Deux MOOCs sur la recherche reproductible

A. Legrand, K. Hinsen

22 octobre 2024

- Recherche reproductible : principes méthodologiques pour une science transparente
 - depuis 2018
 - bilingue français/anglais
 - "grand public": s'adresse à tout le monde qui travaille avec des données et/ou du code
 - licence CC-BY

- Recherche reproductible : principes méthodologiques pour une science transparente
 - depuis 2018
 - bilingue francais/anglais
 - "grand public": s'adresse à tout le monde qui travaille avec des données et/ou du code
 - licence CC-BY
- Reproducible Research II: Practices and tools for managing computations and data
 - 1ère session : mai à septembre 2024
 - en anglais
 - très technique : calcul scientifique à l'échelle
 - licence CC-BY-NC-SA

Auteurs

- Arnaud Legrand (informatique)
- Christophe Pouzat (mathématique)
- Konrad Hinsen (physique)

Auteurs

- Arnaud Legrand (informatique)
- Christophe Pouzat (mathématique)
- Konrad Hinsen (physique)

- Kim Tâm Huynh
- Ludovic Courtès
- Matthieu Simonin

Auteurs

- Arnaud Legrand (informatique)
- Christophe Pouzat (mathématique)
- Konrad Hinsen (physique)

- Kim Tâm Huynh
- Ludovic Courtès
- Matthieu Simonin

Inria Learning Lab

- Deux ingénieurs pédagogiques à chaque instant :
 Aurélie Bayle, Marie-Hélène Comte, Laurence Farhi,
 Tatiana Khomenko, Madeline Montigny
- Un informaticien : Benoît Rospars

Introduction

• interviews avec des chercheurs de disciplines différentes

Introduction

1. Cahier de notes, cahier de laboratoire

- prise de note structurée : Markdown, Pandoc
- outils d'indexation : DocFetcher, ExifTool
- gestion de versions : GitLab, Git avec des petits dessins
- exercices :
 - rédiger un document avec une certaine spécification
 - trouver des informations sur qui a fait quoi dans un dépot git
 - ...

Introduction

1. Cahier de notes, cahier de laboratoire

2. La vitrine et l'envers du décor : le document computationnel

- principes du document computationnel
- principes de l'analyse réplicable
- trois outils, trois parcours :
 - Jupyter et Python (en ligne, dans le MOOC) : 63%
 - RStudio et R: 31%
 - Emacs/Org-mode et Python + R: 7%
- exercices : utilisation des notebooks, visualisation, analyse de données (navette "Challenger")

Introduction

- 1. Cahier de notes, cahier de laboratoire
- 2. La vitrine et l'envers du décor : le document computationnel
- 3. La main à la pâte : une analyse réplicable
 - rédaction de documents computationnels
 - exemple : données du Réseau Sentinelles sur l'incidence des infections grippales
 - travail pratique : rédiger une analyse réplicable (7 sujets)

Introduction

- 1. Cahier de notes, cahier de laboratoire
- 2. La vitrine et l'envers du décor : le document computationnel
- 3. La main à la pâte : une analyse réplicable
- 4. Vers une étude reproductible : la réalité du terrain
 - l'enfer des données : taille, formats, pérennité
 - l'enfer des logiciels : environnements logiciel
 - l'enfer du calcul : flottants, nombres aléatoires

Les sessions

1ère session: 2018

- durée fixe : 2 mois
- 3588 inscrits, 291 attestations (8%)

Les sessions

1ère session : 2018

2ème session: 2019

- durée fixe : 2 mois
- matériel supplémentaire visant les SHS
- traduction du MOOC entier en anglais
- 2192 inscrits, 135 attestations (6%)

Les sessions

1ère session : 2018

2ème session: 2019

3ème session : depuis mars 2020

- encore ouverte
- legère revision des exercices
- début 2024 : 17168 inscrits, 1938 badges/attestations (12%)

• 86% en France, 78% francophones

- 86% en France, 78% francophones
- 66% entre 19 et 35 ans

- 86% en France, 78% francophones
- 66% entre 19 et 35 ans
- 46% femmes, 54% hommes

- 86% en France, 78% francophones
- 66% entre 19 et 35 ans
- 46% femmes, 54% hommes
- 50% niveau mastère, 41% niveau doctorat

- 86% en France, 78% francophones
- 66% entre 19 et 35 ans
- 46% femmes, 54% hommes
- 50% niveau mastère, 41% niveau doctorat
- 54% doctorants et post-docs

- 86% en France, 78% francophones
- 66% entre 19 et 35 ans
- 46% femmes, 54% hommes
- 50% niveau mastère, 41% niveau doctorat
- 54% doctorants et post-docs
- 12% étudiants (dont 42% recoivent des crédits ECTS)

- 86% en France, 78% francophones
- 66% entre 19 et 35 ans
- 46% femmes, 54% hommes
- 50% niveau mastère, 41% niveau doctorat
- 54% doctorants et post-docs
- 12% étudiants (dont 42% recoivent des crédits ECTS)
- 29% sciences du vivant,
 23% informatique,
 22% physique/ingénieurs,
 10% SHS,
 9% mathématiques

- 86% en France, 78% francophones
- 66% entre 19 et 35 ans
- 46% femmes, 54% hommes
- 50% niveau mastère, 41% niveau doctorat
- 54% doctorants et post-docs
- 12% étudiants (dont 42% recoivent des crédits ECTS)
- 29% sciences du vivant,
 23% informatique,
 22% physique/ingénieurs,
 10% SHS,
 9% mathématiques
- 72% Windows, 34% Linux, 17% macOS

Retours

Satisfaction

50% complètement satisfaits, 46% plutôt satisfaits

Retours

Satisfaction

50% complètement satisfaits, 46% plutôt satisfaits

Points de critique

- trop difficile pour les participants sans base solide en informatique
- trop long

Retours

Satisfaction

50% complètement satisfaits, 46% plutôt satisfaits

Points de critique

- trop difficile pour les participants sans base solide en informatique
- trop long

Forum d'échange

- outil d'entraide
- plus efficace pour une session courte

Défis techniques

• Le réseau Sentinelles change son format de données

Défis techniques

- Le réseau Sentinelles change son format de données
- Notre environnement conda devient irreproductible

Sortir des trois enfers

4. Vers une étude reproductible : la réalité du terrain

- l'enfer des données : taille, formats, pérennité
- l'enfer des logiciels : environnements logiciel
- l'enfer du calcul : flottants, nombres aléatoires

Reproducible Research II: Practices and tools for managing computations and data

Introduction

- "fil rouge" : détection de taches solaires
- interviews avec des astrophysiciens
- trois notebooks pour mieux comprendre les données

Introduction

1. Managing data

- Archiving : Zenodo, Software Heritage
- File formats : CSV, JSON, FITS, HDF5
- Project organization
- Versioning : git-annex

Introduction

1. Managing data

2. Managing software

- On the Importance of Software Environments
- Package Management Principles : Debian
- Isolation and Containers : Docker
- Using Containers
- Building and Sharing Containers
- Functional Package Managers : Guix

Introduction

1. Managing data

2. Managing software

3. Managing computations

- Why do we need workflows?
- From notebooks to shell scripts
- Workflows with make
- Workflows with snakemake
- Workflows and environments

Le projet "fil rouge" : détection de taches solaires

Du notebook au workflow

- point de départ : notebook (Jupyter/Python) pour la détection
- transformation en deux tâches d'un workflow

Du notebook au workflow

- point de départ : notebook (Jupyter/Python) pour la détection
- transformation en deux tâches d'un workflow
- tâche de niveau supérieur : série chronologique des moyennes mensuelles entre 2009 et 2020
- gestion des erreurs

Du notebook au workflow

- point de départ : notebook (Jupyter/Python) pour la détection
- transformation en deux tâches d'un workflow
- tâche de niveau supérieur : série chronologique des moyennes mensuelles entre 2009 et 2020
- gestion des erreurs

Nous fournissons le workflow complet.

Les exercices portent sur la compréhension et la modification.

Gestion des données

- environ 50.000 images de l'Observatoire Royal de Belgique
- qualité variable au cours des années
- des images non exploitables (éclipses, ...)
- sous-ensemble annexé au workflow par git annex

Environnement logiciel

- construit avec Guix
- exporté comme image Docker/Singularity (environ 1 Go)
- instructions pour les trois technologies de conteneurs (Guix, Docker, Singularity)

Défis techniques

• outils complexes dont nous avons découvert les détails en route

Défis techniques

- outils complexes dont nous avons découvert les détails en route
- environnements imbriqués

Défis techniques

- outils complexes dont nous avons découvert les détails en route
- environnements imbriqués
- notre environnement Guix n'est pas compilable pour ARM64

• 1976 inscrits, 298 actifs, 40 éligibles au badge

- 1976 inscrits, 298 actifs, 40 éligibles au badge
- 56% en France

- 1976 inscrits, 298 actifs, 40 éligibles au badge
- 56% en France
- tranches d'ages : $\frac{1}{3}$ 25 à 35, $\frac{1}{3}$ 36 à 45, $\frac{1}{3}$ 46 à 55

- 1976 inscrits, 298 actifs, 40 éligibles au badge
- 56% en France
- tranches d'ages : $\frac{1}{3}$ 25 à 35, $\frac{1}{3}$ 36 à 45, $\frac{1}{3}$ 46 à 55
- 33% femmes, 66% hommes

- 1976 inscrits, 298 actifs, 40 éligibles au badge
- 56% en France
- tranches d'ages : $\frac{1}{3}$ 25 à 35, $\frac{1}{3}$ 36 à 45, $\frac{1}{3}$ 46 à 55
- 33% femmes, 66% hommes
- 48% niveau mastère, 45% niveau doctorat

- 1976 inscrits, 298 actifs, 40 éligibles au badge
- 56% en France
- tranches d'ages : $\frac{1}{3}$ 25 à 35, $\frac{1}{3}$ 36 à 45, $\frac{1}{3}$ 46 à 55
- 33% femmes, 66% hommes
- 48% niveau mastère, 45% niveau doctorat
- 38% sciences du vivant,32% informatique,24% physique/ingénieurs

Qui sont nos apprenants?

(68 réponses)

- 1976 inscrits, 298 actifs, 40 éligibles au badge
- 56% en France
- tranches d'ages : $\frac{1}{3}$ 25 à 35, $\frac{1}{3}$ 36 à 45, $\frac{1}{3}$ 46 à 55
- 33% femmes, 66% hommes
- 48% niveau mastère, 45% niveau doctorat
- 38% sciences du vivant,
 32% informatique,
 24% physique/ingénieurs
- 69% Linux, 54% Windows, 12% macOS

Qui sont nos apprenants?

(68 réponses)

- 1976 inscrits, 298 actifs, 40 éligibles au badge
- 56% en France
- tranches d'ages : $\frac{1}{3}$ 25 à 35, $\frac{1}{3}$ 36 à 45, $\frac{1}{3}$ 46 à 55
- 33% femmes, 66% hommes
- 48% niveau mastère, 45% niveau doctorat
- 38% sciences du vivant,
 32% informatique,
 24% physique/ingénieurs
- 69% Linux, 54% Windows, 12% macOS
- 54% "plutôt satisfaits", 39% "complètement satisfaits"

Pour la prochaine session...

- débogage à fond
- exercices revisés, simplifiés
- git-annex et Guix auront leurs propres modules