Mathematics Department C4 SOW

Specification	Reference	Notes/Extra Material
 1. Algebra and Functions Rational functions. Partial fractions (denominators not more complicated than repeated linear terms) 	Heinemann Chapter 1 Section 1:1 to 1.5 - Exercises 1A, 1B, 1C,1D & 1E Summary of key points	Partial fractions to include denominators such as $(ax + b)(cx + d)(ex + f)$ and $(ax + b)(cx + d)^2$ The degree of the numerator may equal or exceed the degree of the denominator. Applications to integration, differentiation and series expansions. Quadratic factors in the denominator such as $(x^2 + a)$, a>0 are <u>not</u> required. Mixed Exercise 1F Revision Exercise 1
 2. Coordinate geometry in the (x, y) plane Parametric equations of curves and conversion between Cartesian and parametric forms. 	Heinemann Chapter 2 Sections 2.1 – 2.4 - Exercises 2A, 2B, 2C,& 2D Summary of key points	Candidates should be able to find the area under a curve given its parametric equations. Candidates will <u>not</u> be expected to sketch a curve from its parametric equations.
	Summary of key points	Mixed Exercise 2E Revision Exercise 2

3. Sequences & Series	Heinemann Chapter 3	
Binomial series for any rational n.	Sections 3.1 to 3.3 - Exercises 3A,3B & 3C	For I x I < b/a, candidates should eb able to obtain the expansion of $(ax + b)^n$, and the expansion of rational functions by decomposition into partial fractions.
	Summary of key points	Mixed Exercise 3D Revision Exercise 3
 Differentiation Differentiation of simple functions defined implicitly or parametrically 	Heinemann Chapter 4 Sections 4.1 to 4.2 - Exercises 4A & 4B	The finding of equations of tangents and normal's to curves given parametrically or implicitly is required.
 Exponential growth and decay. Formation of simple differential equations. 	Section 4.3 - Exercises 4C	Knowledge and use of the result d/dx (a^x) = a^x In a is expected.
	Sections 4.4 to 4.5 - Exercises 4D, & 4E	Questions involving connected rates of change may be set.
	Summary of key points	Mixed Exercise 4F Revision Exercise 4

5. Integration

• Integration of e^x, 1/x, sin x, cos x.

Evaluation of volume of revolution

- Simple cases of integration by substitution and integration by parts. These methods as the reverse processes of the chain and product rules respectively.
- Simple cases of integration using partial fractions.

Heinemann Chapter 6

Sections 6.1

- Exercise 6A

Sections 6.9

Exercise 6l

Sections 6.2, 6.3, 6.6, 6.7

- Exercises 6B, 6C 6F & 6G

Sections 6.4 & 6.5

- Exercises 6D & 6E

To include integration o standard functions such as sin 3x, $\sec^2 2x$, $\tan x$, e^{5x} , 1/2x. Candidates should recognise integrals of the form $\int \underline{f'(x)} dx = \ln f(x) + c$

Candidates are expected to be able to sue trigonometric identities to integrate, for example, $\sin^2 x$, $\tan^2 x$, $\cos^2 3x$

 $\Pi \int y^2 dx$ is required but not $\Pi \int x^2 dy$. Candidates should be able to find a volume of revolution, given parametric equations.

Except in the simplest of cases the substitution will be given. The integral $\int \ln x \, dx$ is required.

More than one application of integration by parts may be required, for example $\int x^2 e^x dx$.

Integration of rational expressions such as those arising from partial fractions,

e.g.
$$\frac{2}{3x+5}$$
, $\frac{3}{(x-1)^2}$

Note that the integration of other rational expressions, such as $\frac{x}{x^2 + 5}$ and $\frac{2}{(2x - 1)^4}$ is also required.

 Analytical solution of simple first order differential equations with separable variables. 		General and particular solutions will be required.
Numerical integration of function	Sections 6.8 - Exercise 6H	Application of the trapezium rule to functions covered in C3 & C4. Use of increasing number of trapezia to improve accuracy and estimate error will be required. Questions will not require more than 3 iterations.
		Simpson's rule is not required.
	Summary of key points	Mixed Exercise 6L Revision Exercise 6
6. Vectors	Heinemann Chapter 5	
 Vectors in two and three dimensions 	Sections 5.1 to 5.7 - Exercise 5A, 5B, 5C, 5D, 5E, 5F & 5G	Candidates should be able to find a unit
 Magnitude of a vector 		vector in the direction of a , and be familiar with I a I
 Algebraic operations of vector addition and multiplication by scalars, and their geometrical interpretations. 		
 Position vectors. 		$\overrightarrow{OB} - \overrightarrow{OA} = \overrightarrow{AB} = \mathbf{b} - \mathbf{a}$

The distance between two points		The distance d between two points (x_i , y_i , z_i ,) and (x_2 , y_2 , z_2 ,) is given by $d^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2$
Vector equations of lines	Sections 5.8 to 5.9 - Exercises 5H & 5I	To include the forms $\mathbf{r} = \mathbf{a} + r\mathbf{b}$ and $\mathbf{r} = \mathbf{c} + t(\mathbf{d} - \mathbf{c})$
The scalar product. Its use for calculating the angle between two lines.	Sections 5.10 - Exercises 5J	Intersection, or otherwise of two lines. Candidates should know that for
		$\overrightarrow{OA} = \mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and $\overrightarrow{OB} = \mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ then
		$\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3$ and $\cos AOB = \mathbf{\underline{a} \cdot \underline{b}}$
	Summary of key points	Candidates should know that if a.b = 0, and that a and b are non-zero vectors, then a and b are perpendicular. Mixed Exercise 5K Revision Exercise 5