Package 'criticality'

May 30, 2023
Title Modeling Fissile Material Operations in Nuclear Facilities
Version 0.9.3
Depends R (>= $3.6.0$), caret
Description A collection of functions for modeling fissile material operations in nuclear facilities, based on Zywiec et al (2021) <doi:10.1016 j.ress.2020.107322="">.</doi:10.1016>
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.2.3
Imports bnlearn, dplyr, evd, fitdistrplus, ggplot2, keras, magrittr, parallel, reticulate, scales
NeedsCompilation no
Author William Zywiec [aut, cre] (https://orcid.org/0000-0002-1842-9599)
Maintainer William Zywiec <willzywiec@gmail.com></willzywiec@gmail.com>
Repository CRAN
Date/Publication 2023-05-29 22:20:14 UTC
R topics documented:
BN
Index 1

2 Model

BN

BN Function

Description

This function creates a Bayesian network from pre-formatted nuclear facility data.

Usage

```
BN(dist = "gamma", facility.data, ext.dir)
```

Arguments

```
dist Truncated probability distribution (e.g., "gamma", "normal")
facility.data .csv file name
ext.dir External directory (full path)
```

Value

A Bayesian network that models fissile material operations (op), controls (ctrl), and parameters that affect nuclear criticality safety

Examples

```
ext.dir <- paste0(tempdir(), "/criticality/extdata")
dir.create(ext.dir, recursive = TRUE, showWarnings = FALSE)

extdata <- paste0(.libPaths()[1], "/criticality/extdata")
file.copy(paste0(extdata, "/facility.csv"), ext.dir, recursive = TRUE)
file.copy(paste0(extdata, "/mcnp-dataset.RData"), ext.dir, recursive = TRUE)

BN(
   facility.data = "facility.csv",
   ext.dir = ext.dir
)</pre>
```

Model

Model Function

Description

This function builds the deep neural network metamodel architecture.

NN 3

Usage

```
Model(
  dataset,
  layers = "8192-256-256-256-256-16",
  loss = "sse",
  opt.alg = "adamax",
  learning.rate = 0.00075,
  ext.dir
)
```

Arguments

dataset Training and test data

layers String that defines the deep neural network architecture (e.g., "64-64")

loss Loss function

opt.alg Optimization algorithm

learning.rate Learning rate

ext.dir External directory (full path)

Value

A deep neural network metamodel of Monte Carlo radiation transport code simulation data

NN NN Function

Description

This function trains an ensemble of deep neural networks to predict keff values (imports Tabulate, Scale, Model, Fit, Plot, and Test functions).

Usage

```
NN(
   batch.size = 8192,
   code = "mcnp",
   dataset,
   ensemble.size = 5,
   epochs = 1500,
   layers = "8192-256-256-256-256-16",
   loss = "sse",
   opt.alg = "adamax",
   learning.rate = 0.00075,
   val.split = 0.2,
   overwrite = FALSE,
```

4 NN

```
remodel = FALSE,
replot = TRUE,
verbose = FALSE,
ext.dir,
training.dir = NULL
)
```

Arguments

batch.size Batch size

code Monte Carlo radiation transport code (e.g., "cog", "mcnp")

dataset Training and test data

ensemble.size Number of deep neural networks in the ensemble

epochs Number of training epochs

layers String that defines the deep neural network architecture (e.g., "64-64")

loss Loss function

opt.alg Optimization algorithm

learning.rate Learning rate val.split Validation split

overwrite Boolean (TRUE/FALSE) that determines if files should be overwritten

remodel Boolean (TRUE/FALSE) that determines if an existing metamodel should be

reused

replot Boolean (TRUE/FALSE) that determines if .png files should be replotted

verbose Boolean (TRUE/FALSE) that determines if TensorFlow and Fit function output

should be displayed

ext.dir External directory (full path)
training.dir Training directory (full path)

Value

A list of lists containing an ensemble of deep neural networks and weights

Examples

```
ext.dir <- paste0(tempdir(), "/criticality/extdata")
dir.create(ext.dir, recursive = TRUE, showWarnings = FALSE)

extdata <- paste0(.libPaths()[1], "/criticality/extdata")
file.copy(paste0(extdata, "/facility.csv"), ext.dir, recursive = TRUE)
file.copy(paste0(extdata, "/mcnp-dataset.RData"), ext.dir, recursive = TRUE)

config <- FALSE
try(config <- reticulate::py_config()$available)
try(if (config == TRUE) {</pre>
```

Plot 5

```
NN(
   batch.size = 128,
   ensemble.size = 1,
   epochs = 10,
   layers = "256-256-16",
   loss = "sse",
   replot = FALSE,
   ext.dir = ext.dir
)
})
```

Plot

Plot Function

Description

This function generates and saves plots and data.

Usage

```
Plot(i, history = NULL, plot.dir)
```

Arguments

i Model numberhistory Training historyplot.dir Plot directory (full path)

Value

No output (generates and saves ggplot2 files and training histories)

Risk Risk Function

Description

This function estimates process criticality accident risk (imports Sample function).

6 Risk

Usage

```
Risk(
   bn,
   code = "mcnp",
   cores = parallel::detectCores()/2,
   dist = "gamma",
   facility.data,
   keff.cutoff = 0.9,
   metamodel,
   risk.pool = 100,
   sample.size = 1e+09,
   usl = 0.95,
   ext.dir,
   training.dir = NULL
)
```

Arguments

bn	Bayesian network
code	Monte Carlo radiation transport code (e.g., "cog", "mcnp")
cores	Number of CPU cores to use for generating Bayesian network samples
dist	Truncated probability distribution (e.g., "gamma", "normal")
facility.data	.csv file name
keff.cutoff	keff cutoff value (e.g., keff >= 0.9)
metamodel	List of deep neural network metamodels and weights
risk.pool	Number of times risk is calculated
sample.size	Number of samples used to calculate risk
usl	Upper subcritical limit (e.g., keff ≥ 0.95)
ext.dir	External directory (full path)
training.dir	Training directory (full path)

Value

A list of lists containing process criticality accident risk estimates and Bayesian network samples

Examples

```
ext.dir <- paste0(tempdir(), "/criticality/extdata")
dir.create(ext.dir, recursive = TRUE, showWarnings = FALSE)

extdata <- paste0(.libPaths()[1], "/criticality/extdata")
file.copy(paste0(extdata, "/facility.csv"), ext.dir, recursive = TRUE)
file.copy(paste0(extdata, "/mcnp-dataset.RData"), ext.dir, recursive = TRUE)
config <- FALSE</pre>
```

Sample 7

```
try(config <- reticulate::py_config()$available)</pre>
try(if (config == TRUE) {
 Risk(
   bn = BN(
      facility.data = "facility.csv",
      ext.dir = ext.dir),
    code = "mcnp",
    cores = 1,
    facility.data = "facility.csv",
   keff.cutoff = 0.5,
   metamodel = NN(
      batch.size = 128,
      ensemble.size = 1,
      epochs = 10,
      layers = "256-256-16",
      replot = FALSE,
      ext.dir = ext.dir),
    risk.pool = 10,
    sample.size = 1e+04,
    ext.dir = ext.dir,
    training.dir = NULL
 )
})
```

Sample

Sample Function

Description

This function samples the Bayesian network and generates keff predictions using a deep neural network metamodel.

Usage

```
Sample(
  bn,
  code = "mcnp",
  cores = parallel::detectCores()/2,
  keff.cutoff = 0.9,
  metamodel,
  sample.size = 1e+09,
  ext.dir,
  risk.dir = NULL
)
```

Arguments

bn

Bayesian network object

8 Scale

code Monte Carlo radiation transport code (e.g., "cog", "mcnp")

cores Number of CPU cores to use for generating Bayesian network samples

keff.cutoff keff cutoff value (e.g., 0.9)

metamodel List of deep neural network metamodels and weights

sample.size Number of samples used to calculate risk

ext.dir External directory (full path)

risk.dir Risk directory

Value

A list of Bayesian network samples with predicted keff values

Scale Scale Function

Description

This function centers, scales, and one-hot encodes variables.

Usage

```
Scale(code = "mcnp", dataset = NULL, output, ext.dir)
```

Arguments

code Monte Carlo radiation transport code (e.g., "cog", "mcnp")

dataset Training and test data

output Processed output from Monte Carlo radiation transport code simulations

ext.dir External directory (full path)

Value

A list of centered, scaled, and one-hot-encoded training and test data

Tabulate 9

Tabulate

Tabulate Function

Description

This function loads/saves training and test data (imports Scale function).

Usage

```
Tabulate(code = "mcnp", ext.dir)
```

Arguments

code Monte Carlo radiation transport code (e.g., "cog", "mcnp")
ext.dir External directory (full path)

Value

A list of centered, scaled, and one-hot-encoded training and test data

Examples

```
ext.dir <- paste0(tempdir(), "/criticality/extdata")
dir.create(ext.dir, recursive = TRUE, showWarnings = FALSE)

extdata <- paste0(.libPaths()[1], "/criticality/extdata")
file.copy(paste0(extdata, "/facility.csv"), ext.dir, recursive = TRUE)
file.copy(paste0(extdata, "/mcnp-dataset.RData"), ext.dir, recursive = TRUE)

Tabulate(
    ext.dir = ext.dir
)</pre>
```

Test

Test Function

Description

This function calculates deep neural network metamodel weights and generates keff predictions for all training and test data.

Usage

```
Test(dataset, ensemble.size = 5, loss = "sse", ext.dir, training.dir)
```

Test

Arguments

dataset Training and test data

ensemble.size Number of deep neural networks in the ensemble

loss Loss function

ext.dir External directory (full path)
training.dir Training directory (full path)

Value

A list of deep neural network weights

Index

```
BN, 2
Model, 2
NN, 3
Plot, 5
Risk, 5
Sample, 7
Scale, 8
Tabulate, 9
Test, 9
```