W12n, AIR Projektowanie Algorytmów i Metody Sztucznej Inteligencji	Sprawozdanie nr 3 Temat: Kółko i Krzyżyk
Jakub Cebula	Wt 15:15, 5 czerwca 2023 Dr inż. Marek Bazan

Spis treści

1	Treść zadania	2
2	Opis zadania	2
3	Algorytm minimax() 3.1 Działanie algorytmu	2 2
4	Optymalizaca (alpha-beta cięcia)	3
5	Testy	4
6	Wnioski	4
7	Bibliografia	5

1 Treść zadania

Należy zaimplementować grę w kółko i krzyżyk z wykorzystaniem algorytmu MinMax z alfa-beta cięciami. Gracz powinien posiadać możliwość definiowana rozmiaru pola (kwadratowego) wraz z ilością znaków w rzędzie.

2 Opis zadania

Spośród wymienionych w instrukcji zadania gier wybrano kółko i krzyżyk. Rozgrywane pomiędzy dwoma graczami, polega na naprzemiennym obejmowaniu przez nich pól kwadratowej planszy - wstawianiu znaku 'X' lub 'O' - w taki sposób, aby ustalona ilość tych samych znaków znajdowała się obok siebie w poziomej, pionowej bądź ukośnej linii. Na poczatku gry trzeba ustawić wymaganie tj. wielkość planszy, ilość potrzebnych znaków do zwycięstwa oraz głębokość rekurencji algorytmu minimax.

```
PS C:\Users\Jakub\Desktop\pamsi3> ./a.exe
Podaj rozmiar planszy: 3
Podaj ile znakow do wygranej: 3
Podaj glebokosc rekursji: 3
```

Rysunek 1: Konfiguracja

3 Algorytm minimax()

Algorytm AI służy do wykonywania optymalnych ruchów i przyjemuje takie argumenty:

- depth głębokość rekurencji
- · alpha, beta -zmienne wykorzystane do alpha-beta cięcia
- isMaximizingPlayer wskazuje, na to który gracz wykonuje ruch, czy jest on maksymalizowny czy minimalizowany.

3.1 Działanie algorytmu

- 1. Sprawdza, czy osiągnięto maksymalną głębokość przeszukiwania (depth) lub zakończono grę (gameOver()). Jeśli tak, zwraca wartość oceny (evaluate()).
- 2. Jeśli aktualny gracz jest maksymalizujący (isMaximizingPlayer == true), to dla każdego możliwego ruchu komputera (pustego pola na planszy) wykonuje następujące kroki:
 - Wykonuje ruch komputera na danym polu.
 - Wywołuje rekurencyjnie funkcję minimax dla gracza minimalizującego, zmniejszając depth o 1 i aktualizując wartość alfa (alpha) i beta.
 - Aktualizuje najlepszą wartość (bestValue) i wartość alfa (alpha) na podstawie wartości zwróconej z rekurencyjnego wywołania.
 - Jeżeli beta <= alpha, wykonuje cięcie alfa-beta (przerywa pętlę).
 - Zwraca najlepszą wartość (bestValue).
- 3. Jeśli aktualny gracz jest minimalizujący (isMaximizingPlayer == false), to dla każdego możliwego ruchu gracza (pustego pola na planszy) wykonuje podobne kroki jak w przypadku maksymalizującego gracza, ale aktualizuje najlepszą wartość (bestValue) i wartość beta (beta).
- 4. Na końcu zwraca najlepszą wartość (bestValue), która reprezentuje ocenę ruchu komputera.

Rysunek 2

4 Optymalizaca (alpha-beta cięcia)

Algorytm minimax z alfa-beta cięciami pozwala na znaczne zmniejszenie liczby przeszukiwanych węzłów w drzewie gry poprzez eliminację niepotrzebnych gałęzi. W każdej iteracji, gdy osiągnięte zostaną odpowiednie warunki cięcia (beta <= alpha), algorytm przerywa przeszukiwanie i nie rozważa dalszych gałęzi, które nie wpłyną na wynik. Dzięki temu algorytm jest bardziej wydajny i może obsłużyć większe drzewa gry.

5 Testy

Rysunek 3

Rysunek 4

6 Wnioski

- Dla planszy 3x3 i 3 punktow do wygranej nie da się wygrać z komputerem.
- Czas wykonywania algorytmu minimax silnie zależy od rozmiaru planszy, ale także ustawionej głębokości rekursji i ilości znaków w rzędzie- w przeciwieństwie do 3x3, dla większych planszy komputer nie wykonywał ruchów niezwłocznie i na ruch trzeba było czekać nawet kilkadziesiąt sekund,
- Optymalizacja alfa-beta cięciami znacznie poprawiła czas wykonywania ruchu przez komputer.

7 Bibliografia

- 1. https://www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-1-introduction/
- 2. https://pl.wikipedia.org/wiki/Algorytm_min-max
- $3.\ {\tt https://pl.wikipedia.org/wiki/Algorytm_alfa-beta}\\$
- 4. Michale T. Goodrich, Roberto Tamassia, David M. Mount. Data Structures and Algorithms in C++. Second Edition. John Wiley & Sons, Inc.