

第6章 嵌入式系统硬件(4)

杨光华

物联网与物流工程研究院 / 电气信息学院

办公室: 行政楼 631

电邮: ghyang@jnu.edu.cn 电话: 8505687

声明:课件中的部分文字、图片、视频等源于网络,相应版权属于原创作人

第6章 嵌入式系统硬件

主要内容

- 1. S3C2410概述
- 2. 电源电路模块
- 3. 复位电路模块
- 4. JATG接口模块
- 5. 时钟与电源管理
- 6. S3C2410X的存储器
- 7. DMA控制器
- 8. A/D转换与触摸屏
- 9. 中断控制器

- 10. 输入/输出端口
- 11. 定时器、PWM
- 12. UART通用异步串行接口
- 13. SPI串行总线接口
- 14. I2C(IIC)串行总线接口
- 15. 实时钟RTC
- 16. USB接口
- 17. 看门狗
- 18. LCD控制器

15 实时钟RTC

主要内容

概述

结构

寄存器

应用举例

重点:

- (1) RTC原理
- (2) RTC应用

一、概述

- RTC(实时时钟):提供可靠的系统时间,包括时、分、 秒、和年、月、日等;系统关机状态下也能正常工作 (后备电池供电),外围也不需太多辅助电路,典型的 只需一个高精度32.768KHz 晶振和电阻电容等
- RTC应用:现在很多电子产品都有RTC功能,如电子日历 (台式、壁式等)、手持数码产品(手机、电子词典、 各种学习机、照相机、摄像机等)、电子计量仪表(电 度表、燃气表、水表等)、家用电器(电视机、机顶盒、 DVD等)等,应用非常广泛

S3C2410 RTC 特点

- RTC芯片:独立的RTC芯片,如壁式电子日历、电子计量仪表等; RTC功能集成到其它的芯片中,如手持数码产品等
- S3C2410的RTC的特点
 - 时钟数据采用BCD 编码
 - 时钟数据有: 秒、分、时、日、月、年、星期
 - 能够对闰年的年月日进行自动处理
 - 具有告警功能, 当系统处于关机状态时, 能产生告警中断
 - 具有独立的电源输入
 - 提供毫秒级时钟中断,可用于嵌入式操作系统的内核时钟

二、S3C2410的RTC结构

1、S3C2410的RTC结构

5部分构成: 时钟发生器、节拍发生器、时间与日期计数器(时分秒年月日星期)、报警发生器、控制逻辑等

2、S3C2410 RTC的振荡电路

· S3C2410 RTC的只需外接2个20P左右的小电容、32.768KHz的晶振即可

Why 32.768KHz?

三、RTC专用寄存器

· S3C2410的RTC有17个专用寄存器,均需用字节读写。下表为前10个,有4个为控制寄存器,6个为报警寄存器

Register	Address	R/W	Description	Reset Value
RTCCON	0x57000040/3	R/W	RTC控制寄存器	0x0
TICNT	0x57000044/7	R/W	RTC节拍计数器	0x00
RTCALM	0x57000050/3	R/W	RTC报警控制寄存器	0x00
RTCRST	0x5700006C/F	R/W	RTC循环复位寄存器	0x0
ALMSEC	0x57000054/7	R/W	报警秒数寄存器	0x00
ALMMIN	0x57000058/B	R/W	报警分钟数寄存器	0x00
ALMHOUR	0x5700005C/F	R/W	报警小时数寄存器	0x00
ALMDAY	0x57000060/3	R/W	报警天(日)数寄存器	0x01
ALMMON	0x57000064/7	R/W	报警月数寄存器	0x01
ALMYEAR	0x57000068/B	R/W	报警年数寄存器	0x00

三、RTC专用寄存器

· S3C2410的RTC有17个专用寄存器,均需用字节读写。下表为4个控制寄存器

Register	Address	R/W	Description	Reset Value
RTCCON	0x57000040/3	R/W	RTC控制寄存器	0x0
TICNT	0x57000044/7	R/W	RTC节拍计数器	0x00
RTCALM	0x57000050 /3	R/W	RTC报警 控制寄存器	0x00
RTCRST	0x5700006C /F	R/W	RTC秒循环 复位寄存器	0x0

本表6个寄存器: 为报警日期、时间寄存器

Register	Address	R/W	Description	Reset Value
ALMSEC	0x57000054/7	R/W	报警秒数寄存器	0x00
ALMMIN	0x57000058/B	R/W	报警分钟数寄存器	0x00
ALMHOUR	0x5700005C/F	R/W	报警小时数寄存器	0x00
ALMDAY	0x57000060/3	R/W	报警天(日)数寄存器	0x01
ALMMON	0x57000064/7	R/W	报警月数寄存器	0x01
ALMYEAR	0x57000068/B	R/W	报警年数寄存器	0x00

后7个寄存器:为日期、时间寄存器

Register	Address	R/W	Description	Reset Value
BCDSEC	0x57000070/3	R/W	秒当前值寄存器	0xXX
BCDMIN	0x57000074/7	R/W	分钟当前值寄存器	0xXX
BCDHOUR	0x57000078/B	R/W	小时当前值寄存器	0xXX
BCDDAY	0x5700007C/F	R/W	日当前值寄存器	0xXX
BCDDATE	0x57000080/3	R/W	星期当前值寄存器	0xXX
BCDMON	0x57000084/7	R/W	月当前值寄存器	0xXX
BCDYEAR	0x57000088/B	R/W	年当前值寄存器	0xXX

1、RTC控制寄存器 (RTCCON)

Register	Address	R/W	Description	Reset Value
RTCCON	0x57000040(L) 0x57000043(B)	R/W (字节)	RTC控制寄存器	0x0

字段名	位	意义	初值
CLKRST	3	RTC时钟计数复位。 0: 不复位; 1 = BCD计数复位。	0
CNTSEL	2	BCD计数选择。0: 合并BCD计数; 1 = 保留(单独的BCD计数器)	0
CLKSEL	1	BCD时钟选择。 0: XTAL / 32768 1: 用XTAL原值 (但只用于测试)	0
RTCEN	0	RTC控制使能。 0: 失能; 1: 使能 指BCD时间计数和读取操作可以被执行	0

2、RTC节拍时间计数器(TICNT)

Register	Address	R/W	Description	Reset Value
TICNT	0x57000044(L) 0x57000047(B)	R/W (字节)	RTC节拍时间 计数器	0x00

字段名	位	意义	初值
TICK INT ENABLE	7	节拍中断使能。 0: 失能, 1: 使能。	0
TICK TIME COUNT	6:0	节拍时间计数值(1~127)。	000

说明:这个计数器的值在内部减少,用户不能在工作时读取这个计数器的值。

3、RTC报警控制寄存器 (RTCCON)

Register	Address	R/W	Description	Reset Value
RTCALM	0x57000050(L) 0x57000053(B)	R/W (字节)	RTC报警 控制寄存器	0x0

字段名	位	意义	初值
Reserved	7	保留 (为0)	0
ALMEN	6	报警总使能位。0: 失能; 1: 使能	0
YEAREN	5	年报警使能位。0:失能;1:使能	0
MONEN	4	月报警使能位。0: 失能; 1: 使能	0
DATEEN	3	日报警使能位。0:失能;1:使能	0
HOUREN	2	时报警使能位。0: 失能; 1: 使能	0
MINEN	1	分报警使能位。0:失能;1:使能	0
SECEN	0	秒报警使能位。0: 失能; 1: 使能	0

4、RTC报警秒数寄存器 (ALMSEC)

Register	Address	R/W	Description	Reset Value
ALMSEC	0x57000054(L) 0x57000057(B)	R/W (字节)	报警秒数 寄存器	0x00

字段名	位	意义	初值
Reserved	7	保留 (为0)	0
ALMSECH	6:4	报警时间秒十位,BCD值。0~5	000
ALMSECL	3:0	报警时间秒个位,BCD值。0~9	0000

5、报警时间分钟数寄存器 (ALMMIN)

Register	Address	R/W	Description	Reset Value
ALMMIN	0x57000058(L) 0x5700005B(B)	R/W (字节)	报警分钟数 寄存器	0x00

字段名	位	意义	初值
Reserved	7	保留 (为0)	0
ALMMINH	6:4	报警时间分钟十位, BCD值。0~5	000
ALMMINL	3:0	报警时间分钟个位, BCD值。0~9	0000

6、报警时间小时数寄存器 (ALMHOUR)

Register	Address	R/W	Description	Reset Value
ALMHOUR	0x5700005C(L) 0x5700005F(B)	R/W (字节)	报警小时 寄存器	0x00

字段名	位	意义	初值
Reserved	7:6	保留 (为0)	00
ALMHOURH	5:4	报警时间小时十位, BCD值。0~2	00
ALMHOURL	3:0	报警时间小时个位, BCD值。0~9	0000

7、RTC报警天数寄存器 (ALMDATE)

Register	Address	R/W	Description	Reset Value
ALMDATE	0x57000060(L) 0x57000063(B)	R/W (字节)	报警日期 天数寄存器	0x01

字段名	位	意义	初值
Reserved	7:6	保留(为0)	00
ALMDATEH	5:4	报警日期天数十位, BCD值。0~3	00
ALMDATEL	3:0	报警日期天数个位, BCD值。0~9	0001

8、报警时间月数寄存器 (ALMMON)

Register	Address	R/W	Description	Reset Value
ALMMON	0x57000064(L) 0x57000067(B)	R/W (字节)	报警日期 月数寄存器	0x01

字段名	位	意义	初值
Reserved	7:5	保留 (为0)	000
ALMMONH	4	报警日期月数十位, BCD值。0~1	0
ALMMONL	3:0	报警日期月数个位, BCD值。0~9	0001

9、报警时间年数寄存器(ALMYEAR)

Register	Address	R/W	Description	Reset Value
ALMYEAR	0x57000068(L) 0x5700006B(B)	R/W (字节)	报警年数 寄存器	0x00

字段名	位	意义	初值
ALMYEARH	7:4	报警日期年数十位, BCD值。0~9	0000
ALMYEARL	3:0	报警日期年数个位, BCD值。0~9	0000

说明:年数的千位和百位应该是20。

10、秒循环复位寄存器(RTCRST)

Register	Address	R/W	Description	Reset Value
RTCRST	0x5700006C(L) 0x5700006F(B)	R/W (字节)	秒循环复位 寄存器	0x00

字段名	位	意义	初值
Reserved	7:4	保留 (为0)	000
SRSTEN	3	秒循环复位控制位。 0: 禁止; 1: 允许	0
SECCR	2:0	秒循环进位边界。 011: 30秒; 100: 40秒; 101: 50秒。	00

说明:对于秒循环进位边界设为其它值,到设定值只复位,但不会向分钟进位。

11、当前时间秒数寄存器 (BCDSEC)

Register	Address	R/W	Description	Reset Value
BCDSEC	0x57000070(L) 0x57000073(B)	R/W (字节)	当前时间 秒数寄存器	-

字段名	位	意义	初值
Reserved	7	保留 (为0)	-
NOWSECH	6:4	当前时间秒十位, BCD值。0~5	-
NOWSECL	3:0	当前时间秒个位, BCD值。0~9	-

12、当前时间分钟寄存器 (BCDMIN)

Register	Address	R/W	Description	Reset Value
BCDMIN	0x57000074(L) 0x57000077(B)	R/W (字节)	当前时间 分钟寄存器	-

字段名	位	意义	初值
Reserved	7	保留 (为0)	-
NOWMINH	6:4	当前时间分钟十位, BCD值。0~5	-
NOWMINL	3:0	当前时间分钟个位, BCD值。0~9	-

13、当前时间小时数寄存器 (BCDHOUR)

Register	Address	R/W	Description	Reset Value
BCDHOUR	0x57000078(L) 0x5700007B(B)	R/W (字节)	当前时间 小时寄存器	-

字段名	位	意义	初值
Reserved	7:6	保留 (为0)	-
NOWHOURH	5:4	当前时间小时十位, BCD值。0~2	-
NOWHOURL	3:0	当前时间小时个位, BCD值。0~9	-

14、当前日期天数寄存器 (BCDDATE)

Register	Address	R/W	Description	Reset Value
BCDDATE	0x5700007C(L) 0x5700007F(B)	R/W (字节)	当前日期 天数寄存器	•

字段名	位	意义	初值
Reserved	7:6	保留(为0)	-
NOWDATEH	5:4	当前日期天数十位, BCD值。0~3	-
NOWDATEL	3:0	当前日期天数个位, BCD值。0~9	-

15、当前星期寄存器(BCDDAY)

Register	Address	R/W	Description	Reset Value
BCDDAY	0x57000080(L) 0x57000083(B)	R/W (字节)	当前星期 寄存器	•

字段名	位	意义	初值
Reserved	7:3	保留 (为0)	•
NOWDAY	2:0	当前星期值。1~7	•

1: 星期日; 2: 星期一; 3: 星期二;

4: 星期三; 5: 星期四; 6: 星期五;

7: 星期六

16、当前日期月数寄存器 (BCDMON)

Register	Address	R/W	Description	Reset Value
BCDMON	0x57000084(L) 0x57000087(B)	R/W (字节)	报警日期 月数寄存器	0x01

字段名	位	意义	初值
Reserved	7:5	保留 (为0)	000
NOWMONH	4	当前日期月数十位, BCD值。0~1	0
NOWMONL	3:0	当前日期月数个位, BCD值。0~9	0001

17、当前日期年数寄存器 (BCDYEAR)

Register	Address	R/W	Description	Reset Value
BCDHOUR	0x57000088(L) 0x5700008B(B)	R/W (字节)	当前日期 年数寄存器	0x00

字段名	位	意义	初值
NOWYEARH	7:4	当前日期年数十位, BCD值。0~9	0000
NOWYEARL	3:0	当前日期年数个位, BCD值。0~9	0000

说明:年数的千位和百位应该是20

四、S3C2410 RTC使用方法

- 1、读/写寄存器
 - (1) 设置允许读写:对寄存器RTCCON的0位写1
- (2) 显示时间、日期方法: 需要不断地从BCDSEC、BCDMIN、BCDHOUR、BCDDAY、BCDDATE、BCDMON、和BCDYEAR 寄存器读取数据,然后显示出来

(3) 可能会引起显示错误

例如,假设用户在2006年12月31日23点59分59秒读取寄存器 BCDYEAR 到BCDSEC,在用户读取BCDSEC寄存器时,如果结果是0, 那么很有可能年、月、日、时、分已经变成了2007年1月1日0时0 分了,数据组合在一起可能是错的。读取的数据可能是:

- 1) 2006年12月1日0时0分
- 2) 2006年1月1日0时0分,等

解决的方法: 当读取到的BCDSEC 等于0 时,用户应该再读取一次

BCDYEAR到BCDSEC 的值。

2、报警功能

RTC的报警寄存器 (RTCALM) 决定了报警的使能、禁止、以及报警时间设定的条件

在RTC报警的使能情况下:

- (1) 在正常工作模式下,报警中断(ALMINT)是激活状态的
- (2) 在掉电模式下 (PWDN信号有效) ,电源管理唤醒信号 (PMWKUP) 与报警中断 (ALMINT) 都是激活状态

3、节拍中断

RTC 节拍用于中断请求

TICNT 寄存器: 有中断使能位、节拍时间位

当节拍计数值到达0时,就会触发节拍中断。节拍中断的间隔时间计算如下:

Period=(n+1)/128 秒

n: 节拍时间计数值 (1~127)

说明: RTC 节拍中断可以作为RTOS(实时操作系统)内核的时间节拍

五、应用举例

例:编写一程序,对S3C2410的RTC进行设置,使用节拍中断,每1秒中断一次,中断后显示出当前的日期和时间。初始日期、时间设置为正确值。

1、设置控制寄存器:

RTCCON = 0x0 0 0 1 = 0x01

含义:RTC不复位、正常BCD计数、BCD时钟选择为1/32768、允许读出RTC值

2、设置节拍时间寄存器:

TICNT=0x111111111=0xFF

含义:允许节拍中断、节拍计数值为127,每1秒钟中断一次。

BIT_TICK EQU (0x1 << 8)

BIT_ALLMSK EQU (0xffffffff)

BIT_RTC EQU (0x1 << 30)

#include "2410addr.h"

#include "2410lib.h"

void Test_Rtc_Tick(void);

void __irq Rtc_Tick(void);

```
void Test Rtc Tick(void)
{
 Uart Printf("RTC Tick interrupt test for S3C2410 ! \n");
 pISR_TICK = (unsigned)Rtc_Tick;
                                   //设置中断服务程序地址
 rINTMSK & = ^{\sim}(BIT TICK);
                                    // (0x1<<8) 开时钟节拍中断
                                    //设置日期与时间
 rBCDYEAR = 0x07;
 rBCDMON = 0x05;
                                    //SUN:1 MON:2 TUE:3 WED:4 THU:5 FRI:6 SAT:7
 rBCDDAY = 0x03;
 rBCDDATE = 0x22;
 rBCDHOUR = 0x08;
 rBCDMIN = 0x38;
 rBCDSEC = 0x25;
                                    //设置节拍值 Period = (n + 1) / 128 =1sec
 rTICNT = (1 << 7) + 127;
                                    //启动计时、允许读写
 rRTCCON = 0x01;
 Uart Printf("Press any key to exit.\n");
 Uart Getch();
                                    //等待按键
 rINTMSK | = BIT_TICK;
                                    //(1<<8)
                                    //关闭时钟节拍中断
```

```
void __irq Rtc_Tick(void)
 char year, month, date, hour, min, sec;
                                         //读取年月日
 year = rBCDYEAR;
 month = rBCDMON & 0x1F;
 date = rBCDDATE & 0x3F;
                                          //读取时分秒
 hour = rBCDHOUR \& 0x3F;
 min = rBCDMIN \& 0x7F;
      = rBCDSEC & 0x7F;
 sec
                                          //显示日期、时间
 Uart Printf("20%2x年%2x月%2x日,
           %2x: %2x: %2x\n", year,
            month ,date hour,min,sec);
                                          //清除中断请求标志
 rSRCPND | = BIT_TICK;
                                          //清除中断请求标志
 rINTPND | = BIT_TICK;
```

第6章 嵌入式系统硬件

主要内容

- 1. S3C2410概述
- 2. 电源电路模块
- 3. 复位电路模块
- 4. JATG接口模块
- 5. 时钟与电源管理
- 6. S3C2410X的存储器
- 7. DMA控制器
- 8. A/D转换与触摸屏
- 9. 中断控制器

- 10. 输入/输出端口
- 11. 定时器、PWM
- 12. UART通用异步串行接口
- 13. SPI串行总线接口
- 14. I2C(IIC)串行总线接口
- 15. 实时钟RTC
- 16. USB接口
- 17. 看门狗
- 18. LCD控制器

16 USB接口

主要内容

USB总线概述

结构

寄存器

重点: USB拓扑结构、逻辑组成、传输方式

一、USB总线概述

 USB (Universal Serial Bus, 通用串 行总线)是由Intel、 Compaq, Microsoft 等公司联合提出的 一种串行总线标准, 主要用于PC与外围

设备互连

Release name \$	Release date \$	Maximum transfer rate ◆
USB 0.8	December 1994	
USB 0.9	April 1995	
USB 0.99	August 1995	
USB 1.0-RC	November 1995	
USB 1.0	January 1996	Full Speed (12 Mbit/s)
USB 1.1	August 1998	Full Speed (12 Mbit/s)[31]
USB 2.0	April 2000	High Speed (480 Mbit/s)
USB 3.0	November 2008	SuperSpeed (5 Gbit/s)
USB 3.1	July 2013	SuperSpeed+ (10 Gbit/s)
USB 3.2	September 2017	SuperSpeed+ (20 Gbit/s)

一、USB总线概述

USB

Standard A

Standard B

+ D-

1 2

4 3 **– D+**

Pin 1 V_{BUS} (+5 V)

Pin 2 Data-

Pin 3 Data+

Pin 4 Ground

USB传输方式(4种)

- 1) 同步传输:设备与主机同步,速度高,
- 一次传输,不确保无错误。如用于声音、视频传输
- 2) 中断传输:实时性强,应用于数据量少、分散、不可预测的数据传输中。如键盘、鼠标、游戏杆操作

USB传输方式(4种)

- 3) 批量传输:应用于大量数据传输,保证传输数据正确无误。但对数据的实效性要求不高。如打印机、扫描仪等
- 4) 控制传输:传输的不是数据,而是命令和状态信号,主要用于主机对USB设备进行配置、控制、查询状态等。该方式数据量小、实效性要求也不高

USB拓扑结构 (树状结构)

USB接口逻辑组成

- 1) USB主机(host):控制USB总 线上所有的USB设备和所有集线器 的数据通信过程
 - 检测、连接、断开设备
 - 控制数据流
 - 收集状态、纠正错误等。
- 2) USB设备(device):所有的 USB设备均可接收数据,根据数据 包的地址判断是否保存

USB接口逻辑组成

3)端点(endpoint):端点是位于USB设备中、与USB主机进行通信的基本单元。USB设备可以有多个端点,各端点的地址由设备地址和端点号确定

在USB设备中,端点就是一个 数据缓冲区

4) 管道 (pipe): 是主机与设备 之间数据通信的逻辑通道。

USB总线主要特点

- •USB端口不区分设备
- •即插即用、可热插拔
- •传输速度高
- ·易扩展,可扩展到127个USB设备
- •对设备提供电源
- •成本低等

二、S3C2410的USB接口结构

S3C2410处理器内部集成的USB HOST控制器支持两个USB host 通讯端口和1个USB Device端口

1、USB 控制器的主要特点

- 符合USB 1.1 协议规范
- 支持USB低速(1.5Mb/s)和全速(12Mb/s)设备连接
- 支持控制、中断、批量数据传输方式(无同步方式)

- 1、USB 控制器的主要特点
- ·集成了5个配置有FIFO缓冲器的节点
 - 1个有16字节的FIFO (EPO)
 - 4个有64字节的FIFO (EP1---EP4)
- •支持DMA方式批量传输(EP1---EP4)
- •集成了USB收发器
- •支持挂起和远程唤醒功能

2、S3C2410的USB 原理结构

•主要有5部分构成:控制逻辑、USB协议、5个FIFO、4个DMA、USB接口

S3C2410的USB HOST结构

S3C2410的USB DEVICE结构

三、USB DEVICE专用寄存器

共46个,其基地址为0x52000000

寄存器	描述	偏址
FUNC_ADDR_REG	功能地址寄存器	140
PWR_REG	电源管理寄存器	144
EP_INT_REG(EP0-EP4)	端点04中断寄存器	148
USB_INT_REG	USB中断寄存器	158
EP_INT_EN_REG (EP0–EP4)	端点中断允许寄存器	15C
USB_INT_EN_REG	USB中断允许寄存器	16C

三、USB DEVICE专用寄存器(续1)

寄存器	描述	偏址
FRAME_NUM1_REG	帧序号低字节寄存器	170
FRAME_NUM2_REG	帧序号高字节寄存器	174
INDEX_REG	索引寄存器	178
EP0_FIFO_REG	端点0 FIFO 寄存器	1C0
EP1_FIFO_REG	端点1 FIFO 寄存器	1C4
EP2_FIFO_REG	端点2 FIFO 寄存器	1C8
EP3_FIFO_REG	端点3 FIFO 寄存器	1CC
EP4_FIFO_REG	端点4 FIFO 寄存器	1D0

三、USB DEVICE专用寄存器(续2)

寄存器	描述	偏址
EPn_DMA_CON	端点n DMA控制寄存器	2xx
EPn_DMA_UNIT	端点n DMA传输单位寄存器	2xx
EPn_DMA_FIFO	端点n DMA FIFO计数器	2xx
EPn_DMA_TTC_L	端点n DMA传输计数器L	2xx
EPn_DMA_TTC_M	端点n DMA传输计数器M	2xx
EPn_DMA_TTC_H	端点n DMA传输计数器H	2xx

说明: n=1, 2, 3, 4。因此是4组, 24个寄存器。

三、USB DEVICE专用寄存器(续3)

寄存器	描述	偏址
IN_CSR1_REG /EP0_CSR	端点输入控制状态寄存器1 /端点0控制状态寄存器	184
IN_CSR2_REG	端点输入控制状态寄存器2	188
MAXP_REG	端点最大包寄存器	18C
OUT_CSR1_REG	端点输出控制状态寄存器1	190
OUT_CSR2_REG	端点输出控制状态寄存器2	194
OUT_FIFO_CNT1_REG	端点写输出计数寄存器1	198
OUT_FIFO_CNT2_REG	端点写输出计数寄存器2	19C

第6章 嵌入式系统硬件

主要内容

- 1. S3C2410概述
- 2. 电源电路模块
- 3. 复位电路模块
- 4. JATG接口模块
- 5. 时钟与电源管理
- 6. S3C2410X的存储器
- 7. DMA控制器
- 8. A/D转换与触摸屏
- 9. 中断控制器

- 10. 输入/输出端口
- 11. 定时器、PWM
- 12. UART通用异步串行接口
- 13. SPI串行总线接口
- 14. I2C(IIC)串行总线接口
- 15. 实时钟RTC
- 16. USB接口
- 17. 看门狗
- 18. LCD控制器

17 看门狗

主要内容

USB总线概述

结构

寄存器

应用举例

重点: WDT定义与工作原理; 理解其应用方法

一、看门狗及工作原理

1、看门狗

嵌入式系统运行受到外部干扰或者系统错误,程序有时会出现"跑飞",导致整个系统瘫痪。在对系统稳定性要求较高的场合,为了防止这一现象的发生,需要"看门狗"(WATCHDOG)电路。看门狗的作用就是当系统"跑飞"而进入死循环时,恢复系统的运行

看门狗:一种定时器电路,具有监视并恢复程序正常运行的功能。

2、看门狗的工作原理

• 基本原理:

设一系统程序完整运行一周期的时间是Tp,看门狗的定时周期为Ti,要求Ti>Tp

在程序运行一周期后,修改定时 器的计数值,只要程序正常运行, 定时器就不会溢出

若由于干扰等原因使系统不能在 Tp 时刻修改定时器的计数值,定 时器将在Ti 时刻溢出,引发系统 复位,使系统得以重新运行,从 而起到监控作用

二、S3C2410 的看门狗

1、S3C2410 看门狗的功能

S3C2410 的看门狗定时器有两个功能:

- (1) 定时器功能:可以作为常规定时器使用,它是一个十六位的定时器,并且可以产生中断,中断名为INT_WDT,中断号是0x09
- (2)复位功能:作为看门狗定使用,当时钟计数减为0 (超时)时,它将产生一个128个时钟周期的复位信号

2、S3C2410 看门狗结构与工作原理

由五部分构成: 时钟、看门狗计时器、看门狗数据寄存器、复位信号发生器、控制逻辑等

S3C2410 ARM9的看门狗工作原理

3、S3C2410看门狗定时时间

预分频器为8位,其值为: 0---255

再分频器可选择值为: 16、32、64、128

输入到计数器的时钟周期为:

T_wtd=1/[PCLK/(Prescaler+1)/Division_factor]

看门狗的定时周期为:

 $T=WTDAT \times T_wtd$

注意:

- ·一旦看门狗的定时器启动工作,其数据寄存器(WTDAT) 中的值将不会自动读到时间寄存器中间去(WTCNT)
- ·由于这个原因,程序员必须在看门狗计时器启动之前, 应该将一个初始值写入到看门狗的时间计数器(WTCNT) 中间去
- •即先对时间计数器系初值,再启动看门狗工作

三、看门狗专用寄存器

共3个, 其基地址为0x53000000

寄存器	描述	初值	偏移地址
WTCON	看门狗控制寄存器	0x8021	0
WTDAT	看门狗数据寄存器	0x8000	4
WTCNT	看门狗计数寄存器	0x8000	8

1、看门狗控制寄存器 (WTCON)

Register	Off Add	R/W	Description	Reset Value
WTCON	0	R/W	看门狗控制寄存器	0x8021

字段名	位	意义	初值
Prescaler Value	15:8	预分频值。0255。	0x80
Reserved	7:6	保留 (为0)	00
Watchdog Timer	5	看门狗控制位。 0:禁止;1:允许	1

1、看门狗控制寄存器(WTCON,续)

字段名	位	意义	初值
Clock Select	4:3	再分频值选择。 00: 16; 01: 32; 10: 64; 11: 128	00
Interrupt Generation	2	看门狗中断控制。 0:禁止;1:允许。	0
Reserved	1	保留 (为0)	0
Reset Enable	0	看门狗复位功能控制。 0:禁止;1:允许。	1

2、看门狗数据寄存器(WTDAT)

Register	Off Add	R/W	Description	Reset Value
WTDAT	4	R/W	看门狗数据寄存器	0x8000

说明

- (1) 该数据寄存器为对看门狗计数器重装计数值,初始值为 0x8000
- (2) 在初始化看门狗操作中,WTDATA 的值不会自动加载到 定时计数器中
 - (3) 在计数溢出后,WTDAT的值将被装载到WTCNT 寄存器中

3、看门狗计数寄存器(WTCNT)

Register	Off Add	R/W	Description	Reset Value
WTCNT	8	R/W	看门狗计数寄存器	0x8000

字段名	位	意义	初值
Count Value	15:0	看门狗的当前计数值	0x8000

说明: 在计数中只能读,不能写(写不起作用)

四、应用举例

例:编写一程序,利用S3C2410看门狗中断产生频率为1kHz的方波,并且从GPB0引脚输出。设S3C2410的PCLK为50MHz

- (1) 计算数据寄存器值
 - 1) 取再分频值为16,分频后的频率为:

50M/16 = 3125000Hz

2) 取预分频值为25, 分频后的频率为:

3125000/25 = 125000Hz

3) 取计数值为60,则计数器后的频率为:

125000/60 = 2083.3Hz

4) 方波频率为:

2083.3/2 = 1042Hz

不可能实现准确的1000Hz方波

(2) 看门狗控制寄存器值

WTCON

 $=0b\ 00011000\ 00\ 0\ 00\ 1\ 0\ 0=0x1804$

含义:预分频值为0x18、保留00、先禁止看门狗 定时器工作、选择再分频00(分频值为16)、允许 定时器中断、保留0、禁止看门狗复位。

(3) 看门狗数据寄存器值

WTDAT = 60 = 0x3C

```
(0x1 << 9)
BIT WDT EQU
#include <string.h>
#include "2410addr.h"
#include "2410lib.h"
#include "timer.h"
void ___irq Wdt_Int(void);
void Test WDT IntReq(void)
 Uart_Printf("WatchDog Timer Interrupt Request Test! \n");
                                                     //开看门狗中断
 rINTMSK \&= ^(BIT WDT);
                                                     //设置中断向量
 pISR_WDT = (unsigned)Wdt_Int;
                                                     //把GPB0设为输出
 rGPBCON = rGPBCON&0x03 | 0x01;
                                              //写控制寄存器
 rWTCON = 0x1804;
                                              //写数据寄存器
 rWTDAT = 60;
                                              //写计数器
 rWTCNT = 60;
                                              //启动看门狗定时器工作
 rWTCON = rWTCON | (1<<5);
```

```
Uart_Printf("Press any Key to Exit!\n");
                                    //等待按键
 Uart_Getch();
 rWTCON & = ~(1<<5);
                                    //关闭看门狗定时器
 rINTMSK | = (BIT_WDT);
                                    //屏蔽看门狗中断
void __irq Wdt_Int(void)
                               //对GPB0取反
 rGPBDATA ^{\circ} = 0x01;
                               //清除看门狗中断请求标志
 rSRCPND | = BIT_WDT;
                               //清除看门狗中断服务标志
 rINTPND | = BIT_WDT;
```

第6章 嵌入式系统硬件

主要内容

- 1. S3C2410概述
- 2. 电源电路模块
- 3. 复位电路模块
- 4. JATG接口模块
- 5. 时钟与电源管理
- 6. S3C2410X的存储器
- 7. DMA控制器
- 8. A/D转换与触摸屏
- 9. 中断控制器

- 10. 输入/输出端口
- 11. 定时器、PWM
- 12. UART通用异步串行接口
- 13. SPI串行总线接口
- 14. I2C(IIC)串行总线接口
- 15. 实时钟RTC
- 16. USB接口
- 17. 看门狗
- 18. LCD控制器

18 LCD控制器

主要内容

- 1、LCD概述
- 2、S3C2410 LCD控制器
- 3、S3C2410 LCD控制器结构与工作原理
- 4、专用寄存器

要求:了解LCD的工作原理;了解LCD控制器的结构,了解引脚信号

一、LCD概述

·LCD(液晶显示器)主要分成三部分:LCD显示屏、显示控制器、 缓冲存储器

1、LCD显示屏(LCD模块)

主要由:玻璃基板、偏振片、电极、胶框、液晶材料、背光等构成。 (STN、TFT、OLED等)

2、显示控制器

产生各种信号:场、行扫描及同步信号,显示驱动信号等

显示控制器:如T6963、LPC3600

TN、STN 及 TFT 型液晶显示屏的比较

类 别	TN	STN	TFT
原理	液晶分子扭转 90°	液晶分子扭转 240°~270°	液晶分子扭转90°以上
特性	黑白、单色,低对比度	黑白、彩色(26 万色), 低对比度, 较 TN 佳	彩色 (1 667 万色), 高对比度, 较 STN 佳
全色彩化	否	否	全彩色
动画显示	否	否	可以
视角	狭窄 (30°以下)	狭窄(40°以下)	较宽 (80°以下)
面板尺寸	1~3 英寸	1~12 英寸	12 英寸以上
应用范围	电子表、计算器、简单的掌上游 戏机、移动电话	电子词典、移动电话、商务通、 低档笔记本电脑	移动电话、笔记本电脑、液晶彩 显、液晶彩电

二、S3C2410 LCD控制器

- 一般功能: S3C2410 LCD控制器具有一般LCD控制器功能,产生各种信号、传输显示数据到LCD驱动器
- 1、S3C2410特点
 - (1) 基本特点
 - 1) 有专用DMA
 - 用于向LCD驱动器传输数据
 - 2) 有中断 (INT_LCD)

3) 显示缓存可以很大

系统存储器可以作为显示缓存用

4) 支持多屏滚动显示

用显示缓存支持硬件水平、垂直滚屏

5) 支持多种时序LCD屏

通过对LCD控制器编程,产生适合不同LCD显示屏的扫描信号、数据宽度、刷新率信号等

6) 支持多种数据格式

大端、小端格式, WinCE格式

(2) 支持STN材料LCD

- 1) 单色显示:每像素2位数据、4级灰度;每像素4位数据、16级 灰度。
- 2) 单色扫描: 4位单向、双向扫描,8位单向扫描。
- 3) 彩色显示:每像素16位数据、65536种色彩,每像素24位数据 真色彩。
- 4) 支持多种LCD屏 640×480、320×240、160×160等
- 5) 4MB显示缓存

支持256色的像素数: 4096×1024, 2048×2048, 1024×4096等

(3) 支持TFT材料LCD

- 1) 单色显示:每像素1位数据、2位数据、4位数据、 8位数据。
- 2) 彩色显示: 每像素16位数据、65536种色彩,每像素24位数据、16M种真色彩。
- 3) 支持多种LCD屏 640×480、320×240、160×160等
- 4) 4MB显示缓存 支持64K色的像素数: 2048×1024 等

三、S3C2410 LCD控制器结构与工作原理

- 1、LCD控制器结构
- ·主要由6部分组成:时序发生器、LCD主控制器(LPC3600)、 DMA、视频信号混合器、数据格式转换器、控制逻辑等

2、LCD控制器引脚信号

共41个信号

VD[23:0]: LCD数据

VDEN: 数据使能

VCLK: 时钟信号

VLINE: 行扫描信号

LEND: 行结束信号

VFRAME: 帧扫描信号

HSYNC: 水平同步信号

VSYNC: 垂直同步信号

VM:显示驱动交流信号

LCDVF0、LCDVF1、LCDVF2: 时序控制信号

LCD_PWREN: 面板电源控制信号

LCD_HCLK: 时钟面板控制信

CPV: 行同步面板控制信号

STV: 帧同步面板控制信号

TP: 显示驱动面板控制信号

STH: 面板控制信号

→ VCLK/LCD HCLK

→ VLINE / HSYNC / CPV

→ VFRAME / VSYNC / STV

→ VM / VDEN / TP

.

→ LCDVF0

→ LCDVF1

→ LCDVF2

→ VD[23:0]

四、LCD控制器专用寄存器

· S3C2410的有17个专用寄存器,分为四类,其基地址均为 0x4D000000

1、控制寄存器 (5个,如下表)

寄存器	描述	初值	偏址
LCDCON1	LCD控制寄存器1	0x00000000	0x00
LCDCON2	LCD控制寄存器2	0x00000000	0x04
LCDCON3	LCD控制寄存器3	0x00000000	0x08
LCDCON4	LCD控制寄存器4	0x00000000	0x0C
LCDCON5	LCD控制寄存器5	0x00000000	0x10

2、地址寄存器

共3个地址寄存器控制寄存器,如下表所示

寄存器	描述	初值	偏址
LCDSADDR1	帧起始地址寄存器1	0x00000000	0x14
LCDSADDR2	帧起始地址寄存器2	0x00000000	0x18
LCDSADDR3	虚拟屏地址寄存器	0x00000000	0x1C

3、颜色配置寄存器

• 共4个颜色配置寄存器,1个抖动模式寄存器,如下表

寄存器	描述	初值	偏址
REDLUT	红颜色寄存器	0x00000000	0x20
GREENLUT	绿颜色寄存器	0x00000000	0x24
BLUELUT	蓝颜色寄存器	0x00000000	0x28
DITHMODE	抖动模式寄存器	0x00000000	0x4C
TPAL	临时调色存器	0x00000000	0x50

4、中断寄存器

· 共3个中断寄存器,1个LCD控制器寄存器,如下表所示

寄存器	描述	初值	偏址
LCDSADDR1	中断服务寄存器	0x0	0x54
LCDSADDR2	中断标志寄存器	0x0	0x58
LCDSADDR3	中断屏蔽寄存器	0x3	0x5C
LPCSEL	LPC3600控制器 控制寄存器	0x4	0x60

Thank you