Fermat's Enigma

n を 3 以上の自然数とする (x, y, z) = (a, b, c) が方程式

$$x^n + y^n = z^n$$

の解ならば,a,b,cの少なくとも1つは0である.

n=lm と分解すると,(x,y,z)=(a,b,c) が方程式 $x^n+y^n=z^n$ の解ならば, $(x,y,z)=(a^m,b^m,c^m)$ は方程式 $x^l+y^l=z^l$ の解である.3 以上の自然数 n をわりきる 3 以上の自然数のうち最小のものは 3 以上の素数か 4 だから,l=n が 3 以上の素数か 4 の場合に示せば,3 以上のすべての自然数 n について示したことになる.

Fermat: n = 4 のときに証明.

Euler: n=3 のときに証明.

多くの数学者による部分的な結果のあとに, Wiles が一般の l について証明.

Wiles の方法: 志村・谷山予想を証明することで, Fermat の最終定理を証明.

志村・谷山予想:有理数体上の楕円曲線はすべて保型形式と結びついている.

Wiles の部分的な結果のあと, Breuil-Conrad-Diamond-Taylor が一般の場合を証明. Fermat の最終定理の証明のためには, Wiles の結果で十分.

n=3,4 の場合と, n=l>5 の場合の違い.

n=3,4 のとき:楕円曲線 $x^3+y^3=1$ と $y^2=x^3-x$ に座標が有理数の点がないことを証明.

 $n=l\geq 5$ のとき:楕円曲線 $y^2=x(x-a^l)(x-c^l)$ そのものがないことを証明.背理法による証明のながれ.

- ・方程式 $x^l + y^l = z^l$ の解 (x, y, z) = (a, b, c) があったとする.
- ・楕円曲線 $y^2=x(x-a^l)(x-c^l)$ が,保型形式 $f=\sum_{n=1}^\infty a_nq^n$ と結びついていることを証明する(Wiles)
- ・レベル2 の保型形式 $g=\sum_{n=1}^\infty b_nq^n$ で , すべての $n\geq 1$ に対し b_n-a_n が l でわりきれるものが存在することを証明する(Ribet)
 - $\cdot a_1$ なのに , レベル 2 の保型形式は 0 だけなので矛盾が得られる .

楕円曲線 $y^2 = x(x - a^l)(x - c^l)$ を考えるところが 1 つのポイント (Frey)

楕円曲線と保型形式,およびそれらの関係が重要.

講義の内容:

- 1. 楕円曲線.
- 2.保型形式.
- 3. それらの関係.

1 楕円曲線

曲線:2 変数の多項式 f(x,y) に対し, f(x,y) = 0 で定義された図形.

f(x,y) が 1 次式のとき:直線

2次式のとき:2次曲線.円,楕円,放物線,双曲線.

3次式のとき:楕円曲線 ≠ 楕円

名前の由来: 楕円積分. 積分の計算

$$\int \frac{1}{\sqrt{x^2 - 1}} dx = ?$$

双曲線 $x^2-y^2=1$ を考え,t=x+y とおけば, $\frac{1}{t}=x-y$ だから

$$x = \frac{1}{2} \left(t + \frac{1}{t} \right), y = \frac{1}{2} \left(t - \frac{1}{t} \right), \frac{dx}{dt} = \frac{1}{2} \left(1 - \frac{1}{t^2} \right)$$

であり,

$$\int \frac{1}{\sqrt{x^2 - 1}} dx = \int \frac{1}{y} \frac{dx}{dt} dt = \int \frac{1}{t} dt = \log t = \log(x + \sqrt{1 - x^2}).$$

積分が計算できる根拠:双曲線 $x^2-y^2=1$ の有理関数によるパラメータ表示

$$x = \frac{1}{2} \left(t + \frac{1}{t} \right), y = \frac{1}{2} \left(t - \frac{1}{t} \right)$$

$$\int \frac{1}{\sqrt{x^3 - 1}} dx$$

ではどうか.初等関数では積分を表わせない.楕円の弧長の計算にでてくるので,楕円積分とよばれる.楕円曲線 $y^2=x^3-1$ を,有理関数でパラメータ表示することはできない.

整数論的な問題意識、整数係数の多項式

$$y^2 = x^3 + ax + b$$

で定義される楕円曲線が重要.

たとえば,有理点についての Mordell の定理. Birch Swinnerton-Dyer 予想など. 100万ドル懸賞問題.

Fermat が余白に書き込んだ本: Diophantus (古代ギリシャの数学者). 有理点を次々に構成.

P での接線には,もう一つの交点Q がある.

複素数解はわかりやすい . ω_1, ω_2 を複素数で , $\omega_1/\omega_2 = \tau$ が実数でないものとする .

$$\wp(z) = \frac{1}{z^2} + \sum_{m,n \in \mathbb{Z}; (m,n) \neq (0,0)} \left(\frac{1}{(z - (m\omega_1 + n\omega_2))^2} - \frac{1}{(z - (m\omega_1 + n\omega_2))^2} \right),$$

$$\wp'(z) = -2 \sum_{m,n \in \mathbb{Z}} \frac{1}{(z - (m\omega_1 + n\omega_2))^3}$$

とおき, さらに,

$$g_2 = 60 \sum_{m,n \in \mathbb{Z}; (m,n) \neq (0,0)} \frac{1}{(m\omega_1 + n\omega_2)^2}, \quad g_3 = 140 \sum_{m,n \in \mathbb{Z}; (m,n) \neq (0,0)} \frac{1}{(m\omega_1 + n\omega_2)^3}$$

とおけば, $(x,y) = (\wp(z), \wp'(z))$ は方程式

$$y^2 = 4x^3 - g_2x - g_3$$

をみたす. $\wp(z)$ や $\wp'(z)$ を楕円関数という.

Diophantus の方法: $P = (\wp(z), \wp'(z))$ なら $Q = (\wp(-2z), \wp'(-2z))$.

2 保型形式

 $H = \{z \in \mathbb{C} | \text{Im } z > 0 \}$ を上半平面という.

保型形式:H上定義された正則関数 f(z) のうち,特別な性質をみたすもの.

性質 1 . f(z+1) = f(z)

 $q=\exp(2\pi iz)$ とおくと, $f(z)=\sum_{n=-\infty}^{\infty}a_nq^n$ と表わせる.z=x+iy のとき,

$$q = \exp(2\pi i z) = e^{-2\pi y} (\cos 2\pi x + i \sin 2\pi y)$$

だから , y > 0 なら |q| < 1. q(z+1) = q(z).

性質 2 . n < 0 なら ($n \le 0$ なら) $a_n = 0$.

 $f(z) = \sum_{n=0}^{\infty} a_n q^n$. (カスプ形式)

性質3.整数 $a,b,c,d\in\mathbb{Z}$ で,ad-bc=1 かつc がN でわりきれるものに対し,

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^{2k}f(z)$$

がなりたつ.

重さ2k,レベルNの保型形式(カスプ形式)

zを $\dfrac{az+b}{cz+d}$ にうつす変換は,上半平面での合同変換を表わしている.

上半平面 H: 非ユークリッド幾何の舞台

ユークリッド幾何:ふつうの平面幾何.平行線公理がなりたつ.

平行線公理:直線l外の一点Pをとおり,lと平行な直線はただ1つ存在する.

非ユークリッド幾何: 平行線公理以外はユークリッド幾何と同じ条件をみたす幾何学.

例 1 . 球面上の幾何: 球の中心をとおる平面との共通部分である円を直線とよぶ. 直線 l 外の一点 P をとおり, l と平行な直線は 1 つも存在しない.

例 2.上半平面上の幾何 (双曲幾何): 実軸上に中心がある半円か,実軸と直交する半直線を直線とよぶ.直線 l 外の一点 P をとおり,l と平行な直線はいくらでも存在する.上半平面は単位円 $\{z\in\mathbb{C}||z|<1\}$ と同等.

3 楕円曲線と保型形式の関係

L 関数

素数が無限個あることの Euler による証明

 $1+\frac{1}{2}+\cdots+\frac{1}{n}>\log n\to\infty$ だから , $1+\frac{1}{2}+\cdots+\frac{1}{n}+\cdots=\infty$. 素因数分解の一意性より

$$1 + \frac{1}{2} + \dots + \frac{1}{n} + \dots$$

$$= (1 + \frac{1}{2} + \frac{1}{4} + \dots)(1 + \frac{1}{3} + \frac{1}{9} + \dots) \dots$$

$$= \frac{1}{1 - \frac{1}{2}} \frac{1}{1 - \frac{1}{3}} \frac{1}{1 - \frac{1}{5}} \dots$$

右辺が発散 $\Leftrightarrow \frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots$ が発散.よって,素数は無限個.s>1なら

$$\zeta(s) = 1 + \frac{1}{2^s} + \dots + \frac{1}{n^s} + \dots = \frac{1}{1 - \frac{1}{2^s}} \frac{1}{1 - \frac{1}{2^s}} \frac{1}{1 - \frac{1}{5^s}} \dots$$

は収束.

 $\zeta(s)$ を複素数変数の関数として定義し , 素数の分布とむすびつけて研究 (Riemann) . $s=-2,-4,-6,\ldots$ なら $\zeta(s)=0$

 ${
m Riemann}$ 予想:それ以外の $\zeta(s)=0$ をみたす複素数 s は,すべて ${
m Re}\ s={1\over 2}$ がなりたつ.これも 100 万ドル懸賞問題.

ペレルマンがほかの 100 万ドル懸賞問題 (Poincare 予想) を解決したが , 100 万ドルもらわなかった .

いろいろなゼータ関数がある.楕円曲線のL関数もその一種.

 $y^2=x^3+ax+b$ で定義される楕円曲線を E で表わす.各素数 p に対し,整数 $a_p(E)$ を定義し,L 関数を

$$L(E,s) = \prod_{p} \frac{1}{1 - a_p(E)p^{-s} - p^{1-2s}}$$

で定義する.

 $a_p(E)$ の定め方:

保型形式との結びつき:無限積を展開すると $L(E,s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ と表わせる .

志村・谷山予想: $\sum_{n=1}a_nq^n$ が保型形式である.