

# Anàlisi i Disseny d'Aplicacions

# Anàlisi de requeriments (UML)

**Josep Gutiérrez** 

Departament d'informàtica Salesians de Sarrià



# Model de casos d'ús

#### Casos d'ús

- Els casos d'ús és una tècnica per a l'especificació de requisits funcionals proposat per **Ivar Jacobson** i incorporada actualment a UML
- Reparteix la funcionalitat del sistema en transaccions significatives pels usuaris d'un sistema
- Els usuaris del sistema es denominen **actors** i les particions funcionals es coneixen amb el nom de **casos d'ús**
- Els casos d'ús descriuen el comportament del sistema des del punt de vista de l'usuari
- Estableixen els límits del sistema i defineixen les relaciones entre aquest i l'entorn.
- Els casos d'ús són descripcions de la funcionalitat del sistema (què?) independents de la implementació (com?).
- Estan basats en el llenguatge natural, cosa que facilita la seva comprensió per part dels usuaris.



# Obtenció de requeriments

- Segons el Procés Unificat de Desenvolupament, els principals passos per a capturar els requeriments són:
  - Identificació de actors i casos d'ús
  - Prioritzar casos d'ús
  - Detallar casos d'ús
  - Prototipar la interfície d'usuari
  - Estructurar el model de casos d'ús

# Obtenció de requeriments

Mostrem en un diagrama d'activitats el procés d'obtenció de requeriments





# Identificació d'actors i casos d'ús

## **Objectius**



- Delimitar el sistema i el seu entorn
- Esbossar qui o què (actors) interactuarà amb el sistema, i quina funcionalitat (casos d'ús) s'espera del sistema
- Capturar i definir un glossari de termes comuns essencials per a poder descriure detalladament els casos d'ús del sistema.
- És l'activitat més decisiva per a obtenir adequadament els requeriments
- Responsabilitat de l'analista de requeriments



# Identificació d'actors i casos d'ús

#### **Activitats**

- Establir el límit del sistema: només software, hardware i software, ho utilitza una persona, una organització,...
- Identificació d'actors principals: usuaris que satisfan els seus objectius mitjançant l'ús dels serveis del sistema
- Identificar per a cada actor els seus objectius i escenaris associats
- Definir els casos d'ús que satisfacin els objectius d'usuari. Nomenarlos d'acord amb els seus objectius..
- Descriure breument (descripció informal) cada cas d'ús



# Identificació d'actors

- Els Actors representen entitats externes que interactuen amb el sistema
- Poden ser un usuari o un sistema extern
- Un actor representa un rol:
  - No es correspon directament amb persones concretes
  - Tota persona que interactua amb el sistema ha d'estar representat al menys per un actor en el model de casos d'ús
- Identificació d'actors
  - Quins grups d'usuaris necessiten el sistema?
  - Quins usuaris realitzen les funcions principals del sistema?
  - Quins usuaris realitzen funciones secundaries, com manteniment o administració?
  - Existeix algun sistema extern de hardware o software?
- Cal donar nom als actors i descriure breument el seu rol i per a què utilitzen el sistema



# Tipus d'actors

- Actor principal: té objectius d'usuari que es satisfan amb l'ús dels serveis del sistema
  - S'identifica per a identificar els objectius d'usuari
- Actor de recolzament: proporciona un servei (per exemple, informació) al sistema (Per exemple, el servei d'autorització de pagament). Normalment és un sistema informàtic, però pot ser una organització o una persona
  - S'identifica per a clarificar les interfícies externes i els protocols
- Actor passiu: està interessat en el comportament del cas d'ús, però no és principal ni de recolzament. Per exemple, l'Agencia Tributaria.
  - S'identifica per assegurar que tots els requeriments necessaris s'han identificat i satisfet



# Casos d'ús

Un Cas d'ús Especifica tots els escenaris possibles per a una determinada funcionalitat

Un exemple en format "informat" de distints escenaris d'un caso d'ús (Larman, pàg. 45):

#### Gestionar Devolucions

#### Escenari principal d'èxit:

Un client arriba a una caixa amb articles per tornar. El caixer utilitza el PDV per a registrar cada un dels articles tornats...

#### Escenaris alternatius:

- Si es va pagar amb tarja de crèdit, i es rebutja la transacció de reembossament, cal informar al client i pagar-li en efectiu.
- Si l'identificador de l'article no es troba al sistema, notificar al supervisor i suggerir l'entrada manual del codi d'identificació.
- 3. ...

- Representa una col·lecció de escenaris amb èxit i fracàs relacionats, i descriu als actors utilitzant un sistema per a satisfer un objectiu.
- És iniciat per un actor
- Pot interactuar amb altres actors
- Representa un flux d'esdeveniments complet a través del sistema.



# Nivell i abast dels casos d'ús

L'anàlisi de requeriments d'una aplicació informàtica, s'ha de centrar en els casos d'ús a nivell dels processos de negoci elementals (EBP, Elementary Business Processes)

#### FBP:

- Tasca realitzada per un actor en un lloc, en un instant, com resposta a un esdeveniment de negoci, que afegeix valor quantificable per al negoci i deixa les dades en un estat consistent. Per exemple, Autoritzar Crèdit, o Sol·licitar Preu
- No és un petit pas com "eliminar una línia de comanda"
- No es tarda dies i múltiples sessions com "negociar contracte amb el proveïdor"
- Són els casos d'ús "base", però poden haver-hi d'altres
- Podem agrupar objectius separats del tipus Alta-Baixa-Modificació-Consulta, en casos d'ús denominats Gestió de ...





# El diagrama de context

- El diagrama de context mostra els límits del sistema i representa la relació entre actors i casos d'ús
  - Límits del sistema
  - Què queda fora del sistema
  - Resumeix el comportament de un sistema i els seus actors

Suggeriments per a dibuixar diagrames de context



- Utilitzar només casos d'ús de nivell de objectius d'usuari
- Mostrar els actors que representen sistemes informàtics amb una notació alternativa als actors humans
- Situar els actors principals a l'esquerra i els de recolzament a la dreta
- És important complementar els diagrames amb descripcions dels casos d'ús (Especificacions de cas d'ús)



# El diagrama de context

El diagrama de context mostra els límits del sistema i representa la relació entre actors i casos d'ús



# Prioritzar casos d'ús



- Serveix per determinar quins són necessaris per el desenvolupament en les primeres iteracions i quins poden deixar-se per a posteriors iteracions
- Qüestions a tenir en compte:
  - Casos d'ús amb dificultat de desenvolupament
  - Casos d'ús imprescindibles per la posta en marxa del sistema
  - Organització del desenvolupament incremental
  - Disponibilitat de l'equip de desenvolupament
- Es revisa la priorització amb el cap de projecte i s'utilitza com entrada per la planificació de cada iteració del projecte



# Detallar els casos d'ús



- Objectiu principal: descriure el flux de successos en detall
  - Com comença
  - Com acaba
  - Com interactua amb els actors
- Es detalla pas a pas la seqüència d'accions del cas d'ús
- Es treballa estretament amb els usuaris reals dels casos d'ús
- Resultat: descripció detallada mitjançant
  - Especificacions del cas d'ús
  - Diagrames



- Actors participants: actors que utilitzen els serveis del sistema per a complir un objectiu
- Propòsit: Resum dels objectius associats amb l'escenari propi del cas d'ús en estudi
- Precondicions:
  - Estableixen allò que *sempre s'ha de* complir abans que comenci un escenari en el cas d'ús.
  - No es proven, sinó que són condicions que se assumeixen que són certes.
  - Normalment una precondició implica un escenari d'un altre cas d'ús que s'ha completat amb èxit.
  - Exemple : el caixer s'identifica i el sistema l'autentifica
- Postcondicions:
  - Estableixen què s'ha de complir quan el cas d'ús es completa amb èxit (bé l'escenari principal d' èxit o algun camí alternatiu)
  - Exemple: Es registra la venda. Els impostos es calculen correctament, s'actualitzen comptabilitat i inventari i es genera el rebut.



# Escenari principal d'èxit (o flux bàsic)

- Descriu el camí d'èxit típic que satisfà els interessos del personal involucrat
- No solen incloure condicions o bifurcacions.
- Recull els passos, que poden ser de tres tipus:
  - Una interacció entre actors
  - Una validació (normalment a càrrec del sistema)
  - Un canvi d'estat realitzat pel sistema (per exemple, registrant una venda o modificant un registre de la base de dades)
- El primer pas indica l'esdeveniment que desencadena el l'escenari



## **Extensions (o fluxos alternatius)**

- Indiquen tots els altres escenaris possibles, tant d'èxit com de fracàs.
- La combinació de l'escenari principal i els escenaris d'extensió haurien de satisfer els interessos del personal involucrat
- Exemples:
  - 3a. Identificador no vàlid
  - 1. El Sistema detecta l'error i rebutja l'entrada
- Un flux alternatiu té dos parts:
  - Condició: allò que pot ser detectat pel sistema o l'actor (el sistema detecta un error de comunicació amb el sistema d'actualització d'inventari)
  - Implementació: es pot resumir en un pas o bé incloure una seqüència:
    - 3-6a. El Client demana al Caixer que elimini un article de la compra:
      - 1. El Caixer introdueix l'identificador de l'article par eliminar-lo de la compra
      - 2. El Sistema mostra la suma parcial actualitzada
  - Poden incloure's condicions d'extensió que es poden donar durant qualsevol dels passos (per exemple, el Client cancel·la la compra)



### **Requeriments especials**

- Apareixen quan un requisit no funcional, atribut de qualitat o restricció es relaciona de manera específica amb un cas d'ús
- Inclou qualitats com rendiment, fiabilitat i facilitat d'ús, i restriccions de disseny que son d'obligat compliment o es consideren probables.
- Exemple:
  - Interfície d'usuari amb pantalla tàctil en un gran monitor de pantalla plana. El text ha de ser visible a un metre de distancia
  - Temps de resposta per a l'autorització de crèdit de 30 segons al menys en el 80% dels casos
- En algunes ocasions resulta convenient reunir al final tots els requeriments no funcionals en una especificació complementària



# Exemple de especificació del cas d'ús

# Detall de casos d'ús

# Realitzar una comanda

que el client quedi satisfet respecte al tracte i atenció rebuda i repeteixi l'experiència de comprar als Assegurar que el procés de recollida de dades i cobrament és realitzi de forma eficient. Assegura

El client ha rebut el catàleg i es disposa a adquirir productes que hi apareixen

- Sistema informàtic (secundari)
- Sistema de pagaments (recolzament)

- El client introdueix les dades b\u00e0siques per a formalitzar una comanda (codis de refer\u00e9ncia) dels productes i dades d'identificació, enviament i pagament)

- El comercial introdueix les dades en el sistema informàtic [A1]
   El comercial comprova la disponibilitat dels productes [A2]
   El comercial gestiona el pagament (cas d'us Comprovació de p
   El comercial valida la comanda
   El sistema envia un mail de confirmació de la comanda on s'inc El comercial gestiona el pagament (cas d'us Comprovació de pagament) [A3]
  El comercial valida la comanda
  El sistema envia un mail de confirmació de la comanda on s'inclou la relació de productes i
- 7. El sistema genera un document de preparació de comanda que es pot consultar des del

# Fluxos alternatius

- al client. La comanda queda en estat pendent mentre aquesta questió no quedi subsanada. No [A1] Les dades enviades pel clients contenen errors pel que fa a les referències dels productes. El comercial envia un mail consignant la referência errônia i demanat rectificació
- cop té aquesta dada el comercial envia un mail al client indicant aquesta incidência i demanat si encara confirma que vol la comanda. [A2] No hi ha momentàniament stock d'un dels productes a enviar. El comercial fa una petició al departament de compres per que aquest li doni un possible plaç de lliurament. Un
- comercial envia un mail al client indicant-li la incidencia i demanant-li dades alternatives [A3] No s'ha pogut realitzar el cobrament utilitzant les dades subministrades pel client. El
- el seu codi de reclamació amb el client i si no pot arreglar la discrepancia obre una reclamació i li comunica al client per a poder realitzar el cobrament. La comanda queda en estat retinguda [A4] El client no està d'acord amb la liquidació realitzada. El comercial es posa en contacte

el client ha rebut un mail confirmant que la seva comanda s'està processant i que ADAICourier ha efectuat el cobrament dels serveis satisfactòriament La comanda resta en estat validat, el magatzem disposa d'un document de preparació de comandes i

Requeriments especial

No pot passar més d'una setmana entre que el client realitza la comanda i rep els producte al seu

# Prototipar l'interfície d'usuari



- Es decideix què es necessita de les l'interfícies d'usuari per habilitar els casos d'ús per a cada actor
- Es desenvolupen prototipus que il·lustren com poden utilitzar el sistema els usuaris per executar els casos d'ús
- Resultat final: conjunt d'esquemes d'interfícies d'usuari i prototipus d'interfície que especifiquen l'aparença d'aquestes cara als actors més importants
- En interactuar amb el sistema, els actors utilitzaran elements d'interfície que representen atributs dels casos d'ús, i solen ser termes del glossari (data de venciment, condicions de facturació, titular de compte,...)



# Prototipar l'interfície d'usuari

# Activitats del disseny de l'interfície d'usuari

- Estudiar tots els casos d'ús als quals l'actor pot accedir
- Identificar els elements d'interfície necessaris per a possibilitar el cas d'ús, actor per actor
- Dissenyar l'aparença dels elements
- Especificar el mode de manipulació
- Identificar les decisions i accions que pot prendre l'actor
- Determinar la informació que necessita l'actor abans d'invocar cada acció dels casos d'ús
- Determinar la informació que ha de proporcionar l'actor al sistema i a l'inrevés



# Prototipar l'interfície d'usuari

# Activitats del disseny de l'interfície d'usuari

- Es construeixen prototipus executables o no de les configuracions més importants
- Revisió i validació: Pot fer-se superficialment i corregir-se després, durant el disseny.
- Cal que es verifiqui que :
  - Cada actor navega de forma adequada
  - Es proporciona una aparença agradable i una forma consistent de treball
  - Compleix amb estàndards rellevants com el color, mida dels botons, situació de les barres d'eines, ...



# Estructurar el model de casos d'ús

# **Objectius**



- Aconseguir descripcions de funcionalitat (de casos d'ús) generals i compartits que poden ser utilitzades per casos d'ús més específics (relacions de generalització)
- Aconseguir descripcions de funcionalitat (de casos d'ús) addicionals u opcionals que poden ampliar casos d'ús més específics (relacions de extensió)
- Aconseguir descripcions de funcionalitat (de casos d'ús) addicionals e incondicionals incloses en l'execució de casos d'ús específics (relacions d'inclusió)

| Relació        | Notació                  |
|----------------|--------------------------|
| Generalització | <b>─</b> ──>             |
| Extensió       | -<- <u>extend</u> >><br> |
| Inclusió       |                          |



# Relacions de generalització

- Simplifica la comprensió del model de casos d'ús
- El fill hereta els atributs, operacions i comportaments del pare, i pot afegir atributs i operacions pròpies
- Permet reutilitzar casos d'ús abstractes que existeixen només per què d'altres casos d'ús els utilitzin
  - No poden instanciar-se por sí mateixos
  - Una instància d'un cas d'ús concret també exhibeix el comportament especificat per un cas d'ús abstracte que el (re)utilitza





# Relacions d'extensió

- Un cas d'ús extén un altre cas d'ús si aquest pot incloure el comportament del primer sota determinades condicions
- Regla general: utilitzar relacions d'extensió per a comportaments opcionals o excepcionals
- Avantatges de separar el flux excepcional i opcional amb respecte al cas d'ús bàsic
  - El cas d'ús bàsic es fa més petit i comprensible
  - Es diferencien el cas comú i l'excepcional, permeten que els desenvolupadors els tractin de forma independent

Ambdós són casos d'ús complets por sí mateixos, amb condició inicial i final





# Relacions d'inclusió

- Permeten dividir las redundàncies i reutilitzar casos d'ús
- Regla general: utilitzar relacions d'inclusió per a comportaments compartits per dos o més casos d'ús
- El comportament només ha de dividir-se en casos d'ús separats quan és compartit per dos o més casos d'ús
- No convé dividir en excés (especificació confusa)





# Aspectes dinàmics

# **Utilització de diagrames dinàmics**

- Pot resultar útil utilitzar diagrames dinàmics per descriure un cas d'ús quan existeixen diferents estats i transicions alternatives que dificulten la comprensió de la descripció textual
- Diagrames dinàmics
  - Diagrama d'activitat: descriu les transicions entre estats amb més detall
  - Diagrama d'interacció: descriu com interactua una instància de un cas d'ús amb l'instància d'un actor
- És aconsellable que siguin simples, per que siguin comprensibles per l'usuari



# Diagrama d'activitat

## **Diagrames d'activitat**

- Són bàsicament diagrames de flux modificats en que es mostra com s'esdevenen les diferents activitats i les dependències entre elles.
- Els diagrames de activitats poden dividir-se en "carrers" (SwimLanes) que mostren quin objecte és responsable de cada activitat.
- Les activitats estan relacionades per transicions, que poden separar-se en branques en funció del resultat d'una condició.
- Cada branca mostra la condició que s'ha de complir per què el flux opti per aquell camí. Igualment, les transicions poden bifurcar-se en dos o més activitats paral·leles.
- Ha de reflectir de forma rigorosa els passos indicats en l'especificació de cas d'ús



# Diagrama d'activitat

#### <u>Diagrama d'Activitat</u> <u>Escenari: Processar Venda</u>



# Escenari simple de Processar Venda amb pagament en efectiu

- 1. El Caixer inicia una nova venda
- 2. El sistema genera la nova venda
- 3. El Caixer introdueix l'identificador de l'article
- 4. El Sistema registra la línia de venda
- 5. El sistema presenta la descripció de l'article, preu i suma parcial
- El Caixer repeteix els passos 3 i 4 fins que finalitzin es productes a vendre
- 5. El Sistema mostra el total amb els impostos calculats
- 6. El Caixer introdueix les dades del pagament





# Diagrama d'activitat

# Normes per la confecció de diagrames d'activitat

- Cal indicar els passos del flux bàsic i considerar que tot anirà bé en casa pas
- Cal marcar clarament un punt d'inici i un de final
- La posició en l'eix vertical indica ordre temporal
- Les bifurcacions només s'utilitzen per indicar activitats repetitives (bucles)
- Les divisions i unions concurrents indiquen accions que s'inicien o acaben al mateix temps respectivament





# Diagrama de seqüència del sistema

# Diagrama de seqüència del sistema (DSS)

- Permet representar les interaccions i col·laboracions entre els actors i les operacions que inicien
- Mostra, per a un escenari específic de un cas d'ús:
  - Els esdeveniments que generen els actors externs
  - L'ordre dels esdeveniments
  - esdeveniments entre sistemes
- Els sistemes es tracten com caixes negres
- S'ha de realitzar-se un DSS per l'escenari principal d'èxit del cas d'ús, i els escenaris alternatius complexes o frequents
- Els DSS apareixen en el Procés Unificat en la fase de elaboració, per tal de detallar i identificar les operacions i donar suport a l'estimació de temps i costos
- No es recomana invertir massa temps en aquests diagrames



# Diagrama de seqüència del sistema

# Diagrama de seqüència del sistema (DSS)

- És un diagrama d'interacció que detalla com es duen a terme les operacions, quins missatges són enviats i quan s'envien, tot organitzat al voltant del temps. El temps avança "cap a baix" en el diagrama.
- Els objectes involucrats en l'operació es llisten d'esquerra a dreta segons l'ordre de participació dins de la seqüència de missatges
- Les línies verticals o "línies de la vida" representen el temps de vida de l'objecte.
- Els rectangles verticals són barres d'activació i representen la duració de l'execució del missatges
- Els símbols "[]" expressen condició i si estan precedits de un asteriscionidiquen interacció mentre es compleixi la condició
- Els missatges que són intercanviats entre els objectes d'un diagrama de seqüència poden ser síncrons o asíncrons.





# Bibliografía

Sommerville, I. Ingeniería de Software, cap. 5

Larman, C. Applying UML And Patterns- An Introduction To Object-Oriented Analysis And Design And The RUP

Stevens, P., *Utilización de UML en ingeniería del software con objetos i componentes*, cap. 7 i 8

Cockburn, A. Writing Effective Use Cases

Jacobson, Rumbaugh i Booch, El Proceso Unificado de Desarrollo,

Jacobson, Rumbaugh i Booch, The Unified Modeling Language Reference Manual

