1. Problem Analysis

Step 1: Identify Requirements

- Look for patterns in what's being asked:
 - Domain control (Wk(n))
 - Range control (Ek(n))
 - Both domain and range control
 - Size control (|Wk(n)|)

Step 2: Target Properties

Write down clearly:

```
What should be in Wk(n)?What should be in Ek(n)?Any special conditions (totality, size)?
```

2. Solution Construction

Step 1: Helper Function Design

Step 2: Make it Computable

Common techniques:

```
For divisibility: use rm(x,n)
For domain control: use μz
For even numbers: multiply by 2
For size control: use bounded counters
```

Step 3: Apply SMN Theorem

Standard steps:

- 1. State the theorem
- 2. Show helper function is computable
- 3. Get k(n) such that $\phi k(n)(x) = f(n,x)$

3. Verification

Step 1: Check Domain (Wk(n))

```
Wk(n) = \{x \mid f(n,x)\downarrow\}
Verify this matches requirements
```

Step 2: Check Range (Ek(n))

```
Ek(n) = \{f(n,x) \mid x \in Wk(n)\}
Verify this matches requirements
```

Step 3: Verify Special Properties

- · Check totality if required
- Verify size conditions
- Confirm any other constraints

4. Common Patterns

Domain Control

```
# For x \ge n:
f(n,x) = something + \mu z.(n-x)
```

```
# For x < n:
f(n,x) = something + \mu z.(x-n)
```

Range Control

```
# For even numbers:
f(n,x) = 2*something

# For specific sets:
f(n,x) = desired_value * sg(condition) + default * sg(condition)
```

Size Control

5. Tips and Tricks

- 1. For totality:
 - Include a default value
 - Make sure every case is covered
- 2. For range control:
 - Use multiplication for even/odd
 - Use sign functions (sg, $s\overline{g}$) for switching
- 3. For domain control:
 - Use minimalization (µ)
 - Use remainder function (rm)
- 4. For verification:
 - Write out Wk(n) explicitly
 - Write out Ek(n) as set builder notation
 - Show transformations step by step

Remember: The key is matching the helper function design to the requirements while ensuring computability.