

Charles friend a Sett the set x2+y223 satisfies V(x) < = 50 V3/2 is a trapping region now v=0 on x=0, but x=y on this line (see how we've used V = 0 to identify a set that contains the invariant set) trajectorier stay on their line only if y=0 So the largest invariant set contains only the origin > the origin is asymptotically stable art to FURTHER, WE WILL LATER SHOW that this system has a periodic orbit enclosing the origin thus shows it must be outside the circle x2+y2=3 EXAMPLE $\ddot{X} + a\dot{x} + b\dot{x} + \chi^3 = 0$ Rewrite as $\begin{cases} \dot{x} = y \\ \dot{y} = -ay - bx - x^2 \end{cases}$ $V = \frac{1}{2}y^2 + \frac{1}{2}bx^2 + \frac{x^3}{3}$ is not positive definite but it is on smaller regions $V = -ay^2$ containing origin V = -a y²

fixed of (-b,0) saddle, (0,0) stable spiral

from big in basin of attraction?

level sets of V

	lecture 14-3
·····	
	défine 3 quantities V as above
······································	W = X + B
***************************************	W2=y+a(x+B) some B>0 to be determined
a	define a region $R = \frac{3}{2}(x,y) \left \sqrt{\frac{1}{2}a^2\beta^2}, W, \frac{3}{2}o, y + a(x+\beta) \right $
· Andrika Ira iki isawa a a a a a a a a	V < 0 on cured boundary:
	W=0 a vertical time X=-P, W= X=y 50 our region only bounded by W,
/ABS1111//A1110////////////////////////////	for y > 0
	note W=0 intersects W=0 at (-β,0)
·····	
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	$W_1 = 0$ (o) $\beta = \alpha$ λ
	$= -ay - bx - x^2 + ay$
1881841841841111848888888118418	= -x(b+x)
110000 222012102202	Want Wz>0, true for - b < x < 0
	see the segment defined by Wz = 0 satisfies
	10,-6a) 102=0 B -B < X < 0
· · · · · · · · · · · · · · · · · · ·	(0,-fa) 50 choose 0 < B < b
	this in true 4B < b so
	$R = \frac{1}{2}(x,y) \left[V(x,y) < \frac{1}{2}a^2b^2, x>B, y+a(x+b)>0 \right]$ is a trapping
	teyion
	MAMA 12
	hote however, If on the homoclinic loop V=V(-b,0)= 5
	$\frac{1}{2}a^{2}b^{2} < \frac{b^{3}}{2}$
	a ² < \frac{1}{3} we have this picture
	K by the
	50 the interior of the homoclinic loke
	is a larger trapping region
ne en est actoris estillor tra tra est esta esta esta esta esta esta esta	
A. 1950 (1951 1950 1950 1950 1950 1950 1950 1950	

	Cecture 14-5
1	Theorem: Conservation of Energy
**************************************	$\frac{dH}{dt} = 0 \text{proof} \frac{dH}{dt} = \frac{\partial H}{\partial x} \cdot x + \frac{\partial H}{\partial y} \cdot y = \frac{\partial H}{\partial x} \cdot \frac{\partial H}{\partial y} - \frac{\partial H}{\partial y} \cdot \frac{\partial H}{\partial x} = 0$
	Theorem Conservation of phase space if R is a set of initial conditions in section 2.3 then $V(\Re_t(R_0)) = V(R_0)$ & from $Hw f$, we know
.,.	Proof Volume is preserved $rightarrow 9.f = 0$
	2/2/1
	$\nabla \cdot f = \partial_{x} \left(\frac{\partial H}{\partial y} \right) + \partial_{y} \left(-\frac{\partial H}{\partial x} \right) = 0$
	Corollary A Lawiltonian has no attracting, (or repelling) fixed pts
	pl comment by light
	Ple Suppose O is an attracting fixed pt Alt S be a neighborhood st $\forall x \in N_S(0)$, lim $\mathscr{P}_t(x_0) = 0$
	at fixed t, lit $\rho(t) = \max_{N_8} q_t(x_0) $, and $\rho(t) \xrightarrow{>0} N_8$
.,.	thus $V(\phi_t(R_0)) \leq C_{\rho}(t)^{2N} \longrightarrow 0$
i gara	Contradiction
	So no attracting fixed points

***	Dall byied pts are (nonlinear) centers + & saddles
	example you know X + 5 m X = 0 , sewral
***	$H = \frac{1}{2}y^2 + (1 - \cos x)$
	level sets are trajectories
•••	
.,,.	

 \overline{u}

- 4