VPK120 Evaluation Board User Guide

UG1568 (v1.1) August 24, 2022

Xilinx is creating an environment where employees, customers, and partners feel welcome and included. To that end, we're removing non-inclusive language from our products and related collateral. We've launched an internal initiative to remove language that could exclude people or reinforce historical biases, including terms embedded in our software and IPs. You may still find examples of non-inclusive language in our older products as we work to make these changes and align with evolving industry standards. Follow this link for more information.

Table of Contents

Chapter 1: Introduction	
Overview	2
Navigating Content by Design Process	
Additional Resources	6
Block Diagram	6
Board Features	
Board Specifications	
Chapter 2: Board Setup and Configuration	1.
Standard ESD Measures	
Board Component Location	
Default Jumper and Switch Settings	
Versal ACAP Configuration	
Chantay 2: Beard Component Descriptions	•
Chapter 3: Board Component Descriptions	
Overview	
Component Descriptions	2
Appendix A: VITA 57.4 FMCP Connector Pinouts	57
Overview	57
Appendix B: Xilinx Design Constraints	51
Overview	
Appendix C: Regulatory and Compliance Information	
CE Information	
Compliance Markings	60
Appendix D: Additional Resources and Legal Notices	6 ⁴
Xilinx Resources	
Documentation Navigator and Design Hubs	6 ⁻
References	62

Revision History	63
Please Read: Important Legal Notices	63

Introduction

Overview

The VPK120 evaluation board features the Xilinx® Versal® ACAP XCVP1202 device. The VPK120 board enables the demonstration, evaluation, and development of the applications listed here, as well as other customer applications. Many features found on the VPK120 board are subsets of existing Versal ACAP boards (e.g., the VCK190 and VMK180 boards).

- Fiber optic
- Communications
- Data center compute acceleration
- Aerospace and defense
- Test and measurement

The VPK120 evaluation board is equipped with many of the common board-level features needed for design development, including:

- QSFP-DD optical transceiver support
- LPDDR4 component memory
- USB
- Ethernet networking interface
- One FMC+ expansion port
- PCle[®]

Models of Boards

The following table lists the models for the VPK120 evaluation board. See the VPK120 Evaluation Board product page for details.

Table 1: Models of VPK120 Evaluation Boards

Kit	Description		
EK-VPK120-G	Xilinx Versal ACAP VPK120 evaluation kit		
EK-VPK120-G-J	Xilinx Versal ACAP VPK120 evaluation kit, Japan specific		
EK-VPK120-G-ED (encryption disabled)	Xilinx Versal ACAP VPK120 evaluation kit, China and Russia specific		

Users of encryption-disabled kits will not be able to access the following features:

- Secure boot
- Secure key storage/management
- Crypto HW acceleration (PS and APU crypto accelerators)
- Encrypted bitstream loading
- Encrypted BOOT.BIN partitions
- PUF operation
- High-speed crypto (HSC)

Versal ACAP Kit Numbering

The Versal ACAP kit numbering is illustrated in the following figure.

Product Number **EK** K 120 G ROHS Kit Regional Silicon indicator Туре K = kit Ensures there is no Family and series (e.g., Versal ACAP confusion with silicon P/Ns Options EK - Evaluation Kit Options CK - Characterization Kit Examples G - ROHS J - Japan ED - China/Russia Compliant VPK120 OEM - OEM kit VCK190 X26155-080422

Figure 1: Kit Numbering

Navigating Content by Design Process

Xilinx® documentation is organized around a set of standard design processes to help you find relevant content for your current development task. All Versal® ACAP design process Design Hubs and the Design Flow Assistant materials can be found on the Xilinx.com website. This document covers the following design processes:

 Board System Design: Designing a PCB through schematics and board layout. Also involves power, thermal, and signal integrity considerations. For more information, see Versal ACAP Design Process Documentation Board System Design.

Additional Resources

See Appendix D: Additional Resources and Legal Notices for references to documents, files, and resources relevant to the VPK120 evaluation board.

Block Diagram

A block diagram of the VPK120 evaluation board is shown in the following figure.

Figure 2: Evaluation Board Block Diagram

X26002-021822

Board Features

The VPK120 evaluation board features are listed here. Detailed information for each feature is provided in Chapter 3: Board Component Descriptions.

- XCVP1202, VSVA2785 package
- Form factor: extended height PCIe®, double-slot (heatsink clearance)
- Onboard configuration from:
 - USB-to-JTAG bridge
 - JTAG pod 2 mm 2x7 flat cable connector
 - microSD card (PS MIO I/F)
 - Quad SPI (QSPI)/eMMC (system controller I/F)
 - Dual QSPI
- Clocks
 - ACAP bank 702/5/8 Si570 LPDDR4_CLK1/2/3 (DIMM) 200 MHz
 - ACAP bank 503 Si570 REF_CLK 33.3333 MHz
 - ACAP bank GTY200/1 (REFCLK0) FMC_SI570_BUF0/1 100 MHz
 - 。 IEEE-1588 eCPRI 8A34001 clocks (various)
 - ACAP bank 503 RTC Xtal 32.768 kHz
 - ACAP bank GTY102/3/4/5 (REFCLKO) PCIe CLK3/2/1/0 (from card edge)
 - ACAP bank GTY200/1 (REFCLK0) FMC_SI570_BUF0/1 100 MHz
 - ACAP bank GTY200/1 (REFCLK1) FMC_SI570_BUF0/1 100 MHz
- Three LPDDR4 interfaces (2x32-bit 4 GB components each)
 - XPIO triplet 1 (banks 700, 701, 702)
 - XPIO triplet 2 (banks 703, 704, 705)
 - XPIO triplet 3 (banks 706, 707, 708)
- PL FMCP HSPC (FMC+) connectivity
 - FMCP1 HSPC full LA[00:33] bus
- PL GPIO connections
 - 。 PL UART1 to FTDI

- PL GPIO DIP switch (4-position)
- PL GPIO LEDs (four)
- PL GPIO pushbuttons (two)
- PL trace connector (J332)
- PL SYSCTLR_GPIO[0:15]
- PL 8A34001 GPIO[0:15]
- 28 GTYP transceivers (7 quads)
 - PCle 16-lane edge connector (16, banks GTYP102 GTYP105)
 - FMCP1 HSPC DP (8, banks GTYP200, GTYP201)
 - Not used (4, bank GTYP106)
- 20 PL GTM transceivers (5 quads)
 - QSFPDD1 (8, banks GTM204, GTM205)
 - QSFPDD2 (8, banks GTM202, GTM203)
 - User SMA connectors (1, bank GTM206)
- PCI Express endpoint connectivity
 - 16-lane (banks GTY102 GTY105)
- PS PMC MIO connectivity
 - PS MIO[0:12]: boot configuration QSPI
 - DC QSPI support
 - PS MIO[13:25]: USB2.0
 - PS MIO[26:36, 51]: SD1 I/F
 - PS MIO[37]: ZU4_TRIGGER
 - PS MIO[38]: PCIe_PWRBRK
 - PS MIO[39:41]: SYSMON_I2C
 - PS MIO[42:43]: UARTO to FTDI
 - PS MIO[44:47]: I2C1, I2C0
 - PS MIO[48], PS LPD MIO[0:11, 24:25]: GEM0 RGMII Ethernet RJ-45
 - PS MIO[49] and LPD MIO[13,15:16,20]: power enable
 - PS MIO[50] and LPD MIO[18:19]: PCle status

- PS LPD MIO [21:22]: optional fan interface
- LPD MIO[23]: VADJ_FMC power rail
- Security: PSBATT button battery backup
- SYSMON header
- Operational switches (power on/off, PROG_B, boot mode DIP switch)
- Operational status LEDs (INIT, DONE, PS STATUS, PGOOD)
 - See Power and Status LEDs
- Power management
- System controller (XCZU4EG)

The VPK120 evaluation board provides a rapid prototyping platform using the XCVP1202-2MSEVSVA2785 device. See the *Versal Architecture and Product Data Sheet*: Overview (DS950) for a feature set overview, description, and ordering information.

Board Specifications

Dimensions

Extended Height PCle Form-Factor

Height: 7.478 inches (18.994 cm)

Length: 9.50 inches (24.13 cm) (% PCIe length)

Thickness: 64.24 mil ±08% (1.632 mm ±10%)

Note: Reserve two adjacent PCIe slots to accommodate fan-sink height.

Note: A 3D model of this board is not available.

See the VPK120 Evaluation Board website for the XDC listing and board schematics.

Environmental

Note: The operating temperature range is not fully tested across the specified temperature range. It is for general guidelines only. Customers should use the VPK120 evaluation board for evaluation purposes only in a normal lab environment and should not operate beyond room temperature.

• Temperature:

Operating: 0°C to +45°C

Storage: -25°C to +60°C

• Humidity: 5% to 95% non-condensing

Operating Voltage

+12 V_{DC}

Mechanical

The VPK120 evaluation board includes a mechanical stiffener to help ensure success with the board under normal lab conditions and use. While it is recommended to not remove this stiffener, it is understood that it might be necessary to remove it for continued evaluation. This is especially true when operating in a PCle chassis.

The mechanical stiffener screw torque is 4.5 in-lbs. When attaching or removing the mechanical stiffener, ensure proper ESD precautions are taken. See Standard ESD Measures for suggestions on best practices.

Removing the Stiffener

With power and other cabling unplugged, carefully unscrew the nine 4-40 screws in any order. Care needs to be taken with the cooling solution as the board is manipulated due to potential excessive forces.

- Attaching the Stiffener
 - 1. With power and other cabling unplugged, carefully align the PCBA standoff holes to the sheet metal tray (stiffener) standoffs.
 - 2. Insert two screws in opposite corners of the board/tray combination. Loosely tighten the screws to aid in alignment.
 - 3. Add the remaining seven screws and loosely tighten.
 - 4. In a left to right or right to left pattern, tighten all nine screws to 4.5 in-lbs.

Note: The tray will only fit one direction with the QSFP-DD connectors having a cutout below. See Board Component Descriptions for more information.

Board Setup and Configuration

Standard ESD Measures

CAUTION! ESD can damage electronic components when they are improperly handled, and can result in total or intermittent failures. Always follow ESD-prevention procedures when removing and replacing components.

To prevent ESD damage:

- Attach a wrist strap to an unpainted metal surface of your hardware to prevent electrostatic discharge from damaging your hardware.
- When you are using a wrist strap, follow all electrical safety procedures. A wrist strap is for static control. It does not increase or decrease your risk of receiving electric shock when you are using or working on electrical equipment.
- If you do not have a wrist strap, before you remove the product from ESD packaging and installing or replacing hardware, touch an unpainted metal surface of the system for a minimum of five seconds.
- Do not remove the device from the antistatic bag until you are ready to install the device in the system.
- With the device still in its antistatic bag, touch it to the metal frame of the system.
- Grasp cards and boards by the edges. Avoid touching the components and gold connectors on the adapter.
- If you need to lay the device down while it is out of the antistatic bag, lay it on the antistatic bag. Before you pick it up again, touch the antistatic bag and the metal frame of the system at the same time.
- Handle the devices carefully to prevent permanent damage.

Board Component Location

The following figure shows the VPK120 board component locations. Each numbered component shown in the figure is keyed to the table in Board Component Descriptions.

IMPORTANT! The following figure is for visual reference only and might not reflect the current revision of the board.

IMPORTANT! There could be multiple revisions of this board. The specific details concerning the differences between revisions are not captured in this document. This document is not intended to be a reference design guide and the information herein should not be used as such. Always refer to the schematic, layout, and XDC files of the specific VPK120 version of interest for such details.

Figure 3: Evaluation Board Component Locations

Round callout references a component on the front side of the board

Square callout references a component on the back side of the board

X26014-010522

Board Component Descriptions

The following table identifies the components and references the respective schematic (038-05072-01) page numbers.

CAUTION! Do NOT plug a PC ATX power supply 6-pin connector into the VPK120 board power connector J16. The ATX 6-pin connector has a different pinout than J16. Connecting an ATX 6-pin connector into J16 damages the VPK120 board and voids the board warranty.

Table 2: Board Component Locations

Callout No.	Ref. Des.	Feature	Notes	Schematic Page
1	U1	Versal® ACAP	XCVP1202-2MSEVSVA2785	3-23
			The heatsink is not shown in Figure 3 ¹	
2	U25, U26	LPDDR4 16 GBIT comp. memory (B700-B702 IF)	Micron MT53D512M32D2DS-046 IC SDRAM LPDDR4 512Mx32 2133 MHz	3,27,28
3	U150, U151	LPDDR4 16 GBIT comp. memory (B703-B705 IF)	Micron MT53D512M32D2DS-046 IC SDRAM LPDDR4 512Mx32 2133 MHz	4,29,30
4	U246, U247	LPDDR4 16 GBIT comp. memory (B706-B708 IF)	Micron MT53D512M32D2DS-046 IC SDRAM LPDDR4 512Mx32 2133 MHz	5,31,32
5	J11	SYSMON header	Sullins PBC06DAAN Conn. hdr. vert. 12 pos. 2x6 2.54 mm pitch	12
6	J36	ACAP JTAG 2 mm 2x7 flat-cable connector	Molex 0878321420 Conn. hdr. male vert. 14 pos 2x7 2 mm	48
7	J332	Mictor-38 Arm® trace connector	TE connectivity AMP connectors 2-5767004-2 Conn. hdr. MICTOR 38 pos. 2x19 0.635 mm	26
8	J310	8A34001 I2C 2 mm 2x9 flat- cable connector	Molex 0878321820 Conn. hdr. male vert. 18 pos. 2x9 2 mm	90
9	J344	USB-UART bridge, USB micro type-A connector (USB 2.0) Hirose ZX62D-AB-5P8(30) Micro USB 2.0 type-AB		25
10	J308, U99	USB 2.0 type-A connector USB ULPI transceiver	Wurth 629104190121, USB 2.0 type-A Microchip USB3320C USB 2.0 Xcvr	41
11	J302	Versal ACAP SD 3.0 level translator circuit, SD card socket	Versal ACAP SD 3.0 level Molex 5025700893 translator circuit, SD card Micro SD card cage	
12	U33, U35	I2C bus switches	Texas Instruments TCA9548APWR IC switch bus 1-In 8-Outs I2C 400 kHz Bottom of board	43
13	U233	I2C bus expander	Texas Instruments TCA6416APWR IC exp. GPIO 16-bit I2C 400 kHz Bottom of board	50
14	J1, J2	QSFP-DD 112G connector	Molex 2147334000 QSFP-DD 112G connector and cage	45
15	P3	PCIe® endpoint 16 lane edge connector		44
16	J307	GEM0 SGMII Ethernet PHY, 0x01, RJ45 w/mag Halo HFJ11-1G01E-L12RL RJ-45 Gigabit connector		40
17	J51	FMCP1 Samtec ASP-184329-01 560 pos. connector 14x40 1.27 mm		34-38
18	Various	ACAP power management system (VCCINT, VCC_SOC)	Infineon regulators	51-53

Table 2: **Board Component Locations** (cont'd)

Callout No.	Ref. Des.	Ref. Des. Feature Notes		
19	U160	VCC_PMC/PSFP/VCCO_MIO/ VCCAUX/VCC1V5 regulator	Infineon IRPS5401MTRPBF IC PMU 5-Ch step-down DC/DC	55
20	U167	U167 VCCAUX_PMC/LPDMGTYAVCC/ Infineon IRPS5401MTRPBF IC PMU 5-Ch step-down DC/DC regulator		56
21	U175	VCCO_502/UTIL_2V5/ PSLP_CPM5/MGTYVCCAUX regulator	Infineon IRPS5401MTRPBF IC PMU 5-Ch step-down DC/DC	57
22	U259	LPDMGTYAVTT regulator	Infineon IR38060MTRPBF IC REG BUCK ADJ 6A	60
23	U13	VCC_RAM_VCCINT_GT regulator	Infineon IR38164MTRPBFAUMA1 IC V. reg. step-down DC/DC sync	61
24	U185	VADJ_FMC regulator	Infineon IR38164MTRPBFAUMA1 IC V. reg. step-down DC/DC sync	62
25	U187	VCC1V1_LP4 regulator	Infineon IR38164MTRPBFAUMA1 IC V. reg. step-down DC/DC sync	63
26	U189	MGTYAVTT regulator	Infineon IR38164MTRPBFAUMA1 IC V. reg. step-down DC/DC sync	64
27	U261	UTIL_1V8 regulator	Infineon IR3889MTRPBFAUMA1 IC V. reg. step-down DC/DC sync	65
28	U190	UTIL_3V3 regulator	Infineon IR3889MTRPBFAUMA1 IC V. reg. step-down DC/DC sync	66
29	U191	UTIL_5V0 regulator	gulator Infineon IR3889MTRPBFAUMA1 IC V. reg. step-down DC/DC sync	
30	J325	PMBus 3-pin header	Sullins PBC03SAAN Conn. hdr. vert. 3 pos. 1x3 2.54 mm	43
31	Various	Power good LEDs (see Power and Status LEDs for more details)	Various; see the Bill of Materials	69
32	J16	Power connector, 2x3, for AC-DC power adapter	Molex 0039301060 Conn. ddr. RA 6 pos. 2x3 4.2 mm	49
33	JP1	Power connector, 2x4, for ATX PCIe power	Astron 6652208-T0003T-H Conn. hdr. male RA 8 pos. 2x4 4.2 mm	49
34	J233	Fan header (keyed 4-pin)	Molex 0470533000 Keyed fan header 4 pos. 0.100" vert.	49
35	U205, U249	U205, U249 FMC clock generation and buffering SI570BAB002038DGR, 8P34S1102NLGI Bottom of board		46
36	U258	PCIe 1:4 buffer, 100 MHz, 3.3V Skyworks/Silicon Labs SI53306-B-GMR IC buffer clk. 1 to 4 3.3V		47
37	U11, U12	ACAP U1 QSPI	Micron MT25QU01GBBB8E12-0SIT IC flash NOR SPI 1 Gb	33
38	U32	ACAP U1 REF CLK, 33.33 MHz, 1.8V CMOS, 0x5D	Skyworks/Silicon Labs 570JAC000900DGR Osc. XO 10-280 MHz Bottom of board	42

Table 2: Board Component Locations (cont'd)

Callout No.	Ref. Des.	Feature	Notes	Schematic Page
39	U248	LPDDR4 CLK1, 200 MHz, 3.3V LVDS, 0x60	MHz, 3.3V Skyworks/Silicon Labs 570BAB000299DGR Osc. XO 10-810 MHz Bottom of board	
40	U3	LPDDR4 CLK2, 200 MHz, 3.3V LVDS, 0x60 Skyworks/Silicon Labs 570BAB000299DGR Osc. XO 10-810 MHz Bottom of board		4
41	U4	LPDDR4 CLK3, 200 MHz, 3.3V LVDS, 0x60	Skyworks/Silicon Labs 570BAB000299DGR Osc. XO 10-810 MHz Bottom of board	5
42	J334, J335, J336, J337	ACAP GTM female vertical 34 GHz SMT 3.5 mm screw connector	Carlisle TMB-V5F2-3L1 Conn.	11
43	DS1	Done LED (Active High-Z and pulled High)	Lumex SML-LX0603GW-TR LED green	14
44	DS2	Error out LED (Active High-Z and pulled High)	Lumex SML-LX0603IW-TR LED red	14
45	DS3, DS4, DS5, DS6	User LEDS	Lumex SML-LX0603GW-TR LED green	48
46	U257	IEEE-1588 eCPRI input clock multiplexor	Skyworks/Silicon Labs SI53340-B-GM IC buffer 2:4 LVDS MUX Bottom of board	92
47	U219	IEEE-1588 eCPRI CLK, various, 3.3V, 0x58		
48	J328, J329, J338	IEEE-1588 eCPRI 8A34001 CLK in SMA	Amphenol 132134-15 Conn. rcpt. SMA vert. 50R 12.4 GHz	90
49	J330, J331, J339	IEEE-1588 eCPRI 8A34001 CLK out SMA	Amphenol 132134-15 Conn. rcpt. SMA vert. 50R 12.4 GHz	90
50	U125	XCZU4EG system controller	Xilinx [®] XCZU4EG-2SFVC784E FPGA MPSoC Zynq UltraScale+	71-79
51	U142	SYSCTLR clocks 33.33 MHz & 26 MHz I2C 0x6A	Skyworks/Silicon Labs Si5332FD10259-GM1 Low jitter clock generator with 6 outputs	87
52	U132	System controller LPDDR4 16 GBIT comp. memory		
53	J349	System controller SGMII Halo HFJ11-1G01E-L12RL Ethernet, RJ45 w/magnetics RJ-45 Gigabit connector		81
54	J7, U19	System controller USB 3.0 type- B connector , USB ULPI transceiver	nector , USB ULPI Microchip USB3320C USB 2.0 Xcvr	
55	DS34	System controller Done LED (active-High)	Lumex SML-LX0603GW-TR LED green	75

Notes:

1. The VPK120 evaluation board includes a heatsink with a thermal resistance of 0.38° C/W.

Default Jumper and Switch Settings

The following figure shows the VPK120 board jumper header and switch locations. Each numbered component shown in the figure is keyed to the applicable table in this section. Both tables reference the respective schematic page numbers.

Figure 4: Board Jumper Header and Switch Locations

X26013-042222

Jumpers

The following table lists the default jumper settings.

Table 3: Default Jumper Settings

Callout Number	Ref. Des.	Function	Default	Schematic Page
1	J12	SYSMON VREFP SEL 1-2: External VREF 2-3: Disable external VREF	1-2	12
2	J26	POR_B supervisor SENSE input 1-2: VCCO_MIO ramp-up sense (1.8V) 2-3: VCCAUX_PMC ramp-up sense (1.5V)	1-2	15
3	J326	POR_B enable header 1-2: SYSCTLR can drive POR_B 3-4: PC4 can drive POR_B 5-6: FTDI can drive POR_B Open: POR_B source not connected	1-2, 3-4 jumpered 5-6 open	15
4	J34	VCC fuse enable 1-2: Fuse enabled 2-3: Fuse disabled	2-3	16
5	J37	JTAG source enable 1-2: JTAG sources disabled 2-3: JTAG sources enabled	2-3	24
6	J300	USB shield GND 1-2: USB connector DC grounded 2-3: USB connector no DC grounded	1-2	41
7	J60	PCIe PRSNT_B WIDTH SEL 1-2: x1 3-4: x4 5-6: x8 7-8: x16	1-2, 3-4, 5-6, 7-8	44
8	J301	SD REF 1-2: 3.3V REF 2-3: GND REF	1-2	39
9	J203	SYSCTLR POR_B supervisor enable 1-2: SYSCTLR POR_B supervisor enabled Open: SYSCTLR POR_B supervisor disabled	1-2	75
10	J11	SYSMON header Open: header for test access	Open	12
11	J347	Fan type 1-2: System controller PWM 2-3: Versal ACAP MIO PWM	2-3	49
11	J348	TACH type 1-2: System controller TACH 2-3: Versal ACAP MIO TACH	2-3	49
12	J345	LPDMGTYAVTT enable select Installed: Versal ACAP control Not installed: enabled by UTIL_5V0_PGOOD	Open	68

Switches

The following table lists the default switch settings.

Table 4: Default Switch Settings

Callout Number	Ref. Des.	Function	Default	Schematic Page
13	SW1	U1 mode 4-Pole DIP switch Switch OFF = 1 = high; ON = 0 = low Mode = SW1[1:4] = Mode[0:3] SD = ON,OFF,OFF,OFF = 0111 QSPI32 = ON,OFF,ON,ON = 0100 JTAG = ON,ON,ON,ON,ON = 0000	ON, OFF, OFF, OFF	14
14	SW2	VPK120 power-on reset (POR_B)	Open	15
15	SW3	SYSCTLR JTAG source selection Switch OFF = 1 = high; ON = 0 = low SYSCTLR JTAG SOURCE SEL = SW3[1:2] = SEL[0:1] PL JTAG = ON,ON = 00 FTDI JTAG = OFF,ON = 10 Trace Mictor38 JTAG = ON,OFF = 01 PCIe JTAG = OFF,OFF = 11	OFF, ON	24
16	SW4, SW5	User pushbutton inputs Note: Pushbutton switch default = open = logic low (not pressed).	Open	48
17	SW6	GPIO DIP Switch OFF = 0 = low; ON = 1 = high	OFF, OFF, OFF	48
18	SW11	SYSCTLR mode 4-Pole DIP switch Switch OFF = 1 = high; ON = 0 = low Mode = SW1[1:4] = Mode[0:3] QSPI32 = ON,OFF,ON,ON = 0100 eMMC = ON,OFF,OFF,ON = 0110 JTAG = ON,ON,ON,ON = 0000	ON, OFF, ON, ON	75
19	SW12	System controller power-on reset (SYSCTL_POR_B)	Open	75
20	SW13	Main power	OFF	49
21	SW14	User USB reset	Open	41
22	SW15	User GEM reset	Open	40
23	SW16	System controller FWUEN pushbutton (SYSCTLR_MIO12_FWUEN_C2M_B)	Open	74

Versal ACAP Configuration

The Versal XCVP1202 ACAP boot process is described in the "Platform Boot, Control, and Status" section of the *Versal ACAP Technical Reference Manual* (AM011). The VPK120 board supports a subset of the modes documented in the technical reference manual via onboard boot options. The mode DIP switch SW1 configuration option settings are listed in the following table.

Table 5: Mode Switch SW1 Configuration Option Settings

Boot Mode	Mode Pins [0:3] ²	Mode SW1 [1:4] ²	
JTAG	0000 ^{1,3}	ON, ON, ON	
QSPI32	0100	ON, OFF, ON, ON	
SD1 (SD 3.0)	0111	ON, OFF, OFF, OFF	

Notes:

- 1. Default switch setting.
- 2. Mode DIP SW1 poles [4:1] correspond to U1 XCVP1202 MODE[3:0].
- 3. Mode DIP SW1 individual switches ON=LOW (p/d to GND)=0, OFF=HIGH (p/u to VCCO)=1.

JTAG

The Vivado[®], Xilinx SDK, or third-party tools can establish a JTAG connection to the Versal ACAP in the two ways described in this section.

- FTDI FT4232 USB-to-JTAG/USB-UART device (U20) connected to USB 2.0 type-A micro connector (J344), which requires:
 - Set boot mode SW1 for JTAG as indicated in the "Mode Switch SW1 Configuration Option Settings" table in Versal ACAP Configuration.
 - Set 2-pole DIP SW3[1:2] set to 01 (ON, OFF) for JTAG MUX channel 2 FT4232 U20 bridge.
 - On the 3-pin JTAG MUX, enable header J37 to enable the JTAG MUX. Move the 2-pin jumper to be installed on pins 2-3. See Default Jumper and Switch Settings for defaults and Board Component Location for location.
 - Power-cycle the VPK120 evaluation board or press the power-on reset (POR) pushbutton (SW2). SW2 is near the mode pin dip switch in the figure in Board Component Location).
- JTAG pod flat cable connector J36 (2 mm 2x7 shrouded/keyed), which requires:
 - Set boot mode SW1 for JTAG as indicated in the "Mode Switch SW1 Configuration Option Settings" table in Versal ACAP Configuration.
 - On the 3-pin JTAG MUX, enable header J37 to inhibit the JTAG MUX. Move the 2-pin jumper to be installed on pins 1-2 for high-z mode. See Default Jumper and Switch Settings for defaults and Board Component Location for location.

- 2-pole DIP SW3[1:2] setting is XX as the MUX is inhibited/turned off.
- In this mode, the FT4232 device (U20) UART functionality continues to be available.
- Power-cycle the VPK120 board or press the power-on reset pushbutton (SW2). SW2 is near the mode pin dip switch in the figure in Board Component Location).

QSPI32

This boot mode is supported onboard and is wired to XCVP1202 U1 bank 500 PMC_MIO[0:12] pins. The supported QSPI configuration is dual-parallel x8. To boot from QSPI, follow these steps.

- 1. Store a valid XCVP1202 ACAP boot image file in the QSPI.
- 2. Set boot mode SW1 for QSPI32 as indicated in the "Mode Switch SW1 Configuration Option Settings" table in Versal ACAP Configuration.
- 3. Power-cycle the VPK120 board or press the POR pushbutton SW2. SW2 is near the mode pin dip switch in the figure in Board Component Location.

SD1_3.0

To boot from a SD card installed in microSD card socket J302, follow these steps.

- Store a valid XCVP1202 ACAP boot image file on a microSD card. Plug the SD card into the VPK120 evaluation board SD socket J302 connected to the XCVP1202 U1 bank 501 MIO SD interface.
- 2. Set boot MODE SW1 for SD1 3.0 as indicated in the table in Versal ACAP Configuration.
- 3. Power-cycle the VPK120 board or press the POR pushbutton SW2. SW2 is near the mode pin dip switch in the figure in Board Component Location.

Board Component Descriptions

Overview

This chapter provides a detailed functional description of the board's components and features. The "Board Component Locations" table in Board Component Descriptions identifies the components and references the respective schematic page numbers. Component locations are shown in the "Evaluation Board Component Locations" figure in Board Component Location.

Component Descriptions

Versal ACAP

[Figure 3, callout 1]

The VPK120 evaluation board is populated with the Versal® XCVP1202-2MSEVSVA2785 ACAP, which combines a powerful processing system (PS) and programmable logic (PL) in the same device. The PS in a Versal ACAP features the Arm® flagship Cortex®-A72 64-bit dual-core processor and Cortex®-R5F dual-core real-time processor. For additional information on the Versal XCVP1202-2MSEVSVA2785 ACAP, see the Versal Premium Series Data Sheet: DC and AC Switching Characteristics (DS959). See the Versal ACAP Technical Reference Manual (AM011) for more information about Versal ACAP configuration options.

Encryption Key Battery Backup Circuit

The XCVP1202 ACAP U1 implements bitstream encryption key technology. The VPK120 board provides the encryption key backup battery circuit shown in the following figure.

Figure 5: Encryption Key Backup Circuit

The Seiko TS621E rechargeable 1.5V lithium button-type battery B1 is soldered to the board with the positive output connected to the XCVP1202 ACAP U1 VCC_BATT bank pin AG33. The battery supply current IBATT specification is 150 nA maximum when board power is off. Battery B1 is charged from the VCC1V8 1.8V rail through a 2 series diode with the first forward drop to yield between 0.24V to 0.46V over temperature per fixed 5 mA load, R1725, and limiting 1.56V max at the ACAP pin, PSVBATT. The second diode and 4.7 k Ω current limit resistor allows the battery to trickle charge and prevent battery B1 from back powering R1725.

I/O Voltage Rails

The XCVP1202 ACAP PL I/O bank voltages on the VPK120 board are listed in the following table. See LPD MIO[23]: VADJ_FMC Power Rail for more details on the VADJ_FMC power rail.

Note: The VPK120 evaluation board is shipped with VCC_PMC set to 0.88V, allowing for overdrive. See the *Versal Premium Series Data Sheet: DC and AC Switching Characteristics* (DS959) for more information. See the *Versal ACAP Technical Reference Manual* (AM011) for more information about Versal ACAP configuration options.

Table 6: I/O Voltage Rails

ACAP (U1) Bank	Power Supply Rail Net Name	Voltage	Description
XPIO Bank 700	VCC1V1_LP4	1.1V	LPDDR4 TRIP1 CH1
XPIO Bank 701	VCC1V1_LP4	1.1V	LPDDR4 TRIP1 CH0, LPDDR4 TRIP1 CH1
XPIO Bank 702	VCC1V1_LP4	1.1V	LPDDR4 TRIP1 CH0
XPIO Bank 703	VCC1V1_LP4	1.1V	LPDDR4 TRIP2 CH1
XPIO Bank 704	VCC1V1_LP4	1.1V	LPDDR4 TRIP2 CH0, LPDDR4 TRIP2 CH1
XPIO Bank 705	VCC1V1_LP4	1.1V	LPDDR4 TRIP2 CH0

Table 6: I/O Voltage Rails (cont'd)

ACAP (U1) Bank	Power Supply Rail Net Name	Voltage	Description	
XPIO Bank 706	VCC1V1_LP4	1.1V	LPDDR4 TRIP3 CH1	
XPIO Bank 707	VCC1V1_LP4	1.1V	LPDDR4 TRIP3 CH0, LPDDR4 TRIP3 CH1	
XPIO Bank 708	VCC1V1_LP4	1.1V	LPDDR4 TRIP3 CH0	
XPIO Bank 709	VADJ_FMC ¹	1.5V (default)	FMCP1_LA[17:18]_CC,FMCP1_LA[19:33], FMCP1_SYNC, FMCP_CLK1	
XPIO Bank 710	VADJ_FMC ¹	1.5V (default)	FMCP1_LA[00:01]_CC, FMCP1_LA[02:16], FMCP1_CLK0	
XPIO Bank 711	VCC1V5	1.5V	8A34001_GPIO_[0:15], SYSCTLR_GPIO[0:15], 8A34001_Q6_OUT	
XPIO Bank 712	VCC1V5	1.5V	GPIO_PB[0:1], GPIO_DIP_SW[0:3], GPIO_LED_[0:3]_LS, UART1, QSFPDD1/2 control signals, TRACE signals	
PMC MIO 500	VCCO_MIO	1.8V	SYSMON, USB ULPI 2.0 interface, QSPI1/2 interface	
PMC MIO 501	VCCO_MIO	1.8V	SD bus power, PCIe controls, I2C0/21, UART0, Sys Controller I2C/trigger, SD card controls, GEM reset	
LPD MIO 502	VCCO_502	1.8V	GEM interface/controls, power enables, PCIe PERST, fan tach, fan PWM	

Notes:

LPDDR4 Component Memory

[Figure 3, callout 2, 3, 4]

The VPK120 XCVP1202 ACAP PL DDR memory interface performance is documented in the Versal Premium Series Data Sheet: DC and AC Switching Characteristics (DS959). The VPK120 board LPDDR4 component memory interfaces adhere to the constraints guidelines documented in the "PCB guidelines for Memory Interfaces" section of the Versal ACAP PCB Design User Guide (UG863). The VPK120 DDR4 component interface is a 40Ω impedance implementation. Other memory interface details are also available in the Versal ACAP Memory Resources Architecture Manual (AM007). For more memory component details, see the Micron MT53D512M32D2DS data sheet on the Micron website. For the most current part number, see the Bill of Materials (BOM) located on the VPK120 Evaluation Board website. The detailed ACAP connections for the feature described in this section are documented in the VPK120 board XDC file, referenced in Appendix B: Xilinx Design Constraints.

The VPK120 evaluation board hosts three LPDDR4 memory systems, each with a component configuration of 2x (1x32-bit component).

^{1.} The VPK120 board is shipped with VADJ_FMC set to 1.5V by the ZU4 system controller.

Figure 6: LPDDR4 Component Memory

X26003-080522

XCVP1202 U1 has been configured with three triplet banks.

- XPIO triplet 1 (banks 700/701/702)
- XPIO triplet 2 (banks 703/704/705)
- XPIO triplet 3 (banks 706/707/708)

Each support two independent 32-bit 2 GB component interfaces (4 GB per triplet). The VPK120 evaluation board uses the LPDDR4 memory components as follows:

- Manufacturer: Micron
- Part number: MT53D512M32D2DS-046 WT:D (dual die LPDDR4 SRAM)
- Component description
 - 16 Gb (512 Mb x 32)
 - 1.1V 200-ball WFBGA
 - 。 DDR4-2133

The VPK120 XCVP1202 ACAP PL DDR interface performance is documented in the *Versal Premium Series Data Sheet*: *DC and AC Switching Characteristics* (DS959). The VPK120 evaluation board LPDDR4 component memory interfaces adhere to the constraints guidelines documented in the PCB guidelines for the DDR4 section of the *Versal ACAP PCB Design User Guide* (UG863). The VPK120 DDR4 component interface is a 40Ω impedance implementation. Other memory interface details are also available in the *Versal ACAP Memory Resources Architecture Manual* (AM007). For more memory component details, see the Micron MT53D512M32D2DS data sheet at the Micron website. The detailed ACAP connections for the feature described in this section are documented in the VPK120 evaluation board XDC file, referenced in Appendix B: Xilinx Design Constraints.

System Reset POR_B

[Figure 4, callout 2]

POR_B is the Versal ACAP processor reset, which can be controlled by:

- SYSCTLR (U125)
- PC4 header (J36)
- FTDI USB JTAG chip (U20)

In the following figure, U235 allows directional open drain level shifting for all of these masters, and J326 allows them to be bused together if desired. The TPS389001 U10 supervisor chip holds POR_B off until power is valid. The VPK120 board POR circuit is shown in the following figure.

Figure 7: POR_B Reset Circuit

PMC and LPD MIO

The following sections provide the MIO peripheral mapping implemented on the VPK120 evaluation board. See the *Versal ACAP Technical Reference Manual* (AM011) for more information on MIO peripheral mapping. Additional signal connectivity can be located in the following schematic sections:

• Bank 500: See schematic page 12

• Bank 501: See schematic page 13

• Bank 502: See schematic page 13

The following table provides MIO peripheral mapping implemented on the VPK120 evaluation board. The ACAP bank 500, 501, and 502 mappings are listed in the following table.

Table 7: MIO Peripheral Mapping

PI	PMC MIO[0:25] Bank 500		1C MIO[26:51] Bank 501	LPD MIO[0:25] Bank 502	
0	QSPI U12	26	SD1	0	GEM0
1	QSPI U12	27	SD1	1	GEM0
2	QSPI U12	28	SD1	2	GEM0
3	QSPI U12	29	SD1	3	GEM0
4	QSPI U12	30	SD1	4	GEM0
5	QSPI U12	31	SD1	5	GEM0
6	NC	32	SD1	6	GEM0
7	QSPI U11	33	SD1	7	GEM0
8	QSPI U11	34	SD1	8	GEM0
9	QSPI U11	35	SD1	9	GEM0
10	QSPI U11	36	SD1	10	GEM0
11	QSPI U11	37	ZU4_TRIGGER	11	GEM0
12	QSPI U11	38	PCIE_PWRBRK_B	12	NC
13	U103.6 USB3320 U99 reset gate	39	SYSMON I2C	13	VCC_SOC_EN_LS
14	USB3320 U99	40	SYSMON I2C	14	NC
15	USB3320 U99	41	SYSMON I2C	15	VCC_PSFP_EN_LS
16	USB3320 U99	42	UART0	16	VCC1V1_LP4_AUX_EN_LS
17	USB3320 U99	43	UART0	17	NC
18	USB3320 U99	44	I2C1	18	PCIE_PERST_B
19	USB3320 U99	45	I2C1	19	PCIE_PERST_B
20	USB3320 U99	46	I2C0	20	VCC_PL_EN_LS
21	USB3320 U99	47	I2C0	21	Versal fan
22	USB3320 U99	48	GEM0	22	Versal fan
23	USB3320 U99	49	VCC_PSLP_EN	23	VADJ_FMC_EN_LS
24	USB3320 U99	50	PCIE_WAKE_B	24	GEM0

Table 7: MIO Peripheral Mapping (cont'd)

PMC MIO[0:25] Bank 500		PMC MIO[26:51] Bank 501		LPD MIO[0:25] Bank 502	
25	USB3320 U99	51	SD1	25	GEM0

PMC MIO[0-12] Bank 500: QSPI U11, U12

[Figure 3, callout 37]

The VPK120 evaluation board uses two Micron MT25QU01GBBB8E12-0SIT 4-bit serial peripheral interface (quad SPI) flash devices. These 1 Gb NOR flash devices are organized in a dual parallel configuration and can be used as onboard boot, as well as non-volatile storage memory. When used as a boot source, it is selectable from SW1. See Switches for more information.

See schematic pages 12 and 33.

Figure 8: Dual Parallel QSPI Circuit

X26295-021422

PMC MIO[13:25] Bank 500: USB 2.0 ULPI PHY

The VPK120 evaluation board uses a Standard Microsystems Corporation USB3320 USB 2.0 ULPI transceiver (U99) to support a USB 2.0 type-A connector (J308). The USB3320 is a high-speed USB 2.0 PHY supporting the UTMI+ low pin interface (ULPI) interface standard. The ULPI standard defines the interface between the USB controller IP and the PHY device, which drives the physical USB signaling. Using the ULPI standard reduces the interface pin count between the USB controller IP and the PHY device.

The USB3320 is clocked by a 24 MHz crystal (X8). See the Standard Microsystems Corporation (SMSC) USB3320 data sheet for clocking mode details. The interface to the USB3320 PHY is implemented through the IP in the XCVP1202 ACAP PS.

The USB3320 ULPI transceiver circuit has a Micrel MIC2544 high-side programmable current limit switch (U100). This switch has an open-drain output fault flag on pin 2, which turns on red LED DS37 if over current or thermal shutdown conditions are detected.

Note: As shown in the following figure, the shield for the USB 2.0 type-A connector (J308) can be tied to GND by a jumper on header J300 pins 1-2 (see Default Jumper and Switch Settings). The USB shield can optionally be connected through a series capacitor to GND by installing a capacitor (body size 0402) at location C2762 and inserting a jumper across pins 2-3 on header J300.

Figure 9: USB3320 USB2.0 Connector J308 Shield Connection Options

PMC MIO[26:36, 51] Bank 501: Secure Digital (SD) Card IF

[Figure 3, callout 11]

The VPK120 evaluation board includes a secure digital input/output (SDIO) interface to provide access to general purpose non-volatile SDIO memory cards and peripherals. This interface is used for the SD boot mode and supports SD2.0 and SD3.0 access.

The SDIO interface signals PMC_MIO[26:36, 51] are connected to XCVP1202 ACAP bank 501, which has its VCCO set to 1.8V. Six SD interface nets PMC_MIO[26, 29, 30:33] are passed through a NXP NVT4857UK SD 3.0-compliant voltage level-translator U104. This translator is present between the Versal ACAP and the SD card connector (J302). The NXP NVT4857UK U104 device provides SD3.0 capability with SDR104 performance. The following figure shows the connections of the SD card interface on the VPK120 evaluation board.

Figure 10: SD Card Interface Connections

The following table lists the NVT4857UK U104 adapter pinout.

Table 8: NVT4857UK U104 Adapter Pinout

Aries Adapter Pin Number	NVT4857UKAZ Pin Number	NVT4857UKAZ Pin Name
1	D2	CLKA
2	C3, C2	GND
3	B2	CD
4	C1	CMDA
5	E2	CLK_FB
6	Unused	Unused
7	В3	VCCB
8	Unused	Unused
9	Unused	Unused
10	A3	VSD
11	A2	VCCA

Table 8: NVT4857UK U104 Adapter Pinout (cont'd)

Aries Adapter Pin Number	NVT4857UKAZ Pin Number	NVT4857UKAZ Pin Name
12	Unused	Unused
13	D1	DATA0
14	E3	SEL
15	B1	DAT3A
16	E1	DAT1A
17	Unused	Unused
18	A1	DAT2A
19	E4	DAT1B
20	D4	DAT0B
21	D3	CLKB
22	C4	CMDB
23	B4	DAT3B
24	A4	DAT2B
25	Unused	Unused

The ACAP (U1) also has control over the power for the SDCARD, which allows the ACAP to remove power to the SD card as needed.

Figure 11: SD Socket J302 Power Control

Information for the SD I/O card specification can be found at the SanDisk Corporation or SD Association websites. The VPK120 SD card interface supports the SD1 (2.0) and SD2 (3.0) configuration boot modes documented in the *Versal ACAP Technical Reference Manual* (AMO11). See schematic page 39 for more details.

For NVP NVT4857UK component details, see the NVT4857UK data sheet on the NXP website.

The detailed ACAP connections for the feature described in this section are documented in the VPK120 board XDC file, referenced in Appendix B: Xilinx Design Constraints.

PS MIO[37] ZU4 System Controller GPIO

The ACAP PS bank 501 MIO37 is connected to the ZU4 system controller U125 bank 500 MIO11 pin AE17.

PMC MIO[39:41] System Monitor I2C

The ACAP PS bank 501 MIO39 (PMC_MIO39_SYSMON_I2C_SCL), MIO40 (PMC_MIO40_SYSMON_I2C_SDA), and MIO41 (PMC_MIO41_SYSMON_I2C_ALERT) are connected to the system controller for use with the system controller related applications and alerts.

PMC MIO[42:43] UARTO

[Figure 3, callout 9]

This is the primary Versal ACAP PS-side UART interface. MIO42 (RX_IN) and MIO43 (TX_OUT) are connected to FTDI FT4232HL U20 USB-to-Quad-UART bridge port BD through TI SN74AVC4T245 level-shifters U18 and U21. The FT4232HL U20 port assignments are listed in the following table.

Table 9: FT4232HL Port Assignments

FT4232HL U34	Versal ACAP U1	
Port AD JTAG	VPK120 JTAG chain	
Port BD UART0	PS_UART0 (MIO 42-43)	
Port CD UART1	PL_UART1 bank 712	
Port DD UART2	U20 system controller UART	

The FT4232HL UART interface connections are shown in the following figure.

Figure 12: FT4232HL UART Connections

X26062-030322

For more information on the FT4232HL, see the Future Technology Devices International Ltd. website.

Note: This FTDI configuration image is not provided nor supported. To replicate this feature, a JTAG-SMT2 from Diligent or similar is recommended.

The detailed ACAP connections for the feature described in this section are documented in the VPK120 board XDC file, referenced in Appendix B: Xilinx Design Constraints.

PMC MIO[44:45] I2C1 Bus

[Figure 3, callout 12]

Bus I2C1 connects the XCVP1202 U1 PS bank 501, and the XCZU4EG system controller U125 PS bank 501 to one I2C switch (TCA9548A U35). These I2C1 connections enable I2C communications with other I2C capable target devices. TCA9548A U35 is pin-strapped to respond to I2C address 0×74 . The following figure shows the I2C1 bus connectivity detailed in the table below.

Details for controlling the U35 TCA9548A switch are available in the data sheet on the Texas Instruments website.

The detailed ACAP connections for the feature described in this section are documented in the VPK120 evaluation board XDC file, referenced in Appendix B: Xilinx Design Constraints.

Figure 13: I2C1 Bus Topology

U34 is an I2C addressable 128-Kbit serial I2C bus EEPROM. It has two addresses associated with it and is connected at the same I2C level as the I2C multiplexer listed in the following table. Address 0×54 is used when the memory array is accessed. When using $0 \times 5C$, the identification page is accessed.

The U35 address 0x74 connections are listed in the following table.

Table 10: I2C1 Multiplexer TCA9548A U35 Address 0x74 Connections

I2C Devices	I2C MUX Pos.	I2C Address	Devices
REF_CLK_I2C	0	0x5D	U32
FMCP1_IIC	1	0 x##	J51
No connect	2	N/A	
LPDDR4_SI570_CLK3	3	0x60	U4
LPDDR4_SI570_CLK2	4	0x60	U3
LPDDR4_SI570_CLK1	5	0x60	U248
QSFPDD_I2C	6	0x##	J1, J2
8A34001	7	0x5B	U219, J310

PMC MIO[46:47] I2C0 Bus

[Figure 3, callout 12]

Bus I2C0 connects the XCVP1202 U1 PS bank 501 and the XCZU4EG system controller U125 PS bank 501 to a GPIO 16-bit port expander (TCA6416A U233) and I2C switch (TCA9548A U33). The port expander enables accepting various fan controller, FMCP connector, and power system status inputs. Bus I2C0 also provides access to power system PMBus power controllers and INA226 power monitors, as well as three SI570 components via the U33 TCA9548A switch. TCA6416A U233 is pin-strapped to respond to I2C address 0×20 . The TCA9548A U33 switch is set to 0×74 . Details for controlling the U33 TCA9548A switch can be located in the data sheet located on the Texas Instruments website.

The detailed ACAP connections for the feature described in this section are documented in the VPK120 board XDC file, referenced in Appendix B: Xilinx Design Constraints.

The following figure shows the I2CO bus connectivity.

Figure 14: I2C0 Bus Topology

X26021-021622

The devices on each port of the I2CO U233 TCA6416A port expander and on each bus of the I2CO U33 TCA9548A switch are listed in the following tables.

Table 11: I2C0 Port Expander TCA6416A U233 Address 0x20 Connections

I2C Devices	Port	Direction	Device
NC	P00-P01	N/A	N/A
QSFPDD1_MODSELL	P02	In	J1 QSFP-DD
QSFPDD2_MODSELL	P03	In	J2 QSFP-DD
PMBUS2_INA226_ALERT	P04	In	U125 (ZU4), U166, U168, U172, U174, U176, U177, U184, U186, U188, U234, U260, U264, U265
NC	P07-P09	N/A	N/A
FMCP1_FMC_PRSNT_M2C_B	P10	In	J51 FMCP HSPC
NC	P11	N/A	N/A
FMCP1_FMCP_PRSNT_M2C_B	P12	In	J51 FMCP HSPC
NC	P13	N/A	N/A
VCCINT_VRHOT_B	P14	In	U152 IR35215
8A34001_EXP_RST_B	P15	Out	U221 SN74LVC1G08
PMBUS_ALERT	P16	In	U13, U125 (ZU4), U152, U160, U167, U175, U185, U187, U189, U259
PMBUS1_INA226_ALERT	P17	In	U5 ,U65, U125 (ZU4), U161, U163,U164, U165

Table 12: I2CO Multiplexer TCA9548A U33 Address 0x74 Connections

I2C Devices	I2C Switch Pos.	I2C Address	Devices		
PMBUS_SDA/SCL	0	See Board Power System			
PMBUS1_INA226_SDA/SCL	1	See Board Power System			
No connect	2	N/A			
PMBUS2_INA226_SDA/SCL	3	See Board Power System			
No connect	4	N/A			
No connect	5	N/A			
USER_SI570_1_CLOCK_SDA/SCL	6	0x5F U205			
No connect	7	N/A			

PMC MIO[48] and LPD_MIO[0:11, 24:25]: GEM0 Ethernet

[Figure 3, callout 16]

A PS Gigabit Ethernet MAC (GEM) implements a 10/100/1000 Mb/s Ethernet interface. In the following figure, ACAP (U1) is connected to TI DP83867 U198 Ethernet RGMII PHY before being routed to an RJ45 Ethernet connector J307. The RGMII Ethernet PHY is boot strapped to PHY address (0×0.1) and Auto Negotiation is set to Enable.

Figure 15: RGMII Ethernet

X26023-031022

Ethernet PHY (Three Resets)

[Figure 3, callout 16]

The DP83867 PHY (GEM0 U198) is reset by its GEM0_RESET_B generated by dedicated pushbutton switch (SW15) and PMC_MIO signals as shown in the following figure. The POR_B signal generated by the TPS389001DSER U10 POR device is wired in parallel to each Ethernet PHY reset circuit. The POR device is activated by pushbutton SW2. See System Reset POR_B for more details.

Figure 16: Ethernet PHY Reset Circuit

Send Feedback

Ethernet PHY LED Interface

[Figure 3, callout 16]

Each DP83867 PHY (GEM0 U198) controls two LEDs in the J307 two port connector bezel. The PHY signal LED0 drives the green LED, and LED1 drives the yellow LED. The LED2 signal is not used.

The LED functional description is listed in the following table.

Table 13: Ethernet PHY LED Functional Description

DP838671	S PHY Pin	Turno	Doggwinstian	
Name	Number	Туре	Description	
LED_2	45	S, I/O, PD	By default, this pin indicates receive or transmit activity. Additional functionality is configurable using LEDCR1[11:8] register bits.	
LED_1	46	S, I/O, PD	By default, this pin indicates that 100BASE-T link is established. Additional functionality is configurable using LEDCR1[7:4] register bits.	
LED_0	47	S, I/O, PD	By default, this pin indicates that link is established. Additional functionality is configurable using LEDCR1[3:0] register bits.	

The LED functions can be repurposed with a LEDCR1 register write available via the PHY's management data interface, MDIO/MDC.

See the TI DP83867 RGMII PHY data sheet at the Texas Instruments website for component details.

The detailed ACAP connections for the feature described in this section are documented in the VPK120 board XDC file, referenced in Appendix B: Xilinx Design Constraints.

PMC MIO[49] and LPD MIO[13,15:16,20]: Power Enable

[Figure 3, callout 29]

The VPK120 allows the Versal ACAP to control the power to the various power domains. This is an active-High signal. It is connected to the components that are controlled using an open-drain buffer, U268 (VCC_PSLP_EN) or U254 (see others in the following table). The output of the buffers are pulled up with a 4.7K resistor to aid in the default boot state being set properly. When J345 is installed, the Versal ACAP has control over this power enable. When not installed, the enable is controlled by UTIL_5V0_PGOOD, which is an output from the 5.0V power supply (U191). See schematic page 68 for more information (see Jumpers for defaults).

Table 14: PMC MIO[49] and LPD MIO[13,15:16,20] Power Domains

ACAP Pin	Signal	Power Domains
PMC MIO49	VCC_PSLP_EN	LPDMGTYAVCC, VCCO_502, VCC_PSLP_CPM5, LPDMGTYAVTT
LPD MIO 13	VCC_SOC_EN	VCC_SOC
LPD MIO 15	VCC_PSFP_EN	VCC_PSFP
LPD MIO 16	VCC1V1_LP4_AUX_EN	VCCAUX,VCC1V1_LP4
LPD MIO 20	VCC_PL_EN	VCCINT
LPD MIO 23	VADJ_FMC_EN	VADJ_FMC

Note: See LPD MIO[23]: VADJ_FMC Power Rail for more information.

PMC MIO[50] and LPD MIO[18:19] PCIe Status

The ACAP PS bank 501 PMC MIO50 (PCIe_WAKE_B) and PS bank 502 LPD MIO[18:19] (PCIe_PERST_B) are connected to the PCIe 16-lane edge connector WAKE# (pin B11) and P3 PERST# (pin A11), respectively.

LPD MIO[21:22] Fan PWM

The ACAP PS bank 502 MIO21 (MIO21_FAN_PWM_VERSAL) is connected to J347 pin 3. When J347 is selected as 2-3 (see Jumpers for defaults), the ACAP is able to control the fan PWM speed. A controller application must be created to drive this logic. The ACAP PS bank 502 MIO22 (MIO22_FAN_TACH_VERSAL) is connected J348 pin 3. This signal is fed by a 2N7002 MOSFET (Q46), which is in turn connected to the 12V fan tachometer feedback. The 2N7002 is a N-Channel 60 V MOSFET. For more details, see Cooling Fan Connector.

LPD MIO[23]: VADJ_FMC Power Rail

The VPK120 evaluation board implements the ANSI/VITA 57.4 IPMI support functionality. The power control of the VADJ_FMC power rail is managed by the ZU4 U125 system controller. This rail powers FMCP HSPC J51 VADJ pins, as well as the XCVP1202 U1 VCCO on the FMCP interface banks 709 and 710. The valid values of the VADJ_FMC rail are 0, 1.2V, or 1.5V. At power on, the system controller detects if an FMC module is installed on J51. The Versal ACAP also has control over the active-High enable line on the voltage regulator.

If the Versal ACAP has enabled the voltage regulator (active-High), the following sequence of actions occur:

- If no card is attached to a FMCP connector, the VADJ_FMC voltage is set to 1.5V
- When an FMC card is attached, its IIC EEPROM is read to find a VADJ voltage supported by both the VPK120 board and the FMC module, within the available choices of 0, 1.2V, or 1.5V

 If no valid information is found in an attached FMC card IIC EEPROM, the VADJ_FMC rail is set to 0.0V

The system controller user interface allows the FMC IPMI routine to be overridden and an explicit value can be set for the VADJ_FMC rail. The override mode is useful for FMC mezzanine cards that do not contain valid IPMI EPROM data defined by the ANSI/VITA 57.4 specification.

JTAG Chain

[Figure 3, callout 6, 9, 50]

The JTAG chain includes:

- J36 2x7 2 mm shrouded, keyed JTAG pod flat cable connector
- J344 USB-A micro connector connected to U20 FT4232HL USB-JTAG bridge
- U125 XCZU4EG System Controller bank 44

Figure 17: JTAG Chain Block Diagram

See Versal ACAP Configuration for information on JTAG programming via:

- FTDI FT4232 USB-to-JTAG/USB-UART device (U20) connected to USB 2.0 type-A micro con (J344)
- JTAG pod flat cable connector J36 (2 mm 2x7 shrouded/keyed)

See the "FT4232HL UART Connections" figure in PMC MIO[42:43] UARTO for an overview of FT4232 U20 JTAG and USB-UART connectivity.

Clock Generation

The VPK120 board provides fixed and variable clock sources for the XCVC1202 U1 ACAP and other function blocks. The following table lists the source devices for each clock.

Table 15: Clock Sources

Ref. Des.	Feature	Notes	Schematic Page
U248	DDR4 DIMM CLK, 200 MHz, 3.3V LVDS, 0x60	Skyworks/Silicon Labs 570BAB000299DG	3
U3	DDR4 DIMM CLK, 200 MHz, 3.3V LVDS, 0x60	Skyworks/Silicon Labs 570BAB000299DG	4
U4	DDR4 DIMM CLK, 200 MHz, 3.3V LVDS, 0x60	Skyworks/Silicon Labs 570BAB000299DG	5
U32	ACAP U1 REF CLK, 33.33 MHz, 1.8V CMOS, 0x5D	Skyworks/Silicon Labs 570JAC000900DGR	42
U205	ACAP U1 GTYP CLK, 100 MHz, 3.3V LVDS, 0x5F	Skyworks/Silicon Labs 570BAB002038DGR	46
U219	IEEE-1588 eCPRI CLK, various, 3.3V, 0x5B	Renesas / IDT 8A34001E-000AJG8	90

The detailed ACAP connections for the feature described in this section are documented in the VPK120 board XDC file, referenced in Appendix B: Xilinx Design Constraints.

Programmable LPDDR4 SI570 Clock

[Figure 3, callout 39, 40, 41]

The VPK120 evaluation board has I2C programmable SI570 low-jitter 3.3V LVDS differential oscillators (U248, U3, U4) connected to the GC inputs of U1 DDR4 DIMM interface bank 702, 705, and 708, respectively. The LPDDR4_CLK1_P/N, LPDDR4_CLK2_P/N and LPDDR4_CLK3_P/N series capacitor coupled clock signals are connected to XCVP1202 ACAP U1. At power-up, this clock defaults to an output frequency of 200.000 MHz. User applications or the system controller can change the output frequency within the range of 10 MHz to 945 MHz through the I2C bus interface. Power cycling the VPK120 evaluation board reverts this user clock to the default frequency of 200.000 MHz.

- Programmable oscillator: Skyworks/Silicon Labs SI570BAB000299DG
- 10 MHz-945 MHz range, 200.000 MHz default
- I2C address 0x60
- LVDS differential output, total stability: 61.5 ppm

Programmable SI570 REF Clock

[Figure 3, callout 38]

The VPK120 evaluation board has an I2C programmable SI570 low-jitter 1.8V CMOS single-ended oscillator (U32). The 33.333 MHz REF_CLK clock signal is connected to XCVP1202 ACAP U1 configuration bank 503. At power-up, this clock defaults to an output frequency of 33.333333... MHz (33 + 1/3 MHz). User applications or the system controller can change the output frequency within the range of 10 MHz to 945 MHz through the I2C bus interface. Power cycling the VPK120 evaluation board reverts this user clock to the default frequency of 33.333333... MHz (33 + 1/3 MHz).

- Programmable oscillator: Skyworks/Silicon Labs SI570JAC000900DG
- 10 MHz-945 MHz range, 33.333 MHz default
- I2C address 0x5D
- CMOS single-ended output, total stability: 61.5 ppm

Programmable FMCP GTYP SI570 Clock with Buffer

[Figure 3, callout 35]

The VPK120 evaluation board has an I2C programmable SI570 low-jitter 3.3V LVDS differential oscillator (U205) driving 8P34S1102NLGI (U249) 1-to-2 clock buffer input. The clock buffer generates two copies of the input clock. The FMC_SI570_BUF0_C_P/N and FMC_SI570_BUF1_C_P/N series capacitor coupled clock signals are connected to XCVP1202 ACAP U1 bank 200 and bank 201, respectively.

At power-up, SI570 (U205) defaults to an output frequency of 100.000 MHz. User applications or the system controller can change the output frequency within the range of 10 MHz to 945 MHz through the I2C bus interface. Power cycling the VPK120 board reverts this user clock to the default frequency of 100.000 MHz.

- Programmable oscillator: Skyworks/Silicon Labs SI570BAB002038DG
- 10 MHz-945 MHz range, 100.000 MHz default
- I2C address 0x5F
- LVDS differential output, total stability: 61.5 ppm

IEEE-1588 eCPRI Programmable Synchronization Management Unit

[Figure 3, callout 47]

The 8A34001 synchronization management unit (SMU) provides tools to manage timing references, clock sources, and timing paths for IEEE 1588 and Synchronous Ethernet (SyncE) based clocks. The PLL channels can act independently as frequency synthesizers, jitter attenuators, digitally controlled oscillators (DCO), or digital phase lock loops (DPLL). The following block diagram can aid in quickly determining the overall clock tree for the 8A34001 (U219). See schematic pages 90-91 for details. For more details on programming and controlling the 8A34001, see the Renesas/Integrated Device Technology, Inc. (IDT) website and data sheet.

Figure 18: IEEE-1588 eCPRI Block Diagram

Transceivers

The Versal ACAP has 48 PL transceivers including 28 GTYP and 20 GTM type transceivers. The following table contains the mapping to hardened features, quads, channel locations, as well as general features.

Table 16: Transceiver Mapping

		VPK120 XC\	/P1202 VS\	/A278	85 GTY/GT	M Mappir	ng				
[Unused]	ch3						ch3	GTM SMA			
[Unused]	ch2	Ī			7		ch2	8A34001 1PPS Clocks			
[Unused]	ch1	GTYP Quad 106	PCIe X0Y1		MRMAC	GTM Quad 206	ch1	[Unused]			
[Unused]	ch0	X0Y6			X0Y1	X0Y4	ch0	[Unused]			
[Unused]	refclk1						refclk1	8A34001 CLK6 IN			
[Unused]	refclk0						refclk0	8A34001 Q7 OUT			
PCIe Lane 0	ch3						ch3	QSFPDD1 Lane 1			
PCIe Lane 1	ch2				7		ch2	QSFPDD1 Lane 5			
PCIe Lane 2	ch1	GTYP			7	GTM	ch1	QSFPDD1 Lane 2			
PCIe Lane 3	ch0	Quad 105 X0Y5	CPM5		7	Quad 205 X0Y3	ch0	QSFPDD1 Lane 6			
[Unused]	refclk1				7		refclk1	[Unused]			
PCIe Edge Clock 0	refclk0						refclk0	8A34001 Q8 BUF0			
PCIe Lane 4	ch3		CPM5 (HSDP)		DCMAC X0Y0		ch3	QSFPDD1 Lane 3			
PCIe Lane 5	ch2						ch2	QSFPDD1 Lane 7			
PCIe Lane 6	ch1	GTYP			1	GTM	ch1	QSFPDD1 Lane 4			
PCIe Lane 7	ch0	Quad 104			7	Quad 204 X0Y2	ch0	QSFPDD1 Lane 8			
[Unused]	refclk1	X0Y4					7	7012	refclk1	8A34001 CLK5 IN MUX1	
PCIe Edge Clock 1	refclk0						refclk0	8A34001 Q8 BUF1			
PCIe Lane 8	ch3						ch3	QSFPDD2 Lane 1			
PCIe Lane 9	ch2				7		ch2	QSFPDD2 Lane 2			
PCIe Lane 10	ch1	GTYP	CDME		7	GTM	ch1	QSFPDD2 Lane 3			
PCIe Lane 11	ch0	Quad 103 X0Y3	CPM5		7	Quad 203 X0Y1	ch0	QSFPDD2 Lane 4			
[Unused]	refclk1				7		refclk1	[Unused]			
PCIe Edge Clock 2	refclk0]		refclk0	8A34001 Q9 BUF0			
PCIe Lane 12	ch3				HSC X0Y0		ch3	QSFPDD2 Lane 5			
PCIe Lane 13	ch2	7			7		ch2	QSFPDD2 Lane 6			
PCIe Lane 14	ch1	GTYP	CD145			GTM	ch1	QSFPDD2 Lane 7			
PCIe Lane 15	ch0	Quad 102	CPM5 (HSDP)		7	Quad 202	ch0	QSFPDD2 Lane 8			
[Unused]	refclk1	X0Y2		,,		` ′			X0Y0	refclk1	8A34001 CLK5 IN MUX0
PCIe Edge Clock 3	refclk0						refclk0	8A34001 Q9 BUF1			

Table 16: **Transceiver Mapping** *(cont'd)*

VPK120 XCVP1202 VSVA2785 GTY/GTM Mapping									
								ch3	FMC DP7
			-					ch2	FMC DP6
						MRMAC	GTYP Quad 201	ch1	FMC DP5
						X0Y0	X1Y1	ch0	FMC DP4
								refclk1	SI570_BUF1
						1		refclk0	FMCP1_GBTCLK1
				\forall				ch3	FMC DP3
				\forall			GTYP	ch2	FMC DP2
				\sqcap		PCIe		ch1	FMC DP1
						X1Y0	Quad 200 X1Y0	ch0	FMC DP0
								refclk1	SI570_BUF0
								refclk0	FMCP1_GBTCLK0

GTYP Transceivers

[Figure 3, callout 1]

The ACAP (U1) bank 200 and bank 201 GTYP transceivers are wired to the FMCP connector (J51). See schematic pages 9 and 34 for details.

The GTY/GTYP transceivers in the Versal architecture are power-efficient transceivers, supporting line rates from 1.25 Gb/s to 32.75 Gb/s. The GTY/GTYP transceivers are highly configurable and tightly integrated with the PL resources of the Versal architecture. For more information, see the Versal ACAP GTY and GTYP Transceivers Architecture Manual (AM002).

GTYP102/103/104/105: PCI Express Card Edge Connectivity

[Figure 3, callout 15]

For additional information about the Versal ACAP PCIe functionality, see the Versal ACAP CPM Mode for PCI Express Product Guide (PG346) and Versal ACAP CPM DMA and Bridge Mode for PCI Express Product Guide (PG347). Additional information about the PCI Express standard is available on the PCI-SIG website.

See the Versal Architecture and Product Data Sheet: Overview (DS950) for more information about this feature.

See schematic pages 8 and 44, as well as the VPK120 Evaluation Board website for more details on connectivity. See schematic page 47 for details on the clocking configuration.

GTYP200/201: FPGA Mezzanine Card Interface

[Figure 3, callout 17]

The detailed ACAP connections for the feature described in this section are documented in the VPK120 board XDC file, referenced in Appendix B: Xilinx Design Constraints.

FMC+ Connector Type

The Samtec SEAF series 1.27 mm (0.050 in) pitch mates with the SEAM series connector. For more information about the SEAF series connectors, see the Samtec, Inc. website. The 560-pin FMC+ connector defined by the FMC specification (see Appendix A: VITA 57.4 FMCP Connector Pinouts) provides connectivity for up to:

- 160 single-ended or 80 differential user-defined signals
- 24 transceiver differential pairs
- 6 transceiver (GBTCLK) differential clocks
- 4 differential (CLK) clocks
- 1 differential (REFCLK) clock (both C2M and M2C pairs)
- 1 differential (SYNC) clock (both C2M and M2C pairs)
- 239 ground and 17 power connections

For more information about the VITA 57.4 FMC+ specification, see the VITA FMC Marketing Alliance website.

GTM Transceivers

[Figure 3, callout 1]

The GTM transceiver in the Versal Premium Series is a high-performance transceiver. The GTM transceiver is Xilinx's first PAM4 enabled transceiver that is highly configurable and tightly integrated with the programmable logic resources of the ACAP.

GTM202/203/204/205: QSFP-DD Interface

The ACAP (U1) bank 204 and 205 GTM transceivers are wired to the QSFP-DD connector J1. The ACAP (U1) bank 202 and 203 GTM transceivers are wired to the QSFP-DD connector J2. The connector is Molex connector 2147334000.

The lane selections to J1 have been optimized for 400GAUI-4 operation by ensuring that the legacy connections are connected to the appropriate GTM transceivers. J2 has limited 100+G support and is recommended for 58G per lane use cases such as 400GAUI-8 or 4x100GAUI-2. See the schematic pages 10 and 45 for connectivity details.

Note: QSFP-DD1, J1, supports legacy QSFP operation of 100+G using four odd channels only while full eight channels QSFP-DD operation supports up to 56 Gb/s. QSFP-DD2, J2, supports legacy QSFP 4 channel and QSFP-DD eight channel support up to 56 Gb/s (no 100+ Gb/s support).

See the Versal ACAP GTM Transceivers Architecture Manual (AM017) for more details on GTM-Quad limitations.

QSFP-DD Control Signals

The QSFP-DD control signals can be asserted in multiple ways. Each QSFP-DD has an I2C connection to the I2C1 bus through the I2C multiplexer (TCA9548PWR U35) as shown in the PMC MIO[44:45] I2C1 Bus section.

The following table lists the QSFP-DD control signals.

Table 17: QSFP-DD Control Signals

Signal Name	Feature	Notes	Schematic Page
QSFPDD1_MODSELL	Module select	U1 V34, U233 P02	7, 45, 50
QSFPDD1_RESETL	Module reset	U1 V35	7, 45
QSFPDD1_MODPRSL	Module present	U1 R31	7, 45
QSFPDD1_INTL	Interrupt	U1 T31	7, 45
QSFPDD1_INITMODE	Low power mode	U1 P37	7, 45
QSFPDD_I2C_SDA	Two-wire interface data	U35 I2C MUX	43, 45
QSFPDD_I2C_SCL	Two-wire interface clock	U35 I2C MUX	43, 45
QSFPDD2_MODSELL	Module select	U1 R37, U233 P03	7, 45 , 50
QSFPDD2_RESETL	Module reset	U1 P33	7, 45
QSFPDD2_MODPRSL	Module present	U1 R31	7, 45
QSFPDD2_INTL	Interrupt	U1 T31	7, 45
QSFPDD2_INITMODE	Low power mode	U1 T36	7, 45

User I/O

[Figure 4, callout 16, 17 and Figure 3, callout 45]

See Switches for default values.

The following table lists the net names, reference designators, and schematic pages for the user I/O.

Table 18: User I/O

Net Name	Net Name Ref. Designator	
GPIO_PB0	SW4	7/48

Table 18: User I/O (cont'd)

Net Name	Ref. Designator	Schematic Pages
GPIO_PB1	SW5	7/48
GPIO_DIP_SW0	SW6	7/48
GPIO_DIP_SW1	SW6	7/48
GPIO_DIP_SW2	SW6	7/48
GPIO_DIP_SW3	SW6	7/48
GPIO_LED_0_LS	DS6	7/48
GPIO_LED_1_LS	DS5	7/48
GPIO_LED_2_LS	DS4	7/48
GPIO_LED_3_LS	DS3	7/48

Power and Status LEDs

[Figure 3, callout 31]

The following figure shows the power and status LEDs.

Figure 19: Power and Status LEDs

X20004-021722

Cooling Fan Connector

[Figure 3, callout 34]

The VPK120 cooling fan connector is shown in the following figure. The VPK120 uses the system controller to autonomously control the fan speed by controlling the pulse width modulation (PWM) signal to the fan. The fan rotates slowly (acoustically quiet) when ACAP U1 is cool and rotates faster as the ACAP heats up (acoustically noisy).

The VPK120 board provides a fan controller bypass header J347 and J348 to permit control by the Versal ACAP. See the Default Jumper and Switch Settings for more details.

Figure 20: 12V Fan Header

X26028-121021

System Controller

[Figure 3, callout 50]

The VPK120 board includes an onboard system controller. A host PC resident system controller board user interface application is provided on the VPK120 Evaluation Board website. This board user interface application enables the query and control of select programmable features such as clocks, FMC functionality, and power system parameters. Users should not change the default system controller image as that could potentially cause the board damage if proper procedures are not followed. Contact support if this image needs to be updated.

A brief summary of these instructions is provided here.

- 1. Ensure the Skyworks/Silicon Labs VCP USB-UART drivers are installed. See the *Silicon Labs CP210x USB-to-UART Installation Guide* (UG1033).
- Download the board user interface host PC application from the VPK120 Evaluation Board website.
- 3. Connect a USB cable to VPK120 USB-UART USB-A connector (J344).
- 4. Power-cycle the VPK120.

5. Launch the board user interface application.

The board user interface application UI is shown in the following figure.

Figure 21: System Controller User Interface

X26030-112221

The system controller user interface (SCUI) buttons gray out during command execution and return to their original appearance when ready to accept a new command.

For more information on the SCUI, see the VPK120 System Controller Tutorial (XTP708).

Power On/Off Slide Switch

[Figure 4, callout 20]

The VPK120 board power switch is SW13. Sliding the switch actuator from the off to the on position applies 12VDC power from either the 2x3 6-pin mini-fit power input connector J16 (power from an external 120VAC-to-12VDC power adapter) or the 2x4 8-pin ATX power supply PCIe-type connector JP1.

IMPORTANT! Power to the VPK120 is mutually exclusive and only one of the two power connectors J16 or JP1 should be used to provide board power.

The green LED DS36 illuminates when the VPK120 board power switch is on. See Board Power System for details on the onboard power system.

CAUTION! Do NOT plug a PC ATX power supply 6-pin connector into the VPK120 board power connector J16. The ATX 6-pin connector has a different pinout than J16. Connecting an ATX 6-pin connector into J16 damages the VPK120 board and voids the board warranty.

The following figure shows the power connector J16, power switch SW13, and LED indicator DS36.

Figure 22: Power Input

X26031-112221

Board Power System

[Figure 3, callout 18]

The VPK120 evaluation board uses power management ICs (PMIC) and power regulators from Infineon Integrated Circuits to supply the core and auxiliary voltages listed in the following tables. The detailed ACAP connections for the feature described in this section are documented in the VPK120 board schematic, referenced in Appendix B: Xilinx Design Constraints.

Table 19: Power System - PMBus Regulators and INA226 Map

Rail Name	Regulator Type	Ref. Des.	Vout (V)	Iout (A)	PMBUS Addr.	I2C Addr.	INA226 Ref. Des.	INA226 I2C Addr.
VCC_INT	IR35215 PMIC	U152	0.80	120	0x46	0x16	U65	0x40 BUS1
VCC_SOC			0.80	14			U161	0x41 BUS1
VCC_PSFP	IRPS5401	U160	0.88	2	0 x 4 7	0x17	U164	0x45 BUS1
VCCO_MIO			1.8	2]		U172	0 x 4 5 BUS2
VCCAUX			1.5	4]		U166	0x40 BUS2
VCC_PMC			0.88	0.5]		U163	0x42 BUS1
VCC1V5			1.5	2	1		U264	0x43 BUS2
LPDMGTYAVCC	IRPS5401	U167	0.92	2	0x4C	0x1C	U177	0 x 4 B BUS2
MGTVCCAUX			1.5	2			U176	0x48 BUS2
MGTAVCC			0.92	5	1		U265	0x42 BUS1
VCCAUX_PMC			1.5	0.5	1		U168	0x41 BUS2
VCCO_502	IRPS5401	U175	1.8	2	0 x 4 D	0x1D	U174	0x47 BUS2
UTIL_2V5			2.5	1]		N/A	N/A
VCC_PSLP_CPM5			0.88	7			U165	0x44 BUS1
LPDMGTYVCCAUX			1.5	0.5			U234	0x4D BUS2
LPDMGTYAVTT	IR38060	U259	1.2	4	0x41	0x11	U260	0x4C BUS2
VCC_RAM_VCCINT_GT	IR38164	U13	0.80	5	0 x 4 3	0x13	U5	0x43 BUS1
VADJ_FMC	IR38164	U185	1.5	6	0×4E	0x1E	U184	0x4A BUS2
VCC1V1_LP4	IR38164	U187	1.1	6	0 x 4 F	0x1F	U186	0x49 BUS2
MGTAVTT	IR38164	U189	1.2	8	0x49	0x19	U188	0x46 BUS2

Note: Bus short names are decoded as:

- I2C Address PMBUS_SDA/SCL
- BUS1 PMBUS1_INA226_SDA/SCL
- BU2 PMBUS2_INA226_SDA/SCL

See PMC MIO[46:47] I2C0 Bus for I2C diagrams and more details.

Table 20: Power System - Non-PMBus Regulators

Rail Name	Regulator Type	Ref. Des.	Vout (V)	Iout (A)
UTIL_1V8	IR3889	U261	1.8	4
UTIL_3V3	IR3889	U190	3.3	18
UTIL_5V0	IR3889	U191	5	5
SYS_VCC0V85	TPS62480RNCR	U143	0.85	5
SYS_MGTAVCC	TPS62097RWKR	U146	0.9	1
SYS_VCC1V8	TPS62097RWKR	U144	1.8	1

Table 20: Power System - Non-PMBus Regulators (cont'd)

Rail Name	Regulator Type	Ref. Des.	Vout (V)	Iout (A)
SYS_VCC1V2	TPS62097RWKR	U147	1.2	1
SYS_VCC1V1	TPS7A8300ARGR	U145	1.1	1
8A34001_VCC_GPIO_DC	LP38798SD-ADJ/NOPB	U223	3.3	0.8
8A34001_VDDA	LP38798SD-ADJ/NOPB	U225	3.3	0.8
8A34001_VDDO_Q1_10_7	LP38798SD-ADJ/NOPB	U226	3.3	0.8
8A34001_VDD_CLK0	LP38798SD-ADJ/NOPB	U227	3.3	0.8
8A34001_VDDO_Q0_9_6	LP38798SD-ADJ/NOPB	U228	3.3	0.8
8A34001_VDD_CLK1	LP38798SD-ADJ/NOPB	U229	3.3	0.8
8A34001_VDDO_Q4_11	LP38798SD-ADJ/NOPB	U230	3.3	0.8
8A34001_VDDO_Q8_3_5	LP38798SD-ADJ/NOPB	U236	3.3	0.8
8A34001_VDD_FOD	LP38798SD-ADJ/NOPB	U231	1.8	0.8
8A34001_VDDD	LP38798SD-ADJ/NOPB	U232	1.8	0.8

More information about the power system regulator components can be found at the Infineon Integrated Circuits website.

The FMCP HSPC (J51) VADJ pins are wired to the programmable rail VADJ_FMC. The VADJ_FMC rail is programmed to 1.50V by default. The VADJ_FMC rail also powers the XCVC1202 FMCP interface banks 709 and 710 (see the table in I/O Voltage Rails). Documentation describing PMBus programming for the Infineon power controllers is available on the Infineon Integrated Circuits website. The PCB layout and power system design meet the recommended criteria described in the Versal ACAP PCB Design User Guide (UG863).

Monitoring Voltage and Current

Nineteen rails have a TI INA226 PMBus power monitor circuit with connections to the rail series current sense resistor. This arrangement permits the INA226 to report the sensed parameters separately on the PMBus. The rails equipped with the INA226 power monitors are shown in the power system table in Board Power System. As described in PMC MIO[46:47] I2C0 Bus, the I2C0 bus provides access to the PMBus power controllers and the INA226 power monitors via the U33 TCA9548A bus switch. All PMBus controlled Infineon regulators are tied to the PMBUS_SDA/SCL PMBus, while the INA226 power monitors are split across PMBUS1_INA226_SDA/SCL and PMBUS2_INA226_SDA/SCL.

The I2C0 bus topology figure and I2C0 port expander TCA6416A U233 address 0×20 connections table in PMC MIO[46:47] I2C0 Bus document the I2C0 bus access path to the Infineon PMBus controllers and INA226 power monitor op amps. Refer to schematic for connectivity details. This can be accessed through the VPK120 Evaluation Board website. These power system components are also accessible to the ZU4 U125 system controller (bank 501) and the ACAP U1 (bank 501).

VITA 57.4 FMCP Connector Pinouts

Overview

The following figure shows the pinout of the FPGA plus mezzanine card (FMCP) high pin count (HSPC) connector defined by the VITA 57.4 FMC specification. For a description of how the VPK120 evaluation board implements the FMCP specification, see GTYP200/201: FPGA Mezzanine Card Interface.

Figure 23: FMCP HSPC Connector Pinout

X26032-112221

Xilinx Design Constraints

Overview

The Xilinx® design constraints (XDC) file template for the VPK120 board provides for designs targeting the VPK120 evaluation board. Net names in the constraints listed correlate with net names on the latest VPK120 evaluation board schematic. Identify the appropriate pins and replace the net names with net names in the user RTL.

See the Vivado Design Suite User Guide: Using Constraints (UG903) for more information.

The HSPC FMCP connectors J51 is connected to ACAP U1 banks powered by the variable voltage VADJ_FMC. Because different FMC cards implement different circuitry, the FMC bank I/O standards must be uniquely defined by each customer. See LPD MIO[23]: VADJ_FMC Power Rail for more details on the VADJ_FMC power rail.

IMPORTANT! See the VPK120 board documentation ("Board Files" check box) for the XDC file.

Regulatory and Compliance Information

This product is designed and tested to conform to the European Union directives and standards described in this section.

For Technical Support, open a Support Service Request.

CE Information

CE Directives

2006/95/EC, Low Voltage Directive (LVD)

2004/108/EC, Electromagnetic Compatibility (EMC) Directive

CE Standards

EN standards are maintained by the European Committee for Electrotechnical Standardization (CENELEC). IEC standards are maintained by the International Electrotechnical Commission (IEC).

CE Electromagnetic Compatibility

EN 55022:2010, Information Technology Equipment Radio Disturbance Characteristics – Limits and Methods of Measurement

EN 55024:2010, Information Technology Equipment Immunity Characteristics – Limits and Methods of Measurement

This is a Class A product. In a domestic environment, this product can cause radio interference, in which case the user might be required to take adequate measures.

CE Safety

IEC 60950-1:2005, Information technology equipment - Safety, Part 1: General requirements

EN 60950-1:2006, Information technology equipment - Safety, Part 1: General requirements

Compliance Markings

Xilinx has met its national obligations to the EU WEEE Directive by registering in those countries to which Xilinx is an importer. Xilinx has also elected to join WEEE Compliance Schemes in some countries to help manage customer returns at end-of-life.

If you have purchased Xilinx-branded electrical or electronic products in the EU and are intending to discard these products at the end of their useful life, please do not dispose of them with your other household or municipal waste. Xilinx has labeled its branded electronic products with the WEEE Symbol to alert our customers that products bearing this label should not be disposed of in a landfill or with municipal or household waste in the EU.

This product complies with Directive 2002/95/EC on the restriction of hazardous substances (RoHS) in electrical and electronic equipment.

This product complies with CE Directives 2006/95/EC, Low Voltage Directive (LVD) and 2004/108/EC, Electromagnetic Compatibility (EMC) Directive.

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx Support.

Documentation Navigator and Design Hubs

Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and support resources, which you can filter and search to find information. To open DocNav:

- From the Vivado[®] IDE, select Help → Documentation and Tutorials.
- On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.
- At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics, which you can use to learn key concepts and address frequently asked questions. To access the Design Hubs:

- In DocNav, click the **Design Hubs View** tab.
- On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNay, see the Documentation Navigator page on the Xilinx website.

References

The most up to date information related to the VPK120 board and its documentation is available on these websites:

VPK120 Evaluation Kit

VPK120 Evaluation Kit — Master Answer Record 00003361

These documents provide supplemental material useful with this guide:

- 1. Versal Architecture and Product Data Sheet: Overview (DS950)
- Versal Premium Series Data Sheet: DC and AC Switching Characteristics (DS959)
- 3. Versal ACAP Technical Reference Manual (AM011)
- 4. Versal ACAP SelectIO Resources Architecture Manual (AM010)
- 5. Versal ACAP PCB Design User Guide (UG863)
- 6. Versal ACAP Memory Resources Architecture Manual (AM007)
- 7. Versal ACAP GTY and GTYP Transceivers Architecture Manual (AM002)
- 8. VPK120 System Controller Tutorial (XTP708)
- Tera Term Terminal Emulator Installation Guide (UG1036)
- 10. Vivado Design Suite User Guide: Using Constraints (UG903)
- 11. Vivado Design Suite User Guide: Programming and Debugging (UG908)
- 12. Versal ACAP CPM Mode for PCI Express Product Guide (PG346)
- 13. Versal ACAP CPM DMA and Bridge Mode for PCI Express Product Guide (PG347)
- 14. Versal ACAP System Monitor Architecture Manual (AM006)
- 15. Versal ACAP Clocking Resources Architecture Manual (AM003)
- 16. Versal ACAP GTM Transceivers Architecture Manual (AM017)
- 17. Silicon Labs CP210x USB-to-UART Installation Guide (UG1033)
- 18. Micron Technology (MTA9ADF1G72AZ-3GE1, MT53D512M32D2DS)
- 19. Standard Microsystems Corporation (SMSC) (USB3320)
- 20. SanDisk Corporation
- 21. SD Association
- 22. Skyworks/Silicon Labs (SI570, SI5332, SI53340)
- 23. Texas Instruments (TCA9548A, TCA6416A, DP83867, PCA9306)
- 24. PCI-SIG

- 25. Samtec, Inc. (SEAF series connectors, LPAF connectors)
- 26. VITA FMC Marketing Alliance (FPGA Mezzanine Card (FMC) VITA 57.1, 57.4 specifications)
- 27. Maxim Integrated Circuits (MAX6643)
- 28. Infineon Integrated Circuits (IR35215, IRPS5401, IR38164, IR3897)
- 29. Future Technology Devices International Ltd. (FT4232HL)
- 30. Integrated Device Technology, Inc. (IDT) (85411AMLF, 8T49N241, 8A34001)
- 31. SNIA Technology Affiliates (SFF-8431)
- 32. NXP Semiconductors (NVT4857UK)

Revision History

The following table shows the revision history for this document.

Section	Revision Summary			
08/24/2022 Version 1.1				
GTM Transceivers	Removed maximum line rate 112.0 Gb/s information.			
GTM202/203/204/205: QSFP-DD Interface	Replaced 112G with 100+G.			
08/09/2022 Version 1.0				
Initial release.	N/A			

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials

without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.

Copyright

© Copyright 2022 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Kria, Spartan, Versal, Vitis, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other countries. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.