CSE 460: VLSI Design

Lecture 9: Finite State Machines (part 2)

Figure 6.22 Sequences of input and output signals.

Steps->

- > State diagram
- > State table
- > State assigned table
- ➤ K-map
- > Circuit

Figure 6.23 State diagram of an FSM that realizes the task in Figure 6.22.

Steps->

- > State diagram
- > State table
- > State assigned table
- ➤ K-map
- > Circuit

Present	Next state		Output z	
state	w = 0	w = 1	w = 0	w = 1
A	A	В	0	0
В	A	В	0	1

Figure 6.24 State table for the FSM in Figure 6.23.

	Present	Next state		Output	
		w = 0	w = 1	w = 0	w = 1
0	у	Y	Y	z	z
	0	0	1	0	0
	1	0	1	0	1

Steps->

- > State diagram
- > State table
- > State assigned table
- K-map
- > Circuit

Note that,

$$>$$
 Y = f(w,y)

$$>$$
 z = f(w,y)

Figure 6.25 State-assigned table for the FSM in Figure 6.24.

$$Y = w$$

$$z = wy$$

Steps->

- > State diagram
- > State table
- > State assigned table
- > K-map (Y and z)
- > Circuit

Note that,

$$\rightarrow$$
 Y = f(w,y)

$$>$$
 z = f(w,y)

Steps->

- > State diagram
- > State table
- > State assigned table
- ➤ K-map
- Circuit

Encoding Schemes (State Assignment)

Consider a state assigned table below:

	Present	Next s	tate	
	state	w=0	w=1	Output
	^y 2 ^y 1	<i>Y</i> ₂ <i>Y</i> ₁	<i>Y</i> ₂ <i>Y</i> ₁	Z
A	00	00	01	0
B	01	00	10	0
C	10	00	10	1
	11	dd	dd	d

Schemes->

- > Binary encoding
- > Gray encoding
- One-hot encoding

Encoding Schemes (State Assignment)

Consider another state assigned table below:

	Present	Next s	tate	
	state	w=0	w=1	Output
	<i>y</i> ₂ <i>y</i> ₁	<i>Y</i> ₂ <i>Y</i> ₁	<i>Y</i> ₂ <i>Y</i> ₁	z.
A	00	00	01	0
B	01	00	11	0
C	11	00	11	1
	10	dd	dd	d

Schemes->

- Binary encoding
- **➤** Gray encoding
- One-hot encoding

Decimal Number	4 bit Binary Number	4 bit Gray Code
	ABCD	$G_1G_2G_3G_4$
0 1 2	0 0 0 0 0 0 0 1 0 0 1 0	0 0 0 0 0 0 0 1 0 0 1 1
3 4	0011	$\frac{0}{0} \frac{0}{1} \frac{1}{1} \frac{0}{0}$
5 6	0101	0111
7 8	0111	0100
9	1001	1101
11 12	1011	1110
13 14	1101	1011
15	1111	1000

Encoding Schemes (State Assignment)

Consider another state assigned table below:

	Present	Next	state	
	state	w = 0	w = 1	Output
	$y_3 y_2 y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	Z
A	001	001	010	0
В	010	001	100	0
C	100	001	100	1

Schemes->

- Binary encoding
- Gray encoding
- **➤** One-hot encoding

How many flipflops are required? Ans: 3