

Mathematical Foundations of Computer Science

Connectivity, Trees

If 3 walls from uto v then 3 path from uto v

Paths

Path Graph or Linear Graph:

special graph in first vertex (v_1) and last vertex (v_n) have degree 1, and every other vertex has degree 2.

Path between $u, v \in V(G)$:

A subgraph which is a path subgraph such that 1^{st} vertex = u, last vertex=v. e.g. path between v_2 and v_6 in G

No vertex is repeated in a path

Walk: Vertices, edges can be repeated

Connectivity, Connected Graphs

Connectivity between two vertices:

 $u, v \in V(G)$ are connected iff there is a path from u to v in G

e.g. v_2 , v_6 are connected, v_8 , v_9 are connected.

 v_2, v_9 are not connected.

Connected Graph: Undirected graph G(V, E) is connected iff every pair of nodes $u, v \in V(G)$ are connected.

Connected Components

Connected component: a subset *S* of vertices that are connected in *G*, and connected to no other vertices of *G* (i.e. a maximal connected subset)

$$\{v_8, v_9\}$$
 is a CC $\{v_{10}, v_{11}, v_{12}, v_{13}\}$ yes $\{v_4, v_5, v_2\}$ no $\{v_{11}, v_{12}\}$ no

Connected Components of a graph G

Connectivity is an equivalence relation!

Connected components gives a partition of the vertices. Why?

How many connected components does a connected graph have?

How do we find them? BFS

unv to say
u connected to v

Connected Components

Lemma. Every vertex belongs to exactly one connected component.

```
Proof 1: Follows from connectivity is equivalence relation.
Green a
Roof 2: Define S = \{v \in V \mid u \sim v \}. Claim S is a CC.
         If v, w ES. Then u~v, w~u hence v~w.
          To show S is maximal assume ZES. Then Zyu
          If SU{Z$ is connected. Then I yEs st y^Z.
u-y, y~2 => u~2 => continuation.
      If S, is connected and S, Ju then S, CS
```

A simple bound on Components

Thm. Number of connected components is at least |V| - |E|

Proof. By induction on the number of edges m. $\frac{|\mathcal{E}| \ge |\mathcal{V}| - \# CC}{|\mathcal{E}|}$

IH: Any graph with (m-1) edges has at least |V|-m+1 components.

Add edge
$$(u,v)$$
 to G

(ase 1: (u,v) is same CC . Then

the of CC remains the same

 $f: |v|-m+1 \ge |v|-m$

(ase 2: (u,v) in different CC . Then

 $f: |v|-m+1 \ge |v|-m$
 $f: |v|-m+1 = |v|-m$

Corollary. Every connected graph has at least n-1 edges

Cycles

Simple cycle: A connected graph where every vertex has

degree exactly 2.

Cycles in a Graph *G*:

Any subgraph of *G* which is a cycle

e.g. $(v_1, v_2, v_5, v_4, v_3, v_1)$ forms a cycle in G

Trees

Trees: A connected graph with no cycles

Equivalent Definitions of Trees

Theorem: Let G be a graph with n vertices and m edges

The following are equivalent:

- 1. G is a connected and acyclic (i.e. G is a tree)
- 2. Every two vertices of G are joined by a unique path
- 3. G is connected and m = n 1i.e. A tree is connected with minimal # of edger
- 4. G is acyclic and m = n 1
- 5. G is acyclic and if any two non-adjacent nodes are joined by an edge, the resulting graph has exactly one cycle

Proof of the Equivalence

How many implications do we need to show?

$$5 \times 4 = 20$$
?

To prove this, it suffices to show

$$1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 1$$

Proof of $1 \Rightarrow 2$

Claim: If *G* is a tree (connected, acyclic), then every two nodes are joined by unique path.

Proof: (by contradiction). Suppose not.

Assume G is a tree that has two nodes u, v connected by two different paths:

Then there exists a cycle (formally: a closed walk. Then use PS5 #2)