C11 - 8.1 - Number of Intersections/Solutions Notes

OR INFINITE SOLUTIONS: Congruent Graphs

C11 - 8.2 - Linear/Quadratic Systems Substitution Notes

Solve by substitution.

$$y = x + 1$$

$$y = x^2 - 1$$

Equation 1

Solve for *x*

Equation 1 = Equation 2

Equation 2

$$x + 1 = x^2 - 1$$

-1 -1
 $x = x^2 - 2$

$$x=x^2-2$$

$$-x$$
 $-x$

$$0 = x^2 - x - 2$$

0 = (x + 1)(x - 2)

$$x = -1, 2$$

$$y = x + 1$$
$$y = (-1) + 1$$
$$y = 0$$

$$y = x + 1$$

 $y = (2) + 1$
 $y = 3$

Solve for *y*

Solve for *y*

Intersection #1

Intersection #2

Solve by graphing.

$$y = x + 1$$
$$y = x^2 - 1$$

$$y=(x+1)(x-2)$$

$$x = -1.2$$

Notice the graph of the third equation x-intercepts is the x answer to the question

C11 - 8.2 - Quadratic Systems $b^2 - 4ac$ Notes

Solve by substitution.

$$y = x^2 - 4x + 5$$
 $y = -x^2 + 4x - 6$

$$y = -x^2 + 4x - 6$$

$$x^{2} - 4x + 5 = -x^{2} + 4x - 6$$
$$2x^{2} - 8x + 11 = 0$$

Algebra Cannot Factor

$$y = 2x^2 - 8x + 11$$

$$b^2 - 4ac$$

$$(-8)^2 - 4(2)(11) = -24$$

No Solution

