```
Simple linear
   SST, \hat{\Sigma}(y_i - \bar{y})^2 = SSE, \Sigma(y_i - \hat{y})^2 + SSR, \Sigma(\hat{y} - \bar{y})^2, \hat{\beta}_1^2 S_{xx}, \hat{\beta}_1 S_{xy}
 E[]: \beta_1^2 S_{xx} + (n-1)\sigma^2 = (n-2)\sigma^2 + \sigma^2 + \hat{\beta}_1^2 S_{xx} 
 S_{xx} \sum_{i=1}^{10} (x_i - \bar{x})^2 = 472, S_{yy} = \sum_{i=1}^{10} (y_i - \bar{y})^2 = 731, S_{xy} \sum_{i=1}^{10} (x_i - \bar{x})(y_i - \bar{y}) = 274 
 \hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{274}{472} = 0.5805 = \sum_{i=1}^{10} c_i y_i = r \frac{SD_x}{SD_x} = \frac{\sigma^2}{(n-1)S_x^2}; \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}
  \begin{split} \hat{\sigma}^2 &= \frac{SSE}{n-2} = \frac{1}{8}(S_{yy} - \frac{S_{xy}^2}{S_{xx}}) = \frac{1}{8}(731 - \frac{274^2}{472}) = 71.4926\\ \hat{\beta}_1 &\sim N(\beta_1, \frac{\hat{\sigma}^2}{S_{xx}}); \hat{\beta}_0 \sim N(\beta_0, \hat{\sigma}^2[\frac{1}{n} + \frac{x^2}{S_{xx}}]); \end{split}
   Var(\hat{\beta}_0) = \frac{71.4926}{472} = 0.1515; Var(\hat{\beta}_1) = 71.4926(\frac{1}{10} + \frac{x^2}{472})
  H_0: \hat{\beta}_1 = 0; t_0 = \frac{\hat{\beta}_1 - 0}{\sqrt{Var(\hat{\beta}_1)}} = \frac{0.5805}{\sqrt{0.1515}} = 1.4916 < t_{\frac{0.05}{2}, n-2} = 2.31Fail to reject
  \hat{\beta}_1 \pm t_{\frac{0.05}{k+1}, n-2} se(\hat{\beta}_1) = 0.5805 \pm 2.31 \sqrt{0.1515}, (-0.3185, 1.4795)
   \hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_0 = 168.3609; \bar{x} = 147.6923, S_{XX} = \sum_{i=1}^{13} (x_i - \bar{x})^2 = 6230.769
  CI se(y_0) = \sqrt{MSE(\frac{1}{n} + \frac{(x_0 - \hat{x})^2}{S_{YY}})} = \sqrt{275.06005(\frac{1}{13} + \frac{(170 - 147.6923)^2}{6230.769})} = 6.5671
  \hat{y} \pm t_{n-2,0.025} se(y_0) = \frac{168.3609}{168.3609} \pm \frac{2.200985}{5x} * 6.5671, (153.9068, 182.815)
PI se(y_0) = \sqrt{MSE(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{5x})}; 168.3609 \pm 2.2 * 17.8378; (129.1002, 207.6216)
   least-squares estimators SSE = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i - \beta_2 x_i^2)^2
    \frac{\partial SSE}{\partial \beta_{0,1,2}} = 2\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i - \hat{\beta}_2 x_i^2)(-1, -x_i, -x_i^2) \stackrel{set}{=} 0
   Regression with indicator .....
  y_{i} = \beta_{0} + \beta_{1}x_{i} + \beta_{2}w_{i} + \beta_{3}w_{i}x_{i} + \varepsilon_{i}, w_{i} = \begin{cases} 0 & 1 \leq i \leq \frac{n}{2} \\ 1 & \frac{n}{2} + 1 \leq i \leq n \end{cases}
 H_0: \beta_3 = \beta_4 = \beta_5 = 0; r = 3; H'_0: \beta_2 = \beta_4 = 0; r = 2;

F_{p,3,69} = \frac{96/3}{336/69} = 6.5714; F' = \frac{153/2}{336/69} = 15.7098

p < 0.05 reject H_0 at 0.05 level of significance

R^2 = \frac{SSR}{SST} = \frac{271}{703}; R_{adj}^2 = 1 - \frac{SSE/dfE}{SST/dfT} = 1 - \frac{432/72}{703/74}; R_{pre}^2 = 1 - \frac{PRESS}{SST}
   coefficient of determination is the proportion of variation explained by regressor x
   |\mathbf{r}| = \sqrt{R^2} = \frac{S_{xy}}{\sqrt{S_x x S_y y}} = \frac{Cov(x,y)}{\sqrt{VXVY}} = \frac{\mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r}}{Se\hat{\beta}_1 se\hat{\beta}_0}
  CI: \hat{\beta}_1 \pm t_{\frac{\alpha}{2},n-k-1} se(\hat{\beta}_1), se(\hat{\beta}_1) = \sqrt{MSE \cdot C_{22}}; Bonferroni:t_{\frac{\alpha}{2(k+1)}}, Scheffe \sqrt{2F_{\alpha}}
   8.1556 \pm t(0.005, 9)\sqrt{8.8436 * 0.2483}, 8.1556 \pm 3.25 \times 4.4071; (-6.1653, 22.4765)
 \sum_{j=1}^{m} \sum_{i=1}^{n_i} (y_{ij} - \hat{y}_i)^2 (SSE) = \sum_{j=1}^{m} \sum_{i=1}^{n_i} (y_{ij} - \bar{y}_i)^2 (SS_{PE}) + \sum_{i=1}^{m} n_i (y_{ij} - \hat{y}_i)^2 (SS_{LOF})
  SS_{PE} = \sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2 = 28; SS_{LOF} = 703.87576 - 28 = 675.8758;
   df_{PE} = n - m = 12 - 9 = 3; MS_{PE} = 28/3; df_{LOF} = dfE - df_{PE} = m - (k+1) = 6
   F = \frac{SS_{LOF}/df_{LOF}}{MS_{PE}} = \frac{675.87576/7}{28/3} = 10.34504 > F(0.05, 6, 3) = 8.94. Reject
  \begin{array}{lll} \textbf{CKD} \\ \textbf{A_{f,r}} \ \textbf{y}_{ij} = \ \mu + \tau_i + \epsilon_{ij}; \epsilon_{ij} \sim iidN(0, \sigma^2); \ \textbf{f} \ \sum_{i=1}^a \tau_i = 0; \ \textbf{r} \tau_i \sim iidN(0, \sigma_\tau^2) \\ \textbf{SS} & \textbf{df} & \textbf{MS} \ \textbf{F} & \textbf{EMS} & \textbf{EMS}_r \\ \hline \textbf{Trtn} \ \boldsymbol{\Sigma}^a (\bar{y}_{i.} - \bar{y}_{..})^2 & \textbf{a-1} & \frac{SS_{Tt}}{a-1} & \frac{MS_{Ttt}}{MS_E} \sigma^2 + \frac{n \boldsymbol{\Sigma} \tau^2}{a-1} \sigma^2 + n \sigma_\tau^2 \\ \end{array}
 E \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i.})^{2} \operatorname{a}(n-1) \left| \frac{SS_{E}}{N-a} \right|^{MSE}
T \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{..})^{2} \operatorname{a}(n-1) \left| \frac{SS_{E}}{N-a} \right|^{MSE}
\hat{\sigma}^{2} = MSE = \frac{SSE}{N-a}, \hat{\sigma}_{i}^{2} = \frac{MS_{Trt} - MSE}{n}
   y_{ij} \sim n(\mu + \tau_i, \sigma^2); \bar{y}_{i.} \sim n(\mu + \tau_i, \frac{\sigma^2}{n}); \bar{y}_{i.} - \bar{y}_{j.} \sim n(\mu_i - \mu_j, \frac{2\sigma^2}{n})
 E[y_{ij} - \bar{y}_{i.}] = V[] = \frac{n-1}{n}\sigma^2
CI of \mu_i: \bar{y}_i \pm t_{\frac{\alpha}{2}} \sqrt{\frac{MS_E}{n}}; unbalanved \bar{y}_{i.} \pm t_{\frac{\alpha}{2}} \sqrt{\frac{MS_E}{n_i}}
  \mu_i - \mu_j: \bar{y}_{i.} - \bar{y}_{j.} \pm t_{\frac{\alpha}{2}} \sqrt{\frac{2MS_E}{n}}; unbalanved \bar{y}_{i.} - \bar{y}_{j.} \pm t_{\frac{\alpha}{2}} \sqrt{MS_E(\frac{1}{n_i} + \frac{1}{n_j})}
 \sigma^{2} : \frac{SSE}{\chi_{a/2,df_{E}}^{2}}, \frac{SSE}{\chi_{1-a/2,df_{E}}^{2}} \Gamma : \sum_{i=1}^{a} c_{i} \bar{y}_{i} \pm t_{\frac{\alpha}{2}} \sqrt{\frac{MS_{E}}{n} \sum_{i=1}^{a} c_{i}^{2}} \frac{MS_{Trt}}{MS_{E}} \cdot \frac{\sigma^{2}}{n\sigma_{\tau}^{2} + \sigma^{2}} \sim F_{a-1,N-a}
CI of prop of var \frac{\sigma^{2}}{\sigma_{\tau}^{2} + \sigma^{2}} : \frac{L}{1+L}, \frac{U}{1+U}; L = \frac{1}{n} \left( \frac{MS_{Trt}}{MS_{E}F_{a/2}} - 1 \right); U = \frac{1}{n} \left( \frac{MS_{Trt}}{MS_{E}F_{1-a/2}} - 1 \right)
H_{0} : \beta_{1} = 2\beta_{3}, \beta_{2} = \beta_{3}, \beta_{5} = 0
  \mathbf{T} = \begin{bmatrix} 0 & 1 & 0 & -2 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}_{3\times7} \mathbf{fi} = \begin{bmatrix} \text{FU} \\ \vdots \\ \hat{\beta}_{6} \end{bmatrix}_{7\times1} \mathbf{C} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}_{3\times1} \textit{rank}(T) = 3
 \begin{array}{c} \text{contrast } \Gamma = \sum_{i=1}^{a} c_i \mu_i, C = \sum_{i=1}^{a} c_i \bar{y}_i; \sum_{i=1}^{a} c_i = 0; \text{Orthogonal } \sum_{i=1}^{a} c_i d_i = 0 \\ SS_C = \frac{(\sum_{i=1}^{a} c_i \bar{y}_i)^2}{\frac{1}{n} \sum_{i=1}^{a} c_i^2}; \sum_{1}^{a-1} SS_C = SS_{Trt}; V[\sum_{i=1}^{a} c_i y_i] = \sigma^2 \sum_{i=1}^{a} n_i c_i^2 \\ \hat{\tau}_1 + \hat{\tau}_2 + \hat{\tau}_3 = 0 \quad |\hat{\mu} = 13.8 | \text{(a)} \quad |\text{Contrast} \quad |\text{(b)} \quad |\hat{\mu} = 8.4 \quad |\hat{\tau}_3 = 0 \\ \hat{\mu} + \hat{\tau}_1 = \bar{y}_1 = 10.8 \hat{\tau}_1 = -3.0 | 10.8 | \mu + \tau_1 \\ \hat{\mu} + \hat{\tau}_2 = \bar{y}_2 = 22.2 \hat{\tau}_2 = 8.4 \quad |\text{P} > 0.2 \tau_1 - \tau_2 - \tau_3 | \text{P} > 0.0 \hat{\tau}_2 = 13.8 | \hat{\mu} + \hat{\tau}_2 = \bar{y}_2 = 22.2 \\ \hat{\mu} + \hat{\tau}_3 = \bar{y}_3 = 8.4 \quad |\hat{\tau}_3 = -5.4 | 19.2 | \mu + \tau_1 + \tau_2 \\ H_{CO,DO}; \sum_{i=1}^{3} c_i d_i = 0 \text{C}, \sum_{i=1}^{2} c_i, d_i \bar{y}_i, F_{1,12} \\ SS_{C,D}/MS_E \\ SS_{C,D}/M
 \begin{array}{l} \ddot{\mu} + \tau_3 = y_3 = 0.4 \ \mu_3 = 0.4 \ \mu_3 = 0.4 \ \mu_3 = 0.4 \ \mu_3 = 0 \end{array} \\ H_{C0,D0}; \sum_{i=1}^3 c_i d_i = 0 \\ C, D\sum_{i=1}^a c_i , d_i \ddot{y}_i \\ \mu_1 - 2\mu_2 + \mu_3 = 0 \\ \ddot{y}_1 - 2\ddot{y}_2 + \ddot{y}_3 \\ \ddot{y}_1 - \ddot{y}_3 \\ \end{array} \\ \begin{array}{l} F_{1,12} \\ C^2 / \frac{MS_E}{n} \sum_{i=1}^a c_i^2 \\ C^2 / \frac{MS_E}{n} \sum_{i=1}
  \begin{array}{l} \mu_1 - \mu_3 = 0 \\ \textbf{RCBD} \\ \textbf{Trt}_\mathbf{f} + \textbf{Blk}_\mathbf{f} \end{array}
```

```
and k^m block of factor C; y_{ijkl} is response;
Assumptions: \varepsilon_{ijk} \sim iidN(0, \sigma^2); \Sigma \alpha = 0; \Sigma \beta = 0; Indep
The Latin-Squre design can only use 2 blocking factors, as we distribute the levels of the treatment factor on a table with rows of one blocking factor (each row is fore one block) and columns of the other blocking factor (each column is one block)
To test three blocking factors by turning the Latin-square design into a Graeco-Latin square design, which allows to add a Greek letter to each entry in the table, where each Greek letter stands for a block of the factor G. Graeco-Latin square: y_{ijkl} = \mu + \theta_i + \tau_j + \omega_k + \psi_l + \varepsilon_{ijkl}; i, j, k, l = 1, 2, ..., p where y_{ijk} is the observation in row i and column 1 for Latin letter j and Greek letter k, \theta_i is the effect of the ith row, \tau_j is the effect of column 1 and \varepsilon_{ijkl} \sim iidN(0, \sigma^2) is a random error
       letter treatment k, \psi_l is the effect of column l, and \varepsilon_{ijkl} \sim iidN(0, \sigma^2) is a random error
        component. Only two of the four subscripts are necessary to completely identify an
        observation.
LSDSS proper p \sum_{j=1}^{p} (\bar{y}_{i..} - \bar{y}_{...})^{2} Row p \sum_{j=1}^{p} (\bar{y}_{.j.} - \bar{y}_{...})^{2} Col p \sum_{k=1}^{p} (\bar{y}_{.k} - \bar{y}_{...})^{2} E \sum_{S_{T}} - S_{S}
                                                                                                                                                                                                                                                                                                                                                                      Graebs

Graebs

Trt1 b \sum_{i=1}^{a} (\bar{y}_{i} - \bar{y}_{..})^{2} p-1

Trt2 b \sum_{i=1}^{a} (\bar{y}_{i} - \bar{y}_{..})^{2} p-1

Row a \sum_{j=1}^{b} (\bar{y}_{j} - \bar{y}_{..})^{2} p-1

Col a \sum_{j=1}^{b} (\bar{y}_{j} - \bar{y}_{..})^{2} p-1

E SS_{T} - SS. (p-1
                                                                                                                                                                                       p-1
                                      SS_T^{-1}SS (p-1)(p-2)
\sum^p \sum^p \sum^p (y_{ijk} - \bar{y}_{..})^2 p^2 - 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (p-1)(p-3)
                                                                                                                                                                                                                                                                                                                                                                                                             \sum_{i}^{p} \sum_{j}^{p} (y_{ijkl} - \bar{y}_{..})^{2} p^{2} - 1
                                                                                                                                                                                                                    Case3
p-1
                                                                                                                                         Case2
p-1
                                      Rowp-1
Col p-1
        Rep n-1
     \begin{array}{l} \frac{7}{\rm T} \frac{1}{(np^2-1)} \frac{1}{(np^2-1)(np-2)(p-1)(np-n-1)} \frac{1}{(np^2-1)(np-n-1)} \frac{1}{(np^2-1)(np-n-1)} \frac{1}{(np^2-1)(np-n-1)} \frac{1}{(np^2-1)(np-n-1)(np-n-1)} \frac{1}{(np^2-1)(np-n-1)(np-n-1)(np-n-1)} \frac{1}{(np^2-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-n-1)(np-
       y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}; i = 1, ..., a, j = 1, ..., b; y_{i.} = \sum_j y_{ij}, \bar{y}_{.j} = \frac{1}{k} \sum_i y_{ij} = \frac{y_{.j}}{k};
Q_i = (y_{i.} - \sum_{j=1}^b n_{ij}\bar{y}_{.j}) \text{ where } n_{ij} = \begin{cases} 1 & i^{th} \text{ trt appears in } i^{th} \text{ blk} \\ 0 & \text{o.w.} \end{cases}
|\mathbf{g}| = (\mathbf{g}) \cdot \mathbf{g} \cdot 
       \operatorname{Trt} \underbrace{\frac{k}{\lambda a} \sum^{a} Q_{i}^{2} = \frac{k}{\lambda a} \sum^{a} (y_{i.} - \sum^{b} n_{ij} \bar{y}_{.j})^{2}}_{\text{b-1}} \text{a-1}
\operatorname{Blk} k \sum_{j=1}^{b} (\bar{y}_{.j} - \bar{y}_{..})^{2}
b-1
       E T-Trt<sub>adj</sub>-Blk
                                                                                                                                                                                                                                                                              N-a-b+1Sizek=5
       T \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{..})^2
                                                                                                                                                                                                                                                                           N-1
                                                                                                                                                                                                                                                                                                                                    N = ar = bk = 105
       replications of each pair \lambda = \frac{(k-1)}{a-1}r = \frac{k(k-1)}{a(a-1)}b = 10 = \frac{2}{3}r \in \mathbb{N}^+
        the smallest number of observations per treatment is a multiple of 3 and 5
       Fixed v.s. random; crossed v.s. nested (a)Fixed effects are constant across individuals, random effects vary. Effects are fixed if they are interesting in themselves or random if there is interest in the underlying
     population. When a sample exhausts the population, the corresponding variable is fixed; when the sample is a small part of the population the corresponding variable is random. If an effect is assumed to be a realized value of a random variable, it is called a random effect.

Example: A lab want to test the quality of products. There are only two specific test
       machines. Each machine assigned two operators who randomly sellected from a large amont of operators. Each poerator test the products in three specific temperature. In
        this test, the factor mathine and temperature have fixed effects. The factor operator
       has random effects.
(b) Iwo factors are crossed when every category of one factor co-occurs in the design with every category of the other factor. There is at least one observation in every
        combination of categories for the two factors.
        A factor is nested within another factor when each category of the first factor co-
       occurs with only one category of the other. An observation has to be within one category of Factor 2 in order to have a specific category of Factor 1. All combinations
        of categories are not represented.
        You can calculate an interaction between two crossed factors. If they are nested, you
     cannot because you do not have every combination of one factor along with every combination of the other.

In Example (a), Three temperature are applied on each machine. Thus, temperature and machine have crossed effect. The operators were assigned to each machine are different. The operators are nested in the levels of factor machine. Thus, the effects of the factor operator are nested effect.

Factorial model
           Factorial model
     Factorial model k factors, p generators; 2^p blocks/fraction; 2^{k-p}Run, Blk size; 2^p - 1 alias; 2^p - p - 1 auto confounded; I = ABC = BCD = AD AD+, ABC-, BCD-;(1), BCD-;(1), BCD-;(1), BCD-;(1), BCD-;(1), BCD-;(1), BCD-;(1), BCD-;(2), BCD-;(1), BCD-;(2), BCD-;(2), BCD-;(3), BCD-;(4), BCD-;(5), BCD-;(6), BCD-;(7), BCD-;(8), BCD-;(8),
```

 $y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$, for $\varepsilon_{ij} \sim iidN(0, \sigma^2)$, i = 1, ..., a, j = 1, ..., b

 $\begin{vmatrix} \mathbf{a} - 1 & \begin{vmatrix} \frac{SS_{TH}}{a-1} & \frac{MS_{TH}}{MS_E} \\ \mathbf{b} - 1 & \frac{SS_{BIK}}{b-1} & \frac{MS_{BIK}}{MS_E} \\ (\mathbf{a} - 1)(\mathbf{b} - 1) & \frac{SS_E}{df_E} & \sigma^2 \end{vmatrix} \sigma^2 + \frac{b\sum^a \tau^2}{b-1} \sigma^2 + a\sigma_\tau^2$

 τ_i is effect of i^{th} treatment; α_j is effect of j^{th} block of factor R; β_k effect of k^{th} block of

factor C; ε_{ijkl} is random error when i^{th} treatment is applied at j^{th} block of factor R

Missing Values: Exact(partial) method $F_0 = \frac{(SSE_{red} - SSE_{ful})/r}{MSE_{ful}} = \frac{1403.7 - 921.5}{184.30*(a-1)};$

Apporximation method $\hat{x} = \frac{ay'_1 + by'_1 - y'_1}{(a-1)(b-1)}$, $F_{adj} = \frac{MS_{Trt}}{SSE/df} = \frac{162.08}{921.5/(6-1)}$

 $y_{ijk} = \mu + \tau_i + \alpha_j + \beta_k + \varepsilon_{ijk}$, i, j, k = 1, ..., 6; where μ overall mean

f: $\sum_{i=1}^{a} \tau_i = 0$, $\sum_{j=1}^{b} \beta_j = 0$; r: $\beta_j \sim iidN(0, \sigma_{\beta}^2)$

and k^{th} block of factor C; y_{ijkl} is response;

Trt $b \sum^{a} (\bar{y}_{i.} - \bar{y}_{..})^{2}$ a-1 Blk $a \sum_{i=1}^{b} (\bar{y}_{.i} - \bar{y}_{..})^2$ b-1

 $T \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{..})^2 ab-1$

E T-Trt-Blk

T

term i(f)j(f)k(r)df	SS MSEMS $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
$A\tau_i f$ 0 b n a-1	$bn \sum^{d} (\bar{y}_{i} - \bar{y}_{})^{2}; \frac{\sum^{d} y_{i}^{2}}{bn} - \frac{y_{}^{2}}{abn}, 96$ 96 $\sigma^{2} + \frac{bn \sum \tau_{i}^{2}}{a-1}$
$B\beta_j f$ a 0 n b-1	$an \sum_{j=1}^{b} (\bar{y}_{,j.} - \bar{y}_{,})^2; \frac{\sum_{j=1}^{b} y_{,j.}^2}{an} - \frac{y_{,}^2}{abn}; 208$ $104\sigma^2 + \frac{an \sum_{j=1}^{b} \beta_j^2}{b-1}$
AB	$n \sum^{a} \sum^{b} (y_{ij.} - \bar{y}_{i} - \bar{y}_{.j.} + \bar{y}_{})^{2};112$
$(\tau \beta)_{ij} \mathbf{f} 0 0 \mathbf{n} (a-1)(b-1)$	$n \sum \sum y_{ij.}^2 - \frac{1}{abn} y_{}^2 - SS_A - SS_B$ 56 $\sigma^2 + \frac{n \sum (\tau \beta)_{ij}}{(a-1)(b-1)}$
$E\varepsilon_{ijk}$ r 1 1 1 ab(n-1),18	$SST - \sum SS; (n-1) \sum^a \sum^b S_{ij}^2; 126$ 7 σ^2
Total abn-1,23	$\sum \sum \sum (y_{ijk} - \bar{y}_{})^2 \sum \sum y_{ijk}^2 - \frac{y_{}^2}{abn}; 542$
if Blk 1 n-1	$df_E = (ab-1)(n-1); \frac{\sum^n y_{-k}^2}{ab} - \frac{y_{-k}^2}{abn}$ $\sigma^2 + ab\sigma_\delta^2$
$H_0: (\tau\beta)_{ii} = 0 \forall i, i: F_{n,2,18}$	$\frac{MS_{AB}}{MSE} = \frac{56}{7} = 8$; $F_{0.05,2,8} = 3.55$. There is enough evidence
to reject H_0 . The model may not be reduced, as the interaction effects is significant at	
5% significance level. $\bar{y}_{12} - \bar{y}_{22} \pm t_{\frac{\alpha}{2},18} \sqrt{\frac{2MSE}{n}} = 14 - 8 \pm 2.1 \sqrt{\frac{2*7}{4}} = 6 \pm 3.9287; [2.0713, 9.9287]$	
$y_{12} - y_{22} \pm t_{\frac{\alpha}{2},18} \sqrt{\frac{2\pi n}{n}} =$	$= 14 - 8 \pm 2.1\sqrt{\frac{4}{4}} = 6 \pm 3.9287;[2.0713,9.9287]$
$E[SS_A] = on \sum_{i=1}^n E[(y_{i} - A_n \times B_n + A_n \times C_n])$	$[\bar{y}_{})^2] = bn \sum_{i=1}^a (E[]^2 + V[]) = bn \sum_{i=1}^a \tau_i^2 + (a-1)\sigma^2$ $[\mu + \tau_i + \beta_j + \gamma_k + (\tau\beta)_{ij} + (\tau\gamma)_{ik} + \varepsilon_{ijk}]$
iid $\varepsilon_{iik} \sim iidN(0,\sigma^2)$; $\tau_i \sim$	$ iidN(0,\sigma_{\tau}^{2}); \beta_{j} \sim iidN(0,\sigma_{\beta}^{2}); \gamma_{k} \sim iidN(0,\sigma_{\gamma}^{2}); (\tau\beta)_{ij} \sim $
$iidN(0,\sigma_{\tau\beta}^2); (\tau\gamma)_{ik} \sim iidN$	
i i k df SS]	EMS F
τ_i 1 bc a-1 $\sigma^2 + 1$	$b\sigma_{\tau\gamma}^2 + c\sigma_{\tau\beta}^2 + bc\sigma_{\tau}^2 \mid \frac{1}{bc} \sum_{i=1}^a y_{i}^2 - \frac{1}{abc} y_{}^2 \mid A/(AB+AC-E)$
β_j alc b-1 $\sigma^2 + \sigma^2$	$c\sigma_{\tau\beta}^{2} + ac\sigma_{\beta}^{2} \mid \frac{1}{ac} \sum_{j=1}^{b} y_{,j}^{2} - \frac{1}{abc} y_{,}^{2} \qquad MS_{B}/MS_{AB}$ $b\sigma_{\tau\gamma}^{2} + ab\sigma_{\gamma}^{2} \mid \frac{1}{ab} \sum_{k=1}^{c} y_{,k}^{2} - \frac{1}{abc} y_{,}^{2} \qquad C/AC$ $c\sigma_{\tau\beta}^{2} \mid \frac{\sum_{k=1}^{a} \sum_{j=1}^{b} y_{,i}^{2}}{c} - \frac{\sum_{k=1}^{a} y_{,k}^{2}}{bc} - \frac{\sum_{k=1}^{b} y_{,i}^{2}}{ac} + \frac{y_{,}^{2}}{abc} \qquad AB/E$
γ_k ab 1 c-1 $\sigma^2 + 1$	$b\sigma_{\tau\gamma}^2 + ab\sigma_{\gamma}^2 \mid \frac{1}{ab} \sum_{k=1}^c y_{k}^2 - \frac{1}{abc} y_{k}^2$ C/AC
$(\tau \beta)_{ij} 1 c (a-1)(b-1) \sigma^2 + \sigma^2 $	$c\sigma_{TB}^{2} \mid \frac{\sum^{u} \sum^{v} y_{ij.}^{2}}{c} - \frac{\sum^{a} y_{ij.}^{2}}{bc} - \frac{\sum^{c} y_{ij.}^{2}}{ac} + \frac{y_{i}^{2}}{abc}$ AB/E
(τx) ; 1b1(a-1)(c-1) σ^2 +	$b\sigma_{\tau\gamma}^{2} + \frac{\sum_{a}^{a}\sum_{b}^{c}y_{ik}^{2}}{b} - \frac{\sum_{a}^{a}y_{i.}^{2}}{bc} - \frac{\sum_{c}^{c}y_{-k}^{2}}{ab} + \frac{y_{}^{2}}{abc}$ $\sum_{b}^{a}\sum_{c}^{b}\sum_{c}^{c}y_{ijk}^{2} - \frac{\sum_{c}^{a}\sum_{b}^{b}y_{ij.}^{c}}{c} - \frac{\sum_{c}^{a}\sum_{i}^{c}y_{ik}^{2}}{b} + \frac{\sum_{c}^{a}y_{i.}^{2}}{bc}$ AC/E
	bc ab abc ab
ε_{ijk} [111] a(b-1)(c-1) σ^2	$\sum_{i} \sum_{j} \sum_{i} y_{ijk}^{2} - \frac{z_{ijk}}{c} - \frac{z_{ijk}}{c} - \frac{z_{ijk}}{b} + \frac{z_{ijk}}{bc}$
Total $abc - 1$ $\sum_{i=1}^{a}$ $F_{df_n,df_d} = \frac{MS'}{MS''}; df_n = df_c;$	$\sum_{j=1}^{\nu} \sum_{k=1}^{\nu} y_{ijk}^{-j} - \frac{1}{abc} y_{}^{2}$
$F_{df_n,df_d} = \frac{MS'}{MS''}; df_n = df_c;$	$df_d = \frac{(AC + BC + ABC)^2}{AC^2 + BC^2 + ABC^2}$
Mixed model	
$\mathbf{A_f} \times \mathbf{B_r} : y_{ijk} = \mu + \tau_i + \beta_j$	$+(\tau\beta)_{ij}+\varepsilon_{ijk}$
	$\tau_i = 0; \sum_{i=1}^{a} (\tau \beta)_{ij} = 0 \text{ (restricted model)}; \beta_j \sim iidN(0, \sigma_{\beta}^2);$
$(\tau \beta)_{ij} \sim iidN(0, \frac{a-1}{a}\sigma_{\tau\beta}^2)$	$r_{a} (\widehat{\sigma^{\varrho}})^{2} = r_{a} \nabla^{\varrho} \nabla^{\varrho} \Gamma(\widehat{\sigma} - \widehat{\sigma} - \widehat{\sigma} + \widehat{\sigma})^{2} =$
$L(SSAB) = L[L_{i=1} L_{j=1} L$ $V[\Gamma^a \Gamma^b \Gamma^n(\widehat{R})^2] \cdot O(R)$	$\sum_{k=1}^{m} (\widehat{\tau \beta})_{ij}^{2} = n \sum_{i=1}^{a} \sum_{j=1}^{b} E[(\bar{y}_{ij}, -\bar{y}_{i} - \bar{y}_{.j.} + \bar{y}_{})^{2}] = 1/(b + 1)(m^{2} + m^{2}) - n \sum_{i=1}^{a} \sum_{j=1}^{b} (\bar{x}_{.j}, -\bar{y}_{.j.} + \bar{y}_{})^{2} = 0$
$v [\sum \sum (\iota p)_{ij}] + 0 = (u - 1)$	$-1)(b-1)(n\sigma_{\tau\beta}^{2}+\sigma^{2})=n\sum^{a}\sum^{b}(\bar{y}_{ij.}-\bar{y}_{})^{2}-SS_{A}-SS_{B}$
ij kdf EMS B_r in.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
α_i f Obna-1 $\sigma_{\varepsilon}^2 + n\sigma_{\beta}^2 +$	$-\frac{bn\sum^{u}\alpha_{i}^{2}}{a-1} A/AB \sigma_{\varepsilon}^{2}+\frac{bn\sum^{u}\alpha_{i}^{2}}{a-1} \sigma_{\varepsilon}^{2}+n\sigma_{\beta}^{2}+bn\sigma_{\alpha}^{2}$
$\beta_{\rm or} = 0.1 \text{ma} (\text{b-1}) \sigma^2 + n \sigma^2$	$\Delta B / E \sigma^2 + \frac{n \sum_{i}^{a} \sum_{j}^{b} \beta_{ij}^2}{\sigma^2 + n \sigma^2}$
$s = r \cdot r$	$\frac{a(b-1)}{\sigma^2} \frac{c\varepsilon + a(b-1)}{\sigma^2} \frac{c\varepsilon + n\varepsilon\beta}{\sigma^2}$
$\frac{c_{ijk}}{T}$ abn-1	νε νε
$\frac{1}{\varepsilon_{(ijk)l}} \sim iidN(0,\sigma^2) \sum_{i=1}^2 \tau_i = 0 \qquad \sum_{k=1}^3 \gamma_k = 0 \qquad \beta_{j(i)} \sim iidN(0,\sigma^2_\beta)$	
$\sum_{i=1}^{2} (\tau \gamma)_{ik} = 0 \qquad \sum_{k=1}^{3} (\tau \gamma)_{ik} = 0 \\ \sum_{i=1}^{2} (\beta \gamma)_{j(i)k} = 0 \\ (\beta \gamma)_{j(i)k} \sim iidN(0, \frac{2-1}{2}\sigma_{\beta \gamma}^{2})$	
$\mathbf{B_{r}\text{-in-}A_f} \ y_{ijk} = \mu + \alpha_i + \beta_{ij} + \varepsilon_{ijk}; \sum_{i=1}^a \alpha_i = 0, \beta_{ij} \sim N(0, \sigma_{\beta}^2), \varepsilon_{ij} \sim N(0, \sigma_{\varepsilon}^2)$	
$Cov(y_{111}, y_{112}) = Cov(\beta_{11} + \varepsilon_{111}, \beta_{11} + \varepsilon_{112}) = Var(\beta_{11}) + Cov(\varepsilon_{111}, \varepsilon_{112}) = \sigma_{\beta}^2$	
$\begin{array}{l} Cov(y_{111},y_{121}) = Cov(\beta_{11} + \varepsilon_{111},\beta_{12} + \varepsilon_{121}) = Cov(\beta_{11},\beta_{12}) + Cov(\varepsilon_{111},\varepsilon_{121}) = 0 \\ Cov(y_{111},y_{211}) = Cov(\beta_{11} + \varepsilon_{111},\beta_{21} + \varepsilon_{211}) = Cov(\beta_{11},\beta_{21}) + Cov(\varepsilon_{111},\varepsilon_{211}) = 0 \end{array}$	
$Var(y_{111}) = \sigma_{\beta}^2 + \sigma_{\varepsilon}^2 = Var(y_{112});$	
$Cor(y_{111}, y_{112}) = \frac{\sigma_{\beta}^2}{\sigma_{\beta}^2 + \sigma_{\varepsilon}^2} Cor(y_{111}, y_{121}) = Cor(y_{111}, y_{211}) = 0$	
A linear combination of normal distributed random variables and constants are	

A linear combination of normal distributed random variables and constants are normal distributed. $E[\bar{y}_{ij.}] = E[\frac{1}{n}\sum_{k=1}^{n}y_{ijk}] = \frac{\sum_{k=1}^{n}E[\mu + \alpha_i + \beta_{ij} + \varepsilon_{ijk}] = \mu + \alpha_i, \forall i=1,...,a; j=1,...,b$

```
Var[\bar{y}_{ij.}] = Var[\frac{1}{n}\sum_{k=1}^{n}y_{ijk}] = \frac{\sum_{k=1}^{n}Var[\mu + \alpha_i + \beta_{ij} + \varepsilon_{ijk}]}{n^2} = \frac{1}{n}(\sigma_{\beta}^2 + \sigma_{\varepsilon}^2), \forall i
 f(\bar{y}_{i1},...\bar{y}_{ib}) = \prod_{j=1}^{b} f(\bar{y}_{ij}) = (2\pi^{\frac{\sigma_{\beta}^{2} + \sigma_{\varepsilon}^{2}}{n}})^{-\frac{b}{2}} \exp[\frac{-n}{2(\sigma_{\alpha}^{2} + \sigma_{\varepsilon}^{2})} \sum_{j=1}^{b} (\bar{y}_{ij} - \mu - \alpha_{i})^{2}]
 \hat{\alpha}_1 - \hat{\alpha}_2 \sim N(\alpha_1 - \alpha_2, \frac{2}{b}\sigma_b^2 + \frac{2}{bn}\sigma_\epsilon^2)
 SSE = \sum_{j=1}^{a} \sum_{k=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \mu - \alpha_i - \beta_{ij})^2; \frac{\partial SSE}{\partial \alpha_i} = 2 \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \mu - \alpha_i - \beta_{ij})(-1) \stackrel{set}{=} 0;
\hat{\alpha}_{i} = \frac{\sum_{j=1}^{b} \sum_{k=1}^{n} y_{ijk}}{bn} - \mu - \frac{\sum_{j=1}^{b} \beta_{ij}}{b} = \bar{y}_{i..} - \mu
\hat{\alpha}_{1} - \hat{\alpha}_{2} = \bar{y}_{1..} - \mu - (\bar{y}_{2..} - \mu) = \frac{1}{bn} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{1jk} - y_{2jk})
   = \frac{1}{bn} \sum_{j=1}^{b} \sum_{k=1}^{n} (\alpha_1 - \alpha_2 + \beta_{1j} - \beta_{2j} + \varepsilon_{1jk} - \varepsilon_{2jk}) = \alpha_1 - \alpha_2 + \bar{\beta}_{1.} - \bar{\beta}_{2.} + \bar{\varepsilon}_{1..} - \bar{\varepsilon}_{2..}
 \begin{array}{l} = \frac{1}{b^n} \sum_{j=1}^n \sum_{k=1}^n (u_1 - u_2 + \rho_{1j} - \rho_{2j} + \varepsilon_{1jk} - \varepsilon_{2jkj} - u_1 - u_2 + \rho_{1i} - \rho_{2i} - \varepsilon_{2ik} \\ E[\hat{\alpha}_1 - \hat{\alpha}_2] = \alpha_1 - \alpha_2; \\ Var[\hat{\alpha}_1 - \hat{\alpha}_2] = Var[\bar{\beta}_1. - \bar{\beta}_2. + \bar{\varepsilon}_{1..} - \bar{\varepsilon}_{2..}] \\ = \frac{1}{b^2} \sum_{j=1}^b (Var[\beta_1.] + Var[\beta_2.]) + \frac{1}{b^2 n^2} \sum_{j=1}^b \sum_{k=1}^n (Var[\varepsilon_{1..}] + Var[\varepsilon_{2..}]) = \frac{2}{b} \sigma_{\beta}^2 + \frac{2}{bn} \sigma_{\varepsilon}^2 \\ \bar{y}_{ij}. - \bar{y}_{i..} = \mu + \alpha_i + \beta_{ij} + \bar{\varepsilon}_{ij}. - (\mu + \alpha_i + \bar{\beta}_{i.} + \bar{\varepsilon}_{i..}) = \beta_{ij} - \bar{\beta}_{i.} + \bar{\varepsilon}_{ij}. - \bar{\varepsilon}_{i..} \\ E[\bar{y}_{ij}. - \bar{y}_{i..}] = E[\beta_{ij} - \bar{\beta}_{i} + \bar{\varepsilon}_{ij}. - \bar{\varepsilon}_{i..}] = 0 \\ Cov(\beta_{ij}, \bar{\beta}_{i.}) = \frac{1}{b} Cov(\beta_{ij}, \sum_{j=1}^b \beta_{ij}) = \frac{1}{b} [1 \cdot \sigma_{\beta}^2 + (b-1) \cdot 0] \\ \sum_{i=1}^n Cov(\varepsilon_{in}, \sum_{j=1}^b \varepsilon_{ij}) = \frac{2}{b} 
 Cov(\bar{\varepsilon}_{ij}, \bar{\varepsilon}_{i..}) = Cov(\frac{1}{n}\sum_{k=1}^{n} \varepsilon_{ijk}, \frac{1}{bn}\sum_{j=1}^{b}\sum_{k=1}^{n} \varepsilon_{ijk}) = \frac{\sum_{k=1}^{n} Cov(\varepsilon_{ijk}, \sum_{j=1}^{b} \varepsilon_{ijk})}{bn^2} = \frac{\sigma_{\varepsilon}^2}{bn}
 Var[\bar{y}_{ij.} - \bar{y}_{i..}] = Var[\beta_{ij} - \bar{\beta}_{i.} + \bar{\epsilon}_{ij.} - \bar{\epsilon}_{i..}] = Var[\beta_{ij} - \bar{\beta}_{i.}] + Var[\bar{\epsilon}_{ij.} - \bar{\epsilon}_{i..}] = Var[\beta_{ij} - \bar{\beta}_{i.}] + Var[\bar{\epsilon}_{ij.} - \bar{\epsilon}_{i..}] = Var[\beta_{ij}] + Var[\bar{\beta}_{i.}] - 2Cov(\beta_{ij.}, \bar{\beta}_{i.}) + Var[\bar{\epsilon}_{ij.}] + Var[\bar{\epsilon}_{i..}] - 2Cov(\bar{\epsilon}_{ij.}, \bar{\epsilon}_{i..})
  = \sigma_{\beta}^2 + \frac{1}{b}\sigma_{\beta}^2 - \frac{2}{b}\sigma_{\beta}^2 + \frac{1}{n}\sigma_{\varepsilon}^2 + \frac{1}{bn}\sigma_{\varepsilon}^2 - \frac{2}{bn}\sigma_{\varepsilon}^2 = \frac{b-1}{b}(\sigma_{\varepsilon}^2 + \frac{1}{n}\sigma_{\varepsilon}^2)
 E[\sum_{i=1}^{a} \sum_{j=1}^{b'} (\bar{y}_{ij.} - \bar{y}_{i..})^{2}] = \sum_{i=1}^{a} \sum_{j=1}^{b} (Var[\bar{y}_{ij.} - \bar{y}_{i..}] + E[\bar{y}_{ij.} - \bar{y}_{i..}]^{2})
  = \sum_{i=1}^{a} \sum_{j=1}^{b} \left[ \frac{b-1}{b} (\sigma_{\varepsilon}^2 + \frac{1}{n} \sigma_{\varepsilon}^2) + 0 \right] = a(b-1) (\sigma_{\beta}^2 + \frac{1}{n} \sigma_{\varepsilon}^2)
\begin{split} &\mathcal{L}_{i=1} \mathcal{L}_{j=1}^{j=1} \mathcal{L}_{b}^{b} \mathcal{L}_{i}^{c} \mathcal{L}_{n}^{c} \mathcal{L}_{i}^{c} \mathcal{L}_{j}^{c} \\ & \hat{\sigma}_{\beta}^{2} = \frac{MS_{AB} - MS_{E}}{n}; E[\hat{\sigma}^{2}] = \frac{1}{n} (n\sigma_{\beta}^{2} + \sigma_{\varepsilon}^{2} - \sigma_{\varepsilon}^{2}) = \sigma_{\beta}^{2} \\ & E(MS_{B_{f}(A_{f})}) = \frac{n}{a(b-1)} \sum_{i=1}^{a} \sum_{j=1}^{b} E[(\bar{y}_{ij} - \bar{y}_{i..})^{2}] = \sigma^{2} + \frac{n}{a(b-1)} \sum_{i=1}^{a} \sum_{j=1}^{b} \beta_{j(i)}^{2} \\ & \text{Nested-Three-stages } \mathbf{C}_{\mathbf{r}} - \mathbf{in} - \mathbf{A}_{\mathbf{f}} \mathbf{y}_{ijkl} = \mu + \tau_{i} + \beta_{j(i)} + \gamma_{k(ij)} + \varepsilon_{(ijkl)} \\ & \mathbf{E}(\mathbf{y}_{ij}) = \frac{n}{a(b-1)} \sum_{i=1}^{a} \sum_{j=1}^{b} \beta_{j(i)}^{2} \\ & \mathbf{E}(\mathbf{y}_{ij}) = \frac{n}{a(b-1)} \sum_{i=1}^{a} \sum_{j=1}^{b} \beta_{ij}^{2} \\ & \mathbf{E}(\mathbf{y}_{ij}) = \frac{n}{a(b-1)} \sum_{i=1}^{b} \beta_{ij}^{2
 \begin{aligned} & \epsilon_{ijkl} \sim iid \ N(0,\sigma^2); \sum_{i=1}^2 \tau_i = 0; \beta_{j(i)} \sim iid \ N(0,\sigma^2_\beta); \gamma_{k(ij)} \sim iid \ N(0,\sigma^2_\gamma) \\ & \text{iii} \ \text{KH} \ \text{Idf} & \text{SS} + \text{EMS} & \text{F} \end{aligned}
                                                                                                                                                   \sigma^{2} + n\sigma_{\gamma}^{2} + cn\sigma_{\beta}^{2} + \frac{bcn\sum^{a}\tau_{i}^{2}}{a-1} \mid \frac{\sum^{a}y_{i}^{2}}{bcn} - \frac{y^{2}}{abcn} A/B(A)
\sigma^{2} + n\sigma_{\gamma}^{2} + cn\sigma_{\beta}^{2} \mid \frac{\sum^{a}\sum^{b}y_{ij}^{2}}{cn} - \frac{\sum^{a}y_{i}^{2}}{bcn} B(A)/C(A)
                                                                             0bcna-1
 A_f \tau_i
 B(A)_r \beta_{j(i)}
                                                                                                                                                                                                                                                                                                                                                                                         B(A)/C(A(B))
 C(B(A))r\gamma_{k(ji)}|1|1|n|ab(c-1)|\sigma^2 + n\sigma_{\gamma}^2 + \frac{1}{n}\sum^a\sum^b\sum^cy_{ijk.}^2 - \frac{1}{cn}\sum^a\sum^by_{ij..}^2
                                                                                                                                                                                                                                                                                                                                                                                       C(A(B))/E
                                                                            11111abc(n-1)\sigma^2 + \sum^a \sum^b \sum^c \sum^n y_{ijkl}^2 - \frac{1}{n} \sum^a \sum^b \sum^c y_{ijk}^2
  \varepsilon_{(ijk)l}
                                                                                                       abcn-1 \sum_{a}^{a} \sum_{b}^{c} \sum_{c}^{n} y_{ijkl}^{2} - \frac{1}{abcn} y_{...}^{2}
 T
 Nested-Factorial Factors B_r-in-A_f \times C_f
                                                                                    ij kl df
                                                                                      0bc na-1
                                                                                                                                                                           \sigma^2 + cn\sigma_{\beta}^2 + \frac{bcn\sum_{i=1}^a \tau_i^2}{\sigma_{\beta}^2}
                                                                                                                                                                                                                                                                                                                 MS_A/B(A)
  A_f \tau_i
 \overline{\mathrm{B}(\mathrm{A})_r}\overline{\beta}_{j(i)}
                                                                                      11cna(b-1)
                                                                                                                                                                           \sigma^2 + cn\sigma
                                                                                                                                                                                                                                                                                                                 B(A)/E
                                                                                                                                                                             \tau^2 + n\sigma_{\gamma\beta}^2 + \frac{abn\sum^c \gamma_k^2}{c-1}
                                                                                      ab0nc-1
                                                                                                                                                                                                                                                                                                                  C/CB(A)
 C_f(\gamma)_k
                                                                                                                                                                                                                                              \frac{bn\sum^a\sum^c(\tau\gamma)_{ik}^2}{AC/CB(A)}
                                                                                                                                                                           \sigma^2 + n\sigma_{\gamma\beta}^2 +
                                                                                      0b0n(a-1)(c-1)
  AC_f(\tau\gamma)_{ik}
  CB(A)_r(\gamma\beta)_{kj(i)} 110 na(b-1)(c-1)\sigma^2 + n\sigma_{\gamma\beta}^2
                                                                                                                                                                                                                                                                                                                  CB(A)/E
                                                                                      1111abc(n-1)
  \varepsilon_{(ijk)l}
T
Split-Plot
                                                                                      abcn-1
  \mathbf{\hat{Run}_r} \times \mathbf{A_f} \times \mathbf{B_f} \ y_{ijkl} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \gamma_k + (\tau\gamma)_{ik} + (\beta\gamma)_{jk} + (\tau\beta\gamma)_{ijk} + \varepsilon_{ijk};
 i=1,2,..,r;j=1,2,..,a;k=1,2,..,b
 \varepsilon_{ijk} \sim iidN(0,\sigma^2)|\tau_i \sim iidN(0,\sigma_\tau^2)
                                                                                             \sum_{j=1}^{3} (\tau \beta)_{ij} = 0
                                                                                                                                                                                            |(\tau\beta)_{ij} \sim iidN(0, \frac{3-1}{3}\sigma_{\tau\beta}^2)
 \sum_{j=1}^{3} \beta_j = 0
 \begin{array}{l} \sum_{k=1}^{J-1} \gamma_k = 0 & \sum_{k=1}^{J} (\tau \gamma)_{ik} = 0 \\ \sum_{j=1}^{3} (\beta \gamma)_{jk} = 0 & \sum_{k=1}^{J} (\beta \gamma)_{jk} = 0 \end{array}
                                                                                                                                                                                            |(\tau \gamma)_{ik} \sim iidN(0, \frac{4-1}{4}\sigma_{\tau \gamma}^2)|
 \sum_{i=1}^{3} (\tau \beta \gamma)_{ijk} = 0 \sum_{k=1}^{4} (\tau \beta \gamma)_{ijk} = 0 (\tau \beta \gamma)_{ijk} \sim iidN(0, \frac{(3-1)(4-1)}{3\times 4} \sigma_{\tau \beta \gamma}^2)
                                                                                                                                                                         EMS
                                                                            i j kdf
                                                                                                                                                                         \sigma^2 + ab\sigma_{\tau}^2
  R_r \tau_i
                                                                                                                                                                                                                                                                                                                                                MS_R/MS_E
                                                                             1abr-1
                                                                                                                                                                          \sigma^2 + b\sigma_{\tau\beta}^2 + \frac{rb\sum^a \beta_j^2}{a-1}
                                                                             r0ba-1
  A_f \beta_i
                                                                                                                                                                                                                                                                                                                                                A/RA
                                                                             10b(r-1)(a-1)
                                                                                                                                                                          \sigma^2 + b\sigma_{\tau\beta}^2 = E(Whole-plot error)RA/E
  RA_r(\tau\beta)_{ii}
                                                                                                                                                                          \sigma^2 + a\sigma_{\tau\gamma}^2 + \frac{ra\sum^b \gamma_k^2}{b-1}
                                                                               ra0b-1
                                                                                                                                                                                                                                                                                                                                                B/RB
  B_f(\gamma)_k
                                                                                                                                                                          \sigma^2 + a\sigma_{\tau\gamma}^2
                                                                             1a0(r-1)(b-1)
                                                                                                                                                                                                                                                                                                                                                RB/E
  RB_r(\tau\gamma)_{ik}
                                                                                                                                                                                                                                              r \sum_{a}^{a} \sum_{b}^{b} (\beta \gamma)_{jk}^{2}
                                                                                                                                                                          \sigma^2 + \sigma^2_{\underline{	aueta\gamma}}
                                                                                00(a-1)(b-1)
                                                                                                                                                                                                                              +\frac{-}{(a-1)(b-1)}
  AB_f(\beta\gamma)_{ik}
                                                                                                                                                                                                                                                                                                                                                AB/RAB
  RAB_r(\tau\beta\gamma)_{ijk} 100 (r-1)(a-1)(c-1)\sigma^2 + \sigma_{\tau\beta\gamma}^2
                                                                                                                                                                                                                                                                                                                                                 RAB/E
                                                                                                                                                                          \sigma^2not estimatable
  \varepsilon_{(ijk)h}
```