UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Finančna matematika – 1. stopnja

Anej Rozman Sestavljen Poissonov proces in njegova uporaba v financah

Delo diplomskega seminarja

Mentor: doc. dr. Martin Raič

Kazalo

1. Uvod	4
Slovar strokovnih izrazov	4
Literatura	4

Compound Poisson process and its application in finance

Abstract

Prevod zgornjega povzetka v angleščino.

Math. Subj. Class. (2010): 91G10 60G00 60G01

Ključne besede: Slučajni procesi, Sestavljen Poissonov proces

Keywords: Stochastic processes, Lévy processes

1. Uvod

Poissonov proces šteje število prihodov v danem časovnem intervalu, kjer narava prihodov sledi določenim omejitvam. Sestavljen Poissonov proces, je podoben Poissonovemu procesu, razen da je vsak prihod utežen glede na porazdelitev. Na primer, stranke, ki gredo v trgovino, sledijo Poissonovemu procesu, znesek denarja, ki ga porabijo, pa lahko sledi sestavljenemu Poissonovemu procesu. Hitro vidimo, da je to zelo zanimiv a ideja slučajnega procesa, ki ima veliko potencialnih uporab. V delu se bomo osredotočili na njegovo uporabo v financah. Za začetek definirajmo osnovne pojme ter Sestavljen Poissonov proces.

Definicija 1.1. Naj bo $(\Omega, \mathcal{F}, \mathbb{P})$ verjetnostni prostor in naj bo $T \neq \emptyset$ neprazna indeksna množica ter (S, Σ) merljiv prostor. *Slučajni proces*, parametriziran s T, je družina slučajnih spremenljivk $X_t : \Omega \to S$, ki so (\mathcal{F}, Σ) -merljive za vsak $t \in T$.

Opomba 1.2. Držali se bomo konvencije, da T predstavlja čas, torej $T = [0, \infty)$. V tem primeru govorimo o zveznem slučnem procesu.

Definicija 1.3. Za fiksen $\omega \in \Omega$ je preslikava $[0, \infty) \to \mathbb{R}$; $t \mapsto X_t(\omega)$ trajektorija oziroma realizacija slučajnega procesa $(X_t)_{t>0}$.

Opomba 1.4. Na slučajni proces lahko gledamo tudi kot na predpis, ki nam iz vorčnega prostora Ω priredi slučajno funkcijo $(X_t(\omega))_{t>0}: [0,\infty) \to \mathbb{R}$.

Definicija 1.5. Naj bo $(X_t)_{t\geq 0}$ slučajni proces. Potem za s < t definiramo prirastek procesa $X_t - X_s$ na intervalu [s,t]. Proces $(X_t)_{t\geq 0}$ ima neodvisne prirastke, če so za vsak nabor realnih števil $0 \le t_1 < t_2 < \ldots < t_n < \infty$ prirastki (slučajne spremenljivke)

$$X_{t_2} - X_{t_1}, X_{t_3} - X_{t_2}, \dots, X_{t_n} - X_{t_{n-1}}$$

med seboj neodvisni.

Definicija 1.6. Naj bo $(X_t)_{t\geq 0}$ slučajni proces. Potem pravimo, da ima proces stacionarne prirastke, če za vsak s < t in vsak h > 0 velja, da ima $X_{t+h} - X_{s+h}$ enako porazdelitev kot $X_t - X_s$.

Definicija 1.7. Naj bo $\lambda > 0$. Slučajnemu procesu $(N_t)_{t\geq 0}$ definiranem na verjetnostnem prostoru $(\Omega, \mathcal{F}, \mathbb{P})$ z vrednostmi v \mathbb{R} pravimo *Poissonov proces* z intenzivnostjo λ , če zadošča naslednjim pogojem:

- (1) $B_0 = 0$ skoraj gotovo,
- (2) proces ima neodvisne prirastke,
- (3) prirastki so porazdeljeni $Pois(\lambda t)$,
- (4) proces ima stacionarne prirastke.

Definicija 1.8. Naj bo $(N_t)_{t\geq 0}$ Poissonov proces z intenzivnostjo λ . Naj bo $(X_i)_{i\geq 1}$ zaporedje neodvisnih in enako porazdeljenih slučajnih spremenljivk z vrednostmi v \mathbb{R} . Potem je sestavljen Poissonov proces $(S_t)_{t\geq 0}$ definiran kot

$$S_t = \sum_{i=1}^{N_t} X_i.$$

SLOVAR STROKOVNIH IZRAZOV

LITERATURA