Image Processing Project 1

Rajkumar Ramamurthy Ankur Srivastava Vignesh Rao Yelluri Sridev Srikanth Vivek Vaddina Manpriya Guliani Vishwani Gupta Suparno Datta

Image Processing Project 1

Rajkumar Ramamurthy Ankur Srivastava Vignesh Rao Yelluri Sridev Srikanth Vivek Vaddina Manpriya Guliani Vishwani Gupta Suparno Datta

the oth

Task 1

- Read an intensity image g(x, y) of width w and height h
- Compute a new image g (x, y) according to following rule:

$$\tilde{g}(x,y) = \begin{cases} 0, & \text{if } r_{\min} \leq \|(x,y) - (\frac{w}{2},\frac{h}{2})\| \leq r_{\max} \\ g(x,y), & \text{otherwise} \end{cases}$$

Approach

- Used scipy.misc.imread()
- scipy.misc.imsave()
- numpy arrays
- Matplotlib for visualization

Final Output

Input

Output

Task 2

Band Pass Filter:

- Read an image g(x, y)
- Compute its Fourier transform G(μ, ν)
- Suppress frequencies outside the band rmin and rmax to obtain $G(\mu, \nu)$
- Finally compute the inverse Fourier transform $\tilde{g}(x, y)$ of $\tilde{G}(\mu, \nu)$

Final Output

g(x, y)

 $log |G(\mu, \nu)|$

 $\log |G(\mu, \nu)|$

 $\tilde{g}(x, y)$

Task 3

Importance of Phase:

- Take any two images of identical dimensions
- Get magnitude from one and phase from the other to create a new image
- Analyze the resulting image

Final Output

magnitude from "clock.jpg" phase from "bauckage.jpg"

magnitude from "bauckhage.jpg" phase from "clock.jpg"

An observation

During calculation of magnitude information for an image, initially we were using this formula: re = mag/np.sqrt(1+np.square(np.tan(phase)))

But as we can observe this will never evaluate to a negative number because of np.square

So rather use re = mag*np.cos(phase)

Final Observations

- Fourier transform converts an image into its sine and cosine components
- Changes an image from spatial to frequency domain
- Final conclusion: Phase of an image holds a great deal of the information needed to reconstruct the image

Image Processing Project 1

Rajkumar Ramamurthy Ankur Srivastava Vignesh Rao Yelluri Sridev Srikanth Vivek Vaddina Manpriya Guliani Vishwani Gupta Suparno Datta

