

67

67

RDFS-Plus

- RDFS-Plus is a subset of OWL
- Significantly extends capabilities of RDFS
 - Sufficient for a great many applications
- Easier to implement than all of OWL
 - Supported by many tools that do not support full OWL

Inverse (1)

- Properties relate subjects to objects
- Inverse properties relate the objects back to the subjects
- Given:

```
x P y .
P owl:inverseOf Q .
```

• Then:

```
yQx.
```

69

69

Inverse (2)

• Example: given

```
lit:Shakespeare lit:wrote lit:MacBeth .
lit:wrote owl:inverseOf lit:writtenBy .
```

• Then:

```
lit:MacBeth lit:writtenBy lit:Shakespeare
```

Symmetry

Recall:

bio:AnnHathaway bio:married lit:Shakespeare

• This query fails:

lit:Shakespeare bio:married ?spouse

• Define:

bio:married owl:inverseOf bio:married .

• Equivalently:

bio:married rdf:type owl:SymmetricProperty .

71

71

Transitivity

• If we define:

-P rdf:type owl:TransitiveProperty .

• Then if we have:

```
-x P y.
```

$$-y P z$$
.

• Then we can infer:

```
-x P z.
```

Example: Ancestors

Ancestor Relation in Logic

```
father(X,Y) \rightarrow parent(X,Y)
mother(X,Y) \rightarrow parent(X,Y)
parent(X,T) \rightarrow ancestor(X,Y)
ancestor(X,Y) & ancestor(Y,Z) \rightarrow ancestor(X,Z)
father(Joe,Mary)
mother(Mary, Jane)
```

Deductions

```
parent(Joe,Mary)
                         parent(Mary, Jane)
ancestor(Joe,Mary)
                         ancestor(Mary, Jane)
ancestor(Joe, Jane)
```

73

73

Example: Ancestors

Ancestor Relation in RDFS Schema

```
:father rdfs:subPropertyOf :parent.
  :mother rdfs:subPropertyOf :parent.
   :parent rdfs:subPropertyOf :ancestor.
   :ancestor rdf:type owl:transitiveProperty
  :Joe :father :Mary.
  :Mary :mother :Jane.

    Deductions
```

```
:Joe :parent :Mary.
                         :Mary :parent :Jane.
:Joe :ancestor :Mary.
                         :Mary :ancestor :Jane.
:Joe :ancestor :Jane.
```

Equivalence

• Two classes are equivalent:

```
:Analyst rdfs:subClassOf :Researcher :Researcher rdfs:subClassOf :Analyst
```

• Equivalently we can specify:

```
:Analyst owl:equivalentClass :Researcher
```

```
If

A owl:equivalentClass B
X rdf:type A .

Then:

X rdf:type B .

Then:

X rdf:type A .

Then:

X rdf:type A .
```

75

Equivalence (2)

- Can be derived:
 - owl:equivalentClass rdfs:subPropertyOf
 rdfs:subClassOf
 - owl:equivalentClass rdf:type
 owl:SymmetricProperty
- We can also define equivalent properties:
 - -:borrows owl:equivalentProperty
 :checkedOut .

Equivalence (3)

• Equivalent individuals:

```
lit:Shakespeare lit:wrote lit:Hamlet .
spr:Hamnet spr:hasFather spr:WilliamShakspere .
```

• Did Hamnet's father write "Hamlet"?

```
[spr:Hamnet spr:hasFather ?d .
?d lit:wrote lit:Hamlet . ]
```

• Yes if we identify:

```
spr:WilliamShakspere owl:sameAs
```

lit:Shakespeare .

77

77

Example: Reconciling Federated Databases

	Product					
ID	Model Number	Division	Product Line	Manufacture Location	sku	Available
1	ZX-3	Manufacturing Support	Paper Machine	Sacramento	FB3524	23
2	ZX-3P	Manufacturing Support	Paper Machine	Sacramento	KD5243	4
3	ZX-3S	Manufacturing Support	Paper Machine	Sacramento	IL4028	34
4	B-1430	Control Engineering	Feedback Line	Elizabeth	KS4520	23
5	B-1430X	Control Engineering	Feedback Line	Elizabeth	CL5934	14
6	B-1431	Control Engineering	Active Sensor	Seoul	KK3945	0
7	DBB-12	Accessories	Monitor	Hong Kong	ND5520	100
8	SP-1234	Safety	Safety Valve	Cleveland	HI4554	4
9	SPX-1234	Safety	Safety Valve	Cleveland	OP5333	14

Table 7-2	Sample	Data:	Parts	and	the	Facilities	Required
to Produce	Them						

Product				
ID	Model Number	Facility		
1	B-1430	Assembly Center		
2	B-1431	Assembly Center		
3	M13-P	Assembly Center		
4	ZX-3S	Assembly Center		
5	ZX-3	Factory		
6	TC-43	Factory		
7	B-1430X	Machine Shop		
8	SP-1234	Machine Shop		
9	1180-M	Machine Shop		

Two different databases with product information

Example: Reconciling Federated Databases (2)

```
mfg:Product1 mfg:Product_Manufacture_Location Sacramento .
mfg:Product3 mfg:Product_Manufacture_Location Sacramento .
mfg:Product3 mfg:Product_Manufacture_Location Sacramento .
mfg:Product4 mfg:Product_Manufacture_Location Slizabeth .
mfg:Product5 mfg:Product_Manufacture_Location Seoul .
mfg:Product6 mfg:Product_Manufacture_Location Seoul .
mfg:Product8 mfg:Product_Manufacture_Location Hong Kong .
mfg:Product9 mfg:Product_Manufacture_Location Cleveland .
mfg:Product9 mfg:Product_Manufacture_Location Cleveland .

p:Product9 mfg:Product_Facility "Assembly Center" .
p:Product2 p:Product_Facility "Assembly Center" .
p:Product5 p:Product_Facility "Assembly Center" .
p:Product5 p:Product_Facility "Factory" .
p:Product5 p:Product_Facility "Factory" .
p:Product5 p:Product_Facility "Machine Shop" .
p:Product9 p:Product_Facility "Machine Shop" .
p:Product9 p:Product_Facility "Machine Shop" .
p:Product9 p:Product_Facility "Machine Shop" .
Triples from second database
```

79

Example: Reconciling Federated Databases (2)

```
mfg:Product2 mfg:Product_Manufacture_Location Sacramento .
mfg:Product3 mfg:Product_Manufacture_Location Sacramento .
mfg:Product3 mfg:Product_Manufacture_Location Sacramento .
mfg:Product5 mfg:Product_Manufacture_Location Elizabeth .
mfg:Product6 mfg:Product_Manufacture_Location Elizabeth .
mfg:Product6 mfg:Product_Manufacture_Location Hong Kong .
mfg:Product8 mfg:Product_Manufacture_Location Hong Kong .
mfg:Product9 mfg:Product_Manufacture_Location Cleveland .
mfg:Product9 mfg:Product_Manufacture_Location Cleveland .

p:Product9 p:Product_Facility "Assembly Center" .
p:Product3 p:Product_Facility "Assembly Center" .
p:Product5 p:Product_Facility "Assembly Center" .
p:Product5 p:Product_Facility "Factory" .
p:Product5 p:Product_Facility "Factory" .
p:Product6 p:Product_Facility "Machine Shop" .
p:Product7 p:Product_Facility "Machine Shop" .
p:Product2 owl:sameAs mfg:Product4 .
p:Product2 owl:sameAs mfg:Product3 .
p:Product7 owl:sameAs mfg:Product1 .
p:Product7 owl:sameAs mfg:Product5 .
p:Product8 owl:sameAs mfg:Product8 .

Triples from first database

Triples from first database
```

Functional Properties

• If:

P rdf:type owl:FunctionalProperty

XPA.

X P B .

Then:

A owl:sameAs B .

• Example: presidency :hadPresident president

: Presidency 1: had President: George Washington

:Presidency16 :hadPresident :AbrahamLincoln

81

81

Inverse Functional Properties

```
P rdf:type owl:InverseFunctionalProperty
```

A P X .

B P X .

Then:

A owl:sameAs B .

• Note:

:Presidency22 :hadPresident :GroverCleveland :Presidency24 :hadPresident :GroverCleveland

But it is true of e.g. social security number

- i.e. inverse functional property defines *primary keys*

Example

- Use inverse functional properties to automatically reconcile federated databases
- Product model number is a primary key:

```
mfg:Product_ModelNo
    rdf:type owl:InverseFunctionalProperty .
```

• Equate model numbers:

83

83

Combining Functional and Inverse Functional

- One-to-one property: both functional and inverse functional
- Example: student identity number
 - Functional?
 - Inverse Functional?
- Enforce uniqueness properties:

```
:hasIdentityNo rdfs:domain :Student .
:hasIdentityNo rdfs:range xsd:Integer .
:hasIdentityNo rdf:type owl:FunctionalProperty .
:hasIdentityNo rdf:type owl:InverseFunctionalProperty
```

85