

Cambridge International AS & A Level

CANDIDATE NAME	
CENTRE NUMBER	CANDIDATE NUMBER

MATHEMATICS 9709/41

Paper 4 Mechanics May/June 2024

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each guestion in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use $10 \,\mathrm{m}\,\mathrm{s}^{-2}$.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

BLANK PAGE

1	A car starts from rest and accelerates at $2 \mathrm{ms}^{-2}$ for 10 s. It then travels at a constant speed for 30 s. The car then uniformly decelerates to rest over a period of 20 s.	ıe
	(a) Sketch a velocity-time graph for the motion of the car.	2]
	(b) Find the total distance travelled by the car.	2]
		•••
		•••
		•••

0700/41/M/I/24 | TTurn 0404

Two forces of magnitudes $20\,\mathrm{N}$ and $F\mathrm{N}$ act at a point P in the directions shown in the diagram.

(a)	Given that the resultant force has no component in the y -direction, calculate the value of F .	[2]
		•••••
(b)	Given instead that $F = 10$, find the magnitude and direction of the resultant force.	[5]
		•••••
		•••••
		•••••
		••••••

 ••••
•••••
•••••
•••••
•••••
•••••
•••••

and the speed	As it ascends the hill, the total work done to overcome the resistance to motion is $1 \cdot d$ of the train decreases from $45 \mathrm{ms}^{-1}$ to $40 \mathrm{ms}^{-1}$.	∠ UUU KJ
Find the wor	rk done by the engine of the train as it ascends the hill, giving your answer in kJ.	[4]

A car of mass 1700 kg is pulling a trailer of mass 300 kg along a straight horizontal road. T trailer are connected by a light inextensible cable which is parallel to the road. There are resistances to motion of 400 N on the car and 150 N on the trailer. The power of the car's 14000 W.	re constant
Find the acceleration of the car and the tension in the cable when the speed is $20 \mathrm{ms}^{-1}$.	[6]
	•••••
	•••••
	•••••
	••••••
	•••••
	••••••
	••••••
	•••••
	•••••

a)	It is given that there is no resistance to the bobsled's motion.	
	Find its speed when it reaches the bottom of the slope.	3]
		••
		••
		••

ind the time	that it takes	for the bob	sled to rea	ach the bo	ottom of th	e slope.	[5]
							 •••••

A particle moves in a straight line, starting from a point O. The velocity of the particle at time ts after

velo	Ving O is $v \mathrm{ms}^{-1}$. It is given that $v = kt^{\frac{1}{2}} - 2t - 8$, where k is a positive constant. To city of the particle is $4.5 \mathrm{ms}^{-1}$.	
(a)	Show that $k = 10$.	[5]

(b)	(i) Verify that $v = 0$ when $t = 1$ and $t = 16$.	[1]
(ii) Find the distance travelled by the particle in the first 16s.	[5]

1)	Show that the speed of P when it reaches 20 m above the ground is $15 \mathrm{ms}^{-1}$.	[2
		•••••
		•••••
V	on P reaches 20 m above the ground it collides with a second particle Q of mass 0. ing downwards at $20 \mathrm{ms}^{-1}$. P is brought to instantaneous rest in the collision.	1 kg which
	ing downwards at $20 \mathrm{ms^{-1}}$. P is brought to instantaneous rest in the collision. Find the velocity of Q immediately after the collision.	
	Find the velocity of <i>Q</i> immediately after the collision.	
	Find the velocity of <i>Q</i> immediately after the collision.	[:

When P reaches the ground it rebounds back directly upwards with half of the speed that it had immediately before hitting the ground.

Find the height above the ground at which P and Q next collide.	[6

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly shown.					
			•••••		
		•••••	•••••	•••••	•••••
		•••••			
			•••••		
		•••••	•••••	•••••	

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.