acm-template

langman

February 23, 2018

Contents

1	头文	件																											3
2	图论																												4
	2.1	二分图] .																										4
	2.2	并查集	₹.																										4
	2.3	最短路	ζ.																										5
		2.3.1		jkst																									5
		2.3.2		fa																									5
		2.3.3		ody																									5
	2.4	最小生		·																									5
	2.5	最大流																											5
		2.5.1	_	$_{ m inic}$																									5
	፠ ፦ አሉ	上 毒																											0
3	数学		- ma	77.4	L-																								6
	3.1	三个特																											6
		3.1.1		b 娄	• • •																								6
		3.1.2		特章			•		•	•	٠	•	•	•	•	•	•	•	•		•	•	٠	•	٠	•	•	•	6
		3.1.3	职	大村	木公	江:	•																						6
	3.2	数论.			· ·		-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	•	6
		3.2.1	-	几点																									6
		3.2.2	. ,	法i		_																							6
		3.2.3		拉區		-			•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		6
		3.2.4	莫	比	与期	I 逐	i数	ξ.																					7
	3.3	博弈 .																											8
		3.3.1	主	要的	内解	题	i思	!	Į																				8
		3.3.2	题	型																									8
		3.3.3	\mathbf{S}	G函	数																								8
		3.3.4	解	题第	策略	Ì																							8
	3.4	组合数	文学																										9
		3.4.1	求	组合	全数	Į																							9
		3.4.2	ро	olay	定理	里																							9
		3.4.3		\cos^2																									9

	3.5	线代	9
		3.5.1 矩阵快速幂	9
		3.5.2 矩阵方面知识	9
	3.6	计算几何	9
		3.6.1 几何基本知识	9
		3.6.2	0
		3.6.3	0
4	dp		0
4	dp 4.1	1	
4	4.1		.0
4	4.1	1	.0
4	4.1 4.2		0.0
4	4.1 4.2 4.3		0.0

1 头文件

2 图论

2.1 二分图

判断是否二分图 求出最大匹配数

2.2 并查集

2.3 最短路

两种算法 但是要注意dijkstra无法处理负边的情况

2.3.1 dijkstra

需要注意的在于 可以更优化 我没写了 而且需要注意重边的情况

2.3.2 spfa

需要注意的是怎么建边 双向边?

2.3.3 Flody

这个就不写了,一个小dp

2.4 最小生成树

这是个什么玩意呢 图里面是吧,找到n-1条边使得生成一颗树,然后他的边权 之和最小

2.5 最大流

2.5.1 Dinic

板子先存着,坑定用的着

3 数学方面

3.1 三个特别的数

3.1.1 Fib 数列

$$f(x) = f(x-1) + f(x-2)$$
$$f(0) = 0, f(1) = 1$$

3.1.2 卡特兰 数

$$\sum_{i=1}^{n} f_i * f_{n-i} = f_n$$
$$h(n) = C_{2n}^n - C_{2n-1}^n$$

注意它这个数字来自于什么情况。

3.1.3 斯大林公式

$$\sqrt{2*PI*n}*(\frac{n}{e})^n = n!$$

3.2 数论

第一个自然是最基础的欧几里得算法,欧几里得算法的用处有很多,求最大公倍数,解方程,很多。在后面的过程会把一些常见的板子列出来,一般来说这些板子都已经经过验证,但是不好说对吧。简单题我们可以通过一些模板直接得出答案,但是怎么说,这些对于难题估计只能算工具,重要的是如何转换。

3.2.1 欧几里得

然后是基于这个定理得出的一个定理,中国剩余定理

3.2.2 乘法逆元

思想是通过扩展欧几里得来得出,如果缘分到了,那么 还能用费马小定理来解

3.2.3 欧拉函数

这个东西好呀,他求的是比n小的,并且和n互质的数的个数 更多的来说我觉得这个东西是一个工具,他对解一些题有很重要的作用,起到一个工具的作用 我目前学的比较浅,对他的优化作用没有很深的了解。

3.2.4 莫比乌斯函数

$$F_n = \sum_{i=1}^n f_i$$
$$f_i = \sum_{d|n} u(d) * f(\frac{d}{n})$$

和欧拉函数一样很重要的一个函数他的定义我就不说了,毕竟我latex学的还不好,公式的 插入对我来说用处不大。

3.3 博弈

3.3.1 主要的解题思想

官方说的是通过必败点和必胜点来判定 先通过必败点来推,直接来看必胜点,把问题抽象成图 把状态抽象成点,必败点就是先手必败点,然后通过必败点能走到的搞成必胜点,如过有一个状态没有走过 而且他后面的路都是必胜点那么他就是必败点。感觉就像dp一样,记忆化搜索。 当然题目不可能出的那么简单的。 不过根据雄爷定理,万事不离期宗,掌握基本,扩展自己去发掘。

3.3.2 题型

巴什博弈

这个是最简单的博弈,就是一堆东西,每个人自己能拿1-n件,谁最后一个拿完谁赢,这个是最简单的,不记录。

威佐夫博弈

有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。 这个的解题思路在于通过前面的那个np问题来解决,用局势来思考这些问题,前几个局势在于(0,0),(1,2),(3,5),(4,7).....然后一些大佬就总结出了一些牛逼的结论 $(a_k,b_k),a_k=\frac{k*(\sqrt{5}+1)}{2},b_k=a_k+k$ 人才。

Fibonacci

有一堆个数为n的石子, 游戏双方轮流取石子, 满足:

- (1) 先手不能在第一次把所有的石子取完;
- (2) 之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍)。约定取走最后一个石子的人为赢家。 结论是 当n为Fibonacci数时,先手必败

尼姆博弈

有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。 这个博弈有点意思 他的必败点的局势在于 $(a,b,c)a \wedge b \wedge c = 0$

3.3.3 SG函数

这个在看之前感觉很高级但是啊,好像也就是一个dp的过程,通过一个必败点,看成起点然后,那个方法看成通向下一个起点的路,然后找所有能直接到这个必败点的必胜点。好像也就那么回事。好像能解决的都是小数字题这是一个板子,f里面存的是方法,多堆问题可以转化成异或来解决。

3.3.4 解题策略

- *1:相信自己的第一感觉
- 2 : 博弈都会和一些特别的数搭边 , 所以第一件事坑定是分析局势然后 找找看是不是有特别的意义 , 像什么 卡特兰数 , f i b 数列 , 幂次方 , 异

或的值是否为 0;

3:不挂怎么说,记得打表。

3.4 组合数学

3.4.1 求组合数

第一个是求组合数,方法很多不去列举,注意的是一般来说,组合数都是需要去模一个数,所以他的分母在计算的时候是需要去求逆元的

3.4.2 polay定理

设G=p1, p2, ..., pt是X=a1,a2,...,an上一个置换群,用m种颜色对X中的元素进行涂色,那么不同的涂色方案数为

$$\frac{1}{G} \sum_{k=1}^{t} m^{Cyc(p_k)}$$

 $Cyc(p_k)$ 是置换 p_k 的循环节个数

3.4.3 lucas定理

当组合数的基数过大的时候进行这些操作但是注意,我们的操作也是要求那个模数为素数,且模数要小的情况下,素数的情况我们可以用扩展lucas定理来解决。一个工具,一个数论上的分支。

3.5 线代

3.5.1 矩阵快速幂

这类方法、很多是用在递推关系式的时候、像什么fib数列什么的。

3.5.2 矩阵方面知识

就是用高斯消元法去解决一些问题,像什么秩和方阵的值。

3.6 计算几何

3.6.1 几何基本知识

矢量

矢量的乘积有很多的作用,注意定义。 适用点在于: 1:面积 2: 位置 跨立实验与判断两线段是否相交 线段 P_1P_2, Q_1Q_2 ,相交的条件为 $P_1Q_1xP_1P_2*P_1P_2xP_1Q_2>=0$ $Q_1P_1xQ_1Q_2*Q_1P_2>=0$

pick定理

线段上的是整数点的数的个数 求gcd;

PICK定理 设以整数点为顶点的多边形的面积为S,多边形内部的整数点数为N,多边形边界上的整数点数为L,则 S=L/2+N-1

3.6.2 判断点是否在多边形中

为1的时候,则在内部。2,应该是边上。

3.6.3 凸包问题

4 状态转移 dp

dp的定义: 1: 记忆化搜索; 2: 状态转移 所以我们的解决方案总是跟着这个来走,从定义出发。 难点集中于两个方面,状态式的确定和状态转移方程的确定

4.1 背包

背包的问题主要以下几种: 01背包, 部分背包, 完全背包;[相对来说比较简单], 分组背包[个人感觉较难] 背包难在如何, 确定维数, 确定背包的容量是什么以及背包的价值是什么, 还有背包的dp关系转移式。

4.2 树形dp

关键点在于找状态点间的关系,他一般只有三个关系,父亲节点 ,儿子节点,还有兄弟节点,去找他们之间的关系,所以一般是两遍dfs 找父亲与儿子的关系,找儿子与父亲的关系。

4.3 数位dp

这个dp的精髓在于记忆化搜索,也就是在最高位不是被限定的情况下进行记录,这样的话省掉很多多余的步骤。所有的出发点都处于这个目的。

4.4 状压dp

这个dp的精髓在于状态转移,不过能压缩的情况也是很限定的。 像什么每个点的状态在于都是能用两个状态来描述,且这些点不多,但是组合的方式很多。 一些状压dp经常用的上的公式。

4.5 一些常见的dp

4.5.1 LIS 最长上升子序列