MANIPULAÇÃO E SUBSTITUIÇÃO

São princípios que permitem a obtenção de fórmulas proposicionais equivalentes a uma fórmula dada, através da substituição de suas subfórmulas.

1. Seja A uma fórmula que contém as variáveis p_1 , p_2 , ..., p_n . Se A é uma tautologia, então a fórmula B, obtida pela substituição de p_1 , ..., p_n por fórmulas A_1 , ..., A_n , é uma tautologia.

Exemplo: Fazer a tabela-verdade de ($p \rightarrow p$).

Substituindo a variável p pela fórmula $(q \lor r)$, obtém-se a fórmula $((q \lor r) \to (q \lor r))$. Fazer a tabela-verdade.

2. Se **B**₁ é uma fórmula obtida a partir de **A**₁ pela substituição por **B** de uma ou mais ocorrências de **A** em **A**₁ e se **B** é logicamente equivalente a **A** então **B**₁ é logicamente equivalente a **A**₁.

Exemplo:

$$A_1 = (\neg p \rightarrow (q \rightarrow r)) \qquad \qquad A = (q \rightarrow r)$$

$$B = (\neg q \lor r) \qquad \qquad B_1 = (\neg p \rightarrow (\neg q \lor r))$$

LEIS DE DEMORGAN

Verifique que a fórmula \neg ($p \land q$) é equivalente a ($\neg p \lor \neg q$), e \neg ($p \lor q$) é equivalente a ($\neg p \land \neg q$). Isso é estendido pelas leis de De Morgan.

Sejam A1, A2, ..., An, fórmulas proposicionais.

- I. $\neg (A1 \land A2 \land ... \land An)$ é equivalente a $(\neg A1 \lor \neg A2 \lor ... \lor \neg An)$
- II. $\neg (A1 \lor A2 \lor ... \lor An)$ é equivalente a $(\neg A1 \land \neg A2 \land ... \land \neg An)$

PRINCÍPIO DA DUALIDADE

Dual:

Seja **A** uma fórmula que contém apenas os conectivos { \neg , \wedge , \vee }. A fórmula **A*** que resulta de **A** através da substituição de cada \wedge por \vee e de cada \vee por \wedge é denominada DUAL de **A**.

Exemplo: A fórmula dual de

$$\neg((p \land q) \lor \neg r) \notin \neg((p \lor q) \land \neg r)$$

Princípio da Dualidade:

Se $\bf A$ e $\bf B$ são fórmulas equivalentes que contêm no máximo os conectivos $\{ \land, \lor, \lnot \}$, então as duais respectivas $\bf A^*$ e $\bf B^*$ também são equivalentes.

Exemplos:

a)
$$p \wedge (p \vee q) \equiv p$$

 $p \vee (p \wedge q) \equiv p$

b)
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

 $\neg (p \land q) \equiv \neg p \lor \neg q$

Equivalências entre os conectivos:

1)
$$(A \rightarrow B) \equiv (\neg A \lor B)$$

2)
$$(A \rightarrow B) \equiv \neg (A \land \neg B)$$

3)
$$(A \leftrightarrow B) \equiv (A \rightarrow B) \land (B \rightarrow A)$$

4)
$$(A \subseteq B) \equiv \neg (A \leftrightarrow B) \equiv (A \lor B) \land \neg (A \land B)$$

5)
$$(A \uparrow B) \equiv \neg (A \land B) \equiv (\neg A \lor \neg B)$$

6)
$$(A \downarrow B) \equiv \neg (A \lor B) \equiv (\neg A \land \neg B)$$

7)
$$\neg A \equiv (A \uparrow A) \equiv (A \downarrow A)$$

8)
$$(A \wedge B) \equiv ((A \downarrow A) \downarrow (B \downarrow B))$$

9)
$$(A \lor B) \equiv ((A \uparrow A) \uparrow (B \uparrow B))$$

	PROPRIEDADES DOS CONECTIVOS:									
1.	Comutativa:	$(A \vee B) \equiv (B \vee A)$	$(A \wedge B) \equiv (B \wedge A)$							
2.	Associativa:	$(A \lor B) \lor C \equiv A \lor (B \lor C)$	$(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$							
3.	Distributiva:	$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$	$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$							
4.	Identidade	((
	(elemento neutro):	$(A \vee F) \equiv A$	$(A \wedge V) \equiv A$							
5.	Complementativas	(A	(
	(elem. preponderante):	$(A \lor V) \equiv V$	$(A \wedge F) \equiv F$							
6.	De Morgan:	$\neg (A \lor B) \equiv (\neg A \land \neg B)$	$\neg (A \land B) \equiv (\neg A \lor \neg B)$							
7.	Idempotentes:	$(A \vee A) \equiv A$	$(A \wedge A) \equiv A$							
8.	Dupla Negação:	$A \equiv \neg \neg A$								
9.	Absorção:	$A \lor (A \land B) \equiv A$	$A \wedge (A \vee B) \equiv A$							
10.	Contraposição:	$(A \rightarrow B) \equiv (\neg B \rightarrow \neg A)$								
11.	Prova Condicional:	$A \rightarrow (B \rightarrow C) \equiv (A \land B) \rightarrow C$								
12.	Tautologia:	$(A \lor \neg A) \equiv V$								
13.	Contradição:	$(A \land \neg A) \equiv F$								

CONJUNTOS ADEQUADOS DE CONECTIVOS

Um conjunto adequado de conectivos é aquele tal que qualquer proposição pode ser representada por uma fórmula que contém apenas os conectivos do conjunto.

Exemplos:

Mas será que não pode existir um conjunto adequado de conectivos unitário? Para que isso fosse possível, foram criados dois outros conectivos: a **negação conjunta** (NAD) e a **negação disjunta** (NOR).

Com estes dois conectivos, é possível formar os conjuntos adequados: $\{ \uparrow \} \in \{ \downarrow \}$.

Suas relações com os outros operadores são:

$$\neg A \equiv (A \uparrow A) \equiv (A \downarrow A)$$

 $(A \land B) \equiv ((A \downarrow A) \downarrow (B \downarrow B))$
 $(A \lor B) \equiv ((A \uparrow A) \uparrow (B \uparrow B))$

Exercício:

Representar a fórmula ($p \rightarrow q$) utilizando os conjuntos { \uparrow } e { \downarrow }:

$$(p \rightarrow q) \equiv \neg p \lor q$$

$$\equiv \neg p \lor \neg \neg q$$

$$\equiv \neg (p \land \neg q)$$

$$\equiv p \uparrow \neg q$$

$$\equiv p \uparrow (q \uparrow q)$$

$$(p \rightarrow q) \equiv \\ \neg p \lor q \\ \equiv \neg \neg (\neg p \lor q) \\ \equiv \neg (\neg p \downarrow q) \\ \equiv \neg ((p \downarrow p) \downarrow q) \\ \equiv ((p \downarrow p) \downarrow q) \downarrow ((p \downarrow p) \downarrow q)$$

CONJUNÇÃO NEGADA (NEGATIVE AND = NAND)

É a negação da operação de conjunção (do conectivo de conjunção), representado pelo símbolo 1.

Veja o exemplo: considere as proposições:

A = "Pedro é alto" M = "Pedro é magro"

Na **Sentença 1)** "É falso que Pedro seja alto e magro", que pode ser representada como:

Da **Sentença 1)**, temos as seguintes equivalências:

$$\neg (p \land q) \equiv ((\neg p \land q) \lor (\neg p \land \neg q) \lor (p \land \neg q)) \equiv (\neg p \lor \neg q)$$

$$\neg (p \land q) \equiv (p \uparrow q) \equiv (\neg p \lor \neg q)$$

	NAND														
	\downarrow							\downarrow					\downarrow		
	р	q	Γ	(p	^	q)	‡	(p	↑	q)		(¬ p	>	¬ q)	
1 ^a	>	٧	F	>	٧	V	>	٧	F	V	V	F	F	F	
2 ^a	>	F	٧	>	F	F	>	٧	V	F	V	F	>	V	
3 ^a	F	٧	٧	F	F	V	>	F	٧	V	V	V	V	F	
4 ^a	F	F	V	F	F	F	٧	F	٧	F	V	V	٧	V	

DISJUNÇÃO NEGADA (NEGATIVE OR = NOR)

É a negação da operação de disjunção (do conectivo de disjunção), representado pelo símbolo ↓.

Pelo princípio da Dualidade sabemos que:

$$NAND \rightarrow \neg (p \land q) \equiv ((\neg p \land q) \lor (\neg p \land \neg q) \lor (p \land \neg q)) \equiv (\neg p \lor \neg q)$$

NOR
$$\rightarrow \neg (p \lor q) \equiv ((\neg p \lor q) \land (\neg p \lor \neg q) \land (p \land \neg q)) \equiv (\neg p \land \neg q)$$

Logo:

$$NAND \rightarrow \neg (p \land q) \equiv (p \uparrow q) \equiv (\neg p \lor \neg q)$$

NOR
$$\rightarrow \neg (p \lor q) \equiv (p \lor q) \equiv (\neg p \land \neg q)$$

	NOR													
	\downarrow						\downarrow					\downarrow		
	р	q	Γ	(p	>	q)	‡	(p	\rightarrow	q)		(¬ p	<	¬ q)
1 ^a	٧	/	F	V	٧	٧	٧	V	F	٧	V	F	F	F
2 ^a	>	F	F	٧	٧	F	V	V	F	F	٧	F	F	V
3 ^a	F	٧	F	F	٧	>	V	F	F	>	V	V	F	F
4 ^a	F	F	٧	F	F	F	V	F	٧	F	V	V	V	V

DISJUNÇÃO EXCLUSIVA (EXCLUSIVE OR = XOR = V)

Na linguagem comum (coloquial), a palavra "ou" tem dois significados. Veja os exemplos:

Sentença 1) "Carlos é médico ou professor". (OU inclusivo) Sentença 2) "Mário é alagoano ou gaúcho". (OU exclusivo)

Na **Sentença 1)**, <u>pelo menos</u> uma proposição "*Carlos é médico*", "*Carlos é professor*" é verdadeira, podendo ambas ser verdadeiras simultaneamente.

Na **Sentença 2)**, <u>apenas</u> uma proposição "*Mário é alagoano*", "*Mário é gaúcho*" pode ser verdadeira, pois não é possível que ambas sejam verdadeiras ao mesmo tempo.

	()U ii	nclu	sivo ↓)
	р	q	(p	V	q)
1 ^a	٧	٧	٧	٧	٧
1 ^a 2 ^a 3 ^a 4 ^a	٧	F	٧	٧	F
3 ^a	F	V	F	٧	٧
4 ^a	F	F	F	F	F

