

GPs and Kernel Design GPSS 2021 - Nicolas Durrande

Outline

Talk is organised in 5 sections

- 1. From random variables to Gaussian Processes
- 2. Gaussian process Regression
- 3. Parameter estimation and model validation
- 4. Choosing the kernel
- 5. Making new from old

From random variables to Gaussian processes

Random variables

One way to describe the distribution of a random variable X is through its probability density function p_X :

Probability density functions give the "probability mass" for each interval: $P(X \in [a,b]) = \int_a^b p_X(x) dx.$

$$P(X \in [a, b]) = \int_a^b p_X(x) \, dx$$

There are many of commonly used families of distributions for random variables:

Unsurprisingly, the Gaussian (or Normal) distribution will be particularly relevant to us!

The expectation captures the mean value of a random variable:

$$\mathsf{E}[X] = \int_{\mathbb{R}} x \, p_X(x) \, dx$$

The variance quantifies the dispersion around the mean value:

$$var[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2$$

Examples

1D normal distribution

We say that X is normally distributed if its pdf writes:

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Computing the expectation and variance of X yields:

$$\mathsf{E}[X] = \mu \quad \text{and} \quad \mathsf{var}[X] = \sigma^2.$$

These two quantities are thus enough to characterise the distribution of X.

"X is normally distributed with mean μ and variance σ^2 " is written: $X \sim \mathcal{N}(\mu, \sigma^2)$.

Examples of normally distributed random variables for various values of μ and σ : $(\mu \in \{0, 1\}, \text{ and } \sigma \in \{0.5, 1, 2.5\})$

Random vectors

Probability density functions are also defined for random vectors:

Multivariate normal

We say that $X = (X_1, ..., X_n)$ is multivariate normal if its pdf writes:

$$p_x(x) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right)$$

 μ is the mean vector, and Σ is the covariance matrix:

$$\mu = \mathsf{E}[X] = \begin{pmatrix} \mathsf{E}[X_1] \\ \mathsf{E}[X_2] \end{pmatrix}$$

$$\Sigma = \mathsf{cov}(X, X) = \begin{pmatrix} \mathsf{var}[X_1] & \mathsf{cov}(X_1, X_2) \\ \\ \mathsf{cov}(X_2, X_1) & \mathsf{var}[X_2] \end{pmatrix}$$

As previously we make use of the notation $X \sim \mathcal{N}(\mu, \Sigma)$.

The covariance matrix Σ captures both the dispersion of each component, and their correlation:

Conditional distribution

Knowing the value of one component of a random vector $X = (X_1, X_2)$ can give some information on the other:

The conditional distribution of X_1 given $X_2 = a$ is proportional to $p_{X_1,Y_2}(x,a)$.

Conditional distribution

For a multivariate normal distribution $X = (X_1, X_2)$, the conditional distribution of $X_1 | X_2 = a$ has two great properties

- + It is still normally distributed
- + It's mean and variance are known analytically

More precisely, let

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \mathcal{N} \left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \right)$$

Then the conditional distribution of X_1 given $X_2 = a$ is:

$$X_1 | \{X_2 = a\} \sim \mathcal{N}(\mu_{\mathsf{cond}}, \Sigma_{\mathsf{cond}})$$

$$\mu_{\text{cond}} = \mathsf{E}[X_1 | X_2 = a] = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (a - \mu_2)$$

$$\Sigma_{\text{cond}} = \mathsf{cov}(X_1, X_1 | X_2) = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

Conditional distribution

Intuition why...

$$\begin{split} p(y_1|y_2 = \alpha) &= \frac{p(y_1, \alpha)}{p(\alpha)} \\ &= \frac{\exp(\text{quadratic in } y_1 \text{ and } \alpha)}{\text{const}} \\ &= \frac{\exp(\text{quadratic in } y_1)}{\text{const}} \\ &= \text{normal distribution!} \end{split}$$

The conditional distribution is still Gaussian!

Illustration of the conditional distribution of a 3D multivariate normal vector

Random processes

A random process is a generalisation of random variables/vectors, where each draw is a function

Gaussian Process

A Gaussian Process is a random process f where any finite set $\{f(x_1), f(x_2), ..., f(x_n)\}$ is multivariate normal:

Example For n = 1, we get

Gaussian Process

A Gaussian Process is a random process f where any finite set of the process value is multivariate normal:

Example For n = 2, we get

The distribution of a GP is fully characterised by its mean function and covariance function.

We write $f \sim \mathcal{N}(m(.), k(., .))$:

 $m: D \to \mathbb{R}$ is the mean function $m(x) = \mathsf{E}[f(x)]$

 $k: D \times D \to \mathbb{R}$ is the covariance function (i.e. kernel):

$$k(x,y) = \mathop{\rm cov}(f(x),f(y))$$

The mean m can be any function.

The kernel must satisfy:

- + symmetric: k(x, y) = k(y, x)
- + positive semi-definite: for all $n \in \mathbb{N}$, for all $x_i \in D$, $\forall \alpha_i \in \mathbb{R}$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x_i, x_j) \ge 0$$

Influence of the mean function:

Influence of the kernel (i.e. covariance function)

Sampling from a GP

Let $f \sim \mathcal{GP}(m(\cdot), k(\cdot, \cdot))$, and let (x_1, \ldots, x_n) be a regular grid on [0, 1]. Then $(f(x_1), \ldots, f(x_n)) \sim \mathcal{N}(\mu, \Sigma)$ with:

$$\mu = \begin{pmatrix} m(x_1) \\ m(x_1) \\ m(x_n) \end{pmatrix} \qquad \Sigma = \begin{pmatrix} k(x_1, x_1) & k(x_1, x_2) & k(x_1, x_n) \\ k(x_2, x_1) & k(x_2, x_2) & k(x_2, x_n) \\ \vdots & \vdots & \vdots \\ k(x_n, x_1) & k(x_n, x_2) & k(x_n, x_n) \end{pmatrix}$$

One can use any random variable generator capable of sampling from a multivariate normal distribution to get a draw from $\mathcal{N}(\mu, \Sigma)$. The obtained vector can then be plotted against the indices x_i .

Kernels

There are lots of common kernels:

constant
$$k(x,x') = \sigma^2$$

white noise $k(x,x') = \sigma^2 \delta_{x,x'}$
Brownian $k(x,x') = \sigma^2 \min(x,x')$
exponential $k(x,x') = \sigma^2 \exp\left(-|x-x'|/\theta\right)$
Matérn 3/2 $k(x,x') = \sigma^2 \left(1+|x-x'|\right) \exp\left(-|x-x'|/\theta\right)$
Matérn 5/2 $k(x,x') = \sigma^2 \left(1+|x-x'|/\theta+1/3|x-x'|^2/\theta^2\right) \exp\left(-|x-x'|/\theta\right)$
squared exponential $k(x,x') = \sigma^2 \exp\left(-(x-x')^2/\theta^2\right)$
linear $k(x,x') = \sigma^2 x x'$

23/82

The parameter σ^2 is called the variance and θ the lengthscale.

Examples of kernels in gpflow:

Associated samples

Secondmind 25/82

Gaussian Process Regression

We have some data corresponding to input/output tuples (x_i, y_i)

We want to predict the output value for any input point.

We cannot make predictions without making assumptions

In a GP regression model, we assume that the input x and the output y are related as follow:

$$y = f(x) + \varepsilon$$
, where $f \sim \mathcal{GP}(0, k(\cdot, \cdot))$ and $\varepsilon \sim \mathcal{N}(0, \tau^2)$

Inference consists in combining this model with the observed data in order to derive the posterior distribution

$$prior + data \rightarrow posterior$$

The rules of probability are here to help!

$$p(f|y) = \frac{p(y|f)p(f)}{p(y)}$$

We consider the model $y = f(x) + \varepsilon$ with $f \sim \mathcal{GP}(0, k)$ and $\varepsilon \sim \mathcal{N}(0, \tau^2)$:

The posterior distribution $f(\cdot)|f(X) + \varepsilon = Y$ is still a Gaussian process. The posterior mean and covariance can be computed analytically:

$$m(x) = k(x, X)(k(X, X) + \tau^{2}I)^{-1}Y$$

$$c(x, x') = k(x, x') - k(x, X)(k(X, X) + \tau^{2}I)^{-1}k(X, x')$$

Samples from the posterior distribution

It can be summarized by a mean function and 95% confidence intervals.

A few remarkable properties of GPR models

- + They (can) interpolate the data-points.
- + The prediction variance does not depend on the observations.
- + The mean predictor does not depend on the variance parameter.
- + The mean (usually) come back to zero when predicting far away from the observations.

Can we prove them?

Reminder:

$$m(x) = k(x, X)k(X, X)^{-1}F$$

$$c(x, y) = k(x, y) - k(x, X)k(X, X)^{-1}k(X, y)$$

We do we like GP so much?

They offer great features:

- + Quantification of uncertainty
 - The risk associated with decisions based on predictions can be controlled
 - Can be used to derive exploration/exploitation trade-off
 - \Rightarrow Talk from Javier Gonzales on day 3
- + Versatile framework: non-conjugate likelihood, etc.
 - \Rightarrow Talk from Ti John on day 3
- + Comfortable both with small and big data regimes
 - Extremely data efficient in low data regime
 - Can also cope with large datasets
 - \Rightarrow Talk from Zhenwen Dai on day 3
- + Principled approach: marginal likelihood as a training objective, etc.
- + (mathematically tractable!)

What are their limitations?

- + Complexity
 - Storage footprint is $\mathcal{O}(n^2)$: We have to store the covariance matrix which is $n \times n$.
 - Complexity is $\mathcal{O}(n^3)$: We have to invert the covariance matrix (or compute the Cholesky factor and apply triangular solves).

+ Numerical stability (you want double precision!)

Secondmind 35/82

The kernel has a huge impact on the model: (Matérn 1/2, Matérn 5/2 and Arccosine kernels)

This is because changing kernel means changing prior $(Mat\'{e}rn 1/2, 5/2 \text{ and Arccosine kernels})$

Similarly, changing the kernel parameters has a huge impact on the model: $\frac{1}{2}$

Again, this is because it means changing the hypothesis we include in our model

Finally the noise variance τ^2 also has a big influence

Parameter estimation and Model validation

The choice of the kernel parameters has a great influence on the model.

⇒ Demo https://durrande.shinyapps.io/gp_playground

In order to choose a prior that is suited to the data at hand, we can search for the parameters that maximise the model likelihood.

Definition

The likelihood of a distribution with a density p_X given some observations X_1, \ldots, X_n is:

$$L = \prod_{i=1}^{n} p_X(X_i)$$

In the GPR context, we often have only one observation of the vector Y. The likelihood is then:

$$L(\sigma^2,\theta) = p_{f(X)}(Y) = \frac{1}{(2\pi)^{n/2} |k(X,X)|^{1/2}} \exp\left(-\frac{1}{2}Y^T k(X,X)^{-1}Y\right).$$

It is thus possible to maximise L – or log(L) – with respect to the kernel's parameters in order to find a well suited prior.

Why is the likelihood linked to good model predictions? They are linked by the product rule:

$$p_{f(X)}(Y) = p(Y_1) \times p(Y_2|Y_1) \times p(Y_3|Y_1, Y_2) \times \cdots \times p(Y_n|Y_1, \dots, Y_{n-1})$$

The idea is to introduce new data and to compare the model prediction with reality

Two (ideally three) things should be checked:

- + Is the mean accurate?
 - \Rightarrow Mean square error (0.038 for the plot above)
- + Do the confidence intervals make sense?
 - ⇒ Percentage of points in confidence intervals...
- + Are the predicted covariances right?

The predicted distribution can be tested by normalising the residuals.

According to the model, $F_t \sim \mathcal{N}(m(X_t), c(X_t, X_t))$.

 $c(X_t, X_t)^{-1/2}(F_t - m(X_t))$ should thus be independents $\mathcal{N}(0, 1)$:

When no test set is available, another option is to consider cross validation methods such as leave-one-out.

The steps are:

- 1. build a model based on all observations except one
- 2. compute the model error at this point

This procedure can be repeated for all the design points in order to get a vector of error.

Model to be tested:

Step 1:

Step 2:

Step 3:

We finally obtain:

$$MSE = 0.24$$
 and $Q_2 = 0.34$.

We can also look at the residual distribution, but computing their joint distribution is not as straightforward as previously.

Choosing the kernel

In order to choose a kernel, one should gather all possible informations about the function to approximate...

- + Is it stationary?
- + Is it differentiable, what's its regularity?
- + Do we expect particular trends?
- + Do we expect particular patterns (periodicity, cycles, additivity)?

It is common to try various kernels and to asses the model accuracy (test set or leave-one-out).

Furthermore, it is often interesting to try some input remapping such as $x \to \log(x)$, $x \to \exp(x)$, ...

We have seen previously:

Theorem (Loeve)

 \boldsymbol{k} corresponds to the covariance of a GP

k is a symmetric positive semi-definite function

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x_i, x_j) \ge 0$$

for all $n \in \mathbb{N}$, for all $x_i \in D$, for all $\alpha_i \in \mathbb{R}$.

For a few kernels, it is possible to prove they are psd directly from the definition.

- + $k(x,y) = \delta_{x,y}$
- + k(x, y) = 1

For most of them a direct proof from the definition is not possible. The following theorem is helpful for stationary kernels:

Theorem (Bochner)

A continuous stationary function $k(x,y) = \tilde{k}(|x-y|)$ is positive definite if and only if \tilde{k} is the Fourier transform of a finite positive measure:

$$\tilde{k}(t) = \int_{\mathbb{R}} e^{-i\omega t} \mathrm{d}\mu(\omega)$$

Example

We consider the following measure:

Its Fourier transform gives $\tilde{k}(t) = \frac{\sin(t)}{t}$:

As a consequence, $k(x,y) = \frac{\sin(x-y)}{x-y}$ is a valid covariance function.

Usual kernels

Bochner theorem can be used to prove the positive definiteness of many usual stationary kernels

- + The Gaussian is the Fourier transform of itself \Rightarrow it is psd.
- + Matérn kernels are the Fourier transforms of $\frac{1}{(1+\omega^2)^p}$ \Rightarrow they are psd.

Unusual kernels

Inverse Fourier transform of a (symmetrised) sum of Gaussian gives (A. Wilson, ICML 2013):

 $\overline{\mathcal{F}}$

The obtained kernel is parametrised by its spectrum.

More details this afternoon \Rightarrow Talk from Markus Heinonen

Secondmind 58/82

Unusual kernels

The sample paths have the following shape:

Making new from old

Making new from old

Kernels can be:

- + Summed together
 - On the same space $k(x,y) = k_1(x,y) + k_2(x,y)$
 - On the tensor space $k(\mathbf{x}, \mathbf{y}) = k_1(x_1, y_1) + k_2(x_2, y_2)$
- + Multiplied together
 - On the same space $k(x,y) = k_1(x,y) \times k_2(x,y)$
 - On the tensor space $k(\mathbf{x}, \mathbf{y}) = k_1(x_1, y_1) \times k_2(x_2, y_2)$
- + Composed with a function
 - $k(x,y) = k_1(f(x), f(y))$

All these operations will preserve the positive definiteness.

How can this be useful?

Property

$$k(x,y) = k_1(x,y) + k_2(x,y)$$

is a valid covariance structure.

Example

 $Z \sim \mathcal{N}(0, k_1 + k_2)$ can be seen as $Z = Z_1 + Z_2$ where Z_1 , Z_2 are independent and $Z_1 \sim \mathcal{N}(0, k_1)$, $Z_2 \sim \mathcal{N}(0, k_2)$ $k(x, y) = k_1(x, y) + k_2(x, y)$

Example

Example: The Mauna Loa observatory dataset [GPML 2006]

This famous dataset compiles the monthly CO_2 concentration in Hawaii since 1958.

Let's try to predict the concentration for the next 20 years.

We first consider a squared-exponential kernel:

$$k(x,y) = \sigma^2 \exp\left(-\frac{(x-y)^2}{\theta^2}\right)$$

What happen if we sum both kernels?

$$k(x,y) = k_{rbf1}(x,y) + k_{rbf2}(x,y)$$

What happen if we sum both kernels?

The model is drastically improved!

We can try the following kernel:

$$k(x,y) = \sigma_0^2 x^2 y^2 + k_{rbf1}(x,y) + k_{rbf2}(x,y) + k_{per}(x,y)$$

We can try the following kernel:

$$k(x,y) = \sigma_0^2 x^2 y^2 + k_{rbf1}(x,y) + k_{rbf2}(x,y) + k_{per}(x,y)$$

Once again, the model is significantly improved.

Sum of kernels over tensor space

Property

$$k(x, y) = k_1(x_1, y_1) + k_2(x_2, y_2)$$

is a valid covariance structure.

Remark:

From a GP point of view, k is the kernel of $Z(x) = Z_1(x_1) + Z_2(x_2)$

Sum of kernels over tensor space

We can have a look at a few sample paths from Z:

\Rightarrow They are additive (up to a modification)

Tensor Additive kernels are very useful for

- + Approximating additive functions
- + Building models over high dimensional input space

Sum of kernels over tensor space

Remarks

+ It is straightforward to show that the mean predictor is additive

$$m(\mathbf{x}) = (k_1(x, X) + k_2(x, X))k(X, X)^{-1}F$$

$$= \underbrace{k_1(x_1, X_1)k(X, X)^{-1}F}_{m_1(x_1)} + \underbrace{k_2(x_2, X_2)k(X, X)^{-1}F}_{m_2(x_2)}$$

- \Rightarrow The model shares the prior behaviour.
- + The sub-models can be interpreted as GP regression models with observation noise:

$$m_1(x_1) = \mathsf{E} \left(\ Z_1(x_1) \mid Z_1(X_1) + Z_2(X_2) = F \ \right)$$

Sum of kernels over tensor space

Remark

+ The prediction variance has interesting features

pred. var. with kernel product

pred. var. with kernel sum

Sum of kernels over tensor space

This property can be used to construct a design of experiment that covers the space with only $cst \times d$ points.

Prediction variance

Product over the same space

Property

$$k(x,y) = k_1(x,y) \times k_2(x,y)$$

is valid covariance structure.

Example

We consider the product of a squared exponential with a cosine:

×

=

Product over the tensor space

Property

$$k(\mathbf{x}, \mathbf{y}) = k_1(x_1, y_1) \times k_2(x_2, y_2)$$

is valid covariance structure.

Example

We multiply two squared exponential kernels

Calculation shows we obtain the usual 2D squared exponential kernels.

74/82

Composition with a function

Property

Let k_1 be a kernel over $D_1 \times D_1$ and f be an arbitrary function $D \to D_1$, then

$$k(x,y) = k_1(f(x), f(y))$$

is a kernel over $D \times D$. proof

$$\sum \sum a_i a_j k(x_i, x_j) = \sum \sum a_i a_j k_1 \underbrace{(f(x_i), f(x_j))}_{y_i} \ge 0$$

Remarks:

- + k corresponds to the covariance of $Z(x) = Z_1(f(x))$
- + This can be seen as a (nonlinear) rescaling of the input space

Secondmind

Example

We consider $f(x) = \frac{1}{x}$ and a Matérn 3/2 kernel $k_1(x,y) = (1+|x-y|)e^{-|x-y|}$.

We obtain:

All these transformations can be combined!

Example

 $k(x,y) = f(x)f(y)k_1(x,y)$ is a valid kernel.

This can be illustrated with $f(x) = \frac{1}{x}$ and $k_1(x,y) = (1+|x-y|)e^{-|x-y|}$:

Can we automate the construction of the covariance?

Automatic statistician [Duvenaud 2013, Steinruecken 2019]

It considers a set of possible

- + kernel functions
- + kernel combinations $(+, \times, \text{change-point})$

and uses a greedy approach to find the kernel that minimises

$$BIC = -2\log(L) + \#_{param}\log(n)$$

The automatic statistician also generates human readable reports!

Kernel identification through transformers [preprint Simpson 2021]

idea: train a transformer neural network to add the kernel name as a label to kernel samples

- + Uses a vocabulary of kernels and a grammar to combine them
- + Outputs the probability associated to various kernel combinations

Conclusion: GPR and kernel design in practice

The various steps for building a GPR model are:

- 1. Get the Data (Design of Experiment)
 - What is the overall evaluation budget?
 - What is my model for?
- 2. Choose a kernel. Do we have any specific knowledge we can include in it?
- 3. Estimate the parameters
 - Maximum likelihood
 - Cross-validation
 - Multi-start
- 4. Validate the model
 - Test set
 - Leave-one-out to check mean and confidence intervals
 - Leave-k-out to check predicted covariances

Remark

It is common to iterate over steps 2, 3 and 4.

Secondmind

In practice, the following errors may appear:

- Error: Cholesky decomposition failed
- Error: the matrix is not positive definite

Invertibility issues arise typically when

- + observations are close-by
- + the kernel corresponds to very regular sample paths (squared-exponential for example)
- + the range (or length-scale) parameters are large

In order to avoid numerical problems during optimization, one can:

- + add some (very) small observation noise (jitter or nugget)
- + impose a maximum bound to length-scales
- + impose a minimal bound for noise variance
- + avoid using the Gaussian kernel

Secondmind 81/82

