Background and Context

There is a huge demand for used cars in the Indian Market today. As sales of new cars have slowed down in the recent past, the pre-owned car market has continued to grow over the past years and is larger than the new car market now. Cars4U is a budding tech start-up that aims to find footholes in this market.

In 2018-19, while new car sales were recorded at 3.6 million units, around 4 million second-hand cars were bought and sold. There is a slowdown in new car sales and that could mean that the demand is shifting towards the pre-owned market. In fact, some car sellers replace their old cars with pre-owned cars instead of buying new ones. Unlike new cars, where price and supply are fairly deterministic and managed by OEMs (Original Equipment Manufacturer / except for dealership level discounts which come into play only in the last stage of the customer journey), used cars are very different beasts with huge uncertainty in both pricing and supply. Keeping this in mind, the pricing scheme of these used cars becomes important in order to grow in the market.

Objective

- 1. Explore and visualize the dataset.
- 2. Build a linear regression model to predict the prices of used cars.
- 3. Generate a set of insights and recommendations that will help the business.

Variables to be analyzed

- 1. .No.: Serial Number
- 2. Name: Name of the car which includes Brand name and Model name
- 3. Location: The location in which the car is being sold or is available for purchase Cities
- 4. Year: Manufacturing year of the car
- 5. Kilometers_driven: The total kilometers driven in the car by the previous owner(s) in KM.
- 6. Fuel Type: The type of fuel used by the car. (Petrol, Diesel, Electric, CNG, LPG)
- 7. Transmission: The type of transmission used by the car. (Automatic / Manual)
- 8. Owner: Type of ownership
- 9. Mileage: The standard mileage offered by the car company in kmpl or km/kg
- 10. Engine: The displacement volume of the engine in CC.
- 11. Power: The maximum power of the engine in bhp.
- 12. Seats: The number of seats in the car.
- 13. New_Price : The price of a new car of the same model in INR Lakhs.(1 Lakh = 100, 000)
- 14. Price: The price of the used car in INR Lakhs (1 Lakh = 100, 000)

Importing modules and packages

```
import the important packages
import warnings
warnings.filterwarnings('ignore')
import pandas as pd #library used for data manipulation and analysis
import numpy as np # library used for working with arrays.
import matplotlib.pyplot as plt # library for plots and visualisations
import seaborn as sns # library for visualisations
import random
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
from sklearn import linear_model
from scipy.stats import pearsonr
%matplotlib inline
import scipy.stats as stats # this library contains a large number of probability distributions as well as a grow
```

Reading and pre-processing the data

```
In [98]: data = pd.read_csv('used_cars_data.csv', index_col = 0) #reading the data
np.random.seed(1)
data.sample(n = 10) #random sample of 10 values

Out[98]: Name Location Year Kilometers_Driven Fuel_Type Transmission Owner_Type Mileage Engine Power Seats New_Price Price
S.No.
```

2397	EcoSport 1.5 Petrol Trend	Kolkata	2016	21460	Petrol	Manual	First	17.0 kmpl	1497 CC	121.36 bhp	5.0	9.47 Lakh	6.0
3777	Maruti Wagon R VXI 1.2	Kochi	2015	49818	Petrol	Manual	First	21.5 kmpl	1197 CC	81.80 bhp	5.0	5.44 Lakh	4.1
4425	Ford Endeavour 4x2 XLT	Hyderabad	2007	130000	Diesel	Manual	First	13.1 kmpl	2499 CC	141 bhp	7.0	NaN	6.0
3661	Mercedes- Benz E- Class E250 CDI Avantgrade	Coimbatore	2016	39753	Diesel	Automatic	First	13.0 kmpl	2143 CC	201.1 bhp	5.0	NaN	35.2
4514	Hyundai Xcent 1.2 Kappa AT SX Option	Kochi	2016	45560	Petrol	Automatic	First	16.9 kmpl	1197 CC	82 bhp	5.0	NaN	6.3
599	Toyota Innova Crysta 2.8 ZX AT	Coimbatore	2019	40674	Diesel	Automatic	First	11.36 kmpl	2755 CC	171.5 bhp	7.0	28.05 Lakh	24.8
186	Mercedes- Benz E- Class E250 CDI Avantgrade	Bangalore	2014	37382	Diesel	Automatic	First	13.0 kmpl	2143 CC	201.1 bhp	5.0	NaN	32.0
305	Audi A6 2011-2015 2.0 TDI Premium Plus	Kochi	2014	61726	Diesel	Automatic	First	17.68 kmpl	1968 CC	174.33 bhp	5.0	NaN	20.7
4582	Hyundai i20 1.2 Magna	Kolkata	2011	36000	Petrol	Manual	First	18.5 kmpl	1197 CC	80 bhp	5.0	NaN	2.5
5434	Honda WR-V Edge Edition i- VTEC S	Kochi	2019	13913	Petrol	Manual	First	17.5 kmpl	1199 CC	88.7 bhp	5.0	9.36 Lakh	8.2
4													▶

In [99]: data.shape #the shape of the data

Out[99]: (7253, 13)

In [188... data.info() #info of all the variables

<class 'pandas.core.frame.DataFrame'>
Int64Index: 7253 entries, 0 to 7252
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Name	7253 non-null	object
1	Location	7253 non-null	object
2	Year	7253 non-null	int64
3	Kilometers_Driven	7253 non-null	int64
4	Fuel_Type	7253 non-null	object
5	Transmission	7253 non-null	object
6	Owner_Type	7253 non-null	object
7	Mileage	7251 non-null	object
8	Engine	7207 non-null	object
9	Power	7207 non-null	object
10	Seats	7200 non-null	float64
11	New_Price	1006 non-null	object
12	Price	6019 non-null	float64

dtypes: float64(2), int64(2), object(9)

memory usage: 793.3+ KB

Observation:

- 1. Based on the above data types, Mileage, Engine, Power and New_Price have to be changed to float values
- 2. Name variable column can be further analyzed into useful data.
- 3. Year should be changed into date time/integer value or it can be changed into the age of the car since manfucturing till 2020.

In [101... data.isnull().sum().sort_values(ascending=False) #sum of all the null values per variable

e steet Name Dadas COA

```
OUT[101 New_blice
                               6247
         Price
                               1234
                                 53
         Seats
         Power
                                 46
         Engine
                                 46
                                 2
         Mileage
         Owner Type
                                  0
         Transmission
                                  0
         Fuel_Type
         Kilometers_Driven
                                  0
         Year
                                  0
         Location
         Name
                                  0
         dtype: int64
In [102... data.drop(['New Price'], axis = 1, inplace = True) #droppung the new price variable
         Observation:
          1. New_Price has more than 50% of it's values missing, so that column can be dropped.
          2. Seats, Power, Engine almost have equal number of null values, meaning atleast 3 or 4 variables should be missing per row.
In [103...
          def mileage to num(input): #converitng mileage to a number
              if isinstance(input, str):
                  if input.split()[1] == 'km/kg':
                      return float(input.replace('km/kg', ''))
                   else:
                       return float(input.replace('kmpl', ''))
                  return np.nan
          def engine to num(input): #converting engine to a number value
              if isinstance(input, str):
                  return float(input.replace('CC', ''))
              else:
                  return np.nan
          def power to num(input): #converting power to a number value
              if isinstance(input, str):
                  if input.split()[0] == 'null':
                      return np.nan
                   else:
                       return float(input.replace('bhp', ''))
                  return np.nan
          def nprice to num(input):
              if isinstance(input, str):
                  if input.split()[1] == 'Lakh':
                       return float(input.replace('Lakh', ''))
                   else:
                       return float(input.replace('Cr', '')) * 100
              else:
                  return np.nan
          col transforms = {
               'Mileage': mileage to num,
               'Engine': engine_to_num,
              'Power': power_to_num,
          }
           #making a ddictiornary of all variables to be converted paired withe appropriate function
```

```
In [104...
          # k is the key, so the column name here
          # v is the value, which a function in this case and is
                either `height_to_num` or `weight_to_num`
          for k,v in col_transforms.items():
               data[k] = \overline{data[k].map(v)}
```

In [105... data.info() #checking the data info now

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 7253 entries, 0 to 7252
Data columns (total 12 columns):
# Column
                      Non-Null Count Dtype
    Name 7253 non-null object Location 7253 non-null object Year 7253 non-null object
0 Name
 1
                       7253 non-null int64
2
    Year
 3 Kilometers Driven 7253 non-null int64
 4 Fuel_Type 7253 non-null object
```

```
11 Price
                                   6019 non-null
                                                    float64
          dtypes: float64(5), int64(2), object(5)
         memory usage: 736.6+ KB
          new_name = [i.split()[0] for i in data.Name] #clearing up the Name column
In [106...
          data.Name = new_name
In [107...
          age_cars = [(2020 - i) for i in data. Year] #Changing the Year column to Age of cars
          data.Year = age_cars
          data = data.rename(columns={'Year': 'Age_of_Car'})
In [108... data.nunique(dropna = False) #unique values from each variable
Out[108... Name
                                  33
                                  11
         Location
         Age_of_Car
                                  23
         {\tt Kilometers\_Driven}
                                3660
         Fuel_Type
         Transmission
                                   2
          Owner_Type
                                   4
                                 439
         Mileage
         Engine
                                 151
                                 384
         Power
         Seats
                                  10
         Price
                                1374
         dtype: int64
In [109...
          data.isnull().sum().sort_values(ascending=False) #checking the total number of null values per variable
                                1234
Out[109... Price
                                 175
         Power
          Seats
                                  53
                                  46
         Engine
                                   2
         Mileage
         Owner_Type
                                   0
                                   0
         Transmission
         Fuel_Type
                                   0
         Kilometers Driven
         Age_of_Car
                                   0
         Location
                                   0
         Name
                                   0
         dtype: int64
         data.isnull().sum(axis=1).value counts() #null values per row
In [110...
Out[110... 0
               1308
         1
                 36
         3
         2
                 27
                 10
         dtype: int64
          num_missing = data.isnull().sum(axis=1) #storing null values per row into num_missing
In [111...
          num missing.value counts()
         0
               5872
Out[111...
               1308
         1
         3
                 36
                 27
         2
         4
                 10
         dtype: int64
          # these are missing of Power, Seats and/or Price
In [112...
          data[num\_missing == 2].sample(n=5)
                Name Location Age_of_Car Kilometers_Driven Fuel_Type Transmission Owner_Type Mileage Engine Power Seats Price
Out[112...
```

Transmission

Owner_Type

Mileage

Engine

Power 10 Seats

6

7

8

9

7253 non-null

7253 non-null

7251 non-null

7207 non-null

7078 non-null

7200 non-null

obiect

object

float64

float64

float64

float64

S.No.												
6723	Ford	Kolkata	11	39408	Diesel	Manual	First	17.80	1399.0	NaN	5.0	NaN
3882	Maruti	Kolkata	10	40000	Petrol	Manual	Second	19.50	1061.0	NaN	NaN	2.50
6957	Honda	Kochi	1	11574	Petrol	Manual	First	0.00	1199.0	88.7	NaN	NaN
6896	Toyota	Hyderabad	7	86000	Diesel	Manual	First	23.59	1364.0	NaN	5.0	NaN
5893	Maruti	Chennai	12	51000	Petrol	Manual	Second	19.50	1061.0	NaN	NaN	1.75

In [113... # these are missing Engine, Power and Seats
data[num missing == 3].sample(n=5)

Out[113...

	Name	Location	Age_of_Car	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage	Engine	Power	Seats	Price
S.No.												
4604	Honda	Pune	9	98000	Petrol	Manual	First	16.70	NaN	NaN	NaN	3.15
2780	Hyundai	Pune	11	100000	Petrol	Manual	First	0.00	NaN	NaN	NaN	1.60
4577	BMW	Delhi	8	72000	Diesel	Automatic	Third	18.48	NaN	NaN	NaN	13.85
194	Honda	Ahmedabad	13	60006	Petrol	Manual	First	0.00	NaN	NaN	NaN	2.95
2530	BMW	Kochi	6	64158	Diesel	Automatic	First	18.48	NaN	NaN	NaN	17.89

In [114... # these are missing Engine, Power, Seats, Price
data[num_missing == 4].sample(n=10)

Out[114...

	Name	Location	Age_of_Car	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage	Engine	Power	Seats	Price
S.No.												
6633	Mahindra	Kolkata	4	27000	Diesel	Manual	First	0.00	NaN	NaN	NaN	NaN
6643	BMW	Bangalore	11	150000	Diesel	Automatic	Second	18.48	NaN	NaN	NaN	NaN
6651	Maruti	Kolkata	5	36009	Petrol	Manual	First	16.10	NaN	NaN	NaN	NaN
6042	Skoda	Bangalore	11	72000	Petrol	Manual	Second	17.50	NaN	NaN	NaN	NaN
6677	Fiat	Jaipur	10	65000	Petrol	Manual	Third	14.60	NaN	NaN	NaN	NaN
6880	BMW	Chennai	11	95000	Diesel	Automatic	Second	18.48	NaN	NaN	NaN	NaN
6902	Toyota	Kochi	8	59311	Petrol	Manual	First	18.30	NaN	NaN	NaN	NaN
6541	Toyota	Bangalore	8	56600	Diesel	Manual	First	23.59	NaN	NaN	NaN	NaN
6544	Hyundai	Bangalore	8	58000	Petrol	Automatic	Second	15.00	NaN	NaN	NaN	NaN
6685	Maruti	Pune	10	115000	Petrol	Manual	Second	16.10	NaN	NaN	NaN	NaN

```
for n in num_missing.value_counts().sort_index().index: #printing out where the variables are gone missing
if n > 0:
    print(f'For the rows with exactly {n} missing values, NAs are found in:')
    n_miss_per_col = data[num_missing == n].isnull().sum()
    print(n_miss_per_col[n_miss_per_col > 0])
    print('\n\n')
```

For the rows with exactly 1 missing values, NAs are found in:

Mileage 2
Power 103
Seats 2
Price 1201
dtype: int64

For the rows with exactly 2 missing values, NAs are found in:

Power 26 Seats 5 Price 23 dtype: int64

For the rows with exactly 3 missing values, NAs are found in:

Engine 36 Power 36 Seats 36 dtype: int64

```
For the rows with exactly 4 missing values, NAs are found in:
Engine 10
Power 10
Seats 10
Price 10
dtype: int64
```

```
data['Name'] = data['Name'].astype('category')
In [163...
           data['Location'] = data['Location'].astype('category')
           data['Fuel Type'] = data['Fuel Type'].astype('category') #converting to categorical variables
          data['Transmission'] = data['Transmission'].astype('category')
          data['Owner_Type'] = data['Owner_Type'].astype('category')
          data['Location'] = data['Location'].astype('category')
In [164...
          data['Engine'].fillna(data['Engine'].median(), inplace=True) # median imputation
          data['Power'].fillna(data['Power'].median(), inplace=True)
          data['Mileage'].fillna(data['Mileage'].median(), inplace=True)
          data['Price'].fillna(data['Price'].median(), inplace=True)
          data['Seats'].fillna(data['Seats'].median(), inplace=True)
          void_list = ['Engine', 'Power', 'Mileage', 'Price', 'Seats'] #checking the null values again
for i in void_list: #checking if all the null values have been filled
In [165...
               print(f'{i} null values are: {data[i].isnull().sum()}')
          Engine null values are: 0
          Power null values are: 0
          Mileage null values are: 0
          Price null values are: 0
          Seats null values are: 0
In [166...
          data.isnull().sum().sort_values(ascending=False)
Out[166... Price
                                0
          Seats
                                0
          Power
                                0
          Engine
                                0
          Mileage
          Owner_Type
                                0
          Transmission
                                0
          Fuel_Type
                                0
          Kilometers Driven
                                0
          Age_of_Car
                                0
          Location
                                0
          Name
                                0
          dtype: int64
In [167...
          print(data.describe().T) #statistics of all the variables
```

std

3.198739

4.304204

45.948236

0.000000

563.680643

min

1.000

6.275

72.000

34.200

5.000

0.440

25%

4.00

15.17

77.00

5.00

3.85

1198.00

Price 7253.0 6.843612 4.214570

	50%	75%	max
Age_of_Car	6.00	9.00	16.500
Kilometers_Driven	53416.00	73000.00	131500.000
Mileage	18.16	21.10	29.995
Engine	1493.00	1968.00	3123.000
Power	94.00	138.03	229.575
Seats	5.00	5.00	5.000
Price	5.64	8.40	15.225

count

7253.0

7253.0

7253.0

7253.0

7253.0

mean

6.619054

18.205135

1608.226941

110.402768

5.000000

Kilometers_Driven 7253.0 56277.365918 30187.237813 171.000 34000.00

Observation:

Age of Car

Mileage

Engine

Power

Seats

- 1. Age of car may be normally distributed as mean is very close to the median
- 2. Mileage is normally distributed as mean and median are equal.

- 3. For kilometers driven there is a huge range in the data
- 4. Power and Price huge range in data

In [168... print(data.describe(include = 'category')) #categorical variables statistics

```
Name Location Fuel Type Transmission Owner Type
count
          7253
                    7253
                              7253
                                            7253
            33
unique
                      11
                                                       First
top
        Maruti
                 Mumbai
                            Diesel
                                          Manual
          1444
                     949
                              3852
                                            5204
                                                        5952
freq
```

Observation:

- 1. There are 10 unique values for seats, with 5 being the most common, which makes sense.
- 2. Interesting that there are 5 differnt Fuel_Type cars, with disel being the most common
- 3. Only two types of transmission, which makes sense.
- 4. A car can have more than 4 owners which is very small as compared to the other values in the owner column

EDA

Univariate Analysis

Observations on Age of Car

Observation:

- 1. There are some outliers
- 2. The graph is right skewed.

Observations on Kilometeres Driven

Observation:

- 1. Heavily right skewed graph
- 2. Maybe log scale transformation/arcsinh transformation may be applicable here.
- 3. There is clearly one distinct outlier

Observations on Mileage

Observation:

- 1. One outlier towards the low end and few outliers towards the right side.
- 2. Not accounting for the outlier, the graph looks normally distributed.

Observations on Engine

Observation:

- 1. There are many outliers.
- 2. Graph is slightly right skewed
- 3. The max value of engine 6000 is very close to the median.

Observations on Power

Observation:

- 1. Numerous Outliers present.
- 2. Heavily right skewed graph.
- 3. Outlier treatment like dropping outliers need to be considered.

Observations on Price

Observations:

- 1. Numerous outliers seen.
- 2. Right Skewed graph.
- 3. Log transformation can be completed along with outlier treatments.

Observation on Seats

Observation:

- 1. Many outliers visible.
- 2. Most of the data is centered at 5.
- 3. Shows a normal distribution with mean of 5.

Applying Log and Arcsinh Transformations

Transformation for Kilometers Driven

```
fig, axs = plt.subplots(1, 2, figsize=(10,5)) #making a subplot
    axs[0].hist(x = np.log(data['Kilometers_Driven']), bins = 50) #log transformation of km driven
    axs[0].set_title('Log Transformation')
    axs[1].hist(x = np.arcsinh(data['Kilometers_Driven']), bins = 50, color = 'yellow') #arcsinh transformation of km
    axs[1].set_title('Arcsinh Transformation')
    plt.suptitle('Kilometers Driven Transformation',fontsize=20)
    fig.tight_layout(pad=3.0)
    plt.show()
```

Kilometers Driven Transformation

6 8 10 12 14 16 6 8 10 12 14 16

Observations:

- 1. The log and arcsinh look similar so the difference there is more be about interpretation.
- 2. The log transformation decreases the scale of the distributions, even with the huge range of Kilometeters driven. It seems the outliers caused the log-transformed distributions to still be a bit skewed, but it is closer to normal than the original distribution.

Transformation for Price

```
In [129... fig, axs = plt.subplots(1, 2, figsize=(10,5)) #making a subplot
    axs[0].hist(x = np.log(data['Price']), bins = 50) #log transformation of km driven
    axs[0].set_title('Log Transformation')
    axs[1].hist(x = np.arcsinh(data['Price']), bins = 50, color = 'yellow') #arcsinh transformation of km driven
    axs[1].set_title('Arcsinh Transformation')
    plt.suptitle('Price Transformation', fontsize=20)
    fig.tight_layout(pad=3.0)
    plt.show()
```

Price Transformation

Observations:

- 1. The log and arcsinh look similar so the difference there is more be about interpretation.
- 2. There is onviously one value that is very different from others.
- 3. Maybe removing tht one huge value the graph may look more normally distributed.

Transformations for Seats

```
fig, axs = plt.subplots(1, 2, figsize=(10,5)) #making a subplot
axs[0].hist(x = np.log(data['Seats'] + 1), bins = 50) #log transformation of seats
axs[0].set_title('Log Transformation')
axs[1].hist(x = np.arcsinh(data['Seats']), bins = 50, color = 'yellow') #arcsinh transformation of seats
axs[1].set_title('Arcsinh Transformation')
plt.suptitle('Seats Transformation', fontsize=20)
fig.tight_layout(pad=3.0)
plt.show()
```

Seats Transformation

200

- 1. From the above, there were a lot of 0 values so log(value + 1) transformation has to be applied.
- 2. There dosen't seem to be a big change in either of the two graphs, the outliers are pushing the graph to be more left skewed than previous graph.

Outlier treatments

```
# Let's treat outliers by flooring and capping
In [131...
          def treat_outliers(df, col):
              treats outliers in a variable
              col: str, name of the numerical variable df: dataframe
              col: name of the column
              Q1 = df[col].quantile(0.25) # 25th quantile
              Q3 = df[col].quantile(0.75) # 75th quantile
              IQR = Q3 - Q1
              Lower Whisker = Q1 - 1.5 * IQR
              Upper_Whisker = Q3 + 1.5 * IQR
              # all the values smaller than Lower_Whisker will be assigned the value of Lower Whisker
              # all the values greater than Upper_Whisker will be assigned the value of Upper_Whisker
              df[col] = np.clip(df[col], Lower_Whisker, Upper_Whisker)
              return df
          def treat_outliers_all(df, col_list):
              treat outlier in all numerical variables
              col_list: list of numerical variables
              df: data frame
              for c in col_list:
                  df = treat_outliers(df, c)
              return df
          numeric columns = data.select dtypes(include=np.number).columns.tolist()#numberic columns
In [132...
          numerical_col = data.select_dtypes(include=np.number).columns.tolist()#converting numerical cols
          data = treat outliers all(data, numerical col) #treating outliers
In [133...
          plt.figure(figsize=(20, 30))
          for i, variable in enumerate(numeric_columns): #boxplots subplots
              plt.subplot(5, 4, i + 1)
              plt.boxplot(data[variable], whis=1.5)
              plt.tight_layout()
              plt.title(variable)
          plt.show()
                     Age of Car
                                                  Kilometers Driver
                                                                                   Mileage
                                                                                                                 Engine
```


Observation:

- 1. As it can be seen above, all outliers has been treated and no outliers remain.
- 2. The graph for seats only appear to be a straight line, or all the points seem to be at 5 seats.

```
data['Name'] = data['Name'].astype('category')
data['Location'] = data['Location'].astype('category')
data['Fuel_Type'] = data['Fuel_Type'].astype('category') #converting to categorical variables
data['Transmission'] = data['Transmission'].astype('category')
data['Owner_Type'] = data['Owner_Type'].astype('category')
data['Location'] = data['Location'].astype('category')
```

Categorical Variables

Observations on Name

```
In [205...
    plt.figure(figsize=(20,7))
    ax = sns.countplot(data['Name']) #count plot for Name
    plt.xlabel('Name of Cars')
    plt.xticks(rotation=90)
    plt.ylabel('Count')
    bar_perc(ax,data['Name'])
```


Observations:

- 1. Most common is Maruthi with 19.9%
- 2. Second most common car is Hyundar with 18.5 %
- 3. least common are Bentley, Ambassado, Jeep etc

Observations on Location

```
In [136...
    plt.figure(figsize=(15,7))
    ax = sns.countplot(data['Location']) #count plot for Location
    plt.xlabel('Location')
```

plt.ylabel('Count')
bar_perc(ax,data['Location'])

Observation:

- 1. Mumbai and Hyderbad are the most common Locations.
- 2. The least common location is Ahmedabad

Observation on Fuel Type

```
In [137... plt.figure(figsize=(10,7))
    ax = sns.countplot(data['Fuel_Type'])
    plt.xlabel('Fuel_Type')
    plt.ylabel('Count')
    bar_perc(ax,data['Fuel_Type'])
```


Observation:

- 1. The most common type of Fuel is Diesel with 53.1% followed by petrol 45.8%
- 2. The least common fuel type is the electric car, there was only 2 values of electric car in the whole data.

Observation on Transmission Type

```
In [138_ plt.figure(figsize=(10,7))
    ax = sns.countplot(data['Transmission'])
```

```
plt.xlabel('Transmission')
plt.ylabel('Count')
bar_perc(ax,data['Transmission'])
```


Observation:

- 1. Manual is the most common type of transmission with 71.%
- 2. Automatic is the least common type of transmission

Observation on Owner Type

```
In [139...
            plt.figure(figsize=(10,7))
            ax = sns.countplot(data['Owner_Type'])
            plt.xlabel('Owner_Type')
plt.ylabel('Count')
            bar_perc(ax,data['Owner_Type'])
                             82.1%
              6000
              5000
              4000
           3000
             2000
              1000
                                                  0.2%
                0
                                              Fourth & Above
                            First
```

Observation:

1. First hand owners are mostly popular with 82.1% with the least being 0.2%

Owner_Type

Bivariate Analysis

	Age_of_Car	Kilometers_Driven	Mileage	Engine	Power	Seats	Price
Age_of_Car	1.000000	0.519522	-0.321942	0.049200	-0.035288	NaN	-0.371188
Kilometers_Driven	0.519522	1.000000	-0.160162	0.186120	0.021601	NaN	-0.152816
Mileage	-0.321942	-0.160162	1.000000	-0.621567	-0.539260	NaN	-0.304916
Engine	0.049200	0.186120	-0.621567	1.000000	0.846878	NaN	0.646981
Power	-0.035288	0.021601	-0.539260	0.846878	1.000000	NaN	0.727125
Seats	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Price	-0.371188	-0.152816	-0.304916	0.646981	0.727125	NaN	1.000000

In [142...

data.cov() #covariance of data

Out[142...

	Age_of_Car	Kilometers_Driven	Mileage	Engine	Power	Seats	Price
Age_of_Car	10.231929	5.016561e+04	-4.432510	8.871112e+01	-5.186477	0.0	-5.004103
Kilometers_Driven	50165.611008	9.112693e+08	-20810.125109	3.167007e+06	29961.524356	0.0	-19442.230069
Mileage	-4.432510	-2.081013e+04	18.526176	-1.508044e+03	-106.649682	0.0	-5.531284
Engine	88.711119	3.167007e+06	-1508.043931	3.177359e+05	21934.259628	0.0	1537.014171
Power	-5.186477	2.996152e+04	-106.649682	2.193426e+04	2111.240382	0.0	140.809224
Seats	0.000000	0.000000e+00	0.000000	0.000000e+00	0.000000	0.0	0.000000
Price	-5.004103	-1.944223e+04	-5.531284	1.537014e+03	140.809224	0.0	17.762604

In [143...

Seats

plt.figure(figsize=(20,20))
sns.heatmap(data.corr(), annot=True, linewidths=.5, fmt= '.1f', center = 1) # heatmap
plt.show()

- -0.2

Observation:

- 1. Engine seems to have a high correlation with Price.
- 2. Power and Engine, Power and Price have high correlation
- 3. Seats and other variables don't really correlate well
- 4. Correlation does not imply cassaution.
- 5. Mileage and Engine correlate well negatively.

```
plt.figure(figsize = (20,20))
sns.pairplot(data = data, kind = 'reg') #pairplot
In [144...
                                                                                                                                                                                                     plt.show()
                                                                                                                                                                                           <Figure size 1440x1440 with 0 Axes>
                                                                                                                                                                                                        7.5 Value of Value of
                                                                                                                                                                                                                                           0.4
                                                                                                                                                                                                                                              0.2
                                                                                                                                                                                                                                           -0.2
```

5.25 5.50

5.00 Seats

- 1. As indicated by the heat map most of the variables don't correlate that well with each other, other than the few exceptions.
- 2. Price and Power are positively correlated
- 3. Engine and Price are slightly positively correlated as well.
- 4. Power and Engine are positively correlated as well.
- 5. Power as a representation of itself is very rightly skewed.
- 6. Seats and Engine have a small positive correlation amongst each other.
- 7. Negative correlation for Mileage and Engine.
- 8. Negative correlation for Power and Mileage
- 9. Key variables that correlate well with Price are in the order of Power, Engine, Mileage and Kilometers Driven

Numerical vs Numerical

```
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10,7)) #creating subplots
ax1 = sns.scatterplot(x = 'Age_of_Car', ax = ax1, y = 'Price', data = data) #scatterplot fo age vs price
ax2 = sns.lineplot(x = 'Age_of_Car', ax = ax2, y = 'Price', data = data) #lineplot of age vs price
plt.suptitle('Price against Age of Car',fontsize=20)
plt.xlabel('Age_of_car')
fig.tight_layout(pad=3.0)
plt.ylabel('Price')
```

Out[145... Text(372.11363636363626, 0.5, 'Price')

Price against Age of Car

Observation:

- 1. There is a negative correlation between price and age of car
- 2. The relationship may not be entirely linear but maybe of cubic or maybe quadratic.
- 3. There does seem to be distincive outliers.

```
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10,7))
ax1 = sns.scatterplot(x = 'Kilometers_Driven', ax = ax1, y = 'Price', data = data)
ax2 = sns.lineplot(x = 'Kilometers_Driven', ax = ax2, y = 'Price', data = data)
plt.suptitle('Price against Kilometers_Driven', fontsize=20)
plt.xlabel('Kilometers_Driven')
fig.tight_layout(pad=3.0)
plt.ylabel('Price')
```

Out[146... Text(372.11363636363626, 0.5, 'Price')

Price against Kilometers_Driven

Observations:

- 1. A relationship can't be well established between the two variables.
- 2. Most of the data stack on each other beween 0 and 1 Kilometers driven while the price extends from 0 to 160.
- 3. There is a clear outlier in Kilometeres driven above 6 which is causing the line plot to extend to the right.

```
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10,7))
ax1 = sns.scatterplot(x = 'Mileage', ax = ax1, y = 'Price', data = data)
ax2 = sns.lineplot(x = 'Mileage', ax = ax2, y = 'Price', data = data)
plt.suptitle('Price against Mileage', fontsize=20)
plt.xlabel('Mileage')
fig.tight_layout(pad=3.0)
plt.ylabel('Price')
```

Out[147_ Text(372.11363636363626, 0.5, 'Price')

Price against Mileage

Observations:

- 1. There dosen't seem to be a clear strong relationship between the to variables.
- 2. A negative relationship can be slightly established between the two variables.
- $\label{eq:continuity} 3. \ \ \text{There is 2 clear distinctive outlier points}.$

```
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10,7))
ax1 = sns.scatterplot(x = 'Engine', ax = ax1, y = 'Price', data = data)
ax2 = sns.lineplot(x = 'Engine', ax = ax2, y = 'Price', data = data)
plt.suptitle('Price against Engine', fontsize=20)
plt.xlabel('Engine')
fig.tight_layout(pad=3.0)
```

```
plt.ylabel('Price')
```

Out[148... Text(372.11363636363626, 0.5, 'Price')

Price against Engine

Observations:

- 1. There is definitely a relationship between the two variables.
- 2. Positive correlation can be established between the two variables.
- 3. Although there is a rise in price as the engine values increase it, isn't a steady rise in relationship.

```
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10,7))
ax1 = sns.scatterplot(x = 'Power', ax = ax1, y = 'Price', data = data)
ax2 = sns.lineplot(x = 'Power', ax = ax2, y = 'Price', data = data)
plt.suptitle('Price against Power', fontsize=20)
plt.xlabel('Power')
fig.tight_layout(pad=3.0)
plt.ylabel('Price')
```

Out[149_ Text(372.11363636363626, 0.5, 'Price')

Price against Power

- 1. Power and price do correlate well.
- 2. Positive correlation shown by the two relationships.
- 3. There isn't a steady positive trend, rather many up and down's between the two variables.

Numerical Vs Categorical

```
In [150... plt.figure(figsize=(15,5)) # setting the figure size
   plt.title('Price vs Location')
   ax = sns.barplot(x='Location', y='Price', data=data, palette='muted')#barplot of location vs price
```


Observations:

- 1. Coimbatore has the highest price amongst other locations followed by Bangalore and Kochi.
- 2. Coimbatore and Kochi are in Kerala, which suggest that Kerala has the highest priced cars.
- 3. Lowest priced cars can be found in Jaipur and Kolkata and Chennai.

```
In [151... plt.figure(figsize=(15,5)) # setting the figure size
    plt.title('Price vs Fuel Type')
    ax = sns.barplot(x='Fuel_Type', y='Price', data=data, palette='muted')
```


Observations:

- 1. Electric type cars are highly priced followed by Dlelse and Petrol cars.
- 2. LPG cars are the lowest priced cars.

```
In [152... plt.figure(figsize=(15,5)) # setting the figure size
   plt.title('Price vs Transmission')
   ax = sns.barplot(x='Transmission', y='Price', data=data, palette='muted')
```

```
Price vs Transmission

10
```


Observations:

- 1. Automatic cars are highest priced cars
- 2. Manual cars are the least priced cars.

```
In [153= plt.figure(figsize=(15,5)) # setting the figure size
   plt.title('Price vs Owner_Type')
   ax = sns.barplot(x='Owner_Type', y='Price', data=data, palette='muted')
```


Observations:

- 1. First hand cars are highest priced, followed by second and third.
- 2. This confirms and makes sense, because pre-owned cars will have lower prices than fresh cars.

```
In [154... plt.figure(figsize=(15,5)) # setting the figure size
   plt.title('Price vs Number of Seats')
   ax = sns.barplot(x='Seats', y='Price', data=data, palette='muted')
```


Observations:

1. Cars has only 5 seats as rest of the rows got filled with median values.

```
In [155... plt.figure(figsize=(15,5)) # setting the figure size
   plt.title('Price vs Name')
   plt.xticks(rotation=90)
   ax = sns.barplot(x='Name', y='Price', data=data, palette='muted')
```


Observations:

- 1. As expected Lamborghini has the highest price out of any cars, followed by Porsche, Bentley and Jaguar.
- 2. Least priced cars are the eco cars such as Maruti, Honda, Nissan, Hindustan, Ambassador, Smart etc.
- 3. The name gives straight forward insights, but I don't think it is necesscary to keep names column, as it won't provide any deep insights.

Two Categorical vs Numerical

```
In [156... sns.scatterplot(y = 'Price', x = 'Fuel_Type', data = data, hue = 'Transmission')
Out[156... <AxesSubplot:xlabel='Fuel_Type', ylabel='Price'>
```


Observations:

- 1. Most CNG and LPG cas are manual cars as they are very old cars.
- 2. Diesel and Petrol cars mostly comprise of Automatic cars rather than manual cars.

```
In [157... plt.xticks(rotation=90)
    sns.scatterplot(y = 'Price', x = 'Location', data = data, hue = 'Transmission')
    plt.figure(figsize = (15, 10))
```

Out[157... <Figure size 1080x720 with 0 Axes>

<Figure size 1080x720 with 0 Axes>

Observations:

(7250, 1)

- 1. Automatic cars are common accross every region
- 2. On average automatic cars are highly priced than Mnaual cars for every single region.

```
In [170... data.to_csv('data1.csv') #converting the current data set into a new dataframe
```

Data Preparation for Modeling

```
df = pd.read_csv('data1.csv')
           df.head()
Out[171 ...
             Unnamed:
                         Name
                                  Location Age_of_Car Kilometers_Driven Fuel_Type Transmission Owner_Type
                                                                                                           Mileage Engine Power Seats
                                                                                                                                         Pric
           0
                     0
                         Maruti
                                  Mumbai
                                                 10.0
                                                                 72000
                                                                            CNG
                                                                                       Manual
                                                                                                      First
                                                                                                             26.60
                                                                                                                     998.0
                                                                                                                            58.16
                                                                                                                                     5.0
                                                                                                                                         1.7
           1
                     1
                       Hyundai
                                     Pune
                                                  5.0
                                                                 41000
                                                                           Diesel
                                                                                       Manual
                                                                                                      First
                                                                                                              19.67
                                                                                                                    1582.0
                                                                                                                          126.20
                                                                                                                                     5.0
                                                                                                                                        12.5
           2
                     2
                         Honda
                                  Chennai
                                                  9.0
                                                                 46000
                                                                            Petrol
                                                                                        Manual
                                                                                                      First
                                                                                                              18.20
                                                                                                                    1199.0
                                                                                                                            88.70
                                                                                                                                     5.0
                                                                                                                                         4.5
                         Maruti
                                  Chennai
                                                  8.0
                                                                 87000
                                                                           Diesel
                                                                                        Manual
                                                                                                      First
                                                                                                             20.77
                                                                                                                    1248.0
                                                                                                                            88.76
                                                                                                                                     5.0
                                                                                                                                         6.0
                     4
                                                                 40670
                                                                                                                    1968.0 140.80
           4
                           Audi Coimbatore
                                                  7.0
                                                                           Diesel
                                                                                      Automatic
                                                                                                    Second
                                                                                                              15.20
                                                                                                                                     5.0 17.7
                                                                                                                                       |
In [172...
           X = df.drop(["Price", "Seats"], axis=1) #dropping Seats variable as there was not much correlation between Price
           y = df[["Price"]]
           print(X.head())
           print(y.head())
              Unnamed: 0
                                        Location Age of Car
                                                                 Kilometers Driven Fuel Type
                               Name
          0
                        0
                             Maruti
                                          Mumbai
                                                          10.0
                                                                               72000
                                                                                             CNG
          1
                        1
                           Hyundai
                                             Pune
                                                           5.0
                                                                               41000
                                                                                         Diesel
          2
                        2
                              Honda
                                         Chennai
                                                           9.0
                                                                               46000
                                                                                         Petrol
                        3
                                                           8.0
                                                                               87000
          3
                                                                                         Diesel
                             Maruti
                                         Chennai
           4
                        4
                               Audi
                                      Coimbatore
                                                           7.0
                                                                               40670
                                                                                         Diesel
             Transmission Owner_Type
                                         Mileage
                                                   Engine
                                                              Power
          0
                   Manual
                                 First
                                           26.60
                                                     998.0
                                                              58.16
           1
                   Manual
                                 First
                                            19.67
                                                   1582.0
                                                             126.20
          2
                   Manual
                                 First
                                            18.20
                                                   1199.0
                                                              88.70
          3
                   Manual
                                 First
                                           20.77
                                                   1248.0
                                                              88.76
                Automatic
                                Second
                                           15.20
                                                   1968.0
                                                            140.80
              Price
          0
               1.75
              12.50
          1
               4.50
          3
              6.00
             17.74
In [173…
           print(X.shape)
           print(y.shape)
           (7250, 11)
```

```
In [174... # creating dummy variables
X = pd.get_dummies(X, columns=["Name","Location","Fuel_Type", "Transmission", "Owner_Type"], drop_first=True)
```

```
X.head()
              Unnamed:
Out[174...
                        Age_of_Car Kilometers_Driven Mileage Engine Power Name_Audi Name_BMW Name_Bentley Name_Chevrolet ... Location_I
           0
                     0
                               10.0
                                                                998.0
                                                                        58.16
                                                                                       0
                                                                                                   0
                                                                                                                  0
                                                                                                                                  0 ...
                                               72000
                                                        26.60
                                                                                       0
                                                                                                                  0
                                5.0
                                               41000
                                                         19.67
                                                               1582.0 126.20
                                                                                                   0
                                                                                                                                  0 ...
           2
                     2
                                9.0
                                               46000
                                                         18.20
                                                               1199.0
                                                                        88.70
                                                                                       0
                                                                                                   0
                                                                                                                  0
                                                                                                                                  0
                     3
                                               87000
                                                               1248.0
                                                                                                                  0
           3
                                8.0
                                                        20.77
                                                                        88.76
                                                                                       0
                                                                                                   0
                                                                                                                                  0
                                                                                                   0
                                                                                                                  0
           4
                      4
                                7.0
                                               40670
                                                        15.20
                                                              1968.0 140.80
                                                                                       1
                                                                                                                                  0 ...
          5 rows × 56 columns
In [175...
            # split the data into train and test
            from sklearn.model selection import train test split
            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) #splitting data into te
In [176...
            X_train.head()
Out[176...
                 Unnamed:
                            Age_of_Car Kilometers_Driven
                                                         Mileage
                                                                  Engine
                                                                                     Name_Audi Name_BMW Name_Bentley Name_Chevrolet ... Lo
            952
                      952
                                   7.0
                                                  71000
                                                           17.000
                                                                  1197.0
                                                                           80.000000
                                                                                              0
                                                                                                           0
                                                                                                                         0
                                                                                                                                         0 ...
           2264
                     2264
                                                  131500
                                                                  2446.0
                                                                                              0
                                                                                                           0
                                                                                                                         0
                                                                                                                                         0 ...
                                  16.0
                                                            6.275
                                                                         112.765214
           1504
                                                   95000
                                                                                              0
                                                                                                           0
                                                                                                                         0
                                                                                                                                         0 ...
                      1504
                                  12.0
                                                           12.900
                                                                  1799.0
                                                                          130.000000
           7210
                      7210
                                   7.0
                                                  131500
                                                           22.300
                                                                  1248.0
                                                                           74.000000
                                                                                              0
                                                                                                           0
                                                                                                                         0
                                                                                                                                         0 ...
           5538
                                                   81000
                                                                   936.0
                                                                                              0
                                                                                                           0
                                                                                                                         0
                     5538
                                   8.0
                                                          25.440
                                                                           56.300000
                                                                                                                                         1 ...
          5 rows × 56 columns
          Choose, Train, Evaluate model
```

```
# fitting the model on the train data (70% of the whole data)
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
linearregression = LinearRegression()
linearregression.fit(X_train, y_train)
```

Out[177... LinearRegression()

```
Out[178...
                                          Coefficients
                                         2.532329e-04
                           Unnamed: 0
                           Age_of_Car
                                         -4.608980e-01
                     Kilometers_Driven
                                         -9.727808e-06
                               Mileage
                                        -9.918001e-02
                                Engine
                                         9.691858e-04
                                Power
                                         2.837856e-02
                                        2.872767e+00
                            Name_Audi
                           Name_BMW
                                        2.483456e+00
                         Name_Bentley
                                         1.571339e+00
                       Name_Chevrolet -1.842591e+00
                         Name_Datsun -2.729279e+00
                             Name_Fiat -1.396602e+00
                           Name Force -1.229473e+00
```

```
Name_Ford -1.531774e+00
          Name Hindustan
                            2.930989e-14
              Name_Honda -1.390413e+00
            Name_Hyundai -1.216315e+00
              Name ISUZU -4.441976e+00
               Name_Isuzu -4.871319e-01
             Name_Jaguar
                            2.471685e+00
               Name_Jeep
                            2.238565e+00
        Name_Lamborghini 4.806032e+00
               Name_Land
                            3.884227e+00
           Name_Mahindra
                          -1.718561e+00
              Name_Maruti
                          -9.543948e-01
      Name_Mercedes-Benz
                            2.215802e+00
                Name_Mini
                            5.773696e+00
          Name_Mitsubishi -4.531860e-01
             Name_Nissan -1.478800e+00
          Name OpelCorsa
                            5.160197e+00
                            2.571528e+00
            Name_Porsche
             Name_Renault -1.488897e+00
              Name Skoda -1.357686e+00
              Name_Smart -3.191215e+00
                Name_Tata -2.270336e+00
                            6.735057e-01
             Name_Toyota
         Name_Volkswagen -1.715829e+00
                            1.623700e+00
              Name Volvo
        Location_Bangalore
                            2.427726e-01
          Location_Chennai
                           -7.186991e-02
       Location_Coimbatore
                            1.925768e-01
            Location_Delhi
                            -8.448755e-01
       Location_Hyderabad
                            2.308306e-01
                            -9.290503e-02
           Location_Jaipur
           Location_Kochi
                            -3.416551e-01
          Location_Kolkata -1.026230e+00
          Location_Mumbai
                            -3.248464e-01
            Location_Pune
                            -1.797736e-01
          Fuel_Type_Diesel
                            1.411251e+00
         Fuel_Type_Electric
                            6.989043e+00
           Fuel_Type_LPG
                            7.493960e-01
          Fuel_Type_Petrol
                            1.271854e-01
      Transmission_Manual
                            -7.722681e-01
Owner_Type_Fourth & Above
                            5.905974e-02
       Owner_Type_Second
                            -2.429078e-01
         Owner_Type_Third
                            -4.758598e-01
                           8.152298e+00
                  Intercept
```

Let's check the performance of the model using different metrics (MAE, MAPE, RMSE, R2).

We will be using metric functions defined in sklearn for RMSE, MAE, and R2. We will define a function to calculate MAPE. We will create a function which will print out all the above metrics in one go.

```
# defining function for MAPE
def mape(targets, predictions):
    return np.mean(np.abs((targets - predictions)) / targets) * 100

# defining common function for all metrics
def model_perf(model, inp, out):
```

```
0.00
model: model
inp: independent variables
out: dependent variable
y_pred = model.predict(inp).flatten()
y_act = out.values.flatten()
return pd.DataFrame(
   {
        "MAE": mean_absolute_error(y_act, y_pred),
        "MAPE": mape(y_act, y_pred),
        "RMSE": np.sqrt(mean_squared_error(y_act, y_pred)),
        "R^2": r2 score(y act, y pred),
    index=[0],
```

In [180...

```
# Checking model performance on train set (seen 70% data)
print("Train Performance\n")
model_perf(linearregression, X_train, y_train)
```

Train Performance

MAE MAPE RMSE **0** 1.88127 31.671087 2.513503 0.737865

```
In [181…  # Checking model performance on test set (unseen 30% data)
          print("Test Performance\n")
          model perf(linearregression, X test, y test)
```

Test Performance

Out[181...

RMSE MAE MAPE R^2

0 1.905165 32.523649 2.514116 0.741246

Observations:

- 1. The training data performance is 72% while the testing data performance is 74% both which are comparable which is good.
- 2. R-squared is 0.740 on the test set, i.e., the model explains 74% of total variation in the test dataset. So, overall the model is very satisfactory.
- 3. MAE indicates that our current model is able to predict Price within a mean error of 1.95 years on the test data.
- 4. MAPE on the test set suggests we can predict within 33% of Price.

Linear regression using statsmodel

```
In [182...
```

```
# Let's build linear regression model using statsmodel
# unlike sklearn, statsmodels does not add a constant to the data on its own
# we have to add the constant manually
import statsmodels.api as sm
X = sm.add_constant(X)
X_train1, X_test, y_train, y_test = train_test_split(
    X, y, test size=0.3, random state=42
olsmod0 = sm.OLS(y_train, X_train1)
olsres0 = olsmod0.fit()
print(olsres0.summary())
```

OLS Regression Results

```
______
                   Price R-squared:
OLS Adj. R-squared:
Least Squares F-statistic:
Dep. Variable:
                                                               0.738
Model:
                                                               0.735
Method:
                                                              256.9
                 Fri, 21 May 2021 Prob (F-statistic):
Date:
                                                               0.00
                        14:14:51
                                                             -11879.
Time:
                                 Log-Likelihood:
No. Observations:
                            5075
                                  AIC:
                                                           2.387e+04
                                                           2.424e+04
Df Residuals:
                            5019
                                 BIC:
Df Model:
                             55
Covariance Type:
                       nonrobust
```

t P>|t| [0.025 0.975] coef std err

const	8.1523	2.621	3.110	0.002	3.013	13.292
Unnamed: 0	0.0003	1.71e-05	14.816	0.000	0.000	0.000
Age_of_Car	-0.4609	0.016	-28.320	0.000	-0.493	-0.429
Kilometers_Driven	-9.728e-06	1.64e-06	-5.936	0.000	-1.29e-05	-6.52e-06
Mileage	-0.0992	0.015	-6.429	0.000	-0.129	-0.069
Engine	0.0010	0.000	5.296	0.000	0.001	0.001
Power	0.0284	0.002	13.239	0.000	0.024	0.033
Name_Audi	2.8728	2.563	1.121	0.262	-2.152	7.898
Name_BMW	2.4835	2.566	0.968	0.333	-2.546	7.513
Name_Bentley	1.5713	3.131	0.502	0.616	-4.566	7.709
Name_Chevrolet	-1.8426	2.561	-0.720	0.472	-6.862	3.177
Name_Datsun	-2.7293	2.655	-1.028	0.304	-7.934	2.476
Name_Fiat	-1.3966	2.596	-0.538	0.591	-6.485	3.692
Name_Force	-1.2295	2.940	-0.418	0.676	-6.993	4.534
Name_Ford	-1.5318	2.554	-0.600	0.549	-6.538	3.475
Name_Hindustan	6.613e-15	2.04e-14	0.324	0.746	-3.34e-14	4.66e-14
Name_Honda	-1.3904	2.555	-0.544	0.586	-6.399	3.618
Name_Hyundai	-1.2163	2.552	-0.477	0.634	-6.220	3.787
Name_ISUZU	-4.4420	3.122	-1.423	0.155	-10.562	1.678
Name_Isuzu	-0.4871	3.121	-0.156	0.876	-6.606	5.632
Name_Jaguar	2.4717	2.598	0.951	0.342	-2.622	7.566
Name_Jeep	2.2386	2.640	0.848	0.396	-2.937	7.414
Name_Lamborghini	4.8060	3.594	1.337	0.181	-2.240	11.852
Name_Land	3.8842	2.582	1.504	0.133	-1.177	8.946
Name_Mahindra	-1.7186	2.554	-0.673	0.501	-6.726	3.289
Name_Maruti	-0.9544	2.552	-0.374	0.708	-5.958	4.049
Name_Mercedes-Benz	2.2158	2.561	0.865	0.387	-2.805	7.237
Name_Mini	5.7737	2.610	2.212	0.027	0.657	10.891
Name_Mitsubishi	-0.4532	2.611	-0.174	0.862	-5.572	4.666
Name_Nissan	-1.4788	2.565	-0.577	0.564	-6.507	3.549
Name_OpelCorsa	5.1602	3.594	1.436	0.151	-1.886	12.206
Name_Porsche	2.5715	2.643	0.973	0.331	-2.610	7.753
Name_Renault	-1.4889	2.561	-0.581	0.561	-6.509	3.531
Name_Skoda	-1.3577	2.561	-0.530	0.596	-6.378	3.663
Name_Smart	-3.1912	3.603	-0.886	0.376	-10.255	3.873
Name_Tata	-2.2703	2.558	-0.888	0.375	-7.285	2.744
Name_Toyota	0.6735	2.554 2.554	0.264 -0.672	0.792	-4.334 -6.723	5.681 3.292
Name_Volkswagen	-1.7158	2.554	0.622	0.502		6.745
Name_Volvo Location Bangalore	1.6237 0.2428	0.228	1.067	0.534 0.286	-3.498 -0.203	0.689
Location_bangatore	-0.0719	0.228	-0.329	0.742	-0.500	0.356
Location Coimbatore	0.1926	0.218	0.920	0.742	-0.218	0.603
Location_colmbatore	-0.8449	0.203	-3.959	0.000	-1.263	-0.427
Location_Hyderabad	0.2308	0.215	1.125	0.261	-0.171	0.633
Location_Hyderabad Location Jaipur	-0.0929	0.226	-0.412	0.680	-0.535	0.349
Location_Salpur	-0.3417	0.210	-1.630	0.103	-0.753	0.069
Location_Kolkata	-1.0262	0.215	-4.783	0.000	-1.447	-0.606
Location Mumbai	-0.3248	0.203	-1.597	0.110	-0.724	0.074
Location Pune	-0.1798	0.209	-0.860	0.390	-0.589	0.230
Fuel Type Diesel	1.4113	0.394	3.580	0.000	0.638	2.184
Fuel Type Electric	6.9890	1.844	3.790	0.000	3.374	10.604
Fuel Type LPG	0.7494	0.896	0.837	0.403	-1.007	2.505
Fuel Type Petrol	0.1272	0.400	0.318	0.750	-0.657	0.911
Transmission Manual	-0.7723	0.121	-6.404	0.000	-1.009	-0.536
Owner Type Fourth & Above	0.0591	0.851	0.069	0.945	-1.609	1.727
Owner Type Second	-0.2429	0.105	-2.322	0.020	-0.448	-0.038
Owner Type Third	-0.4759	0.281	-1.696	0.020	-1.026	0.074
======================================	 	 	=========		1.020	0.074
Omnibus:	203.075	Durbin-Wa	tson:		2.013	
Prob(Omnibus):	0.000	Jarque-Be			632.573	
Skew:	0.049	Prob(JB):		4	35e-138	
Kurtosis:	4.727	Cond. No.			1.14e+16	
	 :========	========	=========		=======	

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

 $\[2\]$ The smallest eigenvalue is 1.6e-19. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Observations:

- 1. Negative values of the coefficient show that Price decreases with the increase of corresponding attribute value.
- 2. Positive values of the coefficient show that Price increases with the increase of corresponding attribute value.\
- 3. But these variables might contain multicollinearity, which will affect the p-values. So, we need to deal with multicollinearity and check the other assumptions of linear regression first, and then look at the p-values.

Checking Linear Regression Assumptions:

- 1. No Multicollinearity
- 2. Mean of residuals should be 0
- 3. No Heteroscedasticity
- 4. Linearity of variables

Owner Type Third

dtype: float64

5. Normality of error terms

Test for Multi-colinerarity

```
In [183... from statsmodels.stats.outliers influence import variance inflation factor
         vif_series1 = pd.Series(
             [variance inflation factor(X.values, i) for i in range(X.shape[1])], index=X.columns
         print("VIF Scores: \n\n{}\n".format(vif_series1))
        VIF Scores:
                                    7629.495563
         const
        Unnamed: 0
                                      1.006295
        Age_of_Car
                                       2.161840
        Kilometers_Driven
                                       1.934936
        Mileage
                                       3.489832
         Engine
                                     8.339316
        Power
                                       7.722786
                                   279.130380
        Name Audi
                                   303.807552
        Name BMW
        Name Bentley
                                      3.045368
        Name Chevrolet
                                   150.502278
                                    18.187907
39.238450
        Name Datsun
        Name Fiat
        Name Force
                                      4.038609
                                   338.720203
        Name Ford
        Name Hindustan
                                       2.014152
        Name Honda
                                   676.754533
                                1107.016577
        Name Hyundai
        Name_ISUZU
                                      4.043979
        Name_Isuzu
                                      3.032690
        Name_Jaguar
                                     49.525590
                                    20.262048
        Name_Jeep
        Name_Lamborghini
                                      2.014608
                                     68.353416
        Name Land
        Name Mahindra
                                    320.478849
        Name Maruti
                                  1171.137374
                                   366.713732
        Name_Mercedes-Benz
        Name Mini
                                      32.339617
        Name Mitsubishi
                                     37.230289
        Name Nissan
                                   117.467956
        Name OpelCorsa
                                      2.014707
                                     20.296725
        Name Porsche
        Name Renault
                                   168.120437
        Name Skoda
                                   199.970070
        Name Smart
                                      2.021905
                                   224.434773
        Name Tata
        Name Toyota
                                   478.338904
        Name Volkswagen
                                   359.866054
                                    29.353022
        Name Volvo
        Location Bangalore
                                       2.482514
        Location Chennai
                                      2.965172
                                      3.502153
        Location Coimbatore
        Location Delhi
                                       3.115341
        Location_Hyderabad
                                      3.734260
        Location Jaipur
                                      2.674546
                                      3.494423
        Location Kochi
        Location_Kolkata
                                       3.134109
                                      3.947901
        Location_Mumbai
        Location Pune
                                      3.460740
                                    31.125435
        Fuel_Type_Diesel
        Fuel_Type_Electric
Fuel_Type_LPG
                                    1.045131
1.211395
        _____Tecnot
Transmission_Manual
         Fuel Type Petrol
                                     31.636694
                                      2.310319
        Owner_Type_Fourth & Above
Owner_Type_Second
                                       1.015855
                                      1.180549
```

1.118845

Observations:

- 1. Some of the Name columns have high VIF values, values greater than 10.
- 2. Fuel_type_Diesel and Petrol have high VIF values (31).
- 3. Name_Maruti has the highest VIF value of 1170.

```
In [184... # we drop the one with the highest vif values and check the adjusted R-squared
            X_train2 = X_train1.drop("Name_Maruti", axis=1)
            vif_series2 = pd.Series(
                 [variance_inflation_factor(X_train2.values, i) for i in range(X_train2.shape[1])],
                 index=X_train2.columns,
            print("VIF Scores: \n\n{}\n".format(vif_series2))
           VIF Scores:
           const
                                               375.615738
           Unnamed: 0
                                                1.009592
           Age of Car
                                               2.173371
           Kilometers_Driven
                                                1.937204
           Mileage
                                                 3.496700
                                               8.280492
           Engine
           Power
                                                7.548324
                                               2.020632
           Name_Audi
           Name BMW
                                                 2.253541
                                               1.027349
           Name Bentley
           Name Chevrolet
                                               1.120779
                                                1.018953
           Name Datsun
           Name Fiat
                                                 1.036420
                                                1.013269
           Name Force
           Name Ford
                                               1.288179
           Name Hindustan
                                                        NaN
                                             1.587932
1.741116
1.018323
           Name Honda
           Name Hyundai
           Name ISUZU
                                                1.017891
1.237926
           Name_Isuzu
           Name Jaguar
           Name_Jeep
                                                1.075760
           Name_Lamborghini
                                               1.025266
                                                1.266129
           Name Land
           Name_Mahindra
                                                 1.703093
                                          2.368496
           Name_Mercedes-Benz
                                                1.083688
           Name Mini
                                                1.092721
1.092437
           Name Mitsubishi
           Name Nissan
                                                1.006322
           Name OpelCorsa
           Name Porsche
                                               1.132191
                                               1.136538
1.283632
           Name Renault
           Name Skoda
                                               1.020896
           Name Smart
                                                1.157518
           Name Tata
                                               2.097303
           Name_Toyota
           Name_Volkswagen
                                                 1.283635
           Name Volvo
                                                1.133847
          Name_volvo
Location_Bangalore 2.431605
Location_Chennai 2.801673
Location_Coimbatore 3.360029
2.905687
          Location_Delhi 2.905687
Location_Hyderabad 3.503152
Location_Jaipur 2.540102
Location_Kochi 3.339118
Location_Kolkata 2.979559
Location_Mumbai 3.715593
Location_Pune 3.303077
Fuel_Type_Diesel 30.734370
Fuel_Type_Electric 1.064201
Fuel_Type_LPG 1.253517
Fuel_Type_Petrol 31.499005
Transmission_Manual 2.335851
Owner_Type_Fourth & Above 1.017545
           Owner_Type_Fourth & Above 1.017545
           Owner_Type_Second
                                                1.179906
```

Observation:

Owner_Type_Third

dtype: float64

1. Dropping the Name_Maruthi has seemed to help the VIF values.

1.115901

```
In [185...
```

```
olsmod1 = sm.OLS(y_train, X_train2)
olsres1 = olsmod1.fit()
print(olsres1.summary())
```

OLS Regression Results

	:===========		=========
Dep. Variable:	Price	R-squared:	0.738
Model:	0LS	Adj. R-squared:	0.735
Method:	Least Squares	F-statistic:	261.7
Date:	Fri, 21 May 2021	Prob (F-statistic):	0.00
Time:	14:14:54	Log-Likelihood:	-11879.
No. Observations:	5075	AIC:	2.387e+04
Df Residuals:	5020	BIC:	2.423e+04
Df Model:	54		

Covariance Type: nonrobust

Covariance Type:	nonrobust					
=======================================	coef	std err	======== t	P> t	[0.025	0.975]
const	7.2063	0.688	10.481	0.000	5.858	8.554
Unnamed: 0	0.0003	1.71e-05	14.814	0.000	0.000	0.000
Age_of_Car	-0.4608	0.016	-28.320	0.000	-0.493	-0.429
Kilometers_Driven	-9.745e-06	1.64e-06	-5.950	0.000	-1.3e-05	-6.53e-06
Mileage	-0.0994	0.015	-6.451	0.000	-0.130	-0.069
Engine	0.0010	0.000	5.301	0.000	0.001	0.001
Power	0.0283	0.002	13.237	0.000	0.024	0.033
Name_Audi	3.8264	0.258	14.834	0.000	3.321	4.332
Name_BMW	3.4378	0.264	13.031	0.000	2.921	3.955
Name_Bentley	2.5260	1.812	1.394	0.163	-1.026	6.078
Name_Chevrolet	-0.8902	0.265	-3.358	0.001	-1.410	-0.371
Name_Datsun	-1.7755	0.737	-2.408	0.016	-3.221	-0.330
Name_Fiat	-0.4439	0.496	-0.894	0.371	-1.417	0.529
Name_Force	-0.2772	1.469	-0.189	0.850	-3.157	2.603
Name_Ford	-0.5795	0.191	-3.037	0.002	-0.954	-0.205
Name_Hindustan Name_Honda	-6.803e-15 -0.4366	5.05e-15 0.146	-1.347 -2.994	0.178 0.003	-1.67e-14 -0.722	3.1e-15 -0.151
Name Hyundai	-0.2629	0.140	-2.994	0.003	-0.500	-0.131
Name ISUZU	-3.4892	1.804	-1.934	0.053	-7.025	0.047
Name Isuzu	0.4655	1.803	0.258	0.796	-3.070	4.001
Name Jaguar	3.4259	0.491	6.976	0.000	2.463	4.389
Name Jeep	3.1927	0.678	4.710	0.000	1.864	4.521
Name Lamborghini	5.7497	2.559	2.247	0.025	0.732	10.767
Name Land	4.8368	0.421	11.483	0.000	4.011	5.663
Name Mahindra	-0.7669	0.219	-3.502	0.000	-1.196	-0.338
Name Mercedes-Benz	3.1694	0.240	13.209	0.000	2.699	3.640
Name Mini	6.7279	0.550	12.236	0.000	5.650	7.806
Name Mitsubishi	0.4965	0.607	0.818	0.414	-0.694	1.687
Name Nissan	-0.5261	0.296	-1.778	0.075	-1.106	0.054
Name OpelCorsa	6.1127	2.535	2.411	0.016	1.142	11.083
Name Porsche	3.5250	0.695	5.069	0.000	2.162	4.888
Name Renault	-0.5356	0.241	-2.220	0.026	-1.008	-0.063
Name_Skoda	-0.4043	0.241	-1.676	0.094	-0.877	0.069
Name_Smart	-2.2407	2.554	-0.877	0.380	-7.247	2.766
Name_Tata	-1.3174	0.221	-5.958	0.000	-1.751	-0.884
Name_Toyota	1.6257	0.202	8.029	0.000	1.229	2.023
Name_Volkswagen	-0.7631	0.183	-4.170	0.000	-1.122	-0.404
Name_Volvo	2.5778	0.562	4.583	0.000	1.475	3.680
Location_Bangalore	0.2426	0.228	1.066	0.286	-0.204	0.689
Location_Chennai	-0.0699	0.218	-0.320	0.749	-0.498	0.358
Location_Coimbatore	0.1930	0.209	0.923	0.356	-0.217	0.603
Location_Delhi	-0.8447	0.213	-3.959	0.000	-1.263	-0.426
Location_Hyderabad	0.2308	0.205	1.125	0.261	-0.171	0.633
Location_Jaipur	-0.0933	0.226	-0.414	0.679	-0.535	0.349
Location_Kochi	-0.3412	0.210	-1.628	0.104	-0.752	0.070
Location_Kolkata	-1.0263	0.215	-4.783	0.000	-1.447	-0.606
Location_Mumbai	-0.3248	0.203	-1.596	0.110	-0.724	0.074
Location_Pune	-0.1801	0.209	-0.862	0.389	-0.590	0.229
<pre>Fuel_Type_Diesel Fuel Type Electric</pre>	1.4126 6.9883	0.394 1.844	3.584 3.790	0.000 0.000	0.640 3.374	2.185 10.603
Fuel Type LPG		0.896	0.835	0.404	-1.008	2.504
Fuel Type Petrol	0.7481	0.490	0.335			0.910
Transmission Manual	0.1264 -0.7725	0.400	-6.407	0.752 0.000	-0.657 -1.009	-0.536
Owner_Type_Fourth & Above		0.121	0.068	0.946	-1.610	1.725
Owner Type Second	-0.2431	0.105	-2.324	0.940	-0.448	-0.038
Owner Type Third	-0.4661	0.103	-1.668	0.020	-1.014	0.082
=======================================	==========	========	========	========	=1.014	0.002
Omnibus:	202.887	Durbin-Wa	tson:		2.014	
Prob(Omnibus):	0.000	Jarque-Be			631.576	

 Omnibus:
 202.887
 Durbin-Watson:
 2.014

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 631.576

 Skew:
 0.049
 Prob(JB):
 7.16e-138

 Kurtosis:
 4.725
 Cond. No.
 1.14e+16

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.6e-19. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Observation:

1. Dropping the Maruti value has increased the Adjusted R-squared value.

```
# we drop the one with the highest vif values and check the adjusted R-squared
In [186...
         X_train3 = X_train2.drop("Fuel_Type_Diesel", axis=1)
         vif series2 = pd.Series(
             [variance inflation factor(X train3.values, i) for i in range(X train3.shape[1])],
             index=X_train3.columns,
         print("VIF Scores: \n\n{}\n".format(vif_series2))
        VIF Scores:
                                    263.935629
         const
        Unnamed: 0
                                     1.009571
                                      2.171764
        Age_of_Car
        Kilometers Driven
                                      1.936175
        Mileage
                                      3.493694
         Engine
                                      8.276285
        Power
                                      7.546950
        Name Audi
                                      2.016326
        Name BMW
                                      2.248770
        Name Bentley
                                     1.027338
        Name Chevrolet
                                      1.117814
        Name Datsun
                                      1.018793
        Name Fiat
                                     1.035719
        Name Force
                                      1.013213
        Name Ford
                                      1.280584
        Name Hindustan
                                           NaN
        Name Honda
                                     1.579944
        Name Hyundai
                                     1.728310
        Name_ISUZU
                                      1.018321
        Name_Isuzu
                                      1.017890
        Name_Jaguar
                                     1.237481
        Name_Jeep
                                     1.075376
        Name_Lamborghini
                                      1.025265
        Name Land
                                      1.265255
        Name Mahindra
                                     1.696692
        Name Mercedes-Benz
                                     2.364810
        Name Mini
                                      1.083105
        Name Mitsubishi
                                      1.092432
        Name Nissan
                                     1.089720
        Name_OpelCorsa
                                     1.006312
        Name Porsche
                                      1.132113
        Name Renault
                                      1.130976
        Name Skoda
                                     1.280291
        Name Smart
                                     1.020838
        Name Tata
                                      1.154024
        Name Toyota
                                      2.093541
        Name Volkswagen
                                     1.276603
        Name_Volvo
                                     1.133354
        Location_Bangalore
                                      2.431211
        Location Chennai
                                      2.801063
        Location Coimbatore
                                     3.359519
        Location Delhi
                                     2.905019
        Location Hyderabad
                                      3.501627
        Location Jaipur
                                     2.537576
        Location Kochi
                                     3.338707
        Location_Kolkata
                                     2.978139
        Location_Mumbai
                                      3.713202
        Location_Pune
                                      3.303057
        Fuel Type Electric
                                     1.018817
        Fuel_Type_LPG
                                     1.027701
         Fuel Type Petrol
                                      2.688654
        Transmission_Manual
                                      2.335844
         Owner Type Fourth & Above
                                     1.017527
        Owner_Type_Second
                                      1.179627
        Owner Type Third
                                      1.115711
        dtype: float64
```

- 1. Dropping the Diesel value has brought all VIF values significantly down.
- 2. Engine and Power have slighty high VIF value of 7 and 8 respectively.

```
In [187... olsmod2 = sm.OLS(y_train, X_train3)
    olsres2 = olsmod2.fit()
    print(olsres2.summary())
```

OLS Regression Results

ULS REGIESSIUM RESULTS					
Dep. Variable:	Price	R-squared:	0.737		
Model:	0LS	Adj. R-squared:	0.734		
Method:	Least Squares	F-statistic:	265.7		
Date:	Fri, 21 May 2021	Prob (F-statistic):	0.00		
Time:	14:14:55	Log-Likelihood:	-11885.		
No. Observations:	5075	AIC:	2.388e+04		
Df Residuals:	5021	BIC:	2.423e+04		
Df Model:	53				
Covariance Type:	nonrobust				
Df Residuals: Df Model:	5021 53 nonrobust		2.423e+04		

	coef	std err	t	P> t	[0.025	0.975]
const	8.5498	0.577	14.817	0.000	7.419	9.681
Unnamed: 0	0.0003	1.71e-05	14.780	0.000	0.000	0.000
Age of Car	-0.4624	0.016	-28.395	0.000	-0.494	-0.430
Kilometers Driven	-9.61e-06	1.64e-06	-5.862	0.000	-1.28e-05	-6.4e-06
Mileage	-0.1010	0.015	-6.551	0.000	-0.131	-0.071
Engine	0.0010	0.000	5.376	0.000	0.001	0.001
Power	0.0284	0.002	13.271	0.000	0.024	0.033
Name Audi	3.8691	0.258	14.997	0.000	3.363	4.375
Name BMW	3.4813	0.264	13.194	0.000	2.964	3.999
Name Bentley	2.5047	1.814	1.381	0.167	-1.051	6.061
Name_Chevrolet	-0.8413	0.265	-3.174	0.002	-1.361	-0.322
Name_Datsun	-1.7423	0.738	-2.360	0.018	-3.189	-0.295
Name_Fiat	-0.3976	0.497	-0.800	0.424	-1.372	0.577
Name_Force	-0.2380	1.471	-0.162	0.871	-3.122	2.646
Name_Ford	-0.5270	0.190	-2.766	0.006	-0.900	-0.154
Name_Hindustan	-8.057e-15	6.61e-15	-1.218	0.223	-2.1e-14	4.91e-15
Name_Honda	-0.3995	0.146	-2.744	0.006	-0.685	-0.114
Name_Hyundai	-0.2258	0.120	-1.874	0.061	-0.462	0.010
Name_ISUZU	-3.4811	1.806	-1.928	0.054	-7.021	0.059
Name_Isuzu	0.4738	1.805	0.262	0.793	-3.066	4.013
Name_Jaguar	3.4592	0.492	7.037	0.000	2.496	4.423
Name_Jeep	3.2386	0.678	4.773	0.000	1.908	4.569
Name_Lamborghini	5.7563	2.562	2.247	0.025	0.733	10.779
Name_Land	4.8765	0.422	11.568	0.000	4.050	5.703
Name_Mahindra	-0.7188	0.219	-3.285	0.001	-1.148	-0.290
Name_Mercedes-Benz	3.2033	0.240	13.345	0.000	2.733	3.674
Name_Mini	6.7735	0.550	12.308	0.000	5.695	7.852
Name_Mitsubishi	0.5319	0.608	0.875	0.382	-0.660	1.724
Name_Nissan	-0.4733	0.296	-1.600	0.110	-1.053	0.107
Name_OpelCorsa	6.1412	2.538	2.419	0.016	1.165	11.118
Name_Porsche	3.5458	0.696	5.093	0.000	2.181	4.911
Name_Renault	-0.4751	0.241	-1.972	0.049	-0.947	-0.003
Name_Skoda	-0.3602	0.241	-1.493	0.135	-0.833	0.113
Name_Smart	-2.1719	2.557	-0.849	0.396	-7.184	2.840
Name_Tata	-1.2738	0.221	-5.763	0.000	-1.707	-0.840
Name_Toyota	1.6564	0.203	8.178	0.000	1.259	2.053
Name_Volkswagen	-0.7145	0.183	-3.911	0.000	-1.073	-0.356
Name_Volvo	2.6198	0.563	4.654	0.000	1.516	3.723
Location_Bangalore	0.2530	0.228	1.110	0.267	-0.194	0.700
Location_Chennai	-0.0584	0.219	-0.267	0.790	-0.487	0.370
Location_Coimbatore	0.2023	0.209	0.966	0.334	-0.208	0.613
Location_Delhi	-0.8563	0.214	-4.009	0.000	-1.275	-0.437
Location_Hyderabad	0.2462	0.205	1.198	0.231	-0.157	0.649
Location_Jaipur	-0.0678	0.226	-0.300	0.764	-0.510	0.375
Location_Kochi	-0.3495	0.210	-1.666	0.096	-0.761	0.062
Location_Kolkata	-1.0095	0.215	-4.701	0.000	-1.431	-0.588
Location_Mumbai	-0.3433	0.204	-1.686	0.092	-0.742	0.056
Location_Pune	-0.1819	0.209	-0.870	0.384	-0.592	0.228
<pre>Fuel_Type_Electric Fuel Type LPG</pre>	5.6238	1.806	3.114	0.002	2.083	9.165
_ * · _	-0.6142	0.812	-0.756	0.449	-2.206	0.978
Fuel_Type_Petrol Transmission Manual	-1.2435	0.117	-10.635	0.000	-1.473	-1.014 -0.535
Owner Type Fourth & Above	-0.7718	0.121	-6.394	0.000	-1.008	
Owner Type Second	0.0703 -0.2488	0.852 0.105	0.083 -2.377	0.934	-1.599 -0.454	1.740 -0.044
Owner Type Third	-0.2488		-2.377	0.018	-0.454 -1.027	
				0.087 ======	======	0.069
Omnibus:	201.479	Durbin-Wa			2.013	
Proh(Omnibus):	െ ഒര	la raug. Da	era (IR).		625 270	

 Omnibus:
 201.479
 Durbin-Watson:
 2.013

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 625.279

 Skew:
 0.046
 Prob(JB):
 1.67e-136

 Kurtosis:
 4.717
 Cond. No.
 1.14e+16

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The smallest eigenvalue is 1.6e-19. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

```
In [188...
          X_train4 = X_train3.drop("Engine", axis=1)
          vif_series3 = pd.Series(
              [variance_inflation_factor(X_train4.values, i) for i in range(X_train4.shape[1])],
              index=X_train4.columns,
          print("VIF Scores: \n\n{}\n".format(vif_series3))
         VIF Scores:
```

const	203.087484
Unnamed: 0	1.009437
Age_of_Car	2.171142
Kilometers_Driven	1.933292
Mileage	2.875093
Power	4.584163
Name_Audi	2.005452
Name_BMW	2.245323
Name Bentley	1.024193
Name Chevrolet	1.117175
Name Datsun	1.018206
Name Fiat	1.033625
Name Force	1.012416
Name Ford	1.275100
Name Hindustan	NaN
Name Honda	1.571491
Name_Hyundai	1.722503
Name ISUZU	1.016563
Name Isuzu	1.012857
Name_Jaguar	1.237107
Name Jeep	1.070163
Name Lamborghini	1.024193
Name Land	1.024193
_	
Name_Mahindra	1.616945
Name_Mercedes-Benz	2.364229
Name_Mini	1.082880
Name_Mitsubishi	1.071009
Name_Nissan	1.084946
Name_OpelCorsa	1.006310
Name_Porsche	1.110225
Name_Renault	1.130176
Name_Skoda	1.278347
Name_Smart	1.011498
Name_Tata	1.152938
Name_Toyota	1.819513
Name_Volkswagen	1.276551
Name_Volvo	1.128738
Location_Bangalore	2.431160
Location Chennai	2.800673
Location Coimbatore	3.359499
Location Delhi	2.905012
Location Hyderabad	3.501461
Location Jaipur	2.537576
Location Kochi	3.338676
Location Kolkata	2.977845
Location Mumbai	3.712804
Location Pune	3.303000
Fuel_Type_Electric	1.013586
Fuel_Type_LPG	1.024585
Fuel_Type_Petrol	2.125654
Transmission Manual	2.335767
Owner_Type_Fourth & Above	1.017526
Owner_Type_Second	1.179485
Owner_Type_Third	1.115705
dtype: float64	1.113/03
utype. Ituatu4	

Observation:

- 1. Dropping engine has brought down all the high VIF values
- 2. All VIF values are now below 5 indicating no multi-colinearity
- 3. Power's VIF vlaue dropped to below 5.

OLS Regression Results

=======================================	=======================================		===========
Dep. Variable:	Price	R-squared:	0.737
Model:	0LS	Adj. R-squared:	0.734
Method:	Least Squares	F-statistic:	265.7
Date:	Fri, 21 May 2021	Prob (F-statistic):	0.00
Time:	14:14:56	Log-Likelihood:	-11885.
No. Observations:	5075	AIC:	2.388e+04
Df Residuals:	5021	BIC:	2.423e+04
Df Model:	53		
Covariance Type:	nonrobust		

Covariance Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]
const	8.5498	0.577	14.817	0.000	7.419	9.681
Unnamed: 0	0.0003	1.71e-05	14.780	0.000	0.000	0.000
Age of Car	-0.4624	0.016	-28.395	0.000	-0.494	-0.430
Kilometers_Driven	-9.61e-06	1.64e-06	-5.862	0.000	-1.28e-05	-6.4e-06
Mileage	-0.1010	0.015	-6.551	0.000	-0.131	-0.071
Engine	0.0010	0.000	5.376	0.000	0.001	0.001
Power	0.0284	0.002	13.271	0.000	0.024	0.033
Name_Audi	3.8691	0.258	14.997	0.000	3.363	4.375
Name_BMW	3.4813	0.264	13.194	0.000	2.964	3.999
Name_Bentley	2.5047	1.814	1.381	0.167	-1.051	6.061
Name_Chevrolet	-0.8413	0.265	-3.174	0.002	-1.361	-0.322
Name_Datsun	-1.7423	0.738	-2.360	0.018	-3.189	-0.295
Name_Fiat	-0.3976	0.497	-0.800	0.424	-1.372	0.577
Name_Force	-0.2380	1.471	-0.162	0.871	-3.122	2.646
Name_Ford	-0.5270	0.190	-2.766	0.006	-0.900	-0.154
Name_Hindustan	-8.057e-15	6.61e-15	-1.218	0.223	-2.1e-14	4.91e-15
Name_Honda	-0.3995	0.146	-2.744	0.006	-0.685	-0.114
Name_Hyundai	-0.2258	0.120	-1.874	0.061	-0.462	0.010
Name_ISUZU	-3.4811	1.806	-1.928	0.054	-7.021	0.059
Name_Isuzu	0.4738	1.805	0.262	0.793	-3.066	4.013
Name_Jaguar	3.4592	0.492	7.037	0.000	2.496	4.423
Name_Jeep	3.2386	0.678	4.773	0.000	1.908	4.569
Name_Lamborghini	5.7563	2.562	2.247	0.025	0.733	10.779
Name_Land	4.8765	0.422	11.568	0.000	4.050	5.703
Name_Mahindra	-0.7188	0.219	-3.285	0.001	-1.148	-0.290
Name_Mercedes-Benz	3.2033	0.240	13.345	0.000	2.733	3.674
Name_Mini	6.7735	0.550	12.308	0.000	5.695	7.852
Name_Mitsubishi	0.5319	0.608	0.875	0.382	-0.660	1.724
Name_Nissan	-0.4733	0.296	-1.600	0.110	-1.053	0.107
Name_OpelCorsa	6.1412	2.538	2.419	0.016	1.165	11.118
Name_Porsche	3.5458	0.696	5.093	0.000	2.181	4.911
Name_Renault	-0.4751	0.241	-1.972	0.049	-0.947	-0.003
Name_Skoda	-0.3602	0.241	-1.493	0.135	-0.833	0.113
Name_Smart	-2.1719	2.557	-0.849	0.396	-7.184 -1.707	2.840 -0.840
Name_Tata	-1.2738	0.221 0.203	-5.763 8.178	0.000	1.259	
Name_Toyota Name Volkswagen	1.6564 -0.7145	0.183	-3.911	0.000	-1.073	2.053 -0.356
Name_Volvo	2.6198	0.163	4.654	0.000 0.000	1.516	3.723
Location_Bangalore	0.2530	0.228	1.110	0.267	-0.194	0.700
Location_bangatore	-0.0584	0.219	-0.267	0.790	-0.194	0.700
Location_cnemnar	0.2023	0.209	0.966	0.334	-0.208	0.613
Location_ColmbatorC	-0.8563	0.214	-4.009	0.000	-1.275	-0.437
Location Hyderabad	0.2462	0.205	1.198	0.231	-0.157	0.649
Location Jaipur	-0.0678	0.226	-0.300	0.764	-0.510	0.375
Location Kochi	-0.3495	0.210	-1.666	0.096	-0.761	0.062
Location Kolkata	-1.0095	0.215	-4.701	0.000	-1.431	-0.588
Location Mumbai	-0.3433	0.204	-1.686	0.092	-0.742	0.056
Location Pune	-0.1819	0.209	-0.870	0.384	-0.592	0.228
Fuel Type Electric	5.6238	1.806	3.114	0.002	2.083	9.165
Fuel Type LPG	-0.6142	0.812	-0.756	0.449	-2.206	0.978
Fuel Type Petrol	-1.2435	0.117	-10.635	0.000	-1.473	-1.014
Transmission Manual	-0.7718	0.121	-6.394	0.000	-1.008	-0.535
Owner Type Fourth & Above		0.852	0.083	0.934	-1.599	1.740
Owner Type Second	-0.2488	0.105	-2.377	0.018	-0.454	-0.044
Owner_Type_Third	-0.4791	0.280	-1.713	0.087	-1.027	0.069
Omnibus:	======================================	 Durbin-Wa	======== atson:		2.013	
Proh(Omnihus):	0 000		era (IR):		625 279	

0.000 Jarque-Bera (JB): 625.279 0.046 Prob(JB): 1.67e-136 Prob(Omnibus): Skew: 4.717 Cond. No. 1.14e+16 Kurtosis:

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The smallest eigenvalue is 1.6e-19. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Observation:

- 1. Since multi-colinerity has been tested, drop variables where value of p is greater than 0.05.
- 2. Since none of the of the individual values are greater than 0.05, no variable has to be dropped.
- 3. No categorical variables will be removed even though their p values are greater than 0.05 because it is from a categorical variable and there are other levels of this category that are significant.

Mean of residuals should be 0.

Out[190... 1.9748264764032868e-11

Observation:

1. Mean of residuals is close to 0.

Test for linearity

```
In [191... residual = olsres3.resid
    fitted = olsres3.fittedvalues

In [192... sns.set_style("whitegrid") #residuals vs fitted plot
    sns.residplot(fitted, residual, color="purple", lowess=True)
    plt.xlabel("Fitted Values")
    plt.ylabel("Residuals")
    plt.title("Residual vs Fitted plot")
    plt.show()
```


Observations:

- 1. Scatter plot shows the distribution of residuals (errors) vs fitted values (predicted values).
- 2. If there exist any pattern in this plot, we consider it as signs of non-linearity in the data and a pattern means that the model doesn't capture non-linear effects.
- 3. We see no pattern in the plot above. Hence, the assumption is satisfied.

Test for Normality

It can be checked via QQ Plot, Residuals following normal distribution will make a straight line plot otherwise not.

Other test to check for normality: Shapiro-Wilk test.

```
In [193...
sns.distplot(residual) #desnisty plot
plt.title("Normality of residuals")
plt.show()
```



```
0.10
```

```
import pylab
import scipy.stats as stats

stats.probplot(residual, dist="norm", plot=pylab)# probabilty plot
plt.show()
```



```
In [195... stats.shapiro(residual) #shapiro test
```

out[195... ShapiroResult(statistic=0.9686605334281921, pvalue=6.801046498356176e-32)

- The residuals are not normal as per shapiro test, but as per QQ plot they are approximately normal.
- The issue with shapiro test is when dataset is big, even for small deviations, it shows data as not normal.
- · Hence we go with the QQ plot and say that residuals are normal.
- We can try to treat data for outliers and see if that helps in further normalizing the residual curve.

TEST FOR HOMOSCEDASTICITY

For goldfeldquandt test, the null and alternate hypotheses are as follows:

Null hypothesis: Residuals are homoscedastic Alternate hypothesis: Residuals have heteroscedasticity

```
import statsmodels.stats.api as sms
from statsmodels.compat import lzip

name = ["F statistic", "p-value"]
test = sms.het_goldfeldquandt(residual, X_train4)
lzip(name, test)
```

```
Out[196... [('F statistic', 1.0625766900919138), ('p-value', 0.06509422887655633)]
```

Since p-value > 0.05, we can say that the residuals are homoscedastic. This assumption is therefore valid in the data.

Now we have checked all the assumptions and they are satisfied, so we can move towards the prediction part.

Predicting on the test data

```
In [197... X_train4.columns X_train4.shape
```

```
Out[197... (5075, 54)
```

In [198… # Selecting columns from test data that we used to create our final model

```
X_test_final = X_test[X_train4.columns]
           X test final.head()
Out[198...
                const Unnamed:
                                Age_of_Car Kilometers_Driven Mileage Power Name_Audi Name_BMW Name_Bentley Name_Chevrolet ... Location
          2952
                          2952
                                                     40000
                                                              20.77
                                                                    88.80
                                                                                   0
                                                                                                            0
          1634
                  1.0
                          1634
                                       4.0
                                                     68193
                                                              17.11 174.33
                                                                                              0
                                                                                                            0
                                                                                                                           0 ...
                                                                                              0
                                                                                                            0
          2622
                  1.0
                          2622
                                       8.0
                                                     60000
                                                              19.40
                                                                     86 80
                                                                                   0
                                                                                                                           0 ...
          7048
                          7048
                                                     41200
                                                              28.09
                                                                    88.50
                                                                                   0
                                                                                               0
                                                                                                            0
                                                                                                                           0 ...
                  1.0
                                       3.0
          6732
                  1.0
                          6732
                                       3.0
                                                     35000
                                                              24.30
                                                                    88.50
                                                                                   0
                                                                                              0
                                                                                                            0
                                                                                                                           0 ...
         5 rows × 54 columns
          # Checking model performance on train set (seen 70% data)
In [206...
           print("Train Performance\n")
           print(y train)
           model_perf(olsres3, X_train4.values, y_train)
          Train Performance
                     Price
          952
                  3.650000
                  3.500000
          2264
                  3.000000
          1504
                  9.479468
          7210
                  2.500000
          5538
          3772
                  4.150000
                 5.900000
          5191
                12.500000
          5226
          5390
                 2.250000
                  4.750000
          860
          [5075 rows x 1 columns]
                MAE
                        MAPE
                                 RMSE
                                            R^2
Out[206...
          0 1.888012 32.127677 2.523985 0.735674
In [200...
           # Checking model performance on test set (seen 70% data)
           print("Test Performance\n")
           model_perf(olsres3, X_test_final.values, y_test)
          Test Performance
                MAE
                       MAPE
                                 RMSE
                                           R^2
          0 1.905936 32.76904 2.521289 0.739767
```

Observation:

- 1. Now we can see that the model has low test and train RMSE and MAE, and both the errors are comparable. So, our model is not suffering from overfitting.
- 2. The model is able to explain 73.9% of the variation on the test set, which is very good.
- 3. The MAPE on the test set suggests we can predict within 32% of the price model.

```
In [201...
           # let us print the model summary
           olsmod3 = sm.OLS(y_train, X_train4)
           olsres3 = olsmod3.\overline{f}it()
           print(olsres3.summary())
```

```
OLS Regression Results
______
Dep. Variable:
                          Price
                                 R-squared:
                                                            0.736
Model:
                            0LS
                                 Adj. R-squared:
                                                            0.733
Method:
                    Least Squares
                                 F-statistic:
                                                            268.8
                 Fri, 21 May 2021
Date:
                                 Prob (F-statistic):
                                                             0.00
Time:
                        14:15:03
                                 Log-Likelihood:
                                                           -11900.
No. Observations:
                           5075
                                                         2.391e + 04
                                 ATC:
Df Residuals:
                           5022
                                 BIC:
                                                         2.425e+04
```

Covariance Type:	nonrobust	
Df Model:	52	

covariance Type:	1011100051					
	coef	std err	t	P> t	[0.025	0.975]
const	10.0394	0.508	19.780	0.000	9.044	11.034
Unnamed: 0	0.0003	1.72e-05	14.802	0.000	0.000	0.000
Age_of_Car	-0.4638	0.016	-28.411	0.000	-0.496	-0.432
Kilometers_Driven	-9.27e-06	1.64e-06	-5.643	0.000	-1.25e-05	-6.05e-06
Mileage	-0.1359	0.014	-9.689	0.000	-0.163	-0.108
Power	0.0357	0.002	21.291	0.000	0.032	0.039
Name_Audi	3.7672	0.258	14.602	0.000	3.261	4.273
Name_BMW	3.4258	0.264	12.958	0.000	2.907	3.944
Name_Bentley	3.0443	1.816	1.676	0.094	-0.516	6.605
Name_Chevrolet	-0.8754	0.266	-3.295	0.001	-1.396	-0.354
Name_Datsun	-1.6471	0.740	-2.226	0.026	-3.098	-0.196
Name_Fiat	-0.5177	0.498	-1.040	0.298	-1.494	0.458
Name_Force	-0.0162	1.474	-0.011	0.991	-2.907	2.874
Name_Ford	-0.4599	0.191	-2.413	0.016	-0.834	-0.086
Name_Hindustan	3.839e-14	1.48e-14	2.599	0.009	9.43e-15	6.74e-14
Name_Honda	-0.3423	0.146 0.121	-2.350 -2.183	0.019	-0.628 -0.500	-0.057 -0.027
Name_Hyundai	-0.2633	1.809	-2.183 -1.701	0.029	-6.625	
Name_ISUZU Name Isuzu	-3.0777 1.1564	1.806	0.640	0.089 0.522	-2.384	0.469 4.697
Name Jaquar	3.5052	0.493	7.112	0.000	2.539	4.097
Name Jeep	2.9846	0.493	4.397	0.000	1.654	4.315
Name Lamborghini	6.2018	2.568	2.415	0.016	1.167	11.236
Name Land	4.8332	0.423	11.436	0.000	4.005	5.662
Name Mahindra	-0.4637	0.214	-2.165	0.030	-0.884	-0.044
Name Mercedes-Benz	3.2235	0.241	13.394	0.000	2.752	3.695
Name Mini	6.7308	0.552	12.198	0.000	5.649	7.813
Name Mitsubishi	0.9896	0.604	1.640	0.101	-0.194	2.173
Name Nissan	-0.3680	0.296	-1.243	0.214	-0.948	0.212
Name OpelCorsa	6.1597	2.546	2.420	0.016	1.169	11.150
Name Porsche	4.0662	0.691	5.882	0.000	2.711	5.421
Name Renault	-0.5095	0.241	-2.110	0.035	-0.983	-0.036
Name_Skoda	-0.3097	0.242	-1.281	0.200	-0.784	0.164
Name_Smart	-3.4868	2.552	-1.366	0.172	-8.490	1.516
Name_Tata	-1.2374	0.222	-5.585	0.000	-1.672	-0.803
Name_Toyota	2.0504	0.189	10.829	0.000	1.679	2.422
Name_Volkswagen	-0.7208	0.183	-3.935	0.000	-1.080	-0.362
Name_Volvo	2.4267	0.563	4.308	0.000	1.322	3.531
Location_Bangalore	0.2586	0.228	1.132	0.258	-0.189	0.706
Location_Chennai	-0.0445	0.219	-0.203	0.839	-0.474	0.385
Location_Coimbatore	0.2050	0.210	0.976	0.329	-0.207	0.617
Location_Delhi	-0.8545	0.214	-3.990	0.000	-1.274	-0.435
Location_Hyderabad	0.2538	0.206	1.232	0.218	-0.150	0.658
Location_Jaipur	-0.0676	0.226	-0.299	0.765	-0.511	0.376
Location_Kochi	-0.3461	0.210	-1.645	0.100	-0.758 -1.420	0.066
Location_Kolkata Location Mumbai	-0.9980	0.215	-4.635 1.636	0.000		-0.576
Location Pune	-0.3319 -0.1773	0.204 0.210	-1.626 -0.845	0.104 0.398	-0.732 -0.588	0.068 0.234
Fuel_Type_Electric	4.9280	1.807	2.728	0.006	1.386	8.470
Fuel Type LPG	-0.8545	0.813	-1.051	0.293	-2.448	0.739
Fuel Type Petrol	-1.5312	0.104	-14.687	0.233	-1.736	-1.327
Transmission Manual	-0.7681	0.121	-6.345	0.000	-1.005	-0.531
Owner Type Fourth & Above	0.0654	0.854	0.077	0.939	-1.609	1.739
Owner Type Second	-0.2550	0.105	-2.429	0.015	-0.461	-0.049
Owner Type Third	-0.4825	0.280	-1.720	0.085	-1.032	0.067
=======================================						
Omnibus:	198.115	Durbin-Wat	tson:		2.012	
Prob(Omnibus):	0.000	Jarque-Bei	ra (JB):		612.123	
Skew:	0.029	Prob(JB):			.20e-133	
Kurtosis:	4.700	Cond. No.		1	L.14e+16	
					======	

Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.6e-19. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Conclusion

olsres3 is our final model which follows all the assumptions, and can be used for interpretations.

- 1. Owner Type, Transmission, Fuel type, location, km driven, age of car all decrease as price increases and vice versa as indicated by negative coeficent.
- 2. Fuel_type, Location and Name of the cars were big indicators in determining price, as change in any of these variables changed the

- overall r-squared and adjusted r-squared values.
- 3. Increase in power, increases price value by 0.0357, which is about Rs.3570.
- 4. As age of car increased the price would decrease by Rs 46,380.
- 5. As mileage of the car increase, the price would again decrease by 0.1359 which is about Rs. 13, 590.
- 6. As the number of owners increased for a car, for the second and third car as the price would decrease from Rs 25500 to s 48250, but for owners 4 and above, the price would increase by Rs 6540.
- 7. As a car is indentified as Electric fuel type the price of the car would increase by Rs. 49,280
- 8. For high end luxury cars such as Volvo, Porsche, Lamborghini, BMW, Audi etc, the price would increase.
- 9. For low end cars, such as Maruthi, Hyundai, Honda etc the price would decrease.
- 10. Locations such as Coimbatore and Kochi had higher price increase as compared to other locations such as Kolkata and Mumbai where prices generally decreased.

Recommendation

- 1. Age of car, mileage and and kilometers driven have all negative impact on the price of car, i.e as any of these values increases the price of the car will significantly reduce.
- 2. Name of the car is a big indicator in how price is determined, as high-end luxury cars like Lamborghini and Porsche are much higher priced as compared to low-end budget cars like Maruthi or Honda.
- 3. Location wise the most priced cars are sold in Coimbatore and Kochi, while the low-end, low-price cars are sold in Kolkata, Mumbai etc.
- 4. Electric cars are much more expensive than any other fuel types and it will be better to sell electric cars as compared to Petrol or Diesel although both these fuel types heavily determine the price.
- 5. Owner type is also a big indication of the pricing, selling first-hand cars with no previous owners will yield higher price compared to preowned cars.
- 6. The number of seats did not have much of an impact in deciding the price of the car