

# (12) PATENT ABRIDGMENT (11) Document No. AU-B-51725/96 (19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 717937

(54) Title PROSTATE-SPECIFIC MEMBRANE ANTIGEN AND USES THEREOF International Patent Classification(s) C12N 015/64 C12Q 001/68 C07K 014/435 (51): C12N 015/12 (22) Application Date : 23.02.96 (21) Application No. : 51725/96 (87) PCT Publication Number: W096/26272 Priority Data (30)(33)Country (31)Number (32)Date US UNITED STATES OF AMERICA 24.02.95 08/394152 08/466381 02.06.95 US UNITED STATES OF AMERICA US UNITED STATES OF AMERICA 02.06.95 08/470735 Publication Date: 11.09.96 (43)Publication Date of Accepted Application: 06.04.00 (44)Applicant(s) SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH (72) Inventor(s) RON S ISRAELI; WARREN D. W HESTON; WILLIAM R. FAIR Attorney or Agent (74)PHILLIP'S ORMONDE & FITZPATRICK, 367 Collins Street, MELBOURNE VIC 3000 (56)Prior Art Documents WO 94/09820 MEDLINE ABS #7527294. ISRAELI RS ET AL CANCER RES 1994 54 (24):6306-10 Claim (57)





IN

| (51) International Patent Classification 6:                                                                                                            |                                                                                | !        | (11) International Publication Number: WO 96/26272                                                                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------|--|
| C12N 15/12, 15/<br>14/435                                                                                                                              | /64, C12Q 1/68, C07K                                                           | A 1      | (43) International Publication Date: 29 August 1996 - 29 (18 96)                                                            |  |
| (21) International Application Number: PCT US96 024. (22) International Filing Date: 23 February 1996 (23.02.9)                                        |                                                                                |          | 400 East 85th Street, New York, NY 10028 (US) FAIR, William, R. [US US]. Apartment 3501, 400 East 70th                      |  |
|                                                                                                                                                        |                                                                                |          | Street, New York, NY 10021 (US).                                                                                            |  |
| (30) Priority Data:<br>08/394,152<br>08/466,381<br>08/470,735                                                                                          | 24 February 1995 (24.02.95<br>2 June 1995 (02.06.95)<br>2 June 1995 (02.06.95) | Ţ        | (74) Agent: WHITE, John, P., Cooper & Dunham L.L.P., 1185<br>US Avenue of the Americas, New York, NY 10036 (US),<br>US US 1 |  |
| ***                                                                                                                                                    |                                                                                |          | (81) Designated States: AU, CA, JP, MX, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC,            |  |
| (60) Parent Applications or Grants (63) Related by Continuation US 08/394,152 (CIP                                                                     |                                                                                |          | NL, PT, SE).                                                                                                                |  |
| US<br>Filed on                                                                                                                                         | 24 February 1995                                                               | ,        |                                                                                                                             |  |
| L'S                                                                                                                                                    | 08/466,                                                                        |          |                                                                                                                             |  |
| Filed on                                                                                                                                               | 2 June 1995                                                                    |          | - ·                                                                                                                         |  |
| US                                                                                                                                                     | 08/470,                                                                        | 735 (CI  | IP)                                                                                                                         |  |
| Filed on                                                                                                                                               | 2 June 1995                                                                    | (02.06.9 | 95)                                                                                                                         |  |
| (71) Applicant (for all designated States except US): SLOA!  KETTERING INSTITUTE FOR CANCER RESEARC [US/US]; 1275 York Avenue, New York, NY 10021 (US) |                                                                                |          | СН                                                                                                                          |  |
| (72) Inventors; and (75) Inventors/Applicants (for US only): ISRAFII, Ron, [US/US]: 528 Liberty Avenue, Staten Island, NY 1030                         |                                                                                |          |                                                                                                                             |  |

#### (54) Title: PROSTATE-SPECIFIC MEMBRANE ANTIGEN AND USES THEREOF

#### (57) Abstract

This invention provides an isolated mammalian nucleic acid molecule encoding an alternatively spliced prostate-specific membrane (PSM') antigen. This invention provides an isolated nucleic acid molecule encoding a prostate-specific membrane antigen promoter. This invention provides a method of detecting hematogenous micrometastic tumor cells of a subject, and determining prostate cancer progression in a subject.



# PROSTATE-SPECIFIC MEMBRANE ANTIGEN AND USES THEREOF

Ξ

10

This application is a continuation-in-part of United States Application Serial Nos. 08/466,381 and 08/470,735, both filed June 2, 1995, which are continuations of U.S. Serial No. 08/394,151, filed February 24, 1995, the contents of which are hereby incorporated by reference.

This invention disclosed herein was made in part with Government support under NIH Grants No. DK47650 and CA58192, CA-39203, CA-29502, CA-08748-29 from the Department of Health and Human Services. Accordingly, the U.S. Government has certain rights in this invention.

# 20 BACKGROUND OF THE INVENTION

Throughout this application various references are referred to within parentheses. Disclosures of these publications in their entireties are hereby incorporated by reference into this application to more fully describe the state of the art to which this invention pertains. Full bibliographic citation for these references may be found at the end of each set of Examples in the Experimental Details section.

**:** :

3 =

25

Prostate cancer is among the most significant medical problems in the United States, as the disease is now the most common malignancy diagnosed in American males. In 1992 there were over 132,000 new cases of prostate cancer detected with over 36,000 deaths attributable to the disease, representing a 17.3% increase over 4 years 12. Five year survival rates for patients with prostate cancer range from 86% for those with incalined disease to 19% for those with netastation means. The



15

20

secreted proteins prostate-specific antigen .PSA and

rapid increase in the number of cases appears to result in part from an increase in disease awareness as well as the widespread use of clinical markers such as the

5 prostatic acid phosphatase (PAP) (37).

The prostate gland is a site of significant pathology affected by conditions such as benign growth (BPH), (prostatic cancer) and neoplasia (prostatitis). Prostate cancer represents the second leading cause of death from cancer in man (1). However prostatic cancer is the leading site for cancer development in men. The difference between these two facts relates to prostatic cancer occurring with increasing frequency as men age, especially in the ages beyond 60 at a time when death from other factors often spectrum of Also, the biologic intervenes. aggressiveness of prostatic cancer is great, so that in some men following detection the tumor remains a latent histologic tumor and does not become clinically significant, whereas in other it progresses rapidly, metastasizes and kills the man in a relatively short 2-5 year period (1, 3).

In prostate cancer cells, two specific proteins that 25 are made in very high concentrations are prostatic acid phosphatase (PAP) and prostate specific antigen (PSA) (4, 5, 6). These proteins have been characterized and have been used to follow response to therapy. With the development of cancer, the normal architecture of the 30 gland becomes altered, including loss of the normal duct structure for the removal of secretions and thus the secretions reach the serum. Indeed measurement of serum PSA is suggested as a potential screening method for prostatic cancer. Indeed, the relative amount of 35 PSA and/or PAP in the cancer reduces as compared to normal or benign tissue.

10

: <u>:</u>

PAP was one of the earliest serum markers for detecting metastatic spread (4). PAP hydrolyses tyrosine phosphate and has a broad substrate specificity. Tyrosine phosphorylation is often increased with chaogenic transformation. It has been hypothesized that during neoplastic transformation there is less phosphatase activity available to inactivate proteins that are activated by phosphorylation on tyrosine residues. In some instances, insertion of phosphatases that have tyrosine phosphatase activity has reversed the malignant phenotype.

PSA is a protease and it is not readily appreciated how loss of its activity correlates with cancer development (5, 6). The proteolytic activity of PSA is inhibited by zinc. Zinc concentrations are high in the normal prostate and reduced in prostatic cancer. Possibly the loss of zinc allows for increased proteolytic activity by PSA. As proteases are involved in metastasis and some proteases stimulate mitotic activity, the potentially increased activity of PSA could be hypothesized to play a role in the tumors metastases and spread (7).

25 Eath PSA and FAP are found in prostatic secretions. Eath appear to be dependent on the presence of androgens for their production and are substantially reduced following androgen deprivation.

Frestate-specific membrane antigen (PSM) which appears to be localized to the prostatio membrane has been identified. This antigen was identified as the result of generating monoclonal antibodies to a prostation cancer cell, LNCaP (8).

Dr. Horoszewicz established a cell line designated LNCaP from the lymph node of a hormone refractory,

15

heavily pretreated patient (9). This line was found to have an aneuploid human male karyotype. It maintained prostatic differentiation functionality in that it produced both PSA and PAP. It possessed an androgen receptor of high affinity and specificity. Mice were immunized with LNCaP cells and hybridomas were derived from sensitized animals. A monoplonal antibody was derived and was designated 7E11-C5 (8). The antibody staining was consistent with a membrane location and isolated fractions of LNCaP cell membranes exhibited a strongly positive reaction with immunoblotting and ELISA techniques. This antibody did not inhibit or enhance the growth of LNCaP cells in vitro or in vivo. The antibody to this antigen was remarkably specific to prostatic epithelial cells, as no reactivity was observed in any other component. Immunohistochemical staining of cancerous epithelial cells was more intense than that of normal or benign epithelial cells.

also reported detection 20 Dr. Horoszewicz immunoreactive material using 7E11-C5 in serum of prostatic cancer patients (8). The immunoreactivity was detectable in nearly 60% of patients with stage D-2 disease and in a slightly lower percentage of patients with earlier stage disease, but the numbers of patients 25 in the latter group are small. Patients with benign prostatic hyperplasia (BPH) were negative. Patients with no apparent disease were negative, but 50-60% of patients in remission yet with active stable disease or with progression demonstrated positive 30 reactivity. Patients with non prostatic tumors did not show immunoreactivity with 7E11-C5.

The 7E11-C5 monoclonal antibody is currently in clinical trials. The aldehyde groups of the antibody were oxidized and the linker-chelator glycol-tyrosylin, \*-diethylenetriamine-pentacetic acid\*-lysine GYK-

Ξ

10

15

20

DTPA) was coupled to the reactive aldehydes of the heavy chain (10). The resulting antibody was designated CYT-356. Immunohistochemical staining patterns were similar except that the CYT-356 modified antibody stained skeletal muscle. The comparison of CYT-356 with 7El1-C5 monoclonal antibody suggested both had binding to type 2 muscle fibers. The reason for the discrepancy with the earlier study, which reported skeletal muscle to be negative, was suggested to be due to differences in tissue fixation techniques. Still, the most intense and definite reaction was observed with prostatic epithelial cells, especially cancerous Reactivity with mouse skeletal muscle was detected with immunohistochemistry but not in imagina studies. The Indium 111-labeled antibody localized to LNCaP tumors grown in nude mice with an uptake of nearly 30% of the injected dose per gram tumor at four days. In-vivo, no selective retention of the antibody was observed in antigen negative tumors such as PC-3 and DU-145, or by skeletal muscle. Very little was known about the PSM antigen. An effort at purification and characterization has been described at meetings by Dr. George Wright and colleagues (11, 12).

#### BRIEF DESCRIPTION OF THE FIGURES

Signal in lane 2 represent the 100kD Figure 1: PSM antigen. The EGFr was used as the 5 positive control and is shown in lane Incubation with rabbit antimouse (RAM) antibody alone served as negative control and is shown in lane 3. 10 Figures 2A-2D: Upper two photos show LNCaP cytospins staining positively for PSM antigen. Lower left in DU-145 and lower right is PC-3 cytospin, both negative for PSM antigen expression. 15 Figures 3A-3D: Upper two panels are human prostate sections (BPH) staining positively for PSM antigen. The lower two panels show invasive prostate carcinoma numan 20 sections staining positively expression of the PSM antigen. PSM antigen following Figure 4: 100kD immunoprecipitation of 35S-Methionine labelled LNCaP cells with Cyt-356 25 antibody.

Figure 5:

3% agarose gels stained with Ethidium bromide revealing PCR products obtained using the degenerate PSM antigen primers. The arrow points to sample IN-20, which is a 1.1 kb PCR product which was later confirmed to be a partial cDNA coding for the PSM gene.

Figures 6A-6B: 2% agarose gels of plasmid DNA

\_

resulting from TA cloning of PCR products. Inserts are excised from the PCR II vector (Invitrogen Corp. by digestion with EcoRI. 1.1 kb PSM gene partial cDNA product is shown in lane 3 of gel 1.

Figure 7:

WO 96/26272

Ξ

<u>.</u> (

15

Autoradiogram showing size of cDNA represented in applicants' LNCaP library using M-MLV reverse transcriptase.

Figure 8:

Restriction analysis of full-length clones of PSM gene obtained after screening cDNA library. Samples have been cut with Not I and Sal I restriction enzymes to liberate the insert.

Figure 9:

Plasmid Southern autoradiogram of full length PSM gene clones. Size is approximately 2.7 kb.

Figure 10:

Figure 11:

Northern blot revealing PSM expression limited to LNCaP prostate cancer line and H26 Ras-transfected LNCaP cell line. PC-3, DU-145, T-24, SKRC-27, HELA, MCF-7, HL-60, and others were are all negative.

3.0

3 5

2.5

Autoradiogram of Northern analysis revealing expression of 2.8 kb PSM message unique to the LNCaP cell line lane 1., and absent from the DU-145 (lane 2) and PC-3 cell lines (lane 3). RNA size ladder is shown on the left (kb), and 28S and 18S ribosomal RNA

Ξ

10

15

25

3 0

3.5

bands are indicated on the right.

#### Figures 12A-12B:

Results of PCR of human prostate tissues using PSM gene primers. Lanes are numbered from left to right. Lane 1, LNCaP; Lane 2, H26; Lane 3, DU-145; Lane 4, Normal Prostate; Lane 5, BPH; Lane 6, Prostate Cancer; Lane 7, BPH; Lane 8, Normal; Lane 9, BPH; Lane 10, BPH; Lane 11, BPH; Lane 12, Normal; Lane 13, Normal; Lane 14, Cancer; Lane 15, Cancer; Lane 16, Cancer; Lane 17, Normal; Lane 18, Cancer; Lane 19, IN-20 Control; Lane 20, PSM cDNA

Figure 13: Isoelectric point of PSM antigen (non-glycosylated)

Figures 14:1-8 Secondary structure of PSM antigen

# Figures 15A-15B:

A. Hydrophilicity plot of PSM antigen
B. Prediction of membrane spanning segments

#### Figures 16:1-11

Homology with chicken, rat and human transferrin receptor sequence.

#### Figures 17A-17C:

Immunohistochemical detection of PSM antigen expression in prostate cell lines. Top panel reveals uniformly high level of expression in LNCaP cells; middle panel and lower panel are DU-145 and PC-3 cells respectively.

both negative.

Figure 18:

Autoradiogram of protein gel revealing products of PSM coupled in-vitro transcription/translation. Non-glycosylated PSM polypeptide is seen at 84 kDa (lane 1) and PSM glycoprotein synthesized following the addition of microsomes is seen at 100 kDa (lane 2).

10

Ξ

Figure 19:

Western Blot analysis detecting FSM expression in transfected non-FSM expressing PC-3 cells. 100 kDa PSM glycoprotein species is clearly seen in LNCaP membranes (lane 1), LNCaP crude lysate (lane 2), and PSM-transfected PC-3 cells (lane 4), but is undetectable in native PC-3 cells (lane 3).

20

ΩE

15

Figure 20:

Autoradiogram of ribonuclease protection gel assaying for PSM mRNA expression in normal human tissues. Radiolabeled 1 kb DNA ladder (Gibco-BRL) is shown in lane 1. Undigested probe is 400 nucleotides (lane 2), expected protected PSM band is 350 nucleotides, and tRNA control is shown (lane 3). A strong signal is seen in human prostate (lane 11, with very faint, but detectable signals seen in human brain (lane 4) and human salivary gland (lane 12).

Figure 21:

Autoradiogram of ribonuclease protection gel assaying for PSM mRNA expression in LNCaP tumors grown in

nude mice, and in human prostatio tissues. 32P-labeled 1 kb DNA ladder is shown in lane 1. 298 nucleotide undigested probe is shown llane 27, and tRNA control is shown lane 3 . PSM mRNA expression is clearly detectable in LNCaP cells (lane 4), orthotopically grown LNCaP tumors in nude mice with and without matrigel (lanes 5 and 6), and subcutaneously implanted and grown LNCaP tumors in nude mice (lane 7). PSM mRNA expression is also seen in normal human prostate (lane 8), and in moderately differentiated human prostatic adenocarcinoma (lane Very faint expression is seen in a sample of human prostate tissue with benign hyperplasia (lane 9).

# 20 **Figure 22:**

5

10

15

25

3.0

3.5

Ribonuclease protection assay for PSM expression in LNCaP cells treated with physiologic doses of various steroids for 24 hours. 32P-labeled DNA ladder is shown in lane 1. 298 nucleotide undigested probe is shown (lane 2), and tRNA control is shown (lane 3). mRNA expression is highest in untreated LNCaP cells in charcoal-stripped media (lane 4). Applicant see significantly diminished PSM expression in LNCaP cells treated with DHT (lane 5), Testosterone (lane 6), Estradiol (lane 7), and Progesterone (lane 8), with little response to Dexamethasone (lane 9).

Figure 23: Data illustrating results of PSM DNA

PCT/L S96/02424

- 11 -

and RNA presence in transfect Lunning cell lines employing Southern and Northern blotting techniques

# E Figures 24A-24B:

10

15

20

25

Figure A indicates the power of cytokine transfected cells to teach unmodified cells. Administration was directed to the parental flank or prostate cells. The results indicate the microenvironment considerations.

Figure B indicates actual potency at a particular site. The tumor was implanted in prostate cells and treated with immune cells at two different sites.

#### Figures 25A-25B:

Relates potency of cytokines in inhibiting growth of primary tumors.

Animals administered un-modified parental tumor cells and administered as a vaccine transfected cells. Following prostatectomy of rodent tumor results in survival increase.

Figure 26: PCR amplification with nested primers improved the level of detection of prostatic cells from approximately one prostatic cell per 10,000 MCF-7 cells to better than one cell per million MCF-7 cells, using either PSA.

Figure 27: PCR amplification with nested primers improved the level of detection of prostatic cells from approximately one

prostatic cell per 10,000 MCF-7 cells to better than one cell per million MCF-7 cells, using PSM-derived primers.

5 Figure 28:

A representative ethidium stained gel photograph for PSM-PCF. Samples run in lane A represent PCR products generated from the outer primers and samples in lanes labeled E are products of inner primer pairs.

10

Figure 29:

PSM Southern blot autoradiograph. The sensitivity of the Southern blot analysis exceeded that of ethidium staining, as can be seen in several samples where the outer product is not visible on figure 3, but is detectable by Southern blotting as shown in figure 4.

20

15

Figure 30:

Characteristics of the 16 patients analyzed with respect to their clinical stage, treatment, serum PSA and PAP values, and results of assay.

25

Figures 31A-31D:

The DNA sequence of the 3 kb XhoI fragment of p683 which includes 500 bp of DNA from the RNA start site was determined Sequence 683XFRVS starts from the 5' distal end of PSM promoter.

3 (1

Figure 32: Potential binding sites on the PSM promoter.

3 5

Figure 33: Promoter activity of PSM up-stream fragment/CAT d to thim ra.

#### Figure 34:

Comparison between PSM and FSM' cTNA. Sequence of the 5' end of PSM cDNA (5 is shown. Underlined region denotes nucleotides which are present in PSM cDNA sequence but absent in PSM' cDNA. Boxed region represents the putative transmembrane domain of PSM antigen.

\* Asterisk denotes the putative translation initiation site for PSM'.

10

Ξ

#### Figure 35:

Graphical representation of PSM and PSM' cDNA sequences and antisense PSM RNA probe (b). PSM cDNA sequence with complete coding region (5). (a) PSM' cDNA sequence from this study. (c) Cross hatched and open boxes denote sequences identity in PSM and PSM'. Hatched box indicates sequence absent from PSM'. Regions of cDNA sequence complementary to the antisense probe are indicated by dashed lines between the sequences.

20

25

15

#### Figure 36:

RNase protection assay with FSM specific probe in primary prostatic tissues. Total cellular RNA was isolated from human prostatic samples: normal prostate, BPH, and CaP. PSM and PSM' spliced variants are indicated with arrows at right. The left lane is a DNA ladder. Samples from different patients are classified as: lanes 3-6, CaP, carcinoma of prostate; BPH, benign prostatic hypertrophy, lanes 7-9; normal, normal prostatic tissue, lanes 10-12. Autoradiograph was exposed for longer period to read lanes 8 and 9.

3.5

3.5

|     |                | -14-                                                                                                                                                                                                                                                                                                                                                                     |
|-----|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (5) | Figure 37:     | Tumor Index, a quantification of the expression of PSM and PSM'. Expression of PSM and PSM'. Expression of PSM and PSM' (Fig.3) was quantified by densitometry and expressed as a ratio of PSM/PSM' on the Y-axis. Three samples each were quantitated for primary CaF, BPH and normal prostate tissues. Two samples were quantitated for LNCaP. Normal, normal prostate |
| 10  |                | tissue.                                                                                                                                                                                                                                                                                                                                                                  |
|     | Figure 38:     | Characterization of PSM membrane bound and PSM' in the cytosol.                                                                                                                                                                                                                                                                                                          |
| 15  | Figure 39:     | Intron 1F: Forward Sequence. Intron 1                                                                                                                                                                                                                                                                                                                                    |
|     | -              | contains a number of trinucleotide repeats which can be area associated with chromosomal instability in tumor cells. LNCaP cells and primary prostate                                                                                                                                                                                                                    |
| 20  |                | tissue are identical, however in the                                                                                                                                                                                                                                                                                                                                     |
| 25  |                | PC-3 and Du-145 tumors they have substantially altered levels of these trinucleotide repeats which may relate to their lack of expression of PSM.                                                                                                                                                                                                                        |
| 25  | Figures 407 40 | D.                                                                                                                                                                                                                                                                                                                                                                       |
|     | Figures 40A-40 | Intron 1R: Reverse Sequence                                                                                                                                                                                                                                                                                                                                              |
| 3 b | Figure 41:     | Intron 2F: Forward Sequence                                                                                                                                                                                                                                                                                                                                              |
|     | Figure 42:     | Intron 2R: Reverse Sequence                                                                                                                                                                                                                                                                                                                                              |

Intron 3F: Forward Sequence

Intron 3E: Reverse Sequence

Figures 43A-43B:

Figures 44A-44B:

Figures 45A-45B:

3.5

WO 96/26272 PCT/US96/02424

-15-

Intron 4F: Forward Sequence

# Figures 46A-46B:

Intron 4R: Reverse Sequence

1

#### Figures 47A-47D:

Sequence of the genomic region upstream of the 5' transcription start site of PSM.

10

15

#### Figure 48:

Photograph of ethidium bromide stained gel depicting representative negative and positive controls used in the study. Samples 1-5 were from, respectively: male with prostatis, a healthy female volunteer, a male with BPH, a control 1:1,000,000 dilution of LNCaP cells, and a patient with renal cell carcinoma. Below each reaction is the corresponding control reaction performed with beta-2-microglobulin primers to assure RNA integrity. No PCR products were detected for any of these negative controls.

25

20

# Figure 49:

Photograph of gel displaying representative positive PCR results using PSM primers in selected patients with either localized or disseminated prostate cancer. Sample 1-1 were from respectively: a patient with clinically localized stage Tl<sub>c</sub> disease, a radical prostatectomy patient with organiconfined disease and a negative serum PSA, a radical prostatectomy patient with locally advanced disease and a negative serum PSA, a patient with

3.5

3 %

treated stage D2 disease, and a patient with treated hormone refractory disease.

- 5 **Figure 50:** Chromosomal location of PSM based on cosmid construction.
- Figure 51: Human monochromosomal somatic cell hybrid blot showing that chromosome 11 contained the PSM genetic sequence by Southern analysis. DNA panel digested with PstI restriction enzyme and probed with PSM cDNA. Lanes M and H refer to mouse and hamster DNAs. The numbers correspond to the human chromosomal DNA in that hybrid.
- Figure 52: Ribonuclease protection assay using PSM radiolabeled RNA probe revels an abundant PSM mRNA expression in AT6.1-11 clone 1, but not in AT6.1-11 clone 2, thereby mapping PSM to 11p11.2-13 region.
- 25 **Figure 53:** Tissue specific expression of PSM RNA by Northern blotting and RNAse protection assay.
- Figure 54: Mapping of the PSM gene to the 11p11.2
  p13 region of numan chromosome 11 by southern blotting and in-situ hybridization.
- Figure 55: Schematic of potential response elements.
  - Figure 56: Genomic organization of PSM gene.

-17-

Figure 57: Schematic of metastatic prostate cell

Figure 58A-58C:

Nucleic acid of PSM genomic DNA is read

5 prime away from the transcription
start site: number on the sequences
indicates nucleotide upstream from the
start site. Therefore, nucleotide #121
is actually -121 using conventional

numbering system.

Figure 59:

Representation of NAAG 1, acividin, azotomycin, and 6-diazo-5-exo-norleucine, DON.

Figure 60:

Preparation of N20 acetylaspartylglutamate, NAAG 1.

Figure 61:

Synthesis of N-acetylaspartylglutamate, NAAG 1.

25

Figure 62:

Synthesis of N-phosphonoacetylaspartyl-L-glutamate.

Figure 63:

Synthesis of 5-diethylphosphonon-2 amino benzylvalerate intermediate.

Figure 64:

Synthesis of analog 4 and 5.

Figure 65:

Representation of DON, analogs 17-20.

5 Figure 66:

Substrates for targeted drug delivery, analog 21 and 22.

Figure 67:

Dynemycin A and its mode of action.

Figure 68:

Synthesis of analog 28.

15 Figure 69:

Synthesis for intermediate analog 28.

Figure 70:

Attachment points for PALA.

20

Figure 71:

Mode of action for substrate 21.

Figures 72A-72D:

Intron 1F: Forward Sequence.

Figures 73A-73E:

Intron 1R: Reverse Sequence

Figures 74A-74C:

Intron 2F: Forward Sequence

Figures 75A-75C:

Intron 2R: Reverse Sequence

3.5

Figures 76A-76B:

Intion SF: Forward Sequence

**-** 0

15

20

25

31

Figures 77A-77B:

Intron 3R: Reverse Sequence

5 Figures 78A-78C:

Intron 4F: Forward Sequence

Figures 79A-79E:

Intron 4RF: Reverse Sequence

Figure 80:

PSM genomic organization of the exons and 19 intron junction sequences. The exon/intron junctions (See Example 15° are as follows:

- 1. Exon /intron 1 at bp 389-390;
- 2. Exon /intron 2 at hp 490-491;
- 3. Exon /intron 3 at hp 681-682;
- 4. Exon /intron 4 at bp 784-785;
- 5. Exon /intron 5 at bp 911-912;
- 6. Exon /intron 6 at hp 1096-1097;
- 7. Exem /intron 7 at bp 1190-1191;
- 8. Expn /intron 8 at bp 1289- 1290;
- 9. Exon [intron 9 at bp 1375-1376;
- 10. Excn /intron 10 at hp 1496-1497;
- 11. Exon /intron 11 at hp 1579-1580;
- 12. Exon /intron 12 at bp 1640-1641;
- 13. Expn 'intron 13 at bp 1708-1709;
- 14. Expn [intron 14 at bp 1803-1804;
- 18. Exam intron 15 at mp legu-le93;
- 16. Excn [intron 16 at bp 1158-2159;
- 17. Exen /intron 17 at bp 2240-2241;
- 18. Exam /intron 18 at bp 2334-2335;
- 19. Excn /intron 19 at bp 2644-2648.

3.5

# SUMMARY OF THE INVENTION

This invention provides an isolated mammalian nucleic acid molecule encoding an alternatively spliced prostate-specific membrane (PSM' antigen.

This invention provides an isolated nucleic acid molecule encoding a prostate-specific membrane antigen promoter. This invention provides a method of detecting hematogenous micrometastic tumor cells of a subject, and determining prostate cancer progression in a subject.

15

20

25

3 5

# Detailed Description of the Invention

Throughout this application, references to specific nucleotides are to nucleotides present on the coding strand of the nucleic acid. The following standard abbreviations are used throughout the specification to indicate specific nucleotides:

C=cytosine A=adenosine
T=thymidine G=guanosine

A "gene" means a nucleic acid molecule, the sequence of which includes all the information required for the normal regulated production of a particular protein, including the structural coding sequence, promoters and enhancers.

This invention provides an isolated mammalian nucleic acid encoding an alternatively spliced prostate-specific membrane (PSM') antigen.

This invention provides an isolated mammalian nucleic acid encoding a mammalian prostate-specific membrane (PSM) antigen.

This invention further provides an isolated mammalian DNA molecule of an isolated mammalian nucleic acid molecule encoding an alternatively spliced prostate-specific membrane antigen. This invention also provides an isolated mammalian GDNA molecule encoding a mammalian alternatively spliced prostate-specific membrane antigen. This invention provides an isolated mammalian RNA molecule encoding a mammalian alternatively spliced prostate-specific sytosolic antigen.

This invention further provides an isolated mammalian

DNA molecule of an isolated mammalian nucleic acid molecule encoding a mammalian prostate-specific membrane antigen. This invention also provides an isolated mammalian cDNA molecule encoding a mammalian prostate-specific membrane antigen. This invention provides an isolated mammalian RNA molecule encoding a mammalian prostate-specific membrane antigen.

In the preferred embodiment of this invention, the isolated nucleic sequence is cDNA from human as shown in Figures 47A-47D. This human sequence was submitted to GenBank (Los Alamos National Laboratory, Los Alamos, New Mexico) with Accession Number, M99487 and the description as PSM, Homo sapiens, 2653 base-pairs.

15

20

25

30

35

5

10

This invention also encompasses DNAs and cDNAs which encode amino acid sequences which differ from those of PSM or PSM' antigen, but which should not produce phenotypic changes. Alternatively, this invention also encompasses DNAs and cDNAs which hybridize to the DNA and cDNA of the subject invention. Hybridization methods are well known to those of skill in the art.

For example, high stringent hybridization conditions are selected at about 5° C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Typically, stringent conditions will be in which the those concentration is at least about 0.02 molar at pH 7 and the temperature is at least about 60°C. factors may significantly affect the stringency of nybridization, including, among others, composition and size of the complementary strands, the presence of organic solvents, ie. salt or formamide Ξ

25

3.0

concentration, and the extent of base mismatching, the combination of parameters is more important than the absolute measure of any one. For Example high stringency may be attained for example by overnight hybridization at about  $68\,^{\circ}\text{C}$  in a  $6\times$  SSC solution, washing at room temperature with  $6\times$  SSC solution, followed by washing at about  $68\,^{\circ}\text{C}$  in a  $6\times$  SSC in a  $6.6\times$  SSX solution.

Hybridization with moderate stringency may be attained for example by:

1. filter pre-hybridizing and hybridizing with a solution of 3x sodium chloride, sodium citrate (SSC), 50% formamide, 0.1M Tris buffer at Ph 7.5, 5x Denhardt's solution;

2.) pre-hybridization at 37°C for 4 hours;

3) hybridization at 37°C for 4 hours;

3) hybridization at 37°C with amount of labelled probe equal to 3,000,000 cpm total for 16 hours;

4) wash in 2x SSC and 0.1% SDS solution;

5) wash 4x for 1 minute each at room temperature at 4x at 60°C for 30 minutes each; and 6) dry and expose to film.

The DNA molecules described and claimed herein are useful for the information which they provide concerning the amino acid sequence of the polypeptide and as products for the large scale synthesis of the polypeptide by a variety of recombinant techniques. The molecule is useful for generating new cloning and expression vectors, transformed and transfected prokaryotic and eukaryotic host cells, and new and useful methods for cultured growth of such host cells capable of expression of the polypeptide and related products.

Moreover, the isolated mammalian nucleic acid molecules encoding a mammalian prostate-specific membrane antigen and the alternatively spliced PSM' are useful for the development of probes to study the tumorigenesis of

20

25

P (

3 5

prostate cancer.

This invention also provides an isolated nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a sequence of a nucleic acid molecule encoding the prostate-specific membrane antigen or the alternatively spliced prostate specific membrane antigen.

This nucleic acid molecule produced can either be DNA or RNA. As used herein, the phrase "specifically hybridizing" means the ability of a nucleic acid molecule to recognize a nucleic acid sequence complementary to its own and to form double-helical segments through hydrogen bonding between complementary base pairs.

This nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a sequence of a nucleic acid molecule encoding the prostate-specific membrane antigen can be used as a probe. Nucleic acid probe technology is well known to those skilled in the art who will readily appreciate that such probes may vary greatly in length and may be labeled with a detectable label, such as a radioisotope or fluorescent dye, to facilitate detection of the probe. DNA probe molecules may be produced by insertion of a DNA molecule which encodes PSM antigen into suitable vectors, such as plasmids or bacteriophages, followed by transforming into suitable bacterial host cells, replication in the transformed bacterial host cells and harvesting of the DNA probes, using methods well known in the art. Alternatively, probes may be generated chemically from DNA synthesizers.

RNA probes may be generated by inserting the PSM antigen molecule downstream if a backeriophage promoter

-25-

such as T3, T7 or SP6. Large amounts of RNA probe may be produced by incubating the labeled nuclectides with the linearized PSM antigen fragment where it contains an upstream promoter in the presence of the appropriate RNA polymerase.

This invention also provides a nucleit acid molecule of at least 15 nucleotides capable of specifically hybridizing with a sequence of a nucleit acid molecule which is complementary to the mammalian nucleic acid molecule encoding a mammalian prostate-specific membrane antigen. This molecule may either be a ENA or RNA molecule.

15 The current invention further provides a method of detecting the expression of a mammalian PSM or PSM' antigen expression in a cell which comprises obtaining total mRNA from the cell, contacting the mRNA so obtained with a labelled nucleic acid molecule of at 15 nucleotides capable of specifically 20 hybridizing with a sequence of the nucleic acid molecule encoding a mammalian PSM or PSM' antigen under hybridizing conditions, determining the presence of mRNA hybridized to the molecule and thereby detecting the expression of the mammalian prostate-specific 25 membrane antigen in the cell. The nucleic acid molecules synthesized above may be used to detect expression of a PSM or PSM' antigen by detecting the presence of mRNA coding for the PSM antigen. Total mRNA from the cell may be isolated by many procedures 5 0 well known to a person of ordinary skill in the art. The hybridizing conditions of the labelled nucleic acid molecules may be determined by routine experimentation. well known in the art. The presence of mRNA hybridized 3.5 to the probe may be determined by gel electrophoresis or other methods known in the art. By measuring the amount of the hybrid made, the expression of the PSM

antigen by the cell can be determined. The labeling may be radioactive. For an example, one or more radioactive nucleotides can be incorporated in the nucleic acid when it is made.

5

10

15

In one embodiment of this invention, nucleic acids are extracted by precipitation from lysed cells and the mRNA is isolated from the extract using an cligo-dT column which binds the poly-A tails of the mRNA molecules (13). The mRNA is then exposed to radioactively labelled probe on a nitrocellulose membrane, and the probe hybridizes to and thereby labels complementary mRNA sequences. Binding may be detected by luminescence autoradiography or scintillation counting. However, other methods for performing these steps are well known to those skilled in the art, and the discussion above is merely an example.

This invention further provides another method to 20 detect expression of a PSM or PSM' antigen in tissue sections which comprises contacting the tissue sections with a labelled nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a sequence of nucleic acid molecules encoding a mammalian 25 PSM antigen under hybridizing conditions, determining the presence of mRNA hybridized to the molecule and thereby detecting the expression of the mammalian PSM or PSM' antigen in tissue sections. The probes are also useful for in-situ hybridization or in order to 3.0 locate tissues which express this gene, or for other hybridization assays for the presence of this gene or its mRNA in various biological tissues. The in-situ hybridization using a labelled nucleic acid molecule is well known in the art. Essentially, tissue sections : 5 are incubated with the labelled nucleic acid molecule to allow the hybridization to occur. The molecule will

WO 96/26272 PCT/US96/02424

-27-

carry a marker for the detection because it is "labelled", the amount of the hybrid will be determined based on the detection of the amount of the marker and so will the expression of PSM antigen.

This invention further provides isolated PSM or PSM' antigen nucleic acid molecule operatively linked to a promoter of RNA transcription. The isolated PSM or PSM' antigen sequence can be linked to vector systems. Various vectors including plasmid vectors, cosmid vectors, bacteriophage vectors and other viruses are well known to ordinary skilled practitioners. This

invention further provides a vector which comprises the isolated nucleic acid molecule encoding for the PSM or

15 PSM' antigen.

Ξ

20

25

3.5

As an example to obtain these vectors, insert and vector DNA can both be exposed to a restriction enzyme to create complementary ends on both molecules which base pair with each other and are then ligated together with DNA ligase. Alternatively, linkers can be ligated to the insert DNA which correspond to a restriction site in the vector DNA, which is then digested with the restriction enzyme which cuts at that site. Other means are also available and known to an ordinary skilled practitioner.

In an embodiment, the PSM sequence is cloned in the Not I/Sal I site of pSPORT/vector (Gipco\* - BRL). This plasmid, p55A-PSM, was deposited on August 14, 1991 with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Maryland 20852, U.S.A. under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganism for the Purposes of Patent Procedure. Plasmid, p55A-PSM, was accorded ATCC Accession Number 75294.

15

20

25

3.0

This invention further provides a host vector system for the production of a polypeptide naving the biological activity of the prostate-specific membrane antigen. These vectors may be transformed into a suitable host cell to form a host cell vector system for the production of a polypeptide having the biological activity of PSM antigen.

Regulatory elements required for expression include promoter sequences to bind RNA polymerase sequences for initiation ribosome transcription binding. For example, a bacterial expression vector includes a promoter such as the lac promoter and for transcription initiation the Shine-Dalgarno sequence and the start codon AUG (14). Similarly, a eukaryotic expression vector includes a heterologous or homologous RNA polymerase II, a downstream promoter for polyadenylation signal, the start codon AUG, and a termination codon for detachment of the ribosome. vectors may be obtained commercially or assembled from the sequences described by methods well known in the art, for example the methods described above for constructing vectors in general. Expression vectors are useful to produce cells that express the PSM antigen.

This invention further provides an isolated DNA or cDNA molecule described hereinabove wherein the host cell is selected from the group consisting of bacterial cells (such as  $\underline{E.coli}$ ), yeast cells, fungal cells, insect cells and animal cells. Suitable animal cells include, but are not limited to Vero cells, HeLa cells, Cos cells, CV1 cells and various primary mammalian cells.

This invention further provides a method of producing a polypeptide having the biological activity of the prostate specific membrane antigen which comprising

WO 96/26272 PCT/US96/02424

-29-

growing host cells of a vector system containing the PSM antigen sequence under suitable condition permitting production of the polypeptide and recovering the polypeptide so produced.

5

This invention provides a mammalian cell comprising DNA molecule encoding a mammalian PSM or PSM' antiger such as a mammalian cell comprising a plasmid adapte for expression in a mammalian cell, which comprises DNA molecule encoding a mammalian PSM antigen and the regulatory elements necessary for expression of the DN in the mammalian cell so located relative to the DN encoding the mammalian PSM or PSM' antigen as to permit expression thereof.

15

2.0

25

10

Numerous mammalian cells may be used as hosts including, but not limited to, the mouse fibroblas cell NIH3T3, CHO cells, HeLa cells, Ltk' cells, Cocells, etc. Expression plasmids such as that describe supra may be used to transfect mammalian cells is methods well known in the art such as calcium phosphat precipitation, electroporation or DNA encoding to mammalian PSM antigen may be otherwise introduced into mammalian cells, e.g., by microinjection, to chial mammalian cells which comprise DNA, e.g., cDNA or plasmid, encoding a mammalian PSM antigen.

This invention provides a method for determining whether a ligand can beind to a mammalian prostate specific membrane antigen, which comprises contacting mammalian cell comprising an isolated DW molecule encoding a mammalian prostate specific membrane autions with the ligand under andict as permitting the ligands to the manufactan prostate specific membrane actions.

35 antigen, and thereign determining whether the

35 Antigen, and thereby determining whether the light hinds to a mammalian prostate-specific median ntigen.



This invention further provides ligands bound to the mammalian PSM or PSM' antigen.

This invention also provides a therapeutic agent comprising a ligand identified by the above-described method and a cytotoxic agent conjugated thereto. The cytotoxic agent may either be a radioisotope or a toxin. Examples of radioisotopes or toxins are well known to one of ordinary skill in the art.

10

15

20

25

3 C

3.5

5

This invention also provides a method of imaging prostate cancer in human patients which comprises administering to the patients at least one ligand identified by the above-described method, capable of binding to the cell surface of the prostate cancer cell and labelled with an imaging agent under conditions permitting formation of a complex between the ligand and the cell surface PSM or PSM' antigen. This invention further provides a composition comprising an effective imaging agent of the PSM OR PSM' antigen ligand and a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers are well known to one of ordinary skill in the art. For an example, such a pharmaceutically acceptable carrier can be physiological saline.

Also provided by this invention is a purified mammalian PSM and PSM' antigen. As used herein, the term "purified prostate-specific membrane antigen" shall mean isolated naturally-occurring prostate-specific memorane antigen or protein (purified from nature or manufactured such that the primary, secondary and tertiary conformation, and posttranslational modifications are identical to naturally-occurring material) as well as non-naturally occurring polypeptides having a primary structural conformation (i.e. continuous sequence of amini acid residues).

\_ \_

15

Such polypeptides include derivatives and analogs.

This invention provides an isolated nucleic acid molecule encoding a prostate-specific membrane antigen provider. In one embodiment the PSM promoter has at least the sequence as in Figures 58A-58C.

This invention provides an isolated nucleur acid molecule encoding an alternatively spliced prospects specific membrane antigen promoter.

This invention further provides a polypeptide on oded by the isolated mammalian nucleic acid sequence of PSM and PSM' antigen.

It is believed that there may be natural I gand interacting with the PSM or PSM' antigen. This invention provides a method to identify such as anal ligand or other ligand which can bind to the FIM or 20 PSM' antigen. A method to identify the ligand comprises at coupling the purified mammalian FFM or TSMT antigen to a solid matrix, b) incubating the crupled purified mammalian PSM or PSM' protein to the potential ligands under the conditions permitting 25 kinding of ligands and the purified PSM or FSM' antigen; c) washing the ligand and coupled purified mammalian PSM or PSM' antigen complex formed in he to eliminate the nonspecific binding and impurities and finally dy eluting the ligand from the bound : .. ::ed which how or  ${\sf FeM}^{\sigma}$  antigen. The term , , , of pling preteins to a solid matrix are wel the art. Potential ligands may either be deques trom otrunture of resmalian PSM // PSM rical experiments known by ordinare . . : fitichers. The conditions is a kinding ... y he determined and protocols for car. - - -----

ramentation have long been well document

The ligand-PSM antigen complex will be washed. Finally, the bound ligand will be eluted and characterized. Standard ligands characterization techniques are well known in the art.

5

10

25

3.0

3.5

The above method may also be used to purify ligands from any biological source. For purification of natural ligands in the cell, cell lysates, serum or other biological samples will be used to incubate with the mammalian PSM or PSM' antigen bound on a matrix. Specific natural ligand will then be identified and purified as above described.

With the protein sequence information, antigenic areas may be identified and antibodies directed against these areas may be generated and targeted to the prostate cancer for imaging the cancer or therapies.

This invention provides an antibody directed against the amino acid sequence of a mammalian PSM or PSM' antigen.

This invention provides a method to select specific regions on the PSM or PSM' antigen to generate antibodies. The protein sequence may be determined from the PSM or PSM' DNA sequence. Amino acid sequences may be analyzed by methods well known to those skilled in the art to determine whether they produce hydrophobic or hydrophilic regions in the proteins which they build. In the case of cell membrane proteins, hydrophobic regions are well known to form the part of the protein that is inserted into the lipid bilayer of the cell membrane, while hydrophilic regions are located on the cell surface, in an aqueous environment. Usually, the hydrophobic regions will be more immunogenic than the hydrophobic regions. Therefore the hydrophilic amin acid

sequences may be selected and used to generate antibodies specific to mammalian PSM antigen. For an example, hydrophilic sequences of the human PSM antigen shown in hydrophilicity plot of Figures 16:1-11 may be easily selected. The selected peptides may be prepared using commercially available machines. As an alternative, DNA, such as a cDNA or a fragment thereof, may be cloned and expressed and the resulting polypeptide recovered and used as an immunogen.

10

15

20

Ξ

Polyclonal antibodies against these peptides may be produced by immunizing animals using the selected peptides. Monoclonal antibodies are prepared using hybridoma technology by fusing antibody producing B cells from immunized animals with myeloma cells and selecting the resulting hybridoma cell line producing the desired antibody. Alternatively, monoclonal antibodies may be produced by <u>in vitro</u> techniques known to a person of ordinary skill in the art. These antibodies are useful to detect the expression of mammalian PSM antigen in living animals, in humans, or in biological tissues or fluids isolated from animals or humans.

- In one embodiment, peptides Asp-Glu-Leu-Lys-Ala-Glu (SEQ ID No. ), Asn-Glu-Asp-Gly-Asn-Glu (SEQ ID No. ) and Lys-Ser-Pro-Asp-Glu-Gly (SEQ ID No. ) of human PSM antigen are selected.
- This invention further provides polyplonal and monoclonal antibody(les) against peptides Asp-Glu-Leu-Lys-Ala-Glu (SEQ ID No. ), Asn-Glu-Asp-Gly-Asn-Glu (SEQ ID No. ) and Lys-Ser-Pro-Asp-Glu-Gly (SEQ ID No. )

3 5

This invention provides a therapeutic agent comprising antibodies or ligand(s) directed against PSM antigen

and a cytotoxic agent conjugated thereto or antibodies linked enzymes which activate prodrug to kill the tumor. The cytotoxic agent may either be a radioisotope or toxin.

Ξ

10

15

20

25

This invention provides a method of imaging prostate cancer in human patients which comprises administering to the patient the monoclonal antibody directed against the peptide of the mammalian PSM or PSM' antigen capable of binding to the cell surface of the prostate cancer cell and labeled with an imaging agent under conditions permitting formation of a complex between the monoclonal antibody and the cell surface prostate-specific membrane antigen. The imaging agent is a radioisotope such as Indium<sup>111</sup>.

This invention further provides a prostate cancer specific imaging agent comprising the antibody directed against PSM or PSM' antigen and a radioisotope conjugated thereto.

This invention also provides a composition comprising an effective imaging amount of the antibody directed against the PSM or PSM' antigen and a pharmaceutically acceptable carrier. The methods to determine effective imaging amounts are well known to a skilled practitioner. One method is by titration using different amounts of the antibody.

3.

35

This invention further provides an immunoassay for measuring the amount of the prostate-specific membrane antigen in a biological sample comprising steps of a) contacting the biological sample with at least one antibody directed against the PSM or PSM' antigen to form a complex with said antibody and the prostate-specific membrane antigen, and b) measuring the amount of the prostate-specific membrane antigen in said

WO 96/26272 PCT/US96/02424

biological sample by measuring the amount of said complex. One example of the biological sample is a serum sample.

- 35

This invention provides a method to purify mammalian prostate-specific membrane antigen comprising steps of a, coupling the antibody directed against the PSM or PSM' antigen to a solid matrix; b) incubating the ccupled antibody of as with lysate containing prostate-**1**0 specific membrane antigen under the condition which the antibody and prostate membrane specific can bind; c washing the solid matrix to eliminate impurities and d) eluting the prostate-specific membrane antigen from the coupled antibody.

15

20

25

3.0

This invention also provides a transgenic nonhuman mammal which comprises the isolated nucleic acid molecule encoding a mammalian PSM or PSM' antigen. This invention further provides a transgenic nonhuman whose genome comprises antisense complementary to DNA encoding a mammalian prostatespecific membrane antigen so placed as to be transcribed into antisense mRNA complementary to mRNA encoding the prostate-specific membrane antigen and which hybridizes to mRNA encoding the prostate specific antigen thereby reducing its translation.

Animal model systems which elucidate the physiological and behavioral roles of mammalian PSM or PSM' antiden are produced by creating transgenic animals in which the expression of the PSM or PSM' antigen is either increased or decreased, or the amino acid sequence of the expressed PSM antigen is altered, by a variety of techniques. Examples of these techniques include, but are not limited to: 1. Insertion of normal dr mutant 3.5 versions of DNA encoding a mammalian PSM or PSM' antigen, by microinjection, electroporation, retroviral

10

transfection or other means well known to those skilled in the art, into appropriate fertilized embryos in order to produce a transgenic animal (16) or 2 Homologous recombination (17) of mutant or normal, human or animal versions of these genes with the native dene locus in transdenic animals to alter the regulation of expression or the structure of these PSM or PSM' antigen sequences. The technique of homologous recombination is well known in the art. It replaces the native gene with the inserted gene and so is useful for producing an animal that cannot express native PSM antigen but does express, for example, an inserted mutant PSM antigen, which has replaced the native PSM antigen in the animal's genome by recombination, resulting in undere xpression of the transporter. Microinjection adds genes to the genome, but does not remove them, and so is useful for producing an animal which expresses its own and added PSM antigens, resulting in over expression of the PSM antigens.

20

25

30

3.5

15

One means available for producing a transgenic animal, with a mouse as an example, is as follows: mice are mated, and the resulting fertilized eggs are dissected out of their cviducts. The eggs are stored in an appropriate medium such as Me medium (16). DNA or cDNA encoding a mammalian PSM antigen is purified from a vector by methods well known in the art. Inducible promoters may be fused with the coding region of the DNA to provide an experimental means to regulate expression of the trans-gene. Alternatively or in addition, tissue specific regulatory elements may be fused with the coding region to permit tissue-specific expression of the trans-gene. The DNA, in appropriately buffered solution, is put into microinfection needle (which may be made from capillary tubing using a pipet puller) and the egg to be injected is put in a depression slide. The needle is inserted

into the pronucleus of the egg, and the DNA solution is injected. The injected egg is then transferred into the oviduot of a pseudopregnant mouse (a mouse stimulated by the appropriate hormones to maintain pregnancy but which is not actually pregnant, where it proceeds to the uterus, implants, and develops to term. As noted above, microinjection is not the only method for inserting DNA into the egg cell, and is used here only for exemplary purposes.

10

15

20

25

3.0

5

Another use of the PSM antigen sequence is to isolate homologous gene or genes in different mammals. The gene or genes can be isolated by low stringency screening of either cDNA or genomic libraries of different mammals using probes from PSM sequence. The positive clones identified will be further analyzed by DNA sequencing techniques which are well known to an ordinary person skilled in the art. For example, the detection of members of the protein serine kinase family by homology probing.

This invention provides a method of suppressing or modulating metastatic ability of prostate tumor cells, prostate tumor growth or elimination of prostate tumor cells comprising introducing a DNA molecule encoding a prostate specific membrane antigen operatively linked to a 5' regulatory element into a tumor cell of a subject, in a way that expression of the prostate specific membrane antigen is under the control of the regulatory element, thereby suppressing or madulating metastatic ability of prostate tumor cells, prostate tumor growth or elimination of prostate tumor cells. The subject may be a mammal or more specifically a human.

3.5

In one embodiment, the DNA molecule encoding prostate specific membrane antigen operatively linked to a 5'

regulatory element forms part of a transfer vector which is inserted into a cell or organism. In addition the vector is capable or replication and expression of prostate specific membrane antigen. The DNA molecule encoding prostate specific membrane antigen can be integrated into a genome of a eukaryotic or prokaryotic cell or in a host cell containing and/or expressing a prostate specific membrane antigen.

Further, the DNA molecule encoding prostate specific membrane antigen may be introduced by a bacterial, viral, fungal, animal, or liposomal delivery vehicle. Other means are also available and known to an ordinary skilled practitioner.

15

20

25

5

Further, the DNA molecule encoding a prostate specific membrane antigen operatively linked to a promoter or enhancer. A number of viral vectors have been described including those made from various promoters and other regulatory elements derived from virus sources. Promoters consist of short arrays of nucleic acid sequences that interact specifically with cellular proteins involved in transcription. The combination of different recognition sequences and the cellular concentration of the cognate transcription factors determines the efficiency with which a gene is transcribed in a particular cell type.

Examples of suitable promoters include a viral promoter. Viral promoters include: adenovirus promoter, an simian virus 40 (SV40) promoter, a cytomegalovirus (CMV) promoter, a mouse mammary tumor virus (MMTV) promoter, a Malony murine leukemia virus promoter, a murine sarcoma virus promoter, and a Rous sarcoma virus promoter.

Further, another suitable promoter to a heat chock

promoter. Additionally, a suitable promoter is a bacteriophage promoter. Examples of suitable bacteriophage promoters include but not limited to, a T7 promoter, a T3 promoter, an SP6 promoter, a lambda promoter, a baculovirus promoter.

Ξ

20

2.5

3.0

3.5

Also suitable as a promoter is an animal cell promoter such as an interferon promoter, a metallothionein promoter, an immunoglobulin promoter. A fungal promoter is also a suitable promoter. Examples of fungal promoters include but are not limited to, an ADC1 promoter, an ARG promoter, an ADH promoter, a CYC1 promoter, a CUP promoter, an ENO1 promoter, a GAL promoter, a PHO promoter, a PGK promoter, a GAPDH promoter, a mating type factor promoter. Further, plant cell promoters and insect cell promoters are also suitable for the methods described herein.

This invention provides a method of suppressing or modulating metastatic ability of prostate tumor cells, prostate tumor growth or elimination of prostate tumor cells, comprising introducing a DNA molecule encoding

prostate specific membrane antigen operatively linked to a 5' regulatory element coupled with a therapeutic DNA into a tumor cell of a subject, thereby suppressing or modulating metastatic ability of prostate tumor cells, prostate tumor growth or elimination of prostate tumor cells. The subject may be a mammal or more specifically a human.

Further, the therapeutic DNA which is coupled to the DNA molecule encoding a prostate specific membrane. antigen operatively linked to a 5' regulatory element into a tumor cell may code for a cytokine, viral antigen, or a pro-drug activating enzyme. Other means are also available and known to an ordinary skilled

20

25

30

practitioner.

In addition, this invention provides a prostate tumor cell, comprising a DNA molecule isolated from mammalian nucleic acid encoding a mammalian prostate-specific membrane antigen under the control of a prostate specific membrane antigen operatively linked to a 5' regulatory element.

As used herein, DNA molecules include complementary DNA (cDNA), synthetic DNA, and genomic DNA.

This invention provides a therapeutic vaccine for preventing human prostate tumor growth or stimulation of prostate tumor cells in a subject, comprising administering an effective amount to the prostate cell, and a pharmaceutical acceptable carrier, thereby preventing the tumor growth or stimulation of tumor cells in the subject. Other means are also available and known to an ordinary skilled practitioner.

This invention provides a method of detecting hematogenous micrometastic tumor cells of a subject, comprising (A) performing nested polymerase chain reaction (PCR) on blood, bone marrow or lymph node samples of the subject using the prostate specific membrane antigen primers or alternatively spliced prostate specific antigen primers, and (B) verifying micrometastases by DNA sequencing and Southern analysis, thereby detecting hematogenous micrometastic tumor cells of the subject. The subject may be a mammal or more specifically a human.

The micrometastatic tumor cell may be a prostatic cancer and the DNA primers may be derived from prostate specific antigen. Further, the subject may be administered with simultaneously an effective amount of

WO 96/26272 PCT/US96/02424

-41-

hormones, so as to increase expression of prostate specific membrane antigen. Further, growth factors or cytokine may be administered in separately or in conjunction with hormones. Cytokines include, but are not limited to: transforming growth factor beta, Ξ epidermal growth factor EGF family, fibroblast growth factors, hepatocyte growth factor, insulin-like growth factors, B-nerve growth factor, platelet-derived growth factor, vascular endothelial growth factor, interleukin 1, IL-1 receptor antagonist, interleukin 2, interleukin 10 3, interleukin 4, interleukin 5, interleukin 6, IL-6 soluble receptor, interleukin 7, interleukin 8, interleukin 9, interleukin 10, interleukin 11, interleukin 12, interleukin 13, angiogenin, chemokines, colony stimulating factors, granulocyte-macrophage 15 colony stimulating factors, erythropsietin, interferon, interferon gamma, leukemia inhibitory factor, oncostatin M, pleiotrophin, secretory leukocyte protease inhibitor, stem cell factor, tumor necrosis factors, adhesion molecule, and soluble tumor necrosis 20 factor (TNF) receptors.

This invention provides a method of abrogating the mitogenic response due to transferrin, comprising introducing a DNA molecule encoding prostate specific membrane antigen operatively linked to a 5' regulatory element into a tumor cell, the expression of which gene is directly associated with a defined pathological effect within a multicellular organism, thereby abrogating mitogen response due to transferrin. The tumor cell may be a prostate cell.

25

30

3.5

This invention provides a method of determining. prostate cancer progression in a subject which comprises: a obtaining a suitable prostate tissue sample; b extracting RNA from the prostate tissue sample; c performing a RNAse protection assay on the

15

20

25

3.0

3.5

RNA thereby forming a duplex RNA-RNA hybrid; d detecting PSM and PSM' amounts in the tissue sample; e calculating a PSM/PSM' tumor index, thereby determining prostate cancer progression in the subject. In-situ hyribridization may be performed in conjunction with the above detection method.

This invention provides a method of detecting prostate cancer in a subject which comprises: (a) obtaining from a subject a prostate tissue sample; (b) treating the tissue sample so as to separately recover nucleic acid molecules present in the prostate tissue sample; (c) contacting the resulting nucleic acid molecules with multiple pairs of single-stranded labeled oligonucleotide primers, each such pair being capable of specifically hybridizing to the tissue sample, under hybridizing conditions; (d) amplifying any nucleic acid molecules to which a pair of primers hybridizes so as to obtain a double-stranded amplification product; (e) treating any such double-stranded amplification product so as to obtain single-stranded nucleic acid molecules therefrom; (f) contacting any resulting single-stranded nucleic acid molecules with multiple single-stranded labeled oligonucleotide probes, each such probe containing the same label and being capable of specifically hybridizing with such tissue sample, under hybridizing conditions; (g) contacting any resulting hybrids with an antibody to which a marker is attached and which is capable of specifically forming a complex with the labeled-probe, when the probe is present in such a complex, under complexing conditions; and (h) detecting the presence of any resulting complexes, the presence thereof being indicative of . prostate cancer in a subject.

This invention provides a method of enhancing antibody based targeting of PSM or PSM' in prostate tissue for

WO 96/26272 PCT/US96/02424

- 43 -

diagnosis or therapy of prostate cancer comprising administering to a patient b-FGF in sufficient amount to cause upregulation of PSM or PSM' expression.

This invention provides a method of enhancing antibody based targeting of FSM or PSM' in prostate tissue for diagnosis or therapy of prostate cancer comprising administering to a patient TGF in sufficient amount to cause upregulation of PSM expression or PSM'.

This invention provides a method of enhancing antibody based targeting of PSM or PSM' in prostate tissue for diagnosis or therapy of prostate cancer comprising administering to a patient EGF in sufficient amount to cause upregulation of PSM or PSM' expression.

This invention provides a pharmaceutical composition comprising an effective amount of PSM or the alternatively spliced PSM and a carrier or diluent. Further, this invention provides a method for administering to a subject, preferably a human, the pharmaceutical composition. Further, this invention provides a composition comprising an amount of PSM or the alternatively spliced PSM and a carrier or diluent.

25 Specifically, this invention may be used as a food additive.

20

3 0

The compositions are administered in a manner compatible with the dosage formulation, and in a therapeutically effective amount. Precise amounts of active ingredient required to be administered depend on the judgment of the practitioner and are peculiar to each subject.

Suitable regimes for initial administration and booster shots are also variable, but are typified by an initial administration followed by repeated doses at one or

8

333

more hour intervals by a subsequent injection or other administration.

As used herein administration means a method of

WO 98/33903 PCT/AU98/00057

5/8

Figure 5

Figure 6

Figure

vehicles commonly used to formulate pharmaceutical compositions for animal or human administration. The diluent is selected 50 as not to affect the highestal diluents.

- are distilled water, physiological safine, ringer s solution, destrose colution, and Hank's solution. In addition, the pharmaceutical composition or formulation
- may also include other carriers, adjuvants; or nontoxic, nontherapeutic, nonimmunogenic stabilizers and the like. Effective amounts of such diluent or carrier are those amounts which are effective to obtain a pharmaceutically acceptable formulation in terms of solubility of components, or biological activity, etc.
- 35 This invention will be better understood from the Experimental Details which follow. However, one skilled in the art will readily appreciate that the

specific methods and results discussed are merely illustrative of the invention as described more fully in the claims which follow thereafter.

# EXPERIMENTAL DETAILS

#### EXAMPLE 1:

Materials and Methods: The approach for cloning the gene involved purification of the antigen by immunoprecipitation, and microsequencing of several internal peptides for use in synthesizing degenerate oligonucleotide primers for subsequent use in the polymerase chain reaction (19, 20). A partial cDNA was amplified as a PCR product and this was used as a homologous probe to clone the full-length cDNA molecule from a LNCaP (Lymph Node Carcinoma of Prostate) cell line cDNA plasmid library (8).

15

20

25

3.0

3.5

Western Analysis of the PSM Antigen: Membrane proteins were isolated from cells by hypotonic lysis followed by centrifugation over a sucrose density gradient (21). 10-20µg of LNCaP, DU-145, and PC-3 membrane proteins were electrophoresed through a 10% SDS-PAGE resolving gel with a 4% stacking gel at 9-10 milliamps for 16-18 Proteins were electroblotted onto membranes (Millipore® Corp.) in transfer buffer (48mM Tris base, 39mM Glycine, 20% Methanol) at 25 volts overnight at 4°C. Membranes were blocked in TSB (0.15M NaCl, 0.01M Tris base, 5% BSA) for 30 minutes at room temperature followed by incubation with 10-15 $\mu$ g/ml of CYT-356 monoclonal antibody (Cytogen Corp.) for 2 hours. Membranes were then incubated with  $10-15\mu g/ml$ rabbit anti-mouse immunoglobulin (Accurate Scientific) for 1 hour at room temperature followed by incubation with <sup>125</sup>I-Protein A (Amersham<sup>€</sup>) at 1x10<sup>6</sup> cpm/ml at room temperature. Membranes were then washed . and autoradiographed for 12-24 hours at -70°C (Figure 1).

Immunohistochemical Analysis of PSM Antigen Expression:

avidin-biotin method of immunohistochemical detection was employed to analyze both human tissue sections and cell lines for PSM Antigen expression Ξ (22). Cryostat-cut prostate tissue sections (4-6µm thick, were fixed in methanol, acetone for 10 minutes. Cell cytospins were made on glass slides using 50,000 cells/100 $\mu$ l/slide. Samples were treated with 1% hydrogen peroxide in PBS for 10-15 minutes in order to 10 remove any endogenous peroxidase activity. sections were washed several times in PBS, and then incubated with the appropriate suppressor serum for 20 minutes. The suppressor serum was drained off and the sections or cells were then insubated with the diluted CYT-356 monoclonal antibody for 1 hour. Samples were 15 then washed with PBS and sequentially incubated with secondary antibodies (horse or goat immunoglobulins, 1:200 dilution for 30 minutes), and with avidin-biotin complexes (1:25 dilution for 30 minutes). DAB was used 20 as a chromogen, followed by hematoxylin counterstaining and mounting. Frozen sections of prostate samples and duplicate cell cytospins were used as controls for each As a positive control, the antiexperiment. cytokeratin monoclonal antibody CAM 5.2 was used 25 following the same procedure described above. Tissue sections are considered by us to express the PSM antigen if at least 5% of the cells demonstrate immunoreactivity. The scoring system is as follows: 1 = <5%; 2 = 5-19%; 3 = 20-75%; and 4 = >75% positive 30 calls. Homogeneity versus heterogeneity was accounted for by evaluating positive and negative cells in 3-5 high power light microscopic fields (400x), recording the percentage of positive cells among 100-500 cells. The intensity of immunostaining is graded on a 1+ to 4+ scale, where 1+ represents mild, 2-3+ represents 3.5 moderate, and 4+ represents intense immunostaining as compared to positive controls.

3.0

⊋ ⊊

Immunoprecipitation of the PSM Antigen: 80%-confluent LNCaP cells in 100mm petri dishes were starved in RPMI media without methionine for 2 hours, after which 35S-Methionine was added at  $100\mu \text{Ci/ml}$  and the cells were grown for another 16-18 hours. Cells were then washed 5 and lysed by the addition of lml of lysis buffer (1% Triton X-100, 50mM Hepes pH 7.5, 10% glycerol, 150mM MgCl<sub>2</sub>, 1mM PMSF, and 1mM EGTA) with incubation for 20 minutes at 4°C. Lysates were pre-cleared by mixing with Pansorbin® cells (Calbiochem®) for 90 minutes at 10 Cell lysates were then mixed with Protein A Sepharose CL-4B beads (Pharmacia ) previously bound with CYT-356 antibody (Cytogen Corp.) and RAM antibody (Accurate Scientific) for 3-4 hours at  $4^{\circ}$ C.  $12\mu g$  of antibody was used per 3mg of beads per petri dish. 15 Beads were then washed with HNTG buffer (20mM Hepes pH 7.5, 150mM NaCl, 0.1% Triton X-100, 10% glycerol, and 2mM Sodium Orthovanadate), resuspended in loading buffer containing ß-mercaptoethanol, denatured at 95°C for 5-10 minutes and run on a 10% SDS-PAGE gel 20 with a 4° stacking gel at 10 milliamps overnight. Gels were stained with Coomassie Blue, destained with acetic acid/methanol, and dried down in a vacuum dryer at 60°C. Gels were then autoradiographed for 16-24 hours 25 at -70°C (Figures 2A-2D).

# Immunoprecipitation and Peptide Sequencing:

The procedure described above for immunoprecipitation was repeated with 8 confluent petri dishes containing approximately  $6 \times 10^7$  LNCaF cells. The immunoprecipitation product was pooled and loaded into two lanes of a 10% SDS-PAGE gel and electrophoresed at 9-10 milliamps for 16 hours. Proteins were electroblotted onto Nitrocellulose BA-81 membranes (Schleicher and Schuell' for 2 hours at 75 volts at 4°C in transfer buffer. Membranes were stained with Ponceau Rel to visualize the proteins and the 160kD

15

3.1

3.5

protein band was excised, solubilized, and digested proteolytically with trypsin. HPLC was then performed on the digested sample on an Applied Biosystems Model 1710 and clear dominant peptide peaks were selected and sequenced by modified Edman degradation on a modified post liquid Applied Biosystems Model Protein/Peptide Microsequencer (23). Sequencing data on all of the peptides is included within this document. The amino-terminus of the PSM antigen was sequenced by a similar method which involved purifying the antigen by immunoprecipitation and transfer via electro-blotting to a PVDF membrane (Millipore\*). Protein was analyzed on an Applied Biosystems Model 477A Protein/Peptide Sequencer and the amino terminus was found to be blocked, and therefore no sequence data could be obtained by this technique.

# PSM Antigen Peptide Sequences:

20 2T17 #5 SLYES(W) TK (SEC ID No. ) 2T22 #9 (S)YPDGXNLPGG(g)VQR (SEQ ID No. ) DT26 #3 FYDPMFK (SEQ ID No. ) 2T27 #4 IYNVIGTL(K) (SEQ ID No. ) 2T34 #6 FLYXXTQIPHLAGTEQNFQLAK (SEO ID No. 25 2T35 #2 G/PVILYSDPADYFAPD/GVK (SEQ ID No. 2T38 #1 AFIDPLGLPDRPFYR (SEQ ID No. ) 2T46 #9 YAGESFPGIYDALFLIESK (SEQ ID No. 2T47 #7 TILFAS(W) DAEEFGXK(q) STE(e) A(E) ... (SEQ ID No.

Notes: X means that no residue could be identified at this position. Capital denotes identification but with a lower degree of confidence. (lower case means residue present but at very low levels. ... indicates sequence continues but has dropped below detection limit.

All of these peptide sequences were verified to be unique after a complete homology search of the translated Genbank computer database.

Degenerate PCR: Sense and anti-sense 5'unphosphorylated degenerate oligonucleotide primers 17
to 20 nucleotides in length corresponding to portions
of the above peptides were synthesized on an Applied
Biosystems Model 394A DNA Synthesizer. These primers
have degeneracies from 32 to 144. The primers used are
shown below. The underlined amino acids in the
peptides represent the residues used in primer design.

Peptide 3: FYDPMFK (SEQ ID No. )

15

20

3.5

PSM Primer "A" TT(C or T) - TA(C or T) - GA(C or T) - CCX - ATG - TT (SEQ ID No. )

PSM Primer "B" AAC - ATX - GG(A or G) - TC(A or G) - TA(A or G) - AA (SEQ ID No. )

Primer A is sense primer and B is anti-sense. Degeneracy is 32-fold.

25 Peptide 4: IYNVIGTL(K) (SEQ ID No. 6)

PSM Primer "C" AT(T or C or A) - TA(T or C) - AA(T or C) - GTX - AT(T or C or A) - GG (SEQ ID No. :

30 PSM Primer "D" CC(A or T or G) - ATX - AC(G or A: - TT(A or G) - TA(A or C or T) - AT (SEQ ID No.)

Primer C is sense primer and D is anti-sense. . Degeneracy is 144-fold.

Peptide 2: G/PVILYSDPADYFAPD/GVK (SEQ ID No.

-, -

PSM Primer "E" CCX - GCX - GA(T) or  $C_0 - TA(T)$  or  $C_1 - TA(T)$  or  $C_1 - GC$  (SEQ ID No.

PSM Primer "F" GC(G or A) - AA(A or G) - TA(A or G) - TXC - GCX - GG (SEQ ID No. )

Primer E is sense primer and F is antisense primer. Degeneracy is 128-fold.

- 10 Peptide 6: FLYXXTQIPHLAGTEQNFQLAK (SEQ ID No. )
  - FSM Primer "I" ACX GA(A or G) CA(A or G) AA(T or C) TT(T or C) CA(A or G) CT(SEQ ID No.)
- FSM Primer "J" AG (T or C)TG (A or G)AA (A or G)TT (T or C)TG (T or C)TC XGT (SEQ ID No. :
  - FSM Primer "K" GA(A or G) CA(A or G) AA(T or C) TT(T or C) CA(A or G) CT (SEQ ID No. )
  - PSM Primer "L" AG (T or C)TG (A or G)AA (A or G)TT (T or C)TG (T or C)TC (SEQ ID No. 22)
- Frimers I and K are sense primers and J and L are antisense. I and J have degeneracies of 128-fold and K and L have 32-fold degeneracy.
  - Feptide 7: TILFAS (W) DAEEFGXX (q) STE (e) A (E) ... SEQ

    ID No. )
  - FSM Primer "M" TGG  $GA_{\pm}T$  or C) GCX  $GA_{\pm}A$  or G  $GA_{\pm}A$  or G) TT(C or T) GG (SEQ ID No. )
- FSM Frimer "N" CC (G or A)AA (T or C)TC (T or 35) C)TC XGC (A or G)TC CCA (SEO ID No.)
  - PSM Primer "O" TGG GA(T or C) GCX GA(A or G) -

GA(A or G) - TT (SEQ ID No. 1

PSM Primer "P" AA - (T or C)TC - (T or C)TC - XGC - (A or G)TC - CCA (SEQ ID No. )

5

15

Primers M and O are sense primers and N and P are antisense. M and N have degeneracy of 64-fold and  ${\mbox{\tt O}}$  and P are 32-fold degenerate.

- Degenerate PCR was performed using a Perkin-Elmer Model 10 480 DNA thermal cycler. cDNA template for the PCR was prepared from LNCaP mRNA which had been isolated by dT chromatography methods of oligo standard (Collaborative Research). The cDNA synthesis was carried out as follows:
  - LNCaP poly A+ RNA  $(2\mu g)$  $4.5 \mu l$
  - Oligo dT primers  $(0.5\mu g)$  $1.0\mu$ l
  - $4.5\mu l$ dH,O

20 10μ1

> Incubate at  $68^{\circ}$ C x 10 minutes. Quick chill on ice x 5 minutes.

#### 25 <u> Add:</u>

5 x RT Buffer  $4\mu$ l

0.1M DTT  $2\mu l$ 

10mM dNTPs  $1 \mu 1$ 

- RNasin (Promega) 30  $0.5\mu1$ 
  - $1.5 \mu 1$ <u>dII</u>,0

 $19\mu$ l

Incubate for 2 minutes at 37°C.

Add 1µl Superscript Reverse Transcriptase (Gibco\*-BRL) 3.5 Incubate for 1 hour at 37°C.

Add  $30\mu l$   $dH_2C$ . Use  $2\mu l$  per PCR reaction.

Degenerate PCR reactions were optimized by varying the annealing temperatures, Mg++ concentrations, primer concentrations, buffer composition, extension times and number of cycles. The optimal thermal cycler profile was: Denaturation at 94°C x 30 seconds, Annealing at 45-55°C for 1 minute (depending on the mean  $T_m$  of the primers used), and Extension at 72°C for 2 minutes.

10 x PCR Buffer\*  $5\mu l$ 2.5mM dNTP Mix  $5\mu l$ Primer Mix (containing 0.5-1.0µg each of 5 u l and anti-sense primers) 15 sense 100mM ß-mercaptoethanol  $5\mu l$ LNCaP cDNA template  $2\mu l$ 25mM MgCl, (2.5mM final)  $5\mu l$  $21\mu l$ dH,O

 $50\mu l$  total volume

20

 $2\mu 1$ 

Tubes were overlaid with  $60\mu l$  of light mineral oil and amplified for 30 cycles. PCR products were analyzed by electrophoresing  $5\mu l$  of each sample on a 2-3% agarose gel followed by staining with Ethidium bromide and photography.

diluted Tag Polymerase  $10.5U/\mu l$ 

### \*10x PCR Buffer

30 166mM NH<sub>4</sub>SO<sub>4</sub> 670mM Tris, pH 8.8 2mg/ml BSA

Representative photographs displaying PCR products are shown in Figure 5.

Cloning of PCR Products: In order to further analyze

these PCR products, these products were cloned into a suitable plasmid vector using "TA Cloning" 'Invitrogen' Corp.). The cloning strategy employed here is to directly ligate PCR products into a plasmid vector possessing overhanging T residues at the insertion site, exploiting the fact that Tag polymerase leaves overhanging A residues at the ends of the PCR products. The ligation mixes are transformed into competent E. coli cells and resulting colonies are grown up, plasmid DNA is isolated by the alkaline lysis method (24), and screened by restriction analysis (Figures 6A-6B).

DNA Sequencing of PCR Products: TA Clones of PCR products were then sequenced by the dideoxy method (25) using Sequenase (U.S. Biochemical).  $3-4\mu q$  of each 15 plasmid DNA was denatured with NaOH and ethanol precipitated. Labeling reactions were carried out as per the manufacturers recommendations using 35S-ATP, and the reactions were terminated as per the same protocol. products were then analyzed on 6% 20 Sequencing polyacrylamide/7M Urea gels using an IBI sequencing apparatus. Gels were run at 120 watts for 3 hours. Following electrophoresis, the gels were fixed for 15-20 minutes in 10% methanol/10% acetic acid, transferred onto Whatman 3MM paper and dried down in a Biorad® 25 vacuum dryer at 80°C for 2 hours. Gels were then autoradiographed at room temperature for 16-24 hours. In order to determine whether the PCR products were the correct clones, the sequences obtained at the 5' and 3' ends of the molecules were analyzed for  $t^{\mu}$  correct 3 C rrimer segmences, as well as adjacent segue: as which corresponded to portions of the peptides not used in the design of the primers.

IN-20 was confirmed to be correct and recessent appartial cDNA for the PSM gene. In this PCR eaction, I and N primers were used. The DNA sequence reading

WO 96/26272

5

10

35

from the I primer was:

# ACG GAG CAA AAC TTT CAG CTT GCA AAG (SEQ ID No. T E O N F O L A K (SEQ ID No.

The underlined amino acids were the portion of peptide 6 that was used to design this sense primer and the remaining amino acids which agree with those present within the peptide confirm that this end of the molecule represents the correct protein (PSM antigen).

When analyzed the other end of the molecule by reading from the N primer the anti-sense sequence was:

CTC TTC GGC ATC CCA GCT TGC AAA CAA AAT TGT TCT (SEQ ID No. )

Sense (complementary) Sequence:

- AGA ACA ATT TTG TTT GCA AGC TGG GAT GCC AAG GAG (SEQ ID No. )
  - R T I L F A S W D A E E (SEQ ID No. )
- The underlined amino acids here represent the portion of peptide 7 used to create primer N. All of the amino acids upstream of this primer are correct in the IN-20 clone, agreeing with the amino acids found in peptide 7. Further DNA sequencing has enabled us to identify
- 30 the presence of other PSM peptides within the DNA sequence of the positive clone.

The DNA sequence of this partial cDNA was found to be unique when screened on the Genbank computer database.

cDNA Library Construction and Cloning of Full - Length
PSM cDNA: A cDNA library from LNCaP mRNA was

constructed using the Superscript' plasmid system (BRL<sup>®</sup>-Gibco). The library was transformed using competent DH5-lpha cells and plated onto 100mm plates containing LB plus 100µg/ml of Carbenicillin. Plates were grown overnight at 37°C and colonies were 5 transferred to nitrocellulose filters. Filters were processed and screened as per Grunstein and Hogness (26), using the 1.1kb partial cDNA homologous probe which was radiolabelled with 32P-dCTP by random priming (27). Eight positive colonies were obtained which upon 10 DNA restriction and sequencing analysis proved to represent full-length cDNA molecules coding for the PSM antigen. Shown in Figure 7 is an autoradiogram showing the size of the cDNA molecules represented in the library and in Figure 8 restriction analysis of several 15 full-length clones is shown. Figure 9 is a plasmid Southern analysis of the samples in Figure 8, showing that they all hybridize to the 1.1kb partial cDNA probe.

20

Both the cDNA as well as the antigen have been screened through the Genbank Computer database (Human Genome Project) and have been found to be unique.

- Northern Analysis of PSM Gene Expression: Northern analysis (28) of the PSM gene has revealed that expression is limited to the prostate and to prostate carcinoma.
- RNA samples (either 10µg of total RNA or 2µg of poly A+RNA) were denature and electrophoresed through 1.1% agarose/formaldehyde gels at 60 milliamps for 6-8 hours. RNA was then transferred to Nytran' hylon membranes (Schleicher and Schuell®) by pressure blotting in 10x SSC with a Posi-blotter (Stratagene\*). RNA was cross-linked to the membranes using a Stratalinker (Stratagene\*) and subsequently baked in a

20

25

3.0

vacuum oven at 80°C for 2 hours. Blots were prehybridized at 65°C for 2 hours in prehybridization solution (BRL $^{6}$ ) and subsequently hybridized for 16 hours in hybridization buffer (BRL $^{6}$ ) containing 1-2 x 10 $^{6}$  cpm/ml of  $^{32}$  P-labelled random-primed cDNA probe. Membranes were washed twice in 1x SSPE/1% SDS and twice in 0.1x SSFE/1% SDS at 42°C. Membranes were then airdried and autoradiographed for 12-36 hours at -70°C.

PCR Analysis of PSM Gene Expression in Human Prostate Tissues: PCR was performed on 15 human prostate samples to determine PSM gene expression. Five samples each from normal prostate tissue, benign prostatic hyperplasia, and prostate cancer were used (histology confirmed by MSKCC Pathology Department).

10 $\mu$ g of total RNA from each sample was reverse transcribed to made cDNA template as previously described in section IV. The primers used corresponded to the 5' and 3' ends of the 1.1kb partial cDNA, IN-20, and therefore the expected size of the amplified band is 1.1kb. Since the  $T_m$  of the primers is 64°C. PCR primers were annealed at 60°C. PCR was carried out for 35 cycles using the same conditions previously described in section IV.

LNCaP and H26 - Ras transfected LNCaP (29) were included as a positive control and DU-145 as a negative control. 14/15 samples clearly amplified the 1.1kb band and therefore express the gene.

### Experimental Results

The gene which encodes the 100kD PSM antigen has been identified. The complete cDNA sequence is shown in Sequence ID #1. Underneath that nucleic acid sequence is the predicted translated amino acid sequence. The total number of the amino acids is 750, ID #1. The

Ξ,

10

25

3.5

hydrophilicity of the predicted protein sequence is shown in Figures 16:1-11. Shown in Figures 17A-17C are three peptides with the highest point of hydrophilicity. They are: Asp-Glu-Leu-Lys-Ala-Glu SEQ ID No. ); Asn-Glu-Asp-Gly-Asn-Glu (SEQ ID No. ; and Lys-Ser-Pro-Asp-Glu-Gly (SEQ ID No. ).

By the method of Klein, Kanehisa and DeLisi, a specific membrane-spanning domain is identified. The sequence is from the amino acid #19 to amino acid #44: Ala-Gly-Ala-Leu-Val-Leu-Aal-Gly-Gly-Phe-Phe-Leu-Leu-Gly-Phe-Leu-Phe (SEQ ID No. ).

This predicted membrane-spanning domain was computed on PC Gene (computer software program). This data enables prediction of inner and outer membrane domains of the PSM antigen which aids in designing antibodies for uses in targeting and imaging prostate cancer.

When the PSM antigen sequence with other known sequences of the GeneBank were compared, homology between the PSM antigen sequence and the transferrin receptor sequence were found. The data are shown in Figure 18.

# Experimental Discussions

Potential Uses for PSM Antigen:

30 1. Tumor detection:

Microscopic!

Unambiguous tumor designation can be accomplished by use of probes for different antigens. For prostatic cancer, the PSM antigen probe may prove beneficial. Thus PSM could be used for diagnostic purposes and this could be accomplished at the microscopic level using in situ hybridization using sense control and

10

15

20

25

3.0

35

antisense probes derived from the coding region of the cDNA cloned by the applicants. This could be used in of local extraprostatio assessment extension, involvement of lymph node, bone or other metastatic sites. As bone metastasis presents a major problem in prostatic cancer, early detection of metastatic spread is required especially for staging. In some tumors detection of tumor cells in bone marrow portends a grim prognosis and suggests that interventions aimed at metastasis be tried. Detection of PSM antigen expression in bone marrow aspirates or sections may provide such early information. PCR amplification or in-situ hybridization may be used. Using RT-PCR cells in the circulating can be detected by hematogenous metastasis.

# 2. Antigenic site identification

The knowledge of the cDNA for the antigen also provides for the identification of areas that would serve as good antigens for the development of antibodies for use against specific amino acid sequences of the antigen. Such sequences may be at different regions such as outside, membrane or inside of the PSM antigen. The development of these specific antibodies would provide for immunohistochemical identification of the antigen. These derived antibodies could then be developed for use, especially ones that work in paraffir fixed sections as well as frozen section as they have the greatest utility for immunodiagnosis.

 Restriction fragment length polymorphism and genomic DNA

Restriction fragment length polymorphisms (RFLPS, have proven to be useful in documenting the progression of genetic damage that occurs during tumor initiation and promotion. It may be that RFLP analysis will demonstrate that changes in PSM sequence restriction

25

30

mapping may provide evidence of predisposition to risk or malignant potential or progression of the prostatic tumor.

Depending on the chromosomal location of the PSM antigen, the PSM antigen gene may serve as a useful chromosome location marker for chromosome analysis.

#### 4. Serum

With the development of antigen specific antibodies, if the antigen or selected antigen fragments appear in the serum they may provide for a serum marker for the presence of metastatic disease and be useful individually or in combination with other prostate specific markers.

#### 5. Imaging

As the cDNA sequence implies that the antigen has the characteristics of a membrane spanning protein with the majority of the protein on the exofacial surface, antibodies, especially monoclonal antibodies to the peptide fragments exposed and specific to the tumor may provide for tumor imaging local extension of metastatic tumor or residual tumor following prostatectomy or The knowledge of the coding region irradiation. permits the generation of monoclonal antibodies and these can be used in combination to provide for maximal Because the antigen shares a imaging purposes. similarity with the transferrin receptor based on cDNA analysis (approximately 54%), it may be that there is a specific normal ligand for this antigen and that identification of the ligand(s) would provide another means of imaging.

35 6. Isolation of ligands

The PSM antigen can be used to isolate the normal ligand(s) that bind to it. These ligand(s) depending

WO 96/26272 PCT/US96/02424

-61-

on specificity may be used for targeting, or their serum levels may be predictive of disease status. If it is found that the normal ligand for PSM is a carrier molecule then it may be that PSM could be used to bind to that ligand for therapy purposes (like an iron chelating substance, to help remove the ligand from the circulation. If the ligand promotes tumor growth or metastasis then providing soluble PSM antigen would remove the ligand from binding the prostate. Knowledge of PSM antigen structure could lend to generation of small fragment that binds ligand which could serve the same purpose.

# 7. Therapeutic uses

5

10

- a) Ligands. The knowledge that the cDNA structure of 15 PSM antigen shares structural homology with the transferrin receptor (54% on the nucleic acid level) implies that there may be an endogenous ligand for the receptor that may or may not be transferrin-like. Transferrin is thought to be a ligand that transports 20 iron into the cell after binding to the transferrin receptor. However, apotransferrin is being reported to be a growth factor for some cells which express the transferrin receptor (30). Whether transferrin is a ligand for this antigen or some other ligand binds to 25 this ligand remains to be determined. If a ligand is identified it may carry a specific substance such as a metal ion (iron or zind or other) into the tumor and thus serve as a means to deliver toxic substances (radioactive or cytotoxic themical i.e. toxim like 3 C ricin or cytotoxic alkylating agent or cytotoxic predrugt to the tumor.
- The main metastatic site for prostatic tumor is the pone. The bone and bone stroma are rich in transferrin. Recent studies suggest that this microenvironment is what provides the right "soil" for

prostatic metastasis in the bone (31). It may be that this also promotes attachment as well, these factors which reduce this ability may diminish prostatic metastasis to the bone and prostatic metastatic growth in the bone.

It was found that the ligand for the new antiger. (thought to be an oncogene and marker of malignant phenotype in breast carcinoma) served to induce differentiation of breast cancer cells and thus could serve as a treatment for rather than promotor of the disease. It may be that ligand binding to the right region of PSM whether with natural ligand or with an antibody may serve a similar function.

15

20

5

10

Antibodies against PSM antigen coupled with a cytotoxic agent will be useful to eliminate prostate cancer cells. Transferrin receptor antibodies with toxin conjugates are cytotoxic to a number of tumor cells as tumor cells tend to express increased levels of transferrin receptor (32). Transferrin receptors take up molecules into the cell by endocytosis. Antibody drug combinations can be toxic. Transferrin linked toxin can be toxic.

25

3.0

3.5

b) Antibodies against PSM antigen coupled with a cytotoxic agent will be useful to eliminate prostate cancer cells. The cytotoxic agent may be a radioisotope or toxin as known in ordinary skill of the art. The linkage of the antibody and the toxin or radioisotope can be chemical. Examples of direct linked toxins are doxorubicin, chlorambucil, ricin, pseudomonas exotoxin etc., or a hybrid toxin can be generated % with specificity for PSM and the other % with specificity for the toxin. Such a bivalent molecule can serve to bind to the tumor and the other % to deliver a cytotoxic to the tumor of the bind to and

15

2.0

25

3.5

activate a cytotoxic lymphocyte such as binding to the T, - T receptor complex. Antibodies of required specificity can also be cloned into T cells and by replacing the immunoglobulin domain of the T cell receptor (TcR); cloning in the desired MAb heavy and light chains; splicing the U, and U, gene segments with the constant regions of the  $\alpha$  and  $\beta$  TCR chains and transfecting these chimeric Ab/TcR genes in the patients' T cells, propagating these hybrid cells and infusing them into the patient (33). Specific knowledge of tissue specific antigens for targets and generation of MAb's specific for such targets will help make this a usable approach. Because the PSM antigen coding region provides knowledge of the entire coding region, it is possible to generate a number of antibodies which could then be used in combination to achieve an additive or synergistic anti-tumor action. The antibodies can be linked to enzymes which can activate non-toxic prodrugs at its site of the tumor such as Ab-carboxypeptidase and 4-(bis(2 chloroethyl)amino)benzoyl- $\alpha$ -qlutamic acid and its active parent drug in mice (34).

It is possible to produce a toxic genetic chimera such as TF-40 a genetic recombinant that possesses the cDNA from TGF-alpha and the toxic portion of pseudomonas exotoxin so the TGF and portion of the hybrid binds the epidermal growth factor receptor (EGFR) and the pseudomonas portion gets taken up into the cell enzymatically and inactivates the ribosomes ability to perform protein synthesis resulting in cell death.

In addition, once the ligand for the PSM antigen is identified, toxin can be chemically conjugated to the ligands. Such conjugated ligands can be therapeutically useful. Examples of the toxins are dauncmycin, chlorambucil, ricin, pseudomonas exotoxin,

etc. Alternatively, chimeric construct can be created linking the cDNA of the ligand with the cDNA of the toxin. An example of such toxin is  $TGF\alpha$  and pseudomonas exotoxin (35).

Ξ

10

15

20

25

#### 8. Others

The PSM antigen may have other uses. It is well known that the prostate is rich in zinc, if the antigen provides function relative to this or other biologic function the PSM antigen may provide for utility in the treatment of other prostatic pathologies such as benign hyperplastic growth and/or prostatitis.

Because purified PSM antigen can be generated, the purified PSM antigen can be linked to beads and use it like a standard "affinity" purification. Serum, urine or other biological samples can be used to incubate with the PSM antigen bound onto beads. The beads may be washed thoroughly and then eluted with salt or pH gradient. The eluted material is SDS gel purified and used as a sample for microsequencing. The sequences will be compared with other known proteins and if unique, the technique of degenerated PCR can be employed for obtaining the ligand. Once known, the affinity of the ligand will be determined by standard protocols (15).

## References of Example 1

- Chiaroda, A. (1991) National roundtable of prostate cancer: research directions. Cancer Res.
   51: 2498-2505.
  - Coffey, D.S. Prostate Cancer An overview of an increasing dilemma. Cancer Supplement, 71,3: 883-886, 1993.
- 3. Warner, J.A., et al., (1991) Future developments of non-hormonal systemic therapy for prostatic carcinoma. Urologic Clin. North Amer. 18:25-33.
- 15 4. Nguyen, L., et al., (1990) Prostatic acid phosphatase in the serum of cancer patients with prostatic cancer is a specific phosphotyrosine acid phosphatase. Clin. Chem. 35:1450-1455.
- 20 5. Henttu, P., et al., (1989) cDNA coding for the entire human prostate specific antigen show high homologies to the human tissue kallikrein genes.

  Bioch. Biophys. Res. Comm. 160:903-908.
- 25 6. Yong, CY-F., et al., (1991) Hormonal regulation of prostate-specific antigen messenger RNA in human prostatic adenocarcinoma cell line LNCaP. Cancer Res. 51:3746-3752.
- 7. Lictta, L.A. (1986) Tumor invasion and metastases: role of the extracellular matrix. Cancer Res. 46:1-7.
- 35 Horoszewicz, J.S., et al. 1987, Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res. 7:927-936.

3.5

- 9. Horoszewicz, J.S., et al. (1983: LNCaP model of human prostatic carcinoma. Cancer Res., 43:1809-1818.
- 5 10. Lopes, D., et al. (1990) Immunohistochemical and pharmacokinetic characterization of the site-specific immunoconjugate CYT-356, derived from anti-prostate monoclonal antibody 7E11-C5. Cancer Res., 50:6423-6429.
- 10
  11. Wright, Jr., et al., (1990) Characterization of a
   new carcinoma associated marker:7Ell-C5. Antibod.
   Immunoconj. Radiopharm.3:(abst#193).
- 15 12. Feng, Q., et al., (1991) Purification and biochemical characterization of the 7E11-C5 prostate carcinoma associated antigen. Proc. Amer. Assoc. Cancer Res. 32:239.
- 20 13. Axelrod, H.R., et al., Preclinical results and human immunohistochemical studies with <sup>90</sup>Y-CYT-356. A New prostate cancer agent. Abstract 596. AUA 87th Annual Meeting, May 10-14, 1992. Washington, D.C.
- 14. Maniatis, T., et al., (1982) Molecular Cloning; Cold Spring Harbor Laboratory, pp.197-98 (1982).
- 15. Maniatis, et al., (1982) Molecular Cloning, Cold 30 Spring Harbor Laboratory.
  - 16. Methods in Enzymology vol. 34: 1-810, 1974 (E) B. Jacoby and M. Wilchek Academic Press, New York . 1974.
  - 17. Hogan B. et al. (1986) Manipulating the Mouse Embry, A Laboratory Manual, Cold Spring Harbor

WO 96/26272 PCT/US96/02424

-67-

Laboratory.

10

15

20

25

- 18. Capecchi M.R. Science (1989) 244:1288-1292;
  Zimmer, A. and Gruss, P. (1989) Nature 338:151153.
- 19. Trowbridge, I.S., (1982) Prospects for the clinical use of cytotoxic monoclonal antibodies conjugates in the treatment of cancer. Cancer Surveys 1:543-556.
- 20. Hank, S.K. (1987) Homology probing:
  Identification of cDNA clones encoding members of
  the protein-serine kinase family. Proc. Natl.
  Acad. Sci. 84:388-392.
  - 11. Lee, C.C., et al., (1988) Generation of cDNA probes directed by amino acid sequences: cloning of urate oxidase. Science, 239, 1288.
- 22. Girgis, S.I., et al. (1988) Generation of DNA probes for peptides with highly degenerate codons using mixed primer PCR. Nucleic Acids Res. 16:10932.
- 23. Kartner, N., et al. (1977) Isolation of plasma membranes from human skin fibroblasts. J. Membrane Biology, 36:191-211.
- 33 14. Hsu, S.M., et al. (1981) Comparative study of the immunoperoxidase, anti-peroxidase, and avidin-biotin complex method for studying polypeptide normones with radioimmunoassay antibodies. Am. J. Pathology, 75:734.
- 35
  25. Tempst, P., et al. (1989) Examination of automated polypeptide sequencing using standard

phenylisothiocyanate reagent and subpicomple high performance liquid chromatography analysis. Analytical Biochem. 183:290-300.

- 5 26. Birnboim, H.C. (1983) A rapid alkaline extraction method for the isolation of plasmid DNA. Meth. Enzymol, 100:243-255.
- 27. Sanger, F., et al. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74:5463-5467.
  - 28. Grunstein, M., et al. (1975) Colony hybridization as a method for the isolation of cloned DNAs that contain a specific gene. Proc. Natl. Acad. Sci. USA, 72:3961.
- 29. Feinberg, A.P., et al. (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem, 132, 6.
- 30. Rave, N., et al. (1979) Identification of procollagen mRNAs transferred to diazobenzylomethyl paper from formaldehyde gels.

  Nucleic Acids Research, 6:3559.
- 71. Voeller, H.J., et al. (1991) v-ras<sup>H</sup> expression confers hormone-independent in-vitro growth to LNCaP prostate carcinoma cells. Molec. Endocrinology, Vol. 5. No. 2, 209-216.
- 32. Sirbasku, D.A. (1991) Purification of an equineapotransferrin variant (thyromedin) essential for thyroid hormone dependent growth of GH<sub>1</sub>, rat pituitary tumor cells in chemically defined culture. Brochem., 30:235-301.

WO 96/26272 PCT/US96/02424

-69-

- 33. Rossi, M.C. /1992' Selective stimulation of prostatic carcinoma cell proliferation by transferrin. Proc. Natl. Acad. Sci. /USA 89:6197-6201.
- 34. Eshhan, Z. (1990) Chimeric T cell receptor which incorporates the anti-tumor specificity of a monoclonal antibody with the cytolytic activity of T cells: a model system for immunotherapeutic approach. B. J. Cancer 62:27-29.

5

- 35. Antonie, P. (1990) Disposition of the prodrug 4- (bis(2 chloroethyl) amino)benzoyl-α-glutamic acid and its active parent in mice. B. J. Cancer 62:905-914.
- 36. Heimbrook, D.C., et al. (1990) Transforming growth factor alpha-pseudomonas exotoxin fusion protein prolongs survival of nude mice bearing tumor xenografts. Proc. Natl. Acad. Sci. (USA) 87:4697-4701.
- 37. Chiarodo, A. National Cancer Institute roundtable on prostate cancer; future research directions.

  Cancer Res., 51: 2498-2505, 1991.
- 38. Abdel-Nabi, H., Wright, G.L., Gulfo, J.V., Petrylak, D.P., Neal, C.E., Texter, J.E., Begun, F.P., Tyson, I., Heal, A., Mitchell, E., Furnell, G., and Harwood, S.J. Monoclonal antibodies and radioimmunoconjugates in the diagnosis and treatment of prostate cancer. Semin. Urol., 10: 45-54, 1992.

#### EXAMPLE 2:

# EXPRESSION OF THE PROSTATE SPECIFIC MEMBRANE ANTIGEN

A 2.65 kb complementary DNA encoding PSM was cloned. 5 Immunohistochemical analysis of the LNCaP, DU-145, and PC-3 prostate cancer cell lines for PSM expression using the TE11-C5.3 antibody reveals intense staining in the LNCaP cells, with no detectable expression in both the DU-145 and PC-3 cells. Coupled in-vitro 1.0 transcription/ translation of the 2.65 kb full-length PSM cDNA yields an 84 kDa protein corresponding to the predicted polypeptide molecular weight of PSM. Posttranslational modification of this protein with pancreatic canine microsomes yields the expected 100 15 kDa PSM antigen. Following transfection of PC-3 cells with the full-length PSM cDNA in a eukaryotic expression vector applicant's detect expression of the PSM glycoprotein by Western analysis using the 7E11-C5.3 monoclonal antibody. Ribonuclease protection 20 analysis demonstrates that the expression of PSM mRNA is almost entirely prostate-specific in human tissues. PSM expression appears to be highest in hormoneand is hormonally modulated deprived states steroids, with DHT downregulating PSM expression in the 25 human prostate cancer cell line LNCaP by 8-10 fold, testosterone downregulating PSM by 3-4 fold, corticosteroids showing no significant effect. Normal and malignant prostatic tissues consistently show high PSM expression, whereas heterogeneous, and at times 30 absent. - " expression of PSM in benign prostation hyperplasi . LNCaP tumors implanted and grown both orthotopi ly and subcutaneously in nude mice, abundantly apress FSM providing an excellent in-vivo model syst to study the regulation and modulation of 35 PSM expres .on.

### Materials and Methods:

Cells and Reagents: The LNCaP, DU-145, and PC-3 cell lines were obtained from the American Type Culture Collection. Details regarding the establishment and 5 characteristics of these cell lines have been previously published (5A,7A,8A). Unless specified otherwise, LNCaF cells were grown in RPMI 1640 media supplemented with L-glutamine, nonessential amino 10 acids, and 5% fetal calf serum (Gibco-BRL, Gaithersburg, MD.; in a CC, incubator at 37C. DU-145 and PC-3 cells were grown in minimal essential medium supplemented with 10% fetal calf serum. All cell media were obtained from the MSKCC Media Preparation 15 Restriction and modifying enzymes were Facility. purchased from Gibco-BRL unless otherwise specified.

Immunohistochemical Detection of PSM: Avidin-biotin 20 method of detection was employed to analyze prostate cancer cell lines for PSM antigen expression (9A). Cell cytospins were made on glass slides using  $5x10^4$ cells/100ul per slide. Slides were washed twice with PBS and then incubated with the appropriate suppressor 25 serum for 20 minutes. The suppressor serum was drained off and the cells were incubated with diluted 7E11-C5.3 (5g/ml) monoclonal antibody for 1 hour. Samples were then washed with PBS and sequentially incubated with secondary antibodies for 30 minutes and with avidin-3.0 biotin complexes for 30 minutes. Diaminobenzidine served as the chromogen and color development followed by hematoxylin counterstaining and mounting. Duplicate cell cytospins were used as controls for each. As a positive control, the antiexperiment. cytokeratin monoclonal antibody CAM 5.2 was used 35 following the same procedure described above. Human EJ bladder carcinoma cells served as a negative control.

10

15

In-Vitro Transcription/Translation of PSM Antigen: Plasmid 55A containing the full length 1.65 kb PSM cDNA in the plasmid pSPORT 1 (Gibco-BRL) was transcribed invitro using the Promega TNT system (Promega Corp. Madison, WI). T7 RNA polymerase was added to the cDNA in a reaction mixture containing rabbit reticulocyte lysate, an amino acid mixture lacking methionine, buffer, and 35S-Methionine (Amersham) and incubated at 30C for 90 minutes. Post-translational modification of the resulting protein was accomplished by the addition of pancreatic canine microsomes into the reaction mixture (Promega Corp. Madison, WI.). Protein products were analyzed by electrophoresis on 10% SDS-PAGE gels were subsequently treated with autoradiography enhancer (Amersham, Arlington Heights, IL.) according to the manufacturers instructions and 80C in a vacuum dryer. Gels were autoradiographed overnight at -70C using Hyperfilm MP (Amersham).

20

25

3.0

3.5

Transfection of PSM into PC-3 Cells: The full length PSM cDNA was subcloned into the pREP7 eukaryotic expression vector (Invitrogen, San Diego, Plasmid DNA was purified from transformed DH5-alpha bacteria (Gibco-BRL) using Qiagen maxi-prep plasmid isolation columns (Qiagen Inc., Chatsworth, CA.). Purified plasmid DNA (6-10g) was diluted with 900ul of Optimem media (Gibco-BRL) and mixed with 30ul of Lipofectin reagent (Gibco-BRL) which had previously diluted with 900l of Optimem media. mixture was added to T 75 flasks of 40 50% confluent PC-3 cells in Optimem media. After 24-36 hours, cells were trypsinized and split into 100mm dishes containing RPMI 1640 media supplemented with 10% fetal calf serum and I mg/ml of Hygromycin B (Calbiochem, La Jolla, CA.). The dose of Hygromycin B used was previously determined by a time course/dose response

WO 96/26272 PCT/US96/02424

-73-

cytotoxicity assay. Cells were maintained in 1.8 media for 2-3 weeks with changes of media and Hygromycin B every 4-5 days until discrete colonies appeared. Colonies were isolated using 6mm cloning cylinders and expanded in the same media. As a control, PC-3 cells were also transfected with the pREP7 plasmid alone. RNA was isolated from the transfected cells and PSM mRNA expression was detected by both RNase Protection analysis (described later; and by Northern analysis.

10

15

20

25

3.0

35

Western Blot Detection of PSM Expression: Crude protein lysates were isolated from LNCaP, PC-3, and PSMtransfected PC-3 cells as previously described (10A). LNCaP cell membranes were also isolated according to published methods (10A). Protein concentrations were quantitated by the Bradford method using the BioRad protein reagent kit (BioRad, Richmond, CA.). Following denaturation, 20uq of protein was electrophoresed on a 10% SDS-PAGE gel at 25 mA for 4 hours. Gels were electroblotted onto Immobilon P membranes (Millipare, Bedford, MA.) overnight at 4C. Membranes were blocked in 0.15M NaCl/0.01M Tris-HCl (TS) plus 5% BSA fcllowed by a 1 hour incubation with 7E11-C5.3 moneclonal antibody ( $10\mu g/ml$ ). Blots were washed 4 times with 0.15M NaCl/0.01M Tris-HCl/0.05% Triton-X 100 (TS-X) and incubated for 1 hour with rabbit anti-mouse (Accurate Scientific, Westbury, N.Y.) at concentration of  $10\mu g/ml$ .

Blots were then washed 4 times with TS-X and labeled with <sup>125</sup>I-Protein A (Amersham, Arlington Heights, IL., at a concentration of 1 million cpm/ml. Blots were then washed 4 times with TS-X and dried on Whatman 3MM paper, followed by overnight autoradiography at -70C using Hyperfilm MP (Amersham).

10

15

20

25

3.0

35

Orthotopic and Subcutaneous LNCaP Tumor Growth in Nude Mice: LNCaP cells were harvested from sub-confluent cultures by a one minute exposure to a solution of 0.25% trypsin and 0.02% EDTA. Cells were resuspended in RPMI 1640 media with 5% fetal bovine serum, washed and diluted in either Matrigel (Collaborative Biomedical Products, Bedford, MA.; or calcium and magnesium-free Hank's balanced salt solution (HBSS). Only single cell suspensions with greater than 90% viability by trypan blue exclusion were used for in vivo injection. Male athymic Swiss (nu/nu) nude mice 4-6 weeks of age were obtained from the Memorial Sloan-Kettering Cancer Center Animal Facility. subcutaneous tumor cell injection one million LNCaP cells resuspended in 0.2 mls. of Matrigel were injected into the hindlimb of each mouse using a disposable syringe fitted with a 28 gauge needle. For orthotopic injection, mice were first anesthetized with intraperitoneal injection of Pentobarbital and placed in the supine position. The abdomen was cleansed with Betadine and the prostate was exposed through a midline incision. 2.5 million LNCaP tumor cells in 0.1 ml. were injected directly into either posterior lobe using a 1 ml disposable syringe and a 28 gauge needle. LNCaP cells with and without Matrigel were injected. Abdominal closure was achieved in one layer using Autoclip wound clips (Clay Adams, Parsippany, N.J.). Tumors were harvested in 6-8 weeks, confirmed histologically by faculty of the Memorial Sloan-Kettering Cancer Center Pathology Department, and frozen in liquid nitrogen for subsequent RNA isolation.

RNA Isolation: Total cellular RNA was isolated from cells and tissues by standard techniques (11,12, as well as by using RNAzol B (Cinna/Biotecx, Houston, TX.). RNA concentrations and quality were assessed by UV spectroscopy on a Beckman DU 640 spectrophotometer

and by gel analysis. Human tissue total RNA samples were purchased from Clontech Laboratories, Inc., Fals Alto, CA.

Ribonuclease Protection Assays: A portion of the PSM cDNA was subcloned into the plasmid vector psport 1 (Gibco-BRL) and the crientation of the cDNA insert relative to the flanking T7 and SP6 RNA polymerase promoters was verified by restriction analysis. 10 Linearization of this plasmid upstream of the PSM insert followed by transcription with SP6 polymerase yields a 400 nucleotide antisense RNA probe, of which 350 nucleotides should be protected from RNase digestion by PSM RNA. This probe was used in Figure 20. Plasmid IN-20, containing a 1 kb partial PSM cDNA 15 in the plasmid pCR II (Invitrogen) was also used for riboprobe synthesis. IN-20 linearized with Xmn I (Gibco-BRL) yields a 298 nucleotide anti-sense RNA probe when transcribed using SP6 RNA polymerase, of which 260 nuclectides should be protected from RNase 20 digestion by PSM mRNA. This probe was used in Figures 21 and 22. Probes were synthesized using SP6 RNA polymerase (Gibco-BRL), rNTPs (Gibco-BRL), RNAsin (Promega), and  $^{32}$ P-rCTP (NEN, Wilmington, DE.) according to published protocols (13). Probes were purified over 25 NENSORB 20 purification columns (NEN) and approximately 1 million cpm of purified, radiolabeled PSM probe was mixed with  $10\mu$  of each RNA and hybridized overnight at 45C using buffers and reagents from the RPA II kit 3.0 -Ambion, Austin, TX). Samples were processed as per manufacturer's instructions and analyzed on 5% polyacrilamide/7M urea denaturing gels using Seq ACRYL reagents (ISS, Natick, MA.). Gels were pre-heated to-55C and run for approximately 1-2 hours at 25 watts. Gels were then fixed for 30 minutes in 10% methanol/10% 35 acetic acid, dried onto Whatman 3MM paper at 800 in a BioRad vacuum dryer and autoradiographed overnight with

25

Hyperfilm MP (Amersham). Quantitation of PSM expression was determined by using a scanning laser densitometer (LKB, Piscataway, NJ.).

5 Steroid Modulation Experiment: LNCaP cells (2 million; were plated onto T-75 flasks in RPMI 1640 media supplemented with 5% fetal calf serum and grown 24 hours until approximately 30-40% confluent. were then washed several times with phophate-buffered saline and RPMI medium supplemented with 5% charcoal-10 extracted serum was added. Cells were then grown for another 24 hours, at which time dihydrotesterone, testosterone, estradiol, progesterone, dexamethasone (Steraloids Inc., Wilton, NH.) were added 15 at a final concentration of 2 nM. Cells were grown for another 24 hours and RNA was then harvested as previously described and PSM expression analyzed by ribonuclease protection analysis.

#### Experimental Results

Immunohistochemical Detection of PSM: Using the 7E11-C5.3 anti-PSM monoclonal antibody, PSM expression is clearly detectable in the LNCaP prostate cancer cell line, but not in the PC-3 and DU-145 cell lines (Figures 17A-17C). All normal and malignant prostatic tissues analyzed stained positively for PSM expression.

30 In-Vitro Transcription/Translation of PSM Antigen: As shown in Figure 18, coupled in-vitro transcription/ translation of the 2.65 kb full-length PSM cDNA yields an 84 kDa protein species in agreement with the expected protein product from the 750 amino acid PSM open reading frame. Following post-translational modification using pancreatic canine microsomes were obtained a 100 kDa glycosylated protein species

15

consistent with the mature, native PSM antigen.

Detection of PSM Antigen in LNCaP Cell Membranes and Transfected PC-3 Cells: PC-3 cells transfected with the full length PSM cDNA in the pREP7 expression vector were assayed for expression of SM mRNA by Northern analysis. A clone with high PSM mRNA expression was selected for PSM antigen analysis by Western blotting using the 7E11-C5.3 antibody. In Figure 19, the 100 kDa PSM antigen is well expressed in LNCaP cell lysate and membrane fractions, as well as in PSM-transfected PC-3 cells but not in native PC-3 cells. This detectable expression in the transfected PC-3 cells proves that the previously cloned 2.65 kb PSM cDNA encodes the antigen recognized by the 7E11-C5.3 antiprostate monoclonal antibody.

PSM mRNA Expression: Expression of PSM mRNA in normal tissues was analyzed using ribonuclease 20 protection assays. Tissue expression of PSM appears predominantly within the prostate, with very low levels of expression detectable in human brain and salivary gland (Figure 20). No detectable PSM mRNA expression evident in non-prostatic human tissues when 25 analyzed by Northern analysis. On occasion it is noted that detectable PSM expression in normal human small intestine tissue, however this mRNA expression is variable depending upon the specific riboprobe used. samples of normal human prostate and human 36 prostatic adenocarcinoma assayed have revealed clearly detectable PSM expression, whereas generally decreased or absent expression of PSM in tissues exhibiting henigh hyperplasia (Figure 21). In human LNCaP tumors grown both orthotopically and subcutaneously in nude mice abundant PSM expression with or without the use of 3.5 matrigel, which is required for the growth of subcutaneously implanted LNCaP cells was detected

10

15

(Figure 21). PSM mRNA expression is distinctly modulated by the presence of steroids in physiclogic doses (Figure 22). DHT downregulated expression by 8-10 fold after 24 hours and testosterone diminished PSM expression by 3-4 fold. Estradiol and progesterone also downregulated PSM expression in LNCaP cells, perhaps as a result of binding to the mutated androgen receptor known to exist in the LNCaP cell. Overall, PSM expression is highest in the untreated LNCaP cells grown in steroid-depleted media, a situation that simulates the hormone-deprived (castrate) state invivo. This experiment was repeated at steroid dosages ranging from 2-200 nM and at time points from 6 hours to 7 days with similar results; maximal downregulation of PSM mRNA was seen with DHT at 24 hours at doses of 2-20 nM.

# Experimental Discussion

Previous research has provided two valuable prostatic 20 bio-markers, PAP and PSA, both of which have had a significant impact on the diagnosis, treatment, and management of prostate malignancies. The present work describing the preliminary characterization of the prostate-specific membrane antigen (PSM) reveals it to 25 be a gene with many interesting features. PSM is almost entirely prostate-specific as are PAP and PSA, and as such may enable further delineation of the unique functions and behavior of the prostate. predicted sequence of the PSM protein (3) and its 3.0 presence in the LNCaP cell membrane as determined by Western blotting and immunohistochemistry, indicate that it is an integral membrane protein. Thus, PSM provides an attractive cell surface epitope antibody-directed diagnostic imaging and cytotoxic 35 targeting modalities (14). The ability to synthesize the PSM antigen in-vitro and to produce tumor

WO 96/26272 PCT/US96/02424

-79-

xenografts maintaining high levels of PSM expression provides us with a convenient and attractive model system to further study and characterize the regulation and modulation of PSM expression. Also, the high level of PSM expression in the LNCaP cells provides an excellent in-vitro model system. Since PSM expression is hormonally-responsive to steroids and may be highly expressed in hormone-refractory disease (15). detection of PSM mRNA expression in minute quantities in brain, salivary gland, and small intestine warrants further investigation, although these tissues were negative for expression of PSM antigen immunohistochemistry using the 7E11-C5.3 antibody (16). In all of these tissues, particularly small intestine, mRNA expression using a probe corresponding to a region of the PSM cDNA near the 3' end, whereas expression when using a 5' end PSM probe was not detected. results may indicate that the PSM mRNA transcript undergoes alternative splicing in different tissues.

20

25

3.0

35

5

10

15

Applicants approach is based on prostate tissue specific promotor: enzyme or cytokine chimeras. Promotor specific activation of prodrugs such as non toxic gancyclovir which is converted to a toxic metabolite by herpes simplex thymidine kinase or the prodrug 4-(bis(2chloroethyl)amino)benzoyl-1-glutamic acid to the benzoic acid mustard alkylating agent by the pseudomonas carboxy peptidase G2 was examined. these drugs are activated by the enzyme (chimera) specifically in the tumor the active drug is released only locally in the tumor environment, destroying the surrounding tumor cells. Promotor specific activation cytokines such as IL-12, IL-2 or GM-CSF foractivation and specific antitumor vaccination is Lastly the tissue specific promotor activation of cellular death genes may also prove to be useful in this area.

10

15

20

25

3.0

Gene Therapy Chimeras: The establishment of "chimeric DNA" for gene therapy requires the joining of different segments of DNA together to make a new DNA that has characteristics of both precursor DNA species involved in the linkage. In this proposal the two pieces being linked involve different functional aspects of DNA, the promotor region which allows for the reading of the DNA for the formation of mRNA will provide specificity and the DNA sequence coding for the mRNA will provide for therapeutic functional DNA.

DNA-Specified Enzyme or Cytokine mRNA: When effective, antitumor drugs can cause the regression of very large amounts of tumor. The main requirements for antitumor drug activity is the requirement to achieve both a long enough time (t) and high enough concentration (c) (cxt) of exposure of the tumor to the toxic drug to assure sufficient cell damage for cell death to occur. drug also must be "active" and the toxicity for the tumor greater than for the hosts normal cells (22). The availability of the drug to the tumor depends on tumor blood flow and the drugs diffusion ability. Blood flow to the tumor does not provide selectivity as blood flow to many normal tissues is often as great or greater than that to the tumor. majority of chemotherapeutic cytotoxic drugs are often as toxic to normal tissue as to tumor tissue. Dividing cells are often more sensitive than non-dividing normal cells, but in many slow growing solid tumors such as prostatic cancer this does not provide for antitumor specificity (22).

Previously a means to increase tumor specificity of antitumor drugs was to utilize tumor associated enzymes to activate nontoxic prodrugs to cytotoxic agents (19).

A problem with this approach was that most of the enzymes found in tumors were not totally specific in

WO 96/26272 PCT/US96/02424

-81-

their activity and similar substrate active enzymes or the same enzyme at only slightly lower amounts was found in other tissue and thus normal tissues were still at risk for damage.

5

10

15

20

25

3.5

To provide absolute specificity and unique activity, viral, bacterial and fungal enzymes which have unique specificity for selected prodrugs were found which were not present in human or other animal cells. Attempts to utilize enzymes such as herpes simplex thymidine kinase, bacterial cytosine deaminase carboxypeptidase G-2 were linked to antibody targeting systems with modest success (19). Unfortunately, antibody targeted enzymes limit the number of enzymes available per cell. Also, most antibodies do not have a high tumor target to normal tissue ratio thus normal tissues are still exposed reducing the specificity of these unique enzymes. Antibodies are large molecules that have poor diffusion properties and the addition of the enzymes molecular weight further reduces the antibodies diffusion.

Gene therapy could produce the best desired result if it could achieve the specific expression of a protein in the tumor and not normal tissue in order that a high local concentration of the enzyme be available for the production in the tumor environment of active drug (21).

### 30 Cytokines:

Results demonstrated that tumors such as the bladder and prostate were not immunogenic, that is the administration of irradiated tumor cells to the animal-prior to subsequent administration of non-irradiated tumor cells did not result in a reduction of either the number of tumor cells to produce a tumor nor did it reduce the growth rate of the tumor. But if the tumor

10

15

20

was transfected with a retrovirus and secreted large concentrations of cytokines such as Il-2 then this could act as an antitumor vaccine and could also reduce the growth potential of an already established and growing tumor. IL-2 was the best, GM-CSF also had activity whereas a number of other cytokines were much less active. In clinical studies just using IL-2 for immunostimulation, very large concentrations had to be given which proved to be toxic. The key to the success of the cytokine gene modified tumor cell is that the cytokine is produced at the tumor site locally and is not toxic and that it stimulates immune recognition of the tumor and allows specific and non toxic recognition and destruction of the tumor. The exact mechanisms of how IL-2 production by the tumor cell activates immune fully understood, but recognition is not explanation is that it bypasses the need for cytokine production by helper T cells and directly stimulates activated cytotoxic CD8 antigen Activation of antigen presenting cells may also occur.

#### Tissue Promotor-Specific Chimera DNA Activation

#### Non-Prostatic Tumor Systems:

It has been observed in non-prostatic tumors that the 25 use of promotor specific activation can selectively lead to tissue specific gene expression of In melanoma the use of transfected gene. which codes for the tyrosinase promotor responsible for melanin expression produced over a 50 30 told greater expression of the promotor driven reporter gene expression in melanoma cells and not non melanoma Similar specific activation was seen in the. melanoma cells transfected when they were growing in mice. In that experiment no non-melanoma or melanocyte 35 cell expressed the tyrosinase drive reporter gene product. The research group at Welcome Laboratories

10

15

have cloned and sequenced the promoter region of the gene coding for cardinoembryonic antigen (CEA). CEA is expressed on colon and colon carcinoma cells but specifically on metastatic. A gene chimera was generated which cytosine deaminase. Cytosine deaminase which converts 5 flurorocytosine into 5 fluorouracil and observed a large increase in the ability to selectively kill CEA promotor driven colon tumor cells but not normal liver cells. In vivo they observed that bystander tumor cells which were not transfected with the cytosine deaminase gene were also killed, and that there was no toxicity to the host animal as the large tumors were regressing following treatment. Herpes (HSV), thymidine kinase similarly simplex virus, activates the prodrug gancyclovir to be toxic towards dividing cancer cells and HSV thymidine kinase has been shown to be specifically activatable by tissue specific promoters.

Prostatic Tumor Systems: The therapeutic key to 20 effective cancer therapy is to achieve specificity and spare the patient toxicity. Gene therapy may provide a key part to specificity in that non-essential tissues such as the prostate and prostatic tumors produce 25 tissue specific proteins, such as acid phosphatase (PAP), prostate specific antigen (PSA), and a gene which was cloned, prostate-specific membrane antigen (PSM). Tissues such as the prostate contain selected tissue specific transcription factors which 30 responsible for binding to the promoter region of the DNA of these tissue specific mRNA. The promoter for PSA has been cloned. Usually patients who are being treated for metastatic prostatic cancer have been puton androgen deprivation therapy which dramatically reduces the expression of mRNA for PSA. PSM on the 3.5 other hand increases in expression with hormone deprivation which-means it would be even more intensely



- 84 -

expressed on patients being treated with hormone therapy.

20

25

3.5

# References of Example 2

- Coffey, D.S. Prostate Cancer An overview of an increasing dilemma. Cancer Supplement, 71,3:
   880-886, 1993.
  - 2. Chiarodo, A. National Cancer Institute roundtable on prostate cancer; future research directions. Cancer Res., 51: 2498-2505, 1991.
- 3. Israeli, R.S., Powell, C.T., Fair, W.R., and Heston, W.D.W. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res., 53: 227-230, 1993.
  - 4. Horoszewicz, J.S., Kawinski, E., and Murphy, G.P. Monoclonal antibodies to a new antigenic marker in epithelial cells and serum of prostatic cancer patients. Anticancer Res., 7: 927-936, 1987.
  - 5. Horoszewicz, J.S., Leong, S.S., Kawinski, E., Karr, J.P., Rosenthal, H., Chu, T.M., Mirand, E.A., and Murphy, G.P. LNCaP model of human prostatic carcinoma. Cancer Res., 43: 1809-1818, 1983.
- 6. Abdel-Nabi, H., Wright, G.L., Gulfo, J.V., Petrylak, D.F., Neal, C.E., Texter, J.E., Begun, F.P., Tyson, I., Hear, A., Mitchell, E., Purnell, G., and Harwood, S.J. Monoclonal antibodies and radioimmunoconjugates in the diagnosis and treatment of prostate cancer. Semin. Urol., 10: 45-54, 1992.
  - 7. Stone, K.R., Mickey, D.D., Wunderli, H., Mickey, G.H., and Paulson, D.F. Isolation of a human

prostate carcinoma cell line (DU-145). Int. J. Cancer, 21: 274-281, 1978.

- 8. Kaign, M.E., Narayan, K.S., Ohnuki, Y., and Lechner, J.F. Establishment and characterization of a human prostatic carcinoma cell line (PC-3).

  Invest. Urol., 17: 16-23, 1979.
- 9. Hsu, S.M., Raine, L., and Fanger, H. Review of present methods of immunohistochemical detection.
  Am. J. Clin. Path. 75: 734-738, 1981.
- 10. Harlow, E., and Lane, D. Antibodies: A Laboratory Manual. New York: Cold Spring Harbor Laboratory, p. 449, 1988.
  - 11. Glisin, V., Crkvenjakov, R., and Byus, C. Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry, 13: 2633-2637, 1974.
  - 12. Aviv, H., and Leder, P. Puritication of biologically active globin messenger RNA by chromotography on oligo-thymidylic acid cellulose. Proc. Natl. Acad. Sci. USA, 69: 1408-1412, 1972.
- 13. Melton, D.A., Krieg, P.A., Rebagliati, M.R., Maniatis, T.A., Zinn, K., and Careen, M.R. Efficient in-vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucl. Acids. Res. 12: 7035-7056, 1984.
- 35 14.

20

25

- 15. Axelrod, H.R., Gilman, S.C., D'Aleo, C.J., Petrylak, D., Reuter, V., Gulfo, J.V., Saad, A., Cordon-Cardo, C., and Scher, H.I. Preclinical results and human immunohistochemical studies with 90Y-CYT-356; a new prostatic cancer therapeutic agent. AUA Proceedings, Abstract 596, 1992.
- 16. Lopes, A.D., Davis, W.L., Rosenstraus, M.J.,

  Uveges, A.J., and Gilman, S.C.

  Immunohistochemical and pharmacokinetic

  characterization of the site-specific

  immunoconjugate CYT-356 derived from antiprostate

  monoclonal antibody 7E11-C5. Cancer Res., 50:

  6423-6429, 1990.
  - 17. Troyer, J.K., Qi, F., Beckett, M.L., Morningstar, M.M., and Wright, G.L. Molecular characterization of the 7E11-C5 prostate tumorassociated antigen. AUA Proceedings. Abstract 482, 1993.

25

- 18. Roemer, K., Friedmann, T. Concepts and strategies for human gene therapy. FEBS. 223:212-225.
- 19. Antonie, P. Springer, C.J., Bagshawe, F., Searle, F., Melton, R.G., Rogers, G.T., Burke, P.J., Sherwood, R.F. Disposition of the prodrug 4-bis(2chloroethyl) amino) benzoyl-1-glutamic acid and its active parent drug in mice. Br.J.Canzer 62:909-914, 1990.
- 20. Connor, J. Bannerji, R., Saito, S., Heston, W.D.W., Fair, W.R., Gilboa, E. Regression of bladder tumors in mice treated with interleukin gene-modified tumor cells. J.Exp.Med. 177:1127-1134, 1993. (appendix)

- Vile R., Hart, I.R. In vitro and in vivo targeting of gene expression to melanoma cells.

  Cancer Res. 53:962-967, 1993.
- 5 22. Warner, J.A., Heston, W.D.W. Future developments of nonhormonal systemic therapy for prostatic carcinoma. Urologic Clinics of North America 18:25-33, 1991.
- Vile, R.G., Hart, I.R. Use of tissue specific expression of the herpes simplex virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA. Cancer Res. 53:3860-3864, 1993.

10

15

20

25

3.0

35

#### EXAMPLE 3:

# Sensitive Detection of Prostatic Hematogenous Micrometastases Using PSA and PSM-Derived Primers in the Polymerase Chain Reaction

A PCR-based assay was developed enabling sensitive detection of hematogenous micrometastases in patients with prostate cancer. "Nested PCR", was performed by amplifying mRNA sequences unique to prostate-specific antigen and to the prostate-specific membrane antigen, compared their respective results. Micrometastases were detected in 2/30 patients (6.7%) by PCR with PSA-derived primers, while PSM-derived primers detected tumor cells in 19/16 patients ( $\epsilon 3.3\%$ ). All 8 negative controls were negative with both PSA and PSM PCR. Assays were repeated to confirm results, and PCR products were verified by DNA sequencing and Southern analysis. Patients harboring circulating prostatic tumor cells as detected by PSM, and not by PSA-PCR included 4 patients previously treated with radical prostatectomy and with non-measurable serum PSA levels at the time of this assay. The significance of these findings with respect to future disease recurrence and progression will be investigated.

Improvement in the overall survival of patients with prostate cancer will depend upon earlier diagnosis. Localized disease, without evidence of extra-prostatic spread, is successfully treated with either radical prostatectomy or external beam radiation, with excellent long-term results (2,3). The major problem is that approximately two-thirds of men diagnosed with-prostate cancer already have evidence of advanced extra-prostatic spread at the time of diagnosis, for which there is at present no cure (4). The use of clinical serum markers such as prostate-specific

10

15

20

25

3.0

35

antigen (PSA) and prostatic acid phosphatase (PAP) have enabled clinicians to detect prostatic carcinomas earlier and provide useful parameters to follow responses to therapy (5). Yet, despite the advent of sensitive serum PSA assays, radionuclide bone scans, CT scans and other imaging modalities, results have not detected the presence of micrometastatic cells prior to their establishment of solid metastases. Previous work has been done utilizing the polymerase chain reaction to amplify mRNA sequences unique to breast, leukemia, and other malignant cells in the circulation and enable early detection of micrometastases (6,7). Recently, a PCR-based approach utilizing primers derived from the PSA DNA sequence was published (8). In this study 3/12 patients with advanced, stage D prostate cancer had detectable hematogenous micrometastases.

PSM appears to be an integral membrane glycoprotein which is very highly expressed in prostatic tumors and metastases and is almost entirely prostate-specific (10). Many anaplastic tumors and bone metastases have variable and at times no detectable expression of PSA, whereas these lesions appear to consistently express high levels of PSM. Prostatic tumor cells that escape from the prostate gland and enter the circulation are likely to have the potential to form metastases and are possibly the more aggressive and possibly anaplastic cells, a population of cells that may not express high levels of PSA, but may retain high expression of PSM. DNA primers derived from the sequences of both PSA and PSM in a PCR assay were used to detect micrometastatic cells in the peripheral circulation. Despite the high level of amplification and sensitivity of conventional. RNA PCR, "Nested" PCR approach in which a amplified target sequence was employed, and subsequently use this PCR product as the template for another round of PCR amplification with a new set of primers totally

WO 96/26272 PCT/US96/02424

contained within the sequence of the previous product. This approach has enabled us to increase the level of detection from one prostatic tumor cell per 10,000 cells to better than one cell per ten million cells.

-91-

# Materials and Methods

5

10

15

20

25

3.0

3.5

Cells and Reagents: LNCaP and MCF-7 cells were obtained from the American Type Culture Collection (Rockville, MD.). Details regarding the establishment and characteristics of these cell lines have been previously published (11,12). Cells were grown in RPMI 1640 media supplemented with L-glutamine, nonessential amino acids, obtained from the MSKCC Media Preparation Facility, and 5% fetal calf serum (Gibco-BRL, Gaithersburg, MD.) in a CO<sub>2</sub> incubator at 37C. All cell media was obtained from the MSKCC Media Preparation Facility. Routine chemical reagents were of the highest grade possible and were obtained from Sigma Chemical Company, St. Louis, MO.

Patient Blood Specimens: All blood specimens used in this study were from patients seen in the outpatient offices of urologists on staff at MSKCC. Two anticoagulated (purple top) tubes per patient were obtained at the time of their regularly scheduled blood draws. Specimen procurement was conducted as per the approval of the MSKCC Institutional Review Board. Samples were promptly brought to the laboratory for immediate processing. Serum FSA and FAP determinations were performed by standard techniques by the MSKCC Clinical Chemistry Laboratory. PSA determinations were performed using the Tandem PSA assay (Hybritech, San -Diego, CA.). The eight blood specimens used as negative controls were from 2 males with normal serum PSA values and biopsy-proven BPH, one healthy female, 3 healthy males, one patient with bladder cancer, and

10

15

20

25

3.0

3.5

one patient with acute promyelocytic leukemia.

Blood Sample Processing/RNA Extraction: 4 ml of whole anticoagulated venous blood was mixed with 3 ml of ice cold phosphate buffered saline and then carefully layered atop 8 ml of Ficoll (Pharmacia, Uppsala, Sweden) in a 15-ml polystyrene tube. Tubes were centrifuged at 200 x g for 30 min. at 4C. sterile pasteur pipette, the buffy coat layer (approx. 1 ml.) was carefully removed and rediluted up to 50 ml with ice cold phosphate buffered saline in a 50 ml polypropylene tube. This tube was then centrifuged at 2000 x g for 30 min at 4C. The supernatant was carefully decanted and the pellet was allowed to drip dry. One ml of RNazol B was then added to the pellet and total RNA was isolated as per manufacturers Houston, directions (Cinna/Biotecx, concentrations and purity were determined by UV spectroscopy on a Beckman DU 640 spectrophotometer and by gel analysis.

Determination of PCR Sensitivity: RNA was isolated from LNCaP cells and from mixtures of LNCaP and MCF-7 cells at fixed ratios (i.e. 1:100, 1:1000, etc.) using RNAzol B. Nested PCR was then performed as described below with both PSA and PSM primers in order to determine the limit of detection for the assay. LNCaP:MCF-7 (1:100,000) cDNA was diluted with distilled water to obtain concentrations of 1:1,000,000 and 1:10,000,000. MCF-7 cells were chosen because they have been previously tested and shown not to express PSM by PCR.

Polymerase Chain Reaction: The PSA outer primers used span portions of exons 4 and 5 to yield a 486 bp PCR product and enable differentiation between cDNA and possible contaminating genomic DNA amplification. The upstream primer sequence beginning at nucleotide 494 in

PSA cDNA sequence is 5'-TACCCACTGCATCAGGAACA-3' (SEO. ID. No. / and the downstream primer at nucleotide 960 is 5'-CCTTGAAGCACCACTTACA-3' (SEQ. ID. No. ). PSA inner upstream primer (beginning at nucleotide 559) 5'-ACACAGGCCAGGTATTTCAG-3' (SEQ. ID. No. | and the downstream primer nucleotide 894; (at GTCCAGCGTCCAGCACACAG-3' (SEQ. ID. No. ) yield a 355 bp PCR product. All primers were synthesized by the MSKCC Microchemistry Core Facility.  $5\mu g$  of total RNA was 10 reverse-transcribed into cDNA in a total volume of 2041 using Superscript reverse transcriptase (Gibco-BRL) according to the manufacturers recommendations.  $1\mu l$  of this cDNA served as the starting template for the outer primer PCR reaction. The  $20\mu l$  PCR mix included: 0.5U 15 Taq polymerase (Promega Corp., Madison, WI.), Promega reaction buffer, 1.5mM MgCl<sub>2</sub>, 200mM dNTPs, and 1.0  $\mu$ M of each primer. This mix was then transferred to a Perkin Elmer 9600 DNA thermal cycler and incubated for 25 cycles. The PCR profile was as follows: 94C  $\times$  15 20 sec.,  $60C \times 15$  sec., and 72C for 45 sec. After 25cycles, samples were placed on ice, and  $1\mu l$  of this reaction mix served as the template for another round of PCR using the inner primers. The first set of tubes were returned to the thermal cycler for 25 additional 25 cycles. PSM-PCR required the selection of primer pairs that also spanned an intron in order to be certain that cDNA and not genomic DNA were being amplified.

The PSM outer primers yield a 946 bp product and the inner primers a 434 bp product. The PSM outer upstream primer used was 5'-ATGGGTGTTTGGTGTATTGACC-3' (SEQ. II. No. ) (beginning at nucleotide 1401) and the downstream primer (at nucleotide 2348) was 5'-TGCTTGGAGCATAGATGACATGC-3' (SEQ. ID. No. The PSM inner upstream primer (at nucleotide 1581 was 5'-ACTCCTTCAAGAGCGTGGCG-3' (SEQ. ID. No. and the downstream primer (at nucleotide 2015, was 5'-

15

20

AACACCATCCCTCGAACC-3'(SEQ. ID. No. ). cDNA used was the same as for the PSA assay. The 501 PCR mix included: 1U Tag Polymerase (Promega), 250M dNTPs, 10mM -mercaptoethanol, 2mM MgCl, and 51 of a 10x buffer mix containing: 166mM NH,SO,, 670mM Tris pH 8.8, and 2 mg/ml of acetylated BSA. PCR was carried out in a Perkin Elmer 480 DNA thermal cycler with the following parameters: 94C x 4 minutes for 1 cycle, 94C x 30 sec., 58C  $\times$  1 minute, and 72C  $\times$  1 minute for 25 cycles, followed by 72C x 10 minutes. Samples were then iced and 21 of this reaction mix was used as the template another 25 cycles with a new reaction containing the inner PSM primers. cDNA quality was verified by performing control reactions using primers derived from -actin yielding a 446 bp PCR product. The upstream primer used was 5'-AGGCCAACCGCGAGAAGATGA-3' (SEQ. ID. No. ) (exon 3) and the downstream primer was 5'-ATGTCACACTGGGGAAGC-3' (SEQ. ID. No. ) (exon 4). The entire PSA mix and 101 of each PSM reaction mix were run on 1.5-2% agarose gels, stained with ethidium bromide and photographed in an Eagle Eye Video Imaging System (Stratagene, Torrey Pines, CA.). Assays were repeated at least 3 times to verify results.

Cloning and Sequencing of PCR Products: .PCR products 25 were cloned into the pCR II plasmid vector using the TA cloning system (Invitrogen). These plasmids were transformed into competent E. coli cells using standard methods (13) and plasmid DNA was isolated using Magic Minipreps (Promega) and screened by restriction 3.0 analysis. TA clones were then sequenced by the dideoxy method (14) using Sequenase (U.S. Biochemical). of each plasmid was denatured with NaOH and ethanol precipitated. Labeling reactions were carried out 3.5 according to the manufacturers recommendations using 35S-dATP (NEN), and the reactions were terminated as discussed in the same protocol. Sequencing products

WO 96/26272 PCT/US96/02424

- 95 -

were then analyzed on 6% polyacrilamide/7M urea gels run at 120 watts for 2 hours. Gels were fixed for 10 minutes in 10% methanol/10% acetic acid, transferred to Whatman 3MM paper and dried down in a vacuum dryer for 2 hours at 80C. Gels were then autoradiographed at room temperature for 18 hours.

Southern Analysis: Ethidium-stained agarose gels of PCR products were soaked for 15 minutes in 0.2N Holl followed by 30 minutes each in 0.5N NaOH/1.5M NaCl and C.IM Tris pH 7.5/1.5M NaCl. Gels were then equilibrated for 10 minutes in 10x SSC (1.5M NaCl/0.15M Sodium Citrate. DNA was transferred onto Nytran nylon membranes (Schleicher and Schuell) by pressure blotting in 10x SSC with a Posi-blotter (Stratagene). DNA was cross-linked to the membrane using a UV Stratalinker (Stratagene). Blots were pre-hybridized at 65C for 2 hourthes and subsequently hybridized with denatured  $^{32}\text{P-labeled}$ , random-primed cDNA probes (either PSM or PSA)(9,15). Blots were washed twice in 1x SSFE/0.5% SDS at 42C and twice in 0.1x SSPE/0.5% SDS at 500 for 20 minutes each. Membranes were air-dried and autoradiographed for 30 minutes to 1 hour at -700 with Kodak X-Omat film.

Experimental Results

10

15

20

25

3.5

3.5

PCE amplification with nested primers improved the level of detection of prostatic cells from approximately one prostatic cell per 10,000 MCE-7 cells to better than one cell per million MCE-7 cells, using either PSA or PSM-derived primers 'Figures 26 and 27. This represents a substantial improvement in the ability to detect minimal disease. Characteristics of the 16 patients analyzed with respect to their clinical stage, treatment, serum PSA and PAP values, and results of the assay are shown. In total, PSA-PCE detected

10

15

20

25

3.0

3 5

tumor cells in 2/30 patients (6.7%), whereas PSM-PCR detected cells in 19/30 patients (63.3%). There were no patients positive for tumor cells by PSA and not by PSM, while PSM provided 8 positive patients not detected by PSA. Patients 10 and 11 in table 1, both with very advanced hormone-refractory disease were detected by both PSA and PSM. Both of these patients have died since the time these samples were obtained. Patients 4, 7, and 12, all of whom were treated with radical prostatectomies for clinically localized disease, and all of whom have non-measurable serum PSA values 1-2 years postoperatively were positive for circulating prostatic tumor cells by PSM-PCR, negative by PSA-PCR. A representative ethidium stained gel photograph for PSM-PCR is shown in Figure 28. Samples run in lane A represent PCR products generated from the outer primers and samples in lanes labeled B are products of inner primer pairs. The corresponding PSM Southern blot autoradiograph is shown in Figure 29. The sensitivity of the Southern blot analysis exceeded that of ethidium staining, as can be seen in several samples where the outer product is not visible on Figure 28, but is detectable by Southern blotting as shown in Figure 29. In addition, sample 3 on Figures 28 and 29 (patient 6 in Figure 30) appears to contain both outer and inner bands that are smaller than the corresponding bands in the other patients. sequencing has confirmed that the nucleotide sequence of these bands matches that of FSM, with the exception of a small deletion. This may represent either an artifact of PCR, alternative splicing of PSM mRNA in this patient, or a PSM mutation. All samples sequenced and analyzed by Southern analysis have been confirmed. as true positives for PSA and PSM.

Experimental Details

The ability to accurately stage patients with prostate

cancer at the time of diagnosis is clearly of paramount importance in selecting appropriate therapy and in predicting long-term response to treatment, and potential cure. Pre-surgical staging presently 5 consists of physical examination, serum PSA and PAP determinations, and numerous imaging modalities including transrectal ultrasonography, CT scanning, radionuclide bone scans, and even MRI scanning. present modality, however, addresses the issue of 10 hematogenous micrometastatic disease and the potential negative impact on prognosis that this may produce. Previous work has shown that only a fractional percentage of circulating tumor cells will inevitably go on to form a solid metastasis (16), however, the 15 detection of and potential quantification circulating tumor cell burden may prove valuable in more accurately staging disease. The long-term impact of hematogenous micrometastatic disease must be studied by comparing the clinical courses of patients found to 20 have these cells in their circulation with patients of similar stage and treatment who test negatively.

The significantly higher level of detection of tumor cells with PSM as compared to PSA is not surprising to 25 us, since more consistent expression of PSM in prostate carcinomas of all stages and grades as compared to variable expression of PSA in more differentiated and anaplastic prostate cancers is noted. The detection of tumor cells in the three patients that had undergone radical prostateutumies 30 with subsequent undetectable amounts of serum PSA was suprising. These patients would be considered to be surgical "cures" by standard criteria, yet they apparently continue to harbor prostatio tumo: cells. It will be interesting to follow the clinical course of 3.5 these patients as compared to others without PCR evidence of residual disease.

10

15

20

3.5

#### References of Example 3

- Boring, C.C., Squires, T.S., and Tong, T.: Cancer Statistics, 1993. CA Cancer J. Clin., 43:7-26, 1993.
- Lepor, H., and Walsh, P.C.: Long-term results of radical prostatectomy in clinically localized prostate cancer: Experience at the Johns Hopkins Hospital. NCI Monogr., 7:117-122, 1988.
  - 3. Bagshaw, M.A., Cox, R.S., and Ray, G.R.: Status of radiation treatment of prostate cancer at Stanford University. NCI Monogr., 7:47-60, 1988.
- 4. Thompson, I.M., Rounder, J.B., Teague, J.L., et al.: Impact of routine screening for adenocarcinoma of the prostate on stage distribution. J. Urol., 137:424-426, 1987.
- 5. Chiarodo, A.: A National Cancer Institute roundtable on prostate cancer; future research directions. Cancer Res., 51:2498-2505, 1991.
- 25 6. Wu, A., Ben-Ezra, J., and Colombero, A.:
  Detection of micrometastasis in breast cancer by
  the polymerase chain reaction. Lab. Invest.,
  62:109A, 1990.
- 7. Fey, M.F., Kulozik, A.E., and Hansen-Hagge, T.E.:
  The polymerase chain reaction: A new tool for the detection of minimal residual disease in hematological malignancies. Eur. J. Cancer, 27:89-94, 1991.
- 8. Moreno, J.G., Croce, C.M., Fischer, R., Monne, M., Vihko, P., Mulholland, S.G., and Gomella,

2.0

2.5

- L.G.: Detection of hematogenous micrometastasis in patients with prostate cancer. Cancer Res., 52:6110-6112, 1992.
- Israeli, R.S., Powell, C.T., Fair, W.R., and Heston, W.D.W.: Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res., 53:227-230, 1993.
- 10 10. Israeli, R.S., Powell, C.T., Corr, J.G., Fair, W.R., and Heston, W.D.W.: Expression of the prostate-specific membrane antigen (PSM).: Submitted to Cancer Research.
- 15 11. Horoszewicz, J.S., Leong, S.S., Kawinski, E., Karr, J.P., Rosenthal, H., Chu, T.M., Mirand, E.A., and Murphy, G.P.: LNCaP model of human prostatic carcinoma. Cancer Res., 43:1809-1818, 1983.
- 12. Soule, H.D., Vazquez, J., Long, A., Albert, S., and Brennan, M.: A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Can. Inst., 51:1409-1416, 1973.
- 13. Hanahan, D.: Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol., 166:557-580, 1983.
- 30 14. Sanger, F., Nicklen, S., and Coulson, A.R.: DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74:5463-5467, 1977.
- Lundwall, A., and Milja, H.: Molecular cloning of a human prostate specific antigen cDNA. FEBS Letters, 214:317, 1987.

Liotta, L.A., Kleinerman, J., and Saidel, G.M.:
Quantitative relationships of intravascular tumor
cells, tumor vessels, and pulmonary metastases
following tumor implantation. Cancer Res.,
34:997-1003, 1974.

-101-

#### EXAMPLE 4:

EXPRESSION OF THE PROSTATE SPECIFIC MEMBRANE ANTIGEN (PSM) DIMINISHES THE MITOGENIC STIMULATION OF AGGRESSIVE HUMAN PROSTATIC CARCINOMA CELLS BY TRANSFERRIN

An association between transferrin and human prostate cancer has been suggested by several investigators. It has been shown that the expressed prostatic secretions 10 of patients with prostate cancer are enriched with respect to their content of transferrin and that prostate cancer cells are rich in transferrin receptors (J. Urol. 143, 381, 1990). Transferrin derived from 15 bone marrow has been shown to selectively stimulate the growth of aggressive prostate cancer cells (PNAS 89, 6197, 1992). DNA sequence analysis has revealed that a portion of the coding region, from nucleotide 1250 to 1700 possesses a 54% homology to the human transferrin 20 receptor. PC-3 cells do not express PSM mRNA or protein and exhibit increased cell growth in response to transferrin, whereas, LNCaP prostate cancer cells which highly express PSM have a very weak response to transferrin. To determine whether PSM expression by 25 prostatic cancer cells impacts upon their mitogenic response to transferrin the full-length PSM cDNA was transfected into the PC-3 prostate cancer cells. Clones highly expressing PSM mRNA were identified by Northern analysis and expression of PSM protein was verified by Western analysis using the anti-PSM 30 monoclonal antibody 7E11-CE.3.

2x10<sup>4</sup> PC-3 or PSM-transfected PC-3 cells per well ere plated in RPMI medium supplemented with 10% fetal bovine serum and at 24 hrs. added 1 µg per ml. of holotransferrin to the cells. Cells were counted at 1 day to be highly mitogenic to the PC-3 cells. Cells

were counted at 1 day to determine plating efficiency and at 5 days to determine the effect of the transferrin. Experiments were repeated to verify the results.

5

10

PC-3 cells experienced an average increase of 275% over controls, whereas the LNCaP cells were only stimulated 43%. Growth kinetics revealed that the PSM-transfected PC-3 cells grew 30% slower than native PC-3 cells. This data suggests that PSM expression in aggressive, metastatic human prostate cancer cells significantly abrogates their mitogenic response to transferrin.

The use of therapeutic vaccines consisting of cytokinesecreting tumor cell preparations for the treatment of 15 established prostate cancer was investigated in the Dunning R3327-MatLyLu rat prostatic adenocarcinoma model. Only IL-2 secreting, irradiated tumor cell preparations were capable of curing animals from 20 subcutaneously established tumors, and engendered immunological memory that protected the animals from another tumor challenge. Immunotherapy was less effective when tumors were induced orthotopically, but nevertheless led to improved outcome, significantly 25 delaying, and occasionally preventing recurrence of tumors after resection of the cancerous prostate. Induction of a potent immune response in tumor bearing animals against the nonimmunogenic MatLyLu tumor supports the view that active immunotherapy of prostate cancer may have therapeutic benefits. 3.0

-103-

#### EXAMPLE 5:

# CLONING AND CHARACTERIZATION OF THE PROSTATE SPECIFIC MEMBRANE ANTIGEN (PSM) PROMOTER.

Ξ

10

15

The expression and regulation of the PSM gene is complex. By immunostaining, PSM antigen was found to be expressed brilliantly in metastasized tumor, and in organ confined tumor, less so in normal prostation tissue and more heterogenous in EPH. PSM is strongly expressed in both anaplastic and hormone refractory tumors. PSM mRNA has been shown to be down regulated by androgen. Expression of PSM RNA is also modulated by a host of cytokines and growth factors. Knowledge of the regulation of PSM expression should aid in such diagnostic and therapeutic strategies as imunoscintigraphic imaging of prostate cancer and protate-specific promoter-driven gene therapy.

20

25

Sequencing of a 3 kb genomic DNA clone that contained 2.5 kb upstream of the transcription start site revealed that two stretches of about 300 b.p. -260 to -600; and -1325 to -1625; have substantial homology (79-87%) to known genes. The promoter lacks a GC rich region, nor does it have a consensus TATA box. However, it contains a TA-rich region from position -35 to -65.

Several consensus recognition sites for gonord. transcription factors such as API, AP2, NFkB, GRE and E2-RE were identified. Chimeric constructs containing fragments of the upstream region of the PSM gene fused to a promoterless chloramphenical acetyl transferase gene were transfected into, and transiently expressed in LNCaP, PC-3, and SW620 (a colonic cell line. With

in LNUaP, PO-3, and SW620 (a colonic cell line). With an additional SV40 enhancer, sequence from -565 to +7%

exhibited promoter activity in LNCaP but not in FC-3 nor in SW620.

#### Materials and Methods

10

Cell Lines. LNCaP and FC-3 prostatic cardinoma dell lines (American Type Culture Collection, were cultured in RPMI and MEM respectively, supplemented with 5% fetal calf serum at 37°C and 5% CO,. SW620, a colonic cell line, is a gift from Melisa.

Polymerase Chain Reaction. The reaction was performed in a 50  $\mu$ l volume with a final concentration of the following reagents: 16.6 mM NH,SO,, 67 mM Tris-HCl pH 8.8, acetylated BSA 0.2 mg/ml, 2mM MgCl<sub>2</sub>, 250 µM dNTFs, 15 10 mM ß-mercaptoethanol, and 1 U of rth 111 Tag polymerase (Boehringer Mannhiem, CA). A total of 25 cycles were completed with the following profile: cycle 1, 94°C 4 min.; cycle 2 through 25, 94°C 1 min, 60°C 1 min, 72°C 1 min. The final reaction was extended for 10 min at 72°C. Aliquots of the reaction were electrophoresed on 1 % agarose gels in 1X Tris-acetate-EDTA buffer.

25

3.5

: 5

20

Cloning of PSM promoter. A bacteriophage P1 library of human fibroblast genomic DNA (Genomic Sysytems, Inc., St. Louis, MI), was screened using a PCR method of Pierce et al. Primers located at the 5' end of FSM usea:5'-CTCAAAAGGGGCCGGATTTCC-3' were E'CTCTCAATCTCACTAATGCCTC-3'. A positive crone, p683, was digested with Xhol restriction enzyme. Southern analysis of the restricted fragments using a DNA probefrom the extreme 5' to the Ava-1 site of PSM cDNA confirmed that a 3Kb fragment contains the 5% regulatory sequence of the PSM gene. The 3 kb Xhol fragment was subcloned into pESBluescrpt vectors and

WO 96/26272 PCT/US96/02424

-105-

sequenced using the dideoxy method.

Functional Assay of PSM Promoter. Chloramphenical Acetyl Transferase, (CAT) gene plasmids were constructed from the Smal-HindIII fragments or subfragments (using either restriction enzyme subfragments or PCR' by insertion into promoterless pCAT basic or pCAT-enhancer vectors (Promega). pCAT-constructs were cotransfected with pSVBgal plasmid (5 Ag of each plasmid, into cell lines in duplicates, using a calcium phosphate method (Gibco-BRL, Gaithersburg, MD). The transfected cells were harvested 72 hours later and assayed (15µg of lysate) for CAT activity using the LSC method and for Bgal activity (Promega). CAT activities were standardized by comparision to that of the Bgal activities.

#### Results

10

15

25

3.5

20 Sequence of the 5' end of the PSM gene.

The DNA sequence of the 3 kb XhoI fragment of p683 which includes 500 bp of DNA from the RNA start site was determined (Figures 31A-31D) Sequence 683XFRVS starts from the 5' distal end of PSM promoter, it overlaps with the published PSM putative promoter at nt 2485, i.e. the putative transcription start site is at nt 2485; sequence 683XF107 is the reverse, complement of 683XFRVS). The sequence from the XhoI fragment displayed a remarkable arrays of elements and motifs which are characteristic of eukaryotic promoters and regulatory regions found in other genes (Figure 32).

Functional Analysis of upstream PSM genomic elements . for promoter activity.

Various pCAT-PSM promoter constructs were tested for promoter activities in two prostatic cell lines:

LNCaP, PC-3 and a colonic SW620 (Figure 33... Induction of CAT activity was neither observed in p1070-CAT which contained a 1070 bp PSM 5' promoter fragment, nor in p676-CAT which contained a 641 bp PSM 5' promoter fragment. However, with an additional SV-40 enhancer, sequence from -565 to +76 \p676-CATE exhibited promoter activity in LNCaP but not in PC-3 nor in SW620.

Therefore, a LNCaP specific promoter fragment from -565 to +76 has been isolated which can be used in PSM promoter-driven gene therapy.

#### EXAMPLE 6:

15

25

30

3.5

ALTERNATIVELY SPLICED VARIANTS OF PROSTATE SPECIFIC MEMBRANE ANTIGEN RNA: RATIO OF EXPRESSION AS A POTENTIAL MEASUREMENT OF PROGRESSION

#### 20 MATERIALS AND METHODS

Cell Lines. LNCaP and PC-3 prostatic carcinoma cell lines were cultured in RPMI and MEM respectively, supplemented with 5% fetal calf serum at 37°C and 5% CO<sub>2</sub>.

Primary tissues. Primary prostatic tissues were obtained from MSKCC's in-house tumor procurement service. Gross specimen were pathologically staged by MSKCC's pathology service.

RNA Isolation. Total RNA was isolated by a modified guanidinium thiocynate/phenol/chloroform. method using a RNAzol B kit (Tel-Test, Friendswood, TX). RNA was stored in diethyl pyrocarbonate-treated water at -80°C. RNA was quantified using spectrophometric abscrption at 260nm.

3 5

-107-

cDNA synthesis. Two different batches of normal prostate mRNAs obtained from trauma-dead males Clontech, Palo Alto, CA, were denatured at 70°C for 10 min., then reverse transcribed into cDNA using random hexamers and Superscript II reverse transcriptase GIBCO-BRL, Gaithersburg, MD at 50°C for 30 min. followed by a 94°C incubation for 5 min.

Polymerase Chain Reaction. Cligonuolestide primers(5'-CTCAAAAGGGGCCGGATTTCC-3' and 10 AGGCTACTTCACTCAAAG-3',, specific for the 5' and 3' ends of PSM cDNA were designed to span the cDNA sequence. The reaction was performed in a 50  $\mu l$  volume with a final concentration of the following reagents 16.8 mM NH,SO,, 67 mM Tris-HCl pH 8.8, acetylated BSA 0.2 mg/ml, 15 2mM MgCl,, 250 $\mu$ M dNTPs, 10 mM ß-mercaptoethanol, and 1 U of rTth polymerase (Perkin Elmer, Norwalk, CT). A total of 25 cycles were completed with the following profile: cycle 1, 94°C 4 min.; cycle 2 through 25, 94°C 20 1 min, 60°C 1 min, 72°C 1 min. The final reaction was extended for 10 min at 72°C. Aliquots of the reaction were electrophoresed on 1 % agarose gels in 1% Trisacetate-EDTA buffer.

- Cloning of PCR products. PCR products were cloned by the TA cloning method into pCRII vector using a kit from Invitrogen (San Diego, CA). Ligation mixture were transformed into competent Escherichia coli Inv5a.
- Sequencing. Sequencing was done by the diderxy method using a sequenase kit from US Blochemical (Cleveland, OH). Sequencing products were electrophoresed on a 5% polyacrylamide/7M urea gel at 52°C.
  - RNase Protection Assays. Full length PSM cDNA clone was digested with NgoM 1 and Nhel. A 350 b.p. fragment

10

was isplated and subcloned into pSPORT1 vector (GIBCC-BRL, Gaithersburg, MD). The resultant plasmid, pSP350, was linearized, and the insert was transcribed by SF6 RNA polymerase to yield antisense probe of 395 nucleotide long, of which 355 nucleotides and/or 210 nucleotides should be protected from RNAse digestion by FSM or PSM' RNA respectively (Fig.2). Total celluar RNA (20  $\mu$ g) from different tissues were hybridized to the aforementioned antisense RNA probe. Assays were performed as described (7). tRNA was used as negative control. RPAs for LNCaP and PC-3 were repeated.

#### RESULTS

RT-PCR of mRNA from normal prostatic tissue. Two 15 independent RT-PCR of mRNA from normal prostates were performed as described in Materials and Methods. Subsequent cloning and sequencing of the PCR products revealed the presence of an alternatively spliced variant, PSM'. PSM' has a shorter cDNA (2387 20 nucleotides) than PSM (2653 nucleotides). The results of the sequence analysis are shown in Figure 34. The cDNAs are identical except for a 266 nucleotide region near the 5' end of PSM cDNA (nucleotide 114 to 380) that is absent in PSM' cDNA. Two independent repetitions of RT-PCR of different mRNA samples yielded 25 identical results.

PSM RNA and spanning the 3' splice junction of PSM' RNA was used to measure relative expression of PSM and PSM' mRNAs (Figure 35). With this prope, both PSM and PSM' RNAs in LNCaP cells was detected and the predominant form was PSM. Neither PSM nor PSM' RNA was detected in PC-3 cells, in agreement with previous Northern and Western blot data (5,6). Figure 36 showed the presence of both splice variants in human primary prostatic tissues. In primary prostatic tumor, PSM is

WO 96/26272 PCT/US96/02424

-109-

the dominant form. In contrast, normal prostate expressed more PSM' than PSM. BPH samples showed about equal expression of both variants.

Tumor Index. The relative expression of PSM and PSM' (Figure 36, was quantified by densitometry and expressed as a tumor index (Figure 37). LNCaP has an index ranging from 9-11; CaP from 3-6; BPH from 0.75 to 1.6; normal prostate has values from 0.075 to 0.45.

10

15

20

25

#### DISCUSSION

Sequencing data of PCR products derived from human normal prostatic mRNA with 5' and 3' end PSM oligonucleotide primers revealed a second splice variant, PSM', in addition to the previously described PSM cDNA.

PSM is a 750 a.a. protein with a calculated molecular weight of 84,330. PSM was hypothesized to be a type II integral membrane protein (5). A classic type II membrane protein is the transferrin receptor and indeed PSM has a region that has modest homology with the transferrin receptor (5). Analysis of the PSM amino acid sequence by either the methods of Rao and Argos (7) or Eisenburg et. al. (8) strongly predicted one transmembrane helix in the region from a.a.#20 to #43. Both programs found other regions that could be membrane associated but were not considered likely candidates for being transmembrane regions.

١.

3.5

PSM' antigen, on the other hand, is a 693 a.a. protein as deduced from its mRNA sequence with a molecular weight of 78,000. PSM' antigen lacks the first 57 amino acids present in PSM antigen (Figure 34). It is likely that PSM' antigen is cytosolic.

The function of PSM and PSM' are probably different.

10

15

20

25

3.0

3.5

The cellular location of PSM antigen suggests that it may interact with either extra- or intra- cellular ligand(s) or both; while that of PSM' implies that PSM' can only react with cytosolic ligand(s). Furthermore, PSM antigen has 3 potential phosphorylation sites on its cytosolic domain. These sites are absent in PSM' antigen. On the other hand, PSM' antigen has 25 potential phosphorylation sites, 10 N-myristoylation sites and 9 N-glycosylation sites. For PSM antigen, all of these potential sites would be on the extracellular surface. The modifications of these sites for these homologous proteins would be different depending on their cellular locations. Consequently, the function(s) of each form would depend on how they are modified.

The relative differences in expression of PSM and PSM' by RNase protection assays was analyzed. Results of expression of PSM and PSM' in primary prostatic tissues strongly suggested a relationship between the relative expression of these variants and the status of the cell: either normal or cancerous. While it is noted here that the sample size of the study is small (Figures 36 and 37), the consistency of the trend is evident. The samples used were gross specimens from patients. The results may have been even more dramatic if specimens that were pure in content of CaP, BPH or normal had been used. Nevertheless, in these specimens, it is clear that there is a relative increase of PSM over PSM' mRNA in the change from normal to CaP. The Tumor Index (Figure 37 could be useful in measuring the pathologic state of a given It is also possible that the change in expression of PSM over PSM' may be a reason for tumor progression. A more differentiated tumor state may be restored by PSM' either by transfection or by the use of differentiation agents.

Ξ

25

3 1

3.5

-111-

#### References of Example 6

- 1. Murphy, G.F. Report on the American Urologic Association/American Cancer Society Scientific Seminar on the Detection and treatment of Early-Stage Prostate Cancer. CA Cancer J. Clin. 44:91-95,1994.
- 2. Israeli, R.S., Miller Jr., W.H., Su, S.L., Powell, C.T., Fair, W.R., Samadi, D.S., Huryk, R.F., DelBlasio, A., Edwards, E.T, and Heston, W.D.W. Sensitive Nested Reverse Transcription Polymerase Chain Reaction Detection of Circulating Prostatic Tumor Cells: Comparision of Prostate-specific Membrane Antigen and Prostate-specific Antigen-based Assays. Cancer Res., 54: 6325-6329,1994.
- 3. Horoszewicz, J.S., Kawinski, E., and Murphy, G.P. Mcnoclonal antibodies to a new antigenic marker in epithelial cells and serum of prostatic cancer patients.

  Anticancer Res., 7:927-936,1987.
  - 4. Horoszewicz, J.S., Leong, S.S., Kawinski, E., Karr, J.P., Rosenthal, H., Chu, T.M., Mirand, E.A. and Murphy, G.P. LNCaP model of human prostatic Carcinoma. Cancer Res., 43:1809-1818,1983.
    - 5. Israeli, R.S., Powell, C.T., Fair, W.R. and Heston, W.D.W. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res.,53:227-230,1993.

- 6. Israeli, R.S., Powell, C.T., Corr, J.G., Fair, W.R. and Heston, W.D.W. Expression of the prostate-specific membrane antigen. Cancer Res., 54:1807-1811,1994.
- 7. Melton, D.A., Krieg, P.A., Rebagliati, M.R., Maniatis, T., Zinn, K. and Green, M.R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res., 12:7035-7056, 1984.
- 8. Rao, M.J.K. and Argos, P. A conformational preference parameter to predict helices in integral membrane proteins. Biochim. Biophys. Acta, 869:197-214,1986.
- 9. Eisenburg, D., Schwarz, E., Komaromy, M. and Wall, R. Analysis of membrane and surface protein sequences with the hydrophbic moment plot, J. Mol. Biol. 179:125-142,1984.
- 25 10. Troyer, J.K. and Wright Jr.,G.L. Biochemical characterization and mapping of 7E-11 C-5.3. Epitope of the prostate specific membrane antigen (PSMA). American Association for Cancer Research Special Conference: Basic and Clinical Aspect of Prostate Cancer. Abstract C-38, 1994.

-113-

#### EXAMPLE 7:

ENHANCED DETECTION OF PROSTATIC HEMATOGENOUS MICRO-METASTASES WITH PSM PRIMERS AS COMPARED TO PSA PRIMERS USING A SENSITIVE NESTED REVERSE TRANSCRIPTASE-PCR ASSAY.

77 randomly selected samples were analyzed from 10 patients with prostate cancer and reveals that PSM and PSA primers detected circulating prostate cells in 48 (62.3%) and 7 (9.1%) patients, respectively. In treated stage D disease patients, PSM primers detected cells in 16 of 24 (66.7%), while PSA primers detected 15 cells in 6 of 24 patients (25%). In hormone-refractory prostate cancer (stage D3), 6 of 7 patients were positive with both PSA and PSM primers. All six of these patients died within 2-6 months of their assay, despite aggressive cytotoxic chemotherapy, in contrast 20 to the single patient that tested negatively in this group and is alive 15 months after his assay, suggesting that PSA-PCR positivity may serve as a predictor of early mortality. In post-radical prostatectomy patients with negative serum PSA values. 25 PSM primers detected metastases in 21 of 31 patients (67.7%), while PSA primers detected cells in only 1 of 33 (3.0%), indicating that micrometastatic spread may be a relatively early event in prostate cancer. The analysis of 40 individuals without known prostate 3 1 cancer provides evidence that this assay is highly specific and suggests that PSM expression may predict the development of cancer in patients without clinically apparent prostate cancer. Using PSM. primers, micrometastases were detected in 4 of 40 controls, two of whom had known BPH by prostate biopsy 3 5 and were later found to have previously undetected prostate cancer following repeat prostate biopsy

10

15

20

25

3.0

3 =

performed for a rising serum PSA value. These results show the clinical significance of detection of hematogenous micrometastatic prostate cells using PSM primers and potential applications of this molecular assay.

#### EXAMPLE 8:

# MODULATION OF PROSTATE SPECIFIC MEMBRANE ANTIGEN (PSM) EXPRESSION IN VITRO BY CYTOKINES AND GROWTH FACTORS.

The effectiveness of CYT-356 imaging is enhanced by manipulating expression of PSM. PSM mRNA expression is downregulated by steroids. This is consistent with the clinical observations that PSM is strongly expressed in both anaplastic and hormone refractory lesions. contrast, PSA expression is decreased following hormone withdrawal. In hormone refractory disease, believed that tumor cells may produce both growth factors and receptors, thus establishing an autocrine loop that permits the cells to overcome normal growth constraints. Many prostate tumor epithelial cells express both  $TGF\alpha$  and its receptor, epidermal growth factor receptor. Results indicate that the effects of  $TGF\alpha$  and other selected growth factors and cytokines on the expression of PSM in-vitro, in the human prostatic carcinoma cell line LNCaP.

2x10<sup>6</sup> LNCaP cells growing in androgen-depleted media were treated for 24 to 72 hours with EGF, TGFα, TNFß or TNFα in concentrations ranging from 0.1 ng/ml to 100 ng/ml. Total RNA was extracted from the cells and PSM mRNA expression was quantitated by Northern blot analysis and laser densitometry. Both b-FGF and TGFα yielded a dose-dependent 10-fold upregulation of PSM expression, and EGF a 5-fold upregulation, compared to untreated LNCaP. In contrast, other groups have shown

-115-

a marked downregulation in PSA expression induced by these growth factors in this same in-vitro model. TNF4, which is cytotoxic to LNCaP cells, and TNF9 downregulated PSM expression 6-fold in androgen depleted LNCaP cells.

TGFa is mitogenic for aggressive prostate cancer cells. There are multiple forms of PSM and only the membrane form is found in association with tumor progression. The ability to manipulate PSM expression by treatment with cytokines and growth factors may enhance the efficacy of Cytogen 356 imaging, and therapeutic targeting of prostatic metastases.

#### EXAMPLE 9:

10

20

NEOADJUVANT ANDROGEN-DEPRIVATION THERAPY (ADT) PRIOR TO RADICAL PROSTATECTOMY RESULTS IN A SIGNIFICANTLY DECREASED INCIDENCE OF RESIDUAL MICROMETASTATIC DISEASE AS DETECTED BY NESTED RT-PCT WITH PRIMERS.

Radical prostatectomy for clinically localized prostate cancer is considered by many the "gold standard" treatment. Advances over the past decade have served to degrease morbidity dramatically. .Improvements 25 intended to assist clinicians in better staging patients preoperatively have been developed, however the incidence of extra-prostatic spread still exceeds 50%, as reported in numerous studies. A phase III ~ · prospective randomized clinical study designed to compare the effects of ADT for 3 months in patients undergoing radical prostatectomy with similarly matched controls receiving surgery alone was conducted. The . previously completed phase II study revealed a 100 3 E margin positive rate in the ADT group N=69 compared to a 33% positive rate 'N=72' in the surgery alone group.

10

15

20

25

30

3.5

Patients who have completed the phase III study were analyzed to determine if there are any differences between the two groups with respect to residual micrometastatic disease. A positive PCR result in a post-prostatectomy patient identifies viable metastatic cells in the circulation.

Nested RT-PCR was performed with PSM primers on 12 patients from the ADT group and on 10 patients from the control group. Micrometastatic cells were detected in 9/10 patients (90%) in the control group, as compared to only 2/12 (16.7%) in the ADT group. In the ADT group, 1 of 7 patients with organ-confined disease tested positively, as compared to 3 of 3 patients in the control group. In patients with extra-prostatic disease, 1 of 5 were positive in the ADT group, as compared to 6 of 7 in the control group. These results indicate that a significantly higher number of patients may be rendered tumor-free, and potentially "cured" by the use of neoadjuvant ADT.

#### EXAMPLE 10:

# SENSITIVE NESTED RT-PCR DETECTION OF CIRCULATION PROSTATIC TUMOR CELLS - COMPARISON OF PSM. AND PSA-BASED ASSAYS

Despite the improved and expanded arsenal of modalities available to clinician today, including sensitive serum PSA assays, CT scan, transrectal ultrasonography, endorectal co.I MRI, etc., many patients are still found to have metastatic disease at the time of pelvic lymph node dissection and radical prostatectomy. An highly sensitive reverse transcription PCR assay capable of detecting occult hematogenous micrometastatic prostatic cells that would otherwise go undetected by presently available staging modalities

-117-

was developed. This assay is a modification of similar PCR assays performed in patients with prostate cancer and other malignancies $^{2,3,4,5}$ . The assay employs PCR primers derived from the cDNA sequences of prostate-specific antigen<sup>6</sup> and the prostate-specific membrane antigen recently cloned and sequenced.

#### Materials and Methods

Cells and Reagents. LNCaF and MCF-7 cells were obtained from the American Type Culture Collection (Rockville, MD.). Details regarding the establishment and characteristics of these cell lines have been previously published<sup>8,9</sup>. Cells grown in RPMI 1640 medium and supplemented with L-glutamine, nonessential amino acids, and 5% fetal calf serum (Gibco-BRL, Gaithersburg, MD.) In a 5% CO<sub>2</sub> incubator at 37°C. All cell media was obtained from the MSKCC Media Preparation Facility. Routine chemical reagents were cf the highest grade possible and were obtained from Sigma Chemical Company (St. Louis, MO).

Patient Blood Specimens. All blood specimens used in this study were from patients seen in the outpatient 25 offices of urologists on staff at MSKCQ. Two anticoagulated tubes per patient were obtained at the time of their regularly scheduled blood draws. Specimens were obtained with informed consent of each patient , as per a protocol approved by the MSKCC Institutional Review Board. Samples were promptly prought to the laboratory for immediate processing. Seventy-seven specimens from patients with prostate cancer were randomly selected and delivered to the laboratory. "blinded" along with samples from negative controls for processing. These included 24 patients with stage 1 3.5 disease (3 with  $D_0$ , 3 with  $D^{\dagger}$ , 11 with  $D^{\dagger}$ , and 7 with  $\mathbb{D}^3$ ), 31 patients who had previously undergone radical

15

20

25

31

3.5

prostatectomy and had undetectable postoperative serum PSA levels (18 with pT2 lesions, 11 with pT3, and 2 pT4), 2 patients with locally recurrent disease following radical prostatectomy, 4 patients who had received either external beam radiation therapy or interstitial 1125 implants, 10 patients with untreated clinical stage T1-T2 disease, and 6 patients with clinical stage T3 disease on anti-androgen therapy. The forty blood specimens used as negative controls were from 10 health males, 9 males with biopsy-proven EPH and elevated serum PSA levels, 7 healthy females, 4 male patients with renal cell carcinoma, 2 patients with prostatic intraepithelial neoplasia (PIN), 2 patients with transitional cell carcinoma of the bladder and a pathologically normal prostate, 1 patient acute prostatitis, 1 patient with promyelocytic leukemia, 1 patient with testicular cancer, 1 female patient with renal cell carcinoma, 1 patient with lung cancer, and 1 patient with a cyst of the testicle.

Blood Sample Processing/RNA Extraction. 4 ml of whole anticoaqulated venous blood was mixed with 3 ml of ice cold PBS and then carefully layered atop 8 ml of Ficoll (Pharmacia, Uppsala, Sweden) in a 14-ml polystyrene Tubes were centrifuged at 200 x g for 30 min. at The buffy coat layer (approx. 1 ml.) was carefully removed and rediluted to 50 ml with ice cold FBS in a 50 ml polypropylene tube. This tube was then centrifuged at 2000 x g for 30 min. at 4°C. The supernatant was carefully decanted and the pellot was allowed to drip dry. One ml of RNazol B was then added to the pellet and total RNA was isolated as permanufacturers directions (Cinna/Biotecx, Houston, TX. RNA concentrations and purity were determined by UV spectroscopy on a Beckman DU 640 spectrophotometer and by del analysis.

3 %

3.5

Determination of PCR Sensitivity. ENA was isolated from LNCaP cells and from mixtures of LNCaP and MCF-T cells at fixed ratios i.e. 1:100, 1:1,000, etc. using ENAzol B. Nested PCR was then performed as described below with both PSA and PSM primers in order to determine the limit of detection for the assay. LNCaP:MCF-7 '1:100,000 cDNA was diluted with distilled water to obtain concentrations of 1:1,000,000. The human breast cancer cell line MCF-7 was chosen because they had previously been tested by us and shown not to express either PSM nor PSA by both immunohistochemistry and conventional and nested PCR.

Polymerase Chain Reaction. The PSA cuter primer sequences are nucleotides 494-513 (sense) in exon 4 and nucleotides 960-979 (anti-sense) in exon 5 of the PSA cDNA. These primers yield a 486 bp PCR product from PSA CDNA that can be distinguished from a product synthesized from possible contaminating genomic DNA.

PSA-494 5'-TAC CCA CTG CAT CAG GAA CA-3'
PSA-960 5'-CCT TGA AGC ACA CCA TTA CA-3'

The PSA inner upstream primer begins at nucleotide 559 and the downstream primer at nucleotide 894 to yield a 355 bp PCE product.

PSA-559 5'-ACA CAG GCC AGG TAT TTC AG-3' PSA-894 5'-GTC CAG CGT CCA GCA CAC AG-3'

All primers were synthesized by the MSKCT Microchemistry Core Facility.  $5\mu g$  of total RNA was reverse-transcribed into oDNA using random hexamer primers (Gibco-BRL) and Superscript II reverse transcriptase (Gibco-BRL) according to the manufacturers recommendations.  $1\mu l$  of this CDNA served as the starting template for the outer primer PCF reaction. The  $20\mu l$  PCR mix included: C.EU Tag polymerase (Promega Promega reaction buffer, 1.5mM MGCl, 2024M dNTPs, and 1.24M of each primer. This mix

was then transferred to a Perkin Elmer 9600 DNA thermal cycler and incubated for 25 cycles. The PCR profile was as follows:  $94^{\circ}\text{C} \times 15 \text{ sec.}$ ,  $60^{\circ}\text{C} \times 15 \text{ sec.}$ , and  $72^{\circ}\text{C}$  for 45 sec. After 25 cycles, samples were placed on ice, and  $1\mu\text{l}$  of this reaction mix served as the template for another 25 cycles using the inner primers. The first set of tubes were returned to the thermal cycler for 25 additional cycles. The PSM outer upstream primer sequences are nucleotides 1368-1390 and the downstream primers are nucleotides 1995-2015, yielding a 67 bp PCR product.

PSM-1368 5'-CAG ATA TGT CAT TCT GGG AGG TC-3' PSM-2015 5'-AAC ACC ATC CCT CGA ACC-3'

The PSM inner upstream primer span nucleotides 1689-1713 and the downstream primer span nucleotides 1899-1923, yielding a 234 bp PCR product.

> PSM-1689 5'-CCT AAC AAA AGA GCT GAA AAG CCC-3' PSM-1923 5'-ACT GTG ATA CAG TGG ATA GCC GCT-3'

 $2\mu l$  of cDNA was used as the starting DNA template in 20 the PCR assay. The  $50\mu l$  PCR mix included: 1U Tag polymerase (Boehringer Mannheim), 250 µM cNTPs, 10 mM ßmercaptoethanol, 2mM MgCl<sub>2</sub>, and  $5\mu$ l of a 10x buffer mix containing: 166mM NH,SO,, 670mM Tris pH 8.8, and 2mg/ml of acetylated BSA. PCR was carried out in a Perkin 25 Elmer 480 DNA thermal cycler with the following parameters: 94°C x 4 minutes for 1 cycle, 94°C x 30 sec.,  $58^{\circ}$ C x 1 minute, and  $72^{\circ}$ C x 1 minute for 25 cycles, followed by 72°C x 10 minutes. Samples were then ided and  $2.5\mu l$  of this reaction mix was used as the template for another 25 cycles with a new reaction mix containing the inner PSM primers. cDNA quality was verified by performing control reactions using primers. derived from the  $\mbox{$\mathbb{S}$-2-microglobulin}$  gene sequence  $^{10}$  a ubiquitous housekeeping gene. These primers span exons 3 E. 2-4 and generate a 620 bp PCR product. The sequences for these primers are:

-121-

ß-2 (exon 2) 5'-AGC AGA GAA TGG AAA GTC AAA-3' ß-2 (exon 4) 5'-TGT TGA TGT TGG ATA AGA GAA-3' The entire PSA mix and 7-10µl of each PSM reaction mix were run on 1.5-2% agarose gels, stained with ethidium bromide and photographed in an Eage Eye Wides Imaging

System (Statagene, Torrey Pines, CA. . Assays were repeated at least twice to verify results.

Cloning and Sequencing of PCR Products. PCR products 10 were cloned into the pCR II plasmid vector using the TA cloning system (Invitrogen). These plasmids were transformed into competent E. coli cells using standard methods 11 and plasmid DNA was isolated using Magic Minipreps (Promega) and screened by restriction 15 analysis. Double-stranded TA clones were then sequenced by the dideoxy method  $^{12}$  using  $^{38}S-cCTP$  (NEN) and Sequenase (U.S. Biochemical). Sequencing products were then analyzed on 6% polyacrilamide/7M urea gels, which were fixed, dried, and autoradiographed as 20 described.

Southern Analysis. PCR products were transferred from ethidium-stained agarose gels to Nytran nylon membranes (Schletcher and Schuell) by pressure blotting with a Posi-blotter (Stratagene) according. to manufacturer's instructions. DNA was cross-linked to the membrane using a UV Stratalinker (Stratagene). Blots were pre-hybridized at 65°C for 2 hours and subsequently hybridized with denatured 32F-labeled. random-primed  $^{13}$  cDNA probes (either PSA or PSM). Blots were washed twice in 1x SSC/0.5% SDS at 42°C and twice in 0.1x SSC/0.1% SDS at 50°C for 20 minutes each. Membranes were air-dried and autoradiographed for 1 3 . hours at room temperature with Hyperfilm MP (Amersham).

25

1. 5

10

15

20

#### Results

PSA and PSM Nested PCR Assays: The application of nested PCR increased the level of detection from an average of 1:10,000 using outer primers alone, to better than 1:1,000,000. Dilution curves demonstrating this added sensitivity are shown for PSA and PSM-PCR in Figures 1 and 2 respectively. Figure 1 shows that the 486 bp product of the PSA outer primer set is clearly detectable with ethidium staining to dilutions, whereas the PSA inner primer 355 bp product is clearly detectable in all dilutions shown. Figure 2 the PSM outer primer 647 bp product is also clearly detectable in dilutions to only 1:10,000 with conventional PCR, in contrast to the PSM inner nested PCR 234 bp product which is detected in dilutions as low as 1:1,000,000. Southern blotting was performed on all controls and most of the patient samples in order to confirm specificity. Southern blots of the respective dilution curves confirmed the primer specificities but did not reveal any significantly increased sensitivity.

PCR in Negative Controls: Nested PSA and PSM PCR was performed on 40 samples from patients and volunteers as 25 described in the methods and materials section. Figure 48 reveals results from 4 representative Legative control specimens, in addition to a positive control. Each specimen in the study was also assayed with the B-2-microglobulin control, as shown in the figure, in 3.0 order to verify RNA integrity. Negative results were obtained on 39 of these samples using the PSA primers, however PSM nested PCR yielded 4 positive results. Two of these "false positives" represented patients with elevated serum PSA values and an enlarged prostate who 35 underwent a transrectal prostate biopsy revealing stromal and fibromuscular hyperplasia. In foth of

these patients the serum FSA level continued to rise and a repeat prostate biopsy performed at a later date revealed prostate cancer. One patient who presented to the clinic with a testicular cyst was noted to have a positive PSM nested PCR result which has been unable to explain. Unfortunately, this patient never returned for follow up, and thus have not been able to obtain another blood sample to repeat this assay. Positive result were obtained with both PSA and PSM primers in a 61 year old male patient with renal cell carsinoma. This patient has a normal serum PSA level and a normal digital rectal examination. Overall, if the two patients were excluded in whom a positive PCR, but no other clinical test, accurately predicted the presence of prostate cancer, 36/38 (94.7%) of the negative controls were negative with PSM primers, and 39/40 (97.5% were negative using PSA primers.

10

15

Patient Samples: In a "blinded" fashion, in which the 20 laboratory staff were unaware of the nature of each specimen, 117 samples from 77 patients mixed randomly with 40 negative controls were assayed. The patient samples represented a diverse and heterogeneous group as described earlier. Several representative patient 25 samples are displayed in Figure 49, corresponding to positive results from patients with both localized and disseminated disease. Patients 4 and 5, both with stage D prostate cancer exhibit positive results with both the outer and inner primer pairs, indicating a 3 1 large dirculating tumbs deli burden, as compared to the other samples. Although the PSM and PSA primers yielded similar sensitivities in LNCaP dilution curves previously shown, PSM primers detected micrometastases in 61.3% of the patient samples, whereas PSA primers only detected 9.1%. In patients 3.5 with documented metastatic prostate cancer istages  $\mathbb{D}_{c}$  -D<sub>3</sub> receiving anti-androgen treatment, PSM primers

10

25

3.0

detected micrometastases in 16/24 (66.7%), whereas PSA primers detected circulating cells in only 6/24 '25%. In the study 6/7 patients with hormone-refractory prostate cancer (stage D<sub>3</sub>) were positive. In the study, PSA primers revealed micrometastatic cells in only 1/15 (6.7%) patients with either pT3 or pT4 (locally-advanced) prostate cancer following radical prostatectomy. PSM primers detected circulating cells in 9/15 (60%) of these patients. Interestingly, circulating cells 13/18 (72.2%) patients with pT2 (organ-confined) prostate cancer following radical prostatectomy using PSM primers was detected. None of these patient samples were positive by PSA-PCR.

Improved and more sensitive method for the detection of minimal, occult micrometastic disease have been reported for a number of malignancies by use of immunohistochemical methods (14), as well as the polymerase chain reaction (3, 4, 5). The application of PCR to detect occult hematogenous micrometastases in prostate cancer was first described by Moreno, et al. (2) using conventional PCR with PSA-derived primers.

When human prostate tumors and prostate cancer cells in-vitro were studied by immunohistochemistry and mRNA analysis, PSM appeared to be highly expressed in anaplastic cells, normone-refractory cells, and bony metastases (22, 23, 24), in contrast to PSA. If cells capable of hematogenous micrometastasis represent the more aggressive and poorly-differentiated cells, they may express a higher level of PSM per cell as compared to PSA, enhancing their detectibility by RT-PCR.

Nested RT-PCR assays are both sensitive and specific.

Results have been reliably reproduced on repeated occasions. Long term testing of both cDNA and RNA stability is presently underway. Both assays are

WO 96/26272 PCT/US96/02424

-125-

capable of detecting one prostatic cell in at least one million non-prostatic cells of similar size. This confirms the validity of the comparison of PSM vs. PSA primers. Similar levels of PSM expression in both human prostatic cancer cells in-vivo and LNCaP cells in-vitro resulted. The specificity of the PSM-PCR assay was supported by the finding that two "negative control" patients with positive PSM-PCR results were both subsequently found to have prostate cancer. This suggests an exciting potential application for this technique for use in cancer screening. In contrast to recently published data (18), significant ability for FSA primers to accurately detect micrometastatic cells in patients with pathologically with pathologically organ-confined prostate cancer, despite the sensitivity of the assay failed to result. Rather a surprisingly high percentage of patients with localized prostate cancer that harbor occult circulating prostate cells following "curative" radical prostatectomy results which suggests that micrometastasis is an early event in prostate cancer.

10

15

20

25

3.0

The application of this powerful new modality to potentially stage and/or follow the response to therapy in patients with prostate cancer certainly merits further investigation. In comparison to molecular detection of occult tumor cells, present clinical modalities for the detection of prostate cancer spread appear inadequate.

10

20

3.5

#### References for Example 10

- 1. Boring, C.C., Squires, T.S., Tong, T., and Montgomery, S. Cancer Statistics, 1994. CA., 44: 7-26, 1994.
- Moreno, J.G., Croce, C.M., Fischer, R., Monne, M., Vihko, P., Mulholland, S.G., and Gomella, L.G., Detection of hematogenous micrometastasis in patients with prostate cancer. Cancer Res., 52:6110-6112, 1992.
- 3. Wu, A., Ben-Ezra, J., and Colombero, A.:
  Detection of micrometastasis in breast cancer by
  the polymerase chain reaction. Lab. Ivest., 62:
  109A, 1990.
  - 4. Fey, M.F., Kulozik, A.E., and Hansen-Hagge, T.E.:
    The polymerase chain reactipn: A new tool for
    the detection of minimal residual disease in
    hematological malignacies. Eur. J. Cancer, 27:
    89-94, 1991.
- 5. Miller, W.H., Jr., Levine, K., DeBlasio, A., Frankel, S.R., Dmitrovsky, E., and Warrell, R.P., Jr. Detection of mininal residual disease in Acute Promyelocytic Leukėmia by a reverse transciption polymerase chain reaction assay for th PML/RAR-α fusion mRNA. Blood, 82: 1689-1694, 1993.
  - 6. Lundwall, A., and Lilja, H: Molecular cloning of a human prostate specific antigen cDNA. FEBS. Letters, 214: 317, 1987.
  - 7. Isaeli, R.S., Powell, C.T., Fair, W.R., and Heston, W.D.W.: Molecular cloning of a

complementary DNA encoding a prostate-specific membran antigen. Cancer Res., 53: 227-230, 1993.

- Horoszewicz, J.S., Leong, S.S., Kawinski, E., Karr, J.P., Rosenthal, H., Thu, T.M., Mirand, E.A., and Murphy, G.P.: LNCaP model of human prostactic carcinoma. Cancer Res., 43: 1809-1818, 1983.
- 5. Soule, H.D., Vazquez, J., Long, A., Albert, S., and Brennan, M.: A human cell line from a pleural effusion derived from a breast carcinoma.
  J. Natl. Can. Inst., 51: 1409-1416, 1973.
- 10. Gussow, D., Rein, R., Ginjaar, I., Hochstenbach, F., Seemann, G., Kottman, A., Ploegh, H.L. The human ß-2-Microglobulin gene. Primary structure and definition of the transcriptional unit. J. of Immunol. 139:3132-3138, 1987.
- 11. Hanahan, D.: Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol., 166:557-580, 1983.
- 25 12. Sanger, F., Nicklen, S., and Coulson, A.R.: DNA sequncing with chain-terminating inhibitors.

  Proc. Natl. Acad. Sci. USA, 74:5463-5467, 1977.
- 13. Feinberg, A.P., and Vogelstein, B. A technique for radiolabeling DNA restriction endomuclease fragments to high specific activity. Anal. Biochem., 132:6-13, 1983.
- 14. Oberneder, R., Riesenberg, R., Kriegmair, M., Bitzer, U., Klammert, R., Schneede, P., Hofstetter, A., Riethmuller, G., and Pantel, K. Immunocytochemcical detection and phenytypic

characterization of micrometastatic tumour cells in bone marrow of patients with prostate cancer. Urol. Res. 22:3-8, 1994.

- Israeli, R.S., Miller, W.H., Jr., Su, S.L., Samadi, D.S., Powell, C.T., Heston, W.D.W., Wise, G.J., and Fair, W.R. Sensitive detection of prostatic hematogenous micrometastases using prostate-specific antigen (PSA) and prostate-specific membran antigen (PSM) derived primers in the polymerase chain reaction. J. Urol. 151:373A, 1994.
- 16. Israeli, R.S., Miller, W.H., Jr., Su, S.L, Samadi, D.S., Powell, C.T. Heston, W.D.W., Wise, G.J., and Fair, W.S. Sensitive detection of prostatic hematogenous micrometastases using PsA and PSM-derived primers in the polymerase chain reaction. In press J. Urology.
- 17. Vessella, R., Stray, J., Arman, E., Ellis, W., and Lange, P. Reverse transcription polymerase chain reaction (RT-PCR) detects metastatic prostate cancer cells in lymph nodes, blood and potentially bone marrow using .PSA-mRNA as template, J. Urol. 151:412A, 1994.
- 18. Katz, A.E., Olsson, C.A., Raffo, A.J., Cama, C., Perlman, H., Seaman, E., O'Toole, K.M., McMahon, D., Benson, M., and Buttyan, R., Molecular staging of prostate cancer with the use of an enhanced reverse transcriptase-PCR assay. Urology 43:765-775, 1994.
- 35 19. Wood, D.P., Jr., Banks, E.R., Humphries, S., McRoberts, J.W., and Rangenkar, V.M.

  Identification of micrometastases in paitents

3.5

with prostate cancer. J. Urol. 151:303A, 1994.

- Deguchi, T., Doi, T., Ehara, H., Ito, S., Takahashi, Y., Nishino, Y., Fujihiro, S., Kawamura, T., Komeda, H., Horie, M., Kaji, H., Shimokawa, K., Tanaka, T., and Kawada, Y. Detection of micrometastic prostate cancer cells in lymph nodes by reverse-transcriptase polymerase chain reaction. Cancer Res. 53:5350-4, 1993.
- 21. Ghossein, R., Scher, H., Gerald, W., Hoffman, A., Kelley, W., Curely, T., Libertz, C., and Rosai, J. Detection of cirulating tumor cells in peripheral blood of patients with advanced prostatic carcinoma. Proc. Amer. Soc. of Clin. Oncol., 13:237, 1994.
- 22. Israeli, R.S., Powel, C.T., Corr, J.G., Fair,
  W.R., and Heston, W.D.W.: Expression of the
  prostate-specific membrane antigen. Cancer Res.,
  54:1807-1811, 1994.
- 23. Axelrod, H.R., Gilman, S.C., D'Aleo, C.H.
  Fetrylak, D., Reuter, V., Gulfo, J.V., Saad A.,
  Cordon-Cardo, C., and Scher, H.I. Preclinical
  results and human immunohistochemical strudies
  with 90Y-CYT-356: a new prostatic cancer
  therapeutic agent. J.Urol., 147:361A, 1992.
  - 24. Wright, G.L., Jr., Haley, C., Beckett, M.L., and Schellhammer, P.F. Expression of the prostate biomaker 7E11-C5 in primary and metastic prostate-carcinoma. Proc. Amer. Ass. for Can. Res. 35:233, 1994.
    - 25. Liotta, L.A., Kleinerman, J., and Saidel, S.M.:



-130-

Quantitative relationships of intravascular tumor cells, tumors vessels, and pulmonary metastases following tumore implantation. Cancer Res., 34:997-1003, 1974.

5

#### EXAMPLE 11:

### CHROMOSOMAL LOCALIZATION OF COSMID CLONES 194 AND 683 BY FLUORESCENCE IN-SITU HYBRIDIZATION:

PSM was initially mapped as being located on chromosome 11p11.2-p13 (Figures 51-54). Further information from the cDNA in-situ hybridizations experiments demonstrated as much hybridization on the q as p arms. Much larger fragments of genomic DNA was obtained as cosmids and two of these of about 60 kilobases each one going 3' and the other 5' both demonstrated binding to chromosome 11 p and q under low stringency. However under higher stringency conditions only the binding at 11q14-q21 remained. This result suggests that there is another gene on 11p that is very similar to PSM because it is so strongly binding to nearly 120 kilobases of genomic DNA (Figure 50).

Purified DNA from cosmid clones 194 and 683 was

20

5

10

15

labelled with biotin dUTP by nick translation. Labelled probes were combined with sheared human DNA and independently hybridized to normal metaphase 25 chromosomes derived from PHA stimulated peripheral blood lymphocytes in a solution containing formamide, 10% dectran sulfate, and 2XSSC. Specific hybridization signals were detected by incubating the hybridized slides in fluoresein conjugated avidin. 2 Following signal detection the slides were counterstained with propidium iodide and analyzed. These first experiments resulted in the specific labelling of a group C chromosome on both the long andshort arms. This chromosome was believed to be chromosome 11 on the basis of its size and morphology. 3.5 A second set of experiments were performed in which a chromosome 11 centromere specific probe was

10

3.5

cohybridized with the cosmid clones. These experiments were carried out in 60% formamide in an attempt to eliminate the cross reactive signal which was observed when low stringency hybridizations were done. These experiments resulted in the specific labelling of the centromere and the long arm of chromosome 11. Measurements of 10 specifically labelled chromosomes 11 demonstrated that the cosmid clones are located at a position which is 44% of the distance from the centromere to the telomere of chromosome arm 11q, an area that corresponds to band 14q. A total of 160 metaphase cells were examined with 153 cells exhibiting specific labelling.

Cloning of the 5' upstream and 3' downstream regions of the PSM genomic DNA. A bacteriophage P1 library of human fibroblast genomic DNA (Genomic Systems, St. Louis, MI) was screened using the PCR method of Pierce et. al. Primer pairs located at either the 5' or 3' termini of PSM cDNA were used. Positive cosmid clones were digested with restriction enzymes and confirmed by Southern analysis using probes which were constructed from either the 5' or 3' ends of PSM cDNA. Positive clone p683 contains the 5' region of PSM cDNA and about 60 kb upstream region. Clone -194 contains the 3' terminal of the PSM cDNA and about 60 kb downstream.

#### EXAMPLE 12:

#### 30 PEPTIDASE ENZYMATIC ACTIVITY

PSM is a type two membrane protein. Most type two membrane proteins are binding proteins, transport, proteins or peptidases. PSM appears to have peptidase activity. When examining LNCaP cells with a substrate N-acetyl-aspartyl-14C-glutamic acid, NAAG, glutamic acid was released, thus acting as a carboxypeptidase. In

witro translated PSM message also had this peptidase activity...

The result is that seminal plasma is rich in its content of glutamic acid, and are able to design 5 inhibitors to enhance the activity of the non degraded normal substrate if its increased level will have a biologic desired activity. Also biologic activity can be measured to see how it correlates wit the level of message. Tissue may be examined for activity directly 10 rather than indirectly using in-situ analysis or immunohistochemical probes. Because there is another gene highly similar on the other arm of chromosome 11 when isolated the expressed cloned genes can be used to determine what are the substrate differences and use 15 those substrates for identification of PSM related activity, say in circulating cells when looking for metastases.

#### 20 **EXAMPLE 13:**

## IONOTROPICGLUTAMATE RECEPTOR DISTRIBUTION IN PROSTATE TISSUE

#### 25 Introduction:

Excitatory neurotransmission in the central nervous system (CNS) is mediated predominantly by glutamate receptors. Two types of glutamate receptors have been identified in human CNS: metabotropic receptors, which are coupled to second-messenger systems, and ionotropic receptors, which serve as ligand-gated ion channels. The presence of ionotropic glutamate receptors in human prostate tissue was investigated.

#### 35 Methods:

3.0

Detection of glutamate receptor expression was performed using anti-GluR2/3 and anti-biotim

15

20

25

immunohistochemical technique in paraffin-embedded prostate tissues. PSM antigen neurocarboxypeptidase that acts to release glutamate. In the CNS glutamate acts as a neurotransmitter by acting on glutaminergic ion channels and increases the flow of ions like calcium ions. One way the glutamate signal is transduced into cell activity is activation of nitric oxide synthase, and nitric oxide synthase has recently been found to be present in human prostatic tissue. NO is a major signalling mechanism and is involved in control of cell growth and death, in response to inflammation, in smooth muscle cell contraction, etc,. In the prostate much of the stroma is smooth muscle. It was discovered that the prostate is rich in glutaminergic receptors and have begun to define this relationship. Stromal abnormalities are key feature of BPH. Stromal epithelial interactions are of importance in bothe BPH and CaP. The other glutaminergic receptors through G proteins to change the metabolism of the cell.

#### Results:

Anti-GluR2/3 immunoreactivity was unique to prostatic stroma and was absent in the prostatic epithelial compartment. Strong anti-GluR4 immunoreactivity was observed in basal cells of prostatic acini.

#### Discussion:

The differential distribution of ionotropic glutamate receptor subtypes between the stromal and epithelial compartments of the prostate has not been previously described. Prostate-specific membrane antigen. (PSMA) has an analogous prostatic distribution, with expression restricted to the epithelial compartment.

PSM antigen is a neurocarboxypeptidase that acts to

15

20

25

release glutamate from NAAG 1, also a potential nerotransmitter. In the CNS glutamate acts as a neurotransmitter by acting on glutamineraic ion channels and increases the flow of ions like calcium ions. One way the glutamate signal is transduced into cell activity is the activation of nitric oxide synthase, and nitric oxide synthase has recently been found to be present in human prostatic tissue. NO is a major signaling mechanism and is involved in control of cell growth and death, in response to inflammation. in smooth muscle cell contraction, etc,. prostate much of the stroma is smooth muscle. prostate is rich in glutaminergic receptors. Stromal abnormalities are the key feature of BPH. Stromal epithelial interactions are of importance in both BPH and CaP. The other glutaminergic receptors through G proteins to change the metabolism of the cell. Glutamate can be produced in the cerebral cortex through the carboxypeptidase activity of the prostatespecific membrane antigen (PSMA). In this location, PSMA cleaves glutamate from acetyl-aspartyl-glutamate. Taken together, these observations suggest a function for PSMA in the human prostate; glutamate may be an autocrine and/or paracrine signalling molecule, possibly mediating epithelial-stromal .interactions. Ionotropic glutamate receptors display a unique compartmental distribution in the human prostate.

The carboxypeptidase like activity and one substrate is the dipeptide N-acetyl-aspartyl glutamic acid, NAAG which is one of the best substrates found to date to act as a neurotransmitter in the central nervous system and its abnormal function may be associated with-neurotoxic disorder such as epilepsy, ALS, alzheimers etc. PSM carboxypeptidase may serve to process neuropeptide transmitters in the prostate. Neuropeptide transmitters are associated with the

10

neuroendocrine cells of the prostate and neuroendocrine cells and are thought to play a role in prostatic tumor progression. Interestingly PSM antigen's expression is upregulated in cancer. Peptides known to act as prostatic growth factors such as TGF-a and bFGF, up regulate the expression of the antigen. TNF on the other hand downregulate PSM. TGF and FGF act through the mitogen activated signaling pathway, while TNF acts through the stress activated protein kinase pathway. Thus modulation of PSM expression is useful for enhancing therapy.

#### EXAMPLE 14:

## 15 IDENTIFICATION OF A MEMBRANE-BOUND PTEROYLPOLYGAMMA-GLUTAMYL CARBOXYPEPTIDASE (FOLATE HYDROLASE) THAT IS EXPRESSED IN HUMAN PROSTATIC CARCINOMA

PSM may have activities both as a folate hydrolase and 20 a carboxyneuropeptidase. For the cytotoxic drug methotrexate to be a tumor toxin it has to get into the cell and be polygammaglutamated which to be active, because polyglutamated forms serve as the enzyme substrates and because polyglutamated forms or toxins 25 are also retained by the cell. Folate hydrolase is a competing reaction and deglutamates methotrexate which then can diffuse back out of the cell. Cells that overexpose folate hydrolase activity are resistant to methotrexate. Prostate cancer has always 3 Û absolutely refractory to methotrexate therapy and this may explain why, since the prostate and prostate cancer has a lot of folate hydolase activity. However, based on this activity, prodrugs may be generated which. would be activate at the site of the tumor such as N-35 phosphonoacetyl-l-aspartate-glutamate. PALglu is an inhibitor of the enzyme activity with NAAG as a substrate.

WO 96/26272 PCT/US96/02424

-137-

Prostate specific membrane antigen was immuno precipitated from the prostate cancer cell line LNCap and demonstrated it to be rich in foliate hydolase activity, with gammaglutamated foliate or polyglutamated methotrexate being much more potent inhibitors of the neuropeptidase activity than was quisqualate, which was the most potent inhibitor reported up to this time and consistent with the notion that polyglutamated foliates may be the preferred substrate.

**1** 0

15

20

25

3.0

3.5

5

Penta-gammaglutamyl-folate is a very potent inhibitor of activity (inhibition of the activity of the enzyme is with 0.5um Ki.) As penta-gammaglutamyl-folate may also be a substrate and as folates have to depolygammaglutamated in order to be transported into the cell, this suggest that this enzyme may also play a role in folate metabolism. Folate is necessary for the support of cell function and growth and thus this enzyme may serve to modulate folate access to the prostate and prostate tumor. The other area where PSM is expressed is in the small intestine. It turns out that a key enzyme of the small intestine that is involved in folate uptake acts as a carboxypeptidase in sequentially proteclytically removing the terminal gammaglutaminyl group from folate. In the bone there is a high level of unusual gammaglutamate modified proteins in which the gamma glutamyl group is further carboxylated to produce gammacarboxyglutamare, or GLA. One such protein is ostecnectin.

Using capillary electrophoresisis ptercyl poly-gamma-glutamate car: pxyp : tidase (hydrolase, activity was, investigated in mem: rane preparations from androgen-sensitive human progratic carcinoma cells (LNCaP). The enzyme immunologically cross-reacts with a derivative of an anti-prostate monoclonal antibody (7E11-C5 that

recognizes prostate specific membrane (PSM) antigen. The PSM enzyme hydrolyzes gamma-glutamyl linkages and is an exopeptidase as it liberates progressively glutamates from methotrexate triuglutamate (MTXGlu,) and folate pentaglutamate (Pte Glu3) with accumulation of MTX and Pte Glu respectively. The semi-purified membrane-bound enzyme has a broad activity from pH 2 to 10 and is maximally active at pH4.0. Enzymatic activity was weakly inhibited by dithfothreitol (≥0.2 mM) but by reduced glutathione, homocysteine, or hydroxymercuribenzoate (0.05-0.5 mM). By contrast to LNCaP cell membranes, membranes isolated from androgeninsensitive human prostate (TSU-Prl, Duke-145, PC-3) and estrogen-sensitive mammary adenocarcinoma (MCF-7) cells do not exhibit comparable hydrolase activity nor do they react with 7E11-C5. Thus, a folate hydrolase identified in LNCap cells that exopeptidase activity and is strongly expressed by these cells.

20

25

30

35

10

15

PALA-Glutamate 3 was tested for efficacy of the prodrug strategy by preparing N-acetylaspartylglutamate, NAAG 1 (Figure 59). NAAG was synthesized from commercially available gamma-benzylaspartate which was acetylated with acetic anhydride in pyridine to afford N-acetylgamma-benzyl aspartate in nearly quantitative yield. The latter was activated as its pentafluorophenyl ester by treatment with pentafluorophenyltrifluoroacetate in pyridine at 0 deg.C for an hour. This activated ester constitutes the central piece in the preparation of compounds 1 and 4 (Figure 60). When 6 is reacted with epsilon-benzyl-L-glutamate in the presence of HOAT(1hydroxy-7-azabenzotriazole) in THF - DMF. (tetrahydrofuran, N,N- dimethylformamide) at reflux for an overnight period and after removal of the benzyl protecting groups by hydrogenolysis (H2, 30 psi, 10% Pd/C in ethylacetate) gave a product which

WO 96/26272 PCT/US96/02424

identical in all respects to commercially available NAAG (Sigma).

FALA-Glutamate 3 and analog 5, was synthesized in a similar manner with the addition to the introduction of a protected phosphonoacetate moiety instead of a simple acetate. It is compatible with the function of diethylphosphonoacetic acid which allows the removal of the ethyl groups under relatively mild conditions.

10

15

20

25

3.0

35

5

Commercially available dietnylphosphonoacetic acid was treated with perfluorophenyl acetate in pyridine at 0 deq.C to room temperature for an hour to afford the corresponding pentafluorophenyl ester in quantitative yield after short path column chromatography. This was then reacted with gammabenzylaspartate and HOAT in tetrahydrofuran for half an hour at reflux temperature to give protected PALA 7 (Nphosphonoacetylaspartate) in 90% yield after flash column chromatography. The free acid was then activated as its pentafluorophenyl ester 8, then it was reacted with delta-benzyl-L-glutamate and HOAT in a mixture of THF-DMF (9:1, v/v) for 12 hours at reflux to give fully protected PALA-Glutamate 9 in 66% yield after column chromatography. Sequential removal of the ethyl groups followed by the debenzylation was accomplished for a one step deprotection of both the benzyl and ethyl groups. Hence protected PALA-Glutamate was heated up to reflux in neat trimethylsilylchloride for an overnight period. resulting bistrimethylsilylphosphonate ester 10 was submitted without purification to hydrogenolysis 'H, 36 psi, 10% Pd/C, ethylacetate). The desired material 3 was isolated after purification by reverse phase column chromatography and ion exchange resin.

Analogs 4 and 5 were synthesized by preparation of

phosphonoglutamate 14 from the alpha-carboxyl-protected glutamate.

-140-

Commercially available alpha-benzyl-N-Boc-L-glutamate 11 was treated at refluxing THF with neat boranedimethylsulfide complex to afford the corresponding alcohol in 90% yield. This was transformed into bromide 12 by the usual procedure  $(Pph_3, CBr_4)$ .

10

15

The Michaelis-Arbuzov reaction using triethylphosphite to give the corresponding diethylphosphonate 13 which would be deprotected at the nitrogen with trifluoroacetic acid to give free amine 14. The latter would be condensed separately with either pentafluorophenylesters 6 or 8 to give 16 and 15 respectively, under conditions similar to those described for 3. 15 and 16 would be deprotected in the same manner as for 3 to yield desired analogs 4 and 5.

20

An inhibitor of the metabolism of purines and pyrimidine like DON (6-diazo-5-oxo norleucine) or its aspartate-like 17, and glutamate-like 18 analogs would be added to the series of substrates.

25

ٿ د

Analog 20 is transformed into compound 17 by treatment with oxalyl chloride followed by diazomethane and deprotection under known conditions to afford the desired analogs. In addition, azotomycin is active only after in vivo conversion to DON which will be released after action of PSM on analogs 17, 18, and 19.

In addition, most if not all chemotherapies rely on one hypothesis; fast growing cells possess a far higher appetite for nutrients than normal cells. Hence, they uptake most of the chemotherapeutic drugs in their preximity. This is why chemotherapy is associated with

WO 96/26272 PCT/US96/02424

5

25

35

-141-

serious secondary effects (weakening of the immune system, loss of hair, ...) that sometimes put the patient's life in danger. A selective and effective drug that cures where it should without damaging what it shouldn't damage is embodied in representative structures 21 and 22.

Representative compounds, 21 and 22, were designed based on some of the specific effects and properties of 10 PSM, and the unique features of some newly discovered cytotoxic molecules with now known mode of action. The latter, referred to commonly as enedignes, like dynemycin A 23 and cr its active analogs. The recent isolation of new natural products like Dynemycin A 23, 15 has generated a tremendous and rapidly growing interest in the medical and chemical sciences. They have displayed cytotoxicities to many cancer cell lines at the sub-nanomolar level. One problem is they are very toxic, unstable, and non-selective. Although they have been demonstrated, in vitro, to exert their activity 20 through DNA damage by a radical mechanism as described below, their high level of toxicity might imply that they should be able to equally damage anything in their path, from proteins to enzymes, ...etc.

These molecules possess unusual structural features that provide them with exceptional reactivities. Dynemycin A 23 is relatively stable until the anthraquinone moiety is bioreduced into hydroanthraquinone 24. This triggers a chain of events by which a diradical species 25 is generated as a result of a Bergman cycloaromatization. Ciradical species 25 is the ultimate damaging edge of dynemycin.

A. It subtracts 2(two) protons from any neighboring molecule or molecules(ie. DNA) producing radicals therein. These radicals in turn combine with molecular oxygen to give hydroperoxide intermediates that, in the

5

20

case of DNA, lead to single and double strand incision, and consequent cell death. Another interesting feature was provided by the extensive work of many organic chemists who not only achieved the total synthesis of (+)-dynemycin A 23 and other enedignes, but also designed and efficiently prepared simpler yet as active analogs like 26.

Enediyne 26 is also triggerable and acts by virtue of the same mechanism as for 23. This aspect is very relevant to the present proposed study in that 27 (a very close analog of 26) is connected to NAAG such that the NAAG-27 molecule, 21, would be inert anywhere in the body (blood, organs, normal prostate cells, ...etc.) except in the vicinity of prostate cancer, and metastatic cells. In this connection NAAG plays a multiple role:

- Solubilization and transport: analogs of 26-type are hydrophobic and insoluble in aqueous media, but with a water soluble dipeptide that is indigenous to the body, substrate 21 should follow the ways by which NAAG is transported and stored in the body.
- 25 Recognition, guidance, and selectivity:

  Homologs of PSM are located in the small intestines and
  in the brain.

In the latter, a compound like 27 when attached to a multiply charged dipeptide like NAAG, has no chance of crossing the blood brain barrier. In the former case, PSM homolog concentration in the small intestines is very low compared to that of PSM in prostrate cancercells. In addition, one could enhance the selectivity of delivery of the prodrug by local injection in the prostate. Another image of this strategy could be formulated as follows. If prostate cancer were a war

WO 96/26272 PCT/US96/02424

-143-

in which one needed a "smart bomb" to minimize the damage within the peaceful surroundings of the war zone, then 21 would be that "smart bomb". NAAG would be its guidance system, PSM would be the trigger, and 27 would be the warhead.

26 and its analogs are established active molecules that portray the activity of dynemycin A. Their syntheses are described in the literature. The total synthesis of optically active 27 has been described. The synthetic scheme that for the preparation of 28 is almost the same as that of 27. However, they differ only at the position of the methoxy group which is meta to the nitrogen in the case of 28. This requires an intermediate of type 29, and this is going to be prepared by modification of the Myers' method. Compound 28 is perhaps the closest optically active analog that resembles very much 26, and since the activity of the latter is known and very high.

20

25

5

10

15

Since NAAG is optically pure, its combination with racemic material sometimes complicates purification of intermediates. In addition, to be able to modify the components of this system one at a time, optically pure intermediates of the type 21 and 22 are prepared. 27 was prepared in 17 steps starting fro commercially available material. Another interesting feature of 27 is as demonstrates in a very close analog 26, it possesses two(2) triggers as shown by the arrows.

3 ^

3.5

The oxygen and the nitrogen can both engender the Bergman cycloaromatization and hence the desired damage. The simple protection deprotection manipulation of either functionality should permit the selective positioning of NAAG at the nitrogen or at the oxygen centers. PSM should recognize the NAAG portion of 21 or 22, then it would remove the glutamic acid

5

10

moiety. This leaves 27 attached to N-acetylaspartate.

Intramolecular assisted hydrolysis of systems like N-acetylaspartyle is well documented in the literature. The aminoacid portion should facilitate the hydrolysis of such a linkage. In the event this would not work when NAAG is placed on the nitrogen, an alternative would be to attach NAAG to the oxygen giving rise to phenolic ester 22 which is per se labile and removable under milder conditions. PSM specific substrates can be designed that could activate pro-drugs at the site of prostatic tumor cells to kill those cells. PSM specific substrates may be used in treatment of benign prostatic hyperplasia.

. . . agagttgTCCCGCTAGAT

#### EXAMPLE 15:

4R. strand

35

### GENOMIC ORGANIZATION OF PSM EXON/INTRON JUNCTION SEQUENCES

5 EXON 1 Intron 1 1F. strand CGGCTTCCTCTTCGG eggetteetettegg tagggggggegeetegeggag...tatttttea 1R. strand ...ataaaaagtCCCACCAAA 15 Exon 2 Intron 2 2F. strand ACATCAAGAAGTTCT acatcaagaagttct caagtaagtccatactcgaag... 20 2R. strand ...caagtggtcATTAAAATG Exen 3 Intron 3 3F. strand 25 GAAGATGGAAATGAG gaaqatqgaaatgag gtaaaatataaataaataa... Exon 4 Intron 4 3-0 4F. strand AAGGAATGCCAGAGG aaggaatgccagagg taaaaaacacagtgcaacaaa...

-146-

Intron 5 Exon 5 5F. strand CAGAGGAAATAAGGT cagaggaaataaggt aggtaaaaattatetettttt... ...qtqttttctAGGTTAAAAATG 5 ...cacttttgaTCCAATTT 5R. strand Excn 6 Intron 6 10 6F. strand GTTACCCAGCAAATG gttacccagcaatg gtgaatgatcaatccttgaat... 6R. strand . . . aaaaaaagtCTTATACGAATA 15 Exon 7 Intron 7 7F. strand ACAGAAGCTCCTAGA 20 acagaagctcctaga gtaagtttgtaagaaaccargg... ...aaacacaggttatcTTTTTACCCA 7R. strand Exon 8 Intron 8 . 25 8F. strand AAACTTTTCTACACA aaacttttctacaca gttaagagactatataaatttta... ...aaacgtaatcaTTTCAGTTCTAC 30 8R. strand Exon 9 Intron 9 9F. strand AGCAGTGGAACCAG agcagtggaaccag gtaaaggaatcgtttgctagca... ...tttctagatAGATATGTCATTC 5

-147-

9R. strand

. . . aaagaTCTGTCTATACAGTAA

Exon 10 Intron 10

10F. Strand

CTGAAAAAGGAAGG

otgaaaaaggaagg taatacaaacaaatagcaagaa...

Exon 11 Intron 11

10 11F. Strand

TGAGTGGGCAGAGG

agagg ttagttggtaatttgctataatata...

15

Excn 13 Intron 12

12R. strand

GAGTGTAGTTTCCT

gtagtttcct gaaaaataagaaaagaatagat...

20

Exon 14 Intron 13

13R. strand

AGGGCTTTTCAGCT

agggetttteaget acacaaattaaaagaaaaaag...

25

Exen 14 Intron 14

14F. strand

GTGGCATGCCCAGG

30

gtggcatgcccagg taaataaatgaatgaagtttcca...

Excn 16 Intron 15

15R. strand

AATTTGTTTGTTTCC

aatttqtttqtttcc tacagaaaaacaacaacaaca...

-148-

Exon 16 Intron 16

16F. strand

CAGTGTATCATTTG

cagigitateating grangitaecetteetitticaaatt...

5 ...tttcagATTCACTTTTT

16R. strand ...aaagtcTAAGTGAAAA

10 Exon 17 Intron 17

17F. strand

TTTGACAAAAGCAA

tttgacaaaagcaa gtatgttctacatatatgtgcatat...

15 17R. strand ...aaagagtcGGGTTA

Exon 18 Intron 18

18F. strand

20 GGCCTTTTTATAGG

ggcctttttatagg taaganaagaaaatatgactcct...

18R. strand ...aatagttgTGTAAACCC

25

Exon 19 Intron 19

19F. strand

GAATATTATATA

gaatattatatata gttatgtgagtgtttatatatgtgtgt...

30

Notes: F: Forward strand

R: Reverse strand

The claims defining the invention are as follows:

1. An isolated nucleic acid encoding an alternatively spliced prostate-specific membrane (PSM') antigen.

5

15

20

- 2. An isolated mammalian DNA of claim 1.
- 3. An isolated mammalian cDNA of claim 2.
- 10 4. An isolated mammalian RNA derived from claim 1.
  - 5. An isolated nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a sequence encoding alternatively spliced prostate-specific membrane (PSM') antigen but not capable of specifically hybridizing with a sequence encoding prostate-specific membrane antigen.
    - 6. An isolated nucleic acid of at least 15 nucleotides capable of specifically hybridizing with a sequence encoding prostate-specific membrane antigen but not capable of specifically hybridizing with a sequence encoding alternatively spliced prostate-specific membrane (PSM') antigen.
    - 7. An isolated nucleic acid of claim 5 or 6 wherein the isolated nucleic acid is DNA
- 8. An isolated nucleic acid of claim 5 or 6 wherein the isolated nucleic acid is RNA.
  - 9. An isolated nucleic acid of claim 5 or 6 wherein the isolated nucleic acid is labelled with a detectable marker.
  - 10. An isolated nucleic acid of claim 9 wherein the detectable marker is a radioactive or a fluorescent label.

30

- 11. A method of detecting expression of an alternatively spliced prostate-specific membrane (PSM') antigen in a sample which comprises obtaining total mRNA from the sample and detecting the presence of mRNA encoding alternatively spliced prostate-specific membrane (PSM') antigen, thereby detecting expression of the alternatively spliced prostate-specific membrane (PSM') antigen in the sample.
- 12. A method of detecting expression of an alternatively spliced prostate-specific membrane (PSM') antigen in a sample which comprises obtaining total mRNA from the sample, contacting the mRNA so obtained with a labeled nucleic acid of claim 5 under hybridizing conditions and detecting the presence of mRNA encoding alternatively spliced prostate-specific membrane (PSM') antigen, thereby detecting the expression of the alternatively spliced prostate-specific membrane (PSM') antigen in the sample.
- 13. A method of detecting expression of prostate-specific membrane antigen in a sample which comprises obtaining total mRNA from the sample, contacting the mRNA so obtained with a labelled nucleic acid of claim 6 under hybridizing conditions and detecting the presence of mRNA encoding prostate-specific membrane antigen, thereby detecting expression of the prostate-specific membrane antigen in the sample.
- 14. An isolated nucleic acid of claim 2 operatively linked to a promoter of RNA transcription.
- 15. A vector which comprises the isolated nucleic acid of claim 1.
- 16. A host vector system for the production of a polypeptide having the biological activity of the alternatively spliced prostate-specific membrane (PSM') antigen which comprises the vector of claim 15 and a suitable host.
- 17. A host vector system of claim 16, wherein the suitable host is a bacterial cell, insect cell, or mammalian cell

30

5

10

15

20

25

Martine State (State of State of State

- 18. A method of producing a polypeptide having the biological activity of the alternatively spliced prostate-specific membrane (PSM') antigen which comprises growing the host cells of the host vector system of claim 17 under suitable conditions permitting production of the polypeptide and recovering the polypeptide so produced.
- 19. A polypeptide encoded by the isolated nucleic acid of claim 1.
- 20. A method of detecting hematogenous micrometastatic tumor cells of a subject comprising obtaining a sample from a subject, obtaining total mRNA from the sample, PCR amplifying any mRNA encoding prostate-specific membrane antigen present in the sample, contacting such amplified mRNA with the labelled nucleic acid of claim 6 under hybridizing conditions and detecting the presence of mRNA encoding prostate-specific membrane antigen, thereby detecting hematogenous micrometastatic tumor cells of the subject.
  - 21. A method of detecting hematogenous micrometastatic tumor cells of a subject comprising obtaining a sample from a subject, obtaining total mRNA from the sample, PCR amplifying any mRNA encoding alternatively spliced prostate-specific membrane (PSM') antigen present in the sample, contacting such amplified mRNA with the labelled nucleic acid of claim 5 under hybridizing conditions and detecting the presence of mRNA encoding alternatively spliced prostate-specific membrane (PSM') antigen, thereby detecting hematogenous micrometastatic tumor cells of the subject.

22. A method of detecting hematogenous micrometastic tumor cells of a subject comprising obtaining a sample from the subject, obtaining mRNA from the sample, performing nested polymerase chain reaction (PCR) using as a primer the nucleic acid of claim 5, and verifying micrometastases by DNA sequencing and Southern analysis, thereby detecting hematogenous

micrometastic tumor cells of the subject.

5

20

25

30

- 23. A method of detecting hematogenous micrometastic tumor cells of a subject comprising obtaining a sample from the subject, obtaining mRNA from the sample, performing nested polymerase chain reaction (PCR) using as a primer the nucleic acid of claim 6, and verifying micrometastases by DNA sequencing and Southern analysis, thereby detecting hematogenous micrometastic tumor cells in the subject.
- 24. A method according to any one of claims 20 to 23 wherein the subject is administered hormones, epidermal growth factor, b-fibroblast growth factors, or tumor necrosis factor.
- 25. A method of determining prostate cancer progression in a subject which comprises: a) obtaining a suitable prostate tissue sample; b) extracting RNA from the prostate tissue sample; c) performing a RNAse protection assay on the
   15 RNA, thereby forming a duplex RNA-RNA hybrid; d) detecting PSM and PSM' amounts in the tissue sample; e) calculating a PSM/PSM' tumour index, thereby determining prostate cancer progression in the subject.
- 26. The method of claim 18, further comprising performing in-situ 20 hybridization.
  - 27. A method according to any one of claims 11, 12, 13, 20, 21, 22, 23, or 25 wherein the sample is blood, bone marrow or lymph node.
- 25 28. An isolated nucleic acid according to claim 1 substantially as hereinbefore described with reference to any one of examples 1, 2 or 15.
  - 29. A method of detecting expression of an alternatively spliced prostate-specific membrane (PSM') antigen in a sample substantially as hereinbefore described with reference to any one of examples 3 to 14.

DATED: 7 July 1999
PHILLIPS ORMONDE & FITZPATRICK

Minutes I would be seen as a

5

10

30

Attorneys for:

SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH

#### FIGURE 1



1 - anti- EGFr PoAB RK-2 2 - Cyt-356 MoAB/RAM

3 - **RAM** 





SUBSTITUTE SHEET (RULE 26)

#### FIGURE 4

100.5

72.0

43.0

28.5

FIGURE 5



FIGURE 6A

FIGURE 6B



FIGURE 7



FIGURE 8



#### FIGURE 9

2 — 1.6 —

FIGURE 10

FIGURE 11

1 2 3

9.5\_\_\_

7.5\_\_\_

4.4 \_\_\_

\_\_\_

2.4 \_\_\_

1.4 \_\_\_

FIGURE 12A

FIGURE 12B



13/130 FIGURE 13



# FIGURE 14-1

Done on sequence PMSANTIGEN.
Total number of residues is: 750.
Analysis done on the complete sequence.

^ || Â <u>^|</u> <u>^</u> AA AA AA 264 309 97 101 CNAT CNAT CNAT CNAT -88 -75 0 11 11 n 11 oa] DC conformation conformation conformation conformation (H) (E) (T) Extended Helical Turn Coil

Sequence shown with conformation codes.

are given conformation Ø more residues in or ហ stretch of Consecutive overlined.

- 15 12 163 15 153 163 IE IEI |E I 11 H E 田 回 ы H IX IH II I II II II I IH I II H II
- H I II II II II IH 1= II II IX H 10 10 10 10 10 10 II IH II II IH II 161 田 161 15 回 161 31
- I II I I 10 10 10 10 10 Ы 回 日 ы E L E. H ы H IH IH H H I I I I H IH I 61

FIGURE

•

١

١

1

i

1

ł

1

1

1

İ

1

1

1

-

I

1

1

1

1

1

1

1

1

#### 15/130

H II H IEI 15 IE 161 C E IE C IE 11 H 11 15 回 1 15 回 15 L **| \Pi** 15 田 C IEI 163 L 田 田 田田 H C H IШ |EI C 田田 11 15 16 H 田 田 C IE 日 F C 田 IEI 15 H **[** 15 田 C 1 15 11 C 田 E 田田 C IEI 16 11 1 日 II H 旧田 田 田田 H 回 161 1 H 161 II H H 15 田田 田田 H 田 田田 |E 回 II IX 田 回 IEI H H E 田田 回回 团 C II II 田 161 田田 H 田田 |E H IEI E C II IX 田田 C 田田 田 回 C 国 C E C IH IH 田田 C 15 15 12 C **-**C Ţ H H IH |E C H 田田 18 11 H C C H I IX X H H 日日 田 161 国 C C H 1= II C C H 15 163 田 H 臼  $\mathbf{C}$ C II C C C II 田 16 回 C 团 IE C IX C H  $\Xi$ II 1 1 18 C 团 153 C II H C L H 6 | [1] 田田 C IH 田田 IH II Ţ E E II I C 11 C IH 167 II C  $\Box$ 163 153 I II L 161 H 田田 IH C  $\Box$ 163 田田 H I  $\Xi$ IH H H **| | | | |** II C 国 | **[**] 田 II II C H H II ) ध IH C C 16 IE II IX  $\mathcal{O}$ 田 回 H मि 囝 H  $\equiv$ 田 一日 II IX II Ы 163 C IEI 国 I Гī 161 1 = II H F II 田 IE H II IH 田 163 IH I IH H 15 i ELI C 回 I II C 15 II  $\mathcal{O}$ H 161 II 16 田田 H II IX C IE IH C H C H | E 田 H IX II H 1 II  $\blacksquare$ E  $\mathcal{O}$ IX 1 15  $\Xi$ H IH H H I 团 C IX 1 163 C IH 91 121 151 181 211 241 271 301 331 361 391 421

FIGURE 14-3

| Ξ      | ाध्य    | Ŧ      | II     | IH     | नि         | नि  | ाष्ट्र | ပ      | IΞ  |
|--------|---------|--------|--------|--------|------------|-----|--------|--------|-----|
| H      | ाध      | ပ      | II     | II     | ाध         | िल  | मि     | ပ      | I   |
| I      | ाध      | ចោ     | II     | II     | <b> </b> 匝 | िस  | मि     | II     | IH  |
| H      | िस      | Ξ      | II     | Ţ      | 田          | ပ   | ा      | IH     | II  |
| H      | 旧       | H      | IH     | नि     | 回          | ပ   | ित     | II     | IH  |
| H      | Ŧ       | E      | IH     | िल     | मि         | H   | नि     | IH     | I   |
| H      | 10      | ធា     | II     | नि     | ित         | E   | ा      | IH     | II  |
| H      | ر<br>ا  | Ŀ      | IH     | लि     | H          | H   | H      | II     | IΞ  |
| Ŀ      | CI      | ن<br>ت | IX     | ाष्ट्र | IH         | IH  | S      | II     | ΙΞ  |
| 田      | ان<br>ت | ن<br>ت | II     | लि     | H          | II  | S      | II     | IH  |
| 田      | ıυ      | ບ      | II     | II     | IH         | IH  | S      | II     | H   |
| ы      | H       | E      | II     | II     | IH         | IH  | E      | ចា     | IH  |
| ы      | T       | II     | II     | II     | Ö          | IH  | T      | 匝      | IX  |
| ы      | Ţ       | IX     | IX     | II     | ပ          | IH  | 回      | I      | ित  |
| E      | IX      | IH     | मि     | IX     | I          | II  | 臼      | 旧      | िट  |
| ы      | IH      | IX     | ि      | ाध्य   | मि         | I   | II     | 回      | िष  |
| 田      | II      | IX     | िल     | ित     | मि         | II  | II     | 田      | मि  |
| $\Xi$  | II      | F      | E      | ाध     | ाध         | II  | II     | ाध्य   | मि  |
| ष्प    | II      | ធា     | मि     | ाध्य   | धि         | I   | II     | िल     | ि   |
| 田      | II      | দ্র    | मि     | िष्    | 回          | II  | II     | ध      | िष  |
| 凹      | I       | 10     | ित     | l<br>E | II         | I   | II     | 1      | मि  |
| Ţ      | I       | 10     | ाध     | ाध्य   | IX         | II  | II     | S.     | IX  |
| H      | I       | 10     | ن<br>ت | l<br>E | I          | H   | II     | ပ      | II  |
| ы      | II      | 10     | IE     | E      | IH         | I   | H      | ပ      | I   |
| E      | II      | CI     | 15     | H      | I          | II  | IX     | ن<br>ت | II  |
| ن<br>ت | I       | ाध     | IE     | Ħ      | II         | IH  | IH     | H      | II  |
| S      | I       | 1 ध्य  | 1      | II     | II         | I   | I      | ि      | I   |
| ध      | υ       | न      | IE     | II     | I          | II  | धि     | 田      | IX  |
| ш      | ပ       | नि     | ப      | II     | II         | II  | नि     | ि      | IX  |
| ធា     | I       | ित     | H      | 1=     | I          | II  | EI     | लि     | ပ   |
| 451    | 481     | 511    | 541    | 571    | 601        | 631 | 661    | 691    | 721 |

FIGURE 14-4

Semi-graphical output.

Symbols used in the semi-graphical representation:

conformation: Extended conformation: coilconformation: X conformation: Helical Turn

50

**MWNLLHETDSAVATARRPRWLCAGALVLAGGFFLLGFLFGWFIKSSNEAT** 

30

20

10

X<\*\*\*\*\*XXXXXX---X<\*\*\*\*\*XXXXXX--~~~~<<~~~XXXXXXXXXXXXXXXXXXXXX

100

FIGURE 14-5

150 KEFGLDSVELAHY DVLLSY PNKTHPNY I SI INEDGNEI FNTSLFEPPPPG 140 120

200

18/130

YENVSDIVPPFSAFSPQGMPEGDLVYVNYARTEDFFKLERDMKINCSGKI

| XX>><                                                                                                                                                                                                                                                                    | 250<br> <br>DGWNLPG     | \**-\\\      | 300<br> <br>/HPIGYY                                                                   |                 | 350<br> <br>HIHSTN                                                                     | * * * * * * * * * * * * * * * * * * * * | 400<br> <br>VHEIVR     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|---------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------|-----------------------------------------|------------------------|
| -<< <xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx< td=""><td>240<br/> <br/>FAPGVKSYP </td><td>&lt;</td><td>290<br/> <br/> EAVGLPSIPV</td><td>* * *</td><td>340<br/> <br/>GNFSTQKVKM</td><td>-*XXXXXX-*</td><td>390<br/> <br/>GIDPQSGAAV</td></xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx<> | 240<br> <br>FAPGVKSYP   | <            | 290<br> <br> EAVGLPSIPV                                                               | * * *           | 340<br> <br>GNFSTQKVKM                                                                 | -*XXXXXX-*                              | 390<br> <br>GIDPQSGAAV |
| 1 1                                                                                                                                                                                                                                                                      | 230<br> <br>VILYSDPADY  |              | 280<br> <br>NEYAYRGIA                                                                 | XX              | 330<br> <br>VPYNVGPGFT                                                                 |                                         | 380<br> <br>SGHRDSWVFG |
| FIGURE 14-6                                                                                                                                                                                                                                                              | 220<br> <br>KNAQLAGAKG  | XXXXXXX**<<- | 270<br> <br>GDPLTPGYPA                                                                | * * *         * | 320<br> <br>PDSSWRGSLK                                                                 |                                         | 370<br> <br> VEPDRYVIL |
| - < <                                                                                                                                                                                                                                                                    | 210 220 230 240 250<br> | **           | 260 270 280 290 300<br>         <br>GGVQRGNILNLNGAGDPLTPGYPANEYAYRGIAEAVGLPSIPVHPIGYY | * ^ ^ + ^       | 310 320 330 340 350<br>         <br>DAQKLLEKMGGSAPPDSSWRGSLKVPYNVGPGFTGNFSTQKVKMHIHSTN | XXXXXXX->>>++++                         | 360 370 380 390 400    |

FIGURE 14-7

| XXX          | 450<br> <br>ERGVAYI                                                                  |                             | 500<br> <br> ESWTKK                                                     | * < < < XX                    | 550<br> <br> KFSGYP                                                                    |           | 009     |
|--------------|--------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------|-----------|---------|
| ->xxx**<***< | 440<br> <br>Waeensrilgi                                                              | *XXXXXXXX******XXXXXXXXX    | 490<br> <br>PDEGFEGKSL)                                                 | -XXXXXXXXX**XXXXXXXXXXXXXXXX- | 540<br> <br>Varytknwetn                                                                | *^^^^     | 969<br> |
|              | 430<br> <br>EEFGLLGSTE                                                               | X****XXXXX                  | 480<br> <br>VHNLTKELKS]                                                 | XXXXXXX**)<br>XXXXXXXX        | 530<br> <br>FFQRLGIASGE                                                                | XXXXX>+++ | 580     |
|              | 420<br> <br>RTILFASWDA                                                               |                             | 470<br> <br>VDCTPLMYSL                                                  | (X                            | 520<br> <br>                                                                           | (         | 570     |
|              | 410 420 430 440 450<br>       <br>SFGTLKKEGWRPRRTILFASWDAEEFGLLGSTEWAEENSRLLQERGVAYI | XXX***>>>***>-<br>XXX***>>> | 460 470 480 490 500   ADSSIEGNYTLRVDCTPLMYSLVHNLTKELKSPDEGFEGKSLYESWTKK |                               | 510 520 530 540 550<br>         <br>SPSPEFSGMPRISKLGSGNDFEVFFQRLGIASGRARYTKNWETNKFSGYP |           | 260     |

# FIGURE 14-8

| 7                   |
|---------------------|
| 20                  |
| $\bar{\mathcal{Q}}$ |
|                     |
| LPFDC               |
| •                   |
| 1                   |
| 15                  |
| LANSIVLPF           |
| ï                   |
| FE                  |
| 2                   |
| 2                   |
| Ö                   |
| 7                   |
| Q                   |
| HLTVAQVRGGMVFEI     |
| Ę                   |
| HI                  |
| $\Xi$               |
| MFKY                |
| Σ                   |
| DP                  |
| Σ                   |
| KF                  |
| E                   |
| YELV                |
| $\Xi$               |
| T)                  |
| (E                  |
| 5                   |
| 15                  |
| X                   |
| I                   |
|                     |

| XXX<                   | 650 | KESERI                                             |
|------------------------|-----|----------------------------------------------------|
| XXX<                   | 640 | AVKNFTEIAS                                         |
| X-X                    | 630 | <br>  FYSVSFDSLFS                                  |
| X-XXXXXXXXXXXXXXXXXXX  | 620 | I SMKHPQEMKT                                       |
| X-XXXXXXXXXXXXXXXXXXXX | 610 | AVVLRKYADKIYSISMKHPQEMKTYSVSFDSLFSAVKNFTEIASKFSERI |
| ii                     |     | A                                                  |

| XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
|----------------------------------------|----------------------------------------|
| XXXXXXXXXXXXXXXXXXXXXXXXXXXXX          | XXXXXXXXXXXXX————————————————————————— |

21/130

| 700 | <br>SSHNKY          |
|-----|---------------------|
| 069 | <br>RPFYRHVIYAPSSI  |
| 680 | <br>AFIDPLGLPDRPFYI |
| 670 | MNDQLMCLERAFIDPLG   |
| 099 | <br>QDFDKSNPIVLRMM  |

| <pre>&lt;###<xxxxxxxxxxxxxxx< th=""><th>&lt;+***&lt;**</th></xxxxxxxxxxxxxxx<></pre> | <+***<** |
|--------------------------------------------------------------------------------------|----------|
| XX>>>**                                                                              | XX>>>**  |

| 750 |              | AETLSEVÄ                     |
|-----|--------------|------------------------------|
| 740 |              | /AAFTVQAAAE                  |
| 730 |              | <b>NWGEVKRQIYV</b>           |
| 720 | <del>-</del> | I ESKVĎPSKA                  |
| 710 |              | AGESFPGIYDALFDIESKVDPSKAWGEV |

XXXXXXXXXXX --XXXXXXXXXXXX ----XXXXXXX\*\*\*\*XXXXXXXX--<-------XXXXXXX\*\*\*\*XXXXXXX--<----

22/130 FIGURE 15A



# FIGURE 15B

\* PREDICTION OF ANTIGENIC DETERMINANTS

Analysis done on the complete sequence. Total number of residues is: 750. Done on sequence PMSANTIGEN.

-> This is the value recommended by the authors The averaging group length is: 6 amino acids. The method used is that of Hopp and Woods.

The three highest points of hydrophilicity are:

: Asp-Glu-Leu-Lys-Ala-Glu Asn-Glu-Asp-Gly-Asn-Glu 137 **6**8 63 to 132 to 482 to : From From 1.57 1.62

Lys-Ser-Pro-Asp-Glu-Gly 487 From

Ah stands for: Average hydrophilicity.

of the cases assigned to a known antigenic group. The second and third points Note that, on a group of control proteins, only the highest point was in 100% gave a proportion of 33% of incorrect predictions.

23/130

| ٠ | , | • |  |
|---|---|---|--|
|   | ځ | ) |  |
| • | - | • |  |
|   | ı | J |  |
|   | ĭ | - |  |
|   |   | ) |  |

| opt         | 321                                    | 311                                    | 997                                          |
|-------------|----------------------------------------|----------------------------------------|----------------------------------------------|
| initl       | 120                                    | 164                                    | 145                                          |
| initn       | 203                                    | 164                                    | 145                                          |
| scores are: | G.gallus mRNA for transferrin receptor | Rat transferrin receptor mRNA, 3' end. | Human transferrin receptor mRNA, complete cd |
| The best    | CHKTFER                                | RATTRFR                                | HUMTFRR                                      |

G.gallus mRNA for transferrin receptor 51.9% identity in 717 nt overlap CHKTFER

120 203

CHKTFE TACACTTATCCCATTCGGACATGCCCACCTTGGAACTGGAGACCCTTACACCCCAGGCTT 1030 10201000

24/130

| pmsgen<br>CHKTFE | 1200 1210 1220 1230 1240 1250 pmsgen AGCACCACATAGCAGCTGGAGGAAGTCTCAAAGTGCCCTACAATGTTGGACCTGG ::::::::::::::::::::::::::::::::::       |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| pmsgen<br>CHKTFE | 1260 1270 1280 1290 1300 1310 pmsgen ctttactggaaactttactacaaaagtcaagatgcacatccactctaccaatgaagt : :::::::::::::::::::::::::::::::::::  |
| pmsgen<br>CHKTFE | 1320 1330 1340 1350 1360 1370 pmsgen GACAAGAATTTACAATGTGATAGGTACTCTCTCAGAGGAGCAGTGGAACCAGACAGA                                        |
| pmsgen           | 1380 1390 1400 1410 1420 1430 pmsgen CATTCTGGGAGTCACCGGGACTCATGGGTGTTTGGTGTATTGACCCTCAGAGTGGAGC : ::::::::::::::::::::::::::::::::::: |

|                                                                                                                  | 26,                                                                                                                | /130                                                                                           |                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 1440 1450 1460 1470 1480 1490 pmsgen AGCTGTTCATGAAATTGTGAGGAGCTTTGGAACACTGAAAAAGGAAGGTGGAG ::::::::::::::::::::: | 1500 1510 1520 1530 1540 1550  ACCTAGAAGAACAATTTTGTTTGCAAGCTGGGATGCAGAAGAATTTTGGTCTTCTTGGTTC ::::::::::::::::::::: | pmsgen TACTGAGTGGCAGAGGAATTCAAGACTCCTTCAAGAGCGTGGCGTGGCTTATATTAA ::::::::::::::::::::::::::::: | 1620 1630 1640 1650 1660 1670  TGC-TGACTCATCTATAGAAGGAAACTA-CACTCTGAGAGTTGATTGTACACCGCTGATG :::::::::::::::::::::::::::::::::: |
| 1480<br>CACTGAAAA<br>: :::::<br>TAGTGAAAA.<br>1430                                                               | 1540<br>AAGAATTTG<br>::::::<br>GAGACTACG                                                                           | 1600<br>AGCGTGGCG'<br>:<br>CCAAAGCTT'<br>1550                                                  | 0 1660 AGTTGATTGTA :::::::::::::::::::::::::::                                                                                 |
| 1470<br>AGCTTTGGAA<br>: :: : :<br>ATCTCAGACA<br>1420                                                             | 1530<br>TGGGATGCAG<br>::: ::::<br>TGGAGTGCAG                                                                       | 3ACTCCTTCAAGAG<br>::::::                                                                       | 1650<br>-CACTCTGAGA<br>: : : :<br>3CCATGTCAAG                                                                                  |
| 1460<br>TGTGAGG<br>:: : :                                                                                        | 1520<br>GTTTGCAAGC<br>X::::::::                                                                                    | 1580<br>1580<br>15 : : X<br>1530                                                               | 1640 AAGGAAACTA- ::::::: CTGGGAGCAAC                                                                                           |
| 1450<br>STTCATGAAAT'TG1<br>: :: ::<br>PTGTTGGAACTTGC<br>1400                                                     | 1510<br>  GAACAATTTT<br>  :: :: :: :: :: :: :: :: :: :: :: :: ::                                                   | 1570<br>GGGCAGAGGA<br>:: :::<br>GGCTGGAGGG                                                     | 1630<br>TCATCTATAG<br>: :: :<br>TGCTCCAGTC                                                                                     |
| 1440<br>AGCTGTTC<br>::::<br>TGCTATA1                                                                             | 1500<br>ACCTAGAA<br>::: ::<br>ACCGAGGC<br>1450                                                                     | 1560<br>TACTGAGTGG(::::::::::::::::::::::::::::::::                                            | 1620<br>TGC-TGAC<br>:: ::<br>-GCTTGGA                                                                                          |
| pmsgen<br>CHKTFE                                                                                                 | pmsgen<br>CHKTFE                                                                                                   | pmsgen<br>CHKTFE                                                                               | pmsgen<br>CHKTFE                                                                                                               |

|                        | 1680 1690 1700 1710 1720 1730 pmsgen TACAGCTTGGTACACAAAAGAGCTGAAAAGGCCCTGATGAAGGCTTTTGAAGA | 1690<br>ACACAACCTA            | 1700<br>ACAAAAGAGCI                    | 1710<br>GAAAAGCCCT                     | 1720<br>GATGAAGGCT                                                                                                                                                                                                        | 1730<br>President         |
|------------------------|--------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| :::<br>TATATGC<br>1630 | : :: :<br>TATGCTGCTG<br>1630                                                               | : :<br>GGGAGTATT,<br>1640     | : :: : : : : : : : : : : : : : : : : : | :::::::::::::::::::::::::::::::::::::: | CHKTFE TATATGCTGCGGAGTATTATGAAGGGGGGTGAAGAATCCAGCAGCAGTCTCAGAGAGGGGGTGAAGAATCCAGCAGTCTCAGAGAGGGGGTGAAGAATCCAGCAGTCTCAGAGAGGGGGTGAAGAATCCAGCAGTCTCAGAGAGGGGGTGAAGAATCCAGCAGTCTCAGAGAGGGGGGTGAAGAATCCAGCAGTCTCAGAGAGGGGGGGG | :: ::<br>:AGAGAGC<br>1680 |
| AAATCTC                | 1740<br>CTCTTTAT                                                                           | 1750 176<br>FGAAAGTTGGACTAAAA | 1760<br>ACTAAAAAAAG                    | 1770<br>TCCTTCCCCA                     | pmsgen AAATCTCTTTATGAAAGTTGGACTAAAAAAAGTCCTTCCCCAGAGTTCAGTGGCATGCCCCCAGAGTTCAGTGCCCCCCAGAGTTCAGTGCCCCCCCAGAGTTCAGTGCCCCCCCAGAGTTCAGTGCCCCCCCC                                                                             | 1790<br>CATGCCC           |
| CTCTATAACA(            | TATAA<br>1690                                                                              | CAGACTTGGC                    | ccagacrege<br>1710                     | TAAAAGCAGT<br>1720                     | GACTTGGCCCAGACTGGGTAAAAGCAGTTGTTCCTCTTGGCCTGGA                                                                                                                                                                            | GCCTGGA                   |

| ' end. 164                       |                            |
|----------------------------------|----------------------------|
| Rat transferrin receptor mRNA, 3 | identity in 560 nt overlap |
| RATTRFR                          | 55.5\$                     |

28/130

RATTRF CTCATGTAAGCTGGAACTTTCACAGAATCAAAATGTGAAGCTCACTGTGAACAATGTACT pmsgen -TACTGGAAACTTTTCTACACAAAAGTCAAGATGCACATC-CACTCT-ACCAATG-

| 1370<br>AGACAG<br>:::::                                                                      | 1430<br>FCAGAG<br>::::                                       | 1480<br>AAAAGGAA<br>::: ::<br>TCAAAAGAT<br>00                                                                    | SGTCTT                                                                                           |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 1360<br>GTGGAACC,<br>: :::::<br>GAGGAACC,<br>780                                             | 1420<br>'ATTGACCC'<br>::<br>'TGCGAAGT'<br>840                | 1480<br>:TGAAAAJ<br>::: ::<br>TGATTTCAAJ                                                                         | 1540<br>AAGAATTTG<br>:::::::<br>GAGACTATG                                                        |
| 1350<br>CAGAGGAGCA<br>: :::<br>TAAAGGCTAT                                                    | 1410<br>GTTTGGTGGT<br>:::::::::::::::::::::::::::            | 1470  SAGCTTTGGAACA-CTGA-  :: :: ::  AAGTATTCTCAGATATGAT  30                                                     | 1530<br>GGGATGCAG<br>:: ::::<br>GGACTGCAG<br>950                                                 |
| 0 1340 1350 1360 137  AATGTGATAGGTACTCTCAGAGGAGCAGTGGAACCAGACA ::::::::::::::::::::::::::::  | 1400<br>ACTCATGGGTG<br>::::::<br>ACGCTTGGGGC<br>820          | 1460<br>TGAGGAGCTT<br>:::<br>GCCCAAGTAT<br>880                                                                   | 1520<br>TTGCAAGCT<br>:::::::::<br>TTGCCAGCT<br>940                                               |
| pmsgenAAGTGACAAGAATTTACAATGTGATAGGTACTCTCAGAGGAGCAGTGGAACCAGACAG ::::::::::::::::::::::::::: | ACCGGG<br>: ::<br>AGAGAG<br>0                                | 1440 1450 1460 1470 1480  pmsgen T-GGAGCTGTTGTTGAAATTGTGAGGAGCTTTTGGAACA-CTGAAAAAGGAA :::::::::::::::::::::::::: | 1490 1500 1510 1520 1530 1540 pmsgen GGGTGGAGACCTAGAACTTTTGTTTTGCAAGCTGGGATGCAGAAGAATTTTGTTTT :: |
| 1320 1330<br>SACAAGAATTTACA<br>:::::::::::::::::::::::::::::::::::                           | 1390<br>rcrgggaggrc<br>: :::: :<br>AGTAGGAGCCC               | 40 14<br>CTGTTGTTC7<br>: : : :<br>GTCTT-CTG1<br>860                                                              | 1500<br>CTAGAAGAA<br>: : : : :<br>CCAGCAGGA                                                      |
| 1320<br>AAGTGACA<br>::: :::                                                                  | 1380 pmsgen ATATGTCATTCTG :::::::::::::::::::::::::::::::::: | 1440<br>'-GGAGCAGCTGT'<br>:::::::::::::::::::::::::::::::::::                                                    | 1490<br>GGGTGGAGACC<br>:: X::::<br>GGATTTAGACC<br>910, 93                                        |
| pmsgen<br>RATTRF G                                                                           | pmsgen A<br>RATTRF C                                         | pmsgen T-(<br>:<br>RATTRF TG                                                                                     | pmsgen G<br>:<br>RATTRF G                                                                        |

29/130

| ;                                                                                         | 30/130                                                                                |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1600<br>CGTGGCGTG<br>: :<br>GCTTTC<br>1020                                                | 1660<br>FGATTGTAC<br>: : :<br>FTCTGCCAG<br>1080                                       |
| 1580 1590  TTCAAGACTCCTTCAAGAGC :::: : : : : : : : : : : : : : : : : :                    | 1650<br>CTCTGAGAGT'<br>: : ::<br>\CTTCAAGGT'<br>1070                                  |
| 1580<br>TTCAAGACTCCT<br>::::<br>CCTTTCATCTTTGC/                                           | 1640 1650 16<br>AGGAAACTA-CACTCTGAGAGTTGATTG<br>:: ::: :: : : : : : : : : : : : : : : |
| pmsgen ctrgctrctactgagtggcagagaatrcaagactctrcaagagtggcgtg ::::::::::::::::::::::::::::::: | 1630<br>ATAGA<br>CGTCC7<br>050                                                        |
| 1560<br>CTACTGAGTGGGC<br>: :::::::::<br>CGACTGAGTGGCT<br>980                              | 1610 1620 CTTATATTAATGCTGACTCATCT :::::::::::::::::::::::::::::::                     |
| 1550<br>CTTGGTTCTV<br>:::::<br>GTTGGTCCGV                                                 | 1610<br>GCTTATATTA<br>:::: ::::<br>ACTTACATTA                                         |
| pmsgen<br>RATTRF                                                                          | pmagen<br>RATTRF                                                                      |

31/130

Human transferrin receptor mRNA, complete cd 54.3% identity in 464 nt overlap HUMTFRR

|      |                                              |                   |                                              |      |      | 32                      | 2/1               | 130                                                                   | )    |
|------|----------------------------------------------|-------------------|----------------------------------------------|------|------|-------------------------|-------------------|-----------------------------------------------------------------------|------|
|      | TCTACAC                                      | ••                | TAACCTC                                      |      | 1330 | TTTACAA                 | •••               | TTCTTAA                                                               |      |
| 1270 | <b>SGAAACTTT</b>                             | ••                | STAGGATGG                                    | 1190 | 1320 | AAGTGACAAGAATTTACAA     | •••               | AGATAAAAA                                                             | 1250 |
| 1260 | CTTTAC-TO                                    | ••••••••••••••••• | CTCTACATO                                    | 1180 |      | 1                       | ••                | GCTGAAAGA                                                             | 1240 |
| 1250 | CCCTACAATGTTGGACCTGGCTTTAC-TGGAAACTTTTCTACAC | ••                | CCCTCTGACTGGAAAACAGACTCTACATGTAGGATGGTAACCTC | 1170 | 1310 | CATC-CACTCT-ACCAATG     | ••••••••••••••••• | HUMTFR AGAAAGCAAGAATGTGAAGCTCACTGTGAGCAATGTGCTGAAAGAGAGATAAAAATTCTTAA | 1230 |
| 1240 | <b>FGCCCTACAAT</b>                           |                   | STCCCTCTGAC                                  | 1160 | 1300 | CACATC-CACT             | ••                | <b>FGAAGCTCACT</b>                                                    | 1220 |
| 1230 | AGTCTCAAAG                                   |                   | SAAGGAGACT                                   | 1150 | 1290 | AGTCAAGATG              | •••               | AGCAAGAATG                                                            | 1210 |
|      | pmsgen AGGAAGTCTCAAAGTG                      | ı                 | HUMTFR TATGGAAGGAGACTGT                      | 1140 | 1280 | pmsgen AAAAAGTCAAGATGCA | ••                | HUMTFR AGAA                                                           | 1200 |

# 33/130 ប្

| pmsgen<br>HUMTFR | AAATTG<br>  : :::<br>  AACTTGCC<br>  1380                              | 1460<br>-TGAGGAGCT'<br>::::::<br>CAGATGTTCT<br>1390 | 1470<br>TTGGAACACTG<br>: : :<br>CAGATATGGTC<br>1400     | 1480 1490 ;AAAAAGGAAGGGTGGAGA ::: X::: :TTAAAAGATGGGTTTCAG |                                                                                                                                          | 1500<br>CCTAGAAGAACAA<br>::::::::<br>CCCAGCAGAAGCA<br>1430 |
|------------------|------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| pmsgen<br>HUMTFR | 1510 1520 pmsgen TTTTGTTTGCAAG ::::::::::::::::::::::::::::::::::      | 1520<br>GCAAGCTGGGA<br>:: :: ::<br>GCCAGTTGGAC      | 1530<br>ATGCAGAAGAA<br>::::::::<br>STGCTGGAGAC<br>1460  | 1540<br>TTTGGTCTTC<br>:::::<br>TTTGGATCGC                  | 1510 1520 1530 1540 1550 1560 pmsgen TTTTGTTTGCAAGCTGGATGCAAGTTTTGGTCTTTTTTTT                                                            | 1560<br>TGAGTGGGCAG<br>::::::::<br>TGAATGGCTAG<br>1490     |
| pmsgen<br>HUMTFR | 1570 158<br>pmsgen A-GGAGAATTCAAG<br>: :: : :<br>HUMTFR AGGGATACCTTTCG | 1580  TTCAAGACTCC  : :::  CTTTCGTC-CC  1510         | 1590<br>CTTCAAGAGCG::::::                               | 1600<br>TGGCGTGGCT<br>: ::<br>GGCTTTCACT                   | 1570 1580 1590 1600 1610 1620  pmsgen A-GGAGATTCAAGACTCCTTCAAGAGCGTGGCGTGGCTTATTATTATGCTGACTCATCT :::::::::::::::::::::::::::::::        | 1620<br>CTGACTCATCT<br>:: ::<br>CGGATAAAGCG<br>1550        |
| pmsgen<br>HUMTFR | 1630<br>ATAGAAGGI<br>: ::<br>GTTCTTGGI                                 | 1640 AAACTACACTC : :: rACCAGCAACT                   | 1650<br>:TGAGAGTT'GA'<br>::::::<br>:TCAAGGTTTC'<br>1580 | 1660<br>TTGTACACCG<br>: ::<br>FGCCAGCCCA                   | 1630       1640       1680         ATAGAAGGAAACTACACCTCTGAGTTGTACACCGCTGATGTACA-GCTTGGT-AC         : : : : : : : : : : : : : : : : : : : | 1680<br>GCTTGGT-AC<br>:::: ::                              |

1690 1700 1710 1720 1730 1740 pmsgen ACAACCTAACAAAGGCTGAAAAGCCCTGATGAAGGCTTTGAAGGCCAAATCTCTTTATG : ::: ::: HUMTFR AAAACAATGCAAATGTGAAGCATCCGGTTACTGGGCAATTTCTATATCAGGACAGCAAC

34/130

WO 96/26272 PCT/US96/02424

35/130 FIGURE 17A



FIGURE 17B



FIGURE 17C



SUBSTITUTE SHEET (RULE 26)

FIGURE 18

1 2

100 –

68 –

43 —

FIGURE 19

1 2 3 4

200 kDa ----

69 kDa ——

100 kDa —

--- PSM

# FIGURE 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

400

350

## FIGURE 21

1 2 3 4 5 6 7 8 9 10



FIGURE 22

1 2 3 4 5 6 7 8 9





## 41/130 FIGURE 23

| CELL LINE/TYPE          | 11p11.2-13<br>REGION | METASTATIC | PSM RNA<br>DETECTED | PSM DNA<br>DETECTED |
|-------------------------|----------------------|------------|---------------------|---------------------|
| LNCap                   |                      |            | ++                  | ND                  |
| HUMAN<br>PROSTATE       |                      |            | ++                  | ND                  |
| A9<br>(FIBROSARCOMA)    | NO                   | NO         | -                   | -                   |
| A9(11)<br>(A9+HUM. 11)  | YES                  | NO         | _                   | REPEAT              |
| AT6.1<br>(RAT PROSTATE) | NO                   | YES        | -                   | _                   |
| AT6.1-11-c11            | YES                  | NO         | +                   | ++                  |
| AT6.1-11-c12            | NO                   | YES        | <del>-</del>        | _                   |
| R1564<br>(RAT MAMMARY)  | NO                   | YES        | -                   | -                   |
| R1564-11-c14            | YES                  | YES        | -                   | +                   |
| R1564-11-c15            | YES                  | YES        | -                   | REPEAT              |
| R1564-11-c16            | YES                  | YES        | _                   | ND                  |
| R1564-11-c12            | YES                  | YES        | ND                  | +                   |

42/130





FIGURE 24B



43/130 FIGURE 25A



FIGURE 25B







WO 96/26272 PCT/US96/02424

## 46/130





| Gl |    | 20 |
|----|----|----|
| G  | JR | 30 |

| Patient | Stage    | Treatment                                           | PSA  | PAP | PSA-PCR | PSM-PCR  |
|---------|----------|-----------------------------------------------------|------|-----|---------|----------|
| 1       | T2NxMo   | None                                                | 8.9  | 0.7 | _       | +        |
| 2       | T2NoMo   | RRP 7/93                                            | 6.1  | _   | -       | +        |
| 3       | T2CNoMo  | PLND 5/93                                           | 4.5  | 0.1 | -       | +        |
| 4       | T2BNoMo  | RRP 3/92                                            | NMA  | 0.4 | -       | +        |
| 5       | T3NxMo   | Proscar +<br>Flutamide                              | 51.3 | 1.0 | _       | +        |
| 6       | Recur T3 | I-125 1986                                          | 54.7 | 1.4 | -       | +        |
| 7       | T3ANoMo  | RRP 10/92                                           | NMA  | 0.3 | -       | +        |
| 8       | T3NxMo   | XRT 1987                                            | 7.5  | 0.1 | -       | _        |
| 9       | T3NxMo   | Proscar +<br>Flutamide                              | 35.4 | 0.7 | -       | -        |
| 10      | D2       | S/P XRT<br>Flutamide<br>+Emcyt                      | 311  | 4.5 | +       | +        |
| 11      | D2       | RRP 4/91<br>Lupron 10/92<br>Velban +<br>Emcyt 12/92 | 1534 | 1.4 | . +     | +        |
| 12      | T2NoMo   | RRP 8/91                                            | NMA  | 0.5 | -       | +        |
| 13      | T3NoMo   | RRP 1/88<br>Lupron +<br>Flutamide 5/92              | 0.1  | 0.3 | -       | -        |
| 14      | D1       | PLND 1989<br>XRT 1989                               | 1.6  | 0.4 | _       | <u>-</u> |
| 15      | D1       | Proscar +<br>Flutamide                              | 20.8 | 0.5 | _       | -        |
| 16      | T2CNoMo  | RRP 4/92                                            | 0.1  | 0.3 | _       | -        |



### FIGURE 31A

|     | 10                       | 20                       | 3 0                      | 40                       | 50                       | <b>6</b> C               |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 1   | AAGGGTGCTC               | CTTAGGCTGA               | ATGCTTGCAG               | ACAGGATGCT               | TGGTTACAGA               | TGGGCTGTGA               |
|     | TTCCCACGAG               | GAATCCGACT               | TACGAACGTC               | TGTCCTACGA               | ACCAATGTCT               | ACCCGACACT               |
| 61  | CTCGAGTGGA               | GTTTTATAAG               | GGTGCTCCTT               | AGGCTGAATG               | CTTGCAGACA               | GGATGCTTGG               |
|     | GAGCTCACCT               | CAAAATATTC               | CCACGAGGAA               | TCCGACTTAC               | GAACGTCTGT               | CCTACGAACC               |
| 121 | TTACAGATGG               | GCTGTGAGCT               | GGGTGCTTGT               | AAGAGGATGC               | TTGGGTGCTA               | AGTGAGCCAT               |
|     | AATGTCTACC               | CGACACTCGA               | CCCACGAACA               | TTCTCCTACG               | AACCCACGAT               | TCACTCGGTA               |
| 181 | TTGCAGTTGA               | CCCTATTCTT               | GGAACATTCA               | TTCCCCTCTA               | CCCCTGTTTC               | TGTTCCTGCC               |
|     | AACGTCAACT               | GGGATAAGAA               | CCTTGTAAGT               | AAGGGGAGAT               | GGGGACAAAG               | ACAAGGACGG               |
| 241 |                          | ATTTTTCATT<br>TAXAAAGTAA |                          |                          |                          |                          |
| 301 | TTCTTTAAAC               | CTCAGTTTTC               | TTATCTGTAA               | AAGGTAAATA               | ATAATACAGG               | GTGCAACAGA               |
|     | AAGAAATTTG               | GAGTCAAAAS               | AATAGACATT               | TTCCATTTAT               | TATTATGTCC               | CACGTTGTCT               |
| 3€1 | AAAATCTAGT               | GTGGTTTACA               | TAATCACCTG               | TTAGAGATTT               | TAAATTATTT               | CAGGATAAGT               |
|     | TTTTAGATCA               | CACCAAATGT               | ATTAGTGGAC               | AAT CTCTAAA              | ATTTAAAA                 | GTCCTATTCA               |
| 421 | CATGATAATI               | AAATGAAATA               | ATGCACATAA               | AGCACATAGT               | GTGGTGTCCT               | CCATATAGAA               |
|     | GTACTATTAA               | TTTACTTTAT               | TACGTGTATT               | TCGTGTATCA               | CACCACAGGA               | GGTATATCTT               |
| 48: | AATGCTCAGT               | ATATTGGTTA               | TTAACTACTT               | GTTGAAGGTT               | TATCTTCTCC               | ACTAAACTGT               |
|     | TTACGAGTCA               | TATAACCAAT               | AATTGATGAA               | CAACTTCCAA               | ATAGAAGAGG               | TGATTTGACA               |
| 541 | AAGTTCCACA               | AGCCTTACAA               | TATGTGACAG               | ATATTCATTC               | ATTGTCTGAA               | TTCTTCAAAT               |
|     | TTCAAGGTGT               | TCGGAATGTT               | ATACACTGTC               | TATAAGTAAG               | TAACAGACTT               | AAGAAGTTTA               |
| 601 |                          | CACCATAGCG<br>GTGGTATCGC |                          |                          |                          |                          |
| 661 | CAAAAATCAC<br>GTTTTTAGTG | TTTATATTT                | AACTGAAATT<br>TTGACTTTAA | TGCTTACTTA<br>ACGAATGAAT | TAATCACATC<br>ATTAGTGTAG | TAACCTTCAA<br>ATTGGAAGTT |
| 721 | AGAAAACACA               | TTAACCAACT               | GTACTGGGTA               | ATGTTACTGG               | GTGATCCCAC               | GTTTTACAAA               |
|     | TCTTTTGTGT               | AATTGGTTGA               | CATGACCCAT               | TACAATGACC               | CACTAGGGTG               | CAAAATGTTT               |

### FIGURE 31B

|      | ACTOTTOTA   | A TATTCTGGTA<br>C ATAAGACCAT | TCAACTTATG | AATCGTGGGT | CCCCATTAGT | CGAACCTGTC |
|------|-------------|------------------------------|------------|------------|------------|------------|
|      | CIGGICCAGO  | AAAGACTGTT<br>TTTCTGACAA     | TTCTCAGAAG | ACTGAGGTTT | GAGTCACGAG | GGAGGTCACG |
|      | G.G.L.CG.   | CTCCATAAAG<br>GAGGTATTTC     | CATAGGACAC | GACTTATCTC | TGACATCTCA | CCATGTTTCA |
|      | TICIGICIGI  | TTATATTAAG<br>AATATAATTC     | AGAATCGAAA | CACTGAAGCT | TACTGAATGG | ATTAGATCGA |
|      | 111 AAAGTCA | TTTACCATGT<br>AAATGGTACA     | CATTTAGTCC | TTCTCATTAT | CTTGTTTGGA | ACTTCCCAGG |
|      | GITACCACTA  | TAAATGAGGT<br>ATTTACTCCA     | CTACATGTAT | TGTACGTAGT | GAGTATTATT | CACGAGAAAT |
|      | PIATAATCAG  | ACTATTATTA<br>TGATAATAAT     | CGGTAGAGAC | TAATCTAAAC | TGTTATCCTT | GTAATCCTTT |
|      | CIAIATCAIG  | ATTCAGGATT<br>TAAGTCCTAA     | AACAATCTTT | CTCTACTTCT | TTAAGGGAAG | GAAGGACGGG |
|      | ALCCAUTAGA  | AGGAGTTGTC<br>TCCTCAACAG     | TACCAAGTAA | CAACTGTTTA | ATTAAAAGGG | TTTAAAAAGT |
|      | GAAAUGAGTO  | AAAGTCTACA<br>TYTCAGATGT     | AGCTTCGTGG | GTTCTGACAT | GTTAGATCAG | GTAGAAAAAG |
|      | GIGAATIGAG  | ATACTGTGCT<br>TATGACACGA     | GAGGGAAAGA | GTTTCGTTTG | ACAAACGATA | AGGAACTTAT |
|      | GIGAGACTCA  | TTTCTGCCTT<br>AAAGACGGAA     | ACGGATGAGT | CGACCGGGTA | CCGGGGATTA | CAAAGAAGAG |
|      | TAGAGGTGAC  | GGTCAAATCC<br>CCAGTTTAGG     | ATGGACATGG | AATACCAAGA | CAATTTTCGT | CACGAAGGTA |
| 1261 | AAAGTACTCC  | TAGCAAATGC                   | ACGGCCTCTC | TCACGGATTA | TAAGAACACA | GTTTATTTTA |



### FIGURE 31C

|      | TTTCATGAGG               | ATCGTTTACG            | TGCCGGAGAG               | AGTGCCTAAT               | ATTCTTGTGT               | CAAATAAAAT               |
|------|--------------------------|-----------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 1621 | TAAAGCATGT               | T AGCTATTCTC          | TCCCTCGAAA               | TACGATTATT               | ATTATTAAGA               | ATTTATAGCA               |
|      | ATTTCGTACA               | TCGATAAGAG            | AGGGAGCTTT               | ATGCTAATAA               | TAATAATTCT               | TAAATATCGT               |
| 1681 | GGGATATAAT<br>CCCTATATTA | TTTGTATGAT AAACATACTA | GATTCTTCTG<br>CTAAGAAGAC | GTTAATCCAA<br>CAATTAGGTT | CCAAGATTGA<br>GGTTCTAACT | TTTTATATCT<br>AAAATATAGA |
| 1741 | ATTACGTAAG               | ACAGTAGCCA            | GACATAGCCG               | GGATATGAAA               | ATAAAGTCTC               | TGCCTTCAAC               |
|      | TAATGCATTC               | TGTCATCGGT            | CTGTATCGGC               | CCTATACTIT               | TATTTCAGAG               | ACGGAAGTTG               |
| 1801 | AAGTTCCAGT               | ATTCTTTTCT            | TTCCTCCCCT               | CCCCTCCCCT               | CCCTTCCCCT               | CCCCTTCCTT               |
|      | TTCAAGGTCA               | TAAGAAAAGA            | AAGGAGGGGA               | GGGGAGGGGA               | GGGAAGGGGA               | GGGGAAGGAA               |
| 1861 | CCCTTTCCCT               | TCCCTTCCTT            | TCTTTCTTGA               | GGGAGTCTCA               | CTCTGTCACC               | AGGCTCCAGT               |
|      | GGGAAAGGGA               | AGGGAAGGAA            | AGAAAGAACT               | CCCTCAGAGT               | GAGACAGTGG               | TCCGAGGTCA               |
| 1921 | GCAGTGGCGC               | TATCTTGGCT            | GACTGCAACC               | TCCGCCTCCC               | CGGTTCAAGC               | GATTCTCCTG               |
|      | CGTCACCGCG               | ATAGAACCGA            | CTGACGTTGG               | AGGCGGAGGG               | GCCAAGTTCG               | CTAAGAGGAC               |
| 1981 | CCTCAGCCTC               | CTGAGTAGCT            | GGGACTACAG               | GAGCCCGCCA               | CCACGCCCAG               | CTAATTTTTG               |
|      | GGAGTCGGAG               | GACTCATCGA            | CCCTGATGTC               | CTCGGGCGGT               | GGTGCGGGTC               | GATTAAAAAC               |
| 2041 | TATTTTTAGT               | AGAGATGGGG            | TTTCACCATG               | TTGGCCAGGA               | TGGTCTCGAT               | TTCTCGACTT               |
|      | ATAAAAATCA               | TCTCTACCCC            | AAAGTGGTAC               | AACCGGTCCT               | ACCAGAGCTA               | AAGAGCTGAA               |
| 2101 | CGTGATCCGC               | CTGTCTGGGC            | CTCCCAAAGT               | GCTGGGATTA               | CAGGCGTGAG               | CCACCACGCC               |
|      | GCACTAGGCG               | GACAGACCCG            | GAGGGTTTCA               | CGACCCTAAT               | GTCCGCACTC               | GGTGGTGCGG               |
| 2161 | CGGCTTTAAA               | AAATGGTTTT            | GTAATGTAAG               | TGGAGGATAA               | TACCCTACAT               | GTTTATTAAT               |
|      | GCCGAAATTT               | TTTACCAAAA            | CATTACATTC               | ACCTCCTATT               | ATGGGATGTA               | CAAATAATTA               |
| 2221 | AACAATAATA               | TTCTTTAGGA            | AAAAGGGCGC               | GGTGGTGATT               | TACACTGATG               | ACAAGCATTC               |
|      | TTGTTATTAT               | AAGAAATCCT            | TTTTCCCGCG               | CCACCACTAA               | ATGTGACTAC               | TGTTCGTAAG               |
| 2281 | CCGACTATGG               | AAAAAAAGCG            | CAGCTTTTTC               | TGCTCTGCTT               | TTATTCAGTA               | GAGTATTGTA               |
|      | GGCTGATACC               | TTTTTTTTCGC           | GTCGAAAAAG               | ACGAGACGAA               | AATAAGTCAT               | CTCATAACAT               |
| 2341 | GAGATTGTAT               | AGAATTTCAG            | AGTTGAATAA               | AAGTTCCTCA               | TAATTATAGG               | AGTGGAGAGA               |
|      | CTCTAACATA               | TCTTAAAGTC            | TCAACTTATT               | TTCAAGGAGT               | ATTAATATCC               | TCACCTCTCT               |

### FIGURE 31D

| 2401 | GGAGAGTOTO               | TTTCTTCCTT | TCATTTTTAT | ATTTAAGCAA       | GAGCTGGACA | TTTTCCAAGA |
|------|--------------------------|------------|------------|------------------|------------|------------|
|      | CCTCTCAGAS               | AAAGAAGGAA | AGTAAAAATA | TAAATTCGTT       | CTCGACCTGT | AAAAGGTTCT |
| 2461 | AAGTTTTTTT               | TTTTTAAGGC | GCCTCTCAAA | AGGGGCCGGA       | TTTCCTTCTC | CTGGAGGCAG |
|      | TTCAAAAAAA               | AAAAATTCCG | CGGAGAGTTT | TCCCCGGCCT       | AAAGGAAGAG | GACCTCCGTC |
| 2521 | ATGTTGCCTC               | TCTCTCTCGC | TCGGATTGGT | TCAGTGCACT       | CTAGAAACAC | TGCTGTGGTG |
|      | TACAACGGAG               | AGAGAGAGCG | AGCCTAACCA | AGTCACGTGA       | GATCTTTGTG | ACGACACCAC |
| 2581 | GAGAAACTGG               | ACCCCAGGTC | TGGAGCGAAT | TCCAGCCTGC       | AGGGCTGATA | AGCGAGGCAT |
|      | CTCTTTGACC               | TGGGGTCCAG | ACCTCGCTTA | AGGTCGGACG       | TCCCGACTAT | TCGCTCCGTA |
| 2641 | TAGTGAGATT               | GAGAGAGACT | TTACCCCGCC | GTGGTGGTTG       | GAGGGGGGG  | AGTAGAGCAG |
|      | ATCACTCTAA               | CTCTCTGA   | AATGGGGCGG | CACCACCAAC       | CTCCCGCGCG | TCATCTCGTC |
| 2701 | CAGCACAGGC               | GCGGGTCCCG | GGAGGCCGGC | TCTGCTCGCG       | CCGAGATGTG | GAATCTCCTT |
|      | GTCGTGTCCG               | CGCCCAGGGC | CCTCCGGCCG | AGACGAGCGC       | GGCTCTACAC | CTTAGAGGAA |
| 2761 | CACGAAACCG               | ACTOGGCTGT | GGCCACCGCG | caccaccac        | GCTGGCTGTG | CGCTGGGGCG |
|      | GTGCTTTGGC               | TGAGCCGACA | CCGGTGGCGC | ga <b>gagaga</b> | CGACCGACAC | GCGACCCCGC |
| 2821 | CTGGTGCTGG               | CGGGTGGCTT | CTTTCTCCTC | GGCTTCCTCT       | TCGGTAGGGG | GGCGCCTCGC |
|      | GACCACGACC               | GCCCACCGAA | GAAAGAGGAG | CCGAAGGAGA       | AGCCATCCCC | CCGCGGAGCG |
| 2881 | GGAGCAAACC               | TOGGAGTOTT | CCCCGTGGTG | CCGCGGTGCT       | GGGACTCGCG | GGTCAGCTGC |
|      | CCTCGTTTGG               | AGOOTCAGAA | GGGGCACCAC | GGCGCCACGA       | CCCTGAGCGC | CCAGTCGACG |
| 2941 | CGAGTGGGAT               | CCTGTTGCTG | GTCTTCCCCA | GGGGCGGCGA       | TTAGGGTCGG | GGTAATGTGG |
|      | GCTCACCCTA               | GGACAACGAC | CAGAAGGGGT | CCCCGCCGCT       | AATCCCAGCC | CCATTACACC |
| 3001 | GGTGAGCACC<br>CCACTCGTGG |            |            |                  |            |            |

### FIGURE 32

Potential binding sites on the PSM promoter\*

| Site       | Seq           | **Location                                                                                 | #nt matched                                                                            |
|------------|---------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| AP1        | TKAGTOA       | 1145                                                                                       | 7/7                                                                                    |
| E2-RS      | ACCHNNNNNGGT  | 1940<br>1951                                                                               | 12/12<br>12/12                                                                         |
| GHF        | NNNTAAATNNN   | 580<br>753<br>1340<br>1882<br>1930<br>1979<br>2001<br>2334<br>2374<br>2591<br>2620<br>2686 | 11/11<br>11/11<br>11/11<br>11/11<br>11/11<br>11/11<br>11/11<br>11/11<br>11/11<br>11/11 |
| CVC repeat | GGGNGGRR      | 1165<br>1175<br>1180<br>1185<br>1190                                                       | 8/8<br>8/8<br>8/8<br>8/8                                                               |
| NEKB       | GGGRHTYHC     | 961                                                                                        | 10/10                                                                                  |
| uteroglob: |               | 250<br>921<br>1104                                                                         | 8/8<br>8/8<br>8/8                                                                      |
| IFN AAWA   | AANGAAAGGR590 | 13/13 C                                                                                    | eli 41 509 (1985)                                                                      |

<sup>\*</sup> the PSM promoter sequence 683XFRVS (Fig. 1) starts from the 5' end of the promoter fragment. The 3' region overlapps the previously published PSM cDNA at nt#2485,i.e. the putatative transcription start site is at nt#2485 on sequence 683XFRVS. \*\*The number refered to in this table is in reference to sequence 683XF107 which is the complement and inverse of 683XFRVS.

54/130



SUBSTITUTE SHEET (RULE 26)

CTCAAAAQQQQCCQQATTTCCT TCT TBBABBCABATBTTBCCTCTCTCTCBCTCBBATTBBTTCABTBCACTCTABAAACACTBCTBTBBBABAACT BOACCCC ADD ICTUBADCDAATICCA GCCTGCAUDGCTGATAAGCGAGGCATTAUTGAUATTGAGAGAGACTTTACCC

FIGURE 34

TOC OCT ODG OCO CTO OTO CTO OCO OOT GOCTIC TIT CTC CTC OOC TIC CTC TTC OOA TOO TIT Met Trp Aen Leu Leu IIIs Glu Thr Asp Ser Ala Val Ain Ain Ain Arg Arg Pro Arg Trp Leu ATO TOU AAT CTC CTT GAC DAA ACC DAC TOO OCT OTO OCC ACC OCO COC COO COC TOO CTO

Gly Ala Leu Val Lou Ala Gly Gly Phe Phe Leu Leu Gly Phe Leu Phe Gly Trp Phe

Cys Ale

ATA AAA TGC TGC AAT BAA BCT ACT AAC ATT ACT CCA AAB CAT AAT ATB AAA BCA TTT TTB BAT BAA IIIe Lys Ser Ser Asn Glu Ala Thr Aen 11e Thr Pro Lys His Aen Met Lys Ala Phe Leu Asp Glu

TOO AAA GCT GAG AAC ATC AAG AAG TTC TTA TAT AAT TTT ACA CAG ATA CCA CAT TTA GCA GGA ACA 1 Leu Lya Aia Giu Aan lie Lya Lye Phe Leu Tyr Aan Phe Thr Gin lie Pro Illa Leu Aia Gly

56/130



SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)

58/130



59/130



### FIGURE 39

|     | 10          | 20         | 3 0         | 40                  | 50         | €C         |
|-----|-------------|------------|-------------|---------------------|------------|------------|
| •   | TTTGCAGACT  | TGACCAACTT | TOTAAGAAAA  | GCAGAACCAC          | ACAGGCAAGC | TCAGACTOTT |
|     | AAACGTCTGA  | ACTGGTTGAA | AGATTOTTTT  | CGTCTTGGTG          | TGTCCGTTCG | AGTOTGAGAA |
| 61  | TTAAATT     | CCAGTTTTGA | CTTTGCCACT  | TCTTAGTGGC          | CTTGAACAAG | TTACCGAGTC |
|     | AATTTAATAA  | GGTCAAAACT | GAAACGGTGA  | AGAATCACCG          | GAACTTGTTC | AATGGCTCAG |
| 121 | CTCTCAGCGT  | TAGTTACCCT | ATTTTAATGA  | TGAGGATAAT          | ATTATCTGCC | CAAATTATTG |
|     | GAGAGTCGCA  | ATCAATGGGA | TAAAATTACT  | ACTCCTATTA          | TAATAGACGG | GTTTAATAAC |
| 181 | GTATAGTAAA  | TATATAGCAT | GTAAATCTCC  | TAGCAGAGTA          | CTGGGATTTC | GCCACTTTAT |
|     | CATATCATTT  | ATATATCGTA | CATTTAGAGG  | ATCGTCTCAT          | GACCCTAAAG | CGGTGAAATA |
| 241 | TTCTTCTTTA  | CCAAGATACT | CCTATTGGAC  | TTAATACACA          | GGACTAGTOT | AAGGTATCAC |
|     | AAGAAGAAAT  | GGTTCTATGA | GJATAACCTG  | AATT <b>AT</b> GTGT | CCTGATCAGA | TTCCATAGTG |
| 301 | CAGGTAGTCC  | ACTOCTGCTC | GGAATCTGAC  | CCGGGATTAG          | AGTAGGGCAT | GGACCAGATG |
|     | GTCCATCAGG  | TGAGGACGAG | CCTTAGACTG  | GGCCCTAATC          | TCATCCCGTA | COTGGTCTAI |
| 361 | GGTTTAAACA  | AATTCAATAT | CTTCCACTAG  | CTTCACCTTG          | GGGTTGTAAA | AGTTTTTGAA |
|     | DOAAATTTGT  | TTAAGTTATA | GAAGGTGATC  | GAAGTGGAAC          | CCCAACATTT | TCAAAAACTT |
| 421 | SEASACACTG  | TGCTCATAAC | AATCTTCATC  | TOTTAAAAGG          | ATTITATIOT | TCCTGGTATC |
|     | SEESTGAC    | ACGAGTATTG | TTAGAAGTAG  | AGAATTTTOO          | TAAAATAAGA | AGGACCATAG |
| 481 | CTCACTOTCA  | TCCCTTGTAT | TCCGTGCTCA  | GTGGCTGACA          | CAGAAGAGTT | CTTTATHNHH |
|     | GAGTGAGAGT  | AGGGAACATA | AGGCACGAGT  | CACCGACTGT          | GTCTTCTCAA | GAAATANNHH |
| 541 | имимимимими | CATCCTSTTC | ATTTTT CAGA | TCTCAGTTCA          | AGCATCTCGT | CCTCAGTGTG |
|     | имимимимими | GTAGGACAAS | TAAAAAGTCT  | AGAGTCAAGT          | TCGTAGAGCA | GGAGTCACAC |
| 601 | GTGTTNNCTG  | ATCCCTCACT | CTAATCCAAG  | TCTTTCTGTT          | TTATGCACAG | GTTGGAATCT |
|     | CACAANNGAC  | TAGGGAGTGA | GATTAGGTTC  | AGAAAGACAA          | AATACGTGTC | CAACCTTAGA |
| 661 | TATTTCCGTT  | TGCGNNCCAA | TCNAATNGTA  | TTTAATATGC          | ATGTATATAT | GTATGTGCAT |
|     | ATAAAGGCAA  | ACGCNNGGTT | AGNTTANCAT  | AAATTATACG          | TACATATATA | CATACACGTA |
| 721 | TTGTATGCTA  | NGCGATTAAG | AACTAGAATA  | ATTAATAATT          | GGAAGTCTAG | AAGTGG     |
|     | AACATACGAT  | NCGCTAATTC | TTGATCTTAT  | TAATTATTAA          | CCTTCAGATC | TTCACC     |



### FIGURE 40A

|       | 10                         | _ `                      |                          | •                         |              | · · · · · · · · · · · · · · · · · · · |
|-------|----------------------------|--------------------------|--------------------------|---------------------------|--------------|---------------------------------------|
|       | 1 TGAAAAATAC               | ATCAAAAATA               | A GGCATGAGAT             | ACGAGOCTATA               | r agataggact | TATTTTTAT                             |
|       | ACTTTTTATC                 | TAGTTTTTAT               | CCGTACTCTA               | A TGCTCGGATA              | A totatootga | A ATAAAAAA                            |
| 6     | 1 TATTGTTGTA               | TGTATTATTT               | GTAAAACACA               | AATTATCAAT                | ATTACCTCTC   | G ACATTAGGTO                          |
|       | ATAACAACAT                 | ACATAATAAA               | CATTTTGTGT               | TTAATAGTTA                | ATAATGGAGAC  | TGTAATCCAO                            |
| 12    | 1 AGATATTCTG<br>TCTATAAGAC | AATTTTAATT<br>AATTAAAATT | TCTCTTGCCT<br>AGAGAACGGA | `ACTTTCACTO<br>TGAAAGTGAC | AAAAAGAGTO   | ATGCAAACA:<br>TACGTTTGTC              |
| 18    | 1 ATTTTTAAGT               | TGCAAACCAA               | TTGCAAAATA               | TTTTTTTATC                | CAACTICAAT   | GATAGGTATT                            |
|       | TAAAAATTCA                 | ACGTTTGGTT               | AACGTTTTAT               | AAAAAAATAG                | GTIGAAGTIA   | CTATCCATA                             |
| 24    | 1 GCTGTTAATT               | CTAAGATATG               | CATTAATTGT               | TTCAACTAAT                | GGGTGTCAAA   | CGAGATGTTC                            |
|       | CGACAATT <b>AA</b>         | GATTCTATAC               | GTAATTAACA               | AAGTTGATTA                | CCCACAGTTT   | GCTCTACAAG                            |
| 30:   | TGAAAATGAA                 | GGCAAAAAGG               | AGATICACCT               | TOTACTTTCA                | TAAAGTTTOT   | ATOTTOCTOT                            |
|       | ACTTTTACTT                 | CCGTTTTTCC               | TCTAGGTGGA               | AGATGAAAGT                | ATTTCAAAGA   | TAGAAGGAGA                            |
| 3 6 3 | GCTGACTCAA                 | ATAAGCATTT               | AATACATTTT               | ATAACGAATT                | AATTAIGAAT   | ATATTTCAAA                            |
|       | CGACTGAGTT                 | TATTOGTAAA               | TTATGTAAAA               | TATTGCTTAA                | TTAATACTTA   | TATAAAGTTT                            |
| 421   | TAAATAAATT                 | ATTTCCAAGT               | STTGAAGGAA               | ATTCAGACTT                | CTAATTTGCT   | CTGATTCTGA                            |
|       | ATTTATTTAA                 | TAAAGGTTCA               | CAACTTCCTT               | TAAGTCTGAA                | GATTAAACGA   | GACTAAGACT                            |
| 481   | AACTAAAACA                 | AATGCTCTGT               | GAGAGITTGC               | GTTTCCAGTG                | AASTASCOTS   | AGAAATCCAA                            |
|       | TTGATTTTGT                 | TTACGAGACA               | CTCTCAAACS               | CAAAGGTCAC                | TICATOGOAC   | TOTTTAGGTT                            |
| 541   | GTCAGACAGC                 | TACATGAAAC               | TACATTTATT               | AGOTOTOTGO                | CACACACCAS   | TGCACGATAS                            |
|       | CAGTCTGTCG                 | ATGTACTTIG               | ATGTAAAIGG               | TOGAGAGAOG                | GTCTGTGGTC   | ACGTGCTATO                            |
| 601   | CGCAGAACAT                 | GTAGCTAGAT               | CTCAGTCATA               | GCTНИННИНН                | אאאאאאאאאא   | AGACCTTGCA                            |
|       | GCGTCTTGTA                 | CATCGATCTA               | GAGTCAGTAT               | СGAНИНИННИ                | אאאאאאאאאא   | TCTGGAACGT                            |
| 661   | GTTGGCTTTT                 | AACCTGAAGG               | AGATAAGGCA               | AGATTCCAGG                | GTTTATTTAG   | AGAAATTACA                            |
|       | CAACCGAAAA                 | TTGGACTTCC               | TCTATTCCGT               | TCTAAGGTCC                | CAAATAAATC   | TCTTTAATGT                            |
| 721   | GGATCTGGGA                 | ATAAAGTAGT               | TACAAAATTA               | GTCCCCAACC                | AGCTTTCATG   | GAGCTTTCAA                            |
|       | CCTAGACCCT                 | TATTTCATCA               | ATGTTTTAAT               | CAGGGGTTGG                | TCGAAAGTAC   | CTCGAAAGTT                            |

1

### 62/130

### FIGURE 40B

| / 5 1 | AATAATTAAT | AAGATCAAGA | TAATCGCATG                             | CATACAATGC | ACATACATAT | ATACATGCAT |
|-------|------------|------------|----------------------------------------|------------|------------|------------|
|       |            |            | ······································ | GIRIGIIACS | .G.M.GIM.A | TAIGIACGTA |
| 841   | ATTAAAATAC | ATGATTGGAC | GCAAACGGAA                             | ATAAGATTCC | ACCTGTGCAT | AAAACAGAAA |
|       | IAATTTATG  | TACTAACCTG | cgrmgccm                               | TATTCTAAGG | TGGACACGTA | TTTTGTCTT  |
| 901   | GACTTGGTTA | GAGTGAGGGA | TCAGGAAACA                             | CCACACTGAG | GACGAGATGN | NNNNNNNNN  |
|       | CIGAACCAAT | CTCACTCCCT | AGTOCTTTGT                             | GGTGTGACTC | CTGCTCTACN | ממממממממ   |
| 961   | NTAGTGGGTG | GGGGGCGGAC | ATCAATAAAG                             | AACTCTTCTG | TGTGAGCCAC | TGAGCACGG  |
|       | NATCACCCAC | ccccccccrc | TAGTTATTTC                             | TTGAGAAGAC | ACASTOSSTS | ACTOSTGCCT |
| 1021  | ATAAAGGGAT | GAGAGTGAGG | GCAANTACCA                             | GAAGAATAAA | ATCOTTTAA  | GAGATGAAGA |
|       | TATTTOCCTA | CTCTCACTCC | CGTTNATGGT                             | CLICLIATIL | TAGGAAAATT | STOTACTTCT |
| 1081  | TTSTTATSAS | CACAGTGTGT | GGNTTCAAAA                             | ATCTTTTAAC | AACCCCAAGG | TGAAGCTACT |
|       | AACAATACTC | GTGTCACACA | CONAAGTTTT                             | TAGAAAATTG | TIGGGGTTCC | ACTTOGATOA |
| 1141  | TGGAAGATAT | TTGAATTTGT | TTAAACCCAT                             | CTGGTCCTAG | CCCTATTCTT | TGAATCCGAA |
|       | ACCTTOTATA | AACTTAAACA | AATTTGGGTA                             | GACCAGGATC | GGGATAAGAA | ACTTAGGCTT |
| 1201  | GAGGTCAAGA | ATTOCGASCA | GASTSSACTA                             | CCTGTGATAC | CTTAGACTAG | TOCTGTGTAT |
|       | CTCCAGTTCT | TAAGGCTCGT | CTCACCTGAT                             | GGACACTATG | GAATCTGATC | AGGACACATA |
| 1261  | TCAAGTCCAA | TGAGAGTATC | TGTAAGAGAA                             | TAAGTGCGAA | ATCCAGATCT |            |
|       | AGTTCAGGTT | ACTOTOATAG | ACATTOTOTT                             | ATTCACGCTT | TAGGTCTAGA |            |



### FIGURE 41

|     | 10                       | 20          | 3 C          | <b>4</b> C | 50          | 60         |
|-----|--------------------------|-------------|--------------|------------|-------------|------------|
| :   | GGATTCTGTT               | GAGCCCTAGC  | TCATTATGAT   | GTCCTGTTGT | CCTACCCAAA  | TAAGACTCAT |
|     | CCTAAGACAA               | CTCGGGATCG  | AGTAATACTA   | CAGGACAACA | GGATGGGTTT  | ATTCTGAGTA |
| 61  | CCCAACTACA               | TCTCAATAAT  | TAATGAAGAT   | GGAAATGAGG | TAAAAAATAA  | ATAAATAAAT |
|     | GGGTTGATGT               | AGAGTTATTA  | ATTACTTCTA   | CCTTTACTCC | ATTTTTTTATT | TATTTATTTA |
| 121 | AAAAGAAACA               | TTCCCCCCA   | TTTATTATTT   | TTTCAAATAC | CTTCTATGAA  | ATAATGTTCT |
|     | TTTTCTTTGT               | AAGGGGGGGT  | AAATAATAAA   | AAAGTTTATG | GAAGATACTT  | TATTACAAGA |
| 181 | ATCCCTCTCT               | AAATATTAAT  | AGAAATCAAT   | ATTATTGGAA | CTGTGAATAC  | CTTTAATATC |
|     | TAGGGAGAGA               | TTTATAATTA  | TCTTTAGTTA   | TAATAACCTT | GACACTTATG  | GAAATTATAG |
| 241 | TOATTATOOG               | GTGTCAACTA  | OTTTOOTATG   | ATGTTGAGTT | ACTGGGTTTA  | GAAGTCGGGA |
|     | ADDAATAGGO               | CACAGTTGAT  | GAAAGGATAC   | TACAACTCAA | TGACCCAAAT  | CTTCAGCCCT |
| 301 | AATAATGCTG               | TAAANNNUNN  | AGTTAGTOTA   | CACACCAATA | TCAAATATGA  | TATACTTGTA |
|     | TTATTACGAC               | ATTTNUNNUNN | TCAATCAGAT   | GTGTGGTTAT | AGTTTATACT  | ATATGAACAT |
| 361 | AACCTCCAAG               | CATAAAAAGA  | GATACTTTAT   | AAAAGAGGTT | CTTTTTTTCT  | TTTTTTTTT  |
|     | TTGGAGGTTC               | GTATTTTTCT  | CTATGAAATA   | TTTTCTCCAA | GAAAAAAAGA  | AAAAAAAA   |
| 42. | TOCAGATOGA               | GTTTIACTCC  | TGTCAGGCAG   | GCNGAGTGCA | GTGGTGCCAT  | CTCGGCTCAC |
|     | AGGTCTACCT               | CAAASTGAGG  | ACAGTCCGTC   | CGNCTCACGT | CACCACGGTA  | GAGCCGAGTG |
| 461 | TGCAACCTCC               | ACCTCCCATG  | TT DAA GGGAT | TCTCCTTCCT | CAGTCTCCTG  | ASTAGETGGG |
|     | ACGTTGGAGG               | TGGAGGGTAC  | AAGTTOOOTA   | AGAGGAAGGA | GTCAGAGGAC  | TCATCGACCC |
| 541 | ATTACAGGTS               | TSCACCACCA  | CACCCAGCTA   | ATTTTTGTAT | TTTTAATAGA  | GACAGGGTTT |
|     | TAATGTCCAC               | ACGTGGTSST  | STGGGTCGAT   | TAAAAACATA | AAAATTATCT  | CTGTCCCAAA |
|     |                          | ACCGGTCCGA  | TCAGASCTTS   | ASSACTSSAS | ATCCACTAGG  |            |
|     | CTCCCAAAGT<br>GAGGGTTTCA | ACATOTTAAT  | GTGCACACTC   | CGTGACGCGG | AACGGTCCTC  | TATGTAAAA  |
| 721 | GATAGGTTTA               | ATTTATAAAG  | ACACTGCACA   | GATTTGAGTT | GCTGGGAAAT  | GCACGGATTC |
|     | CTATCCAAAT               | TAAATATTTC  | TGTGACGTGT   | CTAAACTCAA | CGACCCTTTA  | CGTGCCTAAG |

781 CAGTATGCA GTCATACGT

1 AATCAAAATA AAACAGTTAA AGTTI GATIA CTATAATGAA ACACAAAAAA AATGAATATT TTAGTTTTTAT TEFFORMATE TOAAACTAAT GATATTAGTE TGFGTTTTTF TTACTTATAA **4**  $\widetilde{\mathbb{T}}$ 

FIGURE 42

TAGAAAATAC AGTCATCTCC OO FEROUTA GGAAGTCCTA AAACTACTAT CATAGTCTAT 61 ATCTTTATG TCAGTAGAGG GIGAATGAAT CCTTGAGGAT TTTGATGATA GTATCAGATA

121 CCCAGCACTA TGCTAGAAGT TOLGAAGAAT TOACGAGATG AATAAATCAC AGATTCTGTC GGGTCGTGAT ACGATCTTCA ACACTTCTTA AGTGCTCTAC TTATTTAGTG TCTAAGACAG

181 CTCAAAATGG TTAGATCTAT TCAGGAAACA AAGCTAAAAA AACCCCACCA ATAACTAAAA GAGTETTACC AATCTAGATA AGTCCTTTGT TTCGATTTTT TTGGGTGGT TATTGATTTT 241 ATCAACCAAA TGAAAAACAA CAATCATAAA ATAAGTAAGT ACCTATAGAA AGAAAAGCTC TAGTIGGITT ACTITITIGIT GHTAGTATIT TAHTCATICA TGGATATCIT TCTTTTCGAG 301 AGAGGAGGTA AAAAGAATCT CCTTAAAAGG AATACTATAT ACTGTAAAAC TGTGACTGAT TCTCCTCCAT THITCTTAGA GGAATTHIC TTATGATATA TGACATTTHG ACACTGACTA

161 AGAAGGAA TCTTCCTT

### FIGURE 43A

|       | 10                       | 2 0                         | 3 C         | 4 0                     | <b>5</b> C               | 60                       |
|-------|--------------------------|-----------------------------|-------------|-------------------------|--------------------------|--------------------------|
| 1     | TATGGGAAAS               | TTTTCAGAGG                  | AAATAAGGTA  | AGGGAAAAGT              | TATCTCTTTT               | TTTCTCTCCC               |
|       | ATACCCTTTC               | AAAASTCTCC                  | TTTATTCCAT  | TCCCTTTTCA              | ATAGAGAAAA               | AAAGAGAGGG               |
| 61    | CCAATGTAAA               | AAGTTATAGT                  | GGGTTTTACA  | TGTGTAGAAT              | CATTTTCTTA               | AAACTTTATG               |
|       | GGTTACATTT               | TTCAATATCA                  | CCCAAAATGT  | ACACATCTTA              | GTAAAAGAAT               | TTTGAAATAC               |
| 121   | AATACCATTA               | TTTTCTTGTA                  | TTCTGTGACA  | TGCCACCTTA              | CAGAGAGGAC               | ACATTTACTA               |
|       | TTATGGTAAT               | AAAAGAACAT                  | AAGACACTGT  | ACGGTGGAAT              | GTCTCTCCTG               | TGTAAATGAT               |
| 181   | GGTTATATCC               | CGGGGTTAAA                  | TTCGAGCATT  | GGAATTTGGC              | CAGTGTAGAT               | GTTTAGAGTG               |
|       | CCAATATAGG               | GCCCCAATTT                  | AAGCTCGTAA  | CCTTAAACCG              | GTCACATCTA               | CAAATCTCAC               |
| 241   | AACAGAACAA               | TTTTTCTSTS                  | OTTACAGGTT  | ATGGCTGTGG              | CGTA FAAGAA              | GCATGCACTG               |
|       | TISTCTTGTT               | AAAAAGACAC                  | GAATCTCCAA  | TACCGACACC              | GCATGTTCTT               | CGTACGTGAC               |
| 301   | GGTTTATTAT<br>CCAAATAATA | TAA CTTT CAG<br>ATT GAAAGTC | TATOTTTGTT  | TTAAATATTT<br>AATTTAAAA | TOTACAAAAA<br>AGATGTTTTT | TGTTTACTAA<br>ACAAATGATT |
| 361   | ATTAAATTGT               | AGTATGAATT                  | GTTATAAATAY | ATGAGGTAAA              | CATTTACACA               | TAGCAAATTT               |
|       | TAATTTAACA               | TCATACTTAA                  | GAATATITAT  | TACTCCCTTT              | GTAAATGTGT               | ATCGTTTAAA               |
| 421   | AAAAATTACT               | STCATTTGAT                  | TTGTTAATAT  | ATTITTOTOT              | TTASTGGGAA               | ATTAAATTAA               |
|       | TTTTTAATGA               | CASTAAACTA                  | AA IAATTATA | TAAAAAGAGA              | AATCACCCTT               | TAATTTAAT                |
| 4 8 1 | AAAATTOOTT               | TOGACTSTCA                  | GACAATAGGA  | TTGCTGTGGT              | CTACTIGCTT               | ATTATATTTG               |
|       | ITTIAAGGAA               | AGCTSACAST                  | CTUTTATOCT  | AACGACACCA              | GATGAACGAA               | TAATATAAAC               |
| 541   | TAGASTOTAS               | AATGCAATCT                  | CACTACACTA  | TAGACATOTO              | ANNCTAACGT               | AGGACAATTC               |
|       | AICTCAGATO               | TTACGTTAGA                  | GT34T::34T  | ATOTGTAGAG              | TNNGATTGCA               | TCCTGTTAAG               |
| 601   | TGAGAAACTA               | TTCCAGACCT                  | COTTATOOSS  | TTAGCCAACG              | NTATCOTTCA               | SCTSGCATTS               |
|       | ACTCTTTGAT               | AAGGTCTGSA                  | SGAATACCCG  | AATCGGTTCC              | NATAGGAAGT               | CGACCGTAAC               |
| 661   | CAGGGTGACT               | TCTHOCTONN                  | AATCCAGCTC  | TCTNTCACAG              | ATGTGATCCA               | AGAGACACTC               |
|       | GTCCCACTGA               | AGANGGAGNN                  | TTAGGTCGAG  | AGANAGTGTC              | TACACTAGGT               | TCTCTGTGAG               |
| 721   | ACAATTAATC               | AACTAGCATT                  | CTAAATTTCA  | ATTCCAGATC              | TATTACCTTA               | ATATGGTAGC               |
|       | TGTTAATTAG               | TTGATCGTAA                  | GATTTAAAGT  | TAAGGTCTAG              | ATAATGGAAT               | TATACCATCG               |

### FIGURE 43B

- TEL TGAAGCTTIN NICACISTCA ATTOIGATCA GATATATGAC AATTITAAAT TATTIGCAGT ACTITCGAAAN NASIGACAGI TAAGACTAGI CITATATACIG TIAAAATTIA ATAAACGICA
- 841 GTGTAAGAAA CGCTTCAGGT AGTTTAAATT TAAGGCT CACATTCTTT GCGAAGTCCA TCACATTTAA ATTCCGA



### FIGURE 44A

|     | 1 C         | 2 0         | 30           | 4 C        | 5 C        | 60          |
|-----|-------------|-------------|--------------|------------|------------|-------------|
| 1   | CTCCTTTGGC  | CCCTGCCAGC  | TGGGCATTTT   | TAACCTAGTT | TACACAGTGT | CTTTTTTTCC  |
|     | GAGGAAACCG  | GGGACGGTCG  | ACCCGTAAAA   | ATTGGATCAA | ATGTGTCACA | GAAAAAAGG   |
| 61  | TTATTTTAAA  | TTGGTTGTTC  | CAGATTOGGT   | AATATCAATT | ATTAATATTA | CACTTAAATS  |
|     | AATAAAATTT  | AACCAACAAG  | GTCTAAGOOA   | TTATAGTTAA | TAATATTAAA | GTGAATTTAC  |
| 121 | AGTACCAGAA  | CTTTATCTTC  | AACCTTTTTC   | TCATTAGGCC | TACAACATAG | GACATCTCGG  |
|     | TOATGGTCTT  | GAAATAGAAG  | TTGGAAAAAS   | AGTAATCCGG | ATGTTGTATC | CTGTAGAGCC  |
| 181 | ATAGAATTTC  | CTTTTCTTTT  | TGCTACTATA   | AGCTGCTAAA | ATCCTCAGAA | CATCAGATTT  |
|     | TATCTTAAAG  | GAAAAGAAAA  | ACGATGATAT   | TCGACGATTT | TAGGAGTCTT | GTAGTCTAAA  |
| 241 | AGAAATGTTC  | TTATTAGTGG  | TAGTGAGCAT   | TTGCTATTTC | CTACCACTAG | CTTACAAATA  |
|     | TCTTTACAAG  | AATAATCACC  | ATCACTCGTA   | AACGATAAAG | GATGGTGATC | GAATGTTTAT  |
| 301 | TAATAAGCAA  | GTAGACCCCA  | CAGGCCAAAT   | TCCTATTTGT | TCTACAGTCG | AAAGGGAATT  |
|     | ATTATTCGTT  | CATCTG333T  | GTCCGGTTTA   | AGGATAAACA | AGATGTCAGC | TTTCCCTTAA  |
| 361 | TTAAAATTT   | TAATTTOCAC  | TAAAGAGAAA   | AATATATTAA | CAATCAAATT | GACAGTOGAT  |
|     | AAATTTTAAAA | ATTAAASSTG  | ATTTCTCTTT   | TTAATATATT | GTTAGTTTAA | CTGTCAGCTA  |
| 421 | TTTAATTSST  | ATGTGTAATT  | STITT COCT C | ATTATTTATA | ACAATTCATA | OTA CAATTTA |
|     | AAATTAASSA  | TAGAGATTAA  | CANAGEGRAS   | TATAAATAAT | TGTTAAGTAT | GATGTTAAAT  |
| 481 | ATTTAGTAAA  | CATTTTT GTA | GACCATATTT   | AAAACAAAGA | TACTGAAAGT | TAATATAAAC  |
|     | TAAATCATTT  | GTAAAAACAT  | CTGGTATAAA   | TTTTGTTTGT | ATGACTTTCA | ATTATATTTG  |
| 141 | PRACTICATO  | CTCTCTGTAG  | GCCACAGCCA   | TAACCTGTAA | GCACAGAAAA | ATTTGTTCTG  |
|     | DETCACOTAC  | GAGAGACATO  | CGGTGTCGGT   | ATTGGACATT | CGTGTCTTTT | TAAACAAGAC  |
| 601 | TTACTCTAAA  | CATOTACACT  | SGCCAAATTC   | CAATGOTOGA | ATTTAACCCC | GGGATATAAC  |
|     | AATGAGATTT  | GTAGATIIGA  | CCGGTTTAAG   | GTTACGAGOT | TAAATTGGGG | CCCTATATTG  |
| 661 | CTAGTAAATG  | TGTCCTCTCT  | GTCAAGGTGG   | GCATGTCACA | GAATACAGAA | CAATCAATGG  |
|     | GATCATTTAG  | ACAGGAGAGA  | CAGTTCCACC   | CGTACAGTGT | CTTATGTCTT | GTTAGTTACC  |
| 721 | TATTCATAAA  | GTTTTAAGAA  | AATGATTCTA   | CACATGTAAA | ACCCACTATA | ACTTTTTACA  |
|     | ATAAGTATTT  | CAAAATTCTT  | TTACTAAGAT   | GTGTACATTT | TGGGTGATAT | TGAAAAATGT  |

### FIGURE 44B

- 641 DATATOTEGO AATTADAATT TIOODAGAGO AATTEATTTT CATETOCOST TOO CTATAGACCE TTAATETTAA AAGGGTOTES TTAACTAAAA ETACAGGGCA AGG

### FIGURE 45A

|     | 10                       | 2 0                      | <b>3</b> C               | <b>4</b> ¢               | 5 C                      | 61                       |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 1   | GATGCTATTI<br>CTACGATAAA | GGGCAATTTC<br>CCCGTTAAAG | TTATTGACAG<br>AATAACTGTC | TTTTGAAATG               | TTAGGCTTTT<br>AATCCGAAAA | ATOTOGATIT<br>TAGAGGTAAA |
| 61  | TTTAGTACTT               | AAATTTTCCA               | ACATGGGTGT               | TGCTTGTTAT               | TTTATCAGTA               | TAAAATAGAA               |
|     | AAATCATGAA               | TTTAAAAGGT               | TGTACCCACA               | ACGAACAATA               | AAATAGTCAT               | ATTTTATCTT               |
| 121 | GAGTGGTTCT               | GTTCTGGAAT               | TTAGTATATA               | CATGAGTATC               | TAGTGTATGT               | CAGCCATGAA               |
|     | CTCACCAAGA               | CAAGACCTTA               | AATCATATAT               | GTACTCATAG               | ATCACATACA               | GTCGGTACTT               |
| 181 | AATGAACCTT               | TCAGATGTTT               | AACTTCAGGG               | AACCTAATTG               | AGTCATTGCT               | CCAGACATTG               |
|     | TTACTTGGAA               | AGTCTACAAA               | TTGAAGTCCC               | TTGGATTAAC               | TCAGTAACGA               | GGTCTGTAAC               |
| 241 | TTGCTTTGALA              | CCCACTATAT               | THNUNNUNCT               | CGGGCAATT:               | CTCAGTGTGG               | CAAGGATACT               |
|     | AACGAAACTT               | GGGTGATATA               | ADMINININGA              | GCCCGTTACT               | GAGTCACACC               | GTTCCTATGA               |
| 301 | ACTGCAGGCC               | TGTTTCTGGA               | AGGCACTGGA               | STOCTCTGAT               | SCAAACTTTG               | GCCAGGGACT               |
|     | TGACGTCCGG               | ACAAAGAGCT               | TCCGTGACCT               | SASSAGACTA               | CGTTTGAAAC               | CGGTCCCTGA               |
| 361 | COTTGATAGO<br>GGAACTATOG | TOTTAAATAG<br>AGAATTTATO | ATGCTGCACC<br>TACCACCTGC | AACACTCTCT<br>TTGTGAGAGA | TTCTTTTCTC AAGAAAAAAA    | TOTTTTTOTT<br>AGAAAAAGAA |
| 421 | TATTCAATAT               | TAGACTACAA               | GCATTITALAT              | GACTTOTOAG               | GGTTTCTAGC               | TOTOTOTOAT               |
|     | ATAAGTTATA               | ATCTGATGTT               | CGTTAGATTI               | STGAAGAGTO               | CCAAAGATCG               | AGAGAGAGTA               |
| 481 | TT DADACATS              | CTTT CCTAGT              | AATCTCTACT               | CATATATCTT               | ACTGCTACGC               | TGGGGCCAGA               |
|     | AAGTGTGTAD               | GAAAGGATCA               | TTAGAGATGA               | GTATATAGAA               | 1 JACGATGCG              | ACCCCGGTCT               |
| 541 | TAACHNNNNN               | CTT CCATTTT              | GTTTTTATCT               | CTATTOTTOT               | TCCCCTTCTG               | CTTTCATTAT               |
|     | ATTGHNNNNN               | SAASGTAAAA               | CAAAAATAGA               | GATAAGAAGA               | AGGGGAAGAC               | GAAAGTAATA               |
| 601 | IGAAACTTTC               | TGCTTTCATT               | ATTGAAACTT               | TOOCAGATTT               | CTTCTGCTTA               | ACCTGGCATT               |
|     | ACTTTGAAAG               | ALGAAAGIAA               | IAACTTTGAA               | AGGGTOTAAA               | CAAGACGAAT               | TGGACCGTAA               |
| 661 | GGAACTGTTT               | CCTCTTCCCT               | GTGCTGCTTT               | CTCCCATTGC               | CATGTCCTTT               | TTTTTTTTT                |
|     | CCTTGACAAA               | GGAGAAGGGA               | CACGACGAAA               | GAGGGTAACG               | GTACAGGAAA               | AAAAAAAA                 |
| 721 | TTTTTTTTTT               | TGAGACAGTG<br>ACTCTGTCAC | TCACTCTGTT AGTGAGACAA    | GCCCAGGCTG<br>CGGGTCCGAC | GAGTGCAATG<br>CTCACGTTAC | GTGCAATCTT<br>CACGTTAGAA |

### FIGURE 45B

| / O - | 33 CLACIGCA         | ACCCCGACTC | COGGLICAAG | - GALLCICIA | CCTGCCTCAG | CCICCTGAST |
|-------|---------------------|------------|------------|-------------|------------|------------|
|       | CCGGTGACGT          | TGGGGCTGAG | GCCCAAGTTC | ACTAAGAGAT  | GGACGGAGTC | GGAGGACTCA |
| e 4 1 | AGCTGGGATT          | ACAGGTGCCA | CCACTATGCC | GGCTGATTTT  | GTATTTTAGT | AGAGATGGGT |
|       | TOGROSOTAR          | TGTCCACGGT | GGTGATACGG | CCGACTAAAA  | CATAAAATCA | TOTOTACCCA |
| 901   | TCACATGCAG          | ATCAGCTGTT | CCGACTCTGA | CCAGNUNNNN  | NUNNNNNNNN | 1701110701 |
|       | ASTSTACSTC          | TAGTOGACAA | GGCTGAGACT | GGTCNNNNN   | ממממממממ   | TAGTTTCAGT |
| 9 6 1 | GCCAAAGTGC          | TAGGCTTAGA | GTAATTGTGT | AATTTCCACA  | CAAGTGCAAC | CTAGTGTAAT |
|       | OSSTTTCACS          | ATCCGAATCT | CATTANCACA | TTAAASGTGT  | GTTCACGTTG | GATCACATTA |
|       | G D D T DAA DAA     | TGTNNNTATG | AATSTOTOGA | ACGTTAGTAA  | CTAATAACAA | GTAGTTAGTT |
|       | CGGAGTTCTT          | ACAMMMATAC | TTACAGAGCT | TOCALICATT  | GATTATIGTI | CATCAATCA  |
| 081   | TATAGATGTA          | TOCTAGIATG | TAGCA      |             | •          |            |
|       | 2 7 2 7 0 7 2 0 2 7 | ACCITCITIC | } TOCT     |             |            |            |

### FIGURE 46A

|     | 10                       | 2 C                      | 30                       | 40                       | <b>5</b> C               | 6C                       |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 2   | CACAAAAAA                | GATTATTAGÖ               | CACAAAAAA                | COTTGAAGTA               | ACGCATTAAA               | ATGTTAATGG               |
|     | GTGTTTTTT                | CTAATAATCG               | GTGTTTTTT                | GGAACTTCAT               | TGCGTAATTT               | TACAATTACC               |
| 61  | ATTCACTTTA               | TTGAGCATCT               | GCTCATAATA               | CTTTAATGAG               | TGCAAAGTGC               | TTTGAATATA               |
|     | TAAGTGAAAT               | AACTCGTAGA               | CGAGTATTAT               | GAAATTACTC               | ACGTTTCACG               | AAACTTATAT               |
| 121 | ATACGTCATT               | TAAACCTTAC               | CATAATTOTG               | AGGAATTGCT               | ACCTCCACTT               | CACAGATGGG               |
|     | TATGCAGTAA               | ATTTGGAATG               | GTATTAAGAC               | TOCTTAACGA               | TGGAGGTGAA               | GTGTCTACCC               |
| 181 | GCACAGGAGG               | CTTAGATAAC               | ATGCCCAAAG               | TCATGCTTCT               | AGTAAATGGA               | TATAATTAAG               |
|     | CGTGTCCTCC               | GAATCTATIG               | TACGGGTTTC               | AGTACGAAGA               | TCATTTACCT               | ATATTAATTC               |
| 241 | ATTOAAATTA               | TTGATAAGAA               | TTTGATCTGC               | STTASSASTA               | TOTAGTAGTA               | AATCTAAAAG               |
|     | TAAGTTTAAT               | AACTATTCTT               | AAACTAGACG               | GAATSSTSAT               | AGATOATOAT               | TTAGATTTTC               |
| 301 | CGCTTTCCAG               | AGCATGTGCT               | GTTGATAGAG               | CTTGATGTCT               | AACTCTCTGA               | AATTTTCCAT               |
|     | GCGAAAGGTC               | TCGTACACGA               | CAACTATCTC               | GAACTACAGA               | TTGAGAGACT               | TTAAAAGGTA               |
| 361 | TOTTATTTGT               | CTCACTGGTA               | TATAGTTATT               | TTTTACTACT               | TTCATACACC               | TACTAAGAAG               |
|     | AGAATAAACA               | GAGTGACCAT               | ATATCAATAA               | AAAATGATGA               | AAGTATGTGG               | ATGATTCTTC               |
| 421 | ACAGGAGGAT<br>TGTCCTCCTA | CAAAGATAGG<br>GTTTCTATCC | ATTTCATTTA<br>TAAAGTAAAT |                          | AGCTTCACGT<br>TOGAAGTGCA |                          |
| 481 | AGAATAAGAT<br>TOTTATTOTA | TCAGGCAGAC<br>AGTCCGTCTG | CACCAGTATA<br>GTGGTCATAT | TICCATGGTC<br>ACGGTACCAG | COTGGTTATC               | TTTCAGCAGG<br>AAAGTCGTCC |
| E41 | TGACCGAGAA<br>ACTGGCTCTT | AGAAAACATG<br>TCTTTTGTAC | GTAATGTTTA<br>CATTACAAAT | TGAMATGGTG<br>ACTITAICAC | GGTTCTTGTA<br>CCAAGAACAT |                          |
| 601 | AACATATOTS               | CCTTTACTGT               | ATTAAGATGA               | TGGATTAACT               | TATTCTTGAT               | ATGGGCATGT               |
|     | TTGTATAGAC               | GGAAATGACA               | TAATTOTACT               | ACCTAATTGA               | ATAAGAACTA               | TACCCGTACA               |
| 661 | AAAACAATAT               | ACTTTTACTA               | AACAGCTACA               | GAGAGACAAA               | TGTGTTTCCA               | GACAAACTTA               |
|     | TTTTGTTATA               | TGAAAATGAT               | TTGTCGATGT               | CTCTCTGTTT               | ACACAAAGGT               | CTGTTTGAAT               |
| 721 | AGAGACTGAG               | TGTTCAAACT               | GAATAATCTC               | GACCTTAATT               | GTAACTATAT               | TTTATGAAAT               |
|     | TCTCTGACTC               | ACAAGTTTGA               | CTTATTAGAG               | CTGGAATTAA               | CATTGATATA               | AAATACTTTA               |

### FIGURE 46B

- 781 CCAGCTGTAA GGCAAAACAG ACTOTTGGCT ACACGGCATT TGTCTGTTAA TGATACTCAA GGTCGACATT CCGTTTTGTC TGAGAACCGA TGTGCCGTAA ACAGACAATT ACTATGAGTT
- 841 COTTAACOGT CACTTAATAA TGCTGAATAA TGTCATTAAT CTGAGATGTT AGTATGATCA GGAATTGGCA GTGAATTATT ACGACTTATT ACAGTAATTA GACTCTACAA TCATACTAGT
- 911 ATSSBARTCA CTGCTGAGCT CTCSAAGCCC TACCCTTAGT GACGACTCGA GAGCTTCGGG

| CTCTOCACACATGTTCCCTCTCTCTCTCTCTCTCTCTCTCTCTCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 180                                                                                                                                             | 270                                                                                                                                                                                                                 | 360                                                                                                                                                                                                                                                 | 4.50                                                                                                                                                                                                                                    | 340                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 84                                                                                                                                              | ËĒ                                                                                                                                                                                                                  | r. g                                                                                                                                                                                                                                                | 6.1.4<br>0.1.4                                                                                                                                                                                                                          | 84<br>14                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>AA</b><br>Ly.                                                                                                                                | A&C                                                                                                                                                                                                                 | TAC                                                                                                                                                                                                                                                 | Pro<br>Pro                                                                                                                                                                                                                              | 17.<br>17.                                                                                                                                                                                                                                             |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATO<br>Het                                                                                                                                      | ્રું તુ                                                                                                                                                                                                             | Ser<br>Ser                                                                                                                                                                                                                                          | 7.00 Pro                                                                                                                                                                                                                                | <b>₹</b>                                                                                                                                                                                                                                               |
| <b>32</b> F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CT CT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AAT                                                                                                                                             | CA.                                                                                                                                                                                                                 | 170<br>Leu                                                                                                                                                                                                                                          | Ω1<br>Pro                                                                                                                                                                                                                               | G11<br>V•1                                                                                                                                                                                                                                             |
| \$ \frac{1}{2} \text{S} S | 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CAT<br>B1.                                                                                                                                      | ĄĘ                                                                                                                                                                                                                  | CTG<br>L•u                                                                                                                                                                                                                                          | S c s                                                                                                                                                                                                                                   | 17.1<br>17.5                                                                                                                                                                                                                                           |
| 7 X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AAG<br>Ly•                                                                                                                                      | 917<br>917                                                                                                                                                                                                          | 515<br>4.                                                                                                                                                                                                                                           | GAA<br>G1"                                                                                                                                                                                                                              | GTG<br>V•1                                                                                                                                                                                                                                             |
| 2010X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pr. 8                                                                                                                                           | OCA<br>A1.                                                                                                                                                                                                          | GAT<br>And                                                                                                                                                                                                                                          | 1 E                                                                                                                                                                                                                                     | CIA<br>Leu                                                                                                                                                                                                                                             |
| 24051<br>CTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ACT                                                                                                                                             | 11A<br>L•u                                                                                                                                                                                                          | IAI<br>Iye                                                                                                                                                                                                                                          | 11A<br>L•u                                                                                                                                                                                                                              | CAT<br>Asp                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATT<br>11.                                                                                                                                      | CAT<br>B1.                                                                                                                                                                                                          | CAT<br>BI                                                                                                                                                                                                                                           | TCA<br>Ser                                                                                                                                                                                                                              | 000<br>01,7                                                                                                                                                                                                                                            |
| TOCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AAC<br>A•n                                                                                                                                      | CCA                                                                                                                                                                                                                 | A1.                                                                                                                                                                                                                                                 | ACA<br>The                                                                                                                                                                                                                              | 6A6                                                                                                                                                                                                                                                    |
| AAAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 2<br>2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ACT<br>The                                                                                                                                      | ATA<br>11•                                                                                                                                                                                                          | CTA<br>Leu                                                                                                                                                                                                                                          | ** <b>*</b>                                                                                                                                                                                                                             | CCA<br>Fro                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ara<br>Ara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SCT<br>Ala                                                                                                                                      | C∧;                                                                                                                                                                                                                 | GAG<br>Glu                                                                                                                                                                                                                                          | TTC<br>Pi.                                                                                                                                                                                                                              | ATG<br>Het                                                                                                                                                                                                                                             |
| 1001<br>2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OCC<br>Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₹<br>21°                                                                                                                                        | ACA<br>Thr                                                                                                                                                                                                          | CTT<br>Vel                                                                                                                                                                                                                                          | A17                                                                                                                                                                                                                                     | 0.5<br>G L Y                                                                                                                                                                                                                                           |
| (X.T3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CCC<br>Ar &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AAT<br>A•n                                                                                                                                      | E É                                                                                                                                                                                                                 | TCT GT1<br>Ser Vel                                                                                                                                                                                                                                  | <b>9</b> 75                                                                                                                                                                                                                             | C.<br>G.I.n                                                                                                                                                                                                                                            |
| 7000<br>0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QQ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TCC<br>Ser                                                                                                                                      | AA.T.                                                                                                                                                                                                               | GAT<br>And                                                                                                                                                                                                                                          | <b>₩</b>                                                                                                                                                                                                                                | CCT                                                                                                                                                                                                                                                    |
| <b>₹</b> 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100<br>5• r                                                                                                                                     | TAT<br>Tyr                                                                                                                                                                                                          | 01.0<br>1.0<br>1.0                                                                                                                                                                                                                                  | C. 3.                                                                                                                                                                                                                                   | ICI<br>Ser                                                                                                                                                                                                                                             |
| 10.14<br>10.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A<br>Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A.A.A. 1. y •                                                                                                                                   | 117<br>L•u                                                                                                                                                                                                          | 61.y                                                                                                                                                                                                                                                | CAI<br>A.p                                                                                                                                                                                                                              | ITC<br>Mie                                                                                                                                                                                                                                             |
| 1501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ¥ = 1                                                                                                                                           | 110<br>M•                                                                                                                                                                                                           | 111<br>M•                                                                                                                                                                                                                                           | Clu                                                                                                                                                                                                                                     | AL.                                                                                                                                                                                                                                                    |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 010<br>010<br>010<br>010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 5                                                                                                                                             | AAG<br>L.y.e                                                                                                                                                                                                        | 6 <b>AA</b><br>G1.u                                                                                                                                                                                                                                 | AAT<br>neA                                                                                                                                                                                                                              | AGT<br>Ser                                                                                                                                                                                                                                             |
| (MTT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ala Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75 T                                                                                                                                            | AAG<br>1. y •                                                                                                                                                                                                       | AAA<br>Lya                                                                                                                                                                                                                                          | ATT<br>11.                                                                                                                                                                                                                              | TTC<br>Ph.                                                                                                                                                                                                                                             |
| GATT<br>ACCU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 700<br>5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35                                                                                                                                              | ATC<br>11•                                                                                                                                                                                                          | 100<br>Irp                                                                                                                                                                                                                                          | ATA<br>11.                                                                                                                                                                                                                              | CCI<br>Pro                                                                                                                                                                                                                                             |
| CTC0<br>CTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ₹<br>\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11C                                                                                                                                             | VYC<br>V●II                                                                                                                                                                                                         | C <b>AG</b><br>G1n                                                                                                                                                                                                                                  | 1CA<br>5•1                                                                                                                                                                                                                              | CCA                                                                                                                                                                                                                                                    |
| Ω <u>3</u> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ACC<br>Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 <b>1</b> 0                                                                                                                                    | GAG<br>G1u                                                                                                                                                                                                          | 700<br>Ser                                                                                                                                                                                                                                          | ATC<br>11.                                                                                                                                                                                                                              | GIA<br>Val                                                                                                                                                                                                                                             |
| 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>₹</b> 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EE                                                                                                                                              | AL.                                                                                                                                                                                                                 | 3 5<br>3 5                                                                                                                                                                                                                                          | TAC                                                                                                                                                                                                                                     | ATT<br>11.                                                                                                                                                                                                                                             |
| CTCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35                                                                                                                                              | AAA<br>Ly•                                                                                                                                                                                                          | A11<br>11.                                                                                                                                                                                                                                          | A P                                                                                                                                                                                                                                     | CAI                                                                                                                                                                                                                                                    |
| 1100<br>6104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CTT<br>L•u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CIC                                                                                                                                             | 116                                                                                                                                                                                                                 | CAA<br>G Ln                                                                                                                                                                                                                                         | 3.5                                                                                                                                                                                                                                     | TCG<br>Ser                                                                                                                                                                                                                                             |
| A11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E 3                                                                                                                                             | 01°                                                                                                                                                                                                                 | <b>№</b> 6                                                                                                                                                                                                                                          | CAT<br>B1.                                                                                                                                                                                                                              | GTT<br>Vel                                                                                                                                                                                                                                             |
| 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ¥ å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Eé                                                                                                                                              | CAT                                                                                                                                                                                                                 | 8 4<br>1.8                                                                                                                                                                                                                                          | ACT<br>The                                                                                                                                                                                                                              | A new                                                                                                                                                                                                                                                  |
| ADOCA<br>ADOCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15 g 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | THE THE CHE CIC GOT THE CHE THE GREET THE THE ANA THE THE GAS GUT ALT AND ATT ACT CHE AND CA AND CAL AND AND GEN THE PRO LYS BIS AND HOLLYS ALS | ITG GAT GAA ITG AAA GCT GAG AAC ATG AAG ATG ITG ITA TAT AAT TTT AGA CAG GAT ITA GCA GAT AGA AAG TTT Lew Amp Glu Lew Lye Ale Glu Ann Ile Lye Lye Lye Lew Tyr Agn Phe Glu Ile Fro Bie Lew Ale Gly The Glu Gln Ann Phe | E 3                                                                                                                                                                                                                                                 | ANT AND ACT CAT COC AND TAC ATC ATCA ATT ANT CAN CAT CAN ANT CAG ATT TIC AND ACT ACT TO TTA TIT GAN CCA CCT CCT CCA Agn Lye The Bie Pro Aen Tyr Ile Ser Ile Ile Aen Clu Aep Cly Aen Gluille Phe Aep The Ser Leu Phe Glu Pro Pro Pro Pro | TAT GAA AAT GIT ICG GAI AIT GIA CCA CCI IIC AGI GCI IIC ICI CCI CAA GGA AIG CCA GAG GGC GAI CIA GTG IAI GII AAC IAI GCA<br>Tyr Glu Agn Val Ser Amp Ile Val Pro Pro Pro Pre Ser Ala Pre Ser Pro Gin Gly Het Pro Glu Gly Amp Leu Val Tyr Val Amn Tyr Ala |
| STA<br>STA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATO TOO AAT CTC CTT CAC GAA AND GAC TOO GAT GTG GAN ACC GAN COX CAN COX CAN TOO CTG TOO COT COO CAO CTG GTG CTG COO CCT HOU Lou Blo Glu Thir Asp Ser Ala Val Ala Thir Ala Air Arr Pro Arr Irp Lou Cya Ala Gly Ala Lou Val Lou Ala Gly Ala Cou Val Lou Ala Gly Ala Lou Val Lou Ala Gly Ala Cou Ala Gly Ala Lou Ala Gly Ala Cou Ala Gly Ala Lou Ala Gly Ala Cou Ala Gly Ala Cou Ala Ala Cou Ala Ala Ala Ala Cou Ala Ala Gly Ala Cou Ala Ala Cou Ala Ala Cou Ala Ala Ala Ala Cou Ala | 85                                                                                                                                              | ËĚ                                                                                                                                                                                                                  | CAG CTT OCA AAG CAA AIT CAA TOC CAG TOG AAA GAA 111 GGC CTG GAI TCT GTT GAG CTA OCA CAI TAI GAI GTC CTG ITG TOC TAC OCA OLA Lee Ale Gla Lye Gla Ile Gla Ser Gla Trp Lye Glu fie Gly Leu Aep Ser Vel Glu Leu Ale Bie Tyr Aep Vel Leu Leu Ser Tyr Pro | TAN<br>PA                                                                                                                                                                                                                               | 141<br>17r                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                        |

FIGURE 47A

# FIGURE 47B

| 630                                                                                                         | 720                                                                                                                             | 610<br>270                                                                                                                 | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 990                                                                                                                                  | ATA GGT 1060<br>11- 017 360                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ar.                                                                                                         | LY.                                                                                                                             | CCA<br>Pro                                                                                                                 | TAT<br>Tyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q 27.                                                                                                                                | 96.1<br>91.7                                                                                                                                            |
| 7 E                                                                                                         | C 16                                                                                                                            | A FE                                                                                                                       | TAC<br>Tyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GTT<br>Vol                                                                                                                           | A1A<br>11•                                                                                                                                              |
| G11<br>V•1                                                                                                  | 33.5                                                                                                                            | C.T.                                                                                                                       | 61.<br>61.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AAT<br>Aen                                                                                                                           | CTC<br>V•1                                                                                                                                              |
| AAA<br>Lys                                                                                                  | CCI                                                                                                                             | $\frac{\alpha}{r}$                                                                                                         | ATT<br>11•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TAC AAT GTT (Tyr Asn Val (                                                                                                           | AAI<br>Asn                                                                                                                                              |
| 000<br>014                                                                                                  | SCI<br>Ale                                                                                                                      | GAC CCT CTC ACA                                                                                                            | CCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CCC                                                                                                                                  | IAC                                                                                                                                                     |
| TAT<br>Tyr                                                                                                  | 11 £                                                                                                                            | 617<br>617                                                                                                                 | CAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GTG<br>V•1                                                                                                                           | A11<br>11.                                                                                                                                              |
| OCC AGA TAT GOG AAA<br>Ale Are Tyr Gly Lye                                                                  | 7AC<br>7yr                                                                                                                      | V •<br>V •                                                                                                                 | CCT GIT (Pro Val )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AAA<br>Ly•                                                                                                                           | AGA<br>Arg                                                                                                                                              |
| ₩<br>¥                                                                                                      | d∎v<br>gwc                                                                                                                      | est<br>ely                                                                                                                 | CCT<br>Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CTC                                                                                                                                  | ACA<br>Thr                                                                                                                                              |
| A11                                                                                                         | A.                                                                                                                              | AAT<br>A s n                                                                                                               | ATT<br>11•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGT<br>Ser                                                                                                                           | GTG<br>Val                                                                                                                                              |
| GTA<br>Val                                                                                                  | CCI                                                                                                                             | CTG<br>L•11                                                                                                                | AGT<br>5•r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CCA<br>G13                                                                                                                           | 6AA<br>613                                                                                                                                              |
| A T T                                                                                                       | GAC                                                                                                                             | AAT                                                                                                                        | CCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A: A                                                                                                                                 | AAT<br>Amn                                                                                                                                              |
| AAA<br>Lys                                                                                                  | 700<br>5•r                                                                                                                      | CIA<br>L•11                                                                                                                | CIT<br>Len                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10:<br>1: p                                                                                                                          | Ar.C                                                                                                                                                    |
| 933<br>613                                                                                                  | TAC<br>17 r                                                                                                                     | ATC<br>11•                                                                                                                 | 150<br>1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %¥<br>3•#                                                                                                                            | 101<br>3•r                                                                                                                                              |
| CON CAC ATC AAA ATC AAT TOC TOT GOD AAA ATT GTA ATT AFR AFR AND HOT LYB TIO AYN CYB Ser GLY LYB TIO VAL TLO | OCC AAA 237 GET ATT CTC TAC TCC GAC CCT GCT GAC TAC TIT GCT CCT Alm Lya Cly Val IIa Lau Tyr Sar Asp Pro Alm Amp Tyr Phe Alm Pro | GGA GGT GHT GTC CAG GGT GGA AAT ATC CTA AAT CTG AAT GGT GCA GGA GLY GLY VAL GHA Arg Gly Aan He Len Ann Len Ann Gly Ale Gly | ANY CGT (ATA ALL CATA CATA CGT GTT CGT CTT CCA AGT ATT AND AND AND CHARLES AND AND CHARLES AND CATACOMPACT AND CHARLES AND CHA | GET GREAT THE OCA COA COA GAT AND TON AND GGA ANT CTC AAA GTG COC GLYGLY 3+r Alm Pro Fro Fro Amp S+r Inp Arm Gly S+r Leu Lym Val Pro | CAA AAA GIC AAG AIG CAC AIC CAC ICT ACC AAI GAA GIG ACA AGA AII IAC AAI GIG GIn Lys Val Lys Het His IIe His Ser The Ash Gib Val Ihe Arg IIe Tye Ash Val |
| 1:K                                                                                                         | A1 T                                                                                                                            | \$ <del>6</del> 6                                                                                                          | OCT<br>Ale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CAT                                                                                                                                  | ATC<br>11.                                                                                                                                              |
| A A T                                                                                                       | <del>.</del> _ •                                                                                                                | ¥1¥<br>¥1¥                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fr 0                                                                                                                                 | CAC<br>HIL                                                                                                                                              |
| <u>-</u> =                                                                                                  | \$2.5<br>\$1.3                                                                                                                  | ¥ :                                                                                                                        | ٠.٢<br>٧.٤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CCA                                                                                                                                  | ATC.                                                                                                                                                    |
| <b>₹</b>                                                                                                    | ¥                                                                                                                               | 61C<br>V*I                                                                                                                 | A11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SCA<br>A1.                                                                                                                           | %G<br>1.7•                                                                                                                                              |
| 7 ¥ £                                                                                                       | 330<br>VI•                                                                                                                      | 5 5                                                                                                                        | ¥373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TCA<br>3 • r                                                                                                                         | GTC<br>V-1                                                                                                                                              |
| CAC<br>Anti                                                                                                 | rad cTG GYA GOG<br>Glu Leu Ale Gly                                                                                              | 617<br>617                                                                                                                 | CGT<br>Ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.17<br>6.17                                                                                                                         | ₹;                                                                                                                                                      |
|                                                                                                             | <b>₹</b> ,<br><b>∀</b> ,<br><b>∀</b> ,                                                                                          | €35<br>0 1,4                                                                                                               | ACT CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.17                                                                                                                                 | A<br>P I S                                                                                                                                              |
| <b>GA</b> 6                                                                                                 | £ :                                                                                                                             | CCT<br>Pro                                                                                                                 | <b>TAT</b><br>Tyt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A16<br>M•0                                                                                                                           | AC.A<br>Thr                                                                                                                                             |
| III AAA IIG GAA<br>Fhe Lys Leu Glu                                                                          | 11 (S                                                                                                                           | 120 110                                                                                                                    | AAT GAA TAT GCI TAT<br>Aan Glu Iyi Ala Iyt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ξ<br>                                                                                                                                | 7CI<br>5.er                                                                                                                                             |
| <b>.</b> }                                                                                                  | 28 ₹                                                                                                                            | TOG AAT                                                                                                                    | TAT<br>171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6AA<br>61u                                                                                                                           | AAC 1111<br>Agn Phe                                                                                                                                     |
| E E                                                                                                         | AAI<br>A∎n                                                                                                                      | 133<br>1 r p                                                                                                               | GAA<br>G1u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CIA<br>Leu                                                                                                                           | <b>**</b>                                                                                                                                               |
| A CAC ITC 1                                                                                                 | GTT AMA AAT (                                                                                                                   | 8 5                                                                                                                        | AAT<br>Aan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CTC<br>L•u                                                                                                                           | 61.4<br>61.4                                                                                                                                            |
| ₹<br>8                                                                                                      | GTT<br>V=1                                                                                                                      | GAT<br>A.p                                                                                                                 | 84.<br>A.4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>AAG</b> Ly•                                                                                                                       | ACT                                                                                                                                                     |
| 3 ई                                                                                                         | AAT AAG<br>Amn Lym                                                                                                              | £ 33                                                                                                                       | CCA<br>Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CAG<br>Gln                                                                                                                           | E &                                                                                                                                                     |
| ACT<br>The                                                                                                  |                                                                                                                                 | 17.1                                                                                                                       | TAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S. A.                                                                                                                                | 85.7                                                                                                                                                    |
| \$ \$                                                                                                       | 25.                                                                                                                             | Ser S                                                                                                                      | 0CT<br>C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GAT                                                                                                                                  | B 5                                                                                                                                                     |
|                                                                                                             |                                                                                                                                 |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                         |

74/130

FIGURE 47C

### 75/130

| <b>2</b>       | 5 1 N S                                            | 85<br>≴ ₹       | 8 <del>7</del> 5    | 5 × 1    | 35                                          | CTC AGA GGA GCA GTG GAA CCA Leu Arg Gly Ala Val Glu Pro | CCA GAC            | C AGA         | A 17                | TAT GTC A      | A11            |                                       | (53.4<br>(1.4) | GOA OGT CAC (                                                            | \$ E               | 8 5        | GAC<br>And                  | GAC TCA                                         | 15 g       | 616<br>Val  | E É        | 061<br>613 | 667<br>GLy | A11<br>11• | <b>₹</b>   | ∝r<br>Pro       | 5<br>5<br>5<br>7<br>7<br>8 | S 51              | 390      |  |
|----------------|----------------------------------------------------|-----------------|---------------------|----------|---------------------------------------------|---------------------------------------------------------|--------------------|---------------|---------------------|----------------|----------------|---------------------------------------|----------------|--------------------------------------------------------------------------|--------------------|------------|-----------------------------|-------------------------------------------------|------------|-------------|------------|------------|------------|------------|------------|-----------------|----------------------------|-------------------|----------|--|
| 964 Q          | OCA OCT<br>Ale Ale                                 | 5 ×             | 5 ×                 | 11<br>11 | GTT GTT CAT GAA ATT GT! AKG AKC             | ¥2<br>1                                                 | 5 >                | ;; <b>V</b> ( | S AC                | 111 c<br>111 c | V: 55 .        | ACA<br>The                            | 0.10           | LIG AAA AAG                                                              | . AAG<br>I.ye      | GA.        | GAA (22) 10G<br>Glu Gly Irp | 138                                             | AGA<br>Ar  | CCT         | ACA<br>Arg | AGA<br>Arg | ACA<br>THE | A11 TTG    | 130        | E &             | 8 4                        | % r               | 1260     |  |
| Toc C.         | CAT CCA                                            | 000 OV          | 3                   | ¥ = =    | GAA GAA TIT CAT CIT CIT CAT TCT GIL GIL FOR | 17 L                                                    | 17 C1              | 85            | 1 TC                | T ACT          | 5 La           | 11.2                                  | 2 V            | GAS TOS OF A GAG GAG AAT TCA AGA CTC Glu Trp Ala Glu Glu Ann Ser Arg Leu | CAG                | AAT        | ICA<br>Ser                  | AGA<br>Ar &                                     | 010        | C11<br>Leu  | <b>₹</b> 5 | GAU CGT    | Are        | GGC GTO G  | GT0<br>V•1 | A1.             | TAT<br>Tyr                 | A11               | 1350     |  |
| An A           | OCT GAC TCA TCT ATA GAA ALe Asp Ser Ser Ile Glu    | AC T            | CA T(<br>•r S       | C1 A     | 17<br>1.<br>6.<br>6.                        | ু<br>ইন                                                 | . <b>∀</b>         | OCA AMO TAC   | C ACT               | T CTG          | 3 AGA<br>1 Arr | C11                                   | GAT<br>A.p.    | rot<br>Cy•                                                               | MIA<br>The         | CCC<br>Pro | CTG<br>L•u                  | ATG<br>Het                                      | 1AC<br>17F | AGC<br>3.er | 116        | GTA<br>Vel | #1.        | AAC<br>A*J | CTA<br>Lea | A F             | Ly.                        | <b>GAG</b><br>G1u | 1440     |  |
| CTG A L. (.)   | AAA AGC CCT (                                      | გ <u>შ</u><br>8 | 7<br>10<br>10<br>10 | CAT G    | CAA G                                       | 6XC 111<br>61y Ph•                                      | 11 GAA<br>h• G1u   | S 5<br>≯ 3    | GA: AAA<br>G1y 1.y* | A TOT<br>Sor   | r ctt<br>r Leu | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | CAA<br>Glu     | N AGE                                                                    | AGT TOS<br>Sec Trp | ACT<br>Thr | AAA: Ly•                    | LY.                                             | Ser        | Pro         | TCC<br>Ser | CCA<br>Pro | GAG<br>GAU | £ £        | AGT<br>Ser | 93C<br>GL7      | ATC                        | 85                | 1530     |  |
| ACG A          | ATA AG                                             | S               | ¥ <b>₹</b>          | 223      | ACC AAA ITG GGA TCI<br>Ser Lye Leu Gly Ser  | Ø 5<br>•                                                | CCA AAT<br>Gly Amn | AT CAT        | ITT TI<br>IP Fh•    | 7 GAG<br>• Glu | 6 676<br>u Val | 11C                                   | 717C           | CAA                                                                      | 1 Arg              | E 3        | CGA 617                     | ATT 11.                                         | A1.        | TCA<br>Ser  | 000        | AGA<br>Arg | A1.        | Ar. 8      | TAT        | ACT             | ₹.                         | A and             | 1620     |  |
| 700 G<br>Trp G | GAA ACA AAC AAA IIC AOC<br>Glu Thr Asn Lys Phe Ser | CA A            | AC A.               | 7 T      | TC A                                        | 20                                                      | OXC TAT            | AI CCA        | 7 CTG               | 6 TAI          | T CAC          | N.T.<br>Ser                           | r GTC          | TAT<br>Tyr                                                               | CAA<br>Glu         | ACA<br>Thr | TAT                         | TAT GAG TIG GTG GAA AAG Tyr Glu Leu Val Glu Lys | TTG        | CTC Vel     | 85         | Ly         | THE STA    | TAT<br>Tyr | 12 g       | TAT GAT CCA ATG | ATC<br>Fet                 | ΕĚ                | TTT 1710 |  |

FIGURE 47D

### 690

76/130

IAA GAGGAITCITIAGAGAAICCGIAIIGAAHHEGEGGGHAFGEGGHAGGAGAAGAAFGGAGTATAIAGAAAITHAAAAITGGGIAFAHHGA<u>AAIAAA</u>GITGAAIATA 2968 ACC CAT GTC . GAT TOT CGA GAT TAT Asp Cys Arg Asp Tyr AAA GTO 11 th žg 3°r IAT GAT ATT GAA AOC Asp Ile Glu Ser GTA Vel A AC Ë. % F AGT 3.e.r 21 10 10 CCT III **MA** Ly• TAC ACA Thr . Λ•ι AYS Arg AAA TAT CAC CTC ACT GIG GCC CAG GIT CGA GGA GAG AIG GIG III GAG CIA GAG AAI ICC AIA GIG CTC ALBIA Leu Thr Val Ala Gin Val Arg Gly Gly Met Hal Me Glu Leu Ala Aan Ser Ile Val Leu ADC CAC AAC AAG TAT OCA GAS 1"A TTC CCA GAA ATT TAT GAT GCT CTG TIT Sor His Asn Lys Tyr Ale Gly Clu Ser His Pro Gly Ile Tyr Asp Ale Leu Phe CAC A\*P AAG Ly• Ë Ë ري ري ري AGA (2)A ITT ATT (AT CCA ITA (2X) ITA CCA ATA ATA ATA THE INE ITE AND PTO Let Gly Let Pro ATG H•t C14 AGA CTC CAG Ark I en Glin 35 SCA Pro AAA CAT ATT CAT FIG ANG TIC ANT GAG ACT ATT TOT ATG GAI CAA CTC ATG TIT CTG GAA Asp Gln Leu Met Phe Leu Glu OCT GAC AAA ATC TAA ALa Aap tya Ile Tyr 5.44 G1:2 A'A Thr AAT TTT Agn Phe AMG TAT GTA AAG Vel Lye \$ \$0 \$. AGA Ar s Aen Aen ¥ & ¥2,3 g å A10 5.3 TOC ANG ( ¥84 750 Eė ¥ S E 3 ₹ **₹** 77 718 V.1 B 25 A77 11-¥ 8 ¥ 3 25

TATATAAAAAAAAAAAAAAAAAAAAAAAAAAAA 2343

### FIGURE 48



### FIGURE 49



79/130



### FIGURE 51

### <u>δ ♀ M H 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y</u>





### FIGURE 52

AT6.1-11 clone 2 AT6.1-11 clone 1

R1564-11 clone 4 R1564

R1564-11 clone 6

t RNA LnCap PC3

Markers

Uncut

PEN RNA 1 VOINS II ADL NOCARCINOMA ADENOCARO INOMA CANCIRCELL RALPROSTATIC RALMAMARY TIBROSARCOMA NOLSE. 1.1.1 1 / ブ HUMAN MAMMARY HUMAN PROSLATE HSSHE/ CELL R1564-11-CL6 R1564-11.C.1.2 R1564-11-C1 t R1564-11-C1.5 AT6,1-11-(1,1 AT6.1-11-CL2 181564 1.617 (11)67 ----

# FIGURE 53

83/130

FIGURE 54

Prostate



84/130



# FIGURE 56





Prostate Specific Promoter: Cytosine Deaminase Chimera





### FIGURE 58A

|       | 10                       | 20                             | 3 0                             | 40                                  | 5 C                           | $\epsilon$ :                 |
|-------|--------------------------|--------------------------------|---------------------------------|-------------------------------------|-------------------------------|------------------------------|
| 1     |                          | AAAAAAAAA T<br>TTTTTTTTT A     | TTCTTGGAA<br>AAGAACCTT          | AATGTCCAGC<br>TTACAGGTCG            | TCTTGCTTAA A<br>AGAACGAATT T  | TAAAAATATA<br>ATTTTTATA      |
| έÌ    | GAAAGGAAGA<br>CTTTCCTTCT | AAGAGACTCT C<br>TTCTCTGAGA G   | ACCTOTOTODA<br>TREADADADAD      | CTCCTATAAT<br>GAGGATATTA            | TATGAGGAAC TATACTCCTTG A      | TTTATTCAA<br>AAATAAGTT       |
| 121   | CTOTGAAATT<br>GAGACTTTAA | CTATACAATC T<br>GATATGTTAG A   | CTACAATAC<br>GATGTTATG          | TCTACTGAAT<br>AGATGACTTA            | AAAAGCAGAG (TTTTCGTCTC (      | CAGAAAAGC<br>GTCTTTTTCG      |
| 181   | TGCGCTTTTT<br>ACGCGAAAAA | TTCCATAGTC (                   | GGGAATGOTT<br>DCCTTACGAA        | GTCATCAGTG<br>CAGTAGTCAC            | TAAATCACCA<br>ATTTAGTGGT      | COGOGOCOTT<br>GGCGCGGGAA     |
| 241   | TTTCCTAAAG<br>AAAGGATTTC | AATATTATTS (                   | AATAATTAA<br>TTATTAATAA         | ACATGTAGGG<br>TGTACATCCC            | TATTATCCTC<br>ATAATAGGAG      | CACTTACATT<br>GTGAATGTAA     |
| 301   | ACAAAACAT<br>ATBOTTTTET  | TTTTTAAAGC<br>AAAAATTTOG       | CGGGGGTGGT<br>GCCCGCACCA        | GECTCACECC<br>CECCTOACCCC           | TGTAATCCCA<br>ACATTAGGGT      | GCACTTTGGG<br>CGTGAAACCC     |
| 3 € 1 | AGGCCCAGAG<br>TCCGGGTCTG | AGGCGGATCA<br>TOCCCCTAGT       | CCALACTCGAG<br>GCTTCAGCTG       | E AAATCGAGAG<br>TTTAGCTCTG          | CATCCIGGCC<br>GTAGGACCGG      | AACATGGTGA<br>TTGTACCACT     |
| 401   | AACCCATO<br>TTOGGGTAG    | I CTACTAAAAA<br>A GATGATTTTT   | TACALALAT<br>ATSTITTA           | T ACOTOGOGO<br>N TOG <b>accoc</b> c | T GETGGEGGG<br>A CEACGGEEGG   | TOOTSTAGTS<br>AGGACATCAS     |
| 4.8.3 | 1 COACCTACT<br>GCTCGATIP | C AGGAGGCTGA<br>5 TOOTOGGACT   | 000A 00A 0A.                    | E TESETTEAA<br>T ASCGAACTT          | 0 03030A0300<br>0 0000000000  | GAGGTTGCAG<br>CTCCAACGTC     |
| 54    | 1 TCAGCCAAG<br>AGTCGGTTC | A TAGOGGGAGT<br>T ATCGCGGTGA   | 30ACT <b>3GA</b> 3<br>03T3ACCTC | I STEGTGACA<br>S GACCACTGT          | G AGTGAGACTC<br>C TCACTCTGAG  | CCTCAAGAAA<br>GGAGTTOTTT     |
| 60    | 1 GAAAGGAAG<br>CTTTCCT1C | G GAAGGGAAAG<br>CTTCCCTTTC     | SBAABBAAB<br>COTTOOTTO          | a agagggaa<br>c cotocott            | PEKDEDADD D.<br>POTODOTOO OT  | GGAGGGGAGG<br>CCTCCCCTCC     |
| 66    | 1 AAAGAAAAC<br>TTTTTTTT  | GA ATACTGGAAC<br>TT TATGACCTTG | TTGTTGAAC<br>AACAACTTG          | CAGAGACTT                           | TT ATTTTCATA<br>AA TAAAAGTATA | CCCGGCTATG<br>A GGGCCGATAC   |
| 7 2   | 1 TCTGGCTAC<br>AGACCGATC | OT GTCTTACGTA                  | ATAGATATA<br>TATCTATA           | AA AATCAATCI<br>IT TTAGTTAGI        | TT GGTTGGATT<br>AA CCAACCTAA  | A ACCAGAAGAA<br>T TGGTCTTCTT |

### FIGURE 58B

| 7 & 1 | TGAGAAGATA               | TATTCTGGTA               | AGTTGAATAC                | TTAGCACCCA (                 | GGGTAATCA (              | PCTTGGACAS               |
|-------|--------------------------|--------------------------|---------------------------|------------------------------|--------------------------|--------------------------|
|       | ACTOTTOTAT               | ATAAGACCAT               | TCAACTTATG                | AATCGTGGGT (                 | CCCCATTAGT (             | CGAACCTGTC               |
| 841   | GACCAGGTCC               | AAAGACTGTT               | AAGASTCTTC                | TGACTCCAAA (                 | CTCAGTGCTC               | CCTCCAGTGC               |
|       | CTGGTCCAGG               | TTTCTGACAA               | TTCTCAGAAG                | ACTGAGGTTT (                 | GAGTCACGAG               | GGAGGTCACG               |
| 901   | CACAAGCAAA               | CTCCATAAAG               | GTATCCTGTG                | CTGAATAGAS                   | ACTGTAGAGT               | GGTACAAAGT               |
|       | GTGTTCCTTT               | GAGGTATTTC               | CATAGGACAC                | GACTTATCIC                   | TGACATCTCA               | CCATGTTTCA               |
| 961   | AAGACAGACA               | TTATATTAAG               | TCTTAGCTTT                | GTGACTTCGA                   | ATGACTTACC               | TAATOTAGOT               |
|       | TICTGTCTGT               | AATATAATTC               | AGAATCGAAA                | CACTGAAGCT                   | TACTGAATGG               | ATTAGATOGA               |
| 1021  | AAATTTCAGT               | TTTACCATGT               | GTAAATCAGG                | AAGAGTAATA                   | GAACAAACCT               | TGAAGGGTCC               |
|       | TTTAAAGTCA               | AAATGGTACA               | CATTTAGTCC                | TTCTCATTAT                   | CTTGTTTGGA               | ACTTCCCAGG               |
| 1081  | CAATGGTGAT               | TAXATGAGGT               | GATGTACATA                | ACATGCATCA                   | CTCATAATAA               | GTGCTCTTTA               |
|       | GTTACCACTA               | ATTTACTCCA               | CTACATGTAT                | TGTACGTAGT                   | GAGTATTATT               | CACGAGAAAT               |
| 1141  | AATATTAGTC               | ACTATIATIA               | GCCATCTCTG                | ATTAGATTIG                   | ACAATAGGAA               | CATTAGGANA               |
|       | TTATAATCAG               | IGATAATAAI               | CGGTAGAGAC                | TAATCTAAAC                   | TGTTATCCTT               | GTAATCCTTT               |
| 1201  | GATATAGTAC               | ATTCAGGATT               | TTGTTAGALA                | GAGATGAAGA                   | AATTCCCTTC               | CTTCCTGCCC               |
|       | CTATATCATG               | TAAGTCCTAA               | AACAATCTTT                | CTCTACTTCT                   | TTAAGGGAAG               | GAAGGACGGG               |
| 1261  | TAGGTCATCT               | AGGAGTTGTC               | ATGGTTCATT                | GTTGACAAAT                   | TAATTTTCCC               | AAATTTTTCA               |
|       | ATCCAGTAGA               | TCCTCAACAS               | TACCAAGTAA                | CAACTGTTTA                   | ATTAAAAGGG               | TITAAAAAGT               |
| 1321  | CTTTGCTCAG               | AAAGTCTACA               | TOGANGONOO                | CAAGACTGTA                   | CAATCTAGTC               | CATCTTTTTC               |
|       | GAAACGAGTC               | TTTCASATGT               | AGOTTOGTGG                | GTTCTGACAT                   | STTAGATGAG               | GTAGAAAAAG               |
| 1381  | CACTTAACTC               | ATACTSIGCT               | CTCCCTTTCT                | CAAAGCAAAC                   | TGTTTGCTAT               | TCCTTGAATA               |
|       | GTGAATTGAG               | TAIGACACGA               | GAGGGAAAGA                | GTTTCGTTTG                   | ACAAACGATA               | AGGAACTTAT               |
| 1441  | CACTCTGAGT               | TTTCTGCCTT               | IGCCIACTCA                | SCTGGCCCAT                   | GGCCCTAAT                | GTTTCTTCTC               |
|       | GTGAGACTCA               | AAAGACGGAA               | ACGGATGAGT                | CGACCGGGTA                   | CCGGGGATTA               | CAAAGAAGAG               |
| 1501  | ATCTCCACTG               | GGTCAAATCC               | TACCTGTACC                | TTATGGTTCT                   | GTTANAAGCA               | GTGCTTCCAT               |
|       | TAGAGGTGAC               | CCAGTTTAGG               | ATGGACATGG                | AATACCAAGA                   | CAATTTTCGT               | CACGAAGGTA               |
| 1561  | AAAGTACTCC               | TAGCAAATGO               | ACGSSCTOTO                | TCACGGATTA                   | TANGANCACA               | GTTTATTTTA               |
|       | TTTCATGAGG               | ATCGTTTACG               | TOCCOCAGAG                | ASTGCCTAAT                   | ATTCTTGTGT               | CAAATAAAAT               |
| 1621  |                          |                          |                           | TACGATIATT<br>ATGCTAATAA     | ATTATTARGA               | ATTTATAGCA               |
| 1681  | GGGATATAAT<br>CCCTATATTA | TTTGTATGAT               | GATTCTTCTG                | GTTAATCCAA<br>CAATTAGGTT     | CCAAGATTGA<br>GGTTCTAACT | TITTATATOT<br>AAAATATAGA |
| 1741  | ATTACGTAAC<br>TAATGCATTC | ACAGTAGECU<br>TGTCATCGGT | GACATAGOCO<br>CTGTATOGOC  | GGATATGAAA<br>CCTATACTTT     | ATANAGTOTO<br>TATTTCAGAG | TGCCTTCAAC               |
| 180   | TTCAMOSTC                | TAGALLAGI                | TICCTCCCC                 | COCCTOCCCT<br>CGGGAGGGAA     | COCTTOCCCT               | CCCCTTCCTT               |
| 186   | COCTTTCCC                | TCCCTTCCT                | TCTTTCTTGA<br>A AGANAGAAC | A GGGAGTOTOP<br>T COOTCAGAGI | CTCTGTCACO               | AGGCTCCAGT<br>TCCGAGGTCA |



### FIGURE 58C

| 1921 | GCAGTGGCGC<br>CGTCACCGCG | TATCTTGGCT<br>ATAGAACCGA | GACTGCAACC<br>CTGACGTTGG | TCCGCCTCCC<br>AGGCGGAGGS | CGGTTCAX C<br>GCCAAGTT CC | GATTOTOCTS<br>CTAASAGGAC                        |
|------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|-------------------------------------------------|
| 1981 | CCTCAGCCTC<br>GGAGTCGGAG | CTGAGTAGCT<br>GACTCATCGA | GGGACTACAG<br>CCCTGATGTC | GAGCCCGCCA<br>CTCGGGCGGT | CCACGCCC<br>GGTGCGOC      | CTANTITIO<br>GET. LULIA                         |
| 2041 | TATTTTTAGT<br>ATAAAAATCA |                          | TTTCACCATG<br>AAAGTGGTAC |                          |                           | m cakem<br>N cores                              |
| 2101 | CGTGATCCGC<br>GCACTAGGCG |                          | CTCCCAAAGT<br>GAGGGTTTCA |                          |                           | 0020 <b>A</b> 000<br>000 <b>270</b> 000         |
| 2161 | CGGCTTTAAA<br>GCCGAAATTT | AAATGGTTTT<br>TTTACCAAAA | GTAATGTAAG<br>CATTACATIC | TGGAGGATAA<br>ACCTCCTATT | TACCCTA: 1<br>ATGGGAT:    |                                                 |
| 2221 | AACAATAATA<br>TIGTIATIAT |                          | ANAAGGGCGC<br>TTTTCCCGCG |                          |                           |                                                 |
| 2281 | CCGACTATGG<br>GGCTGATACC | ANAMAGEG<br>TTTTTTTCGE   | CASCTTTTTC               | TGCTCTGCTT<br>ACGAGACSAA | TTATTCA F.A. AATAAGTEAT   | GASTATTOTA<br>CTCATAACAT                        |
|      | -                        | TCTTAAAGTC               | TCAACTTATT               | TTCAAGGAGT               | ATTAATA" "C               | TO DOTOTO                                       |
|      |                          | AAAGAAGGAA               | AGTANANATA               | TAXATTCOTT               | CTCGACC                   | TT COUNT<br>AN OUTTO                            |
|      |                          | AAAATTCCG                | CSGAGAGTTT               | Teccesseer               | AAAGGAA:                  | <b>%</b> 7: 7: 7: 7: 7: 7: 7: 7: 7: 7: 7: 7: 7: |
|      |                          | AGAGAGAGCG               | AGCCTAACCA               | ASTCACGTGA               | GATCTTT                   | rice restrict                                   |
|      |                          | TGGGGTCCAG               | ACCTCGCTTA               | AGGTCGGACG               | TCCCGACTAT                | TOGOTOGTA                                       |
|      |                          | CTCTCTCTCA               | AATGGGGGGG               | CACCACCAAC               | crecose                   | TCF TCTCCTC                                     |
|      |                          | CGCCCAGGCC               | cercessess               | AGACGAGCGC               | GGCTCTA                   | ot parm                                         |
|      | CACGAAACCG<br>GTGCTTTGGC |                          |                          | •                        |                           | 601 300000000000000000000000000000000000        |
|      |                          | GCCCACCGAA               | GAAAGAGGAG               | CCGAAGGAGA               | AGCCATC                   | - •                                             |
|      |                          | AGCCTCAGAA               | GGGGCACCAC               | OGOGCCACGA               | CCCTGAG                   |                                                 |
|      | CGAGTGGGAT<br>GCTCACCCTA |                          | CAGAASGOGT               | CCCOSCCOCT               | AATCCCA                   | U. TO:<br>C , ACA .                             |
| 3001 | CCYCLOSLCG               |                          |                          |                          |                           |                                                 |

$$\frac{0}{\text{NH}}$$

$$HO_2C$$

$$\frac{1}{\text{N}}$$

$$HO_2C$$

$$\frac{1}{\text{N}}$$

NAAG 1 N-acetylaspartyl-L-glutamate

Acivian

Azotomycin, becomes active by in vivo conversion to DON

6-diazo-5-oxo-norleucine, DON

0=

O=c ( : Š

FIG. 61

### 92/130

NAAG Identical in all respects to an authentic sample from Sigma.

acetic anhydride
 tetrahydrofurane
 N.N-dimethyfformamide

palladium on charcoal

PAC PAC

ErOAc = ethylacetate

FIG. 64

FIG. 66

FIG. 67

26 active at the nano to ploomotar levels in different cell lines readily rearranges when one or both thiggering devices are deprotected



FIG. 69



FIG. 70



"THE WARHEAD"

| 50 —     | ccece gracragaad<br>socge cacdaecers | sees escentrase<br>ecces ecectaates | AGCTG GGAACGGTGC<br>TCGAC CCTTGCCACG | CAGGIIGAGO GINGAACICA<br>GICCAACICC CAICTIGACI | TGCAA GACAGAGGAA<br>ACGTT CTGTCTCCTT | TIGIT IGITIGITIG<br>AACAA ACAAACAAAC | GGCAA GCTTGGGAAC<br>CCGTT CGAACCCTTG | CITIT GCTGITITIC<br>GAAAA CGACAAAAAG           | AAGCAGAACC ACACAGGCAA<br>TTCGTCTTGG TGTGTCCGTT | CTTCTTAGTG GCCTTGAACA<br>GAAGAATCAC CGGAACTTGT |
|----------|--------------------------------------|-------------------------------------|--------------------------------------|------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| 0        | F TGGTGCCGCG                         | r ccccaggggg                        | S AGGGTAGCTG<br>C TCCCATCGAC         |                                                | S AGCCCTGCAA<br>C TCGGGACGTT         | T TIGITITIGIT<br>A AACAAAACAA        | A ACAGAGGGAA<br>I IGICICCGII         | G CGGGTCTTTT<br>C GCCCAGAAAA                   |                                                |                                                |
| <b>v</b> | GTCTTCCCCÓ<br>CAGAAGGGGC             | TGCTGGTCTT<br>ACGACCAGAA            | acttaggagg<br>Tcaatcctcc             | GACAGTCACT<br>CTGTCAGTGA                       | CAAGTGCTGG<br>GTTCACGACC             | ttgittigit<br>Aacaaaacaa             | CTTGGAAGTA<br>GAACCTTCAT             | TCTTTACCAG<br>AGAAATGGTC                       | TTTCTAAGAA<br>AAAGATTCTT                       | GACTTTGCCA                                     |
| 30       | AAACCTCGGA<br>TTTGGAGCCT             | GGGATCCTGT<br>CCCTAGGACA            | GCACCCCTCG                           | CTGCTGGTAG                                     | AGGAAGGTTC<br>TCCTTCCAAG             | TTGTTTTGTT<br>AACAAAACAA             | TTCTTTCTTC<br>AAGAAAGAAG             | TCTGGACAGG<br>Agacctgtcc                       | TTGATCCAAC<br>AACTAGGTTG                       | TTCCAGTTTT<br>AAGGTCAAAA                       |
| 20       | cctcgcggAg<br>ggaggcctc              | GCTGCCGAGT                          | TGTGGGGTGA<br>ACACCCCACT             | TCTCGACAAG<br>AGAGCTGTTC                       | AACTGGGCGT<br>TTGACCCGCA             | TGCTTTTGTT                           | TCTCTGTGCA<br>AGAGACACGT             | TGTGTGAACC AGGTCACCAA<br>ACACACTTGG TCCAGTCGTT | ATTIGCAGAC<br>TAAACGICIG                       | TTTTATTAAA<br>AAAATAATTT                       |
| 10       | TAGGGGGGCG                           | TCGCGGGTCA                          | GTCGGGGTAA<br>CAGCCCCATT             | AGGGCTGAGT<br>TCCCGACTCA                       | GAGAACCTGA<br>CTCTTGGACT             | GTTTTTTTT<br>CAAAAAAAA               | TTTTTTACC<br>AAAAAATGG               | TGT <b>GTGAA</b> CC<br>ACACACTTGG              | CTGGGTACTG<br>GACCCATGAC                       | GCTCAGACTC                                     |
|          | <b>~</b>                             | 61                                  | 121                                  | 181                                            | 241                                  | 301                                  | 361                                  | 421                                            | 481                                            | 541                                            |

FIG. 72B

ATATTATCTG TCAATGGCTC AGGGAGAGTC GCAATCAATG GGATAAAATA CTACTCCTAT TATAATAGAC GATGAGGATA 601 AGTTACCGAG TCCCTCTCAG CGTTAGTTAC CCTATTTTAT

TACTGGGATT ATGACCCTAA CCTAGCACAG GGATCGTGTC ATGTAAATCT TACATTTAGA GTAATACTAA ATAATATAGC TATTATATCG CATTATCATT CANATTATIO GTTTAATAAC 661

TACACAGGAC TATTICITIC ITTACCAAGA TACTCCTCAT TGGACTITAA TACACAGGAC ATAAAGAAGA AAATGGTTCT ATGAGGAGTA ACCTGAAATT ATGTGTCCTG AAGCGGTGAA TTCGCCACTT 721

CTGCTCGGAA TTCTTGACCC TCTTTCGGGA ATAGTGGTCC ATCAGGTGAG GACGAGCCTT AAGAACTGGG AGAAAGCCCT TAGGGCATGG ACCACATGGG TITAAACAAA "TICAAIAICI ICCACIAGCI TATCACCAGG TAGTCCACTC TTTAGAAGAA ATCAGATTCC TAGTCTAAGG 781 841

TCACCTIGGG GIIGITAAAA GAITITIGAA CCACACACIG IGCICAIAAC AAICIICAIC TTAGAAGTAG GGTGTGAC ACGAGTATTG CTAAAAACTT CAACAATTTT AGTGGAACCC 106

ATCCCGTACC IGGICTACCC AAATTIGITT AAGITATAGA AGGIGAICGA

MANTCTTCTT

TCTTAAAAGG ATTTTATTCT TCCTGGTATT GCCCTCACTC TCATCCCTGT ATTCCGTGCT AGAATTTTCC TAAAATAAGA AGGACCATAA CGGGAGTGAG AGTAGGGACA TAAGGCACA TCTTAAAAGG 961

•

- AGGATTCTCT GGGTGGGTGN TCCTAAGAGA CCCACCCACT CACAGAAGAG TICTITATIG ATGICCGCCC GIGICTICIC AAGANATAAC TACAGGCGGG CAGTGGCTCA GTCACCGACT
- GTTCATTTT CAAGTAAAAA GCCICCAICC ICTICATCCI CGAGAGGGA GGGGGATGTC CGGAGGTAGG AGAAGTAGGA CCCCCTACAG GCTCTCCCT
- CAAGICTITC GTTCAGAAAG AAGTTCGTAG AGCAGGAGTC ACACCACAAA GGACTAGGGA GTGAGATTAG CACTCTAATC TICAAGCAIC ICGICCICAG IGIGGIGIIT CCIGAICCCI
- TTTAATAGG IGECCACCET AGASTAAAGG CAAACGCAGG ITAGTACATA AAATTATACG TGTTTTATGC ACAGGTGGAA TCTTATTTCC GTTTGCGTCC AATCATGTAT ACAMATACG 1201
- AATTATTAAC CGCTAATTCT TGATCTTATT AIGTAIAIAI GIAICICCAI TIGIAIGCAI GCGAITAAGA ACIAGAAIAA CATACACGTA AACATACGTA TACATATATA 1261
- CCAGATCCTG GGTCTAGGAC ACTITICGACC AACCCCTGAT TAAAACATIG ATGAAATAAG TACTITATIC TGAAAGCTGG TTGGGGACTA ATTTTGTAAC CTTTCGAGGT GALAGCTCCA 1321
- CCITAICTCC TICAGGITAA AAGCCAACTG ATTAAAGAGA TITATITGGG ACCFTAGAAC GGAATAGAGG AAGTCCAATT TTCGGTTGAC AAATAAACCC TGGAATCTTG TAATTTCTCT 1381
- ACGCACCTGA CAAGGICIAA IGACIGCAGG AICIAGCIAI CCATIGITIC IGGCCGCCIA IGCGIGCACI ACTGACGTCC TAGATCGATA GGTAACAAAG ACCGCGGAT GTTCCAGATT 1441
- GACTTGGATT GICTCICCGA CCCAITTAAC AICAAAGIAA CAICGACAGA CIGAACCIAA GTAGCTGTCT TAGTTTCATT GGGTANATTG CAGAGAGGCT GGGTGTCTGG CCCACAGACC
- GITICAGAAT CANAGICTIA AGAGIGCGGA IGAAGIGACC ITIGCGITIG AGAGIGICGI AAAAAAAI TTTIGTTTTA TCTCACAGCA TETCACGCCT ACTTCACTGG AAACGCAAAC
- TTATTTGAAA AATAAACTTT TIGIGAACCT TIATTAAATA TAGAAGTCTG AATTTCCTTC AACACTTGGA AATAATTTAT GICTCGITIA AICTICAGAC ITAAAGGAAG CAGAGCAAAT 1621
- CAGCAGAGGA ATATAAGTAT TAATTAAGCA ATATTTTAC ATAATTTACG AATAAACTCA GTCGTCTCCT TATTAAATGC TTATTTGAGT 1681. TATATTCATA ATTAATTCGT TATAAAATG

FIG. 72D

AGATAGAAAC TITATGAAAG TAGAAGGIGG ATCTCCITIT IGCCTICAIT TICAGAACAI ACGGAAGTAA AAGTCTTGTA ICTATCTTTG AAATACTTTC ATCTTCCACC TAGAGGAAAA 1741

GATTATCTCA CTAATAGAGT AAAAGCAGGA TTTTCGTCCT ACAGTAAAAT TGTCATTTTA CTTTGTAATT GANACATTAN GGGTAATCAA CCCATTAGIT GAGCAAATGT CTCGTTTACA 1801

AAATATTTTG GTCGTTATGG ATAGTAACT'S CAACCTATTC TITATAAAC GTTGGATAAG TATCATTGAA CAGCAATACC CTTAGAATAA ATTITIGIANA GAATCITAIT TAAAACATTT 1861

AGTAGGCAAG TCATCCGTTC TTAGACAAAC GTACTGAGAA AAAGTCACTT AATCTGTTTG CATGACTCTT TTTCAGTGAA GCAACTTAAA CGTTGAATTT CAATTGGTTT GITAACCAAA 1921

ATCTCACCTA ATGTCAGAGG TAATATTGAT AATTTGTGTT TAGAGTGGAT TACAGTCTCC ATTATAACTA TTAAACACAA ATTCAGAAAT TAAGTCTTTA AGAAATTAAA TCTTTAATTT 1981

AATAATGAAA AATAAGTCCT ATCTATAGGC TCGTATCTCA TTATTACTTT TTATTCAGGA TAGATATCCG AGCATAGAGT TIACAAAIAA TACATACAAC AATGTTTATT ATGTATGTTG TTACAAATAA 2041

2101 TGCCTATTT TGGATGTATT TITCA ACGGATAAAA ACCTACATAA AAAGT

| 09  | TATTTTTAT<br>ATAAAAAATA                                                                                                                |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|
| C — | tgaaaatac atcaaaaatá ggcatgacat acgagcctat agataggact tatttttat<br>actttttatg tagtttttat ccgtactcta tgctcggata tctatcctga ataaaaaata   |
| 40  | ACGAGCCTAT<br>TGCTCGGATA                                                                                                               |
| 30  | GGCATGACAT                                                                                                                             |
| 50  | atcaaaaatá<br>tagtttttat                                                                                                               |
| 10  | 1 TGAAAAKTAG ATCAAAAATA GGCATGAGAT ACGAGCCTAT AGATAGGACT TATTTTTAT<br>ACTITITATG TAGTITITAT CCGTACTCTA TGCTCGGATA TCTATCCTGA ATAAAAATA |

FIG. 73A

- 61 TATTGTTGTA TGTATTATTT GTAAAACACA AATTATCAAT ATTACCTCTG ACATTAGGTG ATAACAACAT ACATAATAAA CATTTTGTGT TTAATAGTTA TAATGGAGAC TGTAATCCAC
- AGATATICIG AATTITAATT TCTCTTGCCT ACTITICACTG AAAAAGAGTC ATGCAAACAG ICTATAAGAC ITAAAATTAA AGAGAACGGA IGAAAGTGAC TITTTCTCAG TACGITTGTC 121
- ATTITIANGT TGCANACCAN TTGCANAATA TTITITIATC CANCTICANT GATAGGTATT TAANAATICA ACGTTTGGTT AACGTTTTAI AAAAAAATAG GTTGAAGTTA CTATCCATAA 181
- CTAAGATATG CATTAATTGT TTCAACTAAT GGGTGTCAAA CCACATGTTC GATTCTATAC GTAATTAACA AAGTTGATTA CCCACAGTTT GCTCTACAAG CGACAATTAA GCTGTTAATT 241
- TGAAAAIGAA GGCAAAAAGG AGAICCACCT TCTACTITCA TAAAGTITCT ATCTICCICT CCGTTTTTCC TCTAGGTGGA AGATGAAAGT ATTTCAAAGA TAGAAGGAGA ACTTTTACTT 301
- AATACATTIT ATAACGAATT AATTATGAAT ATATTTCAAA TTAATACTTA TATAAAGITT TTATGTAAAA TATTGCTTAA TATTCGTAAA GCTGACTCAA ATAAGCATTT CGACTGAGTT 361
- CTAATTIGCT CTGATICIGA GACTAAGACT GATTAAACGA 421 TAAATAAATT ATTTCCAAGT GTTGAAGGAA ATTCAGACTT ATTIATITA TAAAGGTICA CAACTICCTT TAAGTCIGAA

FIG. 73B

AACTAAAACA AATGCTCTGT GAGAGTTTGC GTTTCCAGTG AAGTAGCGTG AGAAATCCAA TTGATTTTGT TTACGAGACA CTCTCAAACG CAAAGGTCAC TTCATCGCAC TCTTTAGGTT TTGATITIGI ITACGAGACA CICICAAACG CAAAGGICAC 481

GTCAGACAGE TACATGAAAE TACATTTAEE AGCTETETGE CAGACACEAG TGCACGATAG CAGTETGTEG ATGTACTTTE ATGTAAATGG TEGAGAGAEG GTETGTGGTE AGGTGCTATE 541

CCANNNNNN NNNNNNNNN TCTGGAACGT GCGTCTTGTA CATCGATCTA GAGTCAGTAT

661 GTTGGCTTTT AACCTGAAGG AGATAAGGCA AGATTCCAGG GTTTATTTAG AGAAATTACA TCTAAGGICC CAAATAAATC TCTTTAATGT TIGGACTICC ICTATICCGT CAACCGAAAA 721 GGATCTGGGA ATAAAGTAGT TACAAAATTA GTCCCCAACC AGCTTTCATG GAGCTTTCAA CCTAGACCCT TATTTCATCA ATGTTTTAAT CAGGGGTTGG TCGAAAGTAC CTCGAAAGTT

TCTATGTATA TATGTACGTA TICTAGITOT TAATCGCAIG CATACANIGC ACAIACATAT ATACAIGCAT AATAATTAAT AAGATCAAGA ATTAGCGTAC GTATGTTACG 781 TTATTTANTTA

FIG. 73C

- TTTTGTCTTT 841 ATTAAAHTAC ATGAITGGAC GCAAACGGAA ATAAGAITCC ACCIGTGCAT AAAACAGAAA TAATITIATG TACTAACCTG CGTTTGCCTT TAITCTAAGG TGGACACGTA
- GACTICGITA GAGIGAGGGA TCAGGAAACA CCACACTGAG GACGAGAIGN NNNNNNNNNNN CTGAACCAAT 901
- 961 NIAGIGGGIG GGGGGGGGAC ATCAATAAAG AACTCITCIG IGTCAGCCAC IGAGCACGGA CCCCCCCTG INSTITUT TIGAGANDAC ACAGICGGIG ACTCGIGCCI NATCACCCAC
- 1021 ATAAAGGGAT GAGAGTGAGG GCAANTACCA GAAGAATAAA ATCCTTTTAA GAGATGAAGA TAITICCCIA CICICACICC CGIINAIGGI CIICTIAIII TAGGAAAAII CICIACIICI
- AACANTACTO GIGICACÁCA CONAAGIITT TAGAAAATIG TIGGGGITCO ACTICGAICA 1081 TIGITATGAG CACAGTGTGT GGNTTCAAAA ATCTTTTAAC AACCCCAAGG TOAAGCTAGT
- 1141 TGGAAGATAT TTGAATTTGT TTAAACCCAT CTGGTCCTAG CCCTATTCTT TGAATCCCGA ACCTTCTATA AACTTAAACA AATTTGGGTA GACCAGGATC GGGATAAGAA ACITAGGGCT

AAGAGGGTCA AGAATTCCGA GCAGGAGTGG ACTACCTGGT GATACCTTAG ACTAGTCCTG TTCTCCCAGT TCTTAAGGCT CGTCCTCACC TGATGGACCA CTATGGAATC TGATCAGGAC 1201

TGTATTANAG TCCAATGAGG AGTATCITGG TAAAATAATA AATAAAGTCC CGAAAATCCC ACATAATTTC AGGTTACTCC TCATAGAACC ATTTTATTAT TTATTTCAGG GCTTTTAGGG 1261

AATTTGCAGA TCATGACACG ATCCTCTAAA TGTACGATAT AATAAATGAT AHNNNNNNA TFAAACGTCT HUNNNNNNNH AGTACTETGC TAGGAGATT ACATGCTATA TTATTACTA 1321

CICCCIGAGC CATIGAACAA GAGGGACTCG GTAACTTSIT GAGTAGTAIT TTATCCCATT GATTGCGACT CIAACGCIGA AATAGGGTAA CTCATCATAA TANTATTATC ATTATANTAG 1381

CISGAATITI AAIAAAAGAG ICTAGCIIGC GITCCGGTGA TICTICACCG TITCAGITIT GACCIIAAAA TIAITITICTC AGATCGAACG AAGAAGTGGC AAAGTCAAAA CAAGGCCACT 1441

CANATCAGTA CCCAGGAAAA CINNITCADA GINIAGICAT GGGICCIITT GANNAAGTCT GACGAAAAGA ATCTTTCAAC TAGAAAGTTG CTGCTTTTCT GACACACCAA CTGTGTGTT 1501

1551 ACAGCAAAAG ACCCGCTGGT AAAGACCTGT CCAGATTGCT GACCTGGTTC ACACANNTCC

FIG. 73E

TGTCOTITIC IGGGCGACCA TIICIGGACA GGICIAACGA CIGGACCAAG IGIGINNAGG

1621 AAGCITGCCT CTGTTACITC CAASGAAGAA ASAATGCACA GAGAGGTAAA AAAACAAACA TTTTGTTTGT CTCTCCATT TICGAACGGA GACAAIGAAG GIICCITCII ICIIACGIGI

TTTCAAGGAG TRGITTIGET TIGITHER TEGETIFICE TEGETIFFF TIGGTTTGTT

1741 IGICITGCAG GGCTCCAGCA CTTGGAACCT TCCTACGTCC TANITICAGG TTCICTCAGT ACAGAACGTC CCGAGGTCGT GAACCTTGGA AGGATGCAGG ATNAAAGTCC AAGAAGTCA ACAGAACGTC 1801 TCTACCCTCA ACCTGAGTGA CTGTCCTACC AGCAGCTTGT CGAGAACTCA GCCCTGCACC AGATGGGAGT TGGACTCACT GACAGGATGG TCGTCGAACA GCTCTTGAST CGGGACGTGG

1861 GITCCCAGCT ACCCTCCTCC TAACTCGASG GGTGCT CAAGGGTCGA TGGGAGGAGGAGGAGGAGCTCC CCACGA

# FIG. 74A

- 61
- ATAATGTTCT CTTCTATGAA TITTCITTGI AAGGGGGGT AATAATAAA AAAGITTATG TTTCANATAC TTTATTATT Trececed AAAAGAAACA 121
- CTGTGAATAC CTTTAATATC GACACTTATG GANATTATAG ATCCCTCTCT ANATATTANT AGAAATCAAT ATTATTGGAA TAGGGAGAGA TETATAATTA TCTTTAGTTA TAATAACCTT ATCCCTCTCT 181
- GIGICAACIA CITICCIATO AIGITOAGIT ACIGGGITIA GAAGICGGGA CACAGITGAI CITICAGCCCT AGTAATAGGC TCATTATCCG 241
- AATAATGCTG TAAANNNNN AGTTAGTCTA CACACCAATA TCAAATATGA TATACTTGTA TTATTACGAC ATTINNNNN TCAATCAGAT GTGTGGTTAT AGTTTATACT ATATGAACAT 301
- AACCTCCAAG TTGGAGGTTC 361

١

#### 113/130

# FIG. 74B

- CTCGGCTCAC CACCACGGTA GAGCCGAGTG GIGGIGCCAT CAAAGTGAGG ACAGTCCGTC CGNCTCACGT 421 TCCAGATGGA GTTTCACTCC TGTCAGGCAG GCNGAGTGCA AGGTCTACCT
- CAGTCTCCTG AGTAGCTGGG TOGAGGGTAC AAGTICCCIA AGAGGAAGGA GICAGAGGAC TCATCGACCC ACCICCAIG ITCAAGGGAT ICTCCITCCT ACGTTGGAGG 481 TGCANCCTCC
- TAATGICCAC ACGIGGIGGI GIGGGICGAI IMAAAACAIA AMAATIAICI CIGICCCAAA CACCCAGCIA AITTITGTAT TITTAATAGA GACAGGGTTT 541 ATTACAGGTG TGCACCACCA
- CATCOATGIT GGCCAGGCIA GICTCGAACT CCIGACCICT AGGIGATCCA CCCGCCTCAG GTAGCIACAA CCGGTCCGAT CAGAGCTTGA GGACTGGAGA ICCACTAGGI GGGCGGAGIC 601
- CCTCCCAAAG TIGTAGAAIT ACACGIGIGA GGCACIGCIC IGGCCAGGAG ATACAITITITI GAAGGGITTC AACAICITAA IGIGCACACT CCCIGACGAG ACCGGICCIC IAIGIAAAAA 661
- GATAGGITTA ATTIATAAAG ACACTGCACA GATTIGGAGT TGCTGGGAAA TCACGATCCA CTATCCAAAT TAAATATTTC TGTGACGTGT CTAAACCTCA ACGACCCTTT AGTGCTAGGT 721

# FIG. 74C

- ATTGATCAGG CATACGIAAA CIGGGICGIT AAAAATAACC AIGAATIACT AAINIAGAGI IAACTAGICC Tratatche TACITAATSA TTTTTTTGG CTATGCATTT GACCCAGCAA 781
- CCFGTCAAAC CTCCGTTCCA GGACAGITTG GAGGCAAGGI AACTTGAGAC ACGCTTCTTA AACACACC TGTAAACTCT ACATITGAGA TIGAACTOTO IGCGAAGAAT ITGIGTGIGG 841
- OTTIGCAAGT IGGGGCATAT ACTGAGAAAG TAMANICAIC INANITICIT AAACITAGAA CAAACGITCA ACCCCGIATA IGACICITIC AILTIAGIAG AITIAAAGAA ITTUAAICIT 106
- GCAGATAAAT TGATATATT ATTATGATGT ATGTTCAATA TGAAAGATCA TCTTCTGTTA CGTCTATTTA ACTATATAAA TAATACTACA TACAAGTTAT ACTTTCTAGT AGAAGACAAT 961
- CATACATNNA TETTACTTAA CATACCTEGA ITITTAGAGET ACCGTATGTA GTATGTANNI AGAATGAATT GTATGGAGTE AAAATETEGA TGGCATACAT GTTITATATT CAMATATA 1021

- ITTCTAITIA GGIAAGIICO FITAGICCII TIAITACIGG GCACICITAA CGTGAGAATT CTICTCAGGI AAAGATAAAT CCATICAAGG AAATCAGGAA AATAAIGACC GAAGAGTCCA 1081
- TTACATGTAG CTTGAAATAT GTCCAGTTTG AGCAGTGAAC TGAAAATGTC ATGTGATTAA AATGTACATC GAACTTTATA CAGGTCAAAC TCGTCACTTG ACTTTTAGG TACACTAATT 1141
- GTACATATAT AATITITITI CATAGIAGGT CAATAACCTC CITITATIGA CTAATGAATC CATGIATATA ITAAAAAAA GTAFCATCCA GTTATTGGAG GAAAAIAACT GAITACITAG 1201
- 1261 ACTICICIAA IGATIATAGG TCAAGAGATT ACTAATATGC

| 09  | ATGAATATT<br>TACTTATAA                                                                                                                  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|
| o-  | AATCAAAATA AAACAGTTAA AGTTTGATTA CTATAATCAA ACACAAAAA AATGAATATT<br>TTAGTTTTAT TTTGTCAATT TCAAACTAAT GATATTAGTT TGTGTTTTTT TTACTTATAA   |
| 4   | CTATAATCAÁ<br>GATATTAGTT                                                                                                                |
| 30  | AGTTTGATTA<br>TCAAACTAAT                                                                                                                |
| 070 | AAACAGTTAA<br>TTTGTCAATT                                                                                                                |
| 01  | 1 AATCAAAATA AAACAGTTAA AGITIGATTA CIATAATCAA ACACAAAAAA AATGAATATT<br>TTAGTTTTAT TTTGTCAATT TCAAACTAAT GATATTAGTT TGTGTTTTT TTACTTATAA |

FIG. 75A

TTTGATGATA GTATCAGATA CATAGTCTAT TAGAAATAC AGTCATCTCC CACTTACTTA GGAAGTCCTA AAACTACTAT 61 ATCINITAIG TCAGIACASG GISAAIGAAT CCITCAGGAT

121 CCCAGCACTA TGCTAGAAGT TGTGAAGAAT TCACGAGATG AATAAATCAC AGATTCTGTC GGGTCGTGAT ACGATCTTCA ACACTTCTTA AGTGCTCTAC TTATTTAGTG TCTAAGACAG

CTCAAAATGG TTAGATCTAT TCAGGAAACA AAGCTAAAAA AACCCCACCA ATAACTAAAA GAGTTTTACC AATCTAGATA AGTCCTTTGT TTCGATTTT TTGGGGTGGT TATTGATTTT 181

241 ATCAACCAAA TGAAAAACAA CAATCATAAA ATAAGTAAGT ACCTATAGAA AGAAAAGCTC TCTTTCGAG TGGATATCTT GITAGIATT TATTCATTCA TAGTIGGITT ACTITITIGIT

CTGTGTACTG GACACATGAC 301 AGAGGAGGTA AAAAGATAAC TCTTCCAAAA GGAATACTAT ATACTGTAAA TATGACATTT CCTTATGATA TITICIATIC AGAAGGITIT TCTCCTCCAT

361 ATAGAAGGAA GAATTAGAAA NNNNNNNTG TAAGTGGCAT ACATACTAAG CTAGTGTGAA TATCTTCCTT CTTAATCTTT NNNNNNNAC ATTCACCGTA TGTATGATTC GATCACAAA

421

FIG. 75B

GIGITCGGAT TIATACATCA ACGAAGIGIC TICCAATCIT CATITAATIG GAGIACITAA CTCATGAATT GTAAATTAAC TGCTTCACAG AAGGTTAGAA AATATGTAGT CACAAGCCTA

GAAAGAITIT AAIACCAAAI CITICIAAAA ITAIGGIITA ACTIGIAAGG ACTAAGCTIT CGAITTIGGA IGAACATICC IGAITCGAAA GCIAAAACCT ACTTGTAAGG ACTAAGCTTT TCTTGAGAGA AGAACTCTCT 481

AAAAAGTACC TITGITIGGI AAICICAAIC AITATAATAG IGCITAGATA ATACCTAGGA ITTITCAIGG AAACAAACCA ITAGAGITAG TAATATTAIC ACGAAICIAI TAIGGAICCT 541

ACTITAAAAA AAAGIACAIG ATIGGGGAAT CACAACTGGC TGAAATITIT TITCAIGIAC IAACCCCTIA GIGIIGACCG ACAAATTAAA TATTAAATTT TGTTTAATTT ATAATTTAAA 601

CTTACTAGAT TCTCTNNNNN NATATGCACT GAAAAGAATG AAAAACACTG AACCAAATAT TTTTTGTGAC TTGGTTTATA GAATGATCTA AGAGANNNN NTATACGIGA CTTTTCTTAC 199

NICITITIT AAGITIAAAA ITAAAITGGA AAAAAATAGI AAGGAATAIC AGAAGCAAAA NACAAAAAAA TICAAAITII AAITIAACCI TI'ITITAICA ITCCITAIAG ICITICGITITI NTGTTTTTT 721

781 AAATAAAATG AAAGCAAGAA TCCTCAGAGG TAGCACGAAA TTTGGCTTTG CTTAGATGGA TTTCGTTCTT AGGAGTCTCC ATCGTGCTTT AAACCGAAAC GAATCTACCT TTTATTAC

FIG. 75C

CTAIGGCCCA IGAAAAGGAT TCAGGAGTTA GITTAAAAGCT GGITCACATA GAIACCGGGT ACTITTCCTA AGTCCTCAAT CAAAITTCGA CCAAGIGTAT 841 TCTATCAAAG AGATAGTTTC

901 ATGGAATCTA GCAGAAGACT GTGCATAAAG GTGGTCTAAG AACAACATA TCCTGACCAG TACCTTAGAT CGTCTTCTGA CACGTATTTC CACCAGATTC TTGTTGTTAT AGGACTGGTC

GTGAGGGGG TCACNCTNAA TNCCAGCACT TTGGGAGCCC AAGGTGGGTG GATCACGAGG 196

GAGACCAGCC TGACCAACAT GGTGAAACCG CGTCTCTACT AAAATAGAA CTCTGGTCGG ACTGGTTGTA CCACTTTGGC GCAGAGATGA TTTTTATCTT TCAGGAGTTT AGTCCTCAAA 1021

CAGGAGACTG AGACAGGAGA TCTGTCCTCT GTCGACTTGA GTCCTCTGAC AAATTAGCCG NGCCTACGTG CTTCTAATCC CAGCTGAACT TTTAATCGGC NCGGATGCAC GAAGATTAGG GTCGACTTGA 1081

CCCAGCATGC AAGCITNNNN NNGCCACTGC ACTCCAGCCT AGGGTGCAAA GGGTCGTACG TTCGAANNNN NNCGGTGACG TGAGGTCGGA TCCCACGTTT 1141 ATCACTTGAA TAGTGAACIT

# FIG. 76A

| _ | AAGO | STA)            |         | ATT<br>[]] | ATC<br> |     | TTT      | <b>PP</b> 1  | TCT<br>      |     | CC  |             | TAJ<br>      | GT) |     | <b>AA</b> ( | M            | KTA<br> | G | - |
|---|------|-----------------|---------|------------|---------|-----|----------|--------------|--------------|-----|-----|-------------|--------------|-----|-----|-------------|--------------|---------|---|---|
| - | AAG  | th              | نلدا    | ÅTT        | ÅŤĊ     | 40  | 11       | <u>i-1-1</u> | TCT          | CT  | ççç | ÇÇY         | 4            | ĠŦ  |     | ÅÅ          | GT7          | CATA    | S | _ |
| - | TGG  | GTT!            | rta<br> | CAT        | GTG<br> | TAC | <b>.</b> | TCA          | TTT          | TC: | TA  | <b>KK</b> K | CT           | TT/ | ATG | <b>XX</b> 2 | <b>ቦ</b> ልር  | CAT     | r | - |
| - | TGG  | 3 <b>7-</b> 7-1 | CTA     | ĊÀŤ        | ĠŦĠ     | TAC | ÀÀ:      | TCA          | +++          | ψĊï | TA  | ÄÄÄ         | ζŢ           | TT  | \TG | **          | rac          | CAT     | r | - |
| - | ATT  | MC1             | PTG:    | TAT        | TCT     | GTO | AC       | ATG          | CCC          | ACC | TT  | ACA<br>III  | GA           | GAC | GA  | CAC         | : <b>\</b> ] | TTA<br> | C | - |
| - | ATT  | rrci            | ric:    | TAT        | ĻĊŢ     | ĠŤĠ | ÀĊ       | ATG          | cċċ          | ACC | TT. | γĊΥ         | GÀ           | GAC | GA  | cyc         | <b>1</b>     | TTA     |   | - |
| - | TAGO |                 |         | 1          | 111     | 111 | 11       | 111          | 111          | 111 |     | 111         | 11           | 111 | -11 | 111         | 11           | 111     | ı | - |
| - | TAGO | TT)             | YTX:    | rcc        | CGG     | GGI | TA       | LAT          | TCG          | λGC | 'AT | TGG         | AA'          | TT  | 'ĠĠ | نغ          | vĠİ          | GTA.    |   | - |
| - | ATG  |                 |         |            | 111     | 111 |          |              | 111          | [1] | 11  | 111         | $\mathbf{H}$ |     | 11  |             | 11           | 111     | Ī | - |
| - | ATGT | LT-L'           | \GX(    | FTG.       | AAC     | AGA | AC       | <b>NAA</b>   | TTT          | TTC | TG' | TGC         | TT.          | λCΣ | \GG | TTA         | Ϋ́С          | GĊŤ     | 3 | - |
| _ | TGG  |                 |         |            | $\Pi$   | 111 | 11       | 111          | $\mathbf{H}$ | 111 | 11  | 111         | $\Pi$        | 111 | ĪĪ  |             | ΪĬ           | 111     | Ī | _ |
| _ | TGGG |                 |         |            |         |     |          |              |              |     |     |             |              |     |     |             |              |         |   | - |
| _ | GTT  |                 |         |            | 111     | 111 | 113      | 111          | 111          | 111 | 11  |             | 11           |     | H   | 111         | ĪĪ           | 111     | Ī | - |
| _ | ATTO |                 |         |            |         |     |          |              |              |     |     |             | _            |     | _   |             |              |         | • | - |
| _ | ATTO |                 |         |            |         |     |          | 111          | 111          | 111 | 11  |             | $\Pi$        | 111 | 11  | ΠĪ          | 11           |         | Ĭ | _ |
| _ | TTAC |                 |         |            |         |     |          |              |              |     |     |             |              |     |     |             |              |         | • | _ |
| _ |      | +111            | 11      |            |         | 111 |          |              | $\Pi\Pi$     | 111 |     | 111         |              |     |     | 111         |              | 111     | ĺ |   |
| _ | ATTI |                 |         |            |         |     |          |              |              |     |     |             |              |     |     |             |              |         | • | _ |

# FIG. 76B

| - | ATT                 | TTAA | لللا | ATT                                 | CCT | TTC  | FACT | <br>GTA | EAAC | AAA  | TAG      | LAA: | TTG      | GCC | <br>rgt | _ |
|---|---------------------|------|------|-------------------------------------|-----|------|------|---------|------|------|----------|------|----------|-----|---------|---|
|   | GGG                 |      | +111 | $\mathbf{I} \mathbf{I} \mathbf{I}'$ |     |      |      | 111     |      |      | 111      |      |          | 111 |         | - |
|   | TGC:                | 1111 | 111  | 111                                 |     |      |      |         |      | 111  | 111      |      | 111      |     |         | - |
|   | 111/<br>   <br>111/ | 1111 |      | 1111                                |     |      |      |         |      | 111  | 111      | 111  | 111      |     |         | - |
| - | CIT                 | HHI  | 111  | $\Pi\Pi$                            |     |      |      | HH      |      | +111 | 111      |      | 111      |     |         | - |
|   | ATT                 |      | 111  | 1111                                |     | 1111 |      |         |      | 111  | $\Pi\Pi$ | 111  | $\Pi\Pi$ |     | ΙĪĪ     | _ |
|   | TTA                 |      | 111  |                                     |     |      |      | ĬĬĬ     |      | ĬĪ   | <b>-</b> |      | •        |     |         |   |

| 09    | CGGTAATATC<br>GCCATTATAG                                                                                                                |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 0.00  | POAAAACACÁ GIGICITICH TICCITATIH TAAATIGGIH GITCCAGAIH CGGIAATATC<br>TOITTIGGGE CACAGAAAGA AAGGAATAAA ATITAACCAA CAAGGICIAA GCCATIATAG  |
| 40    | taaattggt†<br>atttaaccaa                                                                                                                |
| 0 0 0 | TTCCTTATTT<br>AAGGAATAAA                                                                                                                |
| 70    | GTGTCTTTCT<br>CACAGAAAGA                                                                                                                |
| 10    | TOTATACACÁ GIGICITICH TICCITATIN TARATIGGIN GITCCAGAIN CGGLAATAIC<br>TOTITITOTGI CACAGRAAGA AAGGAATAAA ATITAACCAA CAAGGICIAA GCCATTATAG |

- 61 AATITICAAT AITACACIIA AAIGAGIACC AGAACTIIAT CIICAACCIT ITCICAIIAG TINANAGITA TANIGIGAAT ITACICAIGG ICIIGAAAIA GAAGIIGGAA AAGAGIAAAIC
- GCCTACACA AAGGACATCT CGGATAGAAT TTCCCTTTTC TTTTTGCTAC TATAAGCTCT 121
- GCATTTGCTA CGTAAACGAT ANAMATICETE AGNACATENG ATTTAGAAAT GITCTTATTA GIGGTAGTGA TTTTTTAGGAG TCTTGTAGTC TAAATCTTTA CAAGAATAAT CACCATCACT , B T
- TITCTACCA CTAGCTTACA AATATAATAA GCAAGTAGAC CCCACAGGCC AAATTCCTAT CGTICATOTG
- GGGTGATTIC TTAAATTAAA TTAAAAATT CAGCTITICCC AACAAGATGT 301
- ATTAACAAAT CAAATGACAG TAATITTTAA ATTTGCTATG TGTAAATIGT TITCCCTCAT TAAACGATAC ACATTTAACA AAAGGGAGTA GITTACTGIC ATTAAAAATT TAATTGTTTA 361
- 42: INTITATAAC AATICATACI ACAATITAAT ITAGIAAACA ITITIGIAGA AAATAITIAA TGTFFAATTA AATCATTIGT AAAAACATCT TTTATAAATT ""NAATATIG TIAAGTAIGA

FIG. 77B

481 AACAAAGATA CIGAAAGITA ATAINAAACC CAGIGCAIGC TICIIGIAGG CCACAGCCAI TIGIIICIAI GACTIICAAI LAIANITIGG GICACGIACG AAGAACAICC GGIGGCGIA GACTITICAAT TATANTITGG GTCACGTACG AAGAACATCC GGTGTCGGTA

541 AACCIGIAAG CACAGAAAAA TIIGIICIGI IACICIAAAC AICIACACIG GCCAAAITICC IIGGACAITIC GIGICITIII AAACAAGACA AIGAGAITIG IAGAIGIGAA GIGTCTITIT AAACAAGACA AIGAGAITIG TAGAIGIGAC CGGITTAAAG 601 AATGCTCGAA TITAACCCCG GGATATAACC TAGTAAATGT GTCCTCTCTG TAAGGTGGGC TTACGACCCG

ATGTCACAGA ATACAAGAAA ATAATGGTAT TCATAAAGTT TTAAGAAAAT GATTCTACAC CTAAGATGTG TATTACCATA AGTATTTCAA AATTCTTTTA TATGTTCTTT TACAGIGICI 661

721 ATGTAAAACC CACTATAACT TTTTACATTG GGGGAGAGAA AAAAAGAGAT AATTTTTACC TTAAAAATGG TACATITICG GIGATATIGA AAAATGIAAC CCCCICICIT TITITCICIA

781 TT AA

CTACGATAAA CCCGTTAAAG AATAACTGTC AAAACTTTAC AATCCGAAAA TAGAGGTAAA TTAGGCTTTT ATCTCCATT 50 GATGCTATTT GOGCAATTTC TTATTGACAG TTTTGAAATG 40 30 20

FIG. 78A

TTTAGTACIT AAATTTTCCA ACATGGGTGT TGCTTGTTAT TTTATCAGTA TAAAATAGAA aaatgaa titaaaaggi tgtacccaca acgaacaata aaatagtcat attitatctt 61

CAGCCATGAA GTCGGTACTT GAGTGGTTCT GTTCTGGAAT TTAGTATATA CATGAGTATC TAGTGTATGT CTCACCAAGA CAAGACCTTA AATCATATT GTACTCATAG ATCACATACA 121

TTACTIGGAA AGTCTACAAA TIGAAGICCC TIGGATTAAC ICAGIAACGA GGICIGIAAC CCAGACATTG AATGAACCIT ICAGAIGITI AACTICAGGG AACCIAATIG AGICAIIGCT 181

GGGTGATATA ANNNNNNGA GCCCGTTACT GAGTCACACC GTTCCTATGA TIGCTITIGAA CCCACTATAT INNNNNNCT CGGGCAATGA CTCAGIGIGG CAAGGATACT AACGAAACTT 241

ACTGCAGGCC TGTTTCTGGA AGGCACTGGA CTCCTCTGAI GCAAACTTTG GCCAGGGACT TGACGTCCGG ACAAAGACCT TCCGTGACCT GAGGAGACTA CGTTTGAAAC CGGTCCCTGA 301

CCTTGATAGC TCTTAAATAG ATGCTGCACC AACACTCTCT TTCTTTTCTC TCTTTTTCTT GGAACTATCG AGAATTTATC TACGACGTGG TTGTGAGAGA AAGAAAAGAG AGAAAAAGAA 361

FIG. 78B

421 TATTCAATAT TAGACTACAA GCAGTCTAAG GACTTCTCAG GGTTTCTAGC TCTCTCAT CCAAAGATCG AGAGAGATA CGTCAGATTC CTGAAGAGTC ATAAGTTATA ATCTGATGTT

481 TICACACAIG CITICCIAGI AAICTCIACI CAIATAICIT ACIGCTACGC IGGGGCCAGA TTAGAGATGA GTATATAGAA TGACGATGCG ACCCGGTCT AAGTGTGTAC GAAAGGATCA

CTTTCATTAT GATAAGAAGA AGGGGAAGAC GAAAGTAATA TCCCCTTCTG GITITIATCT CTAITCITCT CAAAAATAGA GAAGGTAAAA CTTCCATTT 541 TAACNNNNN ATTGNNNNN

CAAGACGAAT TGGACCGTAA GITCIGCITA ACCIGGCATI TAACTTTGAA AGGGTCTAAA 601 IGAAACITIC IGCITICATI ATIGAAACIT ICCCAGAIIT ACTITGAAAG ACGAAAGTAA

GTACAGGAAA AAAAAAAAA CATGICCIII ITITIIIII GIGCIGCIT'I CICCCAITGC GGAGAAGGGA CACGACGAAA GAGGGTAACG CCTCTTCCCT 661 GGAACTGTTT CCTTGACAAA 721 TITITITIT TGAGACAGIG ICACTCIGIT GCCCAGGCIG GAGTGCAATG GIGCAAICIT AAAAAAAA ACTCTGTCAC AGTGAGACAA CGGGTCCGAC CTCACGTTAC CACGTTAGAA

FIG. 78C

GOCCACTGCA ACCCCCGCCT CCCGGGTTCA AGTGATTCTC CTGCCTCAGC CTCCTGAGTA CCGGTGACGT TGGGGGCGGA GGGCCCAAGT TCACTAAGAG GACGGAGTCG GAGGACTCAT 781

GCTGGGATTA CAGGTGCCCA CCACTATGCC CGGCTGATTT TTGTATTTTT AGTAGAGATN CGACCCTAAT GTCCACGGGT GGTGATACGG GCCGACTAAA AACATAAAAA TCATCTCTAN 841

CCTGACCGCA GTGANTCCGC NNNNNNAAA GIGGIANCGA CIAGICCGAC CAGAGCIIGA GGACIGGCGI CACINAGGCG NNNNNNTTT CACCATNGCT GAICAGGCTG GTCTCGAACT 901

CICCCAAAGI GCIGACATIA CAGGCATGAG ICACTGCGNC CAGCCACCAT GOAGGAACCO GAGGGTTTCA CGACTCTAAT GICCGTACTC AGTOACGCNG GICGGTGGTA CCTCCTTGGC 196

TATTCTCTAG AGGIGAGAGA ACACTGGCTC TTCTAACAAG TTGAAATTTG ATAGAGACC ATAAGAGATC ICCACICTCT TGIGACCGAG AAGATIGITC AACTITAAAC TATCICTGG 1021

TACAATTACC ATGTTAATGG GATTATTAGC CACAAAAAA CCTTGAAGTA ACGCATTAAA TGCGTAATTT CTAATAATCG GIGTTITITT GGAACTICAT GIGITITITI CACADADADA

FIG. 79A

TIGAGCATCT GCTCATANTA CTITTAATGAG TGCAAAGTGC TITGAATATA AACTCGTAGA CGAGTATTAT GAAATTACTC ACGTTTCACG AAACTTATAT TAAGTGAAAT ATTCACTTTA 5

TAAACCITAC CATAATITCIG AGGAATIGCT ACCTCCACTT CACAGATGGG TCGAGGTGAA GTGTCTACCC GTATTAAGAC TCCTTAACGA TATGCAGTAN ATTTGGAATG ATACGTCATT 121

GCACAGGAGG CTTAGATAAC ATGCCCAAAG TCATGCTTCT AGTAAATGGA TATAATTAAG TACGGGTTFC AGTACGAAGA TCATTTACCT ATATTAATTC CGTGTCCTCC GAATCTATTG 181

ATTCAAATTA TTGATAAGAA TTTGATCTGC CITACCAGTA TCTAGTAGTA AATCTAAAAG GAATGGTCAT AGATCATCAT TTAGATTTTC TAAGITTAAT AACTATTCTT AAACTAGACG 241

AACTCTCTGA AATTTTCCAT TTAAAAGGTA TTGAGAGACT CGCTTTCCAG AGCATGTGCT GTTGATAGAG CTTGATGTCT CAACTATCTC GAACTACAGA GCGAAAGGIC TCGIACACGA 301

TCTIATITIGI CICACIGGIA IAIAGIIAIT ITIIACIACI TICAIACACC IACIAAGAAG ATATCAATAA AAAATGATGA AAGTATGTGG ATGATTCTTC AGAATAAACA GAGTGACCAT 361

FIG. 79B

GAATGCCTAA AGCTTCACGT ATTTTAATTC CTTACGGATT TCGAAGTGCA TAAAATTAAG 421 ACAGGAGGAT CAAAGATAGG ATTTCATTTA TGTCCTCCTA GTTTCTATCC TAAAGTAAAT

AGANTAAGAT TCAGGCAGAC CACCAGTATA TGCCATGGTC CCTGGTTATC TITCAGCAGG TCTTATTCTA AGICCGTCTG GTGTCATAT ACGGTACCAG GGACCAATAG AAAGTCGTCC 481

GITTCACTIC CAAAGTGAAG CCAAGAACAT GIAATGIITA TGAAATGGTG GGTICTTGTA CATTACAAAT ACTTTACCAC AGAAAACATG TCTTTTGTAC ACTEGETETT TGACCGAGAA 141

TIGIATAGAC GGALATGACA TAATICTACT ACCTAATIGA ATAAGAACTA TACCCGTACA ATGGGCATGT TATICITGAL CCTTTACTGF ATTAAGATGA TGGATTAACT AACATATCTG 601

GACAAACTTA ACACAAAGGT CTGTTTGAAT TGTGTTTCCA GAGAGACAAA CTCTCTGTTT 661 AAAACAATAT ACTITTACTA AACAGCTACA TITTGITATA TGAAAATGAT TTGTCGATGT

GIAACTATAT TITATGAAAT CATTGATATA AAATACTITA TCTCTGACTC ACAAGTTTGA CTTATTAGAG CTGGAATTAA GAATAATCTC GACCTTAATT 721 AGAGACIGAG TGTTCAAACT

GACTICITIG GGCCTACCAC GGGCATITIG TICCIGITAN CIGAAGAAAC CCGGAIGGIG CCCGTAAAAC AAGGACAAIN CCGTTTTTGT CCCAAAAACA CCAGCTGTAA 781

FIG. 79C

NNNTACTCCA AACCTTAAAC CCACGTCCAC TTAAATAATG GCCTGGAAAT AAATGTCATT NNNATGAGGT TTGGAATTTG GGTGCAGGTG AATTTATTAC CGGACCTTTA TTTACAGTAA AAATGTCATT NNNTACTCCA 841

TCAATCTGTC AGTTAGACAG CACCTCTTAA GTGGAGAATT TAGACTATAA TATGACTCTA CAAATCAATA CTTTAGTTTT GANATCANA GITTAGITAT ATACTGAGAT ATCTGATATT 901

GCAGCATGCT CGACACGCCA GCTGTGCGGT CACGACCCIC AIGCACTCAG GTGCTGGGAG TACGTGAGTC CTGTAAGCTT TCTCTGCGGT GACATTCGAA AGAGACGCCA 196

CCTGTTTGAG GGACANACTC TICCTGTCTA AAGGACAGAT GCCCACCAAC CGGGTGGTTG TGTTTTCTTC TGCCTGTACA ACAAAAGAAG ACGGACATGT CTGTCATGTC S 1021

CAATAAGGAA ACAATCAGTA TGTTAGTCAT GTTATTCCTT ACTGCACATG (TGACGTGTAC ( NGATCTTAGA NCTAGAATCT ATGCANNNN GAAATATGAA TACGTNNNNN CTTTATACTT 1081

TIAATIGIAG AGCAAATIT TACGAGATAG AATTAACATC TCGTTTTAAA ATGCTCTATC TTAAGTAATC AATTCATTAG AGAGCACCTT TCTCGTGGAA TCTTAGTGAA 1141 AGAATCACTT

CTCTTTTCCC TTTTTCACTA AGGAGTTTGT ATATTAAACA GAGAAAAGGG AAAAGTGAT TCCTCAAACA TATAATTTGT TITCACATIT ATTAAGGAGA 1201 AAAGIGIAAA TAATICCICT

FIG. 79D

ACANTAAAAT GCCACGTATA TGTTATITIA CGGTGCATAT CTTAAAGITC ATTACATAAT ATTTAAATAA ATTNNATAAA 1261 GAATTTCAAG TAATGTATTA TAAATTTATT TAANNTATTT

ATACATAGIC AAAACAGCAG TTTTGTCGTC TATGTATCAG NNNCATTGGT AGAAAGCACA NNNGTAACCA TCTTTCGTGT AACATGANNN TTGTACTNNN 1321 AGCATCAAGC TCGTAGITCG AGTATTAAAT AAACAGAAAA TITGCAAAAG GCAAGTAAAG AATATACATA TACTTAATTA TCATAATTAA TTAGATTAA ATGAATTAAT 1381

AAGCAGATAA TGGGGGCAAC TICGICTAIL ACCCCCGTIG ATGIATITIA TAACTATGIC CICCAICIII CITIAAAICA 1441 TACATAAAAT ATTGATACAG GAGGTAGAAA GAAATTTAGT

TITITITI TCTCAGGAGT CGTCTCGAAG' GGAAGATIGT TTTTCGTCGG GTTATTTAAT AAAAAAAAAA CAATAAATTA 1501 AGAGTCCTCA GCAGAGCTTC CCTTCTAACA AAAAGCAGCC

1561 CTAACAAAA GCAGCCTGAA AAATCGAGCT GCAAACATAG ATTAGCAATC GGCTGAAAGT

ij

#### 129/130

FIG. 79E

GATTOTITIT CGTCGGACIT TITAGCICGA CGITIGIAIC TAATCGITAG CCGACITICA

1621 GCGGGAGAAT GCTGGCAGCT GTGCCAATAG TAAAGGGCTA CCTGGAGCCG GGCGCGTGGC COCCUCTIA CGACCGICGA CACGGITAIC AITICCCGAI GGACCICGGC CCGCGCACCG

GAGGTCGGGA TCACGCTGTA ATCCCAGCAC TITGGGAGGG CGAGGCAACG CGGATCACCT AGTGCGACAT TAGGGTCGTG AAACCCTCCC GCTCCGTTGC GCCTAGTGGA 1681

CAAACTCTAG 1801 AAAGGCAAAA AATGAGCCGG GCATGGTGGC ACATGCCTTG CACATCCCAG CTGAGGCAGG TTACTEGGCC CGTACCACCG TGTACGGAAC TTTCCGTTTT

1861 AGAATTCACT TGAACCTGGG AGGTAGAGAT TECGGTGAAG CGAGATCACG TCATTGCACT TCTTAAGTGA ACTTGGACCC TCCATCTCTA ACGCCACTTC GCTCTAGTGC AGTAACGTGA

CCAGCCTGGG CAAAAAGAGC AAAACTTAGT CTCAAAAAAA AAAANNCAAA GAAAAAA CTTTTT GITITICICG ITTIGAATCA GAGIITITIT ITTINGTIT GGTCGGACCC 1921

FIG. 80



