Departamento de Matemática da Universidade de Aveiro

Álgebra Linear e Geometria Analítica

Exame de Recurso

28 de Janeiro de 2008	Duração: 2 horas 30 minutos
Nome: Curso	:
Caso pretenda desistir assine a seguinte declaração. Declaro que desisto.	

Questão	1a	1b(i)	1b(ii)		1b(iii)		2a	2b(i)		2b(ii)		2b(iii)		total
Cotação	15	10	10		10		15	15		15		15		105
Classificaçã)													
	Questão		3a	3b	3c	30	d -	4 5a		5b	to	otal		
	Cotação		15	15	15	15	5 15		10	10	95			
	013												ĺ	

IMPORTANTE: Justifique resumidamente todas as suas afirmações e indique os cálculos que efectuou.

1. Considere a matriz

$$B = \begin{bmatrix} 1 & -1 & 1 & 2 \\ 1 & a - 3 & 0 & 2 \\ 2 & a - 4 & 1 & b \end{bmatrix},$$

em que $a, b \in \mathbb{R}$.

(a) Indique para que valores de a e b se tem

i.
$$car(B) = 2$$
.

ii.
$$car(B) = 3$$
.

(b) Considere a = 1 e b = 4.

- i. Determine uma base para o espaço das colunas de B.
- ii. Verifique que (0, -1, -1) pertence ao espaço das colunas de B.
- iii. Resolva o sistema BX = 0.
- 2. (a) Calcule o determinante da matriz

$$A = \begin{bmatrix} 0 & 3 & 1 \\ 1 & 0 & 2 \\ 2 & \alpha & 0 \end{bmatrix}$$

e indique para que valores de $\alpha \in \mathbb{R}$ a matriz A é invertível.

- (b) Diga, justificando, se as seguintes afirmações são verdadeiras.
 - i. Se $A \in B$ são matrizes quadradas tais que $\det(A) = 2$ e $\det(B) = 3$, então $\det(A + B) = 5$.
 - ii. Se A é uma matriz quadrada tal que $A^2 = A$ e se B = I A, então $B^2 = B$ e AB = 0.
 - iii. Se A é uma matriz quadrada tal que $A = I A^2$, então A é invertível.
- 3. Considere a base canónica $\mathcal{C}=((1,0,0),(0,1,0),(0,0,1))$ de \mathbb{R}^3 e seja $f:\mathbb{R}^3\to\mathbb{R}^3$ a aplicação linear definida por

$$f(1,0,0) = (1,\alpha,0),$$
 $f(0,1,0) = (0,1,-\alpha),$ $f(0,0,1) = (\alpha,0,-1),$

 $com \ \alpha \in \mathbb{R}.$

- (a) Obtenha a matriz de f relativa a base canónica de \mathbb{R}^3 e determine os valores do parâmetro α para os quais f é sobrejectiva.
- (b) Seja $\alpha = -1$. Determine o núcleo de f e indique a sua dimensão.
- (c) Determine a matriz de mudança de base da base canónica de \mathbb{R}^3 para a base

$$\mathcal{B} = ((1,0,0), (1,1,0), (1,1,1))$$

de \mathbb{R}^3 .

- (d) Considere $\alpha = -1$. Determine a matriz de f relativamente a base $\mathcal{B} = ((1,0,0),(1,1,0),(1,1,1))$ de \mathbb{R}^3 .
- 4. Considere as rectas concorrentes

$$\mathcal{R}: (x, y, z) = (1, 1, 0) + \lambda(1, 1, 3), \ \lambda \in \mathbb{R},$$

$$\mathcal{S}: (x, y, z) = (1, 2, 5) + \mu(1, 0, -2), \ \mu \in \mathbb{R}.$$

Escreva a equação vectorial do plano \mathcal{P} que contém a recta \mathcal{R} e é perpendicular ao plano que contém \mathcal{R} e \mathcal{S} .

- 5. (a) Diagonalize a matriz $\begin{bmatrix} 5 & 1 \\ 1 & 5 \end{bmatrix}$.
 - (b) Determine os valores do parâmetro α para os quais a cónica definida por

$$5x^2 + 5y^2 + 2xy + 2x - 2y + \alpha = 0$$

é uma elipse.