STAT 231: Statistics

Charles Shen

Spring 2016, University of Waterloo Formulas and Notes.

Assume all \log are in base e unless specified.

I've tried to use ln for consistency, but there may be a few inconsistency.

Contents

1	Sta	tistical Models and Maximum Likelihood Estimation	3
	1.1	Likelihood Function for Binomial Distribution	3
	1.2	Likelihood Function for Poisson Distribution	3
	1.3	Likelihood Function for Exponential Distribution	3
	1.4	Likelihood Function for Gaussian Distribution	3
	1.5	Invariance Property of Maximum Likelihood Estimates	3
2	Est	imation	4
	2.1	Confidence Intervals and Pivotal Quantities	4
	2.2	Chi-Squared Distribution $\sim X_k^2$	5
	2.3	Student's t Distribution	6
	2.4	Likelihood-Based Confidence Intervals	6
	2.5	Confidence Intervals for Parameters in the $G(\mu, \sigma)$ Model	7
3	Tes	ts of Hypothesis	9
	3.1	p-value	9
	3.2	Tests of Hypotheses for Parameters in the $G(\mu, \sigma)$ Model	10
	3.3	Likelihood Ratio Tests of Hypotheses - One Parameter	12
		3.3.1 Likelihood Ratio Test Statistic for Binomial	13
		3.3.2 Likelihood Ratio Test Statistic for Exponential	13
		3.3.3 Likelihood Ratio Test Statistic and $G(\mu, \sigma)$	14

1 Statistical Models and Maximum Likelihood Estimation

Definition. The **relative likelihood function** is defined as

$$R(\theta) = \frac{L(\theta)}{L(\hat{\theta})}$$
 for $\theta \in \Omega$

Note that $0 \le R(\theta) \le 1$ for all $\theta \in \Omega$.

Definition. The log likelihood function is defined as

$$l(\theta) = \ln L(\theta)$$
 for $\theta \in \Omega$

1.1 Likelihood Function for Binomial Distribution

The maximum likelihood estimate of θ is $\bar{\theta} = y/n$.

1.2 Likelihood Function for Poisson Distribution

The value $\theta = \bar{y}$ maximizes $l(\theta)$ and so $\hat{\theta} = \bar{y}$ is the maximum likelihood estimate of θ .

1.3 Likelihood Function for Exponential Distribution

The value $\theta = \bar{y}$ maximizes $l(\theta)$ and so $\hat{\theta} = \bar{y}$ is the maximum likelihood estimate of θ for an Exponential Distribution $\sim Exp(\theta)$.

1.4 Likelihood Function for Gaussian Distribution

The maximum likelihood estimate of θ is $\hat{\theta} = (\hat{\mu}, \hat{\sigma})$, where

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} y_i = \bar{y} \text{ and } \hat{\sigma} = \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2 \right]^{1/2}$$

Note that $\hat{\sigma} \neq \sigma$ (sample variance).

1.5 Invariance Property of Maximum Likelihood Estimates

Theorem. If $\hat{\theta}$ is the maximum likelihood estimate of θ , then $g(\hat{\theta})$ is the maximum likelihood estimate of $g(\theta)$.

2 Estimation

2.1 Confidence Intervals and Pivotal Quantities

In general, construct a pivot using the estimator, use that to construct coverage interval, estimate it and find the confidence interval.

Definition. A 100p%, where $0 \le p \le 1$, confidence interval tells 100p% of the intervals constructed from samples will contain the true unknown value of μ (or σ).

Theorem. Central Limit Theorem

If n is large, and if Y_1, \ldots, Y_n are drawn from a distribution with mean μ and variance σ^2 , then $\bar{Y} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$.

For a Binomial Distribution, the confidence interval is

$$\left[\hat{\pi} \pm z^* \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}} \right]$$

where $\hat{\pi} = \frac{y}{n}$, y is the observed data.

To determine the sample size

$$n \ge \left(\frac{z^*}{MoE}\right)^2 \hat{\pi} (1 - \hat{\pi})$$

where MoE is the margin of error.

To be conservative, we usually pick $\hat{\pi} = 0.5$ as it maximizes $\hat{\pi}(1 - \hat{\pi})$.

For a Poisson Distribution, the pivotal quantity is

$$\frac{\bar{Y} - \mu}{\sqrt{\frac{\bar{Y}}{n}}} = Z \sim N(0, 1)$$

and the confidence interval is

$$\left[\bar{y} \pm z^* \sqrt{\frac{\bar{y}}{n}} \right]$$

2.2 Chi-Squared Distribution $\sim X_k^2$

The Gamma function is

$$\Gamma(\alpha) = \int_0^\infty y^{\alpha - 1} e^{-y} dy \text{ for } \alpha > 0$$

Properties of the Gamma Function:

- $\Gamma(\alpha) = (\alpha 1)\Gamma(\alpha 1)$
- $\Gamma(\alpha) = (\alpha 1)!$
- $\Gamma(1/2) = \sqrt{\pi}$

The X_k^2 distribution is a continuous family of distributions on $(0, \infty)$ with probability density function

$$f(x;k) = \frac{1}{2^{k/2}\Gamma(k/2)}x^{(k/2)-1}e^{-x/2}$$
 for $x > 0$

where $k \in \{1, 2, ...\}$ is a parameter of the distribution. k is referred to as the "degrees of freedom" (d.f.) parameter.

For $X \sim X_k^2$

- E(X) = k and Var(X) = 2k
- If k = 1, $X = Z^2$ and $Z \sim G(0, 1)$
- If k = 2, $X \sim Exp(2)$ $(\theta = 2)$
- If k is large, $X \stackrel{Appr.}{\sim} N(k, 2k)$
- Let X_{k_1}, X_{k_1} be independent random variables with $X_{k_i} \sim X_{k_i}^2$. Then $X_{k_1} + X_{k_2} = X_{k_1+k_2}^2$.

Theorem. If $Y_i \sim Exp(\mu)$, then

$$\frac{2Y_i}{\mu} \sim Exp(2) \to X_2^2$$

2.3 Student's t Distribution

Student's t distribution has probability density function

$$f(t;k) = c_k \left(1 + \frac{t^2}{k}\right)^{-(k+1)/2}$$
 for $t \in \Re$ and $k = 1, 2, ...$

where the constant c_k is given by

$$c_k = \frac{\Gamma(\frac{k+1}{2})}{\sqrt{k\pi}\Gamma(\frac{k}{2})}$$
 k is the degrees of freedom

Properties of T:

- i) Range of $T: (-\infty, \infty)$
- ii) T is symmetric around 0
- iii) As $k \uparrow$, $T \to Z$

Theorem. Suppose $Z \sim G(0,1)$ and $U \sim X_k^2$ independently. Let

$$T = \frac{Z}{\sqrt{U/k}}$$

$$\rightarrow \frac{\bar{Y} - M}{s / \sqrt{n}} \sim t_{n-1}$$

Then T has Student's t distribution with k degrees of freedom.

2.4 Likelihood-Based Confidence Intervals

Theorem. A 100p% likelihood interval is an approximate 100q% where $q = 2P(Z \le \sqrt{-2 \ln p}) - 1$ and $Z \sim N(0, 1)$.

Example 2.1. Show that a 1% likelihood interval is an approximate 99.8% confidence interval.

Note that p = 0.01

$$q = 2P(Z \le \sqrt{-2\ln(0.01)}) - 1$$

$$\approx 2P(Z \le 3.03) - 1$$

$$= 2(0.99878) - 1$$

$$= 0.998 = 99.8\%$$

Theorem. If a is a value such that

$$P = 2P(Z \le a) - 1$$
 where $Z \sim N(0, 1)$

then the likelihood interval $\{\theta: R(\theta) \geq e^{-a^2/2}\}$ is an approximate 100p% confidence interval.

Example 2.2. Since

$$0.95 = 2P(Z \le 1.96) - 1$$
 where $Z \sim N(0, 1)$

and

$$e^{-(1.96)^2/2} = e^{-1.9208} \approx 0.1465 \approx 0.15$$

therefore a 15% likelihood interval for θ is also an approximate 95% confidence interval for θ .

2.5 Confidence Intervals for Parameters in the $G(\mu, \sigma)$ Model

If Y_1, \ldots, Y_n are independent $N(\mu, \sigma^2)$, then $\bar{Y} \sim N(\mu, \frac{\sigma^2}{n})$ and

$$\frac{\bar{Y} - \mu}{s / \sqrt{n}} \sim t_{n-1}$$

(2)
$$\frac{(n-1)S^2}{\sigma^2} \sim X_{n-1}^2$$

General Rule:

The Confidence Interval for μ if σ is unknown is

$$\left[\bar{y} \pm t^* \frac{s}{\sqrt{n}} \right]$$

When σ is unknown, we replace σ by its estimate s, and we use t-pivot. Confidence interval when σ is known is

$$\left[\ \bar{y} \pm z^* \frac{\sigma}{\sqrt{n}} \ \right]$$

When σ is known, we use z-pivot.

If n is really large, then the t^* value converges to the corresponding z^* value (by Central Limit Theorem).

Confidence Intervals for σ^2 and σ

Theorem. Suppose Y_1, Y_2, \ldots, Y_n is a random sample from the $G(\mu, \sigma)$ distribution with sample variance S^2 . Then the random variable

$$\frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

has a Chi-squared distribution with n-1 degrees of freedom.

Using the theorem, we can construct a 100p% confidence interval for the parameter σ^2 or σ .

Recall this is the same as the equation (2) in this sub-section.

We can find constants a and b such that

$$P(a < U < b) = p$$

where $U \sim X_{n-1}^2$.

So a 100p% confidence interval for σ^2 is

$$\left[\begin{array}{c} \frac{(n-1)s^2}{b}, \frac{(n-1)s^2}{a} \end{array}\right]$$

and a 100p% confidence interval for σ is

$$\left[\sqrt{\frac{(n-1)s^2}{b}}, \sqrt{\frac{(n-1)s^2}{a}}\right]$$

Unlike confidence interval for μ , the confidence interval for σ^2 is not symmetric about s^2 . the estimator of σ^2 . The X_{n-1}^2 distribution is not a symmetric distribution.

Prediction Interval for a Future Observation

Suppose that $Y \sim G(\mu, \sigma)$, then

$$Y - \widetilde{\mu} = Y - \overline{Y} \sim N\left(0, \sigma^2\left(1 + \frac{1}{n}\right)\right)$$

Also

$$\frac{Y - \bar{Y}}{S\sqrt{1 + \frac{1}{n}}} \sim t_{n-1}$$

is a pivotal quantity which can be used to obtain an interval of values for Y. Let a be a value such that $P(-a \le T \le a) = p$ or $P(T \le a) = (1+p)/2$ which is obtained from tables. Thus

$$\left[\bar{y} \pm as\sqrt{1 + \frac{1}{n}} \right]$$

3 Tests of Hypothesis

Definition. A hypothesis in statistic is a claim made about the values of a certain parameter of the population.

There are **two** competing hypotheses:

- Null Hypothesis, denoted H_0 ; current "status quo" assumption.
- Alternative Hypothesis, denoted H_1 ; seeks to challenge H_0 .

Definition. A test statistic or discrepancy measure D is a function of the data \mathbf{Y} that is constructed to measure the degree of "agreement" between the data \mathbf{Y} and the null hypothesis H_0 .

For every testing decision, there is a possibility of making two kinds of errors:

Type I H_0 is true; H_0 is rejected.

Type II H_1 is true; H_0 is not rejected.

If Type I error goes down, then Type II error goes up; vice versa holds as well.

3.1 p-value

Suppose there's the test statistic $D = D(\mathbf{Y})$ to test the hypothesis H_0 . Also suppose that $d = D(\mathbf{y})$ is the observed value of D.

Definition. A *p-value* or observed significance level of the test of hypothesis H_0 using test statistic D is

$$p$$
-value = $P(D \ge d; H_0)$

Caution: The *p-value* is **not** the probability that H_0 is true.

Table 1: Interpretation of *p-values*

$p ext{-}value$	Interpretation
p- $value > 0.1$	No evidence against H_0 based on the observed
	data.
$0.05 < p\text{-}value \le 0.10$	Weak evidence against H_0 based on the observed
	data.
$0.01 < p\text{-}value \le 0.05$	Evidence against H_0 based on the observed data.
$0.001 < p$ -value ≤ 0.01	Strong evidence against H_0 based on the observed
	data.
p -value ≤ 0.001	Very strong evidence against H_0 based on the ob-
	served data.

If the *p-value* is not small, it cannot be concluded that H_0 is true. It can only be said that there is no evidence against the null hypothesis in light of the observed data.

Confidence Interval vs. Hypothesis Testing

Confidence interval is the range of "reasonable" values for θ , given the level of confidence and sample data.

Hypothesis testing tests whether a particular value of θ is "reasonable" given the p-value and sample data.

3.2 Tests of Hypotheses for Parameters in the $G(\mu, \sigma)$ Model

Hypothesis Tests for μ

Using the test statistic

$$D = \frac{|\bar{Y} - \mu_0|}{S/\sqrt{n}}$$

Then using the sample mean \bar{y} and standard deviation s, we get

$$d = \frac{|\bar{y} - \mu_0|}{s/\sqrt{n}}$$

The *p-value* can be then obtained via

$$p$$
-value = $P(D \ge d)$

$$= P(|T| \ge d)$$

$$= 1 - P(-d \ge T \ge d)$$

$$= 2[1 - P(T \le d)] \text{ where } T \sim t_{n-1}$$

One-sided hypothesis tests

Suppose that the null hypothesis is $H_0: \mu = \mu_0$ and the alternative hypothesis is $H_1: \mu > \mu_0$.

To test $\mu = \mu_0$, use the same test statistic and observed value. Then *p-value* can be obtained via

$$p\text{-}value = P(D \ge d)$$

$$= P(T \ge d)$$

$$= 1 - P(T \le d) \text{ where } T \sim t_{n-1}$$

Relationship Between Hypothesis Testing and Interval Estimation

Suppose y_1, y_2, \ldots, y_n is an observed random sample from the $G(\mu, \sigma)$ distribution.

Suppose $H_0: \mu = \mu_0$ is tested, and we have

$$p\text{-}value \ge 0.05$$
 if and only if $P\left(\frac{|\bar{Y} - \mu_0|}{S/\sqrt{n}} \ge \frac{|\bar{y} - \mu_0|}{s/\sqrt{n}}; H_0 : \mu = \mu_0 \text{is true}\right) \ge 0.05$ if and only if $P\left(|T| \ge \frac{|\bar{y} - \mu_0|}{s/\sqrt{n}}\right) \ge 0.05$ where $T \sim t_{n-1}$ if and only if $P\left(|T| \le \frac{|\bar{y} - \mu_0|}{s/\sqrt{n}}\right) \le 0.95$ if and only if $\frac{|\bar{y} - \mu_0|}{s/\sqrt{n}} \le a$ where $P(|T| \le a) = 0.95$ if and only if $\mu_0 \in \left[\bar{y} - a\frac{s}{\sqrt{n}}, \bar{y} + a\frac{s}{\sqrt{n}}\right]$

which is a 95% confidence interval for μ .

In general, suppose we have data \mathbf{y} , a model $f(\mathbf{y}, \theta)$ and we use the same pivotal quantity to construct a confidence interval for θ and a test of the hypothesis $H_0: \mu = \mu_0$.

Then the parameter value $\theta = \theta_0$ is inside a 100q% confidence interval for θ if and only if the *p-value* for testing $H_0: \mu = \mu_0$ is greater than 1 - q.

The disadvantage is that we need to construct the appropriate test statistics D and that may be difficult if the original distribution is complicated.

Hypothesis tests for σ

For testing $H_0: \sigma = \sigma_0$, use the test statistic

$$U = \frac{(n-1)S^2}{\sigma_0^2}$$

Note that for large values of U and small values of U provide evidence against H_0 due to the asymmetric shape of Chi-squared distributions. To approximate the p-value:

- 1. Let $u = (n-1)s^2/\sigma_0^2$ denote the observed value of U from the data
- 2. If u is large (that is, if $P(U \le u) > 0.5$) compute the p-value as

$$p$$
-value = $2P(U > u)$

where $U \sim \chi_{n-1}^2$

3. If u is small (that is, if $P(U \le u) < 0.5$) compute the p-value as

$$p$$
- $value = 2P(U \le u)$

where $U \sim \chi_{n-1}^2$

3.3 Likelihood Ratio Tests of Hypotheses - One Parameter

When a pivotal quantity does not exist then a general method for finding a test statistic with good properties can be based on the likelihood function.

Theorem. Suppose

 $\theta = \text{unknown parameter}$

n =sample size

 $\hat{\theta} = MLE \text{ for } \theta$

 $\widetilde{\theta} = \text{Maximum Likelihood Estimator}$

$$H_0: \theta = \theta_0$$

 $H_1: \theta \neq \theta_0$

Then for large n, the Likelihood Ratio Test Statistic is

$$\Lambda(\theta_0) = -2 \ln \frac{L(\theta_0)}{L(\widetilde{\theta})} \sim X_1^2$$

$$\Lambda(\theta_0) = 2[L(\widetilde{\theta}) - L(\theta_0)]$$

Using the observed value of $\Lambda(\theta_0)$, denoted by

$$\lambda(\theta_0) = -2 \ln \left[\frac{L(\theta_0)}{L(\hat{\theta})} \right] = -2 \ln R(\theta_0)$$

where $R(\theta_0)$ is the relative likelihood function evaluated at $\theta = \theta_0$. The *p-value* can then be approximated via

$$p\text{-}value \approx P[W \ge \lambda(\theta_0)] \quad \text{where } W \sim \chi_1^2$$

$$= P\left(|Z| \ge \sqrt{\lambda(\theta_0)}\right) \quad \text{where } Z \sim G(0, 1)$$

$$= 2\left[1 - P(Z \le \sqrt{\lambda(\theta_0)})\right]$$

3.3.1 Likelihood Ratio Test Statistic for Binomial

$$\lambda(\theta_0) = -2 \ln \left[\left(\frac{\theta_0}{\hat{\theta}} \right)^y \left(\frac{1 - \theta_0}{1 - \hat{\theta}} \right)^{n - y} \right]$$

where $\hat{\theta} = y/n$

3.3.2 Likelihood Ratio Test Statistic for Exponential

Suppose $y_1, y_2, \ldots, y_n \sim \text{Exponential}(\theta)$

$$\lambda(\theta_0) = -2 \ln \left[\left(\frac{\hat{\theta}}{\theta_0} \right)^n e^{n(1-\hat{\theta}/\theta_0)} \right]$$

3.3.3 Likelihood Ratio Test Statistic and $G(\mu, \sigma)$

Suppose $Y \sim G(\mu, \sigma)$ with p.d.f.

$$f(y; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2}(y - \mu)^2\right]$$

Then the likelihood ratio test statistic is

$$\Lambda(\theta_0) = \left(\frac{\bar{Y} - \mu_0}{\sigma/\sqrt{n}}\right)^2$$

Notice that $\Lambda(\theta_0)$ is the square of the standard Normal Distribution random variable

$$\frac{\bar{Y} - \mu_0}{\sigma / \sqrt{n}}$$

Therefore, it has exactly a χ_1^2 distribution.