

FORMAT FOR COURSE CURRICULUM

Course Title: Software Engineering

Credit Units:

L	T	P/S	SW/F W	No. of PSDA	TOTAL CREDIT UNITS
3	-	2	2	2	5

Course Code: IT301

Course Level:UG

Course Objectives:

- 1. To make the students to develop skills that will enable them to construct software of high quality software that is reliable, and that is reasonably easy to understand, modify and maintain
- 2. To make student learn how to use available resources to develop software, reduce cost of software and how to maintain quality of software

Pre-requisites: Student should have knowledge of development languages of software

Course Contents/Syllabus:

	Weightage (%)
Module I : Introduction	15
Descriptors/Topics:	
 Software life cycle models: Waterfall, Prototype, Evolutionary and Spiral models 	
Agile Methodology	
Overview of Quality Standards like ISO 9001, SEI-CMM	
Module II: Software Metrics and Project Planning	25
Descriptors/Topics:	
Size Metrics like LOC, Token Count, Function Count	
Design Metrics	
Data Structure Metrics	
Information Flow Metrics	
Overview of Project Planning	

Cost estimation, static, Single and multivariate models, COCOMO model, Putnam Resource Allocation Model Distance as a second.	
Risk management	
Module III : Software Requirement Analysis, design and coding	20
Descriptors/Topics;	
Problem Analysis	
 Software Requirement and Specifications 	
Behavioural and non-behavioural requirements	
Software Prototyping	
Cohesion & Coupling	
 Classification of Cohesiveness & Coupling 	
 Function Oriented Design, Object Oriented Design, User Interface Design 	
Top-down and bottom-up Structured programming, Information hiding	
Module IV : Software Reliability, Testing and Maintenance	25
Descriptors/Topics:	
Failure and Faults	
Reliability Models: Basic Model, Logarithmic Poisson Model	
Software process	
• Functional testing: Boundary value analysis, Equivalence class testing, Decision table testing, Cause effect	
graphing	
Structural testing: path testing	
• Data flow and mutation testing, unit testing, integration and system testing, Debugging, Testing Tools, &	
Standards.	
 Management of maintenance, Maintenance Process, Maintenance Models, Reverse Engineering, Software 	
Reengineering	
Module V: UML and DevOps	15
Descriptors/Topics:	
Introduction to UML	
 Introduction to Rational Rose Environment 	
Class Diagram in UML	
Use Case Diagram in UML	
State Diagram in UML	
Object Diagram in UML	
Activity Diagram in UML	
Sequence Diagram in UML	
Collaboration Diagram in UML	
Component Diagram in UML	

- Deployment Diagram in UML
- DevOps: Introduction, Life cycle, tools, Difference between Agile and DevOps

Course Learning Outcomes:

Students will be able to:

- Understand software life cycle models and quality standards
- Interpret the importance of the software planning using project metrics
- Identify software requirements and develop software design
- Design software test cases and understand maintenance process
- Illustrate entire software designing with various diagrams

Pedagogy for Course Delivery:

The class will be taught using remote teaching methodology. Students' learning and assessment will be on the basis of four quadrants and flipped class method. E-content will be also provided to the students for better learning. The class will be taught using theory, practical and case-based method.

Lab/ Practical details, if applicable:

List of Experiments:

- Class Diagram in UML
- Use Case Diagram in UML
- State Diagram in UML
- Object Diagram in UML
- Activity Diagram in UML
- Sequence Diagram in UML
- Collaboration Diagram in UML
- Component Diagram in UML
- Deployment Diagram in UML

List of Professional Skill Development Activities (PSDA)

I. Quiz

Assessment/Examination Scheme:

Theory L/T (%)	Lab/Practical/Studio (%)	End Term Examination	
80	20	100	

Theory Assessment (L&T):

Continuous Assessment/Internal Assessment						End Term Examination	
Components (Drop down)	Minor Exam	Home Assignment	Viva	Attendance	Quiz	Case Study/ Group Presentation	
Weightage (%)	10	8	7	5	5	5	60

Lab/ Practical/ Studio Assessment:

Continuous Assessment/Internal Assessment					End Term Examination
Components(Dropdown	Performance	Lab Record	Viva	Attendance	EE
Weightage(%)	15	10	10	5	60

Text:

- 1. K. K. Aggarwal & Yogesh Singh, "Software Engineering", 2nd Ed, New Age International, 2005.
- 2. R. S. Pressman, "Software Engineering A practitioner's approach", 5th Ed., McGraw Hill Int. Ed., 2001.
- 3. Rajib Mall, Fundamentals of Software Engineering, Prentice Hall India.
- 4. Ian Summerville, Software Engineering, Addison-Wesley.

References:

- 1. R. Fairley, "Software Engineering Concepts", Tata McGraw Hill, 1997.
- 2. P. Jalote, "An Integrated approach to Software Engineering", Narosa, 1991.