Structure and dynamics of complex networks

March 10, 2020

Advanced network characteristics

Degree correlations Full description ANND

Full statistical description of assortativity

- $E_{k',k}$: number of links between nodes of degree k' and k.
- $e_{k',k} = \frac{E_{k',k}}{2L}$: the probability for finding a node with degree k' at one end and a node with degree k at the other end of a randomly selected link,
- $q_k = \sum_{k'} e_{k',k}$: prob. of degree k at one end of a link,
- For a neutral network we expect $e_{k'k} = q_{k'} \cdot q_k$, deviations from this value signify the presence of degree correlations!

7

Advanced network characteristics

Degree correlations Full description ANND

- q_k: the probability for finding a node with degree k at one end of a randomly selected link.
- How can we express q_k with the help of p(k)?

Advanced network characteristics

Degree correlations Full description ANND

- q_k: the probability for finding a node with degree k at one end of a randomly selected link.
- How can we express q_k with the help of p(k)?
 q_k is proportional to the total number of links hanging on nodes with degree k:

$$q_k \sim kN_k$$

Advanced network characteristics

Degree correlations Full description ANND

- q_k: the probability for finding a node with degree k at one end of a randomly selected link.
- How can we express q_k with the help of p(k)?
 q_k is proportional to the total number of links hanging on nodes with degree k:

$$q_k \sim kN_k$$

To turn this into a normalized probability, we have to sum over all possibilities:

$$q_k = \frac{kN_k}{\sum_{k'} k' N_{k'}} = \frac{kp(k)N}{\sum_{k'} k' p(k')N} = \frac{kp(k)}{\langle k \rangle}$$

7

Advanced network characteristics

Degree correlations Full description ANND

Averaging on 100 samples of SF networks with $N = 10^4$, $\gamma = 2.5$, $\langle k \rangle = 3$:

How would the distribution look like for a perfectly assortative/disassortative network?

Advanced network characteristics

Degree correlations Full description ANND Averaging on 100 samples of SF networks with

How would the distribution look like for a perfectly assortative/disassortative network?

Advanced network characteristics

Degree correlations Full description ANND Averaging on 100 samples of SF networks with $N = 10^4$, $\gamma = 2.5$, $\langle k \rangle = 3$:

How would the distribution look like for a perfectly assortative/disassortative network?

Advanced network characteristics

Degree correlations Full description ANND

Results for real networks:

Advanced network characteristics

Degree correlations Full description ANND

Results for real networks:

0.009

0.007

0.006 0.005 e ik

0.004

0.003

Advanced network characteristics

Degree correlations Full description ANND Pearson-correlation

Problems with e_{kl} :

- · difficult to prepare,
- · difficult to evaluate.

Advanced network characteristics

Degree correlations Full description ANND Pearson-correlation

How could we simplify the description of the degree correlations?

Advanced network characteristics

Degree correlations Full description ANND Pearson-correlatio

How could we simplify the description of the degree correlations?

 \rightarrow Average Nearest Neighbors Degree!

Advanced network characteristics

Jegree correlations Full description ANND

ANND (or k_{nn}) of individual nodes

• The ANND of node i:

$$k_i^{\rm ANND} \equiv k_{{\rm nn},i} \equiv \left\langle k_j \right\rangle_{j \; {\rm linked \; to \; } i} = \frac{1}{k_i} \sum_{j \; {\rm linked \; to \; } i} k_j. \label{eq:kannon}$$

7

Advanced network characteristics

Degree correlations Full description ANND

ANND (or k_{nn}) of individual nodes

• The ANND of node i:

$$k_i^{\mathrm{ANND}} \equiv k_{\mathrm{nn},i} \equiv \left\langle k_j \right\rangle_{j \; \mathrm{linked \; to } i} = \frac{1}{k_i} \sum_{j \; \mathrm{linked \; to } i} k_j.$$

$$k_{\text{nn},i} = \frac{2+5+4+3}{4} = 3.5$$

Advanced network characteristics

Degree correlations Full description ANND

ANND of the network

- Once we calculated the ANND for every node, we can calculate further averages, e.g., what is the ANND for nodes with degree k?
- → The ANND of the whole network:

$$k_{\rm nn}(k) \equiv \langle k_{{\rm nn},i} \rangle_{k_i=k}$$
.

• In terms of P(k' | k) and $e_{k'k}$

$$\begin{split} k_{\rm nn}(k) &= \sum_{k'} k' P(k' \mid k), \qquad P(k' \mid k) = \frac{E_{k'k}}{\sum_{k'} E_{k'k}} = \frac{e_{k'k}}{\sum_{k'} e_{k'k}} \\ k_{\rm nn}(k) &= \frac{\sum_{k'} k' e_{k'k}}{\sum_{k'} e_{k'k}} = \frac{\sum_{k'} k' e_{k'k}}{q_k} \end{split}$$

Degree correlations Full description ANND Pearson-correlat

ANND of the network

- Once we calculated the ANND for every node, we can calculate further averages, e.g., what is the ANND for nodes with degree k?
- → The ANND of the whole network:

$$k_{\rm nn}(k) \equiv \langle k_{{\rm nn},i} \rangle_{k_i=k}$$
.

• In terms of P(k' | k) and $e_{k'k}$

$$k_{\rm nn}(k) = \sum_{k'} k' P(k' \mid k), \qquad P(k' \mid k) = \frac{E_{k'k}}{\sum_{k'} E_{k'k}} = \frac{e_{k'k}}{\sum_{k'} e_{k'k}}$$
$$k_{\rm nn}(k) = \frac{\sum_{k'} k' e_{k'k}}{\sum_{k'} e_{k'k}} = \frac{\sum_{k'} k' e_{k'k}}{q_k}$$

Degree correlations Full description ANND Pearson-correla

ANND of the network

- Once we calculated the ANND for every node, we can calculate further averages, e.g., what is the ANND for nodes with degree k?
- → The ANND of the whole network:

$$k_{\rm nn}(k) \equiv \langle k_{{\rm nn},i} \rangle_{k_i=k}$$
.

• In terms of P(k' | k) and $e_{k'k}$:

$$k_{\rm nn}(k) = \sum_{k'} k' P(k' \mid k), \qquad P(k' \mid k) = \frac{E_{k'k}}{\sum_{k'} E_{k'k}} = \frac{e_{k'k}}{\sum_{k'} e_{k'k}}$$

$$\rightarrow k_{\rm nn}(k) = \frac{\sum_{k'} k' e_{k'k}}{\sum_{k'} e_{k'k}} = \frac{\sum_{k'} k' e_{k'k}}{q_k}$$

4

Advanced network characteristics

Degree
correlations
Full description
ANND
Pearson-correlation

Illustration:

Advanced network characteristics

Degree
correlations
Full description
ANND
Pearson-correlation

Illustration:

Advanced network characteristics

Degree correlations Full description ANND Let's calculate the kⁿⁿ(k) in case of a neutral (un-correlated) network!

Advanced network characteristics

Degree correlations Full description ANND Pearson-correlation Let's calculate the kⁿⁿ(k) in case of a neutral (un-correlated) network!

In this case $e_{k'k} = q_{k'}q_k$, thus,

$$P(k' \mid k) = \frac{E_{k'k}}{\sum_{k'} E_{k'k}} = \frac{e_{k'k}}{\sum_{k'} e_{k'k}} = \frac{q_{k'}q_k}{q_k} = q_{k'}.$$

The ANND:

$$k_{\text{nn}}(k) = \sum_{k'} k' P(k' \mid k) = \sum_{k'} k' q_{k'} = \sum_{k'} k' \frac{k' p(k')}{\langle k \rangle} = \frac{1}{\langle k \rangle} \sum_{k'} (k')^2 p(k') = \frac{\langle k^2 \rangle}{\langle k \rangle}.$$

Thus, for neutral networks $k_{nn}(k)$ is **independent** of k!

Advanced network characteristics

Degree correlations Full description ANND Pearson-correlation

Assortative

Disassortative

ANND vs $e_{k'k}$

Advanced network characteristics

Degree correlations Full description ANND

$$\mathbf{e}_{\mathbf{k}'\mathbf{k}}$$
: \leftrightarrow **ANND**: $k(k-1)$ parameters k parameters

→ The ANND is much simpler to evaluate and interpret.

Can we reduce the number of parameters even further?

ANND vs $e_{k'k}$

Advanced network characteristics

Degree correlations Full description ANND

$$\begin{array}{ccc} \mathbf{e_{k'k}} \colon & \leftrightarrow & \mathbf{ANND} \colon \\ k(k-1) \text{ parameters} & & k \text{ parameters} \end{array}$$

→ The ANND is much simpler to evaluate and interpret.

Can we reduce the number of parameters even further?

ANND vs $e_{k'k}$

Advanced network characteristics

Degree correlations Full description ANND

$$\mathbf{e}_{\mathbf{k}'\mathbf{k}}$$
: \leftrightarrow **ANND**: $k(k-1)$ parameters k parameters

→ The ANND is much simpler to evaluate and interpret.

Can we reduce the number of parameters even further?

Advanced network characteristics

Degree correlations Full description ANND

- $e_{k'k}$ can be treated as a **joint probability distribution** for k' and k.
- → Thus, we can use the standard formulas of co-variance and Pearson-correlation to measure their relatedness.
 - The co-variance:

$$\begin{aligned} \operatorname{Cov}_{e}(k',k) &= \left\langle k'k\right\rangle_{e} - \left\langle k'\right\rangle_{e} \left\langle k\right\rangle_{e} = \\ &= \sum_{k',k} k' k e_{k'k} - \left(\sum_{k,k'} k' e_{k'k}\right) \left(\sum_{k',k} k e_{k'k}\right) = \\ &= \sum_{k',k} k' k e_{k'k} - \left(\sum_{k'} k' q_{k'}\right) \left(\sum_{k} k q_{k}\right) = \\ &= \sum_{k',k} k' k \left(e_{k'k} - q_{k'} q_{k}\right) \end{aligned}$$

Advanced network characteristics

Degree
correlations
Full description
ANND
Pearson-correlation

- $e_{k'k}$ can be treated as a **joint probability distribution** for k' and k.
- → Thus, we can use the standard formulas of co-variance and Pearson-correlation to measure their relatedness.
 - The co-variance:

$$\begin{aligned} \operatorname{Cov}_{e}(k',k) &= \left\langle k'k\right\rangle_{e} - \left\langle k'\right\rangle_{e} \left\langle k\right\rangle_{e} = \\ &= \sum_{k',k} k' k e_{k'k} - \left(\sum_{k,k'} k' e_{k'k}\right) \left(\sum_{k',k} k e_{k'k}\right) = \\ &= \sum_{k',k} k' k e_{k'k} - \left(\sum_{k'} k' q_{k'}\right) \left(\sum_{k} k q_{k}\right) = \\ &= \sum_{k',k} k' k \left(e_{k'k} - q_{k'} q_{k}\right) \end{aligned}$$

Advanced network characteristics

Degree correlations Full description ANND Pearson correlation

- $e_{k'k}$ can be treated as a **joint probability distribution** for k' and k.
- → Thus, we can use the standard formulas of **co-variance** and **Pearson-correlation** to measure their relatedness.
 - · The co-variance:

$$\begin{aligned} \operatorname{Cov}_{e}(k',k) &= \left\langle k'k\right\rangle_{e} - \left\langle k'\right\rangle_{e} \left\langle k\right\rangle_{e} = \\ &= \sum_{k',k} k' k e_{k'k} - \left(\sum_{k,k'} k' e_{k'k}\right) \left(\sum_{k',k} k e_{k'k}\right) = \\ &= \sum_{k',k} k' k e_{k'k} - \left(\sum_{k'} k' q_{k'}\right) \left(\sum_{k} k q_{k}\right) = \\ &= \sum_{k',k} k' k \left(e_{k'k} - q_{k'} q_{k}\right) \end{aligned}$$

Advanced network characteristics

Degree
correlations
Full description
ANND
Pearson-correlation

· The variance:

$$\sigma_e^2(k) = \sigma_e^2(k') = \langle k^2 \rangle_e - \langle k \rangle_e^2 = \sum_{k',k} k^2 e_{k'k} - \left(\sum_{k',k} k e_{k'k} \right)^2 =$$

$$\sum_k k^2 q_k - \left(\sum_k k q_k \right)^2.$$

The Pearson-correlation:

$$r = \frac{\operatorname{Cov}_{e}(k', k)}{\sigma_{e}(k')\sigma_{e}(k)} = \frac{\sum\limits_{k', k} k' k (e_{k'k} - q_{k'}q_k)}{\sigma_{e}^{2}(k)}.$$

Properties

$$r>0$$
 assortative $-1 \le r \le 1,$ $r=0$ neutral $r<0$ disassortativ

Advanced network characteristics

correlations

Full description

ANND

Pearson-correlation

· The variance:

$$\sigma_e^2(k) = \sigma_e^2(k') = \langle k^2 \rangle_e - \langle k \rangle_e^2 = \sum_{k',k} k^2 e_{k'k} - \left(\sum_{k',k} k e_{k'k}\right)^2 =$$
$$\sum_k k^2 q_k - \left(\sum_k k q_k\right)^2.$$

The Pearson-correlation:

$$r = \frac{\operatorname{Cov}_{e}(k',k)}{\sigma_{e}(k')\sigma_{e}(k)} = \frac{\sum\limits_{k',k} k' k(e_{k'k} - q_{k'}q_k)}{\sigma_{e}^{2}(k)}.$$

Properties:

$$r > 0$$
 assortative $-1 \le r \le 1,$ $r = 0$ neutral $r < 0$ disassortative

Advanced network characteristics

Degree
correlations
Full description
ANND
Pearson-correlation

· The variance:

$$\sigma_e^2(k) = \sigma_e^2(k') = \langle k^2 \rangle_e - \langle k \rangle_e^2 = \sum_{k',k} k^2 e_{k'k} - \left(\sum_{k',k} k e_{k'k} \right)^2 = \sum_k k^2 q_k - \left(\sum_k k q_k \right)^2.$$

The Pearson-correlation:

$$r = \frac{\operatorname{Cov}_{e}(k',k)}{\sigma_{e}(k')\sigma_{e}(k)} = \frac{\sum\limits_{k',k} k' k(e_{k'k} - q_{k'}q_k)}{\sigma_{e}^{2}(k)}.$$

Properties:

$$\begin{array}{ccc} & r>0 & \text{assortative} \\ -1 \leq r \leq 1, & r=0 & \text{neutral} \\ r<0 & \text{disassortative} \end{array}$$

Advanced network characteristics

Degree
correlations
Full description
ANND
Pearson-correlation

Social networks are assortative

Network	n	r
Physics coauthorship (a)	52 909	0.363
Biology coauthorship (a)	1 520 251	0.127
Mathematics coauthorship (b)	253 339	0.120
Film actor collaborations (c)	449 913	0.208
Company directors (d)	7 673	0.276
Internet (e)	10 697	-0.189
World-Wide Web (f)	269 504	-0.065
Protein interactions (g)	2 115	-0.156
Neural network (h)	307	-0.163
Marine food web (i)	134	-0.247
Freshwater food web (j)	92	-0.276
Dandam anak (u)		0
Random graph (u)		0
Callaway et al. (v)		$\delta/(1+2\delta)$
Barabási and Albert (w)		0

Biological, technological networks are disassortative

-

Measuring degree correlations Summary

Advanced network characteristics

Degree
correlations
Full description
ANND
Pearson-correlation

Network characteristics

Advanced network characteristics

Degree
correlations
Full description
ANND
Pearson-correlation

single node	whole network]	
degree, k_i strength, s_i	average degree, $\langle k \rangle$	\leftrightarrow	SPARSE!
	degree dist., $p(k)$	\leftrightarrow	SCALE-FREE!
	ANND, $k_{\rm nn}(k)$		
distance, l_i	average distance, $\langle \ell \rangle$,	\leftrightarrow	SMALL WORLD!
	diameter		
closeness			
betweenness			
clust. coeff., C	av. clustering, $\langle C \rangle$	\rightarrow	HIGH CLUSTERING!

7