本章要点

- ▶ 竖向荷载下的近似计算-分层力矩分配法
- ➤ 水平荷载下的近似计算-D值法
- ▶ 水平荷载下的近似计算-反弯点法
- > 水平荷载作用下侧移的近似计算

4.2 框架内力分析

框架是典型的杆件体系,变形特点呈剪切型变形,近似计算的方法很多,工程中最实用的是分层力矩分配法及D值法,前者多用于竖向荷载下求解,后者用于水平荷载下求解。两点基本假定外,框架近似计算方法还作以下一些假定:

- (1)忽略梁、柱轴向变形及剪切变形;
- (2) 杆件为等截面(等刚度),以杆件轴线作为框架计算轴线; 在竖向荷载下结构的侧移很小,因此在作竖向荷载下计 算时,假定结构无侧移。

一般规定

- ▶ 框架结构应设计成双向梁柱抗侧力体系。主体节点除个别部外外,不应采用铰接。
- > 抗震设计的框架结构不宜采用单跨框架。
- 框架梁、柱中心线宜重合。当梁柱中心线不能重合时,在计算中应考虑偏心对梁柱节点核心区受力和构造的不利影响,以及梁荷载对柱子的偏心影响。
- ▶ 框架结构按抗震设计时,不应采用部分由砌体墙承重的混合形式。框架结构中的楼、电梯间及局部出屋顶的电梯机房、楼梯间、水箱间等,应采用框架承重,不应采用砌体墙承重。

框架结构内力与位移

(一)、竖向荷载作用下——分层力矩分配法

多层多跨框架结构在竖向荷载作用下的侧移一般较小,当这种侧移可以忽略时,可近似

地按无侧移框架进行内力分析。对于图所示的框架结构,当仅某层梁上作用有竖向荷载时,梁两端的固端弯矩构成了节点 i、j 的不平衡弯矩 M_i 、 M_j ;根据分配系数可分别得到柱端的分配弯矩 M_{ik} 、 M_{im} 和 M_{ji} 、 M_{jn} ;柱端弯矩向远端传递,传递系数为 1/2,即 $M_{ki}=M_{ik}/2$ 、 $M_{mi}=M_{im}/2$ 、 $M_{ij}=M_{ji}/2$;这些远端弯矩又构成了节点 k、l、m、n 的不平衡弯矩;进一步可以得到上、下层梁端的分配弯矩,在经过柱子传递和节点分配后,其值比直接受荷层的梁端弯矩要小得多。

某层框架梁受竖向荷载时的弯矩分配和传递

由图 10.2.16 同样能看到,当框架仅一层受荷时(图 10.2.16(a)),在整个框架中只有直接受荷的梁及与它相连的上、下层柱的弯矩较大,其他各层梁、柱的弯矩由于经过分配、传递而衰减很快,数值均很小(图 10.2.16(b))。可见,当框架某一层梁上作用竖向荷载时,其他各层的弯矩很小。当梁的线刚度大于柱的线刚度时,这一特点更为明显。

图 10.2.16 框架单层受荷的内力

- ① 多层框架的侧移极小而可忽略不计;
- ② 每一层框架梁上的竖向荷载只对本层的梁及与本层梁相连的框架柱产生弯矩和剪力,忽略对其他各层梁、柱的影响。

整框架分解为--系列开口框架

分层计算法的基本假定:

- 1. 在竖向荷载作用下,不考虑框架的侧移
- 2. 每层梁上的竖向荷载对其它层梁的影响可忽略不计
- 3. 上、下柱的远端是固定
- 4. 在计算中,除实际的固定端(如底层柱端)外,其他各层柱 的线刚度均乘以折减系数0. 9
- 5. 同时柱端的弯矩传递系数也相应地从原来的1/2改为1/3。

计算要点

- (1)计算各层梁上竖向荷载值和梁的固端弯矩。
- (2)将框架分层,各层梁跨度及柱高与原结构相同,柱端假定端。
- (3)计算梁、柱线刚度。
- (4) 计算和确定梁、柱弯矩分配系数和传递系数。
- (5)按力矩分配法计算单层梁、柱弯矩。
- (6) 将分层计算得到的、但属于同一层柱的柱端弯矩叠加得到柱的弯矩。
 - 一般情况下,分层计算法所得杆端弯矩在各节点不平衡。 如果需要更精确的结果时,可将节点的不平衡弯矩再进行分配。 柱子的轴力可由其上柱传来的竖向荷载和本层轴力(与梁的剪力平衡求得)叠加得到。

例1 条件:图 10.2.20 所示二层框架,括号内数字为每杆线刚度 i 的相对值,荷载、跨度、层

高均示于图内。

要求: 试用分层法作框架弯矩图.

图 10.2.21 上层框架内力计算

答案:(1)上层框架内力计算

上层柱线刚度乘以 0.9 后,计算各节点分配系数并填于图中方框内。如图 10.2.21 所示。*号数值为固端弯矩。传递系数取 1/3,各结点分配两次过程及结果示于图中。

(2) 下层框架内力计算

图 3.2.22 所示为下层框架内力计算过程及结果。除底层传递系数为 1/2 外,余皆同上层。

(3) 全框架各杆最后内力图

图 10.2.23 为图 10.2.21 和图 10.2.22 的计算结果叠加后所得各杆弯矩图。由图中可见,结点中有不平衡情况。经调整平衡后其值为图 10.2.24 不带括号数字。

图 10.2.22 下层框架内力计算

图 10.2.23 最后弯矩图(单位:kN·m)

图 10. 2. 24 计算结果比较(单位:kN·m)

二、弯矩二次分配法

1、计算假定

假定某一节点的不平衡弯矩只对与该节点相交的各杆件的远端有响,而对其余杆件的影响忽略不计。

2、基本思路

先对各节点不平衡弯矩进行第一次分配,并向远端传递(传递系数均取1/2),再将因传递弯矩而产生的新的不平衡弯矩进行第二次分配,整个弯矩分配和传递过程即告结束。这就是弯矩二次分配法。

注意: 弯矩分配两次, 传递一次。

§ 水平荷载作用下内力近似计算方法——反弯点法

- 假定(1)不考虑柱子的 轴向变形,同层节点水 平位移相等,节点转角 为0
 - (2) 假定上层柱子的反弯点在中点
 - (3) 底层柱子的反弯点 在距底端2h/3

解决的问题: 1。反弯点的位置2。该点的剪力

基本思路

框架的水平荷载主要有风荷载和地震作用,它们都可以简化为框架节点水平集中荷载的作用。在水平荷载作用下,框架的弯矩图如图 10.3.1(a)所示。因无节间荷载,各杆的弯矩图都是直线,各杆都有一个弯矩为零的点称反弯点。当然,各杆的反弯点位置未必相同。图 10.3.1(b)表示该框架受力后的变形图,各柱的上下端既有水平位移,又有角位移(即柱端转角)。如果框架的各层都不缺梁且不考虑轴力所引起各杆的变形,则在同一横梁标高处,各柱端都将产生一个相同的水平位移,同一层各柱上下端的水平位移差 Δ 也相等。其次,如果梁的线刚度比柱的线刚度大得多时(例如 $i_b \ge 3i_c$),上述的节点角位移就很小。

图 10.3.1 框架在水平荷载下的弯矩和变形示意图

为了对水平荷载作用下框架的受力特点做出较为直观的分析,我们应该对水平荷载作用下框架的变形特点作进一步观察。图 10.3.2 列出框架在节点水平外荷载作用下杆端的水平位移和角变形情况。

2. 转角位移方程

柱内反弯点的位置以及柱的抗侧刚度都与梁柱的线刚度有关,与柱端的支承条件有关。图 10.3.4 给出了一个规则框架、不在底层的某柱 AB 的柱端支承条件。所谓规则框架 (10.3.4(a))是指层高、跨度、柱的线刚度和梁的线刚度分别相等的框架。框架在水平荷载作用下产生变形后,柱 AB 到达了新的位置 A'B'。 A'与 B'在水平方向上的位移差为 Δ ,柱 AB 的上下端产生转角 θ_A 、 θ_B (图 10.3.4(b)),弦转角为 $\varphi=\Delta/h$ 。

现应用上述转角位移方程来讨论图 10.3.5 所列出三种支承条件单个杆件的位移和内力之间关系。

图 10.3.5 支承情况与弯矩图

(1) 图 10.3.5(a)为杆端有相对位移 Δ 但无转角(θ =0),根据转角位移方程得杆端弯矩

$$M_{\mathrm{AB}} = M_{\mathrm{BA}} = 6i_{\mathrm{c}} \frac{\Delta}{h}$$
 (10.3.2)
因反弯点在柱高中点、所以该柱所承担的剪力 $V_{\mathrm{AB}} = \frac{12i_{\mathrm{c}}}{h^2}\Delta$

(2) 图 10. 3. 5(b) 为杆两端有转角 $\theta_A = \theta_B = \theta$,相对位移 $\Delta = 0$,根据转角位移方程得杆端弯矩

$$M_{AB} = M_{BA} = 6i_c\theta$$
 (10. 3. 4)

因反弯点在柱高中点、所以该柱所承担的剪力 $V_{AB} = \frac{12i_c}{\hbar}\theta$

(3) 图 10.3.5(c)为杆一端有转角 θ_A ,另一端 θ_B =0,相对位移 Δ =0,根据转角位移方程 得杆端弯矩

$$M_{AB} = 4i_c \theta_A$$
, $M_{BA} = 2i_c \theta_A$ (10. 3. 6)

单位位移在等截面单跨超静定梁中产生的杆端内力

表 10.1.1

序号	变形图	弯矩图	M _{AB}	$M_{ m BA}$	V_{AB}	$V_{ m BA}$
1	$\theta=1$ B A B B	2 <i>i</i>	4 <i>i</i>	2 <i>i</i>	$-\frac{6i}{l}$	$-\frac{6i}{l}$
2	A EI B = 7	61	$-\frac{6i}{l}$	$-\frac{6i}{l}$	$\frac{12i}{l^2}$	$\frac{12i}{l^2}$
3	$\theta = I$ $A = I$ I I I	31	3₺	0	$-\frac{3i}{l}$	$-\frac{3i}{l}$
4	A EI B	³ⁱ /	$-\frac{3i}{l}$	0	$\frac{3i}{l^2}$	3i l ²
5	θ=1 EI 86 1	, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i	-i	- 0	0

注: $i = \frac{EI}{L}$ 为杆件的线刚度。

竖立柱的侧移刚度 d 是使柱顶产生单位水平位移在柱顶所施加的水平力,故

$$d = \frac{V}{\Delta}$$

V——施加在柱顶上的水平力; Δ ——柱顶的水平位移。

图 10.1.14(a)、(b) 所示两立柱, 当柱顶有单位侧移时所引起的剪力或所需施加的外力

d,即为柱的侧移刚度。图 10.1.14(a)为上下梁柱刚度比均很大或均为固定端, $d=\frac{12i}{\hbar^2}$ 。

在实际工程中,如果梁的线刚度比柱的线刚度大很多($i_b/i_c>3$),则梁柱结点的转角 θ 很小。忽略此转角,把框架在水平荷载作用下的变形假设为如图 10.3.6(a)所示情况。

此时不在底层的某柱 AB 的柱端支承条件如图 10.3.7 所示,即忽略柱端转角。应采用式(10.3.3)来描述它的内力和位 $_{V=}\frac{12i_{c}}{\Lambda}$

$$d = \frac{12i_c}{h^2}$$

$$d = \frac{V}{\Delta}$$

d 称为柱的抗侧刚度,即单位侧移下的剪力。这种情况下反弯点在柱的中点。

图 10.3.6 横梁线刚度无限大

图 10.3.7

4. 剪力分配

在利用抗侧刚度作剪力分配时,作了以下两个假定:

- (1) 忽略在水平荷载作用下柱的轴向变形,柱的剪力只与水平位移有关;
- (2) 梁的轴向变形很小,可以忽略,因而同一楼层处柱端位移相等。

假定在同一楼层中各柱端的侧移相等,则同层柱的相对位移 Δ 都相等,由此可得到第 j 层各个柱子的剪力如下:

$$V_{1j} = D_{1j} \cdot \Delta_{j}$$

$$V_{2j} = D_{2j} \cdot \Delta_{j}$$

$$\vdots$$

$$\vdots$$

$$V_{ij} = D_{ij} \cdot \Delta_{j}$$

式中,i 为柱编号, V_{ij} 、 D_{ij} 分别为第j 层第i 根柱子的剪力及抗侧刚度,假定有m 根柱,因为 $V_{1i}+V_{2i}+\cdots\cdots+V_{mi}=V_{ni}$ (10.3.15)

所以

$$\Delta_{j} (D_{1j} + D_{2j} + \dots + D_{ij}) = V_{pj}$$

$$\Delta_{j} = \frac{V_{pj}}{\sum_{i=1}^{m} D_{ij}}$$
(10, 3, 16)

$$d = \frac{V}{\Delta}$$

$$egin{aligned} V_{1j} &= rac{D_{1j}}{\sum\limits_{i=1}^{m} D_{ij}} V_{pj} \ V_{2j} &= rac{D_{2j}}{\sum\limits_{i=1}^{m} D_{ij}} V_{pj} \end{aligned}$$

į

$$V_{ij} = \frac{D_{ij}}{\sum_{i=1}^{m} D_{ij}} V_{pj}$$

 V_{pj} 是第j 层总剪力,式(10.3.17)即柱的剪力分配公式。

(10.3.17)

水平位移 δ

$$V_1 = d_1 \delta$$

$$V_2 = d_2 \delta$$

$$V_3 = d_3 \delta$$

$$\delta = \frac{V_P}{d_1 + d_2 + \dots + d_i} = \frac{V_p}{\sum d_i} V_P$$

$$V_i = \frac{a_i}{\sum_i d_i} V_F$$

5 框架内力计算

(1)据结点平衡计算梁端弯矩之和,再按左右梁的线刚度将弯矩分配到梁端

$$M_b^l = (M_{ij}^t + M_{i,j+1}^b) \frac{i_b^l}{i_b^l + i_b^l}$$

$$M_b^r = (M_{ij}^r + M_{i,j+1}^b) \frac{i_b^r}{i_b^l + i_b^r}$$

- (2) 根据梁两端弯矩计算梁剪力 V。;
- (3) 根据梁剪力计算柱轴力 N。。

各件,框架如图 10, 3, 13(a)所示,圆圈内数字为相对线

要求: 用反弯点法计算图 10.3.13(a)所示的框架并画t

答案:

$$V_1 = \frac{1}{1+1} \times 2 = 1$$
kN
第 3 层柱剪力: 5

$$V_2 = \frac{1}{1+2+2} \times (2+4) = 1.2 \text{kN}$$

$$V_3 = \frac{2}{1+2+2} \times (2+4) = 2.4 \text{kN}$$

2kN

第2层柱剪力: (b)_..

$$V_4 = \frac{2}{2+3+3+1} \times (2+4+4) = 2.22$$
kN

$$V_5 = \frac{3}{2+3+3+1} \times 10 = 3.33$$
kN

$$V_6 = \frac{1}{2+3+3+1} \times 10 = 1.11 \text{kN}$$

底层柱剪力,

$$V_7 = \frac{3}{3+4+4+2} \times (2+4+4+5) = 3.46$$
kN

$$V_8 = \frac{4}{3+4+4+2} \times 15 = 4.61$$
kN

$$V_9 = \frac{2}{3+4+4+2} \times 15 = 2.31 \text{kN}$$

图 10.3.13(c)是刚架的 M 图。以节点 K 为例,说明柱端和梁端弯矩的计算,见图 10.3.13(d)。

柱:

$$M_{KO} = V_3 \times 2.5 = 2.4 \times 2.5 = 6 \text{kN} \cdot \text{m}$$

$$M_{KG} = V_5 \times 2.5 = 3.33 \times 2.5 = 8.32 \text{kN} \cdot \text{m}$$

节点不平衡弯矩: $M_{KO}+M_{KG}=-6.0-8.32=-14.32$ kN·m

梁:

$$M_{\rm KJ} = \frac{6}{6+3} \times 14.32 = 9.55 \,\mathrm{kN} \cdot \mathrm{m}$$

$$M_{KL} = \frac{3}{6+3} \times 14.32 = 4.77 \text{kN} \cdot \text{m}$$

水平荷载作用下的改进反弯点法

——D值法**(**梁柱线刚度比较

1. 层间剪力在各柱间的分配

I第i层的层间剪力V:可表示为

$$V_i = \sum_{k=i}^m F_k$$

$$V_{ij} = \frac{D_{ij}}{\sum_{i=1}^{s} D_{ij}} V_{i}$$

2. 框架柱的侧向刚度——D 值

所示的框架单元,有 8 个节点转角 θ 和 3 个弦转角 φ 共 11 个未知数,而只有节点 A、B 两个力矩平衡条件。为此,作如下假定:

- ①柱 AB 两端及与之相邻各杆远端的转角 θ 均相等;
- ②柱AB及与之相邻的上、下层柱的弦转角 φ 均相等。
- ③柱AB及与之相邻的上、下层柱的线刚度i。均相等。

2. 框架柱的侧向刚度——D值

由转角位移方程及上述假定可得

$$M_{\rm AB} = M_{\rm BA} = M_{\rm AC} = M_{\rm BD} = 4i_{\rm c}\theta + 2i_{\rm c}\theta - 6i_{\rm c}\varphi = 6i_{\rm c}(\theta - \varphi)$$

 $M_{AE} = 6i_3\theta$, $M_{AG} = 6i_4\theta$, $M_{BF} = 6i_1\theta$, $M_{BH} = 6i_2\theta$

由节点 A 和节点 B 的力矩平衡条件分别得

$$6(i_3 + i_4 + 2i_e)\theta - 12i_e\varphi = 0$$

$$6(i_1 + i_2 + 2i_e)\theta - 12i_e\varphi = 0$$

$$\frac{\theta}{\varphi} = \frac{2}{2 + \overline{K}}$$

式中, $\overline{K} = \sum i/2i_e = [(i_1 + i_3)/2 + (i_2 + i_4)/2]/i_e$,表示节点两侧梁平均线刚度与柱线刚度的比值, 简称梁柱线刚度比。

柱 AB 所受到的剪力为

$$V = -\frac{M_{AB} + M_{BA}}{h} = \frac{12i_{c}}{h} (1 - \frac{\theta}{\varphi}) \varphi$$

$$D = \frac{V}{\delta} = \frac{\overline{K}}{2 + \overline{K}} \cdot \frac{12i_{c}}{h^{2}} = \alpha_{c} \frac{12i_{c}}{h^{2}}$$

$$V = \frac{\overline{K}}{2 + \overline{K}} \cdot \frac{12i_{c}}{h} \varphi = \frac{\overline{K}}{2 + \overline{K}} \cdot \frac{12i_{c}}{h^{2}} \cdot \delta$$

$$\alpha_{c} = \frac{\overline{K}}{2 + \overline{K}}$$

式中, α 。称为柱的侧向刚度修正系数,它反映了节点转动降低了柱的侧向刚度,而节点转动的大小 则取决于梁对节点转动的约束程度。由式(5.4.5)可见, $\overline{K} \to \infty$, $\alpha_c \to 1$,这表明梁线刚度越大, 对节点的约束能力越强, 节点转动越小, 柱的侧向刚度越大。

对于框架的底层柱,由于底端为固结支座,无转角,推导思路类似,过程从略,所得底层柱的 K 值及 α 。值不同于上层柱。现将 K 及 α 。的计算公式归纳于表

柱侧向刚度修正系数 α_c

	立 置	边	柱	†	~	
11	Z EL	简 图	\overline{K}	简 图	\overline{K}	$\alpha_{\rm c}$
_	般层	i _c	$\overline{K} = \frac{i_2 + i_4}{2i_c}$	i ₁ i ₂ i ₃ i ₆ i ₄	$\overline{K} = \frac{i_1 + i_2 + i_3 + i_4}{2i_c}$	$\alpha_{\rm c} = \frac{\overline{K}}{2 + \overline{K}}$
底	固接	i _c	$\overline{K} = \frac{i_2}{i_c}$	i ₁ i ₂ i _c	$\overline{K} = \frac{i_1 + i_2}{i_c}$	$\alpha_{\rm c} = \frac{0.5 + \overline{K}}{2 + \overline{K}}$
层	铰接	i _c i ₂	$\overline{K} = \frac{i_2}{i_c}$	- i1 i2 ic	$\overline{K} = \frac{i_1 + i_2}{i_c}$	$\alpha_{\rm c} = \frac{0.5\overline{K}}{1 + 2\overline{K}}$

上述 d 值及 D 值是在不同条件下的柱抗侧刚度,可利用它们求得框架在水平荷载作用下柱的剪力。

用 d 值求解框架内力被称为反弯点法,因为认为柱的反弯点都在中点。反弯点法假定 梁刚度无限大,结点无转角,但在实际工程中只有 i_b/i_c>3 时,才可用反弯点法计算。

用 D 值法求解框架内力时,称为 D 值法,考虑了结点转角的影响,又称为改进反弯点法。反弯点位置,不一定在柱中点。D 值法较为精确,也具有更普遍的意义。

反弯点到柱底距离与柱高度的比值称为反 弯点高度比,反弯点到柱底距离即 yh。

(1) D 值法的反弯点位置

在确定柱反弯点位置时,要考虑影响柱上下结点转角的各种因素,即柱上下端的约束条件。

由图可见当两端约束相同时, $\theta_i = \theta_{i-1}$, 反弯点在中点,当两端约束不相同时,

反弯点到柱底距离

θ, ≠θ,-1, 反弯点则移向转角较大的一端,也就是移向约束刚度较小的一端,其极端情况图中一端铰结,该端转动约束刚度为 0, 弯矩为 0, 即反弯点与该端重合。

影响柱两端约束刚度的主要因素是:

- 结构总层数与该层所在位置;
- 2) 梁柱线刚度比;
- 3) 荷载形式;
- 4) 上层与下层梁刚度比;
- 5) 上、下层层高变化。

反弯点高度比 y 用下式计算

$$y=y_0+y_1+y_2+y_3$$

式中 y₀ 称为标准反弯点高度比,它是在假定各层层高相等、各层梁线刚度相等的情况 下通过理论推导得到的。y₁、y₂、y₃则是考虑上、下梁刚度不同和上、下层层高有变化时反 弯点位置变化的修正值。

① 标准反弯点高度比

规则框架承受均布水平力作用时标准反弯点的高度比 ye 值

		73% XV 1	医米小	30; A-9 11) /JN TT.	/JTF/75	HIJ TOP /I	· (X. 写 ,	WAY HIS LEA	1/08C, IAIL .	70 µm.		400	1.000 000 0	
m	TK n	0. 1	0. 2	0. 3	0. 4	0.5	0.6	0.7	0.8	0.9	1.0	2. 0	3.0	4.0	5.0
1	1	0.80	0. 75	0. 70	0.65	0.65	0.60	0.60	0.60	0.60	0. 55	0. 55	0. 55	0.55	0. 55
	2	0.45	0. 40	0. 35	0.35	0. 35	0. 35	0.40	0.40	0.40	0.40	0.45	0.45	0.45	0. 45
2	1	0.95	0.80	0. 75	0.70	0. 65	0. 65	0. 65	0.60	0.60	0.60	0. 55	0.55	0.55	0.50
	3	0. 15	0. 20	0.20	0. 25	0.30	0.30	0.30	0.35	0.35	0. 35	0.40	0.45	0.45	0. 45
3	2	0.55	0.50	0.45	0.45	0.45	0. 45	0.45	0.45	0.45	0.45	0.45	0.50	0.50	0.50
	1	1.00	0. 85	0.80	0.75	0.70	0.70	0.65	0.65	0.65	0. 60	0.55	0. 55	0.55	0. 55
	4	-0.05	0.05	0. 15	0. 20	0. 25	0.30	0.30	0.35	0.35	0.35	0.40	0.45	0.45	0.45
	3	0. 25	0.30	0.30	0.35	0.35	0.40	0.40	0.40	0.40	0. 45	0.45	0.50	0.50	0. 50
4	2	0. 65	0. 55	0.50	0.50	0.45	0.45	0. 45	0.45	0.45	0. 45	0.45	0.50	0.50	0.50
	1	1. 10	0.90	0.80	0. 75	0.70	0. 70	0.65	0.65	0.65	0. 55	0. 55	0. 55	0.55	0. 55

$$\overline{K} = \frac{i_1 + i_2 + i_3 + i_4}{2i}$$

框架总层数 m 及该层所在楼层 i 以及梁柱线刚度比 \overline{K} 值

表 10.3.2

$$y=y_0+y_1+y_2+y_3$$

② 上下梁刚度变化时的反弯点高度比修正值 刃

当某柱的上梁与下梁刚度不等,则柱上、下结点转角不同,反弯点位置有变化,修正值为少

当
$$i_1+i_2 < i_3+i_4$$
时,令 $\alpha_1 = (i_1+i_2)/(i_3+i_4)$

根据 α_1 和 \overline{K} 值从表 10. 3. 4 中查出 y_1 ,这时反弯点应向上移, y_1 取正值。 当 $i_3+i_4 < i_1+i_2$ 时,令 $\alpha_1 = (i_3+i_4)/(i_1+i_2)$

仍由 α₁ 和 K 值从表 10.3.4 中查出 y₁,这时反弯点应向下移,y₁ 取负值。 对于底层,不考虑 y₁ 修正值。

上下层横梁线刚度比对 y₀ 的修正值 y₁

表 10.3.4

K aı	0.1	0. 2	0.3	0.4	0.5	0.6	0. 7	0.8	0.9	1.0	2. 0	3.0	4.0	5. 0
0.4	0.55	0.40	0.30	0. 25	0.20	0.20	0. 20	0. 15	0.15	0. 15	0.05	0.05	0.05	0.05
0.5	0.45	0.30	0.20	0.20	0.15	0. 15	0. 15	0.10	0.10	0. 10	0.05	0.05	0.05	0.05
0.6	0.30	0. 20	0. 15	0. 15	0.10	0.10	0. 10	0.10	0.05	0. 05	0.05	0.05	0	0
0.7	0. 20	0. 15	0.10	0. 10	0.10	0. 10	0.05	0.05	0.05	0.05	0.05	0	0	0
0.8	0. 15	0.10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0	0	0	0	0
0.9	0.05	0.05	0.05	0.05	0	0	0	0	0	0	0	0	0	0

梁刚度变化时反弯点影响

$$y = y_0 + y_1 + y_2 + y_3$$

③ 上下层高度变化时反弯点高度比修正值 y2 和 y3

层高有变化时,反弯点也有移动,见图 10.3.11。

令上层层高和本层层高之比 $h_{\perp}/h=\alpha_2$,由表 10.3.5 可查得修正值 y_2 。当 $\alpha_2>1$ 时, y_2 为正值,反弯点向上移。当 $\alpha_2<1$ 时, α_2 为负值,反弯点向下移。

同理,令下层层高和本层层高之比 $h_{\perp}/h=\alpha_3$,由表 10.3.5 可查得修正值 y_3 。

上下层高变化对	y ₀	的修正值	y 2	和,	y 3
---------	----------------	------	------------	----	------------

-		_	_	_
	1	n	-	_
		••-	-	-

αz	₹ a₃	0.1	0. 2	0. 3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	2. 0	3. 0	4. 0	5. 0
2.0	,	0.25	0.15	0. 15	0.10	0.10	0.10	0.10	0.10	0.05	0.05	0.05	0.05	0.0	0.0
1.8		0. 20	0. 15	0. 10	0.10	0.10	0. 05	0.05	0.05	0.05	0.05	0.05	0.0	0.0	0.0
1.6	0.4	0. 15	0.10	0.10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.0	0.0	0.0	0.0
1.4	0.6	0.10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.0	0.0	0.0	0.0	0.0
1. 2	0.8	0.05	0.05	0.05	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0
1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.8	1. 2	-0.05	-0.05	-0.05	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.6	1.4	-0.10	-0.05	-0.05	-0.05	-0.05	0. 05	-0.05	-0.05	0.0	0.0	0.0	0.0	0.0	0.0
0.4	1.6	-0.15	-0.10	-0.10	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	0.0	0.0	0.0	0.0
	1.8	-0.20	-0.15	-0.10	-0.10	-0.10	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	0.0	0.0	0.0
	2.0	-0.25	-0.15	-0.15	-0.10	-0.10	-0.10	-0.10	-0.10	-0.05	-0.05	-0.05	-0.05	0.0	0.0

图 10.3.11 层高变化对反弯点影响

ν3----按照 Κ及 α2 求得。

条件:图 10.3.14(a)为三层框架结构的平面及剖面图。图 10.3.14(b)给出了楼层标高处的总水平力及各杆线刚度相对值。

计算如着

數

层

所ィ

3

(3) 计算柱端弯矩

根据各柱反弯点位置及柱剪力求得。

(4) 计算梁端弯矩

根据结点平衡求得梁端弯矩。根据梁端弯矩求梁端剪力。弯矩及反弯点位置如图 10.3.15 所示。

10. 5. 15 /5/1/\(\dagger\)
63.2 63.2
00 0 126.5 1- 184.7 1- 126.5
217.3
200.8
图 10.3.15 框架反弯点位置及弯矩图
=0.271 =0.332

- 1、框架是典型的杆件体系,近似计算的方法 很多,工程中最实用的是力矩分配法及D值法。 力矩分配法多用于竖向荷载下求解;对比较 规则的、层数不多的框架结构,当柱轴向变 形对内力及位移影响不大时,可采用D值法或 反弯点法计算水平荷载作用下的框架内力及 位移。
- 2、框架在水平荷载作用下的侧移变形曲线,它也由两部分弯曲和剪切变形组成,二者沿高变的变形曲线形状不同,可以分别计算,由剪切变形形成的曲线下部突出,底部相对变形较大,由弯曲变形形成的曲线上部向外上部的相对变形较大。

§ 水平荷载作用下侧移的近似计算

多层及高层框架结构在水平力的作用下会产生侧移,侧移过大将导致填充墙开裂,外墙饰面脱落,影响到建筑物的使用。因此,需要对结构的侧移加以控制。控制侧移包括两部分的内容,一是控制顶层最大侧移,二是控制层间相对位移。

(1) 框架侧移变形的分析

图 10.3.18 为一根等截面悬臂柱,在水平均布荷载作用下,柱截面内有弯矩和剪力,因而柱的侧移包括由柱截面弯矩引起的侧移 u_M 和柱截面剪力引起的侧移 u_V,两种侧移曲线的凹向不同。u_M 为下凹,称弯曲型变形;而 u_V 为上凹,称剪切型变形。

图 10.3.18 水平荷载作用下等截面 悬臂柱的侧移曲线 (a)弯曲型变形:(b)剪切型变形

框架结构在水平荷载作用下可视作一空腹悬臂柱,如图 10.3.19 所示。将某层框架柱沿反弯点处切开,中柱的轴力较小可忽略不计,因此可近似认为两侧边柱内轴力大小相等,但一拉一压;此外,各柱内还有剪力。则该空腹悬臂柱(视为整体)的截面弯矩由柱轴力产生(M=NB),而截面剪力由柱剪力产生,其值就等于框架的层间剪力($V=V_1+V_2+V_3$)。仿照上述等截面悬臂柱的侧移曲线特点可知:框架结构的整体弯曲型变形由柱轴力引起;整体剪切型变形由框架柱在弯矩及剪力作用下柱截面发生弯曲变形引起的。

图 10.3.19 水平荷载作用下空腹 悬臂柱的截面内力

匡架总变形=梁柱弯曲变形侧移+柱轴向变形侧移

变形特点:

图 3.55 梁柱弯曲变形引起的侧移

图 3.56 柱轴向变形引起的侧移

梁柱弯曲变形由剪力引起-生剪切变形

柱轴向变形由轴力产生,相当于 弯矩M产生的变形——弯曲变 形

多层框架结构中,框架梁或框架柱的跨度或高度与其截面尺寸相比均比较大(4倍以上),因而属于杆系结构,其变形特点是,杆件的变形以弯曲变形为主,而剪切变形及轴向变形所占比例很小,可忽略不计。因此,框架梁、柱作为单个构件时,其变形均以构件的弯曲变形为主。

综上所述,框架结构的整体侧移曲线由弯曲型变形和剪切型变形两部分组成。弯曲型 变形由框架柱的轴向变形引起;剪切型变形主要由框架梁、柱的弯曲变形引起。

1、梁柱弯曲变形产生的侧移 由抗侧刚度D值的物理意义:

单位层间侧移所需的层剪力,

可得层间侧移公式:

顶点侧移公式: 所有层层间侧移之总和

$$\Delta_n^M = \sum_{j=1}^n \delta_j^M$$

2、柱轴向变形产生的侧移

随着高层框架的高度增加,柱轴向变形产生

侧移占的比例增大,不容忽视

水平荷载作用下,只考虑两根边柱轴力(一拉一压)

$$N = \pm \frac{M(z)}{B}$$

M(z)——上部水平荷载对坐标Z力矩总和

B——两边柱轴线间的距离

·任意水平荷载下柱轴向变形产生的第j层处侧

• 把框架连续化,根据单位荷载法:

$$\Delta_j^N = 2 \int_0^{H_j} (\overline{N}N / EA) dz$$

$$\overline{N} = \pm (H_j - z) / B$$

N——q(z)对坐标z处的力矩M(z)引起的边柱轴力

——为单位集中力作用在j处时在边柱产生的轴力 Hj——j层楼板距底面高度

积分后得到计算公式: $\Delta_j^N = \frac{V_0 H^3}{EB^2 A_{\text{re}}} F_n$

 V_0 ——基底剪力(水平荷载的总和)

F_n——系数,根据不同荷载形式查图

层间变形:

$$\delta_j^N = \Delta_j^N - \Delta_{j-1}^N$$

说明:

框架总变形=梁柱弯曲变形侧移+柱轴向变形侧移, 框架变形仍以剪切型为主,底层层间侧移较大

从上式可以看出,当房屋高度越高(H 越大)、宽度越窄(B 越小),由柱轴向变形引起的顶点侧移 u_N 越大。计算表明,对于高度 $H \leq 50$ m 或高宽比 $H/B \leq 4$ 的钢筋混凝土框架,柱轴向变形引起的顶点位移约占框架梁柱弯曲变形所引起的顶点侧移的 $5\% \sim 11\%$ 。因此当高度和高宽比大于上述数值时,应考虑轴向变形的影响。

《高规》规定:对房屋高度大于 50m或高宽比大于4的结构,宜考 虑柱轴向变形的影响。

(4) 框架结构层间弹性位移验算

在正常使用条件下,限制结构层间位移的主要目的有以下两点:

- 1)保证主体结构基本处于弹性受力状态,对钢筋混凝土结构来讲,首先要避免混凝土墙或柱出现裂缝;同时,将混凝土梁等楼面构件的裂缝数量、宽度和高度限制在《规范》允许范围之内。
 - 2) 保证填充墙、隔墙和幕墙等非结构构件的完好,避免产生明显损伤。

在风荷载或多遇地震(小震)作用下,要使结构处于弹性阶段,因而计算层间位移 Δu 时采用弹性方法,结构构件的刚度采用弹性刚度;由于位移验算属于正常使用极限状态,其重要性比保证安全性的承载能力极限状态有所下降,因而计算位移时采用荷载标准值(不考虑荷载分项系数)。

为了何证框架结构具有足够的刚度,避免产生过大的位移而影响结构的承载力、稳定性和使用要求,按弹性方法计算的楼层层间最大位移与层高之比 Δu/h,《规范》有具体规定。《高层规程》的规定为:

- 4.6.3 按弹性方法计算的楼层层间最大位移与层高之比 $\Delta u/h$ 宜符合以下规定:
- 1 高度不大于 150m 的高层建筑,其楼层层间最大位移与层高之比 $\Delta u/h$ 不宜大于表 4. 6. 3 的限值;

楼层层间最大位移与展高之比的限值

表 4.6.3

结 构 类 型	∆u/h 限值
框架	1/550
框架-剪力墙、框架-核心筒、板柱-剪力墙	1/800
筒中筒、剪力墙	1/1000
框支层	1/1000

- 2 高度等于或大于 250m 的高层建筑,其楼层层间最大位移与层高之比 $\Delta u/h$ 不宜大于 1/500;
- 3 高度在 150~250m 之间的高层建筑,其楼层层间最大位移与层高之比 Δu/h 的限值按本条第 1 款和第 2 款的限值线性插入取用。

注: 楼层层间最大位移 Δu 以楼层最大的水平位移差计算,不扣除整体弯曲变形。抗震设计时,本条规定的楼层位移计算不考虑偶然偏心的影响。

5.5.1 表 5.5.1 所列各类结构应进行多遇地震作用下的抗震变形验算,其楼层内最大的弹性层间位移应符合下式要求:

$$\Delta u_{\rm e} \leqslant [\theta_{\rm e}]h \tag{5.5.1}$$

式中 Δu,——多遇地震作用标准值产生的楼层内最大的弹性层间位移;计算时,除 以弯曲变形为主的高层建筑外,可不扣除结构整体弯曲变形;应计入 扭转变形,各作用分项系数均应采用 1.0;钢筋混凝土结构构件的截面 刚度可采用弹性刚度;

 $[\theta_e]$ ——弹性层间位移角限值,宜按表 5. 5. 1 采用; h——计算楼层层高。

弹性层间位移角限值

表 5.5.1

[θ _e]		
1/550		
1/800		
1/1000		
1/1000		
1/300		

条件: 某四层框架结构(如图 10.3.21),梁柱现浇,楼板预制,柱截面尺寸 400mm×400mm,顶层梁截面尺寸为 240mm×600mm,楼层梁截面尺寸为 240mm×650mm,走道梁均为 240mm×400mm,混凝土强度等级 C20。

图 10.3.21

要求: 试用 D 值法求框架结构在图示水平荷载作用下的内力。

答案: (1) 梁柱线刚度计算

	截面惯性矩 I(mm¹)	线附度 $i = \frac{EI}{l} (N \cdot mm)$	相对线刚度 i
顶层梁	$\frac{240\times600^3}{12} = 4.32\times10^9$	$\frac{4.32\times10^9}{6500}E=6.65\times10^5E$	0. 787
1~3 层梁	$\frac{240\times650^3}{12} = 5.49\times10^9$	$\frac{5.49\times10^9}{6500}E = 8.45\times10^5E$	1. 000
走道梁	$\frac{240\times400^{8}}{12} = 1.28\times10^{9}$	$\frac{1.28\times10^9}{2700}E=4.74\times10^5E$	0. 561
2~4 层柱	400 × 400³	$\frac{2.13\times10^9}{4000}E=5.33\times10^5E$	0. 631
底 层 柱	$\frac{400\times400^3}{12} = 2.13\times10^9$	$\frac{2.13\times10^9}{4500}E=4.74\times10^5E$	0. 561

(2) 求各柱的剪力值

_	柱 DE	柱 IJ	柱 NO	柱 ST	
	$\overline{K} = \frac{1+0.787}{2\times0.631} = 1.416$	$\overline{K} = \frac{2 \times 0.561 + 1 + 0.787}{2 \times 0.631}$ = 2. 305 $D = \frac{2.305}{2 + 2.305} \times 0.631 \times \left(\frac{12}{4^2}\right)$ = 0. 338 $\left(\frac{12}{4^2}\right)$ $V = 8 \times \frac{0.338}{1.2} = 2.25 \text{kN}$	同柱 IJ	同柱 DE V=1.75kN	$\Sigma D = 1.200 \left(\frac{12}{4^2}\right)$
	柱 CD	柱 HI	柱 MN	柱 RS	
第	$D = \frac{1.585}{2+1.585} \times 0.631 \times \left(\frac{12}{4^2}\right)$ $= 0.279 \left(\frac{12}{4^2}\right)$	$\overline{K} = \frac{2 \times (1 + 0.561)}{2 \times 0.631} = 2.474$ $D = \frac{2.474}{2 + 2.474} \times 0.631 \times \left(\frac{12}{4^2}\right)$ $= 0.349 \left(\frac{12}{4^2}\right)$ $V = (8 + 16) \times \frac{0.349}{1.256} = 6.67 \text{kN}$	同柱 <i>HJ、</i> V=6.67kN	同柱 CD V=5.33kN	ΣD=
	1. 256	1. 256			1. $256\left(\frac{12}{4^2}\right)$

			•	-	
	柱 BC	柱 GH	柱 LM	柱 QR	
第 -	$D=0.279\times\left(\frac{12}{4^2}\right)$	$D=0.349\times \left(\frac{12}{4^2}\right)$	同柱 GH	同柱 BC	
二层	$V = (8+16+16) \times \frac{0.279}{1.256}$	$V = (8+16+16) \times \frac{0.349}{1.256}$	V=11. 12kN	V=8.88kN	ΣD= .
/E	=8. 88kN	=11.12kN			$1.256\left(\frac{12}{4^2}\right)$
	柱 AB	柱 FG	柱 KL	柱 PQ	
	$\overline{K} = \frac{1}{0.561} = 1.783$	$\vec{K} = \frac{1+0.561}{0.561} = 2.783$	EH PC		
第		$D = \frac{0.5 + 2.783}{2 + 2.783} \times 0.561$	伺柱 FG	同柱 AB	
1	$\times \left(\frac{12}{4.5^2}\right) = 0.338 \left(\frac{12}{4.5^2}\right)$	$\times \left(\frac{12}{4.5^2}\right)$			
层		$=0.385\left(\frac{12}{4.5^2}\right)$			ΣD=
	$V = (8+16+16+18) \times \frac{0.338}{1.446}$	$V = (8+16+16+18) \times \frac{0.385}{1.446}$	V=15. 43kN	V=13. 57kN	1. 446
	=13.57kN	=15.43kN			$\times \left(\frac{12}{4.5^2}\right)$
V					

(3) 求各柱反弯点高度 yh

根据总层数 m,该柱所在层 n,梁柱线刚度比 \overline{K} ,查表 10. 3. 3 得到标准反弯点系数 y_0 ;根据上下横梁线刚度比值 a_1 查表 10. 3. 4 得修正值 y_1 ;根据上下层高度变化查表 10. 3. 5 得修正值 y_2 、 y_3 ;各层反弯点高度 $y_1 = (y_0 + y_1 + y_2 + y_3)h$ 。

	柱	DE	柱 IJ		柱	NO	柱	ST
第	₹ =1.416	$y_0 = 0.37$	K=2.305 y₀≈	=0.42				
四	$a_1 = \frac{0.787}{1} = 0.787$	$y_1 = 0$	$\alpha_1 = \frac{0.787 + 0.561}{1 + 0.561} = 0.846$	yı =0				
层	α ₃ =1	$y_3 = 0$	α3 ≠1 y ₃ ≈	. 1				
	y=0.37+0+0=0.3	37	y=0.42+0+0=0.42		у	0. 42	y=0.3	37

柱	CD	柱	н	柱	MN	桂	RS
K =1. 585	$y_0 = 0.45$	K =2. 474	y ₀ ≈0.47				
$a_1 = 1$	$y_1 = 0$	$\alpha_1 = 1$	$y_1 = 0$				
a ₂ =1	$y_2 = 0$	a ₂ =1	$y_2 = 0$				
$a_3 = 1$	$y_3 = 0$	<i>a</i> ₃ = 1	y ₃ ≈ 0			}	
y=0.45+0+0+0=	=0. 45	y=0.47+0+0+0	0=0.47	y≕	0. 47	y≕0.	45
ŧ	BC	柱	GH	柱	LM	柱	QR
K =1.585	$y_0 = 0.45$	K ≔2. 474	$y_0 = 0.47$				
$\alpha_1 = 1$	$y_1 = 0$	$a_1 = 1$	y₁ = 0		,		
$\alpha_2 = 1$	$y_2 = 0$	$a_2 = 1$	$y_2 = 0$				
$\alpha_3 = 1.13$	$y_3 = 0$	$a_3 = 1.13$	$y_3 = 0$				
y=0.45+0+0+0=	= 0. 45	y=0.47+0+0+)=0.47	y=:	0. 47	y=0.	45
柱	AB	桂	FG	柱	KL	柱	PQ
$\overline{K} = 1.783$	ya = 0. 55	R≈2. 783	y ₀ =0.55				
$\alpha_2 = 0.889$	$y_2 = 0$	$a_2 = 0.889$	$y_2 = 0$	 - 			
y=0,55+0=0.55		y=0.55+0=0.55	5	y≕ı	0.55	y≕0.∜	55
	$K=1.585$ $a_1=1$ $a_2=1$ $a_3=1$ $y=0.45+0+0+0=1$ 桂 $K=1.585$ $a_1=1$ $a_2=1$ $a_3=1.13$ $y=0.45+0+0+0=1$ $a_3=1.13$ $a_4=1.13$ $a_5=1.13$ $a_5=1.13$ $a_5=1.13$ $a_5=1.13$		$K=1.585$ $y_0=0.45$ $K=2.474$ $a_1=1$ $y_1=0$ $a_1=1$ $a_2=1$ $y_2=0$ $a_2=1$ $a_3=1$ $y_3=0$ $a_3=1$ $y=0.45+0+0+0=0.45$ $y=0.47+0+0+0+0$ $k=1.585$ $y_0=0.45$ $k=2.474$ $a_1=1$ $a_1=1$ $a_2=1$ $a_2=1$ $a_2=0$ $a_2=1$ $a_3=1.13$ $a_3=1.13$ $a_3=1.13$ $y=0.45+0+0+0=0.45$ $y=0.47+0+0+0$ $k=1.783$ $k=1.783$ $k=1.783$ $a_2=0.889$ $a_2=0.889$ $a_2=0.889$	$K=1.585$ $y_0=0.45$ $K=2.474$ $y_0=0.47$ $a_1=1$ $y_1=0$ $a_1=1$ $y_1=0$ $a_2=1$ $y_2=0$ $a_2=1$ $y_2=0$ $a_3=1$ $y_3=0$ $y_3=0$ $y_3=0$ $y=0.45+0+0+0=0.45$ $y=0.47+0+0+0=0.47$ $x=1$ $y=0$ $y=0.47$ $x=1$ $y=0$ $y=0$ $x=1$ $y=0$ $y=0$ $x=1$ $y=0$ $y=0$ $y=0$ $y=0$ $y=0$ $x=1$ $y=0$ </th <th>$K=1.585$ $y_0=0.45$ $K=2.474$ $y_0=0.47$ $a_1=1$ $y_1=0$ $a_2=1$ $y_1=0$ $a_2=1$ $y_2=0$ $a_2=1$ $y_2=0$ $a_3=1$ $y_3=0$ $y_3=0$ $y_3=0$ $y=0.45+0+0+0=0.45$ $y=0.47+0+0+0=0.47$ $y=0.47$ $x_1=1$ $y_1=0$ $y_1=0$ $y_2=0$ $x_2=1$ $y_2=0$ $y_2=0$ $y_3=0$ $x_2=1$ $y_2=0$ $y_3=0$ $y_3=0$ $y=0.45+0+0+0=0.45$ $y=0.47+0+0+0=0.47$ $y=0.47+0+0+0=0.47$ $x_1=0.45+0+0+0=0.45$ $x_2=0.47+0+0+0=0.47$ $y=0.47+0+0+0=0.47$ $x_2=0.45+0=0.55$ $x_2=0.889$ $y_2=0$ $x_2=0.889$ $y_2=0$ $y_2=0.55+0=0.55$</th> <th>$K=1.585$ $y_0=0.45$ $K=2.474$ $y_0=0.47$ $a_1=1$ $y_1=0$ $a_1=1$ $y_1=0$ $a_2=1$ $y_2=0$ $a_2=1$ $y_2=0$ $a_3=1$ $y_3=0$ $y_3=0$ $y_3=0$ $y=0.45+0+0+0=0.45$ $y=0.47+0+0+0=0.47$ $y=0.47$ $x=1.585$ $y_0=0.45$ $x=1.10$ $y=1.10$ $x=1.10$ $y=1.10$ $y=1.10$ $y=1.10$ $y=1.10$ $y=1.10$ $y=1.10$ $y=1.10$ $y=1.10$ $y=1.10$ $y=1.10$</th> <th>$K=1.585$ $y_0=0.45$ $K=2.474$ $y_0=0.47$ $a_1=1$ $y_1=0$ $a_1=1$ $y_1=0$ $a_2=1$ $y_2=0$ $a_2=1$ $y_2=0$ $a_3=1$ $y_3=0$ $y_3=0$ $y_3=0$ $y=0.45+0+0+0=0.45$ $y=0.47+0+0+0=0.47$ $y=0.47$ $y=0.47$</th>	$K=1.585$ $y_0=0.45$ $K=2.474$ $y_0=0.47$ $a_1=1$ $y_1=0$ $a_2=1$ $y_1=0$ $a_2=1$ $y_2=0$ $a_2=1$ $y_2=0$ $a_3=1$ $y_3=0$ $y_3=0$ $y_3=0$ $y=0.45+0+0+0=0.45$ $y=0.47+0+0+0=0.47$ $y=0.47$ $x_1=1$ $y_1=0$ $y_1=0$ $y_2=0$ $x_2=1$ $y_2=0$ $y_2=0$ $y_3=0$ $x_2=1$ $y_2=0$ $y_3=0$ $y_3=0$ $y=0.45+0+0+0=0.45$ $y=0.47+0+0+0=0.47$ $y=0.47+0+0+0=0.47$ $x_1=0.45+0+0+0=0.45$ $x_2=0.47+0+0+0=0.47$ $y=0.47+0+0+0=0.47$ $x_2=0.45+0=0.55$ $x_2=0.889$ $y_2=0$ $x_2=0.889$ $y_2=0$ $y_2=0.55+0=0.55$	$K=1.585$ $y_0=0.45$ $K=2.474$ $y_0=0.47$ $a_1=1$ $y_1=0$ $a_1=1$ $y_1=0$ $a_2=1$ $y_2=0$ $a_2=1$ $y_2=0$ $a_3=1$ $y_3=0$ $y_3=0$ $y_3=0$ $y=0.45+0+0+0=0.45$ $y=0.47+0+0+0=0.47$ $y=0.47$ $x=1.585$ $y_0=0.45$ $x=1.10$ $y=1.10$ $x=1.10$ $y=1.10$ $y=1.10$	$K=1.585$ $y_0=0.45$ $K=2.474$ $y_0=0.47$ $a_1=1$ $y_1=0$ $a_1=1$ $y_1=0$ $a_2=1$ $y_2=0$ $a_2=1$ $y_2=0$ $a_3=1$ $y_3=0$ $y_3=0$ $y_3=0$ $y=0.45+0+0+0=0.45$ $y=0.47+0+0+0=0.47$ $y=0.47$

(4) 由下面公式求出柱上、下两端弯矩

上柱: $M_{\perp}=V(1-y)h$;下柱 $M_{\Gamma}=Vyh$ 。再由节点平衡条件和梁的线刚度比求出各级端弯矩,即可绘出框架弯矩图(图 10.3.22)。

【例 10.3.5】 框架侧移计算

要求: 试计算[例 10.3.4]框架各层层间侧移 Δ , 及顶点侧移 Δ 。

答案: 已知混凝土强度等级为 C20,则弹性模量 $E=25.5\times10^3$ N/mm²

该框架总高 H=16.5m<50m,宽 B=15.7m

H/B=16.5/15.7=1.051<4 可以不考虑柱轴向变形引起的侧移 Δ_N ,只需计算由梁、柱弯曲变形引起的侧移 Δ_V ,具体计算如下:

据式(10.3.21)

$$\Delta_i = \frac{V_i}{\Sigma D_i}$$

1. 计算各层间侧移刚度 ΣD_i :此外应是侧移刚度的绝对值 据[例 10. 3. 4] i=8. $45 \times 10^5 E$ =8. $45 \times 10^5 \times 25$. $5 \times 10^3 = 215$. $48 \times 10^8 (N \cdot mm)$ 各层的层间侧移刚度绝对值为:

顶层:
$$\Sigma D_4 = 1.2i\left(\frac{12}{h_4^2}\right) = 1.2 \times 215.48 \times 10^8 \times \left(\frac{12}{4000^2}\right) = 1.94 \times 10^4 \text{ N/mm}$$

三层:
$$\Sigma D_3 = 1.256i\left(\frac{12}{h_3^2}\right) = 1.256 \times 215.48 \times 10^8 \times \left(\frac{12}{4000^2}\right) = 2.03 \times 10^4 \text{ N/mm}$$

二层:
$$\Sigma D_2 = 1.256i\left(\frac{12}{h_2^2}\right) = 2.03 \times 10^4 \text{ N/mm}$$
 (: $h_2 = h_3 = 4000 \text{mm}$)

一层:
$$\Sigma D_1 = 1.446i\left(\frac{12}{h_1^2}\right) = 1.446 \times 215.48 \times 10^8 \times \left(\frac{12}{4500^2}\right) = 1.85 \times 10^4 \text{ N/mm}$$

2. 计算各层层间侧移 △.

各层剪力
$$V_4$$
=8kN;层间侧移: $\Delta_4 = \frac{8 \times 10^3}{1.94 \times 10^4} = 0.412$ mm;
 V_3 =8+16=24kN; $\Delta_3 = \frac{24 \times 10^3}{2.03 \times 10^4} = 1.182$ mm;
 V_2 =8+16+16=40kN; $\Delta_2 = \frac{40 \times 10^3}{2.03 \times 10^4} = 1.97$ mm;
 V_1 =8+16+16+18=58kN; $\Delta_1 = \frac{58 \times 10^3}{1.85 \times 10^4} = 3.14$ mm。

3. 计算顶部侧移

$$\Delta_{\rm V} = \sum_{i=1}^{4} \Delta_i = 0.412 + 1.182 + 1.97 + 3.14 = 6.7 \,\mathrm{mm}$$

重力二阶效应 (P-△效应)

结构在水平风荷载或水平地震作用下产生 / 侧移变位后, 重力荷载P由于 该侧移而引起的 附加应力。

图 8.2.3 重力二阶效应示意图

图 8.2.3 重力二阶效应示意图

当柔性结构,如钢和钢筋混凝土框架结构,受到水平荷载△时,上部重力荷载P会由于水平位移△产生额外附加的倾覆弯矩。

• M=M1+M2=FH+P △

图 8.2.3 重力二阶效应示意图

M=M₁+M₂=FH+P △,
 M₁初始弯矩, M₂二阶弯矩,
 M₂的加入, 又使△增大,
 同时又对附加弯矩进一步

图 8.2.3 重力二阶效应示意图

增大,如此反复,对柔弱的结构,可能产生积累性的变形增大而导致结构失稳倒塌。

由于结构侧移和重力荷载引起的 P- △ 效应相对较为明显,可使结构的位 移和内力增加,当位移较大时甚至导致 结构失稳。因此,高层建筑混凝土结构 的稳定设计,主要是控制验算结构在风 或地震作用下,重力荷载产生的P- / 效 应对结构性能降低的影响以及由此可能 引起的结构失稳。

5.4 重力二阶效应及结构稳定

- **5.4.1** 在水平力作用下,当高层建筑结构满足下列规定时,可不考虑重力二阶效应的不利影响。
 - 動力墙结构、框架-剪力墙结构、筒体结构:

$$EJ_{d} \geqslant 2.7 H^{2} \sum_{i=1}^{n} G_{i}$$
 (5.4.1-1)

2 框架结构:

$$D_i \geqslant 20 \sum_{j=i}^{n} G_j / h_i$$
 (i=1, 2, ..., n) (5.4.1-2)

式中 *EJ*_a——结构一个主轴方向的弹性等效侧向刚度,可按倒 三角形分布荷载作用下结构顶点位移相等的原则,将结构的侧向刚度折算为竖向悬臂受弯构件的等 效侧向刚度;

H——房屋高度;

 G_i 、 G_j ——分别为第 i、j楼层重力荷载设计值;

 h_i ——第 i 楼层层高;

 D_{i} 一第 i 楼层的弹性等效侧向刚度,可取该层剪力与层间位移的比值;

n——结构计算总层数。

5.4.3 高层建筑结构重力二阶效应,可采用弹性方法进行计算,也可采用对未考虑重力二阶效应的计算结果乘以增大系数的方法近似考虑。结构位移增大系数 F_1 、 F_{1i} 以及结构构件弯矩和剪力增大系数 F_2 、 F_{2i} 可分别按下列规定近似计算,位移计算结果仍应满足本规程第 **4.6.3** 条的规定。

1 对框架结构,可按下列公式计算:

$$F_{1i} = \frac{1}{1 - \sum_{j=i}^{n} G_{j} / (D_{i}h_{i})}$$
 (i=1, 2, ..., n) (5.4.3-1)

$$F_{2i} = \frac{1}{1 - 2\sum_{i=1}^{n} G_{i} / (D_{i}h_{i})} \quad (i=1, 2, \dots, n) \quad (5.4.3-2)$$

框架内力组合

荷载效应组合实际上是内力组合, 内力组合的目的就是要找出框架梁柱控 制截面的最不利内力,最不利内力是使 截面配筋最大的内力。

荷载效应组合原则和构件设计

一、荷载效应组合

荷载效应组合实际上是内力组合,内力组合的目的就是要找出框架。 梁柱控制截面的最不利内力,最不利内力是使截面配筋最大的内力。

- 1、控制制截面通常是梁端支座截面和跨中截面。
- 框架梁的控制截面最不利内力组合有以下几种:
 - (1)、梁端支座截面

$$-M_{\rm max}$$
, $M_{\rm max}$, $V_{\rm max}$

(2)、梁跨中截截面及最不利内力

框架梁的控面

$$+M_{\text{max}}$$
, $-M_{\text{max}}$

框架柱的控制截面通常是柱上、下两端截面。

框架柱的控制截面最不利内力组合有以下几种:

(1)、 M_{max} 及相应的N、V;

- (2)、N_{max} 及相应的M、V;
- (3)、N_{min} 及相应的M、V;
- (4)、**M** 比较大(不是绝对 最大),但N比较小

或N比较大(但不是绝对最小或绝对最大)。

内力组合时应将各种荷载作用下梁 柱轴(如)等矩值和剪力值换算到 经过滤处,然后进行内力组合。

图 3.29 梁、柱端控制截面

2、荷载组合

不考虑抗震设防时,荷载效应组合如下:

$$S = \gamma_G C_G G_K + \psi \sum_{i=1}^n \gamma_{Qi} C_{Qi} Q_{ik}$$

当有两个或两个以上可变荷载参与组合且其中包括风荷载时,荷载组合系数取 $\psi = 0.85$,在其他情况下荷载组合系数均取 $\psi = 1.0$

0

$$\psi = 1.0$$

5.6.1 无地震作用效应组合时,荷载效应组合的设计值应按下式确定:

$$S = \gamma_{\rm G} S_{\rm Ck} + \psi_{\rm Q} \gamma_{\rm Q} S_{\rm Qk} + \psi_{\rm w} \gamma_{\rm w} S_{\rm wk} \tag{5.6.1}$$

式中 S——荷载效应组合的设计值;

 γ_G ——永久荷载分项系数;

 γ_0 ——楼面活荷载分项系数;

γ,,----风荷载的分项系数;

 S_{Ck} ——永久荷载效应标准值;

 S_{Ok} ----楼面活荷载效应标准值;

 S_{wk} ——风荷载效应标准值;

ψ_Q、ψ_{*}——分别为楼面活荷载组合值系数和风荷载组合值系数,当永久荷载效应起控制作用时应分别取 0.7 和 0.0;当可变荷载效应起控制作用时应分别取 1.0 和 0.6 或 0.7 和 1.0。

注:对书库、档案库、储藏室、通风机房和电梯机房,本条楼面活荷载组合值系数取 0.7 的场合应取为 0.9。

- 5.6.2 无地震作用效应组合时,荷载分项系数应按下列规定采用:
 - 1 承载力计算时:
- 1) 永久荷载的分项系数 γ_c: 当其效应对结构不利时,对由可变荷载效应控制的组合应取 1.2,对由永久荷载效应控制的组合应取 1.35; 当其效应对结构有利时,应取 1.0;
 - 2) 楼面活荷载的分项系数 γ_Q: 一般情况下应取 1.4;
 - 3) 风荷载的分项系数 γ, 应取 1.4。
 - 2 位移计算时,本规程公式(5.6.1)中各分项系数均应取 1.0。

5.6.3 有地震作用效应组合时,荷载效应和地震作用效应组合的设计值应按¹ 式确定:

$$S = \gamma_{\rm C} S_{\rm CE} + \gamma_{\rm Eh} S_{\rm Ehk} + \gamma_{\rm Ev} S_{\rm Ehk} + \psi_{\rm w} \gamma_{\rm w} S_{\rm wk}$$

(5. 6. 3

式中 S——荷载效应和地震作用效应组合的设计值;

 S_{CE} ——重力荷载代表值的效应;

 S_{Dis} ——水平地震作用标准值的效应,尚应乘以相应的增大系数或调整系数;

 S_{Ext} ——竖向地震作用标准值的效应,尚应乘以相应的增大系数或调整系数;

 γ_c ——重力荷载分项系数;

γ"——风荷载分项系数;

 $\gamma_{\rm Eb}$ ——水平地震作用分项系数;

 γ_{E} ——竖向地震作用分项系数;

 ψ_w ——风荷载的组合值系数,应取 0.2。

5.6.4 有地震作用效应组合时,荷载效应和地震作用效应的分项系数应按下列规定采用:

1 承载力计算时,分项系数应按表 5.6.4 采用。当重力荷载效应对结构承载力有利时,表 5.6.4 中 γ_c 不应大于 1.0;

有地震作用效应组合时荷载和作用分项系数

表 5.6.4

所考虑的组合	γ _G	γea	γ _{E×}	γ.,	说明	
重力荷载及水平地震作用	1. 2	1.3	_	_		
重力荷载及竖向地震作用	1. 2	_	1. 3	_	9 度抗震设计时考虑;水平长悬臂 结构 8 度、9 度抗震设计时考虑	
重力荷载、水平地震及竖向地 震作用	1. 2	1.3	0. 5	_	9 度抗震设计时考虑;水平长悬臂 结构 8 度、9 度抗震设计时考虑	
重力荷载、水平地震作用及风 荷载	1. 2	1.3		1.4	60m 以上的高层建筑考虑	
重力荷載、水平地震作用、竖 向地震作用及风荷载	1. 2	1.3	0. 5	1.4	60m以上的高层建筑,9度抗震设计时考虑;水平长悬臂结构8度、9度 抗震设计时考虑	

注:表中"一"号表示组合中不考虑该项荷载或作用效应。

条件: 今有一高 48m、三跨、十二层的钢筋混凝土框架结构, 经计算已求得第六层横梁 边跨边端的弯矩标准值如表 8.2.1 所示。

表 8. 2. 1

荷载类型	永久荷载	楼面活载	风荷载	地震作用
弯 矩 值	−25kN • m	-9kN•m	±18kN • m	±30kN • m

要求: 确定该处进行截面配筋时所需有地震作用效应组合时的弯矩设计值。

答案:

- 1. 因总高 H=48m<60m,根据《高层规程》表 5.6.4 的规定不考虑风荷载参与组合。
- 2. 根据《高层规程》3.3.6条的规定,楼面活荷载的组合值系数应取 0.5。
- 3. 根据《高层规程》表 5.6.4 的规定,取 $\gamma_G = 1.2$, $\gamma_{E_1} = 1.3$ 。
- 4. 应用《高层规程》式(5.6.3)梁端弯矩设计值

$$M=1.2[-25+0.5\times(-9)]+1.3\times(-30)=-74.4kN \cdot m$$

条件:今在8度抗震设防区、有一高50m、三跨、12层的钢筋混凝土框架大楼,见图8.2.2。在永久荷载、楼面活荷载、风荷载及水平地震作用标准值的作用下,已算得位于第6层的横梁边跨A端弯矩分别为一25kN·m、一9kN·m、±18kN·m、±30kN·m;

要求: 求第 6 层该横梁边跨 A 端弯矩设计值 MA

(1) 有地震作用效应组合

由永久荷载使第6层横梁边跨端弯矩标准值为 -25kN·m,由楼面活荷载引起第6层横梁边跨端弯矩标准 值为-9kN·m,重力荷载代表值作用下的弯矩标准值为 -25+[0.5×(-9)]=-29.5kN·m

8 度抗震设防区的框架结构,可不考虑竖向地震作用影响,房屋高度仅 50m,在 60m 以下,风荷载也不参与组合。

$$M_A = {1.0 \times (-29.5) + 1.3 \times 30.0 = +9.5 \text{kN} \cdot \text{m}} \atop 1.2 \times (-29.5) + 1.3 \times (-30.0) = -74.4 \text{kN} \cdot \text{m}}$$

(2) 无地震作用效应组合

永久荷载效应起控制作用时, γ_G =1.35, γ_G =1.40, ψ_Q =0.7, ψ_W =0 M_A =1.35×(-25)+0.7×1.4×(-9.0)+0.0×1.4×(±18) =-42.57kN・m

可变荷载效应起控制作用时, $\gamma_G = 1.2$, $\gamma_Q = 1.4$, $\gamma_W = 1.40$, ψ_Q 、 ψ_W 有二组值:即 $\psi_Q = 1.0$ 、 $\psi_W = 0.6 及 \psi_Q = 0.7$ 、 $\psi_W = 1.0$

$$M_A = {1.0 \times (-25) + 1.0 \times 1.4 \times (-9.0) + 0.6 \times 1.4 \times 18 = -22.48 \text{kN} \cdot \text{m}} \atop {1.2 \times (-25) + 1.0 \times 1.4 \times (-9.0) + 0.6 \times 1.4 \times (-18) = -54.72 \text{kN} \cdot \text{m}};$$
以及

$$M_{A} = \frac{1.0 \times (-25) + 0.7 \times 1.4 \times (-9.0) + 1.0 \times 1.4 \times 18 = -8.62 \text{kN} \cdot \text{m}}{1.2 \times (-25) + 0.7 \times 1.4 \times (-9.0) + 1.0 \times 1.4 \times (-18) = -64.02 \text{kN} \cdot \text{m}}$$

(3) 第 6 层该横梁边跨 A 端弯矩的设计值 MA

由以上计算可知, M_A 的弯矩设计值应分别取(-74.4)kN·m及(+9.5)kN·m进行截面的配筋设计。

3、内力分析时应注意的问题

- 5.2.3 在竖向荷载作用下,可考虑框架梁端塑性变形内力重分布对梁端负弯矩乘以调幅系数进行调幅,并应符合下列规定:
- 1 装配整体式框架梁端负弯矩调幅系数可取为 0.7~0.8;现浇框架梁端负弯矩调幅系数可取为 0.8~0.9;
 - 2 框架梁端负弯矩调幅后,梁跨中弯矩应按平衡条件相应增大;
- 3 应先对竖向荷载作用下框架梁的弯矩进行调幅,再与水平作用产生的框架梁 弯矩进行组合;
- 4 截面设计时,框架梁跨中截面正弯矩设计值不应小于竖向荷载作用下按简支梁计算的跨中弯矩设计值的 50%。

条件:有三跨现浇框架梁,跨度为 6.1m、3.0m、6.1m,已知梁上作用有均布荷载设计值 q=40kN/m,经计算已知三层横梁的支座弯矩如图 8.2.1 所示,负号表示梁上部受拉。当 考虑梁端塑性变形内力重分布而对梁端负弯矩进行调幅,并取调幅系数为 0.8 时,

要求: 边横梁的跨中弯矩设计值

答案: (1) 根据《高层规程》5.2.3条第1款,取梁端调幅系数为0.8,调整后的支座弯矩为

$$M_{\pm} = -92 \times 0.8 = -73.6 \text{kN} \cdot \text{m}$$

 $M_{\pm} = -102 \times 0.8 = -81.6 \text{kN} \cdot \text{m}$

(2) 根据《高层规程》5.2.3条第2款

按简支梁计算跨中弯矩
$$M_0 = \frac{ql^2}{8} = \frac{40 \times 6.1^2}{8} = 186.05 \text{kN} \cdot \text{m}$$

由平衡条件
$$M_{\oplus} = M_0 - \frac{M_{\Xi} + M_{\Xi}}{2} = 186.05 - \frac{73.6 + 81.6}{2} = 108.45 \text{kN} \cdot \text{m}$$

(3) 根据《高层规程》5.2.3条第4款

检查
$$M_{\oplus} = 108.45 > \frac{M_0}{2} = \frac{186.05}{2} = 93.03 \text{kN} \cdot \text{m}$$

- 2、活荷载布置
 - (1)、逐跨布置法
 - (2) 、最不利位置法
- (3)、满布法 对楼面活荷载标准值 不超过 $5kN/m^2$ 的一般工业与民用多层

图 3.32 最不利活荷载布置

框架结构,满布荷载法的计算精度和安全度可以满足工程设计要求,为安全起见,满布法对跨中弯矩再乘以1.1~1.2的放大系数。

(4)、水平荷载

水平荷载有风荷载和水平地震作用,水平荷载应考虑正反两个方向。如果结构对称,风荷载和水平地震作用下的框架内力均为反对称。

二、构件截面设计

1、框架梁

框架梁是受弯构件,由内力组合求得控制截面的最不利弯矩和或力后,按正截面受弯承载力计算方法确定所需要的纵筋数量,按定式面受剪承载力计算方法确定所需的箍筋数量,再采取相应的构造措施。

2、框架柱

框架柱是偏心受压构件,通常采用对称配筋,确定柱中纵筋数量时,应从内力组合中找出最不利的内力进行配筋计算。

框架柱除进行正截面受压承载力计算外,还应根据内力组合得到的剪力值进行斜截面抗剪承载力计算,确定柱的箍筋配置。

柱的计算长度:

(1)、一般多层房屋的钢筋混凝土框架结构各层柱段

当为现浇楼盖时: 底层柱段

 $l_0 = 1.0H$

其余各层柱段

 $l_0 = 1.25H$

当为装配式楼盖时: 底层柱段

 $l_0 = 1.25H$

其余各层柱段

 $l_0 = 1.5H$

当为现浇楼盖时:

 $l_0 = 1.0H$

当为装配式楼盖时:

 $l_0 = 1.0H$

下两层楼盖顶面之间的距离。

3、叠合梁

叠合梁是分两次浇捣混凝土的梁,第一次在预制厂浇捣混凝土,做成预制梁运往现场安装;当预制楼板搁置梁上后,在梁的上部第二次在施工现场浇注叠合层,使板和梁连成整体。叠合梁的预制部分,通常做成T形截面,以便搁置预制楼板,构造见图3.33。

图 3.33 叠合梁构造

预制梁所以能和后浇混凝土连成整体共 同工作,主要依靠预制梁中伸出叠合面 的箍筋的抗剪作用以及粗糙的叠合面上的粘结力。

三、框架结构的构造要求

1、混凝土强度等级

框架的混凝土强度等级不应低于C20。

梁柱混凝土强度等级相差不宜大于5MPa。

2、框架梁

(1)、框架梁截面

梁截面高度: $h = (1/8 \sim 1/12)l$ 且不宜大于 $1/4l_n$

梁截面宽度: $b \ge 1/4h$ 及 $1/2b_c$

(2)、框架梁纵向钢筋

框架梁、柱纵向钢筋构造要求见图3.34。

(3)、框架梁箍筋

梁的箍筋沿梁全长范围内设置,第一排箍筋一般设置在距离节点边

最大的证。梁的配箍率不应小于 $0.24f_t/f_{yV}$,箍筋最小直径和最大的要求与一般梁相同。

3、框架柱

(1)、框架柱截面

柱截面高度不宜小于400mm, 柱截面宽度不宜小于350mm, 截面长边尺寸之比宜大于4。

(2)、框架柱纵向钢筋

框架柱的纵向钢筋宜采用对称配筋,框架柱纵向钢筋的最小直径不 应小于12mm,全部纵向钢筋的最小配筋率 $\rho_{\min} \geq 0.4\%$

最大配筋率 $\rho_{\max} \leq 5\%$

(3)、框架柱箍筋

箍筋应为封闭式,箍筋间距不应大于400mm,且不应大于柱短边尺 寸。

4、框架节点

迎洗框架节点——节点范围内的箍筋数量应与柱端相同。

装配式及装配整体式框架节点

