Worksheet 7 Transfer Functions

Worksheet 7

To accompany Chapter 3.4 Transfer Functions

We will step through this worksheet in class.

You are expected to have at least watched the video presentation of Chapter 3.4 of the notes before coming to class. If you haven't watch it afterwards!

Second Hour's Agenda

- Transfer Functions
- A Couple of Examples
- Circuit Analysis Using MATLAB LTI Transfer Function Block
- Circuit Simulation Using Simulink Transfer Function Block

% Matlab setup
clear all
format compact

Transfer Functions for Circuits

Example 6

Derive an expression for the transfer function G(s)G(s) for the circuit below. In this circuit $R_g R_g$ represents the internal resistance of the applied (voltage) source $v_s v_s$, and $R_L R_L$ represents the resistance of the load that consists of $R_L R_L$, LL and CC.

about:srcdoc Page 1 of 10

Sketch of Solution

- Replace $v_s(t)v_s(t)$, R_gR_g , R_LR_L , LL and CC by their transformed (complex frequency) equivalents: $V_s(s)V_s(s)$, R_gR_g , R_LR_L , sLsL and 1/(sC)1/(sC)
- ullet Use the *Voltage Divider Rule* to determine $V_{\mathrm{out}}(s)V_{\mathrm{out}}(s)$ as a function of $V_s(s)V_s(s)$
- ullet Form G(s)G(s) by writing down the ratio $V_{
 m out}(s)/V_s(s)V_{
 m out}(s)/V_s(s)$

about:srcdoc Page 2 of 10

Worked solution.

Pencast: ex6.pdf - open in Adobe Acrobat Reader.

Answer

$$G(s) = \frac{V_{\text{out}}(s)}{V_s(s)} = \frac{R_L + sL + 1/sC}{R_g + R_L + sL + 1/sC}.$$

Example 7

Compute the transfer function for the op-amp circuit shown below in terms of the circuit constants R_1 R_1 , R_2 R_2 , R_3 R_3 , C_1 C_1 and C_2 C_2 . Then replace the complex variable ss with $j\omega j\omega$, and the circuit constants with their numerical values and plot the magnitude

$$|G(j\omega)| = \frac{|V_{\text{out}}(j\omega)|}{|V_{\text{in}}(j\omega)|}$$

versus radian frequency $\omega\omega$ rad/s.

about:srcdoc Page 3 of 10

about:srcdoc Page 4 of 10

Sketch of Solution

- Replace the components and voltages in the circuit diagram with their complex frequency equivalents
- Use nodal analysis to determine the voltages at the nodes either side of the 50K resistor $R_3 R_3$
- Note that the voltage at the input to the op-amp is a virtual ground
- Solve for $V_{\mathrm{out}}(s)V_{\mathrm{out}}(s)$ as a function of $V_{\mathrm{in}}(s)V_{\mathrm{in}}(s)$
- Form the reciprocal $G(s) = V_{\text{out}}(s)/V_{\text{in}}(s)G(s) = V_{\text{out}}(s)/V_{\text{in}}(s)$
- Use MATLAB to calculate the component values, then replace ss by $j\omega j\omega$.
- Plot

$$|G(j\omega)|$$

on log-linear "paper".

Worked solution.

Pencast: ex7.pdf - open in Adobe Acrobat Reader.

Answer

$$G(s) = \frac{V_{\text{out}}(s)}{V_{\text{in}}(s)} = \frac{-1}{R_1 \left((1/R_1 + 1/R_2 + 1/R_3 + sC_1) \left(sC_2R_3 \right) + 1/R_2 \right)}.$$

The Matlab Bit

See attached script: solution7.m.

about:srcdoc Page 5 of 10

Week 3: Solution 7

```
syms s;
```

```
R1 = 200*10^3;

R2 = 40*10^3;

R3 = 50*10^3;

C1 = 25*10^(-9);

C2 = 10*10^(-9);
```

```
den = R1*((1/R1+ 1/R2 + 1/R3 + s*C1)*(s*R3*C2) + 1/R2);
simplify(den)
```

```
Result is: 100*s*((7555786372591433*s)/302231454903657293676544 + 1/20000) + 5
```

Simplify coefficients of s in denominator

```
format long
denG = sym2poly(ans)
```

$$numG = -1;$$

Plot

For convenience, define coefficients aa and bb:

```
a = denG(1);
b = denG(2);
```

$$w = 1:10:100000;$$

$$G(j\omega) = \frac{-1}{a\omega^2 - jb\omega + 5}$$

about:srcdoc Page 6 of 10

$$Gs = -1./(a*w.^2 - j.*b.*w + denG(3));$$

```
semilogx(w, abs(Gs))
xlabel('Radian frequency w (rad/s')
ylabel('IVout/VinI')
title('Magnitude Vout/Vin vs. Radian Frequency')
grid
```

Using Transfer Functions in Matlab for System Analysis

Please use the file tf_matlab.m to explore the Transfer Function features provide by Matlab. Use the *publish* option to generate a nicely formatted document.

Using Transfer Functions in Simulink for System Simulation

The Simulink transfer function (**Transfer Fcn**) block shown above implements a transfer function representing a general input output function

$$G(s) = \frac{N(s)}{D(s)}$$

that it is not specific nor restricted to circuit analysis. It can, however be used in modelling and simulation studies.

Example

Recast Example 7 as a MATLAB problem using the LTI Transfer Function block.

For simplicity use parameters $R_1=R_2=R_3=1$ $\Omega R_1=R_2=R_3=1$ Ω , and $C_1=C_2=1$ $C_1=C_2=1$ F.

about:srcdoc Page 7 of 10

Calculate the step response using the LTI functions.

Verify the result with Simulink.

The Matlab solution: example8.m

MATLAB Solution

From a previous analysis the transfer function is:

$$G(s) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{-1}{R_1 \left[(1/R_1 + 1/R_2 + 1/R_3 + sC_1)(sR_3C_2) + 1/R_2 \right]}$$

so substituting the component values we get:

$$G(s) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{-1}{s^2 + 3s + 1}$$

We can find the step response by letting $v_{\rm in}(t)=u_0(t)v_{\rm in}(t)=u_0(t)$ so that $V_{\rm in}(s)=1/s$ $V_{\rm in}(s)=1/s$ then

$$V_{\text{out}}(s) = \frac{-1}{s^2 + 3s + 1} \cdot \frac{1}{s}$$

We can solve this by partial fraction expansion and inverse Laplace transform as is done in the text book with the help of Matlab's residue function.

Here, however we'll use the LTI block that was introduced in the lecture.

Define the circuit as a transfer function

$$G = tf([-1],[1 3 1])$$

step response is then:

about:srcdoc Page 8 of 10

Simples!

Simulink model

See example_8.slx

open example_8

Result

about:srcdoc Page 9 of 10

Let's go a bit further by finding the frequency response:

Matlab Solutions

For convenience, single script MATLAB solutions to the examples are provided and can be downloaded from the accompanying MATLAB folder.

- Solution 7 [solution7.m]
- Example 8 [example8.m]
- Simulink model [example8.slx]

about:srcdoc Page 10 of 10