Algorytmy filtrowania w programowaniu ograniczeń

autor: Tomasz Kulik promotor: dr Przemysław Kobylański

Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Polska

2019

Zakres pracy

- Wprowadzenie do programowania z ograniczeniami
- Omówienie podstawowych pojęć związanych z językami regularnymi
- Wprowadzenie nowego algorytmu propagującego ograniczenia
- Przedstawienie wyników pracy

Narzędzia

- C++11 z wykorzystaniem biblioteki standardowej
- IBM ILOG CPLEX CP Optimizer

Programowanie z ograniczeniami

Paradygmat pozwalający na modelowanie:

- systemów wspomagających podejmowanie decyzji
- problemów kombinatorycznych
- problemów planistycznych (logistycznych)
- problemów optymalizacyjnych

Problem spełnienia ograniczeń

Formalnie problem spełnienia ograniczeń P to trójka (X, D, C), gdzie:

- X n-elementowa krotka $(X_1, X_2, ..., X_n)$ zmiennych,
- D n-elementowa krotka $(D_1, D_2, ..., D_n)$ zbiorów stanowiących dziedziny odpowiadających zmiennych z krotki X, tj. $X_i \in D_i$,
- C t-elementowa krotka $(C_1, C_2, ..., C_t)$ ograniczeń narzuconych na zmienne z krotki X.

Przykład

Example

Problem spełnienia ograniczeń:

$$\begin{cases}
X = (A, B, C), \\
D = (\{2, 3\}, \{3, 4\}, \{8, 16, 32\})
\end{cases}$$
(1)

Ograniczenia:

$$\begin{cases} 3A > C \\ 3B > C \\ A \neq B, \end{cases} \tag{2}$$

Rozwiązanie: (A = 3, B = 4, C = 8).

Przeszukiwanie, propagacja ograniczeń

Algorytmy poszukujące rozwiązań problemów programowania z ograniczeniami posługują się dwoma podstawowymi technikami:

- Przeszukiwanie drzewa rozwiązań
- Iteracyjna propagacja ograniczeń na dziedzinach zmiennych

Ograniczenia globalne

- Globalne ograniczenia są to takie ograniczenia, które wiążą ze sobą dowolną liczbę zmiennych.
- Globalne ograniczenia pozwalają na wprowadzenie skuteczniejszych metod propagowania ograniczeń dla konkretnych problemów
- Sztandarowy przykład: **AllDifferent** $(X_1, X_2, ..., X_k)$

- Wstęp
- Programowanie z ograniczeniami
- Języki regularne
- 4 Algorytm filtrujący
- Złożoność obliczeniowa
- 6 Zastosowanie
- Podsumowanie

Formalna definicja

Języki rozstrzygalne przez automaty skończone.

Każdy automat skończony można przedstawić w formie gramatyki regularnej.

Dwa rodzaje automatów skończonych:

- Deterministyczne Automaty Skończone (ang. DFA)
- Niedeterministyczne Automaty Skończone (ang. NFA)

Każdemu niedeterministycznemu automatowi skończonemu odpowiada deterministyczny automat skończony akceptujący dokładnie te same słowa. Relacja działa również w przeciwną stronę.

Wyrażenia regularne

Wyrażenia regularne powstałe przy użyciu poniższych operatorów opisują gramatyki regularne:

- Konkatenacja (AB)
- Alternatywa (A|B)
- Domknięcie Kleene'ego (A*)

- Wstęp
- 2 Programowanie z ograniczeniami
- Języki regularne
- 4 Algorytm filtrujący
- 5 Złożoność obliczeniowa
- 6 Zastosowanie
- Podsumowanie

Metoda Thompsona

Metoda pozwalająca na translację wyrażeń regularnych na automaty *NFA*.

(a) Konstrukcja alternatywy.

(b) Konstrukcja konkatenacji.

Metoda RegexFiltering

Metoda RegexFiltering

- Dla każdej zmiennej stwórz pusty kontener
- Na podstawie struktury wypełnionej ścieżkami pomiędzy stanami automatów należy przejść przez wszystkie ścieżki wychodzące ze stanu akceptującego (zaczynając w stanie akceptującym od ostatniej zmiennej)
- Przechodząc przez ścieżki należy dodawać do kontenerów każdej zmiennej wartości zaakceptowane przez automat.

Zbiór wypełnionych kontenerów stanowi nowy zbiór dziedzin dla analizowanych zmiennych.

- Wstęp
- 2 Programowanie z ograniczeniami
- Języki regularne
- 4 Algorytm filtrujący
- 5 Złożoność obliczeniowa
- 6 Zastosowanie
- Podsumowanie

Złożoność Obliczeniowa

- Złożoność czasowa wynosi $O(nk^2)$
- Złożoność pamięciowa wynosi O(nk)
- n liczba zmiennych w wektorze wejściowym
- k liczba stanów automatu wygenerowanego na podstawie wyrażenia regularnego

Eksperymenty

- Wstęp
- 2 Programowanie z ograniczeniami
- Języki regularne
- 4 Algorytm filtrujący
- 5 Złożoność obliczeniowa
- 6 Zastosowanie
- Podsumowanie

Rozmieszczanie odcinków

- Rozmieszczanie odcinków w wektorze zmiennych
- Łączenie z innymi ograniczeniami (np. w celu narzucania zadanej liczby przegięć funkcji)
- Rozwiązywanie zagadek typu Nonograms

Przykład nonogramu

```
=======
                 #####
                   ## ##
                   ******
                    -----
***
```

Porównanie z SWI-Prolog

Rozmiar obrazka	SWI-Prolog	RegexConstraint
6×6	0.022 s.	ok. 0.00 s.
10×10	0.056 s.	0.01 s.
20×20	0.235 s.	0.02 s.
50×50	4.79 s.	0.42 s.

- Wstęp
- 2 Programowanie z ograniczeniami
- Języki regularne
- 4 Algorytm filtrujący
- 5 Złożoność obliczeniowa
- 6 Zastosowanie
- Podsumowanie

Dalszy rozwój

- Wprowadzenie bogatszej gramatyki wyrażeń regularnych
- Rozszerzenie algorytmu o obsługę liczników (możliwość modelowania szerszej klasy problemów)

Dziękuję za uwagę!