

Lecture 02: CNN for texts, embeddings for different languages

Radoslav Neychev

Fall 2021 MIPT, Moscow, Russia

Outline

- Embeddings in the wild
 - Recap
 - Unsupervised translation
- RNNs recap:
 - Dealing with sequences
 - LSTM and GRU recap
 - Vanishing and exploding gradient recap
- CNNs for text processing

Embeddings: word2vec

Embeddings: word2vec

Embeddings: word2vec

Source: Exploiting similarities among languages for machine translation, 2013

- Word embeddings are quite similar for different languages
- Assume there n = 5000 word-translation pairs $\{x_i,y_i\}_{i\in\{1,n\}}$
- Learn linear mapping between the source and target spaces

$$W^\star = \operatorname*{argmin}_{W \in M_d(\mathbb{R})} \|WX - Y\|_{\mathrm{F}}$$

• The translation of source word is $t = \operatorname{argmax}_t \cos(Wx_s, y_t)$.

- Word embeddings are quite similar for different languages
- Assume there n = 5000 word-translation pairs $\{x_i,y_i\}_{i\in\{1,n\}}$
- Learn linear mapping between the source and target spaces
 enforcing an orthogonality constraint on W:

$$W^* = \underset{W \in O_d(\mathbb{R})}{\operatorname{argmin}} \|WX - Y\|_{\mathcal{F}} = UV^T, \text{ with } U\Sigma V^T = \text{SVD}(YX^T).$$

• The translation of source word is $t = \operatorname{argmax}_t \cos(Wx_s, y_t)$.

Comment: mapping between two languages can be done completely in unsupervised manner with GANs.

We will meet later.

More info available in the mentioned paper:

Source: Word translation without parallel data, ICLR 2018

Why cosine distance/similarity?

$$ext{similarity} = \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^{n} A_i B_i}{\sqrt{\sum\limits_{i=1}^{n} A_i^2} \sqrt{\sum\limits_{i=1}^{n} B_i^2}}$$

Cosine distance focuses on angle between the vectors.

With count-based approaches (e.g. BOW)

it is really useful.

With word embeddings it is useful as well.

Source: <u>question</u>

Vector norms for words with no specific context

word	count	vector norm
overheat	11	0.81233
enormous	12	0.807057
dog	1212	11.2591
cat	1545	10.3738
laptop	1906	14.5192
phone	4124	15.7901
a	155726	11.4656
the	252068	8.47355

How to deal with texts?

Recap: RNN

Here is the embedding for phrase [x0, x1, x2]

Recap: Vanilla RNN

Recap: LSTM

chain rule!

chain rule!

Vanishing gradient problem:

When the derivatives are small, the gradient signal gets smaller and smaller as it propagates further

Gradient signal from far away is lost because it's much smaller than from close-by

So model weights updates will be based only on short-term effects

 $h^{(1)}$

W

Recap: LSTM

Recap: GRU

Vanishing gradient: LSTM vs GRU

- LSTM and GRU are both great
 - GRU is quicker to compute and has fewer parameters than LSTM
 - There is no conclusive evidence that one consistently performs better than the other
 - LSTM is a good default choice (especially if your data has particularly long dependencies, or you have lots of training data)

Rule of thumb: start with LSTM, but switch to GRU if you want something more efficient

Vanishing gradient in non-RNN

Vanishing gradient is present in all deep neural networks

- Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small during backpropagation
- Lower levels are hard to train and are trained slower
- Potential solution:

direct (or skip-) connections (just like in ResNet)

Figure 2. Residual learning: a building block.

Vanishing gradient in non-RNN

Vanishing gradient is present in **all** deep neural networks

- Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small during backpropagation
- Lower levels are hard to train and are trained slower
- Potential solution: dense connections (just like in DenseNet)

Vanishing gradient in non-RNN

Vanishing gradient is present in all deep neural networks

- Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small during backpropagation
- Lower levels are hard to train and are trained slower

Conclusion:

Though vanishing/exploding gradients are a general problem, RNNs are particularly unstable due to the repeated multiplication by the same weight matrix [Bengio et al, 1994]

Applying CNNs to texts

CNN simple recap

No padding, no strides

No padding, with strides

CNN simple recap

No padding, with strides

From RNN to CNN

Recurrent neural nets
 can not capture phrases
 without prefix context and
 often capture too much of
 last words in final vector

From RNN to CNN

• RNN: Get compositional vectors for grammatical phrases only

- CNN: What if we compute vectors for every possible phrase?
 - Example: "the country of my birth" computes vectors for:
 - the country, country of, of my, my birth, the country of, country of my, of my birth, the country of my, country of my birth
- Regardless of whether it is grammatical
- Wouldn't need parser
- Not very linguistically or cognitively plausible

Recap: n-gramms

From RNN to CNN

Imagine using only bigrams

 Same operation as in RNN, but for every pair

$$p = \tanh\left(W \left[\begin{array}{c} c_1 \\ c_2 \end{array} \right] + b\right)$$

Can be interpreted as convolution over the word vectors

One layer CNN

- Simple convolution + pooling
- Window size may be different (2 or more)
- The feature map based on bigrams:

$$\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$$

What's next?

We need more features!

 $c_i = f(\mathbf{w}^T \mathbf{x}_{i:i+h-1} + b)$

One layer CNN

Feature representation is based on some applied filter:

$$\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$$

Let's use pooling:

$$\hat{c} = \max\{\mathbf{c}\}\$$

- Now the length of c is irrelevant!
- So we can use filters based on unigrams, bigrams, tri-grams,
 4-grams, etc.

Another example from Kim (2014) paper

More about CNN

 Narrow vs wide convolution (stride and zero-padding)

- Complex pooling schemes over sequences
- Great readings (e.g. Kalchbrenner et. al. 2014)

Based on: Lecture by Richard Socher 5/12/16, http://cs224d.stanford.edu

Neural machine translation: CNN as encoder, RNN as decoder

- One of the first neural machine translation efforts
- Paper: <u>Recurrent Continuous</u>
 <u>Translation Models, Kalchbrenner and Blunsom, 2013</u>

CNN applications

Approaches comparison

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	-	-	_	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	_	_	_	-
RNTN (Socher et al., 2013)	_	45.7	85.4	_	_	_	_
DCNN (Kalchbrenner et al., 2014)	_	48.5	86.8	_	93.0	_	_
Paragraph-Vec (Le and Mikolov, 2014)	_	48.7	87.8	_	_	_	_
CCAE (Hermann and Blunsom, 2013)	77.8	_		_	_	_	87.2
Sent-Parser (Dong et al., 2014)	79.5	_	_	_	_	_	86.3
NBSVM (Wang and Manning, 2012)	79.4	_	_	93.2	_	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_		93.6	_	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	_	_	93.4	_	82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	_		93.6	_	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)	77.3	_	_	_	_	81.4	86.1
CRF-PR (Yang and Cardie, 2014)	_	_	_	_	_	82.7	_
SVM _S (Silva et al., 2011)	_	_	_	_	95.0	_	_

Outro and Tips

- Vanishing gradient is present not only in RNNs
 - Use some kind of memory or skip-connections
- LSTM and GRU are both great
 - GRU is quicker, LSTM catch more complex dependencies
- Clip your gradients
- Using CNNs for texts is similar to n-gramm trick
- CNNs are more effective in case of massive computations
- Combining RNN and CNN worlds? Why not

Attention outro

source language (English)

Problems?

Word2vec embeddings capture only **local** context