Assignment-based Subjective Questions

- 1. From your analysis of the categorical variables from the dataset, what could you infer about their effect on the dependent variable?
 - Ans: The demad of bike is less in the month of spring when compared with other seasons. The demand bike increased in the year 2019 when compared with year 2018.
- 2. Why is it important to use drop first=True during dummy variable creation?

Ans: drop_first=True is important to use, as **it helps in reducing the extra column created during dummy variable creation**. Hence it reduces the correlations created among dummy variables.

Let's say we have 3 types of values in Categorical column and we want to create dummy variable for that column. If one variable is not furnished and semi_furnished, then It is obvious unfurnished. So we do not need 3rd variable to identify the unfurnished.

3. Looking at the pair-plot among the numerical variables, which one has the highest correlation with the target variable?

Ans: Numerical correlation is maximum with temp and atemp 0.99 means 99%

4. How did you validate the assumptions of Linear Regression after building the model on the training set?

Ans: Linear regression is probably the most important model in Data Science. Despite its apparent simplicity, it relies however on a few key assumptions (linearity, homoscedasticity, absence of multicollinearity, independence and normality of errors). Good knowledge of these is crucial to create and improve your model. In this post, I will go over the five main assumptions and explain their importance as well as a few solutions in case they would not be respected.

5. Based on the final model, which are the top 3 features contributing significantly towards explaining the demand of the shared bikes?

Ans: Model seems good enough to predict demand of bikes. The actual and predicted cnt i.e demand significantly overlapped, thus indicating that the model is able to explain the change in demand very well. We can see that the equation for best fitted line and calculation.

General Subjective Questions

1. Explain the linear regression algorithm in detail Ans: Linear Regression is a machine learning algorithm based on supervised learning. It performs a regression task. Regression models a target prediction value based on independent variables. It is mostly used for finding out the relationship between variables and forecasting. Different regression models differ based on – the kind of relationship between dependent and independent variables they are considering, and the number of independent variables getting used.

2. Explain the Anscombe's quartet in detail.

Ans:

Image by Author

Anscombe's Quartet can be defined as a group of four data sets which are nearly identical in simple descriptive statistics, but there are some peculiarities in the dataset that fools the regression model if built. They have very different distributions and appear differently when plotted on scatter plots.

It was constructed in 1973 by statistician Francis Anscombe to illustrate the importance of plotting the graphs before analyzing and model building, and the effect of other observations on statistical properties. There are these four data set plots which have nearly same statistical observations, which provides same statistical information that involves variance, and mean of all x,y points in all four datasets.

This tells us about the importance of visualising the data before applying various algorithms out there to build models out of them which suggests that the data features must be plotted in order to see the distribution of the samples that can help you identify the various anomalies present in the data like outliers, diversity of the data, linear separability of the data, etc. Also, the Linear Regression can be only be considered a fit for the data with linear relationships and is incapable of handling any other kind of datasets. These four plots can be defined as follows:

Anscombe's Data											
Observation	x 1	y1		x2	y2		x3	y3		x4	y4
1	10	8.04		10	9.14		10	7.46		8	6.58
2	8	6.95		8	8.14		8	6.77		8	5.76
3	13	7.58		13	8.74		13	12.74		8	7.71
4	9	8.81		9	8.77		9	7.11		8	8.84
5	11	8.33		11	9.26		11	7.81		8	8.47
6	14	9.96		14	8.1		14	8.84		8	7.04
7	6	7.24		6	6.13		6	6.08		8	5.25
8	4	4.26		4	3.1		4	5.39		19	12.5
9	12	10.84		12	9.13		12	8.15		8	5.56
10	7	4.82		7	7.26		7	6.42		8	7.91
11	5	5.68		5	4.74		5	5.73		8	6.89

The statistical information for all these four datasets are approximately similar and can be computed as follows:

Anscombe's Data											
Observation	x1	y1		x2	y2		x3	y3		x4	y4
1	10	8.04		10	9.14		10	7.46		8	6.58
2	8	6.95		8	8.14		8	6.77		8	5.76
3	13	7.58		13	8.74		13	12.74		8	7.71
4	9	8.81		9	8.77		9	7.11		8	8.84
5	11	8.33		11	9.26		11	7.81		8	8.47
6	14	9.96		14	8.1		14	8.84		8	7.04
7	6	7.24		6	6.13		6	6.08		8	5.25
8	4	4.26		4	3.1		4	5.39		19	12.5
9	12	10.84		12	9.13		12	8.15		8	5.56
10	7	4.82		7	7.26		7	6.42		8	7.91
11	5	5.68		5	4.74		5	5.73		8	6.89
				Summary Statistics							
N	11	11		11	11		11	11		11	11
mean	9.00	7.50		9.00	7.500909		9.00	7.50		9.00	7.50
SD	3.16	1.94		3.16	1.94		3.16	1.94		3.16	1.94
r	0.82			0.82			0.82			0.82	

When these models are plotted on a scatter plot, all datasets generates a different kind of plot that is not interpretable by any regression algorithm which is fooled by these peculiarities and can be seen as follows:

The four datasets can be described as:

Dataset 1: this fits the linear regression model pretty well.

Dataset 2: this could not fit linear regression model on the data quite well as the data is non-linear.

Dataset 3: shows the outliers involved in the dataset which cannot be handled by linear regression model

Dataset 4: shows the outliers involved in the dataset which cannot be handled by linear regression model

3. What is Pearson's R?

Ans: In <u>statistics</u>, the <u>Pearson correlation coefficient</u> (<u>PCC</u>,) — also known as <u>Pearson's r</u>, the <u>Pearson product-moment correlation coefficient</u> (<u>PPMCC</u>), the <u>bivariate correlation</u>, or colloquially simply as <u>the correlation coefficient</u> — is a measure of <u>linear correlation</u> between two sets of data. It is the ratio between the <u>covariance correlation</u> of two variables and the product of their <u>standard deviations</u>; thus it is essentially a normalized measurement of the covariance, such that the result always has a value between –1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationship or correlation. As a simple example, one would expect the age and height of a sample of teenagers from a high school to have a Pearson correlation coefficient significantly greater than 0, but less than 1 (as 1 would represent an unrealistically perfect correlation)

4. What is scaling? Why is scaling performed? What is the difference between normalized scaling and standardized scaling?

Ans: scaling: It is a step of data Pre-Processing which is applied to independent variables to normalize the data within a particular range. It also helps in speeding up the calculations in an algorithm.

Why it is performed: Most of the times, collected data set contains features highly varying in magnitudes, units and range. If scaling is not done then algorithm only takes magnitude in account and not units hence incorrect modelling. To solve this issue, we have to do scaling to bring all the variables to the same level of magnitude.

It is important to note that scaling just affects the coefficients and none of the other parameters like t-statistic, F-statistic, p-values, R-squared, etc.

difference between normalized scaling and standardized scaling:

Normalization/Min-Max Scaling:

• It brings all of the data in the range of 0 and 1. sklearn.preprocessing.MinMaxScaler helps to implement normalization in python.

MinMax Scaling:
$$x = \frac{x - min(x)}{max(x) - min(x)}$$

Standardization Scaling:

Standardization replaces the values by their Z scores. It brings all of the data into a standard normal distribution which has mean (μ) zero and standard deviation one (σ) .

Standardisation:
$$x = \frac{x - mean(x)}{sd(x)}$$

sklearn.preprocessing.scale helps to implement standardization in python.

One disadvantage of normalization over standardization is that it loses some information in the data, especially about outliers.

Example:

Below shows example of Standardized and Normalized scaling on original values.

5. You might have observed that sometimes the value of VIF is infinite. Why does this happen? Ans: If there is perfect correlation, then VIF = infinity. This shows a perfect correlation between two independent variables. In the case of perfect correlation, we get R2 =1, which lead to 1/(1-R2) infinity. To solve this problem we need to drop one of the variables from the dataset which is causing this perfect multicollinearity.

An infinite VIF value indicates that the corresponding variable may be expressed exactly by a linear combination of other variables (which show an infinite VIF as well).

6. What is a Q-Q plot? Explain the use and importance of a Q-Q plot in linear regression. Ans:

Quantile-Quantile (Q-Q) plot, is a graphical tool to help us assess if a set of data plausibly came from some theoretical distribution such as a Normal, exponential or Uniform distribution. Also, it helps to determine if two data sets come from populations with a common distribution.

This helps in a scenario of linear regression when we have training and test data set received separately and then we can confirm using Q-Q plot that both the data sets are from populations with same distributions.

Few advantages/importance:

- a) It can be used with sample sizes also
- b) Many distributional aspects like shifts in location, shifts in scale, changes in symmetry, and the presence of outliers can all be detected from this plot.

It is used to check following scenarios:

If two data sets —

- i. come from populations with a common distribution
- ii. have common location and scale

iii. have similar distributional shapes

iv. have similar tail behavior

Interpretation:

A q-q plot is a plot of the quantiles of the first data set against the quantiles of the second data set.

Below are the possible interpretations for two data sets.

- a) Similar distribution: If all point of quantiles lies on or close to straight line at an angle of 45 degree from x -axis
- b) Y-values < X-values: If y-quantiles are lower than the x-quantiles.
- b) **Y-values < X-values:** If y-quantiles are lower than the x-quantiles.

c) X-values < Y-values: If x-quantiles are lower than the y-quantiles.

d) Different distribution: If all point of quantiles lies away from the straight line at an angle of 45 degree from x -axis