PCA R Documentation

Principal component analysis

Description

A simple function for principal component analysis.

Usage

```
PCA(Y, stand=FALSE, ...)

# Write total variance, eigenvalues, relative eigenvalues, cumulative rel. eigenvalues to window 
name_of_output_object or print(name_of_output_object)

# Plot the scaling type 1 (distance) biplot or scaling type 2 (correlation) biplot 
biplot(name_of_output_object, scaling=1, plot.axes=c(1,2), color.obj="black", color.var="red", ...)
```

Arguments

Y Data matrix

stand FALSE: center the data by column (variable); do not divide by standard deviation.

TRUE: center the data by column (variable) and divide by standard deviation.

scaling =1: distance biplot (default).

=2: correlation biplot.

plot.axes The axes to be plotted (default: axes 1 and 2).

color Color of the object symbols and variable arrows, and their labels, in the biplots.

Defaults: color.obi="black", color.var="red".

... Other parameters passed to print or biplot functions.

Details

Principal component analysis (PCA) of a data table producing scaling 1 and scaling 2 biplots. The variables must be standardized (stand=TRUE) if they are not all expressed in the same physical dimensions. The default is stand=FALSE.

Scaling type 1 biplot uses matrices F for objects and U for variables; notation as in Legendre and Legendre (1998, Section 9.1). This projection preserves the Euclidean distances among objects.

Scaling type 2 biplot uses matrices G for objects and U2 for variables. This projection preserves the correlations among variables.

Value

Function PCA returns a list containing the following results and matrices:

total.var Total variance in matrix Y, possibly after standardization.

eigevalues CA eigenvalues. rel.eigen Relative eigenvalues.

rel.cum.eigen Cumulative sum of the relative eigenvalues. U, F, U2, G Matrices required to produce the biplot.

stand Logical variable (TRUE, FALSE) indicating if the variables were standardized.

obj.names, var.names: additional elements needed to produce the biplot.

Reference

Legendre, P. and Legendre, L. 1998. Numerical Ecology. 2nd English ed. Elsevier, Amsterdam.

Author

Pierre Legendre, Departement de Sciences Biologiques, Universite de Montreal.

Examples

```
# Example: data from Fig. 9.2 of Legendre and Legendre (1998)
table = matrix(c(2,3,5,7,9,1,4,0,6,2), 5, 2)
rownames(table) = c("Obj1", "Obj2", "Obj3", "Obj4", "Obj5")
colnames(table) = c("Var1", "Var2")
res = PCA(table)
                       # Print out the summary results
res
biplot(res, scaling=2) # Produce a scaling 2 biplot in the graphics window
summary(res)
                       # Print the structure of the output object
res$U
                       # Matrix of eigenvectors of cov(Y) (variable arrows in scaling 1 biplot)
res$F
                       # Matrix of principal components (object points in scaling 1 biplot)
res$U2
                       # Matrix of variable arrow positions in scaling 2 biplot
res$G
                       # Matrix of object point positions in scaling 2 biplot
# Example: the spider data of Aart and Smeenk-Enserink (1975), available in library mypart.
# The spider data frame has 28 rows and 18 columns. The first 12 columns are abundances of
different species of spiders and the next 6 are environmental data.
library(mvpart)
data(spider)
                       # Note: this file does not contain site names
# Hellinger transformation of species data prior to PCA, using function decostand (library vegan)
library(vegan)
spider.hel = decostand(spider[,1:12], "hellinger")
res = PCA(spider.hel)
                             # Print out the summary results
res
biplot(res, color.obj="blue") # Produce a scaling 1 biplot in the graphics window
summary(res)
                             # Print the structure of the output object
```