1. Given the circuit below:

(a) Identify the number of branches, the number of nodes, and the number of meshes.

- (b) Which resistors, if any, are in series with other resistors?
- 2. Given the following circuit:

(a) How many nodes and meshes are there?

$$Nodes = 3$$
 $Meshes = 3$

(b) If $V_1=36\mathrm{V}$ and $V_2=-18\mathrm{V},$ use KVL equations to solve for $V_3,~V_4,$ and V_5

(c) If $I_1=$ -15A, $I_2=$ -3A, and $I_5=$ -9A, use KCL equations to solve for I_3 and I_4

$$I_3 = \left[\begin{array}{c|c} \mathbf{b.00} & \mathbf{A} \end{array} \right] I_4 = \left[\begin{array}{c|c} \mathbf{b.00} & \mathbf{A} \end{array} \right]$$

(d) Determine the power absorbed by each component (confirm that the sum of the powers absorbed must be zero).

$$P_1 = \begin{bmatrix} -540W \\ P_2 = \end{bmatrix} P_3 = \begin{bmatrix} 216W \\ P_4 = \end{bmatrix} P_5 = \begin{bmatrix} 162W \\ \end{bmatrix}$$

(e) Using the definition of parallel, which sets of components are in parallel?

3. Given the following circuit:

(a) How many nodes and meshes are there?

Nodes =	4	Meshes =	J
---------	---	----------	---

(b) Is the circuit series, parallel, or neither?

(A) Series	B Parallel	© Neither
_ /	_	_

(c) If V_3 24V and $R_1 = R_3 = 1\Omega$, what value of R_2 will make the current coming out of the voltage source equal 2A?

$$R_2 = \boxed{ 0.050}$$

(d) If $V_S=24\mathrm{V}$ and $R_1=R_3=1\Omega$, what new value of R_2 will make the voltage across R_2 equal 16V?

$$R_2 = \boxed{4.00 \text{ SV}}$$

4. Given the following circuit:

(a) How many nodes and meshes are there?

- (b) Is the circuit series, parallel, or neither?
 - (A) Series (B) Parallel (C) Neither
- (c) If $V_s=36{\rm V},\ R_1=9\Omega$ and $R_2=12\Omega,$ what value of R_3 will make the current coming out of the voltage source equal to 13A?

(d) Given $R_1 = 9\Omega$, $R_2 = 3\Omega$, the current through R_1 is 6A, and the source current is 33A, find the new value for V_s , R_3 , and the currents through R_2 and R_3 . (Hint: $48V < V_s < 66V, 8A < I_3 < 11A$)

$$V_s = \begin{bmatrix} 54.0 \checkmark \end{bmatrix} R_3 = \begin{bmatrix} 0.00 \% \end{bmatrix} I_2 = \begin{bmatrix} 18.0 \% \end{bmatrix} I_3 = \begin{bmatrix} 9.00 \% \end{bmatrix}$$