Домашнее задание 10λ . λ -исчисление.

(Группы B02 и B03, 9 ноября $\rightarrow 16$ ноября)

\item \begin{enumerate}
\item[(a)]

Домашнее задание по логике

1) Напомним,

True := λx . λy . x, False := λx . λy . y.

Выразите логические операции \wedge , \vee , \oplus , \rightarrow , \downarrow (отрицание дизъюнкции) как λ -термы, которые можно применять к **True** и **False**. Покажите эквивалентность термов, соответствующих правым и левым частям каких-нибудь пяти основных равносильностей.

- 2) (а) Выпишите λ -терм Роw, соответствующий возведению в степень чёрчевских нумералов. Проверьте себя, получив **8** в результате β -редукции терма Роw **2 3**. А что будет, если редуцировать **2 2** . . . **2**?
 - (й) Выпишите λ -терм IsZero, который при применении к чёрчевскому нумералу n редуцируется в **True**, если $n = \mathbf{0}$, иначе в **False**.
- 3) Пусть λx . λy . λf . $(f \ x \ y)$ создаёт упорядоченную пару из элементов x и y. Например, λf . f 3 5 такая вот упорядоченная пара.
 - (a) Выпишите λ -терм First, который при применении к упорядоченной паре вернёт её первый элемент.
 - (б) Выпишите λ -терм, преобразующий пару (a,b) в пару (b,b+1). Отсюда получите λ -терм Pred, соответствующий взятию предыдущего чёрчевского нумерала (Pred $\mathbf{0} = \mathbf{0}$). Проверьте себя, применив его к $\mathbf{3}$ и редуцировав результат.
- 4) Придумайте терм без нормальной формы: который можно бесконечное число раз β -редуцировать.
- Пусть

$$\mathbf{S} \coloneqq \lambda x. \ \lambda y. \ \lambda z. \ ((x \ z) \ (y \ z)), \qquad \mathbf{K} \coloneqq \mathbf{True}.$$

Выразите, применяя ${f S}$ и ${f K}$ друг к другу, ${f False}; \oplus ;$ вашу желаемую оценку за курс логики.