Funtores

Rafael Villarroel

2021-02-18 15:30 -0500

Sean C, D dos categorías. Un funtor $F: C \to D$ consta de:

• Una función $F: obj \mathbf{C} \to obj \mathbf{D}$.

- en G, decimos que F es un funtor olvidadizo. También existe un funtor olvidadizo $\mathbb{R}\text{Vect} \to \text{AbGrp}$.
- Sea C = Grp, y sea D = AbGrp. Recordemos que con $G' \leq G$ se denota el subgrupo generado por $\{a^{-1}b^{-1}ab \mid a,b \in G\}$. Se tiene que en general, G' es un subgrupo normal y G/G' es abeliano. Definimos $F: \mathbf{Grp} \to \mathbf{AbGrp}$ como F(G) = G/G'. Sea $f: G \to H$ un morfismo de grupos. Queremos definir $F(f): G/G' \to H/H'$. Como se cumple $f(G') \subseteq H'$, se puede definir F(f)(gG') = f(g)H'.
- Un funtor Δ : **Graph** \rightarrow **SimpComp**, donde, si G es una gráfica (es decir, un objeto de la categoría **Graph**), definimos a $\Delta(G)$ como el complejo simplicial de completas de la gráfica G. Si $f: G_1 \rightarrow G_2$ es un morfismo de gráficas (de modo que $v_1 \sim v_2$ implica $f(v_1) \sim f(v_2)$ o $f(v_1) = f(v_2)$), definimos $\Delta(f): \Delta(G_1) \rightarrow \Delta(G_2)$ como $\Delta(f)(\sigma) = f(\sigma)$.
- Un funtor | · |: SimpComp → Top dado por la realización geométrica. Es decir, dado Δ un complejo simplicial, le

- podemos asociar un espacio topológico $|\Delta|$. Dado un mapeo simplicial $f: \Delta_1 \to \Delta_2$, anteriormente le asociamos una función continua $|f|: |\Delta_1| \to |\Delta_2|$.

 Para cada n > 0, definiremos un funtor
- Para cada $n \ge 0$, definiremos un funtor H_n : **SimpComp** \to **AbGrp** que se llama la homología.