# Algorithms for Automatized Detection of Hook Effect-bearing Amplification Curves

The PCRedux package authors 2018-06-13

### Contents

| 1                       | Abstract                                                                                                                                                                                                      | 1  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2                       | Introduction                                                                                                                                                                                                  | 2  |
| 3                       | Installation                                                                                                                                                                                                  | 2  |
| 4                       | Results for the analysis of the hookreg.rdml data set by humanrater()                                                                                                                                         | 3  |
| 5                       | Results for the analysis with hookreg() and hookregNL()  5.1 Results for the analysis of the hookreg.rdml data set with hookreg()  5.2 Results for the analysis of the hookreg.rdml data set with hookregNL() |    |
| 6                       | Comparison of the hookreg() and hookregNL() methods                                                                                                                                                           | 9  |
| 7                       | Funding                                                                                                                                                                                                       | 11 |
| $\mathbf{R}^{\epsilon}$ | eferences                                                                                                                                                                                                     | 11 |



### 1 Abstract

abstract: | This is a supplemental document for the study Algorithms for Automatized Detection of Hook Effect-bearing Amplification Curves. Quantitative real-time PCR (qPCR) is a widely used method for gene expression analysis, forensics and medical diagnostics (Dvinge and Bertone 2009, Martins et al. (2015), Sauer, Reinke, and Courts (2016)).

Numerous algorithms have been developed to extract features from amplification curves such as the cylce of quantification and the amplification efficiency (Ruijter et al. 2013). There is an agreement, that these algorithms need to be evaluated and benchmarked for their performance (Kemperman and McCall 2017). But at an earlier level it is important to have a solid foundation for the data preprocessing (A.-N. Spiess et al. 2015, A.-N. Spiess et al. (2016), Ronde et al. (2017)). Digitalization of processes holds the promise that potential human mistakes can be spotted and that diagnostic processes can be automatized.

The aim of the study is to provide software tools and algorithms, which assist qPCR users during the analysis and quality management of their data. In particular, this study shows how it is possible to automatically detect hook effects (see Barratt and Mackay (2002)) or hook effect-like curvatures.

### 2 Introduction

The functions and data presented in the paper are available from https://github.com/devSJR/PCRedux. The data, including the RDML file, are part of the PCRedux package and are made available in the CSV or RDML format (Rödiger et al. 2017) for vendor independent analysis.

All analyses were implemented and conducted with the  $\mathbf{R}$  statistical computing language (R Core Team 2017, Rödiger et al. (2015)) and dedicated integrated development environments such as  $\mathbf{RKWard}$  (Rödiger et al. 2012). Further documentation can be found in the help files of the  $\mathbf{R}$  packages.

### 3 Installation

The **hookreg()** and **hookregNL()** functions are part of the PCRedux package for the **R** statistical computing language. Download from CRAN http://cran.r-project.org/ the **R** version for the required operating system and install **R**. Then start **R** and type in the prompt:

```
# Select your local mirror
install.packages("PCRedux")
```

The PCRedux package should just install. If this fails make sure you have write access to the destination directory and follow the instructions of the  $\mathbf{R}$  documentation:

```
# The following command points to the help for download and install of packages
# from CRAN-like repositories or from local files.
?install.packages()
```

The package can be installed as the latest development version using the devtools R package.

```
# Install devtools, if you haven't already.
install.packages("devtools")

library(devtools)
install_github("devSJR/PCRedux")
```

It is recommended to use software with an integrated development environment such as RKWard (Rödiger et al. 2012). To work with RDML data it is recommend to use the RDML package ( $\geq_v$ .0.9-9) by invoking the rdmlEdit() function (for details see Rödiger et al. (2017)) or the rdmlEdit GUI web server (section ??). The RDML file hookreg.rdml contains the amplification curve data. However, other software package (e.g., (Lefever et al. 2009, Ruijter et al. (2015))) can also be used to work with the RMDL data file format.

## 4 Results for the analysis of the hookreg.rdml data set by humanrater()

All calculations in the following sections were employed on the hookreg.rdml data set, which is part of the PCRedux package. The data were transfered to the **R** environment by the RDML package (Rödiger et al. 2017). An overview of the used samples and the qPCR detection chemistries and the classification by two humans ("Hook effect-like Rater 1", "Hook effect-like Rater 2") is shown in Table 1.

Loading experiment: exp1 run: run1 All amplification curves were plotted according to their experiment conditions. They differed in the target molecules (e.g., MLC-2v, BRCA1) and the detection chemistries (e.g., EvaGreen, SybrGreen, hydrolysis probes). Figure 1 shows seven plots for the corresponding experiments. The amplification curves were not preprocessed to preserve the curvature. Selected amplification curves were noisy (e.g., Figure 1F), had overshots or undershot in the background phase (e.g., Figure 1E-G), a short hook phase (e.g., Figure 1D). Amplification curves of Figure 1A, D, F and F exhibited a clearly visible hook effect or a hook like effect.

```
par(mfrow=c(4,2))
# Plot all data of the hookreq.rdml-file according to their type.
# Synthetic template, detected with Syto-13
matplot(data[, 1], data[, 2:13], type="l", lty=1, lwd=2, ylab="RFU", xlab="Cycle")
mtext("A", cex = 1.8, side = 3, adj = 0, font = 2)
# Human MLC-2v, detected with a hydrolysis probe.
matplot(data[, 1], data[, 14:45], type="1", lty=1, lwd=2, ylab="RFU", xlab="Cycle")
mtext("B", cex = 1.8, side = 3, adj = 0, font = 2)
# S27a housekeeping gene, detected with SybrGreen I.
matplot(data[, 1], data[, 46:69], type="l", lty=1, lwd=2, ylab="RFU", xlab="Cycle")
mtext("C", cex = 1.8, side = 3, adj = 0, font = 2)
# Whole genome amplification, detected with EvaGreen.
matplot(data[, 1], data[, 70:71], type="l", lty=1, lwd=2, ylab="RFU", xlab="Cycle")
mtext("D", cex = 1.8, side = 3, adj = 0, font = 2)
# Human BRCA1 gene, detected with a hydrolysis probe.
matplot(data[, 1], data[, 72:87], type="l", lty=1, lwd=2, ylab="RFU", xlab="Cycle")
mtext("E", cex = 1.8, side = 3, adj = 0, font = 2)
# Human NRAS gene, detected with a hydrolysis probe.
matplot(data[, 1], data[, 88:95], type="1", lty=1, lwd=2, ylab="RFU", xlab="Cycle")
mtext("F", cex = 1.8, side = 3, adj = 0, font = 2)
# Water control, detected with a hydrolysis probe.
matplot(data[, 1], data[, 96:97], type="1", lty=1, lwd=2, ylab="RFU", xlab="Cycle")
mtext("G", cex = 1.8, side = 3, adj = 0, font = 2)
```

Printout of all measured samples, their rating by two humans (rater 1 and rater 2) with their dichotomous ratings (0, no hook; 1, hook) and their sources.

- The boggy data (qpcR::boggy) set was taken from the qpcR package (Ritz and Spiess 2008, A.-N. Spiess, Feig, and Ritz (2008)).
- The C127EGHP data (chipPCR::C127EGHP) set was taken from the chipPCR package (Rödiger, Burdukiewicz, and Schierack 2015).
- The testdat data (qpcR::testdat) set was taken from the qpcR package (Ritz and Spiess 2008, A.-N.



Figure 1: Amplification curves. A) Synthetic template, detected with Syto-13. B) Human MLC-2v, detected with a hydrolysis probe. C) S27a housekeeping gene, detected with SybrGreen I. D) Whole genome amplification, detected with EvaGreen. E) Human BRCA1 gene, detected with a hydrolysis probe. F) Human NRAS gene, detected with a hydrolysis probe. G) Water control, detected with a hydrolysis probe. See Table 1 for details. RFU, relative fluorescence units.

Spiess, Feig, and Ritz (2008)).

• Other data were prepared by Evrogen laboratory experiments.

Table 1: Overview of the used amplification curve data. The samples names, data source (origin of data either from an existing data set or prepared for this study), the detection chemistries (intercalator (Syto-13, SyberGreenI, EvaGreen), hydrolysis probes (TaqMan (Cy5/BHQ2), TaqMan (HEX/BHQ1))) and calculations by tow humans.

| Page   Case   Committy   Hook effect-like Rates   Hook effect-like Ra   | man | nans.         |                        |                            |                   |                          |                          |                   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|------------------------|----------------------------|-------------------|--------------------------|--------------------------|-------------------|--|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #   | Sample        | Data Source            | Target                     | Chemistry         | Hook effect-like Rater 1 | Hook effect-like Rater 2 | Rating Conformity |  |
| 2   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | F1.1          |                        |                            |                   | 1                        | 1                        | 1                 |  |
| \$\frac{9}{2}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |               | qpcR::boggy            | synthetic template         |                   | 1                        | 1                        | 1                 |  |
| 5   1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |               | qpck::boggy            |                            |                   |                          |                          |                   |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |               | apcR::boggy            | synthetic template         | Syto-13           |                          |                          |                   |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6   |               | qpcR::boggy            | synthetic template         | Syto-13           |                          | o o                      |                   |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |               | qpcR::boggy            | synthetic template         |                   |                          |                          |                   |  |
| 10   10   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |               | qpcR::boggy            |                            |                   |                          |                          |                   |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |               | qpck::boggy            |                            |                   |                          |                          |                   |  |
| 12   PG-2   open-though   op   |     |               | ancR::boggy            |                            |                   |                          |                          |                   |  |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | F6.2          | qpcR::boggy            |                            |                   | ő                        | 0                        | 1                 |  |
| ### Tables (CS)*** Ta |     |               | chipPCR::C127EGHP      |                            | TaqMan (Cy5/BHQ2) |                          |                          |                   |  |
| 16   1876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |               |                        |                            | TagMan (Cv5/BHQ2) |                          |                          |                   |  |
| 18   18   18   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |               |                        |                            | TaqMan (Cy5/BHQ2) |                          |                          |                   |  |
| 18   18   18   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |               |                        |                            | TagMan (Cy5/BHQ2) |                          |                          |                   |  |
| 19   19   19   19   19   19   19   19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |               |                        |                            | TagMan (Cv5/BHO2) |                          |                          |                   |  |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | HP7           |                        | MLC-2v                     | TaqMan (Cy5/BHQ2) | ő                        | 0                        |                   |  |
| HP10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |               |                        |                            | TaqMan (Cy5/BHQ2) |                          |                          |                   |  |
| HP11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21  |               |                        |                            | TaqMan (Cy5/BHQ2) |                          |                          |                   |  |
| HP12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22  |               | chipPCR::C127EGHP      |                            | TaqMan (Cy5/BHQ2) |                          |                          |                   |  |
| Phi   Phi   ChipPCRC   C17FG   Phi   Phi   C17FG   Phi   Phi   C17FG   Phi     |     |               |                        |                            |                   |                          |                          |                   |  |
| BP14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |               |                        |                            | TagMan (Cv5/BHO2) |                          |                          |                   |  |
| Bir   Bir   Company   Co   | 26  | HP14          | chipPCR::C127EGHP      | MLC-2v                     | TaqMan (Cy5/BHQ2) | 0                        | 0                        | 1                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27  |               |                        |                            |                   |                          |                          |                   |  |
| 10   11   11   12   12   12   13   11   12   13   11   12   13   11   12   13   11   12   13   11   12   13   11   12   13   11   12   13   11   12   13   11   12   13   11   12   13   11   13   11   12   13   11   12   13   11   12   13   11   12   13   11   12   13   11   12   13   11   12   13   11   12   13   11   13   11   13   11   13   11   13   11   13   11   13   11   13   11   13   11   13   11   13   11   13   12   13   11   13   13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |               |                        |                            | TaqMan (Cy5/BHQ2) |                          |                          |                   |  |
| 18   18   18   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |               |                        |                            | TaqMan (Cy5/BHQ2) |                          |                          |                   |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |               |                        |                            | TagMan (Cv5/BHQ2) |                          |                          |                   |  |
| 1872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |               |                        |                            | TagMan (Cv5/BHO2) |                          |                          |                   |  |
| 18   18   18   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33  |               |                        |                            | TaqMan (Cy5/BHQ2) |                          |                          |                   |  |
| Bit    |     |               |                        |                            |                   |                          |                          |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35  |               |                        |                            | TaqMan (Cy5/BHQ2) |                          |                          |                   |  |
| B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37  |               |                        |                            | TagMan (Cy5/BHQ2) |                          |                          |                   |  |
| HP27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |               |                        |                            | TagMan (Cv5/BHQ2) |                          |                          |                   |  |
| HP29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |               |                        |                            | TaqMan (Cy5/BHQ2) |                          |                          |                   |  |
| HP30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |               |                        |                            | TaqMan (Cy5/BHQ2) |                          |                          |                   |  |
| HP31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |               |                        | MLC-2v                     | TaqMan (Cy5/BHQ2) |                          |                          |                   |  |
| HP32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |               |                        | MLC-2v                     |                   |                          |                          |                   |  |
| 45   F1.1_td   qpcR:testdat   S27a housekeeping gene   SybrGreen   0   0   0   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |               |                        |                            | TagMan (Cy5/BHQ2) |                          |                          |                   |  |
| F1.2_td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45  |               |                        |                            | SybrGreen I       |                          |                          |                   |  |
| 48   Fl.4_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46  | F1.2 td       |                        |                            |                   | 0                        | 0                        |                   |  |
| 49   F2.1_td   qpcRt:testdat   S27a housekeeping gene   SybeGreen   0   0   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47  | F1.3_td       |                        |                            |                   |                          |                          |                   |  |
| 50   F2.2_td   qpcRt:testdat   S27a housekeeping gene   SybrGreen   0   0   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | F1.4_td       |                        |                            |                   |                          |                          |                   |  |
| 51   F2.3_td   qpcRt:testdat   S27a housekeeping gene   SybrGreen   0   0   0   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | F2.1_td       |                        |                            |                   |                          |                          |                   |  |
| 52   F2.d_td   qpcRt:testdat   S27a housekeeping gene   SybrGreen   0   0   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51  | F2.2_td       |                        | S27a housekeeping gene     | SybrGreen I       |                          |                          | 1                 |  |
| 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52  |               |                        |                            |                   |                          |                          |                   |  |
| 50   F3.1   d.   d.   d.   d.   d.   d.   d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 53  | F3.1_td       |                        |                            |                   | 0                        | 0                        | 1                 |  |
| 55   F3.d_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |               |                        |                            |                   |                          |                          |                   |  |
| F4.1_td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55  | F3.3_td       |                        | S27a housekeeping gene     |                   |                          |                          |                   |  |
| 58   F4.2_td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50  |               |                        |                            |                   |                          |                          |                   |  |
| 59   F4.3_td   qpcRt:testdat   S27a housekeeping gene   SybrGreen   0   0   0   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58  | F4.2 td       |                        |                            |                   |                          |                          |                   |  |
| 61   F5.1_td   qpcRt:testdat   S27a housekeeping gene   Syb-Green   0   0   0   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59  |               | qpcR::testdat          | S27a housekeeping gene     | SybrGreen I       | 0                        | 0                        | 1                 |  |
| F5.2_td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60  | F4.4_td       |                        |                            |                   |                          |                          |                   |  |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | F5.1_td       | qpcR::testdat          | S27a housekeeping gene     |                   |                          |                          | 1                 |  |
| 64   F5.4_td   qpcRt:testdat   S27a housekeeping gene   SybrGreen   0   0   0   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |               | qpcr::testdat          |                            |                   |                          |                          | 1                 |  |
| Feb.   International Content   Feb.   International Content   International    | 64  | F5.4 +d       | apcR::testdat          | S27a housekeeping gene     | SybrGreen I       |                          |                          |                   |  |
| F6.2_td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |               |                        |                            |                   |                          |                          |                   |  |
| Section   Sect   | 66  | F6.2_td       | qpcR::testdat          | S27a housekeeping gene     | SybrGreen I       | 0                        | 0                        | 1                 |  |
| F09 WGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |               |                        |                            |                   | 0                        | 0                        | 1                 |  |
| F10 WGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68  | F6.4_td       | qpcR::testdat          | S27a housekeeping gene     | SybrGreen I       | 0                        | 0                        | 1                 |  |
| 71   F11"   11   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70  |               | Evrogen lab experiment | Whole genome amplification |                   | †                        | 1                        | 1                 |  |
| Fig.      |     |               |                        | BRCA1 gene                 |                   | i                        | î                        | 1                 |  |
| 73   G01*100ng/mlk   Evrogen lab experiment   BRCA1 gene   TapMan (HEX/BHQ1)   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72  | F12~1ng/mkl   | Evrogen lab experiment | BRCA1 gene                 | TagMan (HEX/BHO1) | ī                        | 1                        | 1                 |  |
| 75   G03*Ing/mkl   Evrogen lab experiment   BRCA1 gene   TapMan (HEK/BHQ1)   0   0   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73  | G01~100ng/mkl | Evrogen lab experiment | BRCA1 gene                 | TaqMan (HEX/BHQ1) | 1                        | 1                        |                   |  |
| 76   G04*Ing/mkl   Evrogen lab experiment   BRCA1 gene   TaqMan (HEX/BHQ1)   0   0   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74  | G02~100ng/mkl | Evrogen lab experiment | BRCA1 gene                 | TaqMan (HEX/BHQ1) | 1                        | 1                        | 1                 |  |
| 77   G05*100ag/mlk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | G03 Ing/mkl   | Evrogen lab experiment |                            | TaqMan (HEX/BHQ1) |                          |                          | 1                 |  |
| 78   G00°100ng/mlk   Evrogen lab experiment   BRCA1 gene   TaqMan (HEX/BHQ1)   0   0   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76  | G05~100ng/mkl | Evrogen lab experiment | BRCA1 gene                 | TagMan (HEX/BHQ1) |                          | 0                        | 1                 |  |
| 79   G07" lng/mkl   Evrogen lab experiment   BRCA1 gene   TaqMan (HEK/BHQ1)   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78  | G06~100ng/mkl | Evrogen lab experiment | BRCA1 gene                 | TagMan (HEX/BHQ1) |                          | 0                        | 1                 |  |
| So   Gols*ing/mkl   Evrogen lab experiment   BRCA1 gene   TaqMan (HEX/BHQ1)   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | G07~1ng/mkl   | Evrogen lab experiment | BRCA1 gene                 | TaqMan (HEX/BHQ1) | 1                        | 1                        |                   |  |
| Section   Sect   | 80  | G08~1ng/mkl   | Evrogen lab experiment | BRCA1 gene                 | TaqMan (HEX/BHQ1) | 1                        | 1                        | 1                 |  |
| St.   G11*Ing/mk1   Evrogen lab experiment   BRCA1 gene   TaqMan (HEX/BHQ1)   0   0   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 81  | G09~100ng/mkl | Evrogen lab experiment | BRCA1 gene                 | TaqMan (HEX/BHQ1) | 1                        | 1                        | 1                 |  |
| Section   Sect   |     | G10 100ng/mkl | Evrogen lab experiment | BRCA1 gene                 | TaqMan (HEX/BHQ1) | 1                        | 1                        | 1                 |  |
| 85   H01'100ng/mkl   Evrogen lab experiment   BRCA1 gene   TaqMan (HEX/BHQ1)   0   0   1   86   H02'100ng/mkl   Evrogen lab experiment   BRCA1 gene   TaqMan (HEX/BHQ1)   0   0   1   87   s1   Evrogen lab experiment   NRAS gene   TaqMan (FAM/BHQ1)   1   1   1   1   88   s2   Evrogen lab experiment   NRAS gene   TaqMan (FAM/BHQ1)   1   1   1   1   89   s3   Evrogen lab experiment   NRAS gene   TaqMan (FAM/BHQ1)   1   1   1   1   1   90   s4   Evrogen lab experiment   NRAS gene   TaqMan (FAM/BHQ1)   1   1   1   1   1   91   s5   Evrogen lab experiment   NRAS gene   TaqMan (FAM/BHQ1)   1   1   1   1   1   91   s6   Evrogen lab experiment   NRAS gene   TaqMan (FAM/BHQ1)   1   1   1   1   1   94   s7   Evrogen lab experiment   NRAS gene   TaqMan (FAM/BHQ1)   0   0   0   1   95   NTC   Evrogen lab experiment   NRAS gene   TaqMan (FAM/BHQ1)   1   1   1   1   1   96   SNT   Evrogen lab experiment   NRAS gene   TaqMan (FAM/BHQ1)   0   0   0   0   1   97   NT   Evrogen lab experiment   NRAS gene   TaqMan (FAM/BHQ1)   0   0   0   0   0   98   NT   Evrogen lab experiment   NRAS gene   TaqMan (FAM/BHQ1)   0   0   0   0   0   99   NT   Evrogen lab experiment   NRAS gene   TaqMan (FAM/BHQ1)   0   0   0   0   90   NT   Evrogen lab experiment   NRAS gene   TaqMan (FAM/BHQ1)   0   0   0   0   91   NT   Evrogen lab experiment   NRAS gene   TaqMan (FAM/BHQ1)   0   0   0   0   91   NT   Evrogen lab experiment   NRAS gene   TaqMan (FAM/BHQ1)   0   0   0   0   91   NT   Evrogen lab experiment   NRAS gene   TaqMan (FAM/BHQ1)   0   0   0   0   91   Evrogen lab experiment   NRAS gene   TaqMan (FAM/BHQ1)   0   0   0   0   91   Evrogen lab experiment   NRAS gene   TaqMan (FAM/BHQ1)   0   0   0   0   0   91   Evrogen lab experiment   NRAS gene   TaqMan (FAM/BHQ1)   0   0   0   0   0   91   Evrogen lab experiment   NRAS gene   TaqMan (FAM/BHQ1)   0   0   0   0   0   0   91   Evrogen lab experiment   0   0   0   0   0   0   0   0   0                                                                                                                | 84  | G12"lng/mkl   | Evrogen lab experiment | BRCA1 gene                 | TagMan (HEX/BHQ1) |                          |                          | 1                 |  |
| MOZ 100mg/ml   Evrogen lab experiment   BRCA1 gene   TaqMan (HEX/BHQ1)   0   0   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85  | H01~100ng/mkl | Evrogen lab experiment | BRCA1 gene                 | TaqMan (HEX/BHQ1) |                          |                          | 1                 |  |
| 87         s1         Evrogen lab experiment         NRAS gene         TaqMan (FAM/BHQ1)         1         1         1           88         s2         Evrogen lab experiment         NRAS gene         TaqMan (FAM/BHQ1)         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 86  | H02~100ng/mkl | Evrogen lab experiment | BRCA1 gene                 | TaqMan (HEX/BHQ1) | ő                        | 0                        | i                 |  |
| 89         3         Evrogen lab experiment         NRAS gene         TaqMan (FAM/BHQ1)         1         1         1           90         s4         Evrogen lab experiment         NRAS gene         TaqMan (FAM/BHQ1)         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 87  | s1            | Evrogen lab experiment | NRAS gene                  | TaqMan (FAM/BHQ1) | 1                        | 1                        | 1                 |  |
| 90 s4 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88  | s2            | Evrogen lab experiment | NRAS gene                  | TaqMan (FAM/BHQ1) | 1                        | 1                        | 1                 |  |
| 91 s5 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 1 2 2 5 6 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 1 1 1 3 3 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |               |                        | NRAS gene                  | TaqMan (FAM/BHQ1) | 1                        | 1                        | 1                 |  |
| 92 s6 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 1 1 3 3 7 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 0 0 1 1 1 4 8 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 1 5 5 NTC Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 0 0 0 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |               | Evrogen lab experiment | NRAS gene<br>NRAS gene     | TagMan (FAM/BHQ1) | 1                        | 1                        | 1                 |  |
| 93         s7         Evrogen lab experiment         NRAS gene         TaqMan (FAM/BHQ1)         0         0         1           94         s8         Evrogen lab experiment         NRAS gene         TaqMan (FAM/BHQ1)         1         1         1         1         1         1         1         1         0         0         1         1         1         0         0         1         1         0         0         1         1         0         0         1         1         0         0         1         0         0         1         0         0         0         1         0         0         0         1         0         0         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92  | s6            | Evrogen lab experiment | NRAS gene                  | TagMan (FAM/BHO1) | 1                        | 1                        | 1                 |  |
| 94 s8 Evrogen lab experiment NRAS gene TaqMan (FAM/BHQ1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93  | s7            | Evrogen lab experiment | NRAS gene                  | TaqMan (FAM/BHQ1) | 0                        | 0                        | 1                 |  |
| 95         NTC         Evrogen lab experiment         NRAS gene         TaqMan (FAM/BHQ1)         0         0         0         1           96         NTC         Evrogen lab experiment         NRAS gene         TaqMan (FAM/BHQ1)         0         0         0         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 94  | s8            |                        | NRAS gene                  | TaqMan (FAM/BHQ1) | 1                        | 1                        |                   |  |
| 90 NIC Evrogen iad experiment NRAS gene TaqMan (FAM/BHQI) U 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |               |                        | NRAS gene                  | TaqMan (FAM/BHQ1) |                          | 0                        | 1                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96  | NIC           | Evrogen ian experiment | NAAO gene                  | raqwan (FAM/BHQ1) | 0                        | 0                        | 1                 |  |

# 5 Results for the analysis with hookreg() and hookregNL()

This section contains the results of the analysis of the amplification curve data with the **hookreg()** function and the **hookregNL()** function. As in the previous sections, all code was commented to make it reproducible. Some rows in Table 2 and Table 3 appear to be empty. This expected behaviour may occur in cases where the corresponding functions were not able to calculate the coefficients due to a failed model fit or violation of the truncation criterion.

### 5.1 Results for the analysis of the hookreg.rdml data set with hookreg()

The following code was used to analyze the hookreg.rdml data set with hookreg() function. The hookreg() function fits a linear model to a region of interest. The linear model is used to decide if the amplification curve as a hook effect or hook effect-like curvature.

```
# Load PCRedux package to obtain the data and make the hookreg() function
# available.
library(PCRedux)
# Load the magrittr to use the %>% pipe-operator
library(magrittr)
# `data` is a temporary data frame of the hook.rdml amplification curve data file.
# Apply the hookreq() function over the amplification curves and arrange the
# results in the data frame `res_hookreg`.
res_hookreg <- sapply(2L:ncol(data), function(i) {</pre>
    hookreg(x=data[, 1], y=data[, i])
}) %>% t %>% data.frame(sample=colnames(data)[-1],.)
# Fetch the calculated parameters from the calculations with the hookreg()
# function as a table `res_hookreg_table`.
res_hookreg_table <- data.frame(sample=as.character(res_hookreg[["sample"]]),</pre>
                                intercept=signif(res_hookreg[["intercept"]], 2),
                                slope=signif(res_hookreg[["slope"]], 1),
                                hook.start=signif(res_hookreg[["hook.start"]], 0),
                                hook.delta=signif(res_hookreg[["hook.delta"]], 0),
                                p.value=signif(res_hookreg[["p.value"]], 4),
                                CI.low=signif(res_hookreg[["CI.low"]], 2),
                                CI.up=signif(res_hookreg[["CI.up"]], 2),
                                hook.fit=res_hookreg[["hook.fit"]],
                                hook.CI=res_hookreg[["hook.CI"]],
                                hook=res_hookreg[["hook"]]
)
```

Finally a pretty printout (Table 2) of the results from the **hookreg()** function for the **hookreg.rdml** data set with the following code was prepared.

The results of the **hookreg()** function are fairly comprehensive. The meaning of the columns is as followed:

Table 2: Results from the hookreg() function for the hookreg.rdml data set.

| · Itobaros                                                                                                     | 11 0111       | OIIO           |                | S() 14         | 11001011 | 101            |               | 1100111      |              |      |
|----------------------------------------------------------------------------------------------------------------|---------------|----------------|----------------|----------------|----------|----------------|---------------|--------------|--------------|------|
| sample                                                                                                         | intercept     | slope          | hook.start     | hook.delta     | p.value  | CI.low         | CI.up         | hook.fit     | hook.CI      | hook |
| A01°F1.1<br>A02°F1.2                                                                                           | 1.20          | -0.01          | 30.00          | 20.00          | 0.00     | -0.01          | -0.01         | 1.00         | 1.00         | 1.00 |
|                                                                                                                | 1.20          | -0.01          | 30.00          | 20.00          | 0.00     | -0.01          | -0.01         | 1.00         | 1.00         | 1.00 |
| A03~F2.1                                                                                                       | 1.20          | -0.01          | 30.00          | 9.00           | 0.00     | -0.01          | -0.00         | 1.00         | 1.00         | 1.00 |
| A04~F2.2<br>A05~F3.1                                                                                           | 1.20          | -0.01          | 30.00          | 9.00           | 0.00     | -0.01          | -0.00         | 1.00         | 1.00         | 1.00 |
| AUS F3.1                                                                                                       | 1.10          | -0.00          | 40.00          | 6.00           | 0.05     | -0.00          | 0.00          | 0.00         | 0.00         | 0.00 |
| A06~F3.2<br>A07~F4.1                                                                                           | 1.10<br>0.00  | -0.00<br>0.00  | 40.00<br>0.00  | 6.00<br>0.00   | 0.02     | -0.01          | 0.00          | 0.00         | 0.00         | 0.00 |
| A08°F4.2                                                                                                       | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| A09°F5.1                                                                                                       | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| A10°F5.2                                                                                                       | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| A11~F6.1                                                                                                       | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| A12°F6.2                                                                                                       | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| A12~F6.2<br>B01~HP1                                                                                            | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| B02~HP2                                                                                                        | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| B03~HP3                                                                                                        | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| B04~HP4                                                                                                        | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| B05~HP5                                                                                                        | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| B06~HP6<br>B07~HP7                                                                                             | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| B07~HP7                                                                                                        | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| B08"HP8<br>B09"HP9                                                                                             | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| B09~HP9                                                                                                        | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| B10~HP10                                                                                                       | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| B11~HP11                                                                                                       | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| B12~HP12<br>C01~HP13                                                                                           | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| C01 HP13                                                                                                       | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| C02~HP14<br>C03~HP15                                                                                           | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| COS HP15                                                                                                       |               |                |                |                |          |                |               |              |              |      |
| C04~HP16<br>C05~HP17                                                                                           | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| C05 HP17<br>C06"HP18                                                                                           | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| COTT HP10                                                                                                      | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| C07"HP19<br>C08"HP20                                                                                           | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| C08°HP20<br>C09°HP21                                                                                           | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| C10"HP22                                                                                                       | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| C10~HP22<br>C11~HP23                                                                                           | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| C12"HP24                                                                                                       | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| D01~HP25                                                                                                       | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| D02~HP26                                                                                                       | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| D03~HP27                                                                                                       | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| D04~HP28                                                                                                       | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| D05~HP29                                                                                                       | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| D06~HP30                                                                                                       | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| D07~HP31                                                                                                       | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| D08~HP32                                                                                                       | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| D09~F1.1_td                                                                                                    | 1.00          | -0.00          | 30.00          | 7.00           | 0.01     | -0.00          | 0.00          | 0.00         | 0.00         | 0.00 |
| D10~F1.2_td<br>D11~F1.3_td                                                                                     | 1.10<br>0.73  | -0.00<br>-0.02 | 30.00<br>10.00 | 10.00<br>30.00 | 0.00     | -0.00<br>-0.04 | -0.00<br>0.01 | 1.00<br>0.00 | 1.00<br>0.00 | 0.00 |
| D12 F1.4_td                                                                                                    | 0.73          | -0.02          | 3.00           | 40.00          | 0.05     | -0.04          | 0.01          | 0.00         | 0.00         | 0.00 |
| D12 F1.4_td                                                                                                    | 1.00          | -0.00          | 30.00          | 7.00           | 0.42     | -0.02          | 0.01          | 0.00         | 0.00         | 0.00 |
| E01~F2.1_td<br>E02~F2.2_td                                                                                     | 1.10          | -0.00          | 40.00          | 5.00           | 0.15     | -0.00          | 0.00          | 0.00         | 0.00         | 0.00 |
| E02 F2.2_td                                                                                                    | -0.13         | 0.00           | 20.00          | 20.00          | 0.90     | -0.01          | 0.06          | 0.00         | 0.00         | 0.00 |
| E03 F2.3_td<br>E04 F2.4_td                                                                                     | 3.10          | -0.08          | 30.00          | 8.00           | 0.24     | -0.03          | 0.17          | 0.00         | 0.00         | 0.00 |
| E057E3 1 +d                                                                                                    | 0.00          | 0.00           | 0.00           | 0.00           | 0.24     | -0.00          | 0.11          | 0.00         | 0.00         | 0.00 |
| E05 <sup>F3.1</sup> _td<br>E06 <sup>F3.2</sup> _td<br>E07 <sup>F3.3</sup> _td                                  | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| E07~F3.3 td                                                                                                    | 0.55          | -0.02          | 10.00          | 30.00          | 0.09     | -0.05          | 0.01          | 0.00         | 0.00         | 0.00 |
|                                                                                                                | 0.11          | -0.00          | 10.00          | 30.00          | 0.84     | -0.04          | 0.03          | 0.00         | 0.00         | 0.00 |
| E09~F4.1_td                                                                                                    | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| E09°F4.1_td<br>E10°F4.2_td                                                                                     | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| E11~F4.3_td                                                                                                    | 2.90          | -0.08          | 30.00          | 10.00          | 0.14     | -0.26          | 0.11          | 0.00         | 0.00         | 0.00 |
| E12~F4.4_td                                                                                                    | 0.26          | -0.02          | 6.00           | 40.00          | 0.08     | -0.06          | 0.01          | 0.00         | 0.00         | 0.00 |
| F01~F5.1_td                                                                                                    | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| F02~F5.2_td                                                                                                    | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| F03~F5.3_td                                                                                                    | 2.20          | -0.06          | 30.00          | 10.00          | 0.06     | -0.16          | 0.04          | 0.00         | 0.00         | 0.00 |
| F04~F5.4_td                                                                                                    | -0.08<br>0.00 | 0.00           | 20.00          | 20.00          | 0.89     | -0.05          | 0.06          | 0.00         | 0.00         | 0.00 |
| F05 F6.1_td<br>F06 F6.2_td                                                                                     | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| F07 F6.2_td                                                                                                    | 0.67          | -0.02          | 20.00          | 20.00          | 0.24     | -0.07          | 0.03          | 0.00         | 0.00         | 0.00 |
| F08°F6.4_td                                                                                                    | 0.07          | -0.02          | 4.00           | 40.00          | 0.73     | -0.07          | 0.03          | 0.00         | 0.00         | 0.00 |
| F09~WGA                                                                                                        | 0.00          | 0.00           | 0.00           | 0.00           | 0.10     | -0.02          | 0.02          | 0.00         | 0.00         | 0.00 |
| F10~WGA                                                                                                        | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| F10~WGA<br>F11~1ng/mkl                                                                                         | 2.40          | -0.04          | 40.00          | 20.00          | 0.00     | -0.06          | -0.02         | 1.00         | 1.00         | 1.00 |
|                                                                                                                | 2.30          | -0.04          | 40.00          | 20.00          | 0.00     | -0.06          | -0.02         | 1.00         | 1.00         | 1.00 |
|                                                                                                                | 1.60          | -0.03          | 30.00          | 20.00          | 0.00     | -0.04          | -0.02         | 1.00         | 1.00         | 1.00 |
| G01*100 ng/mkl<br>G02*100 ng/mkl<br>G03*1ng/mkl<br>G04*1ng/mkl<br>G05*100 ng/mkl                               | 1.70          | -0.03          | 30.00          | 20.00          | 0.00     | -0.05          | -0.02         | 1.00         | 1.00         | 1.00 |
| G03~1ng/mkl                                                                                                    | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| G04~1ng/mkl                                                                                                    | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| G05~100 ng/mkl                                                                                                 | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| G06 100 ng/mkl<br>G07 1ng/mkl<br>G07 1ng/mkl<br>G08 1ng/mkl<br>G09 100 ng/mkl<br>G10 100 ng/mkl<br>G11 1ng/mkl | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| G07~1ng/mkl                                                                                                    | 3.00          | -0.05          | 40.00          | 10.00          | 0.00     | -0.06          | -0.05         | 1.00         | 1.00         | 1.00 |
| G08~1ng/mkl                                                                                                    | 3.00          | -0.05          | 40.00          | 10.00          | 0.00     | -0.06          | -0.04         | 1.00         | 1.00         | 1.00 |
| G09~100 ng/mkl                                                                                                 | 2.50          | -0.04          | 30.00          | 20.00          | 0.00     | -0.05          | -0.04         | 1.00         | 1.00         | 1.00 |
| G10 100 ng/mkl                                                                                                 | 2.60<br>0.00  | -0.05<br>0.00  | 30.00<br>0.00  | 20.00<br>0.00  | 0.00     | -0.05          | -0.04         | 1.00         | 1.00<br>0.00 | 0.00 |
| G11 ing/mkl                                                                                                    | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| G12~1ng/mkl<br>H01~100 ng/mkl                                                                                  | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| H02~100 ng/mkl                                                                                                 | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| H03~s1                                                                                                         | 2.40          | -0.05          | 30.00          | 20.00          | 0.00     | -0.07          | -0.03         | 1.00         | 1.00         | 1.00 |
| H04~s2                                                                                                         | 2.40          | -0.05          | 30.00          | 20.00          | 0.00     | -0.07          | -0.03         | 1.00         | 1.00         | 1.00 |
| H05~s3                                                                                                         | 4.10          | -0.08          | 40.00          | 10.00          | 0.00     | -0.13          | -0.02         | 1.00         | 1.00         | 1.00 |
| H06~s4                                                                                                         | 4.60          | -0.09          | 40.00          | 10.00          | 0.00     | -0.13          | -0.04         | 1.00         | 1.00         | 1.00 |
| H07~s5                                                                                                         | 1.60          | -0.02          | 30.00          | 20.00          | 0.00     | -0.03          | -0.01         | 1.00         | 1.00         | 1.00 |
| H08~s6                                                                                                         | 1.80          | -0.02          | 40.00          | 9.00           | 0.00     | -0.03          | -0.01         | 1.00         | 1.00         | 1.00 |
| H09~s7                                                                                                         | 0.00          | 0.00           | 0.00           | 0.00           |          |                |               | 0.00         | 0.00         | 0.00 |
| H10~s8                                                                                                         | 1.50          | -0.01          | 40.00          | 8.00           | 0.00     | -0.02          | -0.00         | 1.00         | 1.00         | 1.00 |
| H11~NTC                                                                                                        | 0.92          | -0.03          | 10.00          | 30.00          | 0.00     | -0.05          | -0.01         | 1.00         | 1.00         | 1.00 |
| H12~NTC                                                                                                        | 0.50          | -0.01          | 10.00          | 30.00          | 0.19     | -0.05          | 0.02          | 0.00         | 0.00         | 0.00 |

- intercept, is the intercept from the start of the potential hook to the end of the amplification curve.
- *slope* is the slope from the start of the potential hook to the end of the amplification curve. A negative slope is indicative for a hook effect.
- hook.start is the estimated starting cycle of the hook region.
- hook.delta is the number of cycles from the hook.start to the end of the amplification curve.
- p.value describes the significant relationship between the variables in the linear regression model.
- CI.low and CI.up is the confidence interval (low and up) for the slope parameters in the fitted linear model.
- hook.fit is a logical parameter indicating if the fit is significant at a default threshold of 0.005.
- hook. CI is a logical parameter indicating if the slope of fitted linear model is within the confidence interval (0.995).
- *hook* is a logical parameter, which combines the significance test and confidence interval test (negative slope).

### 5.2 Results for the analysis of the hookreg.rdml data set with hookregNL()

The following code was used to analyze the hookreg.rdml data set with hookregNL() function. The procedure is similar to the analysis with the hookreg() function.

The hookreg() function fits a six parameter sigmoidal model to amplification curve. The non-linear model

$$f(x) = c + k \cdot x + \frac{d - c}{(1 + exp(b(log(x) - log(e))))^f}$$

is used to decide, based on the k parameter, if the amplification curve as a hook effect or hook effect-like curvature.

```
# Note that the PCRedux package and the magrittr package need to be loaded (see above).
# Load the qpcR package to prevent messages during the start.
suppressMessages(library(qpcR))
# `data` is a temporary data frame of the hook.rdml amplification curve data file.
# Apply the hookregNL() function over the amplification curves and arrange the
# results in the data frame `res_hookregNL`.
# Not that `suppressMessages()` to prevent warning messages from the qpcR package.
res_hookregNL <- suppressMessages(sapply(2L:ncol(data), function(i) {</pre>
    hookregNL(x=data[, 1], y=data[, i])
}) %>% t %>% data.frame(sample=colnames(data)[-1],.))
res_hookregNL_table <- data.frame(sample=as.character(res_hookregNL[["sample"]]),</pre>
                                  slope=signif(as.numeric(res_hookregNL[["slope"]]), 1),
                                  CI.low=signif(as.numeric(res_hookregNL[["CI.low"]]), 2),
                                  CI.up=signif(as.numeric(res_hookregNL[["CI.up"]]), 2),
                                  hook.CI=unlist(res_hookregNL[["hook"]])
)
```

Finally we prepare a pretty printout (Table 3) of the results from the **hookregNL()** function for the **hookreg.rdml** data set with the following code with the code shown next.

The results of the **hookregNL()** function are less comprehensive then from the **hookreg()** function . The meaning of the columns is as followed:

- *slope* is the slope from the start of the potential hook to the end of the amplification curve that was fitted by a six parameter model. A negative slope is indicative for a hook effect.
- CI.low and CI.up is the confidence interval (low and up) for the slope parameters in the fitted linear model.
- $\bullet$  hook is a logical parameter, which combines the significance test and confidence interval test (negative slope).

```
caption.placement = "top",
comment=FALSE,
table.placement = "!ht", scalebox='0.65'
)
```

Table 3: Results from the hookregNL() function for the hookreg.rdml data set.

| 1100111051                                                                                                         | (/             | Idil           | 01011          | 101 0   |
|--------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|---------|
| sample                                                                                                             | slope          | CI.low         | CI.up          | hook.CI |
| A01°F1.1<br>A02°F1.2                                                                                               | -0.10          | -0.16          | -0.12          | 1.00    |
|                                                                                                                    | -0.20          | -0.20          | -0.15          | 1.00    |
| A03°F2.1<br>A04°F2.2                                                                                               | -0.09<br>-0.09 | -0.13<br>-0.12 | -0.06<br>-0.06 | 1.00    |
| A04 F2.2<br>A05°F3.1                                                                                               | -0.09          | -0.12          | 0.00           | 0.00    |
| A04°F2.2<br>A05°F3.1<br>A06°F3.2                                                                                   | -0.02          | -0.06          | 0.01           | 0.00    |
|                                                                                                                    | 0.00           |                |                | 0.00    |
|                                                                                                                    | 0.00           | -0.01          | 0.02           | 0.00    |
| A09~F5.1                                                                                                           | 0.01           |                |                | 0.00    |
| A08°F4.2<br>A09°F5.1<br>A10°F5.2                                                                                   | 0.01           |                |                | 0.00    |
| A11~F6.1                                                                                                           | 0.00           |                |                | 0.00    |
| A11°F6.1<br>A12°F6.2<br>B01°HP1                                                                                    | 0.00           |                |                | 0.00    |
| B01 HP1                                                                                                            | 0.01           |                |                | 0.00    |
| B02~HP2<br>B03~HP3<br>B04~HP4                                                                                      | 0.08           |                |                | 0.00    |
| B04°HP4                                                                                                            | 0.03           |                |                | 0.00    |
| B05~HP5<br>B06~HP6                                                                                                 | 0.04           |                |                | 0.00    |
| B06~HP6                                                                                                            | 0.02           |                |                | 0.00    |
| DO7~UD7                                                                                                            | -0.10          |                |                | 0.00    |
| B08°HP8<br>B09°HP9                                                                                                 | 0.03           |                |                | 0.00    |
| B09~HP9                                                                                                            | 0.05           |                |                | 0.00    |
| B10~HP10<br>B11~HP11                                                                                               | 0.05           |                |                | 0.00    |
| B11"HP11<br>B12"HP12                                                                                               | 0.06           |                |                | 0.00    |
| C01~HP13                                                                                                           | 0.07           |                |                | 0.00    |
| C02"HP14                                                                                                           | -0.04          |                |                | 0.00    |
| C02~HP14<br>C03~HP15                                                                                               | 0.08           |                |                | 0.00    |
| C04~HP16<br>C05~HP17                                                                                               | 0.09           |                |                | 0.00    |
| C05~HP17                                                                                                           | 0.05           |                |                | 0.00    |
| C06"HP18<br>C07"HP19                                                                                               | 0.03           |                |                | 0.00    |
| C07~HP19<br>C08~HP20                                                                                               | 0.10           |                |                | 0.00    |
| COOSTIDO                                                                                                           | 0.02           |                |                | 0.00    |
| C107HP21                                                                                                           | 0.06           |                |                | 0.00    |
| C10"HP22<br>C11"HP23                                                                                               | 0.01           |                |                | 0.00    |
| C12~HP24<br>D01~HP25                                                                                               | 0.06           |                |                | 0.00    |
| D01~HP25                                                                                                           | 0.09           |                |                | 0.00    |
| D01 HP25<br>D02~HP26<br>D03~HP27                                                                                   | 0.10           |                |                | 0.00    |
| D03~HP27                                                                                                           | 0.10           |                |                | 0.00    |
| D04 HP28<br>D05 HP29                                                                                               | 0.10           |                |                | 0.00    |
| D05 HP29                                                                                                           | 0.20           |                |                | 0.00    |
| D06~HP30<br>D07~HP31                                                                                               | 0.10           |                |                | 0.00    |
| D08"HP32                                                                                                           | 0.04           |                |                | 0.00    |
| D09°F1 1 td                                                                                                        | 0.09           | 0.01           | 0.16           | 0.00    |
| D07 HP31<br>D08 HP32<br>D09 F1.1_td<br>D10 F1.2_td                                                                 | -0.05          | -0.12          | 0.02           | 0.00    |
|                                                                                                                    |                |                |                | 0.00    |
| D12 F1.3_td<br>D12 F1.4_td<br>E01 F2.1_td                                                                          |                |                |                | 0.00    |
| E01 F2.1_td<br>E02 F2.2_td                                                                                         | 0.10           | 0.06           | 0.23           | 0.00    |
|                                                                                                                    | 0.05<br>-0.00  |                |                | 0.00    |
| E04°F2.4 td                                                                                                        | -0.00          |                |                | 0.00    |
|                                                                                                                    | 0.10           | 0.06           | 0.21           | 0.00    |
| E06~F3.2_td                                                                                                        | 0.09           | 0.04           | 0.15           | 0.00    |
|                                                                                                                    | -0.00          |                |                | 0.00    |
|                                                                                                                    | -0.00          |                |                | 0.00    |
|                                                                                                                    | 0.10           | 0.02           | 0.17           | 0.00    |
| E10~F4.2_td                                                                                                        | 0.08           | 0.02           | 0.13           | 0.00    |
| E11 F4.3 td<br>E12 F4.4 td                                                                                         | 0.00           |                |                | 0.00    |
|                                                                                                                    | 0.05           | 0.01           | 0.10           | 0.00    |
|                                                                                                                    | 0.05           | 0.02           | 0.08           | 0.00    |
|                                                                                                                    | -0.01          |                |                | 0.00    |
|                                                                                                                    |                |                |                | 0.00    |
| F05 F6.1_td<br>F06 F6.2_td                                                                                         | 0.03           |                |                | 0.00    |
| F06 F6.2_td<br>F07 F6.3_td                                                                                         | 0.03           |                |                | 0.00    |
|                                                                                                                    | -0.04          |                |                | 0.00    |
| F09 F6.4_td<br>F09 WGA<br>F10 WGA                                                                                  | -0.04          | -45.00         | -8.80          | 1.00    |
| F10°WGA                                                                                                            | -20.00         | -37.00         | -9.30          | 1.00    |
| F11 Ing/mkl                                                                                                        | -0.40          |                |                | 0.00    |
| F12~1ng/mkl                                                                                                        | -0.40          |                |                | 0.00    |
| G01~100 ng/mkl                                                                                                     | -0.40          |                |                | 0.00    |
| F11 <sup>-</sup> 1ng/mkl<br>F12 <sup>-</sup> 1ng/mkl<br>G01 <sup>-</sup> 100 ng/mkl<br>G02 <sup>-</sup> 100 ng/mkl | -0.40          |                |                | 0.00    |
| G03 Ing/mki                                                                                                        | 0.02<br>-0.01  |                |                | 0.00    |
|                                                                                                                    | 0.03           |                |                | 0.00    |
|                                                                                                                    | 0.10           |                |                | 0.00    |
|                                                                                                                    | -1.00          |                |                | 0.00    |
|                                                                                                                    | -1.00          |                |                | 0.00    |
| G08"1ng/mkl<br>G09"100 ng/mkl<br>G10"100 ng/mkl                                                                    | -1.00          |                |                | 0.00    |
| G10~100 ng/mkl                                                                                                     | -1.00          |                |                | 0.00    |
| G10 100 ng/mki<br>G11~1ng/mki<br>G12~1ng/mki                                                                       | -0.03          |                |                | 0.00    |
| G12~1ng/mkl<br>H01~100 ng/mkl                                                                                      | -0.02          |                |                | 0.00    |
|                                                                                                                    | -0.10<br>0.01  |                |                | 0.00    |
|                                                                                                                    | -4.00          |                |                | 0.00    |
| H04~=2                                                                                                             | -4.00          |                |                | 0.00    |
| H057=3                                                                                                             | -5.00          |                |                | 0.00    |
| H06~s4                                                                                                             | -8.00          |                |                | 0.00    |
| H07~s5                                                                                                             | -0.80          |                |                | 0.00    |
| H08~s6                                                                                                             | -0.50          | -0.93          | -0.10          | 1.00    |
| H09°s7                                                                                                             | 0.05           | 0.01           | 0.09           | 0.00    |
| H10°s8<br>H11°NTC                                                                                                  | -0.04<br>40.00 |                |                | 0.00    |
| H11 NTC<br>H12 NTC                                                                                                 | 40.00          |                |                | 0.00    |
|                                                                                                                    | 40.00          |                |                | 0.00    |

### 6 Comparison of the hookreg() and hookregNL() methods

The decisions from the human classification (see Table 1) and the results from the machine decision (section 5.1 and section 5.2) were aggregated in Table 4.

Finally a pretty printout (Table 4) of the aggregated data set with the following code was prepared:

```
# A simple logic was applied to improve the classification result. In this case
# the assumption was, that an amplification curve has an hook effect or hook effect-like
# curvature, if either the hookreg() or hookregNL() function are positive.

meta_hookreg <- sapply(1:nrow(res), function(i){
    ifelse(res[i, "hookreg"] == 1 || res[i, "hookregNL"] == 1, 1, 0)</pre>
```

```
})
res_out <- data.frame(Sample=res[["Sample"]], res[["Human rater"]],</pre>
                      res_hookreg[["hook"]], res_hookregNL_table[["hook.CI"]],
                      meta_hookreg)
colnames(res_out) <- c("Sample",</pre>
                        "Human rater",
                        "hookreg",
                        "hookregNL",
                        "hookreg and hoohkreNL combined"
library(xtable)
options(xtable.comment=FALSE)
print(xtable(res_out, digits=0,
             caption = "Aggregated decisions from the human classification and
the results from the machine decision of the hookreg() and hookregNL()
functions.", label='method_comparision'), ,
      caption.placement = "top",
      scalebox='0.65')
```

The performance of the **hookreg()** and **hookregNL()** functions was analyzed with the **performeR()** function of the PCRedux package (Table 5). The methods were adopted from Brenner and Gefeller (1997) and Kuhn (2008). Note that the formula for the calculations of the sensitivity, specificity, precision, Negative predictive value, fall-out, alse negative rate, false discovery rate, Accuracy, F1 score, Matthews correlation coefficient and kappa by Cohen are described in the documentation of the PCRedux package.

```
res_performeR <- rbind(</pre>
    hookreg=performeR(res_out[["hookreg"]], res_out[["Human rater"]]),
                       hookregNL=performeR(res_out[["hookregNL"]], res_out[["Human rater"]]),
                       combined_hookreg=performeR(res_out[["hookreg and hoohkreNL combined"]],
                                                   res_out[["Human rater"]])
) %>% t %>% signif(4)
colnames(res_performeR) <- c("hookreg", "hookregNL", "hookreg and hookregNL")</pre>
library(xtable)
options(xtable.comment=FALSE)
print(xtable(res_performeR, digits=4,
             caption = "Analysis of the performance of both algorithms. The
performance of the individual test and the combination of the tests is shown.
Note that the classification improved if the hookreg() and hookregNL() function
were combined by a logical statement. The measure were determined with the
\\textit{performeR()} function from the \\texttt{PCRedux} package. Sensitivity,
TPR; Specificity, SPC; Precision, PPV; Negative predictive value, NPV; Fall-out,
FPR; False negative rate, FNR; False discovery rate, FDR; Accuracy, ACC; F1
score, F1; Matthews correlation coefficient, MCC, Cohen's kappa (binary
classification), $\\kappa$", label='res_performeR'),
      size = "normalsize",
      include.rownames = TRUE,
      include.colnames = TRUE,
      caption.placement = "top",
```

```
comment=FALSE,
table.placement = "!ht", scalebox='0.75'
)
```

### 7 Funding

This work was funded by the Federal Ministry of Education and Research (BMBF) InnoProfile-Transfer-Project 03IPT611X and in part by "digilog: Digitale und analoge Begleiter für eine alternde Bevölkerung" (Gesundheitscampus Brandenburg, Brandenburg Ministry for Science, Research and Culture). We thank Franziska Dinter (BTU) for reevaluation of the amplification curve data and Maria Tokarenko (Evrogen JSC) for wet lab experiments conduction.

### References

Barratt, Kevin, and John F. Mackay. 2002. "Improving Real-Time PCR Genotyping Assays by Asymmetric Amplification." *Journal of Clinical Microbiology* 40 (4): 1571–2. doi:10.1128/JCM.40.4.1571-1572.2002.

Brenner, Hermann, and Olaf Gefeller. 1997. "Variation of sensitivity, specificity, likelihood ratios and predictive values with disease prevalence." Statistics in Medicine 16 (9): 981–91. http://www.floppybunny.org/robin/web/virtualclassroom/stats/basics/articles/odds\_risks/odds\_sensitivity)likelihood\_ratios\_validity\_brenner\_1997.pdf.

Dvinge, Heidi, and Paul Bertone. 2009. "HTqPCR: high-throughput analysis and visualization of quantitative real-time PCR data in R." *Bioinformatics* 25 (24): 3325–6. doi:10.1093/bioinformatics/btp578.

Kemperman, Lauren, and Matthew N. McCall. 2017. "miRcomp-Shiny: Interactive assessment of qPCR-based microRNA quantification and quality control algorithms." F1000Research 6 (November): 2046. https://f1000research.com/articles/6-2046/v1.

Kuhn, Max. 2008. "Building Predictive Models in R Using the caret Package." *Journal of Statistical Software* 28 (5). http://www.jstatsoft.org/v28/i05/.

Lefever, Steve, Jan Hellemans, Filip Pattyn, Daniel R. Przybylski, Chris Taylor, René Geurts, Andreas Untergasser, Jo Vandesompele, and on behalf of the RDML Consortium. 2009. "RDML: structured language and reporting guidelines for real-time quantitative PCR data." *Nucleic Acids Research* 37 (7): 2065–9. doi:10.1093/nar/gkp056.

Martins, C., G. Lima, Mr. Carvalho, L. Cainé, and Mj. Porto. 2015. "DNA quantification by real-time PCR in different forensic samples." Forensic Science International: Genetics Supplement Series 5 (December): e545–e546. doi:10.1016/j.fsigss.2015.09.215.

R Core Team. 2017. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Ritz, Christian, and Andrej-Nikolai Spiess. 2008. "qpcR: an R package for sigmoidal model selection in quantitative real-time polymerase chain reaction analysis." *Bioinformatics* 24 (13): 1549–51. doi:10.1093/bioinformatics/btn227.

Rödiger, Stefan, Michał Burdukiewicz, and Peter Schierack. 2015. "chipPCR: an R package to pre-process raw data of amplification curves." *Bioinformatics* 31 (17): 2900–2902. doi:10.1093/bioinformatics/btv205.

Rödiger, Stefan, Michał Burdukiewicz, Konstantin A. Blagodatskikh, and Peter Schierack. 2015. "R as an Environment for the Reproducible Analysis of DNA Amplification Experiments." The R Journal 7 (2):

127–50. http://journal.r-project.org/archive/2015-1/RJ-2015-1.pdf.

Rödiger, Stefan, Michał Burdukiewicz, Andrej-Nikolai Spiess, and Konstantin Blagodatskikh. 2017. "Enabling reproducible real-time quantitative PCR research: the RDML package." *Bioinformatics*, August. doi:10.1093/bioinformatics/btx528.

Rödiger, Stefan, Thomas Friedrichsmeier, Prasenjit Kapat, and Meik Michalke. 2012. "RKWard: a comprehensive graphical user interface and integrated development environment for statistical analysis with R." *Journal of Statistical Software* 49 (9): 1–34. https://www.jstatsoft.org/article/view/v049i09/v49i09.pdf.

Ronde, Maurice W. J. de, Jan M. Ruijter, David Lanfear, Antoni Bayes-Genis, Maayke G. M. Kok, Esther E. Creemers, Yigal M. Pinto, and Sara-Joan Pinto-Sietsma. 2017. "Practical data handling pipeline improves performance of qPCR-based circulating miRNA measurements." RNA 23 (5): 811–21. doi:10.1261/rna.059063.116.

Ruijter, Jan M., Steve Lefever, Jasper Anckaert, Jan Hellemans, Michael W. Pfaffl, Vladimir Benes, Stephen A. Bustin, Jo Vandesompele, Andreas Untergasser, and on behalf of the RDML Consortium. 2015. "RDML-Ninja and RDMLdb for standardized exchange of qPCR data." *BMC Bioinformatics* 16 (1): 197. doi:10.1186/s12859-015-0637-6.

Ruijter, Jan M., Michael W. Pfaffl, Sheng Zhao, Andrej N. Spiess, Gregory Boggy, Jochen Blom, Robert G. Rutledge, et al. 2013. "Evaluation of qPCR curve analysis methods for reliable biomarker discovery: Bias, resolution, precision, and implications." *Methods* 59 (1): 32–46. doi:10.1016/j.ymeth.2012.08.011.

Sauer, Eva, Ann-Kathrin Reinke, and Cornelius Courts. 2016. "Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR." Forensic Science International: Genetics 22 (May): 89–99. doi:10.1016/j.fsigen.2016.01.018.

Spiess, Andrej-Nikolai, Claudia Deutschmann, Michał Burdukiewicz, Ralf Himmelreich, Katharina Klat, Peter Schierack, and Stefan Rödiger. 2015. "Impact of Smoothing on Parameter Estimation in Quantitative DNA Amplification Experiments." Clinical Chemistry 61 (2): 379–88. doi:10.1373/clinchem.2014.230656.

Spiess, Andrej-Nikolai, Caroline Feig, and Christian Ritz. 2008. "Highly accurate sigmoidal fitting of real-time PCR data by introducing a parameter for asymmetry." *BMC Bioinformatics* 9 (1): 221. doi:10.1186/1471-2105-9-221.

Spiess, Andrej-Nikolai, Stefan Rödiger, Michał Burdukiewicz, Thomas Volksdorf, and Joel Tellinghuisen. 2016. "System-specific periodicity in quantitative real-time polymerase chain reaction data questions threshold-based quantitation." *Scientific Reports* 6 (December): 38951. doi:10.1038/srep38951.

Table 4: Aggregated decisions from the human classification and the results from the machine decision of the hookreg() and hookregNL() functions.

| egN      | $\mathrm{L}()$ function        | ns.         |         |           |                                |
|----------|--------------------------------|-------------|---------|-----------|--------------------------------|
|          | Sample                         | Human rater | hookreg | hookregNL | hookreg and hoohkreNL combined |
| 1        | F1.1                           | 1           | 1       | 1         | 1                              |
| 2        | F1.2                           | 1           | 1       | 1         | 1                              |
| 3        | F2.1                           | 1           | 1       | 1         | 1                              |
| 4        | F2.2                           | 1           | 1       | 1         | 1                              |
| 5        | F3.1                           | 0           | 0       | 0         | 0                              |
| 6        | F3.2<br>F4.1                   | 0           | 0       | 0         | 0                              |
| 7<br>8   | F4.1<br>F4.2                   | 0           | 0       | 0         | 0                              |
| 9        | F5.1                           | 0           | 0       | 0         | 0                              |
| 10       | F5.2                           | 0           | 0       | 0         | 0                              |
| 11       | F6.1                           | 0           | ő       | 0         | 0                              |
| 12       | F6.2                           | 0           | 0       | 0         | 0                              |
| 13       | HP1                            | 0           | 0       | 0         | 0                              |
| 14       | HP2                            | 0           | 0       | 0         | 0                              |
| 15       | HP3                            | 0           | 0       | 0         | 0                              |
| 16       | HP4                            | 0           | 0       | 0         | 0                              |
| 17       | HP5                            | 0           | 0       | 0         | 0                              |
| 18       | HP6                            | 0           | 0       | 0         | 0                              |
| 19       | HP7                            | 0           | 0       | 0         | 0                              |
| 20       | HP8                            | 0           | 0       | 0         | 0                              |
| 21<br>22 | HP9<br>HP10                    | 0           | 0       | 0         | 0                              |
| 23       | HP11                           | 0           | 0       | 0         | 0                              |
| 24       | HP12                           | 0           | 0       | 0         | 0                              |
| 25       | HP13                           | 0           | 0       | 0         | 0                              |
| 26       | HP14                           | 0           | 0       | 0         | 0                              |
| 27       | HP15                           | 0           | 0       | 0         | 0                              |
| 28       | HP16                           | 0           | 0       | 0         | 0                              |
| 29       | HP17                           | 0           | 0       | 0         | 0                              |
| 30       | HP18                           | 0           | 0       | 0         | 0                              |
| 31       | HP19                           | 0           | 0       | 0         | 0                              |
| 32       | HP20                           | 0           | 0       | 0         | 0                              |
| 33       | HP21                           | 0           | 0       | 0         | 0                              |
| 34<br>35 | HP22<br>HP23                   | 0           | 0       | 0         | $0 \\ 0$                       |
| 36       | HP24                           | 0           | 0       | 0         | 0                              |
| 37       | HP25                           | 0           | 0       | 0         | 0                              |
| 38       | HP26                           | 0           | 0       | 0         | 0                              |
| 39       | HP27                           | 0           | 0       | 0         | 0                              |
| 40       | HP28                           | 0           | 0       | 0         | 0                              |
| 41       | HP29                           | 0           | 0       | 0         | 0                              |
| 42       | HP30                           | 0           | 0       | 0         | 0                              |
| 43       | HP31                           | 0           | 0       | 0         | 0                              |
| 44       | HP32                           | 0           | 0       | 0         | 0                              |
| 45       | F1.1_td                        | 0           | 0       | 0         | 0                              |
| 46       | F1.2_td                        | 0           | 1       | 0         | 1                              |
| 47<br>48 | F1.3_td<br>F1.4_td             | 0           | 0       | 0         | 0                              |
| 49       | F2.1_td                        | 0           | 0       | 0         | 0                              |
| 50       | F2.2 td                        | 0           | ő       | 0         | 0                              |
| 51       | F2.3_td                        | 0           | 0       | 0         | 0                              |
| 52       | $F2.4$ _td                     | 0           | 0       | 0         | 0                              |
| 53       | F3.1_td                        | 0           | 0       | 0         | 0                              |
| 54       | F3.2_td                        | 0           | 0       | 0         | 0                              |
| 55       | F3.3_td                        | 0           | 0       | 0         | 0                              |
| 56       | F3.4_td                        | 0           | 0       | 0         | 0                              |
| 57       | F4.1_td                        | 0           | 0       | 0         | 0                              |
| 58       | F4.2_td                        | 0           | 0       | 0         | 0                              |
| 59<br>60 | F4.3_td<br>F4.4_td             | 0           | 0       | 0         | 0                              |
| 61       | F5.1_td                        | 0           | 0       | 0         | 0                              |
| 62       | F5.2 td                        | 0           | 0       | 0         | 0                              |
| 63       | F5.3_td                        | 0           | 0       | 0         | 0                              |
| 64       | F5.4_td                        | 0           | 0       | 0         | 0                              |
| 65       | F6.1_td                        | 0           | 0       | 0         | 0                              |
| 66       | $F6.2\_td$                     | 0           | 0       | 0         | 0                              |
| 67       | F6.3_td                        | 0           | 0       | 0         | 0                              |
| 68       | F6.4_td                        | 0           | 0       | 0         | 0                              |
| 69       | F09~WGA                        | 1           | 0       | 1         | 1                              |
| 70       | F10~WGA                        | 1<br>1      | 0       | 1<br>0    | 1                              |
| 71<br>72 | F11~1ng/mkl<br>F12~1ng/mkl     | 1           | 1       | 0         | 1<br>1                         |
| 73       | G01~100ng/mkl                  | 1           | 1       | 0         | 1                              |
| 74       | G02~100ng/mkl                  | 1           | 1       | 0         | 1                              |
| 75       | G03~1ng/mkl                    | 0           | 0       | 0         | 0                              |
| 76       | G04~1ng/mkl                    | 0           | 0       | 0         | 0                              |
| 77       | G05~100ng/mkl                  | 0           | 0       | 0         | 0                              |
| 78       | G06~100ng/mkl                  | 0           | 0       | 0         | 0                              |
| 79       | $G07^{-}1ng/mkl$               | 1           | 1       | 0         | 1                              |
| 80       | G08~1ng/mkl                    | 1           | 1       | 0         | 1                              |
| 81       | G09~100ng/mkl                  | 1           | 1       | 0         | 1                              |
| 82       | G10~100ng/mkl                  | 1           | 11      | 0         | 1                              |
| 83       | G11~1ng/mkl                    | 0           | 0       | 0         | 0                              |
| 84<br>85 | G12~1ng/mkl                    | 0           | 0       | 0         | 0                              |
| 86<br>86 | H01~100ng/mkl<br>H02~100ng/mkl | 0           | 0       | 0         | 0                              |
| 87       | s1                             | 1           | 1       | 0         | 1                              |
| 00       |                                | 1           | 1       | 0         | 1                              |

Table 5: Analysis of the performance of both algorithms. The performance of the individual test and the combination of the tests is shown. Note that the classification improved if the hookreg() and hookregNL() function were combined by a logical statement. The measure were determined with the performeR() function from the PCRedux package. Sensitivity, TPR; Specificity, SPC; Precision, PPV; Negative predictive value, NPV; Fall-out, FPR; False negative rate, FNR; False discovery rate, FDR; Accuracy, ACC; F1 score, F1; Matthews correlation coefficient, MCC, Cohen's kappa (binary classification),  $\kappa$ 

| hookreg         hookregNL         hookreg and hookregNL           TPR         0.9048         0.3333         1.0000           SPC         0.9733         1.0000         0.9733           PPV         0.9048         1.0000         0.9130           NPV         0.9733         0.8427         1.0000           FPR         0.0267         0.0000         0.0267           FNR         0.0952         0.6667         0.0000           FDR         0.0952         0.0000         0.0870           ACC         0.9583         0.8542         0.9792           F1         0.9048         0.5000         0.9545           MCC         0.8781         0.5300         0.9427           LRp         33.9300         Inf         37.5000           kappa         0.8781         0.4386         0.9411           TP         19.0000         75.0000         73.0000           FP         2.0000         0.0000         2.0000           FN         2.0000         14.0000         0.0000           counts         96.0000         96.0000         96.0000 |        |         |           |                       |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|-----------|-----------------------|--|--|
| SPC         0.9733         1.0000         0.9733           PPV         0.9048         1.0000         0.9130           NPV         0.9733         0.8427         1.0000           FPR         0.0267         0.0000         0.0267           FNR         0.0952         0.6667         0.0000           FDR         0.0952         0.0000         0.0870           ACC         0.9583         0.8542         0.9792           F1         0.9048         0.5000         0.9545           MCC         0.8781         0.5300         0.9427           LRp         33.9300         Inf         37.5000           kappa         0.8781         0.4386         0.9411           TP         19.0000         75.0000         73.0000           TN         73.0000         75.0000         73.0000           FP         2.0000         0.0000         2.0000           FN         2.0000         14.0000         0.0000                                                                                                                                  |        | hookreg | hookregNL | hookreg and hookregNL |  |  |
| PPV         0.9048         1.0000         0.9130           NPV         0.9733         0.8427         1.0000           FPR         0.0267         0.0000         0.0267           FNR         0.0952         0.6667         0.0000           FDR         0.0952         0.0000         0.0870           ACC         0.9583         0.8542         0.9792           F1         0.9048         0.5000         0.9545           MCC         0.8781         0.5300         0.9427           LRp         33.9300         Inf         37.5000           kappa         0.8781         0.4386         0.9411           TP         19.0000         7.0000         21.0000           TN         73.0000         75.0000         73.0000           FP         2.0000         0.0000         2.0000           FN         2.0000         14.0000         0.0000                                                                                                                                                                                              | TPR    | 0.9048  | 0.3333    | 1.0000                |  |  |
| NPV         0.9733         0.8427         1.0000           FPR         0.0267         0.0000         0.0267           FNR         0.0952         0.6667         0.0000           FDR         0.0952         0.0000         0.0870           ACC         0.9583         0.8542         0.9792           F1         0.9048         0.5000         0.9545           MCC         0.8781         0.5300         0.9427           LRp         33.9300         Inf         37.5000           kappa         0.8781         0.4386         0.9411           TP         19.0000         7.0000         21.0000           TN         73.0000         75.0000         73.0000           FP         2.0000         0.0000         2.0000           FN         2.0000         14.0000         0.0000                                                                                                                                                                                                                                                         | SPC    | 0.9733  | 1.0000    | 0.9733                |  |  |
| FPR         0.0267         0.0000         0.0267           FNR         0.0952         0.6667         0.0000           FDR         0.0952         0.0000         0.0870           ACC         0.9583         0.8542         0.9792           F1         0.9048         0.5000         0.9545           MCC         0.8781         0.5300         0.9427           LRp         33.9300         Inf         37.5000           kappa         0.8781         0.4386         0.9411           TP         19.0000         7.0000         21.0000           TN         73.0000         75.0000         73.0000           FP         2.0000         0.0000         2.0000           FN         2.0000         14.0000         0.0000                                                                                                                                                                                                                                                                                                                    | PPV    | 0.9048  | 1.0000    | 0.9130                |  |  |
| FNR 0.0952 0.6667 0.0000 FDR 0.0952 0.0000 0.0870 ACC 0.9583 0.8542 0.9792 F1 0.9048 0.5000 0.9545 MCC 0.8781 0.5300 0.9427 LRp 33.9300 Inf 37.5000 kappa 0.8781 0.4386 0.9411 TP 19.0000 7.0000 21.0000 TN 73.0000 75.0000 73.0000 FP 2.0000 0.0000 2.0000 FN 2.0000 14.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NPV    | 0.9733  | 0.8427    | 1.0000                |  |  |
| FDR         0.0952         0.0000         0.0870           ACC         0.9583         0.8542         0.9792           F1         0.9048         0.5000         0.9545           MCC         0.8781         0.5300         0.9427           LRp         33.9300         Inf         37.5000           kappa         0.8781         0.4386         0.9411           TP         19.0000         75.0000         21.0000           TN         73.0000         75.0000         73.0000           FP         2.0000         0.0000         2.0000           FN         2.0000         14.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                         | FPR    | 0.0267  | 0.0000    | 0.0267                |  |  |
| ACC         0.9583         0.8542         0.9792           F1         0.9048         0.5000         0.9545           MCC         0.8781         0.5300         0.9427           LRp         33.9300         Inf         37.5000           kappa         0.8781         0.4386         0.9411           TP         19.0000         75.0000         21.0000           TN         73.0000         75.0000         73.0000           FP         2.0000         0.0000         2.0000           FN         2.0000         14.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FNR    | 0.0952  | 0.6667    | 0.0000                |  |  |
| F1         0.9048         0.5000         0.9545           MCC         0.8781         0.5300         0.9427           LRp         33.9300         Inf         37.5000           kappa         0.8781         0.4386         0.9411           TP         19.0000         7.0000         21.0000           TN         73.0000         75.0000         73.0000           FP         2.0000         0.0000         2.0000           FN         2.0000         14.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FDR    | 0.0952  | 0.0000    | 0.0870                |  |  |
| MCC         0.8781         0.5300         0.9427           LRp         33.9300         Inf         37.5000           kappa         0.8781         0.4386         0.9411           TP         19.0000         7.0000         21.0000           TN         73.0000         75.0000         73.0000           FP         2.0000         0.0000         2.0000           FN         2.0000         14.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ACC    | 0.9583  | 0.8542    | 0.9792                |  |  |
| LRp         33.9300         Inf         37.5000           kappa         0.8781         0.4386         0.9411           TP         19.0000         7.0000         21.0000           TN         73.0000         75.0000         73.0000           FP         2.0000         0.0000         2.0000           FN         2.0000         14.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F1     | 0.9048  | 0.5000    | 0.9545                |  |  |
| kappa         0.8781         0.4386         0.9411           TP         19.0000         7.0000         21.0000           TN         73.0000         75.0000         73.0000           FP         2.0000         0.0000         2.0000           FN         2.0000         14.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MCC    | 0.8781  | 0.5300    | 0.9427                |  |  |
| TP 19.0000 7.0000 21.0000<br>TN 73.0000 75.0000 73.0000<br>FP 2.0000 0.0000 2.0000<br>FN 2.0000 14.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LRp    | 33.9300 | Inf       | 37.5000               |  |  |
| TN 73.0000 75.0000 73.0000<br>FP 2.0000 0.0000 2.0000<br>FN 2.0000 14.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | kappa  | 0.8781  | 0.4386    | 0.9411                |  |  |
| FP 2.0000 0.0000 2.0000<br>FN 2.0000 14.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TP     | 19.0000 | 7.0000    | 21.0000               |  |  |
| FN 2.0000 14.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TN     | 73.0000 | 75.0000   | 73.0000               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FP     | 2.0000  | 0.0000    | 2.0000                |  |  |
| counts 96.0000 96.0000 96.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FN     | 2.0000  | 14.0000   | 0.0000                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | counts | 96.0000 | 96.0000   | 96.0000               |  |  |