DA UN MODELLO PREDITTIVO OPACO AD UN SURROGATO TRASPARENTE: APPLICAZIONE AI PROCESSI DI BUSINESS

Piero Pastore

Relatore: Prof. Gabriele Gianini

Anno 2021/2022

CASO DI STUDIO - XAI EXPLAINABLE ARTIFICIAL INTELLIGENCE

XAI e' una nuova branca emergente dell'**IA** che si occupa di **semplificare** e **interpretare** al meglio modelli neurali più complessi.

Tassonomia XAI

TRASFORMARE UN MODELLO PREDITTIVO OPACO IN UN SURROGATO TRASPARENTE

PREDIZIONE DI PROCESSI DI BUSINESS

LSTM

Generare delle predizioni che rispecchiano il dataset iniziale DT

Emulare il comportamento della rete LSTM tramite dati generati da LSTM

TUNING

Modificare i parametri dei modelli per migliorare i risultati ottenuti **ANALISI**

per verificare la correttezza del surrogato

Confronto dei risultati

LONG SHORT TERM MEMORY

LSTM REGRESSOR

Rete neurale ricorrente che permette di sfruttare le informazioni a lungo termine permettendo di generare predizioni o serie temporali

DECISION TREE

DECISION TREE REGRESSOR

Tecnica basata su una serie di regressori di alberi decisionali che permettono di generare predizioni attraverso un partizionamento ricorsivo binario dei dati

DATASET

LOG OF LOAN BUSINESS PROCESS DATASET

- Contiene informazioni su processi aziendali, con task, tipologie di task, costi e utilizzo delle risorse
- Fase di pulizia, formattazione e normalizzazione prima di essere utilizzato
- ► 6879 record

Esempio predizione label

	KIND	TASK	SOURCE	VALUE
t+1	6	1.0	12	55.2

TUNING LSTM

Viene utilizzato un criterio di validazione walk-forward

- Ogni configurazione del modello viene valutato dopo 10-20 iterazioni
- Parametri valutati:

Epoche

Batch size

Iperparametri valutati:

Numero di neuroni

Layer

1,2,3	layer
[100,150500]	epoch
[50200]	neurons
[4,81024]	batch_size

RISULTATI LSTM

- Percentualeaccuratezza dei record
- Errore stimato medianteMSE

	LSTM
TOTALE	92%
SOURCE	92%
TASK	96%
VALUE	88%
KIND	95%

LSTM	
0.876	SOURCE
0.002	TASK
0.921	VALUE
0.903	KIND

Analisi accuratezza modelli sui dati reali

Errore quadratico medio tra i dati reali e i dati stimati dal modello neurale

TUNING DT

Viene utilizzata la tecnica di grid search con cross validation

- Modello allenato con le predizioni ottenute da LSTM
- Vengono valutati i seguenti iperparametri :
 Criterio e scelta del partizionamento

Profondita'

Terminazione albero

gini, entropy	criterion
Best, random	split
[12-128]	max_depth
8-32	min_samples_leaf

RISULTATI DT

- Percentuale

 accuratezza dei record

 validi
- Errore stimato medianteMSE

	DT
TOTALE	95%
SOURCE	95%
TASK	96%
VALUE	92%
KIND	98%

	DT
SOURCE	0.592
TASK	0.002
VALUE	0.602
KIND	0.670

Analisi accuratezza modello sui dati generati da LSTM

Errore quadratico medio tra i dati iniziali e i dati stimati divisi in base al modello

METRICHE DI VALUTAZIONE

- Analisi accuratezza dei modelli
- Errore stimato mediante MSE
- Confronto visivo della distribuzione dei valori delle label attraverso grafici

CONFRONTI NUMERICI

	LSTM	DT
TOTALE	92%	95%
SOURCE	92%	95%
TASK	96%	96%
VALUE	88%	94%
KIND	95%	96%

	LSTM	DT
SOURCE	0.876	0.592
TASK	0.002	0.002
VALUE	0.921	0.602
KIND	0.903	0.670

Analisi accuratezza modello neurale e surrogato

Calcolo errore quadratico medio per entrambe le stime

CONFRONTO GRAFICO

Distribuzione label kind dei valori stimati dai 2 modelli

Variabilita' label source dei valori generati dai 2 modelli

SVILUPPI FUTURI

- Utilizzati nuovi dataset piu' ricchi ed eterogenei
- Testare nuovi modelli trasparenti che possano semplificare ancora di piu' i risultati ottenuti dall'analisi

GRAZIE PER L'ATTENZIONE