MIDTERM 2A, MATH 152, SPRING 2019

Name: Key PID:

- Print your NAME on every page and write your PID in the space provided above.
- Show all of your work in the spaces provided. No credit will be given for unsupported answers, even if correct.

Total Points: 25

- Supporting work for a problem must be on the page containing that problem. No scratch paper will be accepted.
- No calculators, tables, phones, or other electronic devices are allowed during this exam. You may use your double-sided handwritten notes, but no books or other assistance.

DO NOT TURN PAGE UNTIL INSTRUCTED TO DO SO

(This exam is worth 25 points)

Problem 0.(1 point.) Follows the instructions on this exam and any additional instructions given during the exam.

Problem 1.(6 points.) Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Determine the SVD of the matrix A.

$$(0.5)_{pt}B = \overrightarrow{A}A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

Find eigenvalues and eigenvectors of B:

olet
$$\begin{bmatrix} 2-9 & 2 \\ 2 & 2-9 \end{bmatrix} = 0$$
 $(2-9)^2 - 2^2 = 0$

Find eigenvalues and eigenvectors of
$$det \begin{bmatrix} 2-7 & 2 \\ 2 & 2-7 \end{bmatrix} = 0$$

$$(2-7)^2 - 2^2 = 0.$$

$$-7(4-7) = 0.$$

$$7_1 = 4 \text{ and } 7_2 = 0 \Rightarrow 7_1 = 7_4 = 2 \text{ and } 7_2 = 0.$$

$$7_2 = 4, \quad \begin{bmatrix} 2-4 & 2 \\ 2 & 2-4 \end{bmatrix} = 0 \Rightarrow \begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix} = 0.$$

$$2_1 = x_2$$

$$2_1 = x_2$$

$$1 \neq 1$$

$$1 \neq 1$$

$$1 \neq 1$$

$$1 \neq 1$$

$$1 \neq 2$$

$$1 \neq 3$$

$$1 \neq 4$$

$$2 = 4$$

$$2 = 4$$

$$3 \neq 3$$

$$2 = 6$$

$$2 = 7$$

$$3 \neq 4$$

$$3 \neq 4$$

$$2 = 7$$

$$3 \neq 4$$

$$3 \neq 4$$

$$3 \neq 5$$

$$4 \neq 7$$

$$3 \neq 7$$

$$3 \neq 7$$

$$4 \neq 7$$

$$3 \neq 7$$

$$3 \neq 7$$

$$4 \neq 7$$

$$3 \neq 7$$

$$4 \neq 7$$

$$3 \neq 7$$

$$4 \neq 7$$

$$4 \neq 7$$

$$3 \neq 7$$

$$4 \Rightarrow 7$$

$$4 \Rightarrow$$

1 pt
$$\begin{cases} For \ \lambda_1 = 4, \\ 2 \ 2-4 \end{cases}$$

$$\begin{array}{c} Z_1 = Z_2 \\ Z_2 = Z_3 \end{cases}$$
1 pt $\begin{cases} For \ \lambda_2 = 0, \\ 2 \ 20 \end{cases}$

$$\begin{array}{c} Z_2 = 0, \\ 2 \ 20 \end{cases}$$

$$\begin{array}{c} Z_2 = 0, \\ Z_3 = 0, \\ Z_4 = 0, \end{cases}$$

$$\begin{array}{c} Z_2 = -2, \\ Z_2 = \frac{1}{1} \\ 1 \end{array}$$
1 pt $\begin{cases} Av_1 = xv_2 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$

$$\begin{array}{c} V_4 = \frac{1}{1} \\ 1 \end{cases}$$
1 pt $\begin{cases} Av_1 = xv_2 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_2 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_2 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_2 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_2 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_2 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_2 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_2 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_2 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_2 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_2 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_2 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
1 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
2 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$
2 pt $\begin{cases} Av_1 = xv_3 \Rightarrow v_3 = \frac{1}{1} \\ 1 \end{cases}$

$$1pt\int Av_2=\sigma_2 u_2 \Rightarrow Av_2=0.$$

we can pick uz by selecting any vector of unit norm and or thogonal to u. A candidate is 以二点门.

$$0.5 \quad A = \begin{bmatrix} 1/12 & -1/12 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1/12 & 1/12 \end{bmatrix} \begin{bmatrix} 1/12 & 1/12 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/12 & 1/12 \\ -1/12 & 1/12 \end{bmatrix}$$

Problem 2.(6 points.) Given the SVD of a matrix A as

$$A = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 10\sqrt{2} & 0 \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}.$$

- a) (1 point) Find $||A||_2$, the matrix 2-norm of A.
- b) (3 points) List the singular values, left singular vectors, and right singular vectors of A.
- c) (2 points) Draw a careful, labeled picture of the unit ball in \mathbb{R}^2 and its image under A, together with the singular vectors, with the coordinates of their vertices marked.
- a) 11A1/2 = oz = 1052.
- b) $\sigma_1 = 10\sqrt{2}$, $\sigma_2 = 5\sqrt{2}$. \leftarrow singular values left singular vectors: $u_1 = \begin{bmatrix} \frac{12}{2} \\ \frac{12}{2} \end{bmatrix}$ and $u_2 = \begin{bmatrix} \frac{12}{2}/2 \\ \frac{12}{2} \end{bmatrix}$

right singular vectors: $N_1 = \begin{bmatrix} -3/5 \\ 4/5 \end{bmatrix}$ and $N_2 = \begin{bmatrix} 4/5 \\ 3/5 \end{bmatrix}$

Problem 3.(6 points.) Let X_1, \ldots, X_n be independent uniform random variables over [0,1] and $Y = \min(X_1, \ldots, X_n)$.

- a) (2 points) Show that $\mathbb{P}(Y \ge y) = (1 y)^n$ for $0 \le y \le 1$.
- b) (4 points) Suppose that $\mathbb{E}[Y] = \frac{1}{n+1}$ and $\operatorname{Var}[Y] \leq \mathbb{E}[Y]^2$. Let Y_1, \ldots, Y_m be independent copies of Y. (That is, these Y_i 's have the same distribution as Y and are independent.) Let $Z = \frac{Y_1 + \ldots + Y_m}{m}$. Show that for $\epsilon > 0$,

$$P(|z-\frac{1}{n+1}| \ge \frac{\epsilon}{n+1}) \le \frac{1}{m\epsilon^{2}}.$$

$$P(|x| \ge y) P(x_{1} \ge y) \cap (x_{1} \ge y)$$

$$= P(x_{1} \ge y) P(x_{2} \ge y) \dots P(x_{n} \ge y) \quad \text{since } X \text{ is one independent.}$$

$$= (1-y)(1-y) \dots (1-y)$$

$$= (1-y)^{n}.$$

$$E[z] = E[\frac{y_{1}+\dots+y_{m}}{m}] = \frac{E[x_{1}+\dots+E[x_{m}]}{m} = \frac{mE[x_{1}+\dots+E[x_{m}]}{m} = \frac{mE[x_{1}+\dots+E[x_{m}]}{m} = \frac{mE[x_{1}+\dots+x_{m}]}{m} = \frac{1}{m\epsilon^{2}} \left(\text{Var}[x_{1}]+\dots+\text{Var}[x_{m}] \right)$$

$$= \frac{1}{m\epsilon^{2}} \left(\text{Var}[x_{1}]+\dots+\text{Var}[x_{1}]+\dots+\text{Var}[x_{1}]+\dots+\text{Var}[x_{1}]+\dots+\text{Var}[x_{1}] \right)$$

$$= \frac{1}$$

Problem 4.(6 points.) Let X_1, \ldots, X_{100} be independent random variables such that for some t > 0,

$$\mathbb{P}(X_i > t) \le \frac{1}{2^i}$$
 for $i = 1, ..., 100$.

Let $M = \max(X_1, \dots, X_n)$. Show that $\mathbb{P}(M \le t) \ge 2^{-100}$. (Note that $\frac{1}{2} + \ldots + \frac{1}{2^{100}} = 1 - \frac{1}{2^{100}}$.)

Recall
$$P(M \le t) = 1 - P(M > t)$$
.

$$P(M>t) = P(X_1>t) \cup \{X_2>t\} \cup \dots \cup \{X_{100}>t\})$$

Union $P(X_1>t) + P(X_2>t) + \dots + P(X_{100}>t)$
 $P(M>t) = P(X_1>t) + P(X_2>t) + \dots + P(X_{100}>t)$
 $P(M>t) = P(X_1>t) \cup \{X_2>t\} \cup \dots \cup \{X_{100}>t\}$
 $P(M>t) = P(X_1>t) \cup \{X_2>t\} \cup \dots \cup \{X_{100}>t\}$
 $P(M>t) = P(X_1>t) \cup \{X_2>t\} \cup \dots \cup \{X_{100}>t\}$
 $P(M>t) = P(X_1>t) \cup \{X_2>t\} \cup \dots \cup \{X_{100}>t\}$
 $P(M>t) = P(X_1>t) \cup \{X_2>t\} \cup \dots \cup \{X_{100}>t\}$
 $P(M>t) = P(X_1>t) \cup \{X_2>t\} \cup \dots \cup \{X_{100}>t\}$
 $P(M>t) = P(X_1>t) \cup \{X_2>t\} \cup \dots \cup \{X_{100}>t\}$
 $P(M>t) = P(X_1>t) \cup \{X_2>t\} \cup \dots \cup \{X_{100}>t\}$
 $P(M>t) = P(X_1>t) \cup \{X_2>t\} \cup \{X_2>t\} \cup \dots \cup \{X_{100}>t\}$
 $P(M>t) = P(X_1>t) \cup \{X_2>t\} \cup \{X_2>t\} \cup \dots \cup \{X_{100}>t\}$
 $P(M>t) = P(X_1>t) \cup \{X_2>t\} \cup \{X_2>t\} \cup \{X_1>t\} \cup \{X_2>t\}$
 $P(M>t) = P(X_1>t) \cup \{X_2>t\} \cup \{X_2>t\} \cup \{X_2>t\}$
 $P(M>t) = P(X_1>t) \cup \{X_2>t\} \cup \{X_2>t\}$
 $P(M>t) = P(X_1>t) \cup \{X_2>t\} \cup \{X_2>t\}$
 $P(M>t) = P(X_1>t) \cup \{X_2>t\}$
 $P(M>t) = P(M>t)$
 $P(M>$

Hence,

$$P(M \le t) = 1 - P(M > t) \ge 1 - (1 - 2^{100}) = 2^{-100}$$

nother approach:

$$P(M \le t) = P(\{X_1 \le t\}) \cap \{X_2 \le t\} \cap \dots \cap \{X_{100} \le t\})$$

$$= P(X_1 \le t) P(X_2 \le t) - \dots P(X_{100} \le t)$$

$$= (1 - P(X_1 > t))(1 - P(X_2 > t)) - \dots (1 - P(X_{100} > t))$$

$$\geq (1 - \frac{1}{2})(1 - \frac{1}{2^2}) - \dots (1 - \frac{1}{2^{100}})$$

$$\geq \frac{1}{2} \geq \frac{1}{2}$$

$$\geq (\frac{1}{2})^{100} = 2^{100}$$