W3C LBD Community Group Minutes - Call 20/11/2023

Attendees:

- Alex Donkers (Eindhoven University of Technology, NL)
- Daniel Hernández (University of Stuttgart, Stuttgart, Germany)
- Eduardo Costa (University of the West of England, Bristol, UK)
- Jan-lwo Jäkel (RWTH Aachen University,, GER)
- Stefan Spreng (Züblin, Stuttgart, GER)
- Eva Heinlein (RWTH Aachen)
- Mathias Bonduel (Neanex)
- Aaron Wagner
- Katja Breitenfelder
- Christopher Krueger
- Georgios Triantafyllidis
- Dimitris Mavrokapnidis
- Philipp Hagedorn
- Theo Dunas
- Tim Rossi
- Zhancheng Qiang
- Xi Peng
- Jakob Martin (iabi e.V.)
- Klaus Linhard (iabi e.V.)
- Marin Ljuban
- Rui de Klerk
- Sebastian Seiss (Bauhaus-University Weimar, Germany)
- Diellza Elshani (University of Stuttgart, Germany)

Presentation slides

slides:

https://github.com/w3c-lbd-cg/lbd/blob/gh-pages/presentations/20231120_Presentation_DiellzaElshani.pdf

- minutes
- demo material

Date and time

• 20/11/2023, Monday, 14:00-15:30@UTC/ 16:00-17:30@CET/ 07:00-08:30@PDT

Moderators

1. Alex Donkers

Agenda

- 1. Introduction of new members
- 2. Diellza Elshani & Aaron Wagner: 'bhOWL: Federated Data Schemas and Semantic Web Technologies via Design Tools with a Focus on Grasshopper 3D'
- 3. Discussion

4. Further topics

Minutes

- 1. Introduction of new members
 - Eduardo Costa: university of West of England (Bristol), research on digital fabrication, applying ontologies in the process
 - Stefan Spreng: colleague of Diellza, works in construction company Züblin and presently at University of Stuttgart
 - Daniel Hernandez: post-doc at University of Stuttgart, working with Diellza, department of IA. Applying ontologies and Linked Data
 - Christopher Krueger: joining as product manager of Bluebeam from Texas
- 2. Diellza Elshani & Aaron Wagner: 'bhOWL: Federated Data Schemas and Semantic Web Technologies via Design Tools with a Focus on Grasshopper 3D'
 - context
 - o cluster of excellence IntCDC > umbrella for different projects
 - co-design: design, analysis, manufacturing and construction from different disciplines
 - facts
 - rules
 - constraints
 - project specific data
 - o project: RP20-1 Knowledge representation for multi-disciplinary co-design
 - data interoperability
 - knowledge representation
 - BIM
 - project context
 - which tools represent what and how => how exchanged
 - represent: building data can be tool dependent <> IFC <> building ontologies
 - exchange of datasets: IFC data (importers/exporters) <> plugins (Speckle, BHoM)
 - co-design interoperability paradigms
 - three existing methods
 - IFC data schema
 - Speckle: focus on connecting software (data) but less focus on representing
 - BHoM > compatibility with parametric design
 - distributed <> centralized
 - decentralized: data exchanges between different tools, no shared data schema nor database > current way of working in the AEC, challenges with versions
 - inefficient for coordination and clash detection
 - centralized: tools which are compatible to a shared data schema and database model
 - data loss between tools and shared data schema
 - e.g. IFC
 - federated: combination of both decentralized and centralized
 - shared data schema is less big compared to centralized approach
 - shared ontology is central
 - shared database model, e.g. RDF

- every tool has its own graph => connect
- BHoM already useable with existing design software (adapters), large library
 - separates functions from objects => rules and facts
- similar approach with IFC <> plugins: designers don't need to learn new approaches nor tools + easier to extend
- why BHoM instead of Speckle?
 - federated data approach
 - 1200 existing objects instead of starting from scratch
- BHoM: initiative by Buro Happold => move together to a Linked Data ontology
 - o graphs as database model > bidirectional exchange to design tools
 - rules and constraints are reusable
 - o reuse classes across projects
 - BHoM ecosystem > many applications supported
 - components
 - the object model (oM) > classes
 - adapters
 - the engine
 - combined: toolkit
 - example oM "Wall"
 - C# framework: implementing composition over inheritance (interfaces)
 - C# graph: start and end point of two distinct objects can be linked
- Conversion pattern for BHoM to RDF representation
 - mapped BHoM components to SWT counterparts in OWL/RDFS
 - data level
 - o connecter to GraphDB to store RDF
- application example: roof construction
 - architectural design
 - o rules from manufacturer and graph
 - o linking graphs
 - o data validation with SHACL
 - rules/inferencing > find edge cassettes (only rough estimation)
 - o querying weight using SPARQL based on individual measurements
- application of the toolkit at Digital Futures Workshop (2022)
 - o many inputs > improvements
 - o videos and lectures are on vimeo and Youtube
- application at CODEC hackathon
 - o energy analysis
 - o compare design options
- live demo by Aaron Wagner
 - o Grasshopper and Rhino CAD environment
 - Rhino geometry to graph
 - TTL adaptor
 - push component
 - result: individuals + classes
 - when applying the BHoM content as input > longer TTL
 - o create custom BHoM objects
 - export to TTL <> GraphDB adaptor (API interactions)
 - onot only objects but also interfaces stored in the graph
 - bidirectional exchange: also from GraphDB to Rhino (update geometry)

3. Discussion

- [Rui de Klerk] possible to do SPARQL queries from Grasshopper?
 - currently we query from GraphDB directly. Could make a component. Not sure if there's additional benefits (GraphDB has built-in guery visualization)
 - [Rui] more flexibility? Prepare endpoints for specific use cases at GraphDB?
- [Tim Rossi] GitHub repository? Access to demo files presented?
 - entire project is on GitHub (<u>BHoM RDF prototypes</u>)
 - meeting is recorded > files of the demo can be shared
- [Rui de Klerk] size of the graph database (meshes)? How to handle that?
 - o option 1: full serialization of geometry
 - o option 2: no serialization of geometry in graph (only string) > base64
 - BHoM has it's own geometry format which mappable to the geometry formats of adaptors
 - currently no intermediate solution
- [Mathias Bonduel] how do you keep track of data coming from different sources (applications, users)? Which data is leading?
 - o architect starts designing > named graph
 - o structural eng > other named graph, but connected content to arch graph
 - o options
 - detect problem > does not know who should solve
 - arch is leading > can change/limit struct design
 - struct is leading > can change/limit arch design
 - [Alex] GIT approach with project manager approving applied in the past > hard to put all requirements in graph
- [Tim] current challenges?
 - OWL vocabulary
 - o geometry challenge (discussed above)
 - o connecting elements together which are actually the same
 - delete actions > delete object => delete properties as well (cascading deletes)
- [Rui] next steps in project? How does your work relate to previous LBD work?
 - o (above)
 - o map to IFC and LBD work
- [Alex Donkers] interaction between deleting in GraphDB and deleting in Grasshopper: also possible to load/create content from the RDF?
 - o [Aaron] many possibilities
 - [Alex] alignment between BHoM/BHOWL and BOT. Everyone can create their own ontologies/extensions. Link to bSDD content?
 - planning to publish BHoM on bSDD
 - classification using other systems
 - approach in BHoM: define classes per institute and publish in GitHub
- [Alex] how much tied to Grasshopper?
 - BHoM can be used through existing UI: Excel, Revit (Dynamo) and Rhino (Grasshopper)
 - needed for interaction with GraphDB
 - alternative: C# programming to BHoM API > needed for other integrations (e.g. structural engineering in Robot)
- [Rui] API for Python using BHoM?
 - o Python toolkit exists for BHoM

4. Further topics

•

Next Call

• 18/12/2023, Monday, 14:00-15:30@UTC/ 16:00-17:30@CET/ 07:00-08:30@PDT

Agenda: Philipp Hagedorn, Ruhr University Bochum

We are interested in getting suggestions from the community about potential agenda items and **Elevator Pitches** for the following calls. Please send your suggestions to the chairs or to internal-lbd@w3.org, whether you have a short presentation to bootstrap the discussion, and an approximate duration you think the discussion will last.

Previous minutes

https://github.com/w3c-lbd-cg/lbd/tree/gh-pages/minutes