

什么是预后预测,意义是什么

寻找与病人预后表现相关的特征(因素),从而判断病人所属生存组别,针对不同组别选择治疗方案

基于深度学习的方法-COX 比例风险回归

 $h_0(t)$ 基础风险函数,表示疾病在t时刻的风险

联合概率分布 (似然)

$$L(\beta) = \prod_{i=1}^{I} \frac{h(X_i, t; \beta)}{\sum_{k=i}^{I} h(X_k, t; \beta)} = \prod_{i=1}^{I} \frac{e^{DL(x_i)}}{\sum_{k=i}^{I} e^{DL(x_k)}}$$

极小化负对数似然

$$\min - \sum_{i=1}^{I} (DL(x_i) - \ln \sum_{k=i}^{I} e^{DL(x_k)})$$

基于概率分布的损失函数,需要对数据分布密集采样,获得有效的统计

基于深度学习的方法-COX 比例风险回归

挑战1:统计失效导致训练不稳定,难以获得有效的收敛。损失函数依靠概率分布,每次计算均需要大量统计数据,基于batch的损失函数计算方式受限于GPU存储空间只能获得少量的统计数据,导致概率分布统计失效,使得损失函数失真,训练不稳定。

基于深度学习的方法-低效的特征提取

预后网络的CAM

心脏内部对比度低,感兴趣结构边缘模糊,难以聚焦感知任务感兴趣特征。

已有的策略-缩小尺寸

严重丢失本就不清晰的边界信息

已有的策略-辅助任务学习

MPA估计分支的注 意力图:**更加聚焦, 关注重要区域**

限制:

- 1. 主导任务的不稳定性。
- 2. 低效率的知识嵌入。仅通过梯度引导底层共享参数的学习,无法嵌入高级的全局知识。

基于先验提示学习和记忆漂移的PAH预后预测

优势:

- 1. **隐先验嵌入**。通过梯度,利用共享表征偏好,引导网络关注与预后相关的特征区域,隐式地嵌入先验知识
- 2. 显先验嵌入。直接将辅助任务预测结果作为提示输入主任务分支,显式地嵌入高级先验知识
- 3. 密集输出空间采样。利用记忆库,保存大量的输出结果,从而无代价的获得大量的采样数据,计算具有统计意义的损失值
- 4. **动态记忆更新**。随着训练动态地更新记忆库,把老的样本丢弃,从而使记忆库中样本分布随输出分布变化。

先验提示学习

b) Memory Drift (MD-) NLPL Loss for optimization on representative statistics

$$y = \mathbf{W}^{\mathsf{T}} \times \mathbf{D} + b$$

COX回归公式

$$y = \mathbf{W^T} \times \mathbf{D} + y^{aux}$$
 先验偏置回归 辅助任务输出

对比分析

Method	MD	HR (95% CI) ↑	C-index (%) ↑	logrank p↓	Time-dependent AUC (%) ↑			
				7 9 mm P V	TP2	TP5	TP8	TP11
MPA (Manual)	-	1.12 (1.04-1.20)	61.69	1.2×10^{-2}	60.89	71.69	73.22	80.51
LPA (Manual)	-	1.13 (1.03-1.24)	61.29	1.0×10^{-1}	55.18	63.63	65.72	71.71
RPA (Manual)	-	1.10 (1.01-1.24)	58.59	1.1×10^{-1}	53.22	60.87	63.61	70.09
MPA/AAo (Manual)	-	1.51 (0.31-7.49)	51.39	5.5×10^{-1}	54.11	55.79	57.96	62.36
MPA/DAo (Manual)	-	1.57 (0.49-5.08)	52.18	7.0×10^{-1}	53.30	58.88	60.61	64.47
Radiomics [7]	-	1.05 (0.82-1.34)	59.70	4.1×10^{-1}	55.35	49.43	41.60	44.94
DeepSurv [9]	×	1.50 (1.14-1.98)	60.38	1.7×10^{-1}	52.81	57.67	59.91	66.40
SurvialNet [12]	\times	1.50 (1.11-2.01)	60.47	2.3×10^{-1}	59.73	56.64	56.94	59.46
LungNet [11]	×	1.69 (1.27-2.24)	63.20	2.1×10^{-2}	64.07	62.93	64.49	67.86
(Multi-task) Deep Profiler [10]	\times	1.14 (0.80-1.61)	52.65	7.8×10^{-1}	49.70	52.21	51.35	63.34
(Multi-task) Cross-Stitch [41]	\times	1.50 (1.06-2.13)	59.67	2.9×10^{-2}	61.01	63.81	58.02	66.91
(Multi-task) Multi-Head [40]	×	1.59 (1.16-2.20)	0.58	1.2×10^{-1}	56.92	62.31	64.47	69.93
DeepSurv [9]	✓	1.65 (1.17-2.33)	64.85	1.4×10^{-2}	65.96	66.04	62.91	66.20
SurvialNet [12]	\checkmark	1.59 (1.11-2.27)	60.49	1.7×10^{-1}	58.98	59.83	61.98	66.73
LungNet [11]	\checkmark	1.68 (1.28-2.20)	63.94	2.4×10^{-2}	65.39	63.89	65.01	68.61
(Multi-task) Deep Profiler [10]	\checkmark	1.55 (1.05-2.27)	61.75	1.5×10^{-2}	64.96	63.80	62.24	68.48
(Multi-task) Cross-Stitch [41]	\checkmark	1.84 (1.29-2.62)	64.87	3.0×10^{-2}	63.77	67.22	58.22	65.74
(Multi-task) Multi-Head [40]	\checkmark	1.64 (1.16-2.31)	64.93	6.2×10^{-2}	65.79	64.45	54.94	58.46
Our P ² -Net wo MD	×	1.97 (1.39-2.79)	65.24	2.9×10^{-3}	66.57	68.92	70.65	76.92
Our P ² -Net	✓	2.14 (1.52-3.02)	70.19	5.6×10^{-3}	72.41	76.15	74.98	78.94

我们的 方法在各项 指标上都表 现出了更高 的性能。

模型分析

MT	MD	PPL	HR (95% CI) ↑	C-index (%) ↑	Prior
			1.50 (1.14-1.98)	60.38	-
		\checkmark	1.97 (1.39-2.79)	65.24	Hidden & explicit
	✓		1.65 (1.17-2.33)	64.85	-
\checkmark	✓		1.64 (1.16-2.31)	64.93	Hidden
	✓	\checkmark	2.14 (1.52-3.02)	70.19	Hidden & explicit

消融实验: DeepSurv仅使用记忆漂移,可获得64.85的C-index,加上多任务学习,由于先验特征的引入,c-index增加到64.93。再加入我们的先验提示学习策略,c-index进一步提高到70.19.

模型分析

分组分析: 利用我们模型输出 的预后因素可视化各组别对象。 高风险普遍表现出更大的的心 脏体积和更大的肺动脉直径。 这是因为分动脉高压累积在肺 动脉和心室, 使得心脏膨大, 肺动脉变粗。低风险则心脏更 小, 肺动脉更细。这证明我们 模型预后结果的准确性。

MPA估计准确性分析: MPA估计 具有临床参考意义,能够为模型的 临床使用提供一定的参考。利用 Bland-Altman分析,模型估计MPA 和医生测量MPA普遍在95%LoA之 内,在临床上可接受。

模型分析

CAM from Priori Network

CAM from Prognosis Network

各分支关注区域分析: 利用CAM图 分析模型关注区域, 先验网络拥有 更聚焦的关注区域, 能够为主网络 提供好的偏好。

感谢大家, 欢迎提问