

- Confusion Matrix
- Accuracy
- Precision
- Recall
- F1 Measure
- Harmonic Mean
- Specificity
- Sensitivity
- AUC Curve
- ROC Curve

Dun dinting

	1 Predic	ction
1	True Positive (TP)	False Negative (FN)
Actual Output 0	False Positive (FP)	True Negative (TN)

True positive (TP).

Equivalent with hit.

True negative (TN).

Equivalent with correct rejection.

False positive (FP).

 Equivalent with false alarm, type I error or underestimation.

False negative (FN).

 Equivalent with miss, type II error or overestimation.

		Actual	
		Positive	Negative
Predicted	Positive	True Positive Predicted has cancer Has Cancer	False Positive Predicted has cancer/Does not have cancer
	Negative	False Negative Predicted not cancer Has cancer	True Negative Predicted not cancer Does not have cancer

Accuracy

- Accuracy = (TP + TN) / (TP + FP + TN + FN)
- Condition positive (P).
 - The number of real positive cases in the data.
- Condition negative (N).
 - The number of real negative cases in the data.

Precision or Positive Predictive Value (PPV)

PPV = True Positive / (True Positive + False Positive)

Precision = tp / (tp + fp)

Sensitivity, Recall, Hit Rate, or True Positive Rate (TPR)

TPR = True Positive / (True Positive + False Negative)

False Positive Rate (FPR) or 1-Specificity

FPR = FP / (FP + TN)

F1 Measure

F1 Measure = (Precision + Recall) / 2

Harmonic Mean, F1 Score

F1 = (2 * Precision * Recall) / (Precision + Recall)

Specificity, Selectivity or True Negative Rate (TNR)

Specificity = True Negative / (True Negative + False Positive)

Threat Score (TS) or Critical Success Index (CSI)

$$CSI = TP / (TP + FN + FP)$$

False Discovery Rate (FDR)

$$FDR = FP / (TP + FP)$$

accuracy (ACC)

$$ACC = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + TN + FP + FN}$$

balanced accuracy (BA)

$$BA = \frac{TPR + TNR}{2}$$

informedness or bookmaker informedness (BM)

$$BM = TPR + TNR - 1$$

markedness (MK) or deltaP (Δp)

$$MK = PPV + NPV - 1$$

Matthews correlation coefficient (MCC)

$$\mathrm{MCC} = \frac{\mathrm{TP} \times \mathrm{TN} - \mathrm{FP} \times \mathrm{FN}}{\sqrt{(\mathrm{TP} + \mathrm{FP})(\mathrm{TP} + \mathrm{FN})(\mathrm{TN} + \mathrm{FP})(\mathrm{TN} + \mathrm{FN})}}$$

Fowlkes-Mallows index (FM)

$$\mathrm{FM} = \sqrt{\frac{TP}{TP + FP} \times \frac{TP}{TP + FN}} = \sqrt{PPV \times TPR}$$

ROC & AUC Curve

Receiver Operating Characteristic (ROC): Since, TPR is equivalent to Sensitivity and FPR is equal to 1 – specificity, the ROC graph is sometimes called the sensitivity vs (1 – specificity) plot.

The Area Under the Curve (AUC)

The Area Under the Curve (AUC) is the measure of the ability of a classifier to difference between classes and is used as a summary of the ROC curve. The higher the AUC, the better the performance of the model at distinguishing between the positive and negative classes.

What's a good AUC?

In general, an AUC of 0.5 suggests no discrimination (like, ability to diagnose patients with and without the disease or condition based on the test), 0.7 to 0.8 is considered **acceptable**, 0.8 to 0.9 is considered **excellent**, and more than 0.9 is considered **outstanding.**