Department of Mathematics

NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS (MA221TC) UNIT 4: VECTOR DIFFERENTIATION

TUTORIAL SHEET-1

- 2. The displacement of a particle moving along a path is given by $x = (1 t^3)$, $y = (1 + t^2)$, z = (2t 5) the magnitude of velocity vector at t = 1 second is _____ Ans: $\sqrt{17}$
- 3. For the curves whose equations are given below, find the unit tangent vectors:

a)
$$x = t^2 + 1$$
, $y = 4t - 3$, $z = 2(t^2 - 3t)$ at $t = 0$

b)
$$\vec{r} = (a\cos 3t) \hat{\imath} + (a\sin 3t) \hat{\jmath} + (4at) \hat{k}$$
 at $t = \frac{\pi}{4}$

Ans: (i)
$$\hat{t} = \frac{(2\hat{j} - 3\hat{k})}{\sqrt{13}}$$
 (ii) $\hat{t} = \frac{1}{5\sqrt{2}} \left[-3\hat{t} - 3\hat{j} + 4\sqrt{2}\hat{k} \right]$

- 4. A particle moves along the curve $\vec{r} = 2t^2 \hat{\imath} + (t^2 4t) \hat{\jmath} + (3t 5) \hat{k}$. Find the component of velocity and acceleration in the direction of vector c = i 3j + 2k at t = 1.

 Ans: $\frac{16}{\sqrt{14}} & \frac{-2}{\sqrt{14}}$
- 5. A person on a hang glider is spiralling upward due to rapidly rising air on a path having position vector $r(t) = 3\cos(t) \hat{\imath} + 3\sin(t) \hat{\jmath} + t^2 \hat{k}$. Find (a) the velocity and acceleration vectors (b) the glider's speed at any time t.

Ans:
$$v = 3\sin(t) \hat{i} + 3\cos(t) \hat{j} + 2t\hat{k};$$

 $a = -3\cos t \hat{i} + -3\sin t \hat{j} + 2\hat{k};$
 $|v| = \sqrt{9 + 4t^2}$

Department of Mathematics

TUTORIAL SHEET-2

1. If
$$\phi(x, y, z) = xy^2z^3 - x^3y^2z$$
, then $|\nabla \phi|$ at $(1, -1, 1)$ is _____. Ans: $2\sqrt{2}$

2. The maximum directional derivative of
$$\phi(x, y, z) = x^2y + yz^2 - xz^3$$
 at $(-1,2,1)$ is ____. Ans: $\sqrt{78}$

3. If
$$\phi(x, y, z) = x^2 + \sin y + z$$
 then $|\nabla \phi|$ at $\left(0, \frac{\pi}{2}, 1\right)$ is _____.
Ans: \hat{k}

4. Find the unit normal vector to the surface
$$\phi(x, y, z) = x^2y + y^2z + xz^2 - 5$$
 at the point $(1, -1, 2)$.

(1, -1, 2).
Ans:
$$\frac{1}{\sqrt{38}}(2\hat{\imath} - 3\hat{\jmath} + 5\hat{k})$$

5. Find the constants
$$a$$
 and b so that the surface $3x^2 - 2y^2 - 3z^2 + 8 = 0$ is orthogonal to the surface $ax^2 + y^2 = bz$ at the point $(-1, 2, 1)$.

Ans:
$$a = \frac{4}{9}$$
, $b = \frac{40}{9}$

7. Find the directional derivative of
$$\phi(x, y, z) = xyz - xy^2z^3$$
 at $(1, 2, -1)$ in the direction of $\hat{\imath} - \hat{\jmath} - 3\hat{k}$.

Ans: $\frac{29}{\sqrt{11}}$

Ans:
$$\frac{29}{\sqrt{11}}$$

Department of Mathematics

TUTORIAL SHEET-3

1. If
$$\vec{f} = 3x^2\hat{\imath} + 5xy^2\hat{\jmath} + xyz^3\hat{k}$$
 then find $div \ \vec{f}$ at $(1, 2, 3)$ is _____. Ans: 80

2. If
$$\vec{f} = (y^2 + z^2 - x^2)\hat{\imath} + (z^2 + x^2 - y^2)\hat{\jmath} + (x^2 + y^2 - z^2)\hat{k}$$
 then find $div \ \vec{f}$ and $curl \ \vec{f}$
Ans: $div \ \vec{f} = -2(x + y + z) \ curl \ \vec{f} = 2[(y - z)\hat{\imath} + (z - x)\hat{\jmath} + (x - y)\hat{k}]$

- 3. Show that the vector field $\vec{f} = (x + 3y)\hat{\imath} + (y 3z)\hat{\jmath} + (x 2z)\hat{k}$ is solenoidal.
- 4. Determine the constant a such that the vector field $\vec{f} = 3x\hat{\imath} + (x+y)\hat{\jmath} az\hat{k}$ is solenoidal.

Ans: 4

5. If
$$\vec{f} = x^2\hat{\imath} + y^2\hat{\jmath} + z^2\hat{k}$$
 and $\vec{g} = yz\hat{\imath} + xz\hat{\jmath} + xy\hat{k}$ then show that $\vec{f} \times \vec{g}$ is solenoidal.

6. If
$$\vec{f} = (2x + 3y + az)\hat{\imath} + (bx + 2y + 3z)\hat{\jmath} + (2x + cy + 3z)\hat{k}$$
 is irrotational vector field, then find the constants a, b, c .

Ans:
$$a = 2, b = 3, c = 3$$

7. If
$$\phi = x^2y + 2xy + z^2$$
 then show that $|\nabla \phi|$ is irrotational.

8. If
$$\phi = x^2 - y^2$$
 then show that ϕ satisfies the Laplacian equation.

9. If
$$\phi = 2x^2yz^3$$
 then find $\nabla^2 \phi$ at $(1, 1, 1)$.

Ans: 1

10. If
$$\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$$
 and $r = |\vec{r}|$ then show that $r^n\vec{r}$ is irrotational for all values of n and solenoidal for $n = -3$.

11. Show that
$$\vec{f} = (6xy + z^3)\hat{\imath} + (3x^2 - z)\hat{\jmath} + (3xz^2 - y)\hat{k}$$
 is irrotational. Find the function ϕ such that $\vec{f} = \nabla \phi$.

Ans:
$$\phi = 3x^2y + xz^3 - yz$$
.