IN THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application. LISTING OF CLAIMS:

1. (Currently Amended) A compound of Formula (I):

$$\begin{array}{c|c}
R^9 & & \\
R^8 & & \\
\hline
R^7 & & \\
R^6 & & \\
\hline
R^5 & \\
\hline
(I)
\end{array}$$

or a stereoisomer or a pharmaceutically acceptable salt form thereof, wherein:

R¹ is selected from

H, $C(=O)R^{2a}$, $C(=O)OR^{2a}$, $S(=O)R^{2a}$, $S(=O)_2R^{2a}$,

C₃₋₇ cycloalkyl,

C₁₋₄ alkyl substituted with 0-3 R²,

C₂₋₄ alkenyl substituted with 0-2 R²,

C₂₋₄ alkynyl substituted with 0-2 R²,

aryl substituted with 0-5 R⁴²,

C₃₋₁₀ carbocyclic residue substituted with 0-3 R⁴¹, and

5-6 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R⁴¹;

R², at each occurrence, is independently selected from

halo, C₁₋₃ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ alkyl,

C2-4 alkenyl, C2-4 alkynyl, C3-6 cycloalkyl,

aryl substituted with 0-5 R⁴²;

C₃₋₁₀ carbocyclic residue substituted with 0-3 R⁴¹, and

5-6 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R⁴¹;

$$R^{2a}$$
 is H, C₁₋₄ alkyl, (aryl)C₁₋₄ alkyl-, or (C₃₋₆ cycloalkyl)C₁₋₄ alkyl-;

 R^{4a} is H or C₁₋₄ alkyl;

 R^5 is H, C_{1-4} alkyl substituted with 0-2 R^{20} , $-C(=O)(C_{1-4}$ alkyl), $-C(=O)O(C_{1-4}$ alkyl), or C_{1-4} haloalkyl;

 R^6 is selected from

halo, CF3, -OCF3, -CN, -NO2, -OCH3, -SCH3, -CF2CF3, -O-R11,

-OCF2CF3, -OCF2H, -OCF2CH3,

 $-S-R^{-11}$, $-S(=O)-R^{-11}$, $-S(=O)-R^{-11}$, $-S(=O)-NR^{-10}-R^{-11}$,

 $-S(=O)_2-NR^{10}-R^{11}$, $-NR^{10}-R^{11}$, $-CH_2O-R^{11}$, $-CH_2S-R^{11}$,

 $CH_2S(=O)-R^{11}$, $CH_2S(=O)$ 2-R¹¹,- $CH_2NR^{10}-R^{11}$, - $C(=O)NR^{10}-R^{11}$

C₁₋₄ haloalkyl, (C₁₋₄ haloalkyl)oxy;

C₁_4-alkyl substituted with 0-2 R²⁰,

C₂₋₄ alkenyl substituted with 0-2 R²⁰,

C2-4 alkynyl substituted with 0-1 R²⁰, and

C₃₋₆ carbocyclic residue substituted with 0-3 R²¹,

 ${\sf R}^7$ and ${\sf R}^9$ are independently selected from

H, F, Cl, Br, CF3, -OCF3, -OH, -CN, NO2, -CF2CF3, C1-4-alkyl,

C2-4 alkenyl, C2-4 alkynyl, C1-4 haloalkyl, C1-4-alkoxy, and

(C₁₋₄ haloalkyl)oxy;

R⁸ is selected from

halo, -CF3, -OCF3, -OH, -CN, -NO2, -OCH3, -SCH3, -CF2CF3, -OR¹², -SR¹², -NR¹²R¹³, -C(O)H, -C(O)R¹², -C(O)NR¹²R¹³, -NR¹⁴C(O)R¹², -C(O)OR¹², -OC(O)R¹², -OC(O)OR¹², -S(O)R¹², -S(O)2R¹², -S(O)NR¹²R¹³, -S(O)2NR¹²R¹³, -NR¹⁴S(O)R¹², -NR¹⁴S(O)2R¹², -NR¹²C(O)R¹⁵, -NR¹²C(O)OR¹⁵, -NR¹²C(O)OR¹⁵, -NR¹²C(O)NHR¹⁵; -OL-6 alkyl substituted with 0-2 R^{8a}, -C2-6 alkenyl substituted with 0-2 R^{8a}, -C3-6 cycloalkyl substituted with 0-2 R^{8a}, -C3-10 carbocyclic residue substituted with 0-3 R³³;

R^{8a}, at each occurrence, is independently selected from

halo, -CF3, -OCF3, -OH, -CN, -NO2, -CF2CF3,

methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl,

 $-OR^{12}$, $-SR^{12}$, $-NR^{12}R^{13}$, -C(O)H, $-C(O)R^{12}$, $-C(O)NR^{12}R^{13}$,

 $-NR^{14}C(O)R^{12}$, $-C(O)OR^{12}$, $-OC(O)R^{12}$, $-OC(O)OR^{12}$,

 $-S(O)R^{12}$, $-S(O)_2R^{12}$, $-S(O)_NR^{12}R^{13}$, $-S(O)_2NR^{12}R^{13}$,

 $-NR^{14}S(O)R^{12}$, $-NR^{14}S(O)_2R^{12}$, $-NR^{12}C(O)R^{15}$, $-NR^{12}C(O)OR^{15}$,

-NR¹²S(O)2R¹⁵, -NR¹²C(O)NHR¹⁵;

phenyl substituted with 0-5 R³³;

C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³³;

 R^{10} is H or C₁₋₄ alkyl;

R¹¹ is selected from

C₁₋₆ alkyl substituted with 0-2 R²⁰,

C₂₋₆ alkenyl substituted with 0-2 R²⁰,

C₂₋₆ alkynyl substituted with 0-1 R²⁰,

C₃₋₁₀ carbocyclic residue substituted with 0-3 R²¹,

aryl substituted with 0-5 R²³, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R²¹;

alternatively, R^{10} and R^{11} join to form a 5- or 6-membered ring optionally substituted with -O- or - $N(R^{14})$ -;

alternatively, R¹⁰ and R¹¹ when attached to N may be combined to form a 9- or 10-membered bicyclic heterocyclic ring system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S, wherein said bicyclic heterocyclic ring system is unsaturated or partially saturated, wherein said bicyclic heterocyclic ring system is substituted with 0-3 R¹⁶;

R^{12} is selected from H,

C₁₋₆ alkyl substituted with 0-2 R^{12a},

C₂₋₆ alkenyl substituted with 0-2 R^{12a},

C₂₋₆ alkynyl substituted with 0-2 R^{12a},

C₃₋₆ cycloalkyl substituted with 0-3 R³³,

aryl substituted with 0-5 R³³;

C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³³;

R^{12a}, at each occurrence, is independently selected from

H, halo, -OH, -CN, -NO₂, -CO₂H, -SO₂R⁴⁵, -SOR⁴⁵, -SR⁴⁵,

-NR⁴⁶SO₂R⁴⁵, -NR⁴⁶COR⁴⁵, -NR⁴⁶R⁴⁷, -SO₂NR⁴⁶R⁴⁷,

 $-CONR^{46}R^{47}$, $-OR^{45}$, =O,

C1-4 alkyl, C2-6 alkenyl, C2-6 alkynyl,

phenyl substituted with 0-5 R³³;

C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and

- 5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³³;
- R¹³, at each occurrence, is independently selected from H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;
- alternatively, R^{12} and R^{13} join to form a 5- or 6-membered ring optionally substituted with -O- or $N(R^{14})$ -;
- alternatively, R¹² and R¹³ when attached to N may be combined to form a 9- or 10-membered bicyclic heterocyclic ring system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S, wherein said bicyclic heterocyclic ring system is unsaturated or partially saturated, wherein said bicyclic heterocyclic ring system is substituted with 0-3 R¹⁶;
- R¹⁴, at each occurrence, is independently selected from H and C₁₋₄ alkyl;
- R¹⁵, at each occurrence, is independently selected from H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;
- R¹⁶, at each occurrence, is independently selected from H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H,

C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ haloalkyl, C₁₋₃ haloalkyl-oxy-, and C₁₋₃ alkyloxy-;

R²⁰ is selected from

H, halo, -OH, -CF3, -CN, -NO2, -CO2H, -SO2R45,

-SOR45, -SR45, -NR46SO2R45, -NR46COR45, -NR46R47,

C₁₋₄ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₄ alkoxy,

C₁₋₄ haloalkyl;

C₃₋₁₀ carbocyclic residue substituted with 0-3 R²¹;

aryl substituted with 0-5 R²³; and

- 5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R²¹;
- R²¹, at each occurrence, is independently selected from

H, OH, halo, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, CN, NO₂, =O, C₁-4 alkyl,

C₁₋₄ alkoxy, and (C₁₋₄ haloalkyl)oxy;

R²³, at each occurrence, is independently selected from

H, OH, halo, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, CN, NO₂, C₁-4 alkyl,

C₁₋₄ alkoxy, and (C₁₋₄ haloalkyl)oxy;

 R^{33} , at each occurrence, is independently selected from

H, OH, halo, -CN, -NO₂, -CF₃, -OCF₃, -SO₂R³⁵, -S(=O)R³⁵, -SR³⁵,

 $-NR^{36}R^{37}$, $-NHC(=O)R^{35}$, $-C(=O)NR^{36}R^{37}$, -C(=O)H, $-C(=O)R^{35}$,

 $-C(=O)OR^{35}$, $-OC(=O)R^{35}$, $-OR^{35}$,

 C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-4} haloalkyl,

C₁₋₄ alkoxy, (C₁₋₄ haloalkyl)oxy,

C₃₋₆ cycloalkyl, phenyl, aryl substituted with 0-2 R³⁴,

C₁₋₆ alkyl substituted with R³⁴, and C₂₋₆ alkenyl substituted with R³⁴;

- $R^{34},$ at each occurrence, is independently selected from OH, C1-4 alkoxy, -SO2R^35, -NR^36R^37, NR^36R^37C(=O)-, and (C1-4 alkyl)CO2-;
- R³⁵, at each occurrence, is independently selected from C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₃₋₆ cycloalkyl, (C₃₋₆ cycloalkyl)methyl-, and (C₃₋₆ cycloalkyl)ethyl-;
- R^{36} , at each occurrence, is independently selected from H and C_{1-4} alkyl;
- R^{37} , at each occurrence, is independently selected from H, C₁₋₄ alkyl, -C(=O)NH(C₁₋₄ alkyl), -SO₂(C₁₋₄ alkyl), -C(=O)O(C₁₋₄ alkyl), -C(=O)(C₁₋₄ alkyl), and -C(=O)H;
- R^{41} , at each occurrence, is independently selected from H, CF3, halo, OH, CO2H, SO2 R^{45} , NR $^{46}R^{47}$, NO2, CN, =O, C1-4 alkyl, C2-8 alkenyl, C2-8 alkynyl, C1-4 alkoxy, and C1-4 haloalkyl;
- R^{42} , at each occurrence, is independently selected from H, CF3, halo, OH, CO2H, SO2R⁴⁵, SOR⁴⁵, SR⁴⁵, NR⁴⁶SO2R⁴⁵, NR⁴⁶COR⁴⁵, NR⁴⁶R⁴⁷, NO2, CN, C1-4 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-4 alkoxy, and C1-4 haloalkyl;

 R^{45} is C_{1-4} alkyl;

R⁴⁶, at each occurrence, is independently selected from H and C₁₋₄ alkyl;

R⁴⁷, at each occurrence, is independently selected from H, C₁₋₄ alkyl,

-C(=O)NH(C₁₋₄ alkyl), -SO₂(C₁₋₄ alkyl),

-C(=O)O(C₁-4 alkyl), -C(=O)(C₁-4 alkyl), and -C(=O)H;

m is 1 or 2;

provided that when R¹¹ is C₁₋₆ alkyl, then R¹ is not a C₁₋₄ alkyl substituted by a) an unsubstituted 3H-pyrimidine-4-one moiety, b) a substituted 3H-pyrimidine-4-one moiety, c) an unsubstituted bicyclic derivative of 3H-pyrimidine-4-one, or d) a substituted bicyclic derivative of 3H-pyrimidine-4-one;

provided that when R^6 is -O- R^{11} and or R^6 is C_{1-6} alkyl; then R^{8a} is not a substituted or unsubstituted indole moiety.

2. (Currently Amended) A compound of Claim 1 of Formula (Ia):

or a stereoisomer or a pharmaceutically acceptable salt form thereof, wherein:

R¹ is selected from

H, C₁₋₃ haloalkyl, C₃₋₆ cycloalkyl,

C₁₋₄ alkyl substituted with 0-2 R²,

C₂₋₄ alkenyl substituted with 0-2 R², and C₂₋₄ alkynyl substituted with 0-2 R²;

R², at each occurrence, is independently selected from halo, C₁₋₃ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ alkyl, C₃₋₆ cycloalkyl, and phenyl substituted with 0-5 R⁴²;

 R^{4a} is H or C₁₋₄ alkyl;

 R^5 is H, C_{1-4} alkyl substituted with 0-1 R^{20} , or C_{1-4} haloalkyl;

R⁶ is selected from

halo, -CF₃, -OCF₃, -CN, -NO₂, -OCH₃, -SCH₃, -CF₂CF₃, -O-R¹¹,

-OCF2CF3, -OCF2H, -OCF2CH3,

 $-S-R^{11}$, $-S(=O)-R^{11}$, $-S(=O)_2-R^{11}$, $-NR^{10}-R^{11}$, $-CH_2O-R^{11}$,

-CH₂S-R¹¹, CH₂S(=O)-R¹¹, CH₂S(=O)₂-R¹¹, -CH₂NR¹⁰-R¹¹,

C₁₋₄ haloalkyl, (C₁₋₄ haloalkyl)oxy;

C₁₋₄-alkyl substituted with 0-2 R²⁰,

C₂₋₄ alkenyl substituted with 0-2 R²⁰,

C2-4 alkynyl substituted with 0-1 R²⁰, and

C₃₋₆ carbocyclic residue substituted with 0-3 R²¹,

R⁷ and R⁹ are independently selected from

H, F, Cl, Br, CF3, -OCF3, -OH, -CN, -NO2, CF2CF3, C1-4-alkyl,

 C_{2-4} alkenyl, C_{2-4} alkynyl, C_{1-4} haloalkyl, C_{1-4} alkoxy, and

(C₁₋₄ haloalkyl)oxy;

R⁸ is selected from

halo, CF₃; -OCF₃, OH, CN, NO₂, OCH₃, SCH₃, -CF₂CF₃, $-OR^{12}, -SR^{12}, -NR^{12}R^{13}, -C(O)H, -C(O)R^{12}, -C(O)NR^{12}R^{13},$ $-NR^{14}C(O)R^{12}, -C(O)OR^{12}, -OC(O)R^{12}, -OC(O)OR^{12},$ $-S(O)R^{12}, -S(O)_2R^{12}, -S(O)NR^{12}R^{13}, -S(O)_2NR^{12}R^{13},$ $-NR^{14}S(O)R^{12}, -NR^{14}S(O)_2R^{12}, -NR^{12}C(O)R^{15}, -NR^{12}C(O)OR^{15},$ $-NR^{12}S(O)_2R^{15}, -NR^{12}C(O)NHR^{15};$ C_{1-6} alkeyl substituted with 0-2 R^{8a} , C_{2-6} alkenyl substituted with 0-2 R^{8a} , C_{3-6} cycloalkyl substituted with 0-2 R^{8a} , and C_{3-10} carbocyclic residue substituted with 0-3 R^{33} ;

 $R^{8a}, \text{ at each occurrence, is independently selected from} \\ \text{halo, -CF3, -OCF3, -OH, -CN, -NO2, -CF2CF3,} \\ \text{methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl,} \\ -OR^{12}, -SR^{12}, -NR^{12}R^{13}, -C(O)H, -C(O)R^{12}, -C(O)NR^{12}R^{13}, \\ -NR^{14}C(O)R^{12}, -C(O)OR^{12}, -OC(O)R^{12}, -OC(O)OR^{12}, \\ -S(O)R^{12}, -S(O)_2R^{12}, -S(O)NR^{12}R^{13}, -S(O)_2NR^{12}R^{13}, \\ -NR^{14}S(O)R^{12}, -NR^{14}S(O)_2R^{12}, -NR^{12}C(O)R^{15}, -NR^{12}C(O)OR^{15}, \\ -NR^{12}S(O)_2R^{15}, -NR^{12}C(O)NHR^{15}; \\ \text{phenyl substituted with 0-5 R}^{33}; \\ \end{aligned}$

C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and

5-6 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³³;

 R^{10} is H or C_{1-4} alkyl;

R¹¹ is selected from

C₁₋₆ alkyl substituted with 0-2 R²⁰,

C₂₋₆ alkenyl substituted with 0-2 R²⁰,

C₂₋₆ alkynyl substituted with 0-1 R²⁰,

C₃₋₁₀ carbocyclic residue substituted with 0-3 R²¹,

aryl substituted with 0-5 R²³, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R²¹;

alternatively, R^{10} and R^{11} join to form a 5- or 6-membered ring optionally substituted with -O- or - $N(R^{14})$ -;

alternatively, R¹⁰ and R¹¹ when attached to N may be combined to form a 9- or 10-membered bicyclic heterocyclic ring system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S, wherein said bicyclic heterocyclic ring system is unsaturated or partially saturated, wherein said bicyclic heterocyclic ring system is substituted with 0-3 R¹⁶;

R¹² is selected from H,

C₁₋₆ alkyl substituted with 0-2 R^{12a},

C₂₋₆ alkenyl substituted with 0-2 R^{12a},

C₂₋₆ alkynyl substituted with 0-2 R^{12a},

C₃₋₆ cycloalkyl substituted with 0-3 R³³,

aryl substituted with 0-5 R³³;

 C_{3-10} carbocyclic residue substituted with 0-3 R^{33} , and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³³;

R^{12a}, at each occurrence, is independently selected from

H, halo, -OH, -CN, -NO₂, -CO₂H, -SO₂R⁴⁵, -SOR⁴⁵, -SR⁴⁵,

 $-NR^{46}SO_2R^{45}$, $-NR^{46}COR^{45}$, $-NR^{46}R^{47}$, $-SO_2NR^{46}R^{47}$,

 $-CONR^{46}R^{47}$, $-OR^{45}$, =O,

C₁₋₄ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl,

phenyl substituted with 0-5 R³³;

C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and

- 5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³³;
- R¹³, at each occurrence, is independently selected from H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;
- alternatively, R^{12} and R^{13} join to form a 5- or 6-membered ring optionally substituted with -O- or $N(R^{14})$ -;
- alternatively, R¹² and R¹³ when attached to N may be combined to form a 9- or 10-membered bicyclic heterocyclic ring system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S, wherein said bicyclic heterocyclic ring system is unsaturated or partially saturated, wherein said bicyclic heterocyclic ring system is substituted with 0-3 R¹⁶:
- R¹⁴, at each occurrence, is independently selected from H and C₁₋₄ alkyl;
- R¹⁵, at each occurrence, is independently selected from H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;
- R^{16} , at each occurrence, is independently selected from H, OH, halo, CN, NO₂, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, -C(=O)H, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ haloalkyl,

C₁₋₃ haloalkyl-oxy-, and C₁₋₃ alkyloxy-;

R²⁰ is selected from

H, halo, -OH, -CF3, -CN, -NO2, -CO2H, -SO2R⁴⁵,

-SOR45, -SR45, -NR46SO2R45, -NR46COR45, -NR46R47,

C₁₋₄ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₄ alkoxy,

C₁₋₄ haloalkyl;

C₃₋₁₀ carbocyclic residue substituted with 0-3 R²¹;

aryl substituted with 0-5 R²³; and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R²¹;

R²¹, at each occurrence, is independently selected from

H, OH, halo, CF3, SO_2R^{45} , $NR^{46}R^{47}$, CN, NO_2 , =O, C_1 -4 alkyl;

C₁₋₄ alkoxy, and (C₁₋₄ haloalkyl)oxy;

R²³, at each occurrence, is independently selected from

H, OH, halo, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, CN, NO₂, C₁₋₄ alkyl;

C₁₋₄ alkoxy, and (C₁₋₄ haloalkyl)oxy;

R³³, at each occurrence, is independently selected from

H, OH, halo, -CN, -NO₂, -CF₃, -OCF₃, -SO₂R³⁵, -S(=O)R³⁵,

-SR³⁵, -NR³⁶R³⁷, -NHC(=O)R³⁵, -C(=O)NR³⁶R³⁷,

-C(=O)H, $-C(=O)R^{35}$, $-C(=O)OR^{35}$, $-OC(=O)R^{35}$, $-OR^{35}$,

C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₄ haloalkyl,

C₁₋₄ alkoxy, (C₁₋₄ haloalkyl)oxy,

C₃₋₆ cycloalkyl, phenyl, aryl substituted with 0-2 R³⁴,

C₁₋₆ alkyl substituted with R³⁴, and

C₂₋₆ alkenyl substituted with R³⁴;

- R^{34} , at each occurrence, is independently selected from OH, C1-4 alkoxy, -SO2 R^{35} , -NR³⁶ R^{37} , NR³⁶R³⁷C(=O)-, and (C1-4 alkyl)CO2-;
- R³⁵, at each occurrence, is independently selected from C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₃₋₆ cycloalkyl, (C₃₋₆ cycloalkyl)methyl-, and (C₃₋₆ cycloalkyl)ethyl-;
- R³⁶, at each occurrence, is independently selected from H and C₁₋₄ alkyl;
- R^{37} , at each occurrence, is independently selected from H, C₁₋₄ alkyl, $-C(=O)NH(C_{1-4} \text{ alkyl})$, $-SO_2(C_{1-4} \text{ alkyl})$, $-C(=O)O(C_{1-4} \text{ alkyl})$, $-C(=O)(C_{1-4} \text{ alkyl})$, and -C(=O)H;
- R⁴¹, at each occurrence, is independently selected from

 H, CF3, halo, OH, CO₂H, SO₂R⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, =O,

 C₁₋₄ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₄ alkoxy, and C₁₋₄ haloalkyl;
- R^{42} , at each occurrence, is independently selected from H, CF3, halo, OH, CO₂H, SO₂R⁴⁵, SOR⁴⁵, SR⁴⁵, NR⁴⁶SO₂R⁴⁵, NR⁴⁶COR⁴⁵, NR⁴⁶R⁴⁷, NO₂, CN, C₁₋₄ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₄ alkoxy, and C₁₋₄ haloalkyl;

 R^{45} is C_{1-4} alkyl;

R⁴⁶, at each occurrence, is independently selected from H and C₁₋₄ alkyl;

R⁴⁷, at each occurrence, is independently selected from H, C₁₋₄ alkyl,

-C(=O)NH(C₁-4 alkyl), -SO₂(C₁-4 alkyl),

 $-C(=O)O(C_{1-4} \text{ alkyl}), -C(=O)(C_{1-4} \text{ alkyl}), \text{ and } -C(=O)H;$

m is 1 or 2.

3. (Currently Amended) A compound of Claim 2 of Formula (Ia):

or a stereoisomer or a pharmaceutically acceptable salt form thereof, wherein:

R¹ is selected from

H, CF3, methyl, ethyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl,

C₁₋₄ alkyl substituted with 0-1 R²,

C₂₋₄ alkenyl substituted with 0-1 R², and

C₂₋₄ alkynyl substituted with 0-1 R²;

R² is selected from

F, Cl, CH₂F, CHF₂, CF₃, methyl, ethyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and phenyl;

R^{4a} is H or methyl;

R⁵ is H, methyl, or ethyl;

R⁶ is selected from

F, Cl, -CF₃, -OCF₃, -CF₂CF₃, -OCF₂CF₃, -OCF₂H, -OCF₂CH₃, -CN, -NO₂, -O-R¹¹, -S-R¹¹, -S(=O)-R¹¹, -S(=O)₂-R¹¹, -CH₂O-R¹¹, -CH₂S-R¹¹, CH₂S(=O)-R¹¹, and CH₂S(=O)₂-R¹¹, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, and s-butyl;

R⁷ and R⁹ are independently selected from H. F. Cl., CH₃, OCH₃, -CF₃, -OCF₃, -CN, and -NO₂;

R⁸ is selected from

OR¹², SR¹², NR¹²R¹³, C(O)R¹², -S(O)R¹², -S(O)2R¹², C₁₋₆ alkyl substituted with 0-2 R^{8a}, C₂₋₆ alkenyl substituted with 0-2 R^{8a}, C₂₋₆ alkynyl substituted with 0-2 R^{8a}, C₃₋₆ cycloalkyl substituted with 0-2 R^{8a}, and C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³;

 $R^{8a}, \text{ at each occurrence, is independently selected from halo, -CF3, -OCF3, -OH, -CN, -NO2, -CF2CF3, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, -OR^{12}, -SR^{12}, -NR^{12}R^{13}, -C(O)H, -C(O)R^{12}, -C(O)NR^{12}R^{13}, -NR^{14}C(O)R^{12}, -C(O)OR^{12}, -OC(O)R^{12}, -OC(O)OR^{12}, -S(O)R^{12}, -S(O)2R^{12}, -S(O)2NR^{12}R^{13}, -S(O)2NR^{12}R^{13}, -NR^{14}S(O)R^{12}, -NR^{14}S(O)2R^{12}, -NR^{12}C(O)R^{15}, -NR^{12}C(O)OR^{15}, -NR^{12}S(O)2R^{15}, -NR^{12}C(O)NHR^{15}; phenyl substituted with 0-5 R^{33};$

C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and

5-6 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³³;

R¹¹ is selected from

methyl, ethyl, propyl, and phenyl substituted with 0-5 R²³,

R¹² is selected from

C₁₋₆ alkyl substituted with 0-2 R^{12a},

C₂₋₆ alkenyl substituted with 0-2 R^{12a},

C₂₋₆ alkynyl substituted with 0-2 R^{12a},

C₃₋₆ cycloalkyl substituted with 0-3 R³³,

aryl substituted with 0-5 R³³;

C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³³;

R^{12a}, at each occurrence, is independently selected from

H, halo, -OH, -CN, -NO₂, -CO₂H, -SO₂R⁴⁵, -SOR⁴⁵,

-SR⁴⁵, -NR⁴⁶SO₂R⁴⁵, -NR⁴⁶COR⁴⁵, -NR⁴⁶R⁴⁷,

 $-SO_2NR^{46}R^{47}$, $-CONR^{46}R^{47}$, $-OR^{45}$, =O,

C₁₋₄ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl,

phenyl substituted with 0-5 R³³;

C₃₋₁₀ carbocyclic residue substituted with 0-3 R³³, and

5-10 membered heterocyclic ring system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R³³;

R¹³, at each occurrence, is independently selected from

H, C₁₋₄ alkyl, C₂₋₄ alkenyl, and C₂₋₄ alkynyl;

- alternatively, R¹² and R¹³ join to form a 5- or 6-membered ring selected from pyrrolyl, pyrrolidinyl, imidazolyl, piperidinyl, methylpiperizinyl, and morpholinyl;
- alternatively, R¹² and R¹³ when attached to N may be combined to form a 9- or 10-membered bicyclic heterocyclic ring system containing from 1-3 heteroatoms selected from the group consisting of N, O, and S; wherein said bicyclic heterocyclic ring system is selected from indolyl, indolinyl, indazolyl, benzimidazolyl, benzimidazolinyl, and benztriazolyl; wherein said bicyclic heterocyclic ring system is substituted with 0-1 R¹⁶;

R¹⁴ is H, methyl, ethyl, propyl, or butyl;

R¹⁵ is H, methyl, ethyl, propyl, or butyl;

- R¹⁶, at each occurrence, is independently selected from H, OH, F, Cl, CN, NO₂, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, and trifluoromethoxy;
- R^{23} , at each occurrence, is independently selected from H, OH, F, Cl, CF₃, SO₂R⁴⁵, NR⁴⁶R⁴⁷, CN, NO₂, methyl, ethyl, propyl, and butyl;
- R³³, at each occurrence, is independently selected from

 H, OH, halo, -CN, -NO₂, -CF₃, -OCF₃, -SO₂R³⁵, -S(=O)R³⁵,
 -SR³⁵, -NR³⁶R³⁷, -NHC(=O)R³⁵, -C(=O)NR³⁶R³⁷,
 -C(=O)H, -C(=O)R³⁵, -C(=O)OR³⁵, -OC(=O)R³⁵, -OR³⁵,
 C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁₋₄ haloalkyl,
 C₁₋₄ alkoxy, (C₁₋₄ haloalkyl)oxy,
 C₃₋₆ cycloalkyl, phenyl, aryl substituted with 0-2 R³⁴,

C₁₋₆ alkyl substituted with R³⁴, and C₂₋₆ alkenyl substituted with R³⁴;

 R^{34} , at each occurrence, is independently selected from OH, C_{1-4} alkoxy, $-SO_2R^{35}$, $-NR^{36}R^{37}$, $NR^{36}R^{37}C(=O)$ -, and $(C_{1-4}$ alkyl) CO_2 -;

R³⁵, at each occurrence, is independently selected from C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₃₋₆ cycloalkyl, (C₃₋₆ cycloalkyl)methyl-, and (C₃₋₆ cycloalkyl)ethyl-;

R³⁶, at each occurrence, is independently selected from H and C₁₋₄ alkyl;

 R^{37} , at each occurrence, is independently selected from H, C₁₋₄ alkyl, -C(=O)NH(C₁₋₄ alkyl), -SO₂(C₁₋₄ alkyl), -C(=O)O(C₁₋₄ alkyl), and -C(=O)H;

 R^{45} is C_{1-4} alkyl;

 R^{46} , at each occurrence, is independently selected from H and C_{1-4} alkyl;

 R^{47} , at each occurrence, is independently selected from H, C₁₋₄ alkyl, -C(=O)NH(C₁₋₄ alkyl), -SO₂(C₁₋₄ alkyl), -C(=O)O(C₁₋₄ alkyl), and -C(=O)H;

m is 1 or 2.

4-5. (Canceled)

6. (Original) A compound of Claim 1 of Formula (Ic):

or a pharmaceutically acceptable salt thereof.

- 7. (Original) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt thereof.
- 8. (Withdrawn) A method for treating a human suffering from a disorder associated with 5HT_{2C} receptor modulation comprising administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt thereof.
- 9. (Withdrawn) A method of Claim 8 for treating a human suffering from a disorder associated with 5HT_{2C} receptor modulation wherein the compound is a 5HT_{2C} agonist.
- 10. (Withdrawn) A method for treating obesity comprising administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt thereof.