9 自然数
$$n=1,2,3,\cdots$$
 に対して, 座標が $(\cos\theta_n,\sin\theta_n)$ である単位円上の点 \mathbf{P}_n が, 以下の規則 (\mathbf{i}) , (\mathbf{ii}) で定められている.

(i)
$$\theta_1 = 0, \theta_2 = \frac{1}{3}\pi$$
 とし、各 n について、

$$\theta_n < \theta_{n+1} < \theta_{n+2} < \theta_n + 2\pi$$

が成り立つ

(ii) 各n について, P_{n+2} は, P_n , P_{n+1} を両端とする弧のうち, P_{n+2} を含む弧を 2 等分する点である.

このように定めるとき, $\theta_3 = \frac{7}{6}\pi$ であることがわかる. 以下の問いに答えよ.

(1) θ_4, θ_5 を求めよ.

(2)
$$heta_{n+1}- heta_n=eta_n$$
 とおくとき, $eta_{n+1}=-rac{1}{2}eta_n+\pi$ を示し,数列 $\{eta_n\}$ の一般項を求めよ.

(3) 数列 $\{\theta_n\}$ の一般項を求めよ.

(1)
$$\theta_{2}$$
, θ_{3} , θ_{4} , $\theta_{2}+2\pi$
 $\frac{1}{3}\pi$, $\frac{1}{6}\pi$, $\frac{1}{7}\pi$, $\frac{1}{7}\pi$
 $\theta_{4}=\frac{1}{2}(\frac{7}{6}\pi+\frac{7}{3}\pi)$
 $\frac{1}{6}\pi$
 $\frac{1}{6}\pi$

$$0_3$$
, 0_4 , 0_5 , $0_3+2\pi$
 $\frac{7}{6}\pi$, $\frac{7}{4}\pi$, $\frac{4\pi}{6}$, $\frac{19}{6}\pi$
 $\frac{1}{6}\pi$, $\frac{19}{4}\pi$, $\frac{19}{6}\pi$)

 $\frac{1}{6}\pi$

(2) Cather. Out, Out, Out, Out 2Th

$$t. Out, Out, Out, Out, Out, Out, 2Th$$
 $t. Out, IJ. Out, & Out, 2Th$
 $t. Out, IJ. Out, & Out, 2Th$
 $t. Out, IJ. Out, & Out, 2Th$
 $t. Out, II. Out, III. Out, II. Out, II.$

But = - 1 Bu + TC

(2). (2)
$$\frac{1}{3}$$

$$\beta_{n+1} = -\frac{1}{2}\beta_{n} + \pi$$

$$(\beta_{n+1} - \frac{1}{3}\pi) = -\frac{1}{2}(\beta_{n} - \frac{2}{3}\pi)$$

$$(\beta_{n} - \frac{2}{3}\pi) = -\frac{1}{2}(\beta_{n} - \frac{2}{3}\pi)$$

$$= \frac{1}{3}\pi - 0 - \frac{2}{3}\pi$$

$$= -\frac{1}{3}\pi$$

(ift $-\frac{1}{2}$

$$\beta_{n} - \frac{2}{3}\pi = -\frac{1}{3}\pi$$

$$\beta_{n} - \frac{2}{3}\pi - \frac{1}{3}\pi(-\frac{1}{2})^{n-1}$$

$$\beta_{n} = \frac{2}{3}\pi - \frac{1}{3}\pi(-\frac{1}{2})^{n-1}$$

 $0 = 0 + \frac{1}{2}$

 $\begin{array}{rcl}
 & = 0, & + \frac{1}{3}\pi(u-1) - \frac{1}{3}\pi \cdot \frac{\left| - \left(-\frac{1}{2} \right)^{u-1} \right|}{\left| - \left(-\frac{1}{2} \right)^{u-1} \right|} \\
 & = \frac{2}{3}\pi(u-1) - \frac{2}{9}\pi \cdot \left(\left| - \left(-\frac{1}{2} \right)^{u-1} \right| \right) \\
 & = \left| -\frac{2}{3}\pi(\left(-\frac{1}{2} \right) - \frac{2}{9}\pi\left(\left(- \left(-\frac{1}{2} \right)^{u} \right) - \right| \right| \\
 & = \frac{2}{3}\pi(\left(-\frac{1}{2} \right) - \frac{2}{9}\pi\left(\left(- \left(-\frac{1}{2} \right)^{u} \right) - \right) \\
 & = \frac{2}{3}\pi(\left(-\frac{1}{2} \right) - \frac{2}{9}\pi\left(\left(- \left(-\frac{1}{2} \right)^{u} \right) - \right) \\
 & = \frac{2}{3}\pi(\left(-\frac{1}{2} \right) - \frac{2}{9}\pi\left(\left(- \left(-\frac{1}{2} \right)^{u} \right) - \right) \\
 & = \frac{2}{3}\pi(\left(-\frac{1}{2} \right) - \frac{2}{9}\pi\left(\left(-\frac{1}{2} \right)^{u} \right) - \frac{2}{9}\pi\left(\frac{1}{9} - \frac{1}{9}\pi\left(-\frac{1}{9} \right) - \frac{2}{9}\pi\left(\frac{1}{9} - \frac{1}{9}\pi\left(-\frac{1}{9} \right) - \frac{1}{9}\pi\left(-\frac{1}{9} - \frac{1}{9}\pi\left(-\frac{1}{9} - \frac{1}{9} \right) - \frac{1}{9}\pi\left(-\frac{1}{9} - \frac{1}{9}\pi\left(-\frac{1}{9} - \frac{1}{9} - \frac{1}{9} - \frac{1}{9}\pi\left(-\frac{1}{9} - \frac{1}{9} - \frac{1}{9} - \frac{1}{9}\pi\left(-\frac{1}{9} - \frac{1}{9} - \frac{1}{9}\pi\left(-\frac{1}{9} - \frac{1}{9} - \frac{1}{9}\pi\left(-\frac{1}{9} - \frac{1}{9} - \frac{1}{9} - \frac{1}{9} - \frac{1}{9} - \frac{1}{9}\pi\left(-\frac{1}{9} - \frac{1}{9} - \frac{1}{9}$

 $\theta_{n+1} - \theta_n = \frac{2}{3}\pi - \frac{1}{2}\pi \left(-\frac{1}{2}\right)^{n-1}$

i.e. $O_{u+1} = O_u + \left(\frac{2}{3}\pi - \frac{1}{3}\pi\left(-\frac{1}{2}\right)^{u-1}\right)$

$$\int_{-1}^{1} du = \frac{2}{4}\pi \left(3u - 4 - \left(-\frac{1}{2} \right)^{u-1} \right)$$