Hubble Space Telescope High Speed Photometer Science Verification Test Report

Space Science and Engineering Center

and

Space Astronomy Laboratory

University of Wisconsin Madison, Wisconsin

July 1992

(NASA-CR-189322) HUBBLE SPACE TELESCOPE HIGH SPEED PHOTOMETER SCIENCE VERIFICATION TEST REPORT (Wisconsin Univ.) 157 p

N94-24710

Unclas

G3/18 0204209

1. Purpose of HSP SV Final Report.			
2. Executive Summary. 3. HSP Performance. 4 3. HSP Performance. 4 3. 1 Thermal. 5. 2 Power. 5. 3. Electrical and Mechanical. 5. 3. 4 Depressurization. 5. 3. 5 Flight Software 5. 3. 5 Flight Software 5. 3. 6 Detectors 5. 3. 7 Alignments. 5. 3. 8 Magnetic Shielding and effects. 5. 3. 8 Magnetic Shielding and effects. 6. 6 3. 9 Sensitivity to SAA. 6. 6 3. 10 Contamination. 6. 6 3. 11 Throughput. 6. 7 Experiment of the State S	١.	Purpose of HSP SV Final Report4	
3.1 HSP Performance)	Etive Summary	
3.2 Power	2	USD Performance4	
3.2 Power	٥.	3.1 Thermal	
3.3 Electrical and Mechanical		3.1 Therman	
3.4 Depressurization		3.2 Power	
3.5 Pilght Software 3.6 Detectors 3.7 Alignments 5.3 3.7 Alignments 5.3 3.8 Magnetic Shielding and effects 5.3 3.9 Sensitivity to SAA 5.6 3.10 Contamination 6.7 3.11 Throughput. 6.7 3.12 Sensitivity to bright objects. 6.8 3.12 Sensitivity to bright objects. 6.9 4. Program Development, Execution, and Results. 6.1 4.1 Program Development. 6.6 4.2 OV/SV Events in Chronological Order. 7.7 4.2 Test Specific Performance. 7.7 3006 - Centering. 7.7 3372 - Fine Alignment. 7.7 33737 - HSP POL Aperture Map and Alignment Test. 7.7 3374 - Fine Alignment. 7.7 3377 - HSP POL Aperture Map and Alignment Test. 8.1399 - Short Term Photometric Performance. 8.3 3119 - Aperture Map - WIS. 8.3 3119 - Visit II - Aperture Map. 8.3 3170 - Part III - POL Map and Alignment. 8.8 3119 - Variability of High Luminosity Stars 8.8 3119 - Variability of High Luminosity Stars 8.8 3119 - Aperture Map - WIS. 9.0 3120 - Aperture Map - VIS. 9.0 3132 - Aperture Map - VIS. 9.0 3133 - Aperture Map - VIS. 9.0 3134 - Shortmer Map - VIS. 9.0 3135 - Aperture Map - VIS. 9.0 3136 - Instrumental Polarization. 9.0 3174 - Aperture Map - VIS. 9.0 3187 - HST - Polarization. 9.0 3188 - Starum Ring Dynamics. 9.0 3189 - Starum Ring Dynamics. 9.0 3181 - Starum Ring Dynamics. 9.0 3183 - Olor Transformation - VIS. 110 3177 - HSP POL Test - Revised. 110 3178 - Color Transformation - VIS. 111 3190 - Prism Mode Test. 110 3190 - Prism Mode Test. 110 3190 - Prism Mode Test. 110 3190 - Prism Mode Test. 111 3190 - Prism Mode Test. 112 3190 - Prism Mode Test.		3.3 Electrical and Mechanical	
3.5 Pilght Software 3.6 Detectors 3.7 Alignments 5.3 3.7 Alignments 5.3 3.8 Magnetic Shielding and effects 5.3 3.9 Sensitivity to SAA 5.6 3.10 Contamination 6.7 3.11 Throughput. 6.7 3.12 Sensitivity to bright objects. 6.8 3.12 Sensitivity to bright objects. 6.9 4. Program Development, Execution, and Results. 6.1 4.1 Program Development. 6.6 4.2 OV/SV Events in Chronological Order. 7.7 4.2 Test Specific Performance. 7.7 3006 - Centering. 7.7 3372 - Fine Alignment. 7.7 33737 - HSP POL Aperture Map and Alignment Test. 7.7 3374 - Fine Alignment. 7.7 3377 - HSP POL Aperture Map and Alignment Test. 8.1399 - Short Term Photometric Performance. 8.3 3119 - Aperture Map - WIS. 8.3 3119 - Visit II - Aperture Map. 8.3 3170 - Part III - POL Map and Alignment. 8.8 3119 - Variability of High Luminosity Stars 8.8 3119 - Variability of High Luminosity Stars 8.8 3119 - Aperture Map - WIS. 9.0 3120 - Aperture Map - VIS. 9.0 3132 - Aperture Map - VIS. 9.0 3133 - Aperture Map - VIS. 9.0 3134 - Shortmer Map - VIS. 9.0 3135 - Aperture Map - VIS. 9.0 3136 - Instrumental Polarization. 9.0 3174 - Aperture Map - VIS. 9.0 3187 - HST - Polarization. 9.0 3188 - Starum Ring Dynamics. 9.0 3189 - Starum Ring Dynamics. 9.0 3181 - Starum Ring Dynamics. 9.0 3183 - Olor Transformation - VIS. 110 3177 - HSP POL Test - Revised. 110 3178 - Color Transformation - VIS. 111 3190 - Prism Mode Test. 110 3190 - Prism Mode Test. 110 3190 - Prism Mode Test. 110 3190 - Prism Mode Test. 111 3190 - Prism Mode Test. 112 3190 - Prism Mode Test.		3.4 Depressurization	
3.6 Detectors		3.5 Flight Software	
3.7 Alignments		3.6 Detectors	
3.8 Magnetic Shielding and effects		3.7 Alignments	
3.9 Sensitivity to SAA		2.9 Monatic Shielding and effects	
3.10 Contamusation		3.6 Magnetic Sinchang and	
3.10 Contamusation		3.9 Sensitivity to SAA	
3.11 Throughput		3.10 Contamination	
3.12 Sensitivity to bright objects		3 11 Throughput	
4. Program Development, Execution, and Results		2 12 Sensitivity to bright objects6	
4.2 Program Development	1	Program Development, Execution, and Results	
4.3 Test Specific Performance	4	A 1 Program Development	
4.3 Test Specific Performance		4.1 ONESY Exercise in Chronological Order	
2769 Color Transformation		4.2 OV/SV Events in Circumstage	
3006 - Centering		4.3 Test Specific Performance	
3362 - Fine Alignment		2769 - Color Transformation	
3362 - Fine Alignment		3006 - Centering	
3377 - HSP POL Aperture Map and Arlight 3474 - Photometric Performance		3362 - Fine Alignment7	
1474 - Photometric Performance		3377 - HSP POL Aperture Map and Alignment 1 est	
1389 - Short Term Photometric Stability		1474 - Photometric Performance	
3119 - Aperture Map. 8 3377 - Part II - POL Map and Alignment		1390 Short Term Photometric Stability	!
3377 - Part II - POL Map and Anguntation		2110 Aporture Man	
3120 - Aperture Map - VIS		2019 - Aperture Victoria and Alignment	,
2771 - Occultation - Kings		33// - Fatt 11 - 1 OD Map VIS	,
3119 - Visit II - Aperture Map. 8 1095 - Variability of High Luminosity Stars 9 9 3135 - Aperture Map - UV 9 3120 - Aperture Map - UV 9 3132 - Photometric Performance 9 3382 - Photometric Performance 9 1386 - Instrumental Polarization 9 1081 - Saturn Ring Dynamics 9 2769 - Color Transformation 9 3383 - OLT Jitter Test - Revised 10 3378 - Color Transformation - VIS 10 3377 - HSP POL Test - Part II - Repeat 10 3377 - HSP POL Test - Part II - Repeat 11 1101 - Optical & UV Observations of Radio Pulsars 11 1102 - Eclipses of Cataclysmic Variable Stars 11 1092 - Eclipses of Cataclysmic Variable Stars 11 3996 - Prism Mode Test 13 1098 - Instrumental Polarization Test (revised) 13 1098 - Supernova Remnants 13 1098 - Supernova Remnants 13 4.4 Data Analysis and Results 13 4.4.2 Color Transformation 15 4.4.4 VIS Detector Sensitivity 15 4.4.5 Phase One Calibrations 19 4.4.6.1 Proposed Observations 22 2.4.5 Database Updates 22 24.5 Database Updates 22 22 22 24.5 Database Updates 22 22 22 22 22 22 24.5 Database Updates 22 22 22 24.5 Database Updates 22 22 24.5 Database Updates 22 24.		3120 - Aperture Map - Community	5
1095 - Variability of High Luminosity Stars		2771 - Occultation - Kings	3
3135 - Aperture Map - VIS		3119 - Visit II - Aperture Map	3
3135 - Aperture Map - VIS		1095 - Variability of High Luminosity Stars)
3120 - Aperture Map - VIS 9 3382 - Photometric Performance 9 1386 - Instrumental Polarization		3135 - Aperture Map - UV)
3382 - Photometric Performance 9 1386 - Instrumental Polarization 9 1081 - Saturn Ring Dynamics 9 2769 - Color Transformation 9 3383 - OLT Jitter Test - Revised 9 1383 - Time Resolved Photometry 10 3378 - Color Transformation - VIS 10 3377 - HSP POL Test - Part II - Repeat 11 3425 - Color Transformation - VIS 11 1101 - Optical & UV Observations of Radio Pulsars 11 1383 - OLT Jitter Test - Second Revision 11 1092 - Eclipses of Cataclysmic Variable Stars 11 2912 - Photometric Calibration 11 3996 - Prism Mode Test 13 3985 - Instrumental Polarization Test (revised) 13 1086 - Pluto Rings 13 1086 - Pluto Rings 13 14.4 Short Term Photometric Stability 13 4.4.1 Short Term Photometric Stability 13 4.4.2 Color Transformation 15 4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 15 4.4.5 Phase One Calibrations - 2912 Analysis 17 4.4.6 Saturn Occultation 19 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 21 4.4.6 Saturn Occultation 20 4.4.6.2 Observations 21 4.4.6 Saturn Occultation 22 4.4.6.2 Observations 22 22 4.4.6 Saturn Occultation 22 22		3120 - Aperture Map - VIS	á
1386 - Instrumental Polarization 9 1081 - Saturn Ring Dynamics 9 2769 - Color Transformation 9 3383 - OLT Jitter Test - Revised 10 1383 - Time Resolved Photometry 10 13378 - Color Transformation - VIS 10 3377 - HSP POL Test - Part II - Repeat 10 3425 - Color Transformation - VIS 11 1101 - Optical & UV Observations of Radio Pulsars 11 1383 - OLT Jitter Test - Second Revision 11 1092 - Eclipses of Cataclysmic Variable Stars 11 2912 - Photometric Calibration 11 3996 - Prism Mode Test 11 3995 - Instrumental Polarization Test (revised) 13 1086 - Pluto Rings 13 1086 - Pluto Rings 13 1098 - Supernova Remnants 13 4.4 Data Analysis and Results 13 4.4.1 Short Term Photometric Stability 13 4.4.2 Color Transformation 15 4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 17 4.4.5 Phase One Calibrations - 2912 Analysis 17 4.4.5 Phase One Calibrations - 2912 Analysis 20 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 20 4.4.6.3 Data Reduction and Analysis 22 4.5 Database Updates 222 22 4.5 Database Updates 222 24.5 Database Updates 222 22 24.5 Database Updates 222 24.5 Database Updates		2392 Photometric Performance	ń
1081 - Saturn Ring Dynamics 9 2769 - Color Transformation 9 3383 - OLT Jitter Test - Revised 10 1383 - Time Resolved Photometry 10 3378 - Color Transformation - VIS 10 3377 - HSP POL Test - Part II - Repeat 10 3425 - Color Transformation - VIS 11 1101 - Optical & UV Observations of Radio Pulsars 11 1101 - Optical & UV Observations of Radio Pulsars 11 13383 - OLT Jitter Test - Second Revision 11 1092 - Eclipses of Cataclysmic Variable Stars 11 2912 - Photometric Calibration 11 3996 - Prism Mode Test 11 3996 - Prism Mode Test 11 3998 - Instrumental Polarization Test (revised) 13 1086 - Pluto Rings 13 1098 - Supernova Remnants 13 4.4 Data Analysis and Results 13 4.4.2 Color Transformation 13 4.4.2 Color Transformation 15 4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 15 4.4.5 Phase One Calibrations - 2912 Analysis 17 4.4.6 Saturn Occultation 19 4.4.6.2 Observations 20 4.4.6.3 Observations 20 4.4.6.3 Data Reduction and Analysis 22 4.5 Database Updates 22 22 22 22 22 22 22			
2769 - Color Transformation 9 3383 - OLT Jitter Test - Revised 10 3378 - Color Transformation - VIS 10 3377 - HSP POL Test - Part II - Repeat 10 3425 - Color Transformation - VIS 11 1101 - Optical & UV Observations of Radio Pulsars 11 3383 - OLT Jitter Test - Second Revision 11 1092 - Eclipses of Cataclysmic Variable Stars 11 2912 - Photometric Calibration 11 3985 - Instrumental Polarization Test (revised) 13 1086 - Pluto Rings 13 1098 - Supernova Remnants 13 4.4 Data Analysis and Results 13 4.4.1 Short Term Photometric Stability 13 4.4.2 Color Transformation 15 4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 15 4.4.6 Saturn Occultation 19 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 21 4.4.6.3 Data Reduction and Analysis 22 4.5 Database Updates 22			
3383 - OLT Jitter Test - Revised. 10 1383 - Time Resolved Photometry 10 10 3378 - Color Transformation - VIS 10 3377 - HSP POL Test - Part II - Repeat 10 3425 - Color Transformation - VIS 11 1101 - Optical & UV Observations of Radio Pulsars 11 1383 - OLT Jitter Test - Second Revision 11 1092 - Eclipses of Cataclysmic Variable Stars 11 2912 - Photometric Calibration 11 3996 - Prism Mode Test 11 3995 - Instrumental Polarization Test (revised) 13 1086 - Pluto Rings 13 1098 - Supernova Remnants 13 1098 - Supernova Remnants 13 4.4 Data Analysis and Results 13 4.4.1 Short Term Photometric Stability 13 4.4.2 Color Transformation 15 4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 15 4.4.5 Phase One Calibrations - 2912 Analysis 17 4.4.5 Phase One Calibrations - 2912 Analysis 20 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 20 4.4.6.3 Data Reduction and Analysis 22 4.5 Database Updates 22 22 20 20 20 20 20 2			
1383 - Time Resolved Photometry 10 3378 - Color Transformation - VIS 10 3377 - HSP POL Test - Part II - Repeat 10 3425 - Color Transformation - VIS 11 1101 - Optical & UV Observations of Radio Pulsars 11 13333 - OLT Jitter Test - Second Revision 11 1092 - Eclipses of Cataclysmic Variable Stars 11 2912 - Photometric Calibration 11 3996 - Prism Mode Test 11 3995 - Instrumental Polarization Test (revised) 13 1086 - Pluto Rings 13 1086 - Pluto Rings 13 1098 - Supernova Remnants 13 4.4 Data Analysis and Results 13 4.4.1 Short Term Photometric Stability 13 4.4.2 Color Transformation 15 4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 15 4.4.5 Phase One Calibrations - 2912 Analysis 19 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 21 4.4.6.3 Data Reduction and Analysis 22 4.5 Database Updates 22 22 24.5 Database Updates 22 22 22 24.5 Database Updates 22 22 24.5 Database Updates 22 22 25 25 25 25 25 2			
3378 - Color Transformation - VIS 3377 - HSP POL Test - Part II - Repeat 10 3425 - Color Transformation - VIS 11 1101 - Optical & UV Observations of Radio Pulsars 11 1102 - Eclipses of Cataclysmic Variable Stars 11 1092 - Eclipses of Cataclysmic Variable Stars 11 2912 - Photometric Calibration 11 3996 - Prism Mode Test 13 3985 - Instrumental Polarization Test (revised) 13 1086 - Pluto Rings 13 1098 - Supernova Remnants 13 1098 - Supernova Remnants 13 4.4 Data Analysis and Results 13 4.4.1 Short Term Photometric Stability 13 4.4.2 Color Transformation 15 4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 15 4.4.5 Phase One Calibrations - 2912 Analysis 19 4.4.6 Saturn Occultation 19 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 21 4.4.6.3 Data Reduction and Analysis 22 4.5 Database Updates 22 22 4.5 Database Updates 22 22 22 24.5 Database Updates 22 22 25 Out to the color of the color		3383 - OLT Jitter Test - Revised	10
3378 - Color Transformation - VIS 3377 - HSP POL Test - Part II - Repeat 10 3425 - Color Transformation - VIS 11 1101 - Optical & UV Observations of Radio Pulsars 11 1102 - Eclipses of Cataclysmic Variable Stars 11 1092 - Eclipses of Cataclysmic Variable Stars 11 2912 - Photometric Calibration 11 3996 - Prism Mode Test 13 3985 - Instrumental Polarization Test (revised) 13 1086 - Pluto Rings 13 1098 - Supernova Remnants 13 1098 - Supernova Remnants 13 4.4 Data Analysis and Results 13 4.4.1 Short Term Photometric Stability 13 4.4.2 Color Transformation 15 4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 15 4.4.5 Phase One Calibrations - 2912 Analysis 19 4.4.6 Saturn Occultation 19 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 21 4.4.6.3 Data Reduction and Analysis 22 4.5 Database Updates 22 22 4.5 Database Updates 22 22 22 24.5 Database Updates 22 22 25 Out to the color of the color		1383 - Time Resolved Photometry	10
3377 - HSP POL Test - Part II - Repeat 3425 - Color Transformation - VIS 11 1101 - Optical & UV Observations of Radio Pulsars 11 13383 - OLT Jitter Test - Second Revision 11 1092 - Eclipses of Cataclysmic Variable Stars 11 1092 - Photometric Calibration 11 3996 - Prism Mode Test 11 3996 - Prism Mode Test 13 3985 - Instrumental Polarization Test (revised) 13 1086 - Pluto Rings 13 1098 - Supernova Remnants 13 1098 - Supernova Remnants 13 4.4 Data Analysis and Results 13 4.4.1 Short Term Photometric Stability 13 4.4.2 Color Transformation 15 4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 15 4.4.5 Phase One Calibrations - 2912 Analysis 19 4.4.6 Saturn Occultation 19 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 20 4.4.6.3 Data Reduction and Analysis 22 4.5 Database Updates 22 24.5 Database Updates 22 24.5 Database Updates 22 22 24.5 Database Updates 22 22 24.5 Database Updates 22 24.5 Observations 22 22 25 Observations 22 22 25 Observations 22 22 24.5 Database Updates 22 22 25 Observations 22 22 24.5 Database Updates 22 22 25 Observations 22 22 24.5 Database Updates 22 24.5 Observations 22 22 24.5 Database Updates 24.5 Database Updates 24.5 Database Updates 24.5 Database Upd			
3425 - Color Transformation - VIS 11 1101 - Optical & UV Observations of Radio Pulsars 11 13383 - OLT Jitter Test - Second Revision 11 1092 - Eclipses of Cataclysmic Variable Stars 11 1092 - Photometric Calibration 11 3996 - Prism Mode Test 11 3996 - Prism Mode Test 13 3985 - Instrumental Polarization Test (revised) 13 1086 - Pluto Rings 13 1098 - Supernova Remnants 13 14.4 Data Analysis and Results 13 4.4.1 Short Term Photometric Stability 13 4.4.2 Color Transformation 15 4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 15 4.4.5 Phase One Calibrations - 2912 Analysis 17 4.4.6 Saturn Occultation 19 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 21 4.4.6.3 Data Reduction and Analysis 22 4.5 Database Updates 22 22 24.5 Database Updates 22 22 24.5 Database Updates 22 22 24.5 Database Updates 22 25 25 25 25 25 25 2			
1101 - Optical & UV Observations of Radio Pulsars 11 3383 - OLT Jitter Test - Second Revision 11 1092 - Eclipses of Cataclysmic Variable Stars 11 11 2912 - Photometric Calibration 11 3996 - Prism Mode Test 11 3996 - Prism Mode Test 13 3985 - Instrumental Polarization Test (revised) 13 1086 - Pluto Rings 13 1098 - Supernova Remnants 13 14.4 Data Analysis and Results 13 4.4.1 Short Term Photometric Stability 13 4.4.2 Color Transformation 15 4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 15 4.4.5 Phase One Calibrations - 2912 Analysis 17 4.4.6 Saturn Occultation 19 4.4.6.1 Proposed Observations 19 4.4.6.2 Observations 20 4.4.6.3 Data Reduction and Analysis 22 4.5 Database Updates 22 24.5 Database Updates 22 24.5 Database Updates 22 24.5 Observations 22 24.5 Database Updates 22 24.5 Database Updates 22 24.5 Database Updates 22 24.5 Observations 22 22 24.5 Observations 22 22 24.5 Database Updates 22 24.5 Observations 22 24.5 Database Updates 22 24.5 Observations 24.5 Obs		245 G.L. Teacformation - VIS	11
3383 - OLT Jitter Test - Second Revision			
1092 - Eclipses of Cataclysmic Variable Stars 11 2912 - Photometric Calibration 11 3996 - Prism Mode Test 13 3985 - Instrumental Polarization Test (revised) 13 1086 - Pluto Rings 13 1098 - Supernova Remnants 13 4.4 Data Analysis and Results 13 4.4.1 Short Term Photometric Stability 13 4.4.2 Color Transformation 15 4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 15 4.4.5 Phase One Calibrations - 2912 Analysis 17 4.4.6 Saturn Occultation 19 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 21 4.4.6.3 Data Reduction and Analysis 21 4.5 Database Updates 22		1101 - Optical & UV Observations of Relation	11
2912 - Photometric Calibration 11 3996 - Prism Mode Test 13 3985 - Instrumental Polarization Test (revised) 13 1086 - Pluto Rings 13 1098 - Supernova Remnants 13 4.4 Data Analysis and Results 13 4.4.1 Short Term Photometric Stability 13 4.4.2 Color Transformation 15 4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 15 4.4.5 Phase One Calibrations - 2912 Analysis 17 4.4.6 Saturn Occultation 19 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 21 4.4.6.3 Data Reduction and Analysis 21 4.5 Database Updates 22		3383 - OLT litter Test - Second Revision	11
2912 - Photometric Calibration 11 3996 - Prism Mode Test 13 3985 - Instrumental Polarization Test (revised) 13 1086 - Pluto Rings 13 1098 - Supernova Remnants 13 4.4 Data Analysis and Results 13 4.4.1 Short Term Photometric Stability 13 4.4.2 Color Transformation 15 4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 15 4.4.5 Phase One Calibrations - 2912 Analysis 17 4.4.6 Saturn Occultation 19 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 21 4.4.6.3 Data Reduction and Analysis 21 4.5 Database Updates 22		1092 - Eclipses of Cataclysmic Variable Stars	11
3996 - Prism Mode Test		2912 - Photometric Calibration	11
3985 - Instrumental Polarization Test (revised) 13 1086 - Pluto Rings 13 1098 - Supernova Remnants 13 4.4 Data Analysis and Results 13 4.4.1 Short Term Photometric Stability 13 4.4.2 Color Transformation 15 4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 15 4.4.5 Phase One Calibrations - 2912 Analysis 17 4.4.6 Saturn Occultation 19 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 21 4.4.6.3 Data Reduction and Analysis 21 4.5 Database Updates 22		3006 - Prism Mode Test	12
1086 - Pluto Rings 13 1098 - Supernova Remnants 13 4.4 Data Analysis and Results 13 4.4.1 Short Term Photometric Stability 13 4.4.2 Color Transformation 15 4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 15 4.4.5 Phase One Calibrations - 2912 Analysis 17 4.4.6 Saturn Occultation 19 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 21 4.4.6.3 Data Reduction and Analysis 22 4.5 Database Updates 22			
1098 - Supernova Remnants 13 4.4 Data Analysis and Results 13 4.4.1 Short Term Photometric Stability 13 4.4.2 Color Transformation 15 4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 15 4.4.5 Phase One Calibrations - 2912 Analysis 17 4.4.6 Proposed Observations 19 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 21 4.4.6.3 Data Reduction and Analysis 22 4.5 Database Updates 22			
4.4 Data Analysis and Results 13 4.4.1 Short Term Photometric Stability 13 4.4.2 Color Transformation 15 4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 17 4.4.5 Phase One Calibrations - 2912 Analysis 17 4.4.6 Saturn Occultation 19 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 20 4.4.6.3 Data Reduction and Analysis 21 4.5 Database Updates 22 4.5 Observations 22		1086 - Pluto Kings	. 13
4.4.1 Short Term Photometric Stability 13 4.4.2 Color Transformation 15 4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 17 4.4.5 Phase One Calibrations - 2912 Analysis 19 4.4.6 Saturn Occultation 19 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 21 4.4.6.3 Data Reduction and Analysis 22 4.5 Database Updates 22		1098 - Supernova Remnants	. 13
4.4.1 Short Term Photometric Stability 13 4.4.2 Color Transformation 15 4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 17 4.4.5 Phase One Calibrations - 2912 Analysis 19 4.4.6 Saturn Occultation 19 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 21 4.4.6.3 Data Reduction and Analysis 22 4.5 Database Updates 22		4.4 Data Analysis and Results	. 13
4.4.2 Color Transformation 15 4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 17 4.4.5 Phase One Calibrations - 2912 Analysis 19 4.4.6 Saturn Occultation 19 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 21 4.4.6.3 Data Reduction and Analysis 22 4.5 Database Updates 22		4.4.1 Short Term Photometric Stability	. 13
4.4.3 Aperture Positions 15 4.4.4 VIS Detector Sensitivity 17 4.4.5 Phase One Calibrations - 2912 Analysis 19 4.4.6 Saturn Occultation 19 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 21 4.4.6.3 Data Reduction and Analysis 22 4.5 Database Updates 22		4.4.2 Color Transformation	15
4.4.4 VIS Detector Sensitivity 17 4.4.5 Phase One Calibrations - 2912 Analysis 19 4.4.6 Saturn Occultation 19 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 21 4.4.6.3 Data Reduction and Analysis 22 4.5 Database Updates 22		443 Aperture Positions	15
4.4.5 Phase One Calibrations - 2912 Analysis 19 4.4.6 Saturn Occultation 19 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 21 4.4.6.3 Data Reduction and Analysis 22 4.5 Database Updates 22 4.6 OV Appendix 22		A A A VIS Detector Sensitivity	17
4.4.6 Saturn Occultation 19 4.4.6.1 Proposed Observations 20 4.4.6.2 Observations 21 4.4.6.3 Data Reduction and Analysis 22 4.5 Database Updates 22 4.6 OV Appendix 22		4 4 5 Phase One Calibrations - 2912 Analysis	10
4.6.1 Proposed Observations		4.4.6 Seturn Occultation	10
4.4.6.2 Observations		4.4.6.1 Proposed Observations	エカ
4.4.6.3 Data Reduction and Analysis		4462 Observations	20
4.5 Database Updates		4463 Data Reduction and Analysis	22
4 C CST A magnetice		4.5 Database Undates	22
4.7 End of SV Status and Liens		4 COST A magnetice	')')
4.8 Contract End Item (CEI) Specifications Verification Status		4.7 End of SV Status and Liens	23
		4.8 Contract End Item (CEI) Specifications Ventication Status	

	26
5. Modifications and Recommendations 5.1 Trend Monitoring Recommendations 5.2 Trend Monitoring Recommendations	26
5 1 Trend Monitoring Recommendations	26
5 7 Inchiment Operational Recommendation	7.1
5.2 Instrument Operational Recommendations	20
5.3 Conclusions & Lessons Learned Appendix A - HSP OV, SV, & GTO proposal numbers and names Appendix B - HST Flight SMS sequence Appendix B - HSTAR STATUS Appendix B - HSP Data Collection Timing	32
Appendix R - HST Flight SMS sequence	33
Appendix C - HSTAR STATUS	37
Appendix C - HSTAR STATUS	45
Appendix D - HSP Data Collection Timing	48
Appendix D-1 - Timing Parameters	52
Appendix D-2 - Choosing WPL, LFP, FPO	53
Appendix D-3 - Definition of Setup Times	56
Appendix E - Filter, Aperture, Proposal, Target, & Date Index Appendix F - HSP and STR Operating Cycles & Times, by SMS and Total	71
Appendix F - HSP and STR Operating Cycles & Times, by SMS and Total Appendix G - 1092 Acquisition Data Appendix G - 1092 Acquisition Data Appendix G - 1092 Acquisition Data	72
Appendix G - 1092 Acquisition Data	
Appendix H - SIAF values - Aperture locations in HS1 V2, V3 coordinates (are secondary). Appendix I - SICF file values - HSP aperture locations in deflection coordinates (steps).	۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰
Appendix 1 - SICF life values - 110 april 1	
Appendix I - SICF file values - HSP aperture locations in deflection coordinates (steps). Appendix J - SMS Activity Timelines	8
Appendix K - HSP Detector Maps	82
Appendix L - HSP Pulsar Filling and Digital Control of the Control	

1. Purpose of HSP SV Final Report

The purpose of this report is to summarize the results of the HSP Science Verification (SV) tests, the status of the HSP at the end of the SV period, and the work remaining to be done. The HSP OV report (November 1991) covered all activities (OV, SV, and SAO) from launch to the completion of phase III alignment, OV 3233 performed in the 91154 SMS, on June 8, 1991. This report covers subsequent activities though May 1992.

2. Executive Summary

The performance of the HSP has continued, with one exception, to be as designed with no failures or anomalies. The exception is that the VIS detector (IDT #3) has apparently lost sensitivity. There are indications that the loss is about a factor of two from the pre-launch ground calibrations but it is difficult to quantify. Between April 21 and July 20 the total flux observered from the same target (VID998) decreased by 10.7%. The reason for this loss is not known. The other detectors, including the POL detector (same IDT configuration as the VIS) have not shown any loss of sensitivity. More recently, the VIS detector did not show any additional loss of sensitivity between the first and second calibration tests (2912) performed in early March and late April 1992.

The short term photometric stability test (1389) data shows a small orbital variation in the measured signal from a star, the cause of which is not understood. There appear to be two effects: one having an orbital period and another with a much longer period that appears as a monotonically increasing linear component. Neither effect can be explained at present.

As of the end of 1991, all Orbital and Science Verification (OV and SV) activities had been successfully completed with the following exceptions:

- 1. The instrumental polarization test (1386) was delayed when the first run of a prior aperture position test (3377) failed because the target was not seen in most of the observations. This was because the HST step and dwell scan ramp up and ramp down time was not properly accounted for in the SMS. The problem was subsequently corrected and the aperture position test was re-run successfully in December 1991. There were problems finding guide stars for the target that further delayed the beginning of the test until March 1992. Presently the test has been partially completed and is scheduled to be fully completed by the end of June 1992.
- 2. The apertures used in the PRISM mode were not adequately mapped in the originally planned OV and SV tests. A new test for mapping the PRISM mode apertures was written after it was determined that the standard aperture mapping tests did not produce sufficient data to determine the prism mode aperture locations to the required accuracy. This test was run, data were analyzed and the locations of the PRISM apertures were updated in the project data base.

3. HSP Performance

HSP performance is nominal. There have been no failures of any hardware or software and the HSP continues to operate in the original pre-launch configuration; there have been no redundant unit reconfigurations. Other than those given in the OV report, there have been no more incidents of single event upsets or bright object safing. Thermal performance, power consumption, and general operation have been as expected.

3.1 Thermal

HSP thermal performance continues to be nominal. Several capabilities built into the HSP thermal control system remain untested in orbit including "software thermostats". Should there ever be a need to control detector or bulkhead temperatures more precisely, the capability exists.

3.2 Power

HSP power consumption continues to be nominal.

3.3 Electrical and Mechanical

There have been no electrical problems. The HSP continues to operate on the primary (prelaunch) set of redundant electronics, including the RIUs. There have been no electrical reconfigurations.

There is, however, a known EMI problem which may or may not require additional work. The reply bus driver is in the RIU and produces significant conducted emission. There has been some indication that reply bus noise can be found in certain detector data. The reply bus can be turned off if needed during critical observations. A test of this scheme was written (SV 2749) and submitted but still awaits implementation; the required commanding has not yet been incorporated into SOGS.

3.4 Depressurization

The HSP has no pressure gauge. There has been no evidence of any significant partial pressure in the HSP at any time.

3.5 Flight Software

Flight software has operated as expected with no anomalies and no revisions. Especially noteworthy was that at its first use the flight software calculated correctly the magnitude and direction of the small angle maneuver required for target acquisition. No corrections or modifications were required. As indicated above, the heater control application processor has been only partially exercised.

3.6 Detectors

All five detectors have continued to operate satisfactorily except, as explained above, the VIS detector has shown a loss of sensitivity of about 10.7% between April and July 1991, but none between March and April 1992.

OV testing has shown that the order of the filter strips on the POL detector was reversed from that shown on the drawings. The same drawings define the orientations of the polarizing strips, which have not been verified yet in the OV or SV program, but will be in later tests. The SV polarization tests have been delayed, first by a problem in HST step and dwell scan timing calculations, then by scheduling problems in the polarization test itself. The test requires a +/- 30 degree spacecraft roll so the observations must be spaced by about 60 days which makes scheduling a suitable target difficult.

3.7 Alignments

Alignment of the HSP apertures to the HST focal plane, FGS-to-SI alignment, has proven during SV to be stable and predictable enough to reliably place targets in apertures. The aperture positions of the image dissector tubes are now known to within 0.02 arc seconds, which is better accuracy than was anticipated before launch.

The GTO program 1092, observations of Z-Chamaeleontis, has shown variations in the pointing of HST that are dependent on the particular FGS configuration used. (see Appendix G)

3.8 Magnetic Shielding and effects

The HSP detectors have double magnetic shielding. HSP instrument level acceptance tests verified the detectors would be insensitive to the effects of the earth's magnetic field or HST ICD level fields. There have been no specific OV or SV tests performed to verify magnetic field sensitivity but no evidence has been found to date of any measurable sensitivity.

3.9 Sensitivity to SAA

Tests have been proposed to measure HSP sensitivity to the SAA but none have been approved or scheduled. Most HSP data have been collected outside the SAA but data taken near the SAA has been examined carefully and no sensitivity to it has been found.

3.10 Contamination

There is no evidence to date in the SV test data of any contamination effects. There is no evidence that the VIS detector sensitivity loss is related to contamination because the VIS detector sensitivity loss is seen in all VIS filters and there is no loss in any other detector. Contamination, although unlikely, cannot be absolutely ruled out as a contributing factor to the VIS tube sensitivity loss.

3.11 Throughput

A few (two or three) filters, F551W for example, have shown evidence of degraded throughput. The VIS detector (all filters) has apparently lost sensitivity but by exactly how much is not known until calibration tests are completed.

3.12 Sensitivity to bright objects

There have been no bright object safing events in the period covered by this report

4. Program Development, Execution, and Results

4.1 Program Development

The HSP SV program is an extension of the ground test program beginning at the sub-box level and extending though VAP, A&V at LMSC, the various GSTs at LMSC and KSC, and OV. The Science Verification program was designed to characterize the performance of the HSP, determine positions of the apertures in both deflection and focal plane coordinates, and to verify photometric performance.

The HSP OV and SV test periods overlapped to a considerable degree because there were problems with specific tests that had to be revised and rescheduled and others that were affected by the difficulties in SI to FGS alignment. The HSP OV report covered the period from launch through early June 1991. This HSP SV report covers the subsequent period from early June 1991 through May 1992. Some SV tests were performed before June 1991 and a few OV tests (by the original defininition: see Appendix A for the designation of each HSP test) were performed in the period covered by this report. For most purposes, the distinction between OV and SV is not significant.

4.2 OV/SV Events in Chronological Order

Launch (liftoff) of HST occurred on April 24, 1990 at 12:32:52 UT. See the HSP OV report for events through May 1991. The major events in the period between June 1991 and May 1992 are listed below:

Test number	Test Name	SMS	Date
3233 - POL 1385 3233 - VIS 2769 2769 3006* 3362 3377 1474 1389 3119 3377 - Part II 3120 2771	Fine Alignment - POL Photometric Performance Fine Alignment - VIS Color Transformation UV Color Transformation VIS Centering Fine Alignment-UV-Visit 2 Fine Alignment-US-Visit 2 HSP POL Test - part 1 Photometric Performance Short Term Photometric Stability Aperture Map POL Map and Align Aperture Map - VIS Occultation - rings	911547D3 911547D3 911547D3 911687AB 911757AB 911827AF 911897AK 911967D4 912177D1 912317D2 912317D2 912387C1 912387C1 912457D4 912457D4	6/3/91 6/5/91 6/8/91 6/17/91 6/24/91 7/5/91 7/19/91 8/9/91 8/19/91 8/22/91 8/26/91 8/30/91 9/3/91

	Asserting Man	912527E5	9/9/91
3119 - visit II	Aperture Map	912527E5	9/13/91
1095***	Variability of High Lum.	912527E5	9/15/91
3362 - Det 1	Fine Alignment - POL	912597B1	9/19/91
1095***	Variability of High Lum	912667C4	9/23/91
3135	Aperture Map - UV	912667C4	9/23/91
3120	Aperture Map - VIS	912667C4	9/23/91
3382	Photometric Performance	912667C4	9/24/91
1386	Instrumental Polarization	912737C6	10/1/91
1081	Saturn Ring Dynamics	912807ai	10/11/91
2769	Color Transformation (repeat)	912807AI	10/13/91
3383	OLT Jitter Test - revised	912877D1	10/17/91
1383	Time Resolved Photometry	913157A9	11/11/91
3378	Color Transformation (VIS)	913297B7	11/19/91
3377	HSP POL Test-Part II repeat	913507DG	12/20/91
3425	Color Transformation VIS	920207AA	1/21/91
1101***	Optical & UV Obs of Radio Pulsars	920277AB	1/28/91
3383**	Revised OLT Jitter	920277AB	1/28/92
1092***	Eclipses of cataclysmic variable stars (note 1)	920627c2	3/2/92
2912	HSP Photometric Canoration	920627c2	3/2/92
3996	Prism Mode Test	920697ci	3/14/92
3985	Instrumental Polarization (revised)	920097c1 921187e4	4/29/92
2912	HSP Photometric Calibration	921187e4 921187e4	4/28/92
3985	Instrumental Polarization (revised)	921187e4 921187e4	5/1/92
3996	Prism Mode Test	92118764 92125764	5/4/92
3985	Instrumental Polarization (revised)		5/20/92
1086	Pluto Rings	921397d1	6/2/92
1098 ***	Supernova Remnants	921537a5	0/2/72

^{*}SAO Test
** OLT Test

Note 1: 1092 executed in every SMS between 92027 and 92153

4.3 Test Specific Performance

The SV tests described in the following sections in chronological order were performed after June 8, 1991. All HSP OV, SV, and SAO tests performed on or before June 8 are described in the HSP OV report.

2769 - Color Transformation

A set of targets are observed in several different filters so that the throughput of the various HSP filters can be related. The observations are short and in the single color photometry mode. The VIS and UV detectors were the subjects of this test. Some of the observations were corrupted by jitter and were later repeated.

3006 - Centering

This test is intended to determine the effect of centering errors on photometric response. A small dwell scan was executed with the target in a one arc second aperture while collecting data.

3362 - Fine Alignment

This test is the second visit of the HSP fine alignment test. It is identical to the first visit except that the target acquisition is entirely on-board (Mode II). The test ran as planned, produced high quality data, and confirmed the aperture positions determined earlier. Both UV detectors and the VIS detector were mapped.

3377 - HSP POL Aperture Map and Alignment Test

This test was added to the SV program when it was determined that the original test (3152) did not produce data of sufficient precision. The reason, discussed at greater length in the HSP OV report, is that there are fewer apertures in the POL tube and therefore fewer data points to define the parameters for the position

^{***} GTO

model. This test is performed in two parts: the first part is a flat field (bright earth or Orion Nebula) aperture mapping test and the second part is similar to 3362 except for the size of the scans.

1474 - Photometric Performance

This proposal verified the dynamic range, limiting magnitude, linearity and digital-to-analog relatability and overlap of the visual IDT (VIS, IDT#3) on HSP. Five (5) photometric standards which span a large range in brightness (5 < V < 14mag.) were observed in the analog and/or digital, single and/or star-sky modes. The results verified the relevant CEI specifications and the deadtime corrections in the pulse counting mode.

1389 - Short Term Photometric Stability

This test has proven to be one of the most interesting of the entire OV & SV program. The test was designed to find any effects on the photometric stability of HSP data. Data are collected in single color photometry mode for as long an observation time with as short an integration time as possible. About five and one half hours were collected with an integration time of 83 milliseconds. The data show two unexpected effects: a sinusoidal oscillation with a 92 minute period and a monotonic linearly increasing offset. Both the zero to peak amplitude of the 92 minute oscillation and the total amplitude of the monotonic linear ramp are about one percent.

3119 - Aperture Map

The exposure times of this test, the SV aperture map test, were slightly modified from those in the OV version of the test, 3093, but is otherwise identical. The Orion nebula or the bright earth is used as a flat field for mapping the HSP image dissector tube apertures in deflection coordinates.

3377 - Part II - POL Map and Alignment

In part I of this test the apertures were mapped in deflection space using a technique similar to the standard aperture mapping test but a bright star was used instead of a flat field. There is sufficient light from the wings of the degraded image to map the apertures. In part II, a technique similar to that used in 3233, HSP Fine Alignment, was used to determine the positions of the apertures in V2/V3 coordinates. The star is observed in a continuous single color photometry data collection while the HST performs a step and dwell scan. The size of the step and dwell scan pattern is optimized for the POL tube. The test did not execute as planned because the HST step and dwell scan ramp up and down times were not properly taken into account in proposal transformation (SMS implementation) Because there were repeated step and dwell scans, the error grew to the point the target moved out of view.

3120 - Aperture Map - VIS

This test is identical to 3119 but is a repeat and was therefore given a new number for scheduling reasons.

2771 - Occultation - Rings

This was the first attempt to observe an occultation of a star by a planet by the HSP. The execution of the test was not as intended because there were errors in transformation resulting from confusion about the proper SMS syntax for specification of scan parameters. However, some occultation data were obtained. Interpretation was made difficult by the loss of background scans. 3119 - Visit II - Aperture Map

This is a repeat of the flat field deflection space aperture map test.

1095 - Variability of High Luminosity Stars

Three targets were observed for about 30 minutes each in the single color photometry mode with 0.1 second integration time. This was an HSP GTO, executed as planned, and provided good data.

3135 - Aperture Map - UV

This is another repeat of the flat field deflection space aperture map test.

3120 - Aperture Map - VIS

This is another repeat of the flat field deflection space aperture map test

3382 - Photometric Performance

This was a repeat of the 1385 test to observe 13th and 15th magnitude targets that were adversely affected by solar array induced jitter in the first attempt.

1386 - Instrumental Polarization

The test executed properly but unfortunately the pre-requisite test, 3377, POL alignment was not completed successfully. It was too late to reschedule the test. Also, the target precession done by the ST ScI did not match the epoch for which the coordinates were correct on the target list. The polarization test was subsequently successfully run as 3985.

1081 - Saturn Ring Dynamics

This was the first HSP GTO of a planetary ring occultation. The following summary is by Amanda Bosh:

On 2-3 October 1991, Saturn occulted the star GSC6323-01396 on its way toward the stationary point of its retrograde loop. This unusually slow occultation was observed with the High Speed Photometer over a period of 20 hours (13 orbits) during ring emersion. Earth occultations, SAA passages, and guide star reacquisitions reduced the actual exposure time, for an exposure efficiency of 34% The losses due to SAA passage were minimized by resuming data collection after SAA on two of the orbits. Whenever possible, simultaneous two-color photometry was obtained using the HSP's photomultiplier tube (PMT, 7500 Angstroms) and visible (VIS, 3200 Angstroms) detectors with an integration time of 0.15 sec. Although the star is not extremely bright (V = 11.9) compared with Saturn's rings, its angular diameter is correspondingly small so that the radial resolution of our observation was determined by diffraction (~2 km, the Fresnel limit).

2769 - Color Transformation

A variety of targets were observed in various filters on all detectors to determine the relative response of the HSP filters. (See section 4.4.2 for discussion of analysis and results)

3383 - OLT Jitter Test - Revised

Excerpts from a "Summary of Jitter Test Execution" by Olivia Lupie, ST ScI

The Jitter test was executed this weekend (October 13, 1991). The test was very difficult and had only partial success. It appeared that all the special commanding and tape recorder movement executed exactly as planned. The HSP worked flawlessly. The communications contacts were all successful. The OSS support was absolutely exceptional. The method, with some modification based on experience from this test, is sound. The preparatory support of this test by Commanding, the MOC, the HSP IDT, SPSS and OSS all proved to be essential, successful and exactly right -- and are greatly appreciated.

- 1. First Jitter exposure on V2 edge completed. Core was off the edge so sensitivity was reduced. Some information will be acquired but sensitivity is somewhat reduced.
- 2. Second Jitter star and edge were aligned with wonderful precision. LOSS of lock caused complete failure. The science data clearly showed gyro drift.

- 3. Jitter in aperture center as control completed and count rates were consistent with the star being centered in the read beam in the aperture center. Successful.
- 4. First jitter on V2 edge Lost to LOSS of lock.
- 5. Second Jitter on V2 edge the core and edge were not coincident, the count rates are extremely low and unusable.
- 6. The Spatial scan across the V2/V3 edge were successful and will be used to determine the edges and star positioning.

RECOMMENDATIONS

- 1. Because of the astrometry observations (to move the servos), LOSS OF LOCK recovery was apparently disabled and the remainder of observation would be taken on gyro control. GET RID OF THE ASTROMETRY activities in subsequent tests.
- 2. LOSS OF LOCK occurred during orbital midnight on several occasions as well as the transition periods. Recommend to look into that perhaps these particular guide stars were bad.
- 3. The scattered light off the aperture edge and the large size of the PSF made interpretation of the 2x2 arcsec images difficult down in OSS. Enlarge the size of the 2x2's next time. Use the PSF data from this run to study the PSF and edge characteristics for next time.
- 4. The placement of the core on the edge must be calibrated in real-time as we initially construed but opted not to perform in this jitter revision. I have devised a simplified method as a result of experience from this test.
- 5. Analyze the FGS and HSP data from this test in order to reconstruct the PCS problems. Determine if the alignment of the deflection system and the V2V3 system in both the command instruction, the proposal instructions, and the PDB -- were all consistent and correct. We may be able to extract some of this information from the data during the jitter test.

1383 - Time Resolved Photometry

This test is one of the most interesting and taxing of the HSP SV program. The data volume is large because there are four observations of 30 minutes each with 11 microsecond integration time. The target was the Crab Pulsar. There were some missing packets for which an HSTAR was written, but the data were otherwise of high quality. The missing packets were restored in later processing.

The analysis and results have been described in Appendix L, High Speed Photometer Pulsar Timing and Light Curve Reduction, Jeff Percival, May 19, 1992.

3378 - Color Transformation - VIS

This is a repeat of 2769 for the VIS detector for one 9th magnitude target that was corrupted by jitter in the first run of 2769. The test ran as expected and the data were of good quality.

3377 - HSP POL Test - Part II - Repeat

The second part of this test, the POL fine alignment test using a step and dwell scan to determine V2/V3 aperture positions, had to be repeated because the target was lost in the first attempt. The target drifted out of view because the step and dwell ramp up and ramp down time was not properly taken into account. Because there were repeated step and dwell scans, the error grew to the point the target moved out of view. In this repeat, the ramp times were correctly considered so the test ran as designed. The results provided the information required.

3425 - Color Transformation - VIS

This is a repeat of 2769 for the VIS detector for four stars in the magnitude range 11 to 12.

1101 - Optical & UV Observations of Radio Pulsars

This GTO proposal is the first of a planned series of pulsar observations in the UV. The target for this observation was the Crab Pulsar. The test ran successfully and good data were collected.

3383 - OLT Jitter Test - Second Revision

The first run of the revised OLT jitter test, 3383, did not execute exactly as planned. (see previous discussion in 3383 - OLT Jitter Test - Revised) The test was modified for this repeat to correct the problems encounted in the first execution. The test ran as planned and good data were collected.

1092 - Eclipses of Cataclysmic Variable Stars

This GTO is a long series of about twice-weekly observations of Z-Chamaeleontis using UV1. Each observation is about a half hour long with one second integration time. The observations are timed to catch the eclipse during most observations but to avoid the eclipse during a few.

2912 - Photometric Calibration

This calibration is planned to be run about monthly. It is a series of single color photometric observations of standard stars in a standard set of filters. The objective is to calibrate the photometric response of the HSP as a function of time.

3996 - Prism Mode Test

This test is intended to map the locations of the prism mode apertures in both deflection and V2/V3 space more precisely than is possible using the standard aperture mapping tests.

The 3996 test was constructed and run in two parts. The first portion of the test consisted of a 3x3 dwell scan of the target centered on the two apertures, with area scans of the apertures at each dwell point. The primary goal of the portion of the test was to determine the h,v deflection coordinates of the apertures which were not well determined by the Aperture Mapping tests from SV. A secondary use of the data was to have been a rough calculation of the best pointing for the prism apertures.

This first portion of the test was not successfull. The assumed V2,V3 location of the aperture was taken from earlier calibration of the locations of the HSP apertures in the MSC Phase III VS tests and their follow on observations. This calibration had proven usable for many other apertures on the 3 detectors and was assumed would yield a workable pointing for the PRISM apertures. This assumption was in error, and the cores of the stellar images did not appear in the prism apertures during the step-and-dwell portion of the test. However, enough light from the wings of the PSF appeared so that the assumed h,v deflections of the apertures could be checked. Although the data were not good enough to refine the deflection coordinates of the apertures, it was sufficient to verify that the coordinates currently in the PDB were good to better that 4 deflection steps. No PDB updates resulted from this portion of the test.

The second portion of the test was a continuous scan of the target in the entrance aperture to the HSP PRISM's. The HSP was configured in the PRISM mode and data were collected at both PRISM apertures during the scan. The continuous scan was a 21 line scan 5" on a side. This portion of the test was successfull in that the star image appeared in both PRISM apertures on all three HSP PRISM assemblies. Concurrently with the science data, FGS telemetry was recorded to provide a good V2,V3 calibration of the HSP science data. These two sets of data were then combined to determine the V2,V3 locations of the six different PRISM mode apertures. The orientation of the scans was then rotated 90 degrees and the apertures re-scanned similarly to the first orientation, and the locations of the aperture again calculated. The results are as follows:

Detector	Aperture	Observation ID	V2 wings	V3 Wings	V2 Core	V3 Core
UV1 UV1 UV1 UV1 UV1	Finding Star Sky Star Sky	v0vn0203 v0vn0204 v0vn0204 v0vn0205 v0vn0205	179.130 136.20 135.92 136.20 135.95	-493.212 -444.35 -444.67 -444.33 -444.63	136.20 136.04 136.20 136.03	-444.35 -444.67 -444.23 -444.69
UV2 UV2 UV2 UV2 UV2	Finding Star Sky Star Sky	v0vn0403 v0vn0404 v0vn0404 v0vn0405 v0vn0405	493.273 428.24 428.38 428.25 428.39	-158.052 -162.95 -163.13 -162.98 -163.14	428.26 428.44 428.25 428.49	-163.14 -163.18 -163.25 -163.26
VIS VIS VIS VIS VIS	Finding Star Sky Star Sky	v0vn0603 v0vn0604 v0vn0604 v0vn0605 v0vn0605	375.763 315.47 315.73 315.47 315.74	-361.975 -337.18 -337.42 -337.26 -337.40	315.49 315.74 315.48 315.74	-337.35 -337.45 -337.32 -337.47

It is felt that the best scheme for determining the best pointing for the use of the PRISM mode is to average the positions of the two apertures, thus minimizing the miscentering problems for both data streams, instead of having good centering for one aperture and very poor centering for the other. Accordingly the average positions for the three assemblies, and the corresponding delta V2,V3 positions are as follows, with the deltas being defined as (finding aperture - prism aperture):

Detector	V2(av)	V3(av)	dV2(delta)	dV3(delta)
UV1	136.12	-444.51	43.010	-48.702
UV1	428.36	-163.21	64.913	5.158
VIS	315.61	-337.40	60.153	-24.575

What remains is to combine the delta positions in V2,V3 of the apertures with the current V2,V3 positions of the finding apertures as defined in the PDB. This will yield the new V2,V3 of the prism apertures. For reference the old V2,V3 of the prism apertures is given along with the old delta positions of the prism apertures WRT the finding aperture. The old and new delta's can be compared to look for systematic effects which might explain the unusually bad predicted positions of the prism apertures. The final table

Detector	V2(old)	V3(old)	V2(TAQ ap)	V3(TAQ a	<u>p)</u>
UV1 UV2 VIS	135.850 428.7297 315.4012	-444.12 -163.43 -338.26	93 4	79.6417 93.5936 75.8750	-492.3280 -157.6331 -362.4401	
Detector	dV2(old)	dV3(old)	dV2(new)	dV3(new)	Change V2	Change V
UV1 UV2 VIS	43.7912 64.8639 60.4738	-48.2079 5.8062 -24.1716	43.010 64.913 60.153	-48.702 5.158 -24.575	-0.7812 0.0491 -0.3208	-0.4941 -0.6482 -0.4034

lastly subtract the new deltas from the PDB V2,v3 of the finding aperture to yield the new V2,V3 of the prism apertures:

Aperture	New V2	New V3
VF135U1_A	+136.63170	-443.62600
VF248U1_A	+136.63170	-443.62600
VF145U2_A	+428.68060	-162.79110
VF262U2_A	+428.68060	-162.79110
VF240V_A	+315.72200	-337.86510
VF551V_A	+315.72200	-337.86510

3985 - Instrumental Polarization Test (revised)

This test is intended to characterize the capability of the HSP to determine polarization. It is based on the earlier tests, 1386 and 3377, but includes more than one target.

1086 - Pluto Rings

This GTO observation is indended to search for rings around Pluto using the PMT during an occultation.

1098 - Supernova Remnants

The 1987A supernova remnant is the target for this observation.

4.4 Data Analysis and Results

The major SV data analysis efforts were the short term photometric tests (Crab Pulsar observations), the Color Transformation tests, and the determination of aperture positions as a function of both deflection and V2/V3 coordinates, especially for the PRISM mode apertures.

4.4.1 Short Term Photometric Stability

The 1389 Short Term Photometric Stability test results showed two unexpected effects: a 92 minute oscillation and a "ramp". The cause of these effects has not been determined but so far no convincing correlation has been found with any HSP engineering data. HSP interior temperatures tend to be stable and the orbital variations of exterior (skin) temperatures are not in phase with the 1389 variations. The following chart (Fig 4.4.1 - 1) shows the 1389 HSP data, each point representing the average of 1000 data samples, plotted with one of the FGS #3 temperature monitors, E457. Note that the two plots are in phase. Fig 4.4.1-2 shows the rebinned data by itself. The HSP team has proposed a test to determine if there are apparent motions of the target relative the HSP detectors.

4.4.2 Color Transformation Summary: The purpose of this test was to determine the color transformation coefficients from the HSP instrumental systems to that of standard stars for various filter-aperture combinations using the UV1, UV2 and VIS detectors. Three photometric standard stars were observed with UV1 and UV2 and four photometric standard stars were observed with the VIS tube. Each star had a different B-V value in order to span a widerange of stellar colors. In each case, 100 one-second integrations were obtained through various filteraperture combinations and 200 one-second integrations were scheduled with the PRISM mode.

Results: Data were successfully obtained with UV1 and UV2. Table 1 lists the mean count rate (counts per second) together with the standard deviation for each object. Fast Fourier Transforms of the UV1 and UV2 data were calculated. These FFTs showed numerous statistically significant features, many of which were near, in frequency, to the well-known 0.1, 0.4, and 0.6 Hz variations associated with the HST/solar arrays. The FGS switched from high gain to low gain just before the data using the VIS detector were obtained. Hence, the data were of poor quality and consequently, are not shown here. In addition, the position of the PRISM mode apertures were not well-known at the time of execution of this test, and hence, these data were also of poor quality. This portion of the color transformation test will be postponed until accurate calibration of the PRISM mode is obtained.

Plans: Reschedule the observations with the VIS tube and repeat the observations on AGK+81D266 using the UV1 detector in order to ascertain the repeatability of the photometry.

Fig. 4.4.1.

Table I
Photometric Data for Color Transformation - UV1 & UV2

Tilean	AGK+81D266 (B-V=-0.34)		SA113-260 (B-V=+0.51)		SA113-339 (B-V=+0.57)	
Filter- Aperture	Mean	σ	Mean	σ	Mean	σ
F135U1_C	1985,7500	40.3146	0.4700	0.7544	0.4400	0.6135
F145U1_A	1250,4700	38.7684	0.3000	0.5000	0.1200	0.3250
F152U1_A	1204.9900	39.2182	0.3800	0.6129	0.1850	0.4132
F184U1 A	11650.9100	116.2706	10.3400	3.0634	10.0250	3.1455
F218U1_A	6961.6300	82.9726	14.2800	4.1883	16.9750	3.9095
F220U1_A	11951.3700	116.0862	26.7000	5.2182	33.3200	5.7626
F248U1_C	9291.0100	100.7439	49.2300	7.4241	65.0150	8.1508
F278U1_A	1576.5900	35.4071	29.9200	5.5221	35.7200	5.8259
F145U2_C	1641.9000	42.4852	0.3700	0.6581	0.2950	0.5550
F152U2_A	1771.0400	53.4993	0.5700	0.7517	0.3400	0.5783
F160U2_A	101365.4700	321.1438	470.3900	25.7383	580.5550	24.2686
F179U2 A	7720.4900	85.5282	10.8300	3.2590	12.1450	3.3427
F184U2 A	10627.1900	117.4213	10.7500	3.3716	11.0550	3.3124
F248U2_A	11023.7500	119.5493	57.3200	7.8369	69.7950	8.4666
F278U2_A	1752.3800	41.8564	32.5800	6.0086	40.2750	6.0753
F284U2_A	6814.0000	76.9227	94.9100	9.5646	112.5650	11.1187

The data for the repeated observation of AGK+81D266 (taken 116 days later) using UV1 are shown in Table II. Each of these observations has a count rate which is consistently smaller by 4-12% than that given in Table I. Observations of a star in NGC 188 during this time with UV1 show no such variability. There is no indication of anything peculair with HSP. Hence, though AGK+81D266 is an HST photometric standard, there is a real possibility that it is in fact variable. The FFTs of the data show statistically significant features which are at slightly different frequencies than those for the previous observations, but which still fall within the jitter spectrum.

Table II
Photometric Data for Repeated Observation of
AGK+81D266 - UV1
(B-V=-0.34)

	(= 0,5.7		_
Filter- Aperture	Mean	σ	
F135U1_C F145U1_A F152U1_A F184U1_A F218U1_A F220U1_A F248U1_C F278U1_A	1803.8500 1105.4000 1098.1000 10923.0400 6401.5100 11127.9900 8859.7200 1520.3500	45.0303 41.2440 32.4792 120.8685 95.5433 140.3659 90.7986 42.1441	

This test was originally designed to observe all three of the stars observed with the UV detectors in addition to two very red stars. However, this portion of the color transformation test was not implemented correctly

and a total of four stars (none of which were observed with the UV tubes) were observed with the VIS detector. Table III lists the data.

Table III
Photometric Data for Color Transformation - VIS

	Photometric Data for Color Transformation (13)							
	BD+28D	4211	SA95	-132	SAS	95-302		5-301
	(B-V=-((B-V=	+0.44)	(B-V	7=+0.84)	(B-V:	=+1.24)
Filter-Aper	•	΄ σ	Mean	σ	Mean	σ	Mean	σ
F184V A	42245.960	332,401	33.930	6.392	2.815	1.501	2.380	1.476
F240V_C	82328.830	458,458	234.490	17.284	52.265	7.263	14.480	3.611
F262V_A	31372.360	205.417	137.850	11.643	29.205	4.976	6.120	2.645
F355V_A	13482.350	111.711	377.790	18.469	244.665	15.854	118.010	10.899
F400V_A	627564.970	3741.140	27003.450	183.741	23488.915	176.213	30911.350	320.748
F419V_A	5432.000	75.236	593.630	25.162	324.160	17.995	257.230	16.504
F450V_A	83784.350	345.823	9506.290	109.844	6622.890	81.583	6911.210	86.921
F551V_A	248.081	17.103	55.646	7.508	42.894	7.477	190.576	21.941
F551V_C		77.765	837.400	32.073	716.800	28.598	1019.190	31.242
F620V_A	12452.770	126.492	4678.080	65.914	5488.255	75.056		

4.4.3 Aperture Positions

Aperture positions of the POL tube were updated in SV as follows:

Aperture	V2	V3
VF327P0	+197.71360	-228.09910
VF327P90	+205.18890	-220.39410
VF327P45	+220.31870	-205.06420
VF327P135	+212.74860	-212.69940
VF277P0	+190.14860	-220.66440
VF277P90	+197.59360	-212.96970
VF277P45	+212.71360	-197.60960
VF277P135	+205.14390	-205.30950
VF237P0	+182.34880	-213.03980
VF237P90	+189.87840	-205.34950
VF237P45	+204.97360	-190.07920
VF237P135	+197.43330	-197.71480
VF216P0	+174.62800	-205.48440
VF216P90	+182.17830	-197.74950
VF216P45	+197.30380	-182.53990
VF216P135	+189.74880	-190.14910

The other apertures appeared to be stable throughout SV and the database positions were not changed. Except for the prism apertures, there is no indication that there will be a need to update these positions soon.

4.4.4 VIS Detector Sensitivity

NGC188-998 has been used for tests of all four image dissector tube over an extended period. If one integrates all the flux from the acquisition image in the finding aperture, the results are less subject to pointing errors than in the smaller apertures. The results are:

Detector	Date	Total Flux	Temperature	
		et e		
POL:	4/21/91	593010	-2.33	
	6/03/91	591478	-1.69	
	9/15/91	598079	-3.60	_
UV1:	3/15/91	145603	-0.74	
•	5/19/91	147879	-0.42	
	7/14/91	144393	-4.55	
UV2:	3/11/91	185081	-3.60	
•	5/18/91	183681	-1.37	
	7/08/91	184095	-3.28	
VIS:	4/21/91	534004	0.22	
. = = -	6/08/91	497848	-1.69	
· - · - · · · · - ·	7/20/91	477161	-2.96	

Note the VIS detector is the only one of the four to show a significant change over the period. The sensitivity loss of the VIS detector over the period of time covered by this data set is 10.7%.

The first two sets of HSP calibrations, 2912, performed in early March and late April 1992, did not show any indication of additional loss in VIS detector sensitivity. The change was small but in the positive direction.

Observation	# Pixels	Mean
v0vz0301t.d0h	400	8.20
v0vz0302t.d0h	400	7.62
v0vz0303t.d0h	1152	71.47
v0vz0304t.d0h	600	8161.00
v0vz0305t.d0h	14	794.40
v0vz0f01t.d0h	400	8.46
v0vz0f02t.d0h	400	8.17
v0vz0f03t.d0h	1152	72.55
v0vz0f04t.d0h	600	8519.00
v0vz0f05t.d0h	14	564.50
	Differences	
Ciltor	Mode	A Mean

Filter	Mode	Δ Mean
F160LP/10.0	ACQ	0.26
F160LP/10.0	ACQ	0.55
F551W/1.0	Single	1.08
F160LP/1.0	Single	358.00
F551W/1.0	Prism	-229.90
		% ∆ Mean

		/0 L3 1VIOUII
F160LP/10.0	ACQ	3.17%
F160LP/10.0	ACQ	7.16%
F551W/1.0	Single	1.51%
F160LP/1.0	Single	4.39%
F551W/1.0	Prism	-28.94%

4.4.5 Phase One Calibrations - 2912 Analysis

2912 is a photometric calibration program which was meant to run repeatedly (every 2 months) on the HSP to measure and monitor filter bandpasses. The test has run twice on dates 03-Mar-1992 and 29-Apr-1992, and this report is for these two runs. The test measures the throughput of the HSP for the object BD+75D325 which is an O subdwarf star. The bandpasses measured are:

UV1: F135W, F218M, F220W, and the PRISM bandpasses F248M and F135W.

UV2: F145M, F184W, F218M, F248M, F278N, F284M, F140LP and the PRISM bandpasses

F262M and F145M.

VIS: F551W, F160LP, F320N, and the PRISM bandpasses F551W and F240W.

POL: F327M, F277M, F237M, F216M in all polarizer orientations.

In addition the flux from the target was measured through the finding aperture which is insensitive to effects from pointing or the PSF of the telescope. The bandpasses are F140LP for the UV detectors and F160LP for the VIS and POL detectors.

The measured count rates were compared between runs as well as against prelaunch calibration curves through a simulator. First was a comparison of the flux rate between the two runs. The count rates as seen in the finding apertures are as follows:

Detector	First(Temp)	Second(Temp)	ratio(dT)
UV1:	956.52(-5.06)	995.35(-7.70)	1.04(-2.64)
UV2:	1172.97(-4.39)	1189.84(-6.66)	1.01(-2.27)
VIS:	970.53(-1.21)	1039.92(-3.44)	1.07(-2.23)
POL:	2142.86(-1.83)	1979.25(-4.07)	0.92(-2.24)

As mentioned about, these data are insensitive to both pointing effects and PSF effects. Therefore the fluxes can be compared directly and related to either changes in target flux or detector sensitivity. The change in count rates between the two runs is difficult to interpret but would seem to be due to the target. The change in temperature is not enough to explain the differences. In other similar data for a different target (NGC188-998), hints of temperature dependancies are at a much lower level, corresponding to about 1% for 2.25 degrees for the POL and VIS cathodes, and about 1/3 that for the UV detectors. This change is more significant. Also the fact that the count rates rise for the later observations (except for POL) indicates that the change is not from contamination or degredation of the HSP/HST optics.

Why POL is different from the other detectors is of concern, although earlier data showed that the VIS detector was losing sensitivity slowly with time. These data show that the response of the VIS detector is stable, indicating that the sensitivity losses have stoped or slowed down. However, this may indicate a general problem with the type of detector used in the VIS and POL IDTs. Carefull monitoring of these detectors is definitely called for. The relatively larger change in the VIS count rates compared to the UV detectors could be explained by a change in the magnitude or temperature of the target star and the larger bandpass of the VIS detector compared to the UV detectors.

Comparison with models: Ratios are predicted/observed count rates

det	First(Ratio)	Second(Ratio)
UV1:	956.52(1.427)	995.35(1.371)
UV2:	1172.97(1.164)	1189.84(1.147)
VIS:	970.53(2.171)	1039.92(2.026)
POL:	2142.86(0.983)	1979.25(1.065)

The difference in count rates for the same object and the two UV detectors has been noticed before and is relatively stable. The ratio of count rates of ~1.23 has seen in earlier data from the 3152/3233/3362 tests. This ratio is maintained in these data sets with ratios of 1.23 for the first data set and 1.20 for the second one. The prediction of count rates for the POL detector is quite good at nearly unity, and the factor of two difference between it and the VIS detector with the same bandpass is the result of the earlier loss in VIS detector sensitivity.

			Other Band	passes		
=			Observed	Predicted	Ratio	Ratio
Filter	wavel	set #	Counts/S	Counts/S	Pre/Obs	1st/2nd
VF135U1_C	1513	01 03	10829.3091	18293.1	1.68922	
VF135U1_C	1513	0D 03	9826.7686	18293.1	1.86156	1.102
VF218U1_A	2172	01 04	48385.7645	87267.7	1.80358	
VF218U1_A	2172	0D 04	44365.3097	87267.7	1.96703	1.091
VF220U1_A	2181	01 05	86782.1555	170300.0	1.96238	
VF220U1_A	2181	0D 05	82953.4151	170300.0	2.05296	1.046
VF145U2_C	1545	02 03	8830.3469	17009.2	1.92622	
VF145U2_C	1545	0E 03	8604.9909	17009.2	1.97667	1.026
VF184U2_A	1905	02 04	72350.0000	175900.0	2.43124	
VF184U2_A	1905	0E 04	72217.6883	175900.0	2.43569	1.002
VF218U2_A	2172	02 05	52441.2281	87267.7	1.66410	
VF218U2_A	2172	0E 05	49893.2174	87267.7	1.74909	1.051
VF248U2_A	2448	02 06	87134.1463	128220.0	1.47152	
VF248U2_A	2448	0E 06	85853,2174	128220.0	1.49348	1.015
VF278U2_A	2762	02 07	14047.5046	14160.5	1.00804	
VF278U2 A	2762	0E 07	13684.8366	14160.5	1.03476	1.027
VF284U2_A	2709	02 08	54303.1646	63086.5	1.16175	
VF284U2_A	2709	0E 08	54668.0832	63086.5	1.15399	0.993
VCLRU2_A	2150	02 09	678048.1293	1365100.0	2.01328	
VCLRU2_A	2150	0E 09	675994.1480	1365100.0	2.01940	1.003
VF551V_C	5675	03 03	7134.4233	34226.4	4.79736	
VF551V_C	5675	0F 03	7263.8413	34226.4	4.71189	0.982
VCLRV_A	2194	03 04	816057.1675	2107200.0	2.58217	
VCLRV_A	2194	0F 04	851905.9337	2107200.0	2.47351	0.958
VEN1 CDO	2239	04 03	3444.0977	4787.2	1.38997	
VF216P0	2239	0G 03	3211.8611	4787.2	1.49048	1.072
VF216P0 VF216P45	2239	04 04	3658.4040	4787.2	1.30855	110.2
VF216P45 VF216P45	2239	0G 04	3387.4737	4787.2	1.41321	1.080
VF216P43 VF216P90	2239	04 05	3667.8884	4787.2	1.30517	2.000
VF216P90_	2239	0G 05	3478.1204	4787.2	1.37638	1.054
VF216P135	2239	04 06	3498.6035	4787.2	1.36832	
VF216P135	2239	0G 06	3337.0292	4787.2	1.43457	1.048
VF237P0	2431	04 07	8952.8829	7420.8	0.82887	
VF237P0	2431	0G 07	8591.4369	7420.8	0.86374	1.042
VF237P45	2431	04 08	9264.4042	7420.8	0.80100	
VF237P45	2431	0G 08	8781.7265	7420.8	0.84502	1.055
VF237P90	2431	04 09	8829.7694	7420.8	0.84043	
VF237P90	2431	0G 09	8748.1754	7420.8	0.84826	1.009
VF237P135	2431	04 0A	8886.1789	7420.8	0.83509	
VF237P135	2431	0G 0A	8500.8866	7420.8	0.87294	1.045
VF277P0	2856	04 0B	16115.6693	12383.9	0.76843	
VF277P0	2856	0G 0B	14938.0742	12383.9	0.82901	1.079
VF277P45	2856	04 0C	14762.9244	12383.9	0.83885	
VF277P45	2856	0G 0C	14210.6505	12383.9	0.87145	1.039
VF277P90	2856	04 0D	16462.6031	12383.9	0.75224	
VF277P90	2856	0G 0D	15209.2691	12383.9	0.81423	1.082
VF277P135	2856	04 0E	16936.5998	12383.9	0.73119	** * *
VF277P135	2856	0G 0E	15376.0525	12383.9	0.80540	1.101
VF327P0	2945	04 0F	18588.1818	8828.2	0.47493	
VF327P0 VF327P0	2945	0G 0F	18289.3062	8828.2	0.48269	1.016
VF327P45	2945	04 0G	17412.7451	8828.2	0.50699	-

VF327P45	2945	0G 0G	16535.0265	8828.2	0.53390	1.053
VF327F43	2945	04 OH	17709.5002	8828.2	0.49850	
VF327F90	2945	OG OH	15743.6970	8828.2	0.56074	1.125
VF327P135	2945	04 01	18486.5939	8828.2	0.47754	
VE327P135	2945	0G 0I	15477.3438	8828.2	0.57039	1.194

Items of note:

First, and of most interest, is that there seems to be a relationship between effective wavelength and correction factor, that peaks at between 1600 and 2000 Angstroms. It is not know what the origin of this problem is at this point, but indications are that the curve is fairly stable, and may reflect differences between the pre-launch calibration curves and actual filter bandpasses for HSP filters.

The second item of note is the differences between the predicted and observed count rates with the POL detector. The observed count rates are higher that predicted. In addition the effect seems to be strongly correlated with wavelength. This effect is unique and the only substantive difference between the models for the POL and UV detectors is the addition of the Polacoat calibration curve, which may well be the source of the differences.

Lastly, the measurements for the PRISM filters have not been included in this report. The PRISM apertures did not have good positions before the test was run, which resulted in very low count rates for these filters. Since this was a known problem with unknown effect on the data, those results were excluded. New positions have been updated to the PDB since, and the next run of this proposal should provide a good calibration of those filters.

4.4.6 Saturn Occultation

"Observer Report" for 1081: Saturn Ring Dynamics - Occultation of GSC6323-01396 by Saturn and its Rings by Amanda Bosh, Maren Cooke, and Jim Elliot (MIT), November 18, 1991

Background: On October 2, 3, 6, 7, and 8 1991, Saturn occulted GSC6323-01396 (see Bosh and McDonald, AJ in press for predicted circumstances of this event). This occultation was discovered in a search of the HST Guide Star Catalog for Saturn occultations. The GSC reports a photographic B magnitude of 12.5 for this star; recent photometry (Sybert et al., AJ submitted) indicates that it is V=11.9, B-V=0.7, and V-R=0.5. This was an important event for several reasons, most notably in that it occurred near the time when Saturn reversed its motion in its retrograde loop, so the sky plane velocities are very low (< 1 km/sec), yielding very high spatial resolution and low noise despite the star's moderate brightness.

4.4.6.1 Proposed Observations

- A. The sequence of observations was to be as follows:
 - 1. Dark measurement
 - 2. Background scan of Saturn and rings (single line continuous scan): The spacecraft tracks relative to Saturn (a moving object) and scans across the planet, roughly along the track that will pass in front of the star during the occultation.
 - 3. Background scan of Saturn and rings (quintuple-line continuous scan): a zigzag path intended to map out the strong (rings by far dominate the stellar signal) and possibly azimuthally varying ring background signal.
 - 4. Background scan of Saturn and rings (identical to I.A.2)
 - 5. Onboard acquisition of offset target (GSC6327-00161). This is automatically done twice. An offset target was used because the occultation star is within the ring system and the large background gradients there make direct acquisition impossible.

- 6. Occultation observations: Starting when the star is in the C ring and following it through the F ring. Close approach to the planet center was at 2 Oct 1991 04:57 UT. These observations cover only egress. The observation sequence is broken into sections covering visibility windows for each orbit.
- 7. Background scan of Saturn and rings (identical to I.A.2)
- 8. Background scan of Saturn and rings (identical to I.A.3)
- 9. Background scan of Saturn and rings (identical to I.A.2)

B. Preparation for the observations

1. It was known ahead of time that items I.A.3 and I.A.8 would not execute correctly because the transformation software was not yet able to handle multiple-line scans in SINGLE-EXP mode for moving targets (a limitation of the MOSS software which would not have presented a problem if it had been made clear). We were not permitted to modify the proposal to remove the SINGLE-EXP specification and re-run the transformation software.

CONTRACTOR AND TOTAL TRACTOR

- 2. An inconsistency in the definition of position angle (used in our background scans, which are done relative to the center of Saturn) was discovered during the execution of SV2771 was declared fixed prior to the transformation of this 1081 proposal; a bug in the JPL software was altered to agree with both proposal instructions and PA convention.
- 3. Relative positions of offset target (GSC6327-00161) and occultation target (GSC6323-01396) were updated near the occultation date to reflect recent ground-based measurements of their positions.
- 4. Contemporaneous ground-based observations of this occultation event were made at the IRTF by Amanda Bosh, Leslie Young, and Jim Elliot, for possible later comparison.

4.4.6.2 Observations

Maren Cooke covered the observations from STScI (OSS). Data were taken with the photomultiplier tube (PMT; 7500 Angstroms) and visible (VIS; 3200 Angstroms) detectors during all of our observations. The desired simultaneous dual-wavelength observations were effected using the HSP's "star-sky" mode of operation. This mode currently has no allowance for separate gain settings for the analog signal, making the second (VIS) detector's analog data nearly unusable. (Jim Younger initiated an HSTAR on this, implemented a new command sequence in April 1992 for future use.)

A. Dark-sky measurement (I.A.1 above)

PMT digital signal varied around ~52 counts (noise mostly within +/-20 counts).

B. Backscans (I.A.2,3,4,7,8,9)

Guiding mode for the telescope during the background scans was Coarse Track.

1. Multiple-line scans

As expected (see I.B.3), the quintuple-line scans did not execute as originally intended; the entire time of the exposure was spent scanning the occultation track.

TILLI MALLE SAME

2. Single-line scans

Although the position angle problem noted above (I.B.4) was ostensibly fixed, there may remain some problem with the MOSS positioning of the S/C relative to Saturn; all four single-line

scans (I.A.2,4,7,9) should have been basically identical but instead seemed to scan different radial regions of the rings, each pair only partially overlapping (the pairs 2&4 and 7&9 were identical). This could conceivably also be due to some unexpected state of the guiding software after the failed multi-line scans. Jim Younger has been consulted about the position history during the observations, but has reported no great illuminations as yet. A short spate of telescope jitter is evident near the end of the first scan, about four minutes into orbital night. The period of the (prominent!) oscillations is about 1.8s (not atypical for solar panel wobble, according to Pierre Bely).

C. Offset Star Acquisitions

As with SV2771, this crucial step was performed flawlessly. Two successive on-board acquisitions were performed, and the faint offset star appeared nearly dead-center even in the first of the frames. On this occasion, the guide stars used were bright enough to attain (and hold, most of the time) Fine Lock. A great relief, given the significant telescope jitter that polluted the SV2771 data. Lock was lost between the two acquisitions, again ~4 minutes into orbital night; fine lock regained after a couple of minutes.

D. Stellar Occultation Observations

Fifteen segments of the slow occultation event were observed during thirteen successive orbits of the HST (observation was discontinued frequently due to Earth occultation and/or SAA passage). Transitions to orbital night were generally accompanied at least by serious jitter and often by temporary loss of lock, but at other times the signal was quite clean in the PMT (red) and somewhat noisier in the VIS (UV) detector. Variations in the stellar signal caused by features in the rings are superposed on the broad, smeared image of Saturn and its rings as seen by the 1 arcsec. aperture. Recognizable ring structure was immediately spotted in many of the segments, and while coverage is not complete, some regions are covered in more than one segment because of spacecraft parallax.

4.4.6.3 Data Reduction and Analysis

A. Data Obtained

- 1. Plots made on-site indicate that data are of relatively high S/N: (unocculted star)/(random noise) ~20 for a one second average
- 2. Two tapes of calibrated data were obtained by Maren Cooke, and installed on our local computer. Data from a third tape FTP'd from Wisconsin with the help of Jeff Percival.
- 3. All data are now in local format.
- 4. Definitive ephemerides obtained and translated into ascii.

B. Reductions

- 1. Transform X,Y,Z,Xdot,Ydot,Zdot of definitive ephemerides into observer latitudes and longitudes for use in local (MIT) software.
- 2. With observer positions, star and planet ephemerides, and times sampled, determine ring plane radii for each data point. Because Saturn was moving very slowly during this event, parallax caused by the HST's orbital motion is a major factor, and the apparent path of the star was a series of "curlicues" through the ring system. Further analysis depends on first being able to determine accurate ring plane radii.

C. Possible Analyses

Comparison of the HSP radial profile with past occultation data may show changes in the ring system over time; previous data sets include the Voyager encounters in 1980 and 1981 (a radio occultation in the X (3.6cm) and S (13 cm) bands by Voyager 1, and ultraviolet observations (2700 and 1100 angstroms) of a

stellar occultation by Voyager 2), and extensive Earth-based observations of the very bright star 28 Sgr being occulted by Saturn in 1989. The multiple tracks traced out in certain regions of the rings (because of spacecraft parallax) may help to constrain the kinematic behavior of known non-circular features, discover new noncircularities, and, along with the additional temporal coverage, provide important leverage in ring orbit models currently being refined. Simultaneous dual-wavelength observations may allow us to investigate the distribution of very fine particles in the rings by studying any color dependence in feature appearance, to the extent that we can subtract the ring background (hampered by the incorrect backscan coverage, as noted in I.B.3. and II.B) and given the relatively poor noise characteristics of the UV signal.

4.5 Database Updates

There were only two database updates in the period covered by this report:

The SIAF file defining the POL tube aperture positions was updated in January 1992 using the results of the 3377 POL fine alignment test. The new positions are shown in section 4.4.3.

The SIAF file defining the PRISM mode apertures was updated in May 1992. The new positions are discussed in section 4.3 in the description of test 3996.

The current SIAF and SICF database values are listed in appendices G and H.

4.6 SV Anomalies

The major anomalies of the SV period (those not covered in the OV report) are:

- 1. The "ramp" and ninety two minute period sinusoid in the 1389 observation. There has been no correlation found to any HSP engineering telemetry. The HSP ODS radiator skin temperture exhibits a similar orbital period but it is not in phase. Some of the FGS temperature variations are in phase with the HSP 1389 SCP data.
- 2. The missing packets in the 1383 Crab Pulsar data were eventually corrected. The problem was somewhere in the ground processing of the large files involved in this test. There were no missing packets in the UV observation of the Crab Pulsar in HSP GTO 1101.

HSP HSTAR status is detailed in Appendix C

4.7 End of SV Status and Liens

All basic HSP functions have been verified and all are working properly as of the end of the SV period. Fine alignment of the HSP prism apertures (3396) and the instrumental polarization test (1386) remain to be completed and analyzed.

No reasonable mechanism is available for dumping the HSP memory and getting the resulting science data in electronic form. The bus directory memory pages require special procedures to dump. The single event upset events (two so far in the OV period) have demonstrated the continuing need to have a straightforward means to dump and check the HSP memory including the bus director memory. As of the end of SV, an effort is underway to create standard procedures to perform this operation and to provide FITS files of the resulting data.

The commanding change to provide for resetting the frame count during a data collection is needed to restore full HSP capability. At this time our understanding is that it will be done, but it has low priority, and cannot be expected any sooner than late summer 1992.

The Crab Pulsar (1383 and 1101) observations produced such large amounts of data that the normal PODPS processing was overwhelmed. Raw data were provided (.pkx files) and proved to be straightforward to read and reduce.

4.8 Contract End Item (CEI) Specifications Verification Status

The following are the HSP CEI specifications and their current verification status:

4.8.1 Wavelength Range

Total instrument quantum efficiency excluding the photomultiplier tube will exceed 1% over the entire range 120 to 660 nm and will reach a maximum of no less than 9% at 400nm. Total instrument quantum efficiency of the photomultiplier tube will exceed 1% over the entire range 600 to 870 nm. Useful sensitivity for polarimetry will be achieved over the interval 210 to 300 nm.

The most conservative interpretation of the results from test 2912 leads to the overall quantum eficiency for the HSP shown in the following table

filter	Peak filter transmission	HSP QE %
f135w	.126	0.04
f218n	.354	0.71
f220w	.354	0.60
f145m	.134	0.05
f184w	.316	0.43
f248m	.354	0.69
f278n	.170	0.37
f284m	.316	0.53
f551w	.355	0.17

HSP does not meet this specification for several reasons: about half of the stellar flux is lost at the one arcsecond apertures because of the HST aberrated images; the VIS detector sensitivity dropped since prelaunch calibrations; and probably other (unknown) causes.

4.8.2 Spectral Resolution

The HSP spectral resolution of the image dissector tubes shall be that of the wavelength filters selected, and these filters shall have bandpasses covering the wavelength interval 120 to 660 nm. One filter with a bandpass selected between 800 and 900 nm shall be used on the photomultiplier tube.

This requirement was satisfied in the design of the HSP and required no specific verification.

4.8.3 Angular Field of view and resolution

The apertures available on each dissector shall be nominally 0.4, 1.0 and 10 arc sec. The apertures on the photomultiplier tube shall be as necessary to allow useful observations of stellar occultations.

The apertures are determined by the aperture plates which were verified in the design and fabrication phases.

4.8.4 Dynamic Range

The HSP shall be able to measure the intensity of astronomical point sources over a range of intensity of 10^8 with a departure from linearity of response as specified in 4.8.7.

Several stars were observed in 1385, 1474, and 3382 with the V filter and established the linearity of the HSP. The range in brightnesses in these observations was 1000 (the range of V was 5.28 to 12.79) and the linearity calculated to be 0.62% or about 6 mMag. The errors are probably dominated by effects external to the instrument, in particular pointing errors and jitter. These combned with the large HST images have made it impossible to do the high precision photometry we had intended with the HSP.

4.8.5 Signal to Noise Ratio

The HSP shall have a signal to noise ratio > 10 which shall be attainable for a visual band observation of a point source of visual apparent magnitude equal to 24 after a 2000 second integration time.

The signal to noise ratio was calculated with the HSP simulator for a 2000 second observation of a 24th magnitude A0 star in all HSP filters using a one arc second aperture. The resulting signal to noise ratio exceeds the requirement for most filters. The accuracy of the HSP simulator has been verified using OV and SV observations.

Targe	t: A0 (T=	9900, B-	V=0.0491489) M(5556)=24	4 E(B-V)=0 z	=0 LAMBDA	FLUX		
det	filt	aper	tstar	tsky	nstar	nsky	ndark	CVC(nA)	SNR
POL	F160LP	0.65-C	2.00e+03	0.00e+00	1.37e+03	2.30e+03	1.00e+02	2.93e-04	61.36
POL	F216M	POL0	2.00e+03	0.00e + 00	1.67e + 00	1.50e-01	1.00e+02	1.46e-07	10.09
POL	F237M	POL ₀	2.00e+03	0.00e + 00	3.64e + 00	3.92e-01	1.00e+02	3.22e-07	10.20
POL	F277M	POL ₀	2.00e+03	0.00e + 00	1.19e + 01	3.20e+00	1.00e + 02	1.21e-06	10.73
POL	F327M	POLO	2.00e+03	0.00e + 00	1.30e+01	6.89e + 00	1.00e+02	1.59e-06	10.95
UV1	F122M	1.0-A	2.00e+03	0.00e + 00	2.66e-01	1.01e-02	1.00e + 04	2.21e-08	100.00
UVI	F135W	1.0-A	2.00e+03	0.00e + 00	4.07e-01	1.04e-02	1.00e + 04	3.34e-08	100.00
UV1	F140LP	1.0-C	2.00e+03	0.00e + 00	2.43e + 02	3.23e + 01	1.00e + 04	2.20e-05	101.37
UV1	F145M	1.0-A	2.00e+03	0.00e + 00	2.91e-01	2.29e-03	1.00e+04	2.35e-08	100.00
UV1	F152M	1.0-A	2.00e+03	0.00e + 00	6.17e-01	6.5 <u>2e-03</u>	1.00e + 04	4.99e-08	100.00
UVI	F184W	1.0-A	2.00e + 03	0.00e + 00	1.39e+01	3.83e-01	1.00e + 04	1.14e-06	100.07
UV1	F218M	1.0-A	2.00e+03	0.00e + 00	1.36e+01	6.67e-01	1.00e + 04	1.14e-06	100.07
UV1	F220W	1.0-A	2.00e+03	0.00e + 00	2.74e+01	1.61e+00	1.00e+04	2.32e-06	100.15
UV1	F240W	1.0-A	2.00e+03	0.00e + 00	6.57e + 01	6.74e + 00	1.00e+04	5.80e-06	100.36
UV1	F248M	1.0-A	2.00e+03	0.00e + 00	3.55e+01	4.19e + 00	1.00e+04	3.17e-06	100.20
UV1	F278N	1.0-A	2.00e+03	0.00e + 00	6.58e + 00	1.35e + 00	1.00e + 04	6.34e-07	100.04
UV1	F284M	1.0-A	2.00e+03	0.00e + 00	2.74e + 01	5.76e + 00	1.00e+04	2.65e-06	100.17
VIS	F160LP	1.0-A	2.00e+03	0.00e + 00	1.54e+03	2.62e+03	6.00e+01	3.33e-04	64.98
VIS	F184W	1.0-A	2.00e+03	0.00e + 00	1.39e+01	3.97e-01	6.00e+01	1.14e-06	8.62
VIS	F240W	1.0-A	2.00e+03	0.00e + 00	7.48e + 01	8.91e+00	6.00e + 01	6.70e-06	11.99
VIS	F262M	1.0-A	2.00e+03	0.00e + 00	3.60e+01	6.07e+00	6.00e+01	3.37e-06	10.10
VIS	F320N	1.0-A	2.00e+03	0.00e + 00	2.51e+01	1.79e + 01	6.00e+01	3.44e-06	10.15
VIS	F355M	1.0-A	2.00e+03	0.00e+ <u>00</u>	2.82e+01	2.12e+01	6.00e+01	3.96e-06	10.46
VIS	F400LP	1.0-A	2.00e+03	0.00e+00	7.84e + 02	2.12e+03	6.00e+01	2.32e-04	54.43
VIS	F419N	1.0-A	2.00e+03	0.00e + 00	3.77e + 01	5.10e + 01	6.00e+01	7.09e-06	12.19
VIS	F450W	1.0-A	2.00e+03	0.00e + 00	4.36e+02	7.08e+02	6.00e+01	9.15e-05	34.70
VIS	F551W	1.0-A	2.00e+03	0.00e + 00	1.03e+02	3.11e+02	6.00e + 01	3.31e-05	21.78
VIS	F620W	1.0-A	2.00e+03	0.00e + 00	1.24e + 02	6.23e + 02	6.00e+01	5.98e-05	28.42
UV2	F122M	1.0-A	2.00e+03	0.00e+00	2.66e-01	1.01e-02	2.00e+03	2.21e-08	44.72
UV2	F140LP	1.0-C	2.00e+03	0.00e + 00	2.43e+02	3.23e+01	2.00e+03	2.20e-05	47.70
UV2	F145M	1.0-A	2.00e+03	0.00e+00	2.91e-01	2.29e-03	2.00e+03	2.35e-08	44.72
UV2	F152M	1.0-A	2.00e+03	0.00e + 00	6.17e-01	6.52e-03	2.00e+03	4.99e-08	44.73
UV2	F160LP	1.0-A	2.00e+03	0.00e + 00	2.39e+02	3.21e+01	2.00e+03	2.17e-05	47.66
UV2	F179M	1.0-A	2.00e+03	0.00e + 00	7.28e+00	4.80e-01	2.00e+03	6.21e-07	44.81
UV2	F184W	1.0-A	2.00e+03	0.00e + 00	1.39e+01	3.83e-01	2.00e+03	1.14e-06	44.88
UV2	F218M	1.0-A	2.00e+03	0.00e + 00	1.36e+01	6.67e-01	2.00e+03	1.14e-06	44.88
UV2	F248M	1.0-A	2.00e+03	0.00e + 00	3.55e+01	4.19e+00	2.00e+03	3.17e-06	45.16
UV2	F262M	1.0-C	2.00e+03	0.00e + 00	6.45e + 00	1.03e+00	2.00e+03	5.98e-07	44.80
UV2	F278N	1.0-A	2.00e+03	0.00e + 00	6.58e + 00	1.35e+00	2.00e+03	6.34e-07	44.81
UV2	F284M	1.0-A	2.00e+03	0.00e+00	2.74e + 01	5.76e+00	2.00e+03	2.65e-06	45.09
PMT	F750W	1.0-A	2.00e+03	0.00e+00	1.97e+02	1.18e+03	8.00e+05	1.10e-04	895.20

4.8.6 Maximum signal to noise ratio

The maximum signal to noise ratio attainable in a single exposure shall be at least 4000.

There are no observations to date that demonstrate this requirement. The longest observation so far, 1389, was 5.5 hours and acheived a signal to noise ratio of 163. Correcting for the pointing and orbital effects, one can show a signal to noise ratio of 1372. This requirement would be difficult to demonstrate given the present jitter and pointing performance and no specific test is planned to collect the required data.

4.8.7 Relative Photometric Accuracy

The brightness ratio of any two signals within the first six decades of the dynamic range, at a given wavelength will be accurate to 0.2% or to 30% of the combined statistical photon noise, whichever is larger.

We do not have data with which to test this specification, but it is unlikely that given the present cirumstances the accuracy could be any better than the 0.6% given in 4.8.4.

4.8.8 Time Resolution

Time resolution shall be as fast as one millisecond, with integration times selectable to a resolution of one microsecond.

This requirement was satisfied in the design and has been verified repeatedly in operations.

4.8.9 In Flight Calibration

The HSP in flight calibration shall rely on internal or astronomical sources as necessary to produce required photometric accuracy.

There are internal test lamps in the HSP intended for ground tests only. All in flight calibrations rely on actual targets.

4.8.10 Thermal Control

The HSP thermal control system will insure the HSP remains within the acceptable operations temperature limits for all portions of the mission.

The HSP thermal control system has operated as expected since launch and has maintained the desired limits.

4.8.11 Engineering Data and Safing Provisions

The HSP instrumentation shall provide the necessary engineering data to enable monitoring and evaluation of the status of the instrument. The instrument must provide continuous on board, real time monitoring of critical elements, and the ability to switch the instrument to a safe condition without real time ground commands should hazardous conditions exist.

The HSP engineering data provides the required information. The difficulty in using the engineering data is that the ground system was not designed to maintain engineering data. Other than real time displays, the engineering data is not well maintained and archiving is chaotic.

5. Modifications and Recommendations

There were no major modifications to operations procedures arising from HSP SV results. The time required for HST step and dwell scans is now understood as a result of the 3377 experience. Data processing has been updated so that the packets missing in original 1383 data have been restored.

5.1 Trend Monitoring Recommendations

There are no trend monitoring procedures for the HSP engineering data. However, any significant or sudden unexplained change in temperatures, voltages, or other parameters should be investigated. Any limit exceeded also should be investigated. Detector parameters are monitored as part of the on-going HSP calibration plan.

It is important to characterize and monitor the sensitivity of all HSP detectors. The planned periodic calibration tests will provide the required data to quantify the loss of sensitivity and monitor any future changes.

The table below shows the HSP total number of on and off cycles and times and the average number of minutes on per cycle for the HSP detectors (HVPS) and support electronics. The Science Tape Recorder is also listed. Note the high number of cycles and low time per cycle of the tape recorder compared to HSP detectors. The data represents the totals from all SMSs from launch through the 92139 SMS. The individual SMS statistics are listed in Appendix F.

Item	#on	#off	on time min	
STR	23040	23040	133687.9	5.8
Det1	53	53	15496.4	292.4
	91	91	23728.4	260.8
Det2	86	86	28918.3	336.3
Det3	68	68	18221.2	268.0
Det4	28	28	5883.9	210.1
Det5	50	50 50	14735.5	294.7
HV1		90	22481.0	249.8
HV2	90	85	27724.7	326.2
HV3	85	68	16719.4	245.9
HV4	68		4522.9	161.5
HV5	28	28	4322.7	101.5

5.2 Instrument Operational Recommendations

There are several issues unresolved as of the end of the OV period that still remain so as of this writing. The following actions should be taken before the close of the SV/GTO period:

- 1. The capability to reset the frame counter should be implemented to allow the HSP to function with the 32 kb link to the tape recorder.
- 2. The remaining capabilities of the HSP thermal control system should be exercised. Should there be need to make changes in standard operating procedures, for example to conserve power, the change could be made quickly and with low risk.
- 3. The capability to dump HSP memory, including the bus director memory, and to provide FITS files of the resulting dump data should be implemented as soon as possible. If there are future single event upsets, or other anomalies, it will be important to have this capability to enable timely analysis of the problem.
- 4. The characterization tests of the POL tube needs to be completed so that the HSP capability for polarization measurements can be established.

- 5. FGS performance still has unexplained characteristics. The acquisitions for 1092 where the same target was acquired once or twice per week for over four months shows some interesting patterns. These data need to be further analyzed and communicated.
- 8. The sensitivity of the VIS tube needs to be closely monitored.

5.3 Conclusions & Lessons Learned

Perhaps the most significant lesson learned in the SV period was the importance of communicating information between the various HST project elements and participants. As this is written, it is not clear what caused the anomalies in the HSP 1389 data, taken in August 1991. Some of the possible causes have major impact beyond the HSP and yet there still does not seem to be a project-wide mechanism for dealing with the problem. A philosophy similar to that used in the GIDEP (Government-Industry Data Exchange Program) ALERT program would seem to have application in the HST project. In a project so large, it is difficult to determine just who may be affected by a problem and who may have relevant information to help solve it. In that case, it would seem logical to try to disseminate as much information as possible. Yet, we find that even within relatively small groups there seems to be a reluctance to communicate such information. The price for this could be huge. Consider the potential implications for follow-on instruments or COSTAR if the cause of the 1389 anomaly is SI motion greater than presently thought possible.

Other significant lessons learned, previously cited, include:

The OV/SV program has demonstrated that the ground system lacks the flexibility and capability to respond reasonably to normal verification activities.

The pre-launch test design and schedule were too success oriented. Tests had to be broken into smaller units to prevent large losses of spacecraft time in the event of problems. Tests were scheduled on the assumption that needed spacecraft support capabilities would exist by the time the test was executed. Often these assumptions were incorrect and led to additional test failures, loss of spacecraft time, and additional delays in implementing improved tests.

The OV/SV program has shown that efficient operations depend on being able to adjust operations procedures to meet the conditions actually encountered that may be different than anticipated before launch.

Appendices

- A. HSP OV, SV, & GTO Proposal Numbers and Names

 The HSP proposal numbers and names are listed and cross-referenced where proposals are continuations or modifications of earlier proposals
- B. HST Flight SMS sequence
 The SMS numbers and revision letters of the flight sms's actually executed are listed
- C. HSP HSTARS
 The numbers, names, and disposition summary of HSP related HSTARs are listed
- D. HSP Data Collection Timing
 The papers written by Mark Werner describing the HSP data collection timing considerations are included in this appendix.
- E. Filter, Aperture, Proposal, Target, and Date Index
 This appendix lists all HSP observations of stellar targets sorted by filter, aperture, target, proposal, and date.
- F. HSP & STR Operating Times & Cycles

 The number of on and off cycles, the total on time, and average on time in minutes is listed for the HSP detectors, detector electronics, and the science tape recorder.
- G. HSP 1092 Acquisition Data
 The acquisition positions of the target of 1092, Z Chamaeleontis, are discussed, listed, and charted.
- H. SIAF Values
 The HSP V2/V3 aperture positions in the PDB in arc seconds.
- I. SICF Values
 The HSP aperture locations in HSP detector deflection coordinates
- J. SMS Activity Timelines
 The parser timeline charts of selected HST & HSP activities for each SMS is included in this appendix.
- K. HSP Detector Maps Charts of all HSP filters and apertures with various other useful information
- L. HSP Pulsar Timing and Light Curve Reduction
 The paper by Jeff Percival describing the 1383 observations of the Crab Pulsar, data reduction, and analysis.

Appendix A - HSP OV, SV. & GTO proposal numbers and names

OV, SV, SV-delta, and GTO HSP proposals by proposal number: version 1.23 4/7/92

"pgm" c	lasses: GO GTO GTO+ OV SAO SV SVD /X	Guest Observer Guaranteed Time Observation Guaranteed Time Observation (Augmentation time) Orbital Verification Science Assessment Observation Science Verification Science Verification (Delta plan) Cancelled
prop	pgm	name
		Opportunity occultations by small bodies (3319,4015)
1079	GTO	The size and composition of planetary ring particles(3373)
1080	GTO	E-t dynamics (3371, 3375)
1081	GTO	Helium abundances in Jovian planet upper atmospheres (3354)
1082	GTO	Dynamics of planetary upper atmospheres (3376)
1083	GTO	Lunar occultations with the HST
1084	GTO	Rotation periods of cometary nuclei
1085		Do Neptune and Pluto have rings? (4076)
1086	GTO	Eclipses and occultations by Pluto and Charon
1087	GTO	Small satellites in the Uranian system
1088	GTO	Captured satellites of the Jovian planets
1089	GTO	Periodic variations in DQ Herculis stars (3257)
1090 1091	GTO	ITV pulsations from X-ray pulsars
1091	GTO	Eclipses of cataclysmic variable stars (3238)
1092	GTO	Observations of 77 Ceti stars
1094	GTO	Search for optical variability assoc. with black holes (3233)
1095	GTO	Variability of high luminosity stars (3232,3920)
1096	GTO	Gravitational lenses I (3250.4034)
1097	GTO	Y-ray binaries (2952,2958,3234,3249,3256,4036)
1098	GTO	Remnant stars in SNRs (2953,3251,4037,4083)
1099	GTO	Active galactic nuclei (3248)
1100	GTO/2	Evolution of the nuclei of planetary nebulae
1101	GTO	Optical and ITV observations of radio pulsars (3233)
1102	GTO	TIVE fight and notar variations in Bela Ceptici Stats
1103	GTO	Vis/IV light curves of short period RR-Lyrae stars (3234)
1104	GTO	High speed photometry of GBS 0526-66
1379	OV	Detector dark count test
1380	OV	MSC Focus and aperture mapping I (1526,3093,3119,3120)
1381	SV	Target acquisition test (3071-3074)
1382	OV	Pulse height distribution test
1383	SV	Time resolved photometry Color transformation test (2769,2770,3378,3425)
1384		Photometric performance test (2382)
1385		Instrumental polarization test
1386		Stokes parameter test
1387		Short-term photometric stability
1389		Gravitational lenses II (4034)
1391		Photometric performance test
1474		Command response test
1499	OV	Command response was

```
Detector data test
        OV
1500
                Data integrity test
        OV
1501
                High voltage turn-on test
        OV
1502
                MSC coarse FGS/HSP alignment II
        OV
                MSC fine FGS/HSP alignment III (1524,2948-51,3140)
1503
        OV
                MSC fine FGS/HSP alignment III (1504,2948-51,3140)
1504
        SV
1524
                MSC aperture mapping I (UV) (1380,3093,3119,3120)
        SV
1526
                Memory dump
        OV
2113
                Safe-to-oldhold
                Constraints on continuum models of active nuclei
2201
        OV
        GO
2608
                RIU polling on/off test
                Pulse height distribution test
Color transformation test (1384,2770,3378,3425)
        SV
2749
        SVD
2768
        SV
2769
                Color transformation test (1384,2769,3378,3425)
                Color transformation test (120).

Stellar occultation by planetary rings

Stellar occultation by dark lunar limb
        SVD
2770
        SV
2771
        SVD
                 Stellar occultation by planetary atmospheres
2772
        SVD
2773
                 Photometric calibration
                 MSC fine FGS/HSP alignment III UV2 (1504,2949,2950,2951,3140)
        SV
2912
                 MSC fine FGS/HSP alignment III UV1 (1504,2948,2950,2951,3140)
2948
         SV
         SV
                 MSC fine FGS/HSP alignment III VIS (1504,2948,2949,2951,3140)
2949
2950
         SV
                 MSC fine FGS/HSP alignment III POL (1504,2948,2949,2950,3140)
 2951
         SV
                 X-ray binaries (1097,2958,3234,3249,3256,4036)
         GTO
 2952
                 Remnant stars in SNRs (1098,3251,4037,4083)
         GTO/X
 2953
                 X-ray binaries (1097,2952,3234,3249,3256,4036)
 2958
         GTO
                 Effect of centering errors on HSP photometry
         SAO
 3006
                 Effect of jitter on HSP photometry
         SAO
 3007
                  10.2/Bright earth test
         OV
 3069
                  Target acquisition test POL (1381)
         SV
                 Target acquisition test UV1 (1381)
Target acquisition test UV2 (1381)
Target acquisition test VIS (1381)
 3071
         SV
 3072
         SV
 3073
         SV
 3074
                  MSC aperture mapping I VIS (1380,1526,3119,3120)
 3093
          SV
                  MSC aperture mapping I VIS visit 2 (1380,1526,3093,3120)
          SV
  3119
                  MSC aperture mapping I VIS visit 3 (1380,1526,3093,3119)
          SV
  3120
                  The Secret Stanley Test
          SV
  3135
                  MSC fine FGS/HSP alignment III (nelson plan) (1504,1524,2948-51)
          SV
  3140
                  MSC aperture mapping II/III (jwp plan) (3233,3362,3363)
          OV
  3152
                  MSC aperture mapping II/III (jwp plan) (3152,3362,3363)
          OV
  3233
                  X-ray binaries (1097,2952,2958,3249,3256,4036)
          GTO
  3234
                  Eclipses of cataclysmic variable stars (1092)
          GTO
  3238
                  Active galactic nuclei (1099)
          GTO
  3248
                  X-ray binaries (1097,2952,2958,3234,3256,4036)
          GTO
  3249
                  Gravitational lenses I (1096,4034)
  3250
          GTO
                  Remnant stars in SNRs (1098,2953,4037,4083)
  3251
          GTO
                   Variability of high luminosity stars (1095,3926)
  3252
          GTO
                   Optical and UV observations of radio pulsars (1101)
  3253
          GTO
                   Vis/UV light curves of short period RR-Lyrae stars (1103)
   3254
           GTO
                   Search for optical variability assoc. with black holes (1094)
           GTO
   3255
                   X-ray binaries (1097,2952,2958,3234,3249,4036)
   3256
           GTO
                   Periodic variations in DQ Herculis stars (1090)
           GTO
   3257
                   Opportunity occultations by small bodies (1079,4015)
           GTO
   3319
                   Gravitational Lenses II (1391)
           GTO
   3321
                   Helium abundances in Jovian planet upper atmospheres (1082)
                   MSC aperture mapping II/III (jwp plan) visit 2 (3152,3233,3363)
           GTO
   3354
           OV
                   MSC aperture mapping II/III (jwp plan) visit 3 (3152,3233,3362)
   3362
           OV
   3363
                   Saturn ring dynamics (later cycles, 1081, 3375)
           GTO
   3371
                   The size and composition of planetary ring particles (1080)
           GTO
   3373
```

3375	GTO	Saturn ring dynamics (cycle 1, 1081, 33/3)
3376	GTO	Dynamics of planetary upper atmospheres (1083)
3377	SV	Pol detector test
3378	SV	Color transformation test II (1384,2769,2770,3425)
3382	SV	Photometric performance test (faint end) (1385)
3383	OLT	The STScI jitter test
3425	SV	Color transformation test VIS (1384,2769,2770,3378)
3926	GTO	Variability of high luminosity stars, retake 0 (1095,3252)
3985	SV	Instrumental polarization test (revised)
3996	SV	Prism mode test
4015	GTO	Opportunity occultations by small bodies (1079,3319)
4034	GTO+	Gravitational lenses I & II (1096,3250,1391)
4036	GTO+	X-ray binaries (1097,2952,2958,3234,3249,3256)
4037	GTO+	Remnant stars in SNRs (1098,2953,3251,4083)
4076	GTO	Do Neptune and Pluto have rings? (1086)
4083	GTO	Remnant stars in SNRs (1098,2953,3251,4037)

≡

Appendix B - HST Flight SMS sequence

The flight SMS sequence is listed below for the period May 6, 1991 through July 19, 1992. Interruptions in the "in continuity with", usually associated with safemode recoveries, are indicated by ******.

neal of the appendiction of the contract of the second

****	920767b4
	92083769
911276a2r	920907bar
911337c8	920977f6r
911407ah	921047d2
911477c3	921117b6
911547d3	921187e4
911617ca	921257e4
911687bg	921327c4
911757b1	921397d1
911827af	921467d9
911897al	921537a5
911967d4	921607c1
912037acr	921677bf
912107b3	921747bc
912177d5r	
912247c7	*****
912317e2	921811d4
912387c1	921826f1
912457d5	921887d1
912527e5	921957c2
912597b1	
912667c4	
912737c6	
912807ai	
912877d1	
912947b4	
913017b5	
913087d4	
913157aa	
913227c4	
913297b7	
913367e3	
913437cd	

913434b8г	
913434061 913507dg	
913577b2	
913647e7	
920067c7	
92007c7 920137d2	
920207aa	
920277ab	
920347b5	
920417b6	
92041760 920487ah	
920557e1	
920627c2	

920697ci

Appendix C - HSTAR STATUS

HSP HSTAR dispositions as of 01-13-92:

HSTAR #	Description	Disposition	Due	ORG
010	HSP Structure Temp VTPMTPB	CLOSED	04-29-90	
205	HSP 2113 Mem. Dump Miscompares 1097	STGS DR 07-19-90	HSP	
207	HSP High Volt Out of Limit	CLOSED	06-19-90	HSP
232	DCF Missing Data Packet for HSP 1500	CLOSED	06-07-90	LMSC
242	HSP 2113 Mem. Dump Miscompares	STGS DR 07-19-90	PORTS	
298	1097 HSP High Volt Mon Out of Limit	CLOSED	06-19-90	MOC
369	HSP UDL and SHPs Missing	CLOSED	06-07-90	LMSC
401	STR P/B of HSP Data Missing SHPS and UDLS	CLOSED	08-07-90	LMSC
529	HSP Data Missing from STR Dump	CLOSED	06-12-90	LMSC
530	HSP Data Missing from STR Dump	CLOSED	06-12-90	LMSC
574	Unexpected PMT Behavior in 1502 CLOSED	10-05-90	HSP	
578	HSP Data from STR Missing	CLOSED	06-14-90	STPG
579	SHP/UDL HSP Data Missing from STR Dump	CLOSED	07-24-90	STPG
581	HSP Data Missing from STR Dump	CLOSED	07-24-90	MOC
672	Missing Calibration Files 1500	CLOSED	07-19-90	HSP
836	HSP Safed by BOP in 1380 Det 3	CLOSED	09-20-90	HSP
958	HSP Safing Recovery STBF Error	CLOSED	08-28-90	STSCI
998	AN Crossing Times Missing	CLOSED	08-17-90	STSCI
999	OSS Not Able to Print	CLOSED	08-17-90	OSS
1072	Tab Listing HSP Safed by BOP During	CLOSED	09-20-90	HSP
1112	1379 PMT VTPAFB1/VTPAFB2 Low Lim Violation	CLOSED	09-20-90	MOC
1115	VTPNP2C Low Lim Violation	CLOSED	09-20-90	MOC
1120	ESS Time Tag Error	CLOSED	ESS	
1145	HSP 1380 T Errors	CLOSED	09-26-90	HSP
1186	Third Dump of HSP STR Data Missing	CLOSED	09-14-90	

1267	OSS Data doesn't Match PODPS Data for HSP 1503 Det 4	CLOSED	01-17-91	STSCI
1358	HSP Clock Overflow Error	CLOSED	10-22-90	HSP
1476	HSP Data Contains Inversion	CLOSED	11-07-90	LMSC
1514	HSP Data Contains Multiple Inversions	CLOSED	11-21-90	LMSC
1537	Missed Target HSP	CLOSED	11-21-90	STPG
1555	Data Inversion In HSP Data	CLOSED	01-08-91	CD500
1662	HSP 1526 Failed Observations	OPEN	02-04-91	STSCI
1957	HSP TLM Error	CLOSED	02-20-91	MOC
1959	HSP 3140 Pointing Error Exceeds 2"	CLOSED	02-20-91	PCS
1967	VTERROR out of limits	CLOSED	02-20-91	HSP
2094	Incorrect Strats in PSTOLS HSPSBYHD & HSPHDSBY	CLOSED	MOC	
2169	Missing Bright Earth in HSP 3152	CLOSED	03-27-91	STScI
2208	HSP FITS Header Discrepancies	OPEN	04-09-91	STScI
2235	PDB Update Identified Post Final Mode	CLOSED	04-10-91	HSP
2274	Missing HSP Observations in 2948/2949	OPEN	05-03-91	STScI
2307	HSP SCP Collection Star Not Seen in Aperture	CLOSED	04-30-91	STPG
2317	Missing Obs in HSP 3152 POL	CLOSED	05-02-91	STPG
2329	Missing Obs in HSP 3007	CLOSED	05-07-91	STPG
2334	HSP Bus Dir Memory Not Dumped	OPEN	05-08-91	STScI
2343	HSP Error Frag	OPEN	05-09-91	MOC
2371	HSP Memdump Compare Needs Modification	OPEN	05-17-91	MOC
2408	BE of HSP Microprocessor Dump	REJ.	05-28-91	MOC
2420	HSP Obs Not Written to FTTS FMT Tape	OPEN	05-30-91	STScI
2471	No Target for HSP Program 1385	CLOSED	06-12-91	STScI
2484	Pointing Error >2" following Baseline GS Acq.	CLOSED	07-01-91	STScI
2485	Targets Not Seen In HSP 1385	CLOSED	06-14-91	STScI
2635	Missing Bright Earth HSP 3362	CLOSED	08-16-91	PCS

				08-19-91	PCS
2659	Bad HSP 2769 VIS Data Due to S/C Jitter	CLOSED			
2660	Inconclusive HSP 2769 Data Using AGK+81DZ66	CLOSED		08-19-91	STScI
2661	Missing Bright Earth in HSP	CLOSED		08-19-91	STScI
2681	HSP FITS HEADER KEYWORD	OPEN		08-22-91	STSCI
	PTSROFLG CALLED-	OPEN		09-03-91	STSCI
2697	HSP DATA LOSS DUE TO STR TAPE TRACK CHANGE			00 12 01	PCS
2733	HSP 1389 DATA DEGRADATION	OPEN		09-13-91	
2796	UNEXPLAINED PERIODIC EFFECT IN HSP 1389 SCI-	OPEN		10-01-91	SESD
2868	HSP DATA LOG AFTER OUTPUT CEASE	OPEN		10-25-91	STSCI
2869	OSS DISCARDED DATA FROM HSP OBSERVATION	OPEN		10-25-91	STSCI
2935	NO COMMANDING TO ENABLE HSP SCIENCE DATA IINTERFACE	CLOSED		01-15-92	STScI
2999	RANDOM SPIKES IN STR DUMP OF	OPEN		01-10-92	DOC
3041	HSP DATA BAD DATA PACKETS IN HSP 1383	OPEN		01-06-92	мос
HSTAR	Closures Submitted Since 11-20-91:				
HSTAR	Closure # Title	Current Status	Assignee	Due	Submitted
1959	HSP 3140 Pointing Error Exceeds 2"	Close	PCS	02-20-91	12-09-91
2274	Missing HSP Observations in 2948/2949	Open	STScI	05-03-91	11-20-91
2471	No Target for HSP Program 1385	Close	STScI	06-12-91	12-09-91
2484	Pointing Error >2" following Baseline GS Acq.	Close	STScI	07-01-91	12-09-91
2485	Targets Not Seen In HSP 1385	Close	STScI	06-14-91	12-09-91
2697	HSP DATA LOSS DUE TO STR TAPE TRACK CHANGE	Open	STSCI	09-03-91	12-19-91
<u>open</u>	HSP HSTARs as of 01-09-92:				
	Closure	Status	Assign	ee Due	Submitted
HSTA	R# Title	Status 	11331614	*****	
1662	HSP 1526 failed observations	Open	STScI	. 02-4-91	

2208	HSP FTTS Header Discrepancies	Open	STScI	04-09-91	
2274	Missing HSP Observations in 2948/2949	Open	STScI	05-03-91	11-20-91
2334	HSP Bus Dir Memory Not Dumped	Open	STScI	05-08-91	
2343	HSP Error Flag	Open	MOC	05-09-91	
2371	HSP Memdump Compare Needs Modification	Open	MOC	05-17-91	
2420	HSP Obs Not Written to FITS FMT Tape	Open	STScI	05-30-91	
2681	HSP FTTS HEADER KEYWORD PTSROFLG CALLED-	Open	STSCI	08-22-91	
2697	HSP DATA LOSS DUE TO STR TAPE TRACK CHANGE	Open	STSCI	09-03-91	12-19-91
2733	HSP 1389 DATA DEGRADATION	Open	PCS	09-13-91	
2796	UNEXPLAINED PERIODIC EFFECT IN HSP 1389 SCI data	Open	SESD	10-01-91	
2868	HSP DATA LOG AFTER OUTPUT CEASE	Open	STSCI	10-25-91	
2869	OSS DISCARDED DATA FROM HSP OBSERVATION	Open	STSCI	10-25-91	
2999	RANDOM SPIKES IN STR DUMP OF	Open HSP DATA	DOC	01-10-92	
3041	Bad Data Packets In HSP 1383	Open	MOC	01-06-92	

Appendix D - HSP Data Collection Timing

(A discussion of HSP data collection timing considerations by Mark Werner, December 1991)

The following is a complete discussion on Data Collection Timing for the HSP. This document will give the necessary information to allow you to calculate,

- 1) the data collection period,
- 2) the total time needed for a data collection,
- 3) the Words/Line (WPL), Lines/Frame (LPF), and Frames/Observation (FPO) for an observation.

The data collection period is a function of the mode, data format, integration time and delay time. The collection period is given as the amount of time needed to collect one sample of data. A sample of data may be one or more bytes of data. The total time for a data collection is a function of many variables. For this discussion, I will only give the user the basic information. This information will allow you to calculate the time with an accuracy of a few tenths of a second. Examples are given for each type of observation.

The total time needed for a data collection will be broken down for each type of observation.

- 1) Mode 1 Single Color Photometry (SCP)
- 2) Mode 2 Star Sky Photometry (SSP)
- 3) Mode 3 Area Scan (ARS)

The other parameters needed for an observation (WPL,LPF,FPO) are derived from the rules and a chart found in Appendix D-2. Appendix D-2 contains the pertinent information about choosing these parameters based on the tape recorder speed. There is also new information about the method to allow data collections to have more than 255 frames. Appendix C contains some extra information about the various set up times.

Mode 1 - Single Color Photometry (SCP)

The total time for an observation (i.e. collect the data) is given by:

$$t_{SCP-TOT} = t_A + t_B + t_C + t_D + (t_{FS/LS} * FPO) + (N_{TOT} * T_C)$$

Where:

$$t_{\Delta}$$
 = setup time A , 28.5 - 34.5 ms

$$t_B$$
 = setup time B , 11.2 - 49.6 ms if [BAT(BDEXF)]= 1 0 if [BAT(BDEXF)]= 0 (i.e. special bus director programs)

$$t_C$$
 = setup time C , 1.0 - 2.0 ms

$$t_{D}^{-}$$
 = setup time D , 0 if [BAT(REQDET])=[BAT(SKYDET)], 24.0 ms if not equal.

 $T_C = data collection period (time/sample) (see Appendix D-1)$

N_{TOT} = total number of samples/observation

- = (WPL * LPF * FPO * 2 bytes/word) / X (bytes/sample)
- = (words/line*lines/frame*frames/obs.* 2 bytes/word)/(bytes/sample)

X is a function of the data format chosen.

Data Format	X
1	1
2	2
3	3
4	2
7	5

The CU/SDF should be ready to receive data after the mode command is sent to the system controller for the minimum times for $t_A + t_B + t_C + t_{FS/LS}$ plus the time needed to collect one line. The time to the first byte is given by (assuming t_D =0);

$$t_{tfb} = t_{Amin} + t_{Bmin} + t_{Cmin} + t_{FS/LSmin} + (WPL*2/X * T_C)$$

The CU/SDF should remain enabled until the time given by the maximum times for $t_A + t_B + t_C + (t_{FS/LS} * FPO)$ plus $(N_{TOT} * T_C)$ plus the time needed to output the last line (i.e. WPL * 16.5 usec/word **). The time to the last byte is given by (assuming t_D =0);

$$t_{\text{llb}} = t_{\text{Amax}} + t_{\text{Bmax}} + t_{\text{Cmax}} + (t_{\text{FS/LSmax}} + \text{FPO}) + (N_{\text{TOT}} + T_{\text{C}}) + \text{WPL} + 16.5 \text{ usec}$$

** See Timing notes is appendix D-3

Example:

An observation using data format 3 (longword) with an actual integration time of 53.71 usec (55 T_{bd}) and an actual delay of 22.46 usec (23 T_{bd}) is needed for 1800 seconds.

Questions

- 1) What WPL,LPF,FPO should be used?
- 2) What are the programmed integration and delay times?
- 3) When can you expect the first data?
- 4) When can you expect the last data?

The first item to consider is the programmed integration and delay times that will give you the correct times. Using Appendix A you obtain the equations for SCP. The data collection period is given by;

$$T_C = INT_{tot} + DEL$$

Where: $INT_{tot} = [BAT(INTTIMx)] + IOT$, IOT from the table = 35

$$DEL = [BAT(DELINTx)] + 1T_{bd}$$

$$T_C = (20+35) + (22+1)$$

= 78 T_{bd}
= 78 * 976.5625 ns
= 76.17 usec

You need to normalize to Ticks/byte to use the table in Appendix D-2.

$$78 T_{bd} / 3 \text{ bytes} = 26 T_{bd} / \text{ byte}$$

This implies WPL = 227 (from Appendix D-2), but (227*2)/3 is not an integer. The next smaller value of WPL that satisfies an integral number of samples in a line is 225.

One line of data is collected in;

Time/line =
$$(225 * 2)/3 * T_C sec. = 11.4255 ms.$$

The total collection time desired is 1800 sec.

$$1800 \text{ sec} = 11.4255 \text{ ms * Y}$$

Y = 157,542.34

Using the rules from Appendix D-2, we choose,

The first data can be expected at;

Time to 1st byte = 28.5 ms + 11.2 ms + 1 ms + 1 ms + 11.42 ms = 53.12 ms.

The last data can be expected at;

Time to last byte =
$$34.5 \text{ ms} + 49.6 \text{ ms} + 2.0 \text{ms} + (3 * 2.0) \text{ ms} + (225*52,514*3*2)/3 * 76.17 usec + (225* 16.5 usec) = $1800.0919 \text{ sec}$$$

Answers:

- 1) 225 WPL, 52,514 LPF, 3 FPO,
- 2) [BAT(INTTIMx)] = 20, [BAT(DELINTx)] = 22
- 3) First byte at 53.12 ms.
- 4) Last byte at 1800.092 seconds.

Mode 2 - Star Sky Photometry (SSP)

The total time for an observation (i.e. collect the data) is given by:

$$t_{SSP-TOT} = t_A + t_B + t_C + t_D + (t_{FS/LS} * FPO) + (N_{TOT} * T_C)$$

Where:

 t_A = setup time A, 28.5 - 34.5 ms

 $t_{\rm p}^{}=$ setup time B , 20.2 - 72.8 ms if [BAT(BDEXF)]= 1

0 if [BAT(BDEXF)]= 0 (i.e. special bus director programs)

 $t_C = \text{setup time C}$, 1.0 - 2.0 ms

t_D = setup time D , 0 if [BAT(REQDET])=[BAT(SKYDET)] (i.e. 1 detector star sky) 24.0 ms for 2 detector star sky.

t_{FS/LS} = frame start to line start delay, 1-2 ms/frame **

 $T_C = data collection period (time/sample) (see Appendix A)$

 $N_{\overline{TOT}}$ = total number of samples/observation = (WPL * LPF * FPO * 2 bytes/word) / 2X (bytes/sample)

Note: 2X is needed in the above equation for SSP. An equal amount of data is collected from each detector. T_C takes into account the timing difference between 1 and 2 detector SSP. X is a function of the data format chosen.

Data Format	X
1	1
2	2
3	3
4	2
7	5

The CU/SDF should be ready to receive data after the mode command is sent to the system controller for the minimum times for $t_A + t_B + t_C + t_{FS/LS}$ plus the time needed to collect one line [i.e. (WPL*2)/X * T_C]. The time to the first byte is given by (assuming 1 detector SSP);

$$t_{tfb} = t_{Amin} + t_{Bmin} + t_{Cmin} + t_{FS/LSmin} + (WPL*2/2X * T_C)$$

If 2 detector SSP is used, insert t_D (of 24.0 ms) in the above equation.

The CU/SDF should remain enabled until the time given by the maximum times for $t_A + t_B + t_C + (t_{FS/LS} * FPO)$ plus $(N_{TOT} * T_C)$ plus the time needed to output the last line (i.e. WPL * 16.5 usec/word **). The time to the last byte is given by(assuming 1 detector SSP);

$$t_{\text{llb}} = t_{\text{Amax}} + t_{\text{Bmax}} + t_{\text{Cmax}} + (t_{\text{FS/LSmax}} + t_{\text{FS/LSmax}}) + (N_{\text{TOT}} + T_{\text{C}}) + WPL + 16.5 \text{ usec}$$

If 2 detector SSP is used, insert t_D (of 24.0 ms) in the above equation.

** See Timing notes is appendix D-3

Example:

An observation using data format 4 (alog) with a time between analog samples of 209 T_{bd} is needed for a 600 seconds, using 2 detectors.

Questions

- 1) What WPL,LPF,FPO should be used?
- 2) What are the programmed integration and delay times?
- 3) When can you expect the first data?
- 4) When can you expect the last data?

The first item to consider is the programmed integration time. Using Appendix D-1 you obtain the equations for SSP, 2 detector. The data collection period is given by;

$$T_C = INT_{tot} + DEL$$

Where: $INT_{tot} = [BAT(INTTIMx)] + IOT$, IOT from the table = 156 DEL = 0, for data format 4. (See Note 1, appendix D-1)

$$T_C = (156+53) = 209 T_{bd} = 209 * 976.5625 ns = 204.1 usec$$

You need to normalize to Ticks/byte to use the table in Appendix D-2.

$$209 T_{bd} / (2 Det. * 2 bytes/Det.) = 52.25 T_{bd} / byte$$

The conservative approach rounds up to the next integer value (i.e. 53). This implies WPL = 91 (from Appendix B).

But, 91 WPL does not give an integer number of samples/line. The next smaller value divisable by four is 90. This implies WPL = 90. One line of data is collected in;

Time/line = $(90 \text{ WPL*2 bytes/word})/(2*2 \text{ bytes/sample.})*T_C = 45 \text{ samples/line * }T_C \text{ sec/sample}$ = 9.1845 ms/line

The total collection time desired is 600 sec.

$$600 \sec = 9.1845 \text{ ms * Y}$$

Y = 65.327

Using the rules from Appendix D-2, we choose,

$$LPF = 65,327$$

 $FPO = 1$

The first data can be expected at;

Time to 1st byte = 28.5 ms + 20.2 ms + 1.0 ms + 24.0 ms + 1.0 ms + 9.1845 ms = 83.88 ms.

The last data can be expected at;

Time to last byte =
$$34.5 \text{ ms} + 72.8 \text{ ms} + 2.0 \text{ ms} + 24.0 \text{ ms} + 4.0 \text{ ms} + (90 * 65,327 * 1 * 2)/2 * 204.1 usec + (90 * 16.5 usec) = 600.132 sec$$

Answers:

1) 90 WPL, 65,327 LPF, 1 FPO,

Note: Half the data will be from the Star detector and half will be from the Sky detector

- 2) [BAT(INTTIMx)] = 53, [BAT(INTIMS)] = Don't care (i.e. only the requested detector integration time is used.
 - 3) First byte at 83.88 ms.
 - 4) Last byte at 600.132 seconds.

Mode 3 - Area Scan Photometry (ARS)

The nominal total time for an observation is given by:

$$t_{ARS-TOT} = t_A + t_B + t_{FS/LS} + (H_{pts} * V_{pts}) (t_{PDA} + t_{dpp} + t_{mv}) + (H_{pts} * V_{pts}) (NIPP * T_C)$$

Where:

$$t_A$$
 = setup time A , 5.7 - 12 ms

t_{FS/LS} = frame start to line start delay, 1-2 ms **

$$H_{pts} = [BAT(HPOINTS)]$$

$$V_{pts} = [BAT(VPOINTS)]$$

$$t_{PDA} = 24.0 \text{ ms}$$
 (See point 3 on the next page.)

$$t_{dpp} = [BAT(DELAYPT)]$$
 in ms

 $T_C = \text{data collection period (time/sample)}$ (see Appendix D-1)

BYTPS = NIPP * BPI (bytes/integration) gives bytes/XY point

The bytes/integration are a function of the data format chosen.

Data Format	X
1	1
2	2
3	3
4	2
7	5

Other restraints and important details;

- 1) One must also satisfy the relationship: $H_{pts} * V_{pts} * NIPP * BPI \le 1920$
- 2) For ARS data collections you MUST use only 1 LPF and 1 FPO.
- 3) If [BAT(REQDET)] does not equal [BAT(SKYDET)], insert $2*t_{PDA}$ for t_{PDA} in the above (i.e. $t_{ARS-TOT}$ =) equation.
- 4) The bus director is started for each XY point and runs long enough to collect BYTPS bytes of data. Think of ARS data collections as a number of SCP data collections strung together in rapid succession.
- 5) All the data for the area scan is collected before it is sent to the CU/SDF. Remember, only 1 LPF and 1 FPO is used. This also implies that an extra data ready is impossible for ARS.
 - 6) The term $(t_{\text{PDA}} + t_{\text{dpp}} + t_{\text{mv}})$ can be considered as the total delay between points. (i.e. $t_{\text{del_tot}} = t_{\text{PDA}} + t_{\text{dpp}} + t_{\text{mv}}$)
 - 7) The CU/SDF should be ready for data at time;

$$t_{tfb} = t_{Amin} + t_{Bmin} + t_{FS/LSmin} + (H_{pts} * V_{pts})(t_{PDA} + t_{dpp} + t_{mv}) + (H_{pts} * V_{pts}) (NIPP * T_{C}) - (H_{pts} * V_{pts}) * 2 ms$$

The last term in the above equation is due to the unknown exact times for t_{PDA} and t_{dpp} and stay enabled for a time: $t_{sth} = (t_{A_{max}} + t_{B_{max}} + t_{ES/I_{S_{max}}} + (H_{pts} + V_{pts})(t_{PDA} + t_{dpp} + t_{max})(t_{PDA} + t_{max})(t_{$

te:
$$t_{ilb} = (t_{Amax}^{+t}_{Bmax}^{+t}_{FS/LSmax}^{+t}_{pts}^{$$

- 8) The time order sequence of events for an ARS collection are;
 - a) transfer detector controller parameters (term t_{PDA})
 - b) delay for N ms (term t_{dpp})
 - c) collect data for current \overrightarrow{XY} point (term NIPP * T_C)
 - d) move data from temporary buffer to output buffer (and other code) (term t_{mv})
 - e) GOTO step a (if haven't taken all data)

f) output line of data

Example:

An area scan observation using;

- 1) data format 7 (all),
- 2) 10 horizontal points, 10 vertical points,
- 3) 2 integrations per point,
- 4) a desired integration time 1,024 T_{bd} (1 ms),
- 5) a delay between integrations of 256 T_{bd} (.25 ms),
- 6) a nominal delay between points of 50 ms
- 7) [BAT(REQDET)] = [BAT(SKYDET)] is required.

Questions:

- 1) What WPL,LPF,FPO should be used?
- 2) What are the programmed integration and delay times?
- 3) What is the programmed delay between points?
- 4) What is the nominal time for the observation
- 5) When can you expect the first data?
- 6) When can you expect the last data?

The first item to consider is the programmed integration and delay times. Using Appendix D-1 you obtain the equations for ARS. The data collection period is given by;

$$T_C = INT_{tot} + DEL$$

Where: $INT_{tot} = [BAT(INTTIMx)] + IOT$, IOT from the table = 159 DEL = $[BAT(DELINTx)] + IT_{bot}$

$$T_C = (865 + 159) + (255 + 1) = 1280 T_{bd} = 1280 * 976.5625 ns = 1.25 ms$$

The next item to consider is the WPL. The total number of points is: Total points = $H_{pts} * V_{pts} = 10 * 10$ = 100

The integrations per XY point is 2 and the data format is 7.

This gives the total number of bytes to be;

$$WPL = 1000 \text{ bytes} * 1 \text{ word/2 bytes} = 500 \text{ words}$$

The nominal delay between points desired is 50 ms. It is given by the equation;

$$t_{\text{del_tot}} = t_{\text{PDA}} + t_{\text{dpp}} + t_{\text{mv}}$$

we know
$$t_{PDA} = 24.0 \text{ ms}$$
, and

$$t_{mv} = (2 * 5 * 100 \text{ usec}) + 1.1 \text{ ms} = 2.1 \text{ ms}$$

 $50 \text{ ms} = 24.0 + 2.1 + x$
 $x = 23.9 \text{ ms}$

Rounding up we get x = 24.0

Note: You may round off in either direction.

The nominal time for an observation is;

$$t_{ARS-TOT} = 12.0 \text{ ms} + 49.6 \text{ ms} + 2.0 \text{ ms} + (100 * (24.0 + 24.0 + 2.1) \text{ ms} + 100 (2* 1.25) \text{ ms}$$

= 5.3236 sec

The first data can be expected at: Time to 1st byte = 5.7 ms + 11.2 ms + 1.0 ms + (100 * 50.1) ms + 100 (2 * 1.25) ms = 5.2779 sec.

The CU/SDF should stay enabled for;

CU/SDF enable time = 6.3 ms + 38.4 ms + 1.0 ms + (100 * 2) ms + (500 * 16.5 usec) = 253.95 ms

Answers:

- 1) 500 WPL, 1 LPF, 1 FPO.
- 2) [BAT(INTTIMx)] = 865, [BAT(DELINTx] = 255.
- 3) [BAT(DELAYPT] = 24.
- 4) The nominal data collection time = 5.3236 sec.
- 5) 1st byte at 5.2779 sec.
- 6) CU/SDF enable time is 254 ms.

Appendix D-1 - Timing Parameters

Data collection periods (T_C) as a function of:

- 1) data collection mode (MODE),
- 2) data format (DFMT),
- 3) integration time (INT),
- 4) delay (DEL)

for bus director (BD) programs assembled by the system controller (SC).

Notes:

1) The delay (DEL) (in multiples of $T_{\mbox{bd}}$) in the following equations is given by:

B) Data format 4. DEL is always = 0, (even if you set [BAT(DELINTx)] > 0)

The integration time serves only as a means to inject time between the A/D samples. The actual sample and hold time is a constant and has been chosen to give LSB accuracy for a full swing of the input voltage.

- 2) The Integration Offset Time (IOT) (in multiples of T_{bd}) in the following equations varies by data format and data collection mode. The smallest T_{C} for a system controller assembled BD program is given by the IOTs in the table on page A3. Any data collections requiring a smaller T_{C} than those in the table must use a special BD program.
- 3) The smallest T_{C} allowed in a special BD is 11 T_{bd} /byte (10.74 us).
- 4) The period of the bus director (T_{bd}) is 976.5625 ns.

Data Collection Mode:

1) Single Color Photometry (SCP)

$$T_C = INT_{tot} + DEL$$

Where: $INT_{tot} = [BAT(INTTIMx)] + IOT$

2.1) Star/Sky Photometry -- 2 Detector

Note: x is the value for [BAT(REQDET)] for the integration and delay times for both Star and Sky collections.

A) Data formats 1,2,3.

$$T_{C} = INT_{tot} + DEL$$
, for all data collections after 2.
Where: $INT_{tot} = [BAT(INTTIMx)] + IOT$

The time for 1st data collection is INT tot. The 2nd collection starts DEL after the end of the first. The 3rd and subsequent collections start INT tot. + DEL after the previous ones.

B) Data formats 4,7

$$T_C = INT_{tot} + DEL$$
Where: $INT_{tot} = [BAT(INTTIMx)] + IOT$

- 2.2) Star/Sky Photometry -- 1 Detector
- A) For all data formats.

$$T_C = INT_{tot_REQ} + DEL_{REQ} + INT_{tot_Sky} + DEL_{Sky} + N$$

Where:

$$INT_{tot REO} = [BAT(INTTIMx)] + IOT x = [BAT(REQDET)]$$

$$\begin{split} & \text{INT}_{\text{tot_}Sky} = [\text{BAT}(\text{INTIMS})] + \text{IOT} \\ & \text{DEL}_{Sky} = 0, \text{ for } [\text{BAT}(\text{DELINTS})] = 0 \\ & \text{DEL}_{Sky} = [\text{BAT}(\text{DELINTS})] + 1T_{\text{bd}}, \text{ for } [\text{BAT}(\text{DELINTS})] > 0 \end{split}$$

B) N varies by format.

Data Format	N (T _{bd})
1	20075
2	20099
3	20119
4	20300
7	20157

3) Area Scan Photometry (ARS)

$$T_C = INT_{tot} + DEL$$

Where:
$$INT_{tot} = [BAT(INTTIMx)] + IOT$$

Integration Offset Times

Data Format	SCP	ARS	Star/Sky (1 det)	Star/Sky (2 det)
1	13	13	1	29
2 3	25 35	25 35	1	53 73
4 7	128 159	128 159	0 105	156 217

Note: The cause for the DEL = DEL + 1 for DEL > 0 has to do with the bus director instruction for controlling the counters. For the case of DEL = 0, one counter control instruction is used to stop one counter and to start the other.

For the case of DEL > 0, one counter instruction is used to stop the counter. The programmed DEL (delay) takes place next. Another counter control instruction is used to start the other counter. Since this second control instruction takes $1 \, T_{bd}$, the effective delay is DEL + 1. Hint: The counter starts on the next rising edge of the system clock (i.e. at the start of the decoding for the next instruction).

Appendix D-2 - Choosing WPL, LFP, FPO

These guidelines pertain only to mode 1 (SCP) and 2 (SSP) data collections. For mode 3 (ARS) data collections see the other restraints and important details for ARS on pages 8 & 9.

There are many factors to consider when choosing the number of words per line (WPL), lines per frame (LPF) and frames per observation (FPO). The dominant ones to take into consideration are the programmed integration time and the total data collection time. When all the appropriate functions are considered, the following chart is realized.

Fast tape speed = 1.024 E06 bps Slow tape speed = 32.0 E03 bps

For the following sample times, use the rules and the chart later in this appendix to obtain the correct WPL.

Data Format	Sample Time	Maximum Tape Tape Speed	Recorder Time/Side
1 (byte)	< 0.2844 ms/byte	fast	10 minutes
2 (word)	< 0.5688 ms/word	fast	10 minutes
3 (Ingwd)	< 0.8533 ms/lngwd	fast	10 minutes
4 (alog)	0.5688 ms/word	fast	10 minutes
7 (all)	< 1.4222 ms/5 bytes	fast	10 minutes

For the following sample times, choose any WPL ≥ 7, 1 LPF and any FPO to achieve the desired total data collection time. If the desired total data collection time is longer than you can achieve with 960 WPL, 1 LPF and 255 FPO, then you MUST choose the new method of "The HSP Commanding Fix for Long Observations" to obtain the desired data collection time. See a more complete discussion about this new method below.

Data Format	Sample Time	Maximum Tape Tape Speed	Recorder Time/Side
1 (byte)	≥ 0.2844 ms/byte	slow	5.2 Hours
2 (word)	≥ 0.5688 ms/word	slow	5.2 Hours
3 (lngwd)	≥ 0.8533 ms/lngwd	slow	5.2 Hours
4 (alog)	≥ 0.5688 ms/word	slow	5.2 Hours
7 (all)	≥ 1.4222 ms/5 bytes	slow	5.2 Hours

Note: The table above assumes 960 WPL. The ultimate time constraint is the rate to the tape recorder.

The following discussion concerns the choice of WPL for the fast data rate to the tape recorder (i.e. 1.024 E06 bps). There are many choices of WPL for short integration times that do not exceed the maximum rate to the tape recorder (i.e. 1.07 ms/ 64 word segment). However, if a user were to choose a number that only

satisfies this maximum rate to the tape recorder, the HSP may send data at the wrong time to the CU/SDF. This miss timed data will cause an "extra data ready error". A complete definition of the extra data ready error can be found in the SI to SI C&DH ICD (ST ICD-08) section 3.9.3.5 "Science Data Transfer".

The HSP uses input DMA to collect data and output DMA to send data out. If these 2 DMAs finish close to each other, there is a possibility of getting an extra data ready error. In order to guarantee the HSP will not cause an extra data ready, we choose the WPL parameter so an input DMA channel will not finish when the output DMA channel finishes. In other words, the time to output a line should be less than the time to input a line.

There are three other factors to consider. The first factor we need to take into account is the frame start to line start delay. This delay will vary and will effectively add more to the time to output a line. The second factor to consider is the variable delay in the time needed by the HSP to actually start sending out data once it has collected a line of data. This delay will also add more to the time to output a line. The third factor to consider is the maximum delay allowed between lines of data. This maximum delay is 10 milliseconds. We choose the WPL to be the maximum WPL that:

- 1) Will not cause the input DMA to finish when the output DMA finishes AND
- 2) still not cause a 10 ms line to line time-out error.

Rules to Assure NO Extra Data Ready

- 1) Always choose the WPL from the chart for the selected data collection rate (in clock ticks /byte). See Note below and point 4.
- 2) Increment the LPF (up to a max. of 65,535) using 1 FPO to achieve the selected total data collection time.
- 3) If 1 FPO does not achieve the desired total data collection time, increment FPO as necessary.
- 4) When integration times are greater than 291 ticks/byte choose N WPL, (Where N=7-960), 1 LPF and the appropriate number of FPO to achieve the desired total data collection time.
- 5) When the WPL from the chart is not an integer multiple of the bytes chosen (i.e. due to data format), always choose the next **LOWEST** integer multiple. (e.g. for 330 T/byte, DFMT=7, choose 10 WPL; for 1000 T/byte, DFMT=7, choose 960 WPL, 1 LPF, and relevant FPO).

Note: The numbers for the chart were calculated by using the following equations.

Input time = WPL * Ticks/byte * 2 byte/word * 0.97656 us/tick + 2 ms

Output time = WPL * 15.625 usec/word

Input time - Output time < 10 msec

OR WPL = INTEGER (4096/(i-8)) Where i = ticks/byte , i \geq 12

For i = 11 use 960 WPL

The 2 msec in the Input time equation is necessary due to fluctuations in firmware timing to enable the output DMA channel.

```
Ticks/Byte Vs WPL
                                                                 Ticks/byte = 117 WPL =
    Ticks/byte = 11 WPL = 960
                                   Ticks/byte = 64 WPL = 73
                                                                 Ticks/byte = 118 WPL =
     Ticks/byte = 12 WPL = 960
                                   Ticks/byte = 65 WPL = 71
                                                                 Ticks/byte = 119 WPL =
                                   Ticks/byte = 66 WPL = 70
    Ticks/byte = 13 WPL = 819
                                   Ticks/byte = 67 WPL = 69
                                                                 Ticks/byte = 120 WPL =
     Ticks/byte = 14 WPL = 682
                                                                 Ticks/byte = 121 WPL =
    Ticks/byte = 15 WPL = 585
                                   Ticks/byte = 68 WPL = 68
                                   Ticks/byte = 69 WPL = 67
                                                                 Ticks/byte = 122 WPL =
     Ticks/byte = 16
                     WPL = 512
                                                                 Ticks/byte = 123 WPL =
                                   Ticks/byte = 70 WPL = 66
     Ticks/byte = 17 WPL = 455
                                                                 Ticks/byte = 124 WPL =
                                    Ticks/byte = 71 WPL =
                                                                                          35
                                                           65
     Ticks/byte = 18 WPL = 409
                                                                                          35
                                                                 Ticks/byte = 125 WPL =
                                    Ticks/byte = 72 WPL = 64
     Ticks/byte = 19 WPL = 372
                                                                 Ticks/byte = 126 WPL =
                                    Ticks/byte = 73 WPL = 63
     Ticks/byte = 20 WPL = 341
                                                                  Ticks/byte = 127 WPL =
                                                                                          34
                                                    WPL = 62
     Ticks/byte = 21 WPL = 315
                                    Ticks/byte = 74
                                                                  Ticks/byte = 128 WPL =
                                                                                          34
                                    Ticks/byte = 75 WPL = 61
     Ticks/byte = 22 WPL = 292
                                                                  Ticks/byte = 129 WPL =
                                                                                          33
                                    Ticks/byte = 76 WPL = 60
     Ticks/byte = 23 WPL = 273
                                    Ticks/byte = 77 WPL = 59
                                                                  Ticks/byte = 130 WPL =
     Ticks/byte = 24 WPL = 256
                                                                  Ticks/byte = 131 WPL =
                                    Ticks/byte = 78
                                                    WPL =
                                                          58
     Ticks/byte = 25 WPL = 240
                                                                  Ticks/byte = 132 WPL =
     Ticks/byte = 26 WPL = 227
                                    Ticks/byte = 79 WPL = 57
                                    Ticks/byte = 80 WPL = 56
                                                                  Ticks/byte = 133 WPL =
     Ticks/byte = 27 WPL = 215
                                                                  Ticks/byte = 134 WPL =
                                                                                          32
                                    Ticks/byte = 81 WPL = 56
     Ticks/byte = 28 WPL = 204
                                    Ticks/byte = 82 WPL = 55
                                                                  Ticks/byte = 135 WPL =
                                                                                          32
     Ticks/byte = 29 WPL = 195
                                                                  Ticks/byte = 136 WPL =
                                    Ticks/byte = 83 WPL = 54
     Ticks/byte = 30 WPL = 186
                                    Ticks/byte = 84 WPL = 53
     Ticks/byte = 31 WPL = 178
                                                                  Ticks/byte = 137-140 WPL = 31
                                    Ticks/byte = 85 WPL = 53
     Ticks/byte = 32 WPL = 170
                                                                  Ticks/byte = 141-144 WPL = 30
                                    Ticks/byte = 86 WPL = 52
     Ticks/byte = 33 WPL = 163
                                                                  Ticks/byte = 145-149 WPL = 29
                                    Ticks/byte = 87 WPL = 51
     Ticks/byte = 34 WPL = 157
                                    Ticks/byte = 88 WPL = 51
                                                                  Ticks/byte = 150-154 WPL = 28
     Ticks/byte = 35 WPL = 151
                                                                  Ticks/byte = 155-159 WPL = 27
                                    Ticks/byte = 89 WPL = 50
     Ticks/byte = 36 WPL = 146
                                                                  Ticks/byte = 160-165 WPL = 26
                                    Ticks/byte = 90 WPL = 49
     Ticks/byte = 37 WPL = 141
                                                                  Ticks/byte = 166-171 WPL = 25
                                    Ticks/byte = 91 WPL = 49
     Ticks/byte = 38 WPL = 136
                                    Ticks/byte = 92 WPL = 48
                                                                  Ticks/byte = 172-178 WPL = 24
     Ticks/byte = 39 WPL = 132
                                    Ticks/byte = 93 WPL = 48
                                                                  Ticks/byte = 179-186 WPL = 23
      Ticks/byte = 40 WPL = 128
                                                                  Ticks/byte = 187-194 WPL = 22
     Ticks/byte = 41 WPL = 124
                                    Ticks/byte = 94 WPL = 47
                                                                  Ticks/byte = 195-203 WPL = 21
                                    Ticks/byte = 95 WPL = 47
                      WPL = 120
      Ticks/byte = 42
                                                                  Ticks/byte = 204-212 WPL = 20
      Ticks/byte = 43 WPL = 117
                                    Ticks/byte = 96 WPL = 46
                                    Ticks/byte = 97 WPL = 46
                                                                  Ticks/byte = 213-223 WPL = 19
      Ticks/byte = 44 WPL = 113
                                                                  Ticks/byte = 224-235 WPL = 18
                                    Ticks/byte = 98 WPL = 45
      Ticks/byte = 45 WPL = 110
                                                                  Ticks/byte = 236-248 WPL = 17
                                    Ticks/byte = 99 WPL = 45
      Ticks/byte = 46 WPL = 107
                                                                  Ticks/byte = 249-264 WPL = 16
                                    Ticks/byte = 100 WPL = 44
      Ticks/byte = 47 WPL = 105
                                                                  Ticks/byte = 265-281 WPL = 15
      Ticks/byte = 48 WPL = 102
                                     Ticks/byte = 101 WPL = 44
                                                                  Ticks/byte = 282-291 WPL = 14
                                     Ticks/bvte = 102 WPL = 43
      Ticks/byte = 49
                      WPL -
                              99
                                     Ticks/byte = 103 WPL = 43
                      WPL -
                              97
      Ticks/byte = 50
                                                                  For ticks/byte > 291 you may use
                                     Ticks/byte = 104 WPL = 42
      Ticks/byte = 51 WPL =
                              95
                                                                  the slow rate to the tape recorder.
      Ticks/byte = 52 WPL =
                                     Ticks/byte = 105 WPL = 42
                              93
                                                                  The time/line must not exceed the
                                     Ticks/byte = 106 WPL = 41
      Ticks/byte = 53 WPL =
                              91
                                                                  rate to the tape recorder. See page
                                     Ticks/byte = 107 WPL = 41
      Ticks/byte = 54 WPL =
                              89
                                     Ticks/byte = 108 WPL = 40
      Ticks/byte = 55 WPL =
                              87
      Ticks/byte = 56 WPL =
                                     Ticks/byte = 109 WPL = 40
                              85
                                     Ticks/byte = 110 WPL = 40
      Ticks/byte = 57 WPL =
                              83
                                                                  DO NOT USE 1.2.3.4.5.or 6 WPL.
                                     Ticks/byte = 111 WPL = 39
      Ticks/byte = 58
                      WPL =
                              81
                                     Ticks/byte = 112 WPL = 39
      Ticks/byte = 59 WPL =
                              80
                                     Ticks/byte = 113 WPL = 39
      Ticks/byte = 60 WPL =
                              78
                                     Ticks/byte = 114 WPL = 38
      Ticks/byte = 61 WPL =
                              77
                                     Ticks/byte = 115 WPL = 38
      Ticks/byte = 62 WPL =
                              75
```

Ticks/byte = 116 WPL = 37

Ticks/byte = 63 WPL = 74

Data Rates

The data are written on the tape recorder in 64 word (1024 bit) segments. Each segment contains some header information as well as science data. For each line, the first segment contains 50 words of science data and 14 header words. All subsequent segments contain 61 words of science data and 3 header words. Fill data are inserted in the last segment if it contains fewer than 61 words of science data. Every 15th segment is used for overhead (e.g. error correction bits). This overhead segment gives an effective data rate of 14/15 of the true data rate. For the fast tape recorder rate (1.024 M bps) this means it takes

15/14 * 1.0 ms/segment = 1.0714 ms/segment or 933.333 segments/sec

The table on the previous page will always fabricate data with a time much more than 1.0714 ms/segment.

For the slow tape recorder rate (32 K bps) this means it takes 15/14 * 32 ms/segment = 34.2857 ms/segment or 29.1666 segments/sec

This is the fastest one may try to send data to the CU/SDF. Using this knowledge one may always choose the WPL to guarantee a data rate slower than the tape recorder rate. This WPL is given by the following equation.

time/line = (15/14) * 32ms

words/line * 2 bytes/word * time/sample * sample/N bytes > M segments/line * 15/14 * 32ms/segment

OR

words/line > M segments/line * 15/14 * 32ms/segment * word/2bytes * sample/time * N bytes/sample

$$M = 1 + INT ((WPL-50)/61) + [1 (If MOD (WPL-50,61) > 0)]$$

The HSP Commanding Fix for Long Observations

If you are not able to attain the desired total data collection time by using 960 WPL, 1 LPF and 255 FPO, you will have to use the HSP commanding fix for long observations. The commanding fix allows for data collections with an infinite number of frames. The only limit is the tape recorder total record time. For a complete discussion about the commanding fix see the article "Reformulation of the HSP commanding fix for long observations", Space Astronomy Lab, University of Wisconsin, 22 October, 1991.

Brief Description

The HSP has an 8 bit software variable which keeps track of the number of frames it has sent to the CU/SDF. When this variable reaches the programmed number of FPO (i.e. VFPOBS command, VFRAOBS telemetry) the HSP stops collecting data and returns to the idle state. The commanding fix allows you to set this software variable to zero during the data collection. The commanding fix sets the software variable to zero the appropriate number of times. After the variable has been set to zero for the last time, the HSP collects and sends 255 more frames of data and returns to the idle state.

Appendix D-3 - Definition of Setup Times

There are several setup times for the three data collection modes. The first two (t_A, t_B) are common to all three modes.

- 1) t_A is defined as the time it takes from the sending of the serial magnitude command (VMODE), to the point where the assembly of a bus director program will begin.
- 2) t_B is defined as the time it takes to assemble a bus director program. This time varies with the type of data collection, data format, integration time and delay time.

The other two setup times (t_C, t_D) are common only to SCP and SSP modes.

- 1) t_C is defined as the time variance possible from the setting of the bit to start the bus director and the actual starting of the bus director. This is due to the firmware.
 - 2) t_D is defined as the time needed to process detector controller parameters for the sky detector.

Timing Notes:

- 1) The frame start to line start delay (t_{FL/LS}) value listed does not exactly conform to ST ICD-08 Figure 3-17. The time given was obtained from C&DH guru Art Rankin. It assumes only one instrument at a time will send data to the CU/SDF. If, in the future, more than one instrument at a time may send data to the CU/SDF, a new value should be used (once it is defined).
- 2) The time given to output a word of data is from HSP is an average time. A word of science data is actually clocked out at the time given in ST ICD-08.

For large integration times, HSP will have a word of data available immediately after the previous word was sent out. The time to output a word of data can be said to be 15.625 usec.

For small integration times, HSP will not have a word of data available immediately after the previous word was sent out. The time to output a word of data can go as high as 16.50 usec. This extra time is due to input and output DMA interactions.

The value I have chosen takes this extra time into account. It was also chosen so as to guarantee the CU/SDF interface will remain enabled long enough to collect all the data from the HSP.

Appendix E - Filter, Aperture, Proposal, Target, & Date Index

The HSP observations for which there was a steller target are listed below, sorted by filter/aperture.

Filter/Aperture	Proposal	/Tape Date	Target	vf160u2_a vf160u2_c	2769t02 3152t01	18-jun-1991 11-mar-1991	sa113-339 vid998
vclru i_a	2949t01	11-apr-1991	f14vid998	vf160u2_c	3233t01	18-may-1991	vid998
	2949102	11-apr-1991	f14vid998	vf160u2_c	3362t01	08-jul-1991	vid998
	1504:01	22-oct-1990	ngc188-998	vf179u2_a	2769:01	17-jun-1991	agk+81d266
· · · · · · · · · · · · · · · · · · ·	1504t02	22-oct-1990	ngc188-998	vf179u2_a vf179u2_a	2769t02 2769t02	18-jun-1991 18-jun-1991	sal13-260 sal13-339
·	1504t02	23-oct-1990	ngc188-998 ngc188-998	vf184u1_a	2769t01	17-jun-1991	agk+81d266
	1504t03 3140t03	23-oct-1990 13-feb-1991	ngc188-998	vf184u1_a	2769:06	11-oct-1991	agk+81d266
vclru1_a vclru1_a	3233t02	19-may-1991	vid998	vf184ul_a	2769t02	17-jun-1991	sa113-260
vclru1_a	3233:03	19-may-1991	vid998	vf184u1_a	2769t02	17-jun-1991	sa113-339
vclru1_a	3006:01	05-jul-1991	vid998	vf184u1_c vf184u2_a	3152t02 2769t01	15-mar-1991 17-jun-1991	vid998 agk+81d266
vclru1_a	3362102	14-jul-1991	vid998 f14vid998	vf184u2_a	2769:02	18-jun-1991	sa113-260
vclru l_t	2949t01 2949t01	10-apr-1991 11-apr-1991	f14vid998	vf184u2_a	2769102	18-jun-1991	sa113-339
vclrul_t vclrul_t	2949t02	11-apr-1991	f14vid998	vf184v_a	2769104	24-jun-1991	agk+81d266
vclru2_a	2948t01	10-apr-1991	f14vid998	vf184v_a	3425t01	22-oct-1991	bd+28d4211
vclru2_a	2948102	10-apr-1991	f14vid998	vf184v_a	2769t05 2769t05	24-jun-1991 24-jun-1991	sa101-207 sa101-429
vclru2_a	1504:06	14-nov-1990	ngc188-998 f14vid998	vf184v_a vf184v_a	2769105	24-jun-1991	sa113-260
vclru2_t	2948:01	10-apr-1991 10-apr-1991	f14vid998	vf184v_a	3425101	23-oct-1991	sa95-132
vclru2_t vclru2_t	2948t02 2948t03	10-apr-1991	f14vid998	vf184v_a	3425t02	19-dec-1991	sa95-301
vclru2_t	3383:02	13-oct-1991	hd49798	vf184v_a	3425t02	19-dec-1991	sa95-302
vf135u1_c	2769t01	17-jun-1991	agk+81d266	vf184v_a	3378t01	11-nov-1991 24-sep-1991	sao27635 hd11408
vf135u1_c	2769106	11-oct-1991	agk+81d266	vf216p0 vf216p0	1386i01 1386i02	26-sep-1991	hd11408
vf135u1_c	2769102	17-jun-1991 17-jun-1991	sa113-260 sa113-339	vf216p0	3985:01	15-mar-1992	hd115271
vf135u1_c vf135u1_c	2769t02 1092t01	31-jan-1992	z-cha	vf216p0	3377t04	31-aug-1991	sao6392
vf135u1_c	1092t02	01-feb-1992	z-cha	vf216p0	3377t06	30-nov-1991	sao6392
vf135u1_c	1092:03	05-feb-1992	z-cha	vf216p135	1386:01	24-sep-1991	hd 11408 hd 11408
vf135u1_c	1092:04	09-feb-1992	z-cha	vf216p135 vf216p135	1386t02 3985t01	26-sep-1991 15-mar-1992	hd115271
vf135u1_c	1092:06	12-feb-1992 13-feb-1992	z-cha z-cha	vf216p135	3377t04	31-aug-1991	sao6392
vf135u1_c vf135u1_c	1092t06 1097t07	17-feb-1992	z-cha	vf216p135	3377t06	30-nov-1991	sao6392
vf135u1_c vf135u1_c	1092108	21-feb-1992	z-cha	vf216p45	1386:01	24-sep-1991	hd11408
vf135u1_c	1092:09	24-feb-1992	z-cha	vf216p45	1386.02	26-sep-1991	hd11408
vf135u1_c	1092:10	25-feb-1992	z-cha	vf216p45	3985t01 3377t04	15-mar-1992 31-aug-1991	hd115271 sao6392
vf135u1_c	1092t11	01-mar-1992	z-cha z-cha	vf216p45 vf216p45	3377t04	30-nov-1991	sao6392
vf135u1_c	1092t12 1092t13	05-mar-1992 08-mar-1992	z-cha	vf216p90	1386:01	24-sep-1991	hd11408
vf135u1_c vf135u1_c	1092114	09-mar-1992	z-cha	vf216p90	1386t02	26-sep-1991	hd11408
vf135u1_c	1092:15	13-mar-1992	z-cha	vf216p90	3985t01	15-mar-1992	hd115271
vf135u1_c	1092116	17-mar-1992	z-cha	vf216p90	3377t04 3377t06	31-aug-1991 30-nov-1991	sao6392 sao6392
vf135u1_c	1092:17	20-mar-1992	z-cha z-cha	vf216p90 vf218u1_a	2769:01	17-jun-1991	agk+81d266
vf135u1_c vf135u1_c	1092:18 1092:19	21-mar-1992 25-mar-1992	z-cha z-cha	vf218u1_a	2769107	11-oct-1991	agk+81d266
vf135u1_c	1092t20	29-mar-1992	z-cha	vf218u1_a	2769:02	17-jun-1991	sa113-260
vf145u1_a	2769t01	17-jun-1991	agk+81d266	vf218u1_a	2769:02	17-jun-1991	sa113-339 agk+81d266
vf145u1_a	2769t07	11-oct-1991	agk+81d266	vf220u1_a vf220u1_a	2769t01 2769t07	17-jun-1991 11-oct-1991	agk+81d266
vf145u1_a	2769102	17-jun-1991 17-jun-1991	sa113- <u>260</u> sa113-339	vf220u1_a	2769102	17-jun-1991	sa113-260
vf145ul_a vf145u2_c	2769i02 2769i01	17-jun-1991 17-jun-1991	agk+81d266	vf220u1_a	2769:02	17-jun-1991	sa113-339
vf145u2_c	2769102	18-jun-1991	sa113-260	vf237p0	1386(01	24-sep-1991	hd11408
vf145u2_c	2769t02	18-jun-1991	sa113-339	vf237p0	1386(02	26-sep-1991 15-mar-1992	hd11408 hd115271
vf152u1_a	2769t01	17-jun-1991	agk+81d266	vf237p0	3985t01 3377t03	30-aug-1991	sao6392
vf152u1_a	2769106	11-oct-1991 17-jun-1991	agk+81d266 sa113-260	vf237p0 vf237p0	3377t06	30-nov-1991	sao6392
vf152u1_a vf152u1_a	2769t02 2769t02	17-jun-1991	sa113-339	vf237p135	2912t01	03-mar-1992	bd+75d325
vf152u2_a	2769:01	17-jun-1991	agk+81d266	vf237p135	1386:01	24-sep-1991	hd11408
vf152u2_a	1095:01	13-sep-1991	hd193237	vf237p135	1386(02	26-sep-1991 15-mar-1992	hd11408 hd115271
vf152u2_a	1095102	19-sep-1991	hd193237	vf237p135 vf237p135	3985i01 3377i04	31-aug-1991	sao6392
vf152u2_a	1095t03	22-sep-1991 18-jun-1991	hd193237 sa113-260	vf237p135	3377106	30-nov-1991	sao6392
vf152u2_a vf152u2_a	2769t02 2769t02	18-jun-1991	sa113-339	vf237p135	3152104	21-apr-1991	vid998
vf160u2_a	2769t01	17-jun-1991	agk+81d266	vf237p135	3233t04	03-jun-1991	vid998
vf160u2_a	2948101	10-apr-1991	f14vid998	vf237p135	3362:04	15-sep-1991	vid998 bd+75d325
vf160u2_a	2948102	10-apr-1991	f14vid998	vf237p45 vf237p45	2912t01 1386t01	03-mar-1992 24-sep-1991	hd11408
vf160u2_a	2948103	10-apr-1991	f14vid998 ngc188-998	vf237p45	1386t02	26-sep-1991	hd11408
vf160u2_a vf160u2_a	1504t06 1504t08	14-nov-1990 14-nov-1990	ngc188-998	vf237p45	3985:01	15-mar-1992	hd115271
vf160u2_a vf160u2_a	3140t01	13-feb-1991	ngc188-998	vf237p45	3377103	31-aug-1991	sao6392
vf160u2_a	2769t02	18-jun-1991	sa113-260	vf237p45	3377t04	31-aug-1991	sao6392

```
vf277p45
                                                                                            3985t01
                                                                                                          14-mar-1992
                                                                                                                             hd115271
vf237p45
vf237p90
                                                sao6392
               3377t06
                             30-nov-1991
                                                                             vf277p45
vf277p45
                                                bd+75d325
                                                                                            3377t03
                                                                                                          30-aug-1991
                                                                                                                             sao6392
               2912t01
                             03-mar-1992
                                                                                            3377t06
                                                                                                          29-nov-1991
                                                                                                                             sao6392
                                                hd11408
vf237p90
               1386t01
                             24-sep-1991
                                                                             vf277p90
                                                                                            2912:01
                                                                                                          03-mar-1992
                                                                                                                             bd+75d325
vf237p90
vf237p90
                                                hd11408
               1386t02
                             26-sep-1991
                                                hd115271
                                                                                                          24-sep-1991
                                                                                                                             hd11408
                                                                             vf277p90
                                                                                            1386t01
               3985t01
                             15-mar-1992
                                                                            vf277p90
vf277p90
vf277p90
                                                                                            1386t02
                                                                                                          26-sep-1991
                                                                                                                             hd11408
vf237p90
vf237p90
               3377t03
                             30-aug-1991
                                                sao6392
                                                                                                          14-mar-1992
                                                                                                                             hd115271
                                                sao6392
                                                                                            3985t01
               3377106
                             30-nov-1991
                                                                                                          30-aug-1991
                                                f14vid998
                                                                                            3377t03
                                                                                                                             sao6392
                             11-apr-1991
vf240u1_a
               2949t01
                                                                             vf277p90
vf278u1_a
                                                                                            3377t06
                                                                                                          29-nov-1991
                                                                                                                             sao6392
                             11-apr-1991
                                                f14vid998
vf240u1_a
vf240u1_a
               2949t02
                             22-aug-1991
23-oct-1990
                                                                                            2769t01
                                                                                                          17-jun-1991
                                                                                                                             agk+81d266
                                                hd60435
               1389102
                                                                            vf278u1_a
vf278u1_a
vf278u1_a
vf278u1_a
vf278u2_a
                                                                                                                             agk+81d266
                                                ngc188-998
                                                                                            2769106
                                                                                                          11-oct-1991
vf240u1_a
vf240u1_a
               1504t02
                                                                                                          17-jun-1991
                                                                                                                             sa113-260
                                                                                            2769t02
               3006t01
                             05-jul-1991
                                                vid998
                                                                                                          17-jun-1991
17-jun-1991
                                                                                             2769102
                                                                                                                             sa113-339
               3152t02
                             15-mar-1991
                                                vid998
vf240u1_c
vf240u1_c
                                                                                                                             agk+81d266
                                                                                            2769t01
                             19-may-1991
                                                vid998
               3233t02
                                                                                                          18-jun-1991
18-jun-1991
                             19-may-1991
14-jul-1991
                                                                                                                             sa113-260
                                                                             vf278u2_a
                                                                                            2769t02
                                                vid998
               3233t03
vf240u1_c
                                                                             vf278u2_a
vf284u2_a
                                                                                                                             sal13-339
                                                                                             2769102
                                                vid998
               3362t02
vf240u1_c
                                                                                                                             agk+81d266
sa113-260
                                                                                                          17-jun-1991
                                                                                             2769t01
                             11-nov-1991
                                                sao27635
vf240v_a
               3378t01
                             24-jun-1991
22-oct-1991
                                                                                                          18-jun-1991
                                                                             vf284u2_a
                                                                                             2769t02
                                                agk+81d266
vf240v_c
               2769t04
                                                                                            2769i02
3152i01
                                                                                                          18-jun-1991
                                                                                                                             sa113-339
                                                bd+28d4211
                                                                             vf284u2_a
               3425101
vf240v_c
                                                                                                          11-mar-1991
                                                                                                                             vid998
                             24-jun-1991
24-jun-1991
24-jun-1991
                                                                             vf284u2_c
                                                sa101-207
vf240v_c
               2769105
                                                                                                         18-may-1991
08-jul-1991
                                                                             vf284u2_c
                                                                                                                             vid998
                                                sa101-429
                                                                                            3233t01
               2769t05
vf240v_c
                                                                                                                             vid998
bd+75d325
                                                                                            3362:01
                                                sa113-260
                                                                             vf284u2_c
               2769t05
vf240v_c
                                                                             vf327p0
vf327p0
vf327p0
                                                                                                          03-mar-1992
                                                sa95-132
                                                                                             2912t01
                             23-oct-1991
               3425101
vf240v_c
                                                                                                          24-sep-1991
25-sep-1991
                                                                                                                             hd11408
                                                sa95-301
                                                                                             1386t01
                             19-dec-1991
19-dec-1991
               3425t02
3425t02
vf240v_c
                                                                                                                             hd11408
                                                sa95-302
                                                                                             1386t02
vf240v_c
                                                                                                          26-sep-1991
                                                                                                                             hd11408
                                                                             vf327p0
                                                                                             1386t02
                                                sao27635
vf240v_c
               3378t01
                             11-nov-1991
                                                                                                                             hd115271
                                                                             vf327p0
                                                                                                          14-mar-1992
                                                vid998
                                                                                             3985:01
vf240v_e
               3152t05
                             21-apr-1991
                                                                             vf327p0
vf327p0
                                                                                             3377t03
                                                                                                          30-aug-1991
                                                                                                                             sao6392
                             08-jun-1991
20-jul-1991
                                                vid998
vf240v_e
               3233t05
                                                                                                                             sao6392
                                                                                                          29-nov-1991
                                                vid998
                                                                                             3377:06
vf240v_e
               3362:03
                                                                                                                             vid998
                                                agk+81d266
                                                                                                          21-apr-1991
                                                                             vf327p0
                                                                                             3152104
                             17-jun-1991
vf248ul_a
               2769103
                                                                             vf327p0
vf327p0
vf327p0
vf327p0
vf327p135
vf327p135
vf327p135
vf327p135
vf327p135
                                                                                                                             vid998
                                                agk+81d266
sa113-260
sa113-339
                                                                                                          03-jun-1991
                             11-oct-1991
                                                                                             3233t04
                2769107
vf248u1_a
                                                                                                                             vid998
                                                                                                          05-jul-1991
                             17-jun-1991
17-jun-1991
                                                                                             3006:01
vf248u1_a
               2769t03
                                                                                                                             vid998
bd+75d325
                                                                                             3362104
                                                                                                          15-sep-1991
               2769103
vf248u1_a
                                                                                                          04-mar-1992
                                                agk+81d266
                                                                                             2912t01
                             17-jun-1991
vf248u1_c
                2769t01
                                                agk+81d266
                                                                                                          24-sep-1991
                                                                                                                             hd11408
                                                                                             1386:01
vf248u1_c
                2769t06
                             11-oct-1991
                                                sal13-260
sal13-339
                                                                                                                             hd11408
                                                                                                          25-sep-1991
                                                                                             1386:02
                             17-jun-1991
17-jun-1991
vf248u1_c
                2769t02
                                                                                                                             hd11408
                                                                                             1386t02
                                                                                                          26-sep-1991
vf248u1_c
                2769102
                                                                                                          14-mar-1992
                                                                                                                             hd115271
                                                                                             3985:01
               2949t02
1504t03
3152t02
                             11-apr-1991
                                                f14vid998
vf248u1_e
                                                                             vf327p135
vf327p135
vf327p45
vf327p45
                                                ngc188-998
                                                                                                          30-aug-1991
                                                                                                                             sao6392
                                                                                             3377:03
                             23-oct-1990
vf248u1_e
                                                                                                          29-nov-1991
                                                                                                                             sao6392
                                                 vid998
                                                                                             3377t06
                              15-mar-1991
 vf248u1_e
                                                                                                                             bd+75d325
                                                vid998
                                                                                             2912t01
                                                                                                          03-mar-1992
                              19-may-1991
 vf248u1_e
                3233t02
                                                                                                          24-sep-1991
25-sep-1991
                                                                                             1386:01
                                                                                                                             hd11408
                             19-may-1991
14-jul-1991
17-jun-1991
                                                 vid998
 vf248u1_c
                3233103
                                                                                                                             hd11408
                                                 vid998
                                                                              vf327p45
                                                                                             1386t02
 vf248u1_e
                3362t02
                                                 agk+81d266
                                                                              vf327p45
                                                                                             1386:02
                                                                                                          26-sep-1991
                                                                                                                             hd11408
 vf248u2_a
                2769t01
                                                                             vf327p45
vf327p45
                                                                                                          14-mar-1992
                                                 sa113-260
                                                                                             3985t01
                                                                                                                             hd115271
 vf248u2_a
                2769t02
                              18-jun-1991
                                                                                                          30-aug-1991
                                                                                             3377:03
                                                 sa113-339
                                                                                                                             sao6392
                2769102
                              18-jun-1991
 vf248u2_a
                                                                             vf327p45
vf327p45
                                                                                                                              sao6392
                                                                                                          29-nov-1991
                                                 f14vid998
                                                                                             3377t06
                              10-apr-1991
 vf248u2_c
                2948102
                                                                                                                              vid998
                                                 f14vid998
                                                                                             3152:04
                                                                                                          21-apr-1991
                              10-apr-1991
                2948t03
 vf248u2_c
                                                ngc188-998
vid998
                                                                             vf327p45
vf327p45
vf327p90
vf327p90
vf327p90
vf327p90
vf327p90
vf327p90
vf327p90
vf355v_a
vf355v_a
vf355v_a
vf355v_a
                                                                                             3233104
                                                                                                          03-jun-1991
                                                                                                                              vid998
                1504t08
                              14-nov-1990
 vf248u2 c
                                                                                             3362:04
                                                                                                          15-sep-1991
                                                                                                                              vid998
 vf248u2_c
                3152:01
                              11-mar-1991
                                                                                                                             bd+75d325
                                                                                             2912t01
                                                                                                          04-mar-1992
                                                 866Piv
 vf248u2 c
                3233:01
                              18-may-1991
                                                                                             1386:01
                                                                                                          24-sep-1991
                                                                                                                             hd11408
                                                 vid998
 vf248u2_c
                3362101
                              08-jul-1991
                                                 agk+81d266
                                                                                             1386:02
                                                                                                          25-sep-1991
                                                                                                                             hd11408
                2769t03
                              17-jun-1991
 vf262u2_a
                                                 sa113-260
sa113-339
agk+81d266
bd+28d4211
sa101-207
                                                                                             1386:02
                                                                                                          26-sep-1991
                                                                                                                              hd11408
 vf262u2 a
                2769103
                              18-jun-1991
                                                                                             3985t01
                                                                                                           14-mar-1992
                                                                                                                              hd115271
                2769:03
                              18-jun-1991
 vf262u2_a
                                                                                             3377103
                                                                                                           30-aug-1991
                                                                                                                              sao6392
 vf262v_a
                2769t04
                              24-jun-1991
                                                                                             3377106
                                                                                                           29-nov-1991
                                                                                                                              sao6392
                3425t01
                              23-oct-1991
 vf262v_a
                                                                                             2769:04
                                                                                                           24-jun-1991
                                                                                                                              agk+81d266
                2769t05
                              24-jun-1991
 vf262v_a
                                                                                             3425101
                                                                                                           22-oct-1991
                                                                                                                              bd+28d4211
                                                 sa101-429
                2769t05
                              24-jun-1991
 vf262v_a
                                                 sa113-260
                                                                                                           24-jun-1991
                                                                                                                              sa101-207
                                                                                             2769t05
                              24-jun-1991
                2769t05
 vf262v_a
                                                                                             2769:05
                                                                                                           24-jun-1991
                                                                                                                              sa101-429
                3425:01
                              23-oct-1991
                                                 sa95-132
 vf262v_a
                                                                                             2769105
                                                                                                           24-jun-1991
                                                                                                                              sa113-260
                3425102
                              19-dec-1991
                                                 sa95-301
                                                                                             3425:01
3425:02
3425:02
3425:02
3378:01
2769:04
3425:01
 vf262v_a
                                                                                                           23-oct-1991
                                                                                                                              sa95-132
                 3425:02
                              19-dec-1991
                                                 sa95-302
                                                                              vf355v_a
  vf262v_a
                                                                                                           19-dec-1991
                                                                                                                              sa95-301
                                                 sao27635
                                                                              vf355v_a
                              11-nov-1991
 vf262v_a
                3378:01
                                                                                                           19-dec-1991
                                                                                                                              sa95-302
                2912i01
1386i01
                                                 bd+75d325
                                                                              vf355v_a
                              03-mar-1992
 vf277p0
                                                                                                           11-nov-1991
                                                                                                                              sao27635
                                                                              vf355v_a
                                                 hd11408
                              24-sep-1991
 vf277p0
                                                                                                                              agk+81d266
bd+28d4211
                                                                                                           24-jun-1991
                              25-sep-1991
                                                 hd11408
                                                                              vf400v_a
                 1386<sub>1</sub>02
1386<sub>1</sub>02
 vf277p0
                                                                                                           23-oct-1991
                                                                              vf400v_a
                              26-sep-1991
                                                 hd11408
 vf277p0
                                                                                                                              sa101-207
                                                                                                           24-jun-1991
                              14-mar-1992
30-aug-1991
                                                                                             2769t05
                                                 hd115271
                                                                              vf400v_a
 vf277p0
                 3985t01
                                                                                                           24-jun-1991
24-jun-1991
                                                                                                                              sa101-429
                                                 sao6392
                                                                              vf400v_a
                                                                                             2769t05
 vf277p0
                 3377t03
                                                                                                                              sa113-260
                              29-nov-1991
                                                                              vf400v_a
                                                                                             2769t05
                                                 sao6392
 vf277p0
                 3377t06
                                                                                                           23-oct-1991
19-dec-1991
                                                                                             3425:01
                                                                                                                              sa95-132
                                                 bd+75d325
                                                                              vf400v_a
                              03-mar-1992
 vf277p135
                 2912:01
                                                                                                                              sa95-301
                                                                                             3425102
                                                                              vf400v_a
                                                 hd11408
                              24-sep-1991
 vf277p135
                 1386t01
                                                                                                                              sa95-302
                                                                                             3425t02
                              26-sep-1991
                                                                              vf400v_a
                                                                                                           19-dec-1991
                                                 hd11408
 vf277p135
                 1386:02
                                                                              vf400v_a
                                                                                              3378t01
                                                                                                           11-nov-1991
                                                                                                                              sao27635
                               15-mar-1992
                                                 hd115271
                 3985t01
 vf277p135
                                                                              vf419v_a
                                                                                             2769t04
                                                                                                           24-jun-1991
                                                                                                                              agk+81d266
                 3377103
                               30-aug-1991
                                                 sao6392
 vf277p135
                                                                              vf419v_a
                                                                                              3425t01
                                                                                                           22-oct-1991
                                                                                                                              bd+28d4211
                              29-nov-1991
                                                 sao6392
                 3377t06
 vf277p135
                                                                              vf419v_a
                                                                                             2769t05
                                                                                                           24-jun-1991
                                                                                                                              sa101-207
                                                 sao6392
                 3377106
                              30-nov-1991
 vf277p135
                                                                                                           24-jun-1991
24-jun-1991
                                                                              vf419v_a
                                                                                              2769105
                                                                                                                              sa101-429
                 2912101
                              03-mar-1992
                                                 bd+75d325
 vf277p45
                                                                                                                              sa113-260
                                                                              vf419v_a
                                                                                             2769t05
                               24-sep-1991
                                                 hd11408
 vf277p45
                 1386(0)
                                                                                                                              sa95-132
                                                                                             3425101
                                                                                                           23-oct-1991
                               26-sep-1991
                                                 hd11408
                                                                              vf419v_a
                 138602
 vf277p45
```

2

```
sa95-301
                             19-dec-1991
vf419v_a
               3425t02
                             19-dec-1991
                                                sa95-302
vf419v a
               3425t02
                              11-nov-1991
                                                sao27635
vf419v a
               3378:01
                                                vid998
                             21-apr-1991
vf419v_c
                3152:05
                             08-jun-1991
                                                 vid998
vf419v_c
                3233105
                                                 vid998
                              20-jul-1991
                3362103
vf419v_c
                                                agk+81d266
bd+28d4211
                              24-jun-1991
vf450v_a
                2769t04
                              22-oct-1991
                3425:01
vf450v_a
                                                 sa101-207
                              24-jun-1991
vf450v_a
                2769t05
                                                 sa101-429
                              24-jun-1991
                2769t05
vf450v a
                                                 sa113-260
vf450v_a
                              24-jun-1991
                2769t05
                              23-oct-1991
19-dec-1991
                                                 sa95-132
vf450v_a
                3425t01
                                                 sa95-301
vf450v_a
                3425:02
                                                 sa95-302
vf450v_a
                3425t02
                              19-dec-1991
vf450v_a
vf551v_a
vf551v_a
vf551v_a
                                                 sao27635
                3378t01
                              11-nov-1991
                                                 agk+81d266
                2769t04
                              24-jun-1991
                                                 bd+28d4211
                3425t01
                              23-oct-1991
                2769105
                              24-jun-1991
                                                 sa101-207
                2769105
                              25-jun-1991
24-jun-1991
                                                 sa101-429
vf551v_a
vf551v_a
                                                 sa113-260
                2769t05
                3425t01
3425t02
                                                 sa95-132
sa95-301
                              23-oct-1991
 vf551v_a
                              19-dec-1991
 vf551v_a
                              19-dec-1991
                                                 sa95-302
                3425t02
 vf551v_a
                              24-jun-1991
22-oct-1991
                                                 agk+81d266
                2769t04
 vf551v_c
                                                 bd+28d4211
                3425t01
 vf551v_c
                              05-jun-1991
                                                 e7-u
 vf551v_c
                 1385t01
                                                 giclas153-41
hd102232
                              27-sep-1991
 vf551v_c
                 3382102
 vf551v_c
                              24-aug-1991
                 1474t03
                                                 hd102703
                              19-aug-1991
 vf551v_c
                 1474t01
                              05-jun-1991
05-jun-1991
05-jun-1991
                                                 hd105498
 vf551v_c
                 1385t02
                                                 hd156623
 vf551v_c
                 1385:01
                                                 hd157243
 vf551v_c
                 1385:01
                                                 sa101-207
 vf551v_c
vf551v_c
                              24-jun-1991
05-jun-1991
                 2769104
                                                 sa101-330
                 1385102
                                                 sa101-429
 vf551v_c
vf551v_c
vf551v_c
                 2769t05
                              24-jun-1991
                                                  sa 107-351
                 1385t03
                               06-jun-1991
                                                  sa 107-452
                              05-jun-1991
05-jun-1991
                 1385t02
vf551v_c
vf551v_c
vf551v_c
vf551v_c
                                                  sa107-990
                 1385102
                 1474i02
2769i05
                               21-aug-1991
                                                  sa113-241
                               24-jun-1991
                                                  sa113-260
                                                  sa95-132
                 3425t01
                               23-oct-1991
                 3425t02
                               19-dec-1991
                                                  sa95-301
 vf551v_c
                                                  sa95-302
                 3425t02
                               19-dec-1991
 vf551v_c
                 3382t01
                               23-sep-1991
                                                  sa95-42
 vf551v_c
                               20-aug-1991
                                                  sa95-52
                 1474t01
 vf551v_c
 vf551v_c
vf551v_c
                 1474:01
                               20-aug-1991
                                                  sa95-68
                 3378:01
                               11-nov-1991
                                                  sao27635
                                                  sao27635
                 3378:01
                               11-nov-1991
 vf551v_e
                              24-jun-1991
22-oct-1991
                                                  agk+81d266
 vf620v_a
                 2769104
                                                  bd+28d4211
                 3425t01
 vf620v_a
                               24-jun-1991
24-jun-1991
                 2769t04
                                                  sa101-207
 vf620v_a
                 2769t04
2769t05
2769t05
3425t01
3425t02
3425t02
3378t01
3152t05
3233t05
                                                  sa101-429
  vf620v_a
                                                  sa113-260
                               24-jun-1991
  vf620v_a
                               23-oct-1991
                                                  sa95-132
  vf620v_a
                                                  sa95-301
                               19-dec-1991
  vf620v_a
                                                  sa95-302
                               19-dec-1991
  vf620v_a
                                                  sao27635
                               11-nov-1991
  vf620v_a
                               21-apr-1991
                                                   vid998
  vf620v_c
                               21-apr-1991
08-jun-1991
20-jul-1991
24-jun-1991
23-oct-1991
                                                   vid998
  vf620v_c
                 3362t03
2769t04
3425t01
                                                   vid998
  vf620v_c
vf750_f320
                                                   agk+81d266
bd+28d4211
  vf750_f320
                                                  gsc6323-0139
gsc6323-0139
                               02-oct-1991
                  1081t02
  vf750_f320
                               03-oct-1991
  vf750_f320
                  1081t02
                                                  gsc6323-0146
gsc6323-0146
gsc6323-0146
gsc6323-0146
                               05-sep-1991
  vf750_f320
                  2771t01
                               05-sep-1991
                  2771t02
  vf750_f320
                               06-sep-1991
06-sep-1991
  vf750_f320
                  2771t01
                  2771t02
  vf750_f320
                               24-jun-1991
                                                   sa101-207
  vf750_f320
                  2769105
                               24-jun-1991
                                                   sa101-429
  vf750_f320
                  2769t05
                                24-jun-1991
                                                   sa113-260
                  2769t05
  vf750_f320
                                                   sa95-132
                                23-oct-1991
  vf750_f320
                  3425101
                                19-dec-1991
                                                   sa95-301
  vf750_f320
                  3425t02
                                19-dec-1991
                                                   sa95-302
  vf750_f320
                  3425:02
                                                   sao27635
                                11-nov-1991
  vf750 f320
                  3378t02
```

Ī

Appendix F - HSP and STR Operating Cycles & Times, by SMS and Total

Note: SMS	For SMSs	with no HSP Item	activity, #on	HSP items h	ave been de on time	leted min/cycle
90105	1c3	STR	0	0	0.0	0.0
901067 901067 901067 901067 901067 901067 901067 901067 901067	766 766 766 766 766 766 766 766 766	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	7 1 1 1 1 1 0 0 0 0	7 1 1 1 1 1 0 0 0 0	25.5 2.0 2.0 2.0 2.0 1.9 0.0 0.0 0.0	3.6 2.0 2.0 2.0 2.0 1.9 0.0 0.0 0.0 0.0
90113' 90113' 90113' 90113' 90113' 90113' 90113' 90113' 90113'	7a6 7a6 7a6 7a6 7a6 7a6 7a6 7a6	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	5 1 1 1 1 1 0 0 0	5 1 1 1 1 1 0 0 0 0	35.8 9.8 9.8 9.8 10.2 0.0 0.0 0.0 0.0	7.2 9.8 9.8 9.8 10.2 0.0 0.0 0.0 0.0
90117	2f3	STR	0	0	0.0	0.0
90118		STR	1	1	4.5	4.5
SMS 90	1191b2 not fo	ound				
90120 90120 90120 90120 90120 90120 90120 90120 90120 90120	745 745 745 745 745 745 745 745	SIR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	6 1 1 1 1 0 0 0 0	6 1 1 1 1 0 0 0	21.0 2.0 2.0 2.0 2.0 1.9 0.0 0.0 0.0 0.0	3.5 2.0 2.0 2.0 2.0 1.9 0.0 0.0 0.0 0.0
90122 90122 90122 90122 90122 90122 90122 90122 90122 90122	15a7 15a7 15a7 15a7 15a7 15a7 15a7 15a7	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	55 3 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2	55 3 2 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2	116.9 38.0 25.3 25.3 25.3 25.3 1.9 1.3 1.3	2.1 12.7 12.6 12.6 12.6 12.6 0.3 0.3 0.3 0.3
90125 90125 90125 90125 90125 90125 90125 90125 90125	52k1 52k1 52k1 52k1 52k1 52k1 52k1 52k1	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	0 1 1 1 1 1 0 0 0	0 1 1 1 1 1 0 0 0	0.0 2.0 2.0 2.0 2.0 1.9 0.0 0.0 0.0 0.0	0.0 2.0 2.0 2.0 2.0 1.9 0.0 0.0 0.0 0.0
90127 90127 90127 90127	17d5 17d5	STR Det1 Det2 Det3	5 1 1 1	5 1 1 1	35.8 9.8 9.8 9.8	7.2 9.8 9.8 9.8

1	Det						
SOI37745	Description		Dat	1	1	0.8	0.8
SOI1277d5	SOIJ27745 Det5	901277d5	Det4				
SOIJ277JAS	SOIJ27745		Det5	1	1	10.2	10.2
SOI1277145	10127745						
SOI127745	SOUTITALS HV2	90127745	HVI				
SOI1277145 HV3	SOI127745	00127745	HV2	Ω	0	0.0	0.0
SOI12771dS	SOI1277dS					0.0	0.0
SO127745	SOI127745	901277d5	HV3	U			
SOI127765	SOI127705 HV5		HV4	Λ	0	0.0	0.0
901283m3	901283m3		• • • •				
901283m3	901283m3	90127745	HV5	U	U	0.0	0.0
901312m4 STR 0 0 0 0.0 0.0 0.0 901323m6 STR 10 10 10 135.9 13.6 901347a6 STR 77 77 219.9 2.9 901352m2 STR 1 1 1 4.3 4.3 4.3 901352m2 Deal 1 1 1 12.7 12.7 901352m2 Deal 0 0 0.0 0.0 0.0 901352m2 HV1 1 1 1 0.6 0.3 901352m2 HV2 0 0 0 0.0 0.0 0.0 901352m2 HV3 0 0 0.0 0.0 0.0 901352m2 HV3 0 0 0.0 0.0 0.0 901352m2 HV5 0 0 0 0.0 0.0 0.0 901352m3 STR 0 0 0 0.0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 0.0 901417ac Deal 2 2 2 18.4 109.2 901417ac Deal 2 2 2 18.4 109.2 901417ac Deal 2 2 2 18.4 109.2 901417ac Deal 2 2 2 12.8 31.9 91.9 91.9 91.9 91.9 91.9 91.9 91.9	901312m4 STR 0 0 0 0.0 0.0 90132m6 STR 10 10 135.9 13.6 901347a6 STR 77 77 219.9 2.9 901352m2 Del1 1 1 1 12.7 12.7 901352m2 Del2 0 0 0.0 0.0 901352m2 Del3 0 0 0.0 0.0 0.0 901352m2 Del4 0 0 0.0 0.0 0.0 901352m2 Del4 0 0 0.0 0.0 0.0 901352m2 Del5 0 0 0.0 0.0 0.0 901352m2 Del4 0 0 0.0 0.0 0.0 901352m2 HV1 1 1 0.6 0.3 901352m2 HV2 0 0 0 0.0 0.0 901352m2 HV3 0 0 0 0.0 0.0 901352m2 HV3 0 0 0 0.0 0.0 901352m2 HV4 0 0 0 0.0 0.0 901352m2 HV5 0 0 0 0.0 0.0 901352m2 HV5 0 0 0 0.0 0.0 901352m2 HV7 0 0 0 0.0 0.0 901352m3 STR 42 42 152.6 3.6 901382m3 STR 0 0 0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac Del4 2 2 113.9 66.9 901417ac Del4 2 2 113.9 66.9 901417ac Del4 2 2 12.9 61.4 901417ac Del4 2 2 12.9 61.4 901417ac Del4 2 2 12.2 9 61.4 901417ac Del4 2 2 12.2 9 61.4 901417ac Del4 2 2 12.2 9 61.4 901417ac Del3 5 5 2054.2 410.8 901417ac Del4 2 2 12.2 9 61.4 901417ac Del4 2 2 12.2 9 61.4 901417ac Del4 2 2 12.2 9 61.4 901417ac Del3 5 5 2054.2 410.8 901417ac HV1 2 2 2 12.4 53.1 901417ac HV2 2 2 12.4 53.1 901417ac HV3 5 5 2039.0 0.0 901402m8 Del 1 1 1.2.7 12.7 901417ac HV3 5 5 2039.0 0.0 901402m8 Del 1 1 1.2.7 12.7 901417ac HV3 5 5 2039.0 0.0 901402m8 Del 1 1 1.2.6 12.6 901417ac HV3 5 5 2039.0 0.0 901452m8 Del3 1 1 12.6 12.6 901452m8 HV4 1 1 1 0.6 0.3 901452m8 HV4 1 1 1 0.6 0.0 901562p4 Del4 0 0 0 0.0 901562p4 Del4 0 0 0 0.0 901562p4 HV4 0 0 0 0 0.0 901562p4 HV4 0 0 0	,					
901312m4 STR 0 0 0 0.0 0.0 0.0 901323m6 STR 10 10 10 135.9 13.6 901347a6 STR 77 77 219.9 2.9 901352m2 STR 1 1 1 4.3 4.3 4.3 901352m2 Deal 1 1 1 12.7 12.7 901352m2 Deal 0 0 0.0 0.0 0.0 901352m2 HV1 1 1 1 0.6 0.3 901352m2 HV2 0 0 0 0.0 0.0 0.0 901352m2 HV3 0 0 0.0 0.0 0.0 901352m2 HV3 0 0 0.0 0.0 0.0 901352m2 HV5 0 0 0 0.0 0.0 0.0 901352m3 STR 0 0 0 0.0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 0.0 901417ac Deal 2 2 2 18.4 109.2 901417ac Deal 2 2 2 18.4 109.2 901417ac Deal 2 2 2 18.4 109.2 901417ac Deal 2 2 2 12.8 31.9 91.9 91.9 91.9 91.9 91.9 91.9 91.9	901312m4 STR 0 0 0 0.0 0.0 90132m6 STR 10 10 135.9 13.6 901347a6 STR 77 77 219.9 2.9 901352m2 Del1 1 1 1 12.7 12.7 901352m2 Del2 0 0 0.0 0.0 901352m2 Del3 0 0 0.0 0.0 0.0 901352m2 Del4 0 0 0.0 0.0 0.0 901352m2 Del4 0 0 0.0 0.0 0.0 901352m2 Del5 0 0 0.0 0.0 0.0 901352m2 Del4 0 0 0.0 0.0 0.0 901352m2 HV1 1 1 0.6 0.3 901352m2 HV2 0 0 0 0.0 0.0 901352m2 HV3 0 0 0 0.0 0.0 901352m2 HV3 0 0 0 0.0 0.0 901352m2 HV4 0 0 0 0.0 0.0 901352m2 HV5 0 0 0 0.0 0.0 901352m2 HV5 0 0 0 0.0 0.0 901352m2 HV7 0 0 0 0.0 0.0 901352m3 STR 42 42 152.6 3.6 901382m3 STR 0 0 0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac Del4 2 2 113.9 66.9 901417ac Del4 2 2 113.9 66.9 901417ac Del4 2 2 12.9 61.4 901417ac Del4 2 2 12.9 61.4 901417ac Del4 2 2 12.2 9 61.4 901417ac Del4 2 2 12.2 9 61.4 901417ac Del4 2 2 12.2 9 61.4 901417ac Del3 5 5 2054.2 410.8 901417ac Del4 2 2 12.2 9 61.4 901417ac Del4 2 2 12.2 9 61.4 901417ac Del4 2 2 12.2 9 61.4 901417ac Del3 5 5 2054.2 410.8 901417ac HV1 2 2 2 12.4 53.1 901417ac HV2 2 2 12.4 53.1 901417ac HV3 5 5 2039.0 0.0 901402m8 Del 1 1 1.2.7 12.7 901417ac HV3 5 5 2039.0 0.0 901402m8 Del 1 1 1.2.7 12.7 901417ac HV3 5 5 2039.0 0.0 901402m8 Del 1 1 1.2.6 12.6 901417ac HV3 5 5 2039.0 0.0 901452m8 Del3 1 1 12.6 12.6 901452m8 HV4 1 1 1 0.6 0.3 901452m8 HV4 1 1 1 0.6 0.0 901562p4 Del4 0 0 0 0.0 901562p4 Del4 0 0 0 0.0 901562p4 HV4 0 0 0 0 0.0 901562p4 HV4 0 0 0			_	-	750	0 F
901312m4 STR 0 0 0 0.0 0.0 901323m6 STR 10 10 135.9 13.6 901347a6 STR 77 77 219.9 2.9 901352m2 Det1 1 1 1 1.27 12.7 901352m2 Det2 0 0 0 0.0 0.0 901352m2 Det3 0 0 0.0 0.0 0.0 901352m2 Det4 0 0 0 0.0 0.0 901352m2 Det5 0 0 0 0.0 0.0 901352m2 Det5 0 0 0 0.0 0.0 901352m2 HV1 1 1 0.6 0.3 901352m2 HV2 1 1 0.6 0.3 901352m2 HV3 0 0 0 0.0 0.0 901352m2 HV3 0 0 0 0.0 0.0 901352m2 HV3 0 0 0 0.0 0.0 901352m2 HV5 0 0 0 0.0 0.0 901352m2 HV7 0 0 0 0.0 0.0 901352m2 HV8 0 0 0 0.0 0.0 901352m2 HV9 0 0 0 0.0 0.0 901352m2 HV9 0 0 0 0.0 0.0 901363m1 STR 42 42 152.6 3.6 901362m3 STR 0 0 0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac Det1 2 2 218.4 109.2 901417ac Det1 2 2 218.4 109.2 901417ac Det2 2 2 133.9 66.9 901417ac Det3 5 5 20054.2 410.8 901417ac Det4 2 2 122.9 61.4 901417ac Det4 2 2 122.9 61.4 901417ac Det4 2 2 122.9 61.4 901417ac HV1 2 2 2 122.4 53.1 901417ac HV1 2 2 2 122.	901312m4 STR 0 0 0 0.0 0.0 901323m6 STR 10 10 110 135.9 13.6 901347a6 STR 77 77 219.9 2.9 901352m2 STR 1 1 1 4.3 4.3 901352m2 Det1 1 1 12.7 12.7 901352m2 Det2 0 0 0 0.0 0.0 901352m2 Det3 0 0 0 0.0 0.0 901352m2 Det4 0 0 0 0.0 0.0 901352m2 Det5 0 0 0 0.0 0.0 901352m2 HV1 1 1 1 0.6 0.3 901352m2 HV2 0 0 0 0.0 0.0 901352m2 HV3 0 0 0 0.0 0.0 901352m2 HV5 0 0 0 0.0 0.0 901363m1 STR 42 42 152.6 3.6 901382m3 STR 0 0 0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 901402m8 STR 7 7 7 15.8 2.3 901417ac Det1 2 2 2 218.4 109.2 901417ac Det1 2 2 2 218.4 109.2 901417ac Det3 5 5 20542 410.8 901417ac Det3 5 5 20542 410.8 901417ac Det3 0 0 0 0.0 0.0 901402m8 HV1 2 2 2 122.9 61.4 901417ac Det5 0 0 0 0.0 0.0 901417ac HV1 2 2 2 124.4 901417ac HV1 2 2 2 124.4 901417ac HV3 5 5 2039.0 203.9 901417ac HV4 2 2 2 127.8 31.9 901417ac HV4 2 2 2 127.8 31.9 901417ac HV4 2 2 2 127.8 31.9 901417ac HV5 0 0 0 0.0 0.0 901452m8 Det3 1 1 12.6 12.6 901452m8 Det3 1 1 1 2.6 12.6 901452m8 Det3 1 1 1 2.6 12.6 901452m8 HV4 1 1 1 0.6 0.3 901452m8 HV5 1 1 1 0.	901283m3	SIR	8	8	13.8	9.5
901323m6 STR 10 10 135.9 13.6 901347a6 STR 77 77 219.9 2.9 901352m2 STR 1 1 1 4.3 4.3 901352m2 Det1 1 1 1 1.2.7 901352m2 Det2 0 0 0 0.0 0.0 901352m2 Det3 0 0 0 0.0 0.0 901352m2 Det4 0 0 0 0.0 0.0 901352m2 Det4 0 0 0 0.0 0.0 901352m2 Det4 0 0 0 0.0 0.0 901352m2 HV1 1 1 0 0.6 0.3 901352m2 HV2 0 0 0 0.0 0.0 901352m2 HV3 0 0 0 0.0 0.0 901352m2 HV3 0 0 0 0.0 0.0 901352m2 HV5 0 0 0 0.0 0.0 901352m2 HV7 0 0 0 0.0 0.0 901352m2 HV7 0 0 0 0.0 0.0 901352m2 HV7 0 0 0 0.0 0.0 901352m2 HV8 0 0 0 0.0 0.0 901352m2 HV9 0 0 0 0.0 0.0 901352m2 HV9 0 0 0 0.0 0.0 901363m1 STR 42 42 152.6 3.6 901382m3 STR 0 0 0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac Det1 2 2 218.4 109.2 901417ac Det1 2 2 218.4 109.2 901417ac Det2 2 2 133.9 66.9 901417ac Det3 5 5 2034.2 410.8 901417ac Det4 2 2 122.9 61.4 901417ac Det5 0 0 0 0.0 901452m8 STR 0 0 0 0.0 901452m8 STR 0 0 0 0.0 901452m8 STR 0 0 0 0.0 901452m8 Det1 1 1 12.7 901417ac HV1 2 2 212.4 53.1 901417ac HV1 2 2 2 212.4 53.1 901417ac	901347a6	,012001110					
901323m6 STR 10 10 135.9 13.6 901347a6 STR 77 77 219.9 2.9 901352m2 STR 1 1 1 4.3 4.3 901352m2 Det1 1 1 1 1.2.7 901352m2 Det2 0 0 0 0.0 0.0 901352m2 Det3 0 0 0 0.0 0.0 901352m2 Det4 0 0 0 0.0 0.0 901352m2 Det4 0 0 0 0.0 0.0 901352m2 Det4 0 0 0 0.0 0.0 901352m2 HV1 1 1 0 0.6 0.3 901352m2 HV2 0 0 0 0.0 0.0 901352m2 HV3 0 0 0 0.0 0.0 901352m2 HV3 0 0 0 0.0 0.0 901352m2 HV5 0 0 0 0.0 0.0 901352m2 HV7 0 0 0 0.0 0.0 901352m2 HV7 0 0 0 0.0 0.0 901352m2 HV7 0 0 0 0.0 0.0 901352m2 HV8 0 0 0 0.0 0.0 901352m2 HV9 0 0 0 0.0 0.0 901352m2 HV9 0 0 0 0.0 0.0 901363m1 STR 42 42 152.6 3.6 901382m3 STR 0 0 0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac Det1 2 2 218.4 109.2 901417ac Det1 2 2 218.4 109.2 901417ac Det2 2 2 133.9 66.9 901417ac Det3 5 5 2034.2 410.8 901417ac Det4 2 2 122.9 61.4 901417ac Det5 0 0 0 0.0 901452m8 STR 0 0 0 0.0 901452m8 STR 0 0 0 0.0 901452m8 STR 0 0 0 0.0 901452m8 Det1 1 1 12.7 901417ac HV1 2 2 212.4 53.1 901417ac HV1 2 2 2 212.4 53.1 901417ac	901347a6			_	_	0.0	
901323m6 STR 10 10 135.9 13.6 901347a6 STR 77 77 219.9 2.9 901352m2 Det1 1 1 1 4.3 4.3 901352m2 Det2 0 0 0 0.0 0.0 901352m2 Det3 0 0 0 0.0 0.0 901352m2 Det4 0 0 0 0.0 0.0 901352m2 Det5 0 0 0 0.0 0.0 901352m2 Det5 0 0 0 0.0 0.0 901352m2 HV1 1 1 0.6 0.3 901352m2 HV2 0 0 0 0.0 0.0 901352m2 HV2 0 0 0 0.0 0.0 901352m2 HV3 0 0 0 0.0 0.0 901352m2 HV3 0 0 0 0.0 0.0 901352m2 HV4 0 0 0 0.0 0.0 901352m2 HV5 0 0 0 0.0 0.0 901352m2 HV5 0 0 0 0.0 0.0 901352m2 HV5 0 0 0 0.0 0.0 901352m2 HV7 0 0 0 0 0.0 0.0 901352m3 STR 0 0 0 0 0.0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac Det2 2 2 128.4 199.2 901417ac Det3 5 5 20054.2 410.8 901417ac Det4 2 2 122.9 61.4 901417ac HV1 2 2 2 122.4 53.1 901452m8 Det1 1 1 12.6 6.	901323m6	001312m4	STR	0	0	0.0	0.0
901347a6 STR 77 77 219.9 2.9 901352m2 STR 1 1 1 4.3 4.3 901352m2 Det1 1 1 1 1.2.7 901352m2 Det2 0 0 0 0.0 901352m2 Det3 0 0 0 0.0 901352m2 Det3 0 0 0 0.0 901352m2 Det4 0 0 0 0.0 901352m2 Det5 0 0 0 0.0 901352m2 Det7 0 0 0 0.0 901352m2 Det8 0 0 0 0.0 901352m2 HV1 1 1 0.6 901352m2 HV2 0 0 0 0.0 901352m2 HV3 0 0 0 0.0 901352m2 HV3 0 0 0 0.0 901352m2 HV4 0 0 0 0.0 901352m2 HV5 0 0 0 0.0 901362m3 STR 0 0 0 0.0 901392m3 STR 0 0 0 0.0 901392m3 STR 0 0 0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac Det1 2 2 2 18.4 109.2 901417ac Det1 2 2 2 18.4 109.2 901417ac Det3 5 5 2054.2 410.8 901417ac Det4 2 2 122.9 61.4 901417ac Det3 5 5 2054.2 410.8 901417ac HV2 2 2 127.8 31.9 901417ac HV4 2 2 116.8 292.9 901417ac HV4 2 2 116.8 292.9 901417ac HV4 2 2 116.8 292.9 901417ac HV5 0 0 0 0.0 901452m8 Det1 1 1 12.7 12.7 901452m8 Det3 1 1 12.6 12.6 901452m8 Det3 1 1 12.6 12.6 901452m8 Det3 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 Det4 1 1 12.7 12.7 901452m8 Det3 1 1 12.6 12.6 901452m8 HV5 1 1 0.6 0.3	901347a6	70131 2: 111 1					
901347a6 STR 77 77 219.9 2.9 901352m2 STR 1 1 1 4.3 4.3 901352m2 Det1 1 1 1 1.2.7 901352m2 Det2 0 0 0 0.0 901352m2 Det3 0 0 0 0.0 901352m2 Det3 0 0 0 0.0 901352m2 Det4 0 0 0 0.0 901352m2 Det5 0 0 0 0.0 901352m2 Det7 0 0 0 0.0 901352m2 Det8 0 0 0 0.0 901352m2 HV1 1 1 0.6 901352m2 HV2 0 0 0 0.0 901352m2 HV3 0 0 0 0.0 901352m2 HV3 0 0 0 0.0 901352m2 HV4 0 0 0 0.0 901352m2 HV5 0 0 0 0.0 901362m3 STR 0 0 0 0.0 901392m3 STR 0 0 0 0.0 901392m3 STR 0 0 0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac Det1 2 2 2 18.4 109.2 901417ac Det1 2 2 2 18.4 109.2 901417ac Det3 5 5 2054.2 410.8 901417ac Det4 2 2 122.9 61.4 901417ac Det3 5 5 2054.2 410.8 901417ac HV2 2 2 127.8 31.9 901417ac HV4 2 2 116.8 292.9 901417ac HV4 2 2 116.8 292.9 901417ac HV4 2 2 116.8 292.9 901417ac HV5 0 0 0 0.0 901452m8 Det1 1 1 12.7 12.7 901452m8 Det3 1 1 12.6 12.6 901452m8 Det3 1 1 12.6 12.6 901452m8 Det3 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 Det4 1 1 12.7 12.7 901452m8 Det3 1 1 12.6 12.6 901452m8 HV5 1 1 0.6 0.3	901347a6						
901347a6 STR 77 77 219.9 2.9 901352m2 STR 1 1 1 4.3 4.3 901352m2 Det1 1 1 1 1.2.7 901352m2 Det2 0 0 0 0.0 901352m2 Det3 0 0 0 0.0 901352m2 Det3 0 0 0 0.0 901352m2 Det4 0 0 0 0.0 901352m2 Det5 0 0 0 0.0 901352m2 Det7 0 0 0 0.0 901352m2 Det8 0 0 0 0.0 901352m2 HV1 1 1 0.6 901352m2 HV2 0 0 0 0.0 901352m2 HV3 0 0 0 0.0 901352m2 HV3 0 0 0 0.0 901352m2 HV4 0 0 0 0.0 901352m2 HV5 0 0 0 0.0 901362m3 STR 0 0 0 0.0 901392m3 STR 0 0 0 0.0 901392m3 STR 0 0 0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac Det1 2 2 2 18.4 109.2 901417ac Det1 2 2 2 18.4 109.2 901417ac Det3 5 5 2054.2 410.8 901417ac Det4 2 2 122.9 61.4 901417ac Det3 5 5 2054.2 410.8 901417ac HV2 2 2 127.8 31.9 901417ac HV4 2 2 116.8 292.9 901417ac HV4 2 2 116.8 292.9 901417ac HV4 2 2 116.8 292.9 901417ac HV5 0 0 0 0.0 901452m8 Det1 1 1 12.7 12.7 901452m8 Det3 1 1 12.6 12.6 901452m8 Det3 1 1 12.6 12.6 901452m8 Det3 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 Det4 1 1 12.7 12.7 901452m8 Det3 1 1 12.6 12.6 901452m8 HV5 1 1 0.6 0.3	901347a6	0013236	STR	10	10	135.9	13.6
901352m2 Det1 1 1 1 2.7 12.7 12.7 901352m2 Det2 0 0 0 0.0 0.0 0.0 901352m2 Det3 0 0 0 0.0 0.0 0.0 901352m2 Det4 0 0 0 0.0 0.0 0.0 901352m2 Det5 0 0 0 0.0 0.0 0.0 901352m2 Det4 0 0 0 0.0 0.0 0.0 901352m2 Det5 0 0 0 0.0 0.0 0.0 901352m2 HV1 1 1 1 0.6 0.3 901352m2 HV2 0 0 0 0.0 0.0 0.0 901352m2 HV3 0 0 0 0.0 0.0 0.0 901352m2 HV3 0 0 0 0.0 0.0 0.0 901352m2 HV4 0 0 0 0.0 0.0 0.0 901352m2 HV5 0 0 0 0.0 0.0 0.0 901362m3 STR 0 0 0 0.0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac Det1 2 2 218.4 1092.2 901417ac Det2 2 218.4 1092.2 901417ac Det2 2 2 133.9 66.9 901417ac Det3 5 5 20542 410.8 901417ac Det3 5 5 20542 410.8 901417ac Det3 5 5 20542 410.8 901417ac Det4 2 2 122.9 61.4 901417ac HV2 2 2 127.8 31.9 901417ac HV3 5 5 2039.0 903.9 901417ac HV4 2 2 1616.8 292.9 901417ac HV5 0 0 0 0.0 0.0 901452m8 Det1 1 1 12.7 12.7 12.7 12.7 12.7 12.7 12.7	901352m2 De1 1 1 1 1 4.3 4.3 9.3 9.01352m2 De1 1 1 1 1 1.27 12.7 12.7 9.01352m2 De2 0 0 0 0.0 0.0 0.0 9.01352m2 De3 0 0 0 0.0 0.0 9.01352m2 De4 0 0 0 0.0 0.0 9.01352m2 HV1 1 1 0.6 0.3 9.01352m2 HV3 0 0 0 0.0 0.0 9.01352m2 HV5 0 0 0 0.0 0.0 0.0 9.01363m1 STR 42 42 152.6 3.6 901382m3 STR 0 0 0 0.0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac Det1 2 2 2 18.4 109.2 901417ac Det1 2 2 2 18.4 109.2 901417ac Det2 2 2 2 133.9 66.9 901417ac Det3 5 5 2054.2 410.8 901417ac Det3 5 5 2054.2 410.8 901417ac Det3 5 5 2054.2 410.8 901417ac Det5 0 0 0 0.0 0.0 901417ac HV1 2 2 2 122.4 53.1 901417ac HV2 2 2 122.4 53.1 901417ac HV3 5 5 2039.0 203.9 901417ac HV4 1 1 1.2.6 12.6 901452m8 Det4 1 1 1.2.6 12.6 901452m8 Det4 1 1 1.2.6 12.6 901452m8 Det3 1 1 1.0.6 0.3 901452m8 Det3 1 1 1.0.6 0.3 901452m8 Det3 1 1 1.0.6 0.3 901452m8 Det4 1 1 1.0.6 0.3 901452m8 Det3 1 1 1 0.6 0.3 90145	301323IIIO	OIIC	••			
901352m2 Det1 1 1 1 2.7 12.7 12.7 901352m2 Det2 0 0 0 0.0 0.0 0.0 901352m2 Det3 0 0 0 0.0 0.0 0.0 901352m2 Det4 0 0 0 0.0 0.0 0.0 901352m2 Det5 0 0 0 0.0 0.0 0.0 901352m2 Det4 0 0 0 0.0 0.0 0.0 901352m2 Det5 0 0 0 0.0 0.0 0.0 901352m2 HV1 1 1 1 0.6 0.3 901352m2 HV2 0 0 0 0.0 0.0 0.0 901352m2 HV3 0 0 0 0.0 0.0 0.0 901352m2 HV3 0 0 0 0.0 0.0 0.0 901352m2 HV4 0 0 0 0.0 0.0 0.0 901352m2 HV5 0 0 0 0.0 0.0 0.0 901362m3 STR 0 0 0 0.0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac Det1 2 2 218.4 1092.2 901417ac Det2 2 218.4 1092.2 901417ac Det2 2 2 133.9 66.9 901417ac Det3 5 5 20542 410.8 901417ac Det3 5 5 20542 410.8 901417ac Det3 5 5 20542 410.8 901417ac Det4 2 2 122.9 61.4 901417ac HV2 2 2 127.8 31.9 901417ac HV3 5 5 2039.0 903.9 901417ac HV4 2 2 1616.8 292.9 901417ac HV5 0 0 0 0.0 0.0 901452m8 Det1 1 1 12.7 12.7 12.7 12.7 12.7 12.7 12.7	901352m2 De1 1 1 1 1 4.3 4.3 9.3 9.01352m2 De1 1 1 1 1 1.27 12.7 12.7 9.01352m2 De2 0 0 0 0.0 0.0 0.0 9.01352m2 De3 0 0 0 0.0 0.0 9.01352m2 De4 0 0 0 0.0 0.0 9.01352m2 HV1 1 1 0.6 0.3 9.01352m2 HV3 0 0 0 0.0 0.0 9.01352m2 HV5 0 0 0 0.0 0.0 0.0 9.01363m1 STR 42 42 152.6 3.6 901382m3 STR 0 0 0 0.0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac Det1 2 2 2 18.4 109.2 901417ac Det1 2 2 2 18.4 109.2 901417ac Det2 2 2 2 133.9 66.9 901417ac Det3 5 5 2054.2 410.8 901417ac Det3 5 5 2054.2 410.8 901417ac Det3 5 5 2054.2 410.8 901417ac Det5 0 0 0 0.0 0.0 901417ac HV1 2 2 2 122.4 53.1 901417ac HV2 2 2 122.4 53.1 901417ac HV3 5 5 2039.0 203.9 901417ac HV4 1 1 1.2.6 12.6 901452m8 Det4 1 1 1.2.6 12.6 901452m8 Det4 1 1 1.2.6 12.6 901452m8 Det3 1 1 1.0.6 0.3 901452m8 Det3 1 1 1.0.6 0.3 901452m8 Det3 1 1 1.0.6 0.3 901452m8 Det4 1 1 1.0.6 0.3 901452m8 Det3 1 1 1 0.6 0.3 90145						
901352m2 Det1 1 1 1 2.7 12.7 12.7 901352m2 Det2 0 0 0 0.0 0.0 0.0 901352m2 Det3 0 0 0 0.0 0.0 0.0 901352m2 Det4 0 0 0 0.0 0.0 0.0 901352m2 Det5 0 0 0 0.0 0.0 0.0 901352m2 Det4 0 0 0 0.0 0.0 0.0 901352m2 Det5 0 0 0 0.0 0.0 0.0 901352m2 HV1 1 1 1 0.6 0.3 901352m2 HV2 0 0 0 0.0 0.0 0.0 901352m2 HV3 0 0 0 0.0 0.0 0.0 901352m2 HV3 0 0 0 0.0 0.0 0.0 901352m2 HV4 0 0 0 0.0 0.0 0.0 901352m2 HV5 0 0 0 0.0 0.0 0.0 901362m3 STR 0 0 0 0.0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac Det1 2 2 218.4 1092.2 901417ac Det2 2 218.4 1092.2 901417ac Det2 2 2 133.9 66.9 901417ac Det3 5 5 20542 410.8 901417ac Det3 5 5 20542 410.8 901417ac Det3 5 5 20542 410.8 901417ac Det4 2 2 122.9 61.4 901417ac HV2 2 2 127.8 31.9 901417ac HV3 5 5 2039.0 903.9 901417ac HV4 2 2 1616.8 292.9 901417ac HV5 0 0 0 0.0 0.0 901452m8 Det1 1 1 12.7 12.7 12.7 12.7 12.7 12.7 12.7	901352m2 De1 1 1 1 1 4.3 4.3 9.3 9.01352m2 De1 1 1 1 1 1.27 12.7 12.7 9.01352m2 De2 0 0 0 0.0 0.0 0.0 9.01352m2 De3 0 0 0 0.0 0.0 9.01352m2 De4 0 0 0 0.0 0.0 9.01352m2 HV1 1 1 0.6 0.3 9.01352m2 HV3 0 0 0 0.0 0.0 9.01352m2 HV5 0 0 0 0.0 0.0 0.0 9.01363m1 STR 42 42 152.6 3.6 901382m3 STR 0 0 0 0.0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac Det1 2 2 2 18.4 109.2 901417ac Det1 2 2 2 18.4 109.2 901417ac Det2 2 2 2 133.9 66.9 901417ac Det3 5 5 2054.2 410.8 901417ac Det3 5 5 2054.2 410.8 901417ac Det3 5 5 2054.2 410.8 901417ac Det5 0 0 0 0.0 0.0 901417ac HV1 2 2 2 122.4 53.1 901417ac HV2 2 2 122.4 53.1 901417ac HV3 5 5 2039.0 203.9 901417ac HV4 1 1 1.2.6 12.6 901452m8 Det4 1 1 1.2.6 12.6 901452m8 Det4 1 1 1.2.6 12.6 901452m8 Det3 1 1 1.0.6 0.3 901452m8 Det3 1 1 1.0.6 0.3 901452m8 Det3 1 1 1.0.6 0.3 901452m8 Det4 1 1 1.0.6 0.3 901452m8 Det3 1 1 1 0.6 0.3 90145	001247.6	दाप्र	77	77	219.9	2.9
SOI352m2	Del	901347a0	Oiit	• •	• • •		
SOI352m2	Del						
SOI352m2	Del	001252-2	STR	1	1	4.3	4.3
SOI1352m2	Solis52m2						12.7
Solition	Section Sect	901352m2	DetI	1		14.7	
Detail	SOI352m2		Det7	Λ	Λ	0.0	0.0
Det	Detail						
Solistic Det O	Dec	901352m2	Det3	U	U	0.0	0.0
SOI1352m2	Section Sect			Λ	Λ	0.0	0.0
SOI352m2	SOI352m2	901352m2	Det4				
SOI352m2	SOI352m2	901352m2	Det5	0	0	0.0	0.0
SOLISTEND STR	1901352m2					0.6	Λ2
SOUTSTAND STEAT	SOUTSTATE STR	901352m2	HVI				
SOUTSTAND STEAT	SOUTSTATE STR	001252-2	HV2	n	n	0.0	0.0
SOI1552m2	SOI SECTION STEAT STEA						
901352m2 HV4 0 0 0 0.0 0.0 0.0 901352m2 HV5 0 0 0 0.0 0.0 0.0 0.0 901352m2 HV5 0 0 0 0.0 0.0 0.0 0.0 901363m1 STR 42 42 152.6 3.6 901382m3 STR 0 0 0 0.0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac STR 231 231 921.2 4.0 901417ac Detl 2 2 218.4 109.2 901417ac Detl 2 2 218.4 109.2 901417ac Detl 2 2 2 133.9 66.9 901417ac Detl 2 2 2 133.9 66.9 901417ac Detl 2 2 122.9 61.4 901417ac Detl 3 5 5 2054.2 410.8 901417ac Detl 4 2 2 122.9 61.4 901417ac Detl 5 0 0 0 0.0 0.0 0.0 901417ac HV1 2 2 2 122.4 50.1 901417ac HV2 2 2 121.4 50.1 901417ac HV2 2 2 127.8 31.9 901417ac HV3 5 5 2039.0 203.9 901417ac HV4 2 2 116.8 29.2 901417ac HV4 2 2 116.8 29.2 901417ac HV5 0 0 0 0.0 0.0 0.0 901432m5 STR 0 0 0 0.0 0.0 0.0 901452m8 Detl 1 1 12.6 12.6 901452m8 Detl 1 1 10.6 0.3 901452m8 Detl 1 1 10.6 0.3 901452m8 HV2 1 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 1 1 0.6	901352m2 HV5 0 0 0 0.0 0.0 901352m2 HV5 0 0 0 0.0 0.0 901363m1 STR 42 42 152.6 3.6 901382m3 STR 0 0 0 0.0 901392m3 STR 0 0 0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac STR 231 231 921.2 4.0 901417ac Det1 2 2 218.4 109.2 901417ac Det3 5 5 2054.2 410.8 901417ac Det3 5 5 2054.2 410.8 901417ac Det4 2 2 122.9 61.4 901417ac Det5 0 0 0.0 0.0 901417ac HV1 2 2 2 122.4 53.1 901417ac HV2 2 2 127.8 31.9 901417ac HV3 5 5 5 2039.0 203.9 901417ac HV4 2 2 116.8 29.2 901417ac HV5 0 0 0.0 0.0 901417ac HV5 0 0 0 0.0 0.0 901417ac HV5 0 0 0 0.0 0.0 901417ac HV5 1 1 12.7 12.7 901417ac HV5 1 1 1 12.7 12.7 901452m8 Det1 1 1 12.7 12.7 901452m8 Det3 1 1 12.7 12.7 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 10.6 0.3 901452m8 HV1 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3	901352m2	HV3	U			
SOLISS2m2	SOUTSTAND STR		HV4	٥	n	0.0	0.0
901363m1 STR 42 42 152.6 3.6 901382m3 STR 0 0 0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac STR 231 231 921.2 4.0 901417ac Det1 2 2 218.4 109.2 901417ac Det3 5 5 2054.2 410.8 901417ac Det4 2 2 2 133.9 66.9 901417ac Det5 0 0 0 0.0 0.0 901417ac Det5 0 0 0 0.0 0.0 901417ac HV1 2 2 2 122.9 61.4 901417ac HV2 2 2 127.8 31.9 901417ac HV2 2 2 127.8 31.9 901417ac HV2 2 2 112.8 31.9 901417ac HV2 2 2 116.8 29.2 901417ac HV5 0 0 0 0.0 0.0 901417ac HV5 0 0 0 0.0 901417ac HV5 0 0 0 0.0 901417ac HV5 0 0 0 0.0 901452m8 Det1 1 1 12.7 12.7 901452m8 Det1 1 1 12.7 12.7 901452m8 Det2 1 1 1 12.6 12.6 901452m8 Det3 1 1 12.6 12.6 901452m8 Det3 1 1 12.6 12.6 901452m8 Det4 1 1 1 1.0 6 0.3 901452m8 Det3 1 1 12.6 12.6 901452m8 Det4 1 1 1 0.6 0.3 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 1 0.6 0.3 901452m8 HV5 1 1 1 0.6 0.3 901452m8 HV1 1 1 1 0.6 0.3 901452m8 HV2 1 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 1 0.6 0.3 901452m8 HV5 1 1 1 0.6 0.3 901452m8 HV1 1 1 1 0.6 0.3	901363m1 STR 42 42 152.6 3.6 901382m3 STR 0 0 0 0.0 0.0 901392m3 STR 0 0 0 0.0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac STR 231 231 921.2 4.0 901417ac Det1 2 2 218.4 109.2 901417ac Det2 2 2 2133.9 66.9 901417ac Det3 5 5 2054.2 410.8 901417ac Det3 5 5 2054.2 410.8 901417ac Det4 2 2 122.9 61.4 901417ac Det5 0 0 0.0 0.0 901417ac HV1 2 2 122.4 53.1 901417ac HV2 2 2 121.78 31.9 901417ac HV2 2 2 121.78 31.9 901417ac HV3 5 5 2039.0 203.9 901417ac HV4 2 2 2 116.8 901417ac HV5 0 0 0 0.0 0.0 901417ac HV5 0 0 0 0.0 0.0 901417ac HV5 0 0 0 0.0 0.0 901417ac HV5 0 1 16.8 29.2 901417ac HV5 0 0 0 0.0 0.0 901452m8 STR 8 8 8 32.5 4.1 901452m8 Det1 1 1 12.7 12.7 901452m8 Det3 1 1 12.6 12.6 901452m8 Det3 1 1 12.6 12.6 901452m8 Det4 1 1 12.7 12.7 901452m8 Det3 1 1 12.6 12.6 901452m8 Det4 1 1 1.6 0.6 0.3 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 1 0.6 0.3 901452m8 HV5 1 1 1 0.6 0.3 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 1 0.6 0.3 901452m8 HV4 1 1 1 0.6 0.3 901452m8 HV5 1 1 1 0.6 0.3						
901363m1 STR 42 42 152.6 3.6 901382m3 STR 0 0 0.0 0.0 901392m3 STR 0 0 0.0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac Det1 2 2 218.4 109.2 901417ac Det1 2 2 218.4 109.2 901417ac Det3 5 5 2054.2 410.8 901417ac Det4 2 2 122.9 61.4 901417ac Det5 0 0 0.0 0.0 901417ac HV1 2 2 212.4 53.1 901417ac HV2 2 2 127.8 31.9 901417ac HV3 5 5 2039.0 203.9 901417ac HV4 2 2 116.8 29.2 901417ac HV3 5 5	901363m1 STR 42 42 152.6 3.6 901382m3 STR 0 0 0.0 0.0 901392m3 STR 0 0 0.0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac Det1 2 2 18.4 109.2 901417ac Det1 2 2 133.9 66.9 901417ac Det3 5 5 2054.2 410.8 901417ac Det4 2 2 122.9 61.4 901417ac Det5 0 0 0 0 0 901417ac HV1 2 2 122.4 53.1 901.4 901417ac HV2 2 2 127.8 31.9 901.4 901417ac HV3 5 5 2039.0 203.9 903.9 903.9 903.9 903.9 903.9 903.9 903.9 903.9 903.9	901352m2	HV5	0	U	0.0	0.0
901382m3	901382m3	,0155 5.					
901382m3	901382m3					150 6	
901382m3	901382m3	901363m1	SIR	42	42	152.6	3.6
901392m3 SIR 0 0 0 0.0 0.0 901402m8 SIR 7 7 15.8 2.3 901417ac SIR 231 231 921.2 4.0 901417ac Det1 2 2 2 218.4 109.2 901417ac Det2 2 2 2133.9 66.9 901417ac Det3 5 5 5 2054.2 410.8 901417ac Det4 2 2 2 122.9 61.4 901417ac Det5 0 0 0 0.0 0.0 901417ac HV1 2 2 2 212.4 53.1 901417ac HV2 2 2 212.7.8 31.9 901417ac HV2 2 2 212.7.8 31.9 901417ac HV3 5 5 5 2039.0 203.9 901417ac HV4 2 2 2 116.8 29.2 901417ac HV5 0 0 0 0.0 0.0 901432m5 SIR 0 0 0 0.0 0.0 901452m8 SIR 8 8 8 32.5 4.1 901452m8 Det1 1 1 12.7 12.7 901452m8 Det3 1 1 12.6 12.6 901452m8 Det3 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det3 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 10.6 0.3 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 1 0.6 0.3 901452m8 HV4 1 1 1 0.6 0.3 901452m8 HV5 1 1 1 0.6 0.3	901392m3 STR 0 0 0 0.0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac STR 231 231 921.2 4.0 901417ac Detl 2 2 218.4 109.2 901417ac Det2 2 2 2133.9 66.9 901417ac Det3 5 5 2054.2 410.8 901417ac Det5 0 0 0 0.0 901417ac Det5 0 0 0 0.0 901417ac HV1 2 2 2122.9 61.4 901417ac HV2 2 2 127.8 31.9 901417ac HV2 2 2 127.8 31.9 901417ac HV3 5 5 5 2039.0 203.9 901417ac HV4 2 2 2 116.8 29.2 901417ac HV5 0 0 0 0.0 901417ac HV5 0 0 0 0.0 901417ac HV5 0 1 0 0.0 901417ac HV5 0 1 0 0 0.0 901452m8 Det1 1 1 12.7 901452m8 Det1 1 1 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 901452m8 Det4 1 1 12.7 901452m8 Det4 1 1 12.7 901452m8 Det3 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det4 1 1 1 12.6 12.6 901452m8 Det4 1 1 1 12.6 12.6 901452m8 Det3 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3	/01505III1					
901392m3 SIR 0 0 0 0.0 0.0 901402m8 SIR 7 7 15.8 2.3 901417ac SIR 231 231 921.2 4.0 901417ac Det1 2 2 2 218.4 109.2 901417ac Det2 2 2 2133.9 66.9 901417ac Det3 5 5 5 2054.2 410.8 901417ac Det4 2 2 2 122.9 61.4 901417ac Det5 0 0 0 0.0 0.0 901417ac HV1 2 2 2 212.4 53.1 901417ac HV2 2 2 212.7.8 31.9 901417ac HV2 2 2 212.7.8 31.9 901417ac HV3 5 5 5 2039.0 203.9 901417ac HV4 2 2 2 116.8 29.2 901417ac HV5 0 0 0 0.0 0.0 901432m5 SIR 0 0 0 0.0 0.0 901452m8 SIR 8 8 8 32.5 4.1 901452m8 Det1 1 1 12.7 12.7 901452m8 Det3 1 1 12.6 12.6 901452m8 Det3 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det3 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 10.6 0.3 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 1 0.6 0.3 901452m8 HV4 1 1 1 0.6 0.3 901452m8 HV5 1 1 1 0.6 0.3	901392m3 STR 0 0 0 0.0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac STR 231 231 921.2 4.0 901417ac Detl 2 2 218.4 109.2 901417ac Det2 2 2 2133.9 66.9 901417ac Det3 5 5 2054.2 410.8 901417ac Det5 0 0 0 0.0 901417ac Det5 0 0 0 0.0 901417ac HV1 2 2 2122.9 61.4 901417ac HV2 2 2 127.8 31.9 901417ac HV2 2 2 127.8 31.9 901417ac HV3 5 5 5 2039.0 203.9 901417ac HV4 2 2 2 116.8 29.2 901417ac HV5 0 0 0 0.0 901417ac HV5 0 0 0 0.0 901417ac HV5 0 1 0 0.0 901417ac HV5 0 1 0 0 0.0 901452m8 Det1 1 1 12.7 901452m8 Det1 1 1 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 901452m8 Det4 1 1 12.7 901452m8 Det4 1 1 12.7 901452m8 Det3 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det4 1 1 1 12.6 12.6 901452m8 Det4 1 1 1 12.6 12.6 901452m8 Det3 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3			_	_		
901392m3 STR 0 0 0 0.0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac STR 231 231 921.2 4.0 901417ac Det1 2 2 2 218.4 109.2 901417ac Det2 2 2 2 133.9 66.9 901417ac Det3 5 5 5 2054.2 410.8 901417ac Det4 2 2 2 122.9 61.4 901417ac Det5 0 0 0 0.0 901417ac HV1 2 2 2 122.8 901417ac HV2 2 2 127.8 31.9 901417ac HV2 2 2 127.8 31.9 901417ac HV3 5 5 5 2039.0 203.9 901417ac HV4 2 2 2 116.8 29.2 901417ac HV5 0 0 0 0.0 901432m5 STR 0 0 0 0.0 901452m8 STR 8 8 8 32.5 4.1 901452m8 Det1 1 1 12.7 901452m8 Det2 1 1 1 12.6 901452m8 Det3 1 1 12.6 901452m8 HV1 1 1 0.6 901452m8 HV1 1 1 0.6 901452m8 HV2 1 1 0.6 901452m8 HV4 1 1 0.6 901452m8 HV5 1 1 0.6 901452m8 HV5 1 1 0.6 901452m8 HV4 1 1 0.6 901452m8 HV5 1 1 0.6 901562p4 Det1 0 0 0.0 901562p4 Det1 0 0 0.0 901562p4 Det3 1 1 81.6 88.8 901562p4 Det4 0 0 0.0 901562p4 Det5 0 0 0.0 901562p4 Det5 0 0 0.0 901562p4 HV1 1 1 1 58.4 901562p4 HV1 1 1 58.4	901392m3 STR 0 0 0 0.0 0.0 901402m8 STR 7 7 15.8 2.3 901417ac STR 231 231 921.2 4.0 901417ac Det1 2 2 218.4 109.2 901417ac Det2 2 2 133.9 66.9 901417ac Det3 5 5 2054.2 410.8 901417ac Det4 2 2 122.9 61.4 901417ac Det5 0 0 0 0.0 0.0 901417ac HV1 2 2 212.7 83.1 901417ac HV2 2 2 127.8 31.9 901417ac HV2 2 2 127.8 31.9 901417ac HV3 5 5 5 2039.0 203.9 901417ac HV4 2 2 217.8 31.9 901417ac HV5 0 0 0 0.0 901417ac HV5 0 0 0 0.0 901417ac HV5 0 1 0 0.0 901417ac HV5 0 1 0 0 0.0 901417ac HV5 0 1 0 0 0.0 901452m8 Det1 1 1 12.7 901452m8 Det1 1 1 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 12.7 901452m8 Det4 1 1 12.7 901452m8 Det3 1 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det3 1 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 Det4 1 1 10.6 0.3 901452m8 HV1 1 1 0.6 0.3 901452m8 HV1 1 1 0.6 0.3 901452m8 HV1 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV6 1 1 0.6 0.3 901452m8 HV7 1 1 0.6 0.3 901452m8 HV7 1 1 0.6 0.3 901452m8 HV1 1 1 0.6 0.3	901382m3	STR	0	0	0.0	0.0
901402m8	901402m8	701302HI3	51.1	•			
901402m8	901402m8						
901402m8	901402m8	001302-3	STR	O	0	0.0	0.0
901417ac	901417ac	9013921113	JIK	•	·		
901417ac	901417ac						
901417ac	901417ac	0014028	CLD.	7	7	15.8	2.3
901417ac	901417ac	9014021116	OII.	•	•		
901417ac	901417ac						
901417ac	901417ac	001417	শেচ	231	231	921.2	4.0
901417ac Det2 2 2 133.9 66.9 901417ac Det3 5 5 2054.2 410.8 901417ac Det4 2 2 122.9 61.4 901417ac Det5 0 0 0 0.0 0.0 0.0 901417ac HV1 2 2 2 127.8 31.9 901417ac HV2 2 2 127.8 31.9 901417ac HV2 2 2 127.8 31.9 901417ac HV3 5 5 5 2039.0 203.9 901417ac HV4 2 2 2 116.8 29.2 901417ac HV5 0 0 0 0.0 0.0 0.0 901432m5 STR 0 0 0 0.0 0.0 0.0 901452m8 Det1 1 1 12.7 12.7 901452m8 Det1 1 1 12.7 12.7 901452m8 Det3 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 Det3 1 1 12.6 12.6 901452m8 Det4 1 1 1 12.6 12.6 901452m8 Det5 1 1 1 0.6 0.3 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 90152m8 HV5 1 1 0.6 0.3 90152pm STR 4 4 5.0 1.3 90152pm Det1 0 0 0.0 0.0 0.0 0.0 901562pm Det2 1 1 68.8 68.8 901562pm Det3 1 1 81.6 88.6 68.8 901562pm Det3 1 1 81.6 88.6 68.8 901562pm Det5 0 0 0.0 0.0 0.0 0.0 901562pm Det5 0 0 0.0 0.0 0.0 0.0 901562pm HV1 0 0 0.0 0.0 901562pm HV1 0 0 0.0 0.0 901562pm HV1 0 0 0.0 0.0 901562pm	901417ac						
901432m5 STR 0 0 0.0 0.0 901452m8 STR 8 8 32.5 4.1 901452m8 Det1 1 1 12.7 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901552m8 HV5 1 1 0.6 0.3	901432m5 STR 0 0 0 0.0 0.0 901452m8 STR 8 8 8 32.5 4.1 901452m8 Detl 1 1 1 12.7 12.7 901452m8 Det2 1 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV 1 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 90152m8 HV 5 1 1 0.6 0.3 90152m8 HV 6 1 1 0.6 0.3 90152m8 HV 7 7 8.8 1.3 901562p4 STR 7 7 8.8 1.3 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det4 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0	901417ac	Det l	2	2	218.4	109.2
901432m5 STR 0 0 0.0 0.0 901452m8 STR 8 8 32.5 4.1 901452m8 Det1 1 1 12.7 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901552m8 HV5 1 1 0.6 0.3	901432m5 STR 0 0 0 0.0 0.0 901452m8 STR 8 8 8 32.5 4.1 901452m8 Detl 1 1 1 12.7 12.7 901452m8 Det2 1 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV 1 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 90152m8 HV 5 1 1 0.6 0.3 90152m8 HV 6 1 1 0.6 0.3 90152m8 HV 7 7 8.8 1.3 901562p4 STR 7 7 8.8 1.3 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det4 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0			2	2	133 0	66.0
901432m5 STR 0 0 0.0 0.0 901452m8 STR 8 8 32.5 4.1 901452m8 Det1 1 1 12.7 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901552m8 HV5 1 1 0.6 0.3	901432m5 STR 0 0 0 0.0 0.0 901452m8 STR 8 8 8 32.5 4.1 901452m8 Detl 1 1 1 12.7 12.7 901452m8 Det2 1 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV 1 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 90152m8 HV 5 1 1 0.6 0.3 90152m8 HV 6 1 1 0.6 0.3 90152m8 HV 7 7 8.8 1.3 901562p4 STR 7 7 8.8 1.3 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det4 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0	90141/ac		- 4	~		
901432m5 STR 0 0 0.0 0.0 901452m8 STR 8 8 32.5 4.1 901452m8 Det1 1 1 12.7 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901552m8 HV5 1 1 0.6 0.3	901432m5 STR 0 0 0 0.0 0.0 901452m8 STR 8 8 8 32.5 4.1 901452m8 Detl 1 1 1 12.7 12.7 901452m8 Det2 1 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV 1 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 90152m8 HV 5 1 1 0.6 0.3 90152m8 HV 6 1 1 0.6 0.3 90152m8 HV 7 7 8.8 1.3 901562p4 STR 7 7 8.8 1.3 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det4 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0	Q01417sc	Det3	5	5	2054.2	410.8
901432m5 STR 0 0 0.0 0.0 901452m8 STR 8 8 32.5 4.1 901452m8 Det1 1 1 12.7 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901552m8 HV5 1 1 0.6 0.3	901432m5 STR 0 0 0 0.0 0.0 901452m8 STR 8 8 8 32.5 4.1 901452m8 Detl 1 1 1 12.7 12.7 901452m8 Det2 1 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV 1 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 90152m8 HV 5 1 1 0.6 0.3 90152m8 HV 6 1 1 0.6 0.3 90152m8 HV 7 7 8.8 1.3 901562p4 STR 7 7 8.8 1.3 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det4 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0			ā	2	122.0	61.4
901432m5 STR 0 0 0.0 0.0 901452m8 STR 8 8 32.5 4.1 901452m8 Det1 1 1 12.7 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901552m8 HV5 1 1 0.6 0.3	901432m5 STR 0 0 0 0.0 0.0 901452m8 STR 8 8 8 32.5 4.1 901452m8 Detl 1 1 1 12.7 12.7 901452m8 Det2 1 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV 1 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 90152m8 HV 5 1 1 0.6 0.3 90152m8 HV 6 1 1 0.6 0.3 90152m8 HV 7 7 8.8 1.3 901562p4 STR 7 7 8.8 1.3 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det4 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0	901417ac	Det4	Z	4		
901432m5 STR 0 0 0.0 0.0 901452m8 STR 8 8 32.5 4.1 901452m8 Det1 1 1 12.7 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901552m8 HV5 1 1 0.6 0.3	901432m5 STR 0 0 0 0.0 0.0 901452m8 STR 8 8 8 32.5 4.1 901452m8 Detl 1 1 1 12.7 12.7 901452m8 Det2 1 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV 1 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 90152m8 HV 5 1 1 0.6 0.3 90152m8 HV 6 1 1 0.6 0.3 90152m8 HV 7 7 8.8 1.3 901562p4 STR 7 7 8.8 1.3 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det4 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0	001417	Det 5	Λ	0	0.0	0.0
901432m5 STR 0 0 0.0 0.0 901452m8 STR 8 8 32.5 4.1 901452m8 Det1 1 1 12.7 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901552m8 HV5 1 1 0.6 0.3	901432m5 STR 0 0 0 0.0 0.0 901452m8 STR 8 8 8 32.5 4.1 901452m8 Detl 1 1 1 12.7 12.7 901452m8 Det2 1 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV 1 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 90152m8 HV 5 1 1 0.6 0.3 90152m8 HV 6 1 1 0.6 0.3 90152m8 HV 7 7 8.8 1.3 901562p4 STR 7 7 8.8 1.3 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det4 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0			ž	ă		52.1
901432m5 STR 0 0 0.0 0.0 901452m8 STR 8 8 32.5 4.1 901452m8 Det1 1 1 12.7 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901552m8 HV5 1 1 0.6 0.3	901432m5 STR 0 0 0 0.0 0.0 901452m8 STR 8 8 8 32.5 4.1 901452m8 Detl 1 1 1 12.7 12.7 901452m8 Det2 1 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV 1 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 90152m8 HV 5 1 1 0.6 0.3 90152m8 HV 6 1 1 0.6 0.3 90152m8 HV 7 7 8.8 1.3 901562p4 STR 7 7 8.8 1.3 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det4 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0	901417ac	HVI	2	2	212.4	
901432m5 STR 0 0 0.0 0.0 901452m8 STR 8 8 32.5 4.1 901452m8 Det1 1 1 12.7 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901552m8 HV5 1 1 0.6 0.3	901432m5 STR 0 0 0 0.0 0.0 901452m8 STR 8 8 8 32.5 4.1 901452m8 Detl 1 1 1 12.7 12.7 901452m8 Det2 1 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV 1 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 90152m8 HV 5 1 1 0.6 0.3 90152m8 HV 6 1 1 0.6 0.3 90152m8 HV 7 7 8.8 1.3 901562p4 STR 7 7 8.8 1.3 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det4 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0			2	2	127 R	31 Q
901432m5 STR 0 0 0.0 0.0 901452m8 STR 8 8 32.5 4.1 901452m8 Det1 1 1 12.7 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901552m8 HV5 1 1 0.6 0.3	901432m5 STR 0 0 0 0.0 0.0 901452m8 STR 8 8 8 32.5 4.1 901452m8 Detl 1 1 1 12.7 12.7 901452m8 Det2 1 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV 1 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 90152m8 HV 5 1 1 0.6 0.3 90152m8 HV 6 1 1 0.6 0.3 90152m8 HV 7 7 8.8 1.3 901562p4 STR 7 7 8.8 1.3 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det4 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0	90141/ac			Ę		
901432m5 STR 0 0 0.0 0.0 901452m8 STR 8 8 32.5 4.1 901452m8 Det1 1 1 12.7 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901552m8 HV5 1 1 0.6 0.3	901432m5 STR 0 0 0 0.0 0.0 901452m8 STR 8 8 8 32.5 4.1 901452m8 Detl 1 1 1 12.7 12.7 901452m8 Det2 1 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV 1 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 90152m8 HV 5 1 1 0.6 0.3 90152m8 HV 6 1 1 0.6 0.3 90152m8 HV 7 7 8.8 1.3 901562p4 STR 7 7 8.8 1.3 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det4 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0	QΩ1.417ac	HV3	5	5	2039.0	203.9
901432m5 STR 0 0 0.0 0.0 901452m8 STR 8 8 32.5 4.1 901452m8 Det1 1 1 12.7 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901552m8 HV5 1 1 0.6 0.3	901432m5 STR 0 0 0 0.0 0.0 901452m8 STR 8 8 8 32.5 4.1 901452m8 Detl 1 1 1 12.7 12.7 901452m8 Det2 1 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV 1 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 90152m8 HV 5 1 1 0.6 0.3 90152m8 HV 6 1 1 0.6 0.3 90152m8 HV 7 7 8.8 1.3 901562p4 STR 7 7 8.8 1.3 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det4 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0			- 1	2	1169	20.2
901432m5 STR 0 0 0.0 0.0 901452m8 STR 8 8 32.5 4.1 901452m8 Det1 1 1 12.7 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901552m8 HV5 1 1 0.6 0.3	901432m5 STR 0 0 0 0.0 0.0 901452m8 STR 8 8 8 32.5 4.1 901452m8 Detl 1 1 1 12.7 12.7 901452m8 Det2 1 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV 1 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 901452m8 HV 4 1 1 0.6 0.3 90152m8 HV 5 1 1 0.6 0.3 90152m8 HV 6 1 1 0.6 0.3 90152m8 HV 7 7 8.8 1.3 901562p4 STR 7 7 8.8 1.3 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det4 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0	90141/ac		- 4	- 4		
901432m5 STR 0 0 0 0.0 0.0 901452m8 STR 8 8 8 32.5 4.1 901452m8 Det1 1 1 1 12.7 12.7 901452m8 Det2 1 1 1 12.6 12.6 901452m8 Det3 1 1 12.6 12.6 901452m8 Det4 1 1 1 12.6 12.6 901452m8 Det4 1 1 1 0.6 0.3 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 STR 7 7 8.8 1.3 901492n2 STR 0 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901562p4 STR 4 4 5.0 1.3 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2	901432m5 STR 0 0 0.0 0.0 901452m8 STR 8 8 32.5 4.1 901452m8 Det1 1 1 12.7 12.7 901452m8 Det2 1 1 12.6 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 12.7 901452m8 Det4 1 1 12.6	901417ac	HV5	0	0	0.0	0.0
901452m8	901452m8	701417ac		•			
901452m8	901452m8				_		
901452m8 SIR 8 8 32.5 4.1 901452m8 Det1 1 1 12.7 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3	901452m8 SIR 8 8 32.5 4.1 901452m8 Det1 1 1 12.7 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3	901432m5	STR	0	0	0.0	0.0
901452m8 Det1 1 1 12.7 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901492m2 STR 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3<	901452m8	701432III3		_			
901452m8 Det1 1 1 12.7 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901492m2 STR 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3<	901452m8						
901452m8 Det1 1 1 12.7 12.7 901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901492m2 STR 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3<	901452m8	001452m8	STR	8	8	32.5	4.1
901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901492n2 STR 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 <td>901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901503n2 STR 7 7 8.8 1.3 901502n4 STR 2 2 45.1 22.6<!--</td--><td></td><td></td><td></td><td></td><td></td><td>12.7</td></td>	901452m8 Det2 1 1 12.6 12.6 901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901503n2 STR 7 7 8.8 1.3 901502n4 STR 2 2 45.1 22.6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>12.7</td>						12.7
901452m8	901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 Det5 1 1 10.6 0.3 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 2 0.6 0.3 901452m8 HV5 1 1 2 0.6 0.3 901452m8 HV5 1 1 1 0.6 0.3 901452m8 HV5 1 1 1 0.6 0.3 901463m4 STR 7 7 8.8 1.3 90152m4 STR 2 2 45.1 22.6 901562p4 Det1 0 0 0 0.0 0.0 0.0 901562p4 Det1 0 0 0 0.0 0.0 0.0 901562p4 Det3 1 1 68.8 68.8 901562p4 Det4 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	901452m8	Det1				
901452m8	901452m8 Det3 1 1 12.7 12.7 901452m8 Det4 1 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 Det5 1 1 10.6 0.3 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 2 0.6 0.3 901452m8 HV5 1 1 2 0.6 0.3 901452m8 HV5 1 1 1 0.6 0.3 901452m8 HV5 1 1 1 0.6 0.3 901463m4 STR 7 7 8.8 1.3 90152m4 STR 2 2 45.1 22.6 901562p4 Det1 0 0 0 0.0 0.0 0.0 901562p4 Det1 0 0 0 0.0 0.0 0.0 901562p4 Det3 1 1 68.8 68.8 901562p4 Det4 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		Det?	1	1	12.6	12.6
901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901463m4 STR 7 7 8.8 1.3 901492n2 STR 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3	Solid State						
901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 2 0.6 0.3 901463m4 STR 7 7 8.8 1.3 901503m2 STR 4 4 5.0 1.3 901503m2 STR 4 4 5.0 1.3 901502p4 STR 2 2 45.1 22.6 901562p4 Det1 0 0 0 0.0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	901452m8 Det4 1 1 12.6 12.6 901452m8 Det5 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901463m4 STR 7 7 8.8 1.3 901492n2 STR 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901562p4 Det1 0 0 0.0 0.0	901452m8	Det3	1	1		
901452m8	901452m8 DetS 1 1 12.6 12.6 901452m8 HV1 1 1 0.6 0.3 901452m8 HV2 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901492m2 STR 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901502p4 STR 2 2 45.1 22.6 901562p4 Det1 0 0 0.0 0.0		DetA	1	1	12.6	12.6
901452m8	901452m8						
901452m8	901452m8	901452m8	Det5	1	1	12.0	
901452m8 HV2 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901463m4 STR 7 7 8.8 1.3 901492n2 STR 0 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2	901452m8 HV2 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901463m4 STR 7 7 8.8 1.3 901492n2 STR 0 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 Det1 0 0 0.0 0.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 Det4 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0					Λ6	0.3
901452m8 HV2 1 1 0.6 0.3 901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901463m4 STR 7 7 8.8 1.3 901492n2 STR 0 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901502p4 STR 2 2 45.1 22.6 901562p4 Det1 0 0 0.0 0.0 0.0 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV3 1 1 1 1 57.2 28.6 901562p4 HV3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	901452m8				Ţ		
901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901463m4 STR 7 7 8.8 1.3 901492n2 STR 0 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2	901452m8 HV3 1 1 0.6 0.3 901452m8 HV4 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901463m4 STR 7 7 7 8.8 1.3 901492n2 STR 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV1 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0		HV2	1	1	0.6	0.3
901452m8 HV4 1 1 1 0.6 0.3 901452m8 HV5 1 1 1 0.6 0.3 901452m8 HV5 1 1 1 0.6 0.3 901452m8 HV5 1 1 1 0.6 0.3 901463m4 STR 7 7 7 8.8 1.3 901492n2 STR 0 0 0 0.0 0.0 0.0 901503n2 STR 4 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0 0.0 0.0 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV3 1 1 1 1 57.2 28.6 901562p4 HV3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	901452m8 HV4 1 1 1 0.6 0.3 901452m8 HV5 1 1 0.6 0.3 901463m4 STR 7 7 7 8.8 1.3 901492n2 STR 0 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 Detl 0 0 0.0 0.0 901562p4 Detl 0 0 0.0 0.0 901562p4 Detl 1 1 68.8 68.8 901562p4 Detl 1 1 68.8 68.8 901562p4 Detl 1 1 68.8 68.8 901562p4 Detl 1 1 81.6 81.6 901562p4 Detl 0 0 0.0 0.0 901562p4 Detl 0 0 0.0 0.0 901562p4 Detl 1 1 81.6 81.6 901562p4 Detl 0 0 0.0 0.0 901562p4 Detl 0 0 0.0 0.0 901562p4 Detl 1 1 81.6 81.6 901562p4 Detl 1 1 81.6 81.6 901562p4 Detl 1 1 81.6 81.6 901562p4 Detl 1 1 58.4 29.2 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0						
901452m8 HV4 1 1 1 0.6 0.3 901452m8 HV5 1 1 1 0.6 0.3 901452m8 HV5 1 1 1 0.6 0.3 901463m4 STR 7 7 7 8.8 1.3 901492n2 STR 0 0 0.0 0.0 0.0 901503n2 STR 4 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 Det1 0 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	901452m8 HV4 1 1 1 0.6 0.3 901452m8 HV5 1 1 1 0.6 0.3 901463m4 STR 7 7 7 8.8 1.3 901492n2 STR 0 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 Detl 0 0 0.0 0.0 901562p4 Detl 0 0 0.0 0.0 901562p4 Detl 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0	901452m8	HV3	1	1		
901452m8 HV5 1 1 0.6 0.3 901463m4 STR 7 7 8.8 1.3 901492n2 STR 0 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901562p4 STR 2 2 45.1 22.6 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2	901452m8 HV5 1 1 0.6 0.3 901463m4 STR 7 7 7 8.8 1.3 901492n2 STR 0 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 Detl 0 0 0.0 0.0 901562p4 Detl 0 0 0.0 0.0 901562p4 Detl 1 1 68.8 68.8 901562p4 Detl 1 1 68.8 68.8 901562p4 Detl 1 1 81.6 81.6 901562p4 Detl 0 0 0.0 0.0 901562p4 Detl 0 0 0.0 0.0 901562p4 Detl 1 1 81.6 81.6 901562p4 Detl 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0	001452	HV4	1	1	0.6	0.3
901463m4 STR 7 7 8.8 1.3 901492n2 STR 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV3 1 1 57.2 <td< td=""><td>901463m4 STR 7 7 8.8 1.3 901492n2 STR 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0.0</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	901463m4 STR 7 7 8.8 1.3 901492n2 STR 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0.0						
901463m4 STR 7 7 8.8 1.3 901492n2 STR 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV3 1 1 57.2 <td< td=""><td>901463m4 STR 7 7 8.8 1.3 901492n2 STR 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0.0</td><td>901452m8</td><td>HVO</td><td>1</td><td>1</td><td>0.6</td><td>0.5</td></td<>	901463m4 STR 7 7 8.8 1.3 901492n2 STR 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0.0	901452m8	HVO	1	1	0.6	0.5
901492n2 STR 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV3 1 1 57.2 28.6	901492n2 STR 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0.0 0.0 901562p4 HV4 0 0 0.0	,		**			
901492n2 STR 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV3 1 1 57.2 28.6	901492n2 STR 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0.0 0.0 901562p4 HV4 0 0 0.0		~~~	-		0.0	12
901492n2 STR 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV3 1 1 57.2 28.6	901492n2 STR 0 0 0.0 0.0 901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0.0 0.0 901562p4 HV4 0 0 0.0	901463m4	SIR	7	7	8.8	1.3
901593n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV3 1 1 57.2 28.6	901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0.0 0.0 901562p4 HV4 0 0 0.0 0.0	,01.05	_				
901593n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV3 1 1 57.2 28.6	901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0.0 0.0 901562p4 HV4 0 0 0.0 0.0			•		0.0	0.0
901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 57.2 28.6 901562p4 HV3 1 1 57.2 28.6	901503n2 STR 4 4 5.0 1.3 901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0.0 0.0 901562p4 HV4 0 0 0.0 0.0	901492n2	STR	U	U	0.0	0.0
901562p4 STR 2 2 45.1 22.6 901562p4 Detl 0 0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 901562p4 Det5 0 0 0.0 901562p4 Det5 0 0 0.0 901562p4 HV1 0 0 0.0 901562p4 HV1 0 0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2	901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0	/ / / / / / / / / / / / / / / / / / / /		-			
901562p4 STR 2 2 45.1 22.6 901562p4 Detl 0 0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 901562p4 Det5 0 0 0.0 901562p4 Det5 0 0 0.0 901562p4 HV1 0 0 0.0 901562p4 HV1 0 0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2	901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0			_			
901562p4 STR 2 2 45.1 22.6 901562p4 Detl 0 0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 901562p4 Det5 0 0 0.0 901562p4 Det5 0 0 0.0 901562p4 HV1 0 0 0.0 901562p4 HV1 0 0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2	901522n4 STR 2 2 45.1 22.6 901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0	901503-2	STR	4	4	5.0	1.3
901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV3 1 1 57.2 28.6	901562p4	201202117	JIK	•	•		
901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV3 1 1 57.2 28.6	901562p4				_		
901562p4 STR 43 43 214.2 5.0 901562p4 Det1 0 0 0.0 0.0 901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV3 1 1 57.2 28.6	901562p4	00152254	CLLS	. 2	2	45.1	22.6
901562p4 Det1 0 0 0.0 0.0 0.0 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6	901562p4 Det1 0 0 0.0 0.0 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0 0.0	701322N 4	JIK	-	-		
901562p4 Det1 0 0 0.0 0.0 0.0 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6	901562p4 Det1 0 0 0.0 0.0 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0 0.0						
901562p4 Det1 0 0 0.0 0.0 0.0 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6	901562p4 Det1 0 0 0.0 0.0 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0 0.0	001562-4	CLD.	43	43	214.2	5.0
901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6	901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0						
901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6	901562p4 Det2 1 1 68.8 68.8 901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0	90156254	Det1	0	U	U,U	0.0
901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6	901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0						
901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6	901562p4 Det3 1 1 81.6 81.6 901562p4 Det4 0 0 0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0	901562p4	Det2				
901562p4 Det4 0 0 0.0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6	901562p4 Det4 0 0 0.0 0.0 0.0 901562p4 Det5 0 0 0.0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0 0.0 0.0 0.0			1	1	81.6	81.6
901562p4 Det5 0 0 0.0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6	901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0.0 0.0						
901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6	901562p4 Det5 0 0 0.0 0.0 901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0.0 0.0 901562p4 HV4 0 0 0.0 0.0	901562 ₀ 4	Det4	υ	U	U.U	
901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6	901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0.0 0.0	001560-4				ሰሰ	ሰሰ
901562p4 HV1 0 0 0.0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6	901562p4 HV1 0 0 0.0 0.0 901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0.0 0.0	901362p4					
901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6	901562p4 HV2 1 1 58.4 29.2 901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0.0 0.0		HVI	0	0	0.0	0.0
901562p4 HV3 1 1 57.2 28.6	901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0.0 0.0						20.2
901562p4 HV3 1 1 57.2 28.6	901562p4 HV3 1 1 57.2 28.6 901562p4 HV4 0 0 0.0 0.0	901562p4	· HV2	1			47.4
70130254	901562p4 HV4 0 0 0.0 0.0				1	<i>57</i> 2.	28.6
001562-4 HVA 0 0 0.0 0.0	701502p4 1111						
	701502p4 1111	90156254	HV4	0	0	0.0	0.0
701502p4 1111	901562p4 HV3 U U 0.0 0.0	/VIJUEDT	44 7 7				
90130204 1173 0 0 0.0 0.0	· · · · · · · · · · · · · · · · · · ·		T737 2	Λ	(1)	4111	

901584a8	STR	4	4	5.0	1.2
901613a3 901613a3 901613a3 901613a3 901613a3 901613a3 901613a3 901613a3 901613a3 901613a3	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	8 1 0 0 1 0 1 0 0 1 0	8 1 0 0 1 0 1 0 0 1	49.2 66.3 0.0 0.0 63.3 0.0 55.9 0.0 0.0 52.9 0.0	6.1 66.3 0.0 0.0 63.3 0.0 28.0 0.0 0.0 26.4 0.0
901627b2 901627b2 901627b2 901627b2 901627b2 901627b2 901627b2 901627b2 901627b2 901627b2 901627b2	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	329 1 2 1 1 1 1 2 1	329 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1	1438.6 250.2 250.2 525.3 248.4 308.5 240.4 245.4 516.3 237.3 304.8	4.4 250.2 250.2 262.7 248.4 308.5 120.2 122.7 129.1 118.7 152.4
901634aa	STR	14	14	17.5	1.3
901662ь3	STR	23	23	270.3	11.8
901673Ь2	STR	33	33	207.9	6.3
901694a4	STR	12	12	15.0	1.3
901713b2	STR	12	12	15.0	1.2
901733b3	STR	12	12	15.0	1.2
901753b2	STR	12	12	15.0	1.3
901773b3 901773b3 901773b3 901773b3 901773b3 901773b3 901773b3 901773b3 901773b3 901773b3 901773b3	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	24 0 0 0 0 0 1 0 0 0 0	24 0 0 0 0 1 0 0 0 0	137.1 0.0 0.0 0.0 0.0 12.7 0.0 0.0 0.0	5.7 0.0 0.0 0.0 0.0 12.7 0.0 0.0 0.0 0.0
901823a4 901823a4 901823a4 901823a4 901823a4 901823a4 901823a4 901823a4 901823a4	SIR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	19 0 0 0 0 1 0 0 0	19 0 0 0 0 1 0 0 0	145.6 0.0 0.0 0.0 0.0 12.7 0.0 0.0 0.0 0.0	7.7 0.0 0.0 0.0 0.0 12.7 0.0 0.0 0.0 0.0
901844a9 901844a9 901844a9 901844a9 901844a9 901844a9 901844a9 901844a9 901844a9	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	47 0 0 0 0 1 0 0 0 0	47 0 0 0 0 1 0 0 0	300.5 0.0 0.0 0.0 0.0 12.7 0.0 0.0 0.0 0.0	6.4 0.0 0.0 0.0 0.0 12.7 0.0 0.0 0.0 0.0
901882a3	STR	. 0	0	0.0	0.0
901893c1	STR	28	28	53.8	1.9

901915a4	STR	42	42	80.7	1.9
901953a6	STR	17	17	37.8	2.2
	CTT	260	260	1117.6	4.3
901974a3	STR		3	561.1	187.0
901974a3	Det 1	3	3	766.5	255.5
901974a3	Det2	3	3		
901974a3	Det3	4	4	1372.5	343.1
901974a3	Det4	3	3	668.5	222.8
901974a3	Det5	0	0	0.0	0.0
901974a3	HV1	4	4	291.8	36.5
	HV2	4	4	490.2	61.3
901974a3	HV3	4	4	1360.3	170.0
901974a3	HV4	4	4	405.0	50.6
901974a3			ŏ	0.0	0.0
901974a3	HV5	0	U	0.0	0.0
902005c8	STR	127	127	581.2	4.6
•			140	7540	5.4
902045a9	STR	140	140	754.2	3.4
902085ab	STR	94	94	488.6	5.2
002125-4	STR	137	137	442.7	3.2
902125e4	SIK				
902165b5	STR	<i>7</i> 7	77	510.2	6.6
902165b5	Det l	0	0	0.0	0.0
902165b5	Det2	Ō	0	0.0	0.0
902165b5	Det3	ŏ	ŏ	0.0	0.0
		Ö	ŏ	0.0	0.0
902165b5	Det4		1	13.0	13.0
90216565	Det5	1		0.0	0.0
902165b5	HV1	0	0		
902165b5	HV2	0	0	0.0	0.0
902165b5	HV3	0	Q	0.0	0.0
902165b5	HV4	0	0	0.0	0.0
902165b5	HV5	. 1	1	0.6	0.3
902205a7	STR	95	95	502.1	5.3
902245c1	STR	78	78	165.2	2.1
SMS 902287a1 not fo	ouna				
902314a4	STR	150	150	453.4	3.0
902314a4	Det1	0	0	0.0	0.0
902314a4	Det2	0	0	0.0	0.0
902314a4	Det3	Ō	0	0.0	0.0
902314a4	Det4	Ō	0	0.0	0.0
	Det5	ĭ	ī	84.8	84.8
902314a4		ò	. 0	0.0	0.0
902314a4	HV1		ŏ	0.0	0.0
902314a4	HV2	0		0.0	0.0
902314a4	HV3	0	0		
902314a4	HV4	Q	0	0.0	0.0
902314a4	HV5	1	1	73.7	36.9
SMS 902333a1 not i	found				
902344a7	STR	78	78	166.2	2.1
•				265.9	2.0
902384a6	STR	131	131		2.0
902384a6	Det1	0	0 2	0.0	0.0
902384a6	Det2	2	2	518.1	259.0
902384a6	Det3	0	0	0.0	0.0
902384a6	Det4	0	0	0.0	0.0
902384a6	Det5	Ō	0	0.0	0.0
	HVI	Ŏ	0	0.0	0.0
902384a6	HV2	ž	ž	512.0	128.0
902384a6		2	Õ	0.0	0.0
902384a6	HV3		ŏ	0.0	0.0
902384a6	HV4	0	Ö	0.0	0.0
902384a6	HV5	0	U	0.0	0.0
	STR	116	116	253.7	2.2
902494a6		0	0	0.0	0.0
902494a6	Det 1		ŏ	0.0	0.0
902494a6	Det2	0			0.0
902494a6	Det3	0	0	0.0	
902494a6	Det4	3	3	461.3	153.8
902494a6	Det5	0	0	0.0	0.0
902494a6	HV1	0	0	0.0	0.0
902494a6	HV2	ŏ	0	0.0	0.0
	HV3	ŏ	ŏ	0.0	0.0
902494a6		3	3	452.1	75.3
902494a6	HV4	0	ō	0.0	0.0
902494a6	HV5	U	U	0.0	0.0

	com.			CEN A	E E
902537ab	STR	117	117	650.4	5.6
902537ab	Detl	0	0	0.0	0.0
902537ab	Det2	1	1	85.3	85.3
			Ō	0.0	0.0
902537ab	Det3	0			
902537ab	Det4	0	0	0.0	0.0
902537ab	Det5	0	0	0.0	0.0
	HV1	Ŏ	Ō	0.0	0.0
902537ab					
902537ab	HV2	1	1	82.2	41.1
902537ab	HV3	0	0	0.0	0.0
	HV4	ŏ	ō	0.0	0.0
902537ab					
902537ab	HV5	0	0	0.0	0.0
, 0200.20					
000 (07 17	STR	253	253	1158.0	4.6
902607d2	_ :				
902607d2	Det1	0	0	0.0	0.0
902607d2	Det2	0	0	0.0	0.0
	Det3	ŏ	Ŏ	0.0	0.0
902607d2					
902607d2	Det4	1	1	79.8	79.8
90260742	Det5	0	0	0.0	0.0
	HVI	ŏ	Ŏ	0.0	0.0
902607d2		-			
902607d2	HV2	0	0	0.0	0.0
902607d2	HV3	0	0	0.0	0.0
	HV4	ĭ	ĭ	76.7	38.4
902607d2					
902607d2	HV5	0	0	0.0	0.0
SMS 902677ab not for	hor				
31413 70207 / 40 1101 101	MIG.				
				0.00	0.0
902747Ы	STR	242	242	862.6	3.6
20211102	**				-
0000171.6	STR	308	308	1111.9	3.6
902817ь8					
902817ь8	Det1	0	0	0.0	0.0
90281768	Det2	1	1	353.7	353.7
,			Ó	0.0	0.0
902817Ь8	Det3	Ō			
902817ь8	Det4	1	1	351.8	351.8
902817ь8	Det5	0	0	0.0	0.0
			ŏ	0.0	0.0
90281768	HV1	0	-		
902817Ь8	HV2	1	1	348.8	174.4
90281768	HV3	0	0	0.0	0.0
	HV4	ĭ	Ĭ	340.8	170.4
90281768					
902817ь8	HV5	0	0	0.0	0.0
•					
902885a3	STR	29	29	688.8	23.8
					20.0
702003 a 3			-,		
70200JaJ					
		94	94	290.9	3.1
902932aa	STR			290.9	3.1
902932aa	STR	94	94		
	STR STR	94 282	94 282	1040.4	3.7
902932aa 902957a9	STR	94	94		
902932aa 902957a9 902957a9	STR STR Det l	94 282 0	94 282 0	1040.4 0.0	3.7 0.0
902932aa 902957a9 902957a9 902957a9	STR STR Det 1 Det 2	94 282 0 1	94 282 0 1	1040.4 0.0 1199.7	3.7 0.0 1199.7
902932aa 902957a9 902957a9 902957a9 902957a9	STR STR Det1 Det2 Det3	94 282 0 1 0	94 282 0 1	1040.4 0.0 1199.7 0.0	3.7 0.0 1199.7 0.0
902932aa 902957a9 902957a9 902957a9	STR STR Det 1 Det 2	94 282 0 1	94 282 0 1	1040.4 0.0 1199.7 0.0 0.0	3.7 0.0 1199.7 0.0 0.0
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9	STR STR Det1 Det2 Det3 Det4	94 282 0 1 0	94 282 0 1 0	1040.4 0.0 1199.7 0.0	3.7 0.0 1199.7 0.0
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9	STR STR Det1 Det2 Det3 Det4 Det5	94 282 0 1 0 0	94 282 0 1 0 0	1040.4 0.0 1199.7 0.0 0.0 0.0	3.7 0.0 1199.7 0.0 0.0 0.0
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9	STR STR Det1 Det2 Det3 Det4 Det5 HV1	94 282 0 1 0 0 0	94 282 0 1 0 0 0	1040.4 0.0 1199.7 0.0 0.0 0.0	3.7 0.0 1199.7 0.0 0.0 0.0
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9	STR STR Det1 Det2 Det3 Det4 Det5	94 282 0 1 0 0	94 282 0 1 0 0	1040.4 0.0 1199.7 0.0 0.0 0.0 0.0	3.7 0.0 1199.7 0.0 0.0 0.0 0.0 598.3
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2	94 282 0 1 0 0 0 0	94 282 0 1 0 0 0 0	1040.4 0.0 1199.7 0.0 0.0 0.0	3.7 0.0 1199.7 0.0 0.0 0.0
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3	94 282 0 1 0 0 0 0	94 282 0 1 0 0 0 0	1040.4 0.0 1199.7 0.0 0.0 0.0 0.0 1196.7	3.7 0.0 1199.7 0.0 0.0 0.0 0.0 598.3 0.0
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	94 282 0 1 0 0 0 0 0	94 282 0 1 0 0 0 0	1040.4 0.0 1199.7 0.0 0.0 0.0 1196.7 0.0	3.7 0.0 1199.7 0.0 0.0 0.0 0.0 598.3 0.0 0.0
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3	94 282 0 1 0 0 0 0	94 282 0 1 0 0 0 0	1040.4 0.0 1199.7 0.0 0.0 0.0 0.0 1196.7	3.7 0.0 1199.7 0.0 0.0 0.0 0.0 598.3 0.0
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	94 282 0 1 0 0 0 0 0	282 0 1 0 0 0 0 0	1040.4 0.0 1199.7 0.0 0.0 0.0 1196.7 0.0 0.0	3.7 0.0 1199.7 0.0 0.0 0.0 0.0 598.3 0.0 0.0
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	94 282 0 1 0 0 0 0 1 0 0	282 0 1 0 0 0 0 0	1040.4 0.0 1199.7 0.0 0.0 0.0 1196.7 0.0 0.0	3.7 0.0 1199.7 0.0 0.0 0.0 0.0 598.3 0.0 0.0
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	94 282 0 1 0 0 0 0 1 0 0 0 328	94 282 0 1 0 0 0 0 1 0 0 0	1040.4 0.0 1199.7 0.0 0.0 0.0 0.0 1196.7 0.0 0.0	3.7 0.0 1199.7 0.0 0.0 0.0 0.0 598.3 0.0 0.0 0.0
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	94 282 0 1 0 0 0 0 0 1 0 0 0 0 3 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	94 282 0 1 0 0 0 1 0 0 0 0 0 328 0	1040.4 0.0 1199.7 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9	3.7 0.0 1199.7 0.0 0.0 0.0 0.0 598.3 0.0 0.0 0.0
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	94 282 0 1 0 0 0 0 0 1 0 0 0 328 0 2	94 282 0 1 0 0 0 1 0 0 0 0 0 328 0	1040.4 0.0 1199.7 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0	3.7 0.0 1199.7 0.0 0.0 0.0 0.0 598.3 0.0 0.0 0.0
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 903027ac 903027ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2	94 282 0 1 0 0 0 0 0 1 0 0 0 328 0 2	94 282 0 1 0 0 0 1 0 0 0 0 0 328 0	1040.4 0.0 1199.7 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 0.0
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 903027ac 903027ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3	94 282 0 1 0 0 0 0 1 0 0 0 328 0 2 0	94 282 0 1 0 0 0 1 0 0 0 0 0 328 0	1040.4 0.0 1199.7 0.0 0.0 0.0 1196.7 0.0 0.0 0.0 1106.9 0.0 1074.9 0.0	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 0.0 3.4 0.0 537.4
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 903027ac 903027ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4	94 282 0 1 0 0 0 0 1 0 0 0 328 0 2 0	94 282 0 1 0 0 0 1 0 0 0 0 0 328 0	1040.4 0.0 1199.7 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2	3.7 0.0 1199.7 0.0 0.0 0.0 0.0 598.3 0.0 0.0 0.0 0.0 537.4 0.0 138.1
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 903027ac 903027ac 903027ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3	282 0 1 0 0 0 0 1 0 0 0 328 0 2 0	94 282 0 1 0 0 0 0 1 0 0 0	1040.4 0.0 1199.7 0.0 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2 0.0	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 0.0 3.4 0.0 537.4 0.0 138.1 0.0
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 903027ac 903027ac 903027ac 903027ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5	282 0 1 0 0 0 0 1 0 0 0 328 0 2 0	282 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	1040.4 0.0 1199.7 0.0 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2 0.0	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 0.0 3.4 0.0 537.4 0.0 138.1 0.0
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 HV1	94 282 0 1 0 0 0 0 0 1 0 0 0 0 328 0 2 0 0	94 282 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1040.4 0.0 1199.7 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2 0.0 0.0	3.7 0.0 1199.7 0.0 0.0 0.0 0.0 598.3 0.0 0.0 0.0 537.4 0.0 138.1 0.0
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 9030257a9 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 HV1 HV5	282 0 1 0 0 0 0 1 0 0 0 0 328 0 2 0 2 0 3	94 282 0 1 0 0 0 0 1 0 0 0 0 328 0 2 0 2 0 0 3	1040.4 0.0 1199.7 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2 0.0 0.0 824.4	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 0.0 537.4 0.0 138.1 0.0 0.0
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 9030257a9 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 HV1	282 0 1 0 0 0 0 1 0 0 0 328 0 2 0 0 2 0 0	94 282 0 1 0 0 0 0 0 1 0 0 0 0 0 328 0 2 0 0 0 0 0	1040.4 0.0 1199.7 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2 0.0 0.0 824.4	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 0.0 537.4 0.0 138.1 0.0 0.0
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 HV1 HV5 STR Det1 Det2 HV1 HV2 HV3	282 0 1 0 0 0 0 1 0 0 0 328 0 2 0 0 2 0 0	94 282 0 1 0 0 0 0 0 1 0 0 0 0 0 328 0 2 0 0 0 0 0	1040.4 0.0 1199.7 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2 0.0 0.0 824.4	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 0.0 537.4 0.0 138.1 0.0 0.0
902932aa 902957a9 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	282 0 1 0 0 0 0 1 0 0 0 328 0 2 0 0 2	282 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	1040.4 0.0 1199.7 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2 0.0 0.0 824.4 0.0 270.1	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 0.0 537.4 0.0 138.1 0.0 0.0 137.4 0.0 67.5
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 HV1 HV5 STR Det1 Det2 HV1 HV2 HV3	282 0 1 0 0 0 0 1 0 0 0 328 0 2 0 0 2 0 0	94 282 0 1 0 0 0 0 0 1 0 0 0 0 0 328 0 2 0 0 0 0 0	1040.4 0.0 1199.7 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2 0.0 0.0 824.4	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 0.0 537.4 0.0 138.1 0.0 0.0
902932aa 902957a9 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV1 HV2 HV3 HV4 HV5	282 0 1 0 0 0 0 0 1 0 0 0 0 0 328 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	94 282 0 1 0 0 0 0 0 1 0 0 328 0 2 0 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1040.4 0.0 1199.7 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2 0.0 0.0 824.4 0.0 270.1 0.0	3.7 0.0 1199.7 0.0 0.0 0.0 0.0 598.3 0.0 0.0 0.0 537.4 0.0 138.1 0.0 0.0 137.4 0.0
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 9030257a9 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV1 HV2 HV3 HV4 HV5	282 0 1 0 0 0 0 0 1 0 0 0 0 0 328 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	94 282 0 1 0 0 0 0 0 1 0 0 328 0 2 0 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1040.4 0.0 1199.7 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2 0.0 0.0 824.4 0.0 270.1	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 0.0 537.4 0.0 138.1 0.0 0.0 137.4 0.0 137.4 0.0
902932aa 902957a9 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR	282 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	94 282 0 1 0 0 0 0 0 1 0 0 328 0 2 0 2 0 33 0 2 0 305	1040.4 0.0 1199.7 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2 0.0 0.0 824.4 0.0 270.1 0.0	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 0.0 537.4 0.0 138.1 0.0 0.0 137.4 0.0 137.4 0.0
902932aa 902957a9 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 STR Det1 Det5 HV1 HV2 STR STR Det1 Det5 HV1 HV2 STR Det1 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1	282 0 1 0 0 0 0 1 0 0 0 0 328 0 2 0 0 2 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0	94 282 0 1 0 0 0 0 0 328 0 2 0 2 0 305 1	1040.4 0.0 1199.7 0.0 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2 0.0 0.0 276.2 0.0 0.0 10	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 0.0 537.4 0.0 138.1 0.0 0.0 137.4 0.0 67.5 0.0
902932aa 902957a9 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 STR STR Det1 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det5 STR Det1 Det2 Det3	282 0 1 0 0 0 0 1 0 0 0 0 328 0 2 0 0 2 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0	282 0 1 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0	1040.4 0.0 1199.7 0.0 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2 0.0 0.0 824.4 0.0 270.1 0.0	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 537.4 0.0 138.1 0.0 0.0 137.4 0.0 67.5 0.0
902932aa 902957a9 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 STR STR Det1 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det5 STR Det1 Det2 Det3	282 0 1 0 0 0 0 1 0 0 0 0 328 0 2 0 0 2 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0	282 0 1 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0	1040.4 0.0 1199.7 0.0 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2 0.0 0.0 824.4 0.0 270.1 0.0 1214.9 259.9 1427.0 262.5	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 0.0 537.4 0.0 138.1 0.0 0.0 137.4 0.0 67.5 0.0
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 STR Det1 Det5 STR Det1 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det5 Det5 Det5	282 0 1 0 0 0 0 0 1 0 0 0 0 0 328 0 2 0 0 2 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0	94 282 0 1 0 0 0 0 0 1 0 0 2 0 2 0 2 0 305 1 3 1	1040.4 0.0 1199.7 0.0 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2 0.0 0.0 824.4 0.0 270.1 0.0 1214.9 259.9 1427.0 262.5	3.7 0.0 1199.7 0.0 0.0 0.0 0.0 598.3 0.0 0.0 0.0 537.4 0.0 138.1 0.0 0.0 137.4 0.0 67.5 0.0
902932aa 902957a9 9030257ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 Det5 HV1 Det2 Det3 Det4 Det5 Det1 Det2 Det3 Det4 Det5	282 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0	94 282 0 1 0 0 0 0 1 0 0 328 0 2 0 2 0 33 0 2 0 305 1 3 1 5	1040.4 0.0 1199.7 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2 0.0 276.2 0.0 276.1 0.0 1214.9 259.9 1427.0 262.5 1628.7	3.7 0.0 1199.7 0.0 0.0 0.0 0.0 598.3 0.0 0.0 0.0 537.4 0.0 138.1 0.0 0.0 137.4 0.0 137.4 0.0 137.4 0.0 259.9 475.7 262.5 325.7
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 STR Det1 Det5 STR Det1 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det5 Det5 Det5	282 0 1 0 0 0 0 0 1 0 0 0 0 0 328 0 2 0 0 2 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0	94 282 0 1 0 0 0 0 0 328 0 2 0 2 0 305 1 3 1 5 1	1040.4 0.0 1199.7 0.0 0.0 0.0 0.0 1196.7 0.0 0.0 1074.9 0.0 276.2 0.0 0.0 276.2 0.0 276.2 0.0 1074.9 0.0 276.2 0.0 0.0 276.2 0.0 276.2 0.0 270.1 0.0 270.1 0.0 270.1 0.0 270.1 0.0 270.2 270.	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 0.0 537.4 0.0 138.1 0.0 0.0 137.4 0.0 67.5 0.0 4.0 259.9 475.7 262.5 325.7 265.2
902932aa 902957a9 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 STR Det1 Det5 HV1 HV2 HV3 HV4 Det5 STR Det1 Det2 Det3 Det4 Det5 STR Det1 Det2 Det3 Det4 Det5	282 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0	94 282 0 1 0 0 0 0 0 328 0 2 0 2 0 305 1 3 1 5 1	1040.4 0.0 1199.7 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2 0.0 276.2 0.0 276.1 0.0 1214.9 259.9 1427.0 262.5 1628.7	3.7 0.0 1199.7 0.0 0.0 0.0 0.0 598.3 0.0 0.0 0.0 537.4 0.0 138.1 0.0 0.0 137.4 0.0 137.4 0.0 4.0 259.9 475.7 262.5 325.7
902932aa 902957a9 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 STR Det1 Det2 Det3 Det4 HV5 STR Det1 Det2 Det3 Det4 Det5 HV1	94 282 0 1 0 0 0 0 0 1 0 0 0 0 0 328 0 2 0 0 2 0 0 3 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	94 282 0 1 0 0 0 0 0 1 0 0 0 328 0 2 0 2 0 305 1 3 1 5 1	1040.4 0.0 1199.7 0.0 0.0 0.0 0.0 1196.7 0.0 0.0 1074.9 0.0 276.2 0.0 0.0 824.4 0.0 270.1 0.0 1214.9 259.9 1427.0 262.5 1628.7 265.2 257.0	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 537.4 0.0 138.1 0.0 0.0 137.4 0.0 67.5 0.0 4.0 259.9 475.7 262.5 325.7 265.2 128.5
902932aa 902957a9 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 STR Det1 Det5 HV1 HV2 HV3 HV4 HV5 STR Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	94 282 0 1 0 0 0 0 0 1 0 0 0 0 0 3 2 0 0 2 0 0 3 0 0 0 0 0 0 0	94 282 0 1 0 0 0 0 0 328 0 2 0 2 0 3 1 3 1 5 1 1 3	1040.4 0.0 1199.7 0.0 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2 0.0 0.0 824.4 0.0 270.1 0.0 1214.9 259.9 1427.0 262.5 1628.7 265.2 257.0 1417.9	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 537.4 0.0 138.1 0.0 0.0 137.4 0.0 67.5 0.0 4.0 259.9 475.7 262.5 325.7 265.2 128.5 236.3
902932aa 902957a9 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 STR Det1 Det2 Det3 Det4 HV5 STR Det1 Det2 Det3 Det4 Det5 HV1	282 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	94 282 0 1 0 0 0 0 0 1 0 0 0 328 0 2 0 2 0 305 1 3 1 5 1	1040.4 0.0 1199.7 0.0 0.0 0.0 0.0 1196.7 0.0 0.0 1074.9 0.0 276.2 0.0 0.0 824.4 0.0 270.1 0.0 1214.9 259.9 1427.0 262.5 1628.7 265.2 257.0 1417.9 257.0	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 537.4 0.0 138.1 0.0 0.0 137.4 0.0 4.0 259.9 475.7 262.5 325.7 265.2 128.5 236.3 128.5
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 9030257ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 HV1 HV2 HV3 HV4 HV5	282 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	94 282 0 1 0 0 0 0 0 1 0 0 0 328 0 2 0 2 0 33 0 2 0 305 1 3 1 5 1 1 3 1	1040.4 0.0 1199.7 0.0 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2 0.0 0.0 824.4 0.0 270.1 0.0 1214.9 259.9 1427.0 262.5 1628.7 265.2 257.0 1417.9	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 537.4 0.0 138.1 0.0 0.0 137.4 0.0 67.5 0.0 4.0 259.9 475.7 262.5 325.7 265.2 128.5 236.3
902932aa 902957a9 9030257ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	282 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0	94 282 0 1 0 0 0 0 0 1 0 0 0 328 0 2 0 2 0 33 0 2 0 305 1 3 1 1 6	1040.4 0.0 1199.7 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2 0.0 276.2 0.0 276.1 0.0 1214.9 259.9 1427.0 262.5 1628.7 265.2 257.0 1357.2	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 537.4 0.0 138.1 0.0 0.0 137.4 0.0 67.5 0.0 4.0 259.9 475.7 262.5 325.7 265.2 128.5 113.1
902932aa 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 902957a9 9030257ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 HV1 HV2 HV3 HV4 HV5	282 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	94 282 0 1 0 0 0 0 0 1 0 0 0 328 0 2 0 2 0 33 0 2 0 305 1 3 1 5 1 1 3 1	1040.4 0.0 1199.7 0.0 0.0 0.0 0.0 1196.7 0.0 0.0 1074.9 0.0 276.2 0.0 0.0 824.4 0.0 270.1 0.0 1214.9 259.9 1427.0 262.5 1628.7 265.2 257.0 1417.9 257.0	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 537.4 0.0 138.1 0.0 0.0 137.4 0.0 4.0 259.9 475.7 262.5 325.7 265.2 128.5 236.3 128.5
902932aa 902957a9 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 STR Det1 Det2 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	94 282 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	94 282 0 1 0 0 0 0 0 1 0 0 0 328 0 2 0 2 0 3 1 1 3 1 5 1 1 6 1	1040.4 0.0 1199.7 0.0 0.0 0.0 0.0 1196.7 0.0 0.0 1074.9 0.0 276.2 0.0 0.0 824.4 0.0 270.1 0.0 1214.9 259.9 1427.0 262.5 1628.7 265.2 257.0 1357.2 257.0	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 537.4 0.0 138.1 0.0 0.0 137.4 0.0 67.5 0.0 4.0 259.9 475.7 262.5 325.7 265.2 128.5 133.1 128.5
902932aa 902957a9 9030257ac 903027ac	STR STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5 STR Det1 Det2 Det3 Det4 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	282 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0	94 282 0 1 0 0 0 0 0 1 0 0 0 328 0 2 0 2 0 33 0 2 0 305 1 3 1 1 6	1040.4 0.0 1199.7 0.0 0.0 0.0 1196.7 0.0 0.0 1106.9 0.0 1074.9 0.0 276.2 0.0 276.2 0.0 276.1 0.0 1214.9 259.9 1427.0 262.5 1628.7 265.2 257.0 1357.2	3.7 0.0 1199.7 0.0 0.0 0.0 598.3 0.0 0.0 537.4 0.0 138.1 0.0 0.0 137.4 0.0 67.5 0.0 4.0 259.9 475.7 262.5 325.7 265.2 128.5 113.1

903104a2	Det1	1	1	259.9 59.8	259.9 59.8
903104a2 903104a2	Det2 Det3	1	1	262.5	262.5
903104a2 903104a2	Det4 Det5	1 1	1 1	54.3 265.2	54.3 265.2
903104a2 903104a2	HV1 HV2	1 1	. 1 1	257.0 56.8	128.5 28.4
903104a2	HV3	1	i 1	257.0	128.5 25.6
903104a2 903104a2	HV4 HV5	1	1	51.3 257.0	128.5
903133b2 903133b2	STR Det1	128 0	128 0	398.3 0.0	3.1 0.0
903133b2 903133b2	Det2 Det3	3 0	3 0	1425.7 0.0	475.2 0.0
90313362	Det4	3	3	938.8 0.0	312.9 0.0
90313352 90313352	Det5 HV1	0	0	0.0	0.0
903133b2 903133b2	HV2 HV3	3 0	3 0	1416.6 0.0	236.1 0.0
90313362	HV4 HV5	4	4	673.3 0.0	84.2 0.0
903133b2 903167b3	SIR	572	572	1474.1	2.6
903167ь3	Det 1	0 3	0 3	0.0 475.7	0.0 158.6
903167ь3 903167ь3	Det2 Det3	0	0	0.0	0.0
903167b3 903167b3	Det4 Det5	3	3	2192.2 0.0	730.7 0.0
903167ь3	HVI	0 3	0	0.0 466.6	0.0 77.8
903167ь3 903167ь3	HV2 HV3	0	3	0.0	0.0
903167b3 903167b3	HV4 HV5	4 0	4 0	1943.8 0.0	243.0 0.0
903237cb	STR	152	152	1124.7	7.4
903237cb 903237cb	Det1 Det2	0 0	0 0	0.0 0.0	0.0 0.0
903237çb	Det3 Det4	0	0 2	0.0 302.2	0.0 151.1
903237cb 903237cb	Det5	0	0	0.0 0.0	0.0
903237cb 903237cb	HV1 HV2	0	0 0	0.0	0.0
903237cb 903237cb	HV3 HV4	0	0 2	0.0 296.1	0.0 74.0
903237cb	HV5	0	ō	0.0	0.0
903307bgr	STR	400 0	400 0	2178.7 0.0	5.4 0.0
903307bgr 903307bgr	Det 1 Det 2	0	Ó	0.0	0.0
903307bgr 903307bgr	Det3 Det4	0 3 0	0 3	0.0 723.8	0.0 241.3
903307bgr 903307bgr	Det5 HV1	0 0	0	0.0 0.0	0.0 0.0
903307bgr	HV2	0	Ŏ 0	0.0 0.0	0.0 0.0
903307bgr 903307bgr	HV3 HV4	0 3	3	714.6	119.1
903307bgr	HV5	0	0	0.0	0.0
903377d6	STR	395 4	395 4	2131.4 5.0	5.4 1.3
903422a3r	STR		513	1481.5	2.9
903447b9 903447b9	STR Det1	513 0	0	0.0	0.0
903447Ь9 903447Ь9	Det2 Det3	0	0	0.0 0.0	0.0 0.0
903447 69	Det4 Det5	3	3 0	163.0 0.0	54.3 0.0
903447b9 903447b9	HV1	0	0	0.0	0.0
903447b9 903447b9	HV2 HV3	0 0	0 0	0.0 0.0	0.0 0.0
903447b9 903447b9	HV4 HV5	3 0	3 0	153.9 0.0	25.7 0.0
903517e8	STR	251	251	933.7 0.0	3.7 0.0
903517e8 903517e8	Det1 Det2	0 2	0 2	2235.4	1117.7
903517e8 903517e8	Det3 Det4	0 5	. 0 5	0.0 1404.0	0.0 280.8
903517e8	Det5	Ō	0	0.0	0.0

					•
903517e8 903517e8 903517e8 903517e8	HV1 HV2 HV3 HV4	0 3 0 5	0 3 0 5	0.0 1999.0 0.0 1388.8 0.0	0.0 333.2 0.0 138.9 0.0
903517e8 910022a1r	HV5 STR	38	38	103.1	2.7
910022a11	STR	96	96	595.7	6.2
910077c9	STR	261	261	2136.8	8.2
910147e4	STR	158	158	1527.8	9.7
910217bd	STR	220	220	1804.4	8.2
910217bd 910217bd 910217bd 910217bd 910217bd 910217bd 910217bd 910217bd 910217bd 910217bd 910217bd 910217bd	Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	0 1 0 1 0 0 0 1	0 1 0 1 0 0 0 1 0 1	0.0 85.3 0.0 79.8 0.0 0.0 82.2 0.0 76.7 0.0	0.0 85.3 0.0 79.8 0.0 0.0 41.1 0.0 38.4 0.0
910287d2	STR	238	238	1217.4	5.1
910357e7	STR	255	255	1582.1	6.2
910427d6 910427d6 910427d6 910427d6 910427d6 910427d6 910427d6 910427d6 910427d6 910427d6 910427d6	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	509 0 1 0 1 0 0 1 0 1	509 0 1 0 1 0 0 1 0	2179.4 0.0 557.9 0.0 535.5 0.0 0.0 554.8 0.0 532.4 0.0	4.3 0.0 557.9 0.0 535.5 0.0 0.0 277.4 0.0 266.2 0.0
910497e7	STR	233	233	1265.2	5.4
910567g1	STR	189	189	1049.3	5.6
910637c2	STR	381	381	2014.8	5.3
910707c6 910707c6 910707c6 910707c6 910707c6 910707c6 910707c6 910707c6 910707c6 910707c6	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	300 3 1 7 1 0 3 1 7 1	300 3 1 7 1 0 3 1 7 1	1512.1 526.1 461.5 1751.8 474.4 0.0 516.4 458.4 1729.1 471.3 0.0	5.0 175.4 461.5 250.3 474.4 0.0 86.1 229.2 123.5 235.7 0.0
910777d4 910777d4 910777d4 910777d4 910777d4 910777d4 910777d4 910777d4 910777d4 910777d4	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	224 3 0 6 0 0 3 0 7 0	224 3 0 6 0 3 0 7 0	1848.3 273.8 0.0 3747.5 0.0 0.0 264.0 0.0 3499.4 0.0 0.0	8.3 91.3 0.0 624.6 0.0 0.0 44.0 0.0 250.0 0.0
910847f2 910847f2 910847f2 910847f2 910847f2 910847f2 910847f2 910847f2 910847f2	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2	229 3 0 6 0 0 3 0 7	229 3 0 6 0 0 3 0 7	1351.3 937.0 0.0 1041.4 0.0 0.0 927.2 0.0 812.8	5.9 312.3 0.0 173.6 0.0 0.0 154.5 0.0 58.1

910847f2 910847f2	HV4 HV5	0	0 0	0.0 0.0	0.0
910917bc 910917bc 910917bc 910917bc 910917bc 910917bc 910917bc 910917bc 910917bc 910917bc 910917bc	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	408 1 1 2 1 0 1 1 2 1 0	408 1 1 2 1 0 1 1 2 1 2	1753.1 176.1 551.0 140.6 326.8 0.0 172.8 547.9 134.1 323.7 0.0	4.3 176.1 551.0 70.3 326.8 0.0 86.4 274.0 33.5 161.9 0.0
910987c9 910987c9 910987c9 910987c9 910987c9 910987c9 910987c9 910987c9 910987c9	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	268 0 1 0 1 0 0 1 0 1 0	268 0 1 0 1 0 0 1 0 1	1867.6 0.0 1224.1 0.0 1199.7 0.0 0.0 1221.1 0.0 1196.7 0.0	7.0 0.0 1224.1 0.0 1199.7 0.0 0.0 610.5 0.0 598.3 0.0
911057d5 911057d5 911057d5 911057d5 911057d5 911057d5 911057d5 911057d5 911057d5 911057d5	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	113 1 0 1 0 0 1 0 1 0 1 0	113 1 0 1 0 0 1 0 1 0	1562.5 552.8 0.0 550.7 0.0 0.0 549.6 0.0 547.5 0.0	13.8 552.8 0.0 550.7 0.0 0.0 274.8 0.0 273.7 0.0
911127e4	STR	209	209	1641.6	7.9
911197b8 911197b8 911197b8 911197b8 911197b8 911197b8 911197b8 911197b8 911197b8 911197b8	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	286 0 1 0 0 0 0 0 1 0 0	286 0 1 0 0 0 0 1 0 0	1519.5 0.0 282.8 0.0 0.0 0.0 0.0 279.8 0.0 0.0	5.3 0.0 282.8 0.0 0.0 0.0 139.9 0.0 0.0
911267c1 911267c1 911267c1 911267c1 911267c1 911267c1 911267c1 911267c1 911267c1 911267c1	SIR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	214 2 2 2 1 0 2 2 2 2 1	214 2 2 2 1 0 2 2 2 2 1 0	1498.9 1024.3 749.5 1012.2 551.5 0.0 1017.8 743.3 1005.7 548.5 0.0	7.0 512.1 374.7 506.1 551.5 0.0 254.4 185.8 251.4 274.2 0.0
911276a2r 911276a2r 911276a2r 911276a2r 911276a2r 911276a2r 911276a2r 911276a2r 911276a2r	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	129 1 0 1 0 0 1 0 1 0	129 1 0 1 0 0 1 0 1 0	1004.6 283.7 0.0 271.4 0.0 0.0 280.5 0.0 268.1 0.0	7.8 283.7 0.0 271.4 0.0 0.0 140.2 0.0 134.1 0.0
911337c8 911337c8 911337c8 911337c8	STR Det1 Det2 Det3	126 0 1 0	126 0 1 0	1155.8 0.0 548.4 0.0	9.2 0.0 548.4 0.0

911337c8 911337c8 911337c8 911337c8 911337c8 911337c8 911337c8	Det4 Det5 HV1 HV2 HV3 HV4 HV5	1 0 0 1 0	1 0 0 1 0	506.3 0.0 0.0 545.4 0.0 503.3 0.0	506.3 0.0 0.0 272.7 0.0 251.6 0.0
911407ah	STR	278	278	1587.1	5.7
911477c3	STR	140	140	1161.2	8.3
911547d3 911547d3 911547d3 911547d3 911547d3 911547d3 911547d3 911547d3 911547d3 911547d3 911547d3	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	196 1 0 3 0 0 1 0 3 0	196 1 0 3 0 0 1 0 3 0	1524.2 750.7 0.0 1817.7 0.0 0.0 747.4 0.0 1808.0 0.0	7.8 750.7 0.0 605.9 0.0 373.7 0.0 301.3 0.0
911617ca	STR	271	271	1898.1	7.0
911687bg 911687bg 911687bg 911687bg 911687bg 911687bg 911687bg 911687bg 911687bg 911687bg 911687bg	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV4	227 0 1 0 2 0 0 0 2 0 2	227 0 1 0 2 0 0 2 0 2 0	1005.6 0.0 672.1 0.0 753.0 0.0 0.0 489.3 0.0 746.9 0.0	4.4 0.0 672.1 0.0 376.5 0.0 0.0 122.3 0.0 186.7
911757b1 911757b1 911757b1 911757b1 911757b1 911757b1 911757b1 911757b1 911757b1 911757b1 911757b1	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	190 0 0 1 0 2 0 0 1 0 4	190 0 0 1 0 2 0 0 1 0 4	1719.8 0.0 0.0 1376.0 0.0 849.8 0.0 0.0 1372.7 0.0 334.0	9.1 0.0 0.0 1376.0 0.0 424.9 0.0 0.0 686.4 0.0 41.8
911827af 911827af 911827af 911827af 911827af 911827af 911827af 911827af 911827af 911827af 911827af	SIR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV4	153 1 0 0 0 1 1 1 0	153 1 0 0 0 1 1 1 0 0	1351.5 151.1 166.2 0.0 0.0 0.0 147.8 163.2 0.0 0.0	8.8 151.1 166.2 0.0 0.0 0.0 73.9 81.6 0.0 0.0
911897al 911897al 911897al 911897al 911897al 911897al 911897al 911897al 911897al 911897al	STR De1 De2 De3 De4 De5 HV1 HV2 HV3 HV4 HV5	168 0 1 0 1 0 0 0 1 0 1 0	168 0 1 0 1 0 0 1 0 1 0	1826.8 0.0 430.4 0.0 507.2 0.0 0.0 427.4 0.0 504.2	10.9 0.0 430.4 0.0 507.2 0.0 0.0 213.7 0.0 252.1 0.0
911967d4 911967d4 911967d4 911967d4 911967d4 911967d4 911967d4	STR Det1 Det2 Det3 Det4 Det5 HV1	237 0 0 1 0 0	237 0 0 1 0 0 0	1376.6 0.0 0.0 713.5 0.0 0.0	5.8 0.0 0.0 713.5 0.0 0.0

911967d4 911967d4 911967d4 911967d4	HV2 HV3 HV4 HV5	0 1 0 0	0 1 0 0	0.0 710.3 0.0 0.0	0.0 355.1 0.0 0.0
912037acr	STR	207	207	1777.3	8.6
912107b3 912107b3 912107b3 912107b3 912107b3 912107b3 912107b3 912107b3 912107b3 912107b3 912107b3	SIR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	164 0 0 5 0 0 0 0	164 0 0 5 0 0 0 0 5 0	1295.6 0.0 0.0 2282.7 0.0 0.0 0.0 0.0 2266.5 0.0 0.0	7.9 0.0 0.0 456.5 0.0 0.0 0.0 226.6 0.0
912177d5r 912177d5r 912177d5r 912177d5r 912177d5r 912177d5r 912177d5r 912177d5r 912177d5r 912177d5r 912177d5r	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	184 1 0 0 0 0 1 0 0 0	184 1 0 0 0 0 1 0 0 0	818.8 330.7 0.0 0.0 0.0 0.0 327.5 0.0 0.0 0.0	4.4 330.7 0.0 0.0 0.0 0.0 163.7 0.0 0.0 0.0
912247c7	STR	251	251	1233.3	4.9
912317e2 912317e2 912317e2 912317e2 912317e2 912317e2 912317e2 912317e2 912317e2 912317e2 912317e2	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	161 0 1 3 0 0 0 1 3 0	161 0 1 3 0 0 0 1 1 3 0	1966.5 0.0 457.4 657.1 0.0 0.0 454.4 647.4 0.0	12.2 0.0 457.4 219.0 0.0 0.0 0.0 227.2 107.9 0.0
912387c1 912387c1 912387c1 912387c1 912387c1 912387c1 912387c1 912387c1 912387c1 912387c1 912387c1	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	190 3 0 0 0 0 0 3 0 0 0	190 3 0 0 0 0 3 0 0	1335.5 2015.2 0.0 0.0 0.0 0.0 2005.4 0.0 0.0 0.0	7.0 671.7 0.0 0.0 0.0 0.0 334.2 0.0 0.0 0.0
912457d5 912457d5 912457d5 912457d5 912457d5 912457d5 912457d5 912457d5 912457d5 912457d5 912457d5	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	174 0 0 8 0 1 0 0 9	174 0 0 8 0 1 0 0 9	2437.7 0.0 0.0 3624.2 0.0 756.4 0.0 0.0 3399.4 0.0 548.4	14.0 0.0 0.0 453.0 0.0 756.4 0.0 0.0 188.9 0.0
912527e5 912527e5 912527e5 912527e5 912527e5 912527e5 912527e5 912527e5 912527e5 912527e5 912527e5	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	332 1 0 1 1 0 1 0 1 0 1	332 1 0 1 1 0 1 0 1 0 1	1167.0 748.1 0.0 156.1 147.3 0.0 744.8 0.0 152.8 144.2 0.0	3.5 748.1 0.0 156.1 147.3 0.0 372.4 0.0 76.4 72.1 0.0

912597b2 912597b2 912597b2 912597b2 912597b2 912597b2 912597b2 912597b2 912597b2 912597b2	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	209 0 0 0 2 0 0 0 0 0 2	209 0 0 0 2 0 0 0 0 0 0	824.3 0.0 0.0 0.0 294.5 0.0 0.0 0.0 288.4 0.0	3.9 0.0 0.0 0.0 147.3 0.0 0.0 0.0 0.0 72.1 0.0
912667c4 912667c4 912667c4 912667c4 912667c4 912667c4 912667c4 912667c4 912667c4 912667c4	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	375 4 1 2 1 0 5 1 2 2 2	375 4 1 2 1 0 5 1 2 2 2	1434.2 2373.9 253.1 409.2 617.3 0.0 2097.7 250.1 402.7 386.7 0.0	3.8 593.5 253.1 204.6 617.3 0.0 209.8 125.0 100.7 96.7 0.0
912737c6 912737c6 912737c6 912737c6 912737c6 912737c6 912737c6 912737c6 912737c6 912737c6 912737c6	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	278 0 0 3 0 3 0 3 0 3 0 3	278 0 0 3 0 3 0 0 3 0 3	2101.5 0.0 0.0 1678.7 0.0 1694.4 0.0 0.0 1665.5 0.0 1682.4	7.6 0.0 0.0 559.6 0.0 564.8 0.0 0.0 277.6 0.0 280.4
912807ai 912807ai 912807ai 912807ai 912807ai 912807ai 912807ai 912807ai 912807ai 912807ai 912807ai	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	337 0 1 0 1 0 0 1 0 1 0	337 0 1 0 1 0 0 0 1 0 1	1261.7 0.0 140.6 0.0 910.6 0.0 0.0 137.5 0.0 907.5	3.7 0.0 140.6 0.0 910.6 0.0 0.0 68.7 0.0 453.8 0.0
912877d1 912877d1 912877d1 912877d1 912877d1 912877d1 912877d1 912877d1 912877d1 912877d1 912877d1	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	181 0 0 4 0 0 0 0 0 4	181 0 0 4 0 0 0 0 0 4 0 0	476.6 0.0 0.0 512.4 0.0 0.0 0.0 499.4 0.0	2.6 0.0 0.0 128.1 0.0 0.0 0.0 0.0 62.4 0.0 0.0
912947b4 912947b4 912947b4 912947b4 912947b4 912947b4 912947b4 912947b4 912947b4 912947b4	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	247 0 0 1 0 1 0 0 1 0 0 1	247 0 0 1 0 1 0 0 1 0 0 1	1218.8 0.0 0.0 645.2 0.0 384.1 0.0 0.0 641.9 0.0 168.0	4.9 0.0 0.0 645.2 0.0 384.1 0.0 0.0 321.0 0.0 42.0
913017b5	STR	221	221	1430.8	6.5
913087d4	STR	224	224	1070.5	4.8
913157aa 913157aa 913157aa 913157aa 913157aa	STR Det 1 Det 2 Det 3 Det 4	171 0 0 1 0	171 0 0 1 0	546.2 0.0 0.0 278.2 0.0	3.2 0.0 0.0 278.2 0.0

913157aa 913157aa 913157aa 913157aa 913157aa 913157aa	Det5 HV1 HV2 HV3 HV4 HV5	1 0 0 1 0	1 0 0 1 0	84.2 0.0 0.0 274.9 0.0 80.7	84.2 0.0 0.0 137.5 0.0 40.3
913227c4	STR	205	205	756.1	3.7
913297b7 913297b7 913297b7 913297b7 913297b7 913297b7 913297b7 913297b7 913297b7 913297b7 913297b7	SIR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	213 1 0 0 0 0 1 0 0 0	213 1 0 0 0 0 1 0 0 0	1800.8 1590.3 0.0 0.0 0.0 0.0 1587.1 0.0 0.0 0.0	8.5 1590.3 0.0 0.0 0.0 0.0 793.5 0.0 0.0 0.0
913367e3	STR	255	255	1650.3	6.5
913507dg 913507dg 913507dg 913507dg 913507dg 913507dg 913507dg 913507dg 913507dg 913507dg 913507dg	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	236 0 0 1 0 1 0 0 1 0 1	236 0 0 1 0 1 0 0 1 0 0	822.3 0.0 0.0 422.8 0.0 219.7 0.0 419.5 0.0 215.7	3.5 0.0 0.0 422.8 0.0 219.7 0.0 0.0 209.8 0.0 107.9
913577ь2	STR	146	146	826.2	5.7
913647e7	STR	215	215	1130.3	5.3
920067c7	STR	213	213	1124.3	5.3
920137d2	STR	283	283	1696.2	6.0
920207b2r 920207b2r 920207b2r 920207b2r 920207b2r 920207b2r 920207b2r 920207b2r 920207b2r 920207b2r 920207b2r	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	140 0 0 0 1 0 0 0 0 0	140 0 0 0 1 0 0 0 0	814.7 0.0 0.0 0.0 147.0 0.0 0.0 0.0 0.0 144.0 0.0	5.8 0.0 0.0 0.0 147.0 0.0 0.0 0.0 72.0
920277ac 920277ac 920277ac 920277ac 920277ac 920277ac 920277ac 920277ac 920277ac 920277ac 920277ac	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	124 0 2 0 1 0 0 2 0 1 0	124 0 2 0 1 0 0 2 0 2 0	1278.9 0.0 336.3 0.0 974.2 0.0 0.0 330.2 0.0 971.1	10.3 0.0 168.1 0.0 974.2 0.0 0.0 82.5 0.0 485.6
920347c1 920347c1 920347c1 920347c1 920347c1 920347c1 920347c1 920347c1 920347c1 920347c1 920347c1	SIR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	210 0 2 0 0 0 0 0 2 0 0	210 0 2 0 0 0 0 0 2 0 0	671.2 0.0 347.9 0.0 0.0 0.0 0.0 341.8 0.0 0.0	3.2 0.0 173.9 0.0 0.0 0.0 0.0 85.4 0.0 0.0
920417b6 920417b6	STR Det l	130 0	130 0	1480.9 0.0	11.4 0.0

920417b6 920417b6 920417b6 920417b6 920417b6 920417b6 920417b6 920417b6 920417b6	Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	2 0 0 0 0 2 0 0	2 0 0 0 0 2 0 0	336.5 0.0 0.0 0.0 0.0 330.4 0.0 0.0	168.2 0.0 0.0 0.0 0.0 82.6 0.0 0.0
920487ah 920487ah 920487ah 920487ah 920487ah 920487ah 920487ah 920487ah 920487ah 920487ah 920487ah	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	183 0 2 0 0 0 0 2 0 0	183 0 2 0 0 0 0 2 0 0	1468.2 0.0 329.9 0.0 0.0 0.0 0.0 323.8 0.0 0.0 0.0	8.0 0.0 164.9 0.0 0.0 0.0 0.0 80.9 0.0 0.0
920557f1 920557f1 920557f1 920557f1 920557f1 920557f1 920557f1 920557f1 920557f1 920557f1 920557f1	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	149 0 3 0 0 0 0 0 0 0	149 0 3 0 0 0 0 0 3 0 0	911.7 0.0 499.3 0.0 0.0 0.0 490.2 0.0 0.0	6.1 0.0 166.4 0.0 0.0 0.0 0.0 81.7 0.0 0.0
920627c6 920627c6 920627c6 920627c6 920627c6 920627c6 920627c6 920627c6 920627c6 920627c6 920627c6	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	373 1 4 2 2 1 1 4 2 2 2 1	373 1 4 2 2 1 1 4 2 2 2	1873.1 203.2 572.3 253.3 238.6 82.5 200.0 560.0 245.6 232.5 78.5	5.0 203.2 143.1 126.7 119.3 82.5 100.0 70.0 61.4 58.1 39.2
920697ci 920697ci 920697ci 920697ci 920697ci 920697ci 920697ci 920697ci 920697ci 920697ci 920697ci	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	158 1 2 0 0 0 1 1 2 0 0	158 1 2 0 0 0 1 1 2 0 0	1368.1 327.1 333.0 0.0 0.0 0.0 323.8 326.9 0.0 0.0	8.7 327.1 166.5 0.0 0.0 0.0 161.9 81.7 0.0 0.0
920767b4 920767b4 920767b4 920767b4 920767b4 920767b4 920767b4 920767b4 920767b4 920767b4 920767b4	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	206 1 3 0 0 0 1 1 3 0	206 1 3 0 0 0 1 1 3 0	1838.9 264.7 507.3 0.0 0.0 0.0 261.4 498.1 0.0 0.0	8.9 264.7 169.1 0.0 0.0 130.7 83.0 0.0 0.0
920837b9 920837b9 920837b9 920837b9 920837b9 920837b9 920837b9 920837b9 920837b9 920837b9 920837b9	SIR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	190 0 2 0 0 0 0 0 2 0 0	190 0 2 0 0 0 0 2 0 0	2514.1 0.0 336.1 0.0 0.0 0.0 0.0 330.0 0.0 0.0	13.2 0.0 168.0 0.0 0.0 0.0 0.0 82.5 0.0 0.0

920907bar 920907bar 920907bar 920907bar 920907bar 920907bar 920907bar 920907bar 920907bar 920907bar 920907bar	SIR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4 HV5	163 0 2 0 0 0 0 0 2 0 0	163 0 2 0 0 0 0 0 2 0 0	1616.3 0.0 352.3 0.0 0.0 0.0 0.0 346.2 0.0 0.0	9.9 0.0 176.1 0.0 0.0 0.0 0.0 86.5 0.0 0.0
920977f6r 920977f6r 920977f6r 920977f6r 920977f6r 920977f6r 920977f6r 920977f6r 920977f6r 920977f6r	SIR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	182 0 3 0 0 0 0 0 0 0 0	182 0 3 0 0 0 0 0 3 0 0	1199.3 0.0 489.1 0.0 0.0 0.0 0.0 479.9 0.0 0.0 0.0	6.6 0.0 163.0 0.0 0.0 0.0 0.0 80.0 0.0 0.0
921047d2 921047d2 921047d2 921047d2 921047d2 921047d2 921047d2 921047d2 921047d2 921047d2 921047d2 921047d2	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	141 0 2 0 0 0 0 2 0 0	141 0 2 0 0 0 0 0 2 0 0	1699.3 0.0 527.1 0.0 0.0 0.0 0.0 521.0 0.0 0.0	12.1 0.0 263.5 0.0 0.0 0.0 130.2 0.0 0.0
921117b6 921117b6 921117b6 921117b6 921117b6 921117b6 921117b6 921117b6 921117b6 921117b6 921117b6	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	192 0 3 0 0 0 0 0 0 0	192 0 3 0 0 0 0 0 3 0 0	2202.5 0.0 504.5 0.0 0.0 0.0 0.0 495.3 0.0 0.0	11.5 0.0 168.2 0.0 0.0 0.0 82.6 0.0 0.0
921187e6 921187e6 921187e6 921187e6 921187e6 921187e6 921187e6 921187e6 921187e6 921187e6	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	220 2 3 2 2 1 2 3 2 2 1 2 2 1	220 2 3 2 2 1 2 3 2 2 2	1298.0 462.9 379.0 213.9 214.8 87.1 456.5 369.8 206.3 208.7 83.0	5.9 231.5 126.3 107.0 107.4 87.1 114.1 61.6 51.6 52.2 41.5
921257e4 921257e4 921257e4 921257e4 921257e4 921257e4 921257e4 921257e4 921257e4 921257e4	SIR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	174 3 3 0 0 0 0 3 3 0 0	174 3 3 0 0 0 3 3 3 0	1635.9 799.9 504.5 0.0 0.0 0.0 790.2 495.3 0.0 0.0	9.4 266.6 168.2 0.0 0.0 131.7 82.6 0.0 0.0
921327c4 921327c4 921327c4 921327c4 921327c4 921327c4 921327c4 921327c4	SIR Det1 Det2 Det3 Det4 Det5 HV1 HV2	159 0 2 0 0 0 0	159 0 2 0 0 0 0	968.5 0.0 316.9 0.0 0.0 0.0 310.8	6.1 0.0 158.5 0.0 0.0 0.0 77.7

921327c4 921327c4 921327c4	HV3 HV4 HV5	0 0 0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0
921397c7 921397c7 921397c7 921397c7 921397c7 921397c7 921397c7 921397c7 921397c7 921397c7	STR Det1 Det2 Det3 Det4 Det5 HV1 HV2 HV3 HV4	187 0 2 1 0 1 0 2 2 2 0 2	187 0 2 1 0 1 0 2 2 2 0 2	1885.2 0.0 337.9 739.5 0.0 686.9 0.0 331.8 526.4 0.0 436.5	10.1 0.0 168.9 739.5 0.0 686.9 0.0 83.0 131.6 0.0 109.1

92139767				•	
_ : :		==	1::41		
Totals	Item	#on	#off	on time (minutes)	min/cycle
•	STR	23040	23040	133687.9	5.8
	Det1	53	53	15496.4	
	Det2	91	91	23728.4	260.8
	Det3	86	86	28918.3	336.3
	Det4	68	68	18221.2	
	Det5	28	28	5883.9	
	HV1	50	50	14735.5	
	HV2	90	90	22481.0	
	HV3	85	85	27724.7	326.2
	HV4	68	68	16719.4	
	HV5	28	28	4522.9	161.5

Appendix G - 1092 Acquisition Data

The HSP GTO 1092 program has acquired the same target, Z Chamaeleontis, 42 times, each time with two iterations for a total of 84 acquisition data sets. There was one unsuccessful acquisition, V0U80501 and V0U80502, where the target was not seen in either acquisition image. The reason for this failure is not known. Several acquisitions were made during eclipse so the acquisition was shown to work even at reduced light levels. These 84 data sets were taken with the same target but different FGS configurations over a long period of time, from late January to early June 1992.

An onboard acquisition is performed followed by an area scan of the image in the finding aperture of UV1. The acquisition and area scan are then repeated. These two iterations are referred to as "acquisition #1" and "acquisition #2" in the following discussion.

The FGS configuration is determined from the SMS and the assumption has been made in all cases that the primary guide star pair was used for all observations. The SMS designates the dominant and subdominant FGS for each guide star pair.

The image centroid in HSP detector deflection coordinates was determined from the IRAF - STSDAS program "Apercen" output. The centroid location is given in units of horizontal and vertical deflection steps; H,V.

The target location in V2, V3 coordinates was taken from the FGS telemetry report summary files for the particular observation. The units are arc seconds from V3. This data is not available for observations in which the telemetry format was "PN". The time of the observation was determined from PASS output.

The difference between these two locations was calculated by transforming the deflection coordinates (H/V) into focal plane (V2/V3) coordinates using the following parameters:

The current project database values for the center of the UV1 finding aperture are:

2476, 3263 in H,V(steps) and 179.64170, -492.3280 in V2, V3 (arc seconds)

There are 41.11 deflection steps per arc second in this region of UV1 and the angle between the V3 and H axes is 18.45 degrees.

The following are attached:

- 1. The data from each observation: For each observation number the tape number, acquisition number (1 or 2), FGS Configuration (dominant and subdominant FGS number), the image centroid in H,V, the target position in V2,V3, and the difference in V2, V3 between the image centroid and target position in arc seconds. The data are sorted by acquisition and FGS configuration.
- 2. A chart showing the image centroid positions. The points are plotted in H,V using different symbols for different FGS configurations as shown on the chart. The first acquisition symbols are plain and the second are filled on this and all following charts.
 - 3. A chart as above but showing a smaller area for greater detail.
 - 4. A chart showing the FGS reported positions.
 - 5. A chart showing the difference in a one arc second region.

Several interesting patterns are evident:

- 1. As one would expect, the deflection positions are grouped "tighter" for the second acquisitions than the first.
 - 2. First acquisitions with FGS #2 dominant have some large errors.
 - 3. In both the deflection map and the V2, V3 map there are groupings by FGS configuration.
- 4. There are a large number of points on the difference chart apparently randomly distributed closely around zero suggesting agreement between the FGS and deflection data.

The data suggest different FGS configurations perform differently. The "tightest" clusters of points seem to be for the case when FGS #3 is dominant. In any case, this large number of acquisitions with a single target represents an opportunity to obtain unique FGS performance information.

The GSFC project has suggested that the data be examined further to see if there is any corelation between the position of the target and the position of the guide stars in the FGS pickle. This will be investigated.

Acknowledgement: Thanks to Colleen Townsley for calculating the image centroid positions using IRAF/SDAS and for determining the time of each observation from PASS files.

HSP 1092 Acquisition Data

: :			FGS (Configura	ation	Defl	ection	FC	SS T/M	Diff	erence
	01	Topo	Acq	Dom	Sub	Н	V	V2	V 3	Δv2	$\Delta v3$
	Observation	Tape 109204	1	1	2						
	V0U80501T	109204	1	1	2						
	V0U80502T	109204	1	1	2	2440	3259	178.90	-492.46	0.12	0.05
	V0U80J01T	109214	1	1	2	2437	3259	178.72	-492.31	0.03	0.01
	V0U80L01T		1	1	2	2433	3255	178.81	-492.49	0.20	0.07
	V0U80N01T	109216		1	2	2432	3263	178.80	-492.57	0.17	0.11
_	V0U80P01T	109218	1	1	2	2449	3267	177.87	-493.05	-0.84	-0.93
	V0U80X01T	109224	1	1	2	2435	3249	178.59	-492.32	0.01	0.00
	V0U81701T	109231	1		2	2431	3270				
	V0U81J01T	109239	1	1	2	2446	3272	178.79	-492.47	-0.08	-0.08
	V0U81L01T	109240	1	1	2	2432	3263	178.81	-492.55	0.18	0.12
	V0U81Z01T	109217	1	1	2	2462	3256	179.45	-492.27	0.18	-0.08
	V0U82301T	109226	1	1	2	2436	3252	178.55	-492.26	-0.10	0.00
	V0U82501T	109230	1	1		2432	3265	179.45	-492.11	0.69	-0.37
	V0U82901T	109238	1	1	2	2452 2456	3255	179.33	-492.23	0.19	-0.07
_	V0U80101T	109202	1	1	3	2448	3244	179.05	-492.03	0.12	-0.11
	V0U80701T	109206	1	1	3	2448 2463	3258	179.81	-492.20	-0.11	-0.07
	V0U80B01T	109208	1	1	3	2463	3255	179.43	-492.30	0.15	-0.06
	V0U80D01T	109210	1	1	3	2463 2451	3257	179.94	-492.16	-0.22	-0.15
	V0U80F01T	109211	1	1	3		3259	179.34	-492.26	0.29	-0.01
	V0U80H01T	109212	1	1	3	2450	3259 3254	179.31	-492.19	0.16	-0.08
	V0U81R01T	109201	1	1	3	2456		179.32	-492.21	0.19	-0.10
	V0U81V01T	109209	1	1	3	2456	3256	179.37	-492.21 -492.30	0.38	0.01
	V0U81X01T	109213	1	1	3	2447	3257	179.30	-492.28	-0.47	-0.22
	V0U80901T	109207	1	2	1	2501	3251 3289	181.44	492.28	1.41	0.56
	V0U80R01T	109219	1	2	1	2612		181.42	-491.77	1.13	0.67
	V0U80T01T	109220	1	2	1	2606	3275	181.42	-491.69	1.05	0.75
	V0U80V01T	109222	1	2	1	2606	3269	180.94	-491.61	0.95	1.30
-	V0U81101T	109227	1	2	1	2602	3249		-491.01 -491.29	0.60	1.07
	V0U81301T	109228	1	2	1	2604	3240	181.28	-491.29	0.00	1.07
	V0U81501T	109229	1	2	1	2468	3268	179.88	-492.28	0.49	-1.09
	V0U81901T	109232	1	2	1	2471	3322	179.88	-492.26 -492.25	0.00	-0.02
	V0U81B01T	109233	1	2	1	2467	3273		-492.23 -492.28	0.00	0.01
-	V0U81D01T	. 109235	1	2	1	2472	3279	180.04 179.96	-492.20 -492.20	0.00	0.02
	V0U81F01T	109236	1	2	1	2470	3275		-492.20 -492.23	0.03	-0.10
	V0U81H01T	109237	1	2	, 1,	2469	3281	180.00	-492.23	0.03	-0.10
	V0U81T01T	109205	1	2	1	2503	3267	101 42	-491.73	1.10	0.67
_	V0U82101T	109221	1	2	1	2606	3276	181.43	-491.73 -492.34	0.01	0.07
	V0U82701M	109234	1	2	1	2470	3276	180.07	-492.34	0.01	0.00
	V0U80301T	109203	1	3	1	2465	3277	177.51	405 47	-3.72	0.07
	V0U80Z01T	109225	1	3	2	2475	3260	177.54	-495.47 404.03	0.18	-0.54
	V0U81N01T	109241	1	3	2	2425	3298	178.45	-494.03	0.16	-0.54
	V0U81P01T	109243	1	3	2	2444	3279	170.00	404 11	0.12	-0.58
-	V0U82B01T	109242	1	3	2	2419	3294	178.39	-494.11 402.22	0.12	-0.38 -0.05
	V0U80J02T	109214	2	1	2	2478	3259	179.78	-492.23	0.03	
	V0U80L02T	109215	2	1	2	2478	3258	179.65	-492.07	0.13	-0.01
	V0U80N02T	109216	2	1	2	2473	3259	179.78	-492.27	0.03	-0.01
<u> </u>	V0U80P02T	109218	2	1	2	2486	3252	179.80	-492.22	-0.03	0.17
	,00001										

6/10/92 Page 1

		FGS (Configura	ation	Defi	lection	F	GS T/M	Dif	ference
01	Tono	Acq	Dom	Sub	Н	V	V2	V 3	Δν2	Δv3
Observation	Tape 109224	2 2	1	2	2472	3265	178.41	-492.80	-0.45	-1.11
V0U80X02T	109224	2	1	2	2466	3262	179.41	-492.12	-0.07	0.04
V0U81702T	109231	2	1	2	2476	3267				
V0U81J02T	109239	2	1	2	2483	3271	179.55	-492.08	0.00	0.00
V0U81L02T	109240	2	1	2	2477	3262	179.81	-492,24	0.04	-0.14
V0U81Z02T		2	1	2	2480	3262	179.87	-492.23	-0.08	-0.13
V0U82302T	109226	2	1	2	2476	3274	179.59	-492.29	0.06	0.21
V0U82502T	109230	2	1	2	2477	3269	179.56	-492.07	-0.09	-0.08
V0U82902T	109238	2	1	3	2477	3260	179.85	-492.17	0.12	-0.13
V0U80102T	109202	2	1	3	2472	3265	179.98	-492.21	0.11	0.23
V0U80702T	109206	2	1	3	2476	3255				
V0U80B02T	109208		1	3	2478	3260	179.85	-492.26	0.02	-0.14
V0U80D02T	109210	2 2	1	3	2478	3266	179.91	-492.13	-0.26	0.01
V0U80F02T	109211	2	1	3	2476	3274	179.98	-492.42	0.00	0.09
V0U80H02T	109212	2	1	3	2476	3259	179.82	-492.15	0.14	-0.06
V0U81R02T	109201	2	1	3	2479	3257	179.86	-492.16	0.06	-0.10
V0U81V02T	109209		1	3	2470	3262	179.87	-492.17	0.11	0.09
V0U81X02T	109213	2	2	1	2473	3269	179.53	-492.17	-0.04	-0.02
V0U80902T	109207	2	2	1	2483	3261	178.37	-492.30	0.88	0.64
V0U80R02T	109219	2	2	1	2472	3259	178.22	-492.45	-1.22	0.48
V0U80T02T	109220	2	2	1	2474	3264	178.30	-492.64	-0.70	-1.12
V0U80V02T	109222	2		1	2482	3265	178.23	-492.94	1.26	0.54
V0U81102T	109227	2	2 2	1	2482	3260	178.57	-492.73	0.35	0.91
V0U81302T	109228	2	2	1	2473	3265	170.5			
V0U81502T	109229	2	2	1	2483	3230	180.05	-492.03	-0.21	0.23
V0U81902T	109232	2	2	1	246 <i>3</i> 2474	3268	180.03	-492.08	-0.17	0.29
V0U81B02T	109233	2		1	2476	3258	179.99	-491.85	0.46	-0.13
V0U81D02T	109235	2	2	1	2474	3276	179.99	-492.07	-0.09	0.09
V0U81F02T	109236	2	2 2	1	2477	3262	179.95	-491.76	0.35	-0.51
V0U81H02T	109237	2		1	2483	3266	179.59	-492.24	-0.03	0.07
V0U81T02T	109205	2	2 2	1	2479	3258	178.36	-492.35	0.30	1.09
V0U82102T	109221	2	2	1	2476	3264	180.01	-491.91	-0.53	0.02
V0U82702M	109234	2		1	2482	3255	100.01			
V0U80302T	109203	2	3		2473	3261	177.70	-495.33	-2.48	-2.45
V0U80Z02T	109225	2	3	2	2473 2477	3259	177.70	-492.75	-0.35	0.15
V0U81N02T	109241	2	3	2	2477	3259	117.72	1,2,13	0.00	
V0U81P02T	109243	2	3	2 2	2482 2476	3256				
V0U82B02T	109242	2	3	2	24/0	3209				

6/10/92

λ.

1092 Acquisitions

a/d/s - acquisition/dominant fgs/subdominant fgs

1092 FGS Telemetry

a/d/s - acquisition/dominant fgs/subdominant fgs

Deflection - FGS Difference - arc seconds

Appendix H - SIAF values - Aperture locations in HST V2, V3 coordinates (arc seconds)

Aperture	V2	V3	
VPCENTER	+196.00000	-203.76230	
VCLRP_A	+172.14820	-192.70940	
VCLRP_T	+178.45590	-186.35250	
VCLRP_S	+178.45590	-186.35250	
VCLRP_C	+184.76370	-179.99580	
VF327P0	+197.71360	-228.09910	
VF327P90	+205.18890	-220.39410	
VF327P45	+220.31870	-205.06420	
VF327P135	+212.74860	-212.69940	
VF277P0	+190.14860	-220.66440	
VF277P90	+197.59360	-212.96970	
VF277P45	+212.71360	-197.60960	
VF277P135	+205.14390	-205.30950	
VF277F133 VF237P0	+182.34880	-213.03980	
VF237P90	+189.87840	-205.34950	
	+204.97360	-190.07920	
VF237P45 VF237P135	+197.43330	-197,71480	
	+174.62800	-205.48440	· · · · · · · · · · · · · · · · · · ·
VF216P0 VF216P90	+182.17830	-197.74950	
	+197.30380	-182.53990	•
VF216P45	+189.74880	-190.14910	
VF216P135	+156.95090	-470.34240	
VUV1CENTER VF135U1_A	+136.63170	-443.62600	
	+121.59890	-448.99870	
VF135U1_B VF248U1_A	+121.59690	-443.62600	
VF248U1_B	+171.82080	-431.81500	
VE125111 C	±1/2 31600	-453 05200	
VF135U1_C	+142.31690	-453.05200 -455.49120	
VF135U1_D	+135.19050	-455.49120	
VF135U1_D VF135U1_E	+135.19050 +128.06410	-455.49120 -457.93070	
VF135U1_D VF135U1_E VF135U1_F	+135.19050 +128.06410 +120.93790	-455.49120 -457.93070 -460.37070	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A	+135.19050 +128.06410 +120.93790 +157.92750	-455.49120 -457.93070 -460.37070 -447.71080	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A VF152U1_B	+135.19050 +128.06410 +120.93790 +157.92750 +165.05440	-455.49120 -457.93070 -460.37070 -447.71080 -445.27300	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A VF152U1_B VF152U1_C	+135.19050 +128.06410 +120.93790 +157.92750 +165.05440 +172.18140	-455.49120 -457.93070 -460.37070 -447.71080 -445.27300 -442.83570	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A VF152U1_B VF152U1_C VF152U1_D	+135.19050 +128.06410 +120.93790 +157.92750 +165.05440 +172.18140 +179.30870	-455.49120 -457.93070 -460.37070 -447.71080 -445.27300 -442.83570 -440.39880	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A VF152U1_B VF152U1_C VF152U1_D VF145U1_A	+135.19050 +128.06410 +120.93790 +157.92750 +165.05440 +172.18140 +179.30870 +145.73020	-455.49120 -457.93070 -460.37070 -447.71080 -445.27300 -442.83570 -440.39880 -463.03170	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A VF152U1_B VF152U1_C VF152U1_D VF145U1_A VF145U1_B	+135.19050 +128.06410 +120.93790 +157.92750 +165.05440 +172.18140 +179.30870 +145.73020 +138.60310	-455.49120 -457.93070 -460.37070 -447.71080 -445.27300 -442.83570 -440.39880 -463.03170 -465.47100	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A VF152U1_B VF152U1_C VF152U1_D VF145U1_A VF145U1_B VF145U1_C	+135.19050 +128.06410 +120.93790 +157.92750 +165.05440 +172.18140 +179.30870 +145.73020 +138.60310 +131.47630	-455.49120 -457.93070 -460.37070 -447.71080 -445.27300 -442.83570 -440.39880 -463.03170 -465.47100 -467.91080	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A VF152U1_B VF152U1_C VF152U1_D VF145U1_A VF145U1_B VF145U1_B VF145U1_B VF145U1_D	+135.19050 +128.06410 +120.93790 +157.92750 +165.05440 +172.18140 +179.30870 +145.73020 +138.60310 +131.47630 +124.34940	-455.49120 -457.93070 -460.37070 -447.71080 -445.27300 -442.83570 -440.39880 -463.03170 -465.47100 -467.91080 -470.35100	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A VF152U1_B VF152U1_C VF152U1_D VF145U1_A VF145U1_B VF145U1_B VF145U1_C VF145U1_C	+135.19050 +128.06410 +120.93790 +157.92750 +165.05440 +172.18140 +179.30870 +145.73020 +138.60310 +131.47630 +124.34940 +161.34220	-455.49120 -457.93070 -460.37070 -447.71080 -445.27300 -442.83570 -440.39880 -463.03170 -465.47100 -467.91080 -470.35100 -457.68990	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A VF152U1_B VF152U1_C VF152U1_D VF145U1_A VF145U1_B VF145U1_B VF145U1_C VF145U1_C VF120U1_A VF220U1_A	+135.19050 +128.06410 +120.93790 +157.92750 +165.05440 +172.18140 +179.30870 +145.73020 +138.60310 +131.47630 +124.34940 +161.34220 +168.46960	-455.49120 -457.93070 -460.37070 -447.71080 -445.27300 -442.83570 -440.39880 -463.03170 -465.47100 -467.91080 -470.35100 -457.68990 -455.25200	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A VF152U1_B VF152U1_C VF152U1_D VF145U1_A VF145U1_B VF145U1_C VF145U1_C VF120U1_A VF220U1_A VF220U1_B VF220U1_C	+135.19050 +128.06410 +120.93790 +157.92750 +165.05440 +172.18140 +179.30870 +145.73020 +138.60310 +131.47630 +124.34940 +161.34220 +168.46960 +175.59720	-455.49120 -457.93070 -460.37070 -447.71080 -445.27300 -442.83570 -440.39880 -463.03170 -465.47100 -467.91080 -470.35100 -457.68990 -455.25200 -452.81450	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A VF152U1_B VF152U1_D VF145U1_A VF145U1_B VF145U1_B VF145U1_C VF120U1_B VF220U1_A VF220U1_A VF220U1_B VF220U1_D	+135.19050 +128.06410 +120.93790 +157.92750 +165.05440 +172.18140 +179.30870 +145.73020 +138.60310 +131.47630 +124.34940 +161.34220 +168.46960 +175.59720 +182.72510	-455.49120 -457.93070 -460.37070 -447.71080 -445.27300 -442.83570 -440.39880 -463.03170 -465.47100 -467.91080 -470.35100 -457.68990 -455.25200 -452.81450 -450.37730	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A VF152U1_B VF152U1_D VF145U1_A VF145U1_B VF145U1_B VF145U1_C VF120U1_B VF220U1_A VF220U1_A VF220U1_B VF220U1_B VF220U1_D VF184U1_A	+135.19050 +128.06410 +120.93790 +157.92750 +165.05440 +172.18140 +179.30870 +145.73020 +138.60310 +131.47630 +124.34940 +161.34220 +168.46960 +175.59720 +182.72510 +149.14440	-455.49120 -457.93070 -460.37070 -447.71080 -445.27300 -442.83570 -440.39880 -463.03170 -465.47100 -467.91080 -470.35100 -457.68990 -455.25200 -452.81450 -450.37730 -473.01380	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A VF152U1_B VF152U1_D VF145U1_A VF145U1_B VF145U1_C VF145U1_D VF220U1_A VF220U1_A VF220U1_B VF220U1_B VF220U1_D VF184U1_B VF184U1_B	+135.19050 +128.06410 +120.93790 +157.92750 +165.05440 +172.18140 +179.30870 +145.73020 +138.60310 +131.47630 +124.34940 +161.34220 +168.46960 +175.59720 +182.72510 +149.14440 +142.01670	-455.49120 -457.93070 -460.37070 -447.71080 -445.27300 -442.83570 -440.39880 -463.03170 -465.47100 -467.91080 -470.35100 -457.68990 -455.25200 -452.81450 -450.37730 -473.01380 -475.45340	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A VF152U1_B VF152U1_D VF145U1_A VF145U1_B VF145U1_C VF145U1_D VF220U1_A VF220U1_A VF220U1_B VF220U1_B VF220U1_D VF184U1_B VF184U1_B VF184U1_B	+135.19050 +128.06410 +120.93790 +157.92750 +165.05440 +172.18140 +179.30870 +145.73020 +138.60310 +131.47630 +124.34940 +161.34220 +168.46960 +175.59720 +182.72510 +149.14440 +142.01670 +134.88920	-455.49120 -457.93070 -460.37070 -447.71080 -445.27300 -442.83570 -440.39880 -463.03170 -465.47100 -467.91080 -470.35100 -457.68990 -455.25200 -452.81450 -450.37730 -473.01380 -475.45340 -477.89340	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A VF152U1_B VF152U1_C VF152U1_D VF145U1_A VF145U1_B VF145U1_B VF120U1_A VF220U1_A VF220U1_B VF220U1_C VF220U1_D VF184U1_A VF184U1_B VF184U1_B VF184U1_B VF184U1_B VF184U1_D	+135.19050 +128.06410 +120.93790 +157.92750 +165.05440 +172.18140 +179.30870 +145.73020 +138.60310 +131.47630 +124.34940 +161.34220 +168.46960 +175.59720 +182.72510 +149.14440 +142.01670 +134.88920 +127.76180	-455.49120 -457.93070 -460.37070 -447.71080 -445.27300 -442.83570 -440.39880 -463.03170 -465.47100 -467.91080 -470.35100 -457.68990 -455.25200 -452.81450 -450.37730 -473.01380 -475.45340 -477.89340 -480.33380	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A VF152U1_B VF152U1_C VF152U1_D VF145U1_A VF145U1_B VF145U1_B VF120U1_A VF220U1_B VF220U1_C VF220U1_C VF220U1_D VF184U1_A VF184U1_B VF184U1_B VF184U1_B VF184U1_B VF184U1_D VF240U1_A	+135.19050 +128.06410 +120.93790 +157.92750 +165.05440 +172.18140 +179.30870 +145.73020 +138.60310 +131.47630 +124.34940 +161.34220 +168.46960 +175.59720 +182.72510 +149.14440 +142.01670 +134.88920 +127.76180 +164.75760	-455.49120 -457.93070 -460.37070 -447.71080 -445.27300 -442.83570 -440.39880 -463.03170 -465.47100 -467.91080 -470.35100 -457.68990 -455.25200 -452.81450 -450.37730 -473.01380 -475.45340 -477.89340 -480.33380 -467.67160	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A VF152U1_B VF152U1_C VF152U1_D VF145U1_A VF145U1_B VF145U1_B VF145U1_C VF145U1_D VF220U1_A VF220U1_B VF220U1_B VF220U1_C VF220U1_D VF184U1_A VF184U1_B VF184U1_B VF184U1_B VF184U1_B VF184U1_D VF240U1_A VF240U1_B	+135.19050 +128.06410 +120.93790 +157.92750 +165.05440 +172.18140 +179.30870 +145.73020 +138.60310 +131.47630 +124.34940 +161.34220 +168.46960 +175.59720 +182.72510 +149.14440 +142.01670 +134.88920 +127.76180 +164.75760 +171.88570	-455.49120 -457.93070 -460.37070 -447.71080 -445.27300 -442.83570 -440.39880 -463.03170 -465.47100 -467.91080 -470.35100 -457.68990 -455.25200 -452.81450 -450.37730 -473.01380 -475.45340 -477.89340 -480.33380 -467.67160 -465.23340	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A VF152U1_B VF152U1_C VF152U1_D VF145U1_A VF145U1_B VF145U1_B VF145U1_C VF145U1_D VF220U1_A VF220U1_B VF220U1_C VF220U1_D VF184U1_A VF184U1_B VF184U1_B VF184U1_B VF184U1_D VF240U1_A VF240U1_B VF240U1_B VF240U1_B	+135.19050 +128.06410 +120.93790 +157.92750 +165.05440 +172.18140 +179.30870 +145.73020 +138.60310 +131.47630 +124.34940 +161.34220 +168.46960 +175.59720 +182.72510 +149.14440 +142.01670 +134.88920 +127.76180 +164.75760 +171.88570 +179.01400	-455.49120 -457.93070 -460.37070 -447.71080 -445.27300 -442.83570 -440.39880 -463.03170 -465.47100 -467.91080 -470.35100 -457.68990 -455.25200 -452.81450 -450.37730 -473.01380 -475.45340 -477.89340 -480.33380 -467.67160 -465.23340 -462.79570	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A VF152U1_B VF152U1_C VF152U1_D VF145U1_B VF145U1_B VF145U1_B VF145U1_D VF220U1_A VF220U1_B VF220U1_C VF220U1_D VF184U1_A VF184U1_B VF184U1_B VF184U1_B VF184U1_D VF240U1_A VF240U1_B VF240U1_B VF240U1_B VF240U1_B VF240U1_B VF240U1_B VF240U1_B VF240U1_B	+135.19050 +128.06410 +120.93790 +157.92750 +165.05440 +172.18140 +179.30870 +145.73020 +138.60310 +131.47630 +124.34940 +161.34220 +168.46960 +175.59720 +182.72510 +149.14440 +142.01670 +134.88920 +127.76180 +164.75760 +171.88570 +179.01400 +186.14240	-455.49120 -457.93070 -460.37070 -447.71080 -445.27300 -442.83570 -440.39880 -463.03170 -465.47100 -467.91080 -470.35100 -457.68990 -455.25200 -452.81450 -450.37730 -473.01380 -475.45340 -477.89340 -480.33380 -467.67160 -465.23340 -462.79570 -460.35840	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A VF152U1_B VF152U1_C VF152U1_D VF145U1_B VF145U1_B VF145U1_D VF220U1_A VF220U1_B VF220U1_C VF220U1_C VF184U1_B VF184U1_B VF184U1_B VF184U1_B VF184U1_B VF184U1_B VF184U1_D VF240U1_A VF240U1_A VF240U1_A VF240U1_A VF240U1_A VF240U1_B VF240U1_A	+135.19050 +128.06410 +120.93790 +157.92750 +165.05440 +172.18140 +179.30870 +145.73020 +138.60310 +131.47630 +124.34940 +161.34220 +168.46960 +175.59720 +182.72510 +149.14440 +142.01670 +134.88920 +127.76180 +164.75760 +171.88570 +179.01400 +186.14240 +152.55940	-455.49120 -457.93070 -460.37070 -447.71080 -445.27300 -442.83570 -440.39880 -463.03170 -465.47100 -467.91080 -470.35100 -457.68990 -455.25200 -452.81450 -450.37730 -473.01380 -477.89340 -480.33380 -467.67160 -465.23340 -462.79570 -460.35840 -482.99860	
VF135U1_D VF135U1_E VF135U1_F VF152U1_A VF152U1_B VF152U1_C VF152U1_D VF145U1_B VF145U1_B VF145U1_B VF145U1_D VF220U1_A VF220U1_B VF220U1_C VF220U1_D VF184U1_A VF184U1_B VF184U1_B VF184U1_B VF184U1_D VF240U1_A VF240U1_B VF240U1_B VF240U1_B VF240U1_B VF240U1_B VF240U1_B VF240U1_B VF240U1_B	+135.19050 +128.06410 +120.93790 +157.92750 +165.05440 +172.18140 +179.30870 +145.73020 +138.60310 +131.47630 +124.34940 +161.34220 +168.46960 +175.59720 +182.72510 +149.14440 +142.01670 +134.88920 +127.76180 +164.75760 +171.88570 +179.01400 +186.14240	-455.49120 -457.93070 -460.37070 -447.71080 -445.27300 -442.83570 -440.39880 -463.03170 -465.47100 -467.91080 -470.35100 -457.68990 -455.25200 -452.81450 -450.37730 -473.01380 -475.45340 -477.89340 -480.33380 -467.67160 -465.23340 -462.79570 -460.35840	

VF218U1_D	+131.17490	-490.31930	
VF278U1_A	+168.17400	-477.65580	
	+175.30270	-475.21750	
VF278U1_B	+182,43160	-472,77960	
VF278U1_C	+189.56060	-470.34220	
VF278U1_D	+189.30000	-492.98590	
VF248U1_C	+155.97520		
VF248U1_D	+148.84640	-495.42600	
VF248U1_E	+141.71770	-497.86650	
VF248U1_F	+134.58900	-500.30740	
VCLRU1_A	+192.97990	-480.32850	
VCLRU1_B	+185.85010	-482.76610	
VCLRU1_D	+171.59130	-487.64270	
VCLRU1_F	+192.32560	-491.71050	
VCLRU1_T	+179.64170	-492.32800	
VCLRU1_S	+179.64170	-492.32800	
VF122U1_A	+156.33660	-504.02180	
VF122U1_B	+149.20710	-506,46230	
	+142.07780	-508.90330	
VF122U1_D		-162.44890	
VUV2CENTER	+462.37020	-162.79110	
VF145U2_A	+428.68060		est prá
VF145U2_B	+424.01480	-177.74540	
VF262U2_A	+428.68060	-162.79110	
VF262U2_B	+440.63610	-127.33600	
VF179U2_A	+439.75320	-163.67660	
VF179U2_B	+437.39530	-170.83010	
VF179U2_C	+435.03780	-177.98370	
VF179U2_D	+432.68060	-185.13770	
VF184U2_A	+444.91970	-148.00760	
VF184U2_B	+447.27890	-140.85460	
VF184U2_C	+449.63860	-133.70170	
VF184U2_D	+451.99880	-126.54890	
VF160U2_A	+449.76870	-166.98030	
	+447.41070	-174.13430	
VF160U2_B	+445.05300	-181.28870	
VF160U2_C		-188.44310	
VF160U2_D	+442.69570		
VF218U2_A	+454.93570	-151.31000	
VF218U2_B	+457.29510	-144.15640	
VF218U2_C	+459.65500	-137.00290	
VF218U2_D	+462.01540	-129.84950	
VF278U2_A	+459.78680	-170.28480	
VF278U2_B	+457.42850	-177.43950	
VF278U2_C	+455.07070	-1 84.5 9440	
VF278U2_D	+452.71330	-191.74960	
VF248U2_A	+464.95410	-154.61330	
VF248U2_B	+467.31380	-147.45900	
VF248U2_C	+469.67390	-140.30490	
VF248U2_D	+472.03460	-133.15100	
VF284U2_A	+469.80750	-173.59030	
VF284U2_A VF284U2_B	+467.44900	-180.74550	
	+465.09100	-187.90110	
VF284U2_C	+462.73340	-195.05680	
VF284U2_D		-157.91730	
VF152U2_A	+474.97520		
VF152U2_B	+477.33510	-150.76240	
VF152U2_C	+479.69540	-143.60780	
VF152U2_D	+482.05630	-136.45310	
VF145U2_C	+479.83080	-176.89660	
VF145U2_D	+477.47210	-184.05260	
VF145U2_E	+475.11390	-191.20870	
_			

ATCLASTIC TO	+472.75610	-198.36500
VF145U2_F		
VCLRU2_A	+492.08060	-139.75620
VCLRU2_B	+489.71960	-146.91140
VCLRU2_D	+484.99890	-161.22220
VCLRU2_F	+500.75850	-147.14920
VCLRU2_T	+493.59360	-157.63310
VCLRU2_S	+493.59360	-157.63310
VF122U2_A	+488.84570	-183.27090
VF122U2_B	+486.48710	-190,42760
VF122U2_D	+484.12890	-197.58460
	+345.85050	-352.60700
VVCENTER		
VF240V_A	+315.72200	-337.86510
VF240V_B	+304.72370	-348.89360
VF551V_A	+315.72200	-337.86510
VF551V_B	+342.35450	-311.45880
	+325.12480	-343.46810
VF240V_C		
VF240V_D	+319.78550	-348.78070
VF240V_E	+314.44620	-354.09380
VF240V_F	+309.10740	-359.40710
VF262V_A	+336.82180	-331.83220
VF262V_B	+342.16220	-326.52050
V F Z O Z V _ D		
VF262V_C	+347.50290	-321.20920
VF262V_D	+352.84410	-315.89820
VF184V_A	+332.56210	-350.94620
VF184V_B	+327.22220	-356,25930
VF184V_C	+321.88270	-361.57270
		-366.88660
VF184V_D	+316.54330	
VCLRV_A	+344.26000	-339.30920
VCLRV_B	+349.60090	-333.99720
VCLRV_C	+354.94210	-328.68540
VCLRV D	+360.28370	-323.37400
VF450V_A	+340.00130	-358.42620
		-363.73980
VF450V_B	+334.66090	
VF450V_C	+329.32090	-369.05370
VF450V_D	+323.98120	-374.36790
VF355V_A	+351.70010	-346.78820
VF355V_B	+357.04150	-341.47570
VF355V_C	+362.38310	-336.16360
		-330.85160
VF355V_D	+367.72520	
VF551V_C	+347.44220	-365.90810
VF551V_D	+342.10150	-371.22210
VF551V_E	+336.76100	-376.53660
VF551V_F	+331,42090	-381.85130
	+359.14220	-354.26910
VF419V_A		
VF419V_B	+364.48390	-348.95620
VF419V_C VF419V_D	+369.82620	-343.64350
VF419V D	+375.16870	-338.33120
VF620V A	+354.88530	-373.39200
VF620V_B	+349.54410	-378.70650
VF620V_C	+344.20320	-384.02140
VF620V_D	+338.86260	-389.33680
VCLRV_E VCLRV_F	+382.61420	-345.81270
VCLRV F	+377.27120	-351.12540
VCLRV_J	+387.00830	-356.33220
VCLRV_H	+366.58620	-361.75190
VCLRV_T	+375.87500	-362.44010
VCLRV_S	+375.87500	-362.44010
VF400V_A	+360.04090	-383.15570
		

VF400V_B	+354.69940	-388.47100
VF400V_D	+349.35810	-393.78660
VF750_F320	+373.14590	-380.04860
VPMTCENTER	+345.85050	-352.60700

Appendix I - SICF file values - HSP aperture locations in deflection coordinates (steps).

Aperture	Н	V	Focus
CLRP_A	1557	3624	1500
CLRP_T	1816	3316	1500
CLRP_S	1976	3476	1500
CLRP C	2694	3644	1500
F216P0	1117	2943	1500
	3147	2959	1500
F216P45		2943	1500
F216P90	1800		1500
F216P135	2474	2944	
F237P0	1131	2249	1500
F237P45	3148	2265	1500
F237P90	1806	2254	1500
F237P135	2477	2258	1500
F277P0	1140	1575	1500
F277P45	3157	1592	1500
F277P90	1812	1587	1500
F277P135	2483	1590	1500
F327P0	1141	890	1500
F327P45	3176	903	1500
F327P90	1820	904	1500
F327P135	2496	909	1500
CLRP_Z	2000	3000	1500
F216P_Z	2000	3000	1500
F237P_Z	2000	1900	1500
F237F_Z	2000	1900	1500
F277P_Z F327P_Z	3600	1900	1500
CLDD V		3635	1500
CLRP_X	2129		1500
F216P_X	2135	2947	
F237P_X	2141	2257	1500
F277P_X	2148	1586	1500
F327P_X	2158	902	1500
CLRP_TX	2136	3636	1500
CLRU1_A	3151	2991	1500
CLRU1_B	2841	2981	1500
CLRU1_D	2231	2972	1500
CLRU1_F	2976	3424	1500
CLRU1_T	2156	2943	1500
CLRU1_S	2316	3103	1500
F122U1_A	1431	3410	1500
F122U1_B	1124	3412	1500
F122U1_D	812	3413	1500
F135U1_A	1450	812	1500
F135U1_B	827	793	1500
F135U1_C	1582	1257	1500
F135U1_D	1276	1253	1500
F135U1_E	967	1245	1500
F135U1_F	653	1233	1500
F145U1_A	1581	1690	1500
F145U1_B	1277	1688	1500
F145U1_B	969	1682	1500
_	657	1673	1500
F145U1_D		1257	1500
F152U1_A	2247		1500
F152U1_B	2552	1256	1300

			4500
F152U1_C	2860	1256	1500
F152U1_D	3172	1256	1500
F184U1_A	1578	2118	1500
		2117	1500
F184U1_B	1275		
F184U1_C	968	2112	1500
F184U1_D	657	2106	1500
F218U1_A	1574	2544	1500
_	1271	2544	1500
F218U1_B			1500
F218U1_C	964	2542	
F218U1_D	653	2538	1500
F220U1_A	2242	1690	1500
F220U1_B	2545	1690	1500
		1692	1500
F220U1_C	2851		1500
F220U1_D	3161	1694	
F240U1_A	2238	2117	1500
F240U1_B	2540	2118	1500
F240U1_C	2845	2121	1500
		2126	1500
F240U1_D	3154		1500
F248U1_A	2385	813	
F248U1_B	3006	810	1500
F248U1_C	1569	2973	1500
F248U1_D	1265	2974	1500
	957	2974	1500
F248U1_E			1500
F248U1_F	644	2973	
F278U1_A	2234	2543	1500
F278U1_B	2536	2545	1500
F278U1_C	2841	2550	1500
	3151	2557	1500
F278U1_D			1500
CLRU1_Z	2000	3000	
F122U1_Z	2000	3000	1500
F135U1_Z	2000	1900	1500
F145U1_Z	2000	1900	1500
F152U1_Z	3600	1900	1500
	2000	1900	1500
F184U1_Z			1500
F218U1_Z	2000	3000	
F220U1_Z	3600	1900	1500
F240U1_Z	3600	1900	1500
F248U1_Z	2000	1900	1500
F278U1_Z	2000	3000	1500
		1900	1500
F248U1PZ	3600		1500
F135U1PZ	2000	1900	
CLRU1_X	2735	3126	1500
F122U1_X	1122	3412	1500
F135U1PX	1139	803	1500
F145U1_X	1121	1683	1500
F143U1_A		1256	1500
F152U1_X	2708		
F184U1_X	1120	2113	1500
F218U1_X	1116	2542	1500
F220U1_X	2700	1692	1500
F240U1_X	2694	2121	1500
		812	1500
F248U1PX	2696		1500
F278U1_X	2691	2549	
F135U1_X	1120	1247	1500
F248U1_X	1109	2974	1500
CLRU1_TX	2476	3263	1500
	2340	1581	1500
CLRV_A			1500
CLRV_B	2633	1583	
CLRV_C	2929	1585	1500

		4.70.5	1500
$CLRV_D$	3232	1586	1500
CLRV_E	3207	2873	1500
CLRV_F	2902	2861	1500
OT DV II	2308	2846	1500
CLRV_H			
CLRV_J	3033	3312	1500
OLDV T			1500
CLRV_T	2223	2824	
CLRV_S	2383	2984	1500
			1500
F184V_A	1703	1572	
F184V_B	1408	1566	1500
F184V_C	1107	1560	1500
F184V_D	7 99	1552	1500
TO 1077 1			
F240V_A	1589	704	1500
F240V B	978	679	1500
F240V_C	1711	1146	1500
F240V_D	1414	1139	1500
F240V_E	1112	1129	1500
F240V_F	802	1117	1500
F262V_A	2353	1156	1500
F262V_B	2648	1157	1500
T202 V_D			
F262V_C	2947	1157	1500
F262V_D	3252	1154	1500
F355V_A	2329	2000	1500
F355V_B	2620	2004	1500
1,000 4 70			
F355V_C F355V_D	2916	2008	1500
E355V D	3218	2012	1500
1,0001			
F400V_A	1517	3283	1500
F400V_B	1213	3287	1500
F400V_D	901	3295	1500
F419V_A	2318	2419	1500
T4171_71			
F419V_B	2611	2424	1500
F419V C	2907	2431	1500
			1500
F419V_D	3210	2438	
F450V_A	1692	1992	1500
		1988	1500
F450V_B	1398		
F450V_C	1098	1985	1500
EACON D	790	1981	1500
F450V_D			
F551V_A	2496	719	1500
F551V_B	3100	713	1500
F551V_C	1680	2412	1500
F551V_D	1384	2411	1500
F551V_E	1083	2410	1500
F551V_F	774	2411	1500
F620V_A	1664	2840	1500
F620V_B	1366	2841	1500
F620V_C	1062	2844	1500
F620V_D	750	2849	1500
F750F320	1964	3495	1500
CLRV_Z	3600	1900	1500
$F184V_Z$	2000	1900	1500
F240V_Z	2000	1900	1500
F262V_Z	3600	1900	1500
1 202 7 _2			
F355V_Z	3600	1900	1500
F400V 7	2000	3000	1500
F400V_Z F419V_Z		E 1 77 . 7	1500
F419V_Z	2000	3000	
F450V_Z	2000	1900	1500
		1900	1500
F551V_Z	2000	•	
F620V_Z	2000	3000	1500
F551VPZ	3600	1900	1500
LJJIVEL	3000	1500	1500

F240VPZ	2000	1900	1500
CLRV_X	2784	1584	1500
F184V_X	1254	1563	1500 -
F240VPX	1284	692	1500
F262V_X	2800	1156	1500
F355V_X	2771	2006	1500
	1210	3288	1500
F400V_X		2428	1500
F419V_X	2762	1987	1500
F450V_X	1245	716	1500
F551VPX	2798	2844	1500
F620V_X	1211	1133	1500
F240V_X	1260	2411	1500
F551V_X	1230		1500
CLRVT_X	2799	3007	1500
CLRV_TX	2543	3144	1500
CLRU2_A	3265	2951	1500
CLRU2_B	2952	2944	
CLRU2_D	2339	2934	1500
CLRU2_F	3089	3391	1500
CLRU2_T	2266	2911	1500
CLRU2_S	2426	3071	1500
F122U2_A	1539	3368	1500
F122U2_B	1233	3368	1500
F122U2_D	924	3370	1500
F145U2_A	1558	746	1500
F145U2_B	940	733	1500
F145U2_C	1675	2928	1500
F145U2_D	1371	2927	1500
F145U2_E	1065	2927	1500
F145U2_F	756	2928	1500
F152U2_A	2341	2500	1500
F152U2_B	2645	2503	1500
F152U2_C	2953	2507	1500
F152U2_D	3264	2511	1500
F160U2_A	1685	1631	1500
F160U2_B	1382	1627	1500
F160U2_C	1077	1623	1500
F160U2_D	768	1618	1500
F179U2_A	1688	1194	1500
F179U2_B	1383	1190	1500
F179U2_C	1076	1184	1500
F179U2_D	766	1177	1500
F184U2_A	2354	1198	1500
F184U2_B	2661	1198	1500
F184U2_C	2970	1196	1500
F184U2_D	3284	1193	1500
F218U2_A	2349	1636	1500
F218U2_B	2653	1636	1500
F218U2_B	2961	1637	1500
F218U2_C F218U2_D	3273	1636	1500
F216U2_D	2344	2068	1500
F248U2_A	2648	2071	1500
F248U2_B	2648 2955	2072	1500
F248U2_C		207 <u>2</u> 2074	1500
F248U2_D	3267	752	1500
F262U2_A	2493		1500
F262U2_B	3117	74 <u>5.</u> 2063	1500
F278U2_A	1683	2063	1500
F278U2_B	1380	2061	1200

F278U2_C	1075	2058	1500
F278U2_D	767	2055	1500
F284U2_A	1679	2495	1500
F284U2_B	1376	2493	1500
F284U2_C	1071	2491	1500
F284U2_D	763	2490	1500
CLRU2_Z	2000	3000	1500
F122U2_Z	2000	3000	1500
F145U2_Z	2000	1900	1500
F152U2_Z	2000	3000	1500
F160U2_Z	2000	1900	1500
F179U2_Z	2000	1900	1500
F184U2_Z	3600	1900	1500
F218U2_Z	3600	1900	1500
F248U2_Z	3600	1900	1500
F248U2_Z F262U2_Z	3600	1900	1500
F278U2_Z	2000	1900	1500
F278U2_Z F284U2_Z	2000	3000	1500
F264U2_Z F262U2PZ	3600	1900	1500
F145U2PZ	2000	1900	1500
CLRU2T_X	2846	3090	1500
F122U2 X	1232	3369	1500
F122U2_X F145U2PX	1232	740	1500
F14302FX F152U2_X	2801	2505	1500
F160U2_X	1228	1625	1500
F100U2_X F179U2_X	1228	1186	1500
F179U2_X F184U2_X	2817	1196	1500
	2809	1636	1500
F218U2_X F248U2_X	2809	2071	1500
	2805	749	1500
F262U2PX F278U2_X	1226	2059	1500
	1220	2492	1500
F284U2_X	1217	2928	1500
F145U2_X		3231	1500
CLRU2_TX	2586	1900	1500
DARK1P	2000	1900	1500
DARKIUI	2000	1900	1500
DARKIV	2000	1900	1500
DARK1U2	2000 3600	1900	1500
DARK2P		1900	1500
DARK2U1	3600	1900	1500
DARK2V	3600	1900	1500
DARK2U2	3600		1500
DARK3P	2000	3000	1500
DARK3U1	2000	3000 3000	1500
DARK3V	2000	3000 3000	1500
DARK3U2	2000	3000	1500
ZERODEFL	2000		1500
PROTECT1	2000	600	1500
PROTECT3	1000	900	1300

Appendix J - SMS Activity Timelines

The HSP parser produces various products, one of which is a graphic timeline showing various HSP, SI, and ST activities. The timeline covers the entire period of the SMS, ususally seven days.

C-2

Appendix K - HSP Detector Maps

There are two sets of maps in this appendix: one shows the filter and aperture names in proposal syntax and the other in project database syntax. There are scales indicating deflection steps, physical dimensions in mm, and arc seconds. The orientation of the detector with respect to the V2 and V3 axes is also shown.

IDT1/POL Proposal names Chart version 1.6 (4/30/91) Jeffrey W Percival

IDT2/UV1 Proposal names Chart version 1.4 (11/10/90) Jeffrey W Percival

IDT3/VIS Proposal names Chart version 1.4 (11/10/90) Jeffrey W Percival

IDT4/UV2
Proposal names
Chart version 1.6 (11/10/90)
Jeffrey W Percival

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50

IDT1/POL
Data base names
Chart version 1.5 (4/30/91)
Jeffrey W Percival

IDT2/UV1
Data base names
Chart version 1.4 (11/10/90)
Jeffrey W Percival

IDT3/VIS Data base names Chart version 1.4 (11/10/90) Jeffrey W Percival

IDT4/UV2 Data base names Chart version 1.5 (11/10/90)

Jeffrey W Percival

High Speed Photometer Pulsar Timing and Light Curve Reduction

Jeffrey W Percival

Space Astronomy Laboratory,

University of Wisconsin,

Madison, WI 53706

May 19, 1992

Abstract

This memo describes in detail the reduction of the 5 High Speed Photometer observations of the Crab Pulsar. This analysis shows that the correlation of the Hubble Space Telescope clock with UTC is well within the design specification of 10 milliseconds, and may be within 1 millisecond.

1 Introduction

The Crab pulsar was observed on five separate occasions by the High Speed Photometer (HSP) on the Hubble Space Telescope (HST). In each case the sample time was $11/1.024 \times 10^6 \approx 10.74$ microseconds. Table 1 gives the circumstances of each observation. Table 2 gives the histograms of the raw data.

The light curves were produced with the following procedure. First, the definitive HST ephemeris was obtained from the Flight Dynamics Facility at Goddard Spaceflight Center. This ephemeris gives the 6-element HST barycentric J2000 state vector at one minute intervals, expressed as the Modified Julian Date in units of 100 nanoseconds. For each of these state vectors, the barycentric state vector of the earth was obtained from the JPL DE-200 Planetary Ephemeris. The sum of these vectors gives the barycentric state vector \mathbf{v} of the HST, and the arrival time correction is then $\mathbf{v} \cdot \hat{\mathbf{p}}/c$ where $\hat{\mathbf{p}}$ is the unit vector in the direction of the Crab Pulsar and c is the speed of light. Cubic spline interpolation in the resulting table of corrections was used to arrive at barycentric corrections within each minute. The phase of each non-zero sample was calculated using the procedure outlined

in the Jodrell Bank Monthly Ephemeris (Lyne & Pritchard 1992). Figures 1- 5 show the resulting mean light curves.

The following sections describe each of these steps in detail.

2 Position of HST

The definitive HST ephemeris is given in files that ultimately originate in the Goddard Spaceflight Center's Flight Dynamics Facility. We obtained the appropriate files from the Science Institute's Data Management Facility. Table 3 gives the files used, and their time coverage in Modified Julian Dates. The accuracy of the HST state vector can be estimated from the data files. Consecutive files share one common time point. The last time point of the previous file is the same as the first time point of the next file. The state vectors for these time points, however, differ according to their respective regression solutions. Comparing pbag0000r.orx with pbai0000r.orx, we find two state vectors for MJD 48547.0: (6632.978, -1360.692, -1706.646) km and (6632.962, -1360.749, -1706.670) km. The difference is (-0.016, 0.057, 0.024) km, or a total displacement of 64 meters. The light travel time for this distance is less than 2% of our sample time, and is negligible for our purposes.

3 Time of day

Events on the HST are driven by the HST clock, a 32-bit counter with a resolution of 125 ms. Events inside the HSP are driven by a separate, internal, clock. The HSP clock is also a 32-bit counter, but the resolution is 1 ms. (HSP events are driven by an oscillator whose rate is $1.024 \times 10^6 s^{-1}$, but the system uses the 1 ms clock for timekeeping.) Assigning absolute times to the photometry samples collected by the HSP requires establishing a time correlation for each of these clocks. That is, one must calibrate the zero point and count rate in order to map clock value onto absolute time.

The HSP/HST clock correlation is established by logging the HST clock value at the instant that the HSP clock is set to zero. No calibration of the HSP clock rate has been performed, so we simply assume that the advertised resolution of 1 ms is correct. The pulsar

observations indicate that this is not too gross an assumption, and in any case the HSP clock only controls events on relatively short time scales, so deviations from the 1 ms resolution are not allowed to accumulate for very long.

The HST/UTC correlation is established by time tagging the receipt of certain telemetry signals at the White Sands ground station. The time tags are then corrected for signal propagation times from White Sands to the TDRS relay satellite in use, and from the TDRS to the HST. The largest remaining uncertainty is in the HST telemetry hardware. Depending on the telemetry format in use at the time of the calibration, the uncertainty can vary from 1 ms (format A) to 8 ms (format C). The calibration is performed daily, and a regression is performed against the accumulated data to extract the coefficients of a quadratic polynomial mapping the HST clock onto UTC. The clock rate (seconds / count) and clock drift (seconds / count²) are important outputs of this regression.

We obtained the results of several regressions from Morlock and Kimmer (1992) We chose to use a solution whose epoch was close in time to the final Pulsar observation. The correlation we chose is:

 $T_0 = 1992.004 \ 05:44:00.443 \ (epoch)$

 $V_0 = 428038096$

 $r_0 = 0.1250000009901 \text{ seconds/count (clock rate)}$

 $d_0 = 8.861552441864 \times 10^{-19} \text{ seconds / count}^2 \text{ (clock drift)}$

Using these coefficients, the time of day is given by

$$T = T_0 + (V_1 - V_0)r_0 + (V_1 - V_0)^2 d_0/2$$
 (1)

where T_0 is the absolute time corresponding to vehicle time V_0 , and V_1 is the vehicle time of the desired event.

¹ 1994年,**1995年至**1995年,1995年,1995年,1995年

4 Time of observation

Now, with these two clock correlations, we can convert any given HST or HSP time to absolute time. The one remaining problem is assigning the correct HST time to the

first photometry sample. There are two ways to approach this, and in order to appreciate the distinction between them we must describe the sequence of events that leads up to the collection of science data with the HSP. In the photometry mode used for the Crab Pulsar, the HSP is programmed to start integrating the first sample at some prearranged HSP time. That is, when the HSP clock reaches some target value, then exactly 1 ms + 1 HSP clock tick later, the first sample begins (Werner, 1992). Although the HSP collects its samples in a continuous stream, the HST Science Data Formatter (SDF) quantizes the downlink into data packets. For the Crab observations, each packet contains 1920 1-byte photometry samples. When the HSP finishes the 1920th sample, it begins an interaction with the SDF to read out the packet. The HSP asserts a signal called Frame Start, and then sometime later, typically 1-2 ms, the SDF asserts a signal called Line Start. The data are then read out of the HSP. Before shipping the packet out to the downlink, the SDF inserts the HST clock value at which the Line Start was generated into the packet header (Rankin, 1992). Although the HST clock has a resolution of only 125 ms, the SDF adds an additional 10 bits of resolution, improving it to 125/2¹⁰ ms, or about 122\(\mu s\).

We can now estimate the HST time of the first photometry sample in two ways: adding the 1 ms + 1 HSP clock tick offset to the programmed start time, or by taking the time embedded in the first data packet and subtracting the time it took to collect the first packet's data, including all the known delays and overheads. We call these two methods the forward method and the backward method. The two principle overheads to account for in the backward method are the amount of time that elapses after the 1920th sample has been collected but before the HSP asserts the Frame Start, and the delay in the SDF before asserting the Line Start. The HSP delay has been estimated to be 1.068-2.61 ms (Werner, 1992), and the SDF delay is 1-2 ms. Table 4 shows the HST times for the Crab observations using each method. The packet time is the actual value recovered from the first data packet. The "backward time" column has 1920 sample times removed, but not the HSP or SDF overheads. The "forward time" column gives the programmed start time, without the 1 ms + 1 HSP clock tick delay. We see that the two methods are discrepant by 0.041703 ± 0.003340 HST clock ticks, or about 5.2 ± 0.4 ms. The sense is that the forward method times are earlier than the

backward method times. Some of the mean discrepancy is due to the neglect of the various delays and overheads. They would move the forward method later by about a millisecond, and would move the backward method earlier by about 3.3 ms (assuming average values for the ranges given above). There remains about 0.9 ms of unknown error.

5 Calculation of phase

The phase of each non-zero sample was calculated using the following procedure, given in Lyne & Pritchard (1992). Denoting the pulsar period with P, and letting ν_0 and $\dot{\nu}$ be the pulsar's frequency and frequency derivative at some epoch, we have

$$P = 1/\nu_0, \tag{2}$$

$$\dot{P} = -\dot{\nu}/\nu_0^2,\tag{3}$$

and

$$\ddot{\nu} = 2\dot{P}^2/P^3. \tag{4}$$

The phase at the instant of observation T is then

$$\Phi = \nu_0 T + \dot{\nu} T^2 / 2 + \ddot{\nu} T^3 / 6. \tag{5}$$

Table 5 gives the radio epoch, and the phase of the first sample of each observation.

6 Mean light curves

Figures 1-5 show each observation coadded into 3125 phase bins covering one pulsar period. 3125 was chosen to make each phase bin approximately as wide as the $10.74\mu s$ sample width. The backward method times in Table 4 were used to produce the light curves in these figures. Tables 6 and 7 give the phase error of the main peak and the phase drift during the observation. The phase error and phase drift $(\Delta P/P)$ was estimated by dividing the observation into about 200 time slices, and coadding the light curve separately for each slice. The phase of the maximum value was found for each slice, and a least squares fit was performed using the resulting few hundred pairs of points. Figures 6-10 show the peak phase

as a function of pulse number, with the linear regression superimposed. The large variance in the data is primarily due to the crude estimate of the peak phase in each of the slices: we chose the phase bin containing the most counts, rather than using a more elaborate technique such as smoothing with curve fitting. Each time slice lasted for only about 10 seconds, and contained just a few hundred counts. The "maximum value" choice would be expected to suffer using the relatively noisy 10-second light curves, but should not do any systematic damage to the regression.

We take the y-intercept of the linear fit to be the phase error with respect to the radio ephemeris, and the slope to be the phase drift within a given observation. Using an average pulsar frequency of 29.94 Hz to convert the phase errors into time errors, we end up with -3.190 ± 0.02979 ms for the forward method, and 1.982 ± 0.3938 ms for the backward method. Now recall the neglected delays and overheads. The forward method should be increased by about a millisecond, to -2.2 ms, and the backward method should be decreased by about 3.3 ms, to -1.3 ms. The residual discrepancy of about 0.9 ms is what we expected, and is due to the unexplained discrepancy in the time of the first datum. Adding the backward method timing uncertainties in quadrature (using 0.771 ms for the HSP delay and 0.5 ms for the SDF delay) we get a total uncertainty in the calculated arrival times of 1.0 ms. The forward method delays of 1 ms + 1 HSP clock tick are exact, so the total uncertainty is just the dispersion of phase errors, or 0.02979 ms.

We see that each of these methods has an advantage. The forward method gives a larger phase error, but produces a very small variance. We believe that the phase error is due to some small, but highly deterministic, overhead in the HSP, perhaps occurring when the HSP resets its internal clock. In fact, a small phase shift between the HST and HSP clocks could introduce a millisecond delay in the reset (Werner, 1992), thereby shifting the HSP time axis by the amount required to eliminate the discrepancy. Note that the backward method times would not be affected by such a phase shift, because they are derived from the HST clock in the packet headers.

The backward method gives a better match to the radio ephemeris, but with a larger dispersion. We think the real phase error of the backward method may be smaller than the

-1.3 ms quoted above, because an average value of 1.5 ms was used for the SDF delay, but with only one active instrument, the SDF delay may be closer to the 1 ms lower limit, and this would bring the backward method phase error to within the 1 ms total uncertainty in the delays and overheads.

These small phase errors and dispersions are a little surprising, given the variability of the HST clock drift term d_0 . A plot in Morlock and Kimmer (1992) shows d_0 plotted as a function of time in 1991, and shows rapid and frequent excursions of at least 3×10^{-18} seconds per count². Extrapolating such a change from the January solution back to the October Crab observations (90 days, at 8 HST ticks per second), we get a temporal uncertainty of about 6 ms. The January Crab observation fell much closer to the correlation epoch, and so is far less sensitive to the uncertainty in d_0 . It is not clear to what extent our small errors and dispersions and due to good luck. A different d_0 would have thrown the October light curves further from the radio ephemeris, increasing the mean error, and further from the January light curve, increasing the dispersion of phase errors. In any case, the HST clock seems to be calibrated to within the 10 ms specification even after folding in all methods, errors, delays, and overheads.

The phase drift provides an estimate of the amount of smearing in the final light curve for each observation. The RMS phase drift of $\Delta P/P = -3 \times 10^{-8}$ over approximately half an hour implies a smearing of about $54\mu s$, or about 5 samples. Referring to Figures 6-10, it is clear that the measured drifts are much smaller than the variance of the data, and are therefore statistically negligible. Figures 11-15 show enlargements centered on the peaks. Note that the peak v0qy0401 shows a profile about as wide as the others, yet its drift measurement in Table 7 is 4 orders of magnitude lower than the others. This too indicates the statistical meaninglessness of the residual phase drift, and bolsters the feeling that the flat tops of the peaks are intrinsic to the pulsar and not an artifact of numerical smearing in the data reduction.

REFERENCES

Lyne, A. G. and Pritchard, R. S. 1992, Jodrell N Bank Crab Pulsar Timing Results Monthly Ephemeris (March 10, 1992)

Morlock, S. and Kimmer, E. 1992, memo to J. Hodges dated January 27, 1992

Rankin, A. 1992, Private communication

Werner, M. L. 1992, Private communication

Table 1

Observation	Date	Filter	Duration (s)
v0qy0102	1991 Oct 17 16:09:03.60	F400LP	2160
v0qy0201	1991 Oct 18 06:39:02.61	F400LP	1800
v0qy0301	1991 Oct 19 06:49:52.61	F400LP	1800
v0qy0401	1991 Oct 20 07:00:43.61	F400LP	1800
v0ui0103	1992 Jan 21 07:58:06.67	F160LP	1680

Table 1: Summary of HSP observations of the Crab pulsar

Table 2

	Counts per sample							
Observation	6	5	4	3	2	1	0	total
v0qy0102	0	0	12	329	13908	733379	200180372	200928000
v0qy0201	1	0	9	384	17002	844570	166577394	167439360
v0qy0301	0	0	5	254	11550	655336	166772215	167439360
v0qy0401	0	0	2	243	10321	601035	166827759	167439360
v0ui0103	0	0	0	0	164	72859	156203457	156276480

Table 2: Histograms of the raw data.

Table 3

Ephemeris file	Start (MJD)	Stop (MJD)
pbag0000r.orx	48545.0	48547.0
pbai0000r.orx	48547.0	48549.0
pbak0000r.orx	48549.0	48551.0
pc1k0000r.orx	48641.0	48643.0

Table 3: Definitive Ephemeris files used for HST position

Table 4

Observation	packet time	backward time	forward time	difference
v0qy0102	373733321.875977	373733321.710977	373733321.672008	0.038969
v0qy0201	374150913.881836	374150913.716836	374150913.672008	0.044828
v0qy0301	374847313.875977	374847313.710977	374847313.672008	0.038969
v0qy0401	375543721.876953	375543721.711953	375543721.672008	0.039945
v0ui0103	439852865.882813	439852865.717812	439852865.672008	0.045804
mean	***			0.041703
std. dev.				0.003340

Table 4: Timing data (values are in HST clock ticks, 125 ms)

Table 5

Observation	Radio Epoch	$ u_0 (\mathrm{Hz}) $	$\dot{ u}(10^{-10}/s^2)$
v0qy0102	48544 + 0.030786 s	29.9436079304	-3.7748018
v0qy0201	48544 + 0.030786 s	29.9436079304	-3.7748018
v0qy0301	48544 + 0.030786 s	29.9436079304	-3.7748018
v0qy0401	48544 + 0.030786 s	29.9436079304	-3.7748018
v0ui0103	48636 + 0.020498 s	29.9406077550	-3.7737775

Table 5: Radio ephemerides used in the data reduction

Table 6

Observation	Φ_0	Phase error	Phase drift $(\Delta P/P)$
v0qy0102	6922707.609	-9.66670e-02	-2.507667e-08
v0qy0201	8485862.431	-9.50542e-02	-4.144763e-08
v0qy0301	11092663.576	-9.56528e-02	5.811730e-09
v0qy0401	13699489.437	-9.42972e-02	-2. <u>38</u> 6960e-08
v0ui0103	16391899.795	-9.58908e-02	-3.832335e-08
mean		-9.55124e-02	-2.458110e-08
std. dev.		8.92000e-04	1.869362e-08
RMS		a exist of the same	2.97286e-08

Table 6: Phase errors and drifts (Forward method).

Table 7

Observation	Φ_0	Phase error	Phase drift $(\Delta P/P)$
v0qy0102	6922707.755	4.823839e-02	-1.618972e-08
v0qy0201	8485862.599	7.154610e-02	-3.709999e-08
v0qy0301	11092663.722	5.051263e-02	-6.236897e-08
v0qy0301 v0qy0401	13699489.587	5.380815e-02	4.463694e-12
v0qy0401 v0ui0103	16391899.966	7.258340e-02	-4.114319e-09
mean		5.933773e-02	-2.395371e-08
std. dev.		1.179137e-02	2.586712e-08
RMS	e kolen for order, more	e tit for for former providence to the second	3.33026e-08

Table 7: Phase errors and drifts (Backward method).

Figure 1: v0qy0102

Figure 2: v0qy0201

Figure 3: v0qy0301

Figure 4: v0qy0401

Figure 5: v0ui0103

Figure 6: v0qy0102

Figure 7: v0qy0201

Figure 8: v0qy0301

Figure 9: v0qy0401

Figure 10: v0ui0103

Figure 11: v0qy0102

Figure 12: v0qy0201

Figure 13: v0qy0301

Figure 14: v0qy0401

Figure 15: v0ui0103

· Barting and American Comment of American Comments (American Comments of American Comments

1

REPORT DO	Form Approved OMB No. 0704-0188		
and maintaining the data needed, and completin	g and reviewing the collection of information. S his burden, to Washington Headquarters Servic	iend comments regarding this burden est se, Directorate for Information Operation	s and Heports, 1215 Jefferson Davis Highway, Suite
1. AGENCY USE ONLY (Leave b	lank) 2. REPORT DATE July 1992	3. REPORT TYPE AN Contractor Report	D DATES COVERED
4. TITLE AND SUBTITLE Hubble Space Telescope Hi Test Report	5. FUNDING NUMBERS		
6. AUTHOR(S) Evan E. Richards, HSP Progr	am Manager		NAS5-24487
7. PERFORMING ORGANIZATIO Space Science and Engineer University of Wisconsin - N 1225 West Dayton Street Madison, WI 53706	B. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING	10. SPONSORING/MONITORING		
National Aeronautics and S Washington, D.C. 20546–0	AGENCY REPORT NUMBER CR-189322		
11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILI Unclassified—Unlimited	TY STATEMENT		12b. DISTRIBUTION CODE
Subject Category 18			
at the end of the SV period, activities (OV, SV, and SAC 91154 SMS, on June 8, 199	•	lone. The HSP OV report (on of phase III alighnment,	OV 3233 performed in the 992. 15. NUMBER OF PAGES
High Speed Photometer			146 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATIOF ABSTRACT Unclassified	ON 20. LIMITATION OF ABSTRACT Unlimited
CHUMOOHIVU	- INTERPOLITIVE	CHICAGOING	V

-