Tests of selection

(3)

- 1. Tests of diversity / tree shape
 - 2. Tests of rates

Test: is there less genetic diversity than expected?

Influenza phylogeny and effective number of infections

Coalescent rates in flu and measles

 $N_e \tau = 7.2 \text{ years}$

 $N_e = 1050$ infections (duration of infection of 5 days)

 $N = 7 \times 10^6$ cases per gen (prevalence)

Off by a factor of 6,700

 $N_e \tau = 124.6 \text{ years}$

 $N_e = 8270$ infections (duration of infection of 11 days)

 $N = 9 \times 10^5$ cases per gen (prevalence)

Off by a factor of 110

Selective sweeps purge nearby diversity

Depth and breadth indicates age and strength of sweep

Selective sweeps purge diversity in Drosophila

Test: is the tree shape different from the neutral expectation?

Tajima's D statistic summarizes deviation from neutrality

Influenza has negative Tajima's D

(3)

Test: is there an overabundance of fixed non-synonymous mutations?

"Trunk" branches show an excess of nonsynonymous change at epitope sites in influenza

Protein sites	d _N /d _S ratio; tree partition		
	All branches	Trunk branches	Other branches
H3N2 HA	0.27 ± 0.02	0.35 ± 0.08	0.26 ± 0.02
H3N2 HAI	0.37 ± 0.04	0.57 ± 0.15	0.34 ± 0.04
H3N2 HA2	0.13 ± 0.02	0.10 ± 0.05	0.14 ± 0.03
H3N2 epitopes	0.63 ± 0.09	1.85 ± 0.82	0.53 ± 0.08
H3N2 non-epitopes	0.15 ± 0.02	0.09 ± 0.04	0.16 ± 0.02

