Изчисляване на топлинен капацитет на калориметър

Лабораторно упражнение №3.11, задача 1

Виолета Кабаджова, ККТФ, фак. номер: 3PH0600026

Физически Факултет, Софийски Университет "Св. Климент Охридски" 29 май 2023 г.

Фигура 1: Схема на опитна постановка: калориметър върху нагревател и термометър

1 Теоритична част

При изследването на топлинните капацитети на определени материали често използваме калориметър. Ако обаче неговата температурата и тази на телата, поставени в него са с различна температура, то между тях започва топлообмен (уравнение на топлинния баланс - 1, където Q_1i са топлините на по-топлите тела, а Q_2i - на по-студените тела), който ако не бъде отчетен предизвиква значителни грешки в измерванията.

$$\Sigma_i Q_{1i} = \Sigma_i Q_{2i} \tag{1}$$

На фиг. 1 е представена принципна схема на опитната установка. Нагревателят отдава топлина, равна на $Q_1=UIt$, където I - големината на електричния ток, протичащ през нагревателя, U - пада на напрежението, t - времето за нагряване. Топлините, които ще погълнат съответно калориметърът и водата, са съответно $Q_{21}=C_K\Delta T$ и $Q_{22}=c_BM_B\Delta T$, където $\Delta T=(T_1-T_0)$ (T_1 - температура в края на загряването, T_0 - температура в началото на загряването), c_B - специфичен топлинен капацитет на водата, M_B - маса на водата. От ур. 1 следва уравнение 2, откъдето и работната ни формула 3.

$$IUt = C_K \Delta T + c_B M_B \Delta T \tag{2}$$

$$C_K = \frac{IUt - c_B M_B \Delta T}{\Delta T} \tag{3}$$

2 Експериментална част

В таблица 1 записваме измерените стойности по време на експеримента. Работим с 300 ml вода в продължение на 9 минути и 16 секунди. Масата на водата намираме като първо измерим калориметъра, докато е празен, и след това го измерим, докато е напълнен с водата. Разликата от двете ни дава маса на водата.

Величина	Стойност	Мерна единица
Обем на водата V	$300 \cdot 10^{-6}$	m^3
Маса на водата т	0.2994	kg
Големина на тока I	4.3	A
Пад на напрежението U	6	V
Начална температура на водата Т ₀	15.6	°C
Крайна температура на водата T_1	22.9	°C
Времеви интервал t	559	S
Специфичен топлинен капацитет на водата	4184	J

Таблица 1: Измервания и резултати

$$C_K = \frac{4.3 \cdot 6 \cdot 559 - 4184 \cdot 0.2994 \cdot (22.9 - 15.6)}{22.9 - 15.6} = 723 \pm 74J/K$$
 (4)