① Veröffentlichungsnummer: 0 528 156 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 92111324.7

2 Anmeldetag: 03.07.92

61) Int. Cl.5: **C07D** 307/60, C07D 307/94, C07D 307/68, C07D 409/12, C07D 407/12, C07F 9/655, A01N 43/08

(30) Priorität: **16.07.91 DE 4123532** 21.05.92 DE 4216814

43 Veröffentlichungstag der Anmeldung: 24.02.93 Patentblatt 93/08

 Benannte Vertragsstaaten: BE CH DE ES FR GB GR IT LI NL PT

71 Anmelder: BAYER AG

W-5090 Leverkusen 1 Bayerwerk(DE)

(72) Erfinder: Fischer, Reiner, Dr. Nelly-Sachs-Strasse 23 W-4019 Monheim 2(DE)

Erfinder: Bretschneider, Thomas, Dr.

Scheerengasse 7-9 W-5200 Siegburg(DE)

Erfinder: Krüger, Bernd-Wieland, Dr.

Unterboschbach 19

W-5060 Bergisch Gladbach 2(DE)

Erfinder: Bachmann, Jürgen, Dr. Carl-Duisberg-Strasse 325 W-5090 Leverkusen 1(DE) Erfinder: Erdelen, Christoph, Dr.

Unterbüscherhof 22

W-5653 Leichlingen 1(DE)

Erfinder: Wachendorff-Neumann, Ulrike, Dr.

Krischerstrasse 81 W-4019 Monheim(DE)

Erfinder: Santel, Hans-Joachim, Dr.

Grünstrasse 9a

W-5090 Leverkusen 1(DE) Erfinder: Lürssen, Klaus, Dr. August-Kierspel-Strasse 145 W-5060 Bergisch Gladbach 2(DE) Erfinder: Schmidt. Robert R., Dr.

Im Waldwinkel 110

W-5060 Bergisch Gladbach 2(DE)

(4) 3-Aryl-4-hydroxy-delta3-dihydrofuranon- und 3-Aryl-4-hydroxy-delta3-dihydrothiophenon-Derivate.

© Die vorliegende Erfindung betrifft neue 3-Aryl-4-hydroxy-Δ3-dihydro-furanon- und 3-Aryl-4-hydroxy-Δ3dihydrothiophenon-Derivate, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung als Insektizide, Akarizide, Herbizide und Fungizide.

Die neuen 3-Aryl-4-hydroxy Δ^3 -dihydrofurano-und 3-Aryl-4-hydroxy- Δ^3 -dihydrothiophenon-Derivate besitzen die allgemeine Formel I

in welcher

für Alkyl, Halogen, Alkoxy oder Halogenalkyl steht, Х

- Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,
- Z für Alkyl, Halogen, Alkoxy steht,
- n für eine Zahl von 0-3 steht, oder wobei die Reste X und Z gemeinsam mit dem Phenylrest an den sie gebunden sind, den Naphthalinrest der Formel

bilden,

in welchem Y die oben angegebene Bedeutung hat,

G für Wasserstoff (a) oder für die Gruppen

-CO-R¹. (b)
$$M-R^2$$
 (c) $-SO_2-R^3$ (d) $-P$ R^5 (e) R^6 (f) oder E^{\oplus} (g)

steht,

A und B gleich oder verschieden sein können und für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen, Alkyl, Halogenalkyl, Alkoxy,

Halogenalkoxy, Nitro substituiertes Aryl, Aralkyl oder Hetaryl stehen

oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesät-

tigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls substituierten

Cyclus bilden,

D für Sauerstoff oder Schwefel steht,

E[®] für ein Metallionäquivalent oder ein Ammoniumion steht,

L und M für Sauerstoff und/oder Schwefel steht,

und R^1 , R^2 , R^3 , R^4 , R^5 , R^6 und R^7 die im Anmeldungstext angegebene Bedeutung besitzen,

mit Ausnahme folgender Verbindungen:

3-(2-Methoxyphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,

3-(2-Chlorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,

3-(2-Methoxyphenyl)-4-hydroxy-Δ³-dihydrofuranon-2,

3-(2-Fluorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2.

Die vorliegende Erfindung betrifft neue 3-Aryl-4-hydroxy- Δ^3 -dihydro-furanon- und 3-Aryl-4-hydroxy- Δ^3 -dihydrothiophenon-Derivate, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung als Insektizide, Akarizide, Herbizide und Fungizide.

Es ist bekannt, daß bestimmte substituierte Δ^3 -Dihydrofuran-2-on-Derivate herbizide Eigenschaften besitzen (vgl. DE-A 4 014 420). Die Synthese der als Ausgangsverbindungen verwendeten Tetronsäurederivate (wie z.B. 3-(2-Methyl-phenyl)-4-hydroxy-5-(4-fluorphenyl)- Δ^3 -dihydrofuranon-(2) ist ebenfalls in DE-A 4 014 420 beschrieben, Ähnlich strukturierte Verbindungen ohne Angabe einer insektiziden und/oder akariziden Wirksamkeit sind aus der Publikation Campbell et al. J. Chem. Soc., Perkin Trans. 1 1985, (8) 1567-76 bekannt.

Es wurden nun neue 3-Aryl-4-hydroxy- Δ^3 -dihydrofuranon- und 3-Aryl-4-hydroxy- Δ^3 -dihydrothiophenon- Derivate der allgemeinen Formel (I)

gefunden, in welcher

10

15

20

25

30

35

40

45

50

55

X für Alkyl, Halogen, Alkoxy oder Halogenalkyl steht,

Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogen-alkyl steht,

Z für Alkyl, Halogen, Alkoxy steht,

n für eine Zahl von 0-3 steht, oder wobei die Reste X und Z gemeinsam mit dem Phenylrest an den sie gebunden sind, den Naphthalinrest der Formel

bilden.

in welchem Y die oben angegebene Bedeutung hat,

G für Wasserstoff (a) oder für die Gruppen

steht,

A und B

gleich oder verschieden sein können und für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Nitro substituiertes Aryl, Aralkyl oder Hetaryl stehen

	oder worin		
	A und B		om, an das sie gebunden sind einen gesät- nenfalls durch Heteroatome unterbrochenen
		und gegebenenfalls substituierten (Cyclus bilden,
5	D	für Sauerstoff oder Schwefel steht,	
	E [®]	für ein Metallionäquivalent oder ein	
	L und M R¹	für Sauerstoff und/oder Schwefel st	
	n.		n substituiertes Alkyl, Alkenyl, Alkoxyalkyl, r Cycloalkyl, das durch Heteroatome unter-
10			s substituiertes Phenyl, gegebenenfalls sub-
			es Hetaryl, substituiertes Phenoxyalkyl oder
		substituiertes Hetaryloxyalkyl steht	und
	R ²		n substituiertes Alkyl, Alkenyl, Alkoxyalkyl,
	D2 D4 1 D5		s substituiertes Phenyl oder Benzyl steht,
15	R^3 , R^4 und R^5		benenfalls durch Halogen substituiertes Al-
			no, Alkylthio, Alkenylthio, Alkinylthio, Cyclo- ubstituiertes Phenyl, Phenoxy oder Phenylt-
		hio stehen,	abstitutories i nonyi, i nonoxy odor i nonyit
	R ⁶ und R ⁷		erstoff, gegebenenfalls durch Halogen sub-
20		stituiertes Alkyl, Alkenyl, Alkoxy, A	ılkoxyalkyl, für gegebenenfalls substituiertes
		Phenyl, für gegebenenfalls substitu	
	oder wobei R ⁶ und R ⁷		Is durch Sauerstoff unterbrochenen Alkylen-
	mit Ausnahme folgender Ve	rest stehen,	
25	3-(2-Methoxyphenyl)-4-hydi		
	3-(2-Chlorphenyl)-4-hydroxy	-	
	3-(2-Methoxyphenyl)-4-hydi	$^{\circ}$ oxy- Δ^{3} -dihydrofuranon-2,	
	3-(2-Fluorphenyl)-4-hydroxy		
		en Formen von Verbindungen der Fo	
30	_	r verschiedenen Bedeutungen (a), (b ben sich folgende hauptsächlichen S	b), (c), (d), (e), (f) und (g) der Gruppe G der
	angemented former (i) erge	ben sien loigende nauptsachlichen e	didition (ia) bis (ig).
	D	A OH X	
35	ъ-		(Ia)
		b ·	(
		o ż _n	
40			
		U II	
	R ¹	A O X	
45	B-	+	
		Y >Y	(Ib)
		o z _n	
50			
50		Ļ	
		L A O-C-M-R ² X	
	- a	A O-C-M-R* X	

55

(Ic)

$$\begin{array}{c|c}
L & & \\
R^4 & & \\
\hline
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

$$\begin{array}{c|c}
L & R^6 \\
\hline
 & R^7 & X \\
\hline
 & D & Z_-
\end{array}$$
(If)

worin

5

10

15

20

25

30

35

40

45

A, B, D, E, L, M, X, Y, Z_n , R^1 , R^2 , R^3 , R^4 , R^5 , R^6 und R^7 die oben angebenenen Bedeutungen besitzen, Weiterhin wurde gefunden, daß man 3-Aryl-4-hydroxy- Δ^3 -dihydrofuranon- und 3-Aryl-4-hydroxy- Δ^3 -dihydrothiophenon-Derivate der Formel (Ia)

$$\begin{array}{c|c}
A & HO & X \\
\hline
D & & Z_n \\
\hline
O & & & (Ia)
\end{array}$$

in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben, erhält, wenn man

(A)

55 Carbonsäureester der Formel (II)

$$\begin{array}{c|c}
A & CO_2R^8 \\
A & Z_n \\
\hline
0 & Y
\end{array}$$

in welcher

5

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben und

R8 für Alkyl steht,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert.

(B)

Außerdem wurde gefunden, daß man Verbindungen der Formel (Ib)

20

$$\begin{array}{c|c}
0\\
R^1-C-0\\
\hline
A\\
\hline
X\\
\hline
Z_n\\
\end{array}$$
(Ib)

30

25

in welcher

A, B, D, X, Y, Z, R¹ und n die oben angegebene Bedeutung haben, erhält, wenn man Verbindungen der Formel (Ia),

35

40

45 in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben,
 α) mit Säurehalogeniden der allgemeinen Formel (III)

50

55

in welcher

R¹ die oben angegebene Bedeutung hat und

Hal für Halogen, insbesondere Chlor und Brom steht, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt

oder

5

10

β) mit Carbonsäureanhydriden der allgemeinen Formel (IV)

R1-CO-O-CO-R1 (IV)

in welcher

R¹ die oben angegebene Bedeutung hat, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels, umsetzt.

15 (C)

Ferner wurde gefunden, daß man Verbindungen der Formel (Ic)

20

25

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

30 in welcher

A, B, D, X, Y, Z, R² und n die oben angegebene Bedeutung haben,

L für Sauerstoff

und

M für Sauerstoff oder Schwefel steht,

s erhält, wenn man Verbindungen der Formel (la)

in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben mit Chlorameisensäureester oder Chlorameisensäurethiolester der allgemeinen Formel (V)

R²-M-CO-CI (V)

o in welcher

R² und M die oben angegebene Bedeutung haben, gegebenenfals in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.

55

D) Ferner wurde gefunden, daß man Verbindungen der Formel (Ic)

in welcher

A, B, D, R², X, Y, Z und n die oben angegebene Bedeutung haben,

L für Schwefel

und

M für Sauerstoff oder Schwefel steht, erhält, wenn man Verbindungen der Formel (la)

20

25

5

10

15

$$\begin{array}{c|c}
A & OH X \\
\hline
D & Z_n
\end{array}$$

in welcher

o A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben

α) mit Chlormonothioameisensäureestern oder Chlordithioameisensäureestern der allgemeinen Formel (VI)

35

in welcher

M und R² die oben angegebene Bedeutung haben

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,

oder

β) mit Schwefelkohlenstoff und anschließend mit Alkylhalogeniden der allgemeinen Formel (VII)

R²-Hal (VII)

50 in welcher

R² die oben angegebene Bedeutung hat

und

Hal für Chlor, Brom, Jod steht, umsetzt.

55

E) Außerdem wurde gefunden, daß man Verbindungen der Formel (Id)

in welcher

5

A, B, D, X, Y, Z, R³ und n die oben angegebene Bedeutung haben, erhält, wenn man Verbindungen der Formel (la)

in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben, mit Sulfonsäurechloriden der allgemeinen Formel (VIII)

in welcher

30

35

R³ die oben angegebene Bedeutung hat gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt.

F) Weiterhin wurde gefunden, daß man Verbindungen der Formel (le)

in welcher

A, B, D, L, X, Y, Z, R⁴, R⁵ und n die oben angegebene Bedeutung haben,

o erhält, wenn man

Verbindungen der Formel (la)

$$\begin{array}{c|c}
A & OH & X \\
\hline
D & Z_n
\end{array}$$
(Ia)

in welcher

5

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben mit Phosphorverbindungen der allgemeinen Formel (IX)

Hal-P (IX)
$$\mathbb{R}^{5}$$

in welcher

25

30

35

40

45

50

L, R⁴ und R⁵ die oben angegebene Bedeutung haben und

Hal für Halogen, insbesondere Chlor und Brom steht, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.

G) Ferner wurde gefunden, daß man Verbindungen der Formel (If)

$$\begin{array}{c|c}
L & R^6 \\
\hline
B & C-C-N & X \\
\hline
D & Z_D
\end{array}$$
(If)

in welcher

A, B, D, L, X, Y, Z, R^6 , R^7 und n die oben angegebene Bedeutung haben, erhält, wenn man Verbindungen der Formel (la),

$$\begin{array}{c|c}
A & OH & X \\
\hline
D & Z_n
\end{array}$$

in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben

α) mit Isocyanaten der allgemeinen Formel (X)

$$R^6 - N = C = O \qquad (X)$$

in welcher

R⁶ die oben angegebene Bedeutung hat

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators umsetzt.

oder

β) mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden der allgemeinen Formel (XI)

10

$$\mathbb{R}^6$$
 \mathbb{C}_1 \mathbb{C}_1

15

20

in welcher

L, R⁶ und R⁷ die oben angegebene Bedeutung haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt.

H) Weiterhin wurde gefunden, daß man Verbindungen der Formel (Ig)

25

30

35

in welcher

X, Y, Z, A, B, D und n die oben angegebene Bedeutung haben, und E[®] für ein Metallionäquivalent oder für ein Ammoniumion steht, erhält, wenn man Verbindungen der Formel (la)

40

45

in welcher

X, Y, Z, A, B, D und n die oben angegebene Bedeutung haben,

50 mit Metallhydroxiden oder Aminen der allgemeinen Formeln (XII) und (XIII)

in welchen

Me für ein- oder zweiwertige Metallionen

s und t für die Zahl 1 oder 2 und

R⁵, R⁶ und R⁷ unabhängig voneinander für Wasserstoff und Alkyl

5

gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt.

Weiterhin wurde gefunden, daß sich die neuen 3-Aryl-4-hydroxy-△3-dihydrofuranon- und 3-Aryl-4hydroxy-Δ3-dihydrothiophenon-Derivate der Formel (I) durch hervorragende akarizide, insektizide, herbizide und fungizide Wirkungen auszeichnen.

Bevorzugt sind Verbindungen der Formel (I)

in welcher

Х für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy oder C₁-C₃-Halogenalkyl steht,

Υ für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy, C₁-C₃-Halogenalkyl steht,

Z für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,

für eine Zahl von 0 bis 3 steht, n

oder wobei die Reste X und Z gemeinsam mit dem Phenylrest an den sie gebunden sind,

den Naphthalinrest der Formel

20

15

25

30

bilden,

in welchem Y die oben angegebene Bedeutung hat,

A und B

gleich oder verschieden sind und für Wasserstoff oder gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, C_1 - C_1 0-Alkoxy- C_2 - C_8 -alkyl, C_1 - C_8 -Polyalkoxy- C_2 - C_8 -alkyl, C_1 - C_{10} -Alkylthio- C_2 - C_8 -alkyl, C_9 - C_8 -alkyl, C_9 - C_8 -alkyl, C_9 - C_8 -alkyl, C_9 - C_9 - C_8 -alkyl, C_9 - C_9 -Ccloalkyl mit 3 bis 8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder gegebenenfalls durch Halogen, C1-C6-Alkyl, C1-C6-Haloalkyl-, C1-C6-Alkoxy-, C1-C₆-Halogenalkoxy, Nitro substituiertes Aryl, Hetaryl oder Aryl-C₁-C₆-alkyl steht,

oder worin

A und B

gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₅-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio oder gegebenenfalls substituiertes Aryl substituierten 3- bis 8gliedrigen Ring bilden,

G für Wasserstoff (a) oder für die Gruppen

40

45

$$-\text{CO-R}^1$$
, (b) $-\text{SO}_2-\text{R}^3$ (d)

50

$$R^4$$
 R^5
(e)
 R^6
(f) oder E^{Θ} (g)

55

steht,

in welchen Εe

für ein Metallionäguivalent oder ein Ammoniumion steht,

L und M

für Sauerstoff und/oder Schwefel steht.

 R^1 für gegebenenfalls durch Halogen substituiertes: C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy- C_2 - C_8 -alkyl, C_1 - C_8 -Alkylthio- C_2 - C_8 -alkyl, C_1 - C_8 -Polyalkoxyl- C_2 - C_8 -alkyl oder Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff- und/oder Schwefelatome unterbrochen sein kann, steht, für gegebenenfalls durch Halogen, Nitro, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halo-5 genalkyl, C₁-C₆-Halogenalkoxy-substituiertes Phenyl steht; für gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl, C₁-C₆-Halogenalkoxy-substituiertes Phenyl-C₁-C₆-alkyl steht, für gegebenenfalls durch Halogen und/oder C₁-C₆-Alkyl substituiertes Hetaryl steht, für gegebenenfalls durch Halogen und C₁-C₆-Alkyl-substituiertes Phenoxy-C₁-C₆-alkyl 10 steht, für gegebenenfalls durch Halogen, Amino und C1-C6-Alkyl-substituiertes Hetaryloxy-C₁-C₆-Alkyl steht, R^2 für gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C2-C8-alkyl, C1-C8-Polyalkoxy-C2-C8-alkyl steht, 15 für gegebenenfalls durch Halogen, Nitro, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogena Ikyl-substituiertes Phenyl oder Benzyl steht, R3, R4 und R5 unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl, C_1-C_8 -Alkoxy, C_1-C_8 -Alkylamino, Di- (C_1-C_8) -Alkylamino, C_1-C_8 -Alkylthio, C_2-C_5 -Alkenylthio, C2-C5-Alkinylthio, C3-C7-Cycloalkylthio, für gegebenenfalls durch Halogen, 20 Nitro, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen, R⁶ und R⁷ unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C1-C20-Alkyl, C₁-C₂₀-Alkoxy, C₂-C₈-Alkenyl, C₁-C₂₀-Alkoxy-C₁-C₂₀-alkyl, für gegebenenfalls 25 durch Halogen, C₁-C₂₀-Halogenalkyl, C₁-C₂₀-Alkyl oder C₁-C₂₀-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl oder C1-C20-Alkoxy substituiertes Benzyl steht oder zusammen für einen gegebenenfalls durch Sauerstoff unterbrochenen C2-C6-Alkylenring stehen, mit Ausnahme folgender Verbindungen: 30 3-(2-Methoxyphenyl)-4-hydroxy-Δ³-dihydrofuranon-2, 3-(2-Chlorphenyl)-4-hydroxy-Δ³dihydrofuranon-2, 3-(2-Methoxyphenyl)-4-hydroxy-Δ³-dihydrofuranon-2, 3-(2-Fluorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, sowie die enantiomerenreinen Formen von Verbindungen der Formel (I). Besonders bevorzugt sind Verbindungen der Formel (I), in welcher 35 für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy oder C₁-C₂-Halogenalkyl steht, Х Υ für Wasserstoff, C_1 - C_6 -Alkyl, Halogen, C_1 - C_6 -Alkoxy, C_1 - C_2 -Halogenalkyl steht, Ζ für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy steht, für eine Zahl von 0 bis 3 steht, n oder wobei die Reste X und Z gemeinsam mit dem Phenylrest an den sie gebunden sind, 40 den Naphthalinrest der Formel 45 50 bilden.

A und B

55

in welchem Y die oben angegebene Bedeutung hat,

gleich oder verschieden sind und für Wasserstoff, gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₀-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₈-Alk $oxy-C_2-C_6$ -alkyl, C_1-C_6 -Polyalkoxy- C_2 C $_6$ -alkyl, C_1-C_8 -Alkylthio- C_2-C_6 -alkyl, Cycloalkyl mit 3 bis 7 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann oder gegebenenfalls durch Halogen-, C₁-C₄-Alkyl, C₁-C₄-Haloalkyl-, C₁-C₄-Alkoxy-, Nitro substituiertes Aryl, Hetaryl oder Aryl-C₁-C₄-alkyl stehen,

oder worin

5

10

15

20

25

30

35

40

45

50

 R^2

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen gesättigten

oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochen und gegebenenfalls durch Halogen, C_1 - C_5 -Alkyl, C_1 - C_5 -Alkoxy, C_1 - C_3 -Halogenalkyl, C_1 - C_4 -Halogenalkoxy, C_1 - C_3 -Alkylthio oder gegebenenfalls durch Halogen, Alkyl, Al-

koxy substituiertes Aryl substituierten 3- bis 8-gliedrigen Ring bilden,

G für Wasserstoff (a) oder für die Gruppen

 $-\text{CO-R}^1$, (b) $-\text{SO}_2 - \text{R}^3$ (d)

steht,

in welchen

E^e für ein Metallionäquivalent oder ein Ammoniumion steht

L und M jeweils für Sauerstoff und/oder Schwefel steht,

 $R^1 \qquad \qquad \text{für gegebenenfalls durch Halogen substituiertes } \quad C_1-C_{16}-\text{Alkyl}, \quad C_2-C_{16}-\text{Alkenyl}, \quad C_1-C_{6}-\text{Alkyl}, \quad C_1-C_{16}-\text{Alkyl}, \quad C_1-C_{16}-\text{Alkyl}, \quad C_1.C_{6}-\text{Polyalkoxy-} \\ C_2-C_{6}-\text{alkyl}, \quad C_1-C_{16}-\text{Alkyl}, \quad$

Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome

unterbrochen sein kann steht,

für gegebenenfalls durch Halogen-, Nitro, C_1 - C_4 -Alkyl-, C_1 - C_4 -Alkoxy-, C_1 - C_3 -Halogenalkyl-, C_1 - C_3 -Halogenalkoxy-substituierets Phenyl steht,

 $f\ddot{u}r\ gegebenen falls\ durch\ Halogen-,\ C_1-C_4-Alkyl-,\ C_1-C_4-Alkoxy-,\ C_1-C_3-Halogenalkyl-,$

C₁-C₃-Halogenalkoxy-substituiertes Phenyl-C₁-C₄-alkyl steht,

für gegebenenfalls durch Halogen- und C₁-C₆-Alkyl-substituiertes Hetaryl steht,

für gegebenenfalls durch Halogen- und C_1 - C_4 -Alkyl-substituiertes Phenoxy- C_1 - C_5 -alkyl steht,

für gegebenenfalls durch Halogen, Amino und $C_1\text{-}C_4\text{-}Alkyl$ substituiertes Hetaryloxy-

C₁-C₅-alkyl steht,

für gegebenenfalls durch Halogen substituiertes: C_1 - C_{16} -Alkyl, C_2 - C_{16} -Alkenyl, C_1 - C_{16} -Alkox- C_2 - C_6 -alkyl, C_1 - C_6 -Polyalkoxy- C_2 - C_6 -alkyl steht,

für gegebenenfalls durch Halogen, Nitro-, C₁-C₄-Alkyl, C₁-C₃-Alkoxy-, C₁-C₃-

Halogenalkyl-substituiertes Phenyl oder Benzyl steht,

R³, R⁴ und R⁵ unabhängig voneinander für gegebenenfalls durch Halogen substituie

unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C_1 - C_6 -Alkyl, C_1 - C_6 -Alkylamino, C_1 - C_6 -Alkylamino, C_1 - C_6 -Alkylamino, C_1 - C_6 -Alkylamino, C_3 - C_4 -Alkylamino, C_2 - C_4 -Alkinylthio, C_3 - C_6 -Cycloalkylthio, für gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylhio, C_1 - C_3 -Halogenalkylthio, C_1 - C_3 -Phalogenalkyl substitutiertes Phenyl, Phenoxy

oder Phenylthio stehen,

unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₁-C₂₀-Alkoxy, C₂-C₈-Alkenyl, C₁-C₂₀-Alkoxy-C₁-C₂₀-alkyl, frnr gegebenenfalls durch Halogen, C₁-C₅-Halogenalkyl, C₁-C₅-Alkyl oder C₁-C₅-Alkyl oder C₁-Phenyl, für gegebenenfalls durch Halogen, C₁-C₅-Alkyl,C₁-C₅-Halogenalkyl oder C₁-C₅-Alkyl,C₁-C₅-Halogenalkyl oder C₁-C₅-Alkyl,C₁-C₅-Halogenalkyl oder C₁-C₅-Alkyl,C₁

C5-Alkoxy substituiertes Benzyl steht,

55 mit Ausnahme folgender Verbindungen:

3-(2-Methoxyphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,

3-(2-Chlorphenyl)-4-hydroxy-Δ³-dihydrofuranon-2,

3-(2-Methoxyphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,

3-(2-Fluorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Ganz besonders bevorzugt sind Verbindungen der Formel (I), in welcher

Χ Methyl, Ethyl, Propyl, i-Propyl, Fluor, Chlor, Brom, Methoxy, Ethoxy und Trifluormethyl steht,

Υ für Wasserstoff, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom,

Methoxy, Ethoxy und Trifluormethyl steht,

Ζ für Methyl, Ethyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy und Ethoxy

steht.

5

10

15

20

25

30

35

50

55

für eine Zahl von 0 bis 3 steht, n

oder wobei die Reste X und Z gemeinsam mit dem Phenylrest an den sie gebunden sind,

den Rest der Formel

bilden,

in welchem Y die oben angegebene Bedeutung hat,

A und B gleich oder verschieden sind und für Wasserstoff, gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₈-Alkyl, C₃-C₄-Alkenyl, C₃-C₄-Alkinyl, C₁-C₆-Alkoxy-C₂-C₄-alkyl, C₁-C₄-Polyalkoxy-C₂-C₄-alkyl, C₁-C₆-Alkylthio-C₂-C₄-alkyl, Cycloalkyl mit 3 bis 6 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann oder gegebenenfalls durch Fluor-, Chlor-, Methyl-, Ethyl-, Propyl-, iso-Propyl-, Methoxy-, Ethoxy-, Trifluormethyl-, Nitro substituiertes Aryl, Pyridin, Imidazol, Pyrazol, Triazol, Indol,

Thiazol oder Aryl-C₁-C₃-alkyl stehen,

oder worin

A und B

gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls durch Fluor, Chlor, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Trifluormethyl, C₁-C₂-Alkylthio oder gegebenenfalls durch Fluor, Chlor, Methyl, Methoxy substituiertes Aryl einen substituierten 3- bis 8-gliedrigen Ring bilden,

G für Wasserstoff (a) oder für die Gruppen

40 -
$$\text{CO-R}^1$$
, (b) $M-R^2$ (c) - SO_2 - R^3 (d)

steht,

in welchen

Ε® für ein Metallionäguivalent oder ein Ammoniumion steht,

L und M für Sauerstoff und/oder Schwefel steht,

 R^1 für gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, $C_1-C_4-Alkoxy-C_2-C_6-alkyl$, $C_1-C_4-Alkylthio-C_2-C_6-alkyl$, $C_1-C_4-Polyalkoxy-C_2-C_4-alkyl$ und Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann, steht,

für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Nethoxy,

Ethoxy, Trifluormethyl, Trifluormethoxy, Nitro-substituiertes Phenyl steht,

für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy-substituiertes Phenyl-C₁-C₃-alkyl steht,

für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl-substituiertes Pyridyl, Pyrimidyl, Thiazolyl und Pyrazolyl steht,

für gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl-substituiertes Phenoxy-C₁-C₄-alkyl steht,

für gegebenenfalls durch Fluor, Chlor, Amino, Methyl-, Ethyl, substituiertes Pyridyloxy-

 C_1 - C_4 -alkyl, Pyrimidyloxy- C_1 - C_4 -alkyl und Thiazolyloxy- C_1 - C_4 -alkyl steht, für gegebenenfalls durch Fluor oder Chlor substituiertes C_1 - C_{14} -Alkyl, C_2 - C_{14} -Alkenyl,

 C_1 - C_4 -Alkoxy- C_2 - C_6 -alkyl, C_1 - C_4 -Polyalkoxy- C_2 - C_6 -alkyl steht,

oder für gegebenenfalls durch Fluor, Chlor, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl substituiertes Phenyl oder Benzyl steht,

unabhängig voneinander für gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, Di-(C₁-C₄-Alkyl)amino, C₁-C₄-Alkylthio, für

gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C_1 - C_2 -Alkytthio, C_1 - C_2 -Chloralkoxy, C_1 - C_2 -Alkytthio, C_1 - C_2 -Fluoralkylthio, C_1 - C_2 -Chloralkylthio, C_1 - C_2 -Chloralkylthio,

C₁-C₃-Alkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,

R⁶ und R⁷ unabhängig voneinander für gegebenenfalls durch Fluor, Chlor, Brom substituiertes C₁-C₁₀-Alkyl, C₁-C₁₀-Alkoxy, C₁-C₁₀-Alkoxy-(C₁-C₁₀)alkyl, für gegebenenfalls durch

Fluor, Chlor, Brom, C_1 - C_{20} -Halogenalkyl, C_1 - C_{20} -Alkyl oder C_1 - C_4 -Alkoxy substituiertes Phenyl, für gegebenenfalls durch Fluor, Chlor, Brom, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkyl, C_1 - C_2 - C_1 - C_1 - C_1 - C_2 - C_1 - C_1 - C_1 - C_1 - C_1 - $C_$

nalkyl oder C₁-C₄-Alkoxy substituiertes Benzyl steht,

mit Ausnahme folgender Verbindungen:

5

10

15

20

25

30

35

40

45

50

55

 \mathbb{R}^2

R3, R4 und R5

3-(2-Methoxyphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,

 $3-(2-Chlorphenyl)-4-hydroxy-\Delta^3-dihydrofuranon-2,$

3-(2-Methoxyphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,

3-(2-Fluorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3-Aryl-4-hydroxy- Δ^3 -dihydrofuran-Derivate der Formel (Ia) genannt:

$$\begin{array}{c|cccc}
A & OH & X \\
\hline
D & & & & & \\
\hline
O & & & & & \\
\end{array}$$
(Ia)

5		Z _n	6-сн ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6 - CH ₃	£но-9	6-CH ₃
10		Y	-сн3	-CH ₃	-cH ₃	-сн3	-cH ₃	-сн3	-cH ₃	-CH ₃	-сн3	-cH ₃	-CH ₃	-CH3
15		×	-CH ₃	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-сн3	-cH ₃	-сн3	-снз	-снз	-cH ₃	-cH ₃
20														
25		D	0	0	0	0	0	0	0	0	0	0	o	0
30		В	x	H	Ħ	×	H	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-CH ₃	-CH3
35				~ l		13)3	¹ 21		-C2H5	2H3)2	-сн ₂ -сн(сн ₃) ₂			\bigcirc
40	Tabelle 1	A	æ	-CH3		-C(CH ₃) ₃	-C ₁₀ H ₂₁	-CH ₃	-C ² Hé))HJ-	-CH2-CI		-CH2-	-сн2сн2-
45	Tabe													

5		Zn	е-сн ³	€ −СН3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃				
10		Y	-CH3	-cH ₃	-CH ₃	-cH ₃	-CH ₃	-CH3	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-cH3
15		×	-CH ₃	-CH ₃	-CH ₃	-CH ₃	-cH ₃	-CH ₃	-cH3	-CH3	-cH ₃	-cH ₃	-cH3	-cH ₃	-cH ₃	-сн3	-cH3
20																	
25		Ω	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30		æ	-C2H5	-сн(сн ₃) ₂	Ħ	×	-CH ₃	-cH ₃						H ₃) ₂ -	2)4-	-(CH ₂) ₃ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -
35	tsetzung			H3)2	\wedge	\wedge	H ₂		-(CH ₂) ₂ -	-(CH ₂)4-	-(CH ₂) ₅ -	-(CH ₂) ₆ -	-(CH ₂) ₇ -	-c(cH ₃) ₂ -c(cH ₃) ₂ -	-сн(сн ₃)-(сн ₂) ₄ -	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	:H ²) ² -СН(С
40	Tabelle 1: Fortsetzung	A	-C2H2	-сн(сн ³) ²	# #	\	-CH=CH2	-CF3) ວ -	- CH	-CE)-
45	Tabe 1	TI															

EP 0 528 156 A1

5	$^{2}_{\rm n}$	6-CH ₃	6-CH ₃	6-CH ₃	е-сн ³	6-CH ₃	6-CH ₃
10	> -	-cH3	-cH ₃	-сн3	-cH ₃	-CH ₃	-cH ₃
15	×	-сн3	-CH3	-cH ₃	-cH ₃	-сн3	-сн3
20							
25	Ω	0	0	0	0	0	0
30	B	(CH ₂) ₂ -	сн ₂) ₂ -	-сн ₂ -с(сн ₃) ₂ -сн ₂ -сн(сн ₃)-сн ₂ -	У	CH ₂) ₂ -	CH ₂) ₂ -
35	Fortsetzung A	-C(CH ₂) ₂ -CH-(CH ₂) ₂ - (CH ₃) ₃	-(CH ₂) ₂ -CH-(CH ₂) ₂ -	$(CH_3)_2$ - CH_2 -(-(CH ₂) ₂ -CH-(CH ₂) ₂ - C ₂ H ₅	-(сH ₂) ₂ -сн-(сH ₂) ₂ - i-с ₃ н ₇
	Tabelle 1: Fo) -	1	-CH2-C		ī	ī
45	H.						

EP 0 528 156 A1

5													
		Zn	H	Ξ	H	H	H	Ħ	Ħ	Ħ	Ħ	x	ĸ
10		٨	ü	C1	CI	CJ	C1	C1	CJ	C1	ü	ប៊	C
15		×	C1	C1	C1	C1	C1	C1	C1	C1	C1	C]	C1
20													
25		D	0	0	0	0	0	0	0	0	0	0	0
30		В	-сн3	-CH ₃	-cH ₃	-сн3				H2)3-	-(CH ₂) ₂ -	$-(CH_2)_2 - CH - (CH_2)_2 - C_2H_5$	H ₂) ₂ -
35	setzung						-(CH ₂) ₄ -	(CH ₂) ₅ -	(CH ₂) ₆ -	н(сн ³)-(с	2-CH(CH ₃)	2)2-CH-(CI	-(CH ₂) ₂ -CH-(CH ₂) i-C ₃ H ₇
40	<u>Tabelle 1</u> : Fortsetzung	A	-cH3	-C2H2	-сн(сн ³) ²	-CF3	1	l	1	-сн ² -с	-(CH ₂)	- (CH	но) -
45	Tabell												

5		Zn	6-C1	6-C1	6-01	6-C1	6-C1	6-C1	6-01	6-C1	6-C1	6-C1	6 - C1
10		٨	H	н	x	H	x	H	H	H	H	æ	Ħ
15		×	CJ.	c ₁	CJ	C1	C1	C1	C1	C1	ü	ü	CJ
20													
25		Q	0	0	0	0	0	0	0	0	0	0	0
30		В	-cH ₃	-cH ₃	-cH ₃	-CH ₃				CH ₂) ₃ -)-(CH ₂) ₂ -	CH ₂) ₂ -	CH ₂) ₂ -
35	<u>le 1</u> : Fortsetzung			įς	-ch(ch ₃) ₂	-cF ₃	-(CH ₂) ₄ -	-(CH ₂) ₅ -	-(CH ₂) ₆ -	$-CH_2-CH(CH_3)-(CH_2)_3$	12)2-сн(сн3	$-(CH_2)_2-CH-(CH_2)_2-$ C_2H_5	-(CH ₂) ₂ -CH-(CH ₂) ₂ - i -C ₃ H ₇
40	1e 1: Fo	V	-CH3	-C2H2	-СH(-CF3				-CH	- (CF	-	-

EP 0 528 156 A1

10		Z _n	6 – ਨੇ ਜੁ	6 - F	6 - F	6 - F	6 - F	6 - F	H-9	6 - F	6 - F	1 4	A-6
15		Y	C1 H	С1 Н	С1 Н	С1 Н	С1 Н	С1 Н	С1 Н	С1 Н	С1 Н	С1 Н	С1 Н
20		×	Ü	b	D	0	0	0	0	O	U	J	,
25		Q	0	0	0	0	0	0	0	0	0	0	0
30		В	-CH3	-CH ₃	-cH ₃	-CH ₃				(CH ₂) ₃ -	$_{3}) - (CH_{2})_{2}$	(CH ₂) ₂ -	CH ₂) ₂ -
40	<u>abelle 1</u> : Fortsetzung	A	-cH ₃	-C2H5	-сн(сн ₃) ₂	-CF3	-(CH ₂) ₄ -	-(CH ₂) ₅ -	-(CH ₂) ₆ -	-сн2-сн(сн3)-	-(сн ₂) ₂ -сн(сь	$-(CH_2)_2 - CH - (CH_2)_2 - CH_2 + $	- (CH ₂) ₂ -CH-(CH ₂) ₂ - i - C ₂ H ₇
45	belle 1			·	-								

EP 0 528 156 A1

5		Zn	Ξ	I	Ħ	H	H	H	Ħ	H	н	Ħ	m
10		>	-cH3	-cH ₃	-сн3	-cH3	-CH3	-CH3	-cH3	-CH3	-CH3	-сн3	-cH3
15		×	-cH ₃	-сн3	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-снз
20													
25		Q	0	0	0	0	0	0	0	0	0	0	0
30		В	-сн3	-CH ₃	-CH ₃	-CH ₃				.H ²)3-	-(CH ₂) ₂ -	.H ₂) ₂ -	.H ₂) ₂ -
35	tsetzung.				-сн(сн ₃) ₂		-(CH ₂) ₄ -	-(CH ₂) ₅ -	-(CH ₂) ₆ -	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH-(CH ₂) ₂ - C ₂ H ₅	-(CH ₂) ₂ -CH-(CH ₂) ₂ - i-C ₃ H ₇
40	<u>Tabelle 1</u> : Fortsetzung	V	-CH3	-C2H5))H)-	-CF3				-CH2.	HD)-	5 -	.
45	Tabe	1100											

EP 0 528 156 A1

5													
		Zn	H	H	Ħ	H	н	H	Ħ	×	×	Ħ	Ħ
10						•		£	r_	ĺz.	f-	Œ.	lt.
15		7	[E.,	Ľ,	L .	ir,	E,	Ľ,	щ	14	4	ш.	14
		×	CI	CI	CI	C1	C1	CJ	C1	ເງ	CI	CI	C1
20													
25		Ω	0	0	0	0	0	0	0	0	0	0	0
30											,		
		æ	-cH3	-CH3	-cH ₃	-CH3				H ₂)3-	-(CH ₂);	H ₂ ¹ 2 -	H ₂) ₂ -
35	5 nn 3						2)4-	2)2-	-9(2	H ₃)-(C	н(сн3)	-CH-(C	(CH ₂) ₂ -CH-(CH ₂) ₂ - i-C ₃ H ₇
40	ortsetzung		m	2 ^H 5	1(CH ₃) ₂	ຸຕ	- (CH	-(CH ₂) ₅ -	HD)-	₂ -сн(с	H2)2-C	-(CH ₂) ₂ -CH-(CH ₂) ₂ - C ₂ H ₅	-(CH ₂) ₂
	다 ::	A	H)	-C ₂]	-CH	-CF3				-CH	- (د	ı	•
45	Tabelle												

EP 0 528 156 A1

5		Zn	6-C1	6-C1	6-C1	6-01	6-C1	6-C1	6-C1	6-C1	6-01	6-01	6 - C1
10		*	-CF3	-CF3	-cF3	-cF3	-CF3	-cF3	-cF ₃	-CF3	-CF3	-CF3	-CF ₃
15		×	-61	-C1	-C1	-C1	-C1	-C1	-01	-c1	-C1	-61	-C1
20													
25		Q	0	0	0	0	0	0	0	0	0	0	0
30		В	-cH ₃	-CH ₃	-CH ₃	-сн3				H ₂)3-	-(CH ₂) ₂ -	H ₂) ₂ -	.H2)2-
35	ortsetzung				H ₃) ₂		-(CH ₂) ₄ -	-(CH ₂) ₅ -	-(CH ²) ⁶ -	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH-(CH ₂) ₂ - C ₂ H ₅	-(CH ₂) ₂ -CH-(CH ₂) ₂ - i-C ₃ H ₇
40	F.	A	-CH ₃	-C2H2	-сн(сн ₃) ₂	-cF3	•	٠	•	-CH2-	- (CH ₂	Ü) -	ນ -
45	Tabelle												

5		$^{Z}_{n}$	H	-C1	н	-cH ₃	-	6-C1	×	€-сн3
10			-	9	т,	9	I	v		v
		+	CI	H	снз	Ħ	C	x	снз	I
15		×	ເງ	C1	CH ₃	снз	C1	C1	снз	снз
20		Ω	0	0	0	0	0	0	0	0
25	6	В	I	H	н	×	CH ₃	снз	снз	снз
30	ortsetzur	Ą	H	Ħ	н	н	CH ₃	снз	снз	снз
35	<u>Tabelle 1</u> : Fortsetzung									
40										

5											
10		Zn	6-C1	Ħ	6-CH ₃	æ	6-01	ж	6-CH3	Ħ	6-C1
15		+	н	CH ₃	H	ü	н	снз	ж	CJ	н
20		×	G G	снз	снз	CI	5	СН3	СНЗ	CJ	ប
25		Q	0	0	0	O	0	0	0	ស	ဟ
20	gun	B	Н	E	I	ж	×	æ	×	×	I
30	Fortsetz	Ą	CH3	c H ₃	СНЗ		\bigcirc	\bigcirc		Ħ	I
35	<u>Tabelle 1</u> ; Fortsetzung										

5										
10		2 _n	сн3 н	6-CH ₃	6-CH ₃	ĸ	6-01	ж	6-CH ₃	6-CH3
15		> -	снз	H	CH ₃	CJ	H	снз	Ħ	снз
20		×	снз	снз	СНЗ	C1	C]	снз	снз	CH3
20		Ω	ဟ	တ	ហ	လ	w	ß	ဟ	တ
25		_ മ	æ	æ	Ħ	I	H	н	Ŧ	H
30		Fortsetzung A	x	н	н	снз	снз	снз	снз	снз
35		Tabelle 1: Fo								

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3-Aryl-4-hydroxy- Δ^3 -dihydrofuran-Derivate der Formel (Ib) genannt:

40

5							-сн(сн ₃) ₂	:H(CH ₃) ₂	₁₃ 3	43)2-C2H5	$-c(cH_3)_2-cH(cH_3)_2$	-с(сн ₃₎₃	-ch-c ₄ H ₉ c ₂ H ₅	с(сн ₃) ₂ -сн ₂ с1	-c(cH ₂ C1) ₂	
10		R1	-CH3	-C2H2	-C3H2	-C4H9)HD-	-CH	-0(0	-0(0	-0(0	-CH2-	-CH-C	(C)	(C) -C	cH ₃
15		Zn	е-сн ³	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	6-CH3	6-CH ₃	€-СН ³	6-CH ₃	
20		¥	-CH ₃	-cH ₃	-CH3	-cH3	-CH3	-CH ₃	-сн3	-CH3	-сн3	-CH3	-сн3	-cH3	-cH3	
25		×	-CH ₃	-CH ₃	-CH ₃	-CH3	-CH ₃	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH ₃	-CH3	
30		D	0	0	0	0	0	0	0	0	0	0	0	0	0	
35		В	-cH ₃	-сн3	-сн3	-CH ₃	-cH ₃	-CH ₃	-CH ₃	-CH3	-сн3	-CH ₃	-CH ₃	-CH3	-cH ₃	
45	Tabelle 2 :	A	-cH3	-cH3	-cH ₃	-cH3	-CH3	-CH ₃	-CH ₃	-сн3	-CH ₃	-CH ₃	-снз	-CH ₃	-CH ₃	
	Tabe															

EP 0 528 156 A1

5		R1	-с(сн ₃) ₂ -сн ₂ осн ₃	$-c(cH_3)-(cH_2-0cH_3)_2$	-CH=C(CH ₃) ₂		H 4	H ₃ C H	\Diamond	<u></u>		-cH ₂	Z
15		Zn	€-сн3	6-CH ₃	€-сн3	€-сн3	6-CH ₃	€-сн ³	6-сн3	€н2-9	6-CH ₃	6-CH ₃	6-CH ₃
20		¥	-CH ₃	-CH3	-CH3	-сн3	-сн3	-CH ₃	-CH ₃	-сн3	-сн3	-CH3	-CH ₃
25		×	-CH3	-CH ₃	-сн3	-CH3	-cH3	-сн3	-cH ₃	-CH3	-CH3	-CH3	-CH ₃
30		D	0	0	0	0	0	0	0	0	0	0	0
35	bun:	В	-cH ₃	-cH ₃	-сн3	-сн ₃	-cH ₃	-снз	-сн ³	-CH ₃	-cH ₃	-снз	-CH ₃
40	Fortsetzung		۲	Ÿ	Y	Ÿ	ĭ	Ť	Ĩ	T	Ť	ī	ī
45	Tabelle 2:	A	-CH ₃	-CH ₃	-CH ₃	-CH ₃	-CH3	-CH ₃	-CH ₃	-CH ₃	-CH3	-CH ₃	-CH ₃

EP 0 528 156 A1

5		R1		-cH ₃	-C ₂ H ₅	-C3H7	-C4H9	-сн(сн ₃) ₂	-ch ₂ ch(ch ₃) ₂	-с(сн ³)3	-с(сн ₃) ₂ -с ₂ н ₅	$-c(cH_3)_2-cH(cH_3)_2$	-CH ₂ -C(CH ₃) ₃	-CH-C4 ^H 9 C2 ^H 5	-c(cH ₃) ₂ -cH ₂ c1	$\frac{-c(cH_2-c1)_2}{cH_3}$
15		z_n		6-CH ₃	€-СН3	6-CH ₃	6-CH ₃	6-CH ₃	6-сн ₃	€-сн3	6-CH ₃	6-CH3	6-CH3	6-CH ₃	6-CH ₃	6-CH ₃
20		Y		-cH ₃	-CH ₃	-CH3	-CH3	-CH3	-CH3	-CH3	-cH3	-cH3	-cH3	-CH ₃	-CH3	-сн3
25		×		-CH3	-CH3	-cH3	-cH3	-CH3	-CH3	-cH3	-CH3	-cH ₃	-CH3	-CH3	-CH3	-CH ₃
30		Q		0	0	0	0	0	0	0	0	0	0	0	0	0
35	Fortsetzung	В		-cH ₃	-cH ₃	-cH ₃	-cH ₃	-cH3	-cH3	-cH ₃	-CH ₃	-cH ₃	-CH3	-сн3	-CH ₃	- CH ₃
40	2	K		-C2H2	-c ₂ H ₅	-C2H5	-C2H5	-C2H5	-c ₂ H ₅	-C2H5	-C ₂ H ₅	-c ₂ H ₅	-C2H5	-C2H5	-C2H5	-C2H5
45	Tabelle		i e													

EP 0 528 156 A1

5		R1	-C(CH ₃) ₂ -CH ₂ OCH ₃	-c(cH ₃)-(cH ₂ -ocH ₃) ₂	-CH=C(CH ₃) ₂	4	# (#	н ³ с н	\Diamond			-cH ₂	2
15		Zn	6-CH ₃	6-CH ₃	6-CH ₃	€+CH ³	6-CH ₃	6-CH ₃	6-CH ₃	€-сн3	6-CH ₃	6-CH ₃	6-CH ₃
20		Α.	-CH3	EHD-	-CH3	-CH ₃	-CH ₃	-CH ₃	-CH3	-CH3	-CH3	-CH ₃	-CH3
25		×	-CH3	-CH ₃	-cH ₃	-CH ₃	-cH ₃	-CH3	-CH3	-CH3	-CH ₃	-CH ₃	-CH3
30		۵	0	0	0	0	0	0	0	0	0	0	0
35													
40	rtsetzung	В	-CH3	-CH ₃	-CH3	-CH3	-сн3	-cH ₃	-CH3	-CH ₃	-CH3	-CH3	-CH3
45	Tabelle 2: For	A	-C2H5	-C2H5	-C2H5	-C2H2	-C2H5	-C2H5	-C2H5	-C2H2	-C2H5	-C2H2	-C2H5

EP 0 528 156 A1

5		R1	-CH ₃	-C ₂ H ₅	-C3H7	-С4Н9	-CH(CH ₃) ₂	-сн ₂ сн(сн ₃) ₂	-с(сн ³) ³	-с(сн ₃) ₂ -с ₂ н ₅	$-c(cH_3)_2$ - $cH(cH_3)_2$	-сн ₂ -с(сн ₃) ₃	-CH-C4H9 C2H5	$-c(cH_3)_2-cH_2c_1$	-c(cH ₂ -c1) ₂ CH ₃
15		^{2}n	6 -CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6 - CH ₃
20		Y	-CH ₃	-cH ₃	-CH3	-CH3	-CH3-	-CH ₃	-CH3	-CH ₃	-CH ₃	-CH3	-CH ₃	-CH ₃	-CH ₃
25		×	-CH ₃	-CH3	-CH3	-CH3	-CH3	-cH ₃	-cH3	-cH ₃	-CH3	-cH ₃	-CH ₃	-CH ₃	-cH ₃
30		D	0	0	0	0	0	0	0	0	0	0	0	0	0
35	ortsetzung	В	-CH ₃	-cH ₃	-cH ₃	-сн3	-cH ₃	-сн3	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-CH ₃	-cH ₃	-сн ³
40	e 2: Forts	A	-сн(сн ³)2	-сн(сн ₃) ₂	-ch(ch ₃) ₂	-сн(сн ₃) ₂	-сн(сн ₃) ₂	-сн(сн3)5	-сн(сн3)2	-сн(сн ^{з)} 2	-cH(CH ₃) ₂	-сн(сн ³) ²			
45	Tabelle 2: F		Ç	טְ	ט	ບ	ט	1	υ	U -	O -	O-	Ÿ	<u>٠</u>	O I

EP 0 528 156 A1

5		R1	-c(cH ₃) ₂ -cH ₂ 0cH ₃	$-c(cH_3)-(cH_2-0cH_3)_2$	-CH=C(CH ₃) ₂		H	H_3c	\Diamond		<u></u>	-cH ₂	N N
15		Zn	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃	е-сн ³	6-CH3	6-сн3
20		Y	-CH3	-CH ₃	-CH3	-CH3	-CH3	-CH3	-CH3	-cH3	-CH ₃	-CH3	-CH ₃
25		×	-cH ₃	-CH ₃	-cH ₃	-cH ₃	-CH3	-сн3	-CH ₃	-CH ₃	-CH ₃	-CH ₃	-CH3
30		D	0	0	0	0	0	0	0	0	0	0	0
35	tsetzung	B	-сн ₃	-сн ₃	-cH ₃	-CH ₃	-снз	-cH ₃	-сн ₃	-cH ₃	-снз	-сн3	-CH ₃
40													
45	Tabelle 2: For	A	-сн(сн3)2	-CH(CH ₃) ₂	-CH(CH ₃) ₂	-CH(CH ₃) ₂	-CH(CH ₃) ₂	-CH(CH ₃) ₂	-сн(сн ³) ₂	-CH(CH ₃) ₂	-сн(сн ₃) ₂	-CH(CH ₃) ₂	-сн(сн ₃) ₂

EP 0 528 156 A1

5		R1	-cH ₃	-C ₂ H ₅	-C ₃ H ₇	-C4H9	-сн(сн ₃) ₂	$-cH_2cH(cH_3)_2$	-с(сн ₃) ₃	-с(сн ₃) ₂ -с ₂ н ₅	$-c(cH_3)_2-cH(cH_3)_2$	$-cH_2-c(cH_3)_3$	-CH-C4H9	C ₂ H ₅	$-c(cH_3)_2-cH_2c_1$	-с(сн ₂ с1) ₂ сн ₃
15		Zn	€-СН3	€-сн3	€-сн³	€но-9	6-сн3	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃	6-CH ₃		6-CH ₃	€ -СН ³
20		>	-CH3	-cH3	-cH3	-cH3	-CH3	-cH ₃	-cH ₃	-CH3	-CH3	-cH3	-CH3		-CH3	-cH3
25		×	-CH ₃	-CH3	-сн3	-CH ₃	-CH ₃	-CH3	-cH3	-CH3	-CH ₃	-cH ₃	-CH ₃		-CH3	-cH ₃
30		D	0	0	0	0	0	0	0	0	0	0	0		0	0
35	et zung	В	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-сн3	-cH ₃	-cH ₃	-сн3		-cH ₃	-cH ₃
40	<u> Tabelle 2</u> : Fortsetzung	A	-cF3	-CF3	-CF3	-CF3	-cF ₃	-CF3	-cF3	-CF3	-CF3	-CF3	-CF3		-CF3	-CF3
45	Tabell															

EP 0 528 156 A1

5		R ¹	с(сн ₃) ₂ -сн ₂ осн ₃	$c(cH_3) - (cH_2 - 0cH_3)_2$	-CH=C(CH ₃) ₂	(Ŷ	THE STATE OF THE S	ノ ∥		S		-сн2	
			, w	ี พ		ا س	່ ຫ			່ ຕ	, m	_m		_ღ
15		Z _n	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-сн3	6-CH ₃	6-CH ₃	6-CH ₃	е-сн ³	6-CH ₃	6 - CH ₃
20		٨	-CH ₃	-CH3	-CH3	-CH ₃	-cH3	-CH3	-cH3	-CH3	-cH ₃	-CH ₃	-CH ₃	-cH ₃
25		×	-CH3	-CH ₃	-CH ₃	-CH ₃	-cH ₃	-CH ₃	-cH ₃	-CH ₃	-cH ₃	-CH3	-CH ₃	-CH3
30		O	0	0	0	0	0	0	0	0	0	0	0	0
35	tsetzung	В	-снз	-снз	-снз	-сн ₃	-снз	-сн3	-сн3	-сн3	-снз	-cH3	-сн3	-cH ₃
40	: Fortse									ູຕ	ຸຕ	.ო	, m	, m
45	Tabelle 2: For	A	-CF3	-cF3	-CF3	-CF3	-CF3	-CF3	-CF3	-CF3	-CF3	-CF3	-CF3	- CF3

EP 0 528 156 A1

5		R1	-сн ₃	-C ₂ H ₅	-C3H7	-C4H9	-CH(CH ₃) ₂	-сн ₂ сн(сн ₃) ₂	-c(cH ₃) ₃	$-c(cH_3)_2-c_2H_5$	$-c(cH_3)_2-cH(cH_3)_2$	-сн ₂ -с(сн ₃₎₃	-CH-C4H9 C2H5	$-c(cH_3)_2$ - cH_2c_1	-c(cH ₂ C1) ₂ сн ₃
15		Zn	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃	6-CH ₃	€ −СН3	6-CH ₃	6-CH ₃	6-CH ₃
20		Y	-CH3	-CH ₃	-CH ₃	-CH ₃	-cH ₃	-CH ₃	-cH3	-CH3	-CH3	-CH3	-сн3	-CH3	-сн3
25		×	-CH ₃	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-cH3	-сн3	-CH3	-cH ₃	-CH3	-сн3
30		D	0	0	0	0	0	0	0	0	0	0	0	0	0
35	tzung	B	_	·	·	- -	 	 	 eri	l ST	l SSF	l 57	1	- 4	1
40	<u>Tabelle 2</u> : Fortsetzung	A	-(CH ₂) ₄ -	-(CH ₂) ₄ -	$-(CH_2)_4^-$	-(CH ₂)4-	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH2)4-	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH ₂) ₄ -
45	Tabell														

5	-	R1	-с(сн ₃) ₂ -сн ₂ осн ₃	-с(сн ₃)-(сн ₂ -осн ₃)	-CH=C(CH ₃) ₂		(E)	н ₃ с/н				-cH ₂	
						, I	l m		l m	m	m		l m
15		Zn	е-сн ³	6-CH ₃	6-CH ₃	6-CH ₃	6-сн3	€-сн3	6-сн ₃	€-СН3	е-сн ³	6-CH ₃	6-CH ₃
20		> -	-CH3	-CH ₃	-cH ₃	-сн3	-cH ₃	-сн3	-CH3	-CH ₃	-CH3	-CH ₃	-CH ₃
25		×	-CH ₃	-CH ₃	-CH ₃	-cH3	-cH ₃	-сн3	-CH ₃	-сн3	-сн3	-CH ₃	-CH ₃
30		D	0	0	0	0	0	0	0	0	0	0	0
35													
40 45	<u>Tabelle 2</u> ; Fortsetzung	A B	-(CH ₂) ₄ -	-(CH2)4-	-(CH2)4-	-(CH ₂) ₄ -	-(CH ²) ⁴ -	-(CH ₂) ₄ -					
	Tabe												

EP 0 528 156 A1

5		R1	-сн ₃	-C ₂ H ₅	-C ₃ H ₂	-С4Н9	-сн(сн ₃₎₂	, н ₂ сн (сн ³) ₂	:(CH ³)3	(CH ₃) ₂ -C ₂ H ₅	;(сн ³) ² -сн(сн ³) ²	:H2-C(CH3)3	-cH-c4H9 c2H5	с(сн ₃) ₂ -сн ₂ с1	-с(сн ₂ с1) ₂ сн ₃
15		Zn		·	•	•							6-CH ₃		9- сн3-9
20		Y	-CH3	-CH ₃	-CH ₃	-сн3	-CH ₃	-cH3	-CH3	-cH3	-cH3	-cH3	-сн3	-cH3	-сн3
25		×	-CH3	-CH3	-CH ₃	-CH ₃	-сн3	-CH3	-CH3	-CH3	-cH3	-CH3	-CH ₃	-CH3	-CH3
30		Q	0	0	0	0	0	0	0	0	0	0	0	0	0
35	gunz:	В	,	,	1	,	1	,	1		1	ı	1	ı	ı
40	2: Fortsetzung	A	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH2)-	-(CH ²) ² -	-(CH ²) ² -	-(CH2)2	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ²) ² -	-(CH ₂) ₅	-(CH ₂) ₅ -	-(CH ₂) ₅	-(CH ₂) ₅ -
45	Tabelle														

5			-с(сн ₃) ₂ -сн ₂ осн ₃	$-c(cH_3)-(cH_2-ocH_3)_2$	H3)2	A		<u></u>					
10		R1	-с(сн ³)	-C(CH ³)	-CH=C(CH3)5		T (н ₃ с н				-CH2	
15		Zn	6-CH ₃	6-CH ₃	6-CH ₃	6-CH3	6-сн3	6-CH ₃	6-CH ₃	6 - CH ₃	€-СН3	6-CH ₃	6 - CH ₃
20		*	-CH ₃	-cH ₃	-CH3	-CH3	-CH3	-сн3	-CH3	-CH3	-CH ₃	-CH3	-сн3
25		×	-CH3	-CH3	-cH3	-cH ₃	-CH3	-CH ₃	-CH3	-CH3	-CH3	-cH ₃	-CH3
30		D	0	0	0	0	0	0	0	0	0	0	0
35	bun	В											
40	Tabelle 2: Fortsetzung	A	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -
45	Tabelle												

EP 0 528 156 A1

5 10		R1	-CH ₃	-C2H5	-C3H7	-C4H9	-CH(CH ₃) ₂	-сн ₂ сн(сн ₃) ₂	-c(cH ₃) ₃	$-c(cH_3)_2-c_2H_5$	$-c(cH_3)_2-cH(cH_3)_2$	$-cH_2-c(cH_3)_3$	-CH-C4H9 C2H5	$-c(cH_3)_2-cH_2c_1$	-c(cH ₂ c1) ₂	снз
15		Z _n	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	^Е нэ-9	
20		Y	-cH3	-cH ₃	-cH ₃	-CH ₃	-CH ₃	-сн3	-cH ₃	-CH ₃	-cH ₃	-cH ₃	-CH ₃	-cH3	-cH ₃	
25		×	-CH3	-CH ₃	-CH3	-CH ₃	-CH ₃	-cH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH ₃	
30		Q	0	0	0	0	0	0	0	0	0	0	0	0	0	
35	ortsetzung	В	ı	ı	ŀ	1	1	ι	ı,	1	ı	1	I,	1	1	
40	2 F	A	-(CH ₂) ₆ -	-(CH ²) ⁶ -	-(CH ₂) ₆ -	-(CH ²) ⁶ -	-(CH ²) ⁶ -	-(CH ²) ⁶ -	-(CH ²) ⁶ -	-(CH ₂) ₆ -	-(CH ²) ⁶ -	-(CH ²) ^e .	-9(CH ²)-	-(CH ²)	-(CH ²) ^e -	
45	Tabelle															

5		R ¹	-с(сн ₃) ₂ -сн ₂ осн ₃	-c(cH ₃)-(cH ₂ -ocH ₃) ₂	-CH=C(CH ₃) ₂		(H)	H_3 C H				-cH ₂	
15		Zn			6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	€+CH ³	6-CH ₃	€-СН3	6-CH ₃
20		Y	-CH ₃	-CH ₃	-CH ₃	-CH3	-CH ₃	-CH ₃	-CH ₃	-CH3	-CH3	-CH3	-CH3
25		×	-CH3	-cH ₃	-cH ₃	-CH3	-CH ₃	-CH ₃	-сн3	-CH3	-CH3	-CH3	-cH ₃
30		Q	0	0	0	0	0	0	0	0	0	0	0
35	g un	В											
40	2: Fortsetzung	A	-(CH ₂) ₆ -	-(CH ²) ⁶ -	-(CH ₂) ₆ -	-(CH ₂) ₆ -	-(CH ₂) ₆ -	-(CH ²) ⁶ -	-(CH ²) ⁶ -	-(CH ²) ⁶ -	-(CH ₂) ₆ -	-(CH ²) ⁶ -	-(CH ²) ⁶ -
45	Tabelle 2	,											

EP 0 528 156 A1

5 10	-	₩.	-CH ₃	-c ₂ H ₅	-C ₃ H ₇	-C4H9	-сн(сн ³) ₂	-сн ² сн(сн ³) ²	-с(сн ³) ³	$-c(cH_3)_2-c_2H_5$	-с(сн ₃₎₂ -сн(сн ₃₎₂	-CH ₂ -C(CH ₃) ₃	-ch-c4H9 c ₂ H ₅	$-c(cH_3)_2-cH_2c_1$	-c(cH ₂ C1) ₂ cH ₃
15		Zn	6-CH ₃	6-CH ₃	6-CH ₃	€+2-9	€ -CH ³	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-снз	6 - CH ₃	6-CH ₃	6 - CH ₃
20		*	-CH3	-cH ₃	-CH ₃	-cH ₃	-CH3	-cH3	-cH3	-CH3	-cH3	-CH3	-CH ₃	-CH3	-CH ₃
25		×	-cH3	-CH ₃	-CH ₃	-CH ₃	-сн3	-cH3	-cH ₃	-cH3	-cH3	-cH3	-CH ₃	-CH ₃	-CH ₃
30		Q	0	0	0	0	0	0	0	0	0	0	0	0	0
35	Fortsetzung	В	-(CH ₂) ₃ -	-(CH ₂)3-	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-(CH ₂)3-	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-(CH ₂)3-	-(CH ₂)3-	-(CH ²) ³ -	-(CH ²) ³ -	-(CH ₂) ₃ -
40		A	-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-сн ₂ -сн(сн ₃)-(сн ₂)3-	-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-сн ² -сн(сн ³)-(сн ²) ³ -	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -
45	Tabelle 2:		Ť	Ĭ	Ĩ	ī	ī	Ī	1	1	•	1	t	1	1

EP 0 528 156 A1

5		R1	-c(cH ₃) ₂ -cH ₂ 0cH ₃	-с(сн ³)-(сн ² -осн ³) ²	-CH=C(CH ₃) ₂		# \(\frac{\pi}{2}\)	H_3 C H				-cH ₂	
15		Zn	6-CH3	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃
20		7-	-CH ₃	-cH3	-CH3	-cH3	-CH ₃	-CH3	-CH3	-CH3	-CH ₃	-CH ₃	-CH ₃
25		×	-CH3	-CH3	-cH3	-CH3	-CH ₃	-CH ₃	-cH ₃	-CH ₃	-CH3	-CH ₃	-cH ₃
30		D	0	0	0	0	0	0	0	0	0	0	0
35	6un2	В	CH ₂) ₃ -	сн ₂)3-	CH ₂)3-	CH ₂)3-	CH ₂) ₃ -	CH ₂)3-	сн ₂)3-	сн2)3-	CH ₂)3-	сн2)3-	сн ₂) з-
40	2: Fortsetzung	A	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-сн ² -сн(сн ³)-(сн ²) ³ .	-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	-сн ² -сн(сн ³)-(сн ₂) ₃ -	-сн ₂ -сн(сн ₃)-(сн ₂)3	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ -	-сн2-сн(сн3)-(сн2)3-
45	Tabelle		-CH2	-CH2	-CH2	-CH2	-CH2	-CH2	-CH ₂	-CH2	-CH2	-CH2	-CH2

EP 0 528 156 A1

5	R1	-CH ₃	-C ₂ H ₅	-c ₃ H ₇	-C4H9	-сн(сн ₃) ₂	-сн ₂ сн(сн ₃) ₂	-с(сн ³) ³	-с(сн ₃) ₂ -с ₂ н ₅	-с(сн ₃) ₂ -сн(сн ₃) ₂	-сн ₂ -с(сн ₃) ₃	-cH-C ₄ H ₉ C ₂ H ₅	-с(сн ₃) ₂ -сн ₂ с1	-с(сн ₂ с1) ₂ сн ₃
15	Zn	€-сн3	6-CH ₃	€-сн3	€-сн3	6-CH ₃	€-сн3	6-CH ₃	6 -CH ₃	6 CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃
20	>-	-CH ₃	-CH ₃	-cH3	-cH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-сн3	-CH3	-сн ³
25	×	-CH ₃	-cH ₃	-CH ₃	-CH ₃	-cH ₃	-CH ₃	-CH ₃	-CH ₃	-cH3	-cH3	-CH ₃	-CH3	-CH ₃
30	Q	0	0	0	0	0	0	0	0	0	0	0	0	0
35	Fortsetzung	3)-(CH ₂) ₂ -	$_3)^-(cH_2)_2^-$	$_3)^-(cH_2)_2^-$	$_3) - (CH_2)_2^-$	$_3) - (CH_2)_2^-$	CH(CH3)-(CH2)2-	CH(CH3)-(CH2)2-	сн(сн3)-(сн2)2-	сн(сн3)-(сн2)2-	CH(CH ₃)-(CH ₂) ₂ -	сн(сн ₃)-(сн ₂) ₂ -	сн(сн ₃)-(сн ₂) ₂ -	₁₃)-(CH ₂) ₂ -
40		-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	:H ₂) ₂ -сн(сн	:H ²) ² -сн(сн	:H ₂) ₂ -сн(сн	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ .	-(сн ²) ² -сн(сн	-(сн ₂) ₂ -сн(сн	-(сн ₂) ₂ -сн(сн	-(сн ₂) ₂ -сн(сн	-(сн ₂) ₂ -сн(сн	-(сн ₂) ₂ -сн(сн	-(сн ₂) ₂ -сн(сн	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -
45	Tabelle 2:)) -)) -)) -)) -) -)) -)-) -) -) -	- -	-) -	<u> </u>

EP 0 528 156 A1

5	R1	-c(cH ₃) ₂ -cH ₂ OCH ₃	$-c(cH_3)-(cH_2-ocH_3)$	-CH=C(CH ₃) ₂	\langle		H _{3C} H				-cH ₂	
15	2 _n	6-CH ₃	6-CH3	6-CH3	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	€н⊃-9	6-CH ₃	€-сн3	6-CH3
20	>-	-CH ₃	-CH ₃	-сн3	-CH3	-CH ₃	-сн3	-CH3	-CH3	-сн3	-CH3	-CH3
25	×	-CH3	-CH3	-CH3	-cH3	-CH ₃	-CH3	-CH3	-CH ₃	-CH3	-CH3	-cH ₃
30	Q	0	0	0	0	0	0	0	0	0	0	0
35	zung B	-(CH ₂) ₂ -	сн(сн ₃)-(сн ₂) ₂ -	сн(сн ³)-(сн ²) ² -	сн(сн³)-(сн²)²-							
40	2: Fortsetzung A B	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(cH ₂) ₂ -cH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(СН ₂) ₂ -СН(СН ₃)-(СН ₂) ₂ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	, 2-сн(снз)	, 2-сн(снз	, 2-сн(сн ₃)
45	Tabelle 2:	-(CH ₂	-(CH ₂	-(CH ₂	- (CH ₂	- (CH ₂	-(CH ₂	-(CH ₂	- (CH ₂	-(CH ²) ² -	-(CH ²) ² -	-(CH ²) ² -

EP 0 528 156 A1

5 10	R1	-сн3	-C ₂ H ₅	-C3H7	-C4H9	-CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	-с(сн ³) ³	-c(cH ₃) ₂ -C ₂ H ₅	$-c(cH_3)_2-cH(cH_3)_2$	-сн ² -с(сн ³) ³	-ch-c ₄ H ₉ c ₂ H ₅	-с(сн ₃) ₂ -сн ₂ с1	-с(сн ₂ с1) ₂ сн ₃
15	Zn	е-сн ³	6-CH ₃	€ −СН3	6-CH3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH3	6 - CH ₃				
20	Y	-cH ₃	-cH ₃	-CH3	-cH ₃	-CH3-	-cH ₃	-CH3	-cH ₃	-cH ₃	-cH ₃	-cH ₃	-CH3	-CH ₃
25	×	-CH ₃	-CH ₃	-cH3	-CH ₃	-CH3	-cH3	-CH3	-CH3	-CH3	-cH3	-cH ₃	-CH3	-сн3
30	Q	0	0	0	0	0	0	0	0	0	0	0	0	0
35 Du n 8	В)-(CH ₂) ₂ -	$-(CH_2)_2^-$	$-(CH_2)_2^-$	$(CH_2)_2^-$	$(CH_2)^2$)-(CH ₂) ₂ -)-(CH ₂) ₂ -	;)-(CH ₂) ₂ -	5)-(CH ₂)2-	5)-(CH ₂) ₂ -			
ob S: Fortsetzung	Ą	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -
9[13qe L		CH2) -	- (СН ₂	- (CH2	- (CH;	- (CH;	- (CH)	- (CH)	- (CH	H) -	- (CH	- (CH	- (CH	HD) -

EP 0 528 156 A1

5	R1	-с(сн3)2-сн20сн3	-с(сн ₃)-(сн ₂ -осн ₃)	-CH=C(CH ³) ₂	\langle	(H)	н ³ С			 }	CH2-	
15	Zn	6-CH ₃	€+2-9	6-CH ₃	6-CH ₃	6-CH ₃						
20	> -	-CH ₃	-снз	-сн3	-CH3	-снз	-CH ₃	-CH ₃	-CH ₃	-CH ₃	-CH3	-CH ₃
25	×	-CH ₃	-cH ₃	-cH3	-cH3	-CH ₃	-CH3	-cH3	-CH3	-CH3	-CH ₃	-CH3
30	ū	0	0	0	0	0	0	0	0	0	0	0
35	tung B)-(CH ²) ² -)-(CH ₂) ₂ -)-(CH ²) ² -)-(CH ₂) ₂ -							
40	2: Fortsetzung A B	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH(C ₂ H ₅)-(CH ₂) ₂ -
45	Tabelle 2:	-(CH ₂	- (CH ₂	-(CH ₂	- (CH ₂	- (CH ₂	-(CH ₂	- (CH ₂	-(CH ₂	- (СН ₂	- (CH ₂	- (CH2

EP 0 528 156 A1

5		R1	-CH ₃	-C2H5	-c ₃ H ₇	-C4H9	-сн(сн ₃) ₂	-cH ₂ cH(CH ₃) ₂	-c(cH ₃) ₃	-с(сн ₃) ₂ -с ₂ н ₅	-с(сн ³) ² -сн(сн ³) ²	$-cH_2-c(cH_3)_3$	-CH-C4H9	-C(CH ₃) ₂ -CH ₂ C1		-c(ch2c1)2 -c(ch2c1)2
15		Zn	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	,	6-CH ₃
20		> -	-CH ₃	-CH3	-cH3	-cH ₃	-CH3	-cH ₃	-cH3	-cH3	-cH ₃	-cH3	-CH ₃	-CH3	ז	-cH ₃
25		×	-CH ₃	-CH ₃	-CH3	-CH ₃	-CH3	-CH ₃	-CH3	-CH ₃	-CH3	-cH3	-CH3	-CH2	0	-CH ₃
30		D	0	0	0	0	0	0	0	0	0	0	0	C)	0
35	rtsetzung	æ	-C'+C'-(CH2)-	-C3H2)-(CH2)2-	$-c_{3H_7}$) - $(c_{H_2})_2$	-C3H7)-(CH2)2-	-C ₃ H ₇)-(CH ₂) ₂ -	$-c_3H_7$)- $(cH_2)_2$ -	$-c_3H_7$)- $(cH_2)_2$ -	$-c_3H_7$)- $(cH_2)_2$ -	-C3H7)-(CH2)2-	-C3H7)-(CH2)2-	-C ₃ H ₇)-(CH ₂) ₂ -	ייר (האט) ייר מ	1-031171 1011212	i-C ₃ H ₇)-(CH ₂) ₂ -
40	2: Fortse	¥			-(CH ₂) ₂ -CH(i-C ₃ ⁴	- (сн ₂) ₂ -сн(і-с ₃ ¹	-(CH ₂) ₂ -CH(i-C ₃ ł			-(CH ₂) ₂ -CH(i-C ₃ l				C	-(ch2)2-cn(1-c3	-(CH ₂) ₂ -CH(i-C ₃
45	Tabelle 2: Fo		HU	(CH2) -	- (CH ₂)	- (CH ₂	- (CH ₂	- (CH ₂	-(CH ₂	- (CH ₂	- (CH ₂	- (CH ₂	- (CH ₂	į	- (CH2	-(CH ₂

EP 0 528 156 A1

5	R1	-с(сн ₃) ₂ -сн ₂ осн ₃	$-c(cH_3)-(cH_2-0cH_3)$	$-CH=C(CH_3)_2$		TH CHI	H ₃ C _H	\bigcirc			-cH ₂	
15	Zn	6-CH3	6-CH ₃	6-CH ₃	6-CH ₃	6 - CH ₃	6-сн3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃
20	*	-CH3	-cH ₃	-cH ₃	-CH3	-cH ₃	-CH3	-CH3	-CH ₃	-CH3	-CH ₃	-сн3
25	×	-CH3	-cH3	-cH3	-CH3	-CH3	-CH3	-сн3	-сн3	-cH3	-CH3	-CH ₃
30	Ω	0	0	0	0	0	0	0	0	0	0	0
35	nng B	-(CH ₂) ₂ -	-(CH ₂) ₂ -	-(CH ₂) ₂ -	-(CH ₂) ₂ -	-2(СН2)-	i-c ₃ H ₇)-(CH ₂) ₂ -	i-c ₃ H ₇)-(CH ₂) ₂ -	i-c ₃ H ₇)-(CH ₂) ₂ -	$i - C_3 H_7) - (CH_2)_2^-$	$i-C_3H_7$)-(CH_2)2-	i-C ₃ H ₇)-(CH ₂) ₂ -
40	Tabelle 2: Fortsetzung A B	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	$-(CH_2)_2-CH(i-C_3H_7)-(CH_2)_2^-$	$-(CH_2)_2-CH(i-C_3H_7)-(CH_2)_2^-$	$-(cH_2)_2-cH(i-c_3H_7)-(cH_2)_2-$	-(CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	сн(і-с ₃ н ₇)	сн(і-с ₃ н ₇)	сн(і-с ₃ н ₇)	сн(і-с ₃ н ₇)	сн(i-с ₃ н ₇)	сн(і-С _З Н ₇)
45	Tabelle 2	-(CH ₂) ₂ -	-(CH ₂) ₂ -	-(CH ₂) ₂ -	-(CH ₂) ₂ -	-(CH ₂) ₂ -	-(CH ₂) ₂ -СH(-(CH ₂) ₂ -CH(-(CH ₂) ₂ -CH(-(CH ₂) ₂ -CH(-(CH ₂) ₂ -CH(-(СН ²) ² -СН(

5											
10		R1	CH3-	- _Э є (Єнэ)	CH3−	(CH ³) ³ C-	снз	(CH ³) ³ C-	CH3−	6-СН ₃ (СН ₃) ₃ С-	(сн ³) ² сн-
15		Zn	x	x	6-01	6-C1	×	н	6-CH ₃	6-CH ₃	⁶ -сн ³
20		>	C1	Cl	н	I	cH ₃	cH3	ж	Ħ	CH3
25		×	ប	CJ	CI	CI	СНЗ	снз	CH ₃	снз	CH3
30		Q	0	0	0	0	0	0	0	0	0
	bunz	æ	Ħ	н	I	H	Ξ	x	Ħ	Ħ	Η
35	: Fortsetzung	Ą	снз	CH3	CH3	CH3	CH3	CH3	CH3	снз	CH3
40	Tabelle 2:										

EP 0 528 156 A1

5	t c	Fp. C	CH ₃	ĺ	н3с-s-сн2-	\\ \\ \\ \\ \\	C2H5	оснз	
10	•	R	H ₃ C-0—	H DE H		P^`P	P^\P		OCH ₃
15	ı	z ^u Z	6-CH ₃	6-CH ₃	€но-9	6-СН _З	£н2-9	6-CH ₃	€+2-9
20		۲	CH3	CH3	снз	CH3	СНЗ	СНЗ	CH ₃
25		×	снз	снз	CH ₃	CH3	CH3	CH3	CH3
30		Q	0	0	0	0	0	0	0
	6un z	В	ж	æ	I	Ħ	Ħ	Ħ	ж
35	Fortsetzung	A	CH ₃	CH ₃	CH3	снз	снз	CH3	СН3
40	Tabelle 2:								

5						-э ^є (^Є нэ)		- ₂ E (§		-Э ^Е (ЕНЭ)		(CH ³) ³ C-	-HJ ² (EHJ)
10		R ₁	н ³ со–	−£H⊃	CH3-	(CH ₃	CH3-	(CH ₃	CH ₃ -				
15		2 _n	^Е НЭ-9	⁶ -СН ³	æ	×	6-C1	6-01	ж	ш	6-CH ₃	6-CH ₃	6-СН ₃
20		٨	CH3	снз	CJ	C1	н	н	CH3	снз	Ħ	Ħ	снз
25		×	снз	CH3	C1	ប	C1	CJ	CH ₃	снз	CH3	CH3	CH ₃
30		Ω	0	0	ဟ	ഗ	ဟ	ဟ	ဟ	ഗ	ဟ	0	0
	õunz	В	ж	Ħ	ĸ	x	I	Ħ	Ħ	Ħ	Ħ	-(CH ₂) ₅ -	-(CH ²) ² -
35	: Fortset	A	СНЗ	CH3	снз	CH ₃	снз	CH3	снз	cH ₃	CH ₃)) -)) -
40	Tabelle 2: Fortsetzung												

EP 0 528 156 A1

5		3-	13)2	CH2-	-с(сн ³) ²	CH ₂)8-	нз	Н _З	H ₃
10	ţ.	сн3-(сн2	c ₂ H ₅ -c(cH ₃) ₂	-э ^E (Eнэ)	(сн ³) ² сн	CH2=CH-(CH2)8-	c_1 c_1 c_1 c_2 c_1	CI CH ₃	=
15	2 _n	6-CH ₃	6-CH ₃	6-сн3	6-CH ₃	е-сн ³	6-CH ₃	е-сн ³	6-CH ₃
20	.	CH3	снз	СНЗ	CH ₃	снз	снз	CH3	CH3
25	×	CH3	CH ₃	CH ₃	CH3	снз	СНЗ	снз	снз
30	Ω	0	0	0	0	0	0	0	0
	gunz	Ħ	Ħ	Ħ	Ħ	Ħ	ж	н	ж
35	Fortset	CH ₃	CH ₃	CH ₃	снз	снз	CH3	CH3	CH3
40	Tabelle 2: Fortsetzung								

EP 0 528 156 A1

5		сн ³ -(сн ⁵)³-	C ₂ H ₅ -C(CH ₃) ₂	нз)зс-сн2-	(CH ₃) ₂ CH-C(CH ₃) ₂	2=CH-(CH ₂) ₈ -	H ₃ C C ₁₁	(сн ³) ³ с-	сн ₃ -	(сн ³) ² сн-	(СН ^З) ^З С-	CH ₃ -(CH ₂) ₃ -
	ra La											
15	2 _n	6-CH ₃	6-сн3	6-CH ₃	6-СН ₃	6-CH ₃	6-CH ₃	6-CH ₃	€ - СН ^З	6-CH ₃	6-CH ₃	6-CH3
20	}	СНЗ	снз	снз	cH_3	снз	СНЗ	ж	снз	снз	CH3	снз
25	×	СНЗ	снз	CH3	CH ₃	снз	снз	снз	СНЗ	СНЗ	CH ₃	CH ₃
30	Ω	0	0	0	0	0	0	ហ	ဟ	ဟ	ഗ	ဟ
	g gunz	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ₂)5-	-(CH ²)2	-(CH ²)2	-(CH ₂) ₅	Ħ	Ħ	x	ж	π
35	: Fortsetzung A B	D) -	D) -	י (פ	- (۵	- (כו	D) -	снз	CH ₃	CH3	снз	снз
40	Tabelle 2:											

EP 0 528 156 A1

10		R ¹	C2H5-C(CH3)3	(сн ³) ³ С-сн ² -	(сн ³) ² сн-с(сн ³) ²	CH ₂ =CH-(CH ₂) ₈ -	c1CH ₃	Cl CH ₃	H ₃ C-0—,	H ₃ C-0>CH ₃
15		2n	6-CH3	² СН ³	6-CH ₃	6-CH ₃	€ +СН ³	е-сн ³	6 - CH ₃	6-сн3
20		4	снз	снз	cH ₃	снз	снз	CH ₃	снз	СНЗ
25		×	СНЗ	CH3	CH ₃	снз	снз	CH3	снз	снз
30		0	ဟ	ဟ	ဟ	ဟ	ဟ	ហ	ហ	ഗ
	gunz	В	Ħ	н	Ξ	æ	x	Ħ	x	ж
35	Fortset	¥	снз	CH3	CH3	снз	снз	снз	снз	CH ₃
40	Tabelle 2: Fortsetzung									

EP 0 528 156 A1

5								
10		R1	H ₃ C	н ₃ с-s-сн ₂ -	() () () ()	C ₂ H ₅	OCH3	OCH ₃
15		Zn	6-CH ₃	6-СН3	6-CH ₃	6-CH ₃	6-CH ₃	6 - CH ₃
20		>-	CH ₃	CH ₃	СНЭ	CH ₃	снз	CH3
25		×	CH ₃	CH3	СНЗ	СНЗ	снз	CH ₃
30		Q	w	ဟ	ω	ω	ဟ	ဟ
	ôunz	а	æ	Ħ	Ξ	I	Ħ	Ħ
35	Fortset	A	снз	снз	CH3	снз	снз	CH ₃
40	<u>Tabelle 2</u> : Fortsetzung							

EP 0 528 156 A1

10	R ¹	CH ₂ =CH-(CH ₂) ₈ -	C1 C1 CH3	C1 CH ₃	H ₃ C-О—, С Н ₃ С СН ₃	H ₃ C-0 CH ₃	H ₃ C → H ₃ C	H ₃ C-S-CH ₂	C Harris
15	Zn	6-сн3	6-CH ₃	6-CH ₃	6-CH ₃	6-сн3	6-CH ₃	6-CH ₃	6-CH ₃
20	,	СНЗ	CH ₃	CH3	снз	снз	снэ	снз	CH ³
25	×	CH3	CH ₃	CH3	снз	CH ₃	СНЗ	CH ₃	CH3
30	Ω	0	0	0	0	0	0	0	0
	g ôunz	СНЗ	снз	снэ	снз	снз	снз	снз	CH3
35	Fortset	CH3	снз	CH ₃	снз	CH3	снз	снз	снэ
40	<u>Tabelle 2</u> : Fortsetzung A B								

EP 0 528 156 A1

5			C2H5	осн3	\downarrow				3C-	
10	,	R1			OCH ₃	н ³ со–	CH3-	cH₃−	-э ^є (Енэ)	CH3-
15		Zn	6-CH ₃	6-CH ₃	€н⊃-9	6-сн ₃	€-сн3	Ħ	Ħ	6-C1
20		A	снз	CH3	CH ₃	CH3	снз	C1	CJ	н
25		×	CH3	CH3	СНЗ	снз	снз	CJ	CJ	C1
30		۵	0	0	0	0	0	0	0	0
	tzung	В	CH3	CH3	CH ₃	СНЗ	снз	-(CH ²) ² -	-(CH ₂) ₅ -	-C(H ₂) ₅ -
35	. Fortsel	A	CH ₃	СНЗ	CH ₃	CH3	CH3	1	1	1
40	<u>Tabelle 2</u> : Fortsetzung	-								

5			<u> </u>											ျာ
10		R1	H,000	CH ₃ -	CH3−	-э ^E (Енэ)	cH3⁻	-э ^є (Енэ)	cH3-	-э [£] (Енэ)	cH₃-	(CH ³) ³ C-	(сн ³) ⁵ сн-	$^{\text{CH}_3}$ - $^{\text{CH}_2})^{^3}$ -
15		Zn	6-CH ₃	6-CH ₃	æ	I	6-C1	6 - C1	æ	н	e-ch3	6-CH ₃	€-сн3	6-CH ₃
20		Å	CH ₂	CH ₃	ប៊	CJ	н	Ħ	снз	€нэ	H	Ħ	снз	CH ₃
25		×	CH	CH ³	C1	Cl	CJ	CJ	снз	CH ₃	снз	CH ₃	CH3	CH3
30		D	ဟ	ဟ	0	0	0	0	0	0	0	0	0	0
	ôun	В	m	ж	CH3	снз	CH3	снз	CH ₃	СНЗ	снз	снз	снз	CH3
35	Fortsetzung	A	H	CH ₃	CH ₃	CH3	CH ₃	CH ₃	CH ₃	сн ₃	снз	CH ₃	снз	CH ₃
40	Tabelle 2:													

EP 0 528 156 A1

5									
10		R1	н ³ с-s-сн ²	CH ₃	C _{C2} H ₅	OCH ₃	OCH ₃	H ₃ co	CH₃-
15		2 ^u 2	€н⊃-9	6-CH ₃	€-СН3	6-СН3	6-CH ₃	6-CH ₃	æ
20		Y	CH ₃	снз	CH ₃	снз	снз	снз	CI
25		×	CH3	снз	CH3	CH ₃	CH ₃	снз	Cl
30		0	0	0	0	0	0	0	0
35	<u>Tabelle 2</u> : Fortsetzung	A B	-(CH ²) ² -	-(CH ₂) ₅	-(CH ²) ² -	H			
40	abelle 2:								
45	H	l							

5									
10		R ¹ (CH2)2C-			- 18 (CH3)	сн ³ -	-2 ⁸ (EH3)	сн ³ -	-2 ^E (EH2)
15		Z _n	: .	1 0	12-9	æ	ш	6-CH ₃	€н ⊃ -9
20		× 5	.	= :	Œ	CH ₃	снз	æ	æ
25		× 5	;		ប៊	CH3	снэ	снз	CH3
30		0	o '	0	0	0	0	0	0
35	<u>Tabelle 2</u> : Fortsetzung	B :			Ţ (H	H	Ħ	#
40	Tabelle 2:								

EP 0 528 156 A1

5	R1	CH ₃ -	. сн ₃) ₂ сн-	-э ^ε (снз)	сн3-(сн2)3-	C2H5-C(CH3)2	(сн ₃) ₃ с-сн ₂ -	сн ³) ² сн-с(сн ³) ²
15	Zn	6-сн ³	€-СН3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	€-сн3
20	>	снз	CH ₃	CH3	CH ₃	снз	снз	снз
25	×	CH3	CH ₃	снз	CH3	снз	CH3	CH3
30	Ω	0	0	0	0	O	0	0
35	<u>Tabelle 2</u> : Fortsetzung A B	# (T)	H	H	H	THE CONTRACTOR OF THE CONTRACT	H	H
40	abelle 2:							
45	Ä	i						

EP 0 528 156 A1

5	R ¹	(снз)зс-	CH ³ -	-э ^є (сн ³)	сн ₃ -	C1 CH ₃	н ₃ с-о—, с Н ₃ с сн ₃	H ₃ C-0	H ₃ C
15	2 _n	6-01	ж	н	6-CH3	6-CH ₃	6-CH ₃	6-CH ₃	6-сн3
20	٨	н	снз	снз	Ħ	CH ₃	СНЗ	CH ₃	cH ₃
25	×	C1	снз	СНЗ	снз	CH ₃	CH3	CH3	CH3
30	û B	-(CH ₂) ₅ - 0	$-(CH_2)_5^-$ 0	-(CH ₂) ₅ - 0	-(CH ₂) ₅ - 0	2)5- 0	2)5- 0	2)5- 0	-(CH ₂) ₅ - 0
35	Fortsetzu	HD) -	HO) -	- (CH	- (CH	- (CH ₂) ₅ .	- (CH ²) ²	-(CH ₂) ₅ -	но) -
40	<u>Tabelle 2</u> ; Fortsetzung A B								

EP 0 528 156 A1

5		CH ₂ =CH-(CH ₂)8-	C1 CH ₃ CH ₃	C1 C1 CH3	H ₃ C-O-C,	H ₃ C-0—, CH ₃	H ₃ C → H ₃ C	н ₃ с-s-сн ₂ -
10	R1				±°			
15	^u z	6-CH ₃	6-CH ₃	6-сн ₃	6-CH ₃	€н⊃-9	6 - CH ₃	6-CH ₃
20	> -	СНЗ	снз	CH3	CH ₃	CH3	CH3	CH3
25	×	СН _З	CH3	снз	CH3	CH3	CH3	CH ₃
30	D A	0	0	0	0	0	0	0
35	Tabelle 2: Fortsetzung A B	H			T		T	
40	Tabelle							

5		CH ₃	CZHS	осн3	人		
10	R1				н ³ со	н ³ со-	CH3-
15	2 u	6-CH ₃	6-CH3	6-сн3	6-сн ₃	^Є но-9	6-сн3
20	>-	CH ₃	снз	CH ₃	CH ₃	CH ₃	СНЗ
25	×	CH3	CH ₃	CH3	CH ₃	CH3	СНЗ
30	Q	0	0	0	0	0	o
35	2: Fortsetzung A B	Ŧ	THE COLUMN	T	π	#	H
40	Tabelle 2:						

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3-Aryl-4-hydroxy- Δ^3 -dihydrofuran-Derivate der Formel (Ic) genannt:

EP 0 528 156 A1

5															
	(R ²	-cH3	-сн3	-CH3	-сн3	-CH3	-сн3	EHD-	-cH ₃	-сн3	-CH ₃		-cH ₃	
10		Σ	0	0	0	0	0	0	0	0	0	0		0	
15		١٦	0	0	0	0	0	0	0	0	0	0		0	
20		Zn	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	€H⊃-9	€-сн3	€н2-9		€ CH ³	
25		>-	-CH3	-cH3	-CH3	-cH3	-CH3	-CH3	-CH3	-CH3		-CH3		-CH3	
30		X	0 -сн3	o -ch3	0 -CH ₃	O -CH ₃	0 -CH ₃	o -CH ₃	0 -CH ₃	O -CH3	0 -CH3	o -cH3		0 -CH ₃	
35		В	-CH ₃	-CH ₃	-снз	-cH ₃				(CH ₂) ₃ -)-(CH ₂) ₂ -	2		2,5-	
40	Tabelle 3:	A	-CH3		0	-CF3	-(CH ²)4-	-(CH ₂) ₅ -	-(CH ₂) ₆ -	-сн ₂ -сн(сн ₃)-(сн ₂) ₃ .	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	$-(CH_2)_2-CH-(CH_2)_2$	C2H5	-(CH ₂) ₂ -CH-(CH ₂) ₂ -	i-C ₃ H ₇
45	Tabe				ī					-CH	но) -	HD) -		- (CF	

EP 0 528 156 A1

5															
		R ²	-C2H5	-C2H5	-C2H5	-c ₂ H ₅	-C2H5	-C2H5	-C2H5	-c ₂ H ₅	-C2H5	-C2H2		-C2H5	
10		Σ	0	0	0	0	0	0	0	0	0	0		0	
15		נ	0	0	0	0	0	0	0	0	0	0		0	
20		Zn	6-CH ₃	6-CH3		6-CH ₃		6-CH3	€н2-9	6-CH ₃	6-CH ₃	€+2-9		6-CH ₃	
25		4	-CH ₃	-cH ₃	-CH3	-CH3	-сн3	-CH3	-CH3	-CH3	-CH3	-CH3		-CH3	
		×	-cH3	-CH3	-cH3	-CH3	-CH3	-сн3	-CH3	-CH3	-CH ₃	-CH3		-cH ₃	
30		Q	0	0	0	0	0	0	0	0	0	0		0	
35	tsetzung	В	-CH3	- CH ₃	-cH ₃	-CH3	ı	ı	1	-(CH ₂) ₃ -	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	H2)2-		.H ₂) ₂ -	
40	Tabelle 3: Fortsetzung	Ą	-دHع	-C2H5	-CH(CH ₃) ₂ -CH ₃	-cF ₃	-(CH ₂)4-	-(CH ₂)5-	-(CH ₂)6-	-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	н ₂) ₂ -сн(сн	-(CH ²) ² -CH-(CH ²) ² -	C2H5	-(CH ₂) ₂ -CH-(CH ₂) ₂ -	i i-C ₃ H ₇
45	Tabe				ı			•		Ď-	: :	(G		- (۵	

EP 0 528 156 A1

5		R ²	-сн(сн ₃) ₂	1(CH ₃) ₂	-сн(сн ₃) ₂	4(CH ₃) ₂	1(CH ₃) ₂	-сн(сн ₃) ₂	-сн(сн ³) ²	-сн(сн ₃) ₂	-сн(сн ³) ₂	-сн(сн ₃₎ 2	-ch(ch ₃) ₂
10		Σ	0 - 0	٠ - د	0	ن- 0	1)- 0	0 - C	0 -C	0 -C!	0 -C!	0	0
15		נ	0	0	0	0	0	0	0	0	0	0	0
20		Zn	€н⊃-9	⁶ -сн ³	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	6-CH3	6-CH3	6-CH3	6-CH ₃	€н⊃-9
25		X		-CH3		-CH ₃	-CH3	-CH3	-cH ₃				-CH ₃
30		×	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH ₃	-CH ₃
		۵	0	0	0	0	0	0	0	0	0	0	0
35	Fortsetzung	В	-cH ₃	-cH3	-cH ₃	-cH ₃	1	ı	ı	-(CH ₂) ₃ -	СН ₃)-(СН ₂)2-	(CH ₂) ₂ - 5	(CH ₂) ₂ -
40	Tabelle 3: Fo	¥	-cH3	-C2H5	-сн(сн ₃) ₂	-CF3	-(CH ₂)4	-(CH ₂)5-	-(CH ₂)6-	-сн ₂ -сн(сн ₃)-(сн ₂) ₃	- (сн ²) ² -сн(сн	- (СН ₂)2-СН-(С С2Н5	-(CH ₂) ₂ -CH-(C i-C ₃ H ₇
45	Tabe				'					-CH	- (CH	- (CH	- (CE

EP 0 528 156 A1

		1													
5		R ²	0 -0CH ₂ -CH(CH ₃) ₂	-0CH2-CH(CH3)2	-0CH ₂ -CH(CH ₃) ₂	-0CH ₂ -CH(CH ₃) ₂	-осн ₂ -сн(сн ₃) ₂	-0CH ₂ -CH(CH ₃) ₂	-осн ₂ -сн(сн ₃) ₂	-0CH ² -CH(CH ³) ²	-0CH ₂ -CH(CH ₃) ₂	0 -0CH ₂ -CH(CH ₃) ₂		0 -0CH ₂ -CH(CH ₃) ₂	
10		Σ	0 -0CH2	0 -0CH2	0 -0CH2	0 -0CH ₂	0 -0CH ₂	0 -осн		0 -0CH					
15		u	0	0	0	0	0	0	0	0	0	0		0	
20		Zn	6-CH3	6-CH3	£но-9	6-CH3	6-CH ₃	6-CH ₃	€-CH3	6-CH ₃	6-CH3	6-CH ₃		€H⊃-9	
25		¥	-сн3	-сн3	-CH3	-CH3	-cH3	-CH3	-cH ₃	-cH3	-CH3	-CH3		-CH3	
		×	-CH3	-CH3	-CH3	-cH3	-cH3	-CH ₃	-cH ₃	-CH3	-CH3	-CH3		-cH3	
30		Ω	0	0	0	0	0	0	0	0	0	0		0	
35	Fortsetzung	മ	-сн3	-cH ₃	-CH ₃	-CH ₃				(CH ₂) ₃ -)-(CH ²) ² -	-2(2)		-2,2,	
40		Ą	-CH ₃		N	1	-4	-(CH ₂)5-	-(CH ₂) ₆ -	-сн ₂ -сн(сн ₃)-(сн ₂)3-	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH-(CH ₂) ₂ -	c ₂ H ₅	-(CH ₂) ₂ -CH-(CH ₂) ₂ -	i -C ₃ H ₇
45	Tabelle 3:				Ď					-CH2	- (CH ₂	- (CH;		- (CH;	

EP 0 528 156 A1

5	R ²	-сн(сн ₃)-с ₂ н ₅	-сн(сн _з)-с ₂ н ₅	-сн(сн ³)-с ⁵ н ²	-сн(сн ₃)-с ₂ н ₅	-сн(сн ³)-с ² н ⁵	-сн(сн ³)-с ⁵ н ²	-сн(сн ₃)-с ₂ н ₅	-сн(сн ₃)-с ₂ н ₅	-сн(сн ₃)-с ₂ н ₅	сн(сн ³)-С ^{2н} 5		-сн(сн ₃)-с ₂ н ₅
10	Σ	0	0	0	0	0	0	0	0	0	0		0
15	ų	0	0	0	0	0	0	0	0	0	0		0
20	2 _n	6-CH ₃	€-сн3	6-CH ₃	€-сн3	6-CH3	е-сн ³	€-сн3	6-CH ₃	6-CH ₃	6-CH ₃		6-сн3
	> -	-CH3	-CH3	-cH3	-CH3	-сн3	-cH3	- cH3-	-cH3	-сн3	-сн3		-сн3
25	×	-CH3	-CH3	-сн3	-cH3	-cH ₃	-CH3	-CH3	-cH ₃	-cH3	-cH ₃		-сн3
30	Q	0	0	0	0	0	0	0	0	0	0		0
35	Fortsetzung B	-cH ₃	-CH ₃	-сн ₃	-снз				-(CH ₂) ₃ -	3)-(CH ₂)2-	$-(CH_2)_2-CH-(CH_2)_2^-$		⁴ 2)2 ⁻
40	Tabelle 3: For	-CH ₃	-C2H5	-сн(сн ₃) ₂	-CF3	-(CH ₂) ₄ -	-(CH ₂) ₅ -	-(CH ₂) ₆ -	-сн ₂ -сн(сн ₃)-(сн ₂)3-	₂) ₂ -ch(ch ₅	2)2-CH-(CH-	5.2	-(CH ₂) ₂ -CH-(CH ₂) ₂ - i-C ₃ H ₇
45	Tabel			Ÿ					-CH;	- (CH,	- (CH;		- (CH;

EP 0 528 156 A1

5		R ²	-сн ² -с(сн ³) ³	-CH ₂ -C(CH ₃) ₃	-CH ₂ -C(CH ₃) ₃	-сн ₂ -с(сн ₃₎₃	-cH ₂ -c(CH ₃) ₃	-сн ₂ -с(сн ₃) ₃	-сн ₂ -с(сн ₃₎₃	-CH ₂ -C(CH ₃) ₃			
10		Σ	0	0	0	0	0	0	0	0	0	0	0
15		ı	0	0	0	0	0	0	0	0	0	0	0
20		Zn	6-CH3	6-CH ₃	€ но - 9	6-CH ₃	6-CH ₃	€HD-9	6-CH ₃	6-CH3	6-CH3	€н2-9	6-СН3
25		>-	-cH3	-CH3	-CH3	-CH3	-CH3	-CH3	-cH3	-cH3	-CH3	-сн3	-CH ₃
		×	-CH3	-CH3	-сн3	-CH3	-CH3	-сн3	-CH3	-CH3	-cH3	-сн3	-CH ₃
30		۵	0	0	0	0	0	0	0	0	0	0	0
35	rtsetzung	В	-сн3	-cH ₃	-cH ₃	-cH3	ı	ı	ı	-(CH ₂) ₃ -	$-(cH_2)_2-cH(cH_3)-(cH_2)_2-$	H ₂ ,2-	Н2)2-
40	<u>Tabelle 3</u> : Fortsetzung	Ą	-CH ₃	-C2H5	-сн(сн3)5	- cF3	-(CH ₂)4-	-(CH ₂) ₅ -	-(CH ₂) ₆ -	-CH2-CH(CH3)-(CH2)3-	2)2-CH(CH	-(CH ₂) ₂ -CH-(CH ₂) ₂ - C ₂ H ₅	$-(CH_2)_2 - CH - (CH_2)_2 - I_3 - $
45	Tabe				ĩ					HD-	HD) -	- (СН	HD) -

EP 0 528 156 A1

5										\bigcirc \Box	
		R ²	-CH2-	-cH2-	-cH2-	-cH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-
10		Σ	0	0	0	0	0	0	0	0	0
15		ı	0	0	0	0	0	0	0	0	0
20		2 _n	6-CH ₃	6-СН3	^Е но-9	€н2-9	6-CH3	6-CH ₃	6-CH3	6-CH3	€H⊃−9
25		¥	€нэ-	-cH ₃	-cH ₃	-cH ₃	-CH3	-cH3	-CH ₃	-CH ₃	-CH ₃
20		×	-сн3	-сн3	-CH3	-cH3	-сн3	-сн3	-cH ₃	-cH3	-CH3
30				•	0	0	0	0	0	0	0
35	ŝunz	Ω	0	0			J	S	J		
40	Fortsetzung	£	-CH3	-CH3	2 -CH3	-CH3	2)4-	2) 5 -	2)6-	нз) - (сн))-(^Е НЭ)
	Tabelle 3:	Ą	-CH3	-C2H5	-сн(сн³)	-CF3	- (CH ₂	- (CH ₂	- (CH ₂	-сн ² -сн(сн ³)-(сн ²)3-	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -
45	Tab		[Ÿ))-

EP 0 528 156 A1

5		(H	Î Î	~C4H9 C2H5	C2H5	.c.4H9 .c.2H5	C4H9 C2H5	C4H9 C2H5	2H5	C4H9 C2H5
10	ж 2	-CH ₂	-CH ₂	сн2-сн	-сн2-сн	-сн2-сн	-сн2-сн	-CH2-CH	о -сн ₂ -сн	CH2-CH
·	Σ	0	0	0	0	0	0	0	0	0
15	ر د	0	0	0	0	0	0	0	0	0
20	u _Z	6-CH ₃	€-СН ³	6-CH ₃	6-CH ₃	6-CH ₃	6-СН ₃	6-CH ₃	€но-9	€+2-9
25	¥	-CH ₃	-CH ₃	-CH3	-CH3	-сн3	-CH ₃	-сн3	-сн3	-CH ₃
30	×	-CH3	-CH ₃	-CH ₃	-cH ₃	-CH3	-CH3	-CH3	-cH ₃	-CH3
	Q	0	0	0	o	0	0	0	0	0
35	set zung B	-2-	-2	-сн3	-сн3	-CH ₃	-cH ₃			
40	<u>Tabelle 3</u> : Fortsetzung A B	-(CH ₂) ₂ -CH-(CH ₂) ₂ C ₂ H ₅	-(CH ₂) ₂ -CH-(CH ₂) ₂ i-C ₃ H ₇		-C2H5 -(-сн(снз)5 -	-CF3 -(-(CH ₂) ₄ -	-(CH ₂) ₅ -	-(CH ²) ⁶ -
45	Tabel1	- (CH ₂)	- (CH ₂)			ָ [֡]				

EP 0 528 156 A1

5	(R ²	-CH ₂ -CH	$-CH_2-CH$	-CH2-CH -CH2-CH	-CH2-CH				
10		Σ	0	0	0	0	0	0	0	0
15		٦	0	0	0	0	0	0	0	0
20		Zn	€-сн³	6-сн3	6-CH ₃	6-CH ₃	6-CH ₃	€но-9	€н⊃-9	€н⊃-9
25		۲	-сн ³	-cH3	-cH3	-cH3	-CH3	-CH3	-cH3	-cH ₃
		×	-cH3	-cH3	-cH3	-cH3	-CH ₃	-снз	-cH ₃	EHD-
30		a	0	0	0	0	0	0	0	0
35	âunz.		.e (s	2H ₂ 2-		1	ю	ო	ო	m
40	le 3: Fortsetzung	A B	-CH ₂ -CH(CH ₃)-(CH ₂)3-	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(cH ₂) ₂ -cH-(cH ₂) ₂ -	, 2 - CH - (CH ₂) 2	1-С ₃ н7 -СН ₃ -СН _.	-C ₂ H ₅ -CH ₃	-сн(сн ₃) ₂ -сн ₃	-CF3 -CH3
45	Tabelle 3:		-CH2	- (CH ₂	- (CH ₂	- (CH ₂)	

10	R2							
70	Σ	0	o	0	0	0	0	0
15	u	0	0	0	0	0	0	0
20	u _Z	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	€-СН3	6-сн3
25	4	-CH3	-CH3	-CH3	-CH3	-CH3	-cH3-	-cH ₃
30	×	-CH3	-cH ₃	-cH3	-cH3	-cH3	-CH3	-CH ₃
	Q	0	0	0	0	0	0	0
35	setzung B				CH2)3-	-(CH ₂) ₂ -	-2,2	-2,2
40	Tabelle 3: Fortsetzung A B	-(CH ₂) ₄ -	-(CH ₂)5-	-(CH ²) ⁶ -	-сн ² -сн(сн ³)-(сн ²)3-	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH-(CH ₂) ₂ -	-(CH ₂) ₂ -CH-(CH ₂) ₂ - i-C ₂ H ₇
45	Tabelle	·	-		-CH2-	-(CH ₂)	(CH2)-	-(CH ²)

EP 0 528 156 A1

5		Ω.	2	Į.	ı,	S	ın.	Į,	ıs	ر ا	, sp	Ϊδ
10	R ²	-C2H5	-c ₂ H	-c ² H	-C2H	-C2H5	-c ² H	-С ² Н	-С ₂ н	-C2H5	-C2H5	-C2H2
	Σ	v	ហ	ស	ស	ហ	ស	ហ	ស	ဟ	w	ω
15	니	0	0	0	0	0	0	0	0	0	0	0
20	u _Z	6-CH ₃	6-CH ₃	6-CH ₃	6-CH3	6-сн3	€-сн3	6-CH ₃		6-CH3	€-сн ³	6-CH ₃
25	*	-CH3	-cH3	-CH3	-cH3	-CH3	-CH3	-cH3	-CH3	-CH3	-CH ₃	-сн3
	×	-CH3	-CH3	-сн3	-cH3	-сн3	-cH3	-CH3	-CH3	-CH3	-сн3	-CH ₃
30	٥	0	0	0	0	0	0	0	0	0	0	0
35 00 n n n n n n n n n n n n n n n n n n	В	н3	нз	нз	нз				н ₂)3-	(CH ₂) ₂ -	-(CH ₂) ₂ -CH-(CH ₂) ₂ - C ₂ H ₅	; 2
Tabelle 3: Fortsetzung	A	E.F.	-C ₂ H ₅ -CH ₃	H ₃) ₂ -C	F3 - C	CH ₂) 4 -	CH ₂)5-	-(CH ₂) ₆ -	сн ³)-(с	сн(сн3)-	сн-(сн ₂) С ₂ н ₅	-(CH ₂) ₂ -CH-(CH ₂) ₂ - i-c ₃ H ₇
9 [1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 1 9 1 1 1 1 1 1 1 1 1 1		ָם י	Ϋ́	-כא(כו	ָ ק	-	1	1	-сн ² -сн	.(CH ²) ² -	(CH ₂) ₂ -	·(CH ₂) ₂ -
H										1	,	,

EP 0 528 156 A1

5		R ²	-сн(сн ₃) ₂	-ch(ch ₃) ₂	-сн(сн ₃) ₂	-ch(ch ₃) ₂	-сн(сн ³)2	-сн(сн ³) ₂	-ch(ch ₃) ₂	-сн(сн ³)2	-ch(ch ₃) ₂	-сн(сн ₃₎₂	-CH(CH ₃) ₂
10		Σ	ທ	ഗ	ဟ	ហ	w	ဟ	ທ	ဟ	ហ	ဟ	ω
15		ר	0	0	0	9	0	0	0	0	0	0	0
20		Zn	e-ch3	6-CH ₃	6-CH ₃	е-сн ³	6-CH3		6-CH ₃			€н⊃-9	6-снз
25		>-	-CH3								-сн3	-CH ₃	-CH ₃
30		×	-CH ₃	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH ₃	-CH ₃
		Q	0	0	0	0	0	0	0	0	0	0	0
35	ortsetzung	В	-CH3	-CH3	cH3-	-CH ₃	4-	5-	_9(3)-(CH ₂)3-	сн ₃)-(сн ₂) ₂	(CH ₂) ₂ -	(CH ₂) ₂ -
45	Tabelle 3: Fortsetzung	A	-CH3	-C2H5	-CH(CH ₃)	-cF3 -cH3	-(CH ₂)4-	-(CH ₂) ₅ -	-(CH ₂)6-	-CH ₂ -CH(CH ₃)-(CH ₂)3-	-(cH ₂) ₂ -cH(CH ₃)-(CH ₂) ₂ -	-(сH ₂)2-СH-(СH ₂)2- С ₂ H ₅	-(CH ₂) ₂ -CH-(CH ₂) ₂ - i-C ₃ H ₇

EP 0 528 156 A1

		1												
5			-сн ² -сн(сн ³) ²	-сн ₂ -сн(сн ₃) ₂	-сн ₂ -сн(сн ₃) ₂	-сн ² -сн(сн ³) ²	-сн ₂ -сн(сн ₃) ₂	-сн ₂ -сн(сн ₃) ₂	-сн ₂ -сн(сн ₃) ₂	-сн ² -сн(сн ³) ²	-CH ₂ -CH(CH ₃) ₂	-сн ₂ -сн(сн ₃) ₂		-ch ₂ -ch(ch ₃) ₂
10		R ²	-cH2-ci	-cH2-cl	-CH2-C	-2H2-€	-CH2-C	-сн ² -с	-сн ₂ -с	-CH2-C	-СH2-С	-сн ₂ -с		-сн ² -с
		Σ	ဟ	ທ	ဟ	ഗ	ທ	ഗ	ဟ	ဟ	ဟ	ဟ		ဟ
15		u	0	0	0	0	0	0	0	0	0	0		0
20		2n	€-сн ³	6-CH ₃	£нр-9	6-CH ₃	6-CH ₃	6-CH3	€-сн3	€н2-9	6-CH ₃	€HJ-9		6-сн3
25		٨	-CH3	-cH3	-CH3	-cH ₃	-cH3	-cH ₃	-CH ₃	-CH3	-CH3	-CH3		-CH3
30		×	-CH3	-CH3	-CH3	-CH3	-CH ₃	-CH3	-CH ₃	-CH3	-CH3	-CH3		-CH3
35		O	0	0	0	0	0	0	0	0	0 -2	0		0
40	<u>Tabelle 3</u> : Fortsetzung	В	-CH ₃ -CH ₃	-c ₂ H ₅ -cH ₃	-ch(ch ₃) ₂ -ch ₃	-cF ₃ -cH ₃	-(CH ₂) ₄ -	-(CH ₂) ₅ -	-(CH ₂) ₆ -	-сн ₂ -сн(сн ₃)-(сн ₂)3-	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	-(CH ₂) ₂ -CH-(CH ₂) ₂ -	c ₂ H ₅	-(CH ₂) ₂ -CH-(CH ₂) ₂ - i-C ₃ H ₇
45	Tabelle		ĭ	ĩ	-CH(1	1	ı	I	-CH2-C	-(CH ₂) ₂	-(CH ₂) ₂		-(CH ₂) ₂

EP 0 528 156 A1

5		R ²	-CH2-C(CH3)3	-CH ₂ -C(CH ₃) ₃	-сн ₂ -с(сн ₃) ₃	-CH ₂ -C(CH ₃) ₃	-cH ₂ -c(CH ₃) ₃	-CH ₂ -C(CH ₃) ₃	-сн ₂ -с(сн ₃) ₃	-сн ₂ -с(сн ₃) ₃	-сн ₂ -с(сн ₃) ₃	-сн ₂ -с(сн ₃₎₃	-сн ₂ -с(сн ₃₎₃
10		Σ	S - C	S - C	ຽ	S - C	S - C	S - C	ຮ	ຮ	ຶ່ນ	S.	S
15		ப	0	0	0	0	0	0	0	0	0	0	0
20		2n	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	6-CH3	6-CH3	6-CH ₃	€н⊃-9	6-CH ₃
25		*	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH3	-CH ₃	-cH ₃
30		×	-CH3	-CH3	-CH3	-CH3	-CH ₃	-CH3	-CH ₃	-CH ₃	-CH ₃	-CH3	-CH3
		Ω	0	0	0	0	0	0	0	0	0	0	0
35	Fortsetzung	Δ	-cH ₃	-cH ₃	-CH ₃	-cH ₃	l edf	ı	-9)-(CH ₂)3-	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	CH ₂) ₂ -	CH ₂) ₂ -
40	Tabelle 3: Fc	A	-CH ₃	-C2H2	-сн(сн ³) ²	-CF3	-(CH ₂)4-	-(CH ²)2-	-(CH ₂)6-	-CH ₂ -CH(CH ₃)-(CH ₂)3-	:H ₂) ₂ -сн(с	-(cH ₂) ₂ -cH-(CH ₂) ₂ - c ₂ H ₅	$-(CH_2)_2 - CH - (CH_2)_2 - \frac{1}{1}$ i - C ₃ H ₇
45	Tab									Ö	- (د) -))-

EP 0 528 156 A1

5	R ²	-сн(сн ₃)-с ₂ н ₅	-сн(сн _з)-с ₂ н ₅	-сн(сн ₃)-с ₂ н ₅	-сн(сн ₃)-с ₂ н ₅	-сн(сн ₃)-с ₂ н ₅	-сн(сн _з)-с ₂ н ₅	-сн(сн ₃)-с ₂ н ₅	-сн(сн _з)-с ₂ н ₅	-сн(сн _з)-с ₂ н ₅	-сн(сн ₃)-с ₂ н ₅		-сн(сн ₃)-с ₂ н ₅	
10	Σ	თ	ທ	ທ	ທ	ທ	ທ	ທ	ហ	ហ	ທ		ທ	
15	נ	0	0	0	0	0	0	0	0	0	0		0	
20	u _Z	6-CH ₃	6-CH3	6-CH3	6-CH ₃	6-CH3	6-CH3	6-CH ₃	6-CH3		€-сн3		6-CH ₃	
25	۲	-CH3	-CH3	-CH3	-CH3	-CH3				-CH3	-CH ₃		-CH3	
	×	-CH ₃	-CH3		-CH3									
30	Q	0	0	0	0	0	0	0	0	0	0		0	
Fortsetzung	В	-cH ₃	-CH3	-cH ₃	-CH3	- 4-		1.0	$-(CH_2)_3^-$	CH3)-(CH3)2-	(CH ₂) ₂ -		3H ₂) ₂ -	
Tabelle 3: For	A	-cH ₃	-C2H2	-ch(ch3)2	-CF3	-(CH ₂)4	-(CH ₂) ₅ -	-(CH ²) ⁶ -	$-cH_2-cH(cH_3)-(cH_2)_3-$	- (CH ₂) ₂ -CH(CH	- (СН ₂)2-СН- (С	C2H5	-(CH ₂) ₂ -CH-(CH ₂) ₂ -	i - C ₃ H ₇
45 e T				ı					- CF	- (CF	- (Ch		- (CF	

EP 0 528 156 A1

5		R ²	-£нэ	(сн ³) ² сн-сн ² -	C2H5-CH- CH3	-э ^є (сн ³)	(сн ³) ³ с-сн ² -	H	C ₂ H ₅ O
10		Σ	0	0	0	0	0	0	0
15		ıı	0	0	0	0	0	0	0
75		u ₂	е-сн ³	6-CH ₃	6-сн3	€но-9	€н⊃-9	€но-9	6-CH ₃
20		Y	снз	снз	сн ³	снз	снз	CH ₃	сн ³
25		×	CH ₃	CH ₃	СН ³	CH3	CH3	CH3	СНЗ
30		D	0	0	0	0	0	0	0
35	etzung	В	x	Ħ	ж	#	Ħ	Ξ	π
40	<u>lle 3</u> : Fortsetzung	A	CH ₃	CH ₃	CH ₃	CH ₃	CH3	CH3	снз
45	Tabelle								

EP 0 528 156 A1

5		R ²	с ₂ н ₅ -сн- С2н ₃	с ₂ н ₅ -сн-	C2H5−CH- CH3 CH3	сн ₅ -сн- сн ₃ -сн ₃
10		Σ	0	0	0	0
15		ı	O	C1 0	0	0 EH3-9
20		2n	π	6-C1	×	-9
		>	Cl	æ	снз	Ħ
25		×	CJ	C1	CH3	снз
30		Q	0	0	0	0
35	tzung	В	ж	æ	x	π
40	Tabelle 3: Fortsetzung	A	CH ₃	СНЗ	СНЗ	снз
	- 1					

EP 0 528 156 A1

5		R ²	C2H50 C2H5	\Diamond	CH3-	(сн ³) ⁵ сн-	(CH ₂) ₂ -CH-CH ₂	C ₂ H ₅ -CH- CH ₃	С ₂ н5-сн- сн ₃	С ₂ Н ₅ -СН- СН ₃
10		Σ	0	0	ທ	ဟ	ဟ	ω	0	0
15		اد	0	0	0	0	. 0	0	0	0
		2 _n	6-сн ₃	6-CH ₃	€но-9	6-CH3	€-СН ³	6-CH ₃	ж	6-C1
20		٨ .	снз	CH ₃	снз	снз	СНЗ	снз	C1	æ
25		×	СН _З	СНЗ	снз	снз	CH3	СНЗ	C3	13
30		Q	0	0	0	0	0	0	ហ	ဟ
35	Fortsetzung	æ	ж	Ħ	Ħ	×	×	Ħ	I	æ
40	ibelle 3: Forts	A	CH3	CH ₃	CH3	СНЗ	СН ^З	CH ₃	CH3	снз

EP 0 528 156 A1

5		R ²	с ₂ н ₅ -сн-	C ₂ H ₅ -CH- C ₂ H ₃	CH3-	(сн ₃) ₂ сн-	(сн ₃) ₂ сн-сн ₂ -	C2H5-CH- CH3	- э ^Е (Енэ)	² нэ-э ^ε (^Е нэ)	H
10		Σ	O	0	0	0	0	0	0	0	0
15		u	0	0	0	0	0	0	0	0	0
70		Z _n	ж	6-CH ₃	€нэ-9	€-CH3	6-CH3	€н2-9	6-CH3	6-CH ₃	6-CH ₃
20		Y	снз	x	снз	снз	снз	CH ₃	снз	снз	снз
25		×	CH ₃	снз	СНЗ	CH ₃	СНЗ	снз	снз	снз	снз
30		Q	ဟ	ဟ	ဟ	ស	ស	ဟ	ഗ	v	ഗ
35	etzung	В	Ħ	x	H	Ħ	æ	æ	Ħ	ж	ж
40	<u>Tabelle 3</u> : Fortsetzung	A	CH ₃	CH ₃	CH3	CH ₃	CH ₃	СНЗ	CH ₃	CH ₃	CH3
45	Tabe										

EP 0 528 156 A1

5		R ²	C2H50	C2H50~~C2H5	\Diamond	cH ₃ -	(CH ³) ² CH-	(сн ³) ² сн-сн ² -	C2H5-CH- CH3	С ₂ н ₅ - сн - сн ₃
10		Σ	0	0	0	ဟ	ဟ	ဟ	ဟ	0
15		Z _n L	0 Ен3-9	0 Ен2-9	0 ^E HD-9	6-CH ₃ 0	0 EHD-9	6-CH ₃ 0	6-CH ₃ 0	О
20		Y	CH ₃	CH3	снз	CH ₃	cH ₃	снз	CH ₃	C1
25		×	снз	CH3	СНЭ	снз	снз	снз	снз	C]
30		Q	ဟ	w	ဟ	ω	ဟ	ဟ	w	0
35	setzung	æ	Ħ	æ	x	H	Ħ	x	æ	CH ₃
40	Tabelle 3: Fortsetzung	A	снз	СН _З	снз	снэ	снз	снз	CH3	снз

EP 0 528 156 A1

5		R ²	C ₂ H ₅ -CH- CH ₃	C ₂ H ₅ -CH- C _H	C ₂ H ₅ -CH- CH ₃	CH3-	(CH ₃) ² CH-	$(cH_3)_2 cH - cH_2$	с ₂ н ₅ -сн- сн ₃	-э ^є (Єнэ)	(CH3)3C-CH2-
10		Σ	0	0	0	0	0	0	0	0	0
		L)	0	0	0	0	0	0	0	0	0
15		2n	6 - C1	ж	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-сн ₃	€ -СН ³	6-CH ₃
20		γ.	æ	снз	π	снз	CH ₃	CH ₃	CH ₃	СНЗ	снз
25		×	C1	CH3	CH3	СНЗ	CH3	CH3	снз	СНЗ	CH3
30		Q	0	0	0	0	0	0	0	0	0
35	tzung	æ	CH ₃	снз	снз	снз	СНЗ	CH ₃	снз	СНЗ	CH3
40	3: Fortsetzung	A	снз	снз	снз	снз	снз	СНЗ	снз	СНЗ	CH3
45	Tabelle										

EP 0 528 156 A1

5		R ²	H	C2H50~~CH3	C2H50		CH₃-	(сн ³) ² сн-	$(CH_2)_2$ - CH - CH_2	с ₂ н5 -сн- сн ₃
10		Σ	0	0	o	0	ហ	တ	ဟ	ဟ
15		u	0	0	0	0	0	0	0	0
		Zn	6-CH ₃	6-сн3	€н⊃-9	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃
20				_	~	m	m	m	m	m
		>-	CH3	СНЗ	СНЗ	СНЗ	ĊĤ	CH ₃	CH	CH
25		×	снз	снз	CH ₃	СНЗ	CH ₃	CH ₃	CH ₃	снэ
30		Ω	0	0	0	0	0	0	0	0
35	et zung	В	CH ₃	СНЗ	CH ₃	снз	снз	снз	CH ₃	снз
40	<u>belle 3</u> : Fortsetzung	А	снз	CH ₃	CH ₃	CH ₃	снз	CH3	CH ₃	снз

EP 0 528 156 A1

5		R ²	C2H5-CH- CH3	С ₂ H ₅ -СН- СН ₃	С ₂ H ₅ -СН- СН ₃	С ₂ H ₅ - СН - ССН - СН -	CH₃-	(CH ₃) ₂ CH-	(сн ₃) ₂ сн-сн ₂ -	С ₂ H ₅ - СН- СН ₃
10		Σ	0	0	0	0	0	0	0	0
15		Z _n L	О Н	6-C1 0	0	о Енр-9	0 EHD-9	0 EHJ-9	0 EHD-9	0 ^E HJ-9
20		¥	C1	ж	снз	ж	снз	€нэ	снз	снз
25		×	CJ	CJ	CH ₃	CH ₃	CH3	СНЗ	CH3	CH ₃
30		۵	0	0	0	0	0	0	0	0
35	ırtsetzung	ъ В	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -
40	<u>Tabelle 3</u> : Fortsetzung									

EP 0 528 156 A1

5		R ²	-2 ^E (ЕНЗ)	(сн ³) ³ С-сн ²	H	C2H50 CH3	C2H50 C2H5	\Diamond	CH³−	(сн ³) ² сн-	(сн ³) ² сн-сн ² -
10		Σ	0	0	0	0	0	0	တ	ស	ဟ
15		נו	0	0	0	0	0	0	0	0	0
		2 ⁿ	€н2-9	6-CH ₃	€-сн3	£нэ-9	€-СН ³	€-сн3	6-CH3	€н⊃-9	€-сн3
20			m.	m	m	m	m	m	m	m	е.
		>	СНЗ	CH3	CH ₃	снз	CH ₃	СНЗ	снз	CH3	снз
25		×	снз	СНЗ	CH3	снз	CH ₃	СНЗ	CH3	cH ₃	снз
30		Q	0	0	0	0	0	0	0	0	0
35	Fortsetzung	æ	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ²) ² -	-(CH ²) ² -
40	Forts	A									

EP 0 528 156 A1

5		R ²	C2H5-CH- CH3	C2H5−CH−	с ₂ н ₅ -сн- с ₄₃	C2H5-CH- CH3 CH3	С ₂ Н5-СН- СН3	CH3-
10		Σ	ဟ	0	0	0	0	0
45		ر	0	0	0	0	0	0
15		2 _n	€-сн³	æ	6-C1	н	е-сн ³	€-сн3
20			снз	C1	ж	CH3	ж	снз
25		×	c _H 3	CJ	G1	CH3	CH ₃	CH3
30		Ω	0	0	0	0	0	0
35	âunz.	Ω	-(CH ₂) ₅ -	Ħ	x	I	ж	Ξ
40	Fortset	A	•					
,,	<u>Tabelle 3: Fortsetzung</u>							
45	Ta	1						

EP 0 528 156 A1

5		R ²	-нэ ^г (сн ^з)	(снз)2сн-сн2	с ₂ н ₅ -сн-	-э ^ε (εнэ)	(сн ³) ³ С-сн ² -	H
10		Σ	0	0	0	0	0	0
15		Z _n L	6-CH ₃ 0	0 EHD-9	0 EH3-9	0 EHJ-9	0 ^E HD-9	6-сн ₃ 0
20		۲	снз	снз	CH ₃	СНЗ	снз	снз
25		×	CH3	СН _Э	CH3	CH ₃	CH3	CH ₃
30		Ω	0	0	0	0	0	0
35	tzung	а	æ	æ	æ	ж	ж	Ħ
40	<u>Tabelle 3</u> : Fortsetzung	A			\bigcirc	\bigcirc		\bigcirc
45	Tat							

EP 0 528 156 A1

5		R ²	C2H50	C2H50		сн3-	(сн ³) ² сн-	(CH3)2CH-CH2	с ₂ н ₅ -сн-
10		Σ	0	0	0	ဟ	w	ω	ဟ
		ı	0	0	0	0	0	0	0
15		u _Z	6 - CH ₃	6-CH ₃	е-сн ³	⁶ -СН ³	€н⊃-9	€-сн ³	6-CH ₃
20		¥	снз	снз	CH ₃	CH ₃	сн ^з	СН ^З	снз
25		×	CH3	CH3	CH ₃	CH3	CH ₃	CH ₃	CH3
30		۵	0	0	0	0	0	0	0
35	tzung	മ	ж	æ	×	Ħ	ж	x	æ
40	<u>Tabelle 3</u> : Fortsetzung	А							
45	H	,	•						

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3-Aryl-4-hydroxy-Δ³-dihydrofuran-Derivate der Formel (Id) genannt:

50

55

$$\begin{array}{c|c}
 & \text{SO}_2 - \mathbb{R}^3 \\
 & \text{O} & \text{X} \\
 & \text{O} & \text{Z}_p
\end{array}$$
(Id)

Tabelle 4:

15	<u>A</u>	В	D	x	Y	Z _n	R ³
20	снз	снз	0	CH3	снз	6-СН _З	
	снз	снз	0	снз	снз	6-CH3	C1—
25	сн _З	снз	o	снз	снз	6-СН _З	
30	снз	снз	0	сн _З	снз	6-CH3	C1—

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3- Aryl-4-hydroxy- Δ^3 -dihydrofuran-Derivate der Formel (Ie) genannt:

40
$$\begin{array}{c|c}
 & & \downarrow & \\
 &$$

EP 0 528 156 A1

5									
10	5	E .	снз	C2H2-S-	-s-нэ ² (£нэ)	C2H5 CH-S- CH ₃	C2H5-5-	(CH3)2CH-S-	C2H5 CH-S-
15	14	£	$\mathrm{CF_3CH_20^-}$	сн ³ -0-	CH3-0-	сн ³ -о-	C2H50-	C2H5-0-	C2H2-0-
20		֓֞֝֝֟֝֝֝֟֝֝֝֝֟֝֝ ֓֓֞֓֓֓֞֓֓֓֓֞֓֓֓֓֓֓֓֓֓֞֓֓֓֓֓֓֡֓֓֓֓֡֓֡֓֓֡֓	ဟ	0	0	0	0	0	0
25	1	_u	6-CH ₃	6-CH ₃	6-CH3	€ +СН ³	€н⊃-9	6 - CH3	6-CH ₃
	Þ	>-	снз	снз	СНЗ	снз	снз	снз	CH3
30	;	×	CH ₃	Енэ	снз	CH ₃	снз	снз	CH ³
35	í	Ω	0	0	0	0	0	0	0
	1	Δ	снз	снз	снз	снз	снз	снз	снз
40	Tabelle 5:	A	снэ	CH ₃	CH ₃	CH ₃	CH3	снз	CH3

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3-Aryl-4-hydroxy- Δ^3 -dihydrofuran-Derivate der Formel (If) genannt:

EP 0 528 156 A1

5	B	0= v	R ⁶	- + z _n	—ү				(If)
15									
20		R ⁷	сн ₃ - сн ₃ -	CH3-	CH2=CH-CH2-	H ₂ ,2-	ا س	H ₅ -	
25		Rô	CH ³ -	СН3- (CH ₂ =CHCH ₂ - (-(CH ²) ² -0-(Cl	-(CH ₂)	C2H5-	
		.	0	ဟ	0	0	ဟ	ທ	
35		2 _n			6-CH ₃	6-CH ₃	6-CH ₃	€+2-9	
40		>	снз	снз	СНЗ	снз	CH3	cH3	
45		×	снз	снз	CH ₃	СНЗ	снз	снз	
		Ω	0	0	0	0	0	0	
50	: 9	а	снз	снз	снз	снз	снз	снз	
	oelle.	æ	CH3	снз	CH3	CH3	снэ	снз	

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3-Aryl-4-hydroxy- Δ^3 -dihydrofuran-Derivate der Formel (Ig) genannt:

Ta	b	e 1	1	е	7

	Α	В	D	x	Y	z _n	E⊕
	сн _З	СНЗ	0	снз	снз	6-CH3	NH ₄
20	снз	снз	0	снз	CH3	6-CH3	Na
	c ₂ H ₅	снз	0	снз	CH3	6-CH3	Na
	-ch(ch3)2	снз	0	снз	снз	6-CH3	Na
25	CF ₃	снз	0	снз	снз	6-CH3	Na
	-(CH ₂)	4 -	0	снз	CH3	6-CH3	Na
	-(CH ₂)	5 -	0	снз	CH3	6-CH3	Na
30	-(CH ₂)	6-	0	снз	снз	6-CH3	Na
	-сн ₂ -сн-(сн ₂ сн ₃)3-	O	снз	сн _З	6-CH ₃	Na
35	-(сн ₂) ₂ -сн-(с сн ₃	H ₂) ₂ -	0	СН ^З	СНЗ	6-CH ₃	Na
40	-(CH ₂) ₂ -СH-(C	H ₂) ₂ -	0	снз	СН _З	6-СН _З	Na
45	-(CH ₂) ₂ -CH-(C i-C ₃ H ₇	H ₂) ₂ -	O	сн _З	снз	6-СН _З	Na

Tabelle 7: Fortsetzung

5	A	В	D	x	Y	z _n	E [⊕]
	CH3	снз	0	CH3	снз	6-CH ₃	i-C ₃ H ₇ NH ₃
10	C ₂ H ₅	CH3	0	CH3	CH3	6-CH3	i-C ₃ H ₇ NH ₃
	-CH(CH ₃) ₂	CH3	0	снз	CH3	6-CH3	$i-C_3H_7NH_3$
15	CF ₃	снз	0	снз	снз	6-CH3	$i-C_3H_7NH_3$
15	-(CH ₂) ₄ -		0	снз	снз	6-CH ₃	$i-C_3H_7NH_3$
	-(CH ₂)	5 -	0	снз	снз	6-CH ₃	$i-C_3H_7NH_3$
20	-(CH ₂)	6-	0	снз	снз	6-CH ₃	$i-C_3H_7NH_3$
	-сн ₂ -сн-(сн ₂ сн ₃)3-	0	сн ³	снз	6-CH ₃	i-C ₃ H ₇ NH ₃
25	-(CH ₂) ₂ -CH-(C CH ₃	H ₂) ₂ -	0	снз	СН ^З	6-CH ₃	i-C ₃ H ₇ NH ₃
30	-(CH ₂) ₂ -CH-(C	H ₂) ₂ -	0	СН _З	CH3	6-CH ₃	i-C ₃ H ₇ NH ₃
35	-(CH ₂) ₂ -CH-(C i-C ₃ H ₇	^{2H} 2 ⁾ 2 ⁻	O	СН _З	снз	6-CH ₃	₃ i-C ₃ H ₇ NH ₃

<u>Tabelle 7</u>: Fortsetzung

5	A	В	D	x	Y	z _n	E&
	сн ₃	снз	0	снз	снз	6-СН _З	N(C ₄ H ₉ -t) ₄
10	С ₂ Н ₅	снз	0	снз	снз	6-CH3	N(C ₄ H ₉ -t) ₄
	-ch(ch ₃) ₂	снз	0	CH3	снз	6-CH3	N(C ₄ H ₉ -t) ₄
	CF ₃	снз	0	CH3	снз	6-CH3	$N(C_4H_9-t)_4$
15	-(CH ₂)	1 -	0	снз	снз	6-CH3	$N(C_4H_9-t)_4$
	-(CH ₂)	5-	0	снз	снз	6-CH3	N(C ₄ H ₉ -t) ₄
20	-(CH ₂)	s -	0	снз	снз	6-CH3	$N(C_4H_9-t)_4$
	-сн ₂ -сн-(сн ₂ : сн ₃	3-	0	CH3	снз	6-CH ₃	N(C ₄ H ₉ -t) ₄
25	-(CH ₂) ₂ -CH-(СП СН ₃	⁴ 2 ⁾ 2 ⁻	0	сн3	сн ₃	6-CH3	N(C ₄ H ₉ -t) ₄
30	-(CH ₂) ₂ -CH-(CI	¹ 2 ⁾ 2 ⁻	0	CH3	сн3	6-CH3	N(C ₄ H ₉ -t) ₄
35	-(CH ₂) ₂ -CH-(CI i-C ₃ H ₇	H ₂)2-	0	CH ³	снз	6-CH ₃	N(C ₄ H ₉ -t) ₄

Tabelle 7: Fortsetzung

5	A	В	D	x	Y	z _n	E [©]
	снз	снз	0	снз	снз	6-CH ₃	NH ₂ (СН ₃) ₂
10	С ₂ Н ₅	снз	0	снз	снз	6-CH3	$\mathrm{NH_2(CH_3)_2}$
	-CH(CH ₃) ₂	снз	0	снз	CH3	6-CH3	NH ₂ (СН ₃) ₂
	CF ₃	снз	0	снз	снз	6-CH3	NH ₂ (СН ₃) ₂
15	-(CH ₂) ₄ -		0	снз	CH3	6-CH3	NH ₂ (СH ₃) ₂
	-(CH ₂) ₅ -		0	снз	снз	6-CH3	$NH_2(CH_3)_2$
20	-(CH ₂)	, -	0	снз	снз	6-CH ₃	$NH_2(CH_3)_2$
	-сн ₂ -сн-(сн ₂)	3-	0	снз	снз	6-CH ₃	NH ₂ (CH ₃) ₂
	СН ^З						
25	-(CH ₂) ₂ -CH-(CH CH ₃	¹ 2 ⁾ 2 ⁻	0	сн ₃	CH3	6-CH ₃	NH ₂ (CH ₃) ₂
30	-(CH ₂) ₂ -CH-(CH	⁴ 2 ⁾ 2 ⁻	0	СН ^З	снз	6-CH ₃	NH ₂ (CH ₃) ₂
35	-(CH ₂) ₂ -CH-(CH ₂) ₁ -C ₃ H ₇	¹ 2 ⁾ 2 ⁻	0	СН _З	сн ₃	6-CH ₃	мн ₂ (сн ₃) ₂

Verwendet man gemäß Verfahren (A) 0-2,6-Dichlorphenylacetyl-hydroxyossigsäureethylester, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (B) (Variante α) 3-(2,4,6 Trimethylphenyl)-4-hydroxy-5,5-dimethyl- Δ^3 -dihydrofuran-2-on und Pivaloylchlorid als Ausgangsstoff, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

55

45

Verwendet man gemäß Verfahren B (Variante β) 3-(2,4,5-Trimethylphenyl)-4-hydroxy-5-phenyl- Δ^3 dihydrofuran-2-on und Acetanhydrid als Ausgangsverbindungen, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

с́н_З

0

30

$$CH_3$$
 CH_3
 H_3C-CO
 CH_3
 H_3C-CO
 CH_3
 H_3C-CO
 CH_3
 CH_3

Verwendet man gemäß Verfahren C 3-(2,4-Dichlorphenyl)-4-hydroxy-5-methyl-Δ³-dihydrofuran-2-on und Chlorameisensäureethoxyethylester als Ausgangsverbindungen, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

55

Verwendet man gemäß Verfahren (D_{α}) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5-methyl- Δ^3 -dihydrothiophen-2-on und Chlormonothioameisensäuremethylester als Ausgangsprodukte, so kann der Reaktionsverlauf wie folgt wiedergegeben werden:

$$H_3$$
C O CH_3 CH_3

Verwendet man gemäß Verfahren (D_{β}) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5.5-pentamethylen- Δ^3 -dihydrofuran-2-on, Schwefelkohlenstoff und Methyl jodid als Ausgangskomponenten, so kann der Reaktionsverlauf wie folgt wiedergegeben werden:

5

OH
$$CH_3$$
 CH_3
 CH_3
 $-HJ$

10

O-C-SCH₃
 CH_3
 CH_3
 CH_3

Verwendet man gemäß Verfahren (E) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5-methylmercaptomethyl-Δ³-dihydrofuran - 2-on und Methansulfonsäurechlorid als Ausgangsprodukt, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:

35

40

Verwendet man gemäß Verfahren (F) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5.5-dimethyl- Δ^3 -dihydro-furan-2-on und Methanthio-phosphonsäurechlorid-(2,2,2-trifluorethylester) als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (G_{α}) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5-tetramethylen- Δ^3 -dihydrofuran-2-on und Ethylisocyanat als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:

5

OH CH₃

$$C_2H_5-N=C=0$$

OCH₃
 $C_2H_5-N=C=0$

OCH₃
 $C_2H_5-N=C=0$

OCH₃
 $C_2H_5-N=C=0$

OCH₃
 $C_2H_5-N=C=0$

20

25

35

40

50

55

Verwendet man gemäß Verfahren (G_{g}) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5-methyl- Δ^3 -dihydrofuran-2-on und Dimethylcarbamidsäurechlorid als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Schema wiedergegeben werden:

Verwendet man gemäß Verfahren (H) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5.5-dimethyl-Δ³-dihydro-furan-2on und NaOH als Komponenten, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Die bei dem obigen Verfahren (A) als Ausgangsstoffe benötigten Verbindungen der Formel (II)

in welcher

15

A, B, D, X, Y, Z, n und R⁸ die oben angegebene Bedeutung haben sind bekannt oder lassen sich nach im Prinzip bekannten Methoden in einfacher Weise herstellen. So erhält man z.B. O-Acyl-α-hydroxycarbonsäureester der Formel (II), wenn man

a) 2-Hydroxycarbonsäure-(ester) bzw. 2-Mercaptocarbonsäure-(ester) der Formel (XIV)

$$\begin{array}{c}
A \\
B
\end{array}$$
CO₂R¹¹
(XIV)

in welcher

R¹¹ für Wasserstoff (XIVa) oder Alkyl (XIVb) steht und

A, B und D die oben angegebene Bedeutung haben, mit Phenylessigsäurehalogeniden der Formel (XV)

$$Y \xrightarrow{X} COHal$$
 (XV)

55

40

45

50

in welcher

X, Y, Z und n die oben angegebene Bedeutung haben und

Hal für Chlor oder Brom steht, acycliert (Chem. Reviews 52 237-416 (1953)); oder wenn man Thio- bzw. Hydroxycarbonsäuren der Formel (IIa),

5

10

15

20

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben und

R¹¹ für Wasserstoff steht,

verestert (Chem. Ind. (London) 1568 (1968).

Verbindungen der Formel (IIa) sind beispielsweise aus den Phenylessigsäurehalogeniden der Formel (XV) und Thio- bzw. Hydroxycarbonsäuren der Formel XIVa) erhältlich (Chem. Reviews 52 237-416 (1953).

Weiterhin erhält man Verbindungen der Formel (II), wenn man Phenylessigsäuren der Formel XVI

25

$$Y \xrightarrow{Z_n} Co_2H$$
 (XVI)

30

40

50

in welcher

 35 X, Y, Z und n die oben angegebene Bedeutung haben mit lpha-Halogencarbonsäureestern der Formel XVII

A CO₂R¹¹ (XVII)

A und B die oben angegebene Bedeutung haben,

R¹¹ für Alkyl steht und

Hal für Chlor oder Brom steht

alkyliert.

in welcher

Beispielhaft seien folgende Verbindungen der Formel (II) genannt:

O-(2,4-Dichlorphenyl-acetyl)-hydroxyessigsäureethylester

O-(2,6-Dichlorphenyl-acetyl)-hydroxyessigsäureethylester

O-(2,4,6-Trichlorphenyl-acetyl)-hydroxyessigsäureethylester

O-(2,4-Dimethylphenyl-acetyl)-hydroxyessigsäureethylester

6 O-(2,6-Dimethylphenyl-acetyl)-hydroxyessigsäureethylester

O-(2,4,6-Trimethylphenyl-acetyl)-hydroxyessigsäureethylester

O-(2,4-Dichlorphenyl-acetyl)-milchsäureethylester

O-(2,6-Dichlorphenyl-acetyl)-milchsäureethylester

```
O-(2,4,6-Trichlorphenyl-acetyl)-milchsäureethylester
O-(2,4-Dimethylphenyl-acetyl)-milchsäureethylester
O-(2,6-Dimethylphenyl-acetyl)-milchsäureethylester
O-(2,4,6-Trimethylphenyl-acetyl)-milchsäureethylester
O-(2,4-Dichlorphenyl-acetyl)-hydroxyisobuttersäureethylester
O-(2,6-Dichlorphenyl-acetyl)-hydroxyisobuttersäureethylester
O-(2,4,6-Trichlorphenyl-acetyl)-hydroxyisobuttersäureethylester
O-(2,4-Dimethylphenyl-acetyl)-hydroxyisobuttersäureethylester
O-(2,6-Dimethylphenyl-acetyl)-hydroxyisobuttersäureethylester
O-(2,4,6-Trimethylphenyl-acetyl)-hydroxyisobuttersäureethylester
O-(2,4-Dichlorphenyl-acetyl)-mandelsäureethylester
O-(2,6-Dichlorphenyl-acetyl)-mandelsäureethylester
O-(2,4,6-Trichlorphenyl-acetyl)-mandelsäureethylester
O-(2,4-Dimethylphenyl-acetyl)-mandelsäureethylester
O-(2,6-Dimethylphenyl-acetyl)-mandelsäureethylester
O-(2,4,6-Trimethylphenyl-acetyl)-mandelsäureethylester
O-(2,4-Dichlorphenyl-acetyl)-1-hydroxycyclohexancarbonsäureethylester
O-(2.6-Dichlorphenyl-acetyl)-1-hydroxycyclohexancarbonsäureethylester
O-(2,4,6-Trichlorphenyl-acetyl)-1-hydroxycyclohexancarbonsäureethylester
O-(2,4-Dimethylphenyl-acetyl)-1-hydroxycyclohexancarbonsäureethylester
O-(2,6-Dimethylphenyl-acetyl)-1-hydroxycyclohexancarbonsäureethylester
O-(2,4,6-Trimethylphenyl-acetyl)-1-hydroxycyclohexancarbonsäureethylester
O-(2,4-Dichlorphenyl-acetyl)-2-hydroxy-2-ethyl-buttersäureethylester
O-(2,6-Dichlorphenyl-acetyl)-2-hydroxy-2-ethylbuttersäureethylester
O-(2,4,6-Trichlorphenyl-acetyl)-2-hydroxy-2-ethylbuttersäureethylester
O-(2,4-Dimethylphenyl-acetyl)-2-hydroxy-2-ethylbuttersäureethylester
O-(2,6-Dimethylphenyl-acetyl)-2-hydroxy-2-ethylbuttersäureethylester
O-(2,4,6-Trimethylphenyl-acetyl)-2-hydroxy-2-ethylbuttersäureethylester
Beispielhaft seien folgende Verbindungen der Formel (II) genannt:
S-(2,4-Dichlorphenyl-acetyl)-thioessigsäureethylester
S-(2,6-Dichlorphenyl-acetyl)-thioessigsäureethylester
S-(2,4,6-Trichlorphenyl-acetyl)-thioessigsäureethylester
S-(2,4-Dimethylphenyl-acetyl)-thioessigsäureethylester
S-(2,6-Dimethylphenyl-acetyl)-thioessigsäureethylester
S-(2,4,6-Trimethylphenyl-acetyl)-thioessigsäureethylester
S-(2,4-Dichlorphenyl-acetyl)-thiomilchsäureethylester
S-(2,6-Dichlorphenyl-acetyl)-thiomilchsäureethylester
S-(2,4,6-Trichlorphenyl-acetyl)-thiomilchsäureethylester
S-(2,4-Dimethylphenyl-acetyl)-thiomilchsäureethylester
S-(2,6-Dimethylphenyl-acetyl)-thiomilchsäureethylester
S-(2,4,6-Trimethylphenyl-acetyl)-thiomilchsäureethylester
S-(2,4-Dichlorphenyl-acetyl)-thioisobuttersäureethylester
S-(2,6-Dichlorphenyl-acetyl)-thioisobuttersäureethylester
S-(2,4,6-Trichlorphenyl-acetyl)-thioisobuttersäureethylester
S-(2,4-Dimethylphenyl-acetyl)-thioisobuttersäureethylester
S-(2,6-Dimethylphenyl-acetyl)-thioisobuttersäureethylester
S-(2,4,6-Trimethylphenyl-acetyl)-thioisobuttersäureethylester
Das Verfahren (A) ist dadurch gekennzeichnet, daß Verbindungen der Formel (II) in welcher A, B, D, X, Y, Z,
n und R8 die oben angegebene Bedeutung haben, in Gegenwart von Basen einer intramolekularen
Kondensation unterwirft.
```

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (A) alle inerten organischen Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Toluol und Xylol, ferner Ether, wie Dibutylether, Tetrahydrofuran, Dioxan, Glykoldimethylether und Diglykoldimethylether, außerdem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid und N-Methyl-pyrrolidon. Weiterhin können Alkohole wie Methanol, Ethanol, Propanol, iso-Propanol, Butanol, Isobutanol, tert.-Butanol eingesetzt werden.

Als Basen (Deprotonierungsmittel) können bei der Durchführung des erfindungsgemäßen Verfahrens (A) alle üblichen Protonenakzeptoren eingesetzt werden. Vorzugsweise verwendbar sind Alkalimetall- und

Erdalkalimetalloxide, -hydroxide und -carbonate, wie Natriumhydroxid, Kaliumhydroxid, Magnesiumoxid, Calciumoxid, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, die auch in Gegenwart von Phasentransferkatalysatoren wie z.B. Triethylbenzylammoniumchlorid, Tetrabutylammoniumbromid, Adogen 464 oder TDA 1 eingesetzt werden können. Weiterhin können Alkalimetalle wie Natrium oder Kalium verwendet werden. Ferner sind Alkalimetall- und Erdalkalimetallamide und -hydride, wie Natriumamid, Natriumhydrid und Calciumhydrid, und außerdem auch Alkalimetall-alkoholate, wie Natrium-methylat, Natriumethylat und Kalium-tert.-butylat einsetzbar.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (A) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 250°C, vorzugsweise zwischen 50°C und 150°C.

Das erfindungsgemäße Verfahren (A) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (A) setzt man die Reaktionskomponenten der Formeln (II) und die deprotonierenden Basen im allgemeinen in etwa äquimolaren Mengen ein. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 3 Mol) zu verwenden.

Adogen 464 = Methyltrialkyl(C₈-C₁₀)ammoniumchlorid

TDA 1 = Tris-(methoxyethoxyethyl)-amin

20

Das Verfahren (Bα) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Carbonsäurehalogeniden der Formel (III) umsetzt.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren ($B\alpha$) bei Verwendung der Säurehalogenide alle gegenüber diesen Verbindungen inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüberhinaus Carbonsäureester, wie Ethylacetat, und auch stark polare Solventien, wie Dimethylsulfoxid und Sulfolan, Wenn die Hydrolysestabilität des Säurehalogenids es zuläßt, kann die Umsetzung auch in Gegenwart von Wasser durchgeführt werden.

Verwendet man die entsprechenden Carbonsäurehalogenide so kommen als Säurebindemittel bei der Umsetzung nach dem erfindungsgemäßen Verfahren ($B\alpha$) alle üblichen Säureakzeptoren in Betracht, Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, Diazabiyclooctan (DABCO), Diazabiycloundecan (DBU), Diazabiycloonen (DBN), Hüning-Base und N,N-Dimethylanilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calciumoxid, außerdem Alkali- und Erdalkali-metall-carbonate, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat.

Die Reaktionstemperaturen können auch bei dem erfindungsgemäßen Verfahren ($B\alpha$) auch bei der Verwendung von Carbonsäurehalogeniden innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und 100°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (Bα) werden die Ausgangsstoffe der Formel (Ia) und das Carbonsäurehalogenid der Formel (III) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäureanhydrid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Das Verfahren ($B\beta$) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Carbonsäurehydriden der Formel (IV) umsetzt.

Verwendet man bei dem erfindungsgemäßen Verfahren (B β) als Reaktionskomponente der Formel (IV) Carbonsäureanhydride, so können als Verdünnungsmittel vorzugsweise diejenigen Verdünnungsmittel verwendet werden, die auch bei der Verwendung von Säurehalogeniden vorzugsweise in Betracht kommen. Im übrigen kann auch ein im Überschuß eingesetztes Carbonsäurehydrid gleichzeitig als Verdünnungsmittel fungieren.

Die Reaktionstemperaturen können bei dem erfindungsgemäßen Verfahren (Bβ) auch bei der Verwendung von Carbonsäureanhydriden innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und 100°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens werden die Ausgangsstoffe der Formel (Ia) und das Carbonsäureanhydrid der Formel (IV) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäureanhydrid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Im allgemeinen geht man so vor, daß man Verdünnungsmittel und im Überschuß vorhandenes Carbonsäureanhydrid sowie die entstehende Carbonsäure durch Destillation oder durch Waschen mit einem organischen Lösungsmittel oder mit Wasser entfernt.

EP 0 528 156 A1

Das Verfahren (C) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (la) mit Chlorameisensäureestern oder Chlorameisensäurethiolestern der Formel (V) umsetzt.

Verwendet man die entsprechenden Chlorameisensäureester bzw. Chlorameisensäurethiolester so kommen als Säurebindemittel bei der Umsetzung nach dem erfindungsgemäßen Verfahren (C) alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, DABCO, DBC, DBA, Hünig-Base und N,N-Dimethyl-anilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calcium-oxid, außerdem Alkali-und Erdalkalimetall-carbonate, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (C) bei Verwendung der Chlorameisensäureester bzw. Chlorameisensäurethiolester alle gegenüber diesen Verbindungen inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenwasserstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüberhinaus Carbonsäureester, wie Ethylacetat, und auch stark polare Solventien, wie Dimethylsulfoxid und Sulfolan.

Bei Verwendung der Chlorameisensäureester bzw. Chlorameisensäurethiolester als Carbonsäure-Derivate der Formel (V) können die Reaktionstemperaturen bei der Durchführung des erfindungsgemäßen Verfahrens (C) innerhalb eines größeren Bereiches variiert werden. Arbeitet man in Gegenwart eines Verdünnungsmittels und eines Säurebindemittels, so liegen die Reaktionstemperaturen im allgemeinen zwischen -20°C und +100°C, vorzugsweise zwischen 0°C und 50°C.

Das erfindungsgemäße Verfahren (C) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (C) werden die Ausgangsstoffe der Formel (Ia) und der entsprechende Chlorameisensäureester bzw. Chlorameisensäurethiolester der Formel (V) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 2 Mol) einzusetzen. Die Aufarbeitung erfolgt dann nach üblichen Methoden. Im allgemeinen geht man so vor, daß man ausgefallene Salze entfernt und das verbleibende Reaktionsgemisch durch Abziehen des Verdünnungsmittels einengt.

Beim Herstellungsverfahren D_{α} setzt man pro Mol Ausgangsverbindung der Formel (Ia) ca. 1 Mol Chlormonothioameisensäureester bzw. Chlordithioameisensäureester der Formel (VII) bei 0 bis 120°C, vorzugsweise bei 20 bis 60°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage, wie Ether, Amide, Alkohole, Sulfone, Sulfoxide.

Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Dimethylsulfid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln wie 35 z.B.

Natriumhydrid oder Kaliumtertiärbutylat das Enolatsalz der Verbindung la dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin, Triethylamin aufgeführt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Beim Herstellungsverfahren D_{β} setzt man pro Mol Ausgangsverbindung der Formel (II) die äquimolare Menge bzw. einen Überschuß Schwefelkohlenstoff zu. Man arbeitet hierbei vorzugsweise bei Temperaturen von 0 bis 50°C und insbesondere bei 20 bis 30°C.

Oft ist es zweckmäßig zunächst aus der Verbindung der Formel (II) durch Zusatz eines Deprotonierungsmittels (wie z.B. Kaliumtertiärbutylat oder Natriumhydrid) das entsprechende Salz herzustellen. Man setzt die Verbindung (II) solange mit Schwefelkohlenstoff um bis die Bildung der Zwischenverbindung abgeschlossen ist, z.B. nach mehrstündigem Rühren bei Raumtemperatur.

Die weitere Umsetzung mit dem Alkylhalogenid der Formel (VIII) erfolgt vorzugsweise bei 0 bis 70°C und insbesondere bei 20 bis 50°C. Hierbei wird mindestens die äquimolare Menge Alkylhalogenid eingesetzt.

Man arbeitet bei Normaldruck oder unter erhöhtem Druck, vorzugsweise bei Normaldruck.

Die Aufarbeitung erfolgt wiederum nach üblichen Methoden.

40

55

Beim Herstellungsverfahren E) setzt man pro Mol Ausgangsverbindung der Formel (Ia) ca. 1 Mol Sulfonsäurechlorid (VIII) bei 0 bis 150°C, vorzugsweise bei 20 bis 70°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage wie Ether, Amide, Nitrile, Alkohole, Sulfone, Sulfoxide.

EP 0 528 156 A1

Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Dimethylsulfid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln (wie z.B. Natriumhydrid oder Kaliumtertiärbutylat) das Enolatsalz der Verbindung la dar, kann auf den weitern Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin aufgeführt.

5

35

50

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Beim Herstellungsverfahren E kann gegebenenfalls unter Phasen-Transfer-Bedingungen gearbeitet werden (W.J. Spillane et. al.; J. Chem. Soc., Perkin Trans I, (3) 677-9 (1982)). In diesem Fall setzt man pro Mol Ausgangsverbindung der Formel a) 0,3 bis 1,5 mol Sulfonsäurechlorid VIII, bevorzugt 0,5 mol bei 0° bis 150°C, vorzugsweise bei 20 bis 70°C um.

Als Phasen-Transfer-Katalysatoren können alle quartären Ammoniumsalze verwendet werden, vorzugsweise Tetraoctylammoniumbromid und Benzyltriethylammoniumchlorid. Als organische Lösungsmittel können in diesem Fall alle unpolaren inerten Lösungsmittel dienen, bevorzugt werden Benzol und Toluol eingesetzt.

Beim Herstellungsverfahren F) setzt man zum Erhalt von Verbindungen der Struktur (le) auf 1 Mol der Verbindung (la), 1 bis 2, vorzugsweise 1 bis 1,3 Mol der Phosphorverbindung der Formel (IX) bei Temperaturen zwischen - 40°C und 150°C, vorzugsweise zwischen -10 und 110°C Als gegebenenfalls zugesetzte Verdünnungsmittel kommen aller inerten, polaren organischen Lösungsmittel in Frage wie Ether, Amide, Nitrile, Alkohole, Sulfide, Sulfone, Sulfoxide etc.

Vorzugsweise werden Acetonitril, Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Dimethylsulfid eingesetzt.

Als gegebenenfalls zugesetzte Säurebindemittel kommen übliche anorganische oder organische Basen in Frage wie Hydroxide, Carbonate. Beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin aufgeführt.

Die Umsetzung kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden der organischen Chemie. Die Reinigung der anfallenden Endprodukte geschieht vorzugsweise durch Kristallisation, chromatographische Reinigung oder durch sogenanntes "Andestillieren", d.h. Entfernung der flüchtigen Bestandteile im Vakuum.

Beim Herstellungsverfahren G_{α} setzt man pro Mol Ausgangsverbindung der Formel la ca. 1 Mol Isocyanat der Formel (X) bei 0 bis 100°C, vorzugsweise bei 20 bis 50°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten organischen Lösungsmittel in Frage, wie Ether, Amide, Nitrile, Sulfone, Sulfoxide.

Gegebenenfalls können Katalysatoren zur Beschleunigung der Reaktion zugesetzt werden. Als Katalysatoren können sehr vorteilhaft zinnorganische Verbindungen, wie z.B. Dibutylzinndilaurat eingesetzt werden. Es wird vorzugsweise bei Normaldruck gearbeitet.

Beim Herstellungsverfahren G_{β} setzt man pro Mol Ausgangsverbindung der Formel (la) ca. 1 Mol Carbamidsäurechlorid bzw. Thiocarbamidsäurechlorid der Formel (XI) bei 0 bis 150°C, vorzugsweise bei 20 bis 70°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen aller inerten polaren organischen Lösungsmittel in Frage wie Ether, Amide, Alkohole, Sulfone, Sulfoxide.

Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Dimethylsulfid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln (wie z.B. Natriumhydrid oder Kaliumtertiärbutylat) das Enolatsalz der Verbindung la dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin aufgeführt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugswiese wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Das Verfahren (H) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Metallhydroxiden (XII) oder Aminen (XIII) umsetzt.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren vorzugsweise Ether wie Tetrahydrofuran, Dioxan, Diethylether oder aber Alkohole wie Methanol, Ethanol, Isopropanol, aber auch Wasser eingesetzt werden. Das erfindungsgemäße Verfahren (H) wird im allgemeinen unter Normaldruck durchgeführt. Die Reaktionstemperaturen liegen im allgemeinen zwischen -20°C und 100°C, vorzugsweise zwischen 0°C und 50°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (H) werden die Ausgangsstoffe der Formel (Ia) bzw. (XII) oder (XIII) im allgemeinen in angenähert äquimolaren Mengen verwendet. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 2 Mol) einzusetzen. Im allgemeinen geht man so vor, daß man das Reaktionsgemisch durch Abziehen des Verdünnungsmittel einengt.

Herstellungsbeispiele

Beispiel la-1

20

10

15

11,8 g (0,105 Mol) Kaliumtertiärbutylat werden bei 40°C in 100 ml tert. Butanol gelöst.

Anschließend läßt man 26 g 2,4,6-Trimethylphenylessigsäureethoxycarbonylmethylester, welcher in 50 ml tert. Butanol gelöst sind, bei 40 °C unter Rühren zutropfen.

Man rührt in 600 ml Eiswasser ein, stellt mit 1N Salzsäure auf pH 2 ein, extrahiert mit Essigsäureethylester, wäscht zweimal mit Wasser, trocknet über Natriumsulfat und engt am Rotationsverdampfer ein.

Ausbeute: 6,82 g (30,3 % der Theorie) der Verbindung 3-(2,4,6-Trimethylphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2.

Schmelzpunkt (nach dem Umkristallisieren aus Methylenchlorid/n-Hexan) 154°C.

30 Beispiel la-2

H₃C OH CH₃ CH

40

35

2,16 g (90 mmol) Natriumhydrid (80 %ig) wurden in 50 ml absolutem Toluol vorgelegt. Man arbeitet unter Argon-Atmosphäre. Es wird auf Rückflußtemperatur erhitzt. Dann läßt man unter Rückfluß 17,5 g (60 mmol) in 70 ml absolutem Toluol gelöste Verbindung der Formel

50

55

zutropfen und erhitzt 3 Stunden lang unter Rückfluß.

EP 0 528 156 A1

Zum Zwecke der Aufarbeitung wird die Lösung einrotiert, der Rückstand in Wasser aufgenommen und die Lösung angesäuert. Der dabei ausfallende Niederschlag wird in Methylenchlorid aufgenommen und die wäßrige Mutterlauge noch mehrfach extrahiert. Anschließend wird über Natriumsulfat getrocknet und am Rotationsverdampfer eingeengt.

Zur Reinigung suspendiert man heiß in 20 ml Chloroform, gibt unter Rückfluß 60 ml n-Hexan langsam zu, läßt langsam abkühlen, saugt ab und trocknet.

Ausbeute 4,66 g (= 32 % d. Th) der Verbindung 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5,5-dimethyl- Δ^3 -dihydrofuranon-(2) vom Schmelzpunkt 254 ° C.

In Analogie zu den Herstellungsmethoden der Beispiele la-1 und la-2 wurden die folgenden Herstellungsbeispiele synthetisiert:

15		Physikal. Konstanten	Fp: 179°C	Fp: 154°C	Fp: 156°C	Fp: 110°C	Fp: 124°C	Fp: 218°C	Fp: 264° C	Fp: 210°C	Fp: 163°C	Fр: 201°С	Fr. 2790 C
20		$^{2}_{n}$	Ħ	æ	×	ĸ	Ħ	ĸ	6 - F	×	x	r	מליי
25		> -	C1	H	æ	x	æ	I	H	H=CH-	Ξ	н	į
30		×	21	C1	cF_3	OCH3	CH3	Вг	ſĸ,	-CH=CH-CH=CH-	CH ₃	Ĺ r. ,	į
35	(Ia)	Q	0	0	0	0	0	0	0	0	0	0	
40	Ļ	В	Ħ	н	ĸ	н	I	I	н	H	н	ж	
45	×	0 7 n											
50	A	A	CH ₃	CH ₃	CH ₃	CH3	CH ₃	н	I	Ξ	Ħ	н	
55	Tabelle 8:	Bsp.~ Nr.	Ia-3	Ia-4	Ia-5	Ia-6	Ia-7	Ia-8	Ia-9	Ia-10	Ia-11	Ia-12	

5		Physikal. Konstanten		Fp: 212-214°C	Fp: 244-245°C	Fp: 208-210°C	Fp: 237° C	Fp: 211°C	Fp: >270°C	Fp: 225°C	Fp: 97°C	Fp: 191° C
15		Z _n		€+2−9	6-CH ₃	6-CH ₃	6-C1	6-C1	6-C1	6-C1	ж	×
		> -		снз	сн3	CH ₃	×	Ħ	H	×	ü	C1
20		×		снз	снз	снз	Cl	C1	C1	C1	CJ	ប
25		Q		0	0	0	0	0	0	0	0	0
30		æ		н	снз	ĸ	Ħ	æ	снз	CH ₃	ж	CH ₃
35	(Bunz:		1									
40	(Fortsetzung)	¥				снз	СНЗ		CH3			CH ₃
45	Tabelle 8:	Bsp Nr.		Ia-14	Ia-15	Ia-16	Ia-17	Ia-18	Ia-19	Ia-20	Ia-21	Ia-22

5		Physikal. Konstanten	: 130° C	: >265°C	Fp: >230°C	: 269º C	: 201° C	: 138°C	: 249° C	: 270-275°C	: 258-260°C	3 ₀ 66-86 :	: 234-238°C
10		Phy Koi	Fp:	ብ ር	Яp	Fр:	ብ ር	ብ ር	Г р:	ብ ር	Fp:	Fp:	Я
15		Z _n	н	6-01	×	6-C1	6-C1	6-01	6-C1	е-сн ³	6-CH3	6-CH ₃	6-CH ₃
20		۲	Cl	Ħ	ບີ	I	Ħ	ĸ	H	снз	снз	снз	снз
		×	C1	C1	C1	ír,	i z.	Ĺt.	ᄕ	снз	снз	снз	снз
25		D	0	0	0	0	0	0	0	0	0	0	0
30		В	СНЗ				×	Ξ	CH ₃		ı	E	
35	(gunz			-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -					-CH2-CH2-	-(CH ₂) ₉ -CH ₃	-(CH2)4-
40	(Fortsetzung)	A		J '	1	•	снз		CH3			- (CH	
45	Tabelle 8:	Bsp Nr.	Ia-23	Ia-24	Ia-25	Ia-26	Ia-27	Ia-28	Ia-29	Ia-30	Ia-31	Ia-32	Ia-33

EP 0 528 156 A1

5	Physikal. Konstanten	Fp: 233-235°C	Fp: >250°C	Fp: 210-245°C	216-228°C	Fp: 192-197°C	Fp: 222°C	246-248° C	223-231° C
10	Phys Kons	Fp:	д С	ብ ር	Яр:	F. 0.7	F.p.:	FD:	ብ ር
15	Zn	6-CH ₃	6-CH ₃	6-сн ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-СН3
20	> -	снз	снз	снз	снз	снз	снз	снз	снз
	×	СНЗ	снз	снз	снз	СНЗ	CH ₃	CH3	CH3
25	Ω	0	0	0	0	0	0	0	0
30	Ф			-2(2	C2H5	x	H ₂) ₂ -		
35	(gunz	-CH ₂ -CH-(CH ₂) ₃ -CH ₃	-(CH ₂) ₆ -	-сн ₂ сн ₂ -сн-(сн ₂) ₂ - t-с ₄ н ₉		\wedge	-сн ₂ -сн ² -сн-(сн ₂) ₂ - сн ₃	-(CH ²) ² -	-CH-(CH ₂) ₄ - CH ₃
40	(Fortset:	-CH2-() -	- CH2C	C2H5	H	-CH2-) -	υ— υ
45	Tabelle 8: (Fortsetzung) Bsp Ar.	Ia-34	Ia-35	Ia-36	Ia-37	Ia-38	Ia-39	Ia-40	Ia-41

EP 0 528 156 A1

5		Physikal. Konstanten	Fp: 257-260°C	Fр: 175-180°С	Fp: 180-185°C	Fp: 258-259°C		Fр: 233-235°С	Fp: 190-194°C	Fp: 197°C	Fp: 255-257°C	Fp: 208°C	Fp: 236-237°C
10		마×	I z. ,	ĮZ,	ц,	ш,		щ	щ.		-	_	-
		2 _n	6-CH ₃	€ СН3	6-CH ₃	€-сн3		6-СН ₃	Ħ	6-61	6-сн3	6-CH ₃	6-сн3
15			ю	m	ო	ო		ю	ဗ		့ဗွာ	္ပ်က္	္ဌာ
		> -	CH3	CH3	СНЗ	СНЗ		снз	снз	H	CH3	СНЗ	CH3
20		×	CH3	снз	снз	снз		СНЗ	снз	ír,	снз	СНЗ	снз
25		۵	0	0	0	0		0	0	0	0	0	0
30		В	CH ₂) ₂ -	CH3	н	-CH2-C(CH3)2-CH2-CH-CH2-	CH ₃	снз	снз	Η H	CF3	cH ₃	
35	(gu		-(CH ₂) ₂ -CH-(CH ₂) ₂ -			(CH ₃) ₂ -		01		─C4H9-t			/ \
40	(Fortsetzung)	A	-(CH ²)	$c_{2}H_{5}$	t-C4H9	-CH2-C(-CH=CH2	снз		СНЗ	i-C4H9	
45	Tabelle 8:	Bsp Nr.	Ia-42	Ia-43	Ia-44	Ia-45		Ia-46	Ia-47	Ia-48	Ia-49	Ia-50	Ia-51

5		Physikal. Konstanten	Fp: 215-217°C	Fp: 212-213°C	Fp: 190-191°C	Fp: 266°C	Fp: 221° C	Fp: 198°C	Fp: 118-127°C	Fp: 170°C	Fp: 204-206°C	Fp: 251-253°C	Fp: 217 (Zers.)
15		Zn	6-CH ₃	6-CH ₃	6-CH ₃	6-CF3	6-C1	×	€+⊃-9	6 - CH ₃	6-CH ₃	3F,6CH3	€н⊃-9
20		Y	CH3	снз	снз	ដ	CF3	ប	снз	снз	снз	снз	снз
-0		×	снз	СНЗ	СНЗ	CJ	ĺz.	ប	снз	снз	СНЗ	снз	CH3
25		D	0	0	0	0	0	0	0	0	0	0	0
30		В	CH ₃	13,2-	н			ĸ	ж	H ₂ CH ₃	CH ₂		
35 40	<u>Tabelle 8</u> : (Fortsetzung)	V	i-C ₃ H ₇	-с(сн ₃) ₂ -с(сн ₃) ₂ -	$i-C_3H_7$	-(CH ₂) ₅ -	-(CH ₂) ₅ -	Н	\triangleright	CH2-CH2	CH ₂	-(CH ₂) ₅ -	\bigcirc
45	Tabelle 8: (Bsp Nr.	Ia-52	Ia-53	Ia-54	Ia-55	Ia-56	Ia-57	Ia-58	Ia-59	Ia-60	Ia-61	Ia-62

Beispiel Ib-1

55

EP 0 528 156 A1

10

15

5

1,23 g (5 mmol) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5,5-dimethyl-∆³-dihydrofuranon-(2) werden in 20 ml absolutem Methylenchlorid vorgelegt. Dazu gibt man 0,61 g (6 mmol) Triethylamin, tropft bei 0-10°C eine Lösung von 0,72 g (6 mmol) Pivaloylchlorid in 5 ml abs. Methylenchlorid zu und rührt 1 h bei Raumtemperatur nach.

Zur Aufarbeitung wird die Lösung mit wäßriger Citronensäure und wäßriger Natriumhydrogencarbonatlösung gewaschen, über Natriumsulfat getrocknet und einrotiert.

Ausbeute: 1,43 g (87 % d.Th.) der Verbindung 3-(2,4,6-Trimethylphenyl)4-pivaloyloxy-5,5-dimethyl- Δ^3 -dihydrofuranon-(2) von Schmelzpunkt 82 ° C.

20

Beispiel lb-2

25

30

2,46 g (10 mmol) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5,5-dimethyl- Δ^3 -dihydrofuranon-(2) werden in 40 ml absolutem Methylenchlorid vorgelegt. Man setzt 1,11 g (11 mmol) Triethylamin zu, tropft bei 0-10° C eine Lösung von 0,86 g (11 mmol) Acetylchlorid in 10 ml abs. Methylenchlorid zu und läßt noch 1 h bei Raumtemperatur rühren.

Die Aufarbeitung erfolgt analog zu Beispiel 3.

Ausbeute: 2,55 g (88 % d. Th.) der Verbindung 3-(2,4,6-Trimethylphenyl)-4-acetyloxy-5,5-dimethyl- Δ^3 -dihydrofuranon-(2) vom Schmelzpunkt 160 ° C.

In Analogie zu den Hertellungsmethoden der Beispiele Ib-1 bis Ib-2 wurden die folgenden Herstellungsbeispiele synthetisiert:

45

40

50

5		Physikal. Konstante	Fp: 118-120°C	Fp: 64°C	Fp: 67°C	Fp: 73°C	Fp: 200° C	Fp: 117-1190 C	Fp: 123-125°C	Fp: 110-112°C
15		R1	снз	-с(сH ₃) ₂ -С ₂ H ₅	-с(сн ₃) ₂ -сн(сн ₃) ₂	$-CH_2-C(CH_3)_3$	снз	-c(cH ₃) ₃	-с(сн ^з)з	снз
20		Zn	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃
25	(Ib)	>	снз	CH3	CH ₃	СНЗ	CH ₃	CH ₃	CH ₃	CH3
30		×	СНЗ	СНЗ	CH ₃	снз	CH ₃	СНЗ	СНЗ	снз
35	, r	Q	0	0	0	0	0	0	0	0
40	O=C-R ¹	В	СН3	CH ₃	з сн3		-(CH ₂) ₅ -	-(CH ₂) ₅ -	CH ₃	3 H
	: -B	< *	Y	CH3	CH3	CH3	'	•	Y	СНЗ
45	Tabelle	Bsp	Ib-3	Ib-4	Ib-5	9-qI	Ib-7	Ib-8	Ib-9	Ib-10

45	40	35		30	25	20	10	5
Tabelle 9:	e 9: (Fort	(Fortsetzung)						
Bsp Nr.	¥	а	О	×	۲	Zn	R1	Physikal. Konstante
Ib-11	cH ₃	н	0	снз	снз	6-CH ₃	-с(сн ³) ³	Ö1
Ib-12	снз	снз	0	снз	CH ₃	е-сн ³	\bigcirc	Fp: 150-152°C
Ib-13	снз	снз	0	снз	снз	€н⊃-9	снз	Fp: 109-1110C
Ib-14		×	0	снз	снз	6-сн3	t-C4H9	ö.
Ib-15	снз	снз	0	снз	CH3	6-CH ₃	-CH=C(CH ₃) ₂	Fp: 88° C
Ib-16	снз	снз	0	снз	снз	€-СН3	$-cH_2$	Ö1
Ib-17			0	снз	снз	6-СН3	снз	Fp: 170-172°C
Ib-18			0	снз	снз	6-CH ₃	t-C4H9	Fp: 128-130°C
Ib-19		-(CH ₂) ₅ -	0	снз	снз	€-сн3	C ₂ H ₅	Fp: 115-116

EP 0 528 156 A1

5	Physikal. Konstante	Fp: 87-88° C	Fр: 138° С	Fp: 114-115°C	Fp: 92-98°C	Fp: 140-142°C	Fp: 121-122°C	Fp: 110-112°C
10	R1	C3-H7	-с(сн ₃) ₂ -сн ₂ с1	-(сн ₃) ₂ -сн ₂ -осн ₃	CH ₂ -0CH ₃ CH ₂ -0CH ₃ CH ₃	CH2-0CH3 CH2-0CH3 CH2-0CH3	CH2-0CH3 -C C2H5 C2H5	_ch2-0ch3 -c ch2-0ch3 i-c3h7
20	Z _n	6-CH ₃ C ₃ -	9-сн3	9-СН ³ - (С	, - CH3 - 6	6-CH ₃ CH ₃ C	- CH3 - 9	6-CH ₃ -c,
25	>-	снз	снз	снз	снз	снз	снз	снз
30	×	CH ₃	CH ₃	снз	СН ^З	снз	СН ^З	CH3
35	zung) B D	0	0	0	0	0	0	0
	(Fortset	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ₂) ₅ -
45	Tabelle 9: Bsp Nr. A	1b-20	Ib-21	Ib-22	Ib-23	Ib-24	Ib-25	1b-26

EP 0 528 156 A1

5		Physikal. Konstante	Fp: 148-151°C	Fp: 105-106°C	Fp: 102-103°C	Fp: 147-148°C	Fp: 146°C	Fp: 60°C	Fp: 121°C	Fp: 104°C	Fp: 96°C	Ö1
10			3,3	8								
15		R ¹	-CH ₂ -C(CH ₃) ₃	-CH=C(CH3)2		T T		t-C4H9	t-C4H9	t-C4H9	-cH3	t-C4H9
20		Zn	е-сн ³	6-CH ₃	е-сн ³	6-CH ₃	^Е НЭ-9	6-C1	6-01	щ	æ	H
25		> -	CH ₃	снз	снз	CH3	снз	H	Ħ	CI	C1	C1
30		×	CH ₃	снз	снз	снз	снз	C1	C1	CI	ប	Cl
35	zung)	В	0	0	0	0	0	0	0		3	0
40	(Fortsetzung)		-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	Ħ	CH3	Y	снз	Ħ
	le 9:	Ą						снз	снз	Ħ	снз	CH ₃
45	Tabelle	Bsp Nr.	Ib-27	Ib-28	Ib-29	Ib-30	Ib-31	1b-32	Ib-33	Ib-34	Ib-35	Ib-36

EP 0 528 156 A1

5	Physikal. Konstante	Fp: 141°C	Fp: 91°C	Fp: 1970C	Fp:101-108°C	Fp: 193⁰ C	Fp: 117°C	Fp: 91° C	Fp: 97º C	Fp: 100° C	Fp: 77° C	Fp: 87°C
10												
15	R1	t-C4H9	t-C4H9	t-C4H9	t-C4H9	t-C4H9	t-C4H9	t-C4H9	t-C4H9	-CH3	C2H5	t-C4H9
20	Zn	6-01	6-61	æ	Ξ	6-C1	6 ∺	6 ₽ -	6 - F	6-C1	6-C1	4 - 9 4 - 1
25	X	#	¤.	l C1	1 CJ	н н	H	н	1 H	н	1 H	1 H
30	X Q	0 01	0 01	0 01	0 01	0 01	0 01	0 01	0 01	0 01	0 0.1	0 01
35	(Fortsetzung)		ж		-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	æ	æ	æ	Ħ	СН _З
	.; «	cH ₃		снз	٠ (۵	- (C		CH		СНЗ	CH ₃	CH ₃
45	Tabelle Bsp Nr.	1b-37	Ib-38	1b-39	Ib-40	Ib-41	Ib-42	Ib-43	Ib-44	Ib-45	Ib-46	Ib-47

EP 0 528 156 A1

5		Physikal. Konstante	Fp: 102-104°C	Öı	Fр: 132°С	Fp: 141°C	Fp:59-60°C	Öı	Fp: 132-133°C	Fp: 155-157°C
10		R1	-CH ₂	L-C4H9			снз	t-C4H9	снз	t-C4H9
20		2 ^u z	6-CH3	6-CH ₃	6-CH ₃	^Е но-9	6-CH3	€-CH³	6 - CH ₃	6 - CH ₃
25		.	CH3	снз	CH ₃	CH ₃	снз	CH ₃	CH ₃	CH ₃
30		×	CH ₃	снз	CH3	снз	CH ₃	снз	снз	СНЗ
35	ortsetzung)	Q 8	0	CF ₃ 0		0	i-C4H9 0	i-C ₄ H ₉ 0	СН ₃ н о	ССН3 Н О
40	9: (F	A	-(CH ₂)5	снз	-(CH ₂) ₅ -	-(CH ₂) ₅ -	снз	снз	H ₃ C	H ₃ C _H
45	Tabelle	Bso.	Ib-48	Ib-49	Ib-50	Ib-51	Ib-52	Ib-53	Ib-54	Ib-55

EP 0 528 156 A1

5		Physikal. Konstante	Fp: 168°C	Öı	Fp:154-156°C	Fp:134-132°C	Fp:114-1170C	Fp:115-1170 C	Öı	Ö1	Fp: 112°C	Öı	Fp:134-136°C
10													∕cH ₃
15		R1	снз	t-C4H9	снэ	t-C4H9	снз	t-C4H9	снз	t-C4H9	t-C4H9	i -C ₃ H ₇	(II)
20		Zn	e-cH3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH3	6-CH3	6-CH3	6-CH3	6-CH ₃	6-CH ₃	6-CH ₃
25		٨	СНЗ	CH3	CH ₃	СН _З	cH ₃	снз	снз	снз	снз	снз	CH ₃
30		×	снз	CH3	снз	СНЗ	снз	снз	CH3	снз	CH3	снз	СНЗ
			0	0	0	0	0	0	0	0	0	0	0
35	(Fortsetzung)	В	i -C ₃ H ₇	i-C ₃ H ₇		\Longrightarrow	-(CH ₂) ₂ -	·(CH ₂) ₂ -	-(CH ₂) ₉ -CH ₃	-(CH ₂) ₉ -CH ₃	ж	-(CH ₂) ₅ -	-(CH ₂) ₅ -
	6	<	снз	снэ			1	1	H	Ħ	H	'	ı
45	Tabelle	Bsp Nr.	Ib-56	Ib-57	Ib-58	Ib-59	Ib-60	Ib-61	Ib-62	IP-63	Ib-64	Ib-65	Ib-66

EP 0 528 156 A1

5	Physikal. Konstante	Ö1	Ö1	Fp:169-172°C	Fp:48-65 ⁹ C	Ö1	Fp:189-1910 C	Fp:160-1620 C	Fp:91-930C
15	R1	снз	t-C4H9	снз	t-C4H9	снз	t-C4H9	снз	L-C4H9
20	2,	6 - CH ₃	6-CH ₃	6-CH ₃	€-СН3	€н⊃-9	€н⊃-9	6-CH ₃	6-сн3
25	۶	CH ₃	CH ₃	CH3	снз	снз	CH ₃	CH ₃	снз
30	×	СНЗ	сн3	CH ³	CH3	снз	снз	CH ₃	CH ₃
35	tzung) B D	0 - 2 2	0 _£(2	0	0	0 _£(2	2)3_ 0	0	0
40	Tabelle 9: (Fortsetzung) Bsp B	-сн ₂ -сн- (сн ₂) ₃ -	-сн ₂ -сн- (сн ₂) ₃ -	-(CH ₂) ₄ -	-(CH ₂)4-	-CH ₂ -CH-(CH ₂) ₃ - (-C ₄ H ₉	-сн ₂ -сн-(сн ₂) ₃ - -с ₄ н ₉	-9(ZHO)-	-(CH ²) ⁶ -
45	Tabelle Bsp Nr.	Ib-67	Ib-68	Ib-69	Ib-70	Ib-71	Ib-72	Ib-73	Ib-74

EP 0 528 156 A1

5	i	Konstante	Fp:125°C	Fp:77-79° C	Ö1	Fp:100-102°C	Fp:135-136°C	Fp:137-139°C	Öl	Fp:107-108°C	Fp:127-128°C
10									7-64H9-t		
15		R1	cH ₃	t-C4H9	снз	t-C4H9	снз	t-C4H9		снз	t-C4H9
20		u _Z	6-CH3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	£но-9	6-CH ₃	6-CH ₃	6-CH ₃
25			CH ₃	CH3	CH ₃	СНЗ	снз	CH ₃	CH ₃	CH3	cH ₃
30		×	CH3	снз	CH3	снз	снз	CH ₃	СНЗ	CH ₃	CH ₃
		۵	0	0	0	0	0	0	0	0	0
35	(Fortsetzung)	В	C2H5	C2H5	Ħ	æ	-(CH ₂) ₂ -CH-(CH ₂) ₂ - CH ₃	сн ₂ (сн ₂) ₂ - сн ₃	(CH ₂) ₅ -	-2(-2(
40	6	A	C2H5	C2H5	= =	(m)	-(CH ₂) ₂	-(CH ₂) ₂	- (CH ₂	-(CH2)7-	-(CH ²) ² -
45	Tabelle	Bsp	Ib-75	1b-76	1b-77	Ib-78	Ib-79	Ib-80	Ib-81	Ib-82	Ib-83

EP 0 528 156 A1

5		Physikal. Konstante	Fp: 52°C	Fp:125-130°C	Fp:139-142°C	Ö1	Fp:140-144°C	Ö1
10								
15		я1	CH ₃	t-C4H9	снз	t-C4H9	снз	t-C4H9
20		Zn	€н⊃-9	6-CH ₃	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃
25		Y	CH ₃	CH ₃	снз	снз	снз	снз
30		×	СНЗ	СНЗ	СНЗ	снз	СНЗ	снз
30		Ω	0	0	0	0	0	0
35	Tabelle 9: (Fortsetzung)	æ	-(CH ₂) ₂ -CH-(CH ₂) ₂ -	-(CH ₂) ₂ -CH-(CH ₂) ₂ -	-(сн ₂) ₄ -сн- сн ₃	- (сн ₂) ₄ -сн- сн ₃	СН _З	снз
40	e 9: (Fc	A	-(CH ₂);	- (CH ₂)	٠ (۵) -	c_2H_5	c_2H_5
45	Tabell	Bso.	Ib-84	Ib-85	Ib-86	Ib-87	Ib-88	Ib-89

EP 0 528 156 A1

5		Physikal. Konstante	Fp: 81-82°C	Fp: 78-790 C	Öl	Öı	Fp: 116°C	Öı	Fp:166-168°C	Fp:185° C	Fp:144-146°C	Fp:99-100°C	Öl	Fp:112-113°C
10						•		•		•	<u>^</u>		•	•
15		R1	снз	t-C4H9	CH3	t-C4H9	снз	t-C4H9	снз	t-C4H9		CH3	t-C4H9	t-C4H9
20		Z	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	6-CH3	6-CH ₃	6-C1	6-C1	6-01	6-CH ₃	6-CH ₃	€-СН3
25		,	CH3	CH ₃	CH ₃	CH ₃	снз	CH ₃	CF3	CF ₃	GF ₃	снз	СНЗ	снз
		×	СНЗ	снз	снз	СНЗ	снз	CH3	ប	ប៊	C]	CH3	снз	снз
30		۵	0	0	CH- 0	O - HJ	cH ₃	0	0	0	0	0	0	CH ₃
35	Fortsetzung)	മ	ж	x	-CH2-C(CH3)2-CH2-CH-	-CH ₂ -C(CH ₃) ₂ -CH ₂ -CH ³	снз	CH ₃	-2-	-2(.2-	i-C ₃ H ₇	i-C ₃ H ₇	снз
40	ار د	Ą	t-C4H9	t-C4H9	-CH ² -C(())2- ² H2-	H2c=CH-	H2C=CH-	-(CH ₂)2-	-(CH2)5-	-(CH ₂) ₅ -	Ħ	Ħ	снз
45	Tabelle	Bsp Nr.	Ib-90	Ib-91	Ib-92	Ib-93	Ib-94	Ib-95	96-qI	1b-97	Ib-98	1b-99	Ib-100	Ib-101

EP 0 528 156 A1

5		Physikal. Konstante	Fp: 89° C	Fp: 162°C	H ₁₇ Öl	Fp: 182° C	Fp: 107-110°C	Fp: 105-106°C	Öı
10		m	C4H9t		-C7H14-CH=CH-C8H17	Adamantyl	H ₃ C CH ₃	C4H9sec	-сн ₂ -сн-с ₄ н _{9п} с ₂ н ₅
20		2 _n	π	Ħ	×	Ħ	Ħ	Ξ	Ħ
		7	C1	Cl	CJ	C1	C1	C1	C1
25		×	C1	CI	ប	CJ	c1	CI	C1
30		a	0	0	0	0	0	0	0
35	(Fortsetzung)	EI	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ²) ⁵ -	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ₂) ₅ -
40		Ą							
45	Tabelle 9:	Bsp Nr.	Ib-102	Ib-103	Ib-104	Ib-105	Ib-106	Ib-107	Ib-108

EP 0 528 156 A1

5	Physikal. Konstante	Fp: 57-59°C	Fp: 104°C	Öı	Fp: 88° C	Fp: 99°C	Fp: 94°C Fp:120-121°C	Fp:188-189°C
10	R1	-CH-C4H9n C2H5	снз	C4H9t	снз	снз	СН ₃ С4Н9t	снз
15	Zn)- EHD-9	6-CH ₃	6-CH ₃ (€ - CH ³	6-CH ₃	3F,6-CH ₃ 3F,6-CH ₃	£н29
20	۲	снз	снз	ZH2	сн ³	снз	CH ₃	CH ₃
25	×	СНЗ	снз	CH3	снз	снз	CH ₃	СНЗ
30	Ω	0	0	0	сн3 о	сн ³ 0	0 0	0
35	(Fortsetzung)	-6(2H2)-	# 	#	сн2-сн2 с	-CH2-CH2 C	-(CH ₂) ₅ - -(CH ₂) ₅ -	
40	<u>~</u>	•						
45	Tabelle Bsy	Ib-109	Ib-110	Ib-111	Ib-112	Ib-113	Ib-114 Ib-115	Ib-116

5	Physikal.	Konstante	Fp: 131°C	Fp:141-143°C	Fp: 85-87°C	Fp: 123-125°C	. Fp: 110-112°C	Ö1	Fp: 132-135°C
10		R1	C4H9t	C4H9t	-C(CH3)5-C5H2	-с(сн ₃) ₂ сн(сн ₃) ₂	-с(сн ₃) ₂ -сн ₂ с1	7-0	-c(cH ₃) ₃
		Zn	6-СН3	6-CH ₃	×	H	æ	I	6-F
20		,	снз	CH ₃	CJ	C1	C1	C1	CF3
25		×	CH ₃	CH ₃	ប៊	C1	C1	C1	CI
30		۵	0	-сн ² - 0	0	0	0	0	0
35	(Fortsetzung)	æ		-cH ₂ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(cH ₂) ₅ -	- (CH2)=-
40		A							
45	Tabelle 9:	Nr.	Ib-117	Ib-118	Ib-119	Ib-120	Ib-121	Ib-122	Tb-123

5		Physikal. Konstante	Ö1	Öl	Öl	Ö1	Ö1	Ö1
10		R ²	C ₂ H ₅	i-C4H9	s-C4H9	C2H5	i-C ₃ H ₇	-CH2-C-C2H5
		Σ	0	0	0	0	0	0
15		اد	0	0	0	0	0	0
20		2 _n	€H⊃-9	6-сн3	6-сн3	6-CH ₃	6-сн ₃	6-CH ₃
		>-	снз	снз	снз	снз	CH ₃	снз
25	(Ic)	×	снз	снз	снз	снз	CH3	снз
30		Ω	0	0	o	0	0	0
35	Z ^z u z	B	CH3	CH ₃	CH ₃	Ħ	Ħ	снз
40	-CM-R2	K	СН3	снз	СНЗ	CH3	CH ₃	снз
,,	Tabello B B D D	Bso Nr.	Ic-1	Ic-2	10-3	Ic-4	Ic-5	Ic-6
45								
50								

EP 0 528 156 A1

5		Physikal. Konstante	Fp:92-94°C	Öı	Öı	Fp:123-124°C	Fp:108°C	Fp:146-1470 C	őı	Fp:142-143°C	Fp:112-114°C
10		R ²	s -сн ₂ с(сн ₃₎₃	o c ₂ H ₅	i-C ₃ H ₇	о сн _з	0 t-C4H9	о снз	0 CH2-CH-C4H9 C2H5	i-C ₃ H ₇	
15		Σ	ဟ	0	0	0	0	0	0	0	0
		ı	0	0	0	0	0	0	0	0	0
20		2n	6-CH ₃	6-CH ₃	6-CH ₃	6-CH3	6-CH3	6-CH3	€-СН3-9	6-CH3	6-CH3
25		٨	снз	CH3	CH ₃	СНЗ	СНЭ	снз	снз	снз	снз
30		×	CH3	СНЗ	снз	CH3	CH3	CH ₃	снз	снз	снз
	ıg)	Ω	0	0	0	0	0	0	0	0	0
35	ortsetzur	æ	CH3	H	н	СН ₃	CH3	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ²) ² -	-(CH ₂) ₅ -
40	Tabelle 10: (Fortsetzung)	A	снз			CH3	снз	י (מ	5) -	۵) -	- (۵
45	Tabe 11	Bsp Nr.	Ic-7	I c - 8	Ic-9	Ic-10	Ic-11	Ic-12	Ic-13	Ic-14	Ic-15

EP 0 528 156 A1

5		Physikal. Konstante	Fp:128-132°C	Fp:129-131°C	Fp:126-127 ³ C	Fp:121-122°C	Öı	Fp: 910 C	Fp:96-97°C	Fp:102-104°C	Ö1	Ö1
10		2	0 t-C4H9	s -cH ₂ C(CH ₃) ₃	i-C3H7	H ₃	i-C ₃ H ₇		i-C4H9	s-C4H9	Н3	O i-C ₃ H ₇
15		L M R ²	0 0)- s 0	0 S i	0 0 сн3	0 0	s s cH ₃	i 0 0	s 0 0	0 0 CH ₃	0 0
20		Zn	6-CH ₃	6-CH ₃	€-сн3	6-CH ₃	€-сн3	€-сн3	6-CH ₃	6-CH ₃	6-сн ₃	€-СН3
25		~	снз	CH ₃	снз	СНЗ	снз	снз	снз	снз	снз	CH ₃
		×	CH ₃	снз	снз	снз	снз	снз	CH ₃	CH ₃	снз	снз
30	(gu	Q	0	0	0	0	0	0	0	0	0	0
35	0: (Fortsetzung)	АВ	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₂ -	-(CH ₂) ₂ -	cH ₃ CH ₃	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-сн ₂ -сн- (сн ₂) ₃ - сн ₃	-сн ₂ -сн- (сн ₂) ₃ - сн ₃
40	Tabelle 10	Bsu Nr.	Ic-16	Ic-17	Ic-18	Ic-19	Ic-20	Ic-21 CI	Ic-22	Ic-23	Ic-24 -C	Ic-25 -C
45	H	шΖ	H	P=4	7-1		-	-	7	.7	••	•

EP 0 528 156 A1

5		Physikal. Konstante	Fp:117-1190 C	Fp:120-122°C	Ö1		Öl		Fp:99-104°C	Fp:43-47º C	Fp:101-102°C	Öı	Ö1
10				~			2			2		2	
15		M R ²	o cH ₃	0 i-C3H7	сн3		0 i-C3H7		O CH3	0 i-C3H7	o ch3	0 i-C ₃ H ₇	o ch3
		L	0	0	0		0		0	0	0	0	0
20		Zn	€-сн3	6-CH3	6-CH ₃		€-сн3		6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃
25		٨	CH ₃	снз	снз		снз		снэ	снз	снз	снз	снз
30		×	снз	снз	снз		снз		CH ₃	$\rm CH_3$	снз	снз	снз
	<u> </u>	۵	0	0	0		0		0	0	0	0	0
35	rtsetzung	B)4-)4-	-(CH ₂) ₂ -C-(CH ₂) ₂ -	L-C4H9	$-(CH_2)_2-C(CH_2)_2-0$	t-C4H9	-9(.)6-	C2H5	C2H5	m.
40	Tabelle 10: (Fortsetzung)	A	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ²) ² -	۱-	-(CH ²) ² -	t-	-(CH ²) ⁶ -	-(CH ₂) ₆ -	C2H5	C2H5	=
45	Tabelle	Bsp Nr.	Ic-26	Ic-27	Ic-28		Ic-29		Ic-30	Ic-31	Ic-32	Ic-33	Ic-34

EP 0 528 156 A1

5 10 15 20	i	Y Z _n L M R ² Konstante	сн ₃ 6-сн ₃ 0 0 i-с ₃ н ₇ öı	СН ₃ 6-СН ₃ 0 0 СН ₃ Fp:100-102° С	CH ₃ 6-CH ₃ 0 0 i-C ₃ H ₇ Fp:104°C	CH ₃ 6-CH ₃ 0 0 CH ₃ Fp: 85-88° C	CH ₃ 6-CH ₃ 0 0 i-C ₃ H ₇ Fp: 97°C	сн ₃ 6-сн ₃ о осн ₃ öı	
30		×	CH ₃	CH ₃	снз	CH ₃	CH ₃	cH ₃	
35	tzung)	в р	0	H ₂) ₂ - 0	3H2 } 2 - 0	0	0	3H ₂) ₂ - 0	
40	Tabelle 10: (Fortsetzung)	K	#	-(сH ₂) ₂ -с-(сH ₂) ₂ - 0 сн ₃	-(сн ₂) ₂ -с-(сн ₂) ₂ - сн ₃	-(CH ₂) ₇ -	-(CH ₂) ₇ -	$-(CH_2)_2-C-(CH_2)_2$	-{_>
45	Tabell	Bsu Nr.	Ic-35	Ic-36	Ic-37	10-38	Ic-39	Ic-40	

EP 0 528 156 A1

5	Physikal. Konstante	Öl	Fp:110-120°C	Ö1	Öı	Fp:141-145° C	Fp:94-95°C
10	R22	0 i-C ₃ H ₇	о снз	0 i-C ₃ H ₇	о сн _з	0 i-C ₃ H ₇	o cH ₃
.0	7	0	0	0	0	0	0
20	Z _n	[€] НЭ- 9	6-сн3	€но-9	6-CH ₃	6-СН3	6-CH3
25	>-	снз	снз	єнэ	снз	снз	снз
	×	CH ₃	снз	СНЗ	снз	CH ₃	снз
30	Q Q	O	0	0	0	0	0
35	rtsetzung B	-(CH ₂) ₂ -C-(CH ₂) ₂ -	CH ₃	снз	2-сн-сн ₂ - сн ₃	2-CH-CH ₂ - CH ₃	π
40	Tabelle 10: (Fortsetzung) Bsp A B	-(CH ₂) ₂	C2H5	C2HS	-cH ₂ -c-cH ₂ -cH-cH ₂ - cH ₃ cH ₃	Ic-45 -CH ₂ -C-CH ₂ -CH-CH ₂ -	t-C4H9
45	Tabelle Bsp Nr.	Ic-41	Ic-42	Ic-43	Ic-44	Ic-45	Ic-46

EP 0 528 156 A1

5	Physikal.	Konstante	Fp:53-56°C	Fp:63-650 C	₽p:88-89º C	Fp:136°C	Ö1	öı	Öı	Fp:125-126°C	Fp:105-107°C
10							^				
15		Μ Ε	o ch ₃	0 i-C3H7	o i-C3H7	O C2H5	O o	o cH ₃	O i-C ₃ H ₇	o ch ₃	o i-C ₃ H ₇
		١.	0	0	0	0	0	0	0	0	0
20		Zu	6-сн3	6-CH ₃	6-CH3	€-сн3	€-сн3	6-CH3	9HD-9	6-CH3	6-CH ₃
25		>	снз	снз	снз	снз	снз	снз	CH ₃	снз	снз
30		×	снз	снз	€H2	снз	снэ	снз	снз	снз	CH ₃
	<u> </u>		0	0	0	0	0	0	0	0	0
35	tsetzung	В	снэ	снз	н		снз	снз	снз	CH ₃	CH ₃
40	<u>Tabelle 10</u> : (Fortsetzung) Bsy	A	-cH=cH2	-CH=CH2	t-C4H9		CH3	i-C4H9	i-C4H9	H ₃ C	H ₃ C/H ₃ C/
45	Tabelle Bsy.	N. L.	Ic-47	Ic-48	Ic-49	Ic-50	Ic-51	Ic-52	10-53	Ic-54	Ic-55

EP 0 528 156 A1

Ü

υυ

	40	35		30	25	20		15	10	5
9[[9	Tabelle 10: (Fortsetzung)	tsetzur	(0)							
Bsp Nr.	V V	æ	۵	×	> -	2 _n	u	M R ²		Physikal. Konstante
1c-56	i-C ₃ H ₇	снз	0	снз	снз	6-CH ₃	0	O CH3		Fp:118°C
Ic-57	i-C ₃ H ₇	снз	0	снз	снз	6-сн3	0	0 i-C3H7		Fp:130°C
Ic-58		< >	0	CH ₃	сн3	e-ch ₃	0	o ch ₃		Fp:130-131 ⁰ (
Ic-59		< >	0	CH ₃	CH ₃	£но-9	0	0 i-C ₃ H ₇		Fp:135-136 ^o (
1c-60	-(CH ²) ² -	2)2-	0	CJ	CF3	6-01	0	O CH ₃		Fp:151°C
Ic-61	-(CH ₂) ₅ -	2)2-	0	CI	CF3	6-01	0	0 i-C3H7		Fp:162-1630
Ic-62	i-C3H7	×	0	снз	снз	6-CH ₃	0	O CH3		Fp:103-104 ⁰ (
Ic-63	i-C ₃ H ₇	Ħ	0	CH3	CH3	€H⊃-9	0	0 i-C ₃ H ₇		Fp:65-67 ⁰ C
Ic-64		—(CH ₂) ₂ - C	сн3 о	снз	CH3	6-CH ₃	0	0 сн3		Ö1
1c-65		—(СН ²)2- С	сн3 о	снз	CH3	6-CH3	0	0 i-C ₃ H ₇		Öl

140

50

5		Physikal. Konstante	Fp:158-160°C	Fp:130-133°C	Ö1	Fp:133-134°C	Fp:152°C	Fp:100-104°C
15		R ₃	сн _з	CH ₃	-N(CH ₃) ₂	снз	-CH ₃	-N(CH ₃) ₂
20		Z _n	е-сн ³	6-CH ₃	€-CH3	6-CH ₃	6-CH ₃	6-CH ₃
25		>	снэ	снз	CH ₃	CH ₃	снз	CH3
30	(14)	×	CH3	снэ	снз	CH3	снз	CH3
30		D	0	0	0	0	0	0
35	> -	В	снэ	снз	cH_3	-(CH ²) ² -	-(CH ²) ⁵ -	-(CH ²) ² -
	ng Z	A	CH3	снз	cH_3	0) -	0) -	0) -
40	SO2-R3 B C C C C C C C C C C C C	BspNr.	Id-1	Id-2	E-pI	Id-4	Id-5	9-pI
45								

5					Physikal. Konstante		Fp:60⁰ C	Fp:64°C	n§°:1.5425	Fp:63°C	Fp:104° C	Fp:60°C	Fp:108°C	Fp:150°C
10					R ⁵		-SC ₂ H ₅	-0C4H9-n	-SC4H9-n	-SC4H9-i	-0C2H5	-0C2H5	-NHC4H9-s	- 0-
15					R4		-0C ₂ H ₅	-cH ₃	-C2H5	-CH3	-C2H5	-oc ₂ H ₅	-0C2H5	-C2H5
20					u		ဟ	ဟ	ហ	ဟ	ഗ	ဟ	ស	ဟ
					^{2}n		€-CH3	6-CH3	6-CH3	6-CH3	6-CH ₃	6-CH3	6-CH3	6-CH ₃
25					> -	1 - - - - -	снз	снз	снз	снз	снз	снз	снз	снз
30				(le)	×		СНЗ	снз	снз	CH3	сн _з	CH3	снз	CH ₃
					Ω		0	0	0	0	0	0	0	0
35				Ţ	m		CH3	CH ₃	CH ₃	снз	CH ₃	CH ₃	cH_3	CH ₃
40	;; [5]		²². ×∫	7 2	≪.		CH ₃	CH ₃	снз	CH3	CH3	CH ₃	СНЗ	CH3
45	Tabelle 12:	<u> </u>	4 − − − − − − − − − − − − − − − − − − −		BspNr.		Ie-1	Ie-2	Ie-3	Ie-4	Ie-5	9-aI	Ie-7	. e - 8

EP 0 528 156 A1

5	Physikal.	Konstante	ngº:1.5550	n§°:1.5367	Fp: 126°C	Fp: 114°C	Fp: 126°C	Fp: 100°C		Fp: 122°C	Fp: 68°C	Fp: 46°C	n§º:1.5445	
10		R	-SC4H9-n	-0C4H9-s	-0C2H5	-NHC4H9-s	-NH-CH3	-0C2H5	-NH-C3H7-1	-NHC4H9-s	-SC4H9	-SC4H9-t	-SC3H2-n	-SC4H9-s
15	,	R ⁴	-C2H5	-cH ₃	-C2H5	-0C2H5	-0C2H5	-0C2H5	-0C2H5	-C2H5	-C2H5	-CH3	-0C ₂ H ₅	
20		اد	ဟ	ဟ	ល	ഗ	ဟ	ဟ	ហ	ທ	ဟ	ທ	Ŋ	ស
25		Zn	€ - СН ^З	6-CH3	6-CH3	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	€+0-9
		>	снз	снз	снз	снз	снз	снз	снз	CH3	CH3	снз	снз	снз
30		×	снз	снз	снз	снз	снз	снз	СНЗ	снз	снз	СНЗ	CH3	снз
35	(ĝunz	۵	0	0	0	0	0	0	0	0	0	0	0	0
40	<u>12</u> : (Fortsetzung)	A B	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ²)2-	-9(ZHD)-	-(CH ²)2-	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	снэ снз	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -
45	Tabelle 12	BspNr.	1e-9	Ie-10	Ie-11	Ie-12	Ie-13	Ie-14	Ie-15	Ie-16	Ie-17	Ie-18	Ie-19	Ie-20

EP 0 528 156 A1

5	Physikal. Konstante	ngº:1.5510	Fp: 90°C	n§º:1.5175	Fp: 151°C	n§º:1.5610	n§º:1.4965	$n_{5}^{20}:1.5300$	Fp: 103°C	Fp: 82° C	
10	R ⁵	-5C3H7-i	-SC ₂ H ₅	-SC4H9-s	-SC4H9-t	-C4H9-s	-0C4H9-i	-осн ₂ с(сн ₃) ₃	-0C4H9-n	CH ₃ -S(CH ₂) ₂ -CH CH ₃	-0C3H7-i
15	R4.	-C2H5	-CH3	-CH3	-C2H5	-C2H5	-CH3	-CH3	-cH ₃	-CH ₃	-0C2H5
20	ឯ	တ	ស	w	ഗ	ທ	ဟ	ဟ	ဟ	ഗ	ဟ
	2 n	€н⊃-9	6-CH3	€н2-9	£нр-9	€-сн3	6-CH3	6-CH3	€но-9	6-сн3	6-CH ₃
25	> -	снз	снз	снз	CH3	снэ	СНЗ	снз	снэ	снз	снз
30	×	CH ₃	снз	снз	CH ₃	CH ₃	CH3	снз	CH3	снз	снз
	Q Q	0	0	0	0	0	0	0	0	O 77	0
35 40	2: (Fortsetzung)	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ²) ² -	-(CH ₂) ₅ -
45	Tabelle 12:	Ie-21	Ie-22	Ie-23	Ie-24	Ie-25	1e-26	Ie-27	Ie-28	Ie-29	Ie-30

EP 0 528 156 A1

5		Physikal. Konstante	ngº :1,5357	Fp: 98°C		: 87° C						
10		Ph) R ⁵ Kor	-0C4H9-s n5º	-SC4H9-s Fp	CH ₃	.H ₂) ₂ -CH Fp:	-SC ₅ H ₁₁ -n	-SC ₃ H ₇	-0C ₂ H ₅	-0C ₃ H ₇ -i	-0C ₂ H ₅	-0C2H5
15		R4	-0C ₂ H ₅	-cH ₃		-С ₂ н ₅ -S(СН ₂)2-СН 	-CH ₃	-CH3	-cH ₃	-cH ₃	-0C2H5	-C2H5
20		u	ស	ω		ហ	ហ	ທ	ທ	ທ	ഗ	0
		2n	6-сн3	6-CH3		€но-9	6-CH ₃	6-CH ₃	6-CH ₃	€HD-9	6-CH ₃	6-CH ₃
25		¥	CH ₃	СНЗ		CH ₃	CH3	CH ₃	снз	снз	снз	снз
30		×	снз	CH3		снз	CH3	CH3	снз	СНЗ	CH ₃	СНЗ
35	tzung)	Ω	0	0		0	0	0	0	0	0	0
40	2: (Fortsetzung)	B	-(CH ₂) ₅ -	-(CH ₂) ₅ -		-(CH ₂) ₅ -	-(CH ₂)5-	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂)5-	-(CH ₂)5-	-(CH ₂) ₄ -
45	Tabelle 1	BspNr.	Ie-31	Ie-32		Ie-33	Ie-34	Ie-35	Ie-36	Ie-37	Ie-38	Ie-39

5		Physikal. Konstante	. Fp: >260°C
10		Ф д	e z
15		Zn	е-сн ³
20		٠	CH3
		×	CH3
25	(61)	a	0
30		æ	-(CH ₂) ₅ -
35	z z z	¥	٦) -
40	Tabelle 13:	BspNr.	1 D)

Herstellung von Ausgangsverbindungen:

Beispiel 1A

55

50

10

5

13,2 g (0,1 Mol) 2-Hydroxyisobuttersäureethylester werden in 200 ml abs. Methylenchlorid vorgelegt, 12,14 g (0,12 Mol) Triethylamin zugegeben und bei 0-10°C eine Lösung von 19,7 g (0,1 Mol) 2,4,6-Trimethylphenylessigsäurechlorid in 50 ml abs. Methylenchlorid zugetropft.

Nach 16 h Rühren bei Raumtemperatur wird die Lösung mit wäßriger Zitronensäure und wäßriger Natriumhydrogencarbonatlösung gewaschen, die organische Phase über Natriumsulfat getrocknet und einrotiert.

Ausbeute: 26,62 g (91 % d. Theorie) der Verbindung oben angegebener Formel. Die Verbindung fällt als Öl an.

Beispiel 2A

25

20

$$H_3C \xrightarrow{CH_3} 0 0 0 \\ CH_2 - C - O - CH_2 - C - OC_2H_5$$

30

35,6 g (0,2 Mol) 2,4,6-Trimethylphenylessigsäure werden in 200 ml tert.- Butanol gelöst. Dazu werden 24,6 g (0,22 Mol) Kalium-tert.-butylat gegeben. Man läßt 15 Minuten rühren. Anschließend läßt man 34,9 g (0,2 mol) Bromessigsäureeethylester zutropfen.

Nach dem Einrotieren wird mit Wasser/Methylenchlorid aufgenommen, extrahiert, über Natriumsulfat getrocknet und einrotiert.

Ausbeute: 38,8 g (74 % d.Theorie) der Verbindung O-(2,4,6-Trimethylphenylacetyl)-hydroxy-essigsäuremethylester vom Schmelzpunkt 154°C (umkristallisiert aus Methylenchlorid/n-Hexan-Gemisch).

45

50

5			Fp.º C					
			R S	C2H5	C2H5	C2H5	C2H5	C2H5
10			2 _n	€-сн³	6-CH ₃	6-CH ₃	€н ⊃ -9	€н⊃-9
15		(11)	۲	снз	снз	снз	снз	снз
20	tellt:	C	×	снз	снз	снз	снз	CH3
	erges	z z z	۵	0	හ	0	0	0
25	rden Þ		В	Ħ	Ξ	снз	1	×
30	In Analogie wurden hergestellt:	A CO2R8	Nr. A	снз	снз	CH ₃	-(CH ²) ² -	
	In An		Bsp.	3A	4 A	5 A	6 A	7.A

Die Wirkstoffe eignen sich bei guter Pflanzenverträglichkeit und günstiger Warmblütertoxizitat zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten und Spinnentieren die in der Landwirtschaft, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

Aus der Ordnung der Isopoda z.B. Oniscus asellus, Armadillidium vulgare, Porcellio scaber.

Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus.

35

Aus der Ordnung der Chilopoda z.B. Geophilus carpophagus, Scutigera spec.

Aus der Ordnung der Symphyla z.B. Scutigerella immaculata.

Aus der Ordnung der Thysanura z.B. Lepisma saccharina.

Aus der Ordnung der Collembola z.B. Onychiurus armatus.

Aus der Ordnung der Orthoptera z.B. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus differentialis, Schistocerca gregaria.

Aus der Ordnung der Dermaptera z.B. Forficula auricularia.

Aus der Ordnung der Isoptera z.B. Reticulitermes spp..

Aus der Ordnung der Anoplura z.B. Phylloxera vastatrix, Pemphigus spp., Pediculus humanus corporis, Haematopinus spp., Linognathus spp.

Aus der Ordnung der Mallophaga z.B. Trichodectes spp., Damalinea spp.

Aus der Ordnung der Thysanoptera z.B. Hercinothrips femoralis, Thrips tabaci.

Aus der Ordnung der Heteroptera z.B. Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.

Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Doralis fabae, Doralis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp. Psylla spp.

Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella maculipennis, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp. Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Laphygma exigua, Mamestra brassicae, Panolis flammea, Prodenia litura, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana.

Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilachna varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Conoderus spp., Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica. Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.

Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hyppobosca spp., Stomoxys spp., Oestrus spp., Hyppoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa.

Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopis, Ceratophyllus spp.. Aus der Ordnung der Arachnida z.B. Scorpio maurus, Latrodectus mactans.

Aus der Ordnung der Acarina z.B. Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp..

Die erfindungsgemäßen Wirkstoffe wirken nicht nur gegen Pflanzen-, Hygiene- und Vorratsschädlinge, sondern auch auf dem veterinärmedizinischen Sektor gegen tierische Parasiten (Ektoparasiten und endoparasiten) wie Schildzecken, Lederzecken, Räubemilben, Laufmilben, Fliegen (stechend und leckend), parasitierende Fliegenlarven, Läuse, Haarlinge, Federlinge, Flöhe und endoparasitisch lebende Würmer.

Die erfindungsgemäßen Wirkstoffe können weiterhin als Defoliants, Desiccants, Krautabtötungsmittel und insbesondere als Unkrautvernichtungsmittel verwendet werden. Unter Unkraut im weitesten Sinne sind alle Pflanzen zu verstehen, die an Orten aufwachsen, wo sie unerwünscht sind. Ob die erfindungsgemäßen Stoffe als totale oder selektive Herbizide wirken, hängt im wesentlichen von der angewendeten Menge ab. Die erfindungsgemäßen Wirkstoffe können z.B. bei den folgenden Pflanzen verwendet werden:

Dikotyle Unkräuter der Gattungen: Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, Taraxacum.

Dikotyle Kulturen der Gattungen: Gossypium, Glycine, Beta, Daucus, Phaseolus, Pisum, Solanum, Linum, Ipomoea, Vicia, Nicotiana, Lycopersicon, Arachis, Brassica, Lactuca, Cucumis, Cucurbita.

Monokotyle Unkräuter der Gattungen: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera.

Monokotyle Kulturen der Gattungen: Oryza, Zea, Triticum, Hordeum, Avena, Secale, Sorghum, Panicum, Saccharum, Ananas, Asparagus, Allium.

Die Verwendung der erfindungsgemäßen Wirkstoffe ist jedoch keineswegs auf diese Gattungen beschränkt, sondern erstreckt sich in gleicher Weise auch auf andere Pflanzen.

55

Die Verbindungen eignen sich in Abhängigkeit von der Konzentration zur Totalunkrautbekämpfung z.B. auf Industrie- und Gleisanlagen und auf Wegen und Plätzen mit und ohne Baumbewuchs. Ebenso können

die Verbindungen zur Unkrautbekämpfung in Dauerkulturen, z.B. Forst, Ziergehölz-, Obst-, Wein-, Citrus-, Nuß-, Bananen-, Kaffee-, Tee-, Gummi-, Ölpalm-, Kakao-, Beerenfrucht- und Hopfenanlagen, auf Zier- und Sportrasen und Weideflächen und zur selektiven Unkrautbekämpfung in einjährigen Kulturen eingesetzt werden.

Die erfindungsgemäßen Wirkstoffe weisen auch eine starke fungizide Wirkung auf und können zur Bekämpfung von unerwünschten Schadorganismen praktisch eingesetzt werden. Die Wirkstoffe sind daher auch für den Gebrauch als Fungizide geeignet.

Fungizide Mittel im Pflanzenschutz werden eingesetzt zur Bekämpfung von Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes.

Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:

Pythium-Arten, wie beispielsweise Pythium ultimum:

10

15

Phytophthora-Arten, wie beispielsweise Phythophthora infestans;

Pseudoperonospora-Arten, wie beispielsweise Pseudoperonospora humuli oder Pseudoperonospora cuben-

Plasmopara-Arten, wie beispielsweise Plasmopara viticola:

Peronospora-Arten, wie beispielsweise Peronospora pisi oder Peronospora brassicae:

Erysiphe-Arten, wie beispielsweise Erysiphe graminis:

Sphaerotheca-Arten, wie beispielsweise Sphaerotheca fuliginea:

20 Podosphaera-Arten, wie beispielsweise Podosphaera leucotricha:

Venturia-Arten, wie beispielsweise Venturia inaequalis:

Pyrenophora-Arten, wie beispielsweise Pyrenophora teres oder Pyrenophora graminea (Konidienform: Drechslera, Synonym: Helminthosporium):

Cochliobolus-Arten, wie beispielsweise Cochliobolus sativus (Konidienform: Drechslera, Synonym: Helminthosporium);

Uromyces-Arten, wie beispielsweise Uromyces appendiculatus:

Puccinia-Arten, wie beispielsweise Puccinia recondita;

Tilletia-Arten, wie beispielsweise Tilletia caries;

Ustilago-Arten, wie beispielsweise Ustilago nuda oder Ustilago avenae;

Pellicularia-Arten, wie beispielsweise Pellicularia sasakii;

Pyricularia-Arten, wie beispielsweise Pyricularia oryzae;

Fusarium-Arten, wie beispielsweise Fusarium culmorum;

Botrytis-Arten, wie beispielsweise Botrytis cinerea;

Septoria-Arten, wie beispielsweise Septoria nodorum:

Leptosphaeria-Arten, wie beispielsweise Leptosphaeria nodorum;

Cercospora-Arten, wie beispielsweise Cercospora canescens;

Alternaria-Arten, wie beispielsweise Alternaria brassicae:

Pseudocercosporella-Arten, wie beispielsweise Pseudocercosporella herpotrichoides.

Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut und des Bodens.

Die Wirkstoffe können in die üblichen Formulierungen übergeführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Wirkstoff-imprägnierte Natur- und synthetische Stoffe, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, ferner in Formulierungen mit Brennsätzen, wie Räucherpatronen, -dosen, -spiralen u.ä., sowie ULV-Kalt- und Warmnebel-Formulierungen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser: mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-

Treibgas, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid: als feste Trägerstoffe kommen in Frage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate: als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengel; als Emulgier und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylarylpolyglykol-Ether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate: als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffe können in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Akariziden, Nematiziden Herbiziden oder Fungiziden vorliegen. Zu den Insektiziden zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, chlorierte Kohlenwasserstoffe, Phenylharnstoffe, durch Mikroorganismen hergestellte Stoffe u.a.

Die erfindungsgemäßen Wirkstoffe können ferner in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die Wirkung der Wirkstoffe gesteigert wird, ohne daß der zugesetzte Synergist selbst aktiv wirksam sein muß.

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.

Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.

Als Vergleichsverbindung aus dem Stand der Technik wurden bei den nachfolgenden biologischen Beispielen die Verbindung der Formel

(bekannt aus US 3 954 998) eingesetzt.

Beispiel A

Phaedon-Larven-Test

55

30

40

45

Lösungsmittel: 7 Gewichtsteile Dimethylformamid Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Merettichblattkäfer-Larven (Phaedon cochleariae) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Käfer-Larven abgetötet wurden: 0 % bedeutet, daß keine Käfer-Larven abgetötet wurden.

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: 2, 3, 4.

Beispiel B

Nephotettix-Test

15

10

Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Reiskeimlinge (Oryza sativa) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Larven der Grünen Reiszikade (Nephotettix cincticeps) besetzt, solange die Keimlinge noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeute 100 %, daß alle Zikaden abgetötet wurden; 0 % bedeutet, daß keine Zikaden abgetötet wurden.

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: 2, 3, 4.

Beispiel C

30

25

Tetranychus-Test (OP-resistent)

Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.

Bohnenpflanzen (Phaseolus vulgaris), die stark von allen Entwicklungsstadien der gemeinen Spinnmilbe oder Bohnenspinnmilbe (Tetranychus urticae) befallen sind, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration tropfnaß gespritzt.

Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, daß alle Spinnmilben abgetötet wurden: 0 % bedeutet, daß keine Spinnmilben abgetötet wurden.

Bei diesem Test zeigen die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: 2, 3, 4

45

50

55

Beispiel D

Pre-emergence-Test / Gewächshaus

Lösungsmittel: 5 Gewichtsteile Aceton

Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel, gibt die angegebene Menge Emulgator zu und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Samen der Testpflanzen werden in normalen Boden ausgesät und nach 24 Stunden mit der Wirkstoffzubereitung begossen. Dabei hält man die Wassermenge pro Flächeneinheit zweckmäßigerweise konstant. Die Wirkstoffkonzentration in der Zubereitung spielt keine Rolle, entscheidend ist nur die Aufwandmenge des Wirkstoffs pro Flächeneinheit. Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in %

Schädigung im Vergleich zur Entwicklung der unbehandelten Kontrolle. Es bedeuten:

0 % = keine Wirkung (wie unbehandelte Kontrolle)

100 % = totale Vernichtung

Bei diesem Test zeigt die folgende Verbindung der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: lb-7.

Als Stand der Technik diente hier Fluortamone ((\pm)-5-(Methylamino)-2-phenyl-4-[3-(trifluormethyl)-phenyl]-3-(2H)-furanon.

	aus
	Gewächshau
	•
Tabelle U	Pre-emergence-Test

Wirkstoff	Wirkstoff aufwand g/ha	Soja	Soja Digitaria Echino- Lonium Panicum Poa Setaria	Echino- chloa	Lonium	Panicum	Poa	Setaria	
Fluortamone bekannte Verbindung	200	20	80	20	80	O	20	30	
Verbindung gemäß Beieniel Ih-7	200	0	95	100	100	06	9.0	95	

Patentansprüche

5

10

15

20

25

35

40

45

3-Aryl-4-hydroxy-Δ³-dihydrofuranon- und 3-Aryl-4-hydroxy-Δ³-dihydrothiophenon-Derivate der allgemeinen Formel (I)

 $\begin{array}{c|c}
A & O & X & Z_{n} \\
\hline
 & O & X & Z_{n}
\end{array}$

- in welcher
 - X für Alkyl, Halogen, Alkoxy oder Halogenalkyl steht,
 - Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyli steht,
 - Z für Alkyl, Halogen, Alkoxy steht,
 - n für eine Zahl von 0-3 steht,

oder wobei die Reste X und Z gemeinsam mit dem Phenylrest, an dem sie gebunden sind, den Napthalinrest der Formel

- 30 bilden,
 - in welchem
 - Y die oben angegebene Bedeutung hat,
 - G für Wasserstoff (a) oder für die Gruppen

-CO-R¹, (b) $M-R^2$ (c) $-SO_2-R^3$ (d) $-P_1$ R^4 (e) R^7 R^6 (f) oder E^{\oplus} (g)

steht,

A und B gleich oder verschieden sein können und für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Nitro substituiertes Aryl, Aralkyl oder Heteraryl stehen,

- 55 und worin
 - A und B

gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls substituierten Cyclus bilden,

	D	für Sauerstoff oder Schwefel steht,
	E [⊕]	für ein Metallionäquivalent oder ein Ammoniumion steht,
	L und M	für Sauerstoff und/oder Schwefel steht,
5	R ¹	für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyal- kyl, Alkylthioalkyl, Polyalkoxyalkyl oder Cycloalkyl, das durch Heteroatome unterbrochen sein kann, gegebenenfalls substituiertes Phenyl, gegebenen- falls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phe-
		noxyalkyl oder substituiertes Hetaryloxyalkyl steht und
	\mathbb{R}^2	für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyal-
10		kyl, Polyalkoxyalkyloder gegebenenfalls substituiertes Phenyl oder Benzyl steht,
	R ³ , R ⁴ und R ⁵	unabhängig voneinander für gegebenenfalls durch Halogen substituiertes
		Alkyl, Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio, Alkinylthio,
		Cycloalkylthio und für gegebenenfalls substituiertes Phenyl, Phenoxy oder
15		Phenylthio stehen,
	R ⁶ und R ⁷	unabhängig voneinander für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für gegebenenfalls sub-
		stituiertes Phenyl, für gegebenenfalls substituiertes Benzyl stehen
	oder wobei R ⁶ und R ⁷	zusammen für einen gegebenenfalls durch Sauerstoff unterbrochenen
20		Alkylenrest stehen,
	mit Ausnahme folgender Ve	erbindungen;

mit radiiamii reigenaer Teremaangen,

25

45

50

55

 $3-(2-Methoxyphenyl)-4-hydroxy-\Delta^3-dihydrofuranon-2, 3-(2-Chlorphenyl)-4-hydroxy-\Delta^3-dihydrofuranon-2, 3-(2-Fluorphenyl)-4-hydroxy-\Delta^3-dihydrofuranon-2, 3-(2-Fluorphenyl)-4-hydroxy-D-1-$

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

30 **2.** 3-Aryl-4-hydroxy-Δ³-dihydrofuranon- und 3-Aryl-4-hydroxy-Δ³-dihydrothiophenon-Derivate der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, daß es sich um eine der folgenden Strukturen (Ia) bis (Ig) handelt:

$$\begin{array}{c|c}
A & O-P & X \\
\hline
 & P & X \\
\hline
 & Z_n
\end{array}$$
(Ie)

$$\begin{array}{c|c}
A & O-C-N \\
\hline
 & R^{6} \\
\hline
 & Z_{D}
\end{array}$$
(If)

worin

A, B, D, E, L, M, X, Y, Z_n , R^1 , R^2 , R^3 , R^4 , R^5 , R^6 und R^7 die in Anspruch 1 angegebenen Bedeutungen besitzen.

3. 3-Aryl-4-hydroxy- Δ^3 -dihydrofuranon- und 3-Aryl-4-hydroxy- Δ^3 -dihydrothiophenon-Derivate der Formel (I) gemäß Anspruch 1,

in welcher

- X fur C_1 - C_6 -Alkyl, Halogen, C_1 - C_6 -Alkoxy oder C_1 - C_3 -Halogenalkyl steht,
- Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy, C₁-C₃-Halogenalkyl steht,
- Z für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,
- n für eine Zahl von 0-3 steht,

oder wobei die Reste X und Z gemeinsam mit dem Phenylrest, an den sie gebunden sind, den Naphthalinrest der Formel

10

5

15

20

25

30

bilden,

in welchem Y die oben angegebene Bedeutung hat,

A und B

gleich oder verschieden sind und für Wasserstoff oder gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C_1 - C_{12} -Alkyl, C_3 - C_8 -Alkenyl, C_3 - C_8 -Alkinyl, C_1 - C_{10} -Alkoxy- C_2 - C_8 -alkyl, C_1 - C_8 -Polyalkoxy- C_2 - C_8 -alkyl, C_1 - C_{10} -Alkylthio- C_2 - C_8 -alkyl, Cycloalkyl init 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann und gegebenenfalls durch Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy-, C_1 - C_6 -Halogenalkoxy, Nitro substituiertes Aryl, Hetaryl oder Aryl-C1- C_6 -alkyl steht,

oder worin

A und B

gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls durch Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkylthio oder gegebenenfalls substituiertes Aryl substituierten 3-bis 8-gliedrigen Ring bilden,

G

für Wasserstoff (a) oder für die Gruppen

35

-CO-R¹, (b)
$$M-R^2$$
 (c) $-SO_2-R^3$ (d) $-P_1 = P_2$ (e) $N = P_3 = P_4$ (f) oder $P_4 = P_4$ (g)

45

40

steht,

in welchen

E⊕

für ein Metallionäguivalent oder ein Ammoniumion steht,

L und M

für Sauerstoff und/oder Schwefel steht,

 R^1

für gegebenenfalls durch Halogen substituiertes: C_1 - C_2 0-Alkyl, C_2 - C_2 0-Alkenyl, C_1 - C_8 -Alkoxy- C_2 - C_8 -alkyl, C_1 - C_8 -Alkylthio- C_2 - C_8 -alkyl, C_1 - C_8 -Polyalkoxyl- C_2 - C_8 -alkyl oder Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoffund/oder Schwefelatome unterbrochen sein kann, steht,

55

50

für gegebenenfalls durch Halogen, Nitro, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Halogenalkoxy-substituiertes Phenyl steht;

für gegebenenfalls durch Halogen-, C₁-C₆-Alkyl, C₁-C₆-Alkoxy-, C₁-C₆-Halogenalkyl-, C₁-C₆-Halogenalkoxy-substituiertes Phenyl-C₁-C₆-alkyl steht, für gegebenenfalls durch Halogen und/oder C₁-C₆-Alkyl substituiertes Hetaryl 5 steht, für gegebenenfalls durch Halogen und/oder C1-C6-Alkyl-substituiertes Phenoxy-C1-C6-alkyl steht, 10 für gegebenenfalls durch Halogen, Amino und C1-C6-Alkyl-substituiertes Hetaryloxy-C₁-C₆-Alkyl steht, \mathbb{R}^2 für gegebenenfalls durch Halogen substituiertes: C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl steht, 15 für gegebenenfalls durch Halogen, Nitro, C1-C6-Alkyl, C1-C6-Alkoxy, C1-C6-Halogenalkyl-substituiertes Phenyl oder Benzyl steht, R3, R4 und R5 unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C1-C8-Alkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkylamino, Di-(C₁-C₈)-Alkylamino, C₁-C₈-Alkylthio, C 2-C5-Alkenylthio, C2-C5-Alkinylthio, C3-C7-Cycloalkylthio, für gegebenenfalls durch 20 Halogen, Nitro, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen, R6 und R7 unabhangig voneinander für gegebenenfalls durch Halogen substituiertes C1-C20-Alkyl, C₁-C₂₀-Alkoxy, C₂-C₈-Alkenyl, C₁-C₂₀-Alkoxy-C₁-C₂₀-alkyl, für gegebenen-25 falls durch Halogen, C1-C20-Halogenalkyl, C1-C20-Alkyl oder C1-C20-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C1-C20-Alkyl, C1-C20-Halogenalkyl oder C₁-C₂₀-Alkoxy substituiertes Benzyl steht oder zusammen für einen gegebenenfalls durch Sauerstoff unterbrochenen C2-C6-Alkylenring stehen, mit Ausnahme folgender Verbindungen: 30 3-(2-Methoxyphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Chlorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Methylphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Fluorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 35 sowie die enantiomerenreinen Formen von Verbindungen der Formel (I). 3-Aryl-4-hydroxy-Δ³-dihydrofuranon- und 3-Aryl-4-hydroxy-Δ³-dihydrothiophenon-Derivate der Formel (I) gemäß Anspruch 1, 40 in welcher Χ für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy oder C₁-C₂-Halogenalkyl steht, Υ für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl steht, Z für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy steht, 45 für eine Zahl von 0-3 steht, oder wobei die Reste X und Z gemeinsam mit dem Phenylrest, an den sie gebunden sind, den Naphthalinrest der Formel 50

158

55

bilden,

in welchem Y die ober angegebene Bedeutung hat,

A und B

gleich oder verschieden sind und für Wasserstoff oder gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₀-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C_1-C_8 -Alkoxy- C_2-C_6 -alkyl, C_1-C_6 -Polyalkoxy- C_2-C_6 -alkyl, C_1-C_8 -Alkylthio- C_2-C_6 alkyl, Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff und/oder Schwefelatomen unterbrochen sein kann und gegebenenfalls durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl-, C₁-C₄-Alkoxy-, Nitro substituiertes Aryl, Hetaryl oder Aryl-C1-C₄-alkyl stehen.

oder worin

5

10

15

20

25

30

35

A und B

gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls durch Halogen, C1-C5-Alkyl, C1-C5-Alkoxy, C1-C3-Halogenalkyl, C1-C4-Halogenalkoxy, C₁-C₃-Alkylthio oder gegebenenfalls durch Halogen, Alkyl, Alkoxy substituiertes Aryl substituierten 3- bis 8-gliedrigen Ring bilden,

G für Wasserstoff (a) oder für die Gruppen

-co-R1. (b) (c) -SO₂-R³

(e)

steht,

in welchen

 R^1

Ε®

L und M

für ein Metallionäguivalent oder ein Ammoniumion steht,

für Sauerstoff und/oder Schwefel steht,

für gegebenenfalls durch Halogen substituiertes: C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C_1 - C_6 -Alkoxy- C_2 - C_6 -alkyl, C_1 - C_{16} -Alkylthio- C_2 - C_6 -alkyl, C_1 - C_6 -Polyalkoxy- C_2 - C_6 alkyl und Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff-und/oder Schwefelatome unterbrochen sein kann, steht,

40

für gegebenenfalls durch Halogen, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₃-Halogenalkyl, C₁-C₃-Halogenalkoxy-substituiertes Phenyl steht,

45

für gegebenenfalls durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₃-Halogenalkyl, C1-C3-Halogenalkoxy-substituierets Phenyl-C1-C4-alkyl steht,

für gegebenenfalls durch Halogen und C1-C6-Alkyl-substituiertes Hetaryl steht,

50

55

für gegebenenfalls durch Halogen- und C1-C4-Alkyl-substituiertes Phenoxy-C1-C5alkyl steht,

für gegebenenfalls durch Halogen, Amino, C₁-C₄-Alkyl-substituiertes Hetaryloxy-C₁-C₅-alkyl steht,

 R^2

für gegebenenfalls durch Halogen substituiertes: C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C_1 - C_{16} -Alkox- C_2 - C_6 -alkyl, C_1 - C_6 -Polyalkoxy- C_2 - C_6 -alkyl steht,

für gegebenenfalls durch Halogen, Nitro, C₁-C₄-Alkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkyl-substituiertes Phenyl oder Benzyl steht,

R³, R⁴ und R⁵ unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C₁-C6-

Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkylamino, Di- $(C_1$ - $C_6)$ -Alkylamino, C_1 - C_6 -Alkylthio, C_3 - C_4 -Alkenylthio, C_2 - C_4 -Alkinylthio, C_3 - C_6 -Cycloalkylthio, für gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkylthio, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylthio, C_1 - C_3 -Halogenalkylthio, C_1 - C_3 -Alkylthio, C_1 - C_3 -Halogenalkylthio, C_1 - C_3 -Alkylthio, C_1 - C_2 - C_3 -Alkylthio, C_1 - C_3 -Alkylthio, C_1

Phenyl, Phenoxy oder Phenylthio stehen,

R⁶ und R⁷ unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₁-C₂₀-Alkoxy, C₂-C₈-Alkenyl, C₁-C₂₀-Alkoxy-C₁-C₂₀-alkyl, für gegebenen-

falls durch Halogen, C_1 - C_5 -Halogenalkyl, C_1 - C_5 -Alkyl oder C_1 - C_5 -Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C_1 - C_5 -Alkyl, C_1 - C_5 -Alkyl, C_1 - C_5 -Halogenalkyl

oder C₁-C₅-Alkoxy substituiertes Benzyl steht,

mit Ausnahme folgender Verbindungen:

3-(2-Methoxyphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(3-Chlorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Fluorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Fluorpheny

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

5. 3-Aryl-4-hydroxy- Δ^3 -dihydrofuranon- und 3-Aryl-4-hydroxy- Δ^3 -dihydrothiophenon-Derivate der Formel (I) gemäß Anspruch 1,

in welcher

5

10

15

25

30

35

40

45

50

55

- X für Methyl, Ethyl, Propyl, i-Propyl, Fluor, Chlor, Brom, Methoxy, Ethoxy und Trifluormethyl steht.
- Y für Wasserstoff, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy, Ethoxy und Trifluormethyl steht,
- Z für Methyl, Ethyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht,
- n für eine Zahl von 0-3 steht,

oder wobei die Reste X und Z gemeinsam mit dem Phenylrest, an den sie gebunden sind, den Naphthalinrest der Formel

bilden,

in welchem Y die oben angegebene Bedeutung hat,

A und B gleich oder verschieden sind und für Wasserstoff, gegebenenfalls durch Halogen

substituiertes geradkettiges oder verzweigtes C₁-C₈-Alkyl, C₃-C₄-Alkenyl, C₃-C₄-Alkinyl, C₁-C₆-Alkoxy-C₂-C₄-alkyl, C₁-C₆-Alkoxy-C₂-C₄-alkyl, C₁-C₆-Alkylthio-C₂-C₄-alkyl, Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff und/oder Schwefelatomen unterbrochen sein kann oder gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, iso-Propyl-, Methoxy-, Ethoxy-, Tiifluormethyl-, Nitro substituiertes Aryl, Pyrisidia kniideal Divisida kniideal D

midin, Imidazol, Pyrazol, Triazol, Indol, Thiazol oder Aryl-C₁-C₃-alkyl stehen,

oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen gesättigten oder

ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls durch Fluor, Chlor, C₁-C₂-Alkyl, C₁-C₂-Alkoxy, Trifluormethyl, C₁-C₂-Alkylthio oder gegebenenfalls substituiertes Fluor, Chlor, Methyl, Methoxy substituiertes Aryl substituierten 3- bis 8-gliedrigen Ring bilden,

G für Wasserstoff (a) oder für die Gruppen

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

55

3-(2-Methoxyphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Chlorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,

3-(2-Methylphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Fluorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,

6. Verfahren zur Herstellung von 3-Aryl-4-hydroxy- Δ^3 -dihydrofuranon- und 3-Aryl-4-hydroxy- Δ^3 -dihydrothiophenon-Derivate der allgemeinen Formel (I)

in welcher

5

10

15

20

25

30

35

40

45

50

55

- X für Alkyl, Halogen, Alkoxy oder Halogenalkyl steht,
- Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,
- Z für Alkyl, Halogen, Alkoxy steht,
- n für eine Zahl von 0-3 steht,

oder wobei die Reste X und Z gemeinsam mit dem Phenylrest, an den sie gebunden sind, den Naphthalinrest der Formel

bilden,

in welchem Y die oben angegebene Bedeutung hat,

G für Wasserstoff (a) oder für die Gruppen

-co- R^1 , (b) $M-R^2$ (c) $-so_2-R^3$ (d)

 $-\frac{R^4}{R^5}$ (e) $\frac{L}{R^7}$ (f) oder E^9 (g)

steht,

A und B gleich oder verschieden sein können und für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Nitro substituiertes Aryl, Aralkyl oder Heteraryl steht

oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls substituierten Cyclus bilden,

D für Sauerstoff oder Schwefel steht,

E^e für ein Metallionäquivalent oder ein Ammoniumion steht,

L und M für Sauerstoff und/oder Schwefel steht,

 R^1 für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl oder Cycloalkyl, das durch Heteroatome unterbrochen sein kann, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phenoxyalkyl oder substituiertes Hetaryloxyalkyl steht und 5 \mathbb{R}^2 für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyloder gegebenenfalls substituiertes Phenyl oder Benzyl steht, R3, R4 und R5 unabhängig voneinander für gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio, Alkinylthio, 10 Cycloalkylthio und für gegebenenfalls substituiertes Phenyl, Phenoxy oder Phenylthio stehen, R⁶ und R⁷ unabhängig voneinander für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für gegebenenfalls substituiertes Phenyl, für gegebenenfalls substituiertes Benzyl stehen 15 oder wobei R6 und R7 zusammen für einen gegebenenfalls durch Sauerstoff unterbrochenen Alkylenrest stehen, mit Ausnahme folgender Verbindungen: 3-(2-Methoxyphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 20 3-(2-Chlorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Methylphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Fluorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, dadurch gekennzeichnet, 25 Erhalt von 3-Aryl-4-hydroxy- Δ^3 -dihydrofuranon- und 3-Aryl-4-hydroxy- Δ^3 man zum dihydrothiophenon-Derivaten der Formel (la) 30 (Ia) 35 in welcher 40 A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben, entweder (A) Carbonsäureester der Formel (II)

55 in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben

und

R8 für Alkyl steht,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert,

oder

(B) zum Erhalt von Verbindungen der Formel (Ib)

10

15

20

in welcher

A, B, D, X, Y, Z, R¹ und n die oben angegebene Bedeutung haben,

Verbindungen der Formel (la),

35

30

in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben,

α) mit Säurehalogeniden der allgemeinen Formel (III)

40

45

50

55

in welcher

R¹ die oben angegebene Bedeutung hat

und

Hal für Halogen, insbesondere Chlor und Brom steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt

oder

β) mit Carbonsäureanhydriden der allgemeinen Formel (IV)

 R^1 -CO-O-CO- R^1 (IV)

in welcher

R¹ die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt, oder daß man

(C) zum Erhalt von Verbindungen der Formel (Ic)

 $\begin{array}{c|c}
 & L \\
 & R^{2}M-C-O & X \\
\hline
A & & & \\
 & D & & & \\
\hline
D & & & & \\
 & & & & \\
\hline
D & & & & \\
D & & & & \\
\hline
D & & & \\
D & & & & \\
\hline
D & & & \\
D & & & & \\
\hline
D & & & \\
D & & & \\
D & & & & \\
\hline
D & & & \\
D & & \\
D & & & \\
D & & \\
D & & & \\
D &$

in welcher

5

10

15

20

25

30

35

40

45

50

55

A, B, D, X, Y, Z, R² und n die oben angegebene Bedeutung haben,

L für Sauerstoff

und

M für Sauerstoff oder Schwefel steht,

Verbindungen der Formel (la)

$$\begin{array}{c|c}
A & HO & X \\
\hline
D & & Z_n \\
\hline
O & & & & & \\
\end{array}$$

in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben

mit Chlorameisensäureester oder Chlorameisensäurethiolester der allgemeinen Formel (V)

R²-M-CO-CI (V)

in welcher

R² und M die oben angegebene Bedeutung haben,

gegebenenfals in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt, oder daß man

(D) zum Erhalt von Verbindungen der Formel (Ic)

in welcher

A, B, D, R², X, Y, Z und n die oben angegebene Bedeutung haben,

L für Schwefel

und

5

10

15

20

25

30

35

40

45

50

55

M für Sauerstoff oder Schwefel steht,

Verbindungen der Formel (la)

 $\begin{array}{c|c}
A & OH X \\
\hline
D & Z_n
\end{array}$ (Ia)

in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben

 α) mit Chlormonothioameisensäureestern oder Chlordithioameisensäureestern der allgemeinen Formel (VI)

S (VI)

in welcher

M und R² die oben angegebene Bedeutung haben

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,

oder

β) mit Schwefelkohlenstoff und anschließend mit Alkylhalogeniden der allgemeinem Formel (VII)

R²-Hal (VII)

in welcher

R² die oben angegebene Bedeutung hat

und

Hal für Chlor, Brom, Jod

steht, umsetzt,

oder daß man

(E) zum Erhalt von Verbindungen der Formel (Id)

in welcher

A, B, D, X, Y, Z, R³ und n die oben angegebene Bedeutung haben,

Verbindungen der Formel (la)

in welcher

5

10

15

20

25

30

35

40

45

50

55

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben,

mit Sulfonsäurechloriden der allgemeinen Formel (VIII)

R3-SO2-CI(VIII)

in welcher

R³ die oben angegebene Bedeutung hat

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt, oder daß man

(F) zum Erhalt von Verbindungen der Formel (Ie)

$$\begin{array}{c|c}
A & O-P & X \\
B & & & & \\
\hline
D & & & & \\
\end{array}$$
(Ie)

in welcher

A, B, D, L, X, Y, Z, R⁴, R⁵ und n die oben angegebene Bedeutung haben,

Verbindungen der Formel (la)

$$\begin{array}{c}
A & OH X \\
\hline
D & Z_n
\end{array}$$
(Ia)

in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben

mit Phosphorverbindungen der allgemeinen Formel (IX)

$$Hal-P \qquad (IX)$$

5

in welcher

10

L, R⁴ und R⁵ die oben angegebene Bedeutung haben

und

Hal für Halogen, insbesondere Chlor und Brom steht, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt, oder daß man

(G) zum Erhalt von Verbindizngen der Formel (If)

20

15

$$\begin{array}{c|c}
A & O-C-N & R^7 \\
\hline
 & & & & \\
\hline$$

25

in welcher

30

A, B, D, L, X, Y, Z, R⁶, R⁷ und n die oben angegebene Bedeutung haben,

Verbindungen der Formel (la),

35

40

in welcher

45

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben α) mit Isocyanaten der allgemeinen Formel (X)

$$R^6 - N = C = O \qquad (X)$$

50

in welcher

die oben angegebene Bedeutung hat gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines

Katalysators umsetzt,

oder 55

β) mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden der allgemeinen Formel (XI)

in welcher

5

10

15

20

25

30

35

40

45

50

55

L, R⁶ und R⁷ die oben angegebene Bedeutung haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt, oder daß man

(H) zum Erhalt von Verbindungen der Formel (Ig)

in welcher

X, Y, Z, A B, D und n die oben angegebene Bedeutung haben,

und E[®] für ein Metallionäquivalent oder für ein Ammoniumion steht,

Verbindungen der Formel (la)

in welcher

X, Y, Z, A, B, D und n die oben angegebene Bedeutung haben,

mit Metallhydroxiden oder Aminen der allgemeinen Formeln (XIII) und (XIII)

in welchen

Me für ein- oder zweiwertige Metallionen s und t für die Zahl 1 oder 2 und

R⁵, R⁶ und R⁷ unabhängig voneinander für Wasserstoff und Alkyl stehen,

gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt.

5

25

30

35

40

45

50

55

7. Insektizide, akarizide, herbizide und fungizide Mittel, gekennzeichnet durch einen Gehalt an mindestens einem 3-Aryl-4- hydroxy-Δ³-dihydrofuranon- oder 3-Aryl-4-hydroxy-Δ³-dihydrothiophenon-Derivat der Formel (I).

- 10 8. Verfahren zur Bekämpfung von Insekten und/oder Spinnentieren und/oder Unkräutern und/oder Pilzen, dadurch gekennzeichnet, daß man 3-Aryl-4-hydroxy-Δ³-dihydrofuranon-oder 3- Aryl-4-hydroxy-Δ³-dihydrothiophenon-Derivate der Formel (I) auf Insekten und/oder Spinnentiere und/oder Unkräuter und/oder Pilzen und/oder deren Lebensraum einwirken läßt.
- Verwendung von 3-Aryl-4-hydroxy-Δ³-dihydrofuranon- oder 3-Aryl-4-hydroxy-Δ³-dihydrothiophenon-Derivaten der Formel (I) zur Bekämpfung von Insekten und/oder Spinnentieren und/oder Unkräutern und/oder Pilzen.
- 10. Verfahren zur Herstellung von insektiziden und/oder akariziden und/oder herbiziden und/oder fungiziden Mitteln, dadurch gekennzeichnet, daß man 3-Aryl-4-hydroxy-Δ³-dihydrofuranon- oder 3- Aryl-4-hydroxy-Δ³-dihydrothiophenon-Derivate der Formel (I) mit Streckmitteln und/oder oberflächenaktiven Mitteln vermischt.

EUROPÄISCHER RECHERCHENBERICHT

EΡ 92 11 1324

	EINSCHLAGIG	EE DOKUMENTE		
Kategorie	Kennzeichnung des Dokum der maßgebli	ents mit Angabe, soweit erforderlich, chen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.5)
A	LIMITED)	ERING AGROCHEMICALS - Zeile 49; Ansprüche	1,6,7-10	C07D307/60 C07D307/94 C07D307/68 C07D409/12 C07D407/12
A	CHEMICAL ABSTRACTS, 2. Dezember 1968, C abstract no. 94792; K. SAKURAI ET AL. ' drugs. I. Antifunga five-membered lacto Seite 8861 ;Spalte * Zusammenfassung * & YAKUGAKU ZASSHI Bd. 88, Nr. 7, 1968 Seiten 919 - 924	columbus, Ohio, US; Antifungal studies on al activity of ne derivatives.' 2;	1,7	C07F9/655 A01N43/08
A	FR-A-2 054 514 (ROU * Anspruch 1; Seite	JSSEL-UCLAF) 12. 12. Schemata 1 und 2 *	1,7	
D,X	EP-A-0 423 482 (BAY	'ER AKTIENGESELLSCHAFT)	1-4,6, 7-10	RECHERCHIERTE SACHGEBIETE (Int. Cl.5
D,A	* Seite 33, Zeile 4 Ansprüche 1,7,8-11	- Seite 3, Zeile 22 * 49 - Seite 35, Zeile 8; * e 1, Beispiele 42, 46 *	1-4,6	C07D C07F
D,A	TRANSACTIONS 1. Nr. 8, 1985, LETCHW Seiten 1567 - 1576 A.C. CAMPBELL ET Al and (Z)-Pulvinones	'Synthesis of (E)-	1-6	
Der vo	orliegende Recherchenbericht wur	de für alle Patentansprüche erstellt		
	Recherchement	Abschlufidstum der Recherche		Prefer

KATEGORIE DER GENANNTEN DOKUMENTE

- X: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung
 P: Zwischenliteratur

- T: der Erfindung zugrunde liegende Theorien oder Grundsätze E: älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument

- &: Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument