Classical Higher-Order Logic – Theory, Applications and Problems –

Christoph E. Benzmüller

University of Cambridge, UK & Universität des Saarlandes, Germany

Saarbrücken, 20 December 2006

Research Interest in AI ____

Can machines think?

Research Interest in Al

Can machines think?

At the end of the century, [...] one will be able to speak of "machines thinking" without expecting to be contradicted.

Alan Turing, 1950

Research Interest in Al

Can machines think?

At the end of the century, [...] one will be able to speak of "machines thinking" without expecting to be contradicted.

Alan Turing, 1950

Can machines play chess?

Research Interest in Al

Can machines think?

At the end of the century, [...] one will be able to speak of "machines thinking" without expecting to be contradicted.

Alan Turing, 1950

The last match man vs machine?

And how about mathematics?

Can we built intelligent

Mathematics Assistant Systems?

Can machines play chess?

Mathematics Assistance Systems

Computing

- Computing
- Proving

- Computing
- Proving
- Exploring/Inventing

- Computing
- Proving
- Exploring/Inventing
- Illustrating/Publishing

- Computing
- Proving
- Exploring/Inventing
- Illustrating/Publishing
- Structuring/Organizing

- Computing
- Proving
- Exploring/Inventing
- Illustrating/Publishing
- Structuring/Organizing
- Explaining/Teaching

Mathematics Assistance Systems

- Computing
- Proving
- Exploring/Inventing
- Illustrating/Publishing
- Structuring/Organizing
- Explaining/Teaching

_ . . .

- Computing
- Proving
- Exploring/Inventing
- Illustrating/Publishing
- Structuring/Organizing
- Explaining/Teaching
- _ ...
- Architecture & HCI & . . .

Mathematics Assistance Systems

see publication list

- Computing
- Proving
- Exploring/Inventing
- Illustrating/Publishing
- Structuring/Organizing
- Explaining/Teaching
- **.** . . .
- (Architecture & HCI & ...)

Applications/Specialisations of Mathematics Assistance Systems

Formal Methods in Computer Science in Mathematics

Formal Methods

E-Learning in all

of these areas

Applications/Specialisations of Mathematics Assistance Systems

Formal Methods

in Computer Science in Mathematics

Formal Methods

E-Learning in all

of these areas

Why Classical Higher-Order Logic (HOL)?

textbooks

$$\mathcal{P}(\mathsf{A}) \quad \{\mathsf{x}|\mathsf{x}\subseteq\mathsf{A}\}$$

higher-order logic

$$\lambda x.x \subseteq A$$

first-order logic

$$x \in \mathcal{P}(A) \Leftrightarrow x \subseteq A$$

Applications/Specialisations of Mathematics Assistance Systems

Formal Methods

in Computer Science in Mathematics

Formal Methods ...

E-Learning in all

of these areas

Why Classical Higher-Order Logic (HOL)?

textbooks

 $\mathcal{P}(\mathsf{A}) \quad \{\mathsf{x}|\mathsf{x}\subseteq\mathsf{A}\}$

higher-order logic

 $\lambda x.x \subseteq A$

first-order logic

 $x \in \mathcal{P}(A) \Leftrightarrow x \subseteq A$

A Big Challenge

Automation of HOL

(research is decades behind)

Automated Theorem Proving

Automated Theorem Proving

Model Classes (Extensionality)

Automated Theorem Proving

Semantics

- Model Classes (Extensionality)
- Abstract Consistency Proof Method

Automated Theorem Proving

Semantics

- Model Classes (Extensionality)
- Abstract Consistency Proof Method
- Test Problems

Automated Theorem Proving

Semantics

- Model Classes (Extensionality)
- Abstract Consistency Proof Method
- Test Problems

Automated Theorem Proving

- Extensional Resolution, Paramodulation
- Combination with FO-ATP

Semantics

- Model Classes (Extensionality)
- Abstract Consistency Proof Method
- Test Problems

Proof Theory

Automated Theorem Proving

- Extensional Resolution, Paramodulation
- Combination with FO-ATP

Semantics

- Model Classes (Extensionality)
- Abstract Consistency Proof Method
- Test Problems

Proof Theory

Cut-simulation

Automated Theorem Proving

- Extensional Resolution, Paramodulation
- Combination with FO-ATP

Semantics

ESSLLI-06, WS-05/06

Model Classes (Extensionality)

[JSL'04]

Abstract Consistency Proof Method

[JSL'04]

Test Problems

[TPHOLs'05]

Proof Theory

Cut-simulation

[IJCAR'06]

Automated Theorem Proving SS-06 (DA), WS-04/05

Extensional Resolution, Paramod.

Combination with FO-ATP

[CADE'98/99,Synthese'02]

[LPAR'04]

Syntax

Syntax

HOL-Syntax: Simple Typed λ **-Calculus**

Simple Types T:

o (truth values)

 ι (individuals)

 $(\alpha \rightarrow \beta)$ (functions from α to β)

HOL-Syntax: Simple Typed λ -Calculus

o (truth values)

Simple Types T: ι (individuals)

 $(\alpha \rightarrow \beta)$ (functions from α to β)

Typed Terms:

 X_{α} Variables (V)

 c_{α} Constants & Parameters ($\Sigma \& P$)

 $(\mathbf{F}_{\alpha \to \beta} \, \mathbf{B}_{\alpha})_{\beta}$ Application

 $(\lambda Y_{\alpha} \mathbf{A}_{\beta})_{\alpha \to \beta} \quad \lambda$ -abstraction

HOL-Syntax: Simple Typed λ -Calculus

o (truth values)

Simple Types T: ι (individuals)

 $(\alpha \rightarrow \beta)$ (functions from α to β)

Typed Terms:

 X_{α} Variables (V)

 c_{α} Constants & Parameters ($\Sigma \& P$)

 $(\mathbf{F}_{\alpha \to \beta} \mathbf{B}_{\alpha})_{\beta}$ Application

 $(\lambda Y_{\alpha} \mathbf{A}_{\beta})_{\alpha \to \beta}$ λ -abstraction

Equality of Terms: α , β , η

HOL: Adding Logical Connectives

$$\top_{\circ}$$
 – true

$$\perp_{0}$$
 – false

$$\neg_{o \rightarrow o}$$
 – negation

$$\vee_{o \to o \to o}$$
 – disjunction

$$\land_{o \rightarrow o \rightarrow o}$$
 – conjunction

$$\Rightarrow_{o \to o \to o}$$
 – implication

$$\Leftrightarrow_{o \to o \to o}$$
 – equivalence

 $\forall X_{\alpha}$... – universal quantification over type α (\forall types α)

 $\exists X_{\alpha}$... – existential quantification over type α (\forall types α)

 $=_{\alpha \to \alpha \to o}$ – equality at type α (\forall types α)

HOL: Adding Logical Connectives _

$$\neg_{o \rightarrow o}$$
 – negation

$$\vee_{o \to o \to o}$$
 – disjunction

 $\forall X_{\alpha}$... – universal quantification over type α

(\forall types α)

HOL: Leibniz Equality _

Impredicative definition of equality

$$\mathbf{A}_{\alpha} \doteq \mathbf{B}_{\alpha}$$

means

$$\forall \mathsf{P}_{\alpha \to \mathsf{o}}(\mathsf{P}\,\mathbf{A} \Rightarrow \mathsf{P}\,\mathbf{B})$$

$$\forall \mathsf{P}_{\alpha \to \mathsf{o}}(\neg \mathsf{P} \, \mathbf{A} \vee \mathsf{P} \, \mathbf{B})$$

Semantics

Model Classes (Extensionality)

Idea of Standard Semantics:

$$\iota \longrightarrow \mathcal{D}_{\iota}$$
 (choose)
o $\longrightarrow \mathcal{D}_{o} = \{\mathtt{T},\mathtt{F}\}$ (fixed)
 $(\alpha \to \beta) \longrightarrow$
 $\mathcal{D}_{\alpha \to \beta} = \mathcal{F}(\mathcal{D}_{\alpha},\mathcal{D}_{\beta})$ (fixed)

Standard Models $\mathfrak{ST}(\Sigma)$

Standard Models $\mathfrak{ST}(\Sigma)$

Idea of Standard Semantics:

$$\iota \longrightarrow \mathcal{D}_{\iota}$$
 (choose)
o $\longrightarrow \mathcal{D}_{o} = \{\mathtt{T},\mathtt{F}\}$ (fixed)
 $(\alpha \to \beta) \longrightarrow$
 $\mathcal{D}_{\alpha \to \beta} = \mathcal{F}(\mathcal{D}_{\alpha},\mathcal{D}_{\beta})$ (fixed)

Henkin's Generalization:

$$\mathcal{D}_{\alpha \to \beta} \subseteq \mathcal{F}(\mathcal{D}_{\alpha}, \mathcal{D}_{\beta})$$
 (choose) but elements are still functions!

[Henkin-50]

Standard Models $\mathfrak{SI}(\Sigma)$

choose: \mathcal{D}_{ι} fixed: $\mathcal{D}_{o}, \mathcal{D}_{\alpha \to \beta}$, functions

Standard Models $\mathfrak{ST}(\Sigma)$

choose: \mathcal{D}_{ι} fixed: $\mathcal{D}_{\mathsf{o}}, \mathcal{D}_{\alpha \to \beta}$, functions

Formulas valid in $\mathfrak{ST}(\Sigma)$

Henkin Models $\mathfrak{H}(\Sigma)=\mathfrak{M}_{\beta\mathfrak{f}\mathfrak{b}}(\Sigma)$

choose: $\mathcal{D}_{\iota}, \mathcal{D}_{\alpha \to \beta}$ fixed: \mathcal{D}_{o} , functions

Formulas valid in $\mathfrak{M}_{\beta\mathfrak{f}\mathfrak{b}}(\Sigma)$?

Henkin Models $\mathfrak{H}(\Sigma) = \mathfrak{M}_{\beta\mathfrak{f}\mathfrak{b}}(\Sigma)$

Formulas valid in $\mathfrak{M}_{\beta\mathfrak{f}\mathfrak{b}}(\Sigma)$

choose: $\mathcal{D}_{\iota}, \mathcal{D}_{\alpha \to \beta}$ fixed: \mathcal{D}_{o} , functions

Non-Extensional Models $\mathfrak{M}_{\beta}(\Sigma)$

Formulas valid in $\mathfrak{M}_{\beta}(\Sigma)$?

choose: $\mathcal{D}_{\iota}, \mathcal{D}_{\alpha \to \beta}$, also non–functions, \mathcal{D}_{o} fixed:

Non-Extensional Models $\mathfrak{M}_{\beta}(\Sigma)$

Formulas valid in $\mathfrak{M}_{\beta}(\Sigma)$?

choose: $\mathcal{D}_{\iota}, \mathcal{D}_{\alpha \to \beta}$, also non–functions, \mathcal{D}_{o} fixed:

We additionally studied different model classes with 'varying degrees of extensionality'

non-extensional models

 \mathfrak{b} : Boolean extensionality, $\mathcal{D}_{o} = \{\mathtt{T},\mathtt{F}\}$

 $\mathfrak{f}(=\eta+\xi)$: functional extensionality

 η : η -functional

 ξ : ξ -functionality

full

Henkin models

non-extensional models

Henkin models

non-extensional models

Henkin models

non-extensional models

Henkin models

non-extensional models

Henkin models

-p.16

© Benzmüller 2006

© Benzmüller 2006

Semantics - Calculi - Abstract Consistency

Semantics:

Model Classes (Extensionality)

Semantics - Calculi - Abstract Consistency

Semantics:

Model Classes (Extensionality)

Reference Calculi: ND (and others)

Semantics - Calculi - Abstract Consistency

Semantics:

Model Classes (Extensionality)

Reference Calculi: ND (and others)

Abstract Consistency / Unifying Principle: Extensions of Smullyan-63 and Andrews-71

Automated Theorem Proving

Extensional Resolution

Extensional HO Resolution \mathcal{ER}

[Andrews-71] Higher-order resolution (without unification)

ext. axioms

proof search & blind variable instantiation

[Huet-73/75] Higher-order constrained resolution

ext. axioms

proof search & eager unification

delayed pre-unification

■ [Benzmüller-99] Extensional higher-order resolution

interleaved proof search & unification

Proof Theory _____

Cut-simulation

We work with a one-sided sequent calculus:

We work with a one-sided sequent calculus:

examples for two-sided rules:

We work with a one-sided sequent calculus:

examples for two-sided rules:

$$rac{\Gamma \Longrightarrow oldsymbol{\Delta}, oldsymbol{A} ee oldsymbol{B}}{oldsymbol{\Gamma} \Longrightarrow oldsymbol{\Delta}, oldsymbol{A} ee oldsymbol{B}}$$

We work with a one-sided sequent calculus:

examples for two-sided rules:

$$rac{\Gamma \Longrightarrow \Delta, \mathbf{A}, \mathbf{B}}{\Gamma \Longrightarrow \Delta, \mathbf{A} ee \mathbf{B}} \, \mathcal{G}(ee_{Intro})$$

We work with a one-sided sequent calculus:

examples for two-sided rules:

$$rac{\Gamma \Longrightarrow \Delta, \mathbf{A}, \mathbf{B}}{\Gamma \Longrightarrow \Delta, \mathbf{A} ee \mathbf{B}} \, \mathcal{G}(ee_{Intro})$$

corresponding one-sided rules:

$$\frac{}{\neg(\Gamma)\cup\Delta,\mathbf{A}\vee\mathbf{B}}\,\mathcal{G}(\vee_{+})$$

 Δ ,**C** stands for $\Delta \cup \{C\}$

We work with a one-sided sequent calculus:

examples for two-sided rules:

$$rac{\Gamma \Longrightarrow \Delta, \mathbf{A}, \mathbf{B}}{\Gamma \Longrightarrow \Delta, \mathbf{A} ee \mathbf{B}} \, \mathcal{G}(ee_{Intro})$$

corresponding one-sided rules:

$$\frac{\neg(\Gamma) \cup \Delta, \mathbf{A}, \mathbf{B}}{\neg(\Gamma) \cup \Delta, \mathbf{A} \vee \mathbf{B}} \, \mathcal{G}(\vee_+)$$

We work with a one-sided sequent calculus:

examples for two-sided rules:

$$egin{aligned} rac{\Gamma \Longrightarrow \Delta, \mathbf{A}, \mathbf{B}}{\Gamma \Longrightarrow \Delta, \mathbf{A} \lor \mathbf{B}} \, \mathcal{G}(ee_{Intro}) & \overline{\Gamma, \mathbf{A} \lor \mathbf{B} \Longrightarrow \Delta} & \mathcal{G}(ee_{Elim}) \end{aligned}$$

corresponding one-sided rules:

$$\frac{\neg(\Gamma) \cup \Delta, \mathbf{A}, \mathbf{B}}{\neg(\Gamma) \cup \Delta, \mathbf{A} \vee \mathbf{B}} \, \mathcal{G}(\vee_+)$$

 Δ ,**C** stands for $\Delta \cup \{C\}$

We work with a one-sided sequent calculus:

examples for two-sided rules:

$$rac{\Gamma \Longrightarrow \Delta, \mathbf{A}, \mathbf{B}}{\Gamma \Longrightarrow \Delta, \mathbf{A} ee \mathbf{B}} \, \mathcal{G}(ee_{Intro})$$

$$rac{\mathsf{\Gamma},\!\mathbf{A}\Longrightarrow \Delta \quad \mathsf{\Gamma},\!\mathbf{B}\Longrightarrow \Delta}{\mathsf{\Gamma},\!\mathbf{A}\lor\mathbf{B}\Longrightarrow \Delta}\,\mathcal{G}(ee_{Elim})$$

corresponding one-sided rules:

$$\frac{\neg(\Gamma) \cup \Delta, \mathbf{A}, \mathbf{B}}{\neg(\Gamma) \cup \Delta, \mathbf{A} \vee \mathbf{B}} \, \mathcal{G}(\vee_{+})$$

We work with a one-sided sequent calculus:

examples for two-sided rules:

$$rac{\mathsf{\Gamma} \Longrightarrow \mathsf{\Delta}, \mathbf{A}, \mathbf{B}}{\mathsf{\Gamma} \Longrightarrow \mathsf{\Delta}, \mathbf{A} \lor \mathbf{B}} \, \mathcal{G}(ee_{Intro})$$

$$rac{\Gamma, \mathbf{A} \Longrightarrow \Delta \quad \Gamma, \mathbf{B} \Longrightarrow \Delta}{\Gamma, \mathbf{A} ee \mathbf{B} \Longrightarrow \Delta} \, \mathcal{G}(ee_{Elim})$$

corresponding one-sided rules:

$$\frac{\neg(\Gamma) \cup \Delta, \mathbf{A}, \mathbf{B}}{\neg(\Gamma) \cup \Delta, \mathbf{A} \vee \mathbf{B}} \, \mathcal{G}(\vee_{+})$$

$$\neg(\Gamma) \cup \Delta, \neg(\mathbf{A} \vee \mathbf{B})$$

 Δ ,**C** stands for $\Delta \cup \{C\}$

We work with a one-sided sequent calculus:

examples for two-sided rules:

$$rac{\Gamma \Longrightarrow \Delta, \mathbf{A}, \mathbf{B}}{\Gamma \Longrightarrow \Delta, \mathbf{A} ee \mathbf{B}} \, \mathcal{G}(ee_{Intro})$$

$$rac{\Gamma, \mathbf{A} \Longrightarrow \Delta \quad \Gamma, \mathbf{B} \Longrightarrow \Delta}{\Gamma, \mathbf{A} \lor \mathbf{B} \Longrightarrow \Delta} \, \mathcal{G}(ee_{Elim})$$

corresponding one-sided rules:

$$\frac{\neg(\Gamma) \cup \Delta, \mathbf{A}, \mathbf{B}}{\neg(\Gamma) \cup \Delta, \mathbf{A} \vee \mathbf{B}} \, \mathcal{G}(\vee_{+})$$

$$\frac{\neg(\Gamma) \cup \Delta, \neg \mathbf{A} \quad \neg(\Gamma) \cup \Delta, \neg \mathbf{B}}{\neg(\Gamma) \cup \Delta, \neg(\mathbf{A} \vee \mathbf{B})} \mathcal{G}(\vee_{-})$$

 Δ ,**C** stands for $\Delta \cup \{C\}$

$$\frac{\mathbf{A} \text{ atomic (and } \beta\text{-normal)}}{\Delta, \neg \mathbf{A}, \mathbf{A}} \mathcal{G}(init)$$

$$\frac{\Delta, \neg \mathbf{A} \quad \Delta, \neg \mathbf{B}}{\Delta, \neg (\mathbf{A} \vee \mathbf{B})} \, \mathcal{G}(\vee_{-})$$

$$\frac{\Delta, \neg(\mathbf{AC})\!\!\!\downarrow_{\beta} \quad \mathbf{C} \in \mathit{cwff}_{\alpha}(\Sigma)}{\Delta, \neg \forall \mathsf{X}_{\alpha} \mathbf{A}} \mathcal{G}(\Pi_{-}^{\mathbf{C}}) \qquad \frac{\Delta, (\mathbf{Ac})\!\!\!\downarrow_{\beta} \quad \mathsf{c}_{\alpha} \in \Sigma \text{ new}}{\Delta, \forall \mathsf{X}_{\alpha} \mathbf{A}} \mathcal{G}(\Pi_{+}^{c})$$

$$\frac{\Delta, \mathbf{A}}{\Delta, \neg \neg \mathbf{A}} \mathcal{G}(\neg)$$

$$rac{\Delta, \mathbf{A}, \mathbf{B}}{\Delta, (\mathbf{A} ee \mathbf{B})} \, \mathcal{G}(ee_+)$$

$$egin{array}{ccc} \Delta, (\mathbf{Ac}) & \mathsf{c}_lpha \in \mathsf{\Sigma} \; \mathsf{new} \ \hline \Delta, orall \mathsf{X}_lpha \mathbf{A} & \mathcal{G}(\Pi^c_+) \end{array}$$

 \triangle ,**A** stands for $\triangle \cup \{A\}$

Sequent Calculi for HOL: \mathcal{G}_{β} ___

The sequent calculus \mathcal{G}_{β} is defined by the rules

$$\mathcal{G}(init), \mathcal{G}(\neg), \mathcal{G}(\lor_{-}), \mathcal{G}(\lor_{+}), \mathcal{G}(\Pi_{-}^{\mathbf{C}}), \mathcal{G}(\Pi_{+}^{c})$$

- is sound for the eight model classes M_{*}
- is complete for the model class $\mathfrak{M}_{\beta}(\Sigma)$
- suitable for automation? Analysis of admissibility of cut:

$$\frac{\Delta, \mathbf{C} \quad \Delta, \neg \mathbf{C}}{\Delta} \, \mathcal{G}(cut)$$

• \mathcal{G}_{β} is indeed cut-free

Cut-simulation with Leibnizequations

Leibniz-equations $\mathbf{M} \stackrel{:}{=}^{\alpha} \mathbf{N} \ (:= \forall \mathsf{P}_{\mathsf{o}\alpha} \neg \mathsf{PM} \lor \mathsf{PN})$ support cut-simulation in \mathcal{G}_{β} in only 3 steps.

Proof:

$$\frac{\Delta, \mathbf{C}}{\Delta, \neg \neg \mathbf{C}} \, \mathcal{G}(\neg) \qquad \Delta, \neg \mathbf{C}}{\Delta, \neg \neg \mathbf{C}} \, \mathcal{G}(\lor_{-})$$

$$\frac{\Delta, \neg (\neg \mathbf{C} \lor \mathbf{C})}{\Delta, \neg (\neg \mathbf{C} \lor \mathbf{C})} \, \mathcal{G}(\lor_{-})$$

$$\Delta' := \Delta, \neg \forall \mathsf{P}_{o\alpha} \neg \mathsf{PM} \lor \mathsf{PN} \, \mathcal{G}(\Pi_{-}^{\lambda X_{\alpha} \bullet \mathbf{C}})$$

Cut-simulation with Extensionality Axioms

The Boolean extensionality axiom \mathcal{B}_{o} is:

$$\forall A_{o} \forall B_{o} (A \Leftrightarrow B) \Rightarrow A \stackrel{:}{=} B$$

The infinitely many functional extensionality axioms $\mathcal{F}_{\alpha\beta}$ are:

$$\forall \mathsf{F}_{\alpha \to \beta^{\bullet}} \forall \mathsf{G}_{\alpha \to \beta^{\bullet}} (\forall \mathsf{X}_{\alpha^{\bullet}} \mathsf{FX} \stackrel{.}{=}^{\beta} \mathsf{GX}) \Rightarrow \mathsf{F} \stackrel{.}{=}^{\alpha \to \beta} \mathsf{G}$$

Cut-simulation with Extensionality Axioms

The functional extensionality axioms support effective cut-simulation in \mathcal{G}_{β} in 11-steps.

Proof:

3 steps; easy
$$\frac{\Delta, \mathsf{fa} \stackrel{\dot{=}}{=}^{\beta} \mathsf{fa}}{\Delta, (\forall \mathsf{X}_{\alpha^{\bullet}} \mathsf{fX} \stackrel{\dot{=}}{=}^{\beta} \mathsf{fX})} \underbrace{\mathcal{G}(\Pi_{+}^{a_{\alpha}})}_{\mathcal{G}(\neg)} \quad \Delta, \mathbf{C} \quad \Delta, \neg \mathbf{C}$$

$$\frac{\Delta, \neg \neg \forall \mathsf{X}_{\alpha^{\bullet}} \mathsf{fX} \stackrel{\dot{=}}{=}^{\beta} \mathsf{fX})}{\Delta, \neg \neg \forall \mathsf{X}_{\alpha^{\bullet}} \mathsf{fX} \stackrel{\dot{=}}{=}^{\beta} \mathsf{fX}} \underbrace{\mathcal{G}(\neg)}_{\mathcal{G}(\neg)} \quad 3 \text{ steps; see before}$$

$$\frac{\Delta, \neg \neg \forall \mathsf{X}_{\alpha^{\bullet}} \mathsf{fX} \stackrel{\dot{=}}{=}^{\beta} \mathsf{fX})}{\Delta, \neg (\mathsf{f} \stackrel{\dot{=}}{=}^{\alpha \to \beta} \mathsf{f})} \underbrace{\mathcal{G}(\lor_{-})}_{\mathcal{G}(\neg)}$$

$$\frac{\Delta, \neg (\neg (\forall \mathsf{X}_{\alpha^{\bullet}} \mathsf{fX} \stackrel{\dot{=}}{=}^{\beta} \mathsf{fX}) \lor \mathsf{f} \stackrel{\dot{=}}{=}^{\alpha \to \beta} \mathsf{f})}{\Delta, \neg \mathcal{F}_{\alpha\beta}} \quad 2 \times \mathcal{G}(\Pi_{-}^{f})$$

Cut-simulation with Extensionality Axioms

It also works with Boolean extensionality axiom – in 14 steps.

Proof:

Reflexivity definition of equality (Andrews)

$$\lambda X_{\alpha^{\blacksquare}} \lambda Y_{\alpha^{\blacksquare}} \forall Q_{\alpha \to \alpha \to o^{\blacksquare}} (\forall Z_{\alpha^{\blacksquare}} (Q Z Z)) \Rightarrow (Q X Y)$$

Reflexivity definition of equality (Andrews)

4 steps

Instances of Comprehension axioms

$$\exists P_{\iota \to o} \forall X_{\iota} PX \Leftrightarrow X \stackrel{\cdot}{=}^{\iota} X$$

Reflexivity definition of equality (Andrews)

4 steps

Instances of Comprehension axioms

16 steps

Axiom of Induction

$$\forall P_{\iota \to o} P0 \land (\forall X_{\iota} PX \Rightarrow P(sX)) \Rightarrow \forall X_{\iota} PX$$

Reflexivity definition of equality (Andrews)

4 steps

Instances of Comprehension axioms

16 steps

Axiom of Induction

18 steps

Axiom of Choice

$$\exists I_{(\alpha \to o) \to o} \forall Q_{\alpha \to o} \exists X_{\alpha} QX \Rightarrow Q(IQ)$$

Reflexivity definition of equality (Andrews)

4 steps

Instances of Comprehension axioms

16 steps

Axiom of Induction

18 steps

Axiom of Choice

7 steps

Axiom of Description

$$\exists I_{(\alpha \to o) \to o} \forall Q_{\alpha \to o} (\exists_1 Y_{\alpha} QY) \Rightarrow Q(IQ)$$

Reflexivity definition of equality (Andrews)
 4 steps

Instances of Comprehension axioms
 16 steps

Axiom of Induction18 steps

Axiom of Choice7 steps

Axiom of Description25 steps

Axiom of Excluded Middle3 steps

 $\forall Q_{0} Q \lor \neg Q$

	Reflexivity	definition of	of equality	(Andrews)	4 steps
--	-------------	---------------	-------------	-----------	---------

Instances of Comprehension axioms
 16 steps

Axiom of Induction18 steps

Axiom of Choice7 steps

Axiom of Description25 steps

Axiom of Excluded Middle3 steps

_ ...

Reflexivity definition of equality (Andrews)

4 stens

- Itomomity domination of oquality (/ aranowo)	rotopo
Instances of Comprehension axioms	16 steps
Axiom of Induction	18 steps

Axiom of Choice7 steps

Axiom of Description25 steps

Axiom of Excluded Middle3 steps

This motivates lots of further research on HOL automation:

How to avoid / treat cut-strong axioms and formulas!

Conclusion

- (\geq) Two hearts are beating in my chest:
 - Integrated and intelligent mathematics assistance systems
 - ΩMEGA at forefront of systems under this vision
 - several of our ideas meanwhile picked up by others
 - several cooperations
 - Foundations and automation (not only!) of HOL
 - contributions to: semantics ← proof theory ← automation
 - automation still decades behind

Currently I am

- working towards a HOL prover competition
- implementing LEO-II, a new version of the prover LEO
- planning to integrate LEO-II with Isabelle/HOL & OMEGA

HOL Challenge: Impredicativity

Notion: (Impredicativity)

- quantification over sets and predicates
- support impredicative definitions and reflection

HOL Challenge: Impredicativity

Notion: (Impredicativity)

- quantification over sets and predicates
- support impredicative definitions and reflection

HOL Challenge: Impredicativity_

Notion: (Impredicativity)

- quantification over sets and predicates
- support impredicative definitions and reflection

$$ightharpoonup P \longleftarrow \{x | true\}$$

$$P \leftarrow \{x | x = 1\}$$

$$P \longleftarrow \{x | x = 1 \lor x = 2\}$$

$$P \longleftarrow \{x|x>0\}$$

$$(\lambda X T_o)$$

$$(\lambda X X = 1)$$

$$(\lambda X X = 1 \lor X = 2)$$

$$(\lambda X X > 0)$$

HOL Challenge: Impredicativity

Notion: (Impredicativity)

- quantification over sets and predicates
- support impredicative definitions and reflection

$$\begin{array}{l} \text{P} \longleftarrow \{\text{x}|\text{true}\} \\ \text{P} \longleftarrow \{\text{x}|\text{x}=1\} \\ \text{P} \longleftarrow \{\text{x}|\text{x}=1 \lor \text{x}=2\} \\ \text{P} \longleftarrow \{\text{x}|\text{x}>0\} \\ \end{array} \begin{array}{l} (\lambda \text{X} \ \text{X}=1) \\ (\lambda \text{X} \ \text{X}=1) \\ (\lambda \text{X} \ \text{X}=2) \\ (\lambda \text{X} \ \text{X}>0) \\ \end{array}$$

- etc.
- unification not powerful enough

 guessing is state of the art
- problem not limited to HOL

Automated Theorem Proving

-p.31

Extensional Resolution

Extensional HO Resolution \mathcal{ER}

[Andrews-71]

proof search & blind variable instantiation

Extensional HO Resolution \mathcal{ER}

[Andrews-71]

proof search & blind variable instantiation

[Huet-73/75]

ext. axioms

proof search & eager unification

delayed pre-unification

Extensional HO Resolution \mathcal{ER}

[Andrews-71]

ext. axioms

proof search & blind variable instantiation

[Huet-73/75]

ext. axioms

proof search & eager unification

delayed pre-unification

[Benzmüller-99]

interleaved proof search & unification

Ex.: Extensional HO Resolution \mathcal{ER}

$$\forall B_{\alpha \to o}, C_{\alpha \to o}, D_{\alpha \to o} B \cup (C \cap D) = (B \cup C) \cap (B \cup D)$$

Negation and definition expansion with

$$\cup = \lambda \mathsf{A}_{\alpha \to \mathsf{o}}, \mathsf{B}_{\alpha \to \mathsf{o}}, \mathsf{X}_{\alpha \blacksquare}(\mathsf{A} \mathsf{X}) \vee (\mathsf{B} \mathsf{X}) \qquad \cap = \lambda \mathsf{A}_{\alpha \to \mathsf{o}}, \mathsf{B}_{\alpha \to \mathsf{o}}, \mathsf{X}_{\alpha \blacksquare}(\mathsf{A} \mathsf{X}) \wedge (\mathsf{B} \mathsf{X})$$
 leads to:

$$\mathsf{C}_1: [\lambda \mathsf{X}_{\alpha^{\blacksquare}}(\mathsf{b}\;\mathsf{X}) \vee ((\mathsf{c}\;\mathsf{X}) \wedge (\mathsf{d}\;\mathsf{X})) \neq^? \lambda \mathsf{X}_{\alpha^{\blacksquare}}((\mathsf{b}\;\mathsf{X}) \vee (\mathsf{c}\;\mathsf{X})) \wedge ((\mathsf{b}\;\mathsf{X}) \vee (\mathsf{d}\;\mathsf{X})))]$$

Goal directed functional and Boolean extensionality treatment:

$$C_2 : [(b x) \lor ((c x) \land (d x)) \Leftrightarrow ((b x) \lor (c x)) \land ((b x) \lor (d x)))]^F$$

Clause normalization results then in a pure propositional, i.e. decidable, set of clauses. Only these clauses are still in the search space of Leo(in total there are 33 clauses generated and Leo finds the proof on a 2,5GHz PC in 820ms).

Similar proof in case of embedded propositions:

$$\forall P_{(\alpha \to o) \to o}, B_{\alpha \to o}, C_{\alpha \to o}, D_{\alpha \to o} P(B \cup (C \cap D)) \Rightarrow P((B \cup C) \cap (B \cup D))$$

Ex.: Extensional HO Resolution \mathcal{ER}

$$\forall P_{o \to o}(P a_o) \land (P b_o) \Rightarrow (P (a_o \land b_o))$$

Negation and clause normalization

$$\mathcal{C}_1: [\mathsf{p}\;\mathsf{a}]^\mathsf{T} \quad \mathcal{C}_2: [\mathsf{p}\;\mathsf{b}]^\mathsf{T} \quad \mathcal{C}_3: [\mathsf{p}\;(\mathsf{a}\wedge\mathsf{b})]^\mathsf{F}$$

Resolution between C_1 and C_3 and between C_2 and C_3

$$C_4 : [p a \neq^? p (a \land b)]$$
 $C_5 : [p b \neq^? p (a \land b)]$

Decomposition

$$\mathcal{C}_6: [\mathsf{a}
eq^? (\mathsf{a} \wedge \mathsf{b})] \qquad \mathcal{C}_7: [\mathsf{b}
eq^? (\mathsf{a} \wedge \mathsf{b})]$$

Goal directed extensionality treatment and clause normalisation:

• from
$$C_6$$

$$\mathcal{C}_8:[\mathsf{a}]^\mathsf{F}\vee[\mathsf{b}]^\mathsf{F}$$

$$\mathcal{C}_8: [\mathsf{a}]^\mathsf{F} \vee [\mathsf{b}]^\mathsf{F} \qquad \mathcal{C}_9: [\mathsf{a}]^\mathsf{T} \vee [\mathsf{b}]^\mathsf{T} \qquad \mathcal{C}_{10}: [\mathsf{a}]^\mathsf{T}$$

$$\mathcal{C}_{10}:[\mathsf{a}]^\mathsf{T}$$

• from
$$C_7$$

$$\mathcal{C}_{11}:[\mathsf{a}]^\mathsf{F}\vee[\mathsf{b}]^\mathsf{F}$$

$$\mathcal{C}_{11}:[\mathsf{a}]^\mathsf{F}\vee[\mathsf{b}]^\mathsf{F} \quad \mathcal{C}_{12}:[\mathsf{a}]^\mathsf{T}\vee[\mathsf{b}]^\mathsf{T} \quad \mathcal{C}_{13}:[\mathsf{b}]^\mathsf{T}$$

$$\mathcal{C}_{13}:[\mathsf{b}]^\mathsf{T}$$

My theorem prover LEO

implements extensional resolution as seen before

My theorem prover LEO

- implements extensional resolution as seen before
- employs the agent-based OANTS architecture to cooperate with state of the art first-order ATPs

My theorem prover LEO

- implements extensional resolution as seen before
- employs the agent-based OANTS architecture to cooperate with state of the art first-order ATPs
- outperforms all first-order ATPs on set examples

My theorem prover LEO

- implements extensional resolution as seen before
- employs the agent-based OANTS architecture to cooperate with state of the art first-order ATPs
- outperforms all first-order ATPs on set examples

has gained interest (not only) from the Isabelle/HOL community

My theorem prover LEO

- implements extensional resolution as seen before
- employs the agent-based OANTS architecture to cooperate with state of the art first-order ATPs
- outperforms all first-order ATPs on set examples

has gained interest (not only) from the Isabelle/HOL community

Biggest Challenge: Impredicativity_

Notion: (Impredicativity)

- quantification over sets and predicates
- support impredicative definitions and reflection

Biggest Challenge: Impredicativity_

Notion: (Impredicativity)

- quantification over sets and predicates
- support impredicative definitions and reflection

Biggest Challenge: Impredicativity

Notion: (Impredicativity)

- quantification over sets and predicates
- support impredicative definitions and reflection

$$ightharpoonup P \longleftrightarrow \{x | true\}$$

$$P \leftarrow \{x | x = 1\}$$

$$P \longleftarrow \{x | x = 1 \lor x = 2\}$$

$$P \longleftarrow \{x | x > 0\}$$

$$(\lambda X T_o)$$

$$(\lambda X X = 1)$$

$$(\lambda X X = 1 \lor X = 2)$$

$$(\lambda X X > 0)$$

Biggest Challenge: Impredicativity

Notion: (Impredicativity)

- quantification over sets and predicates
- support impredicative definitions and reflection

$$\begin{array}{l} \text{P} \longleftarrow \{ \text{x} | \text{true} \} \\ \text{P} \longleftarrow \{ \text{x} | \text{x} = 1 \} \\ \text{P} \longleftarrow \{ \text{x} | \text{x} = 1 \ \) \\ \text{P} \longleftarrow \{ \text{x} | \text{x} = 2 \} \\ \text{P} \longleftarrow \{ \text{x} | \text{x} > 0 \} \\ \end{array}$$

- etc.
- unification not powerful enough

 guessing is state of the art
- problem not limited to HOL

HOL Application: Hardware Verification

Some Basic Devices

$$i1$$
 o

$$i1$$
 \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow

$$NOT(i, o) = (o = \neg i)$$

$$\begin{array}{l} \mathsf{AND}(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) = \\ (\mathsf{o} = (\mathsf{i}_1 \wedge \mathsf{i}_2)) \end{array}$$

$$OR(i_1, i_2, o) =$$

 $(o = (i_1 \lor i_2))$

$$NOT'(i, o) =
(\forall t o(t) = \neg i(t))$$

$$\begin{split} \mathsf{AND'}(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) &= & \mathsf{OR'}(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) = \\ (\forall \mathsf{t} \ldotp \mathsf{o}(\mathsf{t}) = (\mathsf{i}_1(\mathsf{t}) \land \mathsf{i}_2(\mathsf{t}))) & (\forall \mathsf{t} \ldotp \mathsf{o}(\mathsf{t}) = (\mathsf{i}_1(\mathsf{t}) \lor \mathsf{i}_2(\mathsf{t}))) \end{split}$$

$$\begin{aligned}
\mathsf{OR'}(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) &= \\
(\forall \mathsf{t}_\bullet\mathsf{o}(\mathsf{t}) &= (\mathsf{i}_1(\mathsf{t}) \vee \mathsf{i}_2(\mathsf{t})))
\end{aligned}$$

HOL Application: Hardware Verification

Specification of NAND Device

$$\begin{aligned} \mathsf{NAND-SPEC}(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) &= \\ (\mathsf{o} &= \neg (\mathsf{i}_1 \wedge \mathsf{i}_2)) \end{aligned}$$

$$\begin{aligned} &\mathsf{NAND} - \mathsf{SPEC'}(\mathsf{i}_1, \mathsf{i}_2, \mathsf{o}) = \\ &(\forall \mathsf{t} \bullet \mathsf{o}(\mathsf{t}) = \neg (\mathsf{i}_1(\mathsf{t}) \wedge \mathsf{i}_2(\mathsf{t}))) \end{aligned}$$

HOL Application: Hardware Verification

Implementation of NAND Device

$$\begin{aligned} &\mathsf{NAND-IMP}(i_1,i_2,o) = \\ &\exists h_{o} \mathsf{AND}(i_1,i_2,h) \land \mathsf{NOT}(h,o) \end{aligned}$$

$$\begin{aligned} \mathsf{NAND-IMP'}(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) &= \\ \exists \mathsf{h}_{\iota \to \mathsf{o}^{\bullet}} \mathsf{AND}(\mathsf{i}_1,\mathsf{i}_2,\mathsf{h}) \land \mathsf{NOT}(\mathsf{h},\mathsf{o}) \end{aligned}$$

Implementation is correct

$$\begin{aligned} &\mathsf{NAND-IMP}(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) \Rightarrow \mathsf{NAND-SPEC}(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) \\ &\mathsf{NAND-IMP}'(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) \Rightarrow \mathsf{NAND-SPEC}'(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) \end{aligned}$$

Implementation is correct

$$\begin{aligned} &\mathsf{NAND-IMP}(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) \Rightarrow \mathsf{NAND-SPEC}(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) \\ &\mathsf{NAND-IMP}'(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) \Rightarrow \mathsf{NAND-SPEC}'(\mathsf{i}_1,\mathsf{i}_2,\mathsf{o}) \end{aligned}$$

Implementation is correct

NAND-IMP(
$$i_1, i_2, o$$
) \Rightarrow NAND-SPEC(i_1, i_2, o)
NAND-IMP'(i_1, i_2, o) \Rightarrow NAND-SPEC'(i_1, i_2, o)

$$(o = \neg(i_1 \land i_2)) \Rightarrow (\exists h_o AND(i_1, i_2, h) \land NOT(h, o))$$

Implementation is correct

NAND-IMP(
$$i_1, i_2, o$$
) \Rightarrow NAND-SPEC(i_1, i_2, o)
NAND-IMP'(i_1, i_2, o) \Rightarrow NAND-SPEC'(i_1, i_2, o)

$$(o = \neg(i_1 \land i_2)) \Rightarrow (\exists h_{o} \land AND(i_1, i_2, h) \land NOT(h, o))$$
$$(o = \neg(i_1 \land i_2)) \Rightarrow (\exists h_{o} \land (h = (i_1 \land i_2)) \land (o = \neg h))$$

Implementation is correct

NAND-IMP(
$$i_1, i_2, o$$
) \Rightarrow NAND-SPEC(i_1, i_2, o)
NAND-IMP'(i_1, i_2, o) \Rightarrow NAND-SPEC'(i_1, i_2, o)

$$(o = \neg(i_1 \land i_2)) \Rightarrow (\exists h_o \cdot AND(i_1, i_2, h) \land NOT(h, o))$$

$$(o = \neg(i_1 \land i_2)) \Rightarrow (\exists h_o \cdot (h = (i_1 \land i_2)) \land (o = \neg h))$$

$$(out = \neg(i_1 \land i_2)) \Rightarrow (\exists h_{\iota \to o} \cdot AND(i_1, i_2, h) \land NOT(h, o))$$

Implementation is correct

NAND-IMP(
$$i_1, i_2, o$$
) \Rightarrow NAND-SPEC(i_1, i_2, o)
NAND-IMP'(i_1, i_2, o) \Rightarrow NAND-SPEC'(i_1, i_2, o)

$$\begin{split} &(o = \neg(i_{1} \land i_{2})) \Rightarrow (\exists h_{o} \blacksquare \mathsf{AND}(i_{1}, i_{2}, h) \land \mathsf{NOT}(h, o)) \\ &(o = \neg(i_{1} \land i_{2})) \Rightarrow (\exists h_{o} \blacksquare (h = (i_{1} \land i_{2})) \land (o = \neg h)) \\ &(\mathsf{out} = \neg(i_{1} \land i_{2})) \Rightarrow (\exists h_{\iota \to o} \blacksquare \mathsf{AND}(i_{1}, i_{2}, h) \land \mathsf{NOT}(h, o)) \\ &(\mathsf{out} = \neg(i_{1} \land i_{2})) \Rightarrow \\ &(\exists h_{\iota \to o} \blacksquare (\forall t_{i} \blacksquare (h(t) = (i_{1}(t) \land i_{2}(t)))) \land (\forall t_{i} \blacksquare (o(t) = \neg h(t)))) \end{split}$$

Implementation is correct

NAND-IMP(
$$i_1, i_2, o$$
) \Rightarrow NAND-SPEC(i_1, i_2, o)
NAND-IMP'(i_1, i_2, o) \Rightarrow NAND-SPEC'(i_1, i_2, o)

Definition expansion

$$\begin{split} &(o = \neg(i_1 \wedge i_2)) \Rightarrow (\exists h_{o^{\blacksquare}} AND(i_1, i_2, h) \wedge NOT(h, o)) \\ &(o = \neg(i_1 \wedge i_2)) \Rightarrow (\exists h_{o^{\blacksquare}} (h = (i_1 \wedge i_2)) \wedge (o = \neg h)) \\ &(out = \neg(i_1 \wedge i_2)) \Rightarrow (\exists h_{\iota \rightarrow o^{\blacksquare}} AND(i_1, i_2, h) \wedge NOT(h, o)) \\ &(out = \neg(i_1 \wedge i_2)) \Rightarrow \\ &(\exists h_{\iota \rightarrow o^{\blacksquare}} (\forall t_{i^{\blacksquare}} (h(t) = (i_1(t) \wedge i_2(t)))) \wedge (\forall t_{i^{\blacksquare}} (o(t) = \neg h(t)))) \end{split}$$

LEO's proof:

time: 620ms, cl. gen.: 309, cl. fo-like: 68, proof length: 55 cl.

Extensionality Axioms as Clauses

■ EXT-Func[±]: $\forall F_{\alpha \to \beta} \forall G_{\alpha \to \beta} (\forall X_{\beta} F X = G X) \Rightarrow F = G$ Clauses:

$$\mathcal{C}_1 : [\mathsf{p}_{\beta \to \mathsf{o}} \; (\mathsf{F} \; \mathsf{s}_\beta)]^\mathsf{T} \vee [\mathsf{Q} \; \mathsf{F}]^\mathsf{F} \vee [\mathsf{Q} \; \mathsf{G}]^\mathsf{T} \\ \mathcal{C}_2 : [\mathsf{p}_{\beta \to \mathsf{o}} \; (\mathsf{G} \; \mathsf{s}_\beta)]^\mathsf{T} \vee [\mathsf{Q} \; \mathsf{F}]^\mathsf{F} \vee [\mathsf{Q} \; \mathsf{G}]^\mathsf{T}$$

■ EXT-Bool $\stackrel{\doteq}{=}$: $\forall A_o \forall B_o (A \Leftrightarrow B) \Leftrightarrow A \stackrel{\doteq}{=} B$ Clauses:

$$C_{1} : [A]^{F} \vee [B]^{F} \vee [P \ A]^{F} \vee [P \ B]^{T}$$

$$C_{2} : [A]^{T} \vee [B]^{T} \vee [P \ A]^{F} \vee [P \ B]^{T},$$

$$C_{3} : [A]^{F} \vee [B]^{T} \vee [p \ A]^{T},$$

$$C_{4} : [A]^{F} \vee [B]^{T} \vee [p \ B]^{F},$$

$$C_{5} : [A]^{T} \vee [B]^{F} \vee [p \ A]^{T},$$

$$C_{6} : [A]^{T} \vee [B]^{F} \vee [p \ B]^{F}$$

Proof Theory _____

Calculi for HOL

Base Calculus \mathfrak{MR}_{β}

$$egin{aligned} & \longrightarrow \mathfrak{NR}(Hyp) & \longrightarrow \mathfrak{NR}(eta) \ & \longrightarrow \mathfrak{NR}(\lnot I) & \longrightarrow \mathfrak{NR}(\lor I_R) \ & \longrightarrow \mathfrak{NR}(\lor E) \ & \longrightarrow \mathfrak{NR}(\Pi I)^\mathsf{W} \ & \longrightarrow \mathfrak{NR}(\Pi E) & \longrightarrow \mathfrak{NR}(Contr) \end{aligned}$$

$$\frac{\mathbf{A} \stackrel{\beta\eta}{=} \mathbf{B} \quad \mathbf{\Phi} \Vdash \mathbf{A}}{\mathbf{\Phi} \Vdash \mathbf{B}} \mathfrak{MR}(\eta)$$

$$\frac{\mathbf{A} \stackrel{\beta\eta}{=} \mathbf{B} \quad \Phi \Vdash \mathbf{A}}{\Phi \Vdash \mathbf{B}} \mathfrak{M}(\eta)$$

$$\Phi \vdash \forall \mathsf{x}_{\alpha} \cdot \mathbf{M} \stackrel{\beta}{=} \mathbf{N}$$

$$\Phi \vdash (\lambda \mathsf{x}_{\alpha} \cdot \mathbf{M}) \stackrel{\beta\alpha}{=} (\lambda \mathsf{x}_{\alpha} \cdot \mathbf{N})$$

$$\mathfrak{M}(\xi)$$

$$\frac{\mathbf{A} \stackrel{\beta\eta}{=} \mathbf{B} \quad \Phi \Vdash \mathbf{A}}{\Phi \Vdash \mathbf{B}} \mathfrak{MR}(\eta)$$

$$\frac{\Phi \Vdash \forall \mathsf{x}_{\alpha} \cdot \mathbf{M} \stackrel{\dot{=}}{=} \mathbf{N}}{\Phi \Vdash (\lambda \mathsf{x}_{\alpha} \cdot \mathbf{M}) \stackrel{\dot{=}^{\beta\alpha}}{=} (\lambda \mathsf{x}_{\alpha} \cdot \mathbf{N})} \mathfrak{MR}(\xi)$$

$$\frac{\Phi \Vdash \forall \mathsf{x}_{\alpha} \cdot \mathbf{G} \times \stackrel{\dot{=}}{=} \mathbf{H} \times}{\Phi \Vdash \mathbf{G} \stackrel{\dot{=}^{\beta\alpha}}{=} \mathbf{H}} \mathfrak{MR}(\mathfrak{f})$$

$$\frac{\mathbf{A} \stackrel{\beta\eta}{=} \mathbf{B} \quad \Phi \Vdash \mathbf{A}}{\Phi \Vdash \mathbf{B}} \mathfrak{MR}(\eta)$$

$$\Phi \Vdash \forall \mathsf{x}_{\alpha} \cdot \mathbf{M} \stackrel{\beta}{=} \mathbf{N}$$

$$\Phi \vdash (\lambda \mathsf{x}_{\alpha} \cdot \mathbf{M}) \stackrel{\beta\alpha}{=} (\lambda \mathsf{x}_{\alpha} \cdot \mathbf{N})$$

$$\frac{\Phi \vdash \forall \mathsf{x}_{\alpha} \cdot \mathbf{G} \times \stackrel{\beta}{=} \mathbf{H} \times}{\Phi \vdash \mathbf{G} \stackrel{\beta\alpha}{=} \mathbf{H}} \mathfrak{MR}(\mathfrak{f})$$

$$\Phi \vdash \mathbf{G} \stackrel{\beta\alpha}{=} \mathbf{H}$$

$$\frac{\Phi * \mathbf{A} \vdash \mathbf{B} \quad \Phi * \mathbf{B} \vdash \mathbf{A}}{\Phi \vdash \mathbf{A} \stackrel{\alpha}{=} \mathbf{B}} \mathfrak{MR}(\mathfrak{b})$$

Soundness and Completeness of \mathfrak{NR}_*

Thm.: Each calculus is sound wrt. the corresponding model class

Thm.: Each calculus complete wrt. the corresponding model class

For this we extended the

abstract consistency proof method (unifying principle) of

[Smullyan-63]

[Andrews-71]

Semantics

Abstract Consistency Proof Method

Properties for \mathfrak{Acc}_{β} : (Γ_{Σ} is class of sets of formulas; $\Phi \in \Gamma_{\Sigma}$)

- $\nabla_{\!\!c}$ If ${\bf A}$ is atomic, then ${\bf A} \notin \Phi$ or $\neg {\bf A} \notin \Phi$.

- $abla_\wedge \quad \text{If } \neg (\mathbf{A} \lor \mathbf{B}) \in \Phi, \text{ then }$ $\Phi, \neg \mathbf{A}, \neg \mathbf{B} \in \mathsf{F}_{\!\Sigma}.$
- $abla_{\exists}$ If $\neg \Pi^{\alpha} \mathbf{F} \in \Phi$, then $\Phi, \neg (\mathbf{F} \mathbf{w}) \in \Gamma_{\Sigma}$ for any parameter $\mathbf{w}_{\alpha} \in \Sigma_{\alpha}$ which does not occur in any sentence of Φ .

Properties for \mathfrak{Acc}_{β} : (Γ_{Σ} is class of sets of formulas; $\Phi \in \Gamma_{\Sigma}$)

- $\nabla_{\!\! c}$ If ${\bf A}$ is atomic, then ${\bf A} \notin \Phi$ or $\neg {\bf A} \notin \Phi$.
- $abla_{\!eta} \qquad ext{If } \mathbf{A}{=_{\!eta}} \mathbf{B} \text{ and } \mathbf{A} \in \Phi, ext{ then}$ $\Phi, \mathbf{B} \in \mathsf{I}_{\!\Sigma}.$

- $abla_{\exists}$ If $\neg \Pi^{\alpha} \mathbf{F} \in \Phi$, then $\Phi, \neg (\mathbf{F} \mathbf{w}) \in \Gamma_{\Sigma}$ for any parameter $\mathbf{w}_{\alpha} \in \Sigma_{\alpha}$ which does not occur in any sentence of Φ .

Properties for \mathfrak{Acc}_{β}

Properties for \mathfrak{Acc}_{β}

$$\begin{array}{ll} \nabla_{\!\mathfrak{h}} & \text{ If } \neg (\mathbf{A} \ \stackrel{.}{=}^{\mathsf{o}} \ \mathbf{B}) \ \in \ \Phi \text{, then} \\ & \Phi, \mathbf{A}, \neg \mathbf{B} \ \in \ \mathsf{I}_{\!\Sigma} \text{ or } \Phi, \neg \mathbf{A}, \mathbf{B} \ \in \\ & \mathsf{I}_{\!\Sigma}. \end{array}$$

Properties for \mathfrak{Acc}_{β}

$$abla_{c}$$
 $abla_{c}$
 ab

Properties for \mathfrak{Acc}_{β}

$\nabla_{\!\mathfrak{b}}$	If $\neg (\mathbf{A} \ \dot{=}^{o} \ \mathbf{B}) \ \in \ \Phi$, then
	$\Phi, A, \neg B \ \in \ {\text{$\Gamma_{\!\! \Sigma}$ or Φ}}, \neg A, B \ \in \ {\text{$T_{\!\!\!\Sigma}$ or Φ}}, \neg A, B \ \in \ {\text{$T_{\!\!\!\Sigma}$ or Φ}}, \neg$
	$\Gamma_{\!\!\!\Sigma}.$
$ abla_{\!\eta}$	If $\mathbf{A} \stackrel{eta\eta}{=} \mathbf{B}$ and $\mathbf{A} \in \Phi$, then
	$\Phi,\mathbf{B}\inF_{\!\Sigma}.$
$ abla_{\!\xi}$	If $\neg(\lambda X_{lpha}.\mathbf{M} = \dot{=}^{lpha \to eta}$
	$\lambda X_{lpha}.\mathbf{N}) \qquad \in \qquad \Phi, then$
	$\Phi, \neg([w/X]M \stackrel{.}{=}^{\beta} [w/X]N) \in$
	$Γ_{\!\Sigma}$ for any new $w_{lpha} \in \Sigma_{lpha}$.

Properties for \mathfrak{Acc}_{β}

$$abla_{c}$$
 $abla_{c}$
 ab

$\nabla_{\!\mathfrak{b}}$	If $\neg (\mathbf{A} \ \stackrel{.}{=}^{o} \ \mathbf{B}) \ \in \ \Phi$, then
	$\Phi, A, \neg B \ \in \ \textsf{$\Gamma_{\!\!\Sigma}$ or Φ}, \neg A, B \ \in$
	$\Gamma_{\!\!\!\Sigma}.$
$ abla_{\!\eta}$	If $\mathbf{A} \stackrel{eta\eta}{=} \mathbf{B}$ and $\mathbf{A} \in \Phi$, then
	$\Phi,\mathbf{B}\inF_{\!\Sigma}.$
$ abla_{\!\xi}$	If $\neg(\lambda X_{\alpha}.\mathbf{M} \qquad \dot{=}^{\alpha \to \beta}$
	$\lambda X_{lpha} \mathbf{N}) \in \Phi, then$
	$\Phi, \neg([w/X]M \stackrel{.}{=}^{\beta} [w/X]N) \in$
	$Γ_{\Sigma}$ for any new $w_{lpha} \in \Sigma_{lpha}$.
$\nabla_{\!\!f}$	If $ eg(\mathbf{G} \stackrel{\cdot}{=}^{lpha ightarrow eta} \mathbf{H}) \in \Phi$, then
	$\Phi, eg(\mathbf{G}w \doteq^eta \mathbf{H}w) \in l_\Sigma$ for any
	new $w_{lpha} \in \Sigma_{lpha}.$

Properties for \mathfrak{Acc}_{β}

$$abla_{c}$$
 $abla_{c}$
 ab

$\nabla_{\!\mathfrak{b}}$	If $\neg (\mathbf{A} \ \stackrel{=}{=}^{o} \ \mathbf{B}) \ \in \ \Phi$, then
	$\Phi, A, \neg \mathbf{B} \ \in \ \digamma_{\!$
	Γ _Σ .
$\nabla_{\!\!\eta}$	If $\mathbf{A} \stackrel{eta\eta}{=} \mathbf{B}$ and $\mathbf{A} \in \Phi$, then
	$\Phi,\mathbf{B}\inF_{\!\Sigma}.$
$\nabla_{\!\!\xi}$	If $\neg(\lambda X_{\alpha}.\mathbf{M}) \doteq^{\alpha \to \beta}$
	λX_{α} .N) \in Φ , then
	$\Phi, \neg([w/X]\mathbf{M} \stackrel{.}{=}^{\beta} [w/X]\mathbf{N}) \in$
	$Γ_Σ$ for any new $w_α ∈ Σ_α$.
$\nabla_{\!f}$	If $ eg(\mathbf{G} \stackrel{\cdot}{=}^{lpha ightarrow eta} \mathbf{H}) \in \Phi$, then
	$\Phi, eg(\mathbf{G}w\doteq^eta\mathbf{H}w)\inF_{\!\!\!\Sigma}$ for any
	new $w_{lpha} \in \Sigma_{lpha}.$

Thm.: (Model Existence)

Saturated abstract consistency implies model existence

Appl.: (Completeness proofs by pure syntactical means)

 $\Gamma_{\Sigma}^{G} := \{ \Phi | \Phi \text{ is C-consistent} \} \text{ is a saturated } \mathfrak{Acc}_{*}$