Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	R3143_	К работе допущен
Студенты <u>Сайфуллин Динислам</u> <u>Бахтаиров Роман</u>		Работа выполнена
Преподаватель	Пулькин Н. С	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 1.11

«Измерение ускорения свободного падения с помощью оборотного маятника»

1. Цель работы.

Экспериментальная проверка закономерностей движения физического маятника.

- 2. Задачи, решаемые при выполнении работы.
 - Измерение периодов малых колебаний при различных положениях грузов.
 - Обработка результатов измерений.
 - Построение графика по результатам измерений.
- 3. Объект исследования.

Колебания оборотного маятника.

4. Метод экспериментального исследования.

Многократные прямые измерения времени колебаний маятника.

5. Рабочие формулы и исходные данные.

$$L=0$$
,36 м; $T=rac{t}{N}$
$$g=4\pi^2L\left(rac{N}{t_0}
ight)^2$$
 $\delta g=\sqrt{(\delta L)^2+(2\delta t_0)^2}$

6. Измерительные приборы.

<i>№</i> n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Цифровой	2–10 сек	0,01 сек
2	Шкала на маятнике		0–50 см	2 мм

7. Схема установки.

Рис. 1. Схема оборотного маятника

8. Результаты прямых измерений и их обработки.

Таблица 1 - результаты прямых

Расстояние от крайней						
риски до ближайшей	1	2	3	4	5	6
призмы х, см						
	20,1	17,25	15,17	14,8	12,87	12,2
t ₁ , c	19,7	16,97	15,32	14,65	12,93	12,27
	18,85	17,41	15,11	14,85	12,95	12,13
t _{1cp} , c	19,55	17,21	15,2	14,77	12,92	12,2
	11,57	11,38	11,22	11,08	11,68	11,64
t ₂ , c	11,65	11,45	11,15	11,05	11,72	11,6
	11,59	11,49	11,19	11,06	11,65	11,58
t _{2cp} , c	11,6	11,44	11,19	11,06	11,68	11,61

9. Расчет результатов косвенных измерений.

Величина t_0 определяется как ордината точки пересечения кривых $t_1(x)$ и $t_1(x)$:

$$t_0 \approx 11,6 \text{ c}$$

Период колебания маятника:

$$T_0 = \frac{t_0}{N} \approx 1.16 \text{ c}$$

Рассчитанное ускорение свободного падения:

$$g = 4\pi^2 L \left(\frac{N}{t_0}\right)^2 = 9.83 \frac{M}{c^2}$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Относительная и абсолютная погрешности t_0 :

$$\Delta t_0 = 0.423 \text{ c}; \quad 2\Delta t_0 = 0.846 \text{ c}$$

$$\delta t_0 = \frac{\Delta t_o}{t_0} = \frac{0,423}{11.6} = 0,036c$$

Относительная погрешность L_0 :

$$\delta L = \frac{\Delta L}{L} = 0,002 \text{ M}$$

Относительная погрешность ускорения свободного падения:

$$\delta g = \sqrt{(\delta L)^2 + (2\delta t_0)^2} = \sqrt{0.002^2 + (2*0.423)^2} = 0.846 \%$$

Абсолютная погрешность ускорения свободного падения:

$$\Delta g = g \times \delta g = 8,316 \frac{M}{c^2}$$

Относительное отклонение полученного g от справочного g_{cn} :

$$\delta = \frac{|g - g_{\text{cri}}|}{g} = \frac{|9,83 - 9,82|}{9,83} = 0,00102 \%$$

Абсолютное отклонение полученного g от справочного g_{cn} :

$$\Delta = |g - g_{cm}| = |9.83 - 9.82| = 0.001 \text{ m/}c^2$$

11. Графики (перечень графиков, которые составляют Приложение 2).

12. Окончательные результаты.

Период T_0 колебаний маятника:

$$T_0 = 1,16 \text{ c}$$

Значение ускорения свободного падения g с абсолютной и относительной погрешностями:

$$g = 9.83 \frac{M}{c^2}$$
;

$$\delta g = 0.846 \%;$$

$$\Delta g = 8,316 \frac{M}{c^2};$$

Абсолютное и относительное отклонения измеренного ускорения свободного падения от справочного значения для широты лаборатории:

$$\delta = 0.00102 \%; \Delta = 0.001 \text{ m/}c^2$$

13. Выводы и анализ результатов работы.

В ходе лабораторной работы экспериментальным методом была проверена закономерность движения физического маятника. Вычислили абсолютную и относительную отклонения измеренного ускорения свободного падения от табличных значений. Результаты получились удовлетворительными.