### **CCNA Security**

## Лабораторная работа 2

## Сканирование сети и узлов

#### Топология



#### Описание

Nmap – популярный и мощный инструмент для сканирования сетей и узлов. Nmap работает в режиме командной строки, но для простоты вы будете использовать графическую оболочку zenmap. Вы проведёте базовое сканирование сети и узнаете, какие узлы есть в сети 192.168.1.0/24. Затем вы проведёте более глубокое сканирование маршрутизатора R1.

Если вас заинтересует nmap, то полную документацию всегда можно найти на сайте проекта <a href="https://nmap.org/">https://nmap.org/</a>

Также в этой работе вы используете Kali Linux, одну из самых популярных «хакерских ОС».

Если вас заинтересует Kali Linux, то всю информацию можно найти на сайте проекта <a href="https://www.kali.org/">https://www.kali.org/</a>

# Таблица адресации

| Устройство | Интерфейс | IPv4-адрес/Маска<br>подсети | Шлюз по<br>умолчанию | Описание              |
|------------|-----------|-----------------------------|----------------------|-----------------------|
| R1         | Fa0/1     | 192.168.1.1/24              | -                    | LAN interface         |
| KI         | Se2/0     | 10.1.1.1/30                 | -                    | WAN interface (To R2) |
|            | Se2/0     | 10.1.1.2/30                 | -                    | To R1                 |
| R2         | Se2/1     | 10.1.1.6/30                 | -                    | To R3                 |
|            | Fa0/0     | 10.1.1.9/30                 | -                    | To WWW server         |
| R3         | Fa0/1     | 192.168.3.1/24              | -                    | LAN interface         |
|            | Fa0/0     | 192.168.10.1/24             | -                    | Conference Room       |
|            | Se2/1     | 10.1.1.5/30                 | -                    | WAN interface (To R2) |
| PC1        | NIC       | 192.168.1.101/24            | 192.168.1.1          | -                     |
| PC2        | NIC       | 192.168.3.101/24            | 192.168.3.1          | -                     |
| PC10       | NIC       | 192.168.10.101/24           | 192.168.10.1         | -                     |
| Kali       | NIC       | 192.168.1.5/24              | 192.168.1.1          | -                     |
| RADIUS     | NIC       | 192.168.1.3/24              | 192.168.1.1          | -                     |
| www        | NIC       | 10.1.1.10/24                | 10.1.1.9 -           |                       |

# Имена пользователей и пароли

|            | Console             |        | VTY                 |        | Enable |
|------------|---------------------|--------|---------------------|--------|--------|
| Устройство | Имя<br>пользователя | Пароль | Имя<br>пользователя | Пароль | Пароль |
| R1         | -                   | -      | -                   | -      | -      |
| R2         | -                   | -      | -                   | -      | -      |
| R3         | -                   | -      | -                   | -      | -      |

| Устройство | Имя пользователя | Пароль |
|------------|------------------|--------|
| PC1        | Student1         | 1      |
| PC2        | Student1         | 1      |
| PC10       | Student1         | 1      |
| Kali       | root             | toor   |

# Часть 1: Сканирование сети

- 1. Войдите в виртуальную машину Kali.
- 2. Откройте zenmap (Applications -> 01 Information Gathering -> zenmap).



3. Заполните следующие поля

Target: **192.168.1.0/24** Profile: **Ping scan** 

- 4. Нажмите **Scan** и дождитесь результатов сканирования (в средней части окна появится надпись «**Nmap done**»). Сканирование займёт менее минуты.
- 5. Осмотрите результаты сканирования. Какие узлы были обнаружены помимо самой машины Kali?



## Часть 2: Сканирование узла

Вас заинтересовал узел 192.168.1.1. Выполните более глубокое сканирование именно этого узла. При интенсивном сканировании nmap просканирует 1000 самых распространённых портов протокола TCP и попытается определить название и версию операционной системы на устройстве.

1. Заполните следующие поля

Target: **192.168.1.1**Profile: **Intense scan** 

2. Нажмите **Scan** и дождитесь результатов сканирования. Сканирование займёт менее минуты.



3. Перейдите на вкладку Ports/Hosts. Какие открытые порты были обнаружены?



4. Перейдите на вкладку **Host Details**. Какая операционная система была обнаружена? Соответствует ли это действительности?



## Часть 3: Попытка входа на устройство по протоколу Telnet

В результате сканирования вы обнаружили на устройстве 192.168.1.1 открытый порт 23 протокола TCP. Это стандартный порт протокола Telnet. Попробуйте подключиться к устройству.

1. Откройте Terminal (Applications -> Favorites -> Terminal).



2. Введите команду telnet 192.168.1.1

```
root@kali:~# telnet 192.168.1.1
Trying 192.168.1.1...
Connected to 192.168.1.1.
Escape character is '^]'.
Password required, but none set
Connection closed by foreign host.
```

- 3. Порт открыт, но подключение не успешно, так как на маршрутизаторе R1 не установлен пароль для vty-линий. Что ж, по крайней мере вы попытались. По умолчанию на устройствах Cisco запрещены удалённые подключения любого рода, однако в нашей лабораторной работе порт протокола Telnet был сознательно открыт.
- 4. Закройте zenmap и Terminal.