Instruction Set

25 Nov. 2020

32-bit instruction format

31:29	28:24	23:16	15:8	7:0
opcode	raddr2 (s3)	raddr1 (s2)	raddr0 (s1)	waddr (dst)

opcode: complex operation code

raddr2: read address 2 of the data memory (5-bit [0:15]) raddr1: read address 1 of the data memory (8-bit [48:255]) raddr0: read address 0 of the data memory (8-bit [16:255]) waddr: write address of the data memory (8-bit [80:255])

Opcode:

000	001	010	011	101	110	111
LOAD	ADD	SUB	MUL	MAX	MULSUB	MULADD

All of the above are complex operations. (e.g. ADD: (a+jb) + (c+jd))

Examples in RISC-V fashion: OPCODE \$DST, (\$S3), \$S2, \$S1

Assembly	Operation	Instructions in Hex
ADD \$128, \$16, \$48	R128 = R16 + R48	32'h20_30_10_80
MUL \$129, \$17, \$49	R129 = R17 + R49	32'h60_31_11_81
MULADD \$130, \$18, \$50, \$0	R130 = R18 + R0 * R50	32'hE0_32_12_82
MULSUB \$131, \$129, \$128, \$1	R131 = R129 - R1 * R128	32'hC1_80_81_83

Assuming the overlay is comprised of an array of 256 PEs and each PE has 4 DSP blocks. The instruction schedule can be found as follows (if running at 500MHz, 1 cycle = 2ns):

Cycle	Operation	Instruction
256*32	Load input data ¹	Nil
1*32	Complex multiplication	$(a+jb)*(c+jd) \rightarrow a' + jb'$
1*80	FFT	$a' + jb' + W_N(c'+jd') \rightarrow a'' + jb''$
1*80		$a' + jb' - W_N(c' + jd') \rightarrow c'' + jd''$
1*16	Output half values	Add a few cycles to compute partial alpha profiles
32	Shift internal data ²	Can this step multiplex with PE computation?
1*32	Complex multiplication	$(a+jb)*(c+jd) \rightarrow a' + jb'; c' + jd'$
1*80	FFT	$a' + jb' + W_N(c'+jd') \rightarrow a'' + jb''$
1*80		$a' + jb' - W_N(c' + jd') \rightarrow c'' + jd''$
1*16	Output half values	Nil
32	Shift data	Nil
•••		
256*32	Fetch output data	Nil

^{1,2}Load input data, Shift internal data and Fetch output data do not require instructions. They are handled by the SIPO and PISO modules.

Latency = (256*32 + (32+2*80+16) + 255*(32+32+2*80+16) + 256*32) * 2ns = 0.156 ms

Q. How to do a MAX operation among all the outputs of the 256 PEs (after square operation)? Add logic fabrics after the 256 PEs?

Alpha profile should be done in the current PE and keep forward to the next PE.

Instructions for SCD kernel:

```
# 8 element-wise complex multiplications
MUL $80, $16, $48
MUL $81, $17, $49
MUL $82, $18, $50
MUL $83, $19, $51
MUL $84, $20, $52
MUL $85, $21, $53
MUL $86, $22, $54
MUL $87, $23, $55
#8-point FFT (bit-reverse order)
# stage 1
MULADD $88, $80, $84, $0
MULSUB $89, $80, $84, $0
MULADD $90, $82, $86, $0
MULSUB $91, $82, $86, $0
MULADD $92, $81, $85, $0
MULSUB $93, $81, $85, $0
MULADD $94, $83, $87, $0
MULSUB $95, $83, $87, $0
# stage 2
MULADD $96, $88, $90, $0
MULSUB $98, $88, $90, $0
MULADD $97, $89, $91, $2
MULSUB $99, $89, $91, $2
MULADD $100, $92, $94, $0
MULSUB $102, $92, $94, $0
MULADD $101, $93, $95, $2
MULSUB $103, $93, $95, $2
# stage 3
MULADD $104, $96, $100, $0
MULSUB $108, $96, $100, $0
MULADD $105, $98, $102, $1
MULSUB $109, $98, $102, $1
MULADD $106, $97, $101, $2
MULSUB $110, $97, $101, $2
MULADD $107, $99, $103, $3
MULSUB $111, $99, $103, $3
```

32 element-wise complex multiplications MUL \$80, \$16, \$48 MUL \$81, \$17, \$49 MUL \$82, \$19, \$50 MUL \$83, \$20, \$51 MUL \$84, \$21, \$52 MUL \$85, \$22, \$53 MUL \$86, \$23, \$54 MUL \$87, \$24, \$55 MUL \$88, \$25, \$56 MUL \$89, \$26, \$57 MUL \$90, \$27, \$58 MUL \$91, \$28, \$59 MUL \$92, \$29, \$60 MUL \$93, \$30, \$61 MUL \$94, \$31, \$62 MUL \$95, \$32, \$63 MUL \$96, \$33, \$64 MUL \$97, \$34, \$65 MUL \$98, \$35, \$66 MUL \$99, \$36, \$67 MUL \$100, \$37, \$68 MUL \$101, \$38, \$69 MUL \$102, \$39, \$70 MUL \$103, \$40, \$71 MUL \$104, \$41, \$72 MUL \$105, \$42, \$73 MUL \$106, \$43, \$74 MUL \$107, \$44, \$75 MUL \$108, \$45, \$76 MUL \$109, \$46, \$77 MUL \$110, \$47, \$78

32-point FFT (bit-reverse order)

stage 1

MULADD \$112, \$80, \$96, \$0

MULSUB \$113, \$80, \$96, \$0

MUL \$111, \$48, \$79

MULADD \$114, \$88, \$104, \$0

MULSUB \$115, \$88, \$104, \$0

MULADD \$116, \$84, \$100, \$0

MULSUB \$117, \$84, \$100, \$0

MULADD \$118, \$92, \$108, \$0

MULSUB \$119, \$92, \$108, \$0

MULADD \$120, \$82, \$98, \$0

MULSUB \$121, \$82, \$98, \$0

MULADD \$122, \$90, \$106, \$0

MULSUB \$123, \$90, \$106, \$0 MULADD \$124, \$86, \$102, \$0 MULSUB \$125, \$86, \$102, \$0 MULADD \$126, \$94, \$110, \$0 MULSUB \$127, \$94, \$110, \$0 MULADD \$128, \$81, \$97, \$0 MULSUB \$129, \$81, \$97, \$0 MULADD \$130, \$89, \$105, \$0 MULSUB \$131, \$89, \$105, \$0 MULADD \$132, \$85, \$101, \$0 MULSUB \$133, \$85, \$101, \$0 MULADD \$134, \$93, \$109, \$0 MULSUB \$135, \$93, \$109, \$0 MULADD \$136, \$83, \$99, \$0 MULSUB \$137, \$83, \$99, \$0 MULADD \$138, \$91, \$107, \$0 MULSUB \$139, \$91, \$107, \$0 MULADD \$140, \$87, \$103, \$0 MULSUB \$141, \$87, \$103, \$0 MULADD \$142, \$95, \$111, \$0 MULSUB \$143, \$95, \$111, \$0

stage 2

MULADD \$80, \$112, \$114, \$0 MULSUB \$82, \$112, \$114, \$0 MULADD \$81, \$113, \$115, \$8 MULSUB \$83, \$113, \$115, \$8 MULADD \$84, \$116, \$118, \$0 MULSUB \$86, \$116, \$118, \$0 MULADD \$85, \$117, \$119, \$8 MULSUB \$87, \$117, \$119, \$8 MULADD \$88, \$120, \$122, \$0 MULSUB \$90, \$120, \$122, \$0 MULADD \$89, \$121, \$123, \$8 MULSUB \$91, \$121, \$123, \$8 MULADD \$92, \$124, \$126, \$0 MULSUB \$94, \$124, \$126, \$0 MULADD \$93, \$125, \$127, \$8 MULSUB \$95, \$125, \$127, \$8 MULADD \$96, \$128, \$130, \$0 MULSUB \$98, \$128, \$130, \$0 MULADD \$97, \$129, \$131, \$8 MULSUB \$99, \$129, \$131, \$8 MULADD \$100, \$132, \$134, \$0 MULSUB \$102, \$132, \$134, \$0 MULADD \$101, \$133, \$135, \$8 MULSUB \$103, \$133, \$135, \$8

MULADD \$104, \$136, \$138, \$0 MULSUB \$106, \$136, \$138, \$0 MULADD \$105, \$137, \$139, \$8 MULSUB \$107, \$137, \$139, \$8 MULADD \$108, \$140, \$142, \$0 MULSUB \$110, \$140, \$142, \$0 MULADD \$109, \$141, \$143, \$8 MULSUB \$111, \$141, \$143, \$8

stage 3

MULADD \$112, \$80, \$84, \$0 MULSUB \$116, \$80, \$84, \$0 MULADD \$113, \$81, \$85, \$4 MULSUB \$117, \$81, \$85, \$4 MULADD \$114, \$82, \$86, \$8 MULSUB \$118, \$82, \$86, \$8 MULADD \$115, \$83, \$87, \$12 MULSUB \$119, \$83, \$87, \$12 MULADD \$120, \$88, \$92, \$0 MULSUB \$124, \$88, \$92, \$0 MULADD \$121, \$89, \$93, \$4 MULSUB \$125, \$89, \$93, \$4 MULADD \$122, \$90, \$94, \$8 MULSUB \$126, \$90, \$94, \$8 MULADD \$123, \$91, \$95, \$12 MULSUB \$127, \$91, \$95, \$12 MULADD \$128, \$92, \$96, \$0 MULSUB \$132, \$92, \$96, \$0 MULADD \$129, \$93, \$97, \$4 MULSUB \$133, \$93, \$97, \$4 MULADD \$130, \$94, \$98, \$8 MULSUB \$134, \$94, \$98, \$8 MULADD \$131, \$95, \$99, \$12 MULSUB \$135, \$95, \$99, \$12 MULADD \$136, \$96, \$100, \$0 MULSUB \$140, \$96, \$100, \$0 MULADD \$137, \$97, \$101, \$4 MULSUB \$141, \$97, \$101, \$4 MULADD \$138, \$98, \$102, \$8 MULSUB \$142, \$98, \$102, \$8 MULADD \$139, \$99, \$103, \$12 MULSUB \$143, \$99, \$103, \$12

stage 4

MULADD \$80, \$112, \$120, \$0 MULSUB \$88, \$112, \$120, \$0 MULADD \$81, \$113, \$121, \$2

MULSUB \$89, \$113, \$121, \$2 MULADD \$82, \$114, \$122, \$4 MULSUB \$90, \$114, \$122, \$4 MULADD \$83, \$115, \$123, \$6 MULSUB \$91, \$115, \$123, \$6 MULADD \$84, \$116, \$124, \$8 MULSUB \$92, \$116, \$124, \$8 MULADD \$85, \$117, \$125, \$10 MULSUB \$93, \$117, \$125, \$10 MULADD \$86, \$118, \$126, \$12 MULSUB \$94, \$118, \$126, \$12 MULADD \$87, \$119, \$127, \$14 MULSUB \$95, \$119, \$127, \$14 MULADD \$96, \$128, \$136, \$0 MULSUB \$104, \$128, \$136, \$0 MULADD \$97, \$129, \$137, \$2 MULSUB \$105, \$129, \$137, \$2 MULADD \$98, \$130, \$138, \$4 MULSUB \$106, \$130, \$138, \$4 MULADD \$99, \$131, \$139, \$6 MULSUB \$107, \$131, \$139, \$6 MULADD \$100, \$132, \$140, \$8 MULSUB \$108, \$132, \$140, \$8 MULADD \$101, \$133, \$141, \$10 MULSUB \$109, \$133, \$141, \$10 MULADD \$102, \$134, \$142, \$12 MULSUB \$110, \$134, \$142, \$12 MULADD \$103, \$135, \$143, \$14 MULSUB \$111, \$135, \$143, \$14

stage 5

MULADD \$80, \$112, \$128, \$0 MULSUB \$96, \$112, \$128, \$0 MULADD \$81, \$113, \$129, \$1 MULSUB \$97, \$113, \$129, \$1 MULADD \$82, \$114, \$130, \$2 MULSUB \$98, \$114, \$130, \$2 MULADD \$83, \$115, \$131, \$3 MULSUB \$99, \$115, \$131, \$3 MULADD \$84, \$116, \$132, \$4 MULSUB \$100, \$116, \$132, \$4 MULADD \$85, \$117, \$133, \$5 MULSUB \$101, \$117, \$133, \$5 MULADD \$86, \$118, \$134, \$6 MULSUB \$102, \$118, \$134, \$6 MULADD \$87, \$119, \$135, \$7 MULSUB \$103, \$119, \$135, \$7 MULADD \$88, \$120, \$136, \$8 MULSUB \$104, \$120, \$136, \$8 MULADD \$89, \$121, \$137, \$9 MULSUB \$105, \$121, \$137, \$9 MULADD \$90, \$122, \$138, \$10 MULSUB \$106, \$122, \$138, \$10 MULADD \$91, \$123, \$139, \$11 MULSUB \$107, \$123, \$139, \$11 MULADD \$92, \$124, \$140, \$12 MULSUB \$108, \$124, \$140, \$12 MULADD \$93, \$125, \$141, \$13 MULSUB \$109, \$125, \$141, \$13 MULADD \$94, \$126, \$142, \$14 MULSUB \$110, \$126, \$142, \$14 MULADD \$95, \$127, \$143, \$15 MULSUB \$111, \$127, \$143, \$15