Вопрос №1

Числовые последовательности и их пределы

Ограниченность сходящихся к конечному пределу последовательностей

Числовая последовательность называется сходящейся, если у нее имеется конечный предел. В противном случае последовательность называется расходящейся. Иногда говорят, что последовательность, имеющая пределом $\pm \infty$, сходится (расходится) к $\pm \infty$.

Теорема (об ограниченности). Если последовательность имеет конечный предел, то она ограничена.

Доказательство. Пусть $x_n \to x$ при $n \to \infty$, где x - вещественное число. Возьмем его произвольную конечную окрестность интервал O(x)=(a,b). Тогда существует номер N такой что при всех $n \ge N$ справедливы неравенства $a < x_n < b$. Следовательно, вне интервала (a,b) может находиться лишь конечное число членов рассматриваемой последовательности, а именно $x_1, x_2, \ldots, x_{N-1}$ Полагаем $m=\min\{a,b,x_1,x_2,\ldots,x_{N-1}\}$ и $M=\max\{a,b,x_1,x_2,\ldots,x_{N-1}\}$. Тогда для всех $n \ge 1$ имеем $m \le x \le M$. Это и означает, что рассматриваемая последовательность $\{x_n\}$ ограничена.

Обратное теореме утверждение неверно: последовательность $x_n = (-1)^n, n = 1, 2, \ldots$, ограничена, но предела не имеет.

Подпоследовательности сходящихся последовательностей

Теорема (о подпоследовательностях). Любая подпоследовательность сходящейся последовательности также сходится и имеет тот же самый предел.

Доказательство. Пусть $\{x_{n_k}\}$ - подпоследовательность $\{x_n\}$ и $\lim_{n\to\infty} x_n = x$. Тогда $\forall O(x)\exists N\colon \forall n\geq Nx_n\in O(x)$. Но $n_k\geq k$ и поэтому для всех $k\geq N$ число x_{n_k} принадлежит O(x). Это означает, по определению предела, что $\lim_{n\to\infty} x_{n_k} = x$.

Теорема о предельном переходе в неравенстве

Теорема. Пусть пределы двух числовых последовательностей связаны неравенством $x = \lim_{n \to \infty} x_n \le y = \lim_{n \to \infty} y_n$. Тогда существует такой номер N, что при всех $n \ge N$ справедлива оценка $x_n < y_n$.

Доказательство. Из неравенства x < y следует, что существует такое вещественное число a, что x < a < y. По определению предела имеем $\exists N_1 \colon \forall n \geq N_1 \Rightarrow x_n \in (-\infty, a), \ \exists N_2 \colon \forall n \geq N_2 \Rightarrow x_n \in (a, +\infty)$. Возьмем $N = \max\{N_1, N_2\}$, тогда для всех номеров $n \geq N$ имеем $x_n < a < y_n$.

Теорема (о предельном переходе в неравенстве). Пусть существуют $\lim_{n\to\infty} x_n = x$, $\lim_{n\to\infty} y_n = y$ и при этом найдется такой номер N_0 , что для всех $n \geq N_0$ справедливо неравенство $x_n \leq y_n$. Тогда $x \leq y$.

Доказательство. Предположим противное, т.е. x>y. Тогда по предыдущей теореме $\exists N \colon \forall n \geq N \Rightarrow x_n>y_n$, что противоречит условию.

Следствие теоремы о предельном переходе. Если существует $\lim_{n\to\infty} x_n = x$ и при этом найдется такой номер N, что $x_n \leq b$ для всех $n \geq N$, то справедлива оценка $\lim x_n \leq b$.

Заметим, что если существует $\lim_{n\to\infty} x_n = x$ и при этом найдется номер N такой что $x_n > a$ для всех $n \geq N$, то в пределе можно утверждать лишь, что $x \geq a$, но нельзя гарантировать, что x > a. Например, $10^{-n} > 0$ для всех натуральных n, но $\lim_{n\to\infty} 10^{-n} = 0$.

Теорема о трех последовательностях (о двух полицейских) (о зажатой последовательности)

Теорема. Пусть существует такой номер N_0 , что для всех $n \ge N_0$ справедливы неравенства $x_n \le y_n \le z_n$. Если существуют одинаковые пределы $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = c$, то существует и предел $\lim_{n\to\infty} y_n = c$.

Доказательство. Возьмем любую окрестность O(c) точки c, т.е. интервал O(c)=(a,b). Тогда по определению предела $\exists N_1\colon \forall n\geq N_1\Rightarrow x_n\in (a,b),\ \exists N_2\colon \forall n\geq N_2\Rightarrow z_n\in (a,b).$ Возьмем $N=\max\{N_0,N_1,N_2\}.$ Тогда для любого $n\geq N$ имеют место неравенства $a< x_n\leq y_n\leq z_n< b.$ Таким образом, для любой окрестности O(c)=(a,b) точки c указан номер N, начиная c которого все элементы y_n принадлежат этой окрестности O(c). По определению, это означает, что существует предел $\lim_{n\to\infty}y_n=$

Теорема Вейерштрасса о пределе монотонной последовательности

Лемма 1. Пусть последовательность десятичных дробей, J имеющих после запятой ровно k цифр, монотонна и ограничена. Тогда эта последовательность стационарна и имеет конечный предел.

Доказательство. Пусть $\{x_n\}$ последовательность k-значных десятичных дробей. Тогда последовательность $y_n = x_n \cdot 10^k$, $n = 1, 2, \ldots$ состоит из целых чисел. Если при этом $\{x_n\}$ монотонная и ограниченная, то и $\{y_n\}$ также монотонна и ограничена. По ранее доказанному, $\{y_n\}$ стационарна и, следовательно, существует ее конечный предел $y = \lim_{n \to \infty} y_n$. Но в таком случае последовательность $x_n = y_n \cdot 10^{-k}$, $n = 1, 2, \ldots$ также стационарна и, как легко проверить, сходится к числу $y \cdot 10^{-k}$.

Отметим, что если в условиях предыдущей леммы $\{x_n\}$ монотонно возрастает, то каждый ее элемент лежит левее ее же предела: $\forall k \geq 1 \Rightarrow x_k \leq \lim_{n \to \infty} x_n < +\infty$.

Лемма 2. Пусть имеется последовательность $\{x_n\}$ десятичных дробей, среди которых нет периодических с периодом 9. Тогда из серии неравенств $x_n \leq x_{n+1}, n = 1, 2, \ldots$ следует, что при всех $k, k = 0, 1, 2, \ldots$ и при всех $n, n = 1, 2, \ldots$ справедливо неравенство

$$(x_n)_k \le (x_{n+1})_k. \tag{1}$$

Доказательство. Зафиксируем номер n и докажем справедливость неравенства 1 индукцией по индексу k. Пусть десятичные дроби x_n и x_{n+1} заданы равенствами $x_n = +P_0, \alpha_1\alpha_2 \dots \alpha_n \dots, x_{n+1} = +P_1, \beta_1\beta_2 \dots \beta_n \dots$ Тогда $P_0 \leq P_1$ (в противном случае $P_0 > P_1$ и так как x_{n+1} не является периодической десятичной дробью с периодом 9, то имеет место неравенство $x_n > x_{n+1}$, что противоречит условию леммы. Учитывая, что $(x_n)_0 = P_0$ и $(x_{n+1})_0 = P_1$, получаем оценку 1 при k = 0 то есть базис индукции: $(x_n)_0 \leq (x_{n+1})_0$. Предположим теперь, что $(x_n)_k \leq (x_{n+1})_k$ для некоторого k, тогда с необходимостью имеют место неравенства $\alpha_1 \leq \beta_1$, $\alpha_2 \leq \beta_2, \dots, \alpha_k \leq \beta_k$. Предположим противное, тогда найдется такой минимальный номер $j \in \{1, 2, \dots, k\}$, что $\alpha_j > \beta_j$. Это означает, что выполняется соотношение $x_n > x_{n+1}$, но это противоречит условию леммы. Далее имеем $\alpha_{k+1} \leq \beta_{k+1}$ (в случае $\alpha_{k+1} > \beta_{k+1}$ выполняется соотношение

 $x_n > x_{n+1}$, что противоречит условию леммы). Совокупность неравенств $P_0 \leq P_1$, $\alpha_1 \leq \beta_1$, $\alpha_{k+1} \leq \beta_{k+1}$ обеспечивает выполнение для индекса k+1 искомой оценки: $(x_n)_{k+1} \leq (x_{n+1})_{k+1}$. По принципу математической индукции оценка 1 справедлива для всех n и k.

Теорема Вейерштрасса (о монотонной последовательности). Если монотонная последовательность вещественных чисел ограничена, то она имеет конечный предел.

Доказательство. Пусть есть ограниченная монотонная последовательность $\{x_n\}$. Будем предполагать, что для любого n число x_n представлено бесконечной десятичной дробью, которая не является периодической с периодом 9. Тогда по предыдущей лемме в силу монотонного возрастания $\{x_n\}$ для любого $k, k = 0, 1, 2, \ldots$ последовательность kзначных десятичных дробей $y_n = (x_n)_k, n = 1, 2, \dots$ также монотонно возрастает и ограничена. Далее, применяя к последовательности $y_n = (x_n)_k$, $n = 1, 2, \dots$ лемму о монотонной и ограниченной последовательности десятичных дробей с одинаковым числом цифр после запятой, заключаем, что $\{y_n\}$ стационарная, т.е. для фиксированного $k, k = 0, 1, 2, \ldots$ существует номер N_k такой что при всех $n \geq N_k$ имеет место равенство $(x_n)_k =$ $+P_0, \alpha_1\alpha_2\dots\alpha_k$, где $P_0, \alpha_1,\dots,\alpha_k$ от номера n не зависят. Кроме того существует номер N_{k+1} такой что для всех $n \geq N_{k+1}$ справедливо равенство $(x_n)_{k+1} = +p_l, \beta_1\beta_2...\beta_k\beta_{k+1}$. Из определения операций $(\cdot)_k$ и $(\cdot)_{k+1}$ следуют равенства $P_0 = P_1, \ \alpha_1 = \beta_1, \ \ldots, \ \alpha_k = \beta_k, \ \ldots$ Таким образом, для любого $n \geq N_{k+1}$ имеем представление $(x_n)_{k+1} = +P_0, \alpha_1\alpha_2...\alpha_k\beta_{k+1}.$ Не ограничивая общности, можем предполагать, что $N_{k+1} \geq N_k, \; k =$ $0, 1, 2, \dots$ Далее, определив цифру α_{k+1} соотношением $\alpha_{k+1} = \beta_{k+1}$, получаем в итоге последовательность $\{\alpha_1, \alpha_2, \dots \alpha_k, \alpha_{k+1}, \dots\} = \{\alpha_i\}$. Рассмотрим теперь порождаемую этой цифровой последовательностью бесконечную десятичную дробь $x = P_0, \alpha_1 \alpha_2 \dots \alpha_j \alpha_{j+1} \dots$ Построенное таким образом число х обладает следующим свойством:

$$(x_n)_k \le x, k = 0, 1, 2, \dots$$
 (2)

Переходя в этом неравенстве к пределу при $k \to +\infty$, получим по теореме о предельном переходе в неравенствах следующую оценку:

$$\lim_{k \to +\infty} (x_n)_k = x_n \le x. \tag{3}$$

Кроме того нам понадобятся следующие полученные в процессе постро-

ения числа х равенства:

$$(x_n)_k = (x)_k, \forall n \ge N_k. \tag{4}$$

Докажем теперь, что $x = \lim_{n \to +\infty} x_n$. Возьмем произвольную конечную окрестность O(x) точки x т.е. интервал O(x) = (a,b). Из неравенства 3 и условия, что x < b получаем $x_n \le x < b \Rightarrow x_n < b$. Далее из условия, что a < x следует существование номера k_0 такого что

$$\overline{(a)_{k_0}} < (x)_{k_0}. \tag{5}$$

При этом для всех $n \geq N_{k_0} \equiv N_0$ имеем равенство $(x_n)_{k_0} = (x)_{k_0}$. Подставляя его в $\frac{5}{(a)_{k_0}} < (x_n)_{k_0} \leq x_n$. Учитывая еще, что верхнее десятичное приближение всегда не меньше самого числа, для номеров $n \geq N_0$ имеем $a \leq \overline{(a)_{k_0}} < (x_n)_{k_0} \leq x_n$. Таким образом, для всех $n \geq N_0$ число x_n попадает в интервал (a,b): $a < x_n < b$. Это означает, в силу произвольности окрестности O(x) = (a,b) точки x, что существует конечный предел $\lim_{n \to +\infty} x_n = x$.

Общий вид положительного вещественного числа в виде суммы ряда по степеням десяти

Пусть $x=P_0,\alpha_1\alpha_2\dots\alpha_j\alpha_{j+1}\dots$ - произвольное положительное вещественное число. Последовательность соответствующих ему нижних десятичных приближений $\underline{(x)_n}=(x)_n,\ n=1,2,\dots$ монотонно возрастает и ограничена сверху: $\underline{(x)_n}\leq x$. В соответствии с теоремой Вейерштрасса эта последовательность имеет предел. Как уже доказано, этот предел совпадает с исходным числом x, т.е. $x=\lim_{n\to+\infty}(x)_n=\lim_{n\to+\infty}(P_0+\sum_{j=1}^n\frac{\alpha_j}{10^j})$.

Это предельное равенство принято записывать в следующем сокращенном виде:

$$x = P_0 + \sum_{j=1}^{+\infty} \frac{\alpha_j}{10^j} \tag{6}$$

При этом бесконечную сумму в правой части называют суммой ряда.
Равенство 6 задает общий вид положительного вещественного числа.

Вопрос №2

Определение Аффинного пространства связанного с линейным

Пусть A - некоторое непустое множество, элементы которого условимся называть точками и обозначать как $\dot{p}, \dot{q}, \dot{r}, \dots$

Пусть также имеется линейное пространство над полем k.

Определение. Множество A называется аффинным пространством, связанным с X, если задано отображение $(\dot{p}, v) \in A \cdot X \to \dot{p} + v \in A$, обладающее свойствами:

- 1. $\dot{p} + 0 = \dot{p}$;
- 2. $(\dot{p} + u) + v = \dot{p} + (u + v) \ \forall \dot{p} \in A$ и $\forall u, v \in X$;
- 3. $\forall \dot{p}, \dot{q} \in A \exists \vec{v} \in X : \dot{p} + \vec{v} = \dot{q}$ Этот вектор \vec{v} обозначается как \vec{pq} или $\dot{q} \dot{p}$.

Иногда аффинным пространством называют пару (A, X) + отображение с указанными свойствами.

Размерность аффинного пространства X равна размерности связанного с A линейного пространства: $\dim A = \dim X = n$.

Иногда, чтобы подчеркнуть размерность, пишут A^n . Если $k = \mathbb{R}$, то говорят о вещественном аффинном пространстве.

Сдвиги на Аффинном пространстве

Аксиома из определения аффинного пространства утверждает, что $\forall \dot{p} \in A$ работает биекция $v \to \dot{p} + v$ множеств X и A.

Определение. Биективное отображение T_v : $\dot{p} \to \dot{p} + v = T_v (\dot{p}), \, \dot{p} \in A$ на множестве A называется сдвигом в A (или параллельным переносом в A) на вектор v из X.

Из определения следует, что $T_u \circ T_v = T_{u+v}, T_v \circ T_{-v} = I, I$ - тождественное отображение.

Таким образом, множество сдвигов $\{T_n|n\in X\}$ образует группу, изоморфную аддитивной группе пространства X.

Если определить линейную комбинацию сдвигов $aT_u + bT_v = T_{au+bv}$, то множество всех сдвигов становится векторным пространством (изоморфным пространству X).

Пусть \dot{p} , \dot{q} , \dot{r} , \dot{s} - такие точки из A, что $\dot{p}+v=\dot{q}$, $\dot{r}+v=\dot{s}$. Тогда \vec{pq} и \vec{rs} - это разные представители класса эквиваленции, соответствующие вектору v. Из определения получаем, $\vec{pq}+\vec{qr}=\vec{pr}$; $\vec{pq}=-\vec{qp}$; $\vec{pp}=0$ или $(\dot{q}-\dot{p})+(\dot{r}-\dot{q})=(\dot{r}-\dot{p})$; $(\dot{q}-\dot{p})=-(\dot{p}-\dot{q})$; $(\dot{p}-\dot{p})=0$.

Определение евклидова векторного пространства

Определение. Евклидовым векторным пространством называется вещественное линейное пространство X с заданным на нем скалярным произведением $\langle x,y \rangle$, для которого выполнены следующие условия:

- 1. $\langle x, x \rangle > 0 \ \forall x \neq 0$, иначе $\langle x, x \rangle = 0$
- 2. $\langle x, y \rangle = \langle y, x \rangle$
- 3. $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, x \rangle$

 $\forall x, y \in X$ скалярное произведение – вещественное число.

Скалярное произведение и его свойства

По определению, $\langle x,y\rangle$ - это произведение длин векторов на косинус угла между ними: $\langle x,y\rangle=|x|\cdot|y|\cdot\cos\phi$. Если $x=(x_1,x_2,x_3)$, разложение по базису пространства \mathbb{R}^3 , $x=x_1e_1+x_2e_2+x_3e_3$, то длина $|x|=\sqrt{x_1^2+x_2^2+x_3^2}$. Если $y=y_1e_1+y_2e_2+y_3e_3$, то $\langle x,y\rangle=x_1y_1+x_2y_2+x_3y_3$.

Длина вектора в евклидовом пространстве

Пусть X - евклидово векторное пространство со скалярным произведением $\langle x, y \rangle$.

Определение. Длиной или нормой вектора $x \in X$ называется неотрицательное вещественное число $|v| = \sqrt{\langle v, v \rangle} = \langle v, v \rangle^{\frac{1}{2}}$.

Пример. поле вещественных чисел \mathbb{R} представляет собой одномерное евклидово векторное пространство, длина вектора в котором совпадает с абсолютным значением (модулем) соответствующего вещественного числа.

Неравенство Коши-Буняковского

Теорема (неравенство Коши-Буняковского). Для всех x, y из евклидова векторного пространства X имеет место неравенство $|\langle x, y \rangle| \leq |x| \cdot |y|$.

Доказательство. Рассмотрим следующее выражение: $\langle x+ly,x+ly\rangle = \langle x,x\rangle + \langle x,ly\rangle + \langle ly,x\rangle + \langle ly,ly\rangle = \langle x,x\rangle + 2l\langle x,y\rangle + l^2\langle y,y\rangle$. Фиксируя x,y, получаем квадратный трехчлен от l. Коэффициент при l^2 - неотрицателен (при y=0, нулевой). Значения этого квадратичного трехчлена также неотрицательны.

Это возможно только при $D \leq 0$: $D = (2\langle x,y\rangle)^2 - 4\langle x,x\rangle\langle y,y\rangle \leq 0$, или, что то же самое $|\langle x,y\rangle| \leq \langle x,x\rangle^{\frac{1}{2}}\langle y,y\rangle^{\frac{1}{2}}$ это и есть требуемое неравенство.

Замечание. Если $|\langle x,y\rangle| = |x| \cdot |y|$, то D=0, квадратный трехчлен имеет только один вещественный корень l_0 . При этом $\langle x+l_0y,x+l_0y\rangle = 0 \Rightarrow x+l_0y=0$. То есть векторы линейно зависимы. Получили, что равенство в неравенстве Коши-Буняковского достигается только когда векторы линейно зависимы (коллинеарны).

Угол между векторами

Из неравенства Коши-Буняковского: $|\langle x,y\rangle| \leq |x|\cdot |y| \Rightarrow \frac{|\langle x,y\rangle|}{|x|\cdot |y|} \leq 1 \Rightarrow -1 \leq \frac{|\langle x,y\rangle|}{|x|\cdot |y|} \leq 1.$

Следовательно, уравнение $\cos \phi = \frac{|\langle x,y \rangle|}{|x|\cdot|y|}$ на интервале $0 \le \phi \le \pi$ имеет ровно одно решение ϕ . Этот корень называется углом между векторами x и y.

Определение. Векторы x и y называются ортогональными $(x \perp y)$, если соответствующий угол между ними равен $\frac{\pi}{2}$.

Нулевой вектор ортогонален любому вектору из X.

Теорема Пифагора

Теорема. Если $x \perp y$, то $|x + y|^2 = |x|^2 + |y|^2$.

Неравенство треугольника

Следствие. Пусть x и y - произвольные векторы евклидова пространства E^n , т.е. $x \in E^n$ и $y \in E^n$. Докажем, что

$$|x+y| \le |x| + |y|$$
. (Неравенство треугольника)

Доказательство. Очевидно, что $(x+y,x+y)=|x+y|^2$. С другой стороны, (x+y,x+y)=(x,x)+2(x,y)+(y,y)=|x|+2(x,y)+|y|. Принимая во внимание неравенство Коши-Буняковского, получим $|x+y|^2 \leq |x|^2+2\cdot |x||y|+|y|^2=(|x|+|y|)^2 \Rightarrow |x+y|\leq |x|+|y|$.