	HW7 OPTI-330									
	7.1	Abster ->	-7		3.2 A					
0-1		F-	D. P		2	N-1 = & N=0	0			
(a)		0	· Autorioi	1,1		n=0	In eap (- Drika)	
(00)		ulese	D. ~ X-1	exp/	. 0 .					
		A Second A	DK = N=0	T(-2	N N					
	deferring	W= t	ap (-2ni	Alban	00 10 1	0 10	0	(kn)		
	V ()		N	20	exements of	1) will	n=0)		_
			and harmy	<u>a</u> 1	he soluh	p =	K=0 W			-
	so fo	92 DJ=8	Du	rell be a	Ex8 n	rateix	Q= [!			
(*		1120	n=1	٤	3	4	S	6	7	
(Pa)	K2 0		ì	1/2 1 x	2011A		1	(1	
(b)	DZ	6			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
5	jc=4	w°	w	w ²	ω^3	W	WS	ω6	w 7	
D8	Z , K=2	Wo	2 W	W	ω6	w 8	010	W12	w 14	
	13	w°	رى 3	w 6	w9	W 12	w ^{l s}	w 18	w 21	
	4	wo	ω ^γ	ws	w ¹²	W16	ω ²⁰	w 24	w 28	
	1	W	ω '							
	5	wº	w S	WIO	wis	w 20	w ^{2S}	W30	W35	
	6	wº	w ⁶	W 12	w 18	w ²⁴	w30	ω^{36}	wya	
	9	wo	- W7	w 14	ω ²¹	w ²⁸	w ³⁵	w ⁴²	W49	
	4	w =	e 2 1/2							
3	V	W -	6				-			

(L) By colservation it is clear that De (k,n) = De(n,k) >> Symmetric nottix D8 = CD8 J Teranspose = malery also $exp(-2\pi(i/N)l = exp(-2\pi(i/N)lmod(N))$ we = we modn Lmod N operator return the renained of you $w^9 = w^1$ $w^{10} = w^2$ $w^{11} = w^3$ une can simplify our mateix d part at the end (matlab code)

$$f(x) \rightarrow function$$

 $f(n) \rightarrow ony sampled function$

(O) Upsample by 10 & then down sample by 20

Now for apsampling mathematically

$$f_{n}$$
 [n] = { f [n/10] $n = 10k$ $k = enlegee$ 0 otherwise

$$F.Tgf_{\mu,s}(n) = \{f(n)_{i0}\}exp(-2\pi i n \kappa) = \frac{n}{n} = n!$$

$$n = i0n!$$

where k > the frequency term in discreet span or if we say Es is the samplinger (k= Es)

Up Sampling effect will be to comperes the DFT

Ettora)

-S Zs SES

Now the deconstrupting operation is preceded by a LPF operation downsampling by 20 80 we multiply by the exect function $F_{M,D} = F_{8(10\,\Xi)}$ seet $\left(\frac{\Xi}{\Xi_{8/20}}\right)$

Mathematically the Down sampling operation is $f_0(n) = \left(\frac{e_0 f_0(n)}{20} \right) n = \frac{K}{20}$ So in freq domain the freq $f_0(n) = \left(\frac{e_0 f_0(n)}{20} \right) n = \frac{K}{20}$

 $f_{\mu,D} = F_s(\frac{z_s}{z_s})$ set $(\frac{z}{z_{s/z_o}})$ \Rightarrow Here no information is lost in the downsampling

des downsampling then depsampling f(n) -> FT = F(28) Downsamply first so love to pass the signal though a LPF to prevent aliasing LPF operation > multiply ly letter 80 FD, 1 = F(Ex) sect/ \(\frac{z}{z_s}\) So ofter down sample operatio Fors = F(\frac{\gamma_s}{20}) | function is defined only from - \frac{\gamma_s}{40} doing this LPF operation would hed to loss of information. which was not the case in Hus exprampling process FD, u = F(103e) the signal with less information evill now be compressed

0(3) $\mu(x,y,3) = \int_{-\infty}^{\infty} O(\xi,\eta) e^{j2\pi(\xi x + \eta y)} e^{j3\frac{2\pi}{\lambda} \sqrt{1-\chi^2(\xi^2+\eta)}} d\xi d\eta$ now for the expression

Tit n if we expand using the Taylor series formula are
get $\sqrt{1+n} = 1+1x - 1x^2 + \cdots$ if we assume n is small then JItx 2 1+12 so for the town VI-12(22+42) = 1-1/2(22+42) putting this in eg of field $\mu(n,y,3) = \iint U(\xi,\eta) e^{j2\kappa(\xi,\eta+\eta y)} e^{j3\frac{2\kappa}{\lambda}(1-\frac{1}{2}\lambda^2(\xi^2+\eta^2))} d\xi d\eta$ = ((U(z,n) e j2 m(z x + ny) e j3 2 m e j3 x) (z²+n²)
= ((U(z,n) e j2 m(z x + ny) e j3 2 m e j3 x) (z²+n²) = e^{33K} [V(\(\text{T},n\)) e - \(\frac{3}{3}\) \(\(\text{N} \) \(\text{N} \ = eskz M(n,y) & F'(function2)

M(
$$n_2, y_2$$
) = $e^{i \times 2i2}$ $e^{i \times 2i2}$

21,1 y, -> coordinates in the apertur

22, 12 - coord in observation screen

E, N -> spatial facquery defined as

$$z = x_2 \qquad \eta = y_2$$

$$\lambda z_{12} \qquad \lambda z_{13}$$

for frambophe integral

$$Z_{12} \xrightarrow{X_{212}} = X_{10\times 10^{-3}}$$
 $Z_{12} \xrightarrow{X_{12}} = X_{10\times 10^{-3}} = X_{10\times 10^{-3}}$

Therisity in obs plane

Intensity in oles plane

$$\frac{1}{\lambda^{2} \cdot 2} = \frac{1}{500 \times 10^{4}} \times \frac{1}{\lambda^{2}} = \frac{100}{\lambda^{2}}$$

$$\frac{1}{\lambda^{2} \cdot 2} = \frac{100}{\lambda^{2}}$$

$$\frac{1}{\lambda^{2} \cdot 2} = \frac{100}{\lambda^{2}}$$

also
$$F(M(n,y_1)) = F\left(\text{Rest}\left(\frac{n}{L_1}, \frac{y_1}{L_1}\right) - \text{Rest}\left(\frac{n-n_0}{L_2}, \frac{y-y_0}{L_2}\right)\right)$$

$$= L_1^2 \text{Sinc}\left(L_1 \in J(L_1 n) - L_2^2 \text{Sinc}\left(L_2 \cap L_2 - L_2 - L_2^2 \text{Sinc}\left(L_2 \cap L_2 - L_2 - L_2 - L_2 - L_2^2 \right)\right)\right)\right)$$

=
$$L_1^2 \text{ Sinc}(L_1 \mathbb{Z}, L_1 \eta) - L_2^2 \text{ Sinc}(L_2 \mathbb{Z}, L_2 \eta) = 2\pi i (\mathbb{Z} \times 0 + \eta \times 0)$$

= $L_1^2 \text{ Sinc}(L_1 \times 2, L_1 \times 2)$ \mathbb{Z} \mathbb{Z}

$$= L_1^2 \operatorname{Dim}\left(\frac{L_1 \pi_2}{\sqrt{2}_{12}}, \frac{L_1 y_2}{\sqrt{2}_{12}}\right) - L_2^2 \operatorname{Dim}\left(\frac{L_2 \pi_2}{\sqrt{2}_{12}}, \frac{L_2 y_2}{\sqrt{2}_{12}}\right) e^{-2\pi i \left(\frac{\pi_0 \pi_2}{\sqrt{2}_{12}} + \frac{y_0 y_2}{\sqrt{2}_{12}}\right)}$$

$$I(x_{2},y_{2}) = (\frac{100}{\pi})^{2} \left[(0.1) \operatorname{Sinc}^{2} \left(\frac{10x_{2}}{K}, \frac{10y_{2}}{K} \right) + 0.02^{6} \operatorname{sinc}^{2} \left(\frac{2x_{2}}{K}, \frac{2y_{2}}{K} \right) \right]$$

$$= 2 \cdot 0.1 \cdot 0.02^{2} \operatorname{Sinc} \left(\frac{10x_{2}}{K}, \frac{10y_{2}}{K} \right) \operatorname{Sind}^{2} \left(\frac{2x_{2}}{K}, \frac{2y_{2}}{K} \right)$$

$$\text{When } \frac{L_{1}x_{2}}{\lambda^{2}_{12}} = \frac{10x_{10}^{-2}}{500 \times 10^{-6}} \times \frac{\pi}{K} = \frac{10x_{2}}{K}$$

$$\frac{L_{2}x_{2}}{\lambda^{2}_{12}} = \frac{2x_{2}}{K}$$

$$= 26.1^{2} \times 0.04^{2} \operatorname{Sinc}\left(\frac{10 \times 2}{K}, \frac{10 \times 2}{K}\right) \operatorname{Sinc}\left(\frac{4 \times 2}{K}, \frac{4 \times 2}{K}\right)$$

$$\frac{\langle \zeta \rangle}{\langle \chi \rangle} = \frac{\chi_2 \chi_0}{\langle \chi \rangle} = \frac{\chi_0 \chi_0}{\langle \chi \rangle} = \frac{\chi_0$$

$$T(\pi_2/y_e) = (\frac{100}{\pi})^2 [0.1^2 sine() + 0.02^2 sine() e^{-2\pi i (\frac{\pi_2}{\pi}/\frac{y_e}{\pi})}]^2$$

$$= \frac{(100)^{2}}{(100)^{2}} \left[0.15 \sin(\theta) + 0.024 \sin(\theta) - 0.12 \cos(\theta) \right] \sin(\theta) \left(e^{-2\pi i \left(\frac{\pi^{2}}{\pi} + \frac{49}{\pi} \right)} + 0.024 \sin(\theta) \right] + 0.024 \sin(\theta) \left(e^{-2\pi i \left(\frac{\pi^{2}}{\pi} + \frac{49}{\pi} \right)} + 0.024 \sin(\theta) \right) \right]$$

$$= \left(\frac{100}{\pi}\right)^{2} \left[0.1^{4} \sin(\frac{2}{3}) + 0.02^{4} \sin^{2}_{3} - 0.1^{2} + 0.02^{2} \sin^{2}_{3}\right] + 0.02^{2} \sin^{2}_{3} - 0.1^{2} + 0.02^{2} \sin^{2}_{3}\right] + 0.02^{4} \sin^{2}_{3}\left[0.1^{4} \sin^{2}_{3}\left(\frac{1}{3}\right) + 0.02^{4} \sin^{2}_{3}$$

$$\frac{1}{2} \left(\frac{1}{2} \frac{1}{2} \frac{1}{2}\right)^{2} \left(\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}\right) + 0.02^{2} \sin \left(\frac{2}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}\right) + \sin \left(\frac{2}{2} \frac{1}{2} \frac{1}{2}\right) + 2\cos \left(2(2\pi \rho + 2\eta_{2})\right)$$

$$= \left(0.1\right)^{2} \left(0.02\right)^{2} \sin \left(\frac{10\pi 2}{\pi}, \frac{10\pi 2}{\pi}\right) \sin \left(\frac{2\pi 2}{\pi}, \frac{12\eta_{2}}{\pi}\right) + 2\cos \left(2(2\pi \rho + 2\eta_{2})\right)$$

```
1d)
close all; clear all;
n = linspace(-2,2,9);
n = n(1:end-1); %8ppoint sequence
f=rect(n); %i have made a function rect that takes in the input variable
 for m=0:length(f)-1;
     for l=0:length(f)-1;
         D(m+1,l+1) = \exp(-1i*2*pi*m*1/length(f));% Construct the D matrix
     end;
 end;
% displaythe result with D*f
FD=abs(D*f');%f'so that we agree with the matrix multiplication
 stem(fftshift(FD))
F=abs(fftshift(fft(fftshift(f,8))));%
hold on
plot(F,'r')
legend('8 point DFT','8 point FFT') ;xlabel('n');title('DFT and FFT')
```


b

d

