Examen 1 la algebră, anul I, sem. I, informatică (subiect de examen pentru studenții din anii I și II) 03.02.2021

Problema 1. Fie $\sigma = (1 \ 2 \ 3 \ 4 \ 5) \in S_5$.

(1	Determinați soluțiile ecuației $x^2 = \sigma, x \in S_5$.	5 1	pct.)
----	--	------------	------	---

(2) Determinați soluțiile ecuației
$$x^{2021} = \sigma, x \in S_5.$$
 (5 pct.)

(3) Aflați numărul de elemente din
$$H = \langle \sigma \rangle$$
 (subgrupul generat de σ în S_5). (5 pct.)

(4) Aflați indicele lui
$$H$$
 în S_5 . (5 pct.)

(5) Arătați că
$$H$$
 nu este subgrup normal în S_5 . (5 pct.)

(6) Determinați cel mai mic subgrup normal al lui
$$S_5$$
 care-l conține pe H . (10 pct.)

Problema 2. Fie idealele $I = (X^2 - 1)$ și $J = (X^3 - 1)$ ale inelului de polinoame $\mathbb{R}[X]$.

(1) Este adevărat că
$$X^4 - 1 \in I$$
? Dar că $X^4 - 1 \in J$? Justificați. (10 p.)

(2) Determinați un generator pentru fiecare din idealele
$$I \cap J$$
, respectiv $I + J$. (5 p.)

(3) Arătați că
$$\mathbb{R}[X]/I \simeq \mathbb{R} \times \mathbb{R}$$
. (5 p.)

(4) Arătaţi că
$$\mathbb{R}[X]/J \simeq \mathbb{R} \times \mathbb{C}$$
. (5 **p.**)

(5) Arătați că
$$\mathbb{R}[X]/I \not\simeq \mathbb{R}[X]/J$$
. (5 p.)

Problema 3. Fie polinomul $P(X) = X^3 + n^2 X^2 - 5$, $n \in \mathbb{Z}$. Studiați ireductibilitatea lui P, în funcție de n, peste fiecare din corpurile $\mathbb{Q}, \mathbb{Z}_2, \mathbb{Z}_3$, iar în cazurile în care polinomul este reductibil descompuneți-l în factori ireductibili. Justificați răspunsurile. (30 pct.)

¹Toate subiectele sunt obligatorii. Se acordă 5 puncte din oficiu. Timp de lucru 2 ore. Succes!