Analiza matematyczna dla informatyków.

Mieczysław Cichoń, ver. 2.1/2021

Mieczysław Cichoń - WMI UAM

Plan wykładów 7,8 ...

Granica i ciągłość funkcji jednej zmiennej rzeczywistej. Punkt skupienia zbioru.

Granica funkcji w punkcie. Ciągłość funkcji (np. spline) i ciągłość jednostajna funkcji. Własność Darboux. Twierdzenie Weierstrassa o kresach.

Ciąg dalszy informacji o funkcjach zadanych szeregiem potęgowym. Wybrane funkcje elementarne. Funkcje zadane szeregami potęgowymi w informatyce (np. błędu).

Wybrane szeregi potęgowe i ich obliczanie. Błąd obliczeniowy. (na ćwiczeniach: kilka granic funkcji i badanie ciągłości funkcji zadanych klamrowo, wykorzystanie własności Darboux do obliczania miejsc zerowych równań nieliniowych.

Strony do lektury na wykłady 7, 8...

Czytamy najpierw motywacje:

[K] : motywacje - strony 24-27

teraz wstępne materiały

[K] : strony 163-166, 168-171

ale tym razem głównym źródłem jest:

[W]: strony 77-96, pomocniczo 98-102

(lub alternatywnie: z tego wykładu strony 53-69).

Funkcje 1.

Fakt, że badanie funkcji jest **niezbędne informatykom** nie podlega chyba (czyżby?) dyskusji (a już funkcje logarytmiczna i wykładnicza przy szacowaniach błędów metod, to już absolutna podstawa). Ale twierdzenia o ich własnościach też będą przydatne?

Funkcja dla komputera, to w uproszczeniu (na razie) pewna reguła zgodnie z którą powinien obliczyć dla dowolnej wartości x z dziedziny jej wartość f(x) - oczywiście najchętniej dokładnie. Ale to nie takie oczywiste... Skoro liczba x jest reprezentowana z pewną dokładnością, to to nie może być mowy o dokładnym wyniku f(x)! Przybliżanie wartości to konieczny element więszości obliczeń komputerowych. Poza tym dane x też mogą być obarczone dodatkową niepewnością np. pomiarową...

Funkcje 2.

Jeżeli liczba jest niewymierna, to ma nieskończone rozwinięcie (np. dziesiętne) i można tylko operować na przybliżeniach. Trzeba być świadomy błedu i kontrolować go. W miare możliwości to programista ma go ograniczać. Wyobraźmy sobie, że mamy obliczyć $f(\sqrt{5})$ dla pewnej funkcji f, przesłać wynik, a odbiorca wykona dalsze obliczenie np. $g(f(\sqrt{5}))$. Po pierwsze $\sqrt{5}$ do obliczeń musi być przybliżone,czyli $f(\sqrt{5})$ też (zawsze?), teraz problem transmisji danych - to może zwiększyć błąd i znowu obliczenia przybliżone... Inny problem to m.in. czas obliczeń (niekiedy muszą być w czasie "rzeczywistym"). A może przekazać wartość $\sqrt{5}$ w dokładnej postaci i całość obliczeń wykonać po transmisji? Jak? Np. przekazać równanie $x^2 - 5 = 0$, ale to już inna historia. Jest niestety gorzej - nie wszystkie liczby rzeczywiste są pierwiastkami wielomianów o współczynnikach wymiernych (nie są algebraiczne) np. π . Czyli kontrola przybliżeń to wyzwanie dla informatyków.

Funkcje 3.

Proste zastosowania:

- twierdzenie o złożeniu funkcji obliczalnych (teoria obliczalności),
- funkcje tworzące i ich własności przy badaniach rekurencji,
- interpolacja trygonometryczna (funkcje okresowe),
- funkcje skrótów (haszujące),
- problemy złożoności obliczeniowej (np. funkcje logarytmiczne i wielomianowe),
- w metodach numerycznych własność Darboux przy badaniu istnienia rozwiązań równań nieliniowych (powiemy o tym przy okazji metody bisekcji),
- funkcje tworzące dla "matematyki dyskretnej" zastosowanej w informatyce,
- grafika komuterowa, wizualizacja, analiza obrazów (a tam funkcje trygonometryczne, pochodne) itd.

Funkcje 4.

A jak programy obliczają wartości funkcji? Czy jest "najlepszy algorytm"? Dla zainteresowanych **przegląd** algorytmów dla funkcji $f(x) = \sqrt{x}$ można znaleźć tu:

https://www.codeproject.com/Articles/69941/Best-Square-Root-Method-Algorithm-Function-Precisi

Funkcje 5.

Z bardziej zaawansowanych zastosowań (bez metod numerycznych):

- Grafika komputerowa: interpolacja, transformaty (Fouriera w JPEG czy falkowa w formacie JPEG 2000) (i algebra liniowa),
- Optymalizacja: cały rachunek różniczkowy (i algebra liniowa),
- Robotyka (i inne modelowania fizyczne): analiza funkcji wielu zmiennych,
- Transmisja danych (np. oszczędne algorytmy przesyłu strumieniowego): rachunek różniczkowy stosowany do probabilistyki, (przesył danych - transformaty Fouriera itp.),
- Analiza algorytmów o tym szerzej poniżej (np. asymptotyka)...
- ▶ Jako metoda komunikacji z użytkownikami oprogramowania!!
- Algorytmy kryptograficzne: istotna różnowartościowość funkcji, a także własności pewnych klasycznych funkcji (np. funkcja sinus w algorytmie MD5), ...

Odwzorowania

Niech X i Y oznaczają dowolne zbiory niepuste.

Odwzorowaniem określonym w zbiorze X o wartościach ze zbioru Y nazywamy przyporządkowanie (pewną metodą) każdemu elementowi $x \in X$ jakiegoś elementu $y \in Y$. Zapiszemy to $f: X \longrightarrow Y$, gdzie f jest symbolem tego odwzorowania.

Odwzorowanie dla którego każdemu $x \in X$ przyporządkowano dokładnie jeden $y \in Y$ nazywamy **funkcją**.

Podstawowe pojęcia.

O ile nie określono inaczej: będziemy domyślnie rozumieć, że dziedziną jest zbiór dla którego dany wzór ma sens (największy taki zbiór). Mówimy, że funkcja $f:X\longrightarrow Y$ odwzorowuje zbiór X na zbiór Y (f jest **surjekcją**), gdy dla każdego $y\in Y$ istnieje (co najmniej jeden) element $x\in X$ taki, że y=f(x). Inaczej mówiąc f(X)=Y.

O ile $f(X) \subseteq Y$ (tj. $f(X) \subset Y$, ale istnieje $y \in Y \setminus f(X)$) to mówimy, że f odwzorowuje zbiór X w zbiór Y.

Przykładem funkcji f z \mathbb{R} na \mathbb{R} jest f(x) = 4x + 2, a przykładem funkcji f z \mathbb{R} w (nie jest to surjekcja) \mathbb{R} $f(x) = x^2 + 1$ (wówczas zbiór wartości: $f(X) = <1, \infty$)).

Fakt, że f odwzorowuje zbiór X na zbiór Y oznaczać będziemy

$$f: X \xrightarrow{\mathsf{na}} Y.$$

Różnowartościowość.

Będziemy mówili, że funkcja $f:X\longrightarrow Y$ jest **różnowartościowa** (inne nazwy: iniekcja, wzajemnie jednoznaczna, jedno-jednoznaczna, "jeden na jeden"), gdy zachodzi implikacja

$$(f(x) = f(y)) \Longrightarrow (x = y)$$
, dla dowolnego $x, y \in X$.

Funkcją różnowartościową jest np. $f: \mathbb{R} \longrightarrow \mathbb{R}, \ f(x) = 3x + 1,$ a nie jest nią np. $f: \mathbb{R} \longrightarrow \mathbb{R}, \ f(x) = \sin x.$

Fakt różnowartościowości funkcji f oznaczać będziemy

$$f: X \xrightarrow{1-1} Y.$$

Bijekcje i funkcje odwrotne.

Jeżeli funkcja $f: X \xrightarrow[na]{1-1} Y$ jest równocześnie różnowartościowa i odwzorowuje zbiór X na zbiór Y to nazywamy ją **bijekcją.**

W tym przypadku f określa również inną funkcję (to ważne twierdzenie i powinniśmy to wykazać !!) z Y na X nazywaną funkcją odwrotną do f (oznaczaną przez f^{-1}): $f^{-1}: Y \longrightarrow X$.

$$(f^{-1}(y) = x) \Longleftrightarrow (f(x) = y) .$$

(A) - funkcja 1-1 i "na"
(B) - funkcja 1-1, ale nie "na"
(C) - funkcja nie jest 1-1 i jest "na"
(D) - funkcja nie jest ani 1-1, ani "na"

Przykład.

Niech f(x) = 2x + 6 , pokażemy, że jest bijekcją.

Niech $x_1 \neq x_2$, czyli $x_1 - x_2 \neq 0$ oraz

$$f(x_1) - f(x_2) = 2x_1 + 6 - (2x_2 + 6) = 2x_1 + 6 - 2x_2 - 6 =$$

= $2x_1 - 2x_2 = 2(x_1 - x_2) \neq 0$ na mocy założenia.

Funkcja f jest więc różnowartościowa.

Weźmy teraz dowolne $y\in\mathbb{R}$. Ponieważ szukamy $x\in\mathbb{R}$ takiego, że y=f(x), to uzyskamy równanie y=2x+6 i dalej y-6=2x, czyli ostatecznie $\frac{1}{2}y-3=x$. Istnieje więc $x\in\mathbb{R}$ takie, że y=f(x), czyli f jest "na" \mathbb{R} .

Stąd
$$f^{-1}(y)=rac{1}{2}y-3$$
, i $f^{-1}:\mathbb{R}\longrightarrow\mathbb{R}$ jest bijekcją.

Ważną rolę odgrywają pewne klasy odwzorowań:

- (a) Niech $f: \mathbb{N} \longrightarrow \mathbb{R}$. Takie funkcje, dla których dziedziną jest zbiór liczb naturalnych nazywamy ciągami (o ile wartości funkcji są w \mathbb{R} to ciągami liczbowymi).
 - (b) Niech $X_1 = \{1, 2, 3, \dots, n\}, X_2 = \{1, 2, \dots, m\}.$

Funkcje $f: X_1 \times X_2 \longrightarrow \mathbb{R}$ nazywać będziemy macierzami $n \times m$ -elementowymi.

Więcej o tych klasach odwzorowań powiemy później.

Wykresy funkcji odwrotnych dla $f : \mathbb{R} \to \mathbb{R}$.

Jeżeli f^{-1} jest funkcją odwrotną dla $f: \mathbb{R} \to \mathbb{R}$, to jej wykres jest symetryczny do wykresu funkcji f względem prostej y=x.

Monotoniczność.

Definicja. Niech $f: A \longrightarrow \mathbb{R}, A \subset \mathbb{R}, A \neq \emptyset$.

Będziemy mówić, że funkcja f jest:

- (a) rosnąca w A, gdy $(x_1, x_2 \in A, x_1 < x_2) \implies f(x_1) < f(x_2),$
- (b) malejąca w A, gdy $(x_1, x_2 \in A, x_1 < x_2) \implies f(x_1) > f(x_2),$
- (c) niemalejąca w A, gdy $(x_1, x_2 \in A, x_1 < x_2) \implies f(x_1) \le f(x_2),$
- (d) nierosnąca w A, gdy $(x_1, x_2 \in A, x_1 < x_2) \implies f(x_1) \ge f(x_2).$

W przypadku, gdy dla dowolnych $x_1, x_2 \in A$, $f(x_1) = f(x_2)$ funkcję nazywać będziemy stałą.

Monotoniczność cd.

Oczywiście funkcja może nie mieć żadnej z powyższych własności!

(np.
$$f(x) = \sin x \text{ dla } A = \mathbb{R}$$
), ale:

wszystkie funkcje posiadające jedną z powyższych własności nazywamy **monotonicznymi** (funkcje z (a) i (b) - ściśle monotonicznymi).

 ${f U}$ w a g a : Zwracamy szczególną uwagę, że własność ta zależy od zbioru (dziedziny)! Umawiamy się, że mówiąc krótko "funkcja f jest monotoniczna" oznaczać to będzie, że jest monotoniczna w całej swojej dziedzinie.

Funkcje wypukłe.

Definicja. Niech $A \subset \mathbb{R}$ będzie przedziałem. Funkcję $f: A \longrightarrow \mathbb{R}$ nazywamy **wypukłą** w A gdy dla dowolnych $a, b \in A$ oraz dowolnych $s, t \in \mathbb{R}$, $k \in <0,1>$, zachodzi nierówność

$$f(k \cdot a + (1-k) \cdot b) \leq k \cdot f(a) + (1-k) \cdot f(b) .$$

W przypadku, gdy nierówność zachodzi w przeciwnym kierunku funkcję nazywamy **wklęsłą** w *A*.

Ponownie zwracamy uwagę, że ta własność także zależy od zbioru, a nierówność jest na ogół bardzo dobrym oszacowaniem dla wartości funkcji *f* często wykorzystywanym w różnych zastosowaniach.

Nieco później podamy inną metodę badania wypukłości funkcji f. Ilustracją graficzną tej cechy jest fakt, iż odcinek łączący dowolne dwa punkty wykresu $\{(x,y):x\in A,\ y=f(x)\}$,,leży nad" wykresem funkcji (dokładnie to stwierdza nierówność z definicji!! - zrobić odpowiedni rysunek).

Przykładami funkcji wypukłych są np. $f(x)=x^2, x\in\mathbb{R}$ czy $f(x)=e^x, x\in\mathbb{R}$, natomiast funkcja $f(x)=\sin x$ jest wypukła w $A=<\pi,2\pi>$, ale nie jest wypukła w swojej dziedzinie. Funkcje wklęsłe to np. $f(x)=-x^2, x\in\mathbb{R}$ czy $f(x)=\log x, x\in(0,\infty)$.

Przykład. Ponieważ $2=\frac{1}{2}\cdot 1+\frac{1}{2}\cdot 3$, a funkcja $f(x)=\sqrt{x}$, $x\in <0,\infty)$ jest wklęsła (sprawdzić !), to m.in. (!) wstawiając a=1 oraz b=3 do definicji uzyskamy

$$\sqrt{2} \geq \frac{1}{2} \cdot \sqrt{1} + \frac{1}{2} \sqrt{3},$$

czyli $2\sqrt{2}-\sqrt{3}\geq 1$, a ta nierówność nie dla wszystkich jest oczywista...

Podobnie natychmiast mamy przydatne oszacowanie pierwiastka: $\sqrt{2} \leq \frac{3}{2}$ (tu: $\frac{1}{2} = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 0$, gdyż $f(x) = 2^x$ - wypukła).

Funkcje elementarne.

A teraz podamy klasę funkcji zwanych elementarnymi. Jest to niestety umowne pojęcie i można spotkać w literaturze zestawy takich funkcji nieco różniące się od naszego, ale na szczęście raczej rzadko.

Do funkcji elementarnych zaliczamy funkcje:

- potęgowe,
- wykładnicze,
- trygonometryczne,
- odwrotne do powyższych klas funkcji: pierwiastkowe, logarytmiczne, cyklometryczne.

Inne klasy funkcji będą uzyskiwane wykonując działania na funcjach elementarnych, m.in.

- sumy i iloczyny: np. wielomianowe $(f(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \ldots + a_n \cdot x^n)$ i hiperboliczne (!), oraz ich ilorazy (np. funkcje wymierne ilorazy funkcji wielomianowych, a szczególny przypadek to funkcje homograficzne $f(x) = \frac{a_0 + a_1 x}{b_0 + b_1 x}$,
- złożenia funkcji elementarnych,
- tzw. "klamrowe" (np. wartość bezwzględna, funkcje schodkowe czy funkcja sgn(x)) - różne wzory w różnych częściach dziedziny.

Funkcja znaku ("signum"):

$$f(x) = \operatorname{sgn} x = \begin{cases} 1 & x > 0 , \\ 0 & x = 0 , \\ -1 & x < 0 . \end{cases}$$

Wybrane funkcje.

Funkcja stała f(x)=c= const oraz liniowa $f(x)=a\cdot x$ nie wymagają większych komentarzy (może uwaga: tzw. "funkcje liniowe" w szkole średniej $f(x)=a\cdot x+b$ posiadają nazwę od swojego wykresu - linii prostej, w rzeczywistości ta klasa funkcji nazywa się w matematyce funkcjami afinicznymi),

Jeżeli $\alpha \in \mathbb{Z}$ to funkcję $f(x) = x^{\alpha}$ nazywamy funkcją potęgową $X = \mathbb{R}$. Dla α nie będącego liczbą całkowitą dziedzina $X = <0, \infty$).

O ile a>0 to funkcję $f:\mathbb{R}\longrightarrow (0,\infty)$ określoną wzorem $f(x)=a^x$ nazywamy funkcją wykładniczą. Własności takich funkcji (w zależności od a) pozostawiamy jako ćwiczenie.

Funkcje potęgowe.

Wybrane funkcje potęgowe - wykresy dla $x \ge 0$. Zwracam uwagę na symetrię wykresów względem prostej y = x (czyli funkcje "pierwiastkowe").

Teraz rozpatrzmy funkcję odwrotną do funkcji potęgowej (o ile $a \neq 1$) $f(x) = a^x$. Funkcja ta istnieje i jest nazywana funkcją logarytmiczną. Szczególnie istotną funkcją jest jedna z funkcji wykładniczych: $f(x) = e^x$, $x \in \mathbb{R}$ oraz funkcja do niej odwrotna $f^{-1}(x) = \ln x$, $x \in (0, \infty)$.

A funkcje logarytmiczne to w informatyce **absolutna podstawa**, por. materiał: takie ciekawostki dla początkujących - koniecznie przeczytać!

Znane z innych działów funkcje trygonometryczne $f(x) = \sin x$, $g(x) = \cos x$, $h(x) = \tan x$, $k(x) = \cot x$ były już wspomniane przy własnościach funkcji. Proszę przypomnieć sobie JAK były definiowane w szkole średniej...

Funkcje odwrotne do nich, ich dziedziny i własności Czytelnik znajdzie częściowo w zadaniach na ćwiczeniach, a w celu poszerzenia wiadomości odsyłamy do literatury.

Funkcje trygonometryczne i odwrotne do nich...

Funkcje schodkowe i łamane.

Jeżeli $f: \langle a,b \rangle \longrightarrow \mathbb{R}$, oraz $a \leq x_0 \leq x_1 \leq x_2 \leq \ldots \leq x_n = t$ to funkcję f nazywamy schodkową, o ile jest stała w każdym z przedziałów (x_{i-1},x_i) , $(i=1,2,\ldots,n)$; a łamaną, gdy jest afiniczna na każdym z tych przedziałów.

Funkcje hiperboliczne.

Inne przydatne w niektórych działach zastosowań funkcje **hiperboliczne**:

$$\sinh x = \frac{e^x - e^{-x}}{2} , \qquad \cosh x = \frac{e^x + e^{-x}}{2} ,$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} , \qquad \coth x = \frac{e^x + e^{-x}}{e^x - e^{-x}} .$$

Pod pewnymi względami (relacje pomiędzy nimi przypominają te znane z trygonometrii - stąd nazwy) rzeczywiście przypominają funkcje trygonometryczne, ale ich wykresy są zdecydowanie inne niż funkcji trygonometrycznych...

Wykresy funkcji hiperbolicznych.

Cele operowania funkcjami w informatyce.

- (1) przybliżanie jednych funkcji innymi (aproksymacja),
- (2) korzystanie z ich ciągłości i jednostajnej ciągłości (np. własność Darboux),
- (3) znajdowanie punktów charakterystycznych (np. miejsc zerowych, wartości największych itp.),
 - (4) badanie własności (np. monotoniczność, wypukłość),
 - (5) korzystanie z granic funkcji do obliczeń granic ciągów,
 - (6) korzystanie z asymptot (np. symbole Landaua) i inne...

Punkty skupienia zbioru.

Definicja. Element $x_0 \in X$ nazywa się punktem skupienia zbioru $A \subset X$ jeżeli w każdej kuli otwartej $K(x_0, r)$ (r > 0) istnieje co najmniej 1 element zbioru A różny od x_0 :

$$\forall \exists x \in (A \cap K(x_0, r))$$

Inaczej mówiąc - x_0 jest punktem skupienia zbioru A jeżeli istnieje ciąg $(x_n)\subset A$ taki, że $|x_n-x_0|\underset{n\to\infty}{\longrightarrow} 0$.

Oczywiście x_0 nie musi należeć do A. Np. A=(0,1). Wówczas każdy punkt $x\in A$ jest jego punktem skupienia, ale również 0 i 1 są jego punktami skupienia.

Granica funkcji w punkcie.

Niech $f: X \to \mathbb{R}$ i niech x_0 niech będzie punktem skupienia zbioru X.

Definicja. (def. Heinego).

Mówimy, że element y_0 jest granicą funkcji f $x_0 \in X$, jeżeli dla dowolnego ciągu (x_n) elementów $x_n \in X$, $x_n \neq x_0$ oraz $|x_n - x_0| \stackrel{n \to \infty}{\longrightarrow} 0$ odpowiedni ciąg $(f(x_n))$ jest zbieżny do y_0 , czyli $|f(x_n) - y_0| \stackrel{n \to \infty}{\longrightarrow} 0$.

Definicja. (def. Cauchy'ego).

Mówimy, że element y_0 jest granicą funkcji f w punkcie $x_0 \in X$, jeżeli dla dowolnego $\varepsilon > 0$ istnieje taka liczba $\delta > 0$, że dla wszystkich elementów $x \neq x_0 \in X$ takich, że $|x - x_0| < \delta$ zachodzi $|f(x) - y_0| < \varepsilon$

Wówczas piszemy $y_0 = \lim_{x \to x_0} f(x)$.

Granica funkcji w punkcie a.

Równoważność definicji granicy.

Czyli definicja Cauchy'ego ma postać:

$$\forall \exists_{\varepsilon>0} \exists_{\delta>0} \forall |x-x_0| < \delta \implies |f(x)-y_0| < \varepsilon.$$

W powyższych definicjach użyliśmy tej samej nazwy: "granica funkcji f" – usprawiedliwia to następujące:

Twierdzenie. Definicje Heinego i Cauchy'ego granicy funkcji f w punkcie x_0 dla funkcji o wartościach rzeczywistych są równoważne tj. element y_0 jest granicą funkcji f w sensie definicji Heinego wtedy i tylko wtedy, gdy jest granicą funkcji f w sensie definicji Cauchy'ego.

$$(C) = (H)$$

Definicje w przypadku funkcji $f: \mathbb{R} \longrightarrow \mathbb{R}, x_0 \in \mathbb{R}$

(def. Heinego)

$$\forall x_n \neq x_0 (\mid x_n - x_0 \mid \underset{n \to \infty}{\longrightarrow} 0) \implies (\mid f(x_n) - y_0 \mid \underset{n \to \infty}{\longrightarrow} 0)$$

(def. Cauchy'ego)

$$\forall \exists_{\varepsilon>0} \exists_{\delta>0} \forall |x-x_0| < \delta \implies |f(x)-y_0| < \varepsilon$$

Granice jednostronne.

Dla funkcji rzeczywistych $f:P\longrightarrow \mathbb{R}$, gdzie P jest przedziałem można pojęcie granicy nieco uogólnić.

Definicja. Niech x_0 będzie punktem skupienia przedziału P. Mówimy, że liczba $g \in \mathbb{R}$ jest granicą prawostronną funkcji f w punkcie x_0 jeżeli:

(a) (def. Heinego)

dla dowolnego ciągu (x_n) , $x_n \in P$, $x_n > x_0$ $x_n \xrightarrow[n \to \infty]{} x_0$ ciąg $(f(x_n))$ jest zbieżny do g

(b) (def. Cauchy'ego) $\forall \begin{array}{ccc} \exists & \forall & 0 < x - x_0 < \delta & \Longrightarrow & |f(x) - g| < \varepsilon \\ \varepsilon > 0 & \delta > 0 & x \in P \end{array}$

Ten fakt oznaczać będziemy: $g = \lim_{x \to x_0 +} f(x)$

Analogicznie definiujemy granicę lewostronną h: w (a) bierzemy ciągi (x_n) takie, że $x_n < x_0$, a w (b) $x \in P$ spełniające warunek $0 < x_0 - x < \delta$.

Oznaczać ją będziemy $h=\lim_{x\to x_0-}f(x)$ (lub $h=f(x_0-0)=f(x_0-)$). Granice także nazywać będziemy łącznie **jednostronnymi.**

Twierdzenie. Jeżeli $\lim_{x\to x_0+} f(x) = \lim_{x\to x_0-} f(x)$, to istnieje granica funkcji f w punkcie x_0 i równa jest wartości tych granic jednostronnych.

W n i o s e k. Jeżeli $\lim_{x\to x_0+} f(x) \neq \lim_{x\to x_0-} f(x)$, to funkcja f nie posiada granicy w punkcie x_0 .

Różne granice w x=-3, w x=2 granice jednostronne równe (ale granica różna od wartości funkcji)...

Granice na komputerze...

Prezentacja: Skrypt ilustracyjny granic w "Mathematica" - potrzebny darmowy CDF Player lub Mathematica

Twierdzenie o 3 funkcjach.

Otrzymujemy ważne (analogiczne do granic ciągów):

Twierdzenie. (o trzech funkcjach). Jeżeli funkcje f i g mają tę samą granicę k w punkcie x_0 oraz istnieje liczba a>0 taka, że

$$f(x) \le h(x) \le g(x)$$

dla $0 < |x - x_0| < a$, to funkcja h ma granicę w punkcie x_0 i wynosi ona również k.

"Jeżeli obywatel h idzie pomiędzy dwoma policjantami f i g idącymi do komisariatu k, to też tam trafi..."

Działania na granicach.

A teraz kilka działań na granicach:

Twierdzenie. (granica sumy, iloczynu i różnicy). *Jeżeli* funkcje f i g mają granice w punkcie x_0 , to funkcje f+g, f-g oraz $f\cdot g$ mają też granice w tym punkcie i odpowiednio:

$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} (f(x) - g(x)) = \lim_{x \to x_0} f(x) - \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

W szczególności dla f(x) = c = const.

$$\lim_{x\to x_0}(c\cdot g(x))=c\cdot \lim_{x\to x_0}g(x).$$

Ciągłość funkcji w punkcie.

Definicja. Funkcję f określoną w $(x_0 - a, x_0 + a)$, a > 0, nazywamy ciągłą w punkcie x_0 , gdy istnieje granica funkcji f w tym punkcie i jest równa wartości funkcji $f(x_0)$:

$$\lim_{x\to x_0} f(x) = f(x_0) .$$

Twierdzenie. Niech $f:(x_0-a,x_0+a)\longrightarrow \mathbb{R}$. Funkcja f jest ciągła w punkcie x_0 , gdy zachodzi jeden z równoważnych warunków:

$$\forall \exists_{\varepsilon>0} \quad \exists_{\lambda>0} \quad \forall_{\lambda<(x_0-a,x_0+a)} \mid x-x_0 \mid <\delta \implies \mid f(x)-f(x_0) \mid <\varepsilon,$$

$$\forall (x_n \xrightarrow[(x_n)]{} x_0) \implies (f(x_n) \xrightarrow[n\to\infty]{} f(x_0)).$$

Analogicznie, jak dla granic, definicje te nazywa się odpowiednio ciągłością funkcji f w punkcie x_0 w sensie Cauchy'ego oraz w sensie Heinego.

Przykłady.

(1)
$$f(x) = 1$$
 dla $x \neq 0$ i $f(0) = 0$.

Zauważmy, że $\lim_{x\to 0} f(x) = 1$ (sprawdzenie tego oczywistego faktu pozostawiamy Czytelnikowi). Niemniej

$$\lim_{x \to x_0} f(x) = 1 \neq 0 = f(0).$$

Funkcja nie jest ciągła.

- (2) Niech $g(x) = \sin \frac{1}{x}$ dla $x \neq 0$, g(0) = a. Jak wiemy, nie istnieje granica funkcji g w punkcie $x_0 = 0$. Co więcej dla jakiejkolwiek wartości a nie można uzyskać równości $\lim_{x\to 0} g(x) = a$, a tak można postąpić w przykładzie (1) kładąc wartość funkcji w punkcie 0 jako f(0) = 1.
- (3) I jeszcze jeden przypadek $h(x) = \frac{1}{x^2}$ dla $x \neq 0$ oraz h(0) = 0. Tu $\lim_{x\to 0} h(x) = +\infty$, a więc $\lim_{x\to x_0} h(x) \neq h(0)$.

Rodzaje punktów nieciągłości.

Punkty nieciągłości funkcji f w punkcie x_0 można podzielić na ważne przypadki:

Definicja. Niech $f:(x_0-a,x_0+a)\longrightarrow \mathbb{R}$ i niech f będzie nieciągła w punkcie x_0 . Mówimy, że:

- (10) funkcja f ma nieciągłość I rodzaju o ile istnieją granice jednostronne $\lim_{x\to x_0-} f(x)$ i $\lim_{x\to x_0+} f(x)$; jeżeli przy tym istnieje $\lim_{x\to x_0} f(x)$ to nieciągłość nazywamy usuwalną, a jeżeli nie nieusuwalną,
- (2⁰) funkcja f ma nieciągłość II rodzaju, o ile nie istnieje choć jedna z granic jednostronnych $\lim_{x\to x_0-} f(x)$, $\lim_{x\to x_0+} f(x)$.

Punkty nieciągłości.

Nieciągłości I rodzaju (nieusuwalne) w x=1 i x=3 (usuwalna w x=0).

Funkcja z przykładu (1) ma więc nieciągłość I rodzaju usuwalną, a funkcja $f(x) = \operatorname{sgn} x$ nieciągłość I rodzaju nieusuwalną (tzw. skok). W pozostałych przykładach są nieciągłości II rodzaju.

Zadanie: zbadaj ciągłość i określ typ nieciągłości, o ile funkcje są w pewnych punktach nieciągłe:

(a)
$$f(x) = [\sin x]$$
,

(b)
$$f(x) = x^2 \cdot ([x])^2$$
,

(c)
$$f(x) = x^2 \cdot e^{\frac{1}{x}} .$$

(uwaga: [x] = Ent(x) to funkcja "entier", czyli część całkowita liczby x)

Badanie nieciągłości za pomocą komputera.

Badanie ciągłości (lub nie) jest akurat jedną z czynności, których komputer (programista) zbyt łatwo nie wykona.

Mamy sporo trudności do pokonania: skrypt ilustracyjny problemu ze sprawdzaniem nieciągłości nawet w "Mathematica" - potrzebny darmowy *CDF Player* lub *Mathematica*

Dla chętnych (trochę przed czasem - bo temat funkcji wielu zmiennych nie mieści się już w programie "Analizy 1"!!): skrypt ilustracyjny pokazujący problem z funkcjami wielu zmiennych - POLECAM!

Własności funkcji ciągłych I.

W związku z własnościami granic mamy oczywiście:

Twierdzenie. (o ciągłości ilorazu) Jeżeli f i g są ciągłe w punkcie x_0 , to funkcie f+g, f-g, $f \cdot g$ oraz $a \cdot f$ ($a \in \mathbb{R}$) są ciągłe w x_0 , a jeżeli ponadto $g(x_0) \neq 0$ to także funkcja $\frac{f}{\sigma}$ jest ciągła w x_0 .

Twierdzenie. (o ciągłości funkcji złożonej) *Niech funkcja g* będzie ciągła w punkcie x₀ i niech funkcja f będzie ciągła w punkcie $y_0 = g(x_0)$. Wtedy funkcja złożona $(f \circ g)(x) = f(g(x))$ iest ciagła w punkcie x_0 .

Twierdzenie. (o ciągłości funkcji odwrotnej) Załóżmy, że funkcja f : $(a,b) \longrightarrow \mathbb{R}$ jest ściśle monotoniczna w tym przedziale i ciągła w każdym punkcie tego przedziału oraz niech $m = \inf_{x \in (a,b)} f(x) \le M = \sup_{x \in (a,b)} f(x)$. Wtedy funkcja odwrotna $f^{-1}:(m,M)\longrightarrow \mathbb{R}$ jest ściśle monotoniczna w (m,M)i ciągła w każdym punkcie przedziału (m, M).

Ciągłość jednostronna.

Definicja.

- (1⁰) Funkcję $f: < x_0, x_0 + a) \longrightarrow \mathbb{R}$ (a > 0) nazywamy prawostronnie ciągłą w pukcie x_0 , gdy istnieje $\lim_{x \to x_0 +} f(x)$ oraz $\lim_{x \to x_0 +} f(x) = f(x_0)$.
- (20) Funkcję $f:(x_0-a,x_0> \longrightarrow \mathbb{R} \ (a>0)$ nazywamy lewostronnie ciągłą w punkcie x_0 , gdy istnieje $\lim_{x\to x_0-} f(x)$ oraz $\lim_{x\to x_0-} f(x)=f(x_0)$.

Asymptoty.

Ważną konsekwencją zastosowania pojęcia granicy funkcji w badaniach jej przebiegu jest możliwość wykorzystania tzw. asymptot funkcji.

Definicja. Jeżeli funkcja f jest ciągła w przedziale $(x_0-\varepsilon,x_0)$ $[(x_0,x_0+\varepsilon)]$ dla pewnego $\varepsilon>0$ oraz

$$\lim_{x\to x_0-} |f(x)| = +\infty$$

to mówimy, że prosta $x = x_0$ jest prawostronną [lewostronną] asymptotą pionową funkcji f.

Na ogół nie będziemy precyzować czy prosta $x=x_0$ jest prawo- czy lewostronną asymptotą pionową i jeśli zajdzie choć jeden z tych przypadków, to będziemy po prostu mówić o asymptocie pionowej funkcji f. Oczywiste jest, że funkcja f może mieć wiele asymptot pionowych np. $f(x)=\operatorname{tg} x$ ma nieskończenie wiele asymptot pionowych (obustronnych !).

Asymptoty pionowe.

a) - lewostronna, b) - prawostronna, c) - dwustronna

a) funkcja prawostronnie ciągła w x_0

Asymptoty ukośne.

Definicja. Jeżeli istnieje $M \subset \mathbb{R}$ taka, że f jest ciągła w przedziale $(M, +\infty)$ $[(-\infty, M)]$, oraz istnieje prosta y = mx + n taka, że

$$\lim_{x\to+\infty}[f(x)-(mx+n)]=0,$$

odpowiednio:
$$\lim_{x \to -\infty} [f(x) - (mx + n)] = 0$$

to tę prostą nazywamy **asymptotą ukośną funkcji** f przy $x \to +\infty$ [przy $x \to -\infty$]. W sytuacji, gdy m=0 asymptotę nazywamy czasami poziomą. Jest widoczne, że funkcja może mieć co najwyżej 2 asymptoty ukośne.

Przykład asymptot.

Funkcja
$$f(x)=\mid x\mid$$
 ma 2 asymptoty ukośne
$$y=x \qquad \text{przy} \quad x\to +\infty \; ,$$
 oraz
$$y=-x \qquad \text{przy} \quad x\to -\infty \; ,$$
 gdyż
$$\lim_{x\to +\infty} (\mid x\mid -x)=\lim_{x\to +\infty} (x-x)=0 \; ,$$

 $\lim_{x \to -\infty} (|x| - (-x)) = \lim_{x \to -\infty} ((-x) - (-x)) = 0.$

Wzory na asymptoty ukośne.

Pozostaje pytanie jak w ogólnym przypadku znaleźć te asymptoty?

Twierdzenie. Warunkiem koniecznym i wystarczającym na to, aby funkcja y=mx+n była asymptotą ukośną funkcji f dla $x\to +\infty$ $[x\to -\infty]$, jest aby:

$$m = \lim_{x \to +\infty} \frac{f(x)}{x}$$
 oraz $n = \lim_{x \to +\infty} (f(x) - mx)$,

odpowiednio:
$$\left[m = \lim_{x \to -\infty} \frac{f(x)}{x} \quad \text{oraz} \quad n = \lim_{x \to -\infty} (f(x) - mx)\right]$$
.

Przykłady asymptot.

Asymptota (pozioma) w $-\infty$ oraz ukośna w $+\infty$. Jedna asymptota pionowa.

Przykład.

$$f(x) = x + \frac{1}{x} , \qquad x \neq 0$$

Funkcja ta jest ciągła w każdym punkcie swojej dziedziny (sprawdzić !). Mamy więc:

$$\lim_{x\to 0-} f(x) = -\infty$$

$$\lim_{x\to 0+} f(x) = +\infty$$

Czyli prosta x = 0 jest (obustronną) asymptotą pionową. Rozpatrujmy prostą y = mx + n

$$m = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} (1 + \frac{1}{x^2}) = 1$$
,

$$n = \lim_{x \to +\infty} (f(x) - mx) = \lim_{x \to +\infty} \frac{1}{x} = 0.$$

Stąd y = x jest asymptotą ukośną funkcji f (jedyną).

Zadanie.

Wyznacz asymptoty funkcji:

(a)
$$f(x) = \frac{x^2 - 6x + 3}{x - 3}$$
,

(b)
$$f(x) = x \cdot \operatorname{arc} \operatorname{ctg} x$$
,

(c)
$$f(x) = \ln(4 - x^2)$$
.

Prosimy zwrócić uwagę na istnienie OBU współczynników w definicji asympototy ukośnej !!!

Przykład. Dla funkcji $f(x) = x + \sin x$ mamy: $m = \lim_{x \to \pm \infty} \frac{f(x)}{x} = 1$

ALE

 $n=\lim_{x\to\pm\infty}(f(x)-x)=\lim_{x\to\pm\infty}\sin x$ nie istnieje, a więc funkcja **nie ma** asymptot ukośnych ...

Własności funkcji ciągłych II.

Mówimy, że funkcja f jest ciągła w zbiorze A, jeżeli jest ciągła w każdym punkcie x_0 tego zbioru. Jeżeli przy tym A=< a,b>, to w punkcie $x_0=a$ rozważamy ciągłość prawostronną, a w punkcie $x_0=b$ - ciągłość lewostronną.

Twierdzenie. Funkcja ciągła w przedziale domkniętym jest w tym przedziale ograniczona.

Twierdzenie. Funkcja ciągła w przedziale domkniętym osiąga w nim swoje kresy.

Własność Darboux.

Twierdzenie. (własność Darboux) Jeżeli funkcja f jest określona i ciągła w przedziale $P = \langle a, b \rangle$ oraz $x_1, x_2 \in P$, $x_1 < x_2$ będą takie, że $y_1 = f(x_1) \neq f(x_2) = y_2$, to funkcja f przyjmuje w przedziale $\langle x_1, x_2 \rangle$ wszystkie wartości pośrednie między y_1 i y_2 .

https://www.geogebra.org/m/CXEN5xM3

Ciągłość jednostajna.

Zgodnie z definicją ciągłości funkcji f w punkcie x_0 , wybór liczby δ może być zależny od ε i od x_0 . Jeśli uda się dobrać δ niezależnie od wyboru punktu x_0 , to takie funkcje (a nie są to wszystkie funkcje ciągłe) będą miały szczególne własności.

Definicja. Funkcję f określoną w niepustym zbiorze $A \subset \mathbb{R}$ nazywamy **jednostajnie ciągłą**, gdy dla każdego $\varepsilon > 0$ istnieje $\delta > 0$ taka, że dla dowolnych $x, x_0 \in A$ spełniających warunek $\mid x - x_0 \mid < \delta$, zachodzi nierówność $\mid f(x) - f(x_0) \mid < \varepsilon$.

Zestawimy tu powtórnie obie definicje:

$$\begin{array}{ccccc}
\forall & \forall & \exists & \forall & |x-x_0| < \delta \implies |f(x)-f(x_0)| < \varepsilon , \\
\forall & \exists & \forall & \forall & |x-x_0| < \delta \implies |f(x)-f(x_0)| < \varepsilon .
\end{array}$$

$$\begin{array}{ccccc}
\forall & \exists & \forall & \forall & |x-x_0| < \delta \implies |f(x)-f(x_0)| < \varepsilon .$$

$$\varepsilon>0 & \delta>0 & x_0\in A & x\in A$$

Przykładem funkcji ciągłej jednostajnie na $A=\mathbb{R}$ jest $f(x)=\sin x$, ale np. dla A=(0,1) funkcja $f(x)=\frac{1}{X}$ nie jest ciągła jednostajnie.

Ta własność jest silniejsza niż ciągłość, ale mamy twierdzenie:

Twierdzenie. Funkcja ciągła w przedziale domkniętym jest w tym przedziale jednostajnie ciągła.

W informatyce...

Własność jednostajnej ciągłości wydaje się trudna i zbędna w informatyce, Błąd! **Tylko** takie funkcje są przydatne w obliczeniach! Zauważmy, że obliczając $f(x_0)$ (por. Funkcje 2.) wyznaczamy x_0 z pewną dokładnością, powiedzmy δ . Zgodnie z definicją ciągłości wartość $f(x_0)$ wyznaczymy z pewnym błędem ε . Oczekujemy, że w **innych** punktach x błąd **powinien być taki sam**. Ale to - to właśnie jednostajna ciągłość funkcji!! Błąd oszacowania wartości f(x) jest zależny od błędu oszacowania x, ale jest jednakowy dla wszystkich wartości $x \in A$ tylko dla funkcji jednostajnie ciągłej na A.

Stąd będziemy zwracali uwagą na warunki wystarczające ciągłości jednostajnej. Jeden już był, a drugi pojawi się po wprowadzeniu pochodnych (może już teraz: ograniczona pochodna na A, albo warunek Lipschitz'a). To często "ukryte" założenie algorytmów obliczania wartości funkcji...

Korzystając zaś z definicji Heinego i znanych już twierdzeń dla ciągów liczbowych można (oprócz powyższego) udowodnić kolejne twierdzenia.

Twierdzenie. Jeżeli $\lim_{x\to x_0} f(x) = 0$ i funkcja g jest ograniczona w pewnym zbiorze $(x_0 - a, x_0) \cup (x_0, x_0 + a)$ (dla pewnego a > 0) to $\lim_{x\to x_0} f(x) \cdot g(x) = 0$.

Twierdzenie. (o granicy ilorazu). *Jeżeli funkcję f i g mają* granice w punkcie x_0 i $\lim_{x\to x_0} g(x) \neq 0$, to funkcja $\frac{f}{g}$ ma też granicę w punkcie x_0 oraz

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}.$$

Bisekcja.

A tu już coś korzystającego z własności funkcji - na początek ciągłość.

To prosta (czyżby?) metoda znajdowania przybliżonego rozwiązania równania.

Weźmy równanie (dla ułatwienia jest to wielomian o współczynnikach całkowitych):

$$W(x) = x^5 - 8x^4 + x + 11.$$

Na początek jest łatwo: wiemy (dzięki matematyce!), że mamy od 1 do 5 rozwiązań rzeczywistych (można wykonać wykres, o ile potrafimy...).

Obliczamy kilka wartości w różnych punktach (zastanowić się jak je wybierać). Np. W(-2)=-151<0, W(0)=11>0, W(2)=-83<0, W(10)=...>0. Zlokalizowaliśmy co najmniej 3 rozwiązania (a ile ich jest?).

Bisekcja - c.d.

Teraz stosujemy znany algorytm bisekcji, ALE ...

- 1. Ile jest rozwiązań?
- 2. Czy na pewno w przedziałach [-2,0], [0,2] i [2,10] mamy rozwiązanie i jest ono **jedyne**?
- 3. Czy (i jak?) można oszacować błąd przybliżenia?
- 4. O ile przyjmiemy zakładaną dokładność przez ε , to co się stanie z algorytmem, gdy $|x_1 x_2| < \varepsilon$ $(x_1, x_2 rozwiązania)$?

Dobre? No to

$$\sin \frac{2\pi}{x} = 0 \qquad x \in \left[\frac{1}{10000000}, 1 \right]$$

i powodzenia... Problemem jest też powolna zbieżność metody...

Pomoże matematyka (i analiza matematyczna)...

Bisekcja - problemy.

Aby stosować ten algorytm musimy kontrolować własności funkcji f w równaniu f(x) = 0 w < a, b >. Zakładamy $f(a) \cdot f(b) < 0$. (jak zawsze - istnienie i jedyność)

- (1) musi **istnieć** rozwiązanie w tym przedziale (dzięki ciągłości możemy mieć własność Darboux, a to jest warunkiem wystarczającym),
- (2) aby wyznaczyć rozwiązanie musimy wyizolować **jedyne** rozwiązanie w pewnym podprzedziale (tu mogą pomóc inne własności jak moduł ciągłości, albo o czym później własności pochodnej...),
 - (3) metoda nie gwarantuje znalezienia wszystkich rozwiązań.
- ... ale nawet wtedy algorytm nie musi być skuteczny (uwaga na przybliżenia...). Proponuję przeczytać: [K] str. 24-25 i może **sprawdzić** tamte informacje?

Błędy...

Proces aproksymacji to ważny punkt analizy matematycznej. Obliczanie przez komputer wyrażenia z zadaną dokładnością nie jest banalne gdy obliczamy wartości rzeczywiste x. Przecież już w punkcie wyjścia mamy wartość przybliżoną (np. przekątna kwadratu o boku $1\ldots$). Przykłady ograniczania błędów (f - "trudna", g - "łatwa" obliczeniowo):

$$f(x) = x \cdot \sin x \text{ oraz } g(x) = x^2$$

mają "bliskie" wartości dla x w otoczeniu zera

$$f(x) = \frac{x^2 + 1}{x} \text{ oraz } g(x) = x$$

mają "bliskie" wartości dla "dostatecznie" dużych x.

A jak rola analizy matematycznej? Koniec z cudzysłowami, skorzystamy z **granic i asymptot** (symbole o "małe" i O "duże").

Granice niewłaściwe.

Definicja. Niech funkcja f będzie określona dla takich x, że $0 < \mid x - x_0 \mid < a$ przy pewnym a > 0. Mówimy, że funkcja f ma w punkcie x_0 granicę niewłaściwą $+\infty$, gdy dla dowolnej liczby M > 0 istnieje taka $\delta > 0$, że jeśli $0 < \mid x - x_0 \mid < \delta$, to f(x) > M.

Fakt ten zapisujemy $\lim_{x\to x_0} f(x) = +\infty$.

$$\forall \quad \exists \quad 0 < \mid x - x_0 \mid < \delta \quad \Longrightarrow \quad f(x) > M \ .$$

Analogicznie: funkcja f ma w punkcie x_0 granicę niewłaściwą $-\infty$, gdy

$$\forall A_{N>0} \quad \exists A_{N>0} \quad 0 < |X - X_0| < \delta \implies f(X) < -M$$

Granica niewłaściwa.

Granice w nieskończoności.

Definicja. Niech funkcja f będzie przy pewnym a>0 określona w przedziale $< a, \infty$). Liczbę $g\in \mathbb{R}$ nazywamy **granicą funkcji** f **przy** x **dążącym do** $+\infty$ (co zapiszemy $g=\lim_{x\to+\infty}f(x)$ lub $f(x)\longrightarrow g$ dla $x\to+\infty$) gdy dla dowolnej liczby $\varepsilon>0$ istnieje taka liczba A>0, że jeśli x>A, to $\mid f(x)-g\mid<\varepsilon$

$$\forall \quad \exists \quad \forall \quad x > A \quad \Longrightarrow \quad |f(x) - g| < \varepsilon .$$

Analogicznie dla funkcji f określonej w $(-\infty, a > \text{liczbę } g$ nazwiemy **granicą funkcji** f **przy** x **dążącym do** $-\infty$ $(g = \lim_{x \to -\infty} f(x) \text{ lub } f(x) \to g \text{ przy } x \to -\infty)$, gdy

$$\begin{tabular}{lll} \forall & \exists & \forall & x < -A & \Longrightarrow & \mid f(x) - g \mid < \varepsilon \ . \end{tabular}$$

Granica w nieskończoności.

Funkcje asymptotycznie niewiększe.

Prawie przy każdej okazji przedstawiania algorytmu podany będzie np. rząd jego złożoności obliczeniowej: "O" duże = symbol Landau'a, np. sortowanie o złożoności $O(n\log n)$, co posłuży do oceny i porównywania algorytmów. Alternatywą są nierówności pomiędzy ciągami dowodzone poprzez indukcję matematyczną...

Funkcja asymptotycznie niewiększa od funkcji g(n) to taka funkcja $f: \mathbb{N} \to \mathbb{R}$, dla której istnieją c > 0 i $n_0 \in \mathbb{N}$, że $|f(n)| \le c \cdot |g(n)|$ dla (prawie) wszystkich $n \ge n_0$.

Podstawowym zastosowaniem notacji asymptotycznej **w informatyce** jest szacowanie długości działania programów, w szczególności procedur rekurencyjnych, których złożoność łatwo opisać równaniem rekurencyjnym.

Patrz też notacje: "duże Theta" $\Theta(n)$ i "duże Omega $\Omega(n)$ " (ich warunki wystarczające w języku granic ciągów)...

Czasowa złożoność obliczeniowa.

Oznacza to, że $|f(n)| \le c \cdot |g(n)|$ zachodzi dla (prawie wszystkich) liczb naturalnych n, czyli po prostu (warunek wystarczający)

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}<\infty$$

lub nawet niekiedy warunek stosowany ogólniej:

$$\limsup_{n\to\infty}\frac{f(n)}{g(n)}<\infty.$$

Zbiór funkcji asymptotycznie nie większych niż g(n) oznaczamy przez O(g(n)). Przykładowe zastosowanie w informatyce: **twierdzenie o rekursji uniwersalnej** (szacowanie długości działania programu wraz ze wzrostem ilości danych - oczywiście asymptotyczne oszacowanie).

 $http://th-www.if.uj.edu.pl/\sim erichter/dydaktyka/Dydaktyka2013/TPl-2013/TPl-wyklad-3-2013-newTempl.pdf$

Funkcje asymptotycznie podobne (równe).

Jeżeli $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1 < \infty$, to funkcje są asymptotycznie równe (czyli $f(n) \sim g(n)$). Studenci matematyki uczą się np. wzoru Stirliga

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

(o liczbie e powiemy oczywiście na wykładzie...), a w informatyce (kryptografia) np. przybliżenie na ilość liczb pierwszych nie większych niż n

$$\pi(n) \sim \frac{n}{\ln n}$$
.

Możliwe zastosowanie wzoru Stirlinga dla **informatyków**: np. oszacowanie liczby cyfr rozwinięcia dziesiętnego liczby 999!.

Funkcje asymptotycznie mniejsze.

Kolejny szczególnie ciekawy przypadek:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0,$$

czyli symbol "o" małe..., czyli istnieje n_0 , takie, że dla dowolnego c>0 nierówność $|f(n)|< c\cdot |g(n)|$ zachodzi dla wszystkich liczb naturalnych $n \geq n_0$.

W informatyce - np. przydatne w badaniach złożoności obliczeniowej, jak w twierdzeniach o hierarchii czasowej i pamięciowej czy w szacowaniu reszty we wzorze Taylora = błędu lub w badaniach złożoności czasowej algorytmów (np. istotny wynik: dla każdego k mamy $\log_2 n = o(n^k)$ - algorytm przeszukiwania połówkowego), patrz też - później - tw. Stolza i regula de l'Hôspitala....

Poza tym dzięki twierdzeniu: jeżeli f(n) = o(g(n)), to f(n) = O(g(n)), pojęcie będzie przydatne bezpośrednio.

Symbole Landaua.

Zależności algebraiczne $O, o, \Omega, \omega, \Theta$.

zapis warunek wystarczający

$$f(x) \in O(g(x))$$
 : $\lim_{x \to \infty} \left| \frac{f(x)}{g(x)} \right| < \infty$

$$f(x) \in o(g(x))$$
: $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$

$$f(x) \in \Omega(g(x))$$
 : $\lim_{x \to \infty} \left| \frac{f(x)}{g(x)} \right| > 0$

$$f(x) \in \omega(g(x))$$
: $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$

$$f(x) \in \Theta(g(x))$$
 : $0 < \lim_{x \to \infty} \left| \frac{f(x)}{g(x)} \right| < \infty$

$$f(x) \in O(1)$$
 – funkcja $f(x)$ jest ograniczona,

 $f(x) \in O(\log n)$ – funkcja f(x) jest ograniczona przez funkcję logarytmiczną,

$$f(x) \in O(n)$$
 – funkcja $f(x)$ jest ograniczona przez funkcję liniową,

 $f(x) \in O(n \log n)$ - w informatyce, funkcja f(x) jest ograniczona przez funkcję quasi-liniową,

$$f(x) \in O(n!)$$
 – funkcja $f(x)$ jest ograniczona przez silnię.

Zastosowanie: badanie złożoności obliczeniowej algorytmów. Najczęstszym zastosowaniem asymptotycznego tempa wzrostu jest szacowanie złożoności problemów obliczeniowych, w szczególności algorytmów. Oszacowanie rzędów złożoności obliczeniowej funkcji pozwala na porównywanie ilości zasobów (np. czasu, pamięci), jakich wymagają do rozwiązania problemu opisanego określoną ilością danych wejściowych. W dużym uproszczeniu: im niższy rząd złożoności obliczeniowej algorytmu, tym będzie on wydajniejszy przy coraz większym rozmiarze problemu (np. ilości danych).

Tajne/poufne.

- Własność Darboux: rozpatrz 2 przypadki (funkcje ciągłe i pochodne funkcji). Uzasadnij konieczność jej wykoerzystania w metodzie bisekcji. Podaj inny przykład, gdy w algorytmie numerycznym korzystamy z tej własności.
- W oszacowaniach złożoności algorytmów występuje symbol Landaua "o małe" (funkcje asymptotycznie mniejsze): f(n) = o(g(n)). W praktyce oczywiście funkcje f(n) i g(n) są rozbieżne do niekończoności , więc korzystnie jest rozszerzyć funkcje f i g jako zdefiniowane na $\mathbb R$ i wykorzystać regułę de l'Hôspitala. **Podaj ją i sprawdź, że** dla dowolnego $\alpha > 0$ $f(n) = \log_2(n) = o(n^\alpha)$.
- Wiemy, że funkcja f(x) jest rzędu o(x²) przy x → 0. Wybierz, które z funkcji podanych poniżej spełniają taki warunek - wykonaj obliczenia:

[a]
$$f_1(x) = x^3$$
,
[b] $f_2(x) = 274x^2$,
[c] $f_3(x) = 2x^{\frac{3}{2}}$,
[d] $f_4(x) = (\sin x)^2$.

- Obliczając za pomocą komputera wartość pewnej funkcji $f:[a,b] \to \mathbb{R}$ w punkcie $x_0 \in [a,b]$ popełnimy na ogół błąd polegający na konieczności wykonania obliczeń przez komputer na liczbach rzeczywistych. Oznaczmy przez $\varepsilon>0$ akceptowalną dokładność obliczeń wartości funkcji f, a przez $\delta>0$ możliwą dokładność wyznaczania wartości liczby rzeczywistej x_0 . Jaka własność funkcji f pozwala, przy ustalonym $\varepsilon>0$ na uzyskanie **wspólnej dla wszystkich punktów** x_0 wielkości $\delta>0$? Jaka klasa funkcji ciągłych f to zapewnia i podaj 2 przypadki (twierdzenia), pozwalające zbadać zachodzenie tej własności.
- ▶ Oblicz, czy $2^{n+1} = O(2^n)$? A czy $2^{2n} = O(2^n)$? (wsk. : symbole Landaua "O duże")