quen x,2 y,2/10/pg2-11-1 Eliminate x22 hons y12 = X12 (n2-px2)-px2 $Y^{2} = X^{2} \left[\left(\frac{n}{p_{x}} \right)^{2} - 1 \right] - 1$ $y'^{2} = \left(\left(\frac{n^{2}}{p_{x}} \right)^{2} - 1 \right) \left\{ \left[\left(\frac{n}{p_{y}} \right)^{2} - 1 \right] y'^{2} - 1 \right\}$ $= \underbrace{\left(\left(\frac{n^{2}}{p_{x}} \right)^{2} - 1 \right) \left\{ \left[\left(\frac{n}{p_{y}} \right)^{2} - 1 \right] y'^{2} - 1 \right\}}_{x} \underbrace{\left(\frac{n}{p_{y}} \right)^{2} - 1 \right] y'^{2} - 1}_{aut mi'}$ - 1 Y'2 = Vx (Yyy',2 -1) -1. y'2 = 8x8y y'2 - 8x - 1 $(\frac{n}{p_{y}})^{2}-1](\frac{n}{p_{y}})^{2}-1]=\frac{n^{2}}{p_{y}^{2}+n^{2}}-\frac{n^{2}}{p_{y}^{2}}-\frac{n^{2}}{n^{2}}$ 1/2 (1/2 - 1/2 - 1/2) PX - 1/2) PX Thus $y' = \sqrt{x^2 - p_x^2 - p_y^2}$ similarly for $x' = \sqrt{n^2 - p_x^2 - p_y^2}$