Derivation for 2D Jacobian

Saturday, April 15, 2023 11:36 AM

Since

we have: crefficient - since
$$\frac{\partial x}{\partial s}$$
 has given.

($\frac{\partial y}{\partial x}$, $\frac{\partial x}{\partial s}$) + $\frac{\partial y}{\partial s}$ ($\frac{\partial y}{\partial s}$) = $\frac{\partial y}{\partial s}$

$$\frac{\partial y}{\partial x} = \frac{\partial x}{\partial y} + \frac{\partial y}{\partial y} = \frac{\partial y}{\partial y} = \frac{\partial y}{\partial y}$$

using: Gramer's rule on the linear equations above:

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial x} =$$

then
$$\frac{\partial}{\partial x} = \frac{1}{7} \left[\frac{\partial}{\partial \xi} \left(\frac{\partial y}{\partial \eta} \right) - \frac{\partial}{\partial \eta} \left(\frac{\partial y}{\partial \xi} \right) \right]$$

$$\frac{\partial}{\partial y} = \frac{1}{2} \left[\frac{\partial}{\partial \eta} \left(\frac{\partial x}{\partial s} \right) - \frac{\partial}{\partial s} \left(\frac{\partial x}{\partial \eta} \right) \right]$$