2 ^{nde} Chimie	TP de CHIMIE n°3 : Tests d'identification physiques
Objectifs	Identifier, à partir de valeurs de référence, une espèce chimique par ses températures de changement d'état, sa masse volumique

Dans les armoires du laboratoire, la plupart des substances solides sont blanches et la majorité des liquides et des gaz sont incolores. Le chimiste a pourtant besoin de les distinguer. *Comment caractériser des espèces chimiques*?

Rappel: un protocole se rédige étape par étape, en commençant chaque phrase par un verbe à l'infinitif.

I-/ Identifier une espèce chimique grâce à la masse volumique

1) Cas d'un liquide

Vous disposez d'un liquide sur votre paillasse, l'objectif de cette expérience est de déterminer la nature de ce liquide. Pour cela vous utiliserez les <u>données du document 2</u> confrontées au résultat de votre expérience (celle-ci devant être la plus précise possible).

Questions	Compétences	Notation
1-a) Proposer un protocole	Analyser	

Appeler le professeur pour valider ou en cas de difficulté

1-b) Réaliser le protocole	Réaliser	
1-c) Conclure : quel est le liquide étudié ? Justifier.	Communiquer	

2) Cas d'un solide

Vous disposez d'un solide sur votre paillasse; l'objectif de cette expérience est de déterminer en quel matériau est constitué ce solide. Pour cela vous utiliserez les <u>données du document 3</u> confrontées au résultat de votre expérience (celle-ci devant être la plus précise possible).

Questions	Compétences	Notation
2-a) Proposer un protocole	Analyser	
Appeler le professeur pour valider ou en cas de	difficultés.	
2-b) Réaliser le protocole	Réaliser	
2-c) Conclure : quel est le solide étudié ? Justifier.	Communiquer	

Dans les deux expériences précédentes, vous avez calculé les masses volumiques de solide et de liquide. Il est important de <u>savoir retrouver une masse volumique expérimentalement</u>.

Néanmoins, les masses volumiques des solides et des liquides sont tabulées. (Comme vous pouvez le voir sur les documents 1 et 2). Elles sont déterminées très précisément dans des laboratoires.

Il est donc possible à partir de la mesure de la masse d'un échantillon d'en déduire son volume. C'est l'objet de la prochaine expérience.

3) De la masse volumique au volume

L'objectif de cette expérience est de déterminer un volume à partir de la connaissance de la masse volumique et de la masse d'un échantillon.

3-a) Proposez un protocole visant à prélever précisément 50 mL d'eau puis à mesurer la masse d'eau qui a été prélevé.	Analyser	
Appeler le professeur pour valider ou en cas de di <u>f</u>	ficultés.	
3-b) Réaliser le protocole	Réaliser	
3-c) A l'aide de la masse volumique de l'éthanol et de la masse que vous venez de mesurer en déduire, très précisément, le volume que vous avez prélevé.	Communiquer	
Conclure sur la précision de votre prélèvement.		

II-/ Identifier un solide en déterminant sa température de fusion :

Sur votre paillasse, vous disposez d'un solide en poudre. Plutôt que de déterminer sa masse volumique comme vous l'avez fait précédemment, nous allons nous intéresser à une autre grandeur physique qui nous permettra d'identifier l'espèce chimique : la **température de fusion**. Chaque espèce chimique a une température de fusion donnée. Les températures de fusion des différentes espèces chimiques sont connues. Les les chimistes les inscrivent dans des tables (voir document 5).

Lire le document 4 et prendre connaissance du document 5.

4-a) Donner une définition du terme "fusion".	Communiquer	
4-b) A l'aide du document 4, réaliser le protocole permettant de	Communiquer	
déterminer la température de fusion du solide en poudre que vous		
disposez sur votre paillasse. Donner la valeur mesurée.		
4-c) A l'aide de la mesure effectuée et en explicitant votre		
raisonnement, déterminer quelle est l'espèce chimique qui constitue ce	Analyser	
solide en poudre.		

Documents à disposition

Document 1 : La masse volumique :

La masse volumique ρ d'une espèce chimique (solide ou liquide) est le rapport de la masse d'un échantillon sur le volume de cet échantillon :

masse volumique
$$\qquad \rho = \frac{m}{V} \qquad \Longrightarrow$$
 masse d'un échantillon (en kg) volume de l'échantillon (en L)

Remarque : Attention, la masse volumique peut être exprimée en d'autres unités (g.mL-1 ; kg.m-3)

Document 2 : Caractéristiques de plusieurs liquides :

Liquides	Aspect à 20°C	Masse volumique
Cyclohexane	Liquide incolore	0,78 kg.L ⁻¹
Dichlorométhane	Liquide incolore	1,33 kg.L ⁻¹
Eau	Liquide incolore	1,00 kg.L ⁻¹
Ethanol dénaturé commercial	Liquide incolore	0,79 kg.L ⁻¹
Glycérol	Liquide incolore	1,26 kg.L ⁻¹
Huile de paraffine	Liquide incolore	0,85 kg.L ⁻¹

Document 3 : Masses volumiques de différentes espèces chimiques à l'état solide:

Elément	Masse volumique
Fer	7860 kg.m ⁻³
Plomb	11350 kg.m ⁻³
Argent	10500 kg.m ⁻³
Aluminium	2700 kg.m ⁻³
Cuivre	8960 kg.m ⁻³
Zinc	7150 kg.m ⁻³

Document 4: Utilisation d'un banc Köffler

La température de fusion d'une espèce solide peut être évaluée à l'aide d'un banc Köffler. Ce dispositif chauffant permet de visualiser la zone dans laquelle le solide fond.

Protocole à suivre pour utiliser un banc Köffler :

- 1- On dépose une **pointe** de spatule de solide à l'extrémité froide de la plaque.
- 2- On déplace **lentement** le solide vers l'extrémité chaude de la plaque chauffante du banc Köffler jusqu'à observer la première goutte liquide.
- 3- On relève la **température de fusion** avec le curseur.

Document 5 : Température de fusion de certains soli	
Espèce chimique	Température de fusion (°C)
Chlorure de sodium	800
Phosphore	44
Saccharose	186
Aspirine	135
Paracétamol	170
Naphtalène	80