

Cálculo Diferencial e Integral

Notas de Aula

Bruno de Araujo Coutinho

1	Números Reais	. 5
2	Funções e Modelos	. 7
3	Limites e Continuidade	. 9
4 4 .1	Integrais Múltiplas Integrais Duplas sobre Retângulos	11 11
	Bibliography	15
	Books	15
	Articles	15

$$\int_{1}^{\infty} \frac{\ln x}{x^{2}} dx = 1$$

$$\int_{1}^{\infty} \frac{\ln x}{x^{2}} dx = 1$$
1. Números Reais
$$\frac{1}{x^{2}} \frac{\ln x}{x^{2}} dx = 1$$

Os

$$\int_{1}^{\infty} \frac{\ln x}{x^{2}} dx = 1$$

$$\int_{1}^{\infty} \frac{\ln x}{x^{2}} dx = 1$$
2. Funções e Modelos x^{2}

Chama-se limite o comportamento de uma função f(x) em torno de um valor x. Escrevemos

$$lim_{x\to a}f(x)=L$$

e dizemos "o limite de f(x), quando x tende a a é igual a L"se pudermos tornar os valors de f(x) arbitrariamente próximos de L (tão próximos quanto quisermos), tornando x suficientemente próximo de a (por ambos os lados de a), mas não igual a a.

■ Example 3.1 Vamos investigar o comportamento de uma função f definida por $f(x) = x^2 - x + 2$, para valores de x próximos de 2.

x	f(x)	X	f(x)
1	2,000000	3	8,000000
1,5	2,750000	2,5	5,750000
1,9	3,710000	2,1	4,310000
1,95	3,852500	2,05	4,152500
1,99	3,970100	2,01	4,030099
1,999	3,997001	2,001	4,003000

4.1 Integrais Duplas sobre Retângulos

Se f(x) é uma função de uma única variável real e é definida para $a \le x \le b$, subdividimos o intervalo [a,b] em n subintervalos $[x_{i-1},x_i]$ de comprimento igual a $\Delta x = (b-a)/n$ e escolhemos pontos arbitrários x_i^* em cada um desses intervalos. Em seguida, formamos a soma de Riemann e tomamos o limite dessa soma quando $n \to \infty$ para oter a integral definida de a até b da função f

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \cdot \Delta x = \int_a^b f(x) dx \tag{4.1}$$

Figura 4.1: Somas de Riemman para funções de uma variável

De modo semelhante, considere uma função f de duas variáveis definida em um retângulo fechado.

$$R = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R}^2 | a \le x \le b, c \le y \le d\}$$

O gráfico de f é a superfície com equação z = f(x,y). Seja S o sólido contido acima de R e abaixo da superfície z:

$$S = \{(x, y, z) \in \mathbb{R}^3 | 0 \le z \le f(x, y), (x, y) \in R\}$$

Para determinar o volume de S, o primeiro passo é dividir o retângulo R em sub-retângulos. Faremos isto dividindo o intervalo [a,b] em m subintervalos $[x_{i-1},x_i]$ de mesmo comprimento $\delta x = (b-a)/m$ e o intervalo [c,d] em n subintervalos iguais $[y_{j-1},y_j]$ de comprimento $\delta y = (d-c)/n$.

Se escolhermos um ponto arbitrário em cada R_{ij} , (x_i^*, y_j^*) definimos o volume da caixa de base R_{ij} e altura $f(x_i^*, y_j^*)$ como:

$$f(x_i^*, y_i^*) \cdot \Delta A$$

Se realizarmos este procedimento para os demais retângulos, vamos obter uma estimativa do volume:

$$V \approx \sum_{i=1}^{m} \sum_{j=1}^{m} j = 1^{n} f(x_{i}^{*}, y_{j}^{*}) \cdot \Delta A$$

A aproximação do volume acima melhora quando aumentamos os valores de m e n, portanto:

$$V = \lim_{m,n\to\infty} \sum_{i=1}^{m} \sum_{j=1}^{m} j = 1^{n} f(x_i^*, y_j^*) \cdot \Delta A$$

Daí, podemos enunciar a definição de integral dupla sobre um retângulo R_{ij} .

Definition 4.1.1 — Integral Dupla. A integral dupla de f sobre o retângulo R_{ij} é:

$$\iint_{R} f(x,y)dA = \lim_{m,n\to\infty} \sum_{i=1}^{m} \sum_{j=1}^{m} j = 1^{n} f(x_{i}^{*}, y_{j}^{*}) \cdot \Delta A$$

$$\tag{4.2}$$

se este limite existir.

O significado preciso da definição anterior é que para todo $\varepsilon > 0$, existe um número N talque

$$\|\iint_{R} f(x,y)dA - \lim_{m,n\to\infty} \sum_{i=1}^{m} \sum_{j=1}^{m} j = 1^{n} f(x_{i}^{*}, y_{j}^{*}) \cdot \Delta A\| < \varepsilon$$

para todos inteiros m e n maiores que N e para qualquer escolha de (x_i^*, y_j^*) em R_{ij} .

4.2 Integrais Iteradas

Suponha que f seja uma função de duas variáveis contínua no retângulo $R = [a,b] \times [c,d]$. Usaremos a notação

Theorem 4.2.1 — Teorema de Fubini. Se f for contínua no retângulo $R = \{(x,y) \mid a \le x \le b, \ c \le y \le d\}$, então

$$\iint_{R} f(x,y)dA = \int_{a}^{b} \int_{c}^{d} f(x,y)dydx = \int_{c}^{d} \int_{a}^{b} f(x,y)dxdy$$

$$\tag{4.3}$$

Genericamente, esse resultado vale se supusermos que f seha limitada em R, f oissa ser descontínua em um número finito de curvas lisas e a integral iterada exista.

4.3 Integrais Duplas em Regiões Gerais

Uma região plana D é dita ser do tipo I se está contida entre o gráfico de duas funções contínuas de x, ou seja,

$$D_1 = \{(x, y) \mid a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

onde g_1 e g_2 são contínuas em [a,b].

- 4.4 Mudança de Variáveis em Integrais Duplas
- 4.4.1 Integrais Duplas em Coordenadas Polares
 - 4.5 Aplicações das Integrais Duplas
 - 4.6 Integrais Triplas
 - 4.7 Mudança de Variáveis em Integrais Triplas
- 4.7.1 Coordenadas Cilíndricas
- 4.7.2 Coordenadas Esféricas

Books Articles