M621, HW 5, Solution, 09.27

1. About 1/2 to 2/3 of the class got problem 1...some confusion here. Therefore, it's done in some detail below.

We begin with a a fixed element x of G. Its orbit under this particular action is called \mathcal{O} with $\mathcal{O} = \{\langle \S : \langle \in \mathcal{H} \} \}$. We want to show that $|\mathcal{O}| = |\mathcal{H}|$. To do that we construct a bijection f from H to \mathcal{O} : For all $h \in H$, let f(h) = hx. Observe that f is a well-defined function—we'll show it's a bijection. Suppose $h_1, h_2 \in H$, and $f(h_1) = f(h_2)$. Then $h_1x = f(h_1) = f(h_2) = h_2x$. Since x, h_1, h_2 are all in the group G, we can use cancel on the right, and we have $h_1 = h_2$. Hence, f is one-to-one. Now let $g \in \mathcal{O}$. By definition of \mathcal{O} , there exists $g \in \mathcal{O}$ such that $g \in \mathcal{O}$ but then $g \in \mathcal{O}$ but in the image of $g \in \mathcal{O}$ such that $g \in \mathcal{O}$ but then $g \in \mathcal{O}$ such that $g \in \mathcal{O}$ but the image of $g \in \mathcal{O}$ such that $g \in \mathcal{O}$ but the image of $g \in \mathcal{O}$ such that $g \in \mathcal{O}$ such that g

By the paragraph above, each orbit of our action has the same number of elements, namely |H|. As proven in exercise 18 (which was done for HW 3), the orbits of an action partition the set A (the set on which the group acts—in this case, A = G).

Each orbit has |H| elements, so |G| = k|H|, where k is the number of orbits. Thus, |H| divides |G|, which is Lagrange's Theorem.

Comments. 1. It helps if you name your functions (such as "f" or "F" or " α ", or whatever you like), and specify the domain and co-domain (e.g. $F: H \to \mathcal{O}$ or $f: H \to \mathcal{O}$ or..). Also, make sure your function makes sense, and is doing what you want it to do.

- 2. "x" was a fixed but arbitrary element of G, and that seemed caused some people some problems. The authors could have called it " \mathcal{O}_\S ", the orbit of x under the action—not that how they wrote it is any way wrong. This goes back to the first comment—make sure you're aimed in the right direction before you take off.
- 3. If you didn't get all of it (or even if you did), it's a very good problem to go over, get right, and understand well.
- 2. Problem 2, pg. 52 6(a) see https://crazyproject.wordpress.com/2010/01/24/every-subgroup-is-contained-in-its-normalizer/
- 3. Problem 3: \mathbb{N} is a subset of \mathbb{Z} that is closed under +, but \mathbb{N} is not a subgroup of $(\mathbb{Z}, +)$.
- 4. Problem 4: See https://crazyproject.wordpress.com/2010/01/27/there-is-a-unique-group-homomorphism-from-zz-to-any-group-where-the-image-of-1-is-fixed/