In [1]:

import pandas as pd
import numpy as np
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
In [4]:

df = pd.read_csv('Iris.csv')

In [5]:

df

Out[5]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

In [6]: ▶

df.head()

Out[6]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

In [7]: ▶

df.tail()

Out[7]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

In [8]: ▶

df.describe()

Out[8]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

In [10]: ▶

df.dtypes

Out[10]:

Id int64
SepalLengthCm float64
SepalWidthCm float64
PetalLengthCm float64
PetalWidthCm float64
Species object

dtype: object

In [11]:

df.isna().sum()

Out[11]:

Id 0
SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0
dtype: int64

In [79]: ▶

sns.histplot(data=df,x=df['Species'],hue='Species')

Out[79]:

<Axes: xlabel='Species', ylabel='Count'>

In [15]: ▶

sns.heatmap(df.corr().abs(),annot = True)

Out[15]:

<Axes: >


```
In [78]:
                                                                                           H
import matplotlib.pyplot as plt
#fig,axs = plt.subplots(ncols =4,nrows = 1,figsize =(40,20))
for column in df:
    if df[column].dtype!='object':
        sns.histplot(data=df, x=df[column],hue="Species")
        plt.show()
                 20
                         40
                                 60
                                         80
                                                 100
                                                         120
                                                                 140
                                        Ιd
                                                            Species
                                                           Iris-setosa
    17.5
                                                            Iris-versicolor
                                                            Iris-virginica
    15.0
    12.5
    10.0
     7.5
In [16]:
                                                                                           M
X = df.iloc[:,[1,4]]
In [17]:
                                                                                           M
Y = df.iloc[:,[-1]]
In [40]:
                                                                                           H
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size = 0.4,random_state = 45)
In [41]:
                                                                                           H
print(X_train.shape)
(90, 2)
```

localhost:8888/notebooks/Practical9/Pactical9.ipynb

```
In [42]:

from sklearn naive haves import GaussianNR
```

```
from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(X_train,Y_train)
```

Out[42]:

GaussianNB()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [43]:

Y_pred = model.predict(X_test)

In [45]:
```

Y_pred

Out[45]:

In [48]: ▶

Y_test

Out[48]:

	Species
0	Iris-setosa
43	Iris-setosa
129	Iris-virginica
3	Iris-setosa
34	Iris-setosa
44	Iris-setosa
38	Iris-setosa
105	Iris-virginica
123	Iris-virginica
140	Iris-virginica
28	Iris-setosa
125	Iris-virginica
113	Iris-virginica
103	Iris-virginica
133	Iris-virginica
35	Iris-setosa
145	Iris-virginica
142	Iris-virginica
40	Iris-setosa
87	Iris-versicolor
84	Iris-versicolor
85	Iris-versicolor
115	Iris-virginica
51	Iris-versicolor
4	Iris-setosa
112	Iris-virginica
92	Iris-versicolor
64	Iris-versicolor
10	Iris-setosa
91	Iris-versicolor
76	Iris-versicolor
96	Iris-versicolor
119	Iris-virginica
101	Iris-virginica
25	Iris-setosa
137	Iris-virginica
13	Iris-setosa

Species

- 26 Iris-setosa
- 74 Iris-versicolor
- 30 Iris-setosa
- 33 Iris-setosa
- 82 Iris-versicolor
- 1 Iris-setosa
- 52 Iris-versicolor
- Iris-versicolor 93
- 21 Iris-setosa
- 111 Iris-virginica
- Iris-versicolor
- 117 Iris-virginica
- 37 Iris-setosa
- 45 Iris-setosa
- Iris-versicolor 66
- 128 Iris-virginica
- 48 Iris-setosa
- 144 Iris-virginica
- 19 Iris-setosa
- 29 Iris-setosa
- 94 Iris-versicolor
- 47 Iris-setosa

In 81 :versicolor M

from sklearn.metrics import accuracy_score,confusion_matrix,classification_report accuracy = accuracy_score(Y_test,Y_pred) accuracy

Out[81]:

0.966666666666667

In [83]: H

```
conf = confusion_matrix(Y_test,Y_pred)
print(conf)
```

```
[[24 0 0]
```

0 17 0]

[0 2 17]]

```
In [85]:
                                                                                     M
print('Iris-Setosa')
tp = conf[0][0]
tn = conf[1][1]+conf[1][2]+conf[2][1]+conf[2][2]
fp = conf[1][0]+conf[2][0]
fn = conf[0][1]+conf[0][2]
total = tp+tn+fp+fn
error_rate = (fp+fn)/total
print('error = ',error_rate)
print('accuracy = ',1-error_rate)
Iris-Setosa
error = 0.0
accuracy = 1.0
                                                                                     M
In [86]:
print('Iris-versicolor')
tp = conf[1][1]
tn = conf[0][0]+conf[2][0]+conf[0][2]+conf[2][2]
fp = conf[0][1]+conf[0][2]
fn = conf[1][0]+conf[1][2]
total = tp+tn+fp+fn
error_rate = (fp+fn)/total
print('error = ',error_rate)
print('accuracy = ',1-error_rate)
Iris-versicolor
error = 0.0
accuracy = 1.0
In [87]:
                                                                                     M
print('Iris-virginica')
tp = conf[2][2]
tn = conf[0][0]+conf[1][1]+conf[0][1]+conf[1][0]
fp = conf[1][2]+conf[0][2]
fn = conf[2][1]+conf[2][0]
total = tp+tn+fp+fn
error_rate = (fp+fn)/total
print('error = ',error_rate)
print('accuracy = ',1-error_rate)
Iris-virginica
accuracy = 0.966666666666667
```

In [89]: ▶

print(classification_report(Y_test,Y_pred))

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	24
Iris-versicolor	0.89	1.00	0.94	17
Iris-virginica	1.00	0.89	0.94	19
200111201			0.97	60
accuracy				
macro avg	0.96	0.96	0.96	60
weighted avg	0.97	0.97	0.97	60

In []: