Teoria Współbieżności Teoria śladów - siatki prostokątne

Bartosz Dudek

1. Gramatyka

- (PI)
$$S \rightarrow [M]$$

Produkcja startowa - generujemy pojedynczy element siatki

- (PS)
$$[M] \rightarrow [M]$$
$$[M]$$

dołączanie elementu od dołu (south)

poziome łączenie między dwoma sąsiadującymi elementami (horizontal)

2. Generacja siatki 3x3

Przykładowy ciąg produkcji generujący siatkę:

generacja (na czerwono zaznaczam dodany element:

[M] [M] [M]

3. Alfabet w sensie teorii śladów

 $\Sigma = \{ PI, PE_1, PE_2, PS_1, PS_2, PS_3, PS_4, PS_5, PS_6, PH_1, PH_2, PH_3, PH_4 \}$

4. Słowo

PI, PE₁, PS₁, PE₂, PS₂, PS₃, PH₁, PS₄, PS₅, PS₆, PH₂, PH₃, PH₄

5. Relacja (nie)zależności dla alfabetu Σ

D = sym{ (PI, PE₁), (PI, PS₁), (PE₁,PE₂), (PE₁,PS₂), (PS₁, PS₃), (PS₁,PH₁), (PE₂, PS₄), (PS₂,PS₅), (PS₂,PH₁), (PS₂,PH₂), (PS₃,PH₃), (PS₄,PS₆), (PS₄,PH₂), (PS₅,PH₃), (PS₅,PH₄), (PS₆,PH₄)} \cup I₂

6. Graf Diekerta i postać normalna Foaty

 $FNF = [PI][PE_1,PS_1][PE_2,PS_2,PS_3][PS_4,PS_5,PH_1][PS_6,PH_2,PH_3][PH_4]$

7. Projektowanie algorytmu

Przyglądając się powstałym klasą Foaty można zauważyć pewną zależność i rozszerzyć ją dla większych siatek. Każda klasa Foaty (oprócz pierwszej która zawiera produkcję startową) składa się z:

- najpierw z jednej produkcji PE która rozszerza siatkę w prawo aż do momentu osiągnięcia docelowej szerokości (N)
- do wcześniej stworzonych produkcji PS dokładamy połączenie z sąsiadem po lewej - używamy produkcji PH
- następnie do każdej wcześniej istniejącej kolumny dokłada jedną produkcję PS (wyłączając sytuację gdy wysokość danej kolumny osiągnęła oczekiwaną - M)

Ten algorytm powinien generować wszystkie siatki NxM.