In [11]:

```
import pandas as pd #библиотека для работы с наборми данных
   import numpy as np #то же для выполнения математических операций
   import seaborn as sns # графическое изображение данных
   import matplotlib.pyplot as plt # moжe
   from sklearn.model_selection import train_test_split # библиотека для тренировки выборн
 6
 7
   from sklearn.linear_model import LinearRegression # создание регрессионной линеной моде
8
9
   from sklearn.metrics import r2_score, mean_squared_error # использование метрик для оце
10
   import warnings
11
   warnings.filterwarnings("ignore")
12
13
14
  df = pd.read_csv('../concrete_data.csv') # набор данных загружаемый с файла CSV
15 df
```

Out[11]:

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age	Strength
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.99
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.89
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.27
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.05
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.30
1025	276.4	116.0	90.3	179.6	8.9	870.1	768.3	28	44.28
1026	322.2	0.0	115.6	196.0	10.4	817.9	813.4	28	31.18
1027	148.5	139.4	108.6	192.7	6.1	892.4	780.0	28	23.70
1028	159.1	186.7	0.0	175.6	11.3	989.6	788.9	28	32.77
1029	260.9	100.5	78.3	200.6	8.6	864.5	761.5	28	32.40

1030 rows × 9 columns

In [2]:

1 df.info() # информация о фрейме данных

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1030 entries, 0 to 1029
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Cement	1030 non-null	float64
1	Blast Furnace Slag	1030 non-null	float64
2	Fly Ash	1030 non-null	float64
3	Water	1030 non-null	float64
4	Superplasticizer	1030 non-null	float64
5	Coarse Aggregate	1030 non-null	float64
6	Fine Aggregate	1030 non-null	float64
7	Age	1030 non-null	int64
8	Strength	1030 non-null	float64

dtypes: float64(8), int64(1)

memory usage: 72.5 KB

In [3]:

1 df.describe() #дополнительные сведения

Out[3]:

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Ag
count	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030
mean	281.167864	73.895825	54.188350	181.567282	6.204660	972.918932	773
std	104.506364	86.279342	63.997004	21.354219	5.973841	77.753954	80
min	102.000000	0.000000	0.000000	121.800000	0.000000	801.000000	594
25%	192.375000	0.000000	0.000000	164.900000	0.000000	932.000000	730
50%	272.900000	22.000000	0.000000	185.000000	6.400000	968.000000	779
75%	350.000000	142.950000	118.300000	192.000000	10.200000	1029.400000	824
max	540.000000	359.400000	200.100000	247.000000	32.200000	1145.000000	992
4							•

In [5]:

- sns.set()
 pic = sns.pairplot(df, kind='reg')
 pic.savefig("pairplot.png")

In [8]:

1 corr = df.corr() # корреляционная таблица для получения сведений о взаимной корреляции 2 corr

Out[8]:

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	F Aggreg
Cement	1.000000	-0.275216	-0.397467	-0.081587	0.092386	-0.109349	-0.222
Blast Furnace Slag	-0.275216	1.000000	-0.323580	0.107252	0.043270	-0.283999	-0.2810
Fly Ash	-0.397467	-0.323580	1.000000	-0.256984	0.377503	-0.009961	0.079
Water	-0.081587	0.107252	-0.256984	1.000000	-0.657533	-0.182294	-0.450
Superplasticizer	0.092386	0.043270	0.377503	-0.657533	1.000000	-0.265999	0.2220
Coarse Aggregate	-0.109349	-0.283999	-0.009961	-0.182294	-0.265999	1.000000	-0.178 _′
Fine Aggregate	-0.222718	-0.281603	0.079108	-0.450661	0.222691	-0.178481	1.0000
Age	0.081946	-0.044246	-0.154371	0.277618	-0.192700	-0.003016	-0.1560
Strength	0.497832	0.134829	-0.105755	-0.289633	0.366079	-0.164935	-0.167;
4							•

In []:

1

По полученным графикам и таблицам анализируем взимозависимость данных друг от друга

Видно что каждый из параметров не сильно влияет на другой, в то же время нет параметра незначительно влияющего на целевую функцию, следовательно принимаем решение оставить все исходные данные для дальнейшего анализа

Пишем функцию для того что бы для каждого столбца удалить выборсы, далее применяем функцию на каждый столбец

In [12]:

```
1
   def remove_outlier(df, col_name):
 2
       plt.figure(figsize=(20,20))
 3
       f, axes = plt.subplots(1, 2,figsize=(12,4))
 4
       sns.boxplot(df[col_name], ax=axes[0], color='red').set_title("До удаления выбросов:
 5
       Q1 = df[col_name].quantile(0.25)
 6
       Q3 = df[col_name].quantile(0.75)
 7
       IQR = Q3-Q1
       df[col_name] = df[col_name].apply(lambda x : Q1-1.5*IQR if x < (Q1-1.5*IQR) else ((
 8
 9
       sns.boxplot(df[col_name], ax=axes[1], color='purple').set_title("После удаления выб
10
       print()
11
       plt.show()
       return df
12
13
14
   for col in df.select_dtypes(exclude="object").columns[:-1]:
15
       df = remove_outlier(df,col)
```


<Figure size 1440x1440 with 0 Axes>

Отделяем данные от целевой функции

In [13]:

```
1 X = df.drop("Strength", axis = 1).values
2 Y = df["Strength"]
```

Разбиваем данные на тестировочную выборку и тренировочную

In [14]:

```
1 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, random_state = 4, test_size = 2 print(X_train.shape, Y_train.shape, X_test.shape, Y_test.shape) # выводим размеры получ (721, 8) (721,) (309, 8) (309,)
```

Пишем функцию построения модели и проверки её достоверности с помощью метрик

In [17]:

```
def model_train(model, X_train, X_test, Y_train, Y_test):
    model.fit(X_train, Y_train)
    Y_pred = model.predict(X_test)
    print("Коэффициент детерминации :", r2_score(Y_test, Y_pred))
    print("Средняя квадратичная ошибка :", mean_squared_error(Y_test, Y_pred))
    print("Средняя ошибка :", mean_squared_error(Y_test, Y_pred)**0.5)
    sns.regplot(Y_test, Y_pred)
```

In [18]:

```
model_train(LinearRegression(), X_train, X_test, Y_train, Y_test)
```

Коэффициент детерминации : 0.7169162755604069 Средняя квадратичная ошибка : 83.91953664961635 Средняя ошибка : 9.160760702562662

Вывод

- 1. В данной работе произведена попытка анализа прочности бетона от входящих в его состав ингридиентов: цементирующие материалы, песок, вода, крупный заполнитель, пластификатор, а так же сроки его твердения;
- 2. Получена модель линейной регрессии с коэффициентом детерминации 0.71 что является хорошим результатом
- 3. При анализе было выявлено что выборка яляется качественной отсутствуют NaN значения в всех столбцах, все столбцы нужны для анализа прочности бетона

In []:

1