Departamento de Matemática ufición Universidade Federal de São Carlos

Cálculo Numérico - P3.2 - 11/07

Nome:	$\mathrm{R}\mathrm{A}\cdot$

Questão 1 [5 pontos] Na figura vemos o gráfico de uma função de iteração φ e seus dois pontos fixos A e B. Determine e justifique, graficamente, se esses pontos fixos são atratores ou não.

O ponto A é atrator e o ponto B não é atrator.

Questão 2 [5 pontos]. Considere a função $f(x) = 5x^3 - 6x^2$ que possui uma única raiz positiva $x^* = \frac{6}{5}$. Considere uma função de iteração $\varphi(x) = x + \alpha f(x)$ para determinar x^* através de iterações $x_{k+1} = \varphi(x_k)$. Qual é o melhor valor possível para α , isto é, o valor que torna a convergência de (x_k) mais rápida?

Para x^* ser um atrator devemos ter $|\varphi'(x^*)| < 1$, e para x^* ser um super-atrator devemos ter $\varphi'(x^*) = 0$ Logo, devemos ter

$$\varphi'(x^*) = 0 \Leftrightarrow 1 + \alpha f'(x^*) = 0 \Leftrightarrow \alpha = -\frac{1}{f'(x^*)}$$

Como $f'(x^*) = 15 \cdot \frac{36}{25} - 12 \cdot \frac{6}{5} = \frac{36}{5},$ o valor de α é

$$\alpha = -\frac{5}{36}$$