ЛАБОРАТОРНАЯ РАБОТА №5 ГИДРОСИСТЕМА РУЛЕВОГО УПРАВЛЕНИЯ. ПОДБОР ГИДРОАППАРАТОВ.

1.1 Цель работы:

- изучить принцип работы гидросистемы рулевого управления;
- изучить основные элементы гидросистемы рулевого управления и их назначение;
 - произвести расчет количества оборотов рулевого колеса при переводе колес комбайна из одного крайнего положения в другое.

Гидросистема рулевого управления предназначена для поворота управляемых колес мобильной машины.

Основными элементами гидросистемы рулевого управления являются:

- гидронасос, обычно используется шестеренный гидронасос рабочим объемом от 8 до 16 см³;
- клапан предохранительный;
- управляющий гидрораспределитель (насос дозатор);
- гидроцилиндров различных типоразмеров; манометры и датчики давления; бак масляный.

Дополнительно стенд содержит:

- механизм с гидроусилителем;
- передняя ось с управляемыми колесами;
- привод рулевого управления;
- пульт управления с информационно-измерительной системой. Все устройства стенда смонтированы на специальной раме.

					Лабораторная работа №5				
Изм.	Лист	№ докум.	Подпись	Дата					
Разра	<i>1δ.</i>	Чирков АВ.			Гидросистема	рулевого	Лит.	Лист	Листов
Прове	. р.	Ποποβ Β.Б.			упровления	.Подбор		1	
Рецен	1 3.				гидроаппоратов	.11000ор	rra	т. п.	2
Н. Контр.					ewop o www op www o		111		Э.Сухого 11
Зав.ка	φ.	Попов В.Б.						Гр.С-4	+1

Рис.5.1. Общий вид стенда

Стенд предназначен для изучения принципа работы различных компонентов гидросистем рулевого управления, а так же гидросистемы в сборе. Внешний вид стенда приведен на рис. 5.1. гидросхема на рис. 5.2.

Рис. 5.2 – Гидросхема стенда.

Стенд состоит из следующих элементов соединяемых между собой:

1. Шестеренный гидронасос H;

						/
					Лабораьорная работа №5	
Изм.	Лист	№ докум.	Подпись	Дата		

- 2. Предохранительный клапан стенда *КП1*, настроенный на максимальное давление при котором обеспечивается работоспособность стенда 10 МПа;
- 3. Два гидроклапана КД1 и КД2
- 4. Датчики давления Π и Π 2;
- 5. Манометр M_H ;
- 6. Гидроцилиндр U; 7. Бак масляный E1.

Напряжение питания стенда $\sim 380/220$ B, 50 Γ ц.

Заправочная ёмкость гидробака Б1 - 7 дм.

Управление гидростанцией осуществляется кнопками «Пуск» и «Стоп», расположенными на пульте.

В качестве рабочих жидкостей лучше всего использовать моторные масла (M-8B, M-10 Γ 1 и др.).

1.2 Экспериментальная честь.

При положении золотника распределителя P в нейтральном положении (в современных гидросистемах роль распределителя выполняет насос-дозатор, включающий в себя предохранительный лапан $K\Pi$ и клапаны $K\Pi$ и клапаны $K\Pi$ и клапаны $K\Pi$ и клапаны $E\Pi$ и клапаны $E\Pi$ и клапаны $E\Pi$ и клапаны $E\Pi$ в маслобак — обеспечивается режим разгрузки, при этом колеса не поворачиваются. Давление в режиме разгрузки возможно контролировать по манометру $E\Pi$, при этом, чем меньше давление, тем лучше, меньше затраты энергии на перекачивание жидкости по системе. Давление разгрузки будет зависеть от:

- сопротивления по длине от гидронасоса H до гидрораспределителя P;
 - сопротивления по длине от гидрораспределителя P до бака масляного \mathcal{S} ;
 - местные сопротивления в гидроарматуре; сопротивление гидрораспределителя P.

Произведем включение стенда и определим давление разгрузки по показаниям манометра MH.

При переключении распределителя P в одно из крайних положений, например в крайне левое, рабочая жидкость поступает от гидронасоса H через распределитель P в штоковую полость гидроцилиндра U — режим высокого давления, при этом будет происходить поворот колес. При движении штока давления будет зависеть от:

	·			
Изм.	Лист	№ докум.	Подпись	Дата

Лабораьорная работа №5

- сопротивления по длине от гидронасоса

H до

гидрораспределителя P;

- сопротивления гидрораспределителя P (из P в A);
- сопротивления по длине от гидрораспределителя P до поршневой полости гидроцилиндра \mathcal{U} ;
 - нагрузки на штоке гидроцилиндра Ц;
 - сопротивление по длине от гидроцилиндра $\it U$ до

гидрораспределителя P;

- сопротивления гидрораспределителя P (из B в T);
- сопротивления по длине от гидрораспределителя P до бака масляного \mathcal{S} .

При этом суммарная нагрузка, выраженная в давлении, не должна превышать давление настройки предохранительного клапана $K\Pi$, в противном случае рабочая жидкость будет поступать не в гидроцилиндр Π , а будет поступать в маслобак Π через открывшийся предохранительный клапан Π и поворот колес происходить не будет.

При достижении гидроцилиндром \mathcal{U} крайнего положения, колеса полностью повернуты, давление будет увеличиваться до срабатывания предохранительного клапана $K\Pi$ и вся рабочая жидкость будет поступать в бак масляный через открывшийся предохранительный клапан $K\Pi$.

Произведем включение стенда и определим давление, по показаниям манометра *MH*, при перемещении штока гидроцилиндра и при достижении штоком гидроцилиндра одного затем другого крайнего положения, при этом колеса повернутся в одно крайнее, а затем в другое крайнее положение.

Перечень типоразмеров гидроцилиндров.

Практическая честь.

Таблица 5.1

Лист

Диаметр поршня D, мм	Диаметр штока d, мм
40	20
50	25
63	32
70	40
80	40
90	45
100	50

Изм.	Лист	№ докум.	Подпись	Дата

Перечень типоразмеров насос-дозаторов.

50 см ³	80 см ³	100 см ³	125 см ³	160 см ³	200 см ³
315 cm^3	400 см ³	500 cm^3	630 см ³	800 cm^3	1000 cm^3

Таблица 5.3

Перечень типоразмеров шестеренных насосов.

4 cm ³	6 см ³	8 cm ³	10 см ³	12 см ³	14 cm ³
16 см ³	20 см ³	25 cm^3	32 см ³	40 см ³	50 см ³

Таблица 5.4

Способы подключения рулевых гидроцилиндров

Choco	зы подключения рулевых гидроцилиндров
	Штоковый гидроцилиндр F=P*3.14/4*D ² (подача РЖ в поршневую полость)
	F=P*3.14/4*(D²-d²) (подача РЖ в штоковую полость) Двухштоковый гидроцилиндр F=P*3.14/4*(D2-d2)
	Два штоковых гидроцилиндра $F=P^*(3.14/4)^*(2D^2\text{-}d^2)$

Произведем подбор гидроаппаратов при установке двух штоковых гидроцилиндров в гидросистеме рулевого управления. Исходные данные:

- преодолеваемое усилие гидроцилиндром F=8000 Hм;
- ход гидроцилиндра S=185 мм;
- давление настройки предохранительного клапана P=120 bar;
- обороты вращения вала гидронасоса n=2000 об/мин.
 - 1. Произведем подбор диаметра поршня и диаметра штока гидроцилиндра исходя из требуемого усилия и давления в гидросистеме:

 $F = P \cdot K\Pi \coprod \cdot (3.14/4) \cdot (2D^2 - d^2) = 120 \cdot 0.8 \cdot (3.14/4) \cdot (2 \cdot 8^2 - 4^2) = 8440 \text{ H};$

где: P – давление в гидросистеме (настройка предохранительного клапана), bar;

КПД -0.8 (запас гидросистемы по давлению); D - диаметр поршня (подбирать из таблицы 5.1), см;

d – диаметр штока (подбирать из таблицы 5.1), см;

Типоразмер гидроцилиндра должен минимально превышать требуемое усилие.

						Лис
					/Ιαδοραьορнαя ραδοπα №5	
Изм.	Лист	№ докум.	Подпись	Дата	· · ·	

2. Произведем расчет объема хода гидроцилиндра (величина равная объему РЖ, подаваемому в гидроцилиндр при переводе его из одного крайнего положения в другое):

$$V=3.14/4\cdot(2D^2-d^2)\cdot S=3.14/4\cdot(2\cdot 8^2-4^2)\cdot 1626$$
 см³ Где: D — диаметр поршня (подбирать из таблицы 5.1), см; d — диаметр штока (подбирать из таблицы 5.1), см; S - ход гидроцилиндра, см.

3. Произведем расчет объема насос-дозатора учитывая рекомендации: поворот колес из одного крайнего положения в другое должен происходить при 3 или 4 оборотах рулевого колеса:

$$V3=V/3=1626/3=542 \cdot 10^{-6} \text{ m}^3 = 542 \text{ cm}^3$$

 $V4=V/4=1626/4=406,5 \cdot 10^{-6} \text{ m}^3 = 406,5 \text{ cm}^3;$

4. Произведем подбор стандартного насос-дозатора из таблицы 5.2 из расчетного диапазона V3-V4.

Выбираем насос-дозатор Vнд= $500 \cdot 10^{-6}$ м³ = 500 см³;

5. Произведем расчет расхода рабочей жидкости, учитывая рекомендации: человек в среднем вращает рулевое колесо со скоростью около 100 об/мин:

$$Q = V_{HZ} \cdot 100/1000 = 500 \cdot 10^{-6} \cdot 100/1000 = 50 \text{ л/мин};$$

При расходе жидкости менее требуемого, будет наблюдаться голодание насос- дозатора и как следствие повышенное усилие вращения рулевого колеса. Для исключения данного недостатка необходимо более медленно вращать рулевое колесо.

- 6. Произведем расчет рабочего объема шестеренного гидронасоса: $V_H = (Q \cdot 1000)/(n \cdot 0.9) = (50 \cdot 1000) / (2000 \cdot 0.9) = 27.7 \text{ cm}^3$;
- 7. Произведем подбор рабочего объема стандартного гидронасоса из таблицы 5.3.
 - 8. Выбираем насос $V_H=32 \cdot 10^{-6} \text{ м}3=32 \text{ см}^3$;

Вывод: изучил принцип работы гидросистемы рулевого управления; изучил основные элементы гидросистемы рулевого управления и их назначение; произвел расчет количества оборотов рулевого колеса при переводе колес комбайна из одного крайнего положения в другое.

Изм.	Лист	№ докум.	Подпись	Дата