Números Inteiros (Notas de Aula)

Julio Cesar Moraes Pezzott

Departamento de Matemática, UEM,

E-mail: jcmpezzott2@uem.br

O texto que se encaminha é baseado nos livros citados abaixo e para uma melhor compreensão do assunto, recomendamos o estudo destes:

- H. H. Domingues. Fundamentos de aritmética. Florianópolis: Editora da UFSC, 2009.
- C. P. Milies e S. P. Coelho. *Números. Uma introdução* à matemática. 3^a ed. São Paulo: Edusp, 2003.

1 Fundamentação axiomática

Iremos denotar o conjunto dos números inteiros por \mathbb{Z} :

$$\mathbb{Z} = \{\ldots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}.$$

Em \mathbb{Z} , estão definidas duas operações: a *adição* "+" e a *multiplicação* "·". O primeiro grupo de axiomas colocados aqui destaca propriedades de tais operações:

- (Ax.1) (Associatividade da adição): Para quaisquer números inteiros a, b, c, temos que a + (b + c) = (a + b) + c.
- (Ax.2) (Elemento neutro da adição): Existe um único elemento em \mathbb{Z} , o qual é denotado por 0 e chamado de zero ou elemento neutro da adição, tal que a+0=a, para todo $a\in\mathbb{Z}$.
- (Ax.3) (Existência do Oposto): Para cada $a \in \mathbb{Z}$, existe um único elemento em \mathbb{Z} , o qual é denotado por -a e chamado de *oposto* de a, tal que a + (-a) = 0.
- (Ax.4) (Comutatividade da adição): Para quaisquer números inteiros a e b, temos que a+b=b+a.
- (Ax.5) (Associatividade da multiplicação): Para quaisquer números inteiros a,b,c, temos que a(bc)=(ab)c.
- (Ax.6) (Elemento neutro da multiplicação): Existe um único elemento em \mathbb{Z} , o qual é diferente de 0 e denotado por 1, tal que $1 \cdot a = a$, para todo $a \in \mathbb{Z}$. Tal elemento é chamado de elemento neutro da multiplicação.
 - (Ax.7) (Lei do cancelamento para a multiplicação): Para

quaisquer números inteiros a, b e c tais que $a \neq 0$, temos que: se ab = ac, então b = c.

(Ax.8) (Comutatividade da multiplicação): Para quaisquer números inteiros a e b, temos que ab = ba.

(Ax.9) (Distributividade) Para quaisquer números inteiros $a, b \in c$, temos que a(b+c) = ab + ac.

Utilizando tais axiomas, podemos provar alguns fatos.

Proposição 1.1. (Lei do cancelamento para a adição): Para quaisquer números inteiros a, b e c temos que: se a+b=a+c, então b=c

Demonstração. Por hipótese, a+b=a+c. Somamos o oposto de a em ambos os lados dessa igualdade; desse modo, (-a)+(a+b)=(-a)+(a+c). Usando o Axioma (Ax.1), obtemos [(-a)+a]+b=[(-a)+a]+c, ou seja, 0+b=0+c, o que nos permite concluir que b=c.

Proposição 1.2. Para todo $a \in \mathbb{Z}$, temos que $a \cdot 0 = 0$.

Demonstração. Pelo Axioma (Ax.9), temos

$$a \cdot 0 + a \cdot 0 = a(0+0) = a \cdot 0 = a \cdot 0 + 0,$$

ou seja, $a\cdot 0 + a\cdot 0 = a\cdot 0 + 0$. Segue da Proposição 1.1 que $a\cdot 0 = 0$.

Proposição 1.3. Se $a, b \in \mathbb{Z}$ são tais que ab = 0, então a = 0 ou b = 0.

Demonstração. Como ab=0, podemos escrever, por conta da Proposição 1.2, ab=a0. Se a=0, temos o resultado. Se $a\neq 0$, então, como ab=a0, segue do Axioma (Ax.7) que b=0.

Proposição 1.4. (Regra dos Sinais): Dados inteiros a e b, são verdadeiras as seguintes afirmações:

$$(i) -(-a) = a$$

(ii)
$$(-a)b = -(ab) = a(-b)$$

(iii)
$$(-a)(-b) = ab$$

Em \mathbb{Z} , também supomos que seja conhecida a relação "menor~que~ou~igual", denotada por " \leq ". Os axiomas apresentados na sequência abordam tal relação.

(Ax.10) (Propriedade Reflexiva): Para qualquer número inteiro a, temos que $a \le a$.

(Ax.11) (Propriedade Antissimétrica): Para quaisquer números inteiros a e b, temos que se $a \leq b$ e $b \leq a$, então a = b.

(Ax.12) (Propriedade Transitiva) Para quaisquer números inteiros a,b e c, temos que se $a\leq b$ e $b\leq c$, então $a\leq c$.

Quando $a \leq b$ e $a \neq b$, escreveremos a < b e diremos que a é menor que b. Além disso, quando conveniente, escreveremos $b \geq a$ no lugar que $a \leq b$ e diremos que b é maior que ou igual a a. De modo análogo, podemos escrever b > a no lugar de a < b e dizer que b é maior que a.

(Ax.13) (Tricotomia) Para quaisquer números inteiros a e b, temos que ou a < b ou a = b ou b < a

Diante dos axiomas (Ax.10), (Ax.11), (Ax.12) e (Ax.13), vemos que a relação < é uma relação de ordem total.

Aqui, vamos fixar as seguintes notações:

- $\mathbb{Z}_+ = \{x \in \mathbb{Z} : x > 0\}$ é o conjunto dos números inteiros positivos.
- $\mathbb{Z}_{-} = \{x \in \mathbb{Z} : x < 0\}$ é o conjunto dos *números inteiros negativos*.

Os próximos dois axiomas vinculam a relação de ordem \leq com as operações de adição e multiplicação em \mathbb{Z} .

(Ax.14) Para quaisquer números inteiros $a, b \in c$, temos que se $a \le b$, então $a + c \le b + c$.

(Ax.15) Para quaisquer números inteiros a, b e c, temos que se $a \le b$ e $0 \le c$, então $ac \le bc$.

Proposição 1.5. Dado $a \in \mathbb{Z}$, vale que:

- (i) se $a \le 0$, então $-a \ge 0$;
- (ii) se $a \ge 0$, então $-a \le 0$;
- (iii) $a^2 > 0$;
- (iv) 1 > 0.

Demonstração. (i) Se $a \le 0$, então segue do Axioma (Ax.14) que $a+(-a) \le 0+(-a)$. Como a+(-a)=0 e 0+(-a)=-a, obtemos $0 \le -a$.

- (ii) Exercício!
- (iii) Aqui, vamos dividir em dois casos:

Caso 1: $a \ge 0$. Se $a \ge 0$, segue do Axioma (Ax.15) que I

 $a^2 = a \cdot a \ge a \cdot 0 = 0.$

Caso 2: $a \leq 0$. Se $a \leq 0$, então $-a \geq 0$ (pelo item (i) acima) e, assim, $(-a)(-a) = (-a)^2 \geq 0$ (pelo Caso 1). Usando a Regra dos Sinais (item (iii) da Proposição 1.4), obtemos $(-a)^2 = a^2$. Logo $a^2 \geq 0$.

(iv) Como 1 = $1 \cdot 1$ e $1 \cdot 1 > 0$ (pelo item (iii)), temos 1 > 0.

Como consequência, temos:

- $\mathbb{Z}_+ = \{x \in \mathbb{Z} : x > 0\} = \{1, 2, 3, 4, \ldots\}$
- $\mathbb{Z}_{-} = \{x \in \mathbb{Z} : x < 0\} = \{\dots, -4, -3, -2, 1\}$

(Ax.16) (Princípio da Boa Ordem): Todo conjunto nãovazio de inteiros não-negativos possui um elemento mínimo. Ou seja, se A é um subconjunto de $\{0,1,2,3,\ldots\}$, então existe $k \in A$ tal que $k \le a$, para todo $a \in A$.

Demonstrações para os próximos resultados desta seção podem ser encontradas em [2].

Proposição 1.6. Se $a, b \in \mathbb{Z}$ são tais que $a \leq b \leq a+1$, então a = b ou b = a+1. Consequentemente, se $0 \leq a \leq 1$, então a = 0 ou a = 1.

Proposição 1.7. (Propriedade Arquimediana): Dados inteiros positivos a e b, existe um inteiro positivo n tal que na > b.

Proposição 1.8. Todo subconjunto não-vazio de \mathbb{Z} limitado inferiormente possui elemento mínimo. Analogamente, Todo subconjunto não-vazio de \mathbb{Z} limitado superiormente possui elemento máximo.

Exercício 1.9. Sejam $a, b \in \mathbb{Z}$. Mostre que:

- (a) (-1)a = -a.
- (b) Se $a^2 = 0$, então a = 0.
- (c) Se $a^2 = a$, então a = 0 ou a = 1.
- (d) a + x = b tem solução única em \mathbb{Z} .
- (e) Se a < b, então -a > -b.

Antes de passarmos para a próxima seção, destacamos mais duas definições.

- Muitas vezes, escreveremos a-b para indicar a soma a+(-b). Essa é a conhecida operação de subtração.
- O módulo de um número inteiro a, denotado por |a|, é definido por $|a| = \begin{cases} a, & \text{se } a \ge 0; \\ -a, & \text{se } a < 0. \end{cases}$

Proposição 1.10. Sejam a e b números inteiros. Temos que:

- (i) $|a| \ge 0$. Além disso, |a| = 0 se, e somente se, a = 0.
- (ii) |ab| = |a||b|.
- (iii) $|a+b| \le |a| + |b|$.

2 Divisibilidade e o Algoritmo da Divisão

Definição 2.1. Sejam a e b números inteiros. Dizemos que b divide a (ou que a é divisível por b) se existe um número inteiro q tal que a = bq.

- $\bullet\;$ Quando b divide a, escrevemos $b\mid a.$ Se bnão divide a, escrevemos $b\nmid a.$
- Se $b \mid a$, diremos também que a é $\emph{múltiplo}$ de b e que b é um $\emph{divisor}$ de a.
- Se $b \mid a$ e $b \neq 0$, então existe um único $q \in \mathbb{Z}$ tal que a = bq. De fato, se existisse outro $q' \in \mathbb{Z}$ tal que a = bq', teríamos bq = bq' e, usando a Lei do Cancelamento (Ax.7), obteríamos q = q'. Por conta dessa unicidade, o número q, neste caso, recebe o nome de *quociente* de a por b; algumas vezes, escreveremos $q = a/b = \frac{a}{b}$.
- Notemos que $0 \mid a$ se, e somente se, a=0. Neste caso, o quociente não é único, uma vez que $0=0\cdot q$, para todo $q\in\mathbb{Z}$. Por conta disso, assumiremos, a partir daqui, que todos os divisores considerados neste texto são diferentes de zero.

Proposição 2.2. Se $b \mid a \ e \ a \neq 0$, então $|b| \leq |a|$.

Demonstração. Se $b \mid a$, então existe $q \in \mathbb{Z}$ tal que a = bq. Daí, |a| = |bq| = |b||q|. Como $a \neq 0$, temos |a| > 0 e, assim, |q| > 0, ou seja, $1 \leq |q|$. Multiplicando ambos os lados dessa última desigualdade por |b|, obtemos $|b| \leq |b||q| = |a|$.

Corolário 2.3. São verdadeiras as afirmações:

- (i) Os únicos divisores de 1 são 1 e -1.
- (ii) Se $a \mid b \mid e \mid b \mid a$, então $a = \pm b$.

Demonstração. (i) Se $b \mid 1$, então $b \neq 0$ e segue da Proposição 2.2 que $|b| \leq 1$. Logo, $0 < |b| \leq 1$ e, assim, pela Proposição 1.6, temos |b| = 1. Portanto, $b = \pm 1$.

(ii) Se $b \mid a$ e $a \mid b$, então existem $q, s \in \mathbb{Z}$ tais que a = bq e b = as. Daí, a = bq = (as)q = a(sq). Como $a \neq 0$, obtemos 1 = sq, ou seja, q divide 1. Pelo item (i), temos $q = \pm 1$, o que nos fornece $a = \pm b$.

Proposição 2.4. Sejam a, b, c e d números inteiros. São verdadeiras as sequintes afirmações:

- (i) $a \mid a$.
- (ii) Se $a \mid b \mid c$, então $a \mid c$.
- (iii) $Se\ a \mid b\ e\ c \mid d$, $ent\tilde{a}o\ ac \mid bd$.
- (iv) Se $a \mid b \in a \mid c$, então $a \mid (b+c)$.

- (v) Se $a \mid b$ então $a \mid bm$, para todo $m \in \mathbb{Z}$.
- (vi) Se $a \mid b$ e $a \mid c$, então $a \mid (bm+cn)$, para quaisquer $m,n \in \mathbb{Z}$.

Demonstração. (i) Basta observar que $a = 1 \cdot a$.

- (ii) Se $a \mid b$ e $b \mid c$, então existem inteiros q e s tais que b=aq e c=bs. Daí c=bs=(aq)s=a(qs) e isso nos diz que $a \mid c$.
- (iii) Se $a \mid b$ e $c \mid d$, então existem inteiros q e s tais que b = aq e d = cs. Assim, bd = (aq)(cs) = ac(qs); logo $ac \mid bd$.
- (iv) Se $a \mid b$ e $a \mid c$, então existem $q, s \in \mathbb{Z}$ tais que b = aq e c = as. Disso resulta que b + c = aq + as = a(q + s) e isso prova que $a \mid (b + c)$.
- (v) Se $a \mid b$, então b = aq, para algum $q \in \mathbb{Z}$. Assim, para qualquer $m \in \mathbb{Z}$, obtemos bm = aqm = a(qm), isto é, $a \mid bm$.

Exercício 2.5. Suponha que o inteiro b divide os inteiros a_1, a_2, \ldots, a_n . Mostre que, para quaisquer inteiros m_1, m_2, \ldots, m_n , b divide a soma $a_1m_1 + a_2m_2 + \ldots + a_nm_n$.

Nosso objetivo agora é provar o Algoritmo da Divisão. Para isso, precisaremos do seguinte lema.

Lema 2.6. Sejam a e b números inteiros tais que $a \ge 0$ e b > 0. Então existem $q, r \in \mathbb{Z}$ tais que a = bq + r, com $0 \le r < b$.

Demonstração. Consideremos o seguinte conjunto

$$S = \{a - bx : x \in \mathbb{Z} \text{ e } a - bx > 0\}.$$

Se x=0, então $a-bx=a\geq 0$. Assim, $a\in S$, ou seja, $S\neq\emptyset$. Como S é formado apenas por inteiros não-negativos, segue do Princípio da Boa Ordem (Ax.16) que existe $r=\min S$. Já que $r\in S$, temos que r é da forma $r=a-bq\geq 0$, para algum $q\in\mathbb{Z}$.

Afirmamos que r < b. De fato, se ocorresse $r \geq b$, teríamos $a - b(q+1) = a - bq - b = r - b \geq 0$ e daí $a - b(q+1) \in S$. Neste caso, temos a contradição $a - b(q+1) = r - b < r = \min S$. Portanto, r < b.

Teorema 2.7. (Algoritmo da Divisão) Sejam $a, b \in \mathbb{Z}$ tais que $b \neq 0$. Então existem inteiros q e r tais que a = bq + r $0 \leq r < |b|$. Mais: q e r são únicos com tais propriedades.

Demonstração. Primeiramente, vamos provar que q e r podem ser determinados no caso em que b > 0 e a é um inteiro qualquer. O caso $a \ge 0$ foi resolvido no lema anterior. Por isso, podemos supor a < 0. Daí |a| > 0 e, pelo lema acima,

existem $q',r'\in\mathbb{Z}$ tais que |a|=bq'+r', com $0\leq r'<|b|=b$. Se r'=0, então -|a|=a=-(bq')=b(-q')+0=b(-q')+r'e, assim, fazendo q=-q'e r=r', temos o desejado. Se r'>0, temos que

$$a = -|a| = -(bq'+r') = b(-q')-r' = b(-q')-b+b-r' = b(-q'-1) + (b-r').$$

De 0 < r' < b vem que 0 < b - r' < b. Aqui, q = -q' - 1 e r = b - r' verificam as condições exigidas no enunciado do teorema.

Analisemos agora o caso b < 0. Para todo $a \in \mathbb{Z}$, segue do que vimos acima que existem inteiros q' e r' tais que a = |b|q' + r', com $0 \le r' < |b|$. Como b < 0, temos |b| = -b e daí a = |b|q' + r' = (-b)q' + r' = b(-q') + r'. Fazendo q = -q' e r = r', obtemos o desejado.

 $\begin{array}{l} \mbox{$U$nicidade$:} \mbox{ Suponha que existam } q,q',r,r' \in \mathbb{Z} \mbox{ tais que } \\ a=bq+r \mbox{ e } a=bq'+r', \mbox{ com } 0 \leq r < |b| \mbox{ e } 0 \leq r' < |b|. \mbox{ Daí} \\ bq+r=bq'+r'. \mbox{ Sem perda de generalidade, vamos supor } \\ r' \geq r. \mbox{ Daí, } (q-q')b=r'-r \geq 0. \mbox{ Como } |b| > r', \mbox{ temos } \\ r'-r < |b| \mbox{ e disso resulta que } (q-q')b=r'-r < |b|; \mbox{ logo, } \\ 0 \leq |q-q'||b| < |b|. \mbox{ Sendo } |b| > 0, \mbox{ obtemos } 0 \leq |q-q'| < 1, \\ \mbox{ o que nos fornece } |q-q'| = 0, \mbox{ ou seja, } q=q'. \mbox{ Da igualdade} \\ bq+r=bq'+r' \mbox{ vem que } r=r' \mbox{ e provamos assim a unicidade.} \\ \end{array}$

Definição 2.8. Os inteiros q e r determinados no teorema acima são chamados, respectivamente, de *quociente* e resto da divisão de a por b.

Exercício 2.9. Determinar o quociente q e o resto r da divisão de a por b nos seguintes casos:

- (i) a = 138, b = 7
- (ii) a = -138 e b = 7
- (iii) a = 138 e b = -7

Solução: (i) Aqui,

$$\begin{array}{c|c}
1 & 3 & 8 & 7 \\
 & -7 & 19 \\
\hline
 & 6 & 8 \\
 & -63 & \\
\hline
 & 5 &
\end{array}$$

Logo, 138 = $7 \cdot 19 + 5$; daí q = 19 e r = 5.

(ii) Pelo item (i), $138 = 7 \cdot 19 + 5$ e, assim,

$$-138 = -(7 \cdot 19 + 5) = -(7 \cdot 19) - 5 = 7(-19) - 5 =$$

$$= 7 \cdot (-19) - 7 + 7 - 5 = 7(-19) + 7(-1) + 2 =$$

$$= 7(-20) + 2.$$

Daí q=-20e r=2.

(iii) $138 = 7 \cdot 19 + 5 = (-7)(-19) + 5$; logo q = -19 e r = 5.

Definição 2.10. Um número inteiro divisível por 2 é dito par. Quando um número inteiro não for divisível por 2, este será chamado impar.

Observação 2.11. Dado um número inteiro a, segue do Algoritmo da Divisão que existem inteiros q e r tais que a=2q+r, com $0 \le r < 2$. Logo $r \in \{0,1\}$. Se r=0, então a é par. Se r=1, então a é um número ímpar. Ou seja, todo número ímpar é da forma 2q+1, para algum inteiro q.

Exercício 2.12. Mostre que todo inteiro ímpar é da forma 4k + 1 ou 4k + 3.

Solução: Dado um número inteiro a, segue do Algoritmo da Divisão que existem inteiros q e r tais que a=4q+r, com $0 \le r < 4$. Analisemos os possíveis valores de r:

- se r = 0, então a = 4q = 2(2q) é par;
- se r = 1, então a = 4q + 1 = 2(2q) + 1 é impar;
- se r = 2, então a = 4q + 2 = 2(2q + 1) é par;
- se r = 3, temos a = 4q + 3 = 2(2q + 1) + 1 é impar.

Portanto, a é impar se, e somente se, $r \in \{1, 3\}$. Em tais casos, vemos que a é da forma a = 4k + 1 ou 4k + 3.

Exercício 2.13. Mostre que o quadrado de um número inteiro é da forma 3k ou 3k + 1.

Exercício 2.14. Sabe-se que o resto da divisão do inteiro a por 8 é 3. Determine o resto da divisão de $a^2 + 1$ por 4.

Solução: Temos que a = 8q + 3, para algum $q \in \mathbb{Z}$. Assim,

$$a^{2} + 1 = (8q + 3)^{2} + 1 = (16q^{2} + 48q + 9) + 1 =$$

$$= 4(4q^{2}) + 4(12q) + 4 \cdot 2 + 2 = 4(4q^{2} + 12q + 2) + 2.$$

O resto é 2.

Exercício 2.15. Sabe-se que o resto da divisão do inteiro a por 6 é 4. Determine o resto da divisão de $a^2 + 1$ por 6.

Exercício 2.16. Prove que:

- (i) Dado $a \in \mathbb{Z}$, um dos inteiros a, a+2 ou a+4 é múltiplo de 3.
 - (ii) Se a é impar, então $24 \mid a(a^2 1)$.
 - (iii) Se 2 não divide a, então 8 divide $a^2 1$.

Exercício 2.17. Determine números inteiros a e b tais que a-b=184, e o quociente e o resto da divisão de a por b sejam, respectivamente, q=16 e r=4.

Representação dos números em Exercício 3.3. Escreva 127 na base 4. $\mathbf{3}$ outras bases

Teorema 3.1. Seja b um inteiro, $b \ge 2$. Todo inteiro positivo a pode ser escrito de modo único na forma

$$a = r_n b^n + r_{n-1} b^{n-1} + \ldots + r_1 b + r_0$$

em que $n \geq 0$, $r_n \neq 0$ e, para todo índice $i \in \{0, 1, ..., n\}$, $tem\text{-}se \ 0 \le r_i < b$

Demonstração. Existência: Dividindo a por b, obtemos $q_0, r_0 \in \mathbb{Z}$ tais que $a = bq_0 + r_0$, com $0 \le r_0 < b$. Na sequência, dividimos q_0 por b e obtemos inteiros q_1 e r_1 tais que $q_0 = bq_1 + r_1$, com $0 \le r_1 < b$. Repetimos o processo até obtermos um quociente nulo. Isso deve ocorrer em algum passo, pois cada quociente obtido é maior ou igual a zero e menor que o quociente obtido anteriormente.

Suponha que o primeiro quociente nulo seja o n-ésimo termo. Assim, temos:

$$\begin{split} a &= bq_0 + r_0, \ \ 0 \leq r_0 < b \\ q_0 &= bq_1 + r_1, \ \ 0 \leq r_1 < b \\ q_1 &= bq_2 + r_2, \ \ 0 \leq r_2 < b \\ &\vdots \\ q_{n-2} &= bq_{n-1} + r_{n-1}, \ \ 0 \leq r_{n-1} < b \\ q_{n-1} &= b \cdot 0 + r_n, \ \ 0 < r_{n-1} < b \\ \text{Logo} \\ a &= bq_0 + r_0 = b(bq_1 + r_1) + r_0 = \\ &= b^2q_1 + br_1 + r_0 = b^2(bq_2 + r_2) + br_1 + r_0 = \\ &= b^3q_2 + b^2r_2 + br_1 + r_0 = \dots = \\ &= b^nr_n + b^{n-1}r_{n-1} + b^{n-2}r_{n-2} + \dots + b^2r_2 + br_1 + r_0. \end{split}$$

O número b dado no teorema acima é chamado de base e vamos escrever $(r_n r_{n-1} r_{n-2} \dots r_0)_b$ para indicar como que o número a é representado na base b.

Estamos acostumados a expressar números na base 10. Por exemplo, o símbolo 5672 representa o número inteiro $5 \cdot 10^3 + 6 \cdot 10^2 + 7 \cdot 10 + 2$. Quando não explicitarmos a base b na expressão de a, assumimos que a base considerada é a base 10.

Exercício 3.2. Escreva 1329 na base 5.

Solução:

Portanto, $1329 = (20304)_5$.

Unicidade: Será omitida.

Solução:

Logo,
$$127 = (1333)_4$$
.

Exercício 3.4. Escreva 855 na base 12.

Solução: Aqui, precisamos de mais dois algarismos para representarmos os inteiros 10 e 11. Façamos $\alpha = 10$ e $\beta = 11$

Logo,
$$855 = (5\beta 3)_{12} = (5(11)3)_{12}$$
.

Observação 3.5. Note que

$$(5113)_{12} = 5 \cdot 12^3 + 1 \cdot 12^2 + 1 \cdot 12 + 3 = 1887 \neq 855,$$

ou seja, $855 \neq (5113)_{12}$. Agora,
 $(5(11)3)_{12} = 5 \cdot 12^2 + 11 \cdot 12 + 3 = 855.$

Exercício 3.6. Escreva $(1245)_6$ na base 10.

Solução:
$$(1245)_6 = 1 \cdot 6^3 + 2 \cdot 6^2 + 4 \cdot 6 + 5 = 317$$
.

Exercício 3.7. Escreva o número a na base b:

(i)
$$a = 1472, b = 5.$$

(ii)
$$a = 114$$
, $b = 2$.

(iii)
$$a = 15422, b = 12.$$

(iv)
$$a = (2356)_7$$
, $b = 10$.

(v)
$$a = (532)_6, b = 8.$$

(vi)
$$a = (21)_3, b = 12.$$

4 Máximo divisor comum

Sejam a e b inteiros não ambos iguais a zero. Dizemos que um inteiro c é um divisor comum de a e b se $c \mid a$ e $c \mid b$.

Fixemos as seguintes notações:

$$D(a) = \{ d \in \mathbb{Z} : d \mid a \}$$

$$D(b) = \{ d \in \mathbb{Z} : d \mid b \}$$

$$D(a, b) = \{ d \in \mathbb{Z} : d \mid a \in d \mid b \}$$

Vemos que $D(a,b) = D(a) \cap D(b)$. Além disso, D(a,b) é limitado superiormente, pois se $a \neq 0$, então $c \leq |a|$, para todo $c \in D(a,b)$. Logo, o conjunto D(a,b) possui elemento máximo. Disso segue a seguinte definição:

Definição 4.1. Sejam a e b inteiros não ambos iguais a zero. O *máximo divisor comum* (MDC) de a e b é o número denotado por $\mathrm{mdc}(a,b)$ e definido como sendo o máximo do conjunto D(a,b) dos divisores comuns de a e b.

Exemplo 4.2. Vemos que:

$$D(6) = \{-6, -3, -2, -1, 1, 2, 3, 6\}$$

$$D(9) = \{-9, -3, -1, 1, 3, 9\}$$

$$D(10) = \{-10, -5, -2, -1, 1, 2, 5, 10\}.$$

Assim,

$$D(6,9) = D(6) \cap D(9) = \{-3, -1, 1, 3\}$$

$$D(6,10) = D(6) \cap D(10) = \{-2, -1, 1, 2\}$$

$$D(9,10) = D(9) \cap D(10) = \{-1,1\}$$

Portanto, mdc(6, 9) = 3, mdc(6, 10) = 2 e mdc(9, 10) = 1.

Teorema 4.3. (Teorema de Bézout) Sejam $a, b \in \mathbb{Z}$ ambos diferentes de zero e seja d = mdc(a, b). Então existem inteiros x e y tais que d = ax + by.

Demonstração. Temos que $\operatorname{mdc}(a,b) = \operatorname{mdc}(|a|,|b|)$ (prove isso!). Assim, sem perda de generalidade, podemos supor a>0 e b>0. Consideremos o seguinte conjunto:

$$S = \{au + bv : u, v \in \mathbb{Z} \text{ e } au + bv > 0\}$$

Se u=v=1, temos au+bv=a+b>0, ou seja, $a+b\in S$ e disso vem que $S\neq\emptyset$. Como S é formado por inteiros positivos, segue do Princípio da Boa Ordem que S possui elemento mínimo, digamos $d=\min S$. Como $d\in S$, existem inteiros x e y tais que d=ax+by.

Vamos mostrar que $d=\operatorname{mdc}(a,b)$. De fato, notemos que $a\in S$, porque $a=1\cdot a+0\cdot b$. Logo, $d\leq a$. Pelo Algoritmo da Divisão, existem inteiros q e r tais que a=dq+r, com $0\leq r< d$. Mostremos que r=0. Com efeito, se ocorresse r>0, teríamos

$$r = a - dq = a - q(ax + by) = a - qax - bqy =$$

= $a(1 - qx) + b(-qy) > 0$,

o que implicaria $r \in S$, com r < d, contradizendo o fato que d é o mínimo de S. Logo r = 0 e disso vem que a = dq, ou seja, $d \mid a$. Analogamente, prova-se que $d \mid b$ e, assim, temos que $d \in D(a,b)$. Por fim, se $d' \mid a$ e $d' \mid b$, então $d' \mid (ax + by)$ e, assim, $|d'| \leq |d| = d$. Isso prova que d é o elemento máximo de D(a,b), ou seja, d = mdc(a,b).

Teorema 4.4. Sejam $a,b \in \mathbb{Z}$ e $d \in \mathbb{Z}_+$. Temos que $\mathrm{mdc}(a,b) = d$ se, e somente se, as duas seguintes condições são satisfeitas:

- (i) $d \mid a \mid e \mid d \mid b$;
- (ii) se $d' \mid a \ e \ d' \mid b$, então $d' \mid d$.

Demonstração. Seja d = mdc(a, b). Então é claro que a condição (i) se verifica e, na prova do Teorema de Bézout, vimos que a condição (ii) é satisfeita. Reciprocamente, se d satisfaz a condição (i), então $d \in D(a, b)$. Pela condição (ii), se $d' \in D(a, b)$, então $d' \mid d$ e disso segue que $d' \leq d$, o que prova d = max D(a, b), isto é, d = mdc(a, b).

Proposição 4.5. Seja d um divisor positivo comum de a e b. Temos que d = mdc(a,b) se, e somente se, mdc(a/d,b/d)=1.

Demonstração. Suponha $d=\mathrm{mdc}(a,b)$. Existem inteiros a_1 e b_1 tais que $a=da_1$ e $b=db_1$. Afirmamos que $\mathrm{mdc}(a_1,b_1)=1$. De fato, se $d_1=\mathrm{mdc}(a_1,b_1)$, segue do Teorema de Bézout que existem inteiros x e y tais que $d_1=a_1x+b_1y$ e, daí, $dd_1=ax+by$. Como $d_1\mid a_1$, temos que $dd_1\mid da_1$, isto é, $dd_1\mid a$. Do mesmo modo, concluímos que $dd_1\mid b$. Agora, se $d'\in\mathbb{Z}$ é tal que $d'\mid a$ e $d'\mid b$, então $d'\mid d$ (pelo Teorema 4.4) e, consequentemente, $d'\mid dd_1$. Segue do Teorema 4.4 que $\mathrm{mdc}(a,b)=dd_1$, o que nos fornece $d_1=1$.

Suponhamos agora que $\operatorname{mdc}(a/d,b/d) = 1$. Escrevendo $a_1 = a/d$ e $b_1 = b/d$, segue do Teorema de Bézout que existem inteiros x e y tais que $1 = a_1x + b_1y$, o que implica d = ax + by. Se $d' \mid a$ e $d' \mid b$, então $d' \mid (ax + by)$, ou seja, $d' \mid d$. Pelo Teorema 4.4, $d = \operatorname{mdc}(a,b)$.

Teorema 4.6. (Teorema de Euclides) Sejam $a, b, c \in \mathbb{Z}$ tais que $a \mid bc$. Se $\mathrm{mdc}(a, b) = 1$, então $a \mid c$.

Demonstração. Se $\operatorname{mdc}(a,b)=1$, então segue do Teorema de Bézout que existem inteiros x e y tais que 1=ax+by. Logo, c=c(ax+by)=a(cx)+(bc)y. Como $a\mid a$ e $a\mid bc$, temos que $a\mid a(cx)$ e $a\mid b(cy)$ e disso segue que a divide a soma acx+bcy, isto é, $a\mid c$.

Definição 4.7. Dizemos que os inteiros a e b são primos entre si (ou relativamente primos) se <math>mdc(a, b) = 1.

Proposição 4.8. Sejam a e b inteiros primos entre si. Se $c \in \mathbb{Z}$ é tal que $a \mid c \ e \ b \mid c$, então $ab \mid c$.

Demonstração. Se $a \mid c$, então c = aq, para algum $q \in \mathbb{Z}$. Logo, $b \mid aq$ (visto que $b \mid c$). Como $\mathrm{mdc}(a,b) = 1$, segue do Teorema de Euclides que $b \mid q$, isto é, q = bs, para algum $s \in \mathbb{Z}$. Desse modo, c = aq = abs, o que prova que $ab \mid c$.

Exercício 4.9. Sejam $a, b, c \in \mathbb{Z}$. Prove que:

- (i) Se a|b e $\mathrm{mdc}(b,c)=1$, então $\mathrm{mdc}(a,c)=1$.
- (ii) $\operatorname{mdc}(a, c) = \operatorname{mdc}(b, c) = 1$ se, e somente se, $\operatorname{mdc}(ab, c) = 1$.

6

Exercício 4.10. Sejam $a, b, d \in \mathbb{Z}$, com d > 0. Verifique se as afirmações abaixo são verdadeiras ou falsas, justificando sua resposta.

- (i) Se existem $x,y \in \mathbb{Z}$ tais que d = ax + by, então $d = \operatorname{mdc}(a, b).$
- (ii) Se existem $x,y \in \mathbb{Z}$ tais que ax + by = 1, então mdc(a, b) = 1.

Exercício 4.11. Sejam $a, b, c, d \in \mathbb{Z}$, com $d = \operatorname{mdc}(a, b)$. Mostre que:

- (i) Os inteiros x e y tais que d = ax + by não são univocamente determinados.
- (ii) Existem inteiros x e y tais que c = ax + by se, e somente se, d|c.

Nosso intuito agora é apresentar um método que nos diz como calcular o mdc entre dois números inteiros. Para isso, precisamos dos seguintes resultados.

Lema 4.12. *Se* $b \mid a$, *então* mdc(a, b) = |b|.

Lema 4.13. Sejam $a, b \in \mathbb{Z}$, com $b \neq 0$, e considere inteiros q e r tais que a = bq + r, com $0 \le r < |b|$. Nestas condições, temos que D(a,b) = D(b,r) e, consequentemente, mdc(a, b) = mdc(b, r).

Demonstração. Por hipótese, a = bq + r, com $0 \le r < |b|$. Se $x \in D(a, b)$, então $x \mid a \in x \mid b$. Como r = a - bq, temos que $x \mid r$ e, assim, $x \in D(r, b)$. Isso prova que $D(a, b) \subset D(b, r)$.

Por outro lado, se $x \in D(b,r)$, então $x \mid b \in x \mid r$ e disso resulta que $x \mid (bq + r)$, isto é $x \mid a$. Logo $x \in D(a, b)$ e isso prova a inclusão $D(b,r) \subset D(a,b)$. Logo D(a,b) = D(b,r)e, portanto, mdc(a, b) = mdc(b, r).

• Método das Divisões Sucessivas (Algoritmo de Euclides)

Sejam $a, b \in \mathbb{Z}$ tais que $a \ge 0$ e b > 0. Então existem inteiros q_1 e r_1 tais que

$$a = bq_1 + r_1$$
, com $0 \le r_1 < |b|$.

Se ocorrer $r_1 = 0$, então $b \mid a$ e daí mdc(a, b) = b (pelo Lema 4.12). Se $r_1 \neq 0$, então existem $q_2, r_2 \in \mathbb{Z}$ tais que

$$b = r_1 q_2 + r_2$$
, com $0 \le r_2 < r_1$.

Se $r_2 = 0$, então $r_1 \mid b$ e daí $\mathrm{mdc}(b, r_1) = r_1$. Pelo Lema 4.13, concluímos que $\operatorname{mdc}(b, r_1) = \operatorname{mdc}(a, b) = r_1$. Se $r_2 \neq 0$, então existem $q_3, r_3 \in \mathbb{Z}$ tais que

$$r_1 = r_2 q_2 + r_3$$
, com $0 \le r_3 < r_2$.

Se $r_3 = 0$, então $r_2 \mid r_1$ e disso resulta que $\mathrm{mdc}(r_1, r_2) = r_2$ e, $\log_{10}(r_{10}, r_{10}) = \mathrm{mdc}(r_{10}, r_{1$ repetimos o processo, ou seja, efetuamos a divisão de r_2 por $I = (-1) \cdot 1540 + 4 \cdot 396$. Portanto, $x_0 = -1$ e $y_0 = 4$.

 r_3 . Chegaremos em uma sequência $b \geq r_1 \geq r_2 \geq \ldots \geq 0$. Para algum índice n, teremos $r_{n+1} = 0$. De fato, se todos os elementos do conjunto $\{b, r_1, r_2, \ldots\}$ fossem diferentes de zero, tal conjunto seria um subconjunto não-vazio de inteiros positivos sem elemento mínimo, o que contradiz o Princípio da Boa Ordem. Logo, existe n tal que

$$r_{n-2} = r_{n-1}q_n + r_n$$
, com $r_{n-1} = r_nq_{n+1}$.

Usando os Lemas 4.12 e 4.13, concluímos que r_n = $mdc(r_{n-1}, r_{n-2}) = mdc(r_{n-2}, r_{n-3}) = \dots = mdc(b, r_1) =$ mdc(a, b).

Para o caso em que a < 0 ou b < 0, basta observar que mdc(a, b) = mdc(|a|, |b|).

Exemplo 4.14. Vamos determinar o mdc entre 1128 e 336. Efetuando divisões sucessivas, temos:

 $Logo \ mdc(1128, 336) = mdc(336, 120) = mdc(120, 96) =$ mdc(24, 96) = 24.

Pelo Teorema de Bézout, existem inteiros x_0 e y_0 tais que $mdc(1128, 336) = 1128x_0 + 336y_0$. Queremos agora encontrar x_0 e y_0 . Para isso, observamos que

$$1128 = 3 \cdot 336 + 120$$

$$336 = 2 \cdot 120 + 96$$

$$120 = 1 \cdot 96 + 24$$

$$96 = 4 \cdot 24$$

Logo,

$$24 = 120 - 1.96 = 120 - (336 - 2.120) = 3.120 - 1.336 =$$
$$= 3(1128 - 3.336) - 1.336 = 3.1128 + (-10).336.$$

Portanto,
$$x_0 = 3 e y_0 = -10$$
.

Exemplo 4.15. Queremos agora determinar o mdc entre 1540 e 396. Para isso, efetuamos as seguintes divisões sucessivas:

Daí mdc(1540, 396) = mdc(396, 352) = mdc(352, 44) = 44.

Pelo Teorema de Bézout, existem inteiros x_0 e y_0 tais que $mdc(1540, 396) = 1540x_0 + 396y_0$. Para encontrarmos x_0 e y_0 , destacamos que:

$$1540 = 3 \cdot 396 + 352$$
 e $396 = 1 \cdot 352 + 44$

Logo,
$$44 = 396 - 1 \cdot 352 = 396 - (1540 - 3 \cdot 396) =$$

$$(-1) \cdot 1540 + 4 \cdot 396$$
. Portanto, $x_0 = -1$ e $u_0 = 4$.

Exercício 4.16. Use o Algoritmo de Euclides para obter inteiros x e y tais que:

- (a) mdc(56,72) = 56x + 72y.
- (b) mdc(24, 138) = 24x + 138y.
- (c) mdc(119, 272) = 119x + 272y
- (d) mdc(18, 42) = 18x + 42y.

5 Mínimo múltiplo comum

Sejam a e b inteiros diferentes de zero e denote por $M^+(a,b)$ o conjunto formado por todos os inteiros positivos que são múltiplos de a e b simultaneamente. Visto que $|a||b| \in M^+(a,b)$, temos $M^+(a,b) \neq \emptyset$ e, assim, pelo Princípio da Boa Ordem, tal conjunto possui elemento mínimo.

Definição 5.1. Sejam a e b inteiros diferentes de zero. O mínimo múltiplo comum (mmc) de a e b é o elemento mínimo do conjunto $M^+(a,b)$.

Proposição 5.2. Sejam a e b inteiros diferentes de zero e seja $m \in \mathbb{Z}_+$. Temos que m = mmc(a, b) se, e somente se, são satisfeitas as seguintes duas condições:

- (i) $a \mid m \ e \ b \mid m$;
- (ii) se $a \mid m' \ e \ b \mid m'$, então $m \mid m'$.

Proposição 5.3. Sejam a e b inteiros diferentes de zero. Se d = mdc(a, b) e m = mmc(a, b), então md = |ab|.

Demonstração. Aqui, faremos a prova apenas para o caso em que a>0 e b>0 (os demais casos são análogos).

Como $d \mid a$ e $d \mid b$, temos que $d \mid ab$ e iremos escrever $x = \frac{ab}{d}$. Vamos mostrar que x = m. Para isso, devemos provar que x satisfaz as duas condições dadas na Proposição 5.2. Escrevamos $a = da_1$ e $b = db_1$. Pela Proposição 4.5, temos que $\mathrm{mdc}(a_1,b_1)=1$. Agora, note que $x=a_1b$ (uma vez que $x=\frac{ab}{d}$ e $a_1=\frac{a}{d}$) e também $x=ab_1$. Isso prova que $a \mid x$ e $b \mid x$. A condição (i) da Proposição 5.2 está verificada.

Tomemos $m' \in \mathbb{Z}$ tal que m' é múltiplo de a e de b. Então, como $a \mid m'$, existe $q \in \mathbb{Z}$ tal que $m' = aq = da_1q = a_1(dq)$. Ainda, note que $b \mid m'$, o que significa $db_1 \mid a_1(dq)$ e, assim, existe $s \in \mathbb{Z}$ tal que $a_1(dq) = b_1(ds)$, o que nos fornece $a_1q = b_1s$, isto é, $b_1 \mid a_1q$. Uma vez que $\mathrm{mdc}(a_1,b_1) = 1$, segue do Teorema de Euclides que $b_1 \mid q$ e, daí, $q = b_1q_1$, para algum $q_1 \in \mathbb{Z}$. Como $xd = ab = da_1db_1$, temos que $x = a_1db_1$ e, assim, $m' = a_1(dq) = a_1db_1q_1 = xq_1$. Isso prova que $x \mid m'$, ou seja, x satisfaz a condição dada no item (ii) da Proposição 5.2. Portanto, x = m.

Obtemos assim uma fórmula para o cálculo do mmc entre dois números inteiros não-nulos:

$$\operatorname{mmc}(a,b) = \frac{|ab|}{\operatorname{mdc}(a,b)}$$

Exemplo 5.4. Sabemos, pelo Exemplo 4.14, que mdc(1128, 336) = 24. Agora, $1128 \cdot 336 = 379008$ e $379008 = 24 \cdot 15792$. Portanto, mmc(1128, 336) = 15792.

Exemplo 5.5. Pelo Exemplo 4.15, mdc(1540, 396) = 44. Uma vez que $1540 \cdot 396 = 609840 = 609840 = 44 \cdot 13860$, segue do teorema anterior que mmc(1540, 396) = 13860.

Exercício 5.6. Calcule:

- (a) mmc(56, 72)
- (b) mmc(24, 138)
- (c) mmc(119, 272)
- (d) mmc(18, 42)

Exercício 5.7. Determine inteiros positivos a e b tais que ab = 9900 e mdc(a, b) = 330.

Exercício 5.8. Sejam a e b inteiros não-nulos. Mostre que: mdc(a, b) = mmc(a, b) se, e somente se, |a| = |b|.

6 Números primos e o Teorema Fundamental da Aritmética

Iniciamos com a definição de número primo.

Definição 6.1. Um número inteiro p é dito primo se p possui exatamente dois divisores positivos: 1 e |p|.

Observação 6.2. De acordo com a definição acima, -1, 0 e 1 não são números primos, uma vez que o único divisor positivo de -1 e 1 é o número 1 e, como sabemos, 0 possui uma infinidade de divisores positivos.

Exemplo 6.3. Eis alguns números primos positivos: 2, 3, 5, 7, 11, 13, 17, 19, 23.

Exemplo 6.4. O número 4 não é primo, pois 1, 2 e 4 dividem 4.

Exercício 6.5. Liste todos os números primos positivos menores que 100.

Definição 6.6. Um inteiro diferentes de -1, 0 e 1 que não é um número primo é chamado de *composto*.

Definição 6.7. Se b é um divisor de a tal que 1 < |b| < |a|, diremos que b é um divisor próprio de a.