المادة: الرياضيات الشهادة: الثانوية العامة ـ فرع الاجتماع والاقتصاد

نموذج رقم -1- المدّة: ساعتان

الهيئة الأكاديميّة المشتركة قسم : الرياضيات

نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-2017 وحتى صدور المناهج المطوّرة)

ارشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الوارد في المسابقة.

I- (4 points)

Le tableau suivant représente le TVA sur les tissus durant les 6 dernières années dans un certain pays.

						1 2
Année	2010	2011	2012	2013	2014	2015
Rang de l'année xi	3	4	5	6	7	8
TAV y _i	600	700	750	950	1100	1350
(en millions de LL)						

- 1) Calculer les moyennes \bar{x} et \bar{y} des deux séries statistiques x_i et y_i respectivement.
- 2) Représenter graphiquement le nuage de points $(x_i; y_i)$ ainsi que le point moyen $G(\bar{x}; \bar{y})$ dans un repère orthogonal.
- 3) Ecrire une équation de la droite de régression $D_{y/x}$ de y en fonction de x et tracer cette droite dans le repère précédent.
- 4) On suppose que le modèle précédent reste valable jusqu'en 2020. Estimer le TVA sur les tissus dans l'année 2020.

II- (4 points)

Un magasin vend des produits (parfums, des gels pour cheveux et des shampoing) de deux marques A et B

10% de la marque A sont des parfums, 30 % sont des gels pour cheveux et le reste est constitué de shampoing.

50% de la marque B sont des parfums, 20 % sont des gels pour cheveux et le reste est constitué de shampoing.

Un client choisit un produit au hasard.

On considère les événements:

- A: "Le produit est de la marque A"
- **B**: "Le produit est de la marque B"
- H: "Le produit est un gel pour cheveux"
- **F**: "Le produit est un parfum"
- S: "Le produit est un shampoing"

On suppose que $P(A) = \frac{2}{3}$ et $P(B) = \frac{1}{3}$.

1)

- **a-** Calculer les probabilités: $P(A \cap F)$, $P(A \cap H)$, $P(A \cap S)$ et P(F).
- **b-** Calculer la probabilité de l'événement: "Le produit choisi est de marque A, sachant que c'est un parfum.

2) Les prix des produits sont donnés dans le tableau ci-dessous.

	Shampoing	Parfum	Gel pour cheveux
A	15 000 LL	80 000 LL	10 000 LL
В	10 000 LL	50 000 LL	5 000 LL

On désigne par X la variable aléatoire qui représente la somme payée par le client.

- a. Déterminer la loi de probabilité de X.
- b. Calculer l'espérance mathématique de X. Interpréter le résultat obtenu.

III- (4 points)

Pour assurer l'avenir de leur nouveau-né, une banque propose aux parents l'offre suivante:

Pour un dépôt de 10 000 000 LL, à un taux d'intérêt annuel de 8 % capitalisé annuellement, auquel une somme de 400 000 LL s'ajoute à la fin de chaque année.

On désigne par C_0 le capital initial l ($C_0 = 10\ 000\ 000$), et par C_n le capital obtenu à la fin de la nième année.

- 1) a-Vérifier que C_1 =11 200 000 et calculer C_2 . En déduire que la suite (C_n) n'est ni arithmétique ni géométrique.
 - **b-**Exprimer C_{n+1} en fonction de C_n .
- 2) On considère la suite (U_n) définie par : $U_n = C_n + 5\,000\,000$.
 - **a-** Montrer que (U_n) est une suite géométrique de raison 1,08 et dont on déterminera le premier terme.
 - **b-** Exprimer U_n en fonction n. En déduire C_n en fonction de n.
 - **c-** Que sera, 18 ans plus tard, le montant du capital de l'enfant dont les parents ont accepté cette offre ?

IV-(8points)

La courbe ci – contre (C) représente une fonction h continue et strictement décroissante sur l'intervalle

$$]0; +\infty[$$
, définie par :

h(x) = a + bx - ln(x) où a et b sont deux nombres réels.

Indication: La droite (d) d'équation: y = -1.2x + 4 est tangente à la courbe (C) en un point (1; 2.8)

2) Dresser le tableau de variation de h.

B) Soit g une fonction définie sur $[0; +\infty[$ par :

 $g(x) = 3(1-e^{-0.2x})$. Soit (C_1) la courbe représentative de g dans un repère orthonormé.

- 1. Calculer $\lim_{x\to +\infty} g(x)$ et déduire une asymptote à (C_1) .
- 2. Calculer g'(x) la dérivée de g et dresser son tableau de variations.
- 3. (C₁) coupe (C) en un point d'abscisse α . Vérifier que 2,93 < α < 2,95
- 4. Tracer (C₁) et (C) dans le même repère.

C) Dans ce qui suit prendre $\alpha = 2,94$

Une usine produit un certain article électronique. Les fonctions de demande et d'offre exprimées en milliers d'articles sont modélisées respectivement par D(p) = 3 (1-e-0.2p) et S(p) = 3 - 0.2p - $\ln p$ Où p est le prix de l'unité (prix d'un article) en milliers de LL. $(0.2 \le p \le 5)$.

- 1. Calculer l'offre qui correspond à un prix de l'unité de 2 000 LL.
- 2. Calculer le prix de l'unité pour une demande de 2000 articles.
- 3. Donnez une interprétation économique pour la valeur 2,94 de $\,\alpha$. Calculez, dans ce cas, le revenu total.
- 4.a- Déterminer e(p), l'élasticité de la demande en fonction de p.
 - b Calculer e(2,94), et donne une interprétation économique du résultat obtenu.

المادة: الرياضيات الشهادة: الثانوية العامة ـ فرع الاجتماع والاقتصاد نموذج رقم -1-المدّة: ساعتان

الهيئة الأكاديميّة المشتركة قسم: الرياضيات

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعذل للعام الدراسي 2016-2017 وحتى صدور المناهج المطوّرة)

Question II							note			
1)	a-	$P(A \cap F) = \frac{1}{15}, \ P(A \cap H) = \frac{1}{5}, \ P(A \cap S) = \frac{2}{15},$ $P(F) = P(A \cap F) + P(B \cap F) = \frac{2}{30} + \frac{5}{30} = \frac{7}{30}$						0.5 0.5 0.5 0.5		
	b-	$P(F/A) = \frac{P(F \cap A)}{P(A)} = \frac{2}{7}$						0.5		
2)	a-	$X = x_i$ $P(X = x_i)$	5 000 1 15	$\frac{3}{10}$	$\frac{2}{5}$	$\frac{1}{6}$	$\frac{1}{15}$	Total 1		1
	b-								0.5	
	Question III							note		
1)	a-	$C_1 = 10\ 000\ 000 + 10\ 000\ 000 \times 0.08 + 400\ 000 = 11\ 200\ 000$ $C_2 = 11\ 200\ 000 + 11\ 200\ 000 \times 0.08 + 400\ 000 = 12\ 496\ 000$ $\frac{C_1}{C_0} \neq \frac{C_2}{C_1} \text{ and } C_1 - C_0 \neq C_2 - C_1$						0.25 0.25 0.25 0.25		
	b-	$C_{n+1} = C_n + 0.08C_n + 400\ 000 = 1.08C_n + 400\ 000$							0.5	
	a-	$U_{n+1} = 1.08(C_n + 5000000) = 1.08U_n$; (U _n) est une suite géometrique de raison 1.08 dont le premier terme U ₀ = 15 000 000.					1			
2)	b-	$U_n = U_0 \times r^n = 15 \times 1000000 \times 1.08^n$ and $C_n = 15 \times 1000000 \times 1.08^n - 5000$					0.5 0.5			
	c- $C_{18} = 15000000 \times 1.08^{18} - 5000 = 54940000 LL$								0.5	

	Question IV	note
A B-1	1) $h(1)=2.8$ donc $a+b=2.8$ h'(1)=-1.2 alors $b-1=-1.2$ alors $b=-0.2$ and $a=32) \frac{x \mid 0}{h'(x)} \qquad - \frac{1}{h(x)} \lim_{x \to +\infty} f(x) = 3 y=3 \text{ asymptote horizontale.} $	0.5
D-1		0.5
B-2	$g'(x) = 0.6e^{-0.2x}.$ $\begin{array}{c cccc} x & 0 & +\infty \\ g'(x) & + & \\ g(x) & & 3 \\ 0 & & & \end{array}$	1
B-3	Soit $L(x)=f(x)-g(x)$ $L(2.93) \times L(2.95) < 0$ Donc 2,93 <\alpha < 2,95	0,5
B-4	Description of Description (CCC) (CC	1
C-1	S(2)=1.906 milles articles	0.5
C2	D(p)= 2 donc $e^{-0.2p} = \frac{-1}{3}$ donc p= ln(3)/0.2 donc p=5.4930 milles LL.	0.5
C-3	2.94 est le prix d'equilibre du marché. Revenue= 2.94 x D (2.94)=3.921 en millions de LL.	1
C-4-	$e(p) = \frac{0.2p \ e^{-0.2p}}{1 - e^{-0.2p}}$	0.5
a C-4- b	e(2.94)=0.73 si le prix augmente de 1% a partir du prix 2.94 alors la demande diminue de 0,73%	1