MM453 –	Topologia –	Qualificação	Mestrado	
---------	-------------	--------------	----------	--

NOME:	RA:
-------	-----

Questão 1	Questão 2	Questão 3	Questão 4	Questão 5	Questão 6	Nota

Atenção: Respostas que não estejam acompanhadas de argumentos que as justifiquem serão desconsideradas! As contas feitas nas resoluções fazem parte do argumento e, portanto, não devem ser descartadas.

Responda a $\bf 3$ das questões abaixo <u>dentre</u> as <u>primeiras 5</u>; e marque com \times no quadro acima aquelas que excluir. **Na sequência**, responda $\bf 2$ letras da questão 6; marque com \times as letras que exclue.

BOA PROVA!

1. Seja X um espaço topológico localmente compacto e Hausdorff. Defina $X^+ = X \cup \{\infty\}$, onde ∞ representa um ponto que não está em X.

Um subconjunto $A \subset X^+$ é aberto em X^+ se e somente se A verifica uma das duas propriedades: (a) $A \subset X$ e A é aberto em X; (b) $A = X^+ \setminus K$ para algum K subconjunto compacto de X.

Mostar que

- (a) A coleção de abertos definida acima fazem de X^+ um espaço topológico compacto e Hausdorff.
- (b) X é compacto se e somente se ∞ é um aberto de X^+ .
- (c) Se X não é compacto, então é denso em X^+ .
- 2. Um subconjunto $A \subset \mathbb{R}^n$ é dito estrelado se existe um $a \in A$ de forma que para todo $p \in A$, o conjunto $\{ta + (1-t)p : t \in [0,1]\}$ está contido em A. Mostrar que se A é estrelado então é conexo e simplesmente conexo.
- 3. Seja X um espaço topológico discreto. Mostrar que uma sequência $(x_n) \subset X$ converge a um ponto $x \in X$ se e somente se existe um $N \in \mathbb{N}$ tal que $x_n = x, \forall n \geq N$.
- 4. Em \mathbb{R} considere a relação de equivalência $x \sim y \Leftrightarrow x y \in \mathbb{Q}$. Mostre que a aplicação cociente $q : \mathbb{R} \to \mathbb{R}/\sim$ não é fechada e a topologia quociente em \mathbb{R}/\sim é a trivial.
- 5. Mostre que o produto arbitrario de espaços topológicos é conexo se e somente se cada espaço é conexo.
- 6. Determine se as seguintes afirmações são verdadeiras ou falsas. Justifique detalhadamente sua escolha.
 - (a) Se $K \subset X$ é um subespaço compacto, então o fecho \bar{K} é compacto.
 - (b) Seja X um espaço topológico Hausdorff e compacto. Então X é metrizável se e somente se X possui uma base enumerável.
 - (c) \mathbb{S}^1 é homeomorfo a [0,1).
 - (d) Se $A \subset \mathbb{R}$ é conexo e contém pelo menos dois pontos, então $\overset{\circ}{A} \neq \emptyset$.

Exame de Qualificação de MM719 - Fevereiro de 2025

Nome:	RA:
-------	-----

Respostas sem argumentos que as justifiquem serão desconsideradas! As contas feitas nas resoluções fazem parte do argumento e, portanto, não devem ser descartadas.

- 1. Seja $T: \mathbb{R}^4 \to \mathbb{R}^4$ a transformação linear dada por $T(x_1, x_2, x_3, x_4) = (x_2, -4x_1 + 4x_2 + 2x_4, -2x_1 + x_2 + 2x_3 x_4, x_4).$
 - (a) (15pts) Encontre uma base de Jordan e a correspondente forma canônica de Jordan.
 - (b) (10pts) Encontre uma matriz P tal que $P^{-1}AP$ seja a forma canônica racional de T e calcule $P^{-1}AP$, sendo A a matriz de T na base canônica.
 - (c) (10pts) Mostre que um subespaço T-invariante de dimensão 3 ou 4 é soma direta de subespaços T-invariantes cujas dimensões são 1 e 2 e caracterize os que tem dimensão 1 e 2.
- 2. (10pts) Suponha que dim(V) seja finita e α seja uma base de V. Mostre que, se $\alpha^* = f_1, \ldots, f_n$ é a base dual, então a família $(f_{i,j})_{1 \leq i,j \leq n}$ definida por $f_{i,j}(v,w) = f_i(v)f_j(w)$ para todo $v,w \in V$, é uma base para B(V), o espaço das formas bilineares em V.
- 3. (10pts) Seja V um \mathbb{C} -espaço vetorial de dimensão finita com produto interno. Mostre que, se T é operador linear autoadjunto em V, para quaisquer $\lambda \in \mathbb{C}$ e $v \in V$, existe autovalor μ de T tal que $|\lambda \mu| ||v|| \le ||T(v) \lambda v||$.
- 4. Determine se cada uma das afirmações abaixo é verdadeira ou falsa.
 - (a) (10pts) Se V_1, \ldots, V_m são os subespaços T-primários de V e W é um subespaço de V satisfazendo $W = \bigoplus_{j=1}^m (W \cap V_j)$, então W é T-invariante.
 - (b) (10pts) Se $1 < \dim(V) \in \mathbb{Z}$, existe $T : S^2 V \to \bigwedge^2 V$ linear sobrejetora. (Aqui, $S^2 V \in \bigwedge^2 V$ denotam as potências simétrica e exterior de V.)
 - (c) (10pts) Se T e S são operadores lineares cujas formas de Jordan possuem m e n blocos de Jordan, respectivamente, então $T \otimes S$ possui forma de Jordan com mn blocos.
- 5. (15pts) Mostre que existe única transformação linear $\Gamma: V \otimes W \to \operatorname{Hom}_{\mathbb{F}}(V^*, W)$ satisfazendo $\Gamma(v \otimes w)(f) = f(v)w$ para quaisquer $v \in V, w \in W, f \in V^*$. Além disso, se dim(V) é finita, Γ é um isomorfismo. (Aqui, $\operatorname{Hom}_{\mathbb{F}}(V^*, W)$ denota o espaço vetorial das transformações lineares de V^* em W, sobre o corpo \mathbb{F} .)
- 6. (10pts) Considere a forma quadrática no \mathbb{R}^3 dada por q(x,y,z) = -2xy + 4xz 6yz e seja ϕ a forma bilinear simétrica tal que $q(v) = \phi(v,v)$. Encontre base de \mathbb{R}^3 que seja ortogonal com respeito a ϕ e use-a para descrever os vetores isotrópicos com respeito a ϕ .

MM720 - Análise no Rn - Qualificação Mestrado 17/02/2025

NOME:	RA:	

Q1 Sejam γ , f, g, h difeomorfismos de \mathbb{R}^2 em \mathbb{R}^2 de tal forma que $\gamma = h \circ g \circ f$, f(0,0) = (1,1), g(1,1) = (2,2) e h(2,2) = (0,0). Calcule a derivada da inversa de h no ponto (0,0) (i.e. $Dh^{-1}(0,0)$) sabendo que

$$D\gamma(0,0)=\begin{pmatrix}2&1\\1&1\end{pmatrix}, Df(0,0)=\begin{pmatrix}3&3\\2&1\end{pmatrix} \text{ e } Dg(1,1)=\begin{pmatrix}\frac{1}{2}&0\\0&2\end{pmatrix}.$$

- Q2 Seja $f: \mathbb{R}^3 \to \mathbb{R}^3$ de classe C^1 tal que Df(x) é invertível para todo $x \in \mathbb{R}^3$ e $f^{-1}(K)$ é compacto sempre que $K \subset \mathbb{R}^3$ for compacto. Mostre que $f(\mathbb{R}^3) = \mathbb{R}^3$.
- Q3 a) Sejam $U \subset \mathbb{R}^m$ um aberto e $f: U \to \mathbb{R}^n$ uma função. Defina a derivada de f no ponto $x \in U$.
 - b) Sejam $B: \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^p$ uma transformação bilinear. Exiba a derivada de B (mostrando porquê é a derivada de fato).
 - c) Considere $f: \mathbb{R}^{n^2} \to \mathbb{R}^{n(n+1)/2}$ definida por

$$f(X) := XX^T$$

onde X é uma matriz n por n. O contradomínio de f são as matrizes simétricas e os espaços euclidianos respectivos referem-se as coordenadas das matrizes. Mostre que I é um valor regular de f.

- d) Ainda nas notações do item anterior. Mostre que o conjunto $\{X \in \mathbb{R}^{n^2} | XX^T = I\}$ é uma variedade diferenciável em \mathbb{R}^{n^2} e calcule a dimensão desta variedade.
- Q4 a) Enuncie o teorema de Stokes (na versão com formas diferenciáveis).
 - b) Se M é uma variedade com bordo e M é orientável explique o que significa M ser orientável e como é definida a orientação em ∂M .