Kolokwium 2 Bilskiego MADAN 24L

Zad. 1 (10 pkt.)

Dana jest sieć neuronowa dla zadania regresji jak na rysunku z liniową jednostką aktywacji.

- a. Przeprowadzić dwie iteracje uczenia sieci dla pokazanego zbioru danych stosując metodę gradientową przy założeniu, że zmiany wag odbywają się po zakończeniu epoki, a współczynnik uczenia wynosi 0.6. Pokazać zmianę błędu po zakończeniu każdej epoki
- b. Jak (ogólnie) wygląda funkcja odwzorowywana przez tą sieć (podać równanie oraz opisać relację między elementami równania a strukturą sieci)?
- c. Co to jest problem zanikającego gradientu? Czy może on tutaj wystąpić?

Zad. 2 (8 pkt.)

Na zbiorze danych (jak na Rys.) tworzone jest drzewo decyzyjne.

a_1	a ₂	a_3	С
0.5	-0.6	3	0
1	-0.2	4.5	1
1.5	0.2	6	1

- a. Zademonstrować jedną iterację algorytmu rekurencyjnej generacji drzewa z wykorzystaniem Entropii
- b. Jak powinno wyglądać optymalne drzewo decyzyjne (ze względu na głębokość i symetrię)?
- c. Jaki cel ma przycinanie drzewa? Czy w tym wypadku ma ono zastosowanie?

Zad. 3 (7 pkt.)

Dla podanego zbioru danych projektowany jest system logiki rozmytej.

x1	x2	у
0,155539	1,409038	1
0,02482	1,007791	1
2,120914	1,051041	1
3,323032	1,592337	2
1,355773	3,322008	2
2,608502	2,416994	2

Należy:

- a. Zaprojektować wejściowe i wyjściowe funkcje przynależności dla każdej wartości wejściowej (dobierając ich kształt według własnego upodobania)
- b. Zaprojektować zbiór reguł pozwalających sklasyfikować dane ze zbioru
- c. Pokazać działanie reguł w przypadku, gdy na wejście podany jest wektor wejściowy {0.99,
- 1.64} podać wypełnienia odpowiednich funkcji przynależności, pokazać, które reguły zadziałały (może być rysunek).