Tabela da Verdade e Consequência Lógica

Esdras Lins Bispo Jr. bispojr@ufg.br

Lógica para Ciência da Computação Bacharelado em Ciência da Computação

13 de maio de 2014

Plano de Aula

- Pensamento
- 2 Avisos
- Revisão
 - Semântica da LP
- Tabela da Verdade
- Consequência Lógica

Sumário

- Pensamento
- Avisos
- 3 Revisão
 - Semântica da LP
- Tabela da Verdade
- Consequência Lógica

Pensamento

Pensamento

Frase

A maior parte das pessoas vê no problema do amor, em primeiro lugar, o problema de ser amado, e não o problema da própria capacidade de amar.

Quem?

Erich Fromm (1900 - 1980) Psicanalista, filósofo e sociólogo alemão.

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Semântica da LP
- Tabela da Verdade
- Consequência Lógica

Notícias do Santa Cruz

Sumário

- Pensamento
- Avisos
- Revisão
 - Semântica da LP
 - Tabela da Verdade
 - Consequência Lógica

Corolários

Corolário 01

Toda fórmula válida é também satisfazível.

Corolário 02

Toda fórmula insatisfazível é falsificável.

Corolário 03

Uma fórmula não pode ser satisfazível e insatisfazível.

Corolário 04

Uma fórmula não pode ser válida e falsificável.

Corolários

Corolário 05

Se A é válida, então $\neg A$ é insatisfatível; analogamente se A é insatisfatível, entao $\neg A$ é válida.

Corolário 06

Se A é satisfatível, $\neg A$ é falsificável, e vice-versa.

Corolário 07

Existem fórmulas que são tanto satisfatíveis como falsificáveis.

Desafio na Computação

Problema em Aberto

Dada uma fórmula complexa qualquer, classificá-la como

- satisfazível;
- insatisfazível;
- válida;
- falsificável.

Desafio na Computação

Problema em Aberto

Dada uma fórmula complexa qualquer, classificá-la como

- satisfazível;
- insatisfazível;
- válida;
- falsificável.

Primeira solução...

Construção de tabela da verdade.

Sumário

- Pensamento
- Avisos
- 3 Revisão
 - Semântica da LP
- Tabela da Verdade
- Consequência Lógica

Foi um dos primeiros métodos propostos na literatura para a verificação da satisfazibilidade e validade de fórmulas.

Definição

A Tabela da Verdade é um método exaustivo de geração de valorações para uma dada fórmula A.

Construção

• A tabela possui uma coluna para cada subfórmula de A, inclusive para A. Em geral, os átomos de A ficam situados nas colunas mais à esquerda, e A é a fórmula mais à direita.

Construção

 Para cada valoração possível para os átomos de A, insere-se uma linha com os valores da valoração dos átomos.

Construção

 Em seguida, a valoração dos átomos é propagada para as subfórmulas, obedecendo-se a definição de valoração. Dessa forma, começa-se valorando as fórmulas menores até as maiores.

Construção

 Ao final desse processo, todas as possíveis valorações de A são criadas.

Construção

- A tabela possui uma coluna para cada subfórmula de A, inclusive para A. Em geral, os átomos de A ficam situados nas colunas mais à esquerda, e A é a fórmula mais à direita.
- Para cada valoração possível para os átomos de A, insere-se uma linha com os valores da valoração dos átomos.
- Em seguida, a valoração dos átomos é propagada para as subfórmulas, obedecendo-se a definição de valoração. Dessa forma, começa-se valorando as fórmulas menores até as majores.
- Ao final desse processo, todas as possíveis valorações de A são criadas.

Classificação

• A é satisfazível se alguma linha da coluna A contiver 1;

Classificação

• A é válida se todas as linhas da coluna A contiverem 1;

Classificação

• A é falsificável se alguma linha da coluna A contiver 0;

Classificação

• A é insatisfazível se todas as linhas da coluna A contiverem 0.

Classificação

- A é satisfazível se alguma linha da coluna A contiver 1;
- A é válida se todas as linhas da coluna A contiverem 1;
- A é falsificável se alguma linha da coluna A contiver 0;
- A é insatisfazível se todas as linhas da coluna A contiverem 0.

Fórmula 1

$$A_1 = p \vee \neg p$$

Fórmula 1

$$A_1 = p \vee \neg p$$

Fórmula 2

$$A_2 = p \wedge \neg p$$

Fórmula 1

$$A_1 = p \vee \neg p$$

Fórmula 2

$$A_2 = p \wedge \neg p$$

Fórmula 3

$$A_3 = (p \vee q) \wedge (\neg p \vee \neg q)$$

Fórmula

$$A = p \vee \neg p$$

p	$\neg p$	$p \lor \neg p$
0		
1		

Fórmula

$$A = p \vee \neg p$$

р	$\neg p$	$p \lor \neg p$
0	1	
1	0	

Fórmula

$$A = p \vee \neg p$$

р	$\neg p$	$p \lor \neg p$
0	1	1
1	0	1

Fórmula

$$A = p \wedge \neg p$$

p	$\neg p$	$p \wedge \neg p$
0		
1		

Fórmula

$$A = p \wedge \neg p$$

р	$\neg p$	$p \wedge \neg p$
0	1	
1	0	

Fórmula

$$A = p \wedge \neg p$$

р	$\neg p$	$p \wedge \neg p$
0	1	0
1	0	0

Fórmula

$$A = (p \lor q) \land (\neg p \lor \neg q)$$

р	q	$\neg p$	$\neg q$	$p \lor q$	$\neg p \lor \neg q$	$(p \vee q) \wedge (\neg p \vee \neg q)$
0	0					
0	1					
1	0					
1	1					

Fórmula

$$A = (p \lor q) \land (\neg p \lor \neg q)$$

p	q	$\neg p$	$\neg q$	$p \lor q$	$\neg p \lor \neg q$	$(p \vee q) \wedge (\neg p \vee \neg q)$
0		1				
0		1				
1		0				
1		0				

Fórmula

$$A = (p \lor q) \land (\neg p \lor \neg q)$$

p	q	$\neg p$	$\neg q$	$p \lor q$	$\neg p \lor \neg q$	$(p \lor q) \land (\neg p \lor \neg q)$
	0		1			
	1		0			
	0		1			
	1		0			

Fórmula

$$A = (p \lor q) \land (\neg p \lor \neg q)$$

p	q	$\neg p$	$\neg q$	$p \lor q$	$\neg p \lor \neg q$	$(p \vee q) \wedge (\neg p \vee \neg q)$
0	0			0		
0	1			1		
1	0			1		
1	1			1		

Fórmula

$$A = (p \lor q) \land (\neg p \lor \neg q)$$

p	q	$\neg p$	$\neg q$	$p \lor q$	$\neg p \lor \neg q$	$(p \lor q) \land (\neg p \lor \neg q)$
		1	1		1	
		1	0		1	
		0	1		1	
		0	0		0	

Fórmula

$$A = (p \lor q) \land (\neg p \lor \neg q)$$

p	q	$\neg p$	$\neg q$	$p \lor q$	$\neg p \lor \neg q$	$(p \lor q) \land (\neg p \lor \neg q)$
				0	1	0
				1	1	1
				1	1	1
				1	0	0

Fórmula

$$A = (p \lor q) \land (\neg p \lor \neg q)$$

p	q	$\neg p$	$\neg q$	$p \lor q$	$\neg p \lor \neg q$	$(p \lor q) \land (\neg p \lor \neg q)$
0	0	1	1	0	1	0
0	1	1	0	1	1	1
1	0	0	1	1	1	1
1	1	0	0	1	0	0

Sumário

- Pensamento
- Avisos
- RevisãoSemântica da LP
- o Semantica da El
- Tabela da Verdade
- Consequência Lógica

$A \models B$

Dizemos que B é consequência lógica de A (representada por $A \models B$) se toda valoração \mathcal{V} que satisfaz A também satisfaz B.

$A \models B$

Dizemos que B é consequência lógica de A (representada por $A \models B$) se toda valoração \mathcal{V} que satisfaz A também satisfaz B.

$A \models B$

Lê-se B é consequência lógica de A, ou A implica logicamente B.

$$p \lor q \to r \models p \to r$$

$$p \lor q \to r \models p \to r \quad \mathsf{V}$$

Verificar se...

$$p \lor q \to r \models p \to r \quad \mathsf{V}$$

$$p \land q \rightarrow r \models p \rightarrow r$$

Verificar se...

$$p \lor q \to r \models p \to r \quad \mathsf{V}$$

$$p \land q \rightarrow r \models p \rightarrow r$$
 F

Verificar se...

$$p \lor q \rightarrow r \models p \rightarrow r \quad \mathsf{V}$$

Verificar se...

$$p \land q \rightarrow r \models p \rightarrow r$$
 F

Logo...

$$p \land q \rightarrow r \not\models p \rightarrow r$$

Onde estudar mais...

Seção 1.3: Semântica

SILVA, F. S. C. Da; FINGER, M.; MELO, A. C. V. de. Em Lógica para Computação. São Paulo: Thomson Learning, 2006. Código Bib.: [519.687 SIL /log].

Tabela da Verdade e Consequência Lógica

Esdras Lins Bispo Jr. bispojr@ufg.br

Lógica para Ciência da Computação Bacharelado em Ciência da Computação

13 de maio de 2014

