Geometria e Algebra - MIS-Z

Sesto appello - Febbraio - Soluzioni 07/02/2023

Nome e Cognome:		
Corso di laurea:		
Matricola:		

Informazioni

Questo appello contiene 5 esercizi per un totale di 34 punti. Il punteggio ottenuto x sarà convertito in 30esimi nella maniera seguente:

- se $x \leq 30$, allora x sarà il voto in 30esimi;
- se $30 < x \le 34$, allora il voto sarà 30 e Lode.

Le risposte devono essere opportunamente giustificate per ottenere il punteggio massimo. Le risposte indecifrabili non verranno valutate.

Il tempo a disposizione è di 3 ore. È vietato l'utilizzo di ogni tipo di calcolatrice.

Esercizio	Punteggio
1	
2	
3	
4	
5	

TOTALE

ESERCIZIO 1 [6 punti]. Vero o Falso?

Per ciascun asserto si stabilisca se è vero o falso, motivando in modo conciso ed esauriente la risposta.

(a) La funzione

$$f: \quad \mathbb{R}^3 \quad \to \quad \mathbb{R}^3$$
$$(x, y, z) \quad \to \quad (x + 1, y, z - 2)$$

è un'applicazione lineare.

- \square VERO
- **FALSO**

Giustificazione

Si ha f(0,0,0)=(1,0,-2). Poiché $f(0,0,0)\neq(0,0,0)$, f non è un'applicazione lineare.

- (b) Il vettore $(1,0,0) \in \mathbb{R}^3$ appartiene a $Span\{(1,2,-1),(3,-1,-1)\}.$
 - \square VERO
 - **FALSO**

Giustificazione

Poiché (1,2,-1) e (3,-1,-1) sono linearmente indipendenti, il vettore (1,0,0) appartiene a $Span\{(1,2,-1),(3,-1,-1)\}$ se e solo se (1,0,0),(1,2,-1) e (3,-1,-1) sono linearmente dipendenti. Abbiamo

$$\begin{vmatrix} 1 & 0 & 0 \\ 1 & 2 & -1 \\ 3 & -1 & -1 \end{vmatrix} = -3,$$

quindi (1,0,0), (1,2,-1) e (3,-1,-1) sono linearmente indipendenti e di conseguenza $(1,0,0) \notin Span\{(1,2,-1),(3,-1,-1)\}.$

(c) Nel piano euclideo \mathbb{E}^2 le rette

$$r: 3X + Y - 2 = 0$$
 e $s: X - 3Y = 0$

sono ortogonali.

- VERO
- \Box FALSO

Giustificazione

Dalle equazioni cartesiane si deducono i vettori normali a r e a s, che sono rispettivamente (3,1) e (1,-3). Poiché $\langle (3,1), (1,-3) \rangle = 3 \cdot 1 + 1 \cdot (-3) = 0$, concludiamo che r e s sono ortogonali.

- (d) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare. Se f è suriettiva, allora $m \leq n$.
 - VERO
 - \square FALSO

Giustificazione

Se f è suriettiva allora $\operatorname{rg}(f) = \dim(\mathbb{R}^m) = m$. Quindi per il teorema del rango abbiamo $n = \dim(\mathbb{R}^n) = \dim(\ker(f)) + \operatorname{rg}(f) = \dim(\ker(f)) + m \ge m$,

dove l'ultima disuguaglianza è giustificata dal fatto che dim $(\ker(f)) \ge 0$. Concludiamo che $n \ge m$.

ESERCIZIO 2 [6 punti]. Sistema con parametro.

Al variare di $k \in \mathbb{R}$ si discuta la compatibilità del sistema

$$\begin{cases} X_2 + kX_4 = 0 \\ -X_1 + kX_3 = -1 \\ X_2 - X_4 = 4 \\ -X_1 + 2X_2 + kX_3 = 3 \end{cases}$$

e, quando il sistema è compatibile, se ne determinino il "numero" delle soluzioni e l'insieme delle soluzioni. Si riassuma quanto trovato nella tabella seguente:

k	Compatibile?	Numero di soluzioni	Insieme delle soluzioni
k = 1	SI	∞^1	$\{(t+1,2,t,-2), t \in \mathbb{R}\}$
$k \in \mathbb{R} \setminus \{1\}$	NO	0	-

Svolgimento

Consideriamo la matrice dei coefficienti A e la matrice orlata (A|b) associate al sistema:

$$A = \begin{pmatrix} 0 & 1 & 0 & k \\ -1 & 0 & k & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 2 & k & 0 \end{pmatrix}, \qquad (A|b) = \begin{pmatrix} 0 & 1 & 0 & k & 0 \\ -1 & 0 & k & 0 & -1 \\ 0 & 1 & 0 & -1 & 4 \\ -1 & 2 & k & 0 & 3 \end{pmatrix}.$$

Determiniamo innanzitutto i valori di k tali che $\det(A) \neq 0$. Infatti per tali valori avremo $\operatorname{rg}(A) = \operatorname{rg}(A|b) = 4$ e quindi, per Rouché–Capelli, il sistema sarà compatibile ed ammetterà un'unica soluzione che determineremo con il metodo di Cramer.

Con il metodo di Laplace si calcola facilmente che $\det(A) = 0$ per ogni $k \in \mathbb{R}$. Pertanto il sistema o risulterà incompatibile o ammetterà infinite soluzioni. Procediamo quindi con la riduzione di Gauss-Jordan della matrice orlata.

Effettuando nell'ordine le operazioni seguenti:

- 1. $R_1 \leftrightarrow R_2$,
- 2. $R_4 \leftarrow R_4 R_1$,
- 3. $R_3 \leftarrow R_3 R_2$,
- 4. $R_4 \leftarrow R_4 2R_2$,

si ottiene la matrice

$$\begin{pmatrix} -1 & 0 & k & 0 & -1 \\ 0 & 1 & 0 & k & 0 \\ 0 & 0 & 0 & -1 - k & 4 \\ 0 & 0 & 0 & -2k & 4 \end{pmatrix}.$$

A questo punto dobbiamo distinguere due casi, $k \neq -1$ e k = -1.

<u>CASO 1</u>. Se $k \neq -1$ allora possiamo effettuare un'ulteriore operazione per rendere la matrice a scalini. Con l'operazione $R_4 \leftarrow R_4 - \frac{2k}{1+k}R_3$ (definita appunto quando $k \neq -1$), si ottiene

$$\begin{pmatrix} -1 & 0 & k & 0 & -1 \\ 0 & 1 & 0 & k & 0 \\ 0 & 0 & 0 & -1 - k & 4 \\ 0 & 0 & 0 & 0 & \frac{4(1-k)}{1+k} \end{pmatrix}.$$

Notiamo quindi subito che se $k \neq -1$ e $k \neq 1$ il sistema non è compatibile, poiché in tal caso la matrice dei coefficienti ha rango 3 e la matrice orlata ha rango 4.

Per k=1 la matrice a scalini è

$$\begin{pmatrix} -1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & -2 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

In tal caso sia la matrice dei coefficienti che la matrice orlata hanno rango 3. Quindi il sistema possiede $\infty^{4-3} = \infty^1$ soluzioni. Scegliendo X_3 come variabile libera otteniamo l'insieme di soluzioni

$$S_1 = \{(t+1, 2, t, -2), t \in \mathbb{R}\}.$$

<u>CASO 2</u>. Se k = -1 allora con le operazioni 1,2,3,4 si ottiene la matrice

$$\begin{pmatrix} -1 & 0 & -1 & 0 & -1 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 2 & 4 \end{pmatrix}.$$

La terza riga corrisponde all'equazione 0=4, pertanto per k=-1 il sistema non è compatibile.

In conclusione il sistema è compatibile se e solo se k=1 e in tal caso l'insieme delle soluzioni è

$$S_1 = \{(t+1, 2, t, -2), t \in \mathbb{R}\}.$$

ESERCIZIO 3 [8 punti]. Un endomorfismo di \mathbb{R}^3 .

(a) Si enunci il teorema spettrale.

Teorema

Sia V uno spazio vettoriale euclideo di dimensione finita e $f:V\to V$ un endomorfismo simmetrico di V, allora esiste una base ortonormale di V e diagonalizzante per f.

(b) Al variare di $k \in \mathbb{R}$ si consideri l'endomorfismo

$$f_k: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (2x - y + kz, -kx + y, x + kz).$

(b1) Si determinino i valori di k per cui $\mathrm{Im}(f_k) = \mathbb{R}^3.$

Svolgimento

Sia A_k la matrice associata a f_k rispetto alla base canonica $\mathcal B$ di $\mathbb R^3$. Dall'espressione di f_k abbiamo

$$A_k = \begin{pmatrix} 2 & -1 & k \\ -k & 1 & 0 \\ 1 & 0 & k \end{pmatrix}.$$

Allora $\text{Im}(f_k) = \mathbb{R}^3$ se e solo se $\text{rg}(A_k) = 3$, ovvero se e solo se $\det(A_k) \neq 0$. Abbiamo $\det(A_k) = k - k^2 = k(1-k),$

quindi $\operatorname{Im}(f_k) = \mathbb{R}^3$ se e solo se $k \in \mathbb{R} \setminus \{0, 1\}$.

(b2) Per k=1 si spieghi perché l'operatore f_1 è diagonalizzabile e si determini una base diagonalizzante per f_1 e ortornomale rispetto al prodotto scalare standard di \mathbb{R}_3 .

Svolgimento

Per k = 1 abbiamo

$$f_1: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (2x - y + z, -x + y, x + z).$

Sia \mathcal{B} la base canonica di \mathbb{R}^3 (si ricorda che \mathcal{B} è una base ortonormale di \mathbb{R}^3 rispetto al prodotto scalare standard). La matrice associata a f_1 rispetto a \mathcal{B} è

$$A_1 = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

Poiché A_1 è una matrice simmetrica, l'operatore f_1 è simmetrico ed è quindi diagonalizzabile per il teorema spettrale.

Per determinare una base ortonormale di V e diagonalizzante per f_1 , cominciamo con il determinare gli autovalori di f_1 , trovando le radici del polinomio caratteristico:

$$\begin{vmatrix} 2-T & -1 & 1 \\ -1 & 1-T & 0 \\ 1 & 0 & 1-T \end{vmatrix} = -T^3 + 4T^2 - 3T = -T(T-1)(T-3).$$

Pertanto gli autovalori di f_1 sono 0, 1 e 3, tutti di molteplicità algebrica 1. Per ognuno di essi determiniamo l'autospazio corrispondente:

•
$$V_0(f_1) = \left\{ (x, y, z) \in \mathbb{R}^3 : \begin{pmatrix} 2 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} = Span\{(1, 1, -1)\}.$$

•
$$V_1(f_1) = \left\{ (x, y, z) \in \mathbb{R}^3 : \begin{pmatrix} 1 & -1 & 1 \\ -1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} = Span\{(0, 1, 1)\}.$$

•
$$V_3(f_1) = \left\{ (x, y, z) \in \mathbb{R}^3 : \begin{pmatrix} -1 & -1 & 1 \\ -1 & -2 & 0 \\ 1 & 0 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} = Span\{(2, -1, 1)\}.$$

Sia $\mathcal{B}' = \{(1,1,-1),(0,1,1),(2,-1,1)\}$ l'unione delle basi dei tre autospazi $V_0(f_1)$, $V_1(f_1)$ e $V_3(f_1)$. Allora \mathcal{B}' è una base diagonalizzante per f_1 . Inoltre \mathcal{B}' è ortogonale in quanto gli autovalori di f_1 sono tutti distinti. Per ottenere da \mathcal{B}' una base \mathcal{B}'' diagonalizzante per f_1 e ortonormale rispetto al prodotto scalare standard di \mathbb{R}^3 basterà dividere ciascun vettore di \mathcal{B}' per la sua norma. Quindi abbiamo:

$$\begin{split} \mathcal{B}'' &= \left\{ \frac{(1,1,-1)}{\|(1,1,-1)\|}, \frac{(0,1,1)}{\|(0,1,1)\|}, \frac{(2,-1,1)}{\|(2,-1,1)\|} \right\} \\ &= \left\{ \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right), \left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right), \left(\frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \right) \right\}. \end{split}$$

(b3) Sia A_1 la matrice associata a f_1 rispetto alla base canonica di \mathbb{R}^3 . Si determini una matrice $P \in \mathcal{M}_3(\mathbb{R})$ tale che

$$^{T}PA_{1}P = D$$

dove $D \in \mathcal{M}_3(\mathbb{R})$ è una matrice diagonale, e si verifichi la risposta calcolando il prodotto di matrici.

Svolgimento

Sia \mathcal{B} la base canonica di \mathbb{R}^3 e sia \mathcal{B}'' la base ortonormale diagonalizzante trovata al punto (b2). Allora una matrice P tale che TPA_1P è diagonale è data dalla matrice $M_{\mathcal{B},\mathcal{B}''}$ del cambiamento di base da \mathcal{B}'' a \mathcal{B}' . Quindi

$$P = M_{\mathcal{B},\mathcal{B}''} = \begin{pmatrix} \frac{\sqrt{3}}{3} & 0 & \frac{\sqrt{6}}{3} \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} \\ -\frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2} & \frac{\sqrt{6}}{6} \end{pmatrix}.$$

Essendo P la matrice del cambiamento di base tra due basi ortonormali di \mathbb{R}^3 , P è ortogonale, ossia $P^{-1} = {}^TP$.

Effettuando il prodotto di matrici, si verifica con qualche conto che

$$\begin{pmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{3} \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{6}}{3} & -\frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} \end{pmatrix} \begin{pmatrix} 2 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{3}}{3} & 0 & \frac{\sqrt{6}}{3} \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} \\ -\frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2} & \frac{\sqrt{6}}{6} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

ESERCIZIO 4 [8 punti]. Geometria nello spazio.

Si consideri lo spazio \mathbb{E}^3 con il riferimento cartesiano standard.

(a) Si mostri che i punti A(1,3,-1), B(-1,1,-3) e C(0,2,-2) di \mathbb{E}^3 sono allineati e si determini la retta r che li contiene.

Svolgimento

Abbiamo $\overrightarrow{AB}=(-2,-2,-2)$ e $\overrightarrow{AC}=(-1,-1,-1)$. Poiché $\overrightarrow{AB}=2\overrightarrow{AC}$, ovvero \overrightarrow{AB} e \overrightarrow{AC} sono collineari, i punti A,B e C sono allineati.

Scriviamo le equazioni parametriche di r utilizzando \overrightarrow{AC} e A:

$$r: \left\{ \begin{array}{l} x=-t+1\\ y=-t+3\\ z=-t-1 \end{array} \right., \qquad t\in \mathbb{R}.$$

(b) Al variare di h in \mathbb{R} si consideri la retta s_h descritta dalle equazioni cartesiane

$$s_h: \left\{ \begin{array}{l} Y+Z=-h\\ -X+hY=3 \end{array} \right.$$

e si determini la posizione reciproca di r e s_h . Inoltre, quando r e s_h sono incidenti, se ne determini il punto di intersezione.

Svolgimento

Innanzitutto determiniamo le equazioni cartesiane di r, ricavando t dall'ultima equazione e sostituendola nelle prime due:

$$\begin{cases} t = -z - 1 \\ x = z + 2 \\ y = z + 4 \end{cases} \Rightarrow \begin{cases} t = -z - 1 \\ x - z = 2 \\ y - z = 4. \end{cases}$$

Le equazioni cartesiane di r sono quindi:

$$r: \left\{ \begin{array}{l} X - Z = 2 \\ Y - Z = 4. \end{array} \right.$$

Sia dunque

$$A = \begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 4 \\ 0 & 1 & 1 & -h \\ -1 & h & 0 & 3 \end{pmatrix}$$

la matrice dei coefficienti delle equazioni cartesiane di r e s_h . Utilizzando il metodo di Laplace per il calcolo del determinante otteniamo:

$$\det(A) = h^2 - 5h + 6 = (h-2)(h-3).$$

Ne deduciamo che r e s_h sono sghembe se e solo se $h \neq 2$ e $h \neq 3$.

Per h = 2 o h = 3 le rette r e s_h sono complanari, e in base al loro numero di intersezioni determiniamo se sono incidenti, parallele disgiunte o parallele coincidenti.

 \bullet Sia h=2. Consideriamo il sistema

$$\begin{cases} X - Z = 2 \\ Y - Z = 4. \\ Y + Z = -2 \\ -X + 2Y = 3 \end{cases}$$

Risolvendo il sistema si ottiene l'unica soluzione (-1,1,-3). Quindi le rette r e s_2 sono incidenti e si intersecano nel punto $(-1,1,-3) \in \mathbb{E}^3$.

 \bullet Sia h=3. Consideriamo il sistema

$$\begin{cases} X - Z = 2 \\ Y - Z = 4. \\ Y + Z = -3 \\ -X + 3Y = 3 \end{cases}$$

Risolvendo il sistema si ottiene l'unica soluzione $\left(-\frac{3}{2},\frac{1}{2},-\frac{7}{2}\right)$. Quindi le rette r e s_3 sono incidenti e si intersecano nel punto $\left(-\frac{3}{2},\frac{1}{2},-\frac{7}{2}\right)\in\mathbb{E}^3$.

(c) Per <u>uno</u> dei valori di h per cui r e s_h sono complanari, si determini il piano π che le contiene entrambe.

Svolgimento

Consideriamo il caso h=2. La retta s_2 ha equazioni cartesiane:

$$s_2: \left\{ \begin{array}{l} Y+Z=-2 \\ -X+2Y=3 \end{array} \right.$$

Per determinare il piano π contenente r e s_2 basterà determinare tre punti non allineati che appartengono al piano. Ad esempio possiamo prendere un punto di r, un punto di s_2 e il punto di intersezione di r e s_2 . Quindi scegliamo $P_1(1,3,-1) \in r$, $P_2(-3,0,-2) \in s_2$ e $P_3(-1,1,-3)$.

Allora il piano π ha giacitura $Span\{\overrightarrow{P_1P_2}, \overrightarrow{P_1P_3}\} = Span\{(-4, -3, -1), (-2, -2, -2)\}$ e passa per il punto P_1 . Deduciamo quindi che π ha equazioni parametriche

$$\pi: \left\{ \begin{array}{l} x = -4s - 2t + 1 \\ y = -3s - 2t + 3 \\ z = -s - 2t - 1 \end{array} \right., \qquad s, t \in \mathbb{R}.$$

ESERCIZIO 5 [6 punti]. Matrici e sottospazi vettoriali.

(a) Enunciare il teorema di Binet.

Teorema

Siano $A, B \in \mathcal{M}_n(\mathbb{R})$. Allora $\det(AB) = \det(A) \det(B)$. In altre parole il determinante del prodotto di due matrici quadrate è uguale al prodotto dei loro determinanti.

(b) Utilizzando il fatto che una matrice $A \in \mathcal{M}_n(\mathbb{R})$ è invertibile se e solo se $\det(A) \neq 0$, dimostrare l'asserto seguente:

Siano $A, B \in \mathcal{M}_n(\mathbb{R})$. Allora A e B sono invertibili se e solo se AB \grave{e} invertibile.

Dimostrazione

- \Rightarrow) Se A e B sono invertibili, allora $\det(A) \neq 0$ e $\det(B) \neq 0$. Per il teorema di Binet si ha $\det(AB) = \det(A) \det(B)$, quindi $\det(AB) \neq 0$ in quanto è prodotto di due numeri reali non nulli. Ne segue che AB è invertibile.
- \Leftarrow) Se AB è invertibile allora $\det(AB) \neq 0$. Dal teorema di Binet segue che $\det(A)\det(B) \neq 0$, quindi $\det(A)$ e $\det(B)$ sono entrambi non nulli (altrimenti il loro prodotto sarebbe uguale a zero). Concludiamo che A e B sono invertibili.

(c) Si determini se l'insieme delle matrici <u>invertibili</u> di taglia 2×2 è un sottospazio vettoriale di $\mathcal{M}_2(\mathbb{R})$.

Svolgimento

Sia $W = \{A \in \mathcal{M}_2(\mathbb{R}) : A \text{ è invertibile}\}$. Il sottoinsieme W <u>non</u> è un sottospazio vettoriale di $\mathcal{M}_2(\mathbb{R})$. Infatti

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \notin W$$

poiché la matrice nulla ha determinante uguale a zero e quindi non è invertibile.

(d) Si richiama che la traccia di una matrice quadrata è la somma degli elementi sulla diagonale principale. In altre parole per $A = (a_{ij})_{1 \leq i,j \leq n}$ la traccia di A è data da

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}.$$

Si mostri che l'insieme delle matrici 2×2 di traccia nulla è un sottospazio vettoriale di $\mathcal{M}_2(\mathbb{R})$. Se ne determini una base e la dimensione.

Svolgimento

Consideriamo l'insieme

$$U := \{ A \in \mathcal{M}_2(\mathbb{R}) : \operatorname{tr}(A) = 0 \} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a + d = 0 \right\}.$$

Mostriamo innanzitutto che U soddisfa le proprietà di sottospazio vettoriale di $\mathcal{M}_2(\mathbb{R})$.

- Si ha $U \neq \emptyset$, poiché la traccia di $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ è uguale a zero e quindi $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in U$.
- Siano $\lambda, \mu \in \mathbb{R}$ e siano $A = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$ e $B = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix}$ due matrici in U. Allora $\operatorname{tr}(A) = \operatorname{tr}(B) = 0$, ossia $a_1 + d_1 = a_2 + d_2 = 0$. Si ha

$$\lambda A + \mu B = \begin{pmatrix} \lambda a_1 + \mu a_2 & \lambda b_1 + \mu b_2 \\ \lambda c_1 + \mu c_2 & \lambda d_1 + \mu d_2 \end{pmatrix}.$$

Quindi

$$\operatorname{tr}(\lambda A + \mu B) = \lambda a_1 + \mu a_2 + \lambda d_1 + \mu d_2 = \lambda (a_1 + d_1) + \mu (a_2 + d_2) = \lambda \cdot 0 + \mu \cdot 0 = 0,$$
da cui segue che $\lambda A + \mu B \in U$.

Concludiamo che U è un sottospazio vettoriale di $\mathcal{M}_2(\mathbb{R})$. Determiniamo ora una base e la dimensione di U. Osserviamo che:

$$\begin{split} U &= \left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} : a, b, c \in \mathbb{R} \right\} = \\ &= \left\{ a \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} : a, b, c \in \mathbb{R} \right\} = \\ &= Span \left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}. \end{split}$$

Si mostra facilmente che $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ e $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ sono linearmente indipendenti, quindi $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}$ è una base di U e U ha dimensione 3.