Math 314 Matrix Theory

January 25, 2005

Vector equations
$$x_1 \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_{1n} \\ \vdots \\ b_m \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$
 can be useful in understand solutions to linear systems. One reason for this is that

addition and scalar multiplication are so well-beahved (because these operations are caried out component by component):

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ $\mathbf{u} + \mathbf{0} = \mathbf{u} + (0, \dots, 0) = \mathbf{u}$ $(cd)\mathbf{u} = c(d\mathbf{u})$ $1\mathbf{u} = \mathbf{u}$ with $-\mathbf{u} = (-1)\mathbf{u}$, $\mathbf{u} + (-\mathbf{u}) = (0, \dots, 0)$

The *span* of a collection of vectors is the collection of all linear combinations of the vectors;

$$\mathbf{Sp}(\mathbf{v_1},\ldots,\mathbf{v_n}) = \{x_1\mathbf{v_1} + \cdots + x_n\mathbf{v_n} : x_1,\ldots x_n \in \mathbf{R}\}$$

Then a vector equation $x_1\mathbf{v_1} + \cdots + x_n\mathbf{v_n} = \mathbf{b}$ has a solution precisely when $\mathbf{b} \in \mathbf{Sp}(\mathbf{v_1}, \dots, \mathbf{v_n})$

We can therefore understand linear systems (via vector equations) better, by understanding what the span of the column vectors of the coefficient matrix might look like. This will be a point of view that we will continue to develop throughout the course.

Matrix equations:

There is still a third point of view that we will approach systems of equations from: matrix multiplication. We can interpret a linear combination

of vectors,
$$x_1 \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix}$$
, as a product of the matrix $A = \begin{bmatrix} a_{11} & \cdots & \vdots \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$ and the vector $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$, which we denote $A\mathbf{x}$.

In this notation a system of equations has a very compact form: $A\mathbf{x} =$

This is really just a new notation for systems, but it will turn out to be remarkably useful. One reason for its utility is that the matrix $A(c\mathbf{u} = c(A\mathbf{u}))$ product is *linear* (in the vector term): $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$

With this new notation, our basic goal becomes: understand the solutions \mathbf{x} to the equation $A\mathbf{x} = \mathbf{b}$.

Another example of how these different perspectives give different ways to view the same result:

If
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$
, v_1, \ldots, v_n are the column vectors of A , and $\mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$, then the system of equations $\begin{pmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{pmatrix}$ has a solution for every $\mathbf{b}_1, \ldots, \mathbf{b}_m \Leftrightarrow A\mathbf{x} = \mathbf{b}_1$ has a solution for every $\mathbf{b}_1, \ldots, \mathbf{b}_m \Leftrightarrow A\mathbf{x} = \mathbf{b}_1$ has a solution for every $\mathbf{b}_1, \ldots, \mathbf{b}_m \Leftrightarrow A\mathbf{x} = \mathbf{b}_1$ has a solution for every $\mathbf{b}_1, \ldots, \mathbf{b}_m \Leftrightarrow A\mathbf{x} = \mathbf{b}_1$ has a solution for every $\mathbf{b}_1, \ldots, \mathbf{b}_m \Leftrightarrow A\mathbf{x} = \mathbf{b}_1$ has a solution for every $\mathbf{b}_1, \ldots, \mathbf{b}_m \Leftrightarrow A\mathbf{x} = \mathbf{b}_1$

 $\mathbf{Sp}(v_1,\ldots,v_n)=\mathbf{R}^m$.

These, in turn, are true \Leftrightarrow after row reducing A to RREF, every row has a pivot in it. To see this, note that if $(A|\mathbf{b})$ is row reduced, then a pivot in every row means that there is no row $(0 \cdots 0|1)$, (because we can't have the row of 0's in the coefficient matrix), so the system is consistent, so there is a solution. Conversely, if the RREF does not have a pivot in every row, then its bottom row will be a row of 0's. Then

if we start with the inconsistent system $\begin{pmatrix} RREF & | \vdots \\ |0 \\ |1 \end{pmatrix}$ and reverse the row reduction steps, we will arrive at $(A|\mathbf{b})$ (for some \mathbf{b}), which

we know to be inconsistent, so this equation has no solution. So if every system has a solution, then there must be a pivot in every row.