SURVIVAL ANALYSIS WORKSHOP

JOOYOUNG LEE DEPARTMENT OF APPLIED STATISTICS CHUNG-ANG UNIVERSITY

SEOUL MEDICAL CENTER
JANUARY 06, 2023

Instructor.

Jooyoung Lee

- Department of Applied Statistics, Chung-Ang University
- Email: jooylee@cau.ac.kr
- Slides: https://github.com/BLDACAU/survivalSMC2023

OVERVIEW

- The objective of this course is to understand statistical methods for survival analysis.
- Application of methods will be presented using the National Health Insurance Sharing Service (NHISS) big data.

SCHEDULE

Week 1: Introduction to Survival Analysis

Week 2: Clinical Study using NHISS I

Week 3: Introduction to Competing Risks Model

Week 4: Clinical Study using NHISS II

Week 1 Materials

- An introduction to censoring, truncation and examples
- Survival curves, risk set tables, and the Kaplan-Meier estimator
- Log-rank test
- Cox proportional hazard regression models

EXAMPLE

ORC indicates open radical cystectomy; RARC, robot-assisted radical cystectomy.

Figure 1: Figure from Mortezavi, et al., JAMA Network Open 2022

TIME-TO-EVENT DATA

Terminology: Survival time, failure time, lifetime, time-to-event data **Time-to-event data**: the time to event measured from some particular starting point.

The definition includes a **time origin**, a **time scale**, and a definition of **the event** of interest.

- Time origin: entry into study, randomization, birth
- Time scale: years, months, weeks, age, mileage
- Event: death, disease occurrence, progression of tumor, hospitalization, recovery

THE PURPOSE OF TIME-TO-EVENT DATA ANALYSIS

- Estimate a event time distribution of a population
- Compare the event time distributions of two or more groups
- Evaluate the effect of risk factors on the event time

FEATURES OF TIME-TO-EVENT DATA

Time-to-event data consist of a mixture of complete and incomplete observations.

Censoring: Censoring arises when the value of a response measurement (event time) is only partially known.

- Right censoring
- Left censoring
- Interval censoring

Truncation: Truncation is termed to describe a condition by which subjects are screened or excluded from the study population.

Left truncation

NOTATION

- T: Event time (survival/failure time) of an individual from a population
- *C*: Censoring time
- X: Observed time
- δ : Censoring indicator

RIGHT CENSORED DATA

Right censoring: The true unobserved event time is to the right of the censoring time. Right censoring may occur due to no event before the study ends, loss to follow-up or withdrawal from the study.

$$X = \min(T, C)$$
, and $\delta = I(T \le C)$

LEFT TRUNCATED DATA

Left truncation arises when there are particular selection conditions for recruiting study participants.

Univariate Survival data

library(survival) head(ovarian)

	futime	fustat	age	resid.ds	rx	ecog.ps
1	59	1	72.3315	2	1	1
2	115	1	74.4932	2	1	1
3	156	1	66.4658	2	1	2
4	421	0	53.3644	2	2	1
5	431	1	50.3397	2	1	1
6	448	0	56.4301	1	1	2

RECURRENT EVENT DATA

 id start stop status tstatus enum trt

 1 1 0 122 1 1 1 1 1

 2 2 0 122 0 1 1 1 1

 3 3 0 3 1 1 1 1

 4 3 3 88 1 2 2 1

 5 3 88 122 0 2 3 1

Competing Risks data

Competing risks data arise when an individual is at risk of more than one mutually exclusive event.

5 1504

MULTISTATE MODEL

Multistate model is a model for a process where subjects move among a finite number of states.


```
library(mstate); data(ebmt3)
ebmt3[1:5, c(1,2,3,4, 5)]
```

	id	prtime	prstat	${\tt rfstime}$	rfsstat
1	1	23	1	744	0
2	2	35	1	360	1
3	3	26	1	135	1
4	4	22	1	995	0
5	5	29	1	422	1

EVENT TIME DISTRIBUTION

Response (T): Time to event (survival/failure time) of an individual from a population.

- The survival function: S(t) = P(T > t).
- The probability density function of T: f(t) = -dS(t)/dt.
- The hazard function: $\lambda(t) = \lim_{h \to 0^+} \frac{P(t \le T < t + h | T \ge t)}{h} = \frac{f(t)}{S(t)}$.
- The cumulative hazard function: $\Lambda(t) = \int_0^t \lambda(s) ds$.

Risk Table

- $\{(X_i, \delta_i), i = 1, ..., n\}$: a sample of n right-censored survival data.
- $k(k \le n)$ distinct event times $t_1 < t_2 < \cdots < t_k$.
- n_j : the number of individuals at risk at t_j . The number of individuals with no event and uncensored "just before" time t.
- d_j: the number of individuals who experience the event at t_j.

A risk table displays the number at risk n_j at each time point.

Estimating Survival Curves: the Kaplan-Meier estimator

The Kaplan-Meier estimator $\widehat{S}(t)$ is

$$\widehat{S}(t) = \prod_{j:t_j \le t} \left(1 - \frac{d_j}{n_j}\right)$$

Toy Example: X : 3, 5+, 9, 11+

$$\widehat{S}(3)=\frac{3}{4}$$

$$\widehat{S}(9) = \frac{3}{4} \cdot \frac{1}{2}$$

Comparing the Survival of Groups: The Log-Rank Test

We want to test whether the survival curves are the same for two groups.

- $O_j = d_{1j}$: the observed number of events for group 1 at time t_j
- $E_j = n_{1j}d_j/n_j$: the expected number of events for group 1 at time t_j
- $V_j=rac{n_{1j}n_{2j}d_j(n_j-d_j)}{n_j^2(n_j-1)}$: the variance of the observed number of events for group 1 at time t_j

The logrank test statistic is

$$Z = rac{\sum_{j=1}^{k} (O_j - E_j)}{\sqrt{\sum_{j=1}^{k} V_j}} \sim N(0, 1)$$
 under H_0

Example

At
$$t = 3$$

At
$$t = 8$$

At
$$t = 9$$

Group 0	1	3	4
Group 1	0	4	4
Total	1	7	8

Group 0	0	2	2
Group 1	1	3	4
Total	1	5	6

Group 0	1	1	2
Group 1	0	3	3
Total	1	4	5

EXAMPLE

FIG. 3. Timeline for the development of mild cognitive impairment (MCI) and substantial gait impairment, comparing Parkinson's disease (PD) cases with and without type 2 diabetes mellitus (T2DM). Kaplan-Meier curves show the significantly shorter time to develop both of these complications in patients with T2DM. (Color figure can be viewed at wileyonlinelibrary.com)

Figure 2: Figure from Athauda, et al., Movement Disorder 2022

Cox Proportional Hazard Regression Model

The Cox (1972) proposed the proportional hzard regression model:

$$\lambda(t|\mathbf{z}) = \lambda_0(t) \exp(\mathbf{z}'\boldsymbol{\beta})$$

- A vector of covariates $\mathbf{z} = (z_1, \dots, z_p)^T$
- A baseline hazard function $\lambda_0(t)$.

Hazard Ratio

• The estimated hazard ratio (HR) $= rac{\lambda_0(t) \exp(\hat{eta}_j)}{\lambda_0(t)} = \exp(\hat{eta}_j)$

- A 95% CI for HR = $\exp(\hat{\beta}_j \pm 1.96s.e.(\hat{\beta}_j))$
- p-value = $P(|Z| > |z_0|)$, where $z_0 = \hat{\beta}_j/s.e.(\hat{\beta}_j)$, $Z \sim N(0,1)$ under $H_0: \beta_j = 0$.

EXAMPLE

FIGURE 1. Simplistic interpretation of a hazard ratio (HR). HR = 1 means equal efficacy of the experimental (E) and control (C) treatments. If the experimental treatment is better than the control, then the HR (E versus C) <1. If the experimental treatment is worse than the control, then the HR (E versus C) >1.

Figure 3: Figure from Barraclough et al., Journal of Thoracic Oncology 2011

EXAMPLE

From Athauda, et al., Movement Disorder (2022),

"Longitudinal Impact of T2DM on Development of Clinical Milestones

Over the total follow-up period, MCI developed in 40 (56%) of 71 patients with PD + T2DM and 340 (34%) of 986 patients with PD without T2DM. Substantial gait impairment developed in 36 (24%) of 147 patients with PD + T2DM and in 232 (13%) of 1737 patients with PD (Fig. 3). Adjusting for differences in age, sex, PD duration, H&Y stage, vascular risk score, LEDD, and BMI, Cox proportional hazard survival analysis indicated T2DM was a predictor for patients to develop substantial gait impairment (hazard ratio, 1.55; CI: 1.07–2.23; P = 0.020) and also MCI (hazard ratio, 1.74; CI: 1.19–2.55; P = 0.004), compared with the PD (without T2DM) group."

Stratified Cox Regression Models

- Often times we are interested in assessing the effects of exposures while adjusting for other factors in a regression analysis.
- We can stratify on the factor we want to control for if we are not interested in the hazard ratio for this factor to avoid the proportional hazard assumption.

A stratified Cox regression model is formed by

$$\lambda_k(t|\mathbf{z}_k) = \lambda_{k0}(t) \exp(\mathbf{z}_k'\boldsymbol{\beta}),$$

where $\lambda_{k0}(t)$ is the baseline hazard for stratum k and β represents common covariate effects.

Extended Cox Models: Time-dependent Covariates

Consider the study for transplant on survival.

- The Cox model would compare the survival distributions between those without a transplant (ever) to those with a transplant.
- A transplant status was determined at the end of the study and this value characterizes a subject for the entire follow-up period.
- Patients who died early had less time available to get transplants.
- Therefore, the survival estimates are overestimated for the patients who had transplants, and we call this problem as "immortal bias".

Extended Cox Models: Time-dependent Covariates

- As the status of transplant changes over time, we consider a model with a time-dependent indicator of whether a patient had a transplant at each point.
- We compare the risk of an event between the patients who had already transplants and who had not yet transplants at each event time.
- We recalculate the number at risk for each group at each event time.

A path of the covariate upto t: $\bar{\mathbf{z}}_i(t) = \{\mathbf{z}_i(u), 0 \le u \le t\}$.

We model

$$\lambda(t|\bar{\mathbf{z}}(t)) = \lambda_0(t) \exp(\mathbf{z}(t)'\beta).$$

Example

Consider a subject ID 5 with follow-up from time 0 to death at 185 days, and assume that we have a time dependent creatinine value that was measured at day 0, 90 and 120.

subject	start	end	death	age	creatinine
5	0	90	0	25	1.1
5	90	120	0	25	1.5
5	120	185	1	25	1.2
	120	103			1.2

Reference

- Mortezavi, A., Crippa, A., Kotopouli, M. I., Akre, O., Wiklund, P., & Hosseini, A. (2022). Association of Open vs Robot-Assisted Radical Cystectomy With Mortality and Perioperative Outcomes Among Patients With Bladder Cancer in Sweden. JAMA network open, 5(4), e228959-e228959.
- Athauda, D., Evans, J., Wernick, A., Virdi, G., Choi, M. L., Lawton, M., ... & Gandhi, S. (2022). The impact of type 2 diabetes in Parkinson's disease. Movement Disorders, 37(8), 1612-1623.
- Barraclough, H., Simms, L., & Govindan, R. (2011). Biostatistics primer: what a clinician ought to know: hazard ratios. Journal of Thoracic Oncology, 6(6), 978-982.