1	1. A telecommunications network comprising:
2	a first SONET/SDH ring that comprises a first plurality of nodes, wherein said first
3	SONET/SDH ring defines a first address space and wherein each of said first plurality of nodes is
4	identified by a unique address in said first address space; and
5	a second SONET/SDH ring that comprises a second plurality of nodes, wherein second
6	SONET/SDH ring defines a second address space and wherein each of said second plurality of nodes
7	is identified by a unique address in said second address space;
8	wherein there are at least two nodes that have an address in the address space of said first
9	SONET/SDH ring and an address in the address space of said second SONET/SDH ring.
1	2. The telecommunications network of claim 1 further comprising an optical fiber that carries
2	a first STS-N that comprises:
3	(1) a second STS-1 that is associated with said first SONET/SDH ring, and
4	(2) a third STS-1 that is associated with said second SONET/SDH ring.
1	3. The telecommunications network of claim 1 further comprising an optical fiber that carries
2	a first STS-N that comprises:
3	(1) a first automatic protection switching channel that is associated with said first
4	SONET/SDH ring, and
5	(2) a second automatic protection switching channel that is associated with said second
6	SONET/SDH ring.
1	4. The telecommunications network of claim 1 further comprising an optical fiber that carries
2	a first STS-N that comprises:
3	(1) the K_1 and K_2 line overhead bytes that are associated with said first SONET/SDH ring, and
4	(2) the K_1 and K_2 line overhead bytes that are associated with said second SONET/SDH ring.
1	5. A telecommunications network comprising:
2	a first SONET/SDH ring; and
3	a second SONET/SDH ring;
4	an optical fiber that carries:
5	(1) a first STS-1 that is associated with said first SONET/SDH ring, and
6	(2) a second STS-1 that is associated with said second SONET/SDH ring.
1	6. A telecommunications network comprising:
2	a first SONET/SDH ring; and

3	a second SONE 1/SDH ring;
4	an optical fiber that carries:
5	(1) a first automatic protection switching channel that is associated with said first
6	SONET/SDH ring, and
7	(2) a second automatic protection switching channel that is associated with said second
8	SONET/SDH ring.
1	7. A telecommunications network comprising:
2	a first SONET/SDH ring; and
3	a second SONET/SDH ring;
4	an optical fiber that carries:
5	(1) the K_1 and K_2 line overhead bytes that are associated with said first SONET/SDH ring,
6	and
7	(2) the K_1 and K_2 line overhead bytes that are associated with said second SONET/SDH
8	ring.
1	8. A system comprising:
2	a first optical fiber that is associated with a first SONET/SDH ring;
3	a second optical fiber that is associated with a second SONET/SDH ring;
4	a third optical fiber;
5	a fourth optical fiber that is associated with said first SONET/SDH ring;
6	a fifth optical fiber that is associated with said second SONET/SDH ring;
7	a first SONET/SDH node for receiving a first STS-N from said first optical fiber, for receiving
8	a second STS-N from said second optical fiber, and for transmitting said first STS-N and said second
9	STS-N via said third optical fiber; and
10	a second SONET/SDH node for receiving said first STS-N and said second STS-N from said
11	third optical fiber, for transmitting said first STS-N via said fourth optical fiber, and for transmitting
12	said second STS-N via said fifth optical fiber.
1	9. The system of claim 8 wherein said third optical fiber carries automatic protection
2	switching signaling for both said first SONET/SDH ring and said second SONET/SDH ring.
1	10. A SONET/SDH node comprising:
2	a first input port for receiving a first automatic protection switching channel from a first
3	optical fiber that is associated with a first SONET/SDH ring;

4	a second input port for receiving a second automatic protection switching charmer from a
5	second optical fiber that is associated with a second SONET/SDH ring;
6	a multiplexor for multiplexing said first automatic protection switching channel and said
7	second automatic protection switching channel into one STS-N frame; and
8	a output port for transmitting said STS-N frame via a third optical fiber.
1	11. A SONET/SDH node comprising:
2	an input port for receiving a STS-N frame from a first optical fiber;
3	a demultiplexor for demultiplexing a portion of first automatic protection switching channel
4	that is associated with a first SONET/SDH ring and a portion of second automatic protection
5	switching channel that is associated with a second SONET/SDH ring from said STS-N frame;
6	a first output port for transmitting said portion of first automatic protection switching channel
7	via a second optical fiber that is associated with said first SONET/SDH ring; and
8	a second output port for transmitting said portion of second automatic protection switching
9	channel via a third optical fiber that is associated with said second SONET/SDH ring.
1	12. A method of operating a time-division multiplexed telecommunications system, said
2	method comprising:
3	receiving a first optical carrier signal that comprises a first source address and a first
4	destination address in a first address space;
5	receiving a second optical carrier signal that comprises a first source address and a first
6	destination address in a second address space;
7	multiplexing said first optical carrier signal and said second optical carrier signal into a frame;
8	and
9	transmitting said frame;
10	wherein said first optical carrier signal in said frame comprises a second source address and a
11	second destination address in said first address space; and
12	wherein said second optical carrier signal in said frame comprises a second source address and
13	a second destination address in said second address space.
1	13. The method of claim 12 further comprising:
2	receiving said frame;
3	demultiplexing said first optical carrier signal and said second optical carrier signal from said
4	frame;

5

6	transmitted comprises a third source address and a third destination address in said first address space;
7	and
8	transmitting said second optical carrier signal, wherein said second optical carrier signal as
9	transmitted comprises a fourth source address and a fourth destination address in said second address
10	space.
1	14. A method of operating a time-division multiplexed telecommunications system, said
2	method comprising:
3	receiving a frame that comprises (1) a first optical carrier signal that comprises a first source
4	address and a first destination address in a first address space, and (2) a second optical carrier signal
5	that comprises a first source address and a first destination address in a second address space;
6	demultiplexing said first optical carrier signal and said second optical carrier signal from said
7	frame;
8	transmitting said first optical carrier signal, wherein said first optical carrier signal as
9	transmitted comprises a second source address and a second destination address in said first address
10	space; and
11	transmitting said second optical carrier signal, wherein said second optical carrier signal as
12	transmitted comprises a second source address and a second destination address in said second address
13	space.
1	15. The method of claim 14 further comprising:
2	receiving a first optical carrier signal that comprises a third source address and a third
3	destination address in a first address space;
4	receiving a second optical carrier signal that comprises a fourth source address and a fourth
5	destination address in a second address space;
6	multiplexing said first optical carrier signal and said second optical carrier signal into said
7	frame; and
8	transmitting said frame;
9	wherein said first optical carrier signal in said frame comprises said first source address and
10	said first destination address in said first address space; and
11	wherein said second optical carrier signal in said frame comprises said first source address and
12	said first destination address in said second address space.

transmitting said first optical carrier signal, wherein said first optical carrier signal as