DOOTEDIT TIGHT

2

CLAIMS

What is claimed is:

BEST AVAILABLE COPY

		, 001 1
Sab 20 1	1.	A connector comprising:
2		a hollow member having an open first end and an open second end joined
3		by a bore extending through said hollow member having a first bore section and
4		a second bore section that is stepwise reduced from said first bore section creating
5		an annular shoulder therebetween, said first bore section tapering inwardly from
6		said shoulder toward a third bore section;
7		a sealing member receiver integrally formed into the connector and
~ 8		located within said second bore section near said third bore section; and
9		a sealing member seated within said sealing member receiver and at least
10		partially protruding inwardly into said second bore section.
1	2.	The connector of claim 1 further comprising at least one retaining assembly
2		located on one end of said hollow member.
		./
1	3.	The connector of claim 2, wherein said retaining assembly is a barbed-type
2		retaining assembly formed on said hollow member adjacent said second end of
3		şaid bore.
1	4.	The connector of claim 3 further comprising a sealing member receiver formed
2		on said barbed retainer; and
3		a second sealing member seated within said sealing member receiver on
4		said barbed retainer, said second sealing member extending at least partially
5		radially outward of said barbed retainer to effect a sealing relationship with a
6		conduit.
1	5.	The connector of claim 4, wherein at least a portion of said barbed retainer is

formed without a parting line.

2

EEST AVAILABLE COPY

FLN.P.US0002

14

The connector of claim 2, wherein said retaining assembly is a latch-type 1 6. assembly including a retaining clip biased toward a lock position. 2 1 7. The connector of claim 1, wherein said hollow member is configured as an in-line 2 connection with said first open end and said second open end lying on a common 3 axis. The connector of claim 1, wherein said hollow member has an elbow 8. 1 2 configuration with a bend between said first open end and said second open end. 9. The connector of claim 7 further comprising a flange extending partially into said 1 bore extending between a first corner of said bend to a second corner of said 2 3 bend, whereby said flange prevents over insertion of conduit. 10. A connector comprising: 1 2 a hollow member having a first open end and a second open end joined 3 by a bore; said hollow member defining a sealing member receiver housing an 4 5 integrally assembled sealing member, wherein said sealing member receiver is adapted to load said sealing member such that a portion of said sealing member 6 7 protrudes into said bore; and 8 at least one conduit retaining assembly located at one of said ends. The connector of claim 9, wherein said receiver includes a concave recess formed 1 11. in said member having opposing surfaces between which said sealing member is 2 3 seated. The connector of claim 9, wherein said bore opens radially outward adjacent one 1 12. side of said sealing member defining a clearance for removal of an insert

assembly during formation of said connector.

FLN.P.US0002

BEST AVAILABLE COPY

1	13.	The connector of claim 11, wherein said hollow member has a surface adjacent
2		said sealing member extending axially toward said first open end and radially
3		outward to define a frustoconical bore section adjacent said sealing member.
1	14.	The connector of claim 12 further comprising a cylindrical bore section adjacent
2		said frustoconical bore section stepped radially outward by a shoulder separating
3		said sections, said cylindrical bore section opening at said first open end.
1	15.	The connector of claim 13 further comprising generally cylindrical third bore
2		section stepped radially inward by an annular flange inward from said
3		frustoconical portion to an extent less than the protrusion of said sealing member
4		into said bore.
1	16.	The connector of claim 14 further comprising a barbed conduit retaining assembly
2		having a plurality of barbs formed on said hollow member assembly adjacent said
3		second end;
4		said barbed retaining assembly defining a second sealing member received
5		located on an exterior of said hollow member adjacent one of said barbs;
6		a sealing member carried by said second sealing member retainer;
7		wherein said second sealing member is adapted to protrude radially
8		outward of said barbs.
1	17.	A method of manufacturing a connector comprising:
2	·	providing a mold that defines a cavity, providing an insert assembly
3		located within said cavity, and providing a sealing member within said mold
4		contacting said insert assembly and partially exposed to said cavity;
5		compressing said sealing member such that the contact between said insert
6		assembly and sealing member is maintained as the connector is molded; and
7		providing molten plastic material into said mold cavity to form the

4

5

6

7

4

5

6

7

8

s connector.	BIST AVAILABLE UU.
--------------	--------------------

1	18.	The method of claim 17, wherein compressing said sealing member includes
2		mounting said sealing member on a pin assembly slidably received by said insert
3		assembly, and driving said pin assembly toward said insert assembly such that
4		said sealing member is compressed between a portion of said pin assembly and
5		said insert assembly.

1 19. The method of claim 18, further comprising the step of baiasing said pin assembly is biased away from said insert assembly, overcoming said bias to compress said sealing member;

releasing said pin assembly after the connector is formed such that said pin assembly moves away from said insert assembly; and

subsequent to said pin assembly moving away from said insert assembly ejecting the connector from said mold.

1 20. The method of claim 17, wherein said mold includes a first mold portion, a 2 second mold portion, and a third mold portion having a mandrel extending 3 therefrom into the mold cavity;

inserting said mandrel as the mold is closed to compress said sealing member by bearing on said pin assembly;

opening the mold after forming the connector by retracting the mandrel, then opening said first and second mold portions, and pushing the connector off the insert assembly.

Add A2>