CS 511, Fall 2024, Lecture Slides 09 Do You Believe de Morgan's Laws?

Assaf Kfoury

17 September 2024

Do You Believe de Morgan's Laws Are Tautologies?

- Of course you believe they are!
- But now, for each, choose a most efficient procedure to confirm it!

Do You Believe de Morgan's Laws Are Tautologies?

- Of course you believe they are!
- But now, for each, choose a most efficient procedure to confirm it!
- b de Morgan's laws can be expressed as valid WFF's/tautologies:

$$1. \models \neg (p \lor q) \rightarrow (\neg p \land \neg q)$$

$$2. \models (\neg p \land \neg q) \rightarrow \neg (p \lor q)$$

3.
$$\models (\neg p \lor \neg q) \rightarrow \neg (p \land q)$$

$$4. \hspace{0.2cm} \models \hspace{0.1cm} \neg (p \wedge q) \hspace{0.3cm} \rightarrow \hspace{0.1cm} (\neg p \vee \neg q)$$

or, in the form of four formally deducible sequents:

$$1. \vdash \neg (p \lor q) \rightarrow (\neg p \land \neg q)$$

2.
$$\vdash (\neg p \land \neg q) \rightarrow \neg (p \lor q)$$

3.
$$\vdash (\neg p \lor \neg q) \rightarrow \neg (p \land q)$$

$$4. \vdash \neg (p \land q) \rightarrow (\neg p \lor \neg q)$$

Available methods

Already discussed:

- ► Truth-tables to establish $\models \varphi$?
- Natural-deduction formal proofs to establish $\vdash \varphi$?

Yet to be discussed:

- Analytic tableaux?
- Resolution?
- BDD. OBDD. or ROBDD?
- DP or DPLL or CDCL procedures?

In this set of slides we restrict the comparison to **truth-tables** and **natural-deduction proofs**. We delay the comparaison with the other methods to later handouts.

Natural-deduction proof of de Morgan's law (1):

1	$\neg(p\lor q)$	assume
2	p	assume
3	$p \lor q$	Vi 2
4	\perp	$\neg e 1, 3$
5	$\neg p$	¬i 2-4
6	q	assume
7	$p \lor q$	Vi 6
8	\perp	$\neg e 1, 7$
9	$\neg q$	¬i 6-8
10	$\neg p \land \neg q$	$\wedge i 5, 9$
11	$\neg (p \lor q) \to (\neg p \land \neg q)$	→i 1-10

Natural-deduction proof of de Morgan's law (2):

$p \land \neg q$	assume
$ _2 $	∧E 1
$3 \neg q$	∧E 1
$q p \lor q$	assume
5 p	assume
6 q	assume
$ _{7} \neg p $	assume
8 ⊥	¬E 3,6
	¬I 7-8
10 p	¬¬E 9
11 p	∨E 4, 5-5, 6-10
12	$\neg E \ 2,11$
$\neg (p \lor q)$	¬I 4-12
	→I 1-13

Remark: The formal proof of *de Morgan's Law* (2) above makes use of proof rule $\neg\neg E$ on line 10. It is possible to write another formal proof of *de Morgan's Law* (2) which does not use $\neg\neg E$ (nor any of the rules that can be derived from it, specifically, LEM and PBC).

Natural-deduction proof of de Morgan's law (3):

1	$\neg p \lor \neg q$	assume
2	$p \wedge q$	assume
3	p	$\wedge e_1$
4	q	$\wedge e_2$
5	$\neg p$	assume
6	$\neg q$	assume
7	p	assume
8	1	¬e 4,6
9	$\neg p$	¬i 7-8
10	$\neg p$	∨e 1,5-5,6-9
11	1	$\neg e \ 3, 10$
12	$\neg(p \land q)$	¬i 2-11
13	$(\neg p \lor \neg q) \to \neg (p \land q)$	→i 1-12

Natural-deduction proof of de Morgan's law (4):

$\neg (p \land q)$	assume
	assume
$3 \neg p$	assume
$\downarrow \downarrow $	∨i 3
₅ ⊥	¬e 2,4
6 ¬¬p	¬i 3-5
$7 \neg q$	assume
$8 \neg p \lor \neg q$	∨i 7
9 1	¬e 2,8
10 ¬¬q	¬i 7-9
11 p	¬¬e 6
12 q	¬¬e 10
$\mid_{13} p \wedge q$	∧i 11,12
14	¬e 1,13
$15 \neg \neg (\neg p \lor \neg q)$	¬i 2-14
$_{16}$ $(\neg p \lor \neg q)$	¬¬e 15
$ _{17} \neg (p \land q) \rightarrow (\neg p \lor \neg q) $	→i 1-16

Natural-deduction proof of de Morgan's law (2), once more:

We organize the proof differently to make explicit how the rule " \vee E" is used on line 10; " \vee E" has three antecedents, two of which are boxes (here: the first box has one line, {line 5}, and the second box has five lines, {line 5, line 6, line 7, line 8, line 9}.

1	$\neg p \land \neg q$			assume	
2	$\neg p$			$\wedge e_1$ 1	
3	$\neg q$			$\wedge e_2$ 1	
4	$p \lor q$			assume	
5	p	assume	q	assume	
6				assume	
7			<u> </u> _	$\neg e \ 3, 5$	
8			$\neg \neg p$	¬i 6-7	
9			p	¬¬e 8	
10	p			∨e 4,5-	5, 5-9
11	\perp			¬e 2,10)
12	$\neg(p \lor q)$			¬i 4-11	
13	$(\neg p \land \neg q) \to \neg (p \lor q)$			→i 1-12	2

Truth-table verification of de Morgan's laws (1) and (4):

p	q	$\neg p$	$ \neg q$	$p \lor q$	$\neg p \land \neg q$	$\neg (p \lor q)$	$ \mid \neg(p \lor q) \to (\neg p \land \neg q) $
Т	T	F	F	Т	F	F	T
Т	F	F	Т	Т	F	F	Т
F	Т	Т	F	Т	F	F	Т
F	F	Т	Т	F	Т	Т	Т

p	q	$\neg p$	$\neg q$	$p \wedge q$	$\neg p \lor \neg q$	$\neg (p \land q)$	$ \mid \neg(p \land q) \to (\neg p \lor \neg q) $
Т	Т	F	F	Т	F	F	Т
Т	F	F	Т	F	T	T	Т
F	Т	Т	F	F	T	T	Т
F	F	Т	Т	F	Т	Т	Т

and similarly for de Morgan's laws (2) and (3)

natural-deduction proofs versus truth-tables

► For the four de Morgan's laws, each with two propositional variables *p* and *q*, **truth-tables** beat **natural-deduction proofs** – or do they?

natural-deduction proofs versus truth-tables

- For the four de Morgan's laws, each with two propositional variables p and q, truth-tables beat natural-deduction proofs – or do they?
- In these lecture notes, two natural deductions for de Morgan's laws are intuitionistically valid and two are not. The truth tables do not show it, the natural-deduction proofs show it:
 - the natural deductions for de Morgan's (2) and (4) in these lecture slides are not admissible intuitionistically (they use rule "¬¬E"),
 - the natural deductions for de Morgan's (1) and (3) in these lecture slides are admissible intuitionistically (they do not use rule "¬¬E" nor the two rules derived from it, LEM and PBC).
 - but perhaps we did not try hard enough to avoid the rule "¬¬E" in the natural deductions for (2) and (4)???
 - in fact, it is possible to write a natural deduction for de Morgan's (2) which is admissible intuitionistically.
 - however, it can be shown (not easy) that, no matter how hard we try, there are no intuitionistically admissible natural deductions for de Morgan's (4).

natural-deduction proofs versus truth-tables

Exercise

1. Write a natural-deduction proof of the following WFF:

$$\varphi_1 \triangleq \neg (p \land q \land r) \rightarrow (\neg p \lor \neg q \lor \neg r)$$

This is a more general version of de Morgan's law (4).

2. Write a **natural-deduction proof** of the most general de Morgan's law (4):

$$\varphi_2 \triangleq \neg (p_1 \wedge \cdots \wedge p_n) \rightarrow (\neg p_1 \vee \cdots \vee \neg p_n)$$

where $n \ge 2$.

- 3. Show there is a **natural-deduction proof** of the generalized de Morgan's law above φ_2 whose length (the number of lines in the proof) is $\mathcal{O}(n)$.
- 4. Compare the complexity of a **natural-deduction proof** of φ_2 and the complexity of a **truth-table** verification of φ_2 .

