

Trabalho 1 Speed_Run

Pedro Rei 107463, P1 33,3% Cristiano Nicolau 108536, P4 33,3% Tiago Fonseca 108615, P4 33,3%

Índice

I.Introdução	3
2. Apresentação do problema	3
3. Explicação das Solução dadas e respetivos resultados	4
3.1 Solução dada pelo professor	4
3.2 Solução dada pelo professor melhorada(solution_1_recursion)	5
3.2 Solução sem Recursão (solution_2_Nonrecursion)	6
4. Resultados	7
Resultados obtidos em Gráficos MatLab para a solução 1 (solution_1_recursion)	18
5.Conclusão	22
Código speed_run	23
Código MatLab usado	27
Código usado para comparar os tempo de execução por número mecanográfico:	27
Código usado para comparar os tempo de execução por processador:	27
6.Bibliografia	28

1.Introdução

Este trabalho pratico surgiu no contexto da cadeira de Algoritmos e Sistemas de Dados, onde nos foi fornecido um ficheiro com diversos scripts sendo um deles, **speed_run.c**, onde primeiramente o objetivo era tentar melhor o script para fornecer o tempo de execução o mais depressa possível, para fazer isso, poderíamos usar o código já fornecido, acrescentando o necessário, ou criar a nossa própria função. O script **speed run** está feito em linguagem *c*.

Com este trabalho, esperamos ficar mais familiarizados com a programação em linguagem *c*, e em todos os processos necessários para a realização deste trabalho prático.

2. Apresentação do problema

O problema apresentado consiste numa estrada, dividida em segmentos, nas quais passa um carro. Esse carro vai a uma certa velocidade que corresponde ao número de segmentos que avança, sendo que não pode ultrapassar o limite de velocidade presente em cada segmento. A velocidade máxima possível para o carro é 9 e a mínima é 1. Para isso o carro tem 3 opções: aumentar em 1 a sua velocidade, manter a velocidade ou diminuir em 1 a sua velocidade. O objetivo será o carro atravessar a estrada no número mínimo de passos possível, sem ultrapassar os limites de velocidade estabelecidos, de forma a chegar ao último segmento com velocidade 1. Essa mesma estrada pode ter diversos tamanhos e deve-se encontrar o caminho mais rápido em cada um deles.

3. Explicação das Solução dadas e respetivos resultados

Nesta parte do documento, serão apresentadas as soluções já fornecidas pelo professor, as soluções realizadas pelo nosso grupo e ainda os resultados obtidos.

Serão ainda apresentados documentos PDF com a melhor solução encontrada, contendo variáveis relativas ao número de movimentos, tempo de execução e as posições percorridas.

3.1 Solução dada pelo professor

Para este trabalho foi fornecida um script, *speed_run.c*, que nos fornecia uma função, onde esta era ineficiente e apresentava uma velocidade de execução muito lenta e insuficiente para apresentar resultados de uma estrada com 800 segmentos.

Dentro do *script* estava a função *solution_1_recursion* que recebia como dados o número de movimentos, *move_number*, a posição onde estaria o carro, *position*, a velocidade a que ia, *speed*, e a posição final, *final_position*.

Esta função verificava para todas as velocidades em cada posição se esta era a mais eficiente, de modo que fizesse o caminho no menor número de passos possível.

Inicialmente ela irá verificar, para a posição definida, se irá aumentar, reduzir ou manter a velocidade. Para isso, ele verifica se, para cada um dos casos, a nova velocidade que ele vai ter, *new_speed*, cumpre os requisitos, sendo eles: não ultrapassar a velocidade máxima, *_max_road_speed_* e somando ele à posição não ultrapassar o valor da posição final, *final_position*. Por último verifica-se se os segmentos nos quais o carro vai passar têm valor igual ou superior ao da *new_speed*.

Se tudo isto se verificar ele irá efetuar de novo a função onde a velocidade passa a ser o *new_speed*, a posição passa a ser a *position* anterior, e adiciona ao *move_number* +1. A partir daí será sempre feito este processo até chegar ao último segmento, *final_position*, com velocidade 1. Sendo esta uma função recursiva caso exista um caso onde nenhuma das mudanças de velocidade é possível ele pode voltar para o segmento de onde partiu anteriormente e testar para outras velocidades até atingir o objetivo.

3.2 Solução dada pelo professor melhorada(solution 1 recursion)

Ao correr a solução dada pelo professor reparamos num crescimento acentuado do tempo de execução para posições finais maiores, devido ao esforço necessário para percorrer todas as soluções possíveis.

Para reduzir o tempo de execução primeiramente, priorizamos o aumento da velocidade, ou seja, como o objetivo principal é chegar a posição final, *final_position*, com o menor numero de movimentos possíveis, *move_number*, então, ao testar as velocidades, faz mais sentido, incrementar a velocidade ao invés de a manter ou reduzir.

De seguida, podemos poupar uma chamada da função recursiva, uma vez que sabemos sempre que o primeiro movimento, que será passar de velocidade 0 para velocidade 1 e da posição 0 para posição 1, assim sendo podemos logo começar na posição 1, com velocidade 1 e numero de movimentos 1, ou seja, *speed*=1, *move_number*=1 e *position*=1.

Por fim, uma vez que é uma função recursiva, é desnecessário continuar a executar se já encontramos uma solução melhor, ou seja, se com o mesmo numero de movimentos, *move_number*, nos encontramos em uma posição, *position*, mais recuada do que em uma melhor solução já encontrada, é desnecessário continuar a testar esta solução.

3.2 Solução sem Recursão (solution 2 Nonrecursion)

Nesta solução, o nosso objetivo era criar uma solução sem recursividade, mas após diversos erros, não foi possível dar-lhe continuidade, mesmo assim chegamos ao consenso de a colocar no relatório de forma a enriquece-lo mostrando todo o trabalho que foi realizado pelo grupo.

Primeiramente a nossa ideia, era chegar a uma solução sem ser através de uma função recursiva mas sim através de um ciclo *for*. Após decidirmos como iria ser feita a função, percebemos que a única entrada necessária seria o posição final, *final_position*, então de seguida, criamos as variáveis necessárias, *speed*, *move_number*, *position*.

Após isto, iniciamos o ciclo *for* que iria percorrer todos os i ate a posição final, dentro deste ciclo *for* temos ainda umas condições *if* onde caso a velocidade fosse 0, passaria a 1; caso o i fosse igual a final_position-1 ou igual a final_position-2, e a velocidade fosse diferente de 1 então a velocidade diminuiria 1, caso nenhuma destas condições fossem reais então, irá verificar, para a posição definida, se irá aumentar, reduzir ou manter a velocidade. Para isso, ele verifica se, para cada um dos casos, a nova velocidade que ele vai ter, *new_speed*, cumpre os requisitos, sendo eles: não ultrapassar a velocidade máxima, *_max_road_speed_* e somando ele à posição não ultrapassar o valor da posição final, *final_position*. Por último verifica-se se os segmentos nos quais o carro vai passar têm valor igual ou superior ao da *new_speed*. Caso passe em todos os testes, o ciclo for volta a correr, guardando os valores da velocidade, a posição sendo a posição anterior mais a velocidade, e incrementa +1 no move_number. Caso a posição seja igual a posição final e o speed=1 e se o numero de movimentos for menor do que a melhor solução já encontrada, a solução é guardada e o numero de movimentos também.

Por fim encontra-se ainda um ciclo, do While, que foi desenvolvido com a intenção de melhorar o desenvolvimento da função e para a correção de erros. Em que o objetivo era sempre que chegássemos a uma posição onde não era possível decrementar a velocidade para que a velocidade fosse valida nos segmentos da estrada ou seja, por exemplo, se a velocidade fosse 4 mas o salto não fosse valido pois a position+speed percorressem casas onde a velocidade seria 2, entraria neste ciclo.

O objetivo seria ir ao salto anterior e decrementar a velocidade ou seja quando chegasse a este salto, a velocidade seria 3 sendo possível decrementar a velocidade para 2. Caso não fosse possível iria a outro salto atrás, ate que fosse possível fazer os saltos. Com isto dentro deste ciclo calculamos a velocidade anterior, old_speed, através das positions com o move_number anterior, e entrava numa condição if onde a velocidade atual teria de ser maior ou igual a velocidade anterior, caso isso acontecesse, guardava os valores da velocidade, a posição sendo a posição anterior mais a velocidade, e incrementava +1 no move number.

A nossa função solve_2 ao contrario da já fornecida solve_1 que chama a função recursiva com as entradas *move_number, speed, final_position* e *position*; chama a função não recursiva unicamente com a entrada *final_position*.

4. Resultados

Apresentamos agora a parte com os resultados do script, tanto daquilo que aparece no terminal como de alguns dos PDFs que são criados. Inicialmente temos o script original fornecido pelo stor que apresenta a seguinte tabela:

+		+
1		plain recursion
 n	 sol	+ count cpu time +
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29 31 32 33 34 35 36	2 3 3 4 4 5 5 5 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 9 10 10 11 11 11 11 12 12	1 1.656e-06 2 1.115e-06 4 1.067e-06 7 1.186e-06 12 1.337e-06 21 1.692e-06 35 1.851e-06 59 2.474e-06 99 3.213e-06 166 4.993e-06 278 2.393e-06 464 3.047e-06 776 4.934e-06 1296 7.974e-06 2164 1.316e-05 3613 2.196e-05 6030 3.623e-05 10064 6.000e-05 16794 1.000e-04 28023 1.856e-04 46758 2.770e-04 78012 4.487e-04 130090 7.021e-04 216969 1.124e-03 359707 1.893e-03 597824 3.154e-03 995047 5.216e-03 1655499 9.279e-03 2757260 1.481e-02 4617502 2.409e-02 7716364 4.059e-02 12813314 6.703e-02 21329527 1.119e-01 35520858 1.846e-01 59124729 3.184e-01 98503441 5.132e-01

37	12	164103137 8.558e-01
38	13	274843839 1.445e+00
39	13	459339192 2.470e+00
40	13	766741706 4.061e+00
41	14	1280450790 6.817e+00
42	14	2137774080 1.147e+01
43	14	3567725220 1.946e+01
44	14	5919245371 3.404e+01
45	15	9841717643 5.630e+01
46	15	16384861943 9.362e+01
47	15	27264882096 1.496e+02
48	15	43602648571 2.521e+02
49	16	70820435199 4.180e+02
50	16	114375988302 6.761e+02

Através deste gráfico podemos observar também a relação entre o tempo de execução e o comprimento da estrada a percorrer.

Gráfico em Matlab para visualização dos resultados.

Em seguida temos a nossa solução melhorada, em que inicialmente fomos apenas verificar para os diferentes números mecanográficos, mas fomos também comparar para os diferentes processadores as velocidades de execução.

Inicialmente temos a tabela para os números mecanográficos 107463, 108536 e 108615, respetivamente:

Para o 107463:

4		+
		plain recursion
	+ ·	·+
n	sol	count cpu time
	+	+
1	1	1 1.629e-06
2	2	2 1.016e-06
3	3	4 1.048e-06
4	3	4 1.016e-06
5	4	6 1.024e-06
6	4	7 1.117e-06
7	5	9 1.080e-06
8	5	11 1.278e-06
9	5	9 1.059e-06
10	6	12 1.277e-06
11	6	14 6.190e-07
12	6	12 2.690e-07
13	7	16 3.400e-07
14	7	19 3.460e-07
15	7	19 3.120e-07

Algoritmos e Estruturas de Dados

44 15 31 4.110e-07 45 16 35 4.140e-07 46 16 37 4.630e-07 47 16 36 4.600e-07	
45 16 35 4.140e-07	
47 16 36 4.600e-07	
48 16	
55 19	
65 24	
75 27	
85 29	
100 35	
120 43 95 1.053e-06 130 45 106 1.140e-06	
140 47 111 1.172e-06 150 49 116 1.383e-06 160 52 109 1.334e-06	

170 180 190 200 220 240 260 280 300 320 340	60 62 64 71 78 82 89 97 102 111	120 1.315e-06 132 1.338e-06 144 1.637e-06 150 1.679e-06 147 2.020e-06 169 1.801e-06 175 1.855e-06 186 1.671e-05 205 2.242e-06 216 2.375e-06 238 2.423e-06
360		248 2.481e-06
380		266 2.964e-06
400		276 2.831e-06
420		297 3.985e-06
440		296 4.203e-06
460	•	312 3.111e-06
480	152	336 3.359e-06 337 3.424e-06
	167	357 3.597e-06
540		389 3.990e-06
	178	378 3.917e-06
580		400 4.041e-06
	189	418 5.036e-06
620		417 4.239e-06
	204	438 4.352e-06
660		447 4.477e-06
680		458 4.526e-06
700		481 4.854e-06
720		484 4.748e-06
740	236	503 4.813e-06
760	241	528 6.058e-06
780	245	529 5.255e-06
800	253	539 5.304e-06
		+

Para o 108536:

+		+
		plain recursion
+		+
n	sol	count cpu time
+		+
1	1	1 1.391e-06
2	2	2 1.476e-06
3	3	4 1.425e-06
4	3	4 1.072e-06
5	4	6 1.400e-06
6	4	7 1.297e-06
7	5	9 1.465e-06
8	5	11 1.767e-06
9	5	9 1.194e-06

10 11 12 13 14 15 16 17 20 21 22 23 24 25 26 27 30 31 32	6 6 7 7 7 8 8 8 8 9 9 9 9 10 10 10 11	12 1.214e-06 14 7.920e-07 12 4.220e-07 16 3.840e-07 19 4.240e-07 19 3.880e-07 15 3.630e-07 19 3.780e-07 22 3.700e-07 23 4.360e-07 23 4.360e-07 24 4.990e-07 25 4.410e-07 25 4.410e-07 26 3.890e-07 27 4.980e-07 28 4.680e-07 29 3.500e-07 20 3.500e-07 21 3.550e-07 22 3.890e-07 23 3.890e-07 24 3.550e-07 25 3.890e-07
23	9	28 4.620e-07
24 25	9	25 4.410e-07 18 3.780e-07
27 28	10 10	25 3.890e-07 24 4.080e-07
30	11	24 3.550e-07
32 33	11 11	25 3.890e-07 21 3.130e-07
34 35 36	12	23 3.470e-07 25 3.450e-07 23 3.270e-07
37 38	13 13	25 3.810e-07 27 3.740e-07
39 40 41	14	25 3.390e-07 27 3.780e-07 29 3.720e-07
42 43	14 15	27 3.480e-07 29 3.850e-07
44 45 46	15	31 4.070e-07 29 2.848e-06 31 4.010e-07
47 48	16 16	33 4.130e-07 31 3.710e-07
49 50 55	17	33 3.970e-07 34 4.580e-07 36 1.397e-06
60 65	22 24	42 7.570e-07 49 7.680e-07
70 75 80		54 7.010e-07 60 7.860e-07 69 9.020e-07
85 90	29 30	72 8.980e-07 66 1.048e-06
95 100	32 35	67 1.074e-06 73 9.280e-07

400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740	42 44 46 48 53 58 61 63 65 73 81 85 91 116 129 134 139 147 152 158 165 170 176 183 187 193 201 225	82 1.818e-06 96 1.132e-06 105 1.255e-06 109 1.154e-06 109 1.240e-06 111 1.279e-06 121 1.362e-06 134 1.397e-06 138 1.398e-06 150 1.729e-06 151 2.798e-06 151 2.798e-06 187 2.038e-06 208 2.213e-06 211 2.299e-06 233 3.977e-06 243 2.498e-06 267 2.753e-06 267 2.753e-06 292 5.322e-06 294 3.243e-06 304 3.198e-06 329 3.212e-06 329 3.212e-06 329 3.212e-06 342 3.487e-06 342 3.487e-06 352 3.819e-06 363 3.680e-06 363 3.680e-06 363 3.680e-06 363 3.899e-06 403 5.880e-06 425 4.156e-06 425 4.156e-06
780	243	502 4.643e-06 505 5.039e-06
		•
800 +	252	524 5.138e-06
T		

Para o 108615:

+ plain recursion
+
count cpu time
+
1 1.611e-06
2 1.064e-06
4 1.134e-06

Algoritmos e Estruturas de Dados

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	4 4 5 5 5 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 9 10 10 11 11 11 12 12 13 13 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	4 1.089e-06 6 1.083e-06 7 1.111e-06 9 1.125e-06 11 1.237e-06 9 1.123e-06 12 1.225e-06 12 1.225e-06 14 6.580e-07 12 3.220e-07 16 4.100e-07 19 3.930e-07 19 3.930e-07 19 3.940e-07 22 3.680e-07 23 4.720e-07 23 4.720e-07 25 6.810e-07 29 6.550e-07 20 4.000e-07 28 5.670e-07 21 4.720e-07 24 6.240e-07 24 6.240e-07 27 6.180e-07 26 6.590e-07 26 6.590e-07 26 6.590e-07 26 6.590e-07 27 3.640e-07 28 6.190e-07 28 6.190e-07 27 3.900e-07 27 3.650e-07 27 3.650e-07 27 3.650e-07 27 3.640e-07 27 3.640e-0
36 37	12 12	27 3.900e-07 24 3.600e-07
39 40	13 13	29 3.770e-07 27 3.640e-07
	14 14	34 4.140e-07 33 4.240e-07
45 46	15 15	29 3.800e-07 32 3.970e-07 34 4.210e-07
47 48 49	15	33 4.190e-07 29 3.890e-07 31 4.340e-07
50 55	19	31 4.440e-07 37 1.271e-06
60 65 70	23	43 1.056e-06 48 6.870e-07 53 7.010e-07

340 360 380 400 420 440 460	27 28 29 31 34 39 42 44 46 48 51 56 59 61 78 82 88 96 100 114 118 127 137	59 7.030e-07 68 9.050e-07 71 9.000e-07 66 9.920e-07 66 9.280e-07 72 9.030e-07 83 1.370e-06 93 1.036e-06 104 1.132e-06 109 1.118e-06 112 1.346e-06 117 1.233e-06 129 1.326e-06 141 1.649e-06 144 1.331e-05 168 1.979e-06 173 1.951e-06 180 2.057e-06 203 2.258e-06 207 2.301e-06 207 2.301e-06 229 2.431e-06 239 2.529e-06 258 2.972e-06 262 3.767e-06 279 4.814e-06 283 3.159e-06 299 3.112e-06
	•	-
	•	•
	-	
	:	•
	•	229 2.431e-06
	-	
	•	•
	•	
	151	321 3.280e-06
	157	323 3.208e-06
	165 170	341 3.409e-06 373 3.798e-06
	170	368 5.015e-06
	184	390 4.008e-06
600	187	399 3.982e-06
	194	408 4.187e-06
	202	432 4.322e-06
	206 213	435 4.382e-06 446 4.378e-06
	221	465 4.541e-06
	226	480 5.779e-06
	236	502 4.966e-06
	240	514 4.940e-06
	244	520 5.123e-06
	254	543 6.373e-06
+		+

O resultado obtido em PDF foi bem sucedido em todos os casos, sendo que em baixo está apresentado um dos casos com o tamanho da estrada 800,neste caso para o número mecanográfico 107463:

Outro exemplo, desta vez para o número mecanográfico 108536, é apresentado com tamanho da estrada 100:

Por último temos para o número mecanográfico 108615 um exemplo com tamanho da estrada de 50:

Para concluir temos a solução não recursiva referida anteriormente que, apesar de não ter sido concluída devido a diversos erros, teve resultados para um dos números mecanográficos, pelo que irá também ser apresentado o PDF resultante para uma estrada de tamanho 800:

Resultados obtidos em Gráficos MatLab para a solução 1 (solution_1_recursion)

Inicialmente, testámos e corremos o script em cada um dos computadores dos constituintes do grupo com os diferentes números mecanográficos para assim podermos compara tempos de execução por número mecanográfico.

Resultado obtido para o computador do número mecanográfico 107463:

Resultado obtido para o computador do número mecanográfico 108615:

Resultado obtido para o computador do número mecanográfico 108536:

-Para comparar os diferentes tempos de execução para os mesmos processadores, juntámos os tempos de cada um dos computadores e fizemos um gráfico que nos permitiu comparar os tempos de execução para cada processador com o mesmo número mecanográfico.

Para o processador "i7-1185G7" e para o número mecanográfico 107463:

Para o processador "i7-1165G7" e para o número mecanográfico 108615:

Para o processador "i7-1165G7" e para o número mecanográfico 108536:

Com estas comparações conseguimos comparar o desempenho dos vários processadores para a mesma solução encontrada, conseguindo assim ter uma noção da performance de cada um dadas as suas características.

5.Conclusão

Na nossa opinião o trabalho desenvolvido pelo grupo cumpriu os objetivos propostos num tempo de execução substancialmente inferior ao tempo original. Todo este trabalho mostrou em como não é só importante conseguir obter o programa funcional mas sim também tornálo o mais eficiente possível porque em certos casos, como é o caso do script speed_run.c, a velocidade de execução pode não ser suficiente para o tempo que é pretendido.

Para além disso consideramos que a realização deste trabalho foi útil para compreender formas de otimização do nosso código e encontrar soluções alternativas mais eficientes. O facto de analisarmos durante bastante tempo o código fornecido ajudou também na compreensão cada vez mais completa da linguagem C e as alterações por nós feitas permitiu pôr na prática os nossos conhecimentos apreendidos nas aulas teóricas.

Durante a realização do trabalho enfrentámos algumas dúvidas e percalços, no entanto estas foram sempre esclarecidas pelo nosso professor durante as aulas práticas.

Concluindo, consideramos que alcançámos os objetivos propostos pelo professor e estamos bastante satisfeitos com os resultados finais obtidos.

Código speed run

```
// AED, August 2022 (Tomás Oliveira e Silva)
// First practical assignement (speed run)
// Compile using either
// cc -Wall -O2 -D_use_zlib_=0 solution_speed_run.c -lm
// cc -Wall -O2 -D_use_zlib_=1 solution_speed_run.c -Im -lz
// Place your student numbers and names here
//
//
//
// static configuration
#define _max_road_size_ 800 // the maximum problem size
#define _min_road_speed_ 2 // must not be smaller than 1, shouldnot be smaller than 2 #define _max_road_speed_ 9 // must not be larger than 9 (only because of the PDF figure)
// include files --- as this is a small project, we include the PDF generation code directly from make_custom_pdf.c
#include <math.h>
#include <stdio.h>
#include "../P02/elapsed_time.h"
#include "make_custom_pdf.c"
#include <stdbool.h>
// road stuff
static int max_road_speed[1 + _max_road_size_]; // positions 0.._max_road_size_
static void init_road_speeds(void)
    double speed;
    for(i = 0;i <= _max_road_size_;i++)
        speed = (double)_max_road_speed_ * (0.55 + 0.30 * sin(0.11 * (double)i) + 0.10 * sin(0.17 * (double)i + 1.0) + 0.15 * sin(0.19 *
 (double)i));
        \label{eq:max_road_speed} \begin{split} \max_{i=1}^{\infty} \max_{j=1}^{\infty} \max_{i=1}^{\infty} \max_{j=1}^{\infty} \max_{i=1}^{\infty} \max_{j=1}^{\infty} 
        if(max_road_speed[i] < _min_road_speed_)</pre>
           max_road_speed[i] = _min_road_speed_
        if(max_road_speed[i] > _max_road_speed_)
           max_road_speed[i] = _max_road_speed_;
}
// description of a solution
 typedef struct
                                                                                  // the number of moves (the number of positions is one more than the number of moves)
    int positions[1 + _max_road_size_]; // the positions (the first one must be zero)
solution_t;
// the (very inefficient) recursive solution given to the students
static solution_t solution_1,solution_1_best;
static double solution_1_elapsed_time; // time it took to solve the problem
static unsigned long solution_1_count; // effort dispended solving the problem
/* Nossa solucao nao recursiva contem um erro onde so encontra resultado para um elemento do grupo 108536
static void solution_2_Nonrecursion( int final_position)
    int i:
```

```
int flag;
 int move number=0;
 int position=0;
 int speed=0;
 for (i = 0, i \le final_position + 1, i++)
  int new_speed=speed;
  int j,w,q;
  flag = 0;
   if (speed == 0){
    speed=1;
    flag=1;
   } else if ( i == final_position - 1){
     if (speed!=1){
       speed=speed-1;
       flag=1;
   } else if ( i == final_position - 2){
     if (speed!=1){
       speed=speed-1;
       flag=1;
   } else{
    for(new_speed = speed+1;new_speed>=speed-1 && flag==0;new_speed--){\
     if(new_speed >= 1 && new_speed <= _max_road_speed_ && position + new_speed <= final_position ){
       for (j = 0; j <= new_speed && new_speed<=max_road_speed[position+j]; j++){
       for (w= 0; w <= new_speed && new_speed<=max_road_speed[position+w+new_speed]; w++){
       for (q = 0; q <= new_speed && new_speed<=max_road_speed[position+q+new_speed+new_speed]; q++){
       }
       if (j>= new_speed&& w >= new_speed && q>= new_speed){
        speed=new_speed;
        move_number=move_number+1;
        position=position+new_speed;
        solution_1_count++;
        solution_1.positions[move_number] = position;
     }
  if(position == final_position && speed == 1){
   if(move_number < solution_1_best.n_moves){
    solution_1_best = solution_1;
    solution_1_best.n_moves = move_number;
  return;
}
  *//*
  do
   int old_speed;
   move_number-=1;
   position=solution_1.positions[move_number];
   //testa se speed pode dimuir
   speed=solution_1.positions[move_number+1]-solution_1.positions[move_number];
   old_speed=solution_1.positions[move_number]-solution_1.positions[move_number-1]; //com speed isto nao pode ser mais pequeno
que o speed-1
   //se for legal diminui speed e avança
   //senao for da mais um salto atras
   if (speed-1>=old_speed-1){
    flag=1;
    position=position+speed;
    move_number=move_number+1;
    solution_1_count++;
    solution_1.positions[move_number] = position;
  } while (flag!=1);
```

```
*//*
static void solve_2(int final_position)
 if(final_position < 1 || final_position > _max_road_size_)
  fprintf(stderr,"solve_1: bad final_position\n");
  exit(1);
 solution_1_elapsed_time = cpu_time();
 solution_1_count = 0ul;
 solution_1_best.n_moves = final_position + 100;
 solution_1_recursion(final_position);
 solution_1_elapsed_time = cpu_time() - solution_1_elapsed_time;
static void solution_1_recursion(int move_number,int position,int speed,int final_position)
 int i, new_speed;
 solution_1_count++;
 solution_1.positions[move_number] = position;
 if(position == final_position && speed == 1)
  if(move_number < solution_1_best.n_moves)</pre>
   solution_1_best = solution_1;
   solution_1_best.n_moves = move_number;
  return:
 }
 if (solution_1_best.positions[move_number] > solution_1.positions[move_number]) return;
  for(new_speed = speed + 1;new_speed >= speed - 1;new_speed--){// "for" serve para verificar para >,< ou = velocidade
   if(new_speed >= 1 && new_speed <= _max_road_speed_ && position + new_speed <= final_position ){ //hipotese: para igual position
deve ter sempre menos move_number
     for(i = 0;i <= new_speed && new_speed <= max_road_speed[position + i];i++){ // "for" serve para verificar se cumpre o limite para
cada posição seguinte
     if(i > new_speed)
      solution_1_recursion(move_number + 1,position + new_speed,new_speed,final_position);
}
static void solve_1(int final_position)
 if(final_position < 1 || final_position > _max_road_size_)
  fprintf(stderr,"solve_1: bad final_position\n");
  exit(1);
 solution_1_elapsed_time = cpu_time();
 solution_1_count = 0ul;
 solution_1_best.n_moves = final_position + 100;
 solution_1_recursion(1,1,1,final_position); //aumenta sempre de velocidade no 1º logo
 solution_1_elapsed_time = cpu_time() - solution_1_elapsed_time;
// example of the slides
static void example(void)
 int i,final_position;
 srandom(0xAED2022);
 init_road_speeds();
 final_position = 30;
 solve_1(final_position);
```

```
make_custom_pdf_file("example.pdf",final_position,&max_road_speed[0],solution_1_best.n_moves,&solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.positions[0],solution_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_best.position_1_bes
on_1_elapsed_time,solution_1_count,"Plain recursion");
  printf("mad road speeds:");
  for(i = 0;i <= final_position;i++)
    printf(" %d",max_road_speed[i]);
  printf("\n");
  printf("positions:");
  for(i = 0;i <= solution_1_best.n_moves;i++)
    printf(" %d",solution_1_best.positions[i]);
  printf("\n");
// main program
//
int main(int argc,char *argv[argc + 1])
# define _time_limit_ 3600.0
  int n_mec,final_position,print_this_one;
  char file_name[64];
  // generate the example data
  if(argc == 2 && argv[1][0] == '-' && argv[1][1] == 'e' && argv[1][2] == 'x')
     example();
    return 0;
  // initialization
  n_mec = (argc < 2) ? 0xAED2022 : atoi(argv[1]);
  srandom((unsigned int)n_mec);
  init_road_speeds();
  // run all solution methods for all interesting sizes of the problem
  final position = 1;
  solution_1_elapsed_time = 0.0;
  printf(" + --- -----+\n");
                                        plain recursion |\n");
  printf("
                  printf("--- + --
                                         -----+\n"):
  printf(" n | sol
                                          count cpu time |\n");
  printf("--- + --- ------+\n");
  while(final_position <= _max_road_size_/* && final_position <= 20*/)
     print_this_one = (final_position == 10 || final_position == 20 || final_position == 50 || final_position == 100 || final_position == 200 ||
final_position == 400 || final_position == 800) ? 1 : 0;
     printf("%3d |",final_position);
    // first solution method (very bad)
     if(solution_1_elapsed_time < _time_limit_)
       solve_1(final_position);
       if(print_this_one != 0)
         sprintf(file_name, "%03d_1.pdf", final_position);
make_custom_pdf_file(file_name,final_position,&max_road_speed[0],solution_1_best.n_moves,&solution_1_best.positions[0],solution_
1_elapsed_time,solution_1_count,"Plain recursion");
       printf(" %3d %16lu %9.3e |",solution_1_best.n_moves,solution_1_count,solution_1_elapsed_time);
     else
       solution_1_best.n_moves = -1;
       printf("
     // second solution method (less bad)
    // done
     printf("\n");
     fflush(stdout);
     // new final_position
     if(final_position < 50)
       final_position += 1;
     else if(final_position < 100)
      final_position += 5;
     else if(final_position < 200)
       final_position += 10;
```

```
else final_position += 20;
} printf("--- + --- ------- +\n");
return 0;
# undef _time_limit_
```

Código MatLab usado.

Código usado para comparar os tempo de execução por número mecanográfico:

```
n =1; cpu_time = 4; 107463 =[]; #Neste array colocamos os valores do terminal para o numero mecanográfico correspondente. 108536 =[]; #Neste array colocamos os valores do terminal para o numero mecanográfico correspondente. 108615 =[]; #Neste array colocamos os valores do terminal para o numero mecanográfico correspondente. figure(1); plot(107463(:,n), 107463 (:,cpu_time),'r', 108536 (:,n), 108536 (:,cpu_time),'b', 108615:,n), 108615 (:,cpu_time),'green') ylabel("cpu_time (s)") xlabel("Final position") legend('107463', '108536', '108615') %Depois substituir por CPUs talvez title("Gráfico do tempo em função da posição final realizado no computador do aluno 108536.")
```

Código usado para comparar os tempo de execução por processador:

```
n = 1;
cpu time = 4;
i7-1185G7 =[]; #Neste array colocamos os valores do terminal para o numero mecanográfico a comparar no
processador referente.
I7-1165G7 =[]; #Neste array colocamos os valores do terminal para o numero mecanográfico a comparar no
processador referente.
I7-1165G7 =[]; #Neste array colocamos os valores do terminal para o numero mecanográfico a comparar no
processador referente.
figure(1);
plot(i7-1185G7(:,n), i7-1185G7 (:,cpu_time), r', I7-1165G7 (:,n), I7-1165G7 (:,cpu_time), b', I7-1165G7:,n), I7-1165G7
(:,cpu_time),'green')
ylabel("cpu_time (s)")
xlabel("Final position")
legend('107463', '108536', '108615')
title("Gráfico do tempo em função dos 3 processadores para xxxxxx.") #substituir para o numero mecanográfico
correspondente.
```

6.Bibliografia

Para a realização do trabalho foi principalmente consultado o PowerPoint relativo à programação em C disponível na página do e-learning da unidade curricular. Foi também utilizado conteúdo obtido em sites para tirar dúvidas pontuais.

Sites vistos:

- https://stackoverflow.com/
- https://www.javatpoint.com/