Ejercicio 1

Sean $f:U\subseteq\mathbb{R}^n\to\mathbb{R}^m$, con U un abierto de \mathbb{R}^n . Si existen las derivadas parciales de f y como funciones son continuas en U entonces f es diferenciable.

Demostración.

Sean $\overline{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$ fijo y $f = (f_1, f_2, \dots, f_n)$.

$$\operatorname{P.d.} \lim_{\overline{x} \to \overline{y}} \frac{\left| f_i(\overline{x}) - f_i(\overline{y}) - \sum_{j=1}^n \frac{\partial f_i}{\partial x_j}(\overline{x}) \left(x_j - y_j \right) \right|}{\|\overline{x} - \overline{y}\|} = 0 \quad \forall i = 1, 2, \dots, m.$$

Para todo $i=1,2,\ldots,m$ y $j=1,2,\ldots,n$, sea $g:\mathbb{R}\to\mathbb{R}$ dada por $g_j(x)=f_i\left(x_1,\ldots,x_{j-1},x,y_{j+1},\ldots,y_n\right)$, donde $\overline{x}=(x_1,x_2,\ldots,x_n)\in U$. Luego, para cada $i=1,2,\ldots,m$, se tiene que

$$f_{i}(\overline{x}) - f_{i}(\overline{y}) = f_{i}(x_{1}, x_{2}, \dots, x_{n}) - f_{i}(x_{1}, x_{2}, \dots, y_{n}) + f_{i}(x_{1}, x_{2}, \dots, y_{n}) - f_{i}(x_{1}, x_{2}, \dots, y_{n-1}, y_{n}) + f_{i}(x_{1}, x_{2}, \dots, y_{n-1}, y_{n}) - \dots - f_{i}(x_{1}, \dots, x_{j-1}, y_{j}, y_{j+1}, \dots, y_{n}) + f_{i}(x_{1}, \dots, x_{j-1}, y_{j}, y_{j+1}, \dots, y_{n}) - \dots - f_{i}(x_{1}, y_{2}, \dots, y_{n}) + f_{i}(x_{1}, y_{2}, \dots, y_{n}) - f_{i}(y_{1}, y_{2}, \dots, y_{n})$$

$$= g_{n}(x_{n}) - g_{n}(y_{n}) + g_{n-1}(x_{n-1}) - g_{n-1}(y_{n-1}) + g_{n-2}(x_{n-1}) - \dots - g_{j}(y_{j}) + g_{j-1}(x_{j-1}) - \dots - g_{2}(y_{2}) + g_{1}(x_{1}) - g_{1}(y_{1})$$

Ya que f_i es diferenciable en U, se tiene que, para todo $j=1,2,\ldots,n,$ g_j también lo es. Así, por el Teorema del Valor Medio, para cada $j=1,2,\ldots,n$ existe $a_j\in \left[\min\left\{x_j,y_j\right\},\max\left\{x_j,y_j\right\}\right]$ tal que $g_j(x_j)-g_j(y_j)=g_j(a_j)$ (x_j-y_j). De este modo,

$$f_{i}(\overline{x}) - f_{i}(\overline{y}) = g'_{n}(a_{n}) (x_{n} - y_{n}) + g'_{n-1}(a_{n-1}) (x_{n-1} - y_{n-1}) + \dots + g'_{j}(a_{j}) (x_{j} - y_{j}) + \dots + g'_{1}(a_{1}) (x_{1} - y_{1})$$

$$= \frac{\partial f_{i}}{\partial x_{1}} (\overline{z_{1}}) (x_{1} - y_{1}) + \frac{\partial f_{i}}{\partial x_{2}} (\overline{z_{2}}) (x_{2} - y_{2}) + \dots + \frac{\partial f_{i}}{\partial x_{j}} (\overline{z_{j}}) (x_{j} - y_{j}) + \dots + \frac{\partial f_{i}}{\partial x_{n}} (\overline{z_{n}}) (x_{n} - y_{n})$$

donde $\overline{z_j} = (x_1, \dots, x_{j-1}, a_j, y_{j+1}, \dots, y_n)$. Posteriormente,

$$f_{i}(\overline{x}) - f_{i}(\overline{y}) - \sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}}(\overline{x}) (x_{j} - y_{j}) = \frac{\partial f_{i}}{\partial x_{1}}(\overline{z_{1}}) (x_{1} - y_{1}) - \frac{\partial f_{i}}{\partial x_{1}}(\overline{x}) (x_{1} - y_{1}) + \frac{\partial f_{i}}{\partial x_{2}}(\overline{z_{2}}) (x_{2} - y_{2}) - \frac{\partial f_{i}}{\partial x_{2}}(\overline{x}) (x_{2} - y_{2}) + \dots + \frac{\partial f_{i}}{\partial x_{j}}(\overline{z_{j}}) (x_{j} - y_{j}) - \frac{\partial f_{i}}{\partial x_{j}}(\overline{x}) (x_{j} - y_{j}) + \dots + \frac{\partial f_{i}}{\partial x_{n}}(\overline{z_{n}}) (x_{n} - y_{n}) - \frac{\partial f_{i}}{\partial x_{n}}(\overline{x}) (x_{n} - y_{n})$$

$$= \left(\frac{\partial f_i}{\partial x_1}(\overline{z_1}) - \frac{\partial f_i}{\partial x_1}(\overline{x})\right) (x_1 - y_1) + \\ \left(\frac{\partial f_i}{\partial x_2}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) (x_2 - y_2) + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{z_1}) - \frac{\partial f_i}{\partial x_1}(\overline{x})\right) (x_1 - y_1) + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{z_1}) - \frac{\partial f_i}{\partial x_1}(\overline{x})\right) (x_1 - y_1) + \dots + \\ \left(\frac{\partial f_i}{\partial x_2}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) (x_1 - y_1) + \\ \left(\frac{\partial f_i}{\partial x_2}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) (x_2 - y_2) + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) (x_2 - y_2) + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) (x_1 - y_1) + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) (x_1 - y_1) + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) (x_1 - y_1) + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) |x_2 - y_2| + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) |x_2 - y_2| + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) |x_2 - y_2| + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) |x_2 - y_2| + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) |x_2 - y_2| + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) |x_2 - y_2| + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) |x_2 - y_2| + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) |x_2 - y_2| + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) |x_2 - y_2| + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) |x_2 - y_2| + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) |x_2 - y_1| + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) |x_2 - y_1| + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) |x_2 - y_1| + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{z_2}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) |x_2 - y_1| + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) |x_2 - y_1| + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) |x_2 - y_1| + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) |x_2 - y_2| + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) |x_2 - y_2| + \dots + \\ \left(\frac{\partial f_i}{\partial x_1}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{x})\right) |x_2$$

$$\implies \frac{\left| f_{i}(\overline{x}) - f_{i}(\overline{y}) - \sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}}(\overline{x}) \left(x_{j} - y_{j} \right) \right|}{\|\overline{x} - \overline{y}\|} \leq \left| \frac{\partial f_{i}}{\partial x_{1}}(\overline{x}) - \frac{\partial f_{i}}{\partial x_{1}}(\overline{z_{1}}) \right| + \left| \frac{\partial f_{i}}{\partial x_{2}}(\overline{x}) - \frac{\partial f_{i}}{\partial x_{2}}(\overline{z_{2}}) \right| + \dots + \left| \frac{\partial f_{i}}{\partial x_{n}}(\overline{x}) - \frac{\partial f_{i}}{\partial x_{n}}(\overline{z_{n}}) \right|$$

Después, como las derivadas parciales son continuas en U se da que $\lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_j}(\overline{x}) - \frac{\partial f_i}{\partial x_j}(\overline{y}) \right| = 0$, y puesto que $\overline{z_j} = (x_1, \dots, x_{j-1}, a_j, y_{j+1}, \dots, y_n)$ con $a_j \in [\min\{x_j, y_j\}, \max\{x_j, y_j\}]$, se tiene que $\overline{z_j}$ tiende a \overline{y} conforme \overline{x} tiende a \overline{y} , para todo $j = 1, 2, \dots, n$. De esta manera,

$$0 \leq \lim_{\overline{x} \to \overline{y}} \frac{\left| f_i(\overline{x}) - f_i(\overline{y}) - \sum_{j=1}^n \frac{\partial f_i}{\partial x_j}(\overline{x}) \left(x_j - y_j \right) \right|}{\|\overline{x} - \overline{y}\|} \leq \lim_{\overline{x} \to \overline{y}} \left(\left| \frac{\partial f_i}{\partial x_1}(\overline{x}) - \frac{\partial f_i}{\partial x_1}(\overline{z_1}) \right| + \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{z_2}) \right| + \dots + \left| \frac{\partial f_i}{\partial x_n}(\overline{x}) - \frac{\partial f_i}{\partial x_n}(\overline{z_n}) \right| \right)$$

$$= \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_n}(\overline{x}) - \frac{\partial f_i}{\partial x_1}(\overline{z_1}) \right| + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{z_2}) \right| + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{x}) \right| + \dots + \lim_{\overline{x} \to \overline{y}} \left| \frac{\partial f_i}{\partial x_1}(\overline{x}) - \frac{\partial f_i}{\partial x_1}(\overline{x}) - \frac{\partial f_i}{\partial x_2}(\overline{x}) - \frac$$

De esta manera,
$$\lim_{\overline{x} \to \overline{y}} \frac{\left| f_i(\overline{x}) - f_i(\overline{y}) - \sum_{j=1}^n \frac{\partial f_i}{\partial x_j}(\overline{x}) \left(x_j - y_j \right) \right|}{\|\overline{x} - \overline{y}\|} = 0 \quad \forall i = 1, \dots, m$$

Por último,

$$0 \leq \lim_{\overline{x} \to \overline{y}} \frac{\|f(\overline{x}) - f(\overline{y}) - Df(\overline{y})(\overline{x} - \overline{y})\|}{\|\overline{x} - \overline{y}\|} \leq \sum_{i=1}^{m} \lim_{\overline{x} \to \overline{y}} \frac{\left| f_{i}(\overline{x}) - f_{i}(\overline{y}) - \sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}}(\overline{x})(x_{j} - y_{j}) \right|}{\|\overline{x} - \overline{y}\|} = 0$$

Ya que \overline{y} fue arbitrario, se concluye que f es diferenciable en U.

Ejercicio 2

Sean $A, B \subseteq \mathbb{R}$ no vacíos. Si $a \le b$ para todo $a \in A$ y para todo $b \in B$, entonces A está acotada superiormente y B está acotado inferiormente, y además, $\sup(A) \le \inf(B)$.

Demostración.

Sea $b \in B$, ya que $a \le b$ para todo $a \in A$, se tiene que A está acotado superiormente. De igual forma, sea $a \in A$ como $a \le b$ para todo $b \in B$, se da que B está acotado inferiormente. Además, dado que A y B son no vacíos, se obtiene que el supremo y el ínfimo de A y B existen, respectivamente. Como todo elemento de B es cota superior de A se tiene que $\sup(A)$ es una cota inferior de B. Por lo tanto, $\sup(A) \le \inf(B)$, pues $\inf(B)$ es la mayor cota inferior de B.

Ejercicio 3

Si $f \in \mathcal{R}(\alpha)$ en [a, b] y a < c < b entonces $f \in \mathcal{R}(\alpha)$ en [a, c] y en [c, b] y

$$\int_{a}^{b} f \, d\alpha = \int_{a}^{c} f \, d\alpha + \int_{c}^{b} f \, d\alpha$$

Demostración.

Afirmación. $f \in \mathcal{R}(\alpha)$ en [a, c] y en [c, b].

Sea $\varepsilon > 0$. Ya que $f \in \mathcal{R}(\alpha)$ en [a,b] existe $P_{\varepsilon} = \{a = x_0, x_1, \ldots, x_n = b\} \in \gamma_{[a,b]}$ tal que $U(f,P_{\varepsilon},\alpha) - L(f,P_{\varepsilon},\alpha) < \varepsilon$. Luego, para cada $j = 1,\ldots,n$ sean $M_j = \sup \{f(x) \mid x \in [x_{j-1},x_j]\}$ y $m_j = \inf \{f(x) \mid x \in [x_{j-1},x_j]\}$. Ya que a < c < b, existe $i = 1,\ldots,n$ tal que $x_{i-1} < c \le x_i$, por lo que se definen $M'_c = \sup \{f(x) \mid x \in [x_{i-1},c]\}$, $M''_c = \sup \{f(x) \mid x \in [c,x_i]\}$, $m'_c = \inf \{f(x) \mid x \in [c,x_i]\}$.

Después, considerando las particiones $P'_{\varepsilon} = \{a = x_0, x_1, \dots, x_{i-1}, c\} \in \gamma_{[a,c]}$ y $P''_{\varepsilon} = \{c, x_i, x_{i+1}, \dots, x_n\} \in \gamma_{[c,b]}$, se tiene que

$$\mathcal{U}\left(f,P_{\varepsilon}',\alpha\right)=\sum_{i=1}^{i-1}M_{j}\Delta\alpha_{j}+M_{c}'\left[\alpha(c)-\alpha\left(x_{i-1}\right)\right],$$

$$\mathcal{U}\left(f,P_{\varepsilon}^{"},\alpha\right)=M_{c}^{"}\left[\alpha(x_{i})-\alpha\left(c\right)\right]+\sum_{j=i+1}^{n}M_{j}\Delta\alpha_{j},$$

$$\mathcal{L}(f, P'_{\varepsilon}, \alpha) = \sum_{j=1}^{i-1} m_j \Delta \alpha_j + m'_{c} [\alpha(c) - \alpha(x_{i-1})] \qquad y$$

$$\mathcal{L}(f, P''_{\varepsilon}, \alpha) = m''_{c} [\alpha(x_i) - \alpha(c)] + \sum_{j=i+1}^{n} m_j \Delta \alpha_j.$$

Puesto que $[x_{i-1},c]\cup[c,x_i]=[x_{i-1},x_i]$ se da que $M'_c\leq M_i,M''_c\leq M_i,m_i\leq m'_c$ y $m_i\leq m''_c$. Así,

$$\mathcal{U}(f, P'_{\varepsilon}, \alpha) + \mathcal{U}(f, P''_{\varepsilon}, \alpha) = \sum_{j=1}^{i-1} M_{j} \Delta \alpha_{j} + M'_{c} \left[\alpha(c) - \alpha(x_{i-1})\right] + M''_{c} \left[\alpha(x_{i}) - \alpha(c)\right] + \sum_{j=i+1}^{n} M_{j} \Delta \alpha_{j}$$

$$\leq \sum_{j=1}^{i-1} M_{j} \Delta \alpha_{j} + M_{i} \left[\alpha(c) - \alpha(x_{i-1})\right] + M_{i} \left[\alpha(x_{i}) - \alpha(c)\right] + \sum_{j=i+1}^{n} M_{j} \Delta \alpha_{j}$$

$$= \sum_{j=1}^{n} M_{j} \Delta \alpha_{j}$$

$$= U(f, P_{\varepsilon}, \alpha)$$

y

$$-\mathcal{L}(f, P'_{\varepsilon}, \alpha) - \mathcal{L}(f, P''_{\varepsilon}, \alpha) = -\sum_{j=1}^{i-1} m_{j} \Delta \alpha_{j} - m'_{c} [\alpha(c) - \alpha(x_{i-1})] - m''_{c} [\alpha(x_{i}) - \alpha(c)]$$

$$-\sum_{j=i+1}^{n} m_{j} \Delta \alpha_{j}$$

$$\leq -\sum_{j=1}^{i-1} m_{j} \Delta \alpha_{j} - m_{i} [\alpha(c) - \alpha(x_{i-1})] - m_{i} [\alpha(x_{i}) - \alpha(c)] -$$

$$\sum_{j=i+1}^{n} m_{j} \Delta \alpha_{j}$$

$$= \sum_{j=1}^{n} m_{j} \Delta \alpha_{j}$$

$$= -\mathcal{L}(f, P_{\varepsilon}, \alpha)$$

De esta manera,

$$\begin{split} \mathcal{U}\left(f,P_{\varepsilon}',\alpha\right) + \mathcal{U}\left(f,P_{\varepsilon}'',\alpha\right) - \mathcal{L}\left(f,P_{\varepsilon}',\alpha\right) - \mathcal{L}\left(f,P_{\varepsilon}'',\alpha\right) &\leq U(f,P_{\varepsilon},\alpha) - \mathcal{L}(f,P_{\varepsilon},\alpha) < \varepsilon \\ \Longrightarrow \mathcal{U}\left(f,P_{\varepsilon}',\alpha\right) - \mathcal{L}\left(f,P_{\varepsilon}',\alpha\right) + \mathcal{U}\left(f,P_{\varepsilon}'',\alpha\right) - \mathcal{L}\left(f,P_{\varepsilon}'',\alpha\right) < \varepsilon \\ \Longrightarrow \mathcal{U}\left(f,P_{\varepsilon}',\alpha\right) - \mathcal{L}\left(f,P_{\varepsilon}',\alpha\right) < \varepsilon \quad \text{y} \quad \mathcal{U}\left(f,P_{\varepsilon}'',\alpha\right) - \mathcal{L}\left(f,P_{\varepsilon}'',\alpha\right) < \varepsilon \end{split}$$

Por lo que $f \in \mathcal{R}(\alpha)$ en [a, c] y en [c, b].

Ahora, sea $P = \{a = x_0, x_1, \ldots, x_n = b\} \in \gamma_{[a,b]}$, procediendo como antes, se da que existen $P' = \{a = x_0, x_1, \ldots, x_{i-1}, c\} \in \gamma_{[a,c]}$ y $P'' = \{c, x_i, x_{i+1}, \ldots, x_n = b\} \in \gamma_{[c,b]}$ tales que $\mathcal{U}(f, P', \alpha) + \mathcal{U}(f, P'', \alpha) \leq \mathcal{U}(f, P, \alpha)$ y $\mathcal{L}(f, P', \alpha) + \mathcal{L}(f, P'', \alpha) \geq \mathcal{L}(f, P, \alpha)$. Posteriormente, se tiene que

$$\mathcal{L}(f, P', \alpha) \leq \int_{a}^{c} f \, d\alpha \leq \mathcal{U}(f, P', \alpha) \quad y \quad \mathcal{L}(f, P'', \alpha) \leq \int_{c}^{b} f \, d\alpha \leq \mathcal{U}(f, P'', \alpha)$$

$$\Longrightarrow \mathcal{L}(f, P', \alpha) + \mathcal{L}(f, P'', \alpha) \leq \int_{a}^{c} f \, d\alpha + \int_{c}^{b} f \, d\alpha \leq \mathcal{U}(f, P', \alpha) + \mathcal{U}(f, P'', \alpha)$$

$$\Longrightarrow \mathcal{L}(f, P, \alpha) \leq \int_{a}^{c} f \, d\alpha + \int_{c}^{b} f \, d\alpha \leq \mathcal{U}(f, P, \alpha)$$

Como P fue arbitraria, se obtiene que $\int_a^b f \, d\alpha = \int_a^c f \, d\alpha + \int_c^b f \, d\alpha$.