MATLA B function name	Overall description and application	Input	Output	Sectio n in Docu- ment
load_gene rator.m	returns one set of randomly (normal distribution) generated real power for a case file	- MATPOWER library case file's name - number of buses, N	- case file with modified real power	3.3
Real_Pow er_SDP_ AC.m	Returns the Real Power and the Angle from any test case using runpf (Newton-Raphson method)	- case file's name - number of buses, N	- [N x 1] vector of the real power, voltage, and angle of each of the bus	3.3
Real_Pow er_SDP_ DC.m	See Real_Power_SDP_AC - the method used is DC power flow in runpf	Same as above	Same as above	4.4
DC_Powe r_Matrix.	Returns the P and the "transfer matrix"($[\Delta A]^T$) in $\mathbf{P} = [\Delta A]^T \mathbf{B}$ (8) This function calls the all three functions above	- case file's name - number of buses, N - AC or DC runpf	- [N x 1] vector of the real power - [N x m] matrix of [\(\Delta A \)]^T	3.3
opt_setup. m	Returns the P and the "transfer matrix" in $ \begin{bmatrix} \mathbf{P}_1 \\ \mathbf{P}_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} [diag(\mathbf{A}\boldsymbol{\delta}_1)\mathbf{A}]^T \\ [diag(\mathbf{A}\boldsymbol{\delta}_2)\mathbf{A}]^T \\ \vdots \end{bmatrix} \begin{bmatrix} b_{1,2} \\ b_{1,3} \\ \vdots \end{bmatrix} $ (10) by stacking the results from the function above (AC <i>runpf</i> only)	- case file's name - number of buses, N	- [(m * N) x 1] stacked real power vector - [(m * N) x m] big transfer matrix	3.3
Susceptan ce_Vector .m	Returns the solved P, transfer matrix, Susceptance, and Residue (Residue = P - transfer matrix * B), P, and transfer matrix after optimize once for the	- case file's name - number of buses, N - DC or AC runpf - 1 norm or 2 norm	- [(m * N) x 1] stacked real power vector - [(m * N) x m] big transfer matrix	4.4

			- [m x 1] B - [m x 1] Residue	
one_norm _constrain t.m	Function that returns the lowest norm(susceptance,1) value	- Stacked Power Vector (per eq 10) - Stacked transfer matrix (per eq 10) - number of possible bus connections - any additional constraints (put []) for none	[double] lowest norm(suscepta nce,1) value	3.4.1.1
new_incid ent_matri x.m	Returns an updated incidence matrix by zeroing the row that corresponds to the line connection with the lowest susceptance	- Susceptance - number of buses, N - threshold of the susceptance value	- [m x N] incidence matrix	3.4
exact_sus ceptance. m	returns a vector with actual values of the susceptance of the lines that is connected to the specified node	- case file's name - number of buses, N	[(N-1) x 1] susceptance vector	Error! Refere nce source not found.
Topology _Error.m	To provide a measure of the accuracy of the topology estimation through the incidence matrix generated	incidence of the actual topology and the modeled topology	- Number of lines the model failed to identify - Number of lines that is imagined by the model (does not actually exist)	Error! Refere nce source not found.
set_constr aint.m	returns a vector with actual values of the susceptance of the lines that is connected to the specified bus	- case file's name - number of buses, N - bus number of interest	[m x 1] susceptance vector	3.6.2

contingen cy_analysi s.m	given the line that you want to outage, produces a case file with the results from the model. Run the outage scenario with but the regular case file and the modeled case file using DC and AC power flow to see the line loading of the regular (correct) modeled (calculated) case file	- case file's name - number of buses, N - outage to bus - outage from bus - modeled susceptance vector	Line loading of the actual and modeled susceptance under AC and DC analysis in runpf	Error! Refere nce source not found.
contingen cy_analysi s_test.m	Example of running contingency_analysis.m	N/A	Same as above	Error! Refere nce source not found.

To run these code, make sure that YALMIP, Gurobi, and MATPOWER is installed, and the path to their perspective directory is added to MATLAB path, as per below:

```
addpath('Desktop\Final\matpower6.0')
addpath('C:\gurobi751\win64\matlab')
addpath('C:\YALMIP-master')
addpath('C:\YALMIP-master\extras')
addpath('C:\YALMIP-master\demos')
addpath('C:\YALMIP-master\solvers')
addpath('C:\YALMIP-master\modules')
addpath('C:\YALMIP-master\modules\parametric')
addpath('C:\YALMIP-master\modules\moment')
addpath('C:\YALMIP-master\modules\global')
addpath('C:\YALMIP-master\modules\robust')
addpath('C:\YALMIP-master\modules\sos')
addpath('C:\YALMIP-master\modules\sos')
```