# Investigation of α-Sn thin films

Christian Bunker March 25, 2020

# **Background**

- $\beta$ -Sn or white tin is the metallic phase of tin that we are accustomed to in daily life
- α-Sn or gray tin is a semiconductor with a diamond cubic structure
- $\alpha$ -Sn is interesting because it exhibits band inversion in the bulk without having to make a compound or heterostructure

#### **Band structure**



FIG. 1. Energy-band extrema for the proposed model of gray tin.

# Samples

- 48 nm (100)  $\alpha$ -Sn, on CdTe substrate
- 18 nm (100)  $\alpha$ -Sn, on CdTe substrate

#### Superconductivity

- Bulk  $\beta$ -Sn exhibits superconductivity at 3.72 K
- Thin film  $\beta$ -Sn exhibits superconductivity at 3.71 K
- Previous papers have claimed that pockets of  $\beta$ -Sn can form in  $\alpha$ -Sn thin films
- This leads to potential superconductivity

## 48 nm B field sweeps

- 1 microamp current
- H<sub>c</sub> decreases with T
- Floor of the resistance curve increases with T
- Logistic fit determined critical field

$$f(x) = B + \frac{A - B}{1 + (x/x_0)^p}$$



## 48 nm B field sweeps

- Fit is used to determine the critical field at 0 K, B<sub>0</sub>
- Quadratic fit is typical for bulk samples and continuous films



## 48 nm B field sweeps

- Residuals show a poor fit
- Sample may not be continuous



#### 48 nm temperature sweep

- Temperature sweep shows strong evidence of superconductivity
- Previous papers suggest superconductivity in α-Sn is due to pockets of β-Sn which is superconducting



#### 48 nm temperature sweep

- β-Sn reaches critical temperature at 3.71 K
- α-Sn is expected to reach superconductivity at lower temperature due to pocket effect



#### 48 nm current sweep

- Expect to see an I<sub>c</sub> for T < T<sub>c</sub> above which R approaches its typical T > T<sub>c</sub> value
- Need to investigate higher currents (~1 mA)



# Magnetotransport

Use a five point setup to determine the magnetoresistance



 Mixing inevitable occurs between longitudinal and Hall voltage, so we treat the data by taking the even part of the longitudinal voltage and the odd part of the hall voltage

# 48 nm Magnetotransport



 After a subtracting a low order polynomial fit, should see oscillations in high field (|B| > 5 T) R<sub>xx</sub> and R<sub>xy</sub> data



Barbadienne et al

- Oscillations should be the same at positive and negative B
- Oscillations should be independent of polynomial order

48 nm α-Sn Shubnikov-de Haas oscillations



48 nm  $\alpha$ -Sn Shubnikov-de Haas oscillations



#### SdH derivative method

- Take derivative and do a window average smoothing method
- Results show no oscillations



# 18 nm B field sweep

 Sudden rather than gradual shift



#### 18 nm B field sweep

- Much lower critical fields and B<sub>0</sub> than 48 nm sample
- Still much higher than critical fields reported in literature for β-Sn thin films



#### 18 nm current sweep

- Again don't see strong evidence of critical current, should look at higher currents
- 3 K < T < 4 K data needed



# 18 nm Magnetotransport

18 nm  $\alpha$ -Sn Hall Magnetoresistance



18 nm  $\alpha$ -Sn Longitudinal Magnetoresistance



# Perhaps see oscillations in R<sub>xy</sub>

18 nm  $\alpha$ -Sn Shubnikov-de Haas oscillations



#### 18 nm α-Sn Shubnikov-de Haas oscillations



Probably don't see them in R<sub>xx</sub>

18 nm  $\alpha$ -Sn Shubnikov-de Haas oscillations



18 nm  $\alpha$ -Sn Shubnikov-de Haas oscillations



# **Next steps**

- 48 nm sample
  - Increase current sweep to ±1 mA
  - Retake R vs T data at a slower warmup rate to allow full thermalization
- 18 nm sample
  - Repeat magnetotransport data at a higher current (~ 100 μA) to reduce voltage noise in Hall data
  - Increase current sweep to ±1 mA
  - Take R vs T data

#### References

- Bang, Morrison, Rathnayaka, Lyuksyutov, Naugle, and Teizer. Characterization of superconducting Sn thin films and their application to ferromagnet-superconductor hybrids. Thin Solid Films 676, 138-143 (2019).
- 2. Vail, Taylor, Folkes, and Nichols. Growth and magnetotransport in thin film  $\alpha$ -Sn on CdTe. arXiV (2019).
- 3. Matthias, Geballe and Compton. Superconductivity. Reviews of Modern Physics 35, 1-22 (1963).
- 4. Didschuns, Fleischer, Schilbe, Esser, Richter, and Luder. Superconductivity in Sn films on InSb(110) taking into account of the film morphology and structure. Physica C 377, 89-95 (2002).
- 5. Barbadienne, Varignon, Reyren, Marty et al. Angular-resolved photoemission electron spectroscopy and transport studies of the elemental topological insulator alpha Sn. Physical Review B **98**, 195445 (2018)

#### 18 nm B field sweep

- Much lower critical fields and B<sub>0</sub>
- Still much higher than critical fields reported in literature for  $\beta$ -Sn thin films







#### 48 nm $\alpha$ -Sn Shubnikov-de Haas oscillations



