Gasification Repowering, The Innovative Option for Old Existing Coal-Fired Power Plants

Presentation at the Annual

NEMS/Annual Energy Outlook 2003 Conference

March 18, 2003 Washington, D.C.

by **Dale Simbeck Vice President Technology** SFA Pacific, Inc.

444 Castro Street, Suite 720 **Mountain View** California 94041

phone: fax: internet: www.sfapacific.com

1-650-969-8876 1-650-969-1317

SFA Pacific, Inc.

Presentation Overview

Background

- SFA Pacific
- Fundamental changes in electric power generation
- · Aging coal power plant fleet generating over 50% of total power
- · Multi-Pollutant reductions to 3P or to 4P, that is the question

Why power generation will be forced to meet a disproportionate share of any CO₂ reductions

 CO₂ capture & storage could favor coal gasification combined cycle (CGCC) over traditional pulverized coal (PC) steam boiler systems

Power generation CO₂ mitigation economics

Both new & especially retrofit of existing coal-fired power plants

Conclusions

SFA Pacific Background

Founded in 1980

Performs technical, economic & market assessments for the major international energy & engineering companies

Principal work involves residual oil upgrading, electric power generation & emissions control

Niche is objective outside opinion and comparative analysis before companies make major decisions or investments

Unique perspective, as we have no vested interest in resources, technologies, R&D or project development

SFA Pacific, Inc.

Representative SFA Pacific Clients

<u>UTILITIES</u>	<u>INDUSTRIALS</u>	MANUFACTURERS + E&C
Epcor	ВНР	ABB/Alstom
EdF	BP (Amoco Arco Veba Oil)	B&W/McDermott
Electrabel	Chevron Texaco	Black & Veatch
EPDC (Japan)	Conoco Phillips	Bechtel
EPRI	Dow Chemical	Chiyoda
Eskom (South Africa)	ENI	Cummins
National Power	Exxon Mobil	Fluor Daniel
Nova Scotia Power	PDVSA	Foster Wheeler
Ontario Power	Rio Tinto (Kennecott Energy)	General Electric
Power Gen	Saudi Aramco	Kellogg Brown & Root
RWE/Rheinbraun	Shell International	JGC
Taiwan Power	Sinopec	MHI
Tokyo Electric Power	Statoil	Siemens/Westinghouse
TransAlta	Total Fina Elf	Snamprogetti
Vattenfall	Weyerhaeuser	Тоуо
		SFA Pacific, Inc.
		· ·

Fundamental Changes in Power Generation

Deregulation, increased competition & globalization

- IPP subsidiaries, power marketers & convergence of power & gas
- Restructuring: staff reductions, takeovers, asset resales to create large, more economically efficient Genco's, Transco's & Disco's

Greatest uncertainties in Genco's (power generation)

- · Applications, markets, technology, regulations, fuel availability & price
- SO₂, NO_x, PM_{2.5}, & Hg regulations constantly changing quite stringent for new power plants favoring NGCC & can even apply to old "grandfathered" coal plants if modified or upgraded
- However the CO₂ issue will be the greatest uncertainty & challenge

Best option for "grandfathered" old coal power plants is to do as little as required due to risks from above uncertainties

EIA 2000-2020 Facts & Projection of U.S. Electricity Generation & Capacity Additions

Most new capacity is natural gas GT or CC, however, still a 25% coal generation increase, but only 10% new coal capacity

Figure 52. Projected electricity generation by fuel, 2000 and 2020 (billion kilowatthours)

Figure 48. Projected electricity generation and capacity additions by fuel type, including cogeneration, 2000-2020 (gigawatts)

Table A9.

Source: Figures from U.S. DOE's EIA Annual Energy Outlook 2002

SFA Pacific, Inc.

Options for the Over 300,000 MW of Life-Extended Existing U.S. Coal Power Plants

Emphasis on maintaining grandfathering of "big dirties" while knowing they will eventually need rebuilds & flue gas retrofits

- Improved flue gas desulfurization (FGD), selective catalytic reduction (SCR) of NO_x, mercury control via dry carbon scrubbers & bag houses
- Lower capital & fewer permitting hassles than new "greenfield" plants
- However, low efficiency of existing coal power plants gets even lower with these add-on retrofit flue gas emission controls

Delays with eventual flue gas retrofits are clearly cheaper for the short-term, but lack strategic long-term flexibility

 Deregulation, surge in NGCC capacity, efficiency advantage of cogen & especially the CO₂ issue may ultimately work against infinite lifeextension & rebuilds of old existing inefficient coal power plants

To "3P" or To "4P" - That is the Question

Republicans propose the Clear Skies Initiative "3P" reductions

- 73% SO₂, 67% NO_x & 69% Hg reductions by 2018, <u>but</u> back-end loaded
- However, key is elimination of the Clean Air Act & New Source Review allowing upgrades & rebuilds without emission reductions till later
- Likely favors rebuilding "big dirties" then flue gas retrofits after 2010

Democrats propose "4P" reductions that also include CO₂

- SO₂, NO_x & Hg caps slightly lower <u>but</u> sooner than Republicans, <u>however</u> caps CO₂ at 1990 level or about 21% reduction from current
- Likely favors repowering "big dirties" with NG or CGCC <u>depending on how high NG prices go in a carbon constrained world</u>
- Higher capital cost, but also new, efficient power plants at old sites with much better CO₂ capture & storage potential than flue gas retrofits of old life-extended steam units with inevitable reliability issues

SFA Pacific, Inc.

Existing Power Plant Repowering

Defined as adding new gas turbines to existing steam plants

Usually best to let the GT determine the size & add a new steam system

Many advantages to repowering existing steam cycle plants

- Large capacity increase, up to 3 times the original power plant capacity
- Large efficiency increase, usually from about 30-35% to 45-55% if NGCC or about 40-42% if CGCC ("real" HHV efficiency)

Great potential due to location of old existing power plants

- Strategically located in existing grid system with significantly less siting or permitting problems relative to a new "green field" power plant
- NGCC repowering of NG & oil boilers now & later CGCC repowering of coal boilers <u>depending on future of: NG prices, "grandfathering" & CO₂</u>

Why Traditional Power Generators Are Skeptical of Coal Gasification Combined Cycle

Successful CGCC requires chemical process expertise

- Little or no chemical process expertise at most coal utilities & will usually not pay the price required to attract personnel with essential oil & chemical industry gasification expertise even if considering CGCC
- Embarrassingly poor history with the simplest chemical process wet limestone SO₂ scrubber FGD - why FGD costs have dropped in half due to outrageously poor starting baseline costs & performance

Any risk is a "lose-lose" for traditional regulated power generators & CGCC is clearly a much greater risk than PC

- If it does not work well, will not get all the costs covered by rate payers
- If it works quite well & greatly reduces costs, most of the savings are passed on to the rate payers

SFA Pacific, Inc.

CGCC vs PC for New Coal-Based Power Plant

CGCC verses supercritical PC boilers for new coal power plants

- CGCC can have slightly better efficiency (40-42% HHV U.S., not European basis) & slightly lower SO₂, NO_x & PM_{2.5} emissions than PC
- However, CGCC is likely 10-20% higher capital costs plus potentially poorer availability than a PC boiler coal unit

Highly integrated CGCC demonstration plants even worse

 European CGCC demos confused "efficiency with honor" by integrating CGCC to death - 25% extra capital to be 2% more efficient but about 50% (coal only) availability of these complex CGCC demos

Promotion of similar highly integrated CGCC projects in China, India, Taiwan & Korea could be a major set-back to CGCC

• Utility promoters are totally ignoring the extensive chemical process expertise within their nations - existing gasification ammonia plants

Most Successful CGCC Demo is not Integrated

Wabash River CCT: E-Gas (Destec) 262 MW_e CGCC repowering

- Coal to clean syngas "over the fence" by chemical process experts originally from Dow Chemical (then called Destec)
- Clean syngas to utility owned CC at an existing coal-fired power plant reused old ST/gen & coal handling as a CGCC repowering of an existing PC
- The most successful of the five CGCC demonstration plants
 - Lowest capital cost (\$1,590/kW <u>all</u> costs), simplest design (only steam SH integration), highest efficiency (> 39%HHV) & highest availability (85-90%)
 - Now successfully operating on 100% pet coke with even better performance
- Based on the original Dow Chemical later called Destec gasifier
 - Two stage water slurry gives the ease of high pressure feeding with high cold gas efficiency & low cost fire-tube type syngas cooler
 - One of the best coal & coke gasification technologies, however current weak ownership with E-Gas technology now up for sale

SFA Pacific, Inc.

Advantages of CGCC Over PC Boilers

NGCC beats both CGCC & PC until NG - coal price >\$3/MM Btu

 However, <u>uncertainty</u> of future NG prices/supplies makes gasification strategic as clean syngas can replace NG in existing NGCC units

Deregulation increases uncertainty of future power generation

- Favors higher efficiency & much lower capital of NGCC
- Favors higher efficiency, revenues & load factors of polygeneration

Environmental requirements is likely the greatest <u>uncertainty</u> of future coal-based power generation

- Only CGCC can obtain the same low emission as NGCC, including Hg
- Key flexibility of CO₂ capture (new or retrofit) at low incremental costs

CGCC has greater flexibility than PC boiler to face the many uncertainty challenges of future power generation

Gasification Projects Without Subsidies

Chemicals from coal or pet coke	MW _{th} syngas	
Ube Ammonia - Japan	294	
 Farmland - Kansas, USA 	293	
 Eastman Chemicals - Tennessee, USA 	219	
Oil refinery polygeneration from pitch or pet coke		
 Port Arthur*, Texas - USA 	2,029	
 Repsol* - Spain 	1,654	
 Lake Charles*, Louisiana - USA 	1,407	
 Deer Park*, Texas - USA 	1,400	
 Total/EdF/Texaco - France 	1,043	
 Nippon Oil - Japan 	793	
 Exxon - Texas, USA & Singapore 	711	
 Shell - the Netherlands 	637	
* Planned		
	SFA Pacific, Inc.	

Polygeneration

Defined as gasification to synthesis gas (H₂ & CO) for GT-based cogen steam/power + syngas chemicals & premium fuels

Shell Oil Pernis oil refinery in Holland is a good example: no subsidies & high availability <u>without</u> a spare gasifier

• Pitch gasification - 3 units total 640 MW $_{\rm th}$ with 2 gasifiers for oil refinery H $_2$ & 1 gasifier for GCC cogeneration with NG as GT back-up

Great potential for polygeneration in the future due to ongoing deregulation of electric power generation

- Low value feedstock, thereby ultra-low marginal load dispatch costs
- Offers greater flexibility than traditional power plants relative to fuels, products, revenues, emissions, efficiency & annual load factors
- Low marginal costs for CO₂ capture (will likely be added at Pernis)

Power Generation Will Be Forced to Meet a Disproportionate Share of Any CO₂ Reductions

Transportation fuel users have more votes than CO₂ intensive industries as demonstrated in June 2000 in the U.S. & Europe

Power plants can not move to China, as other CO₂ intensive industries in Annex 1 nations will, if faced with carbon taxes

Large potential for improvements in power generation

- Increase old coal-boiler power plants efficiency NG/CGCC repowering
- · Replace coal with: co-firing biomass, natural gas or wind turbines
- New NGCC or CGCC central power plant & especially cogeneration

Large point sources of power generation reduces both CO₂ mitigation & capture/storage costs

SFA Pacific, Inc.

CO₂ Capture Can Save Coal

Transforming the GHG debate as CO₂ capture & storage is generally more effective than renewables or efficiency gains

- Cycling-load wind turbines cannot replace large baseload coal power
- \$/ton for CO₂ avoided is lower than just efficiency due to much larger CO₂ reductions of 90% vs only 20% for efficiency improvements

Effective CO₂ capture requires large CO₂ point source, high purity recovery, compression to high pressure & injection:

• First in enhanced oil recovery (EOR), then coal bed methane (CBM) recovery, but ultimately deep aquifers (like current H₂S injections)

CO₂ capture options in order of increasing costs

- High purity CO₂ vents from existing NG & syngas (H₂ & CO) purification
- CGCC repowering of existing PC boiler central power plants
- New CGCC & polygeneration

Geologic CO₂ Storage is Already a Large Commercially Well Proven Industry

Over 20 years & currently > 30 million ton/year of commercial geologic CO₂ storage for enhanced oil recovery (EOR)

- Extensive existing CO₂ pipeline systems of > 2,000 miles
- If CO₂ were supplied from coal power plants would be > 4,500 MWe
- Expect man-made CO₂ use in EOR to grow significantly in the future

Over 20 years of commercial acid gas (H₂S & CO₂ from natural gas purification) injection into various geologic formations

- Significant because H₂S is a lighter, more dangerous gas than CO₂ & H₂S has a strong smell at only a few parts per million (ppm) in air
- Therefore, just the smallest H₂S leakage would have been easily detected if there were any leakage problems years ago

SFA Pacific, Inc.

Status of Gasification & H₂ + CO₂ Generation

Worldwide commercial gasification capacity

- Almost 50,000 MW_{th} (syngas) operating & growing at 5,000 MW_{th}/yr
- New projects are mostly petroleum coke or pitch gasification in oil refineries for export power + cogen steam & syngas - polygeneration

Extensive successful commercial experience with coal & heavy oil gasification producing pure H₂ & CO₂ streams

- Over 15 solid & 40 liquid fuel gasification plants making pure H₂
- Mostly for ammonia fertilizer plus some for oil refinery H₂
- Most are in China, some in USA, Germany, Japan, India & Brazil

General Electric has tested & will give commercial performance guarantees for H₂- fired "F" type gas turbines

Farmland in Kansas - Commercial (no subsidies) Coke to H₂ Gasification Plant for Ammonia & CO₂

CO₂ Capture Clearly Favors CGCC over PC

PC boiler & low pressure flue gas amine CO₂ scrubber

- Increases relative capital costs of PC by 70-80% while reducing relative capacity & efficiency by 20-30%
- Large amine stripping requirements of 1.5 ton steam per ton CO₂ followed by compressing CO₂ from 1 atm pressure are the problems

CGCC + shift: H₂O+CO to H₂+CO₂ & high pressure CO₂ scrubber

- Favors simple high pressure direct water quench & sour shift designs
- Increases relative capital cost of CGCC by 30-40% while reducing relative capacity & efficiency 10-15%, both half that of PC
- Physical solvents with little CO₂ stripping steam + flashing CO₂ at moderate (3-12 atm) - greatly reduce costs & efficiency/capacity loses
- 2-3 orders of magnitude higher CO₂ partial pressure of CGCC vs PC

Cost of New Power Plants with CO₂ Control

Natural gas combined cycle (NGCC) baseline

 NG price set where coal becomes competitive without CO₂ capture as current NG prices favor NG over coal even if ignoring the CO₂ issue

Best option is cogeneration or polygeneration vs a new central power plant with or without CO₂ capture

Best options if just new central power plant with CO₂ capture

 NGCC with amine flue gas scrubber if low NG prices or coal gasification to H₂ combined cycle (H₂-CGCC) if higher NG prices

Overall CGCC CO₂ capture costs are about 50% for recovery to pure CO₂, 25% for compression & 25% for disposal charge

• Thereby, slight byproduct credit (EOR & CBM) or incentive for CO₂ reduction can significantly reduce net CO₂ control costs

SFA Pacific, Inc.

Electric Power Costs of Coal Verses Natural Gas For Various Fuel Prices & CO₂ Emissions \$ per MWh Electric Price with capital charges & CO2 disposal charge of \$37/ton C 100 CGCC with CO2 control 90 to 0.075 mt CO2/MWh 80 70 **⊢**CGCC 60 0.68 mt CO2/MWh 50 40 NGCC with CO2 control 30 to 0.075 mt CO2/MWh 20 **Natural Gas** <u>Coal</u> 10 ---NGCC 0 0.34 mt CO2/MWh 4 Fuel Prices - \$ per million Btu (HHV) Source: SFA Pacific, Inc SFA Pacific, Inc.

Economics of Existing Coal Power Plants

Baseline: older & less efficient existing coal power plant with high CO₂ emissions (1 ton CO₂ per MWh net power)

- Much lower \$/ton CO2 avoided costs than with a new NGCC baseline
- Many cost & CO₂ mitigation advantages relative to a new power plant

NG repowering & no CO₂ control if low NG prices or CGCC repowering to H₂ with CO₂ capture if higher NG prices

- NG prices will likely rise if a carbon constrained world develops
- Options of retrofit O₂ combustion or flue gas amine CO₂ scrubber to existing coal boiler suffers from large capacity & efficiency losses
 - NGOs oppose these CO₂ capture options due to large efficiency losses
- Gasification repowering increases both capacity & efficiency while reducing <u>all</u> emissions to near zero while staying on coal
 - Only major CO₂ capture application that can make this important claim

Conclusions

Uncertainties in future emission regulations & grandfathering encourages continued life-extension of the old coal plants

- To 3P or to 4P, that is the question: CO₂ hangs in the balance
 - Republican 3P being back-end loaded likely favors rebuilding old coal units & then flue gas retrofit after 2010 - will increase CO₂ emissions

Electric power generation will be forced to meet a disproportionate share of any CO₂ reductions

- SUV owners have more votes than CO₂ intensive industries
- Cannot move electric generation to China
- Lowest CO₂ reduction costs at large point sources (coal power plants)

New capacity additions will favor high-efficiency technology

 Deregulation clearly favors gas turbines for maximum power-to-heat ratio cogeneration & polygeneration for new baseload capacity

SFA Pacific, Inc.

Conclusions

Electric power generators must more objectively assess all CO₂ mitigation options to assure strategic long-term flexibility

- Support reforestation & renewables with honest economics
- Support existing nuclear plant life-extension with uprating
- Consider NGCC or CGCC repowering of existing coal power plants depending on how high NG prices go in a carbon constrained world
- Longer term will require CO₂ capture which likely favors CGCC for repowering of existing coal power plants & polygeneration

Keys to effective CO₂ reduction in U.S. power generation

- Policy to create incentives for CO₂ reduction, capture & replacement of increasingly inefficient old coal plants currently being life-extended
- Gasification repowering old coal plants increases both capacity &
 efficiency while reducing <u>all</u> emissions to near zero, including CO₂;
 only major CO₂ capture application that can make this important claim