Project Report

on

Object Avoiding Robot

in partial fulfilment for the award of the degree of

BACHELOR OF ENGINEERING

IN

COMPUTER SCIENCE AND ENGINEERING WITH SPECIALIZATION IN AI AND ML

Submitted by:

Aditya Bhatia (24BAI70084)

Jaskirat Singh (24BAI70110)

Adil Thakur (24BAI70464)

Under the Guidance of

Dr. Divneet
ACADEMIC UNIT-I

Chandigarh University

April 2025

Index

S. No.	Content	Page No.
1	Project Overview	1
2	Objective and Problem Statement	2
3	Proposed Solution & Methodology	3
4	Key Findings / Results	4
5	Conclusion & Learnings	5
6	References	6
7	Appendix	7-8

1. Project Overview

- **About:** Our project focuses on developing an Object Avoiding Robot, which autonomously detects and avoids obstacles in its path using sensors and programmed logic.
- **Importance:** Object avoidance is a critical capability for autonomous robots used in various industries, from warehouse automation to self-driving vehicles. This project enhances robotic mobility and intelligent navigation.
- **Brief background**: Obstacle avoidance is widely applied in modern robotics, utilizing sensor-based detection systems. Using ultrasonic and IR sensors, the robot analyzes its surroundings and makes real-time adjustments to avoid collisions.

2. Objective and Problem Statement

- **Problem Statement:** Traditional wheeled robots lack autonomous navigation and obstacle detection, limiting their functionality. The goal is to build a self-navigating robot that avoids obstacles without human intervention. Implement sensor-based detection to make real-time movement decisions.
- **Objectives:** Design and program an autonomous robot for obstacle avoidance. Ensure seamless navigation using real-time adjustments to its path.

3. Proposed Solution & Methodology

- **Solution Overview:** We propose using an Arduino-based platform with ultrasonic sensors, IR sensors, and DC motors to design an autonomous object-avoiding robot.

- Tools/Software/Materials Used:

Hardware: Arduino Uno, HC-SR04 ultrasonic sensors, motor driver (L293D), DC motors, wheels, and power supply.

Software: Arduino IDE for coding, C++ for control logic implementation.

4. Key Findings / Results

- **Observations:** The ultrasonic sensor can accurately sense objects in a range of 2-300 cm.

The robot successfully alters its path upon encountering obstacles.

Real-time decision-making is achieved using programmed logic.

- Circuit Diagram:

5. Conclusion & Learnings

- What did we learn?

Sensor Integration plays an important role in real-time autonomous movement.

Code Optimization enhances response time and efficiency.

Power Management affects robot stability and operations.

- Improvements And Next Steps:

Implement **machine learning algorithms** for smarter obstacle detection.

Enhance mobility by using **servo motors** for improved rotation.

Develop wireless control for remote operations.

6. References

- 1. **DIY Builder** YouTube channel.
- 2. Arduino Programming Guide Tech Robotics Publication.

7. Appendix

```
- Code Snippet:
#include <AFMotor.h>
#include <NewPing.h>
#include <Servo.h>
#define TRIG_PIN A0
#define ECHO_PIN A1
#define MAX DISTANCE 200
#define MAX_SPEED 190 // sets speed of DC motors
#define MAX_SPEED_OFFSET 20
NewPing sonar(TRIG_PIN, ECHO_PIN, MAX_DISTANCE);
AF_DCMotor motor1(1, MOTOR12_1KHZ);
AF_DCMotor motor2(2, MOTOR12_1KHZ);
AF_DCMotor motor3(3, MOTOR34_1KHZ);
AF_DCMotor motor4(4, MOTOR34_1KHZ);
Servo myservo;
boolean goesForward=false;
int distance = 100;
int speedSet = 0;
```

```
void setup() {
  myservo.attach(10);
  myservo.write(115);
  delay(2000);
  distance = readPing();
  delay(100);
  distance = readPing();
  delay(100);
  distance = readPing();
  delay(100);
  distance = readPing();
  delay(100);
}
```