Causal Reconstruction Kernels for Consistent Signal Recovery

Volker Pohl, Fanny Yang and Holger Boche

Lehrstuhl für Theoretische Informationstechnik, Technische Universität München

Motivation - Causal Reconstruction

Causal signal reconstruction is crucial

- in on-line applications
- feedback loops in control systems
- to reduce border effects in image processing, etc.

Framework – Shift Invariant Sampling

Non-ideal Acquisition

lowpass filter $x(t) \longrightarrow h(t) \longrightarrow y(t) \longrightarrow c_n = y(na)$ t = na

$$c_n = y(na) = \int_{-\infty}^{\infty} h(\tau) x(na - \tau) d\tau$$

$$\widetilde{x}(t) = \sum_{n \in \mathbb{Z}} c_n \, \sigma(t - na)$$

- ullet Subordinate signal space: arbitrary Hilbert space ${\cal H}$
- The sampling process can be described as the evaluation inner products

$$c_n = y(na) = \langle x, s_n \rangle$$
, $n \in \mathbb{Z}$

• Sampling functions $s_n \in \mathcal{H}$ have the form $s_n = (T_a^n s)(t) = s(t - na)$ or in general $s_n = U^n s$ with $\begin{cases} \text{generator } s \in \mathcal{H} \\ \text{U unitary operator on } \mathcal{H} \end{cases}$

- \Rightarrow Sequence $s = \{s_n\}_{n \in \mathbb{Z}}$ of sampling functions forms a stationary sequence in \mathcal{H}
- \Rightarrow Sequence s is characterized by its corresponding spectral density $\Phi_s \in L^1(\mathbb{T})$

$$\langle s_n, s_m \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(n-m)\theta} \Phi_{\mathbf{s}}(e^{i\theta}) d\theta$$

- Sampling space: $\mathcal{S} := \overline{\operatorname{span}}\{s_n : n \in \mathbb{Z}\}$
- ullet $oldsymbol{s}=\{s_n\}_{n\in\mathbb{Z}}$ is a Riesz basis for the sampling space $\mathcal S$

$$\Leftrightarrow 0 < A \le \Phi_{\mathbf{s}}(e^{i\theta}) \le B < \infty \text{ for a.e. } \theta \in [-\pi, \pi)$$

- M. Unser and A. Aldroubi, "A General Sampling Theory for Nonideal Acquisition Devices," *IEEE Trans. Signal Process.*, vol. 42, no. 11, pp. 2915–2925, Nov. 1994.
- T. Michaeli, V. Pohl, and Y. C. Eldar, "U-Invariant Sampling: Extrapolation and Causal Interpolation from Generalized Samples," *IEEE Trans. Signal Process.*, vol. 59, no. 5, pp. 2085–2100, May 2011.

Reconstruction – Ideal World

Assumptions

- ullet Let $x \in \mathcal{S}$ be an arbitrary signal
- All past and future signal samples $c_n = \langle x, s_n \rangle$, $n \in \mathbb{Z}$ are known

Goal

Signal reconstruction of the form

$$\widetilde{x}(t) = \sum_{n \in \mathbb{Z}} \langle x, s_n \rangle \, \sigma_n(t)$$

such that

- $\widetilde{x}(t) = x(t)$ for all $x \in \mathcal{S}$ (Perfect reconstruction)
- $\langle \widetilde{x}, s_n \rangle = \langle x, s_n \rangle$ for all $n \in \mathbb{Z}$ (Consistency)

Solution

A well known result from frame theory states that the problem is solved by the dual Riesz basis $\{\sigma_n\}_{n\in\mathbb{Z}}$ of $\{s_n\}_{n\in\mathbb{Z}}$, given by

$$\sigma_n(t) = (\mathbf{U}^n \sigma)(t) \tag{1}$$
 with $\sigma(t) = \sum_{k \in \mathbb{Z}} \alpha_k \, s_{-k}(t)$ and $\alpha_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\mathrm{e}^{-\mathrm{i}k\theta}}{\Phi_s(\mathrm{e}^{\mathrm{i}\theta})} \, \mathrm{d}\theta.$

Often, in reality only the past signal samples are known!

Reconstruction – Real World

New Assumption

Let $oldsymbol{c}_0 = \{c_0, c_{-1}, \dots\}$ be the past signal samples known at $t = t_0$

Goal

Naive Solution

$$\widetilde{x}_{-}(t) = \sum_{n=0}^{\infty} c_{-n} \sigma_{-n}(t), \quad t \le t_0$$

based on the non-causal dual frame (1)

However this reconstruction is not perfect, i.e. $\widetilde{x}_{-}(t) \neq x_{-}(t)$, because we need the dual Riesz basis $\{\zeta_{-n}\}_{n=0}^{\infty}$ of $\{s_{-n}\}_{n=0}^{\infty}$!

Main Result – Causal Dual Riesz Basis

Theorem Let $s = \{s_n\}_{n \in \mathbb{Z}}$ be a stationary sequence in a Hilbert space \mathcal{H} which is a Riesz basis for $\mathcal{S} = \overline{\operatorname{span}}\{s_n : n \in \mathbb{Z}\}$ and let Φ_s be the spectral density of s. Then $s_0 = \{s_{-n}\}_{n=0}^{\infty}$ is a Riesz basis for $\mathcal{S}_0 = \overline{\operatorname{span}}\{s_{-n} : n = 0, 1, 2, \dots\}$ and the corresponding dual Riesz basis $\{\zeta_{-n}\}_{n=0}^{\infty}$ is given by

$$\zeta_{-n} = \sum_{k=0}^{\infty} \widehat{\psi}_n(k) \, s_{-k} \;, \quad n = 0, 1, 2, \dots$$
 with
$$\widehat{\psi}_n(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \psi_n(\mathrm{e}^{\mathrm{i}\theta}) \, \mathrm{e}^{-\mathrm{i}k\theta} \, \mathrm{d}\theta \;, \quad n = 0, 1, 2, \dots$$

 $\psi_n \in H^2$ are defined as

$$\psi_n(e^{i\theta}) = \frac{1}{\Phi_s^+(e^{i\theta})} P_+ \left[\frac{e^{in\theta}}{\Phi_s^-(e^{i\theta})} \right], \quad n = 0, 1, 2, \dots$$

and wherein Φ_s^+ and Φ_s^- are the spectral factors of Φ_s .

Overall Causal Reconstruction Scheme

Reconstructed past signal

$$\widetilde{x}_{-}(t) = \sum_{n \le 0} c_{-n} \zeta_{-n}(t) , \quad t \le t_0$$

- \bullet Each reconstruction kernel $\zeta_{-n}(t)$ has a different shape
- Each sampling value corresponds to the weighting of the respective kernel

Example – Causal Spline Reconstruction

Practical Assumptions

- Shift-invariant sampling in $L^2(\mathbb{R})$ with period a=1: $(\mathrm{U}^n s)(t)=s(t-n)$
- $\hbox{ Impulse response } s(t) \hbox{ is a B-spline of } \\ 2 \hbox{ nd degree as a model of a non-ideal } \\ 1 \hbox{ lowpass}$

 $\sigma(t)$: generator of the non-causal dual basis

Causal versus Non-causal Reconstruction Kernels

 Dashed lines: truncated non-causal reconstruction kernels

$$\sigma_{-n}(t) = \sum_{k \in \mathbb{Z}} \alpha_k \, s_{-k}(t+n)$$

Solid lines: causal reconstruction kernels

$$\zeta_{-n}(t) = \sum_{k=0}^{\infty} \widehat{\psi}_n(k) \, s_{-k}(t)$$

• For large n, the causal kernel $\zeta_{-n}(t)$ converges to non-causal kernel $\sigma_{-n}(t)$

Signal Reconstruction - Causal versus Non-causal

- Significant differences close to the border
- ullet Causal and non-causal reconstruction coincide at the distant past $t o -\infty$