ANÁLISIS NUMÉRICO I — Trabajo Práctico 2

9-11 de Junio de 2021

1. Dada la siguiente tabla de datos, obtenida experimentalmente, hallar la constante g que relaciona las variables t y d, mediante el modelo $d \approx gt^2/2$ en el sentido de cuadrados mínimos:

t	0.2	0.4	0.6	0.8	1.0
d	0.1960	0.7850	1.7665	3.1405	4.9075

- 2. Hallar por lo menos una regla de cuadratura de grado de precisión máximo para aproximar $\int_{-3}^{3} f(x)dx$, de las siguientes formas:
 - a) $A[f(x_0) + f(x_1)].$
 - b) $Af(x_0) + Bf(x_0 + 4)$.
- 3. Considere el siguiente sistema de ecuaciones:

$$x + ay = 1$$

$$x + y + z = 1$$

$$by + z = 1$$

- a) Determine los valores de a y b para que el sistema tenga solución única.
- b) Determine los valores de a y b para asegurar la convergencia del método de Jacobi para la resolución de dicho sistema.
- c) Determine los valores de a y b para asegurar la convergencia del método de Gauss Seidel.