Introduction to Signals and Systems: V216

Lecture #10 Chapter 5: DT Fourier Transform

The DTFT

Derivation:

- x[n] aperiodic and (for simplicity) of finite duration
- N is large enough so that x[n] = 0 if $|n| \ge N/2$
- $\tilde{x}[n] = x[n]$ for $|n| \leq N/2$ and periodic with period N

$$\tilde{x}[n] = x[n]$$
 for any n as $N \to \infty$

The DTFT

$$\begin{split} \tilde{x}[n] &= \sum_{k=< N>} a_k e^{jk\omega_0 n} \,,\, \omega_0 = \frac{2\pi}{N} & \text{DTFS synthesis eq.} \\ a_k &= \frac{1}{N} \sum_{n=< N>} \tilde{x}[n] e^{-jk\omega_0 n} & \text{DTFS analysis eq.} \\ &= \frac{1}{N} \sum_{n=-N}^{N_2} \tilde{x}[n] e^{-jk\omega_0 n} = \frac{1}{N} \sum_{n=-\infty}^{\infty} x[n] e^{-jk\omega_0 n} \end{split}$$

Define

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
 $-\text{ periodic in }\omega \text{ with period }2\pi$

$$\downarrow \downarrow \\ a_k = \frac{1}{N}X(e^{jk\omega_0})$$

The DTFT

$$\tilde{x}[n] = \sum_{k = < N > \underbrace{\frac{1}{N} X(e^{jk\omega_0})}_{a_k} e^{jk\omega_0 n} = \frac{1}{2\pi} \sum_{k = < N > } X(e^{jk\omega_0}) e^{jk\omega_0 n} \omega_0 \quad (*)$$

As $N \to \infty$: $\tilde{x}[n] \to x[n]$ for every n

$$\omega_0 \to 0, \sum \omega_0 \to \int d\omega$$

The sum in $(*) \rightarrow$ an integral

The DTFT Pair

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$
 Synthesis equation

Any 2π interval in ω

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

Analysis equation

DTFT Examples

$$1) x[n] = \delta[n]$$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \delta[n]e^{-j\omega n} = 1$$

2) $x[n] = \delta[n - n_0]$ - shifted unit sample

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \delta[n - n_0]e^{-j\omega n} = e^{-j\omega n_0}$$

Same amplitude (=1) as above, but with a *linear* phase $-\omega n_0$

$x[n] = a^n u[n], |a| < 1$ - Exponentially decaying function

$$X(e^{j\omega}) = \sum_{n=0}^{\infty} a^n e^{-j\omega n} = \sum_{n=0}^{\infty} \underbrace{(ae^{-j\omega})}^n \quad \text{Infinite sum formula}$$

$$= \frac{1}{1 - ae^{-j\omega}} = \frac{1}{(1 - a\cos\omega) + ja\sin\omega}$$

$$|X(e^{j\omega})| = \frac{1}{\sqrt{1 - 2a\cos\omega + a^2}}$$

$$\omega = 0: X(e^{j\omega}) = \frac{1}{\sqrt{1 - 2a + a^2}} = \frac{1}{1 - a}$$

$$\omega = \pi : X(e^{j\omega}) = \frac{1}{\sqrt{1 + 2a + a^2}} = \frac{1}{1 + a}$$

The DTFT for pulse:

$$X(e^{j\omega}) = \sum_{n=-N_1}^{N_1} e^{-j\omega n} = \sum_{n=-N_1}^{N_1} (e^{-j\omega})^n = \frac{\sin\omega\left(N_1 + \frac{1}{2}\right)}{\sin(\omega/2)} = X(e^{j(\omega-2\pi)})^n$$

Find IDTFT

$$x[n] = \frac{1}{2\pi} \int_{-W}^{W} e^{j\omega n} d\omega = \frac{\sin Wn}{\pi n}$$

$$x[0] = \frac{1}{2\pi} \int_{-W}^{W} \underbrace{X(e^{j\omega})}_{1} d\omega = \frac{W}{\pi} \underbrace{x[n]}_{0}$$

DTFT for Periodic Signals

Recall the following DTFT pair:

$$e^{jk\omega_0 n} \longleftrightarrow 2\pi \sum_{m=-\infty}^{\infty} \delta(\omega - k\omega_0 - 2\pi m)$$

Represent periodic signal x[n] in terms of DTFS:

$$x[n] = x[n+N] = \sum_{k=< N>} a_k e^{jk\omega_0 n}, \ \omega_0 = \frac{2\pi}{N}$$

$$X(e^{j\omega}) = \sum_{k=< N>} a_k \left[2\pi \sum_{m=-\infty}^{\infty} \delta(\omega - k\omega_0 - 2\pi m) \right] \text{ of DTFT}$$

$$= 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0) = 2\pi \sum_{k=-\infty}^{\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$$

DTFT for Periodic Signals

$$x[n] = \sin \omega_0 n = \frac{1}{2j} e^{j\omega_0 n} - \frac{1}{2j} e^{-j\omega_0 n}$$

$$X(e^{j\omega}) = \frac{\pi}{j} \sum_{m=-\infty}^{\infty} \delta(\omega - \omega_0 - 2\pi m) - \frac{\pi}{j} \sum_{m=-\infty}^{\infty} \delta(\omega + \omega_0 - 2\pi m)$$

DTFT for Periodic Signals

Find DTFT for Periodic Impulse Train

$$x[n] = \sum_{k=-\infty}^{\infty} \delta[n-kN]$$
 $\omega_0 = 2\pi/N$ \cdots

The DTFS coefficients for this signal are:

$$\mathbf{a_k} = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_0 n} = \frac{1}{N} \sum_{n = 0}^{N-1} \underbrace{x[n]}_{=\delta[n]} e^{-jk\omega_0 n} = \frac{1}{N}$$

$$X(e^{j\omega}) = \frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{N}\right) \quad \cdots \quad \qquad \qquad \qquad \qquad \frac{2\pi/N}{N} \quad \cdots \quad \qquad \qquad \qquad \qquad \frac{2\pi}{N} \quad \cdots \quad \qquad \qquad \omega$$

 $X(e^{j\omega})$

Properties of the DT Fourier Transform

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
 — Analysis equation

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$
 — Synthesis equation

1) Periodicity:
$$X(e^{j(\omega+2\pi)}) = X(e^{j\omega})$$

2) Linearity:
$$ax_1[n] + bx_2[n] \longleftrightarrow aX_1(e^{j\omega}) + bX_2(e^{j\omega})$$

More Properties

- 3) Time Shifting: $x[n-n_0] \longleftrightarrow e^{-j\omega n_0} X(e^{j\omega})$
- 4) Frequency Shifting: $e^{j\omega_0 n}x[n] \longleftrightarrow X(e^{j(\omega-\omega_0)})$
- 5) Time Reversal:

$$x[-n] \longleftrightarrow X(e^{-j\omega})$$

6) Conjugate Symmetry:

$$x[n] \text{ real} \Rightarrow X(e^{j\omega}) = X^*(e^{-j\omega})$$

 $|X(e^{j\omega})|$ and $\Re e\{X(e^{j\omega})\}$ are even functions $\angle X(e^{j\omega})$ and $\Im m\{X(e^{j\omega})\}$ are odd functions

and

x[n] real and even $\Leftrightarrow X(e^{j\omega})$ real and even x[n] real and odd $\Leftrightarrow X(e^{j\omega})$ purely imaginary and odd

7) Time Expansion Recall CT property: $x(at) \longleftrightarrow \frac{1}{|a|} X\left(j\left(\frac{\omega}{a}\right)\right)$ Time scale in CT is infinitely fine

But in DT: x[n/2] makes no sense

x[2n] misses odd values of x[n]

But we can "slow" a DT signal down by inserting zeros:

$$k$$
 — an integer ≥ 1

 $x_{(k)}[n]$ — insert (k-1) zeros between successive values

Insert two zeros in this example (k=3)

Time Expansion (continued)

$$x_{(k)}[n] = \begin{cases} x[n/k] & \text{if } n \text{ is an integer multiple of k} \\ 0 & \text{otherwise} \end{cases}$$
 — Stretched by a factor of k in time domain

$$\begin{array}{lcl} X_{(k)}(e^{j\omega}) & = & \displaystyle\sum_{n=-\infty}^{\infty} x_{(k)}[n] e^{-j\omega n} \stackrel{n=mk}{=} \sum_{m=-\infty}^{\infty} x_{(k)}[mk] e^{-j\omega mk} \\ \\ & = & \displaystyle\sum_{m=-\infty}^{\infty} x[m] e^{-j(k\omega)m} = X(e^{jk\omega}) \quad \text{-compressed by a factor} \\ & \quad \text{of k in frequency domain} \end{array}$$

8) Differentiation in Frequency

$$\begin{array}{cccc} X(e^{j\omega}) & = & \displaystyle\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \\ & \displaystyle\frac{d}{d\omega}X(e^{j\omega}) & = & \displaystyle-j\displaystyle\sum_{n=-\infty}^{\infty} nx[n]e^{-j\omega n} \\ & & \displaystyle\downarrow \text{multiply by } j \text{ on both sides} \end{array}$$

 $\begin{array}{cccc} \text{Multiplication} & nx[n] & \leftrightarrow & j\frac{d}{d\omega}X(e^{j\omega}) & \begin{array}{ccc} \text{Differentiation} \\ & \text{in frequency} \end{array}$

Parseval's Relation

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(e^{j\omega})|^2 d\omega$$

9) The Convolution Property

10) Multiplication Property

$$x_1[n]x_2[n] \longleftarrow 1/2\pi X_1(e^{j\omega}) \otimes X_2(e^{j\omega})$$

DTFT Properties

Sec. 5.7 Duality

TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Section	Property	Aperiodic Signal		Fourier Transform
		x[n]		$X(e^{j\omega})$ periodic with $Y(e^{j\omega})$ period 2π
5.3.2	Linearity	y[n] $ax[n] + by[n]$		$Y(e^{j\omega})$ period 2π $aX(e^{j\omega}) + bY(e^{j\omega})$
5.3.3	Time Shifting	$x[n-n_0]$		$e^{-j\omega n_0}X(e^{j\omega})$
5.3.3	Frequency Shifting	$e^{j\omega_0 n}x[n]$		$X(e^{j(\omega-\omega_0)})$
5.3.4	Conjugation	$x^*[n]$		$X^*(e^{-j\omega})$
5.3.6	Time Reversal	x[-n]		$X(e^{-j\omega})$
5.3.7	Time Expansion		if $n = \text{multiple of } k$ if $n \neq \text{multiple of } k$	$X(e^{jk\omega})$
5.4	Convolution	x[n] * y[n]	if $n \neq \text{multiple of } k$	$X(e^{j\omega})Y(e^{j\omega})$
5.5	Multiplication	x[n]y[n]		$rac{1}{2\pi}\int_{2\pi}X(e^{j heta})Y(e^{j(\omega- heta)})d heta$
5.3.5	Differencing in Time	x[n] - x[n-1]		$(1-e^{-j\omega})X(e^{j\omega})$
5.3.5	Accumulation	$\sum_{k=-\infty}^{n} x[k]$		$rac{1-e^{-j\omega})X(e^{j\omega})}{1-e^{-j\omega}}X(e^{j\omega})$
5.3.8	Differentiation in Frequency	nx[n]		$+\pi X(e^{j0})\sum_{k=-\infty}^{+\infty}\delta(\omega-2\pi k) onumber \ jrac{dX(e^{j\omega})}{d\omega}$
5.3.4	Conjugate Symmetry for Real Signals	x[n] real		$egin{array}{l} X(e^{j\omega}) &= X^*(e^{-j\omega}) \ \Re e\{X(e^{j\omega})\} &= \Re e\{X(e^{-j\omega})\} \ \Im m\{X(e^{j\omega})\} &= -\Im m\{X(e^{-j\omega})\} \ X(e^{j\omega}) &= X(e^{-j\omega}) \ orall X(e^{j\omega}) &= - otin X(e^{-j\omega}) \end{array}$
5.3.4	Symmetry for Real, Even Signals	x[n] real an even		$X(e^{j\omega})$ real and even
5.3.4	Symmetry for Real, Odd Signals	x[n] real and odd		$X(e^{j\omega})$ purely imaginary and odd
5.3.4	Even-odd Decomposition	$x_{\nu}[n] = \mathcal{E}\nu\{x[n]\}$	[x[n] real]	$\Re\{X(e^{j\omega})\}$
	of Real Signals	$x_n[n] = Od\{x[n]\}$		$i\mathfrak{Gm}\{X(e^{j\omega})\}$
5.3.9	Parseval's Re	lation for Aperiodic S		<i>yem</i> (22(e))
		$ ^2 = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^2$	_	

a duality relationship between the discrete-time Fourier transform and the continuous-time Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a_k of a periodic signal x[n] are themselves a periodic sequence, we can expand the sequence a_k in a Fourier series. The duality property for discrete-time Fourier series implies that the Fourier series coefficients for the periodic sequence a_k are the values of (1/N)x[-n] (i.e., are proportional to the values of the original

DTFT Properties

Sec. 5.7 Duality

TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Section	Property	Aperiodic Signal		Fourier Transform
		x[n]		$X(e^{j\omega})$ periodic with
		y[n]		$Y(e^{j\omega})$ period 2π
5.3.2	Linearity	ax[n] + by[n]		$aX(e^{j\omega}) + bY(e^{j\omega})$
5.3.3	Time Shifting	$x[n-n_0]$		$e^{-j\omega n_0}X(e^{j\omega})$
5.3.3	Frequency Shifting	$e^{j\omega_0 n}x[n]$		$X(e^{j(\omega-\omega_0)})$
5.3.4	Conjugation	$x^*[n]$		$X^*(e^{-j\omega})$
5.3.6	Time Reversal	x[-n]		$X(e^{-j\omega})$
5.3.7	Time Expansion	$x_{(k)}[n] = \begin{cases} x[n/k], \\ 0 \end{cases}$	if $n = $ multiple of k if $n \neq $ multiple of k	$X(e^{jk\omega})$
5.4	Convolution	x[n] * y[n]	n n n manapie or n	$X(e^{j\omega})Y(e^{j\omega})$
5.5	Multiplication	x[n]y[n]		$rac{1}{2\pi}\int_{2\pi}X(e^{j heta})Y(e^{j(\omega- heta)})d heta$
5.3.5	Differencing in Time	x[n] - x[n-1]		$(1-e^{-j\omega})X(e^{j\omega})$
5.3.5	Accumulation	$\sum_{k=-\infty}^{n} x[k]$		$rac{1-e^{-j\omega})X(e^{j\omega})}{1-e^{-j\omega}}X(e^{j\omega})$
5.3.8	Differentiation in Frequency	nx[n]		$+\pi X(e^{j0})\sum_{k=-\infty}^{+\infty}\delta(\omega-2\pi k) onumber \ jrac{dX(e^{j\omega})}{d\omega}$
5.3.4	Conjugate Symmetry for Real Signals	x[n] real		$egin{array}{l} X(e^{j\omega}) &= X^*(e^{-j\omega}) \ \Re e\{X(e^{j\omega})\} &= \Re e\{X(e^{-j\omega})\} \ \Re f\{X(e^{j\omega})\} &= -\Im f\{X(e^{-j\omega})\} \ X(e^{j\omega}) &= X(e^{-j\omega}) \ X(e^{j\omega}) &= - \&X(e^{-j\omega}) \end{array}$
5.3.4	Symmetry for Real, Even Signals	x[n] real an even		$X(e^{j\omega})$ real and even
5.3.4	Symmetry for Real, Odd Signals	x[n] real and odd		$X(e^{j\omega})$ purely imaginary and odd
5.3.4	Even-odd Decomposition	$x_e[n] = \mathcal{E}v\{x[n]\}$	[x[n] real]	$\Re\{X(e^{j\omega})\}$
	of Real Signals	$x_n[n] = Od\{x[n]\}$	[x[n] real]	$i\mathfrak{G}m\{X(e^{j\omega})\}$
5.3.9	Parseval's Re	lation for Aperiodic S		3
	> x[n]	$ z ^2 = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^2 dz$	$d\omega$	

a duality relationship between the discrete-time Fourier transform and the continuous-time Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a_k of a periodic signal x[n] are themselves a periodic sequence, we can expand the sequence a_k in a Fourier series. The duality property for discrete-time Fourier series implies that the Fourier series coefficients for the periodic sequence a_k are the values of (1/N)x[-n] (i.e., are proportional to the values of the original

DTFT Pairs

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=(N)} a_k e^{jk(2n/N)n}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	a_k
e ^{jugn}	$2\pi \sum_{l=-n}^{+n} \delta(\omega - \omega_0 - 2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, & k = m, m \pm N, m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
cos ω ₀ n	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2mm}{N}$ $a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
sinω ₀ n	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi r}{N}$ $a_k = \begin{cases} \frac{1}{2j}, & k = r, r \pm N, r \pm 2N, \dots \\ -\frac{1}{2j}, & k = -r, -r \pm N, -r \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
x[n] = 1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$

DTFT Pairs

Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N \sin[2\pi k/2N]}, \ k \neq 0, \pm N, \pm 2N, \dots$ $a_k = \frac{2N_1 + 1}{N}, \ k = 0, \pm N, \pm 2N, \dots$
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N}$ for all k
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\omega}}$	
$x[n] \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ $X(\omega) \text{ periodic with period } 2\pi$	
$\delta[n]$	1	
u[n]	$\frac{1}{1-e^{-j\omega}}+\sum_{k=-\infty}^{+\infty}\pi\delta(\omega-2\pi k)$	_
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$(n+1)a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a < 1$	$\frac{1}{(1-ae^{-j\omega})^r}$	_

SYSTEMS CHARACTERIZED BY LINEAR CONSTANT-COEFFICIENT DIFFERENCE EQUATIONS

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k].$$

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}.$$

$$\sum_{k=0}^{N} a_k e^{-jk\omega} Y(e^{j\omega}) = \sum_{k=0}^{M} b_k e^{-jk\omega} X(e^{j\omega}),$$

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{\sum_{k=0}^{M} b_k e^{-jk\omega}}{\sum_{k=0}^{N} a_k e^{-jk\omega}}.$$

SYSTEMS CHARACTERIZED BY LINEAR CONSTANT-COEFFICIENT DIFFERENCE EQUATIONS

Example 5. 18

Consider the causal LTI system that is characterized by the difference equation

$$y[n] - ay[n-1] = x[n],$$

with |a| < 1. From eq. (5.80), the frequency response of this system is

$$H(e_1^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}.$$

Thus, the impulse response of the system is

$$h[n] = a^n u[n].$$

SYSTEMS CHARACTERIZED BY LINEAR CONSTANT-COEFFICIENT DIFFERENCE EQUATIONS

Consider a causal LTI system that is characterized by the difference equation

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n].$$

From eq. (5.80), the frequency response is

$$H(e^{j\omega}) = \frac{2}{1 - \frac{3}{4}e^{-j\omega} + \frac{1}{8}e^{-j2\omega}}.$$

As a first step in obtaining the impulse response, we factor the denominator of

$$H(e^{j\omega}) = \frac{2}{(1-\frac{1}{2}e^{-j\omega})(1-\frac{1}{4}e^{-j\omega})}.$$

 $H(e^{j\omega})$ can be expanded by the method of partial fractions, as in Example appendix. The result of this expansion is

$$H(e^{j\omega}) = \frac{4}{1 - \frac{1}{2}e^{-j\omega}} - \frac{2}{1 - \frac{1}{4}e^{-j\omega}}.$$

The inverse transform of each term can be recognized by inspection, with the

$$h[n] = 4\left(\frac{1}{2}\right)^n u[n] - 2\left(\frac{1}{4}\right)^n u[n].$$