

Developed by 정영환, 박소빈

PT를 시작하시겠습니까?
START PAUSE

CONTENTS

OVERVIEW

DEVELOPMENT

RESULT

OVERVIEW

Factory Automation System 프로젝트를 진행하게 된 계기, 과정

DEVELOPMENT

코드 작업을 위해 참조 및 공부한 자료

RESULT

What is Carrier Aggregation? SAR Team CA Table Assistant 프로젝트 결과물

CONTENTS

OVERVIEW

DEVELOPMENT

RESULT

Factory Automation System

CONTENTS

OVERVIEW

DEVELOPMENT

RESULT

소프트웨어 개발 방법론

- * 소프트웨어 개발에 필요한 반복적인 과정 절차 방법, 산출물, 기법, 도구 등을 정리해 항목화 하고 구현해 나가는 과정을 도식화
- * 프로젝트 진행방법과 수행노하우를 체계화하고 표준화

CONTENTS

OVERVIEW

DEVELOPMENT

RESULT

구조적 방법론

사용자 요구 기능

CC간 중복 조합 제거/DL SCC SAR 과장님, 사원님의 설명 및 자료 제공

독립성 모듈 작성

작성한 데이터 흐름도를 기반

으로 프로그램 환경 세팅

엑셀-프로그램 연동을 위해 '파이썬' 언어 사용

데이터 흐름도 작성

원하는 기능 구현을 위한 시스템환경, 데이터 종합 (다음 슬라이드에서 설명)

프로그램 복잡성 최소화

순차, 조건(if문), 반복(for문) 3개의 논리적 구조로 프로그래밍 프로그램 실행 속도를 높이기 위한 알고리즘 고안, 구현

CONTENTS

OVERVIEW

DEVELOPMENT

RESULT

구조적 방법론

표기법	의미
[진영 순서 #] 프로세스 이름	프로세스 처리
자료 이름	자료 흐름
" 저장소 이름 "	자료 저장소, 데이터 베이스
데이터 처리 과정	데이터 흐름에 따른 작성 코드 내에서 처리되는 과정
단말 이름	자료의 출발과 도착지

CONTENTS

OVERVIEW

DEVELOPMENT

RESULT

폭포수 모델

CONTENTS

OVERVIEW

DEVELOPMENT

RESULT

Carrier

Aggregation

- 운반파 묶음 기술
- LTE- Advanced(이하 LTE-A)의 핵심 기술 중 하나
- 다중 주파수 블록 (이른바 Component Carrier, 컴포넌트 캐리어)가 동일 사용자에게 할당된 상태에서 사용자당 데이터 속도를 증가시키기 위해 무선통신에 사용되는 기술

◎ ○ ○ CA Combination and Reconfiguration Automation Process CONTENTS OVERVIEW DEVELOPMENT RESULT Conventional Network 20 MHz 150 Channel #1 20 MHz Mbps 2" & 3" LTE radio channels are idle LTE Advanced Network CH.#1 20 MHz Aggregated 40 MHz 10 MHz Data Pipe 2X faster V/////

CONTENTS

OVERVIEW

DEVELOPMENT

RESULT

F_{downlink} = F_{DL_Low} + 0.1 (N_{DL} - N_{DL_Offset})

Where,

N_{DL} is downlink EARFCN

Fuplink = Ful_Low + 0.1 (Nul - Nul_Offset)

NUL is uplink EARFCN

E-UTRA band	F _{DL_Low} (MHz)	N _{DL_Offset}	downlink EARFCN(N _{DL})	F _{UL_Low} (MHz)	N _{UL_Offset}	uplink EARFCN (N _{UL})	
1	2110	0	0-599	1920	18000	18000- 18599	
2	1930	600	600-1199	1850	18600	18600- 19199	
3	1805	1200	1200-1949	1710	19200	19200- 19949	
4	2110	1950	1950-2399	1710	19950	19950- 20399	
5	869	2400	2400-2649	824	20400	20400- 20649	
6	875	2650	2650-2749	830	20650	20650- 20749	
7	2620	2750	2750-3449	2500	20750	20750- 21449	
8	925	3450	3450-3799	880	21450	21450- 21799	
9	1844.9	3800	3800-4149	1749.9	21800	21800- 22149	
10	2110	4150	4150-4749	1710	22150	22150- 22749	
11	1475.9	4750	4750-4999	1427.9	22750	22750- 22999	
12	728	5000	5000-5179	698	23000	23000- 23179	
13	746	5180	5180-5279	777	23180	23180- 23279	
14	758	5280	5280-5379	788	23280	23280- 23379	

E-ARFCN (Absolute Radio Frequency Channel Number)

기지국-휴대폰이 통신을 할 때 쓰는 업링크, 다운링크 채널을 정해 놓은 것 인접한 셀들 끼리 비슷한 채널을 이용해 신호를 송출하면 혼선이 일어나기 때문에 각 센터마다 기지국은 다른 ARFCN을 이용해서 서비스를 한다.

다음과 같은 Downlink EARFCN 정보를 검색/수집

그러나

<u>몇몇 특정 LTE band에 대한 정보가 각각 다름</u>
(sol) 다양한 사이트에서 데이터를 수집해봤을 때, 가장 공통적인 데이터로 프로그램 작성

CONTENTS

OVERVIEW

DEVELOPMENT

RESULT

해당하는 <u>REL. 10LTE SAR TEST GUIDANCE AND KDB INQUIRIES 941225</u>에 근거하여 측정절차를 설립

실제 측정해야 할 CA 조합 추출

제조사가 제공한 CA 조합 테이블 분석 같은 CC간 / 다른 CC간 중복 체크 (Reverse, Restriction 고려)

측정할 Downlink SCCs

Uplink PCC 측정한 must 값 입력 요구 Inter band/ intra contiguous / intra non-contiguous

CONTENTS

OVERVIEW

DEVELOPMENT

RESULT

제조사 제공 테이블을 분석해 basic table form에 입력

중복 여부에 상관없이 작성한다.

정해진 Basic table form을 사용해야 프로그램이 동작한다.

같은 CC 간 중복 데이터 제거

Reverse 예외 처리 과정

'Same' 亚**川**

다른 CC 간 중복 데이터 제거

쌍방 데이터의 Reverse 여부 검증

'Cover 가능한 CA 조합'표시

실질적으로 측정해야 할 데이터 문서화 및 새로운 엑셀 파일 생성

실질적 측정해야 할 조합 표시

okbutton1_result1.xlsx 과 okbutton1_result2.xlsx 두개 파일 생성

CONTENTS

OVERVIEW

DEVELOPMENT

RESULT

Uplink PCC 측정한 Maximum power 입력

4번 결과 생성된 'okbutton1 result2.xlsx'에 입력/저장 Uplink pcc 결과 알 수 있는 downlink pcc 정보도 입력해줘야 한다.

CA 조합의 3가지 케이스에 따라 각각 DL SCC 계산Reverse 예외 처리 과정

Inter band : 각각의 middle channel 정보 입력

Intra band / contiguous: low/middle/high 채널인지 분류한 다음, 아래와 같은 공식을 이용해 channel spacing을 계산하여 값을 구한다.

Intra band / non-contiguous : 같은 band 내에 있는 다른 CC 와 가장 멀리 떨어지도록 계산하여 값을 구 하다.

Downlink SCC의 정보가 담긴 파일 생성

'okbutton2_result.xlsx'

CONTENTS

OVERVIEW

DEVELOPMENT

RESULT

okbutton1_result1

okbutton1_result2

2020-03-19 오후 6... Microsoft Excel 워... 12KB

2020-03-19 오후 6... Microsoft Excel 워... 14KB

LTE Release 10 Carrier Aggregation

Index	2CC	Restriction	Cover	Reverse	Index	3CC	Restriction	Cover	Reverse	Index	4CC	Restriction	Cover	Reverse	Index	5CC	Restriction	Cover	Reverse
2CC #1	2A-2A		5CC #1	Yes	3CC #1	2A-2A-4A			Yes	4CC #1	2A-2A-5A	-30A			5CC #1	2A-2A-46	D		
2CC #2	2A-4A		3CC #1	Yes	3CC #2	2A-2A-5A		4CC #1	Yes	4CC #2	2A-2A-5A	-66A			5CC #2	2A-5B-30	A-66A		
2CC #3	2A-5A		4CC #1	Yes	3CC #3	2A-2A-12	A	4CC #3	Yes	4CC #3	2A-2A-12	4-66A			5CC #3	2A-5B-66	A-66A		
2CC #4	2A-7A		3CC #12	Yes	3CC #4	2A-2A-13	A	4CC #4	Yes	4CC #4	2A-2A-13/	4-66A			5CC #4	2A-46D-6	6A		
2CC #5	2A-12A		4CC #3	Yes	3CC #5	2A-2A-14	A		Yes	4CC #5	2A-2A-29/	4-30A			5CC #5	5B-30A-6	6A-66A		
2CC #6	2A-13A		4CC #4	Yes	3CC #6	2A-2A-29	A	4CC #5	Yes	4CC #6	2A-2A-66/	4-66A			5CC #6	41C-41D			
2CC #7	2A-14A		3CC #5	Yes	3CC #7	2A-2A-30	A	4CC #1	Yes	4CC #7	2A-5A-30	4-66A			5CC #7	66A-66A-	4 6D		
2CC #8	2A-29A		4CC #5	Yes	3CC #8	2A-2A-66	A	4CC #2	Yes	4CC #8	2A-5A-66/	4-66A							
2CC #9	2A-30A		5CC #2	Yes	3CC #9	2A-2A-71	A		Yes	4CC #9	2A-5A-66	3							
2CC #10	2A-66A		5CC #2	Yes	3CC #10	2A-4A-4A			Yes	4CC #10	2A-5A-660	:							
2CC #11	2A-71A		3CC #9	Yes	3CC #11	2A-4A-5A			Yes	4CC #11	2A-5B-30A	4	5CC #2						
2CC #12	2C		3CC #37	Yes	3CC #12	2A-4A-7A			Yes	4CC #12	2A-5B-66A	4	5CC #2						
2CC #13	Same		2CC #2	Yes	3CC #13	2A-4A-12	A		Yes	4CC #13	2A-12A-30	A-66A							
2CC #14	4A-4A		3CC #10	Yes	3CC #14	2A-4A-13	A		Yes	4CC #14	2A-12A-66	6A-66A							
2CC #15	4A-5A		3CC #11	Yes	3CC #15	2A-4A-29	A		Yes	4CC #15	2A-13A-66	6A-66A							
2CC #16	4A-7A		3CC #12	Yes	3CC #16	2A-4A-30	A		Yes	4CC #16	2A-13A-66	5B							
2CC #17	4A-12A		3CC #13	Yes	3CC #17	2A-4A-71	A		Yes	4CC #17	2A-13A-66	SC							

okbutton1_result1.xlsx

CONTENTS

OVERVIEW

DEVELOPMENT

RESULT

okbutton1_result1

2020-03-19 오후 6... Microsoft Excel 워... 12KB

okbutton1_result2

2020-03-19 오후 6... Microsoft Excel 워... 14KB

DL CA output power results

E-UTRA			Bands		
CA congiguration	PCC	SCC1	SCC2	SCC3	SCC4
(BCS)	1st	2nd	3rd	4th	5th
5A-7A	5 A	7A			
	7A	5A			
5A-25A	25A	5A			
	5 A	25A			
12A-25A	12A	25A			
	25A	12A			
25A-41A	25A	41A			
	41A	25A			
26A-41A	26A	41A			
	41A	26A			
41A-41A	41A	41A			
2A-2A-4A	2A	2A	4A		
	4A	2A	2A		
2A-2A-14A	14A	2A	2A		
	2A	2A	14A		
2A-2A-71A	2A	2A	71A		
	71A	2A	2A		
2A-4A-4A	2A	4A	4A		

Reverse 된 상태까지 나열

okbutton1_result2.xlsx

UL						DCC			
PCC					PCC				
Mode	BW (MHz)	Channel	Freq (MHz)	RB/Offset	BW (MHz)	Channel	Freq. (MHz)		
QPSK	10	20525	836.5	1/0	10	2525	881.5		
QPSK	20	20850	2510	1/0	20	2850	2630		
QPSK	10	20525	836.5	1/0	10	2525	881.5	rocess Viewer	
QPSK	20	28385	1882.5	1/0	20	8365	1962.5	Processing	
QPSK	10	20525	836.5	1/0	10	2525	881.5		
QPSK	10	27710	2310	1/0	10	9820	2355	·	
QPSK	10	23095	707.5	1/49	10	5095	737.5		
QPSK	20	26365	1882.5	1/0	20	8365	1962.5		
QPSK	20	26365	1882.5	1/0	20	8365	1962.5		
		Gamsun	g_123_tota	l.xlsx	Brow	/se			
		Result T	able						
Gamsung_123_total.xlsx					Brow	/se			
						Can	cel De	veloped by 정영환 & 빅	 소 빈

CONTENTS

OVERVIEW

DEVELOPMENT

RESULT

okbutton2_result)3-19 오3	卓 6	Microsoft Excel 워			23KB
-											

							DL				
	PCC			SCC1			SCC2			SCC3	
BW (MHz)		Freq. (MHz)	BW (MHz)		Freq. (MHz)	BW (MHz)		Freq. (MHz)	BW (MHz)		Freq. (MHz)
10	2525	881.5	20	3100	2655			-			-
20	2850	2630	10	2525	881.5						
10	2525	881.5	20	8365	1962.5						
20	8365	1962.5	10	2525	881.5						
10	2525	881.5	10	9820	2355						
10	9820	2355	10	2525	881.5						
10	5095	737.5	20	8365	1962.5						
20	8365	1962.5	10	5095	737.5						
20	8365	1962.5	20	40620	2593						
20	39750	2506	20	8365	1962.5						
15	8865	876.5	20	40620	2593						
20	900	1960	20	1100	1980	20	2175	2132.5			
20	2175	2132.5	20	900	1960	20	1100	1980			
20	900	1960	20	1100	1980	10	2525	881.5			
10	2525	881.5	20	900	1960	20	1100	1980			
20	900	1960	20	1100	1980	10	5095	737.5			
10	5095	737.5	20	900	1960	20	1100	1980			
20	900	1960	20	1100	1980	10	5230	751			

okbutton2_result.xlsx

CONTENTS

OVERVIEW

DEVELOPMENT

RESULT

- 이전 슬라이드에서 언급했듯이 특정 LTE band 마다 channel, bandwidth, frequency 에 대한 정보가 다양하여 어느 것을 기준으로 삼아야 할지 어려웠다.
- 측정한 uplink pcc 값의 경우 일반적인 Ite band의 low, middle, high인 경우와 값이 달라 간혹 값이 들어가지 않을 수도 있다.
- 그렇기 때문에 이러한 예외 사항에 관해서는 유엘 코리아에서 개발자들에게 언급해줘야 한다.
- 차후, 디버깅 작업을 하기 위해 이전에 수동으로 작업한 결과와 프로그램을 통해 작업한 결과를 비교하여야 한다.