III Combinatorics

Ishan Nath, Michaelmas 2024

Based on Lectures by Prof. Imre Leader

October 24, 2024

Page 1 CONTENTS

Contents

0	\mathbf{Intr}	oduction	2
1	1.1 1.2	Systems Shadows	9
In	dex	-	6

0 Introduction

We have the following list of things.

- 1: Set systems.
- 2: Isoperimetric inequalities.
- 3: Intersection families.

Books include 'Combinatorics' by Bollobás, and 'Combinatorics of Finite Sets', by Anderson.

1 Set Systems

Let X be a set. A set system on X, also called a family of subsets of X, is a family $A \subseteq \mathcal{P}(X)$. For example,

$$X^{(r)} = \{ A \subseteq X \mid |A| = r \}.$$

Usually, $X = [n] = \{1, 2, ..., n\}$, so $|X^{(r)}| = \binom{n}{r}$. Thus,

$$[4]^{(2)} = \{12, 13, 14, 23, 24, 34\}.$$

We make $\mathcal{P}(X)$ into a graph by joining A and B if $|A\triangle B| = 1$. This is the discrete cube Q_n .

Literally just a cube.

Alternatively, can view Q_n as an n-dimensional unit cube $\{0,1\}^n$, by identifying e.g. $\{1,3\}$ with the binary string $101000\cdots$.

Say $\mathcal{A} \subseteq \mathcal{P}(X)$ is a *chain* if, for all $A, B \in \mathcal{A}$, $A \subseteq B$ or $B \subseteq A$. For example,

$$\mathcal{A} = \{23, 12357, 1235, 123567\}$$

is a chain.

Say \mathcal{A} is an *antichain* if, for all $A, B \in \mathcal{A}$ and $A \neq B$, we have $A \nsubseteq B$. For example, $\mathcal{A} = \{23, 137\}$ is an antichain.

How large can a chain be? We can achieve |A| = n + 1 by taking

$$\mathcal{A} = \{\emptyset, 1, 12, 123, \dots, [n]\}$$

Cannot beat this as each $0 \le r \le n$, \mathcal{A} can contain at most one r-set (a member of $X^{(r)}$).

How large can an antichain be? We can achieve $|\mathcal{A}| = n$, e.g. $\mathcal{A} = \{1, 2, ..., n\}$. More generally, we can take $\mathcal{A} = X^{(r)}$, and the best is when $r = \lfloor n/2 \rfloor$.

Theorem 1.1 (Sperner's Lemma). Let $A \subseteq \mathcal{P}(X)$ be an antichain. Then,

$$|\mathcal{A}| \le \binom{n}{\lfloor n/2 \rfloor}.$$

The idea is follows: we know that a chain meets a layer in at most one point, since a layer is an antichain. If we decompose the cube into chains, we have at most one element of an antichain in each chain.

Proof: We will decompose $\mathcal{P}(X)$ into $\binom{n}{\lfloor n/2 \rfloor}$ chains, then we are done. To achieve this, it is sufficient to find:

- (i) For each r < n/2, a matching from $X^{(r)}$ to $X^{(r+1)}$.
- (ii) For each $r \ge n/2$, a matching from $X^{(r)}$ to $X^{(r-1)}$.

Then we put these together to form our chains; each passing through $X^{(\lfloor n/2 \rfloor)}$.

By taking complements, it is enough to prove (i).

Let G be the bipartite subgraph of Q_n spanned by $X^{(r)} \cup X^{(r+1)}$: we seek a matching from $X^{(r)}$ to $X^{(r+1)}$.

For any $S \subseteq X^{(r)}$, the number of edges from S to $\Gamma(S)$ is |S|(n-r), since each edge in S has n-r edges.

Moreover there are at most $|\Gamma(S)|(r+1)$ edges, counting from $\Gamma(S)$. Therefore,

$$|\Gamma(S)| \ge \frac{|S|(n-r)}{r+1} \ge |S|.$$

So we are done, by Hall's matching theorem.

Page 5 1 SET SYSTEMS

When do we have equality in Sperner's? The above proof tells us nothing.

Our aim is to prove the following: if A is an antichain, then

$$\sum_{r=0}^{n} \frac{|\mathcal{A} \cap X^{(r)}|}{\binom{n}{r}} \le 1.$$

In other words, the percentages of each layer occupied add up to at most 1. This trivially implies Sperner's.

1.1 Shadows

For $\mathcal{A} \subseteq X^{(r)}$, the shadow of \mathcal{A} is $\partial \mathcal{A} = \partial^{-} \mathcal{A} \subseteq X^{(r-1)}$ defined by

$$\partial \mathcal{A} = \{ B \in X^{(r-1)} \mid B \subseteq A \text{ for some } A \in \mathcal{A} \}.$$

For example, if $A = \{123, 124, 134, 137\}$, then

$$\partial \mathcal{A} = \{12, 13, 23, 14, 24, 34, 17, 37\}.$$

Proposition 1.1 (Local LYM). Let $A \subseteq X^{(r)}$. Then,

$$\frac{|\partial \mathcal{A}|}{\binom{n}{r-1}} \ge \frac{|\mathcal{A}|}{\binom{n}{r}}.$$

So, the fraction of the local occupancy by $\partial \mathcal{A}$, is at least the occupancy by \mathcal{A} .

Remark. LYM = Lubell, Meshalkin, Yamamoto.

Proof: We look at the number of \mathcal{A} to $\partial \mathcal{A}$ edges in the bipartite graph Q_n ; counting from above, there are exactly $|\mathcal{A}|r$.

However counting from below, it is at most $|\partial \mathcal{A}|(n-r+1)$. So,

$$\frac{|\partial \mathcal{A}|}{|\mathcal{A}|} \ge \frac{r}{n-r+1} = \frac{\binom{n}{r-1}}{\binom{n}{r}}.$$

So we are done.

Remark. When do we have equality? We lose equality if an element in $\partial \mathcal{A}$ is connected to an element not in \mathcal{A} , so for this not to occur, we need that for all $A \in \mathcal{A}$, and $i \in A$, $j \notin \mathcal{A}$, that $A - \{i\} \cup \{j\} \in \mathcal{A}$.

But this is very strong, and in fact either $\mathcal{A} = \emptyset$ or $X^{(r)}$.

Theorem 1.2 (LYM Inequality). Let $A \subseteq \mathcal{P}(X)$ be an antichain. Then,

$$\sum_{r=0}^{n} \frac{|\mathcal{A} \cap X^{(r)}|}{\binom{n}{r}} \le 1.$$

As a bit of notation, we write A_r for $A \cap X^{(r)}$.

We will look at two proofs. The first idea is to bubble down with local LYM.

Proof: Obviously

$$\frac{|\mathcal{A}_n|}{\binom{n}{n}} \le 1.$$

Now, ∂A_n and A_{n-1} are disjoint, as A is an antichain. So,

$$\frac{|\partial \mathcal{A}_n|}{\binom{n}{n-1}} + \frac{|\mathcal{A}_{n-1}|}{\binom{n}{n-1}} = \frac{|\partial \mathcal{A}_n \cup \mathcal{A}_{n-1}|}{\binom{n}{n-1}} \le 1,$$

whence we get

$$\frac{|\mathcal{A}_n|}{\binom{n}{n}} + \frac{|\mathcal{A}_{n-1}|}{\binom{n}{n-1}} \le 1,$$

by local LYM. We now continue again. Notice $\partial(\partial \mathcal{A}_n \cup \mathcal{A}_{n-1})$ is disjoint from \mathcal{A}_{n-2} , we find

$$\frac{\left|\partial(\partial\mathcal{A}_n\cup\mathcal{A}_{n-1})\right|}{\binom{n}{n-2}}+\frac{\left|\mathcal{A}_{n-2}\right|}{\binom{n}{n-2}}\leq 1,$$

whence

$$\frac{\left|\partial \mathcal{A}_n \cup \mathcal{A}_{n-1}\right|}{\binom{n}{n-1}} + \frac{\left|\mathcal{A}_{n-2}\right|}{\binom{n}{n-2}} \le 1.$$

We can now continue inductively.

When do we have equality? We must have had equality in each use of local LYM. Hence equality in LYM needs that the maximum r with $A_r \neq \emptyset$, then $A_r = X^{(r)}$.

Hence equality in Sperner needs either $\mathcal{A} = X^{(n/2)}$, if n is even, or $\mathcal{A} = X^{(\lfloor n/2 \rfloor)}$ or $X^{(\lceil n/2 \rceil)}$, for n odd.

Now time for another proof.

Page 8 1 SET SYSTEMS

Proof: Choose uniformly at random a maximal chain C. For any r-set A, note that

$$\mathbb{P}(A \in \mathcal{C}) = \frac{1}{\binom{n}{r}}.$$

So for our antichain \mathcal{A} ,

$$\mathbb{P}(\mathcal{C} \text{ meets } \mathcal{A}_r) = \frac{|\mathcal{A}_r|}{\binom{n}{r}},$$

as these events are disjoint. Hence, since \mathcal{C} can meet \mathcal{A} at one point at most,

$$\mathbb{P}(\mathcal{C} \text{ meets } \mathcal{A}) = \sum_{r=0}^{n} \frac{|\mathcal{A}_r|}{\binom{n}{r}},$$

from which we get

$$\sum_{r=0}^{n} \frac{|\mathcal{A}_r|}{\binom{n}{r}} \le 1.$$

Equivalently, the number of maximal chains is n!, and the number through any fixed r-set is r!(n-r)!, so

$$\sum_{r} |\mathcal{A}_r| r! (n-r)! \le n!.$$

We now return to shadows. For $\mathcal{A} \subseteq X^{(r)}$, we have

$$|\partial \mathcal{A}| \ge |\mathcal{A}| \frac{r}{n-r+1}.$$

We know that equality is rare: it only happens for $\mathcal{A} = \emptyset$, or $X^{(r)}$. What happens in between?

In other words, given $|\mathcal{A}|$, how should we choose $\mathcal{A} \subseteq X^{(r)}$ to minimise $|\partial \mathcal{A}|$?

It is believable that if $|\mathcal{A}| = \binom{k}{r}$, then we should take $\mathcal{A} = [k]^{(r)}$. In between adjacent binomials, it is believable that we should take $[k]^{(r)}$, plus some r-sets in $[k+1]^{(r)}$.

Example 1.1.

For $\mathcal{A} \subseteq X^{(3)}$ with

$$|\mathcal{A}| = \binom{8}{3} + \binom{4}{2},$$

we could take

$$\mathcal{A} = [8]^3 \cup \{9 \cup B \mid B \in [4]^{(2)}\}.$$

In some ways our set A should be of minimal 'order', under some ordering on $X^{(r)}$.

1.2 Total Orders

Let A, B be distinct r-sets, and say $A = a_1 \dots a_r, B = b_1 \dots b_r$, where $a_1 < \dots < a_r, b_1 < \dots < a_r$.

We say that A < B in the *lexographic* or *lex* ordering if for some j we have $a_i = b_i$ for all i < j, and $a_j < b_j$. So lex cares about small elements.

Example 1.2.

Lex on $[4]^{(2)}$ orders the elements as 12, 13, 14, 23, 24, 34.

Lex on $[6]^{(3)}$ orders the elements as

$$123,124,125,126,134,135,136,145,146,156,$$
 $234,235,236,245,246,256,345,346,356,456.$

We say that A < B in the *colexographic* or *colex* ordering if for some j, we have $a_i = b_i$ for all i > j, and $a_j < b_j$. So colex cares about big elements.

Example 1.3.

Colex on $[4]^{(2)}$ orders the elements as 12, 13, 23, 14, 24, 34.

Colex on $[6]^{(3)}$ orders the elements as

$$123,124,134,234,125,135,235,145,245,345,$$
 $126,136,236,146,246,346,156,256,356,456.$

Note that in colex, $[n-1]^{(r)}$ is an initial segment of $[n]^{(r)}$. This is not true in lex. This allows us to view colex as an enumeration of $\mathbb{N}^{(r)}$. Remark. A < B in colex $\iff A^c < B^c$ in lex, with ground set ordering ordering reversed.

Colex in particular may be the ordering we want to solve the above problem, minimizing $|\partial \mathcal{A}|$. Our aim will then be to show that initial segments of colex are the best for ∂ , i.e. if $\mathcal{A} \subseteq X^{(r)}$ and $\mathcal{C} \subseteq X^{(r)}$ is the initial segment of colex with $|\mathcal{C}| = |\mathcal{A}|$, then

$$|\partial \mathcal{C}| < |\partial \mathcal{A}|$$
.

In particular,

$$|\mathcal{A}| = \binom{k}{r} \implies |\partial \mathcal{A}| = \binom{k}{r-1}.$$

1.3 Compression

The idea is to try to transform $A \subseteq X^{(r)}$ into some $A \subseteq X^{(r)}$ such that:

- (i) $|\mathcal{A}'| = |\mathcal{A}|$.
- (ii) $|\partial \mathcal{A}'| \leq |\partial \mathcal{A}|$.
- (iii) \mathcal{A}' looks more like \mathcal{C} than \mathcal{A} did.

Ideally, we would like a family of such 'compressions'

$$\mathcal{A} \to \mathcal{A}' \to \cdots \to \mathcal{B}$$
.

such that either $\mathcal{B} = \mathcal{C}$, or \mathcal{B} is so similar to \mathcal{C} that we can directly check that

$$|\partial \mathcal{B}| \geq |\partial \mathcal{C}|$$
.

The fact that colex prefers 1 to 2 inspires the following: fix $1 \le i < j \le n$. The ij-compression C_{ij} is defined as follows:

For $A \in X^{(r)}$, set

$$C_{ij}(A) = \begin{cases} A \cup i - j & \text{if } j \in A, i \notin A, \\ A & \text{else.} \end{cases}$$

For $\mathcal{A} \subseteq X^{(r)}$, set

$$C_{ij}(\mathcal{A}) = \{C_{ij}(A) \mid A \in \mathcal{A}\} \cup \{A \in \mathcal{A} \mid C_{ij}(A) \in \mathcal{A}\}.$$

So $C_{ij}(\mathcal{A}) \subseteq X^{(r)}$, and $|C_{ij}(\mathcal{A})| = |\mathcal{A}|$. Say \mathcal{A} is *ij*-compressed if $C_{ij}(\mathcal{A}) = \mathcal{A}$.

Lemma 1.1. Let $A \subseteq X^{(r)}$, and $1 \le i < j \le n$. Then

$$|\partial C_{ij}(\mathcal{A})| \leq |\partial \mathcal{A}|.$$

Page 11 1 SET SYSTEMS

Proof: Write \mathcal{A}' for $C_{ij}(\mathcal{A})$, and let $B \in \partial \mathcal{A}' - \partial \mathcal{A}$. We will show that $i \in B, j \notin B$, and $B \cup j - i \in \partial \mathcal{A} - \partial \mathcal{A}'$, which will show that we are done.

We have that $B \cup x \in \mathcal{A}'$, for some x, with $B \cup x \notin \mathcal{A}$. So, $i \in B \cup x$, $j \notin B \cup x$, and $(B \cup x) \cup j - i \in \mathcal{A}$.

We cannot have x = i, otherwise $(B \cup x) \cup j - i = B \cup j$, giving $B \in \partial \mathcal{A}$. So $i \in B$, and $j \notin B$.

Also, notice $B \cup j - i \in \partial A$, since $(B \cup x) \cup j - i \in A$.

Suppose $B \cup j - i \in \partial \mathcal{A}'$, so $(B \cup j - i) \cup y \in \mathcal{A}'$ for some y. We cannot have y = i, else $B \cup j \in \mathcal{A}'$, so $B \cup j \in \mathcal{A}$, contradicting $B \notin \partial \mathcal{A}$. So $j \in (B \cup j - i) \cup y$, and $i \notin (B \cup j - i) \cup y$.

Whence both $(B \cup j - i) \cup y$ and $B \cup y$ belong to \mathcal{A} , by definition of \mathcal{A}' , contradicting $B \notin \partial \mathcal{A}$.

Remark. We have actually shown that $\partial C_{ij}(\mathcal{A}) \subseteq C_{ij}\partial \mathcal{A}$.

Say $\mathcal{A} \subseteq X^{(r)}$ is left-compressed if $C_{ij}(\mathcal{A}) = \mathcal{A}$ for all $i \leq j$.

Corollary 1.1. Let $A \subseteq X^{(r)}$. Then there exists a left-compressed $B \subseteq X^{(r)}$ with |B| = |A|, and $|\partial B| \le |\partial A|$.

Proof: Define a sequence A_0, A_1, \ldots as follows. Let $A_0 = A$.

Having defined A_0, \ldots, A_k , if A_k is left-compressed then we can stop the sequence with A_k .

If not, choose i < j such that A_j is not ij-compressed, and set $A_{k+1} = C_{ij}(A_k)$.

This must terminate, as for example

$$\sum_{A \in \mathcal{A}_k} \sum_{i \in A} i$$

is strictly decreasing in k.

Then the final term $\mathcal{B} = \mathcal{A}_k$ satisfies that $|\mathcal{B}| = |\mathcal{A}|$, and $|\partial \mathcal{B}| \leq |\partial \mathcal{A}|$, by the previous lemma.

Remark.

1. Similarly we may choose all $\mathcal{B} \subseteq X^{(r)}$ with $|\mathcal{B}| = |\mathcal{A}|$, and $|\partial \mathcal{B}| \leq |\partial \mathcal{A}|$, and

then choose one with smallest sum of elements.

- 2. We can choose the order of the C_{ij} so that no C_{ij} is applied twice.
- 3. Any initial segment of colex is left-compressed. The converse is false, for example lex: {123, 124, 125, 126}.

This is not exactly what we want; we want to show that this is colex.

The fact that colex prefers 23 to 14 inspires the following. Let $U, V \subseteq X$ with $|U| = |V|, U \cap V = \emptyset$, and $\max V > \max U$.

Define the UV-compression as follows: for $A \subseteq X$,

$$C_{UV}(A) = \begin{cases} A \cup U - V & \text{if } V \subseteq A, U \cap A = \emptyset, \\ A & \text{otherwise.} \end{cases}$$

For $\mathcal{A} \subseteq X^{(r)}$, set

$$C_{UV}(\mathcal{A}) = \{C_{UV}(A) \mid A \in \mathcal{A}\} \cup \{A \in \mathcal{A} \mid C_{UV}(A) \in \mathcal{A}\}.$$

For example if $\mathcal{A} = \{123, 124, 147, 237, 238, 149\}$, then

$$C_{23.14}(\mathcal{A}) = \{123, 124, 147, 237, 238, 239\}.$$

So $C_{UV}(\mathcal{A}) \subseteq X^{(r)}$, and $|C_{UV}(\mathcal{A})| = |\mathcal{A}|$. Say \mathcal{A} is UV-compressed if $C_{UV}(\mathcal{A}) = \mathcal{A}$.

Sadly, we can have $|\partial C_{UV}(\mathcal{A})| > |\partial \mathcal{A}|$. For example if $\mathcal{A} = \{147, 137\}$, then $|\partial \mathcal{A}| = 5$, but $C_{23,14}(\mathcal{A}) = \{237, 147\}$ has $|\partial C_{23,14}(\mathcal{A})| = 6$.

We can prove the following at least:

Lemma 1.2. Let $A \subseteq X^{(r)}$ be UV-compressed for all U, V with |U| = |V|, $U \cap V = \emptyset$ and $\max V > \max U$. Then A is an initial segment of colex.

Proof: Suppose not. Then there exists $A, B \in X^{(r)}$ with B < A in colex, but $A \in \mathcal{A}, B \notin \mathcal{A}$.

Set $V = A \setminus B$, $U = B \setminus A$. Then clearly |V| = |U|, and U, V are disjoint, with $\max V > \max U$ since B < A. So, $C_{UV}(A) = B$, contradicting \mathcal{A} UV-compressed.

But we can show the following:

Lemma 1.3. Let $U, V \subseteq X$ with |U| = |V|, $U \cap V = \emptyset$, and $\max U < \max V$. For $A \subseteq X^{(r)}$, suppose that for all u, there exists v such that A is (U - u, V - v)-compressed. Then,

$$|\partial C_{UV}(\mathcal{A})| \leq |\partial \mathcal{A}|.$$

Page 13 1 SET SYSTEMS

Proof: Let $\mathcal{A}' = C_{UV}(\mathcal{A})$. For $B \in \partial \mathcal{A}' - \partial \mathcal{A}$, we will show that $U \subseteq B$, $V \cap B = \emptyset$, and $B \cup V - U \in \partial \mathcal{A} - \partial \mathcal{A}'$.

We have that $B \cup x \in \mathcal{A}'$, and $B \cup x \notin \mathcal{A}$. So $U \subseteq (B \cup x)$, $V \cap (B \cup x) = \emptyset$, and $(B \cup x) \cup V - U \in \mathcal{A}$, by the definition of C_{UV} .

If $x \in U$, then there exists $y \in U$ such that \mathcal{A} is (U - x, V - y)-compressed, by assumption. So from $(B \cup x) \cup V - U \in \mathcal{A}$, we have $B \cup y \in \mathcal{A}$, contradicting $B \notin \partial \mathcal{A}$.

Thus $x \notin U$, and so $U \subseteq B$, $V \cap B = \emptyset$.

We certainly have $B \cup V - U \in \partial A$, as $(B \cup x) \cup V - U \in A$, so we just need to show that $B \cup V - U \notin \partial A'$.

Suppose that $B \cup V - U \in \partial \mathcal{A}'$, so that $(B \cup V - U) \cup w \in \mathcal{A}'$, for some w.

If $w \in U$, then we know that \mathcal{A} is (U - w, V - z)-compressed for some $z \in V$, so $B \cup z \in \mathcal{A}$, contradicting $B \notin \partial \mathcal{A}$.

If $w \notin U$, we have that $V \subseteq (B \cup V - U) \cup w$, and $U \cap ((B \cup V - U) \cup w) = \emptyset$, so by definition of C_{UV} , we must have that both $(B \cup V - U) \cup w$ and $B \cup w \in \mathcal{A}$, contradicting $B \notin \partial \mathcal{A}$.

Theorem 1.3 (Kruskal-Katona). Let $A \subseteq X^{(r)}$, where $1 \le r \le n$, and let C be the initial sequence of colex on $X^{(r)}$, with |C| = |A|. Then,

$$|\partial \mathcal{C}| \leq |\partial \mathcal{A}|.$$

In particular, if $|\mathcal{A}| = \binom{k}{r}$, then

$$|\partial \mathcal{A}| \ge \binom{k}{r-1}.$$

Proof: Let

$$P = \{(U, V) \mid |U| = |V| > 0, U \cap V = \emptyset, \max U < \max V\} \cup \{(\emptyset, \emptyset)\}.$$

Define sets A_0, A_1, \ldots of sets systems in X as follows: set $A_0 = A$.

Having defined A_0, \ldots, A_k , if A_k is (U, V)-compressed for all $(U, V) \in P$, then we are done.

Otherwise, we have $(U, V) \in P$ with |U| = |V| > 0 and disjoint, such that A_k is not (U, V)-compressed. Choose (U, V) minimal.

Page 14 1 SET SYSTEMS

Note that for all $u \in U$, there is $v \in V$ such that $(U - u, V - v) \in P$, namely take $v = \min V$. So by the previous lemma, we get

$$|\partial C_{UV}(\mathcal{A}_k)| = |\partial \mathcal{A}_k|.$$

Set $A_{k+1} = C_{UV}(A_k)$, and continue. This must terminate, as

$$\sum_{A \in \mathcal{A}_k} \sum_{i \in A} 2^i$$

is strictly decreasing in k. Hence the final term \mathcal{B} satisfies $|\mathcal{B}| = |\mathcal{A}|$, $|\partial \mathcal{B}| \leq |\partial \mathcal{A}|$ and is (U, V)-compressed for all $(U, V) \in P$.

So, $\mathcal{B} = \mathcal{C}$ by lemma 1.2.

Remark.

1. Equivalently, if we write

$$|\mathcal{A}| = {k_r \choose r} + {k_{r-1} \choose r-1} + \dots + {k_s \choose s},$$

where $k_r > k_{r-1} > \cdots > k_s$, and $s \ge 1$, then

$$|\partial \mathcal{A}| \ge {k_r \choose r-1} + {k_{r-1} \choose r-2} + \dots + {k_s \choose s-1}.$$

- 2. When do we have equality in Kruskal-Katona? We can check that if $|\mathcal{A}| = \binom{k}{r}$ and $|\partial \mathcal{A}| = \binom{k}{r-1}$, then $\mathcal{A} = Y^{(r)}$ for some $Y \subseteq X$ with |Y| = k.
- 3. However, it is not true in general that if $|\partial \mathcal{A}| = |\partial \mathcal{C}|$ then \mathcal{A} is isomorphic to \mathcal{C} (isomorphism means the sets are equal up to a permutation of the ground set X).

For $A \subseteq X^{(r)}$, $0 \le r \le n$, the upper shadow of A is

$$\partial^+ \mathcal{A} = \{ A \cup x \mid A \in \mathcal{A}, x \notin A \} \subseteq X^{(r+1)}.$$

Corollary 1.2. Let $A \subseteq X^{(r)}$, where $0 \le r \le n$, and let C be the initial segment of lex on $X^{(r)}$ with |C| = |A|. Then,

$$|\partial^+ \mathcal{A}| \ge |\partial^+ \mathcal{C}|.$$

Page 15 1 SET SYSTEMS

Proof: From Kruskal-Katona, note A < B in colex $\iff A^c < B^c$ in lex, with the ground set order reversed.

From the fact that the shadow of an initial segment is an initial segment, we get the following:

Corollary 1.3. Let $A \subseteq X^{(r)}$, and C the initial segment of colex on $X^{(r)}$ with |C| = |A|. Then,

$$|\partial^t \mathcal{C}| < |\partial^t \mathcal{A}|,$$

for all $1 \le t \le r$.

Proof: If $|\partial^t \mathcal{C}| \leq |\partial^t \mathcal{A}|$, then $|\partial^{t+1} \mathcal{C}| \leq |\partial^{t+1} \mathcal{A}|$ by Kruskal-Katona, since $\partial^t \mathcal{C}$ is an initial segment of colex.

So, if $|\mathcal{A}| = \binom{k}{r}$, then

$$|\partial^t \mathcal{A}| \ge \binom{k}{r-t}.$$

Index

antichain, 4

chain, 3 colexographic ordering, 9 compression, 10, 12

discrete cube, 3

left-compressed, 11 lexographic ordering, 9

set system, 3 shadow, 6

upper shadow, 14