

Routing Table and Routing Protocols

Prof. Chien-Chao Tseng

曾建超教授

Department of Computer Science
National Yang Ming Chiao Tung University
cctseng@cs.nctu.edu.tw

References: Cisco CCNA

Switches vs. Routers

- Both are store-and-forward:
 - Routers: NW-layer devices, examine NW-layer headers
 - Switches: Link-layer devices, examine link-layer headers
- Both have forwarding tables:
 - Routers: compute forwarding tables, using routing algorithms, IP addresses
 - Switches: learn forwarding table, using flooding, learning, MAC addresses

Two Main Functions of IP Layer <

(in packet header)

- 1) Routing: control plane determines the source-destination route for packets
 - Manual (static) configuration or
 - Dynamic methods (Routing Algorithms)
 - Slow time-scales (per control event)
- 2) Forwarding: data plane moves packets from router input to appropriate router output
 - Based on IP Destination Addresses
 - Fast time-scales (per-packet)

OSPF IS-IS

NYCU CS

Inter- and Intra-Domain Routing

- Internet is divided into Autonomous Systems (AS).
- Autonomous System (AS):

 a group of networks and routers under the authority of a single administration.
- **Two Types of Routing Algorithms**
 - Intra-domain (AS) Routing: Routing inside an AS
 - ➤ Interior Gateway Protocol (IGP)
 - Inter-domain (AS) Routing: Routing between ASs
 - ➤ Exterior Gateway Protocol (EGP)

- OSPF: Open Shortest Path First
- IS-IS: Intermediate system to intermediate system
- RIP: Route Information Protocol
- IGRP: Interior Gateway Routing Protocol (Cisco)
- EIGRP: Enhanced IGRP (Cisco)
- BGP: Border Gateway Protocol

Intra-domain RIP IGRP

Link State Distance Vector

EIGRP

Routing Algorithm

BGP

Path Vector

Inter-domain

Techniques for Routing Table Entrites

- Every host or router has Routing Tables (RTs)
- Techniques that make the size of RT manageable,
- 1) Next-hop Routing:

RT entry holds only **Address of Next Hop**,

instead of complete route

E.g., Packet: A-to-Z

Node A: $C \rightarrow Z$, Node C: $E \rightarrow Z$, Node E: $E \rightarrow Z$

Node A: $A \rightarrow C \rightarrow E \rightarrow Z$, Node C: $C \rightarrow E \rightarrow Z$

2) Network-Specific Routing:

RT entry holds **Destination Network Address**, instead of **Destination Host Address**

(GW)

- Holds Destination NW ID (or Prefix,) Instead of Host ID
- 3) Default Routing:

One RT entry (Default Route) for Rest of Internet

- Techniques that handles **other issues** such as security
- 4) Host-Specific Routing:

RT entry holds Destination Host address

CS1F Default: CS1F 6F

Default: CSCC

Default: ITSC

CS6F

Default: ITSC

Default Gateway

CSCC

More Specific Routing

Host-Specific Routing:
 Routing Table entry holds Destination Host Address

• Sacrifice efficiency for other advantages

• e.g., More control over routing for security or other reasons

Packets destined for B, normal

Packets destined for X must go thru the firewall;

An extreme case of the more specific route

Why Longest Prefix Matching - Route Aggregation

- Hierarchical Addressing allows efficient advertisement of routing information:
 - **≻**Route Aggregation
- E.g., Given a network of 140.113.24.0/24
 - We can divide it into four subnets of /26
 - But router CS advises 140.113.24.0/24, instead

Lab 0 Auto Summarization		
140.113.24.00 000000	140.113.24. <mark>0/26</mark>	
Lah 1		

140.113.24.01 0000000 140.113.24.64/26

Lab 2

140.113.24.10 000000 140.113.24.128/26

Lab 3

140.113.24.11 000000 140.113.24.192/26

"140.113.24.0/<mark>24</mark>"

MIRC

"140.113.16.0/<mark>24</mark>"

140.113.16.0/24"

Prefix IF

140.113.24.0/24 1

140.113.16.0/24 2

.... ...

Route Aggregation and Longest Prefix Matching

- ★ Ex., Lab 1 moves to MIRC, but retains original addresses
 - MIRC advises more specific route to 140.113.24.64/26
 - >ITSC RT entries: 140.113.24.0/24, 140.113.24.64/26
- Longest Prefix Matching: 140.113.24.100 matches both
 - ➤ ITSC forwards packet to MIRC (via interface 2)

136	N I	LI	ILI	162
	Disa	T:		

Prefix	IF
140.113.24.64/26	2
140.113.24.0/24	1
140.113.16.0/24	2

Longest Prefix

Matching

Lab 0 140.113.24.0/26 140.113.24.0/24
Lab 2 140.113.24.128/26 CS ITSC, 4
Lab 3 140.113.24.192/26 MIRC 2 3
Lab 1 140.113.24.64/26 140.113.16.0/24
• 140.113.16.0/24" • 140.113.24.64/26

✓ Another example of Longest Prefix Matching: Host-specific route

Back

Link State Algorithm

- Tell everyone what you know about your neighbors
 - Advertise

"The state of the links from yourself to all neighbors"

■ Two Phases

1. Link State Broadcasting

- Each node transmits link-state packets (LSPs) on all links
- A neighboring router floods (forwards out all links except the incoming one)
- ➤ All nodes know network topology and link costs
- 2. Path Calculation: Based on Dijkstra's algorithm
 - Each node computes the least cost paths from itself ('source") to all other nodes
 - Construct the routing table with the least cost paths

Link State Dijkstra's algorithm

- Dijkstra's algorithm for Best path calculation (to every other node)
 - 1. Pick unprocessed node w with smallest weight,
 - 2. Mark w as processed and

Update cost of all unprocessed node v that adjacent to w

$$D(v) = \min(D(v), D(w) + c(w,v))$$

p(v): precedence of v
w is p(v)

3. Repeat step 1 until done

Distance Vector Algorithm

- Tell your neighbors what you know about everyone
 - Advertise

"The shortest distance to everyone"

- Iterative, Asynchronous and Distributed:
 - Each local iteration caused by
 - Local link cost change
 - Distance Vector (DV) update-messages from neighbors
 - Algorithm: Each node
 - 1. Wait for local link cost change or update messages from neighbors
 - 2. Estimates its own DV, based on the Bellman-Ford Algorithm
 - 3. Notifies neighbors only when its DV changes,
 - Neighbors then notify their neighbors if necessary
 - 4. Repeat step 1

Bellman-Ford Algorithm

- c(x,v): cost for direct link from x to v
- Dx(y): estimate of least cost from x to y
- Node x maintains
 - Costs of direct links c(x,v)
 - Distance vector: from x to every node y

$$\mathbf{D}x = [Dx(y): y \in N]$$

Distance vectors of x's neighbors

$$Dv = [Dv(y): y \in N]$$
 for each neighbor v

- When node x receives a new update message from a neighbor v,
 - Update its own distance vectors using **Bellman–Ford Equation**

$$Dx(y) \leftarrow minv\{c(x,v) + Dv(y)\}\$$
 for each node $y \in N$

Best Path

• Metric (度量):

Quantitative value routing protocols use to measure the **distance to** a given network

- Best path: selected by a routing protocol
 - The path with the lowest metric
- Dynamic routing protocols
 Use rules and metrics to build and update routing tables
 - Routing Table (Routing Information Base)
 - Data structure used by Routing Protocols
 - Forwarding Table (Forwarding Information Base)
- Routing algorithm
 generates a metric for each path through the network,
 - Based on path characteristic

Example Metrics

- Some dynamic protocols and metrics in use:
 - Routing Information Protocol (RIP):
 - Hop count
 - Open Shortest Path First (OSPF):
 - Cisco's cost based on cumulative bandwidth from source to destination
 - Enhanced Interior Gateway Routing Protocol (EIGRP):
 - Bandwidth,
 - delay,
 - load,
 - reliability

Administrative Distance

- A router may have more than one route source for the same destination network
 - Due to
 - Multiple routing protocols (OSPF, RIP, or ...) and
 - Static routes
- Different routing protocols may decide different paths to reach a destination network
 - Due to different metrics in use.
- > How does the **router** determine **which route to use**?
- Cisco IOS uses Administrative Distance (AD) to determine the route
 - AD represents the "trustworthiness" of the route;
 - The first criterion routers use to determine which route source to use
 - The lower the AD, the more trustworthy the route source
 - Given two different routes to the same destination, a router chooses the route with the lowest AD,

NYCU CS

Administrative Distances (Ads) of Route Sources

Route Source	Administrative Distance
Connected	0
Static	1
EIGRP summary route	5
External BGP	20
Internal EIGRP	90
IGRP	100
OSPF	110
RIP	120
External EIGRP	170
Internal BGP	200

NYCU CS 16

Local Route and Directly Connected Route

- When we configure an IP address on a router's interface, the router will automatically add **two routes** from this IP configuration.
 - Local Route:
 route to the interface that belongs to the router itself.
 - Directly Connected Route:
 route to the network directly attached to the interface
 - We use the router's interface as the default gateway to the network connected to the interface

NYCU CS

Routing Table Sources

- Entries in the routing table can be added as:
 - Local Route Interfaces Added when an interface is configured and active,
 - L: Identifies a router's interface
 - Displayed in IOS 15 or newer for IPv4 routes and all IOS releases for IPv6 routes
 - Directly Connected Interfaces Added when an interface is configured and active
 - C: Identifies a directly connected network.
 - Static Routes Added when manually configured and the exit interface is active
 - Dynamic Routing Protocol Dynamically learned by a routing protocol
 - EIGRP, OSPF, RIP, ...
- On a Cisco router, show ip route command displays IPv4 routing table
 - Additional route information, including
 - How the route was learned,
 - How long the route has been in the table, and
 - Which specific interface to use to reach the destination

Directly Connected Routing Table Entries

- Contains the following information:
 - A. Route Source: How the route was learned.
 - Two codes for Directed Connected Routing Table entries.
 - 'L': IPv4 address assigned to router's interface
 - 'C': a directly connected network
 - B. Destination Network Address of the remote network
 - C. Outgoing Interface Exit interface to use when forwarding packets to the destination network

```
C 192.168.10.0/24 is directly connected, GigabitEthernet0/0 L 192.168.10.1/32 is directly connected, GigabitEthernet0/0
```

- Note: Local route (L) entry:
 - was not displayed prior to IOS 15 in IPv4 routing table.

Remote Network Routing Table Entries

Manually configured or learned from Routing Protocols

- Contains the following information:
 - **A.** Route source how the route was learned. (C-connected, S-static, R-RIP, ...)
 - B. Destination Network address of the remote network.
 - C. Administrative Distance trustworthiness of the route source.
 - Lower values indicate the preferred route sources.
 - D. Metric value (cost) assigned to reach the remote network.
 - Lower values indicate the preferred routes.
 - E. Next-hop IPv4 address of the next router to forward the packet to a network.
 - **F.** Route Timestamp how much time has passed since the route was learned.
 - G. Outgoing Interface exit interface to use when forwarding a packet toward the destination network

D 10.1.1.0/24 [90/2170112] via 209.165.200.226, 00:00:05, Serial0/0/0 (EIGRP)

4