Homework 5

Math 607 (Section 0101), Spring 2022 Due Wednesday, March 16

You are encouraged to think about problems marked with a (*), but they are not to be handed in.

- 1. Consider the Veronese embedding $v_d: \mathbb{P}^1 \to \mathbb{P}^d$.
 - (a) Find the degree of the morphism v_d .
 - (b) Show that the image $v_d(\mathbb{P}^1) \subset \mathbb{P}^1$ is a subvariety.
 - (c) Find the degree of the curve in the image $v_d(\mathbb{P}^1) \subset \mathbb{P}^1$.
- **2.** Consider the curve C cut out by $zy^2=x^3$ in \mathbb{P}^2 . Calculate the intersection including the multiplicities of C with the hyperplanes
 - (a) x = 0
 - **(b)** y = 0
 - (c) z = 0
- **3.** Let R me a commutative ring and $x \in R$ is not a zero divisor. Let M be R-module. Prove the following isomorphisms:
 - (a) $Tor_0(R/x, M) = M/xM$
 - **(b)** $\text{Tor}_1(R/x, M) = M[x]$
 - (c) $\operatorname{Tor}_i(R/x, M) = 0$ for all $i \geq 2$.
- **4.** (Hartshone I.3.14) Projection from a point. Let \mathbb{P}^n be a hyperplane in \mathbb{P}^{n+1} and let $P \in \mathbb{P}^{n+1} \mathbb{P}^n$. Define a mapping $\phi : \mathbb{P}^{n+1} \{P\} \to \mathbb{P}^n$ by $\phi(Q) =$ the intersection of the unique line containing P and Q with \mathbb{P}^n .
 - (a) Show that ϕ is a morphism.
 - (b) Let $Y \subset \mathbb{P}^3$ be the twisted cubic curve which is the image of the 3-uple veronese embedding. If t, u are the coordinates on \mathbb{P}^1 , we say that Y is the curve given parametically by $(x, y, z, w) = (t^3, t^2u, tu^2, u^3)$. Let P = (0, 0, 1, 0) and let \mathbb{P}^2 be the hyperplane z = 0. Show that the projection of Y from P is a cuspidal cubic curve in the place and find its equation.
- **5.** (Hartshorne I.4.4) A variety Y is *rational* if it is birationally equivalent to \mathbb{P}^n for some n (or equivalently if the function field k(Y) is a pure transcendental extension of k.)
 - (a) Any conic in \mathbb{P}^2 is a rational curve.
 - (b) The cuspidal cubic $y^2 = x^3$ is a rational curve.
 - (c) Let Y be the nodal cubic curve $y^2z=x^2(x+z)$ in \mathbb{P}^2 . Show that the projection ϕ from the point P=(0,0,1) to the line z=0 induces a birational map from Y to \mathbb{P}^1 . Thus Y is a rational curve.

- **6.** (Hartshorne I.2.15) The Quadric Surface in \mathbb{P}^3 Consider the surface Q in \mathbb{P}^3 defined by the equation xy zw = 0.
 - (a) Show that Q is equal to the Segre embedding ψ of $\mathbb{P}^1 \times \mathbb{P}^1$ in \mathbb{P}^3 for suitable choice of coordinates.
 - (b) Show that Q contains two families of lines (a *line* is a linear variety of dimension 1) $\{L_t\}, \{M_t\}$ each parametrized by $t \in \mathbb{P}^1$ with the properties that if $L_t \neq L_u$, then $L_t \cap L_u = \emptyset$; if $M_t \neq M_u$, then $M_t \cap M_u = \emptyset$; and for all $t, u, L_t \cap M_u = 0$ one point.
 - (c) Show that Q contains other curves besides these lines and deduce that the Zariski topology on Q is not homeomorphic via ψ to the product topology on $\mathbb{P}^1 \times \mathbb{P}^1$ (where each \mathbb{P}^1 has its Zariski topology.)