the polar axis p) are introduced, as shown in Figure 6-12, the phonon contribution becomes

$$\mathcal{Z}^{\text{ph}}(p) = \frac{i}{(2\pi)^3 |\mathbf{p}|} \int_{-\infty}^{\infty} dq_0 \int p' \, dp' \, \frac{1}{(p_0 + q_0)(1 + i\delta) - \epsilon_{p'}} \times \int q \, dq \{\bar{g}_{ql}\}^2 D_l(-q) \quad (6-30)$$

For convenience we measure all energies with respect to the Fermi energy  $E_F$  so that  $\epsilon_{p_F}=0$ . Since D decreases as  $1/q_0^2$  for large  $q_0$ , the dominant part of the integral comes from  $|q_0| \gtrsim \omega_{\rm av}$  [a typical phonon energy, i.e.,  $\simeq (m/M)^{1/2} E_F \simeq 10^{-2} E_F$ ]. We shall be interested in electron energies  $|p_0| \gtrsim \omega_{\rm av}$  so that the most important values of  $|\epsilon_{p'}|$  are also of order  $\omega_{\rm av}$  or less. For this reason the p'-integral can be replaced by an integral over  $\epsilon_{p'}$  with the limits extending from  $-\infty$  to  $\infty$ . Thus,

$$\begin{split} \varSigma^{\rm ph}(p) \, & \cong \, \frac{im}{(2\pi)^3 p} \int_{-\,\,\infty}^{\,\,\infty} \, dq_0 \int_{-\,\,\infty}^{\,\,\infty} \, d\epsilon_{p'} \, \frac{1}{(p_0 \, + \, q_0)(1 \, + \, i\delta) \, - \, \epsilon_{p'}} \\ & \times \, \int_{0}^{2k_F} \, q \, \, dq \{\bar{g}_{ql}\}^2 D_l(q) \quad (6\text{-}31) \end{split}$$

The limits on the q integral have been simplified by using the fact that only states with  $|p'| \simeq k_F$  contribute strongly to the



FIGURE 6-12 Coordinate system for carrying out the momentum integral in the expression for  $\mathcal{L}^{\rm ph}$ .

## 152 Theory of Superconductivity

If we use the relation  $2|g_{ql}|^2/\Omega_{q,\,l}=V(q)$ , which holds for jellium, we find the simple result

$$\Sigma(p) = i \int G_0(p+q) \mathscr{V}_c(q) \left[ \frac{q_0^2}{q_0^2 - \frac{\Omega_{ql}^2}{\kappa(q)} + i\delta} \right] \frac{d^4q}{(2\pi)^4}$$
 (6-29a)

or

$$\mathcal{E}(p) = i \int G_0(p+q) \frac{V(q)}{1 + V(q)P(q) - \frac{\Omega_{ql}^2}{q_0^2} + i\delta} \frac{d^4q}{(2\pi)^4}$$
 (6-29b)

The denominator in (6-29b) is just the total dynamical dielectric constant of the system including electronic and ionic polarizabilities, since the ionic polarizability is given by the high-frequency



FIGURE 6-11 The real part of the effective interaction between electrons due to the screened Coulomb interaction and the exchange of a dressed phonon, plotted as a function of the energy transfer  $q_0$  for a fixed momentum transfer  $q_0$ . The plot is shown for the RPA treatment of the "jellium" model of a metal. The resonance occurs at the dressed phonon frequency  $\omega_q$ , illustrating the effect of ionic overscreening of the bare Coulomb interaction for  $q_0<\omega_q$  and underscreening for  $q_0>\omega_q$ . For high-frequency  $q_0\gg\omega_q$ , the ions do not respond and  $\mathscr{V}(q,q_0)$  approaches the bare Coulomb interaction reduced by the electronic dielectric function  $\kappa(q,q_0)$ .

not a Yukawa potential but rather the oscillatory function totic form of the screened Coulomb potential for large distance is first discussed by Kohn, Langer, and Vosko,  $^{1098,\,b}$  that the asymp-2.  $d\kappa_0/dq \to \infty$  as  $q \to 2k_F$ . This fact leads to the result,

$$(6-9) \qquad \frac{\cos(2k_{\rm r} x + \phi)}{\varepsilon_{\rm r}} \propto (7)^{\rm V}$$

There is good experimental evidence to support this result. 110

large momentum transfers. 3.  $\kappa_0 \to 1$  as  $q \to \infty$ . Thus, screening is ineffective for very

ssy. (6-5) can vanish for some  $|\mathbf{p}| < p_F$  and  $|\mathbf{p}| + \mathbf{q}|$  that is to and q are related so that the argument of the delta function in For  $q_0 \neq 0$ , the imaginary part of  $\kappa$  is nonzero only when  $q_0$ 

$$q^2 - 2qk_F \leqslant 2m|q_0| \leqslant q^2 + 2qk_F$$
 (6-10)

i.e.,  $\left|q_{0}\right| \gg q^{2} \,+\, \left(2qk_{F}/2m\right)$ , we have the familiar limiting form The situation is illustrated in Figure 6-3. For large frequency,

(11-8) 
$$\frac{z_q \omega}{z_0 p} - 1 = (0, q_0) \pi \partial A$$

useful limiting forms for making physical arguments. where  $\omega_p^2 = 4\pi n e^2/m$ . The two expressions (6-8) and (6-11) are



RPA dielectric function for general wave number q and frequency qo. FIGURE 6-3 A plot showing the behavior of the imaginary part of the