

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

Архитектура ЭВМ

Лабораторная работа №3

Синхронизация микроконтроллера и управление таймерами

Выполнила:

Овчинникова А. П.

Группа:

ИУ7-55Б

Вариант 16

Цель работы – изучение системы синхронизации микроконтроллера NXPLPC2368 и принципов функционирования таймеров общего назначения.

Задание.

Устройство состоит из трех исполнительных механизмов и кнопки, подключенных к устройству управления на основе микроконтроллера NXPLPC2368, подключенного к внешнему генератору синхросигнала. Разработать программу функционирования микроконтроллера, управляющего работой устройства и обеспечивающую заданную логику его работы при заданных параметрах частоты генератора, частоты процессорного ядра, частоты синхронизации периферии.

Устройство управления светофором. Программа функционирования:

- а) При нажатии на кнопку: зеленый сигнал работает в течении 2-хсекунд.
- b) Одновременно работают зеленый и желтый сигнал (1 секунда).
- с) Работает красный сигнал (10 секунд).

Частота внешнего генератора: 12 МГц.

Частота процессорного ядра: 24 МГц.

Частота синхронизации таймера: 12 МГц.

Вычислительная часть.

По условию F_{cpu} = 24 МГц.

$$F_{cpu} = \frac{F_{cco}}{CCLKSEL(7:0) + 1}$$

Пусть $\mathit{CCLKSEL}(7:0) = 11$. Тогда $\mathit{F_{cco}} = 24 \cdot 12 = 288$

$$F_{cco} = \frac{2 \cdot M \cdot F_{in}}{N}$$

По условию $F_{in}=12$ МГц. Тогда $\frac{M}{N}=\frac{F_{cco}}{2F_{in}}=\frac{288}{24}=12$. Возьмем $M=12,\,N=1$.

Листинг программы.

#include <LPC23xx.H> /* Oписание LPC23xx */

#define STB 26 //Port1.26

```
#define CLK 27 //Port1.27
#define DIO 28 //Port1.28
void delay(unsigned int t)
{
//Сбросить таймер
TOTC = 0x000000000;
//Установить задержку в мс в регистре совпадения МСК
TOMRO = t;
//Запустить таймер
TOTCR = 0x000000001;
//Ожидаем окончания счета
while (TOTCR&0x1) {};
}
void tm1638_sendbyte(unsigned int x)
\{
     unsigned int i;
     IODIR1 = (1 << DIO); // Устанавливаем пин DIO на вывод
     for(i = 0; i < 8; i++)
           IOCLR1 = (1 << CLK); // Сигнал CLK устанавливаем в <math>0
           delay(1);//Задержка
           if(x\&1) {IOSET1=(1<<DIO);} //Устанавливаем значение на
выходе DIO
           else
                            {IOCLR1=(1<<DIO);}
           delay(1);//Задержка
           x >>= 1:
           IOSET1 = (1 << CLK); // Сигнал CLK устанавливаем в 1
           delay(2);
```

```
unsigned int tm1638_receivebyte()
{
     unsigned int i;
     unsigned int x=0;
     IODIR1 \&= \sim (1 << DIO); // Устанавливаем пин DIO на ввод
     for(i = 0; i < 32; i++)
  {
           IOCLR1 = (1 << CLK); // Сигнал CLK устанавливаем в <math>0
           delay(1);//Задержка
           if (IOPIN1 &(1<<DIO)) {
                 x = (1 << i);
           delay(1);//Задержка
   IOSET1=(1<<CLK);//Сигнал CLK устанавливаем в 1
   delay(2);
return x;
void tm1638_sendcmd(unsigned int x)
           //Устанавливаем пассивный высокий уровень сигнала STB
           IOSET1 = (1 < < STB);
           //Устанавливаем пины CLK,DIO,STB на вывод
           IODIR1 = (1 << CLK)/(1 << DIO)/(1 << STB);
           //Устанавливаем активный низкий уровень сигнала STB
           IOCLR1=(1<<STB);
```

```
tm1638\_sendbyte(x);
}
void tm1638_setadr(unsigned int adr) {
     //Установить адрес регистра LED инидикации
     tm1638\_sendcmd(0xC0/adr);
}
void tm1638_init() {
     unsigned int i;
     //Разрешить работу индикации
     tm1638_sendcmd(0x88);
     //Установить режим адресации: автоинкремент
     tm1638_sendcmd(0x40);
     //Установить адрес регистра LED инидикации
     tm1638_setadr(0);
     //Сбросить все
     for(i=0;i<=0xf;i++)
           tm1638_sendbyte(0);
     //Установить режим адресации: фиксированный
     tm1638_sendcmd(0x44);
}
void Timer0_Init(void){
//Предделитель таймера = 12000
TOPR = 12000;
//Сбросить счетчик и делитель
TOTCR = 0x000000002;
//При совпадении останавливаем, сбрасываем таймер
```

```
TOMCR = 0x000000006;
//Регистр совпадения = 1000 (1 \Gamma u)
TOMR0 = 1000;
int main (void) {
unsigned int tick = 0;
 unsigned int flag = 0;
unsigned int i;
Timer0 Init(); /* Настроить таймер */
tm1638 init();/* Конфигурируем ТМ1638 */
while (1)
      i = 1;
      tm1638_sendcmd(0x46);
      i = tm1638\_receivebyte();
      // 1 - green, 3 - yellow, 5 - red
      // Проверка нажатия кнопки
      tm1638_sendcmd(0x46);
      i = tm1638\_receivebyte();
      if(i == 1)
      {
            tm1638_setadr(1); // green
            tm1638_sendbyte(1);
```

```
delay(1000);
         tm1638_setadr(1); // green
         tm1638_sendbyte(0);
   }
   tm1638_setadr(1); // green
   tm1638_sendbyte(1);
   tm1638_setadr(3); // yellow
   tm1638_sendbyte(1);
   delay(2000);
   tm1638_setadr(1);
   tm1638_sendbyte(0);
   tm1638_setadr(3);
   tm1638_sendbyte(0);
   tm1638_setadr(5); // red
   tm1638_sendbyte(1);
   delay(10000);
   tm1638_setadr(5); // red
   tm1638_sendbyte(0);
   // delay(0xffff);
}
```

Вывод.

Таким образом, программа корректно выполняет требуемые функции.