Uneigentlick Integrale

 $I \subseteq R$ Interall, $f: I \rightarrow R$ eine Funktion, $f \in R(I)$ für jeder kompalek Inkull $J \subseteq I$

Sei a ER, B E R U { 00}, a < B und f: [a, B) -> R cire Fulktion.

Oas uneigenblick Integral $\int_{a}^{b} f(x) dx$ heißt konvergent

(=) $\lim_{t \to c} \int_{a}^{b} f(x) dx$ existiert

=> $\int_{0}^{0} f(x) dx := \lim_{t \to 0^{-}} \int_{0}^{t} f(x) dx$

Sei bER, & ER u {- 00}, a < b und f: [a, b] -s R eine Fruktion

Ous uneigentlische Integral $\int_{a}^{b} f(x) dx$ heißt konvergent

(=) $\lim_{t\to\infty+} \int_{a}^{b} f(x) dx$ existint

 $=) \int_{-\infty}^{b} f(x) dx := \lim_{t\to\infty+} \int_{-\infty}^{b} f(x) dx$

Die Konvegenz eines uneigentlichen Intgrales ist gleichbedeutend mit der Existenz eines Funktionen limes

Sei non $\alpha < \beta$, $\alpha \in \mathbb{R} \cup \{-\infty\}$, $\beta \in \mathbb{R} \cup \{\infty\}$ und $f: (\alpha, \beta) \rightarrow \mathbb{R}$ eine Forktion

Das uneigenblich Integral $\int_{\alpha}^{\beta} f(x) dx$ heißt konvergent

(=) $\exists c \in (\alpha, \beta)$: $\int_{\alpha}^{\beta} f(x) dx$ and $\int_{\alpha}^{\beta} f(x) dx$ sind honvesont

Termino logie

$$\int_{a}^{\beta} f(x) dx \quad heißt \quad absolut \quad houvesent$$

$$(=) \int_{a}^{\beta} |f(x)| dx \quad ist \quad loonvegent$$

$$\downarrow \downarrow$$

$$\int_{a}^{B} f(x) dx \text{ is } f(x) = \int_{a}^{B} |f(x)| dx$$

$$(=) \forall E>0 \exists c \in (a, \beta) \forall u, v \in (c, \beta): |\int_{a}^{b} f(x) dx | \langle E.$$

Cauchy kiterium

(st [f] < h and
$$[a, b]$$
 and $[a, h(x)]$ learnegent, so ist

 $\int_{a}^{b} f(x) dx$ absolut konveyent

Is
$$f \geq h \geq 0$$
 and $[a, B]$ and $[a, b]$ and $[a, b]$ and $[a, b]$ are divergent, so is $[a, b]$ of $[a, b]$ and $[a, b]$ are divergent $[a, b]$