Test 1: Computational Linear Algebra

(duration: 1hr 30min)

Problem 1 (points: 3+5+2 = 10)

We say that $\mathbb{A} \subset \mathbb{R}^n$ is an *affine* space if for all $x, y \in \mathbb{A}$ and $t \in \mathbb{R}$, we must have $tx + (1 - t)y \in \mathbb{A}$.

- (i) Show that an affine space \mathbb{A} is a subspace if and only if $\mathbf{0} \in \mathbb{A}$.
- (ii) If \mathbb{A} is nonempty and affine, show that there exists an *unique* subspace $\mathbb{U} \subset \mathbb{R}^n$ such that, for any $x_0 \in \mathbb{A}$,

 $\mathbb{A} = \{ \boldsymbol{x}_0 + \boldsymbol{x} : \boldsymbol{x} \in \mathbb{U} \}.$

(iii) Show that the solutions of the equation $\mathbf{A}x = \mathbf{b}$ form an affine space, assuming the equations are solvable. Identify the unique subspace $\mathbb U$ in this case.

Problem 2 (points: 5)

Let \mathbb{N} be the set of natural numbers and \mathfrak{F} denote the set of functions $f: \mathbb{N} \to \mathbb{R}$. Show that \mathfrak{F} is a vector space over \mathbb{R} but is not finite dimensional.

Problem 3 (points: 5)

Let \mathbb{V} be a vector space and $v_1, \ldots, v_n \in \mathbb{V}$ be linearly independent. Show that for any $v \in \mathbb{V}$, the dimension of the space spanned by $v_1 + v, \ldots, v_n + v$ is at least n - 1.

Problem 4 (points: 2+1+2 = 5)

What is the dimension of \mathbb{R}^n as a vector space over the field \mathbb{Q} of rational numbers? What is the dimension of \mathbb{C}^n as a vector space over the fields \mathbb{C} and \mathbb{R} ?

Problem 5 (points: 5)

Let $\mathbb U$ and $\mathbb V$ be 6-dimensional subspaces of a 10-dimensional vector space. Show that there exists vectors $\mathbf x$ and $\mathbf y$ common to both $\mathbb U$ and $\mathbb V$ such that neither $\mathbf x$ nor $\mathbf y$ is a scalar multiple of the other.

Problem 6 (points: 4+1 = 5)

Let $\mathbb{U}_1, \dots, \mathbb{U}_m$ be subspaces of a finite-dimensional vector space. Prove that

$$\dim(\mathbb{U}_1 + \dots + \mathbb{U}_m) \leqslant \dim(\mathbb{U}_1) + \dots + \dim(\mathbb{U}_m).$$

Give a condition on $\mathbb{U}_1, \dots, \mathbb{U}_m$ for which equality holds.
