Introduction to BIDS

Shawn Rhoads Georgetown University Brainhack DC 2020

"A simple and intuitive way to organize and describe your neuroimaging and behavioral data." https://bids.neuroimaging.io/index.html

 A standardized, community-driven way to organize and share data!

- A standardized, community-driven way to organize and share data!
- Saves time!

- A standardized, community-driven way to organize and share data!
- Saves time!
 - Multiple people on one project?
 - Longitudinal study?
 - Want to reuse data for a new project or grant?

- A standardized, community-driven way to organize and share data!
- Saves time!
 - Multiple people on one project?
 - Longitudinal study?
 - Want to reuse data for a new project or grant?
- Easy to understand!

- A standardized, community-driven way to organize and share data!
- Saves time!
 - Multiple people on one project?
 - o Longitudinal study?
 - Want to reuse data for a new project or grant?
- Easy to understand!
- Growing number of applications built around BIDS!

- A standardized, community-driven way to organize and share data!
- Saves time!
 - Multiple people on one project?
 - o Longitudinal study?
 - Want to reuse data for a new project or grant?
- Easy to understand!
- Growing number of applications built around BIDS!
- Contribute to public data repositories (e.g., OpenNeuro, LORIS)

- A standardized, community-driven way to organize and share data!
- Saves time!
 - Multiple people on one project?
 - o Longitudinal study?
 - Want to reuse data for a new project or grant?
- Easy to understand!
- Growing number of applications built around BIDS!
- Contribute to public data repositories (e.g., OpenNeuro, LORIS)
- Supports reproducible science!

BIDS Usage Survey (2019)

72 unique universities/research centers

Approximately 65,605 subjects have been BIDSified!

https://bids.neuroimaging.io/index.html

sub-01

L— anat

L—func

sub-01

L— <mark>anat</mark>

L—func

datatype

datatype

```
sub-01

anat

sub-01_T1w.nii.gz

suffix

sub-01_T1w.json

func

datatype

entities

suffix
```

```
sub-01
   — anat
        sub-01 T1w.nii.gz
        sub-01 T1w.json
   L_func
        L—sub-01_task-localizer_run-01_bold.nii.gz
        L—sub-01_task-localizer_run-01_bold.json
```

datatype

entities

extension

suffix

```
sub-01
   L— anat
       sub-01 T1w.nii.gz
       sub-01 T1w.json
   L_func
        sub-01 task-localizer run-01 bold.nii.gz
        sub-01 task-localizer run-01 bold.json
```

datatype

entities

extension

suffix

```
Anatomical \rightarrow anat Diffusion-weighted \rightarrow dwi Field mapping \rightarrow fmap Functional \rightarrow func
```

```
dset/
   dataset_description.json
   participants.tsv
   sub-01
       anat
         — sub-01 T1w.json
           sub-01 T1w.nii.gz
           sub-01 dwi.bval
           sub-01 dwi.bvec
           sub-01 dwi.json
           sub-01 dwi.nii.gz
       fmap
           sub-01 acg-dwi dir-AP epi.ison
           sub-01 acg-dwi dir-AP epi.nii.gz
           sub-01_acq-dwi_dir-PA_epi.json
           sub-01 acq-dwi dir-PA epi.nii.gz
           sub-01 acq-func dir-AP epi.ison
           sub-01_acq-func_dir-AP_epi.nii.qz
           sub-01 acg-func dir-PA epi.json
           sub-01 acg-func dir-PA epi.nii.gz
           sub-01_task-nback_run-01_bold.json
           sub-01 task-nback run-01 bold.nii.gz
           sub-01 task-nback run-01 events.tsv
           sub-01 task-nback run-01 sbref.json
            sub-01 task-nback run-01 sbref.nii.gz
```

```
sub-01

Lanat

sub-01_T1w.nii.gz

sub-01_T1w.json
```

```
sub-01
     – anat
        L—sub-01_T1w.nii.gz
        L—sub-01_T1w.json
```

```
sub-01
      - func
        __sub-01 task-localizer run-01 bold.nii.gz
        L—sub-01_task-localizer_run-01_bold.json
        __sub-01 task-localizer run-01 events.tsv
        L—sub-01 task-localizer run-02 bold.nii.gz
        L—sub-01 task-localizer run-02 bold.json
        __sub-01_task-localizer_run-02_events.tsv
```

```
sub-01
      - func
        __ sub-01_task-localizer_run-01_bold.nii.gz •
        ___ sub-01_task-localizer_run-01_bold.json
        L—sub-01_task-localizer_run-01_events.tsv
        L—sub-01_task-localizer_run-02_bold.nii.gz
        L—sub-01_task-localizer_run-02_bold.json
        __sub-01_task-localizer_run-02_events.tsv
```

```
sub-01
      - func
        __sub-01 task-localizer run-01 bold.nii.gz
        L—sub-01_task-localizer_run-01_bold.json
        __sub-01 task-localizer run-01 events.tsv
        L—sub-01 task-localizer run-02 bold.nii.gz
        L—sub-01_task-localizer_run-02_bold.json
        __sub-01 task-localizer run-02 events.tsv
```



```
RepetitionTime: 1.06
MatrixCoilMode: "Auto'
FlipAngle: 15
ProcedureStepDescription: "CBU Neuroimaging"
ConversionSoftwareVersion: "v1.0.20170130"
SliceEncodingDirection: "k"
EffectiveEchoSpacing: 0.000345002
CoilCombinationMethod: "Sum of squares"
ManufacturersModelName: "TrioTim"
ProtocolName: "3D EPI 2mm localiser B380"
TaskName: "localizer"
InstitutionAddress: "15 Chaucer Road, Cambridge CB2 7EF, UK"
ImageType: [] 8 items
ReceiveCoilName: "32 Chn Head"
EchoTime: 0.03
MagneticFieldStrength: 3
SliceTiming: [] 30 items
ParallelReductionFactorInPlane: 2
InstitutionName: "MRC Cognition and Brain Sciences Unit"
PulseSequenceType: "3D Gradient Echo Planar Imaging"
PhaseEncodingDirection: "j-"
AcquisitionDateTime: "2012-09-12T12:54:43.820312"
ParallelAcquisitionTechnique: "GRAPPA"
NumberShots: 1
ConversionSoftware: "dcm2niix"
HardcopyDeviceSoftwareVersion: "VB17"
Manufacturer: "Siemens"
```

```
RepetitionTime: 1.06
MatrixCoilMode: "Auto"
FlipAngle: 15
ProcedureStepDescription: "CBU Neuroimaging"
ConversionSoftwareVersion: "v1.0.20170130"
SliceEncodingDirection: "k"
EffectiveEchoSpacing: 0.000345002
CoilCombinationMethod: "Sum of squares"
ManufacturersModelName: "TrioTim"
ProtocolName: "3D EPI 2mm localiser B380"
TaskName: "localizer"
InstitutionAddress: "15 Chaucer Road, Cambridge CB2 7EF, UK"
ImageType: [] 8 items
ReceiveCoilName: "32 Chn Head"
EchoTime: 0.03
MagneticFieldStrength: 3
SliceTiming: [] 30 items
ParallelReductionFactorInPlane: 2
InstitutionName: "MRC Cognition and Brain Sciences Unit"
PulseSequenceType: "3D Gradient Echo Planar Imaging"
PhaseEncodingDirection: "j-"
AcquisitionDateTime: "2012-09-12T12:54:43.820312"
ParallelAcquisitionTechnique: "GRAPPA"
NumberShots: 1
ConversionSoftware: "dcm2niix"
HardcopyDeviceSoftwareVersion: "VB17"
Manufacturer: "Siemens"
```

```
RepetitionTime: 1.06
MatrixCoilMode: "Auto"
FlipAngle: 15
ProcedureStepDescription: "CBU Neuroimaging"
ConversionSoftwareVersion: "v1.0.20170130"
SliceEncodingDirection: "k"
EffectiveEchoSpacing: 0.000345002
CoilCombinationMethod: "Sum of squares"
ManufacturersModelName: "TrioTim"
ProtocolName: "3D EPI 2mm localiser B380"
TaskName: "localizer"
InstitutionAddress: "15 Chaucer Road, Cambridge CB2 7EF, UK"
ImageType: [] 8 items
ReceiveCoilName: "32 Chn Head"
EchoTime: 0.03
MagneticFieldStrength: 3
SliceTiming: [] 30 items
ParallelReductionFactorInPlane: 2
InstitutionName: "MRC Cognition and Brain Sciences Unit"
PulseSequenceType: "3D Gradient Echo Planar Imaging"
PhaseEncodingDirection: "j-"
AcquisitionDateTime: "2012-09-12T12:54:43.820312"
ParallelAcquisitionTechnique: "GRAPPA"
NumberShots: 1
ConversionSoftware: "dcm2niix"
HardcopyDeviceSoftwareVersion: "VB17"
Manufacturer: "Siemens"
```

```
sub-01
      - func
        __sub-01 task-localizer run-01 bold.nii.gz
        L—sub-01_task-localizer_run-01_bold.json
        L—sub-01_task-localizer_run-01_events.tsv
        L—sub-01_task-localizer_run-02_bold.nii.gz
        __sub-01_task-localizer_run-02_bold.json
        ___sub-01_task-localizer_run-02_events.tsv
```

sub-01_task-localizer_run-01_events.tsv

ONSET	DURATION	TRIAL_TYPE
16.01	16.00	objects
48.00	16.00	scrambled
80.00	16.00	faces
112.00	16.00	places
144.00	16.00	objects
176.00	16.00	places
208.00	16.00	faces
240.00	16.00	scrambled
272.00	16.00	scrambled
304.00	16.00	objects
336.00	16.00	faces
368.00	16.00	places

```
sub-01

I—fmap

L—sub-01_phasediff.nii.gz

L—sub-01_phasediff.json

L—sub-01_magnitude1.nii.gz

L—sub-01_magnitude1.json
```


Converting MRI data to BIDS

HeuDiConv Installation

- Local: `pip install heudiconv[all]`
- Anaconda: conda install --channel conda-forge heudiconv
- Docker: `docker pull nipy/heudiconv:latest`
- Singularity: `singularity pull docker://nipy/heudiconv:latest`

Basic Pipeline

DICOM (*.dcm, *.IMA) [raw data] [no structure]

via HeuDiConv NIFTI (*.nii.gz) via fMRIPrep [raw data] [BIDS format] NIFTI (*.nii.gz) [preprocessed data] [BIDS format]

Basic Pipeline

DICOM (*.dcm, *.IMA) [raw data] [no structure]

Creating your heuristic: convertall.py

```
LOCAL DIR=/mnt/data/raw/
OUT DIR=/mnt/data/subjects/
SUBID=01
heudiconv
-d ${LOCAL DIR}/{subject}/*/*IMA \
-s ${SUBID}
-f convertall \
-c none
-o ${OUT DIR}
```

\${OUT_DIR}/.heudiconv/{subject}/info/dicominfo.tsv

С	D	E	F	G	Н	1	J	K	L	М
series_id	dcm_dir_r	unspecifie	unspecifie	dim1	dim2	dim3	dim4	TR	TE	protocol_
5-gre_fiel	GRE_FIELD	-	-	68	68	92	1	0.449	7.38	gre_field_
6-gre_fiel	GRE_FIELD	-	-	68	68	46	1	0.449	7.38	gre_field_
7-ep2d 3.0	EP2D_3_0	-	=	68	68	46	121	2.5	30	ep2d 3.0m
9-ep2d 3.0	EP2D_3_0	-	-	68	68	46	121	2.5	30	ep2d 3.0m
11-ep2d 3	EP2D_3_0	-	=	68	68	46	121	2.5	30	ep2d 3.0m
13-ep2d 3	EP2D_3_0	-		68	68	46	121	2.5	30	ep2d 3.0m
15-MPRAC	MPRAGE_	-	5	288	270	176	1	2.3	2.99	MPRAGE (
16-ep2d 3	EP2D_3_0	-		68	68	46	241	2.5	30	ep2d 3.0m
18-ep2d 3	EP2D_3_0	-	7.5	68	68	46	241	2.5	30	ep2d 3.0m
20-ep2d 3	EP2D_3_0	-	-	68	68	46	241	2.5	30	ep2d 3.0m
26-gre_fie	GRE_FIELD	-	-	70	70	112	1	0.546	7.38	gre_field_
27-gre_fie	GRE_FIELD	-	-	70	70	56	1	0.546	7.38	gre_field_
28-ep2d 2	EP2D_2_0	-	7.5	102	102	56	306	1.79	30	ep2d 2.0m

Creating your heuristic: convert_study.py

- Create a custom Python script (e.g., convert_study.py)
- This allows HeuDiConv to convert your data to BIDS based on your study's parameters
- See a template script here:

https://drive.google.com/file/d/1bwMm2bp3iZs33QpfaYIk44k Q0MSder0c/view?usp=sharing

Running HeuDiConv: convert_study.py

```
LOCAL DIR=/mnt/data/raw/
OUT DIR=/mnt/data/subjects/
SUBID=01
heudiconv
-d ${LOCAL DIR}/{subject}/*/*IMA \
-s ${SUBID} \
-f convert study.py \
-c dcm2niix
-b --minmeta \
-o ${OUT DIR}
```

Running HeuDiConv: convert_study.py

```
LOCAL DIR=/mnt/data/raw/
OUT DIR=/mnt/data/subjects/
SUBID=01
SESID=01
heudiconv
-d ${LOCAL DIR}/{subject}/{session}/*/*IMA \
-s ${SUBID} --ses ${SESID}
-f convert study.py \
-c dcm2niix
-b --minmeta \
-o ${OUT DIR}
```

Running HeuDiConv using Docker

```
SUBID=01
docker run --rm -it \
-v /mnt/data/raw:/raw:ro \
-v /mnt/data/subjects:/output \
nipy/heudiconv:latest
-d /raw/{subject}/*/*IMA \
-s ${SUBID} \
-f convert study.py \
-c dcm2niix
-b --minmeta \
-o /output
```

Running HeuDiConv using Singularity

```
SUBID=01
singularity run --cleanenv \
--bind /mnt/data:/data
~/simqs/heudiconv-latest.simq
-d /data/raw/{subject}/*/*IMA \
-s \${SUBID} \setminus
-f convert study.py \
-c dcm2niix
-b --minmeta \
-o /data/output
```

- dataset_description.json
- participants.tsv
- README
- sub-01
 - L— anat
 - L—func
 - L_fmap
- sub-02
 - L—anat
 - L—func
 - L—fmap

```
- dataset description.json
- participants.tsv
- README
- sub-01
    L— anat
    L—func
    L—fmap
- sub-02
```

└─ anat

L—func

fmap

```
0: "https://doi.org/10.1101/029603"
Funding: "ERC (261352)"
Name: "Adjudicating between face-cod
 ing models with individual-face fM
 RI responses"
License: "CCO"
BIDSVersion: "1.0.1"
Authors:
 0: "Johan D Carlin"
 1: "Nikolaus Kriegeskorte"
Acknowledgments: ""
HowToAcknowledge: "Please cite assoc
 iated manuscript (in press, PLOS C
 omputational Biology); This data w
 as obtained from the OpenfMRI data
 base. Its accession number is ds00
 0232."
```

ReferencesAndLinks:

- dataset_description.json
- participants.tsv
- README
- sub-01
 - L— anat
 - L—func
 - L fmap
- sub-02
 - L— anat
 - L—func
 - L—fmap

- dataset_description.json - participants.tsv - README sub-01 ses-01 — anat L— func -fmap – anat

func

Some final notes

- Your .json files might contain identifiable information about subjects (data from Georgetown CFMI typically doesn't have this, but double-check)
- Anatomical data need to be de-faced
- Metadata in *_phasediff.json and *magnitude.json files may need to be manually entered for fMRIPrep (if multiple fmaps), add:

```
"IntendedFor":
["func/sub-'${SUBID}'_task-localizer_run-01_bold.nii.gz",
"func/sub-'${SUBID}'_task-localizer_run-02_bold.nii.gz",
"func/sub-'${SUBID}'_task-localizer_run-03_bold.nii.gz"],
```

More resources!

- BIDS Starter Kit
- BIDS Tutorial Series
- BIDS Core Specification Outline
- Existing BIDS Presentations
- Guide to building BIDS apps
- BIDS app template on GitHub
- BIDS Validator
- pyBIDS
- Neuroimaging Core (Read the Docs) Resources