Digital Watermarking and Steganography

by Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, Ton Kalker

Chapter 3. Models of Watermarking

Lecturer: Jin HUANG

2015

Overview

Several conceptual models of watermarking

- View of communications
- View of geometry

Correlation-based watermarking

How to measure "it is THE message".

3.2 Communications

Components of Communications Systems

- $oldsymbol{\mathbf{x}}$ is signal that can be transmitted over the channel, but m is not.
 - Source coder: draw symbols in some alphabet.
 - Modulator: converts a sequence of symbols into a physical signal.
- Transmission in channel add noise n.

Classes of Transmission Channels

According to the type of noise function

- Additive noise: y = x + n.
- Fading channel: $\mathbf{y} = \nu[t]\mathbf{x} + \mathbf{n}, 0 \le \nu[t] \le 1$.
- ...

Secure Transmission 1

Security against both passive and active adversaries

- Passive: Aims at the message.
 - Monitors the transmission channel and attempts to illicitly read the message.
- Active: Aims at the transmission.
 - Disable the communications or transmit fake/unauthorized messages.

Secure Transmission 1

Message layer: cryptography.

- Prevent unauthorized reading.
- Prevent unauthorized writing.

Secure Transmission 2

Transport layer: spread spectrum communication.

- Spreads the signal across a wider bandwidth according to a secret key.
 - Frequency hopping.
 - Cannot monitor the transmission.
 - Huge cost/power to jam the transmission.

3.3 Communication-Based Models of Watermarking

Models

Deliver the message from the embedder to decoder.

Not suitable for authentication system.

$$\mathbf{c}_{wn} = \mathbf{c}_o + \mathbf{w}_a + \mathbf{n}$$

How to use the cover work.

- As noise.
- As side information.
- The second message.

As Noise 1

Informed Detector

To cancel out effect of \mathbf{c}_{o} , the whole \mathbf{c}_{o} is not always required.

As Noise 2

Blind Detector

 \mathbf{w}_a is corrupted by both \mathbf{c}_o and \mathbf{n} .

Blind Embedding (E_BLIND)

One bit only message $m \in 0, 1$:

- A reference pattern (key) w_r .
- Encoding into to message pattern:

$$\mathbf{w}_m = (2m - 1)\mathbf{w}_r.$$

- Modulate to added pattern: $\mathbf{w}_a = \alpha \mathbf{w}_m$.
- Embedding: $\mathbf{c}_w = \mathbf{c}_o + \mathbf{w}_a$.

Linear Correlation Decoder (D_LC)

After transmission $c = c_w + n$.

Detection:

- Goal: How c is correlated to \mathbf{w}_r ?
- Linear Correlation (scaled dot product):

$$z_{lc}(\mathbf{c}, \mathbf{w}_r) = \frac{1}{N} \mathbf{c} \cdot \mathbf{w}_r, \quad \mathbf{c} \in \mathbb{R}^N.$$

- Larger $|z_{lc}|$ means higher correlation.
- An imperfect measurement (will show later).

Why Dot Product?

Start from the usual distance definition:

$$\sum_{i} (\mathbf{a}_{i} - \mathbf{b}_{i})^{2} = \|\mathbf{a} - \mathbf{b}\|^{2}$$

$$= (\mathbf{a} - \mathbf{b})^{T} (\mathbf{a} - \mathbf{b})$$

$$= \mathbf{a}^{T} \mathbf{a} - 2\mathbf{a}^{T} \mathbf{b} + \mathbf{b}^{T} \mathbf{b}$$

$$= (\|\mathbf{a}\|^{2} + \|\mathbf{b}\|^{2}) - 2\mathbf{a} \cdot \mathbf{b}.$$

z_{lc}

Assuming c_o , n are from Gaussian distributions:

$$z_{lc} = \frac{1}{N} \left(\mathbf{c}_o + \mathbf{w}_a + \mathbf{n} \right) \cdot \mathbf{w}_r$$

$$= \frac{1}{N} \left(\mathbf{w}_a \cdot \mathbf{w}_r + \left(\mathbf{c}_o + \mathbf{n} \right) \cdot \mathbf{w}_r \right)$$

$$= \frac{1}{N} \left(\mathbf{w}_a \cdot \mathbf{w}_r \right) + \varepsilon$$

$$= \frac{1}{N} \left(\alpha (2m - 1) \mathbf{w}_r \cdot \mathbf{w}_r \right) + \varepsilon$$

$$= (2m - 1) \left(\alpha \frac{\|\mathbf{w}_r\|^2}{N} \right) + \varepsilon.$$

 m_n

Decoder outputs

$$m_n = egin{cases} 1 & z_{lc} > au_{lc} \ \mathbf{no} & - au_{lc} \leq z_{lc} \leq au_{lc} \ 0 & z_{lc} < - au_{lc}. \end{cases}$$

- \bullet $\alpha = 0 \Leftrightarrow no.$
- τ_{lc} is important.

Testing Parameters

- Unit variance: $\sigma_{\mathbf{w}_r}^2 = \|\mathbf{w}_r \mu_{\mathbf{w}_r}\|^2/N = 1$.
 - $\mu_{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}[i].$
 - $\sigma_{\mathbf{x}}^2 = \mu_{(\mathbf{x}[i] \mu_{\mathbf{x}})^2} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}[i] \mu_x)^2$.
- ullet 2000 images for ${f c}_o$, 6000 images as ${f c}_w$.
 - ullet 2000: $\alpha=0$, no watermark.
 - \circ 2000: $\alpha = 1, m = 1$.
 - \circ 2000: $\alpha = 1, m = 0.$
- $\tau_{lc} = 0.7$.
 - False positive probability $P_{fp} \approx 10^{-4}$.
 - In Chapter 7.

Performance Performance Performance Performance Performance Properties a subtermuck properties and the subtermuck properties are subtermuck properties are subtermuck properties and the subtermuck properties are subtermuck

Reason ε is large: High inherent correlations between the images and the reference pattern. Images tend to have more energy in the low frequencies than in the high.

Embedding with Side Information

Adaptive strength α :

Correlation must be large enough:

$$\tau_{lc} < \tau_{lc} + \beta = z_{lc}(\mathbf{c}_w, \mathbf{w}_m)$$

$$= \frac{1}{N}(\mathbf{c}_o + \alpha \mathbf{w}_m) \cdot \mathbf{w}_m.$$

$$\implies \alpha = \frac{N(\tau_{lc} + \beta) - \mathbf{c}_o \cdot \mathbf{w}_m}{\mathbf{w}_m \cdot \mathbf{w}_m}.$$

May sacrifice fidelity.

 $\begin{aligned} \textbf{Discussion} \\ \bullet & \text{ How about directly making } \varepsilon = 0? \\ \bullet & \text{ Find an approximation } c'_o \text{ so that} \\ & c'_o \cdot \mathbf{w}_m = 0. \\ \bullet & \text{ How?} \\ & c'_o = \mathbf{c}_o - \frac{\mathbf{c}_o \cdot \mathbf{w}_m}{\mathbf{w}_m \cdot \mathbf{w}_m} \mathbf{w}_m. \\ \bullet & \text{ Is it good?} \\ \bullet & \text{ Equivalent to?} \\ \bullet & \text{ Will false positive be zero?} \\ \bullet & \text{ Murphy's law: Anything that can go wrong will go wrong (Interstellar).} \end{aligned}$

Multiplexed Communications 1

Multiplexed Communications 2

- In traditional communications:
 - Same method but different parameter
 - Time, frequency, or code sequence.
- In watermarking:
 - Different methods
 - Frequency division for one
 - Spread spectrum coding for the other.
- Signal-to-noise ratio (SNR)
 - Which one is the signal.

Project: System 1

- E_BLIND
- D_LC

Presentation: 7.3,7.4

- False Negative Errors
- ROC curve
 - Receiver operating characteristic curve
 - Balance of false positives and false negatives rate.

Question: Compute

Both the cover work $\mathbf{c} \in \mathbb{R}^N$ and message watermark $\mathbf{w} \in \mathbb{R}^N$ are both normalized, i.e.

$$\|\mathbf{w}\| = 1, \|\mathbf{c}\| = 1$$
:

- If the Euclidean distance of them is $\|\mathbf{w} \mathbf{c}\|^2 = 0.6$, what is the value of their linear correlation $z_{lc}(\mathbf{c}, \mathbf{w})$?
- If the embedding strength α must be less than 2 for fidelity, to achieve desired linear correlation 0.8/N, what is the requirement for cover work c?