DECLARATION

I, Mikio Hippo, residing at 7 th Fl., Kioicho Park Bldg., 3-6, Kioicho, Chiyoda-ku, Tokyo, Japan, hereby declare that I have a thorough knowledge of Japanese and English languages, and that the attached pages contains a correct translations into English of the application documents of Japanese Patent Applications No. 2000-365337 filed on November 30, 2000, 2000-365935 filed on November 30, 2000, 2000-365936 filed on November 30, 2000, 2000-365938 filed on November 30, 2000 and No. 2000-365939 filed on November 30, 2000 in the name of CANON KABUSHIKI KAISHA.

I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statement were made with the knowledge that willful false statements and the like so made, are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Signed this 30th day of October 2008

学学、幹夫

Mikio HIPPO .

Translation of Japanese Patent Application No. 2000-365935

[Type of Document(s)]

Application for patent

[Reference Number]

4351011

[Filing Date]

November 30, 2000

[Addressee]

Director-General of the Patent

Office, Esq.

[International Patent

Classification]

A61B 5/00 A61M 15/00

G06F 12/00 H04M 11/00

[Title of Invention]

A PORTABLE TERMINAL HAVING AN

INHALER AND A METHOD OF CONTROLLING THE INHALER

[Number of Claim(s)]

22

[Inventor(s)]

[Address/Domicile]

c/o Canon Kabushiki Kaisha

3-30-2, Shimomaruko, Ohta-ku, Tokyo, Japan

[Name]

Toshiaki Sasaki

[Inventor(s)]

[Address/Domicile]

c/o Canon Kabushiki Kaisha

3-30-2, Shimomaruko, Ohta-ku, Tokyo, Japan

[Name]

Sadayuki Sugama

[Inventor(s)]

[Address/Domicile]

c/o Canon Kabushiki Kaisha

3-30-2, Shimomaruko, Ohta-ku, Tokyo, Japan

[Name]

Takayoshi Tsutsumi

[Applicant for Patent]

[Identification Number]

000001007

[Name]

Canon Kabushiki Kaisha

[Agent]

[Identification Number]

100076428

[Patent Attorney]

[Name]

Yasunori Ohtsuka

[Telephone Number] 03-5276-3241 [Selected Agent] [Identification Number] 100101306 [Patent Attorney] [Name] Yukio Maruyama [Telephone Number] 03-5276-3241 [Selected Agent] [Identification Number] 100115071 [Patent Attorney] [Name] Yasuhiro Ohtsuka [Telephone Number] 03-5276-3241 [Detail of Fee(s)] [Register Number of Prepayment] 003458 [Amount of Payment] 21000 [List of Attached Documents] [Classification] Specification 1 [Classification] Drawing(s) 1 [Classification] Abstract 1 [Number of General Power of Attorney] 0001010 [Proof Required? Y/N] Yes

2000-365935

[Type of the Document] Specification

[Title of the Invention] A PORTABLE TERMINAL HAVING

AN INHALER AND A METHOD OF CONTROLLING THE INHALER

5 [What Is Claimed Is:]

[Claim 1] A portable terminal which is arranged to be carried by a user characterized in that said terminal includes:

storage means storing personal information about

the user, including information about a clinical chart

of the user and prescription; and

an inhaler for discharging a medicine in the form of fine droplets and making the user inhale the droplets, including

- discharging control means for controlling the inhaler in accordance with an inhalation profile of the user to discharge the medicine, thereby allowing the user to inhale the medicine in accordance with the information of the prescription.
- 20 [Claim 2] The terminal according to claim 1, characterized by further comprising parameter setting means for setting a parameter for discharging control by measuring an inhalation profile of the user without discharging any medicine.
- 25 [Claim 3] The terminal according to claim 2, characterized in that a medicine to be used and the parameter are stored in said storage means in

association with each other.

[Claim 4] The terminal according to claim 1, characterized in that said discharging control means includes a negative pressure sensor for detecting that the user starts inhaling.

[Claim 5] The terminal according to claim 1, characterized in that the terminal further comprises input means, and allows said inhaler to be operated only when information stored in said storage means

coincides with information input from said input means. [Claim 6] The terminal according to claim 1, characterized in that the terminal further comprises an authentication sensor for performing biometrical authentication with respect to the user, and allows

said inhaler to be used only when information about a 15 biometrical characteristic of the user stored in said storage means coincides with information from said authentication sensor.

[Claim 7] The terminal according to claim 1,

20 characterized in that a usage log of said inhaler is stored in said storage means.

[Claim 8] The terminal according to claim 1, characterized by further comprising droplet detection means for monitoring discharged fine droplets of a

25 medicine.

10

[Claim 9] The terminal according to claim 1, further comprising administration time notification means for

notifying the user of a scheduled administration time of the medicine.

[Claim 10] The terminal according to claim 8, characterized by further comprising an administration end notification means for notifying the user that administration of the medicine is normally completed. [Claim 11] The terminal according to claim 1, characterized in that said storage means is a detachable memory card.

10 [Claim 12] A control method for an inhaler for discharging a medicine in the form of fine droplets and making a user inhale the droplets, characterized in that said inhaler is provided for a portable terminal which is arranged to be carried by a user and includes storage means storing personal information about the user, including information about a clinical chart of the user and prescription and

in that said method includes the step of controlling the discharge of the medicine in accordance with an inhalation profile of the user, thereby allowing the user to inhale the medicine in accordance with the information of the prescription.

[Claim 13] The method according to claim 12, characterized in that a parameter is set for discharging control by measuring an inhalation profile of the user without discharging any medicine.

[Claim 14] The method according to claim 13,

25

characterized in that a medicine to be used and the parameter are stored in the storage means in association with each other.

[Claim 15] The method according to claim 12,

characterized in that a negative pressure sensor is used to detect that the user starts inhaling.

[Claim 16] The method according to claim 12, characterized in that input means is further provided for the portable terminal, and the inhaler is allowed

to be operated only when information stored in the 10 storage means coincides with information input from the input means.

[Claim 17] The method according to claim 12, characterized in that an authentication sensor for performing biometrical authentication with respect to 15 the user is further provided for the portable terminal, and the inhaler is allowed to be used only when information about a biometrical characteristic of the user stored in the storage means coincides with

information from the authentication sensor. [Claim 18] The method according to claim 12, characterized in that a usage log of the inhaler is stored in the storage means.

20

[Claim 19] The method according to claim 12,

characterized in that discharged fine droplets of a 25 medicine are monitored.

[Claim 20] The method according to claim 12,

characterized in that the user is notified of a scheduled administration time of the medicine.

[Claim 21] The method according to claim 18, characterized in that the user is notified that administration of the medicine is normally completed.

[Claim 22] A storage medium characterized by storing a program code for implementing the inhaler control method defined in any one of claims 12 to 21.

[Detailed Description of the Invention]

10 [0001]

15

25

[Technical Field of the Invention]

The present invention relates to a portable terminal having an inhaler and a method of controlling the inhaler and, more particularly, to a portable terminal having a portable terminal having a radio communication function and an input/output device for supporting health management for the user and a method of controlling the inhaler.

[0002]

20 [Prior Art]

With recent medical and scientific advances, the average life span of people is prolonged, and we are witnessing an aging society. On the other hand, owing to changes in eating habits and living environment, environmental contamination, viruses, and germs, new diseases and infections have been found. This has provoked anxiety among people about health. In

so-called advanced nations, in particular, an increase in the number of people who suffer lifestyle-related illnesses such as diabetes and hyperpiesia raises a problem.

5 [0003]

10

An increase in the number of medical facilities has not kept pace with an increase in the number of such patients. In addition, in some areas, there are no medical facilities that allow people to regularly visit. Under the circumstances, concerns are rising about future measures including policies against such situations.

[0004]

Remote medical systems and home health management systems have therefore been proposed, which allow the aged and people suffering lifestyle-related diseases and chronic diseases to receive diagnoses from doctors and perform daily health management.

100051

20 A typical arrangement of such systems is that a target individual installs a terminal at his/her home, and connects it to a server in a medical facility or center through a communication line such as the Internet so as to input/transmit answers for a medical inquiry and measurement values such as a blood pressure and bodily temperature from the terminal. A nurse or doctor then checks the data collected in the server and

returns information indicating the presence/absence of an abnormality or message.

[0006]

5

10

To manage such a medical system, clinical records (clinical charts) of users electronically recorded as electronic clinical charts and a medical database storing the data of the electronic clinical charts, various measurement values, and the like are required. Various proposals have been made about such electronic clinical charts and medical databases from various fields.

[0007]

effective in preventing medical malpractices and

medication errors, which have become problems. A great
deal of attention has been paid to an electronic
clinical chart as a means for satisfying the patient's
right to know by disclosing its contents to the patient
or patient's family.

20 [0008]

25

[Problems That the Invention Is to Solve]

Terminals used in the above medical systems include a general personal computer having a display screen and input device and a dedicated terminal capable of measuring a specific value such as a blood pressure.

[0009]

When a device such as a general personal computer is to be used as a terminal, settings for the device and its operation method become complicated. This limits people who can use such terminal.

5 [0010]

10

25

Assume that dedicated terminals are used. In this case, if a user suffers a plurality of diseases or ailments and needs to perform various measurements, he/she must use a plurality of dedicated terminals. This is cumbersome operation and also increases burden

[0011]

on the user.

In a conventionally proposed medical system, if, for example, a user suffers a chronic disease or the like and needs to periodically take a medicine, the user must administer and manage a medicine by himself/herself, and there is no support function on the system side. For this reason, the burden of administration and management of medicines on users cannot be reduced.

[0012]

More specifically, of diabetic patients who are currently on increase, patients suffering type I insulin-dependent diabetes mellitus must periodically take insulin because no insulin is secreted from the pancreas. Administration of insulin is currently performed by subcutaneous injection. This imposes

great physical and mental burden on patients.

[0013]

To reduce the burden on such patients, a pen-type syringe having a thin needle that makes the patients feel little pain has been developed. Type I diabetic patients often work like able-bodied persons except that the patients must periodically take insulin. It is difficult for such a patient to take insulin at proper times because he/she feels dislike to make an inject in the presence of others even with a pen-type syringe.

[0014]

Under the circumstances, a method of discharging a medicine in the form of droplets and making them

15 reach the lungs together with inhaled air, thereby administering the medicine through the lungs instead of injection.

[0015]

In such an inhalation scheme, however, since the
amount of air inhaled and inhalation rate vary among
patients, it is difficult to efficiently administer
medicines to all patients. For this reason, this
scheme is no practical use.

[0016]

The present invention has been made in consideration of the above situation, and has as its object to provide a portable terminal having an inhaler,

and a control method for the inhaler, which can accurately manage medicines in accordance with prescriptions and perform discharging control suitable for each user, thereby efficiently administering medicines.

[0017]

10

20

[Means of Solving the Problems]

In order to achieve the above object, according to the second aspect of the present invention, there is provided a portable terminal which is arranged to be carried by a user and includes

storage means storing personal information about the user, including information about a clinical chart of the user and prescription, and

an inhaler for discharging a medicine in the form of fine droplets and making the user inhale the droplets, comprising

discharging control means for controlling the inhaler in accordance with an inhalation profile of the user to discharge the medicine, thereby allowing the user to inhale the medicine in accordance with the information of the prescription.

[0018]

In addition, in order to achieve the object,

25 according to the present invention, there is provided a

control method for an inhaler for discharging a

medicine in the form of fine droplets and making a user

inhale the droplets, the inhaler being provided for a portable terminal which is arranged to be carried by a user and includes storage means storing personal information about the user, including information about a clinical chart of the user and prescription, and the method including the step of

controlling the discharge of the medicine in accordance with an inhalation profile of the user, thereby allowing the user to inhale the medicine in accordance with the information of the prescription.

[0019]

10

15

With the arrangement or the processing of the invention, the dose of medicine and administration intervals can be accurately managed in accordance with a prescription, and proper discharging control is performed in accordance with the inhalation profile of each user, thereby efficiently administering a medicine.

[0020]

[Embodiments]

Preferred embodiments of the present invention will now be described in detail in accordance with the accompanying drawings. As an embodiment of the health management system of the present invention, a medical health management system will be described.

25 [0021]

[Overall Arrangement]

Fig. 1 is a block diagram showing the overall

arrangement of a medical health management system according to this embodiment. As shown in Fig. 1, this embodiment is comprised of a database 100, medical facility terminal 110, pharmaceutical company terminal 120, drugstore terminal 130, and user terminals 200A to 200N. Fig. 1 shows one each of the database 100, medical facility terminal 110, pharmaceutical company terminal 120, and drugstore terminal 130. Obviously, however, this arrangement is merely an example, and each component may include a plurality of identical ones. In addition, Fig. 1 shows only the four user terminals 200A to 200N (to be generically referred to as a user terminal 200 hereinafter). In practice, however, many user terminals are connected.

15 [0022]

20

25

Fig. 2 is a view showing data to be handled in this embodiment. As shown in Fig. 2(A), the embodiment handles the following data as data about each individual to be registered: basic data including an address, name, date of birth, contact, occupation, place of employment, and the like, identification data including an ID (a number if numbers are assigned to all the people; otherwise, an insurance card number or the like), personal code number, alphanumeric characters such as a password, and biometrical authentication data such as fingerprint, voiceprint, palmprint, face, iris, or retinal blood vessel pattern,

health insurance data including a number, type, usage log, and the like, electronic medical and prescription data (electronic clinical chart) for each individual, including a consultation record, prescription,

5 medication data, hospitalization record, case history, family case history, and the like, and data of measurement values obtained by a health examination.

Data of a designated medical facility as the emergency contact and inhaler set data (to be described later)

are also handled as personal data.

[0023]

15

20

In addition, as shown in Fig. 2(B), data handled as medical data are: medical facility data including a registration number, location, contact, registered doctors, facilities, and the like, pharmaceutical company data including a registration number, location, contact, medicines handled, scale, and the like, drugstore data including registration number, location, contact, medicines handled, pharmaceutist name, and the like, drug data including a drum name, effects, cautions, and the like, and inhaler data (not shown) including data about handling and maintenance of an inhaler.

[0024]

25 All these data are stored in the database 100.

The data about each individual are also stored in each user terminal 200 in the form of a detachable memory

card.

[0025]

The database 100 is a medical database that is installed within, for example, a predetermined range, e.g., an administrative area, and serves to store personal data of each resident in this area and medical data. This database 100 may be installed in a special facility or designated special hospital in the administrative area. The respective databases are connected to each other so that when a given resident is to receive a medical treatment in an area other than the residence area or moves from the residence area, access to necessary data can be made.

[0026]

10

15

20

25

The medical facility terminal 110 is installed in each medical facility and connected to the database 100. The medical facility terminal 110 has a slot in which the memory card of the user terminal 200 is inserted. In a consultation, a doctor or nurse working at the medical facility inserts the memory card of the user terminal 200 carried by the patient into the medical facility terminal 110 to read out personal data about the patient who has visited for a medical examination so as to use the data as reference data for the consultation. The doctor or nurse also updates the data in the database 100 and the data of the electronic clinical chart in the memory card of the patient on the

basis of the consultation result.

[0027]

The prescription data to be recorded at this time includes an expiration date. When the patient takes a consultation again within the expiration date, a new expiration date is set as needed.

[0028]

10

15

In the consultation, the doctor refers to medicine data as sell as the personal data about the patient. If the patient suffers a complication (e.g., suffers a visceral disease and cardiovascular disease at the same time), the doctor uses the above data as reference data in making a determination on prescription contents that are competitive. In such a case, the doctor may give the patient the information (informed consent) to give priority to the prescription desired by the patient.

[0029]

If the DNA analysis result on each patient is
recorded on the memory card of the patient or database
100, a prescription can be determined by using
techniques called gene diagnosis and gene therapy
instead of the conventional average/statistical
techniques.

25 [0030]

The pharmaceutical company terminal 120 is installed in each pharmaceutical company and connected

to the database 100. A person who works at the pharmaceutical company accesses the database 100 from this terminal to check inventory data about medicines in a medical facility or drugstore and update the shipment data of medicines that are supplied. In addition, he/she processes production control data on the basis of these data.

[0031]

10

The drugstore terminal 130 is installed in each drugstore and connected to the database 100. This terminal has a slot in which the memory card of the user terminal 200 is inserted. A person who works at the drugstore inserts the memory card of the user terminal 200 carried by a customer into the drugstore terminal 130 to read out customer's prescription data. 15 In addition, the person accesses the database 100 from this terminal to read out the prescription data on the customer who has visited the drugstore and collate the data with the corresponding data in the database 100. When the two data coincide with each other, he/she 20 sells the corresponding medicine to the customer. The person then updates the medication data in the database 100 and customer's memory card on the basis of the sold medicine.

25 [0032]

> In this case, if the ID or biometrical authentication information of a person who acts as an

alternate is registered in the database 100 in advance, a family member, caretaker, or the like, other than the patient himself/herself, can receive a medicine.

[0033]

5

10

If the user makes a contract for electronic commerce (EC) with a financial facility in which the user has an account, a credit card company, or the like in advance, he/she can make a payment through the user terminal 200 in purchasing a medicine without actually paying for the medicine on the spot. This applies to charges for a consultation and medicine which are paid to a medical facility.

[0034]

The user terminal 200 is compact and lightweight

to allow the user to always carry it. Each terminal is

made to correspond to a specific individual and

incorporates a detachable memory card storing data

about the user himself/herself as described above. The

terminal has a radio communication function and an

input/output device for supporting user's health

management, and is connected to the database 100 by

radio communication, as needed.

[0035]

[User Terminal]

25 Fig. 3 is a block diagram showing the arrangement of the user terminal 200. The user terminal 200 of this embodiment includes a controller 201 including a

CPU for controlling the overall terminal, an inhaler 202 serving as an input/output device for supporting user's health management, a communication unit 203 for supporting radio communication, an internal memory 204 storing control programs and various data, a memory card 205 storing personal data, an I/O interface 206, key switches 207 including a ten-key pad and various switches such as an emergency notification (emergency) switch, a display/speech output unit 208 including a liquid crystal display, microphone, speaker, and the like, a sensor 209 for biometrical authentication, and a rechargeable battery (not shown) serving as a power supply such as a secondary battery.

[0036]

10

15 The inhaler 202 includes a tank 2022B in which a predetermined amount of liquid medicine is stored, a discharge head 2022A for discharging the medicine, supplied from the tank, in the form of fine droplets or microdroplets, a control unit 2021 for driving/controlling the cartridge 2022, and a sensor 20 2023 for reading a code attached to a cartridge or tank or detecting the condition of inhaling (negative pressure) of the user. The inhaler 202 discharges a liquid medicine in the form of fine droplets on the basis of the ink-jet scheme using heat to form mist or 25 aerosol. When the user inhales it, the medicine is administered to the user's body through the lungs.

[0037]

This administration method replaces the administration method using a syringe to facilitate administration of a medicine by a patient

5 himself/herself and reduce his/her mental and physical burdens.

[0038]

10

The communication unit 203 is arranged to perform speech communication based on a proper communication scheme using the ten-key pad of the key switch 207 and the display/speech output unit 208 and communicate data with the database 100 by radio.

[0039]

Although the radio communication scheme to be
used is not specifically described, the scheme used in
a currently available mobile communication system (e.g.,
the cell phone system, PHS system, or car phone system),
a satellite system, or a Bluetooth system may be used.

[0040]

20 The internal memory 204 may be a read-only medium such as a ROM or a programmable storage medium to allow the user to update or change a program through the communication unit 203.

[0041]

25 The memory card 205 is at least re-recordable, detachable storage medium such as a semiconductor storage medium, MO, CD-R, CD-RW, or compact magnetic

disk.

[0042]

The I/O interface 206 is designed to selectively connect external input/output devices 250 such as various measurement sensors and printers when the user is to measure a blood pressure, pulse, blood glucose level, bodily temperature, urine protein, or the like or print his/her measurement data.

[0043]

The user terminal 200 in this embodiment is integrated with the inhaler 202. However, this inhaler 202 may be a detachable discrete device serving as one of the external input/output devices 250 like other medication devices and the above measurement sensors.

15 [0044]

20

25

The authentication sensor 209 is a sensor for performing biometrical authentication with respect to the user by using a fingerprint, voiceprint, palmprint, face, iris, retinal blood vessel pattern, or the like to allow only the registered person to use the user terminal 200.

[0045]

Although not shown, the user terminal 200 has a navigation function of detecting the current position of the terminal by using the intensity of a radio wave received from a GPS or a base station in a radio telephone network and indicating a route to a nearby

medical facility or drugstore by using map information. [0046]

[Security Measures]

The medical health management system of this embodiment must be configured to satisfactory protect data because the data handled by the system are about privacy and important medical data. In addition, to prevent any medical malpractice and operation error, this system must be configured to perform failsafe operation.

[0047]

10

15

20

25

For example, data is preferably stored in the database 100 by a scheme that allows only additional writing (additional recording). However, a specific person in charge may overwrite certain old data upon backing up the data to another storage medium. In order to suppress an excessive increase in the necessary capacity of the memory card of the user terminal 200, data that has aged a predetermined number of years may be overwritten.

[0048]

The database 100 sets an access right for each data item with respect to each of the terminals to which the database 100 is connected, including the medical facility terminal 110, pharmaceutical company terminal 120, drugstore terminal 130, and user terminal 200.

100491

More specifically, the medical facility terminal 110 can access all the data in the database 100, but can write only part of the data about the medical facility, the data of a usage log of the health insurance card carried by a patient who has visited the medical facility, the data of a clinical chart, and the data of measurement values obtained by a health examination and the like. The drugstore terminal 130 can access personal prescription data and medication 10 data when the memory card of the user terminal of the customer is inserted in the drugstore terminal and the IDs coincide with each other, but can normally access only data about medicines and data about pharmaceutical companies. The drugstore terminal 130 can access only 15 data about medicines and data about inventory conditions in medical facilities and drugstores.

[0050]

In addition, an ID, personal code number,

20 password, and the like must be input to operate each of
these terminals. Biometrical authentication may also
be performed by using a sensor similar to that of the
user terminal 200.

[0051]

25 Since the database 100 is connected to the user terminal 200 by radio, especially strict security measures must be taken. The user terminal 200 can

access only the personal data about the user and can write only a usage log of medicines (medication data) and data obtained by measurement done by the user himself/herself. When the user accesses the database 100 from the user terminal 200, biometrical authentication is performed by using the authentication sensor 209 in addition to authentication using alphanumerical characters such as an ID, personal code number, password. In communicating data, an encryption technique is preferably used to prevent leakage and tapping (eavesdropping).

[0052]

10

15

In this embodiment, security measures are also taken for medicines prescribed to the user to prevent a usage error, medication error, and operation error.

[0053]

Every time medication is performed by using the inhaler 202 of the user terminal 200, the cartridge 2022 or tank 2022B is exchanged with a new one.

20 Therefore, each cartridge or tank is packaged independently to allow the user to easily discern whether it is opened or not. One of the above components may be exchanged with a new one for each medication in accordance with the medicine or discharge 25 method to be used. For the sake of simplicity, however, assume that the tank 2022B is exchanged.

[0054]

When only a tank is exchanged for each medication, a discharge head is used a plurality of number of times. In order to ensure high discharge performance, however, when a given cartridge is used a predetermined number of times or a predetermined period of time has elapsed after the cartridge is loaded, a warning that prompts the user to exchange the cartridge with a new one is preferably provided by picture or sound. In addition, the discharge head is preferably designed such that a heater for generating heat energy is disconnected to inhibit the user from performing actual inhaling operation. When a new cartridge is loaded, the user is made to input his/her ID or password so as to be authenticated again.

15 [0055]

10

20

25

wrong medicine administration is preferably prevented in the following manner. An optically or electrically readable code is attached the tank 2022B. When the tank 2022B is loaded into the user terminal 200, the information of the code is collated with the medicine data written on the electronic clinical chart stored in the memory card 205. If a tank containing a medicine contradicting with the electronic clinical chart is loaded, the patient tries to take a medicine in amount exceeding the dose designated by a doctor, or the patient takes a medicine at improper intervals, a warning is provided by picture or sound, and actual

inhaling operation is inhibited.

[0056]

Attaching a similar code to the cartridge 2022 can also effectively prevent a wrong cartridge from being loaded. In addition, since each cartridge has an electrical terminal for connection to the control unit 2021, the type of cartridge may be identified by using this terminal.

[0057]

If a used tank is refilled with a medicine and 10 reused, a deterioration in the purity of the medicine or bacterial contamination may occur. This can be effectively prevented as follows. The outer wall of a tank is made of a metal so as to prevent refilling or 15 the above code is overwritten or rewritten to prevent a read of the code after a medicine is used. Alternatively, tanks or medicines themselves may be colored in different colors for the respective prescriptions to allow the user to easily identify them, or the entire inhaler portion is exchanged with a new 20 one in using a different medicine to prevent mixture of medicines.

[0058]

Furthermore, to perform administration of a

25 medicine at proper intervals based on a prescription,
the patient is preferably informed of the timing of
administration of the medicine by picture, sound,

vibration, or the like.

[0059]

In actually operating the inhaler, the user is preferably made to input his ID or password to authenticate personal identification again. In addition, when the user makes an operation error or a device fault is detected during operation, the operation of the inhaler is preferably stopped immediately for safety.

10 [0060]

Since the user terminal in this embodiment is battery-driven, in order to prevent the battery from running out during inhaling operation, the following operation is required. The remaining power of the 15 battery is checked. If one inhaling operation cannot be done with the remaining capacity, inhaling operation is inhibited. Alternatively, the patient must be notified in advance that the battery will run out after a few inhaling operations. In addition, if the remaining capacity of the battery becomes small, the 20 operation mode may be switched to the power save mode in which the power consumption is smaller than that in the normal discharge mode by, for example, prolonging the discharge time.

25 [0061]

In addition, in order to protect the discharge surface (nozzle) of the discharge head and maintain

high discharge performance from the hygienic viewpoint, the nozzle surface is capped to prevent a medicine residue on the surface from being dried and fixed and also prevent unnecessary medicine from leaking. This cap is preferably integrated with a cap for the inhaler.

[0062]

[Emergency Notification]

The user terminal 200 in this embodiment is made to enter the emergency notification mode by

10 continuously pressing the emergency notification (emergency) switch on the key switch 207 of the user terminal 200 for a predetermined period of time when the condition of the patient abruptly changes or abnormality occurs.

15 [0063]

20

25

Fig. 9 is a view showing an example of the contents of the emergency notification mode. As shown in Fig. 9, when the user terminal in this embodiment enters the emergency notification mode, a menu window is displayed. If the user performs no operation for a predetermined period of time after the menu window is displayed, it is determined that a serious condition has occurred, and emergency notification is performed. In this emergency notification mode, an ambulance is automatically called and a notification is automatically made to a preset contact point such as a family member.

[0064]

The items prepared on the menu screen for emergency notification include a contact to a designated doctor, notification of additional medical contents, designation of emergency treatment contents, navigation, urgent speech communication, and the like.

[0065]

10

25

"Urgent speech communication" is done by the user himself/herself, if he/she can make it, to make a contact to an emergency facility so as to give information about his/her condition or to make a contact to a doctor or family.

[0066]

"Navigation" is the function of indicating a

15 route to a nearby medical facility or drugstore or the
one which can supply the medicine used by the patient
on the basis of the medical data stored in the database
100.

[0067]

20 [Cartridge and Tank]

A cartridge in this embodiment discharges a medicine in the form of fine droplets on the basis of the ink-jet scheme using heat. This scheme is basically the same as the so-called bubble jet scheme practiced in printing apparatuses like printers.

However, this scheme has several characteristic features in a discharge head and tank which differ from

those of printing apparatuses.

[0068]

For example, a discharge head is made of a material plated with gold, ceramic material, or glass material. In addition, the arrangement of discharge openings (nozzles) and the shape of each discharge opening are changed in accordance with the type of medicine discharged and the method of medication (e.g., whether to need to reach the lungs or not).

10 [0069]

15

20

A medicine to be contained in a tank may be colored to allow the user to visually check the remaining amount, or may be mixed with a saccharide or polysaccharide, which tends to be scorched, in advance to prevent the property of the medicine from being changed by heating. Furthermore, the amount of medicine to be contained in the tank is preferably determined by adding the amount of medicine required for recovery processing performed when a discharge error occurs during operation or performed before or after inhaling operation to the amount of medicine required for one medication so as to leave a certain amount of medicine when discharge operation is properly performed.

25 [0070]

A tank in this embodiment has a double structure. That is, an outer wall made of a metal or the like is

integrally formed with an inner wall made of a flexible member whose shape changes in accordance with the amount of medicine contained. This tank differs from an ink tank used in the general ink-jet scheme in that it has neither porous absorber inside nor atmosphere communication port.

[0071]

10

25

Tanks are packaged and supplied, for example, a predetermined number of tanks at a time. In this case, instruments and jigs such as droppers and sterile absorbent gauzes for maintaining discharge heads and caps are preferably packaged together.

[0072]

As described above, in this embodiment, every

time medication is performed, the tank 2022B is
exchanged with a new one, and the cartridge 2022 is
also exchanged after a predetermined number of times of
medication or at predetermined intervals. The
exchanged cartridges and tanks are effectively recycled

in the following manner.

[0073]

Cartridges and tanks are manufactured by a pharmaceutical company and supplied to patients through pharmacies belonging to medical facilities and ordinary drugstores. As described above, when a patient is to obtain a cartridge or tank, he/she inserts the memory card into the medical facility terminal 110 or

drugstore terminal 130. The prescription data stored in the memory card is then collated with the prescription data stored in the database 100. Since medicine data includes the data of a medicine used in the past, whether the patient has already used the same type of cartridge or tank can be easily known.

[0074]

If the patient has used the same type of cartridge or tank, he/she brings it with him/her and exchanges it with a new one. In this case, if information indicating whether the cartridge or tank has been collected is also recorded as a medicine usage log in the medicine data, collection can be done more reliably.

15 [0075]

20

The cartridge or tank is collected to the pharmaceutical company through a medical facility or drugstore. The outer appearance and function of the cartridge or tank are then checked. The cartridge or tank that can be further used is cleaned, sterilized/disinfected, and refilled with a medicine. After the information of the code on the cartridge or tank is rewritten, it is reused.

[0076]

25 [Inhaling Operation]

Processing in actual inhaling operation using the user terminal 200 in this embodiment will be described

next with reference to the flow chart of Fig. 4.

First of all, it is checked whether adjustments for the administration of a medicine have been done (step S301). This adjusting operation includes the initialization step of registering data such as the amount of a medicine for one medication and medication intervals (step S302), the test inhaling step of determining discharge conditions by measuring the amount of air inhaled by each user and a profile (step S303), and the decision step of checking whether the adjustments are done properly as a result of the test inhaling (step S304).

[0078]

10

25

This adjusting operation is performed under the guidance of an expert, e.g., a doctor when it is diagnosed that a medicine must be administered. The measured amount of air inhaled, the measured profile, and the determined discharge conditions are stored as inhaler setting data in both the database 100 and the memory card 205 of the user terminal 200.

[0079]

To perform actual inhaling operation, a cartridge and/or tank are/is loaded into the inhaler 202 (step \$305). To allow the user to perform the operation, authentication with respect to the user is then performed on the basis of a combination of one of an

ID , personal code number, and password, and a biometrical authentication means such as a fingerprint (step \$306).

[0800]

5 Before actual inhaling operation, inhalation/recovery processing is performed by using instruments such as an inhaling jig (step S307). The user then holds the discharge opening end of the inhaler in his/her mouth and executes inhaling 10 operation (step S308). The inhaler starts discharging the medicine upon detecting the inhalation by the user with a negative pressure sensor or the like. While the medicine is discharged, the user terminal preferably generates a signal sound or the like. When a 15 predetermined amount of medicine is discharged after the user repeats inhalation several times (step S309), the inhaling operation is terminated. The end of inhalation is preferably informed by signal sound or indication.

20 [0081]

25

[Driving Control of Discharge Operation]

In this embodiment, a liquid medicine is discharged in the form of fine droplets on the basis of the ink-jet scheme using heat. In this scheme, a driving waveform is formed into a pulse-like shape to control the number of droplets discharged on the basis of the number of pulses. This scheme is therefore

suited to accurately managing the amount of liquid discharged.

[0082]

In this embodiment, however, to use this scheme

for medical treatment, discharging control is performed differently from that in a printing apparatus. More specifically, the printing apparatus prints by discharging ink downward on a print medium such as a paper sheet. In contrast to this, the inhaler in this embodiment must discharge a medicine in the form of mist or aerosol and make the medicine reach the lungs, together with the air inhaled by the user.

[0083]

For this reason, control must be performed to

decrease the size of each droplet to a size much

smaller than that in the general printing apparatus and
reliably discharge droplets with such a small size by a
proper amount. If the size of each droplet decreases,
the kinetic energy of discharged droplets is low.

These droplets need not be discharged in almost one direction as in a printing apparatus, and the droplets discharged in various directions may fly and collide with each other.

100841

In this embodiment, therefore, driving parameters are changed in accordance with the profile (pattern) of air inhalation. For example, in inhaling air, the

amount of air inhaled per unit time is large at the start time point, and decreases immediately before the end of inhalation. If, therefore, the medicine is to be discharged a plurality of number of times within an inhalation time (one to two sec), different discharging speeds, different driving frequencies, and the like are set for the first discharge operation and the last discharge operation. Alternatively, the discharge scheme, the size of each droplet, and the main droplet/sub-droplet ratio may be changed. The timing at which these driving parameters are changed is preferably stored in the memory card in association with the medicine to be used.

[0085]

10

15

Furthermore, the profiles of air inhalation vary among individuals owing to ages, sexes, physiques, and the like. For this reason, even with the same prescription, the profiles must be finely adjusted (tuned) in accordance with the respective users. This operation will be described with reference to the 20 portion described in association with steps S302 to \$304 in the flow chart of Fig. 4.

100861

To check whether inhalation is accurately performed, discharged droplets are preferably monitored 25 by an optical detection means or the like. In this case, if inhalation is not properly performed, a

warning is preferably generated. As a detection method, for example, a method of detecting reflected light, refracted light, transmitted light, or scattered light or a coloring matter or fluorescent agent mixed in a medicine or a method using a laser may be used.

[0087]

[Flow of Medicine]

The flow of a medicine (cartridge and tank) in this embodiment will be described below with reference to Fig. 5.

[8800]

10

25

The medicines manufactured by a pharmaceutical company are supplied to medical facilities and drugstores. Assume that it is required for a user (patient) to take a medicine as a result of consultation with a doctor. In this case, if, for example, the user visits the medical facility for the first time, he/she receives a medicine for a predetermined number of days from the pharmacy of the medical facility from which he/she has taken the consultation.

[0089]

In the second or subsequent visit with a consultation, the user receives a medicine from the pharmacy of the medical facility in the same manner as described above. At this time, the previously received and used medicine is exchanged with a new one, and the

data of the new medicine is written in the medication data on the electronic clinical chart.

[0090]

If no consultation need be taken, the user may receive the medicine from a drugstore. In this case as well, the previously received and used medicine is exchanged with a new one, and the data of the new medicine is written in the medication data on the clinical chart by using a drugstore terminal.

10 [0091]

The used medicine received from the patient is collected from the medical facility or drugstore to the pharmaceutical company and recycled in the above manner.

[0092]

15 [Flow of Data]

Fig. 6 is a view schematically showing the flow of data in this embodiment.

[0093]

As shown in Fig. 6, the health management system

20 according to this embodiment has the database 100 as a
main component, which manages data in a centralized
manner. The respective terminals also manage necessary
information in a decentralized manner.

[0094]

The medical facility terminal 110 reads out medicine data from the database 100. In a consultation, the medical facility terminal 110 reads out the

personal data of the patient from the memory card of the user terminal 200, collates the data with the data read out from the database 100, and writes the data of a health insurance card and electronic clinical chart in the database 100 and the memory card of the patient.

[0095]

10

25

The pharmaceutical company terminal 120 reads out inventory data on medicines in medical facilities and drugstores from the database 100, and writes the data of shipped medicines as shipment data in the database 100. If a new medicine is developed or new effect is found, the pharmaceutical company terminal 120 writes new medicine data in the database 100.

[0096]

The drugstore terminal 130 reads out prescription data and medication data from the memory card of the user terminal 200 of the patient when he/she visits the drugstore, and collates the data with the prescription read out from the database 100. The medication data about the medicine purchased by the patient is written in the memory card and the database 100.

[0097]

The measurement data obtained by the patient himself/herself using a medical diagnostic instrument or outside the medical facility is written in the memory card of the user terminal 200 of the patient.

This measurement data is written in the database 100,

as needed, through the medical facility terminal 110. In addition, in response to a request from the patient, the data of the electronic clinical chart or navigation data about a nearby medical facility or drugstore is read out from the database 100.

[0098]

[Specific Examples]

Specific examples of how health management is performed for several patients by using the health management system according to this embodiment will be described below.

[0099]

10

Assume that in the following specific examples, each patient has already possessed the user terminal 200 having a memory card which is issued by a public facility such as a public office or a medical facility from which the patient has taken a period medical checkup and stores basic data, identification data, health insurance data, and measurement data.

20 [0100]

25

(1) Insulin-Treated Patient

The flow charts of Figs. 7 and 8 show examples of processing to be performed when a consultation is performed and a medicine is supplied, respectively. An example of a patient who needs insulin treatment will be described below with reference to these flow charts.

[0101]

A patient A was told in a periodic medical checkup that his/her blood glucose level was high, and hence visited a nearby medical facility to take a consultation. The patient removed the memory card from this/her user terminal and handed it to a doctor. The doctor inserts the patient's memory card into an medical facility terminal (step S701). The patient then consulted the doctor (step S702). As a result of the consultation, this case was diagnosed as type I insulin-dependent diabetes mellitus, and the patient must periodically medicated with insulin. As a medicine to be prescribed, a mixed formulation of an intermediate type medicine and an immediate type medicine is determined, and the patient was obliged to take 20 units of each medicine within 30 min before breakfast and dinner. Upon consulting with the doctor, standard intake times were set, and an electronic clinical chart was formed (step S703).

[0102]

10

15

20 The data of this electronic clinical chart was written in the memory card of the user terminal 200 of the patient and the database 100. At this time, the data of a photograph of the patient's face and a fingerprint of the patient were newly written as 25 authentication data. The patient A selected pulmonary inhalation as a method of taking insulin (step S704), and would use the inhaler of the user terminal 200 for

the first time.

[0103]

As described in association with steps S302 to S304 in Fig. 4, the inhaler setting data about the patient A was registered in the memory card and database under the guidance of the doctor (step S705).

[0104]

10

Upon completion of the above processing, prescription data was created/updated (step S706), and the patient's memory card was removed from the medical facility terminal and returned to the patient (step S707), thus terminating the processing at the time of consultation.

[0105]

15 The patient A went to the pharmacy of the medical facility while carrying the user terminal 200 to receive a medicine. The patient handed his/her memory card to a person in charge in the pharmacy, and the person inserted the memory card into the medical facility terminal in the pharmacy (step S801) to 20 authenticate the patient with an ID and fingerprint (step S802). The person then checked the prescription data in the memory card by collating it with the prescription data in the database (step S803). If the 25 data do not coincide with each other in step \$802 or S803, the processing is interrupted, and the prescription is informed of the corresponding

information.

[0106]

Since the data coincided with each other in steps \$802 and \$803, the person in charge handed insulin for one month to the patient A (step \$804). This insulin is contained in a cartridge, and the medicine box that the prescription has received also contains an inhaling jig. It was checked that this medicine was supplied for the first time (step \$805). Information such as the amount of insulin received, date, expiration date, intervals, and the like is written as medication data in both the memory card and the database (step \$807). The memory card was then removed and returned to the patient (step \$808).

15 [0107]

10

20

25

When the patient A returned home, a warning sound indicating a standard setting time was generated, and the patient A took out one of cartridges, each of which was packaged, from the received medicine box. The patient carefully opened the package and confirmed that no medicine leaked. The patient then loaded the cartridge into the inhaler. When the cartridge was mounted, the user terminal collated the prescription data written on the electronic clinical chart in the memory card with the information of the loaded cartridge and displayed the type of cartridge and the loading time on the display.

[0108]

As described with reference to steps S306 to S309 in Fig. 4, after the user was authenticated with an ID or fingerprint and inhaling/restoring operation was performed by using a jig, the user inhaled insulin and completed self-administration operation by inhalation. The date when the patient executed inhaling operation was stored in the memory card.

[0109]

10 When the patient periodically repeated such inhaling operation for several days, he/her felt ill on the road. The patient then went to a nearby drugstore by using the navigation function of the user terminal, measured his/her blood glucose level, and stored the 15 measurement result in the memory card. Since the measurement value was slightly higher than the normal value, the patient transferred the data stored in the memory card to the database, and contacted the doctor in charge by using the emergency notification function 20 of the user terminal, thus asking for an instruction from the doctor through speech communication.

[0110]

25

Another day, the patient went to his/her accustomed drugstore because the insulin on hand began to run out, and found that the drugstore had run out of stock. The patient therefore went to a nearby drugstore having insulin in stock by searching for it

using the navigation function. The patient received a new cartridge according to the above procedure described with reference to steps S801 to S804 in Fig. 8. In this case, since this medicine was not supplied for the first time, the flow advanced from step S805 to step S806 to return the used cartridge. At the drugstore terminal, the medication data in the memory card and database were updated, and the inventory data of the medicine was updated. The memory card was then returned to the patient.

[0111]

(2) Impotentia Erigendi Case

An impotentia erigendi case will be described next with reference to the flow charts of Figs. 7 and 8.

15 [0112]

10

20

25

A patient B went to a medical facility to receive a consultation. The patient removed a memory card from his/her user terminal and handed it to a doctor. The doctor inserts the memory card into an medical facility terminal (step S701) and performed a consultation (step 702). As a result of the consultation, the patient was diagnosed with impotentia erigendi. It was then determined on the basis of the consultation with the doctor that the patient would take gonadotrophic hormone by pulmonary inhalation for three months. It was determined that the medicine would be supplied weekly, and the patient would take the medicine at

predetermined intervals which were determined by himself/herself as necessary. The above information was written in both the memory card and the electronic clinical chart in the database (step S703).

5 [0113]

10

15

20

25

The inhaler setting data about the patient B were registered in the memory card and database under the guidance of the doctor as described with reference to steps \$302 to \$304 in Fig. 4 (step \$705). At the same time, data of a photo of the face and fingerprint were also written newly as authentication data.

[0114]

When the above processing was completed, the doctor created/updated prescription data (step S706), removed the patient's memory card from the medical facility terminal, and returned it to the patient (step S707), thus completing the processing in the consultation.

[0115]

The patient B went to the pharmacy of the medical facility while carrying the user terminal 200, and handed the memory card to a person in charge in the pharmacy. The person in charge inserted the memory card into a medical facility installed in the pharmacy (step S801) to authenticate the patient with the ID and the photo of the face (step S802), and checked the prescription in the memory card by collating it with

the prescription in the database (step S803). The person in charge then handed a medicine for one week to the patient B (step S804). This medicine is of a type that is exchanged with a new one in the form of a tank, and the received medicine box also contains an inhaling jig. The person determined that this medicine was supplied for the first time (step S805), and wrote medicine data such as the amount of medicine received, date, expiration date, and intervals in both the memory card and the database (step S807). The person removed the memory card and returned it to the patient (step S808).

[0116]

10

The patient B took out the tank from the medicine box and loaded it into the cartridge as needed, and took the medicine by himself/herself by inhalation as in the case of (1) in accordance with a desired effect exertion time.

[0117]

20 The received medicine ran out one week after it was received, and hence the patient B went to the drugstore. The patient received a new tank according to the processing described with reference to steps \$801 to \$804 in Fig. 8. In this case, since the medicine was not supplied for the first time, the flow advanced from step \$805 to step \$806 to return the used tank. At the drugstore terminal, the medication data

and the inventory data of the medicine in the memory card and database were updated, and the memory card was returned to the patient.

[0118]

5 (3) Person Who Wants to Quit Smoking

A case of a person who wants to quit smoking will be described next with reference to the flow charts of Figs. 7 and 8.

[0119]

nedical treatment with the aim of quitting smoking.

The patient removed a memory card from this user terminal and handed it to a doctor. The doctor inserted the patient' memory card into an medical facility terminal (step S701) and made a medical inquiry (step S702). The doctor determined on the basis of the medical inquiry and consultation that the

prescription would take a medicine by pulmonary

inhalation to reduce the nicotine intake step by step.

It was determined that the medicine would be supplied weekly, and the maximum dose per day would be determined in accordance with a predetermined concentration decrease gradient. The above information was written in the memory card and the electronic

25 clinical chart in the database (step S703).

[0120]

The inhaler setting data about the patient C were

registered in the memory card and database under the guidance of the doctor as described with reference to steps S302 to S304 in Fig. 4 (step S705). At the same time, data of a photo of the face and fingerprint were also written newly as authentication data.

[0121]

10

15

20

In this case, the inhaler is controlled such that when the patient inhales the medicine at predetermined intervals or shorter intervals, the nicotine intake per day decreases, and the patient is inhibited from inhaling the medicine in amount exceeding the maximum dose per day. In addition, the inhaler is controlled such that even if the dose in the previous day is less than the maximum dose, the remaining amount of medicine is not added to the amount of medicine for the next data.

[0122]

When the above processing is completed, prescription data is created/updated (step S706), and the patient's memory card is removed from the medical facility terminal and returned to the patient (step S707), thus terminating the processing at the time of consultation.

[0123]

25 The patient C went to the pharmacy of the medical facility while carrying the user terminal 200, and handed his/her own memory card to a person in charge in

the pharmacy. This person inserted the memory card into the medical facility terminal installed in the pharmacy (step S801) to authenticate the patient with the ID and the photo of the face (step S802), and checked the prescription in the memory card by collating it with the prescription in the database (step S803). The person in charge then handed a medicine for one week to the patient C (step S804). This medicine is of a type that is exchanged with a new one in the form of a tank, and the received medicine 10 box also contains an inhaling jig. The person determined that this medicine was supplied for the first time (step S805), and wrote medicine data such as the amount of medicine received, date, expiration date, and intervals in both the memory card and the database 15 (step S807). The person removed the memory card and returned it to the patient (step S808).

[0124]

The patient C took out the tank from the medicine

20 box several times a day, loaded in into the cartridge,
and took the medicine by himself/herself by pulmonary
inhalation as in the case of (1) instead of smoking.

[0125]

The received medicine ran out one week after it

25 was received, and hence the patient C went to another

medical facility. A doctor inserted the memory card of
the patient C into the medical facility terminal, set

the maximum dose per day and the number of times of inhalation for each inhaling operation in accordance with the concentration decrease gradient set by reading out data from the electronic clinical chart of the patient C, and wrote a new prescription. In addition, the inhaler was adjusted in accordance with the new prescription.

[0126]

of the medical facility according to the processing described with reference to steps S801 to S804 in Fig. 8 as in the above case. In this case, since the medicine was not supplied for the first time, the flow advanced from step S805 to step S806 to return the used tank. At the medical facility terminal of the pharmacy, the medication data and the inventory data of the medicine in the memory card and database were updated, and the memory card was returned to the patient.

[0127]

20 (4) Inpatient

A case of an inpatient will be described next with reference to the flow chart of Fig. 10.

[0128]

In a periodic medical checkup, a stomach cancer

in a patient D was found. The patient therefore went
to a medical facility to take ablation surgery. In the
medical facility, a doctor inserted the patient's

memory card into a medical facility terminal (step S1101) to diagnose the case by reading out past medical checkup result and stomach X-ray photograph images, and performed an operation (step S1102).

5 [0129]

10

20

25

The doctor created an electronic clinical chart including a medical treatment after the operation on the basis of the operation result (step S1103). The memory card of the patient D was moved to a bed-side terminal attached to a bed in the hospital in which the patient D would stay (step S1104), and persons in charge, e.g., a doctor and nurse, were registered (step S1105).

[0130]

This bed-side terminal is a modification of the medical facility terminal 110, and has almost the same arrangement as that of the user terminal 200 except that the inhaler 202 is omitted. However, this terminal has a wide display for better viewability.

The name of the patient, the name of disease, and the symptom are always displayed on this display screen.

[0131]

For everyday treatment performed by the doctor or nurse, he/she identifies the patient according to the name and symptom displayed on the display screen (step S1106), and inputs the ID of the doctor or nurse to read out the electronic clinical chart (step S1107).

The doctor then makes his rounds or the doctor or nurse performs a necessary check or measurement (step S1108). The prescription data is updated on the basis of the resultant data (step S1109).

5 [0132]

When a predetermined period of time has elapsed, the condition of the patient improved, and the patient was given a permission to leave the hospital (step S1110). When the patient left the hospital, the memory card was returned to him/her (step S1111).

[0133]

[Effects of Embodiment]

As has been described above, this embodiment has the following effects.

15 [0134]

10

(1) Various personal data and medical data are electronized and stored in the database, and hence efficient medical practices can be expected by information sharing.

20 [0135]

(2) Personal data about privacy can be protected by setting an access right for each terminal and personal identification.

[0136]

25 (3) Since each user terminal has the emergency notification mode, emergencies can be properly and quickly handled.

[0137]

(4) Administering a medicine by using the inhaler of a user terminal instead of injection as in the prior art allows a patient himself/herself to easily take the medicine, thus reducing his/her mental and physical burdens.

[0138]

1.0

(5) In discharging a medicine from the inhaler, the driving parameters are changed in accordance with the inhalation rate and the like to send a large amount of medicine to the lungs, thereby improving the inhalation efficiency.

[0139]

(6) In administering a medicine by using the inhaler, the medicine can be efficiently administered by performing proper discharging control in accordance with the amount of air inhaled by each patient and the profile.

[0140]

20 (7) When a patient takes a medicine by himself/herself, the patient can be prevented from loading a wrong medicine or erroneously operating the inhaler.

[0141]

25 (8) With the controller of a user terminal, the dose of a medicine and medication intervals can be accurately managed in accordance with prescription data.

[0142]

(9) Since the supply and administration of medicines are recorded, the medicines used by each patient and inventories can be accurately managed. In addition, used cartridges and tanks can be accurately collected.

[0143]

10

25

(10) Prescription data is also stored in the memory card of each user terminal. This allows each user to receive medicines according to a prescription by reading the data regardless of the area where he/she is located.

[0144]

(11) The navigation function of each user
15 terminal facilitates access to a nearby or suitable medical facility or drugstore.

[0145]

[Other Embodiment]

The above embodiment has exemplified the medical health management system. However, the present invention can be applied to various other applications.

[0146]

For example, the present invention may be applied to a system for instructing each user to regularly practice diet and exercise for health and beauty in accordance with a preset program by using a user terminal similar to the one described above and a

terminal installed in a sports club or the like, or the above inhaler of the user terminal may be used to take proper amounts of vitamins and minerals, other than medicines, which are necessary for health.

5 [0147]

When the present invention is used for such an application other than medical applications, the data stored in the database and each terminal and the function of each user terminal are changed as needed.

10 [0148]

15

In addition, the present invention can be used as a medical health management system in such a manner that the above inhaler of the user terminal is used for an inhalation treatment for an asthmatic patient or to administer a medicine into the patient's body, which is currently administered by injection or in the form of an internal medicine.

[0149]

The arrangement of the health management system

20 is not limited to the above embodiments. For example,
the database may be incorporated in the medical
facility terminal.

[0150]

[Effect of the Invention]

As described hereinbefore, according to the present invention, the dose of medicine and administration intervals can be accurately managed in

accordance with a prescription, and proper discharging control is performed in accordance with the inhalation profile of each user, thereby efficiently administering a medicine.

5 [Brief Description of the Drawings]

[Fig. 1]

Fig. 1 is a block diagram showing the overall arrangement of a medical health management system according to an embodiment of the present invention.

10 [Fig. 2]

Fig. 2 is a view showing data to be handled in the embodiment shown in Fig. 1.

[Fig. 3]

Fig. 3 is a block diagram showing the arrangement of a user terminal in the embodiment shown in Fig. 1.

[Fig. 4]

Fig. 4 is a flow chart showing inhaling operation using the user terminal shown in Fig. 3.

[Fig. 15]

Fig. 5 is a view showing the flow of a medicine in the embodiment shown in Fig. 1.

[Fig. 6]

Fig. 6 is a view showing the flow of data in the embodiment shown in Fig. 1.

25 [Fig. 7]

Fig. 7 is a flow chart showing processing in a consultation using a medical facility terminal.

[Fig. 8]

Fig. 8 is a flow chart showing processing in medicine supply.

[Fig. 9]

5 Fig. 9 is a view for explaining an emergency notification mode.

[Fig. 10]

Fig. 10 is a flow chart showing processing for an inpatient.

10 [Description of the Reference Numerals]

100 database

110 medical facility terminal

120 pharmaceutical company terminal

15 130 drugstore terminal

200 portable terminal

201 controller

202 inhaler

203 communication unit

20 204 internal memory

205 memory card

206 I/O interface

207 key switches

208 display/speech output unit

25 209 authentication sensor

250 external input/output devices

2021 control unit

2022 cartridge
2022A discharge head
2022B tank
2023 sensor

5

[Type Of The Document] Abstract [Abstract]

[Object] To provide an inhaler, which perform suitable control for each user.

- 5 [Means of Achieving the Object] In a portable terminal which is arranged to be carried by a user including storage means storing personal information about the user, including information about a clinical chart of the user and prescription, provides an inhaler for discharging a medicine in the form of fine droplets and making the user inhale the droplets, and performing discharging control (S705) for the inhaler in accordance with an inhalation profile of the user to discharge the medicine and storing (S707) the
- information in a memory card of the terminal, when the consultation with a doctor, thereby allowing the user to inhale the medicine in accordance with the information of the prescription.
- 20 [Selected Drawing] Fig. 7

FIG. 1

F1G. 2

	2/10
DESIGNATED MEDICAL FACILITY INHALER SETTINGS	IST
MEASUREMENT DATA HEIGHT WEIGHT BLOOD PRESSURE BLOOD GLUCOSE LEVEL URINE PROTEIN	SCALE SCALE PHARMACEUTIST
ELECTRONIC MEASI CLINICAL CHART CONSULTATION RECORD HEIGH MEDICATION DATA MEDICATION DATA HEIGH PRESCRIPTION HOSPITALIZATION RECORD CASE HISTORY HISTORY URINE	REGISTERED DOCTOR MEDICINES HANDLED MEDICINES HANDLED
HEALTH ELE INSURANCE CLII NUMBER CC TYPE RE USAGE LOG ME HO HO HO HO HIS	CONTACT
IDENTIFICATION HEAD INS INS INS INS INS INCODE NUMBER USSWORD AUTHENTICATION DATA	MEDICAL FACILITY DATA REGISTRATION NO. LOCATION C MEDICINE DATA MEDICINE DATA MEDICINE NAME EFFECTS C
BASIC DATA ADDRESS NAME DATE OF BIRTH CONTACT OCCUPATION PLACE OF EMPLOYMENT	MEDICAL BE
PERSONAL DATA	l

3/10 250 EXTERNAL INPUT/ OUTPUT DEVICE ~ 200 209 AUTHENTICATION SENSOR 208 DISPLAY/SPEECH OUTPUT UNIT 207 KEY SWITCH 206 9 205 203 201 MEMORY CARD COMMUNICATION UNIT CONTROLLER 204 INTERNAL MEMORY 202 2021 CONTROL UNIT DISCHARGE HEAD TANK INHALER 2022A~ 2022B~ 2022~ SENSOR 2023

F1G. 3

FIG. 4

FIG. 5

FIG. 7

FIG. 8

FIG. 10

