- 5.1 实体完整性
- 5.2 参照完整性
- 5.3 用户定义的完整性
- 5.4 完整性约束命名子句
- 5.7 触发器(通过实验五自学)

口 什么是数据库的完整性

- ■数据的正确性
 - ○符合现实世界语义,反映了当前实际状况

例:性别只能是男或女;

学生的学号一定是唯一的;

成绩的取值范围是0到100;

- ■数据的相容性
 - ○数据库同一对象在不同关系表中的数据符合逻辑

例: 学生所选的课程必须是学校开设的课程

学生所在的院系必须是学校已成立的院系

- □数据的<u>完整性</u>和<u>安全性</u>是两个不同概念
 - ■数据的**完整性**
 - 防止数据库中存在不符合语义的数据,也就是防止 数据库中存在不正确的数据
 - o 防范对象: 不合语义的、不正确的数据
 - ■数据的安全性
 - o 保护数据库防止恶意的破坏和非法的存取
 - o 防范对象: 非法用户和非法操作

完整性是阻止合法用户通过合法操作向数据库加入不正确的数据 安全性防范的是非法用户和非法操作存取数据库中的正确数据

口 完整性控制机制

- 1.完整性约束条件定义机制
 - DBMS应提供定义数据库完整性约束条件,并把它们 作为模式的一部分存入数据库中
- 2.完整性检查机制
 - 检查用户发出的操作请求是否违背了完整性约束条件
- **■** 3.违约处理
 - 如果发现用户的操作请求使数据违背了完整性约束条件,则采取一定的动作来保证数据的完整性。

5.1 实体完整性

□关系模型的实体完整性

- CREATE TABLE语句中用PRIMARY KEY定义
 - o **单属性码**可定义为**列级或表级**约束条件
 - o **多属性码**只能定义为**表级**约束条件

例1 定义Student表的Sno属性为主码

CREATE TABLE Student
(Sno Char(9) PRIMARY KEY,
Sname Char(20),
Sage Smallint,
Sdept Char(20))

CREATE TABLE Student (Sno Char(9),
Sname Char(20),
Sage Smallint,
Sdept Char(20),
PRIMARY KEY(Sno))

5.1.1 实体完整性定义

例2 CREATE TABLE SC

(Sno Char(9),

Cno Char(4),

Grade Smallint,

只能在表级定义主码

PRIMARY KEY (Sno, Cno))

- □ 插入或更新主码列时, RDBMS按照实体完整性规则自动 进行检查
- □ 违约反应
 - 检查主码的各个属性是否<mark>为空</mark>,只要有一个为空就拒 绝插入或修改
 - 检查主码值是否唯一,如果不唯一则拒绝插入或修改

5.2 参照完整性

5.2.1 参照完整性定义

- □ FOREIGN KEY子句: 定义外码列
- □ REFERENCES子句: 外码参照哪个表的主码

```
Create Table SC (
```

Sno char(9),

Cno char(4),

Grade smallint,

Primary Key (Sno, Cno),

Foreign Key (Sno) References Student(Sno),

Foreign Key (Cno) References Course(Cno))

5. 2. 2 参照完整性检查和违约处理

参照完整性中,对被参照表和参照表进行增删改操作时有可能破坏参照完整性,必须进行检查。 表5.1 可能破坏参照完整性的情况及违约处理

被参照表(如Student)	参照表(如SC)	违约处理
	插入元组	拒绝
	修改外码值	拒绝
删除元组		拒绝/级连删除/设置为空值
修改主码值		拒绝/级连修改/设置为空值

拒绝执行策略一般设置为默认策略

5. 2. 2 参照完整性检查和违约处理

例1 修改Student中学号S02的元组,关系SC中有3个元组的Sno='S02'。这时可考虑2种不同的处理策略:

- 级连修改:将SC中Sno='S02'的所有元组一起修改。
- 拒绝修改: 拒绝此修改操作。

例2 删除专业表中某个元组,即删除了某个专业号。 学生(学号,姓名,性别,专业号,年龄) 专业(专业号,专业名)

● 置空值删除:将学生关系相应的专业号置空。

```
[例] 显式说明参照完整性的违约处理示例
```

CREATE TABLE SC (

Sno CHAR(9) NOT NULL,

Cno CHAR(4) NOT NULL,

Grade SMALLINT,

PRIMARY KEY(Sno,Cno),

FOREIGN KEY (Sno) REFERENCES Student(Sno)

ON DELETE CASCADE /*级联删除SC表中相应的元组*/

ON UPDATE CASCADE, /*级联更新SC表中相应的元组*/

FOREIGN KEY (Cno) REFERENCES Course(Cno)

ON DELETE NO ACTION

/*当删除course 表中的元组造成了与SC 表不一致时拒绝删除*/

ON UPDATE CASCADE

/*当更新course 表中的cno 时,**级联更新**SC表中相应的元组*/

5.3 用户定义的完整性

- □ 针对某一具体应用的数据必须满足的语义要求。
 - 一、属性上的约束条件
 - o 列值非空(NOT NULL短语)
 - o 列值唯一(UNIQUE短语)
 - o 检查列值是否满足一个条件表达式(CHECK短语)

1、列值非空、唯一

例1: 建立学生登记表 Student,要求姓名唯一, 性别非空。 **CREATE TABLE Student**

(Sno CHAR(9) PRIMARY KEY,

Sname VARCHAR(20) UNIQUE,

Ssex CHAR(2) NOT NULL);

一、属性上的约束条件

2、用CHECK短语指定列值应该满足的条件

例2: 建立学生登记表Student,要求学号在 90000至99999 之间,性别只能是'男'或'女'。

CREATE TABLE Student

(Sno CHAR(5) CHECK (Sno BETWEEN 90000 AND 99999),

Sname VARCHAR(20),

Sage SMALLINT,

Ssex CHAR(2) CHECK (Ssex IN ('男', '女')))

当表中插入元组或修改属性值时,RDBMS就检查属性上的 约束条件是否被满足,如果不满足则操作被拒绝执行。

二、元组上的约束条件

- □ 元组级的限制: 可以设置不同属性之间取值的相互约束条件
 - CREATE TABLE时用CHECK子句定义元组上的约束条件

例3: 建立教师表TEACHER, 要求教师的应发工资不超过3000

元。应发工资就是实发工资列Sal与扣除项Deduct之和。

CREATE TABLE TEACHER

(Eno CHAR(4),

Ename VARCHAR(10),

Sal NUMERIC(7,2),

Deduct NUMERIC(7,2),

CHECK (**Sal** + **Deduct** <=**3000**))

○ 往表中插入元组或修改属性值时,RDBMS检查元组上的约束条件是否被满足,如果不满足则操作被拒绝执行。

INSERT 语句与 CHECK 约束"CK__TEACHER__4E88ABD4"冲突。该冲突发生于数据库"stuData",表"dbo.TEACHER" 语句已终止。

1、完整性约束命名子句

CONSTRAINT<完整性约束条件名>[PRIMARY KEY短语| FOREIGN KEY短语 | CHECK短语 | NOT NULL | UNIQUE]

例4: 建立学生表Student, 要求学号在90000至99999之间。

CREATE TABLE Student3

(Sno CHAR(5)

CONSTRAINT C1 CHECK (Sno BETWEEN 90000 AND 99999),

Sname VARCHAR(20),

Sage SMALLINT)

西南交通大学

《数据库原理及应用》第五章

第14页

5.4 完整性约束命名子句

2、修改表中的完整性限制

使用ALTER TABLE语句修改表中的完整性限制

例5:修改[例4]student表中的约束条件,要求学号改为在900 000-999 999之间。

方法: 先删除原来的约束条件, 再增加新的约束条件。

ALTER TABLE Student **DROP CONSTRAINT** C1;

ALTER TABLE Student

ADD CONSTRAINT C1 CHECK (Sno BETWEEN 900000 AND 999999)

(<u>{</u>

《数据库系统概论》 P173

2题

4题

6题 (注意理解题目要求)