Bendegúz István Biksi, Xia Mengzhen

BGSE

3. Econometrics Assignment

11/11/15

1. Tests of structural change

a. Estimate the model using the full sample, and then use two subperiods: 1960-1973 and 1974-1995. Perform a test of equality of the coefficients of the two equations using the sums of squares of these three regressions. The full sample model:

-3.45 0.002

1.35 0.187

1.98 0.056

-1.81

0.080

-.1839046

-.1051825

-.2751162

-.5902017

-.0471561

.0165684

40.72349

Source	SS	df		MS		Number of obs	=	36
33		10-01-0		- 5		F(5, 30)	=	185.84
Model	.780166195	5	.156	033239		Prob > F	=	0.0000
Residual	.025187735	30	.000	839591		R-squared	=	0.9687
33	Second to despect the second		0.000,000			Adj R-squared	=	0.9635
Total	.80535393	35	.023	010112		Root MSE	=	.02898
1_gpop	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
year	0191181	.005	9565	-3.21	0.003	031283	145	0069533
1_y	1.954627	.192	8543	10.14	0.000	1.560766	2	.348488

Model on the subperiod before 1973:

1_pg

1 pnc

1_puc

_cons

. reg l_gpop year l_y l_pg l_pnc l_puc if year<=1973

-.1155303 .0334795

-.1292739

.2052824 .1520194

20.06664 10.11464

.0714118

	SS		df		MS		N	umbe	r of	obs	=	14
			IDALINE				F	(5	-03	8)	=	811.86
309	6505	L	5	. 0	6619301		P	rob :	> F		=	0.0000
006	5226	4	8	.000	0081533		P	-squ	ared	L,	=	0.9980
	0 2-000		617	3,000			A	dj R	-squ	ared	i =	0.9968
316	1731	5	13	. 02	5509024		R	oot 1	MSE		=	.00903
С	oef.	s	td.	Err.	t	P>	t[[9]	5% C	onf.	In	terval]
026	3662		010	6902	2.47	0.0	39	. 01	0171	44		0510179
124	0000				1.21		co.	21	2740	81	1	.235196
	0038		351	7738	1.21	0.2	63	3	2118	10000		
	5454	-		5087	0.63	0.5			5252	1237	32	4416192
094			150				47	2		84		4416192 8871187
094 583	5454		150 131	5087	0.63	0.5	47 02	2! . 2!	5252	84 92		

Model ont he subperiod after 73:

. reg l_gpop year l_y l_pg l_pnc l_puc if year>1973

SS		d	£		MS		Nu	mbe	r of	0	bs	=		22
		1.40					F	5		1	6)	=	37	.13
012	245		5	.010	820249		Pı	ob	> F			=	0.0	000
521	.95	1	6	.000	291387		R-	squ	ared	1		=	0.9	207
(6/10-)		5,540	G	04/5-00/5	-		Ac	ij R	-squ	ar	ed	=	0.8	959
763	344	2:	1	.002	798259		Ro	oot !	MSE			=	.01	707
oei		Std		Err.	t	P>	t	[9	5% C	on	ı£.	In	terv	al]
261	17	.00	37	736	-3.34	0.0	04	0	2061	.66	5	4.	0046	173
107	73	. 28	56	869	3.55	0.0	03	. 4	0844	137	,	1	. 619	702
237	74	.040	00	297	-6.05	0.0	00	3	2723	333	3	4.	1575	148
168	37	. 18	81	118	1.82	0.0	87	0	5378	43	3		7141	218
	11	. 050	07	741	-1.09	0.2	92	1	6301	.03	3		0522	622
3/4														003

	Residual Sum of Squares
Full sample model	0.025187735
Before 1973 model	0.000652264
After 1973 model	0.004662195
r	6
k	6

The null hypothesis: the coefficients of the two subsample (before 73, after 73) regressions are the same. If one rejects the null hypothesis, s/he is stating that the coefficients are different in the two subsamples.

To test wheter there is a structural change in the data we performe a Chow test, by using the formula:

$$F(r, n-2k) = \frac{\frac{RSS_{all} - (RSS_{bef73} + RSS_{aft73})}{r}}{\frac{RSS_{bef73} + RSS_{aft73}}{n-2k}}$$

Where r is the number of restrictions, n is the sample size, k is the number of parameters and RSS_i is the residual sum of squares obtained from regression i.

In this case r=k=6, so F(6,24)=14,95789, that is larger then the critical value of F(6,24)=2,51, so we can reject the null hypothesis that the coefficients of the two model ran on different subperiods are the same. Meaning they are different.

b. Now imagine that you know the intercepts to be different, so you want to test for a change in the other five coefficients beyond a simple shift in the constant term. How would you do this? (Hint: still you may want to run the two separate regressions for the two subperiods – "unrestricted" model-, but modify the full-sample regression in order to accommodate in that regression the differing intercepts). Do it.

The restricted or the whole sample model now is:

*	reg	1_gpop	year	1_y	1_pg	1_pnc	1_puc	after73

Source	SS	df		MS		Number of obs	=	36
				- 2		F(6, 29)	=	216.29
Model	.787750457	6	.131	291743		Prob > F	=	0.0000
Residual	.017603473	29	.000	607016		R-squared	=	0.9781
		-				Adj R-squared	=	0.9736
Total	.80535393	35	.023	010112		Root MSE	=	.02464
1_gpop	Coef.	Std.	Err.	t	P≻ t	[95% Conf.	In	terval]
year	0168618	.0051	.048	-3.30	0.003	0273023	٠,	0064212
l_y	1.838168	.1672	588	10.99	0.000	1.496086	2	.180251
1_pg	178005	.0335	078	-5.31	0.000	2465361		1094739
1_pnc	.2098421	.1292	667	1.62	0.115	0545381	-	4742222
1_puc	1281312	.0607	215	-2.11	0.044	2523205		0039418
after73	.0773106	.0218	717	3.53	0.001	.032578	-	1220433

Where after 73 takes one if the observation is taken after 1973.

8.654259

16.65782

cons

	Residual Sum of Squares
Full sample model	0.017603473
Before 1973 model	0.000652264
After 1973 model	0.004662195
r	5
k	6

1.92

0.064

-1.042128

34.35777

The value of the test statistic is F(5,24)=11.09939266, that is higher then F(5,24)=2.62, so we can reject the null hypothesis, that is the coefficients of year, log_income, log_price, log_usedcarprice and log_newcarprice are the same across the two subsample. Meaning they are different.

c. Now imagine that **you know** that the price elasticities on automobile prices and the coefficient of the time trend do not change, but the other three coefficients could change or not. How would you test for this change? Do it.

The restricted on the whole sample model now is:

. reg l_gpop year l_y l_pg l_pnc l_puc after73 l_yafter73 l_pgafter73

Source	SS	df		MS		Number of obs	=	36
3			12.12122.00	<u>N</u>		F(8, 27)	=	335.15
Model	.797324836	8	.099	665605		Prob > F	=	0.0000
Residual	.008029094	27	.000	297374		R-squared	=	0.9900
						Adj R-squared	=	0.9871
Total	.80535393	35	.023	010112		Root MSE	=	.01724
l_gpop	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
year	0129056	.0036	746	-3.51	0.002	0204452	=	.005366
1_y	1.517164	.1919	942	7.90	0.000	1.123224	1	.911103
1_pg	.0916647	.2283	134	0.40	0.691	3767957		.560125
1_pnc	.5933324	.1350	152	4.39	0.000	.3163041		8703606
1_puc	1080754	.0447	157	-2.42	0.023	1998245	٠.	0163263
after73	7.866224	2.437	508	3.23	0.003	2.864871	1	2.86758
1_yafter73	8534086	.2699	913	-3.16	0.004	-1.407385	4.	2994323
l_pgafter73	3841614	.2207	667	-1.74	0.093	8371373	300	0688145
cons	11.71724	6.125	905	1.91	0.066	8520753	2	4.28656

Where l_yafter73 is the interaction of the dummy variably after73 and the log of the income. Similarly l_pgafter73 is the interaction between after73 dummy and log of the price.

	Residual Sum of Squares
Full sample model	0,008029094
Before 1973 model	0.000652264
After 1973 model	0.004662195
r	3
k	6

Here the null hypothesis is that: price elasticities on automobile prices and the coefficient of the time trend are the same across the two subperiod. The value of the test-statistic: F(3,24)=4,08641, meanwhile F(3,24)=3.0087866. As the value of the test statistic is higher then the critical value of the F-distribution, we can reject the null hypothesis. So price elasticities on automobile prices and the coefficient of the time trend are not the same across the two subperiod. Note that the value of the test statistic is the lowest in this setting but we are still able to reject the null hypothesis.

2. On instrumental variables.

$$\ln(Q_i) = \beta_0 + \beta_1 \ln(P_i) + \beta_2 Ice_i + \sum_{j=1}^{12} \beta_{2+j} Seas_{j,i} + u_i$$

- a) Why do we include the seasonal variables and why do we include only twelve of them?
- We include seasonal dummy variables in the demand equation, because the demand for grain transportation can have seasonal fluctuation. Meaning, that the demand has a seasonal trend in it's time series data.
- ii. We only include twelve of the thirteen seasonal dummy variables to avoid perfect collinearity and therefore to avoid biased estimation of the parameters.
- b) Estimate this demand equation by OLS. What is the estimated value of the price elasticity of demand?

. reg 1Q 1P ice seas1 seas2 seas3 seas4 seas5 seas6 seas7 seas8 seas9 seas10 seas11 seas12

rce	SS	df		MS		Number of obs	=	328
		00000141	500 500,000			F(14, 313)	=	10.17
del	22.4696137	14	1.604	197241		Prob > F	=	0.0000
ual	49.3989901	313	.1578	324249		R-squared	=	0.3126
						Adj R-squared	=	0.2819
tal	71.8686038	327	.2197	781663		Root MSE	=	.39727
10	Coef.	Std. I	Err.	t	P> t	[95% Conf.	In	terval]
1P	6388847	.08238	886	-7.75	0.000	8009902	S-7-2	4767793
ice	.4477537	.11960	041	3.74	0.000	.2124239		6830835
as1	1328219	.11095	586	-1.20	0.232	351141		0854972
as2	.0668882	.1112	977	0.60	0.548	1520981		2858745
as3	.1114365	.11130	083	1.00	0.318	1075707		3304436
as4	.1554219	.1107	434	1.40	0.161	0624737		3733175
as5	.1096585	.1299	182	0.84	0.399	1459648		3652819
as6	.0468325	.159	596	0.29	0.769	267184		3608491
as7	.1225526	.16004	407	0.77	0.444	1923389		4374442
as8	2350078	.15985	562	-1.47	0.143	5495363		0795207
as9	.0035607	.1600	021	0.02	0.982	3112921		3184135
s10	.1692469	.16129	946	1.05	0.295	1481118		4866057
s11	.2151845	.16009	958	1.34	0.180	0998156		5301846
s12	.2196331	.15913	364	1.38	0.169	0934792		5327454
ons	8.861233	.1713	614	51.71	0.000	8.524067	9	.198399

The estimated value of the price elasticity of demand is: -.6388847 (.0823886). So the demand is inelastic, since .64<1.

c) Interpret and explain the coefficient $\beta 2$.

- i. The coefficient of ice (β 2) is: .4477537 with standard deviation: .1196041. Meaning that, if the Great Lakes are frozen (so you cannot use the alternative shipping method), the quantity that is demanded increases by approx. 56,48%.
- ii. If the lakes are frozen the demand for grain transportation gets higher. Why? If the lakes are frozen, one can not use ships to transport the grain, therefore the only option is trains.
- d) Explain why this OLS estimator is probably biased (think "supply and demand"). The OLS estimator is probably biased because of endogenity. We should estimate a system of equations of supply and demand at the same time. To scan demand and supply, one should have good exogenous supply and demand shifter variables, because price and quantity takes their values simultaneously, so one should estimate the two together.
- e) You are thinking of using the Cartel variable as an IV for ln(P). Use your economic common sense to examine if this variable satisfies the conditions to be a valid instrument.

Cartel as an instrumental variable should fit into two conditions. The relevance condition and the exogenity condition. The verification of the relevance condition, namely $cov(Cartel, ln(P)) \neq 0$ is relatively simple with common sense. If there is a cartel in the relevant market, it does have effects on the market price. Probably a cartel would sustain higher prices, compared to a non-cartel market price. The exogenity condition $cov(Cartel, \varepsilon) = 0$ is a little bit more difficult to verify, but one is able to think about, on avarage the demanded quantity has nothing to do with the market structure, except the price of the given commodity.

f) Estimate the first stage regression. Is Cartel a weak instrument? (Present a more or less formal test).

First stage regression:

. ivregress 2sls 1Q ice seas1 seas2 seas3 seas4 seas5 seas6 seas7 seas8 seas9 seas10 seas11 seas12 (1P=cartel), > first

First-stage regressions

```
Number of obs = 328

F( 14, 313) = 21.32

Prob > F = 0.0000

R-squared = 0.4881

Adj R-squared = 0.4652

Root MSE = 0.2114
```

1P	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ice	.035003	.0642519	0.54	0.586	0914171	.1614232
seas1	.0387253	.0590844	0.66	0.513	0775276	.1549782
seas2	.1362884	.0590844	2.31	0.022	.0200355	.2525413
seas3	.1890486	.0593185	3.19	0.002	.0723351	.3057621
seas4	.0895226	.059357	1.51	0.133	0272666	.2063119
seas5	.0178628	.0698693	0.26	0.798	11961	.1553356
seas6	025741	.0855293	-0.30	0.764	194026	.142544
seas7	0671265	.0855293	-0.78	0.433	2354115	.1011585
seas8	0358373	.0857092	-0.42	0.676	2044762	.1328017
seas9	0057758	.0863212	-0.07	0.947	175619	.1640673
seas10	1002111	.0863212	-1.16	0.247	2700542	.0696321
seas11	0867514	.0853616	-1.02	0.310	2547064	.0812036
seas12	.0116931	.0853616	0.14	0.891	1562619	.1796482
cartel	.3578984	.0248623	14.40	0.000	.30898	.4068168
cons	-1.693741	.0783608	-21.61	0.000	-1.847922	-1.539561

Testing β _Cartel=0

```
. test cartel
```

```
( 1) cartel = 0

F( 1, 313) = 207.22
Prob > F = 0.0000
```

According to the test as the value of the F-statistic is higher, then 10, we can conclude, that cartel is a strong IV, because we reject the null hypothesis, namely the impact of cartel on price is zero.

g) Estimate the demand equation using instrumental variables. What is the estimated value of demand elasticity now?

. ivregress 2sls 1Q ice seas1 seas2 seas3 seas4 seas5 seas6 seas7 seas8 seas9 seas10 seas11 seas12 (1P=cartel)

10	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
19	8665865	.1290666	-6.71	0.000	-1.119552	6136206
ice	.422934	.1187568	3.56	0.000	.190175	. 6556929
seas1	1309732	.1097094	-1.19	0.233	3459997	.0840532
seas2	.0909521	.1105491	0.82	0.411	1257201	.3076244
seas3	.135872	.1105753	1.23	0.219	0808516	.3525956
seas4	.1525109	.1095011	1.39	0.164	0621072	.367129
seas5	.0735618	.1294287	0.57	0.570	1801137	.3272373
seas6	0060642	.1594995	-0.04	0.970	3186775	.3065491
seas7	.0602324	.1605893	0.38	0.708	2545169	.3749816
seas8	2935991	.1601377	-1.83	0.067	6074631	.020265
seas9	0583723	.1605412	-0.36	0.716	3730272	.2562827
seas10	.0858109	.1636392	0.52	0.600	234916	.4065378
seas11	.1517912	.1607242	0.94	0.345	1632225	.4668048
seas12	.1786558	.1583685	1.13	0.259	1317408	.4890524
cons	8.573535	.2114377	40.55	0.000	8.159124	8.987945

Instrumented: 1P

Instruments: ice seas1 seas2 seas3 seas4 seas5 seas6 seas7 seas8 seas9

seas10 seas11 seas12 cartel

The estimated value of the demand elasticity is: -.8665865 (.1290666). The value is higher as it's standard deviation /compared to the results that were obtained in b)/, although the demand is still inelastic.

h) Carry out and comment on the Hausman test for comparison of the two sets of estimates. Is there evidence of a problem of endogeneity?

98	(b)	(B)	(b-B) Difference	sqrt(diag(V_b-V_B)) S.E.
1P	8665865	6388847	2277018	.0993495
ice	. 422934	.4477537	0248198	
seas1	1309732	1328219	.0018486	
seas2	.0909521	.0668882	.0240639	
seas3	.135872	.1114365	.0244355	
seas4	.1525109	.1554219	002911	
seas5	.0735618	.1096585	0360967	
seas6	0060642	.0468325	0528967	
seas7	.0602324	.1225526	0623203	.0132632
seas8	2935991	2350078	0585912	.009491
seas9	0583723	.0035607	061933	.0129132
seas10	.0858109	.1692469	083436	.0276012
seas11	.1517912	.2151845	0633933	.0141983
seas12	.1786558	.2196331	0409773	

b = consistent under Ho and Ha; obtained from ivregress B = inconsistent under Ha, efficient under Ho; obtained from regress

Test: Ho: difference in coefficients not systematic

chi2(14) = (b-B)'[(V_b-V_B)^(-1)](b-B)

= 5.25

Prob>chi2 = 0.9820

(V_b-V_B is not positive definite)

According to the Hausman-test we can not reject the null, because the p-value is higher then, .05, so ln(P) looks like an exogenous variable, but from economic theory we should know, that it is not exogenous. This is usually the case with the Hausman-test, because of the high variance of the coefficient of the 2sls estimation, the test usually can not be rejected. In order to work this test and get reasonable results one should increase the sample size.

i) Do your estimates suggest that the cartel was charging a price that maximized profits
 (that is, the price that a monopolist would charge? (Hint: what should a monopolist do
 if price elasticity is lower than one?)

If the price elasticity is lower than one, then a monopolist would increase price, up to a point where the own price elasticity of the demand is at least one. According to this I obtained from 2sls the following price elasticity: -.8665865, that is smaller then

one in absolute terms, so a monopolist or a cartel that acts like a monopolist would increase the price. An interesting question could be that, comparing cartel prices and competitive prices, or price margins, althought that would need the values of marginal costs.