A Tableau System for First-Order Logic with Standard Names

Jens Claßen Torben Braüner

Department of People and Technology Roskilde University, Denmark

TABLEAUX 2025 Reykjavik, Iceland 27–29 September 2025

The Logic \mathcal{L}

(Levesque 1981; 1984), (Levesque & Lakemeyer 2022)

 \mathcal{L} is a first-order logic with functions and equality using standard names $\mathcal{N} = \{\#1,\#2,\#3,\ldots\}$.

- \blacktriangleright $\mathcal N$ serves as fixed universe of discourse
- $ightharpoonup \mathcal{N}$ is also part of the language (like constants)

 ${\cal L}$ is basis for modal logics for notions of. . .

▶ belief and "only-knowing" (Levesque 1981; 1984), (Levesque & Lakemeyer 2022)

► non-monotonic inference (Lakemeyer & Levesque 2006; 2012)

► actions and change (Lakemeyer & Levesque 2004), (Lakemeyer 2010)

► agent programs and temporal specifications (Claßen & Lakemeyer 2008), (Zarrieß & Claßen 2016)

▶ ...

However, so far there is no implementation of a sound and complete reasoner for \mathcal{L} , only:

▶ a Hilbert-style axiom system **not suitable for actual reasoning** (Levesque & Lakemeyer 2022)

► an implementation of a tractable, but **incomplete** reasoner (Schwering 2017)

► a non-analytic, resolution-style reasoning mechanism (Lakemeyer & Levesque 2019)

Fig. 4. Here we present a sound & complete tableau system for \mathcal{L} , and also its first analytic proof system.

The Logic \mathcal{L}

(Levesque 1981; 1984), (Levesque & Lakemeyer 2022)

Syntax: Standard names used like constants, e.g.,

$$\forall x. \ (x \neq \#3) \supset P(x, a), \quad \exists y. \ f(\#7) = g(y)$$

Semantic model: A world w is a mapping where

- $w[P(n_1, \ldots, n_k)] \in \{0, 1\}$ for primitive atoms $P(n_1, \ldots, n_k)$ (all n_i are standard names)
- $ightharpoonup w[f(n_1,\ldots,n_k)] \in \mathcal{N}$ for primitive terms $f(n_1,\ldots,n_k)$ (all n_i are standard names)

Value of ground terms:

- 1. w(n) = n for every standard name n;
- 2. $w(f(t_1,...,t_k)) = w[f(n_1,...,n_k)], \text{ where } n_i = w(t_i).$

Sentence satisfaction:

- 1. $w \models P(t_1, ..., t_k)$ iff $w[P(n_1, ..., n_k)] = 1$, where $n_i = w(t_i)$;
- 2. $w \models (t_1 = t_2)$ iff $w(t_1)$ is the same name as $w(t_2)$; "=" as identity of co-referring standard names
- 3. $w \models \neg \phi$ iff it is not the case that $w \models \phi$;
- 4. $w \models \phi \lor \psi$ iff $w \models \phi$ or $w \models \psi$;
- 5. $w \models \exists x \phi$ iff for some name $n, w \models \phi_n^x$.

substitutional interpretation of quantification

Axiom System for \mathcal{L}

(Levesque & Lakemeyer 2022)

Axioms:

- 1. $\alpha \supset (\beta \supset \alpha)$
- 2. $(\alpha \supset (\beta \supset \gamma)) \supset ((\alpha \supset \beta) \supset (\alpha \supset \gamma))$
- 3. $(\neg \beta \supset \neg \alpha) \supset ((\neg \beta \supset \alpha) \supset \beta)$
- 4. $\forall x(\alpha \supset \beta) \supset (\alpha \supset \forall x\beta)$, provided that x does not occur freely in α
- 5. $\forall x \alpha \supset \alpha_t^x$
- 6. $(n = n) \land (n \neq m)$ for any distinct n, m

Rules:

- 1. From α and $\alpha \supset \beta$, infer β (MP).
- 2. From $\alpha_{n_1}^{\times}, \ldots, \alpha_{n_k}^{\times}$, infer $\forall x \alpha$, provided the n_i range over all names in α and at least one not in α (UG).
- Axiom 6 formalizes equality as identity over standard names.
- Universal Generalization only requires finitely many instances:

It is enough to prove α_n^x for one unmentioned name n.

The same proof can be used for \underline{any} other unmentioned name n' by substituting n with n'.

Example Proof in ${\cal L}$

1. #1 = #1

(Levesque & Lakemeyer 2022)

$2. \ \forall x(x=x)$	1, UG
3. $f(\#1) = f(\#1)$	MP
4. $\#1 = \#1 \supset f(\#1) = f(\#1)$	MP
5. $\#1 \neq \#2$	A×6
6. $\#1 = \#2 \supset f(\#1) = f(\#2)$	MP
7. $\forall y (\#1 = y \supset f(\#1) = f(y))$	4,6, UG
8. $\forall x \forall y (x = y \supset f(x) = f(y))$	7, UG

A×6

Tableau System for \mathcal{L}

$$\frac{\neg(\phi \lor \psi)}{\neg \phi, \neg \psi} (\neg \lor) \qquad \frac{\neg \neg \phi}{\phi} (\neg \neg) \qquad \frac{\phi \lor \psi}{\phi \mid \psi} (\lor)$$

$$\frac{\exists x \alpha}{\alpha_{n_1}^{\times} \mid \cdots \mid \alpha_{n_k}^{\times}} (\exists) \qquad \frac{\neg \exists x \alpha}{\neg \alpha_t^{\times}} (\neg \exists)$$

$$\frac{(t = n_1) \mid \cdots \mid (t = n_k)}{*} (\mathsf{TCut}) \qquad \frac{\phi[t], (t = n)}{\phi[n]} (\mathsf{TSub})$$

$$\frac{\phi, \neg \phi}{*} (\bot) \qquad \frac{\neg(t = t)}{*} (\not=) \qquad \frac{(n = m)}{*} (=)$$

- (\exists) , (TCut): n_1, \ldots, n_k range over all standard names in the branch, plus one extra.
- Branches over finitely many instances.
- (=): n and m are distinct standard names.
- Equality as identity over standard names.

$$\exists x\exists y\neg(x=y\supset f(x)=f(y))$$

1.
$$\exists x \exists y \neg (x=y \supset f(x)=f(y))$$

$$\mid$$
2.
$$\exists y \neg (\#1=y \supset f(\#1)=f(y))$$
 (\(\exists\), 1

1.
$$\exists x \exists y \neg (x=y \supset f(x)=f(y))$$

 $= \exists y \neg (\#1=y \supset f(\#1)=f(y))$ (\exists), 1
3. $\neg (\#1=\#1 \supset f(\#1)=f(\#1)) \neg (\#1=\#2 \supset f(\#1)=f(\#2))$ (\exists), 2

1.
$$\exists x \exists y \neg (x = y \supset f(x) = f(y))$$

2. $\exists y \neg (\#1 = y \supset f(\#1) = f(y))$

3. $\neg (\#1 = \#1 \supset f(\#1) = f(\#1)) \neg (\#1 = \#2 \supset f(\#1) = f(\#2))$

4. $\neg (f(\#1) = f(\#1))$

($\neg \lor$), 3

1.
$$\exists x \exists y \neg (x = y \supset f(x) = f(y))$$

2. $\exists y \neg (\#1 = y \supset f(\#1) = f(y))$

3. $\neg (\#1 = \#1 \supset f(\#1) = f(\#1)) \neg (\#1 = \#2 \supset f(\#1) = f(\#2))$

4. $\neg (f(\#1) = f(\#1))$
 \vdash

5. $*$
 (\neq) , 4

1.
$$\exists x \exists y \neg (x = y \supset f(x) = f(y))$$

2. $\exists y \neg (\#1 = y \supset f(\#1) = f(y))$

3. $\neg (\#1 = \#1 \supset f(\#1) = f(\#1)) \neg (\#1 = \#2 \supset f(\#1) = f(\#2))$

4. $\neg (f(\#1) = f(\#1))$
 $\Rightarrow f(\#1) = f(\#1)$
 $\Rightarrow f$

1.
$$\exists x \exists y \neg (x = y \supset f(x) = f(y))$$

2. $\exists y \neg (\#1 = y \supset f(\#1) = f(y))$

3. $\neg (\#1 = \#1 \supset f(\#1) = f(\#1)) \neg (\#1 = \#2 \supset f(\#1) = f(\#2))$

4. $\neg (f(\#1) = f(\#1))$
 $\Rightarrow f(\#1) = f(\#1)$
 $\Rightarrow f$

1. a = b2. P(a, a)3. $\neg P(b, b)$

1. a = b|
2. P(a, a)|
3. $\neg P(b, b)$ |
4. a = #1 (TCut), a

1. a = b|
2. P(a, a)|
3. $\neg P(b, b)$ |
4. a = #1 (TCut), a|
5. #1 = b (TSub), 4,1

	a = b	1.
	 P(a, a)	2.
		2.
	eg P(b,b)	3.
(TCut), a	a = #1	4.
(TSub), 4,1	#1=b	5.
(TSub), 4,2	P(#1,#1)	6.

Function symbols are handled analytically by systematically substituting subterms by values (names).

Soundness and Completeness

Theorem. The tableau system for \mathcal{L} is **sound**.

Proof. Use induction to show that expansion rules preserve satisfiability on a branch.

Theorem. The tableau system for \mathcal{L} is **complete**.

Proof. Following (Letz 1999) in overall structure:

1. Build a saturated systematic tableau.

(uses specific lexicographic order for node selection)

2. Show that every open branch is satisfiable.

(uses variant of Hintikka set and Hintikka's lemma)

Discussion

Our tableau system only works on finite inputs, since $\mathcal L$ is not compact:

$$\{\exists x P(x), \neg P(\#1), \neg P(\#2), \neg P(\#3), \dots\}$$

extended notions of compactness for infinitary logics (ω -logic)

There are philosophical reservations against substitutional quantification wrt lack of "ontological commitment". Kripke (1976) argues that substitutional and referential quantification coincide if

- (a) denotation function for terms is total
- (b) all formulae are transparent
- Both conditions hold for \mathcal{L} . Standard names are rigid designators in the sense of (Kripke 1980).

We believe that our systems lends itself well to an implementation.

- 📧 We are developing a prototype in Prolog, similar in spirit to LeanTAP and other systems for FOL.
- In the long run, we are interested in guaranteeing termination for decidable fragments.

Thank You!