Assignment 3

Camera Calibration and Augmented Reality bf289

• Part1 Camera Calibration using 3D calibration object

```
function [P_matrix] = get_P_matrix(cube_points, image_points)
        P_matrix = [];
        [rows_n col_n] = size(cube_points);
        for i = 1 : rows_n
            object_point = cube_points(i , :);
            image_point = image_points(i , :);
            rows = GetRows(object_point , image_point);
            P_matrix = [P_matrix ; rows];
        end
        display(P_matrix);
    end
    function [rows] = GetRows(cube_points, image_points)
        %convert object_point to homogeneous coordinates
        cube_points = [cube_points 1];
        u = image_points(1);
        v = image_points(2);
        zeroes = [0 \ 0 \ 0 \ 0];
        row1 = [cube_points zeroes cube_points.*(-u)];
        row2 = [zeroes cube_points cube_points.*(-v)];
        rows = [row1; row2];
2. end
```

```
P_matrix =
     Columns 1 through 9
3.
    Columns 10 through 12
          -844
                      -844
                                  -422
          -646
                      -646
                                  -323
          -356
                      -356
                                  -178
          -646
                      -646
                                  -323
          -236
                                  -118
                       236
          -966
                       966
                                  -483
          -964
                       964
                                  -482
          -966
                       966
                                  -483
           876
                      -876
                                  -438
           146
                      -146
                                   -73
           324
                                  -162
                      -324
           146
                      -146
                                   -73
                                   -78
           156
                       156
                                  -117
           234
                       234
          1044
                      1044
                                  -522
           234
                       234
                                  -117
    M_matrix =
        -0.1925
                    -0.0283
                                -0.0786
                                            -0.7346
                    -0.2044
        -0.0000
                                -0.0001
                                            -0.6120
                    -0.0001
        -0.0000
                                -0.0003
                                            -0.0024
4.
     camera_center =
```

-2.9912

107.8955

780.1442

0.3597

-8.2695

299.9999

0.2641

1.0000

-0.0000

734.6289

0.0009

0.0000

M_quote =

5.

6.

-844 -646 356 646 236 966 -964 -966 -146 324 146 156 234 -1044 -234

```
R_x =
       1.0000
                               0
            0
                 0.9410
                           0.3384
            0
                -0.3384
                           0.9410
   Theta_x =
     -19.7812
   N_matrix =
               -0.0000 318.8125
     734.6289
       0.0009 734.0199 264.2723
       0.0000
                     0
                          1.0627
7.
    R_z =
                   0.0000
                                   0
        1.0000
       -0.0000
                   1.0000
                                   0
                             1.0000
             0
                        0
    Theta_z =
      -7.2204e-05
8.
    K_matrix =
      691.2797
                   0.0009 299.9999
        0.0000
                690.7067
                           248.6780
        0.0000
                   0.0000
                             1.0000
    focal_length_x = 691.2797
    focal_length_y = 690.7067
    image center = (u, v) = (299.9999, 248.678)
```

Part2 Camera Calibration using 2D calibration object

1. Corner Extraction and Homography computation

```
images2.png, H is
            -0.0835
                       54.2980
   0.9655
   0.0172
            0.8809
                       43.4384
  -0.0000
            -0.0002
                       0.6033
images9.png, H is
  -1.0919
            0.0345 -71.6419
  -0.1477
            -0.9309 -10.3829
  -0.0005
            0.0001 -0.5191
images12.png, H is
            -0.0492
   0.7037
                       75.9062
  -0.1758
            0.8856
                       59.9260
  -0.0005
            -0.0002
                       0.6658
images20.png, H is
  -0.8559
            0.2712 -122.6998
            -0.3995 -57.9033
0.0008 -0.6893
   0.0113
   0.0000
```

2. Computing the Intrinsic and Extrinsic parameters

B_matrix	B_matrix =			
	-0.0000 0.0000 0.0005 0.0000 -0.0000 0.0004 0.0005 0.0004 -1.0000			
v_0	v_0 =			
	230.3654			
lambda	lambda =			
	-0.7692			
alpha	alpha =			
	723.3788			
beta	beta =			
	702.7882			
gamma	gamma =			
	0.6580			
u_0	u_0 =			
A	317.6932			
A_matrix	A_matrix =			
	723.3788			
image = images2.png	image = images9.png			
R_matrix =	R_matrix =			
0.9998 -0.0149 0.0027 0.0203 0.9864 0.1636 -0.0061 -0.1636 0.9865	-0.9241 -0.0119 -0.3818 -0.0271 -0.9941 0.1042 -0.3811 0.1078 0.9183			
T_matrix =	T_matrix =			
-141.5014 -101.3666 449.8412	93.1975 112.4254 -375.5904			
R_T_R =	R_T_R =			
1.0000 0.0061 -0.0000 0.0061 1.0000 -0.0000 -0.0000 -0.0000 1.0000	1.0000 -0.0031 0.0000 -0.0031 1.0000 -0.0000 0.0000 -0.0000 1.0000			

<pre>image = images12.png</pre>	<pre>image = images20.png</pre>			
R_matrix =	R_matrix =			
0.9112 0.0035 0.4119	-0.9999 0.0071 0.0150			
-0.0544 0.9919 0.1141	0.0098 -0.7097 0.7044			
-0.4083 -0.1268 0.9041	0.0114 0.7044 0.7096			
T_matrix =	T_matrix =			
-141.1402	111.9242			
-100.1742	120.8244			
501.5568	-580.1506			
2.7.0	R_T_R =			
R_T_R =				
1.0000 0.0010 0.0000	1.0000 -0.0060 0.0000			
0.0010 1.0000 0.0000	-0.0060 1.0000 0.0000			
0.0000 0.0000 1.0000	0.0000 0.0000 1.0000			
image : images2.png	image : images9.png			
R_modified =	R_modified =			
0.9998 -0.0180 0.0027	-0.9241 -0.0134 -0.3818			
0.0173 0.9864 0.1636	-0.0286 -0.9941 0.1042			
-0.0056 -0.1635 0.9865	-0.3810 0.1072 0.9183			
D.T.D				
R_T_R =	$R_T_R =$			
1.0000 0.0000 0.0000	1.0000 -0.0000 -0.0000			
0.0000 1.0000 -0.0000	-0.0000 1.0000 -0.0000			
0.0000 -0.0000 1.0000	-0.0000 -0.0000 1.0000			
image : images12.png	image : images20.png			
R_modified =	R_modified =			
0.9112 0.0030 0.4119	-0.9999 0.0041 0.0150			
-0.0549 0.9920 0.1141	0.0077 -0.7097 0.7044			
-0.4082 -0.1266 0.9041	0.0135 0.7045 0.7096			
	D.T.D			
R_T_R =	R_T_R =			
1.0000 -0.0000 0.0000	1.0000 0.0000 0.0000			
-0.0000 1.0000 -0.0000	0.0000 1.0000 -0.0000			
0.0000 -0.0000 1.0000	0.0000 -0.0000 1.0000			

3. Improving accuracy

Harris corners

Closest harris corners

H matrix

```
images2.png, H is
  -0.9608
            0.0840 -54.6288
  -0.0172
            -0.8786 -44.6587
  -0.0000
             0.0002
                    -0.6014
images9.png, H is
            -0.0321
                     71.7175
   1.0827
   0.1440
            0.9321
                     11.6294
   0.0005
           -0.0001
                      0.5200
images12.png, H is
  -0.7016
             0.0488 -75.4923
   0.1760
            -0.8856 -60.6018
   0.0005
             0.0002
                     -0.6648
images20.png, H is
  -0.8627
             0.2665 -121.5009
            -0.4000 -56.9806
   0.0057
  -0.0000
             0.0008
                    -0.6851
K matrix
K_matrix =
   735.3424
                 0.4787
                         324.3213
              717.0152
                          233.3936
           0
           0
                      0
                            1.0000
```

R and T matrix

N and i matrix					
image : images2.png	image : images9.png				
R =	R =				
0.0010 -0.0000 -0.0000 0.0000 0.0010 0.0000	-0.0010 -0.0000 -0.0000 -0.0000 -0.0010 0.0000				
0.0000 -0.0002 0.0000	-0.0004 0.0001 0.0000				
Т =	T =				
-0.1468 -0.1027 0.4625	0.1013 0.1177 -0.3999				
image : images12.png	image : images20.png				
R =	R =				
1.0e-03 *	1.0e-03 *				
0.9152 0.0063 0.0004 -0.0549 0.9927 0.0001 -0.4113 -0.1315 0.0009	0.8994 0.0003 0.0000 -0.0082 0.6353 0.0006 0.0065 -0.6336 0.0006				
Т =	T =				
-0.1465 -0.1014 0.5113	-0.1052 -0.1104 0.5268				

Err_reprojection

image : images2.png Sum err_reprojection between the new corner and approx corner is 155.9689 Average err_reprojection between the new corner and approx corner is 1.9496 Sum err_reprojection between the new corner and correct corner is 143.9755 Average err_reprojection between the new corner and correct corner is 1.7997 image : images9.png Sum err_reprojection between the new corner and approx corner is 156.8206 Average err_reprojection between the new corner and approx corner is 1.9603 Sum err_reprojection between the new corner and correct corner is 149.1836 Average err_reprojection between the new corner and correct corner is 1.8648 image : images12.png Sum err_reprojection between the new corner and approx corner is 184.9190 Average err_reprojection between the new corner and approx corner is 2.3115 Sum err_reprojection between the new corner and correct corner is 166.4552 Average err_reprojection between the new corner and correct corner is 2.0807 image : images20.png Sum err_reprojection between the new corner and approx corner is 90.2832 Average err_reprojection between the new corner and approx corner is 1.1285 Sum err_reprojection between the new corner and correct corner is 135.8244 Average err_reprojection between the new corner and correct corner is

Part3 Augmented Reality 101

Augment an Image

Augment an Object

• Extra Credit

We could estimate the intrinsic and extrinsic parameters from only two images of the grid as Zhang described in the section 2.4.9:

Let (R_s, t_s) be the rigid transformation between the two cameras such that

$$(R',t') = (R,t) \circ (R_s,t_s)$$

or more precisely R'=RRs and t'=Rts+t.

Stereo calibration is then to solve A,A',k1,k2,k1',k2', $\{(R_i,t_i) \mid i=1,...,n\}$, and (R_s,t_s) by minimizing the following functions:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \left[\delta_{ij} \left| \left| m_{ij} - \check{m}(A, k_1, k_2, R_i, t_i, M_j) \right| \right|^2 + \delta'_{ij} \left| \left| m'_{ij} - \check{m}(A', k'_1, k'_2, R'_i, t'_i, M_j) \right| \right|^2 \right]$$
 subject to

$$R_i' = R_i R_s and t_i' = R_i t_s + t_i$$

Obviously, it is a nonlinear optimization problem. To obtain the initial guess, we first run single-camera calibration independently for each camera, and compute R_s through SVD from $R_i' = R_i R_s$ and t_s through least-squares from $t_i' = R_i t_s + t_i$.