Fault Simulation

Dr. Shubhajit Roy Chowdhury,

Centre for VLSI and Embedded Systems Technology,

IIIT Hyderabad, India

Email: src.vlsi@iiit.ac.in

Fault Simulation

- Introduction
- Serial Fault Simulation
- □ Parallel Fault Simulation
- Deductive Fault Simulation
- □ Fault Detection
- □ Alternative to Fault Simulation
- □ Conclusion

Introduction

■ What is fault simulation?

- Given
 - A circuit
 - A set of test patterns
 - A fault model
- Determine
 - Faulty outputs
 - Undetected faults
 - Fault coverage

Time Complexity

- Proportional to
 - n: Circuit size, number of logic gates
 - p: Number of test patterns
 - f: Number of modeled faults
- □ Since f is roughly proportional to n, the overall time complexity is O(pn²)

Serial Fault Simulation

- □ First, perform fault-free logic simulation on the original circuit
 - Good (fault-free) response
- For each fault, perform fault injection and logic simulation
 - Faulty circuit response

Algorithm for Serial Fault Simulation

Example of Serial Fault Simulation

Pat. #	Input				Iı	Output					
	A	В	C	E	F	L	J	H	K_{good}	K_f	Kg
P1	0	1	0	1	1	1	0	0	1	0	1
P2	0	0	1	1	1	1	0	0	1	0	1
P 3	1	0	0	0	0	0	1	0	0	0	1

Fault Dropping

- Halting simulation of the detected fault
- Example
 - Suppose we are to simulate P₁, P₂, P₃ in order
 - Fault f is detected by P₁
 - Do not simulate f for P₂, P₃
- For fault grading
 - Most faults are detected after relatively few test patterns have been applied
- □ For fault diagnosis
 - Avoided to obtain the entire fault simulation results

Advantages and Disadvantages of Serial Fault Simulation

Advantages

- Easy to implement
- Ability to handle a wide range of fault models (stuck-at, delay, Br, ...)
- Disadvantages
 - Very slow

Parallel Fault Simulation

- Exploit the inherent parallelism of bitwise operations
- □ Parallel fault simulation [Seshu 1965]
 - Parallel in faults
- □ Parallel pattern fault simulation [Waicukauski 1986]
 - Parallel in patterns

Parallel Fault Simulation

Assumption

- Use binary logic: one bit is enough to store logic signal
- Use w-bit wide data word
- □ Parallel simulation
 - w-1 bit for faulty circuits
 - 1 bit for fault-free circuit
- Process faulty and fault-free circuit in parallel using bitwise logic operations

Fault Injection

Example

Pat#	Input					Internal						Output
		A	A_f	В	C	E	F	L	J	J_g	Н	K
P_I	FF	0	0	1	0	1	1	1	0	0	0	1
	f	0	1	1	0	1	1	1	0	0	1	0
	50)	0	9	1	0	1	1		0	0	9	1
P ₂	FF	0	0	0	1	1	1	1	0	0	0	1
	f	0	1	0	1	1	1	1	0	0	1	0
	50)	0	0	0	1	1	1	1	0	0	0	1
P_3	FF	1	1	0	0	0	0	0	1	1	0	0
	f	1	1	0	0	0	0	0	1	1	0	0
	g	1	1	0	0	0	0	0	1	0	0	1

Advantages and Disadvantages of Parallel Fault Simulation

■ Advantages

 A large number of faults are detected by each pattern when simulating the beginning of test sequence

Disadvantages

- Only applicable to the unit or zero delay models
- Faults cannot be dropped unless all (w-1) faults are detected

Parallel Pattern Fault Simulation

- Parallel pattern single fault propagation (PPSFP)
- Parallel pattern
 - With a w-bit data width, w test patterns are packed into a word and simulated for the fault-free or faulty circuit
- □ Single fault
 - First, fault-free simulation
 - Next, for each fault, fault injection and faulty circuit simulation

Algorithm for parallel pattern fault simulation

Example

		In	put			Output				
		A	В	C	E	F	L	J	H	K
Fault Free	P_I	0	1	0	1	1	1	0	0	1
	P_2	0	0	1	1	1	1	0	0	1
	P_3	_	0	0	0	0	0	1	0	0
f	P_I	1	1	0	1	1	1	0	1	0
	P_2	1	0	1	1	1	1	0	1	0
	P_3	1	0	0	0	0	0	1	0	0
g	P_I	0	1	0	1	1	1	0	0	1
	P_2	0	0	1	1	1	1	0	0	1
	P_3	1	0	0	0	0	0	0	0	1

Advantages and Disadvantages of Parallel Pattern Fault Simulation

Advantages

- Fault is dropped as soon as detected
- Best for simulating test patterns that come later,
 where fault dropping rate per pattern is lower
- Disadvantages
 - Not suitable for sequential circuits

Deductive Fault Simulation

- □ [Armstrong 1972]
- Based on logic reasoning rather than simulation
- \Box Fault list attached with signal x denoted as L_x
 - Set of faults causing x to differ from its fault-free value
- Fault list propagation
 - Derive the fault list of a gate output from those of the gate inputs based on logic reasoning

Example

Example

Advantages and Disadvantages of Deductive Fault Simulation

Advantages

- Very efficient
- Simulate all faults in one pass
- Disadvantages
 - Not easy to handle unknowns
 - Only for zero-delay timing model
 - Potential memory management problem

Fault Detection

- □ Hard detected fault
 - Outputs of fault-free and faulty circuit are different
 - -1/0 or 0/1
 - No unknowns, no Z
- Potentially detected fault
 - · Whether the fault is detected is unclear
 - Example: stuck-at-0 on enable signal of tri-state buffer

Fault Detection (Cont'd)

Oscillation faults

- Cause circuit to oscillate
- Impossible to predict faulty circuit outputs
- Hyperactive faults
 - Catastrophic fault effect
 - Fault simulation is time and memory consuming
 - Example: stuck-at fault on clock
 - Usually counted as detected
 - Save fault simulation time

Alternatives to fault simulation

- □ Toggle Coverage
- Fault Sampling
- Critical Path Tracing
- Statistical Fault Analysis

Toggle Coverage

- Popular for estimating fault grading
- Only one single fault-free simulation
- A net is toggled if
 - Relaxed def: its value has been set to zero and one during fault-free simulation
 - Stringent def: it has both a zero-to-one transition and a one-to-zero transition during fault-free simulation
- □ Toggle coverage

number of toggled nets

number of total nets in the circuit

Fault Sampling

- □ [Butler 1974]
- □ Simulate only a sampled group of faults
- □ Error depends on two factors
 - Sample size
 - The sample is biased or not

Critical Path Tracing

- □ [Abramovici 1984]
- □ Critical value
- Critical path
 - Path consisting of nets with critical value
- Special attention required for fanout reconvergence

Example

Statistical Fault Analysis

- □ [Jain 1985]
- Use probability theory to estimate expected value of fault coverage
- \square Detectability of fault $f(d_f)$
 - 1-controllability, C1(x)
 - 0-controllability, C0(x)
 - Observability, O(x)
 - Sensitization probability, S(x)

Summary

- Fault simulation is very important for
 - ATPG
 - Diagnosis
 - Fault grading
- Popular techniques
 - Serial, Parallel, Deductive
- Requirements for fault simulation
 - Fast speed, efficient memory usage, modeling functional blocks, sequential circuits

Thank You

