Studiați comportarea metodei secantei pentru $ecuația 25x^2 - 10x + 1 = 0$. Ea are o radacina multiplă x = 0.2. Teoria ne spune că metoda nu este aplicabilă. Totuși pentru valorile de pornire $x_0 = 0.9$; $x_1 = 1$; si eroarea absoluta ea = 1e - 8, se poate determina o radacina.

Ce se intâmplă pentru valorile de pornire $x_0 = 0.1$, $x_1 = 0.3$?

Dar daca la testul de oprire adaugam conditia $|f(x_{curent})| < eroarea absoluta si luam eroarea <math>ea = 1e - 12$?

Pentru a calcula valoarea x_n din metoda secantei se folosește formula $x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$, $n \in \mathbb{N}$.

Un aspect important din formulă este diferența de la numitor $f(x_n) - f(x_{n-1})$.

Reprezentarea grafică a funcției.

```
f = @(x) 25.*x.^2-10.*x+1;
fplot(f,[-0.5 0.9]);
```


Testarea valorilor $x_0 = 0.9$, $x_1 = 1$ si ea = 1e - 8.

```
format long
x0 = 0.9;
x1 = 1;
ea = 1e-8;
```

```
diferenta = f(x0)-f(x1)

diferenta =
   -3.75000000000000000

[z,ni] = secant(f,x0,x1,ea)

z =
   0.200000011670111
```

Pentru valorile $x_0 = 0.9$, $x_1 = 1_{\Si}$ ea = 1e - 8 se găsește o soluție pentru că în fiecare moment diferența dintre $f(x_n) - f(x_{n-1})$ se apropie de 0, însă este mai mare in modul decat epsilonul mașinii. Acest fapt se datorează valorilor de intrare x_0 si x_1 pentru care diferența inițială este $f(x_0) - f(x_I) > 0$, dar \Si erorii absolute. Eroarea absolută permite algoritmului să se oprească înainte să ajungă la valori foarte apropiate între rădăcina curentă \Si radacina determinată la iterația anterioară.

Dacă valorile dintre două radăcini consecutive sunt foarte apropiate diferența $f(x_n) - f(x_{n-1})$ ajunge la 0.

Testarea valorilor $x_0 = 0.1$, $x_1 = 0.3$

ni =

```
x0 = 0.1;
x1 = 0.3;
ea = 1e-8;
diferenta = f(x0)-f(x1)

diferenta = 0
```

```
[z,ni] = secant(f,x0,x1,ea) % Returneaza eroare. z=NaN
```

Error using secant (line 32) numarul maxim de iteratii depasit

Valorile de pornire $x_0 = 0.1$, $x_1 = 0.3$ au valoarea funcției $f(x_0) - f(x_I) = 0.25$ (luând în considerare că ea = 1e - 8). Acest lucru reprezintă din start o problemă pentru că la calcularea următoarei valori diferența de la numitor este 0, ceea ce înseamnă o împărțire la 0.

Acelasi lucru se întamplă și pentru $x_0 = 0.15$ și $x_1 = 0.25$.

```
x0 = 0.15;
x1 = 0.25;
ea = 1e-8;
diferenta = f(x0)-f(x1)
diferenta =
```

```
[z,ni] = secant(f,x0,x1,ea) % Returneaza eroare. z=NaN
```

```
Error using secant (line 32) numarul maxim de iteratii depasit
```

numarul maxim de iteratii depasit

Totuși, pentru unele valori x_0 si x_1 cu proprietatea (teoretic) $f(x_0) = f(x_I)$ algoritmul găsește o soluție. Explicația constă în modul în care sistemul efectuează operațiile de înmulțire/adunare și reprezintă numerele. Dacă diferența $f(x_n) - f(x_{n-1})$ este mai mare in modul ca epsilonul mașinii, atunci sistemul găsește o soluție.

Exemplu în care x_0 si x_1 sunt apropiate de solutie, au $f(x_0) = f(x_1)$ si totusi se găsește o soluție: $x_0 = 0.19$ si $x_1 = 0.21$. Eroarea absolută considerată este în continuare ea = 1e - 8.

```
x0 = 0.19;
x1 = 0.21;
diferenta = f(x0)-f(x1)

diferenta > eps

ans = logical
1

ea = 1e-8;
[z,ni] = secant(f,x0,x1,ea)

z = 0.209991455078124
ni = 3
```

Nu este necesar ca valorile de start să fie dispuse de o parte și de cealaltă a rădăcinii pentru ca metoda să eșueze. Pentru $x_0 = 0.9$ și $x_1 = 0.900000000000001(15 \, {\rm zerouri})$ nu găseaște soluția, pentru că diferența $f(x_0) - f(x_I)$ este mai mică decât epsilonul masinii, iar sistemul o aproximează la 0.

```
x0 = 0.9;
x1 = 0.900000000000000001;
diferenta = f(x0)-f(x1)
diferenta < eps
ans = logical
1
ea = 1e-8;
[z,ni] = secant(f,x0,x1,ea) % Returneaza eroare. z=NaN
Error using secant (line 32)
```

Pentru $x_0 = 0.9$ si $x_1 = 0.90000000000001(14 \text{ zerouri})$ se gaseaște o solutie.

```
x0 = 0.9;
  x1 = 0.90000000000000001;
  f(x0)-f(x1)
  ans =
      -5.329070518200751e-15
  ea = 1e-8;
  [z,ni] = secant(f,x0,x1,ea) % Returneaza o solutie
    0.200000013142589
 ni =
     37
Condiția suplimentară |f(x_{curent})| < ea ne asigură că soluția gasită este corectă, adică f(soluția gasită) tinde la
0.
De exemplu, pentru x_0 = 0.17 și x_1 = 0.23 se gasește o solutie (x = 0.2304...), însă valoarea funcției nu este
apropiată de 0 (f(x) = 0.023...). Dacă aplicăm conditia suplimentară metoda secantei nu mai gaseste o
soluție.
  x0 = 0.17;
  x1 = 0.23;
  ea = 1e-12;
  [z,ni] = secant(f,x0,x1,ea) % Gaseste solutie
    0.230468750000000
  ni =
  fz = f(z)
    0.023208618164062
  [z,ni] = secant_modificat(f,x0,x1,ea) % Returneaza eroare. z=NaN
  Error using secant_modificat (line 34)
  numarul maxim de iteratii depasit
```

Aplicarea condiției suplimentare pentru valorile de pornire $x_0 = 0.9$ și $x_1 = 1$.

```
x0 = 0.9;
x1 = 1;
ea = 1e-12;
[z,ni] = secant_modificat(f,x0,x1,ea)
```

z = 0.200000002162418

ni = 41

$$fz = f(z)$$

fz =

fz < ea % f(solutia gasita) este mai mica decat eroarea absoluta</pre>

ans = logical 1