MovieData_R_Assignment

2023-06-11

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)

```
##
        speed
                         dist
                           : 2.00
##
    Min.
          : 4.0
                    Min.
##
    1st Qu.:12.0
                    1st Qu.: 26.00
    Median:15.0
                    Median : 36.00
##
##
    Mean
           :15.4
                   Mean
                           : 42.98
##
    3rd Qu.:19.0
                    3rd Qu.: 56.00
           :25.0
    Max.
                   Max.
                           :120.00
```

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

my_log <- file("C:/Users/golak/Downloads/Assignment1_output.txt")

 $sink("C:/Users/golak/Downloads/Assignment1_output.txt")$

Loading Dataset

library("readxl") dataset = read_excel("C:/Users/golak/Downloads/Movie Data.xlsx") View(dataset)

Print the structure of your dataset

str(dataset)

List the variables in your dataset

names(dataset)

Print the top 15 rows of your dataset

head(dataset, 15)

Write a user defined function using any of the variables from the data set.

my_function <- function(dataset, Rating) { variable <- dataset[[Rating]] average <- mean(variable) return(average) } my_function result <- my_function(dataset, "Rating") result

Use data manipulation techniques and filter rows based on any logical criteria that exist in your dataset

```
library(dplyr) filtered_data <- filter(dataset, Rating > 5) filtered_data
```

Identify the dependent & independent variables and use reshaping techniques and create a new data frame by joining those variables from your dataset.

Remove missing values in your dataset.

```
cleaned_data <- na.omit(dataset) cleaned_data <- na.omit(dataset) cleaned_data
```

Identify and remove duplicated data in your dataset

duplicated_rows <- duplicated(dataset) duplicated_rows

Reorder multiple rows in descending order

```
ordered_dataset <- arrange(dataset, desc(Year), desc(Rating)) ordered_dataset
```

Rename some of the column names in your dataset

```
colnames(dataset) names(dataset)[2]<-"release_year" names(dataset)[8]<-"movie_rating" colnames(dataset)
```

Add new variables in your data frame by using a mathematical function (for e.g. – multiply an existing column by 2 and add it as a new variable to your data frame)

 $datasetNew_Rating < -dataset$ movie_rating + 1 colnames(dataset)

Create a training set using random number generator engine.

```
training\_indices <- sample(nrow(dataset), size = round(0.7 * nrow(dataset))) training\_set <- dataset[training\_indices, ] training\_set <- dataset[training\_indices, ] training\_set
```

Print the summary statistics of your dataset

summary(dataset)

Use any of the numerical variables from the dataset and perform the following statistical functions \bullet Mean \bullet Median \bullet Mode \bullet Range

```
mean_rating <- mean(dataset$movie_rating) print(mean_rating)
median_rating <- median(dataset$movie_rating) print(median_rating)

calculate_mode <- function(x) { unique_values <- unique(x) counts <- tabulate(match(x, unique_values)))
mode <- unique_values[which.max(counts)] return(mode) } variable_mode <- calculate_mode(variable)
variable_mode

variable_range <- range(variable) variable_range
```

Plot a scatter plot for any 2 variables in your dataset

```
x < -dataset movie_ratingy < -dataset release vear plot(x,y)
```

Plot a bar plot for any 2 variables in your dataset

variable <- dataset\$movie_rating barplot(variable)</pre>

Find the correlation between any 2 variables by applying least square linear regression model $\,$

x <- dataset $movie_r atingy < -dataset$ release_year correlation <- cor(x,y) correlation sink()