# Matrices especiales y el método de Gauss-Seidel

Dr. Pablo Alvarado Moya

CE3102 Análisis Numérico para Ingeniería Área de Ingeniería en Computadores Tecnológico de Costa Rica

I Semestre 2018



#### Contenido

- Matrices especiales
  - Sistemas tridiagonales
  - Descomposición de Cholesky
- Descomposición QR
- Gauss-Seidel

#### Sistemas tridiagonales

- Algunos problemas de ingeniería conducen a sistemas de ecuaciones tridiagonales o a bandas. Ejemplos:
  - Splines
  - Ecuaciones diferenciales
- Métodos convencionales (eliminación de Gauss, descomposición LU de Doolittle o Crout) son ineficientes para estos casos.

#### Algoritmo de Thomas

Supóngase que se tiene el sistema tridiagonal

$$\begin{bmatrix} f_1 & g_1 & & & & & \\ e_2 & f_2 & g_2 & & & & \\ & e_3 & f_3 & g_3 & & & \\ & & \ddots & \ddots & \ddots & \\ & & e_{n-1} & f_{n-1} & g_{n-1} \\ & & & e_n & f_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ \vdots \\ r_{n-1} \\ r_n \end{bmatrix}$$

El algoritmo de Thomas es una descomposición *LU* optimizada:

1. Descomposición

2. Sust. hacia adelante

3. Sust. hacia atrás

for 
$$(k = 2; k \le n; k + +)$$
 {
 $e_k /= f_{k-1}$ 
 $f_k -= e_k \cdot g_{k-1}$ 
}

for 
$$(k = 2; k \le n; k + +)$$
 {
$$r_k -= e_k \cdot r_{k-1}$$
}

$$x_n = r_n/f_n$$
for  $(k = n - 1; k > 0; k - -)$  {
$$x_k = (r_k - g_k \cdot x_{k+1})/f_k$$
}

#### Cálculo in-situ

#### El algoritmo calcula in-situ las matrices LU

$$\begin{bmatrix} f_1 & g_1 & & & & & & \\ e_2 & f_2 & g_2 & & & & & \\ & e_3 & f_3 & g_3 & & & & & \\ & & \ddots & \ddots & \ddots & & & \\ & & e_{n-1} & f_{n-1} & g_{n-1} \\ & & & e_n & f_n \end{bmatrix} = \\ \begin{bmatrix} 1 & & & & & \\ e'_2 & 1 & & & \\ & e'_3 & 1 & & & \\ & & e'_3 & 1 & & \\ & & & \ddots & \ddots & \\ & & & e'_{n-1} & 1 \\ & & & & e'_n & 1 \end{bmatrix} \begin{bmatrix} f'_1 & g_1 & & & & \\ f'_2 & g_2 & & & \\ & & f'_3 & g_3 & & \\ & & & \ddots & \ddots & \\ & & & & f'_{n-1} & g_{n-1} \\ & & & & f'_n \end{bmatrix}$$

#### Ejemplo

Resolver

$$\begin{bmatrix} 2,04 & -1 & & & \\ -1 & 2,04 & -1 & & \\ & -1 & 2,04 & -1 \\ & & -1 & 2,04 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 40,08 \\ 0,8 \\ 0,8 \\ 200,8 \end{bmatrix}$$

## Ejemplo: Algoritmo de Thomas

#### Solución:

$$\begin{bmatrix} f_1 & g_1 & & \\ e_2 & f_2 & g_2 & \\ & e_3 & f_3 & g_3 \\ & & e_4 & f_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{bmatrix}$$

Aquí, 
$$f_i = 2,04$$
 y  $e_i = g_i = -1$ .

La descomposición:

for 
$$(k = 2; k \le n; k + +)$$
 {
 $e_k /= f_{k-1}$ 
 $f_k -= e_k \cdot g_{k-1}$ 
}

$$e_2 = e_2/f_1 = -0,49$$
  
 $f_2 = f_2 - e_2 \cdot g_1 = 1,55$   
 $e_3 = e_3/f_2 = -0,645$   
 $f_3 = e_3 \cdot g_2 = 1,395$   
 $e_4 = e_4/f_3 = -0,717$   
 $f_4 = f_4 - e_4 \cdot g_3 = 1,323$ 

Entonces, LU = A:

$$\textbf{LU} = \begin{bmatrix} 1 & & & & \\ -0,49 & 1 & & & \\ & -0,645 & 1 & \\ & & -0,717 & 1 \end{bmatrix} \begin{bmatrix} 2,04 & -1 & & \\ & 1,55 & -1 & \\ & & 1,395 & -1 \\ & & & 1,323 \end{bmatrix}$$

La sustitución hacia adelante:

for 
$$(k = 2; k \le n; k + +)$$
 {  $r_k -= e_k \cdot r_{k-1}$  }

$$r_2 = r_2 - e_2 \cdot r_1 = 20,8$$
  
 $r_3 = r_3 - e_3 \cdot r_2 = 14,221$   
 $r_4 = r_4 - e_4 \cdot r_3 = 210,996$ 

Finalmente, la sustitución hacia atrás:

$$x_n = r_n/f_n$$
  
for  $(k = n - 1; k > 0; k - -)$  {  
 $x_k = (r_k - g_k \cdot x_{k+1})/f_k$   
}

$$x_4 = r_4/f_4 = 159,48$$
  
 $x_3 = (r_3 - g_3 \cdot x_4)/f_3 = 124,538$   
 $x_2 = (r_2 - g_2 \cdot x_3)/f_2 = 93,778$   
 $x_1 = (r_1 - g_1 \cdot x_2)/f_1 = 65,97$ 

### Almacenamiento eficiente de matriz tridiagonal

Una estrategia de ahorro de memoria para el almacenamiento de matrices tridiagonales a bandas es utilizar

$$\begin{bmatrix} & f_1 & g_1 \\ e_2 & f_2 & g_2 \\ e_3 & f_3 & g_3 \\ \vdots & \vdots & \vdots \\ e_{n-1} & f_{n-1} & g_{n-1} \\ e_n & f_n \end{bmatrix}$$

donde las diagonales de la matriz original ocupan columnas de la versión "comprimida".

#### Descomposición de Cholesky

- La descomposición de Cholesky se aplica a
  - matrices simétricas, esto es  $\mathbf{A} = \mathbf{A}^T$
  - matrices definidas positivas, esto es  $\underline{\mathbf{x}}^T \mathbf{A} \underline{\mathbf{x}} > 0$  para todo vector no nulo  $\underline{\mathbf{x}}$
- La descomposición de Cholesky para la matriz simétrica A es

$$A = LL^T$$

- La matríz L<sup>T</sup> es triangular superior y equivale entonces a la matriz U de la descomposición LU
- A L se le conoce como la raíz cuadrada de A

## ¿Cómo derivar las ecuaciones?

#### Algoritmo de descomposición de Cholesky

Siguiendo el esquema de descomposición de Crout se obtiene

$$I_{kk} = \sqrt{a_{kk} - \sum_{j=1}^{k-1} I_{kj}^2}$$

$$I_{ki} = \frac{1}{I_{ii}} \left( a_{ki} - \sum_{j=1}^{i-1} I_{ij} I_{kj} \right) \qquad i = 1, 2, \dots k - 1$$

Con matrices simétricas y definidas positivas no es necesario el pivoteo, pues el método es numéricamente estable.

#### Descomposición QR

Otra descomposición utilizada es

$$\mathbf{A} = \mathbf{Q}\mathbf{R}$$

- R es triangular superior
- **Q** es ortogonal (i.e.  $\mathbf{Q}^T = \mathbf{Q}^{-1}$ )
- Su uso para resolver sistemas de ecuaciones se basa en que

$$\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}}$$

$$\mathbf{Q}\mathbf{R}\underline{\mathbf{x}} = \underline{\mathbf{b}}$$

$$\mathbf{R}\underline{\mathbf{x}} = \mathbf{Q}^T\underline{\mathbf{b}}$$

- **1** Calcular  $\mathbf{b}' = \mathbf{Q}^T \mathbf{b}$
- 2 Sustituir hacia atrás  $\mathbf{R}\mathbf{x} = \mathbf{b}'$



## Características de la descomposición QR

- La descomposición QR requiere cerca del doble de operaciones que la descomposición LU
- Estabilidad numérica del método es alta, por lo que se elige cuando las matrices son mal condicionadas
- Para encontrar Q se utiliza una sucesión de transformaciones de Householder

• La forma de la matriz de transformación de Householder es

$$\mathbf{Q}_1 = \mathbf{I} - 2 \frac{\underline{\mathbf{u}}\underline{\mathbf{u}}^T}{\underline{\mathbf{u}}^T\underline{\mathbf{u}}} = \mathbf{I} - 2 \frac{\underline{\mathbf{u}}\underline{\mathbf{u}}^T}{\|\underline{\mathbf{u}}\|^2} = \mathbf{I} - 2 \underline{\bar{\mathbf{u}}}\underline{\bar{\mathbf{u}}}^T$$

para un vector dado  $\underline{\mathbf{u}}$ , y su normalización  $\underline{\bar{\mathbf{u}}} = \underline{\mathbf{u}}/\|\underline{\mathbf{u}}\|$ 

- ullet Nótese que  ${f Q}_1$  es simétrica:  ${f Q}_1^{\mathcal T} = {f Q}_1$
- Q<sub>1</sub> es ortogonal, pues

$$\mathbf{Q}_{1}\mathbf{Q}_{1}^{T} = \mathbf{Q}_{1}\mathbf{Q}_{1}$$

$$= (\mathbf{I} - 2\underline{\mathbf{u}}\underline{\mathbf{u}}^{T})(\mathbf{I} - 2\underline{\mathbf{u}}\underline{\mathbf{u}}^{T})$$

$$= \mathbf{I} - 2\underline{\mathbf{u}}\underline{\mathbf{u}}^{T} - 2\underline{\mathbf{u}}\underline{\mathbf{u}}^{T} + 4\underline{\mathbf{u}}\underline{\mathbf{u}}^{T} = \mathbf{I}$$

- Sea  $P_1 = Q_1 A$
- La primera columna de  $P_1$  es  $\mathbf{p}_{.1} = \mathbf{Q}_1 \mathbf{a}_{:1}$
- Elíjase  $\underline{\mathbf{u}} = \underline{\mathbf{a}}_{:1} \mp \|\underline{\mathbf{a}}_{:1}\|\underline{\mathbf{e}}_{0}$  para generar  $\mathbf{Q}_{1} = \mathbf{I} 2\mathbf{u}\mathbf{u}^{T}/\|\mathbf{u}\|^{2}$ con el vector unitario  $\mathbf{e}_0 = [1, 0 \dots 0]^T$
- Para la magnitud  $\|\mathbf{u}\|^2$  se cumple:

$$\|\underline{\mathbf{u}}\|^{2} = \|\underline{\mathbf{a}}_{:1} + \|\underline{\mathbf{a}}_{:1}\| \underline{\mathbf{e}}_{0} \|^{2}$$

$$= (a_{11} + \|\underline{\mathbf{a}}_{:1}\|)^{2} + a_{21}^{2} + a_{31}^{2} + \dots + a_{n1}^{2}$$

$$= a_{11}^{2} + 2a_{11}\|\underline{\mathbf{a}}_{:1}\| + \|\underline{\mathbf{a}}_{:1}\|^{2} + a_{21}^{2} + a_{31}^{2} + \dots + a_{n1}^{2}$$

$$= 2\|\underline{\mathbf{a}}_{:1}\|^{2} + 2a_{11}\|\underline{\mathbf{a}}_{:1}\|$$

• Entonces:

$$\underline{\mathbf{p}}_{:1} = \mathbf{Q}\underline{\mathbf{a}}_{:1} = \left(\mathbf{I} - 2\frac{\underline{\mathbf{u}}\underline{\mathbf{u}}^{T}}{\|\underline{\mathbf{u}}\|^{2}}\right)\underline{\mathbf{a}}_{:1} = \underline{\mathbf{a}}_{:1} - 2\frac{\underline{\mathbf{u}}\underline{\mathbf{u}}^{T}}{\|\underline{\mathbf{u}}\|^{2}}\underline{\mathbf{a}}_{:1}$$

$$= \underline{\mathbf{a}}_{:1} - \frac{2\underline{\mathbf{u}}(\underline{\mathbf{a}}_{:1} + \|\underline{\mathbf{a}}_{:1}\| \underline{\mathbf{e}}_{0})^{T}\underline{\mathbf{a}}_{:1}}{\|\underline{\mathbf{u}}\|^{2}}$$

$$= \underline{\mathbf{a}}_{:1} - \frac{2\underline{\mathbf{u}}(\|\underline{\mathbf{a}}_{:1}\|^{2} + \|\underline{\mathbf{a}}_{:1}\| \underline{\mathbf{a}}_{:1})}{2\|\underline{\mathbf{a}}_{:1}\|^{2} + 2a_{11}\|\underline{\mathbf{a}}_{:1}\|}$$

$$= \underline{\mathbf{a}}_{:1} - \frac{\underline{\mathbf{u}}(\|\underline{\mathbf{a}}_{:1}\|^{2} + a_{11}\|\underline{\mathbf{a}}_{:1}\|)}{\|\underline{\mathbf{a}}_{:1}\|^{2} + a_{11}\|\underline{\mathbf{a}}_{:1}\|}$$

$$= \underline{\mathbf{a}}_{:1} - \underline{\mathbf{u}} = \underline{\mathbf{a}}_{:1} - (\underline{\mathbf{a}}_{:1} + \|\underline{\mathbf{a}}_{:1}\| \underline{\mathbf{e}}_{0})$$

$$= \pm \|\underline{\mathbf{a}}_{:1}\| \underline{\mathbf{e}}_{0}$$

- Así, la transformación de Householder  ${f Q}_1$  pone en **cero** todos los elementos en la columna bajo el primer elemento:  $p_{i1}=0$  para i>1
- La transformación  $\mathbf{Q}_2$  opera sobre la matriz que resulta de eliminar la primera fila y la primera columna, y pone en cero todos los elementos en la columna bajo el segundo elemento:

$$\mathbf{Q}_{2}(\mathbf{Q}_{1}\mathbf{A}) = \begin{bmatrix} \frac{1}{\mathbf{Q}} & \mathbf{Q}^{T} \\ \mathbf{Q} & (n-1)\mathbf{Q}_{2} \end{bmatrix} \begin{bmatrix} \frac{p_{11}}{\mathbf{Q}} & [p_{12}, p_{13}, \dots p_{1n}] \\ \mathbf{Q} & (n-1)\mathbf{P}_{1} \end{bmatrix}$$
$$= \begin{bmatrix} p_{11} & p_{12} & [p_{13}, p_{14} \dots p_{1n}] \\ 0 & p'_{22} & [p'_{23}, p'_{24}, \dots p'_{2n}] \\ \hline \mathbf{0} & \mathbf{0} & (n-2)\mathbf{P}_{2} \end{bmatrix}$$

• De forma equivalente para **Q**<sub>3</sub>

$$\begin{aligned} \mathbf{Q}_{3}(\mathbf{Q}_{2}\mathbf{Q}_{1}\mathbf{A}) &= \begin{bmatrix} 1 & 0 & \mathbf{\underline{0}}^{T} \\ 0 & 1 & \mathbf{\underline{0}}^{T} \\ \hline \mathbf{\underline{0}} & \mathbf{\underline{0}} & (^{n-2)}\mathbf{\underline{Q}}_{3} \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} & [p_{13} \dots p_{1n}] \\ 0 & p'_{22} & [p'_{23} \dots p'_{2n}] \\ \hline \mathbf{\underline{0}} & \mathbf{\underline{0}} & (^{n-2)}\mathbf{\underline{P}}_{2} \end{bmatrix} \\ &= \begin{bmatrix} p_{11} & p_{12} & p_{13} & [p_{14}, \dots p_{1n}] \\ 0 & p'_{22} & p'_{23} & [p'_{24}, \dots p'_{2n}] \\ 0 & 0 & p''_{33} & [p''_{34} \dots p''_{3n}] \\ \hline \mathbf{\underline{0}} & \mathbf{\underline{0}} & \mathbf{\underline{0}} & (^{n-3)}\mathbf{\underline{P}}_{3} \end{bmatrix} \end{aligned}$$

• Se repiten transformaciones hasta llegar a  $\mathbf{Q}_{n-1}$ , por lo que

$$R = Q_{n-1}Q_{n-2}\cdots Q_1A$$



 Puesto que las transformaciones de Householder son ortogonales entonces

$$\mathbf{Q} = (\mathbf{Q}_{n-1}\mathbf{Q}_{n-2}\cdots\mathbf{Q}_1)^{-1} = \mathbf{Q}_1^T\mathbf{Q}_2^T\cdots\mathbf{Q}_{n-1}^T$$

Pivoteo es necesario solo para matrices casi singulares

## Métodos iterativos

- Gauss-Seidel es un método iterativo que contrasta con los métodos de eliminación descritos hasta ahora.
- Similar a los métodos de búsqueda de raíces.
- Supóngase que se tiene un sistema

$$\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}}$$

 Se pueden plantear con las n ecuaciones del sistema n igualdades de la forma:



$$x_1 = \frac{1}{a_{11}} \left( b_1 - \sum_{j=2}^n a_{1j} x_j \right)$$

$$x_2 = \frac{1}{a_{22}} \left( b_2 - \sum_{\substack{j=1\\j \neq 2}}^n a_{2j} x_j \right)$$

$$x_3 = \frac{1}{a_{33}} \left( b_3 - \sum_{\substack{j=1 \ i \neq 3}}^n a_{3j} x_j \right)$$

$$x_{i} = \frac{1}{a_{ii}} \left( b_{i} - \sum_{\substack{j=1\\j\neq i}}^{n} a_{ij} x_{j} \right)$$

$$\dot{x}_n = \frac{1}{a_{nn}} \left( b_n - \sum_{j=1}^{n-1} a_{ij} x_j \right)$$

#### Gauss-Seidel y Jacobi

- A partir de un vector inicial  $\underline{\mathbf{x}}^{(k-1)}$  se calcula una siguiente aproximación  $\underline{\mathbf{x}}^{(k)}$  con las ecuaciones anteriores.
- En el método de **Gauss-Seidel** las ecuaciones se evalúan **en-línea**, (secuencialmente), es decir: para calcular  $x_i^{(k)}$  se usan  $x_j^{(k)}$  para j < i (los valores ya calculados en la k-ésima iteración) y  $x_l^{(k-1)}$  para l > i (los valores calculados en la iteración anterior).
- En el método de **Jacobi** las ecuaciones se evalúan **por lotes** (en paralelo), es decir  $\underline{\mathbf{x}}^{(k)}$  se evalúa empleando todo el conjunto de valores anterior  $\mathbf{x}^{(k-1)}$

## Criterio de convergencia

Criterio relativo

$$|\epsilon_{\mathsf{a},i}| = \left| \frac{x_i^j - x_i^{j-1}}{x_i^j} \right| 100 \% < \epsilon_{\mathsf{s}}$$

Criterio absoluto

$$|E_{\mathsf{a},i}| = \left| x_i^j - x_i^{j-1} \right| < E_{\mathsf{s}}$$

#### Problemas de convergencia de método de Gauss-Seidel

- Método de Gauss-Seidel similar a método de punto fijo.
- ⇒ es posible que diverja
- $\Rightarrow$  es posible que si converge lo haga de forma muy lenta.
- Se puede demostrar que sistema converge si es diagonalmente dominante, es decir si

$$|a_{ii}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}|$$

- La relajación es una modificación para mejorar convergencia
- Si el método de Gauss-Seidel produce  $\tilde{x}_i^k$ , entonces el verdadero valor actualizado se calcula con

$$x_i^{(k)} = \lambda \tilde{x}_i^{(k)} + (1 - \lambda) x_i^{(k-1)}$$

- ullet El método de Gauss-Seidel "puro" se obtiene con  $\lambda=1$
- Con  $0 < \lambda < 1$  se obtiene *subrelajación* (se amortiguan oscilaciones)
- Con  $1 < \lambda < 2$  se obtiene *sobrerelajación* que asume que el nuevo valor se mueve en la dirección correcta, y método acelera el movimiento
- Elección de  $\lambda$  lo determina el problema concreto y se determina de forma empírica.

## Mejora del método por medio de relajación

(2)

 Implementación específica para problemas de matrices dispersas (la mayoría de elementos son cero) es eficiente en espacio y cómputo.

## Funciones de GNU/Octave

|                     | Matrices                                                                            |
|---------------------|-------------------------------------------------------------------------------------|
| cond                | Número de condición de una matriz                                                   |
| norm                | Norma vectorial o matricial                                                         |
| rank                | Rango de la matriz                                                                  |
|                     | (número de ecuaciones linealmente independientes)                                   |
| det                 | Determinante                                                                        |
| trace               | Traza de la matriz                                                                  |
|                     | Ecuaciones lineales                                                                 |
| chol                | Factorización de Cholesky                                                           |
| lu                  | Descomposición LU                                                                   |
| inv                 | Matriz inversa                                                                      |
| qr                  | Descomposición QR                                                                   |
| $x = A \setminus b$ | Resuelve $\mathbf{A}\underline{\mathbf{x}} = \underline{\mathbf{b}}$ eficientemente |

#### Resumen

- Matrices especiales
  - Sistemas tridiagonales
  - Descomposición de Cholesky
- 2 Descomposición QR
- Gauss-Seidel

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, LTI-Lib-2, GNU-Make y Subversion en GNU/Linux



Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-LicenciarIgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2005-2018 Pablo Alvarado-Moya Área de Ingeniería en Computadores Instituto Tecnológico de Costa Rica