

Modelagem de Casos de Uso com UML na Prática

A modelagem de **casos de uso** utilizando UML é uma técnica fundamental na engenharia de software para representar **requisitos funcionais** de forma visual e intuitiva. Este relatório aborda os conceitos básicos de atores e casos de uso, descreve os elementos e notações principais do diagrama de casos de uso, e explora como essa modelagem contribui para melhorar a comunicação entre a equipe de desenvolvimento e o cliente.

Conceito de Atores e Casos de Uso

Antes de construir o diagrama em si, é importante entender o que são *atores* e *casos de uso* no contexto de UML:

- Ator: Entidade externa ao sistema que interage com ele, assumindo um determinado papel. Um ator pode ser uma pessoa (usuário humano), uma organização ou mesmo outro sistema que se comunica com o sistema em desenvolvimento 1. Em UML, cada ator representa um papel distinto e tipicamente inicia ações ou eventos no sistema, recebendo as respostas correspondentes do mesmo 2.
- Caso de Uso: Define uma funcionalidade ou serviço específico oferecido pelo sistema que atende a uma meta do usuário. Em essência, um caso de uso descreve uma sequência de interações entre o ator e o sistema para completar um processo que tenha um resultado de valor para o ator (3) (4). Ou seja, cada caso de uso encapsula um objetivo do usuário e o conjunto de passos necessários para atingi-lo via sistema.

Em resumo, os atores representam *quem* interage com o software, enquanto os casos de uso representam *o quê* o sistema faz em resposta, do ponto de vista de quem está usando. Por exemplo, em um sistema de e-commerce, um ator poderia ser o **Cliente** e um de seus casos de uso seria **"Realizar Compra"**, uma funcionalidade que engloba desde selecionar produtos até efetuar o pagamento.

Diagrama de Casos de Uso: Elementos e Notações

O **Diagrama de Casos de Uso** é uma representação visual que mostra como os atores se relacionam com as funcionalidades do sistema. Ele apresenta uma visão de alto nível do comportamento do sistema **do ponto de vista do usuário**, descrevendo *o que* o sistema faz (suas principais funções) e **como interage com os usuários**, mas **não detalha como** essas funcionalidades são implementadas internamente ⁵. Por isso, é uma ferramenta valiosa nas primeiras etapas do projeto para capturar **escopo e requisitos** de forma simples e compartilhável. Geralmente, os diagramas de caso de uso são elaborados no início do projeto e servem como referência durante todo o desenvolvimento ⁶.

Os principais elementos e símbolos em um diagrama de caso de uso incluem atores, casos de uso e o sistema em si, além dos relacionamentos entre esses elementos:

• Ator: representado por um *boneco de palito* (figura humana estilizada). Cada ator fica **fora** dos limites do sistema, indicando que ele está externo ao software. O nome do ator (por exemplo,

"Cliente", "Administrador", "Sistema Externo") identifica o papel que ele exerce. Um mesmo ator pode interagir com vários casos de uso diferentes.

- Caso de uso: representado por uma elipse (oval), geralmente contendo uma breve descrição textual da funcionalidade (de preferência um verbo + substantivo, por exemplo "Emitir Relatório", "Fazer Login" 7). Os casos de uso ficam dentro dos limites do sistema, indicando que são funcionalidades oferecidas pelo software. Cada caso de uso deve produzir um resultado observável e útil para o ator associado 3 .
- **Sistema:** normalmente indicado por um **retângulo** que delimita o escopo do sistema no diagrama. Tudo que está dentro do retângulo faz parte do sistema; elementos (atores ou casos de uso) posicionados fora dele não pertencem ao escopo do sistema modelado 8. O retângulo costuma ter o nome do sistema escrito no topo para deixar claro qual sistema está sendo representado.
- **Associação (comunicação):** linha que conecta um ator a um caso de uso, representando que o ator participa ou interage com aquele caso de uso. Essa ligação indica que há troca de informação entre o ator e o caso de uso (por exemplo, o ator inicia o caso de uso ou o caso de uso fornece algum resultado ao ator) ⁹. Em suma, a linha de associação mostra quais atores estão ligados a quais funcionalidades.

Além das associações simples entre atores e casos de uso, a UML define **relacionamentos especiais** entre casos de uso para capturar dependências, reutilização de passos e variações de comportamento. Os três principais relacionamentos desse tipo são: **Inclusão**, **Extensão** e **Generalização** 10 :

- Inclusão (<<include>>): Indica que um caso de uso *incorpora* explicitamente o comportamento de outro caso de uso. É usada para fatorar trechos comuns ou obrigatórios de fluxo de eventos que são compartilhados entre múltiplos casos de uso. Quando um caso de uso *A* inclui *B*, significa que *A* em algum ponto executa o caso de uso *B*. Por exemplo, no caso de uso "Comprar Item", o passo de pagamento poderia ser extraído como um caso de uso separado "Efetuar Pagamento", que o caso de uso principal *inclui* durante sua execução 11 . O relacionamento de inclusão é representado por uma seta tracejada com o rótulo <<iinclude>> apontando para o caso de uso incluído 12 .
- Extensão (<<extend>>): Indica que um caso de uso estende o comportamento de outro caso de uso principal, geralmente para representar uma variação opcional ou cenário alternativo. O caso de uso base funciona por si só, mas em determinadas condições extras ele poderá acionar o caso de uso de extensão. Em outras palavras, a extensão adiciona passos adicionais ao fluxo básico somente quando certa condição é atendida 13 . Por exemplo, poderíamos ter o caso base "Realizar Venda" e um caso que o estende "Aplicar Desconto Promocional", que ocorre apenas se houver um cupom de desconto válido. Assim como include, a extensão é denotada por uma seta tracejada rotulada <<extend>> ligada do caso de uso opcional ao caso base 14 .
- Generalização: Representa uma relação herança/especialização entre casos de uso ou entre atores. No caso de casos de uso, significa que um caso de uso genérico possui versões especializadas que herdam seu comportamento básico e podem acrescentar ou modificar algo. O caso de uso geral abstrai as partes comuns, e os casos de uso específicos detalham particularidades ¹⁵. Por exemplo, poderíamos ter um caso de uso geral "Pagamento" com dois casos especializados "Pagamento com Cartão" e "Pagamento em Dinheiro", cada um adicionando detalhes próprios, mas ambos compartilhando os passos básicos do pagamento. Já

a **generalização de atores** indica que um ator mais específico herda o papel de um ator mais geral ¹⁶. Por exemplo, um ator **"Administrador"** pode ser uma especialização de **"Usuário"** – o administrador consegue realizar todos os casos de uso que um usuário comum realiza (herdando esse papel) *e* possui casos de uso adicionais exclusivos.

Exemplo de diagrama de caso de uso. O diagrama acima ilustra um sistema simplificado de **reserva de passagens de trem**. Nele, vemos múltiplos atores externos (por exemplo, o *Passageiro* e um *Sistema de Pagamento* externo) interagindo com casos de uso do sistema de reservas. O ator Passageiro está associado a casos de uso como **Reservar Passagem** e **Cancelar Passagem**, representando funcionalidades que ele pode acionar. Repare que o caso de uso **Reservar Passagem** inclui sub-funções auxiliares, como **Preencher Dados** do passageiro e **Efetuar Pagamento**, através de relacionamentos <<iinclude>> (ou seja, essas etapas fazem parte do fluxo sempre que uma reserva é realizada). Já o cancelamento de passagem aciona o reembolso ao cliente, modelado como o caso de uso **Reembolsar Valor** – uma funcionalidade que é **incluída** no fluxo de cancelar passagem quando aplicável. Esse exemplo demonstra, na prática, o uso de vários atores e diferentes relacionamentos (associações e inclusões) para representar requisitos do mundo real em um diagrama de casos de uso UML.

Comunicação entre Equipe e Cliente

Um dos maiores benefícios de modelar casos de uso é servir como uma **ponte de comunicação** entre os clientes (ou usuários finais) e a equipe técnica de desenvolvimento. A natureza narrativa e visual dos casos de uso ajuda a garantir que todos tenham **entendimento alinhado** sobre o que o sistema deve fazer. De fato, a construção dos casos de uso normalmente ocorre de forma iterativa, envolvendo discussões entre o cliente e os desenvolvedores até se chegar a uma especificação de sistema da qual **todos estão de acordo** 17.

Por utilizarem uma linguagem simples e focada no domínio do usuário (evitando detalhes técnicos), os casos de uso podem ser facilmente compreendidos por stakeholders não técnicos. Isso significa que o **cliente consegue ler e entender** os diagramas e descrições de casos de uso sem necessidade de formação em TI ¹⁸. Assim, ele pode validar se as funcionalidades capturadas correspondem realmente aos requisitos desejados. Essa validação antecipada, em conjunto com a equipe, ajuda a evitar divergências de interpretação e reduz falhas de entendimento no levantamento de requisitos.

Em outras palavras, a modelagem de casos de uso funciona como um **contrato** entre os usuários/ clientes e a equipe de desenvolvimento sobre as funcionalidades do sistema ¹⁹. Cada caso de uso acordado representa um serviço que o sistema deve fornecer, e todos (tanto cliente quanto desenvolvedores) têm uma referência visual e textual do escopo funcional combinado. Dessa forma, além de documentar requisitos, os casos de uso fomentam uma comunicação clara: o cliente confirma que a equipe entendeu corretamente suas necessidades, e a equipe confirma junto ao cliente que as funcionalidades modeladas cobrem os cenários esperados. Este alinhamento contínuo facilita a validação de funcionalidades ao longo do projeto e aumenta a chance de sucesso do produto final, atendendo às expectativas do cliente.

Referências: As informações apresentadas neste relatório foram compiladas de materiais confiáveis de Engenharia de Software e UML, incluindo documentações da IBM ²⁰ ⁶, tutoriais especializados (Lucidchart ²¹ ⁹) e literatura acadêmica e de treinamento na área ⁴ ⁷ ¹¹, entre outras fontes citadas ao longo do texto. Essas referências cobrem definições formais de casos de uso e atores, recomendações de notação UML e boas práticas de comunicação de requisitos. Cada citação indicada (por exemplo, ⁴) corresponde à localização da informação na fonte consultada, permitindo verificar e aprofundar cada tópico conforme necessário.

1 8 9 10 21 Diagrama de caso de uso UML: O que é, como fazer e exemplos | Lucidchart https://www.lucidchart.com/pages/pt/diagrama-de-caso-de-uso-uml

2 4 7 11 12 13 15 16 17 19 Grátis: Modelando Sistemas em UML - Material Claro e Objetivo em PDF para Estudo Rápido

https://www.passeidireto.com/arquivo/35755194/modelando-sistemas-em-uml

3 6 20 Diagramas de Caso de Uso na Modelagem UML

https://www.ibm.com/docs/pt-br/rsm/7.5.0?topic=diagrams-use-case

5 14 18 O que é UML e Diagramas de Caso de Uso: Introdução Prática à UML https://fabiojoaoanastacio.wixsite.com/minhasaventuras/post/o-que-%C3%A9-uml-e-diagramas-de-caso-de-uso-introdu%C3%A7%C3%A3o-pr%C3%A1tica-%C3%A0-uml