Dataflow - Defined Variables in Depth

Lorenzo Ceragioli

December 5, 2024

IMT Lucca

Recap: Defined Variables

Computed Value: Set of defined variables (Registers for the IR)

Analysis State: Associate a pair of values to each block (*in* and *out*)

Local Update: update the value associated with a block

- From the block itself: variables defined at the exit of the block are those defined when entering plus the ones defined by the block's commands
- From a block to the others: variables defined at beginning of a block are those defined in every preceding block

Global Update: all local updates until fixpoint

Then check that each instruction uses variables that are defined either at the beginning of the block or in the block before the current instruction.

Simplest: Defined Variables (a forward analysis)

Computed Value: P(R)

Analysis State:

- Formally $dv: L \longrightarrow \mathcal{P}(R) \times \mathcal{P}(R)$
- More handy $dv_{in}: L \longrightarrow \mathcal{P}(R)$ and $dv_{out}: L \longrightarrow \mathcal{P}(R)$

Local Update:

- $lub(dv_{out}(L)) = dv_{in}(L) \cup \{variables defined in L\}$

Global Update: $gu(dv_{in})(L) = lucf(dv_{in}(L))$ and $gu(dv_{out})(L) = lub(dv_{out}(L))$ until fixpoint

Then check each instruction in blocks.

- The variable y in out := y - 1 is undefined!
- Notice that the analysis is very coarse grained, we can do better!

- The variable y in out := y - 1 is undefined!
- Notice that the analysis is very coarse grained, we can do better!

- The variable y in out := y 1 is undefined!
- Notice that the analysis is very coarse grained, we can do better!

- The variable y in out := y 1 is undefined!
- Notice that the analysis is very coarse grained, we can do better!

- The variable y in out := y 1 is undefined!
- Notice that the analysis is very coarse grained, we can do better!

- The variable y in out := y 1 is undefined!
- Notice that the analysis is very coarse grained, we can do better!

- The variable y in out := y 1 is undefined!
- Notice that the analysis is very coarse grained, we can do better!

Recall: Correctness and Completeness of the Analysis

- correctness means that every variable that is deemed defined
 by the analysis is actually defined
 (recall, in each transition system obtained by computing the
 small-step semantics for a given input, when the execution
 reach the given instruction or block)
- the analysis always returning x₀ associating each block with the empty set, i.e. deeming that no variable is defined, is a correct (but useless) analysis
- completeness means that every variable that is actually defined is deemed defined by the analysis
- no analysis can be correct and complete for some properties –
 we must approximate

fixpointS¹

- our global update function *gu* defines correctness of the analysis
- every fixpoint $(\hat{x} \text{ such that } gu(\hat{x}) = \hat{x})$ is correct, none is complete
- the nearest fixpoint to a complete analysis is our best approximation!
- the least fixpoint \hat{x}_{min} is smaller that the maximal fixpoint \hat{x}_{max}

 $x_0 \subseteq \hat{x}_{min} \subseteq \hat{x}_{max} \subseteq$ actually defined variables

How to Compute Fixpoints – Recap

Note, we have a finite CPO with top \top and bottom \bot (a finite lattice), and gu is monotone (and thus complete).

Our CPO is of functions $L \longrightarrow \mathcal{P}(R) \times \mathcal{P}(R)$ (assuming a finite R)

- $s_1 \sqsubseteq s_2$ if for any $l \in L$, $X_1 \subseteq X_2$ and $Y_1 \subseteq Y_2$ where $s_1(l) = (X_1, Y_1)$ and $s_2(l) = (X_2, Y_2)$
- \perp is the function associating every label / with (\emptyset, \emptyset)
- T is the function associating every label I with (R, R)

Fixpoints for

$$gu: (L \longrightarrow \mathcal{P}(R) \times \mathcal{P}(R)) \longrightarrow (L \longrightarrow \mathcal{P}(R) \times \mathcal{P}(R))$$

Kleene's Theorem:
$$\hat{x}_{min} = \bigsqcup_{n} gu^{n}(\bot)$$
 $\hat{x}_{max} = \prod_{n} gu^{n}(\top)$

Exploiting Finiteness

Kleene's Theorem:
$$\hat{x}_{min} = \bigsqcup_{n} gu^{n}(\bot)$$
 $\hat{x}_{max} = \prod_{n} gu^{n}(\top)$

For \hat{x}_{min} we are actually computing the values

$$\perp$$
, $gu(\perp)$, $gu(gu(\perp))$... until we find $gu^{n}(\perp) = gu^{n+1}(\perp) = \hat{x}_{min}$

- we reach such a $gu^n(\bot)$ because the CPO is finite
- we avoid computing \bigsqcup_n because:
 - $\bot \sqsubseteq gu(\bot)$ by definition of \bot
 - $gu^m(\bot) \sqsubseteq gu^{m+1}(\bot)$ for every m by monotonicity, hence

$$\perp \sqsubseteq gu(\perp) \sqsubseteq gu(gu(\perp)) \dots gu^{n-1}(\perp) \sqsubseteq gu^n(\perp)$$

• $x \sqcup x' = x'$ if $x \sqsubseteq x'$

Warning: this is because of our domain, does not hold in general

- •

- We start with the ⊥ of our CPO

- We start with the ⊥ of our CPO
- We compute $gu(\bot)$

- We start with the ⊥ of our CPO
- We compute $gu(\bot)$
- Then $gu(gu(\bot))$

- We start with the ⊥ of our CPO
- We compute $gu(\bot)$
- Then $gu(gu(\bot))$
- ...

- We start with the ⊥ of our CPO
- We compute $gu(\bot)$
- Then $gu(gu(\bot))$
- **...**

- We start with the ⊥ of our CPO
- We compute $gu(\bot)$
- Then $gu(gu(\bot))$
- ...
- We reach a fixpoint, guaranteed to be the minimal one!

Computing the Greatest Fixpoint

Kleene's Theorem:
$$\hat{x}_{min} = \bigsqcup_{n} gu^{n}(\bot)$$
 $\hat{x}_{max} = \prod_{n} gu^{n}(\top)$

For \hat{x}_{max} we compute

$$\top$$
, $gu(\top)$, $gu(gu(\top))$... until we find $gu^n(\top) = gu^{n+1}(\top) = \hat{x}_{max}$

- we reach such a $gu^n(T)$ because the CPO is finite
- we avoid computing \prod_n because:
 - $gu(\top) \sqsubseteq \top$ by definition of \top
 - $gu^{m+1}(\top) \subseteq gu^m(\top)$ for every m by monotonicity, hence

$$\top \supseteq gu(\top) \supseteq gu(gu(\top)) \dots gu^{n-1}(x) \supseteq gu^n(x)$$

• $x \sqcap x' = x' \text{ if } x \supseteq x'$

Warning: this is because of our domain, does not hold in general

- We start with the T of our CPO!

- We start with the T of our CPO!
- We compute $gu(\top)$
- .

- We start with the T of our CPO!
- We compute $gu(\top)$
- Then gu(gu(T))
- .

- We start with the T of our CPO!
- We compute $gu(\top)$
- Then $gu(gu(\top))$
- ...
- e.

- We start with the T of our CPO!
- We compute $gu(\top)$
- Then $gu(gu(\top))$
- ...
- ×

- We start with the T of our CPO!
- We compute $gu(\top)$
- Then $gu(gu(\top))$
- ...

- We start with the T of our CPO!
- We compute $gu(\top)$
- Then $gu(gu(\top))$
- ...

- We start with the T of our CPO!
- We compute $gu(\top)$
- Then $gu(gu(\top))$
- ...

- We start with the T of our CPO!
- We compute $gu(\top)$
- Then $gu(gu(\top))$
- ٠...
- We reach a fixpoint, guaranteed to be the maximal one!

Why Greatest Fixpoint for Defined Variables

Safety defines when an analysis is acceptable for us:

- Definite Variables is a "definite" analysis → safety is correctness
 - we are happy only if all variables deemed defined by the analysis are actually defined
 - some of them may be deemed not defined incorrectly, but that is acceptable
 - (sometimes we will refuse to execute programs that are correct but we will never execute a faulty one)
- all fixpoints are correct (safe), we want the maximal which is the nearest to completeness

Why Least Fixpoint for Live Variables

Safety defines when an analysis is acceptable for us:

- - we are happy only if all variables that are actually live are deemed live by the analysis
 - some of them may be deemed live incorrectly, but that is acceptable
 - (acceptable because we use the information for guiding optimization: we will treat variables deemed live as still important for the program. Even if sometimes they are not really important, the optimization still preserves the semantics of the program)
- All fixpoints are complete (safe), we want the minimal which is the nearest to correctness

Project Fragment

- Write a function for checking that no register is ever used before being initialized with some value in a MiniRISC CFG (mind the initial register in which is always initialized, and out which is always used – if you prefer, you can perform this task on the MiniImp CFG of the program)
- Edit: better to use the greatest fixpoint, but the least is fine