مدرسة عثماني لتعليم اللغات - الوادي ولاية الوادي - السنة الدراسية: 2017/2016

تمارين الدعم / السلسلة رقم 1 / تقديم الأستاذ: بك على النهايات ـ الاستمراريـة ـ مبرهنة القيم المتوسطة / للأقسام 3ع ت + 3ت ر + 3ر

التمرين 10

$$\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x}$$
 :حسب النهايات التالية

$$\lim_{x \to 3} \frac{\sqrt{x + 22} - 5}{\sqrt{x - 2} - 1} \cdot \lim_{x \to 1} \frac{\sqrt{x^2 + 1} - \sqrt{2}}{x - 1}$$

x>-1 برهن أنه من أجل كل عدد حقيقي

$$\frac{-1}{x+1} \le \frac{\cos x}{x+1} \le \frac{1}{x+1}$$

 $f: x \mapsto \frac{\cos x}{x+1}$ هل تقبل الدالة

التمرين <u>12</u>

، x>1 دللة بحيث من اجل كل عدد حقيقي f

$$\frac{3x + \cos x}{x} \le f\left(x\right) \le \frac{3x + 7}{x - 1}$$

 $+\infty$ عند f نهایة عند

التمرين <u>13</u>

 $x \geq 0$ عدد حقیقی ناجل من اجل کا عدد دقیقی f

$$\left| f(x) - 3 \right| \le \frac{1}{x^2 + 1}$$

 $+\infty$ عند f نهایة عند $+\infty$

التمرين 14

x < 0 دالة بحيث من اجل كل عدد حقيقي f

$$f(x) \le -2x^3$$

 $+\infty$ الدالة f نهاية عند

التمرين 15

$$f(x) \ge \frac{1}{2}x^4 + x$$

 $+\infty$ عند $+\infty$ نهایة عند $+\infty$

1) بين أنه من أجل كل عدد حقيقي x يكون:

$$1 \le 3 + 2\cos x \le 5$$

$$x \mapsto \frac{x-1}{3+2\cos x}$$
 هل تقبل الدالة $f: x \mapsto \frac{x-1}{3+2\cos x}$ هل تقبل الدالة

f little D_f (the phase of the large $D_f =]-\infty, +\infty[$ $f(x) = -2x^3 + 4x - 1$

أحسب النهايات عند أطراف المجموعة(المجال) D, (الدالة f

$$D_f =]-\infty, 3[\cup]\beta, +\infty[f(x) = \frac{1+2x}{3-x}]$$

 $\frac{3$ التمرين D_f النالة D_f النالة أحسب النهايات عند أطراف المجموعة (المجال)

$$D_f =]-\infty, 1[\cup]1, +\infty[\cdot f(x) = \frac{x^3 - 1}{1 - x^2}$$

التمرين D_{r} (المجال D_{r} الدالة D_{r} الدالة D_{r}

$$D_f =]-\infty, 2[\cup]2, 3[\cup]3, +\infty[\cdot f(x) = \frac{x+2}{x^2-5x+6}]$$

التمرين D_f الدالة D_f الدالة D_f الدالة D_f

$$D_f = \left[-\infty, +\infty \right[+ f(x) = \sqrt{x^2 + 1} - x$$

$$\lim_{x \to 3} \frac{3x^3 - 8x^2 - 10x + 21}{x^2 - x - 6}$$

$$\lim_{x \to \pm \infty} x + \sqrt{4x^2 + 3} \ (2 \cdot \lim_{x \to -3} \sqrt{\frac{3x + 4}{x - 3}} \ (1$$

$$\lim_{x \to -\infty} \sqrt{-2x^3 + x - 3} \ (2 : \lim_{x \to +\infty} \sqrt{x^2 + x + 1} \ (1$$

باستعمال تعريف العدد المشتق احسب النهايات التالية:

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}} \quad \cdot \lim_{x \to 0} \frac{1 - \cos x}{x} \quad \cdot \lim_{x \to 0} \frac{\sin x}{x}$$

f ادرس النهاية عند $-\infty$ ، عند طالبة الدالة الدالة (1

$$f(x) = \frac{2x+5}{x-1} :$$
المعرفة ب

2) حدّد معادلات المستقيمات المقاربة لمنحنى الدالة f و ادرس وضعيته بالنسبة إلى المستقيم المقارب الأفقى.

<u>التمرين 21</u>

$$f(x) = \frac{3x + \cos x}{x - \pi}$$
:ب $[x] = \frac{3x + \cos x}{x - \pi}$ جدالة معرفة على

$$x > \pi$$
 کن بن أن: $\frac{3x-1}{x-\pi} \le f(x) \le \frac{3x+1}{x-\pi}$ من جل کل (1)

استنتج (lim f(x ثم فسر النتيجة بيانيا. ا بين أن $\infty + = \lim_{x \to \infty} f(x) = +$ بين أن (2

 $2x \ge \sqrt{x^2 - 3x}$:بین أن x > 3 کل 1-أ)من أجل کل 1

ب) استنج حساب
$$\lim_{x\to +\infty} (\sqrt{x^2 - 3x} - 4x)$$
 مستخدما (ب

نظرية الحد من الأعلى.

$$\sqrt{9x^2 + x + 1}$$
 قارنْ بين $\sqrt{9x^2 + x + 1}$ و $x > 0$ و $\sqrt{9x^2 + x + 1}$ مستخدما ب)استنتج حساب $\lim_{x \to +\infty} (\sqrt{9x^2 + x + 1} - 2x)$ مستخدما نظر بّهٔ الحد من الأسفل.

التمرين 22

 $\mathbb{R}-\{2\}$ دالة معرفة ومستمرة وقابلة للإشتقاق على fوجدول تغيراتها الأتي:

واليكن (C) تمثيلها البياني في معلم متعامد ومتجانس.

$$+\infty$$
 عند $f\left(\frac{1}{x}\right)$ غين نهاية ل f ، عين نهاية وأ-1

ب)بيّن أنّ المعادلة $f(x) = \frac{1}{2}$ تقبل حلا وحيدا على [3].

: عرفة على $\{3\}$ دالة معرفة على $\{3\}$

$$g(2) = 0$$
 $g(x) = \frac{1}{f(x)}$; $x \neq 2$

أ) بين أن ع مستمرة عند العدد 2.

ب) عين نهايات الدالة g عند ص+، ∞و3.

1) بين أنه من أجل كل عدد حقيقي x يكون:

$$x^2 - 3\sin x \ge x^2 - 3$$

 $f: x \mapsto x^2 - \sin 3x$ هل تقبل الدالة (2

هل تقبل الدالة $f: x \mapsto x^2 + 2x \sin x$ نهاية عند

∞+ ؟ و عند ∞−؟

ب:
$$-rac{1}{2};+\infty$$
 دالة معرفة على f

$$f(x) = \frac{x + \sin x}{2x + 1}$$

 $x > -\frac{1}{2}$ بیّن أنه من أجل كل عدد حقیقی (1

$$\frac{x-1}{2x+1} \le f\left(x\right) \le \frac{x+1}{2x+1}$$

 $+\infty$ عند عند f الدالة f الدالة عند (2

التمرين 19 منحني التمثيل البياني الممثل لدالة C_f هو التمثيل البياني الممثل لدالة

بقراءة ببانبة

افي كل حالة من الحالات الثلاث عين D مجموعة تعريف الدالة f ثم الحالات الثلاث عين خمّن النهايات عند أطراف المجموعة D واتجاه التغير ثم شكل جدول

في الشكل (3) حدد وضعية C_f بالنسبة لمستقيمه المقارب المائل (2) C_{f} الشكل (4) أكتب معادلة ديكارتية للمستقيم المقارب المائل لـ (3)

التمرين 23

$$f(x) = \frac{x^3 + 3x^2 + 6x + 3}{(x+1)^2}$$
 : بالدالة $f(x) = \frac{x^3 + 3x^2 + 6x + 3}{(x+1)^2}$

 $f(x) = ax + b + \frac{cx + d}{(x+1)^2}$ عين a يكون c ، b ، a عين b عين c ، b ، a عين

2) استنتج أن المنحنى (C) الممثل للدالة f يقبل مستقيما مقاربا مائل (Δ) عند ∞ و عند ∞ يطلب تعيين معادلة له

(3) حدّد وضعية المنحنى (C) بالنسبة إلى (Δ) .

f دالة معرفة على IR فسر هندسيا المعلومات التالي

$$\lim_{x \to \infty} [f(x) - 2x + 5] = -4 \quad \lim_{x \to \infty} [f(x) - 2x + 5] = 0 \quad \lim_{x \to \infty} f(x) = -\infty \quad \lim_{x \to \infty} f(x) = -3$$

$$f(x) - x + 3 > 0 \quad \text{i.i.} \quad x \le -2 \quad \text{i.i.} \quad f(x) < 0 \quad \text{i.i.} \quad x > 1$$

التمري<u>ن 25</u>

.1 عند
$$f(x) = \frac{x^2 + 3}{x + 1}; x > 1$$
 اثبت أن f مستمرة عند 1 لتكن الدالة $f(x) = \sqrt{x^2 + 3}; x \leq 1$

التمرين<u>28</u>

$$h(x) = x^3 - 3x - 2$$
 : كما يلي : IR كما المعرفة على IR كما يلي : IR كما الدالة : IR كما الدالة : IR كما المعادلة : IR تقبل ثلاثة حلول مختلفة في IR كما ذا المعادلة : IR كما الدالة : IR كما تقبل ثلاثة حلول مختلفة في IR

التمرين29

1.5 و محصور بين 1 و α بين أن المعادلة: α محصور بين 1 و 1.5 / بين أن المعادلة:

$$f(x) = \frac{\cos x}{1+x^2}$$
 دالة معرقة على R كمايلي بـ: f دالة معرقة على R دالة R على R دادرس استمرار الدالة R على R

التمرين31

$$f(x) = (x^3 - 2x^2 + 7x - 10)\sin x$$
: يلي يا كما يلي \mathbb{R} كما يلي f دالة معرفة على \mathbb{R} كما يلي أدرس استمرارية الدالة f على \mathbb{R}

الأستاذ: بك على