Московский физико-технический институт (госудраственный университет)

Лабораторная работа по электричеству

Закон [3.4.2]

Талашкевич Даниил Александрович Группа Б01-009

Содержание

1	Теоретическое введение	1
2	Экспериментальная установка	1
3	Ход работы	3
4	Обработка результатов	3
5	Вывод	3
6	Литература	3

Цель работы : изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

В работе используются : катушка самоиндукции с образцом из гадолиния, термостат, частотомер, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

1 Теоретическое введение

Коэффициент самоиндукции катушки L пропорционален магнитной проницаемости μ заполняющей его среды (почему?): $L \propto \mu$. Тогда разность самоиндукций катушки с образцом L и без него L_0 будет пропорциональна восприимчивости образца χ :

$$L - L_0 \propto \mu - 1 = \chi$$

При изменении индуктивности образца меняется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC}$$

где C - ёмкость контура автогенератора. Период колебаний в отсутствие образца определяется самоиндукцией пустой катушки:

$$\tau_0 = 2\pi \sqrt{L_0 C}$$

Отсюда находим

$$L - L_0 \propto \tau^2 - \tau_0^2$$

и, следовательно,

$$\chi \propto \tau^2 - \tau_0^2$$

Из формул 2 и 3 следует, что закон Кюри-Вейсса справедлив, если выполнено соотношение

$$\frac{1}{\tau^2 - \tau_0^2} \propto T - \Theta_p$$

Измерения проводятся в интервале температур от 14°C до 40°C. С целью экономии времени следует начинать измерения с низких температур.

2 Экспериментальная установка

В работе изучается температурная зависимость $\chi(T)$ гадолиния при температурах выше точки Кюри. Выбор материала определяется тем, что его точка Кюри лежит в диапазоне комнатных температур.

Рис. 2. Схема экспериментальной установки

Рис. 1: Схемы экспериментальных установок

Схема установки для проверки закона Кюри-Вейсса показана на рис. 2 Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC-автогенератора (генератора колебаний с самовозбуждением).

Гадолиний является хорошим проводником электрического тока, а рабочая частота генератора достаточно велика ($\sim 50~\rm k\Gamma u$), поэтому для уменьшения вихревых токов образец изготовлен из мелких кусочков размером около 0,5 мм. Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными частичками образца. Кроме того, оно улучшает тепловой контакт между образцом и термостатируемой (рабочей) жидкостью 3 в термостате. Ртутный термометр 4 используется для приближенной оценки температуры. Температура образца регулируется с помощью термостата 5.

- 3 Ход работы
- 4 Обработка результатов
- 5 Вывод
- 6 Литература
 - 1. **Лабораторный практикум по общей физике:** Учебное пособие. В трех томах. Т. 2. Электричество и магнетизм /Гладун А.Д., Александров Д.А., Берулёва Н.С. и др.; Под ред. А.Д. Гладуна М.: МФТИ, 2007. 280 с.