cfg.c 中提供的函数接口如下图所示:

图 2-1 配屏文件中的函数列表

opyright © 2011 Allwinner Technology. All Rights Reserved.

5

和

LCD_cfg_panel_info , LCD_open_flow , LCD_close_flow LCD_get_panel_funs_0/LCD_get_panel_funs_1 是必须包含的 4 个函数。

函数: LCD_cfg_panel_info

功能:配置 A10 的 TCON 基本参数

原型: static void LCD_cfg_panel_info(__panel_para_t * info)

参数的定义见"3 TCON 参数说明"。

函数: LCD_open_flow

功能: 定义开屏的流程

原型: static __s32 LCD_open_flow(__u32 sel)

具体说明见"2.2 开关屏流程"。

函数: LCD_close_flow

功能: 定义关屏的流程

原型: static __s32 LCD_close_flow(__u32 sel)

该函数与 LCD_open_flow 对应

函数: LCD_get_panel_funs_0/LCD_get_panel_funs_1

功能:

原型: void LCD_get_panel_funs_0(__lcd_panel_fun_t * fun)/

void LCD_get_panel_funs_1(__lcd_panel_fun_t * fun)

该函数无需用户修改,LCD_get_panel_funs_0 只在文件 lcd0_panel_cfg.c 中定义,LCD_get_panel_funs_1 只在文件 lcd1_panel_cfg.c 中定义。

2.2. 开关屏流程

开关屏的常见操作流程如图 2-2 所示。

其中,LCD_open_flow 和 LCD_close_flow 称为开关屏流程函数,方框中的函数,如 LCD_power_on, TCON_open 等函数,称为开关屏步骤函数。

部分屏不需要进行初始化操作,LCD_panel_init 及 LCD_panel_exit 这两个步骤函数(图中紫色框部分)可以省去。

图 2-2 开关屏流程

2.2.1. 开关屏步骤函数说明

开屏的步骤函数有 LCD_panel_init, TCON_open, LCD_power_on, LCD_bl_open。

函数: LCD_panel_init

功能:对屏初始化

原型: static void LCD_panel_init(__u32 sel)

可参考"2.3 对屏的初始化"。部分屏不需要进行初始化操作,LCD_panel_init及LCD_panel_exit这两个步骤函数可以省去。

函数: TCON_open

功能: 打开 A10 TCON

原型: __s32 TCON0_open(__u32 sel)

该函数由显示驱动提供,用户无需实现。

函数: LCD_power_on

功能: 打开 LCD 电源

原型: static void LCD power on(u32 sel)

显示驱动提供 LCD_PWR_EN 函数可供调用,用户也可自由实现函数内容。

函数: LCD_bl_open

功能: 打开 LCD 背光

原型: static void LCD_bl_open(__u32 sel)

显示驱动提供 LCD_PWM_EN 和 LCD_BL_EN 函数可供调用,用户也可自由实现函数内容。

LCD_PWM_EN, LCD_BL_EN, LCD_PWR_EN 这三个函数是通过 GPIO 控制实现电源和背光的开启关闭, IO 的位置及属性定义在 sys_config.fex 文件中。

函数: LCD_PWM_EN

功能: 打开或关闭 LCD 背光调节的 PWM 信号

原型: void LCD_PWM_EN (__u32 sel, __bool b_en)

参数说明:

b_en=0:将 PWM pin 设为输入,并把 PWM 模块关闭

b_en=1:将 PWM pin 设为 PWM,并把 PWM 模块打开

对应于 sys_config.fex 文件的 lcd_pwm。

函数: LCD BL EN

功能:打开或关闭 LCD 背光

原型: void LCD_BL_EN (__u32 sel, __bool b_en)

参数说明:

b en=0:设置 LCD 背光控制 IO 为对应电平,关闭背光

b en=1: 设置 LCD 背光控制 IO 为对应电平, 打开背光

对应于 sys config.fex 文件的 lcd bl en;

函数: LCD PWR EN

功能:打开或关闭 LCD 电源

原型: void LCD_PWR_EN(__u32 sel, __bool b_en)

参数说明:

b_en=0:设置 LCD 电源控制 IO 为对应电平,关闭 LCD 电源

b en=1: 设置 LCD 电源控制 IO 为对应电平, 打开 LCD 电源

对应于 sys config.fex 文件的 lcd power。

关屏的步骤函数与开屏的步骤函数相对应。

2.2.2. 开关屏流程函数说明

```
函数: LCD_open_flow
   功能: 初始化开关屏的步骤流程
   原型: static __s32 LCD_open_flow(__u32 sel)
   函数常用内容为:
   static __s32 LCD_open_flow(__u32 sel)
     LCD_OPEN_FUNC(sel, LCD_power_on, 10);
     LCD_OPEN_FUNC(sel, LCD_panel_init, 50);
     LCD_OPEN_FUNC(sel, TCON_open, 100);
     LCD_OPEN_FUNC(sel, LCD_bl_open, 0);
     return 0;
   }
   如上,初始化整个开屏的流程步骤为四个:
   1、打开 LCD 电源, 再延迟 10ms;
   2、初始化屏, 再延迟 50ms;
   3、打开 A10 TCON, 再延迟 200ms;
   4、打开背光,再延迟 0ms。
   LCD open flow 函数只会系统初始化的时候调用一次,执行每个
LCD_OPEN_FUNC 即是把对应的开屏步骤函数进行注册,并没有执行该开屏步
骤函数。LCD_open_flow 函数的内容必须统一用 LCD_OPEN_FUNC(sel, function,
delay_time)进行函数注册的形式,确保正常注册到开屏步骤中。
   函数: LCD_OPEN_FUNC
   功能: 注册开屏步骤函数到开屏流程中
   原型: void LCD_OPEN_FUNC(__u32 sel, LCD_FUNC func, __u32 delay)
   参数说明:
   func 是一个函数指针,其类型是: void (*LCD_FUNC) (__u32 sel),用户自
```

己定义的函数必须也要用统一的形式。比如:

void user_defined_func(__u32 sel)

//do something

{

}

delay 是执行该步骤后,再延迟的时间,时间单位是毫秒。

2.3. 对屏的初始化

- 一部分屏需要进行初始化操作,在开屏步骤函数中,对应于 LCD_panel_init 函数。在 A10 中,提供了两种方式对屏的初始化。
- 一种是通过 8080 总线的方式,使用的是 LCDIO (PD,PH)。这种初始化方式,用于 CPU 屏中,其总线的引脚位置定义与 CPU 屏一致。
- 一种是 SPI 或 IIC 等串行的方式,使用的是 A10 的 GPIO 引脚模拟实现。模拟 GPIO 的引脚位置定义见于 sys_config.fex 中。

2.3.1. IO 模拟串行接口初始化

- IO 模拟串行接口初始化可以参考附录 5.3.2 中的实例。
- IO 的位置(PIN 脚)定义,默认属性(输入输出)定义及默认输出值在sys_config.fex,具体请参考 2.5.2。

显示驱动提供2个接口函数可供使用。说明如下:

函数: LCD_GPIO_read

功能:读取 LCD_GPIO PIN 脚上的电平

原型: __s32 LCD_GPIO_read(__u32 sel,__u32 io_index);

参数说明:

io index = 0: 对应于 sys config.fex 中的 lcd gpio 0

io_index = 1: 对应于 sys_config.fex 中的 lcd_gpio_1

io_index = 2: 对应于 sys_config.fex 中的 lcd_gpio_2

io_index = 3: 对应于 sys_config.fex 中的 lcd_gpio_3

函数返回值为对应 IO 的输入电平,只用于该 GPIO 定义为输入的情形。

函数: LCD_GPIO_write

功能: LCD_GPIO PIN 脚上输出高电平或低电平

原型: __s32 LCD_GPIO_write(__u32 sel,__u32 io_index, __u32 data);

参数说明:

io_index = 0: 对应于 sys_config.fex 中的 lcd_gpio_0

io_index = 1: 对应于 sys_config.fex 中的 lcd_gpio_1

io_index = 2: 对应于 sys_config.fex 中的 lcd_gpio_2

io_index = 3: 对应于 sys_config.fex 中的 lcd_gpio_3 data = 0: 对应 IO 输出低电平

data = 1:对应 IO 输出高电平

只用于该 GPIO 定义为输出的情形。

函数: LCD_GPIO_set_attr

功能:设置 LCD_GPIO PIN 脚为输入或输出模式

原型: __s32 LCD_GPIO_set_attr(__u32 sel,__u32 io_index, __bool b_output);

参数说明:

io_index = 0: 对应于 sys_config.fex 中的 lcd_gpio_0

io_index = 1: 对应于 sys_config.fex 中的 lcd_gpio_1

io_index = 2: 对应于 sys_config.fex 中的 lcd_gpio_2

io_index = 3: 对应于 sys_config.fex 中的 lcd_gpio_3

b output = 0: 对应 IO 设置为输入

b_output = 1: 对应 IO 设置为输出

2.3.2. CPU 屏 8080 总线初始化

CPU 屏的初始化可以参考"附录 5.3.5"的实例。显示驱动提供 5 个接口函数可供使用。如下:

函数: LCD CPU WR

功能:设定 CPU 屏的指定寄存器为指定的值

原型: void LCD_CPU_WR(__u32 sel, __u32 index, __u32 data)

函数内容为

void LCD_CPU_WR(__u32 sel, __u32 index, __u32 data) {

LCD CPU WR INDEX(sel, index);

LCD_CPU_WR_DATA(sel, data);

}

实现了8080总线上的两个写操作。

LCD_CPU_WR_INDEX 实现第一个写操作,这时 PIN 脚 RS(A1)为低电平,总线数据上的数据内容为参数 index 的值。

LCD_CPU_WR_DATA 实现第二个写操作,这时 PIN 脚 RS(A1)为高电平,总线数据上的数据内容为参数 data 的值。

函数: LCD_CPU_WR_INDEX

功能:设定 CPU 屏为指定寄存器

原型: void LCD_CPU_WR(__u32 sel, __u32 index, __u32 data)

void LCD_CPU_WR_INDEX(__u32 sel,__u32 index);

具体说明见 LCD_CPU_WR。

函数: LCD_CPU_WR_DATA

功能:设定 CPU 屏寄存器的值为指定的值

原型: void LCD_CPU_WR_DATA(__u32 sel, __u32 data);

具体说明见 LCD_CPU_WR。

函数: LCD CPU AUTO FLUSH

功能:开启 CPU 屏的刷新

原型: void LCD_CPU_AUTO_FLUSH(__u32 sel, __bool en);

参数说明:

en = 1: 8080 总线上开始传送显示 BUFFER 的数据,实现 CPU 屏的刷新

函数: LCD_cpu_register_irq

功能:设置 LCD_GPIO PIN 脚为输入或输出模式

原型: void LCD_CPU_register_irq(__u32 sel, void (*Lcd_cpuisr_proc) (void))

注册 cpu 屏的中断处理函数,驱动会在每个 vblanking 中断里调用一下用户注册的中断处理函数 Lcd_cpuisr_proc。

CPU 屏的初始化对应于开屏步骤函数的 LCD_panel_init。在 CPU 屏 LCD_panel_init 函数的最后,需要进行两个操作步骤:

- 1、使用 LCD_CPU_register_irq 注册 CPU 屏的中断处理函数 Lcd_cpuisr_proc,该函数的内容,可以是 CPU 屏 GRAM 的 X 和 Y 坐标设置为零的操作,以保证异步屏每帧进行一次同步。
 - 2、调用 LCD_CPU_AUTO_FLUSH(sel,1)打开显示数据传送。示例如下:

区别于模拟串行接口的初始化,LCD_open_flow 中,CPU 屏的初始化 LCD_panel_init 放在 TCON_open 之后,示例如下:

```
static __s32 LCD_open_flow(__u32 sel)
{
    LCD_OPEN_FUNC(sel, LCD_power_on,10);
    LCD_OPEN_FUNC(sel, TCON_open, 100);
    LCD_OPEN_FUNC(sel, LCD_panel_init, 50);
    LCD_OPEN_FUNC(sel, LCD_bl_open, 0);
    return 0;
}
```

2.4. 其它函数

2.4.1. 用户自定义函数

函数: LCD_user_defined_func

功能: 用户可自由定义的函数

原型: static __s32 LCD_user_defined_func(__u32 sel, __u32 para1, __u32 para2, __u32 para3)

该函数是给用户作扩展使用的,可以在此函数里实现任何你想实现的代码,然后在应用层进行调用.

比如对于 3D 屏,可以在该文件里实现屏的 2D 和 3D 的切换,示例如下:

```
static __s32 LCD_user_defined_func(__u32 sel, __u32 para1, __u32 para2,
    _u32 para3)
{
     if(para1 == 0)
     {
        //switch to 2D mode
     }
     else
     {
        //switch to 3D mode
     }
     return 0;
}
```

在用户空间的调用代码示例如下(切换到3D模式):

```
unsigned long arg[4];
int dispfh;

if((dispfh = open("/dev/disp", O_RDWR)) == -1)
{
    printf("open file /dev/disp fail. \n");
    return 0;
}

arg[0] = 0;//lcd0
arg[1] = 1;//switch to 3D mode
ioctl(dispfh, DISP_CMD_LCD_USER_DEFINED_FUNC,(unsigned long)arg);
```

2.4.2. GPIO 操作函数

用户有可能有需要自己对某些 GPIO 进行操作,显示驱动封装了几个函数提供给用户,它们屏避了操作系统间的差异,也就是说在不同的操作系统中都可以使用。

Allwinner Technology CO., Ltd.

```
函数: OSAL_GPIO_Request
   功能:申请 GPIO;
   原型: __hdle OSAL_GPIO_Request(user_gpio_set_t *gpio_list, __u32
group_count_max);
   参数说明:
   gpio_list 为 GPIO 的设置,该结构体如下:
   typedef struct
   {
       char gpio_name[32];
       int port;
       int port_num;
       int mul_sel;
       int pull;
       int drv_level;
       int data;
    }user_gpio_set_t;
   group_count_max: 要设置 GPIO 的个数.
   函数返回: 成功返回 GIPO 的句柄, 失败返回 0.
    函数: OSAL GPIO Release
   功能:释放 GPIO.
   原型: __s32 OSAL_GPIO_Release(__hdle p_handler, __s32
if_release_to_default_status);
   参数说明:
   p_handler: GPIO 的句柄.
   if release to default status: 0/1: 表示释放后的 GPIO 处于输入状态;2: 表示
释放后的 GPIO 状态不变.
   函数返回:成功返回0,失败返回错误号
   将 GIPO PH6 输出高电平,示例如下:
```

```
static void LCD_vcc_on(__u32 sel)
{
    user_gpio_set_t gpio_list;
    int hdl;

    gpio_list.port = 8;// 1:A; 2:B; 3:C; 4:D;5:E;6:F;7:G;8:H.....
    gpio_list.port_num = 6;
    gpio_list.mul_sel = 1;
    gpio_list.pull = 0;
    gpio_list.drv_level = 0;
    gpio_list.data = 1;

hdl = OSAL_GPIO_Request(&gpio_list, 1);
    OSAL_GPIO_Release(hdl, 2);
};
```

2.4.3. 延时函数

驱动提供了毫秒和微秒级的延时给用户使用,不过建议如果延时时间比较长的话可以在开关屏流程里新添新的函数. 因为在 boot 系统里延时是死等的,效率会比较低;如果放在开关屏流程里的话会启用 timmer 去做延时,在延时期间CPU可以做其它的工作.

```
函数: LCD_delay_ms
```

功能: 延时 ms 毫秒

原型: void LCD_delay_ms(__u32 ms)

函数: LCD_delay_us

功能: 延时 us 微秒

原型: void LCD_delay_us(__u32 us)

2.5.fex 文件

在 sys_config.fex 文件中,第一个参数定义了 LCD0 和 LCD1 的使能,定义如下:

lcd0_para_used/ lcd1_para_used

0: lcd0/lcd1 interface not exist:

1:lcd0/lcd1 interface exist;

其他定义为 LCD 所需的 A10 PIN 脚的分配情况。主要包括三个部分。

2.5.1. 电源控制 IO 的定义

电源控制 IO 在 sys_config.fex 文件中定义如下:

 lcd_power
 = port:PH08<1><0><default><0>

 ;lcd_bl_en
 = port:PH07<1><0><default><1>

 lcd_pwm
 = port:PB02<2><0><default><default>

示例 1: lcd_power = port:PH08<1><0><default><1>

含义: lcd_power 引脚为 PH08, PH08 输出高电平时打开 LCD 供电;上下拉不使能。

第一个尖括号:功能分配,与 SPEC 描述一致:1 为输出;

第二个尖括号: 内置电阻; 使用 0 的话, 标示内部电阻高阻态, 如果是 1 则是内部电阻上拉, 2 就代表内部电阻下拉。使用 default 的话代表默认状态,即电阻上拉。其它数据无效。

第三个尖括号:驱动能力;default表驱动能力是等级1

第四个尖括号:输出有效所需电平;即是LCD供电电路上,lcd_power使能所需的电平,0为低电平,1为高电平。

如果该功能引脚不需要,可以通过加注释的方式去掉。如上面代码的 lcd_bl_en。

lcd_bl_en

LCD_BL_EN pin config;

示例 2: lcd_bl_en = port:PH07<1><0><default><1>

含义: lcd_bl_en 引脚为 PH07, PH07 输出高电平时打开 LCD 背光; 上下拉不使能。

lcd_bl_en 的定义与 lcd_power 一致。如果该功能引脚不需要,可以通过加注释的方式去掉。

示例 3: lcd_pwm = port:PB02<2><0><default><

含义: PB2 输出 PWM 信号,对应背光亮度大小的调节

A10 只有 PB2 和 PI3 可以输出 PWM 信号。如果该功能引脚不需要,可以通过加注释的方式去掉。

2.5.2. 模拟串行接口的 IO 定义

模拟串行接口 IO 在 fex 文件中定义如下:

 lcd_gpio_0
 = port:ph10<1><0><default><1>

 lcd_gpio_1
 = port:ph11<1><0><default><1>

 ;lcd_gpio_2
 =

 ;lcd_gpio_3
 =

示例: lcd_gpio_0 = port:ph10<1><0><default><1>

含义: lcd gpio 0引脚为PH10,PH10为输出,默认输出电平为高。

第一个尖括号: 功能分配; 0 为输入, 1 为输出;

第二个尖括号: 内置电阻; 使用 0 的话,标示内部电阻高阻态,如果是 1 则是内部电阻上拉,2 就代表内部电阻下拉。使用 default 的话代表默认状态,即电阻上拉。其它数据无效。

第三个尖括号:驱动能力:default表驱动能力是等级1

第四个尖括号:表示默认值;即是当设置为输出时,该引脚输出的电平,0 为低电平,1为高电平。

如果该功能 IO 不用,可通过注释方式(如上的 lcd_gpio_2)避免冲突,显示驱动对注释 IO 不进行初始化操作。

2.5.3. LCD IO 定义

LCD0 的 IO 定义如下,若该引脚 IO 需要应用于其他方面,可通过注释方式(如下的 lcdde)避免冲突,显示驱动对注释 IO 不进行初始化操作。

LCD1 的 IO 定义与 LCD0 相似,不同的地方在于 LCD1 为 PH 口。

```
Icdd0
       = port:PD00<2><default><default><
lcdd1
       = port:PD01<2><default><default><
lcdd2
       = port:PD02<2><default><default><
lcdd3
       = port:PD03<2><default><default><
lcdd4
       = port:PD04<2><default><default>
Icdd5
       = port:PD05<2><default><default>
lcdd6
       = port:PD06<2><default><default>
lcdd7
       = port:PD07<2><default><default>
Icdd8
       = port:PD08<2><default><default><
lcdd9
       = port:PD09<2><default><default><
Icdd10
        = port:PD10<2><default><default><
Icdd11
       = port:PD11<2><default><default><
Icdd12
        = port:PD12<2><default><default>
lcdd13
       = port:PD13<2><default><default>
lcdd14
       = port:PD14<2><default><default><
Icdd15
        = port:PD15<2><default><default><
lcdd16
        = port:PD16<2><default><default><
Icdd17
        = port:PD17<2><default><default><
lcdd18
        = port:PD18<2><default><default>
lcdd19
        = port:PD19<2><default><default><
Icdd20
        = port:PD20<2><default><default><
lcdd21
        = port:PD21<2><default><default>
Icdd22
       = port:PD22<2><default><default><
Icdd23
       = port:PD23<2><default><default><
lcdclk
       = port:PD24<2><default><default><
;lcdde
        = port:PD25<2><default><default><
lcdhsync = port:PD26<2><default><default><</pre>
lcdvsync = port:PD27<2><default><default><</pre>
```

3. TCON参数说明

3.1.接口参数说明

3.1.1. lcd if

Lcd Interface

设置相应值的对应含义为:

- 0: HV(RGB 同步屏)接口
- 1: CPU(8080)接口
- 2: Reserved
- 3: LVDS 接口

3.1.2. lcd_hv_if

Lcd HV panel Interface

这个参数只有在 lcd_if=0 时才有效。定义 RGB 同步屏下的几种接口类型。设置相应值的对应含义为:

- 0: Parallel RGB
- 1: Serial RGB
- 2: Serial YUV (CCIR656)

RGB 同步屏的接口类型可参考"附录 5.1.1 HV RGB 同步屏接口"。

3.1.3. lcd_hv_srgb_seq0

Lcd HV panel Serial RGB output Sequence in Odd lines

这个参数只有在 lcd_if=0 且 lcd_hv_if=1(Serial RGB)时才有效。

定义奇数行 RGB 输出的顺序

- $0: R \rightarrow G \rightarrow B$
- $1: B \rightarrow R \rightarrow G$
- 2: G→B→R

3.1.4. lcd_hv_srgb_seq1

Lcd HV panel Serial RGB output Sequence in Even lines

这个参数只有在 lcd_if=0 且 lcd_hv_if=1(Serial RGB)时才有效。

定义偶数行 RGB 输出的顺序

- $0: R \rightarrow G \rightarrow B$
- 1: $B \rightarrow R \rightarrow G$
- 2: G→B→R

3.1.5. lcd_hv_syuv_seq

Lcd HV panel Serial YUV output Sequence

这个参数只有在 lcd_if=0 且 lcd_hv_if=2(Serial YUV)时才有效。

定义 YUV 输出格式

- 0: YUYV
- 1: YVYU
- 2: UYVY
- 3: VYUY

3.1.6. lcd_hv_syuv_fdly

Lcd HV panel Serial YUV F line Delay

这个参数只有在 lcd_if=0 且 lcd_hv_if=2(Serial YUV)时才有效。

定义 CCIR656 编码时 F 相对有效行延迟的行数

- 0: F toggle right after active video line
- 1: Delay 2 lines (CCIR NTSC)
- 2: Delay 3 lines (CCIR PAL)

3.1.7. lcd_cpu_if

Lcd CPU panel Interface

这个参数只有在 lcd if=1 时才有效。

设置相应值的对应含义为:

- 0: 18bit/1cycle parallel (RGB666)
- 4: 16bit/1cycle parallel (RGB565)

opyright © 2011 Allwinner Technology. All Rights Reserved.

- 6: 18bit/3cycle parallel (RGB666)
- 7: 16bit/2cycle parallel (RGB565)

CPU 屏/8080 的接口类型可参考"附录 5.1.2 CPU/8080 屏接口"。

3.1.8. lcd_lvds_ch

Lcd LVDS panel Channel number

设置相应值的对应含义为:

- 0: Single Link
- 1: Dual Link

相关说明可参见"附录 5.1.3 LVDS 屏接口"。

3.1.9. lcd lvds bitwidth

Lcd LVDS panel Bit Width

设置相应值对应含义为:

- 0: 24bit
- 1: 18bit

相关说明可参见"附录 5.1.3 LVDS 屏接口"。

3.1.10. lcd_lvds_mode

Lcd LVDS Mode

这个参数只有在 lcd_lvds_bitwidth=0 时才有效

设置相应值对应含义为:

- 0: NS mode
- 1: JEIDA mode

NS mode 和 JEIDA mode 的说明可参见"附录 5.1.3 LVDS 屏接口"。

3.1.11. lcd_frm

Lcd Frame Rate Modulator

FRM 是解决 PIN 减少导致的色深问题。

这个参数设置相应值对应含义为:

- 0: RGB888 → RGB888 direct
- 1: RGB888 → RGB666 dither
- 2: RGB888 → RGB565 dither

opyright © 2011 Allwinner Technology. All Rights Reserved.

补充说明:对接口参数的配置可以参考表 3-1。确定好接口类型,最后确保 对应的一行的相关参数都有配置。

Interface Parameter Parallel RGB (lcd_hv_if=0) 同步 RGB 接口 Serial RGB lcd_hv_srgb_seq0 $(lcd_if=0)$ (lcd_hv_if=1) lcd_hv_srgb_seq1 CCIR656 lcd_hv_syuv_seq (lcd hv if=2) lcd_hv_syuv_fdly Parallel RGB666 $lcd_frm=1$ (lcd_cpu_if=0) Parallel RGB565 lcd_frm=2 CPU/8080 接口 (lcd_cpu_if=4) (lcd_if=1) Serial RGB666 (lcd_cpu_if=5) 8bit2cycle serial (lcd_cpu_if=7) Single channal 24bit: lcd_lvds_bitwidth=0 LVDS 接口 (lcd_lvds_ch=0) lcd_lvds_mode (lcd_if=3) 18bit: lcd_lvds_bitwidth=1 Dual channal lcd_frm=1 (lcd_lvds_ch=1)

表 3-1 LCD 接口参数配置说明

注:请先确定好接口类型,最后确保对应的那一行的参数都有配置

3.2. 时序参数说明

3.2.1. lcd_x

显示屏宽的像素个数

3.2.2. lcd_y

显示屏高的像素个数

3.2.3. lcd ht

Horizontal Total time

指一行总的 dclk 的 cycle 个数。见图 3-1。

图 3-1 水平方向时序信号图

3.2.4. lcd_hbp

Horizontal Back Porch

指有效行间, 行同步信号 (hsync) 开始, 到有效数据开始之间的 dclk 的 cycle 个数。见图 3-1。

3.2.5. lcd_vt

Vertical Total time

指两场的总行数。见图 2。

图 3-2 垂直方向时序信号图

3.2.6. lcd_vbp

Vertical Back Porch

指场同步信号(vsync)开始,到有效数据行开始之间的行数。见图 3-2。

3.2.7. lcd_hv_hspw

Horizontal Sync Pulse Width

指行同步信号的宽度。单位为 1 个 dclk 的时间(即是 1 个 data cycle 的时间)。

opyright © 2011 Allwinner Technology. All Rights Reserved.

见图 3-1。

3.2.8. lcd_hv_vspw

Vertical Sync Pulse Width 指场同步信号的宽度。单位为行。见图 3-2

3.2.9. lcd dclk freq

Data Clock Frequency 指 PIN 总线上数据的传送频率。单位为 MHz 屏幕刷新帧数 = (dclk_freq) / (ht×vt/2)

3.2.10. lcd_io_cfg0

Lcd IO Configuration0

这个参数提供 RGB 同步屏的相位调节。

lcd_dclk_freq < 40 时,该参数可设置为 0x000000000, 0x04000000, 0x10000000, 0x14000000, 0x20000000, 0x24000000, 对应 LCD DCLK 的六个不同相位。

lcd_dclk_freq > 40 时,该参数可设置为 0x00000000, 0x04000000 对应 LCD DCLK 的两个不同相位。

补充说明 1: hbp 在部分屏规格书的定义里并不包括 hspw。这种情况下,要正确配置 AW 的 TCON, hbp(aw)=hbp(panel)+hspw(panel)。vbp 的定义同 hbp。 补充说明 2: A10 的 TCON 中,hfp,vfp 不能为 0。

3.3. 其他参数说明

3.3.1. lcd_pwm_not_used

LCD PWM not Used

通过占空比的不同,PWM 在 LCD 中常用于调节背光的亮度变化。这个参数设置相应值的对应含义为:

- 0: 不使用 PWM
- 1: 使用 PWM

3.3.2. lcd_pwm_ch

Lcd backlight PWM Chanel

该参数值只有在 lcd_pwm_not_used=0 时才有效。设置相应值的对应含义为:

- 0: 使用 PWM0, 从 PB2 送出
- 1: 使用 PWM1, 从 PI3 送出

sys_config.fex 的 lcd_pwm 要相应进行改动。注意,该参数与 lcd_pwm_freq lcd_pwm_pol 共同构成一路 PWM 信号的设置。

3.3.3. lcd_pwm_freq

Lcd backlight PWM Frequency

该参数值只有在 lcd_pwm_not_used=0 时才有效。这个参数配置 PWM 信号的频率,单位为 Hz。

3.3.4. lcd_pwm_pol

Lcd backlight PWM Polarity

该参数值只有在 lcd_pwm_not_used=0 时才有效。这个参数配置 PWM 信号的占空比的极性。

3.3.5. lcd_gamma_correction_en

Lcd Gamma Correction Enable

设置相应值的对应含义为:

- 0: TCON 的 Gamma 校正关闭
- 1: TCON的 Gamma 校正打开

设置为 1 时, 需要对 lcd_gamma_tbl [256]进行赋值。

3.3.6. lcd_gamma_tbl

Lcd Gamma Table

该参数为一个数组__u32 lcd_gamma_tbl[256];

lcd_gamma_tbl[n] = rout<<16 | gout<<8 | bout<<0 表示: 输入 r=n 时, 输出 r=rout; 输入 g=n 时, 输出 g=gout; 输入 b=n 时, 输出 b=bout。

用户使用 Gamma 校正功能时,可以使用函数 lcd_gamma_gen(__panel_para_t * info)对其赋值,函数内容可自由实现。具体可参考"5.3.1"中的实例。

4. 操作指南

显示驱动按照操作系统和运行阶段不同分为两个部分:boot 显示驱动和 linux 显示驱动,因此 LCD 配置也对应两个部分.

配置 LCD 需要用户配置的最多有 5 个文件,用户可能会修改其中的一个或几 个文件:

1,sys_config1.fex(boot 和 linux 阶段都会使用该文件的配置)

2,boot 阶段屏 0 配置文件: lcd0_panel_cfg.c

3,boot 阶段屏 1 配置文件: lcd1_panel_cfg.c

4,linux 阶段屏 0 配置文件: lcd0_panel_cfg.c

5,linux 阶段屏 1 配置文件: lcd1_panel_cfg.c

如下图所示:

注意,我们尽量要求 boot 和 linux 阶段的对应两个文件内容完全相同,与操作 系统相关的操作都会以一个封装好的,具有统一接口的形式提供.所以当一个系统 的.c 文件调通以后,可以将对应的文件拷贝到另一个系统的目录里进行编译即可.

为了文件描述,这篇文档假定我们 linux 上述的目录 为"..\workspace\exdroid\lichee\linux-2.6.36\",具体情况可能会与之不同,将其改为 你对应目录即可.

4.1.sys_config1.fex 配置

打开打包目录里的工具 "crane_pack.exe", 选择好平台和路径后,点 "Edit" 编辑 sys_config1.fex 里的 LCD 相关配置,保存后点"Build"重新生成新的固件. 如下图所示:

4.2.boot 阶段 LCD 配置

eBase 代码下载路径:

B 网: svn://172.16.1.11/eBase

D 网: svn://192.168.200.11/eBase

C 文件路径:

 $... \ensuremath{\verb||} eBase \ensuremath{\verb||} eGON2_TRUNK \ensuremath{\verb||} boot_23 \ensuremath{\verb||} boot1 \ensuremath{\verb||} driver \ensuremath{\verb||} drev_de \ensuremath{\verb||} de \ensuremath{\verb||} bsp \ensuremath{\verb||} lcd \ensuremath{\||} lcd \e$

 $... \ensuremath{\verb||} eBase \ensuremath{\verb||} eGON \ensuremath{\verb||} EGON \ensuremath{\verb||} TRUNK \ensuremath{\verb||} boot \ensuremath{\verb||} 23 \ensuremath{\verb||} boot \ensuremath{\verb||} 1 \ensuremath{\verb||} driver \ensuremath{\verb||} dre \ensuremath{\verb||} de \ensuremath{||} de \ensuremath{||$

编译:

打开 cygwin, 进入 drv_de 目录, 然后调入命令"make clean;make"即可. 如下图所示。

编译出来的结果是 drv_de.drv,路径如下:

 $\dots \exists S=\mathbb{QON}\ Bose\ Bo$

更新驱动:

如果要重新产生固件,可以将文件 drv_de.drv 文件拷贝到打包目录对应的地方,然后使用 "crane_pack.exe",点 "Build"重新生成固件,再烧写。

路径: ...\wboot\bootfs\drv_de.drv

如果不想重新产生固件,可以直接将文件 drv_de.drv 拷贝到小机里。

方法是先断电,接上串口,接上 USB 线,按住 PC 键盘的"1"然后开机,会进入 U 盘模式。

下图为串口打印信息:

Allwinner Technology CO., Ltd.

```
HELLO! BOOTO is starting!
boot0 version : 1.1.3
dram size =512
Succeed in opening nand flash.
Succeed in reading Boot1 file head.
The size of Boot1 is 0x00030000.
The file stored in 0X00000000 of block 2 is perfect.
Check is correct.
Ready to disable icache.
Succeed in loading Boot1.
Jump to Boot1.
         0.161574] boot1 version : 1.1.5
         0.161734] pmu type = 3
         0.181853] axi:ahb:apb=2:1:1
         0,181871] set dcdc2=1400, clock=1008 successed
         0,184102] key
0,195942] no key found
         0.195957] flash init start
         0.216844] flash init finish
         0.218536] fs init ok
         0.219319] fs mount ok
        0.223351] script finish
0.224262] power finish
0.228377] BootMain start
         0,2284031 49
         0.229342] part count = 2
0.232151] USB Device!!
         0.234916] USB Connect!!
         0,2860881 uSuspend
```

再将 drv_de.drv 文件拷贝进名称为"Volumn"的磁盘里,如下图的 F 盘.

最后重启系统即可.

4.3. linux 阶段 LCD 配置

C 文件路径:

- $.. \work space \extraction{thms.p.de=linux-2.6.36 drivers \video\sun4i disp\de_bsp\lcd\lcd 0_panel_cfg.c$
- ..\workspace\exdroid\lichee\linux-2.6.36\drivers\video\sun4i\disp\de_bsp\lcd\lcd 1_panel_cfg.c

编译:

打开 putty, 进入目录..\workspace\exdroid\lichee, 再运行命令"./build.sh -p sun4i crane".

编译出来我们所需要的结果是 lcd.ko,路径如下:

..\workspace\exdroid\lichee\linux-2.6.36\drivers\video\sun4i\lcd\lcd.ko

更新驱动:

如果需要更新固件,进入目录"..\workspace\exdroid\",运行命令"mkimg",然后使用"crane_pack.exe",点"Build"重新生成固件,再烧写..

如果不需要更新固件,可以使用 adb 将 lcd.ko 拷贝到小机里.

方法是在进入 android 系统后,运行批处理文

opyright © 2011 Allwinner Technology. All Rights Reserved.

件"..\workspace\exdroid\lichee\linux-2.6.36\drivers\video\sun4i\adb_push.bat",它会将 disp.ko/hdmi.ko/lcd.ko 三个文件 push 到小机对应的目录(为什么要更新三个驱动而不是只更新 lcd.ko,是考虑到这三个文件有一定的关联,如果版本不一致的话容易出现一些问题,因此将三个文件一起更新以减少因版本不同而产生问题的机会,用户也可自行改写批处理只更新 lcd.ko 文件),然后重启系统即可.

批处理命令如下:

```
adb devices
adb shell mount -o remount,rw /dev/block/nandc /system
adb shell mount -o remount,rw /dev/root /
adb push disp/disp.ko /drv/disp.ko
adb shell chmod 777 /drv/disp.ko
adb shell sync
adb push lcd/lcd.ko /drv/lcd.ko
adb shell chmod 777 /drv/lcd.ko
adb shell sync
adb push hdmi/hdmi.ko /drv/hdmi.ko
adb shell chmod 777 /drv/hdmi.ko
adb shell sync
pause
```

运行批处理的界面如下:

```
\workspace\exdroid\lichee\linux-2.6.36\drivers\video\sun4i>adb devi
  daemon not running. starting it now on port 5037 daemon started successfully \mbox{\scriptsize $\star$}
List of devices attached
20080411 device
Z:\workspace\exdroid\lichee\linux-2.6.36\drivers\video\sun4i>adb shell mount -o remount,rw /dev/block/nandc /system
Z:\workspace\exdroid\lichee\linux-2.6.36\drivers\video\sun4i>adb shell mount -o remount,rw /dev/root /
Z:\workspace\exdroid\lichee\linux-2.6.36\drivers\video\sun4i>adb push disp/disp.ko /drv/disp.ko
 170 KB/s (3270044 bytes in 0.765s)
Z:\workspace\exdroid\lichee\linux-2.6.36\drivers\video\sun4i>adb shell chmod 777 /drv/disp.ko
Z:\workspace\exdroid\lichee\linux-2.6.36\drivers\video\sun4i>adb shell sync
2:\workspace\exdroid\lichee\linux-2.6.36\drivers\video\sun4i>adb push lcd/lcd.ko /drv/lcd.ko
 594 KB/s (230072 bytes in 0.062s)
Z:\workspace\exdroid\lichee\linux-2.6.36\drivers\video\sun4i>adb shell chmod 777 /drv/lcd.ko
Z:\workspace\exdroid\lichee\linux-2.6.36\drivers\video\sun4i>adb shell sync
Z:\workspace\exdroid\lichee\linux-2.6.36\drivers\video\sun4i>adb push hdmi/hdmi.ko /drv/hdmi.ko
3564 KB/s (456303 bytes in 0.125s)
Z:\workspace\exdroid\lichee\linux-2.6.36\drivers\video\sun4i>adb shell chmod 777 /drv/hdmi.ko
Z:\workspace\exdroid\lichee\linux-2.6.36\drivers\video\sun4i>adb shell sync
Z:\workspace\exdroid\lichee\linux-2.6.36\drivers\video\sun4i>pause
身接任意键继续...
```


4.4. 调试

1、如果由于某些原因无串口打印,可以用 adb 进行打印.

命令是: adb shell cat /proc/kmsg

2、如果你想先调试 linux 阶段的 LCD 显示,可以将 drv_de.drv 删除掉再进行调试,以免 boot 阶段的错误设置影响 llinux 阶段的显示.

5. 附录

5.1. 屏接口说明

5.1.1. HV RGB 同步屏接口

RGB 同步屏接口分为 Parallel RGB, Serial RGB, CCIR656 三种类型接口。 常见的一些屏可同时支持 Serial RGB, CCIR656 两种, 引脚定义一致。

图 5-1,图 5-2是 RGB 同步屏的模组规格书的引脚,可供参考。

Pin No.	Symbol	I/O		Function	
1	V _{LED} .	Р	Power for LED backlight		
2	V _{LED+}	Р	Power for LED backlight	Power for LED backlight anode	
3	GND	Р	Power ground		
4	Vpp	Р	Power voltage		
5	R0		Red data (LSB)		
6	R1		Red data		
7	R2	1	Red data		
8	R3		Red data		
9	R4	_	Red data		
10	R5	_	Red data		
11	R6	_	Red data		
12	R7	_	Red data (MSB)		
13	G0		Green data (LSB)		
14	G1	_	Green data		
15	G2	_	Green data		
16	G3	1	Green data		
17	G4	1	Green data		
18	G5	1	Green data		
19	G6		Green data		
20	G7		Green data (MSB)		
21	B0		Blue data (LSB)		
22	B1		Blue data		
23	B2		Blue data		
24	B3	- 1	Blue data		
25	B4	- 1	Blue data	并行数据信号	
26	B5	- 1	Blue data		
27	B6	- 1	Blue data		
28	B7	- 1	Blue data (MSB)		
29	DGND	1	Digital ground		
30	DCLK	T	Pixel clock		
31	DISP	- 1	Display on/ off		
32	HSYNC	T	Horizontal sync signal	同步控制信号	
33	VSYNC	J.	Vertical sync signal		
34	DE	T	Data enable		
35	NC	-	No Connect		
36	GND	Р	Power ground		
37	X1	I/O	Right electrode - differential analog		
38	Y1	I/O	Bottom electrode - differential analog		
39	X2	I/O	Left electrode - differential analog		
40	Y2	1/0	Top electrode - differenti		

图 5-1 HV Parallel RGB 引脚参考图

opyright © 2011 Allwinner Technology. All Rights Reserved.

PIN NO.	Symbol	Description		
1	VCOM	Common electrode driving voltage		
2	CS (SPENB)	Serial communication chip select		
3	SDA (SPDA)	初始化串行接口 ial command data input		
4	SCL (SPCK)	Serial command clock input		
5	HSYNC (HSD)	Horizontal sync input		
6	VSYNC (VSD)	同步控制信号 Vertical sync input		
7	DCLK (CLKIN)	Data clock input		
8~15	D7~D0	串行数据信号 Data bus		
16	DGND	Ground for digital circuits.		
17	VDD	Power setting		
18	VDDIO	Power supply for digital interface		
19	DVDD	Power setting capacitor connecting pins.		
20	C1P	Capacitor connect pin for internal charge pump.		
21	C1M	Capacitor connect pin for internal charge pump.		
22	C2P	Capacitor connect pin for internal charge pump.		
23	C2M	Capacitor connect pin for internal charge pump.		
24	VINT1	Power setting capacitor connect pin.		
25	C3P	Capacitor connect pin for internal charge pump.		
26	C3M	Capacitor connect pin for internal charge pump.		
27	VINT2	Power setting capacitor connect pin.		
28	VINT3	Power setting capacitor connect pin.		
29	C4P	Capacitor connect pin for internal charge pump.		
30	C4M	Capacitor connect pin for internal charge pump.		
31	VGH	Power setting capacitor connect pin		

图 5-2 HV Serial RGB/CCIR656 引脚参考图

5.1.2. CPU/8080 屏接口

CPU 屏接口分为 Parallel RGB666(并行 18bit), Parallel RGB565(并行 16bit), Serial RGB666, Serial RGB565 四种类型。

图 5-3 是并行 18bitCPU 屏的模组规格书的引脚,可供参考。

PIN NO.	SYMBOL	DESCRIPTION
1	Y (U)	Touch panel YU
2	X (L)	Touch panel XL
3	Y (D)	Touch panel YD
4	X (R)	Touch panel XR
5	VSS	Ground
6	IOVCC	Connect to VCC.
7	VCC	Internal logic power: VCC=2.5V~3.3V, VCC>IOVCC.
8	FMARK	NC.
9	CS	Chip select
10	RS	Popieter select input pin RS = "H": DB0 to DB7 are display data RS = "L": DB0 to 读写控制信号 rol data
11	WR	Read/Write execution control R/W=" H ": read R/W=" L": write
12	RD	Read/Write execution control When /RD is " L ", D0 to D7 are in an output status.
13-30	DB0-DB17	18bit要据信号
31	IM1	NC .
32	IM0	NC .
33	ID	NC .
34	RESET	This is an active low signal.
35	GND	Internal logic GND: GND=0V,
36	LED-A	LED 3.2V
37	LED-K1	LED1 GND
38	LED-K2	LED2 GND
39	LED-K3	LED3 GND
40	LED-K4	LED4 GND

图 5-3 CPU Parallel RGB666 引脚参考图

5.1.3. LVDS 屏接口

LVDS 屏接口分为 Single Link 和 Dual Link 两种接口。

在图 5-4 中,红色部分和蓝色部分分别对应独立的 2 个 link。若只有红色部分,即为 Single Link;若有红色和蓝色两部分,即为 Dual Link。

Single Link 和 Dual Link 都具有 24bit, 18bit 两种色深。

在图 5-4 中,实线部分包含 3 data pair channel,虚线部分包含 1 对 data channel。在每一个 Link 中,若只有实线部分,即只有 3 data pair channel,即为 18bit,若具有实线和虚线共 4 data pair channel,即为 24bit。

NS mode 和 JEIDA mode 两种模式的定义见图 5-5。

Pin	Symbol	Description
1	GND	Ground
2	GND	Ground
3	AVDD	Power Supply, 3.3V Typ.
4	AVDD	Power Supply, 3.3V Typ.
5	AVDD	Power Supply, 3.3V Typ.
6	DVDD	Digital Power supply (3.3V Typ)
7	DVDD	Digital Power supply (3.3V Typ)
8	CIk EEDID	Two wire serial interface clock
9	DATA EEDID	Two wire serial interface data
10	RXinO0-	- LVDS differential data input, Chan 0-Odd
11	RXinO0+	+ LVDS differential data input, Chan 0-Odd
12	GND	Ground
13	RXinO1	- LVDS differential data input, Chan 1-Odd
14	RXinO1+	+ LVDS differential data input, Chan 1-Odd
15	GND	Ground
16	RXinO2	- LVDS differential data input, Chan 2-Odd
17	RXinO2*	+ LVDS differential data-input, Chan 2-Odd
18	GND	Ground
19	RXOC-	- LVDS Differential Clock input (Odd) Link 1
20	RXOC+	+ LVDS Differential Clock input (Odd)
21	GND	Ground
22	(RXinO3-)	- EVDS differential data input, Chan 3-Odd
23	RXinO3+	+ LVDS differential data input, Chan 3-Odd
24	GND	Ground
25	RXinE0	- LVDS differential data input, Chan 0-Even Link2
26	RXinE0+	+ LVDS differential data input, Chan 0-Even
27	GND	Ground
28	RXinE1	- LVDS differential data input, Char 1-Even
29	RXinE1+	+ LVDS differential data input, Chan 1-Even
30	GND	Ground
31	RXinE2-	- LVDS differential data input, Chan 2-Even
32	RXinE2+	+ LVDS differential data input, Chan 2-Even
33	GND	Ground
34	RXEC-	- LVDS Differential Clock input (Even)
35	RXEC+	+ LVØS Differential Clock input (Even)
36	GND	&round
37	RXinE3-	- LVDS differential data input, Chan 3-Even
38	RXinE3+	+ LVDS differential data input, Chan 3-Even
39	GND	Ground
40	NC	No connection

图 5-4 Dual Link 24bit LVDS

5.2.A10 与屏的连接说明

两组 LCD 口在 A10 中分配在 PD 和 PH 口。每组 LCD IO 口包括 4 个控制 IO (PD24、PD25、PD26、D27) 和 24 个数据 IO (PD0-PD23)。

配置为不同的显示屏接口, IO 的定义不同, 具体的定义见图 5-1, 不同接口的屏与 A10 的 LCD IO 的连接也应参照图 5-1 进行。

5.2.2 - 5.2.6 是常见的屏接口与 A10 LCD IO 的连接参考图。

5.2.1. LCD IO PORT 定义

表 5-1 LCD IO PORT 定义

	同步 RGB 接口					CPU/I80 接口				LVDS 接口			
If						Para	Para	Sei		Se	rial		
	Para		Serial		CCIR	RGB	RGB	RO	ЗB	RO	GB	Sing	Dual
	RGB		RGB		656	666	565		666 565			Link	Link
Cycle		1st	2nd	3rd				1st	2nd	1st	2nd		
IO0		I	VSYNC		I			CS			l		
IO1	HSYNC					RD							
IO2			DCLK					WR					
IO3			DE					RS					
D23	В7					R5	R4						
D22	В6					R4	R3						
D21	B5					R3	R2						
D20	B4					R2	R1						
D19	В3					R1	R0					1-VN3	E-VN3
D18	B2					R0	G5					1-VP3	E-VP3
D17	B1											1-VNC	E-VNC
D16	В0											1-VPC	E-VPC
D15	G7					G5	G4					1-VN2	E-VN2
D14	G6					G4	G3					1-VP2	E-VP2
D13	G5					G3						1-VN1	E-VN1
D12	G4	D17	D27	D37	D7	G2	G2	R5	G2	R4	G2	1-VP1	E-VP1
D11	G3	D16	D26	D36	D6	G1	G1	R4	G1	R3	G1	1-VN0	E-VN0
D10	G2	D15	D25	D35	D5	G0	G0	R3	G0	R2	G0	1-VP0	E-VP0
D9	G1											0-VN3	O-VN3
D8	G0											0-VP3	O-VP3
D7	В7	D14	D24	D34	D4	В5	B4	R2	В5	R1	B4	0-VNC	O-VNC
D6	В6	D13	D23	D33	D3	B4	В3	R1	B4	R0	В3	0-VPC	O-VPC
D5	B5	D12	D22	D32	D2	В3	B2	R0	В3	G5	B2	0-VN2	O-VN2
D4	B4	D11	D21	D31	D1	B2	B1	G5	B2	G4	B1	0-VP2	O-VP2
D3	В3	D10	D20	D30	D0	B1	В0	G4	B1	G3	В0	0-VN1	O-VN1
D2	B2					В0		G3	В0			0-VP1	O-VP1
D1	B1											0-VN0	O-VN0
D0	В0											0-VP0	O-VP0

5.2.2. HV Parallel RGB 屏参考连接图

5.2.3. HV Serial RGB 屏参考连接图

A10	PD
or :	PΗ
LCD	0.00//
LCD	0-D0 // —

LCD0-D0 //	LCDD0
LCD0-D0X	LCDD1
LCD0-D1X	LCDD2
LCD0-D3	LCDD3
LCD0-D3X	LCDD4
LCD0-D4X	LCDD5
LCD0-D5X	LCDD6
LCD0-D6X	LCDD7
	LCDD8
LCD0-D8	LCDD9
LCD0-D9	LCDD10
LCD0-D10	LCDD11
LCD0-D11	LCDD12
LCD0-D12	LCDD13
LCD0-D13	LCDD14
LCD0-D14	LCDD15
LCD0-D15	LCDD16
LCD0-D16	LCDD17
LCD0-D17	LCDD18
LCD0-D18	LCDD19
LCD0-D19	LCDD20
LCD0-D20	LCDD21
LCD0-D21	LCDD22
LCD0-D22	LCDD23
LCD0-D23	LCDCLK
LCD0-CLK	LCDDE
LCD0-DE	LCDHSYNC
.CD0-HSYNC	LCDVSYNC
.CD0-VSYNC <<	

5.2.4. CPU Parallel RGB666 屏参考连接图

			J3
710 DD			NC1
A10 PD			NC2
ow DII			NC3
or PH		D	IM3
	LCDD0	D	NC4
LCD0-D0X	LCDD1		RESET
LCD0-D1	LCDD2	×	VSYNC
LCD0-D2	LCDD3	×	HSYNC
LCD0-D3	LCDD4	×	DOTCLK
LCD0-D4	LCDD5	LCDD23 X	DEN
LCD0-D5X	LCDD6	LCDD22	DB17
LCD0-D6X—	LCDD7	LCDD21	DB16
LCD0-D7X	LCDD8	LCDD20	DB15
LCD0-D9X	LCDD9	LCDD19	DB14
LCD0-D300-	LCDD10	LCDD18	DB13
LCD0-D10	LCDD11	LCDD15	DB12
LCD0-D112	LCDD12	LCDD14	DB11 DB10
LCD0-D13	LCDD13	LCDD13	DB10 DB9
LCD0-D14	LCDD14	LCDD12	DB8
LCD0-D15	LCDD15	LCDD11	DB7
LCD0-D1622—	LCDD16	LCDD10	DB6
LCD0-D1722—	LCDD17	LCDD7	DB5
LCD0-D1822—	LCDD18	LCDD6	DB4
LCD0-D19X	LCDD19	LCDD5	DB3
LCD0-D20X	LCDD20	LCDD4	DB2
LCD0-D2122—	LCDD21	LCDD3	DB1
LCD0-D22	LCDD22	LCDD2	DB0
LCD0-D23	LCDD23	LCDHSYNC	RD
LCD0-CLK?	LCDCLK	LCDCLK	WR
LCD0-DEX	LCDDE	LCDDE	DC
LCD0-HSYNC >>-	LCDHSYNC	LCDVSYNC	CS
LCD0-VSYNC	LCDVSYNC		VSS
***			VCC
		D	LED-
			LED+
			Parallel 18bit CPU

5.2.5. LVDS 2 Single Link 屏参考连接图

5.2.6. LVDS Dual Link 屏参考连接图

A10 PD	
LCD0-D0//	LVDS0-VP0
LCD0-D1	LVDS0-VN0
LCD0-D1	LVDS0-VP1
LCD0-D3	LVDS0-VN1
LCD0-D4	LVDS0-VP2
LCD0-D5	LVDS0-VN2
LCD0-D6	LVDS0-VPC
LCD0-D7	LVDS0-VNC
LCD0-D8	LVDS0-VP3
LCD0-D9	LVDS0-VN3
LCD0-D10	LVDS1-VP0
LCD0-D1122	LVDS1-VN0
LCD0-D12	LVDS1-VP1
LCD0-D13	LVDS1-VN1
LCD0-D14	LVDS1-VP2
LCD0-D15	LVDS1-VN2
LCD0-D16	LVDS1-VPC
LCD0-D17	LVDS1-VNC
LCD0-D18	LVDS1-VP3
LCD0-D19	LVDS1-VN3

5.3.屏文件实例

- 5.3.1 是 A10-EVB-1.1 开发板上的 sys_config1.fex 的 LCD 接口配置;
- 5.3.2 是 A10EVB 标配 5 寸屏的屏配置文件, HV 并行接口 800x480 分辨率;
- 5.3.3 是 4.3 寸屏 TD043 的屏配置文件; HV 并行接口 800x480 分辨率; 该实例中有 IO 模拟串行接口,及插值 Gamma 表的实现;
- 5.3.4 是 10 寸屏 HSD100IFW1 的屏配置文件; LVDS Single Link 接口 1024x600 分辨率;
 - 5.3.5 是 2.8 寸屏 KGM281I0 的屏配置文件; CPU 屏并行 18bit 接口。

5.3.1. sys_config1.fex

LCD 部分实例如下:

LCD 部分头例如下:	
[lcd0_para]	
lcd_used	= 1
lcd_power	= port:PH08<1><0> <default><0></default>
;lcd_bl_en	= port:PH07<1><0> <default><1></default>
lcd_pwm	= port:PB02<2> <default><default></default></default>
lcd_gpio_0	= port:PH07<1><0> <default><1></default>
lcd_gpio_1	= port:PB10<1><0> <default><1></default>
lcd_gpio_2	= port:PB11<1><0> <default><1></default>
;lcd_gpio_3	=
Icdd0	= port:PD00<2> <default><default></default></default>
lcdd1	= port:PD01<2> <default><default></default></default>
lcdd2	= port:PD02<2> <default><default></default></default>
lcdd3	= port:PD03<2> <default><default></default></default>
lcdd4	= port:PD04<2> <default><default></default></default>
lcdd5	= port:PD05<2> <default><default></default></default>
lcdd6	= port:PD06<2> <default><default></default></default>
lcdd7	= port:PD07<2> <default><default></default></default>
lcdd8	= port:PD08<2> <default><default></default></default>
lcdd9	= port:PD09<2> <default><default></default></default>
lcdd10	= port:PD10<2> <default><default></default></default>
lcdd11	= port:PD11<2> <default><default></default></default>
lcdd12	= port:PD12<2> <default><default></default></default>
lcdd13	= port:PD13<2> <default><default></default></default>

icu_useu	-0	
lcd used	= 0	
[lcd1_para]		
lcdvsync	= port:PD27<2> <default><default></default></default>	
Icdhsync	= port:PD26<2> <default><default></default></default>	
lcdde	= port:PD25<2> <default><default></default></default>	
lcdclk	= port:PD24<2> <default><default></default></default>	
lcdd23	= port:PD23<2> <default><default></default></default>	
lcdd22	= port:PD22<2> <default><default></default></default>	
lcdd21	= port:PD21<2> <default><default></default></default>	
lcdd20	= port:PD20<2> <default><default></default></default>	
lcdd19	= port:PD19<2> <default><default></default></default>	
lcdd18	= port:PD18<2> <default><default></default></default>	
lcdd17	= port:PD17<2> <default><default></default></default>	
lcdd16	= port:PD16<2> <default><default></default></default>	
lcdd15	= port:PD15<2> <default><default></default></default>	
lcdd14	= port:PD14<2> <default><default></default></default>	

5.3.2. hv_800x480.c

```
/**********************
   hv_800x480.c
#include "lcd_panel_cfg.h"
//delete this line if you want to use the lcd para define in sys_config1.fex
#define LCD_PARA_USE_CONFIG
#ifdef LCD_PARA_USE_CONFIG
   tcon parameters
 static void LCD_cfg_panel_info(__panel_para_t * info)
   memset(info,0,sizeof(__panel_para_t));
    //interface
   info->lcd_if
                                                                             3:Ivds
                        = 0;
                                    //0:hv;
                                                 1:cpu/8080;
                                                               2:reserved;
   info->lcd_hv_if
                        = 0;
                                        //0:hv para;
                                                      1:hv serial;
                                                                    2:ccir656
   //timing
   info->lcd_x
                         = 800;
                                        //Hor Pixels
   info->lcd_y
                         = 480:
                                        //Ver Pixels
   info->lcd_dclk_freq
                        = 33;
                                        //Pixel Data Cycle,in MHz
   info->lcd_ht
                         = 1056;
                                        //Hor Total Time
   info->lcd_hbp
                         = 216;
                                        //Hor Back Porch
   info->lcd_vt
                         = 525*2;
                                        //Ver Total Time*2
   info->lcd_vbp
                         = 35:
                                        //Ver Back Porch
                                        //Hor Sync Time
                         = 10;
   info->lcd_hv_hspw
                                        //Ver Sync Time
   info->lcd_hv_vspw
                          = 10:
   info->lcd_io_cfg0
                         = 0x10000000; //Clock Phase
    //color
   info->lcd_frm
                         = 0;
                                        //0: direct;
                                                      1: rgb666 dither;
                                                                        2:rgb656 dither
```

opyright © 2011 Allwinner Technology. All Rights Reserved.


```
info->lcd_gamma_correction_en = 0;
   info->lcd_pwm_not_used = 0;
   info->lcd_pwm_ch
                        = 0;
                        = 12500;
                                     //Hz
   info->lcd_pwm_freq
   info->lcd_pwm_pol
                        = 0;
}
#endif
   lcd flow function
    hv panel:first lcd_panel_init,than TCON_open
 static __s32 LCD_open_flow(__u32 sel)
    LCD_OPEN_FUNC(sel, LCD_power_on, 50); //open lcd power, than delay 50ms
    LCD_OPEN_FUNC(sel, TCON_open,
                                   500); //open lcd controller, than delay 500ms
    LCD_OPEN_FUNC(sel, LCD_bl_open, 0); //open lcd backlight, than delay 0ms
    return 0:
static __s32 LCD_close_flow(__u32 sel)
    LCD_CLOSE_FUNC(sel, LCD_bl_close, 0); //close lcd backlight, and delay 0ms
    LCD_CLOSE_FUNC(sel, TCON_close, 0); //close lcd controller, and delay 0ms
    LCD_CLOSE_FUNC(sel, LCD_power_off, 1000); //close lcd power, and delay 1000ms
    return 0:
   lcd step function
 static void LCD_power_on(__u32 sel)
   LCD_POWER_EN(sel, 1);
```

```
static void LCD_power_off(__u32 sel)
   LCD_POWER_EN(sel, 0);
static void LCD_bl_open(__u32 sel)
   LCD_PWM_EN(sel, 1);
   LCD_BL_EN(sel, 1);
static void LCD_bl_close(__u32 sel)
   LCD_BL_EN(sel, 0);
   LCD_PWM_EN(sel, 0);
}
   user define function
 static __s32 LCD_user_defined_func(__u32 sel, __u32 para1, __u32 para2, __u32 para3)
   return 0;
   do not modify
 void LCD_get_panel_funs_0(__lcd_panel_fun_t * fun)
#ifdef LCD_PARA_USE_CONFIG
   fun->cfg_panel_info = LCD_cfg_panel_info;
   fun->cfg_open_flow = LCD_open_flow;
   fun->cfg_close_flow = LCD_close_flow;
   fun->lcd_user_defined_func = LCD_user_defined_func;
```

5.3.3. hv_800x480_td043.c

```
/***********************************
  hv_800x480_td043.c
#include "lcd_panel_cfg.h"
//delete this line if you want to use the lcd para define in sys_config1.fex
#define LCD_PARA_USE_CONFIG
#ifdef LCD_PARA_USE_CONFIG
   tcon parameters
 static void lcd_gamma_gen(__panel_para_t * info);
static void LCD_cfg_panel_info(__panel_para_t * info)
{
   memset(info,0,sizeof(__panel_para_t));
    //interface
   info->lcd_if
                        = 0;
                                   //0:hv;
                                                 1:cpu/8080;
                                                               2:reserved;
                                                                            3:Ivds
   info->lcd_hv_if
                                        //0:hv para; 1:hv serial;
                     = 0;
                                                                   2:ccir656
   //timing
   info->lcd x
                         = 800:
                                        //Hor Pixels
                         = 480;
                                        //Ver Pixels
   info->lcd_y
   info->lcd_dclk_freq
                        = 33:
                                        //Pixel Data Cycle,in MHz
   info->lcd_ht
                         = 1056;
                                      //Hor Total Time
   info->lcd_hbp
                         = 216;
                                        //Hor Back Porch
   info->lcd_vt
                         = 525*2;
                                       //Ver Total Time*2
   info->lcd_vbp
                         = 35;
                                        //Ver Back Porch
   info->lcd_hv_hspw
                         = 10:
                                      //Hor Sync Time
   info->lcd_hv_vspw
                                        //Ver Sync Time
                         = 10;
                         = 0x10000000: //Clock Phase
   info->lcd_io_cfg0
    //color
   info->lcd_frm
                         = 0;
                                        //0: direct;
                                                      1: rgb666 dither;
                                                                        2:rgb656 dither
   info->lcd_gamma_correction_en = 0;
                                      //Gamma Table enable
```

```
//Gamma Table Generation Func
     lcd_gamma_gen(info);
    info->lcd_pwm_not_used = 0;
    info->lcd_pwm_ch
                               = 0;
    info->lcd_pwm_freq
                               = 12500;
                                               //Hz
    info->lcd_pwm_pol
                               = 0;
}
static void lcd_gamma_gen(__panel_para_t * info)
{
     const __u8 g_gamma_tbl[][2] =
     //{input value, corrected value}
          \{0, 0\},\
          {15, 15},
          {30, 30},
          {45, 45},
          {60, 60},
          {75, 75},
          {90, 90},
          {105, 105},
          {120, 120},
          {135, 135},
          {150, 150},
          {165, 165},
          {180, 180},
          {195, 195},
          {210, 210},
          {225, 225},
          {240, 240},
          {255, 255},
     };
     //insert value
          __u32 items = sizeof(g_gamma_tbl)/2;
          __u32 i,j;
          for(i=0; i<items-1; i++)
                __u32    num = g_gamma_tbl[i+1][0] - g_gamma_tbl[i][0];
                for(j=0; j<num; j++)
                     _{u32} \ value = 0;
```

opyright © 2011 Allwinner Technology. All Rights Reserved.


```
value = g_gamma_tbl[i][1]
                         + ((g_gamma_tbl[i+1][1] - g_gamma_tbl[i][1]) * j)/num;
                  info->lcd_gamma_tbl[g_gamma_tbl[i][0] + j]
                       = (value << 16) + (value << 8) + value;
         info->lcd\_gamma\_tbl[255] = (g\_gamma\_tbl[items-1][1]<<16)
                                      + (g_gamma_tbl[items-1][1]<<8)
                                      + (g_gamma_tbl[items-1][1]);
    }
#endif
   Icd flow function
    hv panel:first lcd_panel_init,than TCON_open
 static __s32 LCD_open_flow(__u32 sel)
{
    LCD_OPEN_FUNC(sel, LCD_power_on, 50); //open lcd power, than delay 50ms
    LCD_OPEN_FUNC(sel, LCD_panel_init, 50); //lcd panel initial, than delay 50ms
    LCD_OPEN_FUNC(sel, TCON_open,
                                              500); //open lcd controller, than delay 500ms
    LCD_OPEN_FUNC(sel, LCD_bl_open, 0);
                                                //open lcd backlight, than delay 0ms
    return 0;
}
static __s32 LCD_close_flow(__u32 sel)
    LCD_CLOSE_FUNC(sel, LCD_bl_close, 0);
                                                 //close lcd backlight, and delay 0ms
    LCD_CLOSE_FUNC(sel, TCON_close, 0);
                                                 //close lcd controller, and delay 0ms
    LCD_CLOSE_FUNC(sel, LCD_panel_exit, 0);
                                                 //lcd panel exit, and delay 0ms
    LCD_CLOSE_FUNC(sel, LCD_power_off, 1000); //close lcd power, and delay 1000ms
    return 0;
   Icd step function
```



```
static void LCD_power_on(__u32 sel)
    LCD_POWER_EN(sel, 1);
static void LCD_power_off(__u32 sel)
    LCD_POWER_EN(sel, 0);
static void LCD_bl_open(__u32 sel)
    LCD_PWM_EN(sel, 1);
    LCD_BL_EN(sel, 1);
}
static void LCD_bl_close(__u32 sel)
    LCD_BL_EN(sel, 0);
    LCD_PWM_EN(sel, 0);
}
   lcd panel initial
    serial io initial
#define td043_spi_scen(sel,data)
                                      LCD_GPIO_write(sel,2,data)
#define td043_spi_scl(sel,data)
                                       LCD_GPIO_write(sel,1,data)
#define td043_spi_sda(sel,data)
                                      LCD_GPIO_write(sel,0,data)
static void td043_spi_wr(__u32 sel,__u32 addr,__u32 value)
{
    __u32 i;
     __u32 data = (addr<<10 | value);
     td043_spi_scen(sel,1);
     td043_spi_scl(sel,0);
     td043_spi_scen(sel,0);
     for(i=0;i<16;i++)
          if(data & 0x8000)
```

opyright © 2011 Allwinner Technology. All Rights Reserved.

```
td043_spi_sda(sel,1);
          else
               td043_spi_sda(sel,0);
          data <<= 1;
          LCD_delay_us(10);
          td043_spi_scl(sel, 1);
          LCD_delay_us(10);
          td043_spi_scl(sel,0);
     td043_spi_scen(sel,1);
static void td043_init(__u32 sel)
     td043_spi_wr(sel,0x02,0x07);
    td043_spi_wr(sel,0x03,0x5f);
    td043_spi_wr(sel,0x04,0x17);
    td043_spi_wr(sel,0x05,0x20);
    td043_spi_wr(sel,0x06,0x08);
    td043_spi_wr(sel,0x07,0x20);
    td043_spi_wr(sel,0x08,0x20);
    td043_spi_wr(sel,0x09,0x20);
    td043_spi_wr(sel,0x0a,0x20);
    td043_spi_wr(sel,0x0b,0x20);
    td043_spi_wr(sel,0x0c,0x20);
    td043_spi_wr(sel,0x0d,0x20);
    td043_spi_wr(sel,0x0e,0x10);
    td043_spi_wr(sel,0x0f,0x10);
    td043_spi_wr(sel,0x10,0x10);
    td043_spi_wr(sel,0x11,0x15);
    td043_spi_wr(sel,0x12,0xaa);
    td043_spi_wr(sel,0x13,0xff);
    td043_spi_wr(sel,0x14,0x86);
    td043_spi_wr(sel,0x15,0x8e);
    td043_spi_wr(sel,0x16,0xd6);
    td043_spi_wr(sel,0x17,0xfe);
    td043_spi_wr(sel,0x18,0x28);
    td043_spi_wr(sel,0x19,0x52);
    td043_spi_wr(sel,0x1a,0x7c);
    td043_spi_wr(sel,0x1b,0xe9);
    td043_spi_wr(sel,0x1c,0x42);
    td043_spi_wr(sel,0x1d,0x88);
    td043_spi_wr(sel,0x1e,0xb8);
    td043_spi_wr(sel,0x1f,0xff);
```

opyright © 2011 Allwinner Technology. All Rights Reserved.

```
td043_spi_wr(sel,0x20,0xf0);
}
static void LCD_panel_init(__u32 sel)
   td043_init(sel);
static void LCD_panel_exit(__u32 sel)
{
  user define function
 static __s32 LCD_user_defined_func(__u32 sel, __u32 para1, __u32 para2, __u32 para3)
   return 0;
  *******************
  do not modify
 void LCD_get_panel_funs_0(__lcd_panel_fun_t * fun)
#ifdef LCD_PARA_USE_CONFIG
   fun->cfg_panel_info = LCD_cfg_panel_info;
#endif
   fun->cfg_open_flow = LCD_open_flow;
   fun->cfg_close_flow = LCD_close_flow;
   fun->lcd_user_defined_func = LCD_user_defined_func;
}
```

5.3.4. lvds_1024x600_hds100ifw1.c

```
lvds_1024x600_hds100ifw1.c
 #include "lcd_panel_cfg.h"
//delete this line if you want to use the lcd para define in sys_config1.fex
#define LCD_PARA_USE_CONFIG
#ifdef LCD_PARA_USE_CONFIG
  tcon parameters
 static __u8 g_gamma_tbl[256];
static void LCD_cfg_panel_info(__panel_para_t * info)
   memset(info,0,sizeof(__panel_para_t));
   //interface
   info->lcd_if
                     = 3;
                                //0:hv;
                                             1:cpu/8080;
                                                         2:reserved;
                                                                      3:Ivds
   info->lcd_lvds\_ch = 0;
                                //0:single link 1:dual link
   info->lcd_lvds_bitwidth = 1;
                                //0:24bit;
                                             1:18bit;
   //timing
   info->lcd_x
                      = 1024;
                                    //Hor Pixels
   info->lcd_y
                                    //Ver Pixels
                       = 600;
   info->lcd_dclk_freq
                      = 52;
                                    //Pixel Data Cycle,in MHz
   info->lcd_ht
                       = 1344;
                                   //Hor Total Time
   info->lcd_hbp
                       = 20:
                                    //Hor Back Porch
                       =635*2;
                                    //Ver Total Time*2
   info->lcd_vt
                       = 20:
                                    //Ver Back Porch
   info->lcd_vbp
   info->lcd_hv_hspw
                       = 10;
                                    //Hor Sync Time
   info->lcd_hv_vspw
                        = 10;
                                     //Ver Sync Time
   info->lcd_io_cfg0
                       = 0x00000000; //Clock Phase
```

opyright © 2011 Allwinner Technology. All Rights Reserved.

```
//color
                                          //0: direct:
                                                         1: rgb666 dither;
                                                                            2:rgb656 dither
    info->lcd_frm
                           = 1;
    info->lcd_gamma_correction_en = 0;
    info->lcd_pwm_not_used = 0;
    info->lcd_pwm_ch
                            = 0:
    info->lcd_pwm_freq
                           = 12500;
                                          //Hz
    info->lcd_pwm_pol
#endif
   lcd flow function
static __s32 LCD_open_flow(__u32 sel)
{
    LCD_OPEN_FUNC(sel, LCD_power_on, 50); //open lcd power, than delay 50ms
   LCD_OPEN_FUNC(sel, LCD_panel_init, 50); //not in need
    LCD_OPEN_FUNC(sel, TCON_open,
                                               500); //open lcd controller, than delay 500ms
    LCD_OPEN_FUNC(sel, LCD_bl_open, 0); //open lcd backlight, than delay 0ms
    return 0:
static __s32 LCD_close_flow(__u32 sel)
{
    LCD_CLOSE_FUNC(sel, LCD_bl_close, 0);
                                                  //close lcd backlight, and delay 0ms
    LCD_CLOSE_FUNC(sel, TCON_close, 0);
                                                  //close lcd controller, and delay 0ms
   LCD_CLOSE_FUNC(sel, LCD_panel_exit, 0);
                                                 //not in need
    LCD_CLOSE_FUNC(sel, LCD_power_off, 1000); //close lcd power, and delay 1000ms
    return 0;
   Icd step function
static void LCD_power_on(__u32 sel)
```

opyright © 2011 Allwinner Technology. All Rights Reserved.

```
LCD_POWER_EN(sel, 1);
static void LCD_power_off(__u32 sel)
   LCD_POWER_EN(sel, 0);
static void LCD_bl_open(__u32 sel)
   LCD_PWM_EN(sel, 1);
   LCD_BL_EN(sel, 1);
static void LCD_bl_close(__u32 sel)
   LCD_BL_EN(sel, 0);
   LCD_PWM_EN(sel, 0);
}
   user define function
 static __s32 LCD_user_defined_func(__u32 sel, __u32 para1, __u32 para2, __u32 para3)
   return 0;
   do not modify
 void LCD_get_panel_funs_0(__lcd_panel_fun_t * fun)
#ifdef LCD_PARA_USE_CONFIG
   fun->cfg_panel_info = LCD_cfg_panel_info;
#endif
   fun->cfg_open_flow = LCD_open_flow;
   fun->cfg_close_flow = LCD_close_flow;
   fun->lcd_user_defined_func = LCD_user_defined_func;
```

5.3.5. cpu_320x240_kgm281i0.c

```
/***********************************
   cpu_320x240_kgm281i0.c
#include "lcd_panel_cfg.h"
//delete this line if you want to use the lcd para define in sys_config1.fex
#define LCD_PARA_USE_CONFIG
#ifdef LCD_PARA_USE_CONFIG
/*****************
   tcon parameters
 static __u8 g_gamma_tbl[256];
static void LCD_cfg_panel_info(__panel_para_t * info)
   memset(info,0,sizeof(__panel_para_t));
    //interface
   info->lcd if
                       = 1; //0:hv;
                                                 1:cpu/8080;
                                                              2:reserved:
                                                                            3:lvds
   info->lcd_cpu_if
                        = 0;
                                   //0:18bit
                                                 4:16bit
   //timing
                         = 320;
                                        //Hor Pixels
   info->lcd_x
   info->lcd_y
                         = 240:
                                       //Ver Pixels
                                       //Pixel Data Cycle
   info->lcd_dclk_freq
                        = 6;
                        = 320+30;
   info->lcd ht
                                      //Hor Total Time
                        = 20;
   info->lcd_hbp
                                            //Hor Back Porch
   info->lcd_vt
                        = (240+30)*2; //Ver Total Time*2
   info->lcd_vbp
                         = 20;
                                       //Ver Back Porch
   info->lcd_hv_hspw
                         = 10;
                                        //Hor Sync Time
                                        //Ver Sync Time
   info->lcd_hv_vspw
                          = 10;
                         = 0x10000000; //Clock Phase
   info->lcd_io_cfg0
    //color
   info->lcd_frm
                                        //0: direct;
                                                      1: rgb666 dither;
                                                                       2:rgb656 dither
                         = 1;
   info->lcd_gamma_correction_en = 0;
```



```
//backlight
   info->lcd_pwm_not_used = 0;
   info->lcd_pwm_ch
                          = 0;
   info->lcd_pwm_freq
                         = 12500;
                                       //Hz
   info->lcd_pwm_pol
                          = 0:
#endif
   Icd flow function
    CPU Panel:first TCON_open,than lcd_panel_init
 static __s32 LCD_open_flow(__u32 sel)
{
    LCD_OPEN_FUNC(sel, LCD_power_on, 50); //open lcd power, than delay 50ms
    LCD_OPEN_FUNC(sel, TCON_open,
                                       500); //open lcd controller, than delay 500ms
    LCD_OPEN_FUNC(sel, LCD_panel_init, 50); //lcd panel initial, than delay 50ms
    LCD_OPEN_FUNC(sel, LCD_bl_open, 0);
                                             //open lcd backlight, than delay 0ms
    return 0:
}
static __s32 LCD_close_flow(__u32 sel)
{
    LCD_CLOSE_FUNC(sel, LCD_bl_close, 0);
                                                //close lcd backlight, than delay 0ms
    LCD_CLOSE_FUNC(sel, LCD_panel_exit, 0);
                                                //lcd panel exit, than delay 0ms
    LCD_CLOSE_FUNC(sel, TCON_close, 0);
                                                //close lcd controller, than delay 0ms
    LCD_CLOSE_FUNC(sel, LCD_power_off, 1000);
                                                //close lcd power, than delay 1000ms
    return 0;
}
   lcd step function
 static void LCD_power_on(__u32 sel)
   LCD_POWER_EN(sel, 1);
```

```
static void LCD_power_off(__u32 sel)
   LCD_POWER_EN(sel, 0);
static void LCD_bl_open(__u32 sel)
    LCD_PWM_EN(sel, 1);
   LCD_BL_EN(sel, 1);
static void LCD_bl_close(__u32 sel)
   LCD_BL_EN(sel, 0);
   LCD_PWM_EN(sel, 0);
}
  ****************
   lcd panel initial
    cpu 8080 bus initial
#define kgm281i0_rs(sel,data) LCD_GPIO_write(sel,0,data)
static void kgm281i0_write_gram_origin(__u32 sel)
{
    LCD_CPU_WR(sel,0x0020, 0); // GRAM horizontal Address
    LCD_CPU_WR(sel,0x0021, 319); // GRAM Vertical Address
    LCD_CPU_WR_INDEX(sel,0x22); // Write Memery Start
}
static void kgm281i0_init(__u32 sel)
{
    kgm281i0_rs(sel,1);
    LCD_delay_ms(50);
    kgm281i0_rs(sel,0);
    LCD_delay_ms(50);
    kgm281i0_rs(sel,1);
    LCD_CPU_WR(sel,0x0000, 0x0001);
    LCD_CPU_WR(sel,0x0001, 0x0100);
```

opyright © 2011 Allwinner Technology. All Rights Reserved.


```
LCD_CPU_WR(sel,0x0002, 0x0400);
LCD_CPU_WR(sel,0x0003, 0x1018);
LCD_CPU_WR(sel,0x0004, 0x0000);
LCD_CPU_WR(sel,0x0008, 0x0202);
LCD_CPU_WR(sel,0x0009, 0x0000);
LCD_CPU_WR(sel,0x000A, 0x0000);
LCD_CPU_WR(sel,0x000C, 0x0000);
LCD_CPU_WR(sel,0x000D, 0x0000);
LCD_CPU_WR(sel,0x000F, 0x0000);
LCD_CPU_WR(sel,0x0010, 0x0000);
LCD_CPU_WR(sel,0x0011, 0x0007);
LCD_CPU_WR(sel,0x0012, 0x0000);
LCD_CPU_WR(sel,0x0013, 0x0000);
LCD_delay_ms(50);
LCD_CPU_WR(sel,0x0010, 0x17B0);
LCD_CPU_WR(sel,0x0011, 0x0001);
LCD_delay_ms(50);
LCD_CPU_WR(sel,0x0012, 0x013C);
LCD_delay_ms(50);
LCD_CPU_WR(sel,0x0013, 0x1300);
LCD_CPU_WR(sel,0x0029, 0x0012);
LCD_delay_ms(50);
LCD_CPU_WR(sel,0x0020, 0x0000);
LCD_CPU_WR(sel,0x0021, 0x0000);
LCD_CPU_WR(sel,0x002B, 0x0020);
LCD_CPU_WR(sel,0x0030, 0x0000);
LCD_CPU_WR(sel,0x0031, 0x0306);
LCD_CPU_WR(sel,0x0032, 0x0200);
LCD_CPU_WR(sel,0x0035, 0x0107);
LCD_CPU_WR(sel,0x0036, 0x0404);
LCD_CPU_WR(sel,0x0037, 0x0606);
LCD_CPU_WR(sel,0x0038, 0x0105);
LCD_CPU_WR(sel,0x0039, 0x0707);
LCD_CPU_WR(sel,0x003C, 0x0600);
LCD_CPU_WR(sel,0x003D, 0x0807);
LCD_CPU_WR(sel,0x0050, 0x0000);
LCD_CPU_WR(sel,0x0051, 0x00EF);
LCD_CPU_WR(sel,0x0052, 0x0000);
LCD_CPU_WR(sel,0x0053, 0x013F);
LCD_CPU_WR(sel,0x0060, 0x2700);
LCD_CPU_WR(sel,0x0061, 0x0001);
LCD_CPU_WR(sel,0x006A, 0x0000);
LCD_CPU_WR(sel,0x0080, 0x0000);
LCD_CPU_WR(sel,0x0081, 0x0000);
```

```
LCD_CPU_WR(sel,0x0082, 0x0000);
    LCD_CPU_WR(sel,0x0083, 0x0000);
    LCD_CPU_WR(sel,0x0084, 0x0000);
    LCD_CPU_WR(sel,0x0085, 0x0000);
    LCD_CPU_WR(sel,0x0090, 0x0013);
    LCD_CPU_WR(sel,0x0092, 0x0000);
    LCD_CPU_WR(sel,0x0093, 0x0003);
    LCD_CPU_WR(sel,0x0095, 0x0110);
    LCD_CPU_WR(sel,0x0097, 0x0000);
    LCD_CPU_WR(sel,0x0098, 0x0000);
    LCD_CPU_WR(sel,0x0007, 0x0001);
    LCD_delay_ms(50);
    LCD_CPU_WR(sel,0x0007, 0x0021);
    LCD_CPU_WR(sel,0x0007, 0x0023);
    LCD_delay_ms(50);
    LCD_CPU_WR(sel,0x0007, 0x0173);
}
                                             //irq func
static void Lcd_cpuisr_proc(void)
{
    kgm281i0_write_gram_origin(0);
static void LCD_panel_init(__u32 sel)
    kgm281i0_init(sel);
                                             //initial lcd panel
    kgm281i0_write_gram_origin(sel);
                                             //set gram origin
    LCD_CPU_register_irq(sel,Lcd_cpuisr_proc); //resgister cpu irq func
    LCD_CPU_AUTO_FLUSH(sel,1);
                                             //start sent gram data
}
static void LCD_panel_exit(__u32 sel)
{
   user define function
 static __s32 LCD_user_defined_func(__u32 sel, __u32 para1, __u32 para2, __u32 para3)
    return 0;
```


5.4.LCD CHECK LIST

LCD CHECK LIST

方案:		屏规格:			日期:		
		DVDD	AVDD	VHG	VGL	VCOM	
电压 检查	开屏状态 □						
	关屏状态 □						
效果	位置渐变图 🗆	色深灰阶图□		文字图 □			
检查	色块图 □	亮度调节 □		快慢开关屏口			
签名							