PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-127139

(43) Date of publication of application: 16.05.1997

(51)Int.CI.

G01N 37/00 G01B 21/30 G01R 1/067 H01J 37/28

(21)Application number : 07-284983

(71)Applicant: SHIMADZU CORP

(22)Date of filing:

01.11.1995

(72)Inventor: UEDA MASAHIRO

NAGAMACHI SHINJI

(54) MANUFACTURE OF CANTILEVER TYPE MINUTE PROBE AND CANTILEVER TYPE MINUTE PROBE

(57) Abstract:

PROBLEM TO BE SOLVED: To enlarge the degree of selection of a projection material and its utilizing efficiency by continuously projecting a low energy focused ion beam to one point near the free end of a minute cantilever under a vacuum condition to form a minute needle-shaped projection.

SOLUTION: After a Si3N4 thin film is formed on the surface of a substrate of Si or the like, it is patterned into the form of a cantilever 2, and moreover an unnecessary part is removed by etching the back side of the substrate to form into the form of a stationary substrate 1. Next, one point near the free end of the cantilever 2 is continuously irradiated with a low energy focused ion beam under a vacuum condition to evaporatedly form a

minute needle- shaped projection 3, for instance, so that the diameter of the base or one side and height may be alike about $20\text{-}30\mu\text{m}$. As an evaporateable material, almost all metals and semiconductors can be utilized for ion species, and the single substance or alloy of Au, Cu, Nb and Ge are included in them. Since the projection 3 is evaporatedly formed on the surface of the flat cantilever 2, the utilizing efficiency of the material can be improved.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-127139

(43)公開日 平成9年(1997)5月16日

G 0 1 B 21/30 G 0 1 R 1/067	G 0 1 N 37/00 C G G 0 1 B 21/30 Z G 0 1 R 1/067 A H 0 1 J 37/28 Z
G 0 1 R 1/067	G 0 1 B 21/30 Z G 0 1 R 1/067 A
G 0 1 R 1/067	G 0 1 R 1/067 A
	7.
H 0 1 J 37/28	f01J 37/28 Z
	審査請求 未請求 請求項の数2 OL (全 7 頁)
(21)出顧番号 特顧平7-284983	(71) 出願人 000001993
	株式会社島津製作所
(22)出顧日 平成7年(1995)11月1日	京都府京都市中京区西ノ京桑原町1番地
	(72) 発明者 上田 雅弘
7	京都府京都市中京区西ノ京桑原町1番地
	株式会社島津製作所三条工場内
	(72) 発明者 長町 信治
	京都府京都市中京区西ノ京桑原町 1 番地
<i>3</i> 0	株式会社島津製作所三条工場内
	74)代理人 弁理士 西田 新

(54) 【発明の名称】 カンチレバー型微小探針の製造方法およびカンチレバー型微小探針

(57)【要約】

【課題】 カンチレバーの自由端近傍に形成される微小針状突起の材質の選択度が大きく、従来方法に比して材料の利用効率が高いカンチレバー型微小探針の製造方法と、それにより得られる、従来実用化されていない材質の微小針状突起を持つカンチレバー型微小探針を提供する。

【解決手段】 一端が基板1に固定された微小なカンチレバー2の自由端近傍の一点に、低エネルギ集束イオンビームを連続照射することによってそのイオンを直接蒸着させ、微小針状突起3を形成する。

【特許請求の範囲】

【請求項1】 一端が基板に固定された微小カンチレバーの自由端近傍に、微小な針状突起が形成されてなるカンチレバー型微小探針を製造する方法であって、上記微小カンチレバーの自由端近傍の一点に、真空中にて低エネルギの集束イオンビームを連続照射することによりそのイオンを直接蒸着させて、金属または半導体の単体もしくは合金または化合物からなる微小針状突起を形成することを特徴とするカンチレバー型微小探針の製造方法。

【請求項2】 一端が基板に固定された微小カンチレバーの自由端近傍に、微小な針状突起が形成されてなるカンチレバー型微小探針であって、その微小な針状突起が、微小カンチレバーの自由端近傍に、Au, Cu, Nb, Ti, Co, Ni, Fe, Ag, Al, Pd, Pt, またはGeの集束イオンビームを直接蒸着することによって形成された、これらの元素の単体、もしくはこれらの元素を組み合わせた合金であることを特徴とするカンチレバー型微小探針。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えばSTM (走査型トンネル顕微鏡)、AFM (原子間力顕微鏡)等のSPM (探針走査型顕微鏡)の用いる探針として、あるいは磁気ヘッドとして用いることのできるカンチレバー型微小探針の製造方法と、その製造方法により得ることのできるカンチレバー型微小探針に関する。

[0002]

【従来の技術】探針と被測定試料との間に流れるトンネ ル電流を一定に保ちつつ探針を操作することによって試 料の表面状態を測定するSTMや、被測定試料と探針と の間に作用する力に起因する探針の変位(撓み)を一定 に保ちつつ探針を操作するAFM等をはじめとする、探 針走査型顕微鏡においては、一般に、一端が基板に固定 された微小なカンチレバーの自由端近傍に微小な針状突 起を備えた、いわゆるカンチレバー型微小探針が用いら れれる。このようなカンチレバー型微小探針を製造する 方法としては、従来、次にような方法が知られている。 【0003】一つは、単結晶を用いて、そのエッチング 異方性を利用する、レプリカ法と称される方法である。 その工程の概略を図1~図4に模式的に示す。まず、図 1(A)に断面図、(B)に平面図を示すように、Si 単結晶基板10の表面をSiO₂ 等のマスク11で覆 い、そのマスク11には微小な矩形孔11aを形成す る。次に、そのマスク11を介して、KOH, TMAH (テトラメチルアンモニウムハイドロオキサイド)、ヒ ドラジン、EDP (エチレンジアミンピロカテコール) 等のエッチャントを用いてSi単結晶基板10をエッチ ングすることにより、そのエッチング異方性を利用して 図2(A)に断面図、(B)に平面図を示すように四角

錐形の窪み10aを形成する。次に、その窪み10aを 埋め込むようにSi₃ N₄ 等の膜を成膜し、その膜をフ ォトリソグラフィ技術を用いてパターニングすることに よって、図3(A)断面図、(B)に平面図を示すよう に、一端部が窪み10a内に入り込んだ短冊状の膜12 を残す。次いでSi単結晶10の裏面側からのエッチン グにより、窪み10aの形成部分を含めた不要部分を除 去することによって、図4に斜視図を示すように、Si 台座100に一端が固定されたSi3 N4 製のカンチレ バー101の自由端近傍に、微小な四角錐形の針状突起 102を備えた構造のカンチレバー型微小探針を得る。 【0004】従来のカンチレバー型微小探針の製造方法 の他の一つは、サイドエッチングを利用する方法であ る。この方法は、図5(A), (B) に模式的に示すよ うに、Si等の基板20をレジスト膜等のマスク21を 介してエッチングによってパターニングしようとする際 に、そのエッチング量が大きいと、マスク21の下部に もエッチングが進行するサイドエッチングと称される現 象が生じるが、この現象を積極的に利用し、マスク21 の形状、大きさ、エッチング条件等を適当に選ぶこと で、カンチレバーの自由端近傍に円錐形または角錐形等 の微小探針を形成する方法である。

【0005】また、従来、数keV~50keV付近のエネルギを有するイオンビームは物質表面との相互作用としてのエッチング効果が大きく、イオンビームミリングとして応用されており、特に20~50keVのGa * 集束イオンビームは、ビーム径をサブミクロンオーダーまで絞り込むことができ、これを用いた高分解能のミリング加工技術が実用化されている。この技術によれば、フォトリソグラフィ技術と比較して格段に高い加工自由度が得られることから、このイオンビームミリング技術によって、前記した各製法により得られたカンチレバー型微小探針の微小針状突起部分等を追加工する方法が実用化されている。

[0006]

【発明が解決しようとする課題】ところで、従来のカンチレバー型微小探針の製造方法のうち、レプリカ法およびサイドエッチングを利用した方法においては、材料化学的性質を利用した方法であるため、適用できる材料に制約が多いという欠点がある。そのことを原因として、従来、例えばAFM等のプローブとして用いられるカンチレバー型微小探針は、これらの方法により製造可能なSiおよびSi。N、以外の材質では実用化されていない。

【0007】また、イオンビームミリング技術を利用してカンチレバー型微小探針を追加工する方法においては、微小探針の純度が低下してしまうという欠点がある。すなわち、20~50keVのイオンビームには、エッチング作用の他にイオン注入作用があるため、ミリング加工に用いられるGaが不純物として探針材料中に

混入してしまうことは避けられない。探針材料の純度が下がることで、探針材料の物理的あるいは化学的性質を積極的に利用する場合に、不利を生じる可能性がある。例えば探針材料に磁性体を用いて磁気力検知型のカンチレバー型微小探針を得ようとする場合、その磁性体の純度が下がることで透磁率、保磁力等が小さくなり、結果として感度が低下してしまうことになる。

【0008】更に、従来の製造方法においては、そのいずれも、バルク状の材料からの削り出しによって所望構造のカンチレバー型微小探針を得るため、材料の利用効率が著しく低いという欠点がある。

【0009】本発明はこのような実情に鑑みてなされたもので、カンチレバーの自由端近傍に形成される微小針状突起の材質の選択度が極めて大きく、しかも、従来の各製法に比して材料の利用効率の大きいカンチレバー型微小探針の製造方法と、それによって得ることのできる、未だ実用化されていない材質の微小針状突起を有するカンチレバー型微小探針を提供することを目的としている。

[0010]

【課題を解決するための手段】上記の目的を達成するため、本発明のカンチレバー型微小探針の製造方法は、一端が基板に固定された微小カンチレバーの自由端近傍の一点に、真空中にて低エネルギの集束イオンビームを連続照射することによりそのイオンを直接蒸着させて、金属または半導体の単体もしくは合金または化合物からなる微小針状突起を形成することによって特徴づけられる。

【0011】本発明のカンチレバー型微小探針の製造方法では、以上のようにして形成された微小針状突起に対して、当該微小針状突起に含まれる元素をイオン種とする集束イオンビームを用いたイオンミリングによって追加工してもよい。

【0012】更に、本発明のカンチレバー型微小探針は、一端が基板に固定された微小カンチレバーの自由端近傍に、Au, Cu, Nb, Ti, Co, Ni, Fe, Ag, Al, Pd, Pt, またはGeの集束イオンビームを直接蒸着することによって形成された、これらの元素の単体、もしくはこれらの元素を組み合わせた合金からなる微小針状突起が形成されていることによって特徴づけられる。

【0013】ここで、本発明の製造方法において、微小針状突起を除くカンチレバー本体の製造方法並びに材質は任意であり、また、本発明のカンチレバー型微小探針においても、カンチレバー本体の材質は限定されない。 【0014】

【作用】本発明は、集束イオンビーム直接蒸着法ではターゲット平面上での蒸着速度がイオンビームのビームプロファイルに反映する事実と、集束イオンビームのビームプロファイルはガウス分布に近似することを利用し

て、真空中で低エネルギ集束イオンビームを微小カンチ レバーの自由端近傍の一点に照射することにより、そこ に微小針状突起を形成しようとするものである。

【0015】すなわち、ターゲットの平坦な表面に集束イオンビームを照射すると、そのイオンのターゲットへの蒸着速度はイオンビームのビームプロファイル、すなわち密度の分布を反映する。この密度分布はガウス分布に近似しており、従って、このような集束イオンビームを低エネルギのもとにターゲットの一点に連続照射すると、図6(A)に示すように、集束イオンビームBの照射当初において、ターゲットTの表面に、ビームBの密度分布に応じて中央部分が盛り上がった薄膜下が成膜される(核の成長)。ここで、集束イオンビームを低エネルギでターゲットTに導くためには、ターゲットTの直前にイオンビームBを減速するための減速用の電場が形成されるが、上記した中央部分が盛り上がった薄膜下

(核)がターゲットTに形成されることによって、イオンビームBにとって減速場である電界分布が、核の形状に沿うように歪み、発散場が生成される。その状態を図6(A)に電気力線fと等電位線pによって示す。

【0016】このような発散場の生成状態で更に集束イオンビームの照射を継続すると、中心部と周辺部の蒸着速度差が助長され、図6(B)に示すように、更に中央部分が盛り上がり、かつ、電界分布の歪みも増大し、中央部分と周辺部分の蒸着速度差は更に広がる(核の成長)。

【0017】そして、最終的には、図6(C)に示すように、中心の点状領域だけが成長し、先鋭な形状を持つ微小針状突起Nが得られる。従って本発明の製造方法によれば、微小針状突起Nは従来の製法のように削り出すのではなく、平坦なカンチレバーの表面に蒸着形成するのであるため、材料の利用効率は著しく向上する。

【0018】また、本発明の製造方法において利用する 集束イオンビーム直接蒸着法によれば、殆どあらゆる金 属および半導体をイオン種として利用することができ、 従って、上述の微小針状突起Nの材質として、集束イオ ンビーム直接蒸着法で蒸着可能な種々の材質の微小針状 突起を自由端近傍に備えたカンチレバー型微小探針を得 ることができる。また、複数のイオン種を用いることに より、金属または半導体の合金ないしは化合物からなる 微小探針の形成も可能である。

【0019】ここで、以上の製造方法によって得られた 微小針状突起Nに対し、より先鋭化や柱状化を図るべく 追加工を行うに際しては、その微小針状突起Nに含まれ る元素をイオン種とする集束イオンビームを用いたイオ ンミリングを行うことによって、そのイオンミリング用 のイオンが微小針状突起N内に注入されても、これが不 純物となることがない。

【0020】一方、本発明のカンチレバー型微小探針は、上記の方法によって製造される微小針状突起をカン

チレバーの自由端近傍に備えているものであるが、従来の製造方法によっては得ることのできない材質、つまり未だ実用化されていない材質からなる微小針状突起を有する点を特徴としている。すなわち、微小針状突起として、従来実用化されているSiおよびSi $_3$ N $_4$ を除き、かつ、集束イオンビーム直接蒸着法により蒸着可能な材料、具体的には、Au、Cu、Nb、Ti、Co、Ni、Fe、Ag、Al、Pd、Pt、またはGeの元素のうち、任意のものの単体、またはこれらの合金からなる微小針状突起がカンチレバー型微小探針である。このような材質からなる微小針状突起を有するカンチレバー型微小探針を用いることにより、その材料の物性を利用した探針とすることができる。

[0021]

【発明の実施の形態】図7は本発明の製造方法の工程説明図である。まず、図7(A)に示すように、固定基板 1 に一端が固定された微小カンチレバー2を作成する。この固定基板 1 とカンチレバー2の材質はは特に限定されるものではないが、その一例として、固定基板 1 を 1

【0022】次に、図7(A)のカンチレバー2の自由端近傍の一点に、真空中において低エネルギの集束イオンビームを連続照射することにより、同図(B)に示すように、カンチレバー2の自由端近傍に微小針状突起3を形成する。この微小針状突起3の大きさは、例えば底辺の直径ないしは一辺が20~30μm程度で、高さも同様に20~30μmである。

【0023】図8にこのような低エネルギの集束イオンビームを連続照射するのに適した集束イオンビーム装置の構成例を示す。この例における集束イオンビーム装置は、ヒータにより加熱される液体金属イオン源81、そのイオン取り出し口に近接配置された引き出し電極82、イオン源81から引き出されたイオンを集束させるコンデンサレンズ83、質量分離器としてのE×Bマスフィルタ84およびビームアパーチャ85、ビームを走査して照射位置を位置決めするための偏向電極86、ターゲットTの直前でイオンビームを集束させる対物レンズ87、ターゲットTを支持するターゲットホルダ88を碍子Gを介して

支承するステージ89を主要構成要素とし、これらは真 空チャンバ80内に収容されている。

【0024】液体金属イオン源81には加速電極91により正の電位が与えられ、この液体金属イオン源81と引き出し電極82との間には、両者間にイオン源81内のイオンを引き出すに十分な電位差が与えられる。

【0025】また、碍子Gによって他の構成要素に対して電気的にフローティング状態に支持されたターゲットホルダ88には減速電源92が接続されており、このターゲットホルダ88と、3枚電極構造を持つ静電レンズである対物レンズ87のターゲットホルダ88側の外部電極との間に、減速電場が形成されるようになっている。なお93は液体金属イオン源81を加熱するためのヒータ電源であり、94はシリング等に装着されて随時にイオンビーム中に引き出されてイオンビーム電流をモニタするためのファラデーカップである。

【0026】以上の構成により、液体金属イオン源81から引き出されて加速されたイオンはコンデンサレンズ83によって集束されるとともに、次段のE×Bマスフィルタ84およびビームアパーチャ85によって所望イオンのみが選別され、更にその単一種のイオンからなるビームは偏向電極86を経て対物レンズ87によって更に集束され、微小スポットとなっターゲットホルダ88上のターゲットTの表面に結像するが、ターゲットTの直前に形成される減速電場によりイオンは減速され、結局、ターゲットTに到達するイオンビームは、加速電源91によるイオン源81の電位と、減速電源92によるターゲット電位との差分だけの最終エネルギを以てターゲットTに到達する。

【0027】このような減速機能を持つ集束イオンビーム装置を用いて、図7(A)に示したカンチレバー2の自由端近傍の一点に、所望のイオン種からなるイオンビームを所定の低エネルギに減速して連続照射することにより、図7(B)に示した微小針状突起3が得られる。例えば、集束イオンビームとしてAu*ビームを用いて、これを50eVのエネルギでカンチレバー2の自由端近傍の一点に連続照射することにより、前記した図6(A)~(C)に示した過程により、高純度のAuを材質とする微小針状突起3が形成され、AFM用のカンチレバー型微小探針が得られる。

【0028】ここで、AFM用のカンチレバー型微小探針における微小針状突起をAuとすることは、被測定試料に対して化学的に不活性であり、被測定試料との間で一切の化学反応が生じないことを意味し、特に化学的に活性な試料の測定に際して有効である。また、比較的柔らかいので、被測定試料を傷つけることがなく、しかも酸化による導電性の劣化が生じないが故に、STMに用いた場合、寿命が長くなる、といった利点がある。

【0029】また、低エネルギ集束イオンビームとして、Co⁺, Co²⁺等の磁性体のイオンビームを用いれ

ば、AFM用センサと同様の構造を持つMFM(磁気力 顕敞鏡)用のカンチレバー型微小探針が得られる。すな わち、MFMでは、被測定試料と探針との間に作用する 磁気力を一定量に保ちつつ探針を走査することにより、 被測定試料の磁気分布を測定するが、その探針としては 磁性体である必要があるが、本発明によってこのような 探針としてAFM用センサと同等の構造のものが得られ る。そして、このような磁性体の微小針状突起を有する カンチレバー型微小探針は、磁気ヘッドとしても用いる ことができ、現在知られている構造の磁気ヘッドに比し て大幅な小型化を達成することができる。

【0030】本発明の製造方法において、微小針状突起 3を構成する材料は以上の例に限られず、イオン化して 集束イオンビームにすることのできる材料であれば任意 の材料を用いることができる。また、複数種のイオン種 からなる低エネルギ集束イオンビームを交互または同時 に照射することにより、これらのイオン種の合金または 化合物からなる微小針状突起3を形成することができ る。現時点においてこのような集束イオンビーム化が可 能な材料としては、上記のAu, Coのほか、Cu, N b, Ti, Co, Ni, Fe, Ag, Al, Pd, Pt の金属、およびSi,Geの半導体が確認されており、 従って本発明の製造方法においては、微小針状突起3の 材質としてこのような元素を単体で、あるいは適宜に組 み合わせた合金または化合物で作成することができる。 【0031】また、本発明のカンチレバー型微小探針 は、その微小針状突起3の材質としては、上記した元素 の単体あるいは合金または化合物のうち、従来実用化さ れているSiを除く全ての材質とすることができる。

【0032】このように微小針状突起3の材質のバリエーションを大きくすることは、被測定試料との組み合わせや測定しようとする物性との関連において、最適な材質の微小針状突起3を有するカンチレバー型微小探針を用いることを可能とし、各種SPMによる測定対象(試料、物性)を広げることができる。

【0033】ここで、上記した実施の形態においては、カンチレバー2の微小針状突起3の形成箇所を平坦面とした例を述べたが、カンチレバー2上の微小針状突起3を形成すべき位置を、あらかじめ盛り上がった形状としておいてもよい。

【0034】すなわち、図9に製造工程の説明図を示すように、まず、カンチレバー2の微小針状突起3を形成する位置に、同図(A)のようにあらかじめ盛り上がり部2aを形成しておく。これにより、図8に例示した集束イオンビーム装置のターゲットホルダ88にカンチレバー2を支持したとき、図9(A)に等電位線Pを示すように減速場は当初から歪んだものとなる。この位置に低エネルギ集束イオンビームを連続的に照射すると、イオンの蒸着速度は、そのビームの密度分布と併せて盛り上がり部2aの中心部が周辺部に比して大きくなり、前

記した図6(B)の状態から集束イオンビームを照射した場合と同等の作用が得られ、その結果、図9(B)に示すように、盛り上がり部2aの上に先鋭な先端を持つ微小針状突起3′が得られる。

【0035】次に、以上の本発明方法の各実施の形態に よって得られたカンチレバー型微小探針の微小針状突起 3または3、に対して、追加工する方法について述べ る。図10(A)に示すようなアスペクト比の大きなラ インアンドスペース構造を持つ試料、これは光学グレー ティングの典型的な構造であるが、このような試料をA FM観察する場合等においては、上記した本発明の製造 方法によって得られた微小針状突起3または3′によっ ても、あるいは前記した従来の製造方法によって得られ た微小針状突起によっても、AFM像の忠実度が低下す る。すなわち、本発明の製造方法および従来の各製造方 法により得られる微小針状突起の形状は、角錐または円 錐に近い形状となる。このような錐形の微小針状突起に より図10(A)のようなプロフィールを持つ試料を測 定する場合、同図(B)に示すように、微小針状突起N と試料とが干渉し、AFM像の忠実度が悪化する。この ような場合、微小針状突起Nの形状をより柱状に近い形 に追加工することで、図10(C)に示すように微小針 状突起Nと試料との干渉を低減させ、AFM像の忠実度 を改善することが可能となる。

【0036】このような追加工に際しては、従来、Gaイオンを用いたイオンミリング技術が採用され、その結果としてGaが不純物として微小針状突起に注入されてしまうことは前記した通りであるが、本発明では、微小針状突起Nの材質に含まれる元素のイオンを用いた集束イオンビームによるイオンミリングを行うことで、そのような不純物の混入を防止する。

【0037】図11にその追加工の例を示す。この例において、前記した本発明の製造方法によって作成した微小針状突起3が例えばAuである場合、イオンミリング用の集束イオンビームとして、エネルギ20keVのAu⁺イオンビームを用いる。この場合、図11(A)に示すように、微小針状突起3を形成したときの集束イオンビームよりもビーム径をより小さくし、図8に例示した集束イオンビーム装置の偏向電極86によって、そのビームを円形に走査する。これにより、微小針状突起3は同図(B)に示すようによりアスペクト比の高い柱状に加工され、図10(A)に示したような試料でもそのAFM像の忠実度が改善される。

【0038】この方法において特に注目すべき点は、微小針状突起3を構成する元素のイオンビームによりイオンミリングする点であり、これにより、イオンミリングに用いるイオンが微小針状突起3に注入されても不純物とならなくなり、追加工により微小針状突起3の純度が低下することがない。

【0039】また、このような微小針状突起の追加工の

他の形態として、前記した本発明方法により得た角錐または円錐状の微小針状突起3または3′を、上記と同様に、そこに含まれる元素のイオンからなる集束イオンビームによって、例えばある特定の側面を削り取ることで非対称な形状に加工することもできる。

【0040】また、本発明の応用として、微小針状突起に意図的に特定の金属元素を不純物として注入することも可能である。すなわち、例えばSi製の微小針状突起に、AuやAl等の金属を注入し、導電性を高める等の応用が可能である。

[0041]

【発明の効果】以上のように、本発明方法によれば、低エネルギ集束イオンビームをカンチレバーの自由端近傍の一点に連続的に照射することによって、そこに微小針状突起を形成するから、集束イオンビームのイオン種として用いることのできる、殆ど全ての金属および半導体からなる微小針状突起を有するカンチレバー型微小探針を得ることができる。しかも、その微小針状突起は従来の方法のように母材から削りだすのではないため、材料の利用効率を大幅に向上させることができるとともに、高い純度の微小針状突起を持つカンチレバー型微小探針を得ることができる。

【0042】また、微小針状突起の材質の選択度が従来の製造方法に比して大幅に大となる結果、従来実用化されていない材料からなるカンチレバー型微小探針が得られ、例えば磁性体の微小針状突起を形成することによって磁気力顕微鏡用のプローブとして、あるいは磁気ヘッドとして使用可能なカンチレバー型微小探針を得ることができ、Auを用いることによって被測定試料に対して

化学的に不活性で、柔らかいために被測定試料を傷つけることなく、しかも酸化による導電性の劣化がないため STMに用いて寿命の長いカンチレバー型微小探針が得 られる。

【図面の簡単な説明】

【図1】従来のレプリカ法によるカンチレバー型微小探 針の製造方法の一工程の説明図

【図2】同じく従来のレプリカ法によるカンチレバー型 微小探針の製造方法の一工程の説明図

【図3】同じく従来のレプリカ法によるカンチレバー型 微小探針の製造方法の一工程の説明図

【図4】従来のレプリカ法により得られたカンチレバー 型微小探針の構造を示す斜視図

【図5】サイドエッチングを利用して従来のカンチレバー型微小探針の製造方法の説明図

【図6】本発明の製造方法の実施の形態における微小針 状突起の形成過程の説明図

【図7】本発明の製造方法の実施の形態の工程説明図

【図8】本発明の製造方法に用いるのに適した集束イオンビーム装置の構成図

【図9】本発明の製造方法の他の実施の形態における微小針状突起の形成過程の説明図

【図10】微小針状突起の追加工の必要性の説明図

【図11】本発明の製造方法における微小針状突起の追加工を行う際の実施の形態の説明図

【符号の説明】

- 1 固定基板
- 2 カンチレバー
- 3,3′ 微小針状突起

