What is claimed is:

1	1.	A memory device, comprising:
2		an array of a magnetic storage cells, each cell comprising a first magnetic
3		layer, a second magnetic layer, and a dielectric in between each said
4		first and second magnetic layers;
5		a first set of conductors to receive current for writing data to said magnetic
6		storage cells; and
7		a second set of conductors for heating said at least one magnetic storage cell
8		when writing a bit of data to said at least one.
1	2.	The memory device of claim 1, wherein the first set of conductors is
2		electrically isolated from the second set of conductors within the array
3		of magnetic storage cells.
1	3.	The memory device of claim 1, wherein heating said at least one magnetic
2		storage cell reduces the magnetic coercivity of at least one of the first
3		and second magnetic layers comprising the magnetic storage cell.
1	4.	The memory device of claim 1, wherein the array of magnetic storage cells
2		comprise spin tunneling storage cells.
1	5.	The memory device of claim 1, wherein the array of magnetic storage cells
2		comprise giant magnetoresistive storage cells.
1	6.	The memory device of claim 1, wherein said array of magnetic storage cells
2		comprise anisotropic magnetoresistive material.

1	7.	The memory device of claim 1, wherein said array of magnetic storage cells
2		comprise any magnetoresistive storage material.
1	8.	The memory device of claim 1 wherein said magnetic storage cells serve as
2		electrical heating elements.
1	9.	The memory device of claim 8, wherein said at least one magnetic storage cell
2		is heated by current flowing through said second set of conductors and
3		through said at least one magnetic storage cell.
1	10.	The memory device of claim 1, wherein said second conductor set includes a
2		heater element placed in series with at least one of the conductors of
3		the second conductor set.
1	11.	The memory device of claim 10, wherein said heater element is a resistive
2		device.
1	12.	The memory device of claim 1, wherein said magnetic memory device
2		includes a heater element placed in series with at least one of the said
3		magnetic storage cells.
1	13.	A method for storing data comprising:
2		applying a voltage on a sense current conductors and across a storage cell to
3		heat the storage cell;
4		after the storage cell is heated, writing data to said storage cell; and
5		then removing said voltage across said storage cell.
1	14.	The method of claim 13, wherein said storage cell is a magnetic storage cell.

1	15.	The method of claim 13, wherein said storage cell is a spin tunneling storage
2		cell.
1	16.	A method for writing data to a magnetic memory device comprising:
2		applying a first current to at least one conductor within a second set of
3		conductors, said first current providing energy to heat the magnetic
4		storage cell;
5		after the magnetic storage cell is heated, applying a second current to at least
6		one conductor in a first set of conductors, said second current
7		providing a magnetic field to write data to said storage cell; and
8		then removing said first current to a second conductor.
1	17.	The method of claim 16, wherein said storage cell is a magnetic storage cell.
1	18.	The method of claim 16, wherein said storage cell is a spin tunneling storage
2		cell.
1	19.	An electronic device comprising:
2		a processor;
3		an input device coupled to said processor;
4		an output device coupled to said processor;
5		and a memory device coupled to said processor, wherein said memory device
6		comprises;
7		an array of a magnetic storage cells, each region comprising a first magnetic
8		layer, a second magnetic layer, and a dielectric in between each said
9		first and second magnetic layers;
10		a first set of conductors to receive current for writing data to said magnetic
11		storage cells; and

		11
12		a second set of conductors for applying a voltage across said at least one
13		magnetic storage cell for heating said at least one magnetic storage cell
14		prior to writing a bit of data to said at least one.
1	20	The electronic device of claim 19, wherein the array of magnetic storage cells
2		comprise random access memory.
1	21.	The electronic device of claim 19, wherein said first magnetic layer has a fixed
2		orientation of magnetization and the second layer has a non-fixed
3		orientation.
1	22.	The electronic device of claim 19, wherein at least one of said second set of
2		conductors includes a resistive heating element for heating each
3		magnetic storage cell when current flows through said heating element.
1	23.	A magnetic storage cell comprising;
2		a first magnetic layer, a second magnetic layer, and a dielectric in between said
3		first and second magnetic layers;
4		a first set of conductors positioned above and below said first and second
5		magnetic layers for writing to said magnetic storage cell; and
6		a second set of conductors positioned above and below said first and second
7		magnetic layers for applying a voltage across a said magnetic storage
8		cell for heating said selected magnetic storage cell prior to writing a bit
9		of data to said magnetic storage cell and for reading the data bit that is
10 -		stored on said magnetic storage cell.
1	24.	The magnetic storage cell of claim 23, wherein said magnetic storage cell is a
2		spin tunneling storage cell.