# **Forord**

Denne rapport indeholder dokumentation for projektet *Design af akustiske volumen-målinger af bryster*. Rapporten indeholder kravspecifikation, accepttest, dokumentation af projektets design og implementeringsfase.

Kravspecifikationen er udarbejdet i samarbejde med Pavia Lumholt, speciallæge i plastikkirurgi på OPA Privathospital, Aarhus.

# Læsevejledning

Til hvert kapitel i denne rapport findes en tilhørende indledning med formål samt læsevejledning.

I bilagslisten €€€.....

i

# Indholdsfortegnelse

| Kapite   | el 1 K | ravspecifikation                      | 1  |
|----------|--------|---------------------------------------|----|
| 1.1      | Indled | lning                                 | 1  |
|          | 1.1.1  | Formål                                | 1  |
|          | 1.1.2  | Læsevejledning                        | 1  |
|          | 1.1.3  | Versionshistorik                      | 1  |
| 1.2      | System | mbeskrivelse                          | 1  |
|          | 1.2.1  | Aktørbeskrivelse                      | 2  |
| 1.3      | Funkt  | ionelle krav                          | 2  |
|          | 1.3.1  | Use Case diagram                      | 3  |
|          | 1.3.2  | Use Case #1 - Ufør brystvolumenmåling | 4  |
| 1.4      | Ikke-f | unktionelle krav                      | 5  |
|          | 1.4.1  | Kalibrering                           | 5  |
| 1.5      | Projel | ktafgrænsning                         | 6  |
| 1.6      | Sama   | rbejdspartnere                        | 8  |
| T.Z. • 1 | 10 7   |                                       | •  |
| •        |        | estdokumentation                      | 9  |
| 2.1      |        |                                       | 9  |
|          | 2.1.1  | Formål                                | 9  |
|          | 2.1.2  | Læsevejledning                        | 9  |
|          | 2.1.3  | Versionshistorik                      | 9  |
| 2.2      | FAT-p  | protokol                              | 9  |
|          | 2.2.1  | Formål                                | 9  |
|          | 2.2.2  | Referencer                            | 9  |
|          | 2.2.3  | Forkortelser                          | 9  |
|          | 2.2.4  | Ansvar                                | 10 |
|          | 2.2.5  | Udstyrsbeskrivelse                    | 10 |
|          | 2.2.6  | Acceptkriterier                       | 10 |
|          | 2.2.7  | Metode                                | 11 |
|          | 2.2.8  | Oversigt over testdokumenter          | 12 |
|          | 2.2.9  | Forudsætning for udførelse af FAT     | 12 |

| 2.3    | FAT-te | estdokument          | 12 |
|--------|--------|----------------------|----|
| Kapite | l 3 In | nplementering        | 13 |
| 3.1    | Indled | ning                 | 13 |
|        | 3.1.1  | Formål               | 13 |
|        | 3.1.2  | Læsevejledning       | 13 |
|        | 3.1.3  | Versionshistorik     | 13 |
| 3.2    | Enhed  | stest                | 13 |
|        | 3.2.1  | Højtaler ABS-224-RC  | 13 |
|        | 3.2.2  | Minijack PC Mikrofon | 15 |
|        | 3.2.3  | Tores højtaler       | 17 |
|        |        |                      |    |

# Kravspecifikation

# 1

# 1.1 Indledning

Dette kapitel indeholder kravspecifikationen for den akustiske volumenmåler til bryster. Kravspecifikation er udarbejdet i samarbejde med projektets kunde, Pavia Lumholt, speciallæge i plastikkirurgi.

#### 1.1.1 Formål

Kravspecifikation definerer de funktionelle og ikke-funktionelle krav, og fungerer som en bindende kontrakt mellem producent og kunde.

#### 1.1.2 Læsevejledning

Dokumentet indeholder en systembeskrivelse for den akustiske brystvolumenmåler (omtales herefter BVM). Systembeskrivelsen er en kort beskrivelse af BVM samt en illustration af måleren. De definerede krav er opdelt i funktionelle og ikke-funktionelle krav, og er beskrevet i de navnebeslægtede afsnit. Dokumentet indeholder ydermere en projektafgrænsning i form af MoSCoW-modellen samt et afsnit omhandlende projektets samarbejdspartnere.

#### 1.1.3 Versionshistorik

| #   | Dato     | Initialer | Beskrivelse      |
|-----|----------|-----------|------------------|
| 0.1 | 03.10.16 | JH & JR   | Sendt til review |

# 1.2 Systembeskrivelse

### Brystvolumenmålerens opbygning

Den akustiske brystvolumenmåler består af en Helmholtz resonator, hvor der er påmonteret en højtaler og en mikrofon. Højtaleren og mikrofonen er koblet til en

Arduino Mega 2560 R3. Arduino'en er koblet til en PC, hvor der skrives til Arduino i LabVIEW.



Figur 1.1. Beskrivelse af systemets komponenter  $\in \in \in \in$ 

#### Brystvolumenmåleren funktionalitet

Når en måling intialiseres med BVM'en afsendes en lyd i resonatoren via højtaleren. Mikrofonen på resonatoren opsamler den reflekterede lyd, og udfra den reflekterede lyd, udregner en algoritme størrelsen på brystvolumen.

#### 1.2.1 Aktørbeskrivelse

Systemets primære aktør er en plastikkirurg, som bruger BMV'en når han ønsker et objektivt mål på et bryst. Det er udelukkende plastikkirurgen, der betjener BMV'en under en måling. Som sekundær aktør giver patient et input, sit bryst, til systemet.

### 1.3 Funktionelle krav

Dette afsnit beskriver de funktionelle krav, som er udarbejdet i samarbejde med Pavia Lumholt. Disse krav er præsenteret i et Use Case diagram samt i en Fully Dressed Use Case beskrivelse.

### 1.3.1 Use Case diagram

I Use Case diagrammet, 1.2, vises en Use Case for brugen af den akustiske brystvolumenmåler. På venstre side af Use Casen ses systemets primære aktør, og på højre side ses systemets sekundære aktør. Endvidere, vises systemets interessenter, nederst i diagrammet.



Figur 1.2. Use Case #1 diagram, hvor blablabla  $\mathfrak{CCC}$ 

#### 1.3.2 Use Case #1 - Ufør brystvolumenmåling

| Use Case #1: Udfør brystvolumenmåling |                    |  |  |  |
|---------------------------------------|--------------------|--|--|--|
| Use Case ID                           | UC #1              |  |  |  |
| Primær aktør                          | Plastikkirurg (PK) |  |  |  |
| Sekundær aktør                        | Patient            |  |  |  |

#### Interessenter

- 1. Patient: ønsker et objektivt mål, som bevis på overensstemmelse med købsaftale
- 2. Sundhedsstyrelsen: ønsker et objektivt mål til vurdering af berettigelse til brystformindskende operation
- 3. Lægemiddelstyrelsen: ønsker, at BVM er i overenstemmelse med EU-lovgivning for medicinsk udstyr

| Startbetingelse     | Slutbetingelse                        |  |
|---------------------|---------------------------------------|--|
| BVM skal være tændt | BVM skal vise et mål for brystvolumen |  |

#### Normalforløb

- 1. PK har behov for at kende patientens brystvolumen
- 2. PK kalibrerer BVM i den tilhørende dockingstation
- 3. PK placrerer BVM på patients blottede bryst
- 4. PK kontrollerer, at patientens bryst er tætomsluttet af BVM
- 5. PK kontrollerer, at BVM er placeret med et ensartet tryk på patientens bryst
- 6. PK foretager en måling af brystvolumen ved at trykke på den dertilhørende knap
- 7. BVM præsenterer målingen på et display, som PK aflæser
- 8. BVM slukkes og rengøres

#### Alternativt flow

- 1. Manglende kalibrering
- (a) PK anbringer BVM i dockingstation
- (b) PK starter kalibrering ved at trykke på den dertilhørerende knap
- (c) BVM melder klar til brug
  - 2. Fejlhåndtering
- (a) PK slukker BVM
- (b) PK anbringer BVM i dockingstationen
- (c) PK tænder BVM
- (d) PK kalibrerer BVM

#### Åbne problemstillinger

- · Hvordan ved PK, at BVM mangler at blive kalibreret?
- · Hvordan ved PK, at BVM melder fejl?
- · Hvordan ved PK, at han påfører et ensartet tryk?
- Hvordan ved PK, at patientens bryst er tætomsluttet af BVM?

### 1.4 Ikke-funktionelle krav

#### Tid

Efter kalibrering må målingen maksimalt tage 10 sek. Dette er et kundekrav fra Pavia Lumholt. BMV'en skal melde om kalibrereingsbehov hver 10. minut

#### Enheder

Målingen skal angives til PK i milliliter(ml.)Plastikkirurger bruger milliliter enheder når de angiver bryststørrelse.

#### $\mathbf{UI}$

UI skal være en touch-screen, da denne form for skærm er rengøringsvenlig. Tekst skal være synligt på en halv meters afstand, da det skal være muligt at aflæse teksten når man står med BVM'en i nogelunde strakt arm. Sproget skal være engelsk, da der ønskes et sprog som kan læses af formentlig alle plastikkirurger. UI skal fejlmelde når der opstår uventet fejl

#### Lovgivning for medicinsk udstyr

BMV'en skal overholde lovgivningen for et medicinsk device. BMV'en skal som et klasse I udstyr og et målingsudstyr opfylde bilag VII og være i overensstemmelse med processerne i bilag VI,V eller VI gældende for metrologisk udstyr.

#### 1.4.1 Kalibrering

BMV'en skal kunne kalibreres efter temperatur og luftfugtighed, da disse kan have en indflydelse på målingens output.

#### Nøjagtighed, præcision og linearitet

BMV'en skal måle nøjagtige og præcice, for at målingerne er valide og kan bruge i praksis. Der skal kunne vises en linearitet ved målinger, så målingerne kan bruge i hele bryststørrelsesspektret.

# 1.5 Projektafgrænsning

MoSCoW-modellen er en prioriteringsmetode, som anvendes til afgræsning af projektet. Modellen beskriver, hvilke dele og krav i projektet, som skal opfyldes (Must), bør opfyldes (Should), kan opfyldes (Could) og ikke vil opfyldes (Would not have). Således gives en struktureret oversigt over, hvilke krav, der er vigtigst at få opfyldt inden for den givne tidsramme, og endvidere, hvilke krav, som efterfølgende med fordel kan implementeres, hvis tidensramme tillader det. Figur 1.3 viser, hvordan de enkelte dele og krav i projektet prioriteres i henhold til MoSCoW-metoden.

#### MoSCoW-model

#### Must have

#### En prototype, som:

- afspiller lyd og optager reflekteret lyd i en resonator
- bestemmer volumen af et bestemt brystfantom ud fra den reflekterede lyd
- præsenterer resultat af måling på et UI

#### Test af:

· nøjagtighed og præcision

#### Dokumentation for:

- søgning, analyse og vurdering af ny viden inden for Helmholtz resonans teori og eksisterende løsninger
- · databehandling og testresultater af nøjagtighed og præcision
- lovgivningsmæssige krav for medicinsk udstyr, gældende for prototypen

#### Should have

#### En prototype, som:

- er håndholdt
- har et integreret UI

#### Test af:

- brystfantomer i forskellige størrelser, former og materialer
- linearitet
- betydningen for temperatur- og luftfugtighedsforhold

#### Dokumentation for:

- · databehandling og testresultater af linearitet ved forskellige brystfantomer
- databehandling og testresultater af betydningen for temperatur- og luftfugtighedsforhold mhp. nødvendighed for kalibrering
- analyse af anvendelsesmuligheder i forhold til ammemonitorering

#### Could have

#### En prototype, som:

· signalerer ved et ensartet anlægstryk

#### Test af

- betydning for tætheden af resonatorens kantafgrænsning
- · betydningen for resonatorens udformning og størrelse

#### Dokumentation for:

- databehandling og testresultater af betydning for tætheden af resonatorens kantafgrænsning
- databehandling og testresultater af betydning for resonatorens udformning og størrelse

#### Would not have

#### En prototype, som:

ved brug af algoritme, selv afbryder ved stabil måling

Figur 1.3. MoSCoW-model, hvor blablabla $\mathfrak{CCC}$ 

# 1.6 Samarbejdspartnere

Kravspecifikationen er udarbejdet gennem et samarbejde med flere parter. Først og fremmest er projektets kravspecifikation til den endelige prototype specificeret i et samarbejde med projektets kunde, speciallæge i plastikkirurgi, Pavia Lumholt. Derudover er projektet tilknyttet en vejleder, lektor Samuel Alberg Thrysøe, med speciale i signalbehandling, som vejleder ved eventuelle problemstillinger. Endvidere indgår eksterne konsulenter, som reviewer's på indholdet af kravspecifikationen.

# Testdokumentation 2

#### 2.1Indledning

Dette kapitel indeholder dokumentation for de udførte tests på den akustiske brystvolumenmåler.

#### 2.1.1 Formål

#### 2.1.2 Læsevejledning

#### Versionshistorik 2.1.3

#### 2.2 FAT-protokol

Denne Final Acceptance Test protokol (FAT-protokol) beskriver alle de forhold og forudsætninger, som skal være opfyldt for at kunne udføre FAT af den akustiske brystvolumenmåler.

#### 2.2.1Formål

Formålet med denne protokol er at specificere FAT-aktivteterne gældnede for brystvolumenmåleren.

#### 2.2.2Referencer

€€ Eksempelvis UC#1

#### 2.2.3 Forkortelser

FAT - Final Acceptance Test

#### 2.2.4 Ansvar

Ved underskrift på protokollen bekræfter:

#### Kunde - Projektansvarlig

- at indholdet er komplet og entydigt
- at det tekniske indhold og metoder er i orden og dækkende for de planlagte tests
- at den projektansvarlige er enig i omfang, metode og acceptkriterier

#### Udviklere - Projektansvarlige

• at det tekniske indhold og metoder er i orden og dækkende for de planlagte tests

#### 2.2.5 Udstyrsbeskrivelse

Den akustiske brystvolumenmåler består af en Helmholtz resonator, hvor der er påmonteret en højtaler og en mikrofon. Højtaleren og mikrofonen er koblet til en Arduino Mega 2560 R3. Arduino'en er koblet til en PC, hvor der skrives til Arduino i LabVIEW. Brystvolumenmåleren benyttes af en plastikkirurg, som bruger BMV'en når han ønsker et objektivt volumenmål på et bryst. Når en måling intialiseres med BVM'en afsendes en lyd i resonatoren via højtaleren. Mikrofonen på resonatoren opsamler den reflekterede lyd, og udfra den reflekterede lyd, udregner en algoritme størrelsen på brystvolumen.



Figur 2.1. Beskrivelse af systemets komponenter  $\in \in \in \in$ 

#### 2.2.6 Acceptkriterier

Acceptkriterierne er afledt af de forhold, der er specificeret i Kravspecifikationen, kapitel 1. Acceptkriterierne er specificeret i de enkelte testskemaer.

#### **2.2.7** Metode

Dette afsnit specificerer de retningslinjer, hvorefter FAT'en skal afvikles.

#### Dokumentsammenhæng

illustreres €€ Indsæt oversigt, med inspiration fra s. 204

#### Gennerelle kray

Afviklingen af FAT skal overholde følgende nøglekrav:

- Protokollen skal være godkendt, før aktiviteter udføres
- Afvigelser skal registreres og rettelser udføres
- Dataindsamling og registreringer skal udføres i overenstemmelse med »god testpraksis«
- Data skal granskes for rigtighed og fuldstændighed
- En FAT-rapport skal udarbejdes og godkendes som bevis på den gennemførte FAT

#### Acceptkriterier

Dette afsnit beskriver, hvordan testskemaerne specifikt skal udfyldes.

- Alle krav skal opfylde de specificerede acceptkriterier i hvert enkelte testskema.
- De aktuelle observationer skal svare til de forventede observationer
- I » Godkendt «-kolonnen skrives » Ja «, hvis acceptkriteriet er overholdt.
- I »Godkendt«-kolonnen skrives »Nej« samt afvigelsesnummer, hvis acceptkriteriet ikke er overholdt.

subsubsectionAfvigelseshåndtering Afvigelser registreres under udførslen af FAT dokumenteres ved udarbejdelse af afvigelsesbilag, hvor følgende punkter opfyldes:

- a) Afvigelse og årsag til afvigelsen beskrives
- b) Aktion for opfyldelse af acceptkriterier angives
- c) Resultat af gennemført aktion dokumenteres

#### Afslutning af FAT-aktiviteter

Ved afslutningen af FAT'aktivteterne, skrives en FAT-rapport der lukker FAT-aktiviteterne, og fungerer som bevis for, at den gennemførte test af brystvolumenmåleren er afsluttet med et tilfredsstillende resultat.

FAT-rapporten omhandler følgende punkter:

- Konklusion på den gennemførte FAT
- Kopi af godkendt protokol
- $\bullet \ \ A fvigelses blad \ med \ korrektive \ aktioner$
- Udfyldte testskemaer

# 2.2.8 Oversigt over testdokumenter

 $\mathfrak{C}\mathfrak{C}$  Her angives de specifikke testdokumenter i en tabel. Obs, på eventuelle referencer til kravspec.

### 2.2.9 Forudsætning for udførelse af FAT

 $\mbox{\formula}$  Hvad forudsætter afgørelsen for igangsættelse af FAT / når det og det er opfyldt, startes FAT

# 2.3 FAT-testdokument

# Implementering 3

# 3.1 Indledning

Dette kapitel indeholder €€€Husk at skrive noget om at for at kunne udføre beskrevne tests, forventes det at man har et vist kendeskab til Labview

#### 3.1.1 Formål

### 3.1.2 Læsevejledning

#### 3.1.3 Versionshistorik

#### 3.2 Enhedstest

Dette afsnit beskriver de indledende funktionstests, hvor hver enkelte selvstændige funktion i systemet afprøves.

#### 3.2.1 Højtaler ABS-224-RC

#### Testformål

Det afprøves, om højtaleren kan generere en lyd.

## Produktspecifikationer

Hardware:

Højtaler: ABS-224-RC

Højtalerkabel: Rød/Sort

2 stk. Male Single Row Pin Header Strip 2.54 mm.

Arduino Mega 2560 R3

PC

USB kabel Hi-speed 2.0 shielded 28AWG/2C+24AWG/2C Han USB A - Han USB B

Software:

NI LabVIEW 2014

NI VISA 15.0.1

VI Package Manager

ARDUINO 1.6.12

#### Opstilling og opsætning

Højtaleren er loddet til højtalerkablets ene ende, og pin headerne er loddet til kablets anden ende. Pin headerne er isat Arduino'en i pin 46 (PL3(OC5A)), som et er digitalt PWM output, og til ground (GND). Arduino'en er med et USB kabel koblet til PC'en. Testopstillingen er vist i figur 3.1.



Figur 3.1. Testopstilling for enhedstest af Højtaler ABS-224-RC.

På PC'en er VI'et genererfrekvenssignal0.2.vi åbnet i LabVIEW. Blokdiagrammet for VI'et er vist i figur 3.2.

#### Udførsel

- I Enter Frequency på frontpanelet i genererfrekvenssignal0.2.vi, indtastes 500.
- 2. Der trykkes på Run.
- 3. Der lyttes efter lydsignal fra højtaleren.

#### Resultater

Lydsignal blev generet og afspillet.



Figur 3.2. I blokdiagrammet genererfrekvenssignal0.2.vi er der anvendt følgende LINX-VI'er; Initialize, Digital Write Square Wave samt Close.

#### Diskussion

-

#### Konklusion

Højtaleren opfylder testen idet der generes en lyd. Samtidig konkluderes, at øvrigt anvendt HW og SW i denne test virker tilfredsstillende, og der vil derfor ikke blive lavet yderligere enhedstests på disse komponenter.

#### Aktion

-

### 3.2.2 Minijack PC Mikrofon

#### Testformål

Det afprøves, om mikrofonen kan optage en tone.

#### Produktspecifikationer

Hardware:

Minijack PC Mikrofon

PC

Software:

NI LabVIEW 2014

### Opstilling og opsætning

Mikrofonen er sat i PC'ens minijack-stik. Testopstillingen er vist i figur 3.3.



Figur 3.3. Testopstilling for enhedstest af Minijack PC Mikrofon.

På PC'en er VI'et optagefrekvenssignal0.1.vi åbnet i LabVIEW. Blokdiagrammet for VI'et er vist i figur 3.4.



Figur 3.4. I blokdiagrammet optagefrekvenssignal0.1.vi opsamles lydsignalet, som vises i en graf på frontpanelet.

### Udførsel

- 1. I VI'et optagefrekvenssignal0.1.vi, trykkes på Run.
- 2. Der indtales en tone i mikrofonen.
- 3. På frontpanelet i VI'et ses frekvensudsving på en graf.

#### Resultater

Mikronen har opfanget et frekvenssignal.

#### Diskussion

-

#### Konklusion

Mikrofonen opfylder testen idet der optages en tone.

#### Aktion

-

### 3.2.3 Tores højtaler

#### Testformål

Det afprøves, om højtaleren kan generere en lyd.

### Produktspecifikationer

Hardware:

Tores højtaler

Højtalerkabel: Rød/Sort

Kabelsko: Rød fladstik hun, str. 0.25-1.65 mm2, 6.6 mm bred fladstik

2 stk. Male Single Row Pin Header Strip 2.54 mm.

Arduino Mega 2560 R3

PC

USB kabel Hi-speed 2.0 shielded 28AWG/2C+24AWG/2C Han USB A - Han USB B

#### Software:

NI LabVIEW 2014

NI VISA 15.0.1

VI Package Manager

**ARDUINO 1.6.12** 

### Opstilling og opsætning

Højtalerkablets ene ende er påsat kabelsko, som er påsat højtaleren. Til kablets anden ende er pin headere loddet fast. Pin headerne er isat Arduino'en i pin 46 (PL3(OC5A)), som et er digitalt PWM output, og til ground (GND). Arduino'en er med et USB kabel koblet til PC'en. Testopstillingen er vist i figur 3.5.



Figur~3.5. Testopstilling for enhedstest af Tores højtaler.

På PC'en er VI'et genererfrekvenssignal0.2.vi åbnet i LabVIEW. Blokdiagrammet for VI'et er vist i figur 3.2.

#### Udførsel

Udføres på samme vis, som ved enhedstest af 3.2.1 Højtaler ABS-224-RC.

#### Resultater

Lydsignal blev generet og afspillet.

#### Diskussion

#### Konklusion

Højtaleren opfylder testen idet der generes en lyd.

#### Aktion