ECE375 Timer/Counter

TA: Dongjun Lee

School of Electrical Engineering and Computer Science Oregon State University

Timer/Counters

- Understand the 8-bit Timer/Counters to generate Pulse-Width Modulation (PWM)
- Control the motor speed of BumpBot using PWM signal
- Read Atmega I 28 Datasheet
 - 73p (Alternate Functions of Port B)
 - 92p I I Op (Timer/Counter)

Read/Write I6bit Register

- Write 16 bit-register
 - \circ out TCNT1H, r17 ; write to high byte first
 - out TCNTIL, r16; write to low byte second
- Read 16 bit-register
 - $^{\circ}$ in r16,TCNT1L $\,\,$; read from low byte first
 - in r17,TCNT1H ; read from high byte second
- IIIp-120p

PWM Output

Alternate Functions of Port B

Port Pin	Alternate Functions			
PB7	OC2/OC1C ⁽¹⁾ (Output Compare and PWM Output for Fimer/Counter2 or Output Compare and PWM Output C for Timer/Counter1)			
PB6	OC1B (Output Compare and PWM Output B for Timer/Counter1)			
PB5	OC1A (Output Compare and PWM Output A for Timer/Counter1)			
PB4	OC0 (Output Compare and PWM Output for Timer/Counter0)			
PB3	MISO (SPI Bus Master Input/Slave Output)			
PB2	MOSI (SPI Bus Master Output/Slave Input)			
PB1	SCK (SPI Bus Serial Clock)			
PB0	SS (SPI Slave Select input)			

Duty Cycle

- Change Duty Cycle to control speed
 - ∘ 100% duty cycle Halt
 - 50% duty cycle Half Speed
 - 0% duty cycle Full Speed
- Use Output Compare Register (OCR)

Compare Output Mode (COM)

Table 54. Compare Output Mode, Fast PWM Mode(1)

COM01	COM00	Description
0	0	Normal port operation, OC0 disconnected.
0	1	Reserved
1	0	Clear OC0 on compare match, set OC0 at BOTTOM, (non-inverting mode)
1	1	Set OC0 on compare match, clear OC0 at BOTTOM, (inverting mode)

Fast PWM Mode

- Uses both OCF0 and TOV0
 Clear OC0 on output compare match, set OC0 at TOP
- Can generate waveform with varying duty cycle and fixed frequency $f_{rww} = \frac{clk_{so}}{prescale \cdot 256}.$

Compare Output Mode (COM)

Table 54. Compare Output Mode, Fast PWM Mode(1)

COM01	COM00	Description
0	0	Normal port operation, OC0 disconnected.
0	1	Reserved
1	0	Clear OC0 on compare match, set OC0 at BOTTOM, (non-inverting mode)
1	1	Set OC0 on compare match, clear OC0 at BOTTOM, (inverting mode)

Fast PWM Mode

- * Can generate waveform with varying duty cycle and fixed frequency $f_{rww} = \frac{cik_{so}}{prescale \cdot 256}.$

Compare Output Mode (COM)

Table 54. Compare Output Mode, Fast PWM Mode⁽¹⁾

COM01	COM00	Description	
0	0	Normal port operation, OC0 disconnected.	
0	1	Reserved	
1	0	Clear OC0 on compare match, set OC0 at BOTTOM, (non-inverting mode)	
1	1	Set OC0 on compare match, clear OC0 at BOTTOM, (inverting mode)	

Fast PWM Mode

Can generate waveform with varying duty cycle and fixed frequency $f_{F^{\rm WM}} = \frac{clk_{10}}{prescale \cdot 256}$

Clock Selection (CS)

Table 56. Clock Select Bit Description

CS02	CS01	CS00	Description	
0	0	0	No clock source (Timer/Counter stopped)	
0	0	1	clk _{TOS} /(No prescaling)	
0	1	0	clk _{TOS} /8 (From prescaler)	
0	1	1	clk _{TOS} /32 (From prescaler)	
1	0	0	clk _{T0S} /64 (From prescaler)	
1	0	1	clk _{TOS} /128 (From prescaler)	
1	1	0	clk _{TOS} /256 (From prescaler)	
1	1	1	clk _{ros} /1024 (From prescaler)	

Fast PWM Mode

- Uses both OCF0 and TOV0 Clear OC0 on output compare match, set OC0 at TOP
- Can generate waveform with varying duty cycle and fixed frequency. $f_{rmn} = \frac{c (k_{f0})}{erescale \cdot 256}$

8

Demo Check

- 16 speed levels
- PORTB 0-3 indicate current speed level
- PORTB 4,7 brightness change
- 4 Functions for Control Speed
 - SPEED_DOWN
 - SPEED UP
 - SPEED MIN
 - SPEED MAX
- Speed levels bound max and min
- Single button press results single action

Speed control • 100% duty cycle – Halt • 50% duty cycle - Half Speed • 0% duty cycle - Full Speed

Checklists for Lab 7

- Demo Checklist
 - All four speed changes work correctly
 - Smooth transitions (I press, I change)
 - No Speed Level overflow or underflow
 - MovFwd signals never overwritten
 - Motor enable signals correctly active low
 - · Actually using PWM, no manual toggling
- Challenge Checklist
 - Time updates every I sec, no leading 0s
 - Buttons still work and reset count on LCD

Questions?

