Introduction à l'IPv6

N. Lebedev

CPE Lyon lebedev@cpe.fr

IPv6

Plan

- Introduction
 - Etat de l'art de l'IP
 - Solutions d'urgence dans IPv4
 - Capacité de l'espace d'adressage IPv4
 - Ouvertures avec l'IPv6
- Adresses IPv6 (RFC 4291)
 - Format et types des adresses IPv6
- 3 Format du paquet IPv6
- Protocoles réseaux et transport
- 5 Découverte de voisinage et autoconfiguration
 - Découverte de voisins (RFC 2461)
 - Configuration automatique. Exemple : config sans état.
 - Configuration avec état : DHCPv6
- 6 Nommage : DNS pour IPv6
- Migration vers IPv6
 - Tunnels—mécanismes de transition et coexistance.
 - Méthodologie de transition
- 8 IPv6 et les protocoles de routage
- Evolutions

Développement de l'IP

RFC 791: Internet Protocol, Sept. 1981, adresse en 32 bits.

1980s : Usage scientifique et militaire.

1990s : Usage commercial, croissance exponentielle ($\times 2$ / an).

1993 : [RFC 1338] Epuisement de classe B était attendu, 1/3 d'espace d'adressage utilisé!

1994 : IPng (new generation) spécifié, adresse en 128 bits, IPv6.

2000s : Epuisement attendu des adresses IPv4 globales (routables).

RFC 2460: Internet Protocol Version 6 Specification.

IP : caractéristiques et raisons du succès

- InterNetworking : couche 3 réseau.
- Indépendant de l'application (couches sups 4-7) et du support (couches liaison-2, physique-1).
- Communication de bout en bout
- Adressage unique hiérarchisée (préfixes IP)
- Service "meilleur effort" pour les datagrammes (paquets).
- Robuste mais pas fiable.
- Modèle client/serveur étendu : un poste peut être l'un ou/et l'autre.
- Protocoles de routage dynamiques—adaptabilité.
- Zones autonomes de routage, délégation de préfixes.
- DNS—nommage coordonné des domaines hiérarchisés.

IPv6

Insuffisances de l'IPv4 classfull

[RFC 1338]

- Pénurie d'adresses IPv4, dont Classe B. (Chine, Inde, Afrique) (Fig)
- Surcharge des tables (routage, MAC) : > 500.000 FIB entrées. (Fig)
- En-tête compliqué ⇒ routeurs surchargés.
- Nvx besoins IPv4 : boxes (IP dédiée), nouvelles applications avec adresses globales (VoIP), mobiles 4G, sécurité.

Addressage privé NAT/PAT [RFC 1918]

- Espace d'adressage privé grand, non-routable vers l'extérieur.
- Partage de connexion par port, PAT : [IP_addr:Port]
- Sécurité élémentaire native (adresses privées).
- ▼ Problème : empêche la "forte" sécurité basée sur la crypto (Nport chiffré).

IPv6

✓ Solutions : NAT-T, IPsec-over-UDP [RFC-3948].

Plages d'adresses réservées à l'usage privé.

- 1 réseau de classe A : 10.0.0.0 10.255.255.255 / 8
- 16 réseaux de classe B : 172.16.0.0 172.31.255.255 / 12
- 256 réseaux de classe C : 192.168.0.0 192.168.255.255 / 16

2018–2019

NAT/PAT—Network/Port Addr Translation [RFC 3022]

Inconvénients :

- "Etat" (stateful): pas de transparence de bout en bout, pour l'appli qui la nécessite. Ex : SIP URI « bob@12.3.4.5 ».
- Client-Serveur implicite : cnx initiée depuis le réseau privé. Nécessite des techniques (ex : port forwarding) pour les connexions entrantes sur Web, FTP internes.

IPv6

7 / 74 2018-2019

CIDR—Classless Inter-Domain Routing

- Avant : autant d'entrées dans la TabR que de sous-réseaux alloués.
- Après : réduction des TabR des FAIs.
 - CIDR—agrégation des routes (préfixe commun), routage géographique (préfixes contigus=supernets),
 - VLSM : abolition des classes A, B et C, mais masque obligatoire!

NB:

Le masque est aussi obligatoire dans le résumé des routes. Ex : 133.44.0.0/20.

IPv6

2018–2019 8 / 74

Capacité IPv4

Exemple:

164.107.134.5 = 10100100.01101011.10000110.00000101 (32 bits)

• Nb maximal d'adresses à plat $< 2^{32} \approx 4$ Milliards.

• Classe A: 15 Millions d'adresses.

• Classe B : 64.000 (en réalité bcp moins).

Classe C: 250

ullet Espace d'adressage total vu par les routeurs pprox 1 Milliard.

2 ³²	4.294.967.296
 Class D,E (multicast, expérimentations) 	-536.870.912
– Sous-réseaux 0, 127 (null, loopback)	-33.554.432
– Adresses privées (RFC 1918)	-17.891.328
Disponibles	3.706.650.624

Combien d'adresses pour le IPng (nouvelle génération?

2020 : population de la Terre ≈ 10 milliards.

- Admettons 100(!) nœuds IP / personne $\Rightarrow 10^{12}$ nœuds
- Plusieurs interfaces / nœud.
- Plusieurs addresses IPv6 / interface (≈ 10 par nœud).
- Prenons de la marge 10¹⁵ addresses.
- Besoin étendu : 10¹⁵ adresses terminales et 10¹⁵ préfixes réseaux.
- Nouveaux domaines: mobiles 4G, IoT, 5G, capteurs, domotique, bâtiment, automobile...

Capacité d'adressage IPv6 est encore plus grande!

Pourrait être $\approx 6 \times 10^{23}$ adresses / m² de surface terrestre (océans compris)!

2018-2019 10 / 74

IPv6 en bref

- Espaces d'adressage "illimité" : $2^{128} \approx 3,4 \times 10^{38}$ adresses disponibles.
- VLSM @IP/masque, agrégation des adresses (CIDR).
- Autoconfiguration—sans routeur ni serveur DHCP.
- Multi-hébergement facilité (pas de rénumérotation interne!)
- Transparence (vs NAT).
- IPsec, QoS et multicast sont natifs (champ "scope").
- Routage plus facile via le champ "flux" donné.
- Entête de taille fixe, simplifiés—traitement plus rapide.
- Identification ≠ localisation, facilité pour applications mobiles.
- Extension des fonctionnalités (protocole, etc) issus de l'IPv4.
- Coexistence avec IPv4 dual-stack; adoption IPv6

Nouvelles applications

- VoIP.
- Embarqué.
- IoT, Internet des objets.
- Téléphonie 4G, réseaux 5G.
- Mobilité (garder la même @IP partout)
- Sécurité en général.
- Domotique et réseaux mobiles de données (capteurs, automobiles,...)
- Vidéoconférence.
- Jeux en réseaux.
- Interface haptiques, télémédecine.

Taille et format d'une adresse IPv6 [RFC 4291, 3513-old]

- 128 bits.
- Notation canonique hexadécimale en 8 blocs de 16 bits.

```
2001:0660:3001:4002:0000:0000:0000:0007 (www.renater.fr)
```

• Au début de chaque bloc, on peut supprimer de 1 à 3 "0"s.

• Une seule fois les blocs successifs de "0000"s s'abrègent en "::".

```
2001 : 660 : 3001 : 4002 :: 0 : 7
2001 : 660 : 3001 : 4002 : 0 :: 7
```

Exemple d'une ERREUR :

2001 :: beda :: 7

Préfixes IPv6

- Un préfixe par lien local (segment LAN). Pls préfixes par LAN possibles.
- La notion de préfixes développée par CIDR est reprise.
- Notation :

Préfixe IPv6 / longueur du préfixe

• Exemples :

2001 :: /16

2001 : 0660 :: /32

• Une adresse fait partie d'un réseau dont le préfixe est de longueur déterminée :

Adresse hôte (www.renater.fr) : 2001:0660:3001:4002::7/48

2001:0660:3001::/48 Adresse sous-réseau = préfixe :

- Unicast : adresse d'une interface seule. Peut être :
 - à portée globale, routable;
 - à portée lien locale, non-routable.
- Multicast (diffusion restreinte multidestinataire): adresse pour un ensemble des interfaces sur les nœuds différents locaux ou distants.
- Anycast : adresse pour un ensemble des interfaces (nœuds différents).
 Destinataire est une seule interface la plus proche au sens du routage.

NB:

Il n'y a plus de broadcast en IPv6!

NB:

L'addresse IPv6 est attribuée à l'interface (et non au nœud).

Principaux types d'adresses IPv6

Définis par les bits de poids fort (à gauche) :

Type d'adresse	Préfixe binaire	Notation IPv6
Route par défaut	000 (128 bits)	:: / 0
Indéfinie (démarrage poste)	000 (128 bits)	:: / 128
Boucle locale (loopback)	001 (128 bits)	:: 1/128
Multicast	11111111	ff00 :: /8
Unicast lien-local (autoconf)	1111111010	fe80 :: /10
Unicast global = Internet	0010 - 0011	2000 – 3FFF :: /3

NB:

- Nœud : N interfaces \times M adresses par interface (unicast, multicast ou anycast).
- Adresse définit la portée (limite d'unicité) : lien ou globale.

Unicast globale [RFC 3587]

1	3	bits		45 bits	16 bits	64 bits
	0	0	1	Global prefix	Subnet ID	interface ID

• Internet IPv6 = sous-réseaux (2000 – 3FFF :: /3), seuls routables.

IPv6

- 64 bits préfixe \approx adresse de sous-réseau en IPv4 :
 - /23—Registrars (RIRs)
 - /32—FAIs
 - /48—topologie publique allouée par le FAI au client.
 - /64 (16 bits)—site, adresse de sous-réseau, ID du segment.
- 64 bits—ID de l'interface ≈ bits "hôte" en IPv4.

Consigne d'usage : 3-1-4 = (site-subnet-host) blocs de 16 bits

C'est la base pour créer des sous-réseaux plus détaillés.

2018-2019 17 / 74

Bonnes pratiques

L	3	bits		45 bits	16 bits	64 bits
	0	0	1	Global prefix	Subnet ID	interface ID

ID des sous-réseaux en VLSM—pas toujours pratique. A faire :

Sous-réseau par 4 bits "Subnet on a nibble"

 Blocs de 4 bits (chiffre hexa-)—masques faciles à utiliser (multiples de 4) : (/64, /60, /56, /52, /48

IPv6

• **Subnet-ID** en hexa-: 0001, 0002...)

```
N^{\circ}-VLAN = N^{\circ} Subnet-ID
(pareil qu'en IPv4)
```

FAI: parfois attribue un préfixe /56

2018-2019 18 / 74 Variantes du plan d'adressage avec différents préfixes (cf : liste à jour 1).

- Permanents déléguées aux RIR. Ex : RIPE NCC
 - 2a00 :: /12,2003 : 0000 :: /18,
 - 2001 : 2000 :: /20,...
- Tunnel 6to4 (2002 :: /16) permettant d'acheminer le trafic IPv6 via le(s) réseau(x) IPv4. Depuis 01/02/2001.
- Toutes les autres adresses routables (> 3/4 de l'espace d'adressage)
 réservées pour usage ultérieur.
- 6bone (**3ffe** :: /**16**) était le préfixe en expérimentation des interconnexions des réseaux IPv6 (fin d'opération 06/06/2006).

 $^{1.\ \}mathtt{http://www.iana.org/assignments/ipv6-unicast-address-assignments}$

10 bits	54 bits	64 bits
1111111010	0	interface ID

- FE80 :: /10
- Adressage sur un segment LAN local : Ethernet, PPP, Tunnel.
- Usage : découverte de voisins (hôtes et routeurs).
- Le durée du bail est illimitée.
- Autoconf à l'initialisation de l'interface. Routage next-hop sur lien.

NB

Jamais routées ⇒ pas besoin du masque!

• Même addresse de plusieurs interfaces sur les nœuds différents!

- Adresses destination "la plus proche" au sens du routage (dynamique).
- Usage : interrogation des serveurs, DNS, DHCP, etc.

Ex:

 Interfaces des routeurs dans le subnet; mais un seul choisi par son @MAC (ND) comme passerelle.

urë Mare

- ID pour le groupe des interfaces sur les nœuds différents.
- Chaque interface peut faire partie de plusieurs groupes multicast (group_ID)
- Jamais utilisées comme addr_src.
- Adresses multicast réservées [RFC 4291]

Exemples d'adresses Multicast

```
FF00 :: -FF0F :: sont réservés, gérés par IANA. Exemples (sur le lien) :
```

- FF02 :: 1 tous les nœuds sur le lien (lien-local)
- FF02 :: 2 tous les routeurs sur le lien
- FF02 :: 5 tous les routeurs OSPE sur le lien
- FF02 :: 6 tous les routeurs désignés (DR) OSPF sur le lien
- FF02 :: 9 tous les routeurs RIP sur le lien

FF02 :: 1 : FF/₁₀₄XX : XXXX adresse Multicast du nœud sollicité.

Adresses obligatoires pour un nœud

Hôte

- Link-Local FE80 :: /10 pour chaque interface, auto-identification.
- Loopback :: 1.
- Multicast, chaque interface : FF02 :: 1 tous les nœud : FF02 :: 2 tous les routeurs ; $FF02 :: 1 : FF/_{104}XX : XXXX$ nœud sollicité pour chaque Unicast ou Anycast
- (Pls!) autres Unicast Globales ou Anycast sur chaque iface.
- (Option : autres Multicast pour les groupes du nœud.)

Routeur en +

- (Pls!) Unicast Globales —préfixe(s) pour les lien(s) auguels l'hôte est connecté
- Anycast sur les interfaces où il est "routeur du sous-réseau" (=passerelle par défaut)
- Multicast ff02 :: 2, tous les routeurs.

Résumé sur l'allocation des adresses IPv6 [RFC 3513]

Allocation	Préfixe 8 bits (bin)	Préfixe (héxa)	Fraction
Reserved (trans, loopback)	0000 0000	00xx :: /8	1/256
Unassigned	0000 0001	01xx :: /8	1/256
Reserved (was NSAP)	0000 001	02xx :: /7	1/128 [RFC4048]
Reserved (was IPX Novell)	0000 01	04 <i>xx</i> :: /6	1/64
Unassigned	0000 1	08xx :: /5	1/32
Unassigned	0001	1xxx :: /4	1/16
Global Unicast	001	(2-3)xxx :: /3	1/8 [RFC3513]
Unassigned	010-110	(4 - D)xxx :: /3	5/8
Unassigned	1110	Exxx :: /4	1/16
Unassigned	1111 0	F(0-7)xx :: /5	1/32
Unassigned	1111 10	F(8-B)xx :: /6	1/64
Unique Local Address (ULA) (private)	1111 110	F(C – D)xx :: /7	1/128
Unassigned	1111 1110 00	FE(0 - 7)x :: /9	1/512
Link-Local Unicast	1111 1110 10	FE(8 – B)x :: /10	1/1024
Deprecated (was site-local)	1111 1110 11	FE(C - F)x :: /10	1/1024
Multicast Addresses	1111 1111	FFxx :: /8	1/256

IPv6

Global Unicast (suite)

IPv6

- Dans le préfixe unicast global (2001 : :/16).
- Agrégation des préfixes depuis clients vers FAIs

26 / 74

IDs des interfaces

- Respect EUI-64 bits format (compatibilité Firewire IEEE 1394, IEEE 802.15.4).
- Méthodes de génération :
 - Basé sur L2 adresse @MAC—préconisation. Portée universelle.
 - 2 Aléatoire [RFC 3041].
 - Oryptographique, basée sur la Clé Publique [RFC 3972].
 - Manuelle.
- ID à portée locale possibles :
 - Lorsque I'@ MAC est indisponible (liaison série, extrémité du tunnel)
 - Voir "IPv6 over <Protocole_L2>"
- Usage : poste client, pas adapté aux serveurs.

NB

- ID de l'interface est unique pour chaque préfixe (subnet).
- ... mais la même ID de l'interface avec différent préfixes possible.

IPv6

2018–2019 27 / 74

Transition @MAC → EUI-64

• Utilisé pour les types d'adresses global ou lien-local.

IPv4 contenues dans IPv6

Adresses IPv6 mappées sur IPv4 :

Représentation d'un hôte IPv4 (réseau) comme IPv6 (pour appli).

Usage : sockets créés par un daemon IPv6, qui accepte (bind) une @ IPv4.

NB : n'est pas supporté par toutes les implémentations ⇒ separate sockets.

:: ffff : a.b.c.d/96

Adresse IPv6 compatible avec IPv4 (obsolète):

Tunnels dynamique (et automatique) IPv6 dans le réseau IPv4 (6to4).

:: 0000 : a.b.c.d/96

Adresses IPv6 et URL [RFC 2732]

• Dans une URL, une adresse IPv6 doit être encadré de [] :

```
http://[3ffe:0:a88:85a3::ac1f:8001]/index.html
```

• Lève l'ambiguïté si N° de port est présent :

```
http://[3ffe:0:a88:85a3::ac1f]:8001/index.html
```

NB:

L'URL n'est pas l'unique cas où cette différence est importante :

- XWindow—système de fenêtrage Unix/Linux.
- Protocole SIP de signalisation téléphonique (VoIP).

Rappel: entête IPv4

IPv6 vs IPv4

- Champs conservés :
 - Version (4 bits).
 - TOS (Type Of Service) ⇒ Traffic class (1 octet).
 - Longueur du paquet ⇒ Longueur de la partie données (2 octets).
 - Protocol type ⇒ Next Header (1 octet)
 - TTL (Time To Live) ⇒ Hop Limit (1 octet)
- Champs supprimés :
 - Longueur de l'entête (car entête de taille fixe dans l'IPv6)
 - Champs de fragmentation (ID, Flags, Offset), car fragmentation par la source.
 - Somme de contrôle sur l'entête (header checksum).
- Rajouté: "Flow label" (20 bits).
- IPv4 options ⇒ IPv6 entêtes d'extensions.
 - Extensions (sauf "hop-by-hop") sont analysées uniquement par le destinataire, rapide!

En-tête IPv6

- En-tête de taille fixe: 40 octets, 3,8% MTU (cf IPv4: entête variable 20—60 octets avec les options, 3,4% MTU).
- MTU = 1280 octets, mécanisme de découverte (si MTU > 1280)

En-têtes étendus de l'IPv6 (extensions)

- Champ "Next Header" pour extension OU protocole encapsulé.
- Ignorés par les routeurs intermédiaires (exception—"Hop-by-Hop" Options header "Next Header = 0").

Valeur du champ "Next Header"	Extension	Valeur	Protocole
0	Proche-en-proche	4	IPv4
43	Routage	6	TCP
44	Fragmentation	17	UDP
51	Authentification	58	ICMPv6
50	Confidentialité	41	IPv6
59	Fin des entêtes		
60	Destination		

Ordre des entêtes d'extension est important

Implémentation complète doit inclure tout!

NB

Entête "destination" peut aussi suivre "Routage", traité par chaque routeur.

IPv6

Spécification des types de flux en IPv6 [RFC 6437]

DEF: "Flux"

Séquence de paquets src-dest pour lesquels la source souhaite un traitement particulier (QoS par RSVP, TRéel,...). Ex : flux applicatif TRéel.

- ID du flux existait déjà en IPv4 : socket (mais rarement utilisé)
 ID_FLUX = (IP_src, N°_Port_src, IP_dest, N°_Port_dest, Flow_labe
- IPv6:
 - ID_FLUX = RAND(), car N° _Port inconnu si cryptage.
 - ID_FLUX = (Addr_src, Addr_dest, Flow_label).
- Crée le "contexte", pour éviter de lire la TabR pour chaque paquet... et les entêtes d'extension!
- Paguet hors flux : Flow_label=0.

ICMPv6 [RFC 2463]

- Fonctions améliorées (vs ICMP) :
 - détection d'erreurs (inaccessibilité d'un nœud / lien / port);
 - tests (ping, traceroute);
 - autoconfiguration (découverte des routeurs,...) ⇒ protocole ND—Neighbor Discovery;
 - reprise de fonction de l'ARP via multicast.
- Nouvelles fonctionnalités dans ICMPv6 :
 - gestion des groupes de multicast MLD ⇒ protocole MLD—Multicast Listener Discovery

Format de l'en-tête et type de messages

Туре			
Valeur	Usage		
1,2,3 et 4 (< 127)	Gestion des erreurs		
128,129	Demande/Réponse d'echo (ping6)		
130–132	Gestion multicast (MLD for IPv6, [RFC 2710])		
133–137	Découverte de voisins (ND)		
144–147	Mobilité [RFC 3775]		

• Type : nature du message

• Code : cause

38 / 74

Fonctionnalités du protocole Neighbor Discovery (ND)

- Autoconfiguration d'adresses.
 - Détection de duplication d'adresse (DAD).
 - Découverte de(s) routeur(s), passerelles.
 - Découverte de(s) préfixe(s).
 - (Opt : découv. des params du lien physique (linkMTU, Max Hop Limit)).
- Résolution d'adresses par ICMPv6 (equiv. ARP).
- Détection d'inaccessibilité des voisins
- Redirection: meilleure route vers la destination.

NB:

- Le protocole ND est utilisé sur un segment réseau (lien local)
- C'est un hybride d' « auto-DHCP » et d'ARP, mais :
 - sans état, ni diffusion (les routeurs ne mémorisent pas les choix des postes)
 - il n'y a pas de bail.

Messages ICMPv6 pour la ND—Neighbor Discovery

Type	Usage	Données
133	Sollicitation du routeur (RS)	 Au démarrage du poste sur Mcast routeur ff02 : :2
134	Annonce du routeur (RA)	 liste des préfixes sur le lien (≠ DHCP) Max Hop Limit (sinon 64/défaut) linkMTU.
135	Sollicitation d'un voisin (NS)	• détection de duplication d' (0) • déterminer l' (0) MAC d'un voisin ((0) ARP) • ou vérifier son (in)accessibilité ((0) ping (0)
136	Annonce d'un voisin (NA)	 réponse à un NS, annonce d'un changement d'@ IPv6
137	Redirection	Routeur annonce le meilleur chemin.

40 / 74

Résolution d'adresse L2 (MAC) : rappel.

Problème

Trouver I'@ MAC à partir de I'@ IP_cible.

Solution IPv4 & ARP

- Diffusion de la requête ARP contenant : $(dest = FF-FF-FF-FF-FF, src = @ MAC_src)$
- Unicast de la réponse ARP vers l'@ MAC_src de la requête : $(dest=0 MAC_src, src = 0 MAC_cible)$
- Table ARP poste source :

Cache ARP				
@ IP_cible	@ MAC_cible	Interface de sortie		

IPv6

Q : Est-ce efficace?

2018-2019 41 / 74

Résolution d'adresse L2 (pour IPv6)

- Au démarrage, chaque nœud doit joindre 2 groupes spéciaux de multicast pour chaque interface réseau.
 - All-nodes multicast link-local groupe (M1): ff02::1
 - Groupe multicast du nœud sollicité (M2) : ff02 :: 1 : ff/₁₀₄XX : XXXX
- ND[NS]—sollicitation du voisin est transmis à M2 de dest. (pas d'AR!)
- ND[NA]—annonce du voisin.

2018–2019 42 / 74

Dérivation de l'@ multicast du nœud sollicité [RFC3307]

Procédé pour Ethernet

@ IPv6_dest 2001 : 0660 : 3001 : 4002 : 4421 : 21ff : fe 24 : 87c1

↓ ↓

P IP Multicast **ff02** :: **1** : **ff 24** : **87**c**1**

sollicitée

@ MAC multi- 33:33: ff 24:87c1

cast

Rappel MAC Bit 7 = "0/1" global/local Bit 8 = "0/1" unicast/multicast

2018–2019 43 / 74

Objectifs d'autoconfiguration

Activation "plug-and-play" de l'interface réseau

- Auto-attribution de l'adresse lien-locale. Puis :
 - Vérifier son unicité sur le lien ⇒ comm locale.
 - Déterminer la(es) @ unicast globales par une des deux méthodes.
- Méthodes dynamiques :
 - "Sans état" (stateless). L'adresse est construite à partir de :
 - Préfixe annocé par le(s) routeur(s) dans les RA—Router Advertisements.
 - @ MAC de l'interface.
 - 2 "Avec état" (DHCPv6), l'attibution est strictement contrôlée.
 - But : attribuer les mêmes adresses, ex : serveurs.

NB:

S'il y a un routeur sur le lien, la machine doit appliquer la méthode indiquée dans le RA.

Segment du LAN

Local-link IPv6 fe80::0a00:20ff:fe0a:aa6d?

Global unicast IPv6 3ffe:302:12:3:a00:20ff:fe0a:aa6d

MAC 8:0:20:a:aa:6d

Initialisation et Détection d'Adresse Dupliquée (DAD)

Ethernet

Src: 08:00:20:0a:aa:6d Dst: 33:33:ff:0a:aa:6d (multicast L2 Ethernet du dest)

Type: 0x86dd (@IPv6)

IPv6

Version: 6 Priorité: OxfO Label: 000000

Longueur: 24 octets (0x0018) Protocole: 58 (0x3a, ICMPv6)

Nombre de sauts: 255 (Oxff) (provient du réseau local)

@IPv6 Source: :: (non-spécifiée)

@IPv6 Dest: ff02::1:ff0a:aa6d (multicast sollicité de l'@ cible)

ICMPv6

```
Type: 135 (0x87, NS - sollicit. d'un voisin)
```

Code: O Checksum : Oxfe37

Cible: fe80::a00:20ff:fe0a:aa6d (soi-même - astre, lien-local)

Annonce d'un voisin $(NA) \Rightarrow collision$

Ethernet

Src: 08:00:20:0a:aa:6d Dst: 33:33:00:00:00:01 Type: 0x86dd (@IPv6)

IPv6

```
Version: 6 Priorité: OxfO Label: 000000
Longueur: 32 octets (0x0020) Protocole: 58 (0x3a, ICMPv6)
```

Nombre de sauts : 255 (0x0ff)

Source: fe80::a00:20ff:fe0a:aa6d (La même que astre, "Cible" !)

Dest: ff02::1 (multicast, tous les noeuds du lien)

ICMPv6

```
Type: 136 (0x88, Annonce d'un voisin) Code: 0 Checksum : 0xe036
Bits (0x7) R = 0 (not router) S = 0 (answer), 0 = 1 (overwrite cache)
```

Cible: fe80::a00:20ff:fe0a:aa6d

```
Option: Type: 2 (Adresse physique cible) Lg: 8 octets (0x01):
```

08:00:20:0a:aa:6d

Sinon, si pas eu de collision, suite à 2 NS, l'unicité de l'adresse serait confirmée.

IPv6 47 / 74 2018-2019

Sollicitation du routeur (RS)

Fthernet

Src: 08:00:20:0a:aa:6d Dst: 33:33:00:00:00:02 (MAC multicast de tous les routeurs) Type: 0x86dd (@IPv6)

IPv6

Version: 6 Priorité : OxfO Label: 000000

Longueur: 16 octets (0x0010) Protocole: 58 (0x3a, ICMPv6)

Nombre de sauts: 255 (0x0ff)

Source: fe80::a00:20ff:fe0a:aa6d (astre, lien-local) Dest: ff02::2 (multicast, tous les routeurs du lien)

ICMPv6

Type: 133 (0x85, Sollicitation du routeur) Code: 0 Checksum: 0xd63e Options: Type: 1 (Adresse physique source) Lg: 8 octets (0x01):

08:00:20:0a:aa:6d

Annonce du routeur (RA)

3 possibilités :

- Routeur fournit les paramètres suffisant en IPv6 : Préfixe, sa Longueur, Passerelle par défaut.
- Mêmes + paramètres DNS à obtenir auprès du serveur DHCPv6
- Routeur : message "Redirect". Le poste devra contacter le serveur DHCPv6 pour la configuration.

Durée de validité : Durée de préférabilité:

Préfixe: 3ffe:302:12:3::/64

Annonce du routeur (RA)

```
Commande:
R1(config)# ipv6 unicast-routing
Ethernet
Src : 1a:00:20:0c:7a:34
Dst: 33:33:00:00:00:01 (MAC multicast de tous les postes)
Type: 0x86dd (@IPv6)
IPv6 . . .
Src: fe80::1800:20ff:fe0c:7a34 (central, lien-local)
Dest: ff02::1 (multicast, tous les noeuds du lien)
ICMPv6
M=O (not Managed by DHCP) O=O H=O (not Home agent for mobiles)
Options:
Type: 1 (Adresse phy src) Lg: 8 octets (0x01): 1a:00:20:0c:7a:34
Type: 3 (Préfixe(s)) Lg: 32 octets (0x04)
Drapeaux: L=1 (même Lien) A=1 (Préfixe OK pour Adr Ucast Globale) R=1
```

IPv6

50 / 74 2018-2019

Principes de base DHCPv6

- Configuration plus riche (impossible par autoconf): une 30-aine de paramètres.
- Affectation pendant une durée (bail) :
 - attribution fixe : même IPv6 à la même MAC.
 - annonce des adresses IP des serveurs de noms (DNS).
 - TFTP pour les téléphones IP : tftp://A.B.C.D/var/lib/tftpboot/SIPphone/
 - découverte automatique des proxys web.
- Client-serveur DHCPv6 sur le lien ou via le Relais-DHCPv6.
- Complémentarité :
 - Autoconf sans état : unicast globale.
 - Avec état : serveur DHCP associe (paramètres, état) pour le client. Usage :
 - Contrôle stricte d'attribution, ex : même adresse à l'hôte (serveurs, imprimantes,...)
 - La RFC du DHCPv6 est maintenant stabilisée.

Résumé autoconfiguration

- Création adresse IPv6 lien-locale.
- Oétection des adresses dupliquée (DAD).
- Envoi d'une requête au(x) routeur(s) sur leurs adresses multicast : sollicitation des routeurs (RS)
- Obtention de(s) préfixe(s) global(ux) grâce aux annonces des routeurs (RA), création des IPv6 avec.
- Oétection des adresses dupliquée (DAD).
- Configuration de la passerelle par défaut.

NB

- Routeurs et équipements cœur de réseau : configuration manuelle.
- Stations : autoconfiguration.

Important

Pb : Résolution nom \leftrightarrow adresse auto-configuration ? ? ? Sol : MAJ DNS IPv6 automatique suite à l'auto-configuration.

IPv6

Rappel sur DNS

- Annuaire hiérarchique réparti.
- Un serveur de noms (NS, Name Server) gère le domaine : cpe.fr
- NS stocke les enregistrements (RR, Resource Records) permettant
 - Résolution < Nom $> \leftrightarrow <$ Adresse >.
 - Résolution inverse.
 - Information sur les domaines, serveurs de noms, etc.
- Indispensable en IPv6 avec l'espace d'adressage et fonctions évolués. Pbs :
 - Auto-configuration est incompatible avec un plan d'adressage.
 - Besoin des adresses IPv6 fixes pour les serveurs, switchs.
 - Sol : fonction hôte MAJ automatique DNS des enregistrements suite à l'attribution d'une configuration.

2018–2019 53 / 74

Format des enregistrements IPv6

Deux nouvelles extensions :

- Enregistrement AAAA (quad A) pour la résolution directe.
- Toutes les adresses sont publiées : IPv4 et/ou IPv6.

```
6bone.net. 3600 IN A 209.71.226.24
6bone.net. 3600 IN AAAA 2001:5c0:0:2::24
```

• Enregistrement PTR stocké dans la sous-arborescence ip6.arpa. pour le nommage inverse.

<@IPv6 inversée par blocs de 4 bits en pointée>.ip6.arpa

IPv6

• Délégation de zone, même qu'en IPv4.

2018–2019 54 / 74

Implémentations

• Support complet du DNS pour l'IPv6 : enregistrements AAAA et PTR sous l'arborescence ip6.arpa et transport IPv6 des messages DNS.

IPv6

- Support partiel : uniquement les enregistrements AAAA et PTR.
- Certains produits logiciels sont uniquement client ou serveur.

BIND 9 de l'ISC-Internet Systems Consortium

- Référence
- Complet : client ("resolver"), serveur, outils.
- Pour la majorité de plate-formes : Unix*, Windows,...

2018–2019 55 / 74

Nommage : DNS pour IPv6

Arborescense DNS pour IPv6

IPv6

56 / 74

2018–2019

Transition vers IPv6

- Normalisation est finalisée.
- Pas de jour "J" ni basculement.
- Phase de coexistance, mais pas de méthode universelle.
- Mécanismes et techniques :
 - Double pile logicielle (dual stack) IPv6 et IPv4.
 - Encapsulation de IPv6 dans IPv4 (tunelling).
 - Traduction des en-têtes IPv6 ↔ IPv4. NAT protocol translation (NAT-PT) between IPv6 and IPv4.
- Motivation : pénurie des adresses et applications phares.

Mécanisme douple pile Dual Stack

- Réseau cœur : chaque nœud implémente deux piles IPv4 et IPv6.
- Stations : double pile dans l'environnement mixte.
- Interface : deux adresses, IPv4 et IPv6!
- Applications socket IPv6 :
 - Peut dialoguer en IPv6 et/or IPv4.
 - Utilise les adresses mappées IPv4 pour communiquer avec les nœuds IPv4.
- Services :
 - Résolveur DNS (stub) retourne IPv6, IPv4 ou les deux.

Mécanisme et types de tunnels

- Manuel (static)
- Automatique
- Tunnel broker
- 6to4
- 6over4

- Générique : IP (v4 ou v6) ou non-IP dans IPv6 [RFC 2473].
- Transport de IPv6 sur IPv4 (proto 41(0x29) en-tête IPv4).
 - Routeur ↔ Routeur. Routeur ↔ Hôte ou Hôte ↔ Hôte.
 - Connexion des îlots IPv6 au dorsal IPv6 à travers le transport IPv4.

6to4

- Interconnexion de deux îlots IPv6 (6to4).
- Création automatique des tunnels IPv6 dans IPv4 (Protocole=41)
- 6to4:
 - Le préfixe 2002 :: /16 a été alloué par l'IANA à ce type d'adressage.
 - Le préfixe /48 du site via l'@ IPv4 (32 bits) du routeur de frontière (BG).

2018–2019 60 / 74

6to4 natif

- Interconnexion des îlots IPv6 avec la dorsale IPv6 natif.
- Création automatique des tunnels IPv6 dans IPv4 (Protocole=41)
- Natif :
 - Routeur relais (ou tunnelier) 6to4, et anycast @IPv4=192.88.99.0/24, routeur par défaut vers Internet IPv6

IPv6

2018–2019 61 / 74

Tunnel broker

- Broker : fournisseur de service tunnel.
- Client : hôte double pile isolé dans IPv4 à connecter en l'IPv6.
- Provisionnement : statique et dynamique, via
- TSP—Tunnel Setup Protocol.
- Fournisseent les préfixes /48.

IPv6 62 / 74 2018-2019

Interface utilisateur pour la création du tunnel

- S'enregistrer : formulaire sur le site, email de confirmation etc (peut être loooong, qqs jours?)
 - Choix de l'OS, fournir son adresse IPv4.
 - Authentification (ID, mot de passe).
- Demande du type (dyn/static) et création du tunnel par le serveur de tunnel.
- Télécharger/recevoir un script de configuration.
- Exécution du script crée le tunnel côté client. Ou installer l'appli
- Choisir le tunnel
- Liste avec PoP en France : Hurricane Electric. SixXS. Renater

Etapes importantes

Des couches basses vers les couches sups

- Equipement réseau : Routeurs, Firewalls, Switchs.
- Services "proches" matériel : DNS.
- Infrastructure IPv6 :
 - Adressage équipement et rajout entrée pour serveurs DNS.
 - Enregistrement sont encore de type A (IPv4).
- Migration de serveurs et de postes en double pile.
 - Par groupe de services liés
- Configuration des clients :
 - Installation des daemons pour l'autoconf (réponse aux sollicitations)
 - Sinon DHCPv6 si l'implémentation existe.

2018–2019 64 / 74

Routage en IPv6

- Static
- RIPng
- OSPFv3
- IS-IS for IPv6
- EIGRP for IPv6
- Multiprotocol BGP version 4 (MP-BGPv4)

NB:

Ces modes doivent être activés via

R# ipv6 unicast-routing

Routage static

- Configuration \approx IPv4.
- Spécificités :
 - Le routeur voisin sur un lien est reconnue par son adresse lien-local.
 - Or, préférer celle-ci comme "prochain saut".
- Examples :
 - Route directe

```
R-FAI(config)# ipv6 route 2001:CC1E::/32 serial 0/0/0
```

- Route recursive (2 × TabR : interface)
 R-FAI(config)# ipv6 route 2001:CC1E::/32 FE80:CC1E::2
- Route complète : interface de sortie ET prochain saut. Usage : interface accès multiple (Ethernet)

```
R-FAI(config)# ipv6 route 2001:CAFE::/32 FastEthernet0/0 FE80:CAFE::2
```

• Route par défaut :

```
R-Home(config)# ipv6 route ::/0 s0/1/0
```


RIPng (new generation), [RFC 2080]

• Basé sur IPv4 RIP version 2 (RIPv2).

=

- Nombre de sauts max est 15.
- Distance administrative (priorité) est 120.
- Utilise « split horizon » et « route inverse empoisonnée » pour empêcher les boucles de routage.

- Echanges des préfixes et réseaux IPv6 uniquement.
- L'adresse du prochain saut est en IPv6.
- Port UDP 520 (au lieu de port UDP 521).
- Groupe de multicast FF02 : :9 (au lieu de 224.0.0.9).

NB:

RIPng est activé sur une INTERFACE

Example activation RIP

Activer le processus RIPng sur une interface, avec un nom "RIPfa00".

```
R1(config)# ipv6 unicast-routing
R1(config)# int fa0/0
R1(config-if)# ipv6 rip ?
WORD User selected string identifying this RIP process
R1(config-if)# ipv6 rip RIPfa00 ?
default-information Configure handling of default route
enable Enable/disable RIP routing
...
R1(config-if)# ipv6 rip RIPfa00 enable
```

Configurer le processus RIPng, désactiver le clivage d'horizon.

```
R1(config)# ipv6 router rip RIPfa00
R1(config-rtr)#?
...
distribute-list Filter networks in routing updates
poison-reverse Poison reverse updates
redistribute Redistribute IPv6 prefixes from another routing prot.
split-horizon Split horizon updates
...
R1(config-rtr)# no split-horizon
```

OSPFv3 pour IPv6

- Basé sur OSPF version 2 (OSPFv2), mais indépendant
- Distribue les préfixes IPv6.
- Encapsulation dans IPv6 en natif.
- Spécificités :
 - Adresses en 128 bits.
 - Quelques adresses spécifiques : lien-locale FE80 ::.
 - Plusieurs adresses par interface.
 - Authentication (IPsec).
 - Unité OSPFv3 est le lien, pas le sous-réseau.

OSPF vs OSPFv3 pour IPv6

- Types de paquets : Hello, DBD, LSR, LSU, LSA.
- Découverte de voisin et adjacence.
- Algorithme SPF: variante de Dijsktra.
- Flection du DR
- Aires multiples, topologies différentes (NBMA, point-to-multipoint, point-to-point and broadcast).

- "Link" équivalent à "subnet" ou "network".
- OSPFv3 est configuré sur une interface.
- Multiple instances OSPFv3 par interface.
- Nouvelles adresses multicast.

NB:

Router-ID est toujours en 32-bits!

Exemple OSPFv3

```
R1(config)# ipv6 unicast-routing
R1(config)# int fa0/0
R1(config-if)# ipv6 ospf ?
  <1-65535>
              Process ID
  authentication
                  Enable authentication
                      Interface cost
  cost
 network
                      Network type
 priority
                      Router priority
R1(config-if)# ipv6 ospf 10 ?
  area Set the OSPF area ID
R1(config-if)# ipv6 ospf 10 area 0
```


Implémentations

- Mac OS X 10.2 Jaguar
- Unices: FreeBSD, OpenBSD, IRIX, Linux (kernel > 2.2), Solaris, HP-UX,...
- Windows: Windows Server 2003, Windows XP with Service Pack 1,2,3;
 Microsoft Windows CE.NET.
- Routeurs: Cisco (IOS > 12.2(2)T), Huawei, HP, Hitachi, Nortel Networks, Juniper Networks,...
- Firewall IPv6 avec accélération matérielle : Checkpoint, Juniper, Cisco,...

Applications

- ipv6gen pour générer les préfixes
- Projet WIDE : http://www.wide.ad.jp/.
- VideoLAN Client and Server (VLC).
- openssh.
- www Server : Apache, thttpd (native!).
- www Client : Mozilla, Konqueror (KDE), Lynx, IE.
- OpenLDAP.
- Wireshark.
- OpenSSH.
- BIND.

Liens utiles

Actifs

```
http://livre.g6.asso.fr , "IPv6 théorie et pratique", Novembre 2005, O'Reilly (accès libre).
http://www.ipv6forum.org
http://www.renater.fr/ . Le Réseau National de télécommunications pour la Technologie
                  l'Enseignement et la Recherche.
http://www.ripe.net/ipv6 Réseau IP Européen—allocation et attribution des @IPv6
http://www.ipv6.ru Russian National IPv6 Forum
```

Projets arrêtés, mais beaucoup d'infos utiles

```
http://www.iot-inc.com/gogo6/ gogoNET and Freenet6. Etait un portail d'accès gratuit à la dorsale
                  IPv6. > 100.000 membres. Fermé en 2017.
```

```
http://6bone.net Plate-forme de test historique IPv6 (arrêtée au 6/06/2006, domaine HS).
http://www.euro6ix.org Projet de construction de l'IPv6 en Europe; livrables intéressants (fin 2005).
http://www.kame.net KAME, USAGI, TAHI projects, But : fournir les implémentations gratuites de la
                   pile IPv6, IPsec et Mobile IPv6 pour BSD et Linux. (fin en 2006)
```