Package 'spatial'

January 1, 2025

Priority recommended
Version 7.3-18
Date 2025-01-01
Depends R ($>= 3.0.0$), graphics, stats, utils
Suggests MASS
Description Functions for kriging and point pattern analysis.
Title Functions for Kriging and Point Pattern Analysis
LazyLoad yes
ByteCompile yes
License GPL-2 GPL-3
<pre>URL http://www.stats.ox.ac.uk/pub/MASS4/</pre>
NeedsCompilation yes
Treeds compilation yes
Author Brian Ripley [aut, cre, cph],
Roger Bivand [ctb],
William Venables [cph]
Maintainer Brian Ripley SPrian.Ripley@R-project.org
Repository CRAN
Date/Publication 2025-01-01 10:25:46 UTC
Contents
anova.trls
correlogram
expcov
Kaver
Kenvl
Kfn
ppgetregion
ppinit
pplik

2 anova.trls

ppregion	.U
predict.trls	1
prmat	
Psim	3
semat 1	4
SSI	5
Strauss	6
surf.gls	7
surf.ls	8
trls.influence	
trmat	
variogram	21
2	23

anova.trls

Index

Anova tables for fitted trend surface objects

Description

Compute analysis of variance tables for one or more fitted trend surface model objects; where anova.trls is called with multiple objects, it passes on the arguments to anovalist.trls.

Usage

```
## $3 method for class 'trls'
anova(object, ...)
anovalist.trls(object, ...)
```

Arguments

object A fitted trend surface model object from surf.ls
... Further objects of the same kind

Value

anova.trls and anovalist.trls return objects corresponding to their printed tabular output.

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

```
surf.ls
```

correlogram 3

Examples

```
library(stats)
data(topo, package="MASS")
topo0 <- surf.ls(0, topo)
topo1 <- surf.ls(1, topo)
topo2 <- surf.ls(2, topo)
topo3 <- surf.ls(3, topo)
topo4 <- surf.ls(4, topo)
anova(topo0, topo1, topo2, topo3, topo4)
summary(topo4)</pre>
```

correlogram

Compute Spatial Correlograms

Description

Compute spatial correlograms of spatial data or residuals.

Usage

```
correlogram(krig, nint, plotit = TRUE, ...)
```

Arguments

```
krig trend-surface or kriging object with columns x, y, and z
nint number of bins used
plotit logical for plotting
... parameters for the plot
```

Details

Divides range of data into nint bins, and computes the covariance for pairs with separation in each bin, then divides by the variance. Returns results for bins with 6 or more pairs.

Value

x and y coordinates of the correlogram, and cnt, the number of pairs averaged per bin.

Side Effects

Plots the correlogram if plotit = TRUE.

References

```
Ripley, B. D. (1981) Spatial Statistics. Wiley.
```

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

4 expcov

See Also

```
variogram
```

Examples

```
data(topo, package="MASS")
topo.kr <- surf.ls(2, topo)
correlogram(topo.kr, 25)
d <- seq(0, 7, 0.1)
lines(d, expcov(d, 0.7))</pre>
```

expcov

Spatial Covariance Functions

Description

Spatial covariance functions for use with surf.gls.

Usage

```
expcov(r, d, alpha = 0, se = 1)

gaucov(r, d, alpha = 0, se = 1)

sphercov(r, d, alpha = 0, se = 1, D = 2)
```

Arguments

r vector of distances at which to evaluate the covariance

d range parameter

alpha proportion of nugget effect

se standard deviation at distance zero

D dimension of spheres.

Value

vector of covariance values.

References

```
Ripley, B. D. (1981) Spatial Statistics. Wiley.
```

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

```
surf.gls
```

Kaver 5

Examples

```
data(topo, package="MASS")
topo.kr <- surf.ls(2, topo)
correlogram(topo.kr, 25)
d <- seq(0, 7, 0.1)
lines(d, expcov(d, 0.7))</pre>
```

Kaver

Average K-functions from Simulations

Description

Forms the average of a series of (usually simulated) K-functions.

Usage

```
Kaver(fs, nsim, ...)
```

Arguments

```
fs full scale for K-fn
nsim number of simulations
... arguments to simulate one point process object
```

Value

list with components x and y of the average K-fn on L-scale.

References

```
Ripley, B. D. (1981) Spatial Statistics. Wiley.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
```

See Also

```
Kfn, Kenvl
```

```
towns <- ppinit("towns.dat")
par(pty="s")
plot(Kfn(towns, 40), type="b")
plot(Kfn(towns, 10), type="b", xlab="distance", ylab="L(t)")
for(i in 1:10) lines(Kfn(Psim(69), 10))
lims <- Kenvl(10,100,Psim(69))
lines(lims$x,lims$lower, lty=2, col="green")
lines(lims$x,lims$upper, lty=2, col="green")
lines(Kaver(10,25,Strauss(69,0.5,3.5)), col="red")</pre>
```

6 Kenvl

Kenvl

Compute Envelope and Average of Simulations of K-fns

Description

Computes envelope (upper and lower limits) and average of simulations of K-fns

Usage

```
Kenvl(fs, nsim, ...)
```

Arguments

```
fs full scale for K-fn
nsim number of simulations
... arguments to produce one simulation
```

Value

list with components

X	distances
lower	min of K-fns
upper	max of K-fns
aver	average of K-fns

References

```
Ripley, B. D. (1981) Spatial Statistics. Wiley.
```

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

```
Kfn, Kaver
```

```
towns <- ppinit("towns.dat")
par(pty="s")
plot(Kfn(towns, 40), type="b")
plot(Kfn(towns, 10), type="b", xlab="distance", ylab="L(t)")
for(i in 1:10) lines(Kfn(Psim(69), 10))
lims <- Kenvl(10,100,Psim(69))
lines(lims$x,lims$lower, lty=2, col="green")
lines(lims$x,lims$upper, lty=2, col="green")
lines(Kaver(10,25,Strauss(69,0.5,3.5)), col="red")</pre>
```

Kfn 7

Kfn

Compute K-fn of a Point Pattern

Description

```
Actually computes L = \sqrt{K/\pi}.
```

Usage

```
Kfn(pp, fs, k=100)
```

Arguments

pp a list such as a pp object, including components x and y

fs full scale of the plot

k number of regularly spaced distances in (0, fs)

Details

relies on the domain D having been set by ppinit or ppregion.

Value

A list with components

x vector of distancesy vector of L-fn values

k number of distances returned – may be less than k if fs is too large

dmin minimum distance between pair of points

1m maximum deviation from L(t) = t

References

```
Ripley, B. D. (1981) Spatial Statistics. Wiley.
```

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

```
ppinit, ppregion, Kaver, Kenvl
```

```
towns <- ppinit("towns.dat")
par(pty="s")
plot(Kfn(towns, 10), type="s", xlab="distance", ylab="L(t)")</pre>
```

8 ppinit

ppgetregion

Get Domain for Spatial Point Pattern Analyses

Description

Retrieves the rectangular domain (x1, xu) \times (y1, yu) from the underlying C code.

Usage

```
ppgetregion()
```

Value

A vector of length four with names c("xl", "xu", "yl", "yu").

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

ppregion

ppinit

Read a Point Process Object from a File

Description

Read a file in standard format and create a point process object.

Usage

```
ppinit(file)
```

Arguments

file

string giving file name

Details

```
The file should contain
the number of points
a header (ignored)
xl xu yl yu scale
```

x y (repeated n times)

pplik 9

Value

```
class "pp" object with components x, y, x1, xu, y1, yu
```

Side Effects

Calls ppregion to set the domain.

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

```
ppregion
```

Examples

```
towns <- ppinit("towns.dat")
par(pty="s")
plot(Kfn(towns, 10), type="b", xlab="distance", ylab="L(t)")</pre>
```

pplik

Pseudo-likelihood Estimation of a Strauss Spatial Point Process

Description

Pseudo-likelihood estimation of a Strauss spatial point process.

Usage

```
pplik(pp, R, ng=50, trace=FALSE)
```

Arguments

pp a pp object

R the fixed parameter R

ng use a ng x ng grid with border R in the domain for numerical integration.

trace logical? Should function evaluations be printed?

Value

```
estimate for c in the interval [0, 1].
```

References

Ripley, B. D. (1988) Statistical Inference for Spatial Processes. Cambridge.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

10 ppregion

See Also

Strauss

Examples

```
pines <- ppinit("pines.dat")
pplik(pines, 0.7)</pre>
```

ppregion

Set Domain for Spatial Point Pattern Analyses

Description

Sets the rectangular domain $(x1, xu) \times (y1, yu)$.

Usage

```
ppregion(xl = 0, xu = 1, yl = 0, yu = 1)
```

Arguments

xl Either xl or a list containing components xl, xu, yl, yu (such as a point-process object)

xu, yl, yu otheri limits of the rectangle if given separately.

Value

none

Side Effects

initializes variables in the C subroutines.

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

```
ppinit, ppgetregion
```

predict.trls 11

					-
pre	ച	1 (+ 1	tr	1 0

Predict method for trend surface fits

Description

Predicted values based on trend surface model object

Usage

```
## S3 method for class 'trls'
predict(object, x, y, ...)
```

Arguments

object	Fitted trend surface model object returned by surf.1s
х	Vector of prediction location eastings (x coordinates)
У	Vector of prediction location northings (y coordinates)
	further arguments passed to or from other methods.

Value

predict.trls produces a vector of predictions corresponding to the prediction locations. To display the output with image or contour, use trmat or convert the returned vector to matrix form.

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

```
surf.ls, trmat
```

```
\label{eq:data_state} $$ \data(topo, package="MASS") $$ topo2 <- surf.ls(2, topo) $$ topo4 <- surf.ls(4, topo) $$ x <- c(1.78, 2.21) $$ y <- c(6.15, 6.15) $$ z2 <- predict(topo2, x, y) $$ z4 <- predict(topo4, x, y) $$ cat("2nd order predictions:", z2, "\n4th order predictions:", z4, "\n") $$
```

12 prmat

prmat

Evaluate Kriging Surface over a Grid

Description

Evaluate Kriging surface over a grid.

Usage

```
prmat(obj, xl, xu, yl, yu, n)
```

Arguments

obj	object returned by surf.gls
xl	limits of the rectangle for grid
xu	ditto
yl	ditto
yu	ditto
n	use n x n grid within the rectangle

Value

list with components x, y and z suitable for contour and image.

References

```
Ripley, B. D. (1981) Spatial Statistics. Wiley.
```

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

```
surf.gls, trmat, semat
```

```
data(topo, package="MASS")
topo.kr <- surf.gls(2, expcov, topo, d=0.7)
prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
contour(prsurf, levels=seq(700, 925, 25))</pre>
```

Psim 13

Psim

Simulate Binomial Spatial Point Process

Description

Simulate Binomial spatial point process.

Usage

```
Psim(n)
```

Arguments

n

number of points

Details

relies on the region being set by ppinit or ppregion.

Value

list of vectors of x and y coordinates.

Side Effects

uses the random number generator.

References

```
Ripley, B. D. (1981) Spatial Statistics. Wiley.
```

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

```
SSI, Strauss
```

```
towns <- ppinit("towns.dat")
par(pty="s")
plot(Kfn(towns, 10), type="s", xlab="distance", ylab="L(t)")
for(i in 1:10) lines(Kfn(Psim(69), 10))</pre>
```

14 semat

semat

Evaluate Kriging Standard Error of Prediction over a Grid

Description

Evaluate Kriging standard error of prediction over a grid.

Usage

```
semat(obj, xl, xu, yl, yu, n, se)
```

Arguments

obj	object returned by surf.gls
xl	limits of the rectangle for grid
xu	ditto
yl	ditto
yu	ditto
n	use n x n grid within the rectangle
se	standard error at distance zero as a multiple of the supplied covariance. Otherwise estimated, and it assumed that a correlation function was supplied.

Value

list with components x, y and z suitable for contour and image.

References

```
Ripley, B. D. (1981) Spatial Statistics. Wiley.
```

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

```
surf.gls, trmat, prmat
```

```
data(topo, package="MASS")
topo.kr <- surf.gls(2, expcov, topo, d=0.7)
prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
contour(prsurf, levels=seq(700, 925, 25))
sesurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 30)
contour(sesurf, levels=c(22,25))</pre>
```

SSI 15

SSI

Simulates Sequential Spatial Inhibition Point Process

Description

Simulates SSI (sequential spatial inhibition) point process.

Usage

```
SSI(n, r)
```

Arguments

```
n number of points
r inhibition distance
```

Details

uses the region set by ppinit or ppregion.

Value

list of vectors of x and y coordinates

Side Effects

uses the random number generator.

Warnings

will never return if r is too large and it cannot place n points.

References

```
Ripley, B. D. (1981) Spatial Statistics. Wiley.
```

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

```
Psim, Strauss
```

```
towns <- ppinit("towns.dat")
par(pty = "s")
plot(Kfn(towns, 10), type = "b", xlab = "distance", ylab = "L(t)")
lines(Kaver(10, 25, SSI(69, 1.2)))</pre>
```

16 Strauss

Strauss

Simulates Strauss Spatial Point Process

Description

Simulates Strauss spatial point process.

Usage

```
Strauss(n, c=0, r)
```

Arguments

n	number of points
С	parameter c in $[0,1]$. c = 0 corresponds to complete inhibition at distances up to r.
r	inhibition distance

Details

Uses spatial birth-and-death process for 4n steps, or for 40n steps starting from a binomial pattern on the first call from an other function. Uses the region set by ppinit or ppregion.

Value

list of vectors of x and y coordinates

Side Effects

uses the random number generator

References

```
Ripley, B. D. (1981) Spatial Statistics. Wiley.
```

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

```
Psim, SSI
```

```
towns <- ppinit("towns.dat")
par(pty="s")
plot(Kfn(towns, 10), type="b", xlab="distance", ylab="L(t)")
lines(Kaver(10, 25, Strauss(69,0.5,3.5)))</pre>
```

surf.gls 17

	_	-	
sur	ť.	gΙ	S

Fits a Trend Surface by Generalized Least-squares

Description

Fits a trend surface by generalized least-squares.

Usage

```
surf.gls(np, covmod, x, y, z, nx = 1000, ...)
```

Arguments

np	degree of polynomial surface
covmod	function to evaluate covariance or correlation function
x	x coordinates or a data frame with columns x, y, z
у	y coordinates
z	z coordinates. Will supersede x\$z
nx	Number of bins for table of the covariance. Increasing adds accuracy, and increases size of the object.
	parameters for covmod

Value

list with components

beta	the coefficients
x	
у	
7	and others for internal use only.

References

```
Ripley, B. D. (1981) Spatial Statistics. Wiley.
```

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

```
trmat, surf.1s, prmat, semat, expcov, gaucov, sphercov
```

18 surf.Is

Examples

```
library(MASS) # for eqscplot
data(topo, package="MASS")
topo.kr <- surf.gls(2, expcov, topo, d=0.7)
trsurf <- trmat(topo.kr, 0, 6.5, 0, 6.5, 50)
eqscplot(trsurf, type = "n")
contour(trsurf, add = TRUE)

prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
contour(prsurf, levels=seq(700, 925, 25))
sesurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 30)
eqscplot(sesurf, type = "n")
contour(sesurf, levels = c(22, 25), add = TRUE)</pre>
```

surf.ls

Fits a Trend Surface by Least-squares

Description

Fits a trend surface by least-squares.

Usage

```
surf.ls(np, x, y, z)
```

Arguments

np	degree of polynomial surface
x	x coordinates or a data frame with columns x , y , z
у	y coordinates
Z	z coordinates. Will supersede x\$z

Value

list with components

```
beta the coefficients

x

y

z and others for internal use only.
```

References

```
Ripley, B. D. (1981) Spatial Statistics. Wiley.
```

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

trls.influence

See Also

```
trmat, surf.gls
```

Examples

```
library(MASS) # for eqscplot
data(topo, package="MASS")
topo.kr <- surf.ls(2, topo)
trsurf <- trmat(topo.kr, 0, 6.5, 0, 6.5, 50)
eqscplot(trsurf, type = "n")
contour(trsurf, add = TRUE)
points(topo)

eqscplot(trsurf, type = "n")
contour(trsurf, add = TRUE)
plot(topo.kr, add = TRUE)
title(xlab= "Circle radius proportional to Cook's influence statistic")</pre>
```

trls.influence

Regression diagnostics for trend surfaces

Description

This function provides the basic quantities which are used in forming a variety of diagnostics for checking the quality of regression fits for trend surfaces calculated by surf.1s.

Usage

Arguments

```
object, x Fitted trend surface model from surf.ls
div scaling factor for influence circle radii in plot.trls
add add influence plot to existing graphics if TRUE
border, col, pch, cex, ...
additional graphical parameters
```

Value

trls.influence returns a list with components:

r raw residuals as given by residuals.trls
hii diagonal elements of the Hat matrix
stresid standardised residuals
Di Cook's statistic

20 trmat

References

Unwin, D. J., Wrigley, N. (1987) Towards a general-theory of control point distribution effects in trend surface models. *Computers and Geosciences*, **13**, 351–355.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

```
surf.ls, influence.measures, plot.lm
```

Examples

```
library(MASS) # for eqscplot
data(topo, package = "MASS")
topo2 <- surf.ls(2, topo)
infl.topo2 <- trls.influence(topo2)
(cand <- as.data.frame(infl.topo2)[abs(infl.topo2$stresid) > 1.5, ])
cand.xy <- topo[as.integer(rownames(cand)), c("x", "y")]
trsurf <- trmat(topo2, 0, 6.5, 0, 6.5, 50)
eqscplot(trsurf, type = "n")
contour(trsurf, add = TRUE, col = "grey")
plot(topo2, add = TRUE, div = 3)
points(cand.xy, pch = 16, col = "orange")
text(cand.xy, labels = rownames(cand.xy), pos = 4, offset = 0.5)</pre>
```

trmat

Evaluate Trend Surface over a Grid

Description

Evaluate trend surface over a grid.

Usage

```
trmat(obj, xl, xu, yl, yu, n)
```

Arguments

obj	object returned by surf.ls or surf.gls
xl	limits of the rectangle for grid
xu	ditto
yl	ditto
yu	ditto
n	use n x n grid within the rectangle

Value

list with components x, y and z suitable for contour and image.

variogram 21

References

```
Ripley, B. D. (1981) Spatial Statistics. Wiley.
```

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

```
surf.ls, surf.gls
```

Examples

```
data(topo, package="MASS")
topo.kr <- surf.ls(2, topo)
trsurf <- trmat(topo.kr, 0, 6.5, 0, 6.5, 50)</pre>
```

variogram

Compute Spatial Variogram

Description

Compute spatial (semi-)variogram of spatial data or residuals.

Usage

```
variogram(krig, nint, plotit = TRUE, ...)
```

Arguments

krig	trend-surface or kriging object with columns x, y, and z
nint	number of bins used
plotit	logical for plotting
	parameters for the plot

Details

Divides range of data into nint bins, and computes the average squared difference for pairs with separation in each bin. Returns results for bins with 6 or more pairs.

Value

 \boldsymbol{x} and \boldsymbol{y} coordinates of the variogram and cnt, the number of pairs averaged per bin.

Side Effects

Plots the variogram if plotit = TRUE

22 variogram

References

```
Ripley, B. D. (1981) Spatial Statistics. Wiley.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
```

See Also

```
correlogram
```

```
data(topo, package="MASS")
topo.kr <- surf.ls(2, topo)
variogram(topo.kr, 25)</pre>
```

Index

```
* spatial
                                                    ppgetregion, 8, 10
    anova.trls, 2
                                                    ppinit, 7, 8, 10
    correlogram, 3
                                                    pplik, 9
                                                    ppregion, 7-9, 10
    expcov, 4
    Kaver, 5
                                                    predict.trls, 11
    Kenvl, 6
                                                    prmat, 12, 14, 17
    Kfn, 7
                                                    Psim, 13, 15, 16
    ppgetregion, 8
                                                    semat, 12, 14, 17
    ppinit, 8
                                                    sphercov, 17
    pplik, 9
                                                    sphercov (expcov), 4
    ppregion, 10
                                                    SSI, 13, 15, 16
    predict.trls, 11
                                                    Strauss, 10, 13, 15, 16
    prmat, 12
                                                    surf.gls, 4, 12, 14, 17, 19, 21
    Psim, 13
                                                    surf.1s, 2, 11, 17, 18, 20, 21
    semat, 14
    SSI, 15
                                                    trls.influence, 19
    Strauss, 16
                                                    trmat, 11, 12, 14, 17, 19, 20
    surf.gls, 17
    surf.1s, 18
                                                    variogram, 4, 21
    trls.influence, 19
    trmat, 20
    variogram, 21
anova.trls, 2
anovalist.trls(anova.trls), 2
correlogram, 3, 22
expcov, 4, 17
gaucov, 17
gaucov (expcov), 4
influence.measures, 20
Kaver, 5, 6, 7
Kenv1, 5, 6, 7
Kfn, 5, 6, 7
plot.lm, 20
plot.trls(trls.influence), 19
```