Tagging Neighborhoods around Educational Institutions in the battle of neighborhoods

Alfonso Pereda Gálvez October 2019

That ? (Issue)

Unknowing by investors of the 10 best types of service companies (cafes, restaurants, hotels ...) that are developed around the locations of educational institutions in a city.

For what?

The focus of the project on "The battle of the neighborhoods" is to provide quality and timely information to reduce the risk of investors in service companies (cafes, restaurants, hotels, gyms, etc.) that can be developed or acquired in the neighborhoods close to educational institutions as in this case in New York City.

How? (Solve) - Data Perspective

Datasets with key data of Education Institutions (ADDRESS, Population, Number of enrolled annually, It offers dormitories, own casifications of the sector: LEVEL_, TYPE, NAICS, etc.) as the one provided by "Homeland Infrastructure Foundation-Level Data (HIFLD)".

Data by FOURSQUARE neighborhood of geomarketing type (Company type, distance from a geographical location point, ranking of visits or "check" regarding pivot type point.

How? Machine
Learning
Techniques
Perspective

SEGMENTATION AND LABELING WITH NON-SUPERVISED LEARNING TECHNIQUE SUCH AS CLUSTERIZATION WITH K-MEANS

APPLICATION OF METHODOLOGICAL PROCESS OF DATA SCIENCE IN THE DEVELOPMENT OF THE PROJECT WITH THE STAGES: UNDERSTANDING THE PROBLEM, DATA ACQUISITION, DATA WRANGLING, EXPLORATORY ANALYSIS, MODELING AND EVALUATION, RESULTS AND CONCLUSIONS.

Cluster Development –Data Wrangling

Cluster Development –Exploratory Analysis of Variables

Descriptive statistics of the New York data set

	TYPE	POPULATION	LEVEL_	INST_SIZE	DORM_CAP	TOT_ENROLL	TOT_EMP
count	86.000000	86.000000	86.000000	86.000000	86.000000	86.000000	86.000000
mean	2.313953	4555.104651	1.686047	1.546512	-20.686047	3284.965116	1212.058140
std	0.673212	10997.498020	0.857652	1.289386	2248.987899	7954.533200	3570.209898
min	1.000000	-999.000000	1.000000	-2.000000	-999.000000	-999.000000	-999.000000
25%	2.000000	187.750000	1.000000	1.000000	-999.000000	116.000000	32.500000
50%	2.000000	673.500000	1.000000	1.000000	-999.000000	471.000000	123.500000
75%	3.000000	2089.500000	2.750000	2.000000	218.000000	1438.250000	634.000000
max	3.000000	73997.000000	3.000000	5.000000	13075.000000	51123.000000	22874.000000

Visual Statistical Analysis

TOT_ENROLL

	NAICS_DESCshort
251242	COLLE
1281	COMPU
1460	COSME
0	EDUCA
764	FINE
27017	JUNIO
1742	OTHER

Cluster Development – Exploratory Analysis of Variables

Bi-variable analysis by selecting classification variables of educational institutions with the aggregation data of each observation.

Analysis of three variables by selecting classification variables of educational institutions with the aggregation data of each observation

Cluster Development –DataSet for Applied Model

115 WEST 27TH

STREET, 11TH

12 E 53RD ST

FLOOR

Flower

Shop

Gym

Hotel

Coffee Shop

Restaurant

Hotel

Boutique

Performing

Arts Venue

Coffee

Shop

Restaurant

Steakhouse

Martial Arts

Sandwich Gym / Fitness

Center

Restaurant

Place

Gift Shop

Model & Evaluation - Number of clusters of the Model (K)

K=4 (Number of Clusters)

Possible range of K values for use in the K-means Model according to the Elwod Curve score technique is in the range of 2 to 4 clusters.

Model K-means applied

Obtaining the following distribution of the observations in the clusters

	nroclust	quantity
0	0	69
1	1	2
2	2	6
3	3	9

Statistical metrics of the numerical variables of the Dataset applied to the Model

Cluster Labels	TOT_EMP	TOT_ENROLL	HOUSE_IN	INST_SIZE	LEVEL_	POPULATION	TYPE	NAICS_CODE	LONGITUDE	LATITUDE	
69.0	69.000000	69.000000	69.000000	69.000000	69.000000	69.000000	69.000000	69.000000	69.000000	69.000000	count
0.0	130.231884	468.507246	0.275362	1.043478	1.840580	671.130435	2.478261	611393.391304	-73.985512	40.752876	mean
0.0	396.956404	817.300661	0.449969	0.695252	0.884893	960.697922	0.584322	131.680788	0.017423	0.028596	std
0.0	-999.000000	-999.000000	0.000000	-2.000000	1.000000	-999.000000	1.000000	611210.000000	-74.015157	40.705781	min
0.0	25.000000	103.000000	0.000000	1.000000	1.000000	122.000000	2.000000	611310.000000	-73.995722	40.739862	25%
0.0	74.000000	268.000000	0.000000	1.000000	2.000000	397.000000	3.000000	611310.000000	-73.987638	40.750855	50%
0.0	244.000000	634.000000	1.000000	1.000000	3.000000	1081.000000	3.000000	611519.000000	-73.977344	40.762927	75%
0.0	1552.000000	3635.000000	1.000000	2.000000	3.000000	4155.000000	3.000000	611710.000000	-73.940306	40.833434	max
Cluster Labels	TOT_EMP	OT_ENROLL	OUSE_IN T	ST_SIZE HO	EVEL_ IN:	POPULATION L	TYPE I	NAICS_CODE	LONGITUDE	LATITUDE	
2.0	2.000000	2.00000	2.0	2.0	2.0	2.000000	2.0	2.0	2.000000	2.000000	count
1.0	1282.000000	40788.50000 2	1.0	5.0	1.0	2070.500000	2.0	611310.0	-73.979575	40.768869	mean
0.0	2251.427991	14615.19006	0.0	0.0	0.0	16866.618052	0.0	0.0	0.025017	0.055744	std
1.0	9690.000000	30454.00000 1	1.0	5.0	1.0	50144.000000	2.0	611310.0	-73.997264	40.729452	min
1.0	0486.000000	35621.25000 2	1.0	5.0	1.0	6107.250000	2.0	611310.0	-73.988419	40.749160	25%
1.0	1282.000000	40788.50000 2	1.0	5.0	1.0	32070.500000	2.0	611310.0	-73.979575	40.768869	50%
1.0	2078.000000	45955.75000 2	1.0	5.0	1.0	8033.750000	2.0	611310.0	-73.970730	40.788577	75%
1.0	2874.000000	51123.00000 2	1.0	5.0	1.0	73997.000000	2.0	611310.0	-73.961885	40.808286	max
Cluster Labels	TOT_EMP	TOT_ENROLL	OUSE_IN	IST_SIZE H	LEVEL_ IN	POPULATION	TYPE	NAICS_CODE	LONGITUDE	LATITUDE	
9.0	9.000000	9.000000	9.0	9.000000	9.0	9.000000	9.000000	9.0	9.000000	9.000000	count
3.0	3851.555556	6284.000000	1.0	2.777778	1.0	10135.555556	1.888889	611310.0	-73.971596	40.771031	mean
0.0	3491.478774	3801.764985	0.0	0.833333	0.0	3137.910695	0.600925	0.0	0.023347	0.038702	std
3.0	1491.000000	1107.000000	1.0	2.000000	1.0	6144.000000	1.000000	611310.0	-73.997158	40.735498	min
3.0	1751.000000	4393.000000	1.0	2.000000	1.0	7976.000000	2.000000	611310.0	-73.989488	40.747310	25%
3.0	2597.000000	6330.000000	1.0	3.000000	1.0	9648.000000	2.000000	611310.0	-73.982240	40.753362	50%
3.0	3347.000000	8846.000000	1.0	3.000000	1.0	13216.000000	2.000000	611310.0	-73.954738	40.789801	75%
3.0	12008.000000	11908.000000	1.0	4.000000	1.0	14505.000000	3.000000	611310.0	-73.928541	40.850800	max
Cluster Labels	TOT_EMP	TOT_ENROLL	HOUSE_IN	INST_SIZE	LEVEL_	POPULATION	TYPE	NAICS_CODE	LONGITUDE	LATITUDE	
6.0	6.000000	6.000000	6.000000	6.000000	6.000000	6.000000	6.000000	6.000000	6.000000	6.000000	count
2.0	3003.833333	18674.500000	0.833333	4.333333	1.166667	21678.333333	1.166667	611293.333333	-73.983978	40.754924	mean
0.0	602.012431	5316.845333	0.408248	0.516398	0.408248	5619.261541	0.408248	40.824829	0.023313	0.040059	std
2.0	2326.000000	12986.000000	0.000000	4.000000	1.000000	16256.000000	1.000000	611210.000000	-74.011826	40.711710	min
2.0	2596.500000	15125.750000	1.000000	4.000000	1.000000	17556.500000	1.000000	611310.000000	-74.000756	40.724152	25%
	2941.000000	17145.000000	1.000000	4.000000	1.000000	19791.000000	1.000000	611310.000000	-73.985910	40.754453	50%
2.0		24020 000000	4 000000	4.750000	1.000000	25461.250000	1.000000	611310.000000	-73.969451	40.769927	75%
2.0	3236.750000	21826.000000	1.000000	4.750000	1.000000	20101.200000	1.000000	011010.000000	70.000401	40.103321	1570

Applying Labeling Prediction

idx 3 ; [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 19,

case0 =[3,4155,1,2,0,3635,520]

Labelling
Prediction
(Y)

```
# 21, 22, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39,
          # 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
          # 58, 59, 61, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 78, 80, 81,84]
case1 =[2,50144,1,5,1,30454,19620]
                                        # idx 85 [79,85]
case2 = [2,16256,1,4,1,12986,3270] # idx 0; [0, 15, 20, 63, 77, 82]
case3=[2,7976,1,2,1,1107,6869] # idx 11; [11, 23, 31, 46, 60, 62, 64, 76, 83]
X_new = np.array([case0]) ## We assign the stock vector
new labels = kmeans.predict(X new) ## Label of the Cluster to which it corresponds
print("cluster to which it belongs : ",new labels) ## Print the assigned cluster label
print("with features-> TYPE: {} , POPULATION: {}, LEVEL : {}, INST SIZE: {}, HOUSE IN: {}, TOT ENROLL: {}, TOT EMP: {}".format(
   case0[0],case0[1],case0[2],case0[3],case0[4],case0[5],case0[6])) ## Print the input characteristics
                                                                                                                                                             Features
X new = np.array([case1]) ## We assign the stock vector
new_labels = kmeans.predict(X_new) ## Label of the Cluster to which it corresponds
print("cluster to which it belongs: ",new labels) ## Print the assigned cluster label
print("with features-> TYPE: {}, POPULATION: {}, LEVEL: {}, INST SIZE: {}, HOUSE IN: {}, TOT ENROLL: {}, TOT EMP: {}".format(
   case1[0],case1[1],case1[2],case1[3],case1[4],case1[5],case1[6])) ## Print the input characteristics
X new = np.array([case2]) ## We assign the stock vector
                                                                                                                                                             Predominant
new labels = kmeans.predict(X new) ## Label of the Cluster to which it corresponds
print("cluster to which it belongs: ",new labels) ## Print the assigned cluster label
print("with features-> TYPE: {}, POPULATION: {}, LEVEL: {}, INST SIZE: {}, HOUSE IN: {}, TOT ENROLL: {}, TOT EMP: {}".format(
   case2[0],case2[1],case2[2],case2[3],case2[4],case2[5],case2[6])) ## Print the input characteristics
X new = np.array([case3]) ## We assign the stock vector
new labels = kmeans.predict(X new) ## Label of the Cluster to which it corresponds
print("cluster to which it belongs : ",new_labels) ## Print the assigned cluster label
print("with features-> TYPE: {} , POPULATION: {}, LEVEL_: {}, INST_SIZE: {}, HOUSE_IN: {}, TOT_ENROLL: {}, TOT_EMP: {}".format(
   case3[0],case3[1],case3[2],case3[3],case3[4],case3[5],case3[6])) ## Print the input characteristics
cluster to which it belongs : [0]
with features-> TYPE: 3 , POPULATION: 4155, LEVEL : 1, INST SIZE: 2, HOUSE IN: 0, TOT ENROLL: 3635, TOT EMP: 520
cluster to which it belongs : [1]
with features-> TYPE: 2 , POPULATION: 50144, LEVEL_: 1, INST_SIZE: 5, HOUSE_IN: 1, TOT_ENROLL: 30454, TOT_EMP: 19620
cluster to which it belongs : [2]
with features-> TYPE: 2 , POPULATION: 16256, LEVEL : 1, INST SIZE: 4, HOUSE IN: 1, TOT ENROLL: 12986, TOT EMP: 3270
cluster to which it belongs: [3]
with features-> TYPE: 2 , POPULATION: 7976, LEVEL: 1, INST SIZE: 2, HOUSE IN: 1, TOT ENROLL: 1107, TOT EMP: 6869
```

Results: Top n of neighboring business premises to each cluster

```
Top 1- Cluster 0: ['American Restaurant' 'Art Gallery' 'Bookstore' 'Boutique'
'Clothing Store' 'Cocktail Bar' 'Coffee Shop' 'Deli / Bodega'
'Donut Shop' 'Gym / Fitness Center' 'Hotel' 'Italian Restaurant'
'Japanese Restaurant' 'Korean Restaurant' 'Martial Arts Dojo' 'Park'
'Sandwich Place' 'Shoe Store' 'Tennis Court' 'Theater']
Top 1- Cluster 1: ['Coffee Shop']
Top 1- Cluster 2: ['Café' 'Coffee Shop' 'Indian Restaurant' "Men's Store" 'Sandwich Place'
"Women's Store"]
Top 1- Cluster 3: ['Coffee Shop' 'Deli / Bodega' 'Hotel' 'Italian Restaurant'
'Korean Restaurant' 'Park' 'Seafood Restaurant' 'Thrift / Vintage Store']
```


Other results

Characterization and segmentation of the New York neighborhoods identifying commercial premises (sale of products or services) around the study centers within a radius of 300 meters.

Identification of neighborhood patterns associated with the educational institutions of the city of New York allowing to answer this question of the business problem defined in this project.

Discreet labeling by application of the k-means predictor model, by providing as input data values of the predominant variables of the established model.

Uso del conocimiento de los mercados y la capacidad de centrar los esfuerzos en determinados segmentos del mercado objetivo a través de los datos proporcionados por empresas de "geomarketing" como FOURSQUARE.

Conclusions

Clusters are formed by the population density of the variables POPULATION, TOT_ENROLL, TOT_EMP and not by the classifications of educational institutions defined by TYPE, LEVEL_, NAICS. Therefore, cluster 0 with 69 observations has the association of more types of businesses than the other clusters and a diversity of educational institutions by TYPE, LEVEL and NAICS.

The use of K-means to neighborhood problems is useful when combining the geographic data associated with demographic characteristics such as educational institutions with the neighborhood data of business premises provided with the FOURSQUARE API, that is to say enhances the labeling results from at least two perspectives, the first one defined by the clusters obtained and the association with the neighborhood, this provides the characterization of the groups obtained. The second point of view is the prediction when entering new data of the determining variables of the k-means model, we obtain a labeling that corresponds to one of the clusters and consequently we obtain characteristics and neighboring businesses (Top 10 in this project).

Conclusions

K-mean is an algorithm that manages to discover new relationships between features, or it helps us to test or decline hypotheses we have of our business.

Favorable results in the identification of crowded business groups (top 10) developed around educational institutions according to TYPE, POPULATION, LEVEL_, INST_SIZE, HOUSE_IN, TOT_ENROLL, TOT_EMP and geographic location given as a pivot.

The clustering model can be improved by associating more data with each observation, since the purpose is to support the decision making of investors, data such as income, expenses, utility of neighboring businesses would be key variables in the prediction and labeling of clusters that are formed with this new data entry.