An introduction to Principal Component Analysis

Ramon van den Akker (Tilburg University)

Agenda

Introduction and outline PCA

PCA - derivation

PCA - standard derivation

Implementation and remarks

Demo

References

Section 1

Introduction and outline PCA

Dimension reduction

Applications:

- data compression
- reduction dimension features
- noise removal
- visualisation
- anomaly detection

Agenda

- we discuss Principal Component Analysis (PCA)
 - ▶ dates back to Pearson (1901) and Hotelling (1933)
- ▶ see, for example, Van der Maaten et al. (2009) for review of dimension reduction techniques

Outline - PCA

Heuristic description:

- encoding: find 'small' number of directions in input space that explain variation in data as well as possible
- decoding: represent data in original dimension by projecting along those directions

Outline - PCA

Training:

- ▶ given p-dimensional observations $X_1, ..., X_n$ with mean $\mu = \mathbb{E}X_i$
- ▶ choice for dimension encoder is made $(d < \min\{p, n\})$
- ▶ p-dimensional vectors w_1, \ldots, w_d , are constructed (*principal components*) and stored

Encoding of observations:

For p-dimensional observation x (can also be new observation):

- lacktriangle calculate principal scores $s_1 = w_1'(x \hat{\mu}), \dots, s_d = w_d'(x \hat{\mu})$
- **>** store d-dimensional (s_1, \ldots, s_d) and throw x itself away

Decoding of observations:

Approximation of x in \mathbb{R}^p by:

$$x_d = \mu + \sum_{j=1}^d s_j w_j \in \mathbb{R}^p$$

Need to store $d \times p + n \times d$ numbers instead of $n \times p$.

Intuition

"Best" reduction to dimension 1 of 2-dimensional data?

Such 'directions' in data are described by covariance matrix data

Intuition

Approximate observation \tilde{x} by $s\tilde{x} \in \mathbb{R}^2$, where $s = \tilde{x}'u_1$:

Setup

Setup:

Consider *p*-dimensional random vector X with mean 0_p and *known* $p \times p$ positive definite covariance matrix Σ

later on we will consider situation in which Σ is unknown and have i.i.d. observations X_1, \ldots, X_n available

Goal:

Construct, for $d=1,\ldots,p-1$, linear subspace of dimension d that explains "as much as possible variation" in X

Remarks:

▶ First we will consider $\mu = 0$ and Σ to be known. Afterwards, we will discuss how to proceed in case $\mu \neq 0$ and Σ are unknown.

Section 2

PCA - derivation

PCA - derivation

We will exploit **spectral theorem**:

As Σ is real, symmetric and positive definite matrix we have:

- ▶ there are p real, positive eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p > 0$ and corresponding (real) eigenvectors $u_1, \ldots, u_p \in \mathbb{R}^p$ with
 - $||u_j||^2 = u_i'u_j = 1$
 - $\mathbf{v}_{j}'u_{i}=0$ for $i\neq j$, i.e. eigenvectors are orthogonal
- Σ can be written as:

$$\Sigma = U \wedge U' = \sum_{j=1}^{p} \lambda_j u_j u_j'$$

where $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_p)$ and $U = [u_1 \cdots u_p]$

- U is orthogonal:
 - $VU = UU' = I_p$
 - $\qquad \qquad U^{-1} = U'$
- \triangleright the eigenvectors u_j are called principal components

PCA - derivation

Spectral decomposition yields (please note that X is random vector)

$$X = I_p X = (UU')X = U(U'X) = \sum_{i=1}^{p} (X'u_i)u_i.$$

Note that this represents X in the coordinate system determined by the eigenvectors u_1, \ldots, u_p . Approximate X by

$$X_d = \sum_{j=1}^d (X'u_j)u_j.$$

We have

$$var(X'u_i) = u'_i var(X)u_i = u'_i U \wedge U' u_i = \lambda_i.$$

And, for $k \neq i$,

$$\operatorname{cov}\left(X'u_{j},X'u_{k}\right)=u_{j}'\operatorname{var}(X)u_{k}=u_{j}'U\Lambda U'u_{k}=0.$$

PCA - derivation

For approximation error, $\varepsilon_d = X - X_d$, we obtain

$$\mathbb{E}\|\varepsilon_d\|^2 = \mathbb{E}\left\|\sum_{j=d+1}^p (X'u_j)u_j\right\|^2 = \sum_{j=d+1}^p \mathbb{E}(X'u_j)^2 = \sum_{j=d+1}^p \lambda_j.$$

And, similarly,

$$\mathbb{E}\|X\|^2 = \sum_{j=1}^p \lambda_j \text{ and } \mathbb{E}\|X_d\|^2 = \sum_{j=1}^d \lambda_j.$$

Measure for variation captured by first d principal components:

$$\frac{\sum_{j=1}^{d} \lambda_j}{\sum_{j=1}^{p} \lambda_j} (\times 100\%)$$

PCA

- ▶ p-dimensional vectors $w_1 = u_1, ..., w_d = u_d$ are called the first d principal components
- dimension reduction by using first d principal components:
 - ▶ replace *p*-dimensional observation **x** by *principal scores*

$$s_j = w_j'(\mathbf{x} - \mu) \in \mathbb{R}, \quad j = 1, \dots, d$$

approximation/reconstruction of x by

$$x_{PCA} = \mu + \sum_{j=1}^{d} s_j w_j \in \mathbb{R}^p$$

▶ applying PCA to observations $\mathbf{x}_1, \dots, \mathbf{x}_n$: instead of storing np numbers, we need to store p + dp + nd numbers

Section 3

PCA - standard derivation

Procedure (with $d \leq p$):

- determine $w_1'X$ with $||w_1|| = 1$ such that $var(w_1'X)$ is maximal
- determine $w_2'X$ with $||w_2||=1$ and $cov(w_1'X,w_2'X)=0$ such that $var(w_2'X)$ is maximal

:

▶ determine w'_dX with $||w_d|| = 1$ and $cov(w'_jX, w'_dX) = 0$ for j = 1, ..., d - 1 such that $var(w'_dX)$ is maximal

First principal component w_1 solves:

$$\max_{\alpha \in \mathbb{R}^p: \|\alpha\| = 1} \operatorname{var}(\alpha' X) = \alpha' \Sigma \alpha$$

Use method of Lagrange mulipliers:

$$\max_{\alpha \in \mathbb{R}, \, \lambda \in \mathbb{R}} \mathcal{L}(\alpha, \lambda) = \max_{\alpha \in \mathbb{R}, \, \lambda \in \mathbb{R}} \alpha' \Sigma \alpha - \lambda (\alpha' \alpha - 1)$$

Stationary point follows from solving:

$$0 = \frac{\mathrm{d}}{\mathrm{d}\alpha} \mathcal{L}(\alpha, \lambda) = 2\Sigma \alpha - 2\lambda \alpha$$
$$1 = \alpha' \alpha$$

which yields $\Sigma \alpha = \lambda \alpha$ i.e. α is eigenvector of Σ corresponding to eigenvalue λ

From F.O.C. we obtained:

$$\Sigma \alpha = \lambda \alpha$$

As we want to maximize, use constraint $\|\alpha\|=1$,

$$\alpha' \Sigma \alpha = \alpha' (\Sigma \alpha) = \alpha' \lambda \alpha = \lambda$$

it follows that $w_1 = u_1$ and $\lambda = \lambda_1$

lacktriangle suppose we have already shown $w_j=u_j$ for $j=1,\ldots,d-1$ Note that

$$0 = \operatorname{cov}(w_j'X, w_d'X) = w_d'\Sigma w_j = \lambda_j w_d'w_j \text{ for } j = 1, \dots, d-1$$

To determine w_d we need to solve:

$$\max_{\substack{\alpha \in \mathbb{R}^p: \, \|\alpha\| = 1 \\ \text{cov}(w_d'X, w_j'X) = 0, \, j = 1, \dots, d - 1}} \text{var}(\alpha'X) = \alpha'\Sigma\alpha$$

Use method of Lagrange mulipliers:

$$\max_{\substack{\alpha \in \mathbb{R}^p \\ \lambda \in \mathbb{R}, \kappa \in \mathbb{R}^{d-1}}} \alpha' \Sigma \alpha - \lambda (\alpha' \alpha - 1) - 2 \sum_{j=1}^{d-1} \kappa_j (w_j' \Sigma \alpha - 0)$$

Stationary point follows from solving:

$$0 = \frac{\mathrm{d}}{\mathrm{d}\alpha} \mathcal{L}(\alpha, \lambda) = 2\Sigma \alpha - 2\lambda \alpha - 2\sum_{j=1}^{d-1} \kappa_j \Sigma w_j$$
$$1 = \alpha' \alpha$$
$$0 = \alpha' \Sigma w_j \text{ for } j = 1, \dots, d-1$$

Multiplying first equation by w_j , with $j \in \{1, \dots, d-1\}$, yields

$$w_j' \Sigma \alpha = \lambda w_j' \alpha + \sum_{j=1}^{d-1} \kappa_j \lambda_j$$

Inserting $0 = w_j' \Sigma \alpha = \lambda_j \alpha' w_j = 0$ we obtain $\kappa_j = 0$. Hence

$$\Sigma \alpha = \lambda \alpha$$

As eigenvectors u_1,\ldots,u_{d-1} cannot be used: $w_d=u_d$, the eigenvector corresponding to eigenvalue λ_d

Section 4

Implementation and remarks

Implementation

- we have an algorithm for the case $\mu = 0$ and Σ is known
- ▶ now consider situation in which Σ, of rank p, is unknown and $μ = \mathbb{E}X ≠ 0_p$, but have i.i.d. observations $Y_1, ..., Y_n$ available
- just use 'anology principle':
 - ightharpoonup estimate Σ by sample covariance matrix

$$\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \hat{\mu})(Y_i - \hat{\mu})'$$

with
$$\hat{\mu} = n^{-1} \sum_{i=1}^{n} Y_i$$

- ightharpoonup apply PCA using $\hat{\Sigma}$ and centered observations $X_i = Y_i \hat{\mu}$.
- rank of $\hat{\Sigma}$ is at most n-1
- if n > p (and true Σ has full column rank) then you we will typically have rank($\hat{\Sigma}$) = p
- if $\hat{\Sigma}$ is not of rank p, then $d = \operatorname{rank}(\hat{\Sigma})$ is the maximal number of principal components you can use
- estimators $\hat{w}_1, \dots, \hat{w}_d$ of of principal components w_1, \dots, w_d

Implementation - to scale or not to scale?

- from the theory it is clear that PCA is not scale invariant (see notebook for numerical illustration), so the results depend on the scale of the variables
 - for example, using 'expenditures in euro' can yield different results compared to using 'expenditures in cents'
- often variables are scaled by their (estimated) standard deviation before applying PCA
- not always a good idea to preprocess variables: if variables have been measured in same units

Remarks - Statistical Properties

Statistical properties?

- not trivial
- consistency and asymptotic normality (for principal components) have been studied for various settings:
 - ▶ p is fixed and $n \to \infty$
 - ▶ n fixed and $p \to \infty$ (useful for "high-dimensional, but small data")
 - both $p \to \infty$ and $n \to \infty$ (sometimes with restrictions on relative speed, like $n/d \to c \in (0,\infty)$)
 - references: Anderson, T.W. (1963), Jung et al. (2009), and Shen et al. (2016)

Remarks - selected actuarial applications

- use of PCA in yield curve modelling
 - see, for example, Diebold and Li (2006), Barber and Copper (2012)
- use in mortality and longevity modelling
 - see, for example, Yanga et al. (2010)
- use in car insurance
 - see, for example, Segovia-Gonzalez (2009) and Zhu and Wüthrich (2020)

Section 5

Demo

Demo

See notebook

Section 6

References

References

- Anderson, T.W. (1963). Asymptotic Theory for Principal Component Analysis. The Annals of Mathematical Statistics 34, pp.122-148.
- Barber, J.R. and M.L. Copper (2012). Principal component analysis of yield curve movements. Journal of Economics and Finance 36, pp.750–765.
- Diebold, F.X. and C. Li (2006). Forecasting the term structure of government bond yields. *Journal of Econometrics* 130, pp.337–364.
- Jung, S. and J. S. Marron (2009). PCA consistency in high dimension low sample size context. The Annals of Statistics 37, pp.4104–4130.
- Shen, D. H. Shen, and J.S. Marron (2016). Journal of Machine Learning Research 17, pp.1-34
- van der Maaten, L.J.P., E.O. Postma, and H.J. van den Herik. Dimensionality Reduction: A Comparative Review. Tilburg University Technical Report, TiCC-TR 2009-005, 2009.
- Segovia-Gonzalez, M.M., F.M. Guerrero, and P.Herranz (2009). Explaining functional principal component
 analysis to actuarial science with an example on vehicle insurance. *Insurance: Mathematics and Economics*45, pp.278–285.
- Turk, M. and A. Pentland (1991). Eigenfaces for recognition. Journal of cognitive neuroscience 3(1), 71–86.
- Yanga, S.S., J.C. Yue, and H.-C. Huang (2010). Modeling longevity risks using a principal component approach: A comparison with existing stochastic mortality models. *Insurance: Mathematics and Economics* 46, pp.254–270.
- Zhu, R. and Wüthrich, M. V. (2020). Clustering driving styles via image processing. Annals of Actuarial Science 2, pp.276–290.