Turma: Nota:

MA 327 Álgebra Linear

Primeiro Semestre de 2006

Segunda Chamada

Nome:	RA:
1 vollic.	1071.

$Quest\~oes$	Pontos
Questão 1	
Questão 2	
Questão 3	
Questão 4	
Questão 5	
Total	

Boa Prova!

Questão 1. (2.0 Pontos)

Considere o espaço vetorial real $\mathcal{P}_2(\mathbb{R})$ e a base canônica $\beta = \{1, x, x^2\}$. Dada a matriz

$$P = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
. Pede–se:

- (a) Determine uma base $\gamma = \{ p_1(x), p_2(x), p_3(x) \}$ de modo que $P = [I]_{\beta}^{\gamma}$.
- **(b)** Dado o polinômio $q(x) = -3 2x + 2x^2$, determine $[q(x)]_{\gamma}$.

Questão 2. (2.0 Pontos)

Considere o espaço vetorial \mathbb{R}^3 com o produto interno usual e S o subespaço definido por:

$$S = \{ (x, y, z) \in \mathbb{R}^3 / x + y + z = 0 \}.$$

Determine um operador linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que Im(T) = S e $Ker(T) = S^{\perp}$.

Questão 3. (2.0 Pontos)

Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ o operador linear definido por: T(x,y) = (3x-2y, -2x+3y). Pede-se:

(a) Determine uma base para cada um dos seguintes subespaços:

$$U_1 = \{ (x,y) \in \mathbb{R}^2 / T(x,y) = 5(x,y) \}$$

$$U_2 = \{ (x,y) \in \mathbb{R}^2 / T(x,y) = (x,y) \}$$

(b) Mostre que o conjunto $\beta = \beta_1 \cup \beta_2$, onde β_1 é uma base para U_1 e β_2 é uma base para U_2 , é uma base para \mathbb{R}^2 e determine $[T]_{\beta}^{\beta}$.

Questão 4. (2.0 Pontos)

Considere o espaço vetorial real \mathbb{R}^3 munido do produto interno usual. Dados os elementos u=(1,1,1) e v=(3,2,1). Pede–se:

- (a) Determine os elementos w_1 e w_2 tais que $v = w_1 + w_2$, de modo que w_1 seja ortogonal ao elemento u e que o conjunto $\{w_2, u\}$ seja linearmente dependente.
- (b) Decompor o elemento w=(1,-1,2) como a soma de um elemento no subespaço $S=[u,w_1]$ e outro no subespaço S^{\perp} .

Questão 5. (2.0 Pontos)

Considere o espaço vetorial real \mathbb{R}^4 munido do produto interno usual. Seja U o subespaço gerado pelos elementos $u_1=(1,1,1,1)$ e $u_2=(-1,1,-1,1)$. Pede–se:

- (a) Determine a melhor aproximação do elemento v = (2, 1, 3, 1) no subespaço U.
- (b) Determine um subespaço W de modo que $\mathbb{R}^4 = U \oplus W$. Justifique sua resposta.

Questão 1. (2.0 Pontos)

(a) Temos que $P = [p_{ij}]$ é a matriz de mudança da base $\gamma = \{p_1(x), p_2(x), p_3(x)\}$ para a base $\beta = \{1, x, x^2\}$. Desse modo, obtemos

$$p_1(x) = p_{11} + p_{21}x + p_{31}x^2 = 1 + x$$

$$p_2(x) = p_{12} + p_{22}x + p_{32}x^2 = x$$

$$p_3(x) = p_{13} + p_{23}x + p_{33}x^2 = 2 + 2x + x^2$$

Assim, temos que $\gamma = \{1 + x, x, 2 + 2x + x^2\}.$

(b) Sabemos que $[q(x)]_{\beta} = [I]_{\beta}^{\gamma} [q(x)]_{\gamma}$. Temos que

$$[q(x)]_{\beta} = \begin{bmatrix} -3\\ -2\\ 2 \end{bmatrix}$$
 e vamos denotar $[q(x)]_{\gamma} = \begin{bmatrix} a\\ b\\ c \end{bmatrix}$.

Assim, obtemos o seguinte sistema linear

$$\begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} -3 \\ -2 \\ 2 \end{bmatrix} \iff \begin{cases} a & + 2c = -3 \\ a + b + 2c = -2 \\ c = 2 \end{cases}$$

que possui uma única solução $a=-7\,,\ b=1$ e c=2. Logo, $[q(x)]_{\gamma}=\begin{bmatrix} -7\\1\\2 \end{bmatrix}$.

Questão 2. (2.0 Pontos)

Inicialmente vamos determinar uma base para o subespaço S. Sabemos que todo elemento $(x, y, z) \in S$ satisfaz a equação x + y + z = 0. Logo, temos que z = -x - y. Desse modo, obtemos que todo elemento $(x, y, z) \in S$ é escrito da seguinte forma:

$$(x, y, z) = x(1, 0, -1) + y(0, 1, -1)$$
 para $x, y \in \mathbb{R}$.

Portanto, o conjunto $\beta = \{(1,0,-1), (0,1,-1) \text{ \'e uma base para o subespaço } S.$ De fato, tomando uma combinação linear nula dos elementos do conjunto β

$$\alpha_1(1,0,-1) + \alpha_2(0,1,-1) = (0,0,0)$$

obtemos $\alpha_1 = \alpha_2 = 0$.

Agora vamos determinar uma base para o subespaço S^{\perp} definido por:

$$S^{\perp} = \{ w \in \mathbb{R}^3 / \langle w, v \rangle = 0 ; \forall v \in S \}.$$

Sabemos que todo elemento $w=(a,b,c)\in S^{\perp}$ deve ser ortogonal aos elemento da base β do subespaço S. Assim, temos que

$$\langle w, v_1 \rangle = a - c = 0$$

$$\langle w, v_2 \rangle = b - c = 0$$

onde $v_1 = (1, 0, -1)$ e $v_2 = (0, 1, -1)$.

Desse modo, obtemos a=c e b=c para $c\in \mathbb{R}$. Assim, todo elemento $w=(a,b,c)\in S^{\perp}$ é escrito da seguinte forma:

$$(a,b,c) = c(1,1,1)$$
 para $c \in \mathbb{R}$.

Logo, $S^{\perp} = [(1, 1, 1)].$

Considerando o espaço vetorial \mathbb{R}^3 com a base $\gamma = \{(1,0,0), (0,1,0), (1,1,1)\}$, vamos definir o operador linear T sobre o \mathbb{R}^3 , satisfazendo Im(T) = S e $Ker(T) = S^{\perp}$, da seguinte forma:

$$T(1,0,0) = (1,0,-1)$$

$$T(0,1,0) = (0,1,-1)$$

$$T(1,1,1) = (0,0,0)$$

Agora vamos escrever um elemento genérico $(x,y,z)\in I\!\!R^3$ com relação à base $\,\gamma\,,$ isto é,

$$(x,y,z) = a(1,0,0) + b(0,1,0) + c(1,1,1) = (a+c,b+c,c)$$

obtendo $c=z\,,\ b=y-z\,$ e a=x-z. Assim, temos que

$$(x, y, z) = (x - z)(1, 0, 0) + (y - z)(0, 1, 0) + z(1, 1, 1).$$

Finalmente, obtemos a expressão do operador T que é dada por:

$$T(x,y,z) = (x-z)T(1,0,0) + (y-z)T(0,1,0) + zT(1,1,1)$$

$$= (x-z)(1,0,-1) + (y-z)(0,1,-1) + z(0,0,0)$$

$$= (x-z, y-z, -x-y+2z).$$

Portanto, temos que o operador linear

$$T(x, y, z) = (x - z, y - z, -x - y + 2z)$$
 para $(x, y, z) \in \mathbb{R}^3$.

satisfaz as condições exigidas.

Questão 3. (2.0 Pontos)

(a) Vamos determinar uma base β_1 para o subespaço U_1 . Temos que todo elemento $(x,y) \in U_1$ deve satisfazer a seguinte condição T(x,y) = 5(x,y), isto é,

$$(3x - 2y, -2x + 3y) = (5x, 5y) \iff (-2x - 2y, -2x - 2y) = (0, 0).$$

Logo, temos uma única equação x + y = 0, isto é, y = -x.

Assim, todo elemento $(x, y) \in U_1$ é escrito como:

$$(x,y) = x(1,-1)$$
 para $x \in \mathbb{R}$.

Portanto, temos que $\beta_1 = \{(1, -1)\}.$

Agora vamos determinar uma base β_2 para o subespaço U_2 . Temos que todo elemento $(x,y) \in U_2$ deve satisfazer a seguinte condição T(x,y) = (x,y), isto é,

$$(3x - 2y, -2x + 3y) = (x, y) \iff (2x - 2y, -2x + 2y) = (0, 0).$$

Logo, temos uma única equação x - y = 0, isto é, y = x.

Assim, todo elemento $(x,y) \in U_2$ é escrito como:

$$(x,y) = x(1,1)$$
 para $x \in \mathbb{R}$.

Portanto, temos que $\beta_2 = \{(1,1)\}.$

(b) Temos que o conjunto $\beta = \beta_1 \cup \beta_2 = \{(1, -1), (1, 1)\}$ é linearmente independente. De fato, podemos observar que β é um conjunto ortogonal. Logo, β é uma base ortogonal para o \mathbb{R}^2 .

Finalmente, vamos determinar a matriz $[T]^{\beta}_{\beta}$. Temos que

$$T(1,-1) = (5,-5) = 5(1,-1) + 0(1,1)$$

$$T(1,1) = (1,1) = 0(1,-1) + 1(1,1)$$

Portanto, obtemos

$$[T]^{\beta}_{\beta} = \begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix},$$

o que completa a resolução do questão.

Questão 4. (2.0 Pontos)

(a) Temos os elementos u = (1, 1, 1) e v = (3, 2, 1), e as seguintes condições:

- (1) $v = w_1 + w_2$.
- (2) O elemento w_1 é ortogonal ao elemento u, isto é $\langle w_1, u \rangle = 0$.
- (3) O conjunto $\{w_2, u\}$ é linearmente dependente, isto é, existe um escalar $\alpha \in \mathbb{R}$ tal que $w_2 = \alpha u$.

Substituindo o elemento $w_2 = \alpha u$, dado pela condição (3), na condição (1) e calculando o produto interno $\langle v, u \rangle$ utilizando a condição (2), obtemos

$$\langle v, u \rangle = \langle w_1 + \alpha u, u \rangle = \langle w_1, u \rangle + \alpha \langle u, u \rangle \implies \alpha = \frac{\langle v, u \rangle}{\langle u, u \rangle} = \frac{6}{3} = 2.$$

Assim, temos que

$$w_2 = (2,2,2)$$
 e $w_1 = v - w_2 = (1,0,-1)$.

(b) Vamos representar o elemento w = (1, -1, 2) da seguinte forma:

$$w = \tilde{w} + \bar{w}$$
 onde $\tilde{w} \in S$ e $\bar{w} \in S^{\perp}$,

isto é, \tilde{w} é a projeção ortogonal de w sobre o subespaço S e \bar{w} é a projeção ortogonal de w sobre o subespaço S^{\perp} .

Como o conjunto $\{w_1, u\}$ é uma base ortogonal para o subespaço $S = [w_1, u]$, temos que o elemento \tilde{w} é calculado da seguinte forma:

$$\tilde{w} = \frac{\langle w, u \rangle}{\langle u, u \rangle} u + \frac{\langle w, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1.$$

Assim, temos que

$$\tilde{w} = \frac{2}{3}(1,1,1) - \frac{1}{2}(1,0,-1) = \left(\frac{1}{6}, \frac{4}{6}, \frac{7}{6}\right).$$

Finalmente, temos que o elemento $\bar{w} = w - \tilde{w}$. Logo,

$$\bar{w} = (1, -1, 2) - \left(\frac{1}{6}, \frac{4}{6}, \frac{7}{6}\right) = \left(\frac{5}{6}, -\frac{10}{6}, \frac{5}{6}\right).$$

Questão 5. (2.0 Pontos)

(a) Temos que o subespaço $U = [u_1, u_2]$, onde $u_1 = (1, 1, 1, 1)$ e $u_2 = (-1, 1, -1, 1)$. Note que os elementos u_1 e u_2 são ortogonais.

Sabemos que a melhor aproximação do elemento $v = (2, 1, 3, 1) \in \mathbb{R}^4$ no subespaço U é dada pela projeção ortogonal do elemento v sobre o subespaço U.

Como o conjunto $\{u_1, u_2\}$ é uma base ortogonal para o subespaço U, temos que a projeção ortogonal, \tilde{v} , do elemento v no subespaço U é calculada da seguinte forma:

$$\tilde{v} = \frac{\langle v, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 + \frac{\langle v, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2.$$

Assim, temos que

$$\tilde{v} = \frac{7}{4}(1,1,1,1) - \frac{3}{4}(-1,1,-1,1) = \left(\frac{5}{2}, 1, \frac{5}{2}, 1\right).$$

(b) Basta considerar W como sendo o complemento ortogonal do subespaço U em \mathbb{R}^4 com relação ao produto interno usual. Pelo **Teorema da Decomposição Ortogonal**, temos que $\mathbb{R}^4 = U \oplus W$. Como dim(U) = 2, temos que dim(W) = 2.

Finalmente vamos determinar uma base para o subespaço W. Sabemos que todo elemento $w=(a,b,c,d)\in W=U^{\perp}$ deve ser ortogonal aos elemento da base de U, isto é,

$$\langle w, u_1 \rangle = a + b + c + c = 0$$

$$\langle w, u_2 \rangle = -a + b - c + c = 0$$

Assim, obtemos um sistema linear homogêneo

$$\begin{cases} a + b + c + d = 0 \\ -a + b - c + d = 0 \end{cases} \iff \begin{cases} a + b + c + d = 0 \\ 2b + 2d = 0 \end{cases}$$

que possui como solução b = -d e a = -c.

Desse modo, todo elemento $w=(a,b,c,d)\in W=U^{\perp}$ é escrito da seguinte forma:

$$(a,b,c,d) \ = \ c(-1,0,1,0) \ + \ d(0,-1,0,1) \qquad \text{para} \qquad c, \ d \ \in \ I\!\!R \, .$$

O conjunto $\beta = \{ (-1,0,1,0), (0,-1,0,1) \}$ é claramente linearmente independente.

Portanto, o conjunto β é uma base para o subespaço $W=U^{\perp}.$