[1] Let curry be the transformation defined by curry(f) = $\lambda x_1, \lambda x_2, f(x_1, x_2)$. Also, let uncurry be the transformation defined by uncurry(f) = $\lambda x.f(fst x)$ (snd x). Prove the following facts:

(a) If
$$\Gamma \vdash f : \tau_1 \times \tau_2 \to \tau$$
 then $\Gamma \vdash curry(f) : \tau_1 \to \tau_2 \to \tau$.

(b) If
$$\Gamma \vdash f : \tau_1 \to \tau_2 \to \tau$$
 then $\Gamma \vdash uncurry(f) : \tau_1 \mathrel{X} \tau_2 \to \tau$.

a)

We consider a function $f(x_1, x_2)$ taking two arguments, and having the type $(x_1, x_2) \rightarrow z$. The curried form of f is defined as:

$$curry(f) = \lambda x_1.(\lambda x_2.(f(x_1, x_2)))$$

Since curry takes, as input, functions with the type $(x_1 \times x_2) \to z$, one concludes that the type of curry itself is:

$$curry: ((x_1 \times x_2) \rightarrow z) \rightarrow (x_1 \rightarrow (x_2 \rightarrow z))$$

b)

We consider a function that takes functions with the type $(x_1 \times x_2)$, and having the type $(x_1 \times x_2)$ \rightarrow z. The uncurried form of f is defined as:

$$uncurry(f) = \lambda x.f(fst x) (snd x)$$

Since curry takes, as input, two arguments, and having the type type $(x_1, x_2) \rightarrow z$, one concludes that the type of uncurried itself is:

$$curry: (x_1 \rightarrow (x_2 \rightarrow z)) \rightarrow ((x_1 \times x_2) \rightarrow z)$$

[2] Let α list = $\mu\alpha'$.unit+($\alpha \times \alpha'$). Write the recursive function map which, given a list $[v_1; v_2; ...; v_n]$ and a function f as arguments, returns the list $[v'_1; v'_2; ...; v'_n]$ where, for each $i \in [1, ...; n, v'_i]$ is the evaluation result of applying f to v_i (i.e., the returned list is the given list but with f applied to each element). Write the function so that \vdash map : τ_{map} where $\tau_{map} = \forall \alpha_1. \forall \alpha_2. \alpha_1$ list \rightarrow ($\alpha_1 \rightarrow \alpha_2$) \rightarrow α_2 list. Also, show the derivation of \vdash map : τ_{map} . For this question, use System F style explicit polymorphism. (Hint: map should be of the form fix $m.\Delta\alpha_1.\Delta\alpha_2.\lambda ls:\alpha_1$ list. $\lambda f:\alpha_1 \rightarrow \alpha_2...$).

fix m. $\Delta\alpha_1$. $\Delta\alpha_2$. λ ls: α_1 list. λ f: $\alpha_1 \rightarrow \alpha_2$.if λ EMPTY α_1 then () else (f α_1) (m α_2 f)

[3] For this question, assume equi-recursive type equivalence (i.e., $\mu\alpha.\tau$ is implicitly equated with $[\mu\alpha.\tau/\alpha]$). The term $\omega = (\lambda x.x \ x)$ ($\lambda x.x \ x$) is not typable in the simple type system but is typable with recursive types. Indeed, below is the type derivation $\vdash \omega : \tau_{\omega}$ where $\tau_{\omega} = \mu\alpha.\alpha \rightarrow \alpha$:

Note that this is a correct derivation because, by equi-recursive type equality, $\tau_{\omega} = \mu\alpha.\alpha \rightarrow \alpha = (\mu\alpha.\alpha \rightarrow \alpha) \rightarrow (\mu\alpha.\alpha \rightarrow \alpha) = \tau_{\omega} \rightarrow \tau_{\omega}$.

Can every closed pure λ term be typed with recursive types? If yes, then write a proof of the claim. If no, then give an example of a closed pure λ term that is not typable with recursive types.

The term $\omega = \lambda x.xx$ is not typable with recursive types.