

Applications of Congruences

Section 4.5

Section Summary

- Hashing Functions
- Pseudorandom Numbers
- Check Digits

Hashing Functions

Definition: A hashing function h assigns memory location h(k) to the record that has k as its key.

- A common ing function is $h(k) = k \mod m$, where m is the number of memory locations.
- function is onto, all memory locations are possible. Because

Example: L 11. This hashing function assigns the records of customers with to memory locations in the following manner: social secv

h(0642

h(03714921

h(107405723) = 16record is assigned to **1**111 = 14

but since location 14 is already occupied, the which is 15.

- DATA STRUCTURE The hashing function is not one to locations. When more than one record more possible keys than memory e location, we say a *collision* to the first free location. occurs. Here a collision has been resolved.
- For collision resolution, we can use a *linear pro*. $h(k,i) = (h(k) + i) \mod m$, where i runs from
- There are many other methods of handling with collisions. You later CS course.

Pseudorandom Numbers

- **Pseudorandom numbers** are not truly random since they are generated by systematic methods.
- The *linear congruential method* is one commonly used procedure for generating pseudorandom numbers.
- Four integers are needed: the **modulus** m, the **multiplier** a, the *increment* c, and **seed** x_0 , with $2 \le a < m$, $0 \le c < m$, $0 \le x_0 < m$.
- We generate a sequence of pseudorandom numbers $\{x_n\}$, with $0 \le x_n < m$ for all n, by successively using the recursively defined function

$$x_{n+1} = (ax_n + c) \bmod m.$$

Pseudorandom Numbers

- **Example**: Find the sequence of pseudorandom numbers generated by the linear congruential method with modulus m = 9, multiplier a = 7, increment c = 4, and seed $x_0 = 3$.
- Solution: Compute the terms of the sequence by successively using the congruence $x_{n+1} = (7x_n + 4) \mod 9$, with $x_0 = 3$.

$$x_1 = 7x_0 + 4 \mod 9 = 7 \cdot 3 + 4 \mod 9 = 25 \mod 9 = 7,$$
 $x_2 = 7x_1 + 4 \mod 9 = 7 \cdot 7 + 4 \mod 9 = 53 \mod 9 = 8,$
 $x_3 = 7x_2 + 4 \mod 9 = 7 \cdot 8 + 4 \mod 9 = 60 \mod 9 = 6,$
 $x_4 = 7x_3 + 4 \mod 9 = 7 \cdot 6 + 4 \mod 9 = 46 \mod 9 = 1,$
 $x_5 = 7x_4 + 4 \mod 9 = 7 \cdot 1 + 4 \mod 9 = 11 \mod 9 = 2,$
 $x_6 = 7x_5 + 4 \mod 9 = 7 \cdot 2 + 4 \mod 9 = 18 \mod 9 = 0,$
 $x_7 = 7x_6 + 4 \mod 9 = 7 \cdot 0 + 4 \mod 9 = 4 \mod 9 = 4,$
 $x_8 = 7x_7 + 4 \mod 9 = 7 \cdot 4 + 4 \mod 9 = 32 \mod 9 = 5,$
 $x_9 = 7x_8 + 4 \mod 9 = 7 \cdot 5 + 4 \mod 9 = 39 \mod 9 = 3.$

The sequence generated is 3,7,8,6,1,2,**0,4,5**,3,7,8,6,1,2,**0,4,5,3**,...

It repeats after generating 9 terms.

Check Digits: UPCs

• A common method of detecting errors in strings of digits is to add an extra digit at the end, which is evaluated using a function. If the final digit is not correct, then the string is assumed not to be correct.

Example: Retail products are identified by their **Universal Product Codes** (*UPC*s). Usually these have 12 decimal digits, the last one being the check digit. The check digit is determined by the congruence

$$3x_1 + x_2 + 3x_3 + x_4 + 3x_5 + x_6 + 3x_7 + x_8 + 3x_9 + x_{10} + 3x_{11} + x_{12} \equiv 0 \pmod{10}.$$

- a. Suppose that the first 11 digits of the UPC are 79357343104. What is the check digit?
- b. Is 041331021641 a valid UPC?

Check Digits: UPCs

$$3x_1 + x_2 + 3x_3 + x_4 + 3x_5 + x_6 + 3x_7 + x_8 + 3x_9 + x_{10} + 3x_{11} + x_{12} \equiv 0 \pmod{10}.$$

- a. Suppose that the first 11 digits of the UPC are 79357343104. What is the check digit?
- b. Is 041331021641 a valid UPC?

Solution (a):

$$3 \cdot 7 + 9 + 3 \cdot 3 + 5 + 3 \cdot 7 + 3 + 3 \cdot 4 + 3 + 3 \cdot 1 + 0 + 3 \cdot 4 + x_{12} \equiv 0 \pmod{10}$$

 $21 + 9 + 9 + 5 + 21 + 3 + 12 + 3 + 3 + 0 + 12 + x_{12} \equiv 0 \pmod{10}$
 $98 + x_{12} \equiv 0 \pmod{10}$
 $x_{12} \equiv 2 \pmod{10}$ So, the check digit is 2.

Check Digits: UPCs

$$3x_1 + x_2 + 3x_3 + x_4 + 3x_5 + x_6 + 3x_7 + x_8 + 3x_9 + x_{10} + 3x_{11} + x_{12} \equiv 0 \pmod{10}.$$

- a. Suppose that the first 11 digits of the UPC are 79357343104. What is the check digit?
- b. Is 041331021641 a valid UPC?

Solution (b):

$$3 \cdot 0 + 4 + 3 \cdot 1 + 3 + 3 \cdot 3 + 1 + 3 \cdot 0 + 2 + 3 \cdot 1 + 6 + 3 \cdot 4 + 1$$

 $0 + 4 + 3 + 3 + 9 + 1 + 0 + 2 + 3 + 6 + 12 + 1 = 44$
 $44 \mod 10 = 4$

$$44 \equiv 4 \pmod{10} \not\equiv 0 \pmod{10}$$

Hence, 041331021641 is not a valid UPC.

Check Digits: ISBNs

Books are identified by an *International Standard Book Number* (ISBN-10), a 10 digit code. The first 9 digits identify the language, the publisher, and the book. The tenth digit is a check digit, which is determined by the following congruence

$$x_{10} \equiv \sum_{i=1}^{9} ix_i \pmod{11}.$$

The validity of an ISBN-10 number can be evaluated with the equivalent $\sum_{i=1}^{10} ix_i \equiv 0 \pmod{11}$.

- a. Suppose that the first 9 digits of the ISBN-10 are 007288008. What is the check digit?
- b. Is 084930149X a valid ISBN10?

Check Digits: ISBNs

The validity of an ISBN-10 number can be evaluated with the equivalent $\sum_{i=1}^{10} ix_i \equiv 0 \pmod{11}$.

- a. Suppose that the first 9 digits of the ISBN-10 are 007288008. What is the check digit?
- b. Is 084930149X a valid ISBN10?

Solution:

a. $X_{10} \equiv 1.0 + 2.0 + 3.7 + 4.2 + 5.8 + 6.8 + 7.0 + 8.0 + 9.8 \pmod{11}$. $X_{10} \equiv 0 + 0 + 21 + 8 + 40 + 48 + 0 + 0 + 72 \pmod{11}$. $X_{10} \equiv 189 \equiv 2 \pmod{11}$. Hence, $X_{10} = 2$.

X is used for the digit 10.

- b. $1 \cdot 0 + 2 \cdot 8 + 3 \cdot 4 + 4 \cdot 9 + 5 \cdot 3 + 6 \cdot 0 + 7 \cdot 1 + 8 \cdot 4 + 9 \cdot 9 + 10 \cdot 10 = 0 + 16 + 12 + 36 + 15 + 0 + 7 + 32 + 81 + 100 = 299 \equiv 2 \not\equiv 0 \pmod{11}$ Hence, 084930149X is not a valid ISBN-10.
- A *single error* is an error in one digit of an identification number and a *transposition error* is the accidental interchanging of two digits. Both of these kinds of errors can be detected by the check digit for ISBN-10. (*see text for more details*)

Query???

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}}$$

$$\exists_{x \in \Re} \exists_{y \in \Re} (x = y) = ?$$

$$\sum_{x=1}^{\infty} x = ?$$

$$\forall x (\Re /x) = ?$$

$$\sum_{x=1}^{\infty} \frac{1}{x} = ?$$

$$\exists_{x \in \Re} \exists_{y \in \Re} (x = y) = ?$$

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}} = ?$$

$$1 - 1 + 1 - 1 + 1 \dots = ?$$

$$\sum_{x=1}^{\infty} \frac{1}{x} = ?$$