

Table 1

Incyte Project ID	Polypeptide SEQ ID NO:	Incyte Polypeptide ID	Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID
25156666	1	251566CD1	2	251566CB1

you have seen your first bird at last

Table 2

Polypeptide SEQ ID NO:	Incyte Polypeptide ID	GenBank ID NO:	Probability Score	GenBank Homolog
1	2515666CD1	g181382	6.90E-270	Cytochrome P450 [Homo sapiens] (Ikeya, K. et al. (1989) Mol. Endocrinol. 3:1399-1408)

Table 3

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
1	2515666CD1	504	S10 S89 S212 T267 T323 T378 S59 T93 S279 S348 T363 S433 T486		E-class P450 group I PR00463: S69-L88, T93-S114, S195-S213, K294-T311, I314-G340, E357-P375, N398-T422, M436-C446, C446-F469 E-class P450 group II PR00464: G130-A150, K294-V322, T323-G340, Q352-F372, K392-E407, L408-A423, S433-C446, C446-F469 P450 superfamily signature PR00385: A305-V322, T323-D336, A358-F369, M437-C446, C446-F457	BLIMPS- PRINTS

Cytochrome P450:	F439-G448	MOTIFS
CYTOCHROME P450	DM0022/S43414 18-491:	BLAST-DOOMO
Cytochrome P450	V24-L485	
Cytochrome P450	PD000021:	BLAST-
Cytochrome P450:	F263-G386, F387-F469	PRODOM
Cytochrome P450:	P42-L499	HMMER-FPAM
Cytochrome P450	cysteine heme-iron Ligand signature: F415-E468	PROFILESCAN
Cytochrome P450	cysteine heme-iron Ligand signature BL00086: M436-L467	BLIMPS- BLOCKS
Transmembrane domain:	L14-R32	HMMER
Signal peptide:	M1-C22	HMMER

Polymerase chain reaction products from the 5' to 3' direction of the poly(A) tail.

Table 4

Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragments	Sequence Fragments	5' Position	3' Position
2	2515666CB1	1790	1-77, 891-915	SZAE00257F1 SZAE00059F1 2515666H1 (LIVRTUT04) SZAEO00073F1 SZAEO00189F1 SZAEO00140F1	1356 142 1 905 251 843	1790 770 177 1601 871 1582

Table 5

Polynucleotide SEQ ID NO: 2	Incyte Project ID 2515666CBI	Representative Library LIVRTUT04
-----------------------------------	------------------------------------	--

Table 6

Library	Vector	Library Description
LIVRTUT04	PINCY	Library was constructed using RNA isolated from liver tumor tissue removed from a 50-year-old Caucasian male during a partial hepatectomy. Pathology indicated a grade 3-4 hepatoma, forming a mass. Patient history included benign hypertension and hepatitis. Hepatitis B core antigen and hepatitis B surface antigen was present in the patient.

Table 7

Program	Description	Reference	Parameter Threshold
ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Applied Biosystems, Foster City, CA.	
ABI/PARACEL FDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	Mismatch <50%
ABI AutoAssembler	A program that assembles nucleic acid sequences.	Applied Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.	Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25:3389-3402.	<i>ESTs</i> : Probability value= 1.0E-8 or less <i>Full Length sequences</i> : Probability value= 1.0E-10 or less
FASTA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises at least five functions: fasta, fastx, tfasta, and sssearch.	Pearson, W.R. and D.J. Lipman (1988) Proc. Natl. Acad. Sci. USA 85:2444-2448; Pearson, W.R. (1990) Methods Enzymol. 183:63-98; and Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-489.	<i>ESTs</i> : fasta E value= 1.06E-6 <i>Assembled ESTs</i> : fasta Identity= 95% or greater and Match length=200 bases or greater; fastx E value= 1.0E-8 or less <i>Full Length sequences</i> : fastx score=100 or greater
BLIMPS	A BLocks IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S. and J.G. Henikoff (1991) Nucleic Acids Res. 19:6565-6572; Henikoff, J.G. and S. Henikoff (1996) Methods Enzymol. 266:88-105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.	Probability value= 1.0E-3 or less
HMMER	An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.	Krogh, A. et al. (1994) J. Mol. Biol. 235:1501-1531; Sonnhammer, E.L.L. et al. (1998) Nucleic Acids Res. 26:320-322; Durbin, R. et al. (1998) Our World View, in a Nutshell, Cambridge Univ. Press, pp. 1-350.	<i>PFAM hits</i> : Probability value= 1.0E-3 or less <i>Signal peptide hits</i> : Score= 0 or greater

Table 7 (cont.)

Program	Description	Parameter Threshold	Reference
ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221.	Normalized quality score \geq CCG-specified "HIGH" value for that particular Prosite motif. Generally, score=1.4-2.1.
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.	
Phrap	A Phils Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M.S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies.	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12:431-439.	Score=3.5 or greater
TMAP	A program that uses weight matrices to delineate transmembrane segments on protein sequences and determine orientation.	Persson, B. and P. Argos (1994) J. Mol. Biol. 237:182-192; Persson, B. and P. Argos (1996) Protein Sci. 5:363-371.	
TMHMMER	A program that uses a hidden Markov model (HMM) to delineate transmembrane segments on protein sequences and determine orientation.	Sonnhammer, E.L. et al. (1998) Proc. Sixth Intl. Conf. on Intelligent Systems for Mol. Biol., Glasgow et al., eds., The Am. Assoc. for Artificial Intelligence Press, Menlo Park, CA, pp. 175-182.	
Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.	