

国 特 許 庁 PATENT OFFICE O

09/960,744 Tetsuyz Kaneko September 24,2001

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2001年 9月18日

出願番号

Application Number:

特願2001-282550

出 願 Applicant(s):

キヤノン株式会社

2001年10月19日

特許庁長官 Commissioner, Japan Patent Office

特2001-282550

【書類名】 特許願

【整理番号】 4539008

【提出日】 平成13年 9月18日

【あて先】 特許庁長官殿

【国際特許分類】 H01L 21/00

【発明の名称】 画像表示装置の製造方法

【請求項の数】 30

【発明者】

【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会

社内

【氏名】 金子 哲也

【発明者】

【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会

社内

【氏名】 中田 耕平

【発明者】

【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会

社内

【氏名】 宮崎 俊彦

【特許出願人】

【識別番号】 000001007

【氏名又は名称】 キヤノン株式会社

【代理人】

【識別番号】 100096828

【弁理士】

【氏名又は名称】 渡辺 敬介

【電話番号】 03-3501-2138

【選任した代理人】

【識別番号】 100059410

【弁理士】

【氏名又は名称】 豊田 善雄

【電話番号】

03-3501-2138

【選任した代理人】

【識別番号】 100110870

【弁理士】

【氏名又は名称】 山口 芳広

【電話番号】 03-3501-2138

【先の出願に基づく優先権主張】

【出願番号】 特願2000-298026

【出願日】

平成12年 9月29日

【手数料の表示】

【予納台帳番号】 004938

【納付金額】 21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0101029

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 画像表示装置の製造方法

【特許請求の範囲】

【請求項1】 画像表示装置の製造方法であって、

電子放出素子を有する第1の部材と、前記電子放出素子が放出する電子が照射 されて発光する蛍光体を有する第2の部材とを、真空雰囲気を実現している封着 処理室において封着する工程を有しており、

該封着の前に、前記電子放出素子のエージング工程を行うことを特徴とする画像表示装置の製造方法。

【請求項2】 前記エージング工程を行った後、前記電子放出素子を大気に 曝すことなく前記封着を行うことを特徴とする請求項1に記載の画像表示装置の 製造方法。

【請求項3】 前記エージング工程は、前記電子放出素子が存在する領域内が1×10⁻⁴Pa以下の圧力になっている状態で行うことを特徴とする請求項1 もしくは2に記載の画像表示装置の製造方法。

【請求項4】 前記エージング工程の後、前記封着工程において前記第1の部材と前記第2の部材に挟まれる孤立空間が形成されるまでの間、前記電子放出素子が存在する領域内の圧力が実質的に1×10⁻⁴Pa以下の状態に保たれることを特徴とする請求項3に記載の画像表示装置の製造方法。

【請求項 5 】 前記エージング工程は、前記電子放出素子が存在する領域内の有機物質の分圧が 1×10^{-6} P a 以下になっている状態で行うことを特徴とする請求項 1 乃至 4 いずれかに記載の画像表示装置の製造方法。

【請求項6】 前記エージング工程の後、前記封着工程において前記第1の部材と前記第2の部材に挟まれる孤立空間が形成されるまでの間、前記電子放出素子が存在する領域内の有機物質の分圧が実質的に1×10⁻⁶ Pa以下の状態に保たれることを特徴とする請求項5に記載の画像表示装置の製造方法。

【請求項7】 前記エージング工程は、前記電子放出素子に電圧を印加する工程であることを特徴とする請求項1乃至6いずれかに記載の画像表示装置の製造方法。

【請求項8】 前記電圧を印加する工程は、その電圧値が前記電子放出素子の画像表示の時に印加される通常の駆動電圧値よりも大きいことを特徴とする請求項7に記載の画像表示装置の製造方法。

【請求項9】 前記エージング工程は、前記電子放出素子から電子を放出させる工程であることを特徴とする請求項7に記載の画像表示装置の製造方法。

【請求項10】 前記エージング工程と前記封着工程の間にパネルゲッタ工程を更に有することを特徴とする請求項1乃至9いずれかに記載の画像表示装置の製造方法。

【請求項11】 前記エージング工程に先立って、エレクトロンビームクリーニング工程を有することを特徴とする請求項1乃至10いずれかに記載の画像表示装置の製造方法。

【請求項12】 画像表示装置の製造方法であって、

複数の電子放出素子を有する第1の部材と、前記電子放出素子が放出する電子が照射されて発光する蛍光体を有する第2の部材とを、真空雰囲気を実現している封着処理室において封着する工程を有しており、

該封着の前に、前記複数の電子放出素子の選択的な特性調整を行う特性調整工程を有することを特徴とする画像表示装置の製造方法。

【請求項13】 前記特性調整工程を行った後、前記電子放出素子を大気に 曝すことなく前記封着を行うことを特徴とする請求項12に記載の画像表示装置 の製造方法。

【請求項14】 前記特性調整工程は、前記電子放出素子が存在する領域内の有機物質の分圧が1×10⁻⁶ P a 以下になっている状態で行うことを特徴とする請求項12もしくは13に記載の画像表示装置の製造方法。

【請求項15】 前記特性調整工程は、前記電子放出素子に電圧を印加する工程であることを特徴とする請求項12乃至14いずれかに記載の画像表示装置の製造方法。

【請求項16】 前記電圧を印加する工程は、その電圧値が前記電子放出素子の画像表示の時に印加される通常の駆動電圧値よりも大きいことを特徴とする請求項15に記載の画像表示装置の製造方法。

【請求項17】 前記特性調整工程は、前記電子放出素子から電子を放出させる工程であることを特徴とする請求項15に記載の画像表示装置の製造方法。

【請求項18】 前記特性調整工程と前記封着工程の間にパネルゲッタ工程を更に有することを特徴とする請求項12乃至17いずれかに記載の画像表示装置の製造方法。

【請求項19】 前記特性調整工程に先立って、エレクトロンビームクリーニング工程を有することを特徴とする請求項12乃至18いずれかに記載の画像表示装置の製造方法。

【請求項20】 画像表示装置の製造方法であって、

電子放出素子を有する第1の部材と、前記電子放出素子が放出する電子が照射 されて発光する蛍光体を有する第2の部材とを、真空雰囲気を実現している封着 処理室において封着する工程を有しており、

活性化工程を行った前記電子放出素子に対して、前記封着の前に、電圧を印加する電圧印加工程を行うことを特徴とする画像表示装置の製造方法。

【請求項21】 画像表示装置の製造方法であって、

電子放出素子を有する第1の部材と、前記電子放出素子が放出する電子が照射 されて発光する蛍光体を有する第2の部材とを、真空雰囲気を実現している封着 処理室において封着する工程を有しており、

電子放出部及び/もしくは電子放出部近傍に炭素及び/もしくは炭素化合物を有する前記電子放出素子に対して、前記封着の前に、電圧を印加する電圧印加工程を行うことを特徴とする画像表示装置の製造方法。

【請求項22】 前記電圧印加工程を行った後、前記電子放出素子を大気に曝すことなく前記封着を行うことを特徴とする請求項20もしくは21に記載の画像表示装置の製造方法。

【請求項23】 前記電圧印加工程は、前記電子放出素子が存在する領域内の有機物質の分圧が1×10⁻⁶ Pa以下になっている状態で行うことを特徴とする請求項20万至22いずれかに記載の画像表示装置の製造方法。

【請求項24】 前記電圧印加工程は、その電圧値が前記電子放出素子の画像表示の時に印加される通常の駆動電圧値よりも大きいことを特徴とする請求項

20万至23いずれかに記載の画像表示装置の製造方法。

【請求項25】 前記電圧印加工程は、前記電子放出素子から電子を放出させる工程であることを特徴とする請求項20乃至23いずれかに記載の画像表示装置の製造方法。

【請求項26】 前記電圧印加工程と前記封着工程の間にパネルゲッタ工程を更に有することを特徴とする請求項20乃至25いずれかに記載の画像表示装置の製造方法。

【請求項27】 前記電圧印加工程に先立って、エレクトロンビームクリーニング工程を有することを特徴とする請求項20乃至26いずれかに記載の画像表示装置の製造方法。

【請求項28】 画像表示装置の製造方法であって、

電子放出素子を有する第1の部材と、前記電子放出素子が放出する電子が照射 されて発光する蛍光体を有する第2の部材とを、真空雰囲気を実現している封着 処理室において封着する工程を有しており、

該封着の前に、前記電子放出素子に画像表示の時に印加される通常の駆動電圧 値よりも大きい電圧を印加する電圧印加工程を行うことを特徴とする画像表示装 置の製造方法。

【請求項29】 前記電圧を印加する工程と前記封着工程の間にパネルゲッタ工程を更に有することを特徴とする請求項28に記載の画像表示装置の製造方法

【請求項30】 前記電圧を印加する工程に先立って、エレクトロンビーム クリーニング工程を有することを特徴とする請求項28もしくは29に記載の画 像表示装置の製造方法

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、画像表示装置の製造方法に関する。特には、電子放出素子を有する 部材と、蛍光体を有する部材とを組み合わせて得られる画像表示装置の製造方法 に関する。 [0002]

【従来の技術】

従来より、電子放出素子としては、大別して熱電子放出素子と冷陰極電子放出素子の2種類のものが知られている。冷陰極電子放出素子には、電界放出型(以下、FE型という)、金属/絶縁層/金属型(以下、MIM型という)、表面伝導型電子放出素子などがある。

[0003]

FE型の例としては、W. P. Dyke & W. W. Dolan, "Field Emission", Advance in Electron Physics, 8, 89 (1956)、あるいはC. A. Spindt, "PHYSICAL Properties of thin-film field emission cathodes with molybdenum cones", J. Appl. Phys., 47, 5248 (1976) などに開示されたものが知られている。

[0004]

MIM型の例としては、C. A. Mead, "Operation of Tunnel-Emission Devices", J. Appl. Phys., 32,646(1961)などに開示されたものが知られている。

[0005]

表面伝導型電子放出素子型の例としては、M. I. Elinson, Radio Eng. Electron Phys., 10, 1290 (1965) などに開示されたものがある。

[0006]

表面伝導型電子放出素子は、基板上に形成された小面積の薄膜に、膜面に平行に電流を流すことにより電子放出が生ずる現象を利用するものである。この表面伝導型電子放出素子としては、前記エリンソン等によるSnO2薄膜を用いたもの、Au 薄膜によるもの [G. Dittmer: Thin Solis Films, 9,317(1972)]、 In_2O_3/SnO_2 薄膜によるもの [M. Hartwell and C. G. Fonstad: IEEE Tran

s. ED Conf.", 519 (1975)]、カーボン薄膜によるもの[荒木久他:真空、第26巻、第1号、22頁(1983)]などが報告されている

[0007]

上記のような電子放出素子を用いた画像表示装置の製造には、これら電子放出素子をマトリクス配置した電子源基板(リアプレート)を用意すると共に、電子線の励起を受けて発光する蛍光体を設けた蛍光体基板(フェースプレート)を用意し、電子放出素子と蛍光体とが内側となるようにして、且つ、間に真空シール構造を提供する外囲器及び耐大気圧構造を提供するスペーサを配置して、これらフェースプレートとリアプレートとを対向配置してから、フリットガラスなどの低融点物質を封着材として用いて内部をシールし、予め設けておいた真空排気管から内部を真空排気した後、真空排気管を封止して表示パネルとする製造工程が用いられている。

[0008]

また、従来技術として特開平11-135018号、特開平8-96700号 、EPA0767481、EPA0785564、EPA0803892、特開 平4-249827号に記載の技術がある。

[0009]

【発明が解決しようとする課題】

このような、電子放出素子を用いた画像表示装置においては、内部の真空度が高い状態を実現したいという課題がある。

[0010]

本願発明者等は、電子放出素子を用いた画像表示装置において、製造工程のひとつとして知られるいくつかの工程が画像表示装置内部の雰囲気に影響を及ぼすことを鋭意研究の末見出した。

[0011]

本願にかかわる発明は、そのような工程を製造工程のひとつとして有する場合であっても、内部雰囲気の良好な画像表示装置を得ることができる製造方法を実現することを目的とする。

[0012]

【課題を解決するための手段】

本願にかかわる発明のひとつは以下のとおりである。

[0013]

画像表示装置の製造方法であって、

電子放出素子を有する第1の部材と、前記電子放出素子が放出する電子が照射 されて発光する蛍光体を有する第2の部材とを、真空雰囲気を実現している封着 処理室において封着する工程を有しており、

該封着の前に、前記電子放出素子のエージング工程を行うことを特徴とする画像表示装置の製造方法。

[0014]

本願発明者等は電子放出素子のエージングを行う場合、真空度が高い状態(圧力が低い状態)で行うと好適であることを確認した。しかしながら本願発明者等はエージング処理によって真空雰囲気が悪化することを見出した。

[0015]

それらの知見を基に、本願発明者等は真空雰囲気を実現している封着処理室に おいて封着を行う工程を採用すると共に、それに先立ってエージング処理を行う という発明に想到した。

[0016]

本願発明で言うエージングとは電子放出素子に画像表示の駆動の際に印加する電圧よりも高い電圧を印加する、または画像表示の際に電子放出部に照射する電子の有するエネルギーよりも高いエネルギーを有する電子を予め電子放出部に照射する(この高いエネルギーを有する電子の放出源は画像表示装置の構成要素である電子放出素子に限らず、別途設けた画像表示に寄与しない電子ビーム源からの電子の場合も含む)、または放出部にUV照射を行なう等、電子放出特性を制御する工程である。この工程を行っておくことにより、以降の、特には実際の画像表示のための駆動を開始してからの特性の急激な変化を抑制できるのである。特に、このエージング前の電子放出素子に所定の電圧(これは実際の画像表示の際に印加される電圧と同じ大きさの電圧であり、該画像表示の際に印加される電

圧値に幅がある場合はその範囲内の値を持つ所定の電圧)を印加して得られる放 出電流量よりもエージング後の該電子放出素子に前記所定の電圧を印加して得ら れる放出電流量の方が少なくなる場合、実際の画像表示のための駆動を開始して からの特性の急激な変化を長時間にわたって抑制でき、好ましい。

[0017]

また、本願にかかわる他の発明のひとつは以下のように構成される。

[0018]

画像表示装置の製造方法であって、

複数の電子放出素子を有する第1の部材と、前記電子放出素子が放出する電子 が照射されて発光する蛍光体を有する第2の部材とを、真空雰囲気を実現してい る封着処理室において封着する工程を有しており、

該封着の前に、前記複数の電子放出素子の選択的な特性調整を行う特性調整工程を有することを特徴とする画像表示装置の製造方法。

[0019]

本願発明者等は電子放出素子の特性調整を行う場合、真空度が高い状態(圧力が低い状態)で行うと好適であることを確認した。しかしながら本願発明者等は特性調整処理によって真空雰囲気が悪化することを見出した。

[0020]

それらの知見を基に、本願発明者等は真空雰囲気を実現している封着処理室に おいて封着を行う工程を採用すると共に、それに先立って特性調整処理を行うと いう発明に想到した。

[0021]

ここで、複数の電子放出素子の特性調整を選択的に行うとは、特定の素子のみに特性調整を行うことや、特性調整の程度を対象素子により異ならせることを言う。また、ここで言う特性とは、具体的には、印加電圧の大きさと放出電流量の関係や、印加電圧の大きさと電子放出素子に流れる電流量の関係などである。特に本願に記載の各発明は冷陰極電子放出素子を用いる場合に特に好適に採用できる。ここで冷陰極電子放出素子においては少なくとも2つの電極間に電圧が印加されることにより電子が放出される構成となる。該2つの電極間の間隙部の状態

を制御(具体的には間隙部の間隔や材質(結晶状態など)を制御)することにより前述したような諸特性を調整することが可能である。該間隙部の状態の制御としては具体的には該2つの電極間に電圧を印加する構成を好適に採用できる。その際に、特定の素子のみに電圧を印加したり、素子ごとに印加する電圧を異ならせることにより選択的な特性調整を行うことができる。

[0022]

また、本願にかかわる他の発明のひとつは以下のように構成される。

[0023]

画像表示装置の製造方法であって、

電子放出素子を有する第1の部材と、前記電子放出素子が放出する電子が照射 されて発光する蛍光体を有する第2の部材とを、真空雰囲気を実現している封着 処理室において封着する工程を有しており、

活性化工程を行った前記電子放出素子に対して、前記封着の前に、電圧を印加する電圧印加工程を行うことを特徴とする画像表示装置の製造方法。

[0024]

また、本願にかかわる他の発明のひとつは以下のように構成される。

[0025]

画像表示装置の製造方法であって、

電子放出素子を有する第1の部材と、前記電子放出素子が放出する電子が照射 されて発光する蛍光体を有する第2の部材とを、真空雰囲気を実現している封着 処理室において封着する工程を有しており、

電子放出部及び/もしくは電子放出部近傍に炭素及び/もしくは炭素化合物を有する前記電子放出素子に対して、前記封着の前に、電圧を印加する電圧印加工程を行うことを特徴とする画像表示装置の製造方法。

[0026]

本願発明者等は活性化工程を経た電子放出素子、及び/もしくは、炭素及び/ もしくは炭素化合物を電子放出部及び/もしくは電子放出部近傍に有する電子放 出素子、に対して電圧印加を行うことにより良好な画像表示装置を得ることがで きることを確認した。この場合電圧印加は、真空度が高い状態(圧力が低い状態)で行うと好適であることも確認した。しかしながら本願発明者等は該電圧印加 工程によって真空雰囲気が悪化することを見出した。

[0027]

それらの知見を基に、本願発明者等は真空雰囲気を実現している封着処理室において封着を行う工程を採用すると共に、それに先立って電圧印加工程を行うという発明に想到した。なお、ここでいう活性化とは電子放出素子に対して電圧を印加したときの放出電流量を増加させる工程であり、活性化を行う前の電子放出素子に所定の電圧を印加したときの放出電流量よりも、活性化工程を行った電子放出素子に前記所定の電圧を印加したときの放出電流量のほうが大きくなる工程である。特に冷陰極素子であって、2つの電極間に電圧を印加して電子を放出せしめる電界放出素子、表面伝導型放出素子の場合には該2つの電極間の間隙部に堆積物を堆積させることにより活性化を行うことができる。

[0028]

また、本願にかかわる他の発明のひとつは以下のように構成される。

[0029]

画像表示装置の製造方法であって、

電子放出素子を有する第一の部材と、前記電子放出素子が放出する電子が照射 されて発光する蛍光体を有する第二の部材とを、真空容器を実現している封着処理室において封着する工程を有しており、

該封着の前に、前記電子放出素子に画像表示の時に印加される通常の駆動電圧 値よりも大きい電圧を印加する電圧印加工程を行うことを特徴とする画像表示装 置の製造方法。

[0030]

上記の発明において、前記エージング工程、または前記特性調整工程、または前記電圧印加工程を行った後、前記電子放出素子を大気に曝すことなく前記封着を行うと好適である。具体的には、前記封着処理室内で前記エージング又は前記特性調整、又は前記電圧印加を行う構成や、後述の実施例で示すように電子放出素子を前記エージングまたは前記特性調整、または前記電圧印加を行う処理室から大気に曝すことなく封着処理室に搬送する構成を採用できる。後者の構成を採

用する場合は、これらの処理室と封着処理室を直接もしくは他の減圧(処理)室を 介して連結しておく構成が好適である。

[0031]

また、前記エージング工程または前記特性調整工程、または前記電圧印加工程は、電子放出素子の電子放出部及び/もしくは電子放出部近傍に堆積する物質の材料が電子放出素子が存在する領域内で十分に少なくなっており、堆積が抑制される雰囲気で行うとよい。具体的には十分に圧力を低くして行うとよい。好適には 1×10^{-4} Pa以下、特には 1×10^{-5} Pa以下の圧力になっている状態で行うとよい。また、前記堆積には雰囲気中の有機物質に由来して生じるものが特に顕著であり、そのため、前記エージング工程または前記特性調整工程、または前記電圧印加工程は雰囲気中の有機物質の分圧が 1×10^{-6} Pa以下の状態で行うとよい。

[0032]

また、前記エージング工程または前記特性調整工程、または前記電圧印加工程の後、前記封着工程において前記第1 の部材と前記第2 の部材に挟まれる孤立空間が形成されるまでの間、前記電子放出素子が存在する領域内の圧力が実質的に 1×10^{-4} Pa以下、特には 1×10^{-5} Pa以下の状態に保たれるようにすると好適である。ここでいう孤立空間とは、外部雰囲気の気体分子から直接影響を受けない空間という意味である。また、封着工程においては、該領域の圧力が 1×10^{-6} Pa以下になっているのが好ましい。なおここで、実質的に特定の真空度の状態、例えば上記のように 1×10^{-4} Pa以下、特には 1×10^{-5} Pa以下の状態に保つとは、すなわち、以下の実施例で示すように、ゲッタフラッシュによる一時的な真空度の低下を許容することを意味する。一時的な真空度の低下があってもその後速やかに真空度は上昇するので、実質的な影響は無視できる程度に抑制されるため許容できるのである。

[0033]

また、前記エージング工程または前記特性調整工程、または前記電圧印加工程から封着を終えるまでは電子放出素子が存在する領域の有機物質の分圧が低い状態を保つのが好ましい。好適には該分圧が実質的に 1×10^{-6} Pa以下に維持さ

れているとよい。また、封着工程においては、該領域の有機物質の分圧が 1×1 0^{-6} P a よりも低くなっているのが好ましい。

[0034]

また、前記エージング工程または前記特性調整工程は、前記電子放出素子に電圧を印加する工程であるとよい。尚、前記電圧印加工程も含め、本発明が意図する、封着の前に前記電子放出素子に印加する電圧値は、該電子放出素子に画像表示の時に印加される通常の駆動電圧の電圧値よりも大きいことが好ましい。

[0035]

また、前記エージング工程または前記特性調整工程、または前記電圧印加工程は、前記電子放出素子から電子を放出させる工程であるとよい。

[0036]

また、封着工程の前に画像表示装置を構成する部材、具体的には、フェースプレートやリアプレートにゲッタを形成する工程(パネルゲッタ工程)を有する場合、このゲッタ形成工程に先立って前記エージング工程または前記特性調整工程、または前記電圧印加工程を行なうのが好ましい。これは、パネルゲッタが前記エージング工程または前記特性調整工程、または前記電圧印加工程で発生するガスに反応し、ゲッタの能力を製造工程中に消費してしまうことを回避できる点で好ましい。

[0037]

また、封着工程の前に画像表示装置を構成する部材、具体的には、フェースプレートやリアプレートを洗浄するエレクトロンビームクリーニング工程を有する場合、このエレクトロンビームクリーニング工程の後に前記エージング工程または前記特性調整工程、または前記電圧印加工程を行なうのが好ましい。これは、エレクトロンビームクリーニング工程によるガスの発生が電子放出素子の特性に影響を及ぼす可能性があるため、エージング工程または前記特性調整工程、または前記電圧印加工程に先立ってエレクトロンビームクリーニング工程を行なうことが好ましい。

[0038]

以上述べてきた全ての発明は、第1の部材が複数の電子放出素子をもつ場合に

特に好適に採用できる。好適な画像表示を行うための構成として10万個以上の電子放出素子を有する構成において本願にかかわる発明は特に有効である。また、電子放出素子は行方向と列方向にマトリックス状に配置されていると特に好適である。

[0039]

また、第1の部材と第2の部材との封着とは間に例えば枠部材のような他の部材を介在させて封着することを含むものである。

[0040]

なお、本願にかかわる発明における電子放出素子としては先に述べたように冷 陰極電子放出素子を好適に採用できる。特には、スピント型の電子放出素子や、 以下の実施例で採用している表面伝導型電子放出素子を好適に採用できる。

[0041]

【発明の実施の形態】

図1(a)は本発明に係る製造装置を模式的に示した図、図1(b)は画像表示装置のパネル部材、即ち、上述した第1の部材あるいは第2の部材の温度を示す温度プロファイル、図1(c)は製造装置内真空度を示す真空度プロファイルである。以下、これらに基づいて本発明に係る製造方法と製造装置の一例を説明する。

[0042]

図1 (a) において、101はパネル部材であるところのリアプレート(以後 RPと表記する)であり、蛍光体励起手段として、複数の電子放出素子(活性化工程により電子放出部及びその近傍にグラファイト状のカーボンが付与されている表面伝導型電子放出素子)が複数の行方向配線と複数の列方向配線によってマトリクス配線された電子源が形成されている。102はパネル部材であるところのフェィスプレート(以後FPと表記する)であり、蛍光体、メタルバックなどが形成されている。103はパネル部材であるところの外枠でありRP101とFP102の間に配置され、RP101及びFP102とともに気密容器であるパネルを構成する。104はスペーサであり、RP101とFP102との間隔を維持するものである。本実施形態では外枠103、とスペーサ104は事前に

RP101上に配置固定されている場合を図示している。

[0043]

105は前室、106はベーク処理室、107は表面浄化処理室、1001は エージング及び特性調整処理室である通電処理室、108は第1のゲッタ処理室 (チャンバーゲッタ処理室)、109は第2のゲッタ処理室(パネルゲッタ処理 室)、110は封着処理室、111は冷却室であり、順次搬送方向(図中の矢印 145)に従って配列接続され、それぞれ不図示の真空ポンプで排気されて、真 空雰囲気が形成されている。

[0044]

本実施形態においては、上記表面浄化処理室107は、電子線照射手段が設けられたエレクトロン・ビーム照射処理室(以後EB照射処理室と表記。本処理室においてエレクトロンビームクリーニング工程が行なわれる)となっている。大気および、各処理室間はゲートバルブ112、113、114、1151、1152、116、117、118、119で隔てられており、パネル部材であるRP101,FP102、外枠103、スペーサ104は、まず、ゲートバルブ112の開閉により前室105に搬入され、順次、処理室へ各ゲートバルブの開閉によって移動する。120はパネル部材の各処理室への移動用のための搬送ローラーである。

[0045]

また、121、123、1003、127、132、136はRP101および、これに固定された外枠103とスペーサ104を加熱するためのホットプレートである。一方、122、124、1002、128、133、137はFP102を加熱するためのホットプレートである。

[0046]

125はEB照射処理室107内でEB照射するための電子銃、126は電子 銃125から照射されたエレクトロン・ビームである。

[0047]

1004、1005はプローブであって、RP101に形成されている複数の 行方向配線の両端部と電気的に接触して電位を印加するためのものである。また RP101に形成されている列方向配線の端部と電気的に接触して電位を印加するプローブも図示していないが設けられている。

[0048]

チャンバーゲッタ処理室108内において、129はチャンバーゲッタフラッシュ装置、130はチャンバーゲッタフラッシュ装置から発生されるチャンバーゲッタフラッシュであり、Baなどの材料を瞬間的に蒸発させたものである。131はチャンバーゲッタ板であり、チャンバーゲッタフラッシュ130が被着し、チャンバーゲッタとして排気作用を行う、即ち、チャンバーゲッタ処理室108内の真空度を上げることができる。

[0049]

パネルゲッタ処理室109において、134はパネルゲッタフラッシュ装置、135はパネルゲッタフラッシュ装置134から発生されるパネルゲッタフラッシュであり、Baなどの材料を瞬間的に蒸発させたものであり、FP102に被着される。そしてこの後、速やかに封着処理室110にてパネル封着を行なう。このパネルゲッタは、パネル封着後のパネル内の真空維持に作用する。

[0050]

138、139、1006、140、141、142は昇降機であり、それぞれ、ホットプレート121、123、1003、127、132、136を支持しており、RP101を各処理工程に必要な高さに昇降させる機能を有する。

[0051]

図1(b)はその横軸が、図1(a)の製造装置における各処理室での工程を示し、縦軸が各処理室での工程におけるパネル部材の温度プロファイルである。この温度プロファイルは、RP101、FP102の温度状態を示すものである。また、図1(c)はその横軸が、図1(a)の製造装置における各処理室での工程を示し、縦軸が各処理室での真空度プロファイルである。

[0052]

RP101とFP102、外枠103、スペーサ104は、搬送手段である搬送ローラ120の駆動によって、順次、矢印145方向に各処理室を通過し、この通過中に各種の処理が施される。

[0053]

本実施形態においては、まず、前室105の真空雰囲気下に、複数の電子放出素子を複数の行方向配線及び列方向配線によってマトリクス状に接続した電子源が配置されたRP101、外枠103、及び、スペーサ104からなる第1の部材と、蛍光体及びメタルバックが配置されたFP102からなる第2の部材とが用意され、ベーク処理室106におけるベーク処理、EB照射処理室107における電子線照射、通電処理室1001におけるエージング及び特性調整処理、チャンバーゲッタ処理室108におけるチャンバーゲッタ処理による高真空到達、パネルゲッタ処理室109におけるパネルゲッタ処理によるパネルへのゲッタフラッシュ、封着処理室110における加熱封着及び冷却室111における冷却処理の各工程が直列された一ライン上で行われるものとなっている。図3に本実施例のRP101の平面図を示す。尚、RP101の構成は図4に示すように複数のFE素子をマトリクス状に配置したものも適用できる。

[0054]

図1 (a)に図示した製造装置の各処理室間には、前述の通り、ゲートバルブ112、113、114、1151、1152、116、117、118、119が配置されており、各処理室は不図示の真空排気系で真空排気される。本実施形態においては、ゲートバルブ112、113、114、1151、1152、116、117、118、119を各処理室間毎に配置したが、このゲートバルブ配置は図1(c)に図示する真空度プロファイルの真空度が相違する処理室間および装置外大気間のみでよく、例えば、チャンバーゲッタ処理室108、パネルゲッタ処理室109、封着室110の間のゲートバルブ116、117、またEB照射処理室107と通電処理室1001の間のゲートバルブ1151は省略することも可能である。

[0055]

上記のように隣接した処理室間にゲートバルブがなく、しかも各処理工程におけるパネル部材の温度が異なる場合は、該処理工程間には、例えばアルミニウム、クロム、ステンレスなどの反射性金属によって形成した熱遮蔽部材(板形状、フィルム形状など)が配置されていることが好ましい。この熱遮蔽部材は、図1

(b)に図示するパネル部材の温度プロファイルの温度が相違する処理室間、例えば、ベーク処理室106とパネルゲッタ処理室109との間の何処か、あるいは、パネルゲッタ処理室109と封着処理室110との間、あるいは、上記両方に配置するのが好ましい。また、該熱遮蔽部材は各処理室間毎に配置してもよい。上記熱遮蔽部材は、上に載置したFP102とRP101とが各処理室間を移動する際には、障害を与えないように設置される。

[0056]

また、本実施形態では、前室105に搬入する前のRP101に、予め、真空構造をシールする外枠103及び耐大気圧構造を形成するスペーサ104を固定設置してあるがこれに限るものではない。例えば、外枠103にスペーサ104を事前に固定し(例えば外枠103内を横切る板状スペーサ104として、その両端を外枠103に固定。)、これを単独の構成部材としてRP101やFP102とは別に本装置内に投入し、各処理工程を行い、最終的に封着処理工程でパネルの構成部材として、所望の位置に配置固定することもできる。

[0057]

尚、図1(a)において143は封着材であり、RP101に配置された外枠103のFP102側端部に事前にフリットガラスなどの低融点物質やインジウムなどの低融点金属又はその合金として設けることができる。封着材143の配置はこれに限るものではなく、外枠103が接触固定されるFP102上の部分に配置しておいても良い。さらには、外枠103を単独の構成部材として独立して、本装置内に投入する場合は、外枠103のRP101側端部及びFP102側端部に封着材143を設けても良い。また、封着材143は、外枠103が接触固定されるRP101およびFP102上の部分に配置されても良い。上記封着材143を設ける部分は、外枠103の端部と、この外枠103の端部が接触固定されるRP101およびFP102上の部分の少なくともいずれか一方に設けてあれば良い。

[0058]

上記のように構成された装置において、パネルを真空排気して封着する工程を 以下に示す。尚、以下の工程は1枚のパネルを封着する場合を示す場合であるが 、連続して複数のパネルを連続的に処理して封着する場合は、各処理工程の処理時間が異なる場合があり、処理時間の長い工程については他の処理工程時間と調整するように、処理工程を複数の処理室に分割すること、あるいは同一の処理室に処理のための構成要素を、例えば、ホットプレート等を複数配置して、同時に処理を行うことよって可能となる。

[0059]

まず、外枠103およびスペーサ104が事前に固定され、封着材143も事前に配置されたRP101と、FP102を前室105に搬入する。搬入に際しては搬送用の治具に上記のRP101とFP102とを配置し、構造上、両者の基板に間隔が形成されるようにしてある。尚、搬入、搬送は治具を用いることに限るものではなく、RP101、FP102の基板をそのまま、装置本体側の支持搬送ユニットで搬送することも可能である。

[0060]

搬入が終了したら、搬入口であるゲートバルブ112を遮蔽し、この前室105の内部を真空排気する。この間、ベーク処理室106以降の処理室は各々の真空度と温度プロファイルに設定されている。以降、RP101,FP102の基板の搬送に際して、対応する処理室間のゲートバルブ113-119を順次、開放、遮断する。

[0.061]

上記前室105が 10^{-5} Pa台の真空排気状態に達したとき、ゲートバルブ113を開放し、RP101とFP102とを前室105から搬出してベーク処理室106に移動し、この移動終了後にゲートバルブ113を遮断する。

[0062]

大気に曝されることなくベーク処理室106に移動されてきたRP101とP102は、このベーク処理室106内で、ホットプレート121, 122の加熱処理(ベーク処理)が施される。このベーク処理によって、RP101とP102に含有、吸着されている水素、酸素、水などの不純物をガス排出させることができる。このときのベーク温度は、一般的に、300C~400C、好ましくは350C~380Cである。このときの真空度は約 10^{-4} Paである。

[0063]

ベーク処理を終了したRP101とFP102とをEB照射処理室107に移動させ、RP101をホットプレート123に固定し、昇降機139によってEB照射処理室107の上部へ移動させる。この間、一時的にRP101とFP102は加熱源であるベーク処理室106のホットプレート121、122から離れることになるが、急激な温度低下を発生しないようにしてEB照射処理室107のホットプレート123,124に固定し、加熱することで、穏やかに降温を行う。この降温状態の基板温度域において、電子銃125からEB126を任意の領域へ放出してEB照射処理(エレクトロンビームクリーニング処理)を行う。EB照射処理は、一般に基板温度域が100℃からベーク温度までの範囲において行われる。この時の真空度は約10~4paから10~5paになる。

[0064]

EB照射処理はRP101、FP102への照射による吸着不純物のガス脱離による基板クリーニング等の効果がある。また、上述の通り、この際、ベーク処理工程での余熱を利用することができるので上記クリーニング効果は一層向上する。また、EB照射はRP101、FP102の両方、または、いずれか一方のみの処理でも良い。

[0065]

また、EB照射はRP101、FP102に限らず、EB照射工程チャンバー内の任意の領域に照射しても良い。EB照射処理は、基板クリーニング以外に、チャンバー空間にEB照射することにより、ベーキング、EB照射基板クリーニングによって脱離したガスをEB照射によりイオン化し、後工程のゲッタフラッシュ処理工程で、よりゲッタへの吸着を促進することができる効果もある。

[0066]

また、以上述べたEB照射処理室107、あるいは、このEB照射処理室107と後述する第1のゲッタ処理室108(チャンバーゲッタ処理室)とは、ベーク処理を終了したRP101及びFP102の降温を行う、徐冷却処理室としての機能をも果たすものであるが、ベーク処理室106とEB照射処理室107との間に別個、徐冷処理室を設けることも好ましい形態の一つである。

[0067]

このような徐冷処理室においては、ベーク処理時の加熱温度からの急激な温度低下を発生しないように、RP101及びFP102はそれぞれホットプレートに固定され、穏やかに降温を行う。この時のホットプレートの温度域は 100° からベーク温度までの範囲で設定され、真空度は約 10° Paから 10° Paの範囲で設定される。

[0068]

EB照射処理が終了した後、昇降機139を降下させてから、ホットプレート123からRP101を取り外し、FP102と共に、通電処理室1001に移動する。このとき、RP101とFP102は通電処理室1001に大気に曝すことなく移動される。通電処理室ではRPはホットプレート1003に保持され上昇される。その後、行方向配線用プローブ1004、1005及び不図示の列方向配線用プローブがRP101に形成されている行方向配線及び列方向配線の端部に電気的に接触される。

[0069]

ここで、行方向配線用プローブと列方向配線用プローブによってそれぞれ行方 向配線と列方向配線に印加される電位の差である電圧が所定の素子に印加される。すなわち、複数の行方向配線のうちのひとつの行方向配線にマイナス7.5ボルトの電位が印加され、その他の行方向配線に0ボルトの電位が印加され、列方向配線の全てに+7ボルトの電位が印加されると、マイナス7.5ボルトの電位が印加される行方向配線に接続される電子放出素子には、列方向配線に印加される電位との電位差である14.5ボルトの電圧が印加され、素子のエージングが進行する。このとき、他の行方向配線に接続される素子には7ボルトの電圧が印加されるのみであるので、エージングの進行は抑制されている。その後順次マイナス7.5ボルトの電圧が印加される行方向配線を変更しながら全ての電子放出素子に14.5ボルトの電圧を経験させる。必要に応じてこのプロセスを繰り返してエージング処理を行う。なお、本実施例においては電子放出素子に印加される電圧はパルス状のものとし、電圧のパルスの幅は66.8[μs]、パルス周期Tsは16.6[ms]とし、各素子に14.5ボルトの電圧が100パルス

印加されるようにした。

[0070]

本願発明で言うエージングとは即ち、電子放出素子に画像表示の駆動の際に印加する電圧よりも高い電圧を印加する、または画像表示の際に電子放出部に照射する電子の有するエネルギーよりも高いエネルギーを有する電子を予め電子放出部に照射する(この高いエネルギーを有する電子の放出源は画像表示装置の構成要素である電子放出素子に限らず、別途設けた画像表示に寄与しない電子ビーム源からの電子の場合も含む)、または放出部にUV照射を行なう等、電子放出特性を制御する工程である。尚、本実施例における上述のエージング工程においては、エージング前の電子放出素子に所定の電圧(これは実際の画像表示の際に印加される電圧と同じ大きさの電圧であり、該画像表示の際に印加される電圧値に幅がある場合はその範囲内の値を持つ所定の電圧)を印加して得られる放出電流量よりもエージング後の該電子放出素子に前記所定の電圧を印加して得られる放出電流量の方が少なくなっており、実際の画像表示のための駆動を開始してからの特性の急激な変化を長期間に渡って抑制できた。

[0071]

ただし、エージング処理を行うのみでは各素子の電子放出特性、この実施例においては印加電圧に対する素子に流れる電流(素子電流)量の特性、が一致しない場合が多々ある。そこで、本実施例では印加電圧14ボルト(実際の画像表示のために印加する電圧の値)に対する素子電流量が他の素子よりも大きい素子に対しては、選択的に更なる電圧印加を行い特性を調整する。すなわち、前記エージング処理においては全ての列方向配線にエージングのための電位を与えたのに対して、この選択的な特性調整工程においては特性調整電圧を印加すべき素子が接続されている列方向配線には徐々に値を正の方向に大きくしながらパルス電位を与え、特性調整電圧を印加しない素子が接続されている列方向配線には0ボルトの電位を与える。これにより特定の素子にのみ徐々に大きくなる電圧が印加されることになる。なお、パルス幅とパルス周期は上記エージングのときと同じにした。なお、パルス電圧の印加と同時に列方向配線に流れる電流をモニタしておき、流れる電流値が所定の値になったら該素子に対する特性調整を終了する。な

お、特性調整する素子を選択するために、行方向配線のほうも特性調整の対象となる電子放出素子が接続される行方向配線のみにマイナス7.5ボルトの電位を印加し、他の行方向配線には0ボルトの電位を与えておく。これらエージング工程、特性調整工程等の電圧印加工程が、どのようなメカニズムで電子放出素子の電子放出量を少なくするのかについては、十分解明されていないが、本発明者らは、少なくとも電子放出部近傍に炭素及び炭素化合物を有する素子においては、画像表示装置の通常の表示駆動に先駆けて、真空雰囲気、より好ましくは有機物質の分圧が低い雰囲気において、予めエージング工程、特性調整工程等の電圧印加工程を行なうことで放出電流量を少なくすることが出来ることを確認している。特に活性化工程によって電子放出部近傍に炭素及び炭素化合物を有する表面伝導型放出素子においては、この電圧印加工程の電圧値を表示駆動時の電圧値より大きくすることで、放出電流量を少なくすることが出来ることも確認している。

[0072]

なお、このエージング工程、及び特性調整工程及び電圧印加工程においては、 真空雰囲気を維持するため真空ポンプによる排気をしながら行う。有機物質の分 圧は1×10⁻⁶Pa以下に維持した。

[0073]

なお、本実施例で製造した電子源は、製造工程終了後実際に駆動する際にはパルス幅変調を行うものとし、実際の画像表示の際の駆動電圧として各素子に印加される電圧の大きさを14ボルトとして用いるものである。

[0074]

通電処理が終了した後、昇降機1006を降下させた後、ホットプレート1003からRP101を取り外し、FP102と共に、チャンバーゲッタ処理室108へ移動する。このとき、RP101とFP102は、チャンバーゲッタ処理室108に大気に曝すことなく移動される。このときのチャンバーゲッタフラッシュ装置129内に内蔵させていた蒸発型ゲッタ材(例えば、バリウムなどのゲッタ材)を抵抗加熱などの方法で加熱蒸発させてチャンバーゲッタフラッシュ130を生じさせ、パネル部材以外のチャンバー内に配置されたチャンバーゲッタ板131の表面にバリウム膜などからなるゲッタ膜(図示せず)を被着せしめる

。この際のパネルゲッタの膜厚は、一般的に5nm~500nm、好ましくは10nm~200nm、より好ましくは、20nm~200nmである。このチャンバーゲッタ処理工程により、チャンバーゲッタ板131に被着したゲッタ膜がチャンバー内のガスを吸着排気して、チャンバーゲッタ処理室の真空度は10⁻⁶ Pa台に到達する。RP101、FP102の基板温度はベーク温度から100 ℃までの温度範囲で当該処理が行われる。なお、チャンバーゲッタフラッシュ130によって、ゲッタ材が蒸発するため、一時的にチャンバー内の真空度は低下するが、真空排気により、高真空へと移行する。

[0075]

次に、RP101とFP102とをパネルゲッタ処理室109に移動させ、RP101をホットプレート132に固定し、昇降機141によってパネルゲッタ処理室109の上部へ移動させる。パネルゲッタ処理室は事前に10⁻⁶Pa台に真空排気されている。この真空度に到達するためには、一般的な真空排気ポンプの他に、上記、蒸発型ゲッタ材のフラッシュによる排気、非蒸発ゲッタ材の加熱活性化による排気などによる補助排気手段を用いることもできる。上記10⁻⁶Pa台に真空排気方法は、以下に述べる封着処理室110、冷却処理室111にも用いることができる。

[0076]

パネルゲッタ処理室109ではパネルゲッタフラッシュ装置134内に内蔵させている蒸発型ゲッタ材(例えば、バリウムなどのゲッタ材)を抵抗加熱などの方法で加熱蒸発させてパネルゲッタフラッシュ135を生じさせ、FPの表面にバリウム膜などからなるゲッタ膜(図示せず)を被着せしめる。この際のパネルゲッタの膜厚は、一般的に5nm~500nm、好ましくは10nm~200nm、より好ましくは、20nm~200nmである。ここで成膜された蒸発型ゲッタは、当該処理工程のチャンバーが10⁻⁶Paの高真空であるためにガス吸着による劣化は小さく、十分にゲッタ真空排気能力を維持したまま、次の封着処理工程へ移される。

[0077]

図1(a)ではFP102上にゲッタ膜を被着、形成したが、形成する部材は

これに限るものではなく、RP101等に形成することも可能である。ただし、ゲッタ材は一般に導電性であるため、封着されたパネルの画像表示駆動時に大きなリーク電流の発生や、駆動電圧の耐圧が維持できないなどの問題が発生する場合がある。例えば、図1(a)のRP101にパネルゲッタフラッシュを行うと、外枠103、スペーサ104にも導電性のゲッタ膜が成膜されるために、駆動時の電気的な問題が発生する場合がある。この様な場合には、ゲッタ膜を被着成膜してはならない部分をメタル薄板の成膜マスクで覆い、ゲッタ膜が被着形成されないようにしながらRP101の必要な部分にのみゲッタ膜を成膜させることができる。なお、パネルゲッタフラッシュによって、ゲッタ材が蒸発するため、一時的にチャンバー内の真空度は低下するが、真空排気により、高真空へと移行する。

[0078]

パネルゲッタ処理工程が終了した後、昇降機141を降下させた後、ホットプレート132からRP101を取り外し、FP102と共に、封着処理室108へ移動する。

[0079]

RP101、FP102を事前に10⁻⁶Pa台まで真空排気した封着処理室110へ移動させ、RP101、FP102を各々ホットプレート136、137に固定する。この時、RP101に配置固定された枠103上の封着材143とスペーサ104はFP102と接触せず、わずかに間隔を有して固定される。またこの固定時にRP101とFP102のパネル封着時の相対位置が決定される。相対位置の決定は突き当てピンによる端面基準で行うことができるがこれに限るものではない。

[0080]

この後、昇降機142を下降させて、RP101に配置固定された外枠103をFP102に接触、押圧させながら、図1(b)の温度プロファイルに示すように、基板を、封着材143の材料に適した封着温度まで上昇させ、封着材143を軟化、または溶解させてからピーク温度で10分間保持し、その後、基板温度を降温させて、封着材料が接着固定される。これにより外枠103に形成され

た封着材 143 が軟化、溶解して外枠 103 と FP102 が接着された後、封着材 143 が硬化して固定される。このとき封着処理室 110 の真空度は 10^{-6} P a を維持しており、本工程で封着されたパネル内も 10^{-6} P a の真空度となる。封着材 143 の接着固定温度は例えば、インジュウム金属であれば加熱ピーク温度は 160 $\mathbb C$ 、硬化固定温度を 140 $\mathbb C$ に設定とした。また封着材 143 がフリットガラスの場合はピーク温度 390 $\mathbb C$ 、硬化固定温度は 300 $\mathbb C$ とした。加熱の昇温レートは 20 $\mathbb C$ $\mathbb C$ $\mathbb C$ 降温レートは 5 $\mathbb C$ \mathbb

[0081]

封着材の硬化固定温度以下に温度が下がった時点で、封着処理が終了し、この後、ホットプレート136からRP101部を取り外し、昇降機142を上昇さる。ホットプレート137からFP102部を取り外しRP101、FP102外枠103、スペーサ104で構成された封着パネル144を、冷却処理室111へ移動する。この時、冷却処理室111は封着処理室の真空度を維持するために、10⁻⁶Pa台に真空排気されている。封着パネル144は封着材の硬化固定温度でホットプレートから取りはずされ、冷却処理室111で冷却される。冷却手段としては、水冷による温度制御機能を有する冷却プレートなどが用いられるがこれに限るものではなく、封着パネル144の急激な温度降下による基板損傷などが発生しなければ、冷却処理室111内で自然冷却を行っても良い。

[0082]

封着パネル144の温度が室温、あるいは室温に近い温度まで降下した段階で、冷却処理室111の真空リークを行い処理室を大気圧にする。その後、装置外大気側のゲートバルブ119を開放し、封着パネル144を装置外へ搬出する。

[0083]

本実施形態の製造装置は、上記封着処理室110と冷却室111との間に、ゲートバルブ118とを設け、該ゲートバルブの開放時に封着処理室110から表示パネルを搬出させ、冷却室111に搬入後、該ゲートバルブを遮蔽し、ここで徐冷後、搬出口119を開放し、表示パネルを冷却室111から搬出させ、最後に該搬出口119を遮蔽して、全工程を終了する。また、次の工程の開始前に、

冷却室111の内部を独立配置した真空排気系(図示せず)によって、真空状態に設定しておくのがよい。

[0084]

本実施形態では、上述した、蒸発型ゲッタ材のほかに、RP101又はRP102上に、予め、チタン材などからなる非蒸発型ゲッタ膜又は非蒸発型ゲッタ部材を設けておいてもよい。

[0085]

また、上述のホットプレート121、123、1003、127、132、136は、FP101が脱落することなく十分な力で固定することができる機材、例えば、機械的に基板周辺をつかむツメによるチャック方式、静電チャック方式や真空着チャック方式を利用した機材を用いることができる。

[0086]

上記の例は工程組み合わせの一例であり、各処理工程の組み合わせによって、様々な処理室の構成例があげられる。ここで、いずれの構成においても、エージング工程、特性調整工程、電圧印加工程は、パネルゲッタ工程に先駆けて行なうのが良い。これは、パネルゲッタが前記エージング工程または前記特性調整工程、または前記電圧印加工程で発生するガスに反応し、ゲッタの能力を製造工程中に消費してしまうことを回避できる点で好ましいからである。

[0087]

また、エレクトロンビームクリーニングによる洗浄する工程を有する場合、このエレクトロンビームクリーニング工程の後に前記エージング工程または前記特性調整工程、または前記電圧印加工程を行なうのが好ましい。これは、エレクトロンビームクリーニング工程によるガスの発生が電子放出素子の特性に影響を及ばす可能性があるため、エージング工程または前記特性調整工程、または前記電圧印加工程に先立ってエレクトロンビームクリーニング工程を行なうことが好ましいからである。

[0088]

尚、具体的な処理工程の変形例としては、第1の変形例として、前室105に おける真空雰囲気下での用意、通電処理室1001での通電処理、パネルゲッタ 処理室109におけるパネルゲッタ処理、封着処理室110における加熱封着、 冷却室111における冷却処理の順に工程を進めるように各処理室を直列させる 例が挙げられる。

[0089]

第2の変形例としては、前室105における真空雰囲気下での用意、ベーク処理室106におけるベーク処理、通電処理室1001での通電処理、パネルゲッタ処理室109におけるパネルゲッタ処理、封着処理室110における加熱封着、冷却室111における冷却処理の順に工程を進めるように各処理室を直列させる例が挙げられる。

[0090]

第3の変形例としては、前室105における真空雰囲気下での用意、ベーク処理室106におけるベーク処理、通電処理室1001での通電処理、チャンバーゲッタ処理室108におけるチャンバーゲッタ処理、パネルゲッタ処理室109におけるパネルゲッタ処理、封着処理室110における加熱封着、冷却室111における冷却処理の順に工程を進めるように各処理室を直列させる例が挙げられる。

[0091]

第4の変形例としては、前室105における真空雰囲気下での用意、EB照射処理室107におけるEB照射処理、通電処理室1001での通電処理、チャンバーゲッタ処理室108におけるチャンバーゲッタ処理、封着処理室110における加熱封着及び冷却室111における冷却処理の順に工程を進めるように各部屋を直列させる例が挙げられる。

[0092]

次に構成部材であるRP101、FP102、外枠103、スペーサ104の搬送と装置導入の変形例として、

第5の変形例としては、RP101とFP102と外枠103へ固定配置したスペーサ104と3個の構成部材として本装置内に投入することもできる。この場合、外枠103の本装置内での封着処理による封着面はRP101、FP102側両面となるために、それぞれの封着面に対して封着材を事前に形成しておく

ことが必要である。

[0093]

第6の変形例としては、RP101とFP102へ接着固定配置した外枠103、同様にFP102に接着固定配置したスペーサ104の2個の構成部材として本装置に投入することもできる。この場合、外枠103の本装置内での封着処理による封着面はRP101側面となるために、封着面に対して封着材を事前に形成しておくことが必要である。

[0094]

次に上記構成部材の変形例に対して、装置の処理室を個別に一列のライン状に 並べて、封着処理工程ですべての構成部材がひとつの処理室に合流して封着処理 が行われる装置構成の変形例として、

第7の変形例としては、RP101とFP102と外枠103へ固定配置したスペーサ104と3個の構成部材として、前室105以降、パネルゲッタラッシュ処理室109までの各処理室を3ライン並べ、上記3個の構成部材を別々に装置へ投入し、3つのパネルゲッタ処理室がひとつの封着処理室に合流するように接続され、該封着処理室で3個の構成部材を封着処理を行い、冷却処理を行う装置構成が挙げられる。

[0095]

第8の変形例としては、RP101へ接着固定配置した外枠103、同様にRP101に接着固定配置したスペーサ104とFP102の2個の構成部材、あるいは、RP101とFP102へ接着固定配置した外枠103、同様にFP102に接着固定配置したスペーサ104の2個の構成部材として、前室105以降、パネルゲッタラッシュ処理室109までの各処理室を2ライン並べ、上記2個の構成部材を別々に装置へ投入し、2つのパネルゲッタ処理室がひとつの封着処理室に合流するように接続され、該封着処理室で2個の構成部材の封着処理を行い、冷却処理を行う装置構成が挙げられる。

[0096]

上記の変形例7,8に対して、各々の処理工程ラインの工程設定を変形例1、 2、3、4の工程の組み合わせで設定しても良い。

[0097]

更に上述の実施態様の説明ではパネルの封着時の真空度を 10^{-6} P a 台に設定していたが、本発明はこの数値に限るものではない。すなわち、パネル封着時の真空度を一般の真空排気ポンプで到達可能な 10^{-5} P a 台に設定することもできる。この場合、処理室内の到達真空度を上げるために行われるチャンバーゲッタ処理室140 と当該ゲッタ処理工程の省略が可能である。また 10^{-6} P a に到達するための補助的なゲッタポンプによる真空排気も省略することができる。

[0098]

以上の処理工程をおこなった封着パネル144は、Baなどの蒸発型ゲッタ材が、例えばFP上に成膜形成されているにも関わらず、従来の封着パネルで存在していた蒸発型ゲッタ材の蒸発源である主に高周波加熱によってゲッタフラッシュを行うゲッタリングや主に抵抗加熱でゲッタフラッシュするゲッタラインが封着パネル内に残留しないという構成上の特徴を有している。

[0099]

また、以上の処理工程と装置は、パネルゲッタフラッシュ処理工程と連続した 封着工程が異なった処理室で構成されているという特徴を有している。

[0100]

図2は、本実施形態の製造装置及び製造方法を用いて作成した画像表示装置の 一部を示す断面図である。

[0101]

図中、図1と同一符号は、同一部材である。上記装置及び方法によって作成した画像表示装置は、RP101とFP102と外枠103とによって真空容器又は減圧容器が形成されている。

[0102]

また、真空容器の場合には、 10^{-5} Pa以上、好ましくは、 10^{-6} Pa以上の高真空に設定することができる。

[0103]

上記真空容器又は減圧容器内には、スペーサ104が配置さて耐大気圧構造を 形成している。本発明で用いたスペーサ104は、無アルカリガラスなどの無ア ルカリ絶縁物質からなる本体311と、該本体311の表面を覆って配置した高抵抗物質で成膜された高抵抗膜309と両端に設けた金属(タングステン、銅、銀、金、モリブデンやこれらの合金など)膜310とを有し、配線306上に導電性接着剤308を介して電気的に接続接着されている。スペーサ104は、上記前室105に搬入する際には、前もってRP101に接着剤308によって接着固定され、封着処理室110において処理が終了した時点で、上記スペーサ104のもう一方の端部とFP102とは電気的に接続されて接して配置される。

[0104]

RP101は、ガラスなどの透明基板304と、ナトリウムなどのアルカリの侵入を防止するための下地膜(SiO_2 、 SnO_2 など)305と、XYマトリクス配列した複数の電子線放出素子312とが配置されている。配線306は、電子線放出素子と接続したカソード側XYマトリクス配線の一方のカソード側配線を構成する。

[0105]

FP102は、ガラスなどの透明基板301と蛍光体層302とアノード源(図示せず)に接続したアノード金属(アルミニウム、銀、銅など)膜303とが配置されている。

[0106]

外囲器 1 1 3 は、上記前室 1 0 5 に搬入する際には、前もってRP1 0 1 にフリットガラスなどの低融点接着剤 3 0 7 によって接着固定しておき、上記封着処理室 1 1 0 における処理工程で、インジウムやフリットガラスを用いた封着材 1 4 3 によって固定接着されている。

[0107]

以上述べてきた実施例によれば、上記電子放出素子やプラズマ発生素子をXY方向に100万画素以上のように大容量で設け、且つこの大容量画素を対角サイズ30インチ以上の大画面に設けた画像表示装置を製造するに当たって、製造工程時間を大幅に短縮することができたのと同時に、画像表示装置を構成する真空容器を 10^{-6} Pa以上のような高真空に達成させることができた。

[0108]

また、以上述べた実施例においては、電子放出素子のエージング工程や特性調整などの工程、特には高真空状態での電圧印加工程を行った上で、封着した後の内部の真空度が高い画像表示装置を実現することができた。

[0109]

【発明の効果】

本願にかかわる発明によって、電子放出特性の変化が抑制され、及び/もしくは電子放出特性の均一性が良好で、かつ内部の真空度の高い画像表示装置を実現することができる。

【図面の簡単な説明】

【図1】

製造装置内のパネル部材の温度プロファイル及び製造装置内の各室間の真空度プロファイルと共に本発明に係る製造装置を模式的に示した図である。

【図2】

本発明の製造装置及び製造方法を用いて作成した画像表示装置の一部を示す断面図である。

【図3】

本発明による画像表示装置の構成部材である電子放出素子を有する第1の部材 (リアプレート)の一例を模式的に示す平面図である。

【図4】

本発明による画像表示装置の構成部材である電子放出素子を有する第1の部材 (リアプレート) の別の例を模式的に示す平面図である。

【符号の説明】

- 101 リアプレート(RP)
- 102 フェィスプレート (FP)
- 103 外枠
- 104 スペーサ
- 105 前室
- 106 ベーク処理室
- 107 表面浄化処理室(EB照射処理室)

特2001-282550

- 108 第1のゲッタ処理室 (チャンバーゲッタ処理室)
- 109 第2のゲッタ処理室(パネルゲッタ処理室)
- 110 封着処理室
- 111 冷却室
- 1001 通電処理室
- 112~114、116~119、1151、1152 ゲートバルブ
- 120 搬送ローラー
- 121, 123, 127, 132, 136, 1003 ホットプレート (RP

用)

- 122, 124, 128, 133, 137, 1002 ホットプレート (FP用)
 - 125 電子銃
 - 126 エレクトロン・ビーム (EB)
 - 129 チャンバーゲッタフラッシュ装置
 - 130 チャンバーゲッタフラッシュ
 - 131 チャンバーゲッタ板
 - 134 パネルゲッタフラッシュ装置
 - 135 パネルゲッタフラッシュ
 - 138~142 昇降機
 - 1004, 1005 通電用プローブ
 - 143 封着材
 - 144 封着パネル
 - 145 搬送方向を示す矢印
 - 301 透明基板
 - 302 蛍光体層
 - 303 アノード金属膜
 - 304 透明基板
 - 305 下地膜
 - 306 配線

- 307 低融点接着剤
- 308 金属膜
- 309 高抵抗膜
- 3 1 0 金属膜
- 311 本体
- 312 電子放出素子

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【書類名】 要約書

【要約】

【課題】 電子放出素子を用いた画像表示装置においては、内部の真空度が高い 状態を実現する。

【解決手段】 真空雰囲気中での封着を行う構成とし、その封着に先立って電子 放出素子のエージングや選択的な特性調整を行う。

【選択図】 図1

認定・付加情報

特許出願の番号

特願2001-282550

受付番号

50101369880

書類名

特許願

担当官

第五担当上席

0094

作成日

平成13年 9月21日

<認定情報・付加情報>

【特許出願人】

【識別番号】

000001007

【住所又は居所】

東京都大田区下丸子3丁目30番2号

【氏名又は名称】

キヤノン株式会社

【代理人】

申請人

【識別番号】

100096828

【住所又は居所】

東京都千代田区有楽町1丁目4番1号 三信ビル

229号室

【氏名又は名称】

渡辺 敬介

【選任した代理人】

【識別番号】

100059410

【住所又は居所】

東京都千代田区有楽町 1 丁目4番1号 三信ビル

229号室

【氏名又は名称】

豊田 善雄

【選任した代理人】

【識別番号】

100110870

【住所又は居所】

東京都千代田区有楽町1丁目4番1号 三信ビル

229号室

【氏名又は名称】

山口 芳広

出願人履歷情報

識別番号

[000001007]

1. 変更年月日 1990年 8月30日

[変更理由] 新規登録

住 所 東京都大田区下丸子3丁目30番2号

氏 名 キヤノン株式会社