Aussagenlogik & Prädikatenlogik (FGdI II) 1. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Otto Felix Canavoi, Kord Eickmeyer

SoSe 2015/16 13. April 2016

Gruppenübung

Aufgabe G1.1 (Semantik der Aussagenlogik)

Betrachten Sie die folgenden Formeln aus $AL(\{p,q,r\})$:

$$\begin{split} \varphi_1 &:= (\neg q \vee r) \to p, \\ \varphi_2 &:= (p \wedge \neg q \wedge r) \vee (\neg p \wedge \neg q \wedge \neg r) \\ \varphi_3 &:= (q \vee (r \to p)) \\ \varphi_4 &:= \varphi_1 \wedge \neg \varphi_3 \\ \varphi_5 &:= (r \to p) \to \varphi_3 \end{split}$$

Welcher dieser Formeln sind erfüllbar? Welche sind allgemeingültig? Welche Implikationen $\varphi_i \models \varphi_j$ gelten? **Lösung:** Wir stellen eine Wahrheitstafel auf:

p	q	r	φ_1	φ_2	φ_3	φ_4	φ_5
0	0	0	0	1	1	0	1
1	0	0	1	0	1	0	1
0	1	0	1	0	1	0	1
1	1	0	1	0	1	0	1
0	0	1	0	0	0	0	1
1	0	1	1	1	1	0	1
0	1	1	0	0	1	0	1
1	1	1	1	0	1	0	1

Es sind also $\varphi_1, \varphi_2, \varphi_3$ und φ_5 erfüllbar, φ_5 ist allgemeingültig. Es gelten die Implikationen

$$\varphi_4 \models \varphi_1, \varphi_2 \models \varphi_3 \models \varphi_5.$$

Zwischen φ_1 und φ_2 besteht keine Implikationsrelation.

Aufgabe G1.2 (Boolesche Junktoren)

Wie viele verschiedene zweistellige Boolesche Junktoren, d.h. Funktionen $*: \mathbb{B} \times \mathbb{B} \to \mathbb{B}$, gibt es? Welche davon sind

- (a) monoton, d.h. wenn $p_1 \le p_2$ und $q_1 \le q_2$, dann auch $(p_1 * q_1) \le (p_2 * q_2)$?
- (b) kommutativ, d.h. p * q = q * p?
- (c) einstimming, d.h. p * p = p für $p \in \mathbb{B}$?
- (d) Gruppen-Verknüpfungen, d.h. $(\mathbb{B}, *, e)$ ist eine Gruppe bei geeigneter Wahl von $e \in \mathbb{B}$?
- (e) dual zueinander? Dabei sind *1 und *2 dual zueinander, wenn

$$\neg((\neg p) *_1 (\neg q)) = p *_2 q$$

für alle $p, q \in \mathbb{B}$ gilt.

(f) selbstdual, d.h. $\neg((\neg p) * (\neg q)) = p * q$.

Lösung: Es gibt $2^{2^2} = 16$ verschiedene solcher Junktoren, die in der folgenden Tabelle zusammengefasst sind:

i =	0*10	$0*_{i} 1$	$1*_{i}0$	$1*_i 1$	mon.	komm.	einst.	Gr.	dual zu	selbstdual
1	0	0	0	0	х	х			*16	
2	1	0	0	0		x			*8	
3	0	1	0	0					*12	
4	1	1	0	0					*4	x
5	0	0	1	0					*14	
6	1	0	1	0					*6	x
7	0	1	1	0		x		x	*10	
8	1	1	1	0		x			*2	
9	0	0	0	1	х	х	х		*15	
10	1	0	0	1		x		x	*7	
11	0	1	0	1	x		x		*11	x
12	1	1	0	1					*3	
13	0	0	1	1	х		х		*13	х
14	1	0	1	1					*5	
15	0	1	1	1	x	x	x		*9	
16	1	1	1	1	x	x			*1	

Um von einem Junktor zu einem dualen zu kommen, muss man die entsprechende Zeile *rückwärts* lesen und 0 und 1 vertauschen. Beispiel: Die Zeile für $*_3$ ist 0, 1, 0, 0, rückwärts 0, 0, 1, 0, mit 0 und 1 vertauscht 1, 1, 0, 1, also $*_{12}$.

Aufgabe G1.3 (Potenzmengenalgebren)

In der Vorlesung "Automaten, Formale Sprachen und Entscheidbarkeit" haben wir unter anderem Boolesche Algebren kennengelernt, also Strukturen $\mathcal{B} = (B, \cdot, +, ', 0, 1)$ mit zwei binären Operationen \cdot und + und einer unären Operation ', die folgenden Bedingungen genügen:

- (i) \cdot und + sind assoziativ und kommutativ.
- (ii) Es gelten die Distributivgesetze $a \cdot (b+c) = a \cdot b + a \cdot c$ und $a + (b \cdot c) = (a+b) \cdot (a+c)$ für alle $a, b, c \in B$.
- (iii) Für alle $b \in B$ gilt $b \cdot 1 = b + 0 = b$.
- (iv) $1 \neq 0$ und für alle $b \in B$ gilt $b \cdot b' = 0$ und b + b' = 1.

Als Beispiele für Boolesche Algebren haben wir Potenzmengenalgebren kennengelernt:

Für eine Menge $M \neq \emptyset$ ist $\mathcal{P}(M) := (\mathcal{P}(M), \cap, \cup, \bar{0}, \emptyset, M)$ eine Boolesche Algebra.

Ein weiteres Beispiel ist die Boolesche Algebra der Aussagenlogik $\mathbb{B} = (\{0,1\}, \wedge, \vee, \neg, 0, 1)$.

- (a) Zeigen Sie, dass für |M| = 1 die Booleschen Algebren $\mathcal{P}(M)$ und \mathbb{B} isomorph sind.
- (b) Sei $M = \{m_1, ..., m_n\}$ eine endliche Menge mit n Elementen. Zeigen Sie, dass die Booleschen Algebren $\mathcal{P}(M)$ und \mathbb{B}^n isomorph sind. *Hinweis*: Die folgende Abbildung ist ein natürlicher Isomorphismus:

$$f: \mathcal{P}(M) \to \mathbb{B}^n$$

$$X \mapsto (p_1, \dots, p_n), \text{wobei } p_i := \begin{cases} 0 & \text{falls } m_i \notin X \\ 1 & \text{falls } m_i \in X. \end{cases}$$

(c) Benutzen Sie die Isomorphie aus (b), um die de Morgan'schen Regeln $\overline{X \cup Y} = \overline{X} \cap \overline{Y}$ und $\overline{X \cap Y} = \overline{X} \cup \overline{Y}$ für $X, Y \subseteq M$ in $\mathcal{P}(M)$ für endliche M zu beweisen.

Lösung:

- (a) Die Abbildung $\emptyset \mapsto 0, M \mapsto 1$ ist ein Isomorphismus, wie sich leicht nachprüfen lässt.
- (b) Dass f ein Isomorphismus ist, lässt sich leicht nachprüfen.
- (c) Es genügt, die de Morgan'schen Regeln in $\mathbb B$ zu prüfen. Daraus folgt, dass die Regeln in $\mathbb B^n$ gelten und weger der Isomorphie auch in $\mathcal P(M)$.

Hausübung

Aufgabe H1.1 (Mengen)

(12 Punkte)

Im folgenden sind vier Teilmengen M_1, \ldots, M_4 der Menge $S := \{a, b, \ldots, h\}$ skizziert:

- (a) Stellen Sie die Menge $\{b,g,h\}$ durch $\cap,\cup,\bar{}$ aus den Mengen M_1 bis M_4 dar.
- (b) Geben Sie eine Menge $X \subseteq S$ an, die nicht aus M_1 bis M_4 dargestellt werden kann. Geben Sie ein Kriterium dafür an, dass $X \subseteq S$ dargestellt werden kann.
- (c) Wie viele verschiedene Mengen $X \subseteq \{a, ..., h\}$ lassen sich aus M_1 bis M_4 darstellen? Wie lassen sich diese systematisch darstellen?

Lösung:

- (a) $\{b, g, h\} = (M_1 \cap M_2) \cup ((M_2 \cup M_3) \cap M_4).$
- (b) Die Menge $\{a\}$ kann nicht dargestellt werden, da für alle Mengen M_1, \ldots, M_4 gilt, dass $a \in M_i \iff c \in M_j$. Allgemein kann $X \subseteq S$ genau dann dargestellt werden, wenn $(a \in X \iff c \in X)$ gilt.
- (c) Es lassen sich $2^7 = 128$ Mengen darstellen, nämlich alle Vereinigungen der Mengen

$$\{a,c\} = M_1 \cap \overline{(M_2 \cup M_3)},$$

$$\{b\} = M_1 \cap M_2,$$

$$\{d\} = M_1 \cap M_3,$$

$$\{e\} = M_4 \cap \overline{(M_2 \cup M_3)},$$

$$\{f\} = M_2 \cap \overline{(M_1 \cup M_4)},$$

$$\{g\} = M_2 \cap M_4, \text{ und}$$

$$\{h\} = M_3 \cap M_4.$$

Bemerkung: Man kann diese Aufgabe auch aussagenlogisch modellieren. Eine solche Modellierung wäre durch vier aussagenlogische Variablen p_1, \ldots, p_4 . Formeln aus $AL(\{p_1, \ldots, p_4\})$ entsprechen dann genau den Booleschen Kombinationen der Mengen M_1, \ldots, M_4 . Wir ordnen jedem Element aus $x \in S$ eine Belegung

$$\begin{split} \mathfrak{I}_x: \{p_1, \dots, p_4\} &\to \mathbb{B}, \\ p_i &\mapsto \begin{cases} 0 & \text{falls } x \not\in M_i, \\ 1 & \text{falls } x \in M_i \end{cases} \end{split}$$

zu. Dann beschreiben zwei Formel
n φ, ψ die gleiche Menge, falls $\mathfrak{I}_x \models \varphi \Leftrightarrow \mathfrak{I}_x \models \psi$ für alle $x \in S$ gilt.

Aufgabe H1.2 (Boolesche Algebren)

(12 Punkte)

Sei $\mathcal V$ eine Variablenmenge. Wir ordnen jeder aussagenlogischen Formel $\varphi \in AL(\mathcal V)$ wie folgt einen Term $[\varphi]$ in der Signatur der Booleschen Algebren mit \cdot , +, ', 0 und 1 zu:

$$[0] := 0,$$

$$[1] := 1,$$

$$[p] := p \text{ für } p \in \mathcal{V},$$

$$[(\varphi \lor \psi)] := ([\varphi] + [\psi]),$$

$$[(\varphi \land \psi)] := ([\varphi] \cdot [\psi]), \text{ und}$$

$$[\neg \varphi] := [\varphi]'.$$

(a) Zeigen Sie, dass für zwei Formeln $\varphi, \psi \in AL(\mathcal{V})$ gilt:

$$\varphi \equiv \psi \iff [\varphi] = [\psi] \text{ in } \mathbb{B} \text{ für alle Belegungen } \mathfrak{I} : \mathcal{V} \to \mathbb{B}$$
 (1)

(*Hinweis*: Hier und im Folgenden ist mit " $[\varphi] = [\psi]$ in $\mathbb B$ für alle Belegungen $\mathfrak I$ " nicht gemeint, dass $[\varphi]$ und $[\psi]$ als Terme syntaktisch gleich sind, sondern dass die durch sie definierten Funktionen $\mathbb B^n \to \mathbb B$ identisch sind, wobei n die Anzahl der in $[\varphi]$ und $[\psi]$ vorkommenden Variablen ist.)

(b) Tatsächlich lässt sich (1) verallgemeinern zu

$$\varphi \equiv \psi \iff [\varphi] = [\psi]$$
 in allen Booleschen Algebren \mathcal{B} für alle $\mathfrak{I} : \mathcal{V} \to \mathcal{B}$.

Zeigen Sie dies für alle Potenzmengenalgebren endlicher Mengen.

Hinweis: Sie können das Ergebnis aus G1.3(b) benutzen.

(c) Welche Relation zwischen aussagenlogischen Formeln entspricht der Teilmengenrelation ⊆ in Potenzmengenalgebren?

Lösung:

(a) Wir zeigen per Induktion über den Aufbau von φ , dass für jede Belegung $\mathfrak{I}: \mathcal{V} \to \mathbb{B}$:

$$\mathfrak{I} \models \varphi \iff [\varphi] = 1 \text{ für die Belegung } \mathfrak{I}$$

Da außerdem gilt

$$\varphi \equiv \psi \iff (\mathfrak{I} \models \varphi \leftrightarrow \mathfrak{I} \models \psi \text{ für alle Belegungen } \mathfrak{I} : \mathcal{V} \to \mathbb{B})$$

folgt die Behauptung.

(b) Die Richtung "

" folgt direkt aus (a), da die rechte Seite von (b) stärker ist als die von (a).

Wir beweisen die Implikation " \Rightarrow ". Seien $\varphi, \psi \in AL(\mathcal{V})$ äquivalent, und sei $M = \{m_1, \dots, m_n\}$ eine n-elementige Menge und $\mathfrak{I}: \mathcal{V} \to \mathcal{P}(M)$ eine Belegung. Sei $f: \mathcal{P}(M) \to \mathbb{B}^n$ der Isomorphismus aus G1.3(b). Dann gilt für die Belegung $\tilde{\mathfrak{I}}:=f\circ \mathfrak{I}: \mathcal{V} \to \mathbb{B}^n$:

$$\tilde{\mathfrak{I}} = (\tilde{\mathfrak{I}}_1, \dots, \tilde{\mathfrak{I}}_n) \quad \text{mit} \quad \tilde{\mathfrak{I}}_i(p) = \begin{cases} 0 & \text{falls } m_i \notin \mathfrak{I}(p), \\ 1 & \text{falls } m_i \in \mathfrak{I}(p). \end{cases}$$

Mit dem Ergebnis aus Aufgabenteil (a) gilt nun

$$\varphi \equiv \psi \Rightarrow [\varphi] = [\psi] \text{ in } \mathbb{B} \text{ für die Belegungen } \tilde{\mathfrak{I}}_1, \dots, \tilde{\mathfrak{I}}_n$$

$$\Rightarrow [\varphi] = [\psi] \text{ in } \mathbb{B}^n \text{ für die Belegung } \tilde{\mathfrak{I}}$$

$$\Rightarrow [\varphi] = [\psi] \text{ in } \mathcal{P}(M) \text{ für die Belegung } \mathfrak{I},$$

und da M und \Im beliebig waren folgt die Behauptung.

(c) Der Relation ⊆ entspricht die aussagenlogische Implikation ⊨ zwischen Formeln in dem Sinne, dass

$$\varphi \models \psi \iff ([\varphi] \subseteq [\psi] \text{ in allen Booleschen Algebren } \mathcal{B} \text{ und für alle Belegungen } \mathfrak{I} : \mathcal{V} \to \mathcal{B}).$$

Aufgabe H1.3 (Vollständige Systeme von Junktoren)

(12 Punkte)

Führen Sie die in der Gruppenübung G2 begonnene Untersuchung der zweistelligen Booleschen Junktoren wie folgt fort:

- (a) Zeigen Sie, dass wenn $\{*\}$ für einen zweistelligen Booleschen Junktor * ein vollständiges System von Junktoren bildet, dann auch $\{\bar{*}\}$, wobei $\bar{*}$ wie in G1.2(e) der zu * duale Junktor ist (sowohl mit Konstanten 0, 1 als auch ohne).
- (b) Welche der folgenden Junktoren bilden
 - i. mit Konstanten 0,1 bzw.
 - ii. auch ohne 0,1

ein vollständiges System von Junktoren? Begründen Sie jeweils Ihre Antwort!

p	q	$p *_1 q$	<i>p</i> * ₂ <i>q</i>	$p *_3 q$	$p *_4 q$	$p *_5 q$
0	0	0	1	1	0	0
0	1	1	1	1	1	1
1	0	1	1	0	1	0
1	1	0	0	1	1	0

Lösung:

- (a) Wir nehmen an, dass jede Funktion $f: \mathbb{B}^n \to \mathbb{B}$ aus * und ggf. den Konstanten 0 und 1 dargestellt werden kann. Wenn wir in einem Term, der f darstellt,
 - * durch $\bar{*}$,
 - p_i durch $\neg p_i$,
 - 0 durch 1 und 1 durch 0

ersetzen, dann erhalten wir einen Term, der $\neg f$ darstellt, wie man leicht durch Induktion zeigen kann. Der wesentliche Induktionsschritt lautet

$$(\neg g)\bar{*}(\neg h) = \neg (g*h).$$

Da für jedes f auch $\neg f$ aus * darstellbar ist und Konstanten 0 und 1 nicht neu eingeführt werden, gelten beide Aussagen.

- (b) $*_1$ ist auch mit Konstanten nicht vollständig: Wir nennen eine Funktion $f : \mathbb{B}^n \to \mathbb{B}$ gerade, falls $f(\neg p_1, \dots, \neg p_n) = f(p_1, \dots, p_n)$, und ungerade, falls $f(\neg p_1, \dots, \neg p_n) = \neg f(p_1, \dots, p_n)$. Aus $*_1$ lassen sich dann, auch mit 0 und 1, nur Funktionen darstellen, die gerade oder ungerade sind (was man leicht per Induktion zeigt). Die Funktion $p \land q$ ist jedoch weder gerade noch ungerade, kann also nicht dargestellt werden.
 - $*_2$ ist vollständig, da $\neg p = p *_2 p$ und $p \land q = \neg (p *_2 q)$.
 - $*_3$ ist mit Konstanten vollständig, da $\neg p = p *_3 0$ und $p \lor q = (\neg p) *_3 q$. Ohne Konstanten ist $*_3$ nicht vollständig, da $1 *_3 1 = 1$ und somit nur Funktionen darstellbar sind, für die f(1, ..., 1) = 1 gilt.
 - $*_4$ ist monoton, daher lassen sich (auch mit Konstanten) nur monotone Funktionen darstellen. Insbesondere kann $\neg p$ nicht dargestellt werden.
 - $*_5 = \bar{*}_3$ ist nur mit Konstanten vollständig, wir benutzen dazu das Ergebnis aus (a).