

Annals of Pure and Applied Logic 89 (1997) 275

Erratum

Erratum to "What's so special about Kruskal's theorem and the ordinal Γ_0 ?

A survey of some results in proof theory" [Ann. Pure Appl. Logic 53 (1991) 199–260]

Jean H. Gallier

Department of Computer and Information Science, School of Engineering and Applied Science, University of Pennsylvania, 200 South 33rd Street, Philadelphia, PA 19104-6389, USA

Gopalan Nadathur has pointed out that there is a gap in the proof of Theorem 4.5, pp. 207–208. Specifically, there is a gap in the proof of the claim that \leq is a wqo on \mathscr{Q} (line 11 of p. 208). The problem is that even though $t_k \leq t_h$, the proof does not ensure that k < h (line 16 of p. 208). However, the proof of the claim can be repaired as follows:

Correction: Let

$$\mathcal{D} = \{s_{\sigma(i)}/j \mid i \geq 1, \ 1 \leq j \leq rank(s_{\sigma(i)})\}.$$

We claim that \leq is a wqo on \mathscr{D} . Otherwise, let $r=\langle r_1,r_2,\ldots,r_j,\ldots\rangle$ be a bad sequence in \mathscr{D} . Because r is bad, it contains a bad subsequence $r'=\langle r'_1,r'_2,\ldots,r'_j,\ldots\rangle$ with the following property: if i< j, then r'_i is a subtree of a tree t_p and r'_j is a subtree of a tree t_q such that p< q. Indeed, every t_i only has finitely many subtrees, and r being bad must contain an infinite number of distinct trees. Thus, we consider a bad sequence r with the additional property that if i< j, then r_i is a subtree of a tree t_p and r_j is a subtree of a tree t_q such that p< q. Let p be the index of the first tree in the sequence p such that p>0 some p. If p>0 if p>0 is a subtree of a tree p>0 for some p if p>0 such that p>0 is a subtree of a tree p>0 such that p>0 such t

$$\langle t_1, t_2, \ldots, t_{n-1}, r_1, r_2, \ldots, r_i, \ldots \rangle$$

is bad, since by clause (ii) of the definition of \leq , for any k s.t. $1 \leq k \leq n-1$, $t_k \leq r_j$ would imply that $t_k \leq t_h$ for some t_h and l such that $r_j = t_h/l$ and k < h, since each r_i is a subtree of some t_p such that n-1 < p. But since $|r_1| < |t_n|$, this contradicts the fact that t is a minimal bad sequence. Hence, \mathscr{D} is a wqo.