mercoledì 7 dicembre 2022

14:26

Siano dati l'insieme delle categorie C = {sport, politica} e una collezione di 280 documenti definiti sul vocabolario V = {T1, T2, T3, T4}.
 a) Costruire un classificatore bayesiano per C, addestrandolo sul seguente training set TR:
 TR = {<D1, c2>, <D2, c2>, <D3, c1>, <D4, c1>}

dove per ogni documento si riporta di seguito l'elenco delle parole in esso presenti, con le relative occorrenze: D1= $\{T_4:4\}$

D2={T₃:3, T₂:2} D4={T₃:5}

NB: illustrare chiaramente tutte le fasi di costruzione del classificatore

b) Determinare la classe di appartenenza del seguente documento $d=\{T_1:1,T_3:2\}$

b) Determinare la classe di appartenenza del seguente documento $d = \{T_1: 1, T_2: 2\}$ [PUNTI 2)

(PUNTI 7)

mercoledì 7 dicembre 2022

14:50

 Sia data la seguente matrice utenti-item di un sistema di filtraggio collaborativo, i cui rating di gradimento sono espressi in una scala discreta da 1 a 7

cspressi in ana scala discreta da 1 a /					
	I_1	I_2	I_3	I4	I_5
\mathbf{U}_1		3	5		7
U_2		6	2 (?	1
U_3	3	4		1	2
U ₄		4	4	2	3

Calcolare la predizione per l'item I4 e l'utente U2, utilizzando un algoritmo di user-to-user collaborative filtering, una neighborhood size pari a 2 e il coseno come misura di similarità.

$$P(Uz_{1}T_{4})$$

$$P(Q_{1}M) = RQ + \frac{\sum_{j \in N(Q)} Sin(Q_{1}J)(R_{J}i - R_{J})}{\sum_{j \in N(Q)} Sin(Uz_{1}U_{4})} = \frac{\sum_{j \in N(Q)} Sin(Uz_{1}U_{4})}{\sum_{j \in N(Q)} Sin(Uz_{1}U_{4})} = \frac{\sum_{j \in N(Q)} Sin($$