机器学习导论 (2021 春季学期)

五、神经网络

主讲教师: 周志华

神经网络发展回顾

1940年代-萌芽期: M-P模型 (1943), Hebb 学习规则 (1945)

1956左右-1969左右~繁荣期:感知机 (1958), Adaline (1960), ...

1969年: Minsky & Papert "Perceptrons"

马文·闵斯基 (1927-2016) 1969年图灵奖

1984左右 -1997左右~繁荣期: Hopfield (1983), BP (1986), ...

1997年左右: SVM文本分类成功 及 统计学习 兴起

沉寂期

2012-至今~繁荣期:深度学习

2019年3月27日,ACM宣布: 7

Geoffrey Hinton, Yann LeCun, Yoshua Bengio

因对深度学习的卓越贡献获得图灵奖

科学的发展总是"螺旋式上升"

三十年河东

三十年河西

坚持才能有结果

BP (BackPropagation:误差逆传播算法)

迄今最成功、最常用的神经网络算法,可用于多种任务(不仅限于分类)

P. Werbos在博士学位论文中正式完整描述:

P. Werbos. Beyond regression: New tools for prediction and analysis in the behavioral science. Ph.D dissertation, Harvard University, 1974

给定训练集 $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}, x_i \in \mathbb{R}^d, y_i \in \mathbb{R}^l$

输入: d 维特征向量

输出: 1 个输出值

隐层:假定使用 q 个

隐层神经元

假定功能单元均使用 Sigmoid 函数

BP 算法推导

对于训练例 $(\boldsymbol{x}_k, \boldsymbol{y}_k)$, 假定网络的实际输出为 $\hat{\boldsymbol{y}}_k = (\hat{y}_1^k, \hat{y}_2^k, \ldots, \hat{y}_l^k)$

$$\hat{y}_j^k = f(\beta_j - \theta_j)$$

则网络在 (x_k,y_k) 上的均方误差为:

$$E_k = \frac{1}{2} \sum_{j=1}^{l} (\hat{y}_j^k - y_j^k)^2$$

需通过学习确定的参数数目: (d+l+1)q+l

BP 是一个迭代学习算法, 在迭代的每一轮中采用广义感知机学习规则

$$v \leftarrow v + \triangle v$$
.

BP 算法推导 (续)

BP 算法基于梯度下降策略,以目标的负梯度方向对参数进行调整

以 w_{hj} 为例

对误差 E_k ,给定学习率 η ,有:

$$\Delta w_{hj} = -\eta \frac{\partial E_k}{\partial w_{hj}}$$

注意到 w_{hj} 先影响到 β_j ,

再影响到 \hat{y}_{j}^{k} , 然后才影响到 E_{k} , 有:

$$\frac{\partial E_k}{\partial w_{hj}} = \frac{\partial E_k}{\partial \hat{y}_i^k} \cdot \frac{\partial \hat{y}_j^k}{\partial \beta_j} \cdot \frac{\partial \beta_j}{\partial w_{hj}}$$

BP 算法推导 (续)

$$\hat{y}_j^k = f(\beta_j - \theta_j)$$

$$\hat{y}_j^k (1 - \hat{y}_j^k)$$

$$\Rightarrow g_j = -\frac{\partial E_k}{\partial \hat{y}_j^k} \cdot \frac{\partial \hat{y}_j^k}{\partial \beta_j}$$
$$= \hat{y}_j^k (1 - \hat{y}_j^k) (y_j^k - \hat{y}_j^k)$$

于是,
$$\Delta w_{hj} = -\eta \frac{\partial E_k}{\partial w_{hj}} = \eta g_j b_h$$

BP 算法推导 (续)

类似地,有:

$$\Delta \theta_j = -\eta g_j$$

$$\Delta v_{ih} = \eta e_h x_i$$

$$\Delta \gamma_h = -\eta e_h$$

其中:

$$= -\sum_{j=1}^{l} \frac{\partial E_k}{\partial \beta_j} \cdot \frac{\partial \beta_j}{\partial b_h} f'(\alpha_h - \gamma_h) = \sum_{j=1}^{l} w_{hj} g_j f'(\alpha_h - \gamma_h)$$

$$= b_h (1 - b_h) \sum_{j=1}^{l} w_{hj} g_j \qquad \qquad \Rightarrow \eta \in (0, 1) \text{ π ext}$$

 $e_h = -\frac{\partial E_k}{\partial b_h} \cdot \frac{\partial b_h}{\partial \alpha_h}$

学习率 $\eta \in (0,1)$ 不能太大、不能太小

BP 算法

```
输入: 训练集 D = \{(\boldsymbol{x}_k, \boldsymbol{y}_k)\}_{k=1}^m; 学习率 \eta.
```

过程:

- 1: 在(0,1)范围内随机初始化网络中所有连接权和阈值
- 2: repeat
- 3: for all $(\boldsymbol{x}_k, \boldsymbol{y}_k) \in D$ do
- 4: 根据当前参数和式(5.3) 计算当前样本的输出 \hat{y}_k ;
- 5: 根据式(5.10) 计算输出层神经元的梯度项 g_i ;
- 6: 根据式(5.15) 计算隐层神经元的梯度项 e_h ;
- 7: 根据式(5.11)-(5.14) 更新连接权 w_{hj}, v_{ih} 与阈值 θ_j, γ_h
- 8: end for
- 9: until 达到停止条件

输出: 连接权与阈值确定的多层前馈神经网络

图 5.8 误差逆传播算法

标准 BP 算法 VS. 累积 BP 算法

标准 BP 算法

- 每次针对单个训练样例更 新权值与阈值
- 参数更新频繁,不同样例可能抵消,需要多次迭代

累积 BP 算法

- 其优化目标是最小化整个 训练集上的累计误差
- 读取整个训练集一遍才对 参数进行更新,参数更新 频率较低

在很多任务中,累计误差下降到一定程度后,进一步下降会非常缓慢,这时标准BP算法往往会获得较好的解,尤其当训练集非常大时效果更明显.

缓解过拟合

主要策略:

- □ 早停(early stopping)
 - 若训练误差连续 a 轮的变化小于 b, 则停止训练
 - 使用验证集: 若训练误差降低、验证误差升高, 则停止训练
- □ 正则化 (regularization)
 - 在误差目标函数中增加一项描述网络复杂度

例如
$$E = \lambda \frac{1}{m} \sum_{k=1}^{m} E_k + (1-\lambda) \sum_{i} w_i^2$$

偏好比较小的连接权和阈值,使网络输出更"光滑"

全局最小 vs. 局部极小

神经网络的训练过程可看作一个参数寻优过程:

在参数空间中, 寻找一组最优参数使得误差最小

"跳出"局部极小的常见策略:

- ✔ 不同的初始参数
- ✔ 模拟退火
- ✔ 随机扰动
- ✔ 演化算法

其他常见神经网络模型

➤ RBF: 分类任务中除BP之外最常用

> ART: "竞争学习"的代表

➤ SOM: 最常用的聚类方法之一

> 级联相关网络: "构造性"神经网络的代表

➤ Elman网络: 递归神经网络的代表

➤ Boltzmann机: "基于能量的模型"的代表

>

RBF 神经网络

RBF: Radial Basis Function (径向基函数)

- 单隐层前馈神经网络
- 使用<mark>径向基函数</mark>作为隐层神经元激活函数 $\rho(\boldsymbol{x},\boldsymbol{c}_i) = e^{-\beta_i \|\boldsymbol{x}-\boldsymbol{c}_i\|^2}$ 例如高斯径向基函数 $\rho(\boldsymbol{x},\boldsymbol{c}_i) = e^{-\beta_i \|\boldsymbol{x}-\boldsymbol{c}_i\|^2}$
- 输出层是隐层神经元输出的线性组合

$$\varphi(\boldsymbol{x}) = \sum_{i=1}^q w_i \rho(\boldsymbol{x}, \boldsymbol{c}_i)$$

训练:

Step1:确定神经元中心,常用的方式包括随机采样、聚类等

Step2:利用BP算法等确定参数

SOM 神经网络

SOM: Self-Organizing feature Map (自组织特征映射)

- 竞争型的无监督神经网络
- 将高维数据映射到低维空间(通常为2 维),高维空间中相似的样本点映射到 网络输出层中邻近神经元
- 每个神经元拥有一个权向量
- 目标:为每个输出层神经元找到合适的权向量以保持拓扑结构

图 5.11 SOM 网络结构

训练:

- 网络接收输入样本后,将会确定输出层的"获胜"神经元("胜者通吃")
- 获胜神经元的权向量将向当前输入样本移动

级联相关网络

CC: Cascade-Correlation (级联相关)

构造性神经网络:将网络的结构也当做学习的目标之一,希望 在训练过程中找到适合数据的网络结构

训练:

- 开始时只有输入层和输出层
- 级联 新的隐层结点逐渐加入,从而创建起层级结构
- 相关 最大化新结点的输出与网络误差之间的相关性

(a) 初始状态

(b) 增加一个隐层结点

(c) 增加第二个隐层结点

Elman 网络

递归神经网络: Recurrent NN, 亦称 Recursive NN

- 网络中可以有环形结构,可让使一些神经元的输出反馈回来作为输入
- t 时刻网络的输出状态: 由 t 时刻的输入状态和 t-1 时刻的网络状态 共同决定

Elman 网络是最常用的递归神经网络之一

- 结构与前馈神经网络很相似,但隐层神经元的输出被反馈回来
- 使用推广的BP算法训练

目前在自然语言处理等领域常用的 LSTM 网络, 是一种复杂得多的递归神经网络

图 5.13 Elman 网络结构

深度学习的兴起

- 2006年, Hinton 组发表深度学习的 Science 文章
- 2012年, Hinton 组参加ImageNet 竞赛, 使用 CNN 模型以超过 第二名10个百分点的成绩夺得当年竞赛的冠军
- 在计算机视觉、语音识别、机器翻译等领域取得巨大成功

深度学习是"模拟人脑"吗?

《IEEE 深度对话 Facebook 人工智能负责人 Yann LeCun》

Yann LeCun CNN的主要发明人 深度学习"三架马车"之一 2019年图灵奖得主

IEEE Spectrum:这些天我们看到了许多关于深度学习的新闻

Yann LeCun: 我最不喜欢的描述是「它像大脑一样工作」,我不喜欢人们这样说的原因是,虽然深度学习从生命的生物机理中获得灵感,但它与大脑的实际工作原理差别非常非常巨大。将它与大脑进行类比给它赋予了一些神奇的光环,这种描述是危险的。

深度神经网络

以往神经网络采用单或双隐层结构

例如, ImageNet 胜者:

2012: 8 层 2015: 152 层 2016: 1207 层

deep

深度神经网络: 很多层

神经网络实质上是多层函数嵌套形成的数学模型

可以说受到了一点生物神经机制的"启发",但远没有"受指导"

至今最常用的算法: **BP** [Rumelhart et al., 1986],是完全从数学上推导出来的

重要诀窍 (tricks)

- □ 预训练+微调
- 预训练: 监督逐层训练, 每次训练一层隐结点
- ★ 微调: 预训练全部完成后,对全网络进行微调训练

可视为将大量参数分组, 对每组先找到较好的局部 配置,再全局寻优

■ 权共享 (weight-sharing)

减少需优化的参数

- 一组神经元使用相同的连接权值
- Dropout

降低 Rademacher 复杂度

- 在每轮训练时随机选择一些参数令其不被更新(下一轮可能被更新)
- ReLU (Rectified Linear Units)

求导容易;缓解梯度消失现象

• 将 Sigmoid 激活函数修改为修正线性函数

$$f(x) = \max(0, x)$$

□ 交叉熵 (Cross-entropy)

更能体现分类任务的特性

• BP算法中以交叉熵 $-\frac{1}{m}\sum_{i=1}^{m}y_{i}\log\hat{y}_{i}$ 代替均方误差 $\frac{1}{m}\sum_{i=1}^{m}(y_{i}-\hat{y}_{i})^{2}$

尚有许多trick缺乏关于奏效原因的合理猜测

深度学习并非"突然出现"的"颠覆性技术",

而是经过了长期发展、很多研究者做出贡献,

"冷板凳"坐"热"的结果

例如: CNN (卷积神经网络)

引发深度学习热潮, 被广泛应用

信号处理中的卷积 [最晚1903年已在文献中出现]

D. Hubel & T. Wiesel 关于 猫视皮层的研究 [1962]

G. Hinton研究组将8层CNN用于 ImageNet竞赛获胜 [2012]

福岛邦彦(Fukushima) 在神经网络中引入卷积 [1982]

H. Lee et al. 引入无监督 逐层训练CNN [2009]

Y. LeCun 引入BP算法训练 卷积网络, CNN成型 [1989]

G. Hinton通过无监督逐层 训练,构建深层模型 [2006]

Y. LeCun et al., CNN 用于 支票手写字符识别[1998]

Y. LeCun and Y. Bengio, 完整描述CNN [1995]

20年

304

前往第七站.....

