

SELF-CONSISTENCY IMPROVES CHAIN OF THOUGHT REASONING IN LANGUAGE MODELS

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou Google Research, Brain Team

AGENDA

- 1 MOTIVATION
- **2 RELATED WORKS**
- 3 SELF-CONSISTENCY METHOD
- **4 EVALUATION**

- **5 ADDITIONAL STUDIES**
- 6 CONCLUSION
- 7 APPENDIX

CHAPTER 1

MOTIVATION

CHAIN-OF-THOUGHT REASONING

CoT: a series of prompts which mimic human reasoning to guide language models in their reasoning process.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?",

A: 5

CoT Reasoning:

- There are 3 cars in the parking lot already.
- 2 more arrive.
- Now there are 3 + 2 = 5

The Answer is **5**

COT REASONING

Scaling LMs and implementing CoT improves reasoning abilities for tackling complex tasks.

Pros:

- CoT guides models in step-by-step reasoning, enhancing their ability to reason effectively.
- Achieve higher performance on complex tasks requiring multi-step reasoning.
- A transparent CoT, improves the interpretability of model decision.

Possible to leverage CoT's benefits to achieve greater Consistency in finding the best solution? 1

- Consistency: A desirable property of language understanding models.
- Improving overall language understanding and interpretation.
- Ensuring consistent performance in different linguistic situations.

¹ Measuring and Improving Consistency in Pretrained Language Models, Elazar et al. (2021)

CHAPTER 2

RELATED WORKS

1. Training Verifiers to Solve Math Word Problems, Cobbe et al., 2021, Google

Challenge:

State-of-the-art language models struggle with multi-step mathematical reasoning.

Idea:

Train an additional verifier to re-rank generated solutions.

- The paper introduces GSM8K, a dataset of diverse grade school math word problems.
- Sample a fixed number of candidate solutions, select the solution ranked highest by the verifier.
- Verifiers are trained to judge the correctness of model completions.
- Verification significantly improves performance on GSM8K.
- Improves the solve rate on math tasks compared to just fine-tuning the language model

1. Training Verifiers to Solve Math Word Problems, Cobbe et al., 2021, Google (continue)

Cobbe et al., 2021

VS.

Self-Consistency:

- Sample a fixed number of candidate solutions.
- Verifiers trained to judge the correctness of model completions
- Fine-tuning with human annotated reasoning paths
- Select the solution ranked highest by the verifier.

? Will be discussing

2. Measuring and Improving Consistency in Pretrained Language Models,

Elazar et al. (2021)

Challenge:

Assess the consistency of Pretrained Language Models (PLMs) with respect to factual knowledge.

Idea:

Create the PARAREL dataset to evaluate PLM consistency and propose a method for improving model consistency.

Enhance factual knowledge consistency through pre-training with additional consistency loss.

2. Measuring and Improving Consistency in Pretrained Language Models,

Elazar et al. 2021 (continue)

Elazar et al. (2021)

VS.

Self-Consistency

- Recognize the importance of consistency in LMs.
- Acknowledge the limitations of current language models in terms of consistency
- Improve consistency through additional training and experimentation.
- Proposes extending pre-training with an additional consistency loss to improve model consistency

X

CHAPTER 3

SELF-CONSISTENCY METHOD WITHIN THE COT

SELF-CONSISTENCY METHOD

Spec:

- Unsupervised:
- Does not rely on human annotation, additional training or need to further modifications.
- Acting as a self-ensemble approach without the need for multiple separately trained models.
- Improved performance without introducing additional complexity or training requirements.

How?

- Complex reasoning tasks have multiple valid paths.
- Self-consistency encourages diverse problem-solving approaches.
- Thoughtful analysis expand the range of reasoning paths.
- It challenges the notion of a single "right" solution.
- Considering various paths enhances flexibility in finding the best solution.

SELF-CONSISTENCY METHOD

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

A: There are 3 cars in the parking lot already. 2 more arrive. Now there are 3 + 2 = 5 cars. The answer is 5.

Q: Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder for \$2 per egg. How much does she make every day?

A:

1: CoT Prompting

a language model is prompted with a set of manually written chain-of-thought exemplars

SELF-CONSISTENCY WITHIN THE COT REASONING

she has 16 - 3 = 13 left. Then

she bakes muffins, so she

has 13 - 4 = 9 eggs left. So

she has 9 eggs * \$2 = \$18.

A:

friends every day with four. She sells

the remainder for \$2 per egg. How

much does she make every day?

instead of relying on "greedy decode."

SELF-CONSISTENCY WITHIN THE COT REASONING

3. Aggregating Reasoning Paths for Consistent Answers

- Aggregate the reasoning paths by marginalizing them out.
- Select the most consistent answer from the final set of answers.

SAMPLING

Self-consistency is compatible with most existing sampling algorithms, including:

- Temperature Sampling (Ackley et al., 1985; Ficler & Goldberg, 2017)
- Top-K Sampling (Fan et al., 2018; Holtzman et al., 2018; Radford et al., 2019)
- Nucleus Sampling (Holtzman et al., 2020)

SELF-CONSISTENCY OVER DIVERSE REASONING PATHS

She eats 3 for breakfast, so she has 16 - 3 = 13 left. Then she bakes muffins, so she has 13 - 4 = 9 eggs left. So she has 9 eggs * \$2 = \$18.

$$r_{i\rightarrow}$$
 a_{i}

- After Sampling multiple (r_i, a_i)
- Apply marginalization over r_i
 by taking a majority vote over a_i

r_i: a sequence of tokens representing the reasoning path

 a_i the generated answers $\in A$: fixed answer set

m: # of candidate outputs sampled from the decoder

$$\arg\max_{a} \sum_{i=1}^{m} \mathbb{1}(\mathbf{a}_i = a)$$

Majority Vote

The most "consistent" answer among the final answer set.

Accuracy Comparison across commonsense reasoning benchmarks

	GSM8K	MultiArith	AQuA	SVAMP	CSQA	ARC-c
Greedy decode	56.5	94.7	35.8	79.0	79.0	85.2
Weighted avg (unnormalized) Weighted avg (normalized)	$56.3 \pm 0.0 \\ 22.1 \pm 0.0$	90.5 ± 0.0 59.7 ± 0.0			$74.8 \pm 0.0 \\ 52.1 \pm 0.0$	
Weighted sum (unnormalized) Weighted sum (normalized)	$59.9 \pm 0.0 \\ 74.1 \pm 0.0$	$\begin{array}{c} 92.2 \pm 0.0 \\ 99.3 \pm 0.0 \end{array}$		$76.2 \pm 0.0 \\ 86.8 \pm 0.0$	$76.2 \pm 0.0 \\ 80.7 \pm 0.0$	$83.5 \pm 0.0 \\ 88.7 \pm 0.0$
Unweighted sum (majority vote)	74.4 ± 0.1	99.3 ± 0.0	48.3 ± 0.5	86.6 ± 0.1	80.7 ± 0.1	88.7 ± 0.1

Table 1: Accuracy comparison of different answer aggregation strategies on PaLM-540B.

DIFFERENT ANSWER AGGREGATION STRATEGIES

Weighted Aggregation

Weight each (r_i, a_i) by $P(r_i, a_i | prompt, question)$ either take the:

- unnormalized probability of the model generating: P(r_i, a_i | prompt, question) or
- normalize the conditional probability by the output length (Brown et al., 2020)

$$P(\mathbf{r}_i, \mathbf{a}_i \mid \text{prompt}, \text{question}) = \exp^{\frac{1}{K} \sum_{k=1}^K \log P(t_k \mid \text{prompt}, \text{question}, t_1, \dots, t_{k-1})}$$

Normilzed weighted sum

k: total # of tokens log probability of generating the k-th token tk in (ri, ai) conditioned on the previous tokens

Accuracy Comparison across commonsense reasoning benchmarks

	GSM8K	MultiArith	AQuA	SVAMP	CSQA	ARC-c
Greedy decode	56.5	94.7	35.8	79.0	79.0	85.2
Weighted avg (unnormalized) Weighted avg (normalized)	$56.3 \pm 0.0 \\ 22.1 \pm 0.0$	90.5 ± 0.0 59.7 ± 0.0	35.8 ± 0.0 15.7 ± 0.0	$73.0 \pm 0.0 \\ 40.5 \pm 0.0$	$74.8 \pm 0.0 \\ 52.1 \pm 0.0$	
Weighted sum (unnormalized) Weighted sum (normalized)	59.9 ± 0.0 74.1 ± 0.0	$\begin{array}{c} 92.2 \pm 0.0 \\ 99.3 \pm 0.0 \end{array}$	$\begin{array}{c} 38.2 \pm 0.0 \\ 48.0 \pm 0.0 \end{array}$	$76.2 \pm 0.0 \\ 86.8 \pm 0.0$	$76.2 \pm 0.0 \\ 80.7 \pm 0.0$	$83.5 \pm 0.0 \\ 88.7 \pm 0.0$
Unweighted sum (majority vote)	74.4 ± 0.1	99.3 ± 0.0	48.3 ± 0.5	86.6 ± 0.1	80.7 ± 0.1	88.7 ± 0.1

Table 1: Accuracy comparison of different answer aggregation strategies on PaLM-540B.

CHAPTER4

EVALUATION

EXPERMINET SETUP

- Benchmarks:
 - Arithmetic reasoning (use the Math Word Problem Repository, ...
 - Commonsense reasoning (CommonsenseQA, StrategyQA, ...)
 - Symbolic Reasoning (last letter concatenation, Coinflip)
- All expermiments in the few-shot settings
- Neither training nor fine-tuning
- Use same propmts for fair comparision

Language Models:

UL2 (encder-decoder, 20-B)¹

LaMDA (decoder-only, 137-B)

GPT-3 (decoder-only, 175-B)²

PaLM (decoder-only, 540-B)

MAIN RESULTS (ARITHMETIC REASONING)

	Method	AddSub	MultiArith	ASDiv	AQuA	SVAMP	GSM8K
	Previous SoTA	94.9 ^a	60.5^{a}	75.3^{b}	37.9^{c}	57.4 ^d	$35^e / 55^g$
UL2-20B	CoT-prompting	18.2	10.7	16.9	23.6	12.6	4.1
	Self-consistency	24.8 (+6.6)	15.0 (+4.3)	21.5 (+4.6)	26.9 (+3.3)	19.4 (+6.8)	7.3 (+3.2)
LaMDA-137B	CoT-prompting	52.9	51.8	49.0	17.7	38.9	17.1
	Self-consistency	63.5 (+10.6)	75.7 (+23.9)	58.2 (+9.2)	26.8 (+9.1)	53.3 (+14.4)	27.7 (+10.6)
PaLM-540B	CoT-prompting	91.9	94.7	74.0	35.8	79.0	56.5
	Self-consistency	93.7 (+1.8)	99.3 (+4.6)	81.9 (+7.9)	48.3 (+12.5)	86.6 (+7.6)	74.4 (+17.9)
GPT-3	CoT-prompting	57.2	59.5	52.7	18.9	39.8	14.6
Code-davinci-001	Self-consistency	67.8 (+10.6)	82.7 (+23.2)	61.9 (+9.2)	25.6 (+6.7)	54.5 (+14.7)	23.4 (+8.8)
GPT-3	CoT-prompting	89.4	96.2	80.1	39.8	75.8	60.1
Code-davinci-002	Self-consistency	91.6 (+2.2)	100.0 (+3.8)	87.8 (+7.6)	52.0 (+12.2)	86.8 (+11.0)	78.0 (+17.9)

Table 2: Arithmetic reasoning accuracy by self-consistency compared to chain-of-thought prompting

MAIN RESULTS (COMMONSENSE AND SYMBOLIC REASONING)

	Method	CSQA	StrategyQA	ARC-e	ARC-c	Letter (4)	Coinflip (4)
	Previous SoTA	91.2 ^a	73.9^{b}	86.4 ^c	75.0^{c}	N/A	N/A
UL2-20B	CoT-prompting	51.4	53.3	61.6	42.9	0.0	50.4
	Self-consistency	55.7 (+4.3)	54.9 (+1.6)	69.8 (+8.2)	49.5 (+6.8)	0.0 (+0.0)	50.5 (+0.1)
LaMDA-137B	CoT-prompting	57.9	65.4	75.3	55.1	8.2	72.4
	Self-consistency	63.1 (+5.2)	67.8 (+2.4)	79.3 (+4.0)	59.8 (+4.7)	8.2 (+0.0)	73.5 (+1.1)
PaLM-540B	CoT-prompting	79.0	75.3	95.3	85.2	65.8	88.2
	Self-consistency	80.7 (+1.7)	81.6 (+6.3)	96.4 (+1.1)	88.7 (+3.5)	70.8 (+5.0)	91.2 (+3.0)
GPT-3	CoT-prompting	46.6	56.7	63.1	43.1	7.8	71.4
Code-davinci-001	Self-consistency	54.9 (+8.3)	61.7 (+5.0)	72.1 (+9.0)	53.7 (+10.6)	10.0 (+2.2)	75.9 (+4.5)
GPT-3	CoT-prompting	79.0	73.4	94.0	83.6	70.4	99.0
Code-davinci-002	Self-consistency	81.5 (+2.5)	79.8 (+6.4)	96.0 (+2.0)	87.5 (+3.9)	73.4 (+3.0)	99.5 (+0.5)

Table 3: Commonsense and symbolic reasoning accuracy by self-consistency compared to CoT prompting

EFFECT OF THE NUMBER OF SAMPLED REASONING PATHS

Number of reasoning paths

 \approx

Accuracy

CHAPTER5

ADDITIONAL STUDIES

IMPROVING ROBUSTNESS TO IMPERFECT PROMPTS

- Imperfect Prompts: Manually constructed prompts in few-shot learning can contain minor mistakes due to human annotation.
- Greedy decoding with imperfect prompts leads to decreased accuracy (17.1% → 14.9%).
- Self-consistency fills in the gaps and significantly improves results with imperfect prompts.

	Prompt with correct chain-of-thought	17.1
LaMDA-137B	Prompt with imperfect chain-of-thought + Self-consistency (40 paths)	14.9 23.4

• Consistency and Accuracy: Consistency, measured as the agreement with the final aggregated answer, is highly correlated with accuracy.

Figure 5: The consistency is correlated with model's accuracy.

SELF CONSISTENCY FOR NON-NATURAL-LANGUAGE REASONING AND ZERO-SHOT COT

Self-consistency improves accuracy by generating intermediate equations

Gains are smaller due to limited diversity in equation decoding.

e.g., from "There are 3 cars in the parking lot already. 2 more arrive.

Now there are 3 + 2 = 5 cars." to "3 + 2 = 5") (Limited Leeway)

LaMDA-137B	Prompt with equations + Self-consistency (40 paths)	5.0 6.5
PaLM-540B	Zero-shot CoT (Kojima et al., 2022) + Self-consistency (40 paths)	43.0 69.2

Self-consistency enhances results significantly in zero-shot CoT scenarios (+26.2%)

CHAPTER6

CONCLUSION

CONCLUSION AND FUTURE WORK

Conclusion

- Self-Consistency improves accuracy in a range of Arithmetic and Commonsense reasoning tasks across four language models.
- With reasoning paths enhances interpretability in reasoning tasks.
- Provides improved output calibration and uncertainty estimation.
- Computation cost: Self-Consistency incurs additional computational overhead.
- Optimal paths: Few reasoning paths yield significant gains without excessive cost.

Future Work

- Use self-consistency to generate better supervised data for fine-tuning.
- Improving prediction accuracy in a single inference run.
- Mitigate inconsistencies and inaccuracies in reasoning paths to enhance trustworthiness.
- Further research needed to refine the process of generating effective rationales.

THANKS!

ali.khalaji@stud.tu-darmstadt.de

CHAPTER7

APPENDIX

CONSISTENCY IN LANGUAGE UNDERSTANDING 1

- Possible to leverage CoT's benefits to achieve greater Consistency in finding the best solution?
- Consistency: A desirable property of language understanding models.
- We want to make consistent decisions in semantically equivalent contexts.
- Improving overall language understanding and interpretation.
- Ensuring consistent performance in different linguistic situations.
- Promoting reliable and consistent language processing.

¹ Measuring and Improving Consistency in Pretrained Language Models, Elazar et al. (2021)

APPENDIX - SELF-CONSISTENCY WITHIN THE COT REASONING

Additional Notes on Self-Consistency

- Find a middle ground between open-ended and fixed answer text generation.
- Reasoning Tasks: Usually rely on greedy decoding approaches due to fixed answers.
- Benefits of Diversity: Adding diversity to reasoning processes highly advantageous.
- Sampling Approach: like in open-ended text generation, to introduce diversity.
- Self-consistency can be expanded to open-text generation if we define a suitable consistency metric.
- Metric Definition: Develop a metric to assess agreement or contradiction between multiple generated texts.

SELF-CONSISTENCY VS. SAMPLE-AND-RANK

Experiment Setup

- Comparison conducted on GPT-3 code-davinci-001 model.
- Same number of sequences sampled from the decoder for both approaches.
- Final answer extracted from the top-ranked sequence.

Self-Consistency Method

- Generates multiple sequences from the decoder.
- Promotes agreement and consistency among the generated responses.
- · Results in significant accuracy improvement.

Sample-and-Rank Method¹

- Sampling multiple sequences and ranking them based on log probability.
- Provides a marginal accuracy improvement.
- Gain is comparatively smaller compared to self-consistency.

¹ Towards a Human-like Open-Domain Chatbot, (Adiwardana et al., 2020)

SELF-CONSISTENCY VS. SAMPLE-AND-RANK

Results:

- Self-consistency proves to be a more effective approach for improving generation quality compared to the sample-and-rank method.
- Self-consistency yields substantial accuracy gains by promoting diversity and consistency among generated responses.

SELF-CONSISTENCY VS. BEAM SEARCH

- on the UL2-20B Model.
- Equal number of beams (for beam search) and reasoning paths (for self-consistency)
- Self-consistency can adopt beam search to decode each reasoning path
- The Performance of Self-Consistency with sampling is better, as beam search's limited output diversity limits its effectiveness.1

	Beam size / Self-consistency paths	1	5	10	20	40
AQuA	Beam search decoding (top beam) Self-consistency using beam search Self-consistency using sampling	23.6 23.6 19.7 ± 2.5	19.3 19.8 ± 0.3 24.9 ± 2.6		15.0 24.6 ± 0.4 26.7 ± 1.0	
MultiArith	Beam search decoding (top beam) Self-consistency using beam search Self-consistency using sampling	$10.7 \\ 10.7 \\ 9.5 \pm 1.2$	$12.0 \\ 11.8 \pm 0.0 \\ 11.3 \pm 1.2$		11.0 12.3 ± 0.1 13.7 ± 0.9	

Compare self-consistency with beam search decoding on the UL2-20B model.

¹ A Simple, Fast Diverse Decoding Algorithm for Neural Generation, Li & Jurafsky, 2016)

SELF CONSISTENCY VS. CHAIN OF THOUGHT

- For some tasks (e.g., ANLI-R1, e-SNLI, RTE), adding chain-of-thought does hurt performance compared to standard prompting, but
- but self-consistency is able to robustly boost the performance and outperform standard prompting, making it a reliable way to add rationales in few-shot in-context learning for common NLP tasks

	ANLI R1 / R2 / R3	e-SNLI	RTE	BoolQ	HotpotQA (EM/F1)
Standard-prompting (no-rationale) CoT-prompting (Wei et al., 2022)	69.1 / 55.8 / 55.8 68.8 / 58.9 / 60.6	85.8 81.0	84.8 79.1	71.3 74.2	27.1 / 36.8 28.9 / 39.8
Self-consistency	78.5 / 64.5 / 63.4	88.4	86.3	78.4	33.8 / 44.6

Table 5: Compare Standard/CoT prompting with self-consistency on common NLP tasks.

THE END