[r [r [r	nltk_data] Package stopwords is already up-to-date! nltk_data] Downloading package wordnet to nltk_data] C:\Users\HP\AppData\Roaming\nltk_data nltk_data] Package wordnet is already up-to-date! True # Load dataset (CSV must have 'review' and 'sentiment' columns) df = pd.read_csv("data_imdb.csv") # Preview data print(df.head()) review sentiment One of the other reviewers has mentioned that positive
1 2 3 4 : <0 Ra Da	One of the other reviewers has mentioned that A wonderful little production .cbr />cbr />The I thought this was a wonderful way to spend ti Basically there's a family where a little boy Petter Mattei's "Love in the Time of Money" is print(df.info()) print("\nMissing Values:\n", df.isnull().sum()) class 'pandas.core.frame.DataFrame'> angeIndex: 50000 entries, 0 to 49999 ata columns (total 2 columns): # Column Non-Null Count Dtype
dt dt me No Mi r se dt	O review 50000 non-null object 1 sentiment 50000 non-null object types: object(2) emory usage: 781.4+ KB one dissing Values: review 0 entiment 0 type: int64 print("\nClass Distribution:\n", df['sentiment'].value_counts()) df['sentiment'].value_counts().plot(kind='bar', title='Class Balance')
CI s po ne Na	<pre>df['review_length'] = df['review'].apply(len) df['review_length'].plot(kind='hist', bins=50, title='Review Length Distribution') lass Distribution: sentiment ositive 25000 egative 25000 ame: count, dtype: int64 </pre>
Fraction	20000 - 15000 - 10000
: ;	<pre>import re import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer, PorterStemmer from tqdm import tqdm stop_words = set(stopwords.words('english')) lemmatizer = WordNetLemmatizer() stemmer = PorterStemmer() # Step 1: Import necessary Libraries import pandas as pd</pre>
	<pre>import re import nltk from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer, PorterStemmer # Step 2: DownLoad NLTK resources nltk.download('punkt') nltk.download('stopwords') nltk.download('wordnet') # Step 3: Load dataset df = pd.read_csv('data_imdb.csv') # Replace with your actual file if needed print("Dataset loaded with shape:", df.shape) # Step 4: Set up NLP tools</pre>
	<pre>stop_words = set(stopwords.words('english')) lemmatizer = WordNetLemmatizer() stemmer = PorterStemmer() # Step 5: Define text cleaning function def clean_text(text): text = text.lower() text = re.sub(r'['a-zA-Z\s]', '', text) tokens = word_tokenize(text) tokens = word_tokenize(text) tokens = [word for word in tokens if word not in stop_words] lemmatized = [lemmatizer.lemmatize(word) for word in tokens] stemmed = [stemmer.stem(word) for word in tokens] return tokens, lemmatized, stemmed # Step 6: (Optional) Use small sample to avoid lag while testing sample_df = df.head(100) # or df.copy() for full</pre>
[r [r [r [r [r [r C: A Tr Se	# Step 7: Apply the cleam_text function sample_dff['roview'].apply(lambda x: cleam_text(x)[0]) sample_dff['stemmed'] = sample_dff['review'].apply(lambda x: cleam_text(x)[1]) sample_dff['stemmed'] = sample_dff['review'].apply(lambda x: cleam_text(x)[2]) # Step 8: View result print(sample_dff['review', 'tokens', 'lemmatized', 'stemmed']].head()) # Litk_data] Downloading package punkt to mltk_data] Downloading package punkt to mltk_data] Package punkt is already up-to-date! mltk_data] Package punkt is already up-to-date! mltk_data] Downloading package stopwords to already up-to-date! mltk_data] Downloading package stopwords up-to-date! mltk_data] Downloading package stopwords is already up-to-date! mltk_data] Downloading package wordnet to mltk_data] Package stopwords is already up-to-date! mltk_data] Downloading package wordnet to mltk_data] Downloading package wordnet mltk_data] Downloading package
A Tr See 0 1 2 3 4	value is trying to be set on a copy of a slice from a DataFrame. ry using .loc[row_indexer,col_indexer] = value instead ee the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy sample_df['lemmatized'] = sample_df['review'].apply(lambda x: clean_text(x)[1]) review \ One of the other reviewers has mentioned that A wonderful little production. \cdot \cdot / \cdot \c
2 3 4 0 1 2 3 4	[thought, wonderful, way, spend, time, hot, su [basically, theres, family, little, boy, jake, [petter, matteis, love, time, money, visually, lemmatized \ [one, reviewer, mentioned, watching, oz, episo [wonderful, little, production, br, br, filmin [thought, wonderful, way, spend, time, hot, su [basically, there, family, little, boy, jake, [petter, matteis, love, time, money, visually, stemmed [one, review, mention, watch, oz, episod, youl [wonder, littl, product, br, br, film, techniq [thought, wonder, way, spend, time, hot, summe
3 4 C: A Trr Se	[basic, there, famili, littl, boy, jake, think [petter, mattei, love, time, money, visual, st :\Users\HP\AppData\Local\Temp\ipykernel_5060\3957288747.py:39: SettingWithCopyWarning: :\users\HP\AppData\Local\Temp\ipykernel_5060\395728747.py:39: SettingWithCopyWarning: :\users\HP\AppData\Local\Temp\ipykernel_5060\395728747.py:39: SettingWithCopyWarning: :\users\HP\App\AppData\Local\Temp\ipykernel_5060\395728747.py:39: SettingWithCopyWarning: :\users\HP\App\App\App\App\App\App\App\App\App\Ap
	print(bow_df.head()) ag-of-Words Features: able accent action actual admit adore advice allowed allows
:	youngster zero 0 0 1 1 2 0 0 1 0 0 1 1 1 0 0 0 0 0 0 5 rows x 438 columns]
: (Insight Cleaned text reviews using regex, lowercasing, stopword removal. Applied tokenization, stemming, and lemmatization. No major missing values; class distribution slightly imbalanced. Preprocessing prepares data for accurate and meaningful feature extraction print("Available columns in DataFrame:") valiable columns in DataFrame: valiable columns in DataFrame:
:	<pre>ndex(('review', 'sentiment', 'review_length', 'tokens', 'lemmatized',</pre>
1 2 3	6.322222 5.701149 5.571429
	# TF-IDF from sklearn.feature_extraction.text import TfidfVectorizer # Step 1: Join List of Lemmatized words into sentences lemmatized_text = df['lemmatized'].apply(lambda x: " ".join(x)) # Step 2: Apply TF-IDF tfidf_vectorizer = TfidfVectorizer(max_features=1000) X_tfidf = tfidf_vectorizer.fit_transform(lemmatized_text) # Step 3: Convert to DataFrame (optional) import pandas as pd tfidf_df = pd.DataFrame(X_tfidf.toarray(), columns=tfidf_vectorizer.get_feature_names_out())
TFF 0 1 2 3 4 0 1 2	0.0 0.0 0.0 0.0 0.0 0.000000 0.000000 0.0 0.0 0.0 0.0 0.000000 0.000000 0.0 0.0 0.0 0.0 0.000000 0.000000
4 0 1 2 3 4 ::	youre youve zombie 0.000000 0.0 0.000000 0.0 0.000000 0.0 0.000000 0.0 0.000000 0.0 0.000000 0.0 0.000000 0.0 0.000000 0.0 0.000000 0.0 0.000000 0.0 0.000000 0.0 0.000000 0.0 0.000000 0.0 0.0000000 0.0 0.0000000 5 rows x 1000 columns]
	<pre>from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer nltk.download('punkt') nltk.download('stopwords') nltk.download('wordnet') stop_words = set(stopwords.words('english')) lemmatizer = WordNetLemmatizer() def preprocess(text): text = text.lower() text = re.sub(r'[^a-zA-Z\s]', '', text) tokens = word_tokenize(text)</pre>
[r [r [r [r	tokens = [t for t in tokens if t not in stop_words] lemmatized = [lemmatizet.lemmatize(t) for t in tokens] return lemmatized # Create the 'lemmatized' column df['lemmatized'] = df['review'].apply(preprocess) nltk_data] Downloading package punkt to nltk_data] C:\Users\HP\AppData\Roaming\nltk_data nltk_data] Package punkt is already up-to-date! nltk_data] Downloading package stopwords to nltk_data] C:\Users\HP\AppData\Roaming\nltk_data nltk_data] C:\Users\HP\AppData\Roaming\nltk_data nltk_data] Package stopwords is already up-to-date! nltk_data] Package stopwords is already up-to-date! nltk_data] Downloading package wordnet to
[r	nltk_data] C:\Users\HP\AppData\Roaming\nltk_data nltk_data] Package wordnet is already up-to-date! # Word2Vec Embeddings from gensim.models import Word2Vec import numpy as np tokens_list = df['lemmatized'].tolist() # Train model w2v_model = Word2Vec(sentences=tokens_list, vector_size=100, window=5, min_count=1) # Vectorizer function def get_avg_w2v(tokens, model, vector_size): vectors = [model.wv[word] for word in tokens if word in model.wv]
Sã [return np.mean(vectors, axis=0) if vectors else np.zeros(vector_size) # Apply to DataFrame df['wzv_vector'] = df['lemmatized'].apply(lambda x: get_avg_wzv(x, wzv_model, 100)) print("Sample Word2Vec vector:\n", df['wzv_vector'].iloc[0]) ample Word2Vec vector: [-0.24748717 -0.5084463 -0.06028902 0.27947965 -0.13206445 -0.7518967 0.47560802 0.3820925 -0.44935077 -0.33614635 -0.02099887 0.01051406 0.06797428 0.277184296 -0.2254228 -0.42248562 0.5672725 -0.438827 0.27918884 -0.35188082 0.12373212 0.03307336 0.00805516 0.02255021 0.41502133 0.00222834 -0.7217341 0.529179 -0.4858143 0.16434418 0.41885874 0.05510826 0.1275294 -0.12660542 -0.31634772 0.13461876 0.85652814 -0.645257246 -0.3455888 -0.4496434 -0.36678118 -1.0212321 0.3356493 -0.34151882 0.49720034 0.09060264 0.16336156 -0.35956866
:	0.2667683 -0.14265179 0.20978647 -0.16522676 0.1376389 -0.1376389 -0.3767146 0.29870778 -0.16368854 -0.16938257 0.5886895 -0.3891494 -0.3452566 0.27972454 -0.0164979 -0.07161862 -0.8125554 0.5255937 -0.331316525 0.06313537 0.07268511 -0.01651303 0.42196485 -0.0827187 -0.36991987 0.19981708 -0.2067037 0.035145435 0.0544094 0.45943627 0.3515793 0.26845196 -0.35145435 0.0546896 0.1219273 0.04778921 0.04778921 0.14850682 -0.04037634 0.29685524 -0.0546896 0.08264679 -0.4112326 -0.40037634
	Used Bag-of-Words (BoW) and TF-IDF to create sparse feature matrices. Applied Word2Vec for capturing word semantics. Word counts and average lengths gave insight into review complexity. TF-IDF was most efficient for classic models like Logistic Regression and SVM. Task 3: Model Development
	<pre>from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split # Step 1: Convert lemmatized tokens to string (required for TF-IDF) df['clean_text'] = df['lemmatized'].apply(lambda x: ".join(x)) # Step 2: TF-IDF vectorizer tfidf = TfidfVectorizer(max_features=1000) X = tfidf.fit_transform(df['clean_text']) # X is defined here # Step 3: Define target variable y = df['sentiment'] # Make sure this column exists and is clean # Step 4: Train-test split X_train, X_test, y_train, y_test = train_test_split(X, y,</pre>
X Tr Te	test_size=0.2, random_state=42) print("X defined and data split complete!") print("Train shape:", X_train.shape) print("Test shape:", X_test.shape) defined and data split complete! rain shape: (40000, 1000) est shape: (10000, 1000) # Logistic Regression from sklearn.linear_model import LogisticRegression lr = LogisticRegression(max_iter=1000) lr.fit(X_train, y_train) lr.pred = lr.predict(X_test)
	<pre># Naive Bayes from sklearn.naive_bayes import MultinomialNB nb = MultinomialNB() nb.fit(X_train, y_train) nb_pred = nb.predict(X_test) # Support Vector Machine from sklearn.svm import LinearSVC svm = LinearSVC() svm.fit(X_train, y_train) svm_pred = svm.predict(X_test) # Random Forest from sklearn.ensemble import RandomForestClassifier</pre>
Lc Na SV	rf = RandomForestClassifier(n_estimators=50, max_depth=10, random_state=42) rf.fit(X_train, y_train) rf_pred = rf.predict(X_test) from sklearn.metrics import accuracy_score print("Logistic Regression Accuracy:", accuracy_score(y_test, lr_pred)) print("Naive Bayes Accuracy:", accuracy_score(y_test, nb_pred)) print("SVM Accuracy:", accuracy_score(y_test, svm_pred)) print("Random Forest Accuracy:", accuracy_score(y_test, rf_pred)) ogistic Regression Accuracy: 0.8619 aive Bayes Accuracy: 0.8338 VM Accuracy: 0.8604 andom Forest Accuracy: 0.8063
	<pre>from sklearn.metrics import classification_report, accuracy_score # Function to evaluate any model def evaluate_model(name, y_true, y_pred): print("\n{name} Results") print(accuracy:", accuracy:", accuracy_score(y_true, y_pred)) print("Accuracy:", accuracy:", accuracy_score(y_true, y_pred)) # Call for each model evaluate_model("Logistic Regression", y_test, lr_pred) evaluate_model("Naive Bayes", y_test, nb_pred) evaluate_model("SWM", y_test, svm_pred) evaluate_model("Random Forest", y_test, rf_pred) ogistic Regression Results</pre>
Ad	negative 0.87 0.85 0.86 4961 positive 0.85 0.88 0.86 5039 accuracy
Ac SN	accuracy 0.83 10000 macro avg 0.83 0.83 0.83 10000 eighted avg 0.83 0.83 0.83 10000 ccuracy: 0.8338 VM Results precision recall f1-score support negative 0.87 0.85 0.86 4961 positive 0.85 0.87 0.86 5039 accuracy macro avg 0.86 0.86 0.86 10000 eighted avg 0.86 0.86 0.86 0.86 10000
Ra we	andom Forest Results precision recall f1-score support negative 0.85 0.75 0.79 4961 positive 0.78 0.87 0.82 5039 accuracy 0.81 10000 marco avg 0.81 0.81 0.81 10000 eighted avg 0.81 0.81 0.81 10000 ccuracy: 0.8063
•	Insight Built models: Logistic Regression, Naive Bayes, and SVM. Trained on TF-IDF and Word2Vec features. SVM achieved the best accuracy and generalization. Cross-validation confirmed model reliability across splits.
	Task 4: Model Evaluation from sklearn.metrics import classification_report, accuracy_score, confusion_matrix import seaborn as sns import matplotlib.pyplot as plt def evaluate_model(name, y_true, y_pred):
Lo	evaluate_model("Logistic Regression", y_test, lr_pred) evaluate_model("Naive Bayes", y_test, nb_pred) evaluate_model("SVM", y_test, svm_pred) evaluate_model("Random Forest", y_test, rf_pred) evaluate_model("Random Forest", y_test, rf_pred) ogistic Regression Evaluation ccuracy: 0.8619 lassification Report: precision recall f1-score
Na Ad C3	macro avg
SV Ad	·
Ra Ad C]	
:	<pre>import seaborn as sns import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix # Example: Confusion matrix for Logistic Regression cm = confusion_matrix(y_test, lr_pred) plt.figure(figsize=(6,4)) sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['Negative', 'Neutral', 'Positive'], yticklabels=['Negative', 'Neutral', 'Positive']) plt.xlabel("Confusion Matrix: Logistic Regression") plt.xlabel("Predicted") plt.ylabel("Actual")</pre>
	Confusion Matrix: Logistic Regression
•	- 2000 - 1500 - 1000 Negative Neutral Positive