Segmentation d'images

Objectifs

Introduction à la segmentation d'images : entraînement + évaluation

Explorer la quantification d'un modèle et l'intégration dans une application mobile

https://github.com/Marouan-git/image_segmentation

Applications

Identifier des cellules (e.g cellules sanguines)

Zones d'atterrissage pour les drones

Véhicules autonomes

Identification des mauvaises herbes

Principe

Image

Mask

1 pixel = 1 classe

Image segmentée

conv2

deconv2

deconv2

deconv1

conv4

Modèle CNN

Evaluation

https://learnopencv.com/intersection-over-union-iou-in-object-detection-and-segmentation/

1 = correspondance parfaite

0 = aucune correspondance

Intégration

Quantification

Réduire la taille du modèle

Accélérer l'inférence

Tout en conservant un maximum de précision

$$r = S(q - Z)$$
 $S = (r_{\text{max}} + r_{\text{min}})/(q_{\text{max}} + q_{\text{min}})$ $r_{\text{min}} = S(q_{\text{min}} - Z)$

 $Z = q_{\min} - r_{\min}/S$