CompMath: LATEX-Übung 1

Richard Weiss vs. Asst. Prof. Kevin Sturm June 2019

1

Theorem (Brezzi 1974). Let X and Y be Hilbert spaces. Further, let $a: X \times X \to \mathbb{R}$ and $b: X \times Y \to \mathbb{R}$ be continuous bilinear forms and $X_0 := \{x \in X : b(x,\cdot) = 0 \in Y^*\}$. Under the assumptions

- $\alpha := \inf_{v \in X_0 \setminus \{0\}} \frac{a(v,v)}{\|v\|_X^2} > 0$, i.e., $a(\cdot,\cdot)$ is coercive in X_0 ,
- $\bullet \ \beta \coloneqq \inf_{\substack{y \in Y \\ y \neq 0}} \sup_{\substack{x \in X \\ x \neq 0}} \frac{b(x,y)}{\|x\|_X \|y\|_Y} > 0$

there holds the assertion: For each $(x^*, y^*) \in X^* \times Y^*$ there is a unique solution $(x, y) \in X \times Y$ of the so-called saddle point problem

$$a(x,\tilde{x}) + b(\tilde{x},y) = x^*(\tilde{x}) \text{ for all } \tilde{x} \in X,$$

$$b(\tilde{x},y) = y^*(\tilde{y}) \text{ for all } \tilde{y} \in Y.$$
 (SP)

$\mathbf{2}$

The Gamma function is defined as

$$\Gamma(x) := \lim_{n \to \infty} \frac{n! \, n^x}{x(x+1) \cdots (x+n)}.$$

There holds the Weierstraß product representation

$$\frac{1}{\Gamma(x)} = x \cdot e^{Cx} \cdot \prod_{k=1}^{\infty} \left(1 + \frac{x}{k} \right) e^{-x/k} \text{ where } C \coloneqq \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right).$$

3

For given basis $b \in \mathbb{N}_{\geq 2}$, mantissa length $t \in \mathbb{N}$ and exponential bounds $e_{\min} < 0 < e_{\max}$ we define the set of normalized floating point numbers $F := F(b, t, e_{\min}, e_{\max}) \subset \mathbb{R}$ by

$$F = \{0\} \cup \left\{ \left(\sigma \sum_{k=1}^{t} a_k b^{-k} \right) b^e \, \middle| \, \sigma \in \{\pm 1\}, a_j \in \{0, \dots, b-1\}, a_1 \neq 0, e \in \mathbb{Z}, e_{\min} \leq e \leq e_{\max} \right\}.$$

The finite sum $a = \sum_{k=1}^{t} a_k b^{-k}$ is called **normalized mantissa** of a floating point number.

4

For $q \in \mathbb{R}$, it holds that

$$\lim_{n \to \infty} q^n = \begin{cases} +\infty & \text{iff } q > 1, \\ 1 & \text{iff } q = 1, \\ 0 & \text{iff } -1 < q < 1, \\ \# & \text{iff } q \le -1. \end{cases}$$

5

$$V(x_1, \dots, x_n) := \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix} \in \mathbb{R}^{n \times n}$$

6

In general,

$$\det V(x_1, \dots, x_n) = \prod_{1 \le i \le j \le n} (x_j - x_i).$$

For n = 6, Maple gives us

$$\det V(x_1, \dots, x_6) = (x_5 - x_6)$$

$$(x_4 - x_6) (x_4 - x_5)$$

$$(x_3 - x_6) (x_3 - x_5) (x_3 - x_4)$$

$$(x_2 - x_6) (x_2 - x_5) (x_2 - x_4) (x_2 - x_3)$$

$$(x_1 - x_6) (x_1 - x_5) (x_1 - x_4) (x_1 - x_3) (x_1 - x_2).$$

7

Theorem. The matrix $L \in \mathbb{R}^{n \times n}$ has the following form

$$L = \begin{pmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{pmatrix}$$

with $L_{11} \in \mathbb{R}^{k \times k}$ and 0 < k < n. If L_{11} and L_{22} are regular, then L is regular as well, and the inverse is given by

$$L^{-1} = \begin{pmatrix} L_{11}^{-1} & 0 \\ -L_{22}^{-1}L_{21}L_{11}^{-1} & L_{22}^{-1} \end{pmatrix}.$$

Proof. Because L_{11} , L_{22} are regular, L_{11}^{-1} , L_{22}^{-1} and thus, L^{-1} are well-defined. To verify that L^{-1} is indeed the correct inverse of L, we multiply block wise

$$L^{-1} \cdot L = \begin{pmatrix} L_{11}^{-1} & 0 \\ -L_{22}^{-1} L_{21} L_{11}^{-1} & L_{22}^{-1} \end{pmatrix} \cdot \begin{pmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{pmatrix} = \begin{pmatrix} E_k & 0 \\ 0 & E_{n-k} \end{pmatrix} = E_n.$$

This calculation shows that $L \in GL_n(\mathbb{R})$.

8

Theorem. Let $n \in \mathbb{N}$, $A, B \subset \mathbb{R}^n$ be open intervals with compact closure \overline{A} , \overline{B} and $A \cap B = \emptyset$. We define the boundary of the sets as $\partial A := \overline{A} \setminus A$ and $\partial B := \overline{B} \setminus B$.

Then, there holds for the distances of the two sets that $dist(A, B) = dist(\partial A, \partial B)$, where we define for arbitrary sets $C, D \subset \mathbb{R}^n$

$$dist(C, D) := \inf \{ \|x - y\|_2 : x \in C, y \in D \}.$$
 (1)

Proof. We can write

$$A = \prod_{k=1}^n (a_k^-, a_k^+), B = \prod_{k=1}^n (b_k^-, b_k^+), \overline{A} = \prod_{k=1}^n [a_k^-, a_k^+] \text{ and } \overline{B} = \prod_{k=1}^n [b_k^-, b_k^+],$$

for bounded intervals $A, B \in \mathbb{R}^n$.

We notice, that $dist(A, B) = dist(\overline{A}, \overline{B})$:

"\le "\le "\in \begin{aligned} \overline{A}, \overline{B} \text{ are compact and } & \|x-y\|_2 \text{ continuous, the set in (1) is compact and } & \dist(\overline{A}, \overline{B}) = \le \limin\left\{ \|x-y\|_2 : x \in \overline{A}, y \in \overline{B}\right\}. \text{ Let } & x \in \overline{A}, y \in \overline{B}, \text{ be such that } & \dist(\overline{A}, \overline{B}) = \|x-y\|_2. \text{ However, one can find } & \in \in \le A, & \overline{y} \in B, \text{ sufficiently close to } & x, y. \text{ That is, for arbitrary } & \in 0, \text{ let } & \|x-\overline{x}\|_2, \|y-\overline{y}\|_2 \le \frac{\epsilon}{2}. \text{ Then} \text{ Then } \end{array}.

$$\Rightarrow \operatorname{dist}(A,B) \leq \|\tilde{x} - \tilde{y}\|_2 \leq \|\tilde{x} - x\|_2 + \|x - y\|_2 + \|y - \tilde{y}\|_2 \leq \frac{\epsilon}{2} + \operatorname{dist}(\overline{A},\overline{B}) + \frac{\epsilon}{2}$$
$$\Rightarrow \forall \epsilon > 0 : \operatorname{dist}(A,B) \leq \operatorname{dist}(\overline{A},\overline{B}) + \epsilon.$$

"\ge "This is trivial, because $A \subseteq \overline{A}, B \subseteq \overline{B}$."

In order to see, that $\operatorname{dist}(A, B) = \operatorname{dist}(\overline{A}, \overline{B}) = \operatorname{dist}(\partial A, \partial B)$, we notice, that $x \in \partial A, y \in \partial B$. If this were not the case, then w.l.o.g.

$$\exists \ell \in \{1,\ldots,n\} : x_{\ell} \in (a_{\ell}^-, a_{\ell}^+) \Rightarrow \exists \epsilon > 0 : K_{\epsilon}(x_{\ell}) \subseteq (a_{\ell}^-, a_{\ell}^+).$$

But, considering $\epsilon^2 < 2|x_\ell - y_\ell|\epsilon$, we would get the contradiction

$$||x - y||_2^2 - \sum_{\ell \neq k=1}^n |x_k - y_k|^2 = |x_\ell - y_\ell|^2$$

$$> |(x_\ell - y_\ell) - \operatorname{sgn}(x_\ell - y_\ell)\epsilon|^2$$

$$= |x_\ell - y_\ell|^2 - 2|x_\ell - y_\ell|\epsilon + \epsilon^2.$$