MATERIAIS

- Fonte de tensão DC variável (0-30 V).
- Multímetro.
- Protoboard.
- Diodo 1N4007.
- Resistências de 1 kΩ, 470Ω, 330Ω e100Ω.
- 1 Capacitor .
- 1 Indutor.
- 1 CI 7400.
- Cabos de conexão.

PROCEDIMENTOS DA PRÁTICA

1 Medindo a resistência

Calcule o valor de cada uma das resistências fornecidas nesta prática usando o código de cores:

Valor nominal:	Ω	Tolerância:	%
Valor nominal:	Ω	Tolerância:	%
Valor nominal:	Ω	Tolerância:	%
Valor nominal:	Ω	Tolerância:	%
	Valor nominal: Valor nominal:	Valor nominal: Ω Valor nominal: Ω	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

2 Meça o valor de cada uma das resistências anteriores colocando o multímetro digital no modo correspondente.

R1:	Valor medido:	Ω
R2:	Valor medido:	Ω
R3:	Valor medido:	Ω
R4:	Valor medido:	Ω

Os resultados são consistentes? Explique.

3 Medindo a capacitância

Coloque o multímetro digital na opção correspondente para medir capacitâncias e meça o valor do capacitor fornecido nesta prática. Compare com o valor nominal indicado na capa do componente:

C1:	Valor medido:	 F
C1:	Valor nominal:	F

4 Usando a opção correspondente do multímetro digital verifique o funcionamento do diodo fornecido nesta prática.

D1:	Valor medido:	V	(Polarização direta)
D1:	Valor medido:	V	(Polarização inversa)

Os valores medidos em polarização direta e inversa são iguais? Diferentes? Explique.

- **5** Usando a opção para medir continuidade do multímetro digital verifique a forma como os furos do protoboard estão interconectados.
- **6** Ajuste o valor da fonte de tensão variável em 12 V. Coloque o multímetro na opção medição de tensão DC e verifique o nível de tensão fornecido pela fonte variável. Compare o valor medido com o valor indicado na fonte:

```
Valor da leitura: _____ V
Valor indicado na fonte: _____ V
```

7 Monte o circuito ilustrado na figura no *protoboard*. A fonte de tensão deve ser ligada por último. Observação: Aplique uma tensão de alimentação de 12 V.

8 Faça a leitura da tensão na resistência 3 (R3) (Coloque o multímetro em paralelo com a resistência R3).

Valor da tensão na resistência V_R=_____ V

9 Faça a leitura da corrente na resistência 3 (R3) (Coloque o multímetro em série com a resistência R3.)

Valor da corrente na resistência I_R=_____ A

10 Calcule o valor da potência dissipada pelo Resistor R3

Valor da potencia na resistência P_R=V_R.I_R=_____ W

Qual é o valor nominal da potência na resistência? P_Rnom=_____ W

 Alguns multímetros precisam de um ajuste de escala para realizar a medição de uma grandeza. Explique se o multímetro que você usou nesta prática precisou em algum momento do ajuste de escala.

Conclusões:

Conexões dos terminais de uma protoboard:

Código de cores de um resistor:

Código de Cores

