A Objective

```
In [ ]:
```

B Snyopsis & Algorithm

```
In [ ]:
```

C Code and Output

```
In [1]: import numpy as np
         import matplotlib.pyplot as plt
         \textbf{from} \ \textbf{sklearn.decomposition} \ \textbf{import} \ \textbf{PCA}
         from sklearn.datasets import load_iris
         from sklearn.preprocessing import StandardScaler
In [2]: # Load the Iris dataset
         iris = load_iris()
         X = iris.data
         y = iris.target
In [3]: # Standardize the dataset
         scaler = StandardScaler()
         X_scaled = scaler.fit_transform(X)
In [4]: # Apply PCA and reduce to 2 components
         pca = PCA(n_components=2)
         X_pca = pca.fit_transform(X_scaled)
In [9]: # Plot the PCA results
         plt.figure(figsize=(8, 6))
         plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y, cmap='plasma', edgecolor='red', s=100)
plt.xlabel('First Principal Component')
         plt.ylabel('Second Principal Component')
         plt.title('PCA on Iris Dataset')
         plt.colorbar()
         plt.show()
```



```
In [6]: # Print explained variance ratio
print("Explained Variance Ratio:", pca.explained_variance_ratio_)
```

Explained Variance Ratio: [0.72962445 0.22850762]

D Conclusions & Discussion

In $[\]:$ #Discuss what inferences you have made after the successful completion of the Experiment.

E Viva Voce Questions

In [1]:	#1 What is Dimensionality Reduction?
In [2]:	#2 Define PCA?
In [3]:	#3 Define Eigen Values.
In [4]:	#4 Define Eigen Vectors.
In [5]:	#5 Define Orthogonality.