Σπύρος Φρονιμός - Μαθηματικός

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ${\bf 10~Aυγούστου~2017}$

ΑΛΓΕΒΡΑ Β΄ ΛΥΚΕΙΟΥ

Εκθετική και Λογαριθμική Συνάρτηση

ΛΟΓΑΡΙΘΜΟΙ

ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΛΟΓΑΡΙΘΜΟΣ

Λογάριθμος με βάση ένα θετικό αριθμό $a \neq 1$ ενός θετικού αριθμού β ονομάζεται ο εκθέτης στον οποίο θα υψωθεί ο αριθμός a ώστε να δώσει τον αριθμό β . Συμβολίζεται :

$$\log_{a} \beta$$

με $0 < a \neq 1$ και $\beta > 0$.

- Ο αριθμός α ονομάζεται βάση του λογαρίθμου.
- Ο αριθμός β έχει το ρόλο του αποτελέσματος της δύναμης με βάση a, ενώ ολόκληρος ο λογάριθμος, το ρόλο του εκθέτη.
- Αν ο λογάριθμος (εκθέτης) με βάση a του β είναι ίσος με x τότε θα ισχύει :

$$\log_a \beta = x \Leftrightarrow a^x = \beta$$

- Εαν η βάση ενός λογαρίθμου είναι ο αριθμός 10 τότε ο λογάριθμος ονομάζεται δεκαδικός λογάριθμος και συμβολίζεται : $\log x$.
- Εαν η βάση του λογαρίθμου είναι ο αριθμός *e* τότε ο λογάριθμος ονομάζεται φυσικός λογάριθμος και συμβολίζεται : ln x.

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΙΔΙΟΤΗΤΕΣ ΛΟΓΑΡΙΘΜΩΝ

Για οπουσδήποτε θετικούς πραγματικούς αριθμούς $x, y \in \mathbb{R}^+$ έχουμε τις ακόλουθες ιδιότητες που αφορούν το λογάριθμο τους με βάση έναν θετικό πραγματικό αριθμό a.

Ιδιότητα	Συνθήκη
Λογάριθμος γινομένου	$\log_a(x \cdot y) = \log_a x + \log_a y$
Λογάριθμος πηλίκου	$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$

Λογάριθμος δύναμης
$$\log_a x^{\kappa} = \kappa \cdot \log_a x \ , \ \kappa \in \mathbb{Z}$$

$$\log_a \sqrt[\nu]{x} = \frac{1}{\nu} \log_a x \ , \ \nu \in \mathbb{N}$$

$$\Lambdaογάριθμος ως εκθέτης
$$a^{\log_a x} = x$$

$$\Lambdaογάριθμος δύναμης με κοινή βάση
$$\log_a x = x$$

$$\Lambdaλλαγή βάσης
$$\log_a x = \frac{\log_\beta x}{\log_\beta a}$$$$$$$$

Επίσης για κάθε λογάριθμο με οποιαδήποτε βάση $a \in \mathbb{R}^+$ έχουμε :

i.
$$\log_a 1 = 0$$

ii.
$$\log_a a = 1$$