

Traffic Signal Control Using Reinforcement Learning Agents

Presented by:
Abhijit Taneja
Anjali Ramchandani
Shan Sun
Tanmay Patil

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Problem

- Traffic congestion.
- Bad traffic flow could lead to:
 - Fuel emissions
 - Delays, which can further have cascading effects

Approach

Adaptive Traffic Signal

- There are various models existing that use reinforcement learning
- Reinforcement learning algorithms can vary between value-based methods or actor-critic methods.
- We have compared the results from Q-learning (value-based) and A2C (actor-critic) methods

Simulation

• Environment

A 4-way intersection with each arm having 2-way 4-lane roads. We will be considering only the possibility of a left turn

Dataset

1000 cars generated over 5400 frames. Traffic signals with green duration 10 seconds and yellow 4 secs. The cars follows the behaviour of a ideal driver.

SUMO

• SUMO

"Simulation of Urban MObility" (Eclipse SUMO) is an open source, highly portable, microscopic and continuous road traffic simulation

NETEDIT

A command line tool which helps map routes and network xml files into SUMO configuration file

TRACI

API for SUMO library. Useful for changing the flow of events

Learning Agents

Learning Parameters

States

We divided the positions of car with respect to traffic lights into 80 states.

Actions

Change in traffic signal to green or yellow is considered one unique action. 4 ways so 4 action.

Rewards

Cumulative sum of weighting time of all the cars is taken to be the reward. We only take the negative part in order to penalize the model.

Results

We chose to decide the efficiency of the model based total of cars halted per step, until the last step

Deep Q Learning

• We apply Q Learning algorithm to into order to train you model for the best state action pair

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

• In deep Q-learning, we use a neural network to approximate the Q-value function. The state is given as the input and the Q-value of all possible actions is generated as the output.

```
for i, b in enumerate(batch):
    state, action, reward, nextState = b[0], b[1], b[2], b[3] # extract data from one
    qCurr = qs[i]
    qCurr[action] += alpha * (reward + self._gamma * np.amax(qns[i]) - qCurr[action])
    x[i] = state
    y[i] = qCurr
```

DQL NN Architecture

Inputs: current states st

Output: action-value function $Q(s_t,a_t)$

A₂C

 A2C decomposes the Q (state-action) value into two pieces: the state Value function V(s) and the advantage value A(s, a).

Actor decides which action to take and critic tells the actor how good its action was

A2C Actor Architecture

Inputs: current states s_t Output: policy $\pi(a_t|s_t)$

A2C Critic Architecture

Inputs: current states s_t Output: value function $V(s_t)$

Results and analysis

Deep Q learning Network

• DQL Show consistent drop in queue length. There is a hint of saturation not can't be sure.

Deep Q learning Network


```
Begin Testing
---- Test episode
Loading configuration ... done.
Total reward: -62100
Queue Length Sum: 2981374
Simulation time: 266.0 s
 Testing done
```

Output for 100 episodes with 100 epochs

Actor Critic Network

• The A2C model shows heavy drop till 40 episodes, after that it starts to saturate

Actor Critic Network


```
Begin Testing
---- Test episode
 Retrying in 1 seconds
Loading configuration ... done.
Total reward: -29346.0
Queue Length Sum: 165904
Simulation time: 9.6 s
Testing done
```

Output for 100 episodes with 100 epochs

Thank You! Questions?