TABLE VII
IEEE 30-Bus System Data (Nominal Power Flow)

Bus data					Line data	
Bus	P inject.	Q inject.	Ang., θ	Volt., V	Line	React.
#	(net), p.u.	(net), p.u.	rad	p.u.	#	X, p.u.
1	0.1765	0.5084	0.0438	1.0500	1	0.06
2	0.9635	2.0656	0.0441	1.0500	2	0.19
3	-0.1200	-0.0600	0.0102	0.9837	3	0.17
4	-0.3800	-0.0800	0.0075	0.9723	4	0.04
5	0.0000	0.0000	-0.0330	0.9740	5	0.20
6	0.0000	0.0000	-0.0178	0.9530	6	0.18
7	-1.1400	-0.5450	-0.0851	0.9314	7	0.04
8	-1.5000	-0.7500	-0.0685	0.9233	8	0.12
9	0.0000	0.0000	0.0362	0.9759	9	0.08
10	-0.2900	-0.1000	0.0634	0.9890	10	0.04
11	0.0000	0.0000	0.0362	0.9759	11	0.21
12	-0.5600	-0.3750	0.2017	0.9472	12	0.56
13	2.1000	1.2760	0.5018	1.0500	13	0.21
14	-0.3100	-0.0800	0.1444	0.9414	14	0.11
15	-0.4100	-0.1250	0.1697	0.9554	15	0.26
16	-0.1750	-0.0900	0.1032	0.9398	16	0.14
17	-0.4500	-0.2900	0.0476	0.9568	17	0.26
18	-0.1600	-0.0450	0.0468	0.9320	18	0.13
19	-0.4750	-0.1700	-0.0037	0.9300	19	0.20
20	-0.1100	-0.0350	0.0074	0.9423	20	0.20
21	-0.8750	-0.5600	0.1059	1.0280	21	0.19
22	1.5795	2.1958	0.1335	1.0500	22	0.22
23	1.3000	0.8515	0.3294	1.0500	23	0.13
24	-0.4350	-0.3350	0.2010	1.0084	24	0.07
25	0.0000	0.0000	0.3076	1.0115	25	0.21
26	-0.1750	-0.1150	0.2394	0.9638	26	0.08
27	2.0955	1.1650	0.4075	1.0500	27	0.07
28	0.0000	0.0000	0.0193	0.9476	28	0.15
29	-0.1200	-0.0450	0.2871	1.0050	29	0.02
30	-0.5300	-0.0950	0.2047	0.9884	30	0.20
					31	0.18
					32	0.27
					33	0.33
					34	0.38
					35	0.21
					36	0.40
					37	0.42
					38	0.60
					39	0.45
					40	0.20
					41	0.06

to provide feasible initial guesses to the optimization problem (26)–(41), as discussed below.

One can note just by inspection of the three-bus system that the most severe blackout is obtained by removing lines 2–5 from the network as it will isolate the load from generation. Such a situation can be systematically identified by the graph theory based algorithm discussed in [12] for a larger system. For example, a significant blackout is obtained by removing lines 28, 29, 30 and 36 for the IEEE 30-bus system, as identified in [12]. By allowing the line parameter γ associated with only these lines to vary, the initialization process poses the problem: what is the most (locally) severe failure that can be obtained by partially removing

only these lines from service? This problem can be described mathematically in an optimization framework as

$$\max_{\theta, V, z, \gamma, \mu_1, \dots, \mu_6, \lambda} e^T z \tag{47}$$

such that constraints (10)–(13) and (15)–(23) are satisfied along with $0 \le \gamma \le \gamma_{\max}$ and $e^Tz \ge S_{\min}$. The nominal power flow solution (Tables VI and VII) provides an initial guess for this initialization procedure. Parameter γ_{\max} is set to 0.9, a value close to but less than one, and S_{\min} is set to 0.5, a small positive value, to avoid graph partitioning and/or trivial solutions. (One trivial/undesired solution is $\lambda = w_0, \mu_1 = e, \mu_2, \dots, \mu_6, z = 0$; thus making the objective function zero.) This approach has been used to obtain solutions discussed in Sections III-A and B

We note that there are other ways to obtain feasible initial guesses for the optimization problem (26)–(41). One way features solving the simplified problem

$$\min_{\theta, V, z, \gamma, \mu_1, \dots, \mu_6, \lambda} \quad \left\| e + \frac{\partial F}{\partial z}^T \lambda - \mu_1 + \mu_2 \right\|_2 \tag{48}$$

such that constraints (10)–(13) and (16)–(23) are satisfied along with $0 \le \gamma \le \gamma_{\max}, e^T \gamma \le L_{\max}$ and $e^T z \ge S_{\min}$. The nominal power flow solution provides an initial guess for this initialization procedure. Random starting guesses have also produced solutions to (48).

REFERENCES

- Western Electricity Coordinating Council, Operating committee handbook, III-119, Revised, 2005.
- [2] Western Electricity Coordinating Council, Operating Committee Handbook III-84, Revised, 2005.
- [3] F. Alvarado, I. Dobson, and Y. Hu, "Computation of closest bifurcations in power systems," *IEEE Trans. Power Syst.*, vol. 9, no. 2, pp. 918–928, May 1994.
- [4] J. Arroyo and F. Galiana, "On the solution of the bilevel programming formulation of the terrorist threat problem," *IEEE Trans. Power Syst.*, vol. 20, no. 2, pp. 789–797, May 2005.
- [5] C. Cañizares, "Applications of optimization to voltage collapse analysis," in Proc. IEEE/Power Eng. Soc. Summer Meeting, Panel Session: Optimization Techniques in Voltage Collapse Analysis.
- [6] C. Cañizares, "Conditions for saddle-node bifurcations in AC/DC power systems," *Int. J. Elect. Power Energy Syst.*, vol. 17, no. 1, pp. 61–68, 1995.
- [7] C. Cañizares, W. Rosehart, A. Berizzi, and C. Bovo, "Comparison of voltage security constrained optimal power flow techniques," in *Proc. IEEE/Power Eng. Soc. Summer Meeting*, Vancouver, BC, Canada, Jul. 2001.
- [8] Q. Chen and J. McCalley, "Identifying high risk N k contingencies for online security assessment," *IEEE Trans. Power Syst.*, vol. 20, no. 2, pp. 823–834, May 2005.
- [9] C. L. DeMarco and J. Wassner, "A generalized eigenvalue perturbation approach to coherency," in *Proc. 4th IEEE Conf. Control Applications*, 1995, pp. 611–617.
- [10] I. Dobson, "Observations on the geometry of saddle node bifurcation and voltage collapse in electrical power systems," *IEEE Trans. Circuits Syst. I: Fund. Theory Appl.*, vol. 39, no. 3, pp. 240–243, Mar. 1992.
- [11] I. Dobson and L. Lu, "New methods for computing a closest saddle node bifurcation and worst case load power margin for voltage collapse," *IEEE Trans. Power Syst.*, vol. 8, no. 3, pp. 905–913, Aug. 1993.
- [12] V. Donde, V. López, B. C. Lesieutre, A. Pinar, C. Yang, and J. Meza, "Identification of severe multiple contingencies in electric power networks," in *Proc. North Amer. Power Symp.*, Ames, IA, Oct. 2005.
- [13] Z. Feng, V. Ajjarapu, and D. Maratukulam, "A practical minimum load shedding strategy to mitigate voltage collpase," *IEEE Trans. Power* Syst., vol. 13, no. 4, pp. 1285–1291, Nov. 1998.