MAT232 - Lecture 6

vectors?

AlexanderTheMango

Prepared for January 23, 2025

Contents

Tit	itle Page				0
Preliminary Concepts					1
	Introduction to Vectors		1	ે (1
	Vector Representation			\	1
	Basic Vector Operations			.\	2
	Scalar Multiplication			.\	2
	Vector Addition			. \	2
	Vector Subtraction				3
	Vector Components				3
	Magnitude of a Vector				3
	Properties of Vector Operations		\		3
	Applications of Vectors				4
	Introduction to Three-Dimensional Space				4
	Locating Points in Space				5
	Coordinate Planes in \mathbb{R}^3				5
	Distance Formula in Three Dimensions				5
	Equations of Planes				5
	Equations of Spheres	3			6
	Graphing Equations in Three Dimensions	\mathcal{L}			6
	Working with Vectors in \mathbb{R}^3		6	Ø,	7
	Vector Operations in \mathbb{R}^3	. /		7. (7
	Properties of Vectors in \mathbb{R}^3				8

Definitions and Theorems

Straight from the textbook — no fluff, just what we need.

Quick recap before diving into the lecture.

Introduction to Vectors

Definition

A **vector** is a quantity that has both magnitude and direction. Vectors can be optionally denoted in multiple ways:

• Boldface Notation: v

• Arrow Notation: \vec{v}

• Overline Notation: \overline{v}

Note

In MAT232H5, the contents of a vector are typically written using angle bracket notation:

$$\mathbf{v} = \langle v_1, v_2, v_3 \rangle$$

For example, a 3D vector can be represented as:

$$\vec{v} = \langle 2, -1, 3 \rangle$$

Depending on the context, you might see $\mathbf{v} = \langle v_1, v_2 \rangle$ in 2D or $\mathbf{v} = \langle v_1, v_2, v_3, v_4 \rangle$ in higher dimensions.

Remark

Quantities such as velocity and force are examples of vectors because they require both magnitude and direction to be fully described.

Vector Representation

A **vector** in a plane is represented by a directed line segment (an arrow) with an **initial point** and a **terminal point**. The length of the segment represents its **magnitude**, denoted $\|\vec{v}\|$. A vector with the same initial and terminal point is called the **zero vector**, denoted $\vec{0}$.

Two vectors \vec{v} and \vec{w} are equivalent if they have the same magnitude and direction, written as $\vec{v} = \vec{w}$.

Exercise

Sketching Vectors

Sketch a vector in the plane from initial point P(1,1) to terminal point Q(8,5).

Basic Vector Operations

Scalar Multiplication

Multiplying a vector \vec{v} by a scalar k results in a new vector $k\vec{v}$ with the following properties:

- · Its magnitude is |k| times the magnitude of \vec{v} .
- · Its direction remains the same if k > 0.
- · Its direction is reversed if k < 0.
- If k = 0 or $\vec{v} = \vec{0}$, then $k\vec{v} = \vec{0}$.

Note

The zero vector $\vec{0}$ is the vector with a magnitude of 0 and no direction (or any direction). It is the only vector that is orthogonal (perpendicular) to every vector, including itself.

Exercise

Scalar Multiplication

Given vector \vec{v} , sketch the vectors $3\vec{v}$, $\frac{1}{2}\vec{v}$, and $-\vec{v}$.

Vector Addition

The sum of two vectors \vec{v} and \vec{w} is constructed by placing the initial point of \vec{w} at the terminal point of \vec{v} . The vector sum, $\vec{v} + \vec{w}$, is the vector from the initial point of \vec{v} to the terminal point of \vec{w} .

Exercise

Vector Addition

Given vectors \vec{v} and \vec{w} , sketch $\vec{v} + \vec{w}$ using both the triangle method and the parallelogram method.

Vector Subtraction

The difference $\vec{v} - \vec{w}$ is defined as $\vec{v} + (-\vec{w})$, where $-\vec{w}$ is the vector with the same magnitude as \vec{w} but opposite direction.

Exercise

Vector Subtraction

Given vectors \vec{v} and \vec{w} , sketch $\vec{v} - \vec{w}$.

Vector Components

A vector in standard position has its initial point at the origin (0,0). If the terminal point is (x,y), the vector is written in **component form** as $\vec{v} = \langle x, y \rangle$. The scalars x and y are called the **components** of \vec{v} .

Exercise

Expressing Vectors in Component Form

Express vector \vec{v} with initial point (-3,4) and terminal point (1,2) in component form.

Magnitude of a Vector

Definition

The magnitude of a vector $\vec{v} = \langle x, y \rangle$ is its length, and is given by:

$$\|\overrightarrow{v}\| = \sqrt{x^2 + y^2}.$$

Exercise

Find the magnitude of the vector $\vec{v} = \langle 3, -4 \rangle$.

Properties of Vector Operations

Theorem

Let \vec{u} , \vec{v} , and \vec{w} be vectors, and let k and c be scalars. Then:

- 1. $\vec{u} + \vec{v} = \vec{v} + \vec{u}$ (Commutative Property)
- 2. $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$ (Associative Property)
- 3. $k(c\vec{v}) = (kc)\vec{v}$ (Associativity of Scalar Multiplication)
- 4. $k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$ (Distributive Property)

Proof

Proof of Commutative Property:

Let $\overrightarrow{u} = \langle u_1, u_2 \rangle$ and $\overrightarrow{v} = \langle v_1, v_2 \rangle$. Then:

$$\overrightarrow{u} + \overrightarrow{v} = \langle u_1 + v_1, u_2 + v_2 \rangle = \langle v_1 + u_1, v_2 + u_2 \rangle = \overrightarrow{v} + \overrightarrow{u}.$$

Applications of Vectors

Example

Real-Life Applications

- A boat crossing a river experiences a force from its motor and a force from the river current. Both forces are vectors.
- A quarterback throwing a football applies a velocity vector to the ball, determining its speed and direction.

Introduction to Three-Dimensional Space

The three-dimensional rectangular coordinate system consists of three perpendicular axes: the x-axis, the y-axis, and the z-axis, with an origin at the point of intersection (0,0,0). This system is often denoted by \mathbb{R}^3 .

Tin

The three-dimensional coordinate system follows the **right-hand rule**. If you align your right hand's fingers with the positive x-axis and curl them toward the positive y-axis, your thumb points in the direction of the positive z-axis.

Remark

This can also be visualized by holding a screwdriver with your right hand. If you rotate the screwdriver from the positive x-axis to the positive y-axis, the direction of the screwdriver represents the positive z-axis.

Note

The right-hand rule can serve as a visual aid for determining the direction of the cross product of two vectors.

Locating Points in Space

A point in three-dimensional space is represented by coordinates (x, y, z), where:

- x is the distance along the x-axis,
- y is the distance along the y-axis,
- z is the distance along the z-axis.

Exercise

Sketch the points (-2, 3, -1) and (1, -2, 3) in three-dimensional space.

Coordinate Planes in \mathbb{R}^3

The three coordinate planes in \mathbb{R}^3 are:

- The xy-plane: $\{(x, y, 0) \mid x, y \in \mathbb{R}\},\$
- The xz-plane: $\{(x,0,z) \mid x,z \in \mathbb{R}\},\$
- The yz-plane: $\{(0, y, z) \mid y, z \in \mathbb{R}\}.$

Note

The coordinate planes divide space into eight regions called **octants**. The first octant is where x > 0, y > 0, and z > 0; the other octants are numbered counterclockwise. It's like quadrants in 2D, but with that extra dimension!

Distance Formula in Three Dimensions

Theorem

The distance d between points $P_1 = (x_1, y_1, z_1)$ and $P_2 = (x_2, y_2, z_2)$ is given by:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

Exercise

Find the distance between points $P_1 = (1, -5, 4)$ and $P_2 = (4, -1, -1)$.

Equations of Planes

A plane parallel to one of the coordinate planes can be described by:

• z = c for a plane parallel to the xy-plane,

- y = b for a plane parallel to the xz-plane,
- x = a for a plane parallel to the yz-plane.

Exercise

Write an equation of the plane passing through point (1, -6, -4) that is parallel to the xy-plane.

Equations of Spheres

Definition

A **sphere** is the shape described by the set of all points in space equidistant from a fixed point, called the **centre**. The distance from the centre to any point on the sphere is called the **radius**.

Theorem

Equation of a Sphere:

The sphere with centre (a, b, c) and radius r is given by:

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2.$$

Exercise

Find the standard equation of the sphere with center (-2, 4, -5) and passing through point (4, 4, -1).

Exercise

Find the equation of the sphere with diameter PQ, where P=(2,-1,-3) and Q=(-2,5,-1).

Graphing Equations in Three Dimensions

Exercise

Describe the set of points that satisfies (y+2)(z-3)=0, and graph the set.

Exercise

Describe the set of points in three-dimensional space that satisfies $x^2 + (z-2)^2 = 16$, and graph the surface.

Working with Vectors in \mathbb{R}^3

Definition

A three-dimensional vector is a quantity with both magnitude and direction, represented by a directed line segment (arrow) in \mathbb{R}^3 . A vector $\overrightarrow{v} = \langle x, y, z \rangle$ has its initial point at the origin (0,0,0) and its terminal point at (x,y,z). The zero vector is $\overrightarrow{0} = \langle 0,0,0 \rangle$.

Exercise

Checkpoint 2.18:

Let S = (3, 8, 2) and T = (2, -1, 3). Express \overrightarrow{ST} in component form and in standard unit form.

Vector Operations in \mathbb{R}^3

Definition

Let $\vec{v} = \langle x_1, y_1, z_1 \rangle$ and $\vec{w} = \langle x_2, y_2, z_2 \rangle$ be vectors in \mathbb{R}^3 , and let k be a scalar. Then:

- Vector Addition: $\vec{v} + \vec{w} = \langle x_1 + x_2, y_1 + y_2, z_1 + z_2 \rangle$
- Scalar Multiplication: $k\vec{v} = \langle kx_1, ky_1, kz_1 \rangle$
- Vector Subtraction: $\overrightarrow{v} \overrightarrow{w} = \overrightarrow{v} + (-\overrightarrow{w}) = \langle x_1 x_2, y_1 y_2, z_1 z_2 \rangle$
- Magnitude: $\|\vec{v}\| = \sqrt{x_1^2 + y_1^2 + z_1^2}$
- Unit Vector: The unit vector in the direction of \vec{v} is $\frac{1}{\|\vec{v}\|}\vec{v}$, provided $\vec{v} \neq \vec{0}$.

Exercise

Vector Operations in Three Dimensions

Let $\vec{v} = \langle -2, 9, 5 \rangle$ and $\vec{w} = \langle 1, -1, 0 \rangle$. Find the following vectors:

- $3\vec{v} 2\vec{w}$
- 5|| w̄||
- ||5w||
- A unit vector in the direction of \vec{v}

Exercise

Let $\vec{v} = \langle -1, -1, 1 \rangle$ and $\vec{w} = \langle 2, 0, 1 \rangle$. Find a unit vector in the direction of $5\vec{v} + 3\vec{w}$.

Properties of Vectors in \mathbb{R}^3

Theorem

Properties of Vectors in Space:

Let \vec{u} , \vec{v} , and \vec{w} be vectors in \mathbb{R}^3 , and let k and c be scalars. Then:

- 1. $\vec{u} + \vec{v} = \vec{v} + \vec{u}$ (Commutative Property)
- 2. $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$ (Associative Property)
- 3. $\vec{u} + \vec{0} = \vec{u}$ (Additive Identity Property)
- 4. $\vec{u} + (-\vec{u}) = \vec{0}$ (Additive Inverse Property)
- 5. $k(c\vec{v}) = (kc)\vec{v}$ (Associativity of Scalar Multiplication)
- 6. $k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$ (Distributive Property)
- 7. $(k+c)\vec{u} = k\vec{u} + c\vec{u}$ (Distributive Property)
- 8. $1\vec{u} = \vec{u}$ and $0\vec{u} = \vec{0}$ (Identity and Zero Properties)

Proof

Proof of Commutative Property:

Let $\overrightarrow{u} = \langle u_1, u_2, u_3 \rangle$ and $\overrightarrow{v} = \langle v_1, v_2, v_3 \rangle$. Then:

$$\vec{u} + \vec{v} = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle = \langle v_1 + u_1, v_2 + u_2, v_3 + u_3 \rangle = \vec{v} + \vec{u}.$$

self-note: continue from here with section 2.3 and section 2.4 in the textbook

