课程编号: A072121

北京理工大学 2006-2007 学年第二学期

2006 级工科《数学分析 B》期末试卷 (B卷)

(本试卷共 6 页、八个大题,满分 100 分;答题前请检查是否有漏印、 缺页和印刷不清楚的情况,如有此种情况,请及时向监考教师反映)

- 一、求解下列各题(每小题6分)
 - 1. 已知直线 $L: \frac{x-1}{2} = \frac{y}{m} = \frac{z+2}{3}$ 与平面 $\pi: x-y+2z+D=0$ 平行,且 L 到 π 的距离 为 $\sqrt{6}$,求 m 与 D 的值.

2. 设 $z = \frac{1}{x} f(xy) + y \varphi(x+y)$, 其中 f, φ 二阶可导, 求 $\frac{\partial^2 z}{\partial x \partial y}$.

3. 计算第二类曲线积分 $I=\int_L \frac{x^2}{y}dx+\frac{x}{y}dy$,其中 L 是曲线 $y=\sqrt{x}$ 上从点 A(1,1) 到点 B(4,2) 的弧段.

4. 设有级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^p} \ln(1+\frac{1}{n})$, 指出 p 在什么范围内取值时级数绝对收敛,

在什么范围内取值时级数条件收敛, 在什么范围内取值时级数发散(要说明理由).

- 二、解下列各题(每小题7分)
 - 1. 已知 \vec{n} 是曲面 $x^2 y^2 + z^2 = 1$ 在点(2,2,1)处指向z增大方向的单位 法向量, $u = xy^2 - z \ln z$, 求 $\frac{\partial u}{\partial \vec{n}}\Big|_{(2,2,1)}$.

2. 将函数 $f(x) = \frac{1}{x^2 + 3x + 2}$ 展开成 (x-1) 的幂级数,并求收敛区间及 $f^{(5)}(1)$ 的值.

3. 计算三重积分 $I = \iint_{\Omega} x^2 z dV$,其中 Ω 是由柱面 $y = x^2$ 与平面 y = 1, z = 0, z = 2 所围成的立体.

4. 求二元函数 $z = f(x, y) = x^3 - 3x^2 - y^2 - 9x + 2y$ 的极值点与极值.

三、 $(8 \, f)$ 设 $f(x) = x^2 + 1$, $-\pi \le x \le \pi$,将 f(x) 展开成以 2π 为周期的傅里叶级数.

四、(8分) 设V 是由曲面 $z = \sqrt{2-x^2-y^2}$ 与 $z = \sqrt{x^2+y^2}$ 围成的立体,求V 的表面积.

五、(8 分) 计算第二类曲面积分 $I=\iint_S x^3 dy dz + y^3 dz dx + dx dy$, 其中 S 是曲面 $z=x^2+y^2 \ (0 \le z \le 1)$ 的下侧.

六、(8分) 求幂级数 $\sum_{n=1}^{\infty} (n^2 + n) x^n$ 的收敛域与和函数.

七、(8 分) 已知在半平面 x > 0内 $(x-y)(x^2+y^2)^{\lambda} dx + (x+y)(x^2+y^2)^{\lambda} dy$ 为二元 函数 f(x,y) 的全微分. (1) 求 λ 的值; (2) 求 $f(1,\sqrt{3}) - f(2,0)$ 的值.

八、(8分) 设 $\Omega(t) = \{(x, y, z) \mid x^2 + y^2 + z^2 \le t^2\}$, 其中t > 0. 已知f(x)在 $[0, +\infty)$ 内连续,又设 $F(t) = \iiint_{\Omega(t)} f(x^2 + y^2 + z^2) dx dy dz$.

- (1) 求证: F(t)在 $(0,+\infty)$ 内可导,并求F'(t)的表达式;
- (2) 设 $f(0) \neq 0$, 求证: 级数 $\sum_{n=1}^{\infty} n^{1-\lambda} F'(\frac{1}{n})$ 在 $\lambda > 0$ 时收敛, $\lambda \leq 0$ 时发散.

(此页纸不够时可写到背面)