

Le 01 Juillet 2019

Examen

 $Electromagn\'etisme~(Fili\`ere~SMI-S4)$

Session de rattrapage – Durée 1h30

Exercice I

Soit un arc d'anneau conducteur, inscrit dans un cercle de centre O et de rayon R, parcouru par un courant d'intensité I.

1.	En utilisant les règles de symétries de distribution du courant, indiquer l'omagnétique en O.	orientation du champ
2.	Quelle est l'expression du champ magnétique élémentaire \overrightarrow{dB} créé par ce courant en O (centre du cercle) ?	ette distribution de
3.	En déduire le champ magnétique \vec{B} créé par cette distribution de courant longueur de l'arc d'anneau est égale au :	en O dans le cas où la
	a) demi-cercle. (figure (a))	R
	b) quart de cercle (figure (b))	(a)
		R
		(b)

Exercice II

Une tige conductrice mobile, de résistance électrique négligeable, prend appui sur deux rails parallèles fixes, eux aussi de résistance négligeable. Ces rails sont reliés à une pile par l'intermédiaire d'une résistance. (voir figure).

1)	Quel est le courant qui circule dans le circuit lorsque la tige mobile est maintenue fixe ?
2)	Les deux rails et la tige sont plongés dans un champ magnétique uniforme perpendiculaire au plan des rails. • Que vaut la force magnétique qui s'exerce sur la tige lorsque celle-ci est maintenue fixe ?
3)	Lorsque la tige est laissée libre de se déplacer, la force magnétique la met en mouvement, • Quel est le flux Ø correspondant au déplacement x de la tige (déplacement perpendiculaire aux rails) ?
	Exprimer la force électromotrice e en fonction de B, d et v la vitesse de déplacement de la barre
4)	La f.c.é.m. qui a pour effet de diminuer la force magnétique résultante, jusqu'à l'annuler. La vitesse de la tige est alors constante. Que vaut-elle (négliger les frottements) ?

	Exercice	III
--	----------	-----

On considère le montage suivant en régime alternatif sinusoïdal de pulsation ω

1) Exprimer l'impédance complexe \bar{Z}_{RL} de la branche (R,L) du circuit en fonction de R,L et ω

2) Exprimer l'impédance complexe, \bar{Z}_{RC} , de la branche (R,C) du circuit en fonction de R,C et ω

.....

3) En déduire l'impédance, \bar{Z}_{tot} de la portion de circuit en pointillé. On exprimera, \bar{Z}_{tot} sous la forme $\bar{Z}_{tot} = \frac{A+jRB}{2R+jB}$

4) Montrer que si $LC\omega^2 = 1$, alors \bar{Z}_{tot} est réelle et donner sa valeur en fonction de R, L, et ω uniquement.

.....

Pour toute la suite de l'exercice, on suppose $LC\omega^2 = 1$,

Le générateur est parfait et délivre une tension, $E_0 = \cos(\omega t)$ soit en notation complexe: $E_0 e^{j\omega t}$

5) On cherche à exprimer le courant qui circule dans la branche RL du circuit sous la forme :

$$i_{RL} = I_1 \cos(\omega t - \varphi_1)$$

- a) Exprimer l'amplitude complexe \bar{I}_1
- b) Exprimer l'amplitude I_1 et φ_1 en fonction de E_0,R,L,et ω

6)	Donner le courant qui circule dans la branche RC du circuit. On mettra i_{RC} sous la forme :
	$i_{RC} = I_2 \cos(\omega t - \varphi_2)$
	a) Exprimer l'amplitude complexe \bar{I}_2
	c) Exprimer l'amplitude I_2 et φ_2 en fonction de E_0 , R , L , et ω
7)	Quel est le courant total i_{tot} délivré par le générateur. Montrer que ce courant est en phase avec la tension délivrée par le générateur.