MÉTHODE 1

Si l'inéquation est du type $\ln (u(x)) \ge \ln (v(x))$

SITUATION

Afin de résoudre une inéquation du type $\ln\left(u\left(x
ight)\right)\geq\ln\left(v\left(x
ight)\right)$, il faut faire disparaître les logarithmes.

ÉNONCÉ

Résoudre l'inéquation suivante :

$$\ln\left(x+7\right) \ge \ln\left(2x+4\right)$$

ETAPE 1

Déterminer le domaine de définition

On détermine le domaine de définition de chaque logarithme pour obtenir le domaine de définition de l'inéquation.

APPLICATION

L'inéquation existe si et seulement si les deux conditions suivantes sont vérifiées :

$$\begin{cases} x+7 > 0 \\ 2x+4 > 0 \end{cases}$$

Soit:

$$\left\{egin{aligned} x > -7 \ & \ x > -2 \end{aligned}
ight.$$

Le domaine de définition de l'inéquation est donc : $]-2;+\infty[$.

ETAPE 2

Faire disparaître les logarithmes

On sait que:

$$\ln\left(u\left(x
ight)
ight) \geq \ln\left(v\left(x
ight)
ight) \Leftrightarrow u\left(x
ight) \geq v\left(x
ight)$$

APPLICATION

Pour tout réel x>-2 :

$$\ln{(x+7)} \ge \ln{(2x+4)} \Leftrightarrow x+7 \ge 2x+4$$

ETAPE 3

Résoudre la nouvelle inéquation

On résout l'inéquation obtenue normalement.

APPLICATION

Pour tout réel x:

$$x + 7 \ge 2x + 4$$

$$\Leftrightarrow 3 \geq x$$

ETAPE 4

Sélectionner les solutions incluses dans le domaine de définition

On ne sélectionne enfin que les solutions incluses dans le domaine de définition.

APPLICATION

Les solutions x de l'inéquation vérifient les conditions suivantes :

$$\begin{cases} x > -\\ x \le 3 \end{cases}$$

Ainsi, l'ensemble des solutions de l'inéquation est :

$$S =]-2;3]$$

MÉTHODE 2

Si l'inéquation est du type $\ln\left(u\left(x\right)\right) > k$

SITUATION

Afin de résoudre une inéquation du type $\ln{(u\,(x))} \geq k$, on applique la fonction exponentielle des deux côtés pour faire disparaître le logarithme.

ÉNONCÉ

Résoudre l'inéquation suivante :

$$\ln\left(7x+1\right) < 8$$

ETAPE 1

Déterminer le domaine de définition

On détermine le domaine de définition de chaque logarithme pour obtenir le domaine de définition de l'inéquation.

APPLICATION

L'inéquation existe si et seulement si :

$$7x+1>0\Leftrightarrow x>-rac{1}{7}$$

Le domaine de définition de l'inéquation est donc $\left]-rac{1}{7};+\infty
ight[$.

ETAPE 2

Utiliser la fonction l'exponentielle pour faire disparaître le logarithme

On sait que:

$$\ln\left(u\left(x
ight)
ight)\geq k\Leftrightarrow u\left(x
ight)\geq e^{k}$$

APPLICATION

Pour tout réel $x>-rac{1}{7}$:

$$\ln{(7x+1)} < 8 \Leftrightarrow 7x+1 < e^8$$

ETAPE 3

Résoudre la nouvelle inéquation

On résout l'inéquation obtenue normalement.

APPLICATION

Or, pour tout réel x:

$$7x+1 < e^8 \Leftrightarrow 7x < e^8-1 \Leftrightarrow x < rac{e^8-1}{7}$$

ETAPE 4

Sélectionner les solutions incluses dans le domaine de définition

On ne sélectionne enfin que les solutions incluses dans le domaine de définition.

APPLICATION

Les solutions x de l'inéquation vérifient les conditions suivantes :

$$egin{cases} x > -rac{1}{7} \ x < rac{e^8-1}{7} \end{cases}$$

Ainsi, l'ensemble des solutions de l'inéquation est :

$$S=\left]-rac{1}{7};rac{e^8-1}{7}
ight[$$

MÉTHODE 3

Si l'inéquation est du type

$a \left(\ln (x)\right)^2 + b \ln (x) + c \ge 0$

SITUATION

Afin de résoudre une inéquation du type $a\left(\ln\left(x\right)\right)^2+bln\left(x\right)+c\geq 0$, on introduit le changement de variable $X=\ln\left(x\right)$ pour résoudre l'inéquation du second degré obtenue avant d'appliquer la fonction exponentielle aux solutions pour revenir à la variable initiale.

ÉNONCÉ

Résoudre l'inéquation suivante :

$$\left(\ln\left(x\right)\right)^2 - 2\ln\left(x\right) - 15 < 0$$

ETAPE 1

Poser
$$X = \ln{(x)}$$

On pose la nouvelle variable $X=\ln{(x)}$.

APPLICATION

On pose $X = \ln(x)$.

ETAPE 2

Résoudre la nouvelle inéquation

Afin de déterminer le signe du trinôme du second degré obtenu, on calcule $\Delta=b^2-4ac$.

ullet Si $\Delta>0$, le trinôme est du signe de a sauf entre ses deux racines $X_1=rac{-b-\sqrt{\Delta}}{2a}$ et

$$X_2=rac{-b+\sqrt{\Delta}}{2a}$$
 .

- Si $\Delta=0$, le trinôme est du signe de a sur $\mathbb R$ et s'annule en $X_0=rac{-b}{2a}$.
- Si $\Delta < 0$, le trinôme est du signe de a sur $\mathbb R$.

APPLICATION

L'inéquation devient :

$$X^2 - 2X - 15 < 0$$

On reconnaît la forme d'une inéquation du second degré.

On sait donc que l'expression est du signe de a > 0 sauf entre ses racines.

On détermine le discriminant :

$$\Delta = b^2 - 4ac$$

$$\Delta = \left(-2\right)^2 - 4 \times 1 \times \left(-15\right)$$

$$\Delta = 64$$

 $\Delta>0$, donc l'équation $X^2-2X-15=0$ admet deux solutions :

•
$$X_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{2 - \sqrt{64}}{2 \times 1} = -3$$

•
$$X_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{2 + \sqrt{64}}{2 \times 1} = 5$$

On en déduit que le trinôme $\,X^2-2X-15\,$ est négatif sur $\,]-3;5[\,.\,]$

ETAPE 3

Donner les solutions de la première inéquation

On exprime la variable initiale en fonction de la nouvelle variable : $x=e^{X}$.

On applique la fonction exponentielle aux intervalles solutions de la nouvelle inéquation.

On en déduit le ou les intervalle(s) solution de l'inéquation.

APPLICATION

On procède au changement de variable inverse $\,x=e^x\,.\,$

La fonction exponentielle étant strictement croissante sur ${\mathbb R}$:

$$exp\left(\left] -3;5
ight[
ight) =\leftert e^{-3};e^{5}
ightert$$

On en conclut que l'ensemble des solutions de l'inéquation est :

$$S=\left]e^{-3};e^{5}
ight[$$

MÉTHODE 4

En cas d'inéquation produit ou quotient

SITUATION

Pour résoudre une inéquation produit ou quotient, on étudie le signe du produit ou du quotient. Pour cela, on dresse un tableau de signes.

ÉNONCÉ

Résoudre l'inéquation suivante :

$$\ln\left(x-1\right)\times\ln\left(x+4\right)>0$$

ETAPE 1

Déterminer le domaine de définition

On détermine le domaine de définition de chaque logarithme pour obtenir le domaine de définition de l'inéquation.

APPLICATION

L'inéquation existe si et seulement si les deux conditions suivantes sont vérifiées :

$$\left\{egin{aligned} x-1>0 \ x+4>0 \end{aligned}
ight.$$

Soit:

$$\begin{cases} x > 1 \\ x > -4 \end{cases}$$

Le domaine de définition de l'inéquation est donc : $]1;+\infty[$.

ETAPE 2

Déterminer le produit / quotient dont on doit étudier le signe

On se ramène à une inéquation du type A imes B > 0 , A imes B < 0 , $\dfrac{A}{B} > 0$ et $\dfrac{A}{B} < 0$.

Pour résoudre l'inéquation de départ, on étudie le signe du produit ou quotient auquel on s'est ramené.

En cas de quotient, on détermine au préalable le ou les valeur(s) interdite(s).

APPLICATION

Tous les termes sont du même côté de l'inégalité.

On étudie donc le signe de $\ln{(x-1)} imes \ln{(x+4)}$ pour résoudre l'inéquation.

ETAPE 3

Déterminer le signe de chaque facteur

Afin de déterminer le signe du produit ou quotient, on détermine le signe de chaque facteur séparément.

APPLICATION

On étudie d'abord le signe de chaque facteur :

- $orall x \in \]1; +\infty[$, $\ln{(x-1)}>0 \Leftrightarrow x-1>1 \Leftrightarrow x>2$
- $orall x \in]-4; +\infty[$, $\ln{(x+4)}>0 \Leftrightarrow x+4>1 \Leftrightarrow x>-3$

ETAPE 4

Dresser un tableau de signes

On dresse un tableau de signes afin de déterminer le signe du produit ou du quotient.

APPLICATION

On dresse ensuite le tableau de signes :

X	1		2		+ ∞
ln(x-1)		_	•	+	
ln(x + 4)			+		
$\ln(x-1) \times \ln(x+4)$		_		+	

ETAPE 5

Conclure sur les solutions de l'inéquation

On choisit dans le tableau de signes le ou les intervalle(s) sur lequel/lesquels l'inéquation est vérifiée.

APPLICATION

L'inéquation est vérifiée lorsque $\ln{(x-1)} imes \ln{(x+4)} > 0$.

Donc l'ensemble des solutions de l'inéquation est :

$$S=]2;+\infty[$$