Index

4	
A halian anauna	
Abelian groups	vol.1: p.24
Adjoint operators	vol.1: pp.43 - 44, 87, 103
Adjugate matrix	vol.2: pp.120 - 121
Affine spaces	vol.1: p.93
Asymptotically stable	vol.2:p.76
Attracting fixed point	vol.2:p.76
Autonomous systems	vol.1:p.7
B	
Basin boundary	vol.2:p.89
Basin of attraction	vol.2:p.89
Basis	vol.2: pp.125 - 127
Bifurcation	vol.1: pp.11 - 12, 63 - 64
Body velocity	vol.1:p.38
C	
Causal systems	vol.2:p.152
	vol.3: pp.3-4
Cayley-hamilton theorem	vol.2: pp.139 - 140
Centroid of area	vol.1: pp.4-6
Characteristic equation	vol.2: pp.77, 138 - 139
Column space	vol.2: pp.133 - 134
Connection vector field	vol.1: pp.118 - 119
Conservative system	vol.2: pp.89 - 91, 103
Conservative vector fields	vol.1: pp.145 - 146
Conserved quantity	vol.2: p.90
Constraint, holonomic	vol.1: pp.76 - 77
Constraint, nonholonomic	vol.1: pp.110 - 117, 135 - 136
Contour	vol.2: pp.91 - 92
Convolution	vol.3: pp.2 - 3
Coordinate transformation matrix	vol.2: pp.128 - 129
Coordinate vector	vol.2: pp.126 - 127
Corange	vol.2: pp.51 - 54
Corank	vol.2: pp.51 - 54
Cotangent bundle	vol.1: p.126
Cotangent space	vol.1: p.126
Cotangent vector	vol.1: pp.127 - 130
Cramer's rule	vol.2: p.121
Cross product	vol.1: pp.1 - 2
Curl (vector)	vol.1: p.145
Curvature (constraint)	vol.1: pp.144 - 145
D	000.1 . pp.111 110
Dead zone nonlinearity	vol.2:p.151
Deficient matrix	vol.2: p.131 vol.2: pp.140 - 141
Degenerate matrix	vol.2: pp.140 - 141 vol.2: p.139
Degrees of freedom	vol.2: p.139 vol.1: p.17
Degrees or meedom	$voi.1 \cdot p.11$

Determinant	vol.2: pp.78 - 81, 115 - 119
Diagonalization	vol.2: pp.142 - 144
Diffeomorphic	vol.1: p.20
Differential-algebraic equations	vol.2: pp.41 - 44, 47 - 48
Differential-algebraic equations, differentiation index	vol.2: pp.47 - 48
Differential-algebraic equations, model consistency	vol.2: pp.41 40 $vol.2: p.44$
Differential-algebraic equations, moder consistency Differential-algebraic equations, regularity	vol.2: p.44 vol.2: p.45
	-
Differential-algebraic equations, solution	vol.2: p.44
Dimension (of a vector space)	vol.2: pp.125 - 126
Direct product of two sets	vol.1: p.20
Direct sum	vol.1: p.20
Direct sum of two sets	vol.1: p.125
Directional linearity	vol.1: p.106
Distribution (allowable velocities)	vol.1: pp.112, 148 - 150
Dot product	vol.2: pp.134 - 135
E	
Eigenspace	vol.2: p.140
Eigenvalue	vol.2: pp.77, 138 - 145
Eigenvector	vol.2: pp.76 - 77, 138 - 145
Elementary row operators	vol.2: p.107
Embedding	vol.1:p.96
Equilibrium point	vol.3:p.1
Equivalent vectors w.r.t. functions	vol.1: pp.100 - 101
Euler-lagrange equation	vol.1:p.136
Existence and uniqueness theorem	vol.1:pp.11,13
	vol.2:p.82
Exponential map	vol.1: pp.48 - 51, 103 - 104
External forces	vol.1:p.1
F	
Force couple	vol.1:p.2
Force couple system	vol.1:p.3
Forward euler integration	vol.2: p.148
Forward kinematics	vol.1: pp.78, 83 - 84
Fundamental vector field (infinitesimal generators)	vol.1: pp.99 - 100
G	
Gait generation	vol.1:p.124
Gaussian elimination	vol.2:p.104
Generalized coordinates	vol.1:p.78
Geodesics	vol.1: pp.44 - 46, 51, 96 - 99
Gradient vector field	vol.1: pp.129 - 130
Gram schmidt orthogonality procedure	vol.2: p.137
Group	vol.1: pp.21, 94 - 95
Group invariant vectors	vol.1: p.100
Group, left/right action	vol.1: pp.24 - 29, 33, 80, 96, 137
Group, symmetry	vol.1: pp.108 - 109, 137
H	150, 161
Hartman-grobman theorem	vol.2:p.88
· · · · · · · · · · · · · · · · · · ·	<i>1</i>

		10 04
	Heteroclinic trajectory	vol.2 : p.94
	Iolonomic constraint	vol.1: pp.76 - 77
ŀ	Iomeomorphic	vol.1: p.19
_	_	vol.2 : p.88
	Iomogeneity	vol.3: p.1
	Iomogeneous equations	vol.2: p.105
F	Hyperbolic fixed point	vol.2: pp.87 - 88
F	Hysteresis	vol.1: pp.66, 70-71
		vol.2: p.42
I		
I	dempotent	vol.2: p.37
I	mage (algebra)	vol.1: p.124
I	ndex theory	vol.2: pp.98 - 101
I	nner product	vol.2: pp.134 - 135
I	nternal forces	vol.1:p.1
I	ntersection (spaces)	vol.2: pp.130 - 131
I	nvariance	vol.1: p.139
I	socline	vol.2: pp.74, 84
I	somorphic	vol.1:p.22
J	•	1
	acobian	vol.1: pp.84 - 86
		vol.2: p.85
K		200.2 · p.00
	Kernel	vol.1: pp.124 - 125
	Kinematic locomotion	vol.1: pp.105 - 107
L	Minemane locolitotion	101.1 . pp.100 101
	agrangian	vol.2: p.45
	agrangian multipliers	vol.2: p.45 - 46
	aglangian multipliers aplace transform	vol.2: pp.45 – 40
	-	vol.2 : p.76
	ia algebra	-
	ie algebra	vol.1: pp.41, 98 – 100, 103, 151 – 152
1	ie bracket	vol.1: pp.148 - 150
		vol.2 : p.1
	ie groups	vol.1: pp.21, 96 – 99
	ifted actions	vol.1: pp.31 - 42, 52 - 54, 85, 137 - 138
	inear combination	vol.2: p.124
	inear equations	vol.2: p.104
	inear independence	vol.2: pp.124 - 125
	inear time invariance	vol.2: p.152
I	inear transformation	vol.2: pp.131 - 133
Ι	inearity (mapping)	vol.1: pp.106 - 107
Ι	inearity (systems)	vol.2: p.152
		vol.3: p.1
Ι	inearization at a fixed point	vol.1: pp.10 - 11
		vol.2: pp.84 - 85
		vol.3:p.1
Ι	local connection	vol.1: pp.114-117, 120, 122-123, 130, 142

Locomotion	vol.1:p.104
Localitation Lotka-volterra model of competition	vol.2 : p.88
M	001.2 . p.36
Manifolds	vol.1: pp.17 - 19,93
Manifolds, accessible	vol.1: pp.76 - 78
Manifolds, c^k -differentiable	
•	vol.1: p.20 vol.1: p.93
Manifolds, curvature	-
Manifolds, stable	$vol.2: p.89 \\ vol.1: p.93$
Manifolds, topology Matrix cofactor	vol.1: p.95 vol.2: pp.111, 118 - 120
Matrix determinant	vol.2: pp.111, 110 - 120 vol.2: pp.115 - 119
Matrix determinant Matrix inverse	vol.2: pp.113 - 119 vol.2: pp.110 - 115
Matrix minor	vol.2: pp.110 - 115 vol.2: p.111
	vol.2: p.111 vol.2: p.106
Matrix operations Mamowyless systems	
Memoryless systems Model consistency	vol.2: p.152 vol.2: p.44
Modular addition	-
Momentum	vol.1: p.21
Monotonic function	vol.1: pp.138 - 140
	vol.1: p.13
Multiplicative calculus N	vol.1: pp.34 - 38, 46 - 47
Neutrally stable	vol.2:p.76
Noether's theorem	vol.2: p.10 vol.1: pp.131 - 134
Noncommutativity	vol.1: pp.131 - 134 vol.1: p.147
Nonconservativity	vol.1: p.147 vol.1: pp.145 - 147
Nonholonomic constraint	vol.1: pp.1149 - 147 vol.1: pp.110 - 117, 135 - 136
Nullcline	vol.2: p.84
Nullity	vol.2 : p.04 vol.2 : p.134
Nullspace	vol.2: p.134 vol.2: pp.132 - 134
O	tot.2 : pp.102 104
One-form	vol.1: pp.125, 127-129
Optimal frame	vol.1 : p.83
Orthogonal compliment	vol.2: pp.137 - 138
Orthogonal set	vol.2: p.135
Orthonormal	vol.2: pp.135 - 136
Orthonormal basis	vol.2: p.136
Outer product	vol.2: p.136
Overdetermined system	vol.2: pp.19, 41
P	PF = 1
Pfaffian constraint	vol.1: pp.111 - 117
Phase (angle)	vol.2:p.61
Phase drift	vol.2:p.68
Phase lock	vol.2:p.67
Phase portrait	vol.1: pp.7 - 9
•	vol.2: pp.74, 83
Poles (transfer function)	vol.2:p.147
Position trajectory	vol.1:p.105
v	*

	Potentials	vol.1: p.17
	Preimage (algebra)	vol.1: p.124
	Principally kinematic system	vol.1: p.139
	Principle of least action	vol.1: pp.131 - 133
	Projection operator	vol.2:p.37
R		
	Range (matrix)	vol.2: pp.132 - 133
	Range of entrainment	vol.2: pp.68 - 69
	Rank	vol.2: pp.51, 53 - 54, 132 - 134
	Reaction force	vol.1: p.4
	Realization theory	vol.2: p.149
	Reconstruction equation	vol.1: pp.114 - 123, 138
	Regular control problem	vol.2: p.45
	Reversible system	vol.2: pp.92 - 95
	Rigid body	vol.1: p.23
	Rigid body, left lifted action	vol.1: pp.38 - 41
	Rigid body, right lifted action	vol.1: pp.41 - 43
	Row echelon form	vol.2 : p.107
	Row space	vol.2: p.134
	Runge-kutta method	vol.2: p.131
S	Trunge kuwa memou	000.2 . p.00
D	Saddle connection	vol.2: p.94
		vol.2 : p.34 vol.1 : p.24
	Semidirect product of two sets Separatrix	vol.1: p.24 vol.2: p.89
	_	
	Shape trajectory Shift appropriate	vol.1: p.105
	Shift operator	vol.3: pp.1 - 2
	Similar matrices	vol.2: p.142
	Singular matrix	vol.2: pp.41 - 42, 51, 110, 122
	Solution, differential-algebraic equations	vol.2: p.44
	Span G. et la la tr	vol.2: pp.124 - 125
	Spatial velocity	vol.1: pp.43, 85
	Special euclidean group	vol.1: p.23
	~	vol.2: pp.1-2
	Special orthogonal group, $so(n)$	vol.1: p.22
		vol.2: pp.1-2
	Stable	vol.2: p.76
	State space model	vol.2: pp.147 - 150
	State vector	vol.2: pp.147 - 149
	Strain energy	vol.2: pp.5-7
	Structural stability	vol.2: p.88
	Subspace	vol.2: pp.129 - 130
	Sum (spaces)	vol.2: pp.130 - 131
	Superposition	vol.3: p.1
	Symmetric matrix	vol.2:p.144
	Symmetry	vol.1: pp.108-109, 131
T		
	Tangent spaces	vol.1: pp.29 - 30

Tensor product	vol.1:p.20
Time invariance	vol.2:p.152
	vol.3:pp.1-3
Time-reversal symmetry	vol.2: pp.92 - 93
Toeplitx matrix	vol.3:p.3
Trace	vol.2: pp.78 - 80
Transfer function	vol.2: pp.146 - 147, 150
U	
Underactuated system	vol.1:p.104
Underdetermined system	vol.2:pp.19,41
Unstable	vol.2:p.76
V	
Varignon's theorem	vol.1:p.1
Vector field	vol.1: pp.30 - 31
	vol.2:p.74
Vector mapping	vol.2:p.127
Vector space	vol.2: pp.122 - 123
Vertical space	vol.1:p.125
W	
Work (mechanical)	vol.1:p.145
Z	
Zero set	vol.1: pp.76, 110 - 111
Zeros (transfer function)	vol.2:p.147