Svar, TATA24, 2019-08-29

2.
$$x_1 = \frac{1}{2}$$
, $x_2 = \frac{1}{2}$

7. Satt
$$\bar{u}_{1} = e^{\left(\frac{3}{1}\right)}$$
, $\bar{u}_{2} = e^{\left(\frac{1}{3}\right)}$, $\bar{u}_{3} = e^{\left(\frac{1}{1}\right)}$, $\bar{u}_{4} = e^{\left(\frac{7}{4}\right)}$.

Gram - Schmidt; $\bar{f}_{1} = \bar{u}_{1} = e^{\left(\frac{3}{1}\right)}$.

 $\bar{f}_{2} = \bar{u}_{2} - \frac{\bar{u}_{2} \cdot \bar{f}_{1}}{\bar{f}_{1} \cdot \bar{f}_{1}} \bar{f}_{1} = e^{\left(\frac{3}{1}\right)} - 1e^{\left(\frac{3}{1}\right)} = e^{\left(\frac{2}{2}\right)}$.

Obs att $\bar{u}_{3} = -\frac{1}{2}\bar{f}_{2}$, så $\bar{u}_{3} \in [\bar{f}_{1}, \bar{f}_{2}]$.

 $\bar{f}_{4} = \bar{u}_{4} - \frac{\bar{u}_{4} \cdot \bar{f}_{1}}{\bar{f}_{1} \cdot \bar{f}_{1}} \bar{f}_{1} - \frac{\bar{u}_{4} \cdot \bar{f}_{2}}{\bar{f}_{2} \cdot \bar{f}_{2}} \bar{f}_{2} = e^{\left(\frac{7}{4}\right)} - 2e^{\left(\frac{3}{1}\right)} - \frac{1}{2}e^{\left(\frac{7}{2}\right)} = e^{\left(\frac{2}{1}\right)}$.

Normering ger: Svar: $e^{\left(\frac{1}{1}\right)} \bar{f}_{1} = e^{\left(\frac{3}{1}\right)}$, $e^{\left(\frac{7}{1}\right)} \bar{f}_{2} = e^{\left(\frac{7}{1}\right)}$.

8.
$$\begin{cases} x_1' = 3x_1 - 2x_2 & x_1(0) = 3 \\ x_2' = 2x_1 - 2x_2 & x_2(0) = 1 \end{cases}$$

$$S_{\alpha}^{2} = X_{\alpha}^{2} - X_{\alpha}^{2} = X_{\alpha}^{2} - X$$

Svar:
$$\begin{cases} x_1(t) = \frac{10}{3}e^{2t} - \frac{1}{3}e^{-t}, \\ x_2(t) = \frac{5}{3}e^{2t} - \frac{2}{3}e^{-t}. \end{cases}$$

9.
$$Q(eX) = 3x_1^2 + 3x_2^2 + 7x_3^2 - x_1x_2$$
 $(x = \begin{pmatrix} x_1 \\ x_3 \end{pmatrix})$.

 $S_{\alpha}^{\alpha} Q(eX) = X^{t}AX$, med $A = \begin{pmatrix} 3 - 1/2 & 0 \\ -1/2 & 3 & 0 \\ 0 & 0 & 7 \end{pmatrix}$. Egenvarden:

 $\begin{vmatrix} 3 - \lambda & -1/2 & 0 \\ -1/2 & 3 - \lambda & 0 \\ 0 & 0 & 7 - \lambda \end{vmatrix} = (7 - \lambda)((\lambda - 3)^2 - (1/2)^2) = (7 - \lambda)(\lambda - 7/2)(\lambda - 5/2) = 0$.

 $\lambda = 7: \begin{pmatrix} -1/2 - 1/2 & 0 & 0 \\ -1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} ger + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$,

 $\lambda = \frac{7}{2}: \begin{pmatrix} -1/2 - 1/2 & 0 & 0 \\ -1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 7/2 & 0 \end{pmatrix} ger + \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\lambda = \frac{5}{2}: \begin{pmatrix} 1/2 - 1/2 & 0 & 0 \\ -1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 9/2 & 0 \end{pmatrix}$ ger $\lambda = \frac{1}{2}$ $\lambda = \frac{5}{2}: \begin{pmatrix} 1/2 - 1/2 & 0 & 0 \\ -1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 9/2 & 0 \end{pmatrix}$ ger $\lambda = \frac{1}{2}$ $\lambda = \frac{5}{2}: \begin{pmatrix} 1/2 - 1/2 & 0 & 0 \\ -1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 9/2 & 0 \end{pmatrix}$ ger $\lambda = \frac{1}{2}$ $\lambda = \frac{5}{2}: \begin{pmatrix} 1/2 - 1/2 & 0 & 0 \\ -1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 9/2 & 0 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 9/2 & 0 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 9/2 & 0 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 9/2 & 0 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ ger $\lambda = \frac{1}{2}: \begin{pmatrix} 1/2 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ ger

10.
$$F: \mathbb{R}^3 \to \mathbb{R}^3$$
 ges as $\frac{1}{7}\begin{pmatrix} 2 & 3 & -6 \\ 6 & 2 & 3 \\ -3 & 6 & 2 \end{pmatrix}$ i standardbasen,

a)
$$l$$
 ar egenrummet till egenvardet -1 :
$$\begin{pmatrix} 9 & 3 & -6 & | & 0 \\ 6 & 9 & 3 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 0 & 21 & 21 & | & 0 \\ 0 & 21 & 21 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & -3 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix},$$
vilket ger: Svar: $(x_1, x_2, x_3) = (t, -t, t), t \in \mathbb{R}$.

b) Ta
$$\bar{u} \perp l$$
, tex. $\bar{u} = e(\frac{1}{0})$. Satt $\bar{v} = F(\bar{u}) = e(\frac{1}{7}) = \frac{1}{7} \left(\frac{5}{8}\right)$. $\bar{u} \cdot \bar{v} = |\bar{u}||\bar{v}||\cos\theta$, sa $\cos\theta = \frac{5/7 + 8/7 + 0}{\sqrt{2} \cdot \frac{1}{7}\sqrt{25 + 64 + 9}} = \frac{13}{14}$.

$$\frac{\text{Svar}}{\text{14}}$$
 arccos $\frac{13}{14}$.