Зачетные задачи

Зотов Алексей 497

May 27, 2017

Задача. 1. Построить систему интерактивных доказательств для языка GI-NO-EQUAL-CLASSES $= \{(G_1, \ldots G_m) \mid \text{в разбиении этого набора графов на классы эквивалентности по отношению изоморфизма нет двух классов одинакового размера<math>\}$

Ответ. Мы уже знаем, что $\mathsf{GNI} \in \mathbf{IP}$ и будем это использовать. Также $\mathsf{GI} \in \mathbf{NP}$. $M = \{1, \dots, m\}$ Рассмотрим такой протокол :

- 1. $\forall i \in 1, \ldots, m$ верификатор V посылает пруверу P индекс i соответствующий G_i .
- 2. P возвращает $X_i = \{(k, S_{ki}) | G_k \cong G_i\}$ множество индексов графов, изоморфных G_i и соответствующие сертификаты изоморфности. $X_i = (K_i, S_i)$ обозначение.
- $3. \ V$ проверяет полученные сертификаты.
- 4. $\forall j: j \notin K_i$ верификатор V инициирует протокол проверки $(G_i, G_j) \in \mathbf{GNI})$, с вероятностью опибки $p_{ij} \leq \frac{1}{3}$.
- 5. Алгорим повторяется с пункта (1), игнорируя те индексы, для которых уже найден класс изоморфности.
- 6. V проверяет, что все классы получились разного размера. Возвращает True, если на каждый шаг протокола корректный (проверка сертификатов, проверка на $G_i \ncong G_j$), и полученные классы разного размера. Иначе False.

Докажем, что алгоритм корректен:

- если $X = (G_1, \dots G_m) \in \mathsf{GI-NO-EQUAL-CLASSES}$, тогда каждый на каждой итерации прувер будет действовать корректно, положительная проверка на изоморфность и неизоморфность проходит без ошибок (с вероятностью 1).
- если $X=(G_1,\ldots G_m)\notin \mathsf{GI-NO-EQUAL-CLASSES},$ тогда P не может неизоморфные графы отнести в один класс $(\mathsf{T.K.}$ проверка сертификатов детерминированная), но может попробовать изоморфные графы разбить по разным классам, воспользовавшись наличем ошибки при проверке $G_i\ncong G_j$. На каждой такой проверке вероятность обмануть верификатор $p_{ij}\le \frac{1}{3}$. Значит вероятность ошибочно принять $X\colon P_{\mathrm{err}}\le \frac{1}{3}$.

Задача. 4. Постройте систему интерактивных доказательств с общими случайными битами для языка GROUP-NI = $\{G_0, G_1 \mid G_0, G_1 - \text{табилцы умножения двух неизоморфных конечных групп}$

Ответ. Проверить, что данные таблицы это таблицы умножения групп, верификатор может без прувера за $O(n^2)$. Достаточно проверить ассоциативность, наличие единицы и обратимость всех элементов. Нужно проверить их неизоморфность.

Рассмотрим $S = \{(H, \sigma) | H \cong G_i, i \in \{0, 1\}, \sigma \in \text{Aut} H\}$. Тогда, если $G_0 \cong G_1$, то |S| = n!, иначе $|S| = 2 \cdot n!$. Каждую группу порядка n можно записать двоичным числом длины m, где m = p(n). Обозначим K = 2n!, имеем $S \subset \{0, 1\}^m$. Выберем k таким, что $2^{k-2} \leq K \leq 2^{k-1}$. Рассмотрим такой протокол:

• V выбирает случайную хэш-функцию h из семейства попарно независимых полиномиально вычислимых (от m,k) хеш-функций $H_{m,k}: 2^{\mathbf{m}} \to 2^{\mathbf{k}}$. Также выбирает случайный $y \in 0, 1^k$. Отправляет пруверу P пару (h,y) (значит можно считать,что случайные биты - общие).

- P выбирает $x \in S: h(x) = y$. Возвращает верификатору пару (x, s), где s сертификат $x \in S$.
- V проверяет сертификат s и h(x) = y. Принимает доказательство если проверки корректные.

Покажем корректность протокола. Пусть $p = \frac{|S|}{2^k}$.

- $P_{h,y}\{\exists x \in S : h(x) = y\} \le p$ Tak kak $|h(S)| \le |S|$.
- Рассмотрим E_x событие $\{h(x)=y\}$. $Pr\{\bigcup_{x\in S}E_x\}\geq \sum_{x\in S}Pr\{E_x\}-\sum_{x< x'\in S}Pr\{E_x\cap E_{x'}\}=\frac{|S|}{2^k}-\frac{|S|(|S|-1)}{2}\frac{1}{2^{2k}}>p(1-\frac{p}{2})\geq \frac{3}{4}p$ (так как $p\leq \frac{1}{2}$ из-за выбора p и ограничения сверху на размер S).

Получили $\frac{3}{4}p \le P_{h,y}\{\exists x \in S : h(x) = y\} \le p$, значит :

- Если $|S| \ge K$, то $\frac{3}{4}p_0 \le P_{h,y}\{\exists x \in S : h(x) = y\}$
- Если $|S| \leq \frac{K}{2}$, то $P_{h,y}\{\exists x \in S: h(x) = y\} \leq p \leq \frac{p_0}{2} < \frac{3}{4}p_0$

Для разных случаев получили некоторый вероятностый зазор, который можно увеличить полиномильным числом повторений протокола.

Задача. 2. Пусть есть m=n(n-1)/2 булевых схем полиномиального размера ϕ_1,\ldots,ϕ_m со входом длины k и одним выходом. Для каждого $x\in\{0,1\}^k$ рассмотрим граф G_x на n вершинах, матрица смежности которого задана результатами работы схем ϕ_j на входе x. Рассмотрим множество графов $\mathcal{G}=\{G_x|x\in\{0,1\}^k\}$. Пусть мы хотим отделить наборы ϕ_1,\ldots,ϕ_m , когда в множестве \mathcal{G} менее C различных попарно неизоморфных графов от наборов, когда их хотя бы D ($D\geq C$). Существует ли интерактивная система доказательств, которая делает это при C=D? Можете ли вы её построить? Если не можете, то попробуйте её построить для случая C=D/2.

Ответ. Да, такой протокол существует. $\mathbf{L} = \{\{(\phi_1 \dots \phi_m)\} : \mathbf{B} \ \mathcal{G} \$ содержится менее D попарно неизоморфных графов $\}$. $\mathbf{L} \in \mathbf{PSAPCE}$. Можно посчитать количество классов изоморфности графов на полиномиальной памяти, для этого храним текущее число классов, для каждого не рассмотренного графа G_i , перебираем все уже рассмотренные G_j (перебор графов, или наборов булевых формул это одно и то же), если $\forall j \leq i : G_j \ncong G_i$, то увеличиваем число классов эквивалентности. Полученное число классов эквивалентности и будет ответом. Дальше сравним его с D. Значит $\mathbf{L} \in \mathbf{PSAPCE}$. Знаем $\mathbf{IP} = \mathbf{PSAPCE}$. Значит нужный протокол из \mathbf{IP} существует. Для C = D/2 подойдет протокол подробно описанный выше, в задаче (4).

Задача. 3. Пусть $S \in \mathbf{NP}$. Обозначим через S_n множество $S \cap \{0,1\}^n$. Постройте систему интерактивных доказательств, получающую на вход число K, такую что если $|S_n| > K$, то прувер убеждает верификатора с вероятностью 1 (а не 2/3, как на лекции), а если $|S_n| < K/2$, то прувер убеждает с вероятностью не больше 1/3. Можно ли заменить K/2 на 0.99K? (Аргумент полинома во времени работы верификатора - это n).

Ответ. Используем протокол, подробно описанный в задаче (4).

Для 0.99K достаточно проверять не размер множества S, а размер множества $(S \times S \times \ldots \times S) = S^l$, которое очевидно лежит в **NP**, l выбираем так, что $0.99^l \le \frac{1}{2}$. Получаем сравнение для размеров M и K, где $\frac{1}{2}K^l \le M \le K^l$.

Ошибку первого рода можно до 0, так как мы получили протокол из IP, для которого в одном из эквивалентных определений соответствующая ошибка равна 0.

Задача. 5. Определим класс **AMA**' и **AMA**" так: $B \in \mathbf{AMA}'(\mathbf{AMA}'')$, если существует полиномиальный алгоритм V(x,r,s,q), такой что:

- *Ecnu* $x \in B$, mo $\Pr_r[\exists s \Pr_q[V(x, r, s, q) = 1] \ge \frac{2}{3}] \ge \frac{2}{3}$
- (для **AMA**') Если $x \notin B$, то $\mathbf{Pr}_r[\exists \ s\mathbf{Pr}_q[V(x,r,s,q)=1] \geq \frac{2}{3}] \leq \frac{1}{3}$
- (для AMA") Если $x \notin B$, то $\mathbf{Pr}_r[\forall s \mathbf{Pr}_q[V(x,r,s,q)=1] \leq \frac{1}{3}] \geq \frac{2}{3}$
- (a) (1 балл) Поясните, в чём отличие трёх определений. А именно, почему один и тот же V может удовлетворить одному и не удовлетворить другому.
- (б) (4 балла) Докажите, что $\mathbf{PP} \subset \mathbf{AMA'}$.
- (в) (5 баллов) Докажите, что $\mathbf{AMA}'' = AMA$.

Ответ.

- 1. $\forall \ s\mathbf{Pr}_q[V(x,r,s,q)=1] \leq \frac{1}{3} \Leftrightarrow \nexists s\mathbf{Pr}_q[V(x,r,s,q)=1] > \frac{1}{3}$. получаем для \mathbf{AMA}' и \mathbf{AMA}'' соответственно :
 - (для $\mathbf{AMA'}$) Если $x \notin B$, то $\mathbf{Pr}_r[\exists \ s\mathbf{Pr}_q[V(x,r,s,q)=1] \geq \frac{2}{3}] \leq \frac{1}{3}$
 - (для **АМА**") Если $x \notin B$, то $\mathbf{Pr}_r[\nexists s \mathbf{Pr}_q[V(x,r,s,q)=1] > \frac{1}{3}] \geq \frac{2}{3}$

Пусть тогда V такой, что $x \in B \implies \forall r \exists s \mathbf{Pr}_q[V(x,r,s,q)=1]=\frac{1}{2},$ тогда : $\mathbf{Pr}_r[\exists \ s \mathbf{Pr}_q[V(x,r,s,q)=1] \geq \frac{2}{3}] = 0 \leq \frac{1}{3}$ - выполнено $\mathbf{Pr}_r[\sharp s \mathbf{Pr}_q[V(x,r,s,q)=1] > \frac{1}{3}] = 0 < \frac{2}{3}$ - не выполнено

- 2. Пусть $L \in \mathbf{PP}$, значит $\exists M$:
 - $x \in L \implies P_q[M(x,q)=1] \ge \frac{1}{2}$
 - $x \notin L \implies P_q[M(x,q)=1] < \frac{1}{2}$

Заметим, что $\frac{1}{2}$ из определения можно заменить на произвольную константу $\in (0,1)$. Это можно сделать, например, добавив некоторое количество случайных бит, и на некотором фиксированном числе случайных исходов(фиксированных для каждого n) выдавать ответ True, вне зависисмости от входа. Это увеличит константу в определении. Воспользуемся опредеделением с константой $\frac{2}{3}$.

Положим тогда $V(x,s,r,q) = M(x,q) \quad \forall r,s.$ Тогда :

- $x \in L \implies P_r[\exists s : P_q[V(x,r,s,q) = M(x,q) = 1] \ge \frac{2}{3}] = 1 > \frac{2}{3}$
- $x \notin L \implies P_r[\exists s : P_q[V(x,r,s,q) = M(x,q) = 1] \ge \frac{2}{3}] = 0 < \frac{1}{3}$

Значит $L \in AMA'$.

- 3. (a) Пусть $L \in AMA$. Есть протокол: общие случайные биты r и $q \to A$ ртур получает $r \to M$ ерлин возвращает s, зная $r \to A$ ртур получает случайные биты $q \to B$ ыдает вердикт V(x,r,s,q). Так как значение констант в определении AMA не играет, будем счиать их достаточно близкими к 0 и к 1 соответственно ($\varepsilon,1-\varepsilon$. Тогда:
 - Выполнено : $x \in L \implies \mathbf{Pr}_r[\exists \ s\mathbf{Pr}_q[V(x,r,s,q)=1] \ge \frac{2}{3}] \ge \frac{2}{3}$, иначе $P_{r,q}(V(x,r,s,q)=1) < \frac{2}{3} \cdot 1 + \frac{1}{3} \cdot \frac{2}{3} = \frac{8}{9} < 1 \varepsilon$. (Здесь счиатем что P выбирает наилучшее s).
 - Выполнено : $x \notin L \Longrightarrow \mathbf{Pr}_{r}[\forall \, s\mathbf{Pr}_{q}[V(x,r,s,q)=1] \leq \frac{1}{3}] \geq \frac{2}{3},$ иначе $P_{r,q}(V(x,r,s,q)=1) > \frac{2}{3} \cdot 1 + \frac{1}{3} \cdot \frac{1}{3} = \frac{7}{9} > \varepsilon$

Значит $L \in AMA''$.

- (b) Пусть теперь $L \in AMA''$, значит существует соответствующая V. Протокол будет как в пункте 1, но изменим поцедуру принятия доказательства. Пусть Артур получает сразу несколько групп случайных битов $q_1, q_2, ..., q_m$ перед принятием решения. Рассмотрим такую процедуру:
 - і. Артур запускает $V(x, r, s, q_1)$ и $V(x, r, s, q_2)$, если получил в обоих случаях TRUE, то принимает, если в обоих случаях FALSE, то отвергает, иначе повторяет сначала, используя новые случайные биты. Так повторяет некоторое количество раз (подробнее ниже), если так и не получил ответ, то выбирает случайно FALSE или TRUE.

Посмотрим на вероятности:

• Пусть $x \in L$, тогда Артур с вероятностью (по r) $\geq \frac{2}{3}$ попадет в благоприятный случай, где $\exists s$, который и выберет Мерлин, такой, что $\Pr_q[V(x,r,s,q)=1] \geq \frac{2}{3}$. Тогда, применив процедуру описанную выше, Артур с вероятностью $p_1 \geq \frac{4}{9}$ примет доказательство на 1 шаге, с вероятностью $p_1' \leq \frac{1}{9}$ отвергнет, в остальных случая он повторит процедуру, используя новые случайные биты. Если бы он повторял бесконечное число раз, то вероятность принять $p = p_1 + cp_1 + c^2p_1 + \ldots = p_1(1+c+c^2+\ldots) = p_1C$, отверг с $p_1' + cp_1' + c^2p_1' + \ldots = p_1'(1+c+c^2+\ldots) = p_1'C$. Но $p_1C + p_1'C = p + p_1' = 1 \implies C = \frac{1}{p_1+p_1'} \implies p = \frac{p_1}{p_1+p_1'}$. Получим, что $p \geq \frac{4}{5}$. Понятно, что если мы применим меньшее число раз то получим оценку

немного хуже, но последовательность C_n - геометрическая прогрессия, поэтому можно взять полином повторений и приблизиться экспоненциально. (Можно даже

константу раз, т.к. нам нужно константное приближение с некоторой точностью, например с возможной ошибкой δ). Значит итоговая веротяность принять x не меньше $\frac{2}{3}(\frac{4}{5}-\delta)=\frac{8}{15}-\frac{2\delta}{3}>\frac{1}{2}+\delta_0.$ • Пусть $x\notin L$, пользуемся вторым пунктом определения AMA''. Тогда Артур с

• Пусть $x \notin L$, пользуемся вторым пунктом определения AMA''. Тогда Артур с вероятностью $<\frac{1}{3}$ попадет в случай (1), где V может ошибаться часто, то есть в такое r, что $\exists s: P_q[V(x,r,s,q)=M(x,q)=1]>\frac{1}{3}]$. С вероятностью $\geq \frac{2}{3}$ попададет в случай(2), где доля ошибок V мала, то есть $\forall s: P_q[V(x,r,s,q)=M(x,q)=1]\leq \frac{1}{3}]$. Процедура принятия такая же, значит вероятность принять слово x во втором случае : $p\leq \frac{1}{5}+\delta$ получается аналогично предыдущему пункту. Итого вероятность ошибочно принять x в обоих случях $(1+2): P\leq \frac{1}{3}+\frac{2}{3}(\frac{1}{5}+\delta)=\frac{7}{15}+\frac{2\delta}{3}<\frac{1}{2}-\delta_0$. Получили разделимую (на $2\delta_0$) границу.

 $L \in AMA$.

AMA'' = AMA.

Задача. 6. Пусть G является генератором псевдослучайных чисел. Рассмотрим следующие модификации:

- $G'(s) = \left\{ egin{array}{ll} 0^{|G(s)|}, & \textit{если s содержит ровно} \ \frac{|s|}{2} \ \textit{единиц} \\ G(s), & \textit{иначе} \end{array} \right.$
- $G'(s) = \left\{ egin{array}{ll} 0^{|G(s)|}, & \textit{если s содержит ровно} \ \frac{|s|}{3} & \textit{единиц} \ G(s), & \textit{иначе} \end{array} \right.$

Какие из этих функций являются генераторами псведослучайных чисел и почему?

Ответ. Считаем n = |s|. В обоих случая полиномиальная вычислимость G'(s) очевидна. Нужно проверить пункт (2) определения.

1.

$$G'(s) = \begin{cases} 0^{|G(s)|}, & \text{если s содержит ровно } \frac{|s|}{2} \text{ единиц} \\ G(s), & \text{иначе} \end{cases}$$
 (1)

G'(s) - не является ГПСЧ.

В s ровно $\frac{|s|}{2}$ единиц в $C_n^{\frac{n}{2}}$ различных s. Считая, что $s\sim U_n$ и воспользовавшись тем, что для достаточно больших n выполнено $C_n^{\frac{n}{2}}>\frac{2^n}{n+1}$, получим:

$$P(G(s) = 0^{p(n)}) \ge \frac{C_n^{\frac{n}{2}}}{2^n} \ge \frac{1}{n+1} \quad n \ge N_0$$
 (2)

Воспользуемся определением вычислительной неотличимости, $y_n \sim U_{p(n)}$, пусть $\{D_n\}$ - такое симейство схем, что $D_n(x) = 1 \iff x = 0^n$. Получим :

 $|P\{D_n(G'(s))=1\}-P\{D_n(y_n))=1\}|\geq \frac{1}{n+1}-\frac{1}{2^n}\geq \frac{1}{2(n+1)}. \text{ при } n\geq 10. \text{ Также } \frac{1}{2(n+1)}\geq \frac{1}{2(p(n)+1)}$ при $n>N_p$. То есть мы получили, что $\exists \{D_n\}$, $\exists q(p(n))=\frac{1}{2(p(n)+1)} \ \forall N\exists n>N: |P\{D_n(G'(s))=1\}-P\{D_n(y_n))=1\}|\geq \frac{1}{q(p(n))}.$ Значит y_n и G'(s) - не являются вычислительно неотличимыми. Значит G'(s) - не является ГПСЧ.

2. $G'(s)=\left\{ egin{array}{ll} 0^{|G(s)|}, & \text{если s содержит ровно } \frac{|s|}{3} \ \text{единиц} \\ G(s), & \text{иначе} \end{array} \right.$ G'(s) - не является ГПСЧ.

В s ровно $\frac{|s|}{3}$ единиц в $C_n^{\frac{n}{3}}$ различных s. Воспользуемся формулой Стирлинга:

$$C_n^{\frac{n}{3}} = \frac{n!}{\frac{n}{3}! \frac{2n}{3}!} \sim \frac{3}{\sqrt{4\pi n}} \frac{3^n}{2^{\frac{2n}{3}}}$$
 (3)

Обозначим событие $X=\{$ в s ровно $\frac{|s|}{3}$ единиц $\}$. Тогда, считая $s\sim U_n$, получим :

$$P\{G'(s) \neq G(s)\} \le P\{X\} \sim \frac{3}{\sqrt{4\pi n}} \frac{3^n}{2^{\frac{5n}{3}}}$$
 (4)

 $\frac{3^n}{2^{\frac{5n}{3}}}=e^{n(\ln 3-\frac{5}{3}\ln 2)}.$ Заметим, что $\ln 3-\frac{5}{3}\ln 2=c<0.$ Т.е. $P\{G'(s)\neq G(s)\}\sim \frac{3}{2\sqrt{\pi n}}e^{cn}.$ Значит $\exists N \forall n>N: P\{G'(s)\neq G(s)\}\leq \frac{3}{\sqrt{\pi n}}e^{c_0n}\leq e^{cn}, \quad c_0,c<0.$

Так как
$$G(s)$$
 - ГПСЧ, то $y_n \sim U_{p(n)}, \forall \{D_n\} \forall q_1(x)$ - полином $\exists N \forall n > N:$ $|P\{D_n(G(s)) = 1\} - P\{D_n(y_n) = 1\}| < \frac{1}{q_1(p(n))}.$

Воспользуемся определением вычислительной неотличимости:

Воспользуемся определением вычислительной неотличимости :
$$y_n \sim U_{p(n)}, \forall \{D_n\} \forall q(x) \text{ - полином } \exists q_1(x) = \frac{q(x)}{2}, \exists N \forall n > N : |P\{D_n(G'(s)) = 1\} - P\{D_n(y_n) = 1\}| \leq |P\{D_n(G'(s)) = 1\} - P\{D_n(G(s)) = 1\}| + |P\{D_n(G(s)) = 1\} - P\{D_n(y_n) = 1\}| < e^{cn} + \frac{1}{q_1(p(n))} < \frac{1}{q(p(n))}$$

Получили, что G'(s) и y_n вычислительно неотличимы. Значит G'(s) - ГПСЧ.

Задача. 7. Обобщённым судоку называется такая задача: в квадрате $n^2 \times n^2$ в некоторых клетках расставлены числа от 1 до n^2 . Вопрос: можно ли заполнить оставшиеся клетки числами от 1до n^2 , так чтобы в каждой строке, в каждом столбце, а также в каждом из n^2 "выровненных" квадратов $n \times n$ каждое число встречалось по одному разу. В стандартном судоку n=3. Известно, что эта задача NP-полна. Предложите протокол доказательства существования решения с вычислительно нулевым разглашением, не использующий сводимость к какой-либо другой задаче.

Ответ. Будем использовать "Протокол привязки к биту", описанный на лекции, для выполнения операций "Загораживание" и "Открытие".

- S "загораживание", S(b) = (c, k)
- R "открытие", $R(c, k) = \{b, ERROR\}$
- Требования:
 - 1. Корректность : R(S(b)) = b
 - 2. Секретность: привязка к 0 и 1 вычислительно неотличимы.
 - 3. Неподменяемость : невозможность $R(c, k_0) = 0$ и $R(c, k_1) = 1$

Протокол:

Исходная таблица T_0 .

- P выбирает случайную перестановку(перенумерацию) $\sigma \in S_{n^2}$, записывает решение в таблицу T_1 , применяет σ к числам $\{1, \dots n^2\}$ из таблицы T_1 . "Закрывает" таблицу T_1 и перестановку σ и отправляет верификатору.
- V выбирает случайным образом строку, столбец или квадрат, и просит прувера "открыть" выбранный элемент в T_1 . Также V выбирает случайную позицию (i,j) в исходной таблице такую, что $T_0[i,j]=x$ (т.е. в $T_0[i,j]$ уже записано некоторое известное число x , и просит прувера "открыть" $\sigma(x)$. Проверяет на корректность строку, столбец или квадрат соответственно, а также проверяет, что $T_1[i,j] = \sigma(x)$.
- Повторяем протокол с начала нужное количество раз(полином).
- Принимает доказательство, если все проверки пройдены на каждом шаге.

Корректность:

- \bullet Если решение существует, то P будет дйствовать оптиматьно, ошибка второго рода может возникнуть только в протоколе привязки к биту, но ее можно сделать очень маленькой. Во всех остальных частях протокола ошибки не возникнет.
- Если решения нет, то либо есть некорректный элемент(строка, столбец, квадрат), либо прувер применил замену индексов не соответствующим перестановке σ образом. В первом случае вероятность не заметить ошибку $P_1 \leq \frac{3n^2-1}{3n^2} = 1 - \frac{1}{3n^2}$, во втором, $P_2 \leq \frac{n^2-1}{n^2} = 1 - \frac{1}{n^2}$. В любом случае $P \leq 1 - \frac{1}{3n^2}$. $P^{3n^2} \leq (1 - \frac{1}{3n^2})^{3n^2} \sim \frac{1}{e}, n \to \inf$. Значит повторив полиномиальное количество раз сможем получить достаточно малую ошибку.

Задача. 9. Расширим определение **PCP**, введённое на лекции. Назовём классом $\mathbf{PCP}_{c,s}(r,q)_{\Sigma}$ класс языков L, для которых существует полиномиальный вероятностный верификатор V с произвольным доступом к строке $\pi \in \Sigma^*$ длины не более $q2^{O(R)}$, со следующими условиями:

- V использует не больше r случайных битов u делает не больше q неадаптивных запросов κ π (обратите внимание, что здесь мы отказываемся от $O(\dot{})$ -обозначений);
- Ecnu $x \in L$, mo $\Pr\{V^{\pi}(x) = 1\} \ge c$;
- Echu $x \notin L$, mo $\Pr\{V^{\pi}(x) = 1\} \leq s$.

Соответственно, класс, введённый на лекции, является классом $\mathbf{PCP}_{1,\frac{1}{2}}(r,q)_{\{0,1\}}$ Будем считать, что размер алфавита $|\Sigma|$ может зависеть от длины входа |x|. Докажите, что:

- (a) (1 балл) Для алфавитов Σ полиномиального размера выполнено $\mathbf{PCP}_{c,s}(O(\log n),0)_\Sigma \subset \mathbf{P}$
- (б) (4 балла) Для алфавитов Σ полиномиального размера выполнено $\mathbf{PCP}_{c,s}(O(\log n),1)_{\Sigma} \subset \mathbf{P}$ (для любых параметров c>s)
- (в) (5 баллов) Для алфавитов Σ и параметров q, таких что $|\Sigma|^q$ не больше полинома, выполнено $\mathbf{PCP}_{1,\frac{1}{|Stama|q}}(O(\log n),q)_{\Sigma}\subset P$

Ответ. 1. $q=0 \implies$ алгоритм проверки детерменированный, к сертификату не обращается, работает полином. Это есть **P**

Задача. 8. Рассмотрим следующую оптимизационную задачу: по графу G = (V, E) найти максимальный размер подмножества $W \subset V$, такую что индуцированный подграф $(W, W^2 \cap E)$ можно раскрасить в 3 цвета. Докажите, что для некоторого ρ её приближённое решение c точностью ρ является \mathbf{NP} -трудной задачей.

Ответ. Воспользуемся доказанным на лекции фактом, что $\exists \rho$ такое, что ρ - приближение задачи MAX3SAT является NP- трудным. Будем использовать гаджеты, которые мы раньше вводили для сведения MAX3SAT к 3COLOR. Заведем a константных гаджетов(GROUND-FALSE на рисунке).

Также для каждой вершины заведем b гаджетов-пар, соединяющих вершины x и \bar{x} , при этом каждая гаджет-пара соединена с вершиной Ground в константных гаджетах. Далее для каждого дизъюнкта (t_1,t_2,t_3) заведем c 6-вершинных гаджетов снизу, где i-ая вершина из трех соединена со всеми t_1,t_2,t_3 во всех гаджетах, а правая нижняя соединена со всеми Ground и False. Теперь задача нахождения интерпретации, удовлетворяющей k скобкам в 3КНФ эквивалента задаче раскраски такого подграфа из 2a+2bn+6ck+5c(m-k) (n- число переменных, m-дизъюнктов).

Далее Ground вершины красим в цвет 2, все False вершины в цвет 0, в гаджетах переменных: x в 1, \bar{x} в 0. Каждый гаджет дизъюнкта красится в 3 цвета тогда, когда при такой раскраске хотя бы один литерал не ложный.

Пусть мы выбрали в полученном графе множество вершин W и правильно покрасили $(W, W^2 \cap E)$ в 3 цвета. Если мы выбрали какой-то гаджет, то мы можем выбрать все аналогичные гаджеты и покрасить их точно так же.

Увеличив a можно добиться того, чтобы константных гаджетов стало больше, чем всех остальных вершин. Поэтому все константные гаджеты попадают в W. Также, при $b\gg c$ будут покрашены все гаджеты переменных. При этом все гаджеты одного типа имеют одинаковую раскраску.

Итого:

- Если один гаджет имеет раскраску, то также можно раскрасить все аналогичные гаджеты.
- Гаджетам дизъюнктов, полностью раскрашенным в 3 цвета соответствуют истинные дизъюнкты.

Пусть теперь a=10000, b=100, c=1, тогда k скобок можно сделать истинными \iff можно раскрасить подграф размера 20000+200n+5m+k.

Так как $n \leq 3m, k \geq \frac{7}{8}m$ (хотя бы столько можно сделать истинными), то если умеем решать задачу о графе с точностью ρ' , то умеем находить такое k, что

$$\frac{20000 + 200n + 5m + k}{20000 + 200n + 5m + k_{opt}} \ge \rho' \tag{5}$$

$$\frac{k_{opt} - k}{20000 + 200n + 5m + k_{opt}} \le 1 - \rho' \tag{6}$$

$$k_{opt} - k \le (20000 + 200n + 5m + k_{opt})(1 - \rho') \le (1 - \rho')(20000 + 800k_{opt}).$$
 (7)

Так как для некоторой точности ρ задача MAX3SAT (нахождение k близкое к k_{opt}) является NP-трудной, то для точности ρ' данная задача тоже является NP-трудной.