PCT/JP 98/02171 6 09/424347 18.05.98

日本国特許

PATENT OFFICE
JAPANESE GOVERNMENT

REG'D 1 7 JUL 1998 | WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application:

1997年 5月23日

出願番号

Application Number:

平成 9年特許願第134182号

遠藤 仁

PRIORITY DOCUMENT

1998年 7月 3日

特許庁長官 Commissioner, Patent Office 保佑山建門

特平 9-134182

【書類名】 特許願

【整理番号】 B00-0196

【提出日】 平成 9年 5月23日

【あて先】 特許庁長官殿

【国際特許分類】 C12P 41/00

【発明の名称】 有機陰イオントランスポーター及びその遺伝子

【請求項の数】 17

【発明者】

【住所又は居所】 神奈川県相模原市由野台1-23-7

【氏名】 遠藤 仁

【発明者】

【住所又は居所】 東京都八王子市緑町214-102

【氏名】 金井 好克

【発明者】

【住所又は居所】 東京都立川市栄町1-10-47

【氏名】 関根 孝司

【発明者】

【住所又は居所】 東京都三鷹市下連雀3-42-4-301

【氏名】 細山田 真

【特許出願人】

【住所又は居所】 神奈川県相模原市由野台1-23-7

【氏名又は名称】 遠藤 仁

【代理人】

【識別番号】 100076923

【弁理士】

【氏名又は名称】 箕浦 繁夫

【電話番号】 06-300-2726

【手数料の表示】

【予納台帳番号】 016322

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 有機陰イオントランスポーター及びその遺伝子

【特許請求の範囲】

【請求項1】 以下の(A)、(B)、(C)及び(D)から選択されるタンパク質。

- (A) 配列番号1で示されるアミノ酸配列からなるタンパク質。
- (B) 配列番号1で示されるアミノ酸配列において1もしくは数個のアミノ酸が 欠失、置換もしくは付加されたアミノ酸配列からなり、かつ有機陰イオンを輸送 する能力を有するタンパク質。
- (C) 配列番号2で示されるアミノ酸配列からなるタンパク質。
- (D) 配列番号2で示されるアミノ酸配列において1もしくは数個のアミノ酸が 欠失、置換もしくは付加されたアミノ酸配列からなり、かつ有機陰イオンを輸送 する能力を有するタンパク質。
 - 【請求項2】 ヒト由来である請求項1記載のタンパク質。
 - 【請求項3】 ラット由来である請求項1記載のタンパク質。
 - 【請求項4】 腎臓組織由来である請求項1記載のタンパク質。
 - 【請求項5】 請求項1記載のタンパク質をコードする遺伝子。
- 【請求項6】 以下の(a)、(b)、(c)及び(d)から選択されるDNAからなる遺伝子。
- (a) 配列番号1で示される塩基配列からなるDNA。
- (b) 配列番号1で示される塩基配列からなるDNAとストリンジェントな条件 下でハイブリダイズし、かつ有機陰イオンを輸送する能力を有するタンパク質を コードするDNA。
- (c) 配列番号2で示される塩基配列からなるDNA。
- (d) 配列番号2で示される塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ有機陰イオンを輸送する能力を有するタンパク質をコードするDNA。

【請求項7】 ヒト由来である請求項6記載DNA。

【請求項8】 ラット由来である請求項6記載の遺伝子。

【請求項9】 腎臓組織由来である請求項6記載の遺伝子。

【請求項10】 請求項5~9のいずれかの項に記載の遺伝子もしくは該遺 伝子の中のタンパク質をコードする領域を含むプラスミド。

【請求項11】 発現プラスミドである請求項10記載のプラスミド。

【請求項12】 請求項10記載のプラスミドで形質転換された宿主細胞。

【請求項13】 配列番号1又は2で示される塩基配列の中の連続する14 塩基以上の部分配列もしくはその相補的な配列を含むヌクレオチド。

【請求項14】 有機陰イオンを輸送する能力を有するタンパク質をコード する遺伝子を検出するためのプローブとして使用するものである請求項13記載 のヌクレオチド。

【請求項15】 有機陰イオンを輸送する能力を有するタンパク質をコード する遺伝子の発現を変調させるために使用するものである請求項13記載のヌク レオチド。

【請求項16】 請求項 $1\sim 4$ のいずれかの項に記載のタンパク質に対する 抗体。

【請求項17】 請求項1~4のいずれかの項に記載のタンパク質を用いて、該タンパク質の有する有機陰イオンを輸送する能力に対する被検物質の基質としての作用を検定する方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は有陰イオンの輸送に関与する遺伝子と、その遺伝子がコードするポリペプチドに関する。

[0002]

【従来の技術】

腎臓は、生体異物や薬物の体外への排出に関して、重要な役割を果たしている。アニオン性の薬物は、担体を介した経路で腎臓近位尿細管から尿中へ排出され

ている。このような有機陰イオンの排出は、尿細管細胞がその側底膜を介して、 有機陰イオンを尿細管周囲の血液から取り込むことから始まる。

[0003]

側底膜における有機陰イオンの取り込みについては、例えば基質の有機陰イオンとしてパラアミノ馬尿酸塩を使い、摘出臓器かん流法や単離細胞膜小胞系などを用いた実験により研究されてきた。この研究の中で、有機陰イオンの取り込みには、有機陰イオントランスポーターが関与していること、また、側底膜における有機陰イオンの取り込みは、有機アニオンとジカルボン酸の交換輸送体によって介されると考えられてきた。

[0004]

しかし、従来の手法では、尿細管における輸送機構の詳細、例えばトランスポーター間での輸送のネットワークや腎排泄過程における薬物間の相互作用などを解析することは困難であり、有機陰イオントランスポーターの遺伝子を単離して詳細な機能解析を可能とすることが望まれていた。

[0005]

肝臓で発現している有機陰イオントランスポーター遺伝子については、種々の分子種がクローニングされている [Hagenbuchら、Proc. Natl. Acad. Sci. USA、第88巻、10629頁、1991年、Jacqueminら、Proc. Natl. Acad. Sci. USA、第91巻、133頁、1994年、Shiら、J.Biol.Chem.、第270巻、25591頁、1995年、およびKanaiら、Am.J.physiol.、第270巻、F319頁、1996年〕。また、腎臓および肝臓に発現する有機陽イオントランスポータの一つであるOCT1の遺伝子クローニンングが報告されている [Grundemannら、Nature、第372巻、549頁、1994年]。

[0006]

また、ジカルボン酸のトランスポーターとして、腎臓のナトリウム依存性ジカルボン酸トランスポーター(NaDC-1)の遺伝子クローニングが報告されている [Pajorら、J.Biol.Chem.、第270巻、5779頁、1995年]。

[0007]

また、最近、ナトリウム非依存性ラット肝有機陰イオントランスポータ(oatp)の類縁遺伝子として、ラットの腎尿細管に局在する有機陰イオントランスポー

タOAT-K1の遺伝子のクローニングが報告された [Saitoら、J.Biol.Chem.、第270巻、20719頁、1996年]。しかしながら、このOAT-K1については、その輸送機構が、有機アニオンとジカルボン酸の交換輸送によるものであるとは確認されていない。

[0008]

【発明が解決しようとする課題】

本発明の目的は、腎臓における有機陰イオン輸送に関与する新規な有機陰イオントランスポーター遺伝子及びその遺伝子がコードするポリペプチドである有機 陰イオントランスポーターを提供することにある。その他の目的については、以 下の記載より明らかである。

[0009]

【課題を解決するための手段】

本発明者らは、ラット腎臓細胞から、有機陰イオンを輸送する能力を有する新規タンパク質の遺伝子をクローニングし、さらにヒトの相同遺伝子(ホモログ)をクローニングした。さらに、これら遺伝子の産物をアフリカツメガエルの卵母細胞中で発現させて有機陰イオンの輸送能を確認することに成功し、本発明を完成するにいたった。

[0010]

すなわち、本発明は、以下の(A)、(B)、(C)及び(D)から選択されるタンパク質である。

- (A) 配列番号1で示されるアミノ酸配列からなるタンパク質。
- (B) 配列番号1で示されるアミノ酸配列において1もしくは数個のアミノ酸が 欠失、置換もしくは付加されたアミノ酸配列からなり、かつ有機陰イオンを輸送 する能力を有するタンパク質。
- (C) 配列番号2で示されるアミノ酸配列からなるタンパク質。
- (D) 配列番号2で示されるアミノ酸配列において1もしくは数個のアミノ酸が 欠失、置換もしくは付加されたアミノ酸配列からなり、かつ有機陰イオンを輸送 する能力を有するタンパク質。

[0011]

また、本発明は、以下の(a)、(b)、(c)及び(d)から選択されるD NAからなる遺伝子である。

- (a) 配列番号1で示される塩基配列からなるDNA。
- (b)配列番号1で示される塩基配列からなるDNAとストリンジェントな条件 下でハイブリダイズし、かつ有機陰イオンを輸送する能力を有するタンパク質を コードするDNA。
- (c) 配列番号2で示される塩基配列からなるDNA。
- (d)配列番号2で示される塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ有機陰イオンを輸送する能力を有するタンパク質をコードするDNA。

[0012]

本発明の有機陰イオンを輸送する能力を有する新規タンパク質、すなわち有機 陰イオントランスポーター (OAT1: Organic Anion Transporter 1) は、生 体内においては腎臓の尿細管で主に発現している。

[0013]

また、有機陰イオントランスポーターOAT1は、その有機陰イオン輸送能(発現細胞への有機陰イオン取り込み)がジカルボン酸の存在によって活性化される。このことから、有機アニオンとジカルボン酸の交換輸送を行うトランスポーターであると考えられる。また、交換輸送に際しては、OAT1によって有機陰イオンと交換に細胞外にだされるジカルボン酸は、ナトリウム依存性ジカルボン酸トランスポーター(NaDC-1)によって細胞に取り込まれ、リサイクルされると考えられる。

[0014]

また、本発明の有機陰イオントランスポーター〇AT1は、環状塩基、プロスタグランジン、尿酸のほか、抗生物質、非ステロイド系抗炎症薬、利尿薬、抗腫 瘍薬等種々の異なる構造を持った薬物に対してこれらを輸送する(取り込む)能 力を有する、非常に広い範囲の基質選択性を有するものである。

また、本発明の有機陰イオントランスポーターOAT1は、既に報告されているラット腎の有機陰イオントランスポータOAT-K1とは、相同性がなく、全く別の分子種であると考えられる。

[0016]

【発明の実施の形態】

後記配列表の配列番号1は、ラットの腎臓由来の有機陰イオントランスポーター(ラット〇AT1)の遺伝子の全長cDNA塩基配列(約2.2kbp)、及びその翻訳領域にコードされたタンパク質のアミノ酸配列(551アミノ酸)を表す。

[0017]

配列番号2は、ヒトの腎臓由来の有機陰イオントランスポーター(ヒトOAT1)の遺伝子の全長cDNA塩基配列(約2.2kbp)、及びその翻訳領域にコードされたタンパク質のアミノ酸配列(563アミノ酸)を表す。

[0018]

前記配列番号1及び2に示される塩基配列もしくはアミノ酸配列ついて、既知 DNAデータベース (GenBankおよびEMBL) 及びプロテインデータベース (NBRF及びSWISS-PROT) に含まれる全ての配列に対してホモロジー検索を行った結果、一致するものはなく、これら配列は、新規なものであると考えられる。

[0019]

本発明のタンパク質としては、配列番号1又は2で示されたアミノ酸配列を有するもののほか、例えば配列番号1又は2で示されたアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を有するものが挙げられる。アミノ酸の欠失、置換もしくは付加は、有機陰イオン輸送活性が失われない程度であればよく、通常1~約110個、好ましくは1~約55個である。このようなタンパク質は、配列番号1又は2で示されたアミノ酸配列と通常、1~80%、好ましくは1~90%のアミノ酸配列のホモロジーを有する

[0020]

また、本発明の遺伝子としては、配列番号1又は2で示された塩基配列を有するDNAを含むもののほか、配列番号1又は2で示された塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズし得るDNAを含むものが挙げられる。このようにハイブリダイズし得るDNAは、そのDNAにコードされるタンパク質が有機陰イオンを輸送する能力を有するものであればよい。このようなDNAは、配列番号1又は2で示された塩基配列と、通常、70%以上、好ましくは80%以上の塩基配列のホモロジーを有する。このようなDNAとしては、自然界で発見される変異型遺伝子、人為的に改変した変異型遺伝子、異種生物由来の相同遺伝子等が含まれる。

[0021]

本発明において、ストリンジェントな条件下でのハイブリダイゼーションは、通常、ハイブリダイゼーションを、 $5 \times S$ S C 又はこれと同等の塩濃度のハイブリダイゼーション溶液中、37-42 C の温度条件下、約12時間行い、 $5 \times S$ S C 又はこれと同等の塩濃度の溶液等で必要に応じて予備洗浄を行った後、 $1 \times S$ S C 又はこれと同等の塩濃度の溶液中で洗浄を行うことにより実施できる。また、より高いストリンジェンシーを得るためには、洗浄を $0.1 \times S$ S C 又はこれと同等の塩濃度の溶液中で洗浄を行うことにより実施できる。

[0022]

本発明の有機陰イオントランスポーター遺伝子は、適当な哺乳動物の腎臓の組織や細胞を遺伝子源として用いてスクリーニングを行うことにより単離取得できる。哺乳動物としては、イヌ、ウシ、ウマ、ヤギ、ヒツジ、サル、ブタ、ウサギ、ラット及びマウスなどの非ヒト動物のほか、ヒトが挙げられる。

[0023]

遺伝子のスクリーニング及び単離は、発現クローニング法 (Expression Cloning) などにより好適に実施できる。

[0024]

例えば、ラット腎臓組織を遺伝子源として用い、これからmRNA(ポリ(A) +RNA)を調製する。これを、分画し、各画分について、ラットナトリウム

依存性ジカルボン酸塩トランスポーター(NaDC-1)のcRNAとともに、アフリカツメガエルの卵母細胞に導入する。

[0025]

NaDC-1遺伝子のcDNAはすでに報告されている [Pajorら、J.Biol.Chem.、第270巻、5779頁、1995年] ので、この配列情報から、PCR法などを用いて、容易にNaDC-1遺伝子のcDNAを得ることが可能である。得られたNaDC-1cDNAから、T3又はT7RNAポリメラーゼ等を用いて、これに相補的なRNA(cRNA) (キャップ化されたもの)を合成できる。

[0026]

mRNAと、NaDC-1cRNAを導入した卵母細胞について、例えばパラアミノ馬尿酸(PAH)などを基質(有機陰イオン)として、細胞内への基質の輸送(取込み)を測定し、高い取り込みを示したmRNAの画分を選択することにより、OAT1のmRNAを濃縮できる。この濃縮されたmRNAをもとに、cDNAライブラリを作製する。ライブラリのcDNAから、cRNA(キャップ化されたもの)を調製し、各々のクローンについて、前記と同様にして、NaDC-1cRNAとともに卵母細胞に導入し、基質の取り込み活性を指標として、陽性クローンを選択することにより、OAT1遺伝子のcDNAを含むクローンを得ることができる。

[0027]

得られたcDNAについては、常法により塩基配列を決定し、翻訳領域を解析して、これにコードされるタンパク質、すなわち、OAT1のアミノ酸配列を決定することができる。

[0028]

得られた c DN Aが、有機陰イオントランスポーター遺伝子の c DN Aであること、すなわちは c DN Aにコードされた遺伝子産物が有機陰イオントランスポーターであることは、例えば次のようにして検証することができる。すなわち、得られた O A T 1 遺伝子の c DN A から調製した c R N A を卵母細胞内に導入して発現させ、有機陰イオンを細胞内への輸送する(取り込む)能力を、前記と同様、適当な有機陰イオンを基質とする通常の取込み試験(Kanai and Hediger、N

ature、第360巻、467-471頁、1992年)により、細胞内への基質の取り込みを測定することにより確認できる。

[0029]

また、発現細胞について、同様の取り込み実験を応用して、OAT1の特性、例えば、OAT1がジカルボン酸との交換輸送を行っているという特性や、OAT1の基質特異性などを調べることができる。

[0030]

得られたOAT1遺伝子のcDNAを用いて、異なる遺伝子源で作製された適当なcDNAライブラリー又はゲノミックDNAライブラリーをスクリーニングすることにより、異なる組織、異なる生物由来の相同遺伝子や染色体遺伝子等を単離することができる。

[0031]

また、開示された本発明の遺伝子の塩基配列(配列番号1および2に示された塩基配列、もしくはその一部)の情報に基づいて設計された合成プライマーを用い、通常のPCR (Polymerase Chain Reaction) 法によりcDNAライブラリー又はゲノミックDNAライブラリーから遺伝子を単離することができる。

[0032]

c DNAライブラリー及びゲノミックDNAライブラリー等のDNAライブラリーは、例えば、「Molecular Cloning」 [Sambrook, J., Fritsch, E.F.及びManiatis, T. 著、Cold Spring Harbor Laboratory Pressより1989年に発刊] に記載の方法により調製することができる。あるいは、市販のライブラリーがある場合はこれを用いてもよい。

[0033]

本発明の有機陰イオントランスポーター(OAT1)は、例えば、有機陰イオントランスポーターをコードするcDNAを用い、遺伝子組換え技術により生産することができる。例えば、有機陰イオントランスポーターをコードするDNA(cDNA等)を適当な発現ベクターに組み込み得られた組換えDNAを適当な宿主細胞に導入することができる。ポリペプチドを生産するための発現系(宿主ーベクター系)としては、例えば、細菌、酵母、昆虫細胞および哺乳動物細胞の

発現系等が挙げられる。このうち、機能タンパクを得るためには、昆虫細胞およ び哺乳動物細胞を用いることが好ましい。

[0034]

例えば、ポリペプチドを哺乳動物細胞で発現させる場合には、有機陰イオントランスポーターをコードするDNAを、適当な発現ベクター(例えば、レトロウイルス系ベクター、パピローマウイルスベクター、ワクシニアウイルスベクター、SV40系ベクター等)中の適当なプロモーター(例えば、SV40プロモーター、LTRプロモーター、エロンゲーション1αプロモーター等)の下流に挿入して発現ベクターを構築する。次に、得られた発現ベクターで適当な動物細胞を形質転換し、形質転換体を適当な培地で培養することによって、目的とするポリペプチドが生産される。宿主とする哺乳動物細胞としては、サルCOS-7細胞、チャイニーズハムスターCHO細胞、ヒトHeLa細胞又は、腎臓組織由来の初代培養細胞やブタ腎由来LLC-PK1細胞、フクロネズミ腎由来OK細胞等の細胞株等が挙げられる。

[0035]

有機陰イオントランスポーターOAT1をコードするDNAとしては、例えば、配列番号1及び2に示される塩基配列を有するcDNAを用いることができるほか、前記のcDNA配列に限定されることなく、アミノ酸配列に対応するDNAを設計し、ポリペプチドをコードするDNAとして用いることもできる。この場合、ひとつのアミノ酸をコードするコドンは各々1~6種類知られており、用いるコドンの選択は任意でよいが、例えば発現に利用する宿主のコドン使用頻度を考慮して、より発現効率の高い配列を設計することができる。設計した塩基配列を持つDNAは、DNAの化学合成、前記cDNAの断片化と結合、塩基配列の一部改変等によって取得できる。人為的な塩基配列の一部改変、変異導入は、所望の改変をコードする合成オリゴヌクレオチドからなるプライマーを利用して部位特異的変異導入法(site specific mutagenesis) [Mark, D. F. et al.、Proceedings of National Academy of Sciences、第81巻、第5662~5666頁(1984年)] 等によって実施できる。

[0036]

本発明の有機陰イオントランスポーター遺伝子にストリンジェントな条件下でハイブリダイズするヌクレオチド(オリゴヌクレオチドもしくポリヌクレオチド)は、有機陰イオントランスポーター遺伝子を検出するためのプローブとして使用できるほか、有機陰イオントランスポーター遺伝子の発現を変調させるために、例えばアンチセンスオリゴヌクレオチドや、リボザイム、デコイとして使用することもできる。このようなヌクレオチドとしては、例えば、配列番号1又は2で示される塩基配列の中の通常、連続する14塩基以上の部分配列もしくはその相補的な配列を含むヌクレオチドを用いることができ、ハイブリダイズをより特異的とするためには部分配列としてより長い配列、例えば20塩基以上あるいは30塩基以上の配列を用いてもよい。

[0037]

また、本発明の有機陰イオントランスポーター又はこれと免疫学的同等性を有するポリペプチドを用いて、その抗体を取得することができ、抗体は、有機陰イオントランスポーターの検出や精製などに利用できる。抗体は、本発明の有機陰イオントランスポーター、その断片、またはその部分配列を有する合成ペプチド等を抗原として用いて製造できる。ポリクローナル抗体は、宿主動物(例えば、ラットやウサギ等)に抗原を接種し、免疫血清を回収する、通常の方法により製造することができ、モノクローナル抗体は、通常のハイブリドーマ法などの技術により製造できる。

[0038]

以下、実施例をもって本発明をさらに詳しく説明するが、これらの実施例は本 発明を制限するものではない。

[0039]

なお、下記実施例において、各操作は特に明示がない限り、「Molecul ar Cloning」 [Sambrook, J., Fritsch, E.F.及びManiatis, T. 著、Cold Spring Harbor Laboratory Pressより1989年に発刊] に記載の方法により行うか、または、市販の試薬やキットを用いる場合には市販品の指示書に従って使用した。

[0040]

【実施例】

実施例1 ラット有機陰イオントランスポーターのクローニング

(1) ラットジカルボン酸塩トランスポーター c D N A の単離と c R N A 調製 cDNAライブラリーは、ラットポリ(A) *RNAから、cDNA合成用キット(商品名:SuperScript Choice System、ギブコ社製)を使用して作成し、ファー ジベクターAZiplox(ギブコ社製)の制限酵素EcoRI切断部位に組み 込んだ。PCR法にて、ウサギのナトリウム依存性ジカルボン酸トランスポータ -NaDC-1遺伝子 [Pajorら、J.Biol.Chem.、第270巻、5779頁、1995年] の 第1323-1763番目の塩基に相当するセグメントを³²P-dCTPでラベ ルし、これをプローブとして用いて、ラットのcDNAライブラリーをスクリー ニングした。ハイブリダイゼーションは、37℃のハイブリダイゼーション用溶 液中一晩行い、フィルター膜は、37℃で0.1×SSC/0.1%SDSで洗 浄した。ハイブリダイゼーション用溶液としては、5×SSC、3×デンハード 液 (Denhard's液)、0.2% SDS、10%硫酸デキストラン、5 0%ホルムアミド、 0.01%Antiform B(商品名、シグマ社製) (消泡剤)、0.2mg/ml サーモン精子変性DNA、2.5mM ピロリ ン酸ナトリウム、25mM MESを含むpH6.5の緩衝液を用いた。 λ Zi ploxファージに組込まれた cDNA部分を、塩基配列決定のために、プラス ミドpZL1に組み込み、さらにプラスミドpBluescriptIISK-(Stratagene社製) ヘサプクローン化した。

[0041]

上記により得られたラットジカルボン酸塩トランスポーターのcDNAを含む プラスミドから、T7RNAポリメラーゼを用いて、cRNA(cDNAに相補 的なRNA)を調製した。

[0042]

得られたcRNAを、金井らの方法(Kanai and Hediger、Nature、第360巻、第467-471頁、1992年)に準じて、アフリカツメガエルの卵母細胞に注入し、この卵母細胞について、基質としてグルタル酸を用いる取り込み実験を行った。実

験には、放射能ラベルした基質(¹⁴C-グルタル酸)を用いた。その結果、ナトリウム依存性にグルタル酸の取り込みが認められ、クローニングした c D N A がラットジカルボン酸塩トランスポーター遺伝子のものであることが確認できた(図1)。

[0043]

(2) ラット腎臓有機陰イオントランスポーター〇AT1のクローニング 金井らの方法(Kanai and Hediger、Nature、第360巻、第467-471頁、1992年) に準じて、発現クローニング法により以下のようにして行った。

[0044]

ゲル電気泳動によりラット腎臓ポリ (A) +RNA 400μgを分画した。

[0045]

分画により得られた各画分を、上記(1)で得られたラットジカルボン酸塩トランスポーターのcRNAと共に卵母細胞に注入した。卵母細胞は、基質として1mM グルタル酸を含むナトリウムuptake溶液 [96mM 塩化ナトリウム、2mM 塩化カリウム、1.8mM 塩化カルシウム、1mM 塩化マグネシウム、5mM HEPES、pH7.4]中にて予め2時間前培養したものを用いた。

[0046]

RNA注入した卵母細胞について、基質としてパラアミノ馬尿酸塩(以下PAHと略す。)を用い、基質の取り込み実験を金井らの方法(Kanai and Hediger、Nature、第360巻、第467-471頁、1992年)に準じて、以下のようにして行った。基質として「14C-PAH(50μM)を含みグルタル酸を含まないナトリウム uptake溶液中にて1時間卵母細胞を培養して、細胞内に取り込まれた放射能のカウントで基質の取り込み率を測定した。なお、この系において、ラット腎臓のポリ(A)+RNA(mRNA)だけを注入した卵母細胞、および、ラットジカルボン酸塩トランスポーターのCRNAのみを注入した卵母細胞では、PAHの取り込みは見られなかったのに対して、ラット腎臓のポリ(A)+RNAとラットジカルボン酸塩トランスポーターのCRNAの両者を注入した卵母細胞ではPAHの取り込みが認められることを確認した(図2)。

[0047]

分画により得られた各RNA画分のうちRNAを注入した卵母細胞が、最も高いPAHの取り込み率を示した画分を選択した。この画分のポリ(A)⁺RNA(1.8~2.4kb)について、cDNA合成及びプラスミドクローニング用キット(商品名:Superscript Plasmid System、ギブコ社製)を使用して、cDNAをライブラリーを作成した。これらDNAはプラスミドpSPORT1(ギブコ社製)の制限酵素Sall及びNotl認識部位に組み込み、得られた組換えプラスミドDNAを大腸菌DH10B株のコンピテントセル(商品名:Electro Max DH10B Competent cell、ギブコBRL社製)に導入した。得られた形質転換体をニトロセルロース膜上で培養し、1プレート当たり約500個のコロニーが得られた。これらコロニーから、プラスミドDNAを調製し、これらを制限酵素NotIで切断した。得られたDNAを用いて、in vitro転写により、キャップ化されたcRNAを合成した。

[0048]

得られた c R N A (約10 n g)を、上記(1)で得たラットジカルボン酸塩トランスポーターの c R N A (2 n g)と共に卵母細胞へ注入した。これら卵母細胞について、前記と同様にして、P A H の取り込み実験を行うことにより陽性クローンのスクリーニングを行った。スクリーニングに際しては、複数のクローンから抽出した D N A をプールしたグループについて調べ、あるグループでパラアミノ 馬尿酸の取り込みが確認された場合、さらにそれを複数のグループに分割し、さらにスクリーニングを行った。

[0049]

スクリーニングの結果、8000個のクローンから1つの陽性クローン (cR NAを注入した卵母細胞で基質の取り込みが認められるクローン)が単離された

[0050]

得られたクローン、すなわち、ラットジカルボン酸塩トランスポーターOAT 1のcDNAを含むクローンについて、塩基配列決定のための欠失クローン作製 用キット(商品名:Kilo-Sequense Deletion Kit、宝酒造社製)、合成プライマ ー、塩基配列決定用キット(商品名: Sequenase ver.2.0、アマシャム社製)を用いてダイデオキシ法により、cDNAの塩基配を決定した。

[0051]

これにより、ラットジカルボン酸塩トランスポーター〇AT1遺伝子の c D N A の塩基配列が得られた。また、 c D N A の塩基配列を常法により解析して、 c D N A 上の翻訳領域とそこにコードされる〇AT1のアミノ酸配列を決定した。

[0052]

これら配列を、後記配列表の配列番号1に示した。

[0053]

Kyte-Doolittle hydropathy analysis (疎水性プロット)により、OAT1のアミノ酸配列を解析した結果、図3に示したように、12個の膜貫通領域 (memb rane-spanning domains) が予測された。また、5つの糖鎖付加部位が最初の親水性ループに予測された。6番目と7番目の膜貫通領域 (transmembrane domains)の親水基のループにプロテインキナーゼC依存性のリン酸化部位と考えられる部位が4つあった。

[0054]

(3)種々の組織におけるOAT1遺伝子の発現(ノーザンブロティングによる解析)

ラットOAT1遺伝子の全長 c DNAを 32 Pーd CTPでラベルし、これをプローブとして用いて、ラットの種々の組織から抽出したRNAに対してノーザンブロッティングを以下のように行なった。 3μ g のポリ(A) † RNAを 1%アガロース/ ホルムアルデヒドゲルで電気泳動したのち、ニトロセルロースフィルターにトランスファーした。このフィルターを42℃で、 32 P-dCTPでラベルした全長のOAT1 c DNAを含んだハイブリダイゼーション液で1晩ハイブリダイゼーションを行った。フィルターを、65℃にて、0.1%SDSを含む0.1 x S S C で洗浄した。

[0055]

ノーザンブロティングの結果(図4)、腎臓において、2.4kb付近と3.9kbと4. 2kbに相当する2つのバンドが検出され、発現が認められた。腎臓の皮質と髄質 外層ではOAT1 mRNAの発現量が多く、髄質内層では少なかった。

[0056]

さらに長時間の感光で、脳において2.4kb付近にかすかなバンドが検出されたが、その他の組織ではバンドは検出されず、発現は認められなかった。

[0057]

(4) 腎組織におけるOAT1遺伝子の発現(In situハイブリダイゼーションによる解析)

In situ ハイブリダイゼーションを以下のように行った。すなわち、ラットの腎臓を4% パラホルムアルデヒドで灌流することにより固定した後、これを細切り、4% パラホルムアルデヒドでさらに固定した。得られたラット腎臓を 5μ mの厚さに薄切し、得られた切片を、in situハイブリダイゼーションに用いた。

[0058]

全長のOAT1cDNAから、T7若しくはT3RNAポリメラーゼを用いて、 35SでラベルしたセンスcRNAとアンチセンスcRNAを合成し、プローブとして用いた。切片をハイブリダイゼーション液で一晩プローブでハイブリダイゼーションを行ない、O. 1×SSCで30分、37℃にて洗浄した。

[0059]

In situ ハイブリダイゼーションの結果、ラット腎臓の層状部位では、OAT1 m RNAは腎臓の皮質と髄質外層、特に皮質の髄放線の部分で発現することが示された。髄質内層では発現は検出されなかった。この結果は、有機陰イオントランスポーターOAT1が近位尿細管の中間部分で最も多く発現されることを示している。

[0060]

実施例2 有機陰イオントランスポーター〇AT1の特徴づけ

(1) OAT1の輸送活性におけるグルタル酸の影響

ラットOAT1遺伝子 c R N A を注入した卵母細胞による P A H の取り込み実験においてグルタル酸とのプレインキュベーションの影響を調べた。

[0061]

PAHの取り込み実験は、前記実施例1(2)記載方法に準じ、以下のように行った。すなわち、ラットOAT1遺伝子cRNAもしくは、ラットOAT1遺伝子cRNAを注入した卵母細胞を、1mM グルタル酸添加もしくは無添加のナトリウム uptake solution中で2時間前培養したあと、14C-PAHを添加して室温で1時間培養し放射能でラベルされた基質の取り込みを測定した。

[0062]

その結果(図5)、PAHの取り込みは、1mM グルタル酸で卵母細胞を前処置することによって増加した。また、ラットジカルボン酸塩トランスポーターとOAT1が発現している卵母細胞をグルタル酸で前処置すると、さらに14C-パラアミノ馬尿酸塩の取り込みの増加が見られた。この結果に示されるグルタル酸の効果は、PAH取り込みの細胞内ジカルボン酸濃度依存性を示しており、OAT1が有機アニオンとジカルボン酸の交換輸送体であると考えられた。

[0063]

(2) OAT1の輸送活性の塩依存性

ラットOAT1遺伝子cRNAを注入した卵母細胞によるPAHの取り込み実験において培地に添加する塩の影響を調べた。

[0064]

PAHの取り込み実験は、ラットOAT1遺伝子cRNAを注入した卵母細胞を用い、前記(1)記載方法に準じて実施した。但し、 uptake solutionは、塩として塩化コリンイオンを添加した場合の影響をみる場合には、ナトリウム uptake solutionにかえて、塩化コリン uptake solution (96mM 塩化ナトリウムのナトリウム solutionを96 mM 塩化コリンに変えてpHを7.4に調節した)を用いた

[0065]

その結果(図6)、細胞外のナトリウムをコリンと置換しても、PAH取り込みに何ら影響を与えなかった。このことから、OAT1はナトリウムイオン非依存性に働く、トランスポータであることが示された。

[0066]

(3) OAT1のミカエリスーメンテンの動力学試験

有機陰イオントランスポーターのミカエリスーメンテンの動力学試験を行った。基質PAHの濃度の違いによるPAHの取り込み率の変化を調べることにより、有機陰イオントランスポーターのミカエリスーメンテンの動力学試験行った。

[0067]

PAHの取り込み実験は、ラットOAT1遺伝子cRNAを注入した卵母細胞を用い、前記(1)記載方法に準じて実施した。但し、 14 C-PAH取り込みは3分間測定した。その結果(図7)、Km値は約14.3±2.9 μ Mであった。

[0068]

このKm値は、既にin vivo 系報告されている基底側の有機アニオントランスポート系のKm値(80μM) (Ulrich ら、Am. J. Physiol. 第254巻、F453-462頁、1988年) と似ていた。

[0069]

(4) OAT1の基質選択性(薬物添加による阻害試験)

ラットOAT1遺伝子cRNAを注入した卵母細胞によるPAHの取り込み実験において、系への各種薬物添加の影響を調べた。

[0070]

PAHの取り込み実験は、ラットOAT1遺伝子cRNAを注入した卵母細胞を用い、前記(1)記載方法に準じて実施した。但し、ナトリウム uptake solutionを用い、2mM の各種化合物(非標識)の存在下及び非存在下で、PAHの取り込みを測定した。

[0071]

その結果(図8)、構造的に無関係の薬物の添加で、cis-阻害効果が観察された。セファロリジン($\beta-$ ラクタム系抗生物質)、ナリジクス酸(オールドキノロン)、フロセミドとエタクリン酸(利尿薬)、インドメタシン(非ステロイド系抗抗炎症剤)、プロベネシド(尿酸排泄薬)、バルプロ酸(抗てんかん薬)はOAT-1を介した 14 C-パラアミノ馬尿酸塩の取り込みを強く阻害した(85%>)。抗腫瘍薬であるメトトレキサートはPAHの取り込みを中等度に阻

害した。プロスタグランジンE2、c-AMP、c-GMP、尿酸といった内因性化合物もPAHの取り込みを阻害した。

[0072]

(5) OAT1の基質選択性(各種陰イオン性物質を基質とする取り込み試験) 各種陰イオン性物質を基質として、OAT1によるの取り込みを調べた。

[0073]

PAHの取り込み実験は、ラットOAT1遺伝子cRNAを注入した卵母細胞を用い、前記(1)記載方法に準じて実施した。但し、基質としては、¹⁴C-PAHにかえて、放射能でラベルされた各種の化合物を用いた。

[0074]

その結果(図9)、メトキサレート(3 H標識物)、 $_{\rm C}$ - AMP(3 H標識物)、 $_{\rm C}$ - GMP(3 H標識物)、プロスタグランジンE2(3 H標識物)、尿酸(14 C標識物)、 $_{\rm C}$ - ケトグルタル酸(14 C標識物)を基質とした場合に、卵母細胞への取り込みが認められた。一方、TEA(14 C標識物)とタウロコール酸では取り込みを示さなかった。

[0075]

実施例3 ヒト有機陰イオントランスポーターのクローニング

実施例1の(2)にて得たラットOAT1遺伝子のcDNA断片を標識し、これをプローブとして用いて、ヒトcDNAライブラリーをスクリーニングした。ヒトcDNAライブラリーは、遺伝子源としてヒト腎ポリ(A)⁺RNA(クロンテク社製)を用いて作製したヒトcDNAライブラリーを用いた。

[0076]

また、得られた陽性クローン、すなわち、ヒト有機陰イオントランスポーター (ヒトOAT1) c DNAを含むクローンについて、実施例1と同様にして、塩基配列を決定し、得られた c DNAの塩基配列を常法により解析して、 c DNA 上の翻訳領域とそこにコードされるヒトOAT1のアミノ酸配列を決定した。

[0077]

これらヒト〇AT1の配列を、後記配列表の配列番号2に示した。

[0078]

ラットOAT1とヒトOAT1とのホモロジーは、アミノ酸レベルで約85%であった。また、cDNAレベルでのホモロジーは、約79%であった。

[0079]

【発明の効果】

本発明の有機陰イオントランスポーターOAT1およびその遺伝子は、薬物排出や薬物と薬物の相互作用のインビトロでの分析など、薬物動態や毒物動態の分子レベルでの解明に有用と考えられる。また、βラクタム系抗生物質、利尿薬、非ステロイド系抗炎症薬のような腎不全の原因となる多くの薬物が、OAT1によって輸送され、薬物が腎毒性を引き起こす原因はOAT1に起因する蓄積性による可能性が示唆されることから、OAT1を用いて腎毒性を防止するのための薬物をスクリーニングする方法を開発し得ると考えられる。

[0880]

【配列表】

配列番号:1

配列の長さ:2294

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源

生物名:ラット

配列

GCTCCAGCAG ACCCTGAAAG CTGAGCTGTC CAGACCCCCG AAGTGAAGAA AAGAGGCGAG 60
GGCAAGGGAG GGCCAGAACC GAGGGAGAGA GAAAGGAGGG GCAGCCCACC AGCCCGCTGT 120
CCTGCCACAG AACCGGCTCA GCTCCAGCTC CAGGAGTCAC TCAGCTGCAG AGGCAGTGGC 180
AGCCCCACTC CTCAGGCAAA GGGCAGCAGA CAGACAGACA GAGGTCCTAG GACTGGAGGT 240
CCTCAGTCAT TGACCACTCA GCCTGGCCCA GCCCC 275
ATG GCC TTC AAT GAC CTC CTG AAA CAG GTG GGG GGC GTC GGA CGC 320

Met	Ala	Phe	Asn	Asp	Leu	Leu	Lys	Gln	Val	Gly	Ġly	Val	Gly	Arg	
1				5					10					15	
TTC	CAG	TTG	ATC	CAG	GTC	ACC	ATG	GTG	GTT	GCT	CCC	CTA	CTG	CTG	365
Phe	Gln	Leu	Ile	Gln	Val	Thr	Met	Val	Val	Ala	Pro	Leu	Leu	Leu	
				20					25					30	
ATG	GCT	TCC	CAC	AAC	ACC	TTG	CAG	AAC	TTC	ACT	GCC	GCT	ATC	CCC	410
Met	Ala	Ser	His	Asn	Thr	Leu	Gln	Asn	Phe	Thr	Ala	Ala	Ile	Pro	
				35					40					4 5	
CCT	CAT	CAC	TGC	CGC	CCA	CCT	GCC	AAT	GCC	AAT	CTC	AGC	AAA	GAT	455
Pro	His	His	Cys	Arg	Pro	Pro	Ala	Asn	Ala	Asn	Leu	Ser	Lys	Asp	
				50					55					60	
GGA	GGT	CTG	GAG	GCC	TGG	CTG	CCC	CTG	GAC	AAG	CAA	GGA	CAA	CCC	500
Gly	Gly	Leu	Glu	Ala	Trp	Leu	Pro	Leu	Asp	Lys	Gln	Gly	Gln	Pro	
				6 5					70					75	
GAA	TCG	TGC	CTC	CGC	TTT	ACT	TCC	CCC	CAG	TGG	GGA	CCA	CCC	TTT	545
Glu	Ser	Cys	Leu	Arg	Phe	Thr	Ser	Pro	Gln	Trp	Gly	Pro	Pro	Phe	
				80					85					90	
TAC	AAT	GGC	ACA	GAA	GCC	AAT	GGC	ACC	AGA	GTC	ACA	GAG	CCC	TGC	590
Tyr	Asn	Gly	Thr	Glu	Ala	Asn	Gly	Thr	Arg	Va l	Thr	Glu	Pro	Cys	
				95					100					105	
ATT	GAT	GGC	TGG	GTC	TAT	GAC	AAC	AGC	ACC	TTC	CCT	TCA	ACC	ATC	635
Ile	Asp	Gly	Trp	Val	Tyr	Asp	Asn	Ser	Thr	Phe	Pro	Ser	Thr	Ile	
				110					115					120	
GTG	ACT	GAG	TGG	AAC	CTT	GTG	TGC	TCT	CAT	CGG	GCT	TTC	CGC	CAG	680
Val	Thr	Glu	Trp	Asn	Leu	Val	Cys	Ser	His	Arg	Ala	Phe	Arg	Gln	
				125					130					135	
CTG	GCC	CAG	TCC	CTG	TAC	ATG	GTG	GGA	GTG	CTG	CTG	GGA	GCC	ATG	725
Leu	Ala	Gln	Ser	Leu	Tyr	Met	Val	Gly	Val	Leu	Leu	Gly	Ala	Met	
				140					145					150	

GTG TTT GGC TAC	CTG GCG GAC	AGG CTG GGC	CGC CGG AAG GTG	CTG 770
Val Phe Gly Tyr	Leu Ala Asp	Arg Leu Gly	Arg Arg Lys Val	Leu
	155	160		165
ATC TTG AAC TAC	CTG CAG ACA	GCT GTG TCG	GGA ACC TGT GCA	GCC 815
Ile Leu Asn Tyr	Leu Gln Thr	Ala Val Ser	Gly Thr Cys Ala	Ala
	170	175		180
TAT GCA CCC AAC	TAT ACT GTC	TAC TGC GTT	TTC CGG CTC CTC	TCG 860
Tyr Ala Pro Asn	Tyr Thr Val	Tyr Cys Val	Phe Arg Leu Leu	Ser
	185	190		195
GGC ATG TCT TTG	GCT AGC ATT	GCA ATC AAC	TGC ATG ACA CTA	AAT 905
Gly Met Ser Leu	Ala Ser Ile	Ala Ile Asn	Cys Met Thr Leu	Asn
	200	205		210
GTG GAA TGG ATG	CCT ATC CAC	ACC CGT GCC	TAT GTG GGC ACC	TTG 950
Val Glu Trp Met	Pro Ile His	Thr Arg Ala	Tyr Val Gly Thr	Leu
	215	220		225
ATT GGC TAT GTC	TAC AGC CTG	GGC CAG TTC	CTC CTG GCT GGC	ATC 995
Ile Gly Tyr Val	Tyr Ser Leu	Gly Gln Phe	Leu Leu Ala Gly	Ile
	230	235		240
GCC TAT GCT GTG	CCC CAC TGG	CGC CAC CTG	CAG CTT GTG GTC	TCT 1040
Ala Tyr Ala Val	Pro His Trp	Arg His Leu	Gln Leu Val Val	Ser
	245	250		255
GTG CCT TTT TTC	ATT GCC TTC	ATC TAC TCT	TGG TTC TTC ATT	GAG 1085
Val Pro Phe Phe	Ile Ala Phe	Ile Tyr Ser	Trp Phe Phe Ile	Glu
	260	265		270
TCA GCC CGC TGG	TAC TCC TCC	TCA GGA AGG	CTG GAC CTC ACC	CTC 1130
Ser Ala Arg Trp	Tyr Ser Ser	Ser Gly Arg	Leu Asp Leu Thr	Leu
	275	280		285
CGA GCC CTG CAG	AGA GTG GCC	CGG ATC AAT	GGG AAA CAA GAA	GAA 1175
Arg Ala Leu Gln	Arg Val Ala	Arg Ile Asn	Gly Lys Gln Glu	Glu

特平 9-134182

				290	ı				295					300	
GGG	GCT	AAG	CTA	AGT	ATA	GAG	GTG	CTC	CGG	ACC	AGC	CTG	CAG	AAG	1220
Gly	Ala	Lys	Leu	Ser	Ile	Glu	Val	Leu	Arg	Thr	Ser	Leu	Gln	Lys	
				305					310					315	
GAA	CTG	ACT	CTA	AGC	AAA	GGC	CAA	GCC	TCA	GCC	ATG	GAG	CTG	CTG	1265
Glu	Leu	Thr	Leu	Ser	Lys	Gly	Gln	Ala	Ser	Ala	Met	Glu	Leu	Leu	
				320					325					330	
CGC	TGC	CCC	ACC	CTT	CGA	CAC	CTC	TTC	CTC	TGT	CTC	TCC	ATG	CTG	1310
Arg	Cys	Pro	Thr	Leu	Arg	His	Leu	Phe	Leu	Cys	Leu	Ser	Met	Leu	
				335					340					345	
TGG	TTT	GCC	ACT	AGC	TTT	GCC	TAC	TAC	GGG	CTG	GTC	ATG	GAC	CTG	1355
Trp	Phe	Ala	Thr	Ser	Phe	Ala	Tyr	Tyr	Gly	Leu	Va 1	Met	Asp	Leu	
				350					355					360	
CAG	GGC	TTT	GGG	GTC	AGC	ATG	TAC	CTT	ATC	CAG	GTG	ATT	TTC	GGT	1400
Gln	Gly	Phe	Gly	Val	Ser	Met	Tyr	Leu	Ile	Gln	Va 1	Ile	Phe	Gly	
				365					370					375	
GCC	GTG	GAC	CTG	CCT	GCC	AAG	TTT	GTA	TGC	TTC	CTA	GTC	ATC	AAC	1445
Ala	Val	Asp	Leu	Pro	Ala	Lys	Phe	Val	Cys	Phe	Leu	Val	Ile	Asn	
				380					385					390	
TCC	ATG	GGG	CGC	CGG	CCT	GCA	CAG	ATG	GCC	TCC	CTG	CTG	CTG	GCA	1490
Ser	Met	Gly	Arg	Arg	Pro	Ala	Gln	Met	Ala	Ser	Leu	Leu	Leu	Ala	
				395					400					405	
GGC	ATC	TGC	ATC	CTG	GTG	AAT	GGC	ATA	ATA	CCG	AAG	AGC	CAT	ACG	1535
Gly	Ile	Cys	Ile	Leu	Val	Asn	Gly	He	Ile	Pro	Lys	Ser	His	Thr	
			•	410					415					420	
ATC	ATT	CGC	ACC	TCC	CTG	GCT	GTG	CTA	GGG	AAG	GGC	TGC	CTG	GCT	1580
He	Ile	Arg	Thr	Ser	Leu	Ala	Val	Leu	Gly	Lys	Gly	Cys	Leu	Ala	
				425					430					435	
TCC	TCT	TTC	AAC	TGC	ATC	TTC	CTG	TAC	ACC	GGA	GAG	CTG	TAC	CCC	1625

Ser	Ser	Phe	Asn	Cys	Ile	Phe	Leu	Tyr	Thr	Gly	Glu	Leu	Tyr	Pro	
				440					445					450	
ACA	GTG	ATT	CGG	CAG	ACA	GGC	CTG	GGC	ATG	GGC	AGC	ACC	ATG	GCC	1670
Thr	Val	Ile	Arg	Gln	Thr	Gly	Leu	Gly	Met	Gly	Ser	Thr	Met	Ala	
				455					460					465	
CGG	GTG	GGC	AGC	ATT	GTG	AGC	CCG	CTG	GTG	AGC	ATG	ACT	GCA	GAG	1715
Arg	Val	Gly	Ser	Ile	Val	Ser	Pro	Leu	Val	Ser	Met	Thr	Ala	Glu	
				470					475					480	
TTC	TAC	CCC	TCC	ATG	CCT	CTC	TTC	ATC	TTC	GGC	GCT	GTC	CCT	GTG	1760
Phe	Tyr	Pro	Ser	Met	Pro	Leu	Phe	Ile	Phe	Gly	Ala	Val	Pro	Val	
				485					490					495	
GTC	GCC	AGT	GCT	GTC	ACT	GCC	CTG	CTG	CCA	GAG	ACC	TTG	GGC	CAG	1805
Val	Ala	Ser	Ala	Va 1	Thr	Ala	Leu	Leu	Pro	Glu	Thr	Leu	Gly	Gln	
				500					505					510	
CCG	CTG	CCA	GAT	ACA	GTG	CAG	GAC	CTG	AAG	AGC	AGG	AGC	AGA	GGA	1850
Pro	Leu	Pro	Asp	Thr	Val	Gln	Asp	Leu	Lys	Ser	Arg	Ser	Arg	Gly	
				515					520					525	
AAG	CAG	AAT	CAA	CAG	CAG	CAG	GAA	CAG	CAG	AAG	CAG	ATG	ATG	CCG	1895
Lys	Gln	Asn	Gln	Gln	Gln	Gln	Glu	Gln	Gln	Lys	Gln	Met	Met	Pro	
				530					535					540	
CTC	CAG	GCC	TCA	ACA	CAA	GAG	AAG	AAT	GGA	CTT					1928
Leu	Gln	Ala	Ser	Thr	Gln	Glu	Lys	Asn	Gly	Leu					
				545					550	551					
TGA	GAAC	GGA A	AGGG	CTTC	AC AC	CAGC	ACTA	A AGO	GGAG:	ГGGG	GTT	CTAC.	AGG	TCCTGCCGTC	1988
TAC	ATGA	GGA (GGGG	GAGT	GA G	ΓAGA	GGGA	TGO	GACC	ATCC	AAA	TGTG	GAG	GCTGCCATTC	2048
AGA	GAAA'	rcc (CTCC	CCAA	AG G	CAT	GTCAG	G TAC	GACC	CACT	AGG.	AACA.	AAA	GCTCTGACTA	2108
TGT	GCAG	CTT (CTTA	AGCAG	GA AT	rgtt(CTCGT	CAC	CCGG	CCAT	CTT	CCTG	CTC	ATGGTCACTC	2168
CGC	CACC.	TCC A	AGGAG	CCTT	GC A	AAGA	ATCT(AG	ACAAT	ГТАА	ATG	AATC	TCT	TCTAAAAAAA	2228
AAA	AAAA	AAA A	AAAA	AAAA	AA A	AAAA	AAAA	A A A	AAAA	AAAA	AAA	AAAA	AAA	AAAAAAAAA	2288

AAAAA

2294

[0081]

配列番号: 2

配列の長さ:2171

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源

生物名:ヒト

配列

GAA	AGCT	GAG	CTGC	CCTG.	AC C	CCCA	AAGT	G AG	GAGA.	AGCT	GCA.	AGGG.	AAA .	AGGGAGGGAC	60
AGAT	CAG	GGA (GACC	GGGG.	AA G.	AAGG.	AGGA	G CA	GCCA.	AGGA	GGC'	rgct(GTC (CCCCCACAGA	120
GCAC	GCTC	GGA (CTCA	GCTC	CC G	GAGC	AACC	C AG	CTGC	GGAG	GCA	ACGG	CAG '	TGCTGCTCCT	180
CCAC	GCGA	AGG .	ACAG	CAGG	CA G	GCAG	ACAG	A CA	GAGG'	TCCT	GGG	ACTG	GAA (GGCCTCAGCC	240
CCCI	AGCC	ACT (GGGC:	TGGG	CC TO	GGCC	CA								267
ATG	GCC	TTT	AAT	GAC	CTC	CTG	CAG	CAG	GTG	GGG	GGT	GTC	GGC	CGC	312
Met	Ala	Phe	Asn	Asp	Leu	Leu	Gln	Gln	Val	Gly	Gly	Val	Gly	Arg	
1				5					10					15	
TTC	CAG	CAG	ATC	CAG	GTC	ACC	CTG	GTG	GTC	CTC	CCC	CTG	CTC	CTG	357
Phe	Gln	Gln	Ile	Gln	Val	Thr	Leu	Val	Val	Leu	Pro	Leu	Leu	Leu	
				20					25					30	
ATG	GCT	TCT	CAC	AAC	ACC	CTG	CAG	AAC	TTC	ACT	GCT	GCC	ATC	CCT	402
Met	Ala	Ser	His	Asn	Thr	Leu	Gln	Asn	Phe	Thr	Ala	Ala	Ile	Pro	
				35					40					45	
ACC	CAC	CAC	TGC	CGC	CCG	CCT	GCC:	GAT	GCC	AAC	CTC	AGC	AAG	AAC	447
Thr	His	His	Cys	Gly	Pro	Pro	Ala	Asp	Ala	Asn	Leu	Ser	Lys	Asn	
				50					55					60	

GGG GGG CTG GAG	GTC TGG	CTG CCC	CGG	GAC	AGG	CAG	GGG	CAG	CCT	492
Gly Gly Leu Glu	Val Trp	Leu Pro	Arg	Asp	Arg	Gln	Gly	Gln	Pro	·
	65	:		70					7 5	
GAG TCC TGC CTC	CGC TTC	ACC TCC	CCG	CAG	TGG	GGA	CTG	CCC	TTT	537
Glu Ser Cys Leu	Arg Phe	Thr Ser	Pro	Gln	Trp	Gly	Leu	Pro	Phe	
	80	:		85					90	
CTC AAT GGC ACA	GAA GCC	AAT GGC	ACA	GGG	GCC	ACA	GAG	CCC	TGC	582
Leu Asn Gly Thr	Glu Ala	Asn Gly	Thr	Gly	Ala	Thr	Glu	Pro	Cys	
	95			100					105	
ACC GAT GGC TGG	ATC TAT	GAC AAC	AGC	ACC	TTC	CCA	TCT	ACC	ATC	627
Thr Asp Gly Trp	Ile Tyr	Asp Asn	Ser	Thr	Phe	Pro	Ser	Thr	Ile	
	110		i .	115					120	
GTG ACT GAG TGG	GAC CTT	GTG TGC	TCT	CAC	AGG	GCC	CTA	CGC	CAG	672
Val Thr Glu Trp	Asp Leu	Val Cys	Ser	His	Arg	Ala	Leu	Arg	Gln	
	125			130					135	
CTG GCC CAG TCC	TTG TAC	ATG GTG	GGG	GTG	CTG	CTC	GGA	GCC	ATG	717
Leu Ala Gln Ser	Leu Tyr	Met Val	Gly	Val	Leu	Leu	Gly	Ala	Met	
	140			145					150	
GTG TTC GGC TAC	CTT GCA	GAC AGG	CTA	GGC	CGC	CGG	AAG	GTA	CTC	762
Val Phe Gly Tyr	Leu Ala	Asp Arg	Leu	Gly	Arg	Arg	Lys	Val	Leu	
	155			160					165	
ATC TTG AAC TAC	CTG CAG	ACA GCT	GTG	TCA	GGG	ACC	TGC	GCA	GCC	807
Ile Leu Asn Tyr	Leu Gln	Thr Ala	Val	Ser	Gly	Thr	Cys	Ala	Arg	
	170			175					180	
TTC GCA CCC AAC	TTC CCC	ATC TAC	TGC	GCC	TTC	CGG	CTC	CTC	TCG	852
Phe Ala Pro Asn	Phe Pro	Ile Tyr	Cys	Ala	Phe	Arg	Leu	Leu	Ser	
	185			190					195	
GGC ATG GCT CTG	GCT GGC	ATC TCC	CTC	AAC	TGC	ATG	ACA	CTG	AAT	897
Gly Met Ala Leu	Ala Gly	Ile Ser	Leu	Asn	Cys	Met	Thr	Leu	Asn	

特平 9-134182

				200)				205					210	
GTG	GAG	TGG	ATG			CAC	ACA	CGG			GTG	GGC	ACC.		942
											Val				012
		-		215					220	-3		u - y		225	
ATT	GGC	TAT	GTC	TAC	AGC	CTG	GGC	CAG		СТС	CTG	GCT	GGT		987
											Leu				
				230					235				_	240	
GCC	TAC	GCT	GTG	CCC	CAC	TGG	CGC	CAC	CTG	CAG	CTA	CTG	GTC		1032
Ala	Tyr	Ala	Val	Pro	His	Trp	Arg	His	Leu	Gln	Leu	Leu	Val	Ser	
				245					250					255	
GCG	CCT	TTT	TTT	GCC	TTC	TTC	ATC	TAC	TCC	TGG	TTC	TTC	ATT	GAG	1077
Ala	Pro	Phe	Phe	Ala	Phe	Phe	Ile	Tyr	Ser	Trp	Phe	Phe	Ile	Glu	
				260					265					270	
TCG	GCC	CGC	TGG	CAC	TCC	TCC	TCC	GGG	AGG	CTG	GAC	CTC	ACC	CTG	1122
Ser	Ala	Arg	Trp	His	Ser	Ser	Ser	Gly	Arg	Leu	Asp	Leu	Thr	Leu	
				275					280					285	
AGG	GCC	CTG	CAG	AGA	GTC	GCC	CGG	ATC	AAT	GGG	AAG	CGG	GAA	GAA	1167
Arg	Ala	Leu	Gln	Arg	Val	Ala	Arg	Ile	Asn	Gly	Lys	Arg	Glu	Glu	
				290					295					300	
GGA	GCC	AAA	TTG	AGT	ATG	GAG	GTA	CTC	CGG	GCC	AGT	CTG	CAG	AAG	1212
Gly	Ala	Lys	Leu	Ser	Met	Glu	Val	Leu	Arg	Ala	Ser	Leu	Gln	Lys	
				305					310					315	
GAG	CTG	ACC	ATG	GGC	AAA	GGC	CAG	GCA	TCG	GCC	ATG	GAG	CTG	CTG	1257
Glu	Leu	Thr	Met	Gly	Lys	Gly	Gln	Ala	Ser	Ala	Met	Glu	Leu	Leu	
				320					325					330	
CGC	TGC	CCC	ACC	CTC	CGC	CAC	CTC	TTC	CTC	TGC	CTC	TCC	ATG	CTG	1302
Arg	Cys	Pro	Thr	Leu	Arg	His	Leu	Phe	Leu	C ys	Leu	Ser	Met	Leu	
				335				-	340					345	
TGG	TTT	GCC	ACT	AGC	TTT	GCA	TAC	TAT	GGG	CTG	GTC	ATG	GAC	CTG	1347

Trp Phe Ala Thr	Ser Phe Ala Ty	yr Tyr Gly Leu \	Val Met Asp Leu
	350	355	360
CAG GGC TTT GGA	GTC AGC ATC TA	AC CTA ATC CAG	GTG ATC TTT GGT 1392
Gln Gly Phe Gly	Val Ser Ile Ty	yr Leu Ile Gln V	Val Ile Phe Gly
	365	370	375
GCT GTG GAC CTG	CCT GCC AAG CT	TT GTG GGC TTC O	CTT GTC ATC AAC 1437
Ala Val Asp Leu	Pro Ala Lys Le	eu Val Gly Phe I	Leu Val Ile Asn
	380	385	390
TCC CTG GGT CGC	CGG CCT GCC CA	AG ATG GCT GCA (CTG CTG CTG GCA 1482
Ser Leu Gly Arg	Arg Pro Ala Gl	In Met Ala Ala I	Leu Leu Ala
	395	400	405
GGC ATC TGC ATC	CTG CTC AAT GC	GG GTG ATA CCC (CAG GAC CAG TCC 1527
Gly Ile Cys Ile	Leu Leu Asn Gl	ly Val Ile Pro (Gln Asp Gln Ser
	410	415	420
ATT GTC CGA ACC	TCT CTT GCT GT	TG CTG GGG AAG (GGT TGT CTG GCT 1572
Ile Val Arg Thr	Ser Leu Ala Va	al Leu Gly Lys (Gly Cys Leu Ala
	425	430	435
GCC TCC TTC AAC	TGC ATC TTC CT	TG TAT ACT GGG (GAA CTG TAT CCC 1617
Ala Ser Phe Asn	Cys Ile Phe Le	eu Tyr Thr Gly (Glu Leu Tyr Pro
	440	445	450
ACA ATG ATC CGG	CAG ACA GGC AT	rg gga atg ggc a	AGC ACC ATG GCC 1662
Thr Met Ile Arg	Gln Thr Gly Me	et Gly Met Gly S	Ser Thr Met Ala
	455	460	465
CGA GTG GGC AGC	ATC GTG AGC CC	CA CTG GTG AGC	ATG ACT GCC GAG 1707
Arg Val Gly Ser	Ile Val Ser Pr	ro Leu Val Ser 1	Met Thr Ala Glu
	470	475	480
CTC TAC CCC TCC			
Leu Tyr Pro Ser	Met Pro Leu Ph	ne Ile Tyr Gly	Ala Val Pro Val
	485	490	495

特平 9-134182

GCC GCC AGC GCT GTC ACT GTC CTC CTG CCA GAG ACC CTG GGC CAG 179	7
Ala Ala Ser Ala Val Thr Val Leu Leu Pro Glu Thr Leu Gly Gln	
500 505 510	
CCA CTG CCA GAC ACG GTG CAG GAC CTG GAG AGC AGG TGG GCC CCC 1842	2
Pro Leu Pro Asp Thr Val Gln Asp Leu Glu Ser Arg Trp Ala Pro	
515 520 525	
ACT CAG AAA GAA GCA GGG ATA TAT CCC AGG AAA GGG AAA CAG ACG 1887	7
Thr Gln Lys Glu Ala Gly Ile Tyr Pro Arg Lys Gly Lys Gln Thr	
530 535 540	
CGA CAG CAA CAA GAG CAC CAG AAG TAT ATG GTC CCA CTG CAG GCC 1932	2
Arg Gln Gln Glu His Gln Lys Tyr Met Val Pro Leu Gln Ala	
545 550 555	
TCA GCA CAA GAG AAG AAT GGA CTC 1956	3
Ser Ala Gln Glu Lys Asn Gly Leu	
560 563	
TGAGGACTGA GAAGGGCCT TACAGAACCC TAAAGGGAGG GAAGGTCCTA CAGGTCTCCG 2016	3
GCCACCCACA CAAGGAGGAG GAAGAGGAAA TGGTGACCCA AGTGTGGGGG TTGTGGTTCA 2076	3
GGAAAGCATC TTCCCAGGGG TCCACCTCCC TTTATAAACC CCACCAGAAC CACATCATTA 2136	3
AAAGGTTTGA CTGCGAAAAA AAAAAAAA AAAAA 2171	Ĺ

【図面の簡単な説明】

- 【図1】 ラットのナトリウム依存性ジカルボン酸塩トランスポーター (N a DC-1) 遺伝子の c RNA を注入した卵母細胞によるグルタル酸の取り込み 実験の結果を示す図。
- 【図2】 ラット腎組織由来mRNA及び/又はラットNaDC-1遺伝子のcRNAを注入した卵母細胞によるPAHの取り込み実験の結果を示す図。
- 【図3】 ラット有機陰イオントランスポーター〇AT1の疎水性プロットを示す図。

- 【図4】 ラットの各臓器組織におけるOAT1遺伝子mRNAの発現をノーザンブロッティングにより解析した結果を示した電気泳動の写真。
- 【図5】 ラット〇AT1遺伝子cRNAを注入した卵母細胞によるPAH の取り込み実験においてグルタル酸とのプレインキュベーションの影響を調べた 結果を示す図。
- 【図6】 ラット〇AT1遺伝子cRNAを注入した卵母細胞によるPAH の取り込み実験において添加する塩の影響を調べた結果を示す図。
- 【図7】 ラットOAT1遺伝子cRNAを注入した卵母細胞によるPAHの取り込み実験において基質PAHの濃度の影響を調べた結果を示す図。
- 【図8】 ラット〇AT1遺伝子cRNAを注入した卵母細胞によるPAH の取り込み実験において、系への各種薬物添加の影響を調べた結果を示す図。
- 【図9】 基質として各種薬物を用いた場合の、ラットOAT1遺伝子の c RNAを注入した卵母細胞による取り込み実験の結果を示す図。

【書類名】 図面

【図1】

【図2】

【図4】

【図5】

【図6】

【図7】

【書類名】 要約書

【要約】

【課題】 新規な有機陰イオントランスポーター及びそれをコードする遺伝子を 提供する。

【解決手段】 配列番号1もしくは2で示されるアミノ酸配列からなるか、又は、配列番号1もしくは2で示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列からなる、有機陰イオンを輸送する能力を有するタンパク質。前記タンパク質をコードする遺伝子。

【選択図】 なし

特平 9-134182

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【特許出願人】

【識別番号】

597072006

【住所又は居所】

神奈川県相模原市由野台1-23-7

【氏名又は名称】

遠藤 仁

【代理人】

申請人

【識別番号】

100076923

【住所又は居所】

大阪府大阪市淀川区加島3-16-89 田辺製薬

株式会社内

【氏名又は名称】

箕浦 繁夫

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【特許出願人】

【識別番号】

597072006

【住所又は居所】

神奈川県相模原市由野台1-23-7

【氏名又は名称】

遠藤 仁

【代理人】

申請人

【識別番号】

100076923

【住所又は居所】

大阪府大阪市淀川区加島3-16-89 田辺製薬

株式会社内

【氏名又は名称】

箕浦 繁夫

出願人履歴情報

識別番号

[597072006]

1. 変更年月日

1997年 5月23日

[変更理由]

新規登録

住 所

神奈川県相模原市由野台1-23-7

氏 名

遠藤 仁