

Comparison of Acoustic Models and Trajectory Generation Methods for an Acoustically-Aware Aircraft

Kasey A. Ackerman and Irene M. Gregory

NASA Langley Research Center

Hampton, VA 23681

AIAA SciTech Forum

National Harbor, MD

January 2023

Motivation

- Noise management is one of the major barriers to Urban Air Mobility
- Approaches to noise mitigation (non-exhaustive)
 - Vehicle configuration
 - Directivity control via propeller phase synchronization
 - *Trajectory optimization*

Objective

- Create framework for trajectory generation integrating location-based acoustic metrics and vehicle performance limitations
 - Multiple trajectory optimization methods and acoustic noise models
 - Mission-relevant constraints
 - Mission duration, airspace restrictions, ...
 - Vehicle dynamic constraints
 - Aircraft structural limitations, min/max airspeed, ...
 - Vehicle separation/obstacle avoidance
 - Acoustic constraints at a number of discrete observer locations

Comparison of Models and Methods

- Two acoustic source noise models
 - Omni-directional model based on propeller tip Mach Number
 - Directional hemisphere-based model
- Two trajectory planning methods
 - Pre-mission full-trajectory planner using polynomial parameterization
 - Receding horizon (near) real-time nonlinear model predictive control (MPC) trajectory planner
- Compare trajectory planning performance using both noise models and trajectory generation methods

Vehicle Dynamics

- Fixed-wing distributed propulsion aircraft
 - Can represent tilt-wing or split-propulsion vehicle in forward flight
 - Coordinated flight aircraft model*
 - Basic aerodynamic model
 - Simplified motor/propeller model
 - Assumes underlying tracking controller
- Parameter values taken from model of NASA's GL-10 aircraft

Figure credit: NASA

*Adapted from J Hauser, R Hindman, "Aggressive Flight Maneuvers," IEEE Conference on Decision and Control, 1997.

Omni-Directional Acoustic Model

- Metric is *sound pressure level (SPL)*
- Model data fit from the Propeller Analysis System of the Aircraft Noise Prediction Program (PAS-ANOPP)
- Based on effective propeller tip Mach number
- Optional frequency weighting

$$SPL = 10 \log_{10} \left(\frac{1}{\hat{p}^2} \sum_{k=0}^{N_f} \left[\hat{p}_{\text{rms},k}^2 \left(\frac{M_{\text{eff}}}{\hat{M}_{\text{eff}}} \right)^{\xi_k} R_A(f_k) \right] \left(\frac{\hat{r}}{r} \right)^2 N_p \right)$$

Frequency weighting
Number of propellers
Propeller speed
Distance to observer

$$M_{\text{eff}} = \frac{M_t}{1 + J(1 - M_t)}$$

$$M_t = \omega_p d_p / 2c$$

Hemisphere Acoustic Model

- Metric is *sound pressure level (SPL)*
- Model data from the Propeller Analysis System of the Aircraft Noise Prediction Program (PAS-ANOPP)
- Directional noise emission
- Interpolation over airspeed, angle of attack, propeller speed, direction to observer

$$SPL_{obs} = SPL + 20 \log_{10} \left(\frac{\hat{r}}{r} \right) + 6 + R_A(f) + 10 \log_{10}(N_p)$$

Pressure doubling Frequency weighting
Distance to observer Number of propellers

Pre-Mission Trajectory Planner*

- Full trajectory optimization with polynomial parameterization
 - Simplified (differentially flat) vehicle dynamics, acoustic source model, and propagation model
 - Implemented as a 2nd order Hermite interpolation problem
 - Bézier polynomial representation of spatial path and parametric speed
 - Numeric (discrete) evaluation of mid- to high-fidelity acoustic source and propagation models

Figure Credit: *KA Ackerman and IM Gregory, "Trajectory Generation for Noise-Constrained Autonomous Flight Operations," AIAA SciTech Forum, Jan 2020. AIAA-2020-0978

MPC Motion planner*

■ Model Predictive Path Integral Control (MPPI)**

- Stochastic optimization technique used as nonlinear MPC
- Framework to efficiently solve a finite horizon nonlinear optimal control problems
- State cost function can be arbitrarily complex
- Sampling-based optimization leverages GPU for efficient computation

Figure credit: J Pravitra, KA Ackerman, N Hovakimyan, EA Theodorou, "L1-Adaptive MPPI Architecture for Robust and Agile Control of Multirotors," IROS, 2020.

*KA Ackerman, IM Gregory, N Hovakimyan, EA Theodorou, "A Model Predictive Control Approach for In-Flight Acoustic Constraint Compliance," AIAA SciTech Forum, 2021. AIAA-2021-1958

**G Williams, P Drews, B Goldfain, JM Rehg, EA Theodorou, "Information Theoretic Model Predictive Control: Theory and Applications to Autonomous Driving," IEEE Transactions on Robotics, 2018.

Comparison – Acoustic Constraint Inactive

Comparison – Acoustic Constraint Active

Comparison – Sound Pressure Level

Comparison – Vehicle Speed

Noise Model Comparison

■ Omni-directional propeller speed model

Noise Model Comparison

Hemisphere model

Summary

- Compared two different trajectory planning methods and two acoustic noise models
 - Full trajectory planning with guaranteed constraint satisfaction
 - Finite horizon planning has greater freedom in trajectory planning
 - Better able to exploit directionality of hemisphere model
 - Directionality of noise emission makes difference in maximum noise levels seen on ground
 - Higher peak noise, but shorter duration with hemisphere model
- Future efforts focused on combining planner methods to leverage advantages of each
- Acknowledgements
 - NASA's Revolutionary Vertical Lift Technology Project
 - Dr. Kyle Pascioni (NASA Langley Research Center)
 - Dr. Javier Puig Navarro (National Institute of Aerospace)

POC: Kasey Ackerman
kasey.ackerman@nasa.gov

Background Material

Vehicle Dynamics

- Fixed-wing distributed propulsion aircraft
 - Can represent tilt-wing or split-propulsion vehicle in forward flight
 - Coordinated flight aircraft model*
 - Includes basic aerodynamic model
 - Assumes underlying tracking controller
 - Dynamics:

$$\dot{\boldsymbol{x}} = \boldsymbol{v}$$
$$\dot{\boldsymbol{v}} = \boldsymbol{g} + \boldsymbol{R}\boldsymbol{a}_v$$
$$\dot{\boldsymbol{q}} = \frac{1}{2}\boldsymbol{q} \otimes \begin{bmatrix} 0 \\ \boldsymbol{\omega}_v \end{bmatrix}$$
$$\boldsymbol{\omega}_v = [p_s \quad -\boldsymbol{e}_3 (\boldsymbol{a}_v + \boldsymbol{g}) / V \quad \boldsymbol{e}_3 \boldsymbol{g} / V]^T$$
$$[T \quad \alpha \quad p_s]^T = \boldsymbol{u}$$
$$\boldsymbol{e}_3 = [0 \quad 0 \quad 1]^T$$

Coordinated flight constraint

*Adapted from J Hauser, R Hindman, "Aggressive Flight Maneuvers," IEEE Conference on Decision and Control, 1997.

Vehicle Dynamics

■ Aerodynamic model:

$$\mathbf{a}_v = \begin{bmatrix} \frac{T}{m} \cos \alpha - \frac{\rho V^2 S}{2m} (\sin \alpha (C_{N_0} + C_{N_\alpha} \alpha) + \cos \alpha (C_{A_0} + C_{A_{\alpha^2}} \alpha^2)) \\ 0 \\ -\frac{T}{m} \sin \alpha - \frac{\rho V^2 S}{2m} (\cos \alpha (C_{N_0} + C_{N_\alpha} \alpha) - \sin \alpha (C_{A_0} + C_{A_{\alpha^2}} \alpha^2)) \end{bmatrix}$$

Highlighted variables:
Thrust – blue
AoA – red
Aero Coeff - green

■ Propeller/motor model:

$$T = c_2(J)\omega_p^2 + c_1(J)\omega_p + c_0(J)$$

$$J = \frac{2\pi V \cos \alpha}{\omega_p d_p}$$

Advance ratio

■ Parameter values taken from model of NASA's GL-10 aircraft

Pre-Mission Trajectory Planner

- Full trajectory optimization with polynomial parameterization
 - Simplified vehicle dynamics, acoustic source model, and propagation model
 - Implemented as a 2nd order Hermite interpolation problem
 - Bézier polynomial representation of spatial path and parametric speed
 - Computationally efficient algorithms
 - No discretization of trajectory or constraint functions
 - Constraints can be satisfied to arbitrary precision
 - Assumes differential flatness of dynamics and constraints
 - Numeric (discrete) evaluation of mid- to high-fidelity acoustic source and propagation models

*KA Ackerman and IM Gregory, “Trajectory Generation for Noise-Constrained Autonomous Flight Operations,” AIAA SciTech Forum, Jan 2020. AIAA-2020-0978

Pre-Mission Trajectory Planner

■ Differentially flat dynamics

$$\begin{aligned}\dot{x}(t) &= V(t) \begin{bmatrix} \cos(\gamma(t)) \cos(\chi(t)) \\ \cos(\gamma(t)) \sin(\chi(t)) \\ -\sin(\gamma(t)) \end{bmatrix} \\ m\dot{V}(t) &= T(t) - D(t)\end{aligned}$$

■ Spatial path and timing law

- Derive all other variables from path and timing law

$$x(\zeta) = \sum_{k=0}^5 \bar{x}_k b_k^n(\zeta), \quad \zeta \in [0, 1]$$

$$\theta = \frac{d\zeta(\hat{t})}{d\hat{t}} = \sum_{k=0}^{n_\theta} \bar{\theta}_k b_n^k(\hat{t}), \quad \hat{t} = \frac{t}{t_f}$$

$$\zeta(\hat{t}) = \int_0^{\hat{t}} \theta(\tau) d\tau$$

*KA Ackerman and IM Gregory, "Trajectory Generation for Noise-Constrained Autonomous Flight Operations," AIAA SciTech Forum, Jan 2020. AIAA-2020-0978

MPC Motion Planner*

■ Model Predictive Path Integral Control (MPPI)**

- Sample thousands of control sequences, $\nu_t \sim \mathcal{N}(u_t, \Sigma)$, propagate trajectories in parallel
- Exponential cost-weighted averaging to update mean of optimal control distribution, u_t
- Propagate mean optimal control sequence to obtain nominal trajectory

Figure credit: J Pravitra, KA Ackerman, N Hovakimyan, EA Theodorou, “L1-Adaptive MPPI Architecture for Robust and Agile Control of Multirotors,” IROS, 2020.

*KA Ackerman, IM Gregory, N Hovakimyan, EA Theodorou, “A Model Predictive Control Approach for In-Flight Acoustic Constraint Compliance,” AIAA SciTech Forum, 2021. AIAA-2021-1958

MPC Motion Planner

■ Implementation*

- Discrete-time dynamics $\mathbf{z}_{t+1} = \mathbf{f}(\mathbf{z}_t, \boldsymbol{\nu}_t)$, $\boldsymbol{\nu}_t \sim \mathcal{N}(\mathbf{u}_t, \Sigma)$
- Cost functional

$$J(\mathbf{U}) = \mathbb{E} \left[\phi(\mathbf{z}_{t+T}) + \sum_{k=t}^{t+T-1} q(\mathbf{z}_k) + \lambda \mathbf{u}_k^\top \Sigma^{-1} (\boldsymbol{\nu}_k - \mathbf{u}_k) \right]$$

- State cost and control weight for each control sequence

$$\begin{aligned} S(\mathbf{V}_t^i) &= \phi(\mathbf{z}_{t+T}^i) + \sum_{k=t}^{t+T-1} q(\mathbf{z}_k) \\ w(\mathbf{V}_t^i) &= \exp \left[-\frac{1}{\lambda} \left(S(\mathbf{V}_t^i) - \sum_{k=t}^{t+T-1} \mathbf{u}_t' T \Sigma^{-1} \boldsymbol{\nu}_k^i - \beta \right) \right] \end{aligned}$$

- Approximate optimal control

$$\mathbf{u}_t^* \approx \mathbf{u}_t = \mathbf{u}'_t + \frac{1}{\sum_{i=1}^{N_s} w(\mathbf{V}_t^i)} \sum_{i=1}^{N_s} w(\mathbf{V}_t^i) (\boldsymbol{\nu}_t^i - \mathbf{u}_t^i),$$

*KA Ackerman, IM Gregory, N Hovakimyan, EA Theodorou, "A Model Predictive Control Approach for In-Flight Acoustic Constraint Compliance," AIAA SciTech Forum, 2021. AIAA-2021-1958

Noise Model Comparison – Pre-mission Planner

Omni-Directional Model

Hemisphere Model

Noise Model Comparison – MPC Planner

Omni-Directional Model

Hemisphere Model

Planner Comparison – Omni-directional model

Pre-mission Planner

MPC Planner

Planner Comparison – Hemisphere Model

Pre-Mission Planner

MPC Planner

