Cauchy, Course d'analyse (1821)

Matteo Bianchetti

February 15, 2025

Contents

1 Prèliminaries 2

Preface

I solve some exercises and prove some statements taken from Cauchy's Course d'analyse (1821).

Notation

- 1. $\bigwedge S$ is the least element in the set S (which I assume to be non-empty and strictly ordered).
- 2. $\bigvee S$ is the greatest element in the set S (which I assume to be non-empty and strictly ordered).

Chapter 1

Prèliminaries

In the chapter *Prèliminaries*, Cauchy discusses the general notion of quantity. He states the following definition and two propositions:

Definition 1.1. Let $n \in \mathbb{N}$. Given a list of real numbers¹ a_1, a_2, \ldots, a_n , a real number m is $medium \ (moyenne)$ among the a_1, \ldots, a_n if and only if

$$\bigwedge \{a_1, a_2, \ldots, a_n\} \le m \le \bigvee \{a_1, a_2, \ldots, a_n\}.$$

Theorem 1.2. Let $n \in \mathbb{N}$. Let $(a_i)_{1 \leq i \leq n}$ and $(b_i)_{1 \leq i \leq n}$ be sequences of real numbers. Then,

$$\frac{\sum_{i=1}^{n} a_1}{\sum_{i=1}^{n} b_i}$$

is a medium of

$$\frac{a_1}{b_1}, \ldots, \frac{a_n}{b_n}.$$

Theorem 1.3. Let a_1, a_2, \ldots, a_n be real numbers. Therefore,

$$\frac{\sum_{i=1}^{n} a_i}{n}$$

is a medium of a_1, a_2, \ldots, a_n and b_1, \ldots, b_n where $b_i = 1$ (and it is called the arithmetic medium).

One proof (using theorem 1.2) is the following.

Proof. Apply theorem 1.2.

The following is a different proof of theorem 1.2 that does not rely on theorem 1.2.

Proof. Let $a = \bigwedge \{a_1, \ldots, a_n\}$ and $A = \bigvee \{a_1, \ldots, a_n\}$. Moreover, let $m = \frac{\sum_{i=1}^n a_i}{n}$. I have to show that

$$a \leq m \leq A$$
.

¹ Cauchy speaks of "quantities" ($quantit\acute{e}$). I do not claim that Cauchy's quantities coincide exactly with the real numbers.

First, I prove that $a \leq m$. Since $a = \bigwedge \{a_1, \ldots, a_n\}$, for some k_1, \ldots, k_n , one can rewrite the sequence a_1, \ldots, a_n as

$$a+k_1, \ldots, a+k_n.$$

Therefore,

$$a = \frac{\sum_{i=1}^{n} a}{n}$$

$$\leq \frac{\sum_{i=1}^{n} a}{n} + \frac{\sum_{i=1}^{n} k_i}{n}$$

$$= \frac{\sum_{i=1}^{n} (a + k_1)}{n}$$

$$= \frac{\sum_{i=1}^{n} a_i}{n}$$

$$= m.$$

Now, I show that $m \leq A$. Similarly to in the previous case, since $A = \bigvee \{a_1, \ldots, a_n\}$, for some k_1, \ldots, k_n , one can rewrite a_1, \ldots, a_n as

$$A-k_1, \ldots, A-k_n.$$

Reasoning as above, one shows that

$$m = \frac{\sum_{i=1}^{n} a_i}{n} = \frac{\sum_{i=1}^{n} (A - k_1)}{n} \le \frac{\sum_{i=1}^{n} A}{n} = A.$$

When $b_i = 1$ for all $1 \le i \le n$, I will simply say that

$$\frac{\sum_{i=1}^{n} a_i}{n}$$

is the arithmetic mean of a_1, \ldots, a_n (i.e., I will not mention the b_i 's).