Lecture 11: Regular languages and Finite State Automata

CAB203 Discrete Structures

Matthew McKague

Queensland University of Technology cab203@qut.edu.au

Outline

Regular Languages

Regular Expressions

Finite State Automata

Readings

This week:

► None

Next week:

► Lawson Chapter 8 and 9

Outline

Regular Languages

Regular Expressions

Finite State Automata

Symbols and alphabets

Start with some set of symbols $\Sigma \neq \emptyset$, which we will call the alphabet. This can be anything you like, possibly:

- **▶** {0, 1}
- $\blacktriangleright \{a, b, c, \dots, z\}$
- ► The set of all printable ASCII characters
- ► The set of all UNICODE characters

The alphabet is the set Σ , and the elements of Σ are the symbols.

Strings

A string over Σ is a sequence of symbols in Σ .

- Sometimes strings are also called words
- We will use the notation x_j to refer to the jth symbol in x, counting from the left, from 1.
- ► The *length* of a string is the number of symbols in the sequence
- \blacktriangleright The unique string of length 0 is called the *empty string*, with symbol ε
- ▶ The set Σ^* (the *Kleene star*) is the set of all strings over Σ of any length

Mathematically, strings are the same as tuples over Σ , but we think about and notate them differently.

String concatenation

We can concatenate two strings to form a longer string.

- $ightharpoonup x = s_1 s_2 \dots s_i \in \Sigma^*$
- $> xy = s_1 s_2 \dots s_j t_1 t_2 \dots t_k$

Example:

x = abc, y = 123, xy = abc123

Languages

A language over an alphabet Σ is a set of strings over Σ .

- ▶ A language L is any subset $L \subseteq \Sigma^*$
- We can specify a language by writing it out explicitly:

$$L = \{1, 11, 111, 1111\}$$

► We can also specify a language by writing rules for the strings it contains:

$$L = \{x \in \{0,1\}^* : x_1 = 1\}$$

Language examples

- **▶** ∅
- \blacktriangleright $\{1, 11, 111, 1111...\}$, the set of all strings with all 1's
- ► The set of binary representations of all odd natural numbers
- ▶ The set of decimal representations of prime natural numbers
- ► The set of all valid Python programs
- ► The set of all bit strings which are UNICODE encodings of a word in English
- ► The set of Shakespeare's plays

Decision problems

A decision problem for a language L is the problem of deciding whether a given string $x \in \Sigma^*$ is in L.

Any computation problem with a yes/no answer can be phrased as a decision problem

Some languages are undecidable meaning that no computer program can solve the decision problem for that language.

Language operations

- ► We can perform set-theoretic operations on languages, like U since languages are sets
- We can concatenate languages by pairwise concatenating all of their elements.

$$A \cdot B := \{ab : a \in A, b \in B\}$$

Examples

Let:

$$A = \{0, 1\}, \quad B = \{a, b\}$$

then

$$A \cdot B = \{0a, 0b, 1a, 1b\}$$

 $A \cdot A = \{00, 01, 10, 11\}$
 $A \cup B = \{0, 1, a, b\}$

Kleene star

The Kleene star of a language A is the set of all possible concatenations of any length of strings from A

- $ightharpoonup A^0 := \{\varepsilon\}$
- $A^1 := A$
- $\triangleright A^{j} := A^{j-1} \cdot A$
- $A^* := A^0 \cup A^1 \cup A^2 \cup ...$

The Kleene plus is like the Kleene star, but omits the empty string.

 $\blacktriangleright A^+ := A^1 \cup A^2 \cup A^3 \cup \dots$

Regular languages

The *regular languages* are a particular set of languages that have some nice structure, defined by:

- ightharpoonup and $\{\varepsilon\}$ are regular languages
- ▶ For each $a \in \Sigma$, $\{a\}$ is a regular language
- ▶ If A and B are regular languages, then $A \cup B$, $A \cdot B$ and A^* are all regular languages
- ► No other languages are regular

Examples

- $A^+ = A \cdot A^*$
- $ightharpoonup A^n = A \cdot A \cdot \cdots \cdot A$
- ${a, aa, aaa, aaaa, \dots} = {a}^+$
- $\{abc, abcabc, abcabcabc, \dots\} = \{abc\}^+$
- $\qquad \qquad \{\varepsilon, \mathsf{ab}, \mathsf{cd}, \mathsf{abab}, \mathsf{abcd}, \mathsf{cdcd}, \dots\} = (\{\mathsf{a}\} \cdot \{\mathsf{b}\}) \cup (\{\mathsf{c}\} \cdot \{\mathsf{d}\})^*$

More interesting examples

- ▶ The set of IP addresses in the usual format (e.g. 192.168.1.1)
- ► The set of legal email addresses
- ▶ The set of integers, in Base-10 representation (e.g. -1234)
- ▶ The set of valid dates in DD-MM-YYYY format
- Any finite language

Non-regular languages

- ► Most programming languages are not regular (e.g. Python)
- ▶ The language $L \subseteq \{a, b\}^*$ consisting of all strings over $\{a, b\}$ that have an equal number of a's as b's
- The language of matched parentheses $\{\varepsilon, (), ()(), (()), (()()), \dots \}$

These examples all require an unbounded amount of memory to keep track of things, for example to count the number of a's and b's.

Python tuples

While Python has data structures for strings, these are intended for Unicode characters only. For strings over arbitrary elements, we use can use *tuples*.

```
>>> t = ( 'one', 'two', 3) # tuple literals
>>> len(t)
                              # number of elements
3
>>> t[0]
                              # access specific element
one'
>>> t[0] = 'blah'
                              # can't change tuples!
TypeError: 'tuple' object does not support item assignment
>>> a,b,c = t
                              # tuple unpacking
>>> print(a,b,c)
one two 3
>>> t + (4, 5)
                              # tuple concatenation
('one', 'two', 3, 4, 5)
>>> v = (1, )
                              # notation for a tuple with one element
>>> v
(1.)
```

Python and languages

Pragramatically, languages are usually dealt with by building a parser, rather than sets of strings. But the mathematical definitions can still be implemented. The Kleene star is infinite, though, so we won't look at that here.

```
>>> S = \{ (0,1), (1,1) \}; T = \{ (0,0), (1,) \}
>>> { s + t for s in S for t in T }
                                               # concat two languages
\{(0, 1, 1), (1, 1, 0, 0), (0, 1, 0, 0), (1, 1, 1)\}
>>> S | T
                                                # union of languages
\{(0, 1), (0, 0), (1, 1), (1,)\}
>>> A = \{ 0, 1 \}
>>> def strLenN(A, n):
                                    # strings of length n over A
... if n == 0.
... return { () }
... else:
          return { s + (a,) for s in strLenN(A, n-1) for a in A }
>>> strLenN(A, 2)
\{(0, 1), (1, 0), (0, 0), (1, 1)\}
```

Outline

Regular Languages

Regular Expressions

Finite State Automata

Regular expressions

Regular expressions are a way of specifying a regular language over an alphabet Σ . They are tightly related to the definition of regular languages.

Regular expressions

Regular expressions over an alphabet Σ are strings over $\Sigma \cup \{(,),|,*\}$

- lacktriangle the empty string arepsilon is a regular expression
- ightharpoonup x is a regular expression for an $x \in \Sigma$ (literals)
- ightharpoonup if x is a regular expression then (x) is a regular expression
- ▶ if x and y are regular expressions then so is xy
- ▶ if x and y are regular expressions then so is x | y
- ▶ if x is a regular expression then so is x*.

The set of regular expressions over some alphabet Σ is itself a language, and it is not regular.

Regular expression, order of operations

Order of operations for regular expressions

- **(**)
- ► Kleene star
- concatenation

So ab* is the same as a(b*), and abc|def is the same as (abc)|(def).

Matching

Regular expressions are specifications for strings following a certain pattern. If a string follows the pattern for a regular expression then we say that the regular expression *matches* the string. The rules for matching are:

- ightharpoonup arepsilon matches the string arepsilon
- ▶ for any $x \in \Sigma$, x matches the string x
- for any regular expressions x, y, xy matches a string z if z = uv, x matches u and v matches y
- ▶ for any regular expressions x, y, x|y matches a string z if x matches z or y matches z
- for a regular expression x, x* matches z if $z = z_1z_2...z_j$ and x matches each of z_1 , z_2 , z_j .

Examples

- ▶ (ab)+c matches abc, ababc, abababc etc.
- ► (a|b)*c matches c, ac, bc, aac, abc, bac, bbc, aaac, etc.

Regular languages and regular expressions

- For any regular expression x, the set of strings that x matches is a regular language.
- ► For any regular language *L*, there is a regular expression that matches exactly the set of strings in *L*.

To make this strictly true, we need to introduce one more character, \emptyset , which is a regular expression and matches nothing. Then the regular expression \emptyset matches exactly the regular language \emptyset .

Extensions

We can add some *syntactic sugar* to make regular expressions easier to use

- x+ means the same thing as xx*
- [xyz] means the same as (x|y|z) and similar
- lacktriangle . means the same thing as [every symbol in Σ]

One standard for regular expressions is POSIX regular expressions which includes more syntactic sugar.

Using regular expressions

Most programming languages, and many special tools, allow you to use regular expressions:

- ► Test if some string matches a regular expression
- Search a string for substrings that match a regular expression
- Searching through entire files, directories for substrings that match regular expressions (grep)
- Rewriting substrings based on regular expressions and editing rules (sed)

Applications of regular expressions

- Specifying and implementing parts programming languages (e.g. recognising legal variable names)
- System administration (searching for files with certain types of file names)
- Programming (e.g. searching source tree for definitions of functions)
- Checking user input (sanitising strings)
- Database admin (sanitising searches, ensuring data has correct format)
- Network admin (recognise DNS names with certain forms, etc.)
- ► Superhero scenarios (XKCD "Regular Expressions")

Regular expressions in Python

Regular expressions are handled by thet re module. Regular expressions are just strings.

```
>>> import re
                          # use the re module
>>> r = 'a+b+c'
                          # define our regular expression
>>> s = 'blahabcddeeaabbccaa'
                                # some string
                          # get a list of all substrings matching r
>>> re.findall(r,s)
['abc', 'aabbc']
>>> re.split(r,s)
                          # split the string on substrings matching r
['blah', 'ddee', 'caa']
>>> re.sub(r,'HERE',s)
                           # substitute matches of r with text
'blahHEREddeeHEREcaa'
>>> m = re.search(r,s)
                          # search for first match of r
>>> m.span()
                           # location in string of first match
(4.7)
>>> m.group()
                          # matching substring
'abc'
```

Outline

Regular Languages

Regular Expressions

Finite State Automata

Finite state automata

A *finite state automaton* (plural *automata*) is one model of computation. It consists of:

- An alphabet Σ
- ► A set *S* of *states*
- ▶ A starting state $s_0 \in S$
- ▶ A set of accepting states $A \subseteq S$
- ▶ A state change function $\delta : S \times \Sigma \rightarrow S$

As the name suggests, S is a finite set.

If you give an FSA an infinite linear memory, you get a Turing machine, which is the standard model of computing.

Using FSA

We can feed an input $x = x_1 x_2 \dots x_n \in \Sigma^*$ into a FSA like so:

$$t_0 = s_0$$

 $t_j = \delta(t_{j-1}, x_j)$ for $j = 1 \dots n$

- ▶ If $t_n \in A$ then the FSA accepts x
- ▶ If $t_n \notin A$ then the FSA rejects x

FSAs are sometimes called deterministic finite automata, in contrast with non-deterministic finite automata, where the state change function outputs a *set* of possible states to transition to.

State change diagrams

A state change diagram allows us to depict a FSA using a graph-like diagram

- ► Each state is a vertex
- ▶ We draw an edge (s, t) with label x if $\delta(s, x) = t$
- ▶ If $\delta(s,x) = t$ for multiple x, then we just draw one edge with multiple labels
- ▶ We allow *loops* which is an edge from a vertex to itself
- ► Mark the accepting states (we'll use a double circle)

State change diagram example

State change diagrams are not quite directed graphs since we allow loops. Once you allow loops in directed graphs you can depict any binary relation.

Recognising languages

A FSA $M = (\Sigma, S, s_0, \delta, A)$ recognises a language $L \subseteq \Sigma^*$ if

- For every $x \in L$, M accepts x
- ► For every $x \notin L$, M rejects x

Kleene's theorem

Kleene's theorem states that the set of languages recognisable by finite state automata is the same as the set of regular languages.

- Every regular language is recognised by some finite state automaton
- ► Every finite state automaton recognises some regular language

Recognising some simple languages

We'll see how to recognise a simple subset of regular languages given by regular expressions consisting of:

- ► Single symbol literals
- *
- **>** +

Recognising a simple sequence of literals

Suppose we have a regular expression which is just literals: $x_1x_2x_3...x_n$. We can recognise this with a simple FSA:

- ► States $\{s_0, s_1, ..., s_n, r\}$
- ► State change function

$$\delta(s,x) = \begin{cases} s_{j+1} & s = s_j \land x = x_{j+1} \\ r & x \neq x_{j+1} \lor s = s_n \lor s = r \end{cases}$$

 $ightharpoonup A = \{s_n\}$

Basically, we move to a new state if we see the correct next letter in the sequence, otherwise we move to a special rejecting state. Also, we move to the rejecting state if the sequence is too long.

Simple literal example

Let's build a FSA to recognise the regular expression abab:

Adding Kleene stars

If we have a Kleene star then we add a loop instead of a state for the literal before the *. For example, to recognise aba*b:

Kleene star at the end

to recognise aab*:

Here we added a loop on the accepting state

Kleene plus and special cases

There are some special cases that break our simple method, but we can fix them up:

- ► The expression a+ is the same as aa*
- ► The expression a*a is the same as aa*

Using these expressions, we can deal with some more cases, including the Kleene plus. There are other special cases that we won't cover:

▶ a*b*

Common gotchas

- ► In our construction we use a "reject" state *r*, but it is *not* requirement in general
- ▶ Make sure there is exactly *one* state to transition to for each symbol

Uses of FSA

- ► Model of computation
- ► Model of protocols (network connections)
- Modelling aspects of systems programming

FSA's in Python

We can build FSA's using a combination of Python structures

```
>>> delta = { (1,0): 2, (1,1): 1,
          (2.0): 2. (2.1): 3.
         (3,0): 2, (3,1): 3
>>> def runFSA(start, delta, accepting, input):
    state = start
   for i in input:
. . .
          state = delta[(state, i)]
. . .
   if state in accepting:
. . .
          return True
    return False
. . .
>>> runFSA(1, delta, { 3 }, (1,0,1,1))
True
>>> runFSA(1, delta, { 3 }, (1,0,0))
False
```