

A brief tutorial on Neural ODEs

Vikram Voleti

PhD student - Mila, University of Montreal Visiting Researcher - University of Guelph Prof. Graham Taylor

Prof. Christopher Pal

- Initial Value Problems
- Numerical Integration methods
- Fundamental theorem of ODEs

- 2. Neural ODEs
- 3. Later research

1st order Ordinary Differential Equation:

$$rac{dx(t)}{dt} = f(x(t), t, heta)$$

x is a variable we are interested in, t is (typically) time, f is a function of x and t, it is the differential,

 θ parameterizes f (optionally).

Initial value problem:

$$rac{dx(t)}{dt}=f(x(t),t, heta);\;\;x(t_0)\; ext{is given};\;\;x(t_1)=\;?$$

Many physical processes follow this template!

Initial value problem:

$$\frac{dx(t)}{dt} = f(x(t), t, \theta); \quad x(t_0) \text{ is given}; \quad x(t_1) = ?$$

Solution:

$$x(t_1) = x(t_0) + \int_{t_0}^{t_1} f(x(t), t, heta) \ dt$$

Example: $\frac{dx}{dt} = 2t; \ x(0) = 2; \ x(1) = ?$ $\Rightarrow x(1) = x(0) + \int_0^1 2t \ dt$ $= x(0) + (t^2|_{t=1} - t^2|_{t=0})$ $= 2 + 1^2 - 0^2$ = 3

Initial value problem:

$$\frac{dx(t)}{dt} = f(x(t), t, \theta); \quad x(t_0) \text{ is given}; \quad x(t_1) = ?$$

Solution:

$$x(t_1) = x(t_0) + \underbrace{\int_{t_0}^{t_1} f(x(t), t, heta) \ dt}_{t_0}$$

What if this cannot be analytically integrated?

Example:

$$\frac{dx}{dt} = 2xt \; ; \; x(0) = 3$$

$$\Rightarrow \int \frac{1}{2x} \ dx = \int t \ dt$$

$$egin{aligned} &\Rightarrow rac{1}{2} \log x = rac{1}{2} t^2 + c_0 \ &\Rightarrow x(t) = c e^{t^2} \end{aligned}$$

$$x(0)=3\Rightarrow c=2$$

$$x(0)=3\Rightarrow c=2$$
 $\therefore x(t)=2e^{t^2}$

$$\Rightarrow x(1) = 5.436$$

Initial value problem:

$$\frac{dx(t)}{dt} = f(x(t), t, \theta); \;\; x(t_0) \; ext{is given}; \;\; x(t_1) = \;?$$

Solution:

$$x(t_1) = x(t_0) + \int_{t_0}^{t_1} f(x(t), t, heta) \ dt$$

Approximations to $\int_{t_0}^{t_1} f(x(t),t, heta) \ dt$

i.e. Numerical Integration:

- Euler method
- Runge-Kutta methods
- **.**.

Initial value problem:

$$\frac{dx(t)}{dt} = f(x(t), t, \theta); \quad x(t_0) \text{ is given}; \quad x(t_1) = ?$$

Solution:

$$x(t_1) = x(t_0) + \int_{t_0}^{t_1} f(x(t), t, heta) \ dt$$

1st-order Runge-Kutta / Euler's method:

https://guide.freecodecamp.org/mathematics/differential-equations/eulers-method/

Initial value problem:

$$\frac{dx(t)}{dt} = f(x(t), t, \theta); \quad x(t_0) \text{ is given}; \quad x(t_1) = ?$$

Solution:

$$x(t_1) = x(t_0) + \int_{t_0}^{t_1} f(x(t), t, heta) \ dt$$

1st-order Runge-Kutta / Euler's method:

$$egin{aligned} t_{n+1} &= t_n + h \ x(t_{n+1}) &= x(t_n) + h f(x(t_n), t_n) \end{aligned}$$

Example:

$$rac{dx}{dt} = f(x,t) = 2xt \; ; \; x(0) = 3; \; x(1) = \; ?$$
 (Solution: $x(t) = 2e^{t^2}; \; x(1) = 5.436$)

$$\begin{array}{l} h = 0.25 \\ \hline x(0.25) = x(0) + 0.25 * f(x(0), 0) \\ &= 3 + 0.25 * (2 * 3 * 0) \\ &= 3 \\ x(0.5) = x(0.25) + 0.25 * f(x(0.25), 0.25) \\ &= 3 + 0.25 * (2 * 3 * 0.25) \\ &= 3.375 \\ x(0.75) = x(0.5) + 0.25 * f(x(0.5), 0.5) \\ &= 3.375 + 0.25 * (2 * 3.375 * 0.5) \\ &= 4.21875 \\ x(1) = x(0.75) + 0.25 * f(x(0.75), 0.75) \end{array}$$

 ± 5.8008

=4.21875+0.25*(2*4.21875*0.75)

Initial value problem:

$$rac{dx(t)}{dt} = f(x(t), t, heta); \;\; x(t_0) ext{ is given; } \; x(t_1) = \; ?$$

Solution:

$$x(t_1) = x(t_0) + \int_{t_0}^{t_1} f(x(t), t, heta) \ dt$$

1st-order Runge-Kutta / Euler's method:

$$egin{aligned} t_{n+1} &= t_n + h \ x(t_{n+1}) &= x(t_n) + h f(x(t_n), t_n) \end{aligned}$$

Initial value problem:

$$\frac{dx(t)}{dt} = f(x(t), t, \theta); \quad x(t_0) \text{ is given}; \quad x(t_1) = ?$$

Solution:

$$\dot{x}(t_1) = x(t_0) + \int_{t_0}^{t_1} f(x(t), t, heta) \ dt$$

4th-order Runge-Kutta method:

$$egin{aligned} t_{n+1} &= t_n + h \ s_1 &= f(x(t_n), \ t_n) \ s_2 &= f(x(t_n) + rac{h}{2} s_1, \ t_n + rac{h}{2}) \end{aligned}$$

$$s_3=f(x(t_n)+rac{h}{2}s_2,\ t_n+rac{h}{2})$$

$$egin{aligned} s_4 &= f(x(t_n) + h s_3, \ t_n + h) \ x(t_{n+1}) &= x(t_n) + rac{h}{6}(s_1 + 2 s_2 + 2 s_3 + s_4) \end{aligned}$$

Default ODE solver used in MATLAB: https://blogs.mathworks.com/loren/2015/09/23/o

https://blogs.mathworks.com/loren/2015/09/23 de-solver-selection-in-matlab/

Initial value problem:

$$\frac{dx(t)}{dt} = f(x(t), t, \theta); \quad x(t_0) \text{ is given}; \quad x(t_1) = ?$$

Solution:

on:
$$x(t_1)=x(t_0)+\int_{t_0}^{t_1}f(x(t),t, heta)\;dt$$

Initial value problem:

$$rac{dx(t)}{dt} = f(x(t),t, heta); \;\; x(t_0) ext{ is given}; \;\; x(t_1) = \; ?$$

Solution:

$$x(t_1) = ext{ODESolve}(\ f(x(t),t, heta),\ x(t_0),\ t_0,\ t_1\)$$

Fundamental Theorem of ODEs

Suppose f is continuously differentiable

Geometrically, x(t) is a flow!

- 1. Ordinary Differential Equations (ODEs)
 - Initial Value Problems
 - Numerical Integration methods
 - Fundamental theorem of ODEs
- 2. Neural ODEs (Chen et al., NeurIPS 2018)
 - Adjoint method
 - Applications
- 3. Later research

Neural ODEs (Chen et al., NeurIPS 2018)

Initial value problem:

$$\frac{dx(t)}{dt} = f(x(t), t, \theta); \quad x(t_0) \text{ is given}; \quad x(t_1) = ?$$

Solution:

$$x(t_1) = ext{ODESolve}(\ f(x(t),t, heta),\ x(t_0),\ t_0,\ t_1\)$$

f is a neural network!

Paradigm shift: whereas earlier *f* was pre-defined/hand-designed according to the domain, here we would like to estimate an *f* that suits our objective.

ODEs

$$rac{d\mathbf{x}(t)}{dt} = f(\mathbf{x}(t), t, heta)$$
 $egin{aligned} & \mathsf{Euler} \ \mathsf{discretization} \end{aligned}$ $\mathbf{x}_{n+1} = \mathbf{x}_n + h \ f(\mathbf{x}_n, t_n, heta)$

Residual networks

$$\mathbf{x}_{l+1} = \mathrm{ResBlock}(\mathbf{x}_l, heta)$$
 $\mathbf{x}_{l+1} = \mathbf{x}_l + g(\mathbf{x}_l, heta)$
 \searrow Skip connection

Vector

notation <

ODEs

$$rac{d\mathbf{x}(t)}{dt} = f(\mathbf{x}(t), t, heta)$$
 Euler discretization $\mathbf{x}_{n+1} = \mathbf{x}_n + h \ f(\mathbf{x}_n, t_n, heta)$

Forward propagation:

$$\mathbf{x}(t_1) = \text{ODESolve}(\ f(\mathbf{x}(t), t, \theta), \ \mathbf{x}(t_0), \ t_0, \ t_1\)$$

$$L(\mathbf{x}(t_1))
ightarrow rac{\partial L}{\partial heta}$$
 How to compute this?

Update hetato reduce L

Residual networks

$$\mathbf{x}_{l+1} = \mathrm{ResBlock}(\mathbf{x}_l, \theta)$$
 $\mathbf{x}_{l+1} = \mathbf{x}_l + g(\mathbf{x}_l, \theta)$
 \searrow Skip connection

$$\mathbf{y}_{pred} = \operatorname{ResNet}(\mathbf{x})$$
 $ightharpoonup Stacked ResBlocks$

$$L(\mathbf{y}_{pred})
ightarrow rac{\partial L}{\partial heta}$$

Update hetato reduce L

https://arxiv.org/pdf/1806.07366.pdf

https://arxiv.org/pdf/1512.03385.pdf

ODEs

$$rac{d\mathbf{x}(t)}{dt} = f(\mathbf{x}(t), t, heta)$$
 $egin{aligned} & \mathsf{Euler} \, \mathsf{discretization} \ & \mathbf{x}_{n+1} = \mathbf{x}_n + h \, f(\mathbf{x}_n, t_n, heta) \end{aligned}$

Forward propagation:

$$\mathbf{x}(t_1) = ext{ODESolve}(\ f(\mathbf{x}(t), t, heta), \ \mathbf{x}(t_0), \ t_0, \ t_1\)$$

$$L(\mathbf{x}(t_1))
ightarrow egin{array}{c} rac{\partial L}{\partial heta} - \ \end{array}$$
 Update $heta$ to reduce L

Back-propagate through the ODE Solver!

High memory cost -

need to save all activations of all iterations of ODESolve.

Can we do better?

Yes.

https://arxiv.org/pdf/1806.07366.pdf

$$L(ext{ODESolve}(\ f(\mathbf{x}(t),t, heta),\ \mathbf{x}(t_0),\ t_0,\ t_1\)) o rac{\partial L}{\partial heta}\ \Big]$$

Adjoint method (Pontryagin et al., 1962)

adjoint
$$\mathbf{a}(t) = \frac{\partial L}{\partial \mathbf{x}}$$
; $\frac{d\mathbf{a}}{dt} = -\mathbf{a}(t)^{\top} \frac{\partial f(\mathbf{x}(t), t, \theta)}{\partial \mathbf{x}}$

Forward propagation:
$$\mathbf{x}(t_1) = \text{ODESolve}(\ f(\mathbf{x}(t), t, \theta), \ \mathbf{x}(t_0), \ t_0, \ t_1\) \ \Rightarrow \mathbf{a}(t_1) = \frac{\partial L}{\partial \mathbf{x}(t_1)}$$

https://arxiv.org/pdf/1806.07366.pdf

$$L(ext{ODESolve}(\ f(\mathbf{x}(t),t, heta),\ \mathbf{x}(t_0),\ t_0,\ t_1\)) o rac{\partial L}{\partial heta}\ \Big]$$

Adjoint method (Pontryagin et al., 1962)

adjoint
$$\mathbf{a}(t) = rac{\partial L}{\partial \mathbf{x}} \; ; \; rac{d\mathbf{a}}{dt} = -\mathbf{a}(t)^{ op} rac{\partial f(\mathbf{x}(t), \, t, \, heta)}{\partial \mathbf{x}}$$

Forward propagation:
$$\mathbf{x}(t_1) = \text{ODESolve}(\ f(\mathbf{x}(t),t,\theta),\ \mathbf{x}(t_0),\ t_0,\ t_1\) \ \Rightarrow \mathbf{a}(t_1) = \frac{\partial L}{\partial \mathbf{x}(t_1)}$$

Back-propagation:

$$x(t_0) = \text{ ODESolve}(f(\mathbf{x}(t), t, \theta) , \mathbf{x}(t_1), t_1, t_0)$$

$$\Rightarrow \mathbf{a}(t_0) = rac{\partial L}{\partial \mathbf{x}(t_0)} = ext{ ODESolve}(-\mathbf{a}(t)^{ op} rac{\partial f(\mathbf{x}(t), t, heta)}{\partial \mathbf{x}}, \; rac{\partial L}{\partial \mathbf{x}(t_1)}, \; t_1, \; t_0)$$

$$\left| \frac{\partial L}{\partial heta}
ight| = \int_{t_1}^{t_0} -\mathbf{a}(t)^ op rac{\partial f(\mathbf{x}(t),t, heta)}{\partial heta} \; dt = ext{ODESolve}(-\mathbf{a}(t)^ op rac{\partial f(\mathbf{x}(t),t, heta)}{\partial heta}, \;\; \mathbf{0}_{| heta|} \; , \; t_1, \; t_0)$$

https://arxiv.org/pdf/1806.07366.pdf

Initial value is 0

Forward propagation:

$$\mathbf{x}(t_1) = ext{ODESolve}(\ f(\mathbf{x}(t), t, heta), \ \mathbf{x}(t_0), \ t_0, \ t_1\)$$
Compute $L(\mathbf{x}(t_1)).$
 $\mathbf{a}(t_1) = rac{\partial L}{\partial \mathbf{x}(t_1)}$

Back-propagation:

Update hetato reduce L

https://arxiv.org/pdf/1806.07366.pdf

https://arxiv.org/pdf/1806.07366.pdf

Neural ODEs describe a homeomorphism (flow).

- They preserve dimensionality.
- They form non-intersecting trajectories.

https://arxiv.org/pdf/1806.07366.pdf

Neural ODEs are **reversible** models!

Just integrate forward/backward in time.

https://arxiv.org/pdf/1806.07366.pdf

Applications

Supervised Learning

Continuous Normalizing Flows

Generative Latent Models

Tabla	1. D	orforn	2222	_

Table 1: Performance on MNIST.

	Test error	# Params	Memory	Time
1-layer MLP	1.60%	0.24 M	-	-
ResNet	0.41%	0.60 M	$\mathcal{O}(L)$	$\mathcal{O}(L)$
RK-Net	0.47%	0.22 M	$\mathcal{O}(ilde{L})$	$\mathcal{O}(ilde{L})$
ODE-Net	0.42%	0.22 M	$\mathcal{O}(1)$	$\mathcal{O}(ilde{L})$

Vikram Voleti

https://arxiv.org/pdf/1806.07366.pdf

Applications

Supervised Learning

Continuous Normalizing Flows

https://arxiv.org/pdf/1806.07366.pdf

Applications

Supervised Learning

Continuous Normalizing Flows

Generative Latent Models

Train f to maximize the likelihood of the samples from target distribution $\log p(\mathbf{x_0})$

https://arxiv.org/pdf/1806.07366.pdf

Applications

Supervised Learning

Continuous Normalizing Flows

Generative Latent Models

Sample from the noise distribution, transform it into a sample from the target distribution using the trained Neural ODE.

https://arxiv.org/pdf/1806.07366.pdf

Applications

Supervised Learning

Continuous Normalizing Flows

https://arxiv.org/pdf/1806.07366.pdf

Applications

Supervised Learning

Continuous Normalizing Flows

https://arxiv.org/pdf/1806.07366.pdf

Applications

Supervised Learning

Continuous Normalizing Flows

https://arxiv.org/pdf/1806.07366.pdf

Applications

Supervised Learning

Continuous Normalizing Flows

https://arxiv.org/pdf/1806.07366.pdf

Applications

Supervised Learning

Continuous Normalizing Flows

https://arxiv.org/pdf/1806.07366.pdf

Applications

Supervised Learning

Continuous Normalizing Flows

https://arxiv.org/pdf/1806.07366.pdf

Applications

Supervised Learning

Continuous Normalizing Flows

https://arxiv.org/pdf/1806.07366.pdf

Applications

Supervised Learning

Continuous Normalizing Flows

- 1. Ordinary Differential Equations (ODEs)
 - Initial Value Problems
 - Numerical Integration methods
 - Fundamental theorem of ODEs
- 2. Neural ODEs (Chen et al., NeurIPS 2018)
 - Adjoint method
 - Applications
- 3. Later research

FFJORD: Free-form Continuous Dynamics For Scalable Reversible Generative Models (Grathwohl et al., ICLR 2019)

Figure 1: FFJORD transforms a simple base distribution at t_0 into the target distribution at t_1 by integrating over learned continuous dynamics.

- Essentially a better Continuous Normalizing Flow.
- Makes a better estimate for the log determinant term.
- "We demonstrate our approach on high-dimensional density estimation, image generation, and variational inference, achieving the state-of-the-art among exact likelihood methods with efficient sampling."

https://arxiv.org/pdf/1810.01367.pdf

Augmented Neural ODEs (Dupont et al., NeurIPS 2019)

- Shows that Neural ODEs cannot model non-homeomorphisms (non-flows)
- Augments the state with additional dimensions to cover non-homeomorphisms
- Performs ablation study on toy examples and image classification

https://arxiv.org/pdf/1904.01681.pdf

ANODEV2: A Coupled Neural ODE Evolution Framework

(Zhang et al., NeurIPS 2019)

$$\begin{cases} z(1) = z(0) + \int_0^1 f(z(t), \theta(t)) dt & \text{``parent network''}, \\ \theta(t) = \theta(0) + \int_0^t q(\theta(t), p) dt, & \theta(0) = \theta_0 & \text{``weight network''}. \end{cases}$$

- Network weights are also a function of time
- Separate "weight network" generates the weights of the function network at a given time

Latent ODEs for Irregularly-Sampled Time Series

(Rubanova et al., NeurIPS 2019)

Figure 2: The Latent ODE model with an ODE-RNN encoder. To make predictions in this model, the ODE-RNN encoder is run backwards in time to produce an approximate posterior over the initial state: $q(z_0|\{x_i,t_i\}_{i=0}^N)$. Given a sample of z_0 , we can find the latent state at any point of interest by solving an ODE initial-value problem. Figure adapted from Chen et al. [2018].

- Improves the generative latent variable framework for irregularly-sampled time series
- Essentially uses an ODE in the encoder where samples are missing
- Shows results on toy data, MuJoCo, PhysioNet

https://arxiv.org/pdf/1907.03907.pdf

Simple Video Generation using Neural ODEs

(David Kanaa*, Vikram Voleti*, Samira Kahou, Christopher Pal; NeurIPS 2019 Workshop)

 Video generation as a generative latent variable model using Neural ODEs

https://sites.google.com/view/neurips2019lire/accepted-papers?authuser=0

ODE2VAE: Deep generative second order ODEs with Bayesian neural networks (Yildiz et al., NeurIPS 2019)

Figure 2: A schematic illustration of ODE²VAE model. Position encoder ($\mu_{\mathbf{s}}, \sigma_{\mathbf{s}}$) maps the first item \mathbf{x}_0 of a high-dimensional data sequence into a distribution of the initial position \mathbf{s}_0 in a latent space. Velocity encoder ($\mu_{\mathbf{v}}, \sigma_{\mathbf{v}}$) maps the first m high-dimensional data items $\mathbf{x}_{0:m}$ into a distribution of the initial velocity \mathbf{v}_0 in a latent space. Probabilistic latent dynamics are implemented by a second order ODE model $\tilde{\mathbf{f}}_{\mathcal{W}}$ parameterised by a Bayesian deep neural network (\mathcal{W}). Data points in the original data domain are reconstructed by a decoder.

- Uses 2nd-order Neural ODE
- Uses a Bayesian Neural Network
- Showed results modelling video generation as a generative latent variable model using (2nd-order Bayesian) Neural ODE

https://papers.nips.cc/paper/9497-ode2vae-deep-generative-second-order-odes-with-bayesian-neural-networks.pdf

Neural Jump Stochastic Differential Equations (Jia et al., NeurIPS 2019)

Figure 1: Reverse-mode differentiation of an ODE with discontinuities. Each jump $\Delta \mathbf{z}(\tau_j)$ in the latent vector (green, top panel) also introduces a discontinuity for adjoint vectors (green, bottom panel).

- Models continuous + discrete dynamics of a hybrid system
- Discontinuities are modelled as stochastic events
- Show results on real-world and synthetic point process datasets

https://papers.nips.cc/paper/9177-neural-jump-stochastic-differential-equations.pdf

Neural SDE: Stabilizing Neural ODE Networks with Stochastic Noise (Liu et al., 2019)

Figure 4: Comparing the perturbations of hidden states, ε_t , on both ODE and SDE (we choose dropout-style noise).

- Random noise injection into Neural ODEs
- Adds a diffusion term into the Neural ODE formulation, denoting a continuous time stochastic process
- Makes a case for robustness

https://arxiv.org/pdf/1906.02355.pdf

On Robustness of Neural Ordinary Differential Equations

(Yan et al., ICLR 2020)

Figure 3: An illustration of the time-invariant property of ODEs. We can see that the curve $\tilde{\mathbf{z}}_1(t)$ is exactly the horizontal translation of $\mathbf{z}_1(t)$ on the interval $[T', \infty)$.

- Ablation study on adversarial attacks on ODE-Nets
- Introduces new regularization term to improve robustness

https://arxiv.org/pdf/1910.05513.pdf, https://openreview.net/pdf?id=B1e9Y2NYvS

Approximation Capabilities of Neural ODEs and Invertible Residual Networks (Zhang et al., ICML 2020)

Figure 1: Trajectories in \mathbb{R}^{2p} that embed an $\mathbb{R}^p \to \mathbb{R}^p$ homeomorphism, using $f(\tau) = (1 - \cos \pi \tau)/2$ and $g(\tau) = (1 - \cos 2\pi \tau)$. Three examples for p = 1 are shown, including the mapping h(x) = -x that cannot be modeled by Neural ODE on \mathbb{R}^p , but can in \mathbb{R}^{2p} .

 Provides guarantees on modelling capability of homeomorphisms v/s the capacity of the Neural ODE

https://arxiv.org/pdf/1907.12998.pdf

How to Train Your Neural ODE: the world of Jacobian and kinetic regularization (Finlay et al., ICML 2020)

- Figure 1. Optimal transport map and a generic normalizing flow.

- Makes a link between the flow in Neural ODEs and optimal transport
- Introduces two new regularization terms to constrain flows to straight lines
- Speeds up training of Neural ODEs

https://arxiv.org/pdf/2002.02798.pdf

Scalable Gradients for Stochastic Differential Equations

(Li et al., AISTATS 2020)

- Generalizes the adjoint method to stochastic dynamics defined by SDEs:
 "stochastic adjoint sensitivity method."
- PyTorch Implementation of Differentiable SDE Solvers: https://github.com/google-research/torchsde

https://arxiv.org/pdf/2001.01328.pdf

"Bullshit that I and others have said about Neural ODEs"

(David Duvenaud, ML Retrospectives Workshop @ NeurIPS 2019)

Summarizes what went right and wrong in the publication of the Neural ODEs paper

https://www.youtube.com/watch?v=YZ- E7A3V2w

Additional References

- http://faculty.bard.edu/belk/math213/InitialValueProblems.pdf
- ODE Solvers: https://math.temple.edu/~queisser/assets/files/Talk3.pdf
- Textbook: https://users.math.msu.edu/users/gnagy/teaching/ode.pdf
- https://lpsa.swarthmore.edu/NumInt/NumIntFirst.html
- Excellent blog post on ODE solvers: https://blogs.mathworks.com/loren/2015/09/23/ode-solver-selection-in-matlab/
- Autodiff tutorial: <u>http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/readings/L06%20Automatic%20Differentiation.pdf</u>
- Course on Neural Networks & Deep Learning by Roger Grosse & Jimmy Ba, University of Toronto http://www.cs.toronto.edu/~rgrosse/courses/csc421 2019/
- Official Neural ODE code torchdiffeq: https://github.com/rtgichen/torchdiffeq
- DiffEqML's torchdyn: https://github.com/DiffEqML/torchdyn
- TorchSDE: https://github.com/google-research/torchsde

Thank you!