

Prof. Jörg Stelling Biosystems Science and Engineering Mattenstrasse 26 CH-4058 Basel

E: joerg.stelling@bsse.ethz.ch

To be submitted (preferably by e-mail to pencho.yordanov@bsse.ethz.ch), by Monday, April 2^{nd} , 2012. Please include the source files of your code.

Synthetic biology (Spring 2012): Mathematical models

Exercise 2. Toggle Switch

Consider the following mechanism:

$$G_1 \xrightarrow{k_1} G_1 + P_1 \tag{1}$$

$$G_1 + P_2 \xrightarrow{k_{c1}^+} \xi_1^I \tag{2}$$

$$G_2 \xrightarrow{k_2} G_2 + P_2 \tag{3}$$

$$G_2 + P_1 \xrightarrow{k_{c2}^+} \xi_2^{I_1}$$
 (4)

$$\xi_2^{I_1} + P_1 \xrightarrow{k_{c3}^+} \xi_2^{I_2}$$
 (5)

$$P_1 \xrightarrow{d_1} \emptyset \tag{6}$$

$$P_2 \xrightarrow{d_2} \emptyset \tag{7}$$

where:

- reactions (1) and (3) represent the expression of the proteins P_1 and P_2 starting from the genes G_1 and G_2 , respectively,
- steps (6) and (7) account for the degradation of the proteins P_1 and P_2 .

The expression of P_1 is repressed by the protein P_2 , which binds to the promoter of G_1 forming a complex ξ_1^I . On the other hand, the expression of P_2 is repressed by protein P_1 . In this case, there are two active binding sites in the promoter, leading to the formation of an intermediate complex $\xi_2^{I_1}$ which in turns binds to protein P_1 to form a complex $\xi_2^{I_2}$. Binding sites are cooperative provided that:

$$k_{c3}^{+} = \sigma k_{c2}^{+} \qquad \sigma >> 1$$

Let us consider, for simplicity, that $k_{c3}^- = k_{c2}^- = k_{c1}^-$ and $k_{c2}^+ = k_{c1}^+$. For this mechanism, the number of reaction channels is M = 10, and the number of species involved is N = 7.

A deterministic model for the mechanism is given by the following set of ordinary differential equations:

$$\frac{d\mathbf{x}}{dt} = \mathcal{N}W\tag{8}$$

where $\mathbf{x} = ([G_1], [P_1], [\xi_1^I], [G_2], [P_2], [\xi_2^{I_1}], [\xi_2^{I_2}])^T$ is the concentration vector, \mathcal{N} is the stoichiometric matrix $(N \times M)$ and W is the $(M \times 1)$ vector of reaction rates. The stoichiometric matrix contains the stoichiometric coefficients ν_{ij} of each species in every reaction step¹, and it can be constructed starting from the molecularity matrices associated to the reactions as follows:

$$\mathcal{N} = \beta - \alpha \tag{9}$$

where β_{ij} is the molecularity of the product species i in the reaction j and α_{ij} is the molecularity of the reactand species i in the reaction j. Note that both α_{ij} and β_{ij} are positive integers. For example, for reaction (1),

$$\alpha_1 = [1 \ 0 \ 0 \ 0 \ 0 \ 0],$$

$$\beta_1 = [1 \ 1 \ 0 \ 0 \ 0 \ 0],$$

$$\nu_1 = [0 \ 1 \ 0 \ 0 \ 0 \ 0].$$

where α_1^T is the first column of the reactand molecularity matrix α and ν_1^T is the first column of the stoichiometric matrix \mathcal{N} .

The reaction vector contains the rates for each of the reaction steps (j = 1, ..., R). Assuming mass action kinetics, the reaction rate associated to the j-th irreversible step will read:

$$W_j = k_j \prod_{i=1}^N x_i^{\alpha_{ij}} \tag{10}$$

1. For the *deterministic* simulation, use Matlab to integrate the system of ordinary differential equations given by (8). See the attached note with

¹For this set up, we split reversible reactions into a forward and a backward step

syntax for creating an odefile and calling to ODE solvers. The volume of the cell under consideration is $10^{-14}L$, and the Avogadro number is $NA = 6,02 \cdot 10^{23}$ (molecules/mol). The species concentrations in nM are computed as follows:

$$c_i = 10^9 \cdot \frac{n_i}{NA \cdot V} \tag{11}$$

where n_i is the number of molecules of the species i.

- a) Plot the evolution of the concentrations (expressed in nM) until t = 500 min, assuming the values of the parameters S1 in Table 1 starting from initial condition X_{01} in Table 2. Print the values of the level of proteins P_1 and P_2 at steady state (both in concentrations and in number of molecules).
- b) Plot the evolution of the concentrations with initial condition given by X_{02} . Print the values of the level of proteins P_1 and P_2 at steady state (both in concentration and in number of molecules).

Is bistability detected for this set of parameters?.

Table I. Deterministic rate constants

	S1	${ m units}$	
k_1	100	$1/\mathrm{min}$	
k_{c1}^+	1	$1/(nM \cdot min)$	
k_{c1}^-	1	$1/\mathrm{min}$	
k_2	1000	$1/\mathrm{min}$	
σ	100	-	
d_1	6	$1/\mathrm{min}$	
d_2	2	$1/\mathrm{min}$	

Table II. Initial number of molecules

	X_{01}	X_{02}	X_{03}	X_{04}
G_1	1	1	10	10
P_1	20	500	20	500
ξ_1^I	0	0	0	0
G_2	1	1	10	10
P_2	20	500	20	500
$\xi_2^{I_1}$	0	0	0	0
$\xi_2^{I_2}$	0	0	0	0

- 2. For the stochastic simulation, use the routine SSA provided in the course web page. First:
 - a) Compute the set of values for the stochastic rate constants (\hat{k}) starting from the deterministic constants (k) given in Table 1. Take into account that:
 - for unimolecular reactions

$$\hat{k}_j = k_j,$$

- for bimolecular (two species) reactions, and k_j given in $nM^{-1}min^{-1}$

$$\hat{k}_j = 10^9 \cdot k_j / (NA \cdot V).$$

- b) Compute the values of the *propensities* associated to each reaction channel at t=0 for initial conditions X_{01} , X_{02} , X_{03} and X_{04} .
- c) Provide the expression of the *state change vector* for every reaction channel.
- d) Using the routine SSA provided in the course web page, run a stochastic simulation with initial condition X_{01} until t = 500 min (you might have to wait some time for the results).
- e) Plot a histogram illustrating the probability distribution for the number of molecules of protein P_1 after $t > t_t$ where t_t is the time of the transient before reaching the steady state. See how to plot histograms in Matlab in the attached note.
- 3. (Optional). Perform tasks 1.a), 2.d) and 2.e) for initial conditions X_{03} and X_{04} and compare the results of the stochastic and deterministic simulations. Warning: Simulation might take more than two hours.

Odefile toggle.m

Call to ODE solver from the main script

ssa.m

```
function [X, t] = ssa(c,t_fin,X0,v,alpha)
% c: row vector of stochastic kinetic
% constants
% t_fin: final time for the simulation
% X0: column vector of initial conditions
% (number of molecules of every species
% at t=0)
% v: (N times M) state change matrix
% alpha: (N times M) molecularity matrix
% (contains the molecularities of
% the reactants for the M reaction channels)
```

Calling ssa from the main script

```
% Call to ssa
[X, t] = ssa(c,t_fin,X0,v,alpha)
% Plotting results
plot(t,X)
```

Plotting histograms

```
% Plotting histograms

t_t= ...; % define time of the transient

Pls = X(2,t_t:end); % protein 1 for t>t_t

hh = histc(Pls,min(Pls):max(Pls));

bar(min(Pls):max(Pls),hh/sum(hh));
```