Learn to play Atari's Breakout with Deep Reinforcement Learning

Environment

• Gym provided by **OpenAI**

- Is a library which allows to simulate many reinforcement learning environments (incl. Atari games)
- Provides a simple interface for the agent
 (e.g. observation, reward, termination_flag, _ = env.step(action))

Markov Decision Process(MDP)

- MDP< S , A , P , R , γ >
 - S = state space = continuous
 - A = action space = { start, left, right, stay }
 - P = state transition probability matrix = 50% for all
 - $R = reward = \{0,1\}$
 - γ = reward discounting factor = 0.99

Preprocessing

- The observations are 210×160 pixel images with 128 colors
 - Processing big colorized images is computationally expensive
 - So we convert the input to monochrome images with 105x80 pixel
- To capture and learn the motion of moving objects we bundle 4 images together

Q-Learning

- Q-Function:
 - $Q(s, a) = r + \gamma \max_{a'}(Q(s', a'))$

• In some sense, we need to create a model which is trying to predict the max of its own output

Model Input (action) Deep-Q-Network fully Conneced Input (observation) Conv. Conv. Layer Layer fully Con. Output (q-value)

Tricks

(3) Phases of Learning

Observation

- Random actions only ($\epsilon = 1$)
- 50'000 iterations

Exploration

- Randomization- ε annealing ($\varepsilon = 1 0.01$)
- 1'000'000 iterations

Training

• Fixed randomization- ε (ε = 0.01)

Experience Replay

- Every (state, action, new state, reward)-pair gets stored in finite-size memory
 - Ideal 1 million elements
 - Attention: requires a lot of memory

- The network gets trained on 32 independent entries every iteration.
- This is the key method to prevents the network from diverging

Huber Loss

Definition

- Mean squared error for small values
- Mean absolute error for large values

Huber Loss leads the network to less radical changes

Target Network

- $Q(s, a) = r + \gamma \max_{a'}(Q(s', a'))$ is recursive
 - While training Q(s, a) and Q(s', a') get changed
 - Getting close to a target which moves as well is hard (chasing its own tail)

Solution:

• Using a cloned network for Q(s', a') which gets a weight updated every 10'000 iteration

Code

github.com/heitzjon/drl atari breakout

