

Universidade do Minho Escola de Ciências

Departamento de Matemática

Cálculo para Engenharia

Licenciatura em Engenharia Biomédica

Teste 1 A :: 2 de dezembro de 2021

Nome Número

I

As respostas às questões deste grupo devem ser convenientemente justificadas.

Questão 1. [2.5 valores] Considere o conjunto $A = \left\{ x \in \mathbb{R}^+ : \left| \frac{2x+1}{x-1} \right| \geq 1 \right\}$.

- a) Represente o conjunto A na forma de intervalo ou união de intervalos.
- b) Indique, caso existam, o mínimo e o supremo do conjunto A.
- c) Apresente, caso exista, um ponto de acumulação de A que não pertença a A.

Questão 2. [4.5 valores] Considere a função $f:[-2,5] \longrightarrow \mathbb{R}$ cujo gráfico se apresenta na figura anexa. No intervalo [0,3[o gráfico da função é um arco da circunferência centrada em (2,0) de raio 2, cuja equação é $(x-2)^2+y^2=4$.

- b) Classifique a função f quanto à injetividade.
- c) Determine $f^{-1}([-2,-1])$.
- d) Indique os pontos de máximo local de f, e o respetivo valor de f.
- e) Indique os pontos onde f é descontínua.
- f) Indique o maior valor positivo para δ de modo a que seja verdadeira a implicação seguinte:

g) Determine uma equação da reta tangente ao gráfico de f no ponto de abcissa 1,

Questão 3. [2 valores] Calcule
$$\lim_{x\to 2} \frac{2-x-\ln(x-1)}{x^3-3x^2+4}$$
.

Questão 4. [3 valores] Considere as funções f e g definidas por

$$f(x) = \begin{cases} x^2 + 1, & x \le 0 \\ 1 - x, & x > 0 \end{cases} \quad \text{e} \quad g(x) = \begin{cases} x^2 + 1, & x \in \mathbb{Z} \\ 1 - x, & x \in \mathbb{R} \setminus \mathbb{Z} \end{cases}$$

- a) Identifique os pontos onde cada uma das funções f e g é contínua.
- b) Calcule $\lim_{x \to -\infty} f(x)$ e $\lim_{x \to +\infty} g(x)$.

Em cada uma das questões seguintes, assinale neste enunciado, a afirmação verdadeira. não deve apresentar qualquer justificação.

Cada resposta certa vale 1 valor e cada resposta errada desconta 0,25 valores.

Questão 1.	Considere a função $f:\mathbb{R} \to \mathbb{R}$ definida por $f(x) = e^{\cos x}$. Então:		
\bigcirc	f é par e limitada.	\bigcirc	f é monótona e tem máximo.
\bigcirc	f é injetiva e crescente.	\bigcirc	f é não limitada e não monótona.
Questão 2.	Seja $f:\mathbb{R} o \mathbb{R}$ uma função bijetiva. Conseq	uentem	ente, a função ƒ pode ser:
0	par. ímpar.	0	limitada. periódica.
O	шраг.	O	periodica.
Questão 3.	Seja $f:\mathbb{R} o \mathbb{R}$ uma função estritamente crescente e limitada. Então $\lim_{x o +\infty} f(x)$:		
\bigcirc	$é +\infty$.	\bigcirc	$ \acute{e} \circ \max f(\mathbb{R}^+). $
\circ		\bigcirc	não existe.
Questão 4.	Seja $f:[0,1] o\mathbb{R}$ uma função bijetiva. Entâ	ío:	
	f é contínua.		f é invertível.
			$\lim_{x \to 1} f(x) = +\infty.$
O	f é monótona.	O	$\lim_{x\to 1} f(x) = +\infty.$
Questão 5.	Seja $f:\mathbb{R}^+ o]0,1]$ tal que $f(x)=rac{1}{\mathop{ m ch} x}$, uma função bijetiva:		
\circ	$f^{-1}(x) = \operatorname{ch} x.$	\bigcirc	$f^{-1}(x) = \ln \frac{1 + \sqrt{1 - x^2}}{x}.$
	$f^{-1}(x) = \operatorname{ch} \frac{1}{x}.$		f não é invertível.
Questão 6.	Seja $f:\mathbb{R} o\mathbb{R}$ tal que $f(x)=\sh x+\ch x$.	Então	
\circ	f anula-se em pelo menos um ponto.	0	f é sobrejetiva.
\circ	f é crescente.	\bigcirc	$\lim_{x \to -\infty} f(x) = -\infty.$
	(0 + 1) (0)		
Questão 7.	O valor de $\lim_{h\to 0} \frac{\operatorname{sen}(2x+h)-\operatorname{sen}(2x)}{h}$ é:		
\bigcirc	$\cos x$.	\bigcirc	zero.
\circ	$\cos(2x)$.	\bigcirc	não existe.
Questão 8.	O valor de $\arcsin\left(\sin\frac{4\pi}{3}\right)$ é:		