# Exploring Show, Attend, Tell Attention Mechanisms for Image Captioning

Cornell Bowers C<sub>'</sub>IS College of Computing and Information Science

Nick Brenner, Srivatsa Kundurthy, Alex Kozik, Jake Silver, Brandon Li

# Introduction



[Figure 3]

Hundreds of determined runners push forward at the start of a vibrant city marathon, each athlete focused on the road ahead under a bright, sunny sky.

- Image captioning is complex requires understanding objects/relationships in images
- Reproducing the Show, Attend, Tell captioning model, training on Flickr-8k & optimizing for METEOR

# Background & Motivation

# **Prior Approaches**

- CNN  $\rightarrow$ Single Vector  $\rightarrow$  RNN (Vinyals et al., 2014)
  - X Loses spatial **and** contextual detail
- CRF + Object Detectors (Fang et al., 2014)



[Figure 4]

**Encoder-Decoder Architecture for Captioning** 

# Solution: Attention-Based Models

- Dynamically **focuses** on relevant image regions during captioning
- Mimics <u>human visual</u> attention to salient features; interpretable



# Methods



ResNet CNN, LSTM with Attention



**Attention** 

$$e_{ti} = f_{\text{att}}(\mathbf{a}_i, \mathbf{h}_{t-1})$$

$$\alpha_{ti} = \frac{\exp(e_{ti})}{\sum_{k=1}^{L} \exp(e_{tk})}.$$

### **Soft Attention**



[Figure 5]

Weighted sum over **image** regions at each timestep; fully differentiable

$$\mathbb{E}_{p(s_t|a)}[\hat{\mathbf{z}}_t] = \sum_{i=1}^L lpha_{t,i} \mathbf{a}_i$$

**Doubly Stochastic Attention** 

$$L_d = -\log(P(\mathbf{y}|\mathbf{x})) + \lambda \sum_{i}^{L} (1 - \sum_{t}^{C} \alpha_{ti})^2$$

Selects **one** region to focus on per timestep; non-differentiable and trained with REINFORCE

$$p(s_{t,i} = 1 \mid s_{j < t}, \mathbf{a}) = \alpha_{t,i}$$
 $\hat{\mathbf{z}}_t = \sum_i s_{t,i} \mathbf{a}_i.$ 



$$\lambda_r(\log p(\mathbf{y} \mid \tilde{s}^n, \mathbf{a}) - b) \frac{\partial \log p(\tilde{s}^n \mid \mathbf{a})}{\partial W} + \lambda_e \frac{\partial H[\tilde{s}^n]}{\partial W}$$

Moving baseline and entropy term for estimator variance reduction

### **Hard Attention**



[Figure 6]

$$(\log p(\mathbf{y} \mid \tilde{s}^n, \mathbf{a}) - b) \frac{\partial \log p(\tilde{s}^n \mid \mathbf{a})}{\partial W} + \lambda_e \frac{\partial H[\tilde{s}^n]}{\partial W}]$$

# Where is the Model "Looking?"



A <u>boy</u> does a skateboard trick.



A child in a green and white shirt and black pants skateboarding.



A girl in a red <u>striped</u> shirt.



Two men skiing down a snowy

# Results



### Hard





| Soft Attention |       |       |
|----------------|-------|-------|
| BLEU-1         | 67.0  | 45.9  |
| METEOR         | 18.93 | 18.96 |
| Hard Attention |       |       |
| BLEU-1         | 67.0  | 43.2  |
| METEOR         | 20.30 | 20.75 |

Train Loss/Validation Meteor Curves, METEOR/BLEU-1 Inference

# Conclusion

- Attention-based models improve caption quality and interpretability
- Soft and hard attention guide where the model "looks" when generating



Outperformed paper METEOR results