Algèbre linéaire et bilinéaire $I-TD_3$ 27 Septembre 2022

Exercice 1 : Sous-espace vectoriel

Vrai ou Faux. Les espaces suivants sont-ils des sous-espaces vectoriels de $E = \mathcal{F}([-1,1],\mathbb{R})$?

1. F_1 l'ensemble des fonctions bornées sur [-1, 1];

Vrai.

- F_1 est non vide car il contient la fonction nulle par exemple.
- Soient f_1 et f_2 deux fonctions de F_1 et λ un scalaire réel. Il existe deux constantes réelles M_1 et M_2 telles que $\forall x \in [-1,1], |f_1(x)| \leq M_1$ et $|f_2(x)| \leq M_2$. Montrons que $f_1 + \lambda . f_2$ est dans F_1 (donc est bornée). Par l'inégalité triangulaire on a pour tout x dans [-1,1]:

$$|f_1(x) + \lambda \cdot f_2(x)| \le |f_1(x)| + |\lambda| \times |f_2(x)|$$

$$\le M_1 + |\lambda| \times M_2.$$

Donc $f_1 + \lambda f_2$ est bien bornée.

 F_1 est un sous-espace vectoriel de E.

2. F_2 l'ensemble des fonctions bornées par la constante 1 sur [-1, 1];

Faux. Soit f la fonction constante égale à 1 sur [-1,1]. Alors 2.f n'est pas bornée par 1.

 F_2 n'est pas un sous-espace vectoriel de E.

3. F_3 l'ensemble des fonctions telles que f(1) = 0;

Vrai.

- F_3 est non vide car il contient la fonction nulle par exemple.
- Soient f et g deux fonctions s'annulant en 1 et λ un scalaire réel. On constate bien que $(f + \lambda g)(1) = f(1) + \lambda g(1) = 0$ donc $f + \lambda g \in F_3$.

 F_3 est un sous-espace vectoriel de E.

4. F_4 l'ensemble des fonctions telles que f(1) = 1;

Faux. En effet, la fonction nulle ne prend pas la valeur 1 en 1.

 F_4 n'est pas un sous-espace vectoriel de E.

5. F_5 l'ensemble des fonctions paires;

Vrai.

- La fonction nulle est paire donc F_5 est non vide.
- Soient f et g deux fonctions paires et λ un scalaire réel. Alors pour tout $x \in [-1, 1]$, $(f + \lambda g)(-x) = f(-x) + \lambda g(-x) = f(x) + \lambda g(x) = (f + \lambda g)(x)$, donc la fonction $f + \lambda g(x) = f(x) + \lambda g$

est paire.

 F_5 est un sous-espace vectoriel de E.

6. F_6 l'ensemble des fonctions impaires;

Vrai.

- La fonction nulle est impaire donc F_6 est non vide.
- Soient f et g deux fonctions impaires et λ un scalaire réel. Alors pour tout $x \in [-1, 1]$, $(f + \lambda g)(-x) = f(-x) + \lambda g(-x) = -f(x) \lambda g(x) = -(f + \lambda g)(x)$, donc la fonction $f + \lambda g$ est impaire.

 F_6 est un sous-espace vectoriel de E.

7. F_7 l'ensemble des fonctions paires ou impaires;

Faux. Montrons que F n'est pas stable par addition. Soit f la fonction définie sur [-1,1] par f(x) = x. La fonction f est impaire donc $f \in F$. Soit g la fonction définie sur [-1,1] par g(x) = 1. La fonction g est paire donc $g \in F$. On a (f+g)(1) = 2 et (f+g)(-1) = 0 donc la fonction f+g n'est ni paire ni impaire. Donc $f+g \notin F$ et F n'est donc pas un sous-espace vectoriel de E.

 F_7 n'est pas un sous-espace vectoriel de E.

8. F_8 l'ensemble des fonctions croissantes sur [-1, 1];

Faux. Soit f la fonction définie sur [-1,1] par f(x)=x. Alors $f\in F$ mais $(-1).f\not\in F$.

 F_8 n'est pas un sous-espace vectoriel de E.

9. F_9 l'ensemble des fonctions monotones sur [-1, 1];

Faux. Soit f la fonction définie sur [-1,1] par : $f(x) = \begin{cases} 0 \text{ si } x < 0 \\ x \text{ si } x \ge 0 \end{cases}$. Soit g la fonction définie

sur [-1,1] par : $g(x) = \begin{cases} -x & \text{si } x < 0 \\ 0 & \text{si } x \ge 0 \end{cases}$. Les fonctions f et g sont monotones, mais f+g n'est pas monotone.

 F_9 n'est pas un sous-espace vectoriel de E.

10. F_{10} l'ensemble des fonctions f qui vérifient $\lim_{x\to 1^-} f(x) = 0$.

Vrai. En effet :

- la fonction nulle a pour limite 0 en 1^- , donc F_{10} est non vide.
- Soient f et g deux fonctions de F_{10} et λ un scalaire réel. Par linéarité de la limite, on sait que la fonction $f + \lambda g$ a également pour limite 0 en 1^- .

 F_{10} est un sous-espace vectoriel de E.

Exercice 2 : Sous-espace vectoriel

Soit E un \mathbb{K} -espace vectoriel. Soient E_1 , E_2 et E_3 3 sous-espaces vectoriels de E.

1. Comparer pour l'inclusion

$$E_1 + (E_2 \cap E_3)$$
 et $(E_1 + E_2) \cap (E_1 + E_3)$.

Soit $x \in E_1 + (E_2 \cap E_3)$. Il existe $(y, z) \in E_1 \times (E_2 \cap E_3)$ tel que x = y + z. Puisque $z \in E_2$ et $z \in E_3$, on en déduit que $x \in E_1 + E_2$ et $x \in E_1 + E_3$. Donc, $x \in (E_1 + E_2) \cap (E_1 + E_3)$. Ainsi,

$$E_1 + (E_2 \cap E_3) \subset (E_1 + E_2) \cap (E_1 + E_3).$$

Donnons un exemple qui montre que l'inclusion est stricte. Soit $E = \mathbb{R}^2$, $E_1 = \text{Vect}(\{(1,0)\})$, $E_2 = \text{Vect}(\{(0,1)\})$ et $E_3 = \text{Vect}(\{(1,1)\})$. On a $E_2 \cap E_3 = \{0_E\}$, donc $E_1 + (E_2 \cap E_3) = E_1$. De plus, puisque :

$$\forall (x,y) \in \mathbb{R}^2, (x,y) = x.(1,0) + y.(0,1) \text{ et } (x,y) = (x-y).(1,0) + y.(1,1),$$

les familles $\{(1,0),(0,1)\}$ et $\{(1,0),(1,1)\}$ génèrent $\mathbb{R}^2.$ Donc,

$$E_1 + E_2 = \text{Vect}(\{(1,0)\}) + \text{Vect}(\{(0,1)\}) = \text{Vect}(\{(1,0),(0,1)\}) = \mathbb{R}^2$$

et

$$E_1 + E_3 = \text{Vect}(\{(1,0)\}) + \text{Vect}(\{(1,1)\}) = \text{Vect}(\{(1,1),(0,1)\}) = \mathbb{R}^2$$
.

Donc
$$(E_1 + E_2) \cap (E_1 + E_3) = \mathbb{R}^2$$
 et $E_1 + (E_2 \cap E_3) = E_1 \neq \mathbb{R}^2$.

2. A quelle condition suffisante a-t-on égalité?

Montrons que si $E_1 \subset E_2$, alors

$$E_1 + (E_2 \cap E_3) \supset (E_1 + E_2) \cap (E_1 + E_3).$$

Soit $x \in (E_1 + E_2) \cap (E_1 + E_3)$ alors, il existe $(y, z) \in E_1 \times E_2$ et $(a, b) \in E_1 \times E_3$ tels que x = y + z = a + b. Par hypothèses, $(y, z, a) \in E_1 \times E_2 \times E_1 \subset E_2 \times E_2 \times E_2$, donc

$$b = y + z - a \in E_2.$$

Puisque $b \in E_3$, on déduit que $x = a + b \in E_1 + (E_2 \cap E_3)$.

Exercice 3 : Génératrice

1. Soit $a \in \mathbb{R}$, montrer que la famille

$$(x \mapsto (x-a)^n)_{n \in \mathbb{N}}$$

est une famille génératrice de l'ensemble des fonctions polynomiales noté E.

Par définition, une fonction f est polynomiale si, et seulement si, il existe $N \in \mathbb{N}$ et $(a_1, \ldots, a_N) \in \mathbb{R}^N$ tels que :

$$\forall x \in \mathbb{R}, \ f(x) = a_0 + a_1 x + \dots + a_N x^N.$$

Ainsi, on a:

$$E = \text{Vect}(\{x \mapsto x^n, n \in \mathbb{N}\}).$$

(En particulier, l'ensemble E des fonctions polynomiales est un sous espace-vectoriel de $\mathscr{F}(\mathbb{R},\mathbb{R})$.) Soit $a\in\mathbb{R}$, montrons que $E=\mathrm{Vect}(\{x\mapsto (x-a)^n,\ n\in\mathbb{N}\})$ par double inclusion

(⊃) D'après la formule du binôme de Newton, on a :

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, \ (x-a)^n = \sum_{i=0}^n \binom{n}{i} (-a)^{k-i} x^i.$$

Donc $\{x \mapsto (x-a)^n, n \in \mathbb{N}\} \subset E$. D'où, puisque E est stable par combinaison linéaire,

$$\operatorname{Vect}(\{x \mapsto (x-a)^n, n \in \mathbb{N}\}) \subset E.$$

 (\subset) De la même manière, on a :

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, \ x^n = \sum_{i=0}^n \binom{n}{i} a^{k-i} (x-a)^i.$$

Donc, $\{x \mapsto x^n, n \in \mathbb{N}\} \subset \text{Vect}(\{x \mapsto (x-a)^n, n \in \mathbb{N}\})$. Ainsi,

$$E = \operatorname{Vect}(\{x \mapsto x^n, \ n \in \mathbb{N}\}) \subset \operatorname{Vect}(\{x \mapsto (x - a)^n, \ n \in \mathbb{N}\})$$

2. Déterminer dans $\mathscr{C}^0(\mathbb{R},\mathbb{R})$, $\operatorname{Vect}(\{f \in \mathscr{C}^0(\mathbb{R},\mathbb{R}), f \geq 0\}$.

Soit $f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R})$. Posons

$$\forall x \in \mathbb{R}, \ g(x) = \max(0, f(x)), \ \text{et} \ h(x) = \max(0, -f(x)).$$

Les fonctions g et h sont positives et continues (comme maximum de fonctions continues). De plus, on a f = g - h. Donc, $f \in \text{Vect}(\{f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R}), f \geq 0\})$. On a montré l'inclusion

$$\mathscr{C}^0(\mathbb{R},\mathbb{R}) \subset \operatorname{Vect}(\{f \in \mathscr{C}^0(\mathbb{R},\mathbb{R}), f \geq 0\}.$$

L'inclusion $\mathscr{C}^0(\mathbb{R}, \mathbb{R}) \supset \operatorname{Vect}(\{f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R}), f \geq 0\})$ est claire. Donc,

$$\operatorname{Vect}(\{f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R}), \ f \ge 0) = \mathscr{C}^0(\mathbb{R}, \mathbb{R})$$

3. Soit F un sous-espace vectoriel de E, que dire de

$$Vect(E \setminus F)$$
?

Montrons que:

- si F = E, alors $Vect(E \setminus F) = \{0_E\}$;
- si $F \neq E$, alors $Vect(E \setminus F) = E$.

Si F = E, alors $Vect(E \setminus F) = Vect(\emptyset) = \{0_E\}$.

Supposons maintenant $F \neq E$. Il existe alors $x \in E \setminus F$. Montrons que $E \subset \text{Vect}(E \setminus F)$. Soit $y \in E$ quelconque :

- 1. Si $y \in E \setminus F$, alors $y \in \text{Vect}(E \setminus F)$.
- 2. Si $y \in F$, alors $x+y \in E \setminus F$ (sinon, puisque $y \in F$, on aurait $x = x+y-y \in F$, ce qui n'est pas possible car $x \in E \setminus F$). Donc, $y = x+y-x \in \text{Vect}(E \setminus F)$ car $(x+y,x) \in (E \setminus F)^2$.

Exercice 4: Somme directe

Soit E un \mathbb{K} -espace vectoriel, $(E_i)_{i\in I}$ et $(E'_i)_{i\in I}$ deux familles de sous-espaces vectoriels de E, tels que :

$$\forall i \in I, E'_i \subset E_i.$$

Montrer que:

$$\bigoplus_{i \in I} E_i = \bigoplus_{i \in I} E'_i \implies \forall i \in I, E_i = E'_i.$$

Soit $i \in I$ quelconque. Montrons que $E_i \subset E_i'$. Soit $x \in E_i$. Puisque $x \in \bigoplus_{i \in I} E_i = \bigoplus_{i \in I} E_i'$, il existe $n \in \mathbb{N}, \ (i_1, \dots, i_n) \in I^n$ et $(x_{i_1}, \dots, x_{i_n}) \in E_{i_1}' \times \dots \times E_{i_n}'$ tels que

$$x = x_{i_1} + \dots + x_{i_n}.$$

Il y a deux cas:

— Cas 1 : Il existe $i_p \in \{i_1, \ldots, i_n\}$ tel que $i = i_p$. Alors,

$$0_E = \sum_{l=1, l \neq p}^{n} x_{i_l} + (x_{i_p} - x).$$

De plus, puisque $E'_{i_1} \times \cdots \times E'_{i_n} \subset E_{i_1} \times \cdots \times E_{i_n}$, on a $x_{i_p} - x \in E_{i_p}$. On a donc une écriture de 0_E dans $\bigoplus_{i \in I} E_i$. Or, les sous-espaces vectoriels $(E_i)_{i \in I}$ sont en somme directe. Donc, en particulier, $x_{i_p} - x = 0_E$. Ainsi $x = x_{i_p} \in E'_{i_p}$.

— Cas $2: i \notin \{i_1, \ldots, i_n\}$. Alors,

$$0_E = \sum_{l=1}^{n} x_{i_l} - x.$$

On a donc une écriture de 0_E dans $\bigoplus_{i\in I} E_i$. Or, les sous-espaces vectoriels $(E_i)_{i\in I}$ sont en somme directe. Donc, $x=0_E\in E_i'$.

Dans les deux cas, on a $x \in E_i'$. Donc, $E_i \subset E_i'$. L'autre inclusion est vraie par hypothèse, donc, $E_i = E_i'$.

Exercice 5 : Somme directe et Supplémentaire

Soit $E = \mathscr{F}(\mathbb{R}, \mathbb{R})$ l'ensemble des fonctions réelles et :

$$F = \{y : x \mapsto ax + b, \ (a, b) \in \mathbb{R}^2\},\$$

$$G_1 = \{f \in E, \ f(0) = 0\},\$$

$$G_2 = \{f \in E, \ f(0) = f(1) = f(-1) = 0\},\$$

$$G_3 = \{f \in E, \ f(0) = f(1) = 0\}.$$

1. Justifier que F, G_1 , G_2 , G_3 sont des sous-espaces vectoriels de E.

F: L'ensemble des fonctions affines

Montrons que F est un sous-espace vectoriel de E.

Notons $f_1: x \mapsto x$ et $f_2: x \mapsto 1$. On remarque que $F = \text{Vect}(f_1, f_2)$.

F est un sous-espace vectoriel de E.

Les preuves que G_1 , G_2 et G_3 sont des sous-espaces vectoriels de E sont très similaires, contentons nous de le faire pour G_1 .

- G_1 contient la fonction nulle.
- Soient $(f,g) \in (G_1)^2$ et $\lambda \in \mathbb{R}$. Alors :

$$(f + \lambda g)(0) = f(0) + \lambda g(0) = 0,$$

donc $f + \lambda g \in G_1$.

 G_1 est un sous-espace vectoriel de E.

2. Montrer que $F + G_1 = E$. La somme est-elle directe?

Montrons d'abord que $F + G_1 = E$.

Soit $u \in E$, on veut montrer qu'il existe $f \in F$ et $g \in G_1$ telles que u = f + g.

Si f est la fonction constante égale à u(0) et g = u - f, alors on obtient bien la décomposition souhaitée. Donc on a $u \in F + G_1$, d'où $E \subset F + G_1$.

En plus, on a $F \subset E$ et $G_1 \subset E$, donc $F + G_1 \subset E$.

Ce qui montre que $F + G_1 = E$

Cependant, $F + G_1$ n'est pas directe car $u : x \mapsto x$ est dans $F \cap G_1$ et n'est pas la fonction nulle.

La somme $F + G_1$ n'est pas directe.

3. Montrer que $F + G_2$ est directe. La somme vaut-elle E?

Montrons que la somme $F + G_2$ est directe.

Soit $u \in F \cap G_2$. Alors comme $u \in F$, il existe un couple $(a, b) \in \mathbb{R}^2$ tel que $u : x \mapsto ax + b$. De plus $u \in G_2$ donc d'une part u(0) = 0 ce qui implique que b = 0 et d'autre part u(1) = 0 ce qui implique que a = 0.

Donc u est la fonction nulle : $F \cap G_2 = \{0\}$.

La somme $F + G_2$ est directe.

En revanche la somme $F + G_2$ ne vaut pas E. En effet, on peut vérifier que la fonction u définie par :

$$u(x) = \begin{cases} 0 \text{ si } x < 0\\ x \text{ si } x \geqslant 0, \end{cases}$$

n'est pas dans $F + G_2$. En effet, si $u \in F + G_2$, alors il existe une fonction g dans G_2 et deux constantes réelles a et b telles que :

$$\forall x \in \mathbb{R}, \ u(x) = ax + bg(x).$$

On a alors:

$$u(0) = b + g(0) = b = 0$$

 $u(-1) = -a + b + g(-1) = -a + b = 0$
 $u(1) = a + b + g(1) = a + b = 1$

Et comme le système précédent n'a pas de solution on en conclut que u n'est pas dans $F + G_2$.

$$F+G_2$$
 n'est pas égal à E .

4. Montrer que F et G_3 sont supplémentaires dans E.

De la même manière qu'à la question précédente, on montre aisément que la somme $F+G_3$ est directe.

La somme
$$F + G_3$$
 est directe.

Montrons maintenant que $F+G_3=E$. Pour cela on va essayer de construire une décomposition en raisonnant par condition nécessaire.

Analyse : soit $f \in E$. On suppose qu'il existe $(a, b) \in \mathbb{R}^2$ et $g \in G_2$ tels que :

$$\forall x \in \mathbb{R}, \ f(x) = ax + b + g(x).$$

On évalue alors f en 0 et 1.

D'abord, f(0) = b + g(0), donc b = f(0).

Ensuite, f(1) = a + b + g(1), donc a = f(1) - f(0).

Synthèse: montrons maintenant que toute fonction f de E est dans $F + G_3$. Soit $f \in E$. On pose alors (a,b) = (f(0), f(1) - f(0)) et pour tout x réel, g(x) = f(x) - ax - b. On a clairement que:

$$\forall x \in \mathbb{R}, \ u(x) = ax + b + g(x).$$

Reste à vérifier que g est dans G_3 ce qui est le cas car en faisant le calcul on a bien g(0) = g(1) = 0.

Donc
$$F \oplus G_3 = E$$
.

Exercice 6 : Somme directe et Supplémentaire

Soit E un K-espace vectoriel et F, G et H trois sous-espaces vectoriels de E. On suppose que:

$$E = F + G$$
, $H \cap F = \{0_E\}$ et $G \subset H$.

1. Montrer que $E = F \oplus G$.

On sait que $H \cap F = \{0_E\}$ et $G \subset H$ donc $G \cap F \subset \{0_E\}$. L'inclusion réciproque est également vraie car F et G sont des sous-espaces-vectoriels donc contiennent 0_E . Donc $G \cap F = \{0_E\}$, autrement dit la somme F + G est directe. Comme on sait de plus que E = F + G, on a bien $E = F \oplus G$.

2. Montrer que H = G.

Soit $x \in H$. Comme $H \subset E = F + G$, il existe $(f,g) \in F \times G$ tel que x = f + g. On a $G \subset H$ donc $g \in H$. Donc f = x - g est aussi dans H car H est un sous-espace vectoriel. Donc $f \in H \cap F = \{0_E\}$. Donc $f = 0_E$. Donc $x = g \in G$. Nous avons démontré que $H \subset G$. Or on sait aussi que $G \subset H$. Donc H = G.

Exercice 7 : Somme directe et Supplémentaire

Soit E l'ensemble des fonctions $u: \mathbb{R}_+ \to \mathbb{R}$ qui admettent une limite finie en $+\infty: \exists \ell \in \mathbb{R}$, $\lim_{x \to +\infty} u(x) = \ell$.

- 1. Justifier que E est un \mathbb{R} -espace vectoriel.
- 2. Soit F le sous-espace vectoriel de E constitué des fonctions $f: \mathbb{R}_+ \to \mathbb{R}$ qui sont constantes : $\exists c \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) = c$ et soit G le sous-espace vectoriel de E constitué des fonctions $g: \mathbb{R}_+ \to \mathbb{R}$ qui tendent vers 0 en $+\infty: \lim_{x \to +\infty} g(x) = 0$. Montrer que $E = F \oplus G$.

Dans toute la suite, on notera $0_E \colon \mathbb{R}_+ \to \mathbb{R}$ la fonction nulle sur \mathbb{R}_+ (c'est-à-dire $0_E(x) = 0$ pour tout $x \in \mathbb{R}_+$).

- 1. Montrons que E est un sous-espace vectoriel de $\mathscr{F}(\mathbb{R}_+, \mathbb{R})$.
 - \triangleright la fonction nulle 0_E appartient à E (elle tend vers 0 en $+\infty$);
 - ightharpoonup si $u_1, u_2 \in E$, il existe deux nombres réels ℓ_1 et ℓ_2 tels que $\lim_{x \to +\infty} u_1(x) = \ell_1$ et $\lim_{x \to +\infty} u_2(x) = \ell_2$ donc pour tout $x \in \mathbb{R}_+$ on a $(u_1 + u_2)(x) = u_1(x) + u_2(x) \underset{x \to +\infty}{\longrightarrow} \ell_1 + \ell_2 \in \mathbb{R}$ d'où $u_1 + u_2 \in E$;
 - ightharpoonup si $\lambda \in \mathbb{R}$ et $u \in E$, alors il existe $\ell \in \mathbb{R}$ tel que $u(x) \to \ell$ quand $x \to +\infty$ donc pour tout $x \in \mathbb{R}_+$ on a $(\lambda u)(x) = \lambda u(x) \underset{x \to +\infty}{\longrightarrow} \lambda \ell \in \mathbb{R}$ d'où $\lambda u \in E$.

E est donc un sous-espace vectoriel de $\mathscr{F}(\mathbb{R}_+,\mathbb{R})$, en particulier c'est un \mathbb{R} -espace vectoriel.

- 2. L'énoncé nous dit que F et G sont des sous-espaces vectoriels de E, il n'y a donc pas besoin de le vérifier (mais vous pouvez vous entrainer à le faire!). On procède en deux étapes :
- \triangleright Montrons que $F \cap G = \{0_E\}$.
 - Puisque $0_E \in F$ et $0_E \in G$, alors $\{0_E\} \subset F \cap G$.
 - Montrons que $F \cap G \subset \{0_E\}$. Soit $u \in F \cap G$. Puisque $u \in F$, il existe $c \in \mathbb{R}$ tel que u(x) = c pour tout $x \in \mathbb{R}$. En particulier, $\lim_{x \to +\infty} u(x) = c$. Mais $u \in G$ donc $\lim_{x \to +\infty} u(x) = 0$. Par unicité de la limite, on a c = 0 donc $u = 0_E$. On a bien $\{0_E\} \subset F \cap G$.

Par double inclusion, on a $F \cap G = \{0_E\}$.

- ightharpoonup Montrons que F+G=E. On a $F+G\subset E$ donc montrons que $E\subset F+G$. Soit $u\in E$. Il existe donc $\ell\in\mathbb{R}$ tel que $u(x)\to\ell$ quand $x\to+\infty$
 - Analyse : supposons que u = f + g avec $f \in F$ et $g \in G$. Puisque $f \in F$, il existe $c \in \mathbb{R}$ tel que f(x) = c pour tout $x \in \mathbb{R}$. Pour tout $x \in \mathbb{R}$ on a

$$\underbrace{g(x)}_{\substack{x \to +\infty \\ x \to +\infty}} = (u - f)(x) = u(x) - f(x) \underset{x \to +\infty}{\longrightarrow} \ell - c \tag{1}$$

 $\operatorname{car} g \in G$, d'où $c = \ell$.

• Synthèse : définissons $f \in F$ par $f(x) = \ell$ pour tout $x \in \mathbb{R}$ et définissons $g \in E$ par g = u - f. On a $g \in G$ (reprendre le calcul (??) avec $c = \ell$), d'où u = f + g avec $f \in F$ et $g \in G$, c'est-à-dire $u \in F + G$. On a montré que $E \subset F + G$ et donc par double inclusion F + G = E.

Conclusion : $E = F \oplus G$

Exercice 8 : Supplémentaire

Dans cet exercice, on se place dans le \mathbb{R} -espace vectoriel $E = \mathscr{C}^1(\mathbb{R}, \mathbb{R})$.

- 1. Soit $F = \{ f \in E : f(0) = f'(0) = 0 \}.$
 - (a) Trouver une fonction $g \in E$ telle que g(0) = 0 mais $g'(0) \neq 0$ puis trouver une fonction $h \in E$ telle que $h(0) \neq 0$ mais h'(0) = 0.
 - (b) En déduire un supplémentaire de F dans E.
- 2. Soit $H = \{ f \in E : f(0) = f(1) = 0 \}$. En s'inspirant de la question précédente, donner un supplémentaire de H dans E.

Dans toute la suite, on notera $0_E \colon \mathbb{R} \to \mathbb{R}$ la fonction nulle sur \mathbb{R} (c'est-à-dire $0_E(x) = 0$ pour tout $x \in \mathbb{R}$). On a bien sûr $0_E \in E$.

1. (a) Remarque : l'idée ici est que F est défini par les deux équations f(0) = 0 et f'(0) = 0. On cherche alors des fonctions qui vérifient une des équations et pas l'autre.

On peut penser à $g: x \mapsto x$ et à $h: x \mapsto 1$.

- (b) Puisque $g \notin F$ et $h \notin F$, la question précédente nous invite à poser $G = \text{Vect}(\{g, h\}) = \{x \mapsto ax + b \colon a, b \in \mathbb{R}\}$. G est un espace vectoriel par construction. Montrons que $E = F \oplus G$.
 - ightharpoonup Montrons que $F \cap G = \{0_E\}$.
 - Puisque $0_E \in F$ et $0_E \in G$, alors $\{0_E\} \subset F \cap G$.
 - Montrons que $F \cap G \subset \{0_E\}$. Soit $u \in F \cap G$. Puisque $u \in G$, il existe des nombres réels a et b tels que u(x) = ax + b pour tout $x \in \mathbb{R}$. Puisque $u \in F$, on a $0 = u(0) = a \times 0 + b = b$, donc b = 0 et 0 = u'(0) = a d'où a = 0 et donc $u = 0_E$. On a bien $\{0_E\} \subset F \cap G$.

Par double inclusion, on a $F \cap G = \{0_E\}$.

- ightharpoonup Montrons que F+G=E. On a $F+G\subset E$ donc montrons que $E\subset F+G$. Soit $u\in E$.
 - Analyse : supposons que u = f + g avec $f \in F$ et $g \in G$. Puisque $g \in G$, il existe des nombres réels a et b tels que g(x) = ax + b pour tout $x \in \mathbb{R}$. Puisque $f \in F$, on a

$$0 = f(0) = (u - g)(0) = u(0) - g(0) = u(0) - b$$
(2)

donc b = u(0). On a également

$$0 = f'(0) = (u - g)'(0) = u'(0) - g'(0) = u'(0) - a$$
(3)

On a donc a = u'(0).

• Synthèse : définissons $g \in G$ par g(x) = u'(0)x + u(0) pour tout $x \in \mathbb{R}$ et définissons $f \in E$ par f = u - g. On a $f \in F$ (reprendre les calculs (??) et (??) avec a = u'(0) et b = u(0)) d'où u = f + g avec $f \in F$ et $g \in G$, c'est-à-dire $u \in F + G$. On a donc $E \subset F + G$.

Finalement par double inclusion F + G = E.

Conclusion : G est un supplémentaire de F dans E.

2. Cherchons une fonction $g \in E$ telle que g(0) = 0 mais $g(1) \neq 0$ et une fonction $h \in E$ telle que $h(0) \neq 0$ mais h(1) = 0. On peut penser à $g: x \mapsto x$ et $h: x \mapsto 1 - x$. On pose alors $K = \text{Vect}(\{g, h\})$. Or $k \in K$ si et seulement si k(x) = cg(x) + dh(x) pour tout $x \in \mathbb{R}$ avec c et d des nombres réels, mais $\forall x \in \mathbb{R}$, cg(x) + dh(x) = cx + d(1 - x) = (c - d)x + d = ax + b en posant a = c - d et b = d. On a donc $k \in K$ si et seulement si $k \in G$, donc K = G.

Montrons que $E = H \oplus K$. D'après la question précédente, on a H + K = H + G = E. Il reste à montrer que $H \cap K = \{0_E\}$.

- Puisque $0_E \in H$ et $0_E \in K$, alors $\{0_E\} \subset H \cap K$.
- Montrons que $H \cap K \subset \{0_E\}$. Soit $u \in H \cap K$. Puisque $u \in K$, il existe des nombres réels a et b tels que u(x) = ax + b pour tout $x \in \mathbb{R}$. Puisque $u \in H$, on a $0 = u(0) = a \times 0 + b = b$, donc b = 0 et 0 = u(1) = a + b = a d'où a = 0 et donc $u = 0_E$. On a bien $\{0_E\} \subset F \cap G$.

Conclusion : K = G est un supplémentaire de H dans E.