Scilab Textbook Companion for A Textbook of Electrical and Electronics Engineering Materials by P. l. Kapoor¹

Created by
Vishwa Shah
Instrumentation and Control Engineering
Instrumentation Engineering
Institute of Technology, Nirma University
College Teacher
NA
Cross-Checked by

June 2, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: A Textbook of Electrical and Electronics Engineering Materials

Author: P. l. Kapoor

Publisher: Khanna Publishers, New Delhi

Edition: 8

Year: 2010

ISBN: 81-7409-131-9

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
2	Conducting Materials	5
4	Insulating Materials	17
5	Dielectric Materials	22
6	Magnetic Materials	26
15	Miscellaneous Solved Numerical Problems	31

List of Scilab Codes

Exa 2.1	Finding resistance	5
Exa 2.2	Finding resistance	5
Exa 2.3	Finding temperature	6
Exa 2.4	Finding length	6
Exa 2.5	Finding resistance	7
Exa 2.6	Finding temperature coefficient	7
Exa 2.7	Finding resistance	8
Exa 2.8	Finding resistance	8
Exa 2.9	Resistance and temp coeff	9
Exa 2.10	Resistance and temperature	9
Exa 2.11	Finding temperature coefficient	10
Exa 2.12	Resistance and Conductivity	10
Exa 2.13	Finding temperature	11
Exa 2.14	Finding temperature	11
Exa 2.15	Finding resistance	12
Exa 2.16	Finding resistance	13
Exa 2.17	Finding fusing current	13
Exa 2.18	Finding ratios	14
Exa 2.19	Finding resistance	14
Exa 2.20	Finding heat efficiency	15
Exa 2.21	Finding time	15
Exa 4.1	Finding capacitance	17
Exa 4.2	Finding capacitance	17
Exa 4.3	Finding heat	18
Exa 4.4	Finding flux density	19
Exa 4.5	Finding relative permeability	19
Exa 4.6	Finding force	20
Exa 4.7	Finding charge	20

Exa 5.1	Charge and capacitance	22
Exa 5.2	Charge and potential gradient	22
Exa 5.3		23
Exa 5.4		24
Exa 5.5	Finding capacitance	24
Exa 6.1		26
Exa 6.2		26
Exa 6.3	Field intensity and permeability	27
Exa 6.4	Finding loss	28
Exa 6.5	Finding loss and frequency	28
Exa 6.6		29
Exa 6.7		29
Exa 6.8	Finding losses	30
Exa 15.1		31
Exa 15.2	Resistance and BOT units	32
Exa 15.3		32
Exa 15.4		33
Exa 15.5		33
Exa 15.10	Finding resistance	34
Exa 15.11		35
Exa 15.12		35
Exa 15.13		36
Exa 15.14	Finding resistance	36
Exa 15.15		37
Exa 15.16		37
Exa 15.17		38
Exa 15.19		38
Exa 15.20		39
Exa 15.21		39
Exa 15.22	Finding energy loss	40
Exa 15.23		40
Exa 15.24		41
Exa 15.25	Finding AmpereTurns	41
Exa 15.26	Finding flux	42
Exa 15.27	Finding magnetising current	42
Exa 15.28		43
Exa 15.29		44
Exa. 15.30		44

Exa 15.31	Finding resistance	45
Exa 15.32	Finding time	45
Exa 15.33	Finding frequency	46
Exa 15.34	Current Voltage and power	46
Exa 15.35	Finding efficiency	48
Exa 15.36	Finding cost	48
Exa 15.37	Finding no of electrons	49
Exa 15.38	Finding resistance	49
Exa 15.39	Resistance and cost	50
Eva 15 40	Finding current	51

Chapter 2

Conducting Materials

Scilab code Exa 2.1 Finding resistance

```
1 // Finding resistance
2 //Example 2.1(pg. 21)
3 clc
4 clear
5 1=300//in meters
6 \ a=25*(10^--6) //in \ meter \ square
7 d15=2.7//density at 15 degree C in ohm-meter
8 R15=d15*(1/a)
9 printf('The value of Resistance at 15 degree C is \%3
     10 k0=0.004//temp coefficient in ohm/degree C at 0
     degree C
11 t=15, T=50//in degree C
12 k15=k0/(1+(k0*t))
13 R50=R15*(1+k15*(T-t))
14 printf ('The value of Resistance at 50 degree C is %3
     .2 f.ohms', R50)
```

Scilab code Exa 2.2 Finding resistance

```
1 //Finding resistance
2 //Example 2.2(pg. 21)
3 clc
4 clear
5 R20=400// in ohms
6 k0=0.0038
7 t=20,T=80//degree C
8 k1=k0/(1+(k0*t))
9 R80=R20*{1+k1*(T-t)}
10 printf('The value of Resistance at 80 degree C is %3 .4 f ohms', R80)
```

Scilab code Exa 2.3 Finding temperature

```
//Finding temperature
//Example 2.3(pg. 22)

clc

clear
t=15//degree C
R15=250,RT=300//ohms
k0=0.0038//ohm/degree C
k1=k0/(1+(k0*t))
T=[{(RT/R15)-1}/k1]+t//since RT=R15{1+k1*(T-t)}
printf('The value of Temperature at 300 ohm
resistance is %3.1 f degree C',T)
```

Scilab code Exa 2.4 Finding length

```
1 // Finding length
2 // Example 2.4(pg. 22)
3 clc
4 clear
5 // Part (a)
```

```
6 d=0.4*(10^-3)/diameter in meter
7 a=\%pi*(d^2)/4//area in meter square
8 p1=100*(10^-8)//resistivity of nichrome in ohm-meter
9 R=40//resistance in ohms
10 \ 11 = R * a/p1
11 printf ('Thus the length of heater element with
      nichrome wire is \%2.1 \, \text{f} meter \n',11)
12
13 // Part (b)
14 d=0.4*(10^-3)/diameter in meter
15 a=12.6*(10^-8)//area in meter square
16 p2=1.72*(10^-8)//resistance of copper wire in ohm-
      meter
17 R=40//resistance in ohms
18 \ 12 = R * a/p2
19 printf ('Thus the length of heater element with
      copper wire is %2.1 f meter', 12)
```

Scilab code Exa 2.5 Finding resistance

```
1 //Finding resistance
2 //Example 2.5(pg. 23)
3 clc
4 clear
5 R0=80//in ohms
6 t=40// in degree C
7 k0=0.0043
8 R40=R0*(1+(k0*t))
9 printf('The value of Resistance at 40 degree C is %3 .2 f ohms', R40)
```

Scilab code Exa 2.6 Finding temperature coefficient

```
//Finding temperature coefficient
//Example 2.6(pg. 23)
clc
clear
R80=50,R28=40// resistance in ohms
t=28,T=80// temp in degrees
k28=[(R80/R28)-1]/(T-t)//since RT=Rt{1+k*(T-t)}
printf('The value of Temperature coefficient at 28 degree C is %3.4 f ohms per degree C \n',k28)
k0=k28/(1-k28*t)// since k28=k0/(1+k0*t)
printf('The value of Temperature coefficient at 0 degree C is %3.4 f ohms per degree C',k0)
```

Scilab code Exa 2.7 Finding resistance

Scilab code Exa 2.8 Finding resistance

```
1 //Finding resistance
2 //Example 2.8(pg. 24)
3 clc
4 clear
5 R20=50// resistance in ohms
```

Scilab code Exa 2.9 Resistance and temp coeff

```
1 //Finding resistivity and temp coefficient
2 //Example 2.9(pg. 24)
3 clc
4 clear
5 k20=1/254.5// temperature coefficient at 20 degreeC
6 p0=1.6*(10^-6) // resistivity at 0 degree C in ohm-cm
7 t=20, T=50 //temp in degree C
8 k0=k20/(1-(t*k20))/temperature coefficient at 0
      degreeC
9 p50=p0*[1+(T*k0)]// resistivity at 50 degree C in
     ohm-cm
10 k50=1/[T+(1/k0)]/temperature coefficient at 50
      degreeC
11 printf('Thus the temperature coefficient at 50
      degree C is \%3.4 \,\mathrm{f} \, \mathrm{n}, k0)
12 printf ('Thus the resistivity at 50 degree C is %e in
      ohm-cm', p50)
```

Scilab code Exa 2.10 Resistance and temperature

```
1 //Finding resistance and temperature
2 //Example 2.10(pg. 25)
```

Scilab code Exa 2.11 Finding temperature coefficient

```
1  //Finding temperature coefficient
2  //Example 2.11(pg. 25)
3  clc
4  clear
5  R25=50,R70=57.2// resistance in ohms
6  t=25,T=70// temp in degree C
7  //since Rt=R0(1+(k0*t))
8  k0=(R70-R25)/[(R25*T)-(R70*t)]
9  printf('The temp coefficient at 0 degree C is %3.3f',k0 )
```

Scilab code Exa 2.12 Resistance and Conductivity

```
1 //Finding resistance and conductivity
2 //Example 2.12(pg. 26)
3 clc
4 clear
5 R0=15.5// resistance in ohms
```

```
6 t=16//in degree C
7 k0=0.00428//temp coefficient
8 R16=R0*[1+(k0*t)]
9 G=(R0/R16)*100// since conductance=reciprocal of resistance
10 printf('The value of Resistance at 16 degree C is %3 .4 f ohms \n',R16)
11 printf('The value of percentage conductivity at 16 degree C is %3.2 f percent',G)
```

Scilab code Exa 2.13 Finding temperature

```
//finding temperature
//Example 2.13(pg. 26)

clc
clear
RT=144,R20=10// in ohms
t=20// in degree C
k20=5*(10^-3)//temp coefficient at 20 degree C
T={[(RT/R20)-1]/k20}+t
printf('The value of temp required for tungsten bulb is %4.2 f degree C',T)
```

Scilab code Exa 2.14 Finding temperature

```
1 //Finding temperature
2 //Example 2.14(pg. 27)
3 clc
4 clear
5 V15=250,Vt=250//voltage in volts
6 I15=5,It=4//current in amperes
7 T=15//temp in degree C
8 R15=V15/I15//resistance in ohms at 15 degreeC
```

Scilab code Exa 2.15 Finding resistance

```
1 // Finding resistance
2 //Example 2.15(pg. 28)
3 clc
4 clear
5 n=100//no of slots
6 c=12//conductors per slot
7 Lm=300// mean length of turn in cm
8 a=1.5*0.2//cross section of each conductor in cm<sup>2</sup>
9 s=1.72*(10^-6)/specific resistance of copper at 20
     degreeC
10 p=4// poles
11 t=20, T=75/temp in degree C
12 k0=0.00427//temp coefficient of resistivity for
      copper
13 L=n*c*Lm//total length of conductors
14 Ls=L/p//length of conductors in each parallel path
15 \quad s0=s*(1-(k0*t))
16 printf ('Thus specific resistance at 0 degree C is %e
      ohm-cm \n', s0)
17 RT = (s0*Ls)/a
18 printf ('Thus resistance at working temp of 75 degree
```

Scilab code Exa 2.16 Finding resistance

```
//Finding resistance
//Example 2.16(pg. 28)

clc
clear
= 15//cross section area in cm^2
= 1=100000//length in cm
po=7.6*(10^-6)//specific resistance at 0 degree C in ohm—cm
k0=0.005//temp coefficient at 0 degree C
= t=50//temp in degree C
= p50=p0*[1+(t*k0)]//resistivity at 50 degree C
= R50=p50*(1/a)
printf('Thus resistance at 50 degree C is %3.5 f ohms \n', R50)
```

Scilab code Exa 2.17 Finding fusing current

```
1 //Finding fusing current
2 //Example 2.17(pg. 29)
3 clc
4 clear
5 I2=27.5//current of No.25 wire in Amperes
6 d=1/2//since I1/I2=1/2
7 I1=I2*(d^(3/2))
8 printf('Thus fusing current of No.33 wire is %3.3f amperes \n',I1)
```

Scilab code Exa 2.18 Finding ratios

```
1 // Finding ratios
2 //Example 2.18(pg. 30)
3 clc
4 clear
5 sAl=2.85*(10^-6), sCu=1.7*(10^-6)// specific
      resistance in ohm-cm
6 gAl=2.71, gCu=8.89 // specific gravity
7 cAl=5000, cCu=10000//cost per tonne
8 //P=V^2/R, power is same for both so resistance must
       also be same
9 //so R=(p*1)/(pi*d^2)=(p*1)/(pi*d^2)
10 Kd = sqrt(sAl/sCu)//Kd = d/d
11 printf('Thus the ratio of diameters is \%3.3 \,\mathrm{f} \, \mathrm{n}', Kd)
12 Km = (Kd^2) * (gAl/gCu)
13 printf ('Thus the ratio of weights is \%3.4 \,\mathrm{f} \, \mathrm{n}', Km)
14 Kc = Km * (cAl/cCu)
15 printf('Thus the ratio of costs is %3.4f', Kc)
```

Scilab code Exa 2.19 Finding resistance

```
//Finding resistance
//Example 2.19(pg. 33)

clc
clear
R1=18.6//resistance in ohms
K1=5//since 12=5*11
Ka=3// since a2=3*a1
R2=R1*K1/Ka
// resistivity is same because wires are of same material
printf('Thus the resistance of another conductor is %3.1 f ohms', R2)
```

Scilab code Exa 2.20 Finding heat efficiency

```
//Finding heat efficiency
//Example 2.20(pg. 57)

clc
clear
m=1//mass in kg
S=4200//specific heat of water
T2=100,T1=15// temp in degree C
H=m*S*(T2-T1)//heat utilised in J
printf('Heat utilised is %6.2f Joules \n',H)
W=500//wattage rating of kettle in volts
t=15*60// time in sec
Hd=W*t//heat developed in J
printf('Heat developed is %6.2f Joules \n',Hd)
He=(H/Hd)*100//Heat efficiency
printf('Thus heat efficiency is %3.2f percent',He)
```

Scilab code Exa 2.21 Finding time

```
//Finding time
//Example 2.21(pg. 58)

clc
clear
m=3.6//mass in kg
S=4200//specific heat of water
T2=95,T1=15// temp in degree C
H=m*S*(T2-T1)//heat utilised in J
printf('Heat utilised is %7.2f Joules \n',H)
e=0.84//efficiency of kettle
Ei=H/e//Energy input in J
printf('Energy input is %8.2f Joules \n',Ei)
```

```
13 W=1000//rating of kettle in watts
14 t=(Ei/W)/60//time taken in min
15 printf('Thus time taken is %2.1 f min \n',t)
```

Chapter 4

Insulating Materials

Scilab code Exa 4.1 Finding capacitance

```
1 //Finding capacitance
2 //Example 4.1(pg 110)
3 clc
4 clear
5 // Let C1 and C2 be unknown capacities
6 //C1+C2=0.16
7 //(C1*C2)/(C1 + C2)=0.03
8 // from the above 2 equations we get the following polynomial
9 s=poly(0,"s");
10 p=s^2 -0.16*s +0.0048
11 [c1]=roots(p)
12 c2=0.16-c1
13 printf('Thus the capacitance of condensers is %3.2f microF \n ',c1)
```

Scilab code Exa 4.2 Finding capacitance

```
1 //Finding capacitance
2 //Example 4.2(pg 110)
3 clc
4 clear
5 n=9;
6 Ko=8.854*10^-12;
7 K=5;
8 A=12*10^-4;
9 d=2*10^-4;
10
11 C=(n-1)*Ko*K*A/d
12 printf('Thus the capacitance is %e F',C);
13 //The Answer in the Textbook has a calculation error, hence it doesn't match the answer here.
```

Scilab code Exa 4.3 Finding heat

```
//Finding heat
//Example 4.3(pg 110)
clc
clear
C=10^-6
V=10000
//here C is capacitance and V voltage
E=1/2*C*V^2
//E is the energy stored in the capacitor
// when the capacitor is discharged all this energy is dissipated as heat in the wire
H=E/4.2
//H is heat produced in calories since 4.2 Joules=1 calorie
printf('Thus the heat produced is %3.4f calories',H)
```

Scilab code Exa 4.4 Finding flux density

```
1 //Finding electric flux density
2 //Example 4.4(pg 111)
3 clc
4 clear
6 A=0.02; //surface area of plates in meter square
7 d=0.001; // distance between the plates in meter
8 C=4.5*10^-10; //capacitance of the capacitor in farad
9 //for paralel plate condenser C=KoKA/d
10 Ko=8.854*10^-12;
11 //dielectric constant K is given by
12 K = (C*d) / (Ko*A)
13 V=15000; //volatage in volts
14 Q=C*V// charge on condenser in columb
15 D=Q/A// electric flux density in columb per meter
     square
16 printf ('Thus the electric flux density is \%e C/(m^2)
      ',D)
```

Scilab code Exa 4.5 Finding relative permeability

```
//Finding relative permittivity
//Example 4.5(pg 111)
clc
clear
//before inserting the second sheet
d=0.003;//distacne between plates in m^2
K1=6;// relative permittivity of air
Ko=8.854*10^-12;
// capacitance C1=Ko*K1*A/d in Farad
//after inserting the second sheet
d1=0.003;//thickness of first sheet in meter
d2=0.005;//thickness of second sheet in meter
```

```
13 //K2 is unknown

14 //C2=Ko*A/(d1/K1 + d2/K2)

15 // but given that C2=(1/3)*C1

16 //from equations 1,2,3

17 K2= (d2*K1)/(3*d-d1)

18 // since Ko*A/(d1/K1 + d2/K2)=Ko*K1*A/3*d

19 printf('Thus K2 is %3.4f',K2)
```

Scilab code Exa 4.6 Finding force

```
//Finding force
//Example 4.6(pg 113)

clc

clear

q1=1;// in coulomb
q2=1;// in coulomb

Eo=8.854*10^-12;// in Farad per meter

Er=1;

d=1// in meter

pi=3.14;

// F is the force between 2 charges in NEWTONS

F=(q1*q2)/(4*pi*Eo*Er*d^2)

printf('Thus the force between 2 charges is %e',F)
```

Scilab code Exa 4.7 Finding charge

```
1 // Finding charge
2 // Example 4.7(pg 114)
3 clc
4 clear
5 // q1=q2=q
6 pi=3.14;
```

```
7 d=0.2; // in meters
8 K=9*10^9; // here K=1/4*pi*Eo*Er constant
9 F=9.81*10^-1; // in newtons or 10^-1 kgm
10 q=sqrt((F*(d^2))/K)
11 printf('Thus charge is %e in coulomb',q)
```

Chapter 5

Dielectric Materials

Scilab code Exa 5.1 Charge and capacitance

```
//Finding charge and capacitance
//Example 5.1(pg 193)
clc
clear
t=0.25//time in sec
I=0.22//Current in A
V=220//voltage in V
Q=I*t//charge given to condenser
C=Q/V//capacitance of condenser
C1=C*(10^6)
printf('Charge given to condenser is %3.3f Coulombs \n',Q)
printf('Capacitance of condenser is %3.4f F',C)
printf('or %3.0f microF',C1)
```

Scilab code Exa 5.2 Charge and potential gradient

```
1 //Finding charge and potential gradient
```

```
//Example 5.2(pg 193)
clc
clear
C=0.0002*(10^-6)//capacitance in F
V=20000//P.D across condenser in V
t=2//thickness in mm
Q=C*V//charge on each plate in coulomb
g=(V/t)*(1/1000)// potential gradient in kV/mm
printf('Charge given to condenser is %e Coulombs \n',Q)
printf('Potential gradient of condenser is %3.0 f kV/mm',g)
```

Scilab code Exa 5.3 Charge and energy

```
1 //Finding charge and energy
2 //Example 5.3(pg 194)
3 clc
4 clear
5 //Before immersion of oil
6 \quad C=0.005*(10^-6)
7 V = 500
8 q = C * V
9 E=(1/2)*(C*V*V)
10 printf ('Charge of condenser is %e coulomb \n',q)
11 printf ('Energy stored in condenser before immersion
      of oil is %e Joules \n',E)
12
13 // After immersion of oil
14 K = 2.5
15 q1=q// since no loss of charge
16 C1=K*C//capacity of condenser
17 E1=(q1^2)/(2*C1)// energy stored in condenser
18 printf ('Energy stored in condenser after immersion
      of oil is %e Joules', E1)
```

Scilab code Exa 5.4 K and flux density

```
//dielectric constant and flux density
//Example 5.4(pg 194)

clc
clear
A=0.02//surface area of plate in m^2
d=0.001//distance between plates in m
C=4.5*(10^-10)//capacitance in F
V=15000//voltage in volts
Ko=8.854*(10^-12)
K=(C*d)/(K0*A)
q=C*V// charge on condenser in coulombs
D=q/A//Electric flux density in Coulomb/m^2
printf('Thus dielectric constant is %3.2 f \n',K)
printf('Thus Electric flux density is %e Coulombs/m^2',D)
```

Scilab code Exa 5.5 Finding capacitance

```
//Finding capacitance
//Example 5.5(pg 195)

clc
clear
A=0.2//surface area of plate in m^2
t=2.5*(10^-5)//thickness of dielectric in m
K0=8.854*(10^-12)//permittivity of air in F/m
K=5//relative permittivity of dielectric
C=(K*K0*A*(10^6))/t//capacitance of condenser in microF
printf('Thus the Capacitance of condenser is %3.3f microF',C)
```

Chapter 6

Magnetic Materials

Scilab code Exa 6.1 Finding current

```
//Finding current
//Example 6.1(pg 212)
clc
clear
f=0.01//flux in Wb
l=1//mean circumference in m
N=1000//tunrs
Ur=1000//relative permeability
Uo=4*%pi*(10^-7)//permeability of free space in H/m
l=0.001// cross section area in m^2
I=(f*1)/(N*Uo*Ur*a)// current in Amp. since f=A*T/(1/Uo*Ur*a)
printf('Thus Current required is %3.3 f Amp',I)
```

Scilab code Exa 6.2 Finding relative permeability

```
1 //relative permeability
2 //Example 6.2(pg 212)
```

```
3 clc
4 clear
5 f=1.2*(10^-3)//flux in Wb
6 l=1.4//mean circumference in m
7 N=500//tunrs
8 Uo=4*%pi*(10^-7)//permeability of free space in H/m
9 a=0.0012// cross section area in m^2
10 I=2//current in Amp
11 Ur=(f*1)/(N*I*Uo*a)//relative permeability
12 printf('Thus the relative permeability of iron is %3 .2 f ',Ur)
```

Scilab code Exa 6.3 Field intensity and permeability

```
1 //Flux density, field intensity and permeability
2 //Example 6.3(pg 213)
3 clc
4 clear
5 1=0.4//mean circumference in m
6 N = 200 / tunrs
7 Uo=4*\%pi*(10^-7)/permeability of free space in H/m
8 a=5*(10^-4)// cross section area in m<sup>2</sup>
9 I=6.4//current in Amp
10 f=0.8*(10^-3) // flux in Wb
11 fd=f/a//flux density in Wb/m^2
12 fi=I*N/1//Field intensity in AT/m
13 Ur=(f*1)/(N*I*Uo*a)//relative permeability
14 printf('(i) The Flux density is \%3.2 \text{ f Wb/m}^2 \text{ } \text{n',fd})
15 printf('(ii) The Field intensity is \%3.2 \, f \, AT/m \, n',
      fi)
16 printf('(iii) The Relative permeability of steel is
      \%3.2 \, f ', Ur)
17 //The answer to part(iii) has a calculation error in
       the textbook, hence it doesn't match the answer
      here.
```

Scilab code Exa 6.4 Finding loss

```
//Finding loss
//Example 6.4(pg 214)
clc
clear
Hl=250//Hysteresis loss per m^3 in J/cycle
V=1/150//Volume of specimen in m^3
N=50//No of cycles/sec
E=H1*V*N//Energy loss per sec in J
Eh=(E*3600)/1000//Energy loss per hour in kWh
printf('Thus Energy loss per hour is %3.2 f kWh',Eh)
```

Scilab code Exa 6.5 Finding loss and frequency

```
//Finding loss and frequency
//Example 6.5(pg 214)
clc
clear
P=4//no of poles
N=1600// Speed in rpm
f=P*N/120//Frequency of magnetic reversal
V=5400//volume
d=7.5//density
m=(V*d)/1000//Mass of armature in kg
L=1.76//Loss in W/kg
Cl=L*m//Core loss in Watts
printf('Thus Frequency of magnetic reversal is %3.2f c/s',f)
printf('\n and Core loss is %3.2f Watts',Cl)
```

Scilab code Exa 6.6 Finding core loss

```
1 //Finding core loss
2 //Example 6.6(pg 214)
3 clc
4 clear
5 \text{ v} = 76300 // \text{volume in c.c}
6 \text{ P=8// no of poles}
7 N = 375 / rpm
8 f=P*N/120//frequency in c/s
9 Bmax=12000//max. flux density in lines/cm^2
10 n = 0.002 / (assumed)
11 d=7.8//densityin gm/c.c
12 l=1.7/loss in watts per kg
13 Hl=n*v*f*(Bmax^1.6)*(10^-7)/Hysteresis loss in
      Watts
14 Al=v*d*1/1000//Additional loss under particular
      running conditions
15 Tl=Hl+Al//total core loss
16 printf('Thus the total core loss is %4.0 f Watts',Tl)
```

Scilab code Exa 6.7 Finding energy loss

```
//Finding energy loss
//Example 6.7(pg 215)
clc
clear
m=12000//mass in gm
d=7.5//density of iron in gm/c.c
Hl=3000//Hysteresis loss per cc in ergs/cycle
N=50//No of cycles per sec
v=m/d//volume of specimen
```

```
10 E=v*H1*N//Energy loss per cc in ergs
11 Eh=E/(10^10)//Energy loss per hour in kWh
12 printf('Thus the Loss in energy is %3.3 f kWh', Eh)
```

Scilab code Exa 6.8 Finding losses

```
1 //Finding losses
2 //Example 6.8(pg 215)
3 clc
4 clear
5 \text{ m=} 10 // \text{mass in kg}
6 T1=20//total loss in watts
7 f1=50//frequency in c/s
8 T2=35//total loss in watts
9 f2=75//frequency in c/s
10 //both have same peak flux density
11 //total loss=hysteresis loss+ Eddy current loss
12 // all quantities except frequency are constant
13 //so Total loss=Af+Bf^2
14 //let c1 and c2 be constants such that total loss=c1
      *f + c2*f^2
15 c2=[T2-(T1*f2/f1)]/(f2^2-f1*f2)
16 c1 = (T1 - c2 * f1^2) / f1
17 k=c1/c2//hysteresis loss/eddy current loss
18 H50=T1*k/101//hysteresis loss at 50 c/s
19 E50=T1-H50//eddy current loss at 50 c/s
20 printf ('Thus hysteresis loss at 50 c/s is %3.1 f
      Watts \n', H50)
21 printf ('And Eddy current loss at 50\,\mathrm{c/s} is \%3.1\,\mathrm{f}
      \operatorname{Watts} ', \operatorname{\texttt{E50}})
```

Chapter 15

Miscellaneous Solved Numerical Problems

Scilab code Exa 15.1 Voltage and energy loss

```
1 //consumer voltage and energy loss
2 //Example 15.1(pg 392)
3 clc
4 clear
5 R=0.2//total resistance of cable in ohms
6 I=200//current in A
7 t=100//time in hours
8 V = 240 / / voltage in volts
9 c=0.8//cost of electrical energy in Rs per unit
10 V1=I*R//voltage drop in the cable
11 //(i)consumer voltage
12 Vc=V-V1
13 //(ii) Power loss in the cable
14 P=I*I*R//in watts
15 E=P*t/1000//energy loss in kWh
16 C=E*c//cost of energy loss in Rs.
17 printf('(i) Consumer voltage is %3.1 f Volts \n', Vc)
18 printf('(ii)cost of energy loss is Rs \%3.2f',C)
```

Scilab code Exa 15.2 Resistance and BOT units

```
1 //Resistance and BOT units
2 //Example 15.2(pg 393)
3 clc
4 clear
5 Vi=220//voltage in volts supplied by dynamo
6 Vo=200//voltage in volts required for lighting
7 I=40//current in Amperes
8 Pi=Vi*I//power output of dynamo
9 Po=Vo*I//power consumed for lighting
10 L=Pi-Po//line losses
11 R=L/(I^2)/resistance of lines since line losses=I
12 t=10//time in hrs
13 N=(Po*t)/1000//no of units of consumed in B.O.T
14 Nw=(L*t)/1000//No of units wasted in B.O.T units
15 printf('(i) Resistance of lines is \%3.1 \text{ f Ohms } \text{ n',R})
16 printf('(ii)No. of B.O.T units consumed in 10hrs is
      \%3.2 \text{ f B.O.T units} \ \text{',N}
17 printf('(iii) No. of B.O.T units wasted in 10 hrs is
      \%3.2 \text{ f B.O.T units} \ \text{', Nw)}
```

Scilab code Exa 15.3 Finding current

```
1 //Finding current
2 //Example 15.3(pg 393)
3 clc
4 clear
5 M=250000//weight of water lifted per hr in kg
6 h=50//height in metres
```

```
7 g=9.81//gravitational const.
8 WD=M*h*g//work done by pump per hr in watt-sec
9 P=WD/3600//Power output of pump per sec in watts
10 V=500//supply voltage in volts
11 Ep=0.8//efficiency of pump
12 Em=0.9//efficiency of motor
13 E=Em*Ep//overall efficiency
14 I=P/(V*E)//current in amperes
15 printf('Current drawn by the motor is %3.2 f Amperes', I)
```

Scilab code Exa 15.4 Finding torque

```
1 //Finding torque
2 //Example 15.4(pg 394)
3 clc
4 clear
5 P=10//Power developed by motor in H.P
6 N=600//Speed of motor in rpm
7 / 1HP = 735.5 \text{Nw-m/sec} = 75 \text{kgm/sec}
8 a = 75
9 b = 735.5
10 //Torque in kg-m
11 Tkgm=(P*a*60)/(2*%pi*N)//\sin ce P=2*pi*NT/60
12 //Torque in Nw-m
13 TNwm = (P*b*60) / (2*\%pi*N) / since P=2*pi*NT/60
14 printf('(i) Torque in kg.meter is %3.2 f kg-m \n', Tkgm
15 printf('(ii) Torque in Newton.meter is %3.2 f Nw-m',
      TNwm)
```

Scilab code Exa 15.5 Finding mass and energy

```
1 //finding mass and energy
2 //Example 15.5(pg 395)
3 clc
4 clear
5 P=25//Output of diesel engine in kW
6 s=12500//calorific value of fuel oil in k-cal/kgm
7 e=0.35//overall efficiency of diesel set
8 P1=P/e//input energy required in 1 hour in kWh
9 P2=P1*860//input energy in kcal
10 m=P2/s//mass of oil needed per hr in kgm
11 w=1000//weight of 1 ton of oil in kgm
12 Eg=(P*w)/m//Energy generated by 1ton of oil in kWh
13 printf('(i) Mass of oil required per hr is \%3.3 f kgm
     \n', m)
14 printf('(ii) Eletrical energy generated per ton of
     fuel is %4.1 f Kwh', Eg)
```

Scilab code Exa 15.10 Finding resistance

```
//Finding resistance
//Example 15.10(pg 398)

clc
clear
rho=1.7*(10^-6)//resistivity of copper in ohm—cm
l=5//length in metres
t=0.005//thickness in m
D=0.08//external diameter in m
d=D-(2*t)//internal diameter in m
a=%pi*(D^2-d^2)/4//cross section area in cm^2
R=rho*1/a//resistance of copper tube in ohm
R1=R/(10^-4)//resistance in micro—ohm
printf('Thus the resistance of copper tube is %3.2f
micro—ohm',R1)
```

Scilab code Exa 15.11 Conductivity and conductance

```
//Conductivity and conductance
//Example 15.11(pg 399)
clc
clear
rho=1.7*(10^-8)//resistivity in ohm—m
K=1/rho//conductivity in mho/m
a=0.125*(10^-4)//cross sectional area of cable in m
2
1=2000//length of cable in meters
G=K*a/1//conductance
printf('Thus conductivity of cable is %e mho/metres \n',K)
printf('and conductance of cable is %3f mho',G)
```

Scilab code Exa 15.12 Finding resistivity

```
1 //Finding resistivity
2 //Example 15.12(pg 399)
3 clc
4 clear
5 V=0.05//volume in m^3
6 l=300//length in m
7 R=0.0306//resistance of conductor in ohm
8 rho=R*V/(1^2)//resistivity of conducting material
9 printf('Thus resistivity of conducting material is %e ohm-m',rho)
```

Scilab code Exa 15.13 Finding resistivity

```
//Finding resistivity
//Example 15.12(pg 399)
clc
clear
rho=0.67*(10^-6)//resistivity in ohm—inch
m=39.4//1meter = 39.4inch
m2=1525//1 meter2=1525 square inch
rhoc=rho*m/m2//resistivity of copper in ohm/m^3
rho1=rhoc/(10^-6)
printf('Thus resistivity of copper is %e ohm/m^3', rhoc)
rhoc)
rhoc)
rhof('/n which is equal to %2.4 f micro—ohm/m^3', rho1)
```

Scilab code Exa 15.14 Finding resistance

```
1 // Finding resistance
2 //Example 15.14(pg. 400)
3 clc
4 clear
5 R1=0.12//old conductor resistance in ohm
6 d1=15//diameter of old conductor in cm
7 d2=0.4*d1//diameter of new conductor in cm
8 a1=\%pi*(d1^2)/4//area of cross section of old
      conductor
  a2=\%pi*(d2^2)/4//area of cross section of new
      conductor
10 / R = r ho * l / a = r ho * V / a^2
11 //Henec R is proportional to 1/a<sup>2</sup>
12 R2=R1*((a1/a2)^2)//resistance of new conductor
13 printf ('Thus resistance of new conductor is \%2.4 f
     ohm', R2)
```

Scilab code Exa 15.15 Finding resistance

```
//Finding resistance
//Example 15.15(pg. 401)

clc
clear
lab=10//la=10*lb ratio of length of A to length of B

Aab=1/2//Aa=1/2*Ab ratio of area of A to area of B
RHOab=1/2//RHOa=2*RHOb ratio of resistivity of A to resistivity of B
Ra=2//resistance of A in ohm
Rb=(Ra*Aab)/(lab*RHOab)//resistance of B in ohm
//Since Ra=RHOa*la/Aa and Rb=RHOb*lb/Ab so from ratio of two we get Rb
printf('Thus resistance of resistor B is %2.2f ohm', Rb)
```

Scilab code Exa 15.16 Finding resistance

```
//Finding resistance
//Example 15.16(pg. 402)

clc
clear
RHOo=10.3*(10^-6)//resistivity of platinum wire at 0
degree in ohm—cm

d=0.0074//diameter of platinum wire
a=%pi*(d^2)/4//area of cross section of platinum wire in sq cm

Ro=4//resistance of wire in ohm
1=Ro*a/RHOo//length of wire in cm
alphao=0.0038
```

```
11 t=100//temp in degree C
12 R100=Ro*(1+(alphao*t))
13 printf('Thus length of wire required is %3.2 f cms\n', 1)
14 printf('and Resistance of wire at 100 degreeC is %2 .2 f ohms', R100)
```

Scilab code Exa 15.17 Finding resistance

```
//Finding resistance
//Example 15.17(pg. 403)

clc
clear
Ra=1//resistance of A in ohm
lab=20//ratio of length of A to length of B
Aab=1/3//ratio of area of A to area of B
//resistivity is same for both wires
Rb=Ra*(Aab/lab)//resistance of wire B in ohm
//since Ra=rho*la/Aa and Rb=rho*lb/Ab so from ratio of both we get Rb
printf('Thus resistance of wire B is %2.4f omhs',Rb)
```

Scilab code Exa 15.19 Finding potential difference

```
//Finding potential difference
//Example 15.19(pg. 405)
clc
clear
I1=2/(2+3)//current across 2V battery in circuit EBD in A
Vbe=3*I1//voltage dropp across BE in V
I2=4/(5+3)//current across 4V battery in circuit AFC in A
```

```
8 Vaf=3*I2//voltage dropp across AF in V
9 V=Vbe+4-Vaf//sum of potential drops starting from E
         and ending at F
10 //V is the P.D. between E and F
11 printf('Thus the P.D. between E and F is %2.1f Volts
',V)
```

Scilab code Exa 15.20 Finding current

Scilab code Exa 15.21 Finding loss

```
1 //Finding loss
2 //Example 15.21(pg. 407)
3 clc
4 clear
5 A=30//area of hysteresis material in cm^2
6 s1=0.4//scale is 1cm=0.4Wb/m^2
7 s2=400// and 1cm=400AT/m
8 V=1.2*(10^-3)
9 f=50//frequency in Hz
10 H=A*s1*s2//hysteresis loss/m^3/cycle in joules
```

Scilab code Exa 15.22 Finding energy loss

```
//Finding energy loss
//Example 15.22(pg. 407)

clc
clear
d=7500//density of iron in kg/m^3
w=12//weight of iron in kgm
V=w/d//volume of iron in m^3
f=25//frequency in Hz
N=3600*f//number of cycle per hour
A=300//area in joules/m^3
E=A*V*N//Total energy loss per hour in joules
printf('Thus total energy loss per hour is %5.2f
Joules',E)
```

Scilab code Exa 15.23 Finding inductance and energy

```
//Finding inductance and energy
//Example 15.23(pg. 407)
clc
clear
l=0.5//length of coil in meters
d=0.1//diameter of coil
N=1500//no of turns of coil
a=%pi*(d^2)/4//cross sectional area of coil in m^2
Ur=1//relative permeability
Uo=4*%pi*(10^-7)//permeability
I=8//current in A
```

```
12 L=((N^2)*a*Uo*Ur)/l//self inductance of coil in H
13 E=(1/2)*L*(I^2)//Energy stored in Joules
14 printf('Thus Self Inductance of coil is %2.3 f H\n', L
)
15 printf('and Energy stored is %1.2 f Joules', E)
```

Scilab code Exa 15.24 Flux and field strength

```
1 //Finding flux and field strength
2 //Example 15.24(pg. 408)
3 clc
4 clear
5 N=600//number of turns on the coil
6 I=2//current passing through solenoid in A
7 1=0.6//length of solenoid in meter
8 H=N*I/1/magnetic field at the centre in AT/m
9 Ur=1//relative permeability
10 \text{Uo}=4*\%\text{pi}*(10^-7)/\text{permeability}
11 d=0.025//diameter in meters
12 a=\%pi*(d^2)/4//cross sectional area of coil in m^2
13 phi=Uo*Ur*H*a//flux in Wb
14 printf ('Thus Magenetic field at centre is \%3.2 f AT/m
      ',H)
15 printf('\n and Flux is %e Wb',phi)
```

Scilab code Exa 15.25 Finding AmpereTurns

```
1 //Finding Ampere-Turns
2 //Example 15.25(pg. 408)
3 clc
4 clear
5 Ur=1//relative permeability
6 B=1.257//flux density in Wb/m^2
```

```
7 Uo=4*%pi*(10^-7)//permeability
8 H=B/(Uo*Ur)//magnetising force in AT/m
9 1=0.004//length of air gap in meter
10 AT=H*1//AT required for the air gap
11 printf('Thus AT required for the air gap is %3.1f', AT)
```

Scilab code Exa 15.26 Finding flux

```
1 //Finding flux
2 //Example 15.26(pg. 409)
3 clc
4 clear
5 D=0.3//diameter of anchor ring in m
6 l=%pi*D//length of iron ring in m
7 N=400//number of turns on the iron ring
8 a=0.0012//area of cross section of iron path in m<sup>2</sup>
9 Ur=1000//relative permeability
10 \text{Uo}=4*\%\text{pi}*(10^-7)/\text{permeability}
11 I=2//current in A
12 phi=(N*I)/(1/(Uo*Ur*a))/flux through iron path in
     WB
13 phi1=phi/(10^-3)/flux in mWb
14 printf ('Thus flux through iron path is %2.2 f mWb',
      phi1)
```

Scilab code Exa 15.27 Finding magnetising current

```
1 //Finding magnetising current
2 //Example 15.27(pg. 409)
3 clc
4 clear
5 a=0.01//crosssectional area of ring in m^2
```

```
6 Uo=4*(\%pi)*(10^-7)/absolute permeability
7 lf=1.25//leakage factor
8 Ur=400//permeability
9 N=175//no of turns
10 phig=0.8*(10^-3)//flux through air gap in Wb
11 Bg=phig/a//Flux density in air gap in Wb/m<sup>2</sup>
12 Hg=Bg/Uo//magnetising force in air gap in AT/m
13 Lg=0.004//length of air gap in m
14 ATg=Hg*Lg//AT required for air gap in AT
15 phii=phig*lf//flux through iron path in Wb
16 Bi=phii/a//Flux density in iron path in Wb/m^2
17 Hi=Bi/(Uo*Ur)//magnetising force in iron path in AT/
18 Li=1.5//length of iron path in m
19 ATi=Hi*Li//At required for iron path in AT
20 AT=ATi+ATg//total AT required
21 I=ATg/N//Magnetising current required in A
22 printf ('Thus the magnetising current required is \%2
     .2 f Amps', I)
```

Scilab code Exa 15.28 Finding charge and capacity

Scilab code Exa 15.29 Finding heat

```
//Finding heat
//Example 15.29(pg. 411)

clc
clear
C=2*(10^-6)//capacitance of condenser in F
V=10000//PD across condenser in Volts
E=(1/2)*C*(V^2)//energy stored in condenser in Joules
H=E/4.2//heat produced in the wire in calories
printf('Thus heat produced in the wire is %2.2 f calories', H)
```

Scilab code Exa 15.30 Finding K and flux density

```
//Finding K and flux density
//Example 15.30(pg. 411)

clc
clear
V=15*(10^3)//potential difference applied in V
A=0.02//surface area of plate in m^2
d=0.001//distance between plates in m
C=4.5*(10^-10)//Capacitance of capacitor in F
Ko=8.854*(10^-12)//constant
K=(C*d)/(Ko*A)//dielectric constant
T=C*V//charge on condenser in C
D=q/A//Electric flux density in C/m^2
printf('Thus the Charge of condenser is %e Coulomb\n',q)
```

14 printf('And the electric flux density of condenser is %e microF',D)

Scilab code Exa 15.31 Finding resistance

```
1 // Finding resistance
2 //Example 15.31(pg. 412)
3 clc
4 clear
5 m=0.6//{\rm mass} of water in kgm
6 S=4200//specific heat of water
7 T1=100//temperature in degreeC
8 T2=10//temperature in degreeC
9 t=5*60//time in sec
10 V=230//Supply voltage in Volts
11 H=m*S*(T1-T2)//Heat required to raise the temp of
     water from 0 to 100 degree. in J
12 e=0.78//efficiency of kettle
13 Ei=H/e//Energy input in Joules
14 Ei1=Ei/(100*3600)//Energy input in kWh
15 W=Ei/t//Rating of kettle in watts
16 R=(V*V)/W//Resistance of heating element in ohms
17 printf ('Thus Resistance of heating element is %2.1 f
     ohms', R)
```

Scilab code Exa 15.32 Finding time

```
1 //Finding time
2 //Example 15.32(pg. 413)
3 clc
4 clear
5 m1=120//mass of water to be heated in kg
6 m2=20//mass of copper tank in kg
```

```
7 S1=1//specific heat of water
8 S2=0.095//specific heat of copper
9 T1=10//temp in degreeC
10 T2=60//temp in degreeC
11 H=(m1*S1*(T2-T1))+(m2*S2*(T2-T1))//heat required to raise the temp of water and tank in kcal
12 H1=H*4200//heat required in Joules
13 e=0.8//thermal efficiency
14 E=H1/e//Energy input in joules
15 E1=E/(1000*3600)//energy input in kWh
16 r=3//rating of heater in kW
17 t=E1/r//time taken in hours
18 printf('Thus the time taken to raise the temp is %2 .3 f hours',t)
```

Scilab code Exa 15.33 Finding frequency

```
//Finding frequency
//Example 15.33(pg. 414)

clc
clear
fno=5*(10^-5)//specific resistance for steel in ohmom
cm
U=1//relative permeability
d=0.15//depth of penetration in cm
f=(rho*(10^9))/(U*d*d*4*(%pi^2))//frequency required
in cycles per sec
f1=f/1000//frquency in k.cycles/sec
printf('Thus the frequency required is %3.3f k.cycles/sec',f1)
```

Scilab code Exa 15.34 Current Voltage and power

```
1 //Finding current, voltage and power
2 //Example 15.34(pg. 414)
3 clc
4 clear
5 v=50*20*2//Volume of board to be heated in cm<sup>3</sup>
6 Mw=0.56//weight of wood in gm/cm<sup>3</sup>
7 m=Mw*v/1000//mass of wood in kgm
8 S=0.35//specific heat of wood
9 t=15/60//time in hrs
10 f=30*(10^6)/frequency in cycles/sec
11 t2=150, t1=30//temp in degree C
12 H=m*S*(t2-t1)//heat required to raise the temp in
      kcal
13 Hw=H*1000/860//heat required in kW
14 P=Hw/t//power required in Watts
15 e=0.5//efficiency of dielectric heating process
16 Pi=P/e//power input required in Watts
17 Ko=8.854*(10^-12)//absolute permittivity
18 K=5//relative permittivity
19 A=0.5*0.2//area in m
20 i = 0.02
21 C=Ko*K*A/i//capacitance of parallel plate capacitor
22 Xc=1/(2*%pi*f*C)//capacitive reactance in ohms
23 \cos x = 0.05
24 \text{ tanx} = 19.97
25 R=Xc*tanx//resistance
26 V=sqrt(Pi*R)//voltage in volts
27 Ic=V/Xc//current through the board in Amps
28 printf ('Thus the power required is \%2.1 f Watts\n', Pi
29 printf ('And Voltage across the board is \%3.2 f volts\
      n', V)
30 printf ('And the current through the board is \%2.3 f
      Amps', Ic)
```

Scilab code Exa 15.35 Finding efficiency

```
1 // Finding efficiency
2 //Example 15.35(pg. 416)
3 clc
4 clear
5 m=2//quantity of aluminium to be melted in kg
6 t1=15, t2=660 // temp in degree C
7 S=0.212//specific heat of aluminium
8 L=78.8//latent heat of aluminium in kcal/kg
9 H=(m*S*(t2-t1))+(m*L)//total heat required to melt
      Al in kcal
10 i=5//input to furnace in kW
11 E=i*(1000*10*60) //Energy input to furnace in watt-
      sec
12 E1=E/4180//energy input in kcal
13 e=H*100/E1//efficiency of furnace
14 printf ('Thus the efficiency of furnace is \%2.3 \,\mathrm{f}
      percent', e)
```

Scilab code Exa 15.36 Finding cost

```
1 //Finding cost
2 //Example 15.36(pg. 417)
3 clc
4 clear
5 0=5*735.5//output of motor in W
6 e=0.85//efficiency of motor
7 c=2//cost of energy per unit in Rs
8 I=0/e//input of motor in Watts
9 t=4//time in hrs
10 E=I*t/1000//energy consumed in kWh
```

```
11 C=c*E//cost of using the motor in Rs
12 printf('Thus the cost of using the motor is %2.3 f Rs
',C)
```

Scilab code Exa 15.37 Finding no of electrons

```
//Finding no of electrons
//Example 15.37(pg. 417)

clc
clear
!=2.5*(10^-3)//current in Amp
t=30*(10^-3)//time in sec
Q=I*t//charge passing through the person in Coulumbs
e=1.602*(10^-19)//charge of 1 electron in C
N=Q/e//no of electrons passing through the person
printf('Thus the no of electrons passing through the person is %e electrons',N)
```

Scilab code Exa 15.38 Finding resistance

```
//Finding resistance
//Example 15.38(pg. 417)
clc
clear
//(a) Finding resistance between 2 ends
| 1=1//length in m
| a=2.5*(10^-2)*0.05*(10^-2)//area of cross section in m^2
| rho=1.724*(10^-8)//specific resistance of copper in ohm—m
| R=rho*1/a//resistance of the strip in ohm
| //(b) Finding resistance between 2 faces
| 11=0.05*(10^-2)//length in m
```

Scilab code Exa 15.39 Resistance and cost

```
1 //Finding resistance and cost
2 //Example 15.39(pg. 418)
3 clc
4 clear
5 m=2//weight of water to be heated in kg
6 	ext{ t2=98,t1=15//temp in degreeC}
7 s=1//specific heat of water
8 V=200//voltage in volts
9 H=m*s*(t2-t1)//energy required to raise the temp of
      water in kcal
10 H1=H*4200//energy in Watt-sec or Joules
11 e=0.85//efficiency of kettle
12 E=H1/e//energy input required in watt-sec
13 E1=E/(1000*3600)//energy input in kWh
14 c=35//cost per unit in paise
15 C=c*E1//ocst of energy used in paise
16 t=10/60//time in hrs
17 W=E1*1000/t//wattage of kettle in watts
18 R=V*V/W//resistance of heating element in ohms
19 printf ('Thus the resistance of heating element is \%2
      .0 f ohms n', R)
20 printf ('And the cost of energy used is %2.0 f paisa',
```

Scilab code Exa 15.40 Finding current

```
1 //Finding current
2 //Example 15.40(pg. 418)
3 clc
4 clear
5 phi=70000/(10^8)//flux to be set up in Wb since 10^8
      lines =1Wb
6 d=0.03//diameter in m
7 a=\%pi*d*d/4//area of cross section in m^2
8 B=phi/a//flux density in Wb/m<sup>2</sup>
9 Lg=0.002//length of air gap in m
10 Ls = (\%pi * 0.2) - Lg / length of steel path
11 Uo=4*\%pi*(10^-7)/absolute permittivity
12 Ur=800//relative permitivity of steel
13 Hg=B/Uo
14 Hs=B/(Uo*Ur)
15 AT=(Hg*Lg)+(Hs*Ls)//total ampere turns required
16 \text{ N=}500//\text{ no of turns}
17 I=AT/N//exciting current in amps
18 printf ('Thus the value of exciting current is %2.3 f
     A',I)
```