Help Logout Interrupt Main Menu Search Form Posting Counts Show S Numbers Edit S Numbers Preferences Cases								
Search Results - Term (12 AND 14).USPT,PGPB,JPAB,EPAB,DWPI,TDBD. (L12 AND L14).USPT,PGPB,JPAB,EPAB,DWPI,TDBD. (L12 AND L14).USPT,PGPB,JPAB,EPAB,DWPI,TDBD. 19 US Patents Full-Text Database US Pre-Grant Publication Full-Text Database JPO Abstracts Database EPO Abstracts Database Derwant World Patents Index								
Term (12 AND 14).USPT,PGPB,JPAB,EPAB,DWPI,TDBD. (L12 AND L14).USPT,PGPB,JPAB,EPAB,DWPI,TDBD. US Patents Full-Text Database US Pre-Grant Publication Full-Text Database JPO Abstracts Database EPO Abstracts Database Darwant World Patents Index								
(12 AND 14).USPT,PGPB,JPAB,EPAB,DWPI,TDBD. (L12 AND L14).USPT,PGPB,JPAB,EPAB,DWPI,TDBD. 19 US Patents Full-Text Database US Pre-Grant Publication Full-Text Database JPO Abstracts Database EPO Abstracts Database Derwant World Patents Index								
(L12 AND L14).USPT,PGPB,JPAB,EPAB,DWPI,TDBD. US Patients Full-Text Database US Pre-Grant Publication Full-Text Database JPO Abstracts Database EPO Abstracts Database Darwant World Patients Index								
US Patents Full-Text Datebase US Pre-Grant Publication Full-Text Datebase JPO Abstracts Datebase EPO Abstracts Datebase Darwent World Patents Index								
US Pre-Grant Publication Full-Text Database JPO Abstracts Database EPO Abstracts Database Darwent World Patents Index								
US Pre-Grant Publication Full-Text Database JPO Abstracts Database EPO Abstracts Database Darwent World Patents Index								
US Pre-Grant Publication Full-Text Datebase JPO Abstracts Datebase EPO Abstracts Datebase Derwant World Patents Index IBM Technical Disclosure Bullatins Search: Recall Text Clear								
Search History								

DATE: Monday, April 28, 2003 Printable Copy Create Case

Set Name	Hit Count	Set Name result set	
DB=U			
<u>L15</u>	L12 and 114	19	<u>L15</u>
<u>L14</u>	L13 same cache	350	<u>L14</u>
<u>L13</u>	(status or state or dirty) same (RAM or random access memory) same (table or directory or structure or list)	7345	<u>L13</u>
<u>L12</u>	(snoop or snooping) same cache same dirty	292	<u>L12</u>
<u>L11</u>	(status or state or dirty) same (RAM or random access memory)	48826	<u>L11</u>
<u>L10</u>	L9 and (14 or 15)	14	<u>L10</u>
<u>L9</u>	cache same (flush or flushing) same (write adj back) same 13	15	<u>L9</u>
<u>L8</u>	L7 and (15 or 14)	105	<u>L8</u>
<u>L7</u>	cache same (flush or flushing) same (write adj back)	272	<u>L7</u>
<u>L6</u>	cache same (flush or flushing) same (write adj back) same 13 same (14 or 15)	8	<u>L6</u>
<u>L5</u>	("L3" or (level adj three) or (third adj level)) adj2 cache	496	<u>L5</u>
<u>L4</u>	("L2" or (level adj two) or (second adj level)) adj2 cache	3482	<u>L4</u>
<u>L3</u>	("L1" or (level adj one) or (first adj level)) adj2 cache	2329	<u>L3</u>
<u>L2</u>	operating system same 11	. 9	<u>L2</u>
<u>L1</u>	(variable or programmable) same cache same (way or set) same (associativity or associative)	114	<u>L1</u>

END OF SEARCH HISTORY

> home | > about | > feedback | > login US Patent & Trademark Office

Search Results

Search Results for: [cache and (linked list or list structure)] Found 764 of 108,036 searched. → Rerun within the Portal

Warning: Maximum result set of 200 exceeded. Consider refining.

Search with	hin Resu	ılts								
GO > Ad	vanced	Search	> 900	rch He	In/Tine					
- Au	vanceu	Search ·	/ 36a		ip/Tips					
Sort by:	Title	Publica	tion	Publi	cation	Date	Score			
Results 1	- 20 of	200	short Prev Page 1	listing 2 3	g 4 5	6 7	8 9	10	□ Next Page	

Cache coherence in systems with parallel communication channels & many processors
John C. Willis , Arthur C. Sanderson , Charles R. Hill
Proceedings of the 1990 ACM/IEEE conference on Supercomputing
November 1990

98%

This paper describes and analyzes two algorithms for maintaining cache coherence in multiprocessor systems with parallel communication channels and many processors. A distributed link-list relates all cache frames representing the same main memory block. Messages traverse the list to maintain list integrity, exclusive ownership, and consistent values. Memory access semantics are equivalent to a shared memory system without caches. Reference latency, efficiency of memory use, and hardware complex ...

2 The software lookaside buffler reduces search overhead with 96% linked lists

Gerald Bozman
Communications of the ACM March 1984
Volume 27 Issue 3