Matemática Discreta

Teoria dos Grafos Grafos orientados

Profa. Helena Caseli helenacaseli@ufscar.br

Objetivos desta aula

- Apresentar conceitos e definições na teoria dos grafos para grafos orientados
 - Vértices e Arestas
 - Incidência e Adjacência
 - Grau de entrada e Grau de saída
 - Representação matricial
- Capacitar o aluno a usar os conceitos de grafos orientados para modelar problemas computacionais

Problema #15

 Represente o grafo orientado a seguir em uma matriz de adjacência

Considere o grafo a seguir, que representa seguidores no Instagram. Cada pessoa tem nome e idade (nome é o id do vértice). Uma aresta (v1, v2) significa que v1 segue v2 no Instagram.

Fonte: http://www2.ic.uff.br/~vanessa/material/ed/06-Grafos.pdf (slide 101)

Grafo orientado

Fonte: https://pixabay.com/

 Um grafo é orientado (ou dirigido) quando suas arestas especificam claramente quem é o vértice de partida (origem) e quem é o vértice de chegada (destino)

Grafo orientado

 Em um grafo orientado (ou dirigido ou dígrafo), as arestas são indicadas como <u>setas</u> que vão da origem para o destino

Grafo orientado

X Grafo não orientado

Grafo orientado

- Definição
 - Um par (V, A) onde
 - V é um conjunto de vértices
 - A é uma relação binária em V, ou seja, um subconjunto do produto cartesiano de V por V (V x V)
 - → Se u e v são vértices distintos do grafo G, os pares (u, v) e (v, u) são arestas distintas
 - → A aresta (u, v) tem uma orientação definida onde
 - u é a origem e
 - v é o destino

- Grafo orientado
 - Incidência

Fonte: https://pixabay.com/

 Dizemos que uma aresta vw parte (ou sai) do vértice v e chega (ou entra) no vértice w

Grafo orientado

- Incidência
 - Pode ser vista como uma relação entre o conjunto de arestas A e o conjunto de vértices V denominada relação de incidência
 - Isso define duas relações de A para V
 - A <u>relação de saída</u> e
 - A <u>relação de chegada</u>
 - → É uma relação de aresta para vértice
 - Exemplo

- A aresta AB parte de Ae chega em B
- A aresta BA parte de B
 e chega em A

- Grafo orientado
 - Adjacência

Fonte: https://pixabay.com/

 Dizemos que o vértice v domina (ou atinge) o vértice w sse existe uma aresta de G com <u>origem v</u> e destino w

Grafo orientado

- Adjacência
 - Trata-se da <u>relação de adjacência</u> orientada (ou dominância) do grafo G
 - A adjacência é uma relação de vértice para vértice
 - Exemplo

- O vértice A domina o vértice B na aresta AB
- O vértice B domina o vértice A na aresta BA

Grafo orientado

- Grau de entrada do vértice v
 - Número de arestas que <u>chegam</u> a v
 - → Denotado por $d_{G}^{+}(v)$ ou apenas $d^{+}(v)$

Fonte: https://pixabay.com/

- Grau de saída do vértice v
 - Número de arestas que <u>partem</u> de v
 - → Denotado por $d_{G^{-}}(v)$ ou apenas $d^{-}(v)$

Fonte: https://pixabay.com/

Grafo orientado

- Grau do vértice
 - Para um vértice v

$$d_{G}(v) = d_{G^{+}}(v) + d_{G^{-}}(v)$$

- ightharpoonup O símbolo $\Delta_{\rm G}$ é frequentemente usado para denotar o maior grau dos vértices de um grafo G
 - \rightarrow Maior grau de entrada Δ_{G}^{+} e de saída Δ_{G}^{-}
- ightharpoonup O símbolo $\delta_{\rm G}$ é frequentemente usado para denotar o menor grau dos vértices de um grafo G
 - $ilde{\ \ \, }$ Menor grau de entrada $\delta_{\mbox{\scriptsize G}^{+}}$ e de saída $\delta_{\mbox{\scriptsize G}^{-}}$

Dado o grafo

Dê

- a) Arestas que partem do vértice E
- b) Vértices dominados por C
- c) Grau de entrada do vértice A
- d) Grau de saída do vértice A
- e) Vértice(s) com maior grau de entrada
- f) Vértice(s) com menor grau de saída

Dado o grafo

Dê

a) Arestas que partem do vértice E

b) Vértices dominados por C

c) Grau de entrada do vértice A

d) Grau de saída do vértice A

e) Vértice(s) com maior grau de entrada

f) Vértice(s) com menor grau de saída

RESPOSTAS

nenhuma

DeE

DeE

1

2

D e E $(\Delta_{G}^{+} = 2)$

 $\mathsf{E}\left(\delta_{\mathsf{G}}^{-}=0\right)$

Teorema 2

Em qualquer grafo orientado G = (V, A), a soma dos graus de entrada (ou de saída) de todos os vértices é igual ao número de arestas.

$$\sum_{v \in V} d_G^+(v) = \sum_{v \in V} d_G^-(v) = |A|$$

Isso porque cada aresta conta apenas uma vez no cálculo do grau de entrada ou de saída

Exemplo

$$d^{+}(A) = 1$$
, $d^{+}(B) = 1$, $d^{+}(C) = 1$,
 $d^{+}(D) = 2$, $d^{+}(E) = 2$
 $d^{-}(A) = 2$, $d^{-}(B) = 2$, $d^{-}(C) = 2$,
 $d^{-}(D) = 1$, $d^{-}(E) = 0$
Soma entrada = 7 = |A|
Soma saída = 7 = |A|

Representação matricial de grafos orientados

- Matriz de adjacência
 - A matriz de adjacência de um grafo G com n vértices (|V| = n) é a dada por uma matriz booleana M de n linhas e n colunas (n x n)
 - M_{ii} célula (i,j) é
 - 1 sse A contém uma aresta com origem em v_i e destino em v_i
 - 0 caso contrário

- Representação matricial de grafos orientados
 - Matriz de adjacência
 - Exemplo

	Α	В	С	D	Е		
Α	0	1	0	1	0		
В	1	0	1	0	0		
С	0	0	0	1	1		
D	0	0	0	0	1		
Е	0	0	0	0	0		
						1	
coluna indica o grau de entrada							

Quantidade de 1s na coluna indica o grau de entrada

Quantidade de 1s na linha indica o grau de saída

Representação matricial de grafos orientados

- Matriz de incidência
 - A matriz de incidência de um grafo G com n vértices (|V| = n) e m arestas (|A| = m) é a dada por uma matriz booleana M de n linhas e m colunas (n x m)
 - M_{ik} célula (i, k) é
 - 1 sse o vértice v_i é um extremo da aresta e_k
 - 0 caso contrário

Representação matricial de grafos orientados

- Matriz de incidência
 - É possível construir duas matrizes de incidência, uma de entrada (M+) e outra de saída (M-)
 - O elemento M_{ik}+é 1 sse a aresta e_k entra no vértice v_i
 - O elemento M_{ik}-é 1 sse a aresta e_k sai do vértice v_i
 - → Em algumas aplicações é conveniente combinar essas duas matrizes em uma única matriz M cujos elementos são inteiros no conjunto {-1, 0, +1}
 - O elemento M_{ik} é 1 se a aresta e_k entra no vértice v_i
 - O elemento M_{ik}é -1 se a aresta e_k sai do vértice v_i
 - O elemento M_{ik} é 0 se a aresta e_k não incide no vértice v_i

- Representação matricial de grafos orientados
 - Matriz de incidência
 - Exemplo

	AB	ВА	AD	ВС	CD	CE	DE
Α	-1	+1	-1	0	0	0	0
В	+1	-1	0	-1	0	0	0
С	0	0	0	+1	-1	-1	0
D	0	0	+1	0	+1	0	-1
E	0	0	0	0	0	+1	+1

- Quantidade de +1s indica o grau de entrada do vértice representado naquela linha
- Quantidade de -1s indica o grau de saída do vértice representado naquela linha

Problema #15

 Represente o grafo orientado a seguir em uma matriz de adjacência

Considere o grafo a seguir, que representa seguidores no Instagram. Cada pessoa tem nome e idade (nome é o id do vértice). Uma aresta (v1, v2) significa que v1 segue v2 no Instagram.

Fonte: http://www2.ic.uff.br/~vanessa/material/ed/06-Grafos.pdf (slide 101)

Problema #15

Matriz de adjacência

	Ana	Bruna	Caio	Felipe	Jane	João	Marcos	Pedro	Renata
Ana	0	0	0	0	1	1	0	0	0
Bruna	0	0	0	0	0	0	0	0	1
Caio	0	0	0	0	0	0	0	0	0
Felipe	0	0	0	0	0	0	1	0	1
Jane	0	1	0	0	0	0	1	1	0
João	1	0	1	0	0	0	0	1	0
Marcos	0	0	0	1	0	0	0	0	1
Pedro	0	1	1	0	1	0	1	0	0
Renata	0	0	0	0	0	0	0	0	0

Quantidade de 1s na linha indica o grau de saída. Nesse caso, o Pedro é a pessoa que segue o maior número de outras pessoas (grau saída = 4)

Quantidade de 1s na coluna indica o grau de entrada, nesse caso, a Renata e o Marcos são as pessoas com o maior número de seguidores (grau de entrada = 3)