Introduction to Content Delivery Networks

References

Long Live the Web, by Tim Berners-Lee, 2010

http://www.cs.virginia.edu/~robins/Long_L ive_the_Web.pdf

➤ History of the Internet

http://en.wikipedia.org/wiki/History_of_t
he Internet

Intro

- □ The Early Days
- □ The WWW
- □ The Evolution of Content Networking
- The Diversity of Interests

- First application dedicated to content delivery:
 - The electronic distribution of documents, mainly research papers

- Evolution
 - > FTP File Transfer Protocol
 - Used for information retrieval

Evolution

- > FTP File Transfer Protocol
 - Used for information retrieval
- > Archie
 - Search and catalog info available in FTP servers, by file name

Evolution

- > FTP File Transfer Protocol
 - Used for information retrieval
- > Archie
 - Search and catalog info available in FTP servers, by file name
- > WAIS Wide Area Information Server
 - Search and catalog info available in FTP servers, by keywords
 - Scored responses, ranking retrieved information based on the quantity of keyword appearance
 - WAIS Inc. was the first company to commercialize technology related to content delivery

Evolution

- > FTP File Transfer Protocol
 - Used for information retrieval
- > Archie
 - Search and catalog info available in FTP servers, by file name
- > WAIS Wide Area Information Server
 - Search and catalog info available in FTP servers, by keywords
 - Scored responses, ranking retrieved information based on the quantity of keyword appearance
 - WAIS Inc. was the first company to commercialize technology related to content delivery
- > Gopher
 - Evolution of WAIS
 - Capable of hierarchical organization

<u>Intro</u>

- The Early Days of Content Delivery
- □ The WWW
- □ The Evolution of Content Networking
- The Diversity of Interests

- Internet application that <u>links</u> <u>information</u> accessible via networked computers
- Information
 - > Web pages, which can contain
 - text, graphics
 - animations audio/video
 - hyperlinks

Hyperlinks

- > Hyperlinks are embedded in documents
- >Important feature of the Web, differentiates it from early approaches
- Connect a web page to other resources, local or remote
- Enables <u>navigation</u>
 - browsing through information without having to know their actual location

- The origin of the WWW
 - > CERN, European Organization for Nuclear Research, Switzerland
 - Big lab, lots of projects and experts
 - Needed to support dynamic, non-centralized interaction and <u>quick access to documents</u> stored at secluded locations
 - In 1989, Tim Berners-Lee proposes using hypertext for linking information available on individual computers

- > CERN, Switzerland
 - The hypertext concept had been proposed earlier (45, 67, 68)
 - Hypertext documents embed hyperlinks represented as underlined texts or icons. By selecting and clicking on a hyperlink, associated information is loaded and displayed.
 - Tim's proposal:
 - extend the hypertext concept to allow linking of information that can be stored on remote computers
 - create a tool which allows transparent access to remote information
 - CERN approved the proposal and Tim implemented a hypertext browser/editor, finishing the 1st version at the end of 1990.

- □ The origin of the WWW
 - > First browsers
 - Erwise
 - ViolaWWW
 - MidasWWW
 - Early 90s
 - ~50 web-servers
 - the WWW traffic accounted for 0.1% of the Internet traffic

The origin of the WWW

- >Real breakthrough -- Early 1993
 - Mosaic the 1st widespread graphical web browser
 - Developed at NCSA by Andreesen and Bina
 - User-friendly interface
 - Clickable buttons, easy navigation controls, allowed to scroll through text
 - Free and easy to install
 - Allowed beginners to take advantage of the new, exciting web technology

- The origin of the WWW
 - ➤ In 1994, Mosaic became Netscape ...
 - As Andreesen and Bina graduated and moved to Silicon Valley to commercialize their software
 - > ... and the Web really started to grow
 - From ~500 websites in 1994 to ~10,000 in the beginning of 1995
 - Netscape quickly became the predominant browser
 - by 1996, about 75% of the Web users used Netscape

- The origin of the WWW
 - > Microsoft gets into the picture
 - Noticing the growing importance of the Web and Netscape's enormous business success, Microsoft Corporation got into the act and started developing its own browser software - the Internet Explorer
 - "The Browser War"
 - Quick innovation
 - Free browser software
 - Incompatibilities
 - Microsoft crushed Netscape (and others)
 - In 2005, accounting for ~80-90% of the browsers used in the Internet

□ The origin of the WWW

- > Meanwhile, in "server-land"
 - Apache has always dominated the server world with its open source http://news.netcraft.com/archives/2014/09/24/september-2014-web-server-survey.html
- > With Microsoft in the picture
 - New trend toward an increased commercialization of the Web
 - The Web has become the center for internet activity
 - with many people actually not realizing the difference between the Internet and the Web.

- The origin of the WWW
 - > The amount of information and services available
 - has increase at a staggering rate
 - > This tremendous growth causes problems
 - Scalability
 - Reliability
 - Unpredictable service quality
 - High download delays
 - Security

- Basic Concepts of the WWW
 - >The Web
 - large universe linking information accessible via the Internet
 - > Information
 - Web pages, or Web objects
 - > Web objects
 - made available on computers, the Web servers

- Basic Concepts of the WWW
 - >Users request Web objects from a Web server via the Internet
 - > Web client
 - The application initiating the request
 - > Request is made in two ways
 - Address typed in the browser
 - Clinking of a pre-defined link
 - >Homepage
 - Entry portal to a Web site

- The Web model involves 3 main concepts
 - ➤ A common <u>representation</u> format for hypertext documents
 - A scheme for <u>naming and addressing</u>
 Web objects
 - > A standard mechanism for transmitting control and data messages between server and client

- Representing of Web objects
 - >HTML HyperText Markup Language
 - Defines the representation for hypertext documents
 - Originally specified by Tim Berners-Lee in the beginning the 1990s, has been developed and extended
 - Standardization started at the IETF and is now carried out by the W3C - World Wide Web Consortium

- Representing of Web objects
 - > HTML HyperText Markup Language
 - Defines the <u>layout and formatting</u> of a Web page
 - Allow authors to <u>embed hyperlink</u> references to other resources on the Web
 - Relatively simple syntax, expressed in <u>plain ASCII</u> format
 - Tools are now available to <u>export</u> documents in HTML automatically
 - Ease of page creation has helped to fuel the growth of the Web
 - Possible to have Web pages in other formats, but the layout will be transparent to the browser and there will be no hyperlinks

- Identifying Web objects
 - > Two pieces of information
 - Name
 - Location
 - > URI Uniform Resource Identifier
 - URN Uniform Resource Name
 - URL Uniform Resource Location
 - - /<server>/<path>

Transporting Web objects

- The Web operation depends on communication
- > Requires a communication protocol
 - Defines the <u>rules</u>, <u>syntax</u>, <u>and semantics</u> for the interaction
 - Specifies a <u>message format</u> and <u>semantic rules</u> to be applied to the various parts of the message
- >HTTP Hypertext Transport Protocol
 - Main transport mechanism on the Web
 - Application-level protocol

- Transporting Web objects
 - >HTTP
 - Request-response
 - Text-based
 - Stateless
 - Improves simplicity and scalability
 - Complicates the implementation of Web sites that needs to react according to previous information
 - Solution: Cookies and JavaScript

- Applications on the WWW
 - The growth and evolution of the WWW are mainly driven and heavily influenced by applications written and used by business and individuals
 - >Underlying Web technology
 - needs to <u>follow the trends</u> and developments in the application area

- Applications on the WWW
 - > Evolution content delivery
 - Retrieving static content
 - Retrieving dynamic content
 - Retrieving streaming content
 - Interactive collaboration

Model 1: Retrieving static content

- Static content comprises stored documents that reside on Web servers for retrieval by users
- > Information change infrequently
- > Changes require explicit modification by the author
- > Typical usage
 - Accessing personal homepages
 - Fetching research papers
- > Limited interaction with the user
- Not suitable for frequently changing data

- Model 2: Retrieving dynamic content
 - > Dynamic content made new levels of interaction possible
 - > Dynamic content is created only at the time it is requested
 - Final form is not stored
 - It is created with information created or gathered at the time of the request
 - Contents are typically generated by a program run at the server
 - Pages can be customized
 - According to <u>information</u> given by the requesting user
 - According to the <u>capability</u> of the user's end device or network connection
 - Resulting page looks may look different for different users
 - > Typical usage
 - Content portals: news, stock quotes, weather forecasts
 - Examples: My Yahoo! and eBay

Model 3: Retrieving streaming content

- Deliver of continuously flowing media such as audio and video
 - Streaming technology establishes a steady data flow from the server to the client
- Different from playback!
 - No need to wait for the download
- > Two main categories
 - On-demand streaming deliver of pre-recorded content to many users at different times
 - <u>Live streaming</u> broadcast of live content to many users at the same time

- Model 4: Interactive collaboration
 - > Allows two or more users to interact in real-time
 - Users typically react to previous actions of other users in real time
 - > Examples:
 - Videoconferencing
 - Networked gaming
 - Instant messaging
 - Challenges
 - Need to transfer data <u>synchronously</u> with <u>low delay</u>, in <u>real</u> <u>time</u>, for a potentially large number of users

- Applications on the WWW
 - > Evolution -- content
 - Web 1.0
 - Read or write
 - Web 2.0
 - Read and write
 - Web 3.0 -- Semantic Web
 - Read, write, and request

http://www.zdnet.com/blog/web2explorer/a-simple-picture-of-web-evolution/408

- Applications on the WWW
 - > The evolution
 - The way in which the Web is used has <u>exposed some shortcomings</u> of the traditional internet/web model
 - Consequence
 - Content Network
 - → Enhanced network technology overlaying the Internet

<u>Intro</u>

- The Early Days of Content Delivery
- □ The WWW
- □ The Evolution of Content Networking
- The Diversity of Interests

Web evolution

- > Fast growth in number of users
- > Enormous growth in network traffic
- Decrease in service quality
 - Delay
 - Unavailability
- >Users abandon slow-response sites
 - Lost sales and dissatisfied customers

Web evolution

- Web-based e-commerce represents significant business
- ➤ Important to invest in improving service quality
- ➤ Important to invest in the Content Network
 - Technologies that aim to improve content delivery and service provisioning

The Traditional Web Model

- The Web is highly decentralized and distributed
 - Decentralization helped the growth and propagation
- > The simplicity of Web site creation
 - results in an ever-increasing variety of content offered over the web

The Traditional Web Model

- ➤ A small number of pages accounts for the majority of user requests
 - Enable <u>content portals</u> to cover a large percentage of requests
 - Provides the opportunities for performance improvements

The Traditional Web Model

- > The service model is centralized
 - Consequences
 - Bottlenecks at popular servers and/or Internet links to popular servers
 - Scalability Issues
 - Worse yet
 - Extreme traffic peaks

- The Traditional Web Model
 - > The service model is centralized
 - Another problem
 - Distance between server and clients leads to delays
 - » Plain delay
 - » Packet loss
 - » Geographic distance
 - ○Network distance (in number of routers)
 - Need to minimize network distance

- The Traditional Web Model
 - > High-speed always-on Internet access
 - Big problem getting worse with smart phones!
 - more use → more sites → more traffic
 - > Result
 - Low-service quality, due to high delay
 - Unstable throughput
 - Loss of packets

- Evolutionary Steps
 - > Adding more ...
 - Bandwidth
 - Capacity power
 - Quality-of-service support

... not enough

- Evolutionary Steps
 - > More dynamic content network
 - Load-balanced server farms
 - Replication of contents
 - Web caches
 - Content and Web Services

- > Distributing load at a centralized server
 - Web server: potential bottleneck
 - Simple solution: more powerful servers
 - Scalable and flexible solution: <u>server farms</u>
 - In the same location, connected to the same subnet
 - Can be connected to multiple ISPs for extra performance gains
 - Requests pass through a front-end load balancer
 - Devices: Web Switch, Content Switch
 - Extra feature: fault tolerance

- > Distributing content and centralized services
 - Distributing and moving content closer to the user
 - Decrease delay and load on the network
 - Server replication
 - Web caches
 - Browser caching

 Stores requested Web objects locally
 - Proxy caching

 Stores requested Web objects in an intermediate location between server and client, preferably close to client
 - Web caches evolution
 - Hierarchical caching
 - Cooperative caching

- > Distributing content and services
 - New architectures and systems <u>move server-side</u> <u>services out of the edge</u> of the network, closer to the user
 - Enables customization
 - Dynamic assembly of personalized Web pages
 - Content adaptation for wireless devices
 - Trend → framework for distributed Web applications
 - Web services architecture
 - Web services are interoperable building blocks for constructing complex Web applications

- > Simple > Complex
- > Centralized model
 - Helped the Web to grow, but did not scale well
- Distributed content provisioning and applications
 - Increased complexity and higher initial costs
 - But scales better and provides better performance and reliability
- > Example
 - Deploying server-side load balancing and web caching

- Content Networking Defined
 - > Buzz terms
 - Content Distribution
 - Content Delivery
 - Caching Overlays
 - Proxy Networks

- Content Networking Defined
 - > Terms
 - Content
 - Information that is made available to other users on the Internet

- > Terms
 - Content Networks
 - Provides the infrastructure to <u>better</u> support delivery of relevant content over the Internet
 - Communication network that deploys infrastructure components operating at protocols Layers 4-7.
 - » These components interconnect with one another, creating a <u>virtual network</u> layered on top of an existing packet network infrastructure

- >Terms
 - Intermediaries
 - Application-level devices that are part of Web transaction, but are neither the originating nor the terminating device in the transaction.
 - Example: Web caches

- > Functional components of content networks
 - Content Distribution
 - Request-routing
 - Content processing
 - Authorization, authentication, and accounting
- > Not all 4 are always available

- > Functional components of content networks
 - Content Distribution
 - Services (mechanisms and protocols) for moving content from source to users
 - Request-routing
 - Services for navigating user requests to a location best suited for retrieving the requested content

- > Functional components of content networks
 - Content processing
 - Services for creating or adapting content to suit user preferences and device capabilities
 - Authorization, authentication, and accounting
 - Services that enable monitoring, logging, accounting, and billing of content usage.

<u>Intro</u>

- The Early Days of Content Delivery
- □ The WWW
- The Evolution of Content Networking
- □ The Diversity of Interests

- Every party has a different <u>stake and incentive</u> in the Internet business
- Disparity of interests
 - > Cable companies and telephone providers
 - Want to provide access
 - > ISPs
 - Want to provide access
 - Backbone service providers
 - Pressure to cope with traffic growth
 - > E-commerce companies
 - Concerned about security, reliability, and performance

- Understanding this diversity
 - ➤ Important in the design and deployment of content networks
- Addressing the content-network beneficiaries
 - > Value chain
 - Content provider
 - Content network provider
 - Content consumer

Value chain

- > Content provider
 - Typically, content creator ≠ content host
 - Challenge: response time and availability
 - Trend: Hire a third party for providing
 - Need some control
 - For example, to obtain feedback on usage

Value chain

- > Content network provider
 - Provides
 - delivery,
 - caching,
 - replication,
 - request-routing,
 - possibly content processing
 - Need to provide usage feedback to content providers
 - Dilemma:
 - Aim to attract as many requests as possible, but needs to reduce the aggregate load on resources and network links

Value chain

- > Content consumer
 - High expectations for low delay and high throughput
 - Needs tailored service (e.g., for wireless devices)

END