1. Logika – úvod F-uzávěr $\mathbf{F}\langle X\rangle$

F-odvození

F-uzavřená

F-konkluze

 \mathbf{F} -konkluze X je množina [] $\{F[X] \mid F \in \mathbf{F}\}$. Tedy v $\mathbf{F}[X]$ jsou právě prvky $F(x_1,\ldots,x_n)$ s $\langle x_1,\ldots,x_n\rangle\in X^n\cap\operatorname{dom}(F), F\in\mathbf{F}$.

 $\mathbf{F}[X]$

 \mathbf{F} -odvození z X je sekvence s taková, že pro každé i < lh(s) je buď $s_i \in X$ nebo existuje $F \in \mathbf{F}$ a $i_0, \ldots, i_{n-1} < i$ takové, že n je četnost F a $s_i = F(s_{i_0}, \ldots, s_{i_{n-1}})$.

 \mathbf{F} -uzávěr X je nejmenší \mathbf{F} -uzavřená nadmnožina X.

X je \mathbf{F} -uzavřená, když obsahuje svoji \mathbf{F} -konkluzi, neboli $\mathbf{F}[X] \subset X$.

Pak s je **F**-odvození z X prvku $y = (s)_{lh(s)-1}$. Prvek je **F**-odvozený z X, existuje-li jeho \mathbf{F} -odvození z X. Induktivní definice

Induktivni definice množiny Y je seznam pravidel \bullet Každý prvek z X je v Y.

• Pro funkci F z \mathbf{F} , její četnost n a $\langle y_1, \ldots, y_n \rangle$ z Y^n je $F(y_1, \ldots, y_n)$ v Y, jakmile $F \in \mathbf{F}$ s $\langle y_1, \dots, y_n \rangle \in \text{dom}(F)$.

Důkaz indukcí $D\mathring{u}kaz indukc$ í na objektech z $\mathbf{F}\langle X \rangle$ prokazující, že každý prvek z $\mathbf{F}\langle X \rangle$ má

vlastnost V, je schema:

 \bullet Každý prvek z X má vlastnost V. • Když každé y_1, \ldots, y_n z $\mathbf{F}\langle X \rangle$ má vlastnost V, má $F(y_1, \ldots, y_n)$ vlastnost

V, jakmile $F \in \mathbf{F}$ a $\langle y_1, \ldots, y_n \rangle \in \text{dom}(F)$.

(Vlastnosti uzávěru a důkazu indukcí)

Tvrzení 1.1.3 Buď **F** množina funkcí konečných četností a X množina. Pak:

1) $\mathbf{F}\langle X \rangle = \bigcup_{n \in \mathbf{N}} X_n$, $kde \ X_0 = X \ a \ X_{n+1} = X_n \cup \mathbf{F} \lceil X \rceil$.

2) $\mathbf{F}\langle X \rangle = \{ y \mid y \text{ je } \mathbf{F}\text{-}odvozený } z X \}.$

3) Platí-li schema důkazu indukcí na objektech, pak má každý prvek z $\mathbf{F}\langle X \rangle$

 $vlastnost\ V$. 4) $X' \subset X \Rightarrow \mathbf{F}\langle X' \rangle \subset \mathbf{F}\langle X \rangle$ $a \ X \subset \mathbf{F}\langle X \rangle = \mathbf{F}\langle \mathbf{F}\langle X \rangle \rangle$.

Obecná notace

Obecná notace je dvojice $\langle S, Ar_s \rangle$, kde $\emptyset \in S, Ar_S : S \to \mathbf{N}$. Platí, že S jsou symboly a Ar_s jejich četnosti. Konstantní symbol má četnost nulovou.

Notace Notace je obecná notace obsahující alespoň jeden konstantní symbol.

Signatura

Signatura je dvojice $\langle R, F \rangle$, kde R je obecná notace s nenulovými četnostmi

a její prvky jsou relační symboly. A F je obecná notace, jejíž prvky jsou funkční symboly. Notace je funkční signatura, neboli signatura, kde $\underline{R} = \emptyset$. Struktura

Struktura je trojice $A = \langle A, R, F \rangle$, kde A je neprázdná množina (univerzum), R je soubor relací konečných četností a F je soubor funkcí konečných četností. Nulární funkce se nazývá konstanta. Kardinalita struktury A je velikost jejího univerza, tedy

 $\|\underline{A}\| = |A|.$

Podstruktura

Podstrukturastruktur
y $\underline{A}=\langle A,R,F\rangle$ je struktura $\underline{B}=\langle B,R',F'\rangle,$ kde: a) $B \subseteq A$.

b) Relace R' jsou právě tvaru $R \cap B^m$ s $R \in R$ a m rovným četnosti R. c) Funkce F' isou právě tvaru $F \cap (B^n \times B)$ s $F \in F$ a n rovným četnosti F.

Realizace signatury

I Realizace signatury $\langle \underline{R}, \underline{F} \rangle$ je struktura $\underline{A} = \langle A, R^A, F^A \rangle$, kde:

 $R^A = \langle R'_R \mid R \in R \rangle$ $R'_R \subseteq A^{Ar(R)}$ je realizace R v <u>A</u> a značíme ji R^A .

 $F^A = \langle F_F' \mid \mathcal{F} \in F \rangle \quad F_F' : A^{Ar(F)} \to A \text{ je realizace F v } \underline{A} \text{ a značíme ji } \mathcal{F}^A.$

Izomorfismus struktur Nechť $A = \langle A, R^A, F^A \rangle$ a $B = \langle B, R^B, F^B \rangle$ jsou dvě $\langle R, F \rangle$ -struktury. Pak

a) Zobrazení h je prosté a na.

zobrazení $h: A \to B$ je izomorfismus struktur A a B, když:

b) Pro každé $R \in R$, jeho četnost n a $\langle a_1, \ldots, a_n \rangle \in A^n$ je

 $R^A(a_1,\ldots,a_n) \Leftrightarrow R^B(h(a_1),\ldots,h(a_n)).$

c) Pro každou $F \in F$, její četnost n a (a-1)

Obor výrazů

Obor dezignátorů

(O jednoznačnosti dezignátorů)

(O výskytech dezignátorů) (O substituci v dezignátorech)

Hodnota dezignátoru ve struktuře

 $F_{\mathbf{P}} = \mathbf{P} \cup \{\neg, \rightarrow\}.$

• neprázdná množina P prvkovýroků, • logické spojky \neg , \rightarrow .

Výrokový jazyk nad P tvoří

Formule

Výroky či výrokové formule nad **P** jsou dezignátory $D(F_{\mathbf{P}})$, kde

 $VF_{\mathbf{P}}$ značí množinu všech výroků nad \mathbf{P} . Výroková teorie nad \mathbf{P} je množina $T\subseteq$

 $VF_{\mathbf{P}}$ a její prvky se nazývají *axiomy*. se nazývá klauzule. Konjunkce literálů se nazývá elementární klauzule.

Normální tvary

Model

 $Hodnota \ \overline{v}(\varphi) \ v \acute{y} roku \ \varphi \ z \ V F_{\mathbf{P}} \ v \ ohodnocen \acute{v} \ \mathsf{je} \ hodnota \ \varphi \ \mathsf{v} \ F_{\mathbf{P}}$ -struktuře

značíme $v \models T$.

Sémantická ekvivalence

když platí

Pravdivost v teorii

Dále v je model teorie $T \subseteq VF_{\mathbf{P}}$, když je modelem každého axiomu T, což

Pravdivostní ohodnocení $\mathbf{P} = model výrokového jazyka nad <math>\mathbf{P}$ je funkce $v \in {}^{\mathbf{P}}2$.

 $\langle 2, v(p), -1, \rightarrow_1 \rangle_{p \in \mathbf{P}}$. Říkáme, že v je model φ , jestliže $\overline{v}(p) = 1$, tedy φ platí (je splněno) ve v.

 $M^{\mathbf{P}}(T) = \{ v \in {}^{\mathbf{P}}2 \mid v \models T \}.$

 $M^{\mathbf{P}}(T,\varphi) = M^{\mathbf{P}}(T,\psi).$

Formule φ je nezávislá v teorii T, není-li pravdivá ani lživá v T. Formule φ je konzistentní s teorií T (splnitelná v T) není-li lživá v T. Formule φ je silnější než ψ v teorii T a ψ je slabší než φ , když $T \models \varphi \rightarrow \psi$.

Množinu všech pravdivých **P**-formulí v T značíme $\Theta_{\mathbf{P}}(T)$. Množinu všech lživých **P**-formulí v T značíme $\Theta'_{\mathbf{P}}(T)$.

Buď $T \subseteq VF_{\mathbf{P}}$. Formule $\varphi, \psi \neq VF_{\mathbf{P}}$ jsou T-símanticky ekvivalentní $\varphi \sim_T \psi$,

Formule φ je pravdivá v teorii T, platí-li v každém modelu v teorie T. $T \models \varphi$ Formule φ je lživá v teorii T, neplatí-li v žádném modelu teorie T. $T \models \neg \varphi$

Pro $T \subseteq VF_{\mathbf{P}}$ je $M^{\mathbf{P}}(T)$ třída všech modelů teorie T

Výrok je literál, je-li to prvovýrok nebo negace prvovýroku. Disjunkce literálů

Výrok je v konjunktivně normálním tvaru, je-li to konjunkce disjunkcí literálů.

Výrok je v disjunktivně normálním tvaru, je-li to disjunkce konjunkcí literálů.

Axiomatizovatelnost

Teorie T je ekvivalentní S, je-li každá z nich extenzí druhé.

Teorie S je extenze teorie T, když $\mathbf{P}(T) \subseteq \mathbf{P}(S)$ a $\Theta(T) \subseteq \Theta(S)$.

Je-li $\mathbf{P}(T) = \mathbf{P}(S)$, je to jednoduchá extenze.

Teorie je konečně axiomatizovatelná, je-li ekvivalentní teorii s konečně axiomy.

Ekvivalentní teorie

Množina $K \subseteq {\bf P}_{2je}$ axiomatizovatelná, resp. konečně axiomatizovatelná, když

Kompletní teorie

existuje teorie, resp. konečná teorie T taková, že K = M(T).

Teorie T je kompletni, jestliže má model a pro každou formuli φ jejího jazyka platí $T \models \varphi$ nebo $T \models \neg \varphi$, tedy T nemá nezávislý výrok.

(Sémantická kompaktnost)

Věta 2.1.13 Teorie má model, právě když každá její konečná část má model.

Elementární konjunkce, otevřené a uzavřené množiny

Pro funkci $\sigma \subseteq \mathbf{P} \times 2$ značíme $\tilde{\sigma} = \{ v \in \mathbf{P}2 \mid \sigma \subseteq v \}.$

Pro konečnou funkci $\sigma \subseteq \mathbf{P} \times 2$ je elementární konjunkce určená σ formule ε_{σ}

 $\bigwedge p^{\sigma(p)}$.

Buď $K \subseteq {\bf P}2$. Řekneme, že $v \in {\bf P}2$ je oddělené od K, když existuje $\sigma \subseteq v$

 $p \in \text{dom}(\sigma)$ Platí $M(\varepsilon_{\sigma}) = \tilde{\sigma}$.

konečné s $\tilde{\sigma} \cap K = \emptyset$.

Dále K je uzavřená, když K obsahuje každé v, které není oddělení od K.

K je otevřená, je-li její komplement uzavřená.

K je obojetná, jsou-li ona i její komplement uzavřené.

Dedukce Předpoklady dedukce představují mimologické axiomy teorie T a logické axio-

 $\cdot \text{ (PL1) } \varphi \to (\psi \to \varphi)$

my. Logické axiomy LAx jsou dány schematy formulí:

- $\cdot \text{ (PL2) } (\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$ $\cdot \text{ (PL3) } (\neg \varphi \to \neg \psi) \to (\psi \to \varphi)$
 - Pravidlo dedukce je pravidlo odloučení, neboli modus ponens (MP)

 $z \varphi a \varphi \rightarrow \psi \text{ odvod } \psi.$

Důkaz

 $D\mathring{u}kaz \ v \ T$ je {MP}-odvození t $T \cup LAx$.

Je to důkaz formule, která je jeho posledním členem.

Teorém a vyvratitelná formule Formule φ je dokazatelná v T = je teorémem T, existuje-li její důkaz v T. $T \vdash \varphi$.

Formule φ je vyvratitelná v T, když $T \vdash \neg \varphi$.

LAx. Speciálně jsou teorémy T definovány induktivními pravidly:

Množinu všech teorémů teorie T značíme Thm(T). Je to tedy $\{MP\}$ -uzávěr $T\cup$

Bezesporná teorie

Teorie T je sporná, je-li v ní dokazatelná každá formule. Jinak je bezesporná.

1. Každý axiom teorie T a každý logický axiom je teorém teorie T.

2. Jsou-li $\varphi, \varphi \to \psi$ teorémy teorie T, je ψ teorém teorie T.

(Existence modelu bezesporné teorie)

Tvrzení 2.2.3

1) (O korektnosti) Každá v T dokazatelná formule je v T pravdivá. 2) Má-li teorie model, je bezesporná.

Tvrzení 2.2.4 1) $\vdash \varphi \rightarrow \varphi$.

2) (O dedukci) $T, \psi \vdash \varphi \Leftrightarrow T \vdash \psi \to \varphi$. Tyrzení 2.2.5

b) $\vdash \neg \neg \varphi \rightarrow \varphi \ a \vdash \varphi \rightarrow \neg \neg \varphi$

c) $\vdash (\varphi \rightarrow \psi) \rightarrow (\neg \psi \rightarrow \neg \varphi)$ d) $\vdash \varphi \rightarrow (\neg \psi \rightarrow \neg (\varphi \rightarrow \psi))$

a) $\vdash \neg \varphi \rightarrow (\varphi \rightarrow \psi)$ a $\vdash \varphi \rightarrow (\neg \varphi \rightarrow \psi)$ a $\{\varphi, \neg \varphi\} \vdash \psi$

e) $\vdash (\neg \varphi \rightarrow \varphi) \rightarrow \psi$ (Věta o úplnosti výrokové logiky)

Tvrzení 2.2.6 Budte φ, ψ formule teorie T.

- 1)
 - a) Teorie T je sporná, právě když je v ní dokazatelný spor.
 - b) (Důkaz sporem) $T, \neg \varphi \text{ je sporn} \acute{a} \Leftrightarrow T \vdash \varphi$.
- 2) Buď T maximální bezesporná teorie. Pak platí:

 - a) $T \vdash \varphi \Leftarrow \varphi \in T \Leftarrow T, \varphi \text{ je bezesporná.}$
 - b) $\varphi \in T \Leftarrow \neg \varphi \notin T$ a také platí $\varphi \to \psi \in T \Leftarrow \neg \varphi \in T$ nebo $\psi \in T$. c) Ohodnocení v takové, že $(v(p) = 1 \Leftrightarrow p \in T \text{ pro každý prvo-}$
- výrok p), je jediný model T.
 - 3) Bezesporná teorie má maximální bezesporné rozšíření v témže jazyce.

- 4) (O existenci modelu) Teorie má model, právě když je bezesporná. 5) (O kompaktnosti) Teorie má model, právě když každá její konečná podte-
- orie má model. 6) (O úplnosti) $T \vdash \varphi \Leftrightarrow T \models \varphi$ platí pro každou teorii T a její podformuli φ .
- Syntaktické metody dokazování především 2.2.9

Vlastnost, že každá formule z S je dokazatelná v T, značíme symbolem $T \vdash S$.

Znamená to, že $S \subseteq Thm(T) \Leftrightarrow Thm(S) \subseteq Thm(T)$. Platí tranzitivita dedukce $T \vdash S$ a $S \vdash S' \Rightarrow T \vdash S'$.

Speciálním případem je $tranzitivita \rightarrow$

$$T \vdash \varphi \rightarrow \psi \text{ a } T \vdash \psi \rightarrow \psi' \Rightarrow T \vdash \varphi \rightarrow \psi'$$

1)
$$\varphi \& \psi \vdash \varphi, \psi$$
 a $\varphi, \psi \vdash \varphi \& \psi$

1)
$$\varphi \& \psi \vdash \varphi, \psi$$
 a $\varphi, \psi \vdash \varphi \& \psi$
2) $\varphi \leftrightarrow \psi \vdash \{\varphi \to \psi, \psi \to \varphi\}$ a $\{\varphi \to \psi, \psi \to \varphi\} \vdash \varphi \leftrightarrow \psi$

2)
$$\varphi \leftrightarrow \psi \vdash \{\varphi \rightarrow \psi, \psi \rightarrow \varphi\}$$
 a {
3) $T \vdash \varphi \& \psi \Leftrightarrow T \vdash \varphi \text{ a } T \vdash \psi$

4)
$$T \vdash \varphi \leftrightarrow \psi \Leftrightarrow T \vdash \varphi \rightarrow \psi \text{ a } T \vdash \psi \rightarrow \varphi$$

4)
$$T \vdash \varphi \leftrightarrow \psi \Leftrightarrow T \vdash \varphi \rightarrow \psi \text{ a } T \vdash \psi \rightarrow \varphi$$

5) (Pravidlo tranzitivity \leftrightarrow) $T \vdash \varphi \leftrightarrow \psi \text{ a } T \vdash \psi \Rightarrow \chi \Leftrightarrow T \vdash \varphi \leftrightarrow \chi$

ravidlo tranzitivity
$$\leftrightarrow$$
) $T \vdash \varphi \leftrightarrow \psi$ a T

(Pravidlo tranzitivity
$$\leftrightarrow$$
) $T \vdash \varphi \leftrightarrow \psi$ a T
Tvrzení 2.2.10

(Pravidio tranzitivity
$$\leftrightarrow$$
) $I \vdash \varphi \leftrightarrow \psi$ a I

Tyrzení 2.2.10

reflexivita
$$\leftrightarrow$$
, symetrie \leftrightarrow a idempotence \neg .

Tvrzení 2.2.11

Syntakticky jsou dokazatelné následující ekvivalence:
)
$$(\varphi_1 \to (\varphi_2 \to (\dots (\varphi_n \to \psi) \dots))) \to ((\varphi_1 \& \varphi_2))$$

1)
$$(\varphi_1 \to (\varphi_2 \to (\dots (\varphi_n \to \psi) \dots))) \leftrightarrow ((\varphi_1 \& \varphi_2 \& \dots \& \varphi_n) \to \psi)$$

2) $(\varphi \leftrightarrow \psi) \leftrightarrow ((\varphi \to \psi) \& (\psi \to \varphi))$

3)
$$(\varphi \leftrightarrow \psi) \leftrightarrow (\neg \varphi \leftrightarrow \neg \psi)$$

Tvrzení 2.2.12 (O ekvivalenci
$$Vznikne$$
-li formule $\varphi' z \varphi na$

Vznikne-li formule
$$\varphi'$$
 z φ nahrazením některého výskytu podformule ψ formulí ψ' , tak

 $\vdash \psi \leftrightarrow \psi' \rightarrow \varphi \leftrightarrow \varphi'$

$$\vdash \psi \leftrightarrow \psi' \rightarrow \varphi \leftrightarrow \varphi'$$

$$T \models \psi \leftrightarrow \psi' \Rightarrow T \vdash \varphi \leftrightarrow \varphi'$$

$$T \models \psi \leftrightarrow \psi' \quad \rightarrow \quad \varphi \leftrightarrow \varphi'$$

$$T \models \psi \leftrightarrow \psi' \quad \Rightarrow \quad T \vdash \varphi \leftrightarrow \varphi'$$
Tvrzení 2.2.13

Syntaktiky jsou dokazatelné: de Morganovy vztahy, idempotence \vee , komutativita \vee , asociativita \vee . Dále jsou syntakticky dokazatelné: pravidlo rozbor případů, distributivnost ∨

Booleovská pravidla

a & a další.

Nechť **A** je *L*-struktura a $\varphi(x_1,\ldots,x_n)$ jsou *L*-formule a

Definovatelné množiny

 $D = \{ \langle a_1, \dots, a_n \rangle \in A^n \mid \mathbf{A} \models \varphi[a_1, \dots, a_n] \}.$

Pak D je množina definovaná v A formulí $\varphi(x_1,\ldots,x_n)$ bez parametrů. D značíme

 $(\forall x \leq u)(\exists \overline{y})\varphi \to (\exists v)(\forall x \leq u)(\exists \overline{y} \leq v)\varphi,$

 $L^A = \langle S, +, \cdot, 0, < \rangle$

 $\Sigma_{n,L}$ a $\Pi_{n,L}$ -formule $\Sigma_{n,L}$ a $\Pi_{n,L}$ -formule definujeme induktivně:

· $\Sigma_{0,L}$ -formule a $\Pi_{0,L}$ -formule jsou právě omezené formule jazyka L.

· $\Sigma_{n+1,L}$ -formule jsou právě tvaru $(\exists \overline{x})\varphi$, kde φ je nějaká $\Pi_{n,L}$ -formule.

· $\Pi_{n+1,L}$ -formule jsou právě tvaru $(\forall \overline{x})\varphi$, kde φ je nějaká $\Sigma_{n,L}$ -formule.

 $\Delta_{n,L}$ -formule logicky ekvivalentní jak nějaké $\Sigma_{n,L}$ -formuli, tak nějaké $\Pi_{n,L}$ formuli.

Kolekce

 $\varphi(\mathbf{A}).$

Nechť jazyk L obsahuje binární predikátový symbol \(\leq \). Axiom kolekce pro L-

formuli φ dle různých proměnných x, \overline{y} je formule

kde u, v se nevyskytují ve φ a jsou různé od všech x, \overline{y} . Značíme ji $B_{\varphi}^{x,\overline{y}}$, či B_{φ} . Numerický jazyk

Numerický jazyk je jazyk obsahující $\langle S, 0 \rangle$, kde S je unární funkční symbol ope-

race následníka a 0 je konstantní symbol. Teorie v numerickém jazyce je numerická teorie. Konstantní term $S \cdots S0$, S aplikováno n-krát značíme n a nazýváme n-tý numerál.

Pak zavádíme pojem aritmetika, což je numerická teorie s jazykem

kde $+ a \cdot j$ sou binární funkční symboly a $\leq j$ e binární relační symbol.

Robinsonova aritmetika Robinsonova aritmetika Q je L^A -teorie $\langle 1 \rangle$ s axiomy:

(Q1) $0 \neq Sx$ (Q3)x + 0 = x

 $(Q5) \quad x \cdot 0 = x$

(Q7)

 $x \neq 0 \rightarrow (\exists y)(x = Sy)$ Standardní model Robinsonovy aritmetiky je model $\mathbf{N} = \langle N, S, +, \cdot, 0, \leq \rangle$.

 $^{\langle 1 \rangle}$ L^A -teorie je teorie jazyka $\langle S, +, \cdot, 0, \leq \rangle,$ kde S je operace následníka a \underline{n} značí

n-tý numerál, tedy S aplikováno n-krát na konstantní term 0.

(Q8) $x < y \leftrightarrow (\exists z)(z + x = y)$

 $(Q2) \quad Sx = Sy \ \to \ x = y$

(Q4) x + Sy = S(y+y)

(Q6) $y \cdot Sy = x \cdot y + x$

Peanova aritmetika P je rozšíření Q o schema indukce I, tvořené axiomy in $dukce I_{\omega}^{x}$, které mají tvar

Peanova aritmetika

značíme \mathcal{O}^{Δ} .

Aritmetiky $I\Sigma$ $Aritmetika\ I\Sigma_n$ je rozšíření Q o schema indukce I_{Σ_n} , tvořené všemi axiomy

indukce I_{ω}^{x} , kde φ je Σ_{n} -formule. $Aritmetika\ I\Sigma_{n.L}^{\langle 2\rangle}$ je rozšíření Q o schema indukce $I_{\Sigma_{n.L}}$, tvořené všemi axiomy indukce I_{φ}^{x} , kde φ je $\Sigma_{n,L}$ -formule.

 $(\varphi(0) \& (\forall x)(\varphi(x) \rightarrow \varphi(Sx))) \rightarrow (\forall x)\varphi(x).$

Aritmetizace – idea via $^{\Delta}$ N a 4.2.11

IS-teorie je teorie S, která obsahuje axiomy $I\Sigma_{1,L(S)}$.

 Δ_1 -extenze teorie S je teorie S' získaná z S postupně prováděnou extenzí o

symbol definovaný $\Delta_{1,L(S)}$ -formulí právě extendované teorie S_0 . Značíme ji $\mathbf{A}^{S'}$. Každý model $\mathbf{A} \models S$ lze jednoznačně expandovat do modelu S'.

Buď S nějaká IS-teroie. Teorie S^{Δ} se získá tak, že k ní přidáme pro každou Δ_1 formuli jazyka aritmetiky φ (relační) symbol \mathcal{O}_{φ} a jeho definici formulí φ , přičemž splňuje-li φ podmínku existence a jednoznačnosti, přidáme ještě i funkční symbol

 \mathcal{O}_{φ} . Když $\mathbf{A} \models S^{\Delta}$, značíme ji $\mathbf{A}^{S^{\Delta}}$ či \mathbf{A}^{Δ} a interpretaci symbolu \mathcal{O} teorie $\mathbf{A}^{S^{\Delta}}$

Snaha aritmetizace je převést vše na přirozená čísla. Každou formuli tedy potřebujeme zakódovat nějakým přirozeným číslem. Je několik možností, jak formule kódovat. Začněme kódováním dvojic – např. použijme Cantorovo diagonální uspořádání.

$$a \ b \ 0 \ 1 \ 2 \ 0 \ 0 \ 1 \ 3 \ 1 \ 2 \ 4 \ . \ 2 \ 5 \ . \ .$$

Toto kódování dvojici (a, b) přiřadí číslo

$$\langle a,b\rangle = \frac{(a+b)(a+b+1)}{2} + a.$$

Když už umíme zakódovat dvojice, n-tice můžeme kódovat následovně:

$$\langle x_1, \dots, x_{n+1} \rangle_{n+1} = \langle x_1, \langle x_2, \dots, x_{n+1} \rangle_n \rangle,$$

kde (x, y) se nazývá kód uspořádané dvojice. Dále se definuje unární funkční symbol 2^x , který se nazývá exponenciální dvojka. Platí základní vlastnosti. Dále definujeme mnoho funkčních a relačních symbolů.

 $(x,y) = z \leftrightarrow 2z = (x+y+1)(x+y) + 2x,$

kde index n u pravé závorky značí kód n-tice. Závorky bez indexu značí kód dvojice, jak jsme ho zavedli. Jelikož formule jsou konečné n-sekvence, můžeme již kódovat

Teorie BAS se získá jako Δ_1 -extenze teorie $I\Sigma_1$. Definuje se binární funkční

Řekneme-li, že A je Σ_n -množina, znamená to, že A je množina definovaná bez parametrů v **N** nějakou Σ_n -formulí. Obdobně pro Π_n a Δ_n . Platí, že $A \subseteq \mathbf{N}^k$ je Δ_n , právě když A i $\mathbf{N}^k \setminus A$ je Σ_n .

Dále si zavedeme formuli $\varphi_{Ax}^{Prf}(x,y)$ jazyka $L(S^{\Delta})$ vyjadřující, že y je důkazem $x^{\langle 3 \rangle}$ a teorii extendujeme o symboly

 $\operatorname{Prf}_{Ax}(x,y) \leftrightarrow \varphi_{Ax}^{Prf}(x,y)$ y je důkazem x $\operatorname{Th}_{Ax}(x) \leftrightarrow (\exists y)(\operatorname{Prf}_{Ax}(x,y) \& \operatorname{Sent}(x)) \ x \in \operatorname{Th}(\operatorname{Ax}), \ \operatorname{tzn.} \ \operatorname{dokazateln\'a} \ \operatorname{sentence}$ $nTh_{Ax}(x) \leftrightarrow Th_{Ax}(\langle \neg, x \rangle).$ $x \notin \operatorname{Th}(Ax)$

Zavedeme strukturu ${}^{\Delta}\mathbf{N}$ jako model teorie SA^{Δ} , kde $\mathrm{SA} = Th(\mathbf{N})$, tedy tzv. standardní aritmetika.

$$^{\Delta}\mathbf{N}\models SA^{\Delta}$$

formule.

symbol

To znamená, že teorii SA rozšíříme o symboly definované Δ_1 -formulemi. Pro každý

takový symbol \mathcal{O} teorie SA^{Δ} je \mathcal{O}^{Δ} jeho interpretace v ${}^{\Delta}\mathbf{N}$. Pro jazyk L ve struktuře ${}^{\Delta}\mathbf{N}$ je L-axiomatika množina $Ax \subseteq {}^{\Delta}Fm_L$. Teorie je nad ${}^{\Delta}\mathbf{N}$ je jazyk L v ${}^{\Delta}\mathbf{N}$ a nějaká L-axiomatika.

Buď T teorie nad $^{\Delta}$ N. Označme expanzi $\langle ^{\Delta}$ N, $Ax_T \rangle$ do modelu SA $^{\Delta}(Ax)$ jako $\Delta N(T)$. Říkáme, že T je Δ_1 -axiomatizovaná, je-li její axiomatika Δ_1 . Dále T je Δ_1 -

 $axiomatizovateln\acute{a}$, je-li T ekvivalentní nějaké Δ_1 -axiomatizované teorii. Obdobně pro Σ_1 .

Jde nám tedy o to, že opět vše převádíme na čísla. To, že je jazyk z ${}^{\Delta}$ N a teorie nad ${}^{\Delta}$ **N** znamená, že je vše kódováno přirozenými čísly. Daná axiomatika jsou pak zakódované axiomy teorie.

Místo $\operatorname{Prf}_{Ax}(x,y)$ píšeme $\operatorname{Prf}_T = \{ \langle a,b \rangle \in \mathbf{N}^2 \mid \langle \Delta \mathbf{N}, Ax_T \rangle \models \varphi_{Ax}^{Prf}[a,b] \}.$ Ax(x) je unární relační symbol vyjadřující, že x je mimologickým axiomem T.

Rozhodnutelnost

jsou Σ_1 .

Teorie T je rozhodnutelná, když Th_T je Δ_1 . Jinak je nerozhodnutelná. TVRZENÍ 4.2.13

1) Když teorie T je $\Delta_1[\Sigma_1]$ -axiomatizovaná, Prf_T je $\Delta_1[\Sigma_1]$ a Th_T i nTh_T

- Důkaz: První plyne z definic Prf_T a Th_T a nTh_T .

2) Kompletní Σ₁-axiomatizovaná teorie T je rozhodnutelná.

Druhé je již důsledek prvního, neboť pokud je $T \Sigma_1$ -axiomatizovaná, tak Th_T je Σ_1 a jelikož je kompletní, tak se dokáže, že $\mathbb{N} \setminus \operatorname{Th}_T$ je Σ_1 . Neboť x není z Th_T

právě tehdy, když je z n Th_T (což je Σ_1), nebo to není sentence (což je asi definováno

 Δ_1 formulí). Tedy Th_T je Δ_1 , tedy T je rozhodnutelná.

Relace $R \subseteq \mathbb{N}^2$ je Σ_1 -kompletace L-teorie T, jestliže

- 1) R je Σ_1 (množina).
- 2) Pro každé $a \in \text{dom}(R)$ je R[a] L-axiomatika kompletní extenze teorie T. 3) Každá kompletní L-extenze teorie T je ekvivalentní L-teorii s axiomatikou
- tvaru R[a].

TVRZENÍ 4.2.15 (Kompletační kriterium rozhodnutelnosti) Když teorie T je Σ_1 -axiomatizovaná a má Σ_1 -kompletaci, je rozhodnutelná.

Reprezentovatelnost

Funkce $F: \mathbf{N}^n \to \mathbf{N}$ a relace $R \subseteq \mathbf{N}^n$ reprezentujeme v T nějakou formulí. TVRZENÍ 4.3.2 (O reprezentaci funkcí a relací z Δ_1 v Robinsonově aritmetice Q)

- 1) Každá totální funkce ze Σ_1 je reprezentována v Q nějakou Σ_1 -formulí.
 - 2) Každá relace z Δ_1 je reprezentována v Q nějakou Σ_1 formulí.

Nerozhodnutelnost

VETA 4.3.3 (O Δ_1 -neoddělitelnosti)

- Buď T bezesporná numerická L-teorie a nechť každá Δ_1 -podmnožina $\mathbf N$ je re-
- prezentovaná v T. 1) $Kdyz P \subseteq \mathbb{N}$ odděluje Th_T a nTh_T (tedy obsahuje jednu a je disjunktní s
 - druhou), tak platí nějaký ošklivý štrúdl pro nějakou ještě ošklivější relaci. 2) Th_T a nTh_T nelze oddělit Δ_1 -množinou $A \subseteq \mathbf{N}$ a speciálně je tedy T
- nerozhodnutelná. 3) Kdyz T je navíc Σ_1 -axiomatizovaná a A je Δ_1 nadmnožina $Th_T \cup nTh_T$,
- $tak \ A \setminus (Th_T \cup nTh_T) \ neni \ \Sigma_1.$
- VĚTA 4.3.4 (O nerozhodnutelnosti)
- Bezesporná teorie rozšiřující Robinsonovu aritmetiku Q je nerozhodnutelná. Je-li navíc Σ_1 -axiomatizovaná, není kompletní.

nerozhodnutelná (dle 4.3.3.2)). Je-li Σ_1 -axiomatizovaná, tak není kompletní, jinak bychom se dostali do sporu s 4.2.13.2). TVRZENÍ 4.3.6 1) Buť T' extenze T o konečně definic nebo jednoduchá extenze T o konečně

Bezesporná teorie T rozšiřující Robinsonovu aritmetiku Q je bezesporná numerická teorie a platí, že každá Δ_1 množina lze v Q reprezentovat. Proto je T

axiomů. Pak je-li T' nerozhodnutelná, je i T nerozhodnutelná. 2) Buť T' konzervativní extenze T. Pak je-li T nerozhodnutelná, je T' nerozhondutelná.

VĚTA 4.3.11

TVRZENÍ 4.3.7 Teorie T v jazyce aritmetiky, která nemá žádné mimologické axiomy, je neroz-

hodnutelná a nekompletní. Aritmetika Q je nerozhodnutelná (dle 4.3.4 (O nerozhodnutelnosti)) a je to jed-

noduchá extenze T o konečně axiomů (o 8), tedy podle 4.3.6 je i T nerozhodnutelná. A jelikož má Δ_1 -axiomatiku (prázdnou?), což je i Σ_1 -axiomatika, tak je nekompletní (dle 4.3.12.2)).

Struktura A je silně nerozhodnutelná, je-li nerozhodnutelná každá teorie, která ji má za model. Buď A struktura s jazykem konečné signatury. Struktura A je definovatelná ve struktuře **B**, jestliže $A \subseteq B$ je definovaná bez parametrů v **B** a každá relace nebo

funkce z ${\bf A}$ je restrikcí na A nějaké relace nebo funkce definované bez parametrů v B. TVRZENÍ 4.3.9

Standardní model B přirozených čísel je silně nerozhodnutelná struktura. Důkaz: Buď $\mathbf{N} \models T$. Pak $T \cup Q$ je bezesporné rozšíření Q, tedy dle 4.3.4 to je

nerozhodnutelná teorie. A jelikož je to jednoduché rozšíření T o konečně axiomů, tak je i T dle 4.3.6 nerozhodnutelná.

VĚTA 4.3.10 (O silně nerozhodnutelné struktuře)

Je-li A silně nerozhodnutelná struktura definovatelná ve struktuře B, je i B

- silně nerozhodnutelná struktura.
 - 1) Struktura $\mathbf{B} = \langle \mathbf{Z}, +, -, ., 0, 1 \rangle$ celých čísel je silně nerozhodnutelná. Důsledek: Teorie okruhů, komutativních okruhů a oborů integrity jsou nerozhodnutelné.
 - 2) Struktura $\langle \mathbf{Q}, +, -, ., 0, 1 \rangle$ racionálních čísel je silně nerozhodnutelná. Důsledek: Teorie těles a teorie těles charakteristiky 0 jsou nerozhodnutel-
 - né. Stačí jen ukázat, že standardní model je definovatelný ve struktuře B tak, že

N definujeme v **Z** pomocí formule $\varphi(x)$ v jazyce struktury **B** $(\exists a, b, c, d)(a \cdot a + b \cdot b + c \cdot c + d \cdot d = x).$ cích. Dále stačí jen definovat následníka jako S(a) = a + 1 a \leq jako $a < b \leftrightarrow (\exists c \in \mathbf{N})(a + c = b).$ (První Gödelova věta) LEMMA 4.3.12 (Diagonální lemma) Buť T rozšíření teorie Q. Pak pro formuli $\varphi(v_0)$

Že tato formule definuje právě přirozená čísla nám dává Lagrangeova věta o 4 čtver-

teorie T existuje její sentence $\varphi * tak$, že $T \vdash \varphi * \leftrightarrow \varphi(\varphi *)$.

Formule $\tau(x)$ numerické teorie T je definice pravdy v T, jestliže pro každou sentenci φ teorie T platí $T \vdash \varphi \leftrightarrow \tau(\varphi)$. TVRZENÍ 4.3.14 1) V bezesporném rozšíření teorie Q neexistuje definice pravdy.

RF3. Je-li G speciální (4) rekurzivní (m+1)-ární funkce, pak je $\mu x(G(\overline{a},x))$

2) Th(N) není aritmetická množina.

VĚTA 4.3.15 (První Gödlova věta) Bud'T bezesporná Δ_1 -axiomatizované rozšíření Q. Pak existuje Π_1 -sentence pravdivá v \mathbf{N} a nedokazatelná v T.

Speciálně když $\mathbf{N} \models T$, tak existuje sentence nezávislá v T.

Rekurze a Δ_1 -definované funkce a relace

Rekurzivní funkce definujeme induktivně následujícími pravidly:

RF1. Funkce S(x) = x + 1 (následník), $I_i^n(x_1, \ldots, x_n) = x_i$ pro $0 < i \le n$ a

0 < n (i-tá projekce), $x + y, \, x \cdot y$ a $K_{<}$ jsou základní rekurzivní funkce. RF2. Je-li H k-ární rekurzivní funkce a $G_1, \ldots G_k$ jsou m-ární rekurzivní funkce,

je složená funkce $F(\overline{a}) = H(G_1(\overline{a}), \dots, G_n(\overline{a}))$ rekurzivní.

 $0)^{\langle 5 \rangle}$ rekurzivní *m*-ární funkce. TVRZENÍ 4.4.7

1) Totální číselná funkce, resp. relace je rekurzivní, právě když je z Δ_1 . 2) Číselná relace je rekurzivně spočetná, právě když je ze Σ_1 .

Silně nerozhodnutelné struktury

Expanze L-struktury A je nepodstatná, je-li její jazyk extenzí L pouze o kon-

stantní symboly.

LEMMA 4.5.2 (O nepodstatné expanzi)

Je-li nepodstatná expanze A' struktury A silně nerozhodnutelná, je A silně

nerozhodnutelná. TVRZENÍ 4.5.3

 $Grupa \langle Perm(\mathbf{Z}), \cdot, Id \rangle$ je silně nerozhodnutelná.

⁽⁴⁾ Funkce F s aritou (n+1) je speciální, platí-li $(\forall \overline{a})(\exists x)F(\overline{a},x)=0$. ⁽⁵⁾ Vrací minimální x, pro které platí $G(\overline{a}, x) = 0$.

TVRZENÍ 4.5.4

TVRZENÍ 4.5.5

 $Bud' \mathbf{D}_{4} = \langle \mathbf{N}, R_{4}^{D} \rangle, kde$

 $R^D_{\cdot\cdot} = \{\langle 1, m, n, m+n \rangle \mid m, n, \in \mathbf{N}\} \cup \{\langle 0, m, n, m \cdot n \rangle \mid m, n, \in \mathbf{N}\}.$

Důsledek: Každý jazyk $\langle R \rangle$ (prázdná teorie s tímto jazykem), kde R je kvartérní relační symbol, je nerozhodnutelný.

Struktura **D**₄ je silně nerozhodnutelná.

Standardní model je definovatelný ve struktuře $\langle \mathbf{N}, +, -, \cdot, 0, 1 \rangle$, která je zase definovatelná v $\mathbf{D_4}$ (stačí jen definovat konstanty 0 a 1 a binární funkční symboly \cdot a + pomocí formulí v $\mathbf{D_4}$). Jelikož standardní model je silně nerozhodnutelný, tak i $\langle \mathbf{N}, +, -, \cdot, 0, 1 \rangle$ a $\mathbf{D_4}$ jsou silně nerozhodnutelné.

Bud' $\mathbf{D_2} = \langle \mathbf{N} \cup \mathbf{N}^2 \cup \{\infty\}, R_2^D \rangle$, kde R_2^D je

 $\{\langle\langle m,n\rangle,\langle m',n'\rangle\rangle\mid R_A^D(m,n,m',n')\}\}$ $\cup \{\langle m, \langle m, n \rangle \rangle \mid m, n \in \mathbf{N} \} \cup$

 $\cup \{\langle \infty, m \rangle \mid m \in \mathbf{N} \} \cup$ $\cup \{\langle \langle m, n \rangle, \infty \rangle \mid m, n \in \mathbf{N} \} \cup$

Struktura **D**₂ je silně nerozhodnutelná.

Důsledek: Každý jazyk $\langle R \rangle$ (prázdná teorie s tímto jazykem), kde R je binární

relační symbol, je nerozhodnutelný.

Definujme $\mathbf{D_4}$ v nepodstatné expanzi $\mathbf{D_2}$, kterou rozšíříme o konstantní symbol e^D značící ∞ . Pak relační symbol $R_4^D(x,y,x',y')$ definujeme formulí $\varphi(x,y,x',y')$ tvaru

 $(\exists u, u')(R_2(u, e) \& R_2(u', e) \& R_2(u, u') \&$ & $R_2(x,u)$ & $R_2(u,y)$ & $R_2(x',u')$ & $R_2(u',y')$).

 $\cup \{\langle \langle m, n \rangle, n \rangle \mid m, n \in \mathbf{N} \} \cup$

 $R_2(e,x) \& R_2(e,y) \& R_2(e,x') \& R_2(e,y') \&$

Existuje silně nerozhodnutelný (obyčejný) graf.

Definujme $\mathbf{D_2}$ v nepodstatné expanzi \mathbf{A}' struktury $\langle A, P^A \rangle$.

TVRZENÍ 4.5.7

- 1) Existuje silně nerozhodnutelný svaz.
- 2) Existuje silně nerozhodnutelná struktura $\langle B, F^B, G^B \rangle$, kde F^B, G^B isou
- unární funkce.

Najdeme strukturu izomorfní s **A** definovatelnou v $\mathbf{B} = \langle B, \leq^B \rangle$.

Definujme A v B.

TVRZENÍ 4.5.6

5. Logika – eliminace kvantifikátorů (MP leden 2010) Elementární podstruktura

 $A \prec B$.

Struktura A je elementární podstuktura struktury B

jestliže je to podstruktura struktury B

 $\mathbf{A} \subseteq \mathbf{B}$

 $\mathbf{A} \models \varphi[\overline{a}] \Leftrightarrow \mathbf{B} \models \varphi[\overline{a}].$

a pro každou formuli $\varphi(\overline{x})$ jazyka struktury ${\bf A}$ a $\overline{a} \in A^{l(x)}$ platí

Platí, že je-li $\mathbf{A} \subseteq \mathbf{B}$ a φ je bezkvantifikátorová, tak $\mathbf{A} \prec \mathbf{B}$. Dále platí, že pokud $\mathbf{A} \prec \mathbf{B}$, tak $\mathbf{A} \equiv \mathbf{B}$.

Modelová kompaktnost

Teorie T je modelově kompletní, když pro každé její dva modely A, B takové,

že $\mathbf{B} \subseteq \mathbf{B}$ platí $\mathbf{A} \prec \mathbf{B}$.

Vnoření

Funkce $f: \mathbf{A} \to \mathbf{B}$ je (izomorfní) vnoření \mathbf{A} do \mathbf{B} , je-li prostá a platí:

(e1) Pro každé m > 0 a každý m-ární relační symbol R jazyka L a a_1, \ldots, a_m z A je $R^A(a_1,\ldots,a_m) \Leftrightarrow R^B(f(a_1),\ldots,f(a_m)).$

(e2) Pro každé m > 0 a každý m-ární funkční symbol F jazyka L a a_1, \ldots, a_m z A je $f(F^A(a_1,...,a_m)) = F^B(f(a_1),...,f(a_m)).$

Elementární vnoření

Je-li $f[\mathbf{A}] \prec \mathbf{B}$, říkáme, že f je elementární vnoření \mathbf{A} do \mathbf{B} . Neboli vnoření ${\bf A}$ do ${\bf B}$ je elementární právě, když pro každou formuli $\varphi(\overline{x})$ jazyka struktury **A** a $\overline{a} \in A^{l(x)}$ platí

 $\mathbf{A} \models \varphi[\overline{a}] \iff \mathbf{B} \models \varphi[f\overline{a}].$

 $Parciální vnoření \mathbf{A} do \mathbf{B}$ je funkce $f \subseteq A \times B$ taková, že pro každou atomickou (nebo ekvivalentně otevřenou) L-formuli $\varphi(\overline{x})$ a $\overline{a} \in \text{dom}(f)^{l(x)}$ platí

 $\mathbf{A} \models \varphi[\overline{a}] \Leftrightarrow \mathbf{B} \models \varphi[f\overline{a}].$

Parciální vnoření f lze bezprostředně prodloužit, když pro každé $a \in A$ existuje $b \in B$ tak, že $f \cup \{\langle a, b \rangle\}$ je parciální vnoření **A** do **B**.

Prvomodel

modelu teorie T.

TVRZENÍ 5.1.3

Eliminace kvantifikátorů Nejmenší množina formulí obsahující množinu Γ formulí, uzavřená na \neg , & , \vee se značí $b(\Gamma)$ a její prvky se nazývají booleovské kombinace formulí z Γ .

Model teorie T je její algebraický prvomodel, lze-li jej vnořit do každého modelu teorie T. Model teorie T je její prvomodel, lze-li jej elementárně vnořit do každého

Má-li T prvomodel \mathbf{A} , je $\mathrm{Th}(T) = \mathrm{Th}(\mathbf{A})$ a T je tedy kompletní, neboť každý

Má-li teorie T algebraický prvomodel a je modelově kompletní, je kompletní a

Buď Γ množina L-formulí a T teorie v L. Množina Γ je eliminační pro teorii T, jestliže ke každé L-formuli $\varphi(\overline{x})$ s $l(\overline{x}) > 0$ existuje booleovská kombinace $\psi(\overline{x})$

Je-li formule φ tvaru $(\exists y)\chi$, kde χ je bezkvantifikátorová formule, říkáme, že

model teorie T je elementárně ekvivalentní s \mathbf{A} .

její algebraický prvomodel je její prvomodel.

formulí z Γ tak, že $T \vdash \varphi(\overline{x}) \leftrightarrow \psi(\overline{x})$. Je-li Γ množina všech atomických L-formulí, říkáme, že T má eliminaci kvantifikátorů. TVRZENÍ 5.2.3

Má-li T eliminaci kvantifikátorů, je modelově kompletní.

Je-li formule φ tvaru $(\exists y)\chi$, kde χ je elementární konjunkce, říkáme, že φ je 1-primitivní.

Pokud máme \overline{y} místo y, říká se, že φ je primitivní, resp. existenční.

 φ je 1-existenční.

Teorie T je [1]-koexistenční, když pro $\mathbf{A} \models T$, $\mathbf{B} \models T$ a neprázdné konečné parciáln ívnoření f modelu **A** do **B** a každou [1]-primitivní formuli $\varphi(\overline{x})$ s $l(\overline{x}) > 0$

a $\overline{a} \in \text{dom}(f)^{l(\overline{x})}$ je

$$\mathbf{A} \models \varphi[\overline{a}] \Leftrightarrow \mathbf{B} \models \varphi[f\overline{a}].$$

TVRZENÍ 5.2.5 Buď T teorie.

- 1) (Eliminační ekvivalent) T má eliminaci kvantifikátorů $\Leftrightarrow T$ je koexistenč-
- $ni \Leftrightarrow T$ je 1-koexistenční.
- 2) (Eliminační kriterium) Když pro každé $\mathbf{A} \models T$, $\mathbf{B} \models T$ lze každé konečné neprázdné parciální vnoření A do B bezprostředně prodloužit, má T eliminaci kvantifikátorů.

Když pro každé $\mathbf{A} \models T$, $\mathbf{B} \models T$ lze každé konečné neprázdné parciální vnoření ${\bf A}$ do ${\bf B}$ bezprostředně prodloužit, je T 1-koexistenční.