Quiz, 10 questions

✓ Congratulations! You passed!

Next Item

1/1 points

1.

Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

 $\chi^{(i)} < j >$

Correct

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

- $\chi < i > (j$
- $\chi^{(j)} < i >$
- $\gamma < j > (i)$

Quiz, 10 questions

2.

Consider this RNN:

This specific type of architecture is appropriate when:

$$T_x = T_y$$

Correct

It is appropriate when every input should be matched to an output.

$$T_x < T_y$$

$$T_{r} > T_{v}$$

$$T_x = 1$$

Quiz, 10 questions

3.

To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

Speech recognition (input an audio clip and output a transcript)

Un-selected is correct

Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

Correct
Correct!

Image classification (input an image and output a label)

Un-selected is correct

Gender recognition from speech (input an audio clip and output

a label indicating the speaker's gender)

Correct

Correct!

4.

Quiz, 10 questions

You are training this RNN language model.

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- Estimating $P(y^{<1>}, y^{<2>}, ..., y^{<t-1>})$
- Estimating $P(y^{< t>})$
- Estimating $P(y^{<t>} | y^{<1>}, y^{<2>}, ..., y^{<t-1>})$

Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

Estimating $P(y^{<t} | y^{<1}, y^{<2}, ..., y^{<t})$

10/10 points (100%)

Recurrent Neural Networks

Quiz, 10 questions

5.

You have finished training a language model RNN and are using it to sample random sentences, as follows:

What are you doing at each time step *t*?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.

Correct

Yes!

Quiz, 10 questions

6.

You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?

_	ause of this problem?
	Vanishing gradient problem.
0	Exploding gradient problem.
Corre	ect
	ReLU activation function g(.) used to compute g(z), where z is too large.
	Sigmoid activation function g(.) used to compute g(z), where z is too large.
7.	1 / 1 points se you are training a LSTM. You have a 10000 word vocabulary, and
are usi	ng an LSTM with 100-dimensional activations $a^{< t>}$. What is the sion of Γ_u at each time step?
	1
0	100
	ect ect, Γ_u is a vector of dimension equal to the number of en units in the LSTM.
	300
	10000

Quiz, 10 questions

8.

Here're the update equations for the GRU.

GRU

$$\begin{split} \tilde{c}^{< t>} &= \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c) \\ \Gamma_u &= \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u) \\ \Gamma_r &= \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r) \\ c^{< t>} &= \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>} \\ a^{< t>} &= c^{< t>} \end{split}$$

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

- Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Betty's model (removing Γ_r), because if $\Gamma_u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

Correct

Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly dependant on $c^{< t-1>}$.

Betty's model (removing Γ_r), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

Quiz, 10 questions

9.

Here are the equations for the GRU and the LSTM:

GRU	LSTM
$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$	$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$
$\Gamma_u = \sigma(W_u[c^{< t-1>},x^{< t>}] + b_u)$	$\Gamma_u = \sigma(W_u[a^{< t-1>},x^{< t>}] + b_u)$
$\Gamma_r = \sigma(W_r[c^{< t-1>},x^{< t>}] + b_r)$	$\Gamma_f = \sigma(W_f[a^{< t-1>},x^{< t>}] + b_f)$
$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t - 1>}$	$\Gamma_o = \sigma(W_o[a^{< t-1>},x^{< t>}] + b_o)$
$a^{< t>} = c^{< t>}$	$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$
	$a^{< t>} = \Gamma_o * c^{< t>}$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the the blanks?

$$\Gamma_u$$
 and $1-\Gamma_u$

Correct

Yes, correct!

 \bigcap 1 - Γ_u and Γ_u

 \bigcap Γ_r and Γ_u

10/10 points (100%)

Quiz, 10 questions

10.

You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>}$, ..., $x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>}$, ..., $y^{<365>}$. You'd like to build a model to map from $x \to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

	Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.	
	Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.	
0	Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{<1>}$,, $x^{< t>}$, but not on $x^{< t+1>}$,, $x^{<365>}$	
Correct		
Yes!		
	Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not other days' weather.	

