

Aprendizado por Reforço

Programação dinâmica (Experimento 3 — iteração de política truncada)

Implementação

Algoritmo de iteração de política truncada

Algorithm 4.3: Truncated policy iteration algorithm

Initialization: The probability models p(r|s,a) and p(s'|s,a) for all (s,a) are known. Initial guess π_0 .

Goal: Search for the optimal state value and an optimal policy.

While v_k has not converged, for the kth iteration, do

Policy evaluation:

Initialization: select the initial guess as $v_k^{(0)} = v_{k-1}$. The maximum number of iterations is set as j_{truncate} .

While $j < j_{\text{truncate}}$, do

For every state $s \in \mathcal{S}$, do

$$v_k^{(j+1)}(s) = \sum_a \pi_k(a|s) \left[\sum_r p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v_k^{(j)}(s') \right]$$
 Set $v_k = v_k^{(j_{\text{truncate}})}$ Policy improvement:
$$\sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s') \right]$$
 For every state $s \in \mathcal{S}$, do

For every action $a \in \mathcal{A}(s)$, do

$$q_k(s, a) = \sum_r p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_k(s')$$

 $a_k^*(s) = \arg\max_a q_k(s, a)$
 $\pi_{k+1}(a|s) = 1$ if $a = a_k^*$, and $\pi_{k+1}(a|s) = 0$ otherwise