Corrigé de l'épreuve de mathématiques II, filière PSI, CNC 07

Première Partie

1. Le rang de la matrice
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 est $\begin{cases} 0 \text{ si } (a,b,c,d) = 0 \\ 1 \text{ si } ad - bc = 0, (a,b,c,d) \neq 0 \\ 2 \text{ si } ad - bc \neq 0 \end{cases}$

- 2. $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$.
 - (a) Il est évident que rg(A) = 0 si et seulement si le sous-espace véctoriel engendré par ses vecteurs colonnes est nul et cela équivaut á dire que A = 0; en particulier si A n'est pas nulle $rg(A) \ge 1$.
 - (b) Si A est inversible, les vecteurs colonnes $C_1(A), \ldots, C_n(A)$ forment une base de $\mathcal{M}_{n,1}(\mathbb{R})$ donc dim $vect(C_1(A), \ldots, C_n(A)) = n$ c'est à dire rg(A) = n. Réciproquement, si rg(A) = n la famille $(C_1(A), \ldots, C_n(A))$ est une base de $\mathcal{M}_{n,1}(\mathbb{R})$ donc A est inversible.
- 3. On note f_A l'endomorphisme de $\mathcal{M}_{n,1}(\mathbb{R})$ canoniquement associé à A. On a

$$rg(f_A) = \dim(\operatorname{Im}(f_A))$$

et comme $\operatorname{Im}(f_A) = \operatorname{vect}(C_1(A), \dots, C_n(A))$ alors $\operatorname{rg}(A) = \operatorname{rg}(f_A)$.

- 4. (a) On a $A = U^t V = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \cdot (v_1 \dots v_n)$; en notant $A = (a_{i,j})$ et en effectuant le produit matriciel $U^t V$, on voit que $a_{k,\ell} = u_k v_\ell$ pour tout $(k,\ell) \in \{1,\dots,n\}^2$.
 - (b) Avec les notations de la question précèdente, on a : $\operatorname{Tr}(A) = \sum_{i=1}^{n} a_{i,i} = \sum_{i=1}^{n} u_i v_i = {}^{t}VU$.
 - (c) D'aprés la question (4.a), la $j^{i\grave{e}me}$ colonne de A est $C_i(A)=v_iU$.
 - (d) On a $V \neq 0$ donc il existe j_0 tel que $v_{j_0} \neq 0$; ainsi $C_{j_0}(A) = v_{j_0}U \neq 0$ puisque $U \neq 0$; on en déduit que $rg(A) \geqslant 1$. D'autre part, pour tout $j \in \{1, \ldots, n\}$, $C_j(A) = v_jU = \frac{v_j}{v_{j_0}}C_{j_0}(A)$ cela montre que $rg(A) \leqslant 1$; d'où rg(A) = 1
- 5. (a) La matrice A est de rang 1, donc non nulle d'où l'existence d'un i_0 tel que $C_{i_0}(A) \neq 0$.
 - (b) On a $rg(A) = \dim vect((C_1(A), \ldots, C_n(A))) = 1$, donc les colonnes de la matrice A sont toutes proportionnelles à la colonne $C_{i_0}(A)$; ainsi, pour tout $j \in \{1, \ldots, n\}$, il existe un réel λ_j tel que $C_j(A) = \lambda_j C_{i_0}(A)$.
 - (c) D'aprés le calcul précédent, les vecteurs colonnes de A sont $\lambda_1 C_{i_0}(A), \ldots, \lambda_n C_{i_0}(A)$; le calcul éffectué à la question (4.a) montre alors que $A = C_{i_0}(A) \cdot (\lambda_1 \ldots \lambda_n)$, c'est à dire que $A = X \cdot Y$ avec $X = C_{i_0}(A)$ et $Y = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$.
 - (d) Si $A = X_0$. ${}^tY_0 = X_1$. tY_1 et rg(A) = 1, alors les vecteurs X_0 , X_1 , Y_0 et Y_1 sont non nuls. Posons $Y_0 = {}^t(y_1, \ldots, y_n)$, $Y_1 = {}^t(z_1, \ldots, z_n)$. Il existe un indice i_0 tel que $C_{i_0}(A) \neq 0$; or $C_{i_0}(A) = y_{i_0}X_0 = z_{i_0}X_1$ donc $X_1 = \lambda X_0$ avec $\lambda = \frac{y_{i_0}}{z_{i_0}} \neq 0$. Par

ailleurs, pour tout $j \in \{1, ..., n\}$, $C_j(A) = y_j X_0 = z_j X_1 = \lambda z_j X_0$ donc $z_j = \frac{1}{\lambda} y_j$ et $Y_1 = \frac{1}{\lambda} Y_0$. Réciproquement, si $\lambda \neq 0$ alors on a bien (λX_0) . $t \left(\frac{1}{\lambda} Y_0\right) = X_0 t Y_0 = A$. Ainsi, les couples cherchés sont de la forme $\left(\lambda X_0, \frac{1}{\lambda} Y_0\right)$ avec $\lambda \in \mathbb{R}^*$.

- 6. Soit $A \in \mathcal{M}_n(\mathbb{R})$ avec rg(A) = r > 0; d'après un résultat du cours, on peut mettre A sous la forme A = PJQ avec $J = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$, I_r la matrice identité d'ordre r et P,Q des matrices inversibles de $\mathcal{M}_n(\mathbb{R})$. Notons E_{ij} la matrice de terme général $e_{k,l}$ avec $e_{k,l} = 1$ si (k,l) = (i,j) et $e_{kl} = 0$ sinon; alors $J = \sum_{i=1}^r E_{ii}$ et par suite $A = P\left(\sum_{i=1}^r E_{ii}\right)Q = \sum_{i=1}^r PE_{ii}Q$, en plus $1 = rg(E_{ii}) = rg(PE_{ii}Q)$ puisque ces deux matrices sont équivalentes.
- 7. (a) Il est évident que si les vecteurs Z_1, \ldots, Z_n sont tous nuls alors $\sum_{i=1}^n Y_i \cdot {}^t Z_i = 0$. Réciproquement, si $\sum_{i=1}^n Y_i \cdot {}^t Z_i = 0$ alors, pour $j \in \{1, \ldots, n\}$, on a

$$0 = \left(\sum_{i=1}^{n} Y_{i}^{t} Z_{i}\right) Z_{j} = \sum_{i=1}^{n} Y_{i}^{t} Z_{i} Z_{j} = \sum_{i=1}^{n} ({}^{t} Z_{j} Z_{j}) Y_{i},$$

et comme les vecteurs Y_1, \ldots, Y_n sont indépendants, on obtient $||Z_j||^2 = {}^tZ_jZ_j = 0$, pour tout $j \in \{1, \ldots, n\}$; donc les vecteurs Z_1, \ldots, Z_n sont tous nuls.

(b) Soit $(\lambda_{ij})_{1 \leq i,j \leq n}$ une famille de réels tels que $\sum_{1 \leq i,j \leq n} \lambda_{ij} X_i \cdot {}^t Y_j = 0$ alors

$$0 = \sum_{i=1}^{n} X_i \cdot \left(\sum_{j=1}^{n} \lambda_{ij} \cdot {}^{t}Y_j\right) = \sum_{i=1}^{n} X_i \, {}^{t}\left(\sum_{j=1}^{n} \lambda_{ij} \cdot Y_j\right).$$

La question précédente montre alors que, pour tout $i \in \{1, ..., n\}$, $\sum_{j=1}^{n} \lambda_{ij} \cdot {}^{t}Y_{j} = 0$. Par transposition on obtient $\sum_{j=1}^{n} \lambda_{ij} \cdot Y_{j} = 0$, pour tout $i \in \{1, ..., n\}$; la famille $(Y_{1}, ..., Y_{n})$ étant libre, on déduit de ce qui prééde que $\lambda_{ij} = 0$, pour tout $(i, j) \in \{1, ..., n\}^{2}$; cela montre que la famille $(X_{i} \cdot {}^{t}Y_{j})_{i,j}$ est libre et comme $\mathcal{M}_{n}(\mathbb{R})$ est de dimension n^{2} , cette famille en constitue une base.

8. (a) La bilinéarité découle de la linéarité de la trace. Par ailleurs, on sait que, pour tout $M,N\in\mathcal{M}_n\left(\mathbb{R}\right),\ \langle M,N\rangle=\operatorname{Tr}({}^tM.N)=\operatorname{Tr}({}^t(M.N))=\operatorname{Tr}({}^tN.M)=\langle N,M\rangle;$ cela montre que la symtrie de la forme bilinéaire. Enfin, pour tout $M\in\mathcal{M}_n\left(\mathbb{R}\right),\ \langle M,M\rangle=\operatorname{Tr}({}^tM.M)=\sum_{1\leqslant i,j\leqslant n}M_{ij}^2\geqslant 0,$ en plus

$$\langle M, M \rangle = 0 \Longleftrightarrow \sum_{1 \le i, j \le n} M_{ij}^2 = 0 \Longleftrightarrow M = 0.$$

Cela prouve que l'application $(M, N) \longmapsto \langle M, N \rangle$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.

(b) Si X, X', Y et Y' sont des éléments de $\mathcal{M}_{n,1}(\mathbb{R})$, alors

$$\langle X.^{t}Y, X'.^{t}Y' \rangle = \operatorname{Tr} \left({}^{t} \left(X.^{t}Y \right) . \left(X'.^{t}Y' \right) \right) = \operatorname{Tr} \left(Y.^{t}X.X'.^{t}Y' \right),$$

et comme ${}^t\!X.X' \in \mathbb{R}$ alors $\mathrm{Tr}\,({}^t\!X.X'.Y.{}^t\!Y')={}^t\!X.X'\,\mathrm{Tr}\,(Y.{}^t\!Y')=({}^t\!X.X').({}^t\!Y.Y').$ Ainsi

$$\langle X.^tY, X'.^tY' \rangle = 0 \Longleftrightarrow^t X.X' = 0 \text{ ou } {}^tY.Y' = 0.$$

On en déduit que les matrices X. tY et X'. ${}^tY'$ sont orthogonales si et seulement si les vecteurs X, X' ou les vecteurs Y, Y' sont orthogonaux dans $\mathcal{M}_{n,1}(\mathbb{R})$ muni de son produit scalaire canonique.

(c) Si (X_1, \ldots, X_n) , (Y_1, \ldots, Y_n) sont deux systèmes de vecteurs de $\mathcal{M}_{n,1}(\mathbb{R})$, alors la famille $(X_i, Y_j)_{i,j}$ est orthonormée si et seulement si

$$\langle X_i^t Y_j, X_k^t Y_l \rangle = \begin{cases} 1 & \text{si} \quad (i,j) = (k,l) \\ 0 & \text{si} \quad (i,j) \neq (k,l) \end{cases}$$

Or d'aprés le calcul précédent, on a $\langle X_i.^tY_j , X_k.^tY_l \rangle = {}^t X_i.X_k.^tY_j, Y_l$. Donc, pour que la famille $(X_i.^tY_j)_{i,j}$ soit orthonormée dans $(\mathcal{M}_n(\mathbb{R}), <, >)$, il suffit que les deux familles (X_1, \ldots, X_n) , (Y_1, \ldots, Y_n) soient orthonormées dans $\mathcal{M}_{n,1}(\mathbb{R})$, muni de son produit scalaire canonique.

Deuxième Partie

Soit $A = U.^tV$ une matrice de rang 1 , $\alpha = ^tV.U$ et $W = (^tVV).U$

- 1. On a : $A^2 = (U.^tV) \cdot (U.^tV) = U.(^tV.U) \cdot ^tV = \alpha A$
- 2. Une récurrence permet de conclure que $A^k = \alpha^{k-1}A$ pour tout $k \in \mathbb{N}^*$; on en déduit que la matrice A est nilpotente si et seulement s'il existe $k \in \mathbb{N}^*$ tel que $A^k = 0$ c'est à dire si et seulement si $\alpha = 0$ puisque A est non nulle.
- 3. Si A n'est pas nilpotente, d'après la question précédente $\alpha \neq 0$ et on a

$$\left(\frac{1}{\alpha}A\right)^2 = \frac{1}{\alpha^2}A^2 = \frac{1}{\alpha^2}\alpha A = \frac{1}{\alpha}A,$$

donc la matrice $\frac{1}{\alpha}A$ est celle d'un projecteur.

4. (a) la matrice A est de rang 1 et comme $n \ge 2$ alors A n'est pas inversible et 0 est une valeur propre de A; le sous-espace propre de A associée à la valeur propre 0, qui n'est rien d'autre que son noyau noté ker A, est par définition égal à

$$\{Y \in \mathcal{M}_{n,1}(\mathbb{R}) / AY = 0\} = \{Y \in \mathcal{M}_{n,1}(\mathbb{R}) / U^t V Y = 0\}$$

Or, comme $U \neq 0$ on a l'équivalence $U^tVY = ({}^tVY).U = 0 \iff^t VY = 0$; on en déduit que $\ker A = \{Y \in \mathcal{M}_{n,1}(\mathbb{R}) \mid {}^tVY = 0\}$ et d'aprés le théorème du rang dim $\ker A = n - rg(A) = n - 1$.

- (b) On a $AU = U^tVU = ({}^tVU).U = \alpha U$, et comme $U \neq 0$ alors α est une valeur propre de A. Par ailleurs, le fait que la somme des dimensions des sous-espaces propres d'une matrice est toujours inférieure ou égale à son ordre, adjoint au fait que dim ker A = n 1 permet d'affirmer que le sous-espace propre de A associé à la valeur propre α est de dimension 1 et ce sous-espace propre vaut $\mathbb{R}U$.
- (c) Si $\alpha = 0$, la matrice A est nilpotente et 0 est son unique valeur propre. Si $\alpha \neq 0$, la matrice A admet deux valeurs propres qui sont 0 et α puisque la somme des sous-espaces propres associés est égale n.

- 5. si α ≠ 0 , d'aprés la question (4) , 0 et α sont les valeurs propres de A et la somme de leur sous-espaces propres est égale l'ordre de A, donc A est diagonalisable.
 En prenant une base (U₁,..., U_{n-1}) de ker (A) et une base (U_n) de ker (A αI_n), la matrice de l'endomorphisme f dans la base (U₁,..., U_n) est diag (0,..., 0, α). Donc A est semblable à diag (0,..., 0, α) puisque ces deux matrices représentent le même endomorphisme f.
- 6. On suppose que $\alpha = 0$.
 - (a) Comme 0 est la seule valeur propre de A, la matrice A est diagonalisable si et seulement si elle est nulle. Comme $A \neq 0$ alors A n'est pas diagonalisable.
 - (b) $AU = \alpha U = 0$ donc $U \in \ker f$ et comme le vecteur W est colinéaire à U et $W \neq 0$, le théorème de la base incomplte permet de compléter W en une base $(E_1, \ldots, E_{n-2}, W)$ de $\ker f$ qui est de dimension n-1.
 - (c) On a $AV = U^tVV = {}^tVV.U = W \neq 0$ donc $W \notin \ker f$ et par suite la famille $(E_1, \ldots, E_{n-2}, W, V)$ est libre, c'est donc une base de $\mathcal{M}_{n,1}(\mathbb{R})$.

La matrice de
$$f$$
 dans la base $(E_1, \ldots, E_{n-2}, W, V)$ est $\begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & 0 \\ \vdots & \ddots & 0 \\ 0 & \cdots & 0 \end{pmatrix}$.

(d) Soit A une matrice de rang 1, d'après les questions (1.5.c) et (1.4.b), on peut écrire A sous la forme $A = U^tV$ où U, V sont deux vecteurs non nuls de $\mathcal{M}_{n,1}(\mathbb{R})$, avec $\operatorname{Tr}(A) =^t VU$; si plus A est de trace nulle, alors d'après la question (2.6.c), A

est semblable à la matrice
$$\begin{pmatrix} 0 & \cdots & 0 \\ & & \vdots \\ \vdots & \ddots & 0 \\ & & 1 \\ 0 & \cdots & 0 \end{pmatrix}$$
. La transitivité de la relation de similitude permet enfin de conclure que deux matrices de rang 1 et de tarce nulle

similitude permet enfin de conclure que deux matrices de rang 1 et de tarce nulle sont semblables.

Troisième Partie

 $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$, on note A^c sa comatrice et on rappelle la relation

$$A.^tA^c = {}^tA^c.A = \det A.I_n \quad (1)$$

- 1. (a) rg(A) = n, donc A est inversible (d'aprés la question (1.2.b)) et $\det A \neq 0$, puis en multiplions l'égalité (1) précédente à droite par A^{-1} , on obtient ${}^tA^c = \det A.A^{-1}$. On en déduit que $rg(A^c) = rg({}^tA^c) = rg(A^{-1}) = n$ et enfin que $A^{-1} = \frac{1}{\det A} {}^tA^c$.
 - (b) Si A est de rang n-2 alors comme les cofacteurs de A sont tous des déterminants d'ordre n-1, il découle du deuxième résultat admis que tous ces cofacteurs sont nuls, c'est à dire $A^c=0$.
- 2. Si rg(A) = n 1.
 - (a) D'aprés le premier résultat admis, on peut extraire de A une sous-matrice inversible A_1 qui soit d'ordre n-1; cette sous-matrice A_1 est obtenue à partir de A en éliminant une ligne i et une colonne j, donc $(A^c)_{ij} = (-1)^{i+j} \det A_1 \neq 0$. On en déduit que la matrice A^c est non nulle et par conséquent $rg(A^c) \geq 1$.

(b) On note f (resp g) l'endomorphisme de $\mathcal{M}_{n,1}(\mathbb{R})$ canoniquement associé à A (resp à ${}^tA^c$); d'aprés la relation (1) on a $f \circ g = g \circ f = \det A.Id = 0$ et cette dernière relation montre bien que Im $g \subset \ker f$.

On peut donc conclure que $rg(A^c) = rg(^tA^c) = \dim \operatorname{Im} g \leq \dim \ker f = 1$ et comme $rg(A^c) \geq 1$ on a bien $rg(A^c) = 1$.

3. On rappelle que si I un intervalle de \mathbb{R} et $\varphi_1, \ldots, \varphi_n$ sont des applications dérivables de I vers $\mathcal{M}_{n,1}(\mathbb{R})$, alors l'application $\phi: t \longmapsto \det(\varphi_1(t), \ldots, \varphi_n(t))$ est dérivable, avec

$$\phi'(t) = \sum_{k=1}^{n} \det \left(\varphi_1(t), \dots, \varphi_{k-1}(t), \varphi'_k(t), \varphi_{k+1}(t), \dots, \varphi_n(t) \right)$$

(a) On déduit de ce qui précède que l'application $P_A: t \longmapsto \det (C_1(A) - te_1, \dots, C_n(A) - te_n)$ est dérivable sur \mathbb{R} et sa dérivée est donnée par :

$$P'_A(t) = \sum_{k=1}^n \det \Big(C_1(A) - te_1, \dots, C_{k-1}(A) - te_{k-1}, -e_k, C_{k+1}(A) - te_{k+1}, \dots, C_n(A) - te_n \Big).$$

- (b) On a $P_A'(0) = \sum_{k=1}^n \det \left(C_1(A), \dots, C_{k-1}(A), -e_k, C_{k+1}(A), \dots, C_n(A) \right)$. En développant, pour chaque k, le déterminant $\det \left(C_1(A), \dots, C_{k-1}(A), -e_k, C_{k+1}(A), \dots, C_n(A) \right)$ par rapport à la k-ième colonne on trouve l'opposé du k-ième cofacteur principal $\Delta_{k,k}$ de la matrice A. D'où $P_A'(0) = -\sum_{k=1}^n \Delta_{k,k} = -\operatorname{Tr}(A^c)$.
- 4. A et B deux matrices semblables de $\mathcal{M}_n(\mathbb{R})$; soit P inversible telle que $A = PBP^{-1}$.
 - (a) On a $\operatorname{Tr}(A) = \operatorname{Tr}(PBP^{-1}) = \operatorname{Tr}(P^{-1}PB) = \operatorname{Tr}(B),$ $rg(A) = rg(P^{-1}BP) = rg(BP) = rg(B) \text{ (car } P, P^{-1} \text{ inversibles)},$ $P_A(t) = \det(A tI_n) = \det(PBP^{-1} tI_n) = \det(P(B tI_n)P^{-1}) = \det(B tI_n) = P_B(t).$
 - (b) D'après la question (3.3.b), $\operatorname{Tr}(A^c) = -P_A(0) = -P_B(0) = \operatorname{Tr}(B^c)$.
 - (c) Si A est de rang n, donc inversible et il en est de même de B de plus

$$A^{c} = \det A.^{t}(A^{-1}) = \det A.^{t}(PB^{-1}P^{-1}) = \det A.^{t}(P^{-1})^{t}B^{-1}.^{t}P,$$

et comme det $A = \det B$, ${}^tP^{-1} = ({}^tP)^{-1}$ et $B^c = \det B \cdot {}^tB^{-1}$ alors $A^c = {}^tP \cdot (B^c) \cdot ({}^tP)^{-1}$ donc A^c et B^c sont semblables.

- (d) Si $rg(A) \leq n-2$, alors, puisque rg(A) = rg(B), d'après la question (3.1.b), $A^c = B^c = 0$ donc les matrices A^c et B^c sont égales donc semblables.
- (e) Si rg(A) = n 1, alors d'après la question (3.2.b), $rg(A^c) = rg(B^c) = 1$. Posons $\alpha = \text{Tr}(A^c) = \text{Tr}(B^c)$.
 - i. Si $\alpha \neq 0$, alors d'après la question (2.5), A^c est semblable à la matrice $diag(0, \ldots, 0, \alpha)$; de même B^c est semblable à la matrice $diag(0, \ldots, 0, \alpha)$, donc les matrices A^c et B^c sont semblables.
 - ii. Si $\alpha = 0$, alors les matrices A^c et B^c sont de rang 1 et de trace nulle donc semblables d'après la question (2.6.d).