CINEMÁTICA GERAL

FÍSICA - EXERCÍCIOS

 ${\bf P}$ r o f. Victor Milaré $1~4~{\bf d}~{\bf e}~{\bf M}~{\bf a}~{\bf i}~{\bf o}~{\bf d}~{\bf e}~2~0~1~6$

 \mathbf{Q} \mathbf{u} \mathbf{e} \mathbf{s} \mathbf{t} $\tilde{\mathbf{a}}$ \mathbf{o} $\mathbf{1}$ Duas partículas \mathbf{r} e \mathbf{t} partem simultaneamente das posições mostradas na figura abaixo, em movimentos retilíneos e uniformes, com velocidades respectivamente iguais a v_r e v_t . Uma terceira partícula \mathbf{s} , que se encontrava inicialmente alinhada às demais, deve se mover de tal forma a permanecer alinhada às partículas \mathbf{r} e \mathbf{t} , durante todo o movimento. Determine a velocidade v_s com que a partícula \mathbf{s} deverá se mover, em função de v_r , v_s , a e b.

 \mathbf{Q} \mathbf{u} \mathbf{e} \mathbf{s} \mathbf{t} $\tilde{\mathbf{a}}$ \mathbf{o} $\mathbf{2}$ Três turistas, que possuem uma única bicicleta, movem-se ao longo de uma avenida reta, desejando ir do hotel ao centro turístico no **menor espaço de tempo** (o tempo é contado até que o último turista chegue ao centro). A bicicleta consegue transportar apenas duas pessoas de cada vez, a uma velocidade de $20 \ km/h$ e, por isso, o terceiro turista precisa começar o deslocamento a pé. O ciclista leva o segundo turista até um determinado ponto do caminho, de onde este continua a andar a pé, a uma velocidade de $4 \ km/h$, enquanto o ciclista regressa para transportar o terceiro. Se a distância do hotel ao centro turístico é de $8 \ km$, determine:

- a) Em quanto tempo conseguirão chegar ao centro turístico?
- b) O segundo turista deverá ser transportado de bicicleta até faltar quantos km para chegar ao centro turístico?

Q u e s t ã o 3 A figura mostra uma roda de uma diligência usada num filme de bang-bang. A filmagem estava sendo projetada a uma taxa de 24 quadros por segundo e a diligência estava em disparada movendo-se para a direita, numa perseguição. Ainda assim as rodas davam a impressão de estarem girando para trás. Para que isso ocorra, qual é o intervalo de frequência **f** (em Hz) que as rodas poderiam estar girando?

 \mathbf{Q} \mathbf{u} \mathbf{e} \mathbf{s} \mathbf{t} $\mathbf{\tilde{a}}$ \mathbf{o} $\mathbf{4}$ Três tartarugas encontram-se nos vértices de um triângulo equilátero de lado L. Simultaneamente, elas começam a se movimentar com uma velocidade V, sendo que a primeira se dirige em direção a segunda, a segunda em direção a terceira e a terceira, em direção a primeira.

- a) Após quanto tempo as tartarugas vão se encontrar?
- b) Qual a distância percorrida por uma tartaruga qualquer nesse episódio?

 ${\bf Q}$ ${\bf u}$ ${\bf e}$ ${\bf s}$ ${\bf t}$ ${\bf \tilde{a}}$ ${\bf o}$ ${\bf 5}$ Uma lancha sai do ponto A da margem de um rio com correnteza e navega na direção AB até atingir a margem oposta no ponto B como na figura. A distância entre as margens do rio vale L. Durante a travessia, o vento sopra com velocidade u perpendicular às margens, fazendo com que a bandeira da lancha aponte numa direção que forma um ângulo β com a direção AB. Determine a duração da travessia.

 ${f Q}$ u e s t ${f \tilde{a}}$ o 6 Um gafanhoto deseja saltar por cima de um tronco de árvore cilíndrico que encontra-se apoiado no solo. Se a gravidade local vale g e o raio da secção transversal circular vale R, qual a velocidade mínima para o salto do gafanhoto lhe permitirá galgar o tronco da árvore?

GABARITO

$$1. \ v_s = \frac{v_r \cdot b - v_t \cdot a}{(a+b)}$$

- 2. a) 48min. b) 2km
- 3. (2k+1) < f < 2.(k+1), k = 0, 1, 2, 3, 4, 5, ...

4. a)
$$t = \frac{2L}{3V}$$
. b) $d = \frac{2L}{3}$

5.
$$t = \frac{L \cdot sen\beta}{u \cdot sen(\alpha + \beta - 90^{\circ}) \cdot sen\alpha}$$

6.
$$V_{Amin} = \sqrt{2Rg(1+\sqrt{2})}$$

[&]quot;É fazendo que se aprende aquilo que se deve aprender a fazer." (Aristóteles)