HM 1, Kapitel 3

Numerische Lösung von Nullstellenproblemen

Historische Entwicklung

Problemstel-

Fixpunktite-

Newton-Verfahren

Vereinfachtes Newton Verfahren

Sekantenverfah-

Konvergenzgeschwindigceit Vorlesung Höhere Mathematik 1 Kapitel 3: Numerische Lösung von Nullstellenproblemen

9. September 2024

Gliederung des Kapitels

HM 1, Kapitel 3

- Numerisch Lösung vo Nullstellen
- Historische Entwicklun
- Problemste lung
- Fixpunktite ration
- Newton-Verfahren Vereinfachte
- Verei nfachtes Newton Verfahren Sekantenverfah

- 🚺 Numerische Lösung von Nullstellenproblemen
- Historische Entwicklung
- Open Problemstellung
- 4 Fixpunktiteration
- Mewton- Verfahren
- 6 Konvergenzgeschwindigkeit
- Fehlerabschätzung

Lernziele

HM 1, Kapitel 3

Numerische Lösung von Nullstellenproblemen

Historische Entwicklung

Problemstel lung

Fixpunktite ration

Newton-Verfahren Vereinfachtes Newton Verfahren Sekantenverfah

- Sie können die Begriffe Fixpunktgleichung, Fixpunktiteration sowie anziehender bzw. abstossender Fixpunkt definieren.
- Sie können zu einer konkreten Aufgabenstellung die Fixpunktgleichung aufstellen und die entsprechende Iteration durchführen.
- Sie können dabei auftretende Fehler mittels des Banachschen Fixpunktsatzes quantifizieren.
- Sie können das Newtonverfahren, das vereinfachte Newtonverfahren sowie das Sekantenverfahren anwenden.
- Sie verstehen den Begriff der Konvergenzordnung.

Numerische Lösung von Nullstellenproblemen

HM 1, Kapitel 3

Numerische Lösung von Nullstellenproblemen

Historische Entwicklung

Problemstel lung

Fixpunktite ration

Newton-Verfahren

Vereinfachtes Newton Verfahren Sekantenverfah In diesem Kapitel behandeln wir Verfahren zur näherungsweisen Lösung von nichtlinearen Gleichungen mit einer Unbekannten (die Lösung linearer Gleichungen einer Variablen ist trivial).

• Wie wir sehen werden, ist die Lösung von nichtlinearen Gleichungen mit einer Unbekannten äquivalent zur Bestimmung der Nullstellen einer Funktion $f: \mathbb{R} \to \mathbb{R}$ mit f(x) = 0, deshalb der Titel.

Numerische Lösung von Nullstellenproblemen Bemerkung

HM 1, Kapitel 3

Numerische Lösung von Nullstellenproblemen

Historische Entwicklung

Problemste lung

Fixpunktite ration

Newton-Verfahren Vereinfachtes Newton Verfahren Sekantenverfahren

Konvergenzgeschwindiggeit

- Die im Kapitel 2 verwendete Normalisierung $x=\pm 0.m_1m_2m_3...m_n\cdot B^e$ haben wir im Zusammenhang mit der Theorie der Rechnerarithmetik und der maschinendarstellbaren Zahlen zu verschiedenen Basen eingeführt.
- In den Ingenieurwissenschaften werden numerische Resultate aber meist als Dezimalzahlen in der Potenzschreibweise dargestellt mit vier Nachkommastellen, wobei die erste Ziffer vor dem Komma $ungleich\ 0$ sein muss (für $x \neq 0$).
- Sofern wir im weiteren mit numerischen Resultaten arbeiten und es nicht ausdrücklich anders verlangt ist, werden wir also im Dezimalsystem i.d.R. mit der Darstellung

$$x = \pm m_1.m_2m_3m_4m_5 \cdot 10^{\pm e}$$

mit $m_1 \neq 0$ (für $x \neq 0$) arbeiten.

HM 1, Kapitel 3

Numerische Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemste lung

Fixpunktite ration

Verfahren Vereinfachtes Newton Verfahren Sekantenverfal • Die Fragestellung der Lösung nichtlinearer Gleichungen begleitet die (numerische) Mathematik seit ihren Anfängen.

• Die Babylonier (und vermutlich bereits die Ägypter) beschäftigten sich in ihrer auf die Geometrie fokussierten Mathematik unter anderem mit der Frage, wie gross die Seitenlängen x eines Quadrates mit der gegebenen Fläche A sind, also mit der Lösung der nichtlinearen Gleichung $x^2 = A$ (vgl. Kap. 2)

HM 1, Kapitel 3

Numerische Lösung von Nullstellenproblemen

Historische Entwicklung

Problemste lung

Fixpunktite ration

Verfahren Vereinfachte

Newton Verfahren Sekantenverfahren

Konvergenzeschwindig: eit

Abbildung: Babylonische Tontafel YBC 7289 von ca. 1800-1600 v.Chr. Die Näherung von $\sqrt{2}$ ist in der Diagonale eines Quadrates dargestellt mit den Symbolen für $1+24/60+51/60^2+10/60^3=1.41421296...$

HM 1. Kapitel 3

Historische Entwicklung

• Eng damit verwandt ist natürlich die Fragestellung des Flächeninhaltes eines rechtwinkligen Dreiecks.

• Der nach dem griechischen Philosophen Pythagoras von Samos (um 570-510 v.Chr.) benannte Satz $a^2 + b^2 = c^2$ war den Babyloniern bereits rund 1000 Jahre früher bekannt.

HM 1. Kapitel 3

Historische Entwicklung

• Die Übersetzung einer babylonischen Tontafel (ca. 1900-1600 v.Chr.) im Britischen Museum lautet:1

4 is the length and 5 the diagonal. What is the breadth? Its size is not known

4 times 4 is 16

5 times 5 is 25

You take 16 from 25 and there remains 9.

What times what shall I take in order to get 9?

3 times 3 is 9.

3 is the breadth.

 $^{^{}m 1}$ John J. O'Connor. Edmund F. Robertson: Pythagoras's theorem in Babylonian mathematics. In: MacTutor History of Mathematics archive (englisch) unter

HM 1. Kapitel 3

Historische Entwicklung

• Der Grieche Heron von Alexandria (1. Jhr. n.Chr.) beschrieb in seinem Werk Metrika (Buch der Messung) das nach ihm benannte Näherungsverfahren von Heron zur iterativen Berechnung einer (beliebigen) Quadratwurzel $x = \sqrt{A}$ für A > 0 mit der Iterationsvorschrift (für einen Startwert $x_0 \neq 0$):

$$x_{n+1} = \frac{x_n + \frac{A}{x_n}}{2}$$

HM 1, Kapitel 3

Numerisch Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemste lung

Fixpunktite ration

Verfahren Vereinfachtes Newton Verfahren Sekantenverfah Im Mittelalter konzentrierte man sich auf die Nullstellensuche von Polynomen.

- Der italienische Mathematiker Girolamo Cardano (1501-1576) veröffentlichte als erster Lösungsformeln (die Cardanischen Formeln) für kubische Gleichungen und zusätzlich Lösungen für Gleichungen vierten Grades.
- Bei seinen Berechnungen stiess er auf die komplexen Zahlen und zeigte (entgegen der damaligen Lehrmeinung), dass auch mit negativen Zahlen gerechnet werden kann.

HM 1, Kapitel 3

Numerische Lösung von Nullstellenproblemen

Historische Entwicklung

Problemste lung

Fixpunktite ration

Newton-Verfahren

Vereinfachtes Newton Verfahren Sekantenverfa

Konvergenz geschwindig kait

"Cardano" von Gerolamo Cardano (1501-1576) - http://de.wikipedia.org/wiki/Bild:Cardano.jpg (de:Benutzer:ChristianGruchow). Lizenziert unter Public domain über Wikimedia Commons.

HM 1. Kapitel 3

Historische Entwicklung

• Isaac Newton beschrieb im Zeitraum 1664 bis 1671 einen neuen Algorithmus zur Nullstellenbestimmung von Polynomen dritten Grades

"Godfrey Kneller-Isaac Newton-1689" von Sir Godfrey Kneller http://www.newton.cam.ac.uk/art/portrait.html. Lizenziert unter Public domain über Wikimedia Commons

HM 1, Kapitel 3

Numerisch Lösung von Nullstellenproblemen

Historische Entwicklung

Problemstel lung

Fixpunktite ration

Verfahren Vereinfachtes Newton Verfahren Sekantenverfah

Konvergenzgeschwindiggeit Sein Landsmann und Mathematiker Thomas Simpson (1710-1761) formulierte dieses Verfahren unter Benutzung der Ableitung in der Iterationsvorschrift

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)},$$

was wir heute als Newton-Verfahren bezeichnen (vgl. Kap. 3.4).

- Tatsächlich ist das Newton-Verfahren äquivalent zum Heron-Verfahren für die Bestimmung der Nullstellen der Funktion $f(x) = x^2 A$.
- Generell lässt sich das Newton-Verfahren natürlich (unter gewissen Einschränkungen bzgl. der Konvergenz) für beliebige stetig differenzierbare Funktionen f(x) einsetzen, nicht nur für Polynome.

HM 1, Kapitel 3

Numerische Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemstel lung

Fixpunktite ration

Newton-Verfahren Vereinfachte

Vereinfachtes Newton Verfahren Sekantenverfa

Konvergenz geschwindig Wahrscheinlich im Zusammenhang mit dem Beweis des Zwischenwertsatzes der Analysis konstruierte der böhmische Priester und Mathematiker Bernard Bolzano (1781-1848) um 1817 das Bisektionsverfahren², welches durch fortlaufende Intervallhalbierung zuverlässig (aber langsam) erlaubt, eine Nullstelle einer stetigen Funktion zu finden (ohne Benutzung der Ableitung wie im Newton-Verfahren).

²Edwards, C. H. (1979). Bolzano, Cauchy, and Continuity. The Historical Development of the Calculus

HM 1, Kapitel 3

Numerische Lösung von Nullstellenproblemen

Historische Entwicklung

Problemstel lung

Fixpunktite ration

Newton-Verfahren

Vereinfachtes Newton Verfahren Sekantenverfah

Konvergenz geschwindig keit

"Bernhard Bolzano Litho" von Josef Kriehuber (+1876); Foto Peter Geymayer - Eigenes Foto einer Originallithographie der ÖNB (Wien). Von Wikipedia.

HM 1, Kapitel 3

Numerische Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemste lung

Fixpunktite ration

Newton-Verfahren Vereinfachtes Newton Verfahren Sekantenverfah

- Der polnische Mathematiker Stefan Banach (1892-1945) formulierte 1922 den Banachschen Fixpunktsatz zur Theorie der Fixpunktiterationen (siehe Kap. 3.3), die zur Lösung von Nullstellenproblemen in einem weit gefassten Bereich von einfachen Funktionen bis hin zu linearen oder nichtlinearen Gleichungssystemen und Differentialgleichungen reicht.
- Modernere Verfahren zur Nullstellenbestimmung sind meist Kombinationen der hier bereits erwähnten und in den folgenden Unterkapiteln detaillierter vorgestellten Verfahren.

HM 1, Kapitel 3

Numerische Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemstel lung

Fixpunktite ration

Newton-Verfahren Vereinfachtes Newton Verfahren Sekantenverfah

Stefan Banach. Lizenziert unter Creative Commons Attribution-Share Alike 3.0 über Wikimedia Commons

Problemstellung

HM 1, Kapitel 3

Numerisch Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemstellung

Fixpunktite ration

Newton-Verfahren Vereinfachte

Ve rei nfachtes Newton Ve rfahren Sekantenverfahren ullet Gegeben sei eine stetige Funktion $f:\mathbb{R}{
ightarrow}\,\mathbb{R}$.

- Gesucht sei ein Näherungswert für die (bzw. für eine) Nullstelle \overline{x} von f.
- Natürlich ist eine Gleichung der Form g(x) = h(x) äquivalent zu $f(x) \equiv g(x) h(x) = 0$. Geometrisch bedeutet das, dass f(x) an der Stelle \overline{x} die x-Achse schneidet.
- Aufgabe 3.1:

Die nichtlineare Gleichung $x = \cos(x)$ lässt sich als Nullstellenproblem von $f(x) \equiv x - \cos(x) = 0$ interpretieren. Lösen Sie für $x \in [0,1]$ auf graphischem Weg einmal die Gleichung $x = \cos(x)$ und dann die Gleichung $f(x) = x - \cos(x) = 0$.

Lösung zu Aufgabe 3.1

HM 1, Kapitel 3

Numerische Lösung von Nullstellenproblemen

Historische Entwicklung

Problemstellung

Fixpunktite ration

Newton-Verfahren

Vereinfachtes Newton Verfahren

Sekantenverfahren

Konvergenzgeschwindiggeit

20/73

Problemstellung

HM 1, Kapitel 3

Numerisch Lösung von Nullstellenproblemen

Historische Entwicklung

Problemstellung

Fixpunktite ration

Verfahren

Vereinfachtes
Newton

Verfahren

Sekantenverfahren

- Folgende Fragen sollten zuerst geklärt werden, bevor ein solches Problem gelöst werden kann:
- Gibt es überhaupt eine Nullstelle von f(x), und wenn ja, in welchem Bereich?
- ② Gibt es mehrere Nullstellen? Wenn ja, welche davon sollten mit dem Rechner gefunden werden?
- Wir betrachten dazu im folgenden Abschnitt die Fixpunktiteration mit dem Banachschen Fixpunktsatz.

HM 1, Kapitel 3

Numerisch Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemste lung

Fixpunktiteration

Verfahren
Vereinfachtes
Newton
Verfahren
Sekantenverfal

 Die Fixpunktiteration ist eine relativ einfache Methode zur Bestimmung von Nullstellen.

• Sie beruht auf der Idee, dass für nichtlineare Gleichungen der Form f(x) = F(x) - x die Bedingung $f(\overline{x}) = 0$ genau dann erfüllt ist, wenn $F(\overline{x}) = \overline{x}$.

Definition 3.1: Fixpunktgleichung / Fixpunkt [1]

- Eine Gleichung der Form F(x) = x heisst Fixpunktgleichung.
- Ihre Lösungen \overline{x} , für die $F(\overline{x}) = \overline{x}$ erfüllt ist, heissen **Fixpunkte** (da die Funktion F die Punkte \overline{x} auf sich selbst abbildet.

HM 1, Kapitel 3

Numerisch Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemste lung

Fixpunktiteration

Verfahren Vereinfachtes Newton Verfahren Sekantenverfah Anstelle eines Nullstellenproblems kann man also ein dazu äguivalentes Fixpunktproblem betrachten.

- Dazu muss aber f(x) = 0 in die Fixpunktform F(x) = x gebracht werden, wozu es viele Möglichkeiten gibt.
- Bei dieser Überführung muss unbedingt auf Äquivalenz geachtet werden, d.h. die Lösungsmenge darf nicht verändert werden.

Beispiel 3.1:

• Die Gleichung $p(x) = x^3 - x + 0.3$ soll in Fixpunktform gebracht werden.

Lösung: Die einfachste Möglichkeit ist

$$p(x) = 0 \iff F(x) \equiv x^3 + 0.3 = x$$

Aber auch $F(x) \equiv \sqrt[3]{x - 0.3} = x$ ist möglich.

• Die Gleichung $x = \cos(x)$, die wir weiter oben graphisch gelöst haben, ist bereits in der Fixpunktform.

HM 1, Kapitel 3

Numerische Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemste lung

Fixpunktiteration

Verfahren
Vereinfachtes
Newton
Verfahren
Sekantenverfah

Definition 3.2: Fixpunktiteration [1]

• Gegeben sei $F:[a,b] o \mathbb{R}$, mit $x_0 \in [a,b]$. Die rekursive Folge

$$x_{n+1} \equiv F(x_n), \qquad n = 0, 1, 2, ...$$

heisst **Fixpunktiteration** von F zum Startwert x_0 .

• Die 'Hoffnung' ist, dass die erzeugte Folge gegen einen Fixpunkt von F konvergiert.

HM 1, Kapitel 3

Numerisch Lösung von Nullstellenproblemen

Historische Entwicklung

Problemstel lung

Fixpunktiteration

Newton-Verfahren Vereinfachtes Newton Verfahren Sekantenverfahren

- Fixpunktiterationen sind leicht durchzuführen und jeder Iterationsschritt benötigt nur eine Funktionsauswertung.
- Allerdings können sich zwei Fixpunktiterationen zum gleichen Nullstellenproblem bzgl. ihrem Konvergenzverhalten unterscheiden.
- Aus der generellen Form F(x) = x folgt auch direkt, dass sich die Lösungen graphisch als die Schnittpunkte der Kurven der beiden Funktionen y = F(x) und y = x ergeben.

Beispiel 3.2

HM 1, Kapitel 3

Numerisch Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemstel lung

Fixpunktiteration

Newton-Verfahrer

Vereinfachtes Newton Verfahren

Sekantenverfah ren • Berechnen Sie die Nullstellen von $p(x) = x^3 - x + 0.3$ mittels Fixpunktiteration.

- Lösung:
 - Die Fixpunktiteration lautet $x_{n+1} = F(x_n) = x_n^3 + 0.3$.
 - Wir wissen bereits aus der letzten Aufgabe, wo wir die Nullstellen zu vermuten haben, also wählen wir Startwerte aus der Umgebung, z.B. -1, 0, 1.
 - Wir erhalten die folgende Tabelle (aus [1]):

n	x_n	x_n	x_n
0	-1	0	1
1	-0.7	0.3	1.3
2	-0.043	0.327	2.497
3	0.299920493	0.334965783	15.86881747
4	0.3269785388	0.3375838562	3996.375585
5	0.3349588990	0.3384720217	
6	0.3375815390	0.3387764750	:
7	0.3384712295	0.3388812067	:
8	0.3387762027	0.3389172778	:
9	0.3388811129	0.3389297064	:
10	0.3389172455	0.3389339894	:

HM 1, Kapitel 3

Numerisch Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemste lung

Fixpunktiteration

Newton-Verfahren Vereinfachtes Newton Verfahren Sekantenverfahren

- Während mit den beiden Startwerten -1 und 0 die Fixpunktiteration gegen 0.3389... konvergiert, divergiert sie für den Startwert 1.
- Auch für andere Startwerte würde man feststellen, dass die Folgen entweder gegen 0.3389... konvergieren oder dann divergieren.
- Die Nullstelle bzw. der Fixpunkt x = 0.3389 scheint die Iterationsfolgen anzuziehen, die beiden anderen Nullstellen aber nicht.
- Daher können sie mit dieser Iteraton nicht angenähert werden.

HM 1, Kapitel 3

Numerische Lösung von Nullstellenproblemen

Historische Entwicklung

Problemste lung

Fixpunktiteration

Newton-Verfahren

Vereinfachtes Newton Verfahren Sekantenverfal

Sekantenverfah ren • Die Figur in der untenstehenden Abbildung zeigt die Fixpunktitertion in der Nähe des Fixpunktes x = 0.3389.

- Man sieht, dass die Folge schnell konvergiert.
- Was führt nun dazu, dass die Folge für die beiden anderen Fixpunkte nicht konvergiert?

HM 1, Kapitel 3

Numerische Lösung von Nullstellenproblemen

Historische Entwicklung

Problemstel lung

Fixpunktiteration

Newton-Verfahren

Vereinfachtes Newton Verfahren Sekantenverfa

Sekantenverfahren • Die untenstehende Figur zeigt alle drei Schnittpunkte von y = F(x) und y = x.

• Die Vermutung liegt nahe, dass die Steigung der Funktion y = F(x) verglichen mit derjenigen von y = x an der Stelle der Fixpunkte \overline{x} eine Rolle spielt.

HM 1, Kapitel 3

Numerische Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemstel lung

Fixpunktiteration

Newton-Verfahren Vereinfachtes Newton Verfahren Sekantenverfahren

- Dort, wo die Steigung von F(x) kleiner ist als diejenige von y=x (welche die Steigung 1 hat), scheint die Fixpunktiteration zu funktionieren, es muss also gelten $F'(\overline{x})<1$ (wie es in der Umgebung von \overline{x}_2 der Fall ist)
- Die Folge konvergiert umso schneller, je kleiner $F'(\overline{x})$ ist.
- Umgekehrt gilt: Die Fixpunktiteration divergiert für $F'(\overline{x}) > 1$, wie es für die beiden anderen Fixpunkte \overline{x}_1 und \overline{x}_3 der Fall ist.
- Diese sind nicht mit dieser Fixpunktiteration bestimmbar.

Satz zur Fixpunktiteration

HM 1, Kapitel 3

Numerische Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemstel lung

Fixpunktiteration

Verfahren
Vereinfachtes
Newton
Verfahren
Sekantenverfahren

Wir halten also fest:

Satz 3.1 zur Fixpunktiteration [1]:

- Sei $F:[a,b] \longrightarrow \mathbb{R}$ mit stetiger Ableitung F' und $\overline{x} \in [a,b]$ ein Fixpunkt von F. Dann gilt für die Fixpunktiteration $x_{n+1} = F(x_n)$:
 - Ist $|F'(\bar{x})| < 1$, so konvergiert x_n gegen \bar{x} , falls der Startwert x_0 nahe genug bei \bar{x} liegt. Der Punkt \bar{x} heisst dann **anziehender Fixpunkt**.
 - Ist $|F'(\bar{x})| > 1$, so konvergiert x_n für keinen Startwert $x_0 \neq \bar{x}$. Der Punkt \bar{x} heisst dann **abstossender Fixpunkt**.

Aufgabe 3.2

HM 1, Kapitel 3

Numerisch Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemste lung

Fixpunktiteration

Newton-Verfahren Vereinfachter Newton Verfahren

Sekantenverfahren

Konvergenz-

① Überprüfen Sie anhand des obigen Satzes für das Polynom $p(x)=x^3-x+0.3$, welche der drei Fixpunkte $\overline{x}_1=-1.125, \, \overline{x}_2=0.3389, \, \overline{x}_3=0.7864$ der zugehörigen Fixpunktiteration

$$x_{n+1} = F(x_n) = x_n^3 + 0.3$$

abstossend oder anziehend sind.

- 2 Prüfen Sie, ob der Fixpunkt $\overline{x}_3 = 0.7864$ für die alternative Fixpunktiteration $x_{n+1} = F(x_n) = \sqrt[3]{x_n 0.3}$ anziehend oder abstossend ist.
- 3 Bestimmen Sie anhand der Fixpunktiteration die Lösung(en) von $x = \cos(x)$.

Aufgabe 3.2: Lösung

HM 1, Kapitel 3

> merisch sung vo llstellen blemen

Entwicklun Problemste

lung Fixpunktite-

Newton-Verfahren Vereinfachten Newton Verfahren

Sekantenveren ren Konverg

Aufgabe 3.2: Lösung

HM 1, Kapitel 3

Numerisch Lösung vo Nullsteller problemen

Entwicklur Problemst

Fixpunktite-

Newton-Verfahren Vereinfachtes Newton Verfahren Sekantenverfa

Konverge

34/73

Aufgabe 3.2: Lösung

HM 1, Kapitel 3

Fixpunktite-

35/73

Banachscher Fixpunktsatz

HM 1. Kapitel 3

Fixpunktiteration

 Was uns nun interessiert ist, welche Startwerte f
ür eine Fixpunktiteration geeignet sind, und was für Fehler wir für die n-te Fixpunktiteration erwarten müssen.

• Dazu dient uns der Banachsche Fixpunktsatz.

Banachscher Fixpunktsatz

HM 1. Kapitel 3

Fixpunktiteration

Satz 3.2: Banachscher Fixpunktsatz [1]

Sei $F: [a,b] \longrightarrow [a,b]$ (d.h. F bildet [a,b] auf sich selber ab) und es existiere eine Konstante α mit $0 < \alpha < 1$ und

$$|F(x)-F(y)| \le \alpha |x-y|$$
 für alle $x,y \in [a,b]$

(d.h. F ist "Lipschitz-stetig" und "kontraktiv", α nennt man auch Lipschitz-Konstante). Dann gilt:

- F hat genau einen Fixpunkt \overline{x} in [a,b]
- Die Fixpunktiteration $x_{n+1} = F(x_n)$ konvergiert gegen \overline{x} für alle Startwerte $x_0 \in [a, b]$
- Es gelten die Fehlerabschätzungen

$$|x_n - \overline{x}| \le \frac{\alpha^n}{1 - \alpha} |x_1 - x_0|$$
 a-priori Abschätzung
 $|x_n - \overline{x}| \le \frac{\alpha}{1 - \alpha} |x_n - x_{n-1}|$ a-posteriori Abschätzung

Banachscher Fixpunktsatz: Bemerkungen

HM 1, Kapitel 3

Numerisch Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemstel lung

Fixpunktiteration

Verfahren Vereinfachtes Newton Verfahren Sekantenverfahren

Convergenzeschwindigeit • Aus $|F(x) - F(y)| \le \alpha |x - y|$ für alle $x, y \in [a, b]$ folgt

$$\frac{\mid F(x) - F(y) \mid}{\mid x - y \mid} \leq \alpha,$$

wobei die linke Seite sämtliche möglichen Steigungen der Sekanten durch die beiden Punkte (x, F(x)) und (y, F(y)) für alle $x, y \in [a, b]$ darstellt.

• Aus diesem Grund kann man α als die grösstmögliche Steigung von F(x) auf dem Intervall [a,b] interpretieren, bzw.

$$\alpha = \max_{x_0 \in [a,b]} |F'(x_o)|$$

• Wählt man das Intervall [a,b] sehr nahe um einen anziehenden Fixpunkt \overline{x} , so ist also $\alpha \approx |F'(\overline{x})|$.

Banachscher Fixpunktsatz: Bemerkungen

HM 1. Kapitel 3

Fixpunktiteration

• In der Praxis gestaltet es sich meist schwierig, ein Intervall [a,b] zu finden, dass unter F auf sich selbst abgebildet wird.

• Hat man ein solches Intervall gefunden, dann sind die Fehlerabschätzungen aber recht nützlich. Wir werden diesen Satz im Zusammenhang mit der iterativen Lösung von linearen Gleichungssystemen in Kap. 4 nochmals aufgreifen.

Beispiel 3.3

HM 1. Kapitel 3

Fixpunktiteration

- Gesucht ist ein Intervall [a, b] und eine Konstante $\alpha < 1$, so dass der Banachsche Fixpunktsatz auf die Fixpunktiteration $x_{n+1} = F(x_n) = x_n^3 + 0.3$ anwendbar ist.
- Lösung:
 - Wir wissen bereits, dass die Fixpunktiteration in der Nähe von $\overline{x} = 0.3389$ konvergiert.
 - Also suchen wir in der Nähe davon ein geeignetes Intervall, z.B. [a, b] = [0, 0.5].
 - Für jedes x in diesem Intervall gilt $F(x) = x^3 + 0.3 \ge 0.3$ und der maximale Funktionswert ist
 - F(0.5) = 0.125 + 0.3 = 0.425 < 0.5
 - Also bildet F das Intervall [0,0.5] tatsächlich auf [0,0.5] ab, die erste Bedingung ist erfüllt.

Beispiel 3.3 (Fortsetzung)

HM 1. Kapitel 3

Fixpunktiteration

- Jetzt untersuchen wir, ob es eine Konstante $\alpha < 1$ gibt, so dass $|F(x)-F(y)| \le \alpha |x-y|$ für alle $x,y \in [0,0.5]$ gilt.
 - Wir wissen

$$\alpha = \max_{x_0 \in [a,b]} \mid F'(x_o) \mid$$

- Also berechnen wir die Ableitung F'(x) auf dem Intervall [0.0.5] und finden, dass der maximale Wert der Ableitung $|F'(x)| = 3x^2$ wegen ihrem monoton steigenden Verhalten bei x = 0.5 erreicht wird und dass
 - $|F'(x)| = 3x^2 = 3 * 0.5^2 = 0.75 < 1.$
- Also setzen wir $\alpha = 0.75$

Aufgabe 3.3

HM 1. Kapitel 3

Fixpunktiteration

- Schätzen sie jetzt für das obige Beispiel mit der a-priori Abschätzung ab, wie viele Iterationen ausreichen sollten, um ausgehend von $x_0 = 0$ einen absoluten Fehler von max. 10^{-4} zu erhalten. Wenden Sie dann die a-posteriori Abschätzung an, um den absoluten Fehler zu erhalten.
- ② Finden Sie den Fixpunkt \overline{x}_2 für die Fixpunktiteration $x_{n+1} = F(x_n) = \sqrt[3]{x_n - 0.3}$ und den Startwert $x_0 = 0.7$.
- Welche der beiden Fixpunktiterationen $x_{n+1} = F(x_n) = x_n^3 + 0.3, x_0 = 0$ und $x_{n+1} = F(x_n) = \sqrt[3]{x_n - 0.3}$, $x_0 = 0.7$ wird nach Ihrer Erwartung schneller konvergieren?

Aufgabe 3.3: Lösung

HM 1, Kapitel 3

Fixpunktite-

Aufgabe 3.3: Lösung

HM 1, Kapitel 3

Fixpunktite-

Aufgabe 3.3: Lösung

HM 1, Kapitel 3

> nerisch ing vo stellen lemen

Entwicklun Problemste

Fixpunktite-

Newton -Verfahren Vereinfachtes Newton Verfahren Sekantenverf

Sekantenver ren Konverge

HM 1, Kapitel 3

Numerisch Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemstel lung

Fixpunktite ration

Newton-Verfahren

Ve rei nfachtes Newton Verfahren Sekantenverfah ren

- In diesem Abschnitt werden wir ein weiteres Verfahren zur Lösung nichtlinearer Gleichungssysteme betrachten, das bereits aus der Analysis bekannte Newton-Verfahren.
- Im Vergleich zu den bisher betrachteten Verfahren konvergiert dieses meist deutlich schneller. Wie wir im nächsten Abschnitt sehen werden, ist es quadratisch konvergent.
- Im Gegensatz zum Bisektions-Verfahren oder der Fixpunktiteration wird hier allerdings nicht nur die Funktion f selbst sondern auch ihre Ableitung benötigt.
- Wir gehen also davon aus, dass f (stetig) differenzierbar ist.

HM 1. Kapitel 3

Newton-Verfahren

• Die Idee des Newton-Verfahrens ist wie folgt: Berechne die Tangente g(x) von f im Punkt x_n , d.h. die Gerade

$$g(x) = f(x_n) + f'(x_n)(x - x_n).$$

Die Nullstelle von g sei x_{n+1} , dann gilt also

$$g(x_{n+1}) = 0 = f(x_n) + f'(x_n)(x_{n+1} - x_n).$$

Auflösen nach x_{n+1} liefert

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2, 3, ...).$

Das gilt natürlich nur, wenn $f'(x_n) \neq 0$ erfüllt ist.

HM 1, Kapitel 3

Numerische Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemste lung

Fixpunktite ration

Newton-Verfahren

Ve rei nfachtes Newto n Ve rfahre n Sekantenverfahren

Konvergenzgeschwindigkeit

- Die Idee ist in der nachstehenden Abbildung graphisch dargestellt.
- Den Startwert sollte man in der Nähe der Nullstelle wählen, um eine schnelle Konvergenz zu erreichen.
- Die Konvergenz der Folge $(x_0, x_1, x_2, ...)$ ist sicher gegeben, wenn im Intervall [a, b], in dem alle Näherungswerte (und die Nullstelle selbst) liegen sollen, die Bedingung

$$\left|\frac{f(x)\cdot f''(x)}{[f'(x)]^2}\right|<1$$

- erfüllt ist (hinreichende Konvergenzbedingung).
- In der Regel überprüft man diese Bedingung zumindest für den Startwert x₀. Ungeeignet sind Startwerte, in deren unmittelbarer Umgebung die Kurventangente nahezu parallel zur x-Achse verläuft.

HM 1, Kapitel 3

Numerische Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemstel lung

Fixpunktite ration

Newton-Verfahren

Vereinfachtes Newton Verfahren Sekantenverfal

Konvergenz geschwindig

 $Newton-Verfahren\ (aus\ [1])$

HM 1, Kapitel 3

Numerische Lösung von Nullstellenproblemen

Historische Entwicklung

Problemste lung

Fixpunktite ration

Newton-Verfahren

Vereinfachtes Newton Verfahren Sekantenverfa

Sekantenverfahren

Konvergenzgeschwindig-

- Betrachten wir z.B. die Funktion $f(x) = \frac{x}{x^2+1}$
- Für Startwerte $x_0 < 1$ konvergiert das Newton-Verfahren gegen die Nullstelle $\overline{x} = 0$, für $x_0 \ge 1$ divergiert es. Nur im Intervall [0,0.3625] ist die hinreichende Konvergenzbedingung für alle x_i erfüllt.

Aufgabe 3.4

HM 1, Kapitel 3

Numerisch Lösung von Nullstellenproblemen

Historische Entwicklung

Problemste lung

Fixpunktite ration

Newton-Verfahren

Ve rei nfachtes Newton Ve rfahren Sekantenverfah ren ① Bestimmen Sie die Nullstellen von $f(x) = x^2 - 2 = 0$ näherungsweise mit dem Newton-Verfahren und dem Startwert $x_0 = 2$. Vergleichen Sie ihren Wert nach n+1=4 Iterationsschritten mit dem exakten Wert von $\sqrt{2}$. Auf wievielen Nachkommastellen stimmt die Iterationslösung überein?

② Bestimmen Sie das Iterationsverfahren für $f(x) = x^2 - a = 0$ als Berechnungsmöglichkeit für \sqrt{a} und vergleichen Sie das Resultat mit dem in Kap. 3.1 vorgestellten Heron-Verfahren.

Aufgabe 3.4: Lösungen

HM 1, Kapitel 3

Numerisch Lösung vo Nullstellen problemen

Problemst

Fixpunktit

Newton-Verfahren

Ve rei nfachtes Newton Ve rfahren Sekantenverfa

Konverger geschwing

Aufgabe 3.4: Lösungen

HM 1, Kapitel 3

> merisch sung vo llstellen blemen

Entwicklun Problemste

Fixpunktit

Newton-Verfahren

Vereinfachtes Newton Verfahren Sekantenverfa

Konverger geschwind

Vereinfachtes Newton-Verfahren

HM 1, Kapitel 3

Numerische Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemste lung

Fixpunktite ration

Newton-Verfahrer

Ve rei nfachtes Newton Ve rfahren

Sekantenverfa ren

Konvergenzgeschwindig-

- Das Newton-Verfahren ist ein häufig verwendetes und sehr schnelles Verfahren, um Nullstellen zu bestimmen.
- Es hat aber den Nachteil, dass man in jedem Schritt wieder eine Ableitung ausrechnen muss.
- Um das zu umgehen, kann man zu zwei vereinfachten Verfahren greifen, dem Vereinfachten Newton-Verfahren und dem Sekantenverfahren.

Vereinfachtes Newton-Verfahren

HM 1. Kapitel 3

Ve reinfachtes Verfahren

- Statt in jedem Schritt $f'(x_n)$ auszurechnen, kann man immer wieder $f'(x_0)$ verwenden.
- Damit ergibt sich die Rekursionsformel:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}$$
 $(n = 0, 1, 2, 3, ...).$

Natürlich wird man erwarten, dass dieses Verfahren weniger gut funktioniert als das originale Newton-Verfahren.

• Tatsächlich konvergiert es langsamer.

Sekantenverfahren

HM 1. Kapitel 3

Sekantenverfah-

- Hier wird nicht der Schnittpunkt der Tangenten mit der x-Achse berechnet, sondern der Schnittpunkt von Sekanten ('Schneidenden') durch jeweils zwei Punkte $(x_0, f(x_0))$ und $(x_1, f(x_1))$ mit der x-Achse.
- Statt der Ableitung $f'(x_0)$ wird in der Iterationsformel dann die Steigung

$$\frac{f(x_1)-f(x_0)}{x_1-x_0}$$

der Sekanten eingesetzt und man erhält

$$x_2 = x_1 - \frac{f(x_1)}{\frac{f(x_1) - f(x_0)}{x_1 - x_0}} = x_1 - \frac{x_1 - x_0}{f(x_1) - f(x_0)} \cdot f(x_1)$$

und analog die Iterationsformel

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} \cdot f(x_n)$$
 $(n = 1, 2, 3, ...).$

Sekantenverfahren

HM 1, Kapitel 3

Numerisch Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemste lung

Fixpunktite ration

Newton-Verfahren

Ve reinfachtes Newton Ve rfahren

Sekantenverfahren

Konvergenz geschwindig keit

- Das Sekantenverfahren ist veranschaulicht in untenstehender Abbildung.
- Es benötigt zwei Startwerte x_0 , x_1 und konvergiert langsamer, dafür benötigt es keine Ableitungen.

Das Sekantenverfahren

Konvergenzgeschwindigkeit

HM 1. Kapitel 3

• Wie wir bereits angesprochen haben, unterscheiden sich die Nullstellenverfahren in ihrer Effektivität. Dies wird häufig durch den Begriff der Konvergenzordnung ausgedrückt.

Definition 3.3: Konvergenzordnung [1]

• Sei (x_n) eine gegen \overline{x} konvergierende Folge. Dann hat das Verfahren die Konvergenzordnung q≥1 wenn es eine Konstante c > 0 gibt mit

$$|x_{n+1}-\overline{x}| \leq c \cdot |x_n-\overline{x}|^q$$

für alle n. Falls q = 1 verlangt man noch c < 1. Im Fall q=1 spricht man von linearer, im Fall q=2 von quadratischer Konvergenz.

Beispiel 3.4

HM 1, Kapitel 3

Numerisch Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemstel lung

Fixpunktite ration

Verfahren Vereinfachtes Newton Verfahren Sekantenverfah

Konvergenzgeschwindigkeit • Sei c=1 und $|x_0-\overline{x}| \le 0.1$. Es gilt dann also z.B. für quadratische Konvergenz nach jeder Iteration, dass der Fehler quadratisch abnimmt:

$$|x_{1} - \overline{x}| \leq |x_{0} - \overline{x}|^{2} \leq 0.1^{2} = 10^{-2}$$

$$|x_{2} - \overline{x}| \leq |x_{1} - \overline{x}|^{2} \leq (10^{-2})^{2} = 10^{-4}$$

$$|x_{3} - \overline{x}| \leq |x_{2} - \overline{x}|^{2} \leq (10^{-4})^{2} = 10^{-8}$$

$$\vdots$$

Bemerkung:

Es gilt: für einfache Nullstellen konvergiert das Newton-Verfahren quadratisch, das vereinfachte Newton-Verfahren linear, und für das Sekantenverfahren gilt $q=(1+\sqrt{5})/2=1.618...$

HM 1. Kapitel 3

• Wir haben beim Banachschen Fixpunktsatz (Kap. 3.3) bereits eine Art der Fehlerabschätzung kennengelernt, benötigen dort aber die Konstante α .

• In der Praxis gibt es einfachere Methoden, um abzuschätzen, wie weit eine Näherung x_n nach der *n*-ten Iteration von der exakten Nullstelle entfernt ist.

HM 1, Kapitel 3

Numerisch Lösung von Nullstellenproblemen

Historische Entwicklung

Problemstel lung

Fixpunktite ration

Verfahren
Vereinfachtes
Newton
Verfahren
Sekantenverfah

Konvergenzgeschwindig: keit Zur Lösung dient der folgende Satz aus der Analysis:

Satz 3.3: Nullstellensatz von Bolzano

- Sei $f:[a,b] \to \mathbb{R}$ stetig mit $f(a) \le 0 \le f(b)$ oder $f(a) \ge 0 \ge f(b)$. Dann muss f in [a,b] eine Nullstelle besitzen.
- Wenn man also auf dem Intervall [a, b] einen Vorzeichenwechsel von f feststellt, d.h.

$$f(a)\cdot f(b)<0,$$

dann besitzt f in diesem Intervall mindestens eine Nullstelle.

 Im folgenden beschreiben wir ein Verfahren, dass diesen Umstand benutzt

HM 1, Kapitel 3

Numerisch Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemste lung

Fixpunktite ration

Newton-Verfahren Vereinfachtes Newton Verfahren Sekantenverfahren

- Eine einfache Möglichkeit ist es also, die Funktion in der Umgebung der Näherung auszuwerten und zu überprüfen, ob ein Vorzeichenwechsel stattfindet
- Daraus lässt sich gemäss dem Nullstellensatz schliessen, dass eine Nullstelle innerhalb des betrachteten Intervalls liegen muss, und man kann abschätzen, wie weit die Näherung x_n von der tatsächlichen Nullstelle entfernt ist.
- Dieses Verfahren ist auf jedes iterative Verfahren zur Nullstellenbestimmung einer Funktion anwendbar, sofern die Nullstelle ungerade Ordnung hat (d.h. es liegt ein Schnittpunkt und nicht ein Berührungspunkt des Funktionsgraphen mit der x-Achse vor).

HM 1, Kapitel 3

Numerisch Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemste lung

Fixpunktite ration

Verfahren Vereinfachtes Newton Verfahren Sekantenverfal

Sekantenverfahren
Konvergenz-

• Sei x_n also ein iterativ bestimmter Näherungswert einer exakten Nullstelle ξ (ungerader Ordnung) der stetigen Funktion $f: \mathbb{R} \to \mathbb{R}$ und es gelte für eine vorgegebene Fehlerschranke / Fehlertoleranz $\varepsilon > 0$

$$f(x_n-\varepsilon)\cdot f(x_n+\varepsilon)<0,$$

dann muss gemäss dem Nullstellensatz im offenen Intervall $(x_n - \varepsilon, x_n + \varepsilon)$ eine Nullstelle ξ liegen und es gilt die Fehlerabschätzung:

$$|x_n-\xi|<\varepsilon$$

HM 1, Kapitel 3

Numerische Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemstel

Fixpunktite ration

Newton-Verfahrei

Ve rei nfachtes Newton Ve rfahren Sekantenverfa

Konvergenz geschwindig zeit

Abbildung:
$$f(x_n - \varepsilon) \cdot f(x_n + \varepsilon) < 0 \Rightarrow |x_n - \xi| < \varepsilon \text{(aus [6])}.$$

Beispiel 3.5

HM 1. Kapitel 3

• Es soll für $f(x) = x^2 - 2 = 0$ der Fehler für die Näherung x_3 der Nullstelle mit dem Newton-Verfahren berechnet werden.

- Lösung: Es ist leicht zu sehen dass $f(x_3 10^{-5}) < 0$ und $f(x_3+10^{-5}) > 0$. Gemäss dem Nullstellensatz gibt es also eine Nullstelle $x \in [x_3 - 10^{-5}, x_3 + 10^{-5}]$ für die der absolute Fehler $|x-x_3| < 10^{-5}$ ist.
- Tatsächlich gilt $|\sqrt{2}-x_3|\approx 2.1\cdot 10^{-6}$

HM 1, Kapitel 3

Numerisch Lösung von Nullstellen problemen

Historische Entwicklung

Problemste lung

Fixpunktite ration

Newton-Verfahren Vereinfachtes Newton Verfahren Sekantenverfah

> Konvergenzeschwindig: eit

- Um auch den Fall möglicher Berührungspunkten mit der x-Achse oder schlecht konditionierte Probleme abzudecken, empfiehlt es sich sich, in einem Programm zusätzliche Abbruchkriterien einzubauen, da ansonsten die Iteration vielleicht in eine Endlos-Schleife mündet.
- Einfachstes Mittel, ist eine Obergrenze N_{max} für die Anzahl Interationsschritte anzugeben.
- Notwendige (aber nicht hinreichende) Kriterien, um eine Nullstelle zu erkennen, sind für ein vorgegebenes $\varepsilon > 0$ beispielsweise, dass der Funktionswert nach der n-ten Iteration kleiner wird als ε , also $|f(x_n)| < \varepsilon$, oder auch, dass die Differenz zwischen zwei aufeinanderfolgenden Werten unterhalb eine vorgegebene Schwelle sinkt, also $|x_{n+1} x_n| < \varepsilon$.

HM 1, Kapitel 3

Numerisch Lösung vo Nullstellen problemen

Historische Entwicklung

Problemste lung

Fixpunktite ration

Newton-Verfahren

Vereinfachtes Newton Verfahren Sekantenverfal

Sekantenverfal ren

Konvergenz geschwindig keit Diese Abbruchkriterien liefern aber keine Garantie, dass wir tatsächlich nahe genug bei einer Nullstelle sind.

Aufgaben 3.5

HM 1, Kapitel 3

Numerisch Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemstel lung

Fixpunktite ration

Newton-Verfahren Vereinfachte

Newton Verfahren Sekantenverfa Aus [1]:

- A Bestimmen Sie alle Lösungen der Gleichung $2\sin x = x$ bis auf einen nachgewiesenen absoluten Fehler von max. 10^{-3} .
- B Das Bauer-Ziege-Wiese-Problem: Ein Bauer besitzt eine kreisrunde Wiese vom Radius R. Am Rand dieser Wiese bindet er eine Ziege an mit einer Leine der Länge r, und zwar so, dass die Ziege genau die Hälfte der Wiese abgrasen kann (s. Bild 2.4). Wie groß ist r?

Aufgaben 3.5: Fortsetzung

HM 1. Kapitel 3

Aus [1]:

Bild 2.5

Mit dem Kosinussatz erhält man $r = R\sqrt{2(1-\cos\alpha)}$. Das Problem führt auf folgende Gleichung für den Winkel α (im Bogenmaß):

$$\frac{\pi}{2\cos\alpha} + \alpha - \pi - \tan\alpha = 0.$$

Offensichtlich kann diese Gleichung nicht durch geschicktes Umformen nach α aufgelöst werden. Die Hilfe numerischer Methoden ist daher nötig. Bestimmen Sie ein Intervall, in dem sich die gesuchte Lösung befindet und bestimmen Sie die Lösung mit einem Verfahren Ihrer Wahl bis auf einen gesicherten absoluten Fehler von 0.0001.

Wenden Sie das Newton-Verfahren, das vereinfachte Newton-Verfahren und das Sekantenverfahren zur näherungsweisen Bestimmung der Nullstelle von $f(x) = x^2 - 2$ an.

Aufgaben 3.5: Lösungen

HM 1, Kapitel 3

Aufgaben 3.5: Lösungen (Fortsetzung)

Kapitel 3

HM 1.

Lösung vo Nullstellen problemen

Entwicklun Problemste

lung Fixpunktite

Newton -Verfahren Vereinfachtes Newton Verfahren

Konverge geschwin

Aufgaben 3.6

HM 1. Kapitel 3

• Implementieren Sie das Sekanten-Verfahren in Python. Wo würden Sie beim Versuch, das Newton-Verfahren zu implementieren, auf Schwierigkeiten stossen?

• Lösung: Allenfalls in den Übungsstunden.

Fragen

HM 1, Kapitel 3

Numerische Lösung vor Nullstellenproblemen

Historische Entwicklung

Problemstel lung

Fixpunktite ration

Newton-Verfahren

Ve rei nfachtes Newton Ve rfahren

Sekantenverfal ren

Konvergenz geschwindig keit

