SUR LES FORMULES DONNANT DES NOMBRES PSEUDOPREMIERS

PAR

A. ROTKIEWICZ (VARSOVIE)

Sierpiński [2] a établi par l'induction l'existence d'une infinité de nombres pseudopremiers (c'est-à-dire des nombres composés n tels que $n \mid 2^n-2$). Les théorèmes qui suivent contiennent quelques formules donnant directement une infinité de tels nombres.

THÉORÈME 1. Soit p un nombre premier. Les nombres $(2^{2p}-1)/3$ pour p>3 et les nombres $(2^{2p}+1)/5$ pour p>5 sont pseudopremiers.

Démonstration. Erdős [1] a montré que les nombres $(2^{2p}-1)/3$, où p>3, sont pseudopremiers. Vu que $(2^{2p}+1)/5-1=(4^p-4)/5$ et p>5, on a $4p \mid (2^{2p}+1)/5-1$, d'où

$$\left. \frac{2^{2p}+1}{5} \right| 2^{2p}+1 \mid 2^{4p}-1 \mid 2^{(2^{2p}+1)/5-1}-1, \quad \left. \frac{2^{2p}+1}{5} \right| 2^{(2^{2p}+1)/5}-2.$$

Le nombre

$$\frac{2^{2p}+1}{5} = \frac{(2^p+1-2^{(p+1)/2})(2^p+1+2^{(p+1)/2})}{5}$$

est donc pseudopremier, puisque $2^p+1-2^{(p+1)/2}>5$ pour p>5, ce qui achève la démonstration.

Posons maintenant $F_n = 2^{2^n} + 1$ pour n = 1, 2, ...

Théorème 2. Pour qu'un produit $F_{n_1}F_{n_2}...F_{n_k}$ où $n_1,n_2,...,n_k$ sont des nombres naturels et k>1 soit un nombre pseudopremier, il faut et il suffit que l'on ait

$$n_i \neq n_j \ pour \ i \neq j \ et \ 2^{\min(n_1, n_2, \dots, n_k)} > \max(n_1, n_2, \dots, n_k).$$

Le théorème 2 a été démontré en 1904 par Cipolla [3]. Le problème se pose s'il existe pour tout entier k > 1 un nombre pseudopremier qui soit un produit de k nombres de Mersenne distincts. Le théorème suivant en est la réponse affirmative:

Théorème 3. Quels que soient k nombres naturels $n_1 < n_2 < \ldots < n_k$ où $n_k < 2^{n_1}$, le nombre

 $M = (2^{^{F_{n_1}}} \! - 1) \! \cdot \! (2^{^{F_{n_2}}} \! - \! 1) \! \cdot \! \dots \! \cdot \! (2^{^{F_{n_k}}} \! - \! 1)$

est pseudopremier.

Démonstration. L'hypothèse $n_k < 2^{n_1}$ entraîne $n_k + 1 \le 2^{n_1}$, d'où $2^{n_k+1} \mid F_{n_1} - 1 = 2^{2^{n_1}}$ et à plus forte raison $2^{n_1+1} \mid F_{n_i} - 1$ pour $i \ge 1$. On a donc pour i = 1, 2, ..., k et j = 1, 2, ..., k la relation $2^{n_i+1} \mid F_{n_i} - 1$, d'où

 $F_{n_i} \mid 2^{2^{n_i+1}} - 1 \mid 2^{F_{n_j}-1} - 1 \mid 2^{F_{n_j}} - 2$.

$$2^{F_{n_j}} - 1 \equiv 1 \pmod{F_{n_1} F_{n_2} \dots F_{n_k}}$$

et $M=(2^{F_{n_1}}-1)(2^{F_{n_2}}-1)\dots(2^{F_{n_k}}-1)\equiv 1 \pmod{F_{n_1}F_{n_2}\dots F_{n_k}}$. Par conséquent,

 ${{_{2}^{F_{n_{i}}}}}{-1}\mid {{_{2}^{F_{n_{1}}F_{n_{2}}\ldots F_{n_{k}}}}}{-1}\mid {{_{2}^{M-1}}}{-1}\mid {{_{2}^{M}}}{-2},$

et comme $(2^{F_{n_i}}-1, 2^{F_{n_j}}-1) = 2^{(F_{n_i}, F_{n_j})}-1 = 2^1-1 = 1$ pour $i \neq j$, on a $M \mid 2^M-2$, ce qui achève la démonstration.

COROLLAIRE. Les nombres de la forme $(2^{F_n}-1)(2^{F_{n+1}}-1)$ sont pseudopremiers pour $n=2,3,\ldots$

Remarque 1. Il n'existe pas de nombres pseudopremiers divisibles par un carré d'un nombre de Mersenne.

En effet, en supposant que $M_n^2x \mid 2^{M_n^2x}-2$ pour un x naturel et un $M_n=2^n-1$, on aurait $M_n^2\mid 2^{M_n^2x-1}-1$ et le nombre 2, qui appartenant modulo 2^n-1 à l'exposant n, appartiendrait modulo $(2^n-1)^2$ à l'exposant $n(2^n-1)$ (voir mon travail [5], p. 6-7, et celui de LeVeque [6], p. 52). On aurait donc $n(2^n-1)\mid M_n^2x-1$, ce qui est évidemment impossible.

Théorème 4. Chacune des progressions arithmétiques 8k+1, 8k+3, 8k+5 et 8k+7 contient une infinité de nombres pseudopremiers.

Démonstration. Les nombres F_nF_{n+1} où n=2,3,..., qui sont pseudopremiers d'après le théorème 2, sont évidemment de la forme 8k+1.

Il est facile de voir que les nombres $2^{F_nF_{n+1}}-1$ où $n=2,3,\ldots$ sont aussi pseudopremiers; or ils sont évidemment de la forme 8k+7.

D'après le théorème 1, les nombres $(2^{2p}-1)/3$ où p est premier et p>3 sont pseudopremiers; or on constate facilement qu'ils sont de la forme 8k+5.

Enfin, les nombres

$$N_p = \frac{2^p + 1}{3} \cdot \frac{2^{3p} - 1}{7(2^p - 1)} \cdot \frac{2^{5p} - 1}{31(2^p - 1)}$$

où $p \equiv 1 \pmod{12}$ sont des nombres pseudopremiers de la forme 8k+3. En effet, soit $N_p \equiv r \pmod{8}$, donc

$$(2^{p}+1)(2^{3p}-1)(2^{5p}-1) \equiv 3 \cdot 7 \cdot 31(2^{p}-1)^{2} r \pmod{8}$$
.

Vu que $p \ge 13$ par hypothèse, il en résulte que $1 \equiv 3r \pmod 8$, d'où $r \equiv 3 \pmod 8$ et $N_p \equiv 3 \pmod 8$. Reste donc à montrer que le nombre N_p est pseudopremier. Or on a $9 \cdot 5 \mid 2^{12} - 1 \mid 2^{p-1} - 1$ en vertu de l'hypothèse admise sur p et l'identité $(2^p + 1)/3 - 1 = 2(2^{p-1} - 1)/3$ entraîne

$$30p \left| \frac{2^p + 1}{3} - 1 \right|.$$

Pareillement, l'identité

$$\frac{2^{3^{p}}-1}{7(2^{p}-1)}-1=\frac{(2^{p-1}-1)(2^{2^{p+1}}+2^{p+2}-6)}{7(2^{p}-1)}$$

entraîne

(5)
$$30p \left| \frac{2^{3p} - 1}{7(2^p - 1)} - 1 \right|$$

et l'identité

$$\frac{2^{5p}-1}{31(2^p-1)}-1=\frac{(2^{p-1}-1)(2^{4p+1}+2^{3p+2}+2^{2p+3}+2^{p+4}-30)}{31(2^p-1)}$$

entraîne

(6)
$$30p \left| \frac{2^{5p}-1}{31(2^p-1)} - 1 \right|.$$

Il résulte de (4)-(6) que

(7)
$$30p \mid N_p - 1$$
.

Les nombres $(2^p+1)/3$, $(2^{3p}-1)/7(2^p-1)$ et $(2^{5p}-1)/31(2^p-1)$ sont deux à deux premiers entre eux, car $2^p+1\mid 2^{3p}+1$, $2^p+1\mid 2^{5p}+1$ et $(2^{3p}+1, 2^{3p}-1)=(2^{5p}+1, 2^{5p}-1)=1$, d'où

$$\left(\frac{2^p+1}{3},\frac{2^{3p}-1}{7(2^p-1)}\right) = \left(\frac{2^p+1}{3},\frac{2^{5p}-1}{31(2^p-1)}\right) = 1$$

et comme $(2^{3p}-1, 2^{5p}-1) = 2^{(3p,5p)}-1 = 2^p-1$, on a aussi

$$\left(\frac{2^{3p}-1}{7(2^p-1)}, \frac{2^{5p}-1}{31(2^p-1)}\right) = 1.$$

En écrivant les relations (4)-(6) sous la forme

$$\left|\frac{2^{p}+1}{3}\right|2^{30p}-1, \quad \left|\frac{2^{3p}-1}{7(2^{p}-1)}\right|2^{30p}-1 \quad \text{et} \quad \left|\frac{2^{5p}-1}{31(2^{p}-1)}\right|2^{30p}-1,$$

on conclut donc de (7) que $N_p \mid 2^{30p} - 1 \mid 2^{N_p - 1} - 1 \mid 2^{N_p} - 2$, ce qui prouve que le nombre N_p est pseudopremier.

Remarque 2. On peut démontrer que le plus petit nombre pseudopremier de la forme 8k+3 est le nombre 1387 = 19.73.

J'ai démontré (voir [4]) que toute progression infinie de la forme ax+b où a et b sont des nombres naturels premiers entre eux contient une infinité de nombres pseudopremiers.

TRAVAUX CITÉS

- [1] P. Erdős, Problem 4319, American Mathematical Monthly 57 (1950), p. 346.
- [2] W. Sierpiński, Remarque sur une hypothèse des Chinois concernant les nombres $(2^n-2)/n$, Colloquium Mathematicum 1 (1947), p. 9.
- [3] M. Cipolla, Sui numeri composti P che verificano la congruenza di Fermat $a^{P-1} \equiv 1 \pmod{P}$, Annali di Matematica 9 (1904), p. 139-160.
- [4] A. Rotkiewicz, Sur les nombres pseudopremiers de la forme ax+b, Comptes Rendus de l'Académie des Sciences, Paris, 257 (1963), p. 2601-2604.
 - [5] O własnościach wyrażenia a^n-b^n , Prace Matematyczne 6 (1961), p. 1-20.
 - [6] W. J. LeVeque, Topics in number theory, vol. I, Reading 1956.

Recu par la Rédaction le 6.5.1963