Self-Study Session 02

Algorithms and Data Structures (DAT2, SW2, DV2)

Instructions. You have to **work individually** on these questions from 8:15 to 10:00. From 10:00 to 12:00 you can join your group and discuss your solutions together.

- Read carefully the text of each exercise before solving it! Pay particular attentions to the terms in bold.
- If a question seems ambiguous, write under which assumptions you are solving it.
- You can use **CLRS** to refer to the textbook T.H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein, *Introduction to Algorithms* (3rd edition) in your answers.
- Make an effort to use a readable handwriting and to present your solutions neatly.
- The TAs will be available from 10:00 to 12:00. Use the digital trashcan to ask for help.
- The points relative to each question give an indication of their complexity relative to this exercise sheet. These points **may not** correspond to the amount of points you may get for a similar exercise at the exam.

20 Pts

Ques	stion 1.				
Ident	ifying asymptotic no	otation. (Note: lg	means logarithm in	base 2)	
(1.1)	[5 Pts] Mark ALL the correct answers. $n \lg n^5 + n \lg 2^n + n \sqrt{n}$ is				
	\Box b) $\Theta(n \lg n)$	\Box b) $\Theta(n)$	\square c) $\Theta(\sqrt{n})$	\square d) $\Theta(n^2)$	\square e) $\Theta(n^{1.5})$
(1.2)	[5 Pts] Mark ALL the correct answers. $n \lg n^5 + n \lg 2^n + n \sqrt{n}$ is				
	\square a) $\Omega(\lg n)$	\Box b) $O(n)$	\square c) $\Omega(\sqrt{n})$	\square d) $O(n^2)$	\square e) $O(\sqrt{n})$
(1.3)	[5 Pts] Mark ALL the correct answers. $700 \cdot n^2 + \frac{n^2 \lg n}{999} + \lg n^n$ is:				
	\square a) $\Omega(n \lg n)$	\square b) $O(n^3)$	\square c) $O(n^2)$	\square d) $\Omega(n^2 \lg n)$	\square e) $O(n^2 \lg n)$
(1.4)	[5 Pts] Mark ALL all the functions below that satisfy $\lg(f(n) \cdot g(n)) = \Theta(n)$.				
	$\square \ \mathbf{a)} \ f(n) = n^2,$	$g(n) = n^2$	\Box b) $f(n) = 2^n, g(n) = 2^n$		
	\Box c) $f(n) = 2^n$,	$g(n) = 4^n$	\Box d).	\Box d) $f(n) = n \lg n, g(n) = 2^n$	

Question 2.

 $20\,\mathrm{Pts}$

Consider the following recurrences

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \in \{0, 1\} \\ T(n-1) + T(n-2) + \Theta(1) & \text{if } n > 1 \end{cases} \qquad Q(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 8 \cdot Q(n/2) + n^4 & \text{if } n > 1 \end{cases}$$

- (2.1) [5 Pts] Mark **ALL** correct answers.
 - \square a) T(n) can be solved using Case 1 of the Master Theorem
 - \square b) Q(n) can be solved using Case 2 of the Master Theorem
 - \square c) Q(n) can be solved using Case 3 of the Master Theorem
 - \Box d) T(n) cannot be solved using the Master Theorem
- (2.2) [5 Pts] Mark **ALL** correct answers.
 - \square a) $Q(n) = \Theta(n^2 \lg n)$

 \square **b)** $Q(n) = \Omega(n)$

 \square **c)** $Q(n) = \Theta(n^4)$

- □ **d)** $Q(n) = O(n^3)$
- (2.3) [10 Pts] Prove that $T(n) = O(2^n)$ using the substitution method.

Question 3.

 $20\,\mathrm{Pts}$

(3.1) [4 Pts] Mark **ALL** the correct statements. Consider the tree T depicted below

- \square a) The height of T is 3
- \Box b) T satisfies the binary-search tree property
- \Box c) T satisfies the red-black tree property (NIL nodes are omitted)
- \Box d) T satisfies the max-heap property
- \square e) T corresponds to the array [8, 0, 9, 7, 6] interpreted as a binary tree.
- (3.2) [6 Pts] Consider the hash table H = Nil, Nil, 46, 35, Nil, 15, 92, Nil, 52, Nil, 87. Insert the keys 44, 84, 17, 20 in H using open addressing with the auxiliary function h'(k) = k.

Mark the hash table resulting by the insertion of these keys using linear probing.

- \square a) 44, 17, 46, 35, Nil, 15, 92, 84, 52, 20, 87
- \square **b)** 44, Nil, 46, 35, 17, 15, 92, 84, 52, 20, 87
- \Box c) 44, 20, 46, 35, Nil, 15, 92, 84, 52, 17, 87
- \Box **d)** none of the above

Mark the hash table resulting by the insertion of these keys using quadratic probing with $c_1 = 2$ and $c_2 = 4$.

- \square a) 44, 17, 46, 35, Nil, 15, 92, 84, 52, 20, 87
- \square **b)** 44, Nil, 46, 35, 17, 15, 92, 84, 52, 20, 87
- \Box c) 44, 20, 46, 35, Nil, 15, 92, 84, 52, 17, 87
- \Box **d)** none of the above

Mark the hash table resulting by the insertion of these keys using double hashing with $h_1(k) = k$ and $h_2(k) = 1 + (k \mod (m-1))$.

- □ a) 44, 17, 46, 35, Nil, 15, 92, 84, 52, 20, 87
- □ **b)** 44, Nil, 46, 35, 17, 15, 92, 84, 52, 20, 87
- \square c) 44, 20, 46, 35, Nil, 15, 92, 84, 52, 17, 87
- \Box d) none of the above
- (3.3) [10 Pts] Consider the directed graph G depicted below.

- (a) Write the intervals for the discovery time and finishing time of each vertex in the graph obtained by performing a depth-first search visit of *G. Remark:* If more than one vertex can be chosen, choose the one with smallest label.
- (b) Write the corresponding "parenthesization" of the vertices in the sense of Theorem 22.7 in CLRS
- (c) Assign to each edge a label T (tree edge), B (back edge), F (forward edge), or C (cross edge) corresponding to the classification of edges induced by the DFS visit performed before.
- (d) Show the components computed by STRONGLY-CONNECTED-COMPONENTS(G).

Question 4. 20 Pts

A student participates in an exam which includes n different questions Q_1, \ldots, Q_n . Each question Q_i $(i=1\ldots n)$ has a positive value in points, denoted by p_i , and also the time (in minutes) to solve the question, denoted by t_i . Overall, the exam concludes after T minutes. Given this information, the student wants to find a selection $S \subseteq \{1, \ldots, n\}$ of questions to solve that maximises the total amount of points $\sum_{i \in S} p_i$ subject to the time constraint $\sum_{i \in S} t_i \leq T$.

- (a) [5 Pts] Argue why brute-force enumeration of all possible selections of questions leads to an exponential algorithm?
- (b) [10 Pts] Describe a bottom-up dynamic programming procedure PointsQuestions(p, t, T) that takes as input $p[1 \dots n]$, $t[1 \dots n]$, and T > 0 and returns the total amount of points of an optimal selection of questions. Analyse the worst-case running time of your algorithm.
- (c) [5 Pts] Describe a procedure QUESTIONS(p, t, T) that prints an optimal selection of questions.

Question 5. 20 Pts

Let A denote a finite set of labels. We extend the notion of directed graphs to labelled directed graphs G = (V, E) were V is a set of vertices and $E \subseteq V \times A \times V$ is a set of labelled edges. Each labelled edge $(v, a, v') \in E$ is associated to a weight w(v, a, v') by means of a weight function $w: E \to \mathbb{R}$. Let $\pi = \langle v_0, a_1, v_1, a_1, \ldots, a_k v_k \rangle$ be a path of G, the weight of p is the sum of the weights of its constituent edges, namely $w(\pi) = \sum_{i=1}^k w(v_{i-1}, a_i, v_i)$; and the trace of p is the sequence of labels of p, namely $tr(\pi) = a_1 \ldots a_k$.

All-pairs same-trace shortest paths problem: Given a labelled directed graphs G = (V, E) and a trace $\tau = a_1 \dots a_k$, we want to find for every pair of vertices $u, v \in V$ a shortest (least-weighted) path $u \leadsto_{\pi} v$ from u to v such that $tr(\pi) = \tau$.

Hint: By assuming $V = \{1, ..., n\}$ and $A = \{1, ..., m\}$, we can conveniently represent a labelled directed graph G = (V, E) with weight function w by means of a sequence $W^1 ... W^m$ of $n \times n$ adjacency matrices. For $a \in A$ the entry for the pair $(i, j) \in V \times V$ of $W^a = (w_{ij}^a)$ is

$$w_{ij}^{a} = \begin{cases} w(i, a, j) & \text{if } (i, a, j) \in E \\ \infty & \text{if } (i, a, j) \notin E \end{cases}$$

- (a) [10 Pts] Describe an algorithm All-Pairs-Same-Sequence (W, τ) that, given an array W[1..m] of $n \times n$ adjacency matrices and an array $\tau[1..k]$ of labels, returns an $n \times n$ matrix $D = (d_{i,j})$ such that $d_{i,j} = \min\{w(\pi) \mid i \leadsto_{\pi} j, \text{ and } tr(\pi) = \tau\}.$
- (b) [10 Pts] Analyse the asymptotic worst-case running time and space usage of your solution.