Revisit Systematic Generalization via Meaningful Learning

Ning Shi, Boxin Wang, Wei Wang, Xiangyu Liu, Zhouhan Lin ning.shi@ualberta.ca, boxinw2@illinois.edu, {luyang.ww,eason.lxy}@alibaba-inc.com, lin.zhouhan@gmail.com

Introduction

Humans can systematically generalize to novel compositions of existing concepts. Recent studies argue that neural networks appear inherently ineffective in such cognitive capacity, leading to a pessimistic view and a lack of attention to optimistic res ulte

In contrast, the successful one-shot generalization in the turn-left experiment on the Simplified CommAl Navigation (SCAN) task reveals the potential of seq2seq recurrent networks in controlled environments (Lake and Baroni, 2018).

Question by Lake and Baroni (2018) on page 8

"What are, precisely, the generalization mechanisms that subtend the networks' success in these experiments?"

Meaningful Learning

In educational psychology, meaningful learning refers to learning new concepts by relating them to old ones (Ausubel, 1963).

On the contrary, rote learning stands for learning ne concepts without the consideration of relationships.

> USA US

United States

generalization from the old concept "walk left" to he new one "turn left and walk" in SCAN.

From - "walk left and jump left" To - "turn left and walk and jump left"

Old concept - "walk left" New concept - "turn left and walk"

Connect both by pointing to LTURN WALK:

- Inductive Learning
 - Deductuive Learning

The United States of America The United States of America Rote Learning Inductive Learning

US United States

USA

Inductive learning is a bottom-up approach from the more specific to the more general. In grammar teaching, inductive learning is a rule-discovery approach starting with the presentation of specific examples from which a general rule can be inferred.

100% 80% 60% 40% 20% 10%

uctive Learning, the opposite of inductive learning,

is a top-down approach from the more general to the more specific. As a rule-driven approach, teaching in a deductive manner often begins with presenting a general rule followed by specific examples in practice here the rule is applied

Setup - we treat concepts in the initial data set as primitives and generate variant samples and rules accordingly. Next, we mix them up and construct a seq2seq task after a random split. We repeatedly train and evaluate models but slowly decrease the number of times they see each variant until one-shot learning. Results - we observe there is hardly a performance drop for three representative model structures. This evidences that,

with semantic linking, even canonical neural networks can generalize systematically to new concepts and compositions SCAN RNN CNN TEM Size (1e5) SCC. raining Data Sed.

Semantic Linking Injection

% 80% 60% 40% 20% 10% 10 hples per Variant

We increase the difficulty of compositional generalization by excluding from the training set the primitive samples for inductive learning (left) and primitive rules for deductive learning (right).

Data	Model		Token Acc.%		Seq. Acc.%			Data	Model	Token	Acc.%	Seq. Acc.%	
Dun	Alouti	Standard	Difficult	Challenging	Standard	Difficult	Challenging			Standard	Difficult	Standard	Difficult
	RNN	99.99 ± 0.03	99.89 ± 0.19	99.96 ± 0.02	99.95 ± 0.08	99.85 ± 0.08	99.80 ± 0.31		RNN	99.48 ± 0.71	98.70 ± 0.92	98.27 ± 2.38	95.39 ± 2.72
SCAN	CNN	99.96 ± 0.08	99.76 ± 0.54	98.89 ± 2.44	99.85 ± 0.34	99.52 ± 1.07	97.57 ± 5.24	SCAN	CNN	99.99 ± 0.01	98.59 ± 3.10	99.96 ± 0.03	96.66 ± 7.27
	TFM	98.91 ± 0.78	98.90 ± 1.10	98.76 ± 0.85	97.35 ± 1.62	96.86 ± 2.64	96.38 ± 2.81		TFM	96.90 ± 1.78	96.68 ± 2.21	91.94 ± 4.04	91.26 ± 5.80
	RNN	75.71 ± 8.42	75.69 ± 6.12	73.46 ± 3.05	44.95 ± 14.69	43.27 ± 13.47	36.77 ± 5.60		RNN	54.44 ± 7.15	39.71 ± 18.38	13.61 ± 7.08	7.76 ± 5.34
GEO	CNN	87.99 ± 2.67	79.51 ± 6.03	77.40 ± 2.48	69.46 ± 5.78	51.20 ± 8.64	48.58 ± 3.40	GEO:	CNN	41.86 ± 3.38	41.07 ± 7.48	4.85 ± 4.66	4.04 ± 2.18
	TFM	75.37 ± 7.84	75.11 ± 4.88	68.41 ± 4.76	45.93 ± 12.42	44.59 ± 9.76	36.93 ± 7.47		TEM	67.02 ± 6.91	65.97 ± 5.17	36.38 ± 10.08	31.57 ± 7.42
	RNN	58.61 ± 6.18	59.74 ± 5.67	58.11 ± 5.82	36.18 ± 5.75	35.69 ± 6.05	35.45 ± 6.69		RNN	36.50 ± 7.66	36.42 ± 7.39	12.84 ± 4.31	12.66 ± 5.19
ADV	CNN	57.83 ± 7.55	54.05 ± 5.74	53.66 ± 2.57	45.08 ± 9.32	42.14 ± 6.90	41.37 ± 4.04	ADV	CNN	43.51 ± 11.31	35.34 ± 14.68	32.33 ± 12.93	23.58 ± 16.04
	TFM	53.43 ± 2.80	51.51 ± 4.50	49.17 ± 2.58	42.59 ± 3.65	41.28 ± 4.35	38.88 ± 2.68		TFM	56.82 ± 3.79	53.33 ± 3.85	47.43 ± 3.71	43.24 ± 5.14
_													

Proof of Conc

	IMSET'14				1WSLT'15					Gosgraphy				Advising			
Medel	En-De		Do-En		Ea-Fr		Fr-En		Medd	Train		Tot		Train		Test	
	BLEU	SecreBLEU	BLEU	SecreBLEU:	BLEU	Sucrefilli	BLEU	SacreSLEU		Taken Acc. %	Seq. Acc. S	Tokum Acc.%	Seq. Acc. %	Token Acc. %	Seq. Acc.%	Taken Acc. %	Seq. Acc. 9
Basilines									Barlon								
LSTM (Luong et al., 2015)	24.98	24.88	30.18	30.62	38.06	42.99	3534	39.36	8000	89.05	17.39	69.81	5.68	92.22	3.64	60.41	6.11
Transformer (Vasvani et al., 2017)	38.95	28.85	35.24	37.60	41.82	45.41	40.45	42.61	CNN	96.45	79.74	78.44	55.90	99.74	81.62	\$1.74	51.13
Dynamic Conv. (We et al., 2009)	27.39	27.28	33.33	35.54	40.41	4532	39.60	41.42	TFM	99.45	8495	80.24	49.82	99.68	76.90	28.51	29.67
*Veobulary Augmentation									*East	Augmentation							
LSTM (Loong et al., 2015)	25.351	25.385 _{1.50}	33.995	33.630	38.325	43.385cm	37,775 nam	29.820	RNN	\$7.47	29.96	72.391-14	15.051	88.82	30.97	71.175 n.m.	15.060 and
	29.401 6.60		35.727 6.48	38.077 (4.67	42.19% _{0.07}	46.6871.27	41.845,39		CNN	97.54	76.03	80.327 _{1.86}	60.9971.00	99.65	87.04	84.507230	56.0274.00
Dynamic Core, (We et al., 2009)	27,690 am	27.50% cm	33.627s m	36.001 nam	40.575nm	45.991 mm	39.555 na	41,867	7274	99.30	85.75	81.891 _{has}	54.841 cm	59.5T	86.54	\$4.267cm	35.085

