MATH 307 Practice Midterm Exam 1

 $October\ 2021$

 $\bullet\,$ No calculators, cell phones, laptops or notes

• Time allowed: 45 minutes

• 45 total marks	
• Write your name and student number in space below	
Name:	
Student Number:	

- 1. Short answer questions. Each part is independent of the others.
 - (a) (3 marks) **True** or **False**: If A is an invertible matrix, then $||A|| \ge ||A^{-1}||$. Justify your answer.

(b) (3 marks) Suppose the finite difference method yields a solution

$$\boldsymbol{y} = \begin{bmatrix} 1.0 \\ 1.5 \\ 1.8 \\ 1.1 \end{bmatrix}$$

for 6 equally spaced points from $t_0 = 0$ to $t_5 = 1$. Find an approximation of y''(0.6).

(c) (3 marks) Find the LU decomposition of

$$A = \left[\begin{array}{rrr} 1 & -1 & 0 \\ -1 & 2 & 2 \\ 0 & 1 & 3 \end{array} \right]$$

(d) (3 marks) Let $\mathbf{b} \in \mathbb{R}^n$ such that $\mathbf{b} \neq \mathbf{0}$. Determine whether the set

$$U = \{ \boldsymbol{x} \in \mathbb{R}^n : A\boldsymbol{x} = \boldsymbol{b} \}$$

is a subspace of \mathbb{R}^n . Justify your answer.

(e) (3 marks) Find α and β such that the linear system

has infinitely many solutions.

(f) (3 marks) Sketch the natural cubic spline represented by the coefficient matrix

$$C = \begin{bmatrix} -1 & 2 & 1 & -3 & 1 \\ 0 & -3 & 3 & 6 & -3 \\ -2 & -5 & -5 & 4 & 7 \\ 1 & -2 & -8 & -9 & -2 \end{bmatrix}$$

where $t_0 = 0, t_1 = 1, t_2 = 2, t_3 = 3, t_4 = 4, t_5 = 5.$

2. Let $N \geq 4$ and consider the $N \times N$ matrix

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & \ddots & \ddots & \ddots \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix}$$

Let A = LU be the LU decomposition of A.

- (a) (3 marks) Find the first 3 rows of L and the first 3 rows of U.
- (b) (3 marks) Find a recursive formula for the diagonal entries $u_{n,n}$ of U.
- (c) (3 marks) Find det(A) for N = 5.

3. (6 marks) Suppose we have 4 points $(0, y_0), (1, y_1), (2, y_2), (3, y_3)$ and we want to interpolate the data using a spline p(t) constructed from polynomials p_1, p_2, p_3 where

$$p_k(t) = a_k(t - t_{k-1})^3 + b_k(t - t_{k-1}) + c_k$$
, $t \in [t_{k-1}, t_k]$

We require that p(t) and p'(t) are continuous and $p''(t_3) = 0$. Setup (but do **not** solve) a linear system $A\mathbf{x} = \mathbf{b}$ where the solution is

$$oldsymbol{x} = egin{bmatrix} a_1 \ b_1 \ a_2 \ b_2 \ a_3 \ b_3 \end{bmatrix}$$

The system depends on y_0, y_1, y_2, y_3 .

4. Let $U = \text{span}\{\boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3, \boldsymbol{u}_4\} \subseteq \mathbb{R}^4$ where

$$oldsymbol{u}_1 = egin{bmatrix} 2 \\ 4 \\ 4 \\ 2 \end{bmatrix} \qquad oldsymbol{u}_2 = egin{bmatrix} 3 \\ 5 \\ 3 \\ 1 \end{bmatrix} \qquad oldsymbol{u}_3 = egin{bmatrix} 3 \\ 3 \\ -1 \\ -11 \end{bmatrix} \qquad oldsymbol{u}_4 = egin{bmatrix} 0 \\ 3 \\ 11 \\ -2 \end{bmatrix}$$

- (a) (4 marks) Find a basis and the dimension of U.
- (b) (2 marks) Is $\{\boldsymbol{u}_1,\boldsymbol{u}_3,\boldsymbol{u}_4\}$ a basis of U? Explain.

5. Consider the natural cubic spline p(t) represented by the coefficient matrix

$$C = \begin{bmatrix} 3 & a_2 & 2 & -4 & -2 & -2 & 8 \\ 0 & 9 & b_3 & b_4 & b_5 & -18 & -24 \\ 0 & 9 & 12 & 6 & c_5 & -36 & -78 \\ 0 & 3 & 16 & 24 & d_5 & 6 & -50 \end{bmatrix}$$

where $t_0 = 0, t_1 = 1, t_2 = 2, t_3 = 3, t_4 = 4, t_5 = 5, t_6 = 6, t_7 = 7.$

- (a) (4 marks) Find the value b_4 .
- (b) (2 marks) Find p''(5.5)

 ${\it Extra\ workspace.\ Do\ not\ write\ in\ the\ table\ below.}$

Q1	/18
Q2	/9
Q3	/6
Q4	/6
Q5	/6
Total	/45