Министерство науки и высшего образования Российской Федерации

Федеральное Государственное

Автономное Образовательное Учреждение

Высшего Образования

Национальный ядерный университет «МИФИ»

Кафедра: «Финансовый мониторинг»

Отчет по курсу:

«Методы оптимизации»

Студент Монастырский М. О.

Группа С21-703

Проверила: Домашова Д. В.

Оглавление

Графический метод.	3
Симплекс-метод	8
Метод искусственного базиса	10
Двойственные задачи ЛП	12
Экономическая интерпретация двойственной задачи	16
Анализ устойчивости двойственных оценок	22
Транспортная задача	23
Метод северо-западного угла	24
Метол минимальных коэффициентов	24

Графический метод.

$$F = 3x_1 + 2x_2 \rightarrow \min(\max)$$

При ограничениях:

$$\begin{cases} 2x_1 + x_2 \le 8 \\ x_1 + 3x_2 \le 6 \\ x_{1,2 \ge 0} \end{cases}$$

1. Построим область допустимых решений, т.е. решим графически систему неравенств. Для этого построим каждую прямую и определим полуплоскости, заданные неравенствами (рис 1 и 2)

Рис 1. Ограничения, построенные по двум точкам

Рис 2. Границы ОДР

2. Рассмотрим целевую функцию F(x1,x2), найдем и построим ее градиент

$$\nabla F = (3,2)$$

Вектор-градиент, составленный из коэффициентов целевой функции, указывает направление максимизации F(X). Начало вектора — точка (0;0), конец — точка (3;2). Построим прямую, нормальную к полученной и будем двигать ее вдоль вектора градиента. Так, точкой максимума будет считаться точка, в которой прямая покидает пределы области на рис 36 очевидно, что это точка C, а точкой минимума считается та точка, в которой прямая первый раз входит в пределы области, таким образом, из рисунка 3а очевидно, что такой точкой является точка начала координат (0,0)

Рис 3a. «Минимум функции»

Рис 36 «Максимум функции»

Для нахождения координат точки С обратим внимание, что она образована точкой пересечения ограничений 1 и 2, решим систему вида:

$$\begin{cases} 2x_1 + x_2 = 8 \\ x_1 + 3x_2 = 6 \end{cases}$$

$$\begin{cases} 2x_1 + x_2 = 8 \\ x_1 + 3x_2 = 6 \mid \cdot 2 \end{cases} \rightarrow \begin{cases} 2x_1 + x_2 = 8 \\ 2x_1 + 6x_2 = 12 \end{cases} \ominus \rightarrow 5x_2 = 4 \rightarrow x_2 = \frac{4}{5}$$

Методом подстановки в любое из равенств получаем, что x_1 =3,6, следовательно координаты максимума функции $F(x_1,x_2)$ = (3,6;0.8)

Путем подстановки полученных координат можем найти значение целевой функции в точках max и min (Табл. 1)

Название	X_1	X_2	$F(x_1,x_2)$
F _{min}	0	0	0
F _{max}	3,6	0,8	12,4

Табл. 1 «Результаты»

Симплекс-метод

A)
$$F = 3x_1 + 2x_2 \rightarrow max$$

При ограничениях:

$$\begin{cases} 2x_1 + x_2 \le 8 \\ x_1 + 3x_2 \le 6 \\ x_{1,2 \ge 0} \end{cases}$$

$$\begin{cases} 2x_1 + x_2 + x_3 = 8 \\ x_1 + 3x_2 + x_4 = 6 \\ x_{1,2,3,4 \ge 0} \end{cases}$$

			3	2	0	0
Базис	С	В	X_1	X_2	X_3	X_4
X_3	0	8	2	1	1	0
X ₄	0	6	1	3	0	1
Δ	F=0		<u>3</u>	2	0	0

$$\min\{\frac{8}{2},\frac{6}{1}\} \rightarrow 4$$

Текущий план (0,0,8,6)

Перестроим симплекс таблицу в новый базис

И пересчитаем коэффициенты по правилу прямоугольника

Пересчитаем дельты:

Д1=0 заведомо т к базис

Д4=0 заведомо т к базис

$$Д2=2-(0.5*3+0*2,5)=2-1.5=0.5$$

$$Д3=0-(0.5*3+0*(-0.5))=0-1.5=-1.5$$

			3	2	0	0
Базис	С	В	X_1	X_2	X_3	X_4
X_1	3	4	1	0.5	0.5	0
X ₄	0	2	0	2.5	-0.5	1
Δ	F=12		0	0.5	-1.5	0

$$\min\{\frac{4}{0.5}, \frac{2}{2.5}\}$$

Текущий план (4,0,0,2)

Перестроим симплекс таблицу в новый базис

И пересчитаем коэффициенты по правилу прямоугольника

Пересчитываем дельты:

Д3:
$$0-(3*0.6+2*(-0.2)) = 0-(1.8-0.4) = -1.4$$

Д4:
$$0-(3*(-0.2)+2*0.4) = 0-(-0.6+0.8) = 0-0.2$$

			3	2	0	0
Базис	С	В	X_1	X_2	X_3	X_4
X_1	3	3.6	1	0	0.6	-0.2
X_2	2	0.8	0	1	-0.2	0.4
Δ	F=12.4		0	0	-1.4	-0.2

План оптимален

$$X_1 = 3.6$$
; $X_2 = 0.8$

ОПТ решение: (3.6,0.8,0,0)

$$F_{max} = 3*3.6+2*0.8=12.4$$

Метод искусственного базиса

$$F = x_1 + 3x_2 \rightarrow \max$$

$$\begin{cases} 3x_1 + 4x_2 \ge 12 \\ 2x_1 - x_2 \le 6 \\ x_{1,2 \ge 0} \end{cases}$$

Приводим к каноническому виду:

$$\begin{cases} 3x_1 + 4x_2 - x_3 = 12 \\ 2x_1 - x_2 + x_4 = 6 \\ x_{1,2 \ge 0} \end{cases}$$

A1	A2	A3	A4
(3,2)	(4,-1)	(-1,0)	(0,1)

$$\begin{cases} 3x_1 + 4x_2 - x_3 + y_1 = 12 \\ 2x_1 - x_2 + x_4 = 6 \\ x_{1,2,3,4 \ge 0} \end{cases}$$

Базис: А4, Ау1

Поставим задачу G

 $G=-y1 \rightarrow max$

			0	0	0	0	-1
Базис	С	В	A_1	A_2	A_3	A_4	A_{y1}
A_{y1}	-1	12	3	4	-1	0	1
A_4	0	6	2	-1	0	1	0
Δ	G=-12		3	4	-1	0	0

Текущий план: (0,0,0,6,12)

			0	0	0	0	-1
Базис	С	В	A_1	A_2	A_3	A_4	A_{y1}
A_2	0	3	3/4	1	-1/4	0	1/4

A_4	0	9	11/4	0	-1/4	1	1/4
Δ	G=0		0	0	0	0	-1

ОПТ план: (0,3,0,9,0)

Данный план является оптимальным, базис A2, A4 явл. базисом исходной задачи т к G=0

Решаем:

$$F = 3x_1 + 2x_2 \rightarrow max$$

			3	2	0	0
Базис	С	В	A_1	A_2	A_3	A_4
A_2	2	3	3/4	1	-1/4	0
A_4	0	9	11/4	0	-1/4	1
	F=6		1.5	0	0.5	0

Д2:
$$2$$
- $(2) = 0$

$$Д3:0-(-0.5)=0.5$$

$$Д4 = 0-(0)=0$$

Критерий отсутствия решения для вектора A3 выполнен (Vd3 >0) функция не ограничена сверху в ОДР

B)
$$F = x_1 + 2x_2 \rightarrow max$$

$$\begin{cases} x_1 - 6x_2 \ge 6 \\ -2x_1 + x_2 \ge 2 \\ x_{1,2 \ge 0} \end{cases}$$

$$\begin{cases} x_1 - 6x_2 - x_3 = 6 \\ -2x_1 + x_2 - x_4 = 2 \\ x_{1,2,3,4 \ge 0} \end{cases}$$

A1	A2	A3	A4
(1,-2)	(-6,2)	(-1,0)	(0,-1)

$$\begin{cases} x_1 - 6x_2 - x_3 + y_1 = 6 \\ -2x_1 + x_2 - x_4 + y_2 = 2 \\ x_{1,2,3,4 \ge 0} \end{cases}$$

$$G = -y_1 - y_2 \rightarrow max$$

			0	0	0	0	-1	-1
Базис	С	В	A_1	A_2	A_3	A_4	A_{y1}	A_{y2}
A_{y1}	-1	6	1	-6	-1	0	1	0
A _{y2}	-1	2	-2	1	0	-1	0	1
	G=-8		-1	-5	-1	-1	0	0

Д5:-1-
$$(-1)$$
 =0

$$Д6:-1-(-1)=0$$

Опт решение (0,0,0,0,6,2)

ОПТ решение, но G<0 => ОДР пуста

Двойственные задачи ЛП

A)
$$F = 3x_1 + 2x_2 \rightarrow max$$

При ограничениях:

$$\begin{cases} 2x_1 + x_2 \le 8 \\ x_1 + 3x_2 \le 6 \\ x_{1,2 \ge 0} \end{cases}$$

Двойственная задача к данной:

$$G=8y_1+6y_2 \rightarrow min$$

$$\begin{cases} 2y_1 + y_2 \ge 3 \\ y_1 + 3y_2 \ge 2 \\ y_{1,2 \ge 0} \end{cases}$$

ОПТ решение: (3.6,0.8,0,0)

$$F_{max} = 3*3.6+2*0.8=12.4$$

По теореме 2

$$\begin{cases} (3.6 * 2 + 0.8 - 8)y_1 *= 0 \\ (3.6 + 3 * 0.8 - 6)y_2 *= 0 \\ \rightarrow y_{1,2} > 0 \end{cases}$$

$$\begin{cases} (2y_1 + y_2 - 3) * 3.6 = 0 \\ (y_1 + 3y_2 - 2)0.8 = 0 \\ y_{1,2} > 0 \end{cases}$$

$G_{min} = 12.4$

По теореме 3

			3	2	0	0
Базис	С	В	X_1	X_2	X_3	X_4
X_1	3	3.6	1	0	0.6	-0.2
X_2	2	0.8	0	1	-0.2	0.4
Δ	F=12.4		0	0	-1.4	-0.2
			Y3	Y4	Y1	Y2

Оптимальная симплекс таблица

$$Y^*=C_B^*A_{B}^{-1}$$

$$(3,2)*$$
 $\begin{bmatrix} 0.6 & -0.2 \\ -0.2 & 0.4 \end{bmatrix}$ = $(1,4;0.2)$

$$G_{min} = 12.4$$

Экономическая интерпретация двойственной задачи

Сырьё	Te	Технологические коэффициенты							
	A	A B C D							
металл	5	1	0	2	1000				
пластмасса	4	2	2	1	600				
резина	1	0	2	1	150				
Прибыль(руб)	6	2	3	4					

 x_i — количество продукции ј вида, $j = \overline{1,4}$

$$F = 6 \cdot x_1 + 2 \cdot x_2 + 3 \cdot x_3 + 4 \cdot x_4 \rightarrow \max$$

$$\begin{cases} 5 \cdot x_1 + x_2 + 2 \cdot x_4 \le 1000 \\ 4 \cdot x_1 + 2 \cdot x_2 + 2 \cdot x_3 + x_4 \le 600 \\ x_1 + 2 \cdot x_3 + x_4 \le 150 \end{cases}$$

$$x_i \ge 0, j = \overline{1,4}$$

$$\begin{cases} 5 \cdot x_1 + x_2 + 2 \cdot x_4 + x_5 = 1000 \\ 4 \cdot x_1 + 2 \cdot x_2 + 2 \cdot x_3 + x_4 + x_6 = 600 \\ x_1 + 2 \cdot x_3 + x_4 + x_7 = 150 \end{cases}$$

$$x_i \ge 0, j = \overline{1,7}$$

$$A_1 = \begin{pmatrix} 5 \\ 4 \\ 1 \end{pmatrix}, \ A_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \ A_3 = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}, \ A_4 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \ A_5 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ A_6 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ A_7 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

A₅, A₆, A₇ – базис

			6	2	3	4	0	0	0	
Базис	Сбаз	b	\mathbf{A}_1	\mathbf{A}_{2}	A ₃	A ₄	A ₅	A ₆	A ₇	
A5	0	1000	5	1	0	2	1	0	0	200
A6	0	600	4	2	2	1	0	1	0	150
A7	0	150	1	0	2	1	0	0	1	150
	$f(x^{on})$	0	6	2	3	4	0	0	0	

 $x^{\text{оп}} = (0, 0, 0, 0, 1000, 600, 150)$ – не оптимальное решение, критерий отсутствия решения не выполняется

 A_5, A_6, A_1 – базис

			6	2	3	4	0	0	0	
Базис	Сбаз	b	\mathbf{A}_1	A ₂	A 3	A 4	A 5	A ₆	A 7	
A5	0	250	0	1	-10	-3	1	0	-5	250
A6	0	0	0	2	-6	-3	0	1	-4	0
A1	6	150	1	0	2	1	0	0	1	
	$f(x^{on})$	900	0	2	-9	-2	0	0	-6	

 $x^{\text{оп}} = (150, 0, 0, 0, 0, 250, 0)$ – не оптимальное решение

 A_5, A_2, A_1 – базис

			6	2	3	4	0	0	0
Базис	Сбаз	b	$\mathbf{A_1}$	\mathbf{A}_2	A ₃	A ₄	A ₅	A ₆	A ₇
A5	0	250	0	0	-7	-1,5	1	-0,5	-3
A2	2	0	0	1	-3	-1,5	0	0,5	-2
A1	6	150	1	0	2	1	0	0	1
	$f(x^{on})$	900	0	0	-3	1	0	-1	-2

$$x^{\text{оп}} = (150, 0, 0, 0, 250, 0, 0)$$
 — не оптимальное решение A_5, A_2, A_4 — базис

			6	2	3	4	0	0	0
Базис	Сбаз	b	$\mathbf{A_1}$	A ₂	A ₃	A ₄	A 5	A ₆	A ₇
ëA5	0	475	1,5	0	-4	0	1	-0,5	-1,5
A2	2	225	1,5	1	0	0	0	0,5	-0,5
A4	4	150	1	0	2	1	0	0	1
	$f(x^{on})$	1050	-1	0	-5	0	0	-1	-3

$$x^{\text{оп}} = (0, 225, 0, 150, 475, 0, 0)$$
 — оптимальное решение
$$Y^* = (0; 1; 3; 1; 0; 5; 0)$$

Поставим задачу двойственную к данной:

$$G = 1000 \cdot y_1 + 600 \cdot y_2 + 150 \cdot y_3 \rightarrow \min$$

$$\begin{cases} 5 \cdot y_1 + 4 \cdot y_2 + y_3 \ge 6 \\ y_1 + 2 \cdot y_2 \ge 2 \\ 2 \cdot y_2 + 2 \cdot y_3 \ge 3 \\ 2 \cdot y_1 + y_2 + y_3 \ge 4 \end{cases}$$

$$y_i \ge 0, i = \overline{1,3}$$

Теорема 2:

Выясним, какие y_i равны 0 при подстановке оптимального решения в ограничения:

$$(5 \cdot 0 + 225 + 2 \cdot 150 - 1000) \cdot y_1^* = 0 \Rightarrow y_1^* = 0$$
, так как 1 ограничение <0

$$(4 \cdot 0 + 2 \cdot 225 + 2 \cdot 0 + 150 - 600) \cdot y_2^* = 0 \Rightarrow y_2^* > 0$$
, так как 2 ограничение $=0$

$$(0+2\cdot 0+150-150)\cdot y_3^*=0 \Longrightarrow y_3^*>0$$
, так как 3 ограничение = 0

Выясним, какие ограничения двойственной задачи в оптимальной точке выполняются как равенства:

$$(5 \cdot y_1^* + 4 \cdot y_2^* + y_3^* - 6) \cdot 0 = 0 = 5 \cdot y_1^* + 4 \cdot y_2^* + y_3^* > 6$$

$$(y_1^* + 2 \cdot y_2^* - 2) \cdot 225 = 0 = y_1^* + 2 \cdot y_2^* = 2$$

$$(2 \cdot y_2^* + 2 \cdot y_3^* - 3) \cdot 0 = 0 = 2 \cdot y_2^* + 2 \cdot y_3^* > 3$$

$$(2 \cdot y_1^* + y_2^* + y_3^* - 4) \cdot 150 = 0 = > 2 \cdot y_1^* + y_2^* + y_3^* = 4$$

$$\begin{cases} 5 \cdot y_1^* + 4 \cdot y_2^* + y_3^* > 6 \\ y_1^* + 2 \cdot y_2^* = 2 \\ 2 \cdot y_2^* + 2 \cdot y_3^* > 3 \\ 2 \cdot y_1^* + y_2^* + y_3^* = 4 \end{cases} \Leftrightarrow \begin{cases} y_1^* = 0 \\ y_2^* = 1 \\ y_3^* = 3 \end{cases}$$

$$y^* = (0, 1, 3)$$

$$g^* = 1050$$

Теорема 3:

$$A_B^{-1} = \begin{pmatrix} 1 & -0.5 & -1.5 \\ 0 & 0.5 & -0.5 \\ 0 & 0 & 1 \end{pmatrix}$$

$$y^* = (0, 2, 4) \cdot \begin{pmatrix} 1 & -0.5 & -1.5 \\ 0 & 0.5 & -0.5 \\ 0 & 0 & 1 \end{pmatrix} = (0, 1, 3)$$

$g^* = 1050$

Выводы:

1.
$$(5 \cdot 0 + 225 + 2 \cdot 150 - 1000) \cdot y_1^* = 0$$
 $y_1^* = 0$ $(4 \cdot 0 + 2 \cdot 225 + 2 \cdot 0 + 150 - 600) \cdot y_2^* = 0$ $y_2^* > 0$ $(0 + 2 \cdot 0 + 150 - 150) \cdot y_3^* = 0$ $y_3^* > 0$

Второе и третье ограничения выполнились как равенства => ресурсы 2 и 3 вида полностью использовались при оптимальном плане и являются дефицитными. $(y_2^* = 1 > 0, y_3^* = 3 > 0)$

Первое ограничение выполнилось как строгое неравенство => ресурс 1 вида не является дефицитным. Его остаток $x_5^* = 475$

2. $(5 \cdot 0 + 4 \cdot 1 + 3 - 6) \cdot x_1^* = 0$ не выполняется $x_1^* = 0$ $(0 + 2 \cdot 1 - 2) \cdot x_2^* = 0$ выполняется $x_2^* > 0$ $(2 \cdot 1 + 2 \cdot 3 - 3) \cdot x_3^* = 0$ не выполняется $x_3^* = 0$ $(2 \cdot 0 + 1 + 3 - 4) \cdot x_4^* = 0$ выполняется $x_4^* > 0$

Второе и четвертое ограничения выполнились как равенства => двойственные оценки ресурсов, используемых для производства единицы продукции 2 и 4 вида в точности равны прибыли => целесообразно производить эти экономические изделия. ($x_2^* = 225 > 0$, $x_4^* = 150 > 0$)

Первое и третье ограничения — строгие неравенства => суммарные оценки сырья > получаемой прибыли =>производить эти виды продукции экономически нецелесообразно ($x_1^* = 0, x_3^* = 0$)

3. Увеличение сырья 2 вида (пластмасса) на 1 единицу приведет к получению нового плана производства, при этом прибыль увеличивается на 1 и станет равна 1050+1=1051. Произойдет это за счет увеличения продукции В на 0,5, при этом остатки сырья 1 вида (металл) уменьшатся на 0,5.

Увеличение сырья 3 вида (резина) на 1 единицу приведет к получению нового плана производства, при этом прибыль увеличивается на 3 и станет равна 1050+3=1053. Произойдет это за счет уменьшения выпуска продукции В на 0,5 и увеличения выпуска изделий вида D на 1, при этом остатки сырья 1 вида уменьшатся на 1,5.

Анализ устойчивости двойственных оценок

$$A_B^{-1} = \begin{pmatrix} 1 & -0.5 & -1.5 \\ 0 & 0.5 & -0.5 \\ 0 & 0 & 1 \end{pmatrix} b = \begin{pmatrix} 1000 \\ 600 \\ 150 \end{pmatrix}$$

$$A_B^{-1}(b+\Delta b) = \begin{pmatrix} 1 & -0.5 & -1.5 \\ 0 & 0.5 & -0.5 \\ 0 & 0 & 1 \end{pmatrix}.$$

$$\begin{pmatrix} 1000 + \Delta b_1 \\ 600 + \Delta b_2 \\ 150 + \Delta b_3 \end{pmatrix} = \begin{pmatrix} 475 + \Delta b_1 - 0.5 \cdot \Delta b_2 - 1.5 \cdot \Delta b_3 \\ 225 + 0.5 \cdot \Delta b_2 - 0.5 \cdot \Delta b_3 \\ 150 + \Delta b_3 \end{pmatrix} \ge 0$$

$$\begin{pmatrix} x_5^{*\text{HOB}} \\ x_2^{*\text{HOB}} \\ x_4^{*\text{HOB}} \end{pmatrix} = \begin{pmatrix} 475 + \Delta b_1 - 0.5 \cdot \Delta b_2 - 1.5 \cdot \Delta b_3 \\ 225 + 0.5 \cdot \Delta b_2 - 0.5 \cdot \Delta b_3 \\ 150 + \Delta b_3 \end{pmatrix}$$

I.
$$\Delta b_2 = 0$$
, $\Delta b_3 = 0$
 $475 + \Delta b_1 \ge 0$
 $\Delta b_1 \ge -475$

II.
$$\Delta b_1 = 0$$
, $\Delta b_3 = 0$
 $\begin{cases} 475 - 0.5 \cdot \Delta b_2 \ge 0 \\ 225 + 0.5 \cdot \Delta b_2 \ge 0 \end{cases} \Leftrightarrow \begin{cases} \Delta b_2 \le 950 \\ \Delta b_2 \ge -450 \end{cases} \Delta b_2 \in [-450,950]$

III.
$$\Delta b_1 = 0, \ \Delta b_2 = 0$$

$$\begin{cases} 475 - 1.5 \cdot \Delta b_3 \ge 0 \\ 225 - 0.5 \cdot \Delta b_3 \ge 0 \end{cases} \Leftrightarrow \begin{cases} \Delta b_3 \le \frac{950}{3} \\ \Delta b_3 \le 450 \\ \Delta b_3 \ge -150 \end{cases} \Delta b_3 \in \left[-150, \frac{950}{3}\right]$$

$$b_1 \in [525, +\infty]$$
 $b_2 \in [150, 1550]$ $b_3 \in \left[0, \frac{1400}{3}\right]$

$$\begin{pmatrix} x_5^{*\text{HOB}} \\ x_2^{*\text{HOB}} \\ x_4^{*\text{HOB}} \end{pmatrix} = \begin{pmatrix} 475 - 0.5 \cdot 100 - 1.5 \cdot 150 \\ 225 + 0.5 \cdot 100 - 0.5 \cdot 150 \\ 150 + 150 \end{pmatrix} = \begin{pmatrix} 200 \\ 200 \\ 300 \end{pmatrix} - \text{ не входит в зону}$$

устойчивости

$$x^{*HOB} = (0, 200, 0, 300, 200, 0, 0)$$

Транспортная задача

Имеем транспортную задачу заданную функцией:

$$F = x_{11} + 1x_{12} + 3x_{13} + 4x_{14} + 2x_{15} + 7x_{16} + 3x_{21} + 2x_{22} + 1x_{23} + 5x_{24}$$
$$+ 4x_{25} + 5x_{26} + 1x_{31} + 4x_{32} + 6x_{33} + 3x_{34} + 5x_{35} + 2x_{36} + 5x_{41}$$
$$+ 7x_{42} + 4x_{43} + 2x_{44} + 4x_{45} + 3x_{46} \rightarrow min$$

$$\begin{cases} x_{11} + x_{12} + x_{13} + x_{14} + x_{15} + x_{16} = 30 \\ x_{21} + x_{22} + x_{23} + x_{24} + x_{25} + x_{26} = 35 \\ x_{31} + x_{32} + x_{33} + x_{34} + x_{35} + x_{36} = 40 \\ x_{41} + x_{42} + x_{43} + x_{44} + x_{45} + x_{46} = 45 \\ x_{11} + x_{21} + x_{31} + x_{41} = 15 \\ x_{12} + x_{22} + x_{32} + x_{42} = 30 \\ x_{13} + x_{23} + x_{33} + x_{43} = 20 \\ x_{14} + x_{24} + x_{34} + x_{44} = 35 \\ x_{15} + x_{25} + x_{35} + x_{45} = 25 \\ x_{16} + x_{26} + x_{36} + x_{46} = 25 \end{cases}$$

Составим матрицу:

	B1	B2	В3	B4	B5	В6	Запасы
A1	1	1	3	4	2	7	30
A2	3	2	1	5	4	5	35
A3	1	4	6	3	5	2	40
A4	5	7	4	2	4	3	45
Потребности	15	30	20	35	25	25	150/150

Метод северо-западного угла

	B1	B2	В3	B4	B5	В6	Запасы
A1	115	115	3	4	2	7	30/15/0
A2	3	215	1 ²⁰	5	4	5	35/ 20 /0
A3	1	4	6	3.35	55	2	40/5/0
A4	5	7	4	2	4 ²⁰	3 ²⁵	45/25/0
Потребности	15/0	30/15/0	20 /0	35 /0	25/20 /0	25 /0	150/150

F=15+15+30+20+105+25+80+75=365

Метод минимальных коэффициентов

	B1	B2	В3	B4	B5	В6	Запасы
A1	1 ¹⁵	115	3	4	2	7	30/15/0
A2	3	215	120	5	4	5	35/15/0
A3	1	4	6	3	5 ¹⁵	2 ²⁵	40/15/0
A4	5	7	4	2 ³⁵	410	3	45/10/0
Потребности	15/0	30/15/0	20/0	35/0	25	25/0	150/150

$$F(x) = 1*15 + 1*15 + 2*15 + 1*20 + 5*15 + 2*25 + 2*35 + 4*10 = 315$$

План по второму методу получился лучше, поэтому возьмем его в качестве начального.

	B1	B2	В3	B4	B5	В6	Ui
A1	1 ¹⁵	115	3	4	2	7	U1
A2	3	215	120	5	4	5	U2
A3	1 <mark>0</mark>	4	6	3	515	2 ²⁵	U3
A4	5	7	4	235	410	3	U4
$V_{\rm j}$	V1	V2	V3	V4	V5	V6	

$$i = \overline{1,4}$$
 $j = \overline{1,6}$

$$\begin{cases} u_1+v_1=1\\ u_1+v_2=1\\ u_2+v_2=2\\ u_2+v_3=1\\ u_3+v_6=2\\ u_4+v_4=2\\ u_4+v_5=4\\ u_3+v_1=1 \end{cases} \qquad \Pi \text{усть } u_1=0 \Rightarrow \begin{cases} u_1=0\\ v_1=1\\ v_2=1\\ u_2=1\\ v_3=0\\ v_4=3\\ u_4=-1\\ v_6=2\\ u_5=5\\ v_5=5\\ u_3=0 \end{cases}$$

Опорный план не является оптимальным, так как существуют оценки свободных клеток, для которых ui + vj > cij

$$(1;5)$$
: $0+5>2$; $\Delta 15=0+5-2=3>0$

$$(2;5)$$
: $1+5>4$; $\Delta 25=1+5-4=2>0$

$$max(3,2) = 3$$

	B1	B2	В3	B4	B5	В6	Ui
A1	115(-)	115	3	4	2+	7	U1
A2	3	215	120	5	4	5	U2
A3	10(+)	4	6	3	5 ¹⁵⁽⁻⁾	2 ²⁵	U3
A4	5	7	4	235	410	3	U4
V _j	V1	V2	V3	V4	V5	V6	

	B1	B2	В3	B4	В5	В6	Ui
A1	1	115	3	4	215	7	U1
A2	3	215	1 ²⁰	5	4	5	U2
A3	115	4	6	3	5 ⁰	2 ²⁵	U3
A4	5	7	4	235	410	3	U4
$V_{\rm j}$	V1	V2	V3	V4	V5	V6	

$$\begin{cases} u_1 + v_2 = 1 \\ u_2 + v_2 = 2 \\ u_2 + v_3 = 1 \\ u_2 + v_3 = 1 \\ u_4 + v_5 = 4 \\ u_3 + v_6 = 2 \\ u_4 + v_4 = 2 \\ u_1 + v_5 = 2 \\ u_3 + v_1 = 1 \end{cases} \qquad \Pi \text{усть } u_1 = 0 \Longrightarrow \begin{cases} u_1 = 0 \\ v_1 = -2 \\ v_2 = 1 \\ u_2 = 1 \\ v_3 = 0 \\ v_4 = 0 \\ u_4 = 2 \\ v_6 = -1 \\ u_5 = 5 \\ v_5 = 2 \\ u_3 = 3 \end{cases}$$

Опорный план является оптимальным, так все оценки свободных клеток удовлетворяют условию $ui + vj \le cij$.

Минимальные затраты составят: F(x) = 1*15 + 2*15 + 2*15 + 1*20 + 1*15 + 2*25 + 2*35 + 4*10 = 270

