高雄中學 110 學年度第一學期高三第二、三類組數學科第二次月考試題(共兩頁)

- 填充題: (所有答案均需化至最簡,並以藍、黑色原字筆作答,否則不予計分)
- 1. 無窮級數 $\sum_{n=1}^{\infty} \frac{3^n + 6}{5^n} =$ (A)
- 2. 直角 $\triangle ABC$ 中, $\angle A = 90^{\circ}$, $\overline{AB} = 3$, $\overline{AC} = 4$, 在 \overline{AB} 、 \overline{BC} 、 \overline{CA} 上各取一點 A_1 、 B_1 、 C_1 , 使 $\frac{\overline{AA_1}}{\overline{AB}} = \frac{\overline{BB_1}}{\overline{BC}} = \frac{\overline{CC_1}}{\overline{CA}} = \frac{1}{2}$, 設 $\triangle A_1B_1C_1$ 的面積為 a_1 ;在 $\overline{A_1B_1}$ 、 $\overline{B_1C_1}$ 、 $\overline{C_1A_1}$ 上各取一點 A_2 、 B_2 、 C_2 ,使 $\frac{\overline{A_1A_2}}{\overline{A_2B_1}} = \frac{\overline{B_1B_2}}{\overline{B_2C_1}} = \frac{C_1C_2}{\overline{C_2A_1}} = \frac{1}{2}$,設 $\Delta A_2B_2C_2$ 的面積為 a_2 ;在 $\overline{A_2B_2}$ 、 $\overline{B_2C_2}$ 、 $\overline{C_2A_2}$ 上各取一點 A_3 、 B_3 、 C_3 ,使 $\overline{\frac{A_2A_3}{A_3B_5}} = \overline{\frac{B_2B_3}{B_3C_5}} = \overline{\frac{C_2C_3}{C_3A_5}} = \frac{1}{2}$,設 $\Delta A_3B_3C_3$ 的面積為 a_3 ;依此規則可得無窮數列 $\langle a_n \rangle$,則 無窮級數 $\sum_{n=0}^{\infty} a_n = \underline{\qquad (B)}$

- 3. 袋中有 1000 個紅球、2000 個黃球、3000 個綠球,設又加入 3n 個紅球、2n 個黃球、n 個綠球後,每球被取機會均等,其中 $n \in N$ 。 若一次取2球,此兩球均為同色球的機率為 P_n ,則 $\lim P_n =$ (C)
- 5. 設 $n \in \mathbb{N}$,多項式 $f(x) = x^{n+1} x^{n-1} + 1$, $g(x) = x^{2n-2} + x^n 1$, f(x) 除以 x 9 所得餘式為 R_n , g(x) 除以 x 3 所得餘式為 r_n , 則 $\lim_{n\to\infty}\frac{R_n}{r}=\underline{\qquad (E)}$
- 6. 設 $n \in N$, a_n 、 b_n 為 $x^2 nx + (2n 5) = 0$ 之兩根,且 $a_n < b_n$,則 $\lim_{n \to \infty} a_n =$ (F)
- 7. 読 $n \in N$, $S_n = \sum_{k=1}^n \frac{2}{k \times (k+2)}$, $\lim_{n \to \infty} S_n = S$, 則

 - (1) $S = \underline{\hspace{1cm}}$ (G) (2) 若 $|S_n S| \le \frac{1}{100}$,則最小的自然數 $n = \underline{\hspace{1cm}}$ (H)
- 8. 已知數列 $\langle a_n \rangle$ 滿足 $\lim_{n \to \infty} \frac{2a_n}{a_n + 1} = 1$,則 $\lim_{n \to \infty} \frac{a_n 5}{3 a_n} = \underline{\hspace{1cm}}$ (I)

多重選擇題: (每題至少有1個是正確的選項)

1. 下列有關循環小數的敘述中,請選出正確的選項。

(1)
$$1.\overline{9} = 2$$

(2)
$$0.\overline{7} - 0.\overline{3} = 0.\overline{9} - 0.\overline{5}$$

(3)
$$0.5\overline{2} + 0.4\overline{8} = 1$$

(4)
$$0.\overline{7} \times 0.\overline{3} = 0.\overline{21}$$

(5)
$$0.6\overline{7} - 0.\overline{57} = 0.1$$

2. 請選出收斂的數列。

(1)
$$\langle (\tan 136^\circ)^n \rangle$$

(2)
$$\langle (\tan 1)^n \rangle$$

(3)
$$\left\langle \frac{(\sqrt{6}+1)^n + (\sqrt{6}-1)^n}{(2+\sqrt{3})^n + (2-\sqrt{3})^n} \right\rangle$$

(4)
$$\langle \sin(n\pi) \rangle$$

(5)
$$\langle \cos(n\pi) \rangle$$

- 3 請選出正確選項。
 - (1) 設 $\langle a_n \rangle$ 為任意數列,則數列 $\langle n \cdot a_n \rangle$ 必發散
 - (2) 若 $\lim_{n\to\infty} a_n = 5$,則無窮級數 $\sum_{n=1}^{\infty} a_n$ 必發散。
 - (3) 設 $\langle a_n \rangle$ 為收斂數列,則 $\langle \frac{1}{a_n} \rangle$ 必為收斂數列
 - (4) 設 $\langle a_n + b_n \rangle$ 、 $\langle a_n b_n \rangle$ 為兩收斂數列,則 $\langle a_n \rangle$ 、 $\langle b_n \rangle$ 必均為收斂數列
 - (5) 設 $\langle a_n \rangle$ 、 $\langle b_n \rangle$ 為兩收斂數列,且對所有的正整數n, $a_n < c_n < b_n$ 均成立,則 $\langle c_n \rangle$ 必為收斂數列。
- 4. 請選出滿足 $\lim_{n \to \infty} a_n = 5$ 的數列 $\langle a_n \rangle$ 。

(1)
$$\begin{cases} a_1 = 1 \\ a_n = a_{n-1} - 2^{3-n}, n \ge 1 \end{cases}$$

(2)
$$\begin{cases} a_1 = 5 \\ a_n = 25 - 4a_{n-1}, n \ge 2 \end{cases}$$

(1)
$$\begin{cases} a_1 = 1 \\ a_n = a_{n-1} - 2^{3-n}, n \ge 2 \end{cases}$$
(2)
$$\begin{cases} a_1 = 5 \\ a_n = 25 - 4a_{n-1}, n \ge 2 \end{cases}$$
(3)
$$\begin{cases} a_1 = 10 \\ a_n - 5 = \frac{3}{5}(a_{n-1} - 5), n \ge 2 \end{cases}$$

(4)
$$\begin{cases} a_1 = \frac{1}{100} \\ a_n - 5 = \frac{6}{5} (a_{n-1} - 5), n \ge 2 \end{cases}$$

$$\begin{cases} a_1 = 1 \end{cases}$$

(5)
$$\begin{cases} a_1 = 1 \\ a_n = \sqrt{4a_{n-1} + 5}, n \ge 2 \end{cases}$$

計算題: (請詳列過程,否則不計分) 費氏數列 $\langle a_n \rangle$ 滿足 $\begin{cases} a_1 = 1, \ a_2 = 1 \\ a_{n+2} = a_{n+1} + a_n \end{cases}$, $n \in \mathbb{N}$,且已知數列 $\left\langle \frac{a_{n+1}}{a_n} \right\rangle$ 會收斂至一數 t ;數列 $\langle b_n \rangle$ 滿足 $b_n = (t + \frac{1}{t})(t^2 + \frac{1}{t^2})(t^4 + \frac{1}{t^4})\cdots(t^{n_2} + \frac{1}{t^{2^n}})$, $\exists t \exists t :$

- 1. t 之值為何?
- 2. 已知當c為定數且c > 0時, $\lim_{r \to \infty} \sqrt[4]{c} = 1$ (免證明)。

試判斷無窮數列 $\langle \sqrt[r]{b_n} \rangle$ 是否收斂?若收斂,請求出其極限。

高雄中學 110 學年度第一學期高三第二、三類組數學科第二次月考答案卷

_年____组 座號:_____ 姓名:__

一、 填充題:(60%)

對格	1	2	3	4	5	6	7	8	9
分數	8	16	24	32	40	45	50	55	60

*所有答案均需化至最簡,並以藍、黑色原字筆作答,否則不予計分

(A) 3	(B) 3	(C) $\frac{7}{18}$	(D) (3,-2)	(E) 80
(F) 2	(G) $\frac{3}{2}$	(H) 199	(I) -2	

二、多選題:(28%)(每題全對給7分,錯一選項給4分,其他情形不給分)

題號	1	2	3	4
答案	12	134	24	235

四、 計算與證明題: (12%)(請詳列過程,否則不計分)

2.
$$(5 \cancel{f})$$

$$\therefore t = \frac{1+\sqrt{5}}{2} \qquad \qquad \therefore \frac{1}{t} = \frac{2}{1+\sqrt{5}} = \frac{\sqrt{5}-1}{2}$$

$$\Rightarrow t - \frac{1}{t} = 1 \coprod 1 - \frac{1}{t} = \frac{3-\sqrt{5}}{2} > 0$$

$$\Rightarrow \sqrt[2^{n}]{b_{n}} = \sqrt[2^{n}]{(t+\frac{1}{t})(t^{2}+\frac{1}{t^{2}})(t^{4}+\frac{1}{t^{4}})\cdots(t^{2^{n}}+\frac{1}{t^{2^{n}}})}$$

$$= \sqrt[2^{n}]{(t-\frac{1}{t})(t+\frac{1}{t})(t^{2}+\frac{1}{t^{2}})(t^{4}+\frac{1}{t^{4}})\cdots(t^{2^{n}}+\frac{1}{t^{2^{n}}})}$$

$$= \sqrt[2^{n}]{(t-\frac{1}{t})(t+\frac{1}{t})(t^{2}+\frac{1}{t^{2}})(t^{4}+\frac{1}{t^{4}})\cdots(t^{2^{n}}+\frac{1}{t^{2^{n}}})}$$

$$= \sqrt[2^{n}]{(1-\frac{1}{t^{2^{n+2}}})}$$

$$= t^{2} \sqrt[2^{n}]{(1-\frac{1}{t^{2^{n+2}}})} < \sqrt[2^{n}]{(1-\frac{1}{t^{2^{n+2}}})} < \sqrt[2^{n}]{(1-\frac{1}{t^{2^{n+2}}})}$$

$$\lim_{n\to\infty} \sqrt[2^{n}]{(1-\frac{1}{t^{2^{n+2}}})} = 1$$

$$\therefore \lim_{n\to\infty} \sqrt[2^{n}]{(1-\frac{1}{t^{2^{n+2}}})} = 1$$

高雄中學 110 學年度第一學期高三第二、三類組數學科第二次月考答案卷

填充	酉.(((()))											
· > - / L	皮. (60%)											_
		對格	1	2	3	4	5	6	7	8	9	_
		分數	8	16	24	32	40	45	50	55	60	
新有答	案均需化	至最簡,並	以藍、	黑色	原字筆	作答,	否則	不予計	分			
A)		(B)			(C)			(]	D)			(E)
")		(G)			(H)				[)			
多選是	夏: (28%)((每題全對約	合7分	,錯—	選項紹	34分	,其他	情形を	下給分	·)		
號		1			2				3			4
		1										
案												
計算!	與證明題:	(12%)(請詳	列過程	!,否則	不計分	·)						
. (7 5	')					2. (5	5分)					
	• /					`	/ • /					