

SEQUENCE LISTING

<10> Callen, Walter
Richardson, Toby
Frey, Gerhard
Short, Jay M.
Mathur, Eric J.
Gray, Kevin A.
Kerovuo, Janne S.
Slupska, Malgorzata

<120> ENZYMES HAVING ALPHA AMYLASE ACTIVITY
AND METHODS OF USE THEREOF

<130> 09010-108001

<140> US 10/081,872
<141> 2002-02-21

<150> US 60/270,495
<151> 2001-02-21

<150> US 60/270,496
<151> 2001-02-21

<150> US 60/291,122
<151> 2001-05-14

<160> 321

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1311
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetically generated oligonucleotide

<400> 1

atggcaaagt attccgagct cgaagagggc gggctcataa tgcaggcctt ctactggac	60
gtccccatgg gaggaatctg gtggcacacg atagcccaga agataacccga ctggcaagc	120
gccgggattt cggcgatatg gattcccccg gcgagcaagg gcatggcg ggccctattcg	180
atgggctacg acccctacga cttcttgac ctcggtgagt acgaccagaa gggAACGGTA	240
gagacgcgct ttggctccaa gcaggagctc gtgaacatga taaacaccgc ccacgcctat	300
ggcatgaagg taatagccga tatagtcatc aaccaccgcg cccggcggtga cctggagtgg	360
aacccttcg tgaacgacta tacctggacc gacttctcaa aggtcgccgtc gggtaaatac	420
acggccaact acctcgactt ccacccgaac gagctccatg cggcgatcc cggaacattt	480
ggaggctatc ccgacatatg ccacgacaag agctggacc agtactggct ctgggccagc	540
caggagagct acgcggcata tctcaggagc atcggcatcg atgcctggcg cttcgactac	600
gtcaaggggct acggagcgtg ggtcgtcaag gactggctgg actgggtgggg aggctggcc	660
gtcggggagt actgggacac aaacgttgat gcactgctca actgggccta ctcgagcgat	720
gcaaaagtct tcgacttccc gctctactac aagatggacg cggccttta caacaagaac	780
atcccgac tcgtcgaggc cctcaagaac gggggcacag tcgtcagccg cgaccgttt	840
aaggccgtaa cttcgttgc aaaccacgac accgatataa tctggAACAA gtatccagcc	900

tacgcgttca tcctcaccta cgagggccag ccgacaatat tctaccgcga ctacgaggag	960
tggctcaaca aggataagct caagaacctc atctggatac atgacaacct cgccggagga	1020
agcaactgaca tcgtttacta cgacaacgac gagctgatat tcgtgagaaa cggctacgga	1080
agcaagccgg gactgataac atacatcaac ctcgcctcaa gcaaagccgg aaggtgggtt	1140
tacgttccga agttcgagg ctcgtgcata cacgagatac cccgcaatct cggcggctgg	1200
gtggacaagt gggtggaact aagcggctgg gtctacctcg aggctcctgc ccacgaccgg	1260
gccaacggcc agtacggcta ctccgtctgg agctactgcg gtgttgggtg a	1311

<210> 2
<211> 436
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetically generated polypeptide

<400> 2	
Met Ala Lys Tyr Ser Glu Leu Glu Gly Gly Leu Ile Met Gln Ala	
1 5 10 15	
Phe Tyr Trp Asp Val Pro Met Gly Gly Ile Trp Trp Asp Thr Ile Ala	
20 25 30	
Gln Lys Ile Pro Asp Trp Ala Ser Ala Gly Ile Ser Ala Ile Trp Ile	
35 40 45	
Pro Pro Ala Ser Lys Gly Met Gly Gly Ala Tyr Ser Met Gly Tyr Asp	
50 55 60	
Pro Tyr Asp Phe Phe Asp Leu Gly Glu Tyr Asp Gln Lys Gly Thr Val	
65 70 75 80	
Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Val Asn Met Ile Asn Thr	
85 90 95	
Ala His Ala Tyr Gly Met Lys Val Ile Ala Asp Ile Val Ile Asn His	
100 105 110	
Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Asn Asp Tyr Thr	
115 120 125	
Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr	
130 135 140	
Leu Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe	
145 150 155 160	
Gly Gly Tyr Pro Asp Ile Cys His Asp Lys Ser Trp Asp Gln Tyr Trp	
165 170 175	
Leu Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly	
180 185 190	
Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val	
195 200 205	
Val Lys Asp Trp Leu Asp Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr	
210 215 220	
Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Asp	
225 230 235 240	
Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Ala Ala Phe	
245 250 255	
Asp Asn Lys Asn Ile Pro Ala Leu Val Glu Ala Leu Lys Asn Gly Gly	
260 265 270	
Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn	
275 280 285	
His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile	
290 295 300	
Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu	
305 310 315 320	

```

Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn
325 330 335
Leu Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu
340 345 350
Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr
355 360 365
Ile Asn Leu Ala Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys
370 375 380
Phe Ala Gly Ser Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp
385 390 395 400
Val Asp Lys Trp Val Asp Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro
405 410 415
Ala His Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr
420 425 430
Cys Gly Val Gly
435

```

```
<210> 3
<211> 1311
<212> DNA
<213> Artificial Sequence
```

<220>
<223> synthetically generated oligonucleotide

<400> 3
atggccaagt acctggagct cgaagagggc gggctcataa tgcaggcctt ctactggac 60
gtccccatgg gaggaatctg gtggcacag atagcccaga agatacccgta ctgggcaagc 120
gccgggattt cgccgatatacg gattcccccg gcggagcaagg gcatgggcgg cgcctattcg 180
atgggctacg acccctacga cttcttgac ctcggtgagt acgaccagaa gggAACGGTA 240
gagacgcgct ttggctccaa gcaggagctc gtgaacatga taaacaccgc ccacgcctac 300
ggcatcaagg tcatcgcaga catagtaatc aaccaccgcg ccggaggaga ctttgagttg 360
aacccttcg tcaatgacta cacctggacg gacttctcgag aggtcgcttc cggcaagttac 420
acggccaatt acctcgactt ccacccgaac gagctccatg cggggatttc cggAACATTT 480
ggaggctatc ccgacatatg ccacgacaag agctggacc agtactggct ctgggcccagc 540
caggagagct acgcggcata tctcaggagc atcggcatcg atgcctggcg cttcgactac 600
gtcaaggggct atgctccctg ggtcgtaag gactggctga actgggggg aggctggcg 660
gttggagagt actggacac caacgtcgac gctgttctca actgggcata ctcgagcggt 720
gccaaggctt ttgacttcgc cctctactac aaagatggatg aggcctttga caacaaaaac 780
attccagcgc tcgtctctgc cttcagaac gccagactg ttgtctcccg cgaccggttc 840
aaggccgtaa ctttgttagc aaaccacgac accgatataa tctggaaacaa gtatccagcc 900
tacgcgttca tcctcaccta cgaggccag ccgacaatat tctaccgcga ctacgaggag 960
tggctcaaca aggataagct caagaacctc atctggatc atgacaacctt cggccggaggaa 1020
agcactgaca tcgtttacta cgacaacgac gagctgatata tcgtgagaaa cggctacggaa 1080
agcaaggccgg gactgataac atacatcaac ctgcctcaa gcgaaggccgg aaggtgggtc 1140
tacgttccga agttcgccgg agcgtgcata cacgagtaca ccggcaacctt cggccggctgg 1200
gtggacaagt gggtggactc aagcgggtgg gtgtacctcg aggccctgc ccacgaccgg 1260
gccaacggctt attacggctt ctccgtctgg agctattgcg gtgttgggtg a 1311

```
<210> 4
<211> 436
<212> PRT
<213> Artificial Sequence
```

<220>
<223> synthetically generated polypeptide

<400> 4
 Met Ala Lys Tyr Leu Glu Leu Glu Gly Gly Leu Ile Met Gln Ala
 1 5 10 15
 Phe Tyr Trp Asp Val Pro Met Gly Gly Ile Trp Trp Asp Thr Ile Ala
 20 25 30
 Gln Lys Ile Pro Asp Trp Ala Ser Ala Gly Ile Ser Ala Ile Trp Ile
 35 40 45
 Pro Pro Ala Ser Lys Gly Met Gly Gly Ala Tyr Ser Met Gly Tyr Asp
 50 55 60
 Pro Tyr Asp Phe Phe Asp Leu Gly Glu Tyr Asp Gln Lys Gly Thr Val
 65 70 75 80
 Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Val Asn Met Ile Asn Thr
 85 90 95
 Ala His Ala Tyr Gly Ile Lys Val Ile Ala Asp Ile Val Ile Asn His
 100 105 110
 Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Asn Asp Tyr Thr
 115 120 125
 Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr
 130 135 140
 Leu Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe
 145 150 155 160
 Gly Gly Tyr Pro Asp Ile Cys His Asp Lys Ser Trp Asp Gln Tyr Trp
 165 170 175
 Leu Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly
 180 185 190
 Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Ala Pro Trp Val
 195 200 205
 Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr
 210 215 220
 Trp Asp Thr Asn Val Asp Ala Val Leu Asn Trp Ala Tyr Ser Ser Gly
 225 230 235 240
 Ala Lys Val Phe Asp Phe Ala Leu Tyr Tyr Lys Met Asp Glu Ala Phe
 245 250 255
 Asp Asn Lys Asn Ile Pro Ala Leu Val Ser Ala Leu Gln Asn Gly Gln
 260 265 270
 Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn
 275 280 285
 His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile
 290 295 300
 Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu
 305 310 315 320
 Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn
 325 330 335
 Leu Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu
 340 345 350
 Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr
 355 360 365
 Ile Asn Leu Ala Ser Ser Glu Ala Gly Arg Trp Val Tyr Val Pro Lys
 370 375 380
 Phe Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp
 385 390 395 400
 Val Asp Lys Trp Val Asp Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro
 405 410 415
 Ala His Asp Pro Ala Asn Gly Tyr Tyr Gly Ser Val Trp Ser Tyr
 420 425 430
 Cys Gly Val Gly
 435

<210> 5
<211> 1311
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetically generated oligonucleotide

<400> 5

atggccaagt	actccgagct	ggaagagggc	ggcggtataa	tgcaggcctt	ctactggac	60
gtcccaggtg	gaggaatctg	gtggcacacc	atcaggagca	agataccgga	gtggtacgag	120
gcggaaatat	ccgccatttg	gattcccccg	gcaagaagg	gcatgggcgg	cgcctattcg	180
atgggctacg	acccctacga	cttctttgac	ctcggtgagt	acgaccagaa	gggaacggta	240
gagacgcgct	ttggctccaa	gcaggagctc	gtgaacatga	taaacaccgc	ccacgcctat	300
ggcatgaagg	taatagccga	tatagtcata	aaccaccgcg	ccggcggtgta	cctggagtgg	360
aacccttcg	tgaacgacta	tacctggacc	gacttctcaa	aggtcgcgtc	ggtaaatac	420
acggccaact	acctcgactt	ccacccgaac	gagctccatg	cgggcgattc	cggaacattt	480
ggaggctatc	ccgacatatg	ccacgacaag	agctggacc	agtactggct	ctggccagc	540
caggagagct	acgcggcata	tctcaggagc	atcggcatcg	atgcctggcg	cttcgactac	600
gtcaagggtct	atgctccctg	ggtcgtcaag	gactggctga	actgggtgggg	aggctggcg	660
gttggagagt	actgggacac	caacgtcgac	gctgttctca	actgggcata	ctcgagcggt	720
gccaagggtct	ttgacttcgc	cctctactac	aagatggatg	aggcctttga	caacaaaaac	780
attccagcgc	tcgtctctgc	ccttcagaac	ggccagactg	ttgtctcccg	cgaccgggttc	840
aaggccgtaa	cctttgttagc	aaaccacgac	accgatataa	tctggaaacaa	gtaccttgct	900
tatgctttca	tcctcaccta	cgaaggccag	cccgtcatat	tctaccgcga	ccacgaggag	960
tggctcaaca	aggacaggtt	gaacaacacctc	atatggatac	acgaccacct	cgcaggtgga	1020
agcaccgaca	tagtctacta	cgataaacat	gaactcatct	tcgtcaggaa	cggtacacggg	1080
gacaagccgg	ggcttataac	ctacatcaac	ctaggctcga	gcaaggccgg	aagggtgggtt	1140
tatgtgccga	agttcgcggg	cgcgtgcata	cacgagtata	ctggtaacct	cgaggctgg	1200
gtagacaagt	acgtctactc	aagcggctgg	gtctatctcg	aagctccagc	ttacgaccct	1260
gccaacgggc	agtatggcta	ctccgtgtgg	agctactgcg	gggtggctg	a	1311

<210> 6
<211> 436
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetically generated polypeptide

<400> 6

Met	Ala	Lys	Tyr	Ser	Glu	Leu	Glu	Gly	Gly	Val	Ile	Met	Gln	Ala	
1					5			10			15				
Phe	Tyr	Trp	Asp	Val	Pro	Gly	Gly	Ile	Trp	Trp	Asp	Thr	Ile	Arg	
								20		25			30		
Ser	Lys	Ile	Pro	Glu	Trp	Tyr	Glu	Ala	Gly	Ile	Ser	Ala	Ile	Trp	Ile
								35		40		45			
Pro	Pro	Ala	Ser	Lys	Gly	Met	Gly	Gly	Ala	Tyr	Ser	Met	Gly	Tyr	Asp
								50		55		60			
Pro	Tyr	Asp	Phe	Phe	Asp	Leu	Gly	Glu	Tyr	Asp	Gln	Lys	Gly	Thr	Val
								65		70		75		80	
Glu	Thr	Arg	Phe	Gly	Ser	Lys	Gln	Glu	Leu	Val	Asn	Met	Ile	Asn	Thr
								85		90		95			
Ala	His	Ala	Tyr	Gly	Met	Lys	Val	Ile	Ala	Asp	Ile	Val	Ile	Asn	His
								100		105		110			
Arg	Ala	Gly	Gly	Asp	Leu	Glu	Trp	Asn	Pro	Phe	Val	Asn	Asp	Tyr	Thr

115	120	125
Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr	Thr Ala Asn Tyr	
130	135	140
Leu Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe		
145	150	155
Gly Gly Tyr Pro Asp Ile Cys His Asp Lys Ser Trp Asp Gln Tyr Trp		160
165	170	175
Leu Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly		
180	185	190
Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Ala Pro Trp Val		
195	200	205
Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr		
210	215	220
Trp Asp Thr Asn Val Asp Ala Val Leu Asn Trp Ala Tyr Ser Ser Gly		
225	230	235
Ala Lys Val Phe Asp Phe Ala Leu Tyr Tyr Lys Met Asp Glu Ala Phe		240
245	250	255
Asp Asn Lys Asn Ile Pro Ala Leu Val Ser Ala Leu Gln Asn Gly Gln		
260	265	270
Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn		
275	280	285
His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Leu Ala Tyr Ala Phe Ile		
290	295	300
Leu Thr Tyr Glu Gly Gln Pro Val Ile Phe Tyr Arg Asp His Glu Glu		
305	310	315
320		
Trp Leu Asn Lys Asp Arg Leu Asn Asn Leu Ile Trp Ile His Asp His		
325	330	335
Leu Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu		
340	345	350
Ile Phe Val Arg Asn Gly Tyr Gly Asp Lys Pro Gly Leu Ile Thr Tyr		
355	360	365
Ile Asn Leu Gly Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys		
370	375	380
Phe Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp		
385	390	395
400		
Val Asp Lys Tyr Val Tyr Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro		
405	410	415
Ala Tyr Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr		
420	425	430
Cys Gly Val Gly		
435		

<210> 7

<211> 16

<212> PRT

<213> Environmental

<400> 7

Met Ala Leu Glu Glu Gly Gly Leu Ile Met Gln Ala Phe Tyr Trp Asp		
1	5	10
		15

<210> 8

<211> 26

<212> PRT

<213> Bacterial

<400> 8

Met Lys Pro Ala Lys Leu Leu Val Phe Val Val Val Ser Ile Leu
 1 5 10 15
 Ala Gly Leu Tyr Ala Gln Pro Ala Gly Ala
 20 25

<210> 9
 <211> 1311
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> synthetically generated oligonucleotide

<400> 9

atggccaagt	actccgagct	ggaagagggc	gggctcataa	tgcaggcctt	ctactggac	60
gtccccatgg	gaggaatctg	gtggcacacg	atagcccaga	agatacccgaa	ctggcaagc	120
gccgggattt	cggcgatatg	gattcccccg	gcgagcaagg	gcatgggcgg	cgcctattcg	180
atgggctacg	acccctacga	cttctttgac	ctcggtgagt	acgaccagaa	gggaacggta	240
gagacgcgct	ttggctccaa	gcaggagctc	gtgaacatga	taaacacggc	ccatgcctac	300
ggcataaaagg	tcatagcga	catcgtcata	aaccaccgac	caggcggaga	cctcgagtgg	360
aaccgcgtcg	ttggggacta	cacctggacg	gacttctcaa	aggtggcctc	gggcaaataat	420
actgccaact	acctcgactt	ccacccgaac	gagctccatg	cgggcgattc	cggaacacattt	480
ggaggctatc	ccgacatatg	ccacgacaag	agctggacc	agtaactggct	ctgggccagc	540
caggagagct	acgcggcata	tctcaggagc	atcggcatcg	atgcctggcg	ttcgactac	600
gtcaagggct	atgctccctg	ggtcgtcaag	gactggctga	actgggtgggg	aggctggcg	660
gttggagagt	actgggacac	caacgtcgac	gctgttctca	actgggcata	ctcgagcggt	720
gccaagggtct	ttgacttcgc	cctctactac	aagatggacg	aggccttcga	taacaacaac	780
atccccgccc	ttgtggacgc	cctcagatac	ggtcagacag	ttgtcagccg	cgaccgggttc	840
aaggctgtga	cgttttagc	caaccacgt	accgatataa	tctggaaccaa	gtatccagcc	900
tacgcgttca	tcctcaccta	cgagggccag	ccgacaatat	tctaccgcga	ctacgaggag	960
tggctcaaca	aggataagct	caagaacctc	atctggatac	atgacaacct	cggccggagga	1020
agcaactgaca	tcgtttaacta	cgacaacgc	gagctgatat	tcgcgagaaa	cggctacgga	1080
agcaagccgg	gactgataac	atacatcaac	ctcgccctaa	gcaaagccgg	aaggtgggtt	1140
tacgttccga	agttcgcagg	ctcgtgcata	cacgagtaca	ccggcaatct	cggccggctgg	1200
gtggacaagt	gggtggactc	aagcggctgg	gtctacctcg	aggctcctgc	ccacgaccgg	1260
gccaacggcc	agtacggcta	ctccgtctgg	agctactgcg	gtgttggtt	a	1311

<210> 10
 <211> 436
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> synthetically generated polypeptide

<400> 10

Met Ala Lys Tyr Ser Glu Leu Glu Glu Gly	Gly Leu Ile Met Gln Ala	
1 5 10 15		
Phe Tyr Trp Asp Val Pro Met Gly Gly Ile Trp Trp Asp Thr Ile Ala		
. 20 25 30		
Gln Lys Ile Pro Asp Trp Ala Ser Ala Gly Ile Ser Ala Ile Trp Ile		
35 40 45		
Pro Pro Ala Ser Lys Gly Met Gly Gly Ala Tyr Ser Met Gly Tyr Asp		
50 55 60		
Pro Tyr Asp Phe Phe Asp Leu Gly Glu Tyr Asp Gln Lys Gly Thr Val		
65 70 75 80		
Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Val Asn Met Ile Asn Thr		

85	90	95
Ala His Ala Tyr Gly Ile Lys Val Ile	Ala Asp Ile Val Ile	Asn His
100	105	110
Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val	Gly Asp Tyr Thr	
115	120	125
Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr	Thr Ala Asn Tyr	
130	135	140
Leu Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe		
145	150	155
Gly Gly Tyr Pro Asp Ile Cys His Asp Lys Ser Trp Asp Gln Tyr Trp		160
165	170	175
Leu Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly		
180	185	190
Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Ala Pro Trp Val		
195	200	205
Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr		
210	215	220
Trp Asp Thr Asn Val Asp Ala Val Leu Asn Trp Ala Tyr Ser Ser Gly		
225	230	235
Ala Lys Val Phe Asp Phe Ala Leu Tyr Tyr Lys Met Asp Glu Ala Phe		240
245	250	255
Asp Asn Asn Asn Ile Pro Ala Leu Val Asp Ala Leu Arg Tyr Gly Gln		
260	265	270
Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn		
275	280	285
His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile		
290	295	300
Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu		
305	310	315
Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn		320
325	330	335
Leu Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu		
340	345	350
Ile Phe Ala Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr		
355	360	365
Ile Asn Leu Ala Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys		
370	375	380
Phe Ala Gly Ser Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp		
385	390	395
Val Asp Lys Trp Val Asp Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro		400
405	410	415
Ala His Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr		
420	425	430
Cys Gly Val Gly		
435		

<210> 11

<211> 1311

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetically generated oligonucleotide

<400> 11

atggccaagt acctggagct cgaggaggc gggctataa tgcaggcctt ctactggac
gtccccatgg gaggaatctg gtgggacacg atagcccaga agatacccgta ctgggcaagc

60

120

gccccgattt	cggcgatatg	gattccccc	gcgagcaagg	gcatgggcgg	cgcctattcg	180
atgggctacg	acccctacga	cttctttgac	ctcggtgagt	acgaccagaa	gggaacggta	240
gagacgcgct	ttggctccaa	gcaggagctc	gtgaacatga	taaacaccgc	ccacgcctat	300
ggcatgaagg	taatagccga	tatagtcatc	aaccaccgcg	ccggcggtga	cctggagtgg	360
aacccttcg	tgaacgacta	tacctggacc	gacttctcaa	agtcgcgtc	ggtaaatac	420
acggccaact	acctcgactt	ccacccgaac	gagctccatg	cggcgattc	cggAACATT	480
ggaggctatc	ccgacatatg	ccacgacaag	agctgggacc	agtactggct	ctggccagc	540
caggagact	acgcggcata	tctcaggagc	atcggcatcg	atgcctggcg	cttcgactac	600
gtcaagggct	atgctccctg	ggtcgtcaag	gactggctga	actgggtggg	aggctggcg	660
gttggagagt	actgggacac	caacgtcgac	gctgttctca	actgggcata	ctcgagcggt	720
gccaagggtct	ttgacttcgc	cctctactac	aagatggacg	aggccttcga	taacaacaac	780
attcccgcc	ttgtggacgc	cctcagatac	ggtcagacag	tgtcagccg	cgaccgcgtc	840
aaggctgtga	cgttttagc	caaccacgat	accgatataa	tctggAACAA	gtatccagcc	900
tacgcgttca	tcctcaccta	cgagggccag	ccgacaatat	tctaccgcga	ctacgaggag	960
tggctcaaca	aggatacgct	caagaacctc	atctggatac	atgacaacct	cggccggagga	1020
agcacgagca	tagttacta	cgacagcgac	gagatgatct	tctgtgaggaa	cggctatgg	1080
agcaaggctg	gccttataac	ttacatcaac	ctcggctcg	gcaagggtgg	aagggtgggtc	1140
tacgttccga	agtcgcggg	agcgtgcattc	cacgagtaca	ccggcaacct	cggcggtgg	1200
gtggacaagt	gggtggactc	aagcgggtgg	gtgtacctcg	aggcccctgc	ccacgaccgg	1260
gccaacggct	attacggcta	ctccgtctgg	agctactgcg	gtgttggctg	a	1311

<210> 12

<211> 436

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetically generated polypeptide

<400> 12

Met	Ala	Lys	Tyr	Leu	Glu	Leu	Glu	Gly	Gly	Leu	Ile	Met	Gln	Ala	
1				5			10					15			
Phe	Tyr	Trp	Asp	Val	Pro	Met	Gly	Gly	Ile	Trp	Trp	Asp	Thr	Ile	Ala
						20			25			30			
Gln	Lys	Ile	Pro	Asp	Trp	Ala	Ser	Ala	Gly	Ile	Ser	Ala	Ile	Trp	Ile
						35			40			45			
Pro	Pro	Ala	Ser	Lys	Gly	Met	Gly	Gly	Ala	Tyr	Ser	Met	Gly	Tyr	Asp
						50			55			60			
Pro	Tyr	Asp	Phe	Phe	Asp	Leu	Gly	Glu	Tyr	Asp	Gln	Lys	Gly	Thr	Val
						65			70			75		80	
Glu	Thr	Arg	Phe	Gly	Ser	Lys	Gln	Glu	Leu	Val	Asn	Met	Ile	Asn	Thr
						85			90			95			
Ala	His	Ala	Tyr	Gly	Met	Lys	Val	Ile	Ala	Asp	Ile	Val	Ile	Asn	His
						100			105			110			
Arg	Ala	Gly	Gly	Asp	Leu	Glu	Trp	Asn	Pro	Phe	Val	Asn	Asp	Tyr	Thr
						115			120			125			
Trp	Thr	Asp	Phe	Ser	Lys	Val	Ala	Ser	Gly	Lys	Tyr	Thr	Ala	Asn	Tyr
						130			135			140			
Leu	Asp	Phe	His	Pro	Asn	Glu	Leu	His	Ala	Gly	Asp	Ser	Gly	Thr	Phe
						145			150			155		160	
Gly	Gly	Tyr	Pro	Asp	Ile	Cys	His	Asp	Lys	Ser	Trp	Asp	Gln	Tyr	Trp
						165			170			175			
Leu	Trp	Ala	Ser	Gln	Glu	Ser	Tyr	Ala	Ala	Tyr	Leu	Arg	Ser	Ile	Gly
						180			185			190			
Ile	Asp	Ala	Trp	Arg	Phe	Asp	Tyr	Val	Lys	Gly	Tyr	Ala	Pro	Trp	Val
						195			200			205			
Val	Lys	Asp	Trp	Leu	Asn	Trp	Trp	Gly	Gly	Trp	Ala	Val	Gly	Glu	Tyr

210	215	220
Trp Asp Thr Asn Val Asp Ala Val Leu Asn Trp Ala Tyr Ser Ser Gly		
225	230	235
Ala Lys Val Phe Asp Phe Ala Leu Tyr Tyr Lys Met Asp Glu Ala Phe		240
245	250	255
Asp Asn Asn Asn Ile Pro Ala Leu Val Asp Ala Leu Arg Tyr Gly Gln		
260	265	270
Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn		
275	280	285
His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile		
290	295	300
Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu		
305	310	315
320		
Trp Leu Asn Lys Asp Thr Leu Lys Asn Leu Ile Trp Ile His Asp Asn		
325	330	335
Leu Ala Gly Gly Ser Thr Ser Ile Val Tyr Tyr Asp Ser Asp Glu Met		
340	345	350
Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr		
355	360	365
Ile Asn Leu Gly Ser Ser Lys Val Gly Arg Trp Val Tyr Val Pro Lys		
370	375	380
Phe Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp		
385	390	395
400		
Val Asp Lys Trp Val Asp Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro		
405	410	415
Ala His Asp Pro Ala Asn Gly Tyr Tyr Gly Tyr Ser Val Trp Ser Tyr		
420	425	430
Cys Gly Val Gly		
435		

```
<210> 13  
<211> 1311  
<212> DNA  
<213> Artificial Sequence
```

<220>
<223> synthetically generated oligonucleotide

<400> 13	
atggccaagt acctggagct cgaagaggc ggggtcataa tgcagggcgtt ctactggac	60
gtgccttcag gagaaatatg gtggacaca atacggcaga agataccgga gtggtagat	120
gccggaatct ccgcaatatg gattcccccg gcgagcaagg gcatggcgg cgccatttcg	180
atgggctacg acccctacga cttcttgac ctcggtagt atgaccagaa gggAACGGTA	240
gagacgcgct ttggctccaa gcaggagctc gtgaacatga taaacacggc acatgcctac	300
ggcataaagg tcatagcga catgtcata aaccaccgcg caggccgaga cctcgagttg	360
aaccgttcg ttggggacta cacctggacg gacttctcaa aggtggcctc gggcaaataat	420
actgccaact acctcgactt ccaccccaac gaggtcaagt gctgtacga gggcacattt	480
ggaggctcc cagacatagc ccacgagaag agctggacc agcaactggct ctggcgagc	540
gatgagagct acggccgccta cctaaggagc atccggcgttg atgcctggcg cttcgactac	600
gtcaagggtc acggagcgtg ggtcgtcaag gactggctgg actgggtggg aggctggcc	660
gtcggggagt actgggacac aaacgttgat gcaactgctca actgggccta ctcgagcgtat	720
gcaaaaagtct tcgacttccc gctctactac aagatggatg aggcccttga caacaaaaac	780
attccagcgc tcgtctctgc cttcagaac gcccagactg ttgtctcccg cgacccgtc	840
aaggccgtaa ctttgttagc aaaccacgac accgatataa tctggaaacaa gtatccagcc	900
tacgcgttca tcctcaccta cgaggccag ccgacaatat tctaccgcgta ctacgaggag	960
tggctcaaca aggataagct caagaacctc atctggatac atgacaacct cgccggagga	1020
agcaactgaca tagtctacta cgataacgat gaactcatct tcgtcaqqaa cqqctacqqq	1080

gacaagccgg ggcttataac ctacatcaac ctaggctcga gcaaggccgg aagggtgggtt	1140
tatgtgccga agttcgccgg cgctgcac caccgatata ctggtaacct cggaggctgg	1200
gtagacaagt acgtctactc aagcggctgg gtctatctcg aagctccagc ttacgaccct	1260
gccaacgggc agtatggcta ctccgtgtgg agctactgcg gtgttggctg a	1311

<210> 14
<211> 436
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetically generated polypeptide

<400> 14	
Met Ala Lys Tyr Leu Glu Leu Glu Gly Gly Val Ile Met Gln Ala	
1 5 10 15	
Phe Tyr Trp Asp Val Pro Ser Gly Gly Ile Trp Trp Asp Thr Ile Arg	
20 25 30	
Gln Lys Ile Pro Glu Trp Tyr Asp Ala Gly Ile Ser Ala Ile Trp Ile	
35 40 45	
Pro Pro Ala Ser Lys Gly Met Gly Gly Ala Tyr Ser Met Gly Tyr Asp	
50 55 60	
Pro Tyr Asp Phe Phe Asp Leu Gly Glu Tyr Asp Gln Lys Gly Thr Val	
65 70 75 80	
Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Val Asn Met Ile Asn Thr	
85 90 95	
Ala His Ala Tyr Gly Ile Lys Val Ile Ala Asp Ile Val Ile Asn His	
100 105 110	
Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Gly Asp Tyr Thr	
115 120 125	
Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr	
130 135 140	
Leu Asp Phe His Pro Asn Glu Val Lys Cys Cys Asp Glu Gly Thr Phe	
145 150 155 160	
Gly Gly Phe Pro Asp Ile Ala His Glu Lys Ser Trp Asp Gln His Trp	
165 170 175	
Leu Trp Ala Ser Asp Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly	
180 185 190	
Val Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val	
195 200 205	
Val Lys Asp Trp Leu Asp Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr	
210 215 220	
Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Asp	
225 230 235 240	
Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Glu Ala Phe	
245 250 255	
Asp Asn Lys Asn Ile Pro Ala Leu Val Ser Ala Leu Gln Asn Gly Gln	
260 265 270	
Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn	
275 280 285	
His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile	
290 295 300	
Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu	
305 310 315 320	
Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn	
325 330 335	
Leu Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu	

340	345	350
Ile Phe Val Arg Asn Gly Tyr Gly Asp Lys Pro Gly Leu Ile Thr Tyr		
355	360	365
Ile Asn Leu Gly Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys		
370	375	380
Phe Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp		
385	390	395
Val Asp Lys Tyr Val Tyr Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro		400
405	410	415
Ala Tyr Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr		
420	425	430
Cys Gly Val Gly		
435		

<210> 15

<211> 1311

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetically generated oligonucleotide

<400> 15

atggccaagt actccgagct ggaagagggc gggctcataa tgcaggcctt ctactggac	60
gtccccatgg gaggaatctg gtgggacacg atagcccaga agatacccgta ctgggcaagc	120
gccgggattt cggcgatatg gattcccccg gcgagcaagg gcatggggcg cgcctattcg	180
atgggctacg acccctacga cttctttgac ctcggtgagt acgaccagaa gggAACGGTA	240
gagacgcgct ttggctccaa gcaggagctc gtgaacatga taaacacggc ccatgcctac	300
ggcataaaagg tcatagcggc catcgatata aaccaccgcg caggcggaga cctcgagtgg	360
aaccgcgtcg ttggggacta cacctggacg gacttctcaa aggtggcctc gggcaaatat	420
actgccaact acctcgactt ccacccgaac gagctccatg cgggcgattc cggaacattt	480
ggaggctatc ccgacatatg ccacgacaag agctggacc agtactggct ctggccagc	540
caggagagct acgcggcata tctcaggagc atcggcatcg atgcctggcg cttcgactac	600
gtcaagggct acggagctg ggtcgtaag gactggctgg actgggtggg aggctggcc	660
gtcggggagt actggacac aaacgtttagt gcactgctca actgggccta ctcgagcgat	720
gcaaaaagtct tcgacttccc gctctactac aagatggatg aggcccttga caacaaaaac	780
attccagcgc tcgtctctgc cttcagaac ggccagactg ttgtctcccg cgaccgttc	840
aaggccgtaa cttttgttagc aaaccacgac accgatataa ttggaaacaa gtacccggcc	900
tacgccttca tcctcaccta cgagggccag ccgacgatata tctaccgcga ctacgaggag	960
tggctcaaca aggacaggct caagaacctc atctgatac acgaccacct tgccggtgga	1020
agactgaca tcgtttacta cgacaacgcg gagctgatata tcgtgagaaa cggctacgga	1080
agcaagccgg gactgataac atacatcaac ctcgcctcaa gcaaagccgg aagggtgggtt	1140
tatgtgccga agttcgcggg cgctgtcattc cacgagtata ctggtaacct cggaggctgg	1200
gtagacaagt acgtctactc aagcggctgg gtctatctcg aagctccagc ttacgaccct	1260
gccaacgggc agtatggcta ctccgtgtgg agctattgcg gtgttgggtg a	1311

<210> 16

<211> 436

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetically generated polypeptide

<400> 16

Met Ala Lys Tyr Ser Glu Leu Glu Glu Gly Leu Ile Met Gln Ala

1

5

10

15

Phe Tyr Trp Asp Val Pro Met Gly Gly Ile Trp Trp Asp Thr Ile Ala
 20 25 30
 Gln Lys Ile Pro Asp Trp Ala Ser Ala Gly Ile Ser Ala Ile Trp Ile
 35 40 45
 Pro Pro Ala Ser Lys Gly Met Gly Gly Ala Tyr Ser Met Gly Tyr Asp
 50 55 60
 Pro Tyr Asp Phe Phe Asp Leu Gly Glu Tyr Asp Gln Lys Gly Thr Val
 65 70 75 80
 Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Val Asn Met Ile Asn Thr
 85 90 95
 Ala His Ala Tyr Gly Ile Lys Val Ile Ala Asp Ile Val Ile Asn His
 100 105 110
 Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Gly Asp Tyr Thr
 115 120 125
 Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr
 130 135 140
 Leu Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe
 145 150 155 160
 Gly Gly Tyr Pro Asp Ile Cys His Asp Lys Ser Trp Asp Gln Tyr Trp
 165 170 175
 Leu Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly
 180 185 190
 Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val
 195 200 205
 Val Lys Asp Trp Leu Asp Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr
 210 215 220
 Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Asp
 225 230 235 240
 Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Glu Ala Phe
 245 250 255
 Asp Asn Lys Asn Ile Pro Ala Leu Val Ser Ala Leu Gln Asn Gly Gln
 260 265 270
 Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn
 275 280 285
 His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile
 290 295 300
 Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu
 305 310 315 320
 Trp Leu Asn Lys Asp Arg Leu Lys Asn Leu Ile Trp Ile His Asp His
 325 330 335
 Leu Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu
 340 345 350
 Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr
 355 360 365
 Ile Asn Leu Ala Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys
 370 375 380
 Phe Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp
 385 390 395 400
 Val Asp Lys Tyr Val Tyr Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro
 405 410 415
 Ala Tyr Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr
 420 425 430
 Cys Gly Val Gly
 435

<210> 17

<211> 1311

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetically generated oligonucleotide

<400> 17

atggccaagt	actccgagct	ggaagggggc	gggctcataa	tgcaggccct	ctactggac	60
gtccccatgg	gaggaatctg	gtgggacacg	atagcccaga	agatacccgaa	ctggcaagc	120
gccgggattt	cggcgatatg	gattcccccg	gcgagcaagg	gcatgggggg	cgcctattcg	180
atgggctacg	accctacgaa	cttcttgcac	ctcggtgagt	acgaccaggaa	gggaacggta	240
gagacgcgct	ttggctccaa	gcaggagctc	gtgaacatga	taaacacggc	ccatgcctac	300
ggcataaaagg	tcatagcgga	catcgctata	aaccacccgc	caggcggaga	cctcgagtgg	360
aaccgcgttc	ttggggacta	cacctggacg	gacttctcaa	aggtggccctc	gggcaaataat	420
actgccaact	acctcgactt	ccaccccaac	gaggtcaagt	gctgtgacga	gggcacattt	480
ggaggcttcc	cagacatagc	ccacgagaag	agctgggacc	agcaactggct	ctggggcagc	540
gatgagagct	acgccccta	cctaaggagc	atcggcggtt	atgcctggcg	cttcgactac	600
gtcaagggct	acggagcggt	ggtcgtcaag	gactggctgg	actgggggggg	aggctggcc	660
gtcggggagt	actgggacac	aaacgttgat	gcactgctca	actggggccta	ctcgagcgat	720
gcaaaaagtct	tcgacttccc	gctctactac	aagatggacg	ccgcctttga	caacaagaac	780
attcccgac	tcgtcgaggc	cctcaagaac	gggggcacag	tcgtcagccg	cgaccgcgtt	840
aaggccgtaa	ccttcgttgc	aaaccacgac	accgatataa	tctgaaacaa	gtatccagcc	900
tacgcgttca	tcctcaccta	cgagggccag	ccgacaatat	tctaccgcga	ctacgaggag	960
tggctcaaca	aggataagct	caagaacctc	atctggatac	atgacaacct	cgccggagga	1020
agcacgagca	tagttacta	cgacagcgac	gagatgatct	tcgtgaggaa	cggttatgg	1080
agcaaggctg	gccttataac	ttacatcaac	ctcggctcgaa	gcaagggttgg	aagggtgggtt	1140
tacgttccga	agttcgcgagg	ctcgtgcata	cacgagtaca	ccggcaatct	cgccggctgg	1200
gtggacaagt	gggtggactc	aagcggctgg	gtctacctcg	aggctcctgc	ccacgaccgg	1260
gccaacggcc	agtacggcta	ctccgtctgg	agctactgcg	gtgttgggtg	a	1311

<210> 18

<211> 436

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetically generated polypeptide

<400> 18

Met	Ala	Lys	Tyr	Ser	Glu	Leu	Glu	Gly	Gly	Leu	Ile	Met	Gln	Ala	
1														15	
Phe	Tyr	Trp	Asp	Val	Pro	Met	Gly	Gly	Ile	Trp	Trp	Asp	Thr	Ile	Ala
														20	
Gln	Lys	Ile	Pro	Asp	Trp	Ala	Ser	Ala	Gly	Ile	Ser	Ala	Ile	Trp	Ile
														35	
Pro	Pro	Ala	Ser	Lys	Gly	Met	Gly	Gly	Ala	Tyr	Ser	Met	Gly	Tyr	Asp
														50	
Pro	Tyr	Asp	Phe	Phe	Asp	Leu	Gly	Glu	Tyr	Asp	Gln	Glu	Gly	Thr	Val
														65	
Glu	Thr	Arg	Phe	Gly	Ser	Lys	Gln	Glu	Leu	Val	Asn	Met	Ile	Asn	Thr
														85	
Ala	His	Ala	Tyr	Gly	Ile	Lys	Val	Ile	Ala	Asp	Ile	Val	Ile	Asn	His
														100	
Arg	Ala	Gly	Gly	Asp	Leu	Glu	Trp	Asn	Pro	Phe	Val	Gly	Asp	Tyr	Thr
														115	
Trp	Thr	Asp	Phe	Ser	Lys	Val	Ala	Ser	Gly	Lys	Tyr	Thr	Ala	Asn	Tyr
														130	

140

Leu Asp Phe His Pro Asn Glu Val Lys Cys Cys Asp Glu Gly Thr Phe
 145 150 155 160
 Gly Gly Phe Pro Asp Ile Ala His Glu Lys Ser Trp Asp Gln His Trp
 165 170 175
 Leu Trp Ala Ser Asp Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly
 180 185 190
 Val Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val
 195 200 205
 Val Lys Asp Trp Leu Asp Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr
 210 215 220
 Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Asp
 225 230 235 240
 Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Ala Ala Phe
 245 250 255
 Asp Asn Lys Asn Ile Pro Ala Leu Val Glu Ala Leu Lys Asn Gly Gly
 260 265 270
 Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn
 275 280 285
 His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile
 290 295 300
 Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu
 305 310 315 320
 Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn
 325 330 335
 Leu Ala Gly Gly Ser Thr Ser Ile Val Tyr Tyr Asp Ser Asp Glu Met
 340 345 350
 Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr
 355 360 365
 Ile Asn Leu Gly Ser Ser Lys Val Gly Arg Trp Val Tyr Val Pro Lys
 370 375 380
 Phe Ala Gly Ser Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp
 385 390 395 400
 Val Asp Lys Trp Val Asp Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro
 405 410 415
 Ala His Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr
 420 425 430
 Cys Gly Val Gly
 435

<210> 19

<211> 1311

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetically generated oligonucleotide

<400> 19

atggccaagt acctggagct cgaagagggc gggctcataa tgcaggcctt ctactgggac	60
gtccccatgg gagaaatctg gtgggacacg atagcccaga agatacccgta tggcaagc	120
gccgggattt cggcgatatg gattcctccc gcgagcaagg gtatgagcgg cggctattcg	180
atgggctacg acccctacga ttatttgac cttggtgagt actaccagaa ggaaacggtg	240
gaaacgaggt tcggctaaa gcaggagctc ataaacatga taaacacggc ccatgcctac	300
ggcataaaagg tcatagcgaa catcgtaata accaccgcg caggcggaga cctcgagtgg	360
aacccggtcg ttggggacta cacctggacg gacttctcaa aggtggcctc gggcaaatat	420
actgccaact acctcgactt ccacccgaac gagctccatg cgggcgattc cggaacattt	480
ggaggctatc ccgacatatg ccacgacaag agctggacc agtactggct ctggccagc	540

caggagagct acgcggcata tctcaggagc atcggcatcg atgcctggcg cttcgactac	600
gtcaaggcgt atgctccctg ggtcgtaag gactggctga actgggtgggg gggctggcg	660
gttggagagt actgggacac caacgtcgac gctgttctca actgggcata ctcgagcggt	720
gccaaggctt ttgacttcgc cctctactac aagatggatg aggcccttga caacaaaaac	780
attccagcgc tcgtctctgc ctttcagaac ggccagactg ttgtctcccg cgaccgcgtc	840
aaggccgtaa ctttgtagc aaaccacgac accgatataa ttggaacaa gtaccggcc	900
tacgccttca tcctcaccta cgagggccag ccgacgatat tctaccgcga ctacgaggag	960
tggctcaaca aggacaggct caagaacctc atctggatac acgaccacct cgccggtgga	1020
agcaactgaca tcgtttacta cgacaacgac gagctgatat tcgtgagaaa cggctacgga	1080
agcaagccgg gactgataac atacatcaa ctcgcctcaa gcaaagccgg aagggtggtt	1140
tatgtgccga agttcgcggg cgccgtgcata cacgagcata ctggtaacct cggaggctgg	1200
gtagacaagt acgtctactc aagcggctgg gtctatctcg aagctccagc ttacgaccct	1260
gccaacgggc agtatggcta ctccgtgtgg agctactgcg gtgttggct a	1311

<210> 20

<211> 436

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetically generated polypeptide

<400> 20

Met Ala Lys Tyr Leu Glu Leu Glu Gly Gly Leu Ile Met Gln Ala			
1	5	10	15
Phe Tyr Trp Asp Val Pro Met Gly Gly Ile Trp Trp Asp Thr Ile Ala			
20	25	30	
Gln Lys Ile Pro Asp Trp Ala Ser Ala Gly Ile Ser Ala Ile Trp Ile			
35	40	45	
Pro Pro Ala Ser Lys Gly Met Ser Gly Gly Tyr Ser Met Gly Tyr Asp			
50	55	60	
Pro Tyr Asp Tyr Phe Asp Leu Gly Glu Tyr Tyr Gln Lys Gly Thr Val			
65	70	75	80
Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Ile Asn Met Ile Asn Thr			
85	90	95	
Ala His Ala Tyr Gly Ile Lys Val Ile Ala Asp Ile Val Ile Asn His			
100	105	110	
Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Gly Asp Tyr Thr			
115	120	125	
Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr			
130	135	140	
Leu Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe			
145	150	155	160
Gly Gly Tyr Pro Asp Ile Cys His Asp Lys Ser Trp Asp Gln Tyr Trp			
165	170	175	
Leu Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly			
180	185	190	
Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Ala Pro Trp Val			
195	200	205	
Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr			
210	215	220	
Trp Asp Thr Asn Val Asp Ala Val Leu Asn Trp Ala Tyr Ser Ser Gly			
225	230	235	240
Ala Lys Val Phe Asp Phe Ala Leu Tyr Tyr Lys Met Asp Glu Ala Phe			
245	250	255	
Asp Asn Lys Asn Ile Pro Ala Leu Val Ser Ala Leu Gln Asn Gly Gln			
260	265	270	

Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn
 275 280 285
 His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile
 290 295 300
 Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu
 305 310 315 320
 Trp Leu Asn Lys Asp Arg Leu Lys Asn Leu Ile Trp Ile His Asp His
 325 330 335
 Leu Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu
 340 345 350
 Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr
 355 360 365
 Ile Asn Leu Ala Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys
 370 375 380
 Phe Ala Gly Ala Cys Ile His Glu His Thr Gly Asn Leu Gly Gly Trp
 385 390 395 400
 Val Asp Lys Tyr Val Tyr Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro
 405 410 415
 Ala Tyr Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr
 420 425 430
 Cys Gly Val Gly
 435

<210> 21
 <211> 1311
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> synthetically generated oligonucleotide

<400> 21

atggccaagt	actccgagct	ggaagagggc	ggcgttataa	tgcaggcctt	ctactggac	60
gtcccagggt	gaggaatctg	gtgggacacc	atcaggagca	agataccgga	gtggtaacgag	120
gcggaaatat	ccgcatttg	gattcctccc	gggagaagg	gtatgagcgg	cggctattcg	180
atgggctacg	acccctacga	tgatttggac	ctgggtgagt	actaccagaa	gggaacgggt	240
gaaaacgaggt	tcggctaaa	gcaggagctc	ataaacatga	taaacacggc	ccatgcctac	300
ggcataaaagg	tcatagcgg	catcgtcata	aaccacccgc	caggcggaga	cctcgagtgg	360
aacctcggtc	ttggggacta	cacctggacg	gacttctcaa	aggtggcctc	gggcaaataat	420
actgccaact	acctcgactt	ccacccgaac	gagctccatg	cgggcgattc	cggaacattt	480
ggaggctatc	ccgacatatg	ccacgacaag	agctggacc	agtaactggct	ctgggccagc	540
caggagagct	acgcgttata	tctcaggagc	atcggcatcg	atgcctggcg	cttcgactac	600
gtcaagggct	acggagcgt	ggtcgtcaag	gactggctgg	actgggtgggg	aggctggcc	660
gtcggggagt	actgggacac	aaacgttcat	gcactgctca	actgggccta	ctcgagcgat	720
gcaaaaagtct	tcgacttccc	gctctactac	aagatggatg	aggccttta	caacaaaaac	780
attccagcgc	tcgtctctgc	ccttcagaac	ggccagactg	ttgtctcccg	cgacccgttc	840
aaggccgtaa	cctttgttagc	aaaccacgac	accgatataa	tttggaaacaa	gtacccggcc	900
tacgccttca	tcctcaccta	cgagggccag	ccgacgatata	tctaccgcga	ctacgaggag	960
tggctcaaca	aggacaggct	caagaacctc	atctgatac	acgactacat	cggccgtgga	1020
agcaactgaca	tcgtttacta	cgacaacgac	gagctgatata	tcgtgagaaa	cggctacgga	1080
agcaagccgg	gactgataac	atacatcaac	ctcgccctcaa	gcaaagccgg	aaggtgggtt	1140
tatgtgccga	agttcgccgg	cgcgtgcata	cacgagtata	ctggtaacct	cggaggctgg	1200
gtagacaagt	acgtctactc	aagcggctgg	gtctatctcg	aagctccagc	ttacgaccct	1260
gccaacgggc	agtatggcta	ctccgtgtgg	agctattgcg	gtgttggctg	a	1311

<210> 22
 <211> 436

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetically generated polypeptide

<400> 22

Met	Ala	Lys	Tyr	Ser	Glu	Leu	Glu	Gly	Gly	Val	Ile	Met	Gln	Ala	
1					5				10				15		
Phe	Tyr	Trp	Asp	Val	Pro	Gly	Gly	Gly	Ile	Trp	Trp	Asp	Thr	Ile	Arg
					20				25				30		
Ser	Lys	Ile	Pro	Glu	Trp	Tyr	Glu	Ala	Gly	Ile	Ser	Ala	Ile	Trp	Ile
					35				40				45		
Pro	Pro	Gly	Ser	Lys	Gly	Met	Ser	Gly	Gly	Tyr	Ser	Met	Gly	Tyr	Asp
					50				55				60		
Pro	Tyr	Asp	Asp	Leu	Asp	Leu	Gly	Glu	Tyr	Tyr	Gln	Lys	Gly	Thr	Val
					65				70				75		80
Glu	Thr	Arg	Phe	Gly	Ser	Lys	Gln	Glu	Leu	Ile	Asn	Met	Ile	Asn	Thr
					85				90				95		
Ala	His	Ala	Tyr	Gly	Ile	Lys	Val	Ile	Ala	Asp	Ile	Val	Ile	Asn	His
					100				105				110		
Arg	Ala	Gly	Gly	Asp	Leu	Glu	Trp	Asn	Pro	Phe	Val	Gly	Asp	Tyr	Thr
					115				120				125		
Trp	Thr	Asp	Phe	Ser	Lys	Val	Ala	Ser	Gly	Lys	Tyr	Thr	Ala	Asn	Tyr
					130				135				140		
Leu	Asp	Phe	His	Pro	Asn	Glu	Leu	His	Ala	Gly	Asp	Ser	Gly	Thr	Phe
					145				150				155		160
Gly	Gly	Tyr	Pro	Asp	Ile	Cys	His	Asp	Lys	Ser	Trp	Asp	Gln	Tyr	Trp
					165				170				175		
Leu	Trp	Ala	Ser	Gln	Glu	Ser	Tyr	Ala	Val	Tyr	Leu	Arg	Ser	Ile	Gly
					180				185				190		
Ile	Asp	Ala	Trp	Arg	Phe	Asp	Tyr	Val	Lys	Gly	Tyr	Gly	Ala	Trp	Val
					195				200				205		
Val	Lys	Asp	Trp	Leu	Asp	Trp	Trp	Gly	Gly	Trp	Ala	Val	Gly	Glu	Tyr
					210				215				220		
Trp	Asp	Thr	Asn	Val	Asp	Ala	Leu	Leu	Asn	Trp	Ala	Tyr	Ser	Ser	Asp
					225				230				235		240
Ala	Lys	Val	Phe	Asp	Phe	Pro	Leu	Tyr	Tyr	Lys	Met	Asp	Glu	Ala	Phe
					245				250				255		
Asp	Asn	Lys	Asn	Ile	Pro	Ala	Leu	Val	Ser	Ala	Leu	Gln	Asn	Gly	Gln
					260				265				270		
Thr	Val	Val	Ser	Arg	Asp	Pro	Phe	Lys	Ala	Val	Thr	Phe	Val	Ala	Asn
					275				280				285		
His	Asp	Thr	Asp	Ile	Ile	Trp	Asn	Lys	Tyr	Pro	Ala	Tyr	Ala	Phe	Ile
					290				295				300		
Leu	Thr	Tyr	Glu	Gly	Gln	Pro	Thr	Ile	Phe	Tyr	Arg	Asp	Tyr	Glu	Glu
					305				310				315		320
Trp	Leu	Asn	Lys	Asp	Arg	Leu	Lys	Asn	Leu	Ile	Trp	Ile	His	Asp	Tyr
					325				330				335		
Leu	Ala	Gly	Gly	Ser	Thr	Asp	Ile	Val	Tyr	Tyr	Asp	Asn	Asp	Glu	Leu
					340				345				350		
Ile	Phe	Val	Arg	Asn	Gly	Tyr	Gly	Ser	Lys	Pro	Gly	Leu	Ile	Thr	Tyr
					355				360				365		
Ile	Asn	Leu	Ala	Ser	Ser	Lys	Ala	Gly	Arg	Trp	Val	Tyr	Val	Pro	Lys
					370				375				380		
Phe	Ala	Gly	Ala	Cys	Ile	His	Glu	Tyr	Thr	Gly	Asn	Leu	Gly	Gly	Trp
					385				390				395		400

```
<210> 23
<211> 1311
<212> DNA
<213> Artificial Sequence
```

<220>
<223> synthetically generated oligonucleotide

<400> 23	
atggccaagt actccgagct ggaagagggc ggcgttatacg tgcaggcctt ctactggac	60
gtcccaggtg gagaaatctg gtggcacacc atcaggagca agataaccgga gtggtacgag	120
gcgggaatat ccgcatttg gattcccccg qcgagcaagg gcatggcgcc cgcctattcg	180
atgggctacg acccctacga cttcttgac ctcggtgagt acgaccagaa gggAACGGTA	240
gagacgcgct ttggctccaa gcaggagctc gtgaacatga taaacacggc ccatgcctac	300
ggcataaagg tcatacgcca catcgctata aaccaccgcg caggccgaga ctcgagttgg	360
aacccttcg ttggggacta cacctggacg gacttctcaa aggtggcctc gggcaaataat	420
actgccaact acctcgactt ccaccgcAAC gagctccatg cgggcgattc cggAACATT	480
ggaggctatc ccgacatatg ccacgacaag agctggacc agtactggct ctgggccaagc	540
caggagagct acgcggcata tctcaggagc atcggcatcg atgcctggcg cttcgactac	600
gtcaagggct acggagcgtg ggtcgtaag gactggctgg actgggggg aggctggggc	660
gtcggggagt actggacac aaacgtttagt gcactgctca actgggccta ctcgagcgat	720
gcaaaaagtct tcgacttccc gctctactac aagatggatg aggcctttga caacaaaaac	780
attccagcgc tcgtctctgc cttcagaac gccagactg ttgtctcccg cgaccgttc	840
aaggccgtaa ctttgttagc aaaccacgac accgatataa tctggAACAA gtatccagcc	900
tacgcgttca tcctcaccta cgaggccag ccgacaataat tctaccgcga ctacgaggag	960
tggctcaaca aggataagct caagaacctc atctggatAC atgacaacct cggccggagga	1020
agcatgagca tagttacta cgacagcgtc gagatgtatc tcgtgaggaa cggctatggA	1080
agcaaggctg gccttataac ttacatcaac ctggctcgA gcaaggTTGG aaggtgggtc	1140
tacgttccga agttcgccgg agcgtgcata cacgagtaca ccggcaacct cggccggctgg	1200
gtggacaagt gggtgactc aagcgggtgg gtgtacctcg aggcccctgc ccacgaccccg	1260
qccaacggct attacggcta ctccgtctgg agctattgcg gtgtggctg a	1311

```
<210> 24
<211> 436
<212> PRT
<213> Artificial Sequence
```

<220>
<223> synthetically generated polypeptide

```

<400> 24
Met Ala Lys Tyr Ser Glu Leu Glu Glu Gly Val Ile Val Gln Ala
      5           10          15
    1
Phe Tyr Trp Asp Val Pro Gly Gly Ile Trp Trp Asp Thr Ile Arg
      20          25          30
Ser Lys Ile Pro Glu Trp Tyr Glu Ala Gly Ile Ser Ala Ile Trp Ile
      35          40          45
Pro Pro Ala Ser Lys Gly Met Gly Gly Ala Tyr Ser Met Gly Tyr Asp
      50          55          60
Pro Tyr Asp Phe Phe Asp Leu Gly Glu Tyr Asp Gln Lys Gly Thr Val

```

65	70	75	80												
Glu	Thr	Arg	Phe	Gly	Ser	Lys	Gln	Glu	Leu	Val	Asn	Met	Ile	Asn	Thr
85								90							95
Ala	His	Ala	Tyr	Gly	Ile	Lys	Val	Ile	Ala	Asp	Ile	Val	Ile	Asn	His
100								105							110
Arg	Ala	Gly	Gly	Asp	Leu	Glu	Trp	Asn	Pro	Phe	Val	Gly	Asp	Tyr	Thr
115								120							125
Trp	Thr	Asp	Phe	Ser	Lys	Val	Ala	Ser	Gly	Lys	Tyr	Thr	Ala	Asn	Tyr
130								135							140
Leu	Asp	Phe	His	Pro	Asn	Glu	Leu	His	Ala	Gly	Asp	Ser	Gly	Thr	Phe
145								150							160
Gly	Gly	Tyr	Pro	Asp	Ile	Cys	His	Asp	Lys	Ser	Trp	Asp	Gln	Tyr	Trp
165								170							175
Leu	Trp	Ala	Ser	Gln	Glu	Ser	Tyr	Ala	Ala	Tyr	Leu	Arg	Ser	Ile	Gly
180								185							190
Ile	Asp	Ala	Trp	Arg	Phe	Asp	Tyr	Val	Lys	Gly	Tyr	Gly	Ala	Trp	Val
195								200							205
Val	Lys	Asp	Trp	Leu	Asp	Trp	Trp	Gly	Gly	Trp	Ala	Val	Gly	Glu	Tyr
210								215							220
Trp	Asp	Thr	Asn	Val	Asp	Ala	Leu	Leu	Asn	Trp	Ala	Tyr	Ser	Ser	Asp
225								230							240
Ala	Lys	Val	Phe	Asp	Phe	Pro	Leu	Tyr	Tyr	Lys	Met	Asp	Glu	Ala	Phe
245								250							255
Asp	Asn	Lys	Asn	Ile	Pro	Ala	Leu	Val	Ser	Ala	Leu	Gln	Asn	Gly	Gln
260								265							270
Thr	Val	Val	Ser	Arg	Asp	Pro	Phe	Lys	Ala	Val	Thr	Phe	Val	Ala	Asn
275								280							285
His	Asp	Thr	Asp	Ile	Ile	Trp	Asn	Lys	Tyr	Pro	Ala	Tyr	Ala	Phe	Ile
290								295							300
Leu	Thr	Tyr	Glu	Gly	Gln	Pro	Thr	Ile	Phe	Tyr	Arg	Asp	Tyr	Glu	Glu
305								310							320
Trp	Leu	Asn	Lys	Asp	Lys	Leu	Lys	Asn	Leu	Ile	Trp	Ile	His	Asp	Asn
325								330							335
Leu	Ala	Gly	Gly	Ser	Met	Ser	Ile	Val	Tyr	Tyr	Asp	Ser	Asp	Glu	Met
340								345							350
Ile	Phe	Val	Arg	Asn	Gly	Tyr	Gly	Ser	Lys	Pro	Gly	Leu	Ile	Thr	Tyr
355								360							365
Ile	Asn	Leu	Gly	Ser	Ser	Lys	Val	Gly	Arg	Trp	Val	Tyr	Val	Pro	Lys
370								375							380
Phe	Ala	Gly	Ala	Cys	Ile	His	Glu	Tyr	Thr	Gly	Asn	Leu	Gly	Gly	Trp
385								390							400
Val	Asp	Lys	Trp	Val	Asp	Ser	Ser	Gly	Trp	Val	Tyr	Leu	Glu	Ala	Pro
405								410							415
Ala	His	Asp	Pro	Ala	Asn	Gly	Tyr	Tyr	Gly	Tyr	Ser	Val	Trp	Ser	Tyr
420								425							430
Cys	Gly	Val	Gly												
435															

<210> 25

<211> 1311

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetically generated oligonucleotide

<400> 25

atggccaagt	acctggagct	cgaagagggc	gggctcataa	tgcaggcctt	ctactggac	60
gtccccatgg	gaggaatctg	gtgggacacg	atagcccaga	agatacccgaa	ctgggcaagc	120
gccgggattt	cggcgatatg	gattcctccc	gcgagacaagg	gtatgagcgg	cggttattcg	180
atgggctacg	acccctacga	ttatTTGAC	ctcggtgagt	actaccagaa	ggaaacgggt	240
gaaacgaggt	tcggctcaa	gcaggagctc	ataaacatga	taaacaccgc	ccacgcctat	300
ggcatgaagg	taatagccga	tatagtcatc	aaccaccgcg	ccggcgggtga	cctggagtg	360
aacccttcg	tgaacgacta	tacctggacc	gacttctcaa	aggtcgcg	gggtaaaatac	420
acggccaact	acctcgactt	ccacccgaac	gagctccatg	cgggcgattc	cggaacattt	480
ggaggctatc	ccgacatatg	ccacgacaag	agctggacc	agtactggct	ctgggccagc	540
caggagagct	acgcggcata	tctcaggagc	atcggcatcg	atgcctggcg	cttcgactac	600
gtcaagggt	atgctccctg	ggtcgtcaag	gactggctga	actgggtgggg	aggctggcg	660
gttggagagt	actgggacac	caacgtcgac	gctgttctca	actgggcata	ctcgagcg	720
gccaagggtct	ttgacttcgc	cctctactac	aagatggacg	aggccttcga	taacaacaac	780
atccccccc	tggtggcgc	cctcagatac	ggtcagacag	tggtcagccg	cgaccgttc	840
aaggctgtga	cgtttgttagc	caaccacgat	accgatataa	tctgaaacaa	gtatccagcc	900
tacgcgttca	tcctcaccta	cgagggccag	ccgacaatat	tctaccgcga	ctacgaggag	960
tggctcaaca	aggataagct	caagaacac	atctgatac	atgacaac	cgccggagga	1020
agcaccgaca	tagtctacta	cgataaacat	gaactcatct	tcgtcaggca	cggttacggg	1080
gacaagccgg	ggcttataac	ctacatcaac	ctaggctcg	gcaaggccgg	aagggtgggt	1140
taacgttccga	agttcgccagg	ctcgtgcata	cacgactaca	ccggcaatct	cgccggctgg	1200
gtggacaagt	gggtggactc	aagcggctgg	gtctacctcg	aggctctgc	ccacgacc	1260
gccaacggcc	agtacggcta	ctccgtctgg	agctattgcg	gtgttgggt	a	1311

<210> 26

<211> 436

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetically generated polypeptide

<400> 26

Met Ala Lys Tyr Leu Glu Leu Glu Gly	Gly Leu Ile Met Gln Ala		
1	5	10	15
Phe Tyr Trp Asp Val Pro Met Gly Gly	Ile Trp Trp Asp Thr Ile Ala		
20	25	30	
Gln Lys Ile Pro Asp Trp Ala Ser Ala	Gly Ile Ser Ala Ile Trp Ile		
35	40	45	
Pro Pro Ala Ser Lys Gly Met Ser Gly	Gly Tyr Ser Met Gly Tyr Asp		
50	55	60	
Pro Tyr Asp Tyr Phe Asp Leu Gly Glu	Tyr Tyr Gln Lys Gly Thr Val		
65	70	75	80
Glu Thr Arg Phe Gly Ser Lys Gln Glu	Leu Ile Asn Met Ile Asn Thr		
85	90	95	
Ala His Ala Tyr Gly Met Lys Val Ile	Ala Asp Ile Val Ile Asn His		
100	105	110	
Arg Ala Gly Gly Asp Leu Glu Trp Asn	Pro Phe Val Asn Asp Tyr Thr		
115	120	125	
Trp Thr Asp Phe Ser Lys Val Ala Ser	Gly Lys Tyr Thr Ala Asn Tyr		
130	135	140	
Leu Asp Phe His Pro Asn Glu Leu His	Ala Gly Asp Ser Gly Thr Phe		
145	150	155	160
Gly Gly Tyr Pro Asp Ile Cys His Asp	Lys Ser Trp Asp Gln Tyr Trp		
165	170	175	
Leu Trp Ala Ser Gln Glu Ser Tyr Ala	Ala Tyr Leu Arg Ser Ile Gly		
180	185	190	
Ile Asp Ala Trp Arg Phe Asp Tyr Val	Lys Gly Tyr Ala Pro Trp Val		

195	200	205
Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr		
210	215	220
Trp Asp Thr Asn Val Asp Ala Val Leu Asn Trp Ala Tyr Ser Ser Gly		
225	230	235
Ala Lys Val Phe Asp Phe Ala Leu Tyr Tyr Lys Met Asp Glu Ala Phe		
245	250	255
Asp Asn Asn Asn Ile Pro Ala Leu Val Gly Ala Leu Arg Tyr Gly Gln		
260	265	270
Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn		
275	280	285
His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile		
290	295	300
Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu		
305	310	315
Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn		
325	330	335
Leu Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu		
340	345	350
Ile Phe Val Arg His Gly Tyr Gly Asp Lys Pro Gly Leu Ile Thr Tyr		
355	360	365
Ile Asn Leu Gly Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys		
370	375	380
Phe Ala Gly Ser Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp		
385	390	395
Val Asp Lys Trp Val Asp Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro		
405	410	415
Ala His Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr		
420	425	430
Cys Gly Val Gly		
435		

<210> 27

<211> 1311

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetically generated oligonucleotide

<400> 27

atggcaaagt attccgagct cgaagagggc ggcgttataa tgcaggcctt ctactgggac	60
gtcccagggtg gaggaatctg gtgggacacc atcaggagca agataccgga gtggtaacgag	120
gcggaaatat ccgcatttg gattcctccc gcgagaagg gtatgagcgg cggctattcg	180
atgggctacg acccctacga ttattttgac ctcggtagt actaccagaa gggAACGGTG	240
gaaacgaggt tcggctaaa gcaggagctc ataaacatga taaacacggc ccatgcctac	300
ggcataaaagg tcatagcggc catcgtcata aaccacccgcg caggcggaga cctcgagtgg	360
aaccgcgtcg ttggggacta cacctggacg gacttctcaa aggtggcctc gggcaaataat	420
actgccaact acctcgcactt ccacccgaac gagctccatg cgggcgattc cggaacattt	480
ggaggctatc ccgacatatg ccacgacaag agctgggacc agtactggct ctgggccagc	540
caggagagct acgcggcata tctcaggagc atcggcatcg atgcctggcg cttcgactac	600
gtcaagggtc atgctccctg ggtcgtaag gactggctga actgggtgggg aggctggcgc	660
gttggagagt actgggacac caacgtcgac gctgttctca actgggcata ctcgagcgg	720
gc当地gggtct ttgacttcgc cctctactac aagatggacg cggccttgc caacaagaac	780
atccccgcac tcgtcgaggc cctcaagaac gggggcacag tcgtcagccg cgaccggtt	840
aaggccgtaa ctttcgttgc aaaccacgac accgatataa tctggaacaa gtatccagcc	900
tacgcgttca tcctcaccta cgaggccag ccgacaatat tctaccgcga ctacgaggag	960

tggctcaaca	aggataagct	caagaacctc	atctggatac	atgacaacct	cgcggagga	1020
accactgaca	tcgttacta	cgacaacgac	gagctgatat	tcgtgagaaa	cggctacgga	1080
acaagccgg	gactgataac	atacatcaac	ctcgctcaa	gcaaagccgg	aaggtgggtt	1140
tacgttccga	agttcgagg	ctcgtcata	cacgagtaca	ccggcaatct	cggccgctgg	1200
gtggacaagt	gggtggactc	aagcggctgg	gtctacctcg	aggctcctgc	ccacgaccgg	1260
gccaacggcc	agtacggcta	ctccgtctgg	agctactgcg	gtgttgggtg	a	1311

<210> 28

<211> 436

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetically generated polypeptide

<400> 28

Met Ala Lys Tyr Ser Glu Leu Glu Glu Gly Val Ile Met Gln Ala						
1	5	10	15			
Phe Tyr Trp Asp Val Pro Gly Gly Ile Trp Trp Asp Thr Ile Arg						
20	25	30				
Ser Lys Ile Pro Glu Trp Tyr Glu Ala Gly Ile Ser Ala Ile Trp Ile						
35	40	45				
Pro Pro Ala Ser Lys Gly Met Ser Gly Gly Tyr Ser Met Gly Tyr Asp						
50	55	60				
Pro Tyr Asp Tyr Phe Asp Leu Gly Glu Tyr Tyr Gln Lys Gly Thr Val						
65	70	75	80			
Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Ile Asn Met Ile Asn Thr						
85	90	95				
Ala His Ala Tyr Gly Ile Lys Val Ile Ala Asp Ile Val Ile Asn His						
100	105	110				
Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Gly Asp Tyr Thr						
115	120	125				
Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr						
130	135	140				
Leu Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe						
145	150	155	160			
Gly Gly Tyr Pro Asp Ile Cys His Asp Lys Ser Trp Asp Gln Tyr Trp						
165	170	175				
Leu Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly						
180	185	190				
Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Ala Pro Trp Val						
195	200	205				
Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr						
210	215	220				
Trp Asp Thr Asn Val Asp Ala Val Leu Asn Trp Ala Tyr Ser Ser Gly						
225	230	235	240			
Ala Lys Val Phe Asp Phe Ala Leu Tyr Tyr Lys Met Asp Ala Ala Phe						
245	250	255				
Asp Asn Lys Asn Ile Pro Ala Leu Val Glu Ala Leu Lys Asn Gly Gly						
260	265	270				
Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn						
275	280	285				
His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile						
290	295	300				
Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu						
305	310	315	320			
Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn						

325	330	335
Leu Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu		
340	345	350
Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr		
355	360	365
Ile Asn Leu Ala Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys		
370	375	380
Phe Ala Gly Ser Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp		
385	390	395
Val Asp Lys Trp Val Asp Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro		
405	410	415
Ala His Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr		
420	425	430
Cys Gly Val Gly		
435		

<210> 29

<211> 1311

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetically generated oligonucleotide

<400> 29

atggccaagt acctggagct cgaagagggc gggctcataa tgcaggcctt ctactggac	60
gtccccatgg gagaaatctg gtggcacacg gtagcccaga agatacccgta ctgggcaagc	120
gccgggattt cgccatatg gattcccccg gcgagcaagg gcatggcg ggccctattcg	180
atgggctacg acccctacga cttcttgac ctcggtgagt acgaccagaa ggaaacggta	240
gagacgcgct ttggctccaa gcaggagctc gtgaacatga taaacacggc ccatgcctac	300
ggcataaaagg tcatagcggc catcgatcata aaccaccgcg caggcggaga cctcgagtgg	360
aaccgcgtcg ttggggacta cacctggacg gacttctcaa aggtggtctc gggcaaataat	420
actgccaact acctcgactt ccacccgaaac gagctccatg cgggcattt cggAACATT	480
ggaggctatc ccgacatatg ccacgacaag agctggacc agtactggct ctgggccagc	540
caggagagct acgcggcata ttcaggagac atcggcatcg atgcctggcg cttcgactac	600
gtcaagggct atgctccctg ggtcgtaag gactgctga actgggggg aggctggcg	660
gttggagagt actggacac caacgtcgac gctgtctca actggcata ctcgagcggt	720
gccaaggctt ttgacttcgc cctctactac aagatggatg aggcctttga caacaaaaac	780
atccagcgc tgcgtctgc cttcagaac ggccagactg ttgtctcccg cgaccgttc	840
aaggccgtaa ctttgttagc aaaccacgac accgatataa tctggAACAA gtaccctgct	900
tatgccttca tcctcaccta cgaaggccag cccgtcatat tctaccgcga ctacgaggag	960
tggctcaaca aggacaggtt gaacaacctc atatgatac acgaccaccc cgcaggggga	1020
agcaccgaca tagtctacta cgataaacat gaactcatct tcgtcaggaa cggctacggg	1080
gacaaggccgg ggcttataac ctacatcaac ctaggctcgaa gcaaggccgg aagggtgggtt	1140
tatgtgccga agttcgcggg cgcgtgcattc cacgagtata ctggtaacct cggaggctgg	1200
gtagacaagt acgtctactc aagcggctgg gtctatctcg aagctccagc ttacgaccct	1260
gccaacgggc agtatggcta ctccgtgtgg agctactgctg gtgttgggtg a	1311

<210> 30

<211> 436

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetically generated polypeptide

<400> 30

Met Ala Lys Tyr Leu Glu Leu Glu Gly Gly Leu Ile Met Gln Ala
 1 5 10 15
 Phe Tyr Trp Asp Val Pro Met Gly Gly Ile Trp Trp Asp Thr Val Ala
 20 25 30
 Gln Lys Ile Pro Asp Trp Ala Ser Ala Gly Ile Ser Ala Ile Trp Ile
 35 40 45
 Pro Pro Ala Ser Lys Gly Met Gly Gly Ala Tyr Ser Met Gly Tyr Asp
 50 55 60
 Pro Tyr Asp Phe Phe Asp Leu Gly Glu Tyr Asp Gln Lys Gly Thr Val
 65 70 75 80
 Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Val Asn Met Ile Asn Thr
 85 90 95
 Ala His Ala Tyr Gly Ile Lys Val Ile Ala Asp Ile Val Ile Asn His
 100 105 110
 Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Gly Asp Tyr Thr
 115 120 125
 Trp Thr Asp Phe Ser Lys Val Val Ser Gly Lys Tyr Thr Ala Asn Tyr
 130 135 140
 Leu Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe
 145 150 155 160
 Gly Gly Tyr Pro Asp Ile Cys His Asp Lys Ser Trp Asp Gln Tyr Trp
 165 170 175
 Leu Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly
 180 185 190
 Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Ala Pro Trp Val
 195 200 205
 Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr
 210 215 220
 Trp Asp Thr Asn Val Asp Ala Val Leu Asn Trp Ala Tyr Ser Ser Gly
 225 230 235 240
 Ala Lys Val Phe Asp Phe Ala Leu Tyr Tyr Lys Met Asp Glu Ala Phe
 245 250 255
 Asp Asn Lys Asn Ile Pro Ala Leu Val Ser Ala Leu Gln Asn Gly Gln
 260 265 270
 Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn
 275 280 285
 His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Leu Ala Tyr Ala Phe Ile
 290 295 300
 Leu Thr Tyr Glu Gly Gln Pro Val Ile Phe Tyr Arg Asp Tyr Glu Glu
 305 310 315 320
 Trp Leu Asn Lys Asp Arg Leu Asn Asn Leu Ile Trp Ile His Asp His
 325 330 335
 Leu Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu
 340 345 350
 Ile Phe Val Arg Asn Gly Tyr Gly Asp Lys Pro Gly Leu Ile Thr Tyr
 355 360 365
 Ile Asn Leu Gly Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys
 370 375 380
 Phe Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp
 385 390 395 400
 Val Asp Lys Tyr Val Tyr Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro
 405 410 415
 Ala Tyr Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr
 420 425 430
 Cys Gly Val Gly
 435

<210> 31
<211> 1311
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetically generated oligonucleotide

<400> 31

atggcaaagt	actccgagct	ggaagagggc	ggcggtataa	tgcaggcctt	ctactggac	60
gtcccaggtg	gaggaatctg	gtggcacacc	atcaggagca	ggataccgga	gtggtagcag	120
gcggaaatat	ccgccatttg	gattcccccg	gcgagaagg	gcatgggcgg	cgcctattcg	180
atgggctacg	acccctacga	cttctttgac	ctcggtgagt	acgaccagaa	ggaaacggta	240
gagacgcgct	ttggctccaa	gcaggagctc	gtgaacatga	taaacacggc	ccatgcctac	300
ggcataaaagg	tcatagcga	catcgtcata	aaccaccgcg	caggcggaga	cctcgagtgg	360
aaccgcgtcg	ttggggacta	cacctggacg	gacttctcaa	aggtggcctc	gggcaaataat	420
actgccaact	acctcgactt	ccacccgaac	gagctccatg	cgggcgattc	cggaacattt	480
ggaggctatc	ccgacatatg	ccacgacaag	agctggacc	agtactggct	ctggggccagc	540
caggagagct	acgcggcata	tctcaggagc	atcggcatcg	atgcctggcg	ctttgactac	600
gtgaagggct	acggagcgtg	ggtcgtaag	gactggctca	actggtgggg	cggctgggccc	660
gttggcgagt	actgggacac	caacgttcat	gcactcctca	actgggccta	ctcgagcggc	720
gccaagggtct	tcgacttccc	gctctactac	aagatggacg	aggccttcga	taacaacaac	780
atccccgccc	ttgtggacgc	cctcagatac	ggtcagacag	tggcagccg	cgacccgttc	840
aaggctgtga	cgtttgtac	caaccacgt	accgatataa	tctggaacaaa	gtatccagcc	900
tacgcgttca	tcctcaccta	cgagggccag	ccgacaatat	tctaccgcga	ctacgaggag	960
tggctcaaca	aggataagct	caagaacctc	atctggatac	atgacaacct	ggccggagga	1020
agcacgagca	tagttacta	cgacagcgcac	gagatgatct	tcgtgaggac	cggctatgg	1080
agcaaggctg	gccttataac	ttacatcaac	ctcggtcga	gcaagggtgg	aagggtgggtt	1140
tatgtgccga	agttcgccgg	cgcgtgcatic	cacgagtata	ctggtaacct	cggaggctgg	1200
gtagacaagt	acgtctactc	aagcggctgg	gtctatctcg	aagctccagc	ttacgaccct	1260
gccaacgggc	agtatggcta	ctccgtgtgg	agctattgcg	gtgttggctg	a	1311

<210> 32
<211> 436
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetically generated polypeptide

<400> 32

Met Ala Lys Tyr Ser Glu Leu Glu Glu Gly	Gly Val Ile Met Gln Ala		
1	5	10	15
Phe Tyr Trp Asp Val Pro Gly Gly Ile Trp	Trp Asp Thr Ile Arg		
20	25	30	
Ser Arg Ile Pro Glu Trp Tyr Glu Ala Gly	Ile Ser Ala Ile Trp Ile		
35	40	45	
Pro Pro Ala Ser Lys Gly Met Gly Gly Ala	Tyr Ser Met Gly Tyr Asp		
50	55	60	
Pro Tyr Asp Phe Phe Asp Leu Gly Glu Tyr	Asp Gln Lys Gly Thr Val		
65	70	75	80
Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu	Val Asn Met Ile Asn Thr		
85	90	95	
Ala His Ala Tyr Gly Ile Lys Val Ile Ala	Asp Ile Val Ile Asn His		
100	105	110	
Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro	Phe Val Gly Asp Tyr Thr		
115	120	125	

Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr
 130 135 140
 Leu Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe
 145 150 155 160
 Gly Gly Tyr Pro Asp Ile Cys His Asp Lys Ser Trp Asp Gln Tyr Trp
 165 170 175
 Leu Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly
 180 185 190
 Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val
 195 200 205
 Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr
 210 215 220
 Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Gly
 225 230 235 240
 Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Glu Ala Phe
 245 250 255
 Asp Asn Asn Asn Ile Pro Ala Leu Val Asp Ala Leu Arg Tyr Gly Gln
 260 265 270
 Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn
 275 280 285
 His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile
 290 295 300
 Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu
 305 310 315 320
 Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn
 325 330 335
 Leu Ala Gly Gly Ser Thr Ser Ile Val Tyr Tyr Asp Ser Asp Glu Met
 340 345 350
 Ile Phe Val Arg Thr Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr
 355 360 365
 Ile Asn Leu Gly Ser Ser Lys Val Gly Arg Trp Val Tyr Val Pro Lys
 370 375 380
 Phe Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp
 385 390 395 400
 Val Asp Lys Tyr Val Tyr Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro
 405 410 415
 Ala Tyr Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr
 420 425 430
 Cys Gly Val Gly
 435

<210> 33
 <211> 1311
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> synthetically generated oligonucleotide

<400> 33
 atggccaagt actccgagct ggaagaggc ggggtcataa tgcaggcgtt ctactggac 60
 gtgccttcag gagaaatatg gtggcacaca atacggcaga agataccgga gtggtacgat 120
 gccggaatct ccgcaatatg gattcctccc gcgagcaagg gtatgagcgg cggctattcg 180
 atgggctacg acccctacga ttatttgac ctcggtgagt actaccagaa gggAACGGTG 240
 gaaacgaggt tcggctaaa gcaggagctc ataaacatga taaaacacggc ccatgcctac 300
 ggcataaaagg tcatagcggc catcgatata aaccaccgac caggcggaga cctcgagtgg 360
 aaccgggtcg ttggggacta cacctggacg gacttctcaa aggtggcctc gggcaaataat 420

actgccaact acctcgactt ccacccgaac gagctccatg cgggcgattc cgAACATT	480
ggaggctatc ccgacatatg ccacgacaag agctggacc agtactggct ctggccagc	540
caggagagct acgcgcata ttcaggagc atcggcatcg atgcctggcg ctggactac	600
gtgaagggct acggagcgtg ggtcgtaag gactggctca actgggggg cggctggcc	660
gttggcgagt actggcacac caacgttgat gcactcctca actgggccta ctcgagcggc	720
gccaaggctct tcgactttcc gctctactac aagatggacg cggccttga caacaagaac	780
attccccac tcgtcgaggc cctcaagaac gggggcacag tcgtcagccg cgaccgttt	840
aaggccgtaa ctttcgttgc aaaccacgac accgatataa tctggaccaa gtaccttgct	900
tatgctttca tcctcaccta cgaaggccag cccgtcataat tctaccgcga ctacgaggag	960
tggctcaaca aggacagggtt gaacaacctc atatggatac acgaccacct cgcaagggttga	1020
agcaccgaca tagtctacta cgataacgat gaactcatct tcgtcaggaa cggctacggg	1080
gacaagccgg ggcttataac ctacatcaac ctaggctcga gcaaggccgg aagggtgggtt	1140
tacgttccga agttcgcagg ctcgtcata cacgagtaca cccgcaatct cggcggctgg	1200
gtggacaagt gggtgactc aagcggctgg gtctacctcg aggctcctgc ccacgaccgg	1260
gccaacggcc agtacggcta ctccgtctgg agtactgctg gtgttggctg a	1311

<210> 34

<211> 436

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetically generated polypeptide

<400> 34

Met Ala Lys Tyr Ser Glu Leu Glu Glu Gly Val Ile Met Gln Ala	
1 5 10 15	
Phe Tyr Trp Asp Val Pro Ser Gly Gly Ile Trp Trp Asp Thr Ile Arg	
20 25 30	
Gln Lys Ile Pro Glu Trp Tyr Asp Ala Gly Ile Ser Ala Ile Trp Ile	
35 40 45	
Pro Pro Ala Ser Lys Gly Met Ser Gly Gly Tyr Ser Met Gly Tyr Asp	
50 55 60	
Pro Tyr Asp Tyr Phe Asp Leu Gly Glu Tyr Tyr Gln Lys Gly Thr Val	
65 70 75 80	
Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Ile Asn Met Ile Asn Thr	
85 90 95	
Ala His Ala Tyr Gly Ile Lys Val Ile Ala Asp Ile Val Ile Asn His	
100 105 110	
Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Gly Asp Tyr Thr	
115 120 125	
Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr	
130 135 140	
Leu Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe	
145 150 155 160	
Gly Gly Tyr Pro Asp Ile Cys His Asp Lys Ser Trp Asp Gln Tyr Trp	
165 170 175	
Leu Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly	
180 185 190	
Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val	
195 200 205	
Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr	
210 215 220	
Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Gly	
225 230 235 240	
Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Ala Ala Phe	
245 250 255	

Asp Asn Lys Asn Ile Pro Ala Leu Val Glu Ala Leu Lys Asn Gly Gly
 260 265 270
 Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn
 275 280 285
 His Asp Thr Asp Ile Ile Trp Thr Lys Tyr Leu Ala Tyr Ala Phe Ile
 290 295 300
 Leu Thr Tyr Glu Gly Gln Pro Val Ile Phe Tyr Arg Asp Tyr Glu Glu
 305 310 315 320
 Trp Leu Asn Lys Asp Arg Leu Asn Asn Leu Ile Trp Ile His Asp His
 325 330 335
 Leu Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu
 340 345 350
 Ile Phe Val Arg Asn Gly Tyr Gly Asp Lys Pro Gly Leu Ile Thr Tyr
 355 360 365
 Ile Asn Leu Gly Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys
 370 375 380
 Phe Ala Gly Ser Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp
 385 390 395 400
 Val Asp Lys Trp Val Asp Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro
 405 410 415
 Ala His Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr
 420 425 430
 Cys Gly Val Gly
 435

<210> 35
 <211> 1311
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> synthetically generated oligonucleotide

<400> 35
 atggccaagt actccgagct ggaagagggc ggcgttataa tgcaggcctt ctactggac 60
 gtcccagggtg gaggaatctg gtgggacacc atcaggagca agataccgga gtggtaacgag 120
 gcgggaatat ccgcatttg gattcccccg gcgagcaagg gcatggcg cgccatttcg 180
 atgggctacg acccctacga cttctttgac ctcggtgagt acgaccagaa gggAACGGTA 240
 gagacgcgct ttggctccaa gcaggagctc gtgaacatga taaaacaccgc ccacgcctac 300
 ggcacatcaagg tcatacgaga catatgtatc aaccaccgcg cggaggaga ctttgagtgg 360
 aacccttcg tcaatgacta cacctggacg gacttctcg aggtcgcttc cggcaagtac 420
 acggccaaact acctcgactt ccaccccaac gaggtcaagt gctgtgacga gggcacattt 480
 ggaggcgttcc cagacatagc ccacgagaag agctggacc agcactggct ctggcgagc 540
 gatgagagct acggcccta cctaaggagc atcggcggtt atgcctggcg cttcgactac 600
 gtcaagggtct atgctccctg ggtcgtaag gactggctga actgggtgggg aggctggcg 660
 gttggagagt actgggacac caacgtcgac gctgttctca actgggcata ctcgagcggt 720
 gccaagggtct ttgacttcgc cctctactac aagatggacg cggccttta caacaagaac 780
 attcccgac tcgtcgaggc cctcaagaac gggggcacag tcgtcagccg cgaccgttt 840
 aaggccgtaa cttcggttc aaaccacgac accgatataa tctggAACAA gtatccagcc 900
 tacgcgttca tcctcaccta cgagggccag ccgacaatat tctaccgcga ctacgaggag 960
 tggctcaaca aggataagct caagaacctc atctggatac atgacaacgt cgccggagga 1020
 agcaccgaca tagtctacta cgataaacgt gaactcatct tcgtcaggaa cggctacggg 1080
 gacaaggccgg ggcttataac ctacatcaac ctaggctcga gcaaggccgg aaggtgggtt 1140
 tacgttccga agttcgcagg ctcgtgcata cacgagatac ccggcaatct cggcgctgg 1200
 gtggacaagt ggggtggactc aagcggctgg gtctacctcg aggctcctgc ccacgaccgg 1260
 gccaacggcc agtacggcta ctccgtctgg agctactgcg gtgttgggtg a 1311

<210> 36
 <211> 436
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> synthetically generated polypeptide

<400> 36

Met Ala Lys Tyr Ser Glu Leu Glu Gly Gly Val Ile Met Gln Ala
 1 5 10 15

Phe Tyr Trp Asp Val Pro Gly Gly Ile Trp Trp Asp Thr Ile Arg
 20 25 30

Ser Lys Ile Pro Glu Trp Tyr Glu Ala Gly Ile Ser Ala Ile Trp Ile
 35 40 45

Pro Pro Ala Ser Lys Gly Met Gly Gly Ala Tyr Ser Met Gly Tyr Asp
 50 55 60

Pro Tyr Asp Phe Phe Asp Leu Gly Glu Tyr Asp Gln Lys Gly Thr Val
 65 70 75 80

Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Val Asn Met Ile Asn Thr
 85 90 95

Ala His Ala Tyr Gly Ile Lys Val Ile Ala Asp Ile Val Ile Asn His
 100 105 110

Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Asn Asp Tyr Thr
 115 120 125

Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr
 130 135 140

Leu Asp Phe His Pro Asn Glu Val Lys Cys Cys Asp Glu Gly Thr Phe
 145 150 155 160

Gly Gly Phe Pro Asp Ile Ala His Glu Lys Ser Trp Asp Gln His Trp
 165 170 175

Leu Trp Ala Ser Asp Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly
 180 185 190

Val Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Ala Pro Trp Val
 195 200 205

Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr
 210 215 220

Trp Asp Thr Asn Val Asp Ala Val Leu Asn Trp Ala Tyr Ser Ser Gly
 225 230 235 240

Ala Lys Val Phe Asp Phe Ala Leu Tyr Tyr Lys Met Asp Ala Ala Phe
 245 250 255

Asp Asn Lys Asn Ile Pro Ala Leu Val Glu Ala Leu Lys Asn Gly Gly
 260 265 270

Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn
 275 280 285

His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile
 290 295 300

Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu
 305 310 315 320

Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn
 325 330 335

Val Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu
 340 345 350

Ile Phe Val Arg Asn Gly Tyr Gly Asp Lys Pro Gly Leu Ile Thr Tyr
 355 360 365

Ile Asn Leu Gly Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys
 370 375 380

Phe Ala Gly Ser Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp
 385 390 395 400
 Val Asp Lys Trp Val Asp Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro
 405 410 415
 Ala His Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr
 420 425 430
 Cys Gly Val Gly
 435

<210> 37
<211> 1311
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetically generated oligonucleotide

<400> 37
atggccaagt acctggagct cgaagagggc ggggtcataa tgcaggcggtt ctactgggac 60
gtgccttcag gagaaatatg gtgggacaca atacggcaga agataccgga gtggtagcat 120
gccggaatct ccgcaatatg gattcccccg gcggagaagg gcatgggccc cgcctattcg 180
atgggctacg acccctacga cttctttgac ctcggtgagt acgaccagaa gggAACGGTA 240
gagacgcgct ttggctccaa gcaggagctc gtgaacatga taaacaccgc ccacgcctat 300
ggcatgaagg taatagccga tatagtcatc aaccaccgcg cccggcggtga cctggagtgg 360
aacccttcg tgaacgacta tacctggacc gacttctcaa aggtcgcgtc gggtaaatac 420
acggccaact acctcgactt ccacccgaaac gagctccatg cgggcgattc cggaacattt 480
ggaggctatc ccgacatatg ccacgacaag agctgggacc agtactggct ctggccagc 540
caggagagct acgcggcata tctcaggagc atcggcatcg atgcctggcg ctttactac 600
gtgaagggct acggagcgcg ggtcgtcaag gactggctca actgggtgggg cggctgggccc 660
gttggcgagt actgggacac caacgttcat gcaactctca actgggccta ctcgagcggc 720
gccaaggctc tcgacttccc gctctactac aagatggatg aggcccttga caacaaaaac 780
attccagcgc tcgtctctgc cttcagaac ggccagactg ttgtctcccg cgacccgttc 840
aaggccgtaa ctttgttagc aaaccacgac accgatataa tctgaaacaa gtatccagcc 900
tacgcgttca tcctcaccta cgagggccag cgcacaatat tctatcgca ctacgaggag 960
tggctcaaca aggataagct caagaacctc atctgatac atgacaacct cgccggagga 1020
agcaactgaca tcgtttacta cgacaacgac gagctgatata tcgtgagaaa cggctacgg 1080
agcaaggccg gactgataac atacatcaac ctcgcctcaa gcaaagccgg aaggtgggtt 1140
tacgttccga agttcgcagg ctcgtgcata cacgagtaca cccgcaatct cggccggctgg 1200
gtggacaagt gggtgactc aagcggctgg gtctacctcg aggctctgc ccacgaccccg 1260
gccaacggcc agtacggcta ctccgtctgg agctactgcg ggggtgggtg a 1311

<210> 38
<211> 436
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetically generated polypeptide

<400> 38
Met Ala Lys Tyr Leu Glu Leu Glu Gly Gly Val Ile Met Gln Ala
 1 5 10 15
Phe Tyr Trp Asp Val Pro Ser Gly Gly Ile Trp Trp Asp Thr Ile Arg
 20 25 30
Gln Lys Ile Pro Glu Trp Tyr Asp Ala Gly Ile Ser Ala Ile Trp Ile
 35 40 45
Pro Pro Ala Ser Lys Gly Met Gly Gly Ala Tyr Ser Met Gly Tyr Asp

50	55	60
Pro	Tyr Asp Phe Phe Asp	Leu Gly Glu Tyr Asp Gln Lys Gly Thr Val
65	70	75
Glu	Thr Arg Phe Gly Ser Lys Gln Glu	Leu Val Asn Met Ile Asn Thr
	85	90
Ala	His Ala Tyr Gly Met Lys Val Ile Ala Asp Ile Val Ile Asn His	95
	100	105
Arg	Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Asn Asp Tyr Thr	110
	115	120
Trp	Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr	125
	130	135
Leu	Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe	140
145	150	155
Gly	Gly Tyr Pro Asp Ile Cys His Asp Lys Ser Trp Asp Gln Tyr Trp	160
	165	170
Leu	Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly	175
	180	185
Ile	Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Arg Val	190
	195	200
Val	Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr	205
	210	215
Trp	Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Gly	220
225	230	235
Ala	Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Glu Ala Phe	240
	245	250
Asp	Asn Lys Asn Ile Pro Ala Leu Val Ser Ala Leu Gln Asn Gly Gln	255
	260	265
Thr	Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn	270
	275	280
His	Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile	285
	290	295
Leu	Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu	300
305	310	315
Trp	Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn	320
	325	330
Leu	Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu	335
	340	345
Ile	Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr	350
	355	360
Ile	Asn Leu Ala Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys	365
	370	375
Phe	Ala Gly Ser Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp	380
385	390	395
Val	Asp Lys Trp Val Asp Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro	400
	405	410
Ala	His Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr	415
	420	425
Cys	Gly Val Gly	430
	435	

<210> 39

<211> 1311

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetically generated oligonucleotide

<400> 39

atggccaagt	acctggagct	cgaagaggc	ggggtcataa	tgcaggcggt	ctactggac	60
gtgccttcag	gaggaatatg	gtgggacaca	atacggcaga	agataccgga	gtggtacgat	120
gccggaatct	ccgcaatatg	gattcctccc	gcgagcagg	gtatgagcgg	cggctattcg	180
atgggctacg	acccctacga	ttathttgc	ctcggtgagt	actaccagaa	ggaaacggtg	240
gaaaacgaggt	tcggctcaa	gcaggagctc	ataaacatga	taaacaccgc	ccacgcstat	300
ggcatgaagg	taatagccga	tatagtcatc	aaccaccgc	ccggcggtga	cctggagtgg	360
aacccttcg	tgaacgacta	tacctggacc	gacttctcaa	aggtcgcg	ggtaaatac	420
acggccaa	ctcgcactt	ccaccgcac	gagctccatg	cgggcgattc	cgaaacattt	480
ggaggctatc	ccgacatatg	ccacgacaag	agctggacc	agtaactggct	ctgggccagc	540
caggagagct	acgcggcata	tctcaggagc	atcggtatcg	atgcctggcg	cttgactac	600
gtgaagggct	acggagcgt	ggtcgtcaag	gactggctca	actggtggg	cggctggcc	660
gttggcgagt	actgggaccc	caacgttgc	gccctctcc	cctgggccta	ctcgagcggc	720
gccaaggct	tcgacttccc	gctctactac	aagatggatg	aggccttga	caacaaaaac	780
attccagcgc	tcgtctctgc	ccttcagaac	ggccagactg	ttgtctcccg	cgaccgcgtt	840
aaggccgtaa	cctttgtac	caaccacgt	accgatataa	tctggaacaa	gtatccagcc	900
tacgcgttca	tcctcaccta	cgagggcccag	ccgacaatat	tctaccgcga	ctacgaggag	960
tggctcaaca	aggataagct	caagaacctc	atctggatac	atgacaacct	cggccggagga	1020
agcaccgaca	tagtctacta	cgataacgt	gaactcatct	tcgtcaggaa	cggctacggg	1080
gacaagccgg	ggcttataac	ctacatcaac	ctaggctcga	gcaaggccgg	aaggtgggtc	1140
tacgttccga	agttcgcggg	agcgtgcac	cacgagtaca	ccggcaacct	cgccggctgg	1200
gtggacaagt	gggtggactc	aagcgggtgg	gtgtacctc	aggccctgc	ccacgacccg	1260
gccaacggct	attacggcta	ctccgtctgg	agctactgc	gggtgggctg	a	1311

<210> 40

<211> 436

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetically generated polypeptide

<400> 40

Met	Ala	Lys	Tyr	Leu	Glu	Leu	Glu	Gly	Gly	Val	Ile	Met	Gln	Ala	
1				5				10				15			
Phe	Tyr	Trp	Asp	Val	Pro	Ser	Gly	Gly	Ile	Trp	Trp	Asp	Thr	Ile	Arg
					20				25				30		
Gln	Lys	Ile	Pro	Glu	Trp	Tyr	Asp	Ala	Gly	Ile	Ser	Ala	Ile	Trp	Ile
						35			40			45			
Pro	Pro	Ala	Ser	Arg	Gly	Met	Ser	Gly	Gly	Tyr	Ser	Met	Gly	Tyr	Asp
						50			55			60			
Pro	Tyr	Asp	Tyr	Phe	Asp	Leu	Gly	Glu	Tyr	Tyr	Gln	Lys	Gly	Thr	Val
						65			70			75			80
Glu	Thr	Arg	Phe	Gly	Ser	Lys	Gln	Glu	Leu	Ile	Asn	Met	Ile	Asn	Thr
						85			90			95			
Ala	His	Ala	Tyr	Gly	Met	Lys	Val	Ile	Ala	Asp	Ile	Val	Ile	Asn	His
						100			105			110			
Arg	Ala	Gly	Gly	Asp	Leu	Glu	Trp	Asn	Pro	Phe	Val	Asn	Asp	Tyr	Thr
							115			120			125		
Trp	Thr	Asp	Phe	Ser	Lys	Val	Ala	Ser	Gly	Lys	Tyr	Thr	Ala	Asn	Tyr
						130			135			140			
Leu	Asp	Phe	His	Pro	Asn	Glu	Leu	His	Ala	Gly	Asp	Ser	Gly	Thr	Phe
						145			150			155			160
Gly	Gly	Tyr	Pro	Asp	Ile	Cys	His	Asp	Lys	Ser	Trp	Asp	Gln	Tyr	Trp
						165			170			175			
Leu	Trp	Ala	Ser	Gln	Glu	Ser	Tyr	Ala	Ala	Tyr	Leu	Arg	Ser	Ile	Gly

180	185	190
Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val		
195	200	205
Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr		
210	215	220
Trp Asp Pro Asn Val Asp Ala Leu Leu Pro Trp Ala Tyr Ser Ser Gly		
225	230	235
Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Glu Ala Phe		
245	250	255
Asp Asn Lys Asn Ile Pro Ala Leu Val Ser Ala Leu Gln Asn Gly Gln		
260	265	270
Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn		
275	280	285
His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile		
290	295	300
Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu		
305	310	315
Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn		
325	330	335
Leu Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu		
340	345	350
Ile Phe Val Arg Asn Gly Tyr Gly Asp Lys Pro Gly Leu Ile Thr Tyr		
355	360	365
Ile Asn Leu Gly Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys		
370	375	380
Phe Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp		
385	390	395
Val Asp Lys Trp Val Asp Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro		
405	410	415
Ala His Asp Pro Ala Asn Gly Tyr Tyr Gly Tyr Ser Val Trp Ser Tyr		
420	425	430
Cys Gly Val Gly		
435		

<210> 41

<211> 1311

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetically generated oligonucleotide

<400> 41

atggccaagt acctggagct cgaagagggc ggggtcataa tgcaggcggtt ctactgggac	60
gtgccttcag gagaaatatg gtgggacaca atacggcaga agataccgga gtggtaacgat	120
gccggaatct ccgcaatatg gattcctccc gcgagcaagg gtatgagcgg cggctattcg	180
atgggctacg acccctacga ttatttgac ctcggtgagt actaccagaa gggAACGGTg	240
gaaacgaggt tcggctaaa gcaggagctc ataaacatga taaacacggc ccatgcctac	300
ggcataaaagg tcatagcggc catcgtcata aaccaccgcg caggcggaga cctcgagtgg	360
aaccgcgtcg ttggggacta cacctggacg gacttctcaa agtgtggcctc gggcaaataat	420
actggccaact acctcgactt ccacccgaac gagctccatg cgggcgattc cggaacattt	480
ggaggctatc ccgacatatg ccacgacaag agctgggacc agtactggct ctggggccagc	540
caggagagct acgcggcata tctcaggagc atcggcatcg atgcctggcg ctttactac	600
gtgaagggct acggagcgtg ggtcgtcaag gactggctca actgggtgggg cggctggcc	660
gttggcgagt actgggacac caacgttgat gcactcctca actgggccta ctcgagcggc	720
gccaaggctc tcgacttccc gctctactac aagatggacg cggccttga caacaagaac	780
attcccgcac tcgtcgagac cctcaagaac gggggacacag tcgtcagccg cgaccgttt	840

aaggccgtaa cttcggtgc aaaccacgac accgatataa tctggAACAA gtatccAGCC	900
tacgcgttca tcctcaccta cgagggccag ccgacaatat tctaccgcga ctacgaggag	960
tggctcaaca aggataagct caagaacctc atctggatac atgacaacct cgccggagga	1020
agcacgagca tagttacta cgacagcgac gagatgatct tcgtgaggaa cggctatgga	1080
agcaagcctg gccttataac ttacatcaac ctcggctcga gcaaggTTGG aaggtgggtt	1140
tatgtgccga agtgcgccc gcgtgcattc cacgagtata ctggtaacct cggaggctgg	1200
gtagacaagt acgtctactc aagcggctgg gtctatctcg aagctccAGC ttacgaccct	1260
gccaacgggc agtatggcta ctccgtgtgg agctactgcg gtgttgggtt a	1311

<210> 42

<211> 436

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetically generated polypeptide

<400> 42

Met Ala Lys Tyr Leu Glu Leu Glu Gly Gly Val Ile Met Gln Ala	
1 5 10 15	
Phe Tyr Trp Asp Val Pro Ser Gly Gly Ile Trp Trp Asp Thr Ile Arg	
20 25 30	
Gln Lys Ile Pro Glu Trp Tyr Asp Ala Gly Ile Ser Ala Ile Trp Ile	
35 40 45	
Pro Pro Ala Ser Lys Gly Met Ser Gly Gly Tyr Ser Met Gly Tyr Asp	
50 55 60	
Pro Tyr Asp Tyr Phe Asp Leu Gly Glu Tyr Tyr Gln Lys Gly Thr Val	
65 70 75 80	
Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Ile Asn Met Ile Asn Thr	
85 90 95	
Ala His Ala Tyr Gly Ile Lys Val Ile Ala Asp Ile Val Ile Asn His	
100 105 110	
Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Gly Asp Tyr Thr	
115 120 125	
Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr	
130 135 140	
Leu Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe	
145 150 155 160	
Gly Gly Tyr Pro Asp Ile Cys His Asp Lys Ser Trp Asp Gln Tyr Trp	
165 170 175	
Leu Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly	
180 185 190	
Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val	
195 200 205	
Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr	
210 215 220	
Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Gly	
225 230 235 240	
Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Ala Ala Phe	
245 250 255	
Asp Asn Lys Asn Ile Pro Ala Leu Val Glu Ala Leu Lys Asn Gly Gly	
260 265 270	
Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn	
275 280 285	
His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile	
290 295 300	
Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu	

305	310	315	320
Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn			
325	330	335	
Leu Ala Gly Gly Ser Thr Ser Ile Val Tyr Tyr Asp Ser Asp Glu Met			
340	345	350	
Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr			
355	360	365	
Ile Asn Leu Gly Ser Ser Lys Val Gly Arg Trp Val Tyr Val Pro Lys			
370	375	380	
Phe Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp			
385	390	395	400
Val Asp Lys Tyr Val Tyr Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro			
405	410	415	
Ala Tyr Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr			
420	425	430	
Cys Gly Val Gly			
435			

<210> 43

<211> 1311

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetically generated oligonucleotide

<400> 43

atggccaagt actccgagct ggaagagggc ggcgttataa tgcaggcctt ctactggac	60
gtcccagggtg gagaaatctg gtggcacacc atcaggagca agataccgga gtggtacgag	120
gcggaaatat ccgcatttg gattcccccg gcgagaagg gcatggcgcc cgccatttcg	180
atgggctacg acccctacga cttcttgc acgggtgagt acgaccagaa ggaaacggta	240
gagacgcgct ttggctccaa gcaggagctc gtgaacatga taaacacggc ccatgcctac	300
ggcataaaagg tcatagcga catcgatata aaccacccgcg caggcggaga cctcgagtgg	360
aaccgcgtcg ttggggacta cacctggacg gacttctcaa aggtggcctc gggcaaataat	420
actgccaact acctcgactt ccaccccaac gaggtcaagt gctgtgacga gggcacattt	480
ggaggcttcc cagacatagc ccacgagaag agctggacc agcactggct ctggcgagc	540
gatgagagct acgccgccta cctaaggagc atcggcggt atgcctggcg ctgcactac	600
gtcaagggct acggagcggt ggtcgtaag gactggctgg actgggtggg aggctggcc	660
gtcggggagt actgggacac aaacgtttagt gcactgctca actgggccta ctgcagcgat	720
gaaaaagtct tcgacttccc gctctactac aagatggatg aggcccttga caacaaaaac	780
attccagcgc tcgtctctgc ctttcagaac ggcacactg ttgtctcccg cgaccgcgttc	840
aaggccgtaa cttttagtca aaaccacgc accgatataa tctggAACAA gtatccagcc	900
tacgcgttca tcctcaccta cgagggccag ccgacaatat tctaccgca ctacgaggag	960
tggctcaaca aggataagct caagaacctc atctggatac atgacaacct cgtcgagga	1020
agcacgagca tagttacta cgacagcgac gagatgatct tcgtgaggaa cggctatgg	1080
agcaaggctg gccttataac ttacatcaac ctcggctcg gcaagggttgg aaggtgggtt	1140
tacgttccga agttcgagg ctctgtcata cacgagtaca cccgcaatct cggcggctgg	1200
gtggacaagt gggtgactc aagcggctgg gtctacctcg aggctcctgc ccacgacccg	1260
cccaacggcc agtacggcta ctccgtctgg agctactgctg gtgttggctg a	1311

<210> 44

<211> 436

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetically generated polypeptide

<400> 44

Met Ala Lys Tyr Ser Glu Leu Glu Glu Gly Val Ile Met Gln Ala			
1	5	10	15
Phe Tyr Trp Asp Val Pro Gly Gly Ile Trp Trp Asp Thr Ile Arg			
20	25	30	
Ser Lys Ile Pro Glu Trp Tyr Glu Ala Gly Ile Ser Ala Ile Trp Ile			
35	40	45	
Pro Pro Ala Ser Lys Gly Met Gly Gly Ala Tyr Ser Met Gly Tyr Asp			
50	55	60	
Pro Tyr Asp Phe Phe Asp Leu Gly Glu Tyr Asp Gln Lys Gly Thr Val			
65	70	75	80
Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Val Asn Met Ile Asn Thr			
85	90	95	
Ala His Ala Tyr Gly Ile Lys Val Ile Ala Asp Ile Val Ile Asn His			
100	105	110	
Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Gly Asp Tyr Thr			
115	120	125	
Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr			
130	135	140	
Leu Asp Phe His Pro Asn Glu Val Lys Cys Cys Asp Glu Gly Thr Phe			
145	150	155	160
Gly Gly Phe Pro Asp Ile Ala His Glu Lys Ser Trp Asp Gln His Trp			
165	170	175	
Leu Trp Ala Ser Asp Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly			
180	185	190	
Val Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val			
195	200	205	
Val Lys Asp Trp Leu Asp Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr			
210	215	220	
Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Asp			
225	230	235	240
Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Glu Ala Phe			
245	250	255	
Asp Asn Lys Asn Ile Pro Ala Leu Val Ser Ala Leu Gln Asn Gly Gln			
260	265	270	
Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn			
275	280	285	
His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile			
290	295	300	
Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu			
305	310	315	320
Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn			
325	330	335	
Leu Val Gly Gly Ser Thr Ser Ile Val Tyr Tyr Asp Ser Asp Glu Met			
340	345	350	
Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr			
355	360	365	
Ile Asn Leu Gly Ser Ser Lys Val Gly Arg Trp Val Tyr Val Pro Lys			
370	375	380	
Phe Ala Gly Ser Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp			
385	390	395	400
Val Asp Lys Trp Val Asp Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro			
405	410	415	
Ala His Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr			
420	425	430	
Cys Gly Val Gly			

435

<210> 45
<211> 1311
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetically generated oligonucleotide

<400> 45

atggccaagt	actccgacct	ggaagagggc	ggcggtataa	tgcaggcctt	ctactggac	60
gtccccagtg	gaggaatctg	gtgggacacc	atcaggagca	agataccgga	gtggtacgag	120
gccccaaat	cgcatttg	gattcccccg	gcgagcaagg	gcatgggccc	cgcctattcg	180
atgggctacg	accctacga	cttcttgcac	ctcggtgagt	acgaccagaa	gggaacggta	240
gagacgcgc	ttggctccaa	gcaggagctc	gtgaacatga	taaacacggc	ccatgcctac	300
ggcataaaagg	tcatagcgga	catcgctata	aaccacccgc	caggcggaga	cctcgagtgg	360
aaccgcgtcg	ttggggacta	cacctggacg	gacttctcaa	aggtggcctc	gggcaaataat	420
actgccaact	acctcgactt	ccaccccaac	gaggtaagt	gctgtgacga	gggcacattt	480
ggaggcgttcc	cagacatagc	ccacgagaag	agctgggacc	agcactggct	ctggcgcgac	540
gatgagagct	acgccccta	cctaaggagc	atcggcggtt	atgcctggcg	ctttgactac	600
gtgaagggct	acggagcgtg	ggtcgtcaag	gactggctca	actgggtgggg	cggctggcc	660
gttggcgagt	actgggacac	caacgtttagt	gcactcctca	actggggcta	ctcgagcggc	720
gccaaggct	tcgacttccc	gctctactac	aagatggatg	aggcctttga	caacaaaaac	780
attccagcgc	tcgtctctgc	ccttcagaac	ggccagaactg	ttgtctcccg	cgacccgttc	840
aaggccgtaa	cctttgttagc	aaaccacgac	accgatataa	tctggaaacaa	gtatccagcc	900
tacgcgttca	tcctcaccta	cgagggccag	ccgacaatat	tctaccgcga	ctacgaggag	960
tggctcaaca	aggataagct	caagaacctc	atctggatac	atgacaacct	cgccggagga	1020
agcacccgaca	tagtctacta	cgataacgat	gaactcatct	tcgtcaggaa	cggctacggg	1080
gacaagccgg	ggcttataac	ctacatcaac	ctaggctcga	gcaaggccgg	aaggtgggtt	1140
tatgtgccga	agttcgccgg	cgcgtcattc	cacgagtata	ctggtaacct	cgaggcgtgg	1200
gtagacaagt	acgtctactc	aagcggctgg	gtctatctcg	aagctccagc	ttacgaccct	1260
gccaacgggc	agtatggcta	ctccgtgtgg	agctattgcg	gtgttgggtg	a	1311

<210> 46
<211> 436
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetically generated polypeptide

<400> 46

Met	Ala	Lys	Tyr	Ser	Asp	Leu	Glu	Glu	Gly	Val	Ile	Met	Gln	Ala	
1	5						10				15				
Phe	Tyr	Trp	Asp	Val	Pro	Gly	Gly	Ile	Trp	Trp	Asp	Thr	Ile	Arg	
	20						25				30				
Ser	Lys	Ile	Pro	Glu	Trp	Tyr	Glu	Ala	Gly	Ile	Ser	Ala	Ile	Trp	Ile
	35						40				45				
Pro	Pro	Ala	Ser	Lys	Gly	Met	Gly	Gly	Ala	Tyr	Ser	Met	Gly	Tyr	Asp
	50					55				60					
Pro	Tyr	Asp	Phe	Phe	Asp	Leu	Gly	Glu	Tyr	Asp	Gln	Lys	Gly	Thr	Val
	65					70				75			80		
Glu	Thr	Arg	Phe	Gly	Ser	Lys	Gln	Glu	Leu	Val	Asn	Met	Ile	Asn	Thr
	85							90				95			
Ala	His	Ala	Tyr	Gly	Ile	Lys	Val	Ile	Ala	Asp	Ile	Val	Ile	Asn	His
	100						105				110				

Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Gly Asp Tyr Thr
 115 120 125
 Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr
 130 135 140
 Leu Asp Phe His Pro Asn Glu Val Lys Cys Cys Asp Glu Gly Thr Phe
 145 150 155 160
 Gly Gly Phe Pro Asp Ile Ala His Glu Lys Ser Trp Asp Gln His Trp
 165 170 175
 Leu Trp Ala Ser Asp Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly
 180 185 190
 Val Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val
 195 200 205
 Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr
 210 215 220
 Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Gly
 225 230 235 240
 Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Glu Ala Phe
 245 250 255
 Asp Asn Lys Asn Ile Pro Ala Leu Val Ser Ala Leu Gln Asn Gly Gln
 260 265 270
 Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn
 275 280 285
 His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile
 290 295 300
 Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu
 305 310 315 320
 Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn
 325 330 335
 Leu Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu
 340 345 350
 Ile Phe Val Arg Asn Gly Tyr Gly Asp Lys Pro Gly Leu Ile Thr Tyr
 355 360 365
 Ile Asn Leu Gly Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys
 370 375 380
 Phe Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp
 385 390 395 400
 Val Asp Lys Tyr Val Tyr Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro
 405 410 415
 Ala Tyr Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr
 420 425 430
 Cys Gly Val Gly
 435

<210> 47

<211> 1311

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetically generated oligonucleotide

<400> 47

atggccaagt acaccgagct ggaagagggc ggcgttataa tgcaggcctt ctactggac	60
gtcccaggtg gaggaatctg gtggcacacc atcaggagca agataccgga gtggtacgag	120
gcggaaatat cgcgcatttg gattcccccg gcgagcaagg gcatggcg ggccctattcg	180
atggctacg acccctacga cttctttgac ctcggtgagt acgaccagaa ggaaacggtaa	240
gagacgcgct ttggctccaa gcaggagctc gtgaacatga taaacaccgc ccacgcctat	300

ggcatgaagg	taatagccga	tatagtcatc	aaccaccgcg	ccggcggtga	cctggagtgg	360
aaccccctcg	tgaacgacta	tacctggacc	gacttctcaa	aggtcgctc	gggtaaatac	420
acggccaact	acctcgactt	ccaccccaac	gaggtcaagt	gctgtgacga	gggcacattt	480
ggaggcctcc	cagacatagc	ccacgagaag	agctgggacc	agcaactggct	ctggcgagc	540
gatgagagct	acgccccta	cctaaggagc	atcggcggtt	atgcctggcg	ctttgactac	600
gtgaaggggct	acggagcgtg	ggtcgtcaag	gactggctca	actggtgaaa	cggttggcc	660
gttggcgagt	actggacac	caacgttgat	gcactcctca	actgggccta	ctcgagcgcc	720
gccaaggctct	tcgacttccc	gctctactac	aagatggatg	aggccttga	caacaaaaac	780
atcccagcgc	tcgtctctgc	ccttcagaac	ggccagactg	ttgtctcccg	cgaccggttc	840
aaggccgtaa	cctttgttagc	aaaccacgac	accgatataa	tctggAACAA	gtacattgtct	900
tatgcttca	tcctcaccta	cgaaggccag	cccgtcatat	tctaccgca	ctacgaggag	960
tggctcaaca	aggacaggtt	gaacaacctc	atatggatac	acgaccacct	cgcaggtgga	1020
agcacgagca	tagttacta	cgacagcgcac	gagatgatct	tcgtgaggaa	cggttatgga	1080
agcaaggcctg	gccttataaac	ttacatcaac	ctcggtcgaa	gcaagggtgg	aaggtgggtt	1140
tacgttccga	agttcgcagg	cccgtgcata	cacgactaca	ccggcaatct	cgccggctgg	1200
gtggacaagt	gggtggactc	aagcggctgg	gtctacctcg	aggctcctgc	ccacgaccccg	1260
gccaacggcc	agtacggcta	ctccgtctgg	agctactcg	gtgttgggt	g	1311

<210> 48

<211> 436

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetically generated polypeptide

<400> 48

Met Ala Lys Tyr Thr Glu Leu Glu Glu Gly Val Ile Met Gln Ala						
1	5	10	15			
Phe Tyr Trp Asp Val Pro Gly Gly Ile Trp Trp Asp Thr Ile Arg						
20	25	30				
Ser Lys Ile Pro Glu Trp Tyr Glu Ala Gly Ile Ser Ala Ile Trp Ile						
35	40	45				
Pro Pro Ala Ser Lys Gly Met Gly Gly Ala Tyr Ser Met Gly Tyr Asp						
50	55	60				
Pro Tyr Asp Phe Phe Asp Leu Gly Glu Tyr Asp Gln Lys Gly Thr Val						
65	70	75	80			
Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Val Asn Met Ile Asn Thr						
85	90	95				
Ala His Ala Tyr Gly Met Lys Val Ile Ala Asp Ile Val Ile Asn His						
100	105	110				
Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Asn Asp Tyr Thr						
115	120	125				
Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr						
130	135	140				
Leu Asp Phe His Pro Asn Glu Val Lys Cys Cys Asp Glu Gly Thr Phe						
145	150	155	160			
Gly Gly Phe Pro Asp Ile Ala His Glu Lys Ser Trp Asp Gln His Trp						
165	170	175				
Leu Trp Ala Ser Asp Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly						
180	185	190				
Val Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val						
195	200	205				
Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr						
210	215	220				
Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Gly						
225	230	235	240			

Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Glu Ala Phe
 245 250 255
 Asp Asn Lys Asn Ile Pro Ala Leu Val Ser Ala Leu Gln Asn Gly Gln
 260 265 270
 Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn
 275 280 285
 His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Leu Ala Tyr Ala Phe Ile
 290 295 300
 Leu Thr Tyr Glu Gly Gln Pro Val Ile Phe Tyr Arg Asp Tyr Glu Glu
 305 310 315 320
 Trp Leu Asn Lys Asp Arg Leu Asn Asn Leu Ile Trp Ile His Asp His
 325 330 335
 Leu Ala Gly Gly Ser Thr Ser Ile Val Tyr Tyr Asp Ser Asp Glu Met
 340 345 350
 Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr
 355 360 365
 Ile Asn Leu Gly Ser Ser Lys Val Gly Arg Trp Val Tyr Val Pro Lys
 370 375 380
 Phe Ala Gly Pro Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp
 385 390 395 400
 Val Asp Lys Trp Val Asp Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro
 405 410 415
 Ala His Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr
 420 425 430
 Cys Gly Val Gly
 435

<210> 49
 <211> 387
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> synthetically generated oligonucleotide

<400> 49
 gtggtttatg acgatgtccg ctatgacctt tatgccgtag gcatggcccg tgtttatcat
 gttcacgagc tcctgcgtgg agccaaagcg cgtctctacc gttcccttct ggtcgtaactc
 accgaggta aagaagtctgt aggggtcgta gcccattcgaa taggcgcgcgc ccatgccctt
 gctcgccggg ggaatccata tcgcccataat cccggcgctt gcccagtcgg gtagttctg
 ggctatcgtg tccccaccaga ttccctccat ggggacgtcc cagtagaagg cctgcattat
 gagcccgccc tcttcgagcc cgaataactt tgccataagt tacctcctac tagtagatta
 aaattctgtt tcctgtgtga aattgtt

<210> 50
 <211> 129
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> synthetically generated polypeptide

<400> 50
 Val Val Tyr Asp Asp Val Arg Tyr Asp Leu Tyr Ala Val Gly Met Gly
 1 5 10 15
 Arg Val Tyr His Val His Glu Leu Leu Leu Gly Ala Lys Ala Arg Leu
 20 25 30

Tyr Arg Ser Leu Leu Val Val Leu Thr Glu Val Val Lys Glu Val Val Gly
 35 40 45
 Val Val Ala His Arg Ile Gly Ala Ala His Ala Leu Ala Arg Arg Gly
 50 55 60
 Asn Pro Tyr Arg Arg Asn Pro Gly Ala Cys Pro Val Gly Tyr Leu Leu
 65 70 75 80
 Gly Tyr Arg Val Pro Pro Asp Ser Ser His Gly Asp Val Pro Val Glu
 85 90 95
 Gly Leu His Tyr Glu Pro Ala Leu Phe Glu Pro Gly Ile Leu Cys His
 100 105 110
 Lys Leu Pro Pro Thr Ser Arg Leu Lys Phe Cys Phe Leu Cys Glu Ile
 115 120 125
 Val

<210> 51
<211> 1311
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetically generated oligonucleotide

<400> 51
atggccaagt acctggagct cgaagagggc ggggtcataa tgcaggcggtt ctactgggac 60
gtgccttcag gagaaatatg gtgggacaca atacggcaga agataccgga gtggtagcat 120
gccggaatct ccgcaatatg gattcccccg gcgagcaagg gcatgggccc cgccctattcg 180
atgggctacg acccctacga cttctttgac ctcggtgagt acgaccagaa ggaaacggta 240
gagacggcgtt ttggctccaa gcaggagctc gtgaacatga taaacaccgc ccacgcctat 300
ggcatgaagg taatagccga tatagtcatc aaccaccgcg ccggcgggtga cctggagtgg 360
aacccttcg tgaacgacta tacctggacc gacttctcaa aggtcgcgtc gggtaaatac 420
acggccaact acctcgactt ccaccccaac gaggtcaagt gctgtacgaa gggcacattt 480
ggaggcttcc cagacatagc ccacgagaag agctggacc agcactggct ctggggcagc 540
gatgagagct acgccccta cctaaggagc atcggcggtt atgcctggcg ctttgactac 600
gtgaagggct acggagcgtt ggtcgtaag gactggctca actggggggg cggctggcc 660
gttggcgagt actgggacac caacgttcat gcaactctca actgggccta ctcgagcggc 720
gccaaggct tcgacttccc gctctactac aagatggatg aggcccttga caacaaaaac 780
attccagcgc tcgtctctgc cttcagaac ggccagactg ttgtctcccg cgaccggc 840
aaggccgtaa cttttagc aaaccacgac accgatataa tctggaaaca gtatccagcc 900
tacgcgttca tcctcaccta cgaggggccag ccgacaatat tctaccgcga ctacgaggag 960
tggctcaaca aggataagct caagaacctc atctggatac atgacaacct cgccggagga 1020
agcaactgaca tcgtttacta cgacaacgac gagctgatat tcgtgagaaa cggctacggc 1080
agcaagccgg gactgataac atacatcaac ctcgcctcaa gcaaagccgg aagggtgggtt 1140
tacgttccga agttcgcagg ctcgtgcata cacgagtaca cccgcaatct cggcgctgg 1200
gtggacaagt gggtggaactc aagcggctgg gtctacctcg aggctcctgc ccacgaccgg 1260
gccaacggcc agtacgcta ctccgtctgg agctattgcg gtgttggctg a 1311

<210> 52
<211> 436
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetically generated polypeptide

<400> 52
Met Ala Lys Tyr Leu Glu Leu Glu Gly Gly Val Ile Met Gln Ala

1	5	10	15												
Phe	Tyr	Trp	Asp	Val	Pro	Ser	Gly	Gly	Ile	Trp	Trp	Asp	Thr	Ile	Arg
				20			25					30			
Gln	Lys	Ile	Pro	Glu	Trp	Tyr	Asp	Ala	Gly	Ile	Ser	Ala	Ile	Trp	Ile
				35			40					45			
Pro	Pro	Ala	Ser	Lys	Gly	Met	Gly	Gly	Ala	Tyr	Ser	Met	Gly	Tyr	Asp
				50			55					60			
Pro	Tyr	Asp	Phe	Phe	Asp	Leu	Gly	Glu	Tyr	Asp	Gln	Lys	Gly	Thr	Val
				65			70				75		80		
Glu	Thr	Arg	Phe	Gly	Ser	Lys	Gln	Glu	Leu	Val	Asn	Met	Ile	Asn	Thr
				85			90					95			
Ala	His	Ala	Tyr	Gly	Met	Lys	Val	Ile	Ala	Asp	Ile	Val	Ile	Asn	His
				100			105					110			
Arg	Ala	Gly	Gly	Asp	Leu	Glu	Trp	Asn	Pro	Phe	Val	Asn	Asp	Tyr	Thr
				115			120					125			
Trp	Thr	Asp	Phe	Ser	Lys	Val	Ala	Ser	Gly	Lys	Tyr	Thr	Ala	Asn	Tyr
				130			135				140				
Leu	Asp	Phe	His	Pro	Asn	Glu	Val	Lys	Cys	Cys	Asp	Glu	Gly	Thr	Phe
				145			150			155		160			
Gly	Gly	Phe	Pro	Asp	Ile	Ala	His	Glu	Lys	Ser	Trp	Asp	Gln	His	Trp
				165			170					175			
Leu	Trp	Ala	Ser	Asp	Glu	Ser	Tyr	Ala	Ala	Tyr	Leu	Arg	Ser	Ile	Gly
				180			185					190			
Val	Asp	Ala	Trp	Arg	Phe	Asp	Tyr	Val	Lys	Gly	Tyr	Gly	Ala	Trp	Val
				195			200				205				
Val	Lys	Asp	Trp	Leu	Asn	Trp	Trp	Gly	Gly	Trp	Ala	Val	Gly	Glu	Tyr
				210			215				220				
Trp	Asp	Thr	Asn	Val	Asp	Ala	Leu	Leu	Asn	Trp	Ala	Tyr	Ser	Ser	Gly
				225			230				235		240		
Ala	Lys	Val	Phe	Asp	Phe	Pro	Leu	Tyr	Tyr	Lys	Met	Asp	Glu	Ala	Phe
				245			250					255			
Asp	Asn	Lys	Asn	Ile	Pro	Ala	Leu	Val	Ser	Ala	Leu	Gln	Asn	Gly	Gln
				260			265					270			
Thr	Val	Val	Ser	Arg	Asp	Pro	Phe	Lys	Ala	Val	Thr	Phe	Val	Ala	Asn
				275			280					285			
His	Asp	Thr	Asp	Ile	Ile	Trp	Asn	Lys	Tyr	Pro	Ala	Tyr	Ala	Phe	Ile
				290			295				300				
Leu	Thr	Tyr	Glu	Gly	Gln	Pro	Thr	Ile	Phe	Tyr	Arg	Asp	Tyr	Glu	Glu
				305			310			315		320			
Trp	Leu	Asn	Lys	Asp	Lys	Leu	Lys	Asn	Leu	Ile	Trp	Ile	His	Asp	Asn
				325			330					335			
Leu	Ala	Gly	Gly	Ser	Thr	Asp	Ile	Val	Tyr	Tyr	Asp	Asn	Asp	Glu	Leu
				340			345					350			
Ile	Phe	Val	Arg	Asn	Gly	Tyr	Gly	Ser	Lys	Pro	Gly	Leu	Ile	Thr	Tyr
				355			360					365			
Ile	Asn	Leu	Ala	Ser	Ser	Lys	Ala	Gly	Arg	Trp	Val	Tyr	Val	Pro	Lys
				370			375				380				
Phe	Ala	Gly	Ser	Cys	Ile	His	Glu	Tyr	Thr	Gly	Asn	Leu	Gly	Gly	Trp
				385			390			395		400			
Val	Asp	Lys	Trp	Val	Asp	Ser	Ser	Gly	Trp	Val	Tyr	Leu	Glu	Ala	Pro
				405			410					415			
Ala	His	Asp	Pro	Ala	Asn	Gly	Gln	Tyr	Gly	Tyr	Ser	Val	Trp	Ser	Tyr
				420			425					430			
Cys	Gly	Val	Gly												
				435											

<211> 1311
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetically generated oligonucleotide

<400> 53

atggccaagt	actccgagct	ggaagagggc	ggcgttataa	tgcaggcctt	ctactggac	60
gtcccagtg	gaggaatctg	gtgggacacc	atcaggagca	agataccgga	gtggtagcag	120
gcggaaatat	ccgccatttg	gattcccccg	gcgagcaagg	gcatgggcgg	cgcctattcg	180
atgggctacg	accctacga	cttcttgac	ctcggtgagt	acgaccagaa	gggaacggta	240
gagacgcgct	ttggctcaa	gcaggagctc	gtgaacatga	taaacacggc	ccatgcctac	300
ggcataaagg	tcatagcgga	catcgctata	aaccacccgca	caggcggaga	cctcgagtgg	360
aaccgcgtcg	ttggggacta	cacctggacg	gacttctcaa	aggtggcctc	gggcaaataat	420
actgccaact	acctcgactt	ccaccccaac	gaggtcaagt	gctgtgacga	gggcacattt	480
ggaggcttcc	cagacatagc	ccacgagaag	agctgggacc	agcactggct	ctggcgagc	540
gtgagagct	acggccgccta	cctaaggagc	atcggcggtt	atgcctggcg	cttcgactac	600
gtcaagggct	acggagcgtg	ggtcgtcaag	gactggctgg	actgggtgggg	aggctggcc	660
gtcggggagt	actgggacac	aaacgtttagt	gcactgctca	actgggccta	ctcgagcgat	720
gcaaaagtct	tcgacttccc	gctctactac	aagatggatg	aggccttta	caacaaaaac	780
attccagcgc	tcgtctctgc	ccttcagaac	ggccagactg	ttgtctcccg	cgaccgcgttc	840
aaggccgtaa	cctttgttagc	aaaccacgac	accgatataa	tctggaaacaa	gtatccagcc	900
tacgcgttca	tcctcaccta	cgagggccag	ccgacaataat	tctaccgcga	ctacgaggag	960
tggctcaaca	aggataagct	caagaacctc	atctggatac	atgacaacct	cgccggagga	1020
agcaactgaca	tcgtttacta	cgacaacgac	gagctgatata	tcgtgagaaa	cggtacgga	1080
agcaagccgg	gactgataac	atacatcaac	ctcgctcaa	gcaaagccgg	aagggtggtc	1140
tacgttccga	agttcgcggg	agcgtgcattc	cacgagtaca	ccggcaacct	cgccggctgg	1200
gtggacaagt	gggtggactc	aagcgggtgg	gtgtacctcg	aggccctgc	ccacgaccccg	1260
gccaacggct	attacggcta	ctccgtctgg	agctactgctg	gtgtggctg	a	1311

<210> 54
<211> 436
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetically generated polypeptide

<400> 54

Met	Ala	Lys	Tyr	Ser	Glu	Leu	Glu	Gly	Gly	Val	Ile	Met	Gln	Ala	
1															
Phe	Tyr	Trp	Asp	Val	Pro	Gly	Gly	Ile	Trp	Trp	Asp	Thr	Ile	Arg	
Ser	Lys	Ile	Pro	Glu	Trp	Tyr	Glu	Ala	Gly	Ile	Ser	Ala	Ile	Trp	Ile
Pro	Pro	Ala	Ser	Lys	Gly	Met	Gly	Gly	Ala	Tyr	Ser	Met	Gly	Tyr	Asp
Pro	Tyr	Asp	Phe	Phe	Asp	Leu	Gly	Glu	Tyr	Asp	Gln	Lys	Gly	Thr	Val
Glu	Thr	Arg	Phe	Gly	Ser	Lys	Gln	Glu	Leu	Val	Asn	Met	Ile	Asn	Thr
Ala	His	Ala	Tyr	Gly	Ile	Lys	Val	Ile	Ala	Asp	Ile	Val	Ile	Asn	His
Arg	Thr	Gly	Gly	Asp	Leu	Glu	Trp	Asn	Pro	Phe	Val	Gly	Asp	Tyr	Thr
Trp	Thr	Asp	Phe	Ser	Lys	Val	Ala	Ser	Gly	Lys	Tyr	Thr	Ala	Asn	Tyr

130	135	140
Leu Asp Phe His Pro Asn Glu Val Lys Cys	Cys Asp Glu Gly Thr Phe	
145	150	155
Gly Gly Phe Pro Asp Ile Ala His Glu Lys Ser Trp Asp Gln His Trp		160
165	170	175
Leu Trp Ala Ser Asp Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly		
180	185	190
Val Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val		
195	200	205
Val Lys Asp Trp Leu Asp Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr		
210	215	220
Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Asp		
225	230	235
Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Glu Ala Phe		240
245	250	255
Asp Asn Lys Asn Ile Pro Ala Leu Val Ser Ala Leu Gln Asn Gly Gln		
260	265	270
Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn		
275	280	285
His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile		
290	295	300
Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu		
305	310	315
Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn		320
325	330	335
Leu Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu		
340	345	350
Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr		
355	360	365
Ile Asn Leu Ala Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys		
370	375	380
Phe Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp		
385	390	395
Val Asp Lys Trp Val Asp Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro		400
405	410	415
Ala His Asp Pro Ala Asn Gly Tyr Tyr Gly Tyr Ser Val Trp Ser Tyr		
420	425	430
Cys Gly Val Gly		
435		

<210> 55

<211> 1311

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetically generated oligonucleotide

<400> 55

atggccaagt acctggagct cgaggagggc ggggtcataa tgcaggcggtt ctactggac	60
gtgccttcag gagaaatatg gtgggacaca atacggcaga agataccgga gtggtaacgat	120
gccggaatct ccgcaatatg gattcccccg gcgagcaagg gcatgggcgg cgcctattcg	180
atgggctacg acccctacga cttctttgac ctcggtgagt acgaccagaa gggAACGGTA	240
gagacgcgcgt ttggctccaa gcaggagctc gtgaacatga taaacaccgc ccacgcctat	300
ggcatgaagg taatagccga tatagtcatc aaccaccgcg cccggcggtga cctggagtgg	360
aacccttcg tgaacgacta tacctggacc gacttctcaa agtgcgcgtc gggtaaatac	420
acggccaact acctcgactt ccacccgaac gagctccatg cggcgattc cggaacattt	480

ggaggctatc	ccgacatatg	ccacgacaag	agctgggacc	agtactggct	ctggccagc	540
caggagagct	acgcgcata	tctcaggagc	atcgcatcg	atgcctggcg	ctttgactac	600
gtgaagggtc	acggagcgtg	gtcgtcaag	gactggctca	actggtgggg	cggctggcc	660
gttggcgagt	actggacac	caacgttcat	gcactcctca	actggccta	ctcgagcggc	720
gccaaggctc	tcgacttccc	gctctactac	aagatggatg	aggccttga	caacaaaaac	780
attccagcgc	tcgtctctgc	cttcagaac	ggccagactg	ttgtctcccg	cgaccgttc	840
aaggccgtaa	ccttgtagc	aaaccacgac	accgatataa	tctgaaacaa	gtaccttgct	900
tatgcttca	tcctcaccta	cgaaggccag	cccgctcatat	tctaccgcga	ctacgaggag	960
tggctcaaca	aggacaggtt	gaacaaccc	atatggatac	acgaccacct	cgcaggtgga	1020
agcacgagca	tagttacta	cgacagcgcac	gagatgatct	tcgtgagggaa	cggctatggaa	1080
agcaaggcctg	gccttataac	ttacatcaac	ctcggctcga	gcaagggtgg	aaggtgggtt	1140
tacgttccga	agttcgcagg	ctcgtgcata	cacgactaca	ccggcaatct	cggccgctgg	1200
gtggacaagt	gggtgactc	aagcggctgg	gtctacctcg	aggctcctgc	ccacgaccccg	1260
gccaacggcc	agtacggcta	ctccgtctgg	agctattgctg	gtgttggctg	a	1311

<210> 56

<211> 436

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetically generated polypeptide

<400> 56

Met Ala Lys Tyr Leu Glu Leu Glu Gly	Gly Val Ile Met Gln Ala		
1	5	10	15
Phe Tyr Trp Asp Val Pro Ser Gly	Gly Ile Trp Trp Asp Thr Ile Arg		
20	25	30	
Gln Lys Ile Pro Glu Trp Tyr Asp Ala	Gly Ile Ser Ala Ile Trp Ile		
35	40	45	
Pro Pro Ala Ser Lys Gly	Met Gly Gly Ala Tyr Ser Met Gly	Tyr Asp	
50	55	60	
Pro Tyr Asp Phe Phe Asp Leu Gly	Glu Tyr Asp Gln Lys Gly Thr Val		
65	70	75	80
Glu Thr Arg Phe Gly Ser Lys Gln	Glu Leu Val Asn Met Ile Asn Thr		
85	90	95	
Ala His Ala Tyr Gly Met Lys Val	Ile Ala Asp Ile Val Ile Asn His		
100	105	110	
Arg Ala Gly Asp Leu Glu Trp Asn Pro	Phe Val Asn Asp Tyr Thr		
115	120	125	
Trp Thr Asp Phe Ser Lys Val	Ala Ser Gly Lys Tyr Thr Ala Asn Tyr		
130	135	140	
Leu Asp Phe His Pro Asn Glu Leu His	Ala Gly Asp Ser Gly Thr Phe		
145	150	155	160
Gly Gly Tyr Pro Asp Ile Cys His Asp	Lys Ser Trp Asp Gln Tyr Trp		
165	170	175	
Leu Trp Ala Ser Gln Glu Ser Tyr	Ala Ala Tyr Leu Arg Ser Ile Gly		
180	185	190	
Ile Asp Ala Trp Arg Phe Asp Tyr	Val Lys Gly Tyr Gly Ala Trp Val		
195	200	205	
Val Lys Asp Trp Leu Asn Trp	Trp Gly Gly Trp Ala Val Gly Glu Tyr		
210	215	220	
Trp Asp Thr Asn Val Asp Ala Leu	Leu Asn Trp Ala Tyr Ser Ser Gly		
225	230	235	240
Ala Lys Val Phe Asp Phe Pro Leu	Tyr Tyr Lys Met Asp Glu Ala Phe		
245	250	255	
Asp Asn Lys Asn Ile Pro Ala Leu	Val Ser Ala Leu Gln Asn Gly Gln		

	260	265	270
Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn			
275	280	285	
His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Leu Ala Tyr Ala Phe Ile			
290	295	300	
Leu Thr Tyr Glu Gly Gln Pro Val Ile Phe Tyr Arg Asp Tyr Glu Glu			
305	310	315	320
Trp Leu Asn Lys Asp Arg Leu Asn Asn Leu Ile Trp Ile His Asp His			
325	330	335	
Leu Ala Gly Gly Ser Thr Ser Ile Val Tyr Tyr Asp Ser Asp Glu Met			
340	345	350	
Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr			
355	360	365	
Ile Asn Leu Gly Ser Ser Lys Val Gly Arg Trp Val Tyr Val Pro Lys			
370	375	380	
Phe Ala Gly Ser Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp			
385	390	395	400
Val Asp Lys Trp Val Asp Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro			
405	410	415	
Ala His Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr			
420	425	430	
Cys Gly Val Gly			
	435		

<210> 57

<211> 1311

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetically generated oligonucleotide

<400> 57

atggccaagt acctggagct cgaagagagc ggggtcataa tgcaggcggtt ctactggac	60
gtgccttcag gagaaatatg gtggcacaca atacggcaga agataccgga gtggtagat	120
gccggaatct ccgcaatatg gattctccc gcggacaagg gtatgagcgg cggctattcg	180
atgggctacg acccctacga ttatttgac ctcggtgagt actaccagaa gggAACGGTG	240
gaaacgaggt tcggctaaa gcaggagctc ataaacatga taaaacaccgc ccacgcctac	300
ggcatcaagg tcatcgaga catagtaatc aaccaccgcg ccggaggaga ccttgagtgg	360
aacccttcg tcaatgacta cacctggacg gacttctcgta aggtcgcttc cggcaagtac	420
acggccaact acctcgactt ccaccccaac gaggtcaagt gctgtgacga gggcacattt	480
ggaggcttcc cagacatagc ccacgagaag agctgggacc agcactggct ctggcgagc	540
gatgagagct acgccccta cctaaggagc atcggcggtt atgcctggcg ctttgactac	600
gtgaagggct acggagcgtg ggtcgtaag gactggctca actgggtgggg tggctggcc	660
gtcggggagt actgggacac aaacgttgat gcactgctca actgggccta ctcgagcgat	720
gaaaaagtct tcgacttccc gctctactac aagatggacg aggccctcgta taacaacaac	780
attcccgccc tggtgacgc cctcagatac ggtcagacag tggtcagccg cgaccgcgttc	840
aaggctgtga cgttttagc caaccacgat accgatataa tctggAACAA gtaccttgct	900
tatgcttca tcctcaccta cgaaggccag cccgtcatat tctaccgcga ctacgaggag	960
tggctcaaca aggacaggtt gaacaacctc atatggatac acgaccaccc cgcaggtgga	1020
agcaagccgg gactgataac atacatcaac ctcgcctcaa gcaaagccgg aaggtgggtc	1080
tacgttccga agttcgcggg agcgtgcata cacgagatac cccgcaaccc cggcggttgg	1140
gtggacaagt gggtgactc aagcgggtgg gtgtacctcg aggccccctgc ccacgaccgg	1200
gccaacggct attacggcta ctccgtctgg agctattgcg gtgtggctg a	1260
	1311

<210> 58

<211> 436
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetically generated polypeptide

<400> 58
Met Ala Lys Tyr Leu Glu Leu Glu Glu Ser Gly Val Ile Met Gln Ala
1 5 10 15
Phe Tyr Trp Asp Val Pro Ser Gly Gly Ile Trp Trp Asp Thr Ile Arg
20 25 30
Gln Lys Ile Pro Glu Trp Tyr Asp Ala Gly Ile Ser Ala Ile Trp Ile
35 40 45
Pro Pro Ala Ser Lys Gly Met Ser Gly Gly Tyr Ser Met Gly Tyr Asp
50 55 60
Pro Tyr Asp Tyr Phe Asp Leu Gly Glu Tyr Tyr Gln Lys Gly Thr Val
65 70 75 80
Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Ile Asn Met Ile Asn Thr
85 90 95
Ala His Ala Tyr Gly Ile Lys Val Ile Ala Asp Ile Val Ile Asn His
100 105 110
Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Asn Asp Tyr Thr
115 120 125
Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr
130 135 140
Leu Asp Phe His Pro Asn Glu Val Lys Cys Cys Asp Glu Gly Thr Phe
145 150 155 160
Gly Gly Phe Pro Asp Ile Ala His Glu Lys Ser Trp Asp Gln His Trp
165 170 175
Leu Trp Ala Ser Asp Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly
180 185 190
Val Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val
195 200 205
Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr
210 215 220
Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Asp
225 230 235 240
Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Glu Ala Phe
245 250 255
Asp Asn Asn Asn Ile Pro Ala Leu Val Asp Ala Leu Arg Tyr Gly Gln
260 265 270
Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn
275 280 285
His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Leu Ala Tyr Ala Phe Ile
290 295 300
Leu Thr Tyr Glu Gly Gln Pro Val Ile Phe Tyr Arg Asp Tyr Glu Glu
305 310 315 320
Trp Leu Asn Lys Asp Arg Leu Asn Asn Leu Ile Trp Ile His Asp His
325 330 335
Leu Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu
340 345 350
Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr
355 360 365
Ile Asn Leu Ala Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys
370 375 380
Phe Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp

385	390	395	400
Val Asp Lys Trp Val Asp Ser Ser Gly	Trp Val Tyr Leu Glu Ala Pro		
405		410	415
Ala His Asp Pro Ala Asn Gly Tyr Tyr Gly	Tyr Ser Val Trp Ser Tyr		
420		425	430
Cys Gly Val Gly			
435			

<210> 59
<211> 1311
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetically generated oligonucleotide

<400> 59			
atggccaagt acctggagct cgaagagggc ggggtcataa tgcaggcggtt ctactggac		60	
gtgccttcag gaggaaatatg gtgggacaca atacggcaga agataccgga gtggtagat		120	
gccggaatct ccgcaatatg gattcctccc gcgagcaagg gtatgagcg cggttattcg		180	
atgggctacg acccctacga ttatttgac ctgggtgagt actaccagaa gggAACGGTG		240	
gaaacgaggt tcggctcaaa gcaggagctc ataaacatga taaacaccgc ccacgcctac		300	
ggcatcaagg tcatcgaga catagtaatc aaccaccgcg ccggaggaga ctttgagtgg		360	
aacccttgc tcaatgacta cacctggacg gacttctcg aggtcgcttc cggcaagtac		420	
acggccaact acctcgactt ccacccgaac gagctccatg cgggcgattc cggaacattt		480	
ggaggctatc ccgacatatg ccacgacaag agctggacc agtactggct ctggccagc		540	
caggagagct acgcggcata tctcaggagc atcggcatcg atgcctggcg cttcgactac		600	
gtcaagggtc atgctccctg ggtcgtaag gactggctga actgggtgggg aggctggcg		660	
gttggagagt actgggacac caacgtcgac gctgttctca actgggcata ctcgagcggt		720	
gccaaggctt ttgacttcgc cctctactac aagatggacg aggccctcga taacaacaac		780	
attcccggcc ttgtggacgc cctcagatac ggtcagacag tggcagccg cgaccggc		840	
aaggctgtga cggtttagc caaccacgt accgatataa ttggaaacaa gtaccggcc		900	
tacgccttca tcctcaccta cgaggccag ccgacgatatac tctaccgcga ctacgaggag		960	
tggctcaaca aggacaggct caagaacctc atctgatac acgaccaccc cgccgggtgg		1020	
agcaactgaca tcgttacta cgacaacgc gagctgatatac tcgtgagaaa cggctacgg		1080	
agcaagccgg gactgataac atacatcaac ctcgcgtcaa gcaaagccgg aagggtgggtt		1140	
tatgtgccga agttcgccgg cgctgcatac cacgagtata ctggtaacct cggaggctgg		1200	
gtagacaagt acgtctactc aagcggctgg gtctatctcg aagctccagc ttacgaccct		1260	
gccaacgggc agtatggcta ctccgtgtgg agctattcg agtgggtt a		1311	

<210> 60
<211> 436
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetically generated polypeptide

<400> 60			
Met Ala Lys Tyr Leu Glu Leu Glu Gly Val Ile Met Gln Ala			
1	5	10	15
Phe Tyr Trp Asp Val Pro Ser Gly Gly Ile Trp Trp Asp Thr Ile Arg			
20	25	30	
Gln Lys Ile Pro Glu Trp Tyr Asp Ala Gly Ile Ser Ala Ile Trp Ile			
35	40	45	
Pro Pro Ala Ser Lys Gly Met Ser Gly Gly Tyr Ser Met Gly Tyr Asp			
50	55	60	

Pro Tyr Asp Tyr Phe Asp Leu Gly Glu Tyr Tyr Gln Lys Gly Thr Val
 65 70 75 80
 Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Ile Asn Met Ile Asn Thr
 85 90 95
 Ala His Ala Tyr Gly Ile Lys Val Ile Ala Asp Ile Val Ile Asn His
 100 105 110
 Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Asn Asp Tyr Thr
 115 120 125
 Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr
 130 135 140
 Leu Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe
 145 150 155 160
 Gly Gly Tyr Pro Asp Ile Cys His Asp Lys Ser Trp Asp Gln Tyr Trp
 165 170 175
 Leu Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly
 180 185 190
 Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Ala Pro Trp Val
 195 200 205
 Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr
 210 215 220
 Trp Asp Thr Asn Val Asp Ala Val Leu Asn Trp Ala Tyr Ser Ser Gly
 225 230 235 240
 Ala Lys Val Phe Asp Phe Ala Leu Tyr Tyr Lys Met Asp Glu Ala Phe
 245 250 255
 Asp Asn Asn Asn Ile Pro Ala Leu Val Asp Ala Leu Arg Tyr Gly Gln
 260 265 270
 Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn
 275 280 285
 His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile
 290 295 300
 Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu
 305 310 315 320
 Trp Leu Asn Lys Asp Arg Leu Lys Asn Leu Ile Trp Ile His Asp His
 325 330 335
 Leu Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu
 340 345 350
 Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr
 355 360 365
 Ile Asn Leu Ala Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys
 370 375 380
 Phe Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp
 385 390 395 400
 Val Asp Lys Tyr Val Tyr Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro
 405 410 415
 Ala Tyr Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr
 420 425 430
 Cys Gly Val Gly
 435

<210> 61

<211> 1311

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetically generated oligonucleotide

<400> 61

atggccaagt	actccgagct	aaaaagggc	ggggcataa	tgcaggcg	ttt	ctactgggac	60
gtgccttc	ag	gag	at	acggcaga	agataccgg	gtggta	cag
gcggaa	at	at	at	at	at	at	at
atgggctac	g	g	g	g	g	g	g
gaaacgag	gt	gg	gg	gg	gg	gg	gg
ggcatcaag	tc	at	cg	caga	cat	gta	atc
aacc	cc	cc	cc	cc	cc	cc	cc
tc	ca	at	gact	act	ttt	ttt	ttt
acggcca	ac	ct	ca	ac	tt	cc	at
ggaggctat	cc	ca	ac	at	at	cc	cc
caggagag	ac	cg	cc	ga	cc	gg	ag
gtcaaggg	ac	gg	ag	cg	gt	gg	gg
gtcgggg	ag	gg	gg	ac	ac	ac	ac
gaaaagtct	tc	gact	ccc	tc	tact	ac	a
attccagcgc	tc	gt	c	tc	tct	tc	gc
aaggccgt	cc	tt	tt	tg	ac	at	tt
tacgcgttca	tc	tc	tc	ac	cc	cc	cc
tggctcaaca	aggataa	g	g	g	g	g	g
agcac	g	g	g	g	g	g	g
gacaagccg	gg	tt	tt	ta	ta	ta	ta
tacgttccga	ag	tt	cg	cg	gg	gg	gg
gtggaca	gg	gt	gg	ac	tc	cc	cc
gccaacgg	ct	ac	gg	gt	cc	cc	cc
attacggcta	tc	cc	gt	tc	tt	gg	ct
agctactcg	ag	ct	ac	t	gg	gg	ct
gggtggct	gg	gg	gg	gg	gg	gg	gg
a	a	a	a	a	a	a	a

<210> 62

<211> 436

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetically generated polypeptide

<400> 62

Met	Ala	Lys	Tyr	Ser	Glu	Leu	Lys	Gly	Gly	Val	Ile	Met	Gln	Ala	
1					5			10			15				
Phe	Tyr	Trp	Asp	Val	Pro	Ser	Gly	Gly	Ile	Trp	Trp	Asp	Thr	Ile	Arg
					20			25			30				
Gln	Lys	Ile	Pro	Glu	Trp	Tyr	Glu	Ala	Gly	Ile	Ser	Ala	Ile	Trp	Ile
					35			40			45				
Pro	Pro	Ala	Ser	Lys	Gly	Met	Ser	Gly	Gly	Tyr	Ser	Met	Gly	Tyr	Asp
					50			55			60				
Pro	Tyr	Asp	Tyr	Phe	Asp	Leu	Gly	Glu	Tyr	Tyr	Gln	Lys	Gly	Thr	Val
					65			70			75			80	
Glu	Thr	Arg	Phe	Gly	Ser	Lys	Gln	Glu	Leu	Ile	Asn	Met	Ile	Asn	Thr
					85			90			95				
Ala	His	Ala	Tyr	Gly	Ile	Lys	Val	Ile	Ala	Asp	Ile	Val	Ile	Asn	His
					100			105			110				
Arg	Ala	Gly	Gly	Asp	Leu	Glu	Trp	Asn	Pro	Phe	Val	Asn	Asp	Tyr	Thr
					115			120			125				
Trp	Thr	Asp	Phe	Ser	Lys	Val	Ala	Ser	Gly	Lys	Tyr	Thr	Ala	Asn	Tyr
					130			135			140				
Leu	Asn	Phe	His	Pro	Asn	Glu	Leu	His	Ala	Gly	Asp	Ser	Gly	Thr	Phe
					145			150			155			160	
Gly	Gly	Tyr	Pro	Asp	Ile	Cys	His	Asp	Lys	Ser	Trp	Asp	Gln	Tyr	Trp
					165			170			175				
Leu	Trp	Ala	Ser	Gln	Glu	Ser	Tyr	Ala	Ala	Tyr	Leu	Arg	Ser	Ile	Gly
					180			185			190				

Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val
 195 200 205
 Val Lys Asp Trp Leu Asp Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr
 210 215 220
 Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Asp
 225 230 235 240
 Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Glu Ala Phe
 245 250 255
 Asp Asn Lys Asn Ile Pro Ala Leu Val Ser Ala Leu Gln Asn Gly Gln
 260 265 270
 Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn
 275 280 285
 His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile
 290 295 300
 Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu
 305 310 315 320
 Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn
 325 330 335
 Leu Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu
 340 345 350
 Ile Phe Val Arg Asn Gly Tyr Gly Asp Lys Pro Gly Leu Ile Thr Tyr
 355 360 365
 Ile Asn Leu Gly Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys
 370 375 380
 Phe Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp
 385 390 395 400
 Val Asp Lys Trp Val Asp Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro
 405 410 415
 Ala His Asp Pro Ala Asn Gly Tyr Tyr Gly Tyr Ser Val Trp Ser Tyr
 420 425 430
 Cys Gly Val Gly
 435

<210> 63
<211> 1311
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetically generated oligonucleotide

<400> 63

atggccaagt acctggagct cgaagagggc ggggtcataa tgcaggcggtt ctactgggac	60
gtgccttcag gagaaatatg gtggcacaca atacggcaga agataccgga gtggtaacgat	120
gccggaatct ccgcaatatg gattcccccg gcgagcaagg gcatgggcgg cgcctattcg	180
atgggctacg acccctacga cttcttgac ctcggtgagt acgaccagaa ggaaacggta	240
gagacgcgct ttggctccaa gcaggagctc gtgaacatga taaacacggc ccatgcctac	300
ggcataaaagg ccatagcgg a catcgtcata aaccaccgcg caggcggaga cctcgaatgg	360
aaccgcgtcg ttggggacta cacctggacg gacttctcaa agtgtggcctc gggcaatata	420
actgccaact acctcgactt ccaccccaac gaggtcaagt gctgtgacga gggcacattt	480
ggagggttcc cagacatagc ccacgagaag agctgggacc agcaactggct ctggcgagc	540
gatgagagct acgccccta cctaaggagc atcggcggtt atgcctggcg ctttgactac	600
gtgaagggtc acggagcgtg ggtcgtaag gactggctca actgggtgggg cggctggcc	660
gttggcgagt actgggacac caacgttcat gcaactctca actgggccta ctcgagcggc	720
ccaaaggctc tcgacttccc gctctactac aagatggacg cggccttga caacaagaac	780
atccccgcac tcgtcgagac cctcaagaac gggggcacag tcgtcagccg cgaccgttt	840
aaggccgtaa cttcgttgc aaaccacgac accgatataa tctggaacaa gtatccagcc	900

tacgcgttca tcctcaccta cgaggggccag ccgacaataat	tctaccgcga ctacgaggag	960
tgctcaaca aggataagct caagaacctc atctggatac atgacaacct	cgccggagga	1020
agcaccgaca tagtctacta cgataacgat gaactcatct tcgtcaggaa cggctacggg		1080
gacaagccgg ggcttataac ctacatcaac ctaggctgga gcaaggccgg aaggtgggtt		1140
tatgtgccga agttcgccgg cgcgtgcatt cacgagtata ctggtaacct cggaggctgg		1200
gtagacaagt acgtctactc aagcggctgg gtctatctcg aagctccagc ttacgaccct		1260
gccaacgggc agtatggcta ctccgtgtgg agctactgctg ggggtgggtt a		1311

<210> 64

<211> 436

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetically generated polypeptide

<400> 64

Met Ala Lys Tyr Leu Glu Leu Glu Gly Gly Val Ile Met Gln Ala		
1 5 10 15		
Phe Tyr Trp Asp Val Pro Ser Gly Gly Ile Trp Trp Asp Thr Ile Arg		
20 25 30		
Gln Lys Ile Pro Glu Trp Tyr Asp Ala Gly Ile Ser Ala Ile Trp Ile		
35 40 45		
Pro Pro Ala Ser Lys Gly Met Gly Gly Ala Tyr Ser Met Gly Tyr Asp		
50 55 60		
Pro Tyr Asp Phe Phe Asp Leu Gly Glu Tyr Asp Gln Lys Gly Thr Val		
65 70 75 80		
Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Val Asn Met Ile Asn Thr		
85 90 95		
Ala His Ala Tyr Gly Ile Lys Ala Ile Ala Asp Ile Val Ile Asn His		
100 105 110		
Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Gly Asp Tyr Thr		
115 120 125		
Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr		
130 135 140		
Leu Asp Phe His Pro Asn Glu Val Lys Cys Cys Asp Glu Gly Thr Phe		
145 150 155 160		
Gly Gly Phe Pro Asp Ile Ala His Glu Lys Ser Trp Asp Gln His Trp		
165 170 175		
Leu Trp Ala Ser Asp Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly		
180 185 190		
Val Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val		
195 200 205		
Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr		
210 215 220		
Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Gly		
225 230 235 240		
Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Ala Ala Phe		
245 250 255		
Asp Asn Lys Asn Ile Pro Ala Leu Val Glu Ala Leu Lys Asn Gly Gly		
260 265 270		
Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn		
275 280 285		
His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile		
290 295 300		
Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu		
305 310 315 320		

Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn
 325 330 335
 Leu Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu
 340 345 350
 Ile Phe Val Arg Asn Gly Tyr Gly Asp Lys Pro Gly Leu Ile Thr Tyr
 355 360 365
 Ile Asn Leu Gly Trp Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys
 370 375 380
 Phe Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp
 385 390 395 400
 Val Asp Lys Tyr Val Tyr Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro
 405 410 415
 Ala Tyr Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr
 420 425 430
 Cys Gly Val Gly
 435

<210> 65

<211> 1311

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetically generated oligonucleotide

<400> 65

atggccaagt	actccgagct	ggaagaaggc	ggcgttataa	tgcaggcctt	ctactgggac	60
gtccccagggt	gaggaatctg	gtggggcacc	atcaggagca	agataccgga	gtggtaacgag	120
gcccccaatat	ccgcatttg	gattcctccc	gcgagcaagg	gtatgagcgg	cggctattcg	180
atgggctacg	accctacga	ttattttgc	ctcggtgagt	actaccagaa	ggAACCGGTG	240
gaaacgaggt	tccgctcaaa	gcaggagctc	ataaacatga	taaacaccgc	ccacgcctat	300
ggcatgaagg	taatagccga	tatagtcatc	aaccaccgcg	ccggcggtga	cctggagtgg	360
aacccttcg	tgaacgacta	tacctggacc	gacttctcaa	aggctcgctc	gggttaataac	420
acggccaact	acctcgactt	ccacccgaac	gagctccatg	cgggcgattc	cggaacattt	480
ggaggctatc	ccgacatatg	ccacgacaag	agctggacc	agttactggct	ctggccagc	540
caggagagct	acgcggcata	tctcaggagc	atcggcatcg	atgcctggcg	cttcgactac	600
gtcaagggt	atgctccctg	ggtcgtcaag	gactggctga	actgggtgggg	aggctggcg	660
gttggagagt	actgggacac	caacgtcgac	gctgttctca	actgggcata	ctcgagcggt	720
gccaagggtct	ttgacttcgc	cctctactac	aagatggacg	aggccttcga	taacaacaac	780
atccccgccc	tggtgacgc	cctcagatac	ggtcagacag	tggtcagccg	cgaccgttc	840
aaggctgtga	cgttttagc	caaccacgat	accgatataa	tttggaaacaa	gtaccggcc	900
tacgccttca	tcctcaccta	cgagggccag	ccgacgatat	tctaccgcga	ctacgaggag	960
tggctcaaca	aggacaggct	caagaacctc	atctggatac	acgaccacct	cgccggtgga	1020
agcacgagca	tagttacta	cgacagcgac	gagatgatct	tctgtgaggaa	cggctatgga	1080
agcaaggcctg	gccttataac	ttacatcaac	ctcggtcga	gcaagggttg	aagggtggtt	1140
tacgttccga	agttcgcagg	ctcgtgcata	cacgagatac	ccggcaatct	cgccggtcg	1200
gtggacaagt	gggtggactc	aagcggctgg	gtctacctcg	aggctcctgc	ccacgaccog	1260
gccaacggcc	agtacggcta	ctccgtctgg	agctattgcg	gtgttggctg	a	1311

<210> 66

<211> 436

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetically generated polypeptide

<400> 66
 Met Ala Lys Tyr Ser Glu Leu Glu Glu Gly Val Ile Met Gln Ala
 1 5 10 15
 Phe Tyr Trp Asp Val Pro Gly Gly Ile Trp Trp Gly Thr Ile Arg
 20 25 30
 Ser Lys Ile Pro Glu Trp Tyr Glu Ala Gly Ile Ser Ala Ile Trp Ile
 35 40 45
 Pro Pro Ala Ser Lys Gly Met Ser Gly Gly Tyr Ser Met Gly Tyr Asp
 50 55 60
 Pro Tyr Asp Tyr Phe Asp Leu Gly Glu Tyr Tyr Gln Lys Gly Thr Val
 65 70 75 80
 Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Ile Asn Met Ile Asn Thr
 85 90 95
 Ala His Ala Tyr Gly Met Lys Val Ile Ala Asp Ile Val Ile Asn His
 100 105 110
 Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Asn Asp Tyr Thr
 115 120 125
 Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr
 130 135 140
 Leu Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe
 145 150 155 160
 Gly Gly Tyr Pro Asp Ile Cys His Asp Lys Ser Trp Asp Gln Tyr Trp
 165 170 175
 Leu Trp Ala Ser Gln Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly
 180 185 190
 Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Ala Pro Trp Val
 195 200 205
 Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr
 210 215 220
 Trp Asp Thr Asn Val Asp Ala Val Leu Asn Trp Ala Tyr Ser Ser Gly
 225 230 235 240
 Ala Lys Val Phe Asp Phe Ala Leu Tyr Tyr Lys Met Asp Glu Ala Phe
 245 250 255
 Asp Asn Asn Ile Pro Ala Leu Val Asp Ala Leu Arg Tyr Gly Gln
 260 265 270
 Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn
 275 280 285
 His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile
 290 295 300
 Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu
 305 310 315 320
 Trp Leu Asn Lys Asp Arg Leu Lys Asn Leu Ile Trp Ile His Asp His
 325 330 335
 Leu Ala Gly Gly Ser Thr Ser Ile Val Tyr Tyr Asp Ser Asp Glu Met
 340 345 350
 Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr
 355 360 365
 Ile Asn Leu Gly Ser Ser Lys Val Gly Arg Trp Val Tyr Val Pro Lys
 370 375 380
 Phe Ala Gly Ser Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp
 385 390 395 400
 Val Asp Lys Trp Val Asp Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro
 405 410 415
 Ala His Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr
 420 425 430
 Cys Gly Val Gly
 435

<210> 67
 <211> 1311
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> synthetically generated oligonucleotide

<400> 67

atggccaagt	acctggagct	cgaagagggc	ggggcataa	tgcagggcgtt	ctactgggac	60
gtgccttcgg	gaggaatatg	gtgggacaca	atacggcaga	agataccgga	gtggcacat	120
gccggaatct	ccgcaatatg	gattcctccc	gcgagcaagg	gtatgagcgg	cggttattcg	180
atgggctacg	accctacga	ttatTTTgac	ctcggtgagt	actaccagaa	gggaacgggt	240
gaaacgaggt	tcggctaaa	gcaggagctc	ataaacatga	taaacacggc	ccatgcctac	300
ggcataaaagg	tcatagcgg	catcgtcata	aaccaccg	caggcggaga	cctcgagtgg	360
aaccctgtcg	ttggggacta	cacctggacg	gacttctcaa	aggtggcctc	gggcaaataat	420
actgccaact	acctcgactt	ccacccaaac	gagggtcaagt	gctgtgacga	gggcacattt	480
ggaggcttcc	cagacatagc	ccacgagaag	agctggacc	agcactggct	ctggcgagc	540
gatgagagct	acgccccta	cotaaggagc	atcggcggt	atgcctggcg	cttcgactac	600
gtcaaggggct	acggagcgt	ggtcgtcaag	gactggctgg	actgggtgggg	aggctgggccc	660
gtcggggaggt	actgggacac	aaacgttcat	gcaactgctca	actgggccta	ctcgagcgat	720
gcaaaagtct	tcgacttccc	gctctactac	aagatggacg	aggccttcga	taacaacaac	780
attccccccc	tggtggacgc	cctcagatac	ggtcagacag	tggtcagccg	cgaccgggtc	840
aaggctgtga	cgtttgtac	caaccacgat	accgatataa	tctggaacaa	gtatccagcc	900
tacgcgttca	tcctcaccta	cgagggccag	ccgacaatat	tctaccgcga	ctacgaggag	960
tggctcaaca	aggataagct	caagaacctc	atctggatac	atgacaacct	cggccggagga	1020
agcacgagca	tagttacta	cgacagcgcac	gagatgatct	tcgtgaggaa	cggctatgg	1080
agcaagcctg	gccttataac	ttacatcaac	ctcggctcg	gcaagggtgg	aagggtggtc	1140
tacgttccga	agttcgcggg	agcgtgcac	cacgagtaca	ccggcaacct	cggccggctgg	1200
gtggacaagt	gggtggactc	aagcgggtgg	gtgtacctcg	aggcccctgc	ccacgaccgg	1260
gccaacggct	attacggcta	ctccgtctcg	agctactgcg	tggtggctg	a	1311

<210> 68
 <211> 436
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> synthetically generated polypeptide

<400> 68

Met	Ala	Lys	Tyr	Leu	Glu	Leu	Glu	Gly	Gly	Val	Ile	Met	Gln	Ala	
1				5				10				15			
Phe	Tyr	Trp	Asp	Val	Pro	Ser	Gly	Gly	Ile	Trp	Trp	Asp	Thr	Ile	Arg
				20				25				30			
Gln	Lys	Ile	Pro	Glu	Trp	Tyr	Asp	Ala	Gly	Ile	Ser	Ala	Ile	Trp	Ile
				35				40				45			
Pro	Pro	Ala	Ser	Lys	Gly	Met	Ser	Gly	Gly	Tyr	Ser	Met	Gly	Tyr	Asp
				50				55				60			
Pro	Tyr	Asp	Tyr	Phe	Asp	Leu	Gly	Glu	Tyr	Tyr	Gln	Lys	Gly	Thr	Val
65						70				75			80		
Glu	Thr	Arg	Phe	Gly	Ser	Lys	Gln	Glu	Leu	Ile	Asn	Met	Ile	Asn	Thr
						85				90			95		
Ala	His	Ala	Tyr	Gly	Ile	Lys	Val	Ile	Ala	Asp	Ile	Val	Ile	Asn	His
						100				105			110		
Arg	Ala	Gly	Gly	Asp	Leu	Glu	Trp	Asn	Pro	Phe	Val	Gly	Asp	Tyr	Thr

115	120	125
Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr	Thr Ala Asn Tyr	
130	135	140
Leu Asp Phe His Pro Asn Glu Val Lys Cys Cys	Asp Glu Gly Thr Phe	
145	150	155
Gly Gly Phe Pro Asp Ile Ala His Glu Lys Ser Trp	Asp Gln His Trp	160
165	170	175
Leu Trp Ala Ser Asp Glu Ser Tyr Ala Ala Tyr	Leu Arg Ser Ile Gly	
180	185	190
Val Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly	Tyr Gly Ala Trp Val	
195	200	205
Val Lys Asp Trp Leu Asp Trp Trp Gly Gly	Trp Ala Val Gly Glu Tyr	
210	215	220
Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp	Ala Tyr Ser Ser Asp	
225	230	235
Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr	Lys Met Asp Glu Ala Phe	
245	250	255
Asp Asn Asn Asn Ile Pro Ala Leu Val Asp Ala	Leu Arg Tyr Gly Gln	
260	265	270
Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val	Thr Phe Val Ala Asn	
275	280	285
His Asp Thr Asp Ile Ile Trp Asn Lys Tyr	Pro Ala Tyr Ala Phe Ile	
290	295	300
Leu Thr Tyr Glu Gly Gln Pro Thr Ile Phe	Tyr Arg Asp Tyr Glu Glu	
305	310	315
320		
Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu	Ile Trp Ile His Asp Asn	
325	330	335
Leu Ala Gly Gly Ser Thr Ser Ile Val Tyr	Tyr Asp Ser Asp Glu Met	
340	345	350
Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys	Pro Gly Leu Ile Thr Tyr	
355	360	365
Ile Asn Leu Gly Ser Ser Lys Val Gly Arg	Trp Val Tyr Val Pro Lys	
370	375	380
Phe Ala Gly Ala Cys Ile His Glu Tyr Thr	Gly Asn Leu Gly Gly Trp	
385	390	395
400		
Val Asp Lys Trp Val Asp Ser Ser Gly	Trp Val Tyr Leu Glu Ala Pro	
405	410	415
Ala His Asp Pro Ala Asn Gly Tyr Tyr	Gly Tyr Ser Val Trp Ser Tyr	
420	425	430
Cys Val Val Gly		
435		

<210> 69

<211> 1542

<212> DNA

<213> Environmental

<400> 69

atgttggaaa ggattacggt agtctgttta ttgttttattt	tgcttttcc taatatata	60
gaggaaata aggcagaagc agcaacagtg aacaatggaa	cattaatgca gtatttttag	120
tggtagctc cgaatgatgg gaatcattgg aatcggttgc	gttccgatgc tgaaagttt	180
gctcataaag gaatcacatc tggatggata ccacctgcat	ataaaaggac ttgcaaaaat	240
gatgttagggt atggggccta tgatttat gattttaggg	agttcaatca aaaaggAACG	300
gtgcggacga aatatggac aaaagcacag ttgaaatctg	caattgacgc ttacataag	360
caaaacatcg acgtatacgg tggatgttta atgaatcata	aagggtgggc tgattatact	420
gaaaccgtaa cagctgttga ggttagaccgt aacaatcgaa	atattgaagt atcaggtgat	480
tatcaaatta gtgcattggac ggggtttaat ttccagggc	gcggagatgc ttattctaat	540

ttc	aatggatgtt	ttttgcgttt	acggatgggg	atgaaggaag	gaaattaaat	600
cga	attttata	aatttagggg	tgtagataaa	gcgtgggatt	ggaaagtgtc	660
ggaaattatg	attatgtat	gtatgcagat	cttgatTTT	atcatccgt	tgttgcgaat	720
gagatgaaaa	atggggAAC	atggatcg	aatgaattaa	atTTAGATGG	ctttcgTTT	780
gacgctgtta	aacatattga	tcatgaatat	ttacgcgatt	gggttaaatca	tgccagacag	840
caaacgggga	aagaaatgtt	tacagtagct	gaatattggc	aaaatgtatgt	tcaggcTTA	900
aacaattatt	tagcggaaat	caattataat	caatctgtgt	ttgatgcacc	gcttcattac	960
aattttcatt	atgcttcaac	aggaaatggg	aattatgata	tgagaaaat	ttaaatgg	1020
acagtaatga	aaaatcaccc	tgcactcgca	gttactctcg	ttgagaatca	tgattctcag	1080
cctggcagtt	cattggaaatc	tgttagtaagt	ccgtggTTT	agccgctggc	atatgcatt	1140
atTTTAactc	gtgcagaggg	ctatccTTA	gttttctatg	gtgattacta	ttggacaagc	1200
ggaaatagta	gttatgaaat	tccagcgtt	aaagataaaa	ttgatccaat	tttgacggc	1260
cgaaaaaaact	ttgcataatgg	tacgcagcgt	gattatTTG	accatccaga	tgtgattggc	1320
tggacaagag	aaggcgatgg	tgtacatgct	aattctggTT	tagcgcacatt	actctcggac	1380
ggaccaggag	gatcaaagt	gatggatgtt	ggaaagaata	acgctgggg	agtatggtac	1440
gatattacgg	gtaatcaaAC	aaatactgt	acaattaata	aggacggatg	ggggcagttc	1500
tatgtaaatgt	gcccgtcagt	ttccatatat	gttcagcgg	aa		1542

<210> 70

<211> 513

<212> PRT

<213> Environmental

<400> 70

```

Met Leu Lys Arg Ile Thr Val Val Cys Leu Leu Phe Ile Leu Leu Phe
 1           5           10          15
Pro Asn Ile Tyr Glu Gly Asn Lys Ala Glu Ala Ala Thr Val Asn Asn
 20          25          30
Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Ala Pro Asn Asp Gly Asn
 35          40          45
His Trp Asn Arg Leu Arg Ser Asp Ala Glu Ser Leu Ala His Lys Gly
 50          55          60
Ile Thr Ser Val Trp Ile Pro Pro Ala Tyr Lys Gly Thr Ser Gln Asn
 65          70          75          80
Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr Asp Leu Gly Glu Phe Asn
 85          90          95
Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys Ala Gln Leu Lys
100         105         110
Ser Ala Ile Asp Ala Leu His Lys Gln Asn Ile Asp Val Tyr Gly Asp
115         120         125
Val Val Met Asn His Lys Gly Gly Ala Asp Tyr Thr Glu Thr Val Thr
130         135         140
Ala Val Glu Val Asp Arg Asn Asn Arg Asn Ile Glu Val Ser Gly Asp
145         150         155         160
Tyr Gln Ile Ser Ala Trp Thr Gly Phe Asn Phe Pro Gly Arg Gly Asp
165         170         175
Ala Tyr Ser Asn Phe Lys Trp Lys Trp Tyr His Phe Asp Gly Thr Asp
180         185         190
Trp Asp Glu Gly Arg Lys Leu Asn Arg Ile Tyr Lys Phe Arg Gly Val
195         200         205
Asp Lys Ala Trp Asp Trp Glu Val Ser Ser Glu Asn Gly Asn Tyr Asp
210         215         220
Tyr Leu Met Tyr Ala Asp Leu Asp Phe Asp His Pro Asp Val Ala Asn
225         230         235         240
Glu Met Lys Asn Trp Gly Thr Trp Tyr Ala Asn Glu Leu Asn Leu Asp
245         250         255
Gly Phe Arg Leu Asp Ala Val Lys His Ile Asp His Glu Tyr Leu Arg

```

260	265	270
Asp Trp Val Asn His Ala Arg Gln	Gln Thr Gly Lys	Glu Met Phe Thr
275	280	285
Val Ala Glu Tyr Trp Gln Asn	Asp Val Gln Ala	Leu Asn Asn Tyr Leu
290	295	300
Ala Lys Val Asn Tyr Asn Gln	Ser Val Phe Asp	Ala Pro Leu His Tyr
305	310	315
Asn Phe His Tyr Ala Ser Thr	Gly Asn Gly Asn	Tyr Asp Met Arg Asn
325	330	335
Ile Leu Asn Gly Thr Val Met	Lys Asn His	Pro Ala Leu Ala Val Thr
340	345	350
Leu Val Glu Asn His Asp Ser	Gln Pro Gly Gln	Ser Leu Glu Ser Val
355	360	365
Val Ser Pro Trp Phe Lys	Pro Leu Ala Tyr	Ala Phe Ile Leu Thr Arg
370	375	380
Ala Glu Gly Tyr Pro Ser Val	Phe Tyr Gly Asp	Tyr Tyr Gly Thr Ser
385	390	395
Gly Asn Ser Ser Tyr Glu Ile	Pro Ala Leu Lys	Asp Lys Ile Asp Pro
405	410	415
Ile Leu Thr Ala Arg Lys Asn	Phe Ala Tyr	Gly Thr Gln Arg Asp Tyr
420	425	430
Leu Asp His Pro Asp Val Ile	Gly Trp Thr Arg	Glu Gly Asp Gly Val
435	440	445
His Ala Asn Ser Gly Leu	Ala Thr Leu	Leu Ser Asp Gly Pro Gly Gly
450	455	460
Ser Lys Trp Met Asp Val	Gly Lys Asn Asn	Ala Gly Glu Val Trp Tyr
465	470	475
Asp Ile Thr Gly Asn Gln	Thr Asn Thr Val	Thr Ile Asn Lys Asp Gly
485	490	495
Trp Gly Gln Phe Tyr Val Ser	Gly Gly Ser Val	Ser Ile Tyr Val Gln
500	505	510
Arg		

<210> 71
<211> 1311
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetically generated oligonucleotide

<400> 71			
atggccaagt acctggagct cgaagagggc	ggggtcataa tgcaggcgtt	ctactggac	60
gtgccttcag gagaaatatg gtggcacaca	atacggcaga agataccgga	gtggtagcat	120
gccggaatct ccgcaatatg gattcccccg	gcgagcaagg gcatgggcgg	cgcctattcg	180
atgggctacg acccctacga cttcttgac	ctcggtgagt acgaccagaa	gggaacggta	240
gagacgcgct ttggctccaa gcaggagctc	gtgaacatga taaacacggc	ccatgcctac	300
ggcataaaagg tcatagcga catcgtcata	aaccacccgc caggcggaga	cctcgagtgg	360
aaccgcgtcg ttggggacta cacctggacg	gacttctcaa agttagcctc	gggcaaataat	420
actgccaact acctcgactt ccacccgaac	gagctccatg cggcgattc	cggaacattt	480
ggaggctatc ccgacatatg ccacgacaag	agctgggacc agtactggct	ctggggcagc	540
caggagagct acgcggcata tctcaggagc	atcggcatcg atgcctggcg	cttcgactac	600
gtcaagggtct atgctccctg ggtcgtaag	gactggctga actgggtgggg	aggctggcg	660
gttggagagt actgggacac caacgtcgc	gctgttctca actgggcata	ctcgagcggt	720
gccaagggtct ttgacttcgc cctctactac	aagatggatg aggccttga	caacaaaaac	780
attccagcgc tcgtctctgc cttcagaac	ggccagactg ttgtctcccg	cgaccgttc	840

aaggccgtaa	cctttgttagc	aaaccacgac	accgatataa	tctggAACAA	gtatccAGCC	900
tacgcgttca	tcctcaccta	cgagggccag	ccgacaatat	tctaccgcga	ctacgaggag	960
tggctcaaca	aggataagct	caagaacctc	atctgatac	atgacaacct	cggccggagga	1020
agcaactgaca	tcgtttacta	cgacaacgac	gagctgataat	tcgtgagaaa	cggtacggaa	1080
agcaagccgg	gactgataac	atacatcaac	ctcgccCAA	gcaaagccgg	aaggTgggtt	1140
tatgtgccga	agttcgccgg	cgcgtgcattc	cacgagtata	ctggtaacct	cgaggctgg	1200
gtagacaagt	acgtctactc	aagcggctgg	gtctatctcg	aagctccagc	ttacgaccct	1260
gccaacgggc	agtatggcta	ctccgtgtgg	agctactgcg	gggtgggctg	a	1311

<210> 72

<211> 436

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetically generated polypeptide

<400> 72

Met	Ala	Lys	Tyr	Leu	Glu	Leu	Glu	Gly	Gly	Val	Ile	Met	Gln	Ala	
1				5			10				15				
Phe	Tyr	Trp	Asp	Val	Pro	Ser	Gly	Gly	Ile	Trp	Trp	Asp	Thr	Ile	Arg
					20				25				30		
Gln	Lys	Ile	Pro	Glu	Trp	Tyr	Asp	Ala	Gly	Ile	Ser	Ala	Ile	Trp	Ile
						35		40			45				
Pro	Pro	Ala	Ser	Lys	Gly	Met	Gly	Gly	Ala	Tyr	Ser	Met	Gly	Tyr	Asp
						50		55			60				
Pro	Tyr	Asp	Phe	Phe	Asp	Leu	Gly	Glu	Tyr	Asp	Gln	Lys	Gly	Thr	Val
						65		70			75			80	
Glu	Thr	Arg	Phe	Gly	Ser	Lys	Gln	Glu	Leu	Val	Asn	Met	Ile	Asn	Thr
						85			90			95			
Ala	His	Ala	Tyr	Gly	Ile	Lys	Val	Ile	Ala	Asp	Ile	Val	Ile	Asn	His
						100			105			110			
Arg	Ala	Gly	Gly	Asp	Leu	Glu	Trp	Asn	Pro	Phe	Val	Gly	Asp	Tyr	Thr
							115		120			125			
Trp	Thr	Asp	Phe	Ser	Lys	Val	Ala	Ser	Gly	Lys	Tyr	Thr	Ala	Asn	Tyr
						130		135			140				
Leu	Asp	Phe	His	Pro	Asn	Glu	Leu	His	Ala	Gly	Asp	Ser	Gly	Thr	Phe
						145		150			155			160	
Gly	Gly	Tyr	Pro	Asp	Ile	Cys	His	Asp	Lys	Ser	Trp	Asp	Gln	Tyr	Trp
						165			170			175			
Leu	Trp	Ala	Ser	Gln	Glu	Ser	Tyr	Ala	Ala	Tyr	Leu	Arg	Ser	Ile	Gly
						180			185			190			
Ile	Asp	Ala	Trp	Arg	Phe	Asp	Tyr	Val	Lys	Gly	Tyr	Ala	Pro	Trp	Val
						195		200			205				
Val	Lys	Asp	Trp	Leu	Asn	Trp	Trp	Gly	Gly	Trp	Ala	Val	Gly	Glu	Tyr
						210		215			220				
Trp	Asp	Thr	Asn	Val	Asp	Ala	Val	Leu	Asn	Trp	Ala	Tyr	Ser	Ser	Gly
						225		230			235			240	
Ala	Lys	Val	Phe	Asp	Phe	Ala	Leu	Tyr	Tyr	Lys	Met	Asp	Glu	Ala	Phe
						245			250			255			
Asp	Asn	Lys	Asn	Ile	Pro	Ala	Leu	Val	Ser	Ala	Leu	Gln	Asn	Gly	Gln
						260			265			270			
Thr	Val	Val	Ser	Arg	Asp	Pro	Phe	Lys	Ala	Val	Thr	Phe	Val	Ala	Asn
						275		280			285				
His	Asp	Thr	Asp	Ile	Ile	Trp	Asn	Lys	Tyr	Pro	Ala	Tyr	Ala	Phe	Ile
						290		295			300				
Leu	Thr	Tyr	Glu	Gly	Gln	Pro	Thr	Ile	Phe	Tyr	Arg	Asp	Tyr	Glu	Glu

305	310	315	320
Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn			
325	330	335	
Leu Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu			
340	345	350	
Ile Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr			
355	360	365	
Ile Asn Leu Ala Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys			
370	375	380	
Phe Ala Gly Ala Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp			
385	390	395	400
Val Asp Lys Tyr Val Tyr Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro			
405	410	415	
Ala Tyr Asp Pro Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr			
420	425	430	
Cys Gly Val Gly			
435			

<210> 73

<211> 1299

<212> DNA

<213> Environmental

<400> 73

atggctctgg aagagggcgg gcttataatg caggccttct actgggacgt cccaggtgga	60
ggaatctgg gggacaccat agccccagaag atacccgact gggcgagcgc cgggatttcg	120
gcaatatgga ttcccccgc gagtaaggc atgagcggcg gctattcgat gggctacgac	180
ccctacgatt tcttcgacct cggtagtac taccagaagg gaagcgttga gaccgccttc	240
ggatcaaaag aggagcttgt gaacatgata aacaccgccc atgctcacaa catgaaggc	300
atagcggaca tagtcatcaa ccaccgcgccc ggcggcgacc tggagtggaa tccttcacc	360
aacagctaca cctggaccga tttctcgaag gtcgcgtcg gcaagtacac ggccaactac	420
ctcgacttcc acccgAACGA gcttcacgcg ggcgattccg gaacatttgg aggctatccc	480
gacatatgcc acgacaagag ctgggaccag cactggctct gggccagcaa cgaaagctac	540
gccgcctacc tccggagcat cggcatcgac gcctggcgct tcgactacgt caagggtctac	600
gctccctggg tcgttaagaa ctggctgaac cggtgccggc gctggcggt tggagagtac	660
tggacacca acgtcgatgc actcctgagc tgggcctacg acagcggtgc taaagtcttc	720
gacttccgc tctactacaa gatggacgag gccttcgata acaacaacat cccgcgcctc	780
gtggacgccc tcaagaacgg aggcacggc gtcagccgcg acccggtcaa agccgtgacc	840
ttcgttgcca accacgatac caacataatc tggacaagt atccggccta cgccttcata	900
ctcacctatg agggacagcc ggaatattt taccgcgact acgaggagt gctcaacaag	960
gacaggctca ggaacctcat ctggatacac gaccacctcg cgggaggaag cacagacatc	1020
atctactacg acagcgacga gtttatcttc gtgagaaaacg gctacggggca aagccggga	1080
ctgataacct acatcaacct cggctcaagg aaggccggaa ggtgggtcta cggtccgaag	1140
ttcgcaggct cgtgcataca cgagtacacc ggcaacctcg gcccgtggat tgacaagtgg	1200
gttgactcaa gcggtcgggt ctaccttgag gccccggccc acgaccggc caacggccag	1260
tacggctact ccgtatggag ctactgcggc gttgggtga	1299

<210> 74

<211> 432

<212> PRT

<213> Environmental

<400> 74

Met Ala Leu Glu Glu Gly Leu Ile Met Gln Ala Phe Tyr Trp Asp

1 5 10 15

Val Pro Gly Gly Ile Trp Trp Asp Thr Ile Ala Gln Lys Ile Pro

20 25 30

Asp Trp Ala Ser Ala Gly Ile Ser Ala Ile Trp Ile Pro Pro Ala Ser
 35 40 45
 Lys Gly Met Ser Gly Gly Tyr Ser Met Gly Tyr Asp Pro Tyr Asp Phe
 50 55 60
 Phe Asp Leu Gly Glu Tyr Tyr Gln Lys Gly Ser Val Glu Thr Arg Phe
 65 70 75 80
 Gly Ser Lys Glu Glu Leu Val Asn Met Ile Asn Thr Ala His Ala His
 85 90 95
 Asn Met Lys Val Ile Ala Asp Ile Val Ile Asn His Arg Ala Gly Gly
 100 105 110
 Asp Leu Glu Trp Asn Pro Phe Thr Asn Ser Tyr Thr Trp Thr Asp Phe
 115 120 125
 Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr Leu Asp Phe His
 130 135 140
 Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe Gly Gly Tyr Pro
 145 150 155 160
 Asp Ile Cys His Asp Lys Ser Trp Asp Gln His Trp Leu Trp Ala Ser
 165 170 175
 Asn Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly Ile Asp Ala Trp
 180 185 190
 Arg Phe Asp Tyr Val Lys Gly Tyr Ala Pro Trp Val Val Lys Asn Trp
 195 200 205
 Leu Asn Arg Trp Gly Gly Trp Ala Val Gly Glu Tyr Trp Asp Thr Asn
 210 215 220
 Val Asp Ala Leu Leu Ser Trp Ala Tyr Asp Ser Gly Ala Lys Val Phe
 225 230 235 240
 Asp Phe Pro Leu Tyr Tyr Lys Met Asp Glu Ala Phe Asp Asn Asn Asn
 245 250 255
 Ile Pro Ala Leu Val Asp Ala Leu Lys Asn Gly Gly Thr Val Val Ser
 260 265 270
 Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn His Asp Thr Asn
 275 280 285
 Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile Leu Thr Tyr Glu
 290 295 300
 Gly Gln Pro Ala Ile Phe Tyr Arg Asp Tyr Glu Glu Trp Leu Asn Lys
 305 310 315 320
 Asp Arg Leu Arg Asn Leu Ile Trp Ile His Asp His Leu Ala Gly Gly
 325 330 335
 Ser Thr Asp Ile Ile Tyr Tyr Asp Ser Asp Glu Leu Ile Phe Val Arg
 340 345 350
 Asn Gly Tyr Gly Asp Lys Pro Gly Leu Ile Thr Tyr Ile Asn Leu Gly
 355 360 365
 Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys Phe Ala Gly Ser
 370 375 380
 Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp Ile Asp Lys Trp
 385 390 395 400
 Val Asp Ser Ser Gly Arg Val Tyr Leu Glu Ala Pro Ala His Asp Pro
 405 410 415
 Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr Cys Gly Val Gly
 420 425 430

<210> 75
 <211> 1299
 <212> DNA
 <213> Environmental

<400> 75

atggctctgg aagaggcg	gcttataatg caggcattct	actggacgt ccccatgg	60
ggaatctgg gggacacg	ataccgact gggcaagcgc	cgggatttcg	120
gcgatatgg ttcccccg	gagcaagggt atgagcggc	gctattcgat gggctacg	180
ccctacgatt atttgac	cggtgagtac taccagaagg	gaacggtgaa aacaagat	240
ggctcaaagc aggacat	aaacatgata aacaccgccc	acgcctatgg catgaagg	300
atagccata tagtcatca	ccaccgccc ggcggcgat	tggagtggaa ccccttcgt	360
aacgactata cctggacc	gtaaatacac ggcacaact	420	
ctcgacttcc acccgaa	gctccacgc ggcgattcc	480	
gacatatgcc acgacaag	ctgggaccag tactggct	540	
gccccatcc tcaggagc	ggcgtcgact caagggct	600	
gtccctgg tcgtcagg	ctggctgaac tggtgggag	660	
tgggacacca acgtcgac	gctggcatact cgagcgg	720	
gacttcgccc tctactac	aat gatggacgag gccttcg	780	
gtggacgccc tca	ataacaat tcccgcct	840	
gtagatacgg ccagacag	gtcagccgc acccgttc	900	
ttttagcca accacata	aa gacataatc tggaaaca	960	
ctcacctacg agggccag	atccagccat cgcgttc	1020	
gacaagctca agaacat	cttccatc tccgcgact	1080	
gttactacg acaacgac	acgaggatg gctcaaca	1140	
ctgataacat acatcaac	cttccatc tccgcgact	1200	
ttcgcaggct cgtgcata	ggcaacctcg gggctgg	1260	
gtggactcaa gcggctgg	ttacctcgag gtcctgc	1299	
tacggctact ccgttgg	accgacccgca aacggcc		
gat gttggta			

<210> 76

<211> 432

<212> PRT

<213> Environmental

<400> 76

Met Ala Leu Glu Glu Gly	Ley Ile Met Gln Ala Phe Tyr Trp Asp		
1	5	10	15
Val Pro Met Gly Gly Ile Trp Trp Asp Thr Ile Ala Gln Lys Ile Pro			
20	25	30	
Asp Trp Ala Ser Ala Gly Ile Ser Ala Ile Trp Ile Pro Pro Ala Ser			
35	40	45	
Lys Gly Met Ser Gly Gly Tyr Ser Met Gly Tyr Asp Pro Tyr Asp Tyr			
50	55	60	
Phe Asp Leu Gly Glu Tyr Tyr Gln Lys Gly Thr Val Glu Thr Arg Phe			
65	70	75	80
Gly Ser Lys Gln Glu Ley Ile Asn Met Ile Asn Thr Ala His Ala Tyr			
85	90	95	
Gly Met Lys Val Ile Ala Asp Ile Val Ile Asn His Arg Ala Gly Gly			
100	105	110	
Asp Leu Glu Trp Asn Pro Phe Val Asn Asp Tyr Thr Trp Thr Asp Phe			
115	120	125	
Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr Ley Asp Phe His			
130	135	140	
Pro Asn Glu Ley His Ala Gly Asp Ser Gly Thr Phe Gly Gly Tyr Pro			
145	150	155	160
Asp Ile Cys His Asp Lys Ser Trp Asp Gln Tyr Trp Ley Trp Ala Ser			
165	170	175	
Gln Glu Ser Tyr Ala Ala Tyr Ley Arg Ser Ile Gly Ile Asp Ala Trp			
180	185	190	
Arg Phe Asp Tyr Val Lys Gly Tyr Ala Pro Trp Val Val Arg Asp Trp			
195	200	205	
Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr Trp Asp Thr Asn			
210	215	220	

Val Asp Ala Val Leu Asn Trp Ala Tyr Ser Ser Gly Ala Lys Val Phe
 225 230 235 240
 Asp Phe Ala Leu Tyr Tyr Lys Met Asp Glu Ala Phe Asp Asn Asn Asn
 245 250 255
 Ile Pro Ala Leu Val Asp Ala Leu Arg Tyr Gly Gln Thr Val Val Ser
 260 265 270
 Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn His Asp Thr Asp
 275 280 285
 Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile Leu Thr Tyr Glu
 290 295 300
 Gly Gln Pro Thr Ile Phe Tyr Arg Asp Tyr Glu Glu Trp Leu Asn Lys
 305 310 315 320
 Asp Lys Leu Lys Asn Leu Ile Trp Ile His Asp Asn Leu Ala Gly Gly
 325 330 335
 Ser Thr Asp Ile Val Tyr Tyr Asp Asn Asp Glu Leu Ile Phe Val Arg
 340 345 350
 Asn Gly Tyr Gly Ser Lys Pro Gly Leu Ile Thr Tyr Ile Asn Leu Gly
 355 360 365
 Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys Phe Ala Gly Ser
 370 375 380
 Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp Val Asp Lys Trp
 385 390 395 400
 Val Asp Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro Ala His Asp Pro
 405 410 415
 Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr Cys Gly Val Gly
 420 425 430

<210> 77

<211> 1299

<212> DNA

<213> Environmental

<400> 77

atggctctgg aagagggcgg gctcataatg caggcttct actggacgt ccccatggga 60
 ggaatcttgtt gggacacgtt agcccagaag atacccgact gggcaagcgc cgggatttcg 120
 gcgatatgga tccctccgcg gagcaagggt atgagcggcg gctattcgat gggctacgac 180
 ccctacgatt attttgacct cggtgagtac taccagaagg gaacggtgaa aacgaggttc 240
 ggctcaaagc aggagctcat aaacatgata aacaccgccc acgcctatgg catgaaggta 300
 atagccgata tagtcatcaa ccaccgcgc ggcggtgacc tggagtggaa ccccttcgtg 360
 aacgactata cctggaccga ctctcaaag gtcgcgtcg gttaatacac gccaactac 420
 ctgcacttcc acccgaaacga gtcctatgcg ggcgattccg gaacatttg aggctatccc 480
 gacatatgcc acgacaagag ctgggaccag tactggctt gggccagcca ggagagctac 540
 gccgcataatc tcaggagcat cgcatcgat gcctggcgct tcgactacgt caaggctat 600
 gctccctggg tcgtcaagga ctggctgaac tggggggag gctggcggt tggagagtac 660
 tggacaccca acgtcgacgc tttctcaac tggcataact cgagcggtgc caaggcttt 720
 gacttcgccc tctactacaa gatggacgag gccttcgata acaacaacat tcccgccctg 780
 gtggacgccc tcagatacgg tcagacagt gtcagccgcg acccggtcaa ggctgtgacg 840
 ttttagcca accacgatac cgacataatc tggaaacaagt atccagccta cgcgttcatc 900
 ctcacctacg agggccagcc gacaatattc taccgcgact acgaggagtg gctcaacaag 960
 gataagctca agaacctcat ctggatacat gacaacctcg cccggagggag cactgacatc 1020
 gtttactacg acaacgacga gctgatattc gtgagaaaacg gctacggaa caagccggga 1080
 ctgataacat acatcaacct ccctcaagc aaagccggaa ggtgggttta cgttccgaag 1140
 ttccgaggct cgtgcataca cgagtacacc ggcaatctcg gccggctgggt ggacaagtgg 1200
 gtggactcaa gcccgtgggtt ctacctcgag gtcctgccc acgaccggc caacggccag 1260
 tacggctact cctgtggag ctactgcgggt gttgggtga 1299

<210> 78

<211> 432
<212> PRT
<213> Environmental

<400> 78

Met	Ala	Leu	Glu	Glu	Gly	Gly	Leu	Ile	Met	Gln	Ala	Phe	Tyr	Trp	Asp
1				5					10						15
Val	Pro	Met	Gly	Gly	Ile	Trp	Trp	Asp	Thr	Ile	Ala	Gln	Lys	Ile	Pro
		20						25						30	
Asp	Trp	Ala	Ser	Ala	Gly	Ile	Ser	Ala	Ile	Trp	Ile	Pro	Pro	Ala	Ser
		35					40					45			
Lys	Gly	Met	Ser	Gly	Gly	Tyr	Ser	Met	Gly	Tyr	Asp	Pro	Tyr	Asp	Tyr
		50				55				60					
Phe	Asp	Leu	Gly	Glu	Tyr	Tyr	Gln	Lys	Gly	Thr	Val	Glu	Thr	Arg	Phe
		65				70				75			80		
Gly	Ser	Lys	Gln	Glu	Leu	Ile	Asn	Met	Ile	Asn	Thr	Ala	His	Ala	Tyr
					85				90				95		
Gly	Met	Lys	Val	Ile	Ala	Asp	Ile	Val	Ile	Asn	His	Arg	Ala	Gly	Gly
					100			105				110			
Asp	Leu	Glu	Trp	Asn	Pro	Phe	Val	Asn	Asp	Tyr	Thr	Trp	Thr	Asp	Phe
					115			120				125			
Ser	Lys	Val	Ala	Ser	Gly	Lys	Tyr	Thr	Ala	Asn	Tyr	Leu	Asp	Phe	His
					130			135				140			
Pro	Asn	Glu	Leu	His	Ala	Gly	Asp	Ser	Gly	Thr	Phe	Gly	Gly	Tyr	Pro
		145				150				155			160		
Asp	Ile	Cys	His	Asp	Lys	Ser	Trp	Asp	Gln	Tyr	Trp	Leu	Trp	Ala	Ser
					165				170			175			
Gln	Glu	Ser	Tyr	Ala	Ala	Tyr	Leu	Arg	Ser	Ile	Gly	Ile	Asp	Ala	Trp
					180			185				190			
Arg	Phe	Asp	Tyr	Val	Lys	Gly	Tyr	Ala	Pro	Trp	Val	Val	Lys	Asp	Trp
					195			200			205				
Leu	Asn	Trp	Trp	Gly	Gly	Trp	Ala	Val	Gly	Glu	Tyr	Trp	Asp	Thr	Asn
					210			215			220				
Val	Asp	Ala	Val	Leu	Asn	Trp	Ala	Tyr	Ser	Ser	Gly	Ala	Lys	Val	Phe
					225			230			235			240	
Asp	Phe	Ala	Leu	Tyr	Tyr	Lys	Met	Asp	Glu	Ala	Phe	Asp	Asn	Asn	Asn
						245			250			255			
Ile	Pro	Ala	Leu	Val	Asp	Ala	Leu	Arg	Tyr	Gly	Gln	Thr	Val	Val	Ser
					260			265			270				
Arg	Asp	Pro	Phe	Lys	Ala	Val	Thr	Phe	Val	Ala	Asn	His	Asp	Thr	Asp
					275			280			285				
Ile	Ile	Trp	Asn	Lys	Tyr	Pro	Ala	Tyr	Ala	Phe	Ile	Leu	Thr	Tyr	Glu
					290			295			300				
Gly	Gln	Pro	Thr	Ile	Phe	Tyr	Arg	Asp	Tyr	Glu	Glu	Trp	Leu	Asn	Lys
					305			310			315			320	
Asp	Lys	Leu	Lys	Asn	Leu	Ile	Trp	Ile	His	Asp	Asn	Leu	Ala	Gly	Gly
						325			330			335			
Ser	Thr	Asp	Ile	Val	Tyr	Tyr	Asp	Asn	Asp	Glu	Leu	Ile	Phe	Val	Arg
					340			345			350				
Asn	Gly	Tyr	Gly	Ser	Lys	Pro	Gly	Leu	Ile	Thr	Tyr	Ile	Asn	Leu	Ala
					355			360			365				
Ser	Ser	Lys	Ala	Gly	Arg	Trp	Val	Tyr	Val	Pro	Lys	Phe	Ala	Gly	Ser
					370			375			380				
Cys	Ile	His	Glu	Tyr	Thr	Gly	Asn	Leu	Gly	Gly	Trp	Val	Asp	Lys	Trp
					385			390			395			400	
Val	Asp	Ser	Ser	Gly	Trp	Val	Tyr	Leu	Glu	Ala	Pro	Ala	His	Asp	Pro
					405			410			415				

Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr Cys Gly Val Gly
 420 425 430

<210> 79

<211> 1386

<212> DNA

<213> Bacterial

<400> 79

atgaaggcctg	cgaaaactcct	cgtctttgtg	ctcgtagtct	ctatcctcgc	ggggctctac	60
gcccagcccg	cggggccggc	caagtacctg	gagctcgaag	agggcggcgt	cataatgcag	120
gcgttctact	gggacgtgcc	ttcaggagga	atatggtggg	acacaatacg	gcagaagata	180
ccggagtggt	acgatgccgg	aatctccgca	atatggattc	ccccggcgg	caagggcatg	240
ggccggcgct	attcgatggg	ctacgacccc	tacgacttct	ttgacacctgg	tgagtagcgc	300
cagaagggaa	cggtagagac	gcgccttggc	tccaagcagg	agctcgtgaa	catgataaac	360
accgcccacg	cctacggcat	caaggtcatc	gcagacatag	taatcaacca	ccgcgcccgg	420
ggagaccttg	agtggAACCC	cttcgtcaat	gactacacct	ggacggactt	ctcgaagggtc	480
gcttcggca	agtacacggc	caactacctc	gacttccacc	ccaacgaggt	caagtgtgc	540
gacgagggca	cctttggagg	gttcccggac	atagcccacg	agaagagctg	ggaccagtac	600
tggctctggg	cgagcaacga	gagctacgcc	gcctacctca	ggagcatcg	cgttgacgca	660
tggcgttgc	actacgtcaa	gggctacgga	gcgtgggtcg	tcaaggactg	gctggactgg	720
tggggaggct	ggggcgtcg	ggagtagtgg	gacacaaacg	ttgatgcact	gctcaactgg	780
gcctactcga	gcatgcgaaa	agtcttcgac	ttcccgtct	actacaagat	ggacgcggcc	840
tttgacaaca	agaacattcc	cgcactcgtc	gaggccctca	agaacggggg	cacagtgc	900
agccgcgacc	cgtttaaggc	cgttaaccttc	gttgc当地acc	acgacacgg	cataatttg	960
aacaagtacc	cggcctacgc	cttcataccctc	acctacgagg	gccagccgac	gatattctac	1020
cgcgactacg	aggagtggt	caacaaggac	aggctcaaga	acctcatctg	gatacacgac	1080
cacccgcgcg	gtggaagcac	cgcacatagtc	tactacgata	acgatgaact	catttcg	1140
aggaacggct	acggggacaa	gccggggctt	ataacctaca	tcaacctagg	ctcgagcaag	1200
gccggggaggt	gggtctacgt	tccgaagttc	gcgggagcgt	gatccacg	gtacaccgg	1260
aacctcgccg	gctgggtgg	caagtgggtg	gactcaagcg	ggtgggtgt	cctcgaggcc	1320
cctgcccacg	acccggccaa	cggctattac	ggctactcgt	tctggagcta	ctgccccgt	1380
ggctga						1386

<210> 80

<211> 461

<212> PRT

<213> Bacterial

<400> 80

Met	Lys	Pro	Ala	Lys	Leu	Leu	Val	Phe	Val	Leu	Val	Val	Ser	Ile	Leu
1				5				10					15		
Ala	Gly	Leu	Tyr	Ala	Gln	Pro	Ala	Gly	Ala	Ala	Lys	Tyr	Leu	Glu	Leu
				20				25					30		
Glu	Glu	Gly	Val	Ile	Met	Gln	Ala	Phe	Tyr	Trp	Asp	Val	Pro	Ser	
				35				40					45		
Gly	Gly	Ile	Trp	Trp	Asp	Thr	Ile	Arg	Gln	Lys	Ile	Pro	Glu	Trp	Tyr
				50				55					60		
Asp	Ala	Gly	Ile	Ser	Ala	Ile	Trp	Ile	Pro	Pro	Ala	Ser	Lys	Gly	Met
	65							70					75		80
Gly	Gly	Ala	Tyr	Ser	Met	Gly	Tyr	Asp	Pro	Tyr	Asp	Phe	Phe	Asp	Leu
								85					90		95
Gly	Glu	Tyr	Asp	Gln	Lys	Gly	Thr	Val	Glu	Thr	Arg	Phe	Gly	Ser	Lys
								100					105		110
Gln	Glu	Leu	Val	Asn	Met	Ile	Asn	Thr	Ala	His	Ala	Tyr	Gly	Ile	Lys
								115					120		125
Val	Ile	Ala	Asp	Ile	Val	Ile	Asn	His	Arg	Ala	Gly	Gly	Asp	Leu	Glu

130	135	140
Trp Asn Pro Phe Val Asn Asp Tyr Thr Trp Thr Asp Phe Ser Lys Val		
145	150	155
Ala Ser Gly Lys Tyr Thr Ala Asn Tyr Leu Asp Phe His Pro Asn Glu		160
165	170	175
Val Lys Cys Cys Asp Glu Gly Thr Phe Gly Gly Phe Pro Asp Ile Ala		
180	185	190
His Glu Lys Ser Trp Asp Gln Tyr Trp Leu Trp Ala Ser Asn Glu Ser		
195	200	205
Tyr Ala Ala Tyr Leu Arg Ser Ile Gly Val Asp Ala Trp Arg Phe Asp		
210	215	220
Tyr Val Lys Gly Tyr Gly Ala Trp Val Val Lys Asp Trp Leu Asp Trp		
225	230	235
Trp Gly Gly Trp Ala Val Gly Glu Tyr Trp Asp Thr Asn Val Asp Ala		240
245	250	255
Leu Leu Asn Trp Ala Tyr Ser Ser Asp Ala Lys Val Phe Asp Phe Pro		
260	265	270
Leu Tyr Tyr Lys Met Asp Ala Ala Phe Asp Asn Lys Asn Ile Pro Ala		
275	280	285
Leu Val Glu Ala Leu Lys Asn Gly Gly Thr Val Val Ser Arg Asp Pro		
290	295	300
Phe Lys Ala Val Thr Phe Val Ala Asn His Asp Thr Asp Ile Ile Trp		
305	310	315
Asn Lys Tyr Pro Ala Tyr Ala Phe Ile Leu Thr Tyr Glu Gly Gln Pro		320
325	330	335
Thr Ile Phe Tyr Arg Asp Tyr Glu Glu Trp Leu Asn Lys Asp Arg Leu		
340	345	350
Lys Asn Leu Ile Trp Ile His Asp His Leu Ala Gly Gly Ser Thr Asp		
355	360	365
Ile Val Tyr Tyr Asp Asn Asp Glu Leu Ile Phe Val Arg Asn Gly Tyr		
370	375	380
Gly Asp Lys Pro Gly Leu Ile Thr Tyr Ile Asn Leu Gly Ser Ser Lys		
385	390	395
Ala Gly Arg Trp Val Tyr Val Pro Lys Phe Ala Gly Ala Cys Ile His		400
405	410	415
Glu Tyr Thr Gly Asn Leu Gly Gly Trp Val Asp Lys Trp Val Asp Ser		
420	425	430
Ser Gly Trp Val Tyr Leu Glu Ala Pro Ala His Asp Pro Ala Asn Gly		
435	440	445
Tyr Tyr Gly Tyr Ser Val Trp Ser Tyr Cys Gly Val Gly		
450	455	460

<210> 81

<211> 1386

<212> DNA

<213> Bacterial

<400> 81

atgaagaagt ttgtcgccct gttcataacc atgttttcg tagtgagcat ggcagtcgtt	60
gcacagccag ctagcggcgc aaagtattcc gagctcgaag aaggcgccgt tataatgcag	120
gccttctact gggacgtccc aggtggagga atctggggg acaccatcg gagcaagata	180
ccggagtggt acgaggcggg aatatccgcc atttggattc cgccagccag caagggatg	240
agccgcgggtt actcgatggg ctacgatccc tacgattct ttgacctcg cgagtacaac	300
cagaaggaa ccatcgaaac gcgcgttggc tctaaacagg agctcatcaa tatgataaac	360
acggccatg cctacggcat aaaggtcata gcggacatcg tcataaacca ccgcgcaggc	420
ggagacctcg agtggAACCC gttcggttggg gactacacct ggacggactt ctcaaagggt	480
gcctcgggca aataactgc caactacctc gacttccacc ccaacgaggt caagtgtgt	540

gacgagggca catttggagg cttcccagac atagcccacg agaagagctg ggaccagcac	600
tggctctggg cgagcgatga gagctacgcc gcctaacctaa ggagcatcgg cgttgatgcc	660
tggcgcttt actacgtgaa gggctacgga gcgtgggtcg tcaaggactg gctcaactgg	720
tggggcggct gggccgttgg cgagtactgg gacaccaacg ttgatgcact cctcaactgg	780
gcctactcga gcggcgccaa ggtcttcgac ttcccgtct actacaagat ggatgaggcc	840
tttgacaaca aaaacattcc agcgctcgac tctgccctc agaacggcca gactgttgtc	900
tcccgcgacc cgtaaaggc cgtaacctt gtagcaaacc acgacaccga tataatctgg	960
aacaagtacc ttgcttatgc tttcatcctc acctacgaag gccagcccg catattctac	1020
cgcgactacg aggagtggct caacaaggac aggttgaaca acctcatatg gatacacgac	1080
cacctcgcag gtggaagcac gagcatagtc tactacgaca gcgacgagat gatcttcgtg	1140
aggaacggct atggaagcaa gcctggcctt ataacttaca tcaacctcggtc tgagcaag	1200
gttggaaagggt gggtttatgt gccgaagttc gcgggcgcgt gcatccacga gtatactgg	1260
aacctcgag gctgggtaga caagtacgac tactcaagcg gctgggtcta tctcaagct	1320
ccagcttacg accctgccaa cgggcagtt ggctactccg tgtggagcta ttgcgggttt	1380
gggtga	1386

<210> 82

<211> 461

<212> PRT

<213> Bacterial

<400> 82

Met Lys Lys Phe Val Ala Leu Phe Ile Thr Met Phe Phe Val Val Ser	
1 5 10 15	
Met Ala Val Val Ala Gln Pro Ala Ser Ala Ala Lys Tyr Ser Glu Leu	
20 25 30	
Glu Glu Gly Gly Val Ile Met Gln Ala Phe Tyr Trp Asp Val Pro Gly	
35 40 45	
Gly Gly Ile Trp Trp Asp Thr Ile Arg Ser Lys Ile Pro Glu Trp Tyr	
50 55 60	
Glu Ala Gly Ile Ser Ala Ile Trp Ile Pro Pro Ala Ser Lys Gly Met	
65 70 75 80	
Ser Gly Gly Tyr Ser Met Gly Tyr Asp Pro Tyr Asp Phe Phe Asp Leu	
85 90 95	
Gly Glu Tyr Asn Gln Lys Gly Thr Ile Glu Thr Arg Phe Gly Ser Lys	
100 105 110	
Gln Glu Leu Ile Asn Met Ile Asn Thr Ala His Ala Tyr Gly Ile Lys	
115 120 125	
Val Ile Ala Asp Ile Val Ile Asn His Arg Ala Gly Asp Leu Glu	
130 135 140	
Trp Asn Pro Phe Val Gly Asp Tyr Thr Trp Thr Asp Phe Ser Lys Val	
145 150 155 160	
Ala Ser Gly Lys Tyr Thr Ala Asn Tyr Leu Asp Phe His Pro Asn Glu	
165 170 175	
Val Lys Cys Cys Asp Glu Gly Thr Phe Gly Gly Phe Pro Asp Ile Ala	
180 185 190	
His Glu Lys Ser Trp Asp Gln His Trp Leu Trp Ala Ser Asp Glu Ser	
195 200 205	
Tyr Ala Ala Tyr Leu Arg Ser Ile Gly Val Asp Ala Trp Arg Phe Asp	
210 215 220	
Tyr Val Lys Gly Tyr Gly Ala Trp Val Val Lys Asp Trp Leu Asn Trp	
225 230 235 240	
Trp Gly Gly Trp Ala Val Gly Glu Tyr Trp Asp Thr Asn Val Asp Ala	
245 250 255	
Leu Leu Asn Trp Ala Tyr Ser Ser Gly Ala Lys Val Phe Asp Phe Pro	
260 265 270	
Leu Tyr Tyr Lys Met Asp Glu Ala Phe Asp Asn Lys Asn Ile Pro Ala	

275	280	285
Leu Val Ser Ala Leu Gln Asn Gly Gln Thr Val Val	Ser Arg Asp Pro	
290	295	300
Phe Lys Ala Val Thr Phe Val Ala Asn His Asp Thr Asp Ile Ile Trp		
305	310	315
Asn Lys Tyr Leu Ala Tyr Ala Phe Ile Leu Thr Tyr Glu Gly Gln Pro		
325	330	335
Val Ile Phe Tyr Arg Asp Tyr Glu Glu Trp Leu Asn Lys Asp Arg Leu		
340	345	350
Asn Asn Leu Ile Trp Ile His Asp His Leu Ala Gly Gly Ser Thr Ser		
355	360	365
Ile Val Tyr Tyr Asp Ser Asp Glu Met Ile Phe Val Arg Asn Gly Tyr		
370	375	380
Gly Ser Lys Pro Gly Leu Ile Thr Tyr Ile Asn Leu Gly Ser Ser Lys		
385	390	395
Val Gly Arg Trp Val Tyr Val Pro Lys Phe Ala Gly Ala Cys Ile His		
405	410	415
Glu Tyr Thr Gly Asn Leu Gly Gly Trp Val Asp Lys Tyr Val Tyr Ser		
420	425	430
Ser Gly Trp Val Tyr Leu Glu Ala Pro Ala Tyr Asp Pro Ala Asn Gly		
435	440	445
Gln Tyr Gly Tyr Ser Val Trp Ser Tyr Cys Gly Val Gly		
450	455	460

<210> 83

<211> 1299

<212> DNA

<213> Environmental

<400> 83

atggctctgg aagacggcgg gctcataatg caggcttct actggatgt tcctggagga	60
ggaatcttgtt gggcacaaat agctcaaaag ataccgaat gggcaagtgc aggaatctca	120
gcgatatatgga ttccaccaggc gagtaaggc atgagcggtg gttattccat gggctacgat	180
ccctacgatt tctttgacct cgcgagttac tatcagaagg ggacagttga gacgcgccttc	240
ggctcaaagg aagaactggt gaacatgata aacaccgcac actcctacgg cataaagggtg	300
atagcagaca tagtcataaa ccaccgcgc ggtggagacc ttgagtggaa ccccttcgtg	360
aacgactata cctggacaga ctctctaaaaa gtcgcctccg gtaaatatac gccaactac	420
cttgacttcc acccaaacga gcttcactgt tgtatgaaag gtacctttgg aggataccct	480
gatatatgtc acgacaaaag ctgggaccag tactggctct gggcgagcag cgaaagctac	540
gctgcctacc tcaggagcat aggggttgc gcctggcgtt tcgactacgt caagggtac	600
ggagcatggg ttgttaacga ctggctcagc tggggggag gctggggcgt tggagagtac	660
tgggacacga acgttgcactgc actcctcaac tgggcataca gcagcggcgc caaggcttt	720
gacttcccgc tctactacaa gatggacgaa gccttcgaca acaccaacat cccggcatta	780
gtggatgcac tcagatacgg ccagacagtgc gtcagccgcg atcccttcaa ggcggtaact	840
ttcggtgcca accacgatac agatataatc tggaaacaagt atccggctta tgcattcattc	900
cttacctatg agggacagcc ttttatattc taccgcgact acgaggagtg gctcaacaag	960
gataagctt acaacccat ctggatacac gatcaccttg ctggagggag tactgacatt	1020
gtttactacg acagcgacga gcttatctt gtgagaaaacg gctatggcac caaacaggaa	1080
ctgataaacct atatcaaccc ctggctcaagc aaagttggaa ggtgggtcta cgttccaaag	1140
ttcgccgggtt catgcattcca cgagttacacc ggcaacctcg gcggttggat agacaagttac	1200
gtctccctcca gcggttgggtt ctatcttgcag gccccagccc acgaccggc gaacggctac	1260
tacggctact ccgtatggag ctactgcggg gttgggtga	1299

<210> 84

<211> 432

<212> PRT

<213> Environmental

<400> 84

Met Ala Leu Glu Asp Gly Gly Leu Ile Met Gln Ala Phe Tyr Trp Asp
 1 5 10 15
 Val Pro Gly Gly Ile Trp Trp Asp Thr Ile Ala Gln Lys Ile Pro
 20 25 30
 Glu Trp Ala Ser Ala Gly Ile Ser Ala Ile Trp Ile Pro Pro Ala Ser
 35 40 45
 Lys Gly Met Ser Gly Gly Tyr Ser Met Gly Tyr Asp Pro Tyr Asp Phe
 50 55 60
 Phe Asp Leu Gly Glu Tyr Tyr Gln Lys Gly Thr Val Glu Thr Arg Phe
 65 70 75 80
 Gly Ser Lys Glu Glu Leu Val Asn Met Ile Asn Thr Ala His Ser Tyr
 85 90 95
 Gly Ile Lys Val Ile Ala Asp Ile Val Ile Asn His Arg Ala Gly Gly
 100 105 110
 Asp Leu Glu Trp Asn Pro Phe Val Asn Asp Tyr Thr Trp Thr Asp Phe
 115 120 125
 Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr Leu Asp Phe His
 130 135 140
 Pro Asn Glu Leu His Cys Cys Asp Glu Gly Thr Phe Gly Gly Tyr Pro
 145 150 155 160
 Asp Ile Cys His Asp Lys Ser Trp Asp Gln Tyr Trp Leu Trp Ala Ser
 165 170 175
 Ser Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly Val Asp Ala Trp
 180 185 190
 Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val Val Asn Asp Trp
 195 200 205
 Leu Ser Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr Trp Asp Thr Asn
 210 215 220
 Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Gly Ala Lys Val Phe
 225 230 235 240
 Asp Phe Pro Leu Tyr Tyr Lys Met Asp Glu Ala Phe Asp Asn Thr Asn
 245 250 255
 Ile Pro Ala Leu Val Asp Ala Leu Arg Tyr Gly Gln Thr Val Val Ser
 260 265 270
 Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn His Asp Thr Asp
 275 280 285
 Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile Leu Thr Tyr Glu
 290 295 300
 Gly Gln Pro Val Ile Phe Tyr Arg Asp Tyr Glu Glu Trp Leu Asn Lys
 305 310 315 320
 Asp Lys Leu Asn Asn Leu Ile Trp Ile His Asp His Leu Ala Gly Gly
 325 330 335
 Ser Thr Asp Ile Val Tyr Tyr Asp Ser Asp Glu Leu Ile Phe Val Arg
 340 345 350
 Asn Gly Tyr Gly Thr Lys Pro Gly Leu Ile Thr Tyr Ile Asn Leu Gly
 355 360 365
 Ser Ser Lys Val Gly Arg Trp Val Tyr Val Pro Lys Phe Ala Gly Ser
 370 375 380
 Cys Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp Ile Asp Lys Tyr
 385 390 395 400
 Val Ser Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro Ala His Asp Pro
 405 410 415
 Ala Asn Gly Tyr Tyr Gly Tyr Ser Val Trp Ser Tyr Cys Gly Val Gly
 420 425 430

<210> 85

<211> 1299

<212> DNA

<213> Environmental

<400> 85

atggctctgg	aagagggcgg	gcttataatg	caggcattct	attgggacgt	cccaggtgga	60
ggaatctgg	gggacaccat	agcccagaag	ataccgaat	gggcagaatgc	aggaatctca	120
gcgatatgg	ttccaccaggc	gagtaaggga	atgagcggtg	gttattccat	gggcgtacgt	180
ccctacgatt	tctttgacct	ccgcgagtagc	tatcagaagg	ggacagttaa	gacgcgttc	240
ggctcaaagg	aagaacttgtt	gaacatgata	aacaccgcac	actcctacgg	cataaaagggtg	300
atagcggaca	tagtcataaa	ccaccgcgcc	ggtggaggcc	tgcgttgaa	ccccttcgtg	360
aacgactata	cctggacaga	cttctcaaaa	gtcgccctccg	gtaaatatac	agccaactac	420
cttgacttcc	acccaaacga	gcttactgt	tgtgtatggaa	gtacctttgg	aggataccct	480
gatatatgtc	acgacaaaag	ctgggaccag	tactggctct	ggcgagcag	cgaaagctac	540
gctgcctacc	tcaggagcat	aggggttgcac	gcctgtgtt	tgcgtactacgt	caagggtctac	600
ggagcctggg	ttgttaacga	ctggctcagc	ttgtggggag	gtctggccgt	tggagagttac	660
tgggacacta	acggttgc	actcctcaac	tgggcataca	acagcggcgc	caaggcttt	720
gacttcccgc	tctactacaa	gatggacgaa	gccttcgaca	ataccaacat	ccccgcctt	780
gtttacgccc	tcaagaatgg	cgggacagtgt	gtcagccgcg	acccattcaa	ggcgtaact	840
ttcggttgcac	accacgatac	agatataatc	tggacaactgt	atccggctta	tgcattcatc	900
cttacctatg	agggacagcc	tggttatattc	taccgcact	acgaggagtg	gctcaacaag	960
gataagctta	acaacctcat	ctggatacac	gatcacctt	ctggaggggag	tactgacatt	1020
gtttactacg	acagcgacga	gtttatctt	gtgagaaacg	gtatggcac	caaaccagga	1080
ctgataaacct	atataaacct	cggtcaagg	aaagctggaa	gttgggtcta	cgttccaaag	1140
ttcgccgggtt	catgcatcca	cgagtacacc	ggcagccctcg	gcccgttggat	agacaagtac	1200
gtctcctcca	gcccgttgggt	ctaccttgag	gcccggccc	acgaccggc	aatggccag	1260
tatggctact	ccgtctggag	ctattgcggg	gttgggtga			1299

<210> 86

<211> 432

<212> PRT

<213> Environmental

<400> 86

Met	Ala	Leu	Glu	Glu	Gly	Ley	Ile	Met	Gln	Ala	Phe	Tyr	Trp	Asp
1			5			10					15			
Val	Pro	Gly	Gly	Gly	Ile	Trp	Trp	Asp	Thr	Ile	Ala	Gln	Lys	Ile
						20			25				30	
Glu	Trp	Ala	Ser	Ala	Gly	Ile	Ser	Ala	Ile	Trp	Ile	Pro	Pro	Ala
						35			40			45		
Lys	Gly	Met	Ser	Gly	Gly	Tyr	Ser	Met	Gly	Tyr	Asp	Pro	Tyr	Asp
						50			55			60		
Phe	Asp	Leu	Gly	Glu	Tyr	Tyr	Gln	Lys	Gly	Thr	Val	Glu	Thr	Arg
						65			70			75		80
Gly	Ser	Lys	Glu	Glu	Leu	Val	Asn	Met	Ile	Asn	Thr	Ala	His	Ser
						85			90			95		
Gly	Ile	Lys	Val	Ile	Ala	Asp	Ile	Val	Ile	Asn	His	Arg	Ala	Gly
						100			105			110		
Gly	Leu	Glu	Trp	Asn	Pro	Phe	Val	Asn	Asp	Tyr	Thr	Trp	Thr	Asp
						115			120			125		
Ser	Lys	Val	Ala	Ser	Gly	Lys	Tyr	Thr	Ala	Asn	Tyr	Leu	Asp	Phe
						130			135			140		
Pro	Asn	Glu	Leu	His	Cys	Cys	Asp	Glu	Gly	Thr	Phe	Gly	Gly	Tyr
						145			150			155		160
Asp	Ile	Cys	His	Asp	Lys	Ser	Trp	Asp	Gln	Tyr	Trp	Leu	Trp	Ala
						165			170			175		

Ser Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly Val Asp Ala Trp
 180 185 190
 Cys Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val Val Asn Asp Trp
 195 200 205
 Leu Ser Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr Trp Asp Thr Asn
 210 215 220
 Val Asp Ala Leu Leu Asn Trp Ala Tyr Asn Ser Gly Ala Lys Val Phe
 225 230 235 240
 Asp Phe Pro Leu Tyr Tyr Lys Met Asp Glu Ala Phe Asp Asn Thr Asn
 245 250 255
 Ile Pro Ala Leu Val Tyr Ala Leu Lys Asn Gly Gly Thr Val Val Ser
 260 265 270
 Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn His Asp Thr Asp
 275 280 285
 Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile Leu Thr Tyr Glu
 290 295 300
 Gly Gln Pro Val Ile Phe Tyr Arg Asp Tyr Glu Glu Trp Leu Asn Lys
 305 310 315 320
 Asp Lys Leu Asn Asn Leu Ile Trp Ile His Asp His Leu Ala Gly Gly
 325 330 335
 Ser Thr Asp Ile Val Tyr Tyr Asp Ser Asp Glu Leu Ile Phe Val Arg
 340 345 350
 Asn Gly Tyr Gly Thr Lys Pro Gly Leu Ile Thr Tyr Ile Asn Leu Gly
 355 360 365
 Ser Ser Lys Ala Gly Arg Trp Val Tyr Val Pro Lys Phe Ala Gly Ser
 370 375 380
 Cys Ile His Glu Tyr Thr Gly Ser Leu Gly Gly Trp Ile Asp Lys Tyr
 385 390 395 400
 Val Ser Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro Ala His Asp Pro
 405 410 415
 Ala Asn Gly Gln Tyr Gly Tyr Ser Val Trp Ser Tyr Cys Gly Val Gly
 420 425 430

<210> 87

<211> 1419

<212> DNA

<213> Environmental

<400> 87

atgttcctgc	tcgcgtttt	gctcaactgcc	tcgctgttct	gcccaacagg	acagcccgcc	60
aaggctgccc	caccgttaa	cggcaccatg	atgcagtatt	ttgaatggta	cttgccggat	120
gatggcacgt	tatggaccaa	atggccaat	gaagccaaca	acttatccag	ccttggcata	180
accgctctt	ggctgccc	cgcttacaaa	ggaacaagcc	gcagcgcacgt	agggtacgga	240
gtatacgtact	tgtatgacct	cggcgaattc	aatcaaaaag	ggaccgtccg	cacaataac	300
gaaacaaaag	ctcaatatct	tcaagccatt	caagccccc	acgcccgtgg	aatgcaagtg	360
tacgcccgtg	tcgtgttcga	ccataaaggc	ggcgctgacg	gcacggaatg	ggtggacgccc	420
gtcgaagtca	atccgtccga	ccgcaaccaa	gaaatctcg	gcacctatac	aatccaagca	480
tggacgaaat	ttgattttcc	cggcgggggc	aacacctact	ccagctttaa	gtggcgtgg	540
taccatTTG	acggcgttga	ttgggacgaa	agccgaaaat	tgagccgcat	ttacaaattc	600
cgcggcatcg	gcaaagcgtg	ggattgggaa	gtagacacgg	aaaacggaaa	ctatgactac	660
ttaatgtatg	ccgaccctga	tatggatcat	cccgaagtgc	tgaccgagct	aaaaactgg	720
gggaaatggt	atgtcaacac	aacgaacatt	gatgggttcc	ggcttgcgtgc	cgtcaagcat	780
attaagttca	gttttttcc	tgattgggttgc	tcgtatgtgc	gttctcagac	tggcaagccg	840
ctatTTACCG	tcggggaaata	ttggagctat	gacatcaaca	agttgcacaa	ttacattacg	900
aaaacagacg	gaacgatgtc	tttgggttgc	gccccgttac	acaacaaatt	ttataccgct	960
tccaaatcag	ggggcgcatt	tgatatgcgc	acgttaatga	ccaatactct	catgaaagat	1020
caaccgacat	tggccgtcac	cttcgttgc	aatcatgaca	ccgaacccgg	ccaagcgctg	1080

cagtcatggg tcgaccatg gttcaaaccg ttggcttacg ccttattct aactcggcag	1140
gaaggatacc cgtgcgtctt ttatggtac tattatggca ttccacaata taacattcct	1200
tcgctgaaaa gcaaaatcga tccgctcctc atcgcgca gggattatgc ttacggAACG	1260
caacatgatt atcttgatca ctccgacatc atcgggtggca caaggaaagg ggtcactgaa	1320
aaaccaggat ccgggctggc cgcaactgatc accgatgggc cgggaggaag caaatggatg	1380
tactgttggc aaacaacacg ctggaaaagt gttctatga	1419

<210> 88
<211> 472
<212> PRT
<213> Environmental

<400> 88	
Met Phe Leu Leu Ala Phe Leu Leu Thr Ala Ser Leu Phe Cys Pro Thr	
1 5 10 15	
Gly Gln Pro Ala Lys Ala Ala Pro Phe Asn Gly Thr Met Met Gln	
20 25 30	
Tyr Phe Glu Trp Tyr Leu Pro Asp Asp Gly Thr Leu Trp Thr Lys Val	
35 40 45	
Ala Asn Glu Ala Asn Asn Leu Ser Ser Leu Gly Ile Thr Ala Leu Trp	
50 55 60	
Leu Pro Pro Ala Tyr Lys Gly Thr Ser Arg Ser Asp Val Gly Tyr Gly	
65 70 75 80	
Val Tyr Asp Leu Tyr Asp Leu Gly Glu Phe Asn Gln Lys Gly Thr Val	
85 90 95	
Arg Thr Lys Tyr Gly Thr Lys Ala Gln Tyr Leu Gln Ala Ile Gln Ala	
100 105 110	
Ala His Ala Ala Gly Met Gln Val Tyr Ala Asp Val Val Phe Asp His	
115 120 125	
Lys Gly Gly Ala Asp Gly Thr Glu Trp Val Asp Ala Val Glu Val Asn	
130 135 140	
Pro Ser Asp Arg Asn Gln Glu Ile Ser Gly Thr Tyr Gln Ile Gln Ala	
145 150 155 160	
Trp Thr Lys Phe Asp Phe Pro Gly Arg Gly Asn Thr Tyr Ser Ser Phe	
165 170 175	
Lys Trp Arg Trp Tyr His Phe Asp Gly Val Asp Trp Asp Glu Ser Arg	
180 185 190	
Lys Leu Ser Arg Ile Tyr Lys Phe Arg Gly Ile Gly Lys Ala Trp Asp	
195 200 205	
Trp Glu Val Asp Thr Glu Asn Gly Asn Tyr Asp Tyr Leu Met Tyr Ala	
210 215 220	
Asp Leu Asp Met Asp His Pro Glu Val Val Thr Glu Leu Lys Asn Trp	
225 230 235 240	
Gly Lys Trp Tyr Val Asn Thr Thr Asn Ile Asp Gly Phe Arg Leu Asp	
245 250 255	
Ala Val Lys His Ile Lys Phe Ser Phe Phe Pro Asp Trp Leu Ser Tyr	
260 265 270	
Val Arg Ser Gln Thr Gly Lys Pro Leu Phe Thr Val Gly Glu Tyr Trp	
275 280 285	
Ser Tyr Asp Ile Asn Lys Leu His Asn Tyr Ile Thr Lys Thr Asp Gly	
290 295 300	
Thr Met Ser Leu Phe Asp Ala Pro Leu His Asn Lys Phe Tyr Thr Ala	
305 310 315 320	
Ser Lys Ser Gly Gly Ala Phe Asp Met Arg Thr Leu Met Thr Asn Thr	
325 330 335	
Leu Met Lys Asp Gln Pro Thr Leu Ala Val Thr Phe Val Asp Asn His	
340 345 350	

Asp Thr Glu Pro Gly Gln Ala Leu Gln Ser Trp Val Asp Pro Trp Phe
 355 360 365
 Lys Pro Leu Ala Tyr Ala Phe Ile Leu Thr Arg Gln Glu Gly Tyr Pro
 370 375 380
 Cys Val Phe Tyr Gly Asp Tyr Tyr Gly Ile Pro Gln Tyr Asn Ile Pro
 385 390 395 400
 Ser Leu Lys Ser Lys Ile Asp Pro Leu Leu Ile Ala Arg Arg Asp Tyr
 405 410 415
 Ala Tyr Gly Thr Gln His Asp Tyr Leu Asp His Ser Asp Ile Ile Gly
 420 425 430
 Trp Thr Arg Glu Gly Val Thr Glu Lys Pro Gly Ser Gly Leu Ala Ala
 435 440 445
 Leu Ile Thr Asp Gly Pro Gly Ser Lys Trp Met Tyr Cys Trp Gln
 450 455 460
 Thr Thr Arg Trp Lys Ser Val Leu
 465 470

<210> 89

<211> 3301

<212> DNA

<213> Bacterial

<400> 89

atgaaagaag	cggttgtgta	tcaaatttc	ccggatcggt	tcttaatgg	caacccttca	60
aatgataaca	gcaaggcagca	ggcacgcggg	gcccacccga	ttgagcatcg	cgattggtcg	120
gatttgcgg	ataatcccg	cctgaaaggg	acgaggcggt	acgatggcga	cggtgaatgg	180
tgcgaatgact	ttttcgccgg	agacatcgcc	ggaattgaac	aaaagtggta	ttatattgcag	240
tcgcgttgag	tgaacacacat	ttacttaaat	ccgatcgcca	atgcgccatc	gaaccataaa	300
tatgtatgcga	gcaattacaa	agaattggat	ccgatgttcg	gttccccgg	agaattccaa	360
tcgtttgtgc	aggcgcttgc	gaaccggggg	atgcatctca	tcttagacgg	gggttcaac	420
cacgtatccg	acgattcgat	ttactttgac	cgctaccacc	gctatccgac	cgtcgggtcg	480
tatgaatatt	gggaagcggt	ttacgatttg	atgaatgaaa	aaggatttag	cgaggaagaa	540
gcccggaaac	aagtggaaaga	gaagttcaaa	caagagggac	agacgttcag	cccgatgg	600
tttcatctt	ggttcaatat	tggaaacaaa	aaagtcatg	gccattatca	ataccaatca	660
tggtggggct	atgacagtct	gcccggagtt	aagtccgtga	cgggggaaaa	agtgccgcat	720
ccgagtgaat	tgaacaacga	tgcgtcg	aattacattt	tccgtgaatc	ggattcggt	780
gcgaaaagct	ggattccct	cggcgctcc	ggctggcggt	tggatgtggc	caatgaggtg	840
gatccggcgt	tttggcgca	gtttcgccaa	gaattgcttc	aagggtcgta	cgcccgccgt	900
ccgacgttaa	aagaggggga	gcagccgctc	attttaggg	aaatttggga	tgacgcacatcg	960
aaatatttc	taggcacca	gtacgattcc	gtgtatgaa	accgggtccg	cgggggcggt	1020
cttgactttt	tggaaaacgg	aatgcagaa	gaggcggaca	agcggctgac	ggccataagg	1080
gaagactacc	caagtgaagc	gttttatgct	ctgtatgaa	taatcggttc	gcatgacacg	1140
gcgcggggcg	tctttctgct	tggaaacgga	acggattcat	ccgagccggc	ggagcttgat	1200
ccgaattata	atgaggaact	tggaaaaaag	cggtcaagc	tggcggtat	tttgcagatg	1260
ggatacccg	gagcgcgcac	gatttattac	ggcgatgaa	cgggagtaac	aggctaaaa	1320
gaccaggaca	accgcgcac	gtatccgtgg	ggcaaagaag	atcaaaatct	gttgccttgc	1380
tatcagaaag	tggggcacat	tgcgcagac	catcaatcg	tgttggccca	tggcgacatc	1440
aagacgggt	atgcgcagg	ggatgtatac	gtatttgc	gccaatacgg	gcgtgaagcg	1500
gcgcgttgc	ccatcaacgg	cgcaatgag	gacaagacgg	tggcgcttgc	cgtcgcttc	1560
ttgcgttgc	acggcaccgt	gtttacggat	gagttgcatg	atggcggggaa	agctacggtc	1620
gctggcgaa	cggtgacgg	cacgattccg	gccctggat	gacggatgat	gtttgggacg	1680
gtgacggcg	aatgcgcgc	agcagtcac	aatttgcagg	cgagcgcttc	ggatggctgc	1740
gtgacgttac	cgtggaaagg	aatgcacg	agataccgaa	tttacgagtc	cacgttaaaa	1800
ggtgcgggtt	atacgatggt	gcaagagacg	gaaacaactt	cgccacatcg	cggttcgttg	1860
acgaacggaa	cagcctatta	cttgcgttgc	gccccgggtc	atgaaaacgg	aatgaatca	1920
ccgaagggtc	aaacgaatcg	cgtcgccct	cattacccgc	tgacgagcg	caatgtccag	1980
ttcgtgacaa	cgttaagcg	tgcacactg	gatttgc	agccgcagca	agtggatgtc	2040

catgtcaaca tcgacaatgt gacaagcaaa ggagcagctg atgggttgca agcggtttg	2100
caagtgaaag gcccgcata cgaaacatgg aaagaataca gagcggctta ccaaggacaa	2160
gacggcgacg ccaacgttcc cgagctgcc ttcactccgc tcgcccagg gacgtatacg	2220
tatcgttatgcgctgacgac caaccctggc gaggagtggatgtatacaga agagaagcaa	2280
gtgacgtttcgccagacaa cagcggacaa atagcggcagcagacatcgatgcgg	2340
cagcctgcgg ttgaatcgaa acaagtgaat ttatcatggatgtttgtgg gaaaaaaagat	2400
ggggatgttttgcatttttagc catcgagcgc aacgggtata tcgtgcatac aaccacttcg	2460
atccggcgatt catttacaga ctacgatgtc gaaaacggca ccgagttacac gtatgttgc	2520
aagttgtatg accgcggccgg caatgttgc ggcgtcaaaca cggtaaggat gacggccggac	2580
atttgtatgg tgaaagtgtatgtttaaagtg agagcggccgg attacacacc gttggatgcc	2640
cgaattacga ttccgaacag cttaaacggc tggaaacacag gggcctggga gatgtcgcc	2700
aacgggtgcgg tgacgcccga ttggcaattt accgtcgagg tgcaggaagg ggaaacgatc	2760
acctataagt atgtgaaagg cgatcgatgg gatcaagagg ggttggccga ccatacgcgt	2820
gaggacgaca acgatgtga cgtgagctac tacggctatggacgatttg caccgacttg	2880
aaagtgcgg tccacaatga agaaaacaat acgatgatttg tgcaagaccg catttgcgc	2940
tggatcgata tgccggcgt catcgaaagag gtgcaaaaac aaggaagtca agtgcgcgtc	3000
aaggggcaatgcattaaaaa cgggttttgc acgatcaatgcgagcgggtt gccgattgtatgg	3060
ggccggatgg cattctcgta cacgttgcg ccggccagcc atcaaaaaga agtgttgcattatcgaaacatcgccaa aacccatggca acaacgcggcggcgtt gcaatgcgtt	3120
gcgaaaaaca caaaagatgcgtgat tttagaaacgaa agcaattcaa aaagcttctcgagactt cttagagcggc cgccggccca tcgatattcc accccgggtgg ggtaccaggt	3180
a	3300
	3301

<210> 90
<211> 1100
<212> PRT
<213> Bacterial

<400> 90
Met Lys Glu Ala Val Val Tyr Gln Ile Phe Pro Asp Arg Phe Phe Asn
1 5 10 15
Gly Asn Pro Ser Asn Asp Asn Ser Lys Gln Gln Ala Arg Gly Ala Gln
20 25 30
Pro Ile Glu His Arg Asp Trp Ser Asp Leu Pro Asp Asn Pro Arg Leu
35 40 45
Lys Gly Thr Ser Gly Tyr Asp Gly Asp Gly Glu Trp Ser Asn Asp Phe
50 55 60
Phe Gly Gly Asp Ile Ala Gly Ile Glu Gln Lys Leu Asp Tyr Leu Gln
65 70 75 80
Ser Leu Gly Val Asn Thr Ile Tyr Leu Asn Pro Ile Ala Asn Ala Pro
85 90 95
Ser Asn His Lys Tyr Asp Ala Ser Asn Tyr Lys Glu Leu Asp Pro Met
100 105 110
Phe Gly Ser Pro Glu Glu Phe Gln Ser Phe Val Gln Ala Leu Ala Asn
115 120 125
Arg Gly Met His Leu Ile Leu Asp Gly Val Phe Asn His Val Ser Asp
130 135 140
Asp Ser Ile Tyr Phe Asp Arg Tyr His Arg Tyr Pro Thr Val Gly Ala
145 150 155 160
Tyr Glu Tyr Trp Glu Ala Val Tyr Asp Leu Met Asn Glu Lys Gly Leu
165 170 175
Ser Glu Glu Glu Ala Arg Lys Gln Val Glu Glu Lys Phe Lys Gln Glu
180 185 190
Gly Gln Thr Phe Ser Pro Tyr Gly Phe His Leu Trp Phe Asn Ile Glu
195 200 205
Asn Lys Lys Val Asn Gly His Tyr Gln Tyr Gln Ser Trp Trp Gly Tyr
210 215 220

Asp Ser Leu Pro Glu Phe Lys Ser Val Thr Gly Glu Lys Val Pro His
 225 230 235 240
 Pro Ser Glu Leu Asn Asn Asp Ala Leu Ala Asn Tyr Ile Phe Arg Glu
 245 250 255
 Ser Asp Ser Val Ala Lys Ser Trp Ile Ala Leu Gly Ala Ser Gly Trp
 260 265 270
 Arg Leu Asp Val Ala Asn Glu Val Asp Pro Ala Phe Trp Arg Glu Phe
 275 280 285
 Arg Gln Glu Leu Leu Gln Gly Ser Tyr Gly Arg Gly Pro Thr Leu Lys
 290 295 300
 Glu Gly Glu Gln Pro Leu Ile Leu Gly Glu Ile Trp Asp Asp Ala Ser
 305 310 315 320
 Lys Tyr Phe Leu Gly Asp Gln Tyr Asp Ser Val Met Asn Tyr Arg Phe
 325 330 335
 Arg Gly Ala Val Leu Asp Phe Leu Lys Asn Gly Asn Ala Glu Glu Ala
 340 345 350
 Asp Lys Arg Leu Thr Ala Ile Arg Glu Asp Tyr Pro Ser Glu Ala Phe
 355 360 365
 Tyr Ala Leu Met Asn Leu Ile Gly Ser His Asp Thr Ala Arg Ala Val
 370 375 380
 Phe Leu Leu Gly Asn Gly Thr Asp Ser Ser Glu Arg Ala Glu Leu Asp
 385 390 395 400
 Pro Asn Tyr Asn Glu Glu Leu Gly Lys Lys Arg Leu Lys Leu Ala Val
 405 410 415
 Ile Leu Gln Met Gly Tyr Pro Gly Ala Pro Thr Ile Tyr Tyr Gly Asp
 420 425 430
 Glu Ala Gly Val Thr Gly Ser Lys Asp Pro Asp Asn Arg Arg Thr Tyr
 435 440 445
 Pro Trp Gly Lys Glu Asp Gln Asn Leu Leu Ser His Tyr Gln Lys Val
 450 455 460
 Gly His Ile Arg Gln His His Gln Ser Leu Leu Ala His Gly Asp Ile
 465 470 475 480
 Lys Thr Val Tyr Ala Gln Gly Asp Val Tyr Val Phe Ala Arg Gln Tyr
 485 490 495
 Gly Arg Glu Ala Ala Leu Ile Ala Ile Asn Arg Gly Asn Glu Asp Lys
 500 505 510
 Thr Val Ala Leu Asp Val Ala Ser Leu Leu Pro Asn Gly Thr Val Leu
 515 520 525
 Thr Asp Glu Leu His Asp Gly Gly Glu Ala Thr Val Ala Gly Gly Thr
 530 535 540
 Leu Thr Val Thr Ile Pro Ala Leu Asp Gly Arg Met Met Phe Gly Thr
 545 550 555 560
 Val Thr Ala Glu Met Pro Ala Ala Val Ser Asn Leu Gln Ala Ser Ala
 565 570 575
 Ser Asp Gly Cys Val Thr Leu Thr Trp Glu Gly Asn Ala Ser Arg Tyr
 580 585 590
 Arg Ile Tyr Glu Ser Thr Leu Lys Gly Ala Gly Tyr Thr Met Val Gln
 595 600 605
 Glu Thr Glu Thr Thr Ser Ala Thr Ile Gly Ser Leu Thr Asn Gly Thr
 610 615 620
 Ala Tyr Tyr Phe Ala Val Ala Ala Val Asp Glu Asn Gly Asn Glu Ser
 625 630 635 640
 Pro Lys Val Glu Thr Asn Arg Val Val Pro His Tyr Pro Leu Thr Ser
 645 650 655
 Asp Asn Val Gln Phe Val Thr Thr Leu Ser Asp Ala Thr Leu Asp Leu
 660 665 670
 Ser Lys Pro Gln Gln Val Asp Val His Val Asn Ile Asp Asn Val Thr

675	680	685
Ser Lys Gly Ala Ala Asp Gly Leu Gln Ala Val Leu Gln Val Lys Gly		
690	695	700
Pro His Asp Glu Thr Trp Lys Glu Tyr Arg Ala Ala Tyr Gln Gly Gln		
705	710	715
Asp Gly Asp Ala Asn Val Phe Arg Ala Ala Phe Thr Pro Leu Ala Ala		
725	730	735
Gly Thr Tyr Thr Tyr Arg Tyr Ala Leu Thr Thr Asn Leu Gly Glu Glu		
740	745	750
Trp Met Tyr Thr Glu Glu Lys Gln Val Thr Phe Ala Ala Asp Asn Ser		
755	760	765
Asp Gln Ile Ala Pro Ala Asp Ala Ile Glu Leu Arg Gln Pro Ala Val		
770	775	780
Glu Ser Gly Gln Val Asn Leu Ser Trp Thr Phe Val Gly Lys Lys Asp		
785	790	795
Gly Asp Ala Tyr Leu Leu Ala Ile Glu Arg Asn Gly Asp Ile Val His		
805	810	815
Thr Thr Thr Ser Ile Gly Asp Ser Phe Thr Asp Tyr Asp Val Glu Asn		
820	825	830
Gly Thr Glu Tyr Thr Tyr Val Val Lys Leu Tyr Asp Arg Ala Gly Asn		
835	840	845
Val Val Ala Ser Asn Thr Val Lys Val Thr Pro Asp Ile Val Met Val		
850	855	860
Lys Val Ile Phe Lys Val Arg Ala Pro Asp Tyr Thr Pro Leu Asp Ala		
865	870	875
Arg Ile Thr Ile Pro Asn Ser Leu Asn Gly Trp Asn Thr Gly Ala Trp		
885	890	895
Glu Met Ser Arg Asn Gly Ala Val Thr Pro Asp Trp Gln Phe Thr Val		
900	905	910
Glu Val Gln Glu Gly Glu Thr Ile Thr Tyr Lys Tyr Val Lys Gly Gly		
915	920	925
Ser Trp Asp Gln Glu Gly Leu Ala Asp His Thr Arg Glu Asp Asp Asn		
930	935	940
Asp Asp Asp Val Ser Tyr Tyr Gly Thr Ile Gly Thr Asp Leu		
945	950	955
Lys Val Thr Val His Asn Glu Gly Asn Asn Thr Met Ile Val Gln Asp		
965	970	975
Arg Ile Leu Arg Trp Ile Asp Met Pro Val Val Ile Glu Glu Val Gln		
980	985	990
Lys Gln Gly Ser Gln Val Thr Ile Lys Gly Asn Ala Ile Lys Asn Gly		
995	1000	1005
Val Leu Thr Ile Asn Gly Glu Arg Val Pro Ile Asp Gly Arg Met Ala		
1010	1015	1020
Phe Ser Tyr Thr Phe Ala Pro Ala Ser His Gln Lys Glu Val Leu Ile		
1025	1030	1035
His Ile Glu Pro Ser Ala Glu Ser Lys Thr Ala Ile Phe Asn Asn Asp		
1045	1050	1055
Gly Gly Ala Ile Ala Lys Asn Thr Lys Asp Tyr Val Leu Asn Leu Glu		
1060	1065	1070
Thr Lys Gln Phe Lys Lys Leu Leu Glu Ser Thr Ser Arg Ala Ala Ala		
1075	1080	1085
Gly Pro Ser Ile Phe His Pro Gly Gly Val Pro Gly		
1090	1095	1100

<210> 91

<211> 1650

<212> DNA

<213> Bacterial

<400> 91

gtgctaacgt	ttcacccat	cattcgaaaa	ggatggatgt	tcctgctcgc	gttttgctc	60
actgcctcgc	tgttctgccc	aacaggacag	cccgccaagg	ctgcccaccc	gtttaacggc	120
accatgatgc	agtatTTGA	atggtaacttG	ccggatgatG	gcacgttatG	gaccaaagtG	180
gccaatgaag	ccaacaacctT	atccagcctT	ggcatcaccG	ctctttggctG	gccggccgctG	240
tataaaggaa	caagccgcagG	cgacgttagggG	tacggagtatG	acgacttGta	tgacctcgGc	300
gaattcaatC	aaaaagggacG	cgtccgcacaA	aaatacggaaA	caaaaagctcaA	atatcttcaaA	360
gccattcaagG	ccgccccacgcG	cgcttggaaatG	caagtgtacG	ccgatgtcgtG	gttcgaccatG	420
aaaggcggcgC	ccgacggcacG	ggaatgggtG	gacgcccgtcG	aagtcaatccG	gtccgaccgcG	480
aaccaagaaaT	tctcgggcacC	ctatcaaATC	caagcatggA	cggaaatttGta	ttttccccggG	540
cggggcaacaC	cctactccagG	ctttaagtggG	cgcttggtaccG	attttgcacGG	cgttgattggG	600
gacgaaaagccG	gaaaatttGAG	ccgcatttAC	aaattccgcgG	gcacgtggcAA	agcgtgggatG	660
tgggaagtagA	acacggaaaaA	cggaaactatG	gactacttAA	tgtatggcGA	cttggacatG	720
gaccatcctG	aagtggttacG	ggaactgaaaA	aactggggcaA	aatggatGatG	caacacaacG	780
aacattgtatG	ggttccggctG	tgtatGCCGTC	aagcatattAA	agttcagttT	ttttcctgtatG	840
tgttgtcgtG	atgtgcgttC	tcaGactggcA	aagccgttatG	ttaccgtcggG	ggaatatttggG	900
agctatgacaT	tcaacaagttG	gcacaattacA	attacgaaaaA	caaacggaaAC	gatgtctttG	960
tttgatgcccC	cgttacacaaA	caaattttatC	accgcttccaA	aatcagggggG	cgcatttgatG	1020
atgcgcacgtG	taatgaccaaA	tactctcatG	aaagatcaacA	cgacattggcG	cgtcaccttcG	1080
gttgataatC	atgacacccGA	acccggccaaG	gCGCTGcAGT	catgggtcGA	cccattggTC	1140
aaaccgttggG	cttacgccttT	tattctaactG	cggcaggaagG	gatacccgtG	cgtctttatG	1200
ggtgactattG	atggcatcccC	acaatataaacA	attccttcgcG	tggaaagcAA	aatcgatccG	1260
ctccatcgG	cgcgcaggGA	ttatgcttacG	ggaacgcaacG	atgattatctT	tgatcactccC	1320
gacatcatcgG	ggtggacaagG	ggaaggcgTC	actgaaaaAC	caggatccGG	actggccgCA	1380
ctgatcaccG	atggggccggG	aggaagcAAA	tggatgtacG	ttggcaaacaA	acacgcccGA	1440
aaagtgttctG	atgaccttacG	cggcaaccGG	agtgcacaccG	tcaccatcaaA	cagtgtatggA	1500
tggggagaatT	tcaaagtcaaA	tggcggttCG	gtttcggtttG	gggttccTAG	aaaaacgaccG	1560
gtctctaccaC	tcgcttggccG	gatcacaaccG	cgaccgtgGA	ctggtaattG	cgtccgttggG	1620
accgaaccacG	ggttgggtggC	atggccttGA				1650

<210> 92

<211> 549

<212> PRT

<213> Bacterial

<400> 92

Val	Leu	Thr	Phe	His	Arg	Ile	Ile	Arg	Lys	Gly	Trp	Met	Phe	Leu	Leu
1						5			10			15			
Ala	Phe	Leu	Leu	Thr	Ala	Ser	Leu	Phe	Cys	Pro	Thr	Gly	Gln	Pro	Ala
									20		25		30		
Lys	Ala	Ala	Ala	Pro	Phe	Asn	Gly	Thr	Met	Met	Gln	Tyr	Phe	Glu	Trp
									35		40		45		
Tyr	Leu	Pro	Asp	Asp	Gly	Thr	Leu	Trp	Thr	Lys	Val	Ala	Asn	Glu	Ala
									50		55		60		
Asn	Asn	Leu	Ser	Ser	Leu	Gly	Ile	Thr	Ala	Leu	Trp	Leu	Pro	Pro	Ala
									65		70		75		80
Tyr	Lys	Gly	Thr	Ser	Arg	Ser	Asp	Val	Gly	Tyr	Gly	Val	Tyr	Asp	Leu
									85		90		95		
Tyr	Asp	Leu	Gly	Glu	Phe	Asn	Gln	Lys	Gly	Thr	Val	Arg	Thr	Lys	Tyr
									100		105		110		
Gly	Thr	Lys	Ala	Gln	Tyr	Leu	Gln	Ala	Ile	Gln	Ala	Ala	His	Ala	Ala
									115		120		125		
Gly	Met	Gln	Val	Tyr	Ala	Asp	Val	Val	Phe	Asp	His	Lys	Gly	Gly	Ala
									130		135		140		
Asp	Gly	Thr	Glu	Trp	Val	Asp	Ala	Val	Glu	Val	Asn	Pro	Ser	Asp	Arg

145	150	155	160
Asn Gln Glu Ile Ser Gly Thr Tyr Gln Ile	Gln Ala Trp Thr Lys Phe		
165	170	175	
Asp Phe Pro Gly Arg Gly Asn Thr Tyr Ser Ser Phe Lys Trp Arg Trp			
180	185	190	
Tyr His Phe Asp Gly Val Asp Trp Asp Glu Ser Arg Lys Leu Ser Arg			
195	200	205	
Ile Tyr Lys Phe Arg Gly Ile Gly Lys Ala Trp Asp Trp Glu Val Asp			
210	215	220	
Thr Glu Asn Gly Asn Tyr Asp Tyr Leu Met Tyr Ala Asp Leu Asp Met			
225	230	235	240
Asp His Pro Glu Val Val Thr Glu Leu Lys Asn Trp Gly Lys Trp Tyr			
245	250	255	
Val Asn Thr Thr Asn Ile Asp Gly Phe Arg Leu Asp Ala Val Lys His			
260	265	270	
Ile Lys Phe Ser Phe Phe Pro Asp Trp Leu Ser Tyr Val Arg Ser Gln			
275	280	285	
Thr Gly Lys Pro Leu Phe Thr Val Gly Glu Tyr Trp Ser Tyr Asp Ile			
290	295	300	
Asn Lys Leu His Asn Tyr Ile Thr Lys Thr Asn Gly Thr Met Ser Leu			
305	310	315	320
Phe Asp Ala Pro Leu His Asn Lys Phe Tyr Thr Ala Ser Lys Ser Gly			
325	330	335	
Gly Ala Phe Asp Met Arg Thr Leu Met Thr Asn Thr Leu Met Lys Asp			
340	345	350	
Gln Pro Thr Leu Ala Val Thr Phe Val Asp Asn His Asp Thr Glu Pro			
355	360	365	
Gly Gln Ala Leu Gln Ser Trp Val Asp Pro Trp Phe Lys Pro Leu Ala			
370	375	380	
Tyr Ala Phe Ile Leu Thr Arg Gln Glu Gly Tyr Pro Cys Val Phe Tyr			
385	390	395	400
Gly Asp Tyr Tyr Gly Ile Pro Gln Tyr Asn Ile Pro Ser Leu Lys Ser			
405	410	415	
Lys Ile Asp Pro Leu Leu Ile Ala Arg Arg Asp Tyr Ala Tyr Gly Thr			
420	425	430	
Gln His Asp Tyr Leu Asp His Ser Asp Ile Ile Gly Trp Thr Arg Glu			
435	440	445	
Gly Val Thr Glu Lys Pro Gly Ser Gly Leu Ala Ala Leu Ile Thr Asp			
450	455	460	
Gly Pro Gly Gly Ser Lys Trp Met Tyr Val Gly Lys Gln His Ala Gly			
465	470	475	480
Lys Val Phe Tyr Asp Leu Thr Gly Asn Arg Ser Asp Thr Val Thr Ile			
485	490	495	
Asn Ser Asp Gly Trp Gly Glu Phe Lys Val Asn Gly Gly Ser Val Ser			
500	505	510	
Val Trp Val Pro Arg Lys Thr Thr Val Ser Thr Ile Ala Trp Pro Ile			
515	520	525	
Thr Thr Arg Pro Trp Thr Gly Glu Phe Val Arg Trp Thr Glu Pro Arg			
530	535	540	
Leu Val Ala Trp Pro			
545			

<210> 93
<211> 1545
<212> DNA
<213> Bacterial

<400> 93

atgaaatcg	ttgcattcat	gcctatcctt	tttatgcaa	acgatttcat	cagtgaard	60
gaaggaggag	aaaaatggg	gaagaatatg	agaagaagat	tcacgtattt	ttcaatctc	120
ttattttcg	ttcagcttt	tccatTTAGT	gcaaccgcta	gcccataatgg	aacggtgaac	180
agttagtcctg	tggtaatgg	aaacgaagtc	acgtttctat	atggaggaac	aggaaacgag	240
cagtctgtgt	tactggcagg	ctccttaat	gattggcaga	aagatggtga	caagaagatt	300
gcactaaca	aaggcaca	taacgtctgg	tctgtcacgc	aaacacttca	agatgggaca	360
tatacgtata	agtttgg	agatggtcaa	tgggtggcgg	atccgcttaa	cccgaaatcaa	420
gtagacgac	gttacggcgg	ccgtaatagt	gtcgttgg	tcgggacacc	ggtcaacaa	480
gaacggacag	tgacgctgt	tggtaactta	caagacgaat	taggtcatac	gagcaatgg	540
gatccgaaag	cgacagctac	agtgtgaaa	aaggaaggga	acgggttata	tacgttaca	600
ggtacacttc	cagccgaac	gtacgagtat	aaaattgcga	ttaatggcag	ctgggacgaa	660
aactatggtg	tcggcggccg	cgatggcggg	aatattaagc	tgctattaaa	tgaacaaaca	720
acggttacat	tttattacaa	cgacagaac	catgcgattt	cggttgcac	ttggtatgca	780
ccaattctaa	aagaaaagca	gccgcggctc	gttggAACGA	ttttaccagc	tattggttat	840
gaaacagac	tgaacgg	gacgccc	acatcaacgg	cggttgg	agatgtat	900
tttatttcca	tttatacgtt	taaggcgcgt	gtgcca	ggacat	atataaagta	960
gttcttggg	atgattggac	atatgaaaat	tatccacaag	ataatgcca	attaaatgtg	1020
cttgaagaaa	cgacaattac	cttttctt	aacgcgaaaa	cgaaaagt	gtataaccat	1080
tacaatccaa	gcgggtcgga	tggtatcg	caaaaagacc	gtttaagca	taatacgtgg	1140
gattcggtgt	atcgccaacc	gttgg	gtgaaagctg	ggacaga	gacccttcgt	1200
ttatcagcga	aaaaagg	tttgacaaaa	gcccgtgtat	atgtaaaaaa	tacgacaacc	1260
ggcacagcga	aactatattc	gatgaaaaaa	gccgggtt	ttggcgaaga	agaatattgg	1320
gaagcgcacat	tcacaccg	tgtgaaagga	gtatacgg	ataaaattt	tgcggtagat	1380
gctggAACGA	aagcagaata	cgggaaagat	acacaagaag	gca	gtggggaaa	1440
gataaaaaatg	cagactgtt	ccaattaaac	gtgtacgacc	catcctacca	aacaccggat	1500
tgatgaaag	aagcagtgt	atataaattt	ttccctgatc	caa	g	1545

<210> 94

<211> 515

<212> PRT

<213> Bacterial

<400> 94

Met	Lys	Ser	Phe	Ala	Phe	Met	Pro	Ile	Leu	Phe	Tyr	Ala	Asn	Asp	Phe
1			5			10						15			
Ile	Ser	Glu	Arg	Glu	Gly	Gly	Gly	Lys	Met	Gly	Lys	Asn	Met	Arg	Arg
			20			25						30			
Arg	Phe	Thr	Tyr	Phe	Ser	Ile	Phe	Leu	Leu	Phe	Val	Gln	Leu	Phe	Ser
	35			40			45								
Phe	Ser	Ala	Thr	Ala	Ser	Ala	Asn	Gly	Thr	Val	Asn	Ser	Ser	Pro	Val
	50			55			60								
Val	Asn	Gly	Asn	Glu	Val	Thr	Phe	Leu	Tyr	Gly	Gly	Thr	Gly	Asn	Glu
65				70			75					80			
Gln	Ser	Val	Leu	Leu	Ala	Gly	Ser	Phe	Asn	Asp	Trp	Gln	Lys	Asp	Gly
	85			90			95								
Asp	Lys	Lys	Ile	Ala	Leu	Thr	Lys	Gly	Asp	Asn	Asn	Val	Trp	Ser	Val
	100			105			110								
Thr	Gln	Thr	Leu	Gln	Asp	Gly	Thr	Tyr	Thr	Tyr	Lys	Phe	Val	Val	Asp
	115			120			125								
Gly	Gln	Trp	Val	Ala	Asp	Pro	Leu	Asn	Pro	Asn	Gln	Val	Asp	Asp	Gly
	130			135			140								
Tyr	Gly	Gly	Arg	Asn	Ser	Val	Val	Val	Val	Gly	Thr	Pro	Val	Gln	Gln
145			150			155					160				
Glu	Arg	Thr	Val	Thr	Leu	Val	Gly	Asn	Leu	Gln	Asp	Glu	Leu	Gly	His
	165			170			175								
Thr	Ser	Glu	Trp	Asp	Pro	Lys	Ala	Thr	Ala	Thr	Val	Met	Lys	Glu	

180	185	190
Gly Asn Gly Leu Tyr Thr Phe Thr	Gly Thr Leu Pro Ala	Gly Thr Tyr
195	200	205
Glu Tyr Lys Ile Ala Ile Asn Gly Ser Trp Asp	Glu Asn Tyr Gly Val	
210	215	220
Gly Gly Arg Asp Gly Gly Asn Ile Lys Leu	Leu Asn Glu Gln Thr	
225	230	235
Thr Val Thr Phe Tyr Tyr Asn Asp Arg	Thr His Ala Ile Ala Asp Ser	240
245	250	255
Thr Trp Tyr Ala Pro Ile Leu Lys	Glu Lys Gln Pro Arg	Leu Val Gly
260	265	270
Thr Ile Leu Pro Ala Ile Gly Tyr	Glu Thr Asp Val Asn Gly	Trp Thr
275	280	285
Pro Gln Thr Ser Thr Ala Leu	Leu Ser Asp Asp Asp	Phe Asp Ser Ile
290	295	300
Tyr Thr Phe Lys Ala Arg Val Pro Lys Gly	Thr Tyr Glu Tyr Lys Val	
305	310	315
Val Leu Gly Asn Asp Trp Thr Tyr	Glu Asn Tyr Pro Gln Asp Asn Ala	320
325	330	335
Lys Leu Asn Val Leu Glu Glu	Thr Thr Ile Thr Phe Phe	Phe Asn Ala
340	345	350
Lys Thr Lys Val Val Tyr Thr Asp Tyr Asn Pro	Ser Gly Ser Asp Gly	
355	360	365
Ile Val Gln Lys Asp Arg Leu Lys His Asn Thr	Trp Asp Ser Leu Tyr	
370	375	380
Arg Gln Pro Phe Gly Ala Val Lys Ala Gly	Thr Glu Val Thr Leu Arg	
385	390	395
Leu Ser Ala Lys Lys Gly Asp Leu Thr Lys	Ala Asp Val Tyr Val Lys	
405	410	415
Asn Thr Thr Thr Gly Thr Ala Lys Leu	Tyr Ser Met Lys Lys Ala Gly	
420	425	430
Val Leu Gly Glu Glu Tyr Trp	Glu Ala Thr Phe Thr Pro Asp Val	
435	440	445
Lys Gly Val Tyr Gly Tyr Lys Phe	Ile Ala Val Asp Ala Gly Thr Lys	
450	455	460
Ala Glu Tyr Gly Glu Asp Thr Gln Glu Gly	Gln Trp Gly Lys Ala Val	
465	470	475
Asp Lys Asn Ala Glu Leu Phe Gln Leu	Thr Val Tyr Asp Pro Ser Tyr	
485	490	495
Gln Thr Pro Asp Trp Met Lys Glu Ala Val	Val Val Tyr Gln Ile Phe Pro	
500	505	510
Asp Pro Lys		
515		

<210> 95
<211> 1524
<212> DNA
<213> Bacterial

<400> 95

atgtatacac tattcatccg ttcatatttt gatactgatg	gtgatgggtgt aggagacttt	60
agtggagttg ctgaaaaggt agattatcta aaatctttg	gagtagatac agtctggttt	120
ttaccattn ataaaagtaa atcttatcat ggatatgatg	ttgaagatta ctagatgtat	180
gaaccagatt atgaaacact acaagatctt gataatatga	taaaaggctt aatgaaaaat	240
ggaataaagg tagtaatgga tcttgttgtt aatcatacgt	cggatacaca tccatggttt	300
cttgatgcag ttgaaaatac tactaattct ccataattgga	actattacat tatgagcttg	360
gatgagcctc aaaataagaa tcattggcat tataaggta	atccaaaagg acaaactgtg	420

tggtattttg gattgttga ttcatcaatg ccggaccta attacgacaa ccctaaagta	480
atggatgaag tgaaaaaaat aatagattt tggcagata tggagtaga tggatttaga	540
ttagatgcag caaaaacatta ttatggatt gactggagcg atgaaattga acagtccagca	600
agcggtgcaa aagagataga agactatata aaagataaac taggggaaaa tgcaatagtt	660
gtgagtgagg ttacatgg agattcaaat gttctttaa aatttgctcc aatgcctgtg	720
tttaattta gtttatgtcaattttcaatgggaaatgggagaga taacttaatt	780
tcagactcta ttagtgggt tgattcctcg ttgtataatt taaatgttt tcatttcca	840
tttattgata gtcatgatct tgacagatt atttctgagc ttgtagatacgaaatatactcg	900
ggagatgtaa tatctgccac aaaacaatat ttgcttagtta atgcttact actctcatta	960
acaggcatgc caactattta ctatggtgat gaaataggac tttagggatg gaagtggcat	1020
tcagaaccat gggatatacc tggcggtgag ccaatgcaat ggtataaggta caaaaaaaaagg	1080
aacggtc当地 cttattggac aaaagagtt tacgaaggta ttactgaagg aagtgc当地	1140
gaagatggag caatatacga tgatccagat gatggaggat ctgtagaaga acaagaaaaat	1200
ggatattcta tttaaactt tttaaagaa ttatcaact tacgaaaaga ttatccggca	1260
cttgcttttg gaagtaactac gattgagaga gattggaaaa acttgtatgt ttgaaaaag	1320
tcgtataact tccaggatgt tcttgttta attaaccttg atccaacgta ttcaaataca	1380
tacgaagttc cagaaggta taaatgggtg tggtatgcat ttgtatgcat ttgtatgcat	1440
gaatttggag caaaagatga aatgattttcagaatacaa gttggacgat aaatccaagg	1500
caaattata tattttaaa gtaa	1524

<210> 96

<211> 507

<212> PRT

<213> Bacterial

<400> 96

Met Tyr Thr Leu Phe Ile Arg Ser Tyr Phe Asp Thr Asp Gly Asp Gly	
1 5 10 15	
Val Gly Asp Phe Ser Gly Val Ala Glu Lys Val Asp Tyr Leu Lys Ser	
20 25 30	
Leu Gly Val Asp Thr Val Trp Phe Leu Pro Phe Asn Lys Ser Lys Ser	
35 40 45	
Tyr His Gly Tyr Asp Val Glu Asp Tyr Tyr Asp Val Glu Pro Asp Tyr	
50 55 60	
Gly Thr Leu Gln Asp Leu Asp Asn Met Ile Lys Val Leu Asn Glu Asn	
65 70 75 80	
Gly Ile Lys Val Val Met Asp Leu Val Val Asn His Thr Ser Asp Thr	
85 90 95	
His Pro Trp Phe Leu Asp Ala Val Glu Asn Thr Thr Asn Ser Pro Tyr	
100 105 110	
Trp Asn Tyr Tyr Ile Met Ser Leu Asp Glu Pro Gln Asn Lys Asn His	
115 120 125	
Trp His Tyr Lys Val Asn Ser Lys Gly Gln Thr Val Trp Tyr Phe Gly	
130 135 140	
Leu Phe Asp Ser Ser Met Pro Asp Leu Asn Tyr Asp Asn Pro Lys Val	
145 150 155 160	
Met Asp Glu Val Lys Lys Ile Ile Asp Phe Trp Ala Asp Met Gly Val	
165 170 175	
Asp Gly Phe Arg Leu Asp Ala Ala Lys His Tyr Tyr Gly Phe Asp Trp	
180 185 190	
Ser Asp Gly Ile Glu Gln Ser Ala Ser Val Ala Lys Glu Ile Glu Asp	
195 200 205	
Tyr Ile Lys Asp Lys Leu Gly Glu Asn Ala Ile Val Val Ser Glu Val	
210 215 220	
Tyr Asp Gly Asp Ser Asn Val Leu Leu Lys Phe Ala Pro Met Pro Val	
225 230 235 240	
Phe Asn Phe Ser Phe Met Tyr Asn Leu Arg Gly Asn Phe Glu Gly Arg	

245	250	255
Asp Asn Leu Ile Ser Asp Ser Ile Ser Trp Val Asp Ser Ser	Leu Tyr	
260	265	270
Asn Leu Asn Val Phe His Pro Phe Ile Asp Ser His Asp Leu Asp		
275	280	285
Arg Phe Ile Ser Glu Leu Val Asp Ser Lys Tyr Gln Gly Asp Val Ile		
290	295	300
Ser Ala Thr Lys Gln Tyr Leu Leu Val Asn Ala Leu Leu Leu Ser Leu		
305	310	315
Thr Gly Met Pro Thr Ile Tyr Tyr Gly Asp Glu Ile Gly Leu Arg Gly		
325	330	335
Trp Lys Trp His Ser Glu Pro Trp Asp Ile Pro Val Arg Glu Pro Met		
340	345	350
Gln Trp Tyr Lys Asp Gln Lys Gly Asn Gly Gln Thr Tyr Trp Thr Lys		
355	360	365
Glu Phe Tyr Glu Gly Ile Thr Glu Gly Ser Ala Asn Glu Asp Gly Ala		
370	375	380
Ile Tyr Asp Asp Pro Asp Asp Gly Val Ser Val Glu Glu Gln Glu Asn		
385	390	395
Gly Tyr Ser Ile Leu Asn Phe Phe Lys Glu Phe Ile Asn Leu Arg Lys		
405	410	415
Asp Tyr Pro Ala Leu Ala Phe Gly Ser Thr Thr Ile Glu Arg Asp Trp		
420	425	430
Lys Asn Leu Tyr Val Leu Lys Lys Ser Tyr Asn Phe Gln Asp Val Leu		
435	440	445
Val Leu Ile Asn Leu Asp Pro Thr Tyr Ser Asn Thr Tyr Glu Val Pro		
450	455	460
Glu Gly Tyr Lys Trp Val Trp Tyr Ala Phe Phe Asp Gly Asp Asn Tyr		
465	470	475
Glu Phe Gly Ala Lys Asp Glu Met Ile Leu Gln Asn Thr Ser Trp Thr		
485	490	495
Ile Asn Pro Arg Gln Ile Tyr Ile Phe Val Lys		
500	505	

<210> 97

<211> 2931

<212> DNA

<213> Bacterial

<400> 97

atgaggaaga agatgtcgca ttcaagattt acttttcttt tgatcttagc actttttatt	60
ttcttcctccg gttgtatttc agaagttaaa agcgaaagcc agctactaaaa ttcaaagcaa	120
aaggcccttg taaaagttaaa tggataatacg ccatttattt agaatgctac tactaatacg	180
tggagtgttt caaaaagaatc ttttatttattt tatcttagta aagtgatttat tactgttaag	240
gatgtttttt atcagattgt atttactaag gaaacaacga aaaaaacaaa tattttttttt	300
gaaatttgaac ttcttcctgg aacttataca tttgagttaa aaggatatga ggaagattta	360
gttatattttt cagggggaaaa agttaatcag atcatagatg aaaaaataaa tattttttttt	420
gtcgaaaactt tttttttttt tggatagtt aggacaataa ttgaagttga cgatattttt	480
tataaaaaattt atgatattttt atcggcaacg ttgatcttca aaaaagatatac agcacaagaa	540
gattatgtttt aggtacctgt aacacttaca ggtacttcca cttaattaa taaagaattttt	600
tatccctggta tggactgtt aaaaattttaa gttgatctta aatcaaaggaa tgcaagtatgt	660
ttaccagaaaa aagttcatct tggaaatgaa tttagcatag aagtgcctcc agcaaagaca	720
aaaagtttaa catttatgtt agtctttgtt acagagttttaa atgaaccgaa atttagtagtt	780
gtatccctgc aaatttgagtt gcctttgtt gatcctgtt caaattttaa tggagagata	840
aatgtttttttt aaggaaatct ttcaatgtt tggactttt cagatccaaa tgcagaattttt	900
tatgtgtata aagaattttaa ggaacaagga gaatattttgtt atgaattttgtt tggaaaaaca	960
cgcgagaaaa gttatacaat agaaaattttt accaagcaag aattcgataa attttgttga	1020

atcgctatta	atgttatgc	caacggtaaa	gagagtggat	tagttgttct	aaaaaaaagaa	1080
aatattaaac	ttatagattt	agaaagtgtt	gacagtataa	gtgctactta	taacgttgat	1140
acgaatgagc	ttaagggttga	tttggattat	accaattcaa	gtgttacttt	tgaagttttg	1200
aaaaaaaggtt	taaatagcaa	tgaatacgaa	ataatttctc	aactaacaca	aaattctttt	1260
tcaacagaat	tcacaggcag	gcaattttgg	gatcttgaga	aaattgcgt	tagagtagtt	1320
gctaattggat	ttgaaagtaa	gattaatgag	atttcaagag	atgatataac	tataacatca	1380
ttgaatcttc	ctcttacatc	gtctactatg	tatacactat	tcatccgttc	atattttgat	1440
actgatgggt	atgggttagg	agacttttagt	ggagttgctg	aaaaggtaga	ttatctaaaa	1500
tctcttggag	tagatacagt	ctgggtttta	ccattaataa	aaagtaaattc	ttatcatgga	1560
tatgtatgtt	aagattacta	tgatgttagaa	ccagattatg	gaacactaca	agatcttgat	1620
aatatgataa	aagttctaaa	tgaaaatgga	ataaaaggtag	taatggatct	tggtttaat	1680
catacgtcgg	atacacatcc	atggtttctt	gatgcagttg	aaaatactac	taattctcca	1740
tattggaaact	attacattat	gagcttggat	gagcctcaaa	ataagaatca	ttggcattat	1800
aaggtaattt	caaaaggaca	aactgtgtgg	tattttggat	tggttggattc	atcaatgccg	1860
gacccttaatt	acgacaaccc	taaagtaatg	gatgaagtga	aaaaaataat	agattttgg	1920
gcagatatatgg	gagtagatgg	attttagatta	gatgcagcaa	aacattattt	tggatttgac	1980
tggagcgtat	gaattgaaca	gtcagcaagc	gttgc当地	agatagaaga	ctatataaaa	2040
gataaacttag	gggaaaatgc	aatagttgtt	agtggatgtt	acgatggaga	ttccaaatgtt	2100
cttttaaaat	ttgctccat	gcctgtgttt	aatttttagtt	ttatgtacaa	tttgagagga	2160
aattttgaag	ggagagataa	cttaatttca	gactcttta	gttgggttga	ttcctcggtt	2220
tataatttaa	atgttttca	tttccattt	attgatagtc	atgatcttga	cagatttatt	2280
tctgagctt	tagatagtaa	atatcaggga	gatgtatata	ctgccc当地	acaatatttgc	2340
ctagttaat	cttactact	ctcattaaca	ggcatgcca	ctatttacta	tggtgatgaa	2400
ataggactta	ggggatggaa	gtggcattca	gaaccatggg	atatacctgt	gcgtgagcca	2460
atgcaatgg	ataaggatca	aaaagggaaac	ggtcaactt	attggacaaa	agagtttac	2520
gaaggtatta	ctgaaggaag	tgctaatgaa	gatggagcaa	tatacgatga	tccagatgt	2580
ggagtatctg	tagaagaaca	agaaaatgga	tattcttta	taaacttttt	taaagaattt	2640
atcaacttac	gaaaagatta	tccggactt	gctttggaa	gtactacgt	tgagagagat	2700
tggaaaaact	tgtatgttt	gaaaaagtcg	tataacttcc	aggatgttct	tgtattaatt	2760
aaccttgc	caacgtattc	aaatacatac	gaagttccag	aagggtataa	atgggtgtgg	2820
tatgcatttt	ttgatgttga	caactatgaa	tttggagcaa	aagatgaaat	gatttacag	2880
aatacaagtt	ggacgataaa	tccaaggc	atttatatat	ttgtaaagta	a	2931

<210> 98

<211> 976

<212> PRT

<213> Bacterial

<400> 98

Met	Arg	Lys	Lys	Met	Ser	His	Ser	Arg	Phe	Thr	Phe	Leu	Leu	Ile	Leu
1				5				10				15			
Ala	Leu	Phe	Ile	Phe	Phe	Ser	Gly	Cys	Ile	Ser	Glu	Val	Lys	Ser	Glu
								20				25			30
Ser	Gln	Leu	Leu	Asn	Ser	Lys	Gln	Lys	Val	Leu	Val	Lys	Val	Asn	Val
								35				40			45
Asn	Thr	Pro	Phe	Ile	Glu	Asn	Ala	Thr	Thr	Asn	Thr	Trp	Ser	Val	Ser
								50				55			60
Lys	Glu	Ser	Phe	Ile	Asp	Tyr	Leu	Ser	Lys	Val	Ile	Ile	Thr	Val	Lys
								65				70			75
Asp	Val	Asn	Asp	Gln	Ile	Val	Phe	Thr	Lys	Glu	Thr	Thr	Asn	Lys	Thr
								85				90			95
Asn	Ile	Tyr	Phe	Glu	Ile	Glu	Leu	Leu	Pro	Gly	Thr	Tyr	Thr	Phe	Glu
								100				105			110
Val	Lys	Gly	Tyr	Glu	Glu	Asp	Leu	Val	Ile	Phe	Ser	Gly	Glu	Lys	Val
								115				120			125
Asn	Gln	Ile	Ile	Asp	Glu	Lys	Asn	Asn	Ile	Val	Asn	Val	Glu	Thr	Phe
								130				135			140

Phe Val Asn Gly Ile Val Arg Thr Ile Ile Glu Val Asp Asp Ile Ile
 145 150 155 160
 Tyr Lys Asn Tyr Asp Ile Thr Ser Ala Thr Leu Ile Phe Lys Lys Asp
 165 170 175
 Thr Ala Gln Glu Asp Tyr Glu Glu Val Pro Val Thr Leu Thr Gly Thr
 180 185 190
 Ser Thr Leu Ile Asn Lys Glu Leu Tyr Pro Gly Met Trp Thr Val Lys
 195 200 205
 Phe Glu Val Asp Leu Lys Ser Lys Asp Ala Ser Met Leu Pro Glu Lys
 210 215 220
 Val His Leu Glu Asn Glu Phe Ser Ile Glu Val Leu Pro Ala Lys Thr
 225 230 235 240
 Lys Ser Leu Thr Phe Asn Val Val Phe Asp Thr Glu Val Asn Glu Pro
 245 250 255
 Lys Leu Val Val Phe Pro Gln Ile Glu Leu Pro Phe Val Asp Pro
 260 265 270
 Val Thr Asn Leu Ser Gly Glu Ile Asn Glu Leu Glu Gly Asn Leu Ser
 275 280 285
 Met Asn Trp Asp Tyr Ser Asp Pro Asn Ala Glu Phe Tyr Val Tyr Lys
 290 295 300
 Glu Leu Glu Glu Gln Gly Glu Tyr Leu Tyr Glu Phe Val Gly Lys Thr
 305 310 315 320
 Arg Glu Lys Ser Tyr Thr Ile Glu Asn Phe Thr Lys Gln Glu Phe Asp
 325 330 335
 Lys Phe Ser Gly Ile Ala Ile Asn Val Tyr Ala Asn Gly Lys Glu Ser
 340 345 350
 Gly Leu Val Val Leu Lys Lys Glu Asn Ile Lys Leu Ile Asp Leu Glu
 355 360 365
 Ser Val Asp Ser Ile Ser Ala Thr Tyr Asn Val Asp Thr Asn Glu Leu
 370 375 380
 Lys Leu Asp Trp Asn Tyr Thr Asn Ser Ser Val Thr Phe Glu Val Leu
 385 390 395 400
 Lys Lys Gly Ile Asn Ser Asn Glu Tyr Glu Ile Ile Ser Gln Leu Thr
 405 410 415
 Gln Asn Ser Phe Ser Thr Glu Phe Thr Gly Arg Gln Phe Trp Asp Leu
 420 425 430
 Glu Lys Ile Ala Ile Arg Val Val Ala Asn Gly Phe Glu Ser Lys Ile
 435 440 445
 Asn Glu Ile Ser Arg Asp Asp Ile Thr Ile Thr Ser Leu Asn Leu Pro
 450 455 460
 Leu Thr Ser Ser Thr Met Tyr Thr Leu Phe Ile Arg Ser Tyr Phe Asp
 465 470 475 480
 Thr Asp Gly Asp Gly Val Gly Asp Phe Ser Gly Val Ala Glu Lys Val
 485 490 495
 Asp Tyr Leu Lys Ser Leu Gly Val Asp Thr Val Trp Phe Leu Pro Phe
 500 505 510
 Asn Lys Ser Lys Ser Tyr His Gly Tyr Asp Val Glu Asp Tyr Tyr Asp
 515 520 525
 Val Glu Pro Asp Tyr Gly Thr Leu Gln Asp Leu Asp Asn Met Ile Lys
 530 535 540
 Val Leu Asn Glu Asn Gly Ile Lys Val Val Met Asp Leu Val Val Asn
 545 550 555 560
 His Thr Ser Asp Thr His Pro Trp Phe Leu Asp Ala Val Glu Asn Thr
 565 570 575
 Thr Asn Ser Pro Tyr Trp Asn Tyr Tyr Ile Met Ser Leu Asp Glu Pro
 580 585 590
 Gln Asn Lys Asn His Trp His Tyr Lys Val Asn Ser Lys Gly Gln Thr

595	600	605
Val Trp Tyr Phe Gly Leu Phe Asp Ser Ser Met Pro Asp Leu Asn Tyr		
610	615	620
Asp Asn Pro Lys Val Met Asp Glu Val Lys Lys Ile Ile Asp Phe Trp		
625	630	635
Ala Asp Met Gly Val Asp Gly Phe Arg Leu Asp Ala Ala Lys His Tyr		
645	650	655
Tyr Gly Phe Asp Trp Ser Asp Gly Ile Glu Gln Ser Ala Ser Val Ala		
660	665	670
Lys Glu Ile Glu Asp Tyr Ile Lys Asp Lys Leu Gly Glu Asn Ala Ile		
675	680	685
Val Val Ser Glu Val Tyr Asp Gly Asp Ser Asn Val Leu Leu Lys Phe		
690	695	700
Ala Pro Met Pro Val Phe Asn Phe Ser Phe Met Tyr Asn Leu Arg Gly		
705	710	715
Asn Phe Glu Gly Arg Asp Asn Leu Ile Ser Asp Ser Ile Ser Trp Val		
725	730	735
Asp Ser Ser Leu Tyr Asn Leu Asn Val Phe His Phe Pro Phe Ile Asp		
740	745	750
Ser His Asp Leu Asp Arg Phe Ile Ser Glu Leu Val Asp Ser Lys Tyr		
755	760	765
Gln Gly Asp Val Ile Ser Ala Thr Lys Gln Tyr Leu Leu Val Asn Ala		
770	775	780
Leu Leu Leu Ser Leu Thr Gly Met Pro Thr Ile Tyr Tyr Gly Asp Glu		
785	790	795
Ile Gly Leu Arg Gly Trp Lys Trp His Ser Glu Pro Trp Asp Ile Pro		
805	810	815
Val Arg Glu Pro Met Gln Trp Tyr Lys Asp Gln Lys Gly Asn Gly Gln		
820	825	830
Thr Tyr Trp Thr Lys Glu Phe Tyr Glu Gly Ile Thr Glu Gly Ser Ala		
835	840	845
Asn Glu Asp Gly Ala Ile Tyr Asp Asp Pro Asp Asp Gly Val Ser Val		
850	855	860
Glu Glu Gln Glu Asn Gly Tyr Ser Ile Leu Asn Phe Phe Lys Glu Phe		
865	870	875
Ile Asn Leu Arg Lys Asp Tyr Pro Ala Leu Ala Phe Gly Ser Thr Thr		
885	890	895
Ile Glu Arg Asp Trp Lys Asn Leu Tyr Val Leu Lys Lys Ser Tyr Asn		
900	905	910
Phe Gln Asp Val Leu Val Leu Ile Asn Leu Asp Pro Thr Tyr Ser Asn		
915	920	925
Thr Tyr Glu Val Pro Glu Gly Tyr Lys Trp Val Trp Tyr Ala Phe Phe		
930	935	940
Asp Gly Asp Asn Tyr Glu Phe Gly Ala Lys Asp Glu Met Ile Leu Gln		
945	950	955
Asn Thr Ser Trp Thr Ile Asn Pro Arg Gln Ile Tyr Ile Phe Val Lys		
965	970	975

<210> 99
<211> 1536
<212> DNA
<213> Bacterial

<400> 99

atgtacacac tcttcatccg ctcttttac gatacaaaca acgacggtgt aggtgactac	60
aacgggttg cccaaaaagt agactatctc aaaacgcttg gagtgatagc agttgggtc	120
ttgccgttca acaaagcaaa atcgaccac gttacgatg ttgaagacta ctacgatgt	180

gaacctgact atggaacata cgcacaactt gaaaatatga taaagacact caatcagaac	240
ggaattcggt ttgttatgga ctgggttgtg aaccacactt ccgatacaca ctcgtggttt	300
ctggatgccg ttgagaacac aacgaattcg aaatattgga gctactacat aatgacactt	360
gaaaatagag acgggtggaa tcactggcat tggaaagataa actcaaaagg gcaaaaagtt	420
tactacttcg gactgttgaa ctcataatg cccgatttgaa atttcgacaa tccacaagtg	480
atgaacgaaa tcaagagaat aatcgatttc tggataacag tgggtgtgaa tggttcaga	540
cttcatgcac caaagcacta caaaggctgg gattgggacg acggcatttc aggttcagca	600
gcaatcgca gggaaataga aagttacatc aggagcaagt taggaaacga tgcgatagtt	660
gtcggggaaag tgtacgatgg aaatccatcg gttcttcac aatttcgacc gatgccggcg	720
ttcaacttca cattcatgta tgaataaca ggcaaccatg agggggaaaga taacctgctg	780
ggagaaaaca tttcatgggt taatggagcg agttattatc tcaacgtaaa acattcccg	840
ttcatagaca atcacgattt gaacagatgg atatcgatac ttatcgacca aaagtagatg	900
ggaaacacac aagttggtaa gaagcagttat atttaacaa atgcgcttt gcttcctta	960
aacggtatgc ctgttatttta tatggaaat gaaataggct tgagaggatg gaaatgggaa	1020
caagaccgtt gggatttgcc ggtgagagag ccgatgcagt gtcgcaag tcaaagtggaa	1080
gctgggcaga catgggtggac aaagcctgtc taccagcaaa aaggaatcac atttggaaat	1140
gcaaacgtcg atggtgcgat gtacgatgat ccaaattgtatg gggtttcagt agaagagcag	1200
atgaatggtt acacgataaa taacttcttt aaacaattca taacccttag gaagacatat	1260
ccggctctat cgaaaggttc gataacgata gaacgcgact ggaagaacct gtacgttac	1320
aaacgagtct acggaaatca ggaagtgcctt gtattgataa acttagaccc aacttggccg	1380
aacaattaca cggttaccagg tggatacagg tgggtctggat atgcgttctt taatgggagtt	1440
ttgtttgaat ttggcaataa aaacgaatca ccactgagcc aagataacaa ctggacagtc	1500
aatccaaggc aagtgtatgt gtttgtgaag gactaa	1536

<210> 100

<211> 511

<212> PRT

<213> Bacterial

<400> 100

Met Tyr Thr Leu Phe Ile Arg Ser Phe Tyr Asp Thr Asn Asn Asp Gly	
1 5 10 15	
Val Gly Asp Tyr Asn Gly Val Ala Gln Lys Val Asp Tyr Leu Lys Thr	
20 25 30	
Leu Gly Val Asp Thr Val Trp Phe Leu Pro Phe Asn Lys Ala Lys Ser	
35 40 45	
Tyr His Gly Tyr Asp Val Glu Asp Tyr Tyr Asp Val Glu Pro Asp Tyr	
50 55 60	
Gly Thr Tyr Ala Gln Leu Glu Asn Met Ile Lys Thr Leu Asn Gln Asn	
65 70 75 80	
Gly Ile Arg Val Val Met Asp Leu Val Val Asn His Thr Ser Asp Thr	
85 90 95	
His Ser Trp Phe Leu Asp Ala Val Glu Asn Thr Thr Asn Ser Lys Tyr	
100 105 110	
Trp Ser Tyr Tyr Ile Met Thr Leu Glu Asn Arg Asp Gly Trp Asn His	
115 120 125	
Trp His Trp Lys Ile Asn Ser Lys Gly Gln Lys Val Tyr Tyr Phe Gly	
130 135 140	
Leu Phe Asp Ser Ser Met Pro Asp Leu Asn Phe Asp Asn Pro Gln Val	
145 150 155 160	
Met Asn Glu Ile Lys Arg Ile Ile Asp Phe Trp Ile Thr Val Gly Val	
165 170 175	
Asp Gly Phe Arg Leu Asp Ala Pro Lys His Tyr Lys Gly Trp Asp Trp	
180 185 190	
Asp Asp Gly Ile Ser Gly Ser Ala Ala Ile Ala Arg Glu Ile Glu Ser	
195 200 205	
Tyr Ile Arg Ser Lys Leu Gly Asn Asp Ala Ile Val Val Gly Glu Val	

210	215	220
Tyr Asp Gly Asn Pro Ser Val Leu Ser Gln Phe Ala Pro Met Pro Ala		
225	230	235
Phe Asn Phe Thr Phe Met Tyr Gly Ile Thr Gly Asn His Glu Gly Lys		240
245	250	255
Asp Asn Leu Leu Gly Glu Thr Ile Ser Trp Val Asn Gly Ala Ser Tyr		
260	265	270
Tyr Leu Asn Val Lys His Phe Pro Phe Ile Asp Asn His Asp Leu Asn		
275	280	285
Arg Trp Ile Ser Ile Leu Ile Asp Gln Lys Tyr Ser Gly Asn Thr Gln		
290	295	300
Val Gly Thr Lys Gln Tyr Ile Leu Thr Asn Ala Leu Leu Ser Leu		
305	310	315
Asn Gly Met Pro Val Ile Tyr Tyr Gly Asn Glu Ile Gly Leu Arg Gly		320
325	330	335
Trp Lys Trp Gly Gln Asp Pro Trp Asp Leu Pro Val Arg Glu Pro Met		
340	345	350
Gln Trp Tyr Ala Ser Gln Ser Gly Ala Gly Gln Thr Trp Trp Thr Lys		
355	360	365
Pro Val Tyr Gln Gln Lys Gly Ile Thr Phe Gly Asn Ala Asn Val Asp		
370	375	380
Gly Ala Met Tyr Asp Asp Pro Asn Asp Gly Val Ser Val Glu Glu Gln		
385	390	395
Met Asn Gly Tyr Thr Ile Asn Asn Phe Phe Lys Gln Phe Ile Thr Leu		400
405	410	415
Arg Lys Thr Tyr Pro Ala Leu Ser Lys Gly Ser Ile Thr Ile Glu Arg		
420	425	430
Asp Trp Lys Asn Leu Tyr Val Ile Lys Arg Val Tyr Gly Asn Gln Glu		
435	440	445
Val Leu Val Leu Ile Asn Leu Asp Pro Thr Trp Pro Asn Asn Tyr Thr		
450	455	460
Leu Pro Gly Gly Tyr Arg Trp Val Trp Tyr Ala Phe Phe Asn Gly Ser		
465	470	475
Leu Phe Glu Phe Gly Asn Lys Asn Glu Ser Pro Leu Ser Gln Asp Thr		480
485	490	495
Asn Trp Thr Val Asn Pro Arg Gln Val Tyr Val Phe Val Lys Asp		
500	505	510

<210> 101
<211> 2136
<212> DNA
<213> Environmental

<400> 101

ttcgattct ttccaaagtt aatatccccct tttccgcaaa acaccagaga gtggcagcga	60
agcgcagtat caagagacac tgaacaatta caaaggaaag taataatgtat caatttgaaa	120
aaaaaacacca ttagccccct ggtcgaggat atggtattag gctttgcattt caacgcattt	180
gcgggttccta gaaccgcattt tgacacacctc tttgaatggaa aatggaaagtt tgttgcacag	240
gagttgtggaa catttctcgg acctaaaggc tttgccgcag tgcaagtctc tccgcactt	300
aaatctcaca acacggatgc atgggtgggc cggttatcaac ccgttagtta tgctttgaa	360
ggacgcagcg gtaatcgacat ccaattttaaa aatatggtgc aacgttgtaa agctgtggc	420
gtcgatatat acgttagatgc agtgatttaac cacatggcag cctacgcacat aaattttccct	480
gatgttccctt atagcagttaa tgactttaac tcctgtacag gagatattgtat ctataataac	540
cgttggccaaa cacagcattt tgattttagtc ggtcttaatg atctaaaaac aggatctgac	600
tacgtccgccc aaaaaatagc ggattatatg aacgacgcaa tcagttatggg tgtagctgg	660
ttccgttattt atgcagccaa acatatacca gcaggtgata tagctgccat taaagttaaa	720
ttaaatggta atccatacat cttccaagag gtaattggtg catccggcga acctgttcga	780

ccgactgaat acacctttat cgggttgttc acggaatttc aatttgctcg aaaattgggt	840
ccagccttcc gcaatagtaa tattgcttgg ttaaaagaca ttggcagtca aatgaaatta	900
tccagtgctg atgcccgtaa atttgtaacg aatcatgatg aagagcgtca taaccgaaat	960
ggcccttattt ggcacggcgt tcaaggtaat ggtagtgcata tagcaaataat ttccacctt	1020
gcttaccctt acggctatcc aaaaatcatg tcaggataact tcttccacgg tgactttaac	1080
gcagctccac caagcagtgg tatacacaca ggaaatgcgt gtggtttga tggcggagac	1140
tgggtatgcg aacacaaaatg ggcgttattt gctaacatgg ttgccttccg caactataca	1200
gcaagcgaat ggcgtatcg taatttggtgg caaaacagta acgaccaaat tgctttgg	1260
cgcgggtgtt taggtttgt tgtttataat aaacgtgcta atggtagcat taatcaaagt	1320
tttgatacgg gaatgcctga tggccaatac tgtaacataa tagaaagctaa ctggatgaa	1380
agcaccggcc aatgttagtgc agtacagat tccaaacggtc aagccgttat taccgtcagt	1440
ggtgggcaag ctaactttaa tggtagcaggc gatcatgctg ctgcaattca tggtggcgca	1500
aaaattgggt atcaatgttag tggtagatgat tgcccatgta caggatccga ttgtataataat	1560
gatcctaaac ctgattttgc agtaccagca acatcaattt gtacatcaga aaatttacct	1620
acgctatatt actggggagc acaggctaca gatagcttag cgaatgcagc ttggccaggt	1680
gtcgcaatgc aaacaaatgg cgactttaag tgtcatgatt taggtgtcga actaaccaaa	1740
attaacgcca tcttttagtga caatggtgc aataaaacag ctgatctaact tgttactgg	1800
gcaggttgtt ataaagacgg gacttggagc accttacaaa attgtggctt tgaaattacc	1860
ggtgcacaaa ccaatccagt cgggtggcgac gaagtctgg acttccgagg tactgctaatt	1920
gactgggtta aagcacaatt agattatgac gcaactagcgt gttgtattt cacaatacaa	1980
agctttaatg gtgaagaagc acctgcgcgt tttaaaattt ataatggtag ttggactgaa	2040
gcttatccaa cagctgatta ccaagttaca gataacaatt cataccgcat taactttaat	2100
agcgatagca aagcgattac agtaaacgca caataa	2136

<210> 102

<211> 711

<212> PRT

<213> Environmental

<400> 102

Met Arg Phe Phe Pro Lys Leu Ile Ser Pro Phe Pro Gln Asn Thr Arg	
1 5 10 15	
Glu Trp Gln Arg Ser Ala Val Ser Arg Asp Thr Glu Gln Leu Gln Arg	
20 25 30	
Lys Val Ile Met Ile Asn Leu Lys Lys Asn Thr Ile Ser Ala Leu Val	
35 40 45	
Ala Gly Met Val Leu Gly Phe Ala Ser Asn Ala Met Ala Val Pro Arg	
50 55 60	
Thr Ala Phe Val His Leu Phe Glu Trp Lys Trp Glu Asp Val Ala Gln	
65 70 75 80	
Glu Cys Glu Thr Phe Leu Gly Pro Lys Gly Phe Ala Ala Val Gln Val	
85 90 95	
Ser Pro Pro Thr Lys Ser His Asn Thr Asp Ala Trp Trp Gly Arg Tyr	
100 105 110	
Gln Pro Val Ser Tyr Ala Phe Glu Gly Arg Ser Gly Asn Arg Ser Gln	
115 120 125	
Phe Lys Asn Met Val Gln Arg Cys Lys Ala Val Gly Val Asp Ile Tyr	
130 135 140	
Val Asp Ala Val Ile Asn His Met Ala Ala Tyr Asp Arg Asn Phe Pro	
145 150 155 160	
Asp Val Pro Tyr Ser Ser Asn Asp Phe Asn Ser Cys Thr Gly Asp Ile	
165 170 175	
Asp Tyr Asn Asn Arg Trp Gln Thr Gln His Cys Asp Leu Val Gly Leu	
180 185 190	
Asn Asp Leu Lys Thr Gly Ser Asp Tyr Val Arg Gln Lys Ile Ala Asp	
195 200 205	
Tyr Met Asn Asp Ala Ile Ser Met Gly Val Ala Gly Phe Arg Ile Asp	

210	215	220
Ala Ala Lys His Ile Pro Ala Gly Asp Ile Ala Ala Ile Lys Gly Lys		
225	230	235
Leu Asn Gly Asn Pro Tyr Ile Phe Gln Glu Val Ile Gly Ala Ser Gly		240
245	250	255
Glu Pro Val Arg Pro Thr Glu Tyr Thr Phe Ile Gly Gly Val Thr Glu		
260	265	270
Phe Gln Phe Ala Arg Lys Leu Gly Pro Ala Phe Arg Asn Ser Asn Ile		
275	280	285
Ala Trp Leu Lys Asp Ile Gly Ser Gln Met Glu Leu Ser Ser Ala Asp		
290	295	300
Ala Val Thr Phe Val Thr Asn His Asp Glu Glu Arg His Asn Pro Asn		
305	310	315
Gly Pro Ile Trp His Gly Val Gln Gly Asn Gly Tyr Ala Leu Ala Asn		320
325	330	335
Ile Phe Thr Leu Ala Tyr Pro Tyr Gly Tyr Pro Lys Ile Met Ser Gly		
340	345	350
Tyr Phe Phe His Gly Asp Phe Asn Ala Ala Pro Pro Ser Ser Gly Ile		
355	360	365
His Thr Gly Asn Ala Cys Gly Phe Asp Gly Gly Asp Trp Val Cys Glu		
370	375	380
His Lys Trp Arg Gly Ile Ala Asn Met Val Ala Phe Arg Asn Tyr Thr		
385	390	395
400		400
Ala Ser Glu Trp Arg Ile Ser Asn Trp Trp Gln Asn Ser Asn Asp Gln		
405	410	415
Ile Ala Phe Gly Arg Gly Leu Gly Phe Val Val Ile Asn Lys Arg		
420	425	430
Ala Asn Gly Ser Ile Asn Gln Ser Phe Asp Thr Gly Met Pro Asp Gly		
435	440	445
Gln Tyr Cys Asn Ile Ile Glu Ala Asn Phe Asp Glu Ser Thr Gly Gln		
450	455	460
Cys Ser Ala Ala Thr Asp Ser Asn Gly Gln Ala Val Ile Thr Val Ser		
465	470	475
480		480
Gly Gly Gln Ala Asn Phe Asn Val Ala Gly Asp His Ala Ala Ile		
485	490	495
His Val Gly Ala Lys Ile Gly Asp Gln Cys Ser Gly Asp Asp Cys Pro		
500	505	510
Cys Thr Gly Ser Asp Cys Asn Asn Asp Pro Lys Pro Asp Phe Ala Val		
515	520	525
Pro Ala Thr Ser Ile Cys Thr Ser Glu Asn Leu Pro Thr Leu Tyr Tyr		
530	535	540
Trp Gly Ala Gln Pro Thr Asp Ser Leu Ala Asn Ala Ala Trp Pro Gly		
545	550	555
560		560
Val Ala Met Gln Thr Asn Gly Asp Phe Lys Cys His Asp Leu Gly Val		
565	570	575
Glu Leu Thr Lys Ile Asn Ala Ile Phe Ser Asp Asn Gly Ala Asn Lys		
580	585	590
Thr Ala Asp Leu Thr Val Thr Gly Ala Gly Cys Tyr Lys Asp Gly Thr		
595	600	605
Trp Ser Thr Leu Gln Asn Cys Gly Phe Glu Ile Thr Gly Ala Gln Thr		
610	615	620
Asn Pro Val Gly Gly Asp Glu Val Trp Tyr Phe Arg Gly Thr Ala Asn		
625	630	635
640		640
Asp Trp Gly Lys Ala Gln Leu Asp Tyr Asp Ala Thr Ser Gly Leu Tyr		
645	650	655
Tyr Thr Ile Gln Ser Phe Asn Gly Glu Glu Ala Pro Ala Arg Phe Lys		
660	665	670

Ile Asp Asn Gly Ser Trp Thr Glu Ala Tyr Pro Thr Ala Asp Tyr Gln
 675 680 685
 Val Thr Asp Asn Asn Ser Tyr Arg Ile Asn Phe Asn Ser Asp Ser Lys
 690 695 700
 Ala Ile Thr Val Asn Ala Gln
 705 710

<210> 103

<211> 1650

<212> DNA

<213> Environmental

<400> 103

gtgctaacgt ttcaccgcat cattcgaaaa ggatggatgt tcctgctcgc gtttttgc	60
actgcctcgc tggctgccc aacaggacag cccgccaagg ctgcccacc gtttaacggc	120
accatgatgc agtattttga atggtaacttgc cggatgatg gcacgatgtg gaccaaagtgc	180
gccaatgaag ccaacaacctt atccagcctt ggcatacccg ctctttggct gcccggc	240
tacaaaggaa caagccgcag cgacgttaggg tacggatgt acgacttgta tgacccggc	300
gaattcaatc aaaaaggggac cgtccgcaca aaatacggaa caaaagctca atatctcaa	360
gccattcaag ccgccccacgc cgctggatgc caagtgtacg ccgatgtcgt gttcgaccat	420
aaaggcggcgc ccgacggcgc ggaatgggtg gacgcgtcgc aagtcaatcc gtccgaccgc	480
aaccaagaaa tctcgggcac ctatcaaattc caagcatggaa cgaaatttgc ttttccggg	540
cggggcaaca cctactccag cttaagtgg cgctgtacc attttgacgg cggtgattgg	600
gacgaaagcc gaaaatttgc cgcatttac aaattccgcg gcataccgaa agcgtggat	660
tggaaatgtt acacggaaaa cgaaaactat gactacttgc ttatgcgc cttgtatgt	720
gatcatcccg aagtctgtac cgagctgaaa aactgggggg aatggatgtt caacacaacg	780
aacattgtt ggttccggct tttatgcgc aagcatattt agttcagtt ttttctgtat	840
tgttgcgtt atgtgcgttc tcagactggc aagccgttat ttaccgtcgg ggaatattgg	900
agctatgaca tcaacaagtt gcacaattac attacggaaaa caaacggaaac gatgtcttgc	960
tttgcgttcc cgttacacaa caaattttt accgccttcca aatcagggggg cgcatgtat	1020
atgcgcacgt taatgcacca tactctcatg aaagatcaac cgacattggc cgtcaccc	1080
gttgataatc atgacaccgc acccggccaa ggcgtcagt catgggtcga cccatgggtc	1140
aaaccgttgg cttaacgcctt tattcttact cggcagggaa gataccgtg cgtctttat	1200
ggtgactatt atggcattcc acaatataac attccttcgc tgaaaagcaa aatcgatccg	1260
ctccatcg cgcgcaggaa ttatgccttgc ggaacgcac atgattatct tgatcactcc	1320
gacatcatcg ggtggacaag ggaagggggtc actgaaaaac caggatccgg gctggccgca	1380
ctgatcaccgc atggccggg agaagcaaa tggatgtacg ttggcaaaaca acacgctgg	1440
aaagtgttct atgacccatc cggcaaccgg agtgcacccg tcaccatcaa cagtgtatgg	1500
tggggggat tcaaagtcaa tggcggttcg gtttcgggtt gggttccttag aaaaacgacc	1560
gttctacca tcgctcggcc gatcacaacc cgaccgtgaa ctggtaatt cgtccgttgg	1620
accgaaccac gtttggtggc atggccttgc	1650

<210> 104

<211> 549

<212> PRT

<213> Environmental

<400> 104

Val Leu Thr Phe His Arg Ile Ile Arg Lys Gly Trp Met Phe Leu Leu	
1 5 10 15	
Ala Phe Leu Leu Thr Ala Ser Leu Phe Cys Pro Thr Gly Gln Pro Ala	
20 25 30	
Lys Ala Ala Ala Pro Phe Asn Gly Thr Met Met Gln Tyr Phe Glu Trp	
35 40 45	
Tyr Leu Pro Asp Asp Gly Thr Leu Trp Thr Lys Val Ala Asn Glu Ala	
50 55 60	
Asn Asn Leu Ser Ser Leu Gly Ile Thr Ala Leu Trp Leu Pro Pro Ala	

65	70	75	80
Tyr Lys Gly Thr Ser Arg Ser Asp Val	Gly Tyr Gly Val	Tyr Asp Leu	
85	90	95	
Tyr Asp Leu Gly Glu Phe Asn Gln Lys	Gly Thr Val Arg Thr Lys Tyr		
100	105	110	
Gly Thr Lys Ala Gln Tyr Leu Gln Ala Ile	Gln Ala Ala His Ala Ala		
115	120	125	
Gly Met Gln Val Tyr Ala Asp Val Val Phe	Asp His Lys Gly Gly Ala		
130	135	140	
Asp Gly Thr Glu Trp Val Asp Ala Val Glu Val	Asn Pro Ser Asp Arg		
145	150	155	160
Asn Gln Glu Ile Ser Gly Thr Tyr Gln Ile	Gln Ala Trp Thr Lys Phe		
165	170	175	
Asp Phe Pro Gly Arg Gly Asn Thr Tyr Ser Ser	Phe Lys Trp Arg Trp		
180	185	190	
Tyr His Phe Asp Gly Val Asp Trp Asp Glu Ser	Arg Lys Leu Ser Arg		
195	200	205	
Ile Tyr Lys Phe Arg Gly Ile Gly Lys Ala Trp	Asp Trp Glu Val Asp		
210	215	220	
Thr Glu Asn Gly Asn Tyr Asp Tyr Leu Met	Tyr Ala Asp Leu Asp Met		
225	230	235	240
Asp His Pro Glu Val Val Thr Glu Leu Lys Asn	Trp Gly Glu Trp Tyr		
245	250	255	
Val Asn Thr Thr Asn Ile Asp Gly Phe Arg	Leu Asp Ala Val Lys His		
260	265	270	
Ile Lys Phe Ser Phe Phe Pro Asp Trp Leu Ser	Tyr Val Arg Ser Gln		
275	280	285	
Thr Gly Lys Pro Leu Phe Thr Val Gly Glu	Tyr Trp Ser Tyr Asp Ile		
290	295	300	
Asn Lys Leu His Asn Tyr Ile Thr Lys Thr Asn	Gly Thr Met Ser Leu		
305	310	315	320
Phe Asp Ala Pro Leu His Asn Lys Phe Tyr	Thr Ala Ser Lys Ser Gly		
325	330	335	
Gly Ala Phe Asp Met Arg Thr Leu Met Thr Asn	Thr Leu Met Lys Asp		
340	345	350	
Gln Pro Thr Leu Ala Val Thr Phe Val Asp	Asn His Asp Thr Glu Pro		
355	360	365	
Gly Gln Ala Leu Gln Ser Trp Val Asp Pro	Trp Phe Lys Pro Leu Ala		
370	375	380	
Tyr Ala Phe Ile Leu Thr Arg Gln Glu	Gly Tyr Pro Cys Val Phe Tyr		
385	390	395	400
Gly Asp Tyr Tyr Gly Ile Pro Gln Tyr Asn	Ile Pro Ser Leu Lys Ser		
405	410	415	
Lys Ile Asp Pro Leu Leu Ile Ala Arg Arg	Asp Tyr Ala Tyr Gly Thr		
420	425	430	
Gln His Asp Tyr Leu Asp His Ser Asp Ile	Ile Gly Trp Thr Arg Glu		
435	440	445	
Gly Val Thr Glu Lys Pro Gly Ser Gly	Leu Ala Ala Leu Ile Thr Asp		
450	455	460	
Gly Pro Gly Gly Ser Lys Trp Met Tyr Val	Gly Lys Gln His Ala Gly		
465	470	475	480
Lys Val Phe Tyr Asp Leu Thr Gly Asn Arg	Ser Asp Thr Val Thr Ile		
485	490	495	
Asn Ser Asp Gly Trp Gly Glu Phe Lys Val	Asn Gly Gly Ser Val Ser		
500	505	510	
Val Trp Val Pro Arg Lys Thr Thr Val Ser	Thr Ile Ala Arg Pro Ile		
515	520	525	

Thr Thr Arg Pro Trp Thr Gly Glu Phe Val Arg Trp Thr Glu Pro Arg
 530 535 540
 Leu Val Ala Trp Pro
 545

<210> 105

<211> 1650

<212> DNA

<213> Environmental

<400> 105

atgtccctat	tcaaaaaaaat	ctttcgtgg	attgttatctc	tacttctttt	gttttcgttt	60
attgctcctt	tttccattca	aacagaaaaa	gtccgcgtg	gaagtgttcc	agtgaatgga	120
acgatgatgc	aatatttcga	atggtaacctt	ccagacgtg	gaacactatg	gacgaaagta	180
gcaaataaacg	cccaatcttt	agcgaatctt	ggcattactg	ccctttggct	tccccctgcc	240
tataaaggaa	caagcagcag	tgacgttgg	tatggcgtt	atgatttata	tgacctagga	300
gagtttaatc	aaaaggaaac	tgtccgaaca	aaatacggaa	caaaaacaca	atatatccaa	360
gcaatccaag	cggcgcatac	agcagaatg	caagtatacg	cagatgtcgt	ctttaaccat	420
aaagccgtg	cagatgggac	agaactagt	gatgcagtag	aagtaaacc	ttctgaccgc	480
aatcaagaaa	tatcaggaac	atatacaaattc	caagcgtgga	caaaaatttga	ttttccttgtt	540
cgtggaaaca	cctattctag	ttttaatgg	cgttggtac	atttcgatgg	aacggactgg	600
gatgagagta	gaaaactaaa	tcgtatttac	aaattccg	gcacggaaa	agcatggat	660
tggaaagtag	atacagaaaa	tggaaattat	gactatctca	tgtatgcaga	tttggatatg	720
gatcatccag	agttgtatc	tgaactaaaa	aattggggaa	agtggtatgt	aaccacaacc	780
aatatcgacg	gattccgtct	ggatgcagt	aagcatatta	aatatagctt	tttcccagac	840
tggctatcgt	atgtacgaac	ccaaacacaa	aagcctctt	ttgccgttgg	cgaattttgg	900
agctatgaca	ttaacaagct	acacaactat	attacaaga	cgaacggctc	tatgtcccta	960
ttcgtatccc	cgctgcataa	caattttat	atagcatcg	aatcagg	ttatgttgc	1020
atgcgcacat	tactcaacaa	cacattgtat	aaagatcaac	caacactatc	ggtcacat	1080
gtagacaatc	acgataactga	gccaggc	tctttgcagt	cgtgggtcga	gccgtgg	1140
aaaccgttag	cttacgcatt	tatcttgacc	cgccaagaag	gttattccgt	catctttat	1200
ggagattact	atggtattcc	aaaatacaac	attcctgcgc	tgaaaagcaa	acttgatccg	1260
ctgttaattt	ctcgaagaga	ttatgcctac	ggaacacagc	acgactat	tgacaatgca	1320
gatattatcg	gctggacgcg	ggaaggagta	gctgaaaaag	caaattcggg	acttgctgca	1380
ctcattaccg	acggacctgg	cggaagcaaa	tggatgtatg	ttggcaaaca	acacgctg	1440
aaaacgtttt	atgatcta	cgcaatcg	agtgtat	tgacaatcaa	cgctgtatg	1500
tggggagaat	ttaaagtcaa	tggaggg	gtatccat	gggttccaaa	aacatcaacc	1560
acttcccaaa	tcacatttac	tgtaaataat	gccacaacc	tttggggaca	aatgtatac	1620
gttgcgg	atatttcgca	gctggc	aaac			1650

<210> 106

<211> 550

<212> PRT

<213> Environmental

<400> 106

```

Met Ser Leu Phe Lys Lys Ile Phe Pro Trp Ile Val Ser Leu Leu Leu
   1           5                   10                  15
Leu Phe Ser Phe Ile Ala Pro Phe Ser Ile Gln Thr Glu Lys Val Arg
   20          25                  30
Ala Gly Ser Val Pro Val Asn Gly Thr Met Met Gln Tyr Phe Glu Trp
   35          40                  45
Tyr Leu Pro Asp Asp Gly Thr Leu Trp Thr Lys Val Ala Asn Asn Ala
   50          55                  60
Gln Ser Leu Ala Asn Leu Gly Ile Thr Ala Leu Trp Leu Pro Pro Ala
   65          70                  75                  80
Tyr Lys Gly Thr Ser Ser Ser Asp Val Gly Tyr Gly Val Tyr Asp Leu

```

	85	90	95
Tyr Asp Leu Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr			
100	105	110	
Gly Thr Lys Thr Gln Tyr Ile Gln Ala Ile Gln Ala Ala His Thr Ala			
115	120	125	
Gly Met Gln Val Tyr Ala Asp Val Val Phe Asn His Lys Ala Gly Ala			
130	135	140	
Asp Gly Thr Glu Leu Val Asp Ala Val Glu Val Asn Pro Ser Asp Arg			
145	150	155	160
Asn Gln Glu Ile Ser Gly Thr Tyr Gln Ile Gln Ala Trp Thr Lys Phe			
165	170	175	
Asp Phe Pro Gly Arg Gly Asn Thr Tyr Ser Ser Phe Lys Trp Arg Trp			
180	185	190	
Tyr His Phe Asp Gly Thr Asp Trp Asp Glu Ser Arg Lys Leu Asn Arg			
195	200	205	
Ile Tyr Lys Phe Arg Gly Thr Gly Lys Ala Trp Asp Trp Glu Val Asp			
210	215	220	
Thr Glu Asn Gly Asn Tyr Asp Tyr Leu Met Tyr Ala Asp Leu Asp Met			
225	230	235	240
Asp His Pro Glu Val Val Ser Glu Leu Lys Asn Trp Gly Lys Trp Tyr			
245	250	255	
Val Thr Thr Thr Asn Ile Asp Gly Phe Arg Leu Asp Ala Val Lys His			
260	265	270	
Ile Lys Tyr Ser Phe Phe Pro Asp Trp Leu Ser Tyr Val Arg Thr Gln			
275	280	285	
Thr Gln Lys Pro Leu Phe Ala Val Gly Glu Phe Trp Ser Tyr Asp Ile			
290	295	300	
Asn Lys Leu His Asn Tyr Ile Thr Lys Thr Asn Gly Ser Met Ser Leu			
305	310	315	320
Phe Asp Ala Pro Leu His Asn Asn Phe Tyr Ile Ala Ser Lys Ser Gly			
325	330	335	
Gly Tyr Phe Asp Met Arg Thr Leu Leu Asn Asn Thr Leu Met Lys Asp			
340	345	350	
Gln Pro Thr Leu Ser Val Thr Leu Val Asp Asn His Asp Thr Glu Pro			
355	360	365	
Gly Gln Ser Leu Gln Ser Trp Val Glu Pro Trp Phe Lys Pro Leu Ala			
370	375	380	
Tyr Ala Phe Ile Leu Thr Arg Gln Glu Gly Tyr Pro Cys Ile Phe Tyr			
385	390	395	400
Gly Asp Tyr Tyr Gly Ile Pro Lys Tyr Asn Ile Pro Ala Leu Lys Ser			
405	410	415	
Lys Leu Asp Pro Leu Leu Ile Ala Arg Arg Asp Tyr Ala Tyr Gly Thr			
420	425	430	
Gln His Asp Tyr Ile Asp Asn Ala Asp Ile Ile Gly Trp Thr Arg Glu			
435	440	445	
Gly Val Ala Glu Lys Ala Asn Ser Gly Leu Ala Ala Leu Ile Thr Asp			
450	455	460	
Gly Pro Gly Gly Ser Lys Trp Met Tyr Val Gly Lys Gln His Ala Gly			
465	470	475	480
Lys Thr Phe Tyr Asp Leu Thr Gly Asn Arg Ser Asp Thr Val Thr Ile			
485	490	495	
Asn Ala Asp Gly Trp Gly Glu Phe Lys Val Asn Gly Gly Ser Val Ser			
500	505	510	
Ile Trp Val Pro Lys Thr Ser Thr Ser Gln Ile Thr Phe Thr Val			
515	520	525	
Asn Asn Ala Thr Thr Val Trp Gly Gln Asn Val Tyr Val Val Gly Asn			
530	535	540	

Ile Ser Gln Leu Gly Asn
545 550

<210> 107
<211> 1509
<212> DNA
<213> Environmental

<400> 107

atggacagcc	tcgacgcgcc	ggagcagaag	ccctgggtga	aggatggcag	gctctccgcg	60
tacctggata	cagggacagg	gaccgtggc	gctcccgagg	cacctgcgcc	cccggccccc	120
ccggccgagg	aagtccggc	cgtggacaag	tggaaaaacg	atatcatcta	tttgcgcctc	180
accgaccgtt	tccagatgg	cgacaagacc	aacaacatgg	acgtggtccc	gacggacatg	240
aaaaaaatatc	atggccgcga	catccagggg	ctcatcgaca	agctcgacta	tatcaaggag	300
accgggttcga	cggccatctg	gctcacgccc	cctatgaagg	ggcagaccca	cttcttcgag	360
accgacaatt	accatggta	ctggcccatt	gacttctatg	acacggaccc	ccatgtggc	420
accatgcaga	aatttgagga	gcttatcgag	aaagccccatg	agaaaaggct	gaagatcgtg	480
ctcgatattc	ccctgaacca	cacggcctgg	gagcatccct	tctacaaggaa	cgacagcaag	540
aaggactggt	tccaccatat	aggagatgtg	aaggactggg	aagatcccta	ctgggctgaa	600
aacggctcca	tattcggtct	tcctgacctg	gcmcaggaaa	accctgcctg	ggaaaagtac	660
ctcatcgacg	tggcaagtt	ctgggttagac	aagggtattt	acggcttcag	gcttgacgccc	720
gtgaagaacg	tgccctcaa	cttctggcg	aagttgacc	gggcgattca	cgattatgcg	780
ggcaaggact	tcctccctcg	cgggaaatac	tttgacggaa	accggcggaa	agtcgcgaac	840
taccagagag	aggacatgag	ctcaactttc	gattacccgc	tctactggac	cctgaaggac	900
accttcgcca	aggacgggag	catgcgcaac	ctggccgcga	agcttgatga	gtgcgacagg	960
aattatcccg	accggggcct	catgtcggtt	ttccttgata	accacgacac	gccgagggttc	1020
ctcaccgagg	ccaacggcaa	caaggataag	ctcaaactgg	ccctgcgcctt	cgcgatgacc	1080
atcaaccgca	tgcctaccat	ttattatggc	accgaggtt	ccatggaaagg	caactgcgtat	1140
atcatggcg	ccgtagataa	cggagggac	atgcagtggg	acaaggatcc	tgacatgttc	1200
aaataacttca	agactctcac	cactgcccgc	aatgagcatg	aatccctcg	ggaaggaaaag	1260
aagctcgaga	tgtggcagga	tgacaaagtc	tacgcgtacg	ggaggcagac	cccgaaggac	1320
gagtctatcg	tggtgcetaa	caacggctat	gataccgagg	aacgggacat	accgctccgc	1380
cccgagagcg	gcatcaagaa	cggcacggtg	ctgaaggatg	tcatcaccgg	cgaaaccgtg	1440
acggtacaga	acggaaaaat	ccatgcgaaa	tgcggccgca	aacaggcgcg	gatctacgtg	1500
cccgctgtag						1509

<210> 108
<211> 502
<212> PRT
<213> Environmental

<400> 108

Met	Asp	Ser	Leu	Asp	Ala	Pro	Glu	Gln	lys	Pro	Trp	Val	Lys	Asp	Gly
1	5							10					15		
Arg	Leu	Ser	Ala	Tyr	Leu	Asp	Thr	Gly	Thr	Gly	Thr	Val	Val	Ala	Pro
	20							25					30		
Glu	Ala	Pro	Ala	Pro	Pro	Pro	Pro	Pro	Ala	Glu	Glu	Val	Arg	Pro	Val
	35							40					45		
Asp	Lys	Trp	Lys	Asn	Asp	Ile	Ile	Tyr	Phe	Val	Leu	Thr	Asp	Arg	Phe
	50							55					60		
Gln	Asp	Gly	Asp	Lys	Thr	Asn	Asn	Met	Asp	Val	Val	Pro	Thr	Asp	Met
	65							70					75		80
Lys	Lys	Tyr	His	Gly	Gly	Asp	Ile	Gln	Gly	Leu	Ile	Asp	Lys	Leu	Asp
													85		95
Tyr	Ile	Lys	Glu	Thr	Gly	Ser	Thr	Ala	Ile	Trp	Leu	Thr	Pro	Pro	Met
													100		110
Lys	Gly	Gln	Thr	His	Phe	Phe	Glu	Thr	Asp	Asn	Tyr	His	Gly	Tyr	Trp

115	120	125
Pro Ile Asp Phe Tyr Asp Thr Asp Pro His Val Gly Thr Met Gln Lys		
130	135	140
Phe Glu Glu Leu Ile Glu Lys Ala His Glu Lys Gly Leu Lys Ile Val		
145	150	155
Leu Asp Ile Pro Leu Asn His Thr Ala Trp Glu His Pro Phe Tyr Lys		160
165	170	175
Asp Asp Ser Lys Lys Asp Trp Phe His His Ile Gly Asp Val Lys Asp		
180	185	190
Trp Glu Asp Pro Tyr Trp Ala Glu Asn Gly Ser Ile Phe Gly Leu Pro		
195	200	205
Asp Leu Ala Gln Glu Asn Pro Ala Val Glu Lys Tyr Leu Ile Asp Val		
210	215	220
Ala Lys Phe Trp Val Asp Lys Gly Ile Asp Gly Phe Arg Leu Asp Ala		
225	230	235
Val Lys Asn Val Pro Leu Asn Phe Trp Ala Lys Phe Asp Arg Ala Ile		240
245	250	255
His Asp Tyr Ala Gly Lys Asp Phe Leu Leu Val Gly Glu Tyr Phe Asp		
260	265	270
Gly Asn Pro Ala Lys Val Ala Asn Tyr Gln Arg Glu Asp Met Ser Ser		
275	280	285
Leu Phe Asp Tyr Pro Leu Tyr Trp Thr Leu Lys Asp Thr Phe Ala Lys		
290	295	300
Asp Gly Ser Met Arg Asn Leu Ala Ala Lys Leu Asp Glu Cys Asp Arg		
305	310	315
Asn Tyr Pro Asp Pro Gly Leu Met Ser Val Phe Leu Asp Asn His Asp		320
325	330	335
Thr Pro Arg Phe Leu Thr Glu Ala Asn Gly Asn Lys Asp Lys Leu Lys		
340	345	350
Leu Ala Leu Ala Phe Ala Met Thr Ile Asn Arg Met Pro Thr Ile Tyr		
355	360	365
Tyr Gly Thr Glu Val Ala Met Glu Gly Asn Cys Asp Ile Met Gly Ala		
370	375	380
Val Asp Asn Arg Arg Asp Met Gln Trp Asp Lys Asp Pro Asp Met Phe		
385	390	395
Lys Tyr Phe Lys Thr Leu Thr Thr Ala Arg Asn Glu His Glu Ser Leu		400
405	410	415
Arg Glu Gly Lys Lys Leu Glu Met Trp Gln Asp Asp Lys Val Tyr Ala		
420	425	430
Tyr Gly Arg Gln Thr Pro Lys Asp Glu Ser Ile Val Val Leu Asn Asn		
435	440	445
Gly Tyr Asp Thr Gln Glu Arg Asp Ile Pro Leu Arg Pro Glu Ser Gly		
450	455	460
Ile Lys Asn Gly Thr Val Leu Lys Asp Val Ile Thr Gly Glu Thr Val		
465	470	475
Thr Val Gln Asn Gly Lys Ile His Ala Lys Cys Gly Gly Lys Gln Ala		480
485	490	495
Arg Ile Tyr Val Pro Ala		
500		

<210> 109

<211> 1374

<212> DNA

<213> Environmental

<400> 109

atggcaagaa aaacgctggc catattttc gtacttcttag tgcttcgttag tctctcgcca

gttccggcaa	aggcagaaac	tctagagaat	ggtggagtt	taatgcaggc	tttctattgg	120
gatgttcctg	gaggaggaat	ctgggtggac	acaatagctc	aaaagatacc	cgaatggca	180
agtgcaggaa	tctcagcgat	atggattcca	ccagcagata	agggcatgag	cggtggttat	240
tccatgggct	acgatcccta	cgatttctt	gacctcgccg	agtactatca	gaaggggaca	300
gttgagacgc	gcttcggctc	aaaggaagaa	ctggtaaca	tgataaaacac	cgcacactcc	360
tacggcataa	aggtgatagc	ggacatagtc	ataaaaccacc	gcccgggtgg	agaccttgag	420
tgaaccctt	tcgtgaacga	ctatacctgg	acagacttct	caaaaagtgc	ctccggtaaa	480
tatacggcca	actacccctt	cttccaccca	aacgagcttc	actgttgtga	tgaaggtacc	540
tttggaggat	accctgatat	atgtcacgac	aaaagctggg	accagactg	gctctggcg	600
agcagcggaaa	gctacgctgc	ctacctcagg	agcatagggg	ttgacgcctg	gcgttgcac	660
tacgtcaagg	gctacggagc	atgggttgtt	aacgactggc	tcagctggg	gggaggctgg	720
gccgttggag	agtactggg	cacgaacgtt	gatgcactcc	tcaactgggc	atacagcagc	780
ggcgccaagg	tcttgactt	cccgctctac	tacaagatgg	acgaagcctt	cgacaacacc	840
aacatcccg	cattagtgg	tgcactcaga	tacggccaga	cagtggctag	ccgcgatccc	900
ttcaaggcgg	taactttcg	tgccaaccac	gatacagata	taatctggaa	caagtatccg	960
gcttatgcat	tcatccttac	ctatgaggg	cagcctgtta	tattctaccg	cgactacgag	1020
gagtggctca	acaaggataa	gettaacaac	ctcatctgg	tacacgatca	ccttgctgga	1080
gggagtaactg	acattgtta	ctacgacagc	gacgagctta	tctttgttag	aaacggctat	1140
ggcacccaaac	caggactgat	aacctatatac	aacctcggt	caagcaaagt	tggaaggtgg	1200
gtctacgttc	caaagttcgc	cgggcatgc	atccacgagt	acaccggcaa	cctcggcggt	1260
tggatagaca	agtacgtc	ctccagcggc	tgggtctatc	ttgaggcccc	agccacgac	1320
ccggcgaacg	gctactacgg	ctactctg	tggagctact	gcgggtgtgg	ttga	1374

<210> 110

<211> 457

<212> PRT

<213> Environmental

<400> 110

Met Ala Arg Lys Thr Leu Ala Ile Phe Phe Val	Leu Leu Val	Leu Leu	
1	5	10	15
Ser Leu Ser Ala Val Pro Ala Lys Ala Glu Thr	Leu Glu Asn Gly	Gly	
20	25	30	
Val Ile Met Gln Ala Phe Tyr Trp Asp Val Pro	Gly Gly Ile Trp		
35	40	45	
Trp Asp Thr Ile Ala Gln Lys Ile Pro Glu Trp	Ala Ser Ala Gly Ile		
50	55	60	
Ser Ala Ile Trp Ile Pro Pro Ala Ser Lys Gly	Met Ser Gly Gly	Tyr	
65	70	75	80
Ser Met Gly Tyr Asp Pro Tyr Asp Phe Phe	Asp Leu Gly Glu Tyr	Tyr	
85	90	95	
Gln Lys Gly Thr Val Glu Thr Arg Phe Gly Ser	Lys Glu Glu Leu Val		
100	105	110	
Asn Met Ile Asn Thr Ala His Ser Tyr Gly Ile	Lys Val Ile Ala Asp		
115	120	125	
Ile Val Ile Asn His Arg Ala Gly Gly Asp	Leu Glu Trp Asn Pro Phe		
130	135	140	
Val Asn Asp Tyr Thr Trp Thr Asp Phe Ser	Lys Val Ala Ser Gly	Lys	
145	150	155	160
Tyr Thr Ala Asn Tyr Leu Asp Phe His Pro	Asn Glu Leu His Cys	Cys	
165	170	175	
Asp Glu Gly Thr Phe Gly Gly Tyr Pro Asp Ile	Cys His Asp Lys Ser		
180	185	190	
Trp Asp Gln Tyr Trp Leu Trp Ala Ser Ser	Glu Ser Tyr Ala Ala	Tyr	
195	200	205	
Leu Arg Ser Ile Gly Val Asp Ala Trp Arg Phe	Asp Tyr Val Lys Gly		
210	215	220	

Tyr Gly Ala Trp Val Val Asn Asp Trp Leu Ser Trp Trp Gly Gly Trp
 225 230 235 240
 Ala Val Gly Glu Tyr Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp
 245 250 255
 Ala Tyr Ser Ser Gly Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys
 260 265 270
 Met Asp Glu Ala Phe Asp Asn Thr Asn Ile Pro Ala Leu Val Asp Ala
 275 280 285
 Leu Arg Tyr Gly Gln Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val
 290 295 300
 Thr Phe Val Ala Asn His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro
 305 310 315 320
 Ala Tyr Ala Phe Ile Leu Thr Tyr Glu Gly Gln Pro Val Ile Phe Tyr
 325 330 335
 Arg Asp Tyr Glu Glu Trp Leu Asn Lys Asp Lys Leu Asn Asn Leu Ile
 340 345 350
 Trp Ile His Asp His Leu Ala Gly Gly Ser Thr Asp Ile Val Tyr Tyr
 355 360 365
 Asp Ser Asp Glu Leu Ile Phe Val Arg Asn Gly Tyr Gly Thr Lys Pro
 370 375 380
 Gly Leu Ile Thr Tyr Ile Asn Leu Gly Ser Ser Lys Val Gly Arg Trp
 385 390 395 400
 Val Tyr Val Pro Lys Phe Ala Gly Ser Cys Ile His Glu Tyr Thr Gly
 405 410 415
 Asn Leu Gly Gly Trp Ile Asp Lys Tyr Val Ser Ser Ser Gly Trp Val
 420 425 430
 Tyr Leu Glu Ala Pro Ala His Asp Pro Ala Asn Gly Tyr Tyr Gly Tyr
 435 440 445
 Ser Val Trp Ser Tyr Cys Gly Val Gly
 450 455

<210> 111

<211> 1416

<212> DNA

<213> Environmental

<400> 111

atgcccgcgt	tcaaatactaa	ggtgatgcac	atgaagttga	agtaccttgc	tttagtttg	60
ttggctgtgg	cttcgatagg	cctcctctcg	actccagtgg	gtgctgccaa	gtactccgaa	120
ctcgaagagg	gcgggtttat	aatgcaggcc	ttctactggg	acgtccctac	cggtgggatc	180
tgggggaca	ccataagaca	gaaaatcccg	gagtggtacg	acgctggaat	ctcggcgata	240
tggattcctc	cagctagcaa	agttatgggt	ggtgcatact	ccatgggtta	tgaccctac	300
gatttctttg	acctcggcga	gtactatcag	aaggaaacag	ttgagacgcg	tttcggctca	360
aaggaggaac	tggtaacat	gataaacacc	gcacactcct	atggcataaa	ggtgatagcg	420
gacatagtca	taaaccaccg	cgccggcgcc	gacctggagt	ggaaccctt	tgtaaacaac	480
tatacttgg	cagacttctc	caaggtcgcc	tccggtaaat	acacggccaa	ctaccctgac	540
ttcaccccaa	acgaggtaaa	gtgctgcgt	gagggtacat	tttgtgactt	tccggacatc	600
gcccacgaga	agagctggga	tcagtactgg	ctctggcaa	gcaatgagag	ctacggcgcc	660
tatctccgga	gcataggat	cgatgcattgg	cgtttcgact	acgtcaaagg	ttacggagcg	720
tgggttgtta	acgactggct	cagctggtgg	ggaggttggg	ccgttggaga	gtactgggac	780
accaacgttg	atgcactcct	taactggca	tacaacagcg	gtgccaaggt	ctttgacttc	840
ccgctctact	acaagatgga	cgaagcctt	gacaacacca	acatccccgc	tttggtttac	900
gccctccaga	acggaggaac	agtcgttcc	cgcgatccct	tcaaggcagt	aacttcgtt	960
gccaaccacg	ataccgatat	aatctggaaac	aagtatccgg	cttatgcgtt	catccttacc	1020
tatgagggac	agcctgttat	attctaccgc	gactacgagg	agtggctcaa	caaggataag	1080
cttaacaacc	ttatctggat	acacgagcac	cttgccggag	gaagtaccaa	gatcctctac	1140
tacgataacg	atgagctaatt	attcatgagg	gagggctacg	ggagcaagcc	gggcctcata	1200

acctacataa acctcgaaaa cgactgggcc gagcgctggg tgaacgtcgg ctcaaagttt	1260
gccccgtaca caatccatga atacacaggc aatctcggtg gctgggttga caggtgggtt	1320
cagtacgacg gatgggttaa actgacggca cctcctcacg atccagccaa cggatattac	1380
ggctactcag tctggagcta cgcaggcgtc ggatga	1416

<210> 112

<211> 471

<212> PRT

<213> Environmental

<400> 112

Met Pro Ala Phe Lys Ser Lys Val Met His Met Lys Leu Lys Tyr Leu	
1 5 10 15	
Ala Leu Val Leu Leu Ala Val Ala Ser Ile Gly Leu Leu Ser Thr Pro	
20 25 30	
Val Gly Ala Ala Lys Tyr Ser Glu Leu Glu Glu Gly Gly Val Ile Met	
35 40 45	
Gln Ala Phe Tyr Trp Asp Val Pro Thr Gly Gly Ile Trp Trp Asp Thr	
50 55 60	
Ile Arg Gln Lys Ile Pro Glu Trp Tyr Asp Ala Gly Ile Ser Ala Ile	
65 70 75 80	
Trp Ile Pro Pro Ala Ser Lys Gly Met Gly Gly Ala Tyr Ser Met Gly	
85 90 95	
Tyr Asp Pro Tyr Asp Phe Phe Asp Leu Gly Glu Tyr Tyr Gln Lys Gly	
100 105 110	
Thr Val Glu Thr Arg Phe Gly Ser Lys Glu Glu Leu Val Asn Met Ile	
115 120 125	
Asn Thr Ala His Ser Tyr Gly Ile Lys Val Ile Ala Asp Ile Val Ile	
130 135 140	
Asn His Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Asn Asn	
145 150 155 160	
Tyr Thr Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala	
165 170 175	
Asn Tyr Leu Asp Phe His Pro Asn Glu Val Lys Cys Cys Asp Glu Gly	
180 185 190	
Thr Phe Gly Asp Phe Pro Asp Ile Ala His Glu Lys Ser Trp Asp Gln	
195 200 205	
Tyr Trp Leu Trp Ala Ser Asn Glu Ser Tyr Ala Ala Tyr Leu Arg Ser	
210 215 220	
Ile Gly Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala	
225 230 235 240	
Trp Val Val Asn Asp Trp Leu Ser Trp Trp Gly Gly Trp Ala Val Gly	
245 250 255	
Glu Tyr Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Asn	
260 265 270	
Ser Gly Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Glu	
275 280 285	
Ala Phe Asp Asn Thr Asn Ile Pro Ala Leu Val Tyr Ala Leu Gln Asn	
290 295 300	
Gly Gly Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val	
305 310 315 320	
Ala Asn His Asp Thr Asp Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala	
325 330 335	
Phe Ile Leu Thr Tyr Glu Gly Gln Pro Val Ile Phe Tyr Arg Asp Tyr	
340 345 350	
Glu Glu Trp Leu Asn Lys Asp Lys Leu Asn Asn Leu Ile Trp Ile His	
355 360 365	

Glu His Leu Ala Gly Gly Ser Thr Lys Ile Leu Tyr Tyr Asn Asp
 370 375 380
 Glu Leu Ile Phe Met Arg Glu Gly Tyr Gly Ser Lys Pro Gly Leu Ile
 385 390 395 400
 Thr Tyr Ile Asn Leu Gly Asn Asp Trp Ala Glu Arg Trp Val Asn Val
 405 410 415
 Gly Ser Lys Phe Ala Gly Tyr Thr Ile His Glu Tyr Thr Gly Asn Leu
 420 425 430
 Gly Gly Trp Val Asp Arg Trp Val Gln Tyr Asp Gly Trp Val Lys Leu
 435 440 445
 Thr Ala Pro Pro His Asp Pro Ala Asn Gly Tyr Tyr Gly Tyr Ser Val
 450 455 460
 Trp Ser Tyr Ala Gly Val Gly
 465 470

<210> 113

<211> 1539

<212> DNA

<213> Environmental

<400> 113

atgaaaacaac	aaaaacggct	ttacgcccga	ttgctgacgc	tgttatttc	gctcatcttc	60
ttgctgcctc	attctgcagc	agcgccggca	aatctaata	tgacgctgat	gcagtatttt	120
aatggta	tgcccaatga	cggccaa	catggctgt	tgcaaaacga	ctcgccat	180
ttggctgaac	acggattac	tgccgtctgg	attccccgg	catataagg	aacgagccaa	240
gcggatgtgg	gctacgg	ttacgac	tatgatttag	gggagttca	tcaaaaagg	300
acggttcgga	caaagta	cacaaaagg	gagctca	ctgcgat	aagtcttcat	360
tcccgcgaca	ttaacgtt	cgggatgtg	gtcatcaacc	acaaaggcgg	cgctgatgcg	420
accgaagat	taaccgcgt	tgaagtgc	cccgcgtacc	gcaaccgcgt	aatttcagga	480
gaacaccgaa	ttaaggcctg	gacacattt	catttccgg	ggcgcggcag	cacatacagc	540
gattttaat	ggcattggta	ccat	ttgacg	gggacgagtc	ccgaaagctg	600
aaccgcatct	ataagttca	aggaaagg	tggattgg	agtttccaa	tgaaaacggc	660
aactatgatt	atttgatgt	tgccgacat	gattatgacc	atcctgatgt	cgcagcagaa	720
attaagagat	ggggcactt	gtatgca	gaactgca	tggacgg	ccgtctt	780
gctgtcaaac	acattaaatt	ttctttt	cgggattgg	ttaatcatgt	caggaaaaaa	840
acgggaagg	aaatgttac	ggtagctg	tattggcaga	atgacttgg	cgcgctgg	900
aactattga	acaaaacaaa	tttaatcat	tcagtgtt	acgtgcgc	tcattatc	960
ttccatgt	catcgacaca	gggaggcggc	tatgat	gaaattgc	gaacgg	1020
gtcg	ttcca	agcatccgtt	gaaagcg	acattgtcg	ataaccatg	1080
ggcaatcgc	ttgagtcgac	tgtccaaaca	tggtt	cgcttgc	cgctt	1140
ctcacaaggg	aatctggata	ccctcagg	ttctacgg	atatgtacgg	gacgaaagg	1200
gactcccagc	gcgaaattcc	tgcctt	gaaaatttgc	acccgat	aaaagcg	1260
aaacagtat	cgta	ggagc	acagcat	tat	tgcgctgg	1320
acaagggaa	g	g	g	g	g	1380
Met Lys Gln Gln Lys Arg Leu Tyr Ala Arg Leu Leu Thr Leu Leu Phe	1	5	10	15		
Ala Leu Ile Phe Leu Leu Pro His Ser Ala Ala Ala Ala Asn Leu						

<210> 114

<211> 512

<212> PRT

<213> Environmental

<400> 114

Met Lys Gln Gln Lys Arg Leu Tyr Ala Arg Leu Leu Thr Leu Leu Phe	1	5	10	15		
Ala Leu Ile Phe Leu Leu Pro His Ser Ala Ala Ala Ala Asn Leu						

20	25	30													
Asn	Gly	Thr	Leu	Met	Gln	Tyr	Phe	Glu	Trp	Tyr	Met	Pro	Asn	Asp	Gly
35							40				45				
Gln	His	Trp	Lys	Arg	Leu	Gln	Asn	Asp	Ser	Ala	Tyr	Leu	Ala	Glu	His
50						55				60					
Gly	Ile	Thr	Ala	Val	Trp	Ile	Pro	Pro	Ala	Tyr	Lys	Gly	Thr	Ser	Gln
65						70			75			80			
Ala	Asp	Val	Gly	Tyr	Gly	Ala	Tyr	Asp	Leu	Tyr	Asp	Leu	Gly	Glu	Phe
						85			90			95			
His	Gln	Lys	Gly	Thr	Val	Arg	Thr	Lys	Tyr	Gly	Thr	Lys	Gly	Glu	Leu
						100		105			110				
Gln	Ser	Ala	Ile	Lys	Ser	Leu	His	Ser	Arg	Asp	Ile	Asn	Val	Tyr	Gly
							115		120			125			
Asp	Val	Val	Ile	Asn	His	Lys	Gly	Gly	Ala	Asp	Ala	Thr	Glu	Asp	Val
						130		135			140				
Thr	Ala	Val	Glu	Val	Asp	Pro	Ala	Asp	Arg	Asn	Arg	Val	Ile	Ser	Gly
145						150			155			160			
Glu	His	Arg	Ile	Lys	Ala	Trp	Thr	His	Phe	His	Phe	Pro	Gly	Arg	Gly
						165		170			175				
Ser	Thr	Tyr	Ser	Asp	Phe	Lys	Trp	His	Trp	Tyr	His	Phe	Asp	Gly	Thr
						180		185			190				
Asp	Trp	Asp	Glu	Ser	Arg	Lys	Leu	Asn	Arg	Ile	Tyr	Lys	Phe	Gln	Gly
						195		200			205				
Lys	Ala	Trp	Asp	Trp	Glu	Val	Ser	Asn	Glu	Asn	Gly	Asn	Tyr	Asp	Tyr
						210		215			220				
Leu	Met	Tyr	Ala	Asp	Ile	Asp	Tyr	Asp	His	Pro	Asp	Val	Ala	Ala	Glu
225						230			235			240			
Ile	Lys	Arg	Trp	Gly	Thr	Trp	Tyr	Ala	Asn	Glu	Leu	Gln	Leu	Asp	Gly
						245		250			255				
Phe	Arg	Leu	Asp	Ala	Val	Lys	His	Ile	Lys	Phe	Ser	Phe	Leu	Arg	Asp
						260		265			270				
Trp	Val	Asn	His	Val	Arg	Glu	Lys	Thr	Gly	Lys	Glu	Met	Phe	Thr	Val
						275		280			285				
Ala	Glu	Tyr	Trp	Gln	Asn	Asp	Leu	Gly	Ala	Leu	Glu	Asn	Tyr	Leu	Asn
						290		295			300				
Lys	Thr	Asn	Phe	Asn	His	Ser	Val	Phe	Asp	Val	Pro	Leu	His	Tyr	Gln
305						310			315			320			
Phe	His	Ala	Ala	Ser	Thr	Gln	Gly	Gly	Tyr	Asp	Met	Arg	Lys	Leu	
						325		330			335				
Leu	Asn	Gly	Thr	Val	Val	Ser	Lys	His	Pro	Leu	Lys	Ala	Val	Thr	Phe
						340		345			350				
Val	Asp	Asn	His	Asp	Thr	Gln	Pro	Gly	Gln	Ser	Leu	Glu	Ser	Thr	Val
						355		360			365				
Gln	Thr	Trp	Phe	Lys	Pro	Leu	Ala	Tyr	Ala	Phe	Ile	Leu	Thr	Arg	Glu
						370		375			380				
Ser	Gly	Tyr	Pro	Gln	Val	Phe	Tyr	Gly	Asp	Met	Tyr	Gly	Thr	Lys	Gly
385						390			395			400			
Asp	Ser	Gln	Arg	Glu	Ile	Pro	Ala	Leu	Lys	His	Lys	Ile	Glu	Pro	Ile
						405		410			415				
Leu	Lys	Ala	Arg	Lys	Gln	Tyr	Ala	Tyr	Gly	Ala	Gln	His	Asp	Tyr	Phe
						420		425			430				
Asp	His	His	Asp	Ile	Val	Gly	Trp	Thr	Arg	Glu	Gly	Asp	Ser	Ser	Val
						435		440			445				
Ala	Asn	Ser	Gly	Leu	Ala	Ala	Leu	Ile	Thr	Asp	Gly	Pro	Gly	Gly	Ala
						450		455			460				
Lys	Arg	Met	Tyr	Val	Gly	Arg	Gln	Asn	Ala	Gly	Glu	Thr	Trp	His	Asp
465						470			475			480			

Ile	Thr	Gly	Asn	Arg	Ser	Glu	Pro	Val	Val	Ile	Asn	Ser	Glu	Gly	Trp
				485							490				495
Gly	Glu	Phe	His	Val	Asn	Gly	Gly	Ser	Val	Ser	Ile	Tyr	Val	Gln	Arg
				500					505					510	

<210> 115
<211> 1338
<212> DNA
<213> Eukaryote

<400> 115

atggcgaagt	actccgagct	ggagcagggc	ggagtcataa	tgcaggcctt	ctactggac	60
gttccggagg	gaggaatctg	gtgggacaca	atacggcaga	agatccctga	atggtacgat	120
gcaggcatat	ccgccccatctg	gatacccccg	gcgagcaagg	gcatgggcgg	ggcctactcg	180
atgggctacg	accctacga	ttacttcgt	ctgggcgagt	tttaccagaa	gggaaccgtt	240
gagaccgcgt	tcggctccaa	ggaagagctc	gtcaacatga	tctccacgac	ccaccaggat	300
ggcatcaagg	ttatagcgga	catagtgata	aaccaccgac	caggtggaga	cctcgaatgg	360
aaccctatacg	tcggcgacta	tacctggacg	gactttcta	aggtgcgcctc	cggaaaatac	420
aaggcccact	acatggactt	ccatccaaac	aactacagca	cctcagacga	gggaaccttc	480
ggtggcttcc	cagacattga	tcacctcggt	cccttcaacc	agtactggct	gtgggcgagc	540
aacgagagct	acggccgccta	cctcaggagc	ataggatcg	atgcgtggcg	ctttgactac	600
gttaagggct	acggcgcgtg	ggtcgtcaag	gactggctga	gtcagtgggg	cggctggcc	660
gtcggcgagt	actgggacac	caacgtcgat	gcgctctca	actgggccta	cagcagcggc	720
gccaaggct	tcgacttccc	gtctactac	aagatggacg	aggccttga	caacaagaac	780
attcccggcc	tcgtttacgc	catccagaac	ggtgaaaccg	tcgtcagcag	ggatcccttc	840
aaggccgtt	ccttcgtggc	taaccacgt	acgaacataa	tctggaaccaa	gtaccctgcc	900
tatgccttca	tcctgaccta	cgaaggtagc	cccgtcatct	tctaccgcga	ctacgaggag	960
tggctcaaca	aggacaaaact	caacaacctc	atatggattc	acgagcacct	ggcaggggga	1020
agcaccaaga	tcctctacta	cgtacgtacgt	gagctcatct	tcatgagggg	aggctacggc	1080
gacaggcccg	ggcttataac	ctacatcaac	ctcggtagcg	actgggcgg	gagatgggtg	1140
aacgttggct	caaagttcgc	gggtataaca	atccacgaat	acaccggaaa	cctcggcggc	1200
tgggtcgaca	ggtacgtcca	gtacgtacgg	tgggtcaagc	ttaccgctcc	gccacacgt	1260
ccggcaaaccg	gctattacgg	ctactcggtc	tggagctacg	ccggagttgg	aagatctcat	1320
caccatcacc	atcactaa					1338

<210> 116
<211> 445
<212> PRT
<213> Eukaryote

<400> 116

Met	Ala	Lys	Tyr	Ser	Glu	Leu	Glu	Gln	Gly	Gly	Val	Ile	Met	Gln	Ala
1				5			10				15				
Phe	Tyr	Trp	Asp	Val	Pro	Glu	Gly	Ile	Trp	Trp	Asp	Thr	Ile	Arg	
					20			25			30				
Gln	Lys	Ile	Pro	Glu	Trp	Tyr	Asp	Ala	Gly	Ile	Ser	Ala	Ile	Trp	Ile
					35			40			45				
Pro	Pro	Ala	Ser	Lys	Gly	Met	Gly	Gly	Ala	Tyr	Ser	Met	Gly	Tyr	Asp
					50			55			60				
Pro	Tyr	Asp	Tyr	Phe	Asp	Leu	Gly	Glu	Phe	Tyr	Gln	Lys	Gly	Thr	Val
					65			70			75			80	
Glu	Thr	Arg	Phe	Gly	Ser	Lys	Glu	Glu	Leu	Val	Asn	Met	Ile	Ser	Thr
					85			90			95				
Ala	His	Gln	Tyr	Gly	Ile	Lys	Val	Ile	Ala	Asp	Ile	Val	Ile	Asn	His
					100			105			110				
Arg	Ala	Gly	Gly	Asp	Leu	Glu	Trp	Asn	Pro	Tyr	Val	Gly	Asp	Tyr	Thr
					115			120			125				

Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Lys Ala His Tyr
 130 135 140
 Met Asp Phe His Pro Asn Asn Tyr Ser Thr Ser Asp Glu Gly Thr Phe
 145 150 155 160
 Gly Gly Phe Pro Asp Ile Asp His Leu Val Pro Phe Asn Gln Tyr Trp
 165 170 175
 Leu Trp Ala Ser Asn Glu Ser Tyr Ala Ala Tyr Leu Arg Ser Ile Gly
 180 185 190
 Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val
 195 200 205
 Val Lys Asp Trp Leu Ser Gln Trp Gly Gly Trp Ala Val Gly Glu Tyr
 210 215 220
 Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Gly
 225 230 235 240
 Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Glu Ala Phe
 245 250 255
 Asp Asn Lys Asn Ile Pro Ala Leu Val Tyr Ala Ile Gln Asn Gly Glu
 260 265 270
 Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn
 275 280 285
 His Asp Thr Asn Ile Ile Trp Asn Lys Tyr Pro Ala Tyr Ala Phe Ile
 290 295 300
 Leu Thr Tyr Glu Gly Gln Pro Val Ile Phe Tyr Arg Asp Tyr Glu Glu
 305 310 315 320
 Trp Leu Asn Lys Asp Lys Leu Asn Asn Leu Ile Trp Ile His Glu His
 325 330 335
 Leu Ala Gly Gly Ser Thr Lys Ile Leu Tyr Tyr Asp Asp Asp Glu Leu
 340 345 350
 Ile Phe Met Arg Glu Gly Tyr Gly Asp Arg Pro Gly Leu Ile Thr Tyr
 355 360 365
 Ile Asn Leu Gly Ser Asp Trp Ala Glu Arg Trp Val Asn Val Gly Ser
 370 375 380
 Lys Phe Ala Gly Tyr Thr Ile His Glu Tyr Thr Gly Asn Leu Gly Gly
 385 390 395 400
 Trp Val Asp Arg Tyr Val Gln Tyr Asp Gly Trp Val Lys Leu Thr Ala
 405 410 415
 Pro Pro His Asp Pro Ala Asn Gly Tyr Tyr Gly Tyr Ser Val Trp Ser
 420 425 430
 Tyr Ala Gly Val Gly Arg Ser His His His His His
 435 440 445

<210> 117

<211> 1476

<212> DNA

<213> Environmental

<400> 117

atgcgagtgt tcctgggtgt	gccaaagctg agccgccccat	ttcaggcaga gtcacaacaa	60
caagacaggg acataacaat	gaaacacaca gcggaatgc	tggcgatgc aggtatgctg	120
atcgccccct tggcgcatgc	cgtatgtcata ctgcacgcct	tcaactggaa atacagtcaa	180
gtcaccgcca aggccgatct	catcaaggct gccggctaca	agcaggtgct catctcaccg	240
cctctgaagt cctcggccaa	cgagtggtg	gctcggtacc agccccagga tctgcgcctg	300
gtcgacacccc cccttggcaa	caaggcaggat	ctggagcagc tgatgcgcgc gatgcagacc	360
cggggcattg ccgctacgc	ggacgtggtg	ctcaaccaca tggccaacgaa aagctggaa	420
cgcagcggacc tcaactaccc	cggcagcggag	ctgctgcaaa gctacgcgg caatccggcc	480
tactttaaac	gccagaagct	ctttggcgat ctggggcaga acttcctcgcc	540
tttcatccgg	aggggtgcat	caccgactgg aacaatccgg gccatgtcca gtactggcgaa	600

ctgtgcggcg	gggcgggtga	caaggggctg	ccggatctgg	accccaacaa	ctgggtggtg	660
aaccagcaac	aggcttacct	gcaggcgctc	aagggatgg	gatcaaggg	ttttcgggtc	720
gatgcggta	agcacatgag	cgattaccag	atcaacgccc	tgttcacccc	cgagatcaa	780
cagggatgc	acgtcttgg	cgaggtgatc	accacgggg	gcccggcaa	cagcgactat	840
gagaacttcc	tcaaacccta	cctcgacagg	agcggccagg	ggcctacga	cttcccgctc	900
ttcgcctccc	tgcgtggagc	gctgggctac	ggcggcagca	tgaacctgct	ggccgatccc	960
ggtgcctatg	gtcaggcgct	gccgggttagc	cgcgcgtca	cttcgccat	caccacgac	1020
atccccacca	acgacggtt	ccgctaccag	atcctaacc	agaccgacga	gagactggcc	1080
tatgcctacc	tgctcggtcg	cgatggcggt	tgcctctgg	tctactccga	tcacggtaa	1140
accagggaca	aggacggatt	gcgctggca	gactactatc	tgcgcaccca	tctcaaagg	1200
atgatccgct	tccataaac	agtgcaggg	caaccgatgc	agctcatcg	cagtaacgac	1260
tgcttcgtgc	tgttcaagcg	tggcaagcg	ggcgtggtcg	gatcaacaa	gtgcgactac	1320
gagcaggagt	actggctcga	taccgccaga	ttcgagatga	actggtatcg	caactaccgg	1380
gatgtgctcg	accagaatgc	cgtggtaac	gtgcagagcc	agtggtaag	gctgaccatc	1440
ccggcccgcg	gcccggaaat	gtggctcgag	gagtga			1476

<210> 118

<211> 491

<212> PRT

<213> Environmental

<400> 118

Met	Arg	Val	Phe	Leu	Val	Val	Pro	Lys	Leu	Ser	Arg	Pro	Phe	Gln	Ala
1			5					10					15		
Glu	Ser	Gln	Gln	Gln	Asp	Arg	Asp	Ile	Thr	Met	Lys	His	Thr	Ala	Gly
								20			25		30		
Met	Leu	Ala	Ile	Ala	Gly	Met	Leu	Ile	Ala	Pro	Leu	Ala	His	Ala	Asp
	35						40					45			
Val	Ile	Leu	His	Ala	Phe	Asn	Trp	Lys	Tyr	Ser	Glu	Val	Thr	Ala	Lys
	50					55				60					
Ala	Asp	Leu	Ile	Lys	Ala	Ala	Gly	Tyr	Lys	Gln	Val	Leu	Ile	Ser	Pro
	65					70			75			80			
Pro	Leu	Lys	Ser	Ser	Gly	Asn	Glu	Trp	Trp	Ala	Arg	Tyr	Gln	Pro	Gln
						85			90			95			
Asp	Leu	Arg	Leu	Val	Asp	Thr	Pro	Leu	Gly	Asn	Lys	Gln	Asp	Leu	Glu
						100			105			110			
Gln	Leu	Ile	Ala	Ala	Met	Gln	Thr	Arg	Gly	Ile	Ala	Val	Tyr	Ala	Asp
		115						120			125				
Val	Val	Leu	Asn	His	Met	Ala	Asn	Glu	Ser	Trp	Lys	Arg	Ser	Asp	Leu
		130					135				140				
Asn	Tyr	Pro	Gly	Ser	Glu	Leu	Leu	Gln	Ser	Tyr	Ala	Gly	Asn	Pro	Ala
	145					150			155			160			
Tyr	Phe	Glu	Arg	Gln	Lys	Leu	Phe	Gly	Asp	Leu	Gly	Gln	Asn	Phe	Leu
						165			170			175			
Ala	Gly	Gln	Asp	Phe	His	Pro	Glu	Gly	Cys	Ile	Thr	Asp	Trp	Asn	Asn
						180			185			190			
Pro	Gly	His	Val	Gln	Tyr	Trp	Arg	Leu	Cys	Gly	Gly	Ala	Gly	Asp	Lys
						195			200			205			
Gly	Leu	Pro	Asp	Leu	Asp	Pro	Asn	Asn	Trp	Val	Val	Asn	Gln	Gln	
						210			215			220			
Ala	Tyr	Leu	Gln	Ala	Leu	Lys	Gly	Met	Gly	Ile	Lys	Gly	Phe	Arg	Val
	225					230			235			240			
Asp	Ala	Val	Lys	His	Met	Ser	Asp	Tyr	Gln	Ile	Asn	Ala	Val	Phe	Thr
						245			250			255			
Pro	Glu	Ile	Lys	Gln	Gly	Met	His	Val	Phe	Gly	Glu	Val	Ile	Thr	Thr
						260			265			270			
Gly	Gly	Ala	Gly	Asn	Ser	Asp	Tyr	Glu	Asn	Phe	Leu	Lys	Pro	Tyr	Leu

275	280	285
Asp Ser Ser Gly Gln Gly Ala Tyr Asp Phe Pro Leu Phe Ala Ser Leu		
290	295	300
Arg Gly Ala Leu Gly Tyr Gly Gly Ser Met Asn Leu Leu Ala Asp Pro		
305	310	315
Gly Ala Tyr Gly Gln Ala Leu Pro Gly Ser Arg Ala Val Thr Phe Ala		
325	330	335
Ile Thr His Asp Ile Pro Thr Asn Asp Gly Phe Arg Tyr Gln Ile Leu		
340	345	350
Asn Gln Thr Asp Glu Arg Leu Ala Tyr Ala Tyr Leu Leu Gly Arg Asp		
355	360	365
Gly Gly Ser Pro Leu Val Tyr Ser Asp His Gly Glu Thr Arg Asp Lys		
370	375	380
Asp Gly Leu Arg Trp Gln Asp Tyr Tyr Leu Arg Thr Asp Leu Lys Gly		
385	390	395
Met Ile Arg Phe His Asn Thr Val Gln Gly Gln Pro Met Gln Leu Ile		
405	410	415
Gly Ser Asn Asp Cys Phe Val Leu Phe Lys Arg Gly Lys Gln Gly Val		
420	425	430
Val Gly Ile Asn Lys Cys Asp Tyr Glu Gln Glu Tyr Trp Leu Asp Thr		
435	440	445
Ala Arg Phe Glu Met Asn Trp Tyr Arg Asn Tyr Arg Asp Val Leu Asp		
450	455	460
Gln Asn Ala Val Val Asn Val Gln Ser Gln Trp Val Arg Leu Thr Ile		
465	470	475
Pro Ala Arg Gly Ala Arg Met Trp Leu Gln Glu		
485	490	

<210> 119

<211> 1695

<212> DNA

<213> Bacterial

<400> 119

atgc当地	ttgc当地tctt	atttactca	aagaaaggat	gggtgtgcat	gaattat	tttg	60
aaaaaa	gggtgttata	cgttatcg	tc当地ttaa	tcat	tttcc	c当地t	120
atcgat	ttttcaacag	cacaagctaa	tactgcac	gttaacggaa	caat	atattcgaa	180
atcgat	tgggacttac	ctaatgatgg	gacgcttgg	acgaaagtaa	aaaat	atcgaa	240
atcgat	tcttcactag	gtatcacagc	actatggctc	cctccagcat	ataaa	aggaaac	300
atcgat	gatgtcg	acgggttta	cgatttat	gaccttgggg	aattt	aaagggacg	360
atcgat	atccgaacga	aatacggAAC	aaaaacacaa	tatattcaag	ccatt	caaac	420
atcgat	gcagggatgc	aagtatatgc	ggatgttga	ttaatcata	aggcaggggc	tgacagtaca	480
atcgat	gaatttgcg	atgcaggta	ggtaaaccct	tctaatcgaa	atcaaga	aaac	540
atcgat	tatcaaattc	aagcatggac	aaaatttgat	tttccggc	gtggaa	acac	600
atcgat	ttcaaattggc	gcttgtacca	ttttgatgg	acggattggg	acgaa	agtgc	660
atcgat	cgtat	tttcc	ata	tttcc	cc	tttcc	720
atcgat	taca	cc	tttcc	cc	cc	tttcc	780
atcgat	ggaaactatg	attatttaat	gttcgctgat	tttagatatgg	atcac	ccctg	840
atcgat	gaattaaaaaa	actggggAAC	gtggta	cgta	tttgc	atccgt	900
atcgat	gatgccgtaa	aacatattaa	atacagctt	tttcc	cttgc	atccgtt	960
atcgat	caaacaggaa	aaaatttatt	tgccgttgg	gaattttgg	gtc	atgcgt	1020
atcgat	cataattaca	ttacaaaaac	aaatgggtcg	atgtcattat	tttgc	atccgtt	1080
atcgat	aactttata	ccgcttccaa	atcgagtgg	tat	tttgc	atccgtt	1140
atcgat	acattaatga	aagatcaacc	ttcactcg	gtaacactt	tttgc	atccgtt	1200
atcgat	ccagggcaat	ctttacagtc	atgggtcgaa	ccttgg	tttgc	atccgtt	1260
atcgat	atttaa	aca	aa	aa	aa	aa	1320
atcgat	gacaagaagg	gtatccttgc	gtat	tttgc	tttgc	atccgtt	1380
atcgat	aaatacaata	tcccggggtt	aaaaagtaaa	atcgacc	tttgc	atccgtt	
atcgat	tgattacatt	gatcatcaag	acattatcg	atgg	acac	cg	

gaaggcattg atgcaaaacc gaactctgga ctggcggtt taattaccga cggccctgg	1440
ggaagtaaat ggatgtatgt cggtaaaaag catgccggga aagtatttt tgatttaact	1500
ggaaatcgaa gtgacacagt aacgattaat gcggatggtt ggggagaatt taaagtaaac	1560
ggaggatccg tctcaatttg ggtggctaaa acgtcaaacg tcacattac agtcaataac	1620
gccacaacaa caagcgaca aaacgtatat gttgtcgca acattccaga gctaggcaat	1680
tgtcgcacgg tttaa	1695

<210> 120
<211> 564
<212> PRT
<213> Bacterial

<400> 120	
Met Gln Thr Phe Ala Phe Leu Phe Tyr Ser Lys Lys Gly Trp Val Cys	
1 5 10 15	
Met Asn Tyr Leu Lys Lys Val Trp Leu Tyr Tyr Ala Ile Val Ala Thr	
20 25 30	
Leu Ile Ile Ser Phe Leu Thr Pro Phe Ser Thr Ala Gln Ala Asn Thr	
35 40 45	
Ala Pro Val Asn Gly Thr Met Met Gln Tyr Phe Glu Trp Asp Leu Pro	
50 55 60	
Asn Asp Gly Thr Leu Trp Thr Lys Val Lys Asn Glu Ala Thr Asn Leu	
65 70 75 80	
Ser Ser Leu Gly Ile Thr Ala Leu Trp Leu Pro Pro Ala Tyr Lys Gly	
85 90 95	
Thr Ser Gln Ser Asp Val Gly Tyr Gly Val Tyr Asp Leu Tyr Asp Leu	
100 105 110	
Gly Glu Phe Asn Gln Lys Gly Thr Ile Arg Thr Lys Tyr Gly Thr Lys	
115 120 125	
Thr Gln Tyr Ile Gln Ala Ile Gln Thr Ala Gln Ala Ala Gly Met Gln	
130 135 140	
Val Tyr Ala Asp Val Val Phe Asn His Lys Ala Gly Ala Asp Ser Thr	
145 150 155 160	
Glu Phe Val Asp Ala Val Glu Val Asn Pro Ser Asn Arg Asn Gln Glu	
165 170 175	
Thr Ser Gly Thr Tyr Gln Ile Gln Ala Trp Thr Lys Phe Asp Phe Pro	
180 185 190	
Gly Arg Gly Asn Thr Tyr Ser Ser Phe Lys Trp Arg Trp Tyr His Phe	
195 200 205	
Asp Gly Thr Asp Trp Asp Glu Ser Arg Lys Leu Asn Arg Ile Tyr Lys	
210 215 220	
Phe Arg Gly Thr Gly Lys Ala Trp Asp Trp Glu Val Asp Thr Glu Asn	
225 230 235 240	
Gly Asn Tyr Asp Tyr Leu Met Phe Ala Asp Leu Asp Met Asp His Pro	
245 250 255	
Glu Val Val Thr Glu Leu Lys Asn Trp Gly Thr Trp Tyr Val Asn Thr	
260 265 270	
Thr Asn Ile Asp Gly Phe Arg Leu Asp Ala Val Lys His Ile Lys Tyr	
275 280 285	
Ser Phe Phe Pro Asp Trp Leu Thr Tyr Val Arg Asn Gln Thr Gly Lys	
290 295 300	
Asn Leu Phe Ala Val Gly Glu Phe Trp Ser Tyr Asp Val Asn Lys Leu	
305 310 315 320	
His Asn Tyr Ile Thr Lys Thr Asn Gly Ser Met Ser Leu Phe Asp Ala	
325 330 335	
Pro Leu His Asn Asn Phe Tyr Thr Ala Ser Lys Ser Ser Gly Tyr Phe	
340 345 350	

Asp Met Arg Tyr Leu Leu Asn Asn Thr Leu Met Lys Asp Gln Pro Ser
 355 360 365
 Leu Ala Val Thr Leu Val Asp Asn His Asp Thr Gln Pro Gly Gln Ser
 370 375 380
 Leu Gln Ser Trp Val Glu Pro Trp Phe Lys Gln Leu Ala Tyr Ala Phe
 385 390 395 400
 Ile Leu Thr Arg Gln Glu Gly Tyr Pro Cys Val Phe Tyr Gly Asp Tyr
 405 410 415
 Tyr Gly Ile Pro Lys Tyr Asn Ile Pro Gly Leu Lys Ser Lys Ile Asp
 420 425 430
 Pro Leu Leu Ile Ala Arg Arg Asp Tyr Ala Tyr Gly Thr Gln Arg Asp
 435 440 445
 Tyr Ile Asp His Gln Asp Ile Ile Gly Trp Thr Arg Glu Gly Ile Asp
 450 455 460
 Ala Lys Pro Asn Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro Gly
 465 470 475 480
 Gly Ser Lys Trp Met Tyr Val Gly Lys Lys His Ala Gly Lys Val Phe
 485 490 495
 Tyr Asp Leu Thr Gly Asn Arg Ser Asp Thr Val Thr Ile Asn Ala Asp
 500 505 510
 Gly Trp Gly Glu Phe Lys Val Asn Gly Gly Ser Val Ser Ile Trp Val
 515 520 525
 Ala Lys Thr Ser Asn Val Thr Phe Thr Val Asn Asn Ala Thr Thr Thr
 530 535 540
 Ser Gly Gln Asn Val Tyr Val Val Gly Asn Ile Pro Glu Leu Gly Asn
 545 550 555 560
 Cys Arg Thr Gly

<210> 121
 <211> 1556
 <212> DNA
 <213> Environmental

<400> 121

atgctcgccc	tgtcgctcgg	cggctgcggc	atcgacgcgg	gcccgacagg	ccctcgcgtc	60
gtggagccgc	tgccgcagcg	ccccacgctt	ccgcaggagt	accgcgcacag	cggccacgcg	120
gccgcggcgc	acgtgttcgt	gcacctgttc	gagtggaaat	gcgcggacat	cgcggaggaa	180
tgcgagaacg	tgctggggcc	ggcgggctac	gaggcggtgc	aggtgtcgcc	gccgcaggag	240
cacctggtgc	agcagggggc	gcgcgtgggg	cagcggtacc	agccgggtgag	ctactcggtg	300
gcgctgagcc	gcagcggcac	gggcgtggag	ttcagcaaca	tgatcagccg	gtcaaggcc	360
gccggcgtgg	acatctacgt	ggacgcccgtc	atcaaccaca	tgacggccgg	tgcggggacg	420
gggagcaacg	gcaccgccta	caccaagtac	aactaccccg	gcctgtacgc	gcaggcggac	480
tttcacccgc	agtgcgcggt	gggcgactac	accagcgcgg	ccaacgtgca	ggactgcgaa	540
ctgctggggc	tggctgacct	gaacacccggc	gcggccggcg	tgcagcagaa	gatcgcggac	600
tacctggtct	cgctggcgcg	gctggggcgtg	gcgggttttc	gatcgacgc	cgccaagcac	660
atccagccgg	tggaaacttga	cggccatcgta	gaccgcgtga	accagacgt	ggcggcggag	720
ggggcggccgc	ttccctactg	gttcgcggag	gtgatcgaca	acggcggcga	gggggtgcgg	780
cgcgagact	actacggcct	gggatacggc	accggcggcg	ccgcggacat	cacggagttc	840
cgctacaagg	gcgtggcgca	caagttcctg	ggcagcggcg	gccagcggct	ggtggacact	900
aagaacttct	cgccgggtgac	gtggaaacctg	atgcggctgg	acaaggccgt	cgatctttctg	960
gagaaccacg	atacgcagcg	cggcggcgcc	atcggttacc	gcgtatggc	ggcgttccgg	1020
ctggccaacg	tgtggatgct	ggcgcagccg	tacggctatc	cgtcggtat	gtccagctac	1080
gcctttgacc	gcaccccccc	cttggccgc	gacgcggcc	cgccctccga	ggacggcgcg	1140
acgaaggacg	tgacgtgcgc	gcccacgctg	gagacggcg	tgctgggcac	ctgggtgtgc	1200
gagcaccgcg	accccgcat	tcaagcggatg	gtgggtttc	gccgcgcgat	ggcgggcacg	1260
gacctgaacc	gctggtgaaa	caacggcgcc	aacgcattg	cctttcgcc	cggggaccgg	1320

ggttcgtcg ccatcagccg cgagccgaag gtgaccatgg cggccgtgcc cagcggactg	1380
tccccggca cctactgcga cgtgctgacc ggcggcaagg tggcaacgc ctgcgcggga	1440
accagcgtga cggtcgactc tcagggcgtg gtgcagctga gcatcgtcga gaactcggct	1500
ctggatcc acctcggggc caagctgtaa cggcgcgtg gcggatgtgc ggaggg	1556

<210> 122
<211> 517
<212> PRT
<213> Environmental

<400> 122	
Met Leu Ala Leu Ser Leu Gly Gly Cys Gly Ile Asp Ala Gly Pro Thr	
1 5 10 15	
Gly Pro Arg Val Val Glu Pro Leu Pro Gln Arg Pro Thr Leu Pro Gln	
20 25 30	
Glu Tyr Arg Ala Ser Gly His Ala Ala Ala Gly Asp Val Phe Val His	
35 40 45	
Leu Phe Glu Trp Lys Trp Pro Asp Ile Ala Glu Glu Cys Glu Asn Val	
50 55 60	
Leu Gly Pro Ala Gly Tyr Glu Ala Val Gln Val Ser Pro Pro Gln Glu	
65 70 75 80	
His Leu Val Gln Gln Gly Ala Pro Trp Trp Gln Arg Tyr Gln Pro Val	
85 90 95	
Ser Tyr Ser Val Ala Leu Ser Arg Ser Gly Thr Gly Val Glu Phe Ser	
100 105 110	
Asn Met Ile Ser Arg Cys Lys Ala Ala Gly Val Asp Ile Tyr Val Asp	
115 120 125	
Ala Val Ile Asn His Met Thr Ala Gly Ala Gly Thr Gly Ser Asn Gly	
130 135 140	
Thr Ala Tyr Thr Lys Tyr Asn Tyr Pro Gly Leu Tyr Ala Gln Ala Asp	
145 150 155 160	
Phe His Pro Gln Cys Ala Val Gly Asp Tyr Thr Ser Ala Ala Asn Val	
165 170 175	
Gln Asp Cys Glu Leu Leu Gly Leu Ala Asp Leu Asn Thr Gly Ala Ala	
180 185 190	
Gly Val Gln Gln Lys Ile Ala Asp Tyr Leu Val Ser Leu Ala Arg Leu	
195 200 205	
Gly Val Ala Gly Phe Arg Ile Asp Ala Ala Lys His Ile Gln Pro Val	
210 215 220	
Glu Leu Asp Ala Ile Val Asp Arg Val Asn Gln Thr Leu Ala Ala Glu	
225 230 235 240	
Gly Arg Pro Leu Pro Tyr Trp Phe Ala Glu Val Ile Asp Asn Gly Gly	
245 250 255	
Glu Gly Val Arg Arg Glu His Tyr Tyr Gly Leu Gly Tyr Gly Thr Gly	
260 265 270	
Gly Ala Ala Asp Ile Thr Glu Phe Arg Tyr Lys Val Gly Asp Lys	
275 280 285	
Phe Leu Gly Ser Gly Gly Gln Arg Leu Val Asp Leu Lys Asn Phe Ser	
290 295 300	
Ala Val Thr Trp Asn Leu Met Pro Ser Asp Lys Ala Val Val Phe Leu	
305 310 315 320	
Glu Asn His Asp Thr Gln Arg Gly Gly Ile Gly Tyr Arg Asp Gly	
325 330 335	
Thr Ala Phe Arg Leu Ala Asn Val Trp Met Leu Ala Gln Pro Tyr Gly	
340 345 350	
Tyr Pro Ser Val Met Ser Ser Tyr Ala Phe Asp Arg Thr Ser Pro Phe	
355 360 365	

Gly Arg Asp Ala Gly Pro Pro Ser Glu Asp Gly Ala Thr Lys Asp Val
 370 375 380
 Thr Cys Ala Pro Thr Leu Glu Thr Ala Val Leu Gly Thr Trp Val Cys
 385 390 395 400
 Glu His Arg Asp Pro Val Ile Gln Arg Met Val Gly Phe Arg Arg Ala
 405 410 415
 Met Ala Gly Thr Asp Leu Asn Arg Trp Trp Asp Asn Gly Asn Ala
 420 425 430
 Ile Ala Phe Ser Arg Gly Asp Arg Gly Phe Val Ala Ile Ser Arg Glu
 435 440 445
 Pro Lys Val Thr Met Ala Ala Val Pro Ser Gly Leu Ser Pro Gly Thr
 450 455 460
 Tyr Cys Asp Val Leu Thr Gly Gly Lys Val Gly Asn Ala Cys Ala Gly
 465 470 475 480
 Thr Ser Val Thr Val Asp Ser Gln Gly Val Val Gln Leu Ser Ile Val
 485 490 495
 Glu Asn Ser Ala Leu Val Ile His Leu Gly Ala Lys Leu Arg Arg Ala
 500 505 510
 Gly Gly Cys Ala Glu
 515

<210> 123

<211> 1770

<212> DNA

<213> Environmental

<400> 123

atgccccagg	ccattcgcac	ttttcacgt	tggacgttgt	tcggcttaat	cggcgaaaaa	60
ctgtttggtc	tcgtcttttc	tgtcccaccc	cgggcataacc	aggcccagac	aaccccgcccccc	120
cgtaccgtta	tggttcacct	cttcgagtgg	aaatggaccg	acatcgctaa	agaatgcgag	180
aatttcctcg	gaccgaaaagg	cttgcgcga	atccaggtat	cggccccc	ggagcatgtc	240
caggggtcgc	aatgggtggac	ccgcatacg	ccggtcagct	acaagatcga	gagccgctcc	300
ggcacccggg	ccgagttcgc	caatatggtc	tcgcgtgc	aagccgtcg	gtcgatatc	360
tatgtcgatg	ccgtgatcaa	ccatatgacg	actgtcggt	ccggcactgg	tatggctgga	420
tcgaccta	ccagctacac	ctatccgggg	ctgtatcaga	cccaggactt	ccaccactgc	480
gggcgcata	gcaacgatga	tatcagcagg	tacggcgatc	gctggaaagt	acaaaactgc	540
gaactgctca	acctagccg	cctcaacacc	ggcgctgagt	atgtccgggg	taaactcgcc	600
gccttatatga	acgatctgcg	cggcctgggc	gtcgccggat	ttcggatcga	tgccgc当地	660
cacatggata	ccaacgacat	caacaatatac	gttggccgc	tgcccaacgc	gccctacatc	720
taccaggaag	tgatcgacca	ggcgccgag	ccaattaccg	ccggcgaata	cttccagaat	780
ggcgatgtga	ccgagttcaa	gtacagccgc	gagatctgc	gatgttcaa	aaccggccag	840
ctgaccata	tgagccagtt	cggcactgccc	tgggcttca	tgtccagcga	cctggcagta	900
gttttcaccg	ataaccacga	caaccagcgc	ggtcacggcg	gcccggcg	tgtcttgacc	960
tacaaagatg	gccagctgta	caccctgggc	aatatctcg	agctagcctg	gccgtatggc	1020
tacccacagg	tcatgtcgag	ctacacgttc	agcaacggcg	accagggggcc	gccatcgacc	1080
aatgtgtacg	caaccacaac	gcctgttgc	ggcaacggcc	gctgggtctg	tgagcaccgc	1140
tggcgaggaa	tgcacacat	ggtcgcgttc	cgcaactaca	ccgccccgac	cttcagcacc	1200
agcaacttgt	ggagcaacgg	caacaaccag	atcgcttca	ggccggggac	cctgggttt	1260
gtggcgatca	atcgggaagg	tgcagcctg	aaccgcacct	tccaaaccgg	cctgcccgtc	1320
ggcacctact	gcgatgtcat	tacggcgat	ttcaatgcca	ggccggcgac	ctgtttccggc	1380
ccaaactatcg	ctgtcaacgg	ctccggacag	gcaaccatca	cggtaacgc	gatggacgcg	1440
gtggcgatct	acggcgaggc	caggctcgcc	actccggcca	gtgtcaacgt	gacattcaac	1500
gaaaacgcca	cgaccacctg	ggggcagaat	gtgtatatcg	tccggcaacgt	cgccgc当地	1560
ggcagctgga	acgcaggcag	cgcggctta	ctctccctcc	ctaaactaccc	aatctggagc	1620
aagaccatcg	ccctgcccgc	caacaccgc	attgagttaca	agttacatcaa	aaaggatggc	1680
gcgggcaatg	tggtgtggga	aagcgccgc	aaccgcgtct	ttaccacccc	cggcagcggc	1740
agtgccacgc	gcaacgatac	ctggaaatag				1770

<210> 124
<211> 589
<212> PRT
<213> Environmental

<400> 124

Met	Pro	Gln	Ala	Ile	Arg	Thr	Phe	Ser	Arg	Trp	Thr	Leu	Phe	Gly	Leu
1				5					10					15	
Ile	Gly	Val	Phe	Leu	Leu	Gly	Leu	Val	Phe	Ser	Val	Pro	Pro	Arg	Ala
				20				25					30		
Ile	Gln	Ala	Gln	Thr	Thr	Pro	Ala	Arg	Thr	Val	Met	Val	His	Leu	Phe
				35				40				45			
Glu	Trp	Lys	Trp	Thr	Asp	Ile	Ala	Lys	Glu	Cys	Glu	Asn	Phe	Leu	Gly
				50			55			60					
Pro	Lys	Gly	Phe	Ala	Ala	Ile	Gln	Val	Ser	Pro	Pro	Gln	Glu	His	Val
65				70					75				80		
Gln	Gly	Ser	Gln	Trp	Trp	Thr	Arg	Tyr	Gln	Pro	Val	Ser	Tyr	Lys	Ile
				85				90				95			
Glu	Ser	Arg	Ser	Gly	Thr	Arg	Ala	Glu	Phe	Ala	Asn	Met	Val	Ser	Arg
				100				105			110				
Cys	Lys	Ala	Val	Gly	Val	Asp	Ile	Tyr	Val	Asp	Ala	Val	Ile	Asn	His
				115			120			125					
Met	Thr	Thr	Val	Gly	Ser	Gly	Thr	Gly	Met	Ala	Gly	Ser	Thr	Tyr	Thr
				130			135			140					
Ser	Tyr	Thr	Tyr	Pro	Gly	Leu	Tyr	Gln	Thr	Gln	Asp	Phe	His	His	Cys
145					150				155				160		
Gly	Arg	Asn	Gly	Asn	Asp	Asp	Ile	Ser	Ser	Tyr	Gly	Asp	Arg	Trp	Glu
				165				170			175				
Val	Gln	Asn	Cys	Glu	Leu	Leu	Asn	Leu	Ala	Asp	Leu	Asn	Thr	Gly	Ala
				180				185			190				
Glu	Tyr	Val	Arg	Gly	Lys	Leu	Ala	Ala	Tyr	Met	Asn	Asp	Leu	Arg	Gly
				195			200			205					
Leu	Gly	Val	Ala	Gly	Phe	Arg	Ile	Asp	Ala	Ala	Lys	Met	Asp	Thr	
				210			215			220					
Asn	Asp	Ile	Asn	Asn	Ile	Val	Gly	Arg	Leu	Pro	Asn	Ala	Pro	Tyr	Ile
225					230				235				240		
Tyr	Gln	Glu	Val	Ile	Asp	Gln	Gly	Glu	Pro	Ile	Thr	Ala	Gly	Glu	
				245			250			255					
Tyr	Phe	Gln	Asn	Gly	Asp	Val	Thr	Glu	Phe	Lys	Tyr	Ser	Arg	Glu	Ile
				260			265			270					
Ser	Arg	Met	Phe	Lys	Thr	Gly	Gln	Leu	Thr	His	Met	Ser	Gln	Phe	Gly
				275			280			285					
Thr	Ala	Trp	Gly	Phe	Met	Ser	Ser	Asp	Leu	Ala	Val	Val	Phe	Thr	Asp
				290			295			300					
Asn	His	Asp	Asn	Gln	Arg	Gly	His	Gly	Gly	Ala	Gly	Asp	Val	Leu	Thr
305					310				315				320		
Tyr	Lys	Asp	Gly	Gln	Leu	Tyr	Thr	Leu	Gly	Asn	Ile	Phe	Glu	Leu	Ala
				325			330			335					
Trp	Pro	Tyr	Gly	Tyr	Pro	Gln	Val	Met	Ser	Ser	Tyr	Thr	Phe	Ser	Asn
				340			345			350					
Gly	Asp	Gln	Gly	Pro	Pro	Ser	Thr	Asn	Val	Tyr	Ala	Thr	Thr	Thr	Pro
				355			360			365					
Asp	Cys	Gly	Asn	Gly	Arg	Trp	Val	Cys	Glu	His	Arg	Trp	Arg	Gly	Ile
				370			375			380					
Ala	Asn	Met	Val	Ala	Phe	Arg	Asn	Tyr	Thr	Ala	Pro	Thr	Phe	Ser	Thr
385					390				395			400			

Ser Asn Trp Trp Ser Asn Gly Asn Asn Gln Ile Ala Phe Ser Arg Gly
 405 410 415
 Thr Leu Gly Phe Val Ala Ile Asn Arg Glu Gly Gly Ser Leu Asn Arg
 420 425 430
 Thr Phe Gln Thr Gly Leu Pro Val Gly Thr Tyr Cys Asp Val Ile His
 435 440 445
 Gly Asp Phe Asn Ala Ser Ala Gly Thr Cys Ser Gly Pro Thr Ile Ala
 450 455 460
 Val Asn Gly Ser Gly Gln Ala Thr Ile Thr Val Asn Ala Met Asp Ala
 465 470 475 480
 Val Ala Ile Tyr Gly Gly Ala Arg Leu Ala Thr Pro Ala Ser Val Asn
 485 490 495
 Val Thr Phe Asn Glu Asn Ala Thr Thr Trp Gly Gln Asn Val Tyr
 500 505 510
 Ile Val Gly Asn Val Ala Ala Leu Gly Ser Trp Asn Ala Gly Ser Ala
 515 520 525
 Val Leu Leu Ser Ser Ala Asn Tyr Pro Ile Trp Ser Lys Thr Ile Ala
 530 535 540
 Leu Pro Ala Asn Thr Ala Ile Glu Tyr Lys Tyr Ile Lys Lys Asp Gly
 545 550 555 560
 Ala Gly Asn Val Val Trp Glu Ser Gly Ala Asn Arg Val Phe Thr Thr
 565 570 575
 Pro Gly Ser Gly Ser Ala Thr Arg Asn Asp Thr Trp Lys
 580 585

<210> 125
 <211> 1395
 <212> DNA
 <213> Environmental

<400> 125
 gtggcaca tgaagttgaa gtaccttgcc ttatgtttgt tggctgtggc ttgcataaggc
 ctactctcgaa ctccagtggg tgctgccaag tactccgaac tcgaagaggc cggttata
 atgcaggcct tctactgggaa ttgtcccgaa gggaaatct ggtgggacac cataagacag
 aaaatcccgg agtgtacga cgttggaaatc tcggcataat ggattccccc agcttagaaa
 gggatggcgt gtggattttc catggctac gatccctacg atttctttga cctccggcag
 tactatcaga agggAACAGT tgagacgcgc ttccggctaa aggaggaact ggtgaacatg
 ataaacaccg cacactccta tggatataag gtatagcgg acatagtcat aaaccaccgc
 gccggtggag acctttagt gaaccctttt gtaaaacaact atacttggac agacttctcc
 aaggctcgctt ccggtaataa cacggcaac taccttgcact tccacccaaa cgaggtaag
 tgctgcgtt agggtaattt tggtgacttt ccggacatcg cccacggaaa gagctggat
 cagtaactggc tctggcaag caatgagac tacgccccat atctccggag catagggatc
 gatgcattggc gtttcgacta cgtcaaagggt tacggagcgt gggttttaa tgactggctc
 agctggtggg gaggctggc cgttggagag tactggaca cgaacgttga tgcactcctt
 aactggccat acgacagcgg tgccaaagggt tttgacttcc cgctctacta caagatggac
 gaaggctttt gcaacaccaa catccccgtt ttggtttacg ccctccagaa cggaggaaca
 gtgtttccc gcgatccctt caaggcgtt actttcggtt ccaaccacga tacagatata
 atctggaaaca agtatccggc ttatgcgttc atccttaccc atgaggggaca gcctgttata
 ttttaccggc actacgagga gtggctcaac aaggataagc ttaacaacct tatctggata
 cacgagcacc ttggccggagg aagtaccaag atcctctact acgataacga tgagctata
 ttcatgaggg agggctacgg gagcaagccg ggcctcataa cctacataaa cctccggaaac
 gactggccgg agcgctgggt gaacgtcggc tcaaagttt cccgctacac aatccatgaa
 tacacaggca atctcggtgg ctgggttgac aggtgggttc agtacgttgg atgggttaaa
 ctgacggcac ctccatga tccagccaa ggtatattacg gctactcagt ctggagctac
 gcaggcgtcg gatga

<210> 126

<211> 464
<212> PRT
<213> Environmental

<400> 126

Val	Val	His	Met	Lys	Leu	Lys	Tyr	Leu	Ala	Leu	Val	Leu	Leu	Ala	Val
1				5				10						15	
Ala	Ser	Ile	Gly	Leu	Leu	Ser	Thr	Pro	Val	Gly	Ala	Ala	Lys	Tyr	Ser
				20				25					30		
Glu	Leu	Glu	Glu	Gly	Gly	Val	Ile	Met	Gln	Ala	Phe	Tyr	Trp	Asp	Val
				35				40			45				
Pro	Gly	Gly	Gly	Ile	Trp	Trp	Asp	Thr	Ile	Arg	Gln	Ile	Pro	Glu	
				50				55			60				
Trp	Tyr	Asp	Ala	Gly	Ile	Ser	Ala	Ile	Trp	Ile	Pro	Pro	Ala	Ser	Lys
	65				70				75				80		
Gly	Met	Gly	Gly	Gly	Tyr	Ser	Met	Gly	Tyr	Asp	Pro	Tyr	Asp	Phe	Phe
				85				90			95				
Asp	Leu	Gly	Glu	Tyr	Tyr	Gln	Lys	Gly	Thr	Val	Glu	Thr	Arg	Phe	Gly
	100					105					110				
Ser	Lys	Glu	Glu	Leu	Val	Asn	Met	Ile	Asn	Thr	Ala	His	Ser	Tyr	Gly
	115					120					125				
Ile	Lys	Val	Ile	Ala	Asp	Ile	Val	Ile	Asn	His	Arg	Ala	Gly	Gly	Asp
	130					135				140					
Leu	Glu	Trp	Asn	Pro	Phe	Val	Asn	Asn	Tyr	Thr	Trp	Thr	Asp	Phe	Ser
	145					150				155			160		
Lys	Val	Ala	Ser	Gly	Lys	Tyr	Thr	Ala	Asn	Tyr	Leu	Asp	Phe	His	Pro
				165				170			175				
Asn	Glu	Val	Lys	Cys	Cys	Asp	Glu	Gly	Thr	Phe	Gly	Asp	Phe	Pro	Asp
				180				185			190				
Ile	Ala	His	Glu	Lys	Ser	Trp	Asp	Gln	Tyr	Trp	Leu	Trp	Ala	Ser	Asn
	195					200				205					
Glu	Ser	Tyr	Ala	Ala	Tyr	Leu	Arg	Ser	Ile	Gly	Ile	Asp	Ala	Trp	Arg
	210					215				220					
Phe	Asp	Tyr	Val	Lys	Gly	Tyr	Gly	Ala	Trp	Val	Val	Asn	Asp	Trp	Leu
	225					230				235			240		
Ser	Trp	Trp	Gly	Gly	Trp	Ala	Val	Gly	Glu	Tyr	Trp	Asp	Thr	Asn	Val
				245				250			255				
Asp	Ala	Leu	Leu	Asn	Trp	Ala	Tyr	Asp	Ser	Gly	Ala	Lys	Val	Phe	Asp
				260				265			270				
Phe	Pro	Leu	Tyr	Tyr	Lys	Met	Asp	Glu	Ala	Phe	Asp	Asn	Thr	Asn	Ile
				275				280			285				
Pro	Ala	Leu	Val	Tyr	Ala	Leu	Gln	Asn	Gly	Gly	Thr	Val	Val	Ser	Arg
	290					295				300					
Asp	Pro	Phe	Lys	Ala	Val	Thr	Phe	Val	Ala	Asn	His	Asp	Thr	Asp	Ile
	305					310				315			320		
Ile	Trp	Asn	Lys	Tyr	Pro	Ala	Tyr	Ala	Phe	Ile	Leu	Thr	Tyr	Gly	
				325				330			335				
Gln	Pro	Val	Ile	Phe	Tyr	Arg	Asp	Tyr	Glu	Glu	Trp	Leu	Asn	Lys	Asp
				340				345			350				
Lys	Leu	Asn	Asn	Leu	Ile	Trp	Ile	His	Glu	His	Leu	Ala	Gly	Gly	Ser
				355				360			365				
Thr	Lys	Ile	Leu	Tyr	Tyr	Asp	Asn	Asp	Glu	Leu	Ile	Phe	Met	Arg	Glu
	370					375				380					
Gly	Tyr	Gly	Ser	Lys	Pro	Gly	Leu	Ile	Thr	Tyr	Ile	Asn	Leu	Gly	Asn
	385					390				395			400		
Asp	Trp	Ala	Glu	Arg	Trp	Val	Asn	Val	Gly	Ser	Lys	Phe	Ala	Gly	Tyr
				405				410			415				

Thr Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp Val Asp Arg Trp
 420 425 430
 Val Gln Tyr Asp Gly Trp Val Lys Leu Thr Ala Pro Pro His Asp Pro
 435 440 445
 Ala Asn Gly Tyr Tyr Gly Tyr Ser Val Trp Ser Tyr Ala Gly Val Gly
 450 455 460

<210> 127

<211> 1848

<212> DNA

<213> Environmental

<400> 127

gtgtgcatga	attatttcaa	aaaagtgtgg	ttgttattacg	ctatcgtcgc	tacctaatac	60
atttactttc	ttacgcccctt	ttcaactgca	caagccaaca	ctgcaccagt	caacggAACG	120
atgatgcaat	atttcgaatg	ggatttacccg	aatgtatggca	cactttggac	gaaagtaaaa	180
aacgaagcaa	gcagtcttc	ttcttttaggt	attactgcgt	tatggttacc	acctgcatac	240
aaaggaacga	gccaggggga	tgtcggttat	ggcgtgtacg	atttgtatga	cttaggagaa	300
tttaatcaaa	aaggcacat	tgcgaacgaaa	tacggaaccaa	aaacgcataa	tttacaagcc	360
attcaagcgg	caaaaagcgc	tggcatgcaa	gtatacgctg	atgtcgtatt	taatcacaag	420
gccccggcag	atagtacaga	atgggttgac	gcagtcgaag	tgaatccttc	taatcgaaac	480
caagaaacat	ctggcacata	tcaaattcaa	gcatggacaa	aatttgattt	ccctggccgt	540
gggaacacat	actcaagctt	taaatggcga	tggtatcatt	ttgacggtac	ggattggat	600
gaaagccgaa	aactaaatcg	tatttacaaa	ttcgtggca	cagaaaaagc	atgggatttg	660
gaagtagaca	cagagaacgg	aaactatgac	tacttaatgt	ttgctgattt	agatatggat	720
caccctgaag	tcgtgacaga	gctaaaaaac	tggggacat	ggtacgtcaa	tacgacaaat	780
gtcgatgggt	ttcgcttaga	tgcagtaaag	catattaaat	atagcttctt	cccagattgg	840
ttaacacatg	tgcgttcaca	aacacgaaaa	aatcttttg	cagtaggaga	attttggagc	900
tacgatgtca	ataaaactgca	taactacatt	acaaaaacaa	gtggacccat	gtcgtttattt	960
gatgcgccac	ttcataacaa	cttttacact	gcttcaaaat	ctagcggtt	ttttgacatg	1020
cgctatttgt	taaataatac	gttgatgaaa	gaccaggcctt	ctcttgcgtt	cacactcggt	1080
gataatcatg	acacgcaacc	gggacaatct	ttacaatcat	ggttagagcc	ttggtttaag	1140
ccgcttgctt	atgcctttat	tttgacaaga	caagaaggat	atcctgcgt	attttacggc	1200
gactattacg	gcatccctaa	atacaacatt	ccgggattga	aaagtaaaaat	cgatccgctt	1260
ctcattgccc	gtagagacta	cgcatacgg	acacaacgt	attatattga	ccatcaagac	1320
attattggat	ggacacggga	aggaattgac	tcaaaaacga	actctggact	tgcggttta	1380
attactgacg	gccctggtgg	aagtaaatgg	atgtatgtag	gtaaaaagca	tgctggaaaa	1440
gtgtttacg	atctcactgg	aatcgaagc	gatacggtaa	cgattaatgc	agacggctgg	1500
ggagagttt	aagtaaacgg	tggctccgtt	tccattttgg	ttgccaaaac	atcacaagtc	1560
acgtttaccc	tcaacaatgc	gacaacgata	agcggacaaa	atgtgtatgt	cgttggtaac	1620
atcccagagc	tcggaaattt	gaacacagca	aacgcaatca	aatgaccccc	atcttcttat	1680
ccaacgtgga	aagcaaccat	tgctttcca	caagaaaaag	ccattgaatt	taaatttatt	1740
aaaaaaagacc	aatcggaaaa	tgttgggg	gaaagcattc	caaaccgaac	atacaccgtt	1800
ccattttat	caacaggctc	atatacagct	agttggatg	taccttaa		1848

<210> 128

<211> 615

<212> PRT

<213> Environmental

<400> 128

Val Cys Met Asn Tyr Leu Lys Lys Val	Trp Leu Tyr Tyr Ala Ile Val		
1	5	10	15
Ala Thr Leu Ile Ile Tyr Phe Leu Thr Pro Phe Ser Thr Ala Gln Ala			
20	25	30	
Asn Thr Ala Pro Val Asn Gly Thr Met Met Gln Tyr Phe Glu Trp Asp			
35	40	45	

Leu Pro Asn Asp Gly Thr Leu Trp Thr Lys Val Lys Asn Glu Ala Ser
 50 55 60
 Ser Leu Ser Ser Leu Gly Ile Thr Ala Leu Trp Leu Pro Pro Ala Tyr
 65 70 75 80
 Lys Gly Thr Ser Gln Gly Asp Val Gly Tyr Gly Val Tyr Asp Leu Tyr
 85 90 95
 Asp Leu Gly Glu Phe Asn Gln Lys Gly Thr Ile Arg Thr Lys Tyr Gly
 100 105 110
 Thr Lys Thr Gln Tyr Leu Gln Ala Ile Gln Ala Ala Lys Ser Ala Gly
 115 120 125
 Met Gln Val Tyr Ala Asp Val Val Phe Asn His Lys Ala Gly Ala Asp
 130 135 140
 Ser Thr Glu Trp Val Asp Ala Val Glu Val Asn Pro Ser Asn Arg Asn
 145 150 155 160
 Gln Glu Thr Ser Gly Thr Tyr Gln Ile Gln Ala Trp Thr Lys Phe Asp
 165 170 175
 Phe Pro Gly Arg Gly Asn Thr Tyr Ser Ser Phe Lys Trp Arg Trp Tyr
 180 185 190
 His Phe Asp Gly Thr Asp Trp Asp Glu Ser Arg Lys Leu Asn Arg Ile
 195 200 205
 Tyr Lys Phe Arg Gly Thr Gly Lys Ala Trp Asp Trp Glu Val Asp Thr
 210 215 220
 Glu Asn Gly Asn Tyr Asp Tyr Leu Met Phe Ala Asp Leu Asp Met Asp
 225 230 235 240
 His Pro Glu Val Val Thr Glu Leu Lys Asn Trp Gly Thr Trp Tyr Val
 245 250 255
 Asn Thr Thr Asn Val Asp Gly Phe Arg Leu Asp Ala Val Lys His Ile
 260 265 270
 Lys Tyr Ser Phe Phe Pro Asp Trp Leu Thr His Val Arg Ser Gln Thr
 275 280 285
 Arg Lys Asn Leu Phe Ala Val Gly Glu Phe Trp Ser Tyr Asp Val Asn
 290 295 300
 Lys Leu His Asn Tyr Ile Thr Lys Thr Ser Gly Thr Met Ser Leu Phe
 305 310 315 320
 Asp Ala Pro Leu His Asn Asn Phe Tyr Thr Ala Ser Lys Ser Ser Gly
 325 330 335
 Tyr Phe Asp Met Arg Tyr Leu Leu Asn Asn Thr Leu Met Lys Asp Gln
 340 345 350
 Pro Ser Leu Ala Val Thr Leu Val Asp Asn His Asp Thr Gln Pro Gly
 355 360 365
 Gln Ser Leu Gln Ser Trp Val Glu Pro Trp Phe Lys Pro Leu Ala Tyr
 370 375 380
 Ala Phe Ile Leu Thr Arg Gln Glu Gly Tyr Pro Cys Val Phe Tyr Gly
 385 390 395 400
 Asp Tyr Tyr Gly Ile Pro Lys Tyr Asn Ile Pro Gly Leu Lys Ser Lys
 405 410 415
 Ile Asp Pro Leu Leu Ile Ala Arg Arg Asp Tyr Ala Tyr Gly Thr Gln
 420 425 430
 Arg Asp Tyr Ile Asp His Gln Asp Ile Ile Gly Trp Thr Arg Glu Gly
 435 440 445
 Ile Asp Ser Lys Pro Asn Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly
 450 455 460
 Pro Gly Gly Ser Lys Trp Met Tyr Val Gly Lys Lys His Ala Gly Lys
 465 470 475 480
 Val Phe Tyr Asp Leu Thr Gly Asn Arg Ser Asp Thr Val Thr Ile Asn
 485 490 495
 Ala Asp Gly Trp Gly Glu Phe Lys Val Asn Gly Gly Ser Val Ser Ile

	500	505	510
Trp Val Ala Lys Thr Ser Gln Val	Thr Phe Thr Val Asn Asn Ala Thr		
515	520	525	
Thr Ile Ser Gly Gln Asn Val Tyr Val Val Gly Asn Ile Pro Glu Leu			
530	535	540	
Gly Asn Trp Asn Thr Ala Asn Ala Ile Lys Met	Thr Pro Ser Ser Tyr		
545	550	555	560
Pro Thr Trp Lys Ala Thr Ile Ala Leu Pro Gln Gly Lys Ala Ile Glu			
565	570	575	
Phe Lys Phe Ile Lys Lys Asp Gln Ser Gly Asn Val Val Trp Glu Ser			
580	585	590	
Ile Pro Asn Arg Thr Tyr Thr Val Pro Phe Leu Ser Thr Gly Ser Tyr			
595	600	605	
Thr Ala Ser Trp Asn Val Pro			
610	615		

<210> 129

<211> 1854

<212> DNA

<213> Environmental

<400> 129

atgcgttgcc	gccgtggcag	ggacgggtgt	tggtgccggc	ggcgtaatgc	gctgccgcga	60
caccgcgtg	aacaaaataa	tatgaattat	ttgaatagga	tgggggtgtc	aagaatgaca	120
aaatctcgag	agttgcgggt	ttcatggaaa	gtatttgg	ttgggtgcct	gttgtggatg	180
gcttggggat	cttcgcgtc	cgccggcgta	ttgatgcaag	gcttctactg	ggacgccagt	240
accgggacca	gtgattcgtg	gtggacgcat	ttggccaagg	aagccaacgg	tctaaaacgg	300
gccccgttca	ccgcccgtatg	gattcctccg	gtgcttaaag	gggcttcagg	gggctattcc	360
aacgggtacg	atcccttga	cgactatgat	atcggaaagca	aggaccagaa	aggtaccgtg	420
gcgacgcgt	gggggacgcg	agaagaactg	caacgtgccg	tggccgtat	gcfgcgaac	480
ggtctggatg	tgtatgtgga	tctgggtctg	aaccacccgca	acggggacgca	cgggaaattgg	540
aattttcatt	acaaagatgc	gtacggcaaa	gtgggttacg	gcfggttca	aaagggttt	600
tacgattttc	accccaacta	caacattcag	gatgccaatg	tcccaacgca	ggattccagc	660
ttcgggcgcg	attagccca	tgacaatccg	tatgtggccg	atggactgaa	ggctgcaggc	720
gattggctga	ccaaagccct	cgatgttcag	ggatatcgct	tggattacgt	gaaaggcatc	780
agctacaccc	tcctgaaaag	ttatctgtcc	tatggggcca	tgaacggaaa	atttgcgcgc	840
ggtgagttact	gggatgccaa	ccgggatacg	ttgaactgg	ggcgaacac	ggcgatggaa	900
ggggggggcc	atgtgttga	tttgcgttg	cgcgaggagc	taaaaaacat	gtgcaatgcg	960
gacgggtact	acgacatgcg	tcgattggac	cacgcgggtc	tggtcggaat	cgaccgttgg	1020
aaggcgggtga	cgtttgtcga	aaaccatgat	acggatcgcc	acgaccat	ctacaataac	1080
aagcatttgg	cgtatgccta	catcttgcac	tcggaaagggt	atccgacgg	gttctggaa	1140
gattactacc	aatacggaat	gaagccgatc	atcgacaacc	tcatttggat	ccacgaacac	1200
attgcgtacg	gaacgaccca	agacggttgg	aaagacgaag	atgtctttgt	gtatgagcgg	1260
accggaggca	agcggctatt	ggtggggctt	aacgacaatc	gcccaccag	caaaacggtc	1320
accgtacaga	ccggcttgg	tgccaacgtg	gccttgcacg	actacaccgg	caacggcccc	1380
gatctccgta	ccgacgccta	cgtcgggtta	accttgcacca	ttcctgcaaa	cggtaacgtg	1440
gccttattccg	ttccggcat	ctccggatcc	tttgcgg	tgcgagaaaac	cgtgacgcag	1500
gagtttgcgg	gggcgtccga	cttggatatt	cgtccggccg	ataacacgca	atttgcgcag	1560
gtcgggcgg	tatacccaa	ggcaaaacaag	ccggttacag	cggaatttgc	ttggatgccc	1620
aaagacttgg	cgacccac	gtcgattctc	ctagaagtgc	gttcggcttc	ggaaacgctc	1680
atcacgacaa	agaccgtgac	ccaatttgcg	tcccagggt	cccgccgttcc	ttcacgcctc	1740
tcggctaccg	gtggatcgt	ctttccatt	cgaagctata	acacgccttc	gacgaacccca	1800
aaggcggccct	actggtaaaa	ggtaacgtat	acggcgccgc	aatttgcgtca	gtaa	1854

<210> 130

<211> 617

<212> PRT

<213> Environmental

<400> 130

Met Arg Cys Arg Arg Gly Arg Asp Gly Cys Trp Cys Gly Arg Arg Asn
 1 5 10 15
 Ala Leu Pro Arg His Pro Arg Glu Gln Asn Asn Met Asn Tyr Leu Asn
 20 25 30
 Arg Met Gly Val Ser Arg Met Thr Lys Ser Arg Glu Leu Arg Cys Ser
 35 40 45
 Trp Lys Val Phe Val Val Gly Cys Leu Leu Trp Met Ala Trp Gly Ser
 50 55 60
 Ser Ala Ser Ala Gly Val Leu Met Gln Gly Phe Tyr Trp Asp Ala Ser
 65 70 75 80
 Thr Gly Thr Ser Asp Ser Trp Trp Thr His Leu Ala Lys Gln Ala Asn
 85 90 95
 Gly Leu Lys Arg Ala Gly Phe Thr Ala Val Trp Ile Pro Pro Val Leu
 100 105 110
 Lys Gly Ala Ser Gly Gly Tyr Ser Asn Gly Tyr Asp Pro Phe Asp Asp
 115 120 125
 Tyr Asp Ile Gly Ser Lys Asp Gln Lys Gly Thr Val Ala Thr Arg Trp
 130 135 140
 Gly Thr Arg Glu Glu Leu Gln Arg Ala Val Ala Val Met Arg Ala Asn
 145 150 155 160
 Gly Leu Asp Val Tyr Val Asp Leu Val Leu Asn His Arg Asn Gly Asp
 165 170 175
 Asp Gly Asn Trp Asn Phe His Tyr Lys Asp Ala Tyr Gly Lys Val Gly
 180 185 190
 Tyr Gly Arg Phe Gln Lys Gly Phe Tyr Asp Phe His Pro Asn Tyr Asn
 195 200 205
 Ile Gln Asp Ala Asn Val Pro Asn Glu Asp Ser Ser Phe Gly Arg Asp
 210 215 220
 Leu Ala His Asp Asn Pro Tyr Val Ala Asp Gly Leu Lys Ala Ala Gly
 225 230 235 240
 Asp Trp Leu Thr Lys Ala Leu Asp Val Gln Gly Tyr Arg Leu Asp Tyr
 245 250 255
 Val Lys Gly Ile Ser Tyr Thr Phe Leu Lys Ser Tyr Leu Ser Tyr Gly
 260 265 270
 Ala Met Asn Gly Lys Phe Ala Val Gly Glu Tyr Trp Asp Ala Asn Arg
 275 280 285
 Asp Thr Leu Asn Trp Trp Ala Asn Thr Ala Met Glu Gly Arg Ala His
 290 295 300
 Val Phe Asp Phe Ala Leu Arg Glu Glu Leu Lys Asn Met Cys Asn Ala
 305 310 315 320
 Asp Gly Tyr Tyr Asp Met Arg Arg Leu Asp His Ala Gly Leu Val Gly
 325 330 335
 Ile Asp Pro Trp Lys Ala Val Thr Phe Val Glu Asn His Asp Thr Asp
 340 345 350
 Arg His Asp Pro Ile Tyr Asn Asn Lys His Leu Ala Tyr Ala Tyr Ile
 355 360 365
 Leu Thr Ser Glu Gly Tyr Pro Thr Val Phe Trp Lys Asp Tyr Tyr Gln
 370 375 380
 Tyr Gly Met Lys Pro Ile Ile Asp Asn Leu Ile Trp Ile His Glu His
 385 390 395 400
 Ile Ala Tyr Gly Thr Thr Gln Glu Arg Trp Lys Asp Glu Asp Val Phe
 405 410 415
 Val Tyr Glu Arg Thr Gly Gly Lys Arg Leu Leu Val Gly Leu Asn Asp
 420 425 430

Asn Arg Ala Thr Ser Lys Thr Val Thr Val Gln Thr Gly Phe Gly Ala
 435 440 445
 Asn Val Ala Leu His Asp Tyr Thr Gly Asn Gly Pro Asp Leu Arg Thr
 450 455 460
 Asp Ala Tyr Gly Arg Val Thr Leu Thr Ile Pro Ala Asn Gly Tyr Val
 465 470 475 480
 Ala Tyr Ser Val Pro Gly Ile Ser Gly Ser Phe Val Pro Val Glu Lys
 485 490 495
 Thr Val Thr Gln Glu Phe Ala Gly Ala Ser Asp Leu Asp Ile Arg Pro
 500 505 510
 Ala Asp Asn Thr Gln Phe Val Gln Val Gly Arg Ile Tyr Ala Lys Ala
 515 520 525
 Asn Lys Pro Val Thr Ala Glu Leu Tyr Trp Asp Ala Lys Asp Trp Thr
 530 535 540
 Thr Ser Thr Ser Ile Leu Glu Val Arg Ser Ala Ser Gly Thr Leu
 545 550 555 560
 Ile Thr Thr Lys Thr Val Thr Gln Leu Ser Ser Gln Gly Thr Arg Val
 565 570 575
 Ser Phe Thr Pro Ser Ala Thr Gly Trp Tyr Val Phe Ser Ile Arg Ser
 580 585 590
 Tyr Asn Thr Pro Ser Thr Asn Pro Lys Pro Ala Tyr Trp Leu Lys Val
 595 600 605
 Thr Tyr Thr Ala Pro Gln Leu Leu Gln
 610 615

<210> 131

<211> 1881

<212> DNA

<213> Environmental

<400> 131

atgccgcagc	tttaccatt	gccgcccgcgc	tggcgccgcgc	cggccccggca	gggcctggcc	60
gccttgacgc	tggccaccac	ggccctgggc	atctcgacgg	cccaggccca	gagtgcaccg	120
cgcacggcct	tcgtgcacatct	gttcgaatgg	aagtggaccg	acatcgccgc	cgagtgcgag	180
accttcctcg	ggcccaaggg	cttcgcggcg	gtgcaggtgt	cgcccccgaa	cgagcacacaac	240
tgggtgacca	gccccgtatgg	tgcacattat	ccgtgggtgg	tgcgttacca	gccccgtgagc	300
tacagcctgg	accgcagccg	cagcggcacf	cgcgcgcgat	tccaggacat	gttcaaccga	360
tgcaatgcgc	tgggcgtggg	catctacgtg	gacgcgcgtga	tcaatcacat	gtccggcggc	420
acggggcggca	cctcgagcgc	tgggcgcagc	tggagactatc	acaactaccc	tgggccttat	480
ggccccaacg	acttccacca	gccgggtgtgc	agcatcacca	actacgggaa	tgcgaacaat	540
gtgcagcgtt	gcgagctctc	gggcttgcag	gacctggaca	ctgggagcgc	ttatgtgcgc	600
ggcaagatcg	ccgactatct	ggtggatctg	gtcaacatgg	gggtcaaggg	ttccgggtg	660
gatgcggcca	agcacatcag	cccgaccgac	ctgggcgcac	tcatcgatgc	gttcaacagc	720
cgcacccggcg	cgAACCGCCC	tttctgggtt	ctggaggtga	ttggcgccggc	cggcgaggca	780
gtgcagccga	accagtactt	ctcgctcgcc	ggcggccagg	tcaccgtgac	cgagttcaac	840
tatgggaagc	aatcttcgg	caagttcgcc	ggtggcgcc	gtctggccga	gtgcgcagc	900
ttcggtgaaa	cctggggcct	gatgcccagc	agcaaagcga	ttgtttcat	cgacaaccac	960
gacaaggcagc	gcggcatgg	cgccgggtgc	aactatctga	cctaccacca	tggctcgacc	1020
tacatctgg	ccaacatctt	catgctggct	tggccttatg	gctacccggc	gctgtatgtcc	1080
agctatgcct	tcaaccgcag	cacggcctac	gacacgagct	ttggcccgcc	acacgacagt	1140
ggttggcgcca	cccggtggcc	ctgggatgg	ggcggcagcc	agccggcctg	tttcaaccag	1200
agcatcggtg	gctgggtgtg	tgacgaccgc	tggcgccggca	tgcaccaat	ggtggcccttc	1260
cgcaacgcca	cgctgcccaa	ctggaccgtg	accgactgg	gggacaacgg	caacaaccag	1320
atcgcttgc	ggcggggtga	caagggcttc	gtggatgtca	accgcaaga	cgccgcgctg	1380
acgcgcact	tcaagaccag	cctgcccagcc	ggccagact	gcatgtcat	ctccggggac	1440
ttcaacaatg	gtcagtgcac	ggccatgtg	gtgacggctg	atgcggccg	ctacgtgacg	1500
ctgacggccg	ggcccaatgg	tgcggccggcc	atccacgtgg	gccccgtct	ggacggcc	1560

tctcagccgc	cgacgaccgc	ctcggtgacg	ttcaacgcgt	cggccgatac	ctttgggga	1620
cagaacctgt	tcgtcggtgg	caaccacagc	gcactgggca	actggtcgcc	ggcgccgc	1680
aggccatgt	cttggatttc	cggtcgggc	acgcgcgggaa	actggcgccg	ggtgctaat	1740
ttgcggcca	ataccaccta	ccaatacaag	ttcatcaaga	aggacggggc	tggaaacgtg	1800
gtttgggagg	gcggtgccaa	tcgcgtcg	accacgcccgt	ctgggggcgg	atcgtgagc	1860
acgggcggca	attggcagta	g				1881

<210> 132

<211> 626

<212> PRT

<213> Environmental

<400> 132

Met Pro Gln Leu Tyr Pro Leu Pro Pro Arg Trp Arg Arg Ala Ala Arg						
1	5	10	15			
Gln Gly Leu Ala Ala Leu Thr Leu Ala Thr Thr Ala Leu Gly Ile Ser						
20	25	30				
Thr Ala Gln Ala Gln Ser Ala Pro Arg Thr Ala Phe Val His Leu Phe						
35	40	45				
Glu Trp Lys Trp Thr Asp Ile Ala Arg Glu Cys Glu Thr Phe Leu Gly						
50	55	60				
Pro Lys Gly Phe Ala Ala Val Gln Val Ser Pro Pro Asn Glu His Asn						
65	70	75	80			
Trp Val Thr Ser Gly Asp Gly Ala Pro Tyr Pro Trp Trp Met Arg Tyr						
85	90	95				
Gln Pro Val Ser Tyr Ser Leu Asp Arg Ser Arg Ser Gly Thr Arg Ala						
100	105	110				
Glu Phe Gln Asp Met Val Asn Arg Cys Asn Ala Val Gly Val Gly Ile						
115	120	125				
Tyr Val Asp Ala Val Ile Asn His Met Ser Gly Gly Thr Gly Gly Thr						
130	135	140				
Ser Ser Ala Gly Arg Ser Trp Ser Tyr His Asn Tyr Pro Gly Leu Tyr						
145	150	155	160			
Gly Pro Asn Asp Phe His Gln Pro Val Cys Ser Ile Thr Asn Tyr Gly						
165	170	175				
Asp Ala Asn Asn Val Gln Arg Cys Glu Leu Ser Gly Leu Gln Asp Leu						
180	185	190				
Asp Thr Gly Ser Ala Tyr Val Arg Gly Lys Ile Ala Asp Tyr Leu Val						
195	200	205				
Asp Leu Val Asn Met Gly Val Lys Gly Phe Arg Val Asp Ala Ala Lys						
210	215	220				
His Ile Ser Pro Thr Asp Leu Gly Ala Ile Ile Asp Ala Val Asn Ser						
225	230	235	240			
Arg Thr Gly Ala Asn Arg Pro Phe Trp Phe Leu Glu Val Ile Gly Ala						
245	250	255				
Ala Gly Glu Ala Val Gln Pro Asn Gln Tyr Phe Ser Leu Gly Gly Gly						
260	265	270				
Gln Val Thr Val Thr Glu Phe Asn Tyr Gly Lys Gln Ile Phe Gly Lys						
275	280	285				
Phe Ala Gly Gly Arg Leu Ala Glu Leu Arg Ser Phe Gly Glu Thr						
290	295	300				
Trp Gly Leu Met Pro Ser Ser Lys Ala Ile Ala Phe Ile Asp Asn His						
305	310	315	320			
Asp Lys Gln Arg Gly His Gly Gly Asn Tyr Leu Thr Tyr His						
325	330	335				
His Gly Ser Thr Tyr Asp Leu Ala Asn Ile Phe Met Leu Ala Trp Pro						
340	345	350				

Tyr Gly Tyr Pro Ala Leu Met Ser Ser Tyr Ala Phe Asn Arg Ser Thr
 355 360 365
 Ala Tyr Asp Thr Ser Phe Gly Pro Pro His Asp Ser Gly Gly Ala Thr
 370 375 380
 Arg Gly Pro Trp Asp Gly Gly Ser Gln Pro Ala Cys Phe Asn Gln
 385 390 395 400
 Ser Ile Gly Gly Trp Val Cys Glu His Arg Trp Arg Gly Ile Ala Asn
 405 410 415
 Met Val Ala Phe Arg Asn Ala Thr Leu Pro Asn Trp Thr Val Thr Asp
 420 425 430
 Trp Trp Asp Asn Gly Asn Asn Gln Ile Ala Phe Gly Arg Gly Asp Lys
 435 440 445
 Gly Phe Val Val Ile Asn Arg Glu Asp Ala Ala Leu Thr Arg Asn Phe
 450 455 460
 Lys Thr Ser Leu Pro Ala Gly Gln Tyr Cys Asp Val Ile Ser Gly Asp
 465 470 475 480
 Phe Asn Asn Gly Gln Cys Thr Gly His Val Val Thr Val Asp Ala Gly
 485 490 495
 Gly Tyr Val Thr Leu Thr Ala Gly Pro Asn Gly Ala Ala Ala Ile His
 500 505 510
 Val Gly Ala Arg Leu Asp Gly Ala Ser Gln Pro Pro Thr Thr Ala Ser
 515 520 525
 Val Thr Phe Asn Ala Ser Ala Asp Thr Phe Trp Gly Gln Asn Leu Phe
 530 535 540
 Val Val Gly Asn His Ser Ala Leu Gly Asn Trp Ser Pro Ala Ala Ala
 545 550 555 560
 Arg Pro Met Thr Trp Ile Ser Gly Ser Gly Thr Arg Gly Asn Trp Arg
 565 570 575
 Ala Val Leu Asn Leu Pro Ala Asn Thr Thr Tyr Gln Tyr Lys Phe Ile
 580 585 590
 Lys Lys Asp Gly Ala Gly Asn Val Val Trp Glu Gly Gly Gly Asn Arg
 595 600 605
 Val Val Thr Thr Pro Ser Gly Gly Ser Val Ser Thr Gly Gly Asn
 610 615 620
 Trp Gln
 625

<210> 133
 <211> 1638
 <212> DNA
 <213> Environmental

<400> 133

atgaataatg	tgaaaaaaagt	atggttgtat	tattctataa	ttgctacctt	agttatttcc	60
tttttcacac	cttttcaac	agcacaagct	aatactgcac	ctgtcaacgg	aacaatgtatg	120
caatatttcg	aatgggattt	accgaatgat	gggacgctt	ggacgaaagt	aaaaaatgaa	180
gctaccaatc	tttcttcgct	aggtattaca	gcgttatggc	tccctccagc	atataaagga	240
acgagccaaa	gcgatgtcgg	atatggcgtg	tacgatttat	atgaccttgg	ggaatttaat	300
caaaaaggga	cgatccgaac	gaaatacgg	acaaaagcac	aatatattca	agccatccaa	360
gctgccaaag	ccgcaggat	gcaagtatat	gcagatgtt	tatthaatca	taaggcgggg	420
gctgacggca	cagaatttgt	cgatgcagtt	gaggtaaacc	cttctaattcg	aaatcaagaa	480
acatctggca	catatcaaat	tcaagcatgg	acaaaatttg	atttcctgg	tcgtggaaac	540
acatactcca	gcttcaaatg	gcgctggat	cattttgacg	gtaccgattt	gatgaaagt	600
cgtaaattaa	atcgatattt	caaattccgc	ggtacaggaa	aagcgtggga	ctggaaagtc	660
gatacagaaa	acggaaacta	tgattattt	atgttcgttg	attagatat	gatcaccct	720
gaagttgtga	cagactaaa	aaactgggga	aatggat	taaatacgcac	aaatgttagac	780
ggatttcgtt	tggtatgccgt	aaaacatatt	aaatacagct	tttccctga	ctggctaaca	840

tatgtacgta atcaaacagg aaaaaattta tttgctgtt gggatTTT gagctatgac	900
gtcaataagc tgcataacta cattacaaaa acaaATGGAT cgatgtcgTT atttgatgca	960
cctttgcata acaacttta tatcgCTTCC aaATCGAGTG gatATTTGA catcgTTAT	1020
ttattgaata atacattaat gaaagatcaa CCTTCACTCG CTGTAACACT TGTGATAAC	1080
catgatacac aaccaggTCA atctttacaa TCATGGGTAG aAGCTGGTT taaACCgCTT	1140
gcttacgcct ttattttaac aagacaagag gggtatCCTT gcgtattttA CGGTGACTAT	1200
tacggaatCC CGAAATACAA TATTCCGGGA taaaAGTA aaATTGATCC GCTTTAATT	1260
gctcgTCGTG attatgCTTA TGGAACACAA CGTGATTACA TTGATCATCA AGACATTATC	1320
GGATGGACAC GAGAAGGCAT TGATGCAAAA CGGAACCTCTG GACTTGCggc TTAAATTACC	1380
GACGGCCCTG GCGGAAGTAA ATGGATGTAT GTCGGTAAAA AACATGCTGG GAAAGTGT	1440
TATGATTAA CTGGAAATCG AAGTGACACA GTAACGATTA ATGCGGACGG TTGGGGAGAA	1500
TTTAAAGTAA ACGGCGGCTC CGTTTCGATT TGGGTGGCTA AAACATCAA CGTCACATT	1560
ACAGTCAATA ACGCCACAAc AACAAGTGGA CAAAACGTAT ATGTTGTTGG CAACATTCCA	1620
GAGCTAGGCA ATTCTTG	1638

<210> 134

<211> 546

<212> PRT

<213> Environmental

<400> 134

Met Asn Asn Val Lys Val Trp Leu Tyr Tyr Ser Ile Ile Ala Thr	
1 5 10 15	
Leu Val Ile Ser Phe Phe Thr Pro Phe Ser Thr Ala Gln Ala Asn Thr	
20 25 30	
Ala Pro Val Asn Gly Thr Met Met Gln Tyr Phe Glu Trp Asp Leu Pro	
35 40 45	
Asn Asp Gly Thr Leu Trp Thr Lys Val Lys Asn Glu Ala Thr Asn Leu	
50 55 60	
Ser Ser Leu Gly Ile Thr Ala Leu Trp Leu Pro Pro Ala Tyr Lys Gly	
65 70 75 80	
Thr Ser Gln Ser Asp Val Gly Tyr Gly Val Tyr Asp Leu Tyr Asp Leu	
85 90 95	
Gly Glu Phe Asn Gln Lys Gly Thr Ile Arg Thr Lys Tyr Gly Thr Lys	
100 105 110	
Ala Gln Tyr Ile Gln Ala Ile Gln Ala Ala Lys Ala Ala Gly Met Gln	
115 120 125	
Val Tyr Ala Asp Val Val Phe Asn His Lys Ala Gly Ala Asp Gly Thr	
130 135 140	
Glu Phe Val Asp Ala Val Glu Val Asn Pro Ser Asn Arg Asn Gln Glu	
145 150 155 160	
Thr Ser Gly Thr Tyr Gln Ile Gln Ala Trp Thr Lys Phe Asp Phe Pro	
165 170 175	
Gly Arg Gly Asn Thr Tyr Ser Ser Phe Lys Trp Arg Trp Tyr His Phe	
180 185 190	
Asp Gly Thr Asp Trp Asp Glu Ser Arg Lys Leu Asn Arg Ile Tyr Lys	
195 200 205	
Phe Arg Gly Thr Gly Lys Ala Trp Asp Trp Glu Val Asp Thr Glu Asn	
210 215 220	
Gly Asn Tyr Asp Tyr Leu Met Phe Ala Asp Leu Asp Met Asp His Pro	
225 230 235 240	
Glu Val Val Thr Glu Leu Lys Asn Trp Gly Lys Trp Tyr Val Asn Thr	
245 250 255	
Thr Asn Val Asp Gly Phe Arg Leu Asp Ala Val Lys His Ile Lys Tyr	
260 265 270	
Ser Phe Phe Pro Asp Trp Leu Thr Tyr Val Arg Asn Gln Thr Gly Lys	
275 280 285	

Asn Leu Phe Ala Val Gly Glu Phe Trp Ser Tyr Asp Val Asn Lys Leu
 290 295 300
 His Asn Tyr Ile Thr Lys Thr Asn Gly Ser Met Ser Leu Phe Asp Ala
 305 310 315 320
 Pro Leu His Asn Asn Phe Tyr Ile Ala Ser Lys Ser Ser Gly Tyr Phe
 325 330 335
 Asp Met Arg Tyr Leu Leu Asn Asn Thr Leu Met Lys Asp Gln Pro Ser
 340 345 350
 Leu Ala Val Thr Leu Val Asp Asn His Asp Thr Gln Pro Gly Gln Ser
 355 360 365
 Leu Gln Ser Trp Val Glu Ala Trp Phe Lys Pro Leu Ala Tyr Ala Phe
 370 375 380
 Ile Leu Thr Arg Gln Glu Gly Tyr Pro Cys Val Phe Tyr Gly Asp Tyr
 385 390 395 400
 Tyr Gly Ile Pro Lys Tyr Asn Ile Pro Gly Leu Lys Ser Lys Ile Asp
 405 410 415
 Pro Leu Leu Ile Ala Arg Arg Asp Tyr Ala Tyr Gly Thr Gln Arg Asp
 420 425 430
 Tyr Ile Asp His Gln Asp Ile Ile Gly Trp Thr Arg Glu Gly Ile Asp
 435 440 445
 Ala Lys Pro Asn Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro Gly
 450 455 460
 Gly Ser Lys Trp Met Tyr Val Gly Lys Lys His Ala Gly Lys Val Phe
 465 470 475 480
 Tyr Asp Leu Thr Gly Asn Arg Ser Asp Thr Val Thr Ile Asn Ala Asp
 485 490 495
 Gly Trp Gly Glu Phe Lys Val Asn Gly Gly Ser Val Ser Ile Trp Val
 500 505 510
 Ala Lys Thr Ser Asn Val Thr Phe Thr Val Asn Asn Ala Thr Thr Thr
 515 520 525
 Ser Gly Gln Asn Val Tyr Val Val Gly Asn Ile Pro Glu Leu Gly Asn
 530 535 540
 Ser Leu
 545

<210> 135
<211> 1935
<212> DNA
<213> Environmental

```

<400> 135
gtgacaggca ccccgctttt atacattcct ccacataaaa taaccataca gctttcaaat 60
tttgtaaat gtataaaaat aaaaaatagt attgttaagcg ttaacatccg tcattataat
aacttcaaac gcgttatgt ttaatgcaa acgtttgcat cctcattttt tttaaagaaa 120
ggatgtgtgt gcatgaatta tttgaaaaaa gtgtggttgt attacgctat cgtcgctacc 180
ttaatcatt ccttcttac gccctttca actgcacaag ccaacactgc accagtcaac 240
ggaacgatga tgcaatattt cgaatggat ttaccgaatg atggcacact ttggacgaaa 300
gtaaaaaaaaacg aagcaagcag ctttttttct ttaggttata ctgcgttatg gttaccacct 360
gcatacaaaag gaacgagcca agggatgtc gggtatggcg tgtacgatt gtatgactta 420
ggagaattta atcaaaaagg gacgatcga acgaaaatacg gaacaaaaac gcaatattta 480
caagccattc aagcggcaaa aagcgtggc atgcaagtat acgctgatgt cgtatttaat 540
cacaaggcgg gggcagatag tacagaatgg gttgacgcag tcgaagtcaa tccttctaatt 600
cgaaaaccaag aaacatctgg cacatatcaa attcaagcat ggacaaaatt tgattccct 660
gaccgtggaa acacatactc aagctttaaa tggcgctggt atcattttga cggtagggat 720
tgggatgaaa gtgcaaaaact aaatcgcat tacaatttc gtggcacagg aaaagcatgg 780
gattggaaag tagacacaga gaacggaaac tatgactact taatgtttgc tgatTTTat 840
atggatcacc ctgaagtcgt gacagagcta aaaaactggg gaacatqgta cqtcaatacq 900

```

acaaatgtcg	atgggttcg	cttagatgca	gtaaagcata	ttaaatatag	cttttccca	1020
gattggtaa	catatgtcg	ctcacaaaca	caaaaaatc	tgttgcagt	aggagaattt	1080
tggagctacg	atgtcaataa	actgcataac	tacattacaa	aaacaagtgg	aaccatgtcg	1140
ttatttgatg	cggcacttca	taacaactt	tacactgctt	caaaatctag	cgggtatttt	1200
gacatgcgct	atttggtaaa	taatacgtt	atgaaagacc	agccttctct	tgcggtcaca	1260
ctcggtgata	atcatgacac	gcaaccggga	caatcttac	aatcatgggt	agaggccttgg	1320
ttaagccgc	ttgcttatgc	ctttatttt	acaagacaag	aaggatatcc	ttgcgtat	1380
tacggcgact	attacggcat	ccctaaatac	aatattccgg	gattgaaaag	taaaatcgat	1440
ccgcttctca	ttgcccgtag	agactacgca	tacggAACAC	aacgtgatta	tattgaccat	1500
caagacatta	ttggatggac	acgggaaggg	attgactcaa	aaccgaactc	tggacttgcg	1560
gctttaatta	ctgacggtcc	ttgtggaaagt	aaatggatgt	atgttagttaa	aaagcatgct	1620
ggaaaagtgt	tttacgatct	cactggaaat	cgaaggcata	cggtaacgat	taatgcagac	1680
ggctggggag	agtttaagt	aaacgggtggc	tcgcgttcca	tttgggttgc	caaaacatca	1740
caagtcacgt	ttaccgtcaa	caatgcgaca	acgacaagcg	gacaaaatgt	gtatgtcg	1800
ggcaacattc	cagagctcg	aaatttggaaac	acagcaaacg	caatcaaaat	gacccatct	1860
tcttatccaa	cgtggaaaac	aaccattgt	cttccacaag	gaaaagcaat	tggccggcgt	1920
cgccatggcc	cttga					1935

<210> 136

<211> 644

<212> PRT

<213> Environmental

<400> 136

Val	Thr	Gly	Thr	Pro	Ser	Leu	Tyr	Ile	Pro	Pro	His	Lys	Ile	Thr	Ile
1				5				10			15				
Gln	Leu	Ser	Asn	Leu	Leu	Lys	Cys	Ile	Lys	Ile	Lys	Asn	Ser	Ile	Val
					20				25			30			
Ser	Val	Asn	Ile	Arg	His	Tyr	Asn	Asn	Phe	Lys	Arg	Val	Tyr	Val	Leu
					35			40			45				
Met	Gln	Thr	Phe	Ala	Ser	Ser	Phe	Tyr	Leu	Lys	Lys	Gly	Cys	Val	Cys
						50		55			60				
Met	Asn	Tyr	Leu	Lys	Lys	Val	Trp	Leu	Tyr	Tyr	Ala	Ile	Val	Ala	Thr
						65		70		75		80			
Leu	Ile	Ile	Ser	Phe	Leu	Thr	Pro	Phe	Ser	Thr	Ala	Gln	Ala	Asn	Thr
						85			90			95			
Ala	Pro	Val	Asn	Gly	Thr	Met	Met	Gln	Tyr	Phe	Glu	Trp	Asp	Leu	Pro
						100			105			110			
Asn	Asp	Gly	Thr	Leu	Trp	Thr	Lys	Val	Lys	Asn	Glu	Ala	Ser	Ser	Leu
						115			120			125			
Ser	Ser	Leu	Gly	Ile	Thr	Ala	Leu	Trp	Leu	Pro	Pro	Ala	Tyr	Lys	Gly
						130			135			140			
Thr	Ser	Gln	Gly	Asp	Val	Gly	Tyr	Gly	Val	Tyr	Asp	Leu	Tyr	Asp	Leu
						145			150			155			160
Gly	Glu	Phe	Asn	Gln	Lys	Gly	Thr	Ile	Arg	Thr	Lys	Tyr	Gly	Thr	Lys
						165			170			175			
Thr	Gln	Tyr	Leu	Gln	Ala	Ile	Gln	Ala	Ala	Lys	Ser	Ala	Gly	Met	Gln
						180			185			190			
Val	Tyr	Ala	Asp	Val	Val	Phe	Asn	His	Lys	Ala	Gly	Ala	Asp	Ser	Thr
						195			200			205			
Glu	Trp	Val	Asp	Ala	Val	Glu	Val	Asn	Pro	Ser	Asn	Arg	Asn	Gln	Glu
						210			215			220			
Thr	Ser	Gly	Thr	Tyr	Gln	Ile	Gln	Ala	Trp	Thr	Lys	Phe	Asp	Phe	Pro
						225			230			235			240
Asp	Arg	Gly	Asn	Thr	Tyr	Ser	Ser	Phe	Lys	Trp	Arg	Trp	Tyr	His	Phe
						245			250			255			
Asp	Gly	Thr	Asp	Trp	Asp	Glu	Ser	Arg	Lys	Leu	Asn	Arg	Ile	Tyr	Lys

260	265	270
Phe Arg Gly Thr Gly Lys Ala Trp Asp Trp Glu Val Asp Thr Glu Asn		
275	280	285
Gly Asn Tyr Asp Tyr Leu Met Phe Ala Asp Leu Asp Met Asp His Pro		
290	295	300
Glu Val Val Thr Glu Leu Lys Asn Trp Gly Thr Trp Tyr Val Asn Thr		
305	310	315
320		
Thr Asn Val Asp Gly Phe Arg Leu Asp Ala Val Lys His Ile Lys Tyr		
325	330	335
Ser Phe Phe Pro Asp Trp Leu Thr Tyr Val Arg Ser Gln Thr Gln Lys		
340	345	350
Asn Leu Phe Ala Val Gly Glu Phe Trp Ser Tyr Asp Val Asn Lys Leu		
355	360	365
His Asn Tyr Ile Thr Lys Thr Ser Gly Thr Met Ser Leu Phe Asp Ala		
370	375	380
Pro Leu His Asn Asn Phe Tyr Thr Ala Ser Lys Ser Ser Gly Tyr Phe		
385	390	395
400		
Asp Met Arg Tyr Leu Leu Asn Asn Thr Leu Met Lys Asp Gln Pro Ser		
405	410	415
Leu Ala Val Thr Leu Val Asp Asn His Asp Thr Gln Pro Gly Gln Ser		
420	425	430
Leu Gln Ser Trp Val Glu Pro Trp Phe Lys Pro Leu Ala Tyr Ala Phe		
435	440	445
Ile Leu Thr Arg Gln Glu Gly Tyr Pro Cys Val Phe Tyr Gly Asp Tyr		
450	455	460
Tyr Gly Ile Pro Lys Tyr Asn Ile Pro Gly Leu Lys Ser Lys Ile Asp		
465	470	475
480		
Pro Leu Leu Ile Ala Arg Arg Asp Tyr Ala Tyr Gly Thr Gln Arg Asp		
485	490	495
Tyr Ile Asp His Gln Asp Ile Ile Gly Trp Thr Arg Glu Gly Ile Asp		
500	505	510
Ser Lys Pro Asn Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro Gly		
515	520	525
Gly Ser Lys Trp Met Tyr Val Gly Lys Lys His Ala Gly Lys Val Phe		
530	535	540
Tyr Asp Leu Thr Gly Asn Arg Ser Asp Thr Val Thr Ile Asn Ala Asp		
545	550	555
560		
Gly Trp Gly Glu Phe Lys Val Asn Gly Gly Ser Val Ser Ile Trp Val		
565	570	575
Ala Lys Thr Ser Gln Val Thr Phe Thr Val Asn Asn Ala Thr Thr Thr		
580	585	590
Ser Gly Gln Asn Val Tyr Val Val Gly Asn Ile Pro Glu Leu Gly Asn		
595	600	605
Trp Asn Thr Ala Asn Ala Ile Lys Met Thr Pro Ser Ser Tyr Pro Thr		
610	615	620
Trp Lys Thr Thr Ile Ala Leu Pro Gln Gly Lys Ala Ile Gly Gly Val		
625	630	635
Arg His Gly Pro		640

<210> 137

<211> 1320

<212> DNA

<213> Environmental

<400> 137

gtgggacggg caggcttggc gcatcaactcg aacacttccg ccaaggggac atacgggtca

cctctcgaaac	tgcgtccgga	tcgccccgcc	gtggccgggg	cggtcgagct	tgaagatgtc	120
cagcggggag	ccgcccgcga	ggatcacccc	ggcggcgtac	tcgcccaggg	cgggctcag	180
cttgaagccg	tggccggagc	cgcctccca	gagccagacg	ttggaggccc	gcggatggcg	240
gtcgaggagg	aggtgccgt	cgggctgtt	ctcgtaactgg	cagacgcggg	tctcaccag	300
cggcgcgtcc	ttcagggccg	ggaaccggcg	ggccacctcg	gcccgggccc	cttcagcag	360
ggccggggtg	atcgcccgct	cgcggccgt	gggatcgatg	ggctcgcccc	gggtgtcg	420
cggcacctt	aagccgcgt	gctcggtgcc	ggggatgccc	tagtagatcc	gctcgccgag	480
atcgacccag	accggacagc	cgcctccctg	gaagcgcggg	tcgcccggcg	gcgtgcccga	540
gaagaacacc	tcctggcggg	tgttgcggag	gaaccgccta	ccgatcact	ccgggaacag	600
cccgccagc	cagggaccgc	aggcgaagac	gtagaggctg	gccgcgagag	tggagccgtc	660
cggaaaggta	agccgtcca	agggcccccgg	gaccatggcg	gcctgcccgt	actccccccc	720
ctcgccctgg	aacagctcca	ccacggtccc	gcaggcgcgc	cgggcgaaca	gggcgcggc	780
ttcctcctcg	taccagatcg	tgcgacgccc	gtcgaaatcg	acctggggga	agcgctccg	840
ggcctcccc	tgagacagct	cggcggccgg	cagccccgg	tcctccagaa	aaggaaaggga	900
gtcgccgacg	tagctgtcg	cctcgccgca	catccagagg	accccggtcc	ttttgtacag	960
ccggtaaccg	gactggactt	cggcgtcccg	ccagagctcg	aaggagcggg	cgaccactc	1020
cacgtacaga	cggtcgggtc	cgtaggcgc	gcccgtatc	cgcgtctcg	cacccggagct	1080
ggagcggggag	tgcccccggac	cccaggcgtc	caggagggtc	acccgggctc	cgcggcggag	1140
gagatgcagg	gcccgtccagc	cggcgaaggc	gcccggccgc	acgacggcga	tatggggatg	1200
ggagggcatg	gcccggcgtaa	ggttatcgca	gcccgtatc	tcgctggcat	cccatctccg	1260
accggagtat	cctggaaaat	tgcagaagg	agatcgacat	gcaatcgaa	ggaaacgtga	1320

<210> 138

<211> 439

<212> PRT

<213> Environmental

<400> 138

Val	Gly	Arg	Ala	Gly	Leu	Ala	His	His	Ser	Asn	Thr	Ser	Ala	Lys	Gly	
1							5				10			15		
Thr	Tyr	Gly	Ser	Pro	Leu	Glu	Leu	Arg	Pro	Asp	Arg	Pro	Ala	Val	Ala	
								20			25			30		
Gly	Ala	Val	Glu	Leu	Glu	Asp	Val	Gln	Arg	Gly	Ala	Ala	Ala	Glu	Asp	
								35			40			45		
His	Pro	Gly	Gly	Val	Leu	Ala	Gln	Gly	Gly	Ala	Gln	Leu	Glu	Ala	Val	
								50			55			60		
Ala	Gly	Ala	Ala	Ser	Gln	Glu	Pro	Asp	Val	Gly	Gly	Pro	Arg	Met	Ala	
								65			70			75		80
Val	Glu	Glu	Glu	Val	Ala	Val	Gly	Ala	Val	Leu	Val	Leu	Ala	Asp	Ala	
								85			90			95		
Gly	Leu	Asp	Gln	Arg	Arg	Val	Leu	Gln	Gly	Arg	Glu	Pro	Ala	Gly	His	
								100			105			110		
Leu	Gly	Pro	Gly	Arg	Phe	Gln	Gln	Gly	Arg	Gly	Asp	Arg	Pro	Leu	Ala	
								115			120			125		
Arg	Arg	Gly	Ile	Asp	Gly	Leu	Ala	Pro	Gly	Val	Val	Arg	His	Leu	Glu	
								130			135			140		
Ala	Ala	Val	Leu	Val	Ala	Gly	Asp	Ala	Val	Val	Asp	Pro	Leu	Ala	Glu	
								145			150			155		160
Ile	Asp	Pro	Asp	Arg	Thr	Ala	Ala	Leu	Leu	Glu	Ala	Arg	Val	Ala	Arg	
								165			170			175		
Arg	Arg	Ala	Glu	Glu	Glu	His	Leu	Leu	Ala	Gly	Val	Ala	Glu	Glu	Pro	
								180			185			190		
Leu	Thr	Asp	His	Val	Arg	Glu	Gln	Pro	Gly	Gln	Pro	Gly	Thr	Ala	Gly	
								195			200			205		
Glu	Asp	Val	Glu	Val	Gly	Arg	Glu	Ser	Gly	Ala	Val	Arg	Lys	Val	Lys	
								210			215			220		
Pro	Leu	Gln	Gly	Pro	Arg	Asp	His	Gly	Gly	Leu	Pro	Val	Leu	Pro	Ala	

225	230	235	240
Leu Ala Leu Glu Gln Leu His His Gly Pro Ala Gly Ala Pro Gly Glu			
245	250	255	
Gln Gly Ala Gly Phe Leu Leu Val Pro Asp Arg Ala Asp Ala Val Glu			
260	265	270	
Ile Asp Leu Gly Glu Ala Ala Pro Gly Leu Pro Leu Arg Gln Leu Gly			
275	280	285	
Asp Arg Gln Pro Arg Val Leu Gln Lys Arg Lys Gly Val Ala Asp Val			
290	295	300	
Ala Val Val Leu Ala Ala His Pro Glu Asp Pro Gly Pro Phe Val Gln			
305	310	315	320
Pro Val Thr Gly Leu Asp Phe Gly Val Pro Pro Glu Leu Glu Gly Ala			
325	330	335	
Gly Asp Pro Leu His Val Gln Thr Val Gly Ser Val Gly Ala Ala Asp			
340	345	350	
Asp Pro Arg Leu Ala Thr Gly Ala Gly Val Pro Arg Thr Pro			
355	360	365	
Gly Val Gln Glu Gly His Pro Gly Ser Ala Ala Glu Glu Met Gln Gly			
370	375	380	
Gly Pro Ala Ala Glu Gly Ala Gly Ala Asp Asp Gly Asp Met Gly Met			
385	390	395	400
Gly Gly His Gly Gly Arg Lys Val Ile Ala Ala Arg Ser Phe Ala Gly			
405	410	415	
Ile Pro Ser Pro Thr Gly Val Ser Trp Lys Ile Arg Arg Arg Arg Ser			
420	425	430	
Thr Cys Asn Arg Thr Glu Thr			
435			

<210> 139

<211> 1524

<212> DNA

<213> Environmental

<400> 139

atgaaaacat tcaaccttaa acccacactt ttaccttaa cttgctgct gagtcggccg	60
gtattggcg cacaaaatgg aactatgatc cagtattcc attggtatgt gccaaatgac	120
ggcgcactct ggacacaagt tgaaaacaat ggcgcagcac tatccgacaa cggtttaca	180
gcgcgttggt tgccaccagc atataaaggc gcaggtggta gcaacgcgt tggttacggt	240
gtttacgata tgtatgactt aggggaggtt gatcaaaaag gatcggtacg aactaagtac	300
ggcaccaaaag accaatatct aaatgccatc aaagcagcac acaaaaaacaa tatccaaatt	360
tatggtgacg tagtgtcaa ccatcggtgc ggtgcagatg gcaagtcgtg ggtcgatacc	420
aagcgtgtgg attggaataa ccgcaatatt gaacttggcg ataaatggat tgaagcatgg	480
gttgaattta gcttcccagg acgtaacat aaataactcag acttccattt gacgtggtat	540
cactttgatg gcgtcgattt ggtgcacgc ggtaaagaga aagcgatctt taaattcaaa	600
ggtgtatggta aagcatggta ttgggaagtc agttctgaaa aaggcaacta tgactacctc	660
atgtacgcag acttagacat ggatcaccca gaagtgaagc aagagctgaa agattgggt	720
gaatggtaact taaacatgac ggtgttgat ggcttccgaa tggatgcagt gaaacacatc	780
aaatatcagt acctacaaga gtggatcgat tacttgcgtt agaaaaacggg caaagagctc	840
tttaccgttg gtgagtaactg gaactacgcg gtgaacaatc tgcacaactt tatgactaag	900
acttctggca gcatgtcatt gtttgcgtcg cctttacata tgaacttcta taacgcttca	960
cgctctggtg gcaacttga tatgcgcga atcatggatg gcacccgtt gaaagacaaac	1020
ccagtgaaag cagtaacact ggttggaaac catgatacgc aaccactaca ggccttagag	1080
tctccgggtgg attgggtggtt caaaccactt gcgtacgcgt tcattttgcgt tcgtgaggaa	1140
ggttatccgt cagtttctta cgcagattac tacggtgccg aatacagcga taaagggcac	1200
gatataaca tggtgaaagt gccttacatt gagcaattgg tggaaagcgcg taaagattat	1260
gcttatggta aacaacattc ttaccttgac cactggatg tgattgggtt gacacgagaa	1320
ggggatgcgg aacatccgaa ctctatggcg gttatcatga gtgtatggtcc tggcgaaaca	1380

aagtggatgt acacaggttc accgagcaca cgttatgtcg ataaaactagg tattcgtacc	1440
gaagaagtagt ggactaacgc tagtggatgg gccgaattcc cagtgaacgg cgcatcggtt	1500
tctgtttggg ttggcgtaa ataa	1524
<210> 140	
<211> 507	
<212> PRT	
<213> Environmental	
<400> 140	
Met Lys Thr Phe Asn Leu Lys Pro Thr Leu Leu Pro Leu Thr Leu Leu	
1 5 10 15	
Leu Ser Ser Pro Val Leu Ala Ala Gln Asn Gly Thr Met Met Gln Tyr	
20 25 30	
Phe His Trp Tyr Val Pro Asn Asp Gly Ala Leu Trp Thr Gln Val Glu	
35 40 45	
Asn Asn Ala Pro Ala Leu Ser Asp Asn Gly Phe Thr Ala Leu Trp Leu	
50 55 60	
Pro Pro Ala Tyr Lys Gly Ala Gly Gly Ser Asn Asp Val Gly Tyr Gly	
65 70 75 80	
Val Tyr Asp Met Tyr Asp Leu Gly Glu Phe Asp Gln Lys Gly Ser Val	
85 90 95	
Arg Thr Lys Tyr Gly Thr Lys Asp Gln Tyr Leu Asn Ala Ile Lys Ala	
100 105 110	
Ala His Lys Asn Asn Ile Gln Ile Tyr Gly Asp Val Val Phe Asn His	
115 120 125	
Arg Gly Gly Ala Asp Gly Lys Ser Trp Val Asp Thr Lys Arg Val Asp	
130 135 140	
Trp Asn Asn Arg Asn Ile Glu Leu Gly Asp Lys Trp Ile Glu Ala Trp	
145 150 155 160	
Val Glu Phe Ser Phe Pro Gly Arg Asn Asp Lys Tyr Ser Asp Phe His	
165 170 175	
Trp Thr Trp Tyr His Phe Asp Gly Val Asp Trp Asp Asp Ala Gly Lys	
180 185 190	
Glu Lys Ala Ile Phe Lys Phe Lys Gly Asp Gly Lys Ala Trp Asp Trp	
195 200 205	
Glu Val Ser Ser Glu Lys Gly Asn Tyr Asp Tyr Leu Met Tyr Ala Asp	
210 215 220	
Leu Asp Met Asp His Pro Glu Val Lys Gln Glu Leu Lys Asp Trp Gly	
225 230 235 240	
Glu Trp Tyr Leu Asn Met Thr Gly Val Asp Gly Phe Arg Met Asp Ala	
245 250 255	
Val Lys His Ile Lys Tyr Gln Tyr Leu Gln Glu Trp Ile Asp Tyr Leu	
260 265 270	
Arg Lys Lys Thr Gly Lys Glu Leu Phe Thr Val Gly Glu Tyr Trp Asn	
275 280 285	
Tyr Asp Val Asn Asn Leu His Asn Phe Met Thr Lys Thr Ser Gly Ser	
290 295 300	
Met Ser Leu Phe Asp Ala Pro Leu His Met Asn Phe Tyr Asn Ala Ser	
305 310 315 320	
Arg Ser Gly Gly Asn Phe Asp Met Arg Arg Ile Met Asp Gly Thr Leu	
325 330 335	
Met Lys Asp Asn Pro Val Lys Ala Val Thr Leu Val Glu Asn His Asp	
340 345 350	
Thr Gln Pro Leu Gln Ala Leu Glu Ser Pro Val Asp Trp Trp Phe Lys	
355 360 365	
Pro Leu Ala Tyr Ala Phe Ile Leu Leu Arg Glu Glu Gly Tyr Pro Ser	

370	375	380
Val Phe Tyr Ala Asp Tyr Tyr Gly Ala Gln Tyr Ser Asp Lys Gly His		
385	390	395
Asp Ile Asn Met Val Lys Val Pro Tyr Ile Glu Gln Leu Val Lys Ala		400
405	410	415
Arg Lys Asp Tyr Ala Tyr Gly Lys Gln His Ser Tyr Leu Asp His Trp		
420	425	430
Asp Val Ile Gly Trp Thr Arg Glu Gly Asp Ala Glu His Pro Asn Ser		
435	440	445
Met Ala Val Ile Met Ser Asp Gly Pro Gly Gly Thr Lys Trp Met Tyr		
450	455	460
Thr Gly Ser Pro Ser Thr Arg Tyr Val Asp Lys Leu Gly Ile Arg Thr		
465	470	475
Glu Glu Val Trp Thr Asn Ala Ser Gly Trp Ala Glu Phe Pro Val Asn		480
485	490	495
Gly Gly Ser Val Ser Val Trp Val Gly Val Lys		
500	505	

<210> 141

<211> 1401

<212> DNA

<213> Environmental

<400> 141

atgaaaccaa taaaataccct actcatatcc gcccgtgtc tttgttcttt cagttccgcg	60
acttaccccg atactatttt gcacgcgttc aatttgaagt attcagatgt gacggccaac	120
gcgaatcaaa ttgctcaagg tcgttataag aaagtgtttt ttgcgccttc aatggaaatcg	180
agtggcagcc aatgggtggc tcgcttatcaa cctcaagatc tacgcactat cgattctcct	240
ttggcaata aacaagattt agccgcaatg attgcgcac tcaaagggtt gggcgctcgat	300
gtgtatgccg atgtgttact caaccatatg gcaaatgaaa gcttggaaatcg aagtgtacttg	360
aattaccctg gcacagaatg gctaaacat tatgcttagcc gttcaagcta ctatgtcgac	420
cagactctgt ttggcaacct agcacaaggat tatgtgtcag cgaacgactt tcattccagcg	480
ggctgtattt cagattggaa cgaccctggt catgttcagt attggcgat ttgtggcgca	540
gatgggtatg taggtttacc tgaccttgcat ccaaacaact ggggtggttt acaacagcgt	600
ttgtatctga aagcgctaaa agatatgggc atcaaagggt tccgaatttga tgcagtgaag	660
cacatgagcc aataccaaat cgatcaggta ttacagtttgc aaattactgc gaacatgcat	720
gtgtttgggt aagtgttttac tagcgggtggc gcaggaaata gcccgttatga atcgttctta	780
gcgccttacc tgaataatac taatcactct gcctacgatt tcccgctgtt tgcatcgatt	840
cgctcggcat tttctatggg gggcggttta aatcaactgc atgatcctaa agcgtacggc	900
caggcacttg atgataatcg ctcgatcacc tttcgatca cacatgatat tccaaaccat	960
gacggcttcc gctaccaaat tatggaccca caagacgac agcttgcattt cgcgtatatac	1020
cttggtaaaag acgggtggcac gccgctgtatc tacagtgtatg atcttccttgc ttctgaagac	1080
aaggataacg gtcgttgggg caatgtttgg aacagttcga caatgaaaaa catgttgagc	1140
ttccataacg cgatgcaagg caaaacaatg acgtatgtttt ctagcgttca ttgcactttg	1200
ttgtttaagc gtggcaaaa aggtgtgtg ggtttaaca agtgtgttgc aacgcgtggc	1260
gtgacgggtt atacctacca acatgatgtt aattggcatg ttcaatacataa agacgtgtta	1320
agcagcgttca cagaaaccgt gacttctcgt taccatacgt tcaatctacc accacgcgtt	1380
gcgcgtatgt ttaagctgtatgtt g	1401

<210> 142

<211> 466

<212> PRT

<213> Environmental

<400> 142

Met Lys Pro Ile Asn Thr Leu Leu Ile Ser Ala Leu Ala Val Cys Ser

1

5

10

15

Phe Ser Ser Ala Thr Tyr Ala Asp Thr Ile Leu His Ala Phe Asn Trp
 20 25 30
 Lys Tyr Ser Asp Val Thr Ala Asn Ala Asn Gln Ile Ala Gln Ala Gly
 35 40 45
 Tyr Lys Lys Val Leu Val Ala Pro Ala Met Lys Ser Ser Gly Ser Gln
 50 55 60
 Trp Trp Ala Arg Tyr Gln Pro Gln Asp Leu Arg Thr Ile Asp Ser Pro
 65 70 75 80
 Leu Gly Asn Lys Gln Asp Leu Ala Ala Met Ile Ala Ala Leu Lys Gly
 85 90 95
 Val Gly Val Asp Val Tyr Ala Asp Val Val Leu Asn His Met Ala Asn
 100 105 110
 Glu Ser Trp Lys Arg Ser Asp Leu Asn Tyr Pro Gly Thr Glu Val Leu
 115 120 125
 Asn Asp Tyr Ala Ser Arg Ser Ser Tyr Tyr Ala Asp Gln Thr Leu Phe
 130 135 140
 Gly Asn Leu Ala Gln Gly Tyr Val Ser Ala Asn Asp Phe His Pro Ala
 145 150 155 160
 Gly Cys Ile Ser Asp Trp Asn Asp Pro Gly His Val Gln Tyr Trp Arg
 165 170 175
 Leu Cys Gly Ala Asp Gly Asp Val Gly Leu Pro Asp Leu Asp Pro Asn
 180 185 190
 Asn Trp Val Val Ser Gln Gln Arg Leu Tyr Leu Lys Ala Leu Lys Asp
 195 200 205
 Met Gly Ile Lys Gly Phe Arg Ile Asp Ala Val Lys His Met Ser Gln
 210 215 220
 Tyr Gln Ile Asp Gln Val Phe Thr Ser Glu Ile Thr Ala Asn Met His
 225 230 235 240
 Val Phe Gly Glu Val Ile Thr Ser Gly Gly Ala Gly Asn Ser Gly Tyr
 245 250 255
 Glu Ser Phe Leu Ala Pro Tyr Leu Asn Asn Thr Asn His Ser Ala Tyr
 260 265 270
 Asp Phe Pro Leu Phe Ala Ser Ile Arg Ser Ala Phe Ser Met Gly Gly
 275 280 285
 Gly Leu Asn Gln Leu His Asp Pro Lys Ala Tyr Gly Gln Ala Leu Asp
 290 295 300
 Asp Asn Arg Ser Ile Thr Phe Ala Ile Thr His Asp Ile Pro Thr Asn
 305 310 315 320
 Asp Gly Phe Arg Tyr Gln Ile Met Asp Pro Gln Asp Glu Gln Leu Ala
 325 330 335
 Tyr Ala Tyr Ile Leu Gly Lys Asp Gly Gly Thr Pro Leu Ile Tyr Ser
 340 345 350
 Asp Asp Leu Pro Asp Ser Glu Asp Lys Asp Asn Gly Arg Trp Gly Asn
 355 360 365
 Val Trp Asn Ser Ser Thr Met Lys Asn Met Leu Ser Phe His Asn Ala
 370 375 380
 Met Gln Gly Lys Thr Met Thr Met Ile Ser Ser Asp His Cys Thr Leu
 385 390 395 400
 Leu Phe Lys Arg Gly Lys Glu Gly Val Val Gly Ile Asn Lys Cys Gly
 405 410 415
 Glu Thr Arg Gly Val Thr Val Asp Thr Tyr Gln His Glu Phe Asn Trp
 420 425 430
 His Val Gln Tyr Lys Asp Val Leu Ser Ser Ala Thr Glu Thr Val Thr
 435 440 445
 Ser Arg Tyr His Thr Phe Asn Leu Pro Pro Arg Ser Ala Arg Met Phe
 450 455 460
 Lys Leu

465

<210> 143

<211> 1422

<212> DNA

<213> Environmental

<400> 143

atgccaaaga	gcactttac	caaatccata	acaaaatcac	ttcttgctac	ttccgttgg	60
gtaagcttat	tgcctgccta	cgcacaggcc	gacactatct	tgcattgcctt	taactggaaa	120
tacagcgaca	ttaccggcca	agcagagcaa	attgcgaag	ctgggtataa	aaaagtactg	180
atttcaccgc	cgctgaagtc	cacaggccc	caatggtggg	cacgttacca	accacaggac	240
attcgagtga	ttgactcccc	tgtcgcaac	aagcaagatt	tacaaggccct	cattgcagcc	300
ttaaaggcac	aaggcggtga	agtatacgca	gacatcgta	tcaaccacat	ggccaacgaa	360
agctggaaac	gagacgatct	gaactaccgg	ggaagtgatt	tacttaccca	atacagccaa	420
aatatggctt	acatgaacca	gcaaaaaattt	tttggagatt	tagagcaaaa	tcagttctct	480
gccaatgatt	ttcacccggc	tggctgcatt	actgatttgg	gtaacccggg	gcatgttcaa	540
tactggcgct	tatgtgggt	taatggtgc	actgggttac	ctgatcttga	tccttaactcg	600
tgggtgatcg	atcaacaaaa	acgttattt	cgtgcatttga	aagacatggg	aataaaaggc	660
ttccgagttt	atgcggtaaa	acacatgagc	gattaccaaa	tcaaccaagt	gtttacgca	720
gacatcatcg	caggcttaca	tgtatttgg	gaagtgatca	ccagtgggtt	caagggcagc	780
aatgactacc	actctttct	ggaaccgtat	ttaaataaca	ccaatcacgc	cgcgtatgac	840
ttcccgctat	ttgcctctat	ccgaaatgca	tttagtttac	atggcagctt	gtctcaatta	900
catgatccac	aagcttacgg	gcaaggactt	cctaaccgaca	gagccattac	tttaccatc	960
actcacgaca	ttccaaccaa	tgtatggttt	cgttaccaaa	tcatggatcc	aaccagtgaa	1020
aaactcgcgt	acgcgtacat	tctaggcaaa	gatgggggtt	gcccacttat	ctatagcgat	1080
gcttttagacc	caagtgaaga	taaagataag	ggccgctggc	gtgatgtatg	gaaccaagaa	1140
tacatggta	acatgatcag	cttccacaac	aagggtcaag	gtaaaagcat	ggaggtcatg	1200
tacagcgatc	aatgcttgct	ggtctttaaa	cgtaaaaaac	aaggcttagt	cggtattat	1260
aagtgcgctg	aaagccgtac	ctacaccata	gataccatc	gttttgaatt	taactggta	1320
caaccgtaca	acgacacatt	aagccagcac	agcgagacct	ttagcagccg	ttatcatgct	1380
ctgaccatc	cgccgcaaaac	agcacgaatg	ttggcgctat	aa		1422

<210> 144

<211> 473

<212> PRT

<213> Environmental

<400> 144

Met	Pro	Lys	Ser	Thr	Phe	Thr	Lys	Ser	Ile	Thr	Lys	Ser	Leu	Leu	Ala
1					5				10				15		
Thr	Ser	Val	Val	Val	Ser	Leu	Leu	Pro	Ala	Tyr	Ala	Gln	Ala	Asp	Thr
									20				25		30
Ile	Leu	His	Ala	Phe	Asn	Trp	Lys	Tyr	Ser	Asp	Ile	Thr	Arg	Gln	Ala
									35				40		45
Glu	Gln	Ile	Ala	Gln	Ala	Gly	Tyr	Lys	Lys	Val	Leu	Ile	Ser	Pro	Pro
									50				55		60
Leu	Lys	Ser	Thr	Gly	Pro	Gln	Trp	Trp	Ala	Arg	Tyr	Gln	Pro	Gln	Asp
									65				70		75
Ile	Arg	Val	Ile	Asp	Ser	Pro	Val	Gly	Asn	Lys	Gln	Asp	Leu	Gln	Ala
									85				90		95
Leu	Ile	Ala	Ala	Leu	Lys	Ala	Gln	Gly	Val	Glu	Val	Tyr	Ala	Asp	Ile
									100				105		110
Val	Leu	Asn	His	Met	Ala	Asn	Glu	Ser	Trp	Lys	Arg	Asp	Asp	Leu	Asn
									115				120		125
Tyr	Pro	Gly	Ser	Asp	Leu	Leu	Thr	Gln	Tyr	Ser	Gln	Asn	Met	Ala	Tyr
									130				135		140

Met Asn Gln Gln Lys Leu Phe Gly Asp Leu Glu Gln Asn Gln Phe Ser
 145 150 155 160
 Ala Asn Asp Phe His Pro Ala Gly Cys Ile Thr Asp Trp Ser Asn Pro
 165 170 175
 Gly His Val Gln Tyr Trp Arg Leu Cys Gly Gly Asn Gly Asp Thr Gly
 180 185 190
 Leu Pro Asp Leu Asp Pro Asn Ser Trp Val Ile Asp Gln Gln Lys Arg
 195 200 205
 Tyr Leu Arg Ala Leu Lys Asp Met Gly Ile Lys Gly Phe Arg Val Asp
 210 215 220
 Ala Val Lys His Met Ser Asp Tyr Gln Ile Asn Gln Val Phe Thr Pro
 225 230 235 240
 Asp Ile Ile Ala Gly Leu His Val Phe Gly Glu Val Ile Thr Ser Gly
 245 250 255
 Gly Lys Gly Ser Asn Asp Tyr His Ser Phe Leu Glu Pro Tyr Leu Asn
 260 265 270
 Asn Thr Asn His Ala Ala Tyr Asp Phe Pro Leu Phe Ala Ser Ile Arg
 275 280 285
 Asn Ala Phe Ser Tyr His Gly Ser Leu Ser Gln Leu His Asp Pro Gln
 290 295 300
 Ala Tyr Gly Gln Ala Leu Pro Asn Asp Arg Ala Ile Thr Phe Thr Ile
 305 310 315 320
 Thr His Asp Ile Pro Thr Asn Asp Gly Phe Arg Tyr Gln Ile Met Asp
 325 330 335
 Pro Thr Ser Glu Lys Leu Ala Tyr Ala Tyr Ile Leu Gly Lys Asp Gly
 340 345 350
 Gly Ser Pro Leu Ile Tyr Ser Asp Ala Leu Asp Pro Ser Glu Asp Lys
 355 360 365
 Asp Lys Gly Arg Trp Arg Asp Val Trp Asn Gln Glu Tyr Met Val Asn
 370 375 380
 Met Ile Ser Phe His Asn Lys Val Gln Gly Lys Ser Met Glu Val Met
 385 390 395 400
 Tyr Ser Asp Gln Cys Leu Leu Val Phe Lys Arg Glu Lys Gln Gly Leu
 405 410 415
 Val Gly Ile Asn Lys Cys Ala Glu Ser Arg Thr Tyr Thr Ile Asp Thr
 420 425 430
 His Arg Phe Glu Phe Asn Trp Tyr Gln Pro Tyr Asn Asp Thr Leu Ser
 435 440 445
 Gln His Ser Glu Thr Phe Ser Ser Arg Tyr His Ala Leu Thr Ile Pro
 450 455 460
 Ala Gln Thr Ala Arg Met Leu Ala Leu
 465 470

<210> 145

<211> 1542

<212> DNA

<213> Environmental

<400> 145

atgttggaaa ggattacggg agtctgttta ttattttttg tgcttttcc taatataat	60
gggaggaata aggccggaaaggc agcaacgata aataatggaa cattaatgca gtatttttag	120
tggtagctc cgaatgatgg gaatcattgg aatcgttgc gtatgtatgc tgaaagttta	180
gctcataagg gaatcacatc tggatggata ccacctgcat ataaaggggac ttgcacaaat	240
gatgttagggt atggggccta tgatttatac gatttaggg agttcaatca aaaaggaacg	300
gtgcggacga aatatgggac aaaggcacag ttgaaatctg caattgacgc tttacataag	360
caaaacatcg acgtatacgg tggatgtatc atgaatcata aaggtggggc tgattatact	420
gaaaccgtaa cagctgttga ggttagaccgt aacaatcgaa atattgaagt atcaggttat	480

tatgaaatatta	gtgcgtggac	gggttttaac	tttccaggc	gcagagatgc	ttattctaat	540
ttcaaatgga	aatggtatca	tttgacgga	acggattggg	atgaaggaag	gaaattaaac	600
cgaatttata	aatttagggg	tataggtaaa	gcgtggact	gggaagtgtc	tagcaaaaat	660
ggaaattatg	attatttgat	gtatgcagat	cttgattttg	atcatccaga	tgttcgaat	720
gaaatgaaaa	gttggggAAC	gtggtatgc	aatgaattaa	atttagatgg	atttcgttta	780
gatgctgtta	aacatattga	tcatgaatat	ttacgcgatt	gggttaaatca	tgtcagacag	840
caaaccggga	aagaatgtt	tacggtggt	gaatattggc	aaaatgatat	ccagacttta	900
aacaattatt	tggcggaaagt	caattataat	caatctgtat	ttgatgcacc	gcttcattac	960
aattttcatt	atgctcaac	aggaaatggg	aattatgata	tgagaaatat	tttaaatgga	1020
acagtaatga	aaaatcatcc	tgcactcgca	gttactctcg	ttgagaatca	tgattctcaa	1080
cctggccaat	cattgaaatc	tgttagtaagt	ccgtggttt	agccgctggc	atatgcattt	1140
attnaactc	gtgcagaggg	ctatcattca	gtttttatg	gtgattacta	tggacaagc	1200
ggaaatagta	gttatgaaat	tccagcgta	aaagataaaaa	ttgatccat	tttgacggca	1260
cgaaaaaaact	ttgcataatgg	tacgcagcgt	gattatttag	accatccaga	tgtgattggc	1320
tggacaagag	aaggagatag	tgtacatgct	aagtctggtt	tagcggcatt	aatctccgat	1380
ggaccaggag	gatcaaagtg	gatggatgtt	ggaaagaata	acgctgggaa	agtatggtac	1440
gatattacgg	gtaatcaaac	aaatactgt	acaattaata	agatggatc	ggggcaattc	1500
catgtaaatgt	gaggctctgt	ttctatataat	gttcaacagt	aa		1542

<210> 146

<211> 513

<212> PRT

<213> Environmental

<400> 146

Met	Leu	Lys	Arg	Ile	Thr	Val	Val	Cys	Leu	Leu	Phe	Ile	Leu	Leu	Phe
1				5				10				15			
Pro	Asn	Ile	Tyr	Gly	Arg	Asn	Lys	Ala	Glu	Ala	Ala	Thr	Ile	Asn	Asn
					20			25				30			
Gly	Thr	Leu	Met	Gln	Tyr	Phe	Glu	Trp	Tyr	Ala	Pro	Asn	Asp	Gly	Asn
					35			40			45				
His	Trp	Asn	Arg	Leu	Arg	Tyr	Asp	Ala	Glu	Ser	Leu	Ala	His	Lys	Gly
					50			55			60				
Ile	Thr	Ser	Val	Trp	Ile	Pro	Pro	Ala	Tyr	Lys	Gly	Thr	Ser	Gln	Asn
					65			70			75			80	
Asp	Val	Gly	Tyr	Gly	Ala	Tyr	Asp	Leu	Tyr	Asp	Leu	Gly	Glu	Phe	Asn
					85			90			95				
Gln	Lys	Gly	Thr	Val	Arg	Thr	Lys	Tyr	Gly	Thr	Lys	Ala	Gln	Leu	Lys
					100			105			110				
Ser	Ala	Ile	Asp	Ala	Leu	His	Lys	Gln	Asn	Ile	Asp	Val	Tyr	Gly	Asp
					115			120			125				
Val	Val	Met	Asn	His	Lys	Gly	Gly	Ala	Asp	Tyr	Thr	Glu	Thr	Val	Thr
					130			135			140				
Ala	Val	Glu	Val	Asp	Arg	Asn	Asn	Arg	Asn	Ile	Glu	Val	Ser	Gly	Asp
					145			150			155			160	
Tyr	Glu	Ile	Ser	Ala	Trp	Thr	Gly	Phe	Asn	Phe	Pro	Gly	Arg	Arg	Asp
					165			170			175				
Ala	Tyr	Ser	Asn	Phe	Lys	Trp	Lys	Trp	Tyr	His	Phe	Asp	Gly	Thr	Asp
					180			185			190				
Trp	Asp	Glu	Gly	Arg	Lys	Leu	Asn	Arg	Ile	Tyr	Lys	Phe	Arg	Gly	Ile
					195			200			205				
Gly	Lys	Ala	Trp	Asp	Trp	Glu	Val	Ser	Ser	Glu	Asn	Gly	Asn	Tyr	Asp
					210			215			220				
Tyr	Leu	Met	Tyr	Ala	Asp	Leu	Asp	Phe	Asp	His	Pro	Asp	Val	Ala	Asn
					225			230			235			240	
Glu	Met	Lys	Ser	Trp	Gly	Thr	Trp	Tyr	Ala	Asn	Glu	Leu	Asn	Leu	Asp
					245			250			255				

Gly Phe Arg Leu Asp Ala Val Lys His Ile Asp His Glu Tyr Leu Arg
 260 265 270
 Asp Trp Val Asn His Val Arg Gln Gln Thr Gly Lys Glu Met Phe Thr
 275 280 285
 Val Ala Glu Tyr Trp Gln Asn Asp Ile Gln Thr Leu Asn Asn Tyr Leu
 290 295 300
 Ala Lys Val Asn Tyr Asn Gln Ser Val Phe Asp Ala Pro Leu His Tyr
 305 310 315 320
 Asn Phe His Tyr Ala Ser Thr Gly Asn Gly Asn Tyr Asp Met Arg Asn
 325 330 335
 Ile Leu Asn Gly Thr Val Met Lys Asn His Pro Ala Leu Ala Val Thr
 340 345 350
 Leu Val Glu Asn His Asp Ser Gln Pro Gly Gln Ser Leu Glu Ser Val
 355 360 365
 Val Ser Pro Trp Phe Lys Pro Leu Ala Tyr Ala Phe Ile Leu Thr Arg
 370 375 380
 Ala Glu Gly Tyr Pro Ser Val Phe Tyr Gly Asp Tyr Tyr Gly Thr Ser
 385 390 395 400
 Gly Asn Ser Ser Tyr Glu Ile Pro Ala Leu Lys Asp Lys Ile Asp Pro
 405 410 415
 Ile Leu Thr Ala Arg Lys Asn Phe Ala Tyr Gly Thr Gln Arg Asp Tyr
 420 425 430
 Leu Asp His Pro Asp Val Ile Gly Trp Thr Arg Glu Gly Asp Ser Val
 435 440 445
 His Ala Lys Ser Gly Leu Ala Ala Leu Ile Ser Asp Gly Pro Gly Gly
 450 455 460
 Ser Lys Trp Met Asp Val Gly Lys Asn Asn Ala Gly Glu Val Trp Tyr
 465 470 475 480
 Asp Ile Thr Gly Asn Gln Thr Asn Thr Val Thr Ile Asn Lys Asp Gly
 485 490 495
 Ser Gly Gln Phe His Val Ser Gly Gly Ser Val Ser Ile Tyr Val Gln
 500 505 510
 Gln

<210> 147
 <211> 2343
 <212> DNA
 <213> Environmental

<400> 147

atgagcttaa ataactttaa ggtaaaactg ctttagtttg ctgtgtcttc tgctgtattg	60
tcactggctc caaatttagc caatgctgca aattttgaaa gtgagatgg gataatccat	120
ccgtttcagt ggacatatga caatatagca aaagagtgt aagacttgc tggccagcc	180
ggatttgacg gtgtacagat ttcccagcca gcggAACATA AGCGGGCTGA aggagtatgg	240
tggccgtat atcagccgt taattataag aattttacaa ccatgaccgg taacgaggag	300
cagcttaagg caatgatcaa gacctgtaat gatgcagggt ttaagggttt cgctgacgct	360
gttttcaacc aaaaggctac agacgggtgtt ggctggggcg gttcaacttg gagttataag	420
aactaccctg acggattctc cggatcagat ttccatggag actgttccat tgacaaaaagc	480
tatactgtatg caaataatgt cagaacctgt gcactctcg gtatgccgga cgttgccaca	540
gataactccg ctactcagga aaagattgca gattacctcg cttcttaat gaatatgggg	600
gtctatggtt tccgtattgtt cgtgttcaag cacatggat acaacgatata caactccatt	660
ctttcaaaaa ctgcacagaa gactggaaaga agacccctg catatctggaa agtaatcgga	720
gccggtaacg aagctgccga cattcagccg gacaagtata cctttattgtt gaatgcgggtt	780
gtaactgact tcggttatgtt ctggatgca aatgagagtt tcggaaaggaa taattacgg	840
aaggcactgg aactcagttac ctggctcggtt gcaaattcag aaacattcgaa aacaatcat	900
gatgtatgtt gggcagatg ctcagccgg agctgctcaa tggaaactca gaattatgtt	960

gattataatc tggctcagtc ctggcttgcgt gtagtgcgt taggtacagt aagacagata	1020
tattccggtt attcattccc tgtaaaaagat aatgatccctt atcgctcgtcgt tgatgcact	1080
catgatcagg gcgggcctct tggtgccgac cgctgtgaag gtggctgggt gtgtcagcac	1140
cgtgtgtccct tcgttctcaa ttccccaaaga tttgcgagag ctaccagagg tactgctgt	1200
tcaaccaagg gatttgacaa tggtgctttg tggtttaca gaggaagcaa aggttttat	1260
gcacagaata ctaccaacag tcctataacc cagacattct ctgttgaagt acctgacgga	1320
aattactgtg atatcttagg aacatcagat cctaagagca atccatgcgg agcagacgtt	1380
gtcgtaagcg gcggtaaggc taccttact attcctgcaaa agacagctgt ggctatctgt	1440
acagactcag actgggtgcgg caaggggggtt gatccttgcgt aaagtgtatcc gaccgggt	1500
gcctgtgttt gtaaggggaa aaccaccgtt aatggtgtgt gctgtcgtg gtgtaatgcg	1560
cattcatcaa atgaggaatg cacctgtgtt ttgaatccga atgatgccaa ctgtcaggct	1620
gatattgaac ctaccaaggg taaaactctgt tacgcccgtt cttcaaacgg gtggaaacag	1680
gatcctttaa catataaccg taaaacagggt ttctggacta ttaatctgac tcttgcacgg	1740
gcaggtgata ccagccggc tcagcgttcc aagttacag acggatgttc atggaccgg	1800
acagtttacg gttcttcagg tactgccgg aagttggatg taaatacatc atcaaccggc	1860
gatgaacctg tgtctcttgcgt tggtgattat gttcttcca ttaacgataa gaccatggaa	1920
tatacattca ccaaggcaga tgaagtaact aatcagccac cggttgcac atttaccgcg	1980
acagtttacg gtctgaccgt ttctttgcc aataattcat ccgaccctga gaatgatgaa	2040
ttaacctaca gctggaaattt cggtaatggt aaaacatcat ccgagaaaagc tcctagcata	2100
acctatgaag aatccggtaa gtataactgtt actttaaagg ttactgattc agctaataac	2160
actgatacat ttactaaaga tataactgta acagcacctt ctagtggcaa gtacttaaag	2220
gttgcagtca gaggttcgca tgataattac ggaactgatc tggtaaccaa gaacgggtct	2280
gattggaccg gcgtcttgcgtt attctttggatccactagtg tcgacctgca ggccgcgcgag	2340
ctc	2343

<210> 148

<211> 781

<212> PRT

<213> Environmental

<400> 148

Met Ser Leu Asn Asn Phe Lys Val Lys Leu Leu Ser Phe Ala Val Ser			
1	5	10	15
Ser Ala Val Leu Ser Leu Ala Pro Asn Leu Ala Asn Ala Asn Phe			
20	25	30	
Glu Ser Glu Met Val Ile Ile His Pro Phe Gln Trp Thr Tyr Asp Asn			
35	40	45	
Ile Ala Lys Glu Cys Thr Glu Tyr Leu Gly Pro Ala Gly Phe Asp Gly			
50	55	60	
Val Gln Ile Ser Gln Pro Ala Glu His Lys Arg Ala Glu Gly Val Trp			
65	70	75	80
Trp Ala Val Tyr Gln Pro Val Asn Tyr Lys Asn Phe Thr Thr Met Thr			
85	90	95	
Gly Asn Glu Glu Gln Leu Lys Ala Met Ile Lys Thr Cys Asn Asp Ala			
100	105	110	
Gly Val Lys Val Phe Ala Asp Ala Val Phe Asn Gln Lys Ala Thr Asp			
115	120	125	
Gly Val Gly Trp Gly Gly Ser Thr Trp Ser Tyr Lys Asn Tyr Pro Asp			
130	135	140	
Gly Phe Ser Gly Ser Asp Phe His Gly Asp Cys Ser Ile Asp Lys Ser			
145	150	155	160
Tyr Thr Asp Ala Asn Asn Val Arg Thr Cys Ala Leu Ser Gly Met Pro			
165	170	175	
Asp Val Ala Thr Asp Asn Ser Ala Thr Gln Glu Lys Ile Ala Asp Tyr			
180	185	190	
Leu Ala Ser Leu Met Asn Met Gly Val Tyr Gly Phe Arg Ile Asp Ala			
195	200	205	

Ala Lys His Met Gly Tyr Asn Asp Ile Asn Ser Ile Leu Ser Lys Thr
 210 215 220
 Ala Gln Lys Thr Gly Arg Arg Pro Pro Ala Tyr Leu Glu Val Ile Gly
 225 230 235 240
 Ala Gly Asn Glu Ala Ala Asp Ile Gln Pro Asp Lys Tyr Thr Phe Ile
 245 250 255
 Glu Asn Ala Val Val Thr Asp Phe Gly Tyr Val Trp Asp Ala Asn Glu
 260 265 270
 Ser Phe Gly Lys Gly Asn Tyr Gly Lys Ala Leu Glu Leu Ser Thr Trp
 275 280 285
 Leu Gly Ala Asn Ser Glu Thr Phe Val Asn Asn His Asp Asp Glu Trp
 290 295 300
 Gly Arg Cys Ser Ala Gly Ser Cys Ser Met Lys Thr Gln Asn Tyr Ala
 305 310 315 320
 Asp Tyr Asn Leu Ala Gln Ser Trp Leu Ala Val Trp Pro Val Gly Thr
 325 330 335
 Val Arg Gln Ile Tyr Ser Gly Tyr Ser Phe Pro Val Lys Asp Asn Asp
 340 345 350
 Pro Tyr Arg Val Ser Asp Ala Thr His Asp Gln Gly Gly Pro Leu Gly
 355 360 365
 Ala Asp Arg Cys Glu Gly Trp Leu Cys Gln His Arg Val Ser Phe
 370 375 380
 Val Leu Asn Ser Pro Arg Phe Ala Arg Ala Thr Arg Gly Thr Ala Val
 385 390 395 400
 Ser Thr Lys Gly Phe Asp Asn Gly Ala Leu Trp Phe Asn Arg Gly Ser
 405 410 415
 Lys Gly Phe Tyr Ala Gln Asn Thr Thr Asn Ser Pro Ile Thr Gln Thr
 420 425 430
 Phe Ser Val Glu Val Pro Asp Gly Asn Tyr Cys Asp Ile Leu Gly Thr
 435 440 445
 Ser Asp Pro Lys Ser Asn Pro Cys Gly Ala Asp Val Val Val Ser Gly
 450 455 460
 Gly Lys Ala Thr Phe Thr Ile Pro Ala Lys Thr Ala Val Ala Ile Cys
 465 470 475 480
 Thr Asp Ser Asp Trp Cys Gly Lys Gly Val Asp Pro Cys Glu Ser Asp
 485 490 495
 Pro Thr Gly Ala Ala Cys Val Cys Lys Gly Glu Thr Thr Val Asn Gly
 500 505 510
 Val Cys Val Ser Trp Cys Asn Ala His Ser Ser Asn Glu Glu Cys Thr
 515 520 525
 Cys Val Leu Asn Pro Asn Asp Ala Asn Cys Gln Ala Asp Ile Glu Pro
 530 535 540
 Thr Lys Gly Lys Leu Cys Tyr Ala Gly Thr Ser Asn Gly Trp Lys Gln
 545 550 555 560
 Asp Pro Leu Thr Tyr Asn Arg Lys Thr Gly Phe Trp Thr Ile Asn Leu
 565 570 575
 Thr Leu Asp Gly Ala Gly Asp Thr Ser Gly Ala Gln Arg Phe Lys Val
 580 585 590
 Thr Asp Gly Cys Ser Trp Thr Gly Thr Val Tyr Gly Ser Ser Gly Thr
 595 600 605
 Ala Gly Lys Leu Asp Val Asn Thr Ser Ser Thr Gly Asp Glu Pro Val
 610 615 620
 Ser Leu Val Gly Asp Tyr Val Leu Ser Ile Asn Asp Lys Thr Met Glu
 625 630 635 640
 Tyr Thr Phe Thr Lys Ala Asp Glu Val Thr Asn Gln Pro Pro Val Ala
 645 650 655
 Ser Phe Thr Ala Thr Val Asn Gly Leu Thr Val Ser Phe Ala Asn Asn

	660		665		670										
Ser	Ser	Asp	Pro	Glu	Asn	Asp	Glu	Leu	Thr	Tyr	Ser	Trp	Asn	Phe	Gly
							675	.		680					685
Asn	Gly	Lys	Thr	Ser	Ser	Glu	Lys	Ala	Pro	Ser	Ile	Thr	Tyr	Glu	Glu
							690			695					700
Ser	Gly	Lys	Tyr	Thr	Val	Thr	Leu	Lys	Val	Thr	Asp	Ser	Ala	Asn	Asn
										705					720
Thr	Asp	Thr	Phe	Thr	Lys	Asp	Ile	Thr	Val	Thr	Ala	Pro	Ser	Ser	Gly
										725					735
Lys	Tyr	Leu	Lys	Val	Ala	Val	Arg	Gly	Ser	His	Asp	Asn	Tyr	Gly	Thr
										740					750
Asp	Leu	Leu	Thr	Lys	Asn	Gly	Ser	Asp	Trp	Thr	Gly	Val	Phe	Glu	Phe
										755					765
Phe	Gly	Ser	Thr	Ser	Val	Asp	Leu	Gln	Ala	Arg	Glu	Leu			
										770					780

<210> 149
<211> 2502
<212> DNA
<213> Environmental

ccgagtgtta catatgataa agccggtaaa tatactgttt cactcaaagt aaccgatact	2160
gcaaaacaaca ctgataccaa aacactggaa atcgatttaa catctcctgt taacggaaaa	2220
tattccaagg ttgcagtcag aggttcatcat gataactacg gaacaaatct gttaaccagg	2280
aatggttcag aatggaccgg tatctttgaa ttcatgtaaga caaccaaatt caagctgaa	2340
gctctgcctc ctgcagctga ccagtgtatc ttccctcggcg gtaatcgagg tgaggcattg	2400
actgcctccg gtggatttat atctcttcct gccggaaggt atactataaa gtttaatgag	2460
gaaagcaagg ttcttactgc aggcgatgtt gactgcaccg gg	2502
<210> 150	
<211> 834	
<212> PRT	
<213> Environmental	
<400> 150	
Met Ile Leu Ser Asn Phe Lys Val Lys Leu Leu Ser Phe Ala Val Ser	
1 5 10 15	
Ser Ala Val Leu Thr Leu Ala Ala Asn Val Ala Asn Ala Lys Asn Tyr	
20 25 30	
Glu Ser Glu Met Val Ile Ile His Pro Phe Gln Trp Thr Tyr Asp Asn	
35 40 45	
Ile Ala Lys Glu Cys Thr Glu Tyr Leu Gly Pro Ala Gly Phe Asp Gly	
50 55 60	
Val Gln Ile Ser Gln Ala Ala Glu His Lys Asp Ala Gly Gly Ala Trp	
65 70 75 80	
Trp Gly Thr Tyr Gln Pro Val Asn Phe Lys Ser Phe Thr Thr Met Val	
85 90 95	
Gly Asn Glu Glu Gln Leu Arg Ala Met Ile Lys Thr Cys Asn Glu Ala	
100 105 110	
Gly Val Lys Val Phe Ala Asp Ala Val Ile Asn Gln Lys Ala Gly Asp	
115 120 125	
Gly Val Gly Ile Gly Gly Ser Thr Phe Gly Asn Tyr Asn Tyr Pro Asp	
130 135 140	
Gly Phe Thr Ser Asp Asp Phe His His Asn Asn Cys Ser Ile Gly Asn	
145 150 155 160	
Asn Tyr Ser Asp Ala Trp Val Val Arg Phe Cys Asp Leu Ser Gly Met	
165 170 175	
Pro Asp Ile Ala Thr Asp Asn Asp Ser Thr Arg Asn Lys Ile Ala Asp	
180 185 190	
Tyr Phe Ala Ser Leu Met Asn Met Gly Val Tyr Gly Phe Arg Ile Asp	
195 200 205	
Ala Ala Lys His Phe Ser Tyr Asp Asp Ile Asp Ala Ile Val Glu Lys	
210 215 220	
Thr Ala Thr Lys Ala Gly Arg Arg Pro Pro Val Tyr Met Glu Val Ile	
225 230 235 240	
Gly Asn Pro Gly Gln Glu Ala Asp Asp Ile Gln Pro Asn Lys Tyr Thr	
245 250 255	
Trp Ile Asp Asn Ala Val Val Thr Asp Phe Thr Tyr Ala Asn Ser Met	
260 265 270	
His Asn Ile Phe Asn Gly Ser Gly Tyr Ala Lys Ala Leu Asn Met Gly	
275 280 285	
Leu Gly His Val Asp Ala Glu Asn Ala Glu Val Phe Ile Ser Asn His	
290 295 300	
Asp Asn Glu Trp Gly Arg Lys Ser Ala Gly Ser Cys Ser Ile Arg Thr	
305 310 315 320	
Gln Asn Asn Pro Asp Tyr His Leu Ala Gln Ser Trp Leu Ala Val Trp	
325 330 335	
Pro Leu Gly Lys Val Arg Gln Ile Tyr Ser Ala Tyr Gln Phe Pro Val	

	340	345	350
Phe Glu Asp Ser Cys Glu Arg Val Ser Gln Gln Ala His Asp Gln Gly			
355	360	365	
Gly Pro Ile Gly Ala Ala Arg Cys Glu Gly Gly Trp Leu Cys Gln His			
370	375	380	
Arg Val Pro Phe Val Leu Asn Ser Pro Arg Phe Ala Arg Ala Thr Arg			
385	390	395	400
Gly Thr Val Val Thr Thr Lys Gly Phe Asp Asp Gly Ala Leu Trp Phe			
405	410	415	
Asn Arg Gly Ser Lys Gly Phe Tyr Ala Gln Asn Thr Thr Gly Ser Ser			
420	425	430	
Ile Thr His Thr Phe Ser Val Glu Leu Pro Asp Gly Asn Tyr Cys Asp			
435	440	445	
Ile Leu Gly Ala Thr Asp Pro Lys Asn Asn Pro Cys Gly Ala Asp Val			
450	455	460	
Thr Val Ser Gly Gly Lys Ala Thr Phe Thr Ile Pro Ala Lys Thr Ala			
465	470	475	480
Val Ala Ile Cys Thr Asp Glu Lys Trp Cys Gly Lys Gly Val Asp Pro			
485	490	495	
Cys Glu Ser Asp Pro Thr Gly Ser Ala Cys Val Cys Lys Gly Glu Thr			
500	505	510	
Thr Val Asn Gly Val Cys Val Ser Trp Cys Asn Ala His Ser Ser Asn			
515	520	525	
Glu Glu Cys Ala Cys Val Leu Asn Pro Asn Asp Ala Glu Cys Gln Ala			
530	535	540	
Asp Ile Glu Pro Thr Lys Leu Cys Tyr Val Gly Thr Ser Asn			
545	550	555	560
Lys Trp Thr Gln Glu Pro Leu Thr Tyr Asn Arg Lys Thr Gly Phe Trp			
565	570	575	
Thr Leu Asn Val Glu Leu Asp Gly Lys Gly Asp Thr Ser Gly Ala Gln			
580	585	590	
Arg Phe Lys Val Thr Asp Gly Cys Ser Trp Gln Gly Thr Val Tyr Gly			
595	600	605	
Ser Ser Gly Val Glu Gly Arg Leu Asp Val Asn Thr Ser Ala Thr Gly			
610	615	620	
Asp Glu Pro Val Ser Leu Thr Gly Lys Tyr Val Leu Ser Ile Asn Asp			
625	630	635	640
Lys Thr Met Glu Tyr Thr Phe Ile Pro Ala Gly Ser Gly Asn Lys Pro			
645	650	655	
Pro Val Ala Ser Phe Thr Pro Thr Val Lys Asp Leu Thr Val Ser Phe			
660	665	670	
Val Asn Asn Ser Ser Asp Pro Glu Asn Asp Glu Leu Thr Tyr Ser Trp			
675	680	685	
Asn Phe Gly Asn Gly Lys Thr Ser Ser Glu Lys Asn Pro Ser Val Thr			
690	695	700	
Tyr Asp Lys Ala Gly Lys Tyr Thr Val Ser Leu Lys Val Thr Asp Thr			
705	710	715	720
Ala Asn Asn Thr Asp Thr Lys Thr Leu Glu Ile Asp Leu Thr Ser Pro			
725	730	735	
Val Asn Gly Lys Tyr Ser Lys Val Ala Val Arg Gly Ser His Asp Asn			
740	745	750	
Tyr Gly Thr Asn Leu Leu Thr Arg Asn Gly Ser Glu Trp Thr Gly Ile			
755	760	765	
Phe Glu Phe Ser Lys Thr Thr Lys Phe Lys Leu Glu Ala Leu Pro Pro			
770	775	780	
Ala Ala Asp Gln Cys Ile Phe Leu Gly Gly Asn Arg Gly Glu Ala Leu			
785	790	795	800

Thr Ala Ser Gly Gly Phe Ile Ser Leu Pro Ala Gly Arg Tyr Thr Ile
 805 810 815
 Lys Phe Asn Glu Glu Ser Lys Val Leu Thr Ala Gly Asp Val Asp Cys
 820 825 830
 Thr Gly

<210> 151
 <211> 2112
 <212> DNA
 <213> Environmental

<400> 151

atgaaaacta ttctttcaac aatcatggtg atggcggtc cggctgccac caccgttagag	60
gctcaaggct ggccggaaaa ctacggcggc gtcatgttgc agggattcta ctgggattcc	120
tattcagcca ccaagtggac taaactggaa gcacaggctg acgagatctg caactatttc	180
tcgctggtat gggtaccaca gtcggcctat accggcagca gtacctccat gggctacgac	240
ccgctgtatt acttcgacca gcattcatcg ttcggcaccg aagagcagct acggctgttc	300
atcagtacct acaagcagaa aggaactggc atcatagccg atgttagttt caatcaccga	360
aagaatgtct caaactgggt ggatttcccg gcccggaccc acaacggtgtt aacctatcag	420
atggtaagca ccgacatcgat ttcgaacgat gacggcggaa aaacagccac ttggcataat	480
caaaaacggct acagtctctc ctccaatgcc gacgaaggcg aaggctggga cggcatgcgc	540
gacctggacc acaagtgcga gaacgtgcag aaatcggttc ttgcctacac caaatatctg	600
gttgacgact taggctatac cgattccgc tacgatatgg taaagggtt tgacggatcg	660
catgtagccg actacaacac caatgccggc gtgcagttt ctgtcggcga atattggac	720
ggcactgcat cggaaagtttta cagttggatc aacagcacca aaaagagcga tggccgcag	780
tccggcggct tcgacttcgc tttccgatac acctggcgcg atgcccgtcaa caacaagaac	840
tgggcgaacc tgaagaacac ttccggatc agcgatgcgc attacaggcg ctattcggtt	900
acgtttggtaaaaatcacga tacggataac cgttcagcta cggctccca ggatccccatc	960
aagggtgata cgggttccct caatgcctgg atgctggcta tgccgggcac accttgggtt	1020
ttccctgaaac attggacccga ctgcaaggaa gagataaga atctcatcgaa ggcacgtcgc	1080
ctggctcggtt ttcacaacca gggcacctat gccgaatggta tgagcgggtgc agcctacatc	1140
ggacgtaccg taacaggtac gaacggcacc ttacgtgttc tggccggctc ttatcgttat	1200
aatgttagccg ccaactacat tcagattctc tcagggaaaa actataaata ctacgtactc	1260
aacacgctcg aggctccctg gatcgggaaa ggttccggct cgtacaccga aggtgaaacc	1320
gttaacgggtt cgttcatcgat cttatcgcc gatgccaatg ccaagctggt atataaccacc	1380
gacggcacag accccaccgc aacctaaca gccgttaacca gccggacccgaa actgaccatc	1440
acttcggacg cccgttccgaa ggttggctctg ctggccggcg gcatcgatcg gaacatacag	1500
agccgtacat tcacccatc ggctgcaaaac acctccggatc attacacagc caccatgcac	1560
gtatgcaacc agtccggagc ttcataatccg ctgtttgcct atgtttgggc aggaccggac	1620
aacgagcaga ttaacgcaat ctggccgggc accaagctca cccgttccat taccggaaaac	1680
aacccatcctt ggtacacgc gtcgttccag attccgaaaga acgtggacta tggccgtgaac	1740
tttggggatc ccacaaccgg cggcggatc cagacagtgg atgttaccgg catgaaggcc	1800
gatgtctggatc acattattaa cagttaccaag agcggcaaca agtacacggt aaccgacgtt	1860
acccatcgtt attcttcgtt agaggccatc tttgatgaaaaaactccgg ctcctccct	1920
gtctatgacc tgcaggacg cccgttccatc gaaatttagaa acaggacaat tataatccatc	1980
gaacggaaaag aagataactca tcagataaac agaggttccg aaccattctc ctattatgaa	2040
aatcagacac ttagtaatct cagcactgct ggggtttgggg ggcttgcata ccatcagctg	2100
ctccctcgatc gg	2112

<210> 152
 <211> 704
 <212> PRT
 <213> Environmental

<400> 152
 Met Lys Thr Ile Leu Ser Thr Ile Met Val Met Ala Ala Ala Ala Ala

1	5	10	15
Thr Thr Val Glu Ala Gln Gly Trp Pro Glu Asn Tyr Gly	Gly Val Met		
20	25	30	
Leu Gln Gly Phe Tyr Trp Asp Ser Tyr Ser Ala Thr Lys	Trp Thr Lys		
35	40	45	
Leu Glu Ala Gln Ala Asp Glu Ile Cys Asn Tyr Phe Ser	Leu Val Trp		
50	55	60	
Val Pro Gln Ser Ala Tyr Thr Gly Ser Ser Thr Ser Met	Gly Tyr Asp		
65	70	75	80
Pro Leu Tyr Tyr Phe Asp Gln His Ser Ser Phe Gly Thr	Glu Glu Gln		
85	90	95	
Leu Arg Ser Phe Ile Ser Thr Tyr Lys Gln Lys Gly Thr	Gly Ile Ile		
100	105	110	
Ala Asp Val Val Val Asn His Arg Lys Asn Val Ser Asn	Trp Val Asp		
115	120	125	
Phe Pro Ala Glu Thr Tyr Asn Gly Val Thr Tyr Gln	Met Val Ser Thr		
130	135	140	
Asp Ile Val Ser Asn Asp Asp Gly Gly Lys Thr Ala Thr	Trp Ala Asn		
145	150	155	160
Gln Asn Gly Tyr Ser Leu Ser Ser Asn Ala Asp Glu Gly	Glu Gly Trp		
165	170	175	
Asp Gly Met Arg Asp Leu Asp His Lys Ser Gln Asn Val	Gln Lys Ser		
180	185	190	
Val Leu Ala Tyr Thr Lys Tyr Leu Val Asp Asp Leu	Gly Tyr Thr Gly		
195	200	205	
Phe Arg Tyr Asp Met Val Lys Gly Phe Asp Gly Ser	His Val Ala Asp		
210	215	220	
Tyr Asn Thr Asn Ala Gly Val Gln Phe Ser Val	Gly Glu Tyr Trp Asp		
225	230	235	240
Gly Thr Ala Ser Lys Val Tyr Ser Trp Ile Asn Ser Thr	Lys Lys Ser		
245	250	255	
Asp Val Pro Gln Ser Ala Ala Phe Asp Phe Ala Phe	Arg Tyr Thr Cys		
260	265	270	
Arg Asp Ala Val Asn Asn Lys Asn Trp Ala Asn Leu	Lys Asn Thr Ser		
275	280	285	
Gly Ile Ser Asp Ala Asp Tyr Arg Arg Tyr Ser Val	Thr Phe Val Glu		
290	295	300	
Asn His Asp Thr Glu Tyr Arg Ser Ala Thr Ala Ser Gln	Asp Pro Ile		
305	310	315	320
Lys Gly Asp Thr Val Ala Leu Asn Ala Trp Met Leu	Ala Met Pro Gly		
325	330	335	
Thr Pro Cys Val Phe Leu Lys His Trp Thr Asp Cys	Lys Glu Glu Ile		
340	345	350	
Lys Asn Leu Ile Glu Ala Arg Arg Leu Val Gly Ile	His Asn Gln Ser		
355	360	365	
Thr Tyr Ala Glu Trp Met Ser Gly Ala Ala Tyr Ile	Gly Arg Thr Val		
370	375	380	
Thr Gly Thr Asn Gly Thr Leu Arg Val Leu Cys Gly	Ser Tyr Gln Tyr		
385	390	395	400
Asn Val Ala Ala Asn Tyr Ile Gln Ile Leu Ser Gly	Lys Asn Tyr Lys		
405	410	415	
Tyr Tyr Val Leu Asn Thr Leu Glu Ala Pro Trp Ile	Gly Lys Gly Ser		
420	425	430	
Gly Ser Tyr Thr Glu Gly Glu Thr Val Thr Val Pro	Leu Ile Ala Ile		
435	440	445	
Ser Ala Asp Ala Asn Ala Lys Leu Val Tyr Thr Asp	Gly Thr Asp		
450	455	460	

Pro Thr Ala Thr Ser Thr Ala Val Thr Ser Gly Thr Glu Leu Thr Ile
 465 470 475 480
 Thr Ser Asp Ala Val Leu Lys Val Gly Leu Leu Ser Gly Gly Ile Val
 485 490 495
 Arg Asn Ile Gln Ser Arg Thr Phe Thr Phe Gln Ala Ala Asn Thr Ser
 500 505 510
 Glu Tyr Tyr Thr Ala Thr Met His Val Cys Asn Gln Ser Gly Ala Leu
 515 520 525
 Asn Pro Leu Phe Ala Tyr Val Trp Ala Gly Pro Asp Asn Glu Gln Ile
 530 535 540
 Asn Gly Asn Trp Pro Gly Thr Lys Leu Thr Ala Thr Ile Thr Glu Asn
 545 550 555 560
 Asn Leu Thr Trp Tyr Thr Gln Ser Phe Gln Ile Pro Lys Asn Val Asp
 565 570 575
 Tyr Val Val Asn Phe Val Phe Thr Thr Gly Gly Gly Thr Gln Thr
 580 585 590
 Val Asp Val Thr Gly Met Lys Ala Asp Val Trp Tyr Ile Ile Asn Ser
 595 600 605
 Thr Lys Ser Gly Asn Lys Tyr Thr Val Thr Asp Val Thr Ser Gln Tyr
 610 615 620
 Ser Ser Leu Glu Ala Ile Phe Asp Glu Glu Asn Ser Gly Ser Phe Pro
 625 630 635 640
 Val Tyr Asp Leu Gln Gly Arg Arg Val Ser Glu Ile Arg Asn Arg Thr
 645 650 655
 Ile Ile Ser Ser Glu Arg Lys Glu Asp Thr His Gln Ile Asn Arg Gly
 660 665 670
 Ser Glu Pro Phe Ser Tyr Tyr Glu Asn Gln Thr Leu Ser Asn Leu Ser
 675 680 685
 Thr Ala Gly Phe Gly Gly Leu Val His His Gln Leu Leu Leu Val Gly
 690 695 700

<210> 153

<211> 1620

<212> DNA

<213> Environmental

<400> 153

atgcctcaa	ttaatgcaag	cgattgcaaa	aaaaaggtag	ataggagtat	gaagaggaaa	60
aaatggactg	cgttagcact	atctttacca	ctagttatga	gcttatcaac	aaacatacaa	120
gcagaaacat	tacataataa	taagggtcaa	aaggcgcaaa	caggaaataa	agacggaatt	180
tttatatgaa	tgtatgttaa	ttctttttat	gatactgata	gcaatggaca	tggtgattta	240
aaaggcgtca	caaagaaact	tgattatcta	aatgtatggaa	atccaagaac	aaataatgat	300
cttcaaataa	acggtatctg	gatgatgcct	attaacacct	ctcctagtt	tcacaaatat	360
gatgtAACAG	attactataa	tatcgatcct	cagtatggaa	gtttacaaga	tttccgtgaa	420
ctaaacaacag	aagcgcataa	acgcaacgta	aaggtagtaa	tagatctgt	tattaatcat	480
acaaggcagtg	agcatccttg	gtttgtcgat	gcattaaaaa	ataaaaacag	taagtatcga	540
gattactata	tttgggctga	taaaaataca	gacttaaatg	aaaaaggccc	atggggtcaa	600
caagtatggc	acaaagcgtc	gaacggagag	tatttctacg	caacgttctg	ggaaggggatg	660
ccggacttaa	actatgacaa	ccctaaagta	agagaagaaa	tgattaaaat	cggaaattt	720
tggctcaaacc	aaggagctga	tgccttcgt	ctagatgcag	ccatgcacat	ctttaaagg	780
caaacacctg	aaggagcaaa	gaaaaatatt	gaatggtgaa	atgaattccg	cgacgcgatg	840
agagaaaacga	atccaaatac	gtatctagtt	ggtgaaatat	gggatcaacc	agaagtagtt	900
gctccgtatt	atcaatcggt	agattctaca	tttaacttcg	acttagcata	taaaatcggt	960
aattccgtta	aaaatgtac	tgatcaaggg	gtagccgcgg	cagctgttgc	aacggatgag	1020
ttatataaaa	catataatcc	aaataaaatt	gatggAACGT	tttaacgaa	tcatgaccaa	1080
aatcgtgtaa	tgagttagtt	aaatgggtgat	gtaaacaaag	caaaatcgc	agcctctatt	1140
ctgttgacac	ccccctggtaa	tccgttcatt	tattatggcg	aagaaatcgg	catgacaggc	1200

caaaaaccag atgagttgat tcgtgaggct ttccgttggt atgaagatga taaaagaaggt	1260
caaacgagct gggagactcc agtatataac attgatcata atgggtttc agttgaagca	1320
caagataaac aaaaagcttc tcttctaagg cattatcgta aaatgattcg tggtcgtag	1380
caacacgatg aaccttgtcaa aggttaattt gaaccttattt ctgtcaataa ttcacagggtt	1440
gttgcctata atcgtacgta taaaaataaa tcaattcaag tgtaccataa tatttcagac	1500
aagccggta cattaactgt ttcaaacaaa ggaaaactga tttttctag tgaatttagga	1560
gcaaaaaagg aaaaatcaac attagtaatt ccagcgaata cgacagtgtc agtaaagtaa	1620

<210> 154

<211> 539

<212> PRT

<213> Environmental

<400> 154

Met Pro Ser Ile Asn Ala Ser Asp Cys Lys Lys Lys Gly Asp Arg Ser	
1 5 10 15	
Met Lys Arg Lys Lys Trp Thr Ala Leu Ala Leu Ser Leu Pro Leu Val	
20 25 30	
Met Ser Leu Ser Thr Asn Ile Gln Ala Glu Thr Leu His Asn Asn Lys	
35 40 45	
Gly Gln Lys Ala Gln Thr Gly Asn Lys Asp Gly Ile Phe Tyr Glu Leu	
50 55 60	
Tyr Val Asn Ser Phe Tyr Asp Thr Asp Ser Asn Gly His Gly Asp Leu	
65 70 75 80	
Lys Gly Val Thr Lys Lys Leu Asp Tyr Leu Asn Asp Gly Asn Pro Arg	
85 90 95	
Thr Asn Asn Asp Leu Gln Ile Asn Gly Ile Trp Met Met Pro Ile Asn	
100 105 110	
Thr Ser Pro Ser Tyr His Lys Tyr Asp Val Thr Asp Tyr Tyr Asn Ile	
115 120 125	
Asp Pro Gln Tyr Gly Ser Leu Gln Asp Phe Arg Glu Leu Thr Thr Glu	
130 135 140	
Ala His Lys Arg Asn Val Lys Val Val Ile Asp Leu Val Ile Asn His	
145 150 155 160	
Thr Ser Ser Glu His Pro Trp Phe Val Asp Ala Leu Lys Asn Lys Asn	
165 170 175	
Ser Lys Tyr Arg Asp Tyr Tyr Ile Trp Ala Asp Lys Asn Thr Asp Leu	
180 185 190	
Asn Glu Lys Gly Pro Trp Gly Gln Val Trp His Lys Ala Ser Asn	
195 200 205	
Gly Glu Tyr Phe Tyr Ala Thr Phe Trp Glu Gly Met Pro Asp Leu Asn	
210 215 220	
Tyr Asp Asn Pro Lys Val Arg Glu Glu Met Ile Lys Ile Gly Lys Phe	
225 230 235 240	
Trp Leu Lys Gln Gly Ala Asp Gly Phe Arg Leu Asp Ala Ala Met His	
245 250 255	
Ile Phe Lys Gly Gln Thr Pro Glu Gly Ala Lys Lys Asn Ile Glu Trp	
260 265 270	
Trp Asn Glu Phe Arg Asp Ala Met Arg Glu Thr Asn Pro Asn Thr Tyr	
275 280 285	
Leu Val Gly Glu Ile Trp Asp Gln Pro Glu Val Val Ala Pro Tyr Tyr	
290 295 300	
Gln Ser Leu Asp Ser Thr Phe Asn Phe Asp Leu Ala Tyr Lys Ile Val	
305 310 315 320	
Asn Ser Val Lys Asn Gly Thr Asp Gln Gly Val Ala Ala Ala Val	
325 330 335	
Ala Thr Asp Glu Leu Tyr Lys Thr Tyr Asn Pro Asn Lys Ile Asp Gly	

340	345	350
Thr Phe Leu Thr Asn His Asp Gln Asn Arg Val Met Ser Glu Leu Asn		
355	360	365
Gly Asp Val Asn Lys Ala Lys Ser Ala Ala Ser Ile Leu Leu Thr Leu		
370	375	380
Pro Gly Asn Pro Phe Ile Tyr Tyr Gly Glu Glu Ile Gly Met Thr Gly		
385	390	395
Gln Lys Pro Asp Glu Leu Ile Arg Glu Pro Phe Arg Trp Tyr Glu Asp		
405	410	415
Asp Lys Glu Gly Gln Thr Ser Trp Glu Thr Pro Val Tyr Asn Ile Asp		
420	425	430
His Asn Gly Val Ser Val Glu Ala Gln Asp Lys Gln Lys Ala Ser Leu		
435	440	445
Leu Ser His Tyr Arg Lys Met Ile Arg Val Arg Gln Gln His Asp Glu		
450	455	460
Leu Val Lys Gly Asn Leu Glu Pro Ile Ser Val Asn Asn Ser Gln Val		
465	470	475
Val Ala Tyr Asn Arg Thr Tyr Lys Asn Lys Ser Ile Gln Val Tyr His		
485	490	495
Asn Ile Ser Asp Lys Pro Val Thr Leu Thr Val Ser Asn Lys Gly Lys		
500	505	510
Leu Ile Phe Ser Ser Glu Leu Gly Ala Lys Lys Glu Lys Ser Thr Leu		
515	520	525
Val Ile Pro Ala Asn Thr Thr Val Leu Val Lys		
530	535	

<210> 155

<211> 1773

<212> DNA

<213> Environmental

<400> 155

gtgtcaagaa	tgtttgcaaa	acgattcaaa	acctcttac	tgccgttatt	cgctggattt	60
ttattgtgt	ttcatttgtt	tctggcagga	ccaaacggctg	cgaatgctga	aacggctaacc	120
aaatcaaatg	agcttacagc	accgtcgatc	aaaagcgaa	ccattcttca	tgcttggaat	180
tggtcgttca	atacgttaaa	acacaatatg	aaggatattc	atgatgcagg	atatacagcg	240
attcagacgt	ctccgattaa	ccaagtcaag	gaagggAAC	aaggaaataaa	aaacatgtcg	300
aactggtaact	ggctctatca	gccgacatcg	taccaaattg	gcaaccgtta	cttaggtact	360
gaacaagaat	ttaaagaat	gtgtcagcc	gctgaagaat	atggcataaaa	ggttattgtt	420
gacgcggta	tcaatcatac	caccagtac	tatgccgcga	tttccaatga	gattaagagt	480
attccaaact	ggacacatgg	aaacacacaa	attaaaaact	ggtctgatcg	atgggatgtc	540
acgcagaatg	cattgctcgg	gctgtatgac	tggaatacac	aaaatacaca	agtacagtcc	600
tatttgaaac	ggttcttaga	aagagcattt	aatgacgggg	cagacggttt	tcgatttgat	660
gccgc当地	atatacatac	caccagtac	tatgccgcga	tttccaatga	gattaagagt	720
atcacaaata	catctgcaga	gttccaaatac	ggagaaatcc	tgcaggatag	tgcttcaaga	780
gatgcttcat	atgcgaatta	tatgaatgtt	acagcgtcta	actatggca	ttccataagg	840
tccgctttaa	agaatcgtaa	tctggcgtt	tcgaatatct	cccactatgc	atcagatgtt	900
tctgc当地	agcttagtac	atgggttagaa	tcgcatacata	cgtatgc当地	tgatgtgaa	960
gagtc当地	ggatgagcga	tgtatgatc	cgtttaggt	gggc当地	agcttctcg	1020
tcaggcagta	cgc当地	ctttccaga	cctgagggg	gccc当地	tgtgagattc	1080
ccggggaaaa	gccaatagg	cgatgc当地	agtgc当地	ttgaagatca	ggctatcact	1140
gc当地	gattcacaa	tgtgatggct	ggacagcctg	aggaactctc	gaacc当地	1200
ggaaacaacc	agatattat	gaatcagcgc	ggctcacatg	gc当地	ggcaaata	1260
ggttcatcct	ctgttcttat	caatacgc当地	acaaaattgc	ctgatggcag	gtatgataat	1320
aaagctgggg	caggttccatt	tcaagtaaat	gacggtaaac	tgacaggcac	gatcaatgcc	1380
aggctgtgg	ctgtgcttta	tcctgatgat	attgcaaaag	cgc当地	tttccctttag	1440
aattacaaaa	caggtgtaac	acattcttc	aatgatcaac	tgacgattac	actgc当地	1500

gatgcgaaaata caacaaaagc cgtttatcaa atcaataatg gaccagagac ggcgtttaag 1560
 gatggagatc aattcacaat cggaaaagga gatccattt gcaaaacata caccatcatg 1620
 taaaaggaa cgaacagtga tggtgtaacg aggaccgagg aatacagttt tgttaaaaga 1680
 gatccagctt cggccaaaac catcgctat caaaatccga atcattggag ccaggtaaat 1740
 gcttatatct ataaacatga tggggccgg gca 1773

 <210> 156
 <211> 591
 <212> PRT
 <213> Environmental

 <400> 156
 Val Ser Arg Met Phe Ala Lys Arg Phe Lys Thr Ser Leu Leu Pro Leu
 1 5 10 15
 Phe Ala Gly Phe Leu Leu Leu Phe His Leu Val Leu Ala Gly Pro Thr
 20 25 30
 Ala Ala Asn Ala Glu Thr Ala Asn Lys Ser Asn Glu Leu Thr Ala Pro
 35 40 45
 Ser Ile Lys Ser Gly Thr Ile Leu His Ala Trp Asn Trp Ser Phe Asn
 50 55 60
 Thr Leu Lys His Asn Met Lys Asp Ile His Asp Ala Gly Tyr Thr Ala
 65 70 75 80
 Ile Gln Thr Ser Pro Ile Asn Gln Val Lys Glu Gly Asn Gln Gly Asn
 85 90 95
 Lys Asn Met Ser Asn Trp Tyr Trp Leu Tyr Gln Pro Thr Ser Tyr Gln
 100 105 110
 Ile Gly Asn Arg Tyr Leu Gly Thr Glu Gln Glu Phe Lys Glu Met Cys
 115 120 125
 Ala Ala Ala Glu Glu Tyr Gly Ile Lys Val Ile Val Asp Ala Val Ile
 130 135 140
 Asn His Thr Thr Ser Asp Tyr Ala Ala Ile Ser Asn Glu Ile Lys Ser
 145 150 155 160
 Ile Pro Asn Trp Thr His Gly Asn Thr Gln Ile Lys Asn Trp Ser Asp
 165 170 175
 Arg Trp Asp Val Thr Gln Asn Ala Leu Leu Gly Leu Tyr Asp Trp Asn
 180 185 190
 Thr Gln Asn Thr Gln Val Gln Ser Tyr Leu Lys Arg Phe Leu Glu Arg
 195 200 205
 Ala Leu Asn Asp Gly Ala Asp Gly Phe Arg Phe Asp Ala Ala Lys His
 210 215 220
 Ile Glu Leu Pro Asp Asp Gly Ser Tyr Gly Ser Gln Phe Trp Pro Asn
 225 230 235 240
 Ile Thr Asn Thr Ser Ala Glu Phe Gln Tyr Gly Glu Ile Leu Gln Asp
 245 250 255
 Ser Ala Ser Arg Asp Ala Ser Tyr Ala Asn Tyr Met Asn Val Thr Ala
 260 265 270
 Ser Asn Tyr Gly His Ser Ile Arg Ser Ala Leu Lys Asn Arg Asn Leu
 275 280 285
 Gly Val Ser Asn Ile Ser His Tyr Ala Ser Asp Val Ser Ala Asp Lys
 290 295 300
 Leu Val Thr Trp Val Glu Ser His Asp Thr Tyr Ala Asn Asp Asp Glu
 305 310 315 320
 Glu Ser Thr Trp Met Ser Asp Asp Asp Ile Arg Leu Gly Trp Ala Val
 325 330 335
 Ile Ala Ser Arg Ser Gly Ser Thr Pro Leu Phe Phe Ser Arg Pro Glu
 340 345 350
 Gly Gly Gly Asn Gly Val Arg Phe Pro Gly Lys Ser Gln Ile Gly Asp

355	360	365
Arg	Gly	Ser Ala Leu Phe Glu Asp Gln Ala Ile Thr Ala Val Asn Arg
370	375	380
Phe	His Asn Val Met Ala Gly Gln Pro Glu Glu Leu Ser Asn Pro Asn	
385	390	395
Gly	Asn Asn Gln Ile Phe Met Asn Gln Arg Gly Ser His Gly Val Val	
405	410	415
Leu	Ala Asn Ala Gly Ser Ser Val Ser Ile Asn Thr Pro Thr Lys	
420	425	430
Leu	Pro Asp Gly Arg Tyr Asp Asn Lys Ala Gly Ala Gly Ser Phe Gln	
435	440	445
Val	Asn Asp Gly Lys Leu Thr Gly Thr Ile Asn Ala Arg Ser Val Ala	
450	455	460
Val	Leu Tyr Pro Asp Asp Ile Ala Lys Ala Pro His Val Phe Leu Glu	
465	470	475
Asn	Tyr Lys Thr Gly Val Thr His Ser Phe Asn Asp Gln Leu Thr Ile	
485	490	495
Thr	Leu Arg Ala Asp Ala Asn Thr Thr Lys Ala Val Tyr Gln Ile Asn	
500	505	510
Asn	Gly Pro Glu Thr Ala Phe Lys Asp Gly Asp Gln Phe Thr Ile Gly	
515	520	525
Lys	Gly Asp Pro Phe Gly Lys Thr Tyr Thr Ile Met Leu Lys Gly Thr	
530	535	540
Asn	Ser Asp Gly Val Thr Arg Thr Glu Glu Tyr Ser Phe Val Lys Arg	
545	550	555
Asp	Pro Ala Ser Ala Lys Thr Ile Gly Tyr Gln Asn Pro Asn His Trp	
565	570	575
Ser	Gln Val Asn Ala Tyr Ile Tyr Lys His Asp Gly Gly Arg Ala	
580	585	590

<210> 157

<211> 1596

<212> DNA

<213> Environmental

<400> 157

atgc	aaacga	ttgcaaaaaa	agggatgaa	acgatgaaag	ggaaaaaatg	gacagcatta	60
gct	ctaacac	tgcgcgtggc	tgttagctta	tcaacaggcg	ttcacgcccga	aaccgtacat	120
aaaggtaaag	ctccaacagc	agataaaaac	ggtgtctttt	atgagggtgt	tgtaaactct	180	
tttacgatg	caaataaaga	tggacatgg	gatttaaaag	gtcttacaca	aaagctggat	240	
tatttgaatg	acggcaattc	tcataccaaa	aatgatcttc	aagttaaacgg	aatttggatg	300	
atgccgtaa	acccttctcc	tagctatcat	aaatatgtat	taacggacta	ttataaacatt	360	
gatccgcagt	acggaaatct	gcaagatttt	cgcaagctga	tgaaagaagc	agataaacga	420	
gacgtaaagg	ttattatgga	cctcggttg	aatcatacaa	gcagtgaaca	tccttggttt	480	
caagctgcat	taaaagataa	aaacagcaag	tacagagatt	actatatttg	ggccgataaaa	540	
aatactgatt	taaatgaaaaa	aggatcttgg	gggcagcaag	tatggcataa	agctccaaac	600	
ggagagttt	tttatggta	gtttggaa	ggaatgcctg	acttaaattta	cgataatccc	660	
gaagtaagaa	aagaaatgtat	taacgtcgaa	aaattttggc	taaagcaagg	cgttgacggg	720	
ttccgcttag	atgctgcgt	tcataattttt	aaaggtaaaa	cacctgaagg	cgctaagaaa	780	
aatatcggt	ggtggaatga	gttagagat	gcaatgaaaa	aagaaaaaccc	taacgtatat	840	
ctaacgggtg	aagtatggaa	tcaaccggaa	gtagtagctc	cttactatca	atcgcttgat	900	
tctttat	actttgattt	agcaggaaag	attgttaact	ctgtaaaatc	agggaaatgtat	960	
caaggaatcg	cgactgcagc	agccgcaact	gatgagctgt	tcaaatacata	caatccaaat	1020	
aaaattgacg	gcattttctt	aaccaaccat	gaccaaaatc	gcgtcatgag	tgagctaagc	1080	
ggcgtatgt	ataaagcaaa	gtcagctgcc	tctatcttac	ttacgcttcc	tggcaacccg	1140	
tatatttatt	acggtaaga	aatttggatg	accggtaaaa	agcctgtatga	gttaatccgt	1200	
gaaccgttcc	gctggtaacg	aggcaatgga	cttggacaaa	ccagctgggaa	aacatccgt	1260	

tacaacaaag gcggcaatgg tgtgtcagta gagacacaaaa caaaaacaaaa ggattcttg	1320
ttaaatcatt accgtgaaat gattcgctg cgtcagcgc atgaagagtt agtaaaagga	1380
acccttcaat ctatttcagt agacagtaaa gaagtcgttgcctatagccg cacgtataaa	1440
ggcaaatcgat tagcgtgtatcataatatt tcaaatacAAC cggtaaaagt atctgtaa	1500
gcgaaaaggta aattgatTTT tgcttagtggaa aaagggtgcaaa aaaaagtcaa aaatcagctt	1560
gtggttccag ctaatacAAC ggtttaataa aaataa	1596

<210> 158

<211> 531

<212> PRT

<213> Environmental

<400> 158

Met Gln Thr Ile Ala Lys Lys Gly Asp Glu Thr Met Lys Gly Lys Lys	
1 5 10 15	
Trp Thr Ala Leu Ala Leu Thr Leu Pro Leu Ala Ala Ser Leu Ser Thr	
20 25 30	
Gly Val His Ala Glu Thr Val His Lys Gly Lys Ala Pro Thr Ala Asp	
35 40 45	
Lys Asn Gly Val Phe Tyr Glu Val Tyr Val Asn Ser Phe Tyr Asp Ala	
50 55 60	
Asn Lys Asp Gly His Gly Asp Leu Lys Gly Leu Thr Gln Lys Leu Asp	
65 70 75 80	
Tyr Leu Asn Asp Gly Asn Ser His Thr Lys Asn Asp Leu Gln Val Asn	
85 90 95	
Gly Ile Trp Met Met Pro Val Asn Pro Ser Pro Ser Tyr His Lys Tyr	
100 105 110	
Asp Val Thr Asp Tyr Tyr Asn Ile Asp Pro Gln Tyr Gly Asn Leu Gln	
115 120 125	
Asp Phe Arg Lys Leu Met Lys Glu Ala Asp Lys Arg Asp Val Lys Val	
130 135 140	
Ile Met Asp Leu Val Val Asn His Thr Ser Ser Glu His Pro Trp Phe	
145 150 155 160	
Gln Ala Ala Leu Lys Asp Lys Asn Ser Lys Tyr Arg Asp Tyr Tyr Ile	
165 170 175	
Trp Ala Asp Lys Asn Thr Asp Leu Asn Glu Lys Gly Ser Trp Gly Gln	
180 185 190	
Gln Val Trp His Lys Ala Pro Asn Gly Glu Tyr Phe Tyr Gly Thr Phe	
195 200 205	
Trp Glu Gly Met Pro Asp Leu Asn Tyr Asp Asn Pro Glu Val Arg Lys	
210 215 220	
Glu Met Ile Asn Val Gly Lys Phe Trp Leu Lys Gln Gly Val Asp Gly	
225 230 235 240	
Phe Arg Leu Asp Ala Ala Leu His Ile Phe Lys Gly Gln Thr Pro Glu	
245 250 255	
Gly Ala Lys Lys Asn Ile Val Trp Trp Asn Glu Phe Arg Asp Ala Met	
260 265 270	
Lys Lys Glu Asn Pro Asn Val Tyr Leu Thr Gly Glu Val Trp Asp Gln	
275 280 285	
Pro Glu Val Val Ala Pro Tyr Tyr Gln Ser Leu Asp Ser Leu Phe Asn	
290 295 300	
Phe Asp Leu Ala Gly Lys Ile Val Asn Ser Val Lys Ser Gly Asn Asp	
305 310 315 320	
Gln Gly Ile Ala Thr Ala Ala Ala Thr Asp Glu Leu Phe Lys Ser	
325 330 335	
Tyr Asn Pro Asn Lys Ile Asp Gly Ile Phe Leu Thr Asn His Asp Gln	
340 345 350	

Asn Arg Val Met Ser Glu Leu Ser Gly Asp Val Asn Lys Ala Lys Ser
 355 360 365
 Ala Ala Ser Ile Leu Leu Thr Leu Pro Gly Asn Pro Tyr Ile Tyr Tyr
 370 375 380
 Gly Glu Glu Ile Gly Met Thr Gly Glu Lys Pro Asp Glu Leu Ile Arg
 385 390 395 400
 Glu Pro Phe Arg Trp Tyr Glu Gly Asn Gly Leu Gly Gln Thr Ser Trp
 405 410 415
 Glu Thr Ser Val Tyr Asn Lys Gly Gly Asn Gly Val Ser Val Glu Thr
 420 425 430
 Gln Thr Lys Gln Lys Asp Ser Leu Leu Asn His Tyr Arg Glu Met Ile
 435 440 445
 Arg Val Arg Gln Gln His Glu Glu Leu Val Lys Gly Thr Leu Gln Ser
 450 455 460
 Ile Ser Val Asp Ser Lys Glu Val Val Ala Tyr Ser Arg Thr Tyr Lys
 465 470 475 480
 Gly Lys Ser Ile Ser Val Tyr His Asn Ile Ser Asn Gln Pro Val Lys
 485 490 495
 Val Ser Val Thr Ala Lys Gly Lys Leu Ile Phe Ala Ser Glu Lys Gly
 500 505 510
 Ala Lys Lys Val Lys Asn Gln Leu Val Val Pro Ala Asn Thr Thr Val
 515 520 525
 Leu Ile Lys
 530

<210> 159
 <211> 1587
 <212> DNA
 <213> Environmental

<400> 159

atgc	aaaaaaa	aaggggatga	aacgatgaaa	ggaaaaaaat	ggacagctt	agctctaaca	60
ctgcc	gctgg	ctgctagctt	atcaacaggc	gttcacgccc	aaaccgtaca	taaaggtaaa	120
tctcc	aaacag	cagataaaaa	cggtgtattt	tatgaggtgt	atgtaaactc	tttttacgat	180
gcaa	ataaaag	atggacatgg	tgatttaaaa	ggtcttacac	aaaagttgga	ttattnaaat	240
gatgg	caatt	ctcataaaaa	gaatgatctt	caagtaaacg	ggatttggat	gatgccggc	300
aacc	tttctc	ccagctatca	taaatatgtat	gtaacggact	attataatat	tgatccgcag	360
tatgg	aaatc	tgcaagattt	tcgcaaactg	atgaaagaag	cagataaacg	agatgtaaaa	420
gtcattatgg	acctcggtgt	gaatcatacg	agcagtgaac	acccttgggt	tcaagctgca	480	
ttaaaagata	aaaacagcaa	gtacagagat	tactatatct	gggctgataa	aaataccgac	540	
ttgaatgaaa	aaggatctt	gggacagcaa	gtatggcata	aagctccaaa	cggagagtat	600	
tttacggaa	cgttttggga	aggaatgccc	gacttaaatt	acgataatcc	tgaagtaaga	660	
aaagaaaatga	ttaacgttag	aaagtttgg	ctaaagcaag	gagttgatgg	gttccgtcta	720	
gatgctgcgc	ttcatatttt	taaaggccaa	acacctgaag	gcgctaagaa	aatctcctg	780	
tggtggaatg	aatttagaga	tgcaatgaaa	aaggaaaacc	ctaacgtata	tctaacgggt	840	
gaagtatggg	atcaaccgga	agtagtagct	ccttactatc	aatcgcttga	ttcttattt	900	
aactttgatt	tagcagaaaa	gattgtaaac	tctgtaaaat	cagggaaatga	tcaaggaaatc	960	
gcgactgcag	cagcggcaac	ggatgaactg	ttcaaatcat	acaatccaaa	taaaattgac	1020	
ggtattttct	taaccaacca	tgacaaaaat	cgcgtcatga	gtgagctaaa	cggcgatgt	1080	
aataaaagcaa	agtcagtc	ctctatctta	cttacgcttc	ctggcaaccc	gtatatttat	1140	
tacggtgaag	aaatcggcat	gaccggtgaa	aagcctgtatg	agttaatccg	tgaaccgttc	1200	
ccctggtacg	aaggaaaacgg	acttggacaa	accagctggg	aaacacctgt	atataaaca	1260	
ggcggcaacg	gcgtgtctgt	agaagcaca	acaaaacaaa	aggactctt	gttaaatcat	1320	
taccgtgaaa	tgattcgcgt	gcgtcagcag	cacgaagagt	tagaaaagg	aacgcttcaa	1380	
tctat	ttcag	tagacagtaa	agaagtcgtt	gcctata	gtacgtataa	aggcaaatcg	1440
attagcgtgt	atcataat	ttcaa	ccgtaaaag	tatctgtac	agcaaaaggt	1500	
aaattgattt	ttgct	tagtga	aaaaggtgct	aagaaagtca	aaaatcagct	tgtgattccg	1560

gcgaatacaa cggtttaat aaaataa

1587

<210> 160
<211> 528
<212> PRT
<213> Environmental

<400> 160

Met Gln Lys Lys Gly Asp Glu Thr Met Lys Gly Lys Lys Trp Thr Ala
1 5 10 15

Leu Ala Leu Thr Leu Pro Leu Ala Ala Ser Leu Ser Thr Gly Val His
20 25 30

Ala Glu Thr Val His Lys Gly Lys Ser Pro Thr Ala Asp Lys Asn Gly
35 40 45

Val Phe Tyr Glu Val Tyr Val Asn Ser Phe Tyr Asp Ala Asn Lys Asp
50 55 60

Gly His Gly Asp Leu Lys Gly Leu Thr Gln Lys Leu Asp Tyr Leu Asn
65 70 75 80

Asp Gly Asn Ser His Thr Lys Asn Asp Leu Gln Val Asn Gly Ile Trp
85 90 95

Met Met Pro Val Asn Pro Ser Pro Ser Tyr His Lys Tyr Asp Val Thr
100 105 110

Asp Tyr Tyr Asn Ile Asp Pro Gln Tyr Gly Asn Leu Gln Asp Phe Arg
115 120 125

Lys Leu Met Lys Glu Ala Asp Lys Arg Asp Val Lys Val Ile Met Asp
130 135 140

Leu Val Val Asn His Thr Ser Ser Glu His Pro Trp Phe Gln Ala Ala
145 150 155 160

Leu Lys Asp Lys Asn Ser Lys Tyr Arg Asp Tyr Tyr Ile Trp Ala Asp
165 170 175

Lys Asn Thr Asp Leu Asn Glu Lys Gly Ser Trp Gly Gln Gln Val Trp
180 185 190

His Lys Ala Pro Asn Gly Glu Tyr Phe Tyr Gly Thr Phe Trp Glu Gly
195 200 205

Met Pro Asp Leu Asn Tyr Asp Asn Pro Glu Val Arg Lys Glu Met Ile
210 215 220

Asn Val Gly Lys Phe Trp Leu Lys Gln Gly Val Asp Gly Phe Arg Leu
225 230 235 240

Asp Ala Ala Leu His Ile Phe Lys Gly Gln Thr Pro Glu Gly Ala Lys
245 250 255

Lys Asn Leu Leu Trp Trp Asn Glu Phe Arg Asp Ala Met Lys Lys Glu
260 265 270

Asn Pro Asn Val Tyr Leu Thr Gly Glu Val Trp Asp Gln Pro Glu Val
275 280 285

Val Ala Pro Tyr Tyr Gln Ser Leu Asp Ser Leu Phe Asn Phe Asp Leu
290 295 300

Ala Gly Lys Ile Val Asn Ser Val Lys Ser Gly Asn Asp Gln Gly Ile
305 310 315 320

Ala Thr Ala Ala Ala Ala Thr Asp Glu Leu Phe Lys Ser Tyr Asn Pro
325 330 335

Asn Lys Ile Asp Gly Ile Phe Leu Thr Asn His Asp Gln Asn Arg Val
340 345 350

Met Ser Glu Leu Asn Gly Asp Val Asn Lys Ala Lys Ser Ala Ala Ser
355 360 365

Ile Leu Leu Thr Leu Pro Gly Asn Pro Tyr Ile Tyr Tyr Gly Glu Glu
370 375 380

Ile Gly Met Thr Gly Glu Lys Pro Asp Glu Leu Ile Arg Glu Pro Phe

385	390	395	400
Pro Trp Tyr Glu Gly Asn Gly Leu Gly Gln Thr Ser Trp Glu Thr Pro			
405	410		415
Val Tyr Asn Lys Gly Gly Asn Gly Val Ser Val Glu Ala Gln Thr Lys			
420	425	430	
Gln Lys Asp Ser Leu Leu Asn His Tyr Arg Glu Met Ile Arg Val Arg			
435	440	445	
Gln Gln His Glu Glu Leu Val Lys Gly Thr Leu Gln Ser Ile Ser Val			
450	455	460	
Asp Ser Lys Glu Val Val Ala Tyr Ser Arg Thr Tyr Lys Gly Lys Ser			
465	470	475	480
Ile Ser Val Tyr His Asn Ile Ser Asn Gln Pro Val Lys Val Ser Val			
485	490		495
Ala Ala Lys Gly Lys Leu Ile Phe Ala Ser Glu Lys Gly Ala Lys Lys			
500	505	510	
Val Lys Asn Gln Leu Val Ile Pro Ala Asn Thr Thr Val Leu Ile Lys			
515	520	525	

<210> 161

<211> 1623

<212> DNA

<213> Bacterial

<400> 161

gtggatccaa	agaattgttag	tcaatttatg	caaacgatttgc	aaaaaaaaagg	ggatgaaacg	60
atgaaaggga	aaaaatggac	agctttagct	ctaacactgc	cgctggctgc	tagcttatca	120
acaggtgttc	acgccgaaac	cgtacataaa	ggtaaagctc	caacacgaga	taaaaacggt	180
gtctttatg	agtatatgt	aaactctttt	tacgatgcaa	ataaaagatgg	acatggtgat	240
ttaaaaggcc	ttacacaaaa	gttggactat	ttaaatgacg	gaaattctca	tacaaagaat	300
gatcttcaag	taaacgggat	ttggatgatg	ccggtcaacc	cttctcctag	ctatcataaa	360
tatgatgtaa	cgcactatta	taatattgtat	ccgcagttatg	gaaatctgca	agattttcgc	420
aaacttatga	aagaagcaga	taaaccgagac	gtaaaagtca	ttatggacct	tggtgtgaat	480
catacgagca	gtgaacaccc	ttgggttcaa	gctgcgttga	aagataaaaa	cagcaagtac	540
agagattact	atatttgggc	tgataaaaaat	actgacttga	atgaaaaagg	atcttgggga	600
caacaagttat	ggcataaaagc	tccaaacgg	gagtatttt	acggaacgtt	ctgggaaggaa	660
atgcctgact	taaattacga	taaccctgaa	gtaagaaaag	aatgattaa	cgtcggaaag	720
ttttggctaa	aacaaggcgt	tgacggcttc	cgcttagatg	ctgcccctca	tatTTTaaa	780
ggtcaaacgc	ctgaaggcgc	taagaaaaac	attctatgtt	ggaatgagtt	tagagatg	840
atgaaaaaaag	aaaacccgaa	cgtataatcta	acgggtgaag	tgtgggacca	gccagaagta	900
gtagccccctt	actatcaatc	acttgattct	ctatTTTattt	ttgatttagc	aggaaaaatt	960
gtcagctctg	taaaagcagg	aatgatcaa	ggaatcgcca	ctgcagcagc	ggcaactgat	1020
gagctgttca	aatcatacaa	tccaaataaa	attgacggca	ttttcttaac	caaccatgac	1080
caaatacgcg	tcatgagtga	gttaagcggc	gatgtgaata	aagcaaaatc	agccgcctct	1140
atcttactta	cgttccctgg	aaatccgtat	atttattacg	gtgaagaaaat	tggcatgaca	1200
ggtgaaaaggc	ctgatgaatt	aatccgtgaa	ccgttccgc	ggtacgaagg	caacggaaatt	1260
ggacaaacta	gctgggaaac	acctgtatata	aacaaaggcg	gtaacggcgt	gtctgttagaa	1320
gcacaaacaa	aacaaaagga	ttccttggta	aatcattacc	gtgaaatgat	tcgtgtgcgc	1380
cagcagcacg	aagagttagt	aaaaggaacg	cttcaatcca	tttcagtaga	cagtaaaagaa	1440
gtcggtgcct	atagccgcac	gtacaaaggc	aaatcgatata	gctgttatca	taatatttca	1500
aatcaacactg	taaaagtatac	tgttagcagcg	aaaggttaact	tgattttgc	tagtgaaaaaa	1560
ggtgctaaga	aagtcaaaaa	tcagctgtg	attccggcga	atgcgacggt	ttaataaaaa	1620
taa						1623

<210> 162

<211> 540

<212> PRT

<213> Bacterial

<400> 162
 Val Asp Pro Lys Asn Cys Ser Gln Phe Met Gln Thr Ile Ala Lys Lys
 1 5 10 15
 Gly Asp Glu Thr Met Lys Gly Lys Lys Trp Thr Ala Leu Ala Leu Thr
 20 25 30
 Leu Pro Leu Ala Ala Ser Leu Ser Thr Gly Val His Ala Glu Thr Val
 35 40 45
 His Lys Gly Lys Ala Pro Thr Ala Asp Lys Asn Gly Val Phe Tyr Glu
 50 55 60
 Val Tyr Val Asn Ser Phe Tyr Asp Ala Asn Lys Asp Gly His Gly Asp
 65 70 75 80
 Leu Lys Gly Leu Thr Gln Lys Leu Asp Tyr Leu Asn Asp Gly Asn Ser
 85 90 95
 His Thr Lys Asn Asp Leu Gln Val Asn Gly Ile Trp Met Met Pro Val
 100 105 110
 Asn Pro Ser Pro Ser Tyr His Lys Tyr Asp Val Thr Asp Tyr Tyr Asn
 115 120 125
 Ile Asp Pro Gln Tyr Gly Asn Leu Gln Asp Phe Arg Lys Leu Met Lys
 130 135 140
 Glu Ala Asp Lys Arg Asp Val Lys Val Ile Met Asp Leu Val Val Asn
 145 150 155 160
 His Thr Ser Ser Glu His Pro Trp Phe Gln Ala Ala Leu Lys Asp Lys
 165 170 175
 Asn Ser Lys Tyr Arg Asp Tyr Tyr Ile Trp Ala Asp Lys Asn Thr Asp
 180 185 190
 Leu Asn Glu Lys Gly Ser Trp Gly Gln Gln Val Trp His Lys Ala Pro
 195 200 205
 Asn Gly Glu Tyr Phe Tyr Gly Thr Phe Trp Glu Gly Met Pro Asp Leu
 210 215 220
 Asn Tyr Asp Asn Pro Glu Val Arg Lys Glu Met Ile Asn Val Gly Lys
 225 230 235 240
 Phe Trp Leu Lys Gln Gly Val Asp Gly Phe Arg Leu Asp Ala Ala Leu
 245 250 255
 His Ile Phe Lys Gly Gln Thr Pro Glu Gly Ala Lys Lys Asn Ile Leu
 260 265 270
 Trp Trp Asn Glu Phe Arg Asp Ala Met Lys Lys Glu Asn Pro Asn Val
 275 280 285
 Tyr Leu Thr Gly Glu Val Trp Asp Gln Pro Glu Val Val Ala Pro Tyr
 290 295 300
 Tyr Gln Ser Leu Asp Ser Leu Phe Asn Phe Asp Leu Ala Gly Lys Ile
 305 310 315 320
 Val Ser Ser Val Lys Ala Gly Asn Asp Gln Gly Ile Ala Thr Ala Ala
 325 330 335
 Ala Ala Thr Asp Glu Leu Phe Lys Ser Tyr Asn Pro Asn Lys Ile Asp
 340 345 350
 Gly Ile Phe Leu Thr Asn His Asp Gln Asn Arg Val Met Ser Glu Leu
 355 360 365
 Ser Gly Asp Val Asn Lys Ala Lys Ser Ala Ala Ser Ile Leu Leu Thr
 370 375 380
 Leu Pro Gly Asn Pro Tyr Ile Tyr Tyr Gly Glu Glu Ile Gly Met Thr
 385 390 395 400
 Gly Glu Lys Pro Asp Glu Leu Ile Arg Glu Pro Phe Arg Trp Tyr Glu
 405 410 415
 Gly Asn Gly Ile Gly Gln Thr Ser Trp Glu Thr Pro Val Tyr Asn Lys
 420 425 430
 Gly Gly Asn Gly Val Ser Val Glu Ala Gln Thr Lys Gln Lys Asp Ser

435	440	445
Leu Leu Asn His Tyr Arg Glu Met Ile Arg Val Arg Gln Gln His Glu		
450	455	460
Glu Leu Val Lys Gly Thr Leu Gln Ser Ile Ser Val Asp Ser Lys Glu		
465	470	475
Val Val Ala Tyr Ser Arg Thr Tyr Lys Gly Lys Ser Ile Ser Val Tyr		480
485	490	495
His Asn Ile Ser Asn Gln Pro Val Lys Val Ser Val Ala Ala Lys Gly		
500	505	510
Asn Leu Ile Phe Ala Ser Glu Lys Gly Ala Lys Lys Val Lys Asn Gln		
515	520	525
Leu Val Ile Pro Ala Asn Ala Thr Val Leu Ile Lys		
530	535	540

<210> 163

<211> 1422

<212> DNA

<213> Environmental

<400> 163

atggtaacgtc ccgaacgacg ggctgcattt gaaaccgacta tcgaacgact cgcagcactt	60
gaaaagacatt gggtaacgtc ggtgtggatt ccggccggcg acaaaggcac gtcacagaac	120
gatgtcgggt atggggcgta cgatttatac gatctcgccg aattcaacca aaaagggacg	180
acccggacga agtacgggac gaaagcgcag ctccagaccg ccatctcgaa cttgcgcggt	240
aaagggatcg gtgtgtacgg cgacgtcgct atgaatcaca agggcggggc cgattatacc	300
gaatccgttc aggccatcgaa ggtcaatccg tcgaaccgga accaagaaac gtccggtag	360
tatggcatct cggcctggac tgggttcaac ttgcggggc gcaacaatac atactcgccg	420
ttcaaatggc gctggtagca ttttgacggt accgatttggg atcagtcacg cagcttgagc	480
cgcattatac agttcaagag cacaggcaag gcgtggaca cggacgtgtc gaacgagaac	540
ggcaactatg attatcttat gtatgccgac gtcgatttcg agcatcccgaa ggtccggccaa	600
gagatgaaga actggggcaa atggtaacgc gactcgctcg ggctcgacgg tttccgggt	660
gatgcggta aacatatcg ccactcgta ttgaaggagt gggtaacgag cgtgcggccag	720
acgaccggaa aagagatgtt cacggtcgccc gagtatttggaa agaacgtatcg cggtggccatc	780
aacgactatc tgtataagac gggctacacg cactccgtct tcgatgtgcc gtcattat	840
aacttccaag cggccggtaa cggcggcggg tattacgata tgcgcaacat cttgaaaggc	900
accgtcaccg aacagcatcc gtcgctgtcc gtgacgattt tcgataacca cgactcacag	960
ccggcccgat cgctcgagtc gacggtcgccc aactgggttca aaccgctcgcc ctacgcgacg	1020
atcatgacgc gcggtcagggtt atccggcc ctcttctatg gagactattt tggcacgaaa	1080
gggacgacga acccgaaat cccgaacatcg tcgggacgc tccaaccgat tttgaaggca	1140
cggaaaagact tcgcctacgg gacgcacatcg gactacctcg atcatcaggat cgtcatcgcc	1200
tggacacgtg aaggtgtgac cgaccgtgcc aaatcgggtc tcgacgatcg tctatcgac	1260
ggtccggcg gctcgaatgt gatgtacgtc ggcaaacaga acgcccggcga ggtatggaaa	1320
gacatgacga acaacaacgc ccgtctcgac acgatcaatcg ctgacggctg gggtaacgttc	1380
ttcgtcaacg gaggctcggt ctcgatttat acgcaacaat aa	1422

<210> 164

<211> 473

<212> PRT

<213> Environmental

<400> 164

Met Val Arg Pro Glu Arg Arg Ala Ala Leu Glu Pro Thr Ile Glu Arg	
1 5 10 15	
Leu Ala Ala Leu Glu Arg His Trp Val Thr Thr Val Trp Ile Pro Pro	
20 25 30	
Ala Tyr Lys Gly Thr Ser Gln Asn Asp Val Gly Tyr Gly Ala Tyr Asp	
35 40 45	

Leu Tyr Asp Leu Gly Glu Phe Asn Gln Lys Gly Thr Thr Arg Thr Lys
 50 55 60
 Tyr Gly Thr Lys Ala Gln Leu Gln Thr Ala Ile Ser Asn Leu Arg Gly
 65 70 75 80
 Lys Gly Ile Gly Val Tyr Gly Asp Val Val Met Asn His Lys Gly Gly
 85 90 95
 Ala Asp Tyr Thr Glu Ser Val Gln Ala Ile Glu Val Asn Pro Ser Asn
 100 105 110
 Arg Asn Gln Glu Thr Ser Gly Glu Tyr Gly Ile Ser Ala Trp Thr Gly
 115 120 125
 Phe Asn Phe Ala Gly Arg Asn Asn Thr Tyr Ser Pro Phe Lys Trp Arg
 130 135 140
 Trp Tyr His Phe Asp Gly Thr Asp Trp Asp Gln Ser Arg Ser Leu Ser
 145 150 155 160
 Arg Ile Tyr Lys Phe Lys Ser Thr Gly Lys Ala Trp Asp Thr Asp Val
 165 170 175
 Ser Asn Glu Asn Gly Asn Tyr Asp Tyr Leu Met Tyr Ala Asp Val Asp
 180 185 190
 Phe Glu His Pro Glu Val Arg Gln Glu Met Lys Asn Trp Gly Lys Trp
 195 200 205
 Tyr Ala Asp Ser Leu Gly Leu Asp Gly Phe Arg Leu Asp Ala Val Lys
 210 215 220
 His Ile Ser His Ser Tyr Leu Lys Glu Trp Val Thr Ser Val Arg Gln
 225 230 235 240
 Thr Thr Gly Lys Glu Met Phe Thr Val Ala Glu Tyr Trp Lys Asn Asp
 245 250 255
 Leu Gly Ala Ile Asn Asp Tyr Leu Tyr Lys Thr Gly Tyr Thr His Ser
 260 265 270
 Val Phe Asp Val Pro Leu His Tyr Asn Phe Gln Ala Ala Gly Asn Gly
 275 280 285
 Gly Gly Tyr Tyr Asp Met Arg Asn Ile Leu Lys Gly Thr Val Thr Glu
 290 295 300
 Gln His Pro Ser Leu Ser Val Thr Ile Val Asp Asn His Asp Ser Gln
 305 310 315 320
 Pro Gly Gln Ser Leu Glu Ser Thr Val Ala Asn Trp Phe Lys Pro Leu
 325 330 335
 Ala Tyr Ala Thr Ile Met Thr Arg Gly Gln Gly Tyr Pro Ala Leu Phe
 340 345 350
 Tyr Gly Asp Tyr Tyr Gly Thr Lys Gly Thr Thr Asn Arg Glu Ile Pro
 355 360 365
 Asn Met Ser Gly Thr Leu Gln Pro Ile Leu Lys Ala Arg Lys Asp Phe
 370 375 380
 Ala Tyr Gly Thr Gln His Asp Tyr Leu Asp His Gln Asp Val Ile Gly
 385 390 395 400
 Trp Thr Arg Glu Gly Val Thr Asp Arg Ala Lys Ser Gly Leu Ala Thr
 405 410 415
 Ile Leu Ser Asp Gly Pro Gly Gly Ser Lys Trp Met Tyr Val Gly Lys
 420 425 430
 Gln Asn Ala Gly Glu Val Trp Lys Asp Met Thr Asn Asn Asn Ala Arg
 435 440 445
 Leu Val Thr Ile Asn Ala Asp Gly Trp Gly Gln Phe Phe Val Asn Gly
 450 455 460
 Gly Ser Val Ser Ile Tyr Thr Gln Gln
 465 470

<210> 165

<211> 1437

<212> DNA

<213> Bacterial

<400> 165		
atgcagtatt tcgagtggta cgtgccaaat gatggggAAC attggaatcg tttgcgtaat	60	
gatgctgaaa attagctca taaaggaatt acatctgtat ggataccacc cgtatataaa	120	
ggaacttcac aaaatgtatgt aggttatggc gtgtatgtat tatatgattt gggagaattc	180	
aatcaaaaag gaacgatacg gacaaaatggc gggacaaaag cacaattaaa atctgcaatt	240	
gaggcttac ataatcaaaa tattcgtatgt tacggatgtat ttgttatgaa ccataaaggt	300	
ggggcagatt atactgaggt tgtaacagcc gttgaggtag accgtaacaa tcgaaatatt	360	
gaaacatcga gtgattatca aatagatgcg tggacggat ttgatTTCC aggacgcagg	420	
gactcctatt ctaattttaa atggagatgg ttcatTTT atggaacaga ttggatgag	480	
ggaaggaaat taaatagaat ttataaattt aaaggcgtatgt gtaaagcttg ggactggaa	540	
gtgtctagtg agaatggtaa ctatgattat ttaatgtatgt cagatcttgc tttcgatcat	600	
cctgaagttg caaatgaaat gaaaaactgg ggaacctgg atgcggacgc attaaattta	660	
gatggcttgc tttagacgc agttaaacat attgaccatg agtatcttcg tgattggta	720	
aatcatgtta gaaagcaaac ggggaggaa atgtttacag tagctgaata ttggcaaaat	780	
gatattcgttgc tttaaacaat ttatTTGGG aaagtaaattt ataatcaatc tttgttcgat	840	
gcaccccttc attataattt tcattatgtc tcaacaggaa atggaaattt tgatatgagg	900	
aatattttaa agggtacggt agtagaaagt catcctacac ttgctgttac tcttggtag	960	
aatcatgatt ctcagcctgg acagtccatgtt gatctgttgc tgagtccctt gtttaagccg	1020	
ttggcctatg catttattt aacgcgtgcgaaagggtatc cttctgtttt ttatggagat	1080	
tactatggca caaatggaaa tagtagttt gaaattccaa cgtaaagga taaaattgtat	1140	
ccaaattctgcgacggaaa aaactttgcgatgttacgc aacatgatta tttagaccat	1200	
ccagatgtgc ttggctggc aagagaaggaa gatagtatac atgctaattc tggtagca	1260	
acattaaatct ctgatggacc aggaggatca aaatggatga atgttggaaa gaacaacgc	1320	
ggggaaatat ggtacgatatacggcaat caaacaata ctgtacgtat taataaagat	1380	
ggatgggggc agttccatgtt aatgggggc tctgttcaatataatgttca gaagtaa	1437	

<210> 166

<211> 478

<212> PRT

<213> Bacterial

<400> 166			
Met Gln Tyr Phe Glu Trp Tyr Val Pro Asn Asp Gly Glu His Trp Asn			
1	5	10	15
Arg Leu Arg Asn Asp Ala Glu Asn Leu Ala His Lys Gly Ile Thr Ser			
20	25	30	
Val Trp Ile Pro Pro Val Tyr Lys Gly Thr Ser Gln Asn Asp Val Gly			
35	40	45	
Tyr, Gly Val Tyr Asp Val Tyr Asp Leu Gly Glu Phe Asn Gln Lys Gly			
50	55	60	
Thr Ile Arg Thr Lys Tyr Gly Thr Lys Ala Gln Leu Lys Ser Ala Ile			
65	70	75	80
Glu Ala Leu His Asn Gln Asn Ile Asp Val Tyr Gly Asp Val Val Met			
85	90	95	
Asn His Lys Gly Gly Ala Asp Tyr Thr Glu Val Val Thr Ala Val Glu			
100	105	110	
Val Asp Arg Asn Asn Arg Asn Ile Glu Thr Ser Ser Asp Tyr Gln Ile			
115	120	125	
Asp Ala Trp Thr Gly Phe Asp Phe Pro Gly Arg Arg Asp Ser Tyr Ser			
130	135	140	
Asn Phe Lys Trp Arg Trp Phe His Phe Asp Gly Thr Asp Trp Asp Glu			
145	150	155	160
Gly Arg Lys Leu Asn Arg Ile Tyr Lys Phe Lys Gly Val Gly Lys Ala			
165	170	175	

Trp Asp Trp Glu Val Ser Ser Glu Asn Gly Asn Tyr Asp Tyr Leu Met
 180 185 190
 Tyr Ala Asp Leu Asp Phe Asp His Pro Glu Val Ala Asn Glu Met Lys
 195 200 205
 Asn Trp Gly Thr Trp Tyr Ala Asp Glu Leu Asn Leu Asp Gly Phe Arg
 210 215 220
 Leu Asp Ala Val Lys His Ile Asp His Glu Tyr Leu Arg Asp Trp Val
 225 230 235 240
 Asn His Val Arg Lys Gln Thr Gly Lys Glu Met Phe Thr Val Ala Glu
 245 250 255
 Tyr Trp Gln Asn Asp Ile Arg Thr Leu Asn Asn Tyr Leu Gly Lys Val
 260 265 270
 Asn Tyr Asn Gln Ser Val Phe Asp Ala Pro Leu His Tyr Asn Phe His
 275 280 285
 Tyr Ala Ser Thr Gly Asn Gly Asn Tyr Asp Met Arg Asn Ile Leu Lys
 290 295 300
 Gly Thr Val Val Glu Ser His Pro Thr Leu Ala Val Thr Leu Val Glu
 305 310 315 320
 Asn His Asp Ser Gln Pro Gly Gln Ser Leu Glu Ser Val Val Ser Pro
 325 330 335
 Trp Phe Lys Pro Leu Ala Tyr Ala Phe Ile Leu Thr Arg Ala Glu Gly
 340 345 350
 Tyr Pro Ser Val Phe Tyr Gly Asp Tyr Tyr Gly Thr Asn Gly Asn Ser
 355 360 365
 Ser Tyr Glu Ile Pro Thr Leu Lys Asp Lys Ile Asp Pro Ile Leu Thr
 370 375 380
 Ala Arg Lys Asn Phe Ala Tyr Gly Thr Gln His Asp Tyr Leu Asp His
 385 390 395 400
 Pro Asp Val Ile Gly Trp Thr Arg Glu Gly Asp Ser Ile His Ala Asn
 405 410 415
 Ser Gly Leu Ala Thr Leu Ile Ser Asp Gly Pro Gly Gly Ser Lys Trp
 420 425 430
 Met Asn Val Gly Lys Asn Asn Ala Gly Glu Ile Trp Tyr Asp Ile Thr
 435 440 445
 Gly Asn Gln Thr Asn Thr Val Thr Ile Asn Lys Asp Gly Trp Gly Gln
 450 455 460
 Phe His Val Asn Gly Gly Ser Val Ser Ile Tyr Val Gln Lys
 465 470 475

<210> 167

<211> 1596

<212> DNA

<213> Environmental

<400> 167

atgcaaacga ttgcaaaaaa agggatgaa acgatgaaag ggaaaaaatg gacagctta	60
gctctaacac tgccgctggc tgcgttca tcaacaggcg ttcacgcccga aaccgtacat	120
aaaggtaaat ctccaacagc agataaaaac ggtgtattt atgaggtgtt tgtaaactct	180
ttttacatgt caaataaaaga tggacatggt gatttaaaag gtcttacaca aaagttggat	240
tatttaatgt atggcaattc tcatacaaag aatgatctc aatgaaacgg gatttggatg	300
atgccggta acccttctcc cagcttatcat aaatatgtg taacggacta ttataatatt	360
gatccgcagt atggaaatct gcaagatttt cgcaaaactga tggaaagaagc agataaacga	420
gatgtaaaag tcattatgga cctcggttg aatcatacga gcagtgaaca cccttggttt	480
caagctgcatt taaaagataa aaacagcaag tacagagatt actatatctg ggctgataaa	540
aataccgact tgaatgaaaaa aggatcttgg ggacagcaag tatggataa agccccaaac	600
ggagagttt tttacggAAC gttttggaa ggaatGCCGG acttaaatta cgataatcct	660
gaagtaagaa aagaaatgt taacgttagga aagtttggc taaagcaagg agttgacggg	720

ttccgtctag atgctgcgt tcataaaaaaaaggccaaa cacctgaagg cgctaagaaa	780
aatctcctgt ggtggaatga atttagagat gcaatgaaaa aggaaaaccc taacgtatat	840
ctaacgggtg aagtatggga tcaaccggaa gtagtagctc cttactatca atcgcttgat	900
tctttattta actttgattt agcagggaaacttgtaaact ctgtaaaatc aggaaatgtat	960
caaggaatcg cgactgcgc agcggcaacg gatgaactgt tcaaattcata caatccaaat	1020
aaaattgacg gtatTTCTT aaccaaccat gacccaaatc gcgtcatgag tgagctaagc	1080
ggcgatgtga ataaagcaaa gtcagctgcc tctatcttac ttacgcttcc tggcaacccg	1140
tatattttt acggtaaga aatcggcatg accggtaaaa agcctgtatga gttaatccgt	1200
gaaccgttcc gctggatcga agggaaacggg cttggacaaa ccagctgggaa aacacctgtat	1260
tacaacaaag gcccacacgg cgtgtctgtatga agacacaaa caaaaacaaa ggactctttg	1320
ttaaatcatt accgtgaaat gattcgcgtg cgtcagcagc acgaagagtt agtaaaagga	1380
acgcttcaat ctatttcaat agacagtaaa gaagtcgttgcctatagccg cacgtataaa	1440
ggcaaatcga ttagcgtgtatcaat tcaaattcatac cggtaaaagt atctgttagca	1500
gcaaaaaggtaaatttggtagtgaa aaaggtgcta agaaagtcaa aaatcagctt	1560
gtgattccgg cgaatacAAC ggttttaataaataa	1596

<210> 168

<211> 531

<212> PRT

<213> Environmental

<400> 168

Met Gln Thr Ile Ala Lys Lys Gly Asp Glu Thr Met Lys Gly Lys Lys	
1 5 10 15	
Trp Thr Ala Leu Ala Leu Thr Leu Pro Leu Ala Ala Ser Leu Ser Thr	
20 25 30	
Gly Val His Ala Glu Thr Val His Lys Gly Lys Ser Pro Thr Ala Asp	
35 40 45	
Lys Asn Gly Val Phe Tyr Glu Val Tyr Val Asn Ser Phe Tyr Asp Ala	
50 55 60	
Asn Lys Asp Gly His Gly Asp Leu Lys Gly Leu Thr Gln Lys Leu Asp	
65 70 75 80	
Tyr Leu Asn Asp Gly Asn Ser His Thr Lys Asn Asp Leu Gln Val Asn	
85 90 95	
Gly Ile Trp Met Met Pro Val Asn Pro Ser Pro Ser Tyr His Lys Tyr	
100 105 110	
Asp Val Thr Asp Tyr Tyr Asn Ile Asp Pro Gln Tyr Gly Asn Leu Gln	
115 120 125	
Asp Phe Arg Lys Leu Met Lys Glu Ala Asp Lys Arg Asp Val Lys Val	
130 135 140	
Ile Met Asp Leu Val Val Asn His Thr Ser Ser Glu His Pro Trp Phe	
145 150 155 160	
Gln Ala Ala Leu Lys Asp Lys Asn Ser Lys Tyr Arg Asp Tyr Tyr Ile	
165 170 175	
Trp Ala Asp Lys Asn Thr Asp Leu Asn Glu Lys Gly Ser Trp Gly Gln	
180 185 190	
Gln Val Trp His Lys Ala Pro Asn Gly Glu Tyr Phe Tyr Gly Thr Phe	
195 200 205	
Trp Glu Gly Met Pro Asp Leu Asn Tyr Asp Asn Pro Glu Val Arg Lys	
210 215 220	
Glu Met Ile Asn Val Gly Lys Phe Trp Leu Lys Gln Gly Val Asp Gly	
225 230 235 240	
Phe Arg Leu Asp Ala Ala Leu His Ile Phe Lys Gly Gln Thr Pro Glu	
245 250 255	
Gly Ala Lys Lys Asn Leu Leu Trp Trp Asn Glu Phe Arg Asp Ala Met	
260 265 270	
Lys Lys Glu Asn Pro Asn Val Tyr Leu Thr Gly Glu Val Trp Asp Gln	

275	280	285
Pro Glu Val Val Ala Pro Tyr Tyr Gln Ser Leu Asp Ser	Leu Phe Asn	
290	295	300
Phe Asp Leu Ala Gly Lys Ile Val Asn Ser Val Lys Ser	Gly Asn Asp	
305	310	315
Gln Gly Ile Ala Thr Ala Ala Ala Thr Asp Glu Leu Phe	Lys Ser	
325	330	335
Tyr Asn Pro Asn Lys Ile Asp Gly Ile Phe Leu Thr Asn His	Asp Gln	
340	345	350
Asn Arg Val Met Ser Glu Leu Ser Gly Asp Val Asn Lys	Ala Lys Ser	
355	360	365
Ala Ala Ser Ile Leu Leu Thr Leu Pro Gly Asn Pro	Tyr Ile Tyr Tyr	
370	375	380
Gly Glu Glu Ile Gly Met Thr Gly Glu Lys Pro Asp Glu	Leu Ile Arg	
385	390	395
Glu Pro Phe Arg Trp Tyr Glu Gly Asn Gly Leu Gly	Gln Thr Ser Trp	
405	410	415
Glu Thr Pro Val Tyr Asn Lys Gly Gly Asn Gly Val Ser	Val Glu Ala	
420	425	430
Gln Thr Lys Gln Lys Asp Ser Leu Leu Asn His Tyr Arg	Glu Met Ile	
435	440	445
Arg Val Arg Gln Gln His Glu Glu Leu Val Lys Gly	Thr Leu Gln Ser	
450	455	460
Ile Ser Val Asp Ser Lys Glu Val Val Ala Tyr Ser Arg	Thr Tyr Lys	
465	470	475
Gly Lys Ser Ile Ser Val Tyr His Asn Ile Ser Asn Gln	Pro Val Lys	
485	490	495
Val Ser Val Ala Ala Lys Gly Lys Leu Ile Phe Gly Ser	Glu Lys Gly	
500	505	510
Ala Lys Lys Val Lys Asn Gln Leu Val Ile Pro Ala Asn	Thr Thr Val	
515	520	525
Leu Ile Lys		
530		

<210> 169

<211> 1524

<212> DNA

<213> Environmental

<400> 169

atgaaaacat tcaaattaaa acgcactttt ttaccgctaa cttgtctgct cagtgcct	60
gcctttgctg ggcaaatgg caccatgatg cagtatttc atttgtatgt acctaattat	120
ggcgcattat ggacgcagg taaaaagcaat gctccagcac tcgctaaaaa cggtttaca	180
gctctctggc taccgcagc ttacaaaggc gcggcgca gtaatgacgt cggttatggc	240
gtctatgata tgtacgattt agtgagttt gatcaaaaag gtcagtagc aaccaaatac	300
ggcaccaagg ctcagtagat ctctgcaatc aatgcgcgc acaacaacaa tatccaaatc	360
tacggcgatg ttgtgttta ccacccagggt ggtgctgatg ggaagtgcgt ggtcgatacc	420
aagcgcgtt atggggacaa ccgtaacatc gaactggcg acaaattggat tgaagcttgg	480
gttgagtttta attttctgg ccgcaacgc aaataactcaa acttccattt gacttggat	540
cactttgacg gtgttgactg ggatgatgcc ggcaaaagaaa aagcgatctt taaattcaaa	600
ggcgaaggaa aagcatggaa ttgggaagtc agctctgaaa aaggcaatta cgactaccta	660
atgtacgccc atttagacat ggatcaccaaa gaagttaaac aagagctgaa agattggggt	720
gagtggtaca tcaacatgac cggcgttgc ggcttttagaa tggatgccgt gaagcacatt	780
aaatatcagt atctacaaga gtggattgtat catttacgtt ggaaaacagg caaagagctt	840
ttcacccgtt gtgagtattt gaattacgc gtaaatcaac tgcataactt tattactaag	900
acctctggca gatatgcgtt gtcgatgcg ccgcttcaca tgaacttcta caacgcgtca	960
aaatctggcg gcaattacga tatgcgc当地 atcatgaatg gcacgttgc gaaaggacaac	1020

ccagtcaaag	ctgtgactct	cgttagaaaac	cacgatacac	agccattgca	ggcgtagag	1080
tgcacagtgg	attgggggtt	caaggcttt	gcttacgcat	tcattttatt	gcgtgaagaa	1140
ggttatccat	cagtgttcta	cgcagattac	tacggcgcgc	agtacagcga	caaaggctac	1200
aacatcaata	tggccaaagt	tccttacatt	gaagaacttg	taacactgca	taaagagtat	1260
gcgtatggca	aacagaattc	ttatctcgac	cactgggatg	tgattggctg	gaccggagag	1320
ggcgatgctg	aacatccaaa	ctcaatggcg	gtgatcatga	gtgatggacc	agggtggcaaa	1380
aatggatgt	ataccggtaa	gccaagcacf	cgctatgtcg	acaagctggg	tatccgaact	1440
gaagaagttt	ggaccgatac	caatggctgg	gcagaatttc	ctgtcaatgg	tggttcagtc	1500
tcggtttggg	tggcgtaa	gtaa				1524

<210> 170

<211> 507

<212> PRT

<213> Environmental

<400> 170

Met	Lys	Thr	Phe	Lys	Leu	Lys	Arg	Thr	Phe	Leu	Pro	Leu	Thr	Leu	Leu
1				5				10					15		
Leu	Ser	Ala	Pro	Ala	Phe	Ala	Gly	Gln	Asn	Gly	Thr	Met	Met	Gln	Tyr
								20				25			30
Phe	His	Trp	Tyr	Val	Pro	Asn	Asp	Gly	Ala	Leu	Trp	Thr	Gln	Val	Glu
								35			40		45		
Ser	Asn	Ala	Pro	Ala	Leu	Ala	Glu	Asn	Gly	Phe	Thr	Ala	Leu	Trp	Leu
								50			55		60		
Pro	Pro	Ala	Tyr	Lys	Gly	Ala	Gly	Gly	Ser	Asn	Asp	Val	Gly	Tyr	Gly
				65				70			75		80		
Val	Tyr	Asp	Met	Tyr	Asp	Leu	Gly	Glu	Phe	Asp	Gln	Lys	Gly	Ser	Val
								85			90		95		
Arg	Thr	Lys	Tyr	Gly	Thr	Lys	Ala	Gln	Tyr	Ile	Ser	Ala	Ile	Asn	Ala
							100			105			110		
Ala	His	Asn	Asn	Asn	Ile	Gln	Ile	Tyr	Gly	Asp	Val	Val	Phe	Asn	His
							115			120			125		
Arg	Gly	Gly	Ala	Asp	Gly	Lys	Ser	Trp	Val	Asp	Thr	Lys	Arg	Val	Asp
				130			135				140				
Trp	Asp	Asn	Arg	Asn	Ile	Glu	Leu	Gly	Asp	Lys	Trp	Ile	Glu	Ala	Trp
				145			150				155			160	
Val	Glu	Phe	Asn	Phe	Pro	Gly	Arg	Asn	Asp	Lys	Tyr	Ser	Asn	Phe	His
							165			170			175		
Trp	Thr	Trp	Tyr	His	Phe	Asp	Gly	Val	Asp	Trp	Asp	Asp	Ala	Gly	Lys
							180			185			190		
Glu	Lys	Ala	Ile	Phe	Lys	Phe	Lys	Gly	Glu	Gly	Lys	Ala	Trp	Asp	Trp
				195			200				205				
Glu	Val	Ser	Ser	Glu	Lys	Gly	Asn	Tyr	Asp	Tyr	Leu	Met	Tyr	Ala	Asp
				210			215				220				
Leu	Asp	Met	Asp	His	Gln	Glu	Val	Lys	Gln	Glu	Leu	Lys	Asp	Trp	Gly
				225			230				235			240	
Glu	Trp	Tyr	Ile	Asn	Met	Thr	Gly	Val	Asp	Gly	Phe	Arg	Met	Asp	Ala
							245			250			255		
Val	Lys	His	Ile	Lys	Tyr	Gln	Tyr	Leu	Gln	Glu	Trp	Ile	Asp	His	Leu
				260			265				270				
Arg	Trp	Lys	Thr	Gly	Lys	Glu	Leu	Phe	Thr	Val	Gly	Glu	Tyr	Trp	Asn
				275			280				285				
Tyr	Asp	Val	Asn	Gln	Leu	His	Asn	Phe	Ile	Thr	Lys	Thr	Ser	Gly	Ser
				290			295				300				
Met	Ser	Leu	Phe	Asp	Ala	Pro	Leu	His	Met	Asn	Phe	Tyr	Asn	Ala	Ser
				305			310				315			320	
Lys	Ser	Gly	Gly	Asn	Tyr	Asp	Met	Arg	Gln	Ile	Met	Asn	Gly	Thr	Leu

	325	330	335
Met Lys Asp Asn Pro Val Lys Ala Val Thr Leu Val Glu Asn His Asp			
340	345	350	
Thr Gln Pro Leu Gln Ala Leu Glu Ser Thr Val Asp Trp Trp Phe Lys			
355	360	365	
Pro Leu Ala Tyr Ala Phe Ile Leu Leu Arg Glu Glu Gly Tyr Pro Ser			
370	375	380	
Val Phe Tyr Ala Asp Tyr Tyr Gly Ala Gln Tyr Ser Asp Lys Gly Tyr			
385	390	395	400
Asn Ile Asn Met Ala Lys Val Pro Tyr Ile Glu Glu Leu Val Thr Leu			
405	410	415	
Arg Lys Glu Tyr Ala Tyr Gly Lys Gln Asn Ser Tyr Leu Asp His Trp			
420	425	430	
Asp Val Ile Gly Trp Thr Arg Glu Gly Asp Ala Glu His Pro Asn Ser			
435	440	445	
Met Ala Val Ile Met Ser Asp Gly Pro Gly Gly Lys Lys Trp Met Tyr			
450	455	460	
Thr Gly Lys Pro Ser Thr Arg Tyr Val Asp Lys Leu Gly Ile Arg Thr			
465	470	475	480
Glu Glu Val Trp Thr Asp Thr Asn Gly Trp Ala Glu Phe Pro Val Asn			
485	490	495	
Gly Gly Ser Val Ser Val Trp Val Gly Val Lys			
500	505		

<210> 171

<211> 1431

<212> DNA

<213> Environmental

<400> 171

gtgtatgtaa actctttta cgatgcaa ataaagatggac atggtgattt aaaaggctt	60
acacaaaagt tggattattt aaatgtatggc aattctcata caaaagaatga tcttcagta	120
aacgggattt ggatgtgcc ggtcaaccct tctccagct atcataaata tgatgtaacg	180
gactattata atattgtatcc gcagtatgg aatctgcaag atttcgcaa actgtgaaaa	240
gaagcagata aacgagatgt aaaagtcat atggacctcg ttgtaatca tacgagcagt	300
gaacaccctt ggttcaagc tcattaaaaa gataaaaaca gcaagtacag agattactat	360
atctgggctg ataaaaatac cgacttgaat gaaaaaggat cttggggaca gcaagtatgg	420
cataaagccc caaaacggaga gtattttac ggaacgtttt gggaaaggat gccggactta	480
aattacgata atcctgaagt aagaaaagaa atgattaacg taggaaagtt ttggctaaag	540
caaggagttt acgggttccg tctagatgct ggccttcata tttttaaagg ccaaacacct	600
gaaggcgcta agaaaaatct cctgtggtgg aatgaattt gagatgcaat gaaaaaggaa	660
aaccctaacg tatatctaac gggtaagta tggatcaac cggaaatgtt agtccttac	720
tatcaatcgc ttgattttt atttaactt gattnacg gaaagattt aaactctgtt	780
aaatcaggaa atgatcaagg aatcgcgact gcagcagcgg caacggatgtt actgttcaaa	840
tcatacaatc caaataaaat tgacggattt ttcttaacca accatgacca aaatcgcgtt	900
atgagtggc taagcgcga tgtgaataaa gcaaagttagt ctgcctctat cttacttac	960
cttcctggca acccgatat ttattacggt gaagaaatcg gcatgaccgg tgaaaagcct	1020
gatgagttaa tccgtgaacc gttccgtgg tacgaaggaa acggacttgg acaaaaccagc	1080
tggaaacac ctgtatacaa caaaggcggc aacggcgtgt ctgtagaacg acaaaacaaaa	1140
caaaaggact ctttgtaaa tcattaccgt gaaatgattt gctgtgcgtca gcagcacgaa	1200
gagtttagtaa aaggaacgct tcaatctatt tcagtagaca gtaaagaagt cgttgcctat	1260
agccgcacgt ataaaggcaa atcgattagc gtgtatcata atatttcaaa tcaaccgta	1320
aaagtatctg tagcagcaaa agttaaattt attttggta gtgaaaaagg tgctaagaaa	1380
gtcaaaaatc agcttgcgtat tccggcgaat acaacgttt taataaaaata a	1431

<210> 172

<211> 476

<212> PRT

<213> Environmental

<400> 172

Val Tyr Val Asn Ser Phe Tyr Asp Ala Asn Lys Asp Gly His Gly Asp
 1 5 10 15
 Leu Lys Gly Leu Thr Gln Lys Leu Asp Tyr Leu Asn Asp Gly Asn Ser
 20 25 30
 His Thr Lys Asn Asp Leu Gln Val Asn Gly Ile Trp Met Met Pro Val
 35 40 45
 Asn Pro Ser Pro Ser Tyr His Lys Tyr Asp Val Thr Asp Tyr Tyr Asn
 50 55 60
 Ile Asp Pro Gln Tyr Gly Asn Leu Gln Asp Phe Arg Lys Leu Met Lys
 65 70 75 80
 Glu Ala Asp Lys Arg Asp Val Lys Val Ile Met Asp Leu Val Val Asn
 85 90 95
 His Thr Ser Ser Glu His Pro Trp Phe Gln Ala Ala Leu Lys Asp Lys
 100 105 110
 Asn Ser Lys Tyr Arg Asp Tyr Tyr Ile Trp Ala Asp Lys Asn Thr Asp
 115 120 125
 Leu Asn Glu Lys Gly Ser Trp Gly Gln Gln Val Trp His Lys Ala Pro
 130 135 140
 Asn Gly Glu Tyr Phe Tyr Gly Thr Phe Trp Glu Gly Met Pro Asp Leu
 145 150 155 160
 Asn Tyr Asp Asn Pro Glu Val Arg Lys Glu Met Ile Asn Val Gly Lys
 165 170 175
 Phe Trp Leu Lys Gln Gly Val Asp Gly Phe Arg Leu Asp Ala Ala Leu
 180 185 190
 His Ile Phe Lys Gly Gln Thr Pro Glu Gly Ala Lys Lys Asn Leu Leu
 195 200 205
 Trp Trp Asn Glu Phe Arg Asp Ala Met Lys Lys Glu Asn Pro Asn Val
 210 215 220
 Tyr Leu Thr Gly Glu Val Trp Asp Gln Pro Glu Val Val Ala Pro Tyr
 225 230 235 240
 Tyr Gln Ser Leu Asp Ser Leu Phe Asn Phe Asp Leu Ala Gly Lys Ile
 245 250 255
 Val Asn Ser Val Lys Ser Gly Asn Asp Gln Gly Ile Ala Thr Ala Ala
 260 265 270
 Ala Ala Thr Asp Glu Leu Phe Lys Ser Tyr Asn Pro Asn Lys Ile Asp
 275 280 285
 Gly Ile Phe Leu Thr Asn His Asp Gln Asn Arg Val Met Ser Glu Leu
 290 295 300
 Ser Gly Asp Val Asn Lys Ala Lys Ser Ala Ala Ser Ile Leu Leu Thr
 305 310 315 320
 Leu Pro Gly Asn Pro Tyr Ile Tyr Tyr Gly Glu Glu Ile Gly Met Thr
 325 330 335
 Gly Glu Lys Pro Asp Glu Leu Ile Arg Glu Pro Phe Arg Trp Tyr Glu
 340 345 350
 Gly Asn Gly Leu Gly Gln Thr Ser Trp Glu Thr Pro Val Tyr Asn Lys
 355 360 365
 Gly Gly Asn Gly Val Ser Val Glu Ala Gln Thr Lys Gln Lys Asp Ser
 370 375 380
 Leu Leu Asn His Tyr Arg Glu Met Ile Arg Val Arg Gln Gln His Glu
 385 390 395 400
 Glu Leu Val Lys Gly Thr Leu Gln Ser Ile Ser Val Asp Ser Lys Glu
 405 410 415
 Val Val Ala Tyr Ser Arg Thr Tyr Lys Gly Lys Ser Ile Ser Val Tyr

	420	425	430
His Asn Ile Ser Asn Gln Pro Val Lys Val Ser Val Ala Ala Lys Gly			
435	440	445	
Lys Leu Ile Phe Gly Ser Glu Gly Ala Lys Lys Val Lys Asn Gln			
450	455	460	
Leu Val Ile Pro Ala Asn Thr Thr Val Leu Ile Lys			
465	470	475	

<210> 173

<211> 1596

<212> DNA

<213> Environmental

<400> 173

atgcaaacga ttgaaaaaaaaa agggatgaa acgatgaaag gaaaaaatg gacagctta	60
gctctaacac tgccgtggc tgctagctt tcaacaggcg ttcacgcaga aactgtacat	120
aaaggtaaag ctccaacagc agataaaaac ggtttttt atgagggtgt tgtaaactct	180
tttacatgt caaataaaga tggacatggt gattttaaag gtctgacaca aaagttggat	240
tattnaaatg acggcaattc tcatacaaag aatgatcttc aatggaaacgg gattttggat	300
atgccggta acccttctcc tagctatcat aaatatgtat taacggacta ttataacatt	360
gatcctcagt acggaagtct gcaagattt cgcacactga tgaaagaagc agataaacga	420
gacgtaaaag ttattatgga ccttggatgt aatcatacga gcagtgaaca cccttgggtt	480
caagctgcac taaaagataa aaacagcaag tacagagatt actatattt ggctgataaa	540
aataccgatt tgaatgaaaa aggatcttgg ggacagcaag tatggcataa agctccaaac	600
ggagagtatt ttacggAAC gttctggaa ggaatgcctg actttaaatta cgataaccct	660
gaagtaagaa aagaaatgt taacgtcgaa aagtttggc taaagcaagg cgttgatggc	720
ttccgcttag atgctgcct tcataatctt aaaggtaaaa ctcctgaagg cgctaagaaa	780
aatctcctgt ggtggatgt gtttagagat gcaatgaaaa aagaaaaccc taacgtatat	840
ctaacgggtg aagtatggaa tcagccggaa gtagtagctc cttattatca atcgcttgat	900
tccctatTTTtta actttgattt agcaggaaaa attgtcagct ctgtaaaagc agggaaatgtat	960
caaggaatcg ccactgcagc agcggcaacg gatgagctgt tcaaatacata caatccaaat	1020
aaaatttgacg gcattttctt aaccaaccat gacaaaacc gcgcatgag tgagctaagc	1080
ggagatgtga ataaagcaaa atcagctgtc tctatcttac ttacgcttcc tggaaatccg	1140
tatattttt acgggtgaaga aattggcatg accggtaaaa agcctgatga attaatccgt	1200
gaaccgttcc gctggtaacg aggcaacggg attggacaaa ctagctggaa aacacctgt	1260
tataacaaag gcgcaatgg tttgtctgtt gaagcacaaa ccaaacaaaa ggatttttg	1320
ttaaatcatt accgtaaaat gattcgctg cgtcagcagc acgaagaggt agtaaaagga	1380
acgcttcagt ctatTCAGT agacagtaaa gaagttgtcg cttatagccg tacgtataaa	1440
ggcaactcca ttatgtgtt tcaataatatt tcaaatacactgtaaaagt atctgtagcg	1500
gcaaaaggta aattgatttt tgcgtgtt gaaaggtgcta aaaaaggcaaa aaatcagctt	1560
gtgattccgg cgaatgcgac gttttaataa aaataaa	1596

<210> 174

<211> 531

<212> PRT

<213> Environmental

<400> 174

Met Gln Thr Ile Ala Lys Lys Gly Asp Glu Thr Met Lys Gly Lys Lys			
1	5	10	15
Trp Thr Ala Leu Ala Leu Thr Leu Pro Leu Ala Ala Ser Leu Ser Thr			
20	25	30	
Gly Val His Ala Glu Thr Val His Lys Gly Lys Ala Pro Thr Ala Asp			
35	40	45	
Lys Asn Gly Val Phe Tyr Glu Val Tyr Val Asn Ser Phe Tyr Asp Ala			
50	55	60	
Asn Lys Asp Gly His Gly Asp Leu Lys Gly Leu Thr Gln Lys Leu Asp			

65	70	75	80
Tyr	Leu	Asn	Asp
Gly	Asn	Ser	His
85	90	95	
Gly	Ile	Trp	Met
Met	Pro	Val	Asn
100	105	110	
Asp	Val	Thr	Asp
Tyr	Tyr	Asn	Ile
115	120	125	
Asp	Phe	Arg	Lys
Leu	Met	Lys	Glu
130	135	140	
Ile	Met	Asp	Leu
Leu	Val	Val	Asn
145	150	155	160
Gln	Ala	Ala	Leu
Lys	Asp	Lys	Asn
165	170	175	
Trp	Ala	Asp	Lys
Asn	Thr	Asp	Leu
Glu	Lys	Gly	Ser
180	185	190	
Gln	Val	Trp	His
Lys	Ala	Pro	Asn
Gly	Glu	Tyr	Phe
195	200	205	
Trp	Glu	Gly	Met
Pro	Asp	Leu	Asn
Tyr	Asp	Asn	Pro
Glu	Val	Arg	Lys
210	215	220	
Glu	Met	Ile	Asn
Val	Gly	Lys	Phe
225	230	235	240
Phe	Arg	Leu	Asp
Ala	Ala	Leu	His
245	250	255	
Gly	Ala	Lys	Lys
Asn	Leu	Leu	Trp
260	265	270	
Lys	Lys	Glu	Asn
Pro	Asn	Val	Tyr
275	280	285	
Pro	Glu	Val	Val
290	295	300	
Phe	Asp	Leu	Ala
Gly	Lys	Ile	Val
305	310	315	320
Gln	Gly	Ile	Ala
Ala	Thr	Ala	Ala
325	330	335	
Tyr	Asn	Pro	Asn
Lys	Ile	Asp	Gly
340	345	350	
Asn	Arg	Val	Met
355	360	365	
Ala	Ala	Ser	Ile
Leu	Leu	Thr	Leu
370	375	380	
Gly	Glu	Glu	Ile
385	390	395	400
Glu	Pro	Phe	Arg
Trp	Tyr	Glu	Gly
405	410	415	
Glu	Thr	Pro	Val
Tyr	Asn	Lys	Gly
420	425	430	
Gln	Thr	Lys	Gln
Lys	Gln	Asp	Ser
435	440	445	
Arg	Val	Arg	Gln
Gln	Gln	His	Glu
450	455	460	
Ile	Ser	Val	Asp
Ser	Lys	Glu	Val
465	470	475	480
Gly	Asn	Ser	Ile
Ile	Ser	Val	Tyr
485	490	495	
Val	Ser	Val	Ala
Ala	Lys	Gly	Lys
500	505	510	
Ala	Lys	Gly	Lys
Asn	Gln	Leu	Val
515	520	525	
Ala	Asn	Ala	Thr
Thr	Val		

Leu Ile Lys
530

<210> 175
<211> 1398
<212> DNA
<213> Environmental

<400> 175

atgaaaata taatacgact ttgtgctgcc	agcgctatcc tcacggtgtc	ccacgccagt	60
tacggccacg caattttaca cgcgttaac tggcaatata	ccgatgtaac cgccaatgca		120
aatcaaatttgg ccgcaaatgg cttaaaaaaa gtcctcattt	cacccgcaat gaaatccagc		180
ggcagtcaat ggtgggccccg ctatcaaccg	caagacttgc gtgtcattga	ttctccgctg	240
ggcaacaaac aagatttagt cgcgatgatc	aatgcgctca acagcggtgg	ggtcgacgtg	300
tatgctgacg tggtgcttaa ccatatggct	aacgagtcat ggaagcgcag	tgacctgaac	360
tacccgggaa gtgaggtgct caacgactat	caatcccga gtgcttacta	tcaaaggcaa	420
acactttcg gcaatttaca ggagaacctt	tttccgaga atgatttcca	tccggcaggc	480
tgtattacca attggaatga tcctggccac	gtccagtttgc ggcgttgg	cgccggacag	540
ggcgatactg ggctaccgga tctcgatcct	aatcaatggg ttgtgagtca	gcagaagagt	600
tacttgaacg cactcaaattc aatgggaatc	aaagggttcc gtatcgatgc	ggtcaaacat	660
atgagtcaat atcaaataaga ccaagtgtt	acccagaca ttaccgctgg	tatgcatata	720
ttcggagaag tcattaccag tggtggcaaa	ggtgatagcg gctatgaggc	ttttcttgcc	780
ccttaccta ataataccga tcacgcccgt	tatgacttcc cgctatttgc	atcgattcga	840
gccgcgtttt cattctctgg tgggttaaat	cagctacaca atccacaagc	ctatggccaa	900
gcgttacagg actcacgtgc gatcacctt	acgattaccc acgacattcc	aaccaatgac	960
ggttccgct accagatcat ggatccaacc	gatgaacagc tcgcctatgc	ctacatcttg	1020
ggcaaagatg gaggaacgccc	acttgcataat agtgcgtacc	tacctgacag	1080
gacagtggtc gttggccga tgggtggcaaa	gatccgaaca tgattaacat	gcttgccttc	1140
cacaacgcga tgcaaggaca aagcatgact	gtatggcta gcgcataatg	taccttgcta	1200
ttaagcgcg gcaagcaagg cgtggtagga	atcaataaaat gtggcgagag	taagtcggtg	1260
actgtcgata cttaccagca tgagtttaac	ttgtacaccc cgtaccaaga	cgattgagc	1320
ggcgacatca ccacagttag	ttctcgttat caccaatttgc	ttttgccagc	1380
aggatgtgga aactataa		gcgcagtgca	1398

<210> 176

<211> 465

<212> PRT

<213> Environmental

<400> 176

Met Lys Asn Ile Ile Arg Leu Cys Ala	Ala Ser Ala Ile Leu Thr Val		
1	5	10	15
Ser His Ala Ser Tyr Ala Asp Ala	Ile Leu His Ala Phe Asn Trp Gln		
20	25	30	
Tyr Thr Asp Val Thr Ala Asn Ala	Asn Gln Ile Ala Ala Asn Gly Phe		
35	40	45	
Lys Lys Val Leu Ile Ser Pro Ala Met	Lys Ser Ser Gly Ser Gln Trp		
50	55	60	
Trp Ala Arg Tyr Gln Pro Gln Asp Leu	Arg Val Ile Asp Ser Pro Leu		
65	70	75	80
Gly Asn Lys Gln Asp Leu Val Ala Met	Ile Asn Ala Leu Asn Ser Val		
85	90	95	
Gly Val Asp Val Tyr Ala Asp Val Val	Leu Asn His Met Ala Asn Glu		
100	105	110	
Ser Trp Lys Arg Ser Asp Leu Asn Tyr	Pro Gly Ser Glu Val Leu Asn		
115	120	125	
Asp Tyr Gln Ser Arg Ser Ala Tyr	Tyr Gln Arg Gln Thr Leu Phe Gly		

130	135	140
Asn Leu Gln Glu Asn Leu Phe Ser Glu Asn Asp Phe His Pro Ala Gly		
145	150	155
Cys Ile Thr Asn Trp Asn Asp Pro Gly His Val Gln Tyr Trp Arg Leu		160
165	170	175
Cys Gly Gly Gln Gly Asp Thr Gly Leu Pro Asp Leu Asp Pro Asn Gln		
180	185	190
Trp Val Val Ser Gln Gln Lys Ser Tyr Leu Asn Ala Leu Lys Ser Met		
195	200	205
Gly Ile Lys Gly Phe Arg Ile Asp Ala Val Lys His Met Ser Gln Tyr		
210	215	220
Gln Ile Asp Gln Val Phe Thr Pro Asp Ile Thr Ala Gly Met His Ile		
225	230	235
Phe Gly Glu Val Ile Thr Ser Gly Gly Gln Gly Asp Ser Gly Tyr Glu		240
245	250	255
Ala Phe Leu Ala Pro Tyr Leu Asn Asn Thr Asp His Ala Ala Tyr Asp		
260	265	270
Phe Pro Leu Phe Ala Ser Ile Arg Ala Ala Phe Ser Phe Ser Gly Gly		
275	280	285
Leu Asn Gln Leu His Asn Pro Gln Ala Tyr Gly Gln Ala Leu Gln Asp		
290	295	300
Ser Arg Ala Ile Thr Phe Thr Ile Thr His Asp Ile Pro Thr Asn Asp		
305	310	315
Gly Phe Arg Tyr Gln Ile Met Asp Pro Thr Asp Glu Gln Leu Ala Tyr		
325	330	335
Ala Tyr Ile Leu Gly Lys Asp Gly Gly Thr Pro Leu Val Tyr Ser Asp		
340	345	350
Asp Leu Pro Asp Ser Glu Asp Lys Asp Ser Gly Arg Trp Ala Asp Val		
355	360	365
Trp Gln Asp Pro Asn Met Ile Asn Met Leu Ala Phe His Asn Ala Met		
370	375	380
Gln Gly Gln Ser Met Thr Val Val Ala Ser Asp Gln Cys Thr Leu Leu		
385	390	395
Phe Lys Arg Gly Lys Gln Gly Val Val Gly Ile Asn Lys Cys Gly Glu		400
405	410	415
Ser Lys Ser Val Thr Val Asp Thr Tyr Gln His Glu Phe Asn Trp Tyr		
420	425	430
Thr Pro Tyr Gln Asp Val Leu Ser Gly Asp Ile Thr Thr Val Ser Ser		
435	440	445
Arg Tyr His Gln Phe Val Leu Pro Ala Arg Ser Ala Arg Met Trp Lys		
450	455	460
Leu		
465		

<210> 177

<211> 1524

<212> DNA

<213> Environmental

<400> 177

atggaaaacat tcaaattaaa acgcactttt ttaccgctga ctttgctgct cagtgcctcct	60
gcctttgctg ggcaaaatgg caccatgtg cagtattttc attggtagtgc acctaataatgt	120
ggcgcatat ggacgcagggt tgaaaagcaat gctccagttc tcgctgaaaaa cggttttaca	180
gcgcctctggc taccgccccgc atacaaaggc gcggggcggca gtaatgacgt cggttatggc	240
gtctatgata tgtacgattt aggtgagttt gaccaaaaag gctcagtagc aaccaaatac	300
ggcaccaagg ctcagtacat ctctgcaatc aatgccgcgc acaacaacaa tatccaaatt	360
tacggcgacg ttgtgtttaa ccaccgaggt ggcgctgatg ggaagtcgtg ggtcgatacc	420

<210> 178

<211> 507

<212> PRT

<213> Environmental

<400> 178

```

Met Lys Thr Phe Leu Lys Arg Thr Phe Leu Pro Leu Thr Leu Leu
 1          5          10          15
Leu Ser Ala Pro Ala Phe Ala Gly Gln Asn Gly Thr Met Met Gln Tyr
 20         25         30
Phe His Trp Tyr Val Pro Asn Asp Gly Ala Leu Trp Thr Gln Val Glu
 35         40         45
Ser Asn Ala Pro Val Leu Ala Glu Asn Gly Phe Thr Ala Leu Trp Leu
 50         55         60
Pro Pro Ala Tyr Lys Gly Ala Gly Ser Asn Asp Val Gly Tyr Gly
 65         70         75         80
Val Tyr Asp Met Tyr Asp Leu Gly Glu Phe Asp Gln Lys Gly Ser Val
 85         90         95
Arg Thr Lys Tyr Gly Thr Lys Ala Gln Tyr Ile Ser Ala Ile Asn Ala
100        105        110
Ala His Asn Asn Asn Ile Gln Ile Tyr Gly Asp Val Val Phe Asn His
115        120        125
Arg Gly Gly Ala Asp Gly Lys Ser Trp Val Asp Thr Lys Arg Val Asp
130        135        140
Trp Asp Asn Arg Asn Ile Glu Leu Gly Asp Lys Trp Ile Glu Ala Trp
145        150        155        160
Val Glu Phe Asn Phe Pro Gly Arg Asn Asp Lys Tyr Ser Asn Phe His
165        170        175
Trp Thr Trp Tyr His Phe Asp Gly Val Asp Trp Asp Asp Ala Gly Lys
180        185        190
Glu Lys Ala Ile Phe Lys Phe Lys Gly Glu Gly Lys Ala Trp Asp Trp
195        200        205
Glu Val Ser Ser Glu Lys Gly Asn Tyr Asp Tyr Leu Met Tyr Ala Asp
210        215        220
Leu Asp Met Asp His Pro Glu Val Lys Gln Glu Leu Lys Asp Trp Gly
225        230        235        240
Glu Trp Tyr Ile Asn Met Thr Gly Val Asp Gly Phe Arg Met Asp Ala

```

245	250	255
Val Lys His Ile Lys Tyr Gln Tyr Leu Gln Glu Trp Ile Asp His Leu		
260	265	270
Arg Trp Lys Thr Gly Lys Glu Leu Phe Thr Val Gly Glu Tyr Trp Asn		
275	280	285
Tyr Asp Val Asn Gln Leu His Asn Phe Ile Thr Lys Thr Ser Gly Ser		
290	295	300
Met Ser Leu Phe Asp Ala Pro Leu His Met Asn Phe Tyr Asn Ala Ser		
305	310	315
Lys Ser Gly Gly Thr Tyr Asp Met Arg Gln Ile Met Asn Gly Thr Leu		
325	330	335
Met Lys Asp Asn Pro Val Lys Ala Val Thr Leu Val Glu Asn His Asp		
340	345	350
Thr Gln Pro Leu Gln Ala Leu Glu Ser Thr Val Asp Trp Trp Phe Lys		
355	360	365
Pro Leu Ala Tyr Ala Phe Ile Leu Leu Arg Glu Glu Gly Tyr Pro Ser		
370	375	380
Val Phe Tyr Ala Asp Tyr Tyr Gly Ala Gln Tyr Ser Asp Lys Gly Tyr		
385	390	395
Asn Ile Asn Met Ala Lys Val Pro Tyr Ile Glu Glu Leu Val Thr Leu		
405	410	415
Arg Lys Glu Tyr Ala Tyr Gly Lys Gln Asn Ser Tyr Leu Asp His Trp		
420	425	430
Asp Val Ile Gly Trp Thr Arg Glu Gly Asp Ala Glu His Pro Asn Ser		
435	440	445
Met Ala Val Ile Met Ser Asp Gly Pro Gly Gly Thr Lys Trp Met Tyr		
450	455	460
Thr Gly Lys Pro Ser Thr Arg Tyr Val Asp Lys Leu Gly Ile Arg Thr		
465	470	475
Glu Asp Val Trp Thr Asp Ala Asn Gly Trp Ala Glu Phe Pro Val Asn		
485	490	495
Gly Gly Ser Val Ser Val Trp Val Gly Val Lys		
500	505	

<210> 179

<211> 1524

<212> DNA

<213> Environmental

<400> 179

atgaaaacat tcaaattaaa acgcacttt ttaccgctaa ctttgctgct cagtgcctc	60
gccttgcgg ggcaaaatgg caccatgtat cagtaacttc attggtagt acctaataatgtat	120
ggcgccattat ggacgcaggat tgaaagcaat gctccagcac tcgctgaaaaa cggtttaca	180
gcgccttggc taccgcaggc ttacaaaggc gcggccggca gtaatgtatgt cggttatggc	240
gtctacgata tgtacgattt aggtgatgtt gatcaaaaag gtcagtagc aaccaataac	300
ggtaccaagg ctcagtagcat ctctgaatc aatgctgcgc aacaacaacaa tatccaaatt	360
tacggcgacg ttgtgtttaa ccatcggtt ggcgctgtat ggaagtgcgtt ggtcgatacc	420
aagcgcgttg attgggacaa ccgtaacatt gaactggcg acaaataatggat tgaagcttgg	480
gtttagttt attttccttag ccgcacgcac aaataactcga acttccattt gacttggat	540
cactttgacg gtgttgactg ggtatgtgcc ggcaaaagaaa aagcgatctt taaattcaaa	600
ggcgaaggaa aagcatggaa ttgggaagtc agctctgaaa aaggcaatta cgactaccta	660
atgtacgccc atttagacat ggatcaccca gaagttaaac aagagctgaa agattgggtt	720
gagttgtaca tcaacatgac cggcggtttagt ggctttagaa tggatgccgt taagcacatt	780
aaatatcagt atctacaaga gtggattgtat cattacgtt ggaaaacagg caaagagctt	840
ttcacccgtt gtgagtattt gaattacgac gtaaatcaac tgcataactt tattactaag	900
acctctggca gtatgtcggtt gttcgatgcg ccgccttcaca tgaacttcta caacgcgtca	960
aatctggcg gcaattacga tatgcgc当地 atcatgaatg gcacgttcat gaaggacaac	1020

ccagtcaaag	ctgtgactct	cgttagaaac	cacgatacgc	agccattgca	ggcgtagag	1080
tgcacagtgg	attgggtgtt	caaggctctt	gcttacgcat	tcatcttgg	gcgtgaagaa	1140
ggttatccat	cgggtttcta	cgcagattac	tacggcgcc	agtacagcga	caaagggtac	1200
aacattaata	tggccaaagt	gccttacatt	gaagaacttg	taacactgca	taaagagttat	1260
gcgtatggca	aacagaattc	ttatctcgac	cattgggatg	tgattggctg	gactcgagag	1320
ggcgatgctg	aacatccaaa	ctcaatggcg	gtgatcatga	gtgatggacc	gggcggaaca	1380
aatggatgt	ataccgttaa	tccaaggcacg	cgctatgtcg	acaagctggg	tatccgaact	1440
gaagatgttt	ggaccgatgc	caatggctgg	gcagaatttc	ctgtcaatgg	tggttcagtc	1500
tcggtttggg	tgggcgtaa	gtaa				1524
<210> 180						
<211> 507						
<212> PRT						
<213> Environmental						
<400> 180						
Met	Lys	Thr	Phe	Lys	Leu	Lys
1			5		10	
Leu	Ser	Ala	Pro	Ala	Phe	Ala
				Gly	Gln	Asn
					Gly	Thr
					Met	Met
					Gln	Tyr
			20		25	
						30
Phe	His	Trp	Tyr	Val	Pro	Asn
				Asp	Gly	Ala
					Leu	Trp
					Thr	Gln
					Val	Glu
			35		40	
						45
Ser	Asn	Ala	Pro	Ala	Leu	Ala
				Glu	Asn	Gly
					Phe	Thr
					Ala	Leu
					Trp	Leu
			50		55	
						60
Pro	Pro	Ala	Tyr	Lys	Gly	Ala
				Gly	Gly	Gly
				Ser	Asn	Asp
					Val	Gly
					Tyr	Tyr
			65		70	
						75
						80
Val	Tyr	Asp	Met	Tyr	Asp	Leu
				Gly	Glu	Phe
					Asp	Asp
					Gln	Lys
					Gly	Ser
			85		90	
						95
Arg	Thr	Lys	Tyr	Gly	Thr	Lys
				Ala	Ala	Tyr
				Gln	Tyr	Ile
					Ser	Ala
			100		105	
						110
Ala	His	Asn	Asn	Asn	Ile	Gln
					Tyr	Ile
					Gly	Asp
					Asp	Val
			115		120	
						125
Arg	Gly	Gly	Ala	Asp	Gly	Lys
					Ser	Trp
					Val	Asp
					Thr	Lys
			130		135	
						140
Trp	Asp	Asn	Arg	Asn	Ile	Glu
					Leu	Gly
						Asp
					Lys	Trp
			145		150	
						155
						160
Val	Glu	Phe	Asn	Phe	Pro	Ser
					Arg	Asn
						Asp
					Lys	Tyr
						Ser
						Asn
						Phe
						His
			165		170	
						175
Trp	Thr	Trp	Tyr	His	Phe	Asp
					Gly	Val
						Asp
					Trp	Asp
			180		185	
						190
Glu	Lys	Ala	Ile	Phe	Lys	Phe
					Gly	Glu
						Gly
			195		200	
						205
Glu	Val	Ser	Ser	Glu	Lys	Gly
					Asn	Tyr
					Asp	Tyr
					Leu	Met
			210		215	
						220
Leu	Asp	Met	Asp	His	Pro	Glu
					Val	Lys
					Gln	Glu
			225		230	
						235
						240
Glu	Trp	Tyr	Ile	Asn	Met	Thr
						Gly
						Val
						Asp
			245		250	
						255
Val	Lys	His	Ile	Lys	Tyr	Gln
						Tyr
						Leu
			260		265	
						270
Arg	Trp	Lys	Thr	Gly	Lys	Glu
						Leu
						Phe
			275		280	
						285
Tyr	Asp	Val	Asn	Gln	Leu	His
						Phe
						Ile
			290		295	
						300
Met	Ser	Leu	Phe	Asp	Ala	Pro
						Leu
						His
			305		310	
						315
						320
Lys	Ser	Gly	Gly	Asn	Tyr	Asp
						Met
						Asn
						Gly
						Thr
						Leu

325	330	335
Met Lys Asp Asn Pro Val Lys Ala Val Thr Leu Val Glu Asn His Asp		
340	345	350
Thr Gln Pro Leu Gln Ala Leu Glu Ser Thr Val Asp Trp Trp Phe Lys		
355	360	365
Pro Leu Ala Tyr Ala Phe Ile Leu Leu Arg Glu Glu Gly Tyr Pro Ser		
370	375	380
Val Phe Tyr Ala Asp Tyr Tyr Gly Ala Gln Tyr Ser Asp Lys Gly Tyr		
385	390	395
Asn Ile Asn Met Ala Lys Val Pro Tyr Ile Glu Glu Leu Val Thr Leu		
405	410	415
Arg Lys Glu Tyr Ala Tyr Gly Lys Gln Asn Ser Tyr Leu Asp His Trp		
420	425	430
Asp Val Ile Gly Trp Thr Arg Glu Gly Asp Ala Glu His Pro Asn Ser		
435	440	445
Met Ala Val Ile Met Ser Asp Gly Pro Gly Gly Thr Lys Trp Met Tyr		
450	455	460
Thr Gly Asn Pro Ser Thr Arg Tyr Val Asp Lys Leu Gly Ile Arg Thr		
465	470	475
Glu Asp Val Trp Thr Asp Ala Asn Gly Trp Ala Glu Phe Pro Val Asn		
485	490	495
Gly Gly Ser Val Ser Val Trp Val Gly Val Lys		
500	505	

<210> 181

<211> 1830

<212> DNA

<213> Environmental

<400> 181

atgccagagg cttcggcct gcccattacg ccgtcacata gccggcgaaaa gaggttggtg	60
ggcgtgtcgc gcggggcag cctgcccattc actggccggc gttcatcctc	120
gtccggcgct tcgtccccgg tcatccgaac aagcacaaga accggagtt tgcatgagc	180
cacaccctgc gtggcccgat attggccggcg atccctgtgc cgccccccgc ctcgctgac	240
caggccggca agagccggc cgccgtgcgc taccacggcg ggcacaaat catccctccag	300
ggttccact ggaacgtcgt ccgcgaagcg cccaaacgact ggtacaacat cttcgccag	360
caggcctcga cgatcccgc ggacggcttc tcggcaatct ggatggcggt gcccggcggt	420
gacttctcca gctggaccga cggccggcaag tcaggccggcg ggcacggcta cttctggcac	480
gacttcaaca agaacggccg ctacggcagc gacgcccagc tgcgccaggc cgccggcgca	540
ctcgggtggcg ccgggggtgaa ggtgtctac gatgtggtgcc ccaatcacat gaaccggcggc	600
tatccggaca aggagatcaa cctgccccgc ggccagggtct tctggcgcaa cgactgcacc	660
gaccggggca actaccccaa cgactgcgt gacggtgacc gttcatcgcc cggcaagtcg	720
gacctgaaca cggccatcc gcagatctac ggcatgttcc ggcacggact tgccaacctg	780
cgcagcggtt acggccggc cgcttccgc ttgcacttcg ttgcggctta tgccggcgaa	840
cgggtcgaca gctggatgag cgacagcgcc gacagcgtt tctgcgttgg cgagctgtgg	900
aaaagcccgat ccgagtaccc gagctggac tggcgcaaca cggcgagctg gcagcagatc	960
atcaaggact ggtccgaccg gccaagtgc ccgggtttcg acttcgcgt caaggagcgc	1020
atgcagaacg gtcggcgcg cgacttggaa catggcctca atggcaaccc ggaccggcgc	1080
tggcgcgagg tggcggtgac ctttgcgtac aaccacgaca cccgttattc gcccggcgag	1140
aacggcgccg agcaccactg ggcgtgcag gacgggttca tccggccaggc ctacgcctac	1200
atccctacca gcccggcagc gccgggtggtg tactggtcgc acatgtacga ctgggctac	1260
ggcgacttca ttgcggcgtt gatcccggtt cggcgccaccg ctggcggtcg cgccgattcg	1320
gcgatcgttccacagcgcc ctacagcgcc ctggcggtca ccgtcagcg cagccatcg	1380
accctgggtgg tggcgctcaa ctccgatctg gccaaccccg gccagggtcg cagcggcagc	1440
ttcagcgagg cggtaacgc cagcaacggc caggtgcgcg tctggcgacg cggtagcgcc	1500
gatggcgccg gcaatgacgg cggcgaggccc ggtctggta atgtgaactt ccgctgcac	1560
aacggcggtga cgcagatggg cgacagcgcc tacgcgggtt gcaacgtcag ccagctcgcc	1620

aactggagcc cggcctccgc ggtacggctg accgacacca gcagctatcc gacctggaag
 ggcagcatcg ccctgcctga cggtcagaac gtggaatgga agtgccctgat ccgtaacgag
 gcggaacgcga cgctgggtgcg ccagtggcaa tcgggcggca acaaccaggt ccaggcccgc
 gccggcgcga gcaccagcgg ctcgttctga

<210>	182	1680
<211>	609	1740
<212>	PRT	1800
<213>	Environmental	1830

<400> 182
 Met Pro Glu Ala Phe Gly Leu Ala Ile Thr Pro Ser His Ser Arg Arg
 1 5 10 15
 Gly Arg Leu Val Gly Val Ser Arg Gly Gly Ser Leu Pro Met Pro Val
 20 25 30
 Leu His Trp Pro Ala Phe Ile Leu Val Arg Arg Phe Val Ala Gly His
 35 40 45
 Pro Asn Lys His Lys Asn Arg Ser Ile Ala Met Ser His Thr Leu Arg
 50 55 60
 Ala Ala Val Leu Ala Ala Ile Leu Leu Pro Phe Pro Ala Leu Ala Asp
 65 70 75 80
 Gln Ala Gly Lys Ser Pro Ala Gly Val Arg Tyr His Gly Gly Asp Glu
 85 90 95
 Ile Ile Leu Gln Gly Phe His Trp Asn Val Val Arg Glu Ala Pro Asn
 100 105 110
 Asp Trp Tyr Asn Ile Leu Arg Gln Gln Ala Ser Thr Ile Ala Ala Asp
 115 120 125
 Gly Phe Ser Ala Ile Trp Met Pro Val Pro Trp Arg Asp Phe Ser Ser
 130 135 140
 Trp Thr Asp Gly Gly Lys Ser Gly Gly Glu Gly Tyr Phe Trp His
 145 150 155 160
 Asp Phe Asn Lys Asn Gly Arg Tyr Gly Ser Asp Ala Gln Leu Arg Gln
 165 170 175
 Ala Ala Gly Ala Leu Gly Gly Ala Gly Val Lys Val Leu Tyr Asp Val
 180 185 190
 Val Pro Asn His Met Asn Arg Gly Tyr Pro Asp Lys Glu Ile Asn Leu
 195 200 205
 Pro Ala Gly Gln Gly Phe Trp Arg Asn Asp Cys Thr Asp Pro Gly Asn
 210 215 220
 Tyr Pro Asn Asp Cys Asp Asp Gly Asp Arg Phe Ile Gly Gly Lys Ser
 225 230 235 240
 Asp Leu Asn Thr Gly His Pro Gln Ile Tyr Gly Met Phe Arg Asp Glu
 245 250 255
 Leu Ala Asn Leu Arg Ser Gly Tyr Gly Ala Gly Gly Phe Arg Phe Asp
 260 265 270
 Phe Val Arg Gly Tyr Ala Pro Glu Arg Val Asp Ser Trp Met Ser Asp
 275 280 285
 Ser Ala Asp Ser Ser Phe Cys Val Gly Glu Leu Trp Lys Ser Pro Ser
 290 295 300
 Glu Tyr Pro Ser Trp Asp Trp Arg Asn Thr Ala Ser Trp Gln Gln Ile
 305 310 315 320
 Ile Lys Asp Trp Ser Asp Arg Ala Lys Cys Pro Val Phe Asp Phe Ala
 325 330 335
 Leu Lys Glu Arg Met Gln Asn Gly Ser Val Ala Asp Trp Lys His Gly
 340 345 350
 Leu Asn Gly Asn Pro Asp Pro Arg Trp Arg Glu Val Ala Val Thr Phe
 355 360 365

Val Asp Asn His Asp Thr Gly Tyr Ser Pro Gly Gln Asn Gly Gly Gln
 370 375 380
 His His Trp Ala Leu Gln Asp Gly Leu Ile Arg Gln Ala Tyr Ala Tyr
 385 390 395 400
 Ile Leu Thr Ser Pro Gly Thr Pro Val Val Tyr Trp Ser His Met Tyr
 405 410 415
 Asp Trp Gly Tyr Gly Asp Phe Ile Arg Gln Leu Ile Gln Val Arg Arg
 420 425 430
 Thr Ala Gly Val Arg Ala Asp Ser Ala Ile Ser Phe His Ser Gly Tyr
 435 440 445
 Ser Gly Leu Val Ala Thr Val Ser Gly Ser His Gln Thr Leu Val Val
 450 455 460
 Ala Leu Asn Ser Asp Leu Ala Asn Pro Gly Gln Val Ala Ser Gly Ser
 465 470 475 480
 Phe Ser Glu Ala Val Asn Ala Ser Asn Gly Gln Val Arg Val Trp Arg
 485 490 495
 Ser Gly Ser Gly Asp Gly Gly Asn Asp Gly Gly Glu Gly Gly Leu
 500 505 510
 Val Asn Val Asn Phe Arg Cys Asp Asn Gly Val Thr Gln Met Gly Asp
 515 520 525
 Ser Val Tyr Ala Val Gly Asn Val Ser Gln Leu Gly Asn Trp Ser Pro
 530 535 540
 Ala Ser Ala Val Arg Leu Thr Asp Thr Ser Ser Tyr Pro Thr Trp Lys
 545 550 555 560
 Gly Ser Ile Ala Leu Pro Asp Gly Gln Asn Val Glu Trp Lys Cys Leu
 565 570 575
 Ile Arg Asn Glu Ala Asp Ala Thr Leu Val Arg Gln Trp Gln Ser Gly
 580 585 590
 Gly Asn Asn Gln Val Gln Ala Ala Gly Ala Ser Thr Ser Gly Ser
 595 600 605
 Phe

<210> 183
 <211> 1596
 <212> DNA
 <213> Environmental

<400> 183
 atgcaaacga ttgcaaaaaa agggatgaa acgatgaaag ggaaaaaatg gacagctta 60
 gctctaacac tgccgtggc tgctagctta tcaacaggcg ttcacgccga aaccgtacat 120
 aaaggtaagt ctgaagcaac agataaaaac ggtgtcttt atgaggtgt tgtaactct 180
 tttacgata caaataaaga tggacatggt gatttaaaag gtctgacaca aaagttggat 240
 tatttaatg acggcaattc tcatacaaag aatgatctc aagtaaacgg gatttggatg 300
 atgccagtca acccttctcc tagctatcat aaatatgtat taacggacta ttataacatt 360
 gatcctcagt acggaaatct gcaagatttt cgcaagctga tggaaagaagc agacaaacga 420
 gacgtaaaag tcattatgga ctttgttgta aatcatacga gcagcgaaca cccttggtt 480
 caagctgcattaaaagataa aaacagcaag tacagagatt actatatttg ggctgataaa 540
 aataccgatt tgaatgaaaa aggatcttgg gggcagcaag tatggcataa agctccaaac 600
 ggagagtatt ttacggAAC gttttggaa ggaatgcctg acttaaatta cgataaccct 660
 gaagtaagaa aagaaatgat taacgtcgga aagtttggc taaagcaagg cgtaatggc 720
 ttccgcttag atgctgcgt tcataatTTT aaaggtcaaa cacctgaagg cgctaagaaa 780
 aatatcctgt ggtggaatga gtttagagat gcgatgaaaa aagaaaaacc taacgttat 840
 ctaacgggtg aagtatgggA tcagcctgaa gtggtagctc cttactatca atcgcttgat 900
 tctttatTTT attttgattt agcaggaaaa attgtcagct ctgtaaaagc aggaaatgat 960
 caaggaatcg ccactgcagc agcggcaaca gatgaactgt tcaaattcata caatccaaat 1020
 aaaattgacg gcattttctt aaccaaccat gaccaaaatc gcgtcatgag tgagctgagc 1080

ggcgatgtga	acaaagcaaa	atcagctgct	tctatcttac	ttacgcttcc	tggcaacccg	1140
tatatttatt	acggtaaga	aattggcatg	accggtaaaa	agcctgatga	gttaatccgt	1200
gaaccattcc	gctggtaga	aggaaacgga	cttggacaaa	ctagctggta	aacacctgta	1260
tataacaaag	gcggcaacgg	cgtgtctgta	gaagtacaaa	ccaaacaaaaa	ggattctttg	1320
ttaaatcatt	atcgtgaaat	gattcgcgtg	cgtcagcagc	atgaagagtt	agtaaaagga	1380
acgcttcaat	ctatttcaat	agacagtaaa	gaagtggttg	cctatagtcg	cacgtataaa	1440
ggcaactcga	ttagcgtgta	tcataatatt	tcaaatacAAC	ctgtaaaagt	atctgttagca	1500
cgaaaggta	aattgatttt	tgcttagtcaa	aaaggtagtca	aaaaagtcaa	aaatcagctt	1560
gtaattccgg	ctaatacAAC	ggtttaataa	aaataaa			1596

<210> 184

<211> 531

<212> PRT

<213> Environmental

<400> 184

Met Gln Thr Ile Ala Lys Lys Gly Asp Glu Thr Met Lys Gly Lys Lys						
1	5	10	15			
Trp Thr Ala Leu Ala Leu Thr Leu Pro Leu Ala Ala Ser Leu Ser Thr						
20	25	30				
Gly Val His Ala Glu Thr Val His Lys Gly Lys Ser Glu Ala Thr Asp						
35	40	45				
Lys Asn Gly Val Phe Tyr Glu Val Tyr Val Asn Ser Phe Tyr Asp Thr						
50	55	60				
Asn Lys Asp Gly His Gly Asp Leu Lys Gly Leu Thr Gln Lys Leu Asp						
65	70	75	80			
Tyr Leu Asn Asp Gly Asn Ser His Thr Lys Asn Asp Leu Gln Val Asn						
85	90	95				
Gly Ile Trp Met Met Pro Val Asn Pro Ser Pro Ser Tyr His Lys Tyr						
100	105	110				
Asp Val Thr Asp Tyr Tyr Asn Ile Asp Pro Gln Tyr Gly Asn Leu Gln						
115	120	125				
Asp Phe Arg Lys Leu Met Lys Glu Ala Asp Lys Arg Asp Val Lys Val						
130	135	140				
Ile Met Asp Leu Val Val Asn His Thr Ser Ser Glu His Pro Trp Phe						
145	150	155	160			
Gln Ala Ala Leu Lys Asp Lys Asn Ser Lys Tyr Arg Asp Tyr Tyr Ile						
165	170	175				
Trp Ala Asp Lys Asn Thr Asp Leu Asn Glu Lys Gly Ser Trp Gly Gln						
180	185	190				
Gln Val Trp His Lys Ala Pro Asn Gly Glu Tyr Phe Tyr Gly Thr Phe						
195	200	205				
Trp Glu Gly Met Pro Asp Leu Asn Tyr Asp Asn Pro Glu Val Arg Lys						
210	215	220				
Glu Met Ile Asn Val Gly Lys Phe Trp Leu Lys Gln Gly Val Asn Gly						
225	230	235	240			
Phe Arg Leu Asp Ala Ala Leu His Ile Phe Lys Gly Gln Thr Pro Glu						
245	250	255				
Gly Ala Lys Lys Asn Ile Leu Trp Trp Asn Glu Phe Arg Asp Ala Met						
260	265	270				
Lys Lys Glu Asn Pro Asn Val Tyr Leu Thr Gly Glu Val Trp Asp Gln						
275	280	285				
Pro Glu Val Val Ala Pro Tyr Tyr Gln Ser Leu Asp Ser Leu Phe Asn						
290	295	300				
Phe Asp Leu Ala Gly Lys Ile Val Ser Ser Val Lys Ala Gly Asn Asp						
305	310	315	320			
Gln Gly Ile Ala Thr Ala Ala Ala Thr Asp Glu Leu Phe Lys Ser						

325	330	335
Tyr Asn Pro Asn Lys Ile Asp Gly Ile Phe Leu Thr Asn His Asp Gln		
340	345	350
Asn Arg Val Met Ser Glu Leu Ser Gly Asp Val Asn Lys Ala Lys Ser		
355	360	365
Ala Ala Ser Ile Leu Leu Thr Leu Pro Gly Asn Pro Tyr Ile Tyr Tyr		
370	375	380
Gly Glu Glu Ile Gly Met Thr Gly Glu Lys Pro Asp Glu Leu Ile Arg		
385	390	395
Glu Pro Phe Arg Trp Tyr Glu Gly Asn Gly Leu Gly Gln Thr Ser Trp		
405	410	415
Glu Thr Pro Val Tyr Asn Lys Gly Gly Asn Gly Val Ser Val Glu Val		
420	425	430
Gln Thr Lys Gln Lys Asp Ser Leu Leu Asn His Tyr Arg Glu Met Ile		
435	440	445
Arg Val Arg Gln Gln His Glu Glu Leu Val Lys Gly Thr Leu Gln Ser		
450	455	460
Ile Ser Val Asp Ser Lys Glu Val Val Ala Tyr Ser Arg Thr Tyr Lys		
465	470	475
Gly Asn Ser Ile Ser Val Tyr His Asn Ile Ser Asn Gln Pro Val Lys		
485	490	495
Val Ser Val Ala Ala Lys Gly Lys Leu Ile Phe Ala Ser Glu Lys Gly		
500	505	510
Ala Lys Lys Val Lys Asn Gln Leu Val Ile Pro Ala Asn Thr Thr Val		
515	520	525
Leu Ile Lys		
530		

<210> 185

<211> 1572

<212> DNA

<213> Environmental

<400> 185

atgaaactga tgaaaggaa aaaatggaca gcttagctc taacactgcc gctggctgct	60
agcttatcaa caggcggtca cgccgaaact gtacataaag gtaaagctcc aacagcagat	120
aaaaacggtg tctttatga ggtgtatgt aactctttt acgatgc当地 taaagatgga	180
catggtgatt taaaaggct tacacaaaag ctggactatt taaatgacgg aaattctcat	240
acaaaagaatg atcttcaagt aaacgggatt tggatgatgc cagtc当地 accc ttctcctagc	300
tatcataaat atgatgtAAC ggatttattt aacattgatc cgc当地 agtccaa	360
gattttcgca agctgtatgaa agaagcagac aaacgagacg taaaagtcat tatggacctt	420
gttgtgaatc atacgagcag cgaacaccct tggatc当地 agtccaa	480
agcaagtaca gagattacta tatttggct gataaaaata cc当地 acttgaa tgaaaaagga	540
tcttgggac agcaagtatg gcataaaagct ccaaaccggag agtattttt cggacgttt	600
tgggaaggaa tgc当地 tggactt aaattacgt aaccctgaa taagaaaaga aatgattaac	660
gtcggaaagt tttggctaaa gcaaggcggt gatggctcc gcttagatgc tgc当地 cttcat	720
atttttaaag gtcaaaccgc tgaaggcgct aagaaaata ttctgtgggt gaatgagtt	780
agagatgc当地 tgaaaaaaga aaaccctaa gtatatacg cgggtgaagt atggatcag	840
cctgaagtgg tagctc当地 tt caatcg cttgattccc tatttaactt tgatttagca	900
ggaaaaattt tc当地 agtctgtt aaaaaggaa aatgatcaag gaatgccac tgc当地 cagcagcg	960
gcaacggatg agctgtcaa atcataaat ccaaataaaa ttgacggcat ttcttaacc	1020
aaccatgacc aaaaccgc当地 t catgatgtgaa ctgatcggcg atgtgaacaa agcaaaatca	1080
gctgcttcta tcttacttac gcttc当地 cttggcc aaccgc当地 tata ttattacgg tgaagaaattt	1140
ggcatgaccg gtgaaaagcc tggatgatgtt atccgtgaac cgttccgctg gtacgaagga	1200
aacggacttg gacaaaaccag ctggaaaca cctgtatata acaaaggcgg caacggcgtg	1260
tctgtagaag cacaaaaccaa acaaaggat tcttggtaa atcattaccg tgaaatgatt	1320
cgctgctgc当地 tgc当地 agcagcatga agatgtatgaa aaggaacgc ttcaatctat tttagtagac	1380

agtaaagaag ttgttccta tagccgtacg tataaagaca actcgattag cgttatcat	1440
aatatttcaa atcaaccgtt aaaagtatct gtagcagcaa aaggtaaatt aatttttgct	1500
agtaaaaaa agtcaagaat cagttgtga ttccggctaa tacaacggtt	1560
ttaataaaaat aa	1572
<210> 186	
<211> 523	
<212> PRT	
<213> Environmental	
<400> 186	
Met Lys Leu Met Lys Gly Lys Lys Trp Thr Ala Leu Ala Leu Thr Leu	
1 5 10 15	
Pro Leu Ala Ala Ser Leu Ser Thr Gly Val His Ala Glu Thr Val His	
20 25 30	
Lys Gly Lys Ala Pro Thr Ala Asp Lys Asn Gly Val Phe Tyr Glu Val	
35 40 45	
Tyr Val Asn Ser Phe Tyr Asp Ala Asn Lys Asp Gly His Gly Asp Leu	
50 55 60	
Lys Gly Leu Thr Gln Lys Leu Asp Tyr Leu Asn Asp Gly Asn Ser His	
65 70 75 80	
Thr Lys Asn Asp Leu Gln Val Asn Gly Ile Trp Met Met Pro Val Asn	
85 90 95	
Pro Ser Pro Ser Tyr His Lys Tyr Asp Val Thr Asp Tyr Tyr Asn Ile	
100 105 110	
Asp Pro Gln Tyr Gly Asn Leu Gln Asp Phe Arg Lys Leu Met Lys Glu	
115 120 125	
Ala Asp Lys Arg Asp Val Lys Val Ile Met Asp Leu Val Val Asn His	
130 135 140	
Thr Ser Ser Glu His Pro Trp Phe Gln Ala Ala Leu Lys Asp Lys Asn	
145 150 155 160	
Ser Lys Tyr Arg Asp Tyr Tyr Ile Trp Ala Asp Lys Asn Thr Asp Leu	
165 170 175	
Asn Glu Lys Gly Ser Trp Gly Gln Gln Val Trp His Lys Ala Pro Asn	
180 185 190	
Gly Glu Tyr Phe Tyr Gly Thr Phe Trp Glu Gly Met Pro Asp Leu Asn	
195 200 205	
Tyr Asp Asn Pro Glu Val Arg Lys Glu Met Ile Asn Val Gly Lys Phe	
210 215 220	
Trp Leu Lys Gln Gly Val Asp Gly Phe Arg Leu Asp Ala Ala Leu His	
225 230 235 240	
Ile Phe Lys Gly Gln Thr Pro Glu Gly Ala Lys Lys Asn Ile Leu Trp	
245 250 255	
Trp Asn Glu Phe Arg Asp Ala Met Lys Lys Glu Asn Pro Asn Val Tyr	
260 265 270	
Leu Thr Gly Glu Val Trp Asp Gln Pro Glu Val Val Ala Pro Tyr Tyr	
275 280 285	
Gln Ser Leu Asp Ser Leu Phe Asn Phe Asp Leu Ala Gly Lys Ile Val	
290 295 300	
Ser Ser Val Lys Ala Gly Asn Asp Gln Gly Ile Ala Thr Ala Ala Ala	
305 310 315 320	
Ala Thr Asp Glu Leu Phe Lys Ser Tyr Asn Pro Asn Lys Ile Asp Gly	
325 330 335	
Ile Phe Leu Thr Asn His Asp Gln Asn Arg Val Met Ser Glu Leu Ile	
340 345 350	
Gly Asp Val Asn Lys Ala Lys Ser Ala Ala Ser Ile Leu Leu Thr Leu	
355 360 365	

Pro Gly Asn Pro Tyr Ile Tyr Tyr Gly Glu Glu Ile Gly Met Thr Gly
 370 375 380
 Glu Lys Pro Asp Glu Leu Ile Arg Glu Pro Phe Arg Trp Tyr Glu Gly
 385 390 395 400
 Asn Gly Leu Gly Gln Thr Ser Trp Glu Thr Pro Val Tyr Asn Lys Gly
 405 410 415
 Gly Asn Gly Val Ser Val Glu Ala Gln Thr Lys Gln Lys Asp Ser Leu
 420 425 430
 Leu Asn His Tyr Arg Glu Met Ile Arg Val Arg Gln Gln His Glu Glu
 435 440 445
 Leu Val Lys Gly Thr Leu Gln Ser Ile Leu Val Asp Ser Lys Glu Val
 450 455 460
 Val Ala Tyr Ser Arg Thr Tyr Lys Asp Asn Ser Ile Ser Val Tyr His
 465 470 475 480
 Asn Ile Ser Asn Gln Pro Val Lys Val Ser Val Ala Ala Lys Gly Lys
 485 490 495
 Leu Ile Phe Ala Ser Glu Lys Gly Ala Lys Lys Val Lys Asn Gln Leu
 500 505 510
 Val Ile Pro Ala Asn Thr Thr Val Leu Ile Lys
 515 520

<210> 187

<211> 2052

<212> DNA

<213> Environmental

<400> 187

atgtatctca	tccaggaggg	gcacatgcgt	tttccgcccc	ttattcaccc	gcttaccggc	60
ctggcggttc	cggttggagc	tctgcgtacc	gcacagagct	gcccgcatagg	ggagtttgcc	120
gacttgcgg	ttcttgccga	attctgcaaa	aaagccggat	ttgatcttgt	acagcttctt	180
ccggtaatg	acaccggcac	agaaaagtct	ccatacagcg	cgctttctgc	ctttgccctg	240
cacccgctgt	atatcaggct	ttccgacactg	cctgaagcag	cggttttcga	aaagcagatt	300
acagatctga	aaagccggtt	tgaggacttg	cctcggttca	gctatacggg	gctgcgcgt	360
gccaaactgg	atatcctgcg	tgcaagtgtt	gataaaaaaca	aggcaaccat	catcggcagt	420
gccgaactgg	aagcctggat	ttcagataac	ccctgatca	tcaaatatgc	gtttttatg	480
aaccagaaac	accgcaactt	tgaagccggc	tggAACATT	ggggaaagct	gchgcaacccc	540
actcataacg	aaataaaaaa	aacctggcag	ggtaaaacct	ggcaggctga	ccatcaattc	600
tttgcattgc	tgcagatgcg	gctggaccag	cagttactg	ccggcgtac	agagtgcac	660
gccctgggtg	tctatcttaa	gggcgatata	cctataatga	tgaacgagga	ttccgcagat	720
gcctggcgta	atccgaaatt	cttcgcgtac	gatcttcggg	ccggaaagtcc	ccctgacgg	780
gaaaacccccc	agggacaaaa	ctggggcttc	cccattata	actggaaaaa	cctgcaaata	840
gacgggtaca	gctggtgaa	aaaacgtctg	aagcacagcg	cacggattta	ccatgcctac	900
cgcattgacc	atattctgg	gttttccgg	atatggcta	taccctatgg	cgaataactcc	960
ggctacctgg	gatggccctt	gccgcattgaa	ccggtaagtg	cacgagaact	ggcagaacgg	1020
ggctttcca	aggaccgctt	gcgctggctt	accgaacccc	acttgcctac	acgggcagcc	1080
gaggaagcga	ataactggga	ctatctggga	acacacggct	atctgaatca	gatcatgaac	1140
cgtatcggtg	aagaagaact	atggctgttc	aagcccgaga	tcacctgcga	ggcagatata	1200
cgaaacacaa	acctgcggg	tgcctgaaa	gaggttctgg	tacggcagtg	aaaaaaccgg	1260
ctgctgcagg	ttaccggccg	cgacggaaaa	ggacggacaa	tctactatcc	gctgtggcgt	1320
ttccgtgaca	gcactgcatt	gcagacgctt	accgatggcg	agaaacactc	cctgaaagag	1380
ctgttcgccc	aaaaagcggc	gcacaaatgaa	accctgtggc	gagaacaggg	ggtgaaactt	1440
ctgggtgagc	tgacgcgatc	tacggatatg	cttgcctgt	ctgaagatct	ggaaagtatt	1500
ccccacagtg	taccggaaat	gcttcaaacc	cttcaattt	acagtctgcg	ggttacccgc	1560
tggcccccgc	aatggatgc	ccccggccag	cccttcaca	gactggagga	gtatccgctc	1620
atgtcggtag	cgaccccatc	ggttcatgat	tcctctaccc	tgcgccgatg	gtggaaacc	1680
gaaggcggcg	accggccctt	tatggacgca	tggcctccgg	aacaggatgc	atacgcaggaa	1740
gcaggccgccc	atgagttcga	aggcgctgg	ggaccccgcc	aggcatcctg	ggtactccgt	1800

aaactctgcg aagcccggttc cgcgctctgt gtttccccca tccaggatat tttggccctg	1860
tcttcagact ttatgcaat gacagcggac gaggaacgca tcaatattcc gggcagtgtat	1920
tccggattta actggacata cgggttgct gcggcaatcg aggatttac taaaaacacgc	1980
caacttataa ccgcaatcca gaccgcgttg caggaccgcc gggcgaggaa ggcacaagga	2040
gcacagcaat ga	2052

<210> 188

<211> 683

<212> PRT

<213> Environmental

<400> 188

Met Tyr Leu Ile Gln Glu Gly His Met Arg Phe Pro Pro Ile Ile His	
1 5 10 15	
Pro Leu Thr Gly Leu Ala Val Pro Val Gly Ala Leu Arg Thr Ala Gln	
20 25 30	
Ser Cys Gly Ile Gly Glu Phe Ala Asp Leu Pro Val Leu Ala Glu Phe	
35 40 45	
Cys Lys Lys Ala Gly Phe Asp Leu Val Gln Leu Leu Pro Val Asn Asp	
50 55 60	
Thr Gly Thr Glu Ser Ser Pro Tyr Ser Ala Leu Ser Ala Phe Ala Leu	
65 70 75 80	
His Pro Leu Tyr Ile Arg Leu Ser Asp Leu Pro Glu Ala Ala Gly Phe	
85 90 95	
Glu Lys Gln Ile Thr Asp Leu Lys Ser Arg Phe Glu Asp Leu Pro Arg	
100 105 110	
Phe Ser Tyr Thr Glu Leu Arg Arg Ala Lys Leu Asp Ile Leu Arg Ala	
115 120 125	
Val Phe Asp Lys Asn Lys Ala Thr Ile Ile Gly Ser Ala Glu Leu Glu	
130 135 140	
Ala Trp Ile Ser Asp Asn Pro Trp Ile Ile Glu Tyr Ala Val Phe Met	
145 150 155 160	
Asn Gln Lys His Arg Asn Phe Glu Ala Gly Trp Lys His Trp Glu Lys	
165 170 175	
Leu Arg Asn Pro Thr His Asn Glu Ile Gln Lys Thr Trp Gln Gly Lys	
180 185 190	
Thr Trp Gln Ala Asp His Gln Phe Phe Ala Trp Leu Gln Met Arg Leu	
195 200 205	
Asp Gln Gln Phe Thr Ala Ala Ala Thr Glu Cys Asn Ala Leu Gly Val	
210 215 220	
Tyr Leu Lys Gly Asp Ile Pro Ile Met Met Asn Glu Asp Ser Ala Asp	
225 230 235 240	
Ala Trp Ala Asn Pro Glu Phe Phe Arg Asp Asp Leu Arg Ala Gly Ser	
245 250 255	
Pro Pro Asp Gly Glu Asn Pro Gln Gly Gln Asn Trp Gly Phe Pro Ile	
260 265 270	
Tyr Asn Trp Glu Asn Leu Ala Asn Asp Gly Tyr Ser Trp Trp Lys Lys	
275 280 285	
Arg Leu Lys His Ser Ala Arg Tyr Tyr His Ala Tyr Arg Ile Asp His	
290 295 300	
Ile Leu Gly Phe Phe Arg Ile Trp Ala Ile Pro Tyr Gly Glu Tyr Ser	
305 310 315 320	
Gly Tyr Leu Gly Trp Pro Leu Pro His Glu Pro Val Ser Ala Ala Glu	
325 330 335	
Leu Ala Glu Arg Gly Phe Ser Lys Asp Arg Leu Arg Trp Leu Thr Glu	
340 345 350	
Pro His Leu Pro Thr Arg Ala Ala Glu Glu Ala Asn Asn Trp Asp Tyr	

355	360	365
Leu Gly Thr His Gly Tyr Leu Asn Gln Ile Met Asn Arg Ile Gly Glu		
370	375	380
Glu Glu Leu Trp Leu Phe Lys Pro Glu Ile Thr Cys Glu Ala Asp Ile		
385	390	395
Arg Asn Thr Asn Leu Pro Asp Ala Leu Lys Glu Val Leu Val Arg Gln		400
405	410	415
Trp Lys Asn Arg Leu Leu Gln Val Thr Gly Arg Asp Glu Lys Gly Arg		
420	425	430
Thr Ile Tyr Tyr Pro Leu Trp Arg Phe Arg Asp Ser Thr Ala Trp Gln		
435	440	445
Thr Leu Thr Asp Gly Glu Lys His Ser Leu Glu Glu Leu Phe Ala Gln		
450	455	460
Lys Ala Ala His Asn Glu Thr Leu Trp Arg Glu Gln Ala Val Glu Leu		
465	470	475
480		
Leu Gly Glu Leu Thr Arg Ser Thr Asp Met Leu Ala Cys Ala Glu Asp		
485	490	495
Leu Gly Ser Ile Pro His Ser Val Pro Glu Val Leu Ser Asn Leu Ser		
500	505	510
Ile Tyr Ser Leu Arg Val Thr Arg Trp Ala Arg Gln Trp Asp Ala Pro		
515	520	525
Gly Gln Pro Phe His Arg Leu Glu Glu Tyr Pro Leu Met Ser Val Ala		
530	535	540
Thr Pro Ser Val His Asp Ser Ser Thr Leu Arg Gly Trp Trp Glu Thr		
545	550	555
560		
Glu Gly Gly Asp Arg Ala Phe Met Asp Ala Trp Pro Pro Glu Gln Asp		
565	570	575
Ala Tyr Ala Gly Ala Gly Arg His Glu Phe Glu Gly Ala Trp Gly Pro		
580	585	590
Arg Gln Ala Ser Trp Val Leu Arg Lys Leu Cys Glu Ala Arg Ser Ala		
595	600	605
Leu Cys Val Phe Pro Ile Gln Asp Ile Leu Ala Leu Ser Ser Asp Phe		
610	615	620
Tyr Ala Met Thr Ala Asp Glu Glu Arg Ile Asn Ile Pro Gly Ser Val		
625	630	635
640		
Ser Gly Phe Asn Trp Thr Tyr Arg Leu Pro Ala Ala Ile Glu Asp Leu		
645	650	655
Ser Lys Asn Ser Gln Leu Ile Thr Ala Ile Gln Thr Ala Leu Gln Asp		
660	665	670
Arg Arg Ala Arg Lys Ala Gln Gly Ala Gln Gln		
675	680	

<210> 189

<211> 1596

<212> DNA

<213> Environmental

<400> 189

atgcaaacga ttgcaaaaaa aggggatgaa acgatgaaag gaaaaaaaaatg gacagcttta	60
gctctaacac tgccgctggc tgc tagctta tcaacaggcg ttcacgcccga aaccgtacat	120
aaaggtaaat ctccagctgc agataaaaac ggtgtttttt atgagggtgt a t g t a a c t c t	180
ttttacgatg caaataaaga tggacatggt gat taaaag gtcttacaca aaaactggac	240
tat taaatg atggcaattc tcatac aaag aatgatcttca a a g t t a a c t g g g a t t g g a t t g	300
atgccgatca acccttctcc tagcttatcat aaatatgatg taacggacta ttataacatt	360
gattctcagt acggaaatct gcaagat tttt cgcaagctaa tgaaagaagc agataaaacga	420
gat gtaaaag ttattatgga cctcggttg aatcatacga gcagtgaaca cccttggttt	480
caagctgcgt taaaagataa aaacagcaag tacagagatt actatatttgg gctgataaa	540

aataccgatt	tgaataaaa	aggatcttgg	ggacaacaag	tatggcacaa	agctccaaac	600
ggagagtatt	tttacgaac	gttctggaa	ggaatgcctg	acttaaatta	cgataaccct	660
gaagtaagaa	aagaaatgat	taacgtcgg	aagtttggc	taaagcaagg	cgttgacggc	720
ttccgcttag	atgctgccct	tcatatctt	aaaggtcaaa	cacctgaagg	cgctaagaaa	780
aatattgtgt	ggtggaatga	atttagagat	gcgataaaa	aagaaaaccc	gaacgtatat	840
ctaacggcgc	aagtatggg	tcagccggaa	gtggtagctc	cttattatca	gtcgcttgat	900
tccctattta	actttgattt	agcaggaaaa	attgtcagct	ctgtaaaagc	aggaaatgat	960
caaggaatcg	ctactgcagc	agcggcaaca	gatgaactgt	tcaaattata	caatccaaat	1020
aaaattgacg	gcattttctt	aaccaatcat	gaccaaaatc	gcgtcatgag	tgagttaaagc	1080
ggagatgtca	ataaaagcaa	gtcagctgdc	tctatcttac	ttacgcttcc	tggaatccg	1140
tatatttatt	acgggtgaaga	aatcgccatg	accggtgaaa	agcctgatga	attaatccgt	1200
gaaccgttcc	gctggtacga	aggaaacgga	cttggacaaa	ctagttggg	aacacctgta	1260
tacaataaaag	gcggcaacgg	cgtgtctgta	gaagcacaaa	ccaaacaaaa	ggactctttg	1320
ttaaatcatt	accgtgaaat	gattcgcgtg	cgtcagcagc	acgaagagtt	agtaaaagga	1380
acgcttcaat	ctatttcagt	agacagtaaa	gaagttgttg	cttatacgcc	tacgtataaa	1440
ggcaactcca	ttagtgtgta	tcataatatt	tcaaattcaac	ctgtaaaagt	atctgtagca	1500
gcgaaaggta	aattgattt	tgctagtgaa	aaaggtgcta	aaaaggtcaa	aaatcagctt	1560
gtgattccgg	cgaatacaac	ggttttagta	aaataaa			1596

<210> 190

<211> 531

<212> PRT

<213> Environmental

<400> 190

Met	Gln	Thr	Ile	Ala	Lys	Lys	Gly	Asp	Glu	Thr	Met	Lys	Gly	Lys	Lys
1				5					10			15			
Trp	Thr	Ala	Leu	Ala	Leu	Thr	Leu	Pro	Leu	Ala	Ala	Ser	Leu	Ser	Thr
						20			25			30			
Gly	Val	His	Ala	Glu	Thr	Val	His	Lys	Gly	Lys	Ser	Pro	Ala	Ala	Asp
						35			40			45			
Lys	Asn	Gly	Val	Phe	Tyr	Glu	Val	Tyr	Val	Asn	Ser	Phe	Tyr	Asp	Ala
						50			55			60			
Asn	Lys	Asp	Gly	His	Gly	Asp	Leu	Lys	Gly	Leu	Thr	Gln	Lys	Leu	Asp
	65						70			75			80		
Tyr	Leu	Asn	Asp	Gly	Asn	Ser	His	Thr	Lys	Asn	Asp	Leu	Gln	Val	Asn
							85			90			95		
Gly	Ile	Trp	Met	Met	Pro	Ile	Asn	Pro	Ser	Pro	Ser	Tyr	His	Lys	Tyr
						100			105			110			
Asp	Val	Thr	Asp	Tyr	Tyr	Asn	Ile	Asp	Ser	Gln	Tyr	Gly	Asn	Leu	Gln
						115			120			125			
Asp	Phe	Arg	Lys	Leu	Met	Lys	Glu	Ala	Asp	Lys	Arg	Asp	Val	Lys	Val
						130			135			140			
Ile	Met	Asp	Leu	Val	Val	Asn	His	Thr	Ser	Ser	Glu	His	Pro	Trp	Phe
	145						150			155			160		
Gln	Ala	Ala	Leu	Lys	Asp	Lys	Asn	Ser	Lys	Tyr	Arg	Asp	Tyr	Tyr	Ile
							165			170			175		
Trp	Ala	Asp	Lys	Asn	Thr	Asp	Leu	Asn	Glu	Lys	Gly	Ser	Trp	Gly	Gln
						180			185			190			
Gln	Val	Trp	His	Lys	Ala	Pro	Asn	Gly	Glu	Tyr	Phe	Tyr	Gly	Thr	Phe
						195			200			205			
Trp	Glu	Gly	Met	Pro	Asp	Leu	Asn	Tyr	Asp	Asn	Pro	Glu	Val	Arg	Lys
	210						215			220					
Glu	Met	Ile	Asn	Val	Gly	Lys	Phe	Trp	Leu	Lys	Gln	Gly	Val	Asp	Gly
	225						230			235			240		
Phe	Arg	Leu	Asp	Ala	Ala	Leu	His	Ile	Phe	Lys	Gly	Gln	Thr	Pro	Glu
						245			250			255			

Gly Ala Lys Lys Asn Ile Val Trp Trp Asn Glu Phe Arg Asp Ala Met
 260 265 270
 Lys Lys Glu Asn Pro Asn Val Tyr Leu Thr Gly Glu Val Trp Asp Gln
 275 280 285
 Pro Glu Val Val Ala Pro Tyr Tyr Gln Ser Leu Asp Ser Leu Phe Asn
 290 295 300
 Phe Asp Leu Ala Gly Lys Ile Val Ser Ser Val Lys Ala Gly Asn Asp
 305 310 315 320
 Gln Gly Ile Ala Thr Ala Ala Ala Thr Asp Glu Leu Phe Lys Ser
 325 330 335
 Tyr Asn Pro Asn Lys Ile Asp Gly Ile Phe Leu Thr Asn His Asp Gln
 340 345 350
 Asn Arg Val Met Ser Glu Leu Ser Gly Asp Val Asn Lys Ala Lys Ser
 355 360 365
 Ala Ala Ser Ile Leu Leu Thr Leu Pro Gly Asn Pro Tyr Ile Tyr Tyr
 370 375 380
 Gly Glu Glu Ile Gly Met Thr Gly Glu Lys Pro Asp Glu Leu Ile Arg
 385 390 395 400
 Glu Pro Phe Arg Trp Tyr Glu Gly Asn Gly Leu Gly Gln Thr Ser Trp
 405 410 415
 Glu Thr Pro Val Tyr Asn Lys Gly Asn Gly Val Ser Val Glu Ala
 420 425 430
 Gln Thr Lys Gln Lys Asp Ser Leu Leu Asn His Tyr Arg Glu Met Ile
 435 440 445
 Arg Val Arg Gln Gln His Glu Glu Leu Val Lys Gly Thr Leu Gln Ser
 450 455 460
 Ile Ser Val Asp Ser Lys Glu Val Val Ala Tyr Ser Arg Thr Tyr Lys
 465 470 475 480
 Gly Asn Ser Ile Ser Val Tyr His Asn Ile Ser Asn Gln Pro Val Lys
 485 490 495
 Val Ser Val Ala Ala Lys Gly Lys Leu Ile Phe Ala Ser Glu Lys Gly
 500 505 510
 Ala Lys Lys Val Lys Asn Gln Leu Val Ile Pro Ala Asn Thr Thr Val
 515 520 525
 Leu Val Lys
 530

<210> 191
 <211> 1596
 <212> DNA
 <213> Environmental

<400> 191

atgcaaacga ttgcaaaaaa agggatgaa acgatgaaag ggaaaaaatg gacagctta	60
gctctaacac tgccgcggc tgctagctta tcaacaggcg ttcacgccga aaccgtacat	120
aaaggtaaat ctccaacagc agataaaaac ggtgttttt atgaagtgtt tgtaaactct	180
ttttacgatg caaataaaga tggacatggt gactaaaag gtcttacaca aaagttggac	240
tattnaaatg acggcaattc tcatacaaaa aatgatctt aagtaaacgg gattttggatg	300
atgccagtca acccttctcc tagctatcat aaatatgtat taacggacta ttataacatt	360
gatccgcagt acggaaatct gcaagatttt cgcaagctga tggaaagaagc agacaaacga	420
gacgtaaaag tcattatgga ctttgttg aatcatacga gcagtgaaca cccttggttt	480
caagctgcgt taaaagataa aaacagcaag tacagagatt actatatttgg gctgataaaa	540
aataccgact tgaatggaaa agatcttgg ggacaacaag tatggcataa agctccaaac	600
ggagagtatt ttacggAAC gttctggaa ggaatgcctg acttaaatttca cgataaccct	660
gaagtaagaa aagaaatgtat taacgtcgga aagtttggc taaagcaagg cgttgacggg	720
ttccgcttag atgctgcgt tcataaaaaaa aaaggtcaaa cagctgaagg cgctaaagaaa	780
aatatcctgt ggtggaaatga gtttagagat gcgatgaaaa aagaaaaatcc gaatgtatat	840

ctaacgggtg aagtatggga tcagcctgaa gtggtagctc cttattatca atcgcttgat	900
tctttattta attttgcattt agcaggaaaa attgtcagct ctgtaaaagc agggaaatgat	960
caaggaatcg ccactgcagc agcagcaaca gatgaactgt tcaaattcata caatccaaac	1020
aaaattgatg gcatattctt accaaccat gaccaaaaatc gcgtcatgag tgagctgagc	1080
ggcgatgtga gcaaagcaaa atcagctgt tctatcttac ttacgcttcc tggcaacccg	1140
tatattttt acggtaaga aatcggcatg accgggtaaaa agcctgatga attaatccgt	1200
gaaccgttcc gctggtagcga aggaaacgga cttggacaaa ccagttggga aacacctgta	1260
tacaataaag gcggaaacgg tttgtctgtt gaagcacaaa ccaaacaaaa ggattctttg	1320
ttaaatcatt accgtgaaat gattcgcgtg cgtcagcagc atgaagagtt agtaaaagga	1380
acgcttcaat ctatttcaat agacagtaaa gaagttgtt cttatagccg tacgtataaa	1440
ggcaactcca ttagtgttga tcataatatt tcaaatac ac cggtaaaagt atctgttagca	1500
gcaaaaggta aattgatttt tgcttagtggaa aaagggtgcta agaaagtcaa aaatcagctt	1560
gtggttccgg cgaatacaac ggttttaatg aaataa	1596

<210> 192

<211> 531

<212> PRT

<213> Environmental

<400> 192

Met Gln Thr Ile Ala Lys Lys Gly Asp Glu Thr Met Lys Gly Lys Lys	
1 5 10 15	
Trp Thr Ala Leu Ala Leu Thr Leu Pro Leu Ala Ala Ser Leu Ser Thr	
20 25 30	
Gly Val His Ala Glu Thr Val His Lys Gly Lys Ser Pro Thr Ala Asp	
35 40 45	
Lys Asn Gly Val Phe Tyr Glu Val Tyr Val Asn Ser Phe Tyr Asp Ala	
50 55 60	
Asn Lys Asp Gly His Gly Asp Leu Lys Gly Leu Thr Gln Lys Leu Asp	
65 70 75 80	
Tyr Leu Asn Asp Gly Asn Ser His Thr Lys Asn Asp Leu Gln Val Asn	
85 90 95	
Gly Ile Trp Met Met Pro Val Asn Pro Ser Pro Ser Tyr His Lys Tyr	
100 105 110	
Asp Val Thr Asp Tyr Tyr Asn Ile Asp Pro Gln Tyr Gly Asn Leu Gln	
115 120 125	
Asp Phe Arg Lys Leu Met Lys Glu Ala Asp Lys Arg Asp Val Lys Val	
130 135 140	
Ile Met Asp Leu Val Val Asn His Thr Ser Ser Glu His Pro Trp Phe	
145 150 155 160	
Gln Ala Ala Leu Lys Asp Lys Asn Ser Lys Tyr Arg Asp Tyr Tyr Ile	
165 170 175	
Trp Ala Asp Lys Asn Thr Asp Leu Asn Glu Lys Gly Ser Trp Gly Gln	
180 185 190	
Gln Val Trp His Lys Ala Pro Asn Gly Glu Tyr Phe Tyr Gly Thr Phe	
195 200 205	
Trp Glu Gly Met Pro Asp Leu Asn Tyr Asp Asn Pro Glu Val Arg Lys	
210 215 220	
Glu Met Ile Asn Val Gly Lys Phe Trp Leu Lys Gln Gly Val Asp Gly	
225 230 235 240	
Phe Arg Leu Asp Ala Ala Leu His Ile Phe Lys Gly Gln Thr Ala Glu	
245 250 255	
Gly Ala Lys Lys Asn Ile Leu Trp Trp Asn Glu Phe Arg Asp Ala Met	
260 265 270	
Lys Lys Glu Asn Pro Asn Val Tyr Leu Thr Gly Glu Val Trp Asp Gln	
275 280 285	
Pro Glu Val Val Ala Pro Tyr Tyr Gln Ser Leu Asp Ser Leu Phe Asn	

290	295	300
Phe Asp Leu Ala Gly Lys Ile Val Ser Ser Val Lys Ala Gly Asn Asp		
305	310	315
Gln Gly Ile Ala Thr Ala Ala Ala Thr Asp Glu Leu Phe Lys Ser		
325	330	335
Tyr Asn Pro Asn Lys Ile Asp Gly Ile Phe Leu Thr Asn His Asp Gln		
340	345	350
Asn Arg Val Met Ser Glu Leu Ser Gly Asp Val Ser Lys Ala Lys Ser		
355	360	365
Ala Ala Ser Ile Leu Leu Thr Leu Pro Gly Asn Pro Tyr Ile Tyr Tyr		
370	375	380
Gly Glu Glu Ile Gly Met Thr Gly Glu Lys Pro Asp Glu Leu Ile Arg		
385	390	395
Glu Pro Phe Arg Trp Tyr Glu Gly Asn Gly Leu Gly Gln Thr Ser Trp		
405	410	415
Glu Thr Pro Val Tyr Asn Lys Gly Gly Asn Gly Val Ser Val Glu Ala		
420	425	430
Gln Thr Lys Gln Lys Asp Ser Leu Leu Asn His Tyr Arg Glu Met Ile		
435	440	445
Arg Val Arg Gln Gln His Glu Glu Leu Val Lys Gly Thr Leu Gln Ser		
450	455	460
Ile Ser Val Asp Ser Lys Glu Val Val Ala Tyr Ser Arg Thr Tyr Lys		
465	470	475
Gly Asn Ser Ile Ser Val Tyr His Asn Ile Ser Asn Gln Pro Val Lys		
485	490	495
Val Ser Val Ala Ala Lys Gly Lys Leu Ile Phe Ala Ser Glu Lys Gly		
500	505	510
Ala Lys Lys Val Lys Asn Gln Leu Val Val Pro Ala Asn Thr Thr Val		
515	520	525
Leu Met Lys		
530		

<210> 193

<211> 1962

<212> DNA

<213> Environmental

<400> 193

atgaaattca aaaagagttt atctgccggg ctcctttgt tcggaggctc gagcggtgtg	60
acaccatccg tcgctgcgga ggtgccacga accgcatttg tccatttatt cgaatggagt	120
tggccggata ttgccaccga atgcgaaacc tttctggcc ctaagggggtt ctctgcgggt	180
caggtgtctc cgccgcaaaa aagcgtcagc aatgctgcct ggtggcgcg ctaccaaacct	240
gttagttact ctttgaagg ggcgcgttgcg acccggctc aatttgcggg tatggtccag	300
cgttgtaaag cgggggggtt cgatatttat ctggatgcgg tgatcaacca tatggcagca	360
caagatcgct attttccaga agtaccttac agcagtaatg attttcacag ttgcacgggc	420
gatatcgatt attccaaaccg ctggtcgatt caaaaattgcg atctgggttgg gctgaacgat	480
ctcaaaaaccg agtcagaata ctttcggcag aaaattgcag actatatgaa cgatggcgtc	540
agtcgtggcg tggcggttgc tggattgtat gcgcacaagc atatcccggc cggcgacatc	600
gcggcgatca agagcaagct caacggcagc ccgtatatct atcaggaggt tatcgggcg	660
gcaggggagc cggtaaaac cagcgagttac acgtatattt gagaacgtgac ggaatttaac	720
ttcgccccga ccatcgccca taaatttaag caaggttaata ttaaagacct gcagggttgc	780
ggttcgttgcg gcccgttgc gggccacca tcgacagggg tacattctgg taatgcgtgt	840
gaagaacgccc ataaccctgg ccaggttctc agccatcagg actttggcaa tctgtatttc	900
ctcggtaacg tgtttactct gggtatcct tacggctacc caaaaagtgtat gtcgggttac	960
tacccatcgta attttgtatgc cggccacca tcgacagggg tacattctgg taatgcgtgt	1020
ggctttgtatg gcccgttgc ggtctgcgaa cacaatggc gtgggttagc caacatgggt	1080
gcgtttcgca accacacagc agcccaagtgg caggtcactg actgggtggg cgtatgttac	1140

aatcagggtgg	cgttggtcg	tggcgggctg	ggctttgtgg	tgatcaatcg	agatgacaat	1200
aaaggcatca	atcagagttt	ccagacggga	atgcccgtg	gcgagtattg	tgacatcatt	1260
gccggtgtatt	tcgacaccca	gagcggtcat	tgcagcgcta	cgacgatcac	cgtcgacagt	1320
caggggtatg	cacatttac	tgtcggtagt	catcaggccc	ctgcgattca	cattggcgcg	1380
aaactcggt	ccgtgtgcca	ggactgtggc	ggcacggccc	cagagacaaa	agtctgcttt	1440
gacaatgcac	aaaactttag	ccaaccgtat	ttgcattact	ggaatgtcaa	tgcggatcag	1500
gccgtagcga	atgcaacctg	gccgggcgtc	gcatgacagg	ctgaaaatgg	cggttactgc	1560
tacgattttg	gtgtcggtct	caattcaatt	caggtaattt	ttagcgataa	cggcgccagc	1620
caaaccgctg	atctgaccgc	cagcagtccg	acgttgtt	accagaacgg	aacgtggcgt	1680
gacagtgact	tctgtcagag	tagcaatgtg	ggcaacgaga	gttggtattt	ccgttggaaacc	1740
tcaaacgggtt	ggggcgttag	cgcactca	tatgaggctg	cgacaggcct	gtacactactg	1800
gtgcagagct	ttaacgggga	ggagtcgccc	gcacgcctta	aaatttgatga	tggcaactgg	1860
agttagtcgt	atccaagtgc	tgattatcaa	gtcggtgatt	atgccaccta	cacgatcacg	1920
tttgacagcc	agacgaaggc	catcaccgtg	acttcgcagt	aa		1962

<210> 194
<211> 653
<212> PRT
<213> Environmental

<400> 194
 Met Lys Phe Lys Lys Ser Leu Ser Ala Gly Leu Leu Leu Phe Gly Gly
 1 5 10 15
 Leu Ser Gly Val Thr Pro Ser Val Ala Ala Glu Val Pro Arg Thr Ala
 20 25 30
 Phe Val His Leu Phe Glu Trp Ser Trp Pro Asp Ile Ala Thr Glu Cys
 35 40 45
 Glu Thr Phe Leu Gly Pro Lys Gly Phe Ser Ala Val Gln Val Ser Pro
 50 55 60
 Pro Gln Lys Ser Val Ser Asn Ala Ala Trp Trp Ala Arg Tyr Gln Pro
 65 70 75 80
 Val Ser Tyr Ser Phe Glu Gly Arg Ser Gly Thr Arg Ala Gln Phe Ala
 85 90 95
 Asp Met Val Gln Arg Cys Lys Ala Val Gly Val Asp Ile Tyr Leu Asp
 100 105 110
 Ala Val Ile Asn His Met Ala Ala Gln Asp Arg Tyr Phe Pro Glu Val
 115 120 125
 Pro Tyr Ser Ser Asn Asp Phe His Ser Cys Thr Gly Asp Ile Asp Tyr
 130 135 140
 Ser Asn Arg Trp Ser Ile Gln Asn Cys Asp Leu Val Gly Leu Asn Asp
 145 150 155 160
 Leu Lys Thr Glu Ser Glu Tyr Val Arg Gln Lys Ile Ala Asp Tyr Met
 165 170 175
 Asn Asp Ala Leu Ser Leu Gly Val Ala Gly Phe Arg Ile Asp Ala Ala
 180 185 190
 Lys His Ile Pro Ala Gly Asp Ile Ala Ala Ile Lys Ser Lys Leu Asn
 195 200 205
 Gly Ser Pro Tyr Ile Tyr Gln Glu Val Ile Gly Ala Ala Gly Glu Pro
 210 215 220
 Val Gln Thr Ser Glu Tyr Thr Tyr Ile Gly Asp Val Thr Glu Phe Asn
 225 230 235 240
 Phe Ala Arg Thr Ile Gly Pro Lys Phe Lys Gln Gly Asn Ile Lys Asp
 245 250 255
 Leu Gln Gly Ile Gly Ser Trp Ser Gly Trp Leu Ser Ser Asp Asp Ala
 260 265 270
 Val Thr Phe Val Thr Asn His Asp Glu Glu Arg His Asn Pro Gly Gln
 275 280 285

Val Leu Ser His Gln Asp Phe Gly Asn Leu Tyr Phe Leu Gly Asn Val
 290 295 300
 Phe Thr Leu Ala Tyr Pro Tyr Gly Tyr Pro Lys Val Met Ser Gly Tyr
 305 310 315 320
 Tyr Phe Ser Asn Phe Asp Ala Gly Pro Pro Ser Thr Gly Val His Ser
 325 330 335
 Gly Asn Ala Cys Gly Phe Asp Gly Gly Asp Trp Val Cys Glu His Lys
 340 345 350
 Trp Arg Gly Val Ala Asn Met Val Ala Phe Arg Asn His Thr Ala Ala
 355 360 365
 Gln Trp Gln Val Thr Asp Trp Trp Asp Asp Gly Tyr Asn Gln Val Ala
 370 375 380
 Phe Gly Arg Gly Gly Leu Gly Phe Val Val Ile Asn Arg Asp Asp Asn
 385 390 395 400
 Lys Gly Ile Asn Gln Ser Phe Gln Thr Gly Met Pro Ala Gly Glu Tyr
 405 410 415
 Cys Asp Ile Ile Ala Gly Asp Phe Asp Thr Gln Ser Gly His Cys Ser
 420 425 430
 Ala Thr Thr Ile Thr Val Asp Ser Gln Gly Tyr Ala His Phe Thr Val
 435 440 445
 Gly Ser His Gln Ala Ala Ala Ile His Ile Gly Ala Lys Leu Gly Ser
 450 455 460
 Val Cys Gln Asp Cys Gly Gly Thr Ala Ala Glu Thr Lys Val Cys Phe
 465 470 475 480
 Asp Asn Ala Gln Asn Phe Ser Gln Pro Tyr Leu His Tyr Trp Asn Val
 485 490 495
 Asn Ala Asp Gln Ala Val Ala Asn Ala Thr Trp Pro Gly Val Ala Met
 500 505 510
 Thr Ala Glu Asn Gly Gly Tyr Cys Tyr Asp Phe Gly Val Gly Leu Asn
 515 520 525
 Ser Leu Gln Val Ile Phe Ser Asp Asn Gly Ala Ser Gln Thr Ala Asp
 530 535 540
 Leu Thr Ala Ser Ser Pro Thr Leu Cys Tyr Gln Asn Gly Thr Trp Arg
 545 550 555 560
 Asp Ser Asp Phe Cys Gln Ser Ser Asn Val Gly Asn Glu Ser Trp Tyr
 565 570 575
 Phe Arg Gly Thr Ser Asn Gly Trp Gly Val Ser Ala Leu Thr Tyr Glu
 580 585 590
 Ala Ala Thr Gly Leu Tyr Thr Thr Val Gln Ser Phe Asn Gly Glu Glu
 595 600 605
 Ser Pro Ala Arg Phe Lys Ile Asp Asp Gly Asn Trp Ser Glu Ser Tyr
 610 615 620
 Pro Ser Ala Asp Tyr Gln Val Gly Asp Tyr Ala Thr Tyr Thr Ile Thr
 625 630 635 640
 Phe Asp Ser Gln Thr Lys Ala Ile Thr Val Thr Ser Gln
 645 650

<210> 195

<211> 2790

<212> DNA

<213> Environmental

<400> 195

atgctgacag accgtttctt ttagggcgat acatcaaaca acgaccctta caaccagaac	60
tacatgcta aaaacgaccg gggacttat caggcggcg attttaaagg aatcacgcaa	120
aaattggatt atctcgataa gctaggcgtg aacacaatct ggatcagccc gatcgtggaa	180
aatatcaagc atgatgtccg ttatgacaac tctgaaggc attcatacta tgcttaccac	240

ggctactggg caagcaactt cggcggtta aaccacact tcggataat ggaagattc	300
catacactga ttgacgctgc ccataaaaaa ggcataaga tcatggttga cgtagtatta	360
aaccacactg gttatggctt aaaagatatac aacggagaag tttccaatcc tccagccgg	420
tacccaactg acgcagaacg cagcacatat agcagcctgc ttgcgcaggg ttcaaatgtc	480
ggctctgatg aggttgttg cgaatttagct ggcctacctg actaaaaaac agaagacccc	540
gcagtccgccc agacaatcat cgactggcaa acagactgga tcacgaaaagc tactacagct	600
aaaggaaaca caattgacta cttccgtgtc gacactgtga agcacgttga agacgcaaca	660
tgatggcat tcaaaaatga cctcaactgaa aaaatgccga cacacaaaat gatcgggaa	720
gcttggggag caagtccaa taaccaactt ggatacctt aaacaggtat gatgactca	780
ctgcttgact tcgacttcaa aggattgca cagcattcg tgaacggcaa gcttaaggca	840
gcaaacgatg ccctgactgc cgcacacggt aaaattgaca acacagctac tttagttca	900
ttccttggaa gccatgacga agatggttc ctatttaag aaggaaatga caaaggcaag	960
cttaagggtt ctgctccct gcaagcaaca tcaaaaggcc agccggtcat ctattatgg	1020
gaagagctt gtcaaagtgg agcaaacaac tatccgcaat acgataaccg ttatgacctg	1080
gcatgggaca aagttaaaaa caacgacgtc ttgagact acactaagt cctgaacttc	1140
agaagcgctc attcagaagt gttcgctaaa ggtgaacgca cacaattgg cggtctgac	1200
gctgataaat tcttacttt tgctcgtaaa aatggaaacg aagctgctt cgtcggctt	1260
aacgttgcgt acacagcaaa agacgtaaca ctgactgtt ctgcagggtc agtcgtaact	1320
gaccactatg cagataaaaac ttatactgct tcagaagctg gagaaatcac attgacgatc	1380
ccggcaaaaag ctgatggcgg tactgtttt ctaacggttt aaggcggaga aatcacagct	1440
gctaaagcgg caagcgaagg cgacggcaca gttgagccag tccctgcgaa ccacatccgc	1500
attcactaca accgtacaga caacaactat gaaaactacg gtgcatggct gtggAACGAT	1560
gtagcctccc cttctgccaa ctggccgact ggcgtacaa tttttgaaaa aacagacagc	1620
tacggtgcat acatcgacgt accacttaaa gagggcgcta agaacatcg cttccctgtt	1680
atggatgtaa caaaagggtga tcagggtaaa gacggcggcg acaaagggtt tacgatctca	1740
tcacctgaaa tgaacgaaat ttggatcaag caaggttctg acaagggtgt acaattacgag	1800
ccagttgatc ttccggcgaa cactgtccgc gtccactatg tacgtgacaa cgcagactac	1860
gaaaacttcg gtatctggaa ctggggcgat gtaacagcac cttccgaaaaa ctggcctaca	1920
ggcgcagcga aattcgatgg tacagaccgt tacggtgct atgtcgacat tacgtaaaa	1980
gaaggcgc当地 agaacattgg aatgattgtc tttaacactg caaatggaga gaaagacggc	2040
ggagataaat ctttcaacct tctggataaa tataatcgca tttggattaa acaagggtat	2100
gacaatgtct acgtttctcc atactggag caggaacacag gaatcaccac tgcagaggt	2160
atctctgaag atacgattct attaggcttc acaatgactg acggcttaac acctgaatct	2220
ttaaaaggag gtcttgtaat taaagattca actggtgctg aagttgccccat cgaaagtgc	2280
gaaatcacaa ggcacaccc tggaaaaatgaa aaagcaacat tcgatttaga aaagcttcca	2340
ttatccatca catacgccagg cagaacagtt tcagctcaa ctggctggag aatgcttgat	2400
gaaatgtacg cttatgatgg aaacgaccc ggtgcactt acaaggacgg agcagcgacg	2460
tttaattat gggctccgaa agcgagcaag gtaaccgcta acttcttgc taaaaataat	2520
ggcgctgaaa aaatcggcag cgtcgagtta acgaagggtg aaaaaggagt ctggcagct	2580
atggttgctc ctggcgaccc gaaacgtaacc gatcttgaa gttattttt ccagtatgtat	2640
gtaacaaatg acggtataac tcgcccagggt ttagatcctt atgaaaatc aatggcagcc	2700
tttactgtga atacagaagg caatgctgg cctgacgggg acactgttgg caaggcggca	2760
attcaaaaag cttctcgaga gtacttctag	2790

<210> 196

<211> 929

<212> PRT

<213> Environmental

<400> 196

Met Leu Thr Asp Arg Phe Phe Asp Gly Asp Thr Ser Asn Asn Asp Pro

1

5

10

15

Tyr Asn Gln Asn Tyr Asp Ala Lys Asn Asp Arg Gly Thr Tyr Gln Gly

20

25

30

Gly Asp Phe Lys Gly Ile Thr Gln Lys Leu Asp Tyr Leu Asp Lys Leu

35

40

45

Gly Val Asn Thr Ile Trp Ile Ser Pro Ile Val Glu Asn Ile Lys His

50	55	60
Asp Val Arg Tyr Asp Asn Ser Glu Gly His Ser	Glu Gly His	Tyr Tyr Ala Tyr His
65	70	75
Gly Tyr Trp Ala Ser Asn Phe Gly Ala Leu Asn Pro His	Phe Gly Thr	80
85	90	95
Met Glu Asp Phe His Thr Leu Ile Asp Ala Ala His	Glu Lys Gly Ile	
100	105	110
Lys Ile Met Val Asp Val Val Leu Asn His Thr Gly	Tyr Gly Leu Lys	
115	120	125
Asp Ile Asn Gly Glu Val Ser Asn Pro Pro Ala Gly	Tyr Pro Thr Asp	
130	135	140
Ala Glu Arg Ser Thr Tyr Ser Ser Leu Leu Arg Gln Gly	Ser Asn Val	
145	150	155
Gly Ser Asp Glu Val Val Gly Glu Leu Ala Gly Leu Pro	Asp Leu Lys	160
165	170	175
Thr Glu Asp Pro Ala Val Arg Gln Thr Ile Ile Asp Trp	Gln Thr Asp	
180	185	190
Trp Ile Thr Lys Ala Thr Thr Ala Lys Gly Asn Thr	Ile Asp Tyr Phe	
195	200	205
Arg Val Asp Thr Val Lys His Val Glu Asp Ala Thr	Trp Met Ala Phe	
210	215	220
Lys Asn Asp Leu Thr Glu Lys Met Pro Thr His	Lys Met Ile Gly Glu	
225	230	235
Ala Trp Gly Ala Ser Ala Asn Asn Gln Leu Gly	Tyr Leu Glu Thr Gly	
245	250	255
Met Met Asp Ser Leu Leu Asp Phe Asp Phe Lys Gly	Ile Ala His Asp	
260	265	270
Phe Val Asn Gly Lys Leu Lys Ala Ala Asn Asp Ala	Leu Thr Ala Arg	
275	280	285
Asn Gly Lys Ile Asp Asn Thr Ala Thr Leu Gly	Ser Phe Leu Gly Ser	
290	295	300
His Asp Glu Asp Gly Phe Leu Phe Lys Glu Gly Asn Asp	Lys Gly Lys	
305	310	315
Leu Lys Val Ala Ala Ser Leu Gln Ala Thr Ser Lys Gly	Gln Pro Val	320
325	330	335
Ile Tyr Tyr Gly Glu Glu Leu Gly Gln Ser Gly Ala	Asn Asn Tyr Pro	
340	345	350
Gln Tyr Asp Asn Arg Tyr Asp Leu Ala Trp Asp Lys	Val Glu Asn Asn	
355	360	365
Asp Val Leu Glu His Tyr Thr Lys Val Leu Asn Phe	Arg Ser Ala His	
370	375	380
Ser Glu Val Phe Ala Lys Gly Glu Arg Ala Thr Ile	Gly Ser Asp	
385	390	395
Ala Asp Lys Phe Leu Leu Phe Ala Arg Lys Asn Gly	Asn Glu Ala Ala	
405	410	415
Tyr Val Gly Leu Asn Val Ala Asp Thr Ala Lys Asp	Val Thr Leu Thr	
420	425	430
Val Ser Ala Gly Ala Val Val Thr Asp His Tyr Ala	Asp Lys Thr Tyr	
435	440	445
Thr Ala Ser Glu Ala Gly Glu Ile Thr Leu Thr Ile	Pro Ala Lys Ala	
450	455	460
Asp Gly Gly Thr Val Leu Leu Thr Val Glu Gly	Glu Ile Thr Ala	
465	470	475
Ala Lys Ala Ala Ser Glu Gly Asp Gly Thr Val Glu	Pro Val Pro Ala	480
485	490	495
Asn His Ile Arg Ile His Tyr Asn Arg Thr Asp Asn	Asn Tyr Glu Asn	
500	505	510

Tyr Gly Ala Trp Leu Trp Asn Asp Val Ala Ser Pro Ser Ala Asn Trp
 515 520 525
 Pro Thr Gly Ala Thr Met Phe Glu Lys Thr Asp Ser Tyr Gly Ala Tyr
 530 535 540
 Ile Asp Val Pro Leu Lys Glu Gly Ala Lys Asn Ile Gly Phe Leu Val
 545 550 555 560
 Met Asp Val Thr Lys Gly Asp Gln Gly Lys Asp Gly Gly Asp Lys Gly
 565 570 575
 Phe Thr Ile Ser Ser Pro Glu Met Asn Glu Ile Trp Ile Lys Gln Gly
 580 585 590
 Ser Asp Lys Val Tyr Thr Tyr Glu Pro Val Asp Leu Pro Ala Asn Thr
 595 600 605
 Val Arg Val His Tyr Val Arg Asp Asn Ala Asp Tyr Glu Asn Phe Gly
 610 615 620
 Ile Trp Asn Trp Gly Asp Val Thr Ala Pro Ser Glu Asn Trp Pro Thr
 625 630 635 640
 Gly Ala Ala Lys Phe Asp Gly Thr Asp Arg Tyr Gly Ala Tyr Val Asp
 645 650 655
 Ile Thr Leu Lys Glu Gly Ala Lys Asn Ile Gly Met Ile Ala Leu Asn
 660 665 670
 Thr Ala Asn Gly Glu Lys Asp Gly Asp Lys Ser Phe Asn Leu Leu
 675 680 685
 Asp Lys Tyr Asn Arg Ile Trp Ile Lys Gln Gly Asp Asp Asn Val Tyr
 690 695 700
 Val Ser Pro Tyr Trp Glu Gln Ala Thr Gly Ile Thr Asn Ala Glu Val
 705 710 715 720
 Ile Ser Glu Asp Thr Ile Leu Leu Gly Phe Thr Met Thr Asp Gly Leu
 725 730 735
 Thr Pro Glu Ser Leu Lys Gly Leu Val Ile Lys Asp Ser Thr Gly
 740 745 750
 Ala Glu Val Ala Ile Glu Ser Ala Glu Ile Thr Ser Ala Thr Ser Val
 755 760 765
 Lys Val Lys Ala Thr Phe Asp Leu Glu Lys Leu Pro Leu Ser Ile Thr
 770 775 780
 Tyr Ala Gly Arg Thr Val Ser Ala Ser Thr Gly Trp Arg Met Leu Asp
 785 790 795 800
 Glu Met Tyr Ala Tyr Asp Gly Asn Asp Leu Gly Ala Thr Tyr Lys Asp
 805 810 815
 Gly Ala Ala Thr Leu Lys Leu Trp Ala Pro Lys Ala Ser Lys Val Thr
 820 825 830
 Ala Asn Phe Phe Asp Lys Asn Asn Ala Ala Glu Lys Ile Gly Ser Val
 835 840 845
 Glu Leu Thr Lys Gly Glu Lys Gly Val Trp Ser Ala Met Val Ala Pro
 850 855 860
 Gly Asp Leu Asn Val Thr Asp Leu Glu Gly Tyr Phe Tyr Gln Tyr Asp
 865 870 875 880
 Val Thr Asn Asp Gly Ile Thr Arg Gln Val Leu Asp Pro Tyr Ala Lys
 885 890 895
 Ser Met Ala Ala Phe Thr Val Asn Thr Glu Gly Asn Ala Gly Pro Asp
 900 905 910
 Gly Asp Thr Val Gly Lys Ala Ala Ile Gln Lys Ala Ser Arg Glu Tyr
 915 920 925
 Phe

<210> 197

<211> 1401

<212> DNA

<213> Environmental

<400> 197

atgaaaaccgt	caaaaattcg	ttttctctct	gctgccatcg	cttgcagcct	ctccagtacc	60
gccaatgctg	acgcatttt	gcatgcatt	aactggaagt	actccgacgt	cacgaaaac	120
gcttcgcaaa	tcgcggcggc	gggttataaa	aaagtctga	tttcgcgc	actgaaatcg	180
agtggcaatg	aatggggc	acgttatcaa	ccgcaagatc	tgcgcgtgat	cgattcccc	240
cttggcaaca	aaagtactt	aaaatccatg	attgatgctc	tgaaggcggt	cggcggtgat	300
gtgtatgccc	atgtgtgt	taaccatatg	gccaatgaaa	catgaaagcg	tgaagactta	360
aattaccctg	gcagtgaagt	gctgcaacaa	tacgcagcta	acaccagtt	ttatgcggac	420
caaacgctt	ttggcaattt	aacggaaaac	ctattctctg	gctttgactt	ccaccaggaa	480
ggctgttatta	gcgattggaa	tgtgcgcggc	aatgttcagt	actggcgct	ttgtggcggt	540
gctggtgacc	gagggtgtcc	agacttagat	ccgaaacaact	gggtgggtgc	acagcaacgt	600
ttgtatgttga	atgcgtaaa	agggttaggt	gtgaaaggct	tccgcatttga	tgcggttaaa	660
cacatgagcc	aatatcaaat	cgaccagatt	ttcaactgcag	agattaccgc	cggaatgcac	720
gtgtttggtg	aagtgtatcac	cagtggtggc	aaaggcgact	ccagctatga	gaacttctta	780
gcgccttatac	tcaacgccc	caaccattcg	gcttacgatt	tcccacttt	tgcctctatt	840
cgcaacgcct	tctcctacag	cggtggcatg	aacatgcctc	atgatccaca	agcctatggc	900
caagggcttgc	aaaacgcac	ttcaattacc	tttaccatca	cgcacgacat	cccaacgaac	960
gacgggttcc	gttataat	catggatccg	aaagatgaag	agctggctt	cgcttatatc	1020
ctcggtaaag	atggccgcac	acctctgatt	tacagcgaca	acttacctga	taacgaagat	1080
cgtgataatc	gccgttggga	agggtttgg	aaccgtgacc	tgtgaagaa	catgttgcgc	1140
ttccataacc	aatatcaagg	gcaagagatg	acgatgtgt	acagcgacca	atgtctactg	1200
atgtttaagc	gcggtaaaaca	agggggtggc	ggcatataa	aatgcgtga	agagcggtt	1260
cataccgttgc	acacctatca	gcatgagttc	aactgtatc	agccttacac	agatacactc	1320
actggcggtga	ctgaaaaccgt	gagttcgcgt	taccacacct	tccgaattcc	agctcgacgc	1380
gcmcgcatgt	acatgctcta	a				1401

<210> 198

<211> 466

<212> PRT

<213> Environmental

<400> 198

Met	Lys	Pro	Ser	Lys	Phe	Val	Phe	Leu	Ser	Ala	Ala	Ile	Ala	Cys	Ser
1					5			10				15			
Leu	Ser	Ser	Thr	Ala	Asn	Ala	Asp	Ala	Ile	Leu	His	Ala	Phe	Asn	Trp
								20		25			30		
Lys	Tyr	Ser	Asp	Val	Thr	Gln	Asn	Ala	Ser	Gln	Ile	Ala	Ala	Ala	Gly
						35			40			45			
Tyr	Lys	Lys	Val	Leu	Ile	Ser	Pro	Ala	Leu	Lys	Ser	Ser	Gly	Asn	Glu
							50		55			60			
Trp	Trp	Ala	Arg	Tyr	Gln	Pro	Gln	Asp	Leu	Arg	Val	Ile	Asp	Ser	Pro
							65		70		75		80		
Leu	Gly	Asn	Lys	Ser	Asp	Leu	Lys	Ser	Met	Ile	Asp	Ala	Leu	Lys	Ala
							85			90			95		
Val	Gly	Val	Asp	Val	Tyr	Ala	Asp	Val	Val	Leu	Asn	His	Met	Ala	Asn
							100		105			110			
Glu	Thr	Trp	Lys	Arg	Glu	Asp	Leu	Asn	Tyr	Pro	Gly	Ser	Glu	Val	Leu
							115		120			125			
Gln	Gln	Tyr	Ala	Ala	Asn	Thr	Ser	Tyr	Tyr	Ala	Asp	Gln	Thr	Leu	Phe
							130		135			140			
Gly	Asn	Leu	Thr	Glu	Asn	Leu	Phe	Ser	Gly	Phe	Asp	Phe	His	Pro	Glu
							145		150		155		160		
Gly	Cys	Ile	Ser	Asp	Trp	Asn	Asp	Ala	Gly	Asn	Val	Gln	Tyr	Trp	Arg
							165		170			175			

Leu Cys Gly Gly Ala Gly Asp Arg Gly Leu Pro Asp Leu Asp Pro Asn
 180 185 190
 Asn Trp Val Val Ser Gln Gln Arg Leu Tyr Leu Asn Ala Leu Lys Gly
 195 200 205
 Leu Gly Val Lys Gly Phe Arg Ile Asp Ala Val Lys His Met Ser Gln
 210 215 220
 Tyr Gln Ile Asp Gln Ile Phe Thr Ala Glu Ile Thr Ala Gly Met His
 225 230 235 240
 Val Phe Gly Glu Val Ile Thr Ser Gly Gly Lys Gly Asp Ser Ser Tyr
 245 250 255
 Glu Asn Phe Leu Ala Pro Tyr Leu Asn Ala Thr Asn His Ser Ala Tyr
 260 265 270
 Asp Phe Pro Leu Phe Ala Ser Ile Arg Asn Ala Phe Ser Tyr Ser Gly
 275 280 285
 Gly Met Asn Met Leu His Asp Pro Gln Ala Tyr Gly Gln Gly Leu Glu
 290 295 300
 Asn Ala Arg Ser Ile Thr Phe Thr Ile Thr His Asp Ile Pro Thr Asn
 305 310 315 320
 Asp Gly Phe Arg Tyr Gln Ile Met Asp Pro Lys Asp Glu Glu Leu Ala
 325 330 335
 Tyr Ala Tyr Ile Leu Gly Lys Asp Gly Gly Thr Pro Leu Ile Tyr Ser
 340 345 350
 Asp Asn Leu Pro Asp Asn Glu Asp Arg Asp Asn Arg Arg Trp Glu Gly
 355 360 365
 Val Trp Asn Arg Asp Leu Met Lys Asn Met Leu Arg Phe His Asn Gln
 370 375 380
 Met Gln Gly Gln Glu Met Thr Met Leu Tyr Ser Asp Gln Cys Leu Leu
 385 390 395 400
 Met Phe Lys Arg Gly Lys Gln Gly Val Val Gly Ile Asn Lys Cys Gly
 405 410 415
 Glu Glu Arg Ser His Thr Val Asp Thr Tyr Gln His Glu Phe Asn Trp
 420 425 430
 Tyr Gln Pro Tyr Thr Asp Thr Leu Thr Gly Val Thr Glu Thr Val Ser
 435 440 445
 Ser Arg Tyr His Thr Phe Arg Ile Pro Ala Arg Ser Ala Arg Met Tyr
 450 455 460
 Met Leu
 465

<210> 199

<211> 399

<212> DNA

<213> Environmental

<400> 199

gtgagtttga ccaaaaaggc tcagtacgaa ccaaatacg	60
ctgc当地tcaa tgccgc当地c aacaacaata tccaaat	120
accgagggtgg tgctgatggg aagtcgtggg tc当地atcc	180
gcaatattga actggc当地ac aaatggattg aagcttgggt	240
t当地atcgacaa atactcgac ttccatgg	300
atgacgccc当地g caaagaaaaa gcgatctta aattcaaagg	360
ggaaagtc当地g ctctgaaaaa ggcaattacg actaccaa	399

<210> 200

<211> 132

<212> PRT

<213> Environmental

<400> 200

Val Ser Leu Thr Lys Lys Ala Gln Tyr Glu Pro Asn Thr Ala Pro Arg
 1 5 10 15
 Leu Ser Thr Ser Leu Gln Ser Met Pro Arg Thr Thr Thr Ile Ser Lys
 20 25 30
 Phe Thr Ala Met Leu Cys Leu Thr Thr Glu Val Val Leu Met Gly Ser
 35 40 45
 Arg Gly Ser Ile Pro Ser Ala Leu Ile Gly Thr Thr Ala Ile Leu Asn
 50 55 60
 Trp Ala Thr Asn Gly Leu Lys Leu Gly Leu Ser Leu Ile Phe Leu Ala
 65 70 75 80
 Ala Thr Thr Asn Thr Arg Thr Ser Ile Gly Leu Gly Ile Thr Leu Thr
 85 90 95
 Val Leu Thr Gly Met Thr Pro Ala Lys Lys Lys Arg Ser Leu Asn Ser
 100 105 110
 Lys Ala Lys Glu Lys His Gly Ile Gly Lys Ser Ala Leu Lys Lys Ala
 115 120 125
 Ile Thr Thr Thr
 130

<210> 201

<211> 1911

<212> DNA

<213> Environmental

<400> 201

atgacagcca aggctgatga cttacgcatt taccagatca tggtgaaag ctttgtggat	60
ggcgataaac aggtcgccca tggcacggc tacggatcca gccatcacaa aggcatctg	120
caaggatca ttgactcgct ggattacatt caatcgctgg gcgtcaatgc cattggcta	180
acgccgattt ttgaatctat tccgggtggag ggacaagacc attggcgga caggcttgc	240
gctacaggct actttgccag tgactatttc aagatagacc ctcgcattgg cacgttagaa	300
caagccccgtg agctgggta aaaggcacac gcgaaaggct tggatgtctt cttgtatgg	360
gtattttgtc accataaagg caatgtggtg ccattcaccac aaggttagact gcctgtcggt	420
gaaaataacc cggtcagcta cccagagac ctggcgaaaa acgaagaagt cgccagttac	480
tgggtgaaag agttaaagat tggatggctgg cgtctggatc aagcctatca agtgcgcacc	540
gatgcatttgc aagcgatccg tcagagcggt gatgaagcgat cacagtcgt aacttatgtg	600
aataacaaag gggaaaccgt ccattccatttgg gtttacatgg tggctgaaat ttggaaataac	660
gaacgttaca tcacagaaac cggttacggc aaagaaggcg atccggcgat gtgctcggt	720
tttgcattttc cgatgcgtt ccgagtggtc gaaaccatttgc cggttacatgg aagtgggtc	780
agccgaaaag gcggcgaaatg gtttacatgg ggcattgtcac tgcacatgc gtatccggat	840
catgccaagc ctaatttaat gttggcaac catgtgtgg tgcgcattttgg ggatctgctg	900
caacgtggcg gtattgcgtc accagaacaa ccgcaataact ggcagcgatca taaagcgccg	960
atgtctttct tagcagcgta taccggccca attaccttgc attacggatc agaaattggc	1020
gatcagggttgc acggcttgc taaaaaaaatc aaagaagatt gtggcgatgc tggatgtgt	1080
gatgaccacg tggcgccac cagtgcgaag attgtgtgg tgcacatgc actgaatgc	1140
cagcagtcg aactcaaagt atatgtcttc tcattgtatgc cattacgtca gcaacatcc	1200
gcgttatcac aaggggaaacg tactaatgtg atggcgacag agacagtata cgttagaccat	1260
aaacaggcag acaatgaagc cctgttgcatttgc atggatgtgg tgcacatgc cgcggagtca	1320
gtcaccttgc aaggccaaatc gattggatgc caaggtgtgc tgattgttgc gtttacatgg	1380
gagcggttgc tgcccaataa tggggatgc gtttgcatttgc taacggcgatgc tggcgacatgg	1440
ttcctcaaga ttgacactcc gacagcgccg ggtgtatgg cgcatttcgc tgcctcgatgc	1500
tcgcttagtag gttggatgc catggccaaatc tgcacatgc cgcggagtca aggcaccgg	1560
ccggtagcag aaaccttgcata cgtggatgc gattttgcgttgc atgctggatgc gtttacatgg	1620
ccgcagcgccg cgtatcaata caaaggcaag cacaatggca gcaacttgcata tcaagtggtt	1680
gtcgatgaaa aaggcgccgc ctacaagatgc caatcgcata cgtttgcgttgc gagccacatgg	1740
tttactgcgtc acggatgcatttgc ggttacatgc gtttgcgttgc agtcgtatgc tgcctcgatgc	1800

tacggtaaaag acaccggcgt gacgttgccg gaatccggta agtatgttg gagcttaaca	1860
ttcagtgatc ttggcgagcc ggagcaaata atggtgtcta agtgcagta a	1911
<210> 202	
<211> 630	
<212> PRT	
<213> Environmental	
<400> 202	
Met Thr Ala Lys Ala Asp Asp Leu Arg Ile Tyr Gln Ile Met Val Glu	
1 5 10 15	
Ser Phe Val Asp Gly Asp Lys Gln Val Gly His Gly Thr Gly Tyr Gly	
20 25 30	
Thr Ser His His Lys Gly Asp Leu Gln Gly Ile Ile Asp Ser Leu Asp	
35 40 45	
Tyr Ile Gln Ser Leu Gly Val Asn Ala Ile Trp Leu Thr Pro Ile Phe	
50 55 60	
Glu Ser Ile Pro Val Glu Gly Gln Asp His Trp Ala Asp Arg Leu Asp	
65 70 75 80	
Ala Thr Gly Tyr Phe Ala Ser Asp Tyr Phe Lys Ile Asp Pro Arg Phe	
85 90 95	
Gly Thr Leu Glu Gln Ala Arg Glu Leu Val Glu Lys Ala His Ala Lys	
100 105 110	
Gly Leu Tyr Val Phe Phe Asp Gly Val Phe Gly His His Lys Gly Asn	
115 120 125	
Val Val Pro Ser Pro Gln Gly Arg Leu Pro Val Gly Glu Asn Asn Pro	
130 135 140	
Val Ser Tyr Pro Glu Ser Leu Ala Phe Tyr Glu Glu Val Ala Ser Tyr	
145 150 155 160	
Trp Val Lys Glu Leu Lys Ile Asp Gly Trp Arg Leu Asp Gln Ala Tyr	
165 170 175	
Gln Val Pro Thr Asp Ala Trp Lys Ala Ile Arg Gln Ser Val Asp Glu	
180 185 190	
Ala Ser Gln Ser Val Thr Tyr Val Asn Asn Lys Gly Glu Thr Val His	
195 200 205	
Pro Leu Gly Tyr Met Val Ala Glu Ile Trp Asn Asn Glu Arg Tyr Ile	
210 215 220	
Thr Glu Thr Gly Tyr Gly Lys Glu Gly Asp Pro Ala Leu Cys Ser Ala	
225 230 235 240	
Phe Asp Phe Pro Met Arg Phe Arg Val Val Glu Thr Phe Ala Val Asn	
245 250 255	
Glu Ser Gly Val Ser Arg Lys Gly Glu Trp Leu Asn Asp Gly Met	
260 265 270	
Ser Leu His Ser Gln Tyr Pro Asp His Ala Lys Pro Asn Leu Met Leu	
275 280 285	
Gly Asn His Asp Val Val Arg Phe Gly Asp Leu Leu Gln Arg Gly Gly	
290 295 300	
Ile Ala Ser Pro Glu Gln Pro Gln Tyr Trp Gln Arg His Lys Ala Ala	
305 310 315 320	
Met Ser Phe Leu Ala Ala Tyr Thr Gly Pro Ile Thr Leu Tyr Tyr Gly	
325 330 335	
Glu Glu Ile Gly Asp Gln Val Asp Gly Phe Ala Lys Lys Ile Lys Glu	
340 345 350	
Asp Cys Ala Val Ile Gly Leu Cys Asp Asp His Val Ala Arg Thr Ser	
355 360 365	
Ala Lys Ile Asp Gly Val Thr Ala Ser Leu Asn Ala Gln Gln Ser Glu	
370 375 380	

Leu Lys Val Tyr Val Ser Ser Leu Met Thr Leu Arg Gln Gln His Pro
 385 390 395 400
 Ala Leu Ser Gln Gly Glu Arg Thr Asn Val Met Ala Thr Glu Thr Val
 405 410 415
 Tyr Val Asp His Lys Gln Ala Asp Asn Glu Ala Leu Leu Tyr Met Val
 420 425 430
 Ser Thr Thr Asp Asn Ala Glu Ser Val Thr Leu Lys Gly Lys Ala Ile
 435 440 445
 Gly Ser Gln Gly Val Leu Ile Asp Leu Leu Thr Asn Glu Arg Phe Met
 450 455 460
 Pro Asn Asn Gly Glu Tyr Ala Ile Pro Leu Thr Gly Phe Gly Ala Arg
 465 470 475 480
 Phe Leu Lys Ile Asp Thr Pro Thr Ala Ala Gly Val Met Ala Gln Ser
 485 490 495
 Ala Ala Ser Val Ser Leu Val Gly Glu Gly Ile Met Ala Gln Cys Asp
 500 505 510
 Thr Pro Thr Val Glu Gly Thr Gly Pro Val Ala Glu Thr Leu Tyr Val
 515 520 525
 Val Gly Asp Phe Ala Asp Ala Gly Trp Lys Gln Lys Pro Gln Arg Ala
 530 535 540
 Tyr Gln Tyr Lys Gly Lys His Asn Gly Ser Asn Leu Tyr Gln Val Val
 545 550 555 560
 Val Asp Glu Lys Ala Gly Ala Tyr Lys Met Gln Tyr Ala Thr Lys Asp
 565 570 575
 Trp Ser Pro Gln Phe Thr Ala Asp Gly Met Ala Leu Lys Pro Gly Thr
 580 585 590
 Ala Lys Ser Leu Ile Ala Gly Gly Tyr Gly Lys Asp Thr Ala Val Thr
 595 600 605
 Leu Pro Glu Ser Gly Lys Tyr Val Trp Ser Leu Thr Phe Ser Asp Leu
 610 615 620
 Gly Glu Pro Glu Gln Ile
 625 630

<210> 203

<211> 2601

<212> DNA

<213> Environmental

<400> 203

atgaagatga	agtcccccggc	gtgggttgtta	ggtagtgcag	tggccatggc	gttggcctct	60
tcggcagcca	atgcccgtgt	catggttcac	ctgttccagt	ggaagtacaa	tgacatcgcc	120
aacgagtgcg	aaaaggtgct	cgtccccaaa	gggtatgaag	cagtgcagat	cacgcgcgcct	180
gctgaacacc	tgcaaggctc	ctccctgggtgg	gtggtctatc	agcccgtcag	ctacaagaac	240
ttcacttctc	tgggcgttaa	cgaggccgaa	ctcaaaagca	tgatcgcccc	ttgcaaggcc	300
gccggggtca	agatttacgc	cgatgcggta	ttcaaccagc	tggctgggtgg	atcaggcgtc	360
ggtacaggtg	gtacgcgcta	caatgcggc	agttcagct	atcccccaatt	tggctacaac	420
gatttccatc	acgctgggag	cctcaccaac	tatgccgacc	gcaacaatgt	gaaaaacggt	480
gccctgtctgg	ggctgcggta	tctggatacc	ggctctgcct	atgtgcagga	tcagctggct	540
acctatatga	agaccctgag	tggctgggggt	gtggcagggtt	ttcgtcttga	tgcagcaaag	600
catatgagcg	ttgcccgtct	ctcgccatc	gtcagcaagg	cgggcaatcc	ttttgtctac	660
tccgagggtga	ttgggtccac	gggtgaacca	atccagccgg	gcaaatatac	cggcattgggt	720
gccgtgaccg	aatttaata	cggcaccgat	ctggcctcca	acttcaaggg	gcagatcaag	780
aatctcaaga	gcatgggcga	gagctgggggt	ctgcttgcgt	cgaacaaggc	tgaagtcttt	840
gtggtcaacc	atgaccgtga	gcggggacat	ggcggtggcg	gtatgctgac	ctacaaggat	900
ggtgccctct	acaatctggc	caacatcttc	atgctggcct	ggccctatgg	cgcctatccc	960
cagtgatgt	ccggctatga	tttcggcacc	aataccgata	ttggtgggcc	gagcgtacc	1020
ccttgttctt	ccggctctag	ctggaactgc	gaacaccgct	ggagcaacat	cgccaacatg	1080

gtctcgttcc acaatgccgc ccaaggcacg tccatgacca actggtgaaa taatggtaat	1140
aaccagatcg ccttggtcg cggcgcgaag gcctttgtgg tcatcaacaa tgaatcttcc	1200
actctgagca agagcctgca gacgggtctg ccagccgggg agtactgcaa cattctggcc	1260
ggtgatgccc tgtcagcgg cagcaccatc aaggtggatg ccagcggtat ggccaccc	1320
aacgtggcag gnatgaaggc ggcagcgatc catatcaatg ccaagcccg tagcaccagc	1380
agtggcagct caggcttc ctctggctct tcttcctctg ccaccagtaa caagtttgcc	1440
agcatgaatc tgcgggac caacaatggc tggccagca cgcgcacatgac agtggatgcc	1500
aaccgtgtct ggtcggcgg tgcacctt accggggccg cggatgcca tggtgcccag	1560
cgttcaagt ttgatgtcta tggcaactgg acagagagct atggcgatac acaagccgat	1620
ggcattgccc acaaggggag cgccaaggac atctattca atggtgtgg caagtatcg	1680
gtctcgctca aggagagcga catgagctac accctgaccc agctctccag caatcaggca	1740
ccggcggcgg ccatcaccctt caagacactc tccgtcaagc tgggtgactc agtgggttcc	1800
gatgcctccg gctccaccga tcatgtgggt gtcactggct acagctggc taccgggtgc	1860
agtgcgaaga ccgaaactgt gctgtttgat gctctggta ccaagaccat taccgtgaca	1920
gtggccgatg ccgatggctt gaccccaag gccagtgcca cgcgtaccgt caccgatggc	1980
agcgtggctt ataacaccaa ctttgccagc ctgaaatttcc gtggcactcc caacagtgg	2040
ggcgcggcag ccatgacgct ggtggcagac aacacctggg aggcaacggt caacctcgat	2100
ggtcaggcca atcagcgctt caagttcgat atcaaggggtg actggagccca gaactatgg	2160
gatacaaca aggtgggtt ggccgaacgt accggtgccg atatttacac cactgtgacc	2220
ggtaataata aggtgcaatt taacgactcc actttgaagt acaccctgac caagctggcc	2280
gatagcagcg ccaccagcta tagcgcgaac tttgcagcc tctacctgctg tggcaccctt	2340
aacagctggg gcaccaccgc catgaagctg gtggccaata acagctggc ggccgaggtg	2400
acccctcaccg gcaaggcga tgccactggt gccaacgct tcaagttcga cgtcaagggt	2460
gactggagcc agaactacgg tgacagcaac atggacggga ctgccgaacg gactgggtggc	2520
gatatcacca gtgccgtggt gggcacctat ctggtgaccc ttaatgacag cacactgaaa	2580
tacaccctga ccgc当地 a	2601

<210> 204

<211> 866

<212> PRT

<213> Environmental

<400> 204

Met Lys Met Lys Ser Arg Ala Trp Leu Leu Gly Ser Ala Val Ala Met	
1 5 10 15	
Ala Leu Ala Ser Ser Ala Ala Asn Ala Gly Val Met Val His Leu Phe	
20 25 30	
Gln Trp Lys Tyr Asn Asp Ile Ala Asn Glu Cys Glu Lys Val Leu Gly	
35 40 45	
Pro Lys Gly Tyr Glu Ala Val Gln Ile Thr Pro Pro Ala Glu His Leu	
50 55 60	
Gln Gly Ser Ser Trp Trp Val Val Tyr Gln Pro Val Ser Tyr Lys Asn	
65 70 75 80	
Phe Thr Ser Leu Gly Gly Asn Glu Ala Glu Leu Lys Ser Met Ile Ala	
85 90 95	
Arg Cys Lys Ala Ala Gly Val Lys Ile Tyr Ala Asp Ala Val Phe Asn	
100 105 110	
Gln Leu Ala Gly Gly Ser Gly Val Gly Thr Gly Gly Ser Ser Tyr Asn	
115 120 125	
Ala Gly Ser Phe Ser Tyr Pro Gln Phe Gly Tyr Asn Asp Phe His His	
130 135 140	
Ala Gly Ser Leu Thr Asn Tyr Ala Asp Arg Asn Asn Val Gln Asn Gly	
145 150 155 160	
Ala Leu Leu Gly Leu Pro Asp Leu Asp Thr Gly Ser Ala Tyr Val Gln	
165 170 175	
Asp Gln Leu Ala Thr Tyr Met Lys Thr Leu Ser Gly Trp Gly Val Ala	
180 185 190	

Gly Phe Arg Leu Asp Ala Ala Lys His Met Ser Val Ala Asp Leu Ser
 195 200 205
 Ala Ile Val Ser Lys Ala Gly Asn Pro Phe Val Tyr Ser Glu Val Ile
 210 215 220
 Gly Ala Thr Gly Glu Pro Ile Gln Pro Gly Glu Tyr Thr Gly Ile Gly
 225 230 235 240
 Ala Val Thr Glu Phe Lys Tyr Gly Thr Asp Leu Ala Ser Asn Phe Lys
 245 250 255
 Gly Gln Ile Lys Asn Leu Lys Ser Met Gly Glu Ser Trp Gly Leu Leu
 260 265 270
 Ala Ser Asn Lys Ala Glu Val Phe Val Val Asn His Asp Arg Glu Arg
 275 280 285
 Gly His Gly Gly Gly Met Leu Thr Tyr Lys Asp Gly Ala Leu Tyr
 290 295 300
 Asn Leu Ala Asn Ile Phe Met Leu Ala Trp Pro Tyr Gly Ala Tyr Pro
 305 310 315 320
 Gln Val Met Ser Gly Tyr Asp Phe Gly Thr Asn Thr Asp Ile Gly Gly
 325 330 335
 Pro Ser Ala Thr Pro Cys Ser Ser Gly Ser Ser Trp Asn Cys Glu His
 340 345 350
 Arg Trp Ser Asn Ile Ala Asn Met Val Ser Phe His Asn Ala Ala Gln
 355 360 365
 Gly Thr Ser Met Thr Asn Trp Trp Asp Asn Gly Asn Asn Gln Ile Ala
 370 375 380
 Phe Gly Arg Gly Ala Lys Ala Phe Val Val Ile Asn Asn Glu Ser Ser
 385 390 395 400
 Thr Leu Ser Lys Ser Leu Gln Thr Gly Leu Pro Ala Gly Glu Tyr Cys
 405 410 415
 Asn Ile Leu Ala Gly Asp Ala Leu Cys Ser Gly Ser Thr Ile Lys Val
 420 425 430
 Asp Ala Ser Gly Met Ala Thr Phe Asn Val Ala Gly Met Lys Ala Ala
 435 440 445
 Ala Ile His Ile Asn Ala Lys Pro Asp Ser Thr Ser Ser Gly Ser Ser
 450 455 460
 Gly Ser Ser Ser Gly Ser Ser Ser Ala Thr Ser Asn Lys Phe Ala
 465 470 475 480
 Ser Met Asn Leu Arg Gly Thr Asn Asn Gly Trp Ala Ser Thr Ala Met
 485 490 495
 Thr Val Asp Ala Asn Arg Val Trp Ser Ala Asp Val Thr Phe Thr Gly
 500 505 510
 Ala Ala Asp Ala Asn Gly Ala Gln Arg Phe Lys Phe Asp Val Tyr Gly
 515 520 525
 Asn Trp Thr Glu Ser Tyr Gly Asp Thr Gln Ala Asp Gly Ile Ala Asp
 530 535 540
 Lys Gly Ser Ala Lys Asp Ile Tyr Phe Asn Gly Val Gly Lys Tyr Arg
 545 550 555 560
 Val Ser Leu Lys Glu Ser Asp Met Ser Tyr Thr Leu Thr Gln Leu Ser
 565 570 575
 Ser Asn Gln Ala Pro Val Ala Ala Ile Thr Pro Lys Thr Leu Ser Val
 580 585 590
 Lys Leu Gly Asp Ser Val Val Phe Asp Ala Ser Gly Ser Thr Asp Asp
 595 600 605
 Val Gly Val Thr Gly Tyr Ser Trp Ser Thr Gly Gly Ser Ala Lys Thr
 610 615 620
 Glu Thr Val Leu Phe Asp Ala Leu Gly Thr Lys Thr Ile Thr Val Thr
 625 630 635 640
 Val Ala Asp Ala Asp Gly Leu Thr Ser Lys Ala Ser Ala Thr Val Thr

	645	650	655
Val Thr Asp Gly Ser Val Ala Tyr Asn Ser Asn Phe Ala Ser Leu Asn			
660	665	670	
Phe Arg Gly Thr Pro Asn Ser Trp Gly Ala Ala Ala Met Thr Leu Val			
675	680	685	
Ala Asp Asn Thr Trp Glu Ala Thr Val Asn Phe Asp Gly Gln Ala Asn			
690	695	700	
Gln Arg Phe Lys Phe Asp Ile Lys Gly Asp Trp Ser Gln Asn Tyr Gly			
705	710	715	720
Asp Ser Asn Lys Asp Gly Val Ala Glu Arg Thr Gly Ala Asp Ile Tyr			
725	730	735	
Thr Thr Val Thr Gly Gln Tyr Lys Val Gln Phe Asn Asp Ser Thr Leu			
740	745	750	
Lys Tyr Thr Leu Thr Lys Leu Ala Asp Ser Ser Ala Thr Ser Tyr Ser			
755	760	765	
Ala Asn Phe Ala Ser Leu Tyr Leu Arg Gly Thr Pro Asn Ser Trp Gly			
770	775	780	
Thr Thr Ala Met Lys Leu Val Ala Asn Asn Ser Trp Gln Ala Glu Val			
785	790	795	800
Thr Phe Thr Gly Lys Gly Asp Ala Thr Gly Ala Gln Arg Phe Lys Phe			
805	810	815	
Asp Val Lys Gly Asp Trp Ser Gln Asn Tyr Gly Asp Ser Asn Met Asp			
820	825	830	
Gly Thr Ala Glu Arg Thr Gly Gly Asp Ile Thr Ser Ala Val Val Gly			
835	840	845	
Thr Tyr Leu Val Thr Phe Asn Asp Ser Thr Leu Lys Tyr Thr Leu Thr			
850	855	860	
Ala Lys			
865			

<210> 205

<211> 1674

<212> DNA

<213> Environmental

<400> 205

atgtaccgcg taatacctat tattttgatt atgagtatga ttgttagcttg tgagtctcca	60
aagaaaaaaaaa caaccgaaac cgctcaacct tcaacaaatg ccgaaaaacc ctttgggg	120
gaggctgcca atgtatattt ttgttaact gaccgttta acaacggtaa cccaaacaat	180
gacatcaatt ttaataggac taaagaatca ggaaaactcc gcaattttat gggaggcgat	240
atcaaggcga tcacccaaaa aataaatgag gggtattta gtaaacttagg cgttaatgcc	300
atctggctta ccccggttgt tgaacaaata catggcagtg ttgatgaagg taccggcaat	360
acctatgcct ttcatggcta ttggccaaa gattggacaa acttagaccc aaattttggc	420
acaaaagaag accttggcg actggggca actgcccattg caaaaaggcat caggatactt	480
ttagatgtgg taataaacca caccggcccg gtaaccgacc aagaccgggt ttggggagaa	540
gattgggtac gtacaggccc gcagtgtacc tatgataatt acaccaatac caccagttgc	600
acgctggtag ccaatttacc tgatatactt acagaaagta atgaaaatgt ggccttacca	660
accttttgt tagataaaatg gaaagccgaa ggcagattag agcaagaact aaaagaactt	720
gacgattttt tttccgcac aggccaccca cgcgcacccc gctttacat tattaaatgg	780
cttaccgatt acatccgaga atttgggtta gatgggtta gggttgatac cgtaaaacat	840
accgaagaaa cggttttggc cgagttgtat gatgaagccg taattgctt tgccaaat	900
aaaaaagcca acccagacaa ggtattggac gataatgaat ttatatggt aggcaagtg	960
tacaactacg gtatcccg cggaaaggttc tatgatttcg gcgataaaaaa ggtggactat	1020
tttggaccacg gatttaaaag cctcatcaat tttgaaatga aatatgatgc caattttacc	1080
tacgatacac tttttaggaa gtacgatacc ctggcata ccaaacttaa aggcagaagt	1140
gtgctcaact acctctcatac tcacgacgat ggaagttccat ttgataaaaat gccccaaaaa	1200
ccatacgagt cggctacaaa attactgctc actccggcg catccaaat ttattacgg	1260

gacgaaaccg ccagaagcct taacatagaa ggccgcacagg gagatgctac gcttcgttcg	1320
tttatgaatt gggaaagagct cgcagaagac cctgccaagc aaaaaataact tcagcattgg	1380
caaaaactgg gcagttcag gaacaaccac cccgcagttg gtgccggaag gcacaaaaacc	1440
cttggcaaaa agccgttta caccttagc agggttatac aaaaaaatgg ttttattgac	1500
aaagttgtgg tagcattaga tgcccctaaa ggccaaaaac aaattaccgt taatgggttt	1560
tttgatgacg gtacaaaact tgttagatgcc tattcaggca aagaaacctc agttaaaaat	1620
ggtatcggtt cacttcttc tgaatttgat attgtttgt tagaacaaaa ataa	1674

<210> 206

<211> 557

<212> PRT

<213> Environmental

<400> 206

Met Tyr Arg Val Ile Pro Ile Ile Leu Ile Met Ser Met Ile Val Ala	
1 5 10 15	
Cys Glu Ser Pro Lys Lys Lys Thr Thr Glu Thr Ala Gln Pro Ser Thr	
20 25 30	
Asn Ala Glu Lys Pro Phe Val Trp Glu Ala Ala Asn Val Tyr Phe Leu	
35 40 45	
Leu Thr Asp Arg Phe Asn Asn Gly Asn Pro Asn Asn Asp Ile Asn Phe	
50 55 60	
Asn Arg Thr Lys Glu Ser Gly Lys Leu Arg Asn Phe Met Gly Gly Asp	
65 70 75 80	
Ile Lys Gly Ile Thr Gln Lys Ile Asn Glu Gly Tyr Phe Ser Lys Leu	
85 90 95	
Gly Val Asn Ala Ile Trp Leu Thr Pro Val Val Glu Gln Ile His Gly	
100 105 110	
Ser Val Asp Glu Gly Thr Gly Asn Thr Tyr Ala Phe His Gly Tyr Trp	
115 120 125	
Ala Lys Asp Trp Thr Asn Leu Asp Pro Asn Phe Gly Thr Lys Glu Asp	
130 135 140	
Leu Ala Glu Leu Val Ala Thr Ala His Ala Lys Gly Ile Arg Ile Leu	
145 150 155 160	
Leu Asp Val Val Ile Asn His Thr Gly Pro Val Thr Asp Gln Asp Pro	
165 170 175	
Val Trp Gly Glu Asp Trp Val Arg Thr Gly Pro Gln Cys Thr Tyr Asp	
180 185 190	
Asn Tyr Thr Asn Thr Thr Ser Cys Thr Leu Val Ala Asn Leu Pro Asp	
195 200 205	
Ile Leu Thr Glu Ser Asn Glu Asn Val Ala Leu Pro Thr Phe Leu Leu	
210 215 220	
Asp Lys Trp Lys Ala Glu Gly Arg Leu Glu Gln Glu Leu Lys Glu Leu	
225 230 235 240	
Asp Asp Phe Phe Ser Arg Thr Gly His Pro Arg Ala Pro Arg Phe Tyr	
245 250 255	
Ile Ile Lys Trp Leu Thr Asp Tyr Ile Arg Glu Phe Gly Val Asp Gly	
260 265 270	
Phe Arg Val Asp Thr Val Lys His Thr Glu Glu Thr Val Trp Ala Glu	
275 280 285	
Leu Tyr Asp Glu Ala Val Ile Ala Phe Ala Glu Tyr Lys Lys Ala Asn	
290 295 300	
Pro Asp Lys Val Leu Asp Asp Asn Glu Phe Tyr Met Val Gly Glu Val	
305 310 315 320	
Tyr Asn Tyr Gly Ile Ser Gly Gly Arg Phe Tyr Asp Phe Gly Asp Lys	
325 330 335	
Lys Val Asp Tyr Phe Asp His Gly Phe Lys Ser Leu Ile Asn Phe Glu	

340	345	350
Met Lys Tyr Asp Ala Asn Phe Thr	Tyr Asp Thr Leu Phe Arg Lys Tyr	
355	360	365
Asp Thr Leu Leu His Thr Lys Leu Lys Gly Arg Ser Val Leu Asn Tyr		
370	375	380
Leu Ser Ser His Asp Asp Gly Ser Pro Phe Asp	Lys Met Arg Gln Lys	
385	390	395
Pro Tyr Glu Ser Ala Thr Lys Leu Leu Leu Thr Pro Gly Ala Ser Gln		400
405	410	415
Ile Tyr Tyr Gly Asp Glu Thr Ala Arg Ser Leu Asn Ile Glu Gly Ala		
420	425	430
Gln Gly Asp Ala Thr Leu Arg Ser Phe Met Asn Trp Glu Glu Leu Ala		
435	440	445
Glu Asp Pro Ala Lys Gln Lys Ile Leu Gln His Trp Gln Lys Leu Gly		
450	455	460
Ser Phe Arg Asn Asn His Pro Ala Val Gly Ala Gly Arg His Lys Thr		
465	470	475
Leu Gly Lys Pro Phe Tyr Thr Phe Ser Arg Val Tyr Gln Lys Asn		480
485	490	495
Gly Phe Ile Asp Lys Val Val Val Ala Leu Asp Ala Pro Lys Gly Gln		
500	505	510
Lys Gln Ile Thr Val Asn Gly Val Phe Asp Asp Gly Thr Lys Leu Val		
515	520	525
Asp Ala Tyr Ser Gly Lys Glu Thr Ser Val Lys Asn Gly Ile Val Ser		
530	535	540
Leu Ser Ser Glu Phe Asp Ile Val Leu Leu Glu Gln Lys		
545	550	555

<210> 207

<211> 1378

<212> DNA

<213> Environmental

<400> 207

ctgtcgactg agcctttcgt ttgggctcg agactgactc tcagcccacc ccgcagtagc	60
tccagacgga gtagccgtaa tagccgttg ccgggtcggt ggcaggggcc tcgaggtaca	120
cccacccgct ttagtccacc cacttgtcca cccagccgcc gaggttgccg gtgtactcg	180
ggatgcacgc tccccgcaac ttccgaacgt agaccaccc tccggctttt cttgaggcga	240
ggttatgtta tgttatccgt cccggcttgc ttccgttagcc gtttctcact aatattcagct	300
cgtcggttcgt gtagtaaacg acgtcagtgc ttccctccggc caggttgtca tgtatccaga	360
tgagggttctt gagcttatcc ttgttgagcc actcctcgta gtcgcgttag aatattgtcg	420
gctggccctc gtaggtgagg atgaacgcgt aggctggata cttgttccag attatatcgg	480
tgtcggtt tgcaacgaag gtagccgtt taaacgggtc gggctgacg actgtgcccc	540
cgtcttgag ggcctcgacg agtgcggaa tttttttttt gtcaaaggcc gcgtccatct	600
tgtatgtatcg cggaaatcg aagaccttgg cgccgcgtcg gttaggcccag ttgaggagtg	660
catcaacgtt ggtgtccag tactcgccaa cggcccagcc gccccaccag ttgagccagt	720
ccttgacgac ccacgcgtcg tggcccttca cgtatcaaa gcccaggca tcaacgccga	780
tgctccttag gtaggcggcg tagctctcat cgctcgccca gagccagtgc tggccatcg	840
tcttcgttgc ggctatgtct gggaaaggctc caaatgtgcc ctcgtcacag cacttgacct	900
cgttgggtg gaagtgcgagg tagttggcag tatattgccc cgaggccacc tttgagaagt	960
ccgtccaggt gtagtccccca acgaacgggt tccactcgag gtctccgcct gcgcgtgg	1020
ttatgacgat gtccgcgtatg acctttatgc cgtaggcatg ggccgtgttt atcatgttca	1080
cgagctcctg ctggagcca aagcgcgtct ctaccgttcc ctctgtgtcg tactcaccga	1140
ggtc当地 gtcgttaggg tctgtacca tcgaataggc gcccggccatg cccttgctcg	1200
ccggggaaat ccaaattggcg gatattcccg cctcgatcca ctccggatcc ttgctcctga	1260
tgggttccca ccagattccct ccacctggga cgtcccagta gaaggcctgc attataacgc	1320
cgcctcttc cagtcggag tacttgccca taagttaccc cctactagtagta gattaaaa	1378

<210> 208
<211> 439
<212> PRT
<213> Environmental

<400> 208

Leu	Ser	Thr	Glu	Pro	Phe	Val	Leu	Gly	Ser	Arg	Leu	Thr	Leu	Ser	Pro
1					5				10						15
Pro	Arg	Ser	Ser	Ser	Arg	Arg	Ser	Ser	Arg	Asn	Ser	Arg	Trp	Pro	Gly
					20				25					30	
Arg	Gly	Gln	Gly	Pro	Arg	Gly	Thr	Pro	Thr	Arg	Leu	Ser	Pro	Pro	Thr
					35				40					45	
Cys	Pro	Pro	Ser	Arg	Arg	Gly	Cys	Arg	Cys	Thr	Arg	Gly	Cys	Thr	Leu
					50				55				60		
Pro	Arg	Thr	Ser	Glu	Arg	Arg	Pro	Thr	Phe	Arg	Leu	Cys	Leu	Arg	Arg
					65				70			75		80	
Gly	Cys	Met	Leu	Ser	Val	Pro	Ala	Cys	Phe	Arg	Ser	Arg	Phe	Ser	Arg
					85				90				95		
Ile	Ser	Ala	Arg	Arg	Cys	Arg	Ser	Lys	Arg	Arg	Gln	Cys	Phe	Leu	Arg
					100				105				110		
Pro	Gly	Cys	His	Val	Ser	Arg	Gly	Ser	Ala	Tyr	Pro	Cys	Ala	Thr	Pro
					115				120			125			
Arg	Ser	Arg	Gly	Arg	Ile	Leu	Ser	Ala	Gly	Pro	Arg	Arg	Gly	Thr	Arg
					130				135			140			
Arg	Leu	Asp	Thr	Cys	Ser	Arg	Leu	Tyr	Arg	Cys	Arg	Gly	Leu	Gln	Arg
					145				150			155		160	
Arg	Leu	Arg	Pro	Thr	Gly	Arg	Gly	Leu	Cys	Pro	Arg	Ser	Gly	Pro	
					165				170			175			
Arg	Arg	Val	Arg	Glu	Cys	Ser	Cys	Cys	Gln	Arg	Pro	Arg	Pro	Ser	Cys
					180				185			190			
Ser	Arg	Ala	Gly	Ser	Arg	Arg	Pro	Trp	Arg	Arg	Ser	Ser	Arg	Pro	Ser
					195				200			205			
Gly	Val	His	Gln	Arg	Trp	Cys	Pro	Ser	Thr	Arg	Gln	Arg	Pro	Ser	Arg
					210				215			220			
Pro	Thr	Ser	Ala	Ser	Pro	Arg	Pro	Thr	Leu	Arg	Gly	Pro	Ser	Arg	Ser
					225				230			235		240	
Gln	Ser	Ala	Arg	His	Gln	Arg	Arg	Cys	Ser	Leu	Gly	Arg	Arg	Ser	
					245				250			255			
Ser	His	Arg	Ser	Pro	Arg	Ala	Ser	Ala	Gly	Pro	Ser	Ser	Ser	Arg	Gly
					260				265			270			
Leu	Cys	Leu	Gly	Ser	Leu	Gln	Met	Cys	Pro	Arg	His	Ser	Thr	Pro	Arg
					275				280			285			
Trp	Gly	Gly	Ser	Arg	Gly	Ser	Trp	Gln	Tyr	Ile	Cys	Pro	Arg	Pro	Pro
					290				295			300			
Leu	Arg	Ser	Pro	Ser	Arg	Cys	Ser	Pro	Gln	Arg	Thr	Gly	Ser	Thr	Arg
					305				310			315		320	
Gly	Leu	Arg	Leu	Arg	Gly	Gly	Leu	Arg	Cys	Pro	Leu	Pro	Leu	Cys	Arg
					325				330			335			
Arg	His	Gly	Pro	Cys	Leu	Ser	Cys	Ser	Arg	Ala	Pro	Ala	Trp	Ser	Gln
					340				345			350			
Ser	Ala	Ser	Leu	Pro	Phe	Pro	Ser	Gly	Arg	Thr	His	Arg	Gly	Gln	Arg
					355				360			365			
Ser	Arg	Arg	Gly	Arg	Ser	Pro	Ser	Asn	Arg	Arg	Arg	Pro	Cys	Pro	Cys
					370				375			380			
Ser	Pro	Gly	Glu	Ser	Lys	Trp	Arg	Ile	Phe	Pro	Pro	Arg	Thr	Thr	Pro
					385				390			395		400	

Val Ser Cys Ser Trp Cys Pro Thr Arg Phe Leu His Leu Gly Arg Pro
 405 410 415
 Ser Arg Arg Pro Ala Leu Arg Arg Pro Leu Pro Ala Arg Ser Thr Trp
 420 425 430
 Pro Val Thr Ser Tyr Ile Lys
 435

<210> 209

<211> 1416

<212> DNA

<213> Environmental

<400> 209

atgattcagc ccatgcactc tcggaaacag gcctgccgtc tcattccggc actgatcatg	60
acatttgcac tggactgcc gttcaaatt cgtgccatg tcaccctgca tgcttcaac	120
tggagctatg ccgatgtcg tgcgtggcc gttgacatcg ctgcagcagg gtacagtgc	180
gtgctggtg cccccccact tcgatccgaa ggcacggcct ggtggcgcg ataccagccc	240
caggatctcc gccttatcga ccatccgctg ggcaatacac atgacttcgt caacatgatc	300
gatgctctcg atgatgtggg tggggcggtg tacgcccaca tcgtgctcaa ccacatggcc	360
aatgaggctg cacaaggcc tgacctgaac taccctggtc aggcagtgt tgacgaatat	420
gcttccgatc ccggtcattt cgagggcttg aggctgtcg gtaatcttag cttcaatttc	480
ctgtcggaac atgatttcgg acccgccca gtcattcagg attacagcga tgtgtttcag	540
gtccagaact ggcggctgtg cggaccgccc cggaccggc gcctgcccga cctggtcgc	600
aatgactggg tgcattctca acagcgcac tatctggaa ccatcaaggc gctgggtgtg	660
gctggcatgc gcatcgacgc ggtcaagcat atgcccata gccatataaa tgccgttctc	720
accccgaga tccggctggg cttgcattgtg ttggcgaag tcatcaccc cgggtgggct	780
ggtgatacat cctacgaccg ttttctggcc ctttacctgg cacaaggcga ccatggtgcc	840
tatgactttc cattgttga aaccattcgc cgtgcatttcg gttcggtgg cagcatgagt	900
gaactggtcg atcctgctgc ctacggtcag gcccgtccac cggaccgcgc catcaccc	960
gtcatcacgc acgatattcc gaacaatgac ggatttcgtt accagatact cgaccggc	1020
gatgaatcac tggcctacgc ctacattctg gcccgcgt ggggtgtccc gttctgtat	1080
tccgacaaca atgaaaggcg cgatggccgc tggatcgatg cttggcaacg tccggatctg	1140
gttgcataatgg tcggcttcca caatgcagtc cacggtcagg acatggccgt gttttcacat	1200
gacgactgcc acctgtgtt tcggcgccgc agcctggaa ttgtcgcat caacaagtgc	1260
ggccatgcac tcagctcctg ggtcaacatg aaccagagcg tactgtggg gtacgcggac	1320
tacacagacg tgctcgacag caacagcgtt gtcaacatcc agtcatcctg gcacgagttc	1380
atccttcccg cccgcccaggc acgcctgtgg ttgcga	1416

<210> 210

<211> 472

<212> PRT

<213> Environmental

<400> 210

Met Ile Gln Pro Met His Ser Arg Glu Gln Ala Cys Arg Leu Ile Pro	
1 5 10 15	
Ala Leu Ile Met Thr Phe Ala Leu Ala Leu Pro Leu Gln Ile Arg Ala	
20 25 30	
Asp Val Thr Leu His Ala Phe Asn Trp Ser Tyr Ala Asp Val Ala Asp	
35 40 45	
Arg Ala Val Asp Ile Ala Ala Gly Tyr Ser Ala Val Leu Val Ala	
50 55 60	
Pro Pro Leu Arg Ser Glu Gly Thr Ala Trp Trp Ala Arg Tyr Gln Pro	
65 70 75 80	
Gln Asp Leu Arg Leu Ile Asp His Pro Leu Gly Asn Thr His Asp Phe	
85 90 95	
Val Asn Met Ile Asp Ala Leu Asp Asp Val Gly Val Gly Val Tyr Ala	

	100	105	110
Asp Ile Val Leu Asn His Met Ala Asn Glu Ala Ala Gln Arg Pro Asp			
115	120	125	
Leu Asn Tyr Pro Gly Gln Ala Val Leu Asp Glu Tyr Ala Ser Asp Pro			
130	135	140	
Gly His Phe Glu Gly Leu Arg Leu Phe Gly Asn Leu Ser Phe Asn Phe			
145	150	155	160
Leu Ser Glu His Asp Phe Gly Pro Ala Gln Cys Ile Gln Asp Tyr Ser			
165	170	175	
Asp Val Phe Gln Val Gln Asn Trp Arg Leu Cys Gly Pro Pro Pro Asp			
180	185	190	
Pro Gly Leu Pro Asp Leu Val Ala Asn Asp Trp Val Ile Ser Gln Gln			
195	200	205	
Arg Gln Tyr Leu Glu Ala Ile Lys Ala Leu Gly Val Ala Gly Met Arg			
210	215	220	
Ile Asp Ala Val Lys His Met Pro Met Ser His Ile Asn Ala Val Leu			
225	230	235	240
Thr Pro Glu Ile Arg Ser Gly Leu His Val Phe Gly Glu Val Ile Thr			
245	250	255	
Ser Gly Gly Ala Gly Asp Thr Ser Tyr Asp Arg Phe Leu Ala Pro Tyr			
260	265	270	
Leu Ala Gln Ser Asp His Gly Ala Tyr Asp Phe Pro Leu Phe Glu Thr			
275	280	285	
Ile Arg Arg Ala Phe Gly Phe Gly Ser Met Ser Glu Leu Val Asp			
290	295	300	
Pro Ala Ala Tyr Gly Gln Ala Leu Pro Pro Asp Arg Ala Ile Thr Phe			
305	310	315	320
Val Ile Thr His Asp Ile Pro Asn Asn Asp Gly Phe Arg Tyr Gln Ile			
325	330	335	
Leu Asp Pro Val Asp Glu Ser Leu Ala Tyr Ala Tyr Ile Leu Gly Arg			
340	345	350	
Asp Gly Gly Val Pro Leu Leu Tyr Ser Asp Asn Asn Glu Ser Gly Asp			
355	360	365	
Gly Arg Trp Ile Asp Ala Trp Gln Arg Pro Asp Leu Val Ala Met Val			
370	375	380	
Gly Phe His Asn Ala Val His Gly Gln Asp Met Ala Val Leu Ser His			
385	390	395	400
Asp Asp Cys His Leu Leu Phe Arg Arg Gly Ser Leu Gly Ile Val Gly			
405	410	415	
Ile Asn Lys Cys Gly His Ala Leu Ser Ser Trp Val Asn Met Asn Gln			
420	425	430	
Ser Val Leu Trp Trp Tyr Ala Asp Tyr Thr Asp Val Leu Asp Ser Asn			
435	440	445	
Ser Val Val Asn Ile Gln Ser Ser Trp His Glu Phe Ile Leu Pro Ala			
450	455	460	
Arg Gln Ala Arg Leu Trp Leu Arg			
465	470		

<210> 211

<211> 1491

<212> DNA

<213> Environmental

<400> 211

gtgtttcggtt ctgacacagt ttccgcgtacc tgcatgtatg gtgcgcgtcg taatgcctac	60
caacccgatc gggtgtttac tggagtcacg gtgcggacat gcaacttaaa aaagcatgct	120
catgccagg cgctgttgtt catcgtgacg cggtgctgt gcctgaaatc caggcagacc	180

cataaaaaca	acaacaaacc	gataacaaac	gacccaagcc	ttctaagagg	agaaaacggg	240
atggcttta	aactacgcaa	aaaggcgctc	gttggcctgt	tcacggccgg	cgcaatggta	300
tatgccggtg	cagcggcgag	ttgtgaaatc	attctgcagg	gcttccactg	gcactccaag	360
tggggcggca	acaatcaggg	ttgggtggcag	gtgatggaag	gtcaggccaa	caccatcgcc	420
aacgcggcgt	ttacgcacgt	tgggttcccg	ccggtccata	actcggccga	tgccgagggt	480
tacctacccc	gcgagctgaa	caacctcaac	tccagctatg	gctccgaagc	acagctgcgc	540
agcgccatcc	aggcactgaa	caatcgccgc	gtgcatgcga	ttgccgatgt	ggtcatgaac	600
caccgggtgg	gctgctctgg	ctggcgat	ttctgtaacc	cgactggcc	gacctggtag	660
atcgtcgcca	atgattcctg	gcccgggtggc	ccgaaaagcc	agaactggga	cacgggtgag	720
acgttaccacg	ccgccccgtga	cctcgatcac	gccaatccgc	aggtgcgcaa	cgatatctcg	780
caactaccta	acagccgcct	caaggacgta	ggcttctccg	gctggcgctg	ggactatgcc	840
aagggtttct	ggccccccta	tgtcgccgag	tacaactgga	acaccaaccc	gaacttctgt	900
gtgggtgagg	tgtggacgta	tctcgacccc	aacaatccca	acccgcaccc	ccagcaactg	960
gtggactggg	ttgatgtac	cggtggcagt	tgtcaegtct	tcgacttca	caccaagggg	1020
ctgacgaact	atgcgtgca	gcatggccag	tactggcgcc	tgccagggtga	taatgggtggc	1080
ccggctggcg	gcatcgctg	gtggccgcaa	cgcatggta	ccttcgtcga	caaccatgac	1140
acgggcccga	gcaatcactg	tggtgacggc	cagaacctct	ggcccggtgcc	ctgtgacaag	1200
gtcatggagg	cgtatgccta	catcctgacc	catccggcg	tgccgtcggt	gtactggacg	1260
cacttcttca	actggaatct	tggtagcgag	atcagccagt	tgatgcagat	ccgcaagaac	1320
cagggcgtgc	actccggttc	cgacgtctgg	atcggccgagg	cccggtcacgg	cctgtacgccc	1380
gcctatatca	acggtaatgt	ggcgatgaa	atgggctggg	ataactggag	cccgggctgg	1440
ggctggtcgc	tggcggcctc	cggttaacaac	tggccgtct	ggacacgctg	a	1491

<210> 212

<211> 496

<212> PRT

<213> Environmental

<400> 212

Val	Phe	Arg	Ser	Asp	Thr	Val	Ser	Arg	Thr	Cys	Met	Tyr	Gly	Ala	Leu
1						5			10					15	
Arg	Asn	Ala	Tyr	Gln	Pro	Asp	Arg	Val	Phe	Thr	Gly	Val	Thr	Val	Arg
								20		25				30	
Thr	Cys	Asn	Leu	Lys	Lys	His	Ala	His	Arg	Gln	Ala	Leu	Leu	Phe	Ile
						35			40					45	
Val	Thr	Arg	Cys	Leu	Cys	Leu	Lys	Ser	Arg	Gln	Thr	His	Lys	Asn	Asn
							50		55					60	
Asn	Lys	Pro	Ile	Thr	Asn	Asp	Pro	Ser	Leu	Leu	Arg	Gly	Glu	Asn	Gly
							65		70		75			80	
Met	Ala	Phe	Lys	Leu	Arg	Lys	Lys	Ala	Leu	Val	Gly	Leu	Phe	Thr	Ala
							85			90				95	
Gly	Ala	Met	Val	Tyr	Ala	Gly	Ala	Ala	Ala	Ser	Gly	Glu	Ile	Ile	Leu
							100			105				110	
Gln	Gly	Phe	His	Trp	His	Ser	Lys	Trp	Gly	Gly	Asn	Asn	Gln	Gly	Trp
							115		120					125	
Trp	Gln	Val	Met	Glu	Gly	Gln	Ala	Asn	Thr	Ile	Ala	Asn	Ala	Gly	Phe
							130		135					140	
Thr	His	Val	Trp	Phe	Pro	Pro	Val	His	Asn	Ser	Ala	Asp	Ala	Glu	Gly
							145		150		155			160	
Tyr	Leu	Pro	Arg	Glu	Leu	Asn	Asn	Leu	Asn	Ser	Ser	Tyr	Gly	Ser	Glu
							165			170				175	
Ala	Gln	Leu	Arg	Ser	Ala	Ile	Gln	Ala	Leu	Asn	Asn	Arg	Gly	Val	His
							180			185				190	
Ala	Ile	Ala	Asp	Val	Val	Met	Asn	His	Arg	Val	Gly	Cys	Ser	Gly	Trp
							195			200				205	
Ala	Asp	Phe	Cys	Asn	Pro	Asp	Trp	Pro	Thr	Trp	Tyr	Ile	Val	Ala	Asn
							210		215					220	

Asp Ser Trp Pro Gly Gly Pro Lys Ser Gln Asn Trp Asp Thr Gly Glu
 225 230 235 240
 Thr Tyr His Ala Ala Arg Asp Leu Asp His Ala Asn Pro Gln Val Arg
 245 250 255
 Asn Asp Ile Ser His Tyr Leu Asn Ser Arg Leu Lys Asp Val Gly Phe
 260 265 270
 Ser Gly Trp Arg Trp Asp Tyr Ala Lys Gly Phe Trp Pro Gly Tyr Val
 275 280 285
 Gly Glu Tyr Asn Trp Asn Thr Asn Pro Asn Phe Cys Val Gly Glu Val
 290 295 300
 Trp Asp Asp Leu Asp Pro Asn Asn Pro Asn His Arg Gln Gln Leu
 305 310 315 320
 Val Asp Trp Val Asp Ala Thr Gly Gly Ser Cys His Val Phe Asp Phe
 325 330 335
 Thr Thr Lys Gly Leu Thr Asn Tyr Ala Leu Gln His Gly Gln Tyr Trp
 340 345 350
 Arg Leu Gln Gly Asp Asn Gly Gly Pro Ala Gly Gly Ile Gly Trp Trp
 355 360 365
 Pro Gln Arg Met Val Thr Phe Val Asp Asn His Asp Thr Gly Pro Ser
 370 375 380
 Asn His Cys Gly Asp Gly Gln Asn Leu Trp Pro Val Pro Cys Asp Lys
 385 390 395 400
 Val Met Glu Ala Tyr Ala Tyr Ile Leu Thr His Pro Gly Val Pro Ser
 405 410 415
 Val Tyr Trp Thr His Phe Asn Trp Asn Leu Gly Ser Glu Ile Ser
 420 425 430
 Gln Leu Met Gln Ile Arg Lys Asn Gln Gly Val His Ser Gly Ser Asp
 435 440 445
 Val Trp Ile Ala Glu Ala Arg His Gly Leu Tyr Ala Ala Tyr Ile Asn
 450 455 460
 Gly Asn Val Ala Met Lys Met Gly Trp Asp Asn Trp Ser Pro Gly Trp
 465 470 475 480
 Gly Trp Ser Leu Ala Ala Ser Gly Asn Asn Trp Ala Val Trp Thr Arg
 485 490 495

<210> 213

<211> 23

<212> PRT

<213> Environmental

<400> 213

Met Phe Leu Leu Ala Phe Leu Leu Thr Ala Ser Leu Phe Cys Pro Thr
 1 5 10 15
 Gly Gln Pro Ala Lys Ala Ala
 20

<210> 214

<211> 23

<212> PRT

<213> Bacterial

<400> 214

Val Leu Thr Phe His Arg Ile Ile Arg Lys Gly Trp Met Phe Leu Leu
 1 5 10 15
 Ala Phe Leu Leu Thr Ala Ser
 20

<210> 215
<211> 33
<212> PRT
<213> Bacterial

<400> 215
Met Lys Ser Phe Ala Phe Met Pro Ile Leu Phe Tyr Ala Asn Asp Phe
1 5 10 15
Ile Ser Glu Arg Glu Gly Gly Lys Met Gly Lys Asn Met Arg Arg
20 25 30
Arg

<210> 216
<211> 31
<212> PRT
<213> Bacterical

<400> 216
Met Arg Lys Lys Met Ser His Ser Arg Phe Thr Phe Leu Leu Ile Leu
1 5 10 15
Ala Leu Phe Ile Phe Phe Ser Gly Cys Ile Ser Glu Val Lys Ser
20 25 30

<210> 217
<211> 30
<212> PRT
<213> Bacterial

<400> 217
Met Tyr Thr Leu Phe Ile Arg Ser Phe Tyr Asp Thr Asn Asn Asp Gly
1 5 10 15
Val Gly Asp Tyr Asn Gly Val Ala Gln Lys Val Asp Tyr Leu
20 25 30

<210> 218
<211> 22
<212> PRT
<213> Environmental

<400> 218
Val Leu Thr Phe His Arg Ile Ile Arg Lys Gly Trp Met Phe Leu Leu
1 5 10 15
Ala Phe Leu Leu Thr Ala
20

<210> 219
<211> 33
<212> PRT
<213> Environmental

<400> 219
Met Ser Leu Phe Lys Lys Ile Phe Pro Trp Ile Val Ser Leu Leu Leu
1 5 10 15
Leu Phe Ser Phe Ile Ala Pro Phe Ser Ile Gln Thr Glu Lys Val Arg
20 25 30
Ala

<210> 220
<211> 25
<212> PRT
<213> Environmental

<400> 220
Met Ala Arg Lys Thr Leu Ala Ile Phe Phe Val Leu Leu Val Leu Leu
1 5 10 15
Ser Leu Ser Ala Val Pro Ala Lys Ala
20 25

<210> 221
<211> 35
<212> PRT
<213> Environmental

<400> 221
Met Pro Ala Phe Lys Ser Lys Val Met His Met Lys Leu Lys Tyr Leu
1 5 10 15
Ala Leu Val Leu Leu Ala Val Ala Ser Ile Gly Leu Leu Ser Thr Pro
20 25 30
Val Gly Ala
35

<210> 222
<211> 28
<212> PRT
<213> Environmental

<400> 222
Met Lys Gln Gln Lys Arg Leu Tyr Ala Arg Leu Leu Thr Leu Leu Phe
1 5 10 15
Ala Leu Ile Phe Leu Leu Pro His Ser Ala Ala Ala
20 25

<210> 223
<211> 21
<212> PRT
<213> Environmental

<400> 223
Met Arg Val Phe Leu Val Val Pro Lys Leu Ser Arg Pro Phe Gln Ala
1 5 10 15
Glu Ser Gln Gln Gln
20

<210> 224
<211> 30
<212> PRT
<213> Bacterial

<400> 224
Met Gln Thr Phe Ala Phe Leu Phe Tyr Ser Lys Lys Gly Trp Val Cys
1 5 10 15
Met Asn Tyr Leu Lys Lys Val Trp Leu Tyr Tyr Ala Ile Val

20

25

30

<210> 225

<211> 35

<212> PRT

<213> Environmental

<400> 225

Met Pro Gln Ala Ile Arg Thr Phe Ser Arg Trp Thr Leu Phe Gly Leu				
1	5	10	15	
Ile Gly Val Phe Leu Leu Gly Leu Val Phe Ser Val Pro Pro Arg Ala				
20	25	30		
Ile Gln Ala				
35				

<210> 226

<211> 28

<212> PRT

<213> Environmental

<400> 226

Val Val His Met Lys Leu Lys Tyr Leu Ala Leu Val Leu Leu Ala Val				
1	5	10	15	
Ala Ser Ile Gly Leu Leu Ser Thr Pro Val Gly Ala				
20	25			

<210> 227

<211> 30

<212> PRT

<213> Environmental

<400> 227

Val Cys Met Asn Tyr Leu Lys Lys Val Trp Leu Tyr Tyr Ala Ile Val				
1	5	10	15	
Ala Thr Leu Ile Ile Tyr Phe Leu Thr Pro Phe Ser Thr Ala				
20	25	30		

<210> 228

<211> 30

<212> PRT

<213> Environmental

<400> 228

Met Pro Gln Leu Tyr Pro Leu Pro Pro Arg Trp Arg Arg Ala Ala Arg				
1	5	10	15	
Gln Gly Leu Ala Ala Leu Thr Leu Ala Thr Thr Ala Leu Gly				
20	25	30		

<210> 229

<211> 30

<212> PRT

<213> Environmental

<400> 229

Met Asn Asn Val Lys Lys Val Trp Leu Tyr Tyr Ser Ile Ile Ala Thr				
1	5	10	15	
Leu Val Ile Ser Phe Phe Thr Pro Phe Ser Thr Ala Gln Ala				

20

25

30

<210> 230
<211> 28
<212> PRT
<213> Environmental

<400> 230
Val Gly Arg Ala Gly Leu Ala His His Ser Asn Thr Ser Ala Lys Gly
1 5 10 15
Thr Tyr Gly Ser Pro Leu Glu Leu Arg Pro Asp Arg
20 25

<210> 231
<211> 23
<212> PRT
<213> Environmental

<400> 231
Met Lys Thr Phe Asn Leu Lys Pro Thr Leu Leu Pro Leu Thr Leu Leu
1 5 10 15
Leu Ser Ser Pro Val Leu Ala
20

<210> 232
<211> 23
<212> PRT
<213> Environmental

<400> 232
Met Lys Pro Ile Asn Thr Leu Leu Ile Ser Ala Leu Ala Val Cys Ser
1 5 10 15
Phe Ser Ser Ala Thr Tyr Ala
20

<210> 233
<211> 30
<212> PRT
<213> Environmental

<400> 233
Met Pro Lys Ser Thr Phe Thr Lys Ser Ile Thr Lys Ser Leu Leu Ala
1 5 10 15
Thr Ser Val Val Val Ser Leu Leu Pro Ala Tyr Ala Gln Ala
20 25 30

<210> 234
<211> 27
<212> PRT
<213> Environmental

<400> 234
Met Leu Lys Arg Ile Thr Val Val Cys Leu Leu Phe Ile Leu Leu Phe
1 5 10 15
Pro Asn Ile Tyr Gly Arg Asn Lys Ala Glu Ala
20 25

<210> 235
<211> 29
<212> PRT
<213> Environmental

<400> 235
Met Ser Leu Asn Asn Phe Lys Val Lys Leu Leu Ser Phe Ala Val Ser
1 5 10 15
Ser Ala Val Leu Ser Leu Ala Pro Asn Leu Ala Asn Ala
20 25

<210> 236
<211> 28
<212> PRT
<213> Environmental

<400> 236
Met Ile Leu Ser Asn Phe Lys Val Lys Leu Leu Ser Phe Ala Val Ser
1 5 10 15
Ser Ala Val Leu Thr Leu Ala Ala Asn Val Ala Asn
20 25

<210> 237
<211> 27
<212> PRT
<213> Environmental

<400> 237
Met Leu Lys Arg Ile Thr Val Val Cys Leu Leu Phe Ile Leu Leu Phe
1 5 10 15
Pro Asn Ile Tyr Glu Gly Asn Lys Ala Glu Ala
20 25

<210> 238
<211> 26
<212> PRT
<213> Environmental

<400> 238
Met Pro Ser Ile Asn Ala Ser Asp Cys Lys Lys Lys Gly Asp Arg Ser
1 5 10 15
Met Lys Arg Lys Lys Trp Thr Ala Leu Ala
20 25

<210> 239
<211> 33
<212> PRT
<213> Environmental

<400> 239
Val Ser Arg Met Phe Ala Lys Arg Phe Lys Thr Ser Leu Leu Pro Leu
1 5 10 15
Phe Ala Gly Phe Leu Leu Leu Phe His Leu Val Leu Ala Gly Pro Thr
20 25 30
Ala

<210> 240
<211> 25
<212> PRT
<213> Environmental

<400> 240
Met Gln Thr Ile Ala Lys Lys Gly Asp Glu Thr Met Lys Gly Lys Lys
1 5 10 15
Trp Thr Ala Leu Ala Leu Thr Leu Pro
20 25

<210> 241
<211> 25
<212> PRT
<213> Environmental

<400> 241
Met Gln Lys Lys Gly Asp Glu Thr Met Lys Gly Lys Lys Trp Thr Ala
1 5 10 15
Leu Ala Leu Thr Leu Pro Leu Ala Ala
20 25

<210> 242
<211> 36
<212> PRT
<213> Bacterical

<400> 242
Val Asp Pro Lys Asn Cys Ser Gln Phe Met Gln Thr Ile Ala Lys Lys
1 5 10 15
Gly Asp Glu Thr Met Lys Gly Lys Lys Trp Thr Ala Leu Ala Leu Thr
20 25 30
Leu Pro Leu Ala
35

<210> 243
<211> 36
<212> PRT
<213> Environmental

<400> 243
Met Gln Thr Ile Ala Lys Lys Gly Asp Glu Thr Met Lys Gly Lys Lys
1 5 10 15
Trp Thr Ala Leu Ala Leu Thr Leu Pro Leu Ala Ala Ser Leu Ser Thr
20 25 30
Gly Val His Ala
35

<210> 244
<211> 23
<212> PRT
<213> Environmental

<400> 244
Met Lys Thr Phe Lys Leu Lys Arg Thr Phe Leu Pro Leu Thr Leu Leu
1 5 10 15
Leu Ser Ala Pro Ala Phe Ala

<210> 245
<211> 25
<212> PRT
<213> Environmental

<400> 245
Met Gln Thr Ile Ala Lys Lys Gly Asp Glu Thr Met Lys Gly Lys Lys
1 5 10 15
Trp Thr Ala Leu Ala Leu Thr Leu Pro
20 25

<210> 246
<211> 22
<212> PRT
<213> Environmental

<400> 246
Met Lys Asn Ile Ile Arg Leu Cys Ala Ala Ser Ala Ile Leu Thr Val
1 5 10 15
Ser His Ala Ser Tyr Ala
20

<210> 247
<211> 23
<212> PRT
<213> Environmental

<400> 247
Met Lys Thr Phe Lys Leu Lys Arg Thr Phe Leu Pro Leu Thr Leu Leu
1 5 10 15
Leu Ser Ala Pro Ala Phe Ala
20

<210> 248
<211> 23
<212> PRT
<213> Environmental

<400> 248
Met Lys Thr Phe Lys Leu Lys Arg Thr Phe Leu Pro Leu Thr Leu Leu
1 5 10 15
Leu Ser Ala Pro Ala Phe Ala
20

<210> 249
<211> 25
<212> PRT
<213> Environmental

<400> 249
Met Lys Leu Met Lys Gly Lys Lys Trp Thr Ala Leu Ala Leu Thr Leu
1 5 10 15
Pro Leu Ala Ala Ser Leu Ser Thr Gly
20 25

<210> 250
<211> 36
<212> PRT
<213> Environmental

<400> 250
Met Gln Thr Ile Ala Lys Lys Gly Asp Glu Thr Met Lys Gly Lys Lys
1 5 10 15
Trp Thr Ala Leu Ala Leu Thr Leu Pro Leu Ala Ala Ser Leu Ser Thr
20 25 30
Gly Val His Ala
35

<210> 251
<211> 25
<212> PRT
<213> Environmental

<400> 251
Met Gln Thr Ile Ala Lys Lys Gly Asp Glu Thr Met Lys Gly Lys Lys
1 5 10 15
Trp Thr Ala Leu Ala Leu Thr Leu Pro
20 25

<210> 252
<211> 25
<212> PRT
<213> Environmental

<400> 252
Met Lys Phe Lys Lys Ser Leu Ser Ala Gly Leu Leu Leu Phe Gly Gly
1 5 10 15
Leu Ser Gly Val Thr Pro Ser Val Ala
20 25

<210> 253
<211> 23
<212> PRT
<213> Environmental

<400> 253
Met Lys Pro Ser Lys Phe Val Phe Leu Ser Ala Ala Ile Ala Cys Ser
1 5 10 15
Leu Ser Ser Thr Ala Asn Ala
20

<210> 254
<211> 23
<212> PRT
<213> Environmental

<400> 254
Val Ser Leu Thr Lys Lys Ala Gln Tyr Glu Pro Asn Thr Ala Pro Arg
1 5 10 15
Leu Ser Thr Ser Leu Gln Ser
20

```

<210> 255
<211> 30
<212> PRT
<213> Environmental

<400> 255
Met Thr Ala Lys Ala Asp Asp Leu Arg Ile Tyr Gln Ile Met Val Glu
 1           5          10          15
Ser Phe Val Asp Gly Asp Lys Gln Val Gly His Gly Thr Gly
 20          25          30

<210> 256
<211> 25
<212> PRT
<213> Environmental

<400> 256
Met Lys Met Lys Ser Arg Ala Trp Leu Leu Gly Ser Ala Val Ala Met
 1           5          10          15
Ala Leu Ala Ser Ser Ala Ala Asn Ala
 20          25

<210> 257
<211> 16
<212> PRT
<213> Environmental

<400> 257
Met Tyr Arg Val Ile Pro Ile Ile Leu Ile Met Ser Met Ile Val Ala
 1           5          10          15

<210> 258
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 258
gaacactagt aggaggttaac ttatggcaaa gtattccgag ctcgaag      47

<210> 259
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 259
gaacgggtctc attccgccag ccagcaaggg gatgagcgg      39

<210> 260
<211> 33
<212> DNA
<213> Artificial Sequence

```

```

<220>
<223> primer

<400> 260
gaaccgtctc aaaacacggc ccatgcctac ggc 33

<210> 261
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 261
gaacgtctca cctcgacttc caccccaacg aggtcaag 38

<210> 262
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 262
gaacgtctca ggcgcttga ctacgtaaag ggc 33

<210> 263
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 263
gaacggtctc aacaagatgg atgaggcatt tg 32

<210> 264
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 264
gaaccgtctc acgatataat ctgaaacaag tacttgc 38

<210> 265
<211> 35
<212> DNA
<213> Artificial Sequence

<220>

```

<223> primer		
<400> 265		
gaaccgtctc agaagcacga gcatagttta ctacg	35	
<210> 266		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 266		
gaaccgtctc aaagggtgggt ttatgtgcgg	30	
<210> 267		
<211> 36		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 267		
gaacgtctca ggaatccaaa tggcgatatat tccccgc	36	
<210> 268		
<211> 33		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 268		
gaacgggtctc agtttatcat attgatgagc tcc	33	
<210> 269		
<211> 33		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 269		
gaaccgtctc agaggttagtt ggcatatatat ttg	33	
<210> 270		
<211> 31		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		

<400> 270	
gaacgtctca cgccaggcat caacgccc g	31
<210> 271	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 271	
gaacgtctca ttgttagtaga gcgggaagtc	30
<210> 272	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 272	
gaacggtctc aatcggtgtc gtggtttgct ac	32
<210> 273	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 273	
gaaccgtctc acttccaccc tgcgaggtgg c	31
<210> 274	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 274	
gaaccgtctc accttccaac ct tgctcgag c	31
<210> 275	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 275	
tcgagactga ctctcaccca acaccgcaat agc	33

<210> 276		
<211> 50		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 276		
gaacactagt aggaggtaac ttatggccaa gtacctggag ctcgaagagg		50
<210> 277		
<211> 31		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 277		
gaacggtctc attccccgg cgagcaaggg c		31
<210> 278		
<211> 32		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 278		
gaaccgtctc aaaacaccgc ccacgcctac gg		32
<210> 279		
<211> 29		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 279		
gaacgtctca cctcgacttc caccccaac		29
<210> 280		
<211> 31		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 280		
gaacgtctca ggcgcttcga ctacgtcaag g		31
<210> 281		

<211> 34		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 281		
gaacggtctc aacaagatgg acgcggcctt tgac		34
<210> 282		
<211> 35		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 282		
gaaccgtctc acgatataat ttggaacaag taccc		35
<210> 283		
<211> 31		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 283		
gaaccgtctc agaaggcaccc acatagtcta c		31
<210> 284		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 284		
gaaccgtctc aaaggtgggt ctacgttcccg		30
<210> 285		
<211> 36		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 285		
gaacgtctca ggaatccata ttgcggagat tccggc		36
<210> 286		
<211> 32		
<212> DNA		

<213> Artificial Sequence	
<220>	
<223> primer	
<400> 286	
gaacggtctc agtttatcat gttcacgagc tc	32
<210> 287	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 287	
gaaccgtctc agaggttagtt ggccgtgtac ttg	33
<210> 288	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 288	
gaacgtctca gccatgcgtc aacgcccgtg	30
<210> 289	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 289	
gaacgtctca ttgttagtaga gcgggaagtgc g	31
<210> 290	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 290	
gaacggtctc aatcggtgtc gtggtttgca acg	33
<210> 291	
<211> 34	
<212> DNA	
<213> Artificial Sequence	

<220>		
<223> primer		
<400> 291		
gaaccgtctc acttccaccg gcgaggtggc cgta		34
<210> 292		
<211> 32		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 292		
gaaccgtctc accttccggc cttgctcgag cc		32
<210> 293		
<211> 35		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 293		
tcgagactga ctctcagccc accccgcagt agctc		35
<210> 294		
<211> 50		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 294		
gaacactagt aggaggttaac ttatggccaa gtactccgag ctggaagagg		50
<210> 295		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 295		
gaacgggtctc attcctccccg cgagcaaggg		30
<210> 296		
<211> 31		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		

<400> 296
gaaccgtctc aaaacaccgc ccacgcctat g 31
<210> 297
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 297
gaacgtctca cctcgacttc cacccgaacg agc 33
<210> 298
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 298
gaacgtctca ggcgcttcga ctacgtcaag g 31
<210> 299
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 299
gaacggtctc aacaagatgg acgaggcctt cg 32
<210> 300
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 300
gaaccgtctc acgatataat ctggaacaag 30
<210> 301
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 301

gaaccgtctc agaaggactg acatcgttta ctacg	35
<210> 302	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 302	
gaaccgtctc aaaggtgggt ttacgttccg	30
<210> 303	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 303	
gaacgtctca ggaatccata tcgcccggaaat	30
<210> 304	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 304	
gaacggtctc agtttatcat gtttatgagc	30
<210> 305	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 305	
gaaccgtctc agaggttagtt ggccgtgtat ttac	34
<210> 306	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 306	
gaacgtctca cgccaggcat cgatgccgat	30

<210> 307		
<211> 34		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 307		
gaacgtctca ttgttagtaga gggcgaagtc aaag		34
<210> 308		
<211> 36		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 308		
gaacggtctc aatcggtatc gtggttggct acaaac		36
<210> 309		
<211> 34		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 309		
gaaccgtctc acttcctccg gcgagggttgt catg		34
<210> 310		
<211> 32		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 310		
gaaccgtctc accttccggc tttgcttgag gc		32
<210> 311		
<211> 36		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 311		
tcgagactga ctctcaccca acaccgcagt agctcc		36
<210> 312		
<211> 38		

<212> DNA
 <213> Artificial Sequence

<220>
 <223> primer

<400> 312
 cacacagcag caaccaacct cgagactgac tctcascc

38

<210> 313
 <211> 461
 <212> PRT
 <213> Pyrococcus sp.

<400> 313
 Met Lys Lys Phe Val Ala Leu Leu Ile Thr Met Phe Phe Val Val Ser
 1 5 10 15
 Met Ala Ala Val Ala Gln Pro Ala Ser Ala Ala Lys Tyr Ser Glu Leu
 20 25 30
 Glu Glu Gly Gly Val Ile Met Gln Ala Phe Tyr Trp Asp Val Pro Ala
 35 40 45
 Gly Gly Ile Trp Trp Asp Thr Ile Arg Ser Lys Ile Pro Glu Trp Tyr
 50 55 60
 Glu Ala Gly Ile Ser Ala Ile Trp Ile Pro Pro Ala Ser Lys Gly Met
 65 70 75 80
 Gly Gly Ala Tyr Ser Met Gly Tyr Asp Pro Tyr Asp Phe Phe Asp Leu
 85 90 95
 Gly Glu Tyr Asn Gln Lys Gly Thr Val Glu Thr Arg Phe Gly Ser Lys
 100 105 110
 Gln Glu Leu Ile Asn Met Ile Asn Thr Ala His Ala Tyr Gly Ile Lys
 115 120 125
 Val Ile Ala Asp Ile Val Ile Asn His Arg Ala Gly Asp Leu Glu
 130 135 140
 Trp Asn Pro Phe Val Gly Asp Tyr Thr Trp Thr Asp Phe Ser Lys Val
 145 150 155 160
 Ala Ser Gly Lys Tyr Thr Ala Asn Tyr Leu Asp Phe His Pro Asn Glu
 165 170 175
 Val Lys Cys Cys Asp Glu Gly Thr Phe Gly Gly Phe Pro Asp Ile Ala
 180 185 190
 His Glu Lys Glu Trp Asp Gln His Trp Leu Trp Ala Ser Asp Glu Ser
 195 200 205
 Tyr Ala Ala Tyr Leu Arg Ser Ile Gly Val Asp Ala Trp Arg Phe Asp
 210 215 220
 Tyr Val Lys Gly Tyr Gly Ala Trp Val Val Lys Asp Trp Leu Asn Trp
 225 230 235 240
 Trp Gly Gly Trp Ala Val Gly Glu Tyr Trp Asp Thr Asn Val Asp Ala
 245 250 255
 Leu Leu Asn Trp Ala Tyr Ser Ser Gly Ala Lys Val Phe Asp Phe Pro
 260 265 270
 Leu Tyr Tyr Lys Met Asp Glu Ala Phe Asp Asn Thr Asn Ile Pro Ala
 275 280 285
 Leu Val Asp Ala Leu Gln Asn Gly Gly Thr Val Val Ser Arg Asp Pro
 290 295 300
 Phe Lys Ala Val Thr Phe Val Ala Asn His Asp Thr Asp Ile Ile Trp
 305 310 315 320
 Asn Lys Tyr Pro Ala Tyr Ala Phe Ile Leu Thr Tyr Glu Gly Gln Pro

325	330	335
Val Ile Phe Tyr Arg Asp Tyr Glu Glu Trp Leu Asn Lys Asp Lys Leu		
340	345	350
Asn Asn Leu Ile Trp Ile His Asp His Leu Ala Gly Gly Ser Thr Ser		
355	360	365
Ile Val Tyr Tyr Asp Ser Asp Glu Leu Ile Phe Val Arg Asn Gly Asp		
370	375	380
Ser Lys Arg Pro Gly Leu Ile Thr Tyr Ile Asn Leu Gly Ser Ser Lys		
385	390	395
Val Gly Arg Trp Val Tyr Val Pro Lys Phe Ala Gly Ala Cys Ile His		
405	410	415
Glu Tyr Thr Gly Asn Leu Gly Gly Trp Val Asp Lys Tyr Val Glu Ser		
420	425	430
Ser Gly Trp Val Tyr Leu Glu Ala Pro Ala Tyr Asp Pro Ala Ser Gly		
435	440	445
Gln Tyr Gly Tyr Thr Val Trp Ser Tyr Cys Gly Val Gly		
450	455	460

<210> 314

<211> 460

<212> PRT

<213> Pyrococcus furiosus

<400> 314

Val Asn Ile Lys Lys Leu Thr Pro Leu Leu Thr Leu Leu Phe Phe		
1	5	10
Ile Val Leu Ala Ser Pro Val Ser Ala Ala Lys Tyr Leu Glu Leu Glu		
20	25	30
Glu Gly Gly Val Ile Met Gln Ala Phe Tyr Trp Asp Val Pro Gly Gly		
35	40	45
Gly Ile Trp Trp Asp His Ile Arg Ser Lys Ile Pro Glu Trp Tyr Glu		
50	55	60
Ala Gly Ile Ser Ala Ile Trp Leu Pro Pro Pro Ser Lys Gly Met Ser		
65	70	75
Gly Gly Tyr Ser Met Gly Tyr Asp Pro Tyr Asp Tyr Phe Asp Leu Gly		
85	90	95
Glu Tyr Tyr Gln Lys Gly Thr Val Glu Thr Arg Phe Gly Ser Lys Glu		
100	105	110
Glu Leu Val Arg Leu Ile Gln Thr Ala His Ala Tyr Gly Ile Lys Val		
115	120	125
Ile Ala Asp Val Val Ile Asn His Arg Ala Gly Gly Asp Leu Glu Trp		
130	135	140
Asn Pro Phe Val Gly Asp Tyr Thr Trp Thr Asp Phe Ser Lys Val Ala		
145	150	155
Ser Gly Lys Tyr Thr Ala Asn Tyr Leu Asp Phe His Pro Asn Glu Leu		
165	170	175
His Cys Cys Asp Glu Gly Thr Phe Gly Gly Phe Pro Asp Ile Cys His		
180	185	190
His Lys Glu Trp Asp Gln Tyr Trp Leu Trp Lys Ser Asn Glu Ser Tyr		
195	200	205
Ala Ala Tyr Leu Arg Ser Ile Gly Phe Asp Gly Trp Arg Phe Asp Tyr		
210	215	220
Val Lys Gly Tyr Gly Ala Trp Val Val Arg Asp Trp Leu Asn Trp Trp		
225	230	235
Gly Gly Trp Ala Val Gly Glu Tyr Trp Asp Thr Asn Val Asp Ala Leu		
245	250	255
Leu Ser Trp Ala Tyr Glu Ser Gly Ala Lys Val Phe Asp Phe Pro Leu		

260	265	270
Tyr Tyr Lys Met Asp Glu Ala Phe Asp Asn Asn Asn Ile Pro Ala Leu		
275	280	285
Val Tyr Ala Leu Gln Asn Gly Gln Thr Val Val Ser Arg Asp Pro Phe		
290	295	300
Lys Ala Val Thr Phe Val Ala Asn His Asp Thr Asp Ile Ile Trp Asn		
305	310	315
Lys Tyr Pro Ala Tyr Ala Phe Ile Leu Thr Tyr Glu Gly Gln Pro Val		
325	330	335
Ile Phe Tyr Arg Asp Phe Glu Glu Trp Leu Asn Lys Asp Lys Leu Ile		
340	345	350
Asn Leu Ile Trp Ile His Asp His Leu Ala Gly Gly Ser Thr Thr Ile		
355	360	365
Val Tyr Tyr Asp Asn Asp Glu Leu Ile Phe Val Arg Asn Gly Asp Ser		
370	375	380
Arg Arg Pro Gly Leu Ile Thr Tyr Ile Asn Leu Ser Pro Asn Trp Val		
385	390	395
Gly Arg Trp Val Tyr Val Pro Lys Phe Ala Gly Ala Cys Ile His Glu		
405	410	415
Tyr Thr Gly Asn Leu Gly Gly Trp Val Asp Lys Arg Val Asp Ser Ser		
420	425	430
Gly Trp Val Tyr Leu Glu Ala Pro Pro His Asp Pro Ala Asn Gly Tyr		
435	440	445
Tyr Gly Tyr Ser Val Trp Ser Tyr Cys Gly Val Gly		
450	455	460

<210> 315

<211> 484

<212> PRT

<213> Thermococcus sp.

<400> 315

Ser Glu Ser Gln Cys Thr Ala Thr Cys Thr Trp Arg Val Val Tyr Met		
1	5	10
15		
Ser Ala Lys Lys Leu Leu Ala Leu Leu Phe Val Leu Ala Val Leu Val		
20	25	30
Gly Val Ala Val Ile Pro Ala Arg Val Gly Ile Ala Pro Val Ser Ala		
35	40	45
Gly Ala Thr Ser Arg Pro Ser Leu Glu Glu Gly Val Ile Met Gln		
50	55	60
Ala Phe Tyr Trp Asp Val Pro Ala Gly Gly Ile Trp Trp Asp Thr Ile		
65	70	75
80		
Arg Ser Lys Ile Pro Asp Trp Ala Ser Ala Gly Ile Ser Ala Ile Trp		
85	90	95
Ile Pro Pro Ala Ser Lys Gly Met Ser Gly Ala Tyr Ser Met Gly Tyr		
100	105	110
Asp Pro Tyr Asp Phe Phe Asp Leu Gly Glu Tyr Tyr Gln Lys Gly Thr		
115	120	125
Val Glu Thr Arg Phe Gly Ser Lys Gln Glu Leu Ile Asn Met Ile Asn		
130	135	140
Thr Ala His Ser Tyr Gly Ile Lys Val Ile Ala Asp Ile Val Ile Asn		
145	150	155
160		
His Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Thr Asn Ser Tyr		
165	170	175
Thr Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn		
180	185	190
Tyr Leu Asp Phe His Pro Asn Glu Val Lys Cys Cys Asp Glu Gly Thr		

195	200	205													
Phe	Gly	Gly	Phe	Pro	Asp	Ile	Ala	His	Glu	Lys	Ser	Trp	Asp	Gln	Tyr
210			215								220				
Trp	Leu	Trp	Ala	Ser	Gln	Lys	Ser	Tyr	Ala	Ala	Tyr	Leu	Arg	Ser	Ile
225			230							235					240
Gly	Ile	Asp	Ala	Trp	Arg	Phe	Asp	Tyr	Val	Lys	Gly	Tyr	Gly	Ala	Trp
	245					250						255			
Val	Val	Lys	Asp	Trp	Leu	Lys	Trp	Trp	Ala	Leu	Ala	Val	Gly	Glu	Tyr
	260					265						270			
Trp	Asp	Thr	Asn	Val	Asp	Ala	Leu	Leu	Asn	Trp	Ala	Tyr	Ser	Ser	Gly
	275					280						285			
Ala	Lys	Val	Phe	Asp	Phe	Pro	Leu	Tyr	Tyr	Lys	Met	Asp	Glu	Ala	Phe
	290					295					300				
Asp	Asn	Lys	Asn	Ile	Pro	Ala	Leu	Val	Ser	Ala	Leu	Gln	Asn	Gly	Gln
	305					310					315				320
Thr	Val	Val	Ser	Arg	Asp	Pro	Phe	Lys	Ala	Val	Thr	Phe	Val	Ala	Asn
			325					330					335		
His	Asp	Thr	Asp	Ile	Ile	Trp	Asn	Lys	Tyr	Pro	Ala	Tyr	Ala	Phe	Ile
	340					345						350			
Leu	Thr	Tyr	Glu	Gly	Gln	Pro	Val	Ile	Phe	Tyr	Arg	Asp	Tyr	Glu	Glu
	355					360					365				
Trp	Leu	Asn	Lys	Asp	Arg	Leu	Lys	Asn	Leu	Ile	Trp	Ile	His	Asn	Asn
	370					375					380				
Leu	Ala	Gly	Gly	Ser	Thr	Ser	Ile	Val	Tyr	Tyr	Asp	Asn	Asp	Glu	Leu
	385					390					395				400
Ile	Phe	Val	Arg	Asn	Gly	Tyr	Gly	Asn	Lys	Pro	Gly	Leu	Ile	Thr	Tyr
		405							410					415	
Ile	Asn	Leu	Gly	Ser	Ser	Lys	Val	Gly	Arg	Trp	Val	Tyr	Val	Pro	Lys
	420					425						430			
Phe	Ala	Gly	Ser	Cys	Ile	His	Glu	Tyr	Thr	Gly	Asn	Leu	Gly	Gly	Trp
	435					440						445			
Val	Asp	Lys	Tyr	Val	Gly	Ser	Asn	Gly	Trp	Val	Tyr	Leu	Glu	Ala	Pro
	450					455						460			
Ala	His	Asp	Pro	Ala	Lys	Gly	Gln	Tyr	Gly	Tyr	Ser	Val	Trp	Ser	Tyr
	465				470					475				480	
Cys	Gly	Val	Gly												

<210> 316

<211> 457

<212> PRT

<213> Thermococcus hydrothermalis

<400> 316

Met	Ala	Arg	Lys	Val	Leu	Val	Ala	Leu	Leu	Val	Phe	Leu	Val	Val	Leu
1				5				10					15		
Ser	Val	Ser	Ala	Val	Pro	Ala	Lys	Ala	Glu	Thr	Leu	Glu	Asn	Gly	Gly
					20				25				30		
Val	Ile	Met	Gln	Ala	Phe	Tyr	Trp	Asp	Val	Pro	Gly	Gly	Gly	Ile	Trp
					35				40			45			
Trp	Asp	Thr	Ile	Ala	Gln	Lys	Ile	Pro	Asp	Trp	Ala	Ser	Ala	Gly	Ile
					50				55			60			
Ser	Ala	Ile	Trp	Ile	Pro	Pro	Ala	Ser	Lys	Gly	Met	Ser	Gly	Gly	Tyr
	65				70					75			80		
Ser	Met	Gly	Tyr	Asp	Pro	Tyr	Asp	Phe	Phe	Asp	Leu	Gly	Glu	Tyr	Tyr
					85				90			95			
Gln	Lys	Gly	Ser	Val	Glu	Thr	Arg	Phe	Gly	Ser	Lys	Glu	Glu	Leu	Val

100	105	110
Asn Met Ile Asn Thr Ala His Ala His Asn Met Lys Val Ile Ala Asp		
115	120	125
Ile Val Ile Asn His Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe		
130	135	140
Thr Asn Ser Tyr Thr Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys		
145	150	155
Tyr Thr Ala Asn Tyr Leu Asp Phe His Pro Asn Glu Leu His Ala Gly		
165	170	175
Asp Ser Gly Thr Phe Gly Gly Tyr Pro Asp Ile Cys His Asp Lys Ser		
180	185	190
Trp Asp Gln His Trp Leu Trp Ala Ser Asn Glu Ser Tyr Ala Ala Tyr		
195	200	205
Leu Arg Ser Ile Gly Ile Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly		
210	215	220
Tyr Ala Pro Trp Val Val Lys Asn Trp Leu Asn Arg Trp Gly Gly Trp		
225	230	235
Ala Val Gly Glu Tyr Trp Asp Thr Asn Val Asp Ala Leu Leu Ser Trp		
245	250	255
Ala Tyr Asp Ser Gly Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys		
260	265	270
Met Asp Glu Ala Phe Asp Asn Asn Ile Pro Ala Leu Val Asp Ala		
275	280	285
Leu Lys Asn Gly Gly Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val		
290	295	300
Thr Phe Val Ala Asn His Asp Thr Asn Ile Ile Trp Asn Lys Tyr Pro		
305	310	315
Ala Tyr Ala Phe Ile Leu Thr Tyr Glu Gly Gln Pro Ala Ile Phe Tyr		
325	330	335
Arg Asp Tyr Glu Glu Trp Leu Asn Lys Asp Arg Leu Arg Asn Leu Ile		
340	345	350
Trp Ile His Asp His Leu Ala Gly Gly Ser Thr Asp Ile Ile Tyr Tyr		
355	360	365
Asp Ser Asp Glu Leu Ile Phe Val Arg Asn Gly Tyr Gly Asp Lys Pro		
370	375	380
Gly Leu Ile Thr Tyr Ile Asn Leu Gly Ser Ser Lys Ala Gly Arg Trp		
385	390	395
Val Tyr Val Pro Lys Phe Ala Gly Ser Cys Ile His Glu Tyr Thr Gly		
405	410	415
Asn Leu Gly Gly Trp Ile Asp Lys Trp Val Asp Ser Ser Gly Arg Val		
420	425	430
Tyr Leu Glu Ala Pro Ala His Asp Pro Ala Asn Gly Gln Tyr Gly Tyr		
435	440	445
Ser Val Trp Ser Tyr Cys Gly Val Gly		
450	455	

<210> 317

<211> 340

<212> PRT

<213> Artificial Sequence

<220>

<223> consensus sequence

<400> 317

Ser Ala Leu Glu Gly Gly Val Ile Met Gln Ala Phe Tyr Trp Asp Val
1 5 10 15

Pro Gly Gly Ile Trp Trp Asp Ile Lys Ile Pro Trp Ala Gly Ile Ser
 20 25 30
 Ala Ile Trp Pro Pro Ser Lys Gly Met Gly Tyr Ser Met Gly Tyr Asp
 35 40 45
 Pro Tyr Asp Phe Asp Leu Gly Glu Tyr Gln Lys Gly Glu Thr Arg Phe
 50 55 60
 Gly Ser Lys Glu Leu Ile Thr Ala His Lys Val Ile Ala Asp Val Ile
 65 70 75 80
 Asn His Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Tyr Thr Trp
 85 90 95
 Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr Leu
 100 105 110
 Asp Phe His Pro Asn Glu Asp Gly Thr Phe Gly Gly Pro Asp Ile His
 115 120 125
 Lys Trp Asp Gln Trp Leu Trp Ser Ser Tyr Ala Ala Tyr Leu Arg Ser
 130 135 140
 Ile Gly Asp Trp Arg Phe Asp Tyr Val Lys Gly Tyr Trp Val Val Trp
 145 150 155 160
 Leu Trp Ala Val Gly Glu Tyr Trp Asp Thr Asn Val Asp Ala Leu Leu
 165 170 175
 Trp Ala Tyr Ser Gly Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys
 180 185 190
 Met Asp Glu Ala Phe Asp Asn Asn Ile Pro Ala Leu Val Ala Leu Asn
 195 200 205
 Gly Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala
 210 215 220
 Asn His Asp Thr Ile Ile Trp Asn Lys Tyr Ala Tyr Ala Phe Ile Leu
 225 230 235 240
 Thr Tyr Glu Gly Gln Pro Ile Phe Tyr Arg Asp Glu Glu Trp Leu Asn
 245 250 255
 Lys Asp Leu Asn Leu Ile Trp Ile His Leu Ala Gly Gly Ser Thr Ile
 260 265 270
 Tyr Tyr Asp Asp Glu Ile Phe Val Arg Asn Gly Pro Gly Leu Ile Thr
 275 280 285
 Tyr Ile Asn Leu Gly Arg Trp Val Tyr Val Pro Lys Phe Ala Gly Cys
 290 295 300
 Ile His Glu Tyr Thr Gly Asn Leu Gly Gly Trp Asp Lys Val Ser Gly
 305 310 315 320
 Val Tyr Glu Ala Pro Asp Pro Ala Gly Tyr Gly Tyr Val Trp Ser Tyr
 325 330 335
 Cys Gly Val Gly
 340

<210> 318

<211> 463

<212> PRT

<213> Artificial Sequence

<220>

<223> clone

<400> 318

Met Arg Arg Ser Ala Arg Val Leu Val Leu Ile Ile Ala Phe Phe Leu
 1 5 10 15

Leu Ala Gly Ile Tyr Tyr Pro Ser Thr Ser Ala Ala Lys Tyr Ser Glu
 20 25 30

Leu Glu Gln Gly Gly Val Ile Met Gln Ala Phe Tyr Trp Asp Val Pro

35	40	45
Glu	Gly	Gly
Ile	Trp	Trp
Asp	Thr	Ile
Arg	Gln	Lys
Ile	Pro	Glu
50	55	60
Tyr	Asp	Ala
Gly	Ile	Ser
Ala	Ile	Trp
65	70	75
Met	Gly	Gly
Ala	Tyr	Ser
Met	Gly	Tyr
85	90	95
Leu	Gly	Glu
Phe	Tyr	Gln
Lys	Gly	Thr
100	105	110
Lys	Glu	Glu
Leu	Val	Asn
Met	Ile	Ser
115	120	125
Lys	Val	Ile
Ala	Asp	Ile
130	135	140
Glu	Trp	Asn
145	150	155
Pro	Tyr	Val
Gly	Asp	Tyr
165	170	175
Asn	Tyr	Ser
180	185	190
Asp	His	Leu
195	200	205
Leu	Val	Pro
Phe	Asn	Gln
210	215	220
Ser	Tyr	Ala
Ala	Tyr	Leu
Arg	Ser	Ile
225	230	235
Asp	Tyr	Val
240	245	250
Lys	Gly	Trp
255	260	265
Gly	Trp	Ala
270	275	280
Trp	Ala	Val
285	290	295
Asn	Tyr	Ser
295	300	305
Gly	Ala	Lys
310	315	320
Val	Leu	Trp
325	330	335
Tyr	Ala	Tyr
340	345	350
Pro	Val	Ile
345	350	355
Phe	Tyr	Arg
355	360	365
Asp	Tyr	Asp
360	365	370
Glu	Trp	Ile
370	375	380
Ile	Tyr	Tyr
375	380	385
Asp	Asp	Gly
385	390	395
Tyr	Gly	Asp
390	395	400
Arg	Pro	Gly
400	405	410
Trp	Ala	Glu
405	410	415
Arg	Trp	Val
410	415	420
Trp	Val	Asn
415	420	425
Val	Val	Gly
420	425	430
Gly	Ser	Lys
425	430	435
Trp	Ala	Gly
435	440	445
Asp	Pro	Pro
440	445	450
His	His	Asp
445	450	455
Arg	Glu	Tyr
450	455	460
Tyr	Tyr	Gly
455	460	465
Gly	Tyr	Tyr
460	465	470
Tyr	Gly	Tyr
465	470	475
Ser	Val	Trp
470	475	480
Trp	Ser	Tyr
475	480	485
Ser	Tyr	Ala
480	485	490
Tyr	Ala	Gly
485	490	495
Gly	Val	Gly
490	495	500

<210> 319

<211> 306

<212> PRT

<213> Artificial Sequence

<220>

<223> consensus sequence

<400> 319

Gly	Gly	Ile	Met	Gln	Ala	Phe	Tyr	Trp	Asp	Val	Pro	Gly	Gly	Ile	Trp
1			5						10					15	
Trp	Asp	Ile	Lys	Ile	Pro	Trp	Ala	Gly	Ile	Ser	Ala	Ile	Trp	Pro	Pro
			20						25					30	
Ser	Lys	Gly	Met	Gly	Tyr	Ser	Met	Gly	Tyr	Asp	Pro	Tyr	Asp	Phe	Asp
	35					40						45			
Leu	Gly	Glu	Gln	Lys	Gly	Glu	Thr	Arg	Phe	Gly	Ser	Lys	Glu	Leu	Ile
	50					55					60				
Thr	Ala	His	Lys	Val	Ile	Ala	Asp	Val	Ile	Asn	His	Arg	Ala	Gly	Gly
65					70				75					80	
Leu	Glu	Trp	Asn	Pro	Tyr	Thr	Trp	Thr	Asp	Phe	Ser	Lys	Val	Ala	Ser
		85						90						95	
Gly	Lys	Tyr	Ala	Tyr	Asp	Phe	His	Pro	Asn	Asp	Gly	Thr	Phe	Gly	Gly
	100						105					110			
Pro	Asp	Ile	His	Gln	Trp	Leu	Trp	Ser	Ser	Tyr	Ala	Ala	Tyr	Leu	Arg
	115					120					125				
Ser	Ile	Gly	Asp	Trp	Phe	Asp	Tyr	Val	Lys	Gly	Tyr	Trp	Val	Val	Trp
	130					135				140					
Leu	Trp	Ala	Val	Gly	Glu	Tyr	Trp	Asp	Thr	Asn	Val	Asp	Ala	Leu	Trp
145					150				155					160	
Ala	Tyr	Ser	Ala	Lys	Val	Phe	Asp	Phe	Leu	Tyr	Tyr	Lys	Met	Asp	Ala
		165					170					175			
Phe	Asp	Asn	Asn	Ile	Pro	Ala	Leu	Val	Ala	Gly	Thr	Val	Val	Ser	Arg
		180					185				190				
Asp	Pro	Phe	Lys	Ala	Val	Thr	Phe	Val	Ala	Asn	His	Asp	Thr	Ile	Ile
	195					200				205					
Trp	Asn	Lys	Tyr	Ala	Tyr	Ala	Phe	Ile	Leu	Thr	Tyr	Glu	Gly	Gln	Pro
	210					215				220					
Ile	Phe	Tyr	Arg	Asp	Glu	Glu	Trp	Leu	Asn	Lys	Asp	Leu	Asn	Leu	Ile
225					230				235					240	
Trp	Ile	His	Leu	Ala	Gly	Gly	Ser	Thr	Ile	Tyr	Tyr	Asp	Asp	Glu	Ile
		245					250					255			
Phe	Arg	Gly	Pro	Gly	Leu	Ile	Thr	Tyr	Ile	Asn	Leu	Arg	Trp	Val	Val
		260				265				270					
Lys	Phe	Ala	Gly	Ile	His	Glu	Tyr	Thr	Gly	Leu	Gly	Gly	Trp	Asp	Val
	275					280				285					
Gly	Val	Ala	Pro	Asp	Pro	Ala	Gly	Tyr	Gly	Tyr	Val	Trp	Ser	Tyr	Gly
	290				295				300						
Val	Gly														
	305														

<210> 320

<211> 1392

<212> DNA

<213> Artificial Sequence

<220>

<223> clone

<400> 320

atgaggagat ccgcaagggt tttggttctg attatagcgt ttttcctcct ggccggggatt

tactaccctt	ccacgagtgc	cgcgaagtac	tccgagctgg	agcaggcg	agtcataatg	120
caggccttct	actgggacgt	tccggaggg	gaaatctgg	gggacacaat	acggcagaag	180
atccctgaat	ggtacatgc	aggcatatcc	gccatctgg	taccccccgc	gagaaggc	240
atgggcgggg	cctactcgat	gggctacgac	ccctacgatt	acttcgatct	gggcgagtt	300
taccagaagg	gaaccgttga	gaccgccttc	ggctccaagg	aagagctcg	caacatgatc	360
tccacggccc	accagtaggg	catcaaggtt	atagcggaca	tagtgataaa	ccaccgcga	420
ggtgagacc	tcgaatggaa	cccatacgtc	ggcgactata	cctggacgga	ctttctaag	480
gtcgccctcg	ggaaatacaa	ggcccactac	atggacttcc	atccaaacaa	ctacagcacc	540
tcagacgagg	gaaccttcgg	tggctcccc	gacattgatc	acctcgtgcc	cttcaaccag	600
tactggctgt	gggcgagcaa	cgagagctac	gccgcctacc	tcaggagcat	aggatcgat	660
gcgtggcgct	ttgactacgt	taagggctac	ggcgctggg	tcgtcaagga	ctggctgagt	720
cagtggggcg	gctggccgt	cgcgagttac	tggcacacca	acgtcgatgc	gctcctcaac	780
tgggcctaca	gcagcggcgc	caaggtcttc	gacttcccgc	tctactacaa	gatggacgag	840
gccttgaca	acaagaacat	tcccgcctc	gtttacgcca	tccagaacgg	tgaaccgtc	900
gtcagcaggg	atccctcaa	ggccgttacc	ttcgtggcta	accacgatac	gaacataatc	960
tgaacaagt	accctgccta	tgccttcattc	ctgacactacg	aaggtcagcc	cgtcatcttc	1020
taccgcgact	acgaggagtg	gctcaacaag	gacaaactca	acaacacctat	atggattcac	1080
gagcacctgg	cagggggaa	caccaagatc	ctctactacg	acgacgatga	gctcatcttc	1140
atgagggaaag	gctacggcga	caggcccggg	cttataaacct	acatcaaccc	cgtagcgac	1200
tggcggaga	gatgggtgaa	cgttggctca	aagttcgcgg	gctataacaat	ccacgaataac	1260
accggaaacc	tcggcggctg	ggtcgacagg	tacgtccagt	acgacggctg	ggtcaagctt	1320
accgctccgc	cacacgatcc	ggcaaacggc	tattacggct	actcggtctg	gagctacgcc	1380
ggagttggat	ga					1392

<210> 321

<211> 846

<212> DNA

<213> Artificial Sequence

<220>

<223> consensus sequence

<400> 321

ggcggtataa	tgcaggcttc	tatgggagtc	cgaggaaatt	ggtgggacac	ataagatccg	60
atgggcggat	tcgcatttga	tccccgcaga	agggatggcg	ggtatcatgg	gctacgaccc	120
tacgatttga	ctgggagttac	agaagggtat	aacgttggc	aaagacttaa	atgatcacgc	180
caacataagg	tatgcgaatg	tataaccacc	gcccggggc	tgatggacc	tcctaaccctg	240
gacgatttca	agtgcgttga	ataagccact	actgacttcc	accaacagag	gacttgggt	300
ccgaatcacc	taccagactg	gcttgggcag	cgaagctacg	cgctacttgg	gcatgtttag	360
ctgggttgac	tacgttaaggg	ctagctgggt	gtactggct	gtggggggct	gggcgtggga	420
gtactggac	acaacgttgc	ctctacttgg	ctacagcggc	aagtcttgcac	ttccctctac	480
tacaagatgg	aggccttgaa	aaaacatccg	ctgtgttgg	acgtgtccgg	accttaagcg	540
tacttgttgc	accacgaaaca	ataattggaa	caagtacgt	agcttcatcc	tacctagagg	600
cagccatccc	accgcgacta	cgaggagttgg	ctcaacaagg	aataaaccctc	attggatcag	660
aacctgcggg	gagacatttta	ctacgacgag	atattttaga	ggcttaggcac	cggtataac	720
taatcaaccc	gcggagttgg	tagtcaagtt	cgccgatcac	gataacggac	tcgggttgg	780
gacagtgttc	gggggtatgc	cccacgaccg	caaggatagg	ctactcggtt	gagctacggg	840
tggtga						846