Partial Fractions MCQs - Exercise 5.3 (Class 11 Mathematics)

Prepared for Entry Test Preparation

Multiple Choice Questions

- **1.** The partial fraction decomposition of $\frac{1}{(x-1)(x+1)}$ is:
 - (a) $\frac{1}{x-1} + \frac{1}{x+1}$
 - (b) $\frac{1}{2(x-1)} \frac{1}{2(x+1)}$
 - (c) $\frac{1}{x-1} \frac{1}{x+1}$
 - (d) $\frac{-1}{x-1} + \frac{1}{x+1}$
- **2.** For $\frac{2x+1}{(x^2+1)(x+2)}$, the correct partial fraction form is:
 - (a) $\frac{A}{x^2+1} + \frac{B}{x+2}$
 - (b) $\frac{Ax+B}{x^2+1} + \frac{C}{x+2}$
 - (c) $\frac{A}{x+2} + \frac{Bx+C}{x^2+1}$
 - (d) $\frac{Ax+B}{x+2} + \frac{C}{x^2+1}$
- **3.** The partial fraction of $\frac{3}{(x-2)^2}$ is:
 - (a) $\frac{3}{x-2}$
 - (b) $\frac{A}{x-2} + \frac{B}{(x-2)^2}$
 - (c) $\frac{3}{(x-2)^2}$
 - (d) $\frac{3}{x-2} \frac{3}{(x-2)^2}$
- **4.** For $\frac{x^2}{(x+1)(x^2+4)}$, the value of the constant C in the partial fraction $\frac{Ax+B}{x^2+4} + \frac{C}{x+1}$ is:
 - (a) $\frac{1}{5}$
 - (b) $\frac{4}{5}$
 - (c) $-\frac{1}{5}$
 - (d) 0
- **5.** The partial fraction decomposition of $\frac{4x}{(x-1)(x+1)(x^2+1)}$ includes the term:
 - (a) $\frac{A}{x-1} + \frac{B}{x+1}$
 - (b) $\frac{Ax+B}{x^2+1}$
 - (c) $\frac{A}{x-1} + \frac{B}{x+1} + \frac{Cx+D}{x^2+1}$
 - (d) $\frac{A}{x^2+1}$

- **6.** For $\frac{x^3}{x^2-1}$, the first step is:
 - (a) Resolve directly into partial fractions
 - (b) Perform polynomial division
 - (c) Factor the denominator only
 - (d) Substitute x = 1
- **7.** The partial fraction of $\frac{1}{(x^2+1)(x-1)}$ has a numerator of the form:
 - (a) Ax + B for $x^2 + 1$
 - (b) $A \text{ for } x^2 + 1$
 - (c) Ax for x-1
 - (d) A + Bx for x 1
- **8.** For $\frac{5}{(x+1)^2(x-2)}$, the partial fraction form is:
 - (a) $\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x-2}$
 - (b) $\frac{A}{x+1} + \frac{B}{x-2}$
 - (c) $\frac{A}{(x+1)^2} + \frac{B}{x-2}$
 - (d) $\frac{Ax+B}{(x+1)^2} + \frac{C}{x-2}$
- **9.** The value of A in $\frac{2x+3}{(x^2+4)(x-1)} = \frac{Ax+B}{x^2+4} + \frac{C}{x-1}$ is:
 - (a) $\frac{2}{5}$
 - (b) $-\frac{2}{5}$
 - (c) $\frac{3}{5}$
 - **(d)** 0
- **10.** The partial fraction of $\frac{x^2+1}{x^3-1}$ is:
 - (a) $\frac{1}{x-1} \frac{x+2}{x^2+x+1}$
 - (b) $\frac{1}{x-1} + \frac{x+2}{x^2+x+1}$
 - (c) $\frac{2}{x-1} \frac{x+1}{x^2+x+1}$
 - (d) $\frac{1}{x-1} \frac{x-1}{x^2+x+1}$
- **11.** For $\frac{6x}{(x-1)(x^2+2)}$, the coefficient of $\frac{1}{x-1}$ is:
 - (a) 2
 - **(b)** 3
 - (c) -2
 - **(d)** 1
- **12.** The partial fraction of $\frac{1}{(x+2)(x^2+3)}$ has a term:

- (a) $\frac{Ax+B}{x+2}$
- (b) $\frac{A}{x^2+3}$
- (c) $\frac{A}{x+2} + \frac{Bx+C}{x^2+3}$
- (d) $\frac{A}{x+2} + \frac{B}{x^2+3}$
- **13.** For $\frac{x^2}{(x-1)^2(x+1)}$, the partial fraction includes:
 - (a) $\frac{A}{x-1} + \frac{B}{(x-1)^2}$
 - (b) $\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+1}$
 - (c) $\frac{Ax+B}{(x-1)^2} + \frac{C}{x+1}$
 - (d) $\frac{A}{x-1} + \frac{C}{x+1}$
- **14.** The constant C in $\frac{3x+1}{(x+1)(x^2+2)} = \frac{Ax+B}{x^2+2} + \frac{C}{x+1}$ is:
 - (a) $\frac{4}{3}$
 - (b) $-\frac{4}{3}$
 - (c) $\frac{2}{3}$
 - (d) $-\frac{2}{3}$
- **15.** For $\frac{x^4}{x^2-1}$, the partial fraction decomposition after division is:
 - (a) $x^2 + 1 + \frac{1}{x-1} \frac{1}{x+1}$
 - (b) $x^2 + \frac{1}{x-1} \frac{1}{x+1}$
 - (c) $x^2 + 1 + \frac{1}{x-1} + \frac{1}{x+1}$
 - (d) $x^2 1 + \frac{1}{x-1} + \frac{1}{x+1}$
- **16.** The partial fraction of $\frac{2}{(x-1)(x^2+1)(x+1)}$ includes:
 - (a) $\frac{A}{x-1} + \frac{B}{x+1}$
 - (b) $\frac{A}{x-1} + \frac{Bx+C}{x^2+1} + \frac{D}{x+1}$
 - (c) $\frac{A}{x^2+1} + \frac{B}{x+1}$
 - (d) $\frac{Ax+B}{x-1} + \frac{C}{x+1}$
- **17.** For $\frac{x^2+3}{(x^2+1)(x-2)}$, the value of B in $\frac{Ax+B}{x^2+1} + \frac{C}{x-2}$ is:
 - (a) $\frac{11}{5}$
 - (b) $\frac{7}{5}$
 - (c) $-\frac{7}{5}$
 - (d) $\frac{4}{5}$
- **18.** The partial fraction of $\frac{1}{(x+1)^2(x^2+1)}$ includes a term:

- (a) $\frac{A}{(x+1)^2}$
- (b) $\frac{Ax+B}{(x+1)^2}$
- (c) $\frac{A}{x^2+1}$
- (d) $\frac{A}{x+1} + \frac{Bx+C}{x^2+1}$
- **19.** For $\frac{4x+1}{(x-1)(x+2)}$, the coefficient of $\frac{1}{x-1}$ is:
 - (a) $\frac{5}{3}$
 - (b) $\frac{7}{3}$
 - (c) $\frac{1}{3}$
 - (d) $-\frac{1}{3}$
- **20.** The partial fraction of $\frac{x^2+2}{(x^2+x+1)(x-1)}$ has a term:
 - (a) $\frac{Ax+B}{x^2+x+1}$
 - (b) $\frac{A}{x^2 + x + 1}$
 - (c) $\frac{Ax+B}{x-1}$
 - (d) $\frac{A}{x-1} + \frac{B}{x^2+x+1}$

Answers and Explanations

- **1. Answer: b** $\frac{1}{2(x-1)} \frac{1}{2(x+1)}$ *Explanation*: Let $\frac{1}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1}$. Multiply by (x-1)(x+1): 1 = A(x+1) + B(x-1). Put x=1: $1 = A(2) \implies A = \frac{1}{2}$. Put x=1: $1 = B(-2) \implies B = -\frac{1}{2}$.
- **2. Answer: b** $\frac{Ax+B}{x^2+1} + \frac{C}{x+2}$ *Explanation*: For an irreducible quadratic x^2+1 , the numerator is Ax+B. For linear x+2, it's a constant C.
- **3. Answer: c** $\frac{3}{(x-2)^2}$ *Explanation*: Since the denominator is $(x-2)^2$, the fraction is already in its simplest form.
- **4. Answer: b** $\frac{4}{5}$ *Explanation*: Let $\frac{x^2}{(x+1)(x^2+4)} = \frac{Ax+B}{x^2+4} + \frac{C}{x+1}$. Multiply through and put x = -1: $1 = C(1+4) \implies C = \frac{1}{5}$. Equate coefficients to find A = 0, $B = \frac{3}{5}$.
- **5. Answer:** c $\frac{A}{x-1} + \frac{B}{x+1} + \frac{Cx+D}{x^2+1}$ Explanation: Linear factors x-1, x+1 have constants; quadratic x^2+1 has Cx+D.
- **6. Answer: b** Perform polynomial division *Explanation*: Since degree of numerator (3) > degree of denominator (2), divide first.
- **7. Answer: a** Ax+B for x^2+1 *Explanation*: Irreducible quadratic x^2+1 requires a linear numerator Ax+B.
- **8. Answer: a** $\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x-2}$ *Explanation*: Repeated linear $(x+1)^2$ requires $\frac{A}{x+1} + \frac{B}{(x+1)^2}$; linear x-2 requires $\frac{C}{x-2}$.

- **9. Answer:** a $\frac{2}{5}$ *Explanation*: Let $\frac{2x+3}{(x^2+4)(x-1)} = \frac{Ax+B}{x^2+4} + \frac{C}{x-1}$. Put x=1: $5=C(5) \implies C=1$. Equate coefficients: $A=\frac{2}{5}$, $B=\frac{11}{5}$.
- **10. Answer:** a $\frac{1}{x-1} \frac{x+2}{x^2+x+1}$ *Explanation*: For $\frac{x^2+1}{(x-1)(x^2+x+1)}$, solve to get A=1, B=-1, C=-2.
- **11. Answer: b** 3 Explanation: Let $\frac{6x}{(x-1)(x^2+2)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+2}$. Put x=1: $6=A(3) \implies A=2$. Equate coefficients to confirm.
- **12. Answer: c** $\frac{A}{x+2} + \frac{Bx+C}{x^2+3}$ *Explanation*: Linear x+2 has constant numerator; quadratic x^2+3 has Bx+C.
- **13. Answer: b** $\frac{A}{x-1}+\frac{B}{(x-1)^2}+\frac{C}{x+1}$ *Explanation*: Repeated $(x-1)^2$ requires $\frac{A}{x-1}+\frac{B}{(x-1)^2}$; linear x+1 requires $\frac{C}{x+1}$.
- **14. Answer: a** $\frac{4}{3}$ *Explanation*: Let $\frac{3x+1}{(x+1)(x^2+2)} = \frac{Ax+B}{x^2+2} + \frac{C}{x+1}$. Put x = -1: $3(-1) + 1 = C(3) \implies C = \frac{4}{3}$.
- **15. Answer:** a $x^2+1+\frac{1}{x-1}-\frac{1}{x+1}$ Explanation: Divide $\frac{x^4}{x^2-1}=x^2+1+\frac{1}{x^2-1}$. Resolve $\frac{1}{(x-1)(x+1)}$ to get $\frac{1}{x-1}-\frac{1}{x+1}$.
- **16. Answer: b** $\frac{A}{x-1} + \frac{Bx+C}{x^2+1} + \frac{D}{x+1}$ *Explanation*: All factors are accounted for with appropriate numerators.
- **17. Answer: b** $\frac{7}{5}$ *Explanation*: Let $\frac{x^2+3}{(x^2+1)(x-2)} = \frac{Ax+B}{x^2+1} + \frac{C}{x-2}$. Put x=2: $7=C(5) \implies C=\frac{7}{5}$. Equate coefficients: A=0, $B=\frac{7}{5}$.
- **18. Answer: a** $\frac{A}{(x+1)^2}$ Explanation: Repeated linear $(x+1)^2$ includes $\frac{A}{(x+1)^2}$.
- **19. Answer: b** $\frac{7}{3}$ *Explanation*: Let $\frac{4x+1}{(x-1)(x+2)} = \frac{A}{x-1} + \frac{B}{x+2}$. Solve: $A = \frac{7}{3}$, $B = \frac{5}{3}$.
- **20.** Answer: a $\frac{Ax+B}{x^2+x+1}$ Explanation: Quadratic x^2+x+1 requires Ax+B.