590D-homework 1

Vinayak Mathur and Krishna Prasad Sankaranarayanan

September 2017

Question 1 1

We have to find the expected value of the number of times the word 'proof' appears.

The probability of the letters 'p' 'r' 'o' 'o' 'f' appearing together = $(\frac{1}{26})^5$ Let us define a random variable X = Probability that the word 'proof' starts at that index

So the expectation is defined as $\sum a*P(X=a)$ In this case: $E(X)=\sum_1^{(n-4)}1*(\frac{1}{26})^5$ We sum only till (n-4) because 'proof' can only start till that index

Therefore the expected value = $(n-4)*(\frac{1}{26})^5$

The expected value of number of occurrences of proof = 0.0841649

$\mathbf{2}$ Question 2

We define an indicator random variable such that

 $X_i = 1$ if the i^{th} digit is a fixed point and

 $X_i = 0$ otherwise.

The expectation that the i^{th} element is in its place i.e. it is a fixed element is $Ex_i = \frac{1}{n}$ Using linearity of expectations

$$E[X] = E[x_i] + E[x_2] \dots E[x_n]$$

$$= \frac{1}{n} + \frac{1}{n} \dots + \frac{1}{n}$$

$$= n * \frac{1}{n} = 1$$

Question 3 3

3.1

We define a random variable in the following manner:

X = +1 if the coin returns Heads, and

X = -1 if the result is tails

$$E[X]=\sum_1^{100}+1*\frac{1}{2}=100*\frac{1}{2}=50$$
 Therefore the expected payoff is 50

3.2

For a biased coin:

$$\begin{array}{l} E[X] = \sum_{1}^{100} +1*0.3 \\ = 100*0.3 = 30 \end{array}$$

Therefore the expected payoff is 30

3.3

Using Markov Inequality:

$$P(X \ge t) \le \frac{E[X]}{t}$$

We know for our friend to win the expectation is 70, we substitute that in the inequality which results in:

$$P(X \ge 50) \le \frac{70}{50}$$

Therefore the required upper bound is $\frac{7}{5}$

4 Question 4

Consider X to be sum of rolls of dice.

$$X_i$$
 - number on the i^{th} roll of the dice $X = \sum_{i=1}^{100} X_i$

By linearity of expectation , $E[x] = \sum_{i=1}^{100} E[X_i]$

$$E[X_i] = \sum_{k=1}^{6} kP[X_i = l] = \frac{1}{6} * \frac{42}{2} = \frac{7}{2}$$

Therefore
$$E[X] = n * \frac{7}{2} = 100 * \frac{7}{2} = 350$$

$$Var(X) = \sum_{i=1}^{100} Var(X_i)$$

$$Var(X_i) = E[X_i^2] - E[X]^2$$

$$E[X_i^2] = \sum_{k=1}^6 k^2 P[X_i = k]$$

$$E[X_i^2] = \sum_{k=1}^6 k^2 \frac{1}{6}$$

$$E[X_i^2] = \frac{13*42}{36}$$

$$E[X_i^2] = \frac{91}{6}$$
Now $Var(X_i) - E[X_i^2] - E[X_i^2]$

$$Var(X) = \sum_{i=1}^{100} Var(X_i)$$

$$Var(X_i) = E[X_i^2] - E[X]^2$$

$$E[X_i^2] = \sum_{k=1}^{6} k^2 P[X_i = k]$$

$$E[X_i^2] = \sum_{k=1}^{6} k^2 \frac{1}{6}$$

$$E[X_i^2] = \frac{13*42}{36}$$

$$E[X_i^2] = \frac{91}{6}$$

Now,
$$Var(X_i) = E[X_i^2] - E[X]^2$$

$$Var(X_i) = \frac{91}{6} - (\frac{7}{2})^2 = \frac{35}{12}$$

Now, $Var(X_i) = E[X_i^2] - E[X]^2$ $Var(X_i) = \frac{91}{6} - (\frac{7}{2})^2 = \frac{35}{12}$ Therefore, According to Chebyshev's inequality $P[|x - 350| \ge 50] \le \frac{100*35}{12*2500} = \frac{7}{60}$

$$P[|x - 350| \ge 50] \le \frac{100*35}{12*2500} = \frac{7}{60}$$

5 Question 5

5.1

Probability of a particular ball going into a bin $=\frac{1}{n}$ The required expectation is given by:

is given by:

$$E[B_i] = \sum_{1}^{m} \frac{1}{n}$$

$$= m * \frac{1}{n}$$

$$E[B_i] = \frac{m}{n}$$

 $m=100n\ln n$

Applying Chernoff bound:

We define an indicator random variable X

$$P[E[X] - X \ge 25 \ln n] \le e^{-E[x]\frac{\delta^2}{3}}$$

Substituting the value of δ we get

Substituting
$$\leq e^{-E[x]\frac{1}{48}}$$

 $\leq e^{-100 \ln n \frac{1}{48}}$
 $\leq e^{-2 \ln n}$
 $\leq \frac{1}{n^2}$

Therefore the required probability is given by: $P[Number of balls does not differ by <math>25ln(n)] \le 1 - \frac{1}{n^2}$

5.2

Here $m = n \ln n$

Show that all bins lie in the range of $\frac{n}{n} \pm \sqrt{\frac{m}{n}} * \ln n$ $\frac{n}{n} \pm \sqrt{\frac{m}{n}} * \ln n \approx \ln n \pm \ln n$

$$\leq \frac{2e^{-E[X]*\frac{1}{3}}}{\frac{1}{n^{\frac{1}{3}}}}$$

Hence $\delta = 1$ in Chernoff bound

 $P[|X - E[X]|] \ge \delta E[X]$ =P[all bins are out of this range in terms of balls]

$$\leq \frac{2}{n^1/3}$$

For n balls it is $\leq 2n^{2/3}$

So Answer is $1 - 2n^{2/3} \approx 1 - 1/n$

6 Question 6

Consider an indicator random variable X_i

 $X_i = 1$ if 1st item is stored on the i^{th} run of the algorithm.

Algorithm is run t times. Therefore $X = \sum_{i=1}^t X_i$ $E[X] = \sum_{i=1}^t E[X_i = \frac{t}{100}]$ Given in the question , each item is selected in the range $\frac{t}{100}(1 \pm \frac{1}{3})$ Therefore $P(|X - E[X]| \ge \frac{t}{300}) \le 2e^{-E[X]\frac{\delta^2}{3}}$ $\delta = \frac{1}{3}$ $P(|X - E[X]| \ge \frac{t}{300}) \le 2e^{-\frac{t}{100*27}}$ $P(|X - E[X]| \ge \frac{t}{300}) \le 2e^{-\frac{t}{2700}} = 0.99$ $e^{-\frac{t}{2700}} = 0.495$ $e^{-\frac{t}{2700}} = 0.495$ $e^{-\frac{t}{2700}} = 100.495$ $e^{-\frac{t}{2700}} = 100.495$

7 Extra Credit

$$\begin{split} & \text{Let } 1 + \delta = \frac{\ln n}{\ln \ln n} \\ & \text{Consider } m = n \\ & P[X \geq (1+\delta)] \leq \frac{(e)^{\delta}}{(1+\delta)^{1+\delta})}^{E[X]} \\ & \text{Expectation } E[X] = 1 \\ & \text{Since m=n} \\ & P[anybins \geq \frac{\ln n}{\ln \ln n}] \leq n * (\frac{e \ln \ln(n)}{\ln n})^{\frac{\ln n}{\ln \ln n}} \\ & \leq n * \left[e^{\frac{\ln n}{\ln \ln n}} + e^{\frac{\ln n}{\ln \ln n}* \ln \frac{\ln \ln n}{\ln n}}\right] \end{split}$$