Московский физико-технический институт

Лабораторная работа 3.2.2

Резонанс напряжений в последовательном контуре

выполнила студентка группы Б01-007 Миндиярова Рената

Аннотация

Цель работы: исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик,а также определение основных параметров контура.

В работе используются: генератор сигналов, источник напряжения, нагруженный на последовательный колебательный контур с переменной ёмкостью, двулучевой осциллограф, цифровые вольтметры.

Описание работы

Схема экспериментального стенда для изучения резонанса напряжений в последовательном колебательном контуре показана на рисунке. Синусоидальный сигнал от генератора GFG8255A поступает через согласующую RC-цепочку на вход источника напряжения, собранного на операционном усилителе ОУ. Питание операционного усилителя осуществляется встроенным блоком-выпрямителем от сети переменного тока 220 Вольт (цепь питания на схеме не показана). Источник напряжения, обладающий по определению нулевым внутренним сопротивлением, фактически обеспечивает с высокой точностью постоянство амплитуды сигнала на меняющейся по величине нагрузке – последовательном колебательном контуре, изображенном на рисунке в виде эквивалентной схемы.

Ход работы

- 1. Подготавливаем установку к работе и включаем приборы.
- 2. Выставляем на входе контура напряжение $E=150~{\rm MB},$ в течении всей работы поддерживая его постоянным.
- 3. Добиваемся получения двух отцентрованных синусоид на осциллографе. Убеждаемся, что одна из синусоид при изменении частоты f генератора меняет амплитуду относительно начала координа, в то время как амплитуда другой не меняется с погрешностью не более 1%.
- 4. Для контуров с семью различными ёмкостями, меняя их с помощью переключателя на блоке, измеряем резонансные частоты f_{0n} и напряжения $U_C(f_{0n})$. Регистрируйем также напряжения $E(f_{0n})$, игнорируя отклонения в пределах относительной погрешности 1

5. Для контуров ёмкостями $C_1=47.6$ нФ и $C_1=102.8$ нФ снимаем амплитудночастотные характеристики $U_C(f)$ (16-17 точек в сумме по обе стороны от резонанса) при том же напряжении E.

$C=47.6$ н Φ						$C=102,8$ н Φ						
n	f , к Γ ц	σ_f , к Γ ц	A, B	σ_A , B	n	f, кГц	σ_f , к Γ ц	A, B	σ_A, B			
1	21,94	0,1	1,11	0,01	1	15,1	0,1	1,23	0,01			
2	22,13	0,1	1,25	0,01	2	15,17	0,1	1,3	0,01			
3	22,18	0,1	1,29	0,01	3	15,17	0,1	1,32	0,01			
4	22,29	0,1	1,4	0,01	4	15,25	0,1	1,4	0,01			
5	22,68	0,1	1,93	0,01	5	15,31	0,1	1,49	0,01			
6	22,81	0,1	2,18	0,01	6	15,38	0,1	1,6	0,01			
7	23,02	0,1	2,6	0,01	7	15,49	0,1	1,76	0,01			
8	23,15	0,1	2,8	0,01	8	15,57	0,1	1,84	0,01			
9	23,39	0,1	2,84	0,01	9	15,66	0,1	1,97	0,01			
10	23,43	0,1	2,79	0,01	10	15,7	0,1	2	0,01			
11	23,55	0,1	2,63	0,01	11	15,73	0,1	2,04	0,01			
12	23,64	0,1	2,51	0,01	12	15,75	0,1	2,04	0,01			
13	23,78	0,1	2,27	0,01	13	15,88	0,1	2,05	0,01			
14	23,8	0,1	2,2	0,01	14	15,95	0,1	2,02	0,01			
15	23,9	0,1	1,97	0,01	15	16	0,1	1,98	0,01			
16	24,12	0,1	1,75	0,01	16	16,08	0,1	1,88	0,01			
17	24,15	0,1	1,7	0,01	17	16,22	0,1	1,72	0,01			
18	24,47	0,1	1,36	0,01	18	16,44	0,1	1,43	0,01			
19	24,59	0,1	1,26	0,01	19	16,58	0,1	1,27	0,01			

6. Для тех же двух контуров снимите фазово-частотные характеристики $\varphi_C(f)$ (16-17 точек в сумме по обе стороны от резонанса) при том же напряжении E.

	C = 47, 6	Фн	$C=102,8$ н Φ				
\overline{n}	f , к Γ ц	$-\varphi/\pi$	n	f , к Γ ц	$-\varphi/\pi$		
1	21,94	0,03	1	15,1	0,07		
2	22,13	0,04	2	15,17	0,08		
3	22,18	0,05	3	15,17	0,08		
4	22,29	0,05	4	15,25	0,11		
5	22,68	0,1	5	15,31	0,15		
6	22,81	0,14	6	15,38	0,17		
7	23,02	0,21	7	15,49	0,22		
8	23,15	0,29	8	15,57	0,27		
9	23,39	0,4	9	15,66	0,34		
10	23,43	0,49	10	15,7	0,36		
11	23,55	0,6	11	15,73	0,39		
12	23,64	0,71	12	15,75	0,4		
13	23,78	0,8	13	15,88	0,48		
14	23,8	0,83	14	15,95	0,57		
15	23,9	0,87	15	16	0,69		
16	24,12	0,93	16	16,08	0,79		
17	24,15	0,94	17	16,22	0,86		
18	24,47	0,98	18	16,44	0,93		
19	24,59	1	19	16,58	1		

Обработка данных

1. Результаты измерений представим в таблице.

n	C_n , н Φ	$f_{0n},$ к Γ ц	U_C , B	E, B	L, мк Γ н	Q	ρ, Οм	R_{Σ} , Om	$R_{S_{\max}},$ Om	R_L , OM	I, MA
1	24,8	32,2	3,75	0,49	986,643	25,17	199,46	7,92	0,2	4,22	0,0080
2	33,2	27,8	3,33	0,49	988,219	22,35	172,53	7,72	0,17	4,05	0,0093
3	47,6	23,25	2,89	0,49	985,435	19,4	143,88	7,42	0,14	3,77	0,0110
4	57,5	21,16	2,66	0,48	984,876	17,97	130,88	7,28	0,13	3,65	0,0121
5	68	19,47	2,48	0,48	983,648	16,76	120,23	7,17	0,12	3,56	0,0132
6	81,6	-		-	-	-	-	-	-	-	-
7	102,8	15,79	2,06	0,48	989,289	13,91	98,1	7,05	0,10	3,45	0,0161
Среднее значение				986,35	_				3,78	_	
Среднеквадратичная погрешность среднего значения				0,87	-				0,12	_	

$$f_0 = \frac{1}{2\pi} \cdot \frac{1}{\sqrt{LC}}$$

$$L = \frac{1}{4\pi^2} \cdot \frac{1}{\sqrt{f_0^2}C}$$

$$Q = \frac{U_c(\omega_0)}{\varepsilon_0(\omega_0)}$$

$$\rho = \sqrt{\frac{L}{C}}$$

$$R_{\sum} = \frac{\rho}{Q}$$

$$R_{S_{\max}} = 10^{-3}\rho$$

$$R_L = R_{\sum} - R - R_{S_{\max}}$$

$$I_{max} = \frac{\varepsilon_0}{R_{\sum}}$$

- 2. По данным из пункта 5 построим на одном графике амплитудо-частотные характеристики в координатах $f, U_C(f)$.
- 3. По тем же данным построим на одном графике амплитудо-частотные характеристики в безразмерных координатах $x = f/f_{0n}, y = U_C(x)/U_C(1)$.

По ширине резонансных кривых по уровню 0.707 определим добротность ${\bf Q}$ соответствующих контуров.

1,02

1,04

1,06

0,98 f/f0

C1: $\Delta f = 0,0498$ к Гц
 Q=20

0,4

0,3

0,92

C2: $\Delta f = 0,0725$ к Γ ц Q = 13.8

0,94

0,96

Посчитаем погрешность резонансной частоты. С1: $\sigma_{f_0} = \frac{f_{i+1} - f_i}{2} = \frac{23.43 - 23.15}{2} = 0.14$

C2:
$$\sigma_{f_0} = \frac{f_{i+1} - f_i}{2} = \frac{15.95 - 15.75}{2} = 0.1$$

$$\delta_{f_0} = \frac{\sigma_{f_0}}{f_0} \approx 0.006$$

$$\sigma_Q = \delta_{f_0} \cdot Q$$

$$Q_{C1} = 20 \pm 0.12$$

$$Q_{C1} = 13.8 \pm 0.1$$

4. По данным пункта 6 построим на одном графике фазово-частотные характеристики в координатах $x=f/f_{0n}, y=\varphi/\pi$ для выбранных контуров. По этим характеристикам определим добротности контуров одним из двух способов: по расстоянию между точками по оси x, в которых y меняется от -0.25 до -0.75, равному 1/Q, или по формуле Q=0.5 $d\varphi_C(x)/dx$ при x=0: $Q_1=19\pm0,15$ и $Q_2=12,3\pm0,4$.

- 5. По данным таблицы построим зависимость $R_L(f_{0n})$, на график нанесём прямую $\langle R_L \rangle$.
- 6. По данным построим векторную диаграмму тока и напряжений для контура с наименьшей добротностью в резонансном состоянии. Ось абсцисс направим по вектору \vec{E} .

