

9.3 设 T 有 n_1 片树叶,则由树的性质和图论基本定理有:

$$2 \cdot \sum_{i=1}^{k} n_i - 2 = 2(n-1) = 2m = \sum_{i=1}^{k} i \cdot n_i$$

解得:

$$n_1 = \sum_{i=2}^{k} (i-2)n_i + 2$$

注意到, 当 i=2 时, $(i-2)n_i=0$, 因此, 上式可以改写成

$$n_1 = \sum_{i=3}^{k} (i-2)n_i + 2$$

这一公式说明,无向树中树叶的个数由3度及3度以上顶点的个数唯一确定,与树的结构和2度顶点的个数无关。

9.4

证明:对k作归纳。

当 k=1 时,T 即为 K_2 。 $\delta(G)\geq 1$,从而 G 中有边,任取边 $e\in E(G)$,则由 $\{e\}$ 导出的子图 $G[\{e\}]$ 即为与 T 同构的子图。命题成立。

设 $k = t(t \ge 1)$ 时,命题成立。当 k = t + 1 时,设 $v \in V(T)$ 是 T 中某片树叶,且 $u \in V(T)$ 为 T 中(唯一)与 v 相邻的顶点。令 T' = T - v。由归纳假设, G 中存在与 T' 同构的子图 H'。设同构函数为 $\overline{\varphi}: V(T') \to V(H')$,并记 $u' = \overline{\varphi}(u)$ 。注意到, u' 在 V(G) - V(H') 中必然还有邻接点(若不然,则 u' 的所有邻接点都在 V(H') 中,从而由 $u' \in V(H')$ 和 H' 是简单图可知, $d(u') \le |V(H')| - 1 = t < t + 1 = \delta(G)$,矛盾),设 $v' \in V(G) - V(H')$ 就是一个与 u' 相邻且不在 V(H') 中的项点。

 $\diamondsuit H = \langle V(H') \cup \{v'\}, E(H') \cup \{(u', v')\} \rangle, \ \mathbb{R} \ \varphi : V(T) \to V(H), \ \forall x \in V(T),$

$$\varphi(x) = \begin{cases} \overline{\varphi}(x), & \text{if } x \in V(T') \\ v', & \text{if } x = v \end{cases}$$

易见, φ 是从T到H的同构。从而当k=t+1时,命题同样成立。

9.5

证明: T_3 中显然无简单回路 (否则这一回路也将出现在 T 中,这与 T 是树矛盾)。下面只需证 T_3 是连通的。对任意 $u,v \in V(T_3)$,有 $u,v \in V(T_1)$ 和 $u,v \in V(T_2)$,由于 T_1 和 T_2 都是树,所以在中 T_1 和 T_2 中分别有唯一的路径 Γ_1 和 Γ_2 连接 u,v。注意到, Γ_1 和 Γ_2 都在 T 中,而 T 也是树,由 T 中路径的唯一性可知, $\Gamma_1 = \Gamma_2 \subseteq T_1 \cap T_2$ 。从而 $\Gamma_1 \subseteq T_3$ 。这就是说,u,v 在 T_3 中也是连通的。由 u,v 的任意性可知, T_3 是连通的,从而是树。

9.6

证明: 反设 G 和 \overline{G} 中都无圈,则由引理 7.5 有 $|E(G)| = n - p(G) \le n - 1$ 和 $|E(\overline{G})| = n - p(\overline{G}) \le n - 1$ 。从而有 $\frac{n(n-1)}{2} = |E(K_n)| = |E(G \cup \overline{G})| \le 2n - 2$ 。即 $n^2 - 5n + 4 \le 0$,解得 $1 \le n \le 4$ 。与题设 $n \ge 5$ 矛盾。