VNU-HUS MAT3500: Toán rời rạc

Lý thuyết đồ thị III Cây

Hoàng Anh Đức

Bộ môn Tin học, Khoa Toán-Cơ-Tin học Đại học KHTN, ĐHQG Hà Nội hoanganhduc@hus.edu.vn

Nội dung

Lý thuyết đồ thị III Hoàng Anh Đức

Giới thiêu

Một số tính chất của câv

ày có gồc

Cây bao trùm

bao trùm nhỏ nhất

Giới thiệu

Một số tính chất của cây

Cây có gốc

Cây bao trùm

- Đơn đồ thị vô hướng T = (V, E) được gọi là một *cây (tree)* nếu T là đồ thị liên thông và không có chu trình
- Dơn đồ thị vô hướng T = (V, E) được gọi là một *rừng* (forest) nếu T là đồ thị không có chu trình

Hình: G_1, G_2 là cây. G_3, G_4 không là cây. G_4 là rừng. G_3 không là rừng

Bài tập 1

Các đồ thị hai phần đầy đủ $K_{m,n}$ $(m,n\in\mathbb{Z}^+)$ nào là cây?

Lý thuyết đồ thị III Hoàng Anh Đức

)Giới thiệu

Một số tính chất của cây

cay to got

Cay bao truit

Cay bao trum nno nna

STATE OF THE PARTY OF THE PARTY

Bài tập 2

Đồ thị nào trong các đồ thị sau là cây?

Lý thuyết đồ thị III Hoàng Anh Đức

)Giới thiệu

Một số tính chất của cây

Cay to got

Cây bao trùm

Đinh lý 1

Một đồ thị vô hướng G là một cây khi và chỉ khi giữa hai đỉnh bất kỳ của G tồn tại một đường đi đơn duy nhất

Chứng minh.

- (\Rightarrow) Giả sử G là cây
 - Do G liên thông, với hai đỉnh bất kỳ $u, v \in V$, *tồn tại* một đường đi đơn giữa u và v
 - Ta chứng minh đường đi này là $\frac{duy}{duy}$ $\frac{duy}{du$
 - \blacksquare Do $v_0=w_0$, tồn tại i thỏa mãn $v_j=w_j$ với mọi $0\leq j\leq i$ và $v_{i+1}\neq w_{i+1}$
 - \blacksquare Do $v_k=w_\ell$, tồn tại $p\geq i+1$ nhỏ nhất thỏa mãn $v_p\in\{w_i,\dots,w_\ell\}$ hoặc $w_p\in\{v_i,\dots,v_k\}$. Giả sử $v_p=w_q$ với $q\geq i$ nhỏ nhất có thể
 - $lackbox{ } v_i,v_{i+1},\ldots,v_p$ và w_q,\ldots,w_{i+1},w_i tạo thành một chu trình trong G, mâu thuẫn với giả thiết G là cây

Lý thuyết đồ thị III Hoàng Anh Đức

Giới thiệu

Một số tính chất của cây

Cây bao trùm

iới thiêu

5 Một số tính chất của cây

Cây có gốc

Cay bao trum

Cay bao trum nho nha

Chứng minh (tiếp).

- (\Leftarrow) Giả sử với mọi cặp đỉnh $u,v\in V$, tồn tại một đường đi đơn duy nhất giữa u và v trong G
 - Theo đinh nghĩa, G là liên thông
 - Ta chứng minh G không có chu trình. Giả sử phản chứng rằng tồn tại một chu trình C trong G. Do đó, với hai đỉnh u,v bất kỳ thuộc C, có hai đường đi đơn khác nhau nối u và v, mâu thuẫn với giả thiết tồn tại duy nhất một đường đi đơn giữa hai đỉnh bất kỳ trong G

Cây Một số tính chất của cây

Định lý 2

Mọi cây T=(V,E) với $|V|\geq 2$ có ít nhất hai đỉnh bậc 1

Chứng minh.

Lấy một đường đi đơn *dài nhất* v_0, v_1, \ldots, v_m trong T. Bậc của v_0 và v_m đều bằng 1, nếu không ta có thể tìm được một đường đi dài hơn $\ \square$

Định lý 3

Mọi cây gồm n đỉnh có chính xác n-1 cạnh

Chứng minh.

Quy nạp theo n

- **Bước cơ sở:** Với n = 1, cây gồm 1 đỉnh có 0 cạnh
- **Bước quy nạp:** Giả sử mọi cây gồm k đỉnh có chính xác k-1 cạnh, với $k \geq 1$. Ta chứng minh mọi cây T gồm k+1 đỉnh có chính xác k cạnh. Thật vậy, do T là một cây, T có một đỉnh u bậc 1 nào đó. T-u là một cây gồm k đỉnh và theo giả thiết quy nạp có k-1 cạnh. Do đó, T có (k-1)+1=k cạnh

Lý thuyết đồ thị III Hoàng Anh Đức

iiời thiệu

Một số tính chất của cây

âv bao trùm

Cay bao trum nho nha

liới thiệu

Một số tính chất của cây

Câu bao trùm

...,

Cây bao trùm nhỏ nhâ

Bài tập 3

Chứng minh rằng một đồ thị G=(V,E) là một cây khi và chỉ khi G không có chu trình và với mọi cặp đỉnh $u,v\in V$ thỏa mãn $uv\notin E$, đồ thị G+uv có chính xác một chu trình

Bài tập 4

Giả sử một cây T=(V,E) có số các cạnh là một số chẵn. Chứng minh rằng tồn tại một đỉnh trong T có bậc chẵn

Bài tập 5

Cho T=(V,E) là một cây. Gọi Δ là bậc lớn nhất của một đỉnh trong T, nghĩa là, $\Delta=\max_{v\in V}\deg_T(v)$. Chứng minh rằng T có ít nhất Δ đỉnh bậc 1

iới thiêu

8 Một số tính chất của cây

Cay co goc

Cay bao iruin

Cây bao trùm nhỏ nhất

Bài tập 6

Cho T=(V,E) là một cây với |V|>1. Giả sử nếu v là một đỉnh liền kề với một đỉnh bậc 1 trong T thì $\deg_T(v)\geq 3$. Chứng minh rằng tồn tại hai đỉnh bậc 1 trong T có chung một đỉnh liền kề với hai đỉnh đó

Bài tập 7

Một rừng bao gồm n đỉnh và t cây (mỗi cây là một thành phần liên thông của rừng) có bao nhiều cạnh?

Một *cây có gốc (rooted tree)* là một cây trong đó một đỉnh được coi là *đỉnh gốc (root)* và mọi cạnh được định hướng xa khỏi đỉnh gốc. Ta ký hiệu một cây T với gốc r bằng cặp (T,r)

Thông thường, một cây có gốc (T,r) được vẽ với đ*ính gốc ở trên đỉnh của đồ thị*. Khi đó, ta có thể *bỏ qua các hướng của các cạnh*, do việc lựa chọn đỉnh gốc đã xác định các hướng này

Lý thuyết đồ thị III Hoàng Anh Đức

Giới thiệu

Một số tính chất của cây

Cây có gốc

lacktriangle Với một đỉnh v khác đỉnh gốc của một cây có gốc T

■ Đỉnh cha (parent) của v là đỉnh u duy nhất sao cho có một cạnh có hướng từ u đến v. Ta cũng gọi v là đỉnh con (child) của u.

- Đỉnh v được gọi là đỉnh lá (leaf) nếu v không có đỉnh con.
 Các đỉnh có đỉnh con được gọi là các đỉnh trong (internal vertices)
- Các đỉnh có chung một đỉnh cha được gọi là các đỉnh anh em (siblings)
- Các đỉnh tổ tiên (ancestors) của v là các đỉnh trên đường đi từ gốc tới đỉnh đó. Các đỉnh con cháu (descendants) của v là các đỉnh có v là một đỉnh tổ tiên
- $C\hat{a}y$ con (subtree) $v\acute{o}i$ $g\acute{o}c$ v là đồ thị con của T cẩm sinh $b\acute{o}i$ v và các đỉnh con cháu của $n\acute{o}$
- Đỉnh gốc là đỉnh duy nhất trong cây không có đỉnh cha và là tổ tiên của mọi đỉnh còn lại. Đỉnh gốc luôn là một đỉnh trong, trừ trường hợp cây chỉ có một đỉnh duy nhất là đỉnh gốc thì đỉnh gốc là một đỉnh lá

Lý thuyết đồ thị III Hoàng Anh Đức

aiới thiệu

Một số tính chất của cây

10 Cây có gốc

Cây Cây có gốc

A HOUSE TV SACTA

Bài tập 8

Hãy trả lời các câu hỏi về cây có gốc được minh họa như hình vẽ dưới đây

(a) Đỉnh nào là đỉnh gốc?

(b) Các đỉnh nào là đỉnh trong?

(c) Các đỉnh nào là đỉnh lá?

(d) Các đỉnh nào là đỉnh con của j?

(e) Đỉnh nào là đỉnh cha của h?

(f) Các đỉnh nào là đỉnh anh em của o?

 $egin{aligned} extbf{(g)} & ext{Các dinh nào là} \ ext{dinh tổ tiên của } m extbf{?} \end{aligned}$

(h) Các đỉnh nào là đỉnh con cháu của b?

(i) Mức của mỗi đỉnh là bao nhiêu?

) Vẽ các cây con gốc c và gốc e

Lý thuyết đồ thị III Hoàng Anh Đức

iới thiêu

Một số tính chất của câv

)Cây có gốc

Cây bao trùm

- Một cây có gốc T được gọi là một $\frac{\partial}{\partial x} m$ -phân $\frac{\partial}{\partial x} m$
- Cây m-phân với m=2 được gọi là *cây nhị phân (binary tree)*

Bài tập 9

Trong số các cây sau, với m là số nguyên dương nào đó, cây nào là cây m-phân? Cây nào là cây m-phân đầy đủ?

Lý thuyết đồ thị III Hoàng Anh Đức

àiới thiệu

Một số tính chất của cây

² Cây có gốc

ay bao trum

- Một cây có gốc được sắp thứ tự (ordered rooted tree) là một cây có gốc trong đó các đỉnh con của mỗi đỉnh được sắp xếp theo một thứ tư nào đó
- Ta thường vẽ cây có gốc được sắp thứ tự theo cách thông thường với hiểu ngầm rằng các đỉnh con của mỗi đỉnh được sắp xếp theo thứ tư từ trái sang phải
- Với một cây nhị phân được sắp thứ tự, nếu một đỉnh trong u có hai đỉnh con thì đỉnh thứ nhất được gọi là đỉnh con trái (left child), đỉnh thứ hai được gọi là đỉnh con phải (right child). Tương tự, cây con có gốc là đỉnh con trái được gọi là cây con trái (left subtree) và cây có gốc là đỉnh con phải được gọi là cây con phải (right subtree) của u
- Các cây có gốc sắp thứ tự được ứng dụng rộng rãi trong khoa học máy tính, ví dụ như các cây phân tích cú pháp (parse trees), cấu trúc cây trong các tài liệu XML (XML documents), cấu trúc cây mô tả các thư mục và tệp (directories and file system), v.v...

aiời thiệu

Một số tính chất của cây

13) Cây có gốc

Đinh lý 4

Mọi cây m-phân đầy đủ $(m \geq 1)$ với i đỉnh trong có chính xác $n = m \cdot i + 1$ đỉnh

Chứng minh.

Mọi đỉnh khác đỉnh gốc là con của một đỉnh trong nào đó. Do đó có $m\cdot i$ đỉnh con (của các đỉnh trong) và 1 đỉnh gốc

Lý thuyết đồ thị III Hoàng Anh Đức

aioi thiệu

Một số tinh chất của cây

14 Cây có gốc

ây bao trùm

Cay pao trum nno nnat

Biới thiệu

Một số tính chất của cây

15) Cây có gốc

- Mức (level) của một đỉnh trong một cây có gốc là độ dài của đường đi duy nhất từ gốc đến đỉnh đó. Mức của đỉnh gốc là 0
- Độ cao (height) h của một cây có gốc là độ dài lớn nhất của một đường đi từ gốc đến đỉnh lá. Nói cách khác, độ cao của một cây là mức lớn nhất của một đỉnh trong cây đó
- Một cây m-phân có độ cao h được gọi là $\frac{can}{c}$ $\frac{doi}{d}$ \frac{doi}

Định lý 5

Một cây m-phân đầy đủ với

- (i) n đỉnh có i=(n-1)/m đỉnh trong và $\ell=((m-1)n+1)/m$ đỉnh lá;
- (ii) i đỉnh trong có n=mi+1 đỉnh và $\ell=(m-1)i+1$ đỉnh lá:
- (iii) ℓ đỉnh lá có $n=(m\ell-1)/(m-1)$ đỉnh và $i=(\ell-1)/(m-1)$ đỉnh trong

Bài tập 10

Sử dụng Định lý 4, hãy chứng minh Định lý 5

Bài tập 11

Chứng minh rằng với mọi $m \ge 1$, có nhiều nhất m^h đỉnh lá trong một cây m-phân có độ cao h. (**Gợi ý:** Quy nạp theo h)

Lý thuyết đồ thị III Hoàng Anh Đức

Giới thiệu

Một số tính chất của cây

16) Cây có gốc

ây bao trùm

49

Một ứng dụng của cây nhị phân được thể hiện trong định lý sau

Định lý 6

Mọi thuật toán sắp xếp n phần tử nào đó dựa trên các phép so sánh hai phần tử bất kỳ cần sử dụng ít nhất $\lceil \log_2(n!) \rceil$ phép so sánh trong trường hợp xấu nhất

- Do $\log_2(n!) = \Theta(n \log n)$, một thuật toán sắp xếp n phần tử trong trường hợp xấu nhất cần $\Theta(n \log n)$ phép so sánh là một thuật toán tối ưu, theo nghĩa là không tồn tại thuật toán sắp xếp nào khác có thời gian chạy trong thời gian xấu nhất tốt hơn
- Ý tưởng: Mô hình các thuật toán bằng cây nhị phân đầy đủ với các đỉnh trong là các phép so sánh và các đỉnh lá là các kết quả thu được khi đi từ gốc (gọi là cây quyết định (decision tree)). Số phép so sánh sử dụng để ra một kết quả chính là độ dài đường đi từ gốc đến nút lá tương ứng

Lý thuyết đồ thị III Hoàng Anh Đức

Giới thiệu

Một số tính chất của cây

17 Cây có gốc

ây bao trùm nhỏ nhấ

49

Cây Cây có gốc

Hình: Mô hình thuật toán sắp xếp dãy ba phần tử a,b,c bằng cây quyết đinh

Bài tập 12

Với mọi $m \geq 1$, chứng minh rằng trong một cây m-phân có ℓ đỉnh lá và có độ cao h, ta có $h \geq \lceil \log_m \ell \rceil$

Lý thuyết đồ thị III Hoàng Anh Đức

Giới thiệu

Một số tính chất của cây

18 Cây có gốc

Cây bao

Cho G=(V,E) là một đơn đồ thị. Một *cây bao trùm (spanning tree)* của G là một đồ thị con T của G thỏa mãn điều kiện T là một cây và T chứa tất cả các đỉnh của G

Lý thuyết đồ thị III Hoàng Anh Đức

aiời thiệu

Một số tính chất của cây

) Cây bao trùm

Định lý 7

Mọi đơn đồ thị liên thông G có một cây bao trùm

Chứng minh.

Ta xây dựng một cây bao trùm của G như sau

- \blacksquare Lấy một chu trình trong G nếu có
- Xóa một cạnh từ chu trình đó. Đồ thị mới thu được vẫn là liên thông
- \blacksquare Lặp lại các bước trên đến khi không có chu trình trong G

Do G có hữu hạn số đỉnh, cuối cùng ta thu được một cây bao trùm của G (Tai sao?)

Bài tập 13

- (a) Đơn đồ thị vô hướng liên thông nào có chính xác một cây bao trùm?
- (b) Khi nào thì một cạnh của một đơn đồ thị vô hướng liên thông phải thuộc mọi cây bao trùm của đồ thị đó?

Lý thuyết đồ thị III Hoàng Anh Đức

àiới thiệu

Một số tính chất của cây

ay co goc

O)Cây bao trùm

Cây bao trùm

Cho G = (V, E) là một đơn đồ thị vô hướng liên thông. Ta trình bày thuật toán duyệt theo chiều sâu (depth-first search, DFS) để tìm một cây bao trùm của G

Thuật toán 1: Duyệt theo chiều sâu

Input: G: đơn đồ thi vô hướng liên thông với các đỉnh v_1, v_2, \ldots, v_n

Output: Cây bao trùm T

procedure dfs(G):

 $T := \text{cây có chính xác một đỉnh } v_1$

 $visit(v_1)$

procedure visit(v: môt đỉnh của G): **for** $m\tilde{o}i$ đỉnh w liền kề với v và chưa thuộc T **do** Thêm w và canh vw vào Tvisit(w)

return T

Lý thuyết đồ thị III Hoàng Anh Đức

Một số tính chất của

Cây bao trùm

Ví du 1

Tìm một cây bao trùm T của đồ thị $G=(V\!,E)$ sau bằng thuật toán duyệt theo chiều sâu

Lý thuyết đồ thị III Hoàng Anh Đức

Riới thiệu

Một số tính chất của cây

Cây có gốc

²Cây bao trùm

Cay bao trum nho nhai

Một số tính chất của cây

Cây có gốc

23 Cây bao trùm

Lý thuyết đồ thị III Hoàng Anh Đức

Riới thiệu

Một số tính chất của cây

Cây có gốc

24 Cây bao trùm

iới thiệu

Một số tính chất của cây

Cay co goc

Cây bao trùm

Cây bao trùm nhỏ nhấ

Thứ tự các đỉnh được thêm vào T (hay thứ tự các đỉnh thực hiện thủ tục visit()) lần lượt là: v_1 , v_5 , v_6 , v_2 , v_7 , v_8 , v_3 , v_9 , v_4 , v_{11} , v_{10}

- Trước mỗi lần lặp trong thủ tục visit(), T là cây chứa toàn bô các đỉnh đã được gọi bởi thủ tục visit()
- Thuật toán DFS chạy trong thời gian $O(n^2)$ với đơn đồ thị vô hướng liên thông G=(V,E) bất kỳ, trong đó n=|V|
 - visit() được gọi cho mỗi đỉnh chính xác một lần
 - Một cạnh e trong G được xét tối đa hai lần để xác định xem e và một đầu mút của e có thể được thêm vào cây T hay không
 - Do đó, thuật toán DFS chạy trong thời gian O(|E|). Chú ý rằng $|E| \le n(n-1)/2 = O(n^2)$
- Thuật toán DFS có thể được sử dụng như là cơ sở để giải quyết nhiều bài toán khác, ví dụ như bài toán tìm các đường đi và chu trình trong đồ thị, bài toán xác định các thành phần liên thông, bài toán tìm đỉnh cắt, v.v... DFS cũng là cơ sở cho kỹ thuật quay lui (backtracking technique) được sử dụng để thiết kế các giải thuật cho nhiều bài toán khó

aiời thiệu

Một số tính chất của cây

26 Cây bao trùm

Cay bao trum nho nhai

- Có những bài toán chỉ có thể giải được bằng cách tìm kiếm trên tập toàn bộ các lời giải. Để tiến hành tìm kiếm lời giải một cách có hệ thống, một hướng tiếp cận là sử dụng cây quyết định với mỗi đỉnh trong mô tả một quyết định và mỗi đỉnh lá ứng với một lời giải nào đó
- Trong kỹ thuật quay lui (backtracking), để tìm kiếm lời giải mong muốn, đầu tiên ta tiến hành một dãy các quyết định sao cho ta có thể tìm đến các lời giải ở càng xa đỉnh gốc càng tốt. Một dãy các quyết định này tương ứng với một đường đi trong cây quyết định từ gốc đến lá
- Một khi ta biết rằng không thể tìm đến một lời giải mới xa hơn thông qua dãy các quyết định, ta lui lại xét đỉnh cha của đỉnh đang xét hiện tại, và tiếp tục tìm đến một lời giải khác dựa trên một dãy các quyết định mới nếu có thể
- Quá trình này được lặp lại cho đến khi tìm được lời giải mong muốn hoặc kết luận rằng không có lời giải nào như thế tồn tại

aioi trilệu Một số tính chất của

27 Cây bao trùm

Bài tập 14 (*)

Hãy tô màu đồ thị trên bằng 3 màu đỏ (R), xanh lá cây (G), và xanh da trời (B) dựa trên kỹ thuật quay lui đã mô tả. (**Gợi ý**: Xem [Rosen 2012], Mục 11.4.4)

Lý thuyết đồ thị III Hoàng Anh Đức

Giới thiệu

Một số tính chất của cây

Cây bao trùm

Cho G=(V,E) là một đơn đồ thị vô hướng liên thông. Ta trình bày thuật toán $\emph{duyệt theo chiều rộng (breadth-first search, BFS)}$ để tìm một cây bao trùm của G

Thuật toán 2: Duyệt theo chiều rộng

Input: G: đơn đồ thị vô hướng liên thông với các đỉnh v_1, v_2, \ldots, v_n

Output: Cây bao trùm T

ı T:= cây chỉ chứa duy nhất một đỉnh v_1

 $L := \mathsf{danh} \; \mathsf{sách} \; \mathsf{rõng}$

Thêm v_1 vào danh sách L các đỉnh chưa xét

while L khác rỗng do

Bỏ đi đỉnh thứ nhất v từ L **for** $m\tilde{o}i$ đỉnh w liền kề với v **do**

if w không thuộc L và w không thuộc T then

Thêm w vào cuối danh sách L

Thêm w và cạnh vw vào T

 $_{f 0}$ return T

Lý thuyết đồ thị III Hoàng Anh Đức

àiới thiệu

Một số tính chất của cây

Cây có gốc

Cây bao trùm

Ví du 2

Tìm một cây bao trùm T của đồ thị G=(V,E) sau bằng thuật toán duyệt theo chiều rộng

Lý thuyết đồ thị III Hoàng Anh Đức

Giới thiệu

Một số tính chất của cây

Cây có gốc

Cây bao trùm

Cay bao trum nno nnat

iới thiệu

Một số tính chất của cây

Cây có gốc

31 Cây bao trùm

iới thiệu

Một số tính chất của cây

Cây có gốc

32 Cây bao trùm

Cây bao trùm nhỏ nhất

 $L = (v_7)$

Giới thiệu

Một số tính chất của cây

Cây có gốc

33 Cây bao trùm

Cây bao trùm nhỏ nhất

 $L = (v_9)$

- Trước mỗi lần lặp vòng while, T là cây chứa các đỉnh đã xét (= các đỉnh đã bỏ đi từ danh sách L)
- \blacksquare Thuật toán BFS chạy trong chạy trong thời gian $O(n^2)$ với đơn đồ thị vô hướng liên thông G=(V,E) bất kỳ, trong đó n=|V|
 - lacksquare Với mỗi đỉnh v, thuật toán xét các đỉnh liền kề với v và thêm các đỉnh chưa xét vào cuối danh sách L
 - Mỗi cạnh được xét nhiều nhất hai lần để xác định xem có cần thêm cạnh đó và một đỉnh đầu mút vào cây T hay không
 - Do đó, thuật toán BFS chạy trong thời gian O(|E|), hay nói cách khác $O(n^2)$
- Thuật toán BFS là cơ sở để thiết kế các thuật toán giải nhiều bài toán khác nhau, ví dụ như bài toán tìm các thành phần liên thông, bài toán xác định xem một đồ thị có phải đồ thị hai phần hay không, bài toán tìm đường đi ngắn nhất giữa hai đỉnh, v.v...

liời thiệu

Một số tính chất của cây

Cây bao trùm

Cây hạo trùm nhỏ nhất

49

Bài tập 15

Tìm một cây bao trùm của đồ thị sau bằng

- (1) thuật toán tìm kiếm theo chiều sâu (DFS);
- (2) thuật toán tìm kiếm theo chiều rộng (BFS); bắt đầu từ đỉnh a

Bài tập 16

Hãy mô tả các cây bao trùm xuất ra bởi thuật toán tìm kiếm theo chiều rộng và thuật toán tìm kiếm theo chiều sâu khi chạy trên đồ thị đầy đủ K_n , với n là số nguyên dương nào đó

Lý thuyết đồ thị III Hoàng Anh Đức

Giới thiệu

Một số tính chất của cây

Cây có gồc

Cây bao trùm

ay bao trum nno nnat

Cho G=(V,E,w) là một đồ thị liên thông vô hướng có trọng số. Một *cây bao trùm nhỏ nhất (minimum spanning tree)* của G là một cây bao trùm của G có tổng trọng số các cạnh của cây là nhỏ nhất có thể

- Input: Đồ thị liên thông vô hướng có trọng số G = (V, E, w)
- lacktriangle Output: Một cây bao trùm nhỏ nhất T của G
- Thuật toán Prim
- Thuật toán Kruskal

Lý thuyết đồ thị III Hoàng Anh Đức

iidi thiệu

Một số tính chất của cây

āy có gốc

ay bao trum

iới thiệu

Một số tính chất của cây

iy boo trùm

Cây bao trùm nhỏ nhất

Thuật toán 3: Thuật toán Prim

Input: G=(V,E,w): đồ thị liên thông vô hướng có trọng số **Output:** Một cây bao trùm nhỏ nhất T của G

1 T := môt canh có trong số nhỏ nhất

 \mathbf{z} for i:=1 to n-2 do

e:= một cạnh có trọng số nhỏ nhất liên thuộc với một đỉnh của T thỏa mãn T+e không có chu trình

T := T + e

return T

Ví du 3

Tìm một cây bao trùm nhỏ nhất T của đồ thị G=(V,E,w) sau bằng thuật toán Prim

Lý thuyết đồ thị III Hoàng Anh Đức

Giới thiệu

Một số tính chất của cây

ay co goc

Cay bao trùm

Lý thuyết đồ thị III Hoàng Anh Đức

aiới thiệu

Một số tính chất của cây

Cây có gốc

Cây bao trùm

Cây bao trùm nhỏ nhất

3

Một số tính chất của cây

Cây có gốc

Cây bao trùm

Đinh lý 8

Nếu T là một cây bao trùm xuất ra bởi thuật toán Prim với đồ thị đầu vào G=(V,E,w) thì T là một cây bao trùm nhỏ nhất của G

Chứng minh.

- Thuật toán Prim luôn xuất ra một cây bao trùm
 - Ở các bước trung gian, T luôn là cây
 - Mỗi bước trung gian, thuật toán thêm một cạnh và một đỉnh mới vào T
- \blacksquare Ta chứng minh bằng phản chứng. Giả sử T không có tổng trọng số nhỏ nhất
- Gọi $ET = (e_1, e_2, \dots, e_m)$ là dãy các cạnh được chọn theo thứ tư thực hiện của thuật toán Prim
- Gọi U là một cây bao trùm nhỏ nhất thỏa mãn điều kiện U có chứa k cạnh đầu tiên của ET với k lớn nhất có thể, nghĩa là e_1, e_2, \ldots, e_k thuộc U và $e_{k+1} = xy$ không thuộc U

Lý thuyết đồ thị III Hoàng Anh Đức

aiới thiệu

Một số tính chất của ây

ay co goc

When to come

Lý thuyết đồ thị III Hoàng Anh Đức

ıdı thiệu

Một số tính chất của cây

ay 00 g00

Cây bao trùm nhỏ nhất

Chứng minh (tiếp).

- Gọi W là tập các đỉnh của T tính đến thời điểm ngay trước khi $e_{k+1} = xy$ được chọn
- Gọi P là một đường đi giữa x và y trong U (chú ý rằng xy không là một cạnh của U) và gọi ab là cạnh đầu tiên của P có một đầu mút (a) thuộc W và một đầu mút (b) không thuộc W
- \blacksquare Xét cây bao trùm S = U ab + xy
 - **Nếu** w(a,b) > w(x,y): Tổng trọng số của S nhỏ hơn của U, mâu thuẫn với giả thiết U là cây bao trùm nhỏ nhất
 - Nếu w(a,b)=w(x,y): S là một cây bao trùm nhỏ nhất và S có chứa nhiều cạnh của ET hơn U, mậu thuẫn với định nghĩa của U
 - Nếu w(a,b) < w(x,y): Thuật toán Prim sẽ chọn cạnh ab thay vì cạnh xy, mâu thuẫn với giả thiết ban đầu là xy là canh được chọn

Giới thiệu

Một số tính chất của cây

ay co goc

- Thuật toán Prim là một thuật toán tham lam
 - $lack \mathring{O}$ mỗi bước xây dựng cây bao trùm nhỏ nhất T, thuật toán Prim chỉ thêm các cạnh có trọng số nhỏ nhất liền kề với một đỉnh của cây T tính đến hiện tại mà không tạo thành chu trình mới
- Thuật toán Prim có thể được lập trình để chạy trong thời gian $O(m\log n)$ với đồ thị G=(V,E,w) thỏa mãn m=|E| và n=|V|
- Thuật toán Prim tương tự như thuật toán Dijkstra tìm đường đi ngắn nhất giữa hai đỉnh đã giới thiệu trước đó

Một số tính chất của

Cây bao trùm nhỏ nhất

Thuât toán 4: Thuât toán Kruskal

Input: G = (V, E, w): đồ thị liên thông vô hướng có trọng số Output: Một cây bao trùm nhỏ nhất T của G

 $T := d\hat{o}$ thi rỗng (không có đính và canh)

for i := 1 to n-1 do

e:= một cạnh có trọng số nhỏ nhất thỏa mãn T+ekhông có chu trình

T := T + e

return T

Ví du 4

Tìm một cây bao trùm nhỏ nhất T của đồ thị G=(V,E,w) sau bằng thuật toán Kruskal

Lý thuyết đồ thị III Hoàng Anh Đức

Giới thiệu

Một số tính chất của cây

ay co goc

Cay bao trum

3

Lý thuyết đồ thị III Hoàng Anh Đức

aiới thiệu

Một số tính chất của cây

Cây có gốc

Cây bao trùm

3

Lý thuyết đồ thị III Hoàng Anh Đức

Giới thiệu

Một số tính chất của cây

Cây có gốc

Cây bao trùm

liới thiệu

Một số tính chất của cây

ay co goc

48 Cây bao trùm nhỏ nhất

Bài tập 17

Chứng minh rằng nếu T là một cây bao trùm của G=(V,E,w) xuất ra bởi thuật toán Kruskal thì T là cây bao trùm nhỏ nhất (**Gợi ý:** xem lại chứng minh tính đúng đắn của thuật toán Prim)

- Thuật toán Kruskal là một thuật toán tham lam
 - Ở mỗi bước xây dựng cây bao trùm nhỏ nhất T, thuật toán Kruskal chỉ thêm các cạnh có trọng số nhỏ nhất mà không tao thành chu trình mới
 - Khác với thuật toán Prim, ở các bước trung gian của thuật toán Kruskal, T có thể không là cây
- Thuật toán Kruskal có thể được lập trình để chạy trong thời gian $O(m\log m)$ với đồ thị G=(V,E,w) thỏa mãn m=|E|

*

Bài tập 18

Tìm một cây bao trùm nhỏ nhất của đồ thị sau

bằng cách sử dụng

- (a) thuật toán Prim
- (b) thuật toán Kruskal

Lý thuyết đồ thị III Hoàng Anh Đức

Giới thiêu

Một số tính chất của cây

Jay co goc

Cây bao trùm