Introduction to Commutative Algebra

M. F. Atiyah & I. G. MacDonald

October 9, 2021

Contents

1	Rings and Ideals	1
	1.1 Exercise	10

1 Rings and Ideals

A **ring homomorphism** is a mapping f of a ring A into a ring B s.t.

- 1. f(x+y) = f(x) + f(y)
- 2. f(xy) = f(x)f(y)
- 3. f(1) = 1

An **ideal** $\mathfrak a$ of a ring A is a subset of A which is an additive subgroup and is s.t. $A\mathfrak a\subseteq \mathfrak a$. The quotient group $A/\mathfrak a$ inherits a uniquely defined multiplication from A which makes it into a ring, called the **quotient ring** $A/\mathfrak a$. The elements of $A/\mathfrak a$ are the cosets of $\mathfrak a$ in A, and the mapping $\phi:A\to A/\mathfrak a$ which maps each $x\in A$ to its coset $x+\mathfrak a$ is a surjective ring homomorphism

Proposition 1.1. There is a one-to-one order-preserving correspondence between the ideals \mathfrak{b} of A which contain \mathfrak{a} , and the ideals $\bar{\mathfrak{b}}$ of A/\mathfrak{a} , given by $\mathfrak{b} = \phi^{-1}(\bar{\mathfrak{b}})$.

Proof. Let $S_1=\{\mathfrak{b}:\mathfrak{b} \text{ an ideal of } A \text{ and } \mathfrak{a}\subseteq\mathfrak{b}\}$ and $S_2=\{\bar{\mathfrak{b}}:\bar{\mathfrak{b}} \text{ an ideal of } A/\mathfrak{a}\}$, π is the natural map $\pi(S)=S/\mathfrak{a}$, we prove that

$$\varphi:S_1\to S_2 \qquad \quad \mathfrak{b}\mapsto \pi(\mathfrak{b})$$

is an bijection.

First assume that $\mathfrak{a} \subseteq \mathfrak{b}$, we prove that $\pi^{-1}\pi(\mathfrak{b}) = \mathfrak{b}$. Apparently $\mathfrak{b} \subseteq \pi^{-1}\pi(\mathfrak{b})$. For any $b \in \pi^{-1}\pi(\mathfrak{b})$, there is a $s \in \mathfrak{b}$ s.t. $\pi(b) = \pi(s)$. Thus $b-s \in \ker \pi = \mathfrak{a}$. As $\mathfrak{a} \subseteq \mathfrak{b}$, we have $b \in \mathfrak{b}$. Hence $\pi^{-1}\pi(\mathfrak{b}) = \mathfrak{b}$.

Thus for any $\mathfrak{b}_1,\mathfrak{b}_2\in S_1$ and $\varphi(\mathfrak{b}_1)=\pi(\mathfrak{b}_1)=\pi(\mathfrak{b}_2)=\varphi(\mathfrak{b}_2)$, we have $\pi^{-1}\pi(\mathfrak{b}_1)=\pi^{-1}\pi(\mathfrak{b}_2)$. Thus φ is injective.

For any $\bar{\mathfrak{b}} \in S_2$, $\pi^{-1}(\bar{\mathfrak{b}})$ contains $\mathfrak{a} = \pi^{-1}(\{0\})$. Hence φ is surjective Order-preserving means $\mathfrak{a} \subseteq \mathfrak{b} \subseteq \mathfrak{c}$ iff $\bar{\mathfrak{b}} \subseteq \bar{\mathfrak{c}}$

If $f:A\to B$ is any ring homomorphism, the **kernel** of f is an ideal $\mathfrak a$ of A, and the image of f is a subring C of B; and f induces a ring isomorphism $A/\mathfrak a\cong C$

We shall sometimes use the notation $x \equiv y \mod \mathfrak{a}$; this means that $x - y \in \mathfrak{a}$

A **zero-divisor** in a ring A is an element x which divides 0, i.e., for which there exists $y \neq 0$ in A s.t. xy = 0. A ring with no zero-divisor $\neq 0$ (and in which $1 \neq 0$) is called an **integral domain**.

An element $x \in A$ is **nilpotent** if $x^n = 0$ for some n > 0. A nilpotent element is a zero-divisor (unless A = 0)

A unit in A is an element x which "divides 1", i.e., an element x s.t. xy = 1 for some $y \in A$. The element y is then uniquely determined by x, and is written x^{-1} . The units in A form a (multiplicative) abelian group

The multiples ax of an element $x \in A$ from a **principal** ideal, denoted by (x) or Ax. x is a unit iff (x) = A = (1). The **zero** ideal (0) is denoted by (0)

A **field** is a ring A in which $1 \neq 0$ and every non-zero element is a unit. Every field is an integral domain

Proposition 1.2. Let A be a ring $\neq 0$. Then the following are equivalent:

- 1. A is a field
- 2. the only ideals in A are 0 and (1)
- 3. every homomorphism of A into a non-zero ring B is injective

Proof. $2 \to 3$. Let $\phi : A \to B$ be a ring homomorphism. Then $\ker \phi$ is an ideal $\neq (1)$ in A, hence $\ker \phi = 0$, hence ϕ is injective

 $3 \to 1$. Let x be an element of A which is not a unit. Then $(x) \ne (1)$, hence B = A/(x) is not the zero ring. Let $\phi: A \to B$ be the natural homomorphism of A onto B with kernel (x). By hypothesis, ϕ is injective, hence (x) = 0, hence x = 0

An ideal $\mathfrak p$ in A is **prime** if $\mathfrak p \neq (1)$ and if $xy \in \mathfrak p \Rightarrow x \in \mathfrak p$ or $y \in \mathfrak p$ An ideal $\mathfrak m$ in A is **maximal** if $\mathfrak m$ in A is **maximal** if $\mathfrak m \neq (1)$ and if no ideal $\mathfrak a$ s.t. $\mathfrak m \subset \mathfrak a \subset (1)$ (**strict** inclusions). Equivalently

 \mathfrak{p} is prime $\Leftrightarrow A/\mathfrak{p}$ is an integral domain \mathfrak{m} is maximal $\Leftrightarrow A/\mathfrak{m}$ is a field

Proof. If \mathfrak{m} is maximal and suppose $a \notin A$. Then $J = \{ra + i : i \in \mathfrak{m} \text{ and } r \in A\}$ is an ideal. Hence J = A. So there is $r \in A, \mathfrak{m} \in I \text{ s.t. } 1 = ra + i$. So we have $1 \equiv ra \mod \mathfrak{m}$. Hence we find the inverse of $a + \mathfrak{m}$

If A/\mathfrak{m} is a field and suppose $\mathfrak{m} \subset \mathfrak{n} \subset A$. Let $a \in \mathfrak{m} \setminus \mathfrak{n}$, then there exists a $b \in A$ s.t. $ab-1 \in \mathfrak{m}$. So ab+m=1 for some $m \in \mathfrak{m}$. But $ab \in \mathfrak{n}$ and $m \in \mathfrak{m} \subset \mathfrak{n}$, then we have $1 \in \mathfrak{n}$ and $\mathfrak{n} = A$.

Hence a maximal ideal is prime. The zero ideal is prime iff A is an integral domain

If $f:A\to B$ is a ring homomorphism and $\mathfrak q$ is a prime ideal in B, then $f^{-1}(\mathfrak q)$ is a prime ideal in A, for $A/f^{-1}(\mathfrak q)$ is isomorphic to a subring of $B/\mathfrak q$ and hence has no zero-divisor $\neq 0$. (Explanation. Since $\mathfrak q$ is prime, $B/\mathfrak a$ is an integral domain and a subring of an integral domain is still an integral domain. Define the map $\varphi(a+f^{-1}(\mathfrak q))=f(a)+\mathfrak q$ and we need to show its a homomorphism. Then we show its injective.)

But if $\mathfrak n$ is a maximal ideal of B it is not necessarily true that $f^{-1}(\mathfrak n)$ is maximal in A; all we can say for sure is that it is prime. (Example: $A=\mathbb Z$, $B=\mathbb Q$, $\mathfrak n=0$).

Theorem 1.3. Every ring $A \neq 0$ has at least one maximal ideal

Proof. This is the standard application of Zorn's lemma. Let Σ be the set of all ideals $\neq (1)$ in A. Order Σ by inclusion. Σ is not empty, since $0 \in \Sigma$. To apply Zorn's lemma we must show that every chain in Σ has an upper bound in Σ ; let then (\mathfrak{a}_{α}) be a chain of ideals in Σ , so that for each pair of indices α , β we have either $\mathfrak{a}_{\alpha} \subseteq \mathfrak{a}_{\beta}$ or $\mathfrak{a}_{\beta} \subseteq \mathfrak{a}_{\alpha}$. Let $\mathfrak{a} = \bigcup_{\alpha} \mathfrak{a}_{\alpha}$. Then \mathfrak{a} is an ideal and $1 \notin \mathfrak{a}$. Hence $\mathfrak{a} \in \Sigma$ and is an upper bound of the chain. Hence Σ has a maximal element

Corollary 1.4. If $a \neq (1)$ is an ideal of A, there exists a maximal ideal of A containing a

Proof. Apply 1.3 to A/\mathfrak{a} and 1.3

Corollary 1.5. Every non-unit of A is contained in a maximal ideal.

A ring A with exactly one maximal ideal $\mathfrak m$ is called a **local ring**. The field $k=A/\mathfrak m$ is called the **residue field** of A

- **Proposition 1.6.** 1. Let A be a ring and $\mathfrak{m} \neq (1)$ an ideal of A s.t. every $x \in A \mathfrak{m}$ is a unit in A. Then A is a local ring and \mathfrak{m} its maximal ideal.
 - 2. Let A be a ring and $\mathfrak m$ a maximal ideal of A s.t. every element of $1+\mathfrak m$ is a unit in A. Then A is a local ring
- *Proof.* 2. Let $x \in A \mathfrak{m}$. Since \mathfrak{m} is maximal, the ideal generated by x and \mathfrak{m} is (1), hence there exist $y \in A$ and $t \in \mathfrak{m}$ s.t. xy + t = 1; hence xy = 1 t belongs to $1 + \mathfrak{m}$ and therefore is a unit. Now use 1

A ring with only a finite number of maximal ideals is called semi-local

Example 1.1. n

- 1. $A = k[x_1, ..., x_n]$, k a field. Let $f \in A$ be an irreducible polynomial. By unique factorization, the ideal (f) is prime
- 2. $A=\mathbb{Z}$. Every ideal in \mathbb{Z} is of the form (m) for some $m\geq 0$. The ideal (m) is prime iff m=0 or a prime number. All the ideals (p), where p is a prime number, are maximal: $\mathbb{Z}/(p)$ is the field of p elements
- 3. A **principal ideal domain** is an integral domain in which every ideal is principal. In such a ring every non-zero prime ideal is maximal. For if $(x) \neq 0$ is a prime ideal and $(y) \supset (x)$, we have $x \in (y)$, say x = yz, so that $yz \in (x)$ and $y \notin (x)$, hence $z \in (x)$; say z = tx. Then x = yz = ytx, so that yt = 1 and therefore (y) = (1).

Proposition 1.7. The set \mathfrak{N} of all nilpotent elements in a ring A is an ideal, and A/\mathfrak{N} has no nilpotent $\neq 0$

Proof. If $x \in \mathfrak{N}$, clearly $ax \in \mathfrak{N}$ for all $a \in A$. Let $x, y \in \mathfrak{N}$: say $x^m = 0$, $y^n = 0$. By the binomial theorem, $(x+y)^{n+m-1}$ is a sum of integer multiples of products x^ry^s , where r+s=m+n-1;

Let $\bar{x} \in A/\mathfrak{N}$ be represented by $x \in A$. Then \bar{x}^n is represented by x^n , so that $\bar{x}^n = 0 \Rightarrow x^n \in \mathfrak{N} \Rightarrow (x^n)^k = 0$ for some $k > 0 \Rightarrow x \in \mathfrak{N} \Rightarrow \bar{x} = 0$

The ideal \mathfrak{N} is called the **nilradical** of A

Proposition 1.8. *The nilradical of A is the intersection of all the prime ideals of A*

Proof. Let \mathfrak{N}' denote the intersection of all the prime ideals of A. If $f \in A$ is nilpotent and if \mathfrak{p} is a prime ideal, then $f^n = 0 \in \mathfrak{p}$ for some n > 0, hence $f \in \mathfrak{p}$. Hence $f \in \mathfrak{N}'$

Conversely, suppose that f is not nilpotent. Let Σ be the set of ideals $\mathfrak a$ with the property

$$n > 0 \Rightarrow f^n \notin \mathfrak{a}$$

Then Σ is not empty because $0 \in \Sigma$. Zorn's lemma can be applied to the set Σ , ordered by inclusion, and therefore Σ has a maximal element. We shall show that $\mathfrak p$ is a prime ideal. Let $x,y \notin \mathfrak p$. Then the ideals $\mathfrak p + (x)$, $\mathfrak p + (y)$ strictly contain $\mathfrak p$ and therefore do not belong to Σ ; hence

$$f^m \in \mathfrak{p} + (x), \quad f^n \in \mathfrak{p} + (y)$$

for some m,n. It follows that $f^{m+n}\in\mathfrak{p}+(xy)$, hence the ideal $\mathfrak{p}+(xy)$ is not in Σ and therefore $xy\notin\mathfrak{p}$. Hence we have a prime ideal \mathfrak{p} s.t. $f\notin\mathfrak{p}$, so that $f\notin\mathfrak{N}'$

The **Jacobson radical** \mathfrak{R} of A is defined to be the intersection of all the maximal ideals of A. It can be characterized as follows:

Proposition 1.9. $x \in \Re$ iff 1 - xy is a unit in A for all $y \in A$

Proof. ⇒: Suppose 1-xy is not a unit. By 1.5 it belongs to some maximal ideal \mathfrak{m} ; but $x \in \mathfrak{R} \subseteq \mathfrak{m}$, hence $xy \in \mathfrak{m}$ and therefore $1 \in \mathfrak{m}$, which is absurd \Leftarrow : Suppose $x \notin \mathfrak{m}$ for some maximal ideal \mathfrak{m} . Then \mathfrak{m} and x generate the unit ideal (1), so that we have u+xy=1 for some $u \in \mathfrak{m}$ and some $y \in A$. Hence $1-xy \in \mathfrak{m}$ and is therefore not a unit.

If \mathfrak{a} , \mathfrak{b} are ideals in a ring A, their $\operatorname{sum} \mathfrak{a} + \mathfrak{b}$ is the set of all x + y where $x \in \mathfrak{a}$ and $y \in \mathfrak{b}$. It is the smallest ideal containing \mathfrak{a} and \mathfrak{b} . More generally, we may define the $\operatorname{sum} \sum_{i \in I} a_i$ of any family (possibly infinite) of ideals \mathfrak{a}_i of A; is elements are all $\operatorname{sums} \sum x_i$, where $x_i \in \mathfrak{a}_i$ for all $i \in I$ and almost all of the x_i (i.e., all but a finite set) are zero. It is the smallest ideal of A which contains all the ideals \mathfrak{a}_i

The **product** of two ideals \mathfrak{a} , \mathfrak{b} in A is the ideal $\mathfrak{a}\mathfrak{b}$ **generated** by all products xy, where $x \in \mathfrak{a}$ and $y \in \mathfrak{b}$. It is the set of all finite sums $\sum x_i y_i$ where each $x_i \in \mathfrak{a}$ and each $y_i \in \mathfrak{b}$

We have the distributive law

$$\mathfrak{a}(\mathfrak{b} + \mathfrak{c}) = \mathfrak{a}\mathfrak{b} + \mathfrak{a}\mathfrak{c}$$

In the ring \mathbb{Z} , \cap and + are distributive over each other. This is not the case in general. **modular law**

$$\mathfrak{a} \cap (\mathfrak{b} + \mathfrak{c}) = \mathfrak{a} \cap \mathfrak{b} + \mathfrak{a} \cap \mathfrak{b} \text{ if } \mathfrak{a} \supseteq \mathfrak{b} \text{ or } \mathfrak{a} \supseteq \mathfrak{c}$$

$$\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a} \mathfrak{b} \text{ provided } \mathfrak{a} + \mathfrak{b} = (1)$$

If $x \in \mathfrak{a} \cap \mathfrak{b}$, there is a + b = 1. Hence $xa + xb = x \in \mathfrak{ab}$

Two ideals $\mathfrak{a},\mathfrak{b}$ are said to be **coprime** if $\mathfrak{a}+\mathfrak{b}=(1)$. Thus for coprime ideals we have $\mathfrak{a}\cap\mathfrak{b}=\mathfrak{a}\mathfrak{b}$.

Let A be a ring and $\mathfrak{a}_1, \dots, \mathfrak{a}_n$ ideals of A. Define a homomorphism

$$\phi:A\to\prod_{i=1}^n(A/\mathfrak{a}_i)$$

by the rule $\phi(x) = (x + \mathfrak{a}_1, \dots, x + \mathfrak{a}_n)$

Proposition 1.10. 1. If \mathfrak{a}_i , \mathfrak{a}_j are coprime whenever $i \neq j$, then $\prod \mathfrak{a}_i = \bigcap \mathfrak{a}_i$

- 2. ϕ is surjective iff \mathfrak{a}_i , \mathfrak{a}_j are coprime whenever $i \neq j$
- 3. ϕ is injective iff $\bigcap \mathfrak{a}_i = (0)$

Proof. 1. Induction on n. The case n=2 is dealt with above. Suppose n>2 and the result true for $\mathfrak{a}_1,\ldots,\mathfrak{a}_{n-1}$, and let $\mathfrak{b}=\prod_{i=1}^{n-1}\mathfrak{a}_i=\bigcap_{i=1}^{n-1}\mathfrak{a}_i$. As we have $x_i+y_i=1$ $(x_i\in\mathfrak{a}_i,y_i\in\mathfrak{a}_n)$ and therefore

$$\prod_{i=1}^{n-1} x_i = \prod_{i=1}^{n-1} (1-y_i) \equiv 1 \mod \mathfrak{a}_n$$

Hence $\mathfrak{a}_n + \mathfrak{b} = (1)$ and so

$$\prod_{i=1}^n \mathfrak{a}_i = \mathfrak{b}\mathfrak{a}_n = \mathfrak{b} \cap \mathfrak{a}_n = \bigcap_{i=1}^n \mathfrak{a}_i$$

2. \Rightarrow : Let's show for example that $\mathfrak{a}_1, \mathfrak{a}_2$ are coprime. There exists $x \in A$ s.t. $\phi(x) = (1,0,\dots,0)$; hence $x \equiv 1 \mod \mathfrak{a}_1$ and $x \equiv 0 \mod \mathfrak{a}_2$, so that

$$1 = (1 - x) + x \in \mathfrak{a}_1 + \mathfrak{a}_2$$

 $\Leftarrow: \text{ It is enough to show, for example, that there is an element } x \in A \\ \text{ s.t. } \phi(x) = (1,0,\dots,0). \text{ Since } \mathfrak{a}_1 + \mathfrak{a}_i = (1) \ (i>1) \text{ we have } u_i + v_i = 1 \\ (u_i \in \mathfrak{a}_1, v_i \in \mathfrak{a}_i). \text{ Take } x = \prod_{i=2}^n v_i, \text{ then } x = \prod (1-u_i) \equiv 1 \mod \mathfrak{a}_1. \\ \text{ Hence } \phi(x) = (1,0,\dots,0)$

3. $\bigcap \mathfrak{a}_i$ is the kernel of ϕ

Proposition 1.11. 1. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ be prime ideals and let \mathfrak{a} be an ideal contained in $\bigcup_{i=1}^n \mathfrak{p}_i$. Then $\mathfrak{a} \subseteq \mathfrak{p}_i$ for some i.

2. Let $\mathfrak{a}_1, \dots, \mathfrak{a}_n$ be ideals and let \mathfrak{p} be a prime ideal containing $\bigcap_{i=1}^n \mathfrak{a}_i$. Then $\mathfrak{p} \supseteq \mathfrak{a}_i$ for some i. If $\mathfrak{p} = \bigcap \mathfrak{a}_i$, then $\mathfrak{p} = \mathfrak{a}_i$ for some i

Proof. 1. induction on n in the form

$$\mathfrak{a} \not\subseteq \mathfrak{p}_i (1 \leq i \leq n) \Rightarrow \mathfrak{a} \not\subseteq \bigcup_{i=1}^n \mathfrak{p}_i$$

It is true for n=1. If n>1 and the result is true for n-1, then for each i there exists $x_i\in \mathfrak{a}$ s.t. $x_i\notin \mathfrak{p}_j$ whenever $j\neq i$. If for some i we have $x_i\notin \mathfrak{p}_i$, we are through. If not, then $x_i\in \mathfrak{p}_i$ for all i. Consider the element

$$y = \sum_{i=1}^n x_1 x_2 \cdots x_{i-1} x_{i+1} \cdots x_n$$

we have $y \in \mathfrak{a}$ and $y \notin \mathfrak{p}_i$ $(1 \le i \le n)$. Hence $\mathfrak{a} \nsubseteq \bigcup_{i=1}^n \mathfrak{p}_i$

2. Suppose $\mathfrak{p} \not\supseteq \mathfrak{a}_i$ for all i. Then there exist $x_i \in \mathfrak{a}_i$, $x_i \notin \mathfrak{p}$ $(1 \leq i \leq n)$ and therefore $\prod x_i \in \prod \mathfrak{a}_i \subseteq \bigcap \mathfrak{a}_i$; but $\prod x_i \notin \mathfrak{p}$ since \mathfrak{p} is prime. Hence $\mathfrak{p} \not\supseteq \bigcap \mathfrak{a}_i$

If $\mathfrak{p} = \bigcap \mathfrak{a}_i$, then $\mathfrak{p} \subseteq \mathfrak{a}_i$ and hence $\mathfrak{p} = \mathfrak{a}_i$ for some i.

If \mathfrak{a} , \mathfrak{b} are ideals in a ring A, their **ideal quotient** is

$$(\mathfrak{a}:\mathfrak{b}) = \{x \in A : x\mathfrak{b} \subseteq \mathfrak{a}\}\$$

which is an ideal. In particular, $(0:\mathfrak{b})$ is called the **annihilator** of \mathfrak{b} and is also denoted by $\mathrm{Ann}(\mathfrak{b})$: it is the set of all $x \in A$ s.t. $x\mathfrak{b} = 0$. In this notation the set of all zero-divisors in A is

$$D=\bigcup_{x\neq 0} \mathrm{Ann}(x)$$

If $\mathfrak b$ is a principal ideal (x), we shall write $(\mathfrak a:x)$ in place of $(\mathfrak a:(x))$

Example 1.2. If $A = \mathbb{Z}$, $\mathfrak{a} = (m)$, $\mathfrak{b} = (n)$, where say $m = \prod_p p^{\mu_p}$, $n = \prod_p p^{\nu_p}$, then $(\mathfrak{a} : \mathfrak{b}) = (q)$ where $q = \prod_p p^{\gamma_p}$ and

$$\gamma_p = \max(\mu_p - \nu_p, 0) = \mu_p - \min(\mu_p, \nu_p)$$

Hence q = m/(m, n), where (m, n) is the h.c.f. of m and n

Exercise 1.0.1. 1. $\mathfrak{a} \subseteq (\mathfrak{a} : \mathfrak{b})$

- 2. $(\mathfrak{a} : \mathfrak{b})\mathfrak{b} \subseteq \mathfrak{a}$
- 3. $(\mathfrak{a} : \mathfrak{b}) : \mathfrak{c} = (\mathfrak{a} : \mathfrak{bc}) = ((\mathfrak{a} : \mathfrak{c}) : \mathfrak{b})$
- 4. $(\bigcap_i \mathfrak{a}_i : \mathfrak{b}) = \bigcap_i (\mathfrak{a}_i : \mathfrak{b})$
- 5. $(\mathfrak{a}: \sum_{i} \mathfrak{b}_{i}) = \bigcap (\mathfrak{a}: \mathfrak{b}_{i})$

Proof. 3. $(\mathfrak{a} : \mathfrak{b}) : \mathfrak{c} = \{x \in A : x\mathfrak{c} \subseteq \mathfrak{a} : \mathfrak{b}\}$. for any $c \in \mathfrak{c}$, $xc\mathfrak{b} \subseteq \mathfrak{a}$. Hence $x\mathfrak{c}\mathfrak{b} \subseteq \mathfrak{a}$.

5.
$$(\mathfrak{a}:\sum_i\mathfrak{b}_i)=\{x\in A:x\sum_i\mathfrak{b}_i\subseteq\mathfrak{a}\}$$

If \mathfrak{a} is any ideal of A, the **radical** of \mathfrak{a} is

$$r(\mathfrak{a}) = \{x \in A : x^n \in \mathfrak{a} \text{ for some } n > 0\}$$

if $\phi:A\to A/\mathfrak{a}$ is the standard homomorphism, then $r(\mathfrak{a})=\phi^{-1}(\mathfrak{N}_{A/\mathfrak{a}})$ and hence $r(\mathfrak{a})$ is an ideal by 1.7

Exercise 1.0.2. 1. $r(\mathfrak{a}) \supseteq \mathfrak{a}$

- 2. $r(r(\mathfrak{a})) = r(\mathfrak{a})$
- 3. $r(\mathfrak{ab}) = r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b})$
- 4. $r(\mathfrak{a}) = (1)$ iff $\mathfrak{a} = (1)$.
- 5. $r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b}))$
- 6. if \mathfrak{p} is prime, $r(\mathfrak{p}^n) = \mathfrak{p}$ for all n > 0

Proof. 5. $x \in r(\mathfrak{a} + \mathfrak{b})$ iff $x^n \in \mathfrak{a} + \mathfrak{b}$. $y \in r(r(\mathfrak{a}) + r(\mathfrak{b}))$ iff $y^m = a + b$, where $a^{n_a} \in \mathfrak{a}$ and $b^{n_b} \in \mathfrak{b}$. Then $(y^m)^{n_a + n_b} = (a + b)^{n_a + n_b} \in \mathfrak{a} + \mathfrak{b}$

6.
$$x \in r(\mathfrak{p}^n)$$
 iff $x^m \in \mathfrak{p}^n$, then $x^m = p_1 \cdots p_n \in \mathfrak{p}$

Proposition 1.12. The radical of an ideal $\mathfrak a$ is the intersection of the prime ideals which contain $\mathfrak a$

Proof. Apply 1.8 to A/\mathfrak{a} .

Nilradical of A/\mathfrak{a} is the radical of \mathfrak{a} .

More generally, we may define the radical r(E) of any **subset** E of A in the same way. It is **not** an ideal in general. We have $r(\bigcup_{\alpha} E_{\alpha}) = \bigcup r(E_{\alpha})$ for any family of subsets E_{α} of A

Proposition 1.13. $D = set \ of \ zero-divisors \ of \ A = \bigcup_{x \neq 0} r(\mathsf{Ann}(x))$

$$\textit{Proof. } D = r(D) = r(\textstyle\bigcup_{x \neq 0} \mathsf{Ann}(x)) = \textstyle\bigcup_{x \neq 0} r(\mathsf{Ann}(x)) \qquad \qquad \Box$$

Example 1.3. If $A=\mathbb{Z}$, $\mathfrak{a}=(m)$, let p_i $(1\leq i\leq r)$ be the distinct prime divisors of m. Then $r(\mathfrak{a})=(p_1\cdots p_r)=\bigcap_{i=1}^n(p_i)$

Proposition 1.14. Let \mathfrak{a} , \mathfrak{b} be ideals in a ring A s.t. $r(\mathfrak{a})$, $r(\mathfrak{b})$ are coprime. Then \mathfrak{a} and \mathfrak{b} are coprime.

Proof.
$$r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b})) = r(1) = (1)$$
, hence $\mathfrak{a} + \mathfrak{b} = (1)$

Let $f:A\to B$ be a ring homomorphism. If $\mathfrak a$ is an ideal in A, the set $f(\mathfrak a)$ is not necessarily an ideal in B (e.g. $\mathbb Z\to\mathbb Q$). We define the **extension** $\mathfrak a^e$ of $\mathfrak a$ to be the ideal $Bf(\mathfrak a)$ generated by $f(\mathfrak a)$ in B: explicitly, $\mathfrak a^e$ is the set of all sums $\sum y_i f(x_i)$ where $x_i\in\mathfrak a$, $y_i\in B$

If \mathfrak{b} is an ideal of B, then $f^{-1}(\mathfrak{b})$ is always an ideal of A, called the **contraction** \mathfrak{b}^c of \mathfrak{b} . If \mathfrak{b} is prime, then \mathfrak{b}^c is prime. If \mathfrak{a} is prime, \mathfrak{a}^e need not be prime $(f: \mathbb{Z} \to \mathbb{Q}, \mathfrak{a} \neq 0$, then $\mathfrak{a}^e = \mathbb{Q}$, which is not a prime ideal)

We can factorize f as follows:

$$f \xrightarrow{p} f(A) \xrightarrow{j} B$$

where p is surjective and j is injective

Example 1.4. Consider $\mathbb{Z} \to \mathbb{Z}[i]$, where $i = \sqrt{-1}$. A prime ideal (p) of \mathbb{Z} may or may not stay prime when extended to $\mathbb{Z}[i]$. In fact $\mathbb{Z}[i]$ is a principal ideal domain (because it has a Euclidean algorithm, i.e., a Euclidean ring) and the situation is as follows:

- 1. $(2^e) = ((1+i)^2)$, the **square** of a prime ideal in $\mathbb{Z}[i]$
- 2. if $p \equiv 1 \mod 4$ then $(p)^e$ is the product of two distinct prime ideals (for example, $(5)^e = (2+i)(2-i)$)

3. if $p \equiv 3 \mod 4$ then $(p)^e$ is prime in $\mathbb{Z}[i]$

Let $f: A \to B$, $\mathfrak a$ and $\mathfrak b$ be as before. Then

Proposition 1.15. 1. $\mathfrak{a} \subseteq \mathfrak{a}^{ec}$, $\mathfrak{b} \supseteq \mathfrak{b}^{ce}$

- 2. $\mathfrak{b}^c = \mathfrak{b}^{cec}$, $\mathfrak{a}^e = \mathfrak{a}^{ece}$
- 3. If C is the set of contracted ideals in A and if E is the set of extended ideals in B, then $C = \{\mathfrak{a} \mid \mathfrak{a}^{ec} = \mathfrak{a}\}$, $E = \{\mathfrak{b} \mid \mathfrak{b}^{ce} = \mathfrak{b}\}$, and $\mathfrak{a} \mapsto \mathfrak{a}^e$ is a bijective map of C onto E, whose inverse is $\mathfrak{b} \mapsto \mathfrak{b}^c$.

Proof. 3. If $\mathfrak{a} \in C$, then $\mathfrak{a} = \mathfrak{b}^c = \mathfrak{b}^{cec} = \mathfrak{a}^{ec}$; conversely if $\mathfrak{a} = \mathfrak{a}^{ec}$ then \mathfrak{a} is the contraction of \mathfrak{a}^e .

Proof. 1.

Exercise 1.0.3. If $\mathfrak{a}_1, \mathfrak{a}_2$ are ideals of A and if $\mathfrak{b}_1, \mathfrak{b}_2$ are ideals of B, then

$$(\mathfrak{a}_1 + \mathfrak{a}_2)^e = \mathfrak{a}_1^e + \mathfrak{a}_2^e \quad (\mathfrak{b}_1 + \mathfrak{b}_2)^c \supseteq \mathfrak{b}_1^c + \mathfrak{b}_2^c$$

1.1 Exercise

Exercise 1.1.1. Let x be a nilpotent element of a ring A. Show that 1+x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit

Proof. x is a element of a nilradical, which is the intersection all prime ideals. Since every maximal ideal is a prime ideal, then nilradical is a subset of Jacobson radical. Then $1-(-u^{-1})x$ is a unit for some unit u, hence u+x is a unit