July 2024

Price Optimization with Bandits

Pranjal Rawat, DSA Intern

Source doc: here.

Current System

Issues

Issue	Evidence	Solution	
Optimal price changes by country	Localized PO For Blox Fruits and Adopt Me	Pricing based on context	
Optimal prices are different across item clusters	Pet Sim X Price Optimization Test Results and Recommendations	Cluster level pricing	
Optimal price may simply "drift"	Expectation vs. Reality of In-Experience Price Optimization Holdouts	Decaying weights / sliding windows to focus on recent experiences	

Offline evaluation tests on Slap Battles, game makes a case for 7-16% increase in median revenue.

What's next? An A/B Test!

Treatment Arm 1

Aggregate Price Bandit that

- Models revenue as function of price and context.
- Context
 - User Composition
 - Seasonality
- Continuously Explores via Upper Confidence Bounds on Revenue

Treatment Arm 2

Item Cluster level Bandit that

- Factors in substitution patterns between items
- Models the reward surface across groups of items.
- Joint optimization all item prices over revenue surface

Slap Battles : Direct Evaluation

Had price experimentation run on 5/31 to 6/13.

Periodize	Oracle	Bandits	Monte Carlo
Aggregate raw transaction data in price buckets into 5-minute	Train a machine learning model to predict rewards from	Baseline is to uniformly randomize prices.	Each round, 7 contexts are generated and bandit must price all 7
intervals.	context for each price point - "Oracle".	What's new? • Efficient	and receive rewards.
User composition in interval becomes "context".		Exploration Online Reward Modelling	Compare performance using Monte Carlos.

RØBLOX

Data

Aggregating transaction data to 5 minute intervals:

	round	price	avg_reward	d_gender_male	d_gender_female	d_US_users	d_age_in_days	d_days_since_join	d_days_since_join_game	s_hour_of_day	
0	0	75.0	20.000000	1.000000	0.000000	1.000000	5168.800000	1408.200000	494.400000	0	
1	0	80.0	699.000000	1.000000	0.000000	1.000000	6057.000000	520.000000	511.000000	0	
2	0	85.0	163.857143	0.857143	0.000000	0.714286	5400.142857	1176.857143	634.714286	0	
3	0	100.0	116.022727	0.795455	0.090909	0.897727	5441.022727	1135.988636	583.443182	0	
4	0	115.0	186.500000	0.250000	0.250000	0.750000	5811.000000	766.000000	477.250000	0	
5	0	120.0	799.000000	1.000000	0.000000	1.000000	5847.000000	730.000000	80.000000	0	
6	0	125.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0	
7	1	75.0	79.181818	1.000000	0.000000	0.636364	5109.454545	1467.545455	321.090909	0	
8	1	80.0	46.500000	1.000000	0.000000	0.750000	4820.000000	1757.000000	333.500000	0	
9	1	85.0	799.000000	1.000000	0.000000	1.000000	6494.000000	83.000000	81.000000	0	

Rows: 28,224, Columns: 26

RØBLOX

Algorithms

Bandit	Logic	Context (x)	Model	Equation	
Uniform (Baseline)	Different prices to all 7 for a half the rounds, then best price shown to all.	None	None	$r(p) \leftarrow rac{1}{T_{1/2}} \sum_{t=1}^{T_{1/2}} r(t) ext{ for } t \leq T_{1/2}$	
UCB	Predicts mean rewards for each price, plus an exploration bonus.	None	None	$r(p) \leftarrow ar{r}(p) + lpha \sqrt{rac{2 \log t}{n_p}}$	
Linear UCB (Disjoint)	Predicts rewards for each price, given context. Adds an exploration bonus using stderr.	User compositions	OLS	$r(p) \leftarrow heta_p^T \cdot x + lpha \sqrt{x^T \cdot A_p^{-1} \cdot x}$	
Kalman UCB	Models reward as fn of price, price^sq and price * user composition. Adds small exploration bonus using varcov.	Price, price^sq, p*user compositions	Kalman Filter	$r(p) \leftarrow heta_p^T \cdot x + lpha \cdot \sigma_p$	
Greedy LGBM	Learns a separate LGBM reward model for each price arm and chooses prices greedily.	User compositions	LGBM	$r(p) \leftarrow \hat{r}(p \mid x)$	

Simulating 1 Day

The UCB (Green) method helps reduce variance of estimates and raise the lower bound.

The Baseline/Uniform (Orange) carries a risk of doing poorly.

Oracle (Blue) is best possible.

Random (Red) is worst possible.

Simulating 1 Day

Greedy LGBM is slow but outperforms all others - indicating that a flexible reward model is important.

However, the Kalman UCB is fast, efficient and second best.

Lift over Baseline

Two reasons to use online learning:

- More Robux: Increase in revenue.
- More Robust: Decrease in risk.

Bandit	Increase in Median Revenue	Decrease in Range of Revenues
UCB	+0.2%	-53%
Linear UCB (Disjoint)	+2.7%	-3.0%
Kalman UCB	+4.6%	-25%
Greedy LGBM	+16%	-10%

Simulating 4 Weeks

UCB and Baseline median revenue is nearly identical, but UCB has much lower variance.

Greedy LGBM was too slow to complete in time.

Kalman UCB was fast, efficient and best.

RØBLOX

30 simulations per Monte Carlo experiment. The UCB and ETC median overap, but ETC variance is wide.

Lift over Baseline

The superiority of the Kalman UCB in median revenue might be attributed to it modeling the entire revenue function (i.e. demand learning).

Bandit	Increase in Median Revenue	Decrease in Range of Revenues		
UCB	+0.54%	-54.0%		
Linear UCB (Disjoint)	+4.18%	-86.2%		
Kalman UCB	+6.57%	-72.9%		

Flexible models are needed to model the revenue well and yet adding some a-priori information about demand (e.g. including price^2) does help.

Thanks

- Steve for motivation
- Shahzoor data pipelines, code and context.
- Jose suggesting the offline evaluation framework, the notion of "user compositions" and Kalman filter based on his experience at Lyft.
- For feedback Ujwal (all the literature review on topic), Phil, Amar (suggestion of contextual bandit).

Appendix

Prepare Data

Aggregating transaction data to 5 minute intervals:

	round	price	avg_reward	d_gender_male	d_gender_female	d_US_users	d_age_in_days	d_days_since_join	d_days_since_join_game	s_hour_of_day
0	0	75.0	20.000000	1.000000	0.000000	1.000000	5168.800000	1408.200000	494.400000	0
1	0	80.0	699.000000	1.000000	0.000000	1.000000	6057.000000	520.000000	511.000000	0
2	0	85.0	163.857143	0.857143	0.000000	0.714286	5400.142857	1176.857143	634.714286	0
3	0	100.0	116.022727	0.795455	0.090909	0.897727	5441.022727	1135.988636	583.443182	0
4	0	115.0	186.500000	0.250000	0.250000	0.750000	5811.000000	766.000000	477.250000	0
5	0	120.0	799.000000	1.000000	0.000000	1.000000	5847.000000	730.000000	80.000000	0
6	0	125.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0
7	1	75.0	79.181818	1.000000	0.000000	0.636364	5109.454545	1467.545455	321.090909	0
8	1	80.0	46.500000	1.000000	0.000000	0.750000	4820.000000	1757.000000	333.500000	0
9	1	85.0	799.000000	1.000000	0.000000	1.000000	6494.000000	83.000000	81.000000	0

Rows: 28,224, Columns: 26

RBLOX

Oracle Reward Model

For each price, estimate a LGBM model to predict avg. reward from context:

Price	Out-sample R2
75	0.42
80	0.38
85	0.42
100	0.17
115	0.34
120	0.48
125	0.45

Bandit Simulation Loop

- In each round t,
 - 7 user contexts are created by Oracle (representing 7 different users)
 - The bandit must price all 7 contexts
 - The oracle will score all 7 contexts according to price played
 - The bandit will collect rewards obtained
 - The bandit will update internal states

Bandit Notation

r(p): Reward function as a function of price p.

x: Context vector (demographic features).

 α : Exploration parameter.

 $\hat{r}(p\mid x)$: Predicted reward given price p and context x.

 $\bar{r}(p)$: Empirical mean reward for price p.

 n_p : Number of times price p has been chosen.

 σ_p : Standard error for price p.

 A_p : Covariance matrix for price p.

T: Number of rounds or time steps.