

$$3\frac{2^{1}}{3} + 5(u c x)^{\frac{1}{2}} = \frac{3u}{4} 0 < x < T$$
 Some by separation of variables

D) Give
$$f(x,y,t) = x^2y - 2xy + e^{2t}$$

Find directional demonstrative in $(-4\% + 4\% + 2\%)$ directionism at point $(1,40)$
Find the $div(\nabla \mathcal{E})$ at $(2,1,0)$

$$5 y''' - y' = 5 - 4\cos(x) + 2e^{x}$$

Some $00E$

(8)
$$\dot{x} = -5x - y$$
 $x(1) = 0$
 $\dot{y} = -y + 4x$ $y(1) = 1$ Solve