

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

weber REP 970 Concrete fine repair (weber REP 970 Tasoituslaasti HIENO)

The Norwegian EPD Foundation

Owner of the declaration:

Saint-Gobain Finland Oy

Product:

weber REP 970 Concrete fine repair (weber REP 970 Tasoituslaasti HIENO)

Declared unit:

1 kg

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR

NPCR 009:2018 Part B for Technical - Chemical products in the building and construction industry

Program operator:

The Norwegian EPD Foundation

Declaration number:

NEPD-3596-2261-EN

Registration number:

NEPD-3596-2261-EN

Issue date:

30.06.2022

Valid to:

30.06.2027

EPD Software:

LCA.no EPD generator ID: 50128

General information

Product

weber REP 970 Concrete fine repair (weber REP 970 Tasoituslaasti HIENO)

Program operator:

Post Box 5250 Majorstuen, 0303 Oslo, Norway The Norwegian EPD Foundation Phone: +47 23 08 80 00 web: post@epd-norge.no

Declaration number:

NEPD-3596-2261-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 009:2018 Part B for Technical - Chemical products in the building and construction industry

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 kg weber REP 970 Concrete fine repair (weber REP 970 Tasoituslaasti HIENO)

Declared unit with option:

A1-A3,A4,A5,C1,C2,C3,C4,D

Functional unit:

Not relevant

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Owner of the declaration:

Saint-Gobain Finland Oy Contact person: Anne Kaiser Phone: +358400289933 e-mail: anne.kaiser@saint-gobain.com

Manufacturer:

Saint-Gobain Finland Oy P.O. Box 70 Fi-00381 Helsinki, Finland

Place of production:

Saint-Gobain Weber Parainen Parainen Premix plant, Kalkkitehtaantie 21600 Parainen, Finland

Management system:

ISO 9001:2015, ISO 14001:2015 and OHSAS 18001:2007

Organisation no:

FI09515553

Issue date:

30.06.2022

Valid to:

30.06.2027

Year of study:

2021

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Päivi Pesu

Reviewer of company-specific input data and EPD: Helene Løvkvist Andersen

Approved:

Anne Rønning, Norsus AS (no signature required)

Product

Product description:

weber REP 970 Concrete fine repair is salt and frost resistant, class R3 repair mortar. It is grey in colour and maximum grain size 0.6 mm. The purpose of the product is to close pores that occur in concrete surfaces and to level uneven surfaces prior to coating according to concrete repair principles 3.1. and 3.3. It gives extra support to reinforcement by slowing down the penetration of humidity and carbon dioxide into the substrate. The product can be applied by spraying or manually. It is cement based and polymer-modified (PMC). weber REP 970 Concrete fine repair is approved in the bridge repair instructions (SILKO) of the Finnish Road Authority. Delivered in 20 kg bags. GTIN 6415910020729.

Product specification

The composition of the product is described in the following table:

Materials	Value	Unit
Binder	20-40	%
Aggregate	50-80	%
Additives	1-3	%
Packaging, PE	0,004	kg
Packaging, pallet	0,021	kg

Technical data:

weber REP 970 Concrete fine repair is produced according to the requirements of R3 class according to SFS-EN 1504-3:2006 (Product intended for tructural repair of concrete as polymermodified cementious mortar for concrete repair according principles 3.1 and 3.3).

Material consumption: approx. 2 kg/m2/mm Recommended layer thickness: 0-5 mm Recommended water content: 3.6-4.0 l/20 kg Mixed volume: approx. 12-13.6 l/20 kg

More information: www.fi.weber/betonit/betonin-korjauslaastit/weber-rep-970-tasoituslaasti-hieno

Market:

Nordic and Baltic countries

Reference service life, product

The reference service life of the product is similar to the service life of the building.

Reference service life, building

60 years

LCA: Calculation rules

Declared unit:

1 kg weber REP 970 Concrete fine repair (weber REP 970 Tasoituslaasti HIENO)

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Additives	ecoinvent 3.6	Database	2019
Aggregate	ecoinvent 3.6	Database	2019
Binder	ecoinvent 3.6	Database	2019
Filler	ecoinvent 3.6	Database	2019
Packaging	ecoinvent 3.6	Database	2019
Additives	LCA.no	Database	2021
Packaging	Modified ecoinvent 3.6	Database	2019
Cement	Supplier	EPD	2021

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

	Pi	roduct stag	ge		uction on stage				Use stage					End of life stage			Beyond the system boundaries
Raw	materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
Α	.1	A2	A3	A4	A5	В1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
X	(Х	X	Χ	X	MNR	MNR	MNR	MNR	MNR	MNR	MNR	Х	Х	Х	Χ	X

System boundary:

All processes from raw materials extraction to product transportation to the building site, assembly, as well as end of life stage and phases beyond the system boundary (A1-A5, C1-C4, D) are included in the analysis.

The basic production process comprises of mixing raw materials together. Ready mixed product is then packed into small bags. At assembly phase, water is added according to instructions and it is mixed.

When building is demolished at the end-of-life, the structure with mortar integrated into concrete slab are crushed. 90% of crushed concrete is recycled and used to replace natural gravel in soil construction, remaining 10% being disposed to landfill.

System boundaries are illustrated in the picture below.

Additional technical information:

The LCA calculation has been made taking into account the fact that during the manufacturing process 100% renewable electricity is used. This 100% renewable electricity bought is evidenced by Guarantee of Origin certificates (GOs) from LOS, valid for the study year (2021).

Unused product powder is classified as hazardous waste. Product hardens after adding water in 5 to 6 hours and can then be disposed as mixed construction waste.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

The results of stage A4 (transportation of product) in the table of this EPD refer to transportation in Finland (average distance 2021). This product may also be delivered to the countries in the table "Additional A4 information". In order to adapt the impact of transportation to these countries, A4 figures from this EPD shall be multiplied by the multiplication factors below.

At installation stage, it is assumed that mixing is done by electric mixer. Electricity mix used is that of Finland. Material loss is considered to be 0. At end of life stage, it is assumed that all demolition waste is collected and 90% of crushed concrete is recycled and 10% is disposed into landfill. Transport distance to processing is estimated to be 30 km.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, over 32 tonnes, EURO 5 (km)	53,3 %	206	0,023	l/tkm	4,74
Transport from production place to user (A4)	Unit	Value			
Tullinge, Sweden (truck / ferry 384 km)	Multiplication factor GWP/A4	2,20			
Lillestrøm, Norway (truck / ferry 871 km)	Multiplication factor GWP/A4	4,57			
Karlslunde, Denmark (truck / ferry 1033 km)	Multiplication factor GWP/A4	5,35			
Tallinn, Estonia (truck / ferry 271 km)	Multiplication factor GWP/A4	1,41			
Riga, Latvia (truck / ferry 579 km)	Multiplication factor GWP/A4	2,90			
Kaunas, Lithuania (truck / ferry 848 km)	Multiplication factor GWP/A4	4,21			
Assembly (A5)	Unit	Value			
Electricity, Finland (kWh)	kWh/DU	0,00			
Waste, packaging, pallet, EUR wooden pallet, reusable, to average treatment (kg)	kg	0,02			
Waste, packaging, plastic (LDPE), to average treatment (kg)	kg	0,00			
Water, tap water (L)	kg/DU	0,20			
De-construction demolition (C1)	Unit	Value			
Demolition of building per kg product (kg)	kg/DU	1,00			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, over 32 tonnes, EURO 5 (km)	53,3 %	30	0,023	l/tkm	0,69
Waste processing (C3)	Unit	Value			
Waste treatment of product after demolition (kg)	kg	0,90			
Disposal (C4)	Unit	Value			
Disposal of product in landfill (kg)	kg	0,10			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of primary aggregates with crushed recycled inert products (kg)	kg	0,90			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Enviro	Environmental impact												
	Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D			
	GWP-total	kg CO ₂ -eq	4,00E-01	1,87E-02	3,25E-02	4,00E-03	2,73E-03	6,48E-04	8,22E-04	-2,10E-03			
	GWP-fossil	kg CO ₂ -eq	4,31E-01	1,87E-02	9,72E-04	4,00E-03	2,73E-03	6,39E-04	8,20E-04	-2,06E-03			
	GWP-biogenic	kg CO ₂ -eq	-3,32E-02	7,68E-06	3,15E-02	7,50E-07	1,12E-06	5,52E-06	9,58E-07	-4,11E-05			
	GWP-luluc	kg CO ₂ -eq	1,82E-03	5,47E-06	5,94E-06	3,15E-07	7,96E-07	8,84E-07	2,02E-07	-1,39E-06			
(3)	ODP	kg CFC11 -eq	1,63E-08	4,33E-09	1,03E-10	8,64E-10	6,30E-10	1,25E-10	3,10E-10	-3,75E-10			
CET .	АР	mol H+ -eq	1,48E-03	7,87E-05	3,38E-06	4,19E-05	1,15E-05	5,17E-06	7,30E-06	-1,85E-05			
-	EP-FreshWater	kg P -eq	3,46E-05	1,43E-07	2,98E-08	1,46E-08	2,08E-08	4,04E-08	9,30E-09	-5,48E-08			
	EP-Marine	kg N -eq	2,05E-04	2,37E-05	9,20E-07	1,85E-05	3,45E-06	1,52E-06	2,71E-06	-6,43E-06			
-	EP-Terrestial	mol N -eq	3,63E-03	2,62E-04	7,93E-06	2,00E-04	3,81E-05	1,75E-05	2,99E-05	-7,56E-05			
	POCP	kg NMVOC -eq	1,20E-03	8,41E-05	2,18E-06	5,57E-05	1,23E-05	4,68E-06	8,56E-06	-2,00E-05			
	ADP-minerals&metals ¹	kg Sb -eq	2,27E-06	3,20E-07	8,48E-09	6,14E-09	4,66E-08	8,11E-09	7,39E-09	-1,83E-07			
	ADP-fossil ¹	MJ	4,36E+00	2,91E-01	1,89E-02	5,51E-02	4,24E-02	1,98E-02	2,26E-02	-3,49E-02			
<u>%</u>	WDP ¹	m ³	4,36E+00	2,23E-01	9,16E-01	1,17E-02	3,25E-02	2,19E+00	1,39E-01	-1,63E+00			

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Remarks to environmental impacts

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Addition	Additional environmental impact indicators										
In	dicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D	
	PM	Disease incidence	1,05E-08	1,65E-09	2,40E-11	5,07E-09	2,40E-10	8,20E-11	1,56E-10	-3,94E-10	
	IRP ²	kgBq U235 -eq	9,13E+00	1,27E-03	4,10E-04	2,40E-04	1,85E-04	3,33E-04	1,03E-04	-3,20E-04	
	ETP-fw ¹	CTUe	2,15E+00	2,13E-01	1,43E-02	3,01E-02	3,10E-02	1,41E-02	1,23E-02	-3,59E-02	
46. *** <u>B</u>	HTP-c ¹	CTUh	3,74E-10	0,00E+00	0,00E+00	1,00E-12	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
26 E	HTP-nc ¹	CTUh	8,36E-09	2,06E-10	1,40E-11	2,80E-11	3,00E-11	1,30E-11	8,00E-12	-4,40E-11	
	SQP ¹	dimensionless	2,37E+00	3,34E-01	1,28E-02	6,69E-03	4,86E-02	1,12E-02	8,69E-02	7,91E-02	

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the

^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use	Resource use												
	ndicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D			
i ji	PERE	MJ	7,08E-01	3,67E-03	5,18E-03	3,00E-04	5,34E-04	1,02E-02	8,08E-04	-8,16E-03			
	PERM	МЈ	2,89E-01	0,00E+00	-2,89E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
ីក្ រ	PERT	МЈ	9,97E-01	3,67E-03	-9,25E-03	3,00E-04	5,34E-04	1,02E-02	8,08E-04	-8,16E-03			
	PENRE	МЈ	2,92E+00	2,91E-01	1,95E-02	5,51E-02	4,24E-02	1,99E-02	2,26E-02	-3,68E-02			
el.	PENRM	МЈ	1,11E+00	0,00E+00	-1,87E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
I	PENRT	МЈ	4,03E+00	2,91E-01	-1,67E-01	5,51E-02	4,24E-02	1,99E-02	2,26E-02	-3,68E-02			
	SM	kg	1,77E-02	0,00E+00	2,53E-06	0,00E+00	0,00E+00	1,71E-05	9,79E-06	-7,05E-05			
2	RSF	МЈ	7,88E-02	1,28E-04	7,20E-05	0,00E+00	1,87E-05	2,07E-04	1,68E-05	-1,67E-04			
	NRSF	МЈ	1,12E-01	4,30E-04	2,03E-04	0,00E+00	6,26E-05	-1,28E-05	3,62E-05	-1,71E-04			
<u>%</u>	FW	m^3	2,42E-03	3,32E-05	2,18E-04	2,83E-06	4,83E-06	3,40E-05	2,78E-05	-1,28E-03			

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; PENRM = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Er	nd of life - Was	ste									
	Inc	dicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
	Ā	HWD	kg	4,12E-03	1,59E-05	1,11E-06	1,62E-06	2,32E-06	1,98E-06	1,59E-06	-8,40E-06
	Ū	NHWD	kg	6,60E-02	2,53E-02	5,50E-03	6,52E-05	3,69E-03	6,26E-05	1,00E-01	-2,55E-04
	8	RWD	kg	6,14E-06	1,99E-06	1,87E-07	3,82E-07	2,90E-07	2,10E-07	1,47E-07	-2,76E-07

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Enc	l of life - Outpu	ıt flow									
	Indicat	tor	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
	@ D	CRU	kg	0,00E+00							
	\$\	MFR	kg	1,99E-03	0,00E+00	2,62E-03	0,00E+00	0,00E+00	9,00E-01	8,92E-06	-1,65E-06
	DF	MER	kg	1,95E-04	0,00E+00	8,00E-07	0,00E+00	0,00E+00	2,07E-06	1,68E-07	-6,17E-05
	50	EEE	MJ	6,95E-03	0,00E+00	4,51E-04	0,00E+00	0,00E+00	3,55E-06	1,39E-05	-1,49E-05
	D	EET	MJ	1,19E-01	0,00E+00	6,83E-03	0,00E+00	0,00E+00	5,38E-05	2,10E-04	-2,25E-04

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content								
Unit	At the factory gate							
kg C	0,00E+00							
kg C	8,60E-03							
	kg C							

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Renewable electricity Saint-Gobain, based on 100% hydro power, with Guarantee of Origin from LOS 2021 (kWh)	ecoinvent 3.6	4,26	g CO2-eg/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The product is classified as hazardous waste (Avfallsforskriften, Annex III), see table.

Name	CASNo	Amount
Portland cement	65997-15-1	25-50%

Indoor environment

Not relevant

Additional Environmental Information

Additional environmental impact indicators required in NPCR Part A for construction products									
Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
GWPIOBC	kg CO ₂ -eq	2,47E-01	1,87E-02	7,73E-04	4,00E-03	2,73E-03	0,00E+00	0,00E+00	-2,20E-03

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012 + A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21

Iversen et al., (2019) EPD generator for Saint-Gobain Weber and Scanspac - Background information and LCA data, LCA.no report number 05.18 Iversen et al., (2020) EPD generator for Saint-Gobain Weber Nordics and Scanspac Background information for customer application,

and LCA data - Supplementary report for modules A5, C and D, LCA.no report number 04.20

NPCR Part A: Construction products and services. Ver. 2.0, 24.03.2021 EPD Norway.

NPCR 009 Part B for technical-chemical products. Ver. 2.0 October 2021, EPD-Norge.

	Program operator and publisher	Phone: +47 23 08 80 00
	The Norwegian EPD Foundation	e-mail: post@epd-norge.no
	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web: www.epd-norge.no
	Owner of the declaration:	Phone: +358400289933
Sweber SAINT-GOBAIN	Saint-Gobain Finland Oy	e-mail: anne.kaiser@saint- gobain.com
	P.O. Box 70, Fi-00381 Helsinki	web: www.saint-gobain.fi
	Author of the Life Cycle Assessment	Phone: +47 916 50 916
(LCA)	LCA.no AS	e-mail: post@lca.no
.no	Dokka 6B, 1671	web: www.lca.no
	Developer of EPD generator	Phone: +47 916 50 916
(LCA)	LCA.no AS	e-mail: post@lca.no
.no	Dokka 6B,1671 Kråkerøy	web: www.lca.no
ECO PLATFORM	ECO Platform	web: www.eco-platform.org
VERIFIED	ECO Portal	web: ECO Portal