Principles of Databases

Translating Entity-Relationship Data Models to Relations

David Sinclair

Entities Relationships Multi-valued Attributes N-ary Relationships

Translating ER Models to Relational Schema

- An Entity-Relationship model is a conceptual model of the system we are modelling.
- We need to convert the conceptual model into a logical model that can be used to define the relations (tables) in a relational database.
- The resulting relations may need to be normalised and optimised.

Example

Consider the following ER model.

Entities Relationships Multi-valued Attributes N-ary Relationships

Strong Entities

- Strong entities are easy to convert.
- Each strong entity becomes a relation (table).
- The attributes of the strong entity become the attributes of the relation.
- Composite attributes should be flattened to simple attributes.
 In our example, we should flatten address into street and city.
- The key of the strong entity becomes the primary key of the relation.

Employee(enum, name, street, city, title, salary)

Weak Entities

- Convert each weak entity into a relation with a foreign key to its identifying entity.
 - Identify the owning entities E_1, E_2, \ldots, E_n .
 - Create a relation R for the weak entity.
 - The primary key of R is the primary keys of the owning entities plus the partial key of the weak entity.
 - Create foreign keys in *R* for the primary keys in the owning entities.
 - Attributes are converted in a similar manner as strong entities.

Employee(enum, name, street, city, title, salary)
Dependent(eno, name, age)

Entities Relationships Multi-valued Attributes N-ary Relationships

1:1 Relationships

- Convert a 1:1 relationship, R, between entities E_i and E_j into unique foreign keys references from the relations representing both entities.
 - Identify the relations R_i and R_j that correspond to the entities E_i and E_j .
 - Choose one of the relations, say R_i.
 - Choose the entity/relation that will always participate in the relationship.
 - Add the attributes of R to R_i.
 - Add the primary key attributes of R_j to R_i and create a foreign key reference.
 - Make sure the primary key attributes of R_j are unique.

Employee(enum, name, street, city, title, salary)
Department(dnum, name, bonus, enum)

1:N Relationships

- Convert a 1:N relationship (or N:1 relationship), R, between entities E_i and E_j into a foreign key references from the N-sided entity to the 1-sided entity.
 - Identify the relations R_i and R_j that correspond to the entities E_i and E_i .
 - Choose the N-sided relation, say R_i .
 - Add the attributes of R to R_i.
 - Add the primary key attributes of R_j to R_i and create a foreign key reference to R_i from R_i .

Employee(enum, name, street, city, title, salary, dnum)
Department(dnum, name, bonus)

Entities Relationships Multi-valued Attributes N-ary Relationships

M:N Relationships

- Convert a M:N relationship, R, between entities E_i and E_j into a new relation R with foreign key references to the two participating entities.
 - Identify the relations R_i and R_j that correspond to the entities E_i and E_j .
 - Create a new relation R.
 - Add the attributes of the relationship to R.
 - The primary key of R is a composite of the primary keys of R_i and R_j and create a foreign key reference from R to R_j and to R_i .

Employee(enum, name, street, city, title, salary, dnum)
Project(pnum, name, budget, location)
WorksOn(enum, pnum, hours, task)

Multi-valued Attributes

- Convert multi-values attributes into a relation with a composite key of the attribute value and the primary key of the attribute's entity.
 - Identify the entity's relation, R_i.
 - Create a relation R for the multi-value attribute where R contains:
 - a single-value attribute; and
 - R_i 's primary key, which is a foreign key from R to R_i .
 - The primary key of R is a composite key of the attribute value and R_i 's primary key

Project(pnum, name, budget)
ProjectLocation(pnum, location)

Entities Relationships Multi-valued Attributes N-ary Relationships

N-ary Relationships

- Convert an N-ary relationship, R, between the entities into a new relation R with foreign key references to the related entities.
 - Identify the relations R_1, R_2, \ldots, R_n that correspond to the entities E_1, E_2, \ldots, E_n .
 - Create a new relation R.
 - Add the attributes of the relationship to R.
 - The primary key of R is a composite of the primary keys of R_1, R_2, \ldots, R_j and create foreign key references from R to R_1, R_2, \ldots, R_i .