Hierarchical spatial modelling for applied population and community ecology

Jeffrey W. Doser, Marc Kéry, Gesa von Hirschheydt 24-27 June 2024

Spatial multispecies Nmixture models

Jeffrey W. Doser 24-27 June 2024

Multi-species N-mixture models

- Many forms of transect surveys or point count surveys collect data on multiple species.
- Given the similarities in data collection protocols with occupancy models, we can extend the multi-species occupancy model to an Nmixture framework.

Biodivers Conserv (2012) 21:1365–1380 DOI 10.1007/s10531-012-0244-z

ORIGINAL PAPER

Biodiversity of man-made open habitats in an underused country: a class of multispecies abundance models for count data

Yuichi Yamaura · J. Andrew Royle · Naoaki Shimada · Seigo Asanuma · Tamotsu Sato · Hisatomo Taki · Shun'ichi Makino

Journal of Applied Ecology

Journal of Applied Ecology 2011, 48, 67-75

doi: 10.1111/j.1365-2664.2010.01922.x

Modelling community dynamics based on species-level abundance models from detection/nondetection data

Yuichi Yamaura¹*‡, J. Andrew Royle², Kouji Kuboi³†, Tsuneo Tada³, Susumu Ikeno⁴ and Shun'ichi Makino¹

Multi-species count data from multiple visits

i = 1, 2, ..., I species

j = 1, 2, ..., J sites

k = 1, 2, ..., K visits

Visit 1

Species	Site 1	Site 2	В	1
٨	2	1	С	2
A	2	1	D	1
В	0	I	Е	0
С	3	1	F	1
D	1	1		
Е	0	2	2	1
F	0	0	0	3

Visit 3

NA

Species

Visit 2			Α	2	1	0	NA
Species	Site 1	Site 2	В	1	0	2	NA
Α	0	NA	С	4	2	0	NA
В	1	NA	D	3	0	0	NA
С	2	NA	Е	1	1	2	NA
D	1	NA	F	0	1	0	NA
Е	0	NA	1	2)		

2

Site 1

Site 2

Site 3

Site 4

Three types of multi-species N-mixture models in spabundance

- 1. Multi-species N-mixture models (msnMix)
 - Species are modelled hierarchically (as random effects)
 - No residual species correlations

Three types of multi-species N-mixture models in spabundance

- 1. Multi-species N-mixture models (msnMix)
 - Species are modelled hierarchically (as random effects)
 - No residual species correlations
- 2. Latent factor multi-species N-mixture models (1fmsnmix)
 - Species are modelled hierarchically (as random effects)
 - Residual species correlations

Three types of multi-species N-mixture models in spabundance

- 1. Multi-species N-mixture models (msnMix)
 - Species are modelled hierarchically (as random effects)
 - No residual species correlations
- 2. Latent factor multi-species N-mixture models (1fmsnmix)
 - Species are modelled hierarchically (as random effects)
 - Residual species correlations
- 3. Spatial factor multi-species N-mixture models (sfMsNMix)
 - Species are modelled hierarchically (as random effects)
 - Residual species correlations
 - Spatial autocorrelation

 Recall in spOccupancy there were two types of spatial multi-species occupancy models: spMsPGOcc() and sfMsPGOcc().

- Recall in spOccupancy there were two types of spatial multi-species occupancy models: spMsPGOcc() and sfMsPGOcc().
- spMsPGOcc() fits a separate spatial random effect for each species.

- Recall in spOccupancy there were two types of spatial multi-species occupancy models: spMsPGOcc() and sfMsPGOcc().
- spMsPGOcc() fits a separate spatial random effect for each species.
- Because algorithms are less efficient for count data than binary data, such an approach becomes very slow for count data models.

- Recall in spOccupancy there were two types of spatial multi-species occupancy models: spMsPGOcc() and sfMsPGOcc().
- spMsPGOcc() fits a separate spatial random effect for each species.
- Because algorithms are less efficient for count data than binary data, such an approach becomes very slow for count data models.
- Further, simulations in Doser, Finley, Banerjee (2023) show the spatial factor occupancy model performs equally well as spMsPGOcc() even when there aren't residual species correlations.

Multi-species N-mixture models (msnMix)

$$N_{i,j} \sim \text{Poisson}(\mu_{i,j})$$

$$\log(\mu_{i,j}) = \beta_{1,i} + \beta_{2,i} \cdot X_{2,j} + \dots + \beta_{r,i} \cdot X_{r,j}$$

$$\beta_{1,i} \sim \text{Normal}(\mu_{\beta,1}, \tau_{\beta,1}^2)$$

$$y_{i,j,k} \sim \text{Binomial}(N_{i,j}, p_{i,j,k})$$

$$\log t(p_{i,j,k}) = \alpha_{1,i} + \alpha_{2,i} \cdot V_{2,j,k} + \dots + \alpha_{d,i} \cdot V_{d,j,k}$$

$$\alpha_{1,i} \sim \text{Normal}(\mu_{\alpha,1}, \tau_{\alpha,1}^2)$$

- Species-level effects are modelled as random intercepts/slopes from a community-level distribution
- Often yields improved precision due to "borrowing strength", particularly for rare species

Latent factor multi-species N-mixture models (1fMsNMix)

$$N_{i,j} \sim \text{Poisson}(\mu_{i,j})$$

$$\log(\mu_{i,j}) = \beta_{1,i} + \beta_{2,i} \cdot X_{2,j} + \dots + \beta_{r,i} \cdot X_{r,j} + \mathbf{w}_{i,j}^*$$

$$\beta_{1,i} \sim \text{Normal}(\mu_{\beta,1}, \tau_{\beta,1}^2)$$

$$\mathbf{w}_{i,j}^* = \lambda_{i,1} \cdot \mathbf{w}_{1,j} + \lambda_{i,2} \cdot \mathbf{w}_{2,j} + \dots + \lambda_{i,q} \cdot \mathbf{w}_{q,j}$$

$$\mathbf{w}_{q,j} \sim \text{Normal}(0,1)$$

$$y_{i,j,k} \sim \text{Binomial}(N_{i,j}, p_{i,j,k})$$

$$\log \operatorname{it}(p_{i,j,k}) = \alpha_{1,i} + \alpha_{2,i} \cdot V_{2,j,k} + \dots + \alpha_{d,i} \cdot V_{d,j,k}$$

$$\alpha_{1,i} \sim \text{Normal}(\mu_{\alpha,1}, \tau_{\alpha,1}^2)$$

- Account for species correlations through a set of latent factors.
- Latent factors arise from a standard normal distribution.

Spatial factor multi-species N-mixture models (sfMsNMix)

$$N_{i,j} \sim \text{Poisson}(\mu_{i,j})$$

$$\log(\mu_{i,j}) = \beta_{1,i} + \beta_{2,i} \cdot X_{2,j} + \dots + \beta_{r,i} \cdot X_{r,j} + \mathbf{w}_{i,j}^*$$

$$\beta_{1,i} \sim \text{Normal}(\mu_{\beta,1}, \tau_{\beta,1}^2)$$

$$\mathbf{w}_{i,j}^* = \lambda_{i,1} \cdot \mathbf{w}_{1,j} + \lambda_{i,2} \cdot \mathbf{w}_{2,j} + \dots + \lambda_{i,q} \cdot \mathbf{w}_{q,j}$$

$$\mathbf{w}_{q} \sim \text{Multivariate Normal}(\mathbf{0}, \tilde{\mathbf{C}}(d, \phi_{q}))$$

$$y_{i,j,k} \sim \text{Binomial}(N_{i,j}, p_{i,j,k})$$

$$\log \operatorname{it}(p_{i,j,k}) = \alpha_{1,i} + \alpha_{2,i} \cdot V_{2,j,k} + \dots + \alpha_{d,i} \cdot V_{d,j,k}$$

$$\alpha_{1,i} \sim \text{Normal}(\mu_{\alpha,1}, \tau_{\alpha,1}^2)$$

- Account for species correlations through a set of spatial factors.
- Spatial factors modelled with NNGPs.

Fitting multi-species abundance N-mixture models

- All the same prior constraints and convergence guidelines from multi-species occupancy models and GLMMs apply here.
- Abudance-based joint species distribution model that accounts for imperfect detection.

Fitting overdispersed multi-species N-mixture models is tricky!

- As we discussed with single-species models, multi-species spatial N-mixture models can be very difficult to fit in practice.
- Models may need to run for hundreds of thousands of MCMC iterations, and they still may mix poorly.
- Can be very sensitive to the default initial values.
- What can we do to make this process a bit easier?
 - Fit model for a short period of time to extract initial values for a longer model run.
 - Run multiple chains of the model in parallel by running R script through the terminal (with reasonable starting values based on the previous model run)

Exercise:
Estimating
abundance of
four foliagegleaning birds

11b-hbef-main-sfMsNMix.R

