

Temporal Difference Learning

Copyright © 1995 by ACM

Information Technology

October 27, 2022

Learning Objectives

- Understand how value functions are updated in Temporal Difference (TD) learning
- Understand SARSA and Q-learning for the control problem
- Understand the differences between those algorithms
- Understand how Q-learning is an off-policy algorithms without a model or importance sampling
- Understand the benefits (and drawbacks) of TD methods

Introduction

- Dynamic Programming (DP) methods required a model of the environment
- DP updated the value function after one time step
- Monte Carlo (MC) methods updated the value function only after the end of the episodes

Can we combine an update after one step without using a model?

Temporal Difference Learning

- Temporal difference (TD) learning combines elements from Dynamic Programming (DP) and Monte Carlo (MC)
- TD learning is model free
- TD learning updates estimates without waiting for the final outcome (bootstrapping)

Prediction

recall MC prediction with constant step size

 TD methods make the update immediately based on the estimates for the next state

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

$$Target$$

General formulation

More generally, the update can be written as

$$V(S_t) \leftarrow V(S_t) + \alpha \delta_t$$

• With the *error term*, defined as

$$\delta_t \doteq R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$$

- This is the error in the estimate made at the time. As it depends on the next state, it is only available at t+1
- This TD is known as TD(0), as the update takes place after 1 step

TD(0) Prediction

TD(0) for estimating v_{π} Input: the policy π to be evaluated step size $\alpha \in (0,1]$ Initialize: V(S) arbitrarily (except V(terminal = 0)Loop for each episode: Initialize S Loop for each step of the episode: $A \leftarrow \text{action given by } \pi \text{ for } S$ Take action A, observe R, S' $V(S_t) \leftarrow V(S_t) + \alpha [R + \gamma V(S') - V(S)]$ $S \leftarrow S'$ until S is terminal

TD(0)

How long does it take you to go home:

- Leave school
- Arrive at bus station
- Take bus
- Exit bus
- Go to bicycle
- Arrive home

State	Elapsed time	Predicted time (from state)	Predicted time (total)
Leave school	0	45	45
Arrive bus station	5	50	55
Take bus	10	45	55
Exit bus	40	20	60
Go to bicycle	45	15	60
Arrive home	58	0	58

Rewards are the time elapsed; the value is the expected time to go home

State	Elapsed time	Predicted time (from state)	Predicted time (total)	MC Error (alpha = 1.0)	TD Error
Leave	0	45	45	58 - 45 = 13	55 - 45 = 10
Arrive bus station	5	50	55	58 - 55 = 3	55 - 55 = 0
Take bus	10	45	55	58 - 55 = 3	60 - 55 = 5
Exit bus	40	20	60	58 - 60 = -2	60 - 60 = 0
Go to bicycle	45	15	60	58 - 60 = -2	58 - 60 = -2
Arrive home	58	0	58	_	_

Advantages of TD

- Updates are based partly on existing estimates, this is called bootstrapping
- No model is required
- Updates are fully incremental and online. There is no need to wait for the end of the episode.
- Does it work? Yes, TD(0) has been shown to converge to the true v

Batch Updating

• If only a finite amount of experience is available, this is presented to the algorithm repeatedly until convergence.

This is called batch updating.

SARSA: On-policy TD Control

- We use generalized policy iteration (GPI) for the control problem.
- As in MC methods, we must balance exploration and exploitation
- TD control methods generally learn an action-value function instead of a statevalue function
- So we look at the transation from (S,A) with reward (R) to the next (S,A)
 (SARSA)

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

SARSA

```
Sarsa for estimating Q \approx q_*
Input:
  step size \alpha \in (0,1]
  small \epsilon > 0
Initialize:
   Q(s,a) for all s \in \mathbb{S}^+, a \in \mathcal{A} arbitrarily (except Q(\text{terminal}, \cdot) = 0)
Loop for each episode:
   Initialize S
   Choose A from S using a policy derived from Q (e.g., \epsilon-greedy)
   Loop for each step of the episode:
     Take action A, observe R, S'
     Choose A' from S' using a policy derived from Q (e.g., \epsilon-greedy)
     Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma Q(S',A') - Q(S,A)]
     S \leftarrow S'; A \leftarrow A'
  until S is terminal
```


Q-learning: Off-policy TD Control

Q-learning is defined by

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_{a} Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

- The learned action-value function Q directly approximate q_* and is independent of the policy being followed.
- The policy determines which state-action pairs are visited and updated, so it must visit all pairs eventually

Q-Learning

```
Q-learning for estimating Q \approx q_*
Input:
  step size \alpha \in (0,1]
   small \epsilon > 0
Initialize:
   Q(s,a) for all s \in \mathbb{S}^+, a \in \mathcal{A} arbitrarily (except Q(\text{terminal}, \cdot) = 0)
Loop for each episode:
   Initialize S
   Loop for each step of the episode:
     Choose A from S using a policy derived from Q (e.g., \epsilon-greedy)
     Take action A, observe R, S'
     Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a Q(S',a) - Q(S,A)]
     S \leftarrow S'
   until S is terminal
```


Expected SARSA

Bellman equation

$$q_{\pi}(s, a) = \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma \sum_{a'} \pi(a' \mid s') q_{\pi}(s', a') \right]$$

Sarsa:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$
 sampled from
$$p(s', r \mid s, a) \qquad \pi(a' \mid s')$$

Expected SARSA

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \sum_{a} \pi(a|S_{t+1})Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

Expected value of the return

n-step TD Prediction

Targets of n-step returns

$$G_{t:t+1} \doteq R_{t+1} + \gamma V_t(S_{t+1})$$

$$G_{t:t+2} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 V_{t+1}(S_{t+2})$$

$$G_{t:t+n} \doteq R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} + \gamma^n V_{t+n-1}(S_{t+n})$$

$$V_{t+n}(S_t) \doteq V_{t+n-1}(S_t) + \alpha [G_{t:t+n} - V_{t+n-1}(S_t)]$$

Summary

- TD(0) methods allow updating value estimates after only 1 step
- New estimates are therefor based on the estimates of the successor states, this is called bootstrapping
- SARSA is an on-policy control algorithm that uses TD(0) as prediction step with an ε -soft policy
- Q-Learning is an off-policy control algorithm that uses TD(0) as prediction step and learns a greedy policy while following an ε -soft policy
- Expected SARSA improves SARSA by summing over the possible actions from the policy