Capstone Project

Car Insurance Price Prediction

By Matt Elmajian

Dataset Features & Strategy

- Target Variable: Premium
- Features Added:
 - Age (Date Last Renewal DoB)
- Key Variables:
 - Value of Vehicle
 - Year_matriculation
 - Age
- Dropped during modeling:
 - Date ranges

Variables	Description
ID	Internal identification number assigned to each annual contract formalized by an insured. Each policyholder can have multiple rows in the dataset, representing different annuities of the product.
Date_start _contract	Start date of the policyholder's contract (DD/MM/YYYY).
Date_last_renewal	Date of last contract renewal (DD/MM/YYYY).
Date_next_renewal	Date of the next contract renewal (DD/MM/YYYY).
Distribution_channel	Classifies the channel through which the policy was contracted. 0 for Agent and 1 for Insurance brokers.
Date_birth	Date of birth of the insured declared in the policy (DD/MM/YYYY).
Date_driving_licence	Date of issuance of the insured person's driver's license (DD/MM/YYYY).
Seniority	Total number of years that the insured has been associated with the insurance entity, indicating their level of seniority.
Policies_in_force	Total number of policies held by the insured in the insurance entity during the reference period.
Max_policies	Maximum number of policies that the insured has ever had in force with the insurance entity.
Max_products	Maximum number of products that the insured has simultaneously held at any given point in time.
Lapse	Number of policies that the customer has cancelled or has been cancelled for nonpayment in the current year of maturity, excluding those that have been replaced by another policy.
Date_lapse	Lapse date. Date of contract termination (DD/MM/YYYY).
Payment	Last payment method of the reference policy. 1 represents a half-yearly administrative process and 0 indicates an annual payment method.
Premium	Net premium amount associated with the policy during the current year.
Cost_claims_year	Total cost of claims incurred for the insurance policy during the current year.
N_claims_year	Total number of claims incurred for the insurance policy during the current year.
N_claims_history	Total number of claims filed throughout the entire duration of the insurance policy.
R_Claims_history	Ratio of the number of claims filed for the specific policy to the total duration (whole years) of the policy in force. It provides an indication of the policy's claims frequency history.
Type_risk	Type of risk associated with the policy. Each value corresponds to a specific risk type: 1 for motorbikes, 2 for vans, 3 for passenger cars and 4 for agricultural vehicles
Area	Dichotomous variable indicates the area. 0 for rural and 1 for urban (more than 30,000 inhabitants) in terms of traffic conditions.
Second_driver	1 if there are multiple regular drivers declared, or 0 if only one driver is declared.
Year_matriculation	Year of registration of the vehicle (YYYY).
Power	Vehicle power measured in horsepower.
Cylinder_capacity	Cylinder capacity of the vehicle.
Value_vehicle	Market value of the vehicle on 31/12/2019.
N_doors	Number of vehicle doors.
Type_fuel	Specific kind of energy source used to power a vehicle. Petrol (P) or Diesel (D).
Length	Length, in meters, of the vehicle.
Weight	Weight, in kilograms, of the vehicle.

Linear Regression Model

- No major correlations in dataset
- Models ran:
 - OLS R-squared: .255
 - Lasso R-squared: .2552
 - Ridge R-squared: .2553

Pearson Correlation Coefficients:

• Value of the Vehicle: .3359

• Year_matriculation: .2920

• Power: .2795

Tree Based Models

- Due to the lack of correlation between features and the target variable, I moved on to Tree Based Models.
- Models tested:
 - Random Forest Regressor
 - R-squared score: .5957
 - RMSE: \$85.00
 - Gradient Boost Regresso
 - R-squared score: .5421
 - RMSE: \$90.46
- Final hyper-parameters: n_estimators: 1000, max_depth = 25

Conclusion / Next Steps

- Model improving, but not ready for use yet
- Potential next steps:
 - Run clustering algorithm on data for further feature engineering
 - Consider running SVM model
 - Further sub-set data into groups and run separate models