Code

critical value Z for a 99% confidence interval using the qnorm() function. For a two-sided confidence interval, a 99% confidence level means that $\alpha=1-0.99=0.01$, and we are interested in the value Z such that the area to the left is $1-\alpha/2=1-0.01/2=0.995$.

#critical value Z

qnorm(0.995) #give 2.58

Based on the critical value calculated in the previous step, $z_99 = 2.58$, the formula for the 99% confidence interval is:

Confidence Interval = Point Estimate
$$\pm \underbrace{2.58 \times \text{SE}}_{\text{MoE}}$$

The critical Z-value, $\mathbf{Z}_{1-\alpha/2}$, is replaced by 2.58, which corresponds to the 99% confidence level ($\alpha=0.01$). This value is the multiplier for the Standard Error (SE) to calculate the Margin of Error (MoE).