M1

- **1.** Se considera semnalul $f: \mathbb{R} \to \mathbb{C}$, $f(t) = \frac{t}{(2+jt)^5}$. Sa se determine energia E(f), spectrul $\hat{f}(\omega)$ si energia $E(\hat{f})$.
- 2. (i) Utilizand metoda (tehnica) transformarii Laplace, sa se rezolve e.d.

$$x'' - 8x' + 16x = e^{2t} + 2$$
, $x(0) = 0$, $x'(0) = 0$

(ii) Sa se determine originalul x(t) care satisface e.d.

$$x'' + 6x' + 9x = \frac{e^{-3t}}{2t+5}$$
; $x(0) = 1$, $x'(0) = 0$

3. Se considera SLDIT (S_d, S_d, L) , avand raspunsul impuls $h = L(\delta) = \delta_{-2} + \delta_{-1} - 2\delta$. Sa se determine intrarea $x \in S_d$ stiind ca iesirea y = L(x) este $y(n) = 2^n u(n)$.

M2

- **1.** Sa se calculeze spectrul, amplitudinea si faza in frecventa ale semnalului $f: \mathbb{R} \to \mathbb{C}$, $f(t) = \frac{j+t}{(t^2-8t+20)^2}$, pentru frecventa $\omega = 10$.
- 2. (i) Utilizand metoda (tehnica) transformarii Laplace, sa se rezolve e.d.

$$x'' - x' - 6x = 1 + e^{-2t}$$
, $x(0) = x'(0) = 1$

- (ii) Fie $f \in \mathcal{O}$, $f(t) = \int_0^t e^{-3x-2t} (x^2+t^2-2tx) (\sin(2x-2t))^{(4)} dx$ Sa se calculeze $\mathcal{L}\{f(t)\}(1)$.
- **3.** Se considera semnalul discret $x = (j + 1, j, 1 + 2j, 0)^T \in K^4$. Sa se determine: :
 - (i) x(45) + x(-145); (ii) Energia E(x); (iii) $X = \mathcal{F}_d x$
 - (ii) (iv) E(X) si sa se verifice formula lui Parseval.

M3

1. Se considera semnalul $f: \mathbb{R} \to \mathbb{C}$, $f(t) = \int_{-\infty}^{\infty} \frac{(t-x)e^{-4x^2}}{(t^2+x^2-2tx+4)^2} dx$

Sa se determine numarul real a astfel incat $f(t) = \frac{t}{(t^2+a)^2} * e^{-4t^2}$

si sa se calculeze spectrul si faza in frecventa ale semnalului f(t) pe frecventa $\omega = 1$.

2. (i) Utilizand metoda (tehnica) transformarii Laplace, sa se rezolve e.d.

$$x'' + 2x'' + x' = e^{t} + 1$$
, $x(0) = 0$, $x'(0) = 0$.

(ii) Utilizand metoda (tehnica) transformarii Laplace, sa se rezolve e.d.

$$x'' + 4x = \frac{1}{3+4\sin^2 t}$$
, $x(0) = 1$, $x'(0) = 2$.

3. Se considera semnalul discret $x = (j, 2 + j, 0, 3 + 2j)^T \in K^4$. Sa se determine : (i) x(89) + x(-189); (ii) Energia E(x); (iii) $X = \mathcal{F}_d x$; (iv) Energia E(X) si sa se verifice formula lui Parseval

M4

- **1.** Fie f(t) solutia ecuatiei integrale Fourier $\int_0^\infty f(t) \sin(\omega t) dt = \frac{1}{\omega(4\omega^2 + 1)^2},$ $\omega > 0$. Sa se determine f(2π).
- **2.** (i) Utilizand metoda (tehnica) transformarii Laplace, sa se rezolve e.d $x'' x = t e^{2t}$, x(0) = 0, x'(0) = 1
 - (ii) Utilizand metoda transformarii Laplace, sa se rezolve ecuatia integro-diferentiala de tip convolutiv $x''(t) = 15 \int_0^t e^{2(\tau t)} x'(t) d\tau + e^{3t} + 1$, x(0) = x'(0) = 0
- **3.** Se considera SLDIT (S_d, S_d, L) , avand raspunsul impuls $h = L(\delta) = \delta_{-2} \delta_{-1} 2\delta$. Sa se determine intrarea $x \in S_d$ stiind ca iesirea y = L(x) este $y(n) = (-1)^n u(n)$.

M5

- **1.** Fie f(t) solutia ecuatiei integrale Fourier $\int_0^\infty f(t) \cos(\omega t) dt = g(\omega)$, unde $g(\omega) = \omega^2 e^{-2\omega}$.
 - (i) Sa se determine E(f) si E(g).
 - (ii) Sa se determine $t \in \mathbb{R}$ astfel incat $arg f(t) = \pi$.
- 2. (i) Utilizand metoda (tehnica) transformarii Laplace, sa se rezolve e.d.

$$x'' + 10x' + 41x = e^{t}$$
, $x(0) = 0$, $x'(0) = 1$.

- (ii) Utilizand transformata Laplace, sa se calculeze $\int_0^\infty \frac{t^3 \sqrt{t} \, e^{-2t} + \cos^2(3t) \cos^2(7t)}{t} dt.$
- **3.** Se considera SLDIT (S_d, S_d, L) , avand raspunsul impuls $h = L(\delta) = \delta_{-1} + 2\delta 15\delta_1$ Sa se determine intrarea $x \in S_d$ stiind ca iesirea y = L(x) este $y(n) = 3^n u(n)$.