Часть I.

Выберите все верные утверждения:

- 1. Мультиколлинеарность приводит к смещению оценок коэффициентов регрессии.
- 2. Мультиколлинеарность приводит к смещению оценок дисперсий коэффициентов регрессии.
- 3. Мультиколлинеарность приводит к высокой дисперсии оценок коэффициентов.
- 4. Для устранения мультиколлинеарности применяется обобщенный метод наименьших квадратов.
- 5. Признаком мультиколлинеарности является значимость модели в целом при незначимости отдельных коэффициентов.
- 6. В случае гетероскедастичности применение стандартных ошибок в форме Уайта помогает сделать оценки коэффициентов эффективными.
- 7. Тест Дарбина-Уотсона применим только в случае автокорреляции первого порядка.
- 8. Нулевая гипотеза в тесте Дарбина-Уотсона наличие автокорреляции.
- 9. Если регрессор коррелирован с ошибкой модели, то оценки коэффициентов становятся несостоятельными.
- 10. В случае автокорреляции оценки дисперсий коэффициентов оказываются смещенными

Часть II.

Задача 1. Ниже представлена оценка следующей модели для выборки, состоящей из женщин18-60 лет:

```
\ln(wage_i) = \beta_1 + \beta_2 educ_i, + \beta_3 marst_i + \beta_4 age_i + \beta_5 child_i + \varepsilon_i, где wage_i — величина заработной платы, руб. educ_i — бинарная переменная (1 — в случае наличия высшего образования, 0 — иначе); marst_i— бинарная переменная (1 — в случае наличия постоянного партнера, 0 — иначе); age_i— возраст женщины, лет; child_i —количество детей младше 18 лет, чел.
```

Регрессионная статистика			
Множественный R	0.318		
R-квадрат	0.101		
Нормированный R-квадрат	B10		

Стандартная ошибка	В7
Наблюдения	B4

Дисперсионный анализ

	df	SS	MS	F	Значимость F
Регрессия	B5	23.073	5.768	В9	0.000
Остаток	В6	204.907	0.414		
Итого	499	В8			

	Коэффицие нты	Стандартная ошибка	t- статистик а	Р- Значени е	Нижние 95%	Верхние 95%
Ү-пересечение	9.296	0.205	45.333	0.000	8.893	9.699
educ	B1	B2	В3	0.000	0.283	0.524
marst	-0.227	0.065	-3.498	0.001	-0.355	-0.100
age	0.003	0.005	0.760	0.448	-0.005	0.012
nchild18	-0.017	0.037	-0.470	0.638	-0.089	0.055

- 1) Вставьте пропущенные числа на месте пропусков (округляйте ответ до 3 знака после запятой):
 - B1=
 - B2=
 - B3=
 - B4=
 - B5=
 - B6=
 - B7=
 - B8=
 - B9=
 - **B10**=

Задача 2.

Для 500 квартир Москвы была оценена зависимость их цены (price, тыс. \$) от общей площади (totsp, кв. м), расстояния до метро (metrdist, мин), возможности добраться до метро пешком (walk, 1 - если такая возможность есть, 0 – иначе):

a)
$$\widehat{price}_i = -28,87 + 2,26totsp_i - 2,57metrdist_i - 33,94walk_i + 1,70walk_i * metrdist_i + 0,51walk_i * totsp_i, R^2 = 0,608$$

Кроме того, была получена следующая модель:

- b) $\widehat{price}_i = -49,30 + 2,56totsp_i 1,37metrdist_i, R^2 = 0,576$
 - 1) Проверьте гипотезу об адекватности регрессии для модели из пункта а) (выпишите Но, Н1, вычислите расчетную статистику, укажите ее распределение, найдите критическую статистику, сделайте выводы)

- 2) Проверьте, можно ли использовать объединенную модель для квартир, находящихся в пешей доступности от метро, и остальных квартир.
- 3) Проинтерпретируйте для модели a) коэффициент при переменной $walk_i * metrdist_i$ (учитывая, что все коэффициенты модели значимы на 10 % уровне значимости)

Задача 3.

На основании опроса 100 студентов ВШЭ была оценена зависимость выпитого кофе в день $(coffee_i, чашек)$ от прорешанных задач по эконометрике $(metrics_i)$: $coffee_i = 1 + 0.1metrics_i$.

Оценка ковариационной матрицы коэффициентов выглядит следующим образом:

- 19 0.1
- 0,1 1
 - 1) Сколько чашек кофе выпьет студент Петя, если решит 10 задач по эконометрике?
 - 2) Постройте 95%-ый доверительный интервал для $E(coffee_i|metrics_i=10)$ ожидаемой величины выпитого кофе при 10 прорешанных задачах.

Задача 4.

По ежемесячным данным с января 2003 по февраль 2014 года была оценена зависимость сбережений домашних хозяйств РФ ($save_t$) от располагаемого дохода (inc_t) и индекса потребительских цен (ipc_t):

```
\widehat{save}_t=211.75+0.067inc_t-10.19ipc_t, R^2=0.54. Кроме того, были оценены следующие модели: \hat{e}_t=-1.64+0.000069inc_t+0.11ipc_t+0.12e_{t-1}+0.12e_{t-2}, R^2=0.03 \hat{e}_t^2=95030.38-38.36inc_t+0.0035inc_t^2-11810.24ipc_t+364.98ipc_t^2+2.75ipc_tinc_t, R^2=0.068
```

- 1) Проведите соответствующий тест на гетероскедастичность (укажите Но, На, вычислите расчетную статистику, укажите ее распределение, найдите критическую статистику и сделайте выводы);
- 2) Проведите соответствующий тест на автокорреляцию (укажите Но, На, вычислите расчетную статистику, укажите ее распределение, найдите критическую статистику и сделайте выводы).

Часть III.

Bonpoc 1. Опишите тест Дарбина-Уотсона (сформулируйте нулевую и альтернативную гипотезы, условия применимости, методику расчёта статистики и её распределение).

Вопрос 2. Сформулируйте теорему Гаусса-Маркова.

Bonpoc 3. Опишите тест Чоу (сформулируйте нулевую и альтернативную гипотезы, методику расчёта статистики и её распределение)