Discrete mathematics

- Discrete mathematics
 - study of mathematical structures and objects that are fundamentally discrete rather than continuous.
- Examples of objects with discrete values are
 - integers, graphs, or statements in logic.
- Discrete mathematics and computer science.
 - Concepts from discrete mathematics are useful for describing objects and problems in computer algorithms and programming languages. These have applications in cryptography, automated theorem proving, and software development.

Logic

Logic:

- defines a formal language for representing knowledge and for making logical inferences
- It helps us to understand how to construct a valid argument

Logic defines:

- Syntax of statements
- The meaning of statements
- The rules of logical inference (manipulation)

Propositional logic

- The simplest logic
- **Definition**:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)
 - 5 + 2 = 8.
 - **(F)**
 - It is raining today.
 - (either T or F)

Propositional logic

- Examples (cont.):
 - How are you?
 - · a question is not a proposition
 - x + 5 = 3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - (T)
 - She is very talented.
 - since she is not specified, neither true nor false
 - There are other life forms on other planets in the universe.
 - either T or F

Composite statements

• More complex propositional statements can be build from elementary statements using **logical connectives**.

Example:

- Proposition A: It rains outside
- Proposition B: We will see a movie
- A new (combined) proposition:

If it rains outside then we will see a movie

Composite statements

- More complex propositional statements can be build from elementary statements using **logical connectives**.
- Logical connectives:
 - Negation
 - Conjunction
 - Disjunction
 - Exclusive or
 - Implication
 - Biconditional

Negation

<u>Definition</u>: Let p be a proposition. The statement "It is not the case that p." is another proposition, called the **negation of p**. The negation of p is denoted by \neg p and read as "not p."

Example:

- Pitt is located in the Oakland section of Pittsburgh.
 - \rightarrow
- It is not the case that Pitt is located in the Oakland section of Pittsburgh.

Other examples:

- $-5+2 \neq 8$.
- 10 is not a prime number.
- It is **not** the case that buses stop running at 9:00pm.

Negation

- Negate the following propositions:
 - It is raining today.
 - It is not raining today.
 - 2 is a prime number.
 - 2 is not a prime number
 - There are other life forms on other planets in the universe.
 - It is not the case that there are other life forms on other planets in the universe.

Negation

• A truth table displays the relationships between truth values (T or F) of different propositions.

р	¬р
Т	F
F	Т

Rows: all possible values of elementary propositions:

Conjunction

Definition: Let p and q be propositions. The proposition "p and q" denoted by p ∧ q, is true when both p and q are true and is false otherwise. The proposition p ∧ q is called the conjunction of p and q.

• Examples:

- Pitt is located in the Oakland section of Pittsburgh and 5 +
 2 = 8
- It is raining today and 2 is a prime number.
- -2 is a prime number and $5 + 2 \neq 8$.
- 13 is a perfect square and 9 is a prime.

Disjunction

Definition: Let p and q be propositions. The proposition "p or q" denoted by p ∨ q, is false when both p and q are false and is true otherwise. The proposition p ∨ q is called the disjunction of p and q.

• Examples:

- Pitt is located in the Oakland section of Pittsburgh or 5 + 2
 = 8.
- It is raining today or 2 is a prime number.
- 2 is a prime number or $5 + 2 \neq 8$.
- 13 is a perfect square or 9 is a prime.

Truth tables

- Conjunction and disjunction
- Four different combinations of values for p and q

р	q	p∧q	p ∨ q
Т	Т		
Т	F		
F	Т		
F	F		

Rows: all possible combinations of values for elementary propositions: 2ⁿ values

Truth tables

- Conjunction and disjunction
- Four different combinations of values for p and q

р	q	p∧q	p ∨ q
Т	Т	Т	
Т	F	F	
F	Т	F	
F	F	F	

• NB: $p \lor q$ (the or is used inclusively, i.e., $p \lor q$ is true when either \underline{p} or \underline{q} or \underline{both} are true).

Truth tables

- Conjunction and disjunction
- Four different combinations of values for p and q

р	q	p∧q	$p \lor q$
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	F

• NB: $p \lor q$ (the or is used inclusively, i.e., $p \lor q$ is true when either p or q or both are true).

Exclusive or

• <u>Definition</u>: Let p and q be propositions. The proposition "p exclusive or q" denoted by p ⊕ q, is true when exactly one of p and q is true and it is false otherwise.

р	q	$p\oplusq$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F