## Homework 8 (Project)

1. Let  $Z_i = \sum_j Z_{ij}$ , where  $Z_{ij} = I$ (patient j in hospital i dies before 30 days). For heart transplant patient j in hospital i,  $e_{ij}$  is a measure of the patient's risk. Then, the exposure for hospital i,  $e_i = \sum_{j=1}^{n_i} e_{ij}$ , where  $n_i$  denotes the number of patients in hospital i. Now suppose that

$$P(Z_{ij} = 1 | \lambda_i) = \lambda_i e_{ij}$$

which implies that

$$Z_{ij} \sim Bernoulli(\lambda_i e_{ij}).$$

Then

$$Z_{i} = \sum_{j} Z_{ij} \sim Poisson(\sum_{j} \lambda_{i} e_{ij})$$

$$\implies Z_{i} \sim Poisson(\lambda_{i} e_{i})$$

provided  $\sum_{j} \lambda_{i} e_{ij} = \lambda_{i} e_{i}$  is small by the Poisson Approximation Theorem, or  $\sum_{j=1}^{n_{i}} (\lambda_{i} e_{ij})^{2} \to 0$  as  $n_{i} \to \infty$  according to  $LeCam's\ result$ .

2. We are interested in finding the hospital with the best mortality rate, which is equivalent to finding the hospital with the lowest  $E(\lambda_i)$ . We run a Gibbs-Sampler for the following model:

$$Z_i \sim Poisson(\lambda_i e_i),$$
  
 $\lambda_i \sim Gamma(\alpha, \beta),$   
 $\alpha \sim Exp(a_0), \quad a_0 = \log(2)/z_0, \quad z_0 = 0.53,$   
 $\beta \sim Gamma(b_0, b_1), \quad b_0 = 1, \quad b_1 = 0.65,$ 

and estimate the mortality rate of hospital i,  $E(\lambda_i)$ , using

$$\widehat{E(\lambda_i)} = \frac{1}{n} \sum_{i=1}^n \lambda_i^{(j)} = \bar{\lambda}_i,$$

where n is the number of observations collected in our sample and  $\lambda_i^{(j)}$  denotes the jth observation for  $\lambda_i$ .

Note that under this model, the value of the log of the posterior denisty of  $(\lambda, \alpha, \beta)$  at  $(\hat{\lambda}, \hat{\alpha}, \hat{\beta}) = (\hat{\lambda}_1, ... \hat{\lambda}_{94}, \hat{\alpha}, \hat{\beta})$  can be calculated in the following manner:

$$f_{(\boldsymbol{\lambda},\alpha,\beta)|\boldsymbol{Z}}(\hat{\boldsymbol{\lambda}},\hat{\alpha},\hat{\beta}) = c \prod_{i=1}^{94} f_{Z_i|\hat{\lambda}_i}(Z_i) f_{\lambda_i|(\hat{\alpha},\hat{\beta})}(\hat{\lambda}_i) f_{\alpha}(\hat{\alpha}) f_{\beta}(\hat{\beta})$$

$$\implies \log f_{(\boldsymbol{\lambda},\alpha,\beta)|\boldsymbol{Z}}(\hat{\boldsymbol{\lambda}},\hat{\alpha},\hat{\beta}) = \log c + \sum_{i=1}^{94} \left( \log f_{Z_i|\hat{\lambda}_i}(Z_i) + \log f_{\lambda_i|(\hat{\alpha},\hat{\beta})}(\hat{\lambda}_i) + \log f_{\alpha}(\hat{\alpha}) + \log f_{\beta}(\hat{\beta}) \right)$$

where c is the normalzing constant, which we will ignore when plotting the posterior density.

We initially run a Gibbs-Sampler on the model using JAGs with a thin of 1, a burn-in of 10000 and n=50000 with initial values of  $\lambda_i^{(0)}=1 \forall i$ . Figure 1c indicates that the negative log posterior converges slowly to a value around 900, but Figures 1a and 1b indicates that it exhibits a clear sinusoidal pattern. This indicates that the chains generated by this algorithm are most likely getting stuck in regions from which it takes a significant amount of time to escape; in other words, they are  $mixing\ slowly$ . The trace plots for  $\alpha$  and  $\beta$  in Figure 2a and 2b also seem problematic for the same reason. As expected, the autocorrelation plots for  $\alpha$  and  $\beta$  in Figure 2a and 2b reveal extremely high correlation. These plots indicate that a thin of 100 may work better.

We run another Gibbs-Sampler on the same model again using JAGs with a thin of 100, a burn-in of 10000 and n=50000 this time. Figures 6a, 6b and 6c shows that the negative log posterior for this chain varies evenly around some value between 850 and 900 without getting stuck in any region for too long. These look much better than when we used a thin of 1. Also, as is evident in Figure 7a and 7b, the autocorrelation plots for  $\alpha$  and  $\beta$  indicate that the thin of 100 works well. The trace plots for  $\alpha$  and  $\beta$  in Figure 7a and 7b also seem much better.

The estimated means and their standard errors, calculated employing the naive method, time series methods (TS) and batch means (BM), using a thin of 1 and a thin of 100 are reported in Table 2 and Table 3, respectively. In calculating the standard errors using the batch means method we used a batch size of  $\lfloor n/\sqrt{n} \rfloor$ . As expected, the general trend is that variance estimates are smaller when using a thin of 100. With a thin of 1 we also

get significantly different values for the standard errors using the different methods, whereas the naive, TS and BM estimates are similar when using a thin of 100. This suggests that the covariance term is almost 0 for the sample collected using a thin of 100, which implies that it is *closer* to an *iid* sample.

The "best" mortality rates are for hospitals 63 and 85 and the "worst" mortality rates are for hospitals 9 and 68. These are presented in Table 1 along with 95% CI's, which were calculated using the TS standard errors from the sample collected with a thin of 100. Trace plots and autocorrelation plots for these  $\lambda_i$  are presented in Figures 4, 5, 9 and 10. Interestingly enough, the  $\lambda_i$  corresponding to these are the hospitals that exhibited the most problematic autocorrelation plots when using a thin of 1. It is also clear from Figure 10 that autocorrelation amongst the  $\lambda_i$  is close of negligible using a thin of 100. Finally we tried multiple starting points using a thin of 100 by setting the initial values of  $\lambda_i^{(0)} = 10 \forall i, \lambda_i^{(0)} = 100 \forall i$  and  $\lambda_i^{(0)}$  as a random sample from the uniform distribution on  $[1,100] \forall i$ , which still gave us the same results in terms of parameter and error estimates and diagnostic plots.

| Best Hospitals:  | Mortality Rates | 95% CI               |
|------------------|-----------------|----------------------|
| 85               | 0.368           | (0.366236, 0.369764) |
| 63               | 0.468           | (0.465648, 0.470352) |
| Worst Hospitals: | Mortality Rates | 95% CI               |
| 9                | 1.512           | (1.506512, 1.517488) |
| 68               | 1.642           | ( 1.637688,1.646312) |

Table 1: Best and Worst Hospitals based on mortality rates using a thin of 100



Figure 1: Negative Log Posterior with a thin of 1





Figure 2: Auto-Correlation plot for  $\alpha$  in Figure 2a and  $\beta$  in Figure 2b with a thin of 1



Figure 3: Trace plot for  $\alpha$  in Figure 3a and  $\beta$  in Figure 3b with a thin of 1



Figure 4: Trace Plots for  $\lambda_i$  using a thin of 1



Figure 5: Autocorrelation Plots for  $\lambda_i$  using a thin of 1



Figure 6: Negative Log Posterior with a thin of 100





Figure 7: Auto-Correlation plot for  $\alpha$  in Figure 7a and  $\beta$  in Figure 7b with a thin of 100



Figure 8: Trace plot for  $\alpha$  in Figure 8a and  $\beta$  in Figure 8b with a thin of 100



Figure 9: Trace Plots for  $\lambda_i$  using a thin of 100



Figure 10: Autocorrelation Plots for  $\lambda_i$  using a thin of 100

|               | Μ       | SE     | SE(BM) | SE(TS) | i  | Μ     | SE     | SE(BM) | SE(TS) |
|---------------|---------|--------|--------|--------|----|-------|--------|--------|--------|
| $\frac{i}{1}$ | Mean    | 0.0021 | 0.0023 | 0.0022 | 48 | Mean  | 0.0018 | 0.0021 |        |
|               | 0.843   |        | 1      |        |    | 1.031 |        |        | 0.0019 |
| 2             | 0.829   | 0.0020 | 0.0023 | 0.0022 | 49 | 0.587 | 0.0015 | 0.0026 | 0.0024 |
| 3             | 1.304   | 0.0026 | 0.0041 | 0.0036 | 50 | 0.605 | 0.0015 | 0.0024 | 0.0023 |
| 4             | 1.047   | 0.0023 | 0.0028 | 0.0024 | 51 | 0.851 | 0.0017 | 0.0018 | 0.0017 |
| 5             | 1.000   | 0.0022 | 0.0022 | 0.0023 | 52 | 1.325 | 0.0021 | 0.0029 | 0.0026 |
| 6             | 0.717   | 0.0018 | 0.0023 | 0.0020 | 53 | 1.257 | 0.0020 | 0.0026 | 0.0024 |
| 7             | 0.762   | 0.0019 | 0.0025 | 0.0022 | 54 | 0.752 | 0.0016 | 0.0018 | 0.0017 |
| 8             | 0.899   | 0.0019 | 0.0020 | 0.0020 | 55 | 0.729 | 0.0016 | 0.0019 | 0.0019 |
| 9             | 1.511   | 0.0028 | 0.0048 | 0.0048 | 56 | 0.872 | 0.0015 | 0.0016 | 0.0015 |
| 10            | 0.751   | 0.0019 | 0.0024 | 0.0021 | 57 | 0.717 | 0.0015 | 0.0018 | 0.0017 |
| 11            | 0.801   | 0.0020 | 0.0022 | 0.0021 | 58 | 0.706 | 0.0015 | 0.0018 | 0.0018 |
| 12            | 0.832   | 0.0018 | 0.0018 | 0.0019 | 59 | 0.978 | 0.0017 | 0.0018 | 0.0018 |
| 13            | 0.785   | 0.0019 | 0.0024 | 0.0022 | 60 | 0.627 | 0.0014 | 0.0019 | 0.0018 |
| 14            | 1.176   | 0.0023 | 0.0030 | 0.0027 | 61 | 0.867 | 0.0017 | 0.0017 | 0.0017 |
| 15            | 1.381   | 0.0025 | 0.0039 | 0.0038 | 62 | 1.371 | 0.0021 | 0.0030 | 0.0026 |
| 16            | 0.726   | 0.0018 | 0.0022 | 0.0020 | 63 | 0.467 | 0.0012 | 0.0024 | 0.0024 |
| 17            | 0.704   | 0.0017 | 0.0023 | 0.0022 | 64 | 0.720 | 0.0014 | 0.0018 | 0.0015 |
| 18            | 1.218   | 0.0022 | 0.0030 | 0.0027 | 65 | 0.881 | 0.0017 | 0.0018 | 0.0018 |
| 19            | 0.623   | 0.0013 | 0.0019 | 0.0018 | 66 | 0.695 | 0.0015 | 0.0020 | 0.0018 |
| 20            | 0.939   | 0.0020 | 0.0020 | 0.0021 | 67 | 0.693 | 0.0013 | 0.0016 | 0.0015 |
| 21            | 0.935   | 0.0020 | 0.0020 | 0.0021 | 68 | 1.643 | 0.0022 | 0.0039 | 0.0037 |
| 22            | 0.933   | 0.0020 | 0.0020 | 0.0021 | 69 | 1.322 | 0.0020 | 0.0027 | 0.0024 |
| 23            | 1.481   | 0.0025 | 0.0046 | 0.0044 | 70 | 0.570 | 0.0012 | 0.0021 | 0.0019 |
| 24            | 1.276   | 0.0023 | 0.0034 | 0.0032 | 71 | 1.263 | 0.0019 | 0.0021 | 0.0021 |
| 25            | 1.195   | 0.0021 | 0.0028 | 0.0024 | 72 | 0.977 | 0.0016 | 0.0017 | 0.0016 |
| 26            | 0.813   | 0.0018 | 0.0019 | 0.0019 | 73 | 0.572 | 0.0012 | 0.0019 | 0.0018 |
| 27            | 0.716   | 0.0018 | 0.0024 | 0.0021 | 74 | 0.848 | 0.0015 | 0.0016 | 0.0015 |
| 28            | 1.110   | 0.0022 | 0.0025 | 0.0023 | 75 | 1.033 | 0.0016 | 0.0018 | 0.0016 |
| 29            | 1.052   | 0.0021 | 0.0023 | 0.0022 | 76 | 0.596 | 0.0012 | 0.0017 | 0.0016 |
| 30            | 1.438   | 0.0025 | 0.0042 | 0.0039 | 77 | 0.747 | 0.0012 | 0.0014 | 0.0013 |
| 31            | 1.392   | 0.0024 | 0.0038 | 0.0035 | 78 | 0.725 | 0.0013 | 0.0016 | 0.0014 |
| 32            | 1.287   | 0.0023 | 0.0033 | 0.0030 | 79 | 0.934 | 0.0015 | 0.0017 | 0.0016 |
| 33            | 1.063   | 0.0021 | 0.0022 | 0.0021 | 80 | 1.026 | 0.0016 | 0.0017 | 0.0016 |
| 34            | 1.285   | 0.0022 | 0.0029 | 0.0027 | 81 | 0.633 | 0.0012 | 0.0017 | 0.0014 |
| 35            | 0.878   | 0.0019 | 0.0021 | 0.0020 | 82 | 0.987 | 0.0014 | 0.0015 | 0.0015 |
| 36            | 1.220   | 0.0022 | 0.0029 | 0.0026 | 83 | 1.322 | 0.0018 | 0.0023 | 0.0020 |
| 37            | 0.705   | 0.0017 | 0.0022 | 0.0020 | 84 | 0.570 | 0.0009 | 0.0012 | 0.0011 |
| 38            | 1.475   | 0.0025 | 0.0044 | 0.0039 | 85 | 0.367 | 0.0009 | 0.0022 | 0.0021 |
| 39            | 0.851   | 0.0018 | 0.0019 | 0.0019 | 86 | 0.982 | 0.0014 | 0.0015 | 0.0015 |
| 40            | 1.049   | 0.0021 | 0.0023 | 0.0021 | 87 | 1.253 | 0.0017 | 0.0021 | 0.0019 |
| 41            | 1.216   | 0.0022 | 0.0028 | 0.0026 | 88 | 1.080 | 0.0015 | 0.0016 | 0.0015 |
| 42            | 1.353   | 0.0023 | 0.0033 | 0.0032 | 89 | 0.657 | 0.0012 | 0.0015 | 0.0013 |
| 43            | 1.409   | 0.0024 | 0.0039 | 0.0036 | 90 | 0.609 | 0.0011 | 0.0015 | 0.0013 |
| 44            | 0.901   | 0.0018 | 0.0018 | 0.0018 | 91 | 1.092 | 0.0014 | 0.0016 | 0.0014 |
| 45            | 1.031   | 0.0020 | 0.0022 | 0.0021 | 92 | 0.795 | 0.0011 | 0.0012 | 0.0011 |
| 46            | 1.243   | 0.0021 | 0.0027 | 0.0024 | 93 | 1.374 | 0.0013 | 0.0016 | 0.0014 |
| 47            | 0.919   | 0.0018 | 0.0019 | 0.0019 | 94 | 1.300 | 0.0013 | 0.0016 | 0.0014 |
|               | . , = 0 |        |        |        |    | ,,,,  |        |        |        |

Table 2: Estimated Mortality Rates  $(\bar{\lambda}_i)$  for Hospitals 1 to 94 using a thin of 1

| i  | Mean  | SE     | SE(BM) | SE(TS) | i  | Mean  | SE     | SE(BM) | SE(TS) |
|----|-------|--------|--------|--------|----|-------|--------|--------|--------|
| 1  | 0.844 | 0.0021 | 0.0022 | 0.0021 | 48 | 1.034 | 0.0019 | 0.0020 | 0.0019 |
| 2  | 0.832 | 0.0021 | 0.0022 | 0.0021 | 49 | 0.587 | 0.0014 | 0.0014 | 0.0014 |
| 3  | 1.300 | 0.0026 | 0.0026 | 0.0026 | 50 | 0.603 | 0.0015 | 0.0013 | 0.0015 |
| 4  | 1.046 | 0.0023 | 0.0021 | 0.0023 | 51 | 0.850 | 0.0017 | 0.0015 | 0.0016 |
| 5  | 1.002 | 0.0022 | 0.0021 | 0.0022 | 52 | 1.323 | 0.0021 | 0.0021 | 0.0021 |
| 6  | 0.716 | 0.0018 | 0.0018 | 0.0018 | 53 | 1.264 | 0.0020 | 0.0021 | 0.0020 |
| 7  | 0.760 | 0.0019 | 0.0017 | 0.0019 | 54 | 0.750 | 0.0016 | 0.0016 | 0.0016 |
| 8  | 0.895 | 0.0019 | 0.0019 | 0.0019 | 55 | 0.725 | 0.0016 | 0.0017 | 0.0016 |
| 9  | 1.512 | 0.0028 | 0.0028 | 0.0028 | 56 | 0.870 | 0.0016 | 0.0016 | 0.0016 |
| 10 | 0.751 | 0.0019 | 0.0017 | 0.0019 | 57 | 0.719 | 0.0015 | 0.0015 | 0.0015 |
| 11 | 0.804 | 0.0020 | 0.0019 | 0.0020 | 58 | 0.708 | 0.0015 | 0.0016 | 0.0015 |
| 12 | 0.834 | 0.0018 | 0.0018 | 0.0018 | 59 | 0.976 | 0.0017 | 0.0017 | 0.0017 |
| 13 | 0.784 | 0.0019 | 0.0020 | 0.0019 | 60 | 0.628 | 0.0014 | 0.0013 | 0.0013 |
| 14 | 1.175 | 0.0023 | 0.0022 | 0.0024 | 61 | 0.865 | 0.0017 | 0.0018 | 0.0017 |
| 15 | 1.383 | 0.0025 | 0.0026 | 0.0025 | 62 | 1.373 | 0.0021 | 0.0020 | 0.0021 |
| 16 | 0.730 | 0.0018 | 0.0018 | 0.0018 | 63 | 0.468 | 0.0012 | 0.0012 | 0.0012 |
| 17 | 0.706 | 0.0017 | 0.0019 | 0.0017 | 64 | 0.720 | 0.0014 | 0.0015 | 0.0014 |
| 18 | 1.221 | 0.0022 | 0.0023 | 0.0022 | 65 | 0.883 | 0.0017 | 0.0016 | 0.0017 |
| 19 | 0.623 | 0.0013 | 0.0013 | 0.0013 | 66 | 0.693 | 0.0015 | 0.0014 | 0.0015 |
| 20 | 0.939 | 0.0020 | 0.0020 | 0.0020 | 67 | 0.695 | 0.0013 | 0.0014 | 0.0013 |
| 21 | 0.934 | 0.0020 | 0.0020 | 0.0020 | 68 | 1.642 | 0.0022 | 0.0022 | 0.0022 |
| 22 | 0.934 | 0.0020 | 0.0020 | 0.0020 | 69 | 1.321 | 0.0020 | 0.0019 | 0.0020 |
| 23 | 1.481 | 0.0025 | 0.0026 | 0.0025 | 70 | 0.570 | 0.0012 | 0.0013 | 0.0012 |
| 24 | 1.274 | 0.0023 | 0.0024 | 0.0023 | 71 | 1.267 | 0.0019 | 0.0021 | 0.0019 |
| 25 | 1.198 | 0.0022 | 0.0020 | 0.0022 | 72 | 0.977 | 0.0016 | 0.0017 | 0.0016 |
| 26 | 0.817 | 0.0018 | 0.0018 | 0.0018 | 73 | 0.571 | 0.0012 | 0.0012 | 0.0012 |
| 27 | 0.716 | 0.0018 | 0.0018 | 0.0018 | 74 | 0.854 | 0.0015 | 0.0015 | 0.0015 |
| 28 | 1.110 | 0.0022 | 0.0022 | 0.0022 | 75 | 1.033 | 0.0016 | 0.0016 | 0.0016 |
| 29 | 1.053 | 0.0021 | 0.0022 | 0.0021 | 76 | 0.595 | 0.0012 | 0.0012 | 0.0012 |
| 30 | 1.439 | 0.0024 | 0.0023 | 0.0024 | 77 | 0.747 | 0.0012 | 0.0012 | 0.0012 |
| 31 | 1.390 | 0.0024 | 0.0022 | 0.0024 | 78 | 0.724 | 0.0013 | 0.0012 | 0.0013 |
| 32 | 1.288 | 0.0023 | 0.0024 | 0.0023 | 79 | 0.931 | 0.0015 | 0.0016 | 0.0015 |
| 33 | 1.062 | 0.0021 | 0.0021 | 0.0021 | 80 | 1.024 | 0.0016 | 0.0016 | 0.0016 |
| 34 | 1.283 | 0.0022 | 0.0023 | 0.0021 | 81 | 0.633 | 0.0012 | 0.0012 | 0.0012 |
| 35 | 0.878 | 0.0019 | 0.0019 | 0.0019 | 82 | 0.984 | 0.0014 | 0.0014 | 0.0014 |
| 36 | 1.219 | 0.0022 | 0.0022 | 0.0022 | 83 | 1.319 | 0.0018 | 0.0018 | 0.0018 |
| 37 | 0.705 | 0.0017 | 0.0017 | 0.0017 | 84 | 0.571 | 0.0009 | 0.0009 | 0.0009 |
| 38 | 1.476 | 0.0025 | 0.0025 | 0.0025 | 85 | 0.368 | 0.0009 | 0.0010 | 0.0009 |
| 39 | 0.852 | 0.0018 | 0.0018 | 0.0018 | 86 | 0.985 | 0.0014 | 0.0013 | 0.0014 |
| 40 | 1.049 | 0.0020 | 0.0021 | 0.0020 | 87 | 1.254 | 0.0017 | 0.0017 | 0.0017 |
| 41 | 1.216 | 0.0022 | 0.0021 | 0.0022 | 88 | 1.082 | 0.0015 | 0.0015 | 0.0015 |
| 42 | 1.352 | 0.0023 | 0.0023 | 0.0023 | 89 | 0.657 | 0.0012 | 0.0011 | 0.0011 |
| 43 | 1.407 | 0.0024 | 0.0025 | 0.0024 | 90 | 0.611 | 0.0011 | 0.0011 | 0.0011 |
| 44 | 0.906 | 0.0017 | 0.0018 | 0.0017 | 91 | 1.092 | 0.0014 | 0.0013 | 0.0014 |
| 45 | 1.030 | 0.0020 | 0.0020 | 0.0020 | 92 | 0.798 | 0.0011 | 0.0012 | 0.0011 |
| 46 | 1.246 | 0.0021 | 0.0020 | 0.0021 | 93 | 1.373 | 0.0013 | 0.0013 | 0.0013 |
| 47 | 0.918 | 0.0018 | 0.0018 | 0.0018 | 94 | 1.304 | 0.0013 | 0.0013 | 0.0013 |

Table 3: Estimated Mortality Rates  $(\bar{\lambda}_i)$  for Hospitals 1 to 94 using a thin of 100

## model { for (i in 1:N) { Z[i] ~ dpois(lambda[i]\*e[i]) lambda[i] ~ dgamma(alpha,beta) } z0 <- 0.53 a0 <- log(2)/z0</pre>

Appendix 1: model.txt

## }

Appendix 2: script.txt

beta ~ dgamma(b0,b1)

alpha ~ dexp(a0)

b0 <- 1 b1 <- 0.65

```
model clear
data clear
model in "model.txt"
data in "data.txt"
compile
inits in "initial_1.txt"
initialize
update 10000
monitor beta, thin(100)
monitor alpha, thin(100)
monitor lambda, thin(100)
monitor Z, thin(100)
update 5000000
coda *
```

## Appendix 3: R code

```
library(coda)
library(xtable)
data = read.table("ht-data.txt",header=TRUE)
attach(data)
length(e)
```

```
res = read.coda("CODAchain1.txt", "CODAindex.txt")
z0 = 0.53
a0 = \log(2)/z0
b0 = 1
b1 = 0.65
logpost = matrix(0,dim(res)[1],1)
for(i in 1:94){
    temp1 <- log(dpois(round(res[,96+i]),res[,2+i]*e[i]))
    temp2 <- log(dgamma(res[,2+i],res[,2],rate = res[,1]))
    temp3 <- log(dexp(res[,2],rate=a0))</pre>
    temp4 <- log(dgamma(res[,1],b0,rate = b1))</pre>
    logpost = logpost + temp1 + temp2 + temp3 + temp4
}
colnames(res)
pdf("alpha.pdf")
plot(as.numeric(res[,2]), type= 'l', xlim = c(0,2000),
     ylim = c(0,10),
xlab = "Iteration", ylab = expression(alpha),
     main = expression("Trace Plot for " ~ alpha))
##trace plot
dev.off()
pdf("beta.pdf")
plot(as.numeric(res[,1]), type= 'l',xlim = c(0,2000),
     ylim = c(0,10),
xlab = "Iteration", ylab = expression(beta),
     main = expression("Trace Plot for " ~ beta))
##trace plot
dev.off()
pdf("tracelmd9.pdf")
plot(as.numeric(res[,2+9]), type= 'l', xlim = c(0,2000),
     ylim = c(0,10),
```

```
xlab = "Iteration", ylab = expression(lambda[9]),
     main=expression("Trace Plot for " ~ lambda[9]))
##trace plot
dev.off()
pdf("acf9.pdf")
acf(res[,2+9], lag.max = 200, xlab = "Lag",
    ylab = "Correlation",
    main=expression("Autocorrelation plot for " ~ lambda[9]))
## autocorrelation plot
dev.off()
pdf("tracelmd63.pdf")
plot(as.numeric(res[,2+63]), type= '1', xlim = c(0,2000),
     ylim = c(0,10),
xlab = "Iteration", ylab = expression(lambda[63]),
     main=expression("Trace Plot for " ~ lambda[63]))
##trace plot
dev.off()
pdf("acf63.pdf")
acf(res[,2+63], lag.max = 200, xlab = "Lag",
    ylab = "Correlation",
    main=expression("Autocorrelation plot for " ~ lambda[63]))
## autocorrelation plot
dev.off()
pdf("tracelmd68.pdf")
plot(as.numeric(res[,2+68]), type= 'l', xlim = c(0,2000),
     ylim = c(0,10),
xlab = "Iteration", ylab = expression(lambda[68]),
     main=expression("Trace Plot for " ~ lambda[68]))
##trace plot
dev.off()
pdf("acf68.pdf")
acf(res[,2+68], lag.max = 200, xlab = "Lag",
    ylab = "Correlation",
    main=expression("Autocorrelation plot for " ~ lambda[68]))
## autocorrelation plot
dev.off()
```

```
pdf("tracelmd85.pdf")
plot(as.numeric(res[,2+85]), type= '1', xlim = c(0,2000),
     ylim = c(0,10),
xlab = "Iteration", ylab = expression(lambda[85]),
     main=expression("Trace Plot for " ~ lambda[85]))
##trace plot
dev.off()
pdf("acf85.pdf")
acf(res[,2+85], lag.max = 200, xlab = "Lag",
   ylab = "Correlation",
   main=expression("Autocorrelation plot for " ~ lambda[85]))
## autocorrelation plot
dev.off()
pdf("logpost.pdf")
plot(as.numeric(-logpost), type= '1',xlim = c(0,2000),
xlab = "Iteration", ylab = "Negative Log Posterior" ,
     main = "Negative Log Posterior" )
##plot for log posterior
dev.off()
pdf("cumsum.pdf")
x = cumsum(-logpost)/1:dim(res)[1]
plot(x, type= 'l',
    ylab = "Cumulative Average of Negative Log Posterior",
     main = "Cumulative Average of Negative Log Posterior")
dev.off()
jpeg("cumsum.jpeg")
x = cumsum(-logpost)/1:dim(res)[1]
plot(x, type= 'l',
    ylab = "Cumulative Average of Negative Log Posterior")
dev.off()
pdf("acf.pdf")
acf(res[,3], lag.max = 200, xlab = "Lag", ylab = "Correlation",
   main="")
```

```
## autocorrelation plot
dev.off()
pdf("alphaacf.pdf")
acf(res[,2], lag.max = 200, xlab = "Lag", ylab = "Correlation",
    main=expression("Autocorrelation Plot for " ~ alpha))
## autocorrelation plot
dev.off()
pdf("betaacf.pdf")
acf(res[,1], lag.max = 200, xlab = "Lag", ylab = "Correlation",
    main=expression("Autocorrelation Plot for " ~ beta))
## autocorrelation plot
dev.off()
btchsz = floor(dim(res)[1]/sqrt(dim(res)[1]))
nbtch = floor(dim(res)[1]/btchsz)
meanlambda = matrix(0,94,1)
varlambda = matrix(0,94,1)
for(i in 1:94){
meanlambda[i] = mean(res[,2+i])
btchvar = matrix(0,nbtch,1)
for (j in 1:nbtch){
    lb = (j-1)*btchsz
    ub = j*btchsz
btchvar[j] = var(res[lb:ub,2+i])
}
varlambda[i] = (btchsz/(nbtch-1))*sum((btchvar - var(res[,2+i]))^2)
}
res.sum = summary(res[,1:96])
d.res.sum = as.data.frame(res.sum$statistics)
```

```
dim(d.res.sum)
bS=floor(dim(res)[1]/sqrt(dim(res)[1]))
library(xtable)
temp = as.data.frame(cbind(1:47, meanlambda[1:47],
    d.res.sum[(1+2):(47+2),3],
    as.matrix(batchSE(res[,1:96],batchSize=bS)[(1+2):(47+2)]),
    d.res.sum[(1+2):(47+2),4], 48:94, meanlambda[48:94],
    d.res.sum[(48+2):(94+2),3],
    as.matrix(batchSE(res[,1:96],
                      batchSize=bS)[(48+2):(94+2)]),
    d.res.sum[(48+2):(94+2),4]))
colnames(temp) =
    c("i","Mean","SE","SE(BM)","SE(TS)","i",
      "Mean", "SE", "SE(BM)", "SE(TS)")
temptab = xtable(temp,
    caption="Estimated means for $\\lambda_i$",
    label="tab1", digits=c(0,0,3,4,4,4,0,3,4,4,4))
print(temptab,include.rownames=FALSE)
```