Construction 1D

Construction 2D

Solvers

2D Transversal Ising Model

Conclusion and outlook

PEPO cluster expansion of tensor exponential

David Devoogdt

Faculty of Engineering and Architecture
Ghent University

February 26, 2021

Graphical notation
Cluster expansion

Construction 1[

Construction 2D

lvers

Ising Model

Conclusion and

Intoduction

Statistical Quantum mechanics

Problem Statement

$$\hat{\rho} = \frac{e^{-\beta \hat{H}}}{Z}$$

$$Z={
m Tr}\!\left(e^{-eta\hat{H}}
ight)$$
 $\langle X
angle={
m Tr}\!\left(
ho\hat{X}
ight)$

Graphical notation

Construction

$$\begin{array}{ccc}
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

jз

 i_1

(5)

4/35

(3)

Graphical notation

Intoduction

Problem Statemen

Graphical notation

Construction 1

Construction 2D

Solvers

2D Transversal Ising Model

Conclusion and outlook

$$\hat{H} = \left(\sum_{\langle ij \rangle} H_2^i H_2^j + \sum_i H_1^i\right)$$

(7)

General idea

$$\bigcirc$$

$$\bigcirc = \exp(-\beta H(\bigcirc))$$

General idea

Problem Statement Graphical notation Cluster expansion

Construction 1

Construction 2I

olvers

2D Transversal Ising Model

Conclusion an

Advantages

- Cluster expansion
- - fast

- size extensive
- symmetry

Construction 1D

Variant A

Reculte

Construction 2D

lvers

Ising Model

Conclusion and

Construction 1D

Variant A

intoduction

Variant A

Results

Construction 2I

Solvers

2D Transvers Ising Model

Conclusion ar

(11)

Variant C

Intoduction

Construction 11

Variant C

Construction 2E

Calvara

2D Transvers Ising Model

Conclusion an

(12)

Error measure

Intoduction

Construction 1

Variant C

Results

Construction 21

olvers

2D Transvers Ising Model

Conclusion and

$$\epsilon(\mathsf{map}) = \frac{||\exp{-\beta H(\mathsf{map})} - \mathsf{MPO}(\mathsf{map})||}{||\exp{-\beta H(\mathsf{map})}||}$$
(13)

Construction 1D

Variant A

.

Results

C . .. 05

Solvers

2D Transversal

Construction 1D

Variant C

Results

C . .: 0F

Solvers

2D Transversal Ising Model

Construction 1D

Variant A

Variant (

Results

Construction 2D

Solvers

2D Transversal Ising Model

Construction 1D

Construction 2D

Loops

Solvers

2D Transvers Ising Model

Conclusion and outlook

Construction 2D

Construction

Linear blocks

Loops

Solvers

2D Transversal

2D Transversa Ising Model

Conclusion a

(14)

(15)

Linear blocks

Loops

Solvers

2D Transvers

Conclusion an

Linear blocks

(18)

(17)

2011311 4011011 11

Construction 21

Linear blocks

C = l.

2D Transvers

onclusion and
utlook And

And many more "linear" blocks

(19)

Loops

bond dim

 α α

(20)

(21)

solver: see later

Unsolved

Intoduction

Construction 1D

Construction 2D

Loops

Solvers

2D Transversa

Conclusion and

(22)

Easy to solve on finite lattice, difficult in thermodynamic limit...

Constituction 1D

Construction 2L

Solvers

Non-linear solv

2D Transversal

Ising Model

Conclusion and outlook

Solvers

Linear solver

- pseudoinverse
- optimisation for tree graphs
- implemented for any shape

24 / 35

Intoduction

constituction 1D

Linear solver

Non-linear solvers

Ising Model

Construction 1D

Construction 2D

Solvers

Linear solver

Non-linear solvers

2D Transversa Ising Model

sequential linear

Intoduction

Construction 2L

.....

Linear solver

Non-linear solvers

2D Transversa Ising Model

Conclusion and

- initialize randomly
- use linear sovler for 1 tensor
- fast

true non-linear solver

Intoduction

Construction 1D

Construction 2D

Solvers

Linear solver

Non-linear solvers

2D Transversa Ising Model

Conclusion and

- Matlab fsolve
- exact jocobian
- multiple patterns
- multiple maps

Construction 1D

Construction 2D

Solvers

2D Transversal Ising Model

First results

Conclusion and

2D Transversal Ising Model

First results

Intoduction

Construction 1D

Construction 2D

Solvers

2D Transversa Ising Model First results

Conclusion and

First results

Intoduction

Construction 1D

Construction 2D

Solvers

2D Transversa Ising Model

First results

Construction 1D

Construction 2D

Solvers

2D Transvers Ising Model

Conclusion and outlook

Conclusion

Intoduction

Construction 1D

Construction 2D

Solvers

2D Transversallsing Model

- Working code for 1D and 2D
- General solvers
- Promising first results in 2D

Outlook: short term

Intoduction

Construction 1D

Construction 2D

Solvers

2D Transversa

- Accurate estimate transversal Ising quantum critical point
- Improve blocks for loops
- continuous improvements framework

Outlook: long term

Intoduction

Construction 1D

Construction 2D

Solvers

2D Transversal Ising Model

- Incorporate symmetries of Hamiltonians
- Look at other (types of) Hamiltonians
- Generalize for other lattice geometries
- Generalize to 3D

References I

ntoductio

Construction 2

Solvers

2D Transvers

Ising Model

Conclusion and outlook