Chemistry

Introduction

- Chemistry is the science of the materials that make up our physical world (physical science). Chemistry tends to focus on the properties of substances and the interactions between different types of matter, particularly reactions that involve electrons.
- No person could expect to master all aspects of such a vast field, so it has been found convenient to divide the subject into smaller areas. For example:
 - Organic chemists study compounds of carbon. Atoms of this element can form stable chains and rings, giving rise to very large numbers of natural and synthetic compounds.
 - **Biochemists** concern themselves with the chemistry of the living world.

Introduction

- Inorganic chemists are interested in all elements, but particularly in metals, and are often involved in the preparation of new catalysts.
- Physical chemists study the structures of materials, and rates and energies of chemical reactions.
- Theoretical chemists with the use of mathematics and computational techniques derive unifying concepts to explain chemical behavior.
- Analytical chemists develop test procedures to determine the identity, composition and purity of chemicals and materials. New analytical procedures often discover the presence of previously unknown compounds.
- One of the main functions of the chemist is to rearrange the atoms of known substances to produce new products.

Atomic and Molecular Structure

- Atoms are single units of an element. lons can be made up of one or more types of elements and carry an electrical charge.
- Atoms cannot be divided using chemicals. They do consist of parts, which include protons, neutrons, and electrons.
- Each electron has a negative electrical charge.
- Each proton has a positive electrical charge. The charge of a proton and an electron are equal in magnitude, yet opposite in sign.
- Each neutron is electrically neutral.
- The nucleus of an atom contains protons and neutrons.
- Electrons move around outside the nucleus.

Atomic Numbers and Atomic Mass

- The atomic number is the number of protons in an atom
- The atomic mass is the mass of protons, neutrons, and electrons in an atom
- Atomic number doesn't always equate to increasing mass because many atoms don't have a number of neutrons equal to the number of protons.
- In other words, several **isotopes** of an element may exist (elements with the same atomic number but with different atomic mass).

- elements, organized on the basis of their atomic numbers, electron configurations, and recurring chemical properties. Elements are presented in order of increasing atomic number (number of protons).
- PA group or family is a vertical column in the periodic table. Elements in the same group tend to have a shared chemistry and exhibit a clear trend in properties with increasing atomic number.
- Elements in the same group tend to show patterns in atomic radius, ionization energy, and electronegativity.

- Atomic radius: The radius of an atom; the distance from the atomic nucleus to the outermost stable electron orbital in an atom at equilibrium
- **Lonization energy:** It is the energy required to remove an electron from a gaseous atom or ion.
- **Electron affinity:** Amount of energy released or spent when an electron is added to a neutral atom or molecule in the gaseous state to form a negative ion
- Electronegativity: A measure of the ability of a specified atom to attract electrons in a molecule

- A period is a horizontal row in the periodic table. Elements in the same period show trends in atomic radius, ionization energy, electron affinity, and electronegativity.
- Moving left to right across a period, atomic radius usually decreases. This occurs because each successive element has an added proton and electron which causes the electron to be drawn closer to the nucleus.
- This decrease in atomic radius also causes the ionization energy to increase when moving from left to right across a period.
- Electronegativity increases in the same manner as ionization energy because of the pull exerted on the electrons by the nucleus.

Increasing Electronegativity

H Hydrogea 1,00794																	He
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
6.941	9.012182											10.811	12.0107	14,00674	Osygen 15,9994	Plainter 18,9984032	20.1797
11	12											13	14	15	16	17	18
Na Sodien 22.999778	Mg Vaponion 24.3050											Al 26.981538	Si 56cm 28.0855	P Phosphorus 30.973761	S 32.066	CI Otorac 35.4527	Ar Arpm 30.948
19	20	21	22	23	. 24	25	26	27	28	29	30	31	32	33	34	35	36
K Ponsoirm Variant	Ca Calcium 40.078	Sc Scandium 44.955910	Ti Titanian 47,867	V Vanadien 50.0415	Cr Chronica 51,9961	Mn Manganose 54.938049	Fe box 55,645	Co Cibals 58,933200	Ni Nout 58,6034	Cu Copper 63.546	Zn 65.39	Ga Gultam 69.723	Ge Germanian 72,61	AS Attento 24,92160	Se Selement T8.96	Br Browner 79.904	Kr Krypon 83,80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb Rabidium 85,4678	Sr Strontium 87,62	Y Yesus \$8,90585	Zr 20000000 91,224	Nb Solium 92,90638	Mo Mohdeum 95,94	Tc Technolism (98)	Ru Rathenians 101.07	Rh Rhodian 102,90550	Pd halladuse 106,42	Ag 5864 107,8682	Cd Calmin 112,411	In Indian 114.818	Sn 118,710	Sb According 121,760	Te Telutum 127,60	I lodes 126,90447	Xe Xonon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs Common 132.90545	Ba Ramon 137,327	La tambanan 138.9055	Hf Referen 178.49	Ta Tambus 180,9479	W Tungsten 183.84	Re House 186,207	Os 0000000 190.23	Ir 192.217	Pt Pterese 195,078	Au 196,96655	Hg Marries 200,59	TI Ballian 204,3833	Pb tred 207.2	Bi (female 208.98038	Po (209)	At (210)	Rn Radeo (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	2017/2010	2243	-17255	testilite =
Fr Francisco (223)	Ra Radium (226)	Ac Actinium (223)	Rf Retherindum (261)	Db Dahman (262)	Sg Subsequen (263)	Bh Botrien (202)	Hs Hariam (265)	Mt Manageme (266)	(209)	(272)	(277)						

INCREASING IONIZATION ENERGY

H H Hydrogen 1,00794																	He
3 Li	Be Be Bergleen 9.012182											5 B	6 C Cartesa 12,0107	7 N N 14,00674	8 O Choyen 15,9994	9 F Hannin 18.9984032	10 Ne 3000 20,1797
11 Na 504mm 22,989378	12 Mg Mg 24.3050											13 Al 26.981538	14 Si 36cm 28.0855	15 P Phosphore 30.973761	16 S sate 32,066	17 Cl CNorne 35.4527	18 Ar Arpm 19.948
19 K 200000000000000000000000000000000000	20 Ca Calcium 40:078	21 Sc 5cm/sen 44,955910	22 Ti Theriam 47,867	23 V Vanadien 50,9415	24 Cr	25 Mn Manganose 54.938049	26 Fe 100 55,845	27 Co Cital: 58,933200	28 Ni Notat 58,6034	29 Cu 50,546	30 Zn 200 65.39	31 Ga Gutum 69,723	Ge Germanian 72,61	33 As Atomic 24,92160	34 Se Selement 18.96	35 Br teems 79,904	36 Kr 80,900 83,80
37 Rb 85.4678	38 Sr Strootum 87,62	39 Y Ynsun 88,90585	40 Zr Znowiam 91,224	41 Nb Notion 92,99638	Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo M	43 Te Todaccien (98)	Ru Ru Rathenians 101.07	45 Rh Rhodien 102,90550	Pd Pd Palladose 106,42	47 Ag Silver 107,8682	48 Cd Catemen 112,411	49 In Interes 114.818	50 Sn Tin 118,710	51 Sb Antonop 121,760	52 Te Tobasan 127,60	53 I lodes 126,90447	54 Xe Xonca 131,29
55 Cs Cnown 132,90545	56 Ba Ration 137,327	57 La 138.9055	72 Hf	73 Ta Ta 180,9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt Ptenne 195,078	79 Au 644 196.96655	80 Hg	81 Tl Ballian 204,3833	82 Pb treat 207.2	83 Bi manda 208.98038	84 Po (209)	85 At (210)	86 Rn 84400 (222)
Fr Function (223)	88 Ra Radium (226)	89 Ac (227)	Rf Reference (261)	105 Db Outstann (262)	106 Sg Subsequent (263)	107 Bh (bdrjum (202)	108 Hs (268)	Mt Mt Marantine (266)	110	(272)	277	113	114				

Molecules

- Molecules are small particles that make up all living and non-living things. Every molecule is unique due to its chemical properties. They are made up of even tinier particles called atoms.
- A mole is defined as the quantity of a substance that has the same number of particles as are found in 12.000 grams of carbon-12. This number, Avogadro's number is 6.022x1023.
- One mole of a compound contains 6.022x1023 molecules of the compound. The mass of 1 mole of a compound is called its molar weight or molar mass. The units for molar weight or molar mass are grams per mole.

Chemical Bonds

- An **ionic bond** is formed when one atom accepts or donates one or more of its valence electrons to another atom.
- A covalent bond is formed when atoms share valence electrons. The atoms do not always share the electrons equally so a polar covalent bond may be the result.
- When electrons are shared by two metallic atoms a metallic bond may be formed.

Definitions

- An ion is an atom or a molecule in which the total number of electrons is not equal to the total number of protons, giving the atom or molecule a net positive or negative electrical charge.
- If a neutral atom loses one or more electrons, it has a net positive charge and is known as a cation (positive ion).
- If an atom gains electrons, it has a net negative charge and is known as an anion (negative ion).

Definitions

- Acids are ionic compounds (a compound with a positive or negative charge) that break apart in water to form a hydrogen ion (H+).
- Bases are ionic compounds that break apart to form a negatively charged hydroxide ion (OH-) in water.
- Oxidation number is the state of an element or ion in a compound with regard to the electrons gained or lost by the element or ion in the reaction that formed the compound, expressed as a positive or negative number indicating the ionic charge of the element or ion.

- Chemical reaction is a process that is usually characterized by a chemical change in which the starting materials (reactants) are different from the products. Chemical reactions tend to involve the motion of electrons, leading to the formation and breaking of chemical bonds.
- Direct Combination or Synthesis Reaction: In a synthesis reaction two or more chemical species combine to form a more complex product.

A + B --> AB

The combination of iron and sulfur to form iron (II) sulfide is an example of a synthesis reaction:

Chemical Decomposition or Analysis Reaction: In a decomposition reaction a compound is broken into smaller chemical species.

$$AB \longrightarrow A + B$$

The electrolysis of water into oxygen and hydrogen gas is an example of a decomposition reaction:

$$2 H_2O --> 2 H_2 + O_2$$

Single Displacement or Substitution Reaction: A substitution or single displacement reaction is characterized by one element being displaced from a compound by another element.

$$A + BC --> AC + B$$

An example of a substitution reaction occurs when zinc combines with hydrochloric acid. The zinc replaces the hydrogen:

$$Zn + 2 HCl --> ZnCl_2 + H_2$$

Metathesis or Double Displacement Reaction: In a double displacement or metathesis reaction two compounds exchange bonds or ions in order to form different compounds.

$$AB + CD --> AD + CB$$

An example of a double displacement reaction occurs between sodium chloride and silver nitrate to form sodium nitrate and silver chloride.

$$NaCl(aq) + AgNO_3(aq) --> NaNO_3(aq) + AgCl(s)$$

Acid-Base Reaction: An acid-base reaction is type of double displacement reaction that occurs between an acid and a base. The H+ ion in the acid reacts with the OH- ion in the base to form water and an ionic salt:

$$HA + BOH --> H_2O + BA$$

The reaction between hydrobromic acid (HBr) and sodium hydroxide is an example of an acid-base reaction:

HBr + NaOH -->NaBr + H₂O

Oxidation-Reduction or Redox Reaction: In a redox reaction the oxidation numbers of atoms are changed. Redox reactions may involve the transfer of electrons between chemical species.

Combustion: A combustion reaction is a type of redox reaction in which a combustible material combines with an oxidizer to form oxidized products and generate heat (exothermic) reaction). Usually in combustion reactions oxygen combines with another compound to form carbon dioxide and water. An example of a combustion reaction is the burning of naphthalene:

$$C_{10}H_8 + 12 O_2 ---> 10 CO_2 + 4 H_2O$$

Hydrolysis Reaction: A hydrolysis reaction involves water. The general form for a hydrolysis reaction is:

$$X^{-}(aq) + H_2O(I) <--> HX(aq) + OH^{-}(aq)$$