1	Apr	olications linéaires et opérations.	2
	1.1	Définition et premières propriétés.	2
	1.2	Exemples.	
	1.3	Noyau et image d'une application linéaire.	
	1.4	Structure de \mathbb{K} -espace vectoriel de $\mathscr{L}(E,F)$	
	1.5	Composition des applications linéaires.	
	1.6	Isomorphismes	
	1.7	Deux modes de définition d'une application linéaire.	
2	Endomorphismes.		
	2.1	L'anneau $\mathscr{L}(E)$	8
	2.2	Groupe linéaire	
	2.3	Homothéties	9
	2.4	Projecteurs	
	2.5	Symétries	
3	Applications linéaires et dimension finie.		
	3.1	Image d'une base	13
	3.2	Isomorphismes et dimension finie	
	3.3	Rang d'une application linéaire	
	3.4	Théorème du rang	
4	Hyperplans.		17
	4.1	Formes linéaires et hyperplans	17
	4.2	Intersection d'hyperplans	
Ex	Exercices		

On a déjà défini dans le cours $Espaces\ vectoriels$ les notions d'application linéaire, d'image et de noyau. Les énoncés correspondants sont répétés ici, afin d'obtenir un chapitre autonome.

1 Applications linéaires et opérations.

On se donne E, F et G trois \mathbb{K} -espaces vectoriels.

1.1 Définition et premières propriétés.

Définition 1.

On appelle application linéaire entre E et F une application $u: E \to F$ telle que

$$\forall x, y \in E \quad \forall \lambda, \mu \in \mathbb{K} \qquad u(\lambda x + \mu y) = \lambda u(x) + \mu u(y).$$

(l'image de la combinaison linéaire, c'est la combinaison linéaire des images)

Une application linéaire de E dans E est appelée **endomorphisme** de E.

Une application linéaire de E dans \mathbb{K} (vu comme \mathbb{K} -espace vectoriel) est une forme linéaire.

Remarque. Il est équivalent de définir la linéarité d'une application $u: E \to F$ à l'aide des propriétés

- 1. $\forall x, y \in E \quad u(x+y) = u(x) + u(y)$ (propriété de morphisme de groupes additifs)
- 2. $\forall x \in E \ \forall \lambda \in \mathbb{K} \ u(\lambda \cdot x) = \lambda \cdot u(x)$ (propriété d'homogénéité).

Certains auteurs préfèrent n'utiliser qu'un scalaire dans leur définition de la linéarité. Il est assez clair en effet que si $u: E \to F$ est une application entre deux \mathbb{K} -espaces vectoriels,

 $u: E \to F$ est linéaire si et seulement si $\forall x, y \in E \ \forall \lambda \in \mathbb{K} \ u(\lambda x + y) = \lambda u(x) + u(y)$.

Remarque. S'il nous faut justifier qu'une certaine application u définie sur E est un endomorphisme de E, on commencera par vérifier sa linéarité puis, si ce n'est pas clair, on expliquera pourquoi l'image par u d'un élément de E est bien un élément de E.

Notation.

L'ensemble des applications linéaires de E vers F est noté

$$\mathcal{L}(E,F)$$

Plutôt que $\mathcal{L}(E,E)$, l'ensemble des endomorphismes de E est noté $\mathcal{L}(E)$.

Proposition 2.

Soit $u \in \mathcal{L}(E, F)$. Alors,

- 1. $u(0_E) = 0_F$.
- 2. $\forall x \in E$, u(-x) = -u(x).
- 3. Pour tout entier $n \in \mathbb{N}^*$, toute famille $(x_1, \ldots, x_n) \in E^n$ et toute famille $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$,

$$u\left(\sum_{i=1}^{n} \lambda_i x_i\right) = \sum_{i=1}^{n} \lambda_i u(x_i).$$

Soient deux applications $u: E \to F$ et $v: E \to F$ (non forcément linéaires). On rappelle que

$$u = v$$
 signifie: $\forall x \in E \ u(x) = v(x)$.

Voici deux conditions suffisantes (aussi nécessaires!) pour garantir l'égalité de deux applications linéaires.

Proposition 3.

Soient $u, v \in \mathcal{L}(E, F)$.

- 1. Si u et v coïncident sur une famille génératrice de E, alors u=v.
- 2. Si u et v coïncident sur deux sous-espaces supplémentaires dans E, alors u = v.

Preuve de 2.

On suppose qu'il existe dans l'espace E deux sous-espaces supplémentaires E_1 et E_2 .

On suppose en outre que $u_{|E_1} = v_{|E_1}$ et $u_{|E_2} = v_{|E_2}$. Montrons que u et v coïncident sur tous les vecteurs de E.

Soit $x \in E$.

$$\exists (x_1, x_2) \in E_1 \times E_2 \quad x = x_1 + x_2.$$

Par linéarité de u et de v, on a

$$u(x) = u(x_1) + u(x_2)$$
 et $v(x) = v(x_1) + v(x_2)$.

Or, puisque u et v coïncident sur E_1 et E_2 , on a $u(x_1)=v(x_1)$ et $u(x_2)=v(x_2)$. Ceci amène bien que u(x)=v(x). \square

Proposition 4 (Image directe/réciproque d'un s.e.v. par une application linéaire).

Soit $u \in \mathcal{L}(E, F)$.

- 1. Si G est un sous-espace vectoriel de E, alors u(G) est un sous-espace vectoriel de F.
- 2. Si H est un sous-espace vectoriel de F, alors $u^{-1}(H)$ est un sous-espace vectoriel de E.

1.2 Exemples.

• Exemples explicites.

Dans le cours *Espaces vectoriels*, on a donné les exemples ci-dessous.

$$u: \left\{ \begin{array}{ccc} M_{n,p}(\mathbb{K}) & \to & M_{p,n}(\mathbb{K}) \\ M & \mapsto & M^{\top} \end{array} \right., \qquad \widetilde{D}: \left\{ \begin{array}{ccc} \mathcal{D}(I,\mathbb{R}) & \to & \mathcal{F}(I,\mathbb{R}) \\ f & \mapsto & f' \end{array} \right.$$

sont des applications linéaires.

$$D: \left\{ \begin{array}{ccc} \mathbb{K}[X] & \to & \mathbb{K}[X] \\ P & \mapsto & P' \end{array} \right.$$

est un endomorphisme de $\mathbb{K}[X]$, et, pour a et b deux réels,

$$\operatorname{tr}: \left\{ \begin{array}{ccc} M_n(\mathbb{K}) & \to & \mathbb{K} \\ M & \mapsto & \operatorname{tr}(M) \end{array} \right., \qquad \varphi: \left\{ \begin{array}{ccc} \mathcal{C}([a,b],\mathbb{R}) & \to & \mathbb{R} \\ f & \mapsto & \int_a^b f(x) \mathrm{d}x \end{array} \right., \quad \Phi_a: \left\{ \begin{array}{ccc} \mathbb{K}[X] & \to & \mathbb{K} \\ P & \mapsto & P(a) \end{array} \right.$$

sont des formes linéaires.

L'exemple ci-dessous sera sur le devant de la scène dans le cours consacré au lien entre les applications linéaires en dimension finie et les matrices.

Exemple 5 (Application linéaire canoniquement associée à une matrice).

Soit $A \in M_{n,p}(\mathbb{K})$. On lui associe l'application ci-dessous, qui est linéaire, et qui sera appelée application linéaire canoniquement associée à A:

$$f: \left\{ \begin{array}{ccc} M_{p,1}(\mathbb{K}) & \to & M_{n,1}(\mathbb{K}) \\ X & \mapsto & AX \end{array} \right.$$

• Exemples plus abstraits.

Pour tout espace vectoriel E, Id_E est un endomorphisme de E.

Pour tous E et F espaces vectoriels, l'application nulle $N: \left\{ \begin{array}{ccc} E & \to & F \\ x & \mapsto & 0_F \end{array} \right.$ est linéaire

Et enfin, un exemple de forme linéaire que l'on retrouvera en fin de cours.

Proposition 6 (Forme coordonnée).

Soit $(e_i)_{i\in I}$ une base d'un \mathbb{K} espace vectoriel E.

Fixons $i \in I$. Pour tout $x \in E$, on note $e_i^*(x)$ la coordonnée de x sur e_i .

L'application
$$e_i^*: \left\{ \begin{array}{ccc} E & \to & \mathbb{K} \\ x & \mapsto & e_i^*(x) \end{array} \right.$$
 est une forme linéaire.

1.3 Noyau et image d'une application linéaire.

Définition 7.

Soit $u \in \mathcal{L}(E, F)$.

1. On appelle **image** de u, et on note $\operatorname{Im} u$ la partie de F définie par :

$$\operatorname{Im} u = \{ u(x), \ x \in E \} = \{ y \in F \mid \exists x \in E \ y = u(x) \}.$$

2. On appelle **noyau** de u et on note Ker u la partie de E définie par :

$$\text{Ker } u = \{ x \in E \mid u(x) = 0_F \}.$$

Proposition 8.

Soit $u \in \mathcal{L}(E, F)$.

- 1. Keru est un sous-espace vectoriel de E et u est injective si et seulement si Ker $u = \{0_E\}$.
- 2. Im u est un sous-espace vectoriel de F et u est surjective si et seulement si $\operatorname{Im} u = F$.

Proposition 9 (Image d'une famille génératrice).

Soit $u \in \mathcal{L}(E, F)$, où on suppose que E est engendré par une famille $(x_i)_{i \in I}$. La famille $(u(x_i))_{i \in I}$ est une famille génératrice de Im(u):

$$\operatorname{Im}(u) = \operatorname{Vect}(u(x_i))_{i \in I}$$
.

Exemple 10.

Soit $n \in \mathbb{N}$ et $E = \mathbb{K}_n[X]$. On considère l'application

$$f: P(X) \mapsto P(2X) - P(X).$$

- 1. Montrer que f est un endomorphisme de E.
- 2. Donner une base de Im f.
- 3. Donner une base de Ker f.

1.4 Structure de \mathbb{K} -espace vectoriel de $\mathcal{L}(E, F)$.

Définition 11.

Soient E et F deux \mathbb{K} -espaces vectoriels. Soient $u, v \in F^E$ deux applications, et $\lambda \in \mathbb{K}$. On définit la **somme** de u et v, notée u + v et le **produit par un scalaire** $\lambda \cdot u$ comme les applications

$$u+v: \left\{ \begin{array}{ccc} E & \to & F \\ x & \mapsto & (u+v)(x) := u(x) + v(x) \end{array} \right. \quad \text{et} \quad \lambda \cdot u: \left\{ \begin{array}{ccc} E & \to & F \\ x & \mapsto & (\lambda \cdot u)(x) := \lambda u(x) \end{array} \right. .$$

Remarque. La structure d'espace vectoriel de E n'intervient nullement : on pourrait poser les mêmes définitions sur F^{Ω} , pour tout ensemble non vide Ω .

Théorème 12.

Muni des lois + et \cdot qui viennent d'être définies, F^E est un \mathbb{K} -espace vectoriel.

L'ensemble $\mathcal{L}(E,F)$ est un sous-espace vectoriel de F^E . C'est donc un K-espace vectoriel.

Preuve.

On laisse au lecteur la tâche ingrate de vérifier que la structure $(F^E, +, \cdot)$ satisfait les huit axiomes de notre définition de \mathbb{K} -espace vectoriel. Contentons-nous de préciser que le zéro de cet espace vectoriel est l'application constante

$$0_{F^E}: \left\{ \begin{array}{ccc} E & \to & F \\ x & \mapsto & 0_F \end{array} \right. .$$

Nous allons prouver soigneusement, en revanche, que $\mathcal{L}(E,F)$ est un sous-espace vectoriel de F^E .

- Le zéro de F^E , c'est-à-dire l'application nulle, est bien linéaire (cf exemple plus haut) : $0_{F^E} \in \mathcal{L}(E,F)$.
- Montrons que $\mathcal{L}(E,F)$ est stable par combinaison linéaire.

Pour cela, considérons deux applications linéaires $u, v \in \mathcal{L}(E, F)$ et $\alpha, \beta \in \mathbb{K}$. Montrons que $\alpha u + \beta v$ est linéaire. Pour cela, considérons x et y dans E, λ et μ dans \mathbb{K} . On a

$$(\alpha u + \beta v) (\lambda x + \mu y) = \alpha u(\lambda x + \mu y) + \beta v(\lambda x + \mu y)$$
 (def + et · dans F^E)

$$= \alpha (\lambda u(x) + \mu u(y)) + \beta (\lambda v(x) + \mu v(y))$$
 (linéarité de u et v)

$$= \lambda (\alpha u(x) + \beta v(x)) + \mu (\alpha u(y) + \beta v(y))$$

$$= \lambda (\alpha u + \beta v) (x) + \mu (\alpha u + \beta v) (y).$$

1.5 Composition des applications linéaires.

Proposition 13 (Une composée d'applications linéaires est linéaire).

Si $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$, alors $v \circ u \in \mathcal{L}(E, G)$.

Exemple 14 (Classique et important).

Soiet $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. Montrer que $\operatorname{Ker} f \subset \operatorname{Ker} (g \circ f)$ et $\operatorname{Im} (g \circ f) \subset \operatorname{Im} g$.

Proposition 15 (Bilinéarité de la composition).

La composée des applications linéaires est bilinéaire :

- 1. $\forall u, v \in \mathcal{L}(E, F), \ \forall w \in \mathcal{L}(F, G), \ \forall \lambda, \mu \in \mathbb{K} \quad w \circ (\lambda \cdot u + \mu \cdot v) = \lambda \cdot w \circ u + \mu \cdot w \circ v.$
- 2. $\forall u, v \in \mathcal{L}(F, G), \ \forall w \in \mathcal{L}(E, F), \ \forall \lambda, \mu \in \mathbb{K} \quad (\lambda \cdot u + \mu \cdot v) \circ w = \lambda \cdot u \circ w + \mu \cdot v \circ w.$

1.6 Isomorphismes.

Définition 16.

On appelle **isomorphisme** toute application linéaire et bijective entre deux espaces vectoriels. On dit de deux K-espaces vectoriels qu'ils sont **isomorphes** s'il existe un isomorphisme entre eux.

Proposition 17 (Réciproque d'un isomorphisme).

Si $u: E \to F$ est un isomorphisme, alors $u^{-1}: F \to E$ est un isomorphisme.

Proposition 18 (Composée d'isomorphismes).

Si $u: E \to F$ et $v: F \to G$ sont deux isomorphismes, alors $v \circ u: E \to G$ est un isomorphisme, et

$$(v \circ u)^{-1} = u^{-1} \circ v^{-1}.$$

1.7 Deux modes de définition d'une application linéaire.

Proposition 19 (Définition d'une AL par l'image d'une base).

Soient $(e_i)_{i\in I}$ une base de E et $(f_i)_{i\in I}$ une famille quelconque de vecteurs de F.

$$\exists ! u \in \mathcal{L}(E, F) \quad \forall i \in I \quad u(e_i) = f_i.$$

Preuve.

Analyse. Supposons l'existence d'une application linéaire u telle que

$$\forall i \in I \quad u(e_i) = f_i.$$

Soit $x \in E$ et $(x_i)_{i \in I} \in \mathbb{K}^I$ les coordonnées de x sur la base $(e_i)_{i \in I}$ (famille de scalaires presque nulle). On a

$$u(x) = u\left(\sum_{i \in I} x_i e_i\right) = \sum_{i \in I} x_i u(e_i) = \sum_{i \in I} x_i f_i = \sum_{i \in I} e_i^*(x) f_i$$

Ainsi, u est nécessairement l'application $x \mapsto \sum_{i \in I} e_i^*(x) f_i$ (voir le paragraphe 1.2 pour la définition des e_i^*).

Synthèse. On vérifie que $u: x \mapsto \sum_{i \in I} e_i^*(x) f_i$ est linéaire et qu'elle envoie bien les e_i sur les f_i .

<u>Conclusion</u>. Il existe bien une unique application linéaire envoyant les e_i sur les f_i .

Proposition 20 (Définition d'une AL par les restrictions à deux supplémentaires).

Soient E_1 et E_2 deux sous-espaces vectoriels de E, supplémentaires dans E ($E = E_1 \oplus E_2$). Soient deux applications linéaires $u_1 \in \mathcal{L}(E_1, F)$, et $u_2 \in \mathcal{L}(E_2, F)$.

$$\exists ! u \in \mathscr{L}(E, F) \quad u_{|E_1} = u_1 \quad \text{ et } \quad u_{|E_2} = u_2.$$

Preuve. Tout vecteur x de E se décompose de manière unique comme la somme d'un vecteur $x_1 \in E_1$ et d'un vecteur $x_2 \in E_2$; notons pour ce vecteur x:

$$p_1(x) = x_2$$
 et $p_2(x) = x_2$.

Ceci définit correctement deux applications

$$p_1: E \to E_1$$
 et $p_2: E \to E_2$.

Nous étudierons ce genre d'applications dans le paragraphe consacré aux projecteurs où nous démontrerons notamment que p_1 et p_2 sont des applications linéaires (cela ne serait pas difficile à prouver ici).

Analyse. Supposons l'existence d'une application linéaire u telle que $u_{|E_1}=u_1$ et $u_{|E_2}=u_2$. Soit $x\in E$ et $(x_1,x_2)\in E_1\times E_2$ ses composantes sur E_1 et E_2 .

$$u(x) = u(x_1 + x_2)$$

$$= u(x_1) + u(x_2) (u \text{ est linéaire})$$

$$= u_1(x_1) + u_2(x_2) (u_{E_1} = u_1 \text{ et } u_{E_2} = u_2)$$

$$= u_1(p_1(x)) + u_2(p_2(x))$$

On obtient donc que nécessairement, $u = u_1 \circ p_1 + u_2 \circ p_2$.

Synthèse. Posons $u=u_1\circ p_1+u_2\circ p_2$. C'est une application linéaire, comme somme et composée d'applications linéaires. On vérifie facilement que pour $x_1\in E_1$, $u(x_1)=u_1(x_1)$ et pour $x_2\in E_2$, $u(x_2)=u_2(x_2)$.

<u>Conclusion</u>. Il existe bien une unique application linéaire coïncidant avec u_1 sur E_1 et avec u_2 sur E_2 .

2 Endomorphismes.

Dans toute cette partie, E est un \mathbb{K} -espace vectoriel.

2.1 L'anneau $\mathcal{L}(E)$.

Proposition 21.

 $(\mathcal{L}(E), +, \circ)$ est un anneau, non commutatif en général.

Le neutre pour \circ est l'identité sur E, notée id_E .

Exemple. Les endomorphismes de $\mathbb{K}[X]$ définis par $u: P \mapsto P'$ et $v: P \mapsto XP$ ne commutent pas.

Notation.

Si u et v sont deux endomorphismes de E, leur composée $v \circ u$ pourra être notée vu. Pour tout entier $k \in \mathbb{N}$, le kème itéré de u sera noté u^k . Notamment, $u^2 = u \circ u$ et $u^0 = \mathrm{id}_E$.

On ne va pas refaire ici le cours sur les anneaux. On se contentera de rappeler que

1. Si
$$uv = vu$$
, alors $\forall n \in \mathbb{N} \ (u+v)^n = \sum_{k=0}^n \binom{n}{k} u^k v^{n-k}$.

2. Si
$$uv = vu$$
, alors $\forall n \in \mathbb{N}^*$ $u^n - v^n = (u - v) \sum_{k=0}^{n-1} u^k v^{n-1-k}$.

En particulier :
$$\forall n \in \mathbb{N}^* \quad \mathrm{id}_E - u^n = (\mathrm{id}_E - u) \sum_{k=0}^{n-1} u^k$$
.

Exemple 22.

Soient u et v deux endomorphismes de E qui commutent $(u \circ v = v \circ u)$. Montrer que $\operatorname{Ker}(u)$ et $\operatorname{Im}(u)$ sont stables par v.

Exemple 23.

Soit $u \in \mathcal{L}(E)$ un endomorphisme nilpotent. On note p son indice de nilpotence, c'est à dire

$$p = \min\{k \in \mathbb{N}^* \ u^k = 0\}.$$

On se donne $x \in E \setminus \text{Ker}(u^{p-1})$.

- 1. Justifier l'existence d'un tel vecteur x.
- 2. Montrer que $(x, u(x), \dots, u^{p-1}(x))$ est libre.
- 3. Supposons dans cette question que E est de dimension finie n. Montrer que $u^n = 0_{\mathscr{L}(E)}$.

8

2.2 Groupe linéaire.

Définition 24.

Un endomorphisme bijectif d'un espace vectoriel E sera appelé **automorphisme** de E. L'ensemble des automorphismes de E sera noté GL(E).

Proposition 25.

 $(GL(E), \circ)$ est un groupe, appelé **groupe linéaire** de E.

Si E est de dimension supérieure à 2, il n'est pas abélien.

Si $u \in GL(E)$, alors u^{-1} sera désigné tantôt comme la réciproque de u, tantôt comme son inverse.

Notation.

Si $u \in GL(E)$ et $k \in \mathbb{Z}$, on rappelle que la notation u^k désigne le k ème itéré de u si k est positif, et dans le cas où $k \in \mathbb{Z} \setminus \mathbb{N}$, alors $u^k = (u^{-1})^{|k|}$.

Exemple 26 (Un inverse classique).

Soit $u \in \mathcal{L}(E)$ un endomorphisme nilpotent, c'est-à-dire qu'il existe $n \in \mathbb{N}^*$ tel que $u^n = 0_{\mathcal{L}(E)}$. Montrer que $\mathrm{id}_E - u$ est un automorphisme de E.

2.3 Homothéties

Définition 27.

Soit $\lambda \in \mathbb{K}$. On appelle **homothétie** de rapport λ l'endomorphisme

$$\lambda \mathrm{id}_E : \left\{ \begin{array}{ccc} E & \to & E \\ x & \mapsto & \lambda \cdot x \end{array} \right.$$

Exemple 28 (Sous-espaces propres).

Soit $f \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$.

- 1. Justifier que pour tout $x \in E$, $x \in \text{Ker}(f \lambda id_E) \iff f(x) = \lambda x$.
- 2. En particulier, comment décrire les vecteurs de $Ker(f id_E)$? de $Ker(f + id_E)$?
- 3. Notons $E_{\lambda} = \operatorname{Ker}(f \lambda \operatorname{id}_{E})$. Que dire de $f_{|E_{\lambda}}$? Supposons que $E = \operatorname{Ker}(f \operatorname{id}) \oplus \operatorname{Ker}(f 2\operatorname{id}_{E})$. Représenter un vecteur et son image par u.

9

L'exercice suivant sera connu d'un étudiant de MPI*.

Exemple 29 (Une caractérisation classique des homothéties (*)).

Soit E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$ tel que

$$\forall x \in E \quad \exists \lambda_x \in \mathbb{K} \quad f(x) = \lambda_x \cdot x.$$

Montrer que f est une homothétie.

 $\textbf{Solution.} \ Commençons\ par\ remarquer\ que\ le\ problème\ consiste\ \grave{a}\ \acute{e} changer\ l'ordre\ des\ quantificateurs\ dans\ une\ phrase:$ on travaille sous l'hypothèse

$$\forall x \in E \quad \exists \lambda \in \mathbb{K} \quad f(x) = \lambda x,$$

et on doit montrer

$$\exists \lambda \in \mathbb{K} \quad \forall x \in E \quad f(x) = \lambda x.$$

Le vecteur nul est un peu à part. En effet, pour tout $\lambda \in \mathbb{K}$, $f(0_E) = 0_E = \mu \cdot 0_E$.

Ainsi, si E est réduit à ce vecteur, f est une homothétie de rapport $0, \pi$, ou 666 au choix.

En revanche, si E n'est pas réduit à $\{0_E\}$ et si x est un vecteur non nul de E, il est facile de voir que le scalaire λ_x tel que $f(x) = \lambda_x x$ est unique. Ainsi, pour répondre à la question, il suffit de montrer :

$$\forall x, y \in E \setminus \{0_E\} \quad \lambda_x = \lambda_y. \tag{*}$$

Montrons (*) et pour cela, considérons x et y dans E, non nuls. Il existe $(\lambda_x, \lambda_y) \in \mathbb{K}^2$ tel que $f(x) = \lambda_x x$ et $f(y) = \lambda_y y$. On a donc, par linéarité, $f(x) + f(y) = f(x+y) = \lambda_x x + \lambda_y y$. Mais le vecteur x+y est dans E, donc il existe un scalaire λ_{x+y} tel que $f(x+y) = \lambda_{x+y}(x+y) = \lambda_{x+y}x + \lambda_{x+y}y$. En égalant les deux expressions de f(x+y), on a

$$(\lambda_x - \lambda_{x+y})x + (\lambda_y - \lambda_{x+y})y = 0_E.$$

Deux cas se présentent.

- Dans le cas où (x,y) est libre, alors, on a $\lambda_x \lambda_{x+y} = 0$ et $\lambda_y \lambda_{x+y} = 0$ et donc $\lambda_x = \lambda_y$.
- Dans le cas où (x,y) est liée, x étant non nul, il existe $\mu \in \mathbb{K}$ tel que $y=\mu x$. On a

$$f(y) = f(\mu x) = \mu f(x) = \mu(\lambda_x x) = \lambda_x(\mu x) = \lambda_x y.$$

Or, $f(y) = \lambda_y y$. On a donc $\lambda_y y$, et, y étant non nul, $\lambda_x = \lambda_y$.

2.4 Projecteurs.

Définition 30.

Soient F et G deux sous-espaces supplémentaires dans E $(E=F\oplus G).$

Pour tout $x \in E$, il existe un unique couple $(x_F, x_G) \in F \times G$ tel que

$$x = x_F + x_G$$
.

Ceci permet de définir l'application qui à un vecteur x associe sa composante sur F:

$$p: \left\{ \begin{array}{ccc} E & \to & E \\ x & \mapsto & p(x) := x_F \end{array} \right.,$$

appelée projection sur F parallèlement à G. On parle aussi de p comme un projecteur.

Proposition 31 (Propriétés des projecteurs).

Soit (F,G) un couple de s.e.v. supplémentaires dans E et p la projection sur F parallèlement à G.

- 1. p est un endomorphisme de E.
- 2. $p \circ p = p$ (on dit que p est **idempotent**).
- 3. F est l'image de p: F = Im(p). C'est aussi l'ensemble des vecteurs invariants par $p: F = \text{Im}(p) = \text{Ker}(p - \text{id}_E)$.
- 4. G est l'ensemble des vecteurs d'image nulle par p: G = Ker(p).
- 5. Ainsi, p est la projection sur Im(p) parallèlement à Ker(p). En particulier,

$$E = \operatorname{Im}(p) \oplus \operatorname{Ker}(p)$$
, c'est-à-dire $E = \operatorname{Ker}(p - \operatorname{id}_E) \oplus \operatorname{Ker}(p)$.

La décomposition d'un vecteur de E s'écrit

$$\forall x \in E$$
 $x = \underbrace{p(x)}_{\in \operatorname{Im}(p)} + \underbrace{x - p(x)}_{\in \operatorname{Ker}(p)}.$

- 6. $id_E p$ est la projection sur G parallèlement à F.
- 7. p peut être vu comme l'unique endomorphisme tel que $p_{|F} = \mathrm{id}_F$ et $p_{|G} = 0_{\mathscr{L}(G)}$.

p, projection sur F, parallèlement à ${\cal G}$

Proposition 32 (L'idempotence caractérisation les projecteurs parmi les endomorphismes).

Soit p un endomorphisme de E.

p est un projecteur ssi $p \circ p = p$.

La définition d'une projection était géométrique; la caractérisation qu'on vient de donner est algébrique

2.5 Symétries.

Définition 33.

Soient F et G deux sous-espaces supplémentaires dans E ($E = F \oplus G$). Pour tout $x \in E$, il existe un unique couple $(x_F, x_G) \in F \times G$ tel que

$$x = x_F + x_G.$$

Ceci permet de définir l'application

$$s: \left\{ \begin{array}{ccc} E & \to & E \\ x & \mapsto & s(x) := x_F - x_G \end{array} \right.,$$

appelée symétrie par rapport à F parallèlement à G.

Proposition 34 (Propriétés des symétries).

Soit (F,G) un couple de s.e.v. supplémentaires dans E et s la symétrie par rapport à F parallèlement à G.

- 1. s est un endomorphisme de E.
- 2. $|s \circ s = id_E|$ (on dit que s est **involutive**).
- 3. F est l'ensemble des vecteurs invariants par $s: F = \text{Ker}(s \text{id}_E)$.
- 4. G est l'ensemble des vecteurs transformés par s en leur opposé : $G = \text{Ker}(s + \text{id}_E)$.
- 5. Ainsi, s est la symétrie par rapport à $Ker(s-id_E)$ parallèlement à $Ker(s+id_E)$. En particulier

$$E = \operatorname{Ker}(s - \operatorname{id}_E) \oplus \operatorname{Ker}(s + \operatorname{id}_E)$$

6. s peut être vue comme l'unique endomorphisme de E tel que $s_{|F} = \mathrm{id}_F$ et $s_{|G} = -\mathrm{id}_G$.

s, symétrie par rapport à F, parallèlement à G

Proposition 35 (L'involutivité caractérise les projecteurs parmi les endomorphismes).

Soit s un endomorphisme de E.

s est une symétrie ssi $s \circ s = id_E$.

Exemple 36.

À l'aide d'une symétrie, redémontrer que $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$ sont supplémentaires dans $M_n(\mathbb{K})$.

Remarque. Il n'est pas inutile de retenir la décomposition d'un vecteur sur les deux supplémentaires associés à une symétrie sur un espace E: on a

$$\forall x \in E \quad x = \underbrace{\frac{1}{2}(x + s(x))}_{\in \text{Ker}(s-\text{id})} + \underbrace{\frac{1}{2}(x - s(x))}_{\in \text{Ker}(s+\text{id})}.$$

3 Applications linéaires et dimension finie.

3.1 Image d'une base.

Théorème 37 (Caractérisation des isomorphismes par l'image d'une base).

Soit $u \in \mathcal{L}(E, F)$, où E est de dimension finie n. On considère (x_1, \ldots, x_n) une base de E.

- 1. u est surjective ssi $(u(x_1), \ldots, u(x_n))$ engendre F.
- 2. u est injective ssi $(u(x_1), \ldots, u(x_n))$ est libre.
- 3. u est une bijective ssi $(u(x_1), \ldots, u(x_n))$ est une base de F.

Corollaire 38.

Une application linéaire entre deux espaces vectoriels de dimension finie est un isomorphisme si et seulement si elle transforme une base en une base.

3.2 Isomorphismes et dimension finie.

Proposition 39.

Soient deux espaces vectoriels E et F isomorphes.

Si l'un des deux est de dimension finie, alors l'autre l'est aussi et dim $E = \dim F$.

Ce résultat donne une nouvelle méthode pour calculer la dimension d'un espace vectoriel. Il suffira d'exhiber un isomorphisme entre cet espace et un espace dont on connaît la dimension. Ci-dessous, une application de ce principe.

Proposition 40.

Soient E, F deux K-espaces vectoriels de dimension finie. Alors $\mathscr{L}(E, F)$ est de dimension finie et

$$\dim \mathcal{L}(E,F) = \dim E \dim F.$$

Corollaire 41.

L'ensemble des formes linéaires sur E, noté $\mathscr{L}(E,\mathbb{K})$ ou parfois E^* a la même dimension que E lorsque ce dernier est de dimension finie.

E* est appelé dual de E. L'étude de ses liens avec E est appelée dualité et est hors-programme.

Proposition 42.

Tout \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$ est isomorphe à \mathbb{K}^n

Proposition 43 (Classification des espaces de dimension finie).

Deux espaces vectoriels de dimension finie sont isomorphes <u>ssi</u> ils ont même dimension.

On vient de voir comment un isomorphisme peut nous aider à calculer une dimension. Voyons maintenant comment la connaissance des dimensions au départ et à l'arrivée peut nous aider à prouver qu'une application linéaire est bijective.

Théorème 44 (Caractérisation des isomorphismes entre deux e.v. de dimension finie).

Soient E et F deux espaces vectoriels de dimension finie et $u \in \mathcal{L}(E,F)$. On a

$$u \text{ est bijective} \iff \left\{ \begin{array}{l} u \text{ est injective} \\ \dim E = \dim F \end{array} \right. \text{ et } u \text{ est bijective} \iff \left\{ \begin{array}{l} u \text{ est surjective} \\ \dim E = \dim F \end{array} \right.$$

Corollaire 45 (Caractérisation des automorphismes en dimension finie).

Soit u un endomorphisme d'un espace de dimension finie.

u est bijectif \iff u est injectif \iff u est surjectif.

Corollaire 46 (L'inversibilité à gauche ou à droite suffit en dimension finie).

Soit u un endomorphisme d'un espace de dimension finie.

u est inversible \iff u est inversible à gauche \iff u est inversible à droite.

Si u est inversible à gauche ou à droite, l'inverse à gauche ou à droite, c'est la réciproque de u.

Exemple 47 (Retour sur l'interpolation de Lagrange).

Soit $n \in \mathbb{N}^*$, $(x_1, \ldots, x_n) \in \mathbb{K}^n$ (scalaires deux à deux distincts) et $(y_1, \ldots, y_n) \in \mathbb{K}^n$. À l'aide de l'application

$$\varphi: \left\{ \begin{array}{ccc} \mathbb{K}_{n-1}[X] & \to & \mathbb{K}^n \\ P & \mapsto & (P(x_1), \dots, P(x_n)) \end{array} \right.,$$

redémontrer que

$$\exists ! P \in \mathbb{K}_{n-1}[X] \quad \forall i \in [1, n] \quad P(x_i) = y_i.$$

3.3 Rang d'une application linéaire.

Définition 48.

Soit $u \in \mathcal{L}(E, F)$. On dit que u est de **rang fini** si son image Im(u) est de dimension finie. On appelle alors **rang** de l'application u et on note rg(u) l'entier

$$rg(u) = dim (Im(u)).$$

Exemple 49 (Rang nul).

Soit $u \in \mathcal{L}(E, F)$. On a

$$rg(u) = 0 \iff \dim Im(u) = 0 \iff Im(u) = \{0_F\} \iff u = 0_{\mathscr{L}(E,F)}.$$

Proposition 50 (Rang et dimension finie au départ ou à l'arrivée).

Soit $u \in \mathcal{L}(E, F)$.

- 1. Si F est de dimension finie, alors u est de rang fini et $rg(u) \leq dim(F)$.
- 2. Si E est de dimension finie, alors u est de rang fini et $rg(u) \leq dim(E)$.

Remarque. Dans la preuve, on comprend que si E est de dimension finie et que (x_1, \ldots, x_n) est une base de E, alors u est de rang fini égal au rang de la famille $(u(x_1), \ldots, u(x_n))$.

Lorsqu'on compose, le rang ne peut que diminuer, comme nous l'apprend la proposition ci-dessous.

Proposition 51.

Soient $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$ deux applications linéaires. Si u ou v est de rang fini, alors, $v \circ u$ est de rang fini et

$$rg(v \circ u) \le min(rg(u), rg(v))$$
.

Le rang d'une application linéaire est invariant par composition avec un isomorphisme.

Proposition 52.

Soit $u \in \mathcal{L}(E, F)$ de rang fini et soient deux isomorphismes $f \in \mathcal{L}(F, G)$ et $g \in \mathcal{L}(H, E)$. Alors $f \circ u$ et $u \circ g$ sont de rang fini et

$$rg(f \circ u) = rg(u)$$
 et $rg(u \circ g) = rg(u)$.

3.4 Théorème du rang.

Proposition 53 (Forme géométrique du théorème du rang).

Soit E et F deux espaces vectoriels et $u \in \mathcal{L}(E, F)$. Si $\mathrm{Ker}(u)$ admet un supplémentaire S dans E, alors

$$u_{|S}: \left\{ \begin{array}{ccc} S & \to & \operatorname{Im}(u) \\ x & \mapsto & u(x) \end{array} \right.$$

est un isomorphisme de S dans Im(u).

La grande idée : pour rendre une application injective, il faut se débarrasser de son noyau...

Théorème 54 (Théorème du rang).

Soit E un espace de dimension finie, F un espace vectoriel et $u \in \mathcal{L}(E,F)$. Alors, u est de rang fini et

$$\dim E = \operatorname{rg}(u) + \dim \operatorname{Ker} u.$$

Attention, une confusion classique consiste à croire que le noyau et l'image d'une application linéaire sont supplémentaires... Ce n'est **pas ce que dit le théorème**! Remarquons déjà que cela n'a aucun sens si les espaces de départ et d'arrivée E et F ne sont pas les mêmes, puisque $\operatorname{Ker} f \subset E$ et $\operatorname{Im} f \subset F$. Et même quand E = F, c'est faux.

4 Hyperplans.

Dans cette partie, E désigne un \mathbb{K} -espace vectoriel (pas nécessairement de dimension finie).

4.1 Formes linéaires et hyperplans.

On rappelle qu'une forme linéaire sur un \mathbb{K} -espace vectoriel E est une application linéaire d'un espace vectoriel E dans \mathbb{K} . On redit aussi que $U\mathbb{K}$ est un \mathbb{K} -espace vectoriel de dimension finie égale à 1.

Définition 55.

On appelle **hyperplan** de E le noyau d'une forme linéaire non nulle sur E.

Remarque. Lorsqu'on dit qu'une forme linéaire φ n'est pas nulle, on dit que φ n'est pas la fonction nulle, autrement dit qu'il existe au moins un vecteur x_0 dans E tel que $\varphi(x_0) \neq 0$.

Exemples.

• Soit $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + 3z = 0\}$. C'est un plan de \mathbb{R}^3 , on le sait. On peut aussi dire que c'est un hyperplan de \mathbb{R}^3 puisque c'est le noyau de la forme linéaire non nulle

$$\varphi: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R} \\ (x, y, z) & \mapsto & x + 2y + 3z \end{array} \right. ;$$

(la forme linéaire ϕ est non nulle car, par exemple $\varphi((1,0,0)) = 1 \neq 0$).

• L'ensemble $G = \{P \in \mathbb{K}[X] \mid P(2) = 0\}$ est un hyperplan de $\mathbb{K}[X]$ puisque $G = \text{Ker}(\psi)$: c'est le noyau de la forme linéaire non nulle

$$\psi: \left\{ \begin{array}{ccc} \mathbb{K}[X] & \to & \mathbb{K} \\ P & \mapsto & P(2) \end{array} \right. ;$$

(la forme linéaire ψ est non nulle car, par exemple $\psi(X) \neq 0$).

Proposition 56.

Soit H un hyperplan de E et D une droite vectorielle de E non incluse dans H. Alors $H \oplus D = E$.

Théorème 57.

Soit H un sous-espace vectoriel d'un \mathbb{K} -espace vectoriel E.

H est un hyperplan de $E \iff H$ est supplémentaire d'une droite de E.

Si E est de dimension finie $n \ge 1$, ses hyperplans sont donc les sous-espaces de dimension n-1.

Les hyperplans d'un espace de dimension 3 sont ses plans vectoriels.

Les hyperplans d'un espace de dimension 2 sont ses droites vectorielles.

Exemple 58.

L'ensemble $H = \{M \in M_n(\mathbb{K}) \mid \text{Tr}(M) = 0\}$ est un hyperplan de $M_n(\mathbb{K})$: c'est le noyau de la trace, forme linéaire non nulle (puisque $\text{Tr}(I_n) \neq 0$ par exemple). Sa dimension est $n^2 - 1$.

Un hyperplan est le noyau d'une infinité de formes linéaires : quels sont les liens entre ces applications?

Proposition 59 (Équations d'un hyperplan).

Soit φ et ψ deux formes linéaires non nulles sur E.

$$\operatorname{Ker}\varphi = \operatorname{Ker}\psi \iff \exists \lambda \in \mathbb{K}^* \quad \psi = \lambda \varphi.$$

L'égalité $\varphi(x)=0$ caractérisant l'appartenance d'un vecteur $x\in E$ à l'hyperplan $\mathrm{Ker}(\varphi)$ est appelée une **équation** de l'hyperplan.

Preuve. L'implication réciproque est facile. Supposons que $\text{Ker}\varphi = \text{Ker}\psi$.

Considérons un vecteur x non nul tel que $x \notin \text{Ker}\varphi$. La droite Vect(x) est donc un supplémentaire de $\text{Ker}\varphi$. On a $\varphi(x) \neq 0$. Posons $\lambda = \frac{\psi(x)}{\varphi(x)}$, de sorte que ψ et $\lambda \varphi$ coïncident sur x puis sur Vect(x).

Puisqu'elles coïncident aussi sur $\operatorname{Ker}(\varphi)$ (où elles sont nulles!), les applications ψ et φ sont égales sur deux supplémentaires donc égales.

Proposition 60 (Lien entre hyperplan et équation linéaire).

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. Soit φ une forme linéaire non nulle. On a

$$x \in \operatorname{Ker} \varphi \iff \sum_{i=1}^{n} \varphi(e_i) e_i^*(x) = 0.$$

L'équation écrite ci-dessus est appelée une **équation** de l'hyperplan $Ker(\varphi)$ dans la base \mathcal{B} .

Preuve. On décompose x sur la base et on applique φ ...

Pour mieux comprendre la notion précédente d'équation d'un hyperplan, on peut se donner des notations plus habituelles : notons $x = \sum_{i=1}^{n} x_i e_i$ la décomposition de x sur la base \mathcal{B} et, pour tout $i \in [1, n]$, notons $a_i = \varphi(e_i)$. On a alors

$$x \in \text{Ker}\varphi \iff a_1x_1 + a_2x_2 + \dots + a_nx_n = 0.$$

En particulier, on retrouve qu'une équation

$$ax + by = 0$$
,

dans le cas où $(a, b) \neq 0$, est l'équation d'une droite vectorielle de \mathbb{R}^2 . C'est l'équation dans la base canonique (e_1, e_2) de l'hyperplan de \mathbb{R}^2 associé à $\varphi : (x, y) \mapsto ax + by$. On a $a = \varphi(e_1)$ et $b = \varphi(e_2)$.

On retrouve, de la même façon, que

$$ax + by + cz = 0$$

est l'équation d'un plan vectoriel de \mathbb{R}^3 , lorsque $(a,b,c) \neq (0,0,0)$: c'est l'équation dans la base canonique de l'hyperplan associé à la forme linéaire $\varphi: (x,y,z) \mapsto ax + by + cz$.

4.2 Intersection d'hyperplans.

Proposition 61.

Soient m et n deux entiers naturels non nuls, avec $m \leq n$ et E un espace vectoriel de dimension n.

- 1. L'intersection de m hyperplans de E est au moins de dimension n-m.
- 2. Réciproquement, tout sous-espace vectoriel de E de dimension n-m est l'intersection de m hyperplans.

En particulier, le système linéaire sur \mathbb{K}^n se récrit

$$\begin{cases} a_1x_1 + a_2x_2 + \dots + a_nx_n = 0 \\ a'_1x_1 + a'_2x_2 + \dots + a'_nx_n = 0 \end{cases}$$
 se récrit
$$\begin{cases} \varphi(x_1, \dots, x_n) = 0 \\ \psi(x_1, \dots, x_n) = 0 \end{cases}$$

L'ensemble des solutions s'écrit donc $\operatorname{Ker}\varphi \cap \operatorname{Ker}\psi'$. Si ces deux formes linéaires sont non nulles, il s'agit d'une intersection d'hyperplans. Si (φ, φ') est libre, les deux hyperplans ne sont pas confondus. On montre alors facilement que $\operatorname{Ker}(\varphi) + \operatorname{Ker}(\psi) = \mathbb{K}^n$ puis, grâce à la formule de Grassmann, que

$$\dim \operatorname{Ker}(\varphi) \cap \operatorname{Ker}(\psi) = n - 2.$$

Dans le cas $\mathbb{K} = \mathbb{R}$ et n = 3, on retrouve bien sûr que l'intersection de deux plans vectoriels non confondus est une droite vectorielle.

Corollaire 62.

Un système de m équations linéaires non nulles sur \mathbb{K}^n , où $m \ge 1$ est un sous-espace vectoriel de \mathbb{K}^n ayant une dimension supérieure à n-m.

Exercices

Images et noyau.

27.1 [$\diamondsuit\lozenge$] Soit u un endomorphisme d'un espace vectoriel E. Montrer

$$\operatorname{Ker}(u) = \operatorname{Ker}(u^2) \iff \operatorname{Ker}(u) \cap \operatorname{Im}(u) = \{0_E\}.$$

27.2 [$\Diamond \Diamond \Diamond$] Soit u un endomorphisme d'un espace vectoriel E. Montrer

$$\operatorname{Im}(u) = \operatorname{Im}(u^2) \iff E = \operatorname{Ker}(u) + \operatorname{Im}(u).$$

27.3 $[\phi \Diamond \Diamond]$ Soit E un K-espace vectoriel et F un sous-espace vectoriel de E. Notons

$$\mathcal{K}_F = \{ f \in \mathscr{L}(E) : F \subset \mathrm{Ker}(f) \}.$$

- 1. Démontrer soigneusement que \mathcal{K}_F est un sous-espace vectoriel de $\mathscr{L}(E)$.
- 2. Prouver que si $f \in \mathcal{K}_F$ et $g \in \mathcal{L}(E)$, alors $g \circ f \in \mathcal{K}_F$.

27.4 [♦♦♦] Noyaux itérés

Soit $u \in \mathcal{L}(E)$, où E est un espace vectoriel.

- 1. Montrer que pour tout $k \geq 0$, on a $\operatorname{Ker}(u^k) \subset \operatorname{Ker}(u^{k+1})$.
- 2. Montrer que

$$\forall k \in \mathbb{N} \quad \operatorname{Ker}(u^k) = \operatorname{Ker}(u^{k+1}) \Rightarrow \operatorname{Ker}(u^{k+1}) = \operatorname{Ker}(u^{k+2}).$$

27.5 [$\Diamond \Diamond \Diamond$] Polynôme annulateur et applications

 $\overline{\text{Soit }E}$ un \mathbb{K} -espace vectoriel et u un endomorphisme de E.

On suppose que $u^2 - 3u + 2\operatorname{Id}_E = 0$.

- 1. Montrer que u est inversible et calculer u^{-1} .
- 2. Soit $n \in \mathbb{N}$.
 - (a) Calculer le reste dans la division euclidienne de X^n par $X^2 3X + 2$.
 - (b) En déduire une expression de u^n .
 - (c) Que dire de $Vect(u^k)_{k\in\mathbb{N}}$?
- 3. Démontrer que $E = \text{Ker}(u \text{id}_E) \oplus \text{Ker}(u 2\text{id}_E)$.

27.6 $[\blacklozenge \blacklozenge \blacklozenge]$ Soient $u \in \mathcal{L}(E,F)$ et $v \in \mathcal{L}(F,E)$. Démontrer que

$$\mathrm{Id}_E - v \circ u$$
 injective $\iff \mathrm{Id}_F - u \circ v$ injective.

$$\mathrm{Id}_E - v \circ u$$
 surjective $\iff \mathrm{Id}_F - u \circ v$ surjective.

27.7 $[\spadesuit \spadesuit \spadesuit]$ Soient E, F, G trois espaces vectoriels, E étant de dimension finie. On considère

$$f: E \to F \in \mathscr{L}(E,F) \quad \text{ et } \quad g: E \to G \in \mathscr{L}(E,G).$$

Montrer l'équivalence

$$\operatorname{Ker}(f) \subset \operatorname{Ker}(g) \quad \Longleftrightarrow \quad \exists \Phi \in \mathscr{L}(F,G) : g = \Phi \circ f.$$

Projecteurs, symétries.

27.8 $[\phi \diamondsuit \diamondsuit]$ Soit p est un projecteur et f un endomorphisme d'un espace vectoriel E. Montrer que $p \circ f = f \circ p$ si et seulement si Ker(p) et Im(p) sont stables par f.

27.9 [$\Diamond \Diamond \Diamond$] Soient f et g deux endomorphismes d'un espace vectoriel E tels que $f \circ g = \mathrm{Id}_E$.

- 1. Montrer que $\operatorname{Im}(g \circ f) = \operatorname{Im}(g)$ et $\operatorname{Ker}(g \circ f) = \operatorname{Ker}(f)$.
- 2. Montrer que $E = \text{Ker}(f) \oplus \text{Im}(g)$.

27.10 $[\phi \phi \diamondsuit]$ En utilisant une symétrie, retrouver que toute fonction de $\mathbb{R}^{\mathbb{R}}$ se décompose de manière unique comme somme d'une fonction paire et d'une fonction impaire.

27.11 $[\blacklozenge \blacklozenge \blacklozenge]$ Soit E un \mathbb{K} -espace vectoriel et p et q deux projecteurs.

- 1. Montrer que p+q est un projecteur si et seulement si $p \circ q = q \circ p = 0$.
- 2. Supposons que p+q est un projecteur. Montrer que

$$\operatorname{Im}(p+q) = \operatorname{Im}(p) \oplus \operatorname{Im}(q)$$
 et $\operatorname{Ker}(p+q) = \operatorname{Ker}(p) \cap \operatorname{Ker}(q)$.

27.12 $[\diamondsuit\diamondsuit\diamondsuit]$ Pour une fois, on calcule vraiment!

Soit
$$E = \mathbb{R}^3$$
, $e_1 = (1, 0, 0)$, $e_2 = (1, 1, 0)$ et $e_3 = (1, 2, 3)$, $F = \text{Vect}(e_1, e_2)$ et $G = \text{Vect}(e_3)$.

- 1. Montrer que F et G sont deux espaces supplémentaires de E.
- 2. Donner l'expression de la projection sur F parallèlement à G (calculer l'image d'un vecteur (x, y, z)).
- 3. Donner l'expression de la symétrie par rapport à G parallèlement à F.

Application linéaires et dimension finie.

27.13 $[\phi \Diamond \Diamond]$ 1. Soit $n \in \mathbb{N}$. Justifier que l'application $f_n : P \mapsto P + P'$ est un automorphisme de $\mathbb{R}_n[X]$.

2. Démontrer que $f: \left\{ \begin{array}{ccc} \mathbb{R}[X] & \to & \mathbb{R}[X] \\ P & \mapsto & P+P' \end{array} \right.$ est un automorphisme de $\mathbb{R}[X]$.

27.14 $[\blacklozenge \lozenge \lozenge]$ Soit $n \in \mathbb{N}$. Pour $P \in \mathbb{K}_n[X]$, on pose f(P) = P(X+1) - P(X).

- 1. Justifier que f est un endomorphisme de $\mathbb{K}_n[X]$.
- 2. Montrer que $\operatorname{Ker} f$ est l'ensemble des polynômes constants.
- 3. Justifier que $\operatorname{Im}(f) = \mathbb{K}_{n-1}[X]$.
- 4. Le noyau et l'image de f sont-ils supplémentaires dans $\mathbb{K}_n[X]$.?

27.15 $[\blacklozenge \blacklozenge \diamondsuit]$ Soit E un espace vectoriel et u un endomorphisme de E. On dit que u est pseudo-nilpotent si

$$\forall x \in E \quad \exists p \in \mathbb{N} \quad u^p(x) = 0_E.$$

- 1. Montrer que si E est de dimension finie, tout endomorphisme pseudo-nilpotent est nilpotent.
- 2. Posons $E = \mathbb{K}[X]$. Proposer un endomorphisme pseudo-nilpotent qui n'est pas nilpotent.

27.16 $[\blacklozenge \blacklozenge \diamondsuit]$ Soit f un endomorphisme d'un espace vectoriel E de dimension n.

- 1. Montrer que $E = \operatorname{Ker}(f) \oplus \operatorname{Im}(f) \Longrightarrow \operatorname{Im}(f) = \operatorname{Im}(f^2)$.
- 2. (a) Démontrer que $\operatorname{Im}(f) = \operatorname{Im}(f^2) \iff \operatorname{Ker}(f) = \operatorname{Ker}(f^2)$
 - (b) Démontrer que $\operatorname{Im}(f) = \operatorname{Im}(f^2) \Longrightarrow E = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$.

27.17 $[\blacklozenge \diamondsuit \diamondsuit]$ Soit E un espace vectoriel de dimension n et $u \in \mathscr{L}(E)$. Démontrer :

$$\operatorname{Ker}(u) = \operatorname{Im}(u) \iff u^2 = 0_{\mathscr{L}(E)} \text{ et } 2\operatorname{rg}(u) = n.$$

27.18 [♦♦♦] Un peu plus dur que l'exercice précédent

 $\overline{\text{Soit }E}$ un espace vectoriel de dimension finie.

Démontrer qu'il existe $u \in \mathcal{L}(E)$ tel que $\operatorname{Ker}(u) = \operatorname{Im}(u)$ si et seulement si la dimension de E est paire.

27.19 $[\blacklozenge \blacklozenge \blacklozenge]$ Soit E un K-espace vectoriel et u et v deux endomorphismes de E de rang fini. Montrer que

$$rg(u \circ v) = rgv - \dim Keru \cap Imv.$$

En vrac.

- 1. Montrer qu'il existe $a \in E$ tel que $(a, f(a), \dots, f^{n-1}(a))$ soit une base de E.
- 2. Montrer que $(\mathrm{id}_E, f, \ldots, f^{n-1})$ est une base de $\mathcal{C}(f)$. Quelle est la dimension de $\mathcal{C}(f)$?

27.21 $[\spadesuit \spadesuit \diamondsuit]$ Soit $n \in \mathbb{N}^*$. Soient a_1, \ldots, a_n n réels deux à deux distincts.

 $\overline{\text{Soient }b_1,\ldots,b_n,\,c_1,\ldots,c_n}$ d'autres réels. Montrer qu'il existe un unique polynôme P dans $\mathbb{R}_{2n-1}[X]$ tel que

$$\forall i \in [1, n] \quad P(a_i) = b_i \quad \text{ et } \quad P'(a_i) = c_i.$$

27.22 $[\blacklozenge \blacklozenge \blacklozenge]$ Soit E un \mathbb{K} -espace vectoriel et F et G deux sous-espaces vectoriels de dimension finie.

À l'aide de l'application ci-dessous, retrouver la formule de Grassmann.

$$\varphi: \left\{ \begin{array}{ccc} F\times G & \to & F+G \\ (x,y) & \mapsto & x+y \end{array} \right. .$$

27.23 $[\phi \Diamond \Diamond]$ Soit E un \mathbb{K} -espace vectoriel de dimension finie n.

On note E^* l'espace vectoriel des formes linéaires sur E.

Soit (e_1, \ldots, e_n) une base de E. Montrer que (e_1^*, \ldots, e_n^*) est une base de E^* .

27.24 $[\spadesuit \spadesuit \spadesuit]$ Soient x_1, \ldots, x_n n réels deux à deux distincts, et

$$F = \left\{ f \in \mathbb{R}^{\mathbb{R}} \mid \forall k \in [1, n] \mid f(x_k) = 0 \right\}.$$

- 1. Démontrer que F est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}}.$
- 2. Exhiber un supplémentaire de F dans $\mathbb{R}^{\mathbb{R}}$.