La Salle College Algorithms & Programming (420AP1AS)

Michelle M. Khalifé Assignment 4 – arrays, 2D arrays

#1. [warm-up]

- a. Declare and initialize an array num[10] of type int, such that the value at index i is i+1.
- b. Modify your code to replace the values in the array with their square. E.g., if num[i] = 5, then num[i] = 25
- c. Return the sum of values in the array

#2. [final grades]

- a. Write a program that reads grades from an array and computes the following: class average, max grade, and min grade. The program needs to ask the user how many students there are in the class in order to create & fill the array.
- b. Create a separate array that captures the distribution of these grades and lets the user know the percentage of students that falls in the different ranges.

#3. [reverse an array]

- a. Write a program that reads characters in an array A and prints them in reverse.
- b. Modify the program to copy the content of array A, in reverse order, in an array B. Display the content of both arrays.
- c. Read the sequence of characters in both arrays from [0] to [n-1]. Is it the same?
- **#4.** [arrays @ w3resources] Exercises 32-36, 38, 42, 54, and 58.

#5. [merge]

- a. Write a program that reads two sorted arrays A[m] and B[n], in parallel, and outputs their elements in ascending order. For simplicity, start with m=n and then modify the program so $m\neq n$.
- b. Modify the program to store the elements in a third array C[m+n]. Don't forget to account for duplicates.
- #6. [for-patterns] Redo the for-patterns in Assignment 3. Instead of printing the pattern, save it into a 2D array.

#7. [grid]

a. Prompt the user for two integers m and n and create an $m \times n$ grid. The value at the (i, j) position is i + mj. Fill the grid with the appropriate value by traversing rows first, and cols second.

```
0 5 10 15 20 25
1 6 11 16 21 26
2 7 12 17 22 27
3 8 13 18 23 28
4 9 14 19 24 29
```

b. Iterate the grid by traversing cols first, and rows second. Here, let the value at position (i,j) be k++, where k is initialized to 0 prior to looping. Print the grid. Is it the same as the grid above?

#8. [sum of rows & cols]

Prompt the user for 9 number that you will read in a 2D array. You can do so in more than one way: either one number at a time *or* 3 at a time. Then compute the sum of each row and column and output the elements in the following format:

ARR	AY		ROW SUM			
1	2	3	6			
4	5	6	15			
7	8	9	24			
COLUMN SUM						
12	15	18				

#9. [TIC TAC TOE]

Write a program that allows a user to play tic tac toe. The program should ask for moves alternating between player X and player O. Alternatively, the second player can be the machine. The program displays the game positions (1-9) and when a player selects a position, their move is entered, and the new board configuration is displayed. The board on the left is the original board. The board on the right shows the configuration after 4 moves.

1	2	3		X	Х	0
4	5	6		4	5	6
7	8	9	-	0	8	9

The game ends when a player has 3 Xs or 3 Os spanning across the board (horizontally, vertically, or diagonally), or there are no more moves that can be made.

#10. [pascal Δ]

In the pattern below, boundaries aside, every row can be computed from the previous row. The element at position (i,j) is the sum of the elements at position (i-1, j-1) and (i-1, j). Reproduce and print the pattern.

1						
1	1					
1	2	1				
1	3	3	1			
1	4	6	4	1		
1	5	10	10	5	1	
1	6	15	20	15	6	1