Untergruppen

Definition 11

Sei (G, \cdot) eine Gruppe. Eine Untergruppe von G 13t eine Teilmenge $H \subseteq G$, $H \neq \emptyset$, so class H bzgl. • auch eine Gruppe ist.

Beispiel: (\mathcal{H}_1+) ist cinc UG $[Q_1+)$. $V = id_1(12)(34), (13)(24), (14)(23)$ j ist

UG von $(S_{4,0})$ (die sogenante Klein'sch Vierergruppe).

<u>Lemma</u> 12

Sei (G, \cdot) eine Gruppe und $H \subseteq G$, $H \neq \emptyset$. Dann gilt; It ist eine Untergruppe von $G \iff \forall g, h \in H$: $g \cdot h^{-\prime} \supseteq H$. Beweis: Libung.

Lemma 13

Sei (Hi)iEI eine Familie von Untrgrupper von (G..). Dann ist NieI Hi eine Untrgruppe von G.

Beweis: Ubung

Lemma 14

Sei H ein Untergruppe von $(G_1 \cdot)$ und $g \in G$. Dann ist auch $g \cdot H \cdot g^{-1} = f \cdot g \cdot h \cdot g^{-1} \mid h \in H$ ein Untergruppe von G_1 die sogenannte konjugierte Untergruppe.

Beweis: abuy.

Benerhung: Zwei Elemente g. he G keijsen konjugiert, falls ein ae G existiert mit aga-'-h.

Definition 15

Sei (G..) ein Gruppe und Sc G ein Teilmenge. Die Untergruppe

<S>:= H Selt Hist ug von G.

heißt die von S erzeugte Untergruppe.

Beispiel: $S = \S g \S$ wit $g \in G$: Dann 1st $\langle S \rangle = \int \S g_1 g^2, ..., g^{\text{ord}(g)} \S$ falls $\text{ord}(g) < \infty$. $\int \int \int \int g^2 g^{-1} dg = g_1 g^2 g^{-1} \int \int \int \int g dg = g_1 g^2 g^{-1} \int g dg = g_1 g^2 g^2 g^{-1} \int g dg = g_1 g^2 g^2 g^{-1}$