LING/C SC/PSYC 438/538

Lecture 22 Sandiway Fong

Last Time

- Gentle introduction to probability
- Important notions:
 - sample space
 - events
 - rule of counting
 - weighted events: probability
 - conditional probability: P(A|B)
 - the importance of conditional probability or expectation in language
 - Just then, the white rabbit
 - the
 - expectation is p(rabbit|white) > p(the|white) (conditional)
 - but p(the) > p(rabbit) (unconditional)

given a word sequence

$$- W_1 W_2 W_3 ... W_n$$

chain rule

- how to compute the probability of a sequence of words
- $p(w_1 w_2) = p(w_1) p(w_2|w_1)$
- $p(w_1 w_2 w_3) = p(w_1) p(w_2|w_1) p(w_3|w_1w_2)$
- **—** ...
- $p(w_1 w_2 w_3...w_n) = p(w_1) p(w_2|w_1) p(w_3|w_1w_2)... p(w_n|w_1...w_{n-2}w_{n-1})$

note

– It's not easy to collect (meaningful) statistics on $p(w_n|w_{n-1}w_{n-2}...w_1)$ for all possible word sequences

Given a word sequence

- W_1 W_2 W_3 ... W_n

Bigram approximation

- just look at the previous word only (not all the proceedings words)
- Markov Assumption: finite length history
- 1st order Markov Model
- $p(w_1 \ w_2 \ w_3 ... \ w_n) = p(w_1) p(w_2 | w_1) p(w_3 | w_1 w_2) ... p(w_n | w_1 ... w_{n-3} w_{n-2} w_{n-1})$
- $p(w_1 \ w_2 \ w_3...w_n) \approx p(w_1) \ p(w_2|w_1) \ p(w_3|w_2)...p(w_n|w_{n-1})$

note

- $p(w_n|w_{n-1})$ is a lot easier to collect data for (and thus estimate well) than p $(w_n|w_1...w_{n-2}|w_{n-1})$

Trigram approximation

- 2nd order Markov Model
- just look at the preceding two words only
- $p(w_1 \ w_2 \ w_3 \ w_4...w_n) = p(w_1) \ p(w_2|w_1) \ p(w_3|w_1w_2) \ p(w_4|w_1w_2w_3)...p(w_n|w_1...w_{n-3}w_{n-2}w_{n-1})$
- $p(w_1 \ w_2 \ w_3 ... w_n) \approx p(w_1) \ p(w_2 | w_1) \ p(w_3 | w_1 w_2) p(w_4 | w_2 w_3) ... p(w_n | w_{n-2} \ w_{n-1})$

note

- $p(w_n|w_{n-2}w_{n-1})$ is a lot easier to estimate well than $p(w_n|w_1...w_{n-2}w_{n-1})$ but harder than $p(w_n|w_{n-1})$

estimating from corpora

- how to compute bigram probabilities
- $p(w_n|w_{n-1}) = f(w_{n-1}w_n)/f(w_{n-1}w)$ w is any word
- Since $f(w_{n-1}w) = f(w_{n-1})$ $f(w_{n-1}) = unigram frequency for <math>w_{n-1}$
- $p(w_n|w_{n-1}) = f(w_{n-1}w_n)/f(w_{n-1})$ relative frequency

Note:

 The technique of estimating (true) probabilities using a relative frequency measure over a training corpus is known as maximum likelihood estimation (MLE)

Typical Practice:

- Logprob calculations used
- Question:
 - Why sum negative log of prob
- Answer (Part 2):
 - -A=BC
 - $\log(A) = \log(B) + \log(C)$
 - probabilities are in range (0, 1]
 - Note:
 - · want probabilities to be non-zero
 - $log(0) = -\infty$
 - log of probabilites will be negative (up to 0)
 - take negative to make them positive

log function

region of

interest

Motivation for smoothing

- Smoothing: avoid zero probability estimates
- Consider

```
p(w_1 \ w_2 \ w_3...w_n) \approx p(w_1) \ p(w_2|w_1) \ p(w_3|w_2)...p(w_n|w_{n-1})
```

- what happens when any individual probability component is zero?
 - Arithmetic multiplication law: $0 \times X = 0$
 - very brittle!
- even in a very large corpus, many possible n-grams over vocabulary space will have zero frequency
 - particularly so for larger n-grams

Example:

 W_r

w_{n-1}w_n bigram frequencies

 W_{n-1}

	I	want	to	eat	Chinese	food	lunc
I	8	1087	0	13	0	0	0
want	3	0	786	0	6	8	6
to	3	0	10	860	3	0	12
eat	0	0	2	0	19	2	52
Chinese	2	0	0	0	0	120	1
food	19	0	17	0	0	0	0
lunch	4	0	0	0	0	1	0

Figure 6.4	Bigram counts for seven of the words (out of 1616 total word
types) in the	Berkeley Restaurant Project corpus of $\approx 10,000$ sentences.

I	3437		
want	1215		
to	3256	L	
eat	938		unigram
Chinese	213		frequencies
food	1506	I	oquonoioo
lunch	459		

bigram probabilities

	1	want	to	eat	Chinese	tood	lunch
I	.0023	.32	0	.0038	0	0	0
want	.0025	0	.65	0	.0049	.0066	.0049
to	.00092	0	.0031	.26	.00092	0	.0037
eat	0	0	.0021	0	.020	.0021	.055
Chinese	.0094	0	0	0	0	.56	.0047
food	.013	0	.011	0	0	0	0
lunch	.0087	0	0	0	0	.0022	0

Figure 6.5 Bigram probabilities for seven of the words (out of 1616 total word types) in the Berkeley Restaurant Project corpus of $\approx 10,000$ sentences.

sparse matrix

zeros render probabilities unusable

(we'll need to add fudge factors - i.e. do **smoothing**)

sparse dataset means zeros are a problem

- Zero probabilities are a problem
 - $p(w_1 \ w_2 \ w_3...w_n) \approx p(w_1) \ p(w_2|w_1) \ p(w_3|w_2)...p(w_n|w_{n-1})$ bigram model
 - one zero and the whole product is zero
- Zero frequencies are a problem
 - $p(w_n|w_{n-1}) = f(w_{n-1}w_n)/f(w_{n-1})$

relative frequency

• bigram $f(w_{n-1}w_n)$ doesn't exist in dataset

smoothing

- refers to ways of assigning zero probability n-grams a non-zero value
- we'll look at two ways here (just one of them today)

Add-One Smoothing

- add 1 to all frequency counts
- simple and no more zeros (but there are better methods)

unigram

- p(w) = f(w)/N (before Add-One)N = size of corpus
- p(w) = (f(w)+1)/(N+V) (with Add-One)
- $f^*(w) = (f(w)+1)*N/(N+V)$ (with Add-One)
 - V = number of distinct words in corpus
 - N/(N+V) normalization factor adjusting for the effective increase in the corpus size caused by Add-One

bigram

 $p(w_n|w_{n-1}) = f(w_{n-1}w_n)/f(w_{n-1})$ (before Add-One) - $p(w_n|w_{n-1}) = (f(w_{n-1}w_n)+1)/(f(w_{n-1})+V)$ (after Add-One) - $f^*(w_{n-1}w_n) = (f(w_{n-1}w_n)+1)^* f(w_{n-1})/(f(w_{n-1})+V)$ (after Add-One)

must rescale so that total probability mass stays at 1

Add-One Smoothing

add 1 to all frequency counts

• bigram

- $p(w_n|w_{n-1}) = (f(w_{n-1}w_n)+1)/(f(w_{n-1})+V)$
- $(f(w_{n-1}, w_n)+1)^* f(w_{n-1}) / (f(w_{n-1})+V)$

frequencies

	Ι	want	to	eat	Chinese	food	lunch	
I	8	1087	0	13	0	0	0	
want	3	0	786	0	6	8	6	
to	3	0	10	860	3	0	12	- figuro 6
eat	0	0	2	0	19	2	52	= figure 6
Chinese	2	0	0	0	0	120	1	
food	19	0	17	0	0	0	0	
lunch	4	0	0	0	0	1	0	

	I	want	to	eat	Chinese	food	lunch
I	6.12	740.05	0.68	9.52	0.68	0.68	0.68
want	1.72	0.43	337.76	0.43	3.00	3.86	3.00
to	2.67	0.67	7.35	575.41	2.67	0.67	8.69
eat	0.37	0.37	1.10	0.37	7.35	1.10	19.47
Chinese	0.35	0.12	0.12	0.12	0.12	14.09	0.23
food	9.65	0.48	8.68	0.48	0.48	0.48	0.48
lunch	1.11	0.22	0.22	0.22	0.22	0.44	0.22

Remarks:

perturbation problem

add-one causes large changes in some frequencies due to relative size of *V* (1616)

want to: $786 \Rightarrow 338$

= figure 6.8

- Add-One Smoothing
 - add 1 to all frequency counts
- bigram
 - $p(w_n|w_{n-1}) = (f(w_{n-1}w_n)+1)/(f(w_{n-1})+V)$
 - $(f(w_{n-1}, w_n)+1)^* f(w_{n-1}) / (f(w_{n-1})+V)$
- Probabilities

Remarks:

perturbation problem

similar changes in probabilities

	I	want	to	eat	Chinese	food	lunch
I	0.00233	0.31626	0.00000	0.00378	0.00000	0.00000	0.00000
want	0.00247	0.00000	0.64691	0.00000	0.00494	0.00658	0.00494
to	0.00092	0.00000	0.00307	0.26413	0.00092	0.00000	0.00369
eat	0.00000	0.00000	0.00213	0.00000	0.02026	0.00213	0.05544
Chinese	0.00939	0.00000	0.00000	0.00000	0.00000	0.56338	0.00469
food	0.01262	0.00000	0.01129	0.00000	0.00000	0.00000	0.00000
lunch	0.00871	0.00000	0.00000	0.00000	0.00000	0.00218	0.00000

= figure 6.5

	I	want	to	eat	Chinese	food	lunch
I	0.00178	0.21532	0.00020	0.00277	0.00020	0.00020	0.00020
want	0.00141	0.00035	0.27799	0.00035	0.00247	0.00318	0.00247
to	0.00082	0.00021	0.00226	0.17672	0.00082	0.00021	0.00267
eat	0.00039	0.00039	0.00117	0.00039	0.00783	0.00117	0.02075
Chinese	0.00164	0.00055	0.00055	0.00055	0.00055	0.06616	0.00109
food	0.00641	0.00032	0.00577	0.00032	0.00032	0.00032	0.00032
lunch	0.00241	0.00048	0.00048	0.00048	0.00048	0.00096	0.00048

= figure 6.7

- let's illustrate the problem
 - take the bigram case:
 - $W_{n-1}W_n$
 - $p(w_n|w_{n-1}) = f(w_{n-1}w_n)/f(w_{n-1})$
 - suppose there are cases
 - $w_{n-1}w_1^0$ that don't occur in the corpus

- add-one
 - "give everyone 1"

- add-one
 - "give everyone 1"

- redistribution of probability mass
 - $p(w_n|w_{n-1}) = (f(w_{n-1}w_n)+1)/(f(w_{n-1})+V)$

- Excel spreadsheet available
 - addone.xls

Witten-Bell Smoothing

- equate zero frequency items with frequency 1 items
- use frequency of things seen once to estimate frequency of things we haven't seen yet
- smaller impact than Add-One

unigram

- a zero frequency word (unigram) is "an event that hasn't happened yet"
- count the number of (different) words (T) we've observed in the corpus
- $p(w) = T/(Z^*(N+T))$
 - w is a word with zero frequency
 - Z = number of zero frequency words
 - N = size of corpus

bigram

```
 \begin{array}{lll} - & \mathsf{p}(w_n|w_{n-1}) = \mathsf{f}(w_{n-1}w_n)/\mathsf{f}(w_{n-1}) \\ - & \mathsf{p}(w_n|w_{n-1}) = \mathsf{T}(w_{n-1})/(\mathsf{Z}(w_{n-1})^*(\mathsf{T}(w_{n-1})+\mathsf{N}(w_{n-1})) \\ & \cdot & \mathsf{T}(w_{n-1}) = \mathsf{number of (seen) bigrams beginning with } w_{n-1} \\ & \cdot & \mathsf{Z}(w_{n-1}) = \mathsf{number of unseen bigrams beginning with } w_{n-1} \\ & \cdot & \mathsf{Z}(w_{n-1}) = (\mathsf{possible bigrams beginning with } w_{n-1}) - (\mathsf{the ones we've seen}) \\ & \cdot & \mathsf{Z}(w_{n-1}) = \mathsf{V} - \mathsf{T}(w_{n-1}) \\ & - & \mathsf{T}(w_{n-1})/\mathsf{Z}(w_{n-1})^* + \mathsf{f}(w_{n-1})/(\mathsf{f}(w_{n-1}) + \mathsf{T}(w_{n-1})) \\ & - & \mathsf{p}(w_n|w_{n-1}) = \mathsf{f}(w_{n-1}w_n)/(\mathsf{f}(w_{n-1}) + \mathsf{T}(w_{n-1})) \end{array} \qquad \text{for non-zero bigrams } (\mathit{after Witten-Bell})
```

Witten-Bell Smoothing

use frequency of things seen once to estimate frequency of things we haven't seen yet

bigram

- $T(w_{n-1})/Z(w_{n-1}) * f(w_{n-1})/(f(w_{n-1}) + T(w_{n-1}))$ estimated zero bigram frequency
 - $T(w_{n-1})$ = number of bigrams beginning with w_{n-1}
 - $Z(w_{n-1})$ = number of unseen bigrams beginning with w_{n-1}

	Ι	want	to	eat	Chinese	food	lunch	
I	8	1087	0	13	0	0	0	
want	3	0	786	0	6	8	6	
to	3	0	10	860	3	0	12	- figuro 6.4
eat	0	0	2	0	19	2	52	= figure 6.4
Chinese	2	0	0	0	0	120	1	
food	19	0	17	0	0	0	0	
lunch	4	0	0	0	0	1	0	

Remark: smaller changes

	Ι	want	to	eat	Chinese	food	lunch
I	7.785	1057.763	0.061	12.650	0.061	0.061	0.061
want	2.823	0.046	739.729	0.046	5.647	7.529	5.647
to	2.885	0.084	9.616	826.982	2.885	0.084	11.539
eat	0.073	0.073	1.766	0.073	16.782	1.766	45.928
Chinese	1.828	0.011	0.011	0.011	0.011	109.700	0.914
food	18.019	0.051	16.122	0.051	0.051	0.051	0.051
lunch	3.643	0.026	0.026	0.026	0.026	0.911	0.026

= figure 6.9

Witten-Bell excel spreadsheet:

```
-wb.xls
```

- Witten-Bell Smoothing
- Implementation (Excel)
 - one line formula

N-gram models

- they're technically easy to compute
 - (in the sense that lots of training data are available)
- but just how good are these n-gram language models?
- and what can they show us about language?

approximating Shakespeare

- generate random sentences using n-grams
- train on complete Works of Shakespeare
- Unigram (pick random, unconnected words)
 - (a) To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have
 - (b) Every enter now severally so, let
 - (c) Hill he late speaks; or! a more to leg less first you enter
 - (d) Will rash been and by I the me loves gentle me not slavish page, the and hour; ill let
 - (e) Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near; vile like

Bigram

- (a) What means, sir. I confess she? then all sorts, he is trim, captain.
- (b) Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.
- (c) What we, hath got so she that I rest and sent to scold and nature bankrupt, nor the first gentleman?
- (d) Enter Menenius, if it so many good direction found'st thou art a strong upon command of fear not a liberal largess given away, Falstaff! Exeunt
- (e) Thou whoreson chops. Consumption catch your dearest friend, well, and I know where many mouths upon my undoing all but be, how soon, then; we'll execute upon my love's bonds and we do you will?
- (f) The world shall- my lord!

- Approximating Shakespeare (section 6.2)
 - generate random sentences using n-grams
 - train on complete Works of Shakespeare

Trigram

- (a) Sweet prince, Falstaff shall die. Harry of Monmouth's grave.
- (b) This shall forbid it should be branded, if renown made it empty.
- (c) What is't that cried?
- (d) Indeed the duke; and had a very good friend.
- (e) Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.
- (f) The sweet! How many then shall posthumus end his miseries.

Quadrigram

- (a) King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in;
- (b) Will you not tell me who I am?
- (c) It cannot be but so.
- (d) Indeed the short and the long. Marry, 'tis a noble Lepidus.
- (e) They say all lovers swear more performance than they are wont to keep obliged faith unforfeited!
- (f) Enter Leonato's brother Antonio, and the rest, but seek the weary beds of people sick.

Remarks:

dataset size problem

training set is small 884,647 words 29,066 different words

 $29,066^2 = 844,832,356$ possible bigrams

for the random sentence generator, this means very limited choices for possible continuations, which means program can't be very innovative for higher *n*

Possible Application?

Aside: http://hemispheresmagazine.com/contests/2004/intro.htm

And now, let the laughing begin.

2000

Faulkner parodies

Hemingway parodies

the 15th annual Faulkner contest, writer David Sheffield was the winner with his "As I Lay

Kvetching," And author Deborah Ein's "Dear Scott Letter" took the 24th annual Hemingway prize.

N-gram models + smoothing

- one consequence of smoothing is that
- every possible concatentation or sequence of words has a non-zero probability

Colorless green ideas

examples

- (1) colorless green ideas sleep furiously
- (2) furiously sleep ideas green colorless
- **Chomsky** (1957):
 - ... It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in an English discourse. Hence, **in any statistical model for grammaticalness**, these sentences will be ruled out on identical grounds as equally `remote' from English. Yet (1), though nonsensical, is grammatical, while (2) is not.

idea

- (1) is syntactically valid, (2) is word salad
- Statistical Experiment (Pereira 2002)

Colorless green ideas

- examples
 - (1) colorless green ideas sleep furiously
 - (2) furiously sleep ideas green colorless
- Statistical Experiment (Pereira 2002)

$$p(w_1\cdots w_n)=p(w_1)\prod_{i=2}^n p(w_i|w_{i-1})$$
 . bigram language model

Using this estimate for the probability of a string and an aggregate model with C = 16 trained on newspaper text using the expectation-maximization (EM) method (Dempster, Laird, & Rubin, 1977), we find that

$$\frac{p(\text{Colorless green ideas sleep furiously})}{p(\text{Furiously sleep ideas green colorless})} \approx 2 \times 10^5$$
.

Thus, a suitably constrained statistical model, even a very simple one, can meet Chomsky's particular challenge.

Interesting things to Google

- example
 - colorless green ideas sleep furiously
- First hit

Web

Colorless green ideas sleep furiously

Chomsky's famous sentence 'Colorless green ideas sleep furiously' is examined and is shown to be a specimen of irony rather being meaningless.

home.tiac.net/~cri/1997/chomsky.html - 4k - Cached - Similar pages

Interesting things to Google

example

colorless green ideas sleep furiously

first hit

- compositional semantics
- a green idea is, according to well established usage of the word "green" is one that is an idea that is new and untried.
- again, a colorless idea is one without vividness, dull and unexciting.
- so it follows that a colorless green idea is a new, untried idea that is without vividness, dull and unexciting.
- to sleep is, among other things, is to be in a state of dormancy or inactivity, or in a state of unconsciousness.
- to sleep furiously may seem a puzzling turn of phrase but one reflects that the mind in sleep often indeed moves furiously with ideas and images flickering in and out.

Interesting things to Google

- example
 - colorless green ideas sleep furiously
- another hit: (a story)
 - "So this is our ranking system," said Chomsky. "As you can see, the highest rank is yellow."
 - "And the new ideas?"
 - "The green ones? Oh, the green ones don't get a color until they've had some seasoning. These ones, anyway, are still too angry. Even when they're asleep, they're furious. We've had to kick them out of the dormitories - they're just unmanageable."
 - "So where are they?"
 - "Look," said Chomsky, and pointed out of the window. There below, on the lawn, the colorless green ideas slept, furiously.

More on N-grams

- How to degrade gracefully when we don't have evidence
 - Backoff
 - Deleted Interpolation
- N-grams and Spelling Correction

Backoff

· idea

- Hierarchy of approximations
- trigram > bigram > unigram
- degrade gracefully
- Given a word sequence fragment:
 - $\ldots W_{n-2} W_{n-1} W_n \ldots$

preference rule

- 1. $p(w_n | w_{n-2} w_{n-1})$ if $f(w_{n-2} w_{n-1} w_n) \neq 0$
- 2. $\alpha_1 p(w_n | w_{n-1})$ if $f(w_{n-1} | w_n) \neq 0$
- 3. $\alpha_2 p(w_n)$
- notes:
 - α_1 and α_2 are fudge factors to ensure that probabilities still sum to 1

Backoff

preference rule

- 1. $p(w_n | w_{n-2} w_{n-1})$ if $f(w_{n-2} w_{n-1} w_n) \neq 0$
- 2. $\alpha_1 p(w_n | w_{n-1})$ if $f(w_{n-1} | w_n) \neq 0$
- 3. $\alpha_2 p(w_n)$

problem

- if $f(w_{n-2}w_{n-1}w_n) = 0$, we use one of the estimates from (2) or (3)
- assume the backoff value is non-zero
- then we are introducing non-zero probability for $p(w_n | w_{n-2} w_{n-1})$ which is zero in the corpus
- then this adds "probability mass" to $p(w_n | w_{n-2} w_{n-1})$ which is not in the original system
- therefore, we have to be careful to juggle the probabilities to still sum to 1

Deleted Interpolation

- fundamental idea of interpolation
- equation: (trigram)
 - $\mathbf{p}(w_n | w_{n-2} w_{n-1}) =$ $\lambda_1 p(w_n | w_{n-2} w_{n-1}) +$ $\lambda_2 p(w_n | w_{n-2}) +$ $\lambda_3 p(w_n)$

- Note:
 - λ_1 , λ_2 and λ_3 are fudge factors to ensure that probabilities still sum to 1