

Lab 6 - Info B

Luca M. Cassano – luca.cassano@polimi.it Sadegh M. Astaneh – sadegh.astaneh@unimi.it Matteo Papini – matteo.papini@polimi.it

Introduzione a Matlab/Octave

Grafici

Funzioni Ricorsive

Strutture

- Superficie di rotazione
- Disegno 2D
- Mappamondo

Superficie di rotazione

Scrivere un programma che permetta di visualizzare la funzione bidimensionale sin(r)/r, lungo le due direzioni x e y

N.B.: rè la distanza dall'origine nel piano XY

Scrivere un programma di disegno 2D interattivo:

- L'utente può scegliere se disegnare un segmento o un cerchio
- Segmento: l'utente fornisce i due estremi come array di Matlab (e.g. [-1,-1] e [2,3])
- Cerchio: l'utente fornisce centro e raggio
- L'utente sceglie se disegnare altre figure (segmenti e cerchi) o smettere
- Tutte le figure devono essere disegnate sullo stesso piano

Suggerimenti

Equazione parametrica del segmento:

Dati gli estremi (x_1, y_1) e (x_2, y_2) :

$$\begin{cases} t \in [0,1] \\ x(t) = x_1 * t + x_2 * (1-t) \\ y(t) = y_1 * t + y_2 * (1-t) \end{cases}$$

Equazione parametrica del cerchio:

Dato il centro (x_0, y_0) e il raggio r:

$$\begin{cases} t \in [0, 2\pi] \\ x(t) = x_0 + r * cos(t) \\ y(t) = y_0 + r * sin(t) \end{cases}$$

Cosa vuoi disegnare? segmento Inserire primo punto [-5, -5]Inserire secondo punto [2,1]Cosa vuoi disegnare? cerchio Inserisci centro [-1, -1]Inserisci raggio 3 Cosa vuoi disegnare? esci $f\underline{x} >>$

Scrivere un programma che permetta di visualizzare località sul mappamondo date le coordinate geografiche

- Rappresentare il mappamondo con una sfera di raggio unitario
- Visualizzare sulla sfera l'equatore e il meridiano di Greenwich
- In modo interattivo, l'utente può inserire latitudine (da -90° a 90°) e longitudine (da -180° a 180°). Visualizzare il punto corrispondente sulla sfera

Un po' di geografia

Latitudine: da -90° (Sud) a 90° (Nord)

Longitudine: da -180° (Ovest) a 180° (Est)

Equatore: cerchio di latitudine 0

Meridiano di Greenwich: **semicerchio** di longitudine 0

Suggerimenti

Equazione parametrica del cerchio:

Dato il centro (x_0, y_0) e il raggio r:

$$\begin{cases} t \in [0, 2\pi] \\ x(t) = x_0 + r * cos(t) \\ y(t) = y_0 + r * sin(t) \end{cases}$$

Equazione parametrica della sfera:

Dato il centro (x_0, y_0, z_0) e il raggio r:

$$\begin{cases} t_1, t_2 \in [0, 2\pi] \\ x(t) = x_0 + r * \cos(t_1) * \cos(t_2) \\ y(t) = y_0 + r * \cos(t_1) * \sin(t_2) \\ z(t) = z_0 + r * \sin(t_1) \end{cases}$$

Inserire latitudine 45 Inserire longitudine 9 Vuoi disegnare ancora? si Inserire latitudine 51 Inserire longitudine Vuoi disegnare ancora? si Inserire latitudine 34 Inserire longitudine -118 Vuoi disegnare ancora? no

Scrivere un programma che chieda all'utente di inserire una serie di dati contenenti ognuno i seguenti attributi:

- città (stringa)
- giorno (intero positivo)
- mese (intero positivo)
- anno (intero positivo)
- tipo di misurazione (char)
- valore (reale)

Ad esempio, l'utente potrà inserire:

- Milano
- **0**4
- **1**2
- **2017**
- N
- **1**0.5

- Dopo aver acquisito una certa quantità di dati, il programma dovrà chiedere all'utente il nome di una città e un tipo di misurazione.
- A questo punto il programma cercherà nell'archivio tutti i record riguardanti la città e il tipo di misurazione richiesti. Stamperà poi a video i dati selezionati ed il relativo valore minimo, massimo e medio dei valori.

Funzioni ricorsive

 I numeri di Fibonacci (dinamiche di popolazione)

- Il Massimo Comun Divisore (algoritmo di Euclide)
- Il problema delle torri di Hanoi

I numeri di Fibonacci

Idea di base

- 1) fib(n)=1 se n=0 oppure n=1
- 2) fib(n)= fib(n-1) + fib(n-2) se n>1

Definizione:

- 1) MCD(m,n)=m se m=n
- 2a) MCD(m,n) = MCD(m-n,n) se m>n
- 2b) MCD(m,n)=MCD(m,n-m) se n>m

esempio:

$$MCD(21,56) = MCD(21,35) = MCD(21,14) =$$

$$= MCD(7,14) = MCD(7,7) = 7$$

http://www.cs.cmu.edu/~cburch/survey/recurse/hanoi.html

Problema: spostare tutti i dischi dalla torre A alla torre B (usando la torre C come "supporto intermedio") in modo che si trovino nello stesso ordine

Le torri di Hanoi

- Scriveremo una funzione ricorsiva che prende come parametro il numero del disco più grande che vogliamo spostare (da 0 a 5 come nel disegno)
- La funzione prenderà anche tre parametri che indicano:
 - da quale asta vogliamo partire (source),
 - a quale asta vogliamo arrivare (dest),
 - l'altra asta, che possiamo usare come supporto temporaneo (spare).

L'idea di base

- Voglio spostare n anelli dal piolo sorgente, a quello destinazione, usando come appoggio il piolo ausiliario
 - Devo quindi prima spostare n 1 anelli dal sorgente all'ausiliario, usando come appoggio il piolo destinazione
 - Poi sposto l'unico anello rimasto dal sorgente al piolo destinazione
 - Infine sposto gli n 1 anelli che si trovano sull'ausilliario all'anello destinazione..

L'uso della ricorsione

- Quando si spostano gli n 1 anelli la funzione hanoi richiama se stessa, cioè effettua una chiamata ricorsiva, semplificando però il problema perché bisogna spostare un numero di anelli inferiore.
- In pratica, con la ricorsione il problema viene continuamente ridotto di complessità fino alla soluzione banale in cui rimane solo un anello, che viene semplicemente spostato nel piolo destinazione.

Le torri di Hanoi: strategia

Ridurremo il problema a quello di spostare 5 dischi dalla torre C alla torre B, dopo che il disco 5 è stato già messo nella posizione giusta

Pseudocodice

Nota: l'algoritmo aggiunge un caso base: quando il disco è il più piccolo (il numero 0). In questo caso possiamo muoverlo direttamente perché non ne ha altri sopra. Negli altri casi, seguiamo la procedura descritta per il disco 5.