

GEOMETRÍA

Capítulo 11

1st SECONDARY

POLÍGONOS REGULARES

MOTIVATING STRATEGY

4 segmentos

8 segmentos

CLASIFICACIÓN DE LOS POLÍGONOS

POLÍGONOS EQUILÁTEROS

POLÍGONOS EQUIÁNGULO

Pentágono Equiángulo

Hexágono Regular

Teoremas solo para Polígono Equiángulos y Regulares

1.Medida de un ángulo interno

(m<i).

$$\mathsf{m} < \mathsf{i} = \frac{180(n-2)}{n}$$

2.Medida de un ángulo exterior (m<e).

$$m < e = \frac{360^{\circ}}{n}$$

NOTA

n = Número de lados = Número de vértices = N° de ángulos

1.En el polígono equiángulo ,halle el valor de α .

2.En el polígono equilátero, halle el valor de x.

3.En el polígono regular, halle el valor de α.

Pentágono

Polígono regular es aquel que es equilátero y equiángulo a la vez.

$$m < i = 180^{\circ} (5 - 2)$$

$$m < i = 36°(3)$$

4. Calcule el perímetro del polígono regular.

POLÍGONO REGULAR es aquel polígono que es equilátero y equiángulo a la vez.

$$2p_{O} = 5 + 5 + 5 + 5 + 5 + 5$$

$$2p_{O} = 30$$

5. Halle la medida de un ángulo interior de un octágono regular.

Piden: el ángulo interior

Medida de un ángulo interior

$$\alpha = 180^{\circ} (8-2)$$

8

 $\alpha = 180^{\circ} (6)$

8

 $\alpha = 135^{\circ}$

6. En el gráfico: Se muestra una caja pentagonal regular. Halle x + y + z.

El gráfico mostrado es regular : X = Y = Z

Medida de un ángulo interior

$$X = \frac{180^{\circ}(5-2)}{5}$$

$$X = \frac{180^{\circ}(3)}{5}$$

$$x = 108^{\circ}$$

Piden: x + y + z

$$x+y+z = 324^{\circ}$$

7.Se muestra una mesa hexagonal regular. Halle la medida del ángulo α , que forman dos lados continuos de la mesa.

Piden: El ángulo interior

Medida de un ángulo interior

$$\mathbf{m} < \mathbf{i} = \frac{180^{\circ}(n-2)}{n}$$

$$\alpha = \frac{180^{\circ}(6-2)}{6}$$

$$\alpha = \frac{180^{\circ}(6-2)}{180^{\circ}(4)}$$

$$\alpha = 120^{\circ}$$