- 1) Find the first 4 terms and the 100th of the following:
 - a) $a_n = n + 1$
 - b) $a_n = n^n$
- 2) Find the 42th term, the sum of the first 80 terms and the sum to infinity (if possible) for the following:
 - a) 5,8,11,14,...
 - b) $3, \frac{3}{2}, 0, -\frac{3}{2}, \dots$
 - c) 2,4,8,16,...
 - d) $3, \frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \dots$
- 3) Express the repeating decimal as a fraction:
 - a) 0.030303...
 - b) 2.1125
- 4) Expand the following using Binomial Theorem:
 - a) $\left(\frac{1}{x} \sqrt{x}\right)^5$
 - b) $\left(2 + \frac{x}{2}\right)^5$
- 5) Find the term containing x^4 in the expansion $(x+2y)^{10}$.
- 6) Find the coefficient containing b^8 in the expansion $(a+b^2)^{12}$.

Answer:

1)

- a) 2,3,4,5 ;101
- b) 1,4,27,256; 100^{100}

2)

- a) $T_{42} = 128$; $S_{80} = 9880$
- b) $T_{42} = -58.5$; $S_{80} = -4500$
- c) $T_{42} = 9.67 \times 10^{24}$; $S_{80} = -9.74 \times 10^{47}$
- d) $T_{42} = 1.36 \times 10^{-12}$; $S_{80} = 6$; $S_{\infty} = 6$

3)

- a) $\frac{1}{33}$
- b) $\frac{10457}{4950}$

4)

- a) $\frac{1}{x^5} \frac{5\sqrt{x}}{x^4} + \frac{10}{x^2} \frac{10\sqrt{x}}{x} + 5x x^2\sqrt{x}$
- b) $32+40x+20x^2+5x^3+\frac{5x^4}{8}+\frac{x^5}{32}$
- 5) $13440x^4y^6$
- 6) 495*a*⁸