⁹/₁₂

B2 Adding Vectors

Where bearings are given, they are in degrees East of North (so North is 000°, East is 090°, South is 180° and West 270°). For the purposes of this exercise, assume that the Earth is flat.

- B2.1 Work out how far I am from my starting point if I:
 - a) walk 3.0 m East then 4.0 m North.
 - b) drive 10 km South from the starting point then drive 5.0 km West.
 - c) fly 80 km South-West from the starting point then fly 120 km North-West.
- B2.2 Work out how fast I am going (relative to a ground-based observer) if:
 - a) I row at 9.0 m s^{-1} (relative to the water) South in a river where the water is flowing 1.0 m s^{-1} South.
 - b) I swim at $1.0~{\rm ms^{-1}}$ (relative to the water) North in a river where the water is flowing $0.30~{\rm m~s^{-1}}$ East.
 - c) in what direction would a ground based observer think I was swimming in question B2.2b? Give your answer as a number of degrees East of North (a bearing).
 - d) I fly at 100 km h^{-1} North-West (relative to the air) when the wind is blowing from the North-East at a speed of 20 km h^{-1} .
- B2.3 Along which bearing would I have to travel in order to travel North (relative to a stationary observer) if:
 - a) I am swimming in a river with a current running 0.40 m s^{-1} to the East, and I can swim at 1.5 m s^{-1} relative to the water?
 - b) I am flying in a 15 km h^{-1} wind coming from the West and can fly at 90 km h^{-1} relative to the air?
 - c) How fast do I move Northwards over the ground in question B2.3b?
- B2.4 A block is subject to two forces a 90 N force downwards and a 30 N force horizontally to the right.
 - a) What is the magnitude of the resultant force on the block?
 - b) At what angle, clockwise from the rightward force, does the resultant force on the block act?