

RISCV-32I プロセッサ設計

電気情報工学科4年

ムハマドナウファル

1TE18239M

目次

- ❖プロセッサの仕様
 - ❖プロセッサ名
 - ❖データハザード・その解決方法
- ❖改善したこと
- ❖検証の結果
- ❖論理合成の結果
- ❖改善できること
- **☆**まとめ

プロセッサ名

GRAPY

データハザード・その解決方法 ハザード検出

データハザード・その解決方法データフォワーディング

クリティカルパースになる!

他の信号に比べたら、パイプラインに入る前にかなりの論理ゲートを通過しないといけなくなるから。

データハザード・その解決方法 パイプラインストール

減算機が要るのは新たに入ったPC値が 既に4と加算されたから、次の命令を指している

効率が悪く、パイプラインストールではなく、 ステージストールである。

特にメモリアクセスには1クロックサイクル以上、かかるときに、困る。

改善したこと

面積の削減

面積の削減に挑戦した。面積が小さいほど消費電力も削減できる。

もちろん、チップのコストも下がるだろう。

ただVerilogの工夫をしただけである。

- 。 Don't Care 信号をなくした。(特にmultiplexer)
- 一部の制御信号も変えなといけない。
- 。 If-else文をconditional operator(条件文? True: False)に書きかえた。 結果は約29%の面積が削減できた。

改善したこと クリティカルパース(フォワーディングなし)

分岐先アドレスの計算

検証の結果

1クロックサイクル = 10ns

ベンチマークプログラム	総クロック数
bitcnts:test	200285
bitcnts:small	1417166995
dijkstra:test	107521545
dijkstra:small	985645445
stringsearch:test	351885
stringsearch:small	3007895

Largeのプログラムの実行が終わらない。 問題点は見つからない。

論理合成の結果

最小クロック周期の制約 [ns]	5.15
面積 [μm²]	265559
消費電力 [mW]	4.7185

改善できることパイプラインストール

これで他のパイプラインもストールできる。

改善できること クリティカルパース(フォワーディング)

まとめ

演習を始めたとき、図などの作成にはうまく行ったが、Verilogでは苦労した。

- ○書いたとき、一般的なプログラミング言語のマインドセットを持ち、進んだ。
- よって、書きかえにはかなりの時間を使った。

自分のパソコンで同じ環境を立ち上げるときに、様々なソフトとスクリプティングの能力が伸びた。

最後に、例外処理が完成できなく、悔しい。

- 。これは、最初からきちんとした計画を立てなかっただろう。
- 。 これからの卒論研究に同じなミスが起こらないように頑張る