PSNA Pneumonia Detection Challenge

Teng-Te Yu, Zheng-Yan Chen, Yi-Hsin Chen

Team 19

- Introduction
- Related Work
- Methodology
- Experiments
- Conclusion
- Future Work

- Introduction
- Related Work
- Methodology
- Experiments
- Conclusion
- Future Work

Introduction

Background

- Pneumonia is top 10 causes of death in both United States and Taiwan
- Analysis patient's chest radiographs (CXRs) is time consuming

Task

Build a model to detect lung opacities on CSRs

Challenge

- Not all of the input images contain lung opacities
- We can not predict 100% like ground truth
 - Not sure is there exists noise data
 - Hard to debug from the detection results

- Introduction
- Related Work
- Methodology
- Experiments
- Conclusion
- Future Work

Related Work

	YOLOv5	Faster R-CNN
Stage	One-stage	Two-stage
Speed	Faster	Slower
Accuracy	?	?

- Introduction
- Related Work
- Methodology
- Experiments
- Conclusion
- Future Work

Overview

• In this project, we focus on data processing

Data Pre-processing - Cleaning

- Contain 26,684 image training dataset
- Use those images with lung opacity only

Data Pre-processing - CLAHE

Contrast Limited Adaptive Histogram Equalization (CLAHE)

- Improve contrast in images
- Widely used in medical images

Data Pre-processing – Transformation

- Resize: $1024 \times 1024 \rightarrow 500 \times 500$ for saving computational resources
- Flip: randomly flipping for data augmentation
- Rotate: randomly rotate 90 degree for data augmentation

Mosaic in YOLOv5

- Mixing 4 training images into one
- Increase the variety of background
 - → Identify the targets from a local view of an image
- BN from 4 different images on each layer
 - → Reduce the need for GPU

Issue of Using Mosaic in Pneumonia dataset

- Mosaic is not suitable for Pneumonia dataset
- Pneumonia detection need to consider whole image
 - Find the location of lungs → Detect the opacities

- Introduction
- Related Work
- Methodology
- Experiments
 - Setup
 - Experimental Results
 - Ablation Studies
 - Discussion
- Conclusion
- Future Work

Setup

Dataset

- Training: 26,684 images (only 6,012 images are used for training after data cleaning)
- Testing: 3,000 images

Evaluation Metric

Mean Average Precision (mAP)

Model

- YOLOv5: Pre-trained YOLOv5X with CSPDarknet53 as the backbone
- Faster R-CNN: Pre-trained Faster R-CNN with ResNet50 as the backbone

Experimental Results

Model	mAP
Baseline	0.20125
YOLOv5	0.05240
Faster R-CNN	0.14062

Baseline > Faster R-CNN > YOLOv5

Detection Results

Type	Ground Truth	YOLOv5	Faster R-CNN
Training	RICHT.	pneumonia 0.23	
Test		pneumonia 0.22	

Ablation Studies

- 1. w/o Mosaic v.s. w/ Mosaic (YOLOv5)
- 2. w/o Data Cleaning v.s. w/ Data Cleaning (Faster R-CNN)
- 3. w/o CLAHE v.s. w/ CLAHE (Faster R-CNN)
- 4. w/o Resizing v.s. w/ Resizing (Faster R-CNN)
- 5. w/o Rotation v.s. w/ Rotation (Faster R-CNN)

w/o Mosaic v.s. w/ Mosaic

Setting	mAP
w/o Mosaic	0.05240
w/ Mosaic	0.01470

- + 0.0354 mAP without using Mosaic
- Mosaic is not suitable for this dataset

w/o Data Cleaning v.s. w/ Data Cleaning

	Setting	mAP
CLAHE +	rotate90 + resize	0.12755
CLAHE + clear	ning + rotate90 + resize	0.14062

• + 0.01305 mAP with data cleaning

w/o CLAHE v.s. w/ CLAHE

Setting	mAP
cleaning + rotate90 + resize	0.13948
CLAHE + cleaning + rotate90 + resize	0.14062

- + 0.00114 mAP with CLAHE
- The gain of CLAHE is quite limited

w/o Resizing v.s. w/ Resizing

Setting	mAP
CLAHE + rotate90	0.12240
CLAHE + rotate90 + resize	0.12755

- + 0.00515 mAP with resize input 1024×1024 to 500×500
- Resize the inputs to smaller size do not hurt the performance

w/o Rotation v.s. w/ Rotation

Setting	mAP
cleaning + resize	0.09697
cleaning + rotate90 + resize	0.13948

• + 0.04251 mAP with randomly rotate input 90 degree as data augmentation

Quick Summary of Ablation Studies

```
w/o Mosaic v.s. w/ Mosaic (YOLOv5)  → + 0.03540
w/o Data Cleaning v.s. w/ Data Cleaning (Faster R-CNN)  → + 0.01305
w/o CLAHE v.s. w/ CLAHE (Faster R-CNN)  → + 0.00114
w/o Resizing v.s. w/ Resizing (Faster R-CNN)  → + 0.00515
w/o Rotation v.s. w/ Rotation (Faster R-CNN)  → + 0.04251
```

Discussion

- Test performance stays flat or even drops as training epoch increase
- Overfitting to training data or inappropriate hyper-parameter (e.g. schedule of LR)

- Introduction
- Related Work
- Methodology
- Experiments
- Conclusion
- Future Work

Conclusion

- Faster R-CNN performs better than YOLOv5 in our experiment
- Proper data processing does help to improve performance
- Mosaic in YOLOv5 is not suitable for this dataset

- Introduction
- Related Work
- Methodology
- Experiments
- Conclusion
- Future Work

Future Work

Modification on Faster R-CNN

- Apply K-Means++ to obtain the initial anchor box size
- Use multi-scale features to generate region of interests (original Faster R-CNN only use one scale feature)