MA 322: Scientific Computing

Department of Mathematics Indian Institute of Technology Guwahati

March 23, 2023

Chapter 5: Numerical Differentiations and Initial Value Problems for ODEs

Error in second order numerical differentiation

$$f(x) = -\cos x$$

h	$f''(0) - D_h^{(2)} f(0)$	Ratio	$f''(0) - \tilde{D}_h^{(2)} f(0)$
.5	2.07E - 2		2.07E - 2
.25	5.20E - 3	3.98	5.20E - 3
.125	1.30E - 3	3.99	1.30E - 3
.0625	3.25E - 4	4.00	3.25E - 4
.03125	8.14E - 5	4.00	8.45E - 5
.015625	2.03E - 5	4.00	2.56E - 6
.0078125	5.09E - 6	4.00	-7.94E - 5
.00390625	1.27E - 6	4.00	-7.94E - 5
.001953125	3.18E - 7	4.00	-1.39E - 3

Euler method

$$y'=y \qquad y(0)=1.$$

	x	$y_h(x)$	Y(x)	$Y(x) - y_h(x)$
h = .2	.40	1.44000	1.49182	.05182
	.80	2.07360	2.22554	.15194
	1.20	2.98598	3.32012	.33413
*	1.60	4.29982	4.95303	.65321
	2.00	6.19174	7.38906	1.19732
h = .1	.40	1,46410	1.49182	.02772
	.80	2.14359	2.22554	.08195
	1.20	3.13843	3.32012	.18169
	1.60	4.59497	4.95303	.35806
	2.00	6.72750	7.38906	.66156
h = .05	.40	1.47746	1.49182	.01437
	.80	2.18287	2.22554	.04267
	1.20	3.22510	3.32012	.09502
	1.60	4.76494	4.95303	.18809
•	2.00	7.03999	7.38906	.34907

Euler method

y' = 1/(1 +	$-x^{2}$) -	$-2y^{2}$	y(0) = 0.
-------------	--------------	-----------	-----------

	x	$y_h(x)$	Y(x)	$Y(x) - y_h(x)$
h = .2	0.00	0.0	0.0	0.0
	.40	.37631	.34483	03148
	.80	.54228	.48780	05448
	1.20	.52709	.49180	03529
	1.60	.46632	.44944	01689
	2.00	.40682	.40000	00682
h = .1	.40	.36085	.34483	01603
	.80	.51371	.48780	02590
	1.20	.50961	.49180	01781
	1.60	.45872	.44944	00928
	2.00	.40419	.40000	00419
h = .05	.40	.35287	.34483	00804
	.80	.50049	.48780	01268
	1.20	.50073	.49180	00892
	1.60	.45425	.44944	00481
	2.00	.40227	.40000	00227

Rounding effects in Euler's method

h	~	Chopped Decimal	Rounded Decimal	Exact Arithmetic
	. x	Decimal	Decimal	Anumenc
.04	1	-1.00E - 2	-1.70E - 2	-1.70E - 2
	2	-1.17E - 2	1.83E - 2	-1.83E - 2
	3	-1.20E - 3	-2.80E - 3	-2.78E - 3
	4	1.00E - 2	1.60E - 2	1.53E - 2
	5	1.13E - 2	1.96E - 2	1.94E - 2
.02	1	7.00E - 3	-9.00E - 3	-8.46E - 3
	2	4.00E - 3	-9.10E - 3	-9.13E - 3
	3	2.30E - 3	-1.40E - 3	-1.40E - 3
	4	-6.00E - 3	8.00E - 3	7.62E - 3
	. 5	-6.00E - 3	8.50E - 3	9.63E - 3
.01	1	2.80E - 2	-3.00E - 3	-4.22E - 3
	2	2.28E - 2	-4.30E - 3	-4.56E - 3
	3	7.40E - 3	-4.00E - 4	-7.03E-4
	4	-2.30E-2	3.00E - 3	3.80E - 3
	5	-2.41E - 2	4.60E - 3	4.81E - 3

Theorem

Assume that the solution Y(x) of IVP has a bounded second derivative on $[x_0, b]$. Then the solution $\{y_h(x_n): x_0 \le x \le b\}$ obtained by Euler's method satisfies

$$\max_{x_0 \le x \le b} |Y(x_n) - y_h(x_n)| \le e^{(b-x_0)K} |e_0 + \left[\frac{2^{(b-x_0)K} - 1}{K}\right] \tau(h),$$

where $\tau(h) = \frac{h}{2} ||Y''||_{\infty}$ and $e_0 = Y_0 - y_h(x_0)$. If in addition to the conditions to the above theorem,

$$|Y_0 - y_h(x_0)| \le c_1 h$$
 as $h \to 0$

for some $c_0 \ge 0$, then there is a constant $B \ge 0$ for which

$$\max_{x_0 < x < b} |Y(x_n) - y_h(x_n)| \le Bh.$$

