Barème.

- Calculs: chaque question sur 2 point, total sur 30 points, ramené sur 5 points, +40%.
- Exercice de TD et problème : chaque question sur 4 points, total sur 100 points, ramené sur 15 points, +80%.

Statistiques descriptives.

Soit
$$\varphi: \mathbb{R} \to \mathbb{R}, \ x \mapsto \min\left(\frac{1}{10} \lceil 10x \rceil; 20\right)$$
.

	Calculs	Problème	Note finale
Transformation	c	p	$\varphi\left(1, 4\frac{5c}{30} + 1, 8\frac{15p}{100}\right)$
Note maximale	25	56	19, 4
Note minimale	4	15	6, 6
Moyenne	$\approx 11,64$	$\approx 30,28$	$\approx 10,93$
Écart-type	$\approx 4,18$	$\approx 8,00$	$\approx 2,52$
Premier quartile	9	26	9, 4
Médiane	12	29	10, 5
Troisième quartile	14	34	12

Remarques générales.

- N'écrivez pas dans les marges et encadrez vos conclusions. J'indique par un $p \to p'$ les points p que vous auriez dû avoir et les points p' à cause de cela. Au DS suivant, je mettrai directement zéro à chaque question où vous ne respectez pas ces consignes.
- Un peu avant la fin du devoir, parcourez l'énoncé et repérez les questions très simples auxquelles vous pouvez répondre (exemple : **II.6.a**). Il est dommage de ne pas répondre à ces questions, ce sont des points de perdus.

I - Un exercice vu en TD.

Certains ont eu du mal à définir ce qu'est un score : un entier s est un score si et seulement s'<u>il existe</u> trois entiers naturels a,b,c tels que s=3a+5b+7c. Cela traduit directement le fait que l'ensemble des scores est $\{3a+5b+7c \mid a,b,c\in\mathbb{N}\}$. L'ai relevé énormément d'erreurs du type «soit $a,b,c,\in\mathbb{N}$, l'ensemble des scores est $\{3a+5b+7c\}$ ». C'est une erreur grave, qui montre que vous n'avez pas compris le jeu entre les variables. Vous exprimez ici qu'il n'y a qu'un seul score possible 3a+5b+7c.

Certains ont tenté une récurrence simple, en écrivant par exemple $1 = 7 - 2 \times 3$. Après avoir écrit n = 3a + 5b + 7c, on a alors n + 1 = 3(a - 2) + 5b + 7(c + 1). Mais ce n'est un score que si $a \ge 2$. Il y a en fait deux autres décompositions à trouver (par exemple : 1 = 6 - 5 et 1 = 5 + 3 - 7). La rédaction était aussi un peu fastidieuse.

II – Le corps des quaternions.

Dans ce problème, on construisait le corps $(\mathbb{H}, +, \times)$ de manière très similaire à la construction de \mathbb{C} vue en cours. Il convenait tout du long de ne pas oublier que l'on ne manipulait pas des nombres, mais des matrices.

- 1) Il convenait de ne pas oublier de mentionner l'existence.
- 2) Peu ont utilisé la question 1 ici! Cela simplifiait pourant énormément la question (les autres ont en fait refait le cheminement de la 1).

Dire que $aI + bJ + cK + dL = 0 \Rightarrow a = b = c = d = 0$ ne peut se faire sans citer **1**. Et cela n'utilise pas le fait que I, J, K, L ne sont pas nulles : $1 \cdot I + (-1) \cdot I = 0$, pourtant I n'est pas nulle.

3c) Simplifiez vos résultats, L^3 ou L^{-1} ne sont pas des réponses satisfaisantes par rapport à -L. Il convenait de détailler la réponse, vu la question.

- **3d)** Même si ce n'est pas une preuve, le fait que l'on ait construit les quaternions à partir de matrices devrait vous faire penser à la non-commutativité. Ensuite, la question **3e** devait vous le confirmer.
 - De même, dans la question $\mathbf{4a}$, si la multiplication était commutative sur \mathbb{H} , on vous aurait plutôt écrit $\overline{qr} = \overline{qr}$. Lisez toujours attentivement l'énoncé avant de répondre aux questions : vous y trouverez toujours beaucoup d'informations.
- **3e)** La question n'était pas d'énoncer une condition nécessaire et suffisante sur deux quaternions q, q' pour que qq' = q'q, mais bien de trouver q tel que pour tout q' : qq' = q'q.
- **4b)** Vous ne pouvez pas utiliser **4a** pour écrire $\overline{q}\overline{q} = \overline{q}\overline{q}$ (ce qui ne permettait pas de conclure).
- **5a)** Vous pouviez tout à fait utiliser le déterminant dans cette question.

On a construit les quaternions comme des matrices. Il est interdit ici d'écrire $\frac{1}{q}$. La notation de fraction serait aussi ambigüe : $\frac{a}{b}$ vaudrait-il ab^{-1} ou $b^{-1}a$?

- **5b)** À la question **4a**, on vous disait bien que $\overline{qr} = \overline{r}\overline{q}$, et non $\overline{qr} = \overline{q}\overline{r}$. Vous ne travailliez pas sur les complexes : l'écriture $q\overline{q} = |q|$ n'a aucun sens ici.
- 6a) C'était une question très simple, tout le monde devait y répondre après avoir traité la question 3b.

III - Quelques inégalités.

- 1) Pas de x, y ici, c'est à vous de les introduire.
- 2) On vous demandait de donner une réponse en fonction de $z\overline{z'}$. Répondre $z\overline{z'} i(x'y + xy')$ n'a pas de sens ici, le deuxième terme n'est pas écrit en fonction de $z\overline{z'}$.
- 4) Vous deviez justifier votre réponse. Par exemple, montrez que $ab=r^2$ si et seulement si $a=\bar{b}$. Il convenait de ne pas oublier la réciproque.
- **5a)** Calculer z_1 et z_2 était peu satisfaisant, vu la question suivante. Je ne l'ai pas sanctionné. J'ai relevé beaucoup d'erreurs de signe sur z_2 .