Problem

Prove that the following two languages are undecidable.

- **a.** $OVERLAP_{CFG} = \{\langle G, H \rangle | G \text{ and } H \text{ are CFGs where } L(G) \cap L(H) \neq \emptyset \}.$ (Hint: Adapt the hint in Problem 5.21.)
- **b.** PREFIX- $FREE_{CFG} = \{\langle G \rangle | G \text{ is a CFG where } L(G) \text{ is prefix-free} \}.$

Step-by-step solution

Step 1 of 7

The given languages have to be proven to be un-decidable.

a)

 $OVERLAP_{CFG} = \{ \langle G, H \rangle | G \text{ and } H \text{ are CFGs where } L(G) \cap L(H) \neq \emptyset \}$

Comment

Step 2 of 7

Assume that $OVERLAP_{CFG}$ is decidable. Given an instance for the problem of Post Correspondence $P = \left\{ \left\lfloor \frac{t_1}{b_1} \right\rfloor, \left\lfloor \frac{t_2}{b_2} \right\rfloor, ..., \left\lfloor \frac{t_n}{b_n} \right\rfloor \right\}$, introduce unique new terminals $a_1, a_2, ..., a_n$ for the CFGs.

Comment

Step 3 of 7

 \cdot Define the CFG $G_{
m as}$:

$$\begin{split} G &= t_1, t_2, ..., t_n \\ L(G) &= \left\{ s \mid s = t_i t_j ... t_k a_k a_j a_i \right\} \\ S_G &\to t_1 S_G a_1 \mid ... \mid t_n S_G a_n \mid t_1 a_1 \mid \mid t_n a_n \end{split}$$

 \cdot Similarly, define the CFG H as follows:

$$\begin{split} H &= b_1, b_2, ..., b_n \\ L(H) &= \left\{ s \mid s = b_i b_j ... b_k a_k a_j a_i \right\} \\ S_H &\to b_1 S_H a_1 \mid ... \mid b_n S_H a_n \mid b_1 a_1 \mid \mid b_n a_n \\ &\text{As } L(G) \cap L(H) \neq \phi \text{ , we get } t_i t_j ... t_k a_k ... a_j a_i = b_i b_j ... b_k a_k ... a_j a_i \end{split}$$

Comment

Step 4 of 7

 \cdot Since the new terminals $a_1, a_2, ..., a_n$ are unique, which can be cancelled from both sides resulting in:

$$t_i t_j ... t_k = b_i b_j ... b_k$$

This is a way to solve for the Post Correspondence Problem P. This is a contradiction as the Post Correspondence Problem is un-decidable. Therefore, the assumption taken that $OVERLAP_{CFG}$ is decidable, is incorrect.

