Applied Statistical Methods II

Some additional topics I

- Let $\mathbf{Y} \in \mathbb{R}^n$ be observed data and $\mathbf{\theta} \in \mathbb{R}^p$ be a population parameter of interest
- Define a function $f: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^q$ s.t.

$$E\left\{ f\left(Y,\theta\right) \right\} =\mathbf{0}_{q}$$

- Idea: like the score function, the function f identifies θ . What is the small value of q that will identify θ ?
- Examples:
 - Estimating the mean: if $EY_i = \mu$, $f(\mathbf{Y}, \mu) = \sum_{i=1}^n Y_i n\mu$.
 - Variance: if $Y_i \sim (\mu, \sigma^2)$, $f(\mathbf{Y}, \sigma^2) = (n-1) - \frac{1}{\sigma^2} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$
 - Any score function: $f(Y, \theta) = \nabla_{\theta} \ell(\theta; Y)$.
- Benefit of MoM: we don't have to know the distribution of Y! Only need its moments.

- Let $\mathbf{Y} \in \mathbb{R}^n$ be observed data and $\mathbf{\theta} \in \mathbb{R}^p$ be a population parameter of interest
- Define a function $f: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^q$ s.t.

$$E\left\{ f\left(Y,\theta\right) \right\} =\mathbf{0}_{q}$$

- Idea: like the score function, the function f identifies θ . What is the small value of q that will identify θ ?
- Examples:
 - Estimating the mean: if $EY_i = \mu$, $f(\mathbf{Y}, \mu) = \sum_{i=1}^n Y_i n\mu$.
 - Variance: if $Y_i \sim (\mu, \sigma^2)$, $f(Y, \sigma^2) = (n-1) - \frac{1}{\sigma^2} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$
 - Any score function: $f(\mathbf{Y}, \boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}; \mathbf{Y})$.
- Benefit of MoM: we don't have to know the distribution of Y! Only need its moments.

- Let $\mathbf{Y} \in \mathbb{R}^n$ be observed data and $\mathbf{\theta} \in \mathbb{R}^p$ be a population parameter of interest
- Define a function $f: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^q$ s.t.

$$E\left\{ f\left(Y,\theta\right) \right\} =\mathbf{0}_{q}$$

- Idea: like the score function, the function f identifies θ . What is the small value of q that will identify θ ?
- Examples:
 - Estimating the mean: if $EY_i = \mu$, $f(\mathbf{Y}, \mu) = \sum_{i=1}^n Y_i n\mu$.
 - Variance: if $Y_i \sim (\mu, \sigma^2)$,

$$f(\mathbf{Y}, \sigma^2) = (n-1) - \frac{1}{\sigma^2} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

- Any score function: $f(Y, \theta) = \nabla_{\theta} \ell(\theta; Y)$.
- Benefit of MoM: we don't have to know the distribution of Y! Only need its moments.

- Let $\mathbf{Y} \in \mathbb{R}^n$ be observed data and $\mathbf{\theta} \in \mathbb{R}^p$ be a population parameter of interest
- Define a function $f: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^q$ s.t.

$$E\left\{ f\left(\mathbf{Y},\theta\right) \right\} = \mathbf{0}_{q}$$

- Idea: like the score function, the function f identifies θ . What is the small value of q that will identify θ ?
- Examples:
 - Estimating the mean: if $EY_i = \mu$, $f(\mathbf{Y}, \mu) = \sum_{i=1}^n Y_i n\mu$.
 - Variance: if $Y_i \sim (\mu, \sigma^2)$,

$$f(\mathbf{Y}, \sigma^2) = (n-1) - \frac{1}{\sigma^2} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

- Any score function: $f(Y, \theta) = \nabla_{\theta} \ell(\theta; Y)$.
- Benefit of MoM: we don't have to know the distribution of Y! Only need its moments.

- Let $\mathbf{Y} \in \mathbb{R}^n$ be observed data and $\mathbf{\theta} \in \mathbb{R}^p$ be a population parameter of interest
- Define a function $f: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^q$ s.t.

$$E\left\{ f\left(Y,\theta\right) \right\} =\mathbf{0}_{q}$$

- Idea: like the score function, the function f identifies θ . What is the small value of q that will identify θ ?
- Examples:
 - Estimating the mean: if $EY_i = \mu$, $f(\mathbf{Y}, \mu) = \sum_{i=1}^n Y_i n\mu$.
 - Variance: if $Y_i \sim (\mu, \sigma^2)$,

$$f(\mathbf{Y}, \sigma^2) = (n-1) - \frac{1}{\sigma^2} \sum_{i=1}^{n} (\mathbf{Y}_i - \bar{\mathbf{Y}})^2$$

- Any score function: $f(Y, \theta) = \nabla_{\theta} \ell(\theta; Y)$.
- Benefit of MoM: we don't have to know the distribution of Y! Only need its moments.

MINQUE (C.R. Rao, 1973)

Suppose
$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \in \mathbb{R}^n$$
, $\boldsymbol{\epsilon} \sim (0, \sum_{r=1}^b \theta_r \mathbf{B}_r)$.

- Estimate θ_r with method of moments.
- We'll use MINQUE: Minimum Norm Quadratic Unbiased Estimation
- Idea: For $\mathbf{A}_s \in \mathbb{R}^{n \times n}$,

$$E(\mathbf{Y}^{T}\mathbf{A}_{s}\mathbf{Y}) = \beta^{T}\mathbf{X}^{T}\mathbf{A}_{s}\mathbf{X}\beta + \sum_{r=1}^{b} \theta_{r} \operatorname{Tr}(\mathbf{B}_{r}\mathbf{A}_{s})$$

- We will set $\hat{\theta}_s = \mathbf{Y}^T \mathbf{A}_s \mathbf{Y}$. What conditions do we need on \mathbf{A}_s such that $E(\hat{\theta}_s) = \theta_s$?
- $\bullet X^T A_S X = \mathbf{0}_{\mathcal{D}}.$
- $Tr(B_rA_s) = 1\{r = s\}.$
- Is A_s symmetric? How about positive semi-definite?
- Question: how do we choose A_1, \ldots, A_{b_0} ?

MINQUE (C.R. Rao, 1973)

Suppose
$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \in \mathbb{R}^n$$
, $\boldsymbol{\epsilon} \sim (0, \sum_{r=1}^b \theta_r \mathbf{B}_r)$.

- Estimate θ_r with method of moments.
- We'll use MINQUE: Minimum Norm Quadratic Unbiased Estimation
- Idea: For $\mathbf{A}_s \in \mathbb{R}^{n \times n}$,

$$E(\mathbf{Y}^{T}\mathbf{A}_{s}\mathbf{Y}) = \boldsymbol{\beta}^{T}\mathbf{X}^{T}\mathbf{A}_{s}\mathbf{X}\boldsymbol{\beta} + \sum_{r=1}^{D} \theta_{r} \operatorname{Tr}(\mathbf{B}_{r}\mathbf{A}_{s})$$

- We will set $\hat{\theta}_s = \mathbf{Y}^T \mathbf{A}_s \mathbf{Y}$. What conditions do we need on \mathbf{A}_s such that $E(\hat{\theta}_s) = \theta_s$?
- $\bullet \ \boldsymbol{X}^T \boldsymbol{A}_{\mathcal{S}} \boldsymbol{X} = \boldsymbol{0}_{\mathcal{D}}.$
- $\operatorname{Tr}(B_r A_s) = 1 \{ r = s \}.$
- Is A_s symmetric? How about positive semi-definite?
- Question: how do we choose A_1, \ldots, A_b ?

MINQUE (C.R. Rao, 1973)

Suppose
$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \in \mathbb{R}^n$$
, $\boldsymbol{\epsilon} \sim (0, \sum_{r=1}^b \theta_r \mathbf{B}_r)$.

- Estimate θ_r with method of moments.
- We'll use MINQUE: Minimum Norm Quadratic Unbiased Estimation
- Idea: For $\mathbf{A}_s \in \mathbb{R}^{n \times n}$,

$$E(\mathbf{Y}^{T}\mathbf{A}_{s}\mathbf{Y}) = \boldsymbol{\beta}^{T}\mathbf{X}^{T}\mathbf{A}_{s}\mathbf{X}\boldsymbol{\beta} + \sum_{r=1}^{D} \theta_{r} \operatorname{Tr}(\mathbf{B}_{r}\mathbf{A}_{s})$$

- We will set $\hat{\theta}_s = \mathbf{Y}^T \mathbf{A}_s \mathbf{Y}$. What conditions do we need on \mathbf{A}_s such that $E(\hat{\theta}_s) = \theta_s$?
- $\bullet \ \boldsymbol{X}^T \boldsymbol{A}_{\mathcal{S}} \boldsymbol{X} = \boldsymbol{0}_{\mathcal{D}}.$
- $Tr(B_rA_s) = 1 \{r = s\}.$
- Is A_s symmetric? How about positive semi-definite?
- Question: how do we choose A_1, \ldots, A_b ?

MINQUE (cont.)

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \in \mathbb{R}^n, \ \boldsymbol{\epsilon} \sim (0, \sum_{r=1}^b \theta_r \mathbf{B}_r)$$

- $\bullet \ \hat{\theta}_{\mathcal{S}} = \mathbf{Y}^{\mathsf{T}} \mathbf{A}_{\mathcal{S}} \mathbf{Y}, \ \mathbf{X}^{\mathsf{T}} \mathbf{A}_{\mathcal{S}} \mathbf{X} = \mathbf{0}_{p}, \ \mathrm{Tr} \left(\mathbf{B}_{r} \mathbf{A}_{\mathcal{S}} \right) = 1 \ \{ r = s \}$
- We'll choose \mathbf{A}_s such that $\hat{\theta}_s$ has minimal variance.
- Under assumptions of normality: $\operatorname{Var}\left(\hat{\theta}_{s}\right) = 2\sum_{r,t} \theta_{r}\theta_{t}\operatorname{Tr}\left(\boldsymbol{A}_{s}\boldsymbol{B}_{r}\boldsymbol{A}_{s}\boldsymbol{B}_{t}\right)$
- Problem: $Var(\hat{\theta}_s)$ depends on θ , the parameter we're trying to estimate!
- Any ideas how to circumvent this?
 - Get a consistent, but inefficient, estimator $\hat{\theta}^{(0)}$ using $A_1^{(0)}, \dots, A_b^{(0)}$.
 - Re-compute $A_1, ..., A_r$ by minimizing $Var(\hat{\theta}_1^{(0)}), ..., Var(\hat{\theta}_b^{(0)})$.

MINQUE (cont.)

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \in \mathbb{R}^n, \ \boldsymbol{\epsilon} \sim (0, \sum_{r=1}^b \theta_r \mathbf{B}_r)$$

- $\bullet \ \hat{\theta}_{\mathcal{S}} = \mathbf{Y}^{\mathsf{T}} \mathbf{A}_{\mathcal{S}} \mathbf{Y}, \ \mathbf{X}^{\mathsf{T}} \mathbf{A}_{\mathcal{S}} \mathbf{X} = \mathbf{0}_{p}, \ \mathrm{Tr} \left(\mathbf{B}_{r} \mathbf{A}_{\mathcal{S}} \right) = 1 \ \{ r = s \}$
- We'll choose \mathbf{A}_s such that $\hat{\theta}_s$ has minimal variance.
- Under assumptions of normality: $\operatorname{Var}\left(\hat{\theta}_{s}\right) = 2\sum_{r,t} \theta_{r}\theta_{t}\operatorname{Tr}\left(\boldsymbol{A}_{s}\boldsymbol{B}_{r}\boldsymbol{A}_{s}\boldsymbol{B}_{t}\right)$
- Problem: $Var(\hat{\theta}_s)$ depends on θ , the parameter we're trying to estimate!
- Any ideas how to circumvent this?
 - Get a consistent, but inefficient, estimator $\hat{\theta}^{(0)}$ using $A_1^{(0)}, \dots, A_n^{(0)}$.
 - Re-compute $A_1, ..., A_r$ by minimizing $Var(\hat{\theta}_1^{(0)}), ..., Var(\hat{\theta}_b^{(0)})$.

MINQUE (cont.)

$$m{Y} = m{X}m{eta} + m{\epsilon} \in \mathbb{R}^n, \, m{\epsilon} \sim (0, \sum_{r=1}^b \theta_r m{B}_r)$$

- $\bullet \ \hat{\theta}_{\mathcal{S}} = \mathbf{Y}^{\mathsf{T}} \mathbf{A}_{\mathcal{S}} \mathbf{Y}, \ \mathbf{X}^{\mathsf{T}} \mathbf{A}_{\mathcal{S}} \mathbf{X} = \mathbf{0}_{p}, \ \mathrm{Tr} \left(\mathbf{B}_{r} \mathbf{A}_{\mathcal{S}} \right) = 1 \ \{ r = s \}$
- We'll choose \mathbf{A}_s such that $\hat{\theta}_s$ has minimal variance.
- Under assumptions of normality: $\text{Var}\left(\hat{\theta}_{s}\right) = 2\sum_{r,t}\theta_{r}\theta_{t}\text{Tr}\left(\boldsymbol{A}_{s}\boldsymbol{B}_{r}\boldsymbol{A}_{s}\boldsymbol{B}_{t}\right)$
- Problem: $Var(\hat{\theta}_s)$ depends on θ , the parameter we're trying to estimate!
- Any ideas how to circumvent this?
 - Get a consistent, but inefficient, estimator $\hat{\theta}^{(0)}$ using $\mathbf{A}_1^{(0)}, \dots, \mathbf{A}_h^{(0)}$.
 - Re-compute $A_1, ..., A_r$ by minimizing $Var\left(\hat{\theta}_1^{(0)}\right), ..., Var\left(\hat{\theta}_b^{(0)}\right)$.

- Let $\mathbf{Y} \in \mathbb{R}^n$ be observed data and $\mathbf{\theta} \in \mathbb{R}^p$ be a population parameter of interest.
- Specify the function $f: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^q$ such that $E\{f(Y,\theta)\} = \mathbf{0}_q$.
- Question: how do we estimate and perform inference on θ when the distribution of \mathbf{Y} is unknown?
- The problem was solved for fixed dimensions p and q in Hansen (1982), which won him the Nobel Prize in economics in 2013.
- Let $W \in \mathbb{R}^{q \times q}$ be p.d. By moment condition, we consider the class of estimators

$$\hat{\boldsymbol{\theta}}_{W} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \boldsymbol{f}(\boldsymbol{Y}, \boldsymbol{\theta})^{T} \boldsymbol{W} \boldsymbol{f}(\boldsymbol{Y}, \boldsymbol{\theta}).$$

• We require $q \ge p$ (Why?) If q = p, $f(\mathbf{Y}, \hat{\theta}_W) = \mathbf{0}_p$, and $\hat{\theta}_W$ is invariant to \mathbf{W} .

- Let $\mathbf{Y} \in \mathbb{R}^n$ be observed data and $\mathbf{\theta} \in \mathbb{R}^p$ be a population parameter of interest.
- Specify the function $f: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^q$ such that $E\{f(Y,\theta)\} = \mathbf{0}_q$.
- Question: how do we estimate and perform inference on θ when the distribution of \mathbf{Y} is unknown?
- The problem was solved for fixed dimensions p and q in Hansen (1982), which won him the Nobel Prize in economics in 2013.
- Let $\mathbf{W} \in \mathbb{R}^{q \times q}$ be p.d. By moment condition, we consider the class of estimators

$$\hat{\boldsymbol{\theta}}_{W} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \, \boldsymbol{f} \, (\boldsymbol{Y}, \boldsymbol{\theta})^{T} \, \boldsymbol{W} \boldsymbol{f} \, (\boldsymbol{Y}, \boldsymbol{\theta}) \, .$$

• We require $q \ge p$ (Why?) If q = p, $f(\mathbf{Y}, \hat{\theta}_W) = \mathbf{0}_p$, and $\hat{\theta}_W$ is invariant to \mathbf{W} .

$$\begin{split} & E\left\{ \boldsymbol{f}\left(\boldsymbol{Y},\boldsymbol{\theta}\right)\right\} = \boldsymbol{0}_{q}, \\ & \hat{\boldsymbol{\theta}}_{W} = \operatorname{argmin}_{\boldsymbol{\theta}} \boldsymbol{f}\left(\boldsymbol{Y},\boldsymbol{\theta}\right)^{T} \boldsymbol{W} \boldsymbol{f}\left(\boldsymbol{Y},\boldsymbol{\theta}\right) \end{split}$$

- If q > p, then $f(Y, \theta) \neq 0$ for any θ . How do we select W?
- By same technique as MINQUE: Minimize the asymptotic variance of $\hat{\theta}_W$ (which depends on θ).
 - ① Start with $\mathbf{W} = I_q$. $\hat{\theta}_{I_q}$ is a \sqrt{n} -consistent estimator for θ .
 - ② Set $\mathbf{W} = \mathbf{W} \left(\hat{\theta}_{I_q} \right)$ to be the optimal \mathbf{W} .
 - Using this \mathbf{W} , $\hat{\theta}_W$ has the smallest possible asymptotic variance!
- Called Hansen's two-step estimator. Used all the time in economics, and recently to study non-random missing data in mass spectrometry data (McKennan et al., 2020).

$$E\left\{ \boldsymbol{f}\left(\boldsymbol{Y},\boldsymbol{\theta}\right)\right\} = \boldsymbol{0}_{q},\\ \hat{\boldsymbol{\theta}}_{W} = \operatorname{argmin}_{\boldsymbol{\theta}} \boldsymbol{f}\left(\boldsymbol{Y},\boldsymbol{\theta}\right)^{T} \boldsymbol{W} \boldsymbol{f}\left(\boldsymbol{Y},\boldsymbol{\theta}\right)$$

- If q > p, then $f(Y, \theta) \neq 0$ for any θ . How do we select W?
- By same technique as MINQUE: Minimize the asymptotic variance of $\hat{\theta}_W$ (which depends on θ).
 - **1** Start with $\mathbf{W} = I_q$. $\hat{\theta}_{l_q}$ is a \sqrt{n} -consistent estimator for θ .
 - 2 Set $\mathbf{W} = \mathbf{W}\left(\hat{\theta}_{l_q}\right)$ to be the optimal \mathbf{W} .
 - 3 Using this \mathbf{W} , $\hat{\theta}_W$ has the smallest possible asymptotic variance!
- Called Hansen's two-step estimator. Used all the time in economics, and recently to study non-random missing data in mass spectrometry data (McKennan et al., 2020).

$$E\left\{ oldsymbol{f}\left(oldsymbol{Y}, oldsymbol{ heta}
ight)
ight\} = oldsymbol{0}_q, \ \hat{oldsymbol{ heta}}_{W} = \operatorname{argmin}_{oldsymbol{ heta}} oldsymbol{f}\left(oldsymbol{Y}, oldsymbol{ heta}
ight)^{T} oldsymbol{W} oldsymbol{f}\left(oldsymbol{Y}, oldsymbol{ heta}
ight)$$

- If q > p, then $f(Y, \theta) \neq 0$ for any θ . How do we select W?
- By same technique as MINQUE: Minimize the asymptotic variance of $\hat{\theta}_W$ (which depends on θ).
 - **1** Start with $\mathbf{W} = I_q$. $\hat{\theta}_{l_q}$ is a \sqrt{n} -consistent estimator for θ .
 - 2 Set $\mathbf{W} = \mathbf{W}\left(\hat{\theta}_{l_q}\right)$ to be the optimal \mathbf{W} .
 - 3 Using this \mathbf{W} , $\hat{\theta}_W$ has the smallest possible asymptotic variance!
- Called Hansen's two-step estimator. Used all the time in economics, and recently to study non-random missing data in mass spectrometry data (McKennan et al., 2020).

Factor Analysis and dimension reduction in noisy data

Overview

- Likely the most important tool in all of high dimensional statistics.
- Used in every discipline: machine learning, genetics, economics, sociology, psychology, education, political science, and many others...
- Comes in many flavors: linear, non-linear, finite dimensional, infinite dimensional (i.e. factor analysis in a RKHS)
- Core idea: find a small number of factors that explain most of the variation in the data.
- In the machine learning/computing science community: often treat this as an optimization problem.
 - Problem: we have no way of understanding the statistical uncertainty in our estimates.
- We will study this in the context of a statistical model.
 - This will allow us to justify our choice of estimators.
 - Study the statistical uncertainty.

Overview

- Likely the most important tool in all of high dimensional statistics.
- Used in every discipline: machine learning, genetics, economics, sociology, psychology, education, political science, and many others...
- Comes in many flavors: linear, non-linear, finite dimensional, infinite dimensional (i.e. factor analysis in a RKHS)
- Core idea: find a small number of factors that explain most of the variation in the data.
- In the machine learning/computing science community: often treat this as an optimization problem.
 - Problem: we have no way of understanding the statistical uncertainty in our estimates.
- We will study this in the context of a statistical model.
 - This will allow us to justify our choice of estimators.
 - Study the statistical uncertainty.

Linear factor analysis in noisy data I

- $\mathbf{y}_g = \mathbf{C}\ell_g + \mathbf{e}_g \in \mathbb{R}^n$ is the expression of gene $g = 1, \dots, p$ (or brain region g, survey question g, etc) across n samples.
 - Will assume that ${m e}_g \sim ({m 0}, \sigma_g^2 I_n)$ and ${m e}_g$ is independent of ${m e}_h$
 - p and n are large. Think $p \gtrsim n$, and maybe p >> n.
- The factors $C \in \mathbb{R}^{n \times K}$ are shared across all genes $g = 1, \dots, p$.
- The **loadings** $\ell_g \in \mathbb{R}^K$ are the effects of \boldsymbol{C} on the expression of gene g. Examples:
 - Some of the columns of *C* might correspond to biological factors like cell type. If a person has more T cells, their expression will look different from someone with more B cells.
 - Maybe some are related to disease (sick vs. healthy), technical factors (processing batch), etc.

Linear factor analysis in noisy data II

- $K << \min(n, p)$, i.e. want to explain the variation in $\mathbf{y}_1, \dots, \mathbf{y}_p$ with a small number of factors.
- C can induce dependencies across genes. Assuming rows i = 1, ..., n of C are i.i.d with $Var(C_{i.}) = \Psi$:

$$\mathsf{Cov}\left(y_{gi},y_{hi}
ight)=\ell_{g}^{T}\Psi\ell_{h},\quad g
eq h=1,\ldots,p$$

• We only observe y_g . Our goal is to recover ℓ_1, \ldots, ℓ_p and C.

$$extbf{\emph{y}}_g = extbf{\emph{C}}\ell_g + extbf{\emph{e}}_g \in \mathbb{R}^n ext{ for } g = 1, \ldots, p$$

$$\mathbf{Y}_{p \times n} = \begin{bmatrix} \mathbf{y}_1^T \\ \vdots \\ \mathbf{y}_p^T \end{bmatrix} = \underbrace{\begin{pmatrix} \ell_1^T \\ \vdots \\ \ell_p^T \end{pmatrix}}_{\mathbf{L}_{p \times K}} \underbrace{\begin{pmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_n \\ \mathbf{c}_T \end{pmatrix}}_{\mathbf{c}^T} + \underbrace{\begin{pmatrix} \mathbf{e}_1^T \\ \vdots \\ \mathbf{e}_p^T \end{pmatrix}}_{\mathbf{E}_{p \times n}}$$

- Recall: $p \gtrsim n$, maybe p >> n.
- Recall: we only observe Y. Goal is to recover $C \in \mathbb{R}^{n \times K}$ and $L \in \mathbb{R}^{p \times K}$, $K << \min(n, p)$
- Problem: without further assumptions, L and C are not identifiable! Why? We can only recover LC^T:

$$\textit{E}\left(\textit{\textbf{Y}} \mid \textit{\textbf{C}}\right) = \textit{\textbf{LC}}^{T} = \textit{\textbf{LC}}^{T} = \textit{\textbf{LR}}\left(\textit{\textbf{CR}}^{-T}\right)^{T}, \quad \forall \text{ invertible } \textit{\textbf{R}} \in \mathbb{R}^{K \times K}$$

- Are im(C) or im(L) identifiable?
- Different types of factor analyses place different assumptions on
 L and C to make them identifiable/interpretable:

$$extbf{\emph{y}}_g = extbf{\emph{C}}\ell_g + extbf{\emph{e}}_g \in \mathbb{R}^n ext{ for } g = 1, \ldots, p$$

$$\mathbf{Y}_{p\times n} = \begin{bmatrix} & \mathbf{y}_1^T \\ & \vdots \\ & \mathbf{y}_p^T \end{bmatrix} = \underbrace{\begin{pmatrix} & \boldsymbol{\ell}_1^T \\ & \vdots \\ & \boldsymbol{\ell}_p^T \end{pmatrix}}_{\mathbf{L}_{p\times K}} \underbrace{\begin{pmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_n \\ & & \\ & \mathbf{c}^T \end{pmatrix}}_{\mathbf{c}^T} + \underbrace{\begin{pmatrix} & \mathbf{e}_1^T \\ & \vdots \\ & \mathbf{e}_p^T \end{pmatrix}}_{\mathbf{E}_{p\times n}}$$

- Recall: $p \gtrsim n$, maybe p >> n.
- Recall: we only observe Y. Goal is to recover $C \in \mathbb{R}^{n \times K}$ and $L \in \mathbb{R}^{p \times K}$, $K << \min(n, p)$
- Problem: without further assumptions, L and C are not identifiable! Why? We can only recover LC^T:

$$E(Y \mid C) = LC^T = LC^T = LR(CR^{-T})^T$$
, \forall invertible $R \in \mathbb{R}^{K \times K}$

- Are im(C) or im(L) identifiable?
- Different types of factor analyses place different assumptions on
 L and C to make them identifiable/interpretable: □ → √ ■

$$extbf{\emph{y}}_g = extbf{\emph{C}}\ell_g + extbf{\emph{e}}_g \in \mathbb{R}^n ext{ for } g = 1, \dots, p$$

$$\mathbf{Y}_{p \times n} = \begin{bmatrix} \mathbf{y}_1^T \\ \vdots \\ \mathbf{y}_p^T \end{bmatrix} = \underbrace{\begin{pmatrix} \ell_1^T \\ \vdots \\ \ell_p^T \end{pmatrix}}_{\mathbf{L}_{p \times K}} \underbrace{\begin{pmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_n \\ \mathbf{c}^T \end{pmatrix}}_{\mathbf{c}^T} + \underbrace{\begin{pmatrix} \mathbf{e}_1^T \\ \vdots \\ \mathbf{e}_p^T \end{pmatrix}}_{\mathbf{E}_{p \times n}}$$

- Recall: $p \gtrsim n$, maybe p >> n.
- Recall: we only observe Y. Goal is to recover $C \in \mathbb{R}^{n \times K}$ and $L \in \mathbb{R}^{p \times K}$, $K << \min(n, p)$
- Problem: without further assumptions, L and C are not identifiable! Why? We can only recover LC^T:

$$E(Y \mid C) = LC^T = LC^T = LR(CR^{-T})^T$$
, \forall invertible $R \in \mathbb{R}^{K \times K}$

- Are im(C) or im(L) identifiable?
- Different types of factor analyses place different assumptions on
 L and C to make them identifiable/interpretable: □ → □ → □ → □ → □

$$extbf{\emph{y}}_g = extbf{\emph{C}}\ell_g + extbf{\emph{e}}_g \in \mathbb{R}^n ext{ for } g = 1, \ldots, extbf{\emph{p}}$$

$$\mathbf{Y}_{p \times n} = \begin{bmatrix} \mathbf{y}_1^T \\ \vdots \\ \mathbf{y}_p^T \end{bmatrix} = \underbrace{\begin{pmatrix} \ell_1^T \\ \vdots \\ \ell_p^T \end{pmatrix}}_{\mathbf{L}_{p \times K}} \underbrace{\begin{pmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_n \\ \end{pmatrix}}_{\mathbf{c}_T} + \underbrace{\begin{pmatrix} \mathbf{e}_1^T \\ \vdots \\ \mathbf{e}_p^T \end{pmatrix}}_{\mathbf{E}_{p \times n}}$$

- Recall: $p \gtrsim n$, maybe p >> n.
- Recall: we only observe Y. Goal is to recover $C \in \mathbb{R}^{n \times K}$ and $L \in \mathbb{R}^{p \times K}$, $K << \min(n, p)$
- Problem: without further assumptions, L and C are not identifiable! Why? We can only recover LC^T:

$$\textit{E}\left(\textit{\textbf{Y}} \mid \textit{\textbf{C}}\right) = \textit{\textbf{LC}}^{T} = \textit{\textbf{LC}}^{T} = \textit{\textbf{LR}}\left(\textit{\textbf{CR}}^{-T}\right)^{T}, \quad \forall \text{ invertible } \textit{\textbf{R}} \in \mathbb{R}^{K \times K}$$

- Are im(C) or im(L) identifiable?
- Different types of factor analyses place different assumptions on
 L and C to make them identifiable/interpretable:

$$extbf{\emph{y}}_g = extbf{\emph{C}}\ell_g + extbf{\emph{e}}_g \in \mathbb{R}^n ext{ for } g = 1, \ldots, extbf{\emph{p}}$$

$$\mathbf{Y}_{p \times n} = \begin{bmatrix} \mathbf{y}_1^T \\ \vdots \\ \mathbf{y}_p^T \end{bmatrix} = \underbrace{\begin{pmatrix} \ell_1^T \\ \vdots \\ \ell_p^T \end{pmatrix}}_{\mathbf{L}_{p \times K}} \underbrace{\begin{pmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_n \\ \end{pmatrix}}_{\mathbf{c}_T} + \underbrace{\begin{pmatrix} \mathbf{e}_1^T \\ \vdots \\ \mathbf{e}_p^T \end{pmatrix}}_{\mathbf{E}_{p \times n}}$$

- Recall: $p \gtrsim n$, maybe p >> n.
- Recall: we only observe Y. Goal is to recover $C \in \mathbb{R}^{n \times K}$ and $L \in \mathbb{R}^{p \times K}$, $K << \min(n, p)$
- Problem: without further assumptions, L and C are not identifiable! Why? We can only recover LC^T:

$$E(Y \mid C) = LC^T = LC^T = LR(CR^{-T})^T$$
, \forall invertible $R \in \mathbb{R}^{K \times K}$

- Are im(C) or im(L) identifiable?
- Different types of factor analyses place different assumptions on
 L and C to make them identifiable/interpretable: □ → □ → □ → □ → □

$$extbf{\emph{y}}_g = extbf{\emph{C}}\ell_g + extbf{\emph{e}}_g \in \mathbb{R}^n ext{ for } g = 1, \ldots, extbf{\emph{p}}$$

$$\mathbf{Y}_{p \times n} = \begin{bmatrix} \mathbf{y}_1^T \\ \vdots \\ \mathbf{y}_p^T \end{bmatrix} = \underbrace{\begin{pmatrix} \ell_1^T \\ \vdots \\ \ell_p^T \end{pmatrix}}_{\mathbf{L}_{p \times K}} \underbrace{\begin{pmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_n \\ \end{pmatrix}}_{\mathbf{c}_T} + \underbrace{\begin{pmatrix} \mathbf{e}_1^T \\ \vdots \\ \mathbf{e}_p^T \end{pmatrix}}_{\mathbf{E}_{p \times n}}$$

- Recall: $p \gtrsim n$, maybe p >> n.
- Recall: we only observe Y. Goal is to recover $C \in \mathbb{R}^{n \times K}$ and $L \in \mathbb{R}^{p \times K}$, $K << \min(n, p)$
- Problem: without further assumptions, L and C are not identifiable! Why? We can only recover LC^T:

$$E(Y \mid C) = LC^T = LC^T = LR(CR^{-T})^T$$
, \forall invertible $R \in \mathbb{R}^{K \times K}$

- Are im(C) or im(L) identifiable?
- Different types of factor analyses place different assumptions on
 L and C to make them identifiable/interpretable: □ → □ → □ → □ → □

$$extbf{\emph{y}}_g = extbf{\emph{C}}\ell_g + extbf{\emph{e}}_g \in \mathbb{R}^n ext{ for } g = 1, \ldots, extbf{\emph{p}}$$

$$\mathbf{Y}_{p\times n} = \begin{bmatrix} & \mathbf{y}_1^T \\ & \vdots \\ & \mathbf{y}_p^T \end{bmatrix} = \underbrace{\begin{pmatrix} & \ell_1^T \\ & \vdots \\ & \ell_p^T \end{pmatrix}}_{\mathbf{L}_{p\times K}} \underbrace{\begin{pmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_n \\ & \vdots \\ & \mathbf{c}^T \end{pmatrix}}_{\mathbf{c}^T} + \underbrace{\begin{pmatrix} & \mathbf{e}_1^T \\ & \vdots \\ & \mathbf{e}_p^T \end{pmatrix}}_{\mathbf{E}_{p\times n}}$$

- Recall: $p \gtrsim n$, maybe p >> n.
- Recall: we only observe Y. Goal is to recover $C \in \mathbb{R}^{n \times K}$ and $L \in \mathbb{R}^{p \times K}$, $K << \min(n, p)$
- Problem: without further assumptions, L and C are not identifiable! Why? We can only recover LC^T:

$$E(Y \mid C) = LC^T = LC^T = LR(CR^{-T})^T$$
, \forall invertible $R \in \mathbb{R}^{K \times K}$

- Are im(C) or im(L) identifiable?
- Different types of factor analyses place different assumptions on
 L and C to make them identifiable/interpretable.

PCA in noisy data I

$$m{Y}_{p \times n} = m{L}_{p \times K} m{C}_{n \times K}^T + m{E}_{p \times n}$$
, entries of $m{E}$ are independent, $m{E}_{gi} \sim (0, \sigma_g^2)$.

- PCA can be interpreted as a particular parametrization of L and C
- Recall goal of PCA: identify most important sources of variation of Y
 - PCs can be ordered by corresponding eigenvalue.

PCA in noisy data I

$$m{Y}_{p \times n} = m{L}_{p \times K} m{C}_{n \times K}^T + m{E}_{p \times n}$$
, entries of $m{E}$ are independent, $m{E}_{gi} \sim (0, \sigma_g^2)$.

- PCA can be interpreted as a particular parametrization of L and C
- Recall goal of PCA: identify most important sources of variation of Y
 - PCs can be ordered by corresponding eigenvalue.

PCA in noisy data II

$$m{Y}_{p imes n} = m{L}_{p imes K} m{C}_{n imes K}^T + m{E}_{p imes n}$$
, entries of $m{E}$ are independent, $m{E}_{gi} \sim (0, \sigma_g^2)$

- Claim: there exists a parametrization of L and C s.t.

 - 2 $n^{-1} \mathbf{C}^T \mathbf{C} = I_K$ and $p^{-1} \mathbf{L}^T \mathbf{L} = \text{diag}(\lambda_1, \dots, \lambda_K),$ $\lambda_1 \geq \dots \geq \lambda_K > 0.$
 - To identify $C_{.1}, \ldots, C_{.K}$ up to sign, need to assume $\lambda_1 > \cdots > \lambda_K > 0$. Why?
 - 3 λ_k and $n^{-1/2} \mathbf{C}_{.k}$ are the kth eigenvalue and eigenvector of $n^{-1} \mathbf{C} \left(p^{-1} \mathbf{L}^T \mathbf{L} \right) \mathbf{C}^T$
- To show this: compute the singular value decomposition of $E(Y \mid C) = LC^T$!
- kth factor is $C_{\cdot k}$; has loading $L_{\cdot k}$ with $p^{-1}L_{\cdot k}^TL_{\cdot k} = \lambda_k$. Here λ_k is the average effect size for the kth factor.
- Interpretation: $C_{\cdot k}$ is the kth (out of K) most important factor.
- Goal: estimate $C_{\cdot k}$ and $L_{\cdot k}$.

PCA in noisy data II

$$m{Y}_{p \times n} = m{L}_{p \times K} m{C}_{n \times K}^T + m{E}_{p \times n}$$
, entries of $m{E}$ are independent, $m{E}_{gi} \sim (0, \sigma_g^2)$

- Claim: there exists a parametrization of L and C s.t.

 - 2 $n^{-1} \mathbf{C}^T \mathbf{C} = I_K$ and $p^{-1} \mathbf{L}^T \mathbf{L} = \text{diag}(\lambda_1, \dots, \lambda_K),$ $\lambda_1 \ge \dots \ge \lambda_K > 0.$
 - To identify $C_{.1}, \ldots, C_{.K}$ up to sign, need to assume $\lambda_1 > \cdots > \lambda_K > 0$. Why?
 - 3 λ_k and $n^{-1/2}C_{\cdot k}$ are the kth eigenvalue and eigenvector of $n^{-1}C(p^{-1}L^TL)C^T$
- To show this: compute the singular value decomposition of $E(Y \mid C) = LC^T$!
- kth factor is $C_{\cdot k}$; has loading $L_{\cdot k}$ with $p^{-1}L_{\cdot k}^TL_{\cdot k} = \lambda_k$. Here λ_k is the average effect size for the kth factor.
- Interpretation: $C_{\cdot k}$ is the kth (out of K) most important factor.
- Goal: estimate $C_{\cdot k}$ and $L_{\cdot k}$.

PCA in noisy data II

$$m{Y}_{p \times n} = m{L}_{p \times K} m{C}_{n \times K}^T + m{E}_{p \times n}$$
, entries of $m{E}$ are independent, $m{E}_{gi} \sim (0, \sigma_g^2)$

- Claim: there exists a parametrization of L and C s.t.

 - 2 $n^{-1} \mathbf{C}^T \mathbf{C} = I_K$ and $p^{-1} \mathbf{L}^T \mathbf{L} = \text{diag}(\lambda_1, \dots, \lambda_K),$ $\lambda_1 \geq \dots \geq \lambda_K > 0.$
 - To identify $C_{.1}, \ldots, C_{.K}$ up to sign, need to assume $\lambda_1 > \cdots > \lambda_K > 0$. Why?
 - 3 λ_k and $n^{-1/2} \mathbf{C}_{.k}$ are the kth eigenvalue and eigenvector of $n^{-1} \mathbf{C} \left(p^{-1} \mathbf{L}^T \mathbf{L} \right) \mathbf{C}^T$
- To show this: compute the singular value decomposition of $E(Y \mid C) = LC^T$!
- kth factor is $C_{\cdot k}$; has loading $L_{\cdot k}$ with $p^{-1}L_{\cdot k}^TL_{\cdot k} = \lambda_k$. Here λ_k is the average effect size for the kth factor.
- Interpretation: $C_{\cdot k}$ is the kth (out of K) most important factor.
- Goal: estimate $C_{\cdot k}$ and $L_{\cdot k}$.

PCA in noisy data: estimation

$$\mathbf{Y}_{p \times n} = \mathbf{L}_{p \times K} \mathbf{C}_{n \times K}^T + \mathbf{E}_{p \times n}, \, \mathbf{E}_{g \cdot} \sim (0, \sigma_g^2 I_n)$$

- $n^{-1} \mathbf{C}^T \mathbf{C} = I_K$ and $p^{-1} \mathbf{L}^T \mathbf{L} = \text{diag}(\lambda_1, \dots, \lambda_K),$ $\lambda_1 > \dots > \lambda_K > 0$
- λ_k and $n^{-1/2} \boldsymbol{C}_{\cdot k}$ are the kth eigenvalue and eigenvector of $n^{-1} \boldsymbol{C} (p^{-1} \boldsymbol{L}^T \boldsymbol{L}) \boldsymbol{C}^T$
- Claim: the first K eigenvectors of $p^{-1} Y^T Y$ accurately estimate C. Idea:
 - ① $E(p^{-1}Y^TY) = C(p^{-1}L^TL)C^T + E(p^{-1}E^TE) = C(p^{-1}L^TL)C^T + (p^{-1}\sum_{g=1}^p \sigma_g^2)I_n = C(p^{-1}L^TL)C^T + \bar{\sigma}^2I_n$
 - This implies eigenvectors of $p^{-1} \mathbf{Y}^T \mathbf{Y} \approx$ eigenvectors of $\mathbf{C} (p^{-1} \mathbf{L}^T \mathbf{L}) \mathbf{C}^T$!
- Note that argument relied on $\mathbf{E}_{g.} \sim (0, \sigma_g^2 I_n)$. What if samples are related, i.e. $\mathbf{E}_{g.} \sim (0, V_g), V_g \neq \sigma_q^2 I_n$?
- How should we estimate L? OLS using estimated design matrix Ĉ!

PCA in noisy data: estimation

$$extbf{Y}_{p imes n} = extbf{L}_{p imes K} extbf{C}_{n imes K}^T + extbf{E}_{p imes n}, extbf{E}_{g\cdot} \sim (0, \sigma_g^2 extsf{I}_n)$$

- $n^{-1} \mathbf{C}^T \mathbf{C} = I_K$ and $p^{-1} \mathbf{L}^T \mathbf{L} = \text{diag}(\lambda_1, \dots, \lambda_K),$ $\lambda_1 > \dots > \lambda_K > 0$
- λ_k and $n^{-1/2} C_{\cdot k}$ are the kth eigenvalue and eigenvector of $n^{-1} C (p^{-1} L^T L) C^T$
- Claim: the first K eigenvectors of $p^{-1} Y^T Y$ accurately estimate C. Idea:

 - 2 This implies eigenvectors of $p^{-1} \mathbf{Y}^T \mathbf{Y} \approx$ eigenvectors of $\mathbf{C} (p^{-1} \mathbf{L}^T \mathbf{L}) \mathbf{C}^T$!
- Note that argument relied on \mathbf{E}_g . $\sim (0, \sigma_g^2 I_n)$. What if samples are related, i.e. \mathbf{E}_g . $\sim (0, \mathbf{V}_g)$, $\mathbf{V}_g \neq \sigma_g^2 I_n$?
- How should we estimate L? OLS using estimated design matrix Ĉ!

$$extbf{Y}_{p imes n} = extbf{L}_{p imes K} extbf{C}_{n imes K}^T + extbf{E}_{p imes n}, extbf{E}_{g\cdot} \sim (0, \sigma_g^2 extsf{I}_n)$$

- $n^{-1} \mathbf{C}^T \mathbf{C} = I_K$ and $p^{-1} \mathbf{L}^T \mathbf{L} = \text{diag}(\lambda_1, \dots, \lambda_K),$ $\lambda_1 > \dots > \lambda_K > 0$
- λ_k and $n^{-1/2} C_{\cdot k}$ are the kth eigenvalue and eigenvector of $n^{-1} C (p^{-1} L^T L) C^T$
- Claim: the first K eigenvectors of $p^{-1} Y^T Y$ accurately estimate C. Idea:

 - This implies eigenvectors of $p^{-1} \mathbf{Y}^T \mathbf{Y} \approx$ eigenvectors of $\mathbf{C} (p^{-1} \mathbf{L}^T \mathbf{L}) \mathbf{C}^T$!
- Note that argument relied on $\mathbf{E}_{g.} \sim (0, \sigma_g^2 I_n)$. What if samples are related, i.e. $\mathbf{E}_{g.} \sim (0, \mathbf{V}_g), \mathbf{V}_g \neq \sigma_q^2 I_n$?
- How should we estimate L? OLS using estimated design matrix Ĉ!

$$extbf{Y}_{p imes n} = extbf{L}_{p imes K} extbf{C}_{n imes K}^T + extbf{E}_{p imes n}, extbf{E}_{g\cdot} \sim (0, \sigma_g^2 extsf{I}_n)$$

- $n^{-1} \mathbf{C}^T \mathbf{C} = I_K$ and $p^{-1} \mathbf{L}^T \mathbf{L} = \text{diag}(\lambda_1, \dots, \lambda_K),$ $\lambda_1 > \dots > \lambda_K > 0$
- λ_k and $n^{-1/2} C_{\cdot k}$ are the kth eigenvalue and eigenvector of $n^{-1} C (p^{-1} L^T L) C^T$
- Claim: the first K eigenvectors of $p^{-1} Y^T Y$ accurately estimate C. Idea:

 - This implies eigenvectors of $p^{-1} \mathbf{Y}^T \mathbf{Y} \approx$ eigenvectors of $\mathbf{C} (p^{-1} \mathbf{L}^T \mathbf{L}) \mathbf{C}^T !$
- Note that argument relied on E_g . $\sim (0, \sigma_g^2 I_n)$. What if samples are related, i.e. E_g . $\sim (0, V_g)$, $V_g \neq \sigma_g^2 I_n$?
- How should we estimate L? OLS using estimated design matrix Ĉ!

$$extbf{Y}_{p imes n} = extbf{L}_{p imes K} extbf{C}_{n imes K}^T + extbf{E}_{p imes n}, extbf{E}_{g\cdot} \sim (0, \sigma_g^2 extsf{I}_n)$$

- $n^{-1} \mathbf{C}^T \mathbf{C} = I_K$ and $p^{-1} \mathbf{L}^T \mathbf{L} = \text{diag}(\lambda_1, \dots, \lambda_K),$ $\lambda_1 > \dots > \lambda_K > 0$
- λ_k and $n^{-1/2} \mathbf{C}_{\cdot k}$ are the kth eigenvalue and eigenvector of $n^{-1} \mathbf{C} \left(p^{-1} \mathbf{L}^T \mathbf{L} \right) \mathbf{C}^T$
- Claim: the first K eigenvectors of $p^{-1} Y^T Y$ accurately estimate C. Idea:

 - This implies eigenvectors of $p^{-1} \mathbf{Y}^T \mathbf{Y} \approx$ eigenvectors of $\mathbf{C} (p^{-1} \mathbf{L}^T \mathbf{L}) \mathbf{C}^T !$
- Note that argument relied on $\mathbf{E}_{g.} \sim (0, \sigma_g^2 I_n)$. What if samples are related, i.e. $\mathbf{E}_{g.} \sim (0, \mathbf{V}_g), \mathbf{V}_g \neq \sigma_g^2 I_n$?
- How should we estimate L? OLS using estimated design matrix C!

$$extbf{Y}_{p imes n} = extbf{L}_{p imes K} extbf{C}_{n imes K}^T + extbf{E}_{p imes n}, extbf{E}_{g\cdot} \sim (0, \sigma_g^2 extsf{I}_n)$$

- $n^{-1} \mathbf{C}^T \mathbf{C} = I_K$ and $p^{-1} \mathbf{L}^T \mathbf{L} = \text{diag}(\lambda_1, \dots, \lambda_K),$ $\lambda_1 > \dots > \lambda_K > 0$
- λ_k and $n^{-1/2} C_{\cdot k}$ are the kth eigenvalue and eigenvector of $n^{-1} C (p^{-1} L^T L) C^T$
- Claim: the first K eigenvectors of $p^{-1} Y^T Y$ accurately estimate C. Idea:

 - This implies eigenvectors of $p^{-1} \mathbf{Y}^T \mathbf{Y} \approx$ eigenvectors of $\mathbf{C} (p^{-1} \mathbf{L}^T \mathbf{L}) \mathbf{C}^T !$
- Note that argument relied on E_g . $\sim (0, \sigma_g^2 I_n)$. What if samples are related, i.e. E_g . $\sim (0, V_g)$, $V_g \neq \sigma_g^2 I_n$?
- How should we estimate L? OLS using estimated design matrix Ĉ!

Asymptotic properties (McKennan & Nicolae, 2018)

$$\textit{\textbf{Y}}_{\textit{p}\times\textit{n}} = \textit{\textbf{L}}_{\textit{p}\times\textit{K}}\textit{\textbf{C}}_{\textit{n}\times\textit{K}}^{\textit{T}} + \textit{\textbf{E}}_{\textit{p}\times\textit{n}},\,\textit{\textbf{E}}_{\textit{g}\cdot} \sim (0,\sigma_{\textit{g}}^2\textit{I}_{\textit{n}})$$

• Consider the case $p \gtrsim n$ (we could have p >> n).

• Corr
$$(\hat{\boldsymbol{C}}_{k\cdot}, \boldsymbol{C}_{k\cdot}) = 1 - O_P \left\{ (\lambda_k np)^{-1/2} + (\lambda_k p)^{-1} \right\}$$

- Blessing of dimensionality: as p gets larger, Ĉ_k. is more accurate!
- This is a common theme in factor analysis problems.
- Estimate for ℓ_g is just as accurate as when \boldsymbol{C} is known (under some assumptions)!
- PCA is incredibly powerful, and can accurately recover factors and loadings.

Example 1: clustering patients based on gene expression

- Expression of $p \approx 15,000$ genes measured on n = 180 lung cancer patients.
- Lung cancer has many sub-types (i.e. not just 1 type of lung cancer).
- Goal: can we classify patients based on expression? If we can, this can lead to personalized treatments.

¹Shen et al., 2016

Example 2: identifying confounders in metabolomics

- Metabolomics is the study of small molecule metabolites in tissues/bodily fluids.
 - Represent the end products of all cellular processes.
- What are the major sources of variation?
- Measured concentration of p = 1, 138 metabolites in the urine of n = 228 infants.

²McKennan et al., 2020

Example 3: a bit of background

- Recall from high school biology: DNA is made up of the four letter alphabet A, C, T, G.
 - At each locus, inherit 1 copy from mother, and 1 from father
- Single nucleotide polymorphism (SNP): A single base pair (out of $\approx 3 \times 10^9$ base pairs) in the genome that shows variation across populations.
- There are hundreds of millions of SNPs in the human genome.
 - These are random mutations that have been inherited over thousands of generations.
 - At (nearly) every SNP, there is a major (i.e. most frequent) allele and a minor (i.e. less frequent allele).
- Genotype at SNP g in individual i can be written as

```
Y_{gi} = 1 \{i \text{ inherited minor allele at } g \text{ from mother}\} + 1 \{i \text{ inherited minor allele at } g \text{ from father}\}
```


Example 3: a bit of background

- Recall from high school biology: DNA is made up of the four letter alphabet A, C, T, G.
 - At each locus, inherit 1 copy from mother, and 1 from father
- Single nucleotide polymorphism (SNP): A single base pair (out of $\approx 3 \times 10^9$ base pairs) in the genome that shows variation across populations.
- There are hundreds of millions of SNPs in the human genome.
 - These are random mutations that have been inherited over thousands of generations.
 - At (nearly) every SNP, there is a major (i.e. most frequent) allele and a minor (i.e. less frequent allele).
- ullet Genotype at SNP g in individual i can be written as

$$Y_{gi} = 1 \{i \text{ inherited minor allele at } g \text{ from mother}\} + 1 \{i \text{ inherited minor allele at } g \text{ from father}\}$$

• $Y_{gi} \in \{0, 1, 2\}$

Example 3: genes mirror geography!!

- Define $Y \in \mathbb{R}^{p \times n}$ to be the genotype matrix at p = 197, 146 SNPs measured in n = 1, 387 Europeans.
- $Y_{gi} \in \{0, 1, 2\}$ is the genotype.
- Goal: can we cluster individuals based on genotype?
- Intuition: individuals with similar genotypes are more related, and should cluster together.

³Novembre et al., 2008

- Given \mathbf{C} and $\hat{\mathbf{C}}$, how should we assess the angle θ between im (\mathbf{C}) and im $(\hat{\mathbf{C}})$?
- To define a geometric angle between spaces, they must intersect. Do vector subspaces always intersect?
- When C and C are vectors, this is easy.

•
$$\cos(\theta) = \frac{|\mathbf{C}^T \hat{\mathbf{C}}|}{\|\mathbf{C}\|_2 \|\hat{\mathbf{C}}\|_2}$$

- The more general case when $C, \hat{C} \in \mathbb{R}^{n \times K}$
 - $\theta = 0 \Leftrightarrow \operatorname{im}(\mathbf{C}) = \operatorname{im}(\hat{\mathbf{C}})$
 - $\theta = \pi/2$ if there exists $v \in \text{im}(\mathbf{C})$ s.t. v is orthogonal to $\text{im}(\hat{\mathbf{C}})$.
- $\bullet \ \cos\left(\theta\right) = \min_{\hat{\boldsymbol{v}} \in \operatorname{im}\left(\hat{\boldsymbol{C}}\right)} \left\{ \max_{\boldsymbol{v} \in \operatorname{im}\left(\boldsymbol{C}\right)} \left(\frac{\hat{\boldsymbol{v}}^{\mathsf{T}} \boldsymbol{v}}{\|\hat{\boldsymbol{v}}\|_2 \|\boldsymbol{v}\|_2} \right) \right\}$
 - Also called the first **principal angle** between im (\hat{c}) and im (c).

- Given C and \hat{C} , how should we assess the angle θ between im (C) and im (\hat{C}) ?
- To define a geometric angle between spaces, they must intersect. Do vector subspaces always intersect?
- ullet When $oldsymbol{\mathcal{C}}$ and $\hat{oldsymbol{\mathcal{C}}}$ are vectors, this is easy.

$$ullet$$
 $\cos\left(heta
ight)=rac{|oldsymbol{\mathcal{C}}^{ au}\hat{oldsymbol{\mathcal{C}}}|}{\|oldsymbol{\mathcal{C}}\|_2\|\hat{oldsymbol{\mathcal{C}}}\|_2}$

- The more general case when $C, \hat{C} \in \mathbb{R}^{n \times K}$
 - $\theta = 0 \Leftrightarrow \operatorname{im}(\mathbf{C}) = \operatorname{im}(\hat{\mathbf{C}})$
 - $\theta = \pi/2$ if there exists $v \in \text{im}(\mathbf{C})$ s.t. v is orthogonal to $\text{im}(\hat{\mathbf{C}})$.
- $\bullet \ \cos\left(\theta\right) = \min_{\hat{\boldsymbol{v}} \in \operatorname{im}\left(\hat{\boldsymbol{C}}\right)} \left\{ \max_{\boldsymbol{v} \in \operatorname{im}\left(\boldsymbol{C}\right)} \left(\frac{\hat{\boldsymbol{v}}^T \boldsymbol{v}}{\|\hat{\boldsymbol{v}}\|_2 \|\boldsymbol{v}\|_2} \right) \right\}$
 - Also called the first **principal angle** between im (\hat{c}) and im (c).

- Given \boldsymbol{C} and $\hat{\boldsymbol{C}}$, how should we assess the angle θ between im (\boldsymbol{C}) and im $(\hat{\boldsymbol{C}})$?
- To define a geometric angle between spaces, they must intersect. Do vector subspaces always intersect?
- ullet When $oldsymbol{\mathcal{C}}$ and $\hat{oldsymbol{\mathcal{C}}}$ are vectors, this is easy.

$$ullet$$
 $\cos\left(heta
ight)=rac{|oldsymbol{\mathcal{C}}^{ au}\hat{oldsymbol{\mathcal{C}}}|}{\|oldsymbol{\mathcal{C}}\|_2\|\hat{oldsymbol{\mathcal{C}}}\|_2}$

- The more general case when $\mathbf{C}, \hat{\mathbf{C}} \in \mathbb{R}^{n \times K}$
 - $\theta = 0 \Leftrightarrow \operatorname{im}(\boldsymbol{c}) = \operatorname{im}(\hat{\boldsymbol{c}})$
 - $\theta = \pi/2$ if there exists $v \in \text{im}(\mathbf{C})$ s.t. v is orthogonal to $\text{im}(\hat{\mathbf{C}})$.

$$\bullet \ \cos\left(\theta\right) = \min_{\hat{\boldsymbol{v}} \in \operatorname{im}\left(\hat{\boldsymbol{C}}\right)} \left\{ \max_{\boldsymbol{v} \in \operatorname{im}\left(\boldsymbol{C}\right)} \left(\frac{\hat{\boldsymbol{v}}^T \boldsymbol{v}}{\|\hat{\boldsymbol{v}}\|_2 \|\boldsymbol{v}\|_2} \right) \right\}$$

• Also called the first **principal angle** between im (\hat{c}) and im (c).

- Given \boldsymbol{C} and $\hat{\boldsymbol{C}}$, how should we assess the angle θ between im (\boldsymbol{C}) and im $(\hat{\boldsymbol{C}})$?
- To define a geometric angle between spaces, they must intersect. Do vector subspaces always intersect?
- ullet When $oldsymbol{\mathcal{C}}$ and $\hat{oldsymbol{\mathcal{C}}}$ are vectors, this is easy.

$$ullet$$
 $\cos\left(heta
ight)=rac{|oldsymbol{c}^{ au}\hat{oldsymbol{c}}|}{\|oldsymbol{c}\|_{2}\|\hat{oldsymbol{c}}\|_{2}}$

- The more general case when $\mathbf{C}, \hat{\mathbf{C}} \in \mathbb{R}^{n \times K}$
 - $\theta = 0 \Leftrightarrow \operatorname{im}(\boldsymbol{c}) = \operatorname{im}(\hat{\boldsymbol{c}})$
 - $\theta = \pi/2$ if there exists $v \in \text{im}(\mathbf{C})$ s.t. v is orthogonal to $\text{im}(\hat{\mathbf{C}})$.
- $\bullet \; \cos\left(\theta\right) = \min_{\hat{\boldsymbol{v}} \in \operatorname{im}\left(\hat{\boldsymbol{C}}\right)} \left\{ \max_{\boldsymbol{v} \in \operatorname{im}\left(\boldsymbol{C}\right)} \left(\frac{\hat{\boldsymbol{v}}^{\mathsf{T}}\boldsymbol{v}}{\|\hat{\boldsymbol{v}}\|_2 \|\boldsymbol{v}\|_2} \right) \right\}$
 - Also called the first **principal angle** between im (\hat{c}) and im (c).

Other applications: adjusting for latent confounders in multivariate regression models

$$\mathbf{Y}_{i} \approx \pi_{i, \bullet} \mathbf{Y}_{\bullet} + \pi_{i, \bullet} \mathbf{Y}_{\bullet} + \bullet \bullet \bullet + \pi_{i, \bullet} \mathbf{Y}_{\bullet}$$

$$\bullet = \text{Cell type 1, } \bullet = \text{Cell type 2, ...,} \bullet = \text{Cell type } c$$

$$\pi_{i, \bullet}$$
Disease status (X)

$$\vdots$$

- If we want to understand relationship between disease status and expression, must account for cell type.
- Problem: we only observed express (Y) and disease status (X). Cell type is unobserved!

Other applications: adjusting for latent confounders in multivariate regression models

$$\mathbf{Y}_{i} \approx \pi_{i, \bullet} \mathbf{Y}_{\bullet} + \pi_{i, \bullet} \mathbf{Y}_{\bullet} + \bullet \bullet \bullet + \pi_{i, \bullet} \mathbf{Y}_{\bullet}$$

$$\bullet = \text{Cell type 1, } \bullet = \text{Cell type 2, ...,} \bullet = \text{Cell type } c$$

$$\pi_{i, \bullet}$$
Disease status (X)

$$\vdots$$

- If we want to understand relationship between disease status and expression, must account for cell type.
- Problem: we only observed express (Y) and disease status (X). Cell type is unobserved!

A model for data with latent confounders

- You now have the tools to model these data!
 - $Y_{g.} \in \mathbb{R}^n$: expression at gene g. We measure (i.e. observed) expression.
 - $X \in \mathbb{R}^n$: covariate of interest, i.e. disease status. This is observed and non-random.
 - $C \in \mathbb{R}^{n \times K}$: cell type and other latent confounders (e.g. diet, batch).
 - We will ignore other observed nuisance covariates not of interest (e.g. the intercept).
- $\mathbf{Y}_{g\cdot} = \mathbf{X}\beta_g + \mathbf{C}\ell_g + \mathbf{e}_g, \, \mathbf{e}_g \sim (\mathbf{0}, \sigma_g^2 I_n).$
 - Goal: Estimate β_g .
 - Problem: C may be correlated with X!
 - Other problem: C can induce correlations across $\hat{\beta}_1, \ldots, \hat{\beta}_p$ (recall Benjamini-Hochberg & other FDR controlling procedures fail when test statistics are correlated).
- We will look at this in depth next time...

A model for data with latent confounders

- You now have the tools to model these data!
 - $Y_{g.} \in \mathbb{R}^n$: expression at gene g. We measure (i.e. observed) expression.
 - $X \in \mathbb{R}^n$: covariate of interest, i.e. disease status. This is observed and non-random.
 - $\mathbf{C} \in \mathbb{R}^{n \times K}$: cell type and other latent confounders (e.g. diet, batch).
 - We will ignore other observed nuisance covariates not of interest (e.g. the intercept).
- $\mathbf{Y}_{g\cdot} = \mathbf{X}\beta_g + \mathbf{C}\ell_g + \mathbf{e}_g, \, \mathbf{e}_g \sim (\mathbf{0}, \sigma_g^2 I_n).$
 - Goal: Estimate β_g .
 - Problem: C may be correlated with X!
 - Other problem: C can induce correlations across $\hat{\beta}_1, \ldots, \hat{\beta}_p$ (recall Benjamini-Hochberg & other FDR controlling procedures fail when test statistics are correlated).
- We will look at this in depth next time...

