$11a_{50} (K11a_{50})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -2u^{46} + 9u^{45} + \dots + 4b + 5, -u^{46} + 18u^{45} + \dots + 4a - 25, u^{47} - 4u^{46} + \dots + 6u - 1 \rangle$$

 $I_2^u = \langle -au + b, a^3 - a^2u - a^2 + 2au + 1, u^2 + u + 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 53 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -2u^{46} + 9u^{45} + \dots + 4b + 5, -u^{46} + 18u^{45} + \dots + 4a - 25, u^{47} - 4u^{46} + \dots + 6u - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{4}u^{46} - \frac{9}{2}u^{45} + \dots - 17u + \frac{25}{4} \\ \frac{1}{2}u^{46} - \frac{9}{4}u^{45} + \dots + \frac{9}{4}u - \frac{5}{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{7}{4}u^{46} - \frac{5}{2}u^{45} + \dots + 2u + \frac{7}{4} \\ -\frac{9}{2}u^{46} + \frac{41}{4}u^{45} + \dots + \frac{35}{4}u - \frac{7}{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{4}u^{46} + \frac{3}{4}u^{45} + \dots + \frac{13}{4}u + 2 \\ \frac{1}{4}u^{46} - u^{45} + \dots - \frac{5}{2}u + \frac{1}{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -2u^{46} + \frac{15}{2}u^{45} + \dots + 20u + 1 \\ -\frac{5}{4}u^{46} + \frac{13}{4}u^{45} + \dots - \frac{11}{4}u + \frac{1}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{7}{4}u^{46} + \frac{33}{4}u^{45} + \dots + \frac{107}{4}u - \frac{1}{2} \\ -\frac{5}{4}u^{46} + \frac{9}{4}u^{45} + \dots - \frac{31}{4}u + \frac{3}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{7}{4}u^{46} + \frac{33}{4}u^{45} + \dots + \frac{107}{4}u - \frac{1}{2} \\ -\frac{5}{4}u^{46} + \frac{9}{4}u^{45} + \dots - \frac{31}{4}u + \frac{3}{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-9u^{46} + \frac{33}{2}u^{45} + \dots 27u 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{47} + 4u^{46} + \dots + 6u + 1$
c_2, c_5	$u^{47} + 14u^{46} + \dots + 38u - 1$
c_3, c_7	$u^{47} - u^{46} + \dots + 96u + 64$
c_6, c_9	$u^{47} + 3u^{46} + \dots - u + 1$
c_8, c_{10}, c_{11}	$u^{47} + 11u^{46} + \dots + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{47} + 14y^{46} + \dots + 38y - 1$
c_2, c_5	$y^{47} + 42y^{46} + \dots + 2346y - 1$
c_{3}, c_{7}	$y^{47} + 35y^{46} + \dots - 23552y - 4096$
c_{6}, c_{9}	$y^{47} - 11y^{46} + \dots + y - 1$
c_8, c_{10}, c_{11}	$y^{47} + 53y^{46} + \dots + 41y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.663428 + 0.780790I		
a = 1.00646 - 1.05901I	1.047100 - 0.807076I	-4.48198 - 0.15159I
b = -0.205400 + 0.577345I		
u = -0.663428 - 0.780790I		
a = 1.00646 + 1.05901I	1.047100 + 0.807076I	-4.48198 + 0.15159I
b = -0.205400 - 0.577345I		
u = -0.199822 + 1.009780I		
a = -0.834043 - 0.291155I	-2.01497 - 4.25844I	-10.22284 + 8.38293I
b = -0.625995 - 0.626906I		
u = -0.199822 - 1.009780I		
a = -0.834043 + 0.291155I	-2.01497 + 4.25844I	-10.22284 - 8.38293I
b = -0.625995 + 0.626906I		
u = -0.461388 + 0.956277I		
a = 0.665200 + 0.526100I	-0.63663 - 1.64887I	-2.14725 - 2.29266I
b = -0.316069 + 0.253513I		
u = -0.461388 - 0.956277I		
a = 0.665200 - 0.526100I	-0.63663 + 1.64887I	-2.14725 + 2.29266I
b = -0.316069 - 0.253513I		
u = 0.810606 + 0.776375I		
a = 0.565835 + 0.632629I	4.58669 - 3.21526I	-3.05328 + 3.33895I
b = -0.750225 - 1.009350I		
u = 0.810606 - 0.776375I		
a = 0.565835 - 0.632629I	4.58669 + 3.21526I	-3.05328 - 3.33895I
b = -0.750225 + 1.009350I		
u = -0.656947 + 0.912090I		
a = -0.22666 + 1.51107I	0.63898 - 4.31334I	-6.53825 + 6.48689I
b = -0.392245 - 0.675540I		
u = -0.656947 - 0.912090I		
a = -0.22666 - 1.51107I	0.63898 + 4.31334I	-6.53825 - 6.48689I
b = -0.392245 + 0.675540I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.867038 + 0.019562I		
a = 0.12989 + 1.85582I	9.34836 - 3.22875I	0.48816 + 2.52460I
b = -0.08456 - 1.60423I		
u = -0.867038 - 0.019562I		
a = 0.12989 - 1.85582I	9.34836 + 3.22875I	0.48816 - 2.52460I
b = -0.08456 + 1.60423I		
u = -0.311898 + 0.787865I		
a = 0.956078 + 0.122134I	-0.33163 - 1.48922I	-3.21291 + 4.41196I
b = 0.1036160 + 0.0693880I		
u = -0.311898 - 0.787865I		
a = 0.956078 - 0.122134I	-0.33163 + 1.48922I	-3.21291 - 4.41196I
b = 0.1036160 - 0.0693880I		
u = 0.749711 + 0.881463I		
a = 0.133762 - 0.692661I	1.38780 + 2.84463I	-7.00000 - 2.87095I
b = -1.094820 - 0.057901I		
u = 0.749711 - 0.881463I		
a = 0.133762 + 0.692661I	1.38780 - 2.84463I	-7.00000 + 2.87095I
b = -1.094820 + 0.057901I		
u = -0.026264 + 0.834708I		
a = -1.139080 - 0.577019I	-2.87835 + 0.31776I	-14.00580 - 0.89851I
b = -0.739974 + 0.342805I		
u = -0.026264 - 0.834708I		
a = -1.139080 + 0.577019I	-2.87835 - 0.31776I	-14.00580 + 0.89851I
b = -0.739974 - 0.342805I		
u = 0.830386 + 0.839820I		
a = 0.137676 - 0.366174I	6.59048 + 1.40114I	0 2.24691I
b = 0.439191 + 0.593639I		
u = 0.830386 - 0.839820I		
a = 0.137676 + 0.366174I	6.59048 - 1.40114I	0. + 2.24691I
b = 0.439191 - 0.593639I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.927893 + 0.738669I		
a = 0.28332 + 1.95602I	13.7092 - 7.1190I	0. + 3.20529I
b = -0.22878 - 1.70233I		
u = 0.927893 - 0.738669I		
a = 0.28332 - 1.95602I	13.7092 + 7.1190I	0 3.20529I
b = -0.22878 + 1.70233I		
u = -0.294048 + 1.158780I		
a = -1.041500 - 0.000140I	5.33133 - 7.16658I	-4.32444 + 6.19083I
b = -0.17743 - 1.57625I		
u = -0.294048 - 1.158780I		
a = -1.041500 + 0.000140I	5.33133 + 7.16658I	-4.32444 - 6.19083I
b = -0.17743 + 1.57625I		
u = -0.322894 + 1.152850I		
a = 1.126820 + 0.062685I	5.51392 - 0.84918I	-3.71085 + 0.I
b = -0.03457 + 1.51727I		
u = -0.322894 - 1.152850I		
a = 1.126820 - 0.062685I	5.51392 + 0.84918I	-3.71085 + 0.I
b = -0.03457 - 1.51727I		
u = -0.810352 + 0.881677I		
a = 1.20304 - 2.40238I	8.49103 + 0.19218I	-2.01859 + 0.I
b = -0.06174 + 1.58029I		
u = -0.810352 - 0.881677I		
a = 1.20304 + 2.40238I	8.49103 - 0.19218I	-2.01859 + 0.I
b = -0.06174 - 1.58029I		
u = 0.928006 + 0.759035I		
a = -0.06191 - 1.86044I	14.10940 - 0.53726I	0 1.50138I
b = 0.10905 + 1.59219I		
u = 0.928006 - 0.759035I		
a = -0.06191 + 1.86044I	14.10940 + 0.53726I	0. + 1.50138I
b = 0.10905 - 1.59219I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.803055 + 0.903733I		
a = -0.99990 + 2.49478I	8.42204 - 6.23223I	0. + 5.02146I
b = -0.11755 - 1.60103I		
u = -0.803055 - 0.903733I		
a = -0.99990 - 2.49478I	8.42204 + 6.23223I	0 5.02146I
b = -0.11755 + 1.60103I		
u = 0.797400 + 0.942409I		
a = 0.817901 + 0.783072I	6.27252 + 4.67969I	0
b = 0.484733 - 0.494859I		
u = 0.797400 - 0.942409I		
a = 0.817901 - 0.783072I	6.27252 - 4.67969I	0
b = 0.484733 + 0.494859I		
u = 0.760355 + 0.975109I		
a = -0.78027 - 1.38920I	3.97968 + 9.12021I	-7.00000 - 8.49829I
b = -0.832040 + 0.941509I		
u = 0.760355 - 0.975109I		
a = -0.78027 + 1.38920I	3.97968 - 9.12021I	-7.00000 + 8.49829I
b = -0.832040 - 0.941509I		
u = 0.236667 + 0.699953I		
a = -2.00141 - 0.89361I	2.56997 + 3.95764I	-7.31001 - 0.68586I
b = -0.27531 + 1.39228I		
u = 0.236667 - 0.699953I		
a = -2.00141 + 0.89361I	2.56997 - 3.95764I	-7.31001 + 0.68586I
b = -0.27531 - 1.39228I		
u = 0.807992 + 1.034530I		
a = 1.69856 + 1.55368I	13.2416 + 6.9328I	0
b = 0.14248 - 1.55761I		
u = 0.807992 - 1.034530I		
a = 1.69856 - 1.55368I	13.2416 - 6.9328I	0
b = 0.14248 + 1.55761I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.796590 + 1.043640I		
a = -1.65368 - 1.73183I	12.7501 + 13.4737I	0
b = -0.26885 + 1.69481I		
u = 0.796590 - 1.043640I		
a = -1.65368 + 1.73183I	12.7501 - 13.4737I	0
b = -0.26885 - 1.69481I		
u = 0.262896 + 0.609439I		
a = 2.19053 + 0.65507I	2.83383 - 1.80935I	-5.60137 + 4.89150I
b = -0.102273 - 1.283390I		
u = 0.262896 - 0.609439I		
a = 2.19053 - 0.65507I	2.83383 + 1.80935I	-5.60137 - 4.89150I
b = -0.102273 + 1.283390I		
u = -0.563257 + 0.159760I		
a = 0.608331 + 0.292239I	1.45889 - 1.89863I	-0.82802 + 4.86862I
b = -0.248810 - 0.689997I		
u = -0.563257 - 0.159760I		
a = 0.608331 - 0.292239I	1.45889 + 1.89863I	-0.82802 - 4.86862I
b = -0.248810 + 0.689997I		
u = 0.143780		
a = 3.43014	-0.906933	-11.3950
b = -0.444877		

II.
$$I_2^u = \langle -au + b, a^3 - a^2u - a^2 + 2au + 1, u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} a \\ au \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} a \\ au \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -a^{2}u+1 \\ a^{2}u+a^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -a^{2}u-au-a+u+1 \\ a^{2}u+a^{2}-au-1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2a^{2}u-a^{2}-a+u+2 \\ a^{2}u+a^{2}-au-1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2a^{2}u-a^{2}-a+u+2 \\ a^{2}u+a^{2}-au-1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $5a^2u + 6a^2 5au a + 7u 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	$(u^2+u+1)^3$
c_3, c_7	u^6
<i>C</i> ₄	$(u^2 - u + 1)^3$
<i>C</i> ₆	$(u^3 + u^2 - 1)^2$
<i>c</i> ₈	$(u^3 - u^2 + 2u - 1)^2$
<i>c</i> ₉	$(u^3 - u^2 + 1)^2$
c_{10}, c_{11}	$(u^3 + u^2 + 2u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5	$(y^2 + y + 1)^3$
c_3, c_7	y^6
c_6, c_9	$(y^3 - y^2 + 2y - 1)^2$
c_8, c_{10}, c_{11}	$(y^3 + 3y^2 + 2y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 1.239560 - 0.467306I	3.02413 - 4.85801I	-2.74410 + 7.22587I
b = -0.215080 + 1.307140I		
u = -0.500000 + 0.866025I		
a = -1.024480 + 0.839835I	3.02413 + 0.79824I	-4.03424 + 1.64667I
b = -0.215080 - 1.307140I		
u = -0.500000 + 0.866025I		
a = 0.284920 + 0.493496I	-1.11345 - 2.02988I	-12.72167 + 5.84990I
b = -0.569840		
u = -0.500000 - 0.866025I		
a = 1.239560 + 0.467306I	3.02413 + 4.85801I	-2.74410 - 7.22587I
b = -0.215080 - 1.307140I		
u = -0.500000 - 0.866025I		
a = -1.024480 - 0.839835I	3.02413 - 0.79824I	-4.03424 - 1.64667I
b = -0.215080 + 1.307140I		
u = -0.500000 - 0.866025I		
a = 0.284920 - 0.493496I	-1.11345 + 2.02988I	-12.72167 - 5.84990I
b = -0.569840		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 + u + 1)^3)(u^{47} + 4u^{46} + \dots + 6u + 1)$
c_2, c_5	$((u^2 + u + 1)^3)(u^{47} + 14u^{46} + \dots + 38u - 1)$
c_3, c_7	$u^6(u^{47} - u^{46} + \dots + 96u + 64)$
c_4	$((u^2 - u + 1)^3)(u^{47} + 4u^{46} + \dots + 6u + 1)$
c_6	$((u^3 + u^2 - 1)^2)(u^{47} + 3u^{46} + \dots - u + 1)$
c_8	$((u^3 - u^2 + 2u - 1)^2)(u^{47} + 11u^{46} + \dots + u + 1)$
c_9	$((u^3 - u^2 + 1)^2)(u^{47} + 3u^{46} + \dots - u + 1)$
c_{10}, c_{11}	$((u^3 + u^2 + 2u + 1)^2)(u^{47} + 11u^{46} + \dots + u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y^2 + y + 1)^3)(y^{47} + 14y^{46} + \dots + 38y - 1)$
c_2,c_5	$((y^2 + y + 1)^3)(y^{47} + 42y^{46} + \dots + 2346y - 1)$
c_3, c_7	$y^6(y^{47} + 35y^{46} + \dots - 23552y - 4096)$
c_6, c_9	$((y^3 - y^2 + 2y - 1)^2)(y^{47} - 11y^{46} + \dots + y - 1)$
c_8, c_{10}, c_{11}	$((y^3 + 3y^2 + 2y - 1)^2)(y^{47} + 53y^{46} + \dots + 41y - 1)$