GROUP VELOCITY

Wave group /ware packet: superposition of womes of different wavelengths + frequencies that is localized in a small region of space.

For a single ware with wavenumber le.

$$\phi(x, t) = \hat{\phi}_{k} e^{i(kx - \omega t)}$$
 phase $\omega = \omega(k)$

couplex-valued

auplitude

Superposition of infinite number of waves

$$\bar{\Psi}(x,t) = \int_{-\infty}^{\infty} \hat{\Psi}(k) e^{i(kx-\omega(k)t)} dk$$
teat k as

a continuous

d(e) is the Fourier transferm of $\overline{\Phi}(x,0)$ and gives the amplifued e e phase of each component of the wave

group: [1](k))

in le-coordinate:

Gaussian -> Gaussian in se

of width Ak /Ak

Ak /Ak

in se-coordinate:

The second secon

~ Yok

Assume that $\hat{q}(k)$ is namowly supported around ko

=) Taylor-series expansion of dispersion relation:

$$\omega(k) = \omega(k_0) + (\lambda k_0 + k_0) \frac{\partial \omega}{\partial k} + \dots$$

= Wo + Cgr (k-ko) + ...

Then $\frac{1}{2}(x,t) = \int_{-\infty}^{\infty} \hat{\varphi}(k) e^{ix(kx-\omega t)} dk$ $\frac{1}{2}(x,t) = \int_{-\infty}^$

iko (x-cpht) po q(k) e i (k-ko) (x-cgr.t) dk.

Cph = work

= e iko (x-cph.t) 2 gr (x-cgr.t)

wave verby maring with speed cph. envelope (wave group) noving without changing shape with speed cgr. We've seen that monochromatic waves (single le) visualized as lines of constant phase ("vests", "troughs") in a space-time diagram: RX-W+ + 2TIN 1:1. x = Cph.t + 2Th

X= 211/k

T = 2TT/W there we chose Coh >0.

For a wave group truse verts (and troughts) will be modulated by an envelope function 4 gr (x-cgr.t) that propagates at speed Cgs.

For example, for cgr >0.

individual everts wave verts propagates have regligible auplitude outside at cph. (slope = cph) wave group. 1 propagates x = Cqr.t envelope 4(x,0)

Can also look at phase speed + group velocity with opposite sign (e.g. Rossby waves)

ASYMPTOTIC SCALING THEORY

Recall the "prinative equations"

* taugent-plane (f-plane, p-plane)

* Boussinesq fund

* trin larger approximation.

$$\frac{D}{Dt} = -\frac{1}{2} \frac{\nabla_2 h}{h}$$

$$\frac{\partial h}{\partial t} = -\frac{1}{2} \frac{\nabla_2 h}{h}$$

$$\frac{\partial h}{\partial t} = 0$$

$$\frac{\partial h}{\partial t}$$

To examine specific phenonena we have simplified these equations using ad hoc approximations, e.g.

- * approximate stratification as layers of constant density
- * steady from with no variation in x-direction => Hadley cell.
- * reglect northear terms

thow do we rigorously determine the importance of each term in the printine equations.

SCALING ANALYSIS.

Example: eastward current speed at a current metet.

-0-

Rewite as

$$u(t) = U \hat{u}(t)$$

v= 20 cm/s.

dinensional non-dimensional

o(1) function.

T = 100 s.

dimension of

dineurionley

timescale

O(1) variable

What about tens like ou?

t=Tt

[cn/s]

[cu/s] unitiess and O(1)

Thus can formally write $\frac{\partial}{\partial t} \rightarrow \frac{1}{T} \frac{\partial}{\partial t}$ $\frac{\partial}{\partial x} \rightarrow \frac{1}{L} \frac{\partial}{\partial x}$

"hatted" variables are always o (1) and dinensionles. NB: scaling is a droice that determines the dynamics we're interested in.

-> "to oning in"

u(t1 = 20 sin Tt + 0.1 sin Tt. cu/s.

1 222222 0.1an/s. 1s.

SCALING THEORY IN THE SHALLOW WATER MODEL

Monentum equation:

<u>gā</u> + ū.∑ū + f× ū = - g∑²√.

white: $u = \nabla \hat{\lambda}$ $v = \nabla \hat{\lambda}$

サかか + でかかか + おかず、か = - のとうこか

First doice: timescale T

$$\frac{\nabla^2}{L} \left[\frac{\partial \hat{u}}{\partial \hat{t}} + \hat{u} \cdot \hat{\nabla} \hat{u} \right] + \int \nabla \hat{f} \times \hat{u} = -\frac{9}{9} \frac{\partial}{\partial t} \hat{\nabla}_2 \hat{u}$$

x 1/20

Second choice: vertical perturbatre Il

To preserve geostophic balance must have

Non-dinensional horizontal nonembru equation:

$$\mathcal{R}_{0} \cdot \left[\frac{\partial \hat{u}}{\partial t} + \hat{u} \cdot \hat{\nabla} \hat{u} \right] + \hat{f} \times \hat{u} = - \hat{\nabla}_{z} \hat{v}$$

Continuity equation.

$$\frac{2 \Gamma}{9 \Gamma} + \vec{n} \cdot \vec{\Delta} \Gamma + \Gamma \vec{\Delta} \cdot \vec{\Lambda} = 0.$$

Now:
$$N = \mathcal{H}\hat{\chi}$$
, $N = \mathcal{T}\hat{\Omega}$, $N = \frac{1}{2}\hat{\Omega}$, $N = \frac{1}{2}\hat{\Omega}$

where again we choose
$$T = \frac{L}{U}$$
, $\mathcal{H} = \frac{f_0 U L}{g_0}$

$$\frac{\chi^{1}/H}{H} = \frac{\frac{1}{2} \cdot \hat{Q} \cdot \hat{Q}}{H} + \frac{1}{2} \cdot \hat{Q} \cdot \hat{Q} \cdot \hat{Q} + \frac{1}{2} \cdot \hat{Q} \cdot \hat{Q} + \frac{1}{2} \cdot \hat{Q} \cdot \hat{Q} = 0$$

Consider
$$\frac{\mathcal{H}}{H} = \frac{f_0 U L}{g H} = \frac{U}{f_0 L} \cdot \frac{f_0^2 L^2}{g H}$$
.

where
$$R_0 = \frac{U}{f_0 L}$$

$$F = \frac{L^2}{Lo^2}, \quad Lo = \sqrt{gH}$$
fo.

Rossby defomation scale Ld = Rossby deformation scale = "stratification" "rotation"

: rotation very important (can regrect surface wores) r ». rq (£ >>1)

: notation not important compared to LKKLd stratification / gravity (Feel)

· both stratification e rotation are L ~ Ld import and (Fn1)

ean: Ld ~ 100 km "mesoscale" ocean eddier)
so L >> 100 km ~ "basin scale".

Atmosphere: Ld ~ 1000 km "syrophic scale" (scale of weather) L >> 1000 km ~ "planetary scale"

For now, let F take any value:

H = RoF.

 $R_{0}F\left(\frac{\partial\hat{y}}{\partial f}+\hat{u}.\hat{\nabla}\hat{y}\right)+\left(1+R_{0}F\hat{y}\right)\hat{\nabla}.\hat{u}=0$

non-dimensional continuity equation.

Two limits:

* Ro << 1, F >> 1 => planetary geostrophic equations

* Ro << 1, F ~ 1 => quasiquestraphic equations.

Planetary geostophic equations:

Assume that Ro. F ~ O(1)

non-dimensional momentum equation:

Ro
$$\left(\frac{\partial \hat{u}}{\partial \hat{t}} + \hat{u} \cdot \nabla u\right) + \hat{f} \times \hat{u} = -\nabla y$$
.

 $\left(\hat{f} \times \hat{u}\right) = -\hat{\nabla}\hat{y}$ | geostophic bolonce

non-dimensional continuity equation:

Re-express in terms of dineusional quantities:

$$\frac{1}{2h} + y \cdot \nabla h + h \cdot \nabla \cdot y = 0$$

$$\frac{1}{2h} + y \cdot \nabla h + h \cdot \nabla \cdot y = 0$$

$$\frac{1}{2h} + y \cdot \nabla h + h \cdot \nabla \cdot y = 0$$

Dinensional planetary geostophic equations.

Quasiquestrophic (QG) model: ROKKI, FNO(1) (L~LD).

=> asymptotic expansion of the equations of notion in the limit of small Ro.

* Write fields as an expansion in powers of Ro << 1:

$$\hat{\eta} = \hat{\eta}_0 + \frac{R_0 \cdot \hat{\eta}_1}{o(R_0)} + \frac{R_0^2 \cdot \hat{\eta}_2}{o(R_0^2)} + \dots$$
where $\hat{\eta}_0, \hat{\eta}_1, \hat{\eta}_2, \dots$ are all $o(1)$.

$$\hat{u} = \hat{u}_0 + Ro \cdot \hat{u}_1 + Ro^2 \hat{u}_2 + ...$$

voure û., û,, û,, ... are all o (1)

$$\hat{f} = \frac{f_0 + \beta y}{f_0} = 1 + \frac{\beta y}{f_0} = 1 + \frac{\beta L}{f_0} \hat{y}$$

=)
$$\hat{f} = 1 + Ro \hat{\beta} \hat{\gamma}$$
 where $\hat{\beta} = O(1)$

where
$$\hat{\beta} = O(1)$$

NEXT WEEK: Sub. into non-dimensional momentum + continuity equation.

- match coefficients of each power of Ro.
- hierather of equations for uo, no, ui, mi, ...