Appendices of "Heat Transfer 2: Radiation and Exchangers"

Appendices

A.1. Physical properties of some materials

	ρ	c_p	λ		ρ	c_p	λ	
	kg m ⁻³	J kg ⁻¹ K ⁻¹	W m ⁻¹ K ⁻¹		kg m ⁻³	J kg ⁻¹ K ⁻¹	W m ⁻¹ K ⁻¹	
Metals :	and allo	oys		Construction materials				
Carbon steel	7,833	465	54	Slate	2,400	879	2.2	
Stainless steel 15% Cr, 10% Ni	7,864	460	20	Basalt	2,850	881	1.6	
Stainless steel 18% Cr, 8% Ni	7,816	460	16.3	Cavernous concrete	1,900	879	1.4	
Stainless steel 25% Cr, 20% Ni	7,864	460	13	Solid concrete	2,300	878	1.75	
Alumina			29	Bitumen (cardboard)	1,050	1,305	0.23	
Aluminum	2,707	896	204	Light hardwoods (dry)	525	1,250	0.15	
Silver	10,525	234	407	Medium-heavy hardwoods (dry)	675	1,250	0.23	
Bronze 75% Cu, 25%Sn	8,800	377	188	Very light hardwoods (dry)	375	1,250	0.12	
Bronze 92% Cu, 8% Al	7,900	377	71	Light softwoods (dry)	375	1,250	0.12	
Graphite carbon	2,250	707	147	Medium-weight softwoods (dry)	500	1,250	0.15	
Silicon carbide			13	Very light softwoods (dry)	375	1,250	0.12	
Bronze 75% Cu, 25%Sn	2,118	7,160	449	Terracotta brick	1,800	878	1.15	
Bronze 92% Cu, 8% Al	8,922	410	22.7	Hard limestone	2,450	882	2.4	

	ρ	c_p	λ]	ρ	c_p	λ	
			W m ⁻¹ K ⁻¹			J kg ⁻¹ K	W m ⁻¹ K ⁻¹	
Metals and	d alloys	s ·		Construction materials				
Copper	8,954	383	386	Cotta brick	1,650	879	1	
Cupronickel 70%Cu, 30% Ni	8,900	377	29.3	Hard limestone	2,400	875	2.4	
Duralumin	2,787	883	164	Soft limestone	400	3,000	0.12	
Tin	7,304	226	64	Floor tile	500	3,000	0.15	
Iron	7,870	452	73	Okoumé plywood	2,600	881	3	
Melting	7,849	460	59	Pine plywood	1,800	889	0.7	
Brass 70%Cu, 30%Zn	8,522	385	111	Granite	2,500	880	2.6	
Magnesium	1,740	1,004	151	Gravel (bulk)	2,350	881	1.1	
Gold	19,300	128	312	Sandstone	2,700	881	2.5	
Platinum	21,400	140	69	Lava stone	1,440	840	0.48	
Lead	11,373	130	35	Marble	2,400	879	2.2	
Liquid sodium	930	1,381	84.5	Insula	ting ma	terials		
Titanium	4,500	523	20.9	Balsa	140		0.054	
Tungsten	19,350	134	163	Cotton	80	1,300	0.06	
Zinc	7,144	384	112	Kapok			0.035	
Miscellaneous	s mater	ials			20	880	0.047	
Asbestos	575	1,046	0.15	Rockwool	55	880	0.038	
Asphalt	2,115	920	0.062		135	880	0.041	
Rubber (natural)	1,150		0.28		8	875	0.051	
Rubber (vulcanized)	1,100	2,010	0.13	Glass wool	10	880	0.045	
Cardboard	86	2,030	0.048	Glass wool	15	880	0.041	
Leather	998		0.159		40	880	0.035	
Ice	920	2,040	1.88	Expanded cork	120	2,100	0.044	
Plexiglass	1,190	1,465	0.19	Carpet	200	1,300	0.06	
Porcelain	2,400	1,088	1.035		32	1,300	0.03	
Polyethylene	929	1,830	0.46	Polyurethane (foam)	50	1,360	0.035	
PVC	1,459	930	0.19		85	1,300	0.045	
Sand	1,515	800	0.2-1.0	DVC (rigid foom)	30	1,300	0.031	
Teflon	2,170	1,004	0.25	PVC (rigid foam)	40	1,300	0.041	
Wet land	1,900	2,000	2		12	1,300	0.047	
Dry land	1,500	1,900	1	Expanded polystyrene	14	1,300	0.043	
Glass	2,300	837	1.05	gr , <i></i> , ,,	18	1,300	0.041	
Pyrex glass	2,220	728	1.13	Styrofoam	30		0.032	
L			i		·	i .	<u> </u>	

A.2. Physical properties of air and water

	Pro	perties o	of water a	t satura	tion		Properties of air at 1 atm						
T	ρ	c_p	λ	$10^4 \mu$	10 ⁷ a	Pr	T	ρ	c_p	λ	$10^4 \mu$	10 ⁷ a	Pr
°C	kg m ⁻³	J kg ⁻¹ K ⁻¹	W m ⁻¹ K ⁻¹	Pa s ⁻¹	m ² s ⁻¹		°C	kg m ⁻³	J kg ⁻¹ K ⁻¹	W m ⁻¹ K ⁻¹	Pa s ⁻¹	m ² s ⁻¹	
0	1,002	4,218	0.552	17.90	1.31	13.06	0	1.292	1,006	0.0242	1.72	1.86	0.72
20	1,001	4,182	0.597	10.10	1.43	7.02	20	1.204	1,006	0.0257	1.81	2.12	0.71
40	995	4,178	0.628	6.55	1.51	4.34	40	1.127	1,007	0.0272	1.90	2.40	0.70
60	985	4,184	0.651	4.71	1.55	3.02	60	1.059	1,008	0.0287	1.99	2.69	0.70
80	974	4,196	0.668	3.55	1.64	2.22	80	0.999	1,010	0.0302	2.09	3.00	0.70
100	960	4,216	0.680	2.82	1.68	1.74	100	0.946	1,012	0.0318	2.18	3.32	0.69
120	945	4,250	0.685	2.33	1.71	1.45	120	0.898	1,014	0.0333	2.27	3.66	0.69
140	928	4,283	0.684	1.99	1.72	1.24	140	0.854	1,016	0.0345	2.34	3.98	0.69
160	910	4,342	0.680	1.73	1.73	1.10	160	0.815	1,019	0.0359	2.42	4.32	0.69
180	889	4,417	0.675	1.54	1.72	1.00	180	0.779	1,022	0.0372	2.50	4.67	0.69
200	867	4,505	0.665	1.39	1.71	0.94	200	0.746	1,025	0.0386	2.57	5.05	0.68
220	842	4,610	0.652	1.26	1.68	0.89	220	0.700	1,028	0.0399	2.64	5.43	0.68
240	816	4,756	0.635	1.17	1.64	0.88	240	0.688	1,032	0.0412	2.72	5.80	0.68
260	786	4,949	0.611	1.08	1.58	0.87	260	0.662	1,036	0.0425	2.79	6.20	0.68
280	753	5,208	0.580	1.02	1.48	0.91	280	0.638	1,040	0.0437	2.86	6.59	0.68
300	714	5,728	0.540	0.96	1.32	1.02	300	0.616	1,045	0.0450	2.93	6.99	0.68

Correlations between 0 and 100°C (T, temperature in °C).

For air:

$$\begin{split} & \rho = \frac{_{353}}{_{T+273}} \, (\text{kg m}^{-3}) \\ & c_p = 1,\!008 \, (\text{J kg}^{-1} \, \text{K}^{-1}) \\ & \lambda = 7.57 \times 10^{-5} \, T + 0.0242 \, (\text{W m}^{-1} \, \text{K}^{-1}) \\ & \mu = 10^{-5} (0.0046 \, T + 1.7176) \, (\text{kg m}^{-1} \, \text{s}^{-1}) \\ & a = 10^{-5} (0.0146 \, T + 1.8343) \, (\text{m}^2 \, \text{s}^{-1}) \\ & Pr = -2.54 \times 10^{-4} \, T + 0.7147 \\ & \beta \approx \frac{1}{_{T+273}} \, (\text{K}^{-1}) \end{split}$$

For water:

$$\begin{split} & \rho = -0.00380 \, T^2 - 0.0505 \, T + 1002.6 \, \, (\text{kg m}^{-3}) \\ & c_p = 4,180 \, (\text{J kg}^{-1} \, \text{K}^{-1}) \\ & \lambda = -9.87 \times 10^{-6} T^2 + 2.238 \times 10^{-3} T + 0.5536 \, \, (\text{W m}^{-1} \, \text{K}^{-1}) \\ & \mu = 10^{-4} \times \frac{0.0003354 \, T^2 - 0.07377 \, T + 17.9}{8.765 \times 10^{-5} T^2 + 0.03032 \, T + 1} \, \, (\text{kg m}^{-1} \, \text{s}^{-1}) \\ & a = 10^{-7} \times (-0.00360 \, T + 1.340) \, \, (\text{m}^2 \, \text{s}^{-1}) \\ & Pr = \frac{-0.0037 \, T^2 + 1.387 \, T + 13.06}{0.005297 \, T^2 + 0.1241 \, T + 1} \\ & \frac{g\beta \rho^2 c_p}{\lambda \mu} = (0.0105 \, T^2 + 0.477 \, T - 0.0363) \times 10^9 \, \, (\text{K}^{-1} \, \text{m}^{-3}) \\ & \log_{10}[p_{sat}(T + 273)] = 20.3182 - \frac{2.795}{T + 273} - 3.868 \, \log_{10}(T + 273) \\ & (\text{mmHg}) - 50^{\circ}\text{C} < T < 200^{\circ}\text{C} \end{split}$$

A.3. Bessel equations and functions

A.3.1. Particular Bessel equations and their solutions

$$y'' + \frac{y'}{x} + m^2 y = 0 \Rightarrow y = k_1 J_0(mx) + k_2 Y_0(mx)$$

$$x^2 y'' + xy' + (x^2 - n^2)y = 0 \Rightarrow y = k_1 J_n(x) + k_2 Y_n(x) \text{ (n integer)}$$

$$y'' + \frac{y'}{x} - m^2 y = 0 \Rightarrow y = k_1 I_0(mx) + k_2 K_0(mx)$$

$$x^2 y'' + xy' - (x^2 - n^2)y = 0 \Rightarrow y = k_1 I_n(x) + k_2 K_n(x) \text{ (n integer)}$$

with:

- $-J_n$, unmodified Bessel function of the first kind of order n.
- $-I_n$, modified Bessel function of the first kind of order n.
- $-Y_n$, unmodified Bessel function of the second kind of order n.
- $-K_n$, modified Bessel function of the second kind of order n.

A.3.2. Main properties of Bessel functions

- Recurrence:

$$J_{n+1}(u) = -J_{n-1}(u) + \frac{2n}{u}J_n(u)Y_{n+1}(u) = -Y_{n-1}(u) + \frac{2n}{u}Y_n(u)$$
$$I_{n+1}(u) = I_{n-1}(u) - \frac{2n}{u}I_n(u)K_{n+1}(u) = K_{n-1}(u) - \frac{2n}{u}K_n(u)$$

- Derivative:

$$\frac{dJ_0(u)}{du} = -J_1(u); \qquad \frac{dI_0(u)}{du} = I_1(u); \qquad \frac{dK_0(u)}{du} = -K_1(u); \qquad \frac{dY_0(u)}{du} = -Y_1(u);$$

$$\frac{d[uJ_1(u)]}{du} = uJ_0(u)$$

- Integrals:

$$\int x^{\nu} W_{\nu-1}(\alpha x) \, dx = \frac{1}{\alpha} x^{\nu} W_{\nu}(\alpha x) \text{ for } W = J, Y, I$$

$$\int x^{-\nu} W_{\nu+1}(\alpha x) \, dx = -\frac{1}{\alpha} x^{-\nu} W_{\nu}(\alpha x) \text{ for } W = J, Y, K$$

$$\int_0^R r [J_0(\alpha r)]^2 dr = \frac{R^2}{2} \{ [J_0(\alpha R)]^2 + [J_1(\alpha R)]^2 \}$$

A.3.3. Asymptotic behavior of Bessel functions of order 0 and 1

If
$$u \to 0$$
: $J_0(u) \to 1$; $J_1(u) \to \frac{u}{2}$; $Y_0(u) \to \left(\frac{2}{\pi}\right) \left[ln\left(\frac{u}{2}\right) + \gamma \right]$; $Y_1(u) \to \frac{2}{\pi u}$; $I_0(u) \to 1$; $I_1(u) \to \frac{u}{2}$; $K_0(u) \to -ln\left(\frac{u}{2}\right) - \gamma$; $K_1(u) \to \frac{1}{u}$

If $u \to \infty$: $J_0(u) \to \sqrt{\frac{2}{\pi u}} cos\left(u - \frac{\pi}{4}\right)$; $J_1(u) \to \sqrt{\frac{2}{\pi u}} cos\left(\frac{u}{2} - \frac{\pi}{4}\right)$; $Y_0(u) \to \sqrt{\frac{2}{\pi u}} sin\left(u - \frac{\pi}{4}\right)$; $Y_1(u) \to \sqrt{\frac{2}{\pi u}} sin\left(\frac{u}{2} - \frac{\pi}{4}\right)$; $I_0(u), I_1(u) \to \sqrt{\frac{2}{\pi u}} exp(u)$; $K_0(u), K_1(u) \to \sqrt{\frac{\pi}{2u}} exp(-u)$

$$I_{v}(x)K_{v+1}(x) + I_{v+1}(x)K_{v}(x) = \frac{1}{x}$$

$$J_{v+1}(x)Y_v(x) - J_v(x)Y_{v+1}(x) = \frac{2}{\pi x}$$

A.4. Main integral transforms: Laplace, Fourier, Hankel

A.4.1. Laplace transform

- Definition:

$$L[T(t)] = \theta(p) = \int_0^\infty exp(-pt) T(t) dt$$
 and: $L^{-1}[\theta(p)] = T(t)$ (inverse transform)

10.10029781394228041.app, Downloaded from https://onlinelibrary.wiley.com/doi/10.10029781394228041.app by Cochrane France, Wiley Online Library on [06/08/2023], See the Terms and Conditions (https://onlinelibrary.wiley.com/

- Properties:
 - linearity: $L[a_1T_1(t) + a_2T_2(t)] = a_1L[T_1(t)] + a_2L[T_2(t)]$, same for L^{-1} ;
 - translation: $L[exp(at)T(t)] = \theta(p-a); L^{-1}[\theta(p-a)] = exp(at)T(t)$:

$$L^{-1}[exp(-ap)\theta(p)] = T(t-a) \text{ if } t > a$$

$$L^{-1}[exp(-ap)\theta(p)] = 0$$
 if $t \le a$

- Change of scale:

$$L[T(at)] = \frac{1}{a}\theta\left(\frac{p}{a}\right)L^{-1}[\theta(ap)] = \frac{1}{a}T\left(\frac{t}{a}\right)$$

- Derivation:

$$L[T'(t)] = p\theta(p) - T(0)L^{-1}[\theta^{(n)}(p)] = (-1)^n t^n T(t)$$

$$L[T''(t)] = p^2 \theta(p) - pT(0) - T'(0)$$

- Integration:

$$L\left[\int_0^t T(u)du\right] = \frac{\theta(p)}{p}L^{-1}\left[\int_p^\infty \theta(u)du\right] = \frac{T(t)}{t}$$

– Multiplication by t^n :

$$L[t^{n}T(t)] = (-1)^{n}\theta^{(n)}(p)L^{-1}[p\theta(p)] = T'(t) - T(0)\delta(t)$$

– Division by t:

$$L\left[\frac{T(t)}{t}\right] = \int_{p}^{\infty} \theta(u) du L^{-1}\left[\frac{\theta(p)}{p}\right] = \int_{0}^{t} T(u) du$$

– Periodic functions: $L[T(t)] = \frac{\int_0^P exp(-pt)T(t)dt}{1-exp(pP)}$. (Period P).

A.4.2. Complex Fourier transform

- Definition:

$$F[T(x)] = \theta(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{i\omega x} T(x) dx$$

$$T(x) = F^{-1}[\theta(\omega)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{i\omega x} \, \theta(\omega) d\omega$$

- Properties:

$$F\left[\frac{\partial T}{\partial x}\right] = -i\omega\theta(\omega); F\left[\frac{\partial^2 T}{\partial x^2}\right] = -\omega^2\theta(\omega)$$

A.4.3. Fourier transform in sine and cosine

- Definitions:
 - sine:

$$F_s[T(x)] = \theta_s(\omega) = \sqrt{\frac{2}{\pi}} \int_0^\infty T(x) \sin(\omega x) dx$$

$$T(x) = F_s^{-1}[\theta_s(\omega)] = \sqrt{\frac{2}{\pi}} \int_0^\infty \theta_s(\omega) \sin(\omega x) dx$$

- cosine:

$$F_c[T(x)] = \theta_c(\omega) = \sqrt{\frac{2}{\pi}} \int_0^\infty T(x) cos(\omega x) dx$$

$$T(x) = F_c^{-1}[\theta_c(\omega)] = \sqrt{\frac{2}{\pi}} \int_0^\infty \theta_c(\omega) \cos(\omega x) dx$$

- Properties:

$$F_{s}\left[\frac{\partial T}{\partial x}\right] = -\omega \theta_{c}(\omega); F_{c}\left[\frac{\partial T}{\partial x}\right] = -\omega \theta_{s}(\omega) - \sqrt{\frac{2}{\pi}}T(0)$$

$$F_{S}\left[\frac{\partial^{2}T}{\partial x^{2}}\right] = -\omega^{2}\theta_{S}(\omega) + \omega\sqrt{\frac{2}{\pi}}T(0); F_{C}\left[\frac{\partial^{2}T}{\partial x^{2}}\right] = -\omega^{2}\theta_{C}(\omega) - \sqrt{\frac{2}{\pi}}\left(\frac{\partial T}{\partial x}\right)_{x=0}$$

A.4.4. Finite Fourier transform in sine and cosine

– Definitions: if the temperature T(x) is only defined on the interval [0, L], we can use a finite Fourier transformation in sine or cosine:

$$F_s[T(x)] = \theta_s(n) = \int_0^L T(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

where
$$F_c[T(x)] = \theta_c(n) = \int_0^L T(x) \cos\left(\frac{n\pi x}{L}\right) dx$$
.

$$T(x) = F_s^{-1}[\theta_s(n)] = \frac{2}{L} \sum_{n=1}^{\infty} \theta_s(n) sin\left(\frac{n\pi x}{L}\right)$$

where
$$T(x) = F_c^{-1}[\theta_c(n)] = \frac{1}{L}\theta_c(0) + \frac{2}{L}\sum_{n=1}^{\infty}\theta_c(n)\cos\left(\frac{n\pi x}{L}\right)$$
.

- Properties:

$$F_s\left[\frac{\partial^2 T}{\partial x^2}\right] = \frac{n\pi}{L}\left[T(0) - (-1)^n T(L)\right] - \frac{n^2 \pi^2}{L^2} \theta_s(n)$$

$$F_c\left[\frac{\partial^2 T}{\partial x^2}\right] = (-1)^n \left(\frac{\partial T}{\partial x}\right)_{x=L} - \left(\frac{\partial T}{\partial x}\right)_{x=0} - \frac{n^2 \pi^2}{L^2} \theta_c(n)$$

A.4.5. Hankel transform of order v

– Definition: for $\nu > -\frac{1}{2}$:

$$H_{\nu}[T(r)] = \theta_{\nu}(\sigma) = \int_{0}^{\infty} r J_{\nu}(\sigma r) T(r) dr; \ T(r) = H_{\nu}^{-1}[\theta_{\nu}(\sigma)] = \int_{0}^{\infty} \sigma J_{\nu}(\sigma r) \theta_{\nu}(\sigma) d\sigma$$

- Property:

$$H_{\nu}\left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) - \frac{\nu^{2}T}{r^{2}}\right] = -\sigma^{2}\theta_{\nu}(\sigma)$$

at order 0:

$$H_0[T(r) = T_i] = T_i \int_0^\infty r J_0(\sigma r) dr = T_i \frac{r}{\sigma} J_1(\sigma r)$$

A.5. Inverse Laplace transform

A.5.1. Analytical method

The Laplace transform $\theta(p)$ of the function T(t) is given by: $L[T(t)] = \theta(p) = \int_0^\infty exp(-pt) T(t) dt$.

There is no general analytic formula for calculating T(t) knowing $\theta(p)$. However, we know the exact expression of T(t) for some particular functions $\theta(p)$, examples of which can be found in section A.5.4 (see Spiegel (1990) for more complete tables). The use of these tables, associated with the particular properties of the inverse Laplace transform recalled in section A.6, allows us to solve a certain number of cases. We will always try to decompose a complex function into a sum, product, series, etc., of simple functions that are more easily invertible.

A.5.2. Numerical methods

When an analytical solution cannot be found, we can use one of the following two numerical methods:

– Stehfest method: the inverse transform of the function $\theta(p)$ can be calculated by (Stehfest 1970):

$$T(t) = \frac{ln(2)}{t} \sum_{j=1}^{N} V_j \theta \left[\frac{jln(2)}{t} \right]$$

N = 20 (double precision):

N = 10 (single precision):

$$\begin{split} V_1 &= \frac{1}{12}; V_2 = -\frac{385}{12}; V_3 = 1,279; V_4 = -\frac{46,871}{3}; V_5 = \frac{505,465}{6}; \\ V_6 &= -\frac{473,915}{2}; V_7 = \frac{1,127,735}{3}; V_8 = -\frac{1,020,215}{3}; V_9 = \frac{328,125}{2}; V_{10} = -\frac{65,625}{2}; \end{split}$$

- Fourier method:

$$\begin{split} T(t) &= \frac{exp(ct)}{t_{max}} \\ &\langle \frac{\theta(c)}{2} + \sum_{k=1}^{\infty} \{Re[\theta(c+j\omega_k)]cos(\omega_k t) - Im[\theta(c+j\omega_k)]sin(\omega_k t)\} \rangle \end{split}$$

with: $\omega_k = \frac{k\pi}{t_{max}}$.

The infinite sum is in practice calculated for a finite number N of terms; we will generally take N > 100. This method requires choosing two parameters: c and t_{max} . We must ensure a posteriori that $exp(-2ct_{max})(2t_{max}) \approx 0$.

A.5.3. Choosing a method and checking the results

The Stehfest method is simpler to implement, because it does not require choosing certain parameters. The Fourier method can lead to a better result in the case of inversion of certain functions such as periodic functions, for example Maillet et al. (2000), Den Iseger (2006), Toutain et al. (2011). We can also directly use the Matlab subroutine "Invlap" based on De Hoog's algorithm.

The study of the behavior of the function $\theta(p)$ at long times $(t \to \infty$ thus $p \to 0)$ and at short times $(t \to 0$ thus $p \to \infty)$ can lead to approximate formulas of $\theta(p)$ for which we can then find the inverse Laplace transform analytically. The comparison of these analytical solutions with the results of the numerical inversion gives an indication of the accuracy of the numerical inversion.

A.5.4. Table of Laplace transforms

From Spiegel (1990),
$$q = \sqrt{\frac{p}{a}}$$
.

$\theta(p) = [T(t)]$	T(t)
$\frac{1}{p}$	1
1	$\delta(t)$ Dirac
$\frac{1}{p^2}$	t
$\frac{1}{p^n}n = 1,2,3\dots$	$\frac{t^{n-1}}{(n-1)!}$
$\frac{ln(p)}{p}$	$-ln(t) - \gamma; \ \gamma = 0.57721$
$\frac{\omega}{p^2 - \omega^2}$	$sinh(\omega t)$
$\frac{p}{p^2 - \omega^2}$	$cosh(\omega t)$
$\frac{\omega^2}{p^2 + \omega^2}$	sin(ωt)
$\frac{p}{p^2 + \omega^2}$	$cos(\omega t)$

$\frac{1}{\sqrt{p}}$	$\frac{1}{\sqrt{\pi t}}$
$\frac{1}{p\sqrt{p}}$	$\frac{2}{\sqrt{\pi}}\sqrt{t}$
$\frac{b}{p(b+\sqrt{p})}$	$1 - exp(b^2t)erfc(b\sqrt{t})$
$\frac{b}{\sqrt{p}(b+\sqrt{p})}$	$exp(b^2t)erf(b\sqrt{t})$
$\frac{1}{p+\alpha}$	$e^{-lpha t}$
$\frac{1}{(p+\alpha)(p+\beta)}$	$\frac{e^{-\beta t} - e^{-\alpha t}}{\alpha - \beta}$
$\frac{1}{(p+\alpha)^2}$	te ^{−αt}
$\frac{p}{(p+\alpha)^2}$	$(1-\alpha t)e^{-\alpha t}$
$\frac{p}{(p+\alpha)(p+\beta)}$	$\frac{\alpha e^{-\beta t} - \beta e^{-\alpha t}}{\alpha - \beta}$
$\frac{1}{(p+\alpha)(p+\beta)(p+\gamma)}$	$\frac{(\gamma - \beta)exp(-\alpha t) + (\alpha - \gamma)exp(-\beta t) + (\beta - \alpha)exp(-\gamma t)}{(\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)}$
$\frac{p}{(p+\alpha)(p+\beta)(p+\gamma)}$	$\frac{\alpha(\beta - \gamma)exp(-\alpha t) + \beta(\gamma - \alpha)exp(-\beta t) + \gamma(\alpha - \beta)exp(-\gamma t)}{(\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)}$
e^{-qx}	$\frac{x}{2\sqrt{\pi at^3}}exp\left(-\frac{x^2}{4at}\right)$
$\frac{e^{-qx}}{q}$	$\sqrt{\frac{a}{\pi t}} exp\left(-\frac{x^2}{4at}\right)$
$\frac{e^{-qx}}{p}$	$erfc\left(\frac{x}{2\sqrt{at}}\right)$
$\frac{e^{-qx}}{pq}$	$2\sqrt{\frac{a}{\pi t}}\exp\left(-\frac{x^2}{4at}\right) - xerfc\left(\frac{x}{2\sqrt{at}}\right)$
$\frac{e^{-qx}}{p^2}$	$\left(t + \frac{x^2}{2a}\right) erfc\left(\frac{x}{2\sqrt{at}}\right) - x\sqrt{\frac{t}{\pi a}} exp\left(-\frac{x^2}{4at}\right)$

$\frac{e^{-qx}}{q+h}$	$\sqrt{\frac{a}{\pi t}} exp\left(-\frac{x^2}{4at}\right) - haexp(hx + ath^2)erfc\left(\frac{x}{2\sqrt{at}} + h\sqrt{at}\right)$
$\frac{e^{-qx}}{q(q+h)}$	$aexp(hx + ath^2)erfc\left(\frac{x}{2\sqrt{at}} + h\sqrt{at}\right)$
$\frac{e^{-qx}}{p(q+h)}$	$\frac{1}{h}erfc\left(\frac{x}{2\sqrt{at}}\right) - \frac{1}{h}exp(hx + ath^2)erfc\left(\frac{x}{2\sqrt{at}} + h\sqrt{at}\right)$
$\frac{e^{-qx}}{pq(q+h)}$	$\frac{2}{h}\sqrt{\frac{a}{\pi t}}exp\left(-\frac{x^{2}}{4at}\right) - \frac{1+hx}{h^{2}}erfc\left(\frac{x}{2\sqrt{at}}\right) + \frac{1}{h^{2}}exp(hx+ath^{2})erfc\left(\frac{x}{2\sqrt{at}} + h\sqrt{at}\right)$
$\frac{e^{-qx}}{p-\alpha}$	$\frac{1}{2}exp(\alpha t)\left\{exp\left(-\frac{x\sqrt{\alpha}}{\sqrt{a}}\right)erfc\left(\frac{x}{2\sqrt{at}}-\sqrt{\alpha t}\right)\right.\\ \left.+exp\left(\frac{x\sqrt{\alpha}}{\sqrt{a}}\right)erfc\left(\frac{x}{2\sqrt{at}}+\sqrt{\alpha t}\right)\right\}$
$\frac{e^{-qx}}{q(p-\alpha)}$	$\frac{1}{2}exp(\alpha t)\sqrt{\frac{\alpha}{\alpha}}\left\{exp\left(-\frac{x\sqrt{\alpha}}{\sqrt{a}}\right)erfc\left(\frac{x}{2\sqrt{at}}-\sqrt{\alpha t}\right)\right.\\ \leftexp\left(\frac{x\sqrt{\alpha}}{\sqrt{a}}\right)erfc\left(\frac{x}{2\sqrt{at}}+\sqrt{\alpha t}\right)\right\}$
$\frac{e^{-qx}}{(q+h)^2}$	$-2h - 2h\left(\frac{a^3t}{\pi}\right)exp\left(-\frac{x^2}{4at}\right) + a(1 - hx - 2ah^2t)$
$\frac{e^{-qx}}{p(q+h)^2}$	$\frac{1}{h^2} erfc\left(\frac{x}{2\sqrt{at}}\right) - \frac{2}{h} \sqrt{\frac{at}{\pi}} exp\left(-\frac{x^2}{4at}\right)$ $-\frac{1}{h^2} (1 + hx + 2ah^2t) exp(hx + ah^2t)$ $\times erfc\left(\frac{x}{2\sqrt{at}} + h\sqrt{at}\right)$
$K_0(qx)$	$\frac{1}{2t}exp\left(-\frac{x^2}{4at}\right)$
$\frac{1}{p^{1/2}}K_{2n}(qx)$	$\frac{1}{2\sqrt{\pi t}}exp\left(-\frac{x^2}{8at}\right)K_n\left(\frac{x^2}{8at}\right)$
$p^{n/2}K_n(qx)$	$\frac{x^n}{a^{n/2}(2t)^{n+1}}exp\left(-\frac{x^2}{4at}\right)$

A.6. erf function

- Properties:

$$\begin{split} erf(u) &= \frac{2}{\sqrt{\pi}} \int_0^u exp(-t^2) dt; \\ ierfc(u) &= \frac{1}{\sqrt{\pi}} exp(-u^2) - u[1 - erf(u)] \end{split}$$

$$\frac{d}{dx}[erf(x)] = \frac{2}{\sqrt{\pi}}exp(-x^2)$$

For
$$x \to \infty$$
: $erfc(x) = \frac{exp(-x^2)}{\sqrt{\pi}} \left[\frac{1}{x} - \frac{1}{2x^3} + \frac{1.3}{2^2x^5} - \frac{1.3.5}{2^3x^7} + \cdots \right]$.

х	erf(x)	erfc(x)	ierfc(x)	х	erf(x)	erfc(x)	ierfc(x)
0	0.000000	1.000000	0.5641896	1.1	0.880205	0.11980	0.036465
0.05	0.056372	0.943628	0.5155995	1.2	0.910314	0.08969	0.026049
0.1	0.112463	0.887537	0.4698221	1.3	0.934008	0.06599	0.018314
0.15	0.167996	0.832004	0.4268365	1.4	0.952285	0.04772	0.012670
0.2	0.222703	0.777297	0.3866080	1.5	0.966105	0.03390	0.008623
0.25	0.276326	0.723674	0.3490886	1.6	0.976378	0.02362	0.005819
0.3	0.328627	0.671373	0.3142186	1.7	0.983790	0.01621	0.003799
0.35	0.379382	0.620618	0.2819256	1.8	0.989091	0.01091	0.002460
0.4	0.428392	0.571608	0.2521274	1.9	0.992790	0.00721	0.001563
0.45	0.475482	0.524518	0.2247329	2	0.995322	0.00468	0.000977
0.5	0.520500	0.479500	0.1996413	2.1	0.997021	0.00298	0.000602
0.55	0.563323	0.436677	0.1767460	2.2	0.998137	0.00186	0.000362
0.6	0.603856	0.396144	0.1559353	2.3	0.998857	0.00114	0.000216
0.65	0.642029	0.357971	0.1370922	2.4	0.999311	0.00069	0.000124
0.7	0.677801	0.322199	0.1200981	2.5	0.999593	0.00041	0.000072

0.75	0.711156	0.288844	0.1048325	2.6	0.999764	0.00024	0.000040
0.8	0.742101	0.257899	0.0911737	2.7	0.999866	0.00013	0.000023
0.85	0.770668	0.229332	0.0790027	2.8	0.999925	0.00008	0.000012
0.9	0.796908	0.203092	0.0682015	2.9	0.999959	0.00004	0.000007
0.95	0.820891	0.179109	0.0586561	3	0.999978	0.00002	0.000004
1	0.842701	0.157299	0.0502547				

A.7. Emissivity of some materials

Reflectivity / solar radiation: Albedo

Absorptivity / solar radiation: 1 - Albedo

A.8. Fraction $\textbf{F}_{0\text{-}\lambda T}$ of energy radiated by a black body between 0 and λ

b a	0	40	80	120	160
1,000	0.03	0.05	0.08	0.11	0.16
1,200	0.21	0.29	0.38	0.49	0.62
1,400	0.78	0.96	1.17	1.41	1.68
1,600	1.97	2.30	2.66	3.06	3.48
1,800	3.94	4.42	4.94	5.49	6.07
2,000	6.68	7.31	7.97	8.65	9.36
2,200	10.09	10.84	11.61	12.40	13.21
2,400	14.03	14.86	15.71	16.57	17.44
2,600	18.32	19.20	20.09	20.99	21.89
2,800	22.79	23.70	24.61	25.51	26.42
3,000	27.33	28.23	29.13	30.03	30.92
3,200	31.81	32.70	33.58	34.45	35.32

a b	0	40	80	120	160
7,800	84.80	84.97	85.14	85.30	85.47
8,000	85.63	85.78	85.94	86.10	86.25
8,200	86.40	86.55	86.69	86.83	86.98
8,400	87.12	87.25	87.39	87.52	87.66
8,600	87.80	87.92	88.04	88.17	88.29
8,800	88.41	88.53	88.65	88.77	88.88
9,000	88.89	89.11	89.22	89.33	89.44
9,200	89.55	89.65	89.76	89.86	89.96
9,400	90.06	90.16	90.26	90.35	90.45
9,600	90.54	90.63	90.72	90.81	90.90
9,800	90.99	91.08	91.16	91.25	91.33
10,000	91.42				

b a	0	40	80	120	160
3,400	36.18	37.03	37.88	38.71	39.54
3,600	40.36	41.18	41.98	42.78	43.56
3,800	44.34	45.11	45.87	46.62	47.36
4,000	48.09	48.81	49.53	50.23	50.92
4,200	51.60	52.28	52.94	53.60	54.25
4,400	54.88	55.51	56.13	56.74	57.34
4,600	57.93	58.51	59.09	59.65	60.21
4,800	60.66	61.30	61.83	62.35	62.87
5,000	63.38	63.88	64.37	64.85	65.33
5,200	65.80	66.26	66.72	67.16	67.60
5,400	68.04	68.46	68.88	69.30	69.70
5,600	70.11	70.50	70.89	71.27	71.65
5,800	72.02	72.38	72.74	73.09	73.44
6,000	73.78	74.12	74.45	74.78	75.10
6,200	75.41	75.72	76.03	76.33	76.63
6,400	76.92	77.21	77.49	77.77	78.05
6,600	78.32	78.59	78.85	79.11	79.36
6,800	79.61	79.86	80.10	80.34	80.58
7,000	80.90	81.04	81.26	81.47	81.70
7,200	81.92	82.13	82.34	82.55	82.75
7,400	82.95	83.15	83.34	83.53	83.72
7,600	83.91	84.09	84.27	84.45	84.62

a b	0	40	80	120	160			
					•			
b a	0	200	400	600	800			
10,000	91.42	91.81	92.19	92.54	92.87			
11,000	93.18	93.48	93.76	94.02	94.27			
12,000	94.50	94.73	94.94	95.14	95.33			
13,000	95.51	95.68	95.84	96.00	96.14			
14,000	96.29	96.42	96.54	96.67	96.78			
15,000	96.89	97.00	97.10	97.19	97.29			
16,000	97.37	97.46	97.54	97.62	97.69			
17,000	97.77	97.83	97.90	97.96	98.02			
18,000	98.08	98.14	98.19	98.24	98.29			
19,000	98.34	98.38	98.43	98.47	98.51			
20,000	98.55							
30,000	99.53							
40,000	99.78	Use:						
50,000	99.89	λ	T = a +	b				
60,000	99.93							
70,000	99.96	Exampl	e: λ <i>T</i> =	2,720 μι	m K			
80,000	99.97		Reads a	t 2,600 +	120			
90,000	99.98		hence: $F_{0-\lambda T} = 20.99\%$					
100,000	99.98							

A.9. Radiation shape factors

Adapted from Siegel and Howell (1992)

Configuration	Diagram	Shape factor
Elementary surface parallel to a rectangular plane	S_1 a b c S_2	$f_{1-2} = \frac{1}{2\pi} \begin{bmatrix} \frac{B}{\sqrt{1+B^2}} tan^{-1} \left(\frac{C}{\sqrt{1+B^2}} \right) \\ + \frac{C}{\sqrt{1+C^2}} tan^{-1} \left(\frac{B}{\sqrt{1+C^2}} \right) \end{bmatrix}$ $B = \frac{b}{a}; C = \frac{c}{a}$
Linear source parallel to a rectangular plane	S_1 a c S_2 b	$f_{1-2} = \frac{1}{\pi B} \begin{bmatrix} \sqrt{1 + B^2} \tan^{-1} \left(\frac{C}{\sqrt{1 + B^2}} \right) - \tan^{-1}(C) \\ + \frac{BC}{\sqrt{1 + C^2}} \tan^{-1} \left(\frac{B}{\sqrt{1 + C^2}} \right) \end{bmatrix}$ $B = \frac{b}{a}; C = \frac{c}{a}$
Linear source parallel to a rectangular plane, intersecting at an angle ф	S ₁	$f_{1-2} = \frac{1}{\pi} \times$ $\begin{cases} tan^{-1}(B) + \frac{\sin^2(\phi)}{2B} ln \left[\frac{B^2 + X^2}{(1 + B^2)X^2} \right] \\ -\frac{\sin(2\phi)}{2B} \left\{ \frac{\pi}{2} - \phi + tan^{-1} \left[\frac{C - \cos(\phi)}{\sin(\phi)} \right] \right\} \\ + \frac{Y}{B} \left[tan^{-1} \left(\frac{C - \cos(\phi)}{\sin(\phi)} \right) + tan^{-1} \left(\frac{\cos(\phi)}{Y} \right) \right] \cos(\phi) \\ + \frac{C\cos(\phi) - 1}{X} tan^{-1} \left(\frac{B}{X} \right) \\ B = \frac{b}{a}; C = \frac{c}{a}; X = \sqrt{C^2 - 2C\cos(\phi) + 1}; Y = \sqrt{B^2 + \sin^2(\phi)} \end{cases}$
Two rectangular parallel planes with the same area	c S_1 a b S_2	$f_{1-2} = \frac{1}{\pi} \begin{bmatrix} \frac{1}{BC} ln\left(\frac{XY}{X+Y-1}\right) + \frac{2\sqrt{X}}{B} tan^{-1}\left(\frac{C}{\sqrt{X}}\right) \\ + \frac{2\sqrt{Y}}{C} tan^{-1}\left(\frac{B}{\sqrt{Y}}\right) - \frac{2}{C} tan^{-1}(B) - \frac{2}{B} tan^{-1}(C) \end{bmatrix}$ $B = \frac{b}{a}; C = \frac{c}{a}; X = 1 + B^{2}; Y = 1 + C^{2}$
Two infinite parallel strips of different widths	\$52 c	$f_{1-2} = \frac{1}{2B} \left[\sqrt{(B+C)^2 + 4} - \sqrt{(B-C)^2 + 4} \right]$ $f_{2-1} = \frac{1}{2C} \left[\sqrt{(B+C)^2 + 4} - \sqrt{(B-C)^2 + 4} \right]$ $f_{1-2} = f_{2-1} = \frac{1}{B} \left[\sqrt{B^2 + 1} - 1 \right] \text{ si } b = c$ $B = \frac{b}{a}; C = \frac{c}{a}$

Two perpendicular rectangular planes having a common side	S ₁	$\begin{split} f_{1-2} \\ &= \frac{1}{\pi B} \begin{bmatrix} \frac{1}{4} \ln \left\{ \left[\frac{(1+B^2)(1+C^2)}{1+B^2+C^2} \right] \left[\frac{B^2(1+B^2+C^2)}{(1+B^2)(B^2+C^2)} \right]^{B^2} \right\} \\ &\times \left[\frac{C^2(1+B^2+C^2)}{(1+C^2)(B^2+C^2)} \right]^{c^2} \\ &+ B t a n^{-1} \left(\frac{1}{B} \right) + C t a n^{-1} \left(\frac{1}{C} \right) \\ &- \sqrt{B^2+C^2} t a n^{-1} \left(\frac{1}{B^2+C^2} \right) \end{bmatrix} \text{ is } a \to \infty \end{split}$
Two identical planes having a common side	θ S_2	$f_{1-2} = f_{2-1} = 1 - \sin\left(\frac{\theta}{2}\right)$
Two perpendicular rectangles	$ \begin{array}{c cccc} A_1 & A_2 \\ \hline A_3 & A_4 \\ \hline A_5 & A_6 \end{array} $	$ \begin{aligned} f_{1-6} &= \frac{1}{2A_1} \left\{ (A_1 + A_2 + A_3 + A_4) f_{1234-56} - A_6 f_{6-24} - A_5 f_{5-13} \right\} \\ &= (A_3 + A_4) f_{34-56} - A_6 f_{6-4} - A_5 f_{5-3} \end{aligned} $
Two parallel rectangles	$ \begin{array}{c c} A_2 & A_1 \\ \hline A_3 & A_4 \\ \hline A_6 & A_5 \\ \hline A_7 & A_8 \end{array} $	$f_{1-7} = \frac{1}{4A_1} \begin{pmatrix} A_{1234} f_{1234-5678} + A_1 f_{1-5} + A_2 f_{2-6} \\ + A_3 f_{3-7} + A_4 f_{4-8} - A_{12} f_{12-56} \\ - A_{14} f_{14-58} - A_{34} f_{34-78} - A_{23} f_{23-67} \end{pmatrix}$
Elementary surface perpendicular to a surface		$f_{1-2} = \frac{1}{2\pi} \left[tan^{-1} \left(\frac{1}{X} \right) - \frac{1}{\sqrt{1 - \frac{Y}{X}}} tan^{-1} \left(\frac{1}{\sqrt{X^2 + Y^2}} \right) \right]$ $X = \frac{c}{a}; Y = \frac{a}{b}$
Two infinite cylinders with parallel axes	$S_1 \downarrow \qquad \qquad S_2 \downarrow \qquad $	$f_{1-2} = \frac{2}{\pi} \left[\sqrt{X^2 - 1} - X + \frac{\pi}{2} - \cos^{-1} \left(\frac{1}{X} \right) \right]$ $X = 1 + \frac{a}{b}$

	r	
Two parallel disks	S_2 C	$f_{1-2} = \frac{1}{2} \left[Z - \sqrt{Z^2 - 4X^2 Y^2} \right]$ $X = \frac{a}{c}; Y = \frac{c}{b}; Z = 1 + (1 + X^2)Y^2$
Two finite coaxial cylinders	b a	$f_{1-2} = \frac{1}{x} - \frac{1}{\pi X} \left\{ \cos^{-1}\left(\frac{B}{A}\right) - \frac{1}{2Y} \left[\frac{\sqrt{(A+2)^2 - 4X^2} \cos^{-1}\left(\frac{B}{XA}\right)}{+B \sin^{-1}\left(\frac{1}{X}\right) - \frac{\pi A}{2}} \right] \right\}$ $f_{1-1} = 1 - \frac{1}{X} + \frac{2}{\pi X} \tan^{-1}\left(\frac{2\sqrt{X^2 - 1}}{Y}\right) - \frac{1}{X} \left\{ \frac{\sqrt{4X^2 + Y^2}}{Y} \sin^{-1}\left[\frac{4(X^2 - 1) + \frac{Y^2}{X^2}(X^2 - 2)}{Y^2 + 4(X^2 - 1)} \right] \right\}$ $-\sin^{-1}\left(\frac{X^2 - 2}{X^2}\right) + \frac{\pi}{2}\left(\frac{\sqrt{4X^2 + Y^2}}{Y} - 1\right)$ $f_{1-3} = \frac{1}{2}(1 - f_{1-1} - f_{1-2})$ $X = \frac{b}{a}; Y = \frac{c}{a}; A = X^2 + Y^2 - 1; B = Y^2 - X^2 + 1$
A plane rectangle and a cylinder with axis located in the middle plane rectangle		$\begin{split} f_{1-2} &= \\ &\frac{2}{\gamma} \int_0^{\gamma/2} \left\{ \frac{\chi}{\chi^2 + \beta^2} - \frac{\chi}{\pi (\chi^2 + \beta^2)} \begin{bmatrix} \cos^{-1} \left(\frac{W}{V} \right) - \frac{1}{2Z} \sqrt{V^2 + 4Z} \\ &\times \cos^{-1} \left(\frac{W}{V \sqrt{\chi^2 + \beta^2}} \right) \\ &+ W \sin^{-1} \left(\frac{1}{\sqrt{\chi^2 + \beta^2}} \right) - \frac{\pi V}{2} \end{bmatrix} \right\} d\beta \\ X &= \frac{a}{r}; Y = \frac{b}{r}; Z = \frac{c}{r}; \end{split}$ $V &= X^2 + Z^2 + \beta^2 - 1; W = Z^2 - X^2 - \beta^2 + 1$

A.10. Cylindrical solar diagram

The diagram enables the calculation of the azimuth α and the height h of the Sun according to the latitude L.

Example: on October 20 at 1 p.m. in a place of latitude 10°N, the azimuth is $a = 217^{\circ}$ and the height of the Sun is $h = 65^{\circ}$.

A.11. Albedo values

Surface	Albedo	Surface (various materials)	Albedo
Earth (planet)	0.20-0.60	Polished silver	0.94
Ground		Oxidized silver	0.50
Cover of fresh snow	0.80-0.90	Polished aluminum	0.97
Aged, packed snow cover	0.50-0.70	Oxidized aluminum	0.85
Bare cultivated land	0.08-0.25	Concrete	0.50
Meadow and green grass	0.12-0.25	Carbon	0.15

Surface	Albedo	Surface (various materials)	Albedo
Sandy soil	0.15-0.25	Gravels	0.25
Light sand, dry or wet	0.25-0.45	Asphalt	0.18
Forests of deciduous trees in summer	0.10-0.20	White lime	0.75
Evergreen forests in summer	0.05-0.15	Papier blanc	0.85
Forest and snow	0.25-0.50	White paints	0.90
Grass and dry vegetation	0.28-0.33	Black matt paints	0.07
Bodies of water (seas, lakes)		Window glass	0.10
Perfectly calm water, h > 30°	0.06-0.02	Dry white plaster	0.90
Perfectly calm water, h < 10°	0.35-0.60	Asbestos cement	0.20
Seas and oceans, h > 30°	0.02-0.05	Clouds	
Seas and oceans, h < 10°	0.02-0.20	Stratiforms	0.40-0.75
Vast icy surfaces	0.25-0.40	Cumuliforms	0.60-0.85

A.12. Integral exponential functions

The integral exponential function of order n, with a positive argument x, is defined by:

$$E_n(x) = \int_0^1 \mu^{n-2} e^{-\frac{x}{\mu}} d\mu$$
 (a)

All the following properties are only valid for n integer.

– For x = 0, equation (a) becomes:

$$E_n(0) = \int\limits_0^1 \mu^{n-2} d\mu$$

thus:

$$E_n(0) \to \infty$$
 (b)

for n = 1, and:

$$E_n(0) = \frac{1}{n-1}$$
 for $n \ge 2$ (c)

– By differentiating relation (a), we obtain:

$$\frac{dE_n(x)}{dx} = -\frac{1}{x}e^{-x} \tag{d}$$

for n = 1, and:

$$\frac{dE_n(x)}{dx} = -E_{n-1}(x) \tag{e}$$

For $n \ge 2$.

From where:

$$\int E_n(x)dx = -E_{n+1}(x) \tag{f}$$

- An integration by parts leads to the recurrence:

$$n E_{n+1}(x) = e^{-x} - x E_n(x)$$
 (g)

- We frequently encounter the integral:

$$\int_0^x x^m E_n(x) dx \tag{h}$$

Integrating by parts and using relations (d) and (e), this integral can be written as:

$$\begin{split} &\int_0^x x^m E_n(x) dx = \\ &\frac{x^{m+1}}{m+1} E_n(x) + \frac{x^{m+2}}{(m+1)(m+2)} E_{n-1}(x) + \dots + \frac{x^{m+n}}{(m+1)(m+2)\dots(m+n)} E_1(x) + \\ &\frac{1}{(m+1)(m+2)\dots(m+n)} \int_0^1 x^{m+n-1} e^{-x} dx \end{split} \tag{i}$$

– According to the recurrence relation (f), $E_1(x)$ can be put in the form:

$$E_1(x) = \int_1^\infty e^{-xt} \frac{dt}{t} = \int_x^\infty e^{-t} \frac{dt}{t}$$
 (j)

– For large values of x, the expansion to infinity of $E_n(x)$ is:

$$E_n(x) = \frac{e^{-x}}{x} \left(1 - \frac{n}{x} + \frac{n(n+1)}{x^2} - \frac{n(n+1)(n+2)}{x^3} + \dots \right)$$
 (k)

and therefore: $E_n(x) = \frac{e^{-x}}{x}$ when $x \to \infty$.

– When $x \to 0$, $E_1(x)$ presents a logarithmic singularity point and can be developed in series, i.e.:

$$E_1(x) = -\gamma - \log(x) + \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n!n}$$
 (1)

where $\gamma = 0.5772156$ is Euler's constant.

10.1002798139422841.app, Downloaded from https://calinelthaty.wi.ey.com/doi/10.1002798139422841.app by Cochrane Fance, Wiley Online Library on [06/08/2021]. See the Terms and Condition (in thtps://colinelthaty.wiley.com/terms-and-conditions) on Wiley Online Library for less is used. A artist ease governed by the applicable Centwice Commons Licenses

Approximation of integral exponential functions:

We seek to approach the integral exponentials by classical exponentials, in particular:

$$E_2(x) \approx a \exp(-bx)$$

$$E_3(x) \approx c \exp(-dx)$$

There are several methods to determine the constants a, b, c and d; the most used is that of Lick:

- we keep the derivation property of the exponential integrals: $\frac{d}{dx}E_3(\alpha x) \approx -\alpha E_2(\alpha x)$, which imposes $E_3(x) \approx \frac{a}{b}exp(-bx)$;

- we impose the moments of order 0 and order 1 of the function E: $a = \frac{3}{4}$ and $b = \frac{1}{2}$.

From where:

$$E_2(x) \approx \frac{3}{4} exp\left(-\frac{1}{2}x\right)$$

$$E_3(x) \approx \frac{1}{2} exp\left(-\frac{3}{2}x\right)$$

A.13. Fredholm singular integral equation

The reduced temperature is given by the equation:

$$\theta(\tau) = \frac{1}{2} \left[E_2(\tau) + \int_0^{\tau_0} \theta(\tau') E_1(|\tau - \tau'|) d\tau' \right]$$

which is the singular Fredholm integral equation whose numerically calculated values for different values of τ are given by the following graph.

The reduced radiation flux is expressed by:

$$Q = 1 - 2 \int_0^{\tau_0} \theta(\tau') E_2(\tau') d\tau'$$

$ au_0$	Q
0.1	0.9157
0.2	0.8491
0.3	0.7934
0.4	0.7458
0.5	0.7040
0.6	0.6672
0.8	0.6045
1.0	0.5532
1.5	0.4572
2.0	0.3900
2.5	0.3401
3.0	0.3016

A.14. Correlations for heat transfer coefficients in forced convection

The characteristics of the fluid calculated at $T_f = \frac{T_p + T_{\infty}}{2}$.

Geometry	Correlation							
	Nu(x): Nu at th		_		e plane			
	\overline{Nu}_L : average N	_		-				
	Turbulent flow:	`		.5)				
Flow on a plane	Nu(x) = 0.028	$8 Re(x)^{0.8} Pr^{1/3}$	3					
Tiow on a plane	$\overline{Nu}_L = 0.035 Re$	$e_L^{0.8} Pr^{1/3}$						
	Laminar flow: (1	$Re < 5.10^5$ and	110 > Pr	> 0.5))			
	Nu(x) = 0.324	$Re(x)^{0.5} Pr^{1/3}$						
	$\overline{Nu}_L = 0.628 Re$	$e_L^{0.5} Pr^{1/3}$						
	Turbulent flow:	(<i>Re</i> > 5,000 an	d 100 >	Pr > 0	.6)			
	$Nu = 0.023 Re^{t}$	$^{0.8}Pr^n$						
	$n = 0.3$ if T_{fluid}	$> T_{wall}$						
	$n = 0.4 \text{ if } T_{fluid} < T_{wall}$							
Flow in a tube	Re calculated for $D_h = \frac{4S}{P}$, where S is the fluid passage section and P is the fluid/wall contact perimeter							
	Laminar flow: N	u = 1.86 (ReP)	$r)^{1/3} \left(\frac{D}{L}\right)^{1}$	$/_3 \left(\frac{\mu}{\mu_p}\right)$	0.14			
	Valid for $Pr \frac{D}{L} >$	\cdot 10, μ_p calcula	ted at T_p					
	$Nu = CRe^{\eta}$	$^{1}Pr^{1/3}$, velocity	u_{∞} calcu	lated up	ostream o	f the tube		
Flow		Re	С		n			
perpendicular to a		0.4-4	0.98	9 (0.330			
circular cylinder		4–40 40–4,000	0.91		0.385			
(Jakob 1949)		4,000–40,000			0.618			
	40,000–250,000 0.0266 0.805							
Flow	Geometry Re C n							
perpendicular to a non-circular			5 10 ³ -		0.102	0.675		
cylinder	$\stackrel{u_{\infty}}{\longrightarrow}$	$\int d$	4 10 ³ –1.	5 10 ⁴	0.228	0.731		
(Jakob 1949)								

Geometry	Correlation										
	$\frac{S_n}{d}$										
	S.	1.	25	1.5		2.0		3.0			
	$\frac{S_p}{d}$	С	n	С	n	С	n	С	n		
		In-line arrangement									
	1.25	0.386	0.592	0.305	0.608	0.111	0.704	0.070	0.752		
	1.5	0.407	0.586	0.278	0.620	0.112	0.702	0.075	0.744		
	2.0	0.464	0.570	0.332	0.602	0.254	0.632	0.220	0.648		
	3.0	0.322	0.601	0.396	0.584	0.415	0.581	0.317	0.608		
	Staggered arrangement										
Flow	0.16	-	-	-	-	-	-	0.236	0.636		
perpendicular	0.9	-	-	-	-	0.495	0.571	0.445	0.581		
to a bundle of 10 tubes	1.0	-	-	0.552	0.558	-	-	-	-		
(Grimson 1937)	1.125	-	-	-	-	0.531	0.565	0.575	0.560		
1937)	1.25	0.575	0.556	0.561	0.554	0.576	0.556	0.579	0.562		
	1.5	0.501	0.568	0.511	0.562	0.502	0.568	0.542	0.568		
	2.0	0.448	0.572	0.462	0.568	0.535	0.556	0.498	0.570		
	3.0	0.344	0.592	0.395	0.580	0.488	0.562	0.467	0.574		
	Nu	$= CRe^{i}$	$^{n}Pr^{1/_{3}},$	velocity	u_{∞} calc	ulated u	ıpstream	of the t	ube		
	S_n		diagramagen		a _v care	S_n		S_p $ -$	 		

Geometry	Correlation										
Flow perpendicular	$N = \frac{h_n}{h_{10}}$										
to a bundle of <i>n</i> rows of	Number of rows n	1	2	3	4	5	6	7	8	9	10
tubes (<i>n</i> ≤10) (Grimson 1937)	N in-line	0.64	0.80	0.87	0.90	0.92	0.94	0.96	0.98	0.99	1.0
	N staggered	0.68	0.75	0.83	0.89	0.92	0.95	0.97	0.98	0.99	1.0

A.15. Correlations for heat transfer coefficients in natural convection

According to Holman (1990). $Ra = GrPr = \frac{c\beta g\Delta T \rho^2 d^3}{\lambda \mu}$

Correlations valid for all fluids: $Nu = C(GrPr)^m$								
Geometry	GrPr	С	m					
Vartical plates and arrivators	$10^4 - 10^9$	0.59	1/4					
Vertical plates and cylinders	$10^9 - 10^{13}$	0.021	2/5					
	$10^{-10} - 10^{-2}$	0.675	0.058					
	$10^{-2} - 10^2$	1.02	0.148					
Horizontal cylinders	$10^2 - 10^4$	0.850	0.188					
	$10^4 - 10^7$	0.480	0.25					
	$10^{7} - 10^{12}$	0.125	0.33					
Upper face of a hot plate or lower	$2\times10^{4}-8\times10^{6}$	0.54	0.25					
face of a cold plate	$8 \times 10^6 - 10^{11}$	0.15	0.33					
Lower face of a hot plate or upper side of a cold plate	10 ⁵ -10 ¹¹	0.27	0.25					
Simplified relations for a	ir at atmospheric pressure	and at T =	≈ 20° C					
Comment	Laminar		Turbulent					
Geometry	$10^4 < GrPr < 10^6$	$GrPr > 10^{9}$						
37 1 1	$(\Lambda T)^{1/4}$		h					
Vertical plate or cylinder	$h = 1.54 \left(\frac{\Delta T}{L}\right)^{1/4}$		$=1.22(\Delta T)^{1/3}$					
TT : 1 1: 1	$(\Lambda T)^{1/4}$	h						
Horizontal cylinder	$h = 1.26 \left(\frac{\Delta T}{D}\right)^{1/4}$	$=1.52(\Delta T)^{1/3}$						
Upper face of a hot horizontal plate	ΔT \ $^{1/4}$		h					
or lower face of a cold plate	$h = 1.41 \left(\frac{\Delta T}{L}\right)^{1/4}$		$=1.83(\Delta T)^{1/3}$					

Lower face of a hot plate or upper face of a cold plate

$$h = 0.71 \left(\frac{\Delta T}{L}\right)^{1/4}$$

$$= 0.71 \left(\frac{\Delta T}{L}\right)^{1/4}$$

Enclosed rectangular cell

Correlation of Hollands et al. (1976)

$$\begin{aligned} Nu &= 1 + 1.44 \left[1 - \frac{1,708}{Ra_d cos(\varphi)} \right]^* \left\{ 1 \\ &- \frac{1,708 [sin(1.8\varphi)^{1.6}]}{Ra_d cos(\varphi)} \right\} \\ &+ \left\{ \left[\frac{Ra_d cos(\varphi)}{5,830} \right]^{1/3} - 1 \right\}^* \end{aligned}$$

If
$$0 < \varphi < tan^{-1}(4,800 Pr), \frac{L}{d} > 12$$

The quantities * are taken equal to 0 if the result of their calculation leads to a negative number.

 $0 < \varphi < 90^{\circ}$ if the hot plate is down.

Correlation of El Sherbiny et al. (1982):

Valid for $\frac{L}{d}$ < 100 and Ra_d < 10⁶

$$Nu = max[Nu_1, Nu_2, Nu_3]$$

with:

 $Nu_1 = 0.0605 \, Ra_d^{0.33}$

$$Nu_{2} = \left\{1 + \left[\frac{0.104 \, Ra_{d}^{0.293}}{1 + \left(\frac{6310}{Ra_{d}}\right)^{1.36}}\right]^{3}\right\}^{\frac{1}{3}}$$

$$Nu_3 = 0.242 \left(\frac{Ra_d d}{L}\right)^{0.272}$$

A.16. NUT charts = $f(\eta)$ for heat exchangers

$z = \frac{q_{c_{min}}}{q_{c_{max}}}$	0	0.25	0.5	0.75	1	1.33	2	4
Point	1	2	3	4	5	6	7	8

A.17. Calculation formulas for singular pressure drops

A.17.1. Pressure drops by change of direction

$$\Delta P = R \frac{\rho u^2}{2}$$

-u, fluid velocity;

-R, coefficient given in the tables below.

- Circular pipes:

$\frac{r}{d}$	10°	20°	45°	60°	90°	120°
0.5 0.6 0.8 1 2 5	0.18 0.13 0.10 0.07 0.04 0.03 0.03	0.33 0.26 0.19 0.15 0.09 0.05	0.59 0.48 0.33 0.27 0.17 0.12 0.09	0.70 0.55 0.39 0.32 0.19 0.13 0.10	0.86 0.68 0.48 0.38 0.23 0.14 0.12	0.97 0.72 0.52 0.43 0.26 0.16 0.14

- Rectangular pipes:

r/d h/c	0.5	0.6	0.7	0.8	1.0	1.5
0.5	1.3	0.8	0.55	0.41	0.3	0.2
1	1	0.65	0.44	0.35	0.25	0.16
2	0.8	0.5	0.35	0.28	0.2	0.13

Multiplier coefficient k to be applied to R for $\alpha \neq 90^{\circ}$

α	15°	30°	45°	60°	90°	135°	180°
k	0.31	0.53	0.69	0.81	1.00	1.21	1.34

A.17.2. Pressure drops by sudden change of cross-section

- Abrupt enlargement:

$$\Delta P = \rho \frac{(u_1 - u_2)^2}{2} = \rho \left(1 - \frac{S_1}{S_2} \right) \frac{{u_1}^2}{2}$$

– Abrupt narrowing:

$$\Delta P = R \frac{\rho u_1^2}{2}$$

S_1/S_2	0.01	0.1	0.2	0.4	0.5	0.6	0.8	1
R	1.5	1.45	1.35	1.2	1.1	0.9	0.5	0