```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

df=pd.read_csv('/content/StudentsPerformance (2).csv')
df

→		gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score	
	0	female	group B	bachelor's degree	standard	none	72	72	74	
	1	female	group C	some college	standard	completed	69	90	88	
	2	female	group B	master's degree	standard	none	90	95	93	
	3	male	group A	associate's degree	free/reduced	none	47	57	44	
	4	male	group C	some college	standard	none	76	78	75	
	995	female	group E	master's degree	standard	completed	88	99	95	
	996	male	group C	high school	free/reduced	none	62	55	55	
	997	female	group C	high school	free/reduced	completed	59	71	65	
	998	female	group D	some college	standard	completed	68	78	77	
	999	female	group D	some college	free/reduced	none	77	86	86	
	1000	rows × 8 c	columns							

Next steps:

Generate code with df

View recommended plots

New interactive sheet

Data Checks to perform

Check Missing values,

Check Duplicates,

Check data type,

Check the number of unique values of each column,

Check statistics of data set,

Check various categories present in the different categorical column.

df.isnull().sum()

$\overline{\Rightarrow}$		0
	gender	0
	race/ethnicity	0
	parental level of education	0
	lunch	0
	test preparation course	0
	math score	0
	reading score	0
	writing score	0

dtype: int64

```
df.duplicated().sum()
→ 0
df.info()
<<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 1000 entries, 0 to 999
    Data columns (total 8 columns):
                                     Non-Null Count Dtype
         Column
         gender
                                                     object
                                     1000 non-null
                                     1000 non-null
                                                    object
         race/ethnicity
         parental level of education 1000 non-null
                                                    object
                                     1000 non-null
         lunch
                                                    object
                                     1000 non-null
     4 test preparation course
                                                    object
         math score
                                     1000 non-null
                                                     int64
       reading score
                                     1000 non-null
                                                     int64
         writing score
                                     1000 non-null
                                                     int64
     dtypes: int64(3), object(5)
    memory usage: 62.6+ KB
df.nunique()
```


	0
gender	2
race/ethnicity	5
parental level of education	6
lunch	2
test preparation course	2
math score	81
reading score	72
writing score	77

dtype: int64

df.describe()

	math score	reading score	writing score
count	1000.00000	1000.000000	1000.000000
mean	66.08900	69.169000	68.054000
std	15.16308	14.600192	15.195657
min	0.00000	17.000000	10.000000
25%	57.00000	59.000000	57.750000
50%	66.00000	70.000000	69.000000
75%	77.00000	79.000000	79.000000
max	100.00000	100.000000	100.000000

1/10/25, 11:18 AM Untitled7.ipynb - Colab

Insights or Observation

From the above description of numerical data, all means are very close to each other between 66 and 69 All the standard deviation are also close between 14.6-15.19 While there is a minimum of 0 for maths, other are having 17 and 10 value

df.head()

\Rightarrow		gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score	
	0	female	group B	bachelor's degree	standard	none	72	72	74	
	1	female	group C	some college	standard	completed	69	90	88	
	2	female	group B	master's degree	standard	none	90	95	93	
	3	male	group A	associate's degree	free/reduced	none	47	57	44	
	4	male	group C	some college	standard	none	76	78	75	

Next steps:

Generate code with df

View recommended plots

New interactive sheet

df.tail()

 $\overline{\Rightarrow}$ parental level of test preparation reading writing math gender race/ethnicity lunch education course score score score 995 female group E master's degree standard 88 99 95 completed high school free/reduced 996 male 62 55 55 group C none high school free/reduced 997 group C 65 female completed 59 71 some college 998 female group D standard completed 68 78 77 999 female group D some college free/reduced 77 86 86 none

```
[feature for feature in df.columns if df[feature].dtype=='0']
→ ['gender',
     'race/ethnicity',
     'parental level of education',
     'lunch',
     'test preparation course']
df.columns
   Index(['gender', 'race/ethnicity', 'parental level of education', 'lunch',
           'test preparation course', 'math score', 'reading score',
          'writing score'],
          dtype='object')
#segrregate numerical and categorical features
num features = [feature for feature in df.columns if df[feature].dtype!='0']
cat features = [feature for feature in df.columns if df[feature].dtype=='0']
num features
['math score', 'reading score', 'writing score']
cat features
→ ['gender',
     'race/ethnicity',
     'parental level of education',
     'lunch'.
     'test preparation course']
df['gender'].unique()
```

```
array(['female', 'male'], dtype=object)
df['gender'].value counts()
\overline{\Rightarrow}
             count
     gender
      female
               518
      male
               482
     dtype: int64
df['race/ethnicity'].value_counts()
\overline{\Rightarrow}
                     count
     race/ethnicity
         group C
                       319
         group D
                       262
         group B
                       190
         group E
                       140
         group A
                        89
     dtype: int64
df['total_score'] = (df['math score'] + df['reading score'] + df['writing score'])
df['average'] = df['total score'] /3
df.head()
```

- 61		_
	4.	
	-	$\overline{}$

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score	total_score	average	11
0	female	group B	bachelor's degree	standard	none	72	72	74	218	72.666667	
1	female	group C	some college	standard	completed	69	90	88	247	82.333333	
2	female	group B	master's degree	standard	none	90	95	93	278	92.666667	
3	male	group A	associate's degree	free/reduced	none	47	57	44	148	49.333333	
			some			=-0	=-0		000	=	

Next steps:

Generate code with df

View recommended plots

New interactive sheet

```
## Explore More Visulaization
fig,axis = plt.subplots(1,2,figsize=(15,8))
plt.subplot(121)
sns.histplot(data=df , x='average',bins=30 , kde=True,color='g')
plt.subplot(122)
sns.histplot(data=df, x='average',bins=30 , kde=True,hue='gender')
```

<Axes: xlabel='average', ylabel='Count'>

Insights

.Females students have performed well than male students

```
plt.subplots(1,3,figsize=(25,6))
plt.subplot(141)
sns.histplot(data=df,x='average',kde=True , hue='lunch')
plt.subplot(142)
sns.histplot(data=df[df.gender=='female'], x='average', kde=True, hue='lunch')
plt.subplot(143)
sns.histplot(data=df[df.gender=='male'], x='average', kde=True, hue='lunch')
```


Insights

Standard Lunch help students perform well in exams

Standard Lunch helps perform well in exams both males and females

```
plt.subplots(1,3,figsize=(25,6))
plt.subplot(141)
sns.histplot(data=df,x='average',kde=True,hue='parental level of education')
plt.subplot(142)
```

sns.histplot(data=df[df.gender=='female'],x='average',kde=True,hue='parental level of education'
plt.subplot(143)

sns.histplot(data=df[df.gender=='male'],x='average',kde=True,hue='parental level of education')


```
plt.subplots(1,3,figsize=(25,6))
plt.subplot(141)
ax =sns.histplot(data=df,x='average',kde=True,hue='race/ethnicity')
plt.subplot(142)
ax =sns.histplot(data=df[df.gender=='female'],x='average',kde=True,hue='race/ethnicity')
plt.subplot(143)
ax =sns.histplot(data=df[df.gender=='male'],x='average',kde=True,hue='race/ethnicity')
plt.show()
```

race/ethnicity

race/ethnicity