Cognome	Nome	Matricola

(Ingegneria Civile)

 $2^{\rm o}$ Appello — 6 luglio 2010

Esercizio 1. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, si considerino i vettori $u_1 = (2, -1, 0, 3)$ e $u_2 = (1, 3, -1, 2)$. Si definisca una funzione $f : \mathbb{R}^4 \to \mathbb{R}^2$ ponendo $f(v) = (u_1 \cdot v, u_2 \cdot v)$, per ogni $v \in \mathbb{R}^4$.

- (a) Si dimostri che f è lineare e si determinino delle basi di Ker f e di Im f.
- (b) Si scriva la matrice di f rispetto alle basi canoniche.
- (c) Dato il vettore $w = (1, 2) \in \mathbb{R}^2$, si calcoli $f^{-1}(w)$.
- (d) Si determini una base di (Ker f) $^{\perp}$.
- (e) Si dimostri che per ogni funzione lineare $g: \mathbb{R}^2 \to \mathbb{R}^4$, la funzione composta $g \circ f: \mathbb{R}^4 \to \mathbb{R}^4$ avrà sempre un autovalore uguale a 0, con molteplicità ≥ 2 .

Esercizio 2. Nello spazio vettoriale \mathbb{R}^4 sia U il sottospazio generato dai vettori $u_1=(3,-1,2,2),$ $u_2=(1,2,-1,3),\ u_3=(1,-5,4,-4).$ Si indichi poi con W l'immagine della funzione $f:\mathbb{R}^3\to\mathbb{R}^4$ definita da

$$f(x, y, z) = (2x - y, x + 3z, 3x + y + z, 2y - 3z).$$

- (a) Si determinino le equazioni cartesiane e una base di U.
- (b) Si determinino le equazioni cartesiane e una base di W.
- (c) Si determini una base di $U \cap W$ e una base di U + W.
- (d) Dato il vettore $\tilde{v} = (1, 4, t, -1)$, si stabilisca se esiste un valore di $t \in \mathbb{R}$ per cui si abbia $\tilde{v} = f(v)$, per qualche $v \in \mathbb{R}^3$.
- (e) Si stabilisca se esistono delle funzioni lineari $g, h : \mathbb{R}^4 \to \mathbb{R}^4$ tali che g(U) = W e h(W) = U. (le risposte devono essere adequatamente motivate)

Esercizio 3. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio generato dal vettore u=(1,-1,2,3) e sia $W=U^{\perp}$ il sottospazio ortogonale di U.

- (a) Si determini l'equazione cartesiana e una base di W.
- (b) Utilizzando il procedimento di Gram-Schmidt, si trasformi la base trovata nel punto (a) in una base ortogonale.
- (c) Dato il vettore v = (3, -1, 5, 2) si trovino due vettori $v_1 \in U$ e $v_2 \in U^{\perp}$ tali che $v = v_1 + v_2$.
- (d) Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione che associa ad ogni vettore $v \in \mathbb{R}^4$ la sua proiezione ortogonale sul sottospazio U. Si scriva la matrice di f rispetto alla base canonica di \mathbb{R}^4 . Chi è il nucleo di f?

Esercizio 4. Nello spazio affine euclideo tridimensionale, si consideri il punto P = (2, -1, 1) e la retta

$$r: \begin{cases} 2x - y = 1\\ x + y + 2z = 2 \end{cases}$$

- (a) Si determini l'equazione cartesiana del piano π contenente la retta r e passante per il punto P.
- (b) Si determini l'equazione cartesiana del piano σ contenente la retta r e ortogonale al piano π .
- (c) Si determinino le equazioni parametriche della retta s passante per P, contenuta nel piano π e ortogonale alla retta r.
- (d) Sia Q=(-1,-2,2). Si determinino le distanze di Q dalla retta r e dal piano π .
- (e) Si determini la proiezione ortogonale Q' del punto Q sul piano π .

Cognome	Nome	Matricola

(Ingegneria Civile)

 $2^{\rm o}$ Appello — 6 luglio 2010

Esercizio 1. Nello spazio vettoriale \mathbb{R}^4 sia U il sottospazio generato dai vettori $u_1=(2,1,-1,2),$ $u_2=(1,2,1,-1),\ u_3=(0,-3,-3,4).$ Si indichi poi con W l'immagine della funzione $f:\mathbb{R}^3\to\mathbb{R}^4$ definita da

$$f(x, y, z) = (2x + y - z, 2y - z, 3x + z, -x + 2y).$$

- (a) Si determinino le equazioni cartesiane e una base di U.
- (b) Si determinino le equazioni cartesiane e una base di W.
- (c) Si determini una base di $U \cap W$ e una base di U + W.
- (d) Dato il vettore $\tilde{v} = (2, 1, t, 1)$, si stabilisca se esiste un valore di $t \in \mathbb{R}$ per cui si abbia $\tilde{v} = f(v)$, per qualche $v \in \mathbb{R}^3$.
- (e) Si stabilisca se esistono delle funzioni lineari $g, h : \mathbb{R}^4 \to \mathbb{R}^4$ tali che g(U) = W e h(W) = U. (le risposte devono essere adequatamente motivate)

Esercizio 2. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, si considerino i vettori $u_1=(3,0,1,-2)$ e $u_2=(1,1,2,3)$. Si definisca una funzione $f:\mathbb{R}^4\to\mathbb{R}^2$ ponendo $f(v)=(u_1\cdot v,u_2\cdot v)$, per ogni $v\in\mathbb{R}^4$.

- (a) Si dimostri che f è lineare e si determinino delle basi di Ker f e di Im f.
- (b) Si scriva la matrice di f rispetto alle basi canoniche.
- (c) Dato il vettore $w = (2, -1) \in \mathbb{R}^2$, si calcoli $f^{-1}(w)$.
- (d) Si determini una base di $(\text{Ker } f)^{\perp}$.
- (e) Si dimostri che per ogni funzione lineare $g: \mathbb{R}^2 \to \mathbb{R}^4$, la funzione composta $g \circ f: \mathbb{R}^4 \to \mathbb{R}^4$ avrà sempre un autovalore uguale a 0, con molteplicità ≥ 2 .

Esercizio 3. Nello spazio affine euclideo tridimensionale, si consideri il punto P = (1, -1, 2) e la retta

$$r: \begin{cases} x+3z=2\\ 2x+y+z=1 \end{cases}$$

- (a) Si determini l'equazione cartesiana del piano π contenente la retta r e passante per il punto P.
- (b) Si determini l'equazione cartesiana del piano σ contenente la retta r e ortogonale al piano π .
- (c) Si determinino le equazioni parametriche della retta s passante per P, contenuta nel piano π e ortogonale alla retta r.
- (d) Sia Q=(2,1,0). Si determinino le distanze di Q dalla retta r e dal piano π .
- (e) Si determini la proiezione ortogonale Q' del punto Q sul piano π .

Esercizio 4. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio generato dal vettore u=(2,3,-1,4) e sia $W=U^{\perp}$ il sottospazio ortogonale di U.

- (a) Si determini l'equazione cartesiana e una base di W.
- (b) Utilizzando il procedimento di Gram-Schmidt, si trasformi la base trovata nel punto (a) in una base ortogonale.
- (c) Dato il vettore v = (1, -3, 4, 4) si trovino due vettori $v_1 \in U$ e $v_2 \in U^{\perp}$ tali che $v = v_1 + v_2$.
- (d) Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione che associa ad ogni vettore $v \in \mathbb{R}^4$ la sua proiezione ortogonale sul sottospazio U. Si scriva la matrice di f rispetto alla base canonica di \mathbb{R}^4 . Chi è il nucleo di f?

Cognome	Nome	Matricola

(Ingegneria Civile)

 $2^{\rm o}$ Appello — 6 luglio 2010

Esercizio 1. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio generato dal vettore u=(3,-2,4,-1) e sia $W=U^{\perp}$ il sottospazio ortogonale di U.

- (a) Si determini l'equazione cartesiana e una base di W.
- (b) Utilizzando il procedimento di Gram-Schmidt, si trasformi la base trovata nel punto (a) in una base ortogonale.
- (c) Dato il vettore v = (2, 4, -3, 1) si trovino due vettori $v_1 \in U$ e $v_2 \in U^{\perp}$ tali che $v = v_1 + v_2$.
- (d) Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione che associa ad ogni vettore $v \in \mathbb{R}^4$ la sua proiezione ortogonale sul sottospazio U. Si scriva la matrice di f rispetto alla base canonica di \mathbb{R}^4 . Chi è il nucleo di f?

Esercizio 2. Nello spazio vettoriale \mathbb{R}^4 sia U il sottospazio generato dai vettori $u_1=(1,-1,2,2),$ $u_2=(2,2,-1,1),\ u_3=(-3,-5,4,0).$ Si indichi poi con W l'immagine della funzione $f:\mathbb{R}^3\to\mathbb{R}^4$ definita da

$$f(x,y,z) = (2y - z, x + y - z, 2x + y, -x + 2z).$$

- (a) Si determinino le equazioni cartesiane e una base di U.
- (b) Si determinino le equazioni cartesiane e una base di W.
- (c) Si determini una base di $U \cap W$ e una base di U + W.
- (d) Dato il vettore $\tilde{v} = (1, 1, t, 1)$, si stabilisca se esiste un valore di $t \in \mathbb{R}$ per cui si abbia $\tilde{v} = f(v)$, per qualche $v \in \mathbb{R}^3$.
- (e) Si stabilisca se esistono delle funzioni lineari $g, h : \mathbb{R}^4 \to \mathbb{R}^4$ tali che g(U) = W e h(W) = U. (le risposte devono essere adequatamente motivate)

Esercizio 3. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, si considerino i vettori $u_1=(0,2,-3,1)$ e $u_2=(1,2,-1,-2)$. Si definisca una funzione $f:\mathbb{R}^4\to\mathbb{R}^2$ ponendo $f(v)=(u_1\cdot v,u_2\cdot v)$, per ogni $v\in\mathbb{R}^4$.

- (a) Si dimostri che f è lineare e si determinino delle basi di Ker f e di Im f.
- (b) Si scriva la matrice di f rispetto alle basi canoniche.
- (c) Dato il vettore $w = (3, 2) \in \mathbb{R}^2$, si calcoli $f^{-1}(w)$.
- (d) Si determini una base di $(\text{Ker } f)^{\perp}$.
- (e) Si dimostri che per ogni funzione lineare $g: \mathbb{R}^2 \to \mathbb{R}^4$, la funzione composta $g \circ f: \mathbb{R}^4 \to \mathbb{R}^4$ avrà sempre un autovalore uguale a 0, con molteplicità ≥ 2 .

Esercizio 4. Nello spazio affine euclideo tridimensionale, si consideri il punto P = (1, 2, 1) e la retta

$$r: \begin{cases} 2y - z = 2\\ 2x + y + 3z = -1 \end{cases}$$

- (a) Si determini l'equazione cartesiana del piano π contenente la retta r e passante per il punto P.
- (b) Si determini l'equazione cartesiana del piano σ contenente la retta r e ortogonale al piano π .
- (c) Si determinino le equazioni parametriche della retta s passante per P, contenuta nel piano π e ortogonale alla retta r.
- (d) Sia Q = (1, -1, 1). Si determinino le distanze di Q dalla retta r e dal piano π .
- (e) Si determini la proiezione ortogonale Q' del punto Q sul piano π .

Cognome	Nome	Matricola

(Ingegneria Civile)

 $2^{\rm o}$ Appello — 6 luglio 2010

Esercizio 1. Nello spazio affine euclideo tridimensionale, si consideri il punto P = (2, 2, -1) e la retta

$$r: \begin{cases} x + 2y - 3z = 1\\ 2x - z = 0 \end{cases}$$

- (a) Si determini l'equazione cartesiana del piano π contenente la retta r e passante per il punto P.
- (b) Si determini l'equazione cartesiana del piano σ contenente la retta r e ortogonale al piano π .
- (c) Si determinino le equazioni parametriche della retta s passante per P, contenuta nel piano π e ortogonale alla retta r.
- (d) Sia Q = (4, -2, 3). Si determinino le distanze di Q dalla retta r e dal piano π .
- (e) Si determini la proiezione ortogonale Q' del punto Q sul piano π .

Esercizio 2. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, si considerino i vettori $u_1 = (1, -4, 2, 0)$ e $u_2 = (2, 1, 3, -1)$. Si definisca una funzione $f : \mathbb{R}^4 \to \mathbb{R}^2$ ponendo $f(v) = (u_1 \cdot v, u_2 \cdot v)$, per ogni $v \in \mathbb{R}^4$.

- (a) Si dimostri che f è lineare e si determinino delle basi di Ker f e di Im f.
- (b) Si scriva la matrice di f rispetto alle basi canoniche.
- (c) Dato il vettore $w = (4, -1) \in \mathbb{R}^2$, si calcoli $f^{-1}(w)$.
- (d) Si determini una base di (Ker f) $^{\perp}$.
- (e) Si dimostri che per ogni funzione lineare $g: \mathbb{R}^2 \to \mathbb{R}^4$, la funzione composta $g \circ f: \mathbb{R}^4 \to \mathbb{R}^4$ avrà sempre un autovalore uguale a 0, con molteplicità ≥ 2 .

Esercizio 3. Nello spazio vettoriale \mathbb{R}^4 sia U il sottospazio generato dai vettori $u_1=(1,-2,3,-1),$ $u_2=(-1,1,2,-1),$ $u_3=(3,-4,-1,1).$ Si indichi poi con W l'immagine della funzione $f:\mathbb{R}^3\to\mathbb{R}^4$ definita da

$$f(x, y, z) = (x + 2y, x - y + 2z, 2y + z, -x - z).$$

- (a) Si determinino le equazioni cartesiane e una base di U.
- (b) Si determinino le equazioni cartesiane e una base di W.
- (c) Si determini una base di $U \cap W$ e una base di U + W.
- (d) Dato il vettore $\tilde{v}=(3,2,3,t)$, si stabilisca se esiste un valore di $t\in\mathbb{R}$ per cui si abbia $\tilde{v}=f(v)$, per qualche $v\in\mathbb{R}^3$.
- (e) Si stabilisca se esistono delle funzioni lineari $g, h : \mathbb{R}^4 \to \mathbb{R}^4$ tali che g(U) = W e h(W) = U. (le risposte devono essere adequatamente motivate)

Esercizio 4. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio generato dal vettore u=(1,-2,-2,3) e sia $W=U^{\perp}$ il sottospazio ortogonale di U.

- (a) Si determini l'equazione cartesiana e una base di W.
- (b) Utilizzando il procedimento di Gram-Schmidt, si trasformi la base trovata nel punto (a) in una base ortogonale.
- (c) Dato il vettore v = (4, -3, 1, -2) si trovino due vettori $v_1 \in U$ e $v_2 \in U^{\perp}$ tali che $v = v_1 + v_2$.
- (d) Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione che associa ad ogni vettore $v \in \mathbb{R}^4$ la sua proiezione ortogonale sul sottospazio U. Si scriva la matrice di f rispetto alla base canonica di \mathbb{R}^4 . Chi è il nucleo di f?

Cognome	Nome	Matricola

(Ingegneria Civile)

 $2^{\rm o}$ Appello — 6 luglio 2010

Esercizio 1. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, si considerino i vettori $u_1=(1,0,-3,3)$ e $u_2=(2,-1,2,-3)$. Si definisca una funzione $f:\mathbb{R}^4\to\mathbb{R}^2$ ponendo $f(v)=(u_1\cdot v,u_2\cdot v)$, per ogni $v\in\mathbb{R}^4$.

- (a) Si dimostri che f è lineare e si determinino delle basi di Ker f e di Im f.
- (b) Si scriva la matrice di f rispetto alle basi canoniche.
- (c) Dato il vettore $w = (2, -3) \in \mathbb{R}^2$, si calcoli $f^{-1}(w)$.
- (d) Si determini una base di (Ker f) $^{\perp}$.
- (e) Si dimostri che per ogni funzione lineare $g: \mathbb{R}^2 \to \mathbb{R}^4$, la funzione composta $g \circ f: \mathbb{R}^4 \to \mathbb{R}^4$ avrà sempre un autovalore uguale a 0, con molteplicità ≥ 2 .

Esercizio 2. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio generato dal vettore u=(2,-1,5,2) e sia $W=U^{\perp}$ il sottospazio ortogonale di U.

- (a) Si determini l'equazione cartesiana e una base di W.
- (b) Utilizzando il procedimento di Gram-Schmidt, si trasformi la base trovata nel punto (a) in una base ortogonale.
- (c) Dato il vettore v = (1, 3, -2, -3) si trovino due vettori $v_1 \in U$ e $v_2 \in U^{\perp}$ tali che $v = v_1 + v_2$.
- (d) Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione che associa ad ogni vettore $v \in \mathbb{R}^4$ la sua proiezione ortogonale sul sottospazio U. Si scriva la matrice di f rispetto alla base canonica di \mathbb{R}^4 . Chi è il nucleo di f?

Esercizio 3. Nello spazio affine euclideo tridimensionale, si consideri il punto P = (1, -2, 2) e la retta

$$r: \begin{cases} x+y-3z=3\\ 2y-z=2 \end{cases}$$

- (a) Si determini l'equazione cartesiana del piano π contenente la retta r e passante per il punto P.
- (b) Si determini l'equazione cartesiana del piano σ contenente la retta r e ortogonale al piano π .
- (c) Si determinino le equazioni parametriche della retta s passante per P, contenuta nel piano π e ortogonale alla retta r.
- (d) Sia Q = (1, 2, 2). Si determinino le distanze di Q dalla retta r e dal piano π .
- (e) Si determini la proiezione ortogonale Q' del punto Q sul piano π .

Esercizio 4. Nello spazio vettoriale \mathbb{R}^4 sia U il sottospazio generato dai vettori $u_1=(2,1,-1,-3),$ $u_2=(1,1,-2,-1),$ $u_3=(0,-1,3,-1).$ Si indichi poi con W l'immagine della funzione $f:\mathbb{R}^3\to\mathbb{R}^4$ definita da

$$f(x, y, z) = (x + 2y - 2z, -y + z, 2x + z, -x + y).$$

- (a) Si determinino le equazioni cartesiane e una base di U.
- (b) Si determinino le equazioni cartesiane e una base di W.
- (c) Si determini una base di $U \cap W$ e una base di U + W.
- (d) Dato il vettore $\tilde{v} = (1, t, 3, 0)$, si stabilisca se esiste un valore di $t \in \mathbb{R}$ per cui si abbia $\tilde{v} = f(v)$, per qualche $v \in \mathbb{R}^3$.
- (e) Si stabilisca se esistono delle funzioni lineari $g, h : \mathbb{R}^4 \to \mathbb{R}^4$ tali che g(U) = W e h(W) = U. (le risposte devono essere adeguatamente motivate)

Cognome	_ Nome	Matricola

(Ingegneria Civile)

 $2^{\rm o}$ Appello — 6 luglio 2010

Esercizio 1. Nello spazio vettoriale \mathbb{R}^4 sia U il sottospazio generato dai vettori $u_1=(1,-1,-3,1),$ $u_2=(2,-1,-4,3),$ $u_3=(-3,1,5,-5).$ Si indichi poi con W l'immagine della funzione $f:\mathbb{R}^3\to\mathbb{R}^4$ definita da

$$f(x, y, z) = (x - z, -2y + z, x + y + 2z, -x + y).$$

- (a) Si determinino le equazioni cartesiane e una base di U.
- (b) Si determinino le equazioni cartesiane e una base di W.
- (c) Si determini una base di $U \cap W$ e una base di U + W.
- (d) Dato il vettore $\tilde{v} = (t, -1, 4, 0)$, si stabilisca se esiste un valore di $t \in \mathbb{R}$ per cui si abbia $\tilde{v} = f(v)$, per qualche $v \in \mathbb{R}^3$.
- (e) Si stabilisca se esistono delle funzioni lineari $g, h : \mathbb{R}^4 \to \mathbb{R}^4$ tali che g(U) = W e h(W) = U. (le risposte devono essere adequatamente motivate)

Esercizio 2. Nello spazio affine euclideo tridimensionale, si consideri il punto P = (1, 3, -1) e la retta

$$r: \begin{cases} 2x - 2y + z = 2\\ x + 3z = 1 \end{cases}$$

- (a) Si determini l'equazione cartesiana del piano π contenente la retta r e passante per il punto P.
- (b) Si determini l'equazione cartesiana del piano σ contenente la retta r e ortogonale al piano π .
- (c) Si determinino le equazioni parametriche della retta s passante per P, contenuta nel piano π e ortogonale alla retta r.
- (d) Sia Q = (3, -1, 2). Si determinino le distanze di Q dalla retta r e dal piano π .
- (e) Si determini la proiezione ortogonale Q' del punto Q sul piano π .

Esercizio 3. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, si considerino i vettori $u_1 = (0, -2, 2, 1)$ e $u_2 = (1, 3, 2, -2)$. Si definisca una funzione $f : \mathbb{R}^4 \to \mathbb{R}^2$ ponendo $f(v) = (u_1 \cdot v, u_2 \cdot v)$, per ogni $v \in \mathbb{R}^4$.

- (a) Si dimostri che f è lineare e si determinino delle basi di Ker f e di Im f.
- (b) Si scriva la matrice di f rispetto alle basi canoniche.
- (c) Dato il vettore $w = (5, -2) \in \mathbb{R}^2$, si calcoli $f^{-1}(w)$.
- (d) Si determini una base di (Ker f) $^{\perp}$.
- (e) Si dimostri che per ogni funzione lineare $g: \mathbb{R}^2 \to \mathbb{R}^4$, la funzione composta $g \circ f: \mathbb{R}^4 \to \mathbb{R}^4$ avrà sempre un autovalore uguale a 0, con molteplicità ≥ 2 .

Esercizio 4. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio generato dal vettore u=(3,-4,1,2) e sia $W=U^{\perp}$ il sottospazio ortogonale di U.

- (a) Si determini l'equazione cartesiana e una base di W.
- (b) Utilizzando il procedimento di Gram-Schmidt, si trasformi la base trovata nel punto (a) in una base ortogonale.
- (c) Dato il vettore v = (4, -2, 3, 1) si trovino due vettori $v_1 \in U$ e $v_2 \in U^{\perp}$ tali che $v = v_1 + v_2$.
- (d) Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione che associa ad ogni vettore $v \in \mathbb{R}^4$ la sua proiezione ortogonale sul sottospazio U. Si scriva la matrice di f rispetto alla base canonica di \mathbb{R}^4 . Chi è il nucleo di f?