# 2024 Optimization Grand Challenge

Effective Bundle Enumeration and Tree-structured Improvement



#### **Backgrounds and Theoretical Basis**





### Multiple Pickup and Delivery Problem

- NP-hard
- Limitation of Column Generation on Set partitioning Formulation



Practical and general solution approach for real-world scale instances by leveraging structural advantages

#### **Backgrounds and Theoretical Basis**



- Order
- pickup, delivery
- time window
- volume

#### Courier

- capacity
- speed
- availability



### Multiple Pickup and Delivery Problem

- NP-hard
- Limitation of Column Generation on Set partitioning Formulation



Practical and general solution approach for real-world scale instances by leveraging structural advantages

$$\min \quad \sum_{r \in \Omega} c_r \mathbf{x}_r$$

s.t. 
$$\sum_{r \in \Omega} a_{ir} \mathbf{x}_r = 1 \quad \forall i$$

$$\sum_{r\in\Omega} \mathbf{x}_r = |V|$$

$$\mathbf{x}_r \in \mathbb{B} \quad \forall r \in \Omega$$

perfect formulation

if bundles are subtrees from a specific tree

lotation n

n: number of requesV: set of vehicles

 $\ell$ : set of feasible routes r: cost of route  $r \in \Omega$ 

 $a_{ir}$ : binary constant, 1 if route  $r \in \Omega$  includes request i

**Variables**  $\mathbf{x}_r$ : binary variable, 1 if route  $r \in \Omega$  includes request i

#### **Backgrounds and Theoretical Basis**



- Order
  - pickup, delivery
- time window
- volume
- Courier
  - capacity
- speed
- availability



### Multiple Pickup and Delivery Problem

- NP-hard
- Limitation of Column Generation on Set partitioning Formulation



Practical and general solution approach for real-world scale instances by leveraging structural advantages

#### **Subtrees on Tree**

- Tree : an undirected, connected, acyclic graph
- · Subtree: subgraph of the tree



#### **Backgrounds and Theoretical Basis**



- Order
  - pickup, delivery
- time window
- volume

#### Courier

- capacity
- speed
- availability



### Multiple Pickup and Delivery Problem

- NP-hard
- Limitation of Column Generation on Set partitioning Formulation



Practical and general solution approach for real-world scale instances by leveraging structural advantages

#### **Subtrees on Tree**

- Tree : an undirected, connected, acyclic graph
- · Subtree: subgraph of the tree



#### **Backgrounds and Theoretical Basis**



- Order
  - pickup, delivery
- time window
- volume
- Courier
  - capacity
- speed
- availability



### Multiple Pickup and Delivery Problem

- NP-hard
- Limitation of Column Generation on Set partitioning Formulation



Practical and general solution approach for real-world scale instances by leveraging structural advantages

#### **Subtrees on Tree**

- Tree : an undirected, connected, acyclic graph
- · Subtree: subgraph of the tree



**Logics and Details** 



< Algorithm Flowchart >

**Logics and Details** 



### 1. Bundle Enumeration

- Bundle: [ What courier delivers, Which orders via, Which route ]
- Profitable Bundle Enumeration



< Algorithm Flowchart >

**Logics and Details** 



### 1. Bundle Enumeration

- Bundle: [ What courier delivers, Which orders via, Which route ]
- Profitable Bundle Enumeration



< Algorithm Flowchart >

**Logics and Details** 



### < Algorithm Flowchart >

### 1. Bundle Enumeration

- Bundle: [ What courier delivers, Which orders via, Which route ]
- Profitable Bundle Enumeration



**Logics and Details** 



< Algorithm Flowchart >

### 1. Bundle Enumeration

- Bundle: [ What courier delivers, Which orders via, Which route ]
- Profitable Bundle Enumeration



dual soln.

(reduced cost)

### 2. IP Incumbent

- Column Selection by LP
- Restricted IP using selected columns



**Logics and Details** 



< Algorithm Flowchart >

### 3. Tree-structured Improvement

#### 3-1. Tree Construction from IP Solution



- Alt 1. Delivery sequence
- Alt 2. Pickup sequence
- Alt 3. Deadline slack

Deadline slack<sup>1)</sup>

**Logics and Details** 



< Algorithm Flowchart >

### 3. Tree-structured Improvement

#### 3-1. Tree Construction from IP Solution



- Alt 1. Delivery sequence
- Alt 2. Pickup sequence
- Alt 3. Deadline slack

#### 3-2. LP for reduced cost and tree improvement



**Logics and Details** 



< Algorithm Flowchart >

### 3. Tree-structured Improvement

#### 3-1. Tree Construction from IP Solution



3-2. LP for reduced cost and tree improvement

Alt 3. Deadline slack



**Logics and Details** 



< Algorithm Flowchart >

### 3. Tree-structured Improvement

#### 3-1. Tree Construction from IP Solution



- Alt 1. Delivery sequence
- Alt 2. Pickup sequence
- Alt 3. Deadline slack

#### 3-2. LP for reduced cost and tree improvement



Reduced cost

**Logics and Details** 



< Algorithm Flowchart >

### 3. Tree-structured Improvement

#### 3-1. Tree Construction from IP Solution



- Alt 1. Delivery sequence
- Alt 2. Pickup sequence
- Alt 3. Deadline slack

Deadline slack1)

#### 3-2. LP for reduced cost and tree improvement



1) Deadline slack = deadline - service time - arrival time

**Logics and Details** 



< Algorithm Flowchart >

### 3. Tree-structured Improvement

#### 3-1. Tree Construction from IP Solution



- Alt 2. Pickup sequence
- Alt 3. Deadline slack

#### 3-2. LP for reduced cost and tree improvement



1) Deadline slack = deadline - service time - arrival time

**Logics and Details** 



< Algorithm Flowchart >

### 3. Tree-structured Improvement

#### 3-1. Tree Construction from IP Solution



#### 3-2. LP for reduced cost and tree improvement



# **Computational Implementations**

#### **Skills and Environments**

### Implementations

| Languages | С           | for implementing all core algorithms                             |
|-----------|-------------|------------------------------------------------------------------|
|           | Python      | for handling data input and solution output                      |
| Packages  | FICO Xpress | for optimization tasks                                           |
|           | pthread     | for multithreading and parallel processing in bundle enumeration |
|           | hashmap     | for efficient data management using hash maps (open source)      |

### Computational Environments

►Intel Core i7-4770S CPU processor (3.10GHz with 16GB RAM)

#### Instances

▶stage 1, 2, 3 problems from OGC2024 & TEST instances from OGC2024

- 500 orders instances : stage 2-1, stage 2-3, stage 2-5, TEST 2-4, TEST 2-5

- 1000 orders instances: stage 2-2, stage 2-4, stage 2-6, TEST 2-1, TEST 2-2

- 2000 orders instances: stage 3-1, stage 3-2, stage 3-3, TEST 3-1, TEST 3-2

# **Key Strengths**

Algorithmic Advantages and Related Results

**Bundle Enumeration** 

More Time Gain with Less Solution Quality Loss



where avg gap = avg( 
$$\frac{obj - best \ obj}{best \ obj}$$
 ) × 100 (%) with best obj from 300s time limit

# **Key Strengths**

Algorithmic Advantages and Related Results



More Time Gain with Less Solution Quality Loss

### **Tree Improvement**

- Longer bundles observed
- Monotonic improvement
- Near similarity between IP and LP due to tree structure



where avg gap = avg( 
$$\frac{obj - best \ obj}{best \ obj}$$
) × 100 (%) with best obj from 300s time limit

# **Key Strengths**

Algorithmic Advantages and Related Results



More Time Gain with Less Solution Quality Loss

### **Tree Improvement**

- Longer bundles observed
- Monotonic improvement
- Near similarity between IP and LP due to tree structure



where avg gap = avg( 
$$\frac{obj - best \ obj}{best \ obj}$$
) × 100 (%) with best obj from 300s time limit

Future Works and Participation Experience

- Independent Stage Enhancements
  - ► Targeted improvements for each component (Bundle Enumeration / Tree Improvement)

**Future Works and Participation Experience** 

- Independent Stage Enhancements
  - ► Targeted improvements for each component (Bundle Enumeration / Tree Improvement)

- Dynamic Order Handling: Tree Reconstruction
  - ▶Incremental algorithm suitable for real-time order changes



Future Works and Participation Experience

- Independent Stage Enhancements
  - ► Targeted improvements for each component (Bundle Enumeration / Tree Improvement)

- Dynamic Order Handling : Tree Reconstruction
  - ▶Incremental algorithm suitable for real-time order changes



**Future Works and Participation Experience** 

- Independent Stage Enhancements
  - ► Targeted improvements for each component (Bundle Enumeration / Tree Improvement)

- Dynamic Order Handling : Tree Reconstruction
  - ▶Incremental algorithm suitable for real-time order changes



**Future Works and Participation Experience** 

- Independent Stage Enhancements
  - ► Targeted improvements for each component (Bundle Enumeration / Tree Improvement)

- Dynamic Order Handling : Tree Reconstruction
  - ▶Incremental algorithm suitable for real-time order changes



**Future Works and Participation Experience** 

#### **Future Works**

- Independent Stage Enhancements
  - ► Targeted improvements for each component (Bundle Enumeration / Tree Improvement)

- Dynamic Order Handling : Tree Reconstruction
  - ►Incremental algorithm suitable for real-time order changes



### Participation Experience

- Suggested Future Directions for OGC
  - ▶ Regularly changing scoring instances for each stage, instead of fixed instances
- ▶ Providing additional information (e.g., amount of time exceeded, obj value), when the time limit is surpassed

**Future Works and Participation Experience** 

#### **Future Works**

- Independent Stage Enhancements
  - ► Targeted improvements for each component (Bundle Enumeration / Tree Improvement)

- Dynamic Order Handling : Tree Reconstruction
  - ▶Incremental algorithm suitable for real-time order changes



### **Participation Experience**

- Suggested Future Directions for OGC
  - Regularly changing scoring instances for each stage, instead of fixed instances
  - ▶ Providing additional information (e.g., amount of time exceeded, obj value), when the time limit is surpassed
- Reflections on Participation
  - Opportunity to explore algorithms suitable for real-world problems using provided data
  - ► Chance to develop and advance research topics

# Thank You!

Team PRO

