Integral Domain

Definition: Zero Divisor

Let R be a ring and $r, s \in \mathbb{R}^*$ such that $r, s \neq 0$ and rs = 0. r is called a *left zero divisor* of s and s is called a *right zero divisor* of r.

Example

1). $\mathbb{Z} \times \mathbb{Z}$

$$(0,a)(b,0) = (0,0)$$

2). \mathbb{Z}_6

$$2 \cdot 3 = 0$$

3). $M_2(Z)$

$$\begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 6 & 2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Definition: Integral Domain

Let R be a commutative ring with $1 \neq 0$. To say that R is an *integral domain* means that R has no zero divisors.

Theorem

Let R be a commutative ring with $1 \neq 0$. R is an integral domain iff the cancellation laws hold.

Proof

 \implies Assume R is an integral domain

Assume
$$rs = rt$$
 for $r, s, t \in R$ and $r \neq 0$

$$rs - rt = 0$$

$$r(s-t) = 0$$

But $r \neq 0$ by assumption, so s - t = 0 and s = t

Therefore, the left cancellation law holds.

Similarly,
$$sr = tr$$

$$sr - tr = 0$$

$$(s-t)r = 0$$

and thus s = t

Therefore the right cancellation law holds.

Assume that the cancellation laws hold

Assume $r,s\in R$ such that $r\neq 0$ and rs=0

$$r0 = 0$$

$$rs = r0$$

So by left cancellation, s=0

Therefore R contains no left zero divisors.

Similarly, assume $t \in R$ such that tr = 0

$$0r = 0$$

$$tr = 0r$$

So by right cancellation, t = 0

Therefore R contains no right zero divisors.

Therefore R is an integral domain.

Example

- 1). \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C}
- 2). $\mathbb{Z}[x]$
- 3). $\mathbb{Z}[x,y]$
- 4). $\mathbb{Z}[i]$
- 5). $\mathbb{Z}[\omega]$

Note that $M_n(R)$ is not an integral domain due to lack of multiplicative commutativity.

Definition: Field

Let ${\cal F}$ be an integral domain. To say that ${\cal F}$ is a field means:

$$F^\times = F^*$$

In other words, every non-zero element in ${\cal F}$ is a unit.

Theorem

Let F be a finite integral domain. F is a field.

<u>Proof</u>

By definition, F is a commutative ring with unity $1 \neq 0$

Assume
$$a \in F, a \neq 0$$

Let
$$L_a: F \to F$$
 be defined by $L_a(x) = ax$

Assume
$$L_a(x) = L_a(y)$$

$$ax = ay$$

But F is an integral domain, so the cancellation laws hold

$$x = y$$

$$\therefore L_a$$
 is one-to-one.

But F is finite, so L_a is also onto

 $\therefore L_a$ is a bijection on F.

$$1 \in F$$

$$\exists x \in F, L_a(x) = 1$$

$$ax = 1$$

But F is commutative so xa = 1

So \boldsymbol{x} is a multiplicative inverse for \boldsymbol{a}

Thus every non-zero element of ${\cal F}$ has a multiplicative inverse

 $\therefore F$ is a field.