w is updated once it sees a mistake

$$w^{0} = 0 \rightarrow w^{1} \rightarrow w^{2} \rightarrow \dots \rightarrow w^{k} \rightarrow w^{k+1} \rightarrow \dots$$

$$w^{k} = w^{k-1} + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n}) \text{ (the relation of } w^{k} \text{ and } w^{k-1})$$

Proof that: The angle  $\rho_k$  between  $\hat{w}$  and  $w_k$  is smaller as k increases 分子會越來越大

Analysis  $\cos \rho_k$  (larger and larger?)  $\cos \rho_k = \frac{\hat{w} + \hat{w}^k}{\|\hat{w}\| \cdot \|\hat{w}^k\|}$ 

$$\hat{w} \cdot w^{k} = \hat{w} \cdot \left( w^{k-1} + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n}) \right)$$

$$= \hat{w} \cdot w^{k-1} + \hat{w} \cdot \phi(x^{n}, \hat{y}^{n}) - \hat{w} \cdot \phi(x^{n}, \tilde{y}^{n}) \ge \hat{w} \cdot w^{k-1} + \delta$$

$$\ge \delta \text{ (Separable)}$$

w is updated once it sees a mistake

$$w^{0} = 0 \rightarrow w^{1} \rightarrow w^{2} \rightarrow \dots \rightarrow w^{k} \rightarrow w^{k+1} \rightarrow \dots$$

$$w^{k} = w^{k-1} + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n}) \text{ (the relation of } w^{k} \text{ and } w^{k-1})$$

Proof that: The angle  $\rho_k$  between  $\hat{w}$  and  $w_k$  is smaller as k increases

Analysis  $\cos \rho_k$  (larger and larger?)  $\cos \rho_k = \frac{\|\hat{w} - w^*\|}{\|\hat{w}\|}$  $\hat{w} \cdot w^k \ge \hat{w} \cdot w^{k-1} + \delta$ 

$$\hat{w} \cdot w^{1} \geq \hat{w} \cdot w^{0} + \delta \qquad \hat{w} \cdot w^{2} \geq \hat{w} \cdot w^{1} + \delta \qquad \text{upper bound}$$
 
$$\hat{w} \cdot w^{1} \geq \delta \qquad \qquad \hat{w} \cdot w^{2} \geq 2\delta \qquad \qquad \text{(so what)}$$

mistake: 前幾頁是說y^跟w取內積要是max, 而一開始求 argmax的時候有說明y~是找出投影上w(k-1)是最大的值

$$\cos \rho_k = \frac{\hat{w}}{\|\hat{w}\|} \cdot \frac{w^k}{\|w^k\|}$$

$$w^{k} = w^{k-1} + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \widetilde{y}^{n})$$

Assume the distance between any two feature vector is smaller than R

假設所有feature分佈之間的距離小 $\mathop{\lesssim} \|w^{k-1}\| + \mathop{\mathrm{R}}^2$ 

$$||w^{1}||^{2} \le ||w^{0}||^{2} + R^{2} = R^{2}$$

$$||w^{2}||^{2} \le ||w^{1}||^{2} + R^{2} \le 2R^{2}$$
...
$$||w^{k}||^{2} \le kR^{2}$$

$$\cos \rho_k = \frac{\hat{w}}{\|\hat{w}\|} \cdot \frac{w^k}{\|w^k\|} \qquad \hat{w} \cdot w^k \ge k\delta \qquad \|w^k\|^2 \le kR^2$$

$$\hat{w} \cdot w^k \ge k\delta$$

$$\left\| w^k \right\|^2 \le k \mathbf{R}^2$$

$$\geq \frac{k\delta}{\sqrt{kR^2}} = \sqrt{k} \frac{\delta}{R} \qquad \cos \rho_k$$

cos的lower bound

$$\sqrt{k} \frac{\delta}{R} \le 1$$

$$k \le \left(\frac{R}{\delta}\right)^2$$

k的最大值



(最多update這麼多次這個演算法就會結束)



# Structured Linear Model: Reduce 3 Problems to 2

#### **Problem 1: Evaluation**

How to define F(x,y)

#### Problem 2: Inference

 How to find the y with the largest F(x,y)

#### **Problem 3: Training**

How to learn F(x,y)



F(x,y)=w·φ(x,y) 前提是要先能夠解出arg max

#### Problem A: Feature

How to define φ(x,y)

#### Problem B: Inference

 How to find the y with the largest w·φ(x,y)



# Graphical Model

A language which describes the evaluation function

# Structured Learning

We also know how to involve hidden information.

#### Problem 1: Evaluation 假設為linear

• What does F(x,y) look like?  $F(x,y) = w \cdot \phi(x,y)$ 

#### Problem 2: Inference

How to solve the "arg max" problem

$$y = \arg\max_{y \in Y} F(x, y)$$

#### **Problem 3: Training**

Given training data, how to find F(x,y) Structured SVM, etc.

solve: structure perceptron/structure SVM

### Difficulties

怎麼設計evaluation function?

#### Difficulty 1. Evaluation



Hard to figure out? Hard to interpret the meaning?

怎麼解inference

Difficulty 2. Inference



**Gibbs Sampling** 

We can use Viterbi algorithm to deal with sequence labeling. How about other cases?

# Graphical Model

$$F(x,y)$$
 Graph

- Define and describe your evaluation function F(x,y)
   by a graph
- There are three kinds of graphical model.
  - Factor graph, Markov Random Field (MRF) and Bayesian Network (BN)
  - Only factor graph and MRF will be briefly mentioned today.

# Decompose F(x,y)

- F(x, y) is originally a **global** function
  - Define over the whole x and y x,y是一個有結構的物件
- Based on graphical model, F(x, y) is the composition of some **local** functions

  - Each local function defines on only a few related components in x and y
  - Which components are related → defined by Graphical model

# Decomposable x and y

x and y are decomposed into smaller components



### Factor Graph

假設x & y的關係是由一些factor所組成每一個factor都對應到一個function

Each factor influences some components.

Each factor corresponds to a local function.



Larger value means more compatible.

 $F(x,y) = f_a(x_1,y_1) + f_b(x_2,y_1,y_2) + f_c(y_2)$  evaluation function即為所有factor所代表的function組合而成 You only have to define the factors.

You only have to define the factors.

因此其實我們只需要定義factor即可,因為只需要定義某幾個component之間的關係是比較容易的
The local functions of the factors are learned from data.

#### Image De-noising

把image拆成每個pixel代表一個component Each pixel is one component



http://cs.stanford.edu/people/karpathy/visml/ising\_example.html

Factor:

Noisy and clean images are related

同一位置的  $\triangleright$  **a**: the values of  $x_i$  and  $y_i$ 

The colors in the clean image is smooth.

假設clean image相鄰pixel是平滑的  $\triangleright$  **b**: the values of the neighboring  $y_i$ 



#### Noisy and clean images are related

 $\triangleright$  **a**: the values of  $x_i$  and  $y_i$ 

The colors in the clean image is smooth.

 $\triangleright$  **b**: the values of the neighboring  $y_i$ 



**Factor:** 

Realize F(x, y) easily from the factor graph

$$F(x,y) = \sum_{i=1}^{4} f_a(x_i, y_i)$$
global evaluation function
$$+f_b(x_1, y_2) + f_b(x_1, y_3)$$

$$+f_b(x_2, y_4) + f_b(x_3, y_4)$$

#### factor可以隨便亂定義,如下~

#### Factor:

- c: the values of x<sub>i</sub> and the values of the neighboring y<sub>i</sub>
  - $\triangleright$  d: the values of the neighboring  $x_i$  and the values of  $y_i$



$$f_c(x_i, y_i, y_{i-1})$$

$$f_d(x_i, x_{i-1}, y_i)$$

$$f_e(x_i, x_{i-1}, y_i, y_{i-1})$$

# Markov Random Field (MRF)

彼此之間有連接的 Clique: a set of components connecting to each other

Maximum Clique: a clique that is not included by

other cliques 最大的clique也不被其他clique包含 👡



### MRF

Each maximum clique on the graph corresponds to a factor



### **MRF**

