Diagonalisation

Aperçu

- 1. Vecteurs propres et valeurs propres d'un endomorphisme
- 2. Polynôme caractéristique
- 3. Diagonalisation en dimension finie
- 4. Puissances de matrices
- 5. Suites récurrentes
- 6. Équations différentielles
- 7. Théorème de Cayley-Hamilton

Diagonalisation

- 1. Vecteurs propres et valeurs propres d'un endomorphisme
- 2. Polynôme caractéristique
- 3. Diagonalisation en dimension finie
- 4. Puissances de matrices
- 5. Suites récurrentes
- 6. Équations différentielles
- 7. Théorème de Cayley-Hamilton

- **D 1** Soient E un espace vectoriel sur un corps \mathbb{K} , u un endomorphisme de E.
 - Soit $\lambda \in \mathbb{K}$. On dit que λ est une valeur propre de u si l'endomorphisme $u \lambda \operatorname{Id}_E$ n'est pas injectif. Dans ce cas, le noyau de $u \lambda \operatorname{Id}_E$ est appelé sous-espace propre de u relatif à λ . On note

$$E_{\lambda}(u) = \ker \left(u - \lambda \operatorname{Id}_{E} \right) = \{ x \in E \mid u(x) = \lambda x \}.$$

On dit qu'un vecteur $x \neq 0_E$ de E est un vecteur propre de u si u(x) est colinéaire à x, c'est-à-dire

$$\exists \lambda \in \mathbb{K}, u(x) = \lambda x.$$

On dit que x est un vecteur propre de u associé à la valeur propre λ .

L'ensemble des valeurs propres d'un endomorphisme u s'appelle le **spectre** de u et se note Sp(u).

Lorsqu'il n'y a pas d'ambiguïté, on notera $E_{\lambda} = \ker (u - \lambda \operatorname{Id}_{E})$.

Soit $u \in \mathcal{L}(E)$ et λ une valeur propre de u. Alors, E_{λ} est stable par u:

$$u\left(E_{\lambda}\right)\subset E_{\lambda}.$$

De plus,

 $E_0=\ker(u).$

et si $\lambda \neq 0$,

 $E_{\lambda}\subset {\rm Im}(f).$

E 2

Soit E un \mathbb{K} -espace vectoriel.

1. Une homothétie n'a qu'une valeur propre, son rapport α , et on a

$$E=E_{\alpha}$$
.

2. Un projecteur $p \in \mathcal{L}(E)$ a deux valeurs propres, 1 et 0, et on a

$$E = E_1 \oplus E_0$$
.

3. Une symétrie $s \in \mathcal{L}(E)$ a deux valeurs propres, 1 et -1, et on a

$$E=E_1\oplus E_{-1}.$$

Soit $E=\mathscr{C}^\infty(\mathbb{R},\mathbb{R})$ et D : $E\to E$ l'endomorphisme de dérivation. Pour $\alpha\in\mathbb{R}$, $f\mapsto f'$

on pose $f_{\alpha}: \mathbb{R} \to \mathbb{R}$. Alors, pour tout réel x, on a $x \mapsto \mathrm{e}^{\alpha x}$

$$(D f_{\alpha})(x) = f'_{\alpha}(x) = \alpha e^{\alpha x} = \alpha f_{\alpha}(x).$$

Autrement dit, $D f_{\alpha} = \alpha f_{\alpha}$. Tout réel α est donc valeur propre de D. De plus le sous-espace propre de D relatif à la valeur propre α est

$$\begin{split} E_{\alpha} &= \{ \ f \in E \mid \mathsf{D} \ f = \alpha f \ \} \\ &= \left\{ \ f \in E \mid f' = \alpha f \ \right\} \\ &= \left\{ \ f : \begin{array}{c} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \lambda \, \mathrm{e}^{\alpha x} \end{array} \right| \ \lambda \in \mathbb{R} \ \right\}, \end{split}$$

c'est-à-dire $E_{\alpha} = \text{Vect} \left\{ f_{\alpha} \right\}$.

- **T 4** Soit u un endomorphisme de E, et (v_1, \ldots, v_p) une famille finie de vecteurs propres de u associés respectivement à des valeurs propres $(\lambda_1, \ldots, \lambda_p)$ deux à deux distinctes. Alors la famille (v_1, \ldots, v_p) est libre.
- Le spectre d'un endomorphisme d'un espace vectoriel de dimension finie n est fini, et de cardinal au plus n.

- 1. Vecteurs propres et valeurs propres d'un endomorphisme
- 2. Polynôme caractéristique
- 2.1 Polynôme caractéristique d'un endomorphisme
- 2.2 Polynôme caractéristique d'une matrice
- 2.3 Multiplicité
- 3. Diagonalisation en dimension finie
- 4. Puissances de matrices
- 5. Suites récurrentes
- 6. Équations différentielles
- 7. Théorème de Cayley-Hamilton

Dans tout ce paragraphe, on étudie un endomorphisme u d'un \mathbb{K} -espace vectoriel E de dimension finie $n \geq 1$. On désigne par $\mathcal{B} = (e_1, \dots, e_n)$ une base de E et $A = \left(a_{i,j}\right)$ la matrice de u dans la base \mathcal{B} .

- 1. Vecteurs propres et valeurs propres d'un endomorphisme
- 2. Polynôme caractéristique
- 2.1 Polynôme caractéristique d'un endomorphisme
- 2.2 Polynôme caractéristique d'une matrice
- 2.3 Multiplicité
- 3. Diagonalisation en dimension finie
- 4. Puissances de matrices
- 5. Suites récurrentes
- 6. Équations différentielles
- 7. Théorème de Cayley-Hamilton

P 6 Soit u un endomorphisme d'un espace vectoriel E de dimension finie $n \ge 1$. Un scalaire λ est valeur propre de u si, et seulement si

$$\det\left(\lambda\operatorname{Id}_E-u\right)=0.$$

D 7 Soit u un endomorphisme d'un espace vectoriel E de dimension finie $n \ge 1$. On appelle polynôme caractéristique de u le polynôme χ_u défini par la relation

$$\chi_u(\lambda) = \det \left(\lambda \operatorname{Id}_E - u \right).$$

L'ordre de multiplicité d'une racine λ de χ_u est dit multiplicité de la valeur propre λ de u.

En dimension finie, les valeurs propres de u sont exactement les racines de son polynôme caractéristique.

- 1. Vecteurs propres et valeurs propres d'un endomorphisme
- 2. Polynôme caractéristique
- 2.1 Polynôme caractéristique d'un endomorphisme
- 2.2 Polynôme caractéristique d'une matrice
- 2.3 Multiplicité
- 3. Diagonalisation en dimension finie
- 4. Puissances de matrices
- 5. Suites récurrentes
- 6. Équations différentielles
- 7. Théorème de Cayley-Hamilton

D 8 Soit A une matrice de $\mathcal{M}_n(\mathbb{K})$. On appelle **polynôme** caractéristique de A le polynôme χ_A défini par la relation

$$\chi_A(\lambda) = \det(\lambda I_n - A).$$

- P 9 Les polynômes caractéristiques de deux matrices semblables sont égaux.
- P 10 Soit u un endomorphisme d'un espace vectoriel E de dimension finie $n \ge 1$. Le polynôme caractéristique de u est le polynôme caractéristique de n'importe laquelle de ses matrices.
- D 11 Par extension, les valeurs propres, vecteurs propres, sous-espaces propres d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ sont les valeurs propres, les vecteurs propres, les sous-espaces propres de l'endomorphisme de $\mathcal{M}_{n,1}(\mathbb{K})$ qui est canoniquement associé à A.

E 12 Soit E un K-espace vectoriel de dimension 2 muni d'une base $\mathcal{B} = (e_1, e_2)$. On considère $u \in \mathcal{L}(E)$ l'endomorphisme dont la matrice dans la base \mathcal{B} est

$$A = \begin{pmatrix} 7 & -15 \\ 2 & -4 \end{pmatrix}.$$

Alors

$$\lambda I_2 - A = \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 7 & -15 \\ 2 & -4 \end{pmatrix} = \begin{pmatrix} \lambda - 7 & 15 \\ -2 & \lambda + 4 \end{pmatrix},$$

et son polynôme caractéristique est

$$\det(\lambda I_2 - A) = (\lambda - 7)(\lambda + 4) + 30 = \lambda^2 - 3\lambda + 2.$$

Ainsi, les valeurs propres de A (et de u) sont les solutions de $\lambda^2 - 3\lambda + 2 = 0$, c'est-à-dire $\lambda = 1$ et $\lambda = 2$.

Pour trouver les vecteurs propres associées à la valeur propre 1, on détermine les solutions du système $(A - I_2)x = 0$, on a

$$A - I_2 = \begin{pmatrix} 6 & -15 \\ 2 & -5 \end{pmatrix} \underset{L}{\sim} \cdots \underset{L}{\sim} \begin{pmatrix} 1 & -5/2 \\ 0 & 0 \end{pmatrix}.$$

E 12 Soit E un \mathbb{K} -espace vectoriel de dimension 2 muni d'une base $\mathcal{B}=(e_1,e_2)$. On considère $u\in\mathcal{L}(E)$ l'endomorphisme dont la matrice dans la base \mathcal{B} est

$$A = \begin{pmatrix} 7 & -15 \\ 2 & -4 \end{pmatrix}.$$

Ainsi,

$$E_1(A) = \operatorname{Vect} \left\{ \begin{pmatrix} 5 \\ 2 \end{pmatrix} \right\} \quad \text{et} \quad E_1(u) = \operatorname{Vect} \left\{ 5e_1 + 2e_2 \right\}.$$

De manière analogue, on trouve

$$E_2(A) = \text{Vect}\left\{ \begin{pmatrix} 3\\1 \end{pmatrix} \right\} \quad \text{et} \quad E_2(u) = \text{Vect}\left\{ 3e_1 + e_2 \right\}.$$

T 13 Déterminer les valeurs propres et les sous-espaces propres de la matrice

$$A = \begin{pmatrix} 4 & 0 & 4 \\ 0 & 4 & 4 \\ 4 & 4 & 8 \end{pmatrix}.$$

- 1. Vecteurs propres et valeurs propres d'un endomorphisme
- 2. Polynôme caractéristique
- 2.1 Polynôme caractéristique d'un endomorphisme
- 2.2 Polynôme caractéristique d'une matrice
- 2.3 Multiplicité
- 3. Diagonalisation en dimension finie
- 4. Puissances de matrices
- 5. Suites récurrentes
- 6. Équations différentielles
- 7. Théorème de Cayley-Hamilton

D 14 Soit u un endomorphisme d'un espace vectoriel E de dimension finie $n \ge 1$. La **multiplicité d'une valeur propre** λ de u est l'ordre de multiplicité de la racine λ de χ_u .

T 15 Soit u un endomorphisme d'un espace vectoriel E de dimension finie $n \ge 1$. Soit λ une valeur propre de u d'ordre de multiplicité k et E_{λ} le sous-espace propre associé. Alors

$$1 \le \dim E_{\lambda} \le k$$
.

- **T 16** Soit u un endomorphisme d'un espace vectoriel E de dimension finie $n \ge 1$. On suppose χ_u scindé et on note note $\lambda_1, \ldots, \lambda_n$ ses racines listées avec leur multiplicité. Alors
 - 1. Le déterminant de u est égal au produit de ses valeurs propres.
 - 2. La trace de u est égal à la somme de ses valeurs propres.
- R Si $\mathbb{K} = \mathbb{C}$, χ_u est toujours scindé.
- E 17 On considère la matrice

$$A = \begin{pmatrix} -3 & -1 & -2 \\ 1 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Déterminer les valeurs propres et les sous-espaces propres de la matrice sachant que -1 l'une des valeurs propres.

- 1. Vecteurs propres et valeurs propres d'un endomorphisme
- 2. Polynôme caractéristique
- 3. Diagonalisation en dimension finie
- 3.1 Diagonalisation
- 3.2 Cas des valeurs propres simples
- 3.3 Conditions nécessaires et suffisantes de diagonalisabilité
- 4. Puissances de matrices
- 5. Suites récurrentes
- 6. Équations différentielles
- 7. Théorème de Cayley-Hamilton

- 1. Vecteurs propres et valeurs propres d'un endomorphisme
- 2. Polynôme caractéristique
- 3. Diagonalisation en dimension finie
- 3.1 Diagonalisation
- 3.2 Cas des valeurs propres simples
- 3.3 Conditions nécessaires et suffisantes de diagonalisabilité
- 4. Puissances de matrices
- 5. Suites récurrentes
- 6. Équations différentielles
- 7. Théorème de Cayley-Hamilton

- Un endomorphisme u de E est diagonalisable s'il existe une base de E formée de vecteurs propres de u. Dans ce cas, la matrice de u dans cette base est diagonale.
- Une matrice carrée A est diagonalisable si elle est semblable à une matrice diagonale, autrement dit, s'il existe une matrice diagonale D de $\mathcal{M}_n(\mathbb{K})$ et une matrice $P \in \mathrm{GL}_n(\mathbb{K})$ telle que $P^{-1}AP = D$.

$$A = \begin{pmatrix} 7 & -15 \\ 2 & -4 \end{pmatrix}.$$

Cette matrice est diagonalisable, car si l'on considère la matrice

$$P = \begin{pmatrix} 5 & 3 \\ 2 & 1 \end{pmatrix},$$

alors P est inversible et

$$P^{-1} = \begin{pmatrix} -1 & 3 \\ 2 & -5 \end{pmatrix} \quad \text{et} \quad P^{-1}AP = D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}.$$

T 20 Vérifier les calculs précédents.

Un endomorphisme n'est pas nécessairement diagonalisable. Par exemple, un endomorphisme nilpotent non nul n'est jamais diagonalisable : en effet une matrice diagonale nilpotente est nécessairement nulle !

E 21 La matrice

$$A = \begin{pmatrix} 4 & 1 \\ -1 & 2 \end{pmatrix}$$

n'est pas diagonalisable.

- 1. Vecteurs propres et valeurs propres d'un endomorphisme
- 2. Polynôme caractéristique
- 3. Diagonalisation en dimension finie
- 3.1 Diagonalisation
- 3.2 Cas des valeurs propres simples
- 3.3 Conditions nécessaires et suffisantes de diagonalisabilité
- 4. Puissances de matrices
- 5. Suites récurrentes
- 6. Équations différentielles
- 7. Théorème de Cayley-Hamilton

T 23 Soit $A \in \mathcal{M}_n(\mathbb{K})$. Si A possède n valeurs propres distinctes, alors A est diagonalisable.

E 24 La matrice (3, 3)

$$A = \begin{pmatrix} 4 & 0 & 4 \\ 0 & 4 & 4 \\ 4 & 4 & 8 \end{pmatrix}$$

a trois valeurs propres, 0, 4 et 12 : elle est donc diagonalisable.

T 25 Diagonaliser la matrice

$$A = \begin{pmatrix} 4 & 0 & 4 \\ 0 & 4 & 4 \\ 4 & 4 & 8 \end{pmatrix}.$$

$$A = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

n'est pas diagonalisable dans $\mathcal{M}_2(\mathbb{R})$ mais est diagonalisable dans $\mathcal{M}_2(\mathbb{C})$.

- 1. Vecteurs propres et valeurs propres d'un endomorphisme
- 2. Polynôme caractéristique
- 3. Diagonalisation en dimension finie
- 3.1 Diagonalisation
- 3.2 Cas des valeurs propres simples
- 3.3 Conditions nécessaires et suffisantes de diagonalisabilité
- 4. Puissances de matrices
- 5. Suites récurrentes
- 6. Équations différentielles
- 7. Théorème de Cayley-Hamilton

L 27 Soit u un endomorphisme de E, et $\lambda_1, \ldots, \lambda_p$ des valeurs propres de u deux à deux distinctes. Alors,

$$\begin{aligned} \forall (x_1, x_2, \dots, x_p) \in E_{\lambda_1} \times E_{\lambda_2} \times \dots E_{\lambda_p}, \\ x_1 + x_2 + \dots + x_p &= 0_E \implies x_1 = 0_E, x_2 = 0_E, \dots, x_p = 0_E. \end{aligned}$$

On dira que les sous-espaces propres de u associés à des valeurs propres deux à deux distinctes sont en **somme directe**.

- T 28 Soit u un endomorphisme de E. L'endomorphisme u est diagonalisable si, et seulement si
 - ▶ le polynôme caractéristique de u est scindé sur K,
 - pour toute valeur propre de u, sa multiplicité est égale à la dimension du sous-espace propre associé.
- C 29 Soit u un endomorphisme de E. L'endomorphisme u est diagonalisable si, et seulement si

$$\sum_{\lambda \in \mathrm{Sp}(u)} \dim \left(E_{\lambda}(u) \right) = \dim(E).$$

C 30 Soit u un endomorphisme de E et $E_{\lambda_1}, \ldots, E_{\lambda_p}$ les sous-espaces propres de u. L'endomorphisme u est diagonalisable si, et seulement si

$$E_{\lambda_1} + \dots + E_{\lambda_p} = \sum_{\lambda \in \operatorname{Sp}(u)} (E_{\lambda}(u)) = E.$$

$$A = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix}$$

n'a que deux valeurs propres, 2 et 4, mais est diagonalisable.

E 32 La matrice

$$A = \begin{pmatrix} -3 & -1 & -2 \\ 1 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

n'a que deux valeurs propres, -1 et -2, mais n'est pas diagonalisable.

- 1. Vecteurs propres et valeurs propres d'un endomorphisme
- 2. Polynôme caractéristique
- 3. Diagonalisation en dimension finie
- 4. Puissances de matrices
- 5. Suites récurrentes
- 6. Équations différentielles
- 7. Théorème de Cayley-Hamilton

$$A = \begin{pmatrix} 7 & -15 \\ 2 & -4 \end{pmatrix} \qquad P = \begin{pmatrix} 5 & 3 \\ 2 & 1 \end{pmatrix} \qquad P^{-1}AP = D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}.$$

Alors

$$A^{n} = PD^{n}P^{-1} = \begin{pmatrix} 5 & 3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2^{n} \end{pmatrix} \begin{pmatrix} -1 & 3 \\ 2 & -5 \end{pmatrix}$$
$$= \begin{pmatrix} -5 + 6 \cdot 2^{n} & 15 - 15 \cdot 2^{n} \\ -2 + 2 \cdot 2^{n} & 6 - 5 \cdot 2^{n} \end{pmatrix}.$$

- 1. Vecteurs propres et valeurs propres d'un endomorphisme
- 2. Polynôme caractéristique
- 3. Diagonalisation en dimension finie
- 4. Puissances de matrices
- 5. Suites récurrentes
- 6. Équations différentielles
- 7. Théorème de Cayley-Hamilton

E 34 Soit (x_n) et (y_n) deux suites telles que $x_0 = 1$, $y_0 = 1$ et pour tout $n \in \mathbb{N}$,

$$x_{n+1} = 7x_n - 15y_n,$$

$$y_{n+1} = 2x_n - 4y_n.$$

Alors, pour tout $n \in \mathbb{N}$,

$$x_n = 10 - 9 \cdot 2^n,$$

$$y_n = 4 - 3 \cdot 2^n.$$

- 1. Vecteurs propres et valeurs propres d'un endomorphisme
- 2. Polynôme caractéristique
- 3. Diagonalisation en dimension finie
- 4. Puissances de matrices
- 5. Suites récurrentes
- 6. Équations différentielles
- 7. Théorème de Cayley-Hamilton

E 35 On considère le système différentiel

$$y'_1(t) = 7y_1(t) - 15y_2(t)$$

$$y'_2(t) = 2y_1(t) - 4y_2(t)$$

d'inconnues $y_1, y_2 : \mathbb{R} \to \mathbb{R}$. Alors...

- 1. Vecteurs propres et valeurs propres d'un endomorphisme
- 2. Polynôme caractéristique
- 3. Diagonalisation en dimension finie
- 4. Puissances de matrices
- 5. Suites récurrentes
- 6. Équations différentielles
- 7. Théorème de Cayley-Hamilton

T 36 Soient u un endomorphisme d'un espace vectoriel E de dimension finie $n \ge 1$.

$$\chi_u(X) = \det (X \operatorname{Id}_E - u) = \sum_{k=0}^n \alpha_k X^k$$

son polynôme caractéristique. Alors $\chi_u(u) = \sum_{k=0}^n \alpha_k u^k$ est l'endomorphisme nul de E.

T 37 Soient M une matrice carrée d'ordre n et

$$\chi_M(X) = \det \left(X I_n - M \right) = \sum_{k=0}^n \alpha_k X^k$$

son polynôme caractéristique. Alors $\chi_M(M)=\sum_{k=0}^n \alpha_k M^k$ est la matrice nulle de $\mathcal{M}_n(\mathbb{K})$.

Démonstration. Non exigible.

Désignons par C(X) le polynôme à coefficients dans $\mathcal{M}_n(\mathbb{K})$ tel que pour $x \in \mathbb{K}$, C(x) est la transposée de la comatrice de la matrice $xI_n - M$. On a donc, pour tout $x \in \mathbb{K}$,

$$\left(xI_n-M\right)C(x)=\left(\det(xI_n-M\right)I_n=\chi_M(x)I_n.$$

Pour tout entier $k \ge 1$, on a

$$X^{k}I_{n} - M^{k} = (XI_{n} - M)(X^{k-1}I_{n} + X^{k-2}M + \dots + M^{k-1}),$$

et puisque $\chi_M(X)I_n=\sum_{k=0}^n \alpha_k X^k I_n$ et $\chi_M(M)=\sum_{k=0}^n \alpha_k M^k$, on obtient après combinaison linéaire

$$\chi_M(X)I_n - \chi_M(M) = (XI_n - M)Q(X)$$

où Q(X) est un polynôme à coefficients dans $\mathcal{M}_n(\mathbb{K})$. On en déduit

$$\chi_M(M) = \left(XI_n - M\right)(C(X) - Q(X)) = \left(XI_n - M\right)\left(\sum_{k=0}^n X^k B_k\right) \quad \text{avec} \quad B_k \in \mathcal{M}_n(\mathbb{K}).$$

Supposons que l'une des matrices B_k soit non nulle. On pose alors $r = \max\{k \in [1, n] \mid B_k \neq 0\}$, alors

$$\chi_M(M) = X^{r+1}B_r + \sum_{k=0}^{r-1} X^{k+1}B_k - \sum_{k=0}^r X^k M B_k.$$

Ainsi, parmi les coefficients de la matrice $\chi_M(M)$ figurerait au moins un terme en X^{r+1} , ce qui est contradictoire avec $\chi_M(M) \in \mathcal{M}_n(\mathbb{K})$. Les matrices B_k sont donc toutes nulles et $\chi_M(M) = 0$.

E 38 Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$$
, alors

$$\chi_A(X) = \begin{vmatrix} X - a & -b \\ -c & X - d \end{vmatrix} = (X - a)(X - d) - bc = X^2 - (a + d)X + ad - bc$$

$$\chi_A(X) = X^2 - \text{Tr}(A)X + \det(A).$$

D'après le théorème de Cayley-Hamilton, on en déduit

$$A^2 = \operatorname{Tr}(A)A - \det(A)I_2.$$