Bayesian Active Learning for Wearable and Mobile Health

Gautham Krishna Gudur[†], Abhijith Ragav[‡], Prahalathan Sundaramoorthy^{*}, Venkatesh Umaashankar[†]

[†]Global AI Accelerator, Ericsson; [‡]Solarillion Foundation *University of Southern California

Introduction

- Various mobile health applications require modeling of user behavior Human Activity Recognition (HAR), Stress/Affect Detection, Fall Detection, etc. [1,2].
- Active Learning the ability to learn from real-world unlabeled data by querying an oracle, is an unexplored area for such tasks.
- Bayesian Neural Networks (BNNs) Monte Carlo Dropout with NNs to estimate predictive uncertainties [3].
- The predictive distribution for a new data point input x^* can be obtained by,

$$p(y^*|x^*, D_{train}) = \int p(y^*|x^*, \omega)p(\omega|D_{train})d\omega$$

where $p(\omega|D_{train}) = q_{\theta}^*(\omega)$, and $q_{\theta}^*(\omega)$ is the dropout distribution approximated using VI.

- *Dropout*, a light-weight operation enables easier and faster approximation of posterior uncertainties.
- Coupled with active learning acquisition functions for querying the most uncertain data points from the oracle.

Training data Model Trained on Server Bayesian Neural Network (with uncertainties) Real-world data Acquisition functions Real-world data Acquisition Uncertain Uncertain functions Acquisition On-Device Incremental Learning Acquisition On-Device Incremental Learning

Datasets

- HHAR Smartwatch Wearable accelerometer data with 6 activities
- SWELL-KW Stress/Affect Detection Heart Rate, Skin Conductance with 3 conditions
- Notch Fall Detection Wrist-worn accelerometer data with falls and otherwise

Acquisition Functions

Given a classification model M, real-world pool data D_{pool} , and inputs $x \in D_{pool}$, an acquisition function a(x, M) is a function of x that the active learning system uses to infer the next query point:

$$x^* = argmax_{x \in D_{pool}} a(x, M).$$

Acquisition functions are used in active learning scenarios for approximations in Bayesian CNNs, thereby arriving at the most efficient set of data points to query from D_{pool} .

Max Entropy: Pool points are chosen that maximize the predictive entropy.

$$\mathbb{H}\&[y|x, D_{train}] := -\sum_{c} p(y = c|x, D_{train}) \log p(y = c|x, D_{train})$$

Bayesian Active Learning by Disagreement (BALD): Pool points that maximize the mutual information between predictions and model posterior, that disagree the most about the outcome.

$$\mathbb{I}[y,\omega|x,D_{train}] = \mathbb{H}[y|x,D_{train}] - E_{p(\omega|D_{train})}[\mathbb{H}[y|x,\omega]]$$

where $\mathbb{H}[y|x,\omega]$ is the entropy of y, given model weights ω .

Variation Ratios (VR): The LC (Least Confident) method for uncertainty based pool sampling.

$$variation - ratio[x] := 1 - \max_{y} p(y|x, D_{train})$$

Random Sampling: Select a point from a pool of data points uniformly at random.

HHAR Variation Ratios Swell-KW Stress Notch Variation Ratios Usera U

Model Description

- HHAR Smartwatch and Notch Fall Detection Datasets: We use the *HARNet* architecture proposed in [4] for both datasets, which explore intra-axial and inter-axial dependencies of CNNs.
- SWELL-KW Dataset: We use a four-layer Convolutional 1D network.
- Two fully-connected layers after the CNN models are used with a *MC-dropout* layer of probability 0.3 between them, making them *Bayesian Convolutional Neural Networks (B-CNNs)*.
- To perform approximation inference in B-CNNs, dropout is performed at train and test-times using multiple stochastic forward passes (optimal dropout iterations T=10).

On-Device Performance

- Raspberry Pi 2 is used for evaluating our proposed active learning framework, due to similar HW/SW specifications as predominant contemporary mobile/wearable devices.
- Data split into D_{train} , D_{pool} and D_{test} . Leave-one-User-Out (LOOCV) and conventional data split at random is performed.
- Acquisition adaptation factor $-\eta \in [0, 1]$: The number of acquisition windows used for active learning from D_{pool} .
- Variation Ratios acquisition function yields best efficiencies across all datasets.
- Practical to threshold number of D_{pool} points collected in a single acquisition iteration. This can be quantified by either number of windows (w_a) or time taken (in seconds).

Table 1: Performance Metrics

Process	HHAR	Swell-KW	Notch
Baselines before AL	61%	79.12%	0.927
Inference time	14 ms	9 ms	$11 \mathrm{ms}$
Discrete Wavelet Transform	$0.5 \mathrm{ms}$	_	$0.39~\mathrm{ms}$
Decimation	$3.4 \mathrm{ms}$	_	_
Stochastic Forward Pass (T)	$1.4 \sec$	$0.5 \sec$	1 sec
Time taken per epoch	$1.8 \mathrm{sec}$	$0.6 \sec$	$1.2 \mathrm{sec}$
Model size	315 kB	115 kB	180 kB

References

- [1] Abhijith Ragav* and Gautham Krishna Gudur*. Bayesian active learning for wearable stress and affect detection. In NeurIPS Machine Learning for Mobile Health Workshop, 2020.
- [2] Gautham Krishna Gudur, Prahalathan Sundaramoorthy, and Venkatesh Umaashankar. Activeharnet: Towards on-device deep bayesian active learning for human activity recognition. In *The 3rd International Workshop on Deep Learning for Mobile Systems and Applications*, EMDL'19, 2019.
- [3] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In *Proceedings of the 33rd International Conference on International Conference on Machine Learning*, ICML'16, 2016.
- [4] Prahalathan Sundaramoorthy, Gautham Krishna Gudur, Manav Rajiv Moorthy, R. Nidhi Bhandari, and Vineeth Vijayaraghavan. Harnet: Towards on-device incremental learning using deep ensembles on constrained devices. In Proceedings of the 2nd International Workshop on Embedded and Mobile Deep Learning, EMDL'18, 2018.