Name : Amishi Anand Batch: aimlmyb0524

Problem Statement

In the financial sector, accurately predicting whether a loan applicant is likely to repay their loan is crucial for minimizing financial risk and maximizing returns. Traditional manual methods of evaluating loan applicants are time-consuming and prone to human error. With the increasing availability of applicant data, there is a need for a robust machine learning solution that can classify loan applicants based on their likelihood of loan repayment.

The goal of this project is to build a machine learning model that can classify loan applicants into categories (approved or rejected) based on a variety of applicant data, such as income, credit history, and employment status. By using historical loan data, we will build a predictive model that automates the loan approval process, helping to minimize financial risks and streamline decision-making.

Content - The loan_detection.csv file contains a set of 41188 records under 60 attributes:

- 1. Loan ID: A unique identifier for each loan application.
- 2. Gender: The gender of the loan applicant.
- Marital Status: The marital status of the applicant.
- 4. Dependents: The number of dependents.
- 5. Education: The education level of the applicant.
- 6. Self Employed: Whether the applicant is self-employed or not.
- 7. Applicant Income: The income of the loan applicant.
- 8. Coapplicant Income: The income of the coapplicant (if applicable).
- 9. Loan Amount: The amount of the loan.
- 10. Loan Amount Term: The term of the loan in months.
- 11. Credit History: Whether the applicant has a good credit history.
- 12. Property Area: The area type where the property is located (urban, semiurban, rural).
- Loan Status: Indicating whether the loan was approved or rejected.

AIM: Using machine learning techniques to predict loan payments.

Target value: Loan_Status

Importing Required Libraries

```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        import sklearn
        from sklearn.model_selection import train_test_split
        from sklearn.linear_model import LogisticRegression
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier
        import xgboost
        from xgboost import XGBClassifier
        from sklearn.preprocessing import StandardScaler
        from sklearn.model selection import GridSearchCV, RandomizedSearchCV
        from sklearn.metrics import confusion_matrix, accuracy_score, classification_report
        import warnings
        warnings.filterwarnings('ignore')
```

Load Sample Dataset

Out[2]:

	age	campaign	pdays	previous	no_previous_contact	not_working	job_admin.	job_blue- collar	job_entrepreneur	job_housemai
0	56	1	999	0	1	0	0	0	0	
1	57	1	999	0	1	0	0	0	0	
2	37	1	999	0	1	0	0	0	0	
3	40	1	999	0	1	0	1	0	0	
4	56	1	999	0	1	0	0	0	0	

5 rows × 60 columns

Basic EDA

- Imbalance Data
- Missing Data
- Duplicate Data
- Outliers or Anomalies
- Data Visualization
- Feature Encoding
- Feature Selection

In [3]: df.shape

Out[3]: (41188, 60)

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41188 entries, 0 to 41187
Data columns (total 60 columns):

# 	Column	Non-Null Count	Dtype
0	age	41188 non-null	int64
1	campaign	41188 non-null	int64
2	pdays	41188 non-null	
3	previous	41188 non-null	int64
4	no_previous_contact	41188 non-null	
5	not_working	41188 non-null	
6	job_admin.	41188 non-null	int64
7	job_blue-collar	41188 non-null	
8 9	<pre>job_entrepreneur job_housemaid</pre>	41188 non-null 41188 non-null	int64 int64
10	job_management	41188 non-null	int64
11	job_management job_retired	41188 non-null	
12	job_self-employed	41188 non-null	int64
13	job services	41188 non-null	int64
14	job_student	41188 non-null	
15	job_technician	41188 non-null	int64
16	job_unemployed	41188 non-null	int64
17	job_unknown	41188 non-null	int64
18	marital_divorced	41188 non-null	int64
19	marital_married	41188 non-null	int64
20	marital_single	41188 non-null	
21	marital_unknown	41188 non-null	int64
22 23	education_basic.4y	41188 non-null 41188 non-null	int64 int64
23 24	education_basic.6y	41188 non-null	int64
25	education_basic.9y education_high.school	41188 non-null	int64
26	education_illiterate	41188 non-null	
27	education_professional.course	41188 non-null	
28	education_university.degree	41188 non-null	int64
29	education_unknown	41188 non-null	int64
30	default_no	41188 non-null	int64
31	default_unknown	41188 non-null	int64
32	default_yes	41188 non-null	int64
33	housing_no	41188 non-null	int64
34	housing_unknown	41188 non-null	int64
35	housing_yes	41188 non-null	int64
36	loan_no	41188 non-null	
37 38	loan_unknown	41188 non-null 41188 non-null	int64 int64
39	loan_yes contact_cellular	41188 non-null	
40	contact_telephone	41188 non-null	int64
41	month_apr	41188 non-null	int64
42	month_aug	41188 non-null	int64
43	month_dec	41188 non-null	int64
44	month_jul	41188 non-null	int64
45	month_jun	41188 non-null	int64
46	month_mar	41188 non-null	int64
47	month_may	41188 non-null	int64
48	month_nov	41188 non-null	int64
49	month_oct	41188 non-null	int64
50 51	<pre>month_sep day_of_week_fri</pre>	41188 non-null	int64
51 52	day_of_week_iff day_of_week_mon	41188 non-null 41188 non-null	int64 int64
53	day_of_week_thu	41188 non-null	int64
54	day_of_week_the	41188 non-null	int64
55	day_of_week_wed	41188 non-null	int64
56	poutcome_failure	41188 non-null	int64
57	poutcome_nonexistent	41188 non-null	int64
58	poutcome_success	41188 non-null	int64
59	Loan_Status_label	41188 non-null	int64
	es: int64(60)		
memo	ry usage: 18.9 MB		

In [5]: df.describe()

Out[5]:

	age	campaign	pdays	previous	no_previous_contact	not_working	job_admin.	job_blue colla
count	41188.00000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.00000
mean	40.02406	2.567593	962.475454	0.172963	0.963217	0.087623	0.253035	0.22467
std	10.42125	2.770014	186.910907	0.494901	0.188230	0.282749	0.434756	0.41737
min	17.00000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00000
25%	32.00000	1.000000	999.000000	0.000000	1.000000	0.000000	0.000000	0.00000
50%	38.00000	2.000000	999.000000	0.000000	1.000000	0.000000	0.000000	0.00000
75%	47.00000	3.000000	999.000000	0.000000	1.000000	0.000000	1.000000	0.00000
max	98.00000	56.000000	999.000000	7.000000	1.000000	1.000000	1.000000	1.00000

8 rows × 60 columns

Type *Markdown* and LaTeX: α^2

1) Imbalance Data

```
In [6]: df['Loan_Status_label'].value_counts()
```

Out[6]: Loan_Status_label

0 36548

1 4640

Name: count, dtype: int64

Out[7]: <function matplotlib.pyplot.show(close=None, block=None)>

2) Missing Data

age		0	
	paign	0	
pday		0	
	vious	0	
	revious_contact	0	
	_working	0	
	admin.	0	
iob_	_blue-collar	0	
	_entrepreneur	0	
	housemaid	0	
	_management	0	
job_	_management _retired	0	
		0	
	_self-employed		
	services	0	
	student	0	
	technician	0	
lop_	unemployed	0	
	unknown	0	
	tal_divorced	0	
mari	tal_married	0	
mari	tal_single	0	
	tal_unknown	0	
	cation_basic.4y	0	
	cation_basic.6y	0	
educ	cation_basic.9y	0	
educ	cation_high.school	0	
	cation_illiterate	0	
	cation_professional.course	0	
	cation_university.degree	0	
	cation_unknown	0	
	nult_no	0	
	nult_unknown	0	
	nult_yes	0	
	sing_no	0	
	sing_unknown	0	
	sing_yes	0	
loar		0	
	ı_no ı_unknown	0	
	ı_yes	0	
	i_yes :act_cellular	0	
	act_cellular act_telephone		
		0 0	
	:h_apr	-	
	h_aug	0	
	h_dec	0	
	:h_jul	0	
	:h_j un	0	
	h_mar	0	
	:h_may	0	
	:h_nov	0	
	:h_oct	0	
	:h_sep	0	
	_of_week_fri	0	
	of_week_mon	0	
	of_week_thu	0	
dav	of_week_tue	0	
	of_week_wed	0	
	come_failure	0	
	come_nonexistent	0	
	come_nonexistent	0	
	Status_label	0	
	i_status_tabet pe: int64	U	

3) Duplicate Data

In [9]: df[df.duplicated()]

Out[9]:

	age	campaign	pdays	previous	no_previous_contact	not_working	job_admin.	job_blue- collar	job_entrepreneur	job_hous
10	41	1	999	0	1	0	0	1	0	
11	25	1	999	0	1	0	0	0	0	
16	35	1	999	0	1	0	0	1	0	
31	59	1	999	0	1	0	0	0	0	
104	52	1	999	0	1	0	1	0	0	
									····	
40928	21	1	999	0	1	1	0	0	0	
41131	58	1	999	0	1	0	0	0	0	
41167	32	3	999	0	1	0	1	0	0	
41172	31	1	999	0	1	0	1	0	0	
41181	37	1	999	0	1	0	1	0	0	

2417 rows × 60 columns

```
In [10]: df.drop_duplicates(keep='first', inplace=True)
```

```
In [11]: df.duplicated().sum()
```

Out[11]: 0

Type $\it Markdown$ and LaTeX: $\it \alpha^2$

4) Outliers or Anomalies

```
In [12]: # Using IQR
    Q1 = df.quantile(0.25)
    Q3 = df.quantile(0.75)
    IQR = Q3 - Q1
    lower_quartile = (Q1 - 1.5*IQR)
    upper_quartile = (Q3 + 1.5*IQR)
```

```
In [13]: data=df[~((df<lower_quartile) | (df>upper_quartile)) .any(axis=1)]
    data.head()
```

Out[13]:

age campaign pdays previous no_previous_contact not_working job_admin. job_blue-collar job_entrepreneur job_housemaid

0 rows × 60 columns

Type Markdown and LaTeX: α^2

5) Feature Encoding

Type *Markdown* and LaTeX: α^2

6) Feature Selection

In [16]: df.corr()['Loan_Status_label'] Out[16]: age 0.026865 campaign -0.074539 pdays -0.324611 previous 0.228665 no_previous_contact -0.324572 not_working 0.118294 job_admin. 0.035250 job_blue-collar -0.075625 job_entrepreneur -0.019306 job housemaid -0.007496 -0.001627 job_management job retired 0.091108 job_self-employed -0.006224 job_services -0.033042 job_student 0.092536 job_technician -0.003678 job_unemployed 0.012016 job_unknown -0.002082 education_basic.4y -0.011243education_basic.6y -0.024966 education_basic.9y -0.047056education high.school -0.008653 0.006922 education_illiterate education_professional.course 0.002225 education_university.degree 0.054144 education_unknown 0.019507 default_no 0.103282 default_unknown -0.103227 default_yes -0.003224 housing_no -0.011295 housing_unknown -0.004555 housing_yes 0.012686 0.011501 loan_no loan_unknown -0.004555 loan_yes -0.010239poutcome failure 0.028345 poutcome_nonexistent -0.191993poutcome_success 0.316035 Loan_Status_label Name: Loan_Status_label, dtype: float64

Type Markdown and LaTeX: α^2

Model Building

- Separate your Independent and Dependent data
- Split your data into Training and Test set
- Model Selection
- Model Training
- Model Prediction
- Model Evaluation
- Hyperparameter Tuning

1) Separate your Independent and Dependent data

```
In [17]: X = df.iloc[:,:-1]
X
```

Out[17]:

	age	campaign	pdays	previous	no_previous_contact	not_working	job_admin.	job_blue- collar	job_entrepreneur	job_hous
0	56	1	999	0	1	0	0	0	0	
1	57	1	999	0	1	0	0	0	0	
2	37	1	999	0	1	0	0	0	0	
3	40	1	999	0	1	0	1	0	0	
4	56	1	999	0	1	0	0	0	0	
41183	73	1	999	0	1	1	0	0	0	
41184	46	1	999	0	1	0	0	1	0	
41185	56	2	999	0	1	1	0	0	0	
41186	44	1	999	0	1	0	0	0	0	
41187	74	3	999	1	1	1	0	0	0	

38771 rows × 38 columns

0

```
In [18]: y = df['Loan_Status_label']
Out[18]: 0      0
      1      0
      2      0
      3      0
```

4

Name: Loan_Status_label, Length: 38771, dtype: int64

Type $\it Markdown$ and LaTeX: $\it \alpha^2$

2) Split your data into Training and Test set

```
In [19]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Type *Markdown* and LaTeX: α^2

3) Model Selection

LogisticRegression()

```
In [21]: print(f'Training Accuracy : {lr.score(X_train, y_train)}')
print(f'Test Accuracy : {lr.score(X_test, y_test)}')
```

Training Accuracy : 0.8916688160949188 Test Accuracy : 0.8985170857511283

```
In [22]: # Using Decision tree
         dt = DecisionTreeClassifier(max depth=4)
         dt. fit(X_train, y_train)
Out [22]:
                 DecisionTreeClassifier
         DecisionTreeClassifier(max_depth=4)
In [23]: print(f'Training Accuracy : {dt.score(X train, y train)}')
         print(f'Test Accuracy : {dt.score(X_test, y_test)}')
         Training Accuracy : 0.8919589889089502
         Test Accuracy : 0.898388136686009
In [24]: # Using XGBoost
         xgb = XGBClassifier()
         xgb.fit(X_train,y_train)
Out[24]:
                                           XGBClassifier
         XGBClassifier(base score=None, booster=None, callbacks=None,
                        colsample_bylevel=None, colsample_bynode=None,
                        colsample_bytree=None, device=None, early_stopping_rounds=None,
                        enable_categorical=False, eval_metric=None, feature_types=None,
                        gamma=None, grow_policy=None, importance_type=None,
                        interaction_constraints=None, learning_rate=None, max_bin=None,
                        max_cat_threshold=None, max_cat_to_onehot=None,
                        max_delta_step=None, max_depth=None, max_leaves=None,
                        min_child_weight=None, missing=nan, monotone_constraints=None,
                        multi_strategy=None, n_estimators=None, n_jobs=None,
In [25]: print(f'Training Accuracy : {xgb.score(X_train, y_train)}')
         print(f'Test Accuracy : {xgb.score(X_test, y_test)}')
         Training Accuracy: 0.9045331441836472
         Test Accuracy: 0.895164410058027
         Type Markdown and LaTeX: \alpha^2
         4) Model Prediction
In [26]: y pred tr=dt.predict(X train)
         y_pred_ts=dt.predict(X_test)
In [27]: y_train[:3]
Out[27]: 34767
         32132
                  0
         9868
         Name: Loan_Status_label, dtype: int64
```

5) Model Evaluation

```
In [31]: # training data
sns.heatmap(confusion_matrix(y_train, y_pred_tr), annot=True, fmt='.4g')
```

Out[31]: <Axes: >

In [32]: accuracy_score(y_train, y_pred_tr)

Out[32]: 0.8919589889089502

In [33]: print(classification_report(y_train, y_pred_tr))

	precision	recall	f1-score	support
0 1	0.90 0.66	0.99 0.21	0.94 0.32	27285 3731
accuracy macro avg weighted avg	0.78 0.87	0.60 0.89	0.89 0.63 0.87	31016 31016 31016

```
In [34]: # testing data
sns.heatmap(confusion_matrix(y_test, y_pred_ts), annot=True, fmt='.4g')
```

```
Out[34]: <Axes: >
```



```
In [35]: accuracy_score(y_test, y_pred_ts)
```

Out[35]: 0.898388136686009

Type $\mathit{Markdown}$ and LaTeX : α^2

Hyperparameter Tuning

```
In [36]: parameters = {
    'n_estimators': [100, 200],
    'learning_rate': [0.1, 0.01, 1.0, 0.05],
    'max_depth': [3,4,5],
    'gamma': [0.2, 0.3],
    'reg_alpha': [0.1,1,0.2],
    'reg_lambda': [0.1, 1]
}

parameters

Out[36]: {'n_estimators': [100, 200],
    'learning_rate': [0.1, 0.01, 1.0, 0.05],
    'max_depth': [3, 4, 5],
    'gamma': [0.2, 0.3],
    'reg_alpha': [0.1, 1, 0.2],
    'reg_lambda': [0.1, 1]}

In [37]: #Grid Search CV
```

```
In [38]: grid_search = GridSearchCV(estimator=xgb, param_grid=parameters, scoring='accuracy', cv=5, v
        grid search.fit(X train, y train)
         [CV 3/3] LIVE Gamma-012,
                                lambda=0.1;, score=0.887 total time= 0.3s
         [CV 1/5] END gamma=0.2, learning_rate=0.05, max_depth=4, n_estimators=200, reg_alpha=1, reg
         _lambda=1;, score=0.893 total time= 0.3s
         [CV 2/5] END gamma=0.2, learning_rate=0.05, max_depth=4, n_estimators=200, reg_alpha=1, reg
         _lambda=1;, score=0.896 total time= 0.4s
         ______CV 3/5] END gamma=0.2, learning_rate=0.05, max_depth=4, n_estimators=200, reg_alpha=1, reg_lambda=1;, score=0.890 total time= 0.3s
         _lambda=1;, score=0.892 total time= 0.3s
         [CV 5/5] END gamma=0.2, learning_rate=0.05, max_depth=4, n_estimators=200, reg_alpha=1, reg
         _lambda=1;, score=0.887 total time= 0.3s
[CV 1/5] END gamma=0.2, learning_rate=0.05, max_depth=4, n_estimators=200, reg_alpha=0.2, r
         eg_lambda=0.1;, score=0.893 total time= 0.4s
         [CV 2/5] END gamma=0.2, learning_rate=0.05, max_depth=4, n_estimators=200, reg_alpha=0.2, r
         eg_lambda=0.1;, score=0.896 total time= 0.4s
         [CV 3/5] END gamma=0.2, learning_rate=0.05, max_depth=4, n_estimators=200, reg_alpha=0.2, r
         eg_lambda=0.1;, score=0.891 total time= 0.4s
         [CV 4/5] END gamma=0.2, learning_rate=0.05, max_depth=4, n_estimators=200, reg_alpha=0.2, r
         eg_lambda=0.1;, score=0.891 total time= 0.4s
                                                       danth 4 - antimatana 200
In [39]: print(f'Best Selected Hyperparameters: \n\n{grid_search.best_params_}\n')
        print(f'Best Estimator: \n\n{grid search.best estimator }')
         Best Selected Hyperparameters:
         {'gamma': 0.2, 'learning_rate': 0.05, 'max_depth': 3, 'n_estimators': 200, 'reg_alpha': 0.
         2, 'reg_lambda': 0.1}
        Best Estimator:
        XGBClassifier(base_score=None, booster=None, callbacks=None,
                      colsample_bylevel=None, colsample_bynode=None,
                      colsample_bytree=None, device=None, early_stopping_rounds=None,
                      enable_categorical=False, eval_metric=None, feature_types=None,
                      gamma=0.2, grow_policy=None, importance_type=None,
                      interaction_constraints=None, learning_rate=0.05, max_bin=None,
                      max_cat_threshold=None, max_cat_to_onehot=None,
                      max_delta_step=None, max_depth=3, max_leaves=None,
                      min_child_weight=None, missing=nan, monotone_constraints=None,
                      multi_strategy=None, n_estimators=200, n_jobs=None,
                      num_parallel_tree=None, random_state=None, ...)
In [40]: print(f'Training Accuracy : {grid_search.score(X_train, y_train)}')
        print(f'Test Accuracy : {grid_search.score(X_test, y_test)}')
```

Training Accuracy : 0.893345370131545 Test Accuracy : 0.8989039329464862

Thank you!!