

Evolution Strategies for Neural Policy Search

Author: Paul Templier¹
Advisors: Emmanuel Rachelson¹, Dennis G. Wilson¹

[paul.templier@isae-supaero.fr]

June 29, 2022

¹ University of Toulouse, ISAE-SUPAERO

[Context] Mid-thesis report

[Context] Mid-thesis report

Initial topic

Bio-inspired methods for artificial neural networks

[Context] Mid-thesis report

Initial topic

Bio-inspired methods for artificial neural networks

Goal of this report

Organize past and present work, and highlight future research directions.

1. [Context] Context of this PhD

- 1. [Context] Context of this PhD
- 2. [Policy search] Evolution Strategies for Policy Search

- 1. [Context] Context of this PhD
- 2. [Policy search] Evolution Strategies for Policy Search
- 3. [Search space] Representing policies and changing the search space

- 1. [Context] Context of this PhD
- 2. [Policy search] Evolution Strategies for Policy Search
- 3. [Search space] Representing policies and changing the search space
- 4. [Search direction] Using samples to help the search

- 1. [Context] Context of this PhD
- 2. [Policy search] Evolution Strategies for Policy Search
- 3. [Search space] Representing policies and changing the search space
- 4. [Search direction] Using samples to help the search
- 5. [Noisy fitness] Adapting to stochastic problems

- 1. [Context] Context of this PhD
- 2. [Policy search] Evolution Strategies for Policy Search
- 3. [Search space] Representing policies and changing the search space
- 4. [Search direction] Using samples to help the search
- 5. [Noisy fitness] Adapting to stochastic problems
- 6. [Directions] Future work and timeline

- 1. [Context] Context of this PhD
- 2. [Policy search] Evolution Strategies for Policy Search
- 3. [Search space] Representing policies and changing the search space
- 4. [Search direction] Using samples to help the search
- 5. [Noisy fitness] Adapting to stochastic problems
- 6. [Directions] Future work and timeline

Environment

Agent

Environment

[Policy search] Neural networks

Neural Network used in Deep Q Networks [Mnih et al., 2015]

Fixed covariance

- \blacktriangleright (μ, λ) ES
- ► Canonical ES
- ► OpenAl ES

Fixed covariance

- \blacktriangleright (μ, λ) ES
- ► Canonical ES
- ► OpenAl ES

Covariance matrix adaptation

► CMA-ES

Fixed covariance

- \blacktriangleright (μ, λ) ES
- ► Canonical ES
- ► OpenAl ES

Covariance matrix adaptation

► CMA-ES

Natural gradient

- ► XNES
- ► SNES

Fixed covariance

- \blacktriangleright (μ, λ) ES
- ► Canonical ES
- ► OpenAl ES

Covariance matrix adaptation

► CMA-ES

Natural gradient

- ► XNES
- ► SNES

Adjacent methods

- ► Cross-Entropy Method
- ► Augmented Random Search

Fixed covariance

- \blacktriangleright (μ, λ) ES
- ► Canonical ES
- ► OpenAl ES

Covariance matrix adaptation

► CMA-ES

Natural gradient

- ► XNES
- ► SNES

Adjacent methods

- ► Cross-Entropy Method
- Augmented Random Search

Neuroevolution for policy search

- ► Large dimensions (10⁶ parameters)
- ► Iterative evaluation

- 1: σ Mutation step-size
- 2: θ_0 Initial policy parameters
- 3: F Fitness function
- 4: λ Offsprings population size
- 5: μ Parents population size

- 1: σ Mutation step-size
- 2: θ_0 Initial policy parameters
- 3: F Fitness function
- 4: λ Offsprings population size

5:
$$\mu$$
 - Parents population size
6: $w_i = \frac{\log(\mu + 0.5) - \log(i)}{\sum_{j=1}^{\mu} \log(\mu + 0.5) - \log(j)}$ $\forall i = 1...\lambda$

- 1: σ Mutation step-size
- 2: θ_0 Initial policy parameters
- 3: *F* Fitness function
- 4: λ Offsprings population size
- 5: μ Parents population size

6:
$$w_i = \frac{\log(\mu + 0.5) - \log(i)}{\sum_{j=1}^{\mu} \log(\mu + 0.5) - \log(j)}$$
 $\forall i = 1...\lambda$

7: **for** t=0, 1, ... **do**

14: end for

- 1: σ Mutation step-size
- 2: θ_0 Initial policy parameters
- 3: *F* Fitness function
- 4: λ Offsprings population size
- 5: μ Parents population size

6:
$$w_i = \frac{\log(\mu + 0.5) - \log(i)}{\sum_{j=1}^{\mu} \log(\mu + 0.5) - \log(j)} \quad \forall i = 1...\lambda$$

- 7: **for** t=0, 1, ... **do**
- 8: **for** $i=0, 1, ... \lambda$ **do**
- 9: Sample noise: $\epsilon_i \sim N(0, I)$
- 10: Evaluate score: $s_i \leftarrow F(\theta_t + \sigma \epsilon_i)$
- 11: end for

14: end for

- 1: σ Mutation step-size
- 2: θ_0 Initial policy parameters
- 3: *F* Fitness function
- 4: λ Offsprings population size
- 5: μ Parents population size
- 6: $w_i = \frac{\log(\mu + 0.5) \log(i)}{\sum_{j=1}^{\mu} \log(\mu + 0.5) \log(j)} \quad \forall i = 1...\lambda$
- 7: **for** t=0, 1, ... **do**
- 8: **for** $i=0, 1, ... \lambda$ **do**
- 9: Sample noise: $\epsilon_i \sim N(0, I)$
- 10: Evaluate score: $s_i \leftarrow F(\theta_t + \sigma \epsilon_i)$
- 11: end for
- 12: Sort $(\epsilon_1, ..., \epsilon_{\lambda})$ according to s $(\epsilon_i$ with best s_i first)
- 14: end for

1: σ - Mutation step-size 2: θ_0 - Initial policy parameters 3: F - Fitness function 4: λ - Offsprings population size 5: μ - Parents population size 6: $w_i = \frac{\log(\mu + 0.5) - \log(i)}{\sum_{i=1}^{\mu} \log(\mu + 0.5) - \log(j)} \quad \forall i = 1...\lambda$ 7: **for** t=0, 1, ... **do** for $i=0, 1, \dots \lambda$ do 8: Sample noise: $\epsilon_i \sim N(0, I)$ g. Evaluate score: $s_i \leftarrow F(\theta_t + \sigma \epsilon_i)$ 10: end for 11: Sort $(\epsilon_1, ..., \epsilon_{\lambda})$ according to s $(\epsilon_i$ with best s_i first) 12: Update policy: $\theta_{t+1} \leftarrow \theta_t + \sigma \sum_{i=1}^{\mu} w_i \epsilon_i$ 13: 14 end for

[Policy search] Utility

Utility values of the individuals in a ranked population for $\lambda{=}200;~\mu{=}100$

[Policy search] Benchmarking Evolutionary Reinforcement Learning

Reproduction settings

Reproducing Canonical ES [Chrabaszcz et al., 2018] and OpenAl ES [Salimans et al., 2017] on the Arcade Learning Environment.

Evolution of Canonical ES and OpenAI ES on Alien and Pong with 800 CPUh compute budget

- 1. [Context] Context of this PhD
- 2. [Policy search] Evolution Strategies for Policy Search
- 3. [Search space] Representing policies and changing the search space
- 4. [Search direction] Using samples to help the search
- 5. [Noisy fitness] Adapting to stochastic problems
- 6. [Directions] Future work and timeline

[Search space] A Geometric Encoding for Neural Network Evolution

[Search space] A Geometric Encoding for Neural Network Evolution

Fully connected neural network

[Search space] A Geometric Encoding for Neural Network Evolution

Fully connected neural network

GENE encoding [Templier et al., 2021]

[Search space] GENE: Distance functions

$$w_{i,j} = dist(n_i, n_j) \tag{1}$$

Euclidean distance

$$\sqrt{\sum_{k=1}^{D} \left(n_1^k - n_2^k\right)^2} \tag{2}$$

[Search space] GENE: Weight distribution

Distribution of weight values in networks evolved with different encodings.

[Search space] Experimental setup

RAM state representation

[Search space] Experimental setup

SNES

- ► Separable NES
- ▶ Complexity in O(n)

XNES

- ► Exponential NES
- ► Complexity in $O(n^2)$

[Search space] Experimental setup

SNES

- ► Separable NES
- ightharpoonup Complexity in O(n)

XNES

- ► Exponential NES
- ► Complexity in $O(n^2)$

Encodings

- ▶ Direct encoding
- ► GENE: dim=3
- ► 10 runs

[Search space] Computational cost

Evolutionary Strategy update of μ and σ						
	Encoding	D	Genes		Mean time (s)	Memory (KiB)
	pL2-GENE	3	804	SNES	0.000357	630.56
	pL2-GENE	10	2211	SNES	0.000678	1372.16
	Direct	-	5609	SNES	0.001350	3133.44
	pL2-GENE	3	804	XNES	1.475000	1352663.04
	pL2-GENE	10	2211	XNES	14.244000	11806965.76
	Direct	-	5609	XNES	119.976000	79765176.32

[Search space] Competitive results - Arcade Learning Environment

SNES on SpaceInvaders

XNES on SpaceInvaders

[Search space] Competitive results - Arcade Learning Environment

SNES on SpaceInvaders

SNES on Krull

XNES on SpaceInvaders

XNES on Krull

[Search space] Improving results - Arcade Learning Environment

SNES on IceHockey

XNES on IceHockey

[Search space] Improving results - Arcade Learning Environment

SNES on IceHockey

SNES on Seaquest

XNES on IceHockey

XNES on Seaquest

[Search space] Future Work

Distance functions

Design new distance functions, or optimize them through co-evolution.

Hybrid encoding

Switch between indirect and direct encodings during the evolution.

Gradient descent

Use backpropagation and gradient descent to optimize genomes instead of evolution.

Complex networks

Design encodings for convolution layers and recurrent networks.

Content

- 1. [Context] Context of this PhD
- 2. [Policy search] Evolution Strategies for Policy Search
- 3. [Search space] Representing policies and changing the search space
- 4. [Search direction] Using samples to help the search
- 5. [Noisy fitness] Adapting to stochastic problems
- 6. [Directions] Future work and timeline

CEM-RL: CEM + Actor-Critic [Pourchot and Sigaud, 2019]

Content

- 1. [Context] Context of this PhD
- 2. [Policy search] Evolution Strategies for Policy Search
- 3. [Search space] Representing policies and changing the search space
- 4. [Search direction] Using samples to help the search
- 5. [Noisy fitness] Adapting to stochastic problems
- 6. [Directions] Future work and timeline

[Noisy fitness] Stochastic fitness

 ${\sf BigFish\ levels\ generated\ from\ different\ seeds}$

[Noisy fitness] ES on stochastic environments

ES on BigFish, same level

[Noisy fitness] ES on stochastic environments

ES on BigFish, same level

ES on BigFish, random level

Objective: identify the **best** μ individuals with as **few evaluations** as possible. [Lecarpentier et al., 2022]

Objective: identify the **best** μ individuals with as **few evaluations** as possible. [Lecarpentier et al., 2022]

Objective: identify the **best** μ individuals with as **few evaluations** as possible. [Lecarpentier et al., 2022]

[Noisy fitness] ONEMAX and LEADINGONES

[Noisy fitness] ONEMAX and LEADINGONES

[Noisy fitness] Classic Control

Bandit problem

- ► Split
- ► Rank

Bandit problem

- ► Split
- ► Rank

Bandit problem

- ► Split
- ► Rank

Bandit problem

- ► Split
- ▶ Rank

[Noisy fitness] LUCIE for Evolution Strategies

Bandit problem

Selecting which individuals to evaluate

- ► Split
- ► Rank

Population mixing

Keeping evaluated individuals

- ► Elitist ES
- ► Importance Mixing

[Noisy fitness] LUCIE for Evolution Strategies

Bandit problem

Selecting which individuals to evaluate

- ► Split
- ► Rank

Population mixing

Keeping evaluated individuals

- ► Elitist ES
- ► Importance Mixing

[Pourchot et al., 2018

Content

- 1. [Context] Context of this PhD
- 2. [Policy search] Evolution Strategies for Policy Search
- 3. [Search space] Representing policies and changing the search space
- 4. [Search direction] Using samples to help the search
- 5. [Noisy fitness] Adapting to stochastic problems
- 6. [Directions] Future work and timeline

LUCI ES

- ightharpoonup Explore (μ, λ) ES
- ► Ranking in Bandit problems
- ► Heritage (Importance Mixing, elitism)
- ► Scalability

Evolving Evolution Strategies

- ► Make ES methods emerge from scratch
- ► Neuromodulation: adapting ES during the evolution

ES for Policy Search

- ► Neuroevolution constraints and theory
- ► Ablation study of existing methods

References I

- Chrabaszcz, P., Loshchilov, I., and Hutter, F. (2018).

 Back to Basics: Benchmarking Canonical Evolution Strategies for Playing Atari.
 pages 1419–1426.
- Lecarpentier, E., Templier, P., Rachelson, E., and Wilson, D. G. (2022). LUCIE: An Evaluation and Selection Method for Stochastic Problems. In *Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2022)*.
- Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep reinforcement learning. nature, 518(7540):529–533.
- Pourchot, A., Perrin, N., and Sigaud, O. (2018). Importance mixing: Improving sample reuse in evolutionary policy search methods.

References II

- Pourchot, A. and Sigaud, O. (2019). CEM-RL: Combining evolutionary and gradient-based methods for policy search. arXiv:1810.01222 [cs, stat].
- Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I. (2017). Evolution Strategies as a Scalable Alternative to Reinforcement Learning.
- Templier, P., Rachelson, E., and Wilson, D. G. (2021). A Geometric Encoding for Neural Network Evolution. page 9.

[Search space] Signed distances

Bounded identity function

$$\alpha: \left\{ \begin{array}{l} \text{if } x \geq 1 : \alpha(x) = 1\\ \text{if } x \leq -1 : \alpha(x) = -1 \\ \text{else: } \alpha(x) = x \end{array} \right. \tag{3}$$

[Search space] Distance functions

pL2-GENE
$$\alpha \left(\prod_{k=1}^{D} n_1^k - n_2^k \right) \sqrt{\sum_{j=1}^{D} \left(n_1^j - n_2^j \right)^2} \qquad (4)$$

