

NOM:

3^{ème} année

Traitement du signal Contrôle continu n°1

Durée: 2 heures

Prénom :	Délai supplémentaire de 15 minutes, pour palier aux problèmes de connexion, accès à Moodle, etc.
Groupe (entourer): II HF	
Formules utiles: $\sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j} \qquad \sin^2(\theta) = \frac{1 - \cos(2\theta)}{2}$	$TF\big[e^{2\pi j f_0 t}\big] = \delta(f - f_0)$
Exercice 1: On considère un signal sinusoïdal de période T q alternance qui en résulte a pour expression : $x(t)$ sur l'intervalle $\left[\frac{T}{2};T\right]$	
1) Quelles est la valeur de l'énergie du signal	?(Justifier !)
2) Calculer la puissance moyenne du signal	
3) Calculer le coefficient c ₀	
4) Calculer le coefficient c ₁	

5) Calculer le coefficient c ₋₁
6) Montrer que, pour n \neq 1 et n \neq -1, le coefficient c_n de ce développement a pour expression :
$c_n = \frac{A}{\pi} \frac{1}{1 - n^2}$ si n est pair et $c_n = 0$ si n est impair
7) Si l'on programmait la somme des N premiers termes (N grand) de la décomposition en séries
de Fourier, observerait-on le phénomène de Gibbs ? (justifier !)
Exercice 2:
8) Calculer la Transformée de Fourier (TF) de la fonction $x(t) = cos(2\pi f_0 t - \varphi)$

Exercice 3:

9) Calculer la transformée de Fourier inverse de la porte définie par H(f) = 1 si $0 \le f \le f_0$ et H(f) = 0 sinon

Exercice 4:

On considère un signal analogique $x(t) = a \cos 2\pi f_0 t$ que l'on souhaite échantillonner à la fréquence F_e , c'est-à-dire avec un pas d'échantillonnage $T_e = 1/F_e$.

Montrer que les valeurs numériques obtenues $x(n T_e)$ coïncident avec les valeurs numériques $y(n T_e)$ obtenues en échantillonnant à la même fréquence le signal $y(t) = a \cos 2\pi (k F_e \pm f_0) t$ où k est un entier relatif. Après conversion analogique - numérique, il est alors impossible de savoir si la suite de valeurs numériques échantillonnées provient du signal x de fréquence f_0 ou bien du signal y de fréquence f_0 .

- 11) Pour une fréquence d'échantillonnage F_e = 1 kHz, déterminer la fréquence f_1 = k F_e $\pm f_0$ comprise entre 0 et $F_e/2$ où se "replie" :
 - la fréquence f_0 = 600 Hz,
 - la fréquence f_0 = 1200 Hz,
 - la fréquence f_0 = n kHz où n est un entier naturel.

Quelle est alors, dans ce dernier cas, l'allure du signal obtenu après échantillonnage ?

12)	Comment éviter ce repliement des fréquences au moment de l'échantillonnage ?
	cice 4:
	nsidère le signal réel $x(n)$ suivant, acquis à la fréquence F_e = 2 Hz et défini sur 4 points (n = 0 à
3):	1, $x(1) = 3$, $x(2) = 2$, $x(3) = 1$ ($x(n) = 0$ sinon).
	sire calculer sa transformée de Fourier discrète (TFD) sur $N = 4$ points.
13)	Quelle est la résolution en fréquence ?
-,	
14)	Comment la TFD considère-t-elle le signal temporel entre $t=-\infty$ et $t=+\infty$?
>	
15)	Expliquer la relation entre la valeur de la résolution en fréquence et la durée du motif de x(n)
16)	Déterminer la TFD de x(n) pour les 3 premières composantes fréquentielles $X(k)$ ($0 \le k \le 2$).
,	
17)	Déduire la quatrième composante fréquentielle, sans aucun calcul (justifier !)
,	

18) En intégrant la densité spectrale de puissance du signal définie comme $S(f) = \left X(f) \right ^2 / T$,
où T est la durée d'acquisition du signal, calculer la puissance P_f dans le domaine fréquence et vérifier qu'elle est bien égale à la puissance P_t calculée dans le domaine temporel.