Exercise 3.7. Suppose vector space V and W are finite $(2 \le \dim V \le \dim W)$, show that $\{T \in \mathcal{L}(V, W) \mid T \text{ is not injective }\}$ is not a subspace.

Proof. Consider the basis $v_0 + \cdots + v_{(\dim V - 1)} \in V$, and $T(v_0 + \cdots + v_{(\dim V - 1)}) = (0 + 1_0 + \cdots + 1_{(\dim V - 1)})$ and $T'(v_0 + \cdots + v_{(\dim V - 1)}) = (v_0 + 0 + \cdots + v_{(\dim V - 1)})$. Then $(T + T')(\lambda_0 v_0 + \lambda_1 v_1 + \cdots + \lambda_{(\dim V - 1)} v_{(\dim V - 1)}) = \lambda_0 v_0 + \lambda_1 v_1 + \cdots + 2\lambda_{(\dim V - 1)} v_{(\dim V - 1)}$, which is obviously injective.

Exercise 3.11. Suppose V is finite and $T \in \mathcal{L}(V, W)$, show that there is a subspace $U \subset V$ such that:

$$U \cap \text{null } T = \{0\} \quad and \quad \text{range } T = \{ Tu \mid u \in U \}$$

Proof. This is similar to the *isomorphism theorems* about groups! This can be done by the similar way we used in proving dim $V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

The next two exercises remind me the categorical injective and surjective, let try them first!

Exercise. For any $F \in \mathcal{L}(V, W)$, F is injective \iff for any $S, T \in \mathcal{L}(U, V)$, FS = FT implies S = T.

Proof.

- (\Rightarrow) For any $S, T \in \mathcal{L}(V, W)$ that FS = FT, then for any $u \in U$, we have F(Su) = F(Tu), since F is injective, we know Su = Tu, so S = T.
- (\Leftarrow) For any $v, w \in V$ such that Fv = Fw. Consider

$$S(\lambda) = \lambda v$$

$$T(\lambda) = \lambda w$$

in $\mathcal{L}(\mathbb{R}, V)$. Then for any $\lambda \in \mathbb{R}$, we have $FS\lambda = \lambda FS1 = \lambda Fv = \lambda Fw = \lambda FT1 = FT\lambda$. so FS = FT then S = T, which means v = S1 = T1 = w.

Exercise. Suppose W is finite, then for any $F \in \mathcal{L}(V, W)$, F is surjective \iff for any $S, T \in \mathcal{L}(W, U)$, SF = TF implies S = T.

Proof.

- (\Rightarrow) For any $S, T \in \mathcal{L}(W, U)$ such that SF = TF. For any $w \in W$, there is $v \in V$ such that Fv = w since F is surjective. Then we have SFv = TFv so Sw = S(Fv) = T(Fv) = Tw then S = T.
- (⇐) Consider

$$S = I$$
 and $T(\lambda_0 w_0 + \cdots + \lambda_n w_n) = \lambda_0 w_0 + \cdots + \lambda_k w_k$

where w_0, \dots, w_k is the basis of range F and w_0, \dots, w_n is the basis of W that expand from w_0, \dots, w_k .

(If we can use another way to construct T, then W is not need to be finite, for example, $W = \operatorname{range} T \oplus W_0$).

It is easy to show that T is a linear transformation. Then for any $v \in V$, we have TFv = Fv (since T acts like identity transformation on range F) and SFv = Fv, so S = T by the property of F. Since range S = W, so is range T, that means w_0, \dots, w_k spans W, so k = n, which means range F = W, therefore F is surjective.

Exercise 3.19. Suppose W is finite, then for any $T \in \mathcal{L}(V, W)$, show that T is injective \iff there is $S \in \mathcal{L}(W, V)$ such that ST = I.

Proof.

- (\Rightarrow) Consider the basis v_0, \dots, v_n of V, then Tv_0, \dots, Tv_n is a basis of range T since T is injective. We denote Tv_i as w_i and w_0, \dots, w_m as the basis of W which expand from w_0, \dots, w_n . Define $S(\lambda_0 w_0 + \dots + \lambda_m w_m) = \lambda_0 w_0 + \dots + \lambda_n w_n$, and then for any $v \in V$, $ST(\lambda_0 v_0 + \dots + \lambda_n v_n) = S(\lambda_0 w_0 + \dots + \lambda_n w_n) = \lambda_0 v_0 + \dots + \lambda_n v_n$, so ST = I.
- (\Leftarrow) Suppose $A, B \in \mathcal{L}(U, V)$, such that TA = TB, we will show that A = B. STA = IA = A and STB = IB = B and STA = STB since TA = TB. Then we know T is a monomorphism, and then T is injective.

Exercise 3.20. Suppose W is finite, then for any $T \in \mathcal{L}(V, W)$, show that T is surjective \iff there is $S \in \mathcal{L}(W, V)$ such that TS = I.

Proof.

Exercise 3.21. Suppose V is finite, $T \in \mathcal{L}(V, W)$, $U \subseteq W$ a subspace. Show that the inverse image of U: $\{v \in V \mid Tv \in U\}$ is a subspace of V, and

$$\dim \{\ v \in V \mid Tv \in U\ \} = \dim \operatorname{null} T + \dim (U \cap \operatorname{range} T)$$

Proof. The second part is quite easy, we can restrict the domain of T to $\{v \in V \mid Tv \in U\}$, say $T' \in \mathcal{L}(\{v \in V \mid Tv \in U\}, W)$, so that it is in form $\dim\{v \in V \mid Tv \in U\} = \dim \operatorname{null} T' + \dim \operatorname{range} T'$. Obviously range $T' = U \cap \operatorname{range} T$ and $\operatorname{null} T' = \operatorname{null} T$.

We will now show that $\{v \in V \mid Tv \in U\}$ is a subspace of V.

- $T0 \in U$.
- For any $v, w \in V$ such that $Tv, Tw \in U$, we have $T(v+w) = Tv + Tw \in U$.
- For any $v \in V$ such that $Tv \in U$ and $\lambda \in F$, we have $T(\lambda v) = \lambda Tv \in U$.

Therefore it is a subspace.

Exercise 3.22. Suppose U and V are finite, $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$, show that

$$\dim \operatorname{null} ST \leq \dim \operatorname{null} S + \dim \operatorname{null} T$$

Proof. Consider the inverse image of null S on T: $K = \{ v \in V \mid Tv \in \text{null } S \}$, which dimension: $\dim K = \dim \text{null } T + \dim(\text{null } S \cap \text{range } T)$, where $\dim(\text{null } S \cap \text{range } T)$ caps at $\dim \text{null } S$.

We know show that $\operatorname{null} ST = \operatorname{null} K$. For any STv = 0, we know S(Tv) = 0, so $Tv \in K$, therefore $\operatorname{null} ST \subseteq \operatorname{null} K$; For any $Tv \in \operatorname{null} S$, that means S(Tv) = 0, therefore $v \in \operatorname{null} ST$, therefore $\operatorname{null} ST \supseteq \operatorname{null} K$, and $\operatorname{null} ST = \operatorname{null} K$.

Exercise 3.25. Suppose V is finite, $S, T \in \mathcal{L}(V, W)$. Show that $\text{null } S \subseteq \text{null } T \iff \text{there is } E \in \mathcal{L}(W) \text{ such that } T = ES$.

Proof. We define E(S(v)) = Tv for any $v \in V$, so that $E \in \mathcal{L}(\text{range } S, W)$. We first show that E is a mapping, and also a linear transformation.

Suppose $Sv, Sw \in W$ such that Sv = Sw, we need to show that E(Sv) = E(Sw), or normalized Tv = Tw. We know $v - w \in \text{null } S$ since Sv = Sw, so $v - w \in \text{null } T$ since $\text{null } S \subseteq \text{null } T$, therefore T(v - w) = 0, and then Tv = Tw, so E is a mapping.

Now we show that E is a linear transformation.

- For any $Sv, Sw \in \text{range } S$, E(Sv) + E(Sw) = Tv + Tw = T(v + w) = E(S(v + w)) = E(Sv + Sw).
- For any $Sv \in \text{range } S$ and $\lambda \in F$, $\lambda E(Sv) = \lambda Tv = T(\lambda v) = E(S(\lambda v) = E(\lambda Sv))$.

therefore E is a linear transformation.

Now we can expand the domain of E to W such that E'v = Ev for any $v \in \text{range } S$ (this is proven in previous exercise). For any $v \in V$, we have ESv = E(Sv) = Tv, there fore T = ES.

For another direction, for any $v \in \text{null } S$, we have ESv = E0 = 0 = Tv, so $v \in \text{null } T$.

Exercise 3.26. Suppose V is finite, $S, T \in \mathcal{L}(V, W)$. Show that range $S \subseteq \text{range } T \iff \text{there is } E \in \mathcal{L}(V) \text{ such that } S = TE$.

Proof. Consider the inverse image of range S with basis w_0, \dots, w_n , say v_0, \dots, v_n , it is easy to show v_0, \dots, v_n is linear independent. Then $E(v) = \lambda_0 v_0 + \dots + \lambda_n v_n$ where $Sv = \lambda_0 w_0 + \dots + \lambda_n w_n$.

Exercise 3.27. Suppose $P \in \mathcal{L}(V)$ and $P^2 = P$, show that $V = \text{null } P \oplus \text{range } P$.

Proof. Such element is called *idempotent* in algebra.

We will show null $P \oplus \operatorname{range} P$ by showing null $P \cap \operatorname{range} P = \{0\}$. For any $v \in \operatorname{null} P \cap \operatorname{range} P$, we know there is $w \in V$ such that Pw = v since $v \in \operatorname{rangev} P$, then $P^2(v) = P(Pv) = P0 = 0$ since $v \in \operatorname{null} P$ and $P^2(v) = P(Pv) = Pw$, so Pw = 0 while Pw = v therefore v = 0.

Then we have dim $V = \dim \operatorname{null} P + \dim \operatorname{range} P$ and dim(null $P \oplus \operatorname{range} P$) = dim null $P + \dim \operatorname{range} P - \dim\{0\}$, so $V = \operatorname{null} P \oplus \operatorname{range} P$.

Exercise 3.28. Suppose $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}))$ such that for any non-constant polynomial $p \in \mathcal{P}(\mathbb{R})$, $\deg(Dp) = \deg p - 1$. Show that D is surjective.

Proof. We induction on n, starts from 1, to show that $D(\mathcal{P}_n(\mathbb{R})) = \mathcal{P}_{n-1}(\mathbb{R})$.

- Base: for any $p \in \mathcal{P}(\mathbb{R})$ where $\deg p = 1$, we know $\deg Dp = 0$, so $D(\mathcal{P}_1(\mathbb{R}))$ is a non-zero subspace of $\mathcal{P}_0(\mathbb{R})$, which is $\mathcal{P}_0(\mathbb{R})$.
- Induction: We have induction hypothesis: For any $i \leq n$, we have $D(\mathcal{P}_i(\mathbb{R})) = \mathcal{P}_{i-1}(\mathbb{R})$. We want to show that $D(\mathcal{P}_{n+1}(\mathbb{R})) = \mathcal{P}_n(\mathbb{R})$. For

any $p \in \mathcal{P}(\mathbb{R})$ with deg p = n+1, we can write p in form of $p = \lambda x^{n+1} + r$ where deg $r \leq n$, then $Dp = D(\lambda x^{n+1} + r) = D(\lambda x^{n+1}) + Dr$ where deg $D(\lambda x^{n+1}) = n$ and deg $Dr \leq n-1$. So $D(\mathcal{P}_{n+1}(\mathbb{R})) = \mathcal{P}_n(\mathbb{R})$ since: $\mathcal{P}_n(\mathbb{R}) \subseteq D(\mathcal{P}_{n+1}(\mathbb{R}))$ and $D(\lambda x^{n+1}) \in D(\mathcal{P}_{n+1}(\mathbb{R}))$, it is sufficient to span $\mathcal{P}_n(\mathbb{R})$.

Exercise 3.29. For any $p \in \mathcal{P}(\mathbb{R})$, show that there is $q \in \mathcal{P}(\mathbb{R})$ such that 5q'' + 3q' = p.

Proof. We can rewrite the goal as 5DDq + 3Dq = p where D(p) = p', then 5DDq + 3Dq = D(5Dq) + D(3q) = D(5Dq + 3q) = p. We know D is surjective by the previous exercise, the goal is now showing that 5Dq + 3q = r where Dr = p. Then we continue rewrite the goal 5Dq + 3q = (5D)q + (3I)q = (5D + 3I)q = r, we will show that 5D + 3I is surjective, we use the same method in previous exercise.

We denote 5D+3I by F, and induction on $n \in \mathbb{N}$ to show that $F(\mathcal{P}_n(\mathbb{R})) = \mathcal{P}_n(\mathbb{R})$.

- Base: We should show that $F(\mathcal{P}_0(\mathbb{R})) = \mathcal{P}_0(\mathbb{R})$, for any $p \in \mathcal{P}_0(\mathbb{R})$, we have Fp = 5Dp + 3p, where Dp = 0 since $\deg p = 0$, so Fp = 3p, which means we have $1 \in F(\mathcal{P}_0(\mathbb{R}))$ since p is literally a number and $\frac{1}{3p}Fp = 1$.
- Induction: We have induction hypothesis: $F(\mathcal{P}_n(\mathbb{R})) = \mathcal{P}_n(\mathbb{R})$, and we want to show $F(\mathcal{P}_{n+1}(\mathbb{R})) = \mathcal{P}_{n+1}(\mathbb{R})$.

For any $p \in \mathcal{P}_{n+1}(\mathbb{R})$, we have Fp = 5Dp + 3p where $\deg 5Dp = n$ and $\deg 3p = n + 1$, then we can eliminate 5Dp and every term in p with degree less then n + 1 since $\mathcal{P}_n(\mathbb{R}) \subseteq \operatorname{range} F$, then we get z^{n+1} , thus $F(\mathcal{P}_{n+1}(\mathbb{R})) = \mathcal{P}_{n+1}(\mathbb{R})$.

Therefore there is q such that (5D+3I)q=r since 5D+3I is surjective. Another solution from internet: Define Tq=5q''+3q', we can see for any $q \in \mathcal{P}(\mathbb{R})$ we have $\deg Tq=\deg q-1$, so T is surjective. Then there is q such that Tq=5q''+3q'=p.

Exercise 3.30. Suppose $\varphi \in \mathcal{L}(V, F)$ not zero, and $u \in V$ that $u \notin \text{null } \varphi$, show that $V = \text{null } \varphi \oplus \{ au \mid a \in F \}$.

Proof. We can see φ is surjective since $\varphi u \neq 0$, then for any $i \in F$, we have $(i(\varphi u)^{-1})\varphi u = i$.

For any $v \in V$, since φ is surjective (in a particular way), so we have $a\varphi u$ such that $a\varphi u = \varphi v$, then $\varphi(au - v) = 0$ so $au - v \in \text{null } \varphi$. That means (-1)(au - v) + au = v where $(-1)(au - v) \in \text{null } \varphi$ and $au \in \{au \mid a \in F\}$, so $V = \text{null } \varphi + \{au \mid a \in F\}$.

Then $\operatorname{null} \varphi \oplus \{ au \mid a \in F \} \text{ since } u \notin \operatorname{null} \varphi.$

Exercise 3.31. Suppose V is finite (dim V > 1), show that if $\varphi : \mathcal{L}(V) \to F$ is a linear mapping with property $\varphi(ST) = \varphi(S)\varphi(T)$ for any $S, T \in \mathcal{L}(V)$, show that $\varphi = 0$.

Proof. Consider null φ , since dim V > 1 while dim F = 1, so φ cannot be injective, therefore null $\varphi \neq \{0\}$.

For any non-zero $S \in \text{null } \varphi$ and $T \in \mathcal{L}(V)$, we have $\varphi(ST) = \varphi(S)\varphi(T) = 0 = \varphi(T)\varphi(S) = \varphi(TS)$ since $S \in \text{null } \varphi$, thus $ST \in \text{null } \varphi$. We show that null φ is an ideal of $\mathcal{L}(V)$, recall that the property of $\mathcal{L}(V)$, the only ideal of $\mathcal{L}(V)$ is $\{0\}$ and LT(V), so null $\varphi = \mathcal{L}(V)$, which means $\varphi = 0$.

Exercise 3.32. Let V, W are vector spaces and $T \in \mathcal{L}(V, W)$, define $T_C : V_C \to W_C$:

$$T_C(u+iv) = Tu + iTv$$

for any $u, v \in V$.

- 1. Show that T_C is a (complex) linear mapping from V_C to W_C .
- 2. Show that T_C is injective \iff T is injective.
- 3. Show that range $T_C = W_C \iff \text{range } T = W$.

Proof.

1. For any $u, v, s, t \in V$ $\lambda \in \mathbb{C}$, we have

$$T((u+iv) + (s+it))$$
= $T(u+s+i(v+t))$
= $T(u+s) + iT(v+t)$
= $Tu+Ts+iTv+iTt$
= $T(u+iv) + T(s+it)$

and

$$\lambda T(u+iv)$$

$$=\lambda (Tu+iTv)$$

$$=\lambda Tu+\lambda iTv$$

$$=T(\lambda u)+iT(\lambda v)$$

$$=T(\lambda u+i(\lambda v))$$

$$=T(\lambda u+i\lambda v)$$

$$=T(\lambda (u+iv))$$

I believe these are trivial, so the future me should be able to prove these without any effort. $\hfill\Box$