What is claimed is:

1. A method of treating a condition caused by endothelial dysfunction, said method comprising administering to a patient in need thereof a therapeutically effective amount of a compound of Formula I:

$$R_2$$
 N
 R_3
 R_4
 R_8
 R_4

wherein:

5

R₁ and R₃ are the same or different and each is CF₃, halogen, CN, C₁₋₈ alkyl or branched alkyl, C₂₋₈ alkenyl or C₃₋₈ branched alkenyl, C₂₋₈ alkynyl or C₃₋₈ branched alkynyl, C₃₋₈ cycloalkyl optionally substituted with OH, CN or methoxy, C₁₋₈ alkyloxy, C₁₋₄ alkyloxyC₁₋₄ alkyl, C₁₋₈ alkylthio, C₁₋₄ alkylthioC₁₋₄ alkyl, C₁₋₈ dialkylamino, C₁₋₄ dialkylaminoalkyl, CO₂R₅ where R₅ is C₁₋₄ alkyl or C₂₋₄ alkenyl optionally substituted with carbocyclyl or heterocyclyl, aryl or R₁ and R₃ are heterocyclyl connected to the pyrazole in any position that makes a stable bond optionally substituted with halogen, C₁₋₄ alkyl, C₂₋₄ alkenyl, CN, (CH₃)₂N, CO₂CH₃, alkyloxy, aryl, heterocyclyl or R₅;

R₂ is H, halogen or methyl;

20

25

L is -NHC(O)-, -NHC(O)O-, -NHC(O)C(O)-, -NHC(S)-, -NH-, -NHC(O)NH, NHC(S)NH, NHCH₂, -NHCH(\mathbf{R}_6)-, where \mathbf{R}_6 is H, CN or C₁₋₃ alkyl,

R₄ is C₁₋₈ alkyl, C₁₋₈ alkyloxy, C₁₋₈ alkylthio, C₁₋₈ alkylamino, C₁₋₄ alkyloxyalkyl, C₁₋₄ alkylthioalkyl, C₁₋₄ alkylaminoalkyl, C₁₋₄ alkylaminoalkyl, carbocyclyl or heterocyclyl each optionally substituted with one or more halogen, -CN, -NO₂, SO₂NH₂ alkylthio, alkylsulfinyl, alkylsulfonyl or R₇ where R₇ is phenyl, heterocyclyl, C₃₋₆ cycloalkyl, C₁₋₆

alkyl, C_{2-6} alkenyl, C_{1-6} alkyloxyalkyl, C_{1-4} alkyloxy, C_{1-5} alkylamino, C_{1-6} alkylthioalkyl, C_{1-6} alkylsulfinylalkyl or C_{1-6} alkylsulfonylalkyl, each \mathbf{R}_7 in turn is optionally substituted with halogen, OH, alkyloxy, CN, COO-lower alkyl, -CONH-lower alkyl, -CON(lower alkyl)₂, dialkylamino, phenyl or heterocylcyl;

5

10

R₈ is H;

or the pharmaceutically acceptable salts thereof;

with the proviso that when **R**₃ is alkyl or **CF**₃ and **R**₄ is pyridyl, then the pyridyl is substituted except that the substituents on the pyridyl cannot be halogen; and with the proviso that the following compounds are excluded: *N*-[4-(5-ethyl-3-pyridin-3-yl-pyrazol-1-yl)-phenyl]-nicotinamide; N-[4-(5-Ethyl-3-pyridin-3-yl-pyrazol-1-yl)phenyl]-1-methylindole-2-carboxamide; 4-(3-Cyanopropoxy)-N-[4-(5-cyano-3-pyridin-3-yl-pyrazol-1-yl)phenyl]benzamide; and N-[4-(5-cyano-3-pyridin-3-yl-pyrazol-1-yl)phenyl]-4-(3-[1,3]dioxolan-2-yl-propoxy)benzamide.

2. The method according to claim 1 and wherein:

in formula (I):

20

25

30

15

 R_1 is C_{1-8} alkyl or branched alkyl, C_{3-8} alkenyl or branched alkenyl, C_{3-8} alkynyl or branched alkynyl, C_{3-8} cycloalkyl, C_{1-3} alkyloxy C_{1-3} alkyl, C_{1-5} alkyloxy, C_{1-3} alkylthio C_{1-3} alkyl, C_{1-5} alkylthio, CF_3 , heterocyclyl selected from tetrahydrofuranyl, pyridyl, furanyl or thiazolyl or aryl optionally substituted with halogen, C_{1-4} alkyl, CN, alkyloxy or $(CH_3)_2N$;

R₂ is H;

R₃ is halogen, methyl, ethyl, CF₃, CN, cyclopropyl, vinyl, SCH₃, methoxy, heterocyclyl selected from tetrahydrofuranyl, pyridyl, furanyl or thiazolyl or aryl optionally substituted with halogen, C₁₋₄ alkyl, CN, methoxy or (CH₃)₂N;

L is -NHC(O)-, -NH-, -NHCH₂-, -NHC(O)NH, and

R₄ is C₁₋₆ alkyl, carbocyclyl or heterocyclyl selected from pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, morpholinyl, thiomorpholinyl, pyrrolyl, imidazolyl, pyrazolyl, thienyl, furyl, isoxazolyl, isothiazolyl, oxazolyl, thiazolyl, oxadiazolyl, thiadiazolyl, quinolinyl, isoquinolinyl, indolyl, benzimidazolyl, benzofuranyl, benzoxazolyl, benzisoxazolyl, benzpyrazolyl, benzothiofuranyl, benzothiazolyl, quinazolinyl and indazolyl, each optionally substituted with one or more halogen, -CN, alkylthio, alkylsulfinyl, alkylsulfonyl, -NO₂, SO₂NH₂ or R₇ where R₇ is C₁₋₆ alkyl, C₂₋₆ alkenyl, C₁₋₆ alkyloxyalkyl, C₁₋₄ alkyloxy, C₁₋₅ alkylamino, or C₁₋₆ alkylthioalkyl each optionally substituted with OH, CN, -COO-lower alkyl, -CONH-lower alkyl, -CON(lower alkyl)₂, dialkylamino, phenyl or heterocyclyl as hereinabove described in this paragraph.

15

30

3. The method according to claim 2 and wherein:

in the formula (I)

R₁ is ethyl, isopropyl, n-propyl, t-butyl, cyclopentyl, CF₃, ethoxy, CH₃OCH₂-, 2- or 3-tetrahydrofuranyl, 2-, 3-, or 4-pyridyl, 2-furanyl, or 2-thiazolyl;

R₃ is CN, CF₃, Cl, methyl, ethyl, SCH₃, cyclopropyl, vinyl or 2-furanyl;

25 **L** is –NHC(O)-, and

 $\mathbf{R_4}$ is a phenyl or pyridyl each optionally substituted with one to three halogen, -CN, alkylthio, alkylsulfinyl, alkylsulfonyl or $\mathbf{R_7}$ where $\mathbf{R_7}$ is C_{1-6} alkyl, C_{2-6} alkenyl, C_{1-6} alkyloxy C_{1-6} alkyloxy, C_{1-5} alkylamino each optionally substituted with halogen,

OH, CN, COO-lower alkyl, -CONH-lower alkyl, -CON(lower alkyl)₂, dialkylamino, phenyl, morpholinyl or pyridyl.

5 4. The method according to claim 3 and wherein:

in the formula (I)

 R_1 is isopropyl, CF_3 , 3-pyridyl or 4-pyridyl;

R₂ is H;

R₃ is CN, CF₃, Cl, methyl, SCH₃ or ethyl;

15 and

20

25

10

 $\mathbf{R_4}$ is a phenyl or pyridyl each optionally substituted with one to three groups selected from halogen, -CN, alkylthio, alkylsulfinyl, alkylsulfonyl or $\mathbf{R_7}$ where $\mathbf{R_7}$ is C_{1-6} alkyl, C_{1-4} alkyloxy, C_{1-5} alkylamino each optionally substituted with OH, CN, COO-lower alkyl, -CONH-lower alkyl, -CON(lower alkyl)₂, dialkylamino, phenyl, morpholinyl or pyridyl.

5. A method of treating a condition chosen from insulin resistance syndrome, hypertension, angina, ischemia, ischemic stroke, renal disease and Raynaud's disease, wherein said condition is caused by endothelial dysfunction, said method comprising administering to a patient in need thereof a therapeutically effective amount of a compound chosen from:

-34-

or the pharmaceutically acceptable salts thereof.

6. The method according to claim 5 wherein the compound is chosen from:

5

-36-

5

10

7. The method according to claims 1 or 5 wherein the condition is hypertension.

8. A method of increasing EETs concentration in a patient wherein said patient requires treatment of a condition caused by endothelial dysfunction, said method comprising administering to a patient in need thereof a therapeutically effective amount of a compound of Formula I:

$$R_2$$
 N
 R_4
 R_8
 R_4
 R_8

wherein:

5

10

 $\mathbf{R_1}$ and $\mathbf{R_3}$ are the same or different and each is CF₃, halogen, CN, C₁₋₈ alkyl or branched alkyl, C₂₋₈ alkenyl or C₃₋₈ branched alkenyl, C₂₋₈ alkynyl or C₃₋₈ branched alkynyl, C₃₋₈ cycloalkyl optionally substituted with OH, CN or methoxy, C₁₋₈ alkyloxy, C₁₋₄ alkyloxyC₁₋₄ alkyl, C₁₋₈ alkylthio, C₁₋₄ alkylthioC₁₋₄ alkyl, C₁₋₈ dialkylamino, C₁₋₄ dialkylaminoalkyl, CO₂R₅ where R₅ is C₁₋₄ alkyl or C₂₋₄ alkenyl optionally substituted with carbocyclyl or heterocyclyl, aryl or R₁ and R₃ are heterocyclyl connected to the pyrazole in any position that makes a stable bond optionally substituted with halogen, C₁₋₄ alkyl, C₂₋₄ alkenyl, CN, (CH₃)₂N, CO₂CH₃, alkyloxy, aryl, heterocyclyl or R₅;

R₂ is H, halogen or methyl;

L is -NHC(O)-, -NHC(O)O-, -NHC(O)C(O)-, -NHC(S)-, -NH-, -NHC(O)NH, NHC(S)NH, NHCH₂, -NHCH(\mathbf{R}_6)-, where \mathbf{R}_6 is H, CN or C₁₋₃ alkyl,

R₄ is C₁₋₈ alkyl, C₁₋₈ alkyloxy, C₁₋₈ alkylthio, C₁₋₈ alkylamino, C₁₋₄ alkyloxyalkyl, C₁₋₄ alkylthioalkyl, C₁₋₄ alkylaminoalkyl, C₁₋₄ dialkylaminoalkyl, carbocyclyl or heterocyclyl each optionally substituted with one or more halogen, -CN, -NO₂, SO₂NH₂ alkylthio, alkylsulfinyl, alkylsulfonyl or R₇ where R₇ is phenyl, heterocyclyl, C₃₋₆ cycloalkyl, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₁₋₆ alkyloxyalkyl, C₁₋₄ alkyloxy, C₁₋₅ alkylamino, C₁₋₆ alkylthioalkyl, C₁₋₆ alkylsulfinylalkyl or C₁₋₆ alkylsulfonylalkyl, each R₇ in turn is optionally substituted with halogen, OH, alkyloxy, CN, COO-lower alkyl, -CONH-lower alkyl, -CON(lower alkyl)₂, dialkylamino, phenyl or heterocylcyl;

25

30

20

 R_8 is H or NH_2 ;

or the pharmaceutically acceptable salts thereof;

with the proviso that when R_3 is alkyl or CF_3 and R_4 is pyridyl, then the pyridyl is substituted except that the substituents on the pyridyl cannot be halogen;

5

10

15

and with the proviso that the following compounds are excluded: *N*-[4-(5-ethyl-3-pyridin-3-yl-pyrazol-1-yl)-phenyl]-nicotinamide; N-[4-(5-Ethyl-3-pyridin-3-yl-pyrazol-1-yl)phenyl]-1-methylindole-2-carboxamide; 4-(3-Cyanopropoxy)-N-[4-(5-cyano-3-pyridin-3-yl-pyrazol-1-yl)phenyl]benzamide; and N-[4-(5-cyano-3-pyridin-3-yl-pyrazol-1-yl)phenyl]-4-(3-[1,3]dioxolan-2-yl-propoxy)benzamide.

9. A method of increasing EETs concentration in a patient wherein said patient requires treatment of a condition caused by endothelial dysfunction, said method comprising administering to a patient in need thereof a therapeutically effective amount of a compound chosen from:

-39-

-40-

5

or the pharmaceutically acceptable salts thereof.