

Matemática Discreta 2

Aula 04

Cristiane Loesch cristiane.costa@unb.br

Brasília 2025

TEORIA DOS NÚMEROS

- → Teoria dos Restos
- → Estudo dos números inteiros e suas propriedades
 - relação de equivalência
 - grupos

- → Aplicações
 - Criptografia;
 - Resolução de problemas que envolvem múltiplas divisões;
 - Desafios Lógicos

RELAÇÃO DE ORDEM PARCIAL

A divisibilidade por ser considerada uma relação de ordem parcial quando considera-se, apenas, o conjunto dos números naturais não nulos

Podemos dividir \mathbf{n} cupcakes entre \mathbf{m} pessoas, sem cortar nenhum deles?

Podemos dividir **n** cupcakes entre **m** pessoas, sem cortar nenhum deles?

Se a resposta é: SIM!

Significa que **n** é um múltiplo de **m**, logo, **m** divide **n**.

DEFINIÇÃO:

Se a e b são números inteiros com $a \neq 0$, dizemos que a divide b se houver um número in q siro q de modo que b = aq.

Quando a divide b dizemos que a é um fator de b e que b é um múltiplo de a.

DEFINIÇÃO:

Se $a \in b$ são números inteiros com $a \neq 0$, dizemos que a divide b se houver um número in q siro q de modo que b = aq.

Quando a divide b dizemos que a é um fator de b e que b é um múltiplo de a.

$$a \mid b$$
 $\rightarrow a \text{ divide } b, a \neq 0$

$$a \nmid b$$
 $\rightarrow \text{ indica que } a \text{ não divide } b, \text{ sobra resto}$

EXEMPLO:

- a) 3∤7
- b) 3|12

EXEMPLO:

- a) $3 \nmid 7$ $\rightarrow \frac{7}{3}$ não é um número inteiro
- b) $3|12 \rightarrow \frac{12}{3} = 4$

EXEMPLO:

a)
$$3 \nmid 7$$
 $\rightarrow \frac{7}{3}$ não é um número inteiro

b)
$$3|12 \rightarrow \frac{12}{3} = 4$$

SUA VEZ!

e)
$$-7$$
____21

EXEMPLO:

a)
$$3 \nmid 7$$
 $\rightarrow \frac{7}{3}$ não é um número inteiro

b)
$$3|12 \rightarrow \frac{12}{3} = 4$$

SUA VEZ!

c)
$$3|-18$$

$$e) - 7|21$$

PROPRIEDADES:

Sejam
$$a,b,c,ed \in \mathbb{Z}$$

i)
$$a|a$$
 (reflexiva)

ii)
$$a|0$$
 (todo número inteiro divide 0)

iii)
$$1|a$$

iv)
$$a|1\Leftrightarrow a=\pm 1$$
 (divisores de 1 são 1 e -1) x) se $a|b$ e $b|a\Leftrightarrow a=\pm b$

v)
$$0 \mid a \Rightarrow a = 0$$
 (zero só divide zero)

(multiplicatividade)

vi)
$$a|b \Rightarrow ac|bc$$

vii)
$$ac|bc \Rightarrow a|b \quad c \neq 0$$
 (lei do cancelamento)

viii) se
$$a|b$$
 e $b|c \Rightarrow a|c$ (transitiva)

ix) se
$$a|b$$
 e $c|d \Rightarrow ac|bd$

1) x) se
$$a|b|$$
 e $b|a \Leftrightarrow a = \pm b$

xi) se
$$a|b \in a|c \Rightarrow a|(bx+cy)$$

 $\forall x,y \in \mathbb{Z}$ (linearidade)
xii) $a|b \Rightarrow |a| \leq |b| \quad b \neq 0$

xiii)
$$a|b \Rightarrow (b/a)|b \quad a \neq 0$$

xiii)
$$a|b \Rightarrow (b/a)|b \quad a \neq 0$$

EXERCÍCIO:

- 1) Represente os seguintes conjuntos:
 - a) D(10) = { conjunto dos divisores de 10}
 - b) M(5) = {conjunto dos múltiplos de 5}
- 2) Prove que 3 não divide 16, pois não existe nenhum inteiro c tal que 16=3c.

EXERCÍCIO:

- 1) Prove que se a|b e a|c então a|(bx+cy) para todo x e y inteiros
- 2) Sejam a, b, c inteiros e n natural mostre que:
 - a) se a|b então ac|bc
 - b) se a|b então an|bn

PROPOSIÇÃO:

Se \mathbf{a} e \mathbf{b} são inteiros, tal que $\mathbf{b}|\mathbf{a}$, $\mathbf{b} \neq \mathbf{0}$, então $|\mathbf{b}| \leq |\mathbf{a}|$

DEFINIÇÃO:

Se \mathbf{n} é inteiro, diz-se que \mathbf{n} é par se, e somente se, existe \mathbf{k} inteiro tal que $\mathbf{n} = 2\mathbf{k}$.

EXERCÍCIO:

Prove que 4| n²-1, para todo n inteiro não nulo e ímpar

DIVIDINDO A SOMA DE UMA SEQUÊNCIA

TEOREMA: Se b divide todos os inteiros em uma sequência n_1 , n_2 , n_3 , ..., n_k então b divide $n_1+n_2+n_3+...+n_k$.

EXEMPLO:

No final de uma festa, enquanto organizavam a casa quatro amigos percebem que sobraram 6 refrigerantes em lata. Como podem fazer para dividi-los entre eles?

DIVISIBILIDADE – ALGORITMO DA DIVISÃO

TEOREMA

Dados $a,b,\in\mathbb{Z}$, com $b\neq 0 \Rightarrow \exists q,r\in\mathbb{Z}$ tais que:

$$0 \le r < |b|$$

Para a qual existe um único par de inteiro (q,r) que satisfaz tais condições.

DIVISIBILIDADE – ALGORITMO DA DIVISÃO

TEOREMA

Dados $a,b,\in\mathbb{Z}$, com $b\neq 0 \Rightarrow \exists q,r\in\mathbb{Z}$ tais que:

$$a = qb + r$$
 $0 \le r < |b|$

Para a qual existe um único par de inteiro (q,r) que satisfaz tais condições.

EXEMPLO:

- a) a=23 , b=10
- b) a = -37 , b = 5

DIVISIBILIDADE - ALGORITMO DA DIVISÃO

a=qb+r

EXERCÍCIO:

Escreva o algoritmo da divisão para:

- a) a= 43; b= 10
- b) a= 36; b= 3
- c) a = -29; b = 7
- d) a= 100 ; b= -7
- e) a= -100; b= -7
- f) a= 2716; b= 10

DIVISIBILIDADE - ALGORITMO DA DIVISÃO

a=qb+r

EXERCÍCIO:

Escreva o algoritmo da divisão para os polinômios:

- a) $a = 4x^3 + 5x^2 + 5x + 8$; b = 4x + 1
- b) $a = x^2 + x + 1$; b = x 1

OBS: Quando um polinômio de grau n≥ 1 é dividido por outro de grau 1, tal divisão é considerada uma divisão por divisor linear

→ Operações associadas ao processo de divisão

DEFINIÇÃO:

Sejam $a,b\in\mathbb{Z}$, com $b\neq 0$ pelo teorema anterior existe um único par de números $q,r\in\mathbb{Z}$ tal que a=qb+r e $0\leq r<|b|$.

Assim, definimos as operações:

EXEMPLOS

$$11 \mod 3 =$$

EXEMPLOS

a)
$$11 \ div \ 3 =$$

SUA VEZ!

c)
$$-37 \ div \ 5 = -37 \ mod \ 5 =$$

Obs:

→ equivalências na programação:

a div $b \rightarrow a|b$ ou a||b

 $a \mod b \rightarrow a \% b$

Obs:

→ equivalências na programação:

a div
$$b \rightarrow a|b$$
 ou $a||b$

$$a \mod b \rightarrow a \% b$$

- → significados do mod
 - a) $a \mod b = c$ \rightarrow dividir e tomar o resto da divisão
 - b) $a \equiv b \pmod{n} \Rightarrow a b \rightarrow a b$ \Rightarrow a b é múltiplo de n , comumente utilizado em relações de equivalência

EXEMPLO: Phyton

```
Python 2.7
                                                                          Run >
                                                                                Matematica Discreta
   print('Matematica Discreta')
                                                                                ('10 div 2', 5)
                                                                                ('10 mod 2', 0)
   print('10 div 2', 10/2) #imprime o resultado da divisao de 10 por 2
                                                                                ('Q', [1, 1, 1, 2, 2, 2, 3, 3])
   print('10 mod 2', 10%2) #imprime o resto da divisao de 10 por 2
                                                                                ('R', [0, 1, 2, 0, 1, 2, 0, 1])
   A={3, 4, 5, 6, 7, 8, 9, 10} #conjunto A
   0=list()
               #define uma lista onde serao incluidos os valores de O
   R=list()
               #define uma lista onde serao incluidos os valores de R
  for n in A: #utiliza um a um os valores definidos no conjunto A
       0.append(n/3) # calcula n div 3
       R.append(n%3) # calcula n mod 3
   print('0', 0)
                     #imprime a lista dos valores de O, resultado da
                     #divisao de n por 3
   print('R', R)
                    #imprime a lista dos valores de R, o resto da
                    #divisao de n por 3
```

FEITO EM:https://replit.com/languages/python

a = qb + r

EXERCÍCIO:

- 1) Na intenção de trocar minhas moedas do cofrinho, levei-as a uma loja. Como tinha várias moedas de 10 e 25 centavos, a atendente me sugeriu comprar um objeto. Mostre que o preço de qualquer objeto que eu comprar deverá ser divisível por 5 centavos, considerando que não houve troco.
- 2) Considere que você trabalha em uma loja de chocolates e deve montar caixas de bombom. Sabendo que cada caixa deve conter 8 bombons e que você tem 153 para distribuir entre as caixa, responda:
- a) Quantas caixas completas poderá embalar?
- b) Quantos bombons vão sobrar, que não couberam nas caixas?
- c) Represente as operações anteriores utilizando o algoritmo da divisão, DIV e MOD

EXERCÍCIO:

- 3) Uma fábrica tem 987 produtos para transportar em um caminhão. A capacidade inicial do caminhão é de 150 produtos por viagem, mas a cada viagem a capacidade do caminhão diminui em 10 produtos (na segunda viagem, o caminhão carrega 140 produtos, na terceira 130, e assim sucessivamente).
- a) Quantas viagens completas o caminhão precisará fazer até que todos os produtos sejam transportados, se ele puder transportar 150 produtos em todas as viagens? Quantos produtos serão transportados na última viagem?
- b) Quantas viagens completas o caminhão precisará fazer até que todos os produtos sejam transportados, considerando a variação de capacidade do caminhão? Quantos produtos serão transportados na última viagem?
- c) Qual é a capacidade de cada viagem do caminhão ao longo do processo, considerando o fator de redução?

EXERCÍCIO:

4) Pesquisar quais são as regras de divisibilidade entre 2 e 11

a=qb+r