Homework XX

MATH 591 Mathematics of Machine Learning Fall 2019

due: 5pm Oct 24, submit on mycourses

Homework based on Lectures Oct 8-Oct 17

- 1. PAC learning of hyper rectangles. Mohri Chapter 2, question 2.2.
- 2. PAC learning of intervals. Mohri Chapter 2, question 2.9 (hint: do question 2.8 to warm up).
- 3. Stochastic Gradient Descent (SGD) theory. Suppose f is μ -strongly convex and L-smooth. Consider the abstract SGD iteration $x_{k+1} = x_k h_k(\nabla f(x_k) + e_k)$, where e_k is random with mean zero and variance σ^2 . Prove the following variant of the basic lemma,

$$\mathbb{E}[q(x_{k+1}) \mid x_k] \le (1 - \mu h_k)q(x_k) + \frac{1}{2}h_k^2 \sigma^2$$

provided $0 < h_k \le 1/L$.

- 4. Stochastic Gradient Descent (SGD) implementation. Let $x_1, \ldots x_m$ be be random i.i.d. chosen uniformly on [-1,1]. Consider the function $f(x) = \frac{1}{m} \sum_{i=1}^{m} (x-x_i)^2/2$. Take m = 1000
 - (a) Find the best constants μ -convex and L-smooth for f. Find x^* and f^* .
 - (b) Perform gradient descent $x_{k+1} = x_k h_k(\nabla f(x_k))$ with $h_k = 1/2L$. Plot $\log(f(x_k) f^*)$ against k.
 - (c) Perform SGD $x_{k+1} = x_k h_k \nabla_{mb} f(x_k)$ where ∇_{mb} is the gradient of a random mini-batch of f of size 100. (Scale the function by 1/100 instead of 1/m). Choose $h_k = 1/2L$ for k = 1, ... 100, then divide h by 5 and run for another 100 steps. Repeat this two more times. Plot the gap $f(x_k) f^*$ as a function of k.
 - (d) Repeat the last step, but now tune the time step in order to optimize f to the best possible. The results will be noisy, so you will need to plot the average values of f over 10 different runs. Compare the average over 10 runs of your tuned SGD to the original schedule.
- 5. Convexity and Smoothness. Let $f(x) = ||Mx b||^2/2$. Find the best μ -convexity and L-smoothness constants for f(x) in terms of M and b.