Parcial - Escenario 4

Fecha de entrega 20 de sep en 23:55

Puntos 75

Preguntas 15

Disponible 17 de sep en 0:00 - 20 de sep en 23:55

Límite de tiempo 90 minutos

Intentos permitidos 2

Instrucciones

Apreciado estudiante, presenta tus exámenes como SERGIO EL ELEFANTE, quien con honestidad, usa su sabiduría para mejorar cada día.

Lee detenidamente las siguientes indicaciones y minimiza inconvenientes:

- Tienes dos intentos para desarrollar tu evaluación.
- 2. Si respondiste uno de los intentos sin ningún inconveniente y tuviste problemas con el otro, el examen no será habilitado nuevamente.
- 3. Cuando estés respondiendo la evaluación, evita abrir páginas diferentes a tu examen. Esto puede ocasionar el cierre del mismo y la pérdida de un intento.
- **4.** Asegúrate de tener buena conexión a internet, cierra cualquier programa que pueda consumir el ancho de banda y no utilices internet móvil.
- 5. Debes empezar a responder el examen por lo menos dos horas antes del cierre, es decir, máximo a las 9:55 p. m. Si llegada las 11:55 p. m. no lo has enviado, el mismo se cerrará y no podrá ser calificado.
- El tiempo máximo que tienes para resolver cada evaluación es de 90 minutos.

- 7. Solo puedes recurrir al segundo intento en caso de un problema tecnológico.
- 8. Si tu examen incluye preguntas con respuestas abiertas, estas no serán calificadas automáticamente, ya que requieren la revisión del tutor.
- 9. Si presentas inconvenientes con la presentación del examen, puedes crear un caso explicando la situación y adjuntando siempre imágenes de evidencia, con fecha y hora, para que Soporte Tecnológico pueda brindarte una respuesta lo antes posible.
- Podrás verificar la solución de tu examen únicamente durante las 24 horas siguientes al cierre.
- Te recomendamos evitar el uso de teléfonos inteligentes o tabletas para la presentación de tus actividades evaluativas.
- **12.** Al terminar de responder el examen debes dar clic en el botón "Enviar todo y terminar" de otra forma el examen permanecerá abierto.

Confiamos en que sigas, paso a paso, en el camino hacia la excelencia académica!

;Das tu palabra de que realizarás esta actividad asumiendo de corazón nuestro

Volver a realizar el examen

Historial de intentos

	Intento	Hora	Puntaje	
MÁS RECIENTE	Intento 1	28 minutos	75 de 75	

Las respuestas correctas estarán disponibles del 20 de sep en 23:55 al 21 de sep en 23:55.

Puntaje para este intento: **75** de 75 Entregado el 18 de sep en 18:28

Este intento tuvo una duración de 28 minutos.

Pregunta 1 5 / 5 pts

Todos los circuitos combinacionales vistos hasta ahora pueden ser representados mediante sus tablas de verdad.

De acuerdo con la siguiente tabla de verdad (A y B son entradas, Y1-Y0 salidas):

A	В	Y 1	Y0
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

La salida Y0 se puede implementar con una XNOR.

El circuito es un sumador con acarreo.

Es correcto, pues A+B da respectivamente 0, 1, 1 y 0 (éste último con acarreo en Y1).

- El circuito es un conversor de código, de binario a BCD.
- El circuito funciona como un comparador, con sus dos salidas características.

Pregunta 2 5 / 5 pts

Todos los circuitos combinacionales vistos hasta ahora pueden ser representados mediante sus tablas de verdad. De acuerdo con la siguiente tabla de verdad (A y B son entradas, Y1-Y3 salidas):

Tabla de verdad				
A	В	Y2	Y 1	Y0
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

∃s p	posible afirmar que:
	La salida Y2 se puede implementar con una XOR.
	El circuito es un sumador con acarreo.
	El circuito es un conversor de código, de binario a BCD.
	El circuito funciona como un comparador, con sus tres salidas características.

Pregunta 3 5 / 5 pts

La combinación de compuertas lógicas permite obtener nuevas compuertas compuestas, tal es el caso de las compuertas NAND, NOR, XOR y XNOR. Dependiendo del problema, es posible escoger una combinación de compuertas que faciliten la solución del mismo.

Las puertas de un vagón de tren cuentan con sensores que permiten verificar si una persona u objeto las obstruyen. Cada uno de estos sensores funcionan de la siguiente manera:

- Hay un emisor de luz infrarroja en un extremo y un receptor en el otro.
- Si el espacio está vacío, el receptor recibe la luz infrarroja que cruza de un extremo a otro y se genera una señal en ALTO.
- Cuando algo interrumpe el paso de la luz, el sensor no la detecta y genera una señal en BAJO.

Se desea que cuando el conductor del tren mande la señal para cerrar puertas, el sistema detecte si hay obstrucciones. De ser así, se activa una señal de alarma (Que requiere un nivel ALTO para encenderse).

De acuerdo al montaje descrito, usted propondría:

Utilizar una compuerta AND, que detecte cuando todas las señales estén en ALTO.

Usar la lógica de una XOR, para detectar que las diferentes puertas estén o no obstruidas.

Hacer el montaje con una compuerta NAND, para tener una salida en bajo si no hay obstrucciones.

La compuerat NAND es adecuada, pues no sólo verifica que todos los sensores indiquen la ausencia de obstrucciones, sino que su salida es un nivel BAJO cuando esto sucede, lo cual no activaría la alarma.

Utilizar lógica inversa, con una compuerta negativa-AND.

Pregunta 4 5 / 5 pts

Los circuitos combinacionales ven sus salidas afectadas directamente por los valores en las entradas. La relación entre las entradas y las salidas de un circuito combinacional se pueden analizar mediante sus tablas de verdad. Dado el siguiente circuito combinacional:

Pregunta 5 5 / 5 pts

Las compuertas NAND y NOR tienen la particularidad que pueden ser usadas como compuertas universales. Esto quiere decir que, usando un solo tipo de compuerta, es posible generar las funciones básicas AND, NOT y OR. A partir de estas compuertas básicas es posible construir circuitos más complejos.

El siguiente esquema se ha desarrollado usando únicamente compuertas NOR:

¿Cuál es la funcionalidad de este circuito?

- Es un circuito multiplexor con una línea de datos y una de selección.
- Es un circuito semi-sumador con acarreo.
- Es un circuito comparador.

Se trata de un circuito comparador, la salida Y1 indica si

$$A = B$$

, la salida Y0 si

y la salida Y2 si \$\$A

Es un circuito decodificador de binario a decimal.

Pregunta 6 5 / 5 pts

La paridad es un método de detección de errores muy utilizado, debido a la facilidad de su implementación. Tanto el emisor como el receptor deben estar de acuerdo en cuanto al método de detección para poder verificar que la información sea recibida correctamente.

Con el fin de recibir un mensaje utilizando el método de paridad impar, se debe verificar si un circuito digital está diseñado para funcionar con el protocolo del emisor. Usted tiene conocimiento que el circuito implementado en el receptor es el siguiente:

Sabiendo que la salida de ERROR se debe activar cuando haya un error en la paridad, usted deberá entonces:

Modificar el circuito, pues este no es detector de paridad, sino generador de paridad.

Cambiar la compuerta XNOR por una XOR, de tal manera que el bit de paridad no active la salida de error.

El circuito está bien así como está montado, pues detecta la paridad impar.

Al invertir la salida con la compuerta XNOR, el circuito sirve para detectar paridad impar. Si se quita la negación, detecta paridad par.

Se deben cambiar todas las compuertas a XNOR.

5 / 5 pts Pregunta 7 ¿Cuál de las siguientes afirmaciones es falsa? La compuerta AND funciona como una multiplicación lógica, donde si hay un 0 en la entrada la salida es 0. La compuerta NOT permite invertir el valor de una o más variables en sus entradas. La compuerta OR hace una suma lógica, donde si cualquiera de sus entradas es 1, la salida es 1. Las compuertas AND, OR y NOT permiten generar cualquier otro tipo de compuerta.

Pregunta 8 5 / 5 pts

Un sumador completo es un tipo de circuito combinacional, que recibe, además de los operandos de entrada, un bit de acarreo de entrada (Cin),

proveniente de otra suma previa. El siguiente circuito sumador se utiliza en un sumador de 8 bits,

En su operación, el sumador recibe los siguientes datos: A=1, B=0 y Cin=1, el resultado en la salida debería ser:

$$Y = 0$$

У

 \bigcirc Cout = 0.

$$Y = 0$$

У

 \bigcirc Cout = 1.

$$Y = 1$$

У

 \bigcirc *Cout* = 0.

$$Y=1$$
 y $extstyle extstyle extst$

Pregunta 9 5 / 5 pts

Las compuertas NAND son reconocidas como compuertas universales. Como se puede ver en la imagen, ellas permiten reemplazar cualquiera de las compuertas básicas, haciendo más económica la fabricación de circuitos integrados (al usar un único tipo

Teniendo en cuenta lo anterior, analice el circuito de la imagen:

Usted diría que este circuito:

Es un codificador, de 2 entradas y 4 salidas, que dada una de las entradas, genera su correspondiente número binario en la salida.

Un decodificador de 2 líneas a 4 líneas, que activa algunas de las salidas, según el código binario en la entrada.

Al hacer la conversión de compuertas se puede verificar que cada salida se activa para cada uno de los cuatro códigos binarios posibles en la entrada.

- Es un circuito conversor de binario a hexadecimal.
- Es un circuito sumador, que retorna la suma de los 2 números A y B.

Pregunta 10 5 / 5 pts

Los multiplexores, además de ser usados para la selección de datos, pueden funcionar como generadores de funciones lógicas. Partiendo de una tabla de verdad, se seleccionan los mintérminos y se ponen a un nivel de voltaje ALTO (Conectados a VCC) Las demás entradas se ponen en BAJO (Conectados a tierra). De esta manera, al poner en las entradas de selección la combinación adecuada, se puede ver el resultado en la salida. En el siguiente diagrama, se muestra un generador de funciones lógicas, con la entrada de selección en 000:

¿Qué valor habrá en las salidas, si la entrada de selección en el multiplexor se pone en 011?

- Y0 está en 0 y Y1 está en 0.
- O Y0 está en 0 y Y1 está en 1.
- Y0 está en 1 y Y1 está en 0.

A la salida del multiplexor habrá un nivel BAJO con la selección en 011, por lo tanto el demultiplexor mostrará el dato de entrada en su salida Y0, mientras que en Y1 mostrará un nivel BAJO.

Y0 está en 1 y Y1 está en 1.

Pregunta 11 5 / 5 pts

Circuitos lógicos combinacionales				
Un multiplexor es un selector de datos, mediante la selección de				
una entre varias entradas de control . Por otra parte, el				
demultiplexor realiza la tarea inversa, es decir, permite la				
distribución de datos desde una unica entrada a varias salidas. Estos,				
tienen una entrada de habilitación enable la cual pone en				
funcionamiento el circuito.				
Respuesta 1:				
multiplexor				
Respuesta 2:				
control				
Respuesta 3:				
demultiplexor				
Respuesta 4:				
enable				

Pregunta 12 5 / 5 pts

Los **multiplexores** son circuitos combinacionales con varias entradas y una única salida de datos. Están dotados de entradas de control capaces de seleccionar una, y solo una, de las entradas de datos para permitir su transmisión desde la entrada seleccionada hacia dicha salida.

Si las lineas o entradas o son posibles de controla	de selección es M=5, cuantas entradas maximo r con el multiplexor.
·	
☑ 32	
	trolada mediante las lineas o entradas de la cantidad de lineas de selección es posible
2^M, por lo tanto es	s N
☑ 2^5	
☑ 32	
5	
2^M, por lo tanto es	s N
☑ 2^5	
☑ 32	
1 0	
2^M, por lo tanto es	s N
☑ 2^5	
☑ 32	
1 6	
✓ 2 [^] M, por lo tanto es	s N
☑ 2^5	

32

Pregunta 13 5 / 5 pts

Una expresión "producto de sumas" (POS, product of sums) está conformada por varios términos suma (suma booleana) de literales que se agrupan en un producto booleano. Dado el siguiente circuito:

Se podría decir que:

Es el resultado de los maxtérminos

 M_2

У

 M_5

, es decir

Esta expresión se puede obtener directamente del circuito. Al existir una compuerta AND antes de la salida del circuito, se puede decir que la última operación a realizar es un producto. Más a la izquierda, se tienen dos compuertas OR que realizan la suma de los términos

$$A + \bar{B} + C$$

У

$$ar{A} + B + ar{C}$$

Es Igual a los mintérminos

 M_2

У

 M_5

, es decir

$$Y = A\bar{B}C + \bar{A}B\bar{C}$$

Se puede representar como una suma de productos usando los mintérminos

$$m_2,m_3,m_4$$

У

 m_5

.

No se puede representar por producto de sumas, es necesario simplificarlo más.

Pregunta 14 5 / 5 pts

Los circuitos combinacionales están conformados por la unión de diferentes compuertas lógicas, que combinan sus características para obtener una salida compuesta.

De acuerdo con la siguiente tabla de verdad (A y B son entradas, Y3-Y2-Y1-Y0 salidas) para el circuito decodificador:

A	В	Y3	Y2	Y1	Y0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

¿Cuál de las siguientes afirmaciones es falsa?:

- La salida Y0 se puede implementar con una NOR.
- La salida Y1 se puede implementar utilizando una XNOR.

Es correcto, la salida Y1 no se podría obtener directamente usando una XOR.

- La salida Y2 se puede implementar con una AND y un inversor.
- La salida Y3 se puede implementar con una NAND y un inversor.

Pregunta 15 5 / 5 pts

Los circuitos selectores (multiplexores) permiten escoger una de sus entradas y mostrarla en sus salidas, mientras que los circuitos distribuidores (demultriplexores) hacen la tarea opuesta, distribuyendo sus entradas a una de varias salidas.

Usted encuentra un circuito integrado, y en el datasheet puede ver que el elemento tiene ocho (8) entradas de datos, cuatro (4) salidas de datos y una (1) entrada de selección de un bit. Se podría decir que este circuito:

Es un multiplexor con 8 entradas de un bit, el selector permite seleccionar una de las 4 salidas para mostrar el dato de entrada.

Puede usarse como un demultiplexor, utilizando la entrada de 4 bits y su salida de 8 bits.

Es un multiplexor con 2 entradas de 4 bits, el selector permite escoger cuál de las dos entradas se muestra en los 4 bits de salida.

De acuerdo a lo visto, existen multiplexores para datos de más de 1 bit. En este caso se trata de un multiplexor cuyos datos tiene 4 bits, el selector permite escoger una de las 2 entradas de 4 bits y representarla en la salida.

Es un decodificador de 8 a 4 líneas, cuya entrada de selección permite escoger el tipo de decodificación a usar.

Puntaje del examen: 75 de 75

×