

Time Series Forecasting:

Predicting Stock Price of INDF

Our Team

Wafa Nabila Data Scientist

Amira Afdhal Data Scientist

Timothy Hartanto Data Scientist

Troy Kornelius Data Scientist

Table of Contents

- 1 Background
- 2 Problem Statement
- 3 Analytical Approach
- 4 Model and Evaluation
- 5 Conclusions

Background

Background

Indofood: A Consumer Goods Company

PT Indofood Sukses Makmur Tbk. (ticker: **INDF.JK**) is a prominent consumer goods company listed on the Indonesia Stock Exchange (IDX).

Predicting the future price of its stock is essential for investors who are aiming to optimize their portfolios and institutional investors seeking to manage risk and allocate assets effectively.

Problem Statement

Problem Statement

Developing a robust method for forecasting future stock prices

For investor managers, an inaccurate forecast can translate into suboptimal decisions, potential financial losses, and missed opportunities.

Consequently, establishing a reliable approach to time series forecasting is critical to mitigate risks and improve overall decision-making quality.

Analytical Approach

Analytical Approach

Data Collection and Exploration

Gather historical stock price data (closing price) for INDF.JK for the 3-year period 2021-2023 using yahoofinance module in python.

Model Development

Utilize time series forecasting technique, Prophet, to predict future price. Perform hyperparameter tuning and model selection to identify the best-performing approach.

Validation and Testing

Split the dataset into training and validation sets. Evaluate the forecast performance using the MAE and MAPE.

Model & Evaluation

EDA: Multiplicative seasonality

The line chart indicates **multiplicative seasonality**, which is indicated by the larger price increases each year, so we have adjusted the seasonality mode parameter in the model to be *multiplicative* instead of the default *additive*.

Prophet Model

Prophet uses a decomposable time series model with three main model components: trend, seasonality, and holidays.

Error

represents any
idiosyncratic changes
which are not
accommodated by
the model

Trend

non-periodic changes in the value of the time series

Seasonality

 $y(t) = g(t) + s(t) + h(t) + \varepsilon_t$

periodic changes (e.g., weekly and yearly seasonality)

Holidays

effects of holidays
which occur on
potentially irregular
schedules over one or
more days

Holiday Component

Prophet package includes

make_holidays_df function to

account for national
holidays/special dates (such as
annual shareholders' meeting or
cum dividend dates) that can be
added into the model.

Adding special dates, gathering information from INDF corp action information from trading website
Stockbit, to input as holidays (special dates)

	ds	holiday
0	2021-01-01	New Year's Day
13	2021-02-12	Lunar New Year
7	2021-03-11	Isra' and Mi'raj
11	2021-03-14	Day of Silence
10	2021-04-02	Good Friday
	ds	holiday
52	ds 2023-07-06	holiday corp_action
52 40		-
	2023-07-06	corp_action
40	2023-07-06 2023-07-19	corp_action Islamic New Year
40 33	2023-07-06 2023-07-19 2023-08-17	corp_action Islamic New Year Independence Day

Hyperparameter Tuning (1/2)

Using Itertools to iterate through the specified possible combinations to find the the best parameter combinations

changepoint_prior_scale

Determines the flexibility of the trend, and in particular how much the trend changes at the trend changepoints.

seasonality_prior_scale

Controls the flexibility of the seasonality. A large value allows the seasonality to fit large fluctuations, a small value shrinks the magnitude of the seasonality.

seasonality_mode

Can be changed from `additive` to `multiplicative` based on the observable magnitude of seasonal fluctuations which grows with the magnitude of the time series

Hyperparameter Tuning (2/2)

Metric Evaluation

MAE (Mean Absolute Error)

Absolute deviation of the model's predictions from the actual prices (residuals), chosen to minimize the impact of outliers and interpretability.

MAPE (Mean Absolute Percentage Error)

Expresses prediction errors as a percentage of actual values, making it easier to compare forecasting performance across different scales.

Best Model

MAE: 207.18

MAPE: 3.23%

Changepoint Prior Scale	1.0
Seasonality Prior Scale	20
Holiday Prior Scale	10.0
Seasonality Mode	Multiplicative

Daily Seasonality	True
Weekly Seasonality	True
Yearly Seasonality	True

Decomposable Model

An important benefit of the decomposable model is that it allows us to look at each component of the forecast separately. This provides a useful tool to gain insight into our forecasting problem, besides just producing a prediction.

Components Plot After Tuning

Residual Analysis

mean_squared_log_error: 0.0035

r2: -0.1008 MAE: 325.8819 MAPE: 0.0501 MSE: 144192.8811 RMSE: 379.7274

Residual Mean 185.43679338498384

- T-test for mean=0 -> P-value:
 0.00< 0.05 Residual mean is
 significantly different from 0
 (model may be biased)
- Residuals are not normally distributed

Conclusions

Recommendation to buy (Good Entry Points) in Early March

- As the stock price bottoms out in the beginnning of march, it may present a good buying opportunity before the next uptrend.
- Investors looking for long-term growth may accumulate shares if the price stabilizes above 6000.

Recommendation to sell (Exit Strategy) for Early to Mid January

• If the price reaches 6500–6700 IDR, consider selling for short-term profits.

Model Limitations

Inability to Capture Market Efficiency & Random Walk Behavior

Stock prices follow a random walk (EMH), making past patterns unreliable for prediction. Prophet's deterministic approach struggles with volatility, sharp jumps, and unpredictable market shocks.

Weak Handling of Exogenous Factors & Market Sentiment

Prophet relies solely on historical prices and struggles to integrate crucial external drivers like macroeconomic data, news, and sentiment.

Lack of Adaptability to Regime Changes & Non-Stationarity

Structural breaks (e.g., bull/bear markets) disrupt Prophet's trend assumptions, making it unsuitable for

dynamic stock market conditions.

Model Improvement Ideas

Add External Regressors

Incorporate macroeconomic indicators, trading volume, interest rates, or sentiment data to provide additional predictive power beyond historical prices.

Use Shorter Time Horizons

Limit forecasting to short-term trends where seasonality and momentum effects may still hold some relevance, reducing long-term uncertainty.

Apply Post-Processing Adjustments

Use statistical corrections or smoothing techniques to adjust forecasts based on recent market conditions and volatility changes.

Thank You!