Cryptography and Network Security: Principles and Practice

Eighth Edition

Chapter 10

Other Public-Key Cryptosystems

Diffie-Hellman Key Exchange

- First published public-key algorithm
- A number of commercial products employ this key exchange technique
- Purpose is to enable two users to securely exchange a key that can then be used for subsequent symmetric encryption of messages
- The algorithm itself is limited to the exchange of secret values
- Its effectiveness depends on the difficulty of computing discrete logarithms

Figure 10.1 The Diffie–Hellman Key Exchange

Figure 15.9 Diffie-Hellman method

Note

The symmetric (shared) key in the Diffie-Hellman method is $K = g^{xy} \mod p$.

Example 15.1

Let us give a trivial example to make the procedure clear. Our example uses small numbers, but note that in a real situation, the numbers are very large. Assume that g = 7 and p = 23. The steps are as follows:

- 1. Alice chooses x = 3 and calculates $R_1 = 73 \mod 23 = 21$.
- 2. Bob chooses y = 6 and calculates $R_2 = 76 \mod 23 = 4$.
- 3. Alice sends the number 21 to Bob.
- 4. Bob sends the number 4 to Alice.
- 5. Alice calculates the symmetric key $K = 43 \mod 23 = 18$.
- 6. Bob calculates the symmetric key $K = 216 \mod 23 = 18$.
- 7. The value of K is the same for both Alice and Bob; $g^{xy} \mod p = 718 \mod 35 = 18$.

Example 15.2

Let us give a more realistic example. We used a program to create a random integer of 512 bits (the ideal is 1024 bits). The integer p is a 159-digit number. We also choose g, x, and y as shown below:

p	764624298563493572182493765955030507476338096726949748923573772860925 235666660755423637423309661180033338106194730130950414738700999178043 6548785807987581
g	2
x	557
у	273

Example 15.2

Continued

The following shows the values of R_1 , R_2 , and K.

R ₁	844920284205665505216172947491035094143433698520012660862863631067673 619959280828586700802131859290945140217500319973312945836083821943065 966020157955354
R ₂	435262838709200379470747114895581627636389116262115557975123379218566 310011435718208390040181876486841753831165342691630263421106721508589 6255201288594143
K	155638000664522290596225827523270765273218046944423678520320400146406 500887936651204257426776608327911017153038674561252213151610976584200 1204086433617740

Figure 15.10 Diffie-Hellman idea

P

eserved

Security of Diffie-Hellman

Discrete Logarithm Attack

Man-in-the-Middle Attack

In cryptography, we also need to discuss modular logarithm.

Exhaustive Search

Algorithm 9.8 Exhaustive search for modular logarithm

Order of the Group.

Example 9.46

What is the order of group $G = \langle Z_{21} *, \times \rangle$? $|G| = \phi(21) = \phi(3) \times \phi(7) = 2 \times 6 = 12$. There are 12 elements in this group: 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, and 20. All are relatively prime with 21.

Order of an Element

Example 9.47

Find the order of all elements in $G = \langle Z_{10} *, \times \rangle$.

Solution

This group has only $\phi(10) = 4$ elements: 1, 3, 7, 9. We can find the order of each element by trial and error.

- a. $1^1 \equiv 1 \mod (10) \rightarrow \text{ord}(1) = 1$.
- b. $3^4 \equiv 1 \mod (10) \rightarrow \text{ord}(3) = 4$.
- c. $7^4 \equiv 1 \mod (10) \rightarrow \text{ord}(7) = 4$.
- d. $9^2 \equiv 1 \mod (10) \rightarrow \text{ord}(9) = 2$.

Euler's Theorem

Example 9.48

Table 9.4 Finding the orders of elements in Example 9.48

	i = 1	i = 2	i = 3	i = 4	i = 5	i = 6	i = 7
<i>a</i> = 1	x: 1	<i>x</i> : 1	<i>x</i> : 1	x: 1	<i>x</i> : 1	<i>x</i> : 1	<i>x</i> : 1
a = 3	<i>x</i> : 3	x: 1	<i>x</i> : 3	<i>x</i> : 1	<i>x</i> : 3	<i>x</i> : 1	<i>x</i> : 3
a = 5	<i>x</i> : 5	x: 1	<i>x</i> : 5	<i>x</i> : 1	<i>x</i> : 5	<i>x</i> : 1	<i>x</i> : 5
a = 7	<i>x</i> : 7	x: 1	x: 7	x: 1	<i>x</i> : 7	<i>x</i> : 1	<i>x</i> : 7

Primitive Roots In the group $G = \langle Z_n *, \times \rangle$, when the order of an element is the same as $\phi(n)$, that element is called the primitive root of the group.

Example 9.49

Table 9.4 shows that there are no primitive roots in $G = \langle Z_{s} *, \times \rangle$ because no element has the order equal to $\phi(8) = 4$. The order of elements are all smaller than 4.

Table 9.5 shows the result of $a^i \equiv x \pmod{7}$ for the group $G = \langle \mathbb{Z}_7 *, \times \rangle$. In this group, $\phi(7) = 6$.

Table 9.5 *Example 9.50*

	i = 1	i = 2	i = 3	i = 4	i = 5	i = 6
a = 1	<i>x</i> : 1	<i>x</i> : 1	<i>x</i> : 1	x: 1	<i>x</i> : 1	<i>x</i> : 1
a = 2	<i>x</i> : 2	<i>x</i> : 4	<i>x</i> : 1	<i>x</i> : 2	x: 4	<i>x</i> : 1
a = 3	<i>x</i> : 3	<i>x</i> : 2	<i>x</i> : 6	<i>x</i> : 4	<i>x</i> : 5	<i>x</i> : 1
a = 4	<i>x</i> : 4	<i>x</i> : 2	<i>x</i> : 1	<i>x</i> : 4	<i>x</i> : 2	<i>x</i> : 1
<i>a</i> = 5	<i>x</i> : 5	<i>x</i> : 4	<i>x</i> : 6	<i>x</i> : 2	<i>x</i> : 3	<i>x</i> : 1
<i>a</i> = 6	<i>x</i> : 6	<i>x</i> : 1	<i>x</i> : 6	<i>x</i> : 1	<i>x</i> : 6	<i>x</i> : 1

Primitive root \rightarrow

Primitive root \rightarrow

Table 2.7 Powers of Integers, Modulo 19

а	a^2	a^3	a^4	a^5	a^6	a^7	a^8	a^9	a^{10}	a ¹¹	a^{12}	a^{13}	a^{14}	a^{15}	a^{16}	a^{17}	a^{18}
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1
3	9	8	5	15	7	2	6	18	16	10	11	14	4	12	17	13	1
4	16	7	9	17	11	6	5	1	4	16	7	9	17	11	6	5	1
5	6	11	17	9	7	16	4	1	5	6	11	17	9	7	16	4	1
6	17	7	4	5	11	9	16	1	6	17	7	4	5	11	9	16	1
7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1
8	7	18	11	12	1	8	7	18	11	12	1	8	7	18	11	12	1
9	5	7	6	16	11	4	17	1	9	5	7	6	16	11	4	17	1
10	5	12	6	3	11	15	17	18	9	14	7	13	16	8	4	2	1
11	7	1	11	7	1	11	7	1	11	7	1	11	7	1	11	7	1
12	11	18	7	8	1	12	11	18	7	8	1	12	11	18	7	8	1
13	17	12	4	14	11	10	16	18	6	2	7	15	5	8	9	3	1
14	6	8	17	10	7	3	4	18	5	13	11	2	9	12	16	15	1
15	16	12	9	2	11	13	5	18	4	3	7	10	17	8	6	14	1
16	9	11	5	4	7	17	6	1	16	9	11	5	4	7	17	6	1
17	4	11	16	6	7	5	9	1	17	4	11	16	6	7	5	9	1
18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1

Table 2.8 Tables of Discrete Logarithms, Modulo 19 (1 of 2)

(a) Discrete logarithms to the base 2, modulo 19

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$log_{2,19}(a)$	18	1	13	2	16	14	6	3	8	17	12	15	5	7	11	4	10	9

(b) Discrete logarithms to the base 3, modulo 19

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$log_{3,19}(a)$	18	7	1	14	4	8	6	3	2	11	12	15	17	13	5	10	16	9

(c) Discrete logarithms to the base 10, modulo 19

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$log_{10,19}(a)$	18	17	5	16	2	4	12	15	10	1	6	3	13	11	7	14	8	9

Note

The group $G = \langle Z_n^*, \times \rangle$ has primitive roots only if n is 2, 4, p^t , or $2p^t$.

Example 9.51

For which value of n, does the group $G = \langle Z_n *, \times \rangle$ have primitive roots: 17, 20, 38, and 50?

Solution

- a. $G = \langle Z_{17} *, \times \rangle$ has primitive roots, 17 is a prime.
- b. $G = \langle Z_{20} *, \times \rangle$ has no primitive roots.
- c. $G = \langle Z_{38} *, \times \rangle$ has primitive roots, $38 = 2 \times 19$ prime.
- d. $G = \langle Z_{50} *, \times \rangle$ has primitive roots, $50 = 2 \times 5^2$ and 5 is a prime. Copyright © 2020 Pearson Education, Inc. All Rights Reserved

If the group $G = \langle Z_n^*, \times \rangle$ has any primitive root, the number of primitive roots is $\phi(\phi(n))$.

Cyclic Group If g is a primitive root in the group, we can generate the set Z_n^* as $Z_n^* = \{g^1, g^2, g^3, ..., g^{\phi(n)}\}$

Example 9.52

The group $G = \langle Z_{10}^*, \times \rangle$ has two primitive roots because $\phi(10) = 4$ and $\phi(\phi(10)) = 2$. It can be found that the primitive roots are 3 and 7. The following shows how we can create the whole set Z_{10}^* using each primitive root.

$$g = 3 \rightarrow g^1 \mod 10 = 3$$
 $g^2 \mod 10 = 9$ $g^3 \mod 10 = 7$ $g^4 \mod 10 = 1$ $g = 7 \rightarrow g^1 \mod 10 = 7$ $g^2 \mod 10 = 9$ $g^3 \mod 10 = 3$ $g^4 \mod 10 = 1$

The group $G = \langle Z_n^*, \times \rangle$ is a cyclic group if it has primitive roots. The group $G = \langle Z_p^*, \times \rangle$ is always cyclic.

The idea of Discrete Logarithm

Properties of G =
$$\langle Z_p^*, \times \rangle$$
:

- 1. Its elements include all integers from 1 to p-1.
- 2. It always has primitive roots.
- 3. It is cyclic. The elements can be created using g^x where x is an integer from 1 to $\phi(p) = p - 1$.
- 4. The primitive roots can be thought as the base of logarithm.

Solution to Modular Logarithm Using Discrete Logs Tabulation of Discrete Logarithms

Table 9.6 Discrete logarithm for $G = \langle \mathbb{Z}_7^*, \times \rangle$

у	1	2	3	4	5	6
$x = L_3 y$	6	2	1	4	5	3
$x = L_5 y$	6	4	5	2	1	3

Table 2.8 Tables of Discrete Logarithms, Modulo 19 (2 of 2)

(d) Discrete logarithms to the base 13, modulo 19

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$log_{13,19}(a)$	18	11	17	4	14	10	12	15	16	7	6	3	1	5	13	8	2	9

(e) Discrete logarithms to the base 14, modulo 19

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$log_{14,19}(a)$	18	13	7	8	10	2	6	3	14	5	12	15	11	1	17	16	4	9

(f) Discrete logarithms to the base 15, modulo 19

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$log_{15,19}(a)$	18	5	11	10	8	16	12	15	4	13	6	3	7	17	1	2	14	9

Find x in each of the following cases:

a.
$$4 \equiv 3^x \pmod{7}$$
.

b.
$$6 \equiv 5^x \pmod{7}$$
.

Solution

We can easily use the tabulation of the discrete logarithm in Table 9.6.

a.
$$4 \equiv 3^x \mod 7 \rightarrow x = L_3 4 \mod 7 = 4 \mod 7$$

b.
$$6 \equiv 5^x \mod 7 \rightarrow x = L_5 6 \mod 7 = 3 \mod 7$$

Figure 15.11 Man-in-the-middle attack

Figure 10.2 Man-in-the-Middle Attack

EIGamal Cryptography

- Announced in 1984 by T. Elgamal
- Public-key scheme based on discrete logarithms closely related to the Diffie-Hellman technique
- Used in the digital signature standard (DSS) and the S/MIME e-mail standard
- Global elements are a prime number q and a which is a primitive root of q
- Security is based on the difficulty of computing discrete logarithms

Figure 10.11 Key generation, encryption, and decryption in ElGamal

Bob

Key Generation

Algorithm 10.9 ElGamal key generation

Algorithm 10.10 ElGamal encryption

```
ElGamal_Encryption (e_1, e_2, p, P)  // P is the plaintext {

Select a random integer r in the group \mathbf{G} = \langle \mathbf{Z}_p^*, \times \rangle

C_1 \leftarrow e_1^r \mod p

C_2 \leftarrow (P \times e_2^r) \mod p  // C_1 and C_2 are the ciphertexts return C_1 and C_2
```

Algorithm 10.11 ElGamal decryption

Note

The bit-operation complexity of encryption or decryption in ElGamal cryptosystem is polynomial.

Figure 10.3 The ElGamal Cryptosystem

Global Public Elements

q prime number

 $\alpha < q$ and α a primitive root of q

Key Generation by Alice

Select private $X_A < q - 1$

Calculate $Y_A = \alpha^{X_A} \mod q$

Public key $\{q, \alpha, Y_A\}$

Private key X_A

Encryption by Bob with Alice's Public Key

Plaintext: M < q

Select random integer k < q

Calculate $K = (Y_A)^k \mod q$

Calculate $C_1 = \alpha^k \mod q$

Calculate C_2 $C_2 = KM \mod q$

Ciphertext: (C_1, C_2)

Decryption by Alice with Alice's Private Key

Ciphertext: (C_1, C_2)

Calculate $K = (C_1)^{X_A} \mod q$

Plaintext: $M = (C_2K^{-1}) \mod q$

Example 10. 10

Here is a trivial example. Bob chooses p = 11 and $e_1 = 2$. and d = 3 $e_2 = e_1^d = 8$. So the public keys are (2, 8, 11) and the private key is 3. Alice chooses r = 4 and calculates C1 and C2 for the plaintext 7.

Plaintext: 7

$$C_1 = e_1^r \mod 11 = 16 \mod 11 = 5 \mod 11$$

 $C_2 = (P \times e_2^r) \mod 11 = (7 \times 4096) \mod 11 = 6 \mod 11$

Bob receives the ciphertexts (5 and 6) and calculates the plaintext.

$$[C_2 \times (C_1^d)^{-1}] \mod 11 = 6 \times (5^3)^{-1} \mod 11 = 6 \times 3 \mod 11 = 7 \mod 11$$

Plaintext: 7

Instead of using $P = [C_2 \times (C_1^d)^{-1}] \mod p$ for decryption, we can avoid the calculation of multiplicative inverse and use $P = [C_2 \times C_1^{p-1-d}] \mod p$ (see Fermat's little theorem in Chapter 9). In Example 10.10, we can calculate $P = [6 \times 5^{-11-1-3}] \mod 11 = 7 \mod 11$.

For the ElGamal cryptosystem, p must be at least 300 digits and r must be new for each encipherment.

Example 10. 12

Bob uses a random integer of 512 bits. The integer p is a 155-digit number (the ideal is 300 digits). Bob then chooses e_1 , d, and calculates e_2 , as shown below:

<i>p</i> =	115348992725616762449253137170143317404900945326098349598143469219 056898698622645932129754737871895144368891765264730936159299937280 61165964347353440008577
<i>e</i> ₁ =	2
<i>d</i> =	1007

Example 10. 10

Alice has the plaintext P = 3200 to send to Bob. She chooses r = 545131, calculates C1 and C2, and sends them to Bob.

P =	3200
r =	545131
C ₁ =	887297069383528471022570471492275663120260067256562125018188351429 417223599712681114105363661705173051581533189165400973736355080295 736788569060619152881
C ₂ =	708454333048929944577016012380794999567436021836192446961774506921 244696155165800779455593080345889614402408599525919579209721628879 6813505827795664302950

Bob calculates the plaintext $P = C_2 \times ((C_1)^d)^{-1} \mod p = 3200 \mod p$.

P =	3200
-----	------

Summary

- Define Diffie-Hellman Key Exchange
- Understand the Man-in-the-middle attack
- Present an overview of the Elgamal cryptographic system
- Understand Elliptic curve arithmetic
- Present an overview of elliptic curve cryptography
- Present two techniques for generating pseudorandom numbers using an asymmetric cipher

Copyright

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.