

4.9 DBSCAN

CSDN学院 2017年11月

▶常用聚类算法

- 基于距离、相似度的聚类算法
 - K-means (K均值) 及其变种 (K-centers 、 Mini Batch K-Means)
 - Mean shift
 - 吸引力传播 (Affinity Propagation , AP)
 - 层次聚类
 - 聚合聚类 (Agglomerative Clustering)
- 基于密度的聚类算法
 - DBSCAN、DensityPeak (密度最大值聚类)
- 基于连接的聚类算法
 - 谱聚类

▶基于密度聚类方法

- 密度聚类方法:具有足够密度的区域划分为簇
 - 能克服基于距离的算法只能发现"类圆形"聚类的缺点,可发现任意形状的聚类,且对噪声数据不敏感。
 - 但计算密度过程的计算复杂度大,需要建立空间索引来降低计算量,且对数据维数的伸缩性较差。
 - 需要扫描整个数据库,每个数据对象都可能引起一次 查询,因此当数据量大时会造成频繁的I/O操作。
 - 代表算法有: DBSCAN、OPTICS、DENCLUE算法等

DBSCAN

(Density-Based Spatial Clustering of Applications with Noise *) 代码

- DBSCAN是一个有代表性的基于密度的聚类算法。
 - 簇:密度相连的点的最大集合
 - 可在有"噪声"的空间数据库中发现任意形状的聚类

▶基础概念

- DBSCAN的基本思想涉及的一些概念如下:
- (1) 对象的₆一邻域:给定对象的₆半径内的区域。
- (2) 核心点:一个对象的ε一邻域至少包含最小数目(MinPts)个对象,则称该对象为核心点。
- (3) 直接密度可达:给定一组对象集合D,如果p是在q的 ϵ 一邻域内, 而q是一个核心点,则称对象p从对象q出发是直接密度可达的。

- ε=1 , MinPts=5 , q是一个核心对象
- 对象p从对象q出发是直接密度可达的

▶基础概念

- (4) 密度可达:如果存在一个对象链 p_1 , p_2 , ..., p_m , 其中 $p_1=p$, 且 $p_m=q$, 对于 $p_l\in D$, $(1\leq i\leq n)$, p_{i+1} 是从 p_l 关于 ϵ 和MinPts直接密度可达的,则对象p是从对象q关于 ϵ 和MinPts密度可达的。
- (5) 密度相连:如果对象集合D中存在一个对象o , 使得对象p和q是从o 关于e和MinPts密度可达的,则对象p和q是关于e和MinPts密度相连的。

 ε =1cm, MinPts=5, q是一个核心对象 p1是从q关于 ε 和MitPts直接密度可达 p是从 p_1 关于 ε 和MitPts直接密度可达,则对象p从对象q关于 ε 和MitPts密度可达

密度相连

▶基础概念

- (6)边界点:非核心点,从某一核心点直接密度可达。
- (7) 噪声:聚类结束时,不属于任何簇的点。

DBSCAN

参数:

- 给定聚类对象的半径ε—邻域和
- ε—邻域中最小包含的对象数MinPts
- 1. 检查某个对象ε—邻域中的对象数,如果对象数大于MinPts,该对象就是核心对象,就构建以该对象为核心的新簇。
- 2. 反复寻找从这些核心对象出发在ε—邻域内的对象,这个寻找过程可能会合并—些簇,直到没有新的对象可以添加到任何簇中为止。
 - 一个基于密度的簇是基于密度可达性的最大的密度相连对象的集合。
- 不包含在任何簇中的对象被认为是"噪声"。

▶ DBSCAN算法描述

- 输入:包含N个对象的数据库,半径 ε ,最少数目MinPts。
- 输出:所有生成的簇,达到密度要求。
- 1. REPEAT
- 2. 从数据库中抽取一个未处理过的点;
- IF 抽出的点是核心点 THEN找出所有从该点密度可达 的对象,形成一个簇
- ELSE 抽出的点是边缘点(非核心对象), 跳出本次循 环,寻找下一点;
- ✓ 5. UNTIL 所有点都被处理;

▶DBSCAN算法举例

CSDN 不止于代码

- · 训练数据如左所示,样本数N=12
- DBSCAN算法参数: ε =1, MinPts=4

序号	属性 1	属性 2
1	1	0
2	4	0
3	0	1
4	1	1
5	2	1
6	3	1
7	4	1
8	5	1
9	0	2
10	1	2
11	4	2
12	1	3

	,	•	1 2 3 4 5 0
步骤	选择的点	在ε中点的个数	通过计算可达点而找到的新簇
1	1	2	无
2	2	2	无
3	3	3	无
4	4	5	簇C ₁ :{1,3,4,5,9,10,12}
5	5	3	已在一个簇C ₁ 中
6	6	3	无
7	7	5	簇C ₂ :{2,6,7,8,11}
8	8	2	已在一个簇C ₂ 中
9	9	3	已在一个簇C ₁ 中
10	10	4	已在一个簇C ₁ 中,
11	11	2	已在一个簇C ₂ 中
12	12	2	已在一个簇C ₁ 中

.12

► DBSCAN算法举例 (cont.)

步骤	选择 的点	在ε中点 的个数	通过计算可达点 而找到的新簇	第1步,在数据库中选择一点1,由于在以它为圆心的,以1为半径的圆内包含
		_ , , , ,		2个点(小于4),因此它不是核心点,选择下一个点。
				第2步,在数据库中选择一点2,由于在以它为圆心的,以1为半径的圆内包含
1	1	2	无	2个点,因此它不是核心点,选择下一个点。
2	2	2	无	第3步,在数据库中选择一点3,由于在以它为圆心的,以1为半径的圆内包含
3	3	3	无	3个点,因此它不是核心点,选择下一个点。
_			, <u> </u>	第4步,在数据库中选择一点4,由于在以它为圆心的,以1为半径的圆内包含
4	4	5	簇C ₁ :{1,3,4,	5个点,因此它是核心点,寻找从它出发可达的点(直接可达4个,间接
			5,9,10,12}	可达3个),聚出的新类{1,3,4,5,9,10,12},选择下一个点。
5	5	3	已在一个簇C ₁ 中	第5步,在数据库中选择一点5,已经在簇1中,选择下一个点。
6	6	3	无	第6步,在数据库中选择一点6,由于在以它为圆心的,以1为半径的圆内包含
7	7	5	簇C ₂ :{2,6,7,	3个点,因此它不是核心点,选择下一个点。
			8 , 11}	第7步,在数据库中选择一点7,由于在以它为圆心的,以1为半径的圆内包含
8	8	2	已在一个簇C ₂ 中	5个点,因此它是核心点,寻找从它出发可达的点,聚出的新类{2,6,
9	9	3	已在一个簇C ₁ 中	7,8,11},选择下一个点。
10	10	4	已在一个簇C ₁ 中,	第8步,在数据库中选择一点8,已经在簇2中,选择下一个点。
11	11	2	已在一个簇C ₂ 中	第9步,在数据库中选择一点9,已经在簇1中,选择下一个点。
12	12	2	已在一个簇C ₁ 中	第10步,在数据库中选择一点10,已经在簇1中,选择下一个点。
	O			第11步,在数据库中选择一点11,已经在簇2中,选择下一个点。

第12步,选择12点,已经在簇1中,由于这已经是最后一点所有点都以处理,

► Scikit learn中DBSCAN算法的实现

- class sklearn.cluster.DBSCAN(eps=0.5, min_samples=5, metric='euclidean', metric_params=None, algorithm='auto', leaf_size=30, p=None, n_jobs=1)
- **eps** 为ε, 定于邻域大小
- min_samples 为MinPts,定于核心节点的条件,即邻域内样本点的最小数目
- algorithm 为最近邻的搜索算法,可为'auto', 'ball_tree', 'kd_tree', 'brute'

Gaussian mixtures (高斯混合) 不可扩展 many branching factor, threshold, 大的 n_clusters 和 n_samples

optional global clusterer

据简化

适用于密度估计

大数据集,异常值去除,数

Birch

THANK YOU

