Name:

Please write your solutions in an organized and systematic manner; use scratch paper to solve the problems first and then write up a neat solution with the relevant work shown.

1. Consider the following sets

$$A = \{-1, 1, 2\}$$

$$B = \emptyset$$

$$C = \{x \in \mathbb{Z}; x^4 - 5x^2 + 4 = 0\}$$

$$D = \{x \in \mathbb{N}; \cos(x) = 0\}$$

- (a) Which of these four sets are equal?
- (b) What is the cardinality of C?
- (c) Find two sets among these such that one will be a proper subset of the other.
- (d) Find $A \cup C$ and $A \cap C$.
- (e) Find $A \cap B$.

- 2. Give an example of three sets A, B and C such that $B \neq C$ but $B \setminus A = C \setminus A$.
 - [5 pts]

3. Give an example of four different subsets A, B, C and D of $\{1, 2, 3, 4\}$ such that all 6 intersections of two of them (i.e. $A \cap B$, $A \cap C$, $A \cap D$, $B \cap C$, etc.) will be distinct. [5 pts]

4. Find an example of two infinite subsets A_1 and A_2 of \mathbb{N} , satisfying $A_1 \cap A_2 = \emptyset$ and $A_1 \cup A_2 = \mathbb{N}$. [5 pts]

5. For
$$A = \{1, 2\}$$
 and $B = \{4\}$, determine $\mathcal{P}(A \times B)$. [5pts]

6. (extra credit) [5 pts]

(a) Find an example of three infinite subsets A_1, A_2 and A_3 of \mathbb{N} , such that $A_1 \cap A_2 = \emptyset$, $A_1 \cap A_3 = \emptyset$ and $A_2 \cap A_3 = \emptyset$ and $A_1 \cup A_2 \cup A_3 = \mathbb{N}$.

- (b) Find an example of a family $\{A_n\}_{n\in\mathbb{N}}$ satisfying the following conditions:
 - each A_n is an infinite subset of \mathbb{N} ;
 - $A_n \cap A_m = \emptyset$ for any two distinct indices n and m;
 - $\bigcup_{n\in\mathbb{N}} A_n = \mathbb{N}$.