21-373, Algebraic Structures, Department of Mathematical Sciences, Carnegie Mellon University Fall 2011: (Math Studies Section) Monday, Wednesday, Friday, 10:30 am, Porter Hall 226B. Luc Tartar, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

Assignment 10 - Wednesday November 30, 2011. Due Monday December 5

Exercise 64: Show that the polynomial $P = -1 + (x-1)(x-2)\cdots(x-n)$ is irreducible in $\mathbb{Z}[x]$ for all $n \geq 1$.

Exercise 65: For $n \ge 2$, show that $P = 1 + x + \ldots + x^{n-1}$ is irreducible in $\mathbb{Z}[x]$ if and only if n is prime.

Exercise 66: Determine the splitting field extensions $F \subset \mathbb{C}$ for P_j over \mathbb{Q} and compute $[F:\mathbb{Q}]$ for

- i) $P_1 = x^4 2$,
- ii) $P_2 = x^4 + 2$, iii) $P_3 = x^4 + x^2 + 1$, iv) $P_4 = x^6 4$.

Exercise 67: Show that the product of the non-zero elements of any finite field E is -1.

Exercise 68: Find the number of monic irreducible polynomials of degree 4 in $\mathbb{Z}_3[x]$.

Exercise 69: Find the number of monic irreducible polynomials of degree d in $\mathbb{Z}_p[x]$, when both d and p are prime.

Exercise 70: (Putnam 2001-A3) For each integer m, consider the polynomial

$$P_m(x) = x^4 - (2m+4)x^2 + (m-2)^2$$
.

For what values of m is $P_m(x)$ the product of two non-constant polynomials with integer coefficients?