ФГБОУ ВО ННГАСУ

Кафедра информационных систем и технологий

Расчетно-графическая работа

Разработка в среде OpenSource

Разработка приложения сортировки и поиска

Выполнила сту	дентка 3 курса группы ИС-29
Хазова А.С.	
	(подпись)
	Проверил старший преподаватель
Лахов А. Я.	(подпись)

Нижний Новгород 2023 год

Содержание

Задание	3
Алгоритм метода сортировки	4
Алгоритм метода поиска	5
Код на языке Java	
код на языке зача	٠. ر
Сеанс работы с приложением	14

Задание

Разработать консольное приложение на Java, генерирующее файл Data.txt со случайными целыми числами.

Разработать графическое приложение на Java, реализующее функции:

- а) чтение содержания файла Data.txt (название файла вводится через JOptionPane.showInputDialog), запись значений в массив (например, int a []), вывод введенных значений в TextArea,
- б) выполнение имитации сортировки значений массива заданным методом, вывод отсортированных значений в TextArea,
- в) выполнение имитации поиска заданного значения int Key (значение Key вводится через JOptionPane.showInputDialog) заданным методом, найденный индекс, при успешности поиска, выводится в метку Label, при неудаче выводится сообщение Not Found.

Вариант 8.

Задание 1. Выполнение сортировки значений массива методом вставки.

Задание 2. Выполнение поиска заданного значения int Key методом бинарного поиска.

Алгоритм метода сортировки

Сортировка массивов, в данной работе, происходит методом вставки.

Сортировка вставками - алгоритм, при котором каждый последующий элемент массива сравнивается с предыдущими элементами (отсортированными) и вставляется в нужную позицию.

На первом шаге сортируются два первых элемента. Затем на свое место среди них вставляется третий элемент. К трем упорядоченным добавляется четвертый, который занимает свое место в четверке и т. д. Для этого на каждом шаге алгоритма мы выбираем один из элементов входных данных и вставляем его на нужную позицию в уже отсортированной части массива, до тех пор пока весь набор входных данных не будет отсортирован. Метод выбора очередного элемента из исходного массива произволен, однако обычно (и с целью получения устойчивого алгоритма сортировки), элементы вставляются по порядку их появления во входном массиве.

Рис. 1 — Наглядное представление сортировки массива методом вставки.

Так как в процессе работы алгоритма могут меняться местами только соседние элементы, каждый обмен уменьшает число инверсий на единицу. Следовательно, количество обменов равно количеству инверсий в исходном зависимости от реализации массиве вне сортировки. Максимальное количество инверсий содержится В массиве, элементы которого отсортированы не по возрастанию. Число инверсий в таком массиве n*(n-1)/2.

Алгоритм метода поиска

Алгоритм поиска выполняется с помощью методом бинарного поиска.

Бинарным (или двоичным) называют поиск элемента упорядоченного множества через многократное деление этого множества пополам. Искомый элемент всегда будет оказываться в одной из двух частей. Поиск прекращается, когда обнаруживается совпадение граничного элемента между двумя разделенными блоками с заданным, или когда заданный элемент не обнаруживается вовсе.

Реализация этого метода возможна только применимо к отсортированным множествам.

Рис.2 – Наглядное представление бинарного поиска

Код на языке Java

Реализация консольного приложения для создания текстового файла Data.txt и записи в него массива из двадцати случайных чисел:

```
//CreateFile.java
import java.io.File;
import java.io.*;
import java.util.*;
public class CreateFile {
  public static void main(String[] args)throws IOException {
     int[] a = new int[20];
     for (int i = 0; i < a.length; i++) {
       a[i] = (int)(Math.random() * 1001);
       System.out.println(a[i]); }
     File file = new File("Data.txt");
     file.createNewFile();
     FileWriter writer = new FileWriter(file);
     for (int i = 0; i < a.length; i++) {
       final String s = Integer.toString(a[i]);
       writer.write(s);
       writer.write(System.lineSeparator()); }
     writer.close();
  }
```

Реализация графического приложения по сортировке и поиску элементов в массиве целых случайных чисел:

```
//DataInputOutput.java
import java.awt.*;
import java.awt.event.*;
import java.io.IOException;
import java.io.*;
import javax.swing.*;
import java.io.BufferedReader;
public class DataInputOutput extends JFrame implements ActionListener{
  int size = 20;
  int[] a5 = new int[size];
  private JTextArea txt = new JTextArea(4, 57);
  Label lbl = new Label("
                                                 ", Label.CENTER);
                            Нажмите на меню
  Label lbl3 = new Label("______",
Label.CENTER);
  public void actionPerformed(ActionEvent e){
    System.out.println("Menu event: "+e);
    String cmd = e.getActionCommand();
    if(cmd.equals("Open")){
      lbl.setText("
                      Нажата кнопка Ореп
                                             ");
      String file="";
```

```
file = JOptionPane.showInputDialog("Введите название файла с
данными");
       System.out.println(file);
       try{
         FileInputStream fis = new FileInputStream(file);
         InputStreamReader isr = new InputStreamReader(fis);
         BufferedReader br = new BufferedReader(isr);
         String line;
         int i = 0;
         while((line = br.readLine()) != null){
            a5[i] = Integer.parseInt(line);
            i++;
            System.out.println(line); }
         br.close();
       }
       catch(IOException el){
         el.printStackTrace();
       }
       txt.setLineWrap(true);
       txt.setWrapStyleWord(true);
       txt.append("Массив: ");
       for(int i = 0; i < a5.length; i++){
         txt.append(a5[i] + " ");
```

```
}
  txt.append("\n");
}
else if (cmd.equals("Exit")){
  lbl.setText("
                   Нажата кнопка Exit
                                             ");
  dispose();
  System.exit(0);
}
else if(cmd.equals("Sort")){
  lbl.setText("
                   Нажата кнопка Sort
                                             ");
  txt.setLineWrap(true);
  txt.setWrapStyleWord(true);\\
  txt.append("Отсортированный массив: ");
  int in;
  for (int out = 1; out<a5.length; out++){
    int temp = a5[out];
     in = out;
     while(in>0 && a5[in-1] >= temp){
       a5[in] = a5[in-1];
       --in;
     }
     a5[in] = temp;
```

```
}
            for(int i = 0; i < a5.length; i++){
                         txt.append(a5[i] + " ");
             }
            txt.append("\n");
}
else if(cmd.equals("Find")){
            lbl.setText("
                                                                                                       Нажата кнопка Find
                                                                                                                                                                                                                                               ");
             String val="";
             val = JOptionPane.showInputDialog("Введите ключ поиска?");
            int val1 = Integer.parseInt(val);
             System.out.println(val1);
            int k=-1, low = 0, m;
            int high = a5.length - 1;
            while (low <= high){
                         m = low + (high - low)/2;
                         if (a5[m] < val1){
                                      low = m + 1;
                           } else if (a5[m]>val1){
                                      high = m - 1;
                           ellipse = elli
                                      k = m;
```

```
break;
       }
    }
    if (k!=-1)
      lbl3.setText("Найден элемент "+val1+" с индексом " +k);
    else lbl3.setText("Данного значения нет в массиве");
  }
}
void Menu(){
  JMenu m1 = new JMenu("File");
  JMenuItem Item1 = new JMenuItem("Open");
  JMenuItem Item2 = new JMenuItem("Exit");
  m1.add(Item1);
  Item1.addActionListener(this);
  m1.add(Item2);
  Item2.addActionListener(this);
  JMenu m2 = new JMenu("Work");
  JMenuItem Item3 = new JMenuItem("Sort");
  JMenuItem Item4 = new JMenuItem("Find");
  m2.add(Item3);
  Item3.addActionListener(this);
  m2.add(Item4);
```

```
Item4.addActionListener(this);
    JMenuBar mBar = new JMenuBar();
    mBar.add(m1);
    mBar.add(m2);
    setJMenuBar(mBar);
  }
  public DataInputOutput(){
    super("DataIntupOutput");
    Menu();
    setSize(660, 350);
    Container cp = getContentPane();
    JLabel lbl2 = new JLabel();
    lbl2.setText("<html>Pacчетно-графическая работа Хазовой Александры
Сергеевны ИС-29 Вариант 8 <br/> Метод сортировки: вставка <br/> Метод
поиска: бинарный</html>");
    cp.add(lbl2);
    cp.setLayout(new FlowLayout(FlowLayout.CENTER));
    cp.add(lbl);
    cp.add(new JScrollPane(txt));
    cp.add(lbl3);
    setVisible(true);
  }
  public static void main(String[] args) throws Exception {
```

```
new DataInputOutput();
}
```

Сеанс работы с приложением

