(1) Let $f: \mathbb{R}^n \to \mathbb{R}$, $\mathbf{c} = (c_1, \dots, c_n)$, and $g_1(t) = f(t, c_2, \dots, c_n)$. Prove the following.

- (a) If f is continuous at $\mathbf{x} = \mathbf{c}$, $g_1(t)$ is continuous at $t = c_1$.
- (b) If $\lim_{k\to\infty} f(\mathbf{x}_k) = f(\mathbf{c})$ for any sequence \mathbf{x}_k that converges to \mathbf{c} , $f(\mathbf{x})$ is continuous at \mathbf{c} .

Solution. (a) Let $\epsilon > 0$ be given arbitrarily. Because f is continuous at $\mathbf{x} = \mathbf{c}$,

$$\exists \ \delta > 0$$
 such that for all $\mathbf{x} \in N(\mathbf{c}; \delta)$, $|f(\mathbf{x}) - f(\mathbf{c})| < \epsilon$.

For any $t \in N(c_1; \delta)$, we have $(t, c_2, \dots, c_n) \in N(\mathbf{c}; \delta)$, and thus,

$$|g(t) - g(c_1)| = |f(t, c_2, \dots, c_n) - f(\mathbf{c})| < \epsilon.$$

Therefore, $g_1(t)$ is continuous at $t = c_1$.

(b) Suppose to the contrary that f is discontinuous at c, which means

$$\exists \epsilon_0 > 0$$
 such that for all $\delta > 0$, $\exists \mathbf{x} \in N(\mathbf{c}; \delta)$ satisfying $|f(\mathbf{x}) - f(\mathbf{c})| \ge \epsilon_0$.

Fix such $\epsilon_0 > 0$. Then, for each $n \in \mathbb{N}$, there exists some $\mathbf{x}_n \in N(\mathbf{c}; \frac{1}{n})$ such that

$$|f(\mathbf{x}_n) - f(\mathbf{c})| \ge \epsilon_0.$$

We have $\lim_{n\to\infty} \mathbf{x}_n = \mathbf{c}$ but $f(\mathbf{x}_n) \not\to f(\mathbf{c})$. Therefore, we proved the contrapositive statement of part (b).

May 21, 2020 Page 1 of 10 Typeset by \LaTeX

MAS241 Midterm exam

(2) Let $f:[a,b] \to [a,b]$ be continuous. Prove or disprove the following.

- (a) There exists at least one $x \in [a, b]$ such that f(x) = x. (Fixed point theorem)
- (b) The image f([a, b]) is closed.
- (c) The inverse image $f^{-1}([c,d])$ is connected for any $[c,d]\subset [a,b].$

Solution. We can show that (a) and (b) are true but (c) is false as follows.

(a: True) If f(a) = a or f(b) = b, then the statement holds. Suppose otherwise, that is, f(a) > a and f(b) < b. The function g(x) = f(x) - x is continuous on [a, b] and satisfies g(a) < 0 and g(b) > 0. Thus, by intermediate value theorem,

$$\exists x_0 \in (a, b)$$
 such that $g(x_0) = 0$.

In other words, $f(x_0) = x_0$.

- (b: True) Because [a, b] is closed and bounded, [a, b] is compact by Heine-Borel theorem. Since f is continuous and [a, b] is compact, f([a, b]) is compact as well. Therefore, f([a, b]) is closed as well.
- (c: False) We will present a counterexample. Define $f:[a,b] \to [a,b]$ by

$$f(x) = \begin{cases} x & \text{if } a \le x \le \frac{a+b}{2}, \\ b-x & \text{if } \frac{a+b}{2} < x \le b. \end{cases}$$

Let c = a and $d = \frac{2a+b}{3}$. Then, one can show

$$f^{-1}([c,d]) = \left[a, \frac{2a+b}{3}\right] \cup \left[\frac{a+2b}{3}, b\right],$$

which is disconnected.

- (3) Let $f:[a,b] \to \mathbb{R}$ be continuous. Prove or disprove the following.
 - (a) For any $\epsilon > 0$, there exists a piecewise constant function $s : [a, b] \to \mathbb{R}$ such that $||f s||_{\infty} < \epsilon$. (+5 points for the proof of corrected version.)
 - (b) If f is uniformly continuous and strictly monotone, inverse function f^{-1} is also uniformly continuous.

Solution. We can show that (a) and (b) are true as follows.

(a: true) The function f is continuous on a compact interval, so f is uniformly continuous. Thus, for the given $\epsilon > 0$, $\exists \ \delta > 0$ such that

$$x, y \in [a, b], |x - y| < \delta \implies |f(x) - f(y)| < \epsilon.$$

Let $I_n := [a + (n-1)\delta, a + n\delta)$ and $m_n := a + (n+0.5)\delta$ for each $n \in \mathbb{N}$. Since $I_n \cap [a, b]$ partitions [a, b], we can define $s : [a, b] \to \mathbb{R}$ by

$$s(x) = f(m_n)$$
 if $x \in I_n \cap [a, b]$.

Then s is piecewise constant and

$$|f(x) - s(x)| = |f(x) - f(m_n)| < \epsilon$$
 whenever $x \in I_n \cap [a, b]$.

(b) Since f is strictly monotone, f is one-to-one, so $f^{-1}: f([a,b]) \to [a,b]$ exists. Also, by the strict monotonicity, the inverse image of a relatively open interval by f^{-1} is again a relatively open interval, so f is continuous. Since f is continuous and [a,b] is compact, f([a,b]) also is compact. Since f^{-1} is continuous, it is uniformly continuous on the compact set f([a,b]).

- (a) Let $f_k:(a,b)\to\mathbb{R}$ be a Cauchy sequence in $C_\infty((a,b))$. Show that f_k converges to a continuous function (i.e., prove the theorem.)
 - (b) Prove or disprove that the limit is uniformly continuous if f_k are all uniformly continuous.

Solution. We can show that both of them are true as follows.

(a: True) For each $x \in (a,b)$, the sequence $\{f_k(x)\}_{k=1}^{\infty}$ converges since \mathbb{R} is complete. Thus, we can define the pointwise limit function $f:(a,b)\to\mathbb{R}$ as

$$f(x) = \lim_{k \to \infty} f_k(x)$$
 for all $x \in (a, b)$.

We will show that f is continuous and $||f_k - f||_{\infty} \to 0$. Let $\epsilon > 0$ be given. Since $f_k : (a,b) \to \mathbb{R}$ is a Cauchy sequence in $C_{\infty}((a,b))$,

$$\exists N \in \mathbb{N} \text{ such that for all } m, n \geq N, \quad ||f_m - f_n||_{\infty} < \frac{\epsilon}{2}.$$

Claim. $||f_n - f||_{\infty} < \epsilon$ for all $n \ge N$.

(**Proof for the claim**) For each $x \in (a, b)$, choose K = K(x) that satisfies

$$|f_k(x) - f(x)| < \frac{\epsilon}{2}$$
 for all $k \ge K$.

Let $m = \max\{K, N\}$. Then, for any $n \ge N$, we have

$$|f_n(x) - f(x)| \le |f_n(x) - f_m(x)| + |f_m(x) - f(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Therefore, f_k converges (uniformly) to f. Moreover, since a limit of a uniformly convergent sequence continuous functions is continuous, f is continuous.

(b: True) (Of course, "the limit" in the statement means the limit with respect to the norm $\|\cdot\|_{\infty}$.) Suppose that f_k are all uniformly continuous and $\|f_k - f\|_{\infty} \to 0$ as in part (a). We will show that f is uniformly continuous. Let $\epsilon > 0$ be given. Then, for some $n \in \mathbb{N}$,

$$||f_n - f||_{\infty} < \frac{\epsilon}{3}.$$

Since f_n is uniformly continuous,

 $\exists \ \delta > 0$ such that for all $x, y \in (a, b)$ satisfying $|x - y| < \delta$, $|f_n(x) - f_n(y)| < \frac{\epsilon}{3}$.

Therefore, for all $x, y \in (a, b)$ satisfying $|x - y| < \delta$, we have

$$|f(x) - f(y)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)|$$

$$\le |f_n(x) - f_n(y)| + 2||f - f_n||_{\infty}$$

$$< \frac{\epsilon}{3} + \frac{2\epsilon}{3} = \epsilon.$$

- (5) (a) Prove or disprove that a set $A = \{f \in C_{\infty}(\mathbb{R}) : ||f||_{\infty} \le 1\}$ is closed.
 - (b) Prove or disprove that every infinite subset of A has a limit point (i.e., A is compact) or every sequence in A has a cluster point.

Solution. We can show that (a) is true but (b) is false, as follows.

(a: True) Let $g \in C_{\infty}(\mathbb{R}) \backslash A$. Then, $K = ||g||_{\infty} > 1$. For any $h \in C_{\infty}(\mathbb{R})$ satisfying $||h - g||_{\infty} < K - 1$, we have

$$||h||_{\infty} \ge ||g||_{\infty} - ||g - h||_{\infty} > K - (K - 1) = 1,$$

which means

$$N(g; K-1) \subset C_{\infty}(\mathbb{R}) \backslash A$$
.

Therefore, A^c is open, which means A is closed.

(b: False) A is not compact, which can be shown as follows. Define

$$f(x) = \begin{cases} 1 + x & \text{if } -1 < x \le 0, \\ 1 - x & \text{if } 0 < x < 1, \\ 0 & \text{otherwise,} \end{cases}$$

and set $f_n : \mathbb{R} \to \mathbb{R}$ to be the function defined as $f_n(x) = f(x-n)$ for each $n \in \mathbb{N}$. Then $B = \{f_n : n \in \mathbb{N}\}$ is an infinite subset of A.

Claim. B doesn't have a limit point in A.

(**Proof for the claim**) Suppose to the contrary that $g \in A$ is a limit point of B. Then, by the definition of the limit point, $f_n \in N'(g;1)$ for some $n \in \mathbb{N}$. Because $\|\cdot\|_{\infty}$ is a norm, the condition $f_n \in N'(g;1)$ is equivalent to

$$c = ||f_n - g||_{\infty} \in (0, 1).$$

In particular, $|f_n(n) - g(n)| \le c$. For all $m \in \mathbb{N}$ such that $m \ne n$,

$$||f_m - g||_{\infty} \ge |f_m(n) - g(n)| \ge |f_m(n) - f_n(n)| - |f_n(n) - g(n)| \ge 1 - c$$
 whenever $m \ne n$,

so we have $N'(g; \min\{c, 1-c\}) \cap B = \emptyset$. This contradicts the assumption that g is a limit point.

MAS241 Midterm exam

- (6) The following are false. Find counterexamples.
- 10 points
- (a) If $f: \mathbb{R} \to \mathbb{R}$ is continuous and $A \subset \mathbb{R}$ is closed, f(A) is closed.
- (b) If $f: \mathbb{R} \to \mathbb{R}$ is continuous and $A \subset \mathbb{R}$ is open, f(A) is open.
- (c) If A_i are open, $\bigcap_{i=1}^{\infty} A_i$ is open or the empty set.
- (d) If $A_i \neq \emptyset$, are closed, and $A_1 \supset A_2 \supset \cdots$, then $\bigcap_{i=1}^{\infty} A_i \neq \emptyset$.
- Solution. (a) Let $f(x) = e^x$ and $A = \mathbb{R}$. Then f is continuous and A is closed, but $f(A) = (0, \infty)$ is not closed.
- (b) Let $f(x) = x^2$ and A = (-1, 1). Then f is continuous and A is open, but f(A) = [0, 1) is not open nor empty.
- (c) Let $A_i = (-1/i, 1/i)$ for each $i \in \mathbb{N}$. Then A_i are open, but $\bigcap_{i=1}^{\infty} A_i = \{0\}$ is not open.
- (d) Let $A_i = \bigcup_{j=i}^{\infty} \{j\}$ for each $i \in \mathbb{N}$. Then $A_i^c = (-\infty, i) \cup \bigcup_{j=1}^{\infty} (j, j+1)$ are open, which means A_i are closed. However, $\bigcap_{i=1}^{\infty} A_i = \emptyset$.

May 21, 2020 Page 6 of 10 Typeset by \LaTeX

(7) Let $\liminf x_k = a$ and $\limsup x_k = b$. Show the following directly from definitions.

- (a) Show that, if $a = b \in \mathbb{R}$, then x_k is a Cauchy sequence.
- (b) Prove or disprove that, if $b < \infty$ and $\epsilon > 0$, there is $k_0 \in \mathbb{N}$ such that $x_k > b \epsilon$ for all $k > k_0$.
- (c) Prove or disprove that $a \leq b$.
- Solution. (a) Let $\epsilon > 0$ be given arbitrarily. Because $a, b \in \mathbb{R}$, the sequence is bounded as $|x_k| \leq M$ for some constant $M < \infty$. (Since there are no cluster points in the bounded sets $\{x \in [-M,M] : x \leq a \frac{\epsilon}{2}\}$ and $\{x \in [-M,M] : x \geq b + \frac{\epsilon}{2}\}$, there are only finitely many terms of x_k in those sets. See Theorem 1.3.11.) Hence, there exists some $N_1, N_2 \in \mathbb{N}$ such that

$$x_k > a - \frac{\epsilon}{2}$$
 for all $k \ge N_1$, $x_k < b + \frac{\epsilon}{2}$ for all $k \ge N_2$.

Let $N = \max\{N_1, N_2\}$. Then, for all $m, n \ge N$,

$$|x_m - x_n| < \left(b + \frac{\epsilon}{2}\right) - \left(a - \frac{\epsilon}{2}\right) = \epsilon.$$

(b: False) We will present a counterexample. Define a sequence x_k as

$$\begin{cases} x_{2k-1} = 0 & \text{for all } k \in \mathbb{N}, \\ x_{2k} = 1 & \text{for all } k \in \mathbb{N}. \end{cases}$$

Then the set of cluster points is $\{0,1\}$, so $b = \sup\{0,1\} = 1 < \infty$. If we set $\epsilon = 1$, however, $x_{2k-1} \le 0 = b - \epsilon$ for all $k \in \mathbb{N}$, so there is no k_0 satisfying the statement.

(c: True) We will prove $a \leq b$. If $a = -\infty$ or $b = \infty$, it naturally holds that $a \leq b$, so we only have to consider the case when $a, b \in \mathbb{R}$, i.e., the case x_k is bounded. Then, for the set C of cluster points of x_k ,

$$a = \inf C \le \sup C = b.$$

(8) Let $C_1, C_2 \subset \mathbb{R}^n$ be two disjoint and closed sets.

10 points

- (a) Give the definition for the distance between the two sets.
- (b) Find an example that the distance of the two disjoint and closed sets is zero.
- (c) Show that, if C_1 is bounded, there exist two open sets U_1 and U_2 such that $C_1 \subset U_1$, $C_2 \subset U_2$, and $U_1 \cap U_2 = \emptyset$.

Solution. (a) We define

$$dist(C_1, C_2) = \inf\{\|\mathbf{x} - \mathbf{y}\| : \mathbf{x} \in C_1, \ \mathbf{y} \in C_2\},\$$

where $\|\cdot\|$ is the Euclidean norm on \mathbb{R}^n .

(b) For example, let $C_1 = \mathbb{N}$ and $C_2 = \{n + \frac{1}{n} : n \in \mathbb{N}, n \geq 2\}$. Then,

$$C_1^c = (-\infty, 1) \cup \bigcup_{j=1}^{\infty} (j, j+1) \quad \text{and} \quad C_2^c = (-\infty, 2.5) \cup \bigcup_{j=2}^{\infty} \left(j + \frac{1}{j}, j + 1 + \frac{1}{j+1}\right)$$

are open, so C_1 and C_2 are closed. However,

$$0 \le \operatorname{dist}(C_1, C_2) \le \inf \left\{ \left| n - \left(n + \frac{1}{n} \right) \right| : n \in \mathbb{N}, \ n \ge 2 \right\} = 0.$$

(c) Because C_2^c is open and $C_1 \subset C_2^c$, we have

$$\forall \mathbf{x} \in C_1, \exists r_{\mathbf{x}} > 0 \text{ such that } N(\mathbf{x}; 2r_{\mathbf{x}}) \subset C_2^c$$

By Heine-Borel theorem, C_1 is compact. Therefore, for the open cover $\{N(\mathbf{x}; r_{\mathbf{x}})\}_{x \in C_1}$ of C_1 , there exists a finite subcover $\{N(\mathbf{x}_j; r_{\mathbf{x}_j})\}_{j=1}^k$. For $r := \min\{r_{\mathbf{x}_j} : j = 1, \dots, k\}$, we set

$$U_1 = \bigcup_{j=1}^k N(\mathbf{x}_j; r_{\mathbf{x}_j})$$
 and $U_2 = \{\mathbf{x} \in \mathbb{R}^n : \operatorname{dist}(\{\mathbf{x}\}, C_2) < r\}.$

Obviously, $C_1 \subset U_1$, $C_2 \subset U_2$, and $U_1 \cap U_2 = \emptyset$. U_1 is a union of open sets, so is an open set. To prove that U_2 is open, for each $\mathbf{x} \in U_2$, observe that

$$N(\mathbf{x}; r - \operatorname{dist}(\{\mathbf{x}\}, C_2)) \subset U_2.$$

(9) (a) Prove or disprove that $f(x,y) = \frac{x^2y}{x^2+y^2}$ is continuous at (x,y) = (0,0) if we set f(0,0) = 0.

(b) Show that $f:[0,\infty)\to\mathbb{R}$ given by $f(x)=\sqrt{x}$ is uniformly continuous.

Solution. (a) For $(x,y) \neq (0,0)$, using $|xy| \leq \frac{1}{2}(x^2 + y^2)$, we have

$$|f(x,y) - f(0,0)| = \frac{x^2|y|}{x^2 + y^2} \le \frac{|x|(x^2 + y^2)}{2(x^2 + y^2)} = \frac{|x|}{2}.$$

Therefore, setting $\delta = \epsilon$ for given $\epsilon > 0$ shows the continuity at 0 as follows:

$$|(x,y) - (0,0)| < \delta \implies |f(x,y) - f(0,0)| \le \frac{|x|}{2} \le \frac{|(x,y)|}{2} < \frac{\delta}{2} < \epsilon.$$

(b) Let $\epsilon > 0$ be given. The restricted function $f: [0,2] \to \mathbb{R}$, $f(x) = \sqrt{x}$ is continuous on a compact set, thus is uniformly continuous. So,

 $\exists \delta_1 > 0$ such that for all $x, y \in [0, 2]$ satisfying $|x - y| < \delta_1$, $|f(x) - f(y)| < \epsilon$.

On the other hand, for the restricted function $f:[1,\infty)\to\mathbb{R}$, we have

$$|f(x) - f(y)| = |\sqrt{x} - \sqrt{y}| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} \le \frac{|x - y|}{2}$$
 for all $x, y \in [1, \infty)$.

Therefore, $\delta_2 = \epsilon$ satisfies that for all $x, y \in [1, \infty)$ satisfying $|x - y| < \delta_2$,

$$|f(x) - f(y)| < \frac{\delta_2}{2} = \frac{\epsilon}{2} < \epsilon.$$

Let $\delta = \min\{\delta_1, \delta_2, 1\}$. If $x, y \in [0, \infty)$ satisfy $|x - y| < \delta$, then $x, y \in [0, 2]$ or $x, y \in [1, \infty)$, so the above argument proves that

$$|f(x) - f(y)| < \epsilon$$
.

- (10) 10 points
- (a) Let $X = \{f : \mathbb{N} \to \{0,1\}\}$ be the collection of all functions defined on natural numbers which have values of 0 or 1. Prove or disprove that the set is uncountable.
- (b) Prove that a sequence x_k has a cluster point if $x_k \in (0,1)$ for all k. (Do not use Heine-Borel.) (Note: You should consider the space \mathbb{R} , because cluster points can be 0 or 1.)
- Solution. (a) The set X is uncountable, which can be proved as follows. Suppose to the contrary that X is countable, and enumerate the elements as $X = \{f_1, f_2, \dots, f_k, \dots\}$. Define a function $f : \mathbb{N} \to \{0, 1\}$ by

$$f(n) = \begin{cases} 0 & \text{if } f_n(n) = 1, \\ 1 & \text{if } f_n(n) = 0. \end{cases} \text{ for each } n \in \mathbb{N}.$$

Then, $f \neq f_n$ for all $n \in \mathbb{N}$, so $f \notin X$, which contradicts the definition of X. Therefore, X is uncountable.

(b) (The proof is the same as that for Theorem 1.3.11.) The sequence x_k is bounded. Consider the image $Y = \{x_k : k \in \mathbb{N}\}$. If Y is infinite, by Bolzano-Weierstrass theorem, Y has a limit point, which is a cluster point of the sequence x_k . Otherwise, if Y is finite, at least one of the values of the sequence repeats infinitely often, which becomes a cluster point of the sequence x_k .