École Supérieure Privé d'Ingénierie et de Technologies

Concepts et Pratique des Processeurs Numériques des Signaux (DSP)

Chiheb REBAI, Nadia Khouja

chiheb.rebai@supcom.rnu.tn, nadia.khouja@supcom.rnu.tn

Objectifs du cours

Mise en évidence de:

- Fonctionnalités de base des processeurs numériques des signaux (DSP)
- Architectures des cores et des périphériques des DSPs
- Méthodologies et Outils de développement, de vérification et de mise au point

Compétences à acquérir:

- Maîtrise des architectures matérielles des DSPs
- Maîtrise du jeu d'instructions pour la programmation des DSP
- Spécification des applications d'implantation sur DSP
- Règles de structuration et de développement de codes DSP
- Maîtrise des outils de développement et de test des applications DSP

Programme du module

Séance 1	Concepts de base des DSP: définition et architecture générique	C. Rebai
Séance 2	Étude des DSP AD-Blackfin: architecture et jeu d'instructions	C. Rebai
Séance 3	Initiation à l'environnement de développement intégré Visual DSP++	C. Rebai
Séance 4	Application 1: Familiarisation avec le jeu d'instructions du DSP Blackfin	C. Rebai M. Attia
Séance 5	Application 2: Implantation d'un filtre à réponse impulsionnelle finie (FIR)	C. Rebai M. Attia
Séance 6	Application 3: Chargement des porteuses d'un modulateur DMT	C. Rebai M. Attia
Séance 7	Application 4: Fonctions de traitement d'images	C. Rebai M. Attia

Partie 1

Concepts de base des DSP

- Définition des DSP
- Applications des DSP
- Représentations et traitements des données
- Fonctionnalités de base des DSP
- Classification des technologies DSP

École Supérieure Privé d'Ingénierie et de Technologies

Définition des DSP

Définition d'un DSP

- Composant électronique utilisant conjointement du matériel (Hard) et du logiciel (Soft) pour mettre en œuvre une application de traitement de signal
- Système DSP: interagit fortement avec son environnement (contraintes de temps réel et de dynamique des phénomènes physiques)
- Composants du DSP (unités de traitement, contrôleurs, registres, bus, mémoire, ports E/S, périphériques,...): fixent les performances expérimentales du système
- Ressources logicielles (jeu d'instructions, moniteur, OS) offrent la flexibilité au système

Opération «DSP» fondamentale

Produit de convolution

$$y(n) = \sum_{k=0}^{N-1} h(k)x(n-k)$$

Filtre FIR

Les opérations pour chaque **TAP** :

- Two data fetches
- Multiply
- Accumulate
- → Memory write-back to update delay line

Objectif

1 FIR Tap / DSP instruction cycle

Architecture Von Neumann

Système à usage général

Une mémoire pour le code et les données

Double utilisation des bus données et adresses

- 1. Instruction fetch
- 2. Data_1 fetch
- 3. Data_2 fetch

Plusieurs cycles!

Limitations de l'architecture

Von Neumann

$$y(n) = \sum_{k=0}^{N-1} h(k)x(n-k)$$

Implantation avec un microprocesseur x86 d'Intel

 $\begin{aligned} & \mathsf{DX} \leftarrow \mathsf{0} \\ & \mathsf{SI} \ \leftarrow @\mathsf{coef} \\ & \mathsf{DI} \ \leftarrow @\mathsf{samples} \\ & \mathsf{CX} \leftarrow \mathsf{N} \end{aligned}$

tap: MOV AX, [SI]; lecture coefficients
 MUL [DI]; multiplication AX*[DI]→ AX
 ADD DX,AX; accumulation
 INR SI; avancement pointeurs
 INR DI
 LOOP tap

Architecture Harvard

- Mémoire PM et DM séparées
- Bus indépendants pour Chaque mémoire
- En 1 cycle :

 Instr. Fetch & Data fetch
- Memory Mapped IO
- Core: Chemins de données optimisés, MAC, adressage approprié des données
- Software: instructions dédiées aux applications (FFT, video, parole,...)

Architecture Harvard modifiée esp

Chemin de données dans un DSP

Classes de processeurs

Microcontrôleurs

- Architecture: CPU, RAM, ROM, interfaces série / parallèle, timer, circuits d'interruptions
- **Applications:** contrôle / commande de processus
- Caractéristiques: pas d'exigence de vitesse, jeu d'instructions compact
- **Exemples:** 8051, 68HC11, PIC,...

Microprocesseurs

- Architecture: CPU mono-chip, nécessite des circuits additionnels externes
 - RISC: Reduced Instruction Set Computer
 - CISC: Complex Instruction Set Computer
- **Exemples:** Pentium-Series, PowerPC, MIPS,...

Processeurs Numériques des Signaux (DSP)

- Architecture:
 - CPU optimisée pour traitement mathématique temps réel rapide et répétitif
 - RAM, ROM, interfaces série / parallèle, timer, circuits d'interruptions
- **Exemples:** ADSP-21xx, AD-BF-5xx, AD-TS-xxx, TMS320Cxx,...

École Supérieure Privé d'Ingénierie et de Technologies

Applications des DSP

Domaines d'application

Produits électroménagers

Cafetière, machines à laver, fours à micro-onde,...

Électronique grand public

Caméras et appareils photos numériques, décodeurs vidéo, téléphones portables, PDA,...

Automobile

ABS, GPS, contrôle moteur, informatique de confort,

Avionique, spatial, procédés industriels

Systèmes de navigation aérienne et maritime, systèmes de contrôle des procédés industriels

Télécommunications et informatique

Terminaux, nœuds de transfert, équipement de transmission, périphériques informatiques

Capacité de traitement DSP

Applications télécom.

■ LAN câblé

RNIS, xDSL (30 - 500 MIPS), ATM, IP (3000 MIPS),...

LAN sans fils

WLL (DECT: 30 MIPS), WLAN (WiFi: 30 – 1000 MIPS), WiMax,... UWB,...

WAN

GSM (30 MIPS), UMTS (300 MIPS), MBS (3000 MIPS),...

Applications multimédia

Communication: Visiophone, TV numérique, Web-phone, vidéosurveillance,...

Diffusion: Audio (DAB), Vidéo (DVB),...

Manipulation: services interactifs, gestion de multiples flots d'information (MPEG4),...

Exemple: téléphone portable

Position dans le marché des S.C

École Supérieure Privé d'Ingénierie et de Technologies

Représentations et traitement des données

Représentation en virgule fixe

Format P.Q sur (P+Q) bits: Partie entière sur P bits & Partie fractionnelle sur Q bits

Cas d'un DSP 16 bits

Unsigned Fractional 0.16

Signed Integer 16.0

Signed Fractional 1.15

Plages de variation en format 16 bits

FORMAT	Largest Positive Value (0x7FFF) In Decimal	Largest Negative Value (0x8000) In Decimal	Value of 1 LSB (0x0001) In Decimal
1.15 Fractional 2.14 3.13 4.12 5.11 6.10 7.9 8.8 9.7 10.6	0.999969482421875 1.999938964843750 3.999877929687500 7.999755859375000 15.999511718750000 31.999023437500000 63.998046875000000 127.996093750000000 255.992187500000000	-1.0 -2.0 -4.0 -8.0 -16.0 -32.0 -64.0 -128.0 -256.0 -512.0	0.000030517578125 0.000061035156250 0.000122070312500 0.000244140625000 0.000488281250000 0.000976562500000 0.001953125000000 0.003906250000000 0.007812500000000 0.015625000000000
11.5 12.4 13.3 14.2 15.1 16.0 Integer	1023.9687500000000000 2047.937500000000000 4095.875000000000000 8191.750000000000000 16383.500000000000000 32767.000000000000000	-1024.0 -2048.0 -4096.0 -8192.0 -16384.0 -32768.0	0.031250000000000 0.062500000000000 0.125000000000000 0.250000000000000 0.50000000000

Exemple de numérisation de signal

Arithmétique à virgule fixe

Extension de signe : Augmenter la précision sans perdre la valeur

décimal	4 bits	8 bits
0	0000	00000000
1	0001	00000001
-1	1111	1111 1111

Overflow

0011 (3 décimal)

+ 0111 (7 décimal)

= 1010 (-6 décimal ??)

cas d'un signal inversion de polarité

Mise à l'échelle (scaling)

faible résolution de représentation et q
ques bits fort poids à $\mathbf{0}$

Bits de garde

Prévoir les débordements et utiliser l'extension de signe

Saturation:

au maximum négatif ou au maximum positif

Sur 16 bits : 0x7FFF ou 0x8000

Multiplication à virgule fixe

Cas Integer: (8.0)*(8.0)=(16.0)

78*113= 8814 = 00100010 01101110

Aucun ajustement nécessaire. Mais signed ou unsigned?

Cas Fractional

Règle générale : $(P.Q) \times (P'.Q') \Rightarrow (P+P').(Q+Q')$

Unsigned: (0.8)x(0.8)=(0.16)

01001110=0.3046875

01110001=0.44140625

0010001001101110=0.134490966796875

Aucun ajustement nécessaire

Signed: (1.7)x(1.7)=(2.14)

01001110 = +0.609375

01110001=+0.8828125

0010001001101110 = +0.26898193359375

Décalge à gauche => (1.15)

0100010011011100=+0.5379638671875

Il faut spécifier le format pour la Multiplication: IS,IU,FS,FU

Arrondissement et troncature

L'arrondissement ou la troncature peuvent être spécifiés dans l'instruction de multiplication

Représentation en virgule flottante

Virgule flottante (floating point): IEEE Standard 754

<i>n</i> bits					
S	С	М			

Simple précision : n=32 bits

C sur 8 bits

M sur 23 bits

 $N = (-1)^{S} * (1+M) * 2^{C-127}$

Double précision : n=64 bits

C sur 11 bits

M sur 52 bits

 $N = (-1)^S * (1+M) * 2^{C-1023}$

DSP à virgule flottante: Gestion de la virgule par le Hardware

DSP à virgule fixe : des Librairies (Software) pour gérer la virgule flottante

École Supérieure Privé d'Ingénierie et de Technologies

Fonctionnalités de base des DSP

Caractéristiques Fonctionnelles

Rapidité et flexibilité des unités de traitement arithmétique

- Unités de traitement parallèle: *ALU, MAC, SHIFTER*
- Fonctionnement parallèle du MAC et ALU
- Pas de pipeline arithmétique

Trafic sans contraintes du flux de données entre UTA et mémoires

- Data Address Generators: DAG
- Fonctionnement parallèle: recherche de 2 opérandes pendant 1 seul cycle
- Supporte matériellement : circular buffering

Séquencement efficace des tâches

- Supporte des cycles singuliers de branchement (delayed branching)
- "Zero overhead looping" en hard

Facilité de programmation

- Jeu d'instructions en assembleur algébrique + fonctions C
- Précision et plage dynamique étendue pour les unités de traitement

Architecture DSP de base

Adressage circulaire

Exemple du filtre

Data Address Generator (DAG)

Registres du DAG

Index	Modify	Length	Base
10	MO	L0	B0
I 1	M1	L1	B1
			· ·

I : pointe sur la case mémoire en cours d'accès

M: contient le pas d'avancement de I après accès

L: spécifie la taille du buffer circulaire (si L=0 adressage non circulaire)

B: adresse de base du Buffer

Bit Reversed Adressing

Bit Reversed Adressing permet une lecture des échantillons dans l'ordre de traitement par la FFT

Unité d'exécution

Exécution séquentielle

Instr. 1				Ins	str. 2		Cycles			
	1	2	3	4	5	6	7	8	9	
ſ	IF	DOF	EX	WB	IF	DOF	EX	WB	IF	

2 Instructions: 8 cycles

IF Instruction fetch

DOF Decode and operand fetch

EX Execution

WB Write back

Exécution en pipeline

2 Instructions: 5 cycles

Exceptions : Jump, Call, ...

Pipeline Update

Interfaces d'entrées / sorties

Architecture à Bus indépendants

Instructions dédiées I/O (in,out)

Architecture à Bus commun

Memory Mapped I/O

Auto buffering

Architecture à Bus commun

- Configuration de l'interface et association d'un pointeur mémoire à un flux d'entrée
- Auto incrémentation du pointeur à chaque acquisition
- Buffer circulaire
- Génération d'une interruption au moment du *Wrap around*

Acquisition se déroule en Background ce qui libère le Processeur

Direct Memory Access: DMA

DMA setup:

- Adresse source
- Adresse destination
- Sens du transfert
- Taille des données à transférer

Launch DMA

A la fin du transfert une interruption est générée

Transfert se déroule en Background ce qui libère le Processeur

École Supérieure Privé d'Ingénierie et de Technologies

Classification des technologies DSP

d'Analog Devices Inc.

Technologies DSP

Analog Devices (www.analog.com/dsp)

ADSP-21xx 16 bit, fixed point

ADSP-21xxx 32 bit, floating and fixed point

Lucent Technologies (www.lucent.com)

DSP16xxx 16 bit fixed point

DSP32xx 32 bit floating point

Motorola (www.mot.com)

DSP561xx 16 bit fixed point

DSP560xx 24 bit, fixed point

DSP96002 32 bit, floating point

Texas Instruments (www.ti.com)

TMS320Cxx 16 bit fixed point

TMS320Cxx 32 bit floating point

Technologie DSP d'ADI....

Classification des DSP 16 bits

Caractéristiques - ADSP21xx

Caractéristiques - ADSP218x

Caractéristiques - ADSP219x

DSP 32 bits virgule flottante

DSP Tiger SHARC

Core

- 1200 MMACs/s @ 150 MHz -- 16-Bit Fixed Point
- 300 MMACs/s @150 MHz -- 32-Bit Floating Point
- 900 MFLOPS -- 32-Bit Floating Point

Memory

6 Mbits of on-chip SRAM organized in a unified memory map as opposed to the traditional Harvard architecture.

I/O, Peripherals, & Package

- 600 Mbytes/s transfer rate through external bus.
- 600 Mbytes/s aggregate transfer rate through 4 Link Ports
- Glueless multiprocessor cluster support for up to 8 ADSP-TS001s
- 4 General Purpose I/O Ports
- SDRAM Controller
- 360 Ball, SBGA Package 35×35mm

DSP de la famille Blackfin

Model	Max MMACS	•	L2 Memory Bytes	Operating Voltage Core, I/O	Pin/Pkg	Price/1K*
ADSP-BF533SKBC-600	1200	148K		0.7-1.2V/3.3V	160-MBGA	\$23.50
ADSP-BF533SBBC-500	1000	148K	•	0.7-1.2V/3.3V	160-MBGA	\$20.00
ADSP-BF532SBBC-400	800	116K**	-	0.7-1.2V/3.3V	160-MBGA	\$11.50
ADSP-BF532SBST-300	600	116K**	-	0.7-1.2V/3.3V	176-LQFP	\$11.50
ADSP-BF531SBBC-400	800	84K**	-	0.7-1.2V/3.3V	160-MBGA	\$8.00
ADSP-BF531SBST-300	600	84K**	-	0.7-1.2V/3.3V	176-LQFP	\$7.00
ADSP-BF535PKB-350	700	52K	256K	1.0-1.6V/3.3V	260-PBGA	\$44.80
ADSP-BF535PBB-300	600	52K	256K	1.0-1.5V/3.3V	260-PBGA	\$35.20
ADSP-BF535PKB-300	600	52K	256K	1.0-1.5V/3.3V	260-PBGA	\$32.00
ADSP-BF535PBB-200	400	52K	256K	1.0-1.5V/3.3V	260-PBGA	\$30.00

Repérage des ADSP-XXXX

Core Voltage (v)*

No designator = 5V

M = 2.5V internal (3.3V I/O)

N = 1.8-1.9V internal (3.3V I/O)

P = 1.5V

S = 1.0V, 1.2V

*For Blackfin and TigerSHARC Processors, and SHARC DSPs,

this letter refers to fabrication process

Analog Devices
Digital Signal Processing

Package (p)

S = Plastic Quad Flat Pack (MQFP)

ST = Low-profile Quad Flat Pack (LQFP)

B, B1, B2 = Plastic Ball Grid Array (PBGA)

Z = Ceramic QFP, Heat slug up

W = Ceramic QFP, Heat slug down

P = PLCC

G = PGA

BC, CA = Mini BGA (MGBA)

X-Grade

X = Pre-Production

No Suffix = Released

ADSP-XXxxxvtpp-qqqX(R or REEL)

Product Number

BFxxx = Blackfin Processor

TSxxx = TigerSHARC Processor 210xx and 211xx = SHARC DSP

21xx = 16-Bit DSP

2199x = Mixed Signal DSP

Speed (q)

ADSP-219x, ADSP-BFxxx,

ADSP-2116x, ADSP-TSxxx

Speed Grade = Maximum frequency of operation e.g.: -160 = 160 MHz

Tape and Reel

ADSP-218x, ADSP-2106x

Speed Grade = 4x maximum frequency of operation e.g.:-160 = 40 MHz

Temperature (t)

J,K,L,M = Commercial temp range*

A,B,C = Industrial temp range*

S,T,U = Military temp range*

W,Y,Z = Automotive temp range*

École Supérieure Privé d'Ingénierie et de Technologies

Fin de la 1^{ère} partie...