Géométrie repérée dans le plan

Table des matières

I	Coordonnées du milieu d'un segment	1
II	Distance entre deux points	2

Coordonnées du milieu d'un segment

Soient deux points $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points.

Le milieu M du segment [AB] a pour coordonnées : $x_M = \frac{x_A + x_B}{2}$ et $y_M = \frac{y_A + y_B}{2}$.

Cela revient à calculer la moyenne des abscisses et des ordonnées.

Exemples d'application : Dans le plan muni d'un repère (O; I; J), on considère les points A(3; 7) et B(5:2).

Les coordonnées du milieu M de [AB] sont :

$$M\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right) \operatorname{donc} M\left(\frac{3+5}{2}, \frac{7+2}{2}\right) \operatorname{d'où} M\left(4; \frac{9}{2}\right)$$

Exemple 1

Exemple 1

Dans le plan muni d'un repère (O; I; J), on considère les points A(-3; -1), B(5; -2), C(7; 3) et D(-1;4).

Montrer que ABCD est un parallélogramme.

Solution de l'exemple 1

Notons *K* et *L* les milieux des deux diagonales [*AC*] et [*BD*].

Notified K et L les inflieux des deux diagonales [AC] et [B]
$$x_K = \frac{x_A + x_C}{2} = \frac{-3 + 7}{2} = \frac{4}{2} = 2$$
 et $y_K = \frac{y_A + y_C}{2} = \frac{-1 + 3}{2} = 1$ $x_L = \frac{x_B + x_D}{2} = \frac{5 + (-1)}{2} = \frac{4}{2} = 2$ et $y_L = \frac{y_B + y_D}{2} = \frac{-2 + 4}{2} = 1$ K et L sont les mêmes coordonnées donc $K = L$.

Les diagonales du quadrilatère *ABCD* ont le même milieu : ABCD est un parallélogramme

Exemple 2

On considère les points A(2; 5), B(-1; 7) et C(11; 13).

On cherche les coordonnées du point D tel que ABCD soit un parallélogramme.

Solution de l'exemple 2

On note x_D et y_D les coordonnées de D.

ABCD est un parallélogramme si, et seulement si, les diagonales [AC] et [BD] ont le même milieu.

Soit M le milieu de [AC]; on a :
$$\begin{cases}
x_{M} = \frac{x_{A} = x_{C}}{2} = \frac{13}{2} \\
y_{M} = \frac{y_{A} + y_{C}}{2} = 9
\end{cases}$$

De même, les coordonnées du milieu de [AD] sont : $\begin{cases} \frac{x_B + x_D}{2} = \frac{-1 + x_D}{2} \\ \frac{y_B + y_D}{2} = \frac{7 + y_D}{2} \end{cases}$

$$\begin{cases} \frac{x_{\rm B} + x_{\rm D}}{2} = \frac{-1 + x_{\rm D}}{2} \\ \frac{y_{\rm B} + y_{\rm D}}{2} = \frac{7 + y_{\rm D}}{2} \end{cases}$$

Les deux diagonales ont le même milieu, donc on doit avoir égalité entre les coordonnées :

Donc
$$\frac{-1+x_D}{2} = \frac{13}{2}$$
 d'où $-1+x_D = 13$, donc $x_D = 14$.

$$\frac{7 + y_D}{2}$$
 = 9 donc 7 + y_D = 18 d'où y_D = 11.

D a pour coordonnées D(14; 11).

Vérification géométrique : on place les points pour vérifier que le quadrilatère ressemble à un parallélogramme.

Distance entre deux points

Propriété

Le plan est muni d'un repère orthonormal (O; I; J).

On considère les points $A(x_A; y_A)$ et $B(x_B; y_B)$. Alors, la distance AB vaut : $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$

Démonstration:

Supposons que $x_B > x_A$ et $y_B > y_A$.

Cette démonstration est basée sur le théorème de Pythagore.

Comme le repère est **orthonormé**, le triangle ABC est rectangle, puisqu'il a deux côtés parallèles aux axes. D'après le **théorème de Pythagore**, on a : $AB^2 = AC^2 + BC^2 = (x_B - x_A)^2 + (y_B - y_A)^2$.

Par conséquent :
$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

On admet que cette démonstration est valable quelles que soient les positions de A et de B, car $(x_B - x_A)^2 = (x_A - x_B)^2$ et $(y_B - y_A)^2 = (y_A - y_B)^2$.

Remarque: cette formule est à apprendre par cœur et à appliquer directement.

Exemple: Soient
$$A(3; 7)$$
 et $B(2; 13)$.

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = \sqrt{(2 - 3)^2 + (13 - 7)^2} = \sqrt{(-1)^2 + 6^2} = \sqrt{1 + 36} = \sqrt{37} \text{ donc } AB = \sqrt{37}$$

Exercice 1:

Montrer que le point $A(1; \sqrt{2})$ appartient au cercle de centre O et de rayon $\sqrt{3}$.

$$OA = \sqrt{(x_A - x_O)^2 + (y_A - y_O)^2} = \sqrt{1^2 + \sqrt{2})^2} = \sqrt{1 + 2} = \sqrt{3}.$$

La longueur OA est égale au rayon du cercle donc A appartient au cercle.

Exercice 2:

Soient A(1; -2) et B(4; 2).

Montrer que B appartient au cercle de centre $\mathscr C$ de centre A et de rayon 5.

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = \sqrt{(4 - 1)^2 + (2 - (-2))^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5.$$

B appartient bien au cercle de centre A et de rayon 5.

Exercice 3:

Soient A(-2; -1), B(1; 3) et C(-3; 6).

Démontrer que ABC est rectangle isocèle.

•
$$AB = \sqrt{(1 - (-2))^2 + (3 - (-1))^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$

•
$$BC = \sqrt{(-3-1)^2 + (6-3)^2} = \sqrt{(-4)^2 + 3^2} = \sqrt{16+9} = \sqrt{25} = 5$$

•
$$AC = \sqrt{(-3 - (-2))^2 + (6 - (-1))^2} = \sqrt{(-1)^2 + 7^2} = \sqrt{1 + 49} = \sqrt{50}$$

• AB = BC donc ABC est isocèle.

•
$$AC^2 = \sqrt{50}^2 = 50$$
; $AB^2 + BC^2 = 5^2 + (^2 = 25 + 25 = 50)$.
 $AC^2 = AB^2 + BC^2$.

D'après la réciproque du théorème de Pythagore, le triangle ABC est rectangle. Il est donc isocèle rectangle en B.