Non-autoregressive approach in different tasks.

Семаков Андрей

Задача

Идея

Пайплайн

Figure 3. **Pipeline Overview.** MaskGIT follows a two-stage design, with 1) a tokenizer that tokenizes images into visual tokens, and 2) a bidirectional transformer model that performs MVTM, i.e. learns to predict visual tokens masked at random.

Маскирование

$$n = \left\lceil \gamma(\frac{t}{T})N \right\rceil$$

$$\gamma(0) \rightarrow 1 \text{ and } \gamma(1) \rightarrow 0$$

$$\mathcal{L}_{\text{mask}} = - \underset{\mathbf{Y} \in \mathcal{D}}{\mathbb{E}} \left[\sum_{\forall i \in [1, N], m_i = 1} \log p(y_i | Y_{\overline{\mathbf{M}}}) \right]$$

Идея

Input —— MaskGIT (Our Samples) ——

Задача

Figure 1: Decoupled semantic representation for the single utterance "Please remind me to call John".

Идея

Традиционный подход

Идея

Предложение авторов

Идея

	Exact Match Accuracy				
Model	TOP	DSTC2	SNIPS		
RNNG (Einolghozati et al., 2018)	80.86	-	-		
Ptr Transformer (Rongali et al., 2020)	79.25	-	85.43		
Ptr BiLSTM (Aghajanyan et al., 2020)	79.51	88.33	-		
GLAD (Zhong et al., 2018)	i -	79.4	-		
JointBiRNN (Hakkani-Tür et al., 2016)		-	73.20		
Slot Gated (Goo et al., 2018)	17	1/3	75.50		
Capsule NLU (Zhang et al., 2018)	-	-	80.90		
		Ours			
NAR LightConv Pointer	80.20	88.16	80.86		
AR LightConv Pointer	80.23	88.58	76.43		

Задача

«Came from schleiddorf in wurteenberg»

User vocab: {"schlaitdorf", "wurttemberg"}

«Came from schlaitdorf in wurttemberg»

Идея

Figure 1: Inference pipeline. Candidate retrieval ingests ASR output fragment of 10-15 words and selects top 10 user phrases with many matching n-grams in the user vocabulary index. ASR-hypothesis and candidates are combined to a single BERT input sequence with separators. The model predicts labels of correct candidates for each character of ASR-hypothesis, or 0.

Dataset	Users	Utte- rances	Max/Avg vocab size	ASR Model	Baseline WER %	Spellcheck WER %	"Ideal" WER %	Recall %	Precision %	Top 10 recall %
SWC	1341	61370	1341/172	CTC	6.69	5.26	4.46	67	87.4	90.4
				RNNT	6.07	4.93	4.12	62.9	85.6	88.1
SPGI	1114	39341	86/21	CTC	5.88	5.50	5.33	55	88.7	84.5
				RNNT	5.71	5.32	5.12	53.2	88.5	82.7
UserLibri	99	5559	192/43	CTC	3.35	2.89	2.52	61.7	82.3	83.9
				RNNT	2.77	2.44	2.09	54.5	77.6	74.1

Figure 4: SpellMapper accuracy on classes 1-10 depending on the number of training examples (1, 2, 10, 30M) evaluated on 20K validation examples. The whole phrase is considered correct if all symbols are tagged correctly. On class 0 (not presented on the graph) accuracy per symbol is 93%, 95.9%, 97.3%, 97.5% for corresponding corpus sizes

Всем спасибо!