В этой главе читатель познакомился с обработкой статических и динамических матриц в C++, а также с использованием функций для решения задач обработки динамических матриц.

6.5 Задачи для самостоятельного решения

6.5.1 Основные операции при работе с матрицами

Разработать программу на языке С++ для решения следующей задачи.

- 1. В двумерном массиве A, состоящем из $n \times n$ целых чисел, вычислить:
 - наименьший элемент;
 - сумму положительных элементов;
 - количество простых чисел, расположенных на диагоналях матрицы.

Для заданной матрицы $A(n \times n)$ и матрицы того же типа и размерности $C(n \times n)$ найти значение выражения $B = 2 \cdot A + B^T$.

- 2. В двумерном массиве C, состоящем из $n \times n$ целых чисел, вычислить:
 - сумму элементов;
 - количество нечётных элементов;
 - минимальное простое число среди элементов, расположенных на главной диагонали.

Для заданной матрицы $C(n \times n)$ и матрицы того же типа и размерности $B(n \times n)$ найти значение выражения $A = (B-C) \cdot C^T$

- 3. В двумерном массиве B, состоящем из $m \times m$ целых чисел, вычислить:
 - индексы наибольшего элемента;
 - количество отрицательных элементов;
 - среднее геометрическое среди простых чисел, расположенных на побочной диагонали.

Для заданной матрицы размерности $B(n \times n)$ найти значение выражения $A = 3 \cdot B + B^T$

- 4. В двумерном массиве A, состоящем из $n \times m$ вещественных чисел, вычислить:
 - сумму элементов;
 - произведение ненулевых элементов;
 - два наибольших значения матрицы.

Для заданной матрицы $A(n\times m)$ и матрицы того же типа и размерности $C(n\times m)$ найти значение выражения $B=2\cdot A+\frac{1}{3}\cdot C$

- 5. В двумерном массиве B, состоящем из $n \times m$ вещественных чисел, вычислить:
 - произведение элементов;
 - сумму положительных элементов;
 - два наименьших значения среди элементов расположенных по периметру матрицы.

Для заданной матрицы $B(n \times m)$ и матрицы того же типа, но другой размерности $C(m \times n)$ найти значение выражения $A = 3 \cdot B \cdot C$.

- 6. В двумерном массиве A, состоящем из $n \times n$ целых чисел, вычислить:
 - наименьший элемент:
 - количество чётных чисел:
 - сумму положительных элементов, которые представляют собой возрастающую последовательность цифр.

Для заданной матрицы $A(n\times n)$ и матрицы того же типа и размерности $C(n\times n)$ найти значение выражения $B=A^2-C^T$

- 7. В двумерном массиве C, состоящем из $n \times n$ целых чисел, вычислить:
 - индексы наименьшего элемента;
 - сумму квадратов отрицательных элементов;
 - минимальное простое число среди элементов, расположенных в заштрихованной части матрицы (рис. 6.17).

Для заданной матрицы $C(n \times n)$ и матрицы того же типа и размерности $B(n \times n)$ найти значение выражения $A = (B^T + C)^2$

Рис. 6.17:

Рис. 6.18:

- 8. В двумерном массиве B, состоящем из $n \times n$ целых чисел, вычислить:
 - среднее арифметическое элементов;
 - наименьший чётный элемент:
 - количество чисел-палиндромов, расположенных в заштрихованной части матрицы (рис. 6.18).

Для заданной матрицы $B(n\times n)$ и матрицы того же типа и размерности $C(n\times n)$ найти значение выражения $A=\frac{1}{2}\cdot B+C^2$

- 9. В двумерном массиве C, состоящем из $n \times n$ целых чисел, вычислить:
 - среднее геометрическое элементов;
 - наибольший нечётный элемент;
 - количество составных чисел среди элементов, расположенных в заштрихованной части матрицы (рис. 6.19).

Для заданной матрицы $C(n \times n)$ найти значение выражения $A = C + C^T$.

- 10. В двумерном массиве A, состоящем из $n \times n$ целых чисел, вычислить:
 - индексы наименьшего элемента;
 - среднее арифметическое нечётных чисел;

Рис. 6.19:

Рис. 6.20:

Рис. 6.21:

Рис. 6.22:

• количество положительных элементов, которые представляют собой убывающую последовательность цифр.

Для заданной матрицы $A(n \times n)$ найти значение выражения $B = \frac{1}{5} \cdot A^2$. 11. В двумерном массиве B, состоящем из $n \times n$ вещественных чисел, вычис-

- среднее арифметическое элементов;
- элемент наиболее отличающийся от среднего арифметического. Отразить заданную матрицу относительно побочной диагонали.

Для матрицы $B(n \times n)$ и матрицы того же типа и размерности $C(n \times n)$ найти значение выражения $A=2\cdot B-C^T.$

- 12. В двумерном массиве C, состоящем из $n \times n$ целых чисел, вычислить:
 - среднее геометрическое элементов;
 - элемент наименее отличающийся от среднего геометрического;
 - количество положительных элементов с чётной суммой цифр, расположенных в заштрихованной части матрицы (рис. 6.20)

Для матрицы $C(n \times n)$ и матрицы того же типа и размерности $B(n \times n)$ найти значение выражения $A = (B - C) \cdot (B + C)$.

- 13. В двумерном массиве A, состоящем из $n \times n$ целых чисел, вычислить:
 - наименьший элемент и его индексы;
 - среднее арифметическое положительных чётных элементов;
 - произведение простых чисел-палиндромов, расположенных в заштрихованной части матрицы (рис. 6.21).

Для заданной матрицы $A(n\times n)$ и матрицы того же типа и размерности $C(n\times n)$ найти значение выражения $B=A^2-C^2.$

- 14. В двумерном массиве C, состоящем из $n \times n$ целых чисел, вычислить:
 - наибольший элемент и его индексы;
 - среднее арифметическое элементов, расположенных на диагоналях матрицы.

Сформировать новую матрицу $A(n \times n)$, каждый элемент которой будет равен сумме цифр элемента матрицы $C(n \times n)$. Для матриц $A(n \times n)$ и $C(n \times n)$ найти значение выражения $B = (A + C)^2$.

- 15. В двумерном массиве B, состоящем из $m \times m$ целых чисел, вычислить:
 - произведение элементов;
 - индексы наибольшего чётного элемента;
 - сумму чисел-палиндромов, расположенных вне диагоналей матрицы.

Для заданной матрицы размерности $B(n \times n)$ и матрицы того же типа и размерности $C(n \times n)$ найти значение выражения $A = C \cdot B - B^T$.

- 16. В двумерном массиве A, состоящем из $n \times n$ целых чисел, вычислить:
 - среднее арифметическое элементов;
 - наименьший нечётный элемент, расположенный в заштрихованной части матрицы (рис. 6.22).

Сформировать новую матрицу $B(n \times n)$, каждый элемент которой равен значению матрицы $A(n \times n)$, цифры которого записаны в обратном порядке. Для матриц $A(n \times n)$ и $B(n \times n)$ найти значение выражения $B = A + C^2$.

- 17. В двумерном массиве A, состоящем из $n \times m$ целых чисел, вычислить:
 - сумму элементов;
 - количество ненулевых элементов, расположенных по периметру матрицы;
 - среднее геометрическое чисел, в представлении которых все цифры различные.

Для заданной матрицы $A(n\times m)$ и матрицы того же типа и размерности $C(n\times m)$ найти значение выражения $B=2\cdot A-3\cdot C.$

- 18. В двумерном массиве B, состоящем из $n \times m$ целых чисел, вычислить:
 - произведение элементов;
 - сумму элементов, расположенных вне периметра матрицы;
 - наименьшее число, состоящее из одинаковых цифр.

Для заданной матрицы $B(n \times m)$ и матрицы того же типа, но другой размерности $C(m \times k)$ найти значение выражения $A = B \cdot C$.

- 19. В двумерном массиве A, состоящем из $n \times n$ целых чисел, вычислить:
 - среднее геометрическое элементов;
 - индексы наибольшего чётного элемента, расположенного в заштрихованной части матрицы (рис. 6.23).

Сформировать новую матрицу $B(n \times n)$, каждый элемент которой равен значению матрицы $A(n \times n)$ в восьмеричной системе счисления. Найти значение выражения $C=3\cdot A^2$.

- 20. В двумерном массиве B, состоящем из $n \times n$ целых чисел, вычислить:
 - сумму квадратов элементов;
 - количество совершённых чисел, расположенного в заштрихованной части матрицы (рис. 6.24).

Рис. 6.23:

Рис. 6.24:

Рис. 6.25:

Рис. 6.26:

Сформировать новую матрицу $A(n \times n)$, каждый элемент которой равен количеству делителей соответствующего значения матрицы $B(n \times n)$. Для матриц $A(n \times n)$ и $B(n \times n)$ найти значение выражения $C = B^T - A^2$.

- 21. В двумерном массиве A, состоящем из $n \times n$ целых чисел, вычислить:
 - наименьшее абсолютное значение элементов;
 - произведение ненулевых элементов, расположенного в заштрихованной части матрицы (рис. 6.25).

Сформировать новую матрицу $B(n \times n)$, каждый элемент которой равен количеству цифр в соответствующем элементе матрицы $A(n \times n)$. Найти значение выражения $C = B^T \cdot A$.

- 22. В двумерном массиве B, состоящем из $n \times n$ целых чисел, вычислить:
 - произведение ненулевых элементов;
 - наибольшее абсолютное значение элементов, расположенного в заштрихованной части матрицы (рис. 6.26).

Сформировать новую матрицу $C(n \times n)$, каждый элемент которой равен значению матрицы $B(n \times n)$ в пятеричной системе счисления. Найти значение выражения $A = B \cdot B^T$.

- 23. В двумерном массиве C, состоящем из $n \times m$ вещественных чисел, вычислить:
 - сумму модулей элементов;
 - количество нулевых элементов, расположенных вне периметра матри-
 - два наибольших положительных значения.

Для заданной матрицы $C(n \times m)$ и матрицы того же типа, но другой размерности $B(m \times k)$ найти значение выражения $A = C \cdot B$.

- 24. В двумерном массиве B, состоящем из $n \times n$ вещественных чисел, вычислить:
 - сумму квадратов элемента;
 - индексы первого нулевого элемента матрицы;
 - два наибольших значения, расположенных вне периметра матрицы;

Для заданной матрицы $B(n \times n)$ найти значения выражений $A = B \cdot B^T$ и $C = B^T \cdot B$.

- 25. В двумерном массиве A, состоящем из $n \times n$ вещественных чисел вычислить:
 - произведение квадратов элемента;
 - индекс последнего нулевого элемента матрицы;
 - два наименьших значения, расположенных вне диагоналей матрицы.

Из элементов заданной матрицы $A(n \times n)$ сформировать верхнетреугольную матрицу V и нижнетреугольную матрицу U. Проверить равенство $A = V \cdot U$.

6.5.2 Работа со строками и столбцами матрицы

Разработать программу на языке С++ для решения следующей задачи.

- 1. Задана матрица целых чисел $A(n \times m)$. Сформировать массив B(m), в который записать среднее арифметическое элементов каждого столбца заданной матрицы. Вывести номера строк матрицы, в которых находится более двух *простых чисел*.
- 2. Задана матрица вещественных чисел $B(n \times m)$. Сформировать массив A(n), в который записать среднее геометрическое положительных элементов каждой строки заданной матрицы. Определить количество столбцов, упорядоченных по возрастанию.
- 3. Задана матрица целых чисел $A(n \times n)$. Все простые числа, расположенные на побочной диагонали, заменить суммой цифр максимального элемента соответствующей строки матрицы. Сформировать массив B(k), в который записать произведения элементов нечётных строк заданной матрицы.
- 4. В матрице целых чисел $X(n \times n)$ поменять местами диагональные элементы, упорядоченных по убыванию строк. Сформировать массив Y(k), в который записать суммы элементов чётных столбцов заданной матрицы.
- 5. Задана матрица целых чисел $A(n \times n)$. Максимальный элемент каждого столбца заменить суммой иифp максимального элемента матрицы. Сформировать массив B(n), в который записать количество чётных элементов в каждой строке заданной матрицы.
- 6. Задана матрица целых чисел $B(n \times m)$. Максимальный элемент каждого столбца заменить суммой иифр модуля минимального элемента матрицы. Сформировать массив A(n), в который записать количество нечётных элементов в каждой строке заданной матрицы.
- 7. Задана матрица целых чисел $A(n \times n)$. Сформировать массив B(n) из максимальных элементов столбцов заданной матрицы. Вывести индексы чисел-палиндромов, которые находятся на диагоналях матрицы.
- 8. Задана матрица вещественных чисел $P(n \times m)$. Сформировать массив R(k) из номеров столбцов матрицы, в которых есть хотя бы один ноль. Найти строку с максимальной суммой элементов и поменять её с первой строкой.

- 9. Задана матрица вещественных чисел $C(k \times m)$. Сформировать вектор D(k) из средних арифметических положительных значений строк матрицы, и вектор G(n) из номеров столбцов, которые представляют собой знакочередующийся ряд.
- 10. В каждом столбце матрицы вещественных чисел $P(k \times m)$ заменить минимальный элемент суммой положительных элементов этого же столбца. Сформировать вектор D(n) из номеров строк, представляющих собой знакочередующийся ряд.
- 11. В матрице целых чисел $A(n \times m)$ обнулить строки, в которых более двух *простых чисел*. Сформировать массив D(m) из минимальных значений столбцов матрицы.
- 12. В матрице вещественных чисел $P(n \times m)$ найти и вывести номера столбцов, упорядоченных по убыванию элементов. Сформировать массив R(n) из максимальных значений строк матрицы.
- 13. В матрице вещественных чисел $D(n \times m)$ найти и вывести номера строк, упорядоченных по возрастанию элементов. Сформировать массив $C(m \times 2)$ из номеров минимальных и максимальных значений столбцов матрицы.
- 14. В матрице вещественных чисел $P(n \times m)$ найти и вывести номера столбцов, упорядоченных по возрастанию. Сформировать вектор $R(n \times 2)$ из номеров минимальных и максимальных значений строк матрицы.
- 15. В матрице вещественных чисел $D(n \times m)$ найти и вывести номера строк, упорядоченных по убыванию. Сформировать вектор $C(m \times 2)$ из максимальных и минимальных значений столбцов матрицы.
- 16. В матрице вещественных чисел $X(n \times n)$ найти максимальный и минимальный элементы. Поменять местами элементы строки с максимальным значением и элементы столбца с минимальным значением.
- 17. Задана матрица целых чисел $A(n \times n)$. Сформировать массив B(n), каждый элемент которого равен количеству положительных элементов с чётной суммой цифр в соответствующей строке матрицы. В столбцах матрицы поменять местами наибольший и наименьший элементы.
- 18. Задана матрица целых чисел $A(n \times m)$. Сформировать массив B(m), каждый элемент которого равен количеству положительных чисел с суммой цифр, кратной трём в соответствующем столбце матрицы. Найти строку с максимальным произведением элементов.
- 19. Задана матрица целых чисел $A(n \times n)$. Все *числа-палиндромы*, расположенные на главной диагонали, заменить суммой цифр модуля минимального элемента соответствующего столбца матрицы. Сформировать вектор D(n) из произведений абсолютных ненулевых значений соответствующих строк матрицы.
- 20. Задана матрица целых чисел $A(n \times n)$. Поменять местами элементы на диагоналях в столбцах, упорядоченных по возрастанию модулей. Сформировать вектор B(n), каждый элемент которого равен сумме составных значений в соответствующей строке матрицы.

- 21. Задана матрица целых чисел $A(n \times n)$. Минимальный элемент каждой строки заменить суммой цифр максимального *простого элемента* матрицы. Сформировать вектор B(n), каждый элемент которого среднее геометрическое ненулевых элементов в соответствующем столбце матрицы.
- 22. Задана матрица целых чисел $A(n \times n)$. Максимальный элемент каждого столбца заменить суммой цифр минимального *простого элемента* матрицы. Сформировать вектор B(n), каждый элемент которого равен количеству чётных элементов в соответствующей строке матрицы.
- 23. Задана матрица целых чисел $A(n \times n)$. Обнулить строки, в которых на диагоналях нет *чисел-палиндромов*. Сформировать вектор B(n), каждый элемент которого равен количеству нечётных элементов в соответствующем столбце матрицы.
- 24. Задана матрица вещественных чисел $P(n \times m)$. Найти столбец с минимальным произведением элементов. Поменять местами элементы этого столбца и элементы последнего столбца. Сформировать вектор R(n) из сумм квадратов соответствующих строк матрицы.
- 25. Задана матрица целых чисел $A(n \times m)$. В каждой строке заменить максимальный элемент суммой цифр минимального элемента этой же строки. Сформировать массив $B(m \times 2)$, пара элементов которого равна соответственно количеству чётных и нечётных чисел в соответствующем столбце матрицы.

6.5.3 Решение задач линейной алгебры

Разработать программу на языке С++ для решения следующей задачи.

- 1. Задана матрицы $A(n \times n)$ и $B(n \times n)$. Вычислить матрицу $C = 2(A + B^{-1}) A^T \cdot B$.
- 2. Задан массив C(n). Сформировать матрицы $A(n\times n)$ и $B(n\times n)$ по формулам: $A_{ij}=C_i\cdot C_j,\ B_{i,j}=\frac{A_{i,j}}{max(A)}.$

Решить матричное уравнение X(A+E)=3B-E, где E- единичная матрица.

3. Даны массивы C(n) и D(n). Сформировать матрицы $A(n\times n)$ и $B(n\times n)$ по формулам:

$$A_{ij} = C_i \cdot D_j, B_{i,j} = \frac{A_{i,j}}{\min(A)}.$$

Решить матричное уравнение (2A-E)X = B+E, где E — единичная матрица.

4. Квадратная матрица $A(n \times n)$ называется *ортогональной*, если $A^T = A^{-1}$. Определить, является ли данная матрица ортогональной:

$$\begin{pmatrix} 1 & 0.42 & 0.54 & 0.66 \\ 0.42 & 1 & 0.32 & 0.44 \\ 0.54 & 0.32 & 1 & 0.22 \\ 0.66 & 0.44 & 0.22 & 1 \end{pmatrix}.$$

5. Для матрицы

$$H=E-rac{vv^T}{|v|^2},$$
 где $E-$ единичная матрица, а $v=egin{bmatrix}1\\0\\1\\1\end{bmatrix},$

проверить свойство ортогональности: $H^T = H^{-1}$

6. Проверить, образуют ли базис векторы

$$f_1 = \begin{bmatrix} 1 \\ -2 \\ 1 \\ 1 \end{bmatrix}, f_2 = \begin{bmatrix} 2 \\ -1 \\ 1 \\ -1 \end{bmatrix}, f_3 = \begin{bmatrix} 5 \\ -2 \\ -3 \\ 1 \end{bmatrix}, f_4 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}.$$

Если образуют, то найти координаты вектора $x = [1 - 1 \ 3 - 1]^T$ в этом базисе. Для решения задачи необходимо показать, что определитель матрицы F со столбцами f_1 , f_2 , f_3 , f_4 отличен от нуля, а затем вычислить координаты вектора x в новом базисе по формуле $y = F^{-1} \cdot x$.

7. Найти вектор x как решение данной системы уравнений

$$\begin{cases} 3.75x_1 - 0.28x_2 + 0.17x_3 = 0.75 \\ 2.11x_1 - 0.11x_2 - 0.12x_3 = 1.11 \\ 0.22x_1 - 3.17x_2 + 1.81x_3 = 0.05. \end{cases}$$

 \dot{B} ычислить модуль вектора x.

8. Вычислить скалярное произведение векторов x и y. Вектор $y = |1\ 1\ 2\ -3|,$ а вектор x является решением СЛАУ:

$$\begin{cases} 5.7x_1 - 7.8x_2 - 5.6x_3 - 8.3x_4 = 2.7 \\ 6.6x_1 + 13.1x_2 - 6.3x_3 + 4.3x_4 = -5.5 \\ 14.7x_1 - 2.8x_2 + 5.6x_3 - 12.1x_4 = 8.6 \\ 8.5x_1 + 12.7x_2 - 23.7x_3 + 5.7x_4 = 14.7. \end{cases}$$

9. Вычислить вектор X, решив СЛАУ

$$\begin{cases} 4.4x_1 - 2.5x_2 + 19.2x_3 - 10.8x_4 = 4.3 \\ 5.5x_1 - 9.3x_2 - 14.2x_3 + 13.2x_4 = 6.8 \\ 7.1x_1 - 11.5x_2 + 5.3x_3 - 6.7x_4 = -1.8 \\ 14.2x_1 + 23.4x_2 - 8.8x_3 + 5.3x_4 = 7.2. \end{cases}$$

Найти $Y = X \cdot X^T$

10. Вычислить вектор X, решив СЛАУ

$$\begin{cases} 0.34x_1 + 0.71x_2 + 0.63x_3 = 2.08\\ 0.71x_1 - 0.65x_2 - 0.18x_3 = 0.17\\ 1.17x_1 - 2.35x_2 + 0.75x_3 = 1.28 \end{cases}$$

Найти модуль вектора |2X-3|.

11. Вычислить угол между векторами x и $y=|-1\ 5\ -3|.$ Вектор x является решением СЛАУ:

$$\begin{cases} 1.24x_1 + 0.62x_2 - 0.95x_3 = 1.43 \\ 2.15x_1 - 1.18x_2 + 0.57x_3 = 2.43 \\ 1.72x_1 - 0.83x_2 + 1.57x_3 = 3.88 \end{cases}$$

12. Решив систему уравнений методом Гаусса:

© 2015 Алексеев Е. Р., Злобин Г. Г., Костюк Д. А., Чеснокова О. В., Чмыхало А. С.

$$\begin{cases} 8.2x_1 - 3.2x_2 + 14.2x_3 + 14.8x_4 = -8.4 \\ 5.6x_1 - 12x_2 + 15x_3 - 6.4x_4 = 4.5 \\ 5.7x_1 + 3.6x_2 - 12.4x_3 - 2.3x_4 = 3.3 \\ 6.8x_1 + 13.2x_2 - 6.3x_3 - 8.7x_4 = 14.3 \end{cases}$$

13. Решить СЛАУ
$$A^2X = Y^T$$
, где $A = \begin{bmatrix} 2 & 1 & 5 & 2 \\ 5 & 2 & 2 & 6 \\ 2 & 2 & 1 & 2 \\ 1 & 3 & 3 & 1 \end{bmatrix}$, $Y = |3 \ 1 \ 2 \ 1|$.

14. Решить СЛАУ $2(A^T)^2X = Y$, где $A = \begin{bmatrix} 2 & 1 & 5 & 2 \\ 5 & 2 & 2 & 6 \\ 2 & 2 & 1 & 2 \\ 1 & 3 & 3 & 1 \end{bmatrix}$, $Y = \begin{bmatrix} 3 \\ 1 \\ 2 \\ 1 \end{bmatrix}$.

14. Решить СЛАУ
$$2(A^T)^2X=Y$$
, где $A=\begin{bmatrix}2&1&5&2\\5&2&2&6\\2&2&1&2\\1&3&3&1\end{bmatrix}$, $Y=\begin{bmatrix}3\\1\\2\\1\end{bmatrix}$.

15. Заданы матрицы $A(n \times n)$ и $B(n \times n)$

Найти определитель матрицы $C = B^T \cdot A$.

16. Задан массив C(n). Сформировать матрицы $A(n \times n)$ и $B(n \times n)$ по формулам:

$$A_{ij}=C_i\cdot C_j,\, B_{ij}=rac{A_{ij}}{\sum\limits_{i=1}^n A_{ii}}.$$
 Найти определитель $|2E-A\cdot B|.$

17. Для матрицы I = 2P - E, где E — единичная матрица, а

$$P = \begin{bmatrix} -26 & -18 & -27 \\ 21 & 15 & 21 \\ 12 & 8 & 13 \end{bmatrix}$$

проверить свойство $I^2 = E$. При помощи метода Гаусса решить СЛАУ Ix = $|1 \ 1 \ 1|^T$.

18. Квадратная матрица $A(n \times n)$ является симметричной, если для неё выполняется свойство $A^T = A$. Проверить это свойство для матрицы

$$\begin{pmatrix} 1 & 0.42 & 0.54 & 0.66 \\ 0.42 & 1 & 0.32 & 0.44 \\ 0.54 & 0.32 & 1 & 0.22 \\ 0.66 & 0.44 & 0.22 & 1 \end{pmatrix}.$$

Вычислить A^{-1} . Убедиться, что $A \cdot A^{-1} = E$.

- 19. Ортогональная матрица обладает следующими свойствами:
 - модуль определителя ортогональной матрицы равен 1;
 - сумма квадратов элементов любого столбца ортогональной матрицы равна 1:
 - сумма произведений элементов любого столбца ортогональной матрицы на соответствующие элементы другого столбца равна 0.

$$\begin{pmatrix} -2 & 3.01 & 0.12 & -0.11 \\ 2.92 & -0.17 & 0.11 & 0.22 \\ 0.66 & 0.52 & 3.17 & 2.11 \\ 3.01 & 0.42 & -0.27 & -0.15 \end{pmatrix}, \begin{pmatrix} -2 & 2.92 & 0.66 & 3.01 \\ 2.92 & -2 & 0.11 & 0.22 \\ 0.66 & 0.11 & -2 & 2.11 \\ 3.01 & 0.22 & 2.11 & -2 \end{pmatrix}.$$

$$f_1 = \begin{bmatrix} 0.25 \\ 0.333 \\ 0.2 \\ 0.1 \end{bmatrix}, f_2 = \begin{bmatrix} 0.33 \\ 0.25 \\ 0.167 \\ 0.143 \end{bmatrix}, f_3 = \begin{bmatrix} 1.25 \\ -0.667 \\ 2.2 \\ 3.1 \end{bmatrix}, f_4 = \begin{bmatrix} -0.667 \\ 1.333 \\ 1.25 \\ -0.75 \end{bmatrix}.$$

Если образуют, то найти координаты вектора $x = [1 \ 1 \ 1 \ 1]$ се. Для решения задачи необходимо показать, что определитель матрицы Fсо столбцами f_1, f_2, f_3, f_4 отличен от нуля, а затем вычислить координаты вектора x в новом базисе, решив СЛАУ $F \cdot y = x$.

21. Решить СЛАУ

$$\begin{pmatrix} 0.42 & 0.26 & 0.33 & -0.22 \\ 0.74 & -0.55 & 0.28 & -0.65 \\ 0.88 & 0.42 & -0.33 & 0.75 \\ 0.92 & 0.82 & -0.62 & 0.75 \end{pmatrix} \cdot X = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}.$$

0.75 / [0] C^T проверить условия ортогональности: $C \cdot C^T = C^T$

E и $C^T \cdot C = E$. 22. Найти $\|A\|_1 = \max \sum_{j=1}^m |a_{ij}|$ и $\|A\|_{11} = \max \sum_{i=1}^m |a_{ij}|$ для матрицы

$$\begin{pmatrix} 0.75 & 0.18 & 0.63 & -0.32 \\ 0.92 & 0.38 & -0.14 & 0.56 \\ 0.63 & -0.42 & 0.18 & 0.37 \\ -0.65 & 0.52 & 0.47 & 0.27 \end{pmatrix}^{-1}.$$
 23. Найти $\|A\|_{111} = \sqrt{\sum_{i,j} a_{i,j}^2}$ для матрицы

$$\begin{pmatrix} -1.09 & 7.56 & 3.45 & 0.78 \\ 3.33 & 4.45 & -0.21 & 3.44 \\ 2.33 & -4.45 & 0.17 & 2.21 \\ 4.03 & 1 & 3.05 & 0.11 \end{pmatrix}^{-1}.$$

24. Решить СЛАУ методом Гаусса

$$\begin{cases} 8.2x_1 - 3.2x_2 + 14.2x_3 + 14.8x_4 &= -8.4\\ 5.6x_1 - 12x_2 + 15x_3 - 6.4x_4 &= 4.5\\ 5.7x_1 + 3.6x_2 - 12.4x_3 - 2.3x_4 &= 3.3\\ 6.8x_1 + 13.2x_2 - 6.3x_3 - 8.7x_4 &= 14.3 \end{cases}$$

25. Задан массив H(k). Сформировать матрицы $B(k \times k)$ и $G(k \times k)$ по форму-

$$(B_{ij} = H_i \cdot H_j), G_{ij} = \frac{B_{ij}}{min(B)}.$$

Решить матричное уравнение $(G+E) \cdot X = 5B^T - E$, где E — единичная матрица.