Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1	Claim 1. (currently amended) A method comprising:
2	receiving a serial stream of data bits;
3	deserializing the serial stream of data bits into parallel bits;
4	inputting the parallel bits into a content addressable memory and a first register;
5	inputting an output of the first register into a second register;
6	inputting outputs of the first and second registers to the content addressable
7	memory;
8	providing a bus configured to receive the parallel bits and output of the first
9	register, wherein the data lines forming the bus are grouped into a plurality of overlapping
10	subsets of the bus that each contain at least one common data line;
11	providing the parallel bits and the output of the first register in a plurality of
12	parallel bit outputs formats onto the bus; and
13	selecting one of the subsets and associated parallel bit outputs formats to output
14	based on match flag outputs from the content addressable memory, wherein the match flag
15	outputs are generated in response to the inputs to the content addressable memory.
1	Claim 2. (currently amended) The method of claim 1 wherein the plurality of
2	parallel bits and the output of the first register output formats are input to a plurality of tristate
3	driver circuits, and wherein selecting one of the subsets and the associated parallel bit outputs
4	formats to output comprises:
5	enabling one of the tristate driver circuits to output the parallel bits and the output
6	of the first register output format associated with that tristate driver eircuits circuit to an output
7	bus, and disabling other ones of the tristate driver circuits coupled to the output bus.
1	Claim 3. (original) The method of claim 1 wherein there are eight parallel bits.

Appl. No. 10/695,976 Amdt. dated April 27, 2006 Reply to Office Action of December 27, 2005

1	Claim 4. (original) The method of claim 1 wherein the first and second registers
2	are two stages of a shift register.
1	Claim 5. (original) The method of claim 1 wherein a depth of the content
2	addressable memory comprises at least one row for each of the parallel bits.
1	Claim 6. (original) The method of claim 1 wherein the inputs to the content
2	addressable memory are provided by way of parallel transfer.
1	Claim 7. (original) The method of claim 6 wherein a width of the parallel bits
2	inputting the content addressable memory is at least a number of parallel bits output from the
3	deserializer plus a length of a pattern to be detected using the content addressable memory minus
4	1.
1	Claim 8. (currently amended) A circuit comprising:
2	a deserializer circuit coupled to receive serial data input and outputting a first
3	parallel data of-output, wherein the deserializer circuit outputs the first parallel data onto a bus
4	that is configured with overlapping subsets of the bus, wherein the subsets include at least one
5	common data line;
6	a shift register coupled to the first parallel data output; and
7	a content addressable memory, coupled to the shift register to receive the first
8	parallel data output in parallel.
1	Claim 9. (currently amended) The circuit of claim 8 further comprising:
2	a plurality of second parallel data outputs formats based on the first parallel data
3	output, wherein each of second parallel data outputs are associated with a respective one of the
4	subsets; and
5	a plurality of tristate buffer circuits, one coupled to each of the subsets of the bus
5	parallel data output formats.
1	Claim 10. (original) The circuit of claim 9 further comprising:

Appl. No. 10/695,976 Amdt. dated April 27, 2006 Reply to Office Action of December 27, 2005

2	a control logic block, coupled to a match signal from the content addressable
3	memory, generating a plurality of select signals, one coupled to each of the tristate buffer
4	circuits.
1	Claim 11. (original) The circuit of claim 10 wherein based on the match signal,
1	
2	the control logic block generates select signals to enable one of the tristate buffers and disable
3	others of the tristate buffers.
1	Claim 12. (original) The circuit of claim 10 wherein the control logic block
2	comprises a state machine.
1	Claim 13. (currently amended) The circuit of claim 9 wherein there is one
2	parallel data output format for each bit of the first parallel data output minus 1.
2	paramer data output tormat for each of the first paramer data output minus 1.
1	Claim 14. (original) The circuit of claim 8 wherein the shift register is divided
2	into three portions, the first portion of the shift register is coupled to the descrializer, the second
3	portion of the shift register is coupled to the first portion through a first multiplexer, and the third
4	portion of the shift register is coupled to the second portion through a second multiplexer.
1	Claim 15. (currently amended) The circuit of claim 14 wherein the third portion
1	· · · · · · · · · · · · · · · · · · ·
2	position of the shift register is coupled to the first portion of the shift register through the second
3	multiplexer.
1	Claim 16. (currently amended) The circuit of claim 14 wherein the second
2	portion position of the shift register is coupled to the descrializer through the first multiplexer.
1	Claim 17. (original) The circuit of claim 8 wherein each row in the content
1	(· · · · · · · · · · · · · · · · · · ·
2	addressable memory comprises a data pattern to be detected in the serial data input.
1	Claim 18. (original) The circuit of claim 8 wherein the content addressable
2	memory has a number of rows equal to or greater than a number of bits of the first parallel data
3	output.

Claim 19. (original) The circuit of claim 8 wherein the content addressable 1 memory comprises a bit pattern comprising "1111," "0110," "0010," and "1000" in at least a 2 number of rows that is equal to a number of bits of the first parallel data output. 3 Claim 20. (original) The circuit of claim 8 wherein the first parallel data output 1 2 is 8, 10, 16, or 20 bits wide. Claim 21. (original) A programmable logic integrated circuit comprising the 1 2 circuit of claim 8. Claim 22. (original) The circuit of claim 8 further comprising: 1 a plurality of parallel data output formats based on the first parallel data output; 2 3 and a selector circuit, coupled to each of the parallel data output formats and the first 4 parallel data output, outputting one of the parallel data output formats as a second parallel data 5 6 output based on an output from the content addressable memory. Claim 23. (original) The circuit of claim 8 wherein the first parallel data output 1 comprises 8 bits in a format bit 0, bit 1, bit 2, bit 3, bit 4, bit 5, bit 6, and bit 7, and the circuit 2 3 further comprises: a first parallel data output format comprising bit 1, bit 2, bit 3, bit 4, bit 5, bit 6, 4 5 bit 7, and bit 0; a second parallel data output format comprising bit 2, bit 3, bit 4, bit 5, bit 6, bit 7, 6 7 bit 0, and bit 1; and a third parallel data output format comprising bit 3, bit 4, bit 5, bit 6, bit 7, bit 0, 8 9 bit 1 and bit 2; a fourth parallel data output format comprising bit 4, bit 5, bit 6, bit 7, bit 0, bit 1, 10 11 bit 2, and bit 3; a fifth parallel data output format comprising bit 5, bit 6, bit 7, bit 0, bit 1, bit 2, 12 13 bit 3, and bit 4; a sixth parallel data output format comprising bit 6, bit 7, bit 0, bit 1, bit 2, bit 3, 14 15 bit 4, and bit 5; and

Appl. No. 10/695,976 Amdt. dated April 27, 2006 Reply to Office Action of December 27, 2005

16	a seventh parallel data output format comprising bit 7, bit 0, bit 1, bit 2, bit 3, bit
17	4, bit 5, and bit 6.
1	Claim 24. (new) A method comprising:
2	deserializing an input serial data stream into a first parallel word;
3.	generating a second parallel word from the first parallel word;
4	grouping the second parallel word into a plurality of data word subsets that
5	overlap to include at least one common data bit;
6	generating a third parallel word from the first and second parallel word; and
7	detecting a frame alignment symbol within the third parallel word by comparing a
8	bit pattern of the third parallel word to a plurality of frame alignment patterns stored in a content
9	addressable memory.
1	Claim 25. (new) The method of claim 24, further comprising selecting one of the
2	subsets associated with a respective one of the frame alignment patterns that matches the frame
3	alignment symbol.
1	Claim 26. (new) The method of claim 24, wherein detecting the frame alignment
2	symbol comprises detecting the frame alignment symbol within one clock cycle.
1	Claim 27. (new) The method of claim 24, wherein grouping the second parallel
2	word comprises outputting the second parallel word on a data bus that includes subsets of data
3	lines that correspond to the data word subsets.