FDS English Abstract Attached

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開發号

特開平9-68647

(43)公開日 平成9年(1997)3月11日

(51) Int.CL ⁸	織別配号	庁内整理番号	ΡI			技術表示體所
G 0 2 B 13/04			G 0 2 B	13/04	D	
23/26				23/26	С	

密査請求 未請求 海東項の数3 OL (全 7 回)

	414-17-1013-414	本部状 選択項の数3 OL (全 7 円)
特顧平7 −223723	(71)出顧人	000000527 。 但光学工聚株式会社
平成7年(1995)8月31日	(72) 発明者	-
	(C 4) (D C 1	東京都板橋区前野町2丁目36番9号 組光学工業株式会社内
	(74)代理入	弁理士 三浦 邦夫
		特顧平7-223723 (71)出願人 平成7年(1995)8月31日 (72)発明者

(54) 【発明の名称】 内視鏡対物レンズ

(57)【要約】

【目的】 像側のレンズの最終面をファイバーバンドル 端面に一致させるタイプの対物レンズにおいて、細径で 全長が短く、かつ光学性能の高い内視鏡対物レンズを得 ること。

【構成】 物体側から順に、屈折力が零又は負の第1レンズと、正の屈折力を有する第2レンズと、正の屈折力を有する第3レンズの単レンズ3枚で構成され、以下の条件式を満足する内視鏡対物レンズ。

- $\{1\}\ 0 \le |f/f|, |<0.5 \{f_1 < 0\}$
- $(2)\ 0 \le |f_2|/f_1| < 0.5$
- $(3) 1. 8 < f_1 / f_2 < 8$
- $(4)\ 0.\ 15 < d/f < 0.\ 55$

特開平9-68647

1

【特許請求の範囲】

【請求項1】 物体側から順に、屈折力が零または負の 第1レンズと、正の屈折力を有する第2レンズと、正の 屈折力を有する第3レンズの単レンズ3枚で構成され、 上記第3レンズの像側の面は、像面に一致する平面から なり

さらに、下記条件式(1)ないし(4)を満足する内視 鏡対物レンズ。

- $\{1\}\ 0 \le |f/f|, |<0.5 \{f_1 < 0\}$
- $(2)\ 0 \le |f_2|/f_1| < 0.5$
- $(3) 1. 8 < f_1 / f_2 < 8$
- $\{4\}\ 0.\ 15 < d/f < 0.\ 55$

但し.

f:対物レンズ全系の焦点距離、

f: :第1レンズの焦点距離、

よ、: 第2レンズの焦点距離、

f,:第3レンズの焦点距離、

d:第2レンズと第3レンズの間隔。

【請求項2】 請求項1において、さらに下記条件式

(5)を満足する内視鏡対物レンズ。

(5) $n_1 > 1$. 65, $n_1 > 1$. 65m > 1. 65m > 1. または / 2 > 45

但し、

n, : 第2レンズの屈折率。

n」:第3レンズの屈折率。

ν₂ :第2 レンズのアッベ敷、

ν」:第3レンズのアッベ數。

【請求項3】 請求項1または2において、第1レンズ と第2レンズの間に、明るさ絞りが配置されている内視 鏡対物レンズ。

【発明の詳細な説明】

 $\{00001\}$

【技術分野】本発明は、医用及び工業用の内視鏡対物レ ンズに関する。

[0002]

【従来技術及びその問題点】内視鏡の鉗子チャンネル内 を通過させ、胆道、膵管等の狭い体腔内に挿入して観 察、治療を行う細径内視鏡が実用化されているが、より 細い内腔を観察する必要性や、患者の苦痛を軽減する目 的から、より外径の小さい体内挿入部が求められ、その 40 である。本発明の内視鏡対物レンズは、さらに次の条件 結果。その先端部に設ける対物レンズも小径化が求めら れている。

【①①①3】内規鏡対物レンズは、組立、製造が容易な

【①①04】この問題を解決するため、例えば特開平2 -69710号は、最終レンズをファイバーバンドル鑑 面に接合するタイプ、つまりバックフォーカスをゼロに するタイプを提案しているが、この例では、最終レンズ とその前のレンズの間隔(ピント調整間隔)が長いた め、レンズ全長が長くなってしまう。対物レンズの全長 が長くなると、内視鏡先端部も長くなってしまうため、 湾曲操作性の悪化につながり好ましくない。また、全長 が長くなると焦点距離も長くなり、焦点距離が長くなる 10 と被写体深度が浅くなって好ましくない。また、レトロ フォーカス型のレンズは、全長が長くなると第1面及び 最終面での有効径が大きくなる傾向があり、細径にする ためには全長を短くする必要がある。

【①①05】ピント調整間隔が短いものとしては、特別 平2-176612号がある。しかし、この対物レンズ は、第3レンズの正のパワーが比較的大きいため、コマ 収差、非点収差等が大きいという問題があった。

[0006]

【発明の目的】本発明は、レンズ最終面を像面に一致さ 20 せるタイプの対物レンズにおいて、細径でかつレンズ全 長が短く、光学性能の高い内視鏡対物レンズを得ること を目的とする。

[0007]

【発明の概要】本発明の内視鏡対物レンズは、物体側か **ら順に、屈折力が零または負の第1レンズと、正の屈折** 力を有する第2レンズと、正の屈折力を有する第3レン ズの単レンズ3枚で構成され、第3レンズの像側の面 は、像面に一致する平面からなり、さらに次の条件式

(1)ないし(4)を満足することを特徴としている。

- 30 (1) $0 \le |f/f_1| < 0$. 5 ($f_1 < 0$)
 - (2) $0 \le |f_1|/f_1| < 0.5$
 - $(3) 1. 8 < f_1 / f_2 < 8$
 - (4) 0.15 < d/f < 0.55

ぱ:対物レンズ全系の焦点距離、

ぱ、:第1レンズの焦点距離、

f: 第2レンズの焦点距離、

f」: 第3 レンズの焦点距離、

d:第2レンズと第3レンズの間隔。

式(5)を満足することが好ましい。

(5) $n_1 > 1$. 65, $n_1 > 1$. 65m > 1. 65m > 1. 65m > 1. きたはv. >45

特開平9-68647

3

[0008]

【発明の実施の態様】内視鏡対物レンズの特徴である広 い視野角を保ちつつ、諸収差を小さく抑えるためには、 適切なパワー配置にすることが不可欠であり、また、色 収差を小さくするためには、硝材のアッベ数の範囲を適 切に定めることが不可欠である。本発明は、単レンズ3 校という簡単な構成で、これらを適切に定めることによ り、細径でかつレンズ全長が短く光学性能の高い内視鏡 対物レンズを得たものである。

盥についての条件である。屈折力が零とは第1レンズが 平行平面板からなることを意味する。視野角が9()*程 度では第1レンズはパワーがない平行平面板でも十分で あるが、視野角が100°を超える場合には、第1レン ズは負のパワーを持つことが必要である。上限を超えて 負のパワーが強くなると、像面湾曲が補正過剰になる。 【0010】条件式(2)は、第1レンズと第2レンズ の魚点距離の比についての条件である。下腹を超えて第 2レンズのパワーが強くなり過ぎると、コマ収差を結正 できなくなる。上限を超えて第2 レンズのパワーが明く なると、像面湾曲が縞正過剰となる。

【0011】条件式(3)は、第2レンズと第3レンズ の魚点距離の比についての条件である。下版を超えて第 3レンズのパワーが強くなり過ぎると、像面湾曲と非点 収差が稿正不足となる。上限を超える。つまり、第3レ ンズのパワーが第2レンズに比べて弱くなりすぎると、 コマ収差が大きくなってしまう。

【0012】条件式(4)は、第2レンズと第3レンズ の間隔に関する条件である。ピント調整にはある一定値 以上の間隔が必要である。条件式の下限を超えて間隔が 30 狭くなると、ピントの調整が困難となる。上腹を超え て、間隔が広くなると、第2、第3の両正レンズ群のパ ワーが大きくなり、球面収差や像面湾曲等の諸収差が大 きくなってしまう。また、レンズ全長が長くなってしま う問題も生じる。よって、この第2、第3レンズの間隔 に関する条件は、ピント調整間隔を確保しつつ、光学性 能が高く、細径でレンズ全長が短い内視鏡対物レンズを 得るための必要条件である。

【0013】条件式(5)は、第2レンズと第3レンズ の硝材についての条件である。n,>1.65、n,> 1.65とすることにより、像面湾曲を小さくすること ができる。 レン >45またはレン >45とすることによ り 善収差。特に倍率色収差を小さくすることができ

なり、残りの実施例では、第1レンズ10が負の屈折力 のレンズからなっている。 [実施例1] 図1は、本発明 の内視鏡対物レンズの第1の実施例のレンズ構成図であ る。表1は、このレンズ系の数値データ、図2は、この レンズ系による諸収差図である。以下の各表及び各図面 において、FEは基準物体距離5mm での実効下値、 f は対 物レンズ全系の焦点距離。mは近軸横倍率、wは基準物 体距離での半画角、faはバックフォーカス、gはレンズ 各面の曲率半径。dはレンズ厚もしくはレンズ間隔、n 【0.009】条件式(1)は、第1レンズのパワーの範 10 はd線に対する屈折率、 ν はd線のアッペ数を示す。SAは球面収差、SCは正弦条件、d線、g線、C線は、 それぞれの波長における。球面収差によって示される色 収差、Sはサジタル、Mはメリディオナルを示してい る。

[0015]

【表 1 】FE=1:1.75

f=0.32

n=-0.062

 $\omega = 45.3$

20 $f_a = 0.00$

面 No.	R	D	Û	ν
1	00	0.30	1.88300	40.8
2	∞	0.03	-	-
3	00	0.37	1.88300	40.8
4	-0.346	0.15	-	-
Б	0.725	0.37	1.72916	54.7
6	00	-	_	_

【①016】[実施例2]図3は、本発明の内視鏡対物 レンズの第2の実施例のレンズ構成図である。表2は、 このレンズ系の数値データ、図4は、このレンズ系によ る諸収差図である。

[0017]

【表2】FE=1:1.62

f=0.28

m = -0.055

ω=55.7 [°]

 $f_a = 0.00$

Ō	i No.	R	D	0	V
	1	∞	0.23	1.88300	40.8
	2	1.300	0.06	-	~
	3	00	0.35	1.88300	40.8
	4	-0.310	0. 15	-	-
	Б	0.610	0.40	1.72916	54.7

					(4)				特開平9-	-68647
•		5				✓		5		
f=0.26					>	k f=0.29				
m=-0.050						m=-0.057		6		
$\omega = 63.1$			\bigcirc			ω=52.6 °		(3)		
$\hat{\tau}_a = 0.00$						$\hat{\tau_a} = 0.00$				
面 No.	R	D	O	ν		面 No.	R	D	0	ν
1	00	0.30	1.88360	40.8		1	00	0.20	1.88300	40.8
2	1.839	0.04	-	-		2	2.346	0.07	-	-
3	œ	0.30	1.77250	49.6		3	œ	0.30	1.88300	40.8
4	- 0. 259	0.05	-	-		4	-0.276	0.09	-	-
Б	0.647	0.45	1.72916	54.7	19	5	1. 500	0.43	1.72916	54.7
6	00	_	_	_	1.0	6	00	-	_	- -
[0020]	「宝饰碗	4] M 7	社 未熟明.	നർവുള കുടി ക്	ъ.			0.1 Em.		un — (losé)

【10020】 【実施例4】図7は、本発明の内視鏡対物 レンズの第4の実施例のレンズ構成図である。表4は、 このレンズ系の数値データ、図8は、このレンズ系によ る諸収差図である。

[0021]

【表4】FE=1:1.80

f=0.26

 $\eta = -0.049$

ω=69. <u>1</u> '						
$\hat{\tau_g} = 0.00$		+	(Y)			
面 No.	R	D	Ö	ν		
1	00	0.50	1.88300	40.8		
2	0.680	0.09	-	-		
3	œ	0.30	1.88300	40.8		
4	- 0. 291	0. 14	-	-		
Б	0.629	0.45	1.72916	54.7		
6	00	_	_	_		

【0022】[実施例5]図9は、本発明の内視鏡対物 レンズの第5の実施例のレンズ構成図である。表5は、 このレンズ系の数値データ、図10は、このレンズ系に よる諸収差図である。

[0023]

【表5】FE=1:1.80

【10024】 [実施例6] 図11は、本発明の内視鏡対 物レンズの第6の実施例のレンズ構成図である。表6 は、このレンズ系の数値データ、図12は、このレンズ 系による諸収差図である。

[0025]

【表6】FE=1:1.80

f=0.26

m=-0.052 $20 \omega = 62.1$

 $f_a = 0.00$

面 No.	R	D	0	ν.
1	00	0.22	1.88300	40.8
2	1.223	0.07	-	-
3	œ	0.30	1.77250	49.6
4	- 0. 263	0.11	-	-
Б	0.691	0.45	1.83481	42.7
6	00	_	_	_

【表?】

		*			
	条件式 (1)	条件式(2)	条件 式	t (3)	
突旋倒 1	0	o	2.	54	
突縮例2	0.190	0.251	2.	26	
真能例3	0.123	0.160	2.	65	
突胎例4	0.339	0.429	2.	62	
突縮例5	0.108	0.214	6.	58	
突旋例6	0.191	0.411	2	44	
	条件式 (4)	n,	n,	ν,	ν,
享施例)	0.476	1.883	1.729	40.8	54.7

(5)

特開平9-68647

8

【発明の効果】本発明の内視鏡対物レンズによれば、細経でかつレンズ全長が短く。光学性能の高いレンズが得られる。

【図面の簡単な説明】

【図1】本発明の内視鏡対物レンズの第1の実施例のレンズ構成図である。

【図2】図1のレンズ系の諸収差図である。

【図3】本発明の内視鏡対物レンズの第2の実施側のレンズ構成図である。

【図4】図1のレンズ系の諸収差図である。

【図5】本発明の内視鏡対物レンズの第3の実施例のレ*

*ンズ構成図である。

【図6】図5のレンズ系の諸収差図である。

【図?】本発明の内視鏡対物レンズの第4の実施例のレンズ構成図である。

【図8】図7のレンズ系の諸収差図である。

【図9】本発明の内視鏡対物レンズの第5の実施例のレンズ構成図である。

【図10】図9のレンズ系の諸収差図である。

【図11】本発明の内視鏡対物レンズの第6の実施例の 10 レンズ構成図である。

【図12】図11のレンズ系の諸収差図である。

[図1]

[図3]

10 20 30 10 30

[205]

10 20 30 T

(7)

特開平9-68647

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-068647

(43) Date of publication of application: 11.03.1997

(51)Int.CI.

G02B 13/04

G02B 23/26

(21)Application number : 07-223723

(71)Applicant: ASAHI OPTICAL CO LTD

(22)Date of filing:

31.08.1995

(72)Inventor: EGUCHI MASARU

(54) ENDOSCOPIC OBJECTIVE LENS

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain an endoscopic objective lens having a small diameter, short overall length and high optical performance as an objective lens of a type to align the final face of the lens on an image side to the end face of a fiber bundle.

SOLUTION: This endoscopic objective lens is composed, successively from an object side, of three single lenses; a first lens 10 having zero or negative refracting power, a second lens 20 having positive refracting power and a third lens 30 having positive refracting power and satisfies the following condition equations: (1) $0\le \text{everbar}$; f1| 0.5(f10). (2) $0\le \text{everbar}$; f2/f1| 0.5(f10). (3) $0\le \text{everbar}$; f2/f1| 0.5(f10). (4) $0.15\le \text{everbar}$; f1: the focal length of the entire system of the objective lens, f1: the focal length of the first lens, f2: the focal length of the second lens, f3: the focal length of the third lens, (d): the spacing between the second lens and the third lens.

LEGAL STATUS

[Date of request for examination]

19.03.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3450543

[Date of registration]

11.07.2003

[Number of appeal against examiner's decision of rejection]

rejection

[Date of requesting appeal against examiner's decision of rejection]

of rejection

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office