SOLUTIONS FOR HOMEWORK 1

DEFINITIONS FROM THE TEXTBOOK

We suggest to use O, o, Ω, Θ as defined in our textbook *Introduction to Algorithms*, 3Ed.

Definition 0.1 (Θ). $\Theta(g(n)) = \{f(n) | \exists \text{ positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.$

Definition 0.2 (O). $O(g(n)) = \{f(n) | \exists \text{ positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}.$

Definition 0.3 (Ω). $\Omega(g(n)) = \{f(n) | \exists \text{ positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0\}.$

Definition 0.4 (o). $o(g(n)) = \{f(n) | \text{ for any } c > 0, \exists \text{ a constant } n_0 > 0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}.$

The textbook also assumes that above notations are defined in terms of functions whose domains are the set of natural numbers \mathbb{N} because we are dealing with the running time function T(n) and n represents the size of the input. However above definitions are actually applicable to functions whose domains are the set of real numbers \mathbb{R} . Unless we make explicit requirement, you can choose whichever domain (\mathbb{R} or \mathbb{N}) you like.

One more thing worth to mention, O(g(n)) (other notations similar) is a set of functions based on our definition. When we write f(n) = O(g(n)), it is just a convention made in the community of computer science, what we really mean here is $f(n) \in O(g(n))$.

Reminders:

- Solutions provide one possible solution process. In many cases, there are multiple correct processes that will result in the correct final answer.
- Solutions are references that may also contain errors.

QUESTION 1

We have neither f(n) = O(g(n)) nor g(n) = O(f(n)). Let us show $f(n) \neq O(g(n))$ here, the other direction can be proved similarly.

Claim 0.5.
$$f(n) \neq O(g(n))$$

Proof. Prove by contradiction. Assume f(n) = O(g(n)), by the definition, there exist constants $c, n_0 > 0$ such that $0 \le f(n) \le cg(n)$ or $0 \le n \le cn^{1+\sin n}$ for all $n \ge n_0$. It implies

$$(0.6) 0 \le 1 \le c n^{\sin n} \text{ for all } n \ge n_0.$$

Can it be true? To show that the answer is No, it suffices to show:

For any $n_0, c > 0$, we can always pick an $n \ge n_0$ such that $cn^{\sin n} < 1$.

Easy Version: use domain \mathbb{R} . For any given $n_0 > 0$, let $n = 2k\pi - \frac{\pi}{2}$ where k is a large enough integer to make $n > \max\{c, n_0\}$. Then $cn^{\sin n} = \frac{c}{n} < 1$.

Hard Version: use domain \mathbb{N} . First let's consider the set $S = \{x \in \mathbb{R}^+ | \sin y \le -0.5 \text{ for all } y \in (x - \frac{\pi}{3}, x + \frac{\pi}{3})\}$, it is trivial from the graph of $\sin x$ to see that there will be infinitely many elements in S.

Since each $(x - \frac{\pi}{3}, x + \frac{\pi}{3})$ has length $\frac{2\pi}{3} > 1$, it must contain some integer, it tells us that there will be infinitely many $n \in \mathbb{N}$ such that $\sin n \leq -0.5$.

Now given $c, n_0 > 0$, we can always pick an n that $n > c^2, n > n_0$ and $\sin n \le -0.5$, hence $cn^{\sin n} \le cn^{-0.5} < \frac{c}{\sqrt{n}} \le 1$ which conflicts Inequality (0.6).

QUESTION 2

Claim 0.7. $f(n) = \frac{1}{n} = o(1)$.

Proof. For any constant c > 0, choose an $n_0 > \frac{1}{c}$, for any $n > n_0 > \frac{1}{c}$, we have $0 \le \frac{1}{n} \le \frac{1}{1/c} = c \cdot 1$.

QUESTION 3

Claim 0.8. $f(n) = \Theta(g(n))$ does not necessarily imply $2^{f(n)} = \Theta(2^{g(n)})$.

Proof. It suffices to prove the claim by showing a counterexample: $f(n) = \log n, g(n) = 2\log n$, then $2^{f(n)} = n$ but $2^{g(n)} = n^2$. Clearly $n \neq \Theta(n^2)$.

Claim 0.9. $f(n) = \Theta(g(n))$ implies $f^2(n) = \Theta(g^2(n))$.

Proof. $f(n) = \Theta(g(n))$ implies that there exist $c_1, c_2, n_0 > 0$ such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n > n_0$, which further implies that $0 \le c_1^2 g^2(n) \le f^2(n) \le c_2^2 g^2(n)$ for all $n > n_0$. The claim follows because c_1^2 and c_2^2 are also positive constants.

QUESTION 4

Claim 0.10. If
$$f(n) = O(g(n))$$
 then $f(n) + g(n) = O(g(n))$

Proof.
$$f(n) = O(g(n)) \Rightarrow$$

there exist $c, n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

Hence
$$0 \le f(n) + g(n) \le (c+1)g(n)$$
 for all $n \ge n_0$.

Therefore
$$f(n) + g(n) = O(g(n))$$
.

Claim 0.11. If $f(n) = \Omega(g(n))$, we do not have $f(n) - g(n) = \Omega(g(n))$.

Proof. Here is a counterexample:
$$f(n) = g(n) = n$$
, clearly $f(n) = \Omega(g(n))$ but $f(n) - g(n) = 0 \neq \Omega(n)$.

QUESTION 5

Let T(n) be the running time of this algorithm and let a function $f(n) = O(n^2)$. The statement says that T(n) is **at least** $O(n^2)$. That is f(n) = O(T(n)), but it does not tell us nothing about the growth rate of T(n), because by the definition of O-notation, there exist $c_1, c_2, n_1, n_2 > 0$ such that

(0.12)
$$0 \le f(n) \le c_1 n^2 \text{ for all } n \ge n_1.$$

(0.13)
$$0 \le f(n) \le c_2 T(n) \text{ for all } n \ge n_2.$$

(0.12) allows us to take f(n) = 0, substitute 0 for f(n) in (0.13), $0 \le T(n)$ tells us nothing about the growth rate of T(n).

If we want to give a lower bound, we can say that "the running time of this algorithm is $\Omega(n^2)$ ". When we need an upper bound, we can say "the running time of this algorithm is $O(n^2)$ ".