

PRÁCTICA 1

OBJETIVO GENERAL

Este documento describe el proceso ETL (Extract, Transform, Load) aplicado al archivo 'notas_master_data_science.csv'. El objetivo del proceso es extraer los datos de los estudiantes, calcular el promedio de notas, clasificar a los estudiantes en aprobados y reprobados, y presentar los resultados mediante diagramas de barras y gráficos tipo rosco (pie chart).

FASE 1 - EXTRACCIÓN

En esta fase se realiza la lectura del archivo CSV 'notas_master_data_science.csv', el cual contiene 50 registros de estudiantes y 5 columnas correspondientes a las materias del máster en Data Science: Machine Learning, Big Data Analytics, Deep Learning, Data Visualization y Statistics & Probability.

```
def DownloadFile(uri: str, filename: str, overwrite: bool = False, timeout: int = 20):
   dest = Path(filename).resolve()
   if dest.exists() and dest.is file() and dest.stat().st size > 0 and not overwrite:
       print(
           f' Ya existe: "{dest}". No se descarga (use overwrite=True para forzar).'
       return
   if dest.parent and not dest.parent.exists():
       dest.parent.mkdir(parents=True, exist ok=True)
   try:
       with requests.get(uri, stream=True, timeout=timeout) as resp:
           resp.raise for status()
           tmp = dest.with suffix(dest.suffix + ".part")
           with open(tmp, "wb") as f:
               for chunk in resp.iter content(chunk size=1024 * 64):
                  if chunk: # filtra keep-alive chunks
                      f.write(chunk)
           tmp.replace(dest)
       print(f' Archivo "{dest}" descargado exitosamente.')
   except requests.exceptions.RequestException as e:
       print(f" X Error al descargar: {e}")
                          \times
```

DESCARGA DEL DATASET

En un servidor se encuentra subido el dataset que consiste en el archivo CSV. La función **DownloadFile** permite descargar el archivo de la URL y lo almacena en un directorio específico.

```
DOWNLOAD_DIR = "Temp"

DATA_FILE_URI = "https://github.com/UIDE-Tareas/5-Diseno-Procesos-ETL-Data-Science-Tarea1/raw/refs/heads/main/Data/NotasMasterDataScience.csv"

DATA_FILENAME = f"{DOWNLOAD_DIR}/NotasMasterNotasMasterDataScience.csv"

ShowTitleBox(
    "DESCARGANDO BASE DE DATOS",
    boxLineStyle=TitleBoxLineStyle.BLOCK,
    color=ConsoleColor.CYAN,
)

DownloadFile(DATA_FILE_URI, DATA_FILENAME, False)
```

ANÁLISIS INICIAL DE DATOS

TINFO Notas Master Data Science (class 'pandas.core.frame.DataFrame'> RangeIndex: 50 entries, 0 to 49

Data columns (total 6 columns):
Column

#	Column	Non-Null Count	utype
0	Nombre	50 non-null	object
1	Machine Learning	50 non-null	int64
2	Big Data Analytics	50 non-null	int64
3	Deep Learning	50 non-null	int64
4	Data Visualization	50 non-null	int64
5	Statistics & Probability	50 non-null	int64
dtun	oc. int64(F) object(1)		

dtypes: int64(5), object(1)

memory usage: 2.5+ KB

Notas Master Data Science: Primeros 10 elementos.

Nombre	Machine Learning	Big Data Analytics	Deep Learning	Data Visualization	Statistics & Probability
Estudiante 1	84	65	30	74	87
Estudiante_2	34	52	56	50	69
Estudiante_3	95	74	40	100	35
Estudiante_4	53	96	54	60	46
Estudiante_5	86	30	65	59	66
Estudiante_6	83	57	51	46	92
Estudiante_7	68	94	10	67	17
Estudiante_8	9	16	8	68	90
Estudiante_9	98	53	66	41	70
Estudiante_10	0	70	77	21	95
				 	

■Notas Master Data Science - Tamaño de los datos 50 filas x 6 columnas

PRIMERA VISTA A LOS DATOS

```
ShowTitleBox(

"ANÁLISIS INICIAL DE DATOS",

boxLineStyle=TitleBoxLineStyle.BLOCK,

color=ConsoleColor.CYAN,
)

data = pd.read_csv(DATA_FILENAME)

ShowDfInfo(data, "Notas Master Data Science")

ShowDfHead(data, "Notas Master Data Science", 100)

ShowDfShape(data, "Notas Master Data Science")
```

Mostramos la información de las columnas.

Mostramos las primera filas.

Mostramos el tamaño del dataset.

FASE 2 - TRANSFORMACIÓN

Durante esta etapa se calculará el promedio de cada estudiante considerando las cinco materias. Posteriormente, se clasificará a los estudiantes como 'Aprobados' si su media es igual o superior a 60, y 'Reprobados' en caso contrario.

Tomamos las columnas excepto la primera que contiene el nombre, luego se calcula el promedio de las materias y se redondea a dos decimales, ese cálculo lo asignamos a una nueva columna llamada Promedio.

Luego se muestran los primeros 10 elementos.

PROMEDIO DE ESTUDIANTES

```
ShowTitleBox(
    "CALCULO DE PROMEDIOS",
    boxLineStyle=TitleBoxLineStyle.BLOCK,
    color=ConsoleColor.CYAN,
)
data["Promedio"] = data.iloc[:, 1:].mean(axis=1).round(2)
ShowDfHead(data, "Notas Master Data Science", 10)
```

CALCULO DE PROMEDIOS Nombre Machine Learning Big Data Analytics Deep Learning Estudiante 1 68 Estudiante 2 52.2 34 52 56 50 69 Estudiante 3 95 74 40 100 35 68.8 Estudiante 4 96 46 61.8 Estudiante 5 86 65 59 61.2 30 66 Estudiante 6 83 57 51 46 92 65.8 Estudiante 7 68 94 10 67 17 51.2 Estudiante 8 9 16 8 68 90 38.2 Estudiante 9 98 53 66 41 70 65.6 77 21 Estudiante 10 95 52.6

Nombre	Machine Learning	Big Data Analytics	Deep Learning	Data Visualization	Statistics & Probability	Promedio	Estado
Estudiante_1	84	65	30	74	87	68	Aprobado
Estudiante 3	95	74	40	100	35	68.8	Aprobado
Estudiante 4	53	96	54	60	46	61.8	Aprobado
Estudiante 5	86	30	65	59	66	61.2	Aprobado
Estudiante_6	83	57	51	46	92	65.8	Aprobado
Estudiante 9	98	53	66	41	70	65.6	Aprobado
Estudiante 17	99	83	100	53	100	87	Aprobado
Estudiante_18	92	65	56	38	87	67.6	Aprobado
Estudiante 20	99	79	79	65	21	68.6	Aprobado
Estudiante 26	96	31	54	78	62	64.2	Aprobado

■ Master Data Science - Estudiantes Reprobados X Primeros 10 elementos.

+-	+-	+	+-		+		+
Nombre	Machine Learning	Big Data Analytics	Deep Learning	Data Visualization	Statistics & Probability	Promedio	Estado
Estudiante_2	34	52	56	50	69	52.2	Reprobado
Estudiante_7	68	94	10	67	17	51.2	Reprobado
Estudiante_8	9	16	8	68	90	38.2	Reprobado
Estudiante_10	0	70	77	21	95	52.6	Reprobado
Estudiante 11	18	65	79	51	51	52.8	Reprobado
Estudiante_12	23	10	78	15	38	32.8	Reprobado
Estudiante_13	19	28	33	22	43	29	Reprobado
Estudiante 14	61	19	56	87	44	53.4	Reprobado
Estudiante 15	15	25	46	17	62	33	Reprobado
Estudiante_16	17	96	70	73	7	52.6	Reprobado

OBTENER ESTUDIANTES APROBADOS Y REPROBADOS

Establecemos una constante para tener un umbral y determinar si un estudiante aprueba o reprueba el curso.

Creamos una columna en la que contiene el valor aprobado o reprobado, de acuerdo al umbral.

Filtramos los aprobado y reprobados.

Mostramos los primeros 10 elementos de cada grupo.

OBTENER LOS PROMEDIOS DE LAS MATERIAS

Seleccionamos todas las filas y las columnas exceptuando la primera que es el nombre y las 2 últimas que contienen el estado que es categórica, el promedio de, estudiante. Obtenemos el promedio en el eje X.

Creamos un nuevo DataFrame con la información de la materia y el promedio.

Mostramos las primeras filas de este nuevo set de datos.

FASE 3 - CARGA Y VISUALIZACIÓN

Los resultados se presentarán mediante gráficos de barras que muestran la distribución de notas por materia y un diagrama tipo rosco que ilustra el porcentaje de aprobados y reprobados. Estas visualizaciones permiten analizar rápidamente el desempeño general de la cohorte.

```
HOST = "localhost"
PORT = 7374
app = Dash(__name__, external_stylesheets=[dbc.themes.QUARTZ])
print(f"Iniciando Dashboard Host:{HOST}, Port:{PORT}...")
app.title = "Master Data Science - Análisis de Notas"
```

```
figPastel = px.pie(
    data.
    names="Estado",
    title="Distribución de Aprobados vs Reprobados",
    color="Estado",
    color_discrete_map={"Aprobado": ■ "#00cc96", "Reprobado": ■ "#ef553b"},
    hole=0.3.
figPastel.update_layout(template="plotly_dark")
figBarras = px.bar(
    dataPromediosMateria,
    x="Materia",
    y="Promedio",
    title="Promedio de Calificaciones por Materia",
    text="Promedio",
    color="Promedio",
    color_continuous_scale="Blues",
figBarras.update traces(texttemplate="%{text:.2f}", textposition="outside")
figBarras.update layout(template="plotly_dark", xaxis_title="Materia", yaxis_title="Promedio")
```

VISUALIZACIÓN

Utilizando la lib dash creamos un dashboard para mostrar los gráficos.

Dash crea un servidor web que se ejecuta y sirve el sitio web que permite visualizar el dashboard.

Creamos las figuras para los promedios de las materias.

VISUALIZACIÓN

Creamos una función adicional para mostrar el mejor y peor estudiante en una tarjeta KPI.

```
app.layout = dbc.Container(
       dbc.NavbarSimple(
            brand="Dashboard de Calificaciones - Análisis de Notas",
            color="primary",
            dark=True,
            className="mb-4",
       dbc.Row(
               dbc.Col(kpiMejorEstudiante, md=6),
                dbc.Col(kpiPeorEstudiante, md=6),
            className="g-4",
       dbc.Row(
                    dbc.Card(
                        dbc.CardBody([
                            html.H5("Distribución de Aprobados vs Reprobados"),
                            dcc.Graph(figure=figPastel)
                    md=6
                    dbc.Card(
                        dbc.CardBody([
                            html.H5("Promedio de Calificaciones por Materia"),
                            dcc.Graph(figure=figBarras)
                    md=6
            className="g-4",
    fluid=True,
```

VISUALIZACIÓN

Creamos nuestro contenedor final(layout) utilizando lo antes creado.

Lanzamos nuestro servidor.

```
if __name__ == "__main__":
    webbrowser.open(f"http://{HOST}:{PORT}")
    app.run(debug=True, port=PORT, host=HOST, use_reloader=False )
```

VISUALIZACIÓN - RESULTADO FINAL

GRACIAS