Cours: gradients et dérivées directionnelles

Université de Moncton

Herman Goulet-Ouellet

4 avril 2025

Plan pour aujourd'hui

- 1. Rappels sur les dérivées partielles.
- 2. Définition des dérivées directionnelles.
- 3. Définition du gradient.
- 4. Calcul des dérivées directionnelles par le gradient.
- 5. Plan tangent.
- 6. Définition de point critique.

Rappels: dérivées partielles

Définition 1

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de n variables. La dérivée partielle de f par rapport à x_i est définie par la limite (si elle existe):

$$\frac{\partial f}{\partial x_i}(x_1,\ldots,x_n)=\lim_{h\to 0}\frac{f(x_1,\cdots,x_{i-1},x_i+h,x_{i+1},\ldots,x_n)-f(x_1,\cdots,x_n)}{h}$$

Pour une fonction de deux variables f(x, y) on a deux dérivées partielles:

$$\frac{\partial f}{\partial x}(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}, \qquad \frac{\partial f}{\partial y}(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}.$$

2

Rappels: calcul des dérivées partielles

• Pour calculer la dérivée partielle par rapport à une variable donnée, on traite les autres variables comme des constantes.

Exemple 2

Calculons les dérivées partielles de $f(x, y) = 3\sin(x) - 2\cos(y) - xy$.

Rappels: calcul des dérivées partielles

• Pour calculer la dérivée partielle par rapport à une variable donnée, on traite les autres variables comme des constantes.

Exemple 2

Calculons les dérivées partielles de $f(x, y) = 3\sin(x) - 2\cos(y) - xy$.

Réponse: $\frac{\partial f}{\partial x}(x,y) = 3\cos(x) - y$ et $\frac{\partial f}{\partial y}(x,y) = 2\sin(y) - x$.

Rappels: dérivées partielles et droites tangentes

1 La dérivée partielle par rapport à x au point a est égale à la pente de la droite tangente passant par (a, f(a)) dans la direction parallèle à l'axe des x.

Droite tangente au graphe de $f(x,y) = 3\sin(x) - 2\cos(y) - xy$ dans la direction parallèle à l'axe des x passant par le point (1,1,f(1,1)).

Dérivées directionnelles, définition

Définition 3

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de n variables. La dérivée directionnelle de f dans la direction $\mathbf{u} \in \mathbb{R}^n$ est définie par la limite (si elle existe)

$$\nabla_{\boldsymbol{u}}f(\boldsymbol{x})=\lim_{h\to 0}\frac{f(\boldsymbol{x}+h\boldsymbol{u})-f(\boldsymbol{x})}{h},\qquad \text{où }\boldsymbol{x}=(x_1,\ldots,x_n)\in\mathbb{R}^n.$$

5

Dérivées directionnelles, définition

Définition 3

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de n variables. La dérivée directionnelle de f dans la direction $\mathbf{u} \in \mathbb{R}^n$ est définie par la limite (si elle existe)

$$\nabla_{\boldsymbol{u}}f(\boldsymbol{x}) = \lim_{h \to 0} \frac{f(\boldsymbol{x} + h\boldsymbol{u}) - f(\boldsymbol{x})}{h}, \quad \text{où } \boldsymbol{x} = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

1 Pour tout scalaire $k \neq 0$, on a $\nabla_{k \boldsymbol{u}} f = k \nabla_{\boldsymbol{u}} f$. On peut donc se restreindre au cas où \boldsymbol{u} est un **vecteur unitaire**, c'est-à-dire dont la norme euclidienne vaut 1:

$$\|\boldsymbol{u}\| = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2} = 1.$$

5

Dérivées directionnelles, cas de deux variables

Dans le cas de \mathbb{R}^2 , les vecteurs unitaires sont de la forme

$$\mathbf{u} = (\cos(\theta), \sin(\theta)), \quad \theta \in [0, 2\pi).$$

Pour un vecteur de cette forme, la dérivée directionnelle d'une fonction f(x, y) de deux variables est, par définition,

$$\nabla_{\boldsymbol{u}}f(x,y) = \lim_{h \to 0} \frac{f(x+h\cos(\theta),y+h\sin(\theta)) - f(x,y)}{h}$$

Dérivées directionnelles, cas de deux variables

Dans le cas de \mathbb{R}^2 , les vecteurs unitaires sont de la forme

$$\mathbf{u} = (\cos(\theta), \sin(\theta)), \quad \theta \in [0, 2\pi).$$

Pour un vecteur de cette forme, la dérivée directionnelle d'une fonction f(x, y) de deux variables est, par définition,

$$\nabla_{\boldsymbol{u}}f(x,y) = \lim_{h \to 0} \frac{f(x+h\cos(\theta),y+h\sin(\theta)) - f(x,y)}{h}$$

- Quand $\theta = 0$, $\mathbf{u} = (1,0)$ et on retrouve $\nabla_{\mathbf{u}} f = \partial f / \partial x$.
- Quand $\theta = \frac{\pi}{2}$, $\mathbf{u} = (0, 1)$ et on retrouve $\nabla_{\mathbf{u}} f = \partial f / \partial y$.

Dérivées directionnelles, interprétation géométrique

- La dérivée partielle par rapport à x au point **a** est égale à la pente de la droite tangente passant par **a** dans la direction parallèle à l'axe des x.
- La dérivée directionnelle dans la direction u au point a est égale à la pente de la droite tangente passant par a dans la direction parallèle à u.

Droite tangente au graphe de $f(x) = 3\sin(x) - 2\cos(y) - xy$ dans la direction $\mathbf{u} = (3/5, 4/5)$ passant par le point (1, 1, f(1, 1)).

Les droites tangentes dans la direction de l'axe des x et des y sont est indiquées en noir.

Dérivées directionnelles, droites tangentes

La dérivée directionnelle dans la direction \boldsymbol{u} au point \boldsymbol{a} est égale à la pente de la droite tangente passant par \boldsymbol{a} dans la direction parrallèle à \boldsymbol{u} .

• En d'autres mots, la droite tangente admet la description paramétrique:

$$D = \{(\boldsymbol{a} + t\boldsymbol{u}, f(\boldsymbol{a}) + t\nabla_{\boldsymbol{u}}f(\boldsymbol{a})) \mid t \in \mathbb{R}\}.$$

• Dans le cas d'une fonction de deux variables, cette description prend la forme:

$$D = \{(a_1 + tu_1, a_2 + tu_2, f(a_1, a_2) + t\nabla_{\boldsymbol{u}}f(a_1, a_2)) \mid t \in \mathbb{R}\}.$$

Formule pour deux variables

1 Calculer $\nabla_{u}f(x)$ directement à partir de la définition est possible, mais difficile.

Théorème 4

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de deux variables et $\mathbf{u} = (u_1, u_2) \in \mathbb{R}^2$. En tout point $(x, y) \in \mathbb{R}^2$ où f est **différentiable**,

$$\nabla_{\boldsymbol{u}}f(x,y)=u_1\frac{\partial f}{\partial x}(x,y)+u_2\frac{\partial f}{\partial y}(x,y).$$

9

Formule pour deux variables

1 Calculer $\nabla_{u}f(x)$ directement à partir de la définition est possible, mais difficile.

Théorème 4

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de deux variables et $\mathbf{u} = (u_1, u_2) \in \mathbb{R}^2$. En tout point $(x, y) \in \mathbb{R}^2$ où f est **différentiable**,

$$\nabla_{\boldsymbol{u}}f(x,y)=u_1\frac{\partial f}{\partial x}(x,y)+u_2\frac{\partial f}{\partial y}(x,y).$$

(On verra la définition de **différentiable** dans un prochain cours. Pour l'instant on ne travaillera qu'avec des fonctions différentiables.)

Č

Formule pour deux variables, exemple

$$\nabla_{\boldsymbol{u}}f(x,y)=u_1\frac{\partial f}{\partial x}(x,y)+u_2\frac{\partial f}{\partial y}(x,y).$$

Exemple 5

Soit la fonction $f(x,y) = 3\sin(x) - 2\cos(y) - xy$, et $\mathbf{u} = (\cos(\theta), \sin(\theta))$, où $\theta = \arccos(3/5)$. Calculons $\nabla_{\mathbf{u}} f(x,y)$ en utilsant le théorème.

Formule pour deux variables, exemple

$$\nabla_{\boldsymbol{u}}f(x,y)=u_1\frac{\partial f}{\partial x}(x,y)+u_2\frac{\partial f}{\partial y}(x,y).$$

Exemple 5

Soit la fonction $f(x,y) = 3\sin(x) - 2\cos(y) - xy$, et $\mathbf{u} = (\cos(\theta), \sin(\theta))$, où $\theta = \arccos(3/5)$. Calculons $\nabla_{\mathbf{u}} f(x,y)$ en utilsant le théorème.

Réponse:
$$\nabla_{u} f(x, y) = \frac{3}{5} (\cos(x) - y) + \frac{4}{5} (\sin(y) - x).$$

Plan tangent

Corollaire 6

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de deux variables. En tout point $(a,b) \in \mathbb{R}^2$ où f est différentiable, toutes les droites tangentes au graphe de f passant par (a,b,f(a,b)) sont contenues dans le plan d'équation

$$z - f(a,b) = \frac{\partial f}{\partial x}(a,b) \cdot (x-a) + \frac{\partial f}{\partial y}(a,b) \cdot (y-b)$$

appelé plan tangent.

Plan tangent, exemple

$$z - f(a,b) = \frac{\partial f}{\partial x}(a,b) \cdot (x-a) + \frac{\partial f}{\partial y}(a,b) \cdot (y-b).$$

Example 7

Calculons l'équation du plan tangent au graphe de $f(x,y) = -(x^2 + xy + y^2)$ passant par le point (-1/2, 1/2, -1/4).

Plan tangent, exemple

$$z - f(a,b) = \frac{\partial f}{\partial x}(a,b) \cdot (x-a) + \frac{\partial f}{\partial y}(a,b) \cdot (y-b).$$

Example 7

Calculons l'équation du plan tangent au graphe de $f(x,y) = -(x^2 + xy + y^2)$ passant par le point (-1/2, 1/2, -1/4).

Réponse: l'équation du plan tangent est z = x/2 - y/2 + 1/4.

Gradient

Définition 8

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction réelle de n variables. Le gradient de f est la fonction

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{x_1}(\mathbf{x}), \dots, \frac{\partial f}{x_n}(\mathbf{x})\right), \quad \text{où } \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

Autrement dit, $\nabla f \colon \mathbb{R}^n \to \mathbb{R}^n$.

Gradient

Définition 8

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction réelle de n variables. Le gradient de f est la fonction

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{x_1}(\mathbf{x}), \dots, \frac{\partial f}{x_n}(\mathbf{x})\right), \quad \text{où } \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

Autrement dit, $\nabla f \colon \mathbb{R}^n \to \mathbb{R}^n$.

Exemple 9

Soit la fonction $f(x, y, z) = x^2 - xyz - z^2$. Calculons le gradient $\nabla f(x, y, z)$.

Gradient

Définition 8

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction réelle de n variables. Le gradient de f est la fonction

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{x_1}(\mathbf{x}), \dots, \frac{\partial f}{x_n}(\mathbf{x})\right), \quad \text{où } \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

Autrement dit, $\nabla f \colon \mathbb{R}^n \to \mathbb{R}^n$.

Exemple 9

Soit la fonction $f(x, y, z) = x^2 - xyz - z^2$. Calculons le gradient $\nabla f(x, y, z)$.

Réponse: $\nabla f(x, y, z) = (2x - yz, -xz, -2z - xy).$

Produit scalaire

Définition 10

Étant donné deux vecteurs $oldsymbol{u},oldsymbol{v}\in\mathbb{R}^n$, on définit leur produit scalaire par

$$\boldsymbol{u}\cdot\boldsymbol{v}=\sum_{i=1}^nu_iv_i.$$

Produit scalaire

Définition 10

Étant donné deux vecteurs $oldsymbol{u},oldsymbol{v}\in\mathbb{R}^n$, on définit leur produit scalaire par

$$\boldsymbol{u}\cdot\boldsymbol{v}=\sum_{i=1}^nu_iv_i.$$

Proposition 11 (propriétés du produit scalaire)

- 1. $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \, ||\mathbf{v}|| \cos(\theta)$, où θ est l'angle entre \mathbf{u} et \mathbf{v} .
- 2. $|\mathbf{u} \cdot \mathbf{v}| \le ||\mathbf{u}|| \, ||\mathbf{v}||$ (inégalité de Cauchy–Schwarz).
- 3. $\mathbf{u} \cdot \mathbf{v} = 0 \iff \mathbf{u} \perp \mathbf{v}$ (\mathbf{u} et \mathbf{v} sont perpendiculaires).
- 4. $\mathbf{u} \cdot \mathbf{u} = \|\mathbf{u}\|^2$.

Formule du gradient

Théorème 12

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction réelle de n variables et $\mathbf{u} \in \mathbb{R}^n$. En tout point $\mathbf{a} \in \mathbb{R}^n$ où f est **différentiable**,

$$\nabla_{\boldsymbol{u}} f(\boldsymbol{a}) = \nabla f(\boldsymbol{a}) \cdot \boldsymbol{u}.$$

- Pour n = 2 on retrouve la formule énoncée précédemment.
- La preuve utilise la règle de dérivation en chaîne multivariée (prochain cours).

Exemple 13

(a)
$$f(x,y) = x^2 - xy + 3y^2$$
, $u = (\frac{3}{5}, \frac{4}{5})$, $a = (\frac{5}{2}, \frac{5}{7})$.

(b)
$$\sin(3x)\cos(3y)$$
, $\mathbf{u} = (\frac{5}{13}, \frac{12}{13})$, $\mathbf{a} = (\pi, \frac{\pi}{2})$.

(c)
$$f(x_1, x_2, x_3) = x_1 x_3 + x_1^2 - x_2 + x_2 x_3 + x_2^2 + 3x_3^2$$
, $\mathbf{u} = (\frac{\sqrt{2}}{4}, \frac{\sqrt{3}}{4}, \frac{\sqrt{3}}{2})$, $\mathbf{a} = (1, -2, \frac{3}{2})$.

Exemple 13

- (a) $f(x,y) = x^2 xy + 3y^2$, $\mathbf{u} = (\frac{3}{5}, \frac{4}{5})$, $\mathbf{a} = (\frac{5}{2}, \frac{5}{7})$. **Réponse:** $\nabla f(x,y) = (2x - y, -x + 6y)$ et $\nabla_{\mathbf{u}} f(\mathbf{a}) = 4$.
- (b) $\sin(3x)\cos(3y)$, $\mathbf{u} = (\frac{5}{13}, \frac{12}{13})$, $\mathbf{a} = (\pi, \frac{\pi}{2})$.

(c)
$$f(x_1, x_2, x_3) = x_1 x_3 + x_1^2 - x_2 + x_2 x_3 + x_2^2 + 3x_3^2$$
, $\mathbf{u} = (\frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4}, \frac{\sqrt{3}}{2})$, $\mathbf{a} = (1, -2, \frac{3}{2})$.

Exemple 13

- (a) $f(x,y) = x^2 xy + 3y^2$, $\mathbf{u} = (\frac{3}{5}, \frac{4}{5})$, $\mathbf{a} = (\frac{5}{2}, \frac{5}{7})$. **Réponse:** $\nabla f(x,y) = (2x - y, -x + 6y)$ et $\nabla_{\mathbf{u}} f(\mathbf{a}) = 4$.
- (b) $\sin(3x)\cos(3y)$, $\mathbf{u} = (\frac{5}{13}, \frac{12}{13})$, $\mathbf{a} = (\pi, \frac{\pi}{2})$. **Réponse:** $\nabla f(x, y) = (3\cos(3x)\cos(3y), -3\sin(3x)\sin(3y))$ et $\nabla_{\mathbf{u}}f(\mathbf{a}) = 0$.
- (c) $f(x_1, x_2, x_3) = x_1 x_3 + x_1^2 x_2 + x_2 x_3 + x_2^2 + 3x_3^2$, $\mathbf{u} = (\frac{\sqrt{2}}{4}, \frac{\sqrt{3}}{4}, \frac{\sqrt{3}}{2})$, $\mathbf{a} = (1, -2, \frac{3}{2})$.

Exemple 13

- (a) $f(x,y) = x^2 xy + 3y^2$, $\mathbf{u} = (\frac{3}{5}, \frac{4}{5})$, $\mathbf{a} = (\frac{5}{2}, \frac{5}{7})$. **Réponse:** $\nabla f(x,y) = (2x - y, -x + 6y)$ et $\nabla_{\mathbf{u}} f(\mathbf{a}) = 4$.
- (b) $\sin(3x)\cos(3y)$, $\mathbf{u} = (\frac{5}{13}, \frac{12}{13})$, $\mathbf{a} = (\pi, \frac{\pi}{2})$. **Réponse:** $\nabla f(x, y) = (3\cos(3x)\cos(3y), -3\sin(3x)\sin(3y))$ et $\nabla_{\mathbf{u}}f(\mathbf{a}) = 0$.
- (c) $f(x_1, x_2, x_3) = x_1x_3 + x_1^2 x_2 + x_2x_3 + x_2^2 + 3x_3^2$, $\mathbf{u} = (\frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4}, \frac{\sqrt{3}}{2})$, $\mathbf{a} = (1, -2, \frac{3}{2})$. Réponse: $\nabla f(x_1, x_2, x_3) = (2x_1 + x_3, 2x_2 + x_3 1, x_1 + x_2 + 6x_3)$ et $\nabla_{\mathbf{u}} f(\mathbf{a}) = 4\sqrt{3}$.

Exemple non différentiable

A La formule du gradient ne fonctionne pas și la fonction n'est pas différentiable.

Exemple 14

Soit $f(x,y) = xy/(x^2 + y^2)$ si $(x,y) \neq (0,0)$ et f(0,0) = 0. Le gradient ∇f existe partout, y compris en (0,0). Cependant f n'est pas différentiable en (0,0) et les dérivées directionnelles $\nabla_{\mathbf{u}} f(0,0)$ n'existent pas pour $\mathbf{u} \notin \{(0,1),(1,0)\}.$

Conséquence de la formule du gradient

$$\nabla_{\boldsymbol{u}}f(\boldsymbol{x}) = \nabla f(\boldsymbol{x}) \cdot \boldsymbol{u}.$$

Corollaire 15

En tout point $\mathbf{a} \in \mathbb{R}^n$ où f est différentiable:

- 1. Le gradient $\nabla f(a)$ donne la direction qui maximise la croissance instantanée.
- 2. Dans les directions perpendiculaires à $\nabla f(a)$, la croissance instantané est nulle.

Conséquence de la formule du gradient

$$\nabla_{\boldsymbol{u}}f(\boldsymbol{x}) = \nabla f(\boldsymbol{x}) \cdot \boldsymbol{u}.$$

Corollaire 15

En tout point $\mathbf{a} \in \mathbb{R}^n$ où f est différentiable:

- 1. Le gradient $\nabla f(a)$ donne la direction qui maximise la croissance instantanée.
- 2. Dans les directions perpendiculaires à $\nabla f(a)$, la croissance instantané est nulle.

Ce corollaire est très utile pour résoudre des problèmes d'optimisation. Il est à la base de l'**algorithme du gradient**, dont la variante appelée **algorithme du gradient stochastique** est utilisée en apprentissage automatique.

Visualiser le gradient

Soit $f(x,y) = 4 - (\cos^2(x/2) + \cos^2(y/2))^2$. La figure suivante illustre f et ∇f (représenté sur le plan z = 0).

Points critiques, rappel

Les points critiques d'une fonction $f: \mathbb{R} \to \mathbb{R}$ d'une seule variable sont les points $x \in \mathbb{R}$ tels que f'(x) = 0.

Si la fonction est deux fois différentiable alors les points critiques peuvent prendre trois différentes formes:

- 1. maximum local, quand f''(x) < 0.
- 2. minimum local, quand f''(x) > 0.
- 3. point d'inflexion, quand f''(x) = 0.

Points critiques

Définition 16

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de n variables. On appelle **point critique** un point $\mathbf{x} \in \mathbb{R}^n$ tel que où $\nabla f(\mathbf{x}) = 0$.

Points critiques

Définition 16

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de n variables. On appelle **point critique** un point $\mathbf{x} \in \mathbb{R}^n$ tel que où $\nabla f(\mathbf{x}) = 0$.

Pour trouver les points critiques d'une fonction de n variables, il faut donc résoudre un système à n équations et n inconnues:

$$\begin{cases} \frac{\partial f}{\partial x_1}(x_1, x_2, \dots, x_n) &= 0\\ \frac{\partial f}{\partial x_2}(x_1, x_2, \dots, x_n) &= 0\\ \vdots\\ \frac{\partial f}{\partial x_n}(x_1, x_2, \dots, x_n) &= 0 \end{cases}$$

Points critiques, exemple

Exemple 17

Trouvons les points critiques de la fonction

$$f(x_1, x_2, x_3) = x_1x_3 + x_1^2 - x_2 + x_2x_3 + x_2^2 + 3x_3^2.$$

Points critiques, exemple

Exemple 17

Trouvons les points critiques de la fonction

$$f(x_1, x_2, x_3) = x_1x_3 + x_1^2 - x_2 + x_2x_3 + x_2^2 + 3x_3^2$$

Réponse: On a $\nabla f(x_1, x_2, x_3) = (x_3 + 2x_1, -1 + x_3 + 2x_2, x_1 + x_2 + 6x_3)$. Donc les points critiques sont les solutions du système

$$\begin{cases} 2x_1 & + x_3 = 0 \\ 2x_2 + x_3 = 1 \\ x_1 + x_2 + 6x_3 = 0. \end{cases}$$

En utilisant notre trousse à outils d'algèbre linéaire, on trouve un seul point critique, soit $(\frac{1}{20}, \frac{11}{20}, \frac{-1}{10})$.