

Toxic and Hazardous Materials Agency

FINAL REMEDIAL INVESTIGATION DAAA15-88-D-0006 TASK ORDER 3

APENDICES G-Q

OCTOBER 1991

JAMES M. MONTGOMERY CONSULTING ENGINEERS, INC.

AND

E.C. JORDAN

Statement A per telecon Harry Kleiser USATHAMA APG,MD 21010

NWW 5/19/92

Acese of the Second Sec

Appendix G

Geotechnical Sampling Analysis

James M. Montgomery

Consulting Engineers Inc.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

APPENDIX G GEOTECHNICAL SAMPLE ANALYSIS

G.1 - Techniques

Geotechnical sample analysis for SIAD Phase I RI/FS was conducted by NST Engineering of Susanville, California. Analyses performed were sieve analysis and Atterberg limit test (ASTM #C117, C136, and D4318). These tests were performed on selected boring samples. At least one sample from each boring was analyzed. Samples from monitoring well borings were from the screened interval of the well whenever possible. The results of these tests can be found in Appendix G.2.

Sieve analysis is a process of determining particle-size distribution in a soil, sediment, or rock by measuring the percentage of the particles that will pass through standard seives of various sizes. The Atterberg limits are liquid limit and plastic limit. The liquid limit is the water content boundary between the semi-liquid and plastic states of a sediment e.g., a soil. The plastic limit is the water content boundary of a sediment between the plastic and semi-solid states. These are expressed as a percentage water content. The plastic limit and liquid limit define the plasticity index of a sediment. The plasticity index is the water content range of a sediment or soil at which it is plastic. Plasticity index is defined numerically as the liquid limit minus the plastic limit.

G.2 - Results

The data from geotechnical analysis was used primarily to determine grain-size distribution and USCS soil classification, but may also be used to estimate the permeability or hydraulic conductivity of a sample. Using the results of geotechnical analysis alone it is possible to arrive at an estimate for K (hydraulic conductivity) ranging from 10^{-3} to 10^{-1} gpd/ft² for finer grained materials at SIAD to 10^{-1} to 10 gpd/ft² for coarser grained sediments. The aquifer pumping tests produced similar results. All of the values of hydraulic conductivity for these tests fell into the range of silty sand which has values of K ranging from 10^{-2} to 10^2 gpd/ft².

Estimates of Hydraulic conductivity based on grain-size distribution and uniformity of grain-size. For screened interval in monitoring wells.

DMO-5-MWA - Interval 100' screened ~54% finer than #200 mesh USCS classification: CL Sandy Clay K ~ 10³ to 10¹

TNT-15-MWA - Interval 70' screened medium and fine sand $C_u = 2.5$ USCS classification: SP K $\simeq 10^2$ to 1.0 gpd/ft²

TNT-16-MWA - Interval 65.9' to 71' $C_u = 3.8$ medium and fine sand with silt
USCS classification: SP - SM $K \simeq 10^2$ to 1.0 gpd/ft²

DSB-6-SB - Interval 126' to 131'
~15% finer than #200
silty sand
USCS classification: SM
K ~ 10² - 1.0 gpd/ft²

ALF-1-MWA - Interval 105' screened
38.4% of material finer than #200 mesh sieve
62.7% of material finer than #100 mesh
fine sand, u fine sand, silt and clay?
K ~ 10⁻³ to 1.0⁻¹ gpd/ft²/USCS-SM

ALF-2-MWA - Interval 100' screened uniformity coefficient ~ 3.4 effective size ~ .34 mm 50% size ~ .90 mm USCS classification SP K ~ 10⁻¹ to 10 gpd/ft²

ALF-3-MWA - Interval 100' screened

- ~ 20% of material finer than #200 mesh
- ~ 32% of material finer than #100 mesh (.15 mm)
- ~ 52% of material finer than #50 mesh (.30 mm) very coarse, coarse, medium, fine, v. fine sand with silt USCS classification: SM $\times 10^{-2}$ to 1.0 gpd/ft²

CCB-1-MWA - Interval 91' screened 27% finer than #200 90% finer than #10

clayey sand

USCS classification: SC

 $K \simeq 10^{-2}$ to 1.0 gpd/ft²

CCB-2-MWA - Interval 100' screened

~32% finer than #200 (silt)

silty sand with majority of sand fine-medium

USCS classification: SM

 $K \simeq 10^{-3} \text{ to } 1.0^{-1} \text{ gpd/ft}^2$

DMO-3-MWA - Interval 100' screened

~43% finer than #200 (clay)

sand clay

USCS classification: SC

 $K \simeq 10^{-3} \text{ to } 1.0^{-1} \text{ gpd/ft}^2$

DMO-4-MWA - Interval 100'

~35% finer than #200 (clay)

clayey sand

USCS classification: SC

 $K \simeq 10^{-2}$ to 10

}	5/1/90		
PROJECT REMEL	DIAL INVESTIGAT	104 CECAVALION SYMPLE	
	PHASE I	ALF I MWA	SAMPLE MUNICA
DESCRIPTION OF SAMPLE			\\ 7.0 \\ \text{7.0 \\ \t
i	57		₩ 111
TEISHE GRIGINAL SAMPLE (J.)			
409,1	VEIGHT AFTER PREVA		6-1
		PASSIAG	
SIEVE OR SCREEN	WEIGHT RETAINED ON SIEVE (40.)	· #616#1 (40.)	PEACENT
3/8	0		100
4	0	409,1	100
	2.5	4066	99.4
30	68,4	338.2	82.7
50	175.5	162.7	· 39.8
100	118.2	44.5	10.9
NUMBER 200	36.5	8,0	2.0
. aficus sitres innough no.	200 (4)	ERADA (Original polgal - lotal	tolable of freetiene)(am.)
. #ASHING LOSS! (4)	<u> </u>	•	4
DIAL FASSING ND: 200 (4) (A	1. • 8.)	PEACENT ERADA	
OTAL MEIGHT OF FRACTIONS (Tot	9. 4 (al of all anirios in col. b)	(original coldat (de.) = 100) ./O	
CHARAS	409.5		
			1
•,		- PLASTIC	1
Samp	NE 15 NON	- 7040 / /	
	-	-	
			į
(CHAICIAN (SIGNATURE)	1 (31 gnot)	Job Numb	er 90-25 A
Stight 10 1 of me	رعهم . المرا	1charage	70-63

ENG 2087

٠ ڊ

a

0,0

·	5/1/90		
	DIAL INVESTIGAT		SAUPLE RUNDER
	PHASE I	ALF / MWA	/05
OESCRIPTION OF SAMPLE	SM		70.E14.5HEB
TEIGHT BAIGINAL SAMPLE (20.) 1 31. 4	PEIGHI AFIER FREMA	9, Z	(en.) 42, 2
		PASSINO	SILYE
SIEVE OR SCREEN	WEIGHT RETAINED ON SIEVE (40.)	· #fignt (40.)	PERCENT
3/8	0	/31.4	100
4	0.3		99.8
10	1.0	130,1	99.0
30	5.5	124.6	94.8
50	6.4	118.2	. 90.0
100	35.8	82.4	62.7
NUMBER 200	32.0	50,4	38.4
A. ULIGAI SILVEO INAOVGA NO.	200 (4=.) E.3	[RROA {Original valght - tal	ol voight of freetiene)(go.)
. TASHING LOSS (40.)	42.2		/
01AL FASSING ND: 200 (40.) (A	50,5	PEACENT ERAOR	
OTAL WEIGHT OF PRACTIONS (FO		Gridinol woldh	1 (40.) - 100) , 07
EMARS			
·.	PLE 15 NON	PLASTIC	
Style H Sofre	CONFULIDATE (SIGNA	Job Num	nber 90-25 A

	5/1/90			
S. I.A.D. P	AL INVESTIGATI YASE I		AWA	SANFLE NUMBER
OCSCRIPTION OF SAMPLE	SP - SA	1		**************************************
J 88, 0	ocieni afica facea 3	61, 0	PASHING LO	27.0
SIEVE OR SCREEN	OR SIEVE (40.)	· stient (PASSING	SIEVE PERCENT
3/8	0	38	9.0	100
4	1.0		7.0	99.7
	5.8	38	1.2	98.3
30	42.5	33	8.7	87.3
50	138.8		9.9	. 51.5
100	/31.4	6	8.5	17,7
·				
		! 		
NUMBER 200	76.5	32	-0	8.3
. atieni situto innoven no. 200		IRROR (Original	volght · total	totable of freetiene)(je.)
. EASHING (055) (f=.)	27.0		•	/
OIAL FASSING NO. 200 (40.) (A		PEACENT ENABA	elene (10.	(40.) (100)
(*.)	3 28.1			
EMARKS				
·. 	MPLE 15 NO	ما م	STIC.	
			1	
(CHAICAIN (SIGNATURE)	COMPULED AL (SIGNA	Ships .	Job Numb	per 90 - 25 A

FMG . 2087 27.00

SIEVE AHALYSIS DATA					5/1/90
	AL INVESTIGA YASE I	TION	ALF 2		SAMPLE NUMBER
OESCRIPTION OF SAWPLE	SP		17167 6	/	PAGRASHED 165
VEIGHT DRIGINAL SAMPLE (10.) 4/8./	veteni arven fae	3. 4		*ASAIRE (053	4.7
SIEVE ON SCREEM	WFIGHT RFTAINED ON SIEVE (de.)		#E16#1 (4#.	PASSING SI	PERCENT d
· 3/8	0		418.1	,	100
4	8.2		409.	9	98.0
	47.4	_	362.	_	86.7
30	2240	_	128.		331
50	117.4	_	21.1		. 5.1
100	13.5	_	7.6		1.8
·					
		_			
		-			
NUMBER 200	2,2	-	J. 4		/ 2
. SEIGNI SIEVES INAOVEN NO. 200	(4)	(REDA (int - total v	eight of fractions)(qs.)
. EASHING LOSS! (4)	0, Z 4. 7	-	•	. 5	
OTAL TASSING ND: 200 (10.) (A. + #	1 oll entries in col. b.	FERCER		lifor (4 til)	······································
(=.)	417.6	<u></u>			
••	، لده د ۱۰ ۶				
Steph H Sofm is	COMPUTED 1 (SIGN	Leh.	-74	lob Number	90-25 A

2087 0/0 = 35

	5/1/90			
INDUCCI REMEDI S.I.A.D. P.	AL INVESTIGAT YASE I	ALF 3		SANFLE NUMBER /
DESCRIPTION OF SAMPLE	514			PACTASRCO → 163 □ 340
VEIGHT ORIGINAL SAUPLE (20.) 278,7	VEIGHI AFIER PREVA ZO		TASHIRE LOSS	25.4
SIEVE ON SCREEN	WEIGHT RETAINED ON SIEVE (40.)	· stignt (40.	IZ DKIZZAT U	PERCENT
3/8	0	228,	7	100
4	2.0	226.	7	99.1
10	12.0	214.7	7	93.9
30	80.5	134.0	<u>, </u>	58.7
50	45.8	88.	4	· 38.7
100	22,5	65.	9	ટ <i>8 . 8</i>
·				
NUMBER 200	ح 3, کـ	32.	7	14.3
. etigni sitves inadugn no. 29	6.8	CAROA (Original vai	this isles	
. TASHING LOSS! (40.)	25.4			0.5
OTAL FASSING NO. 200 (4) (A	ر.ه	PERCENT LANDA	erer ((e.)	رانا <u>د انتا</u>
OTAL METERS OF FRACTIONS (Fotal	228,2	0,141	nel eelaki (
EHAARS				
SAMPLE IS NOW PLASTIC				
-				
Style H Sofrie	CONFULL DI (SION	Khi to	Job Numbe	190-25 A

	5/1/90			
	DIAL INVESTIGAT	100 CECATATION	440(A	SAMPLE MUNDER
	PHASE I	•	MWA	(00
OLSCRIPTION OF SAMPLE	S M			Cutavinto
VEIGHT DAIGHAL SAMPLE (4) 2/5-2	,	sning (10.)	TASHING LOS	38,6
SIEVE ON SCREEN	MEIGHT RETAINED ON SIEVE (40.)	· VEIGHT (40	PASSIAG S	PERCENT
3/8	0	215	ر ک	100
4	3.6	211		98.3
	15.7	195	.9	91-0
30	42.4	15	7.5	71.3
50	41.0	1/2.	5	· 52.3
100	43,3	69.	2	32,2
NUMBER 200	26.3	42.9	•	19.9
. TEIGHT SICTED THROUGH NO. 2		AROR (Original ve	ight . total t	eight of freetiene)(go.)
. TASHING LOSS! (40.)	3,9	•	0,4	
OTAL TASSING NO. 200 (de.) (A. OTAL SEIGHT OF FRACTIONS (FOR de.)	42.5	(Ortginol volghe (av.) = 100)		
[HARKS				
SAMI	PLE 15 NO) Ρίλιτ	/c	
Style H Sofie	COMPUTED DE (SIGNOS	Khin A	Job Number	90-25 A

45 South Roop Street • Susanville, California 96130 Telephone (916) 257-5173

٧						
	SIEVE AHALYSIS DATA					
S. I. A. D. F	S.I.A.D. PHASE I ALF I SB					
DESCRIPTION OF SAMPLE	SP-SM			740 / 40 / PAGINASHED		
S/9. 8	elighi after freisi 2 9	6.5	VASHING LOSS	(10.)		
SIEVE OR SCREEN	ON SIEVE (40.) ALICHE BLITHED	· BEIGHT (40.	PASSING SI	PEACENT 6		
3/8	0	319,	8	100		
4	0.5	319.	}	99.8		
10	5,8	3/3	<u></u>	98,0		
30	18.4	295	-/	92.3		
50	30.4	264	2	. 82.8		
100	182.8	81.	9	25.6		
·				······································		
NUMBER 200	51.5	30,		9.5		
. TEIGHI SIETED INNOUGH NO. 20	6.3	(AROA (Original vol	tyt - tetel 4			
. TASHING LOSS (40.)	23,3			0.8		
DIAL FASSING NO. 200 (4) (A.		PEACENT LANDA		3 :-		
DIAL WEIGHT OF FRACTIONS (Fota.		(न्ताः)	error (fei)	······································		
LHARS						
SAMA	PLE 15 wow	PLASTI	٠.	·		

Job Number 90 - 25 A

	SIEVE AHALYSIS DATA		5/1/90	
	AL INVESTIGATION PHASE I	CACAVALION AUMORA ALF / SB	SAMPLE RUMBER	
OESCRIPTION OF SAMPLE	SP - SM		PACTASHED JEZ 165	
VETERT ORIGINAL SAMPLE (20.)	VEIGHT AFTER PREVASITING 6 96,		3 Z. 5	
	WEIGHT RETAINED	PASSING	SIEVE	
SIEVE ON SCREEM	ON SIEVE (4m.)	# 16#1 (fe.)	PERCENT	
3/4	0	728.5	100	
1/2 7 _e	30.1	698.4	95.9	
¥e	20.0	678-4	93,1	
4	35.1	643.3	88.3	
10	101.4	541.9	. 74.4	
20	192.2	349.7	48.0	
50	121.5	228,2	31.3	
100	132.4	95.8	13.2	
IUHBER 200	51.1	44.7	6.1	
. BEIGHT SIEVED IMPONDEM NO. 20	0 (am.) (RROR	(Original voight - tota		
. WASHING LOSS! (e)	11.8	O.	4	
HAL PASSING NO. 200 (4m.) (A. (3 2, V	AT CARDA		
DIPL TEIGHT OF FRACTIONS (Foto	44,3	(Original coleni (40.) - OS		
MARKS	728./		<u></u>	
SAMPLE	ר ה אי די די די	STIC		
CHRICIAN (SIGNALIA)	courvite (1 (31 (no ture)	Job Numi	ber 90-25 A	

11

0.0

	SIEYE AMALYSIS DA	īΑ		5/1/90
S.I.A.D. PA	L INVESTIGA VASE I			SANFLE AUGOLA 40'
OLSCRIPTION OF SAMPLE	7710 4	ALF	2 3 0	PACHASHED
	SP-51	M		163
		•		
VEIGHT ORIGINAL SAMPLE (4) 4/9-1	PEIGNI AFTER FREE	BO.0	PASHING LOS	J 9./
			PASSING S	
SIEVE OR SCREEN	WEIGHT RETAINED ON SIEVE (4=.)	· PEIGHT (4-		PERCENT
3/8	0	419-1		100
4	2.9	416.2		993
10	4.9	411.	3	98.1
30	32.8	378,	5	90,3
50	164.9	2/3.	6	. 51.0
100	117.0	96.	<u> </u>	2 3-/
NUMBER 200	51.4	45-7		10.8
. BASHING 1855 (4)	5.4	-	0.7	
HAL FASSING NO. 200 (10.) (A. + 8	39,1	PEACENT LANDA		
DIAL ACIEMI OF FRACTIONS (Foral o	44.5		arror (fr.)	,,, , ,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,
(MARA)	77.0-7			
·. SAMPLE	الم المره لد ١٥	PLASTIC		
(CHRISTIR (Signature)	CONPULS OF (SIGN	ر درد	Job Number	

2082 0/2 = .07

	5/1/90			
. -	AL INVESTIGATI		AJSHUM ROLLAVA	SANFLE AVIOLA 80
	PHASE I	<u> </u>	LF Z 58	
OCSCRIPTION OF SAMPLE	SM			PACEASH(0
VEIGHT DAIGHAL SAMPLE (20.)	VEIGHT AFTER PRESS	45 / d=.) VASHING LO	90.7
			PASSING	SILYE
SIEVE OR SCREEN	WEIGHT REFAINED ON SIEVE (4m.)	• • • • • • • • • • • • • • • • • • • •	GAT (da.)	PERCENT
• 1/2	0		55.8	100
2/3	4.0		531.8	99.3
4	157	<u> </u>	516.1	96,3
10	105.5		410.6	76.6
30	60.5	را	50.1	. 65.3
50	69,0		81.1	52.5
100	116.0		165.1	30.8
	·			
NUMBER 200	52.8	11	2-3	21.0
. WEIGHT SIETED INADUGH NO. 200	(40.)			voight of fractions)(40.)
. TASHING LOSS! (4)	90.7	·	•	(
OIAL FASSING ND: 100 (g) (A	0.)	PEACERI LAA		
DIAL WEIGHT OF FRACTIONS (Fotol	1/2.2 •(a)(ea)(•) in Col. b) 535.7	(original col(hi (ia.) a 100) , 0 Z		
(HARKS	400,7			
. 6.6 P.L. P.I	- = 24 - = 20 . = 4			·
CERRICIAN (SIGNALIA)	CONFUICO SI (SIANO	1//-	Job Numbe	90 - 2 C A

	SIEYE AHALYSIS DAT		5/1/90	
	AL INVESTIGATION	TION CACAVALION NUMBER ALF 3 58	SANFLE NUMBER	
OESCRIPTION OF SAUPLE	SM		786 84 3 R C S	
VEIGHT DAIGHAL SAUPLE (40.)	PEIGHI AFIER PREP	ASHING! (4m.) VASHING L	7 4 2	
SIEVE ON SCREEN	WEIGHT RETAINED ON SIEVE (4m.)	PASSIAG	SIEVE PERCENT	
· 3/8	0	577.2	100	
4	1.2	576,0	998	
10	24.2	551.8	95.6	
30	62.6	489.2	8F.8	
50	178.7	310.5	. 53,8	
100	150.3	160.2	27,8	
NUMBER 200	74.5	85.7	14.9	
. aficht Zifafo invonen no. 100	10.3	CAROR (Original voight - tota	I volume of fractions/(40.)	
. EASHING LOSS (4)	74.2	1.	. 2	
01AL FASSING HD. 200 (4) (A	84.5	reacent enama (prisingly original coldet (do.) = 100) - 2/		
CHARAS	576.0	97131001 001101	,	
	E 15 202	PLASTIC		
Stight H Sofwird	Courvies of (Signal	Job Numb	per 90 - 25 A	

	SIEYE AHALYSIS DATA	1		5/1/90
	AL INVESTIGAT YASE I			SANFLE RYHOLA
S. I. A. D. P.	S M	ALF	<i>3</i> 3 B	PREFESSION TES
VETERT DATETRAL SARPLE (40.) 3 86, 2	VEIGHT AFTER FREDA S &	SHING (40.)	TASHING LOS	67.7
	WEIGHT RETAINED		PASSIAG S	
SIEVE ON SCREEN	ON SIEVE (40.)	- #E16#1 (4#	.,	PEACENT 4
3/8	0	396.	2	100
4	7.0	3 89.	۷	98.2
	9.9	379.	3	95.7
30	99.4	279.	9	70.7
50	106.1	173.	8	· 43.9
100	64.4	109.	4	27.6
•				
		· · · · · · · · · · · · · · · · · · ·		
TUMBER 200	25.5	73.9	, 	18.7
. WEIGHT SIEVED INNOVEM NO. 200		IRROR (Original vol		reight of freetiens)(qu.)
. EASHING LOSS! (4)	67.7	•	•	9
TIAL FASSING ND: 200 (4) (A. + 8	.,	PLACENT LAAGA		
TIAL REIGHT OF FRACTIONS (Forelo	73.0 1011 ontrioo in col.b) 395.3	(0,10)	Bree (10.)	E.S., (III)
MARKS	<u> </u>			
·, SAMI	OLE 15 N	od Pear	TIC	
CHAISSA (SIGNOTULE)	COUPUILS OF (SIGNO)	Pl B	Job Numbe	790-25 A

	SIEYE AMALYSIS DATA			5/7/90
	AL INVESTIGATI NASE I		MWA	SAMPLE BUMBLA ,
DESCRIPTION OF SAMPLE	5 P	1008	, ALWA	PACIASH(8
218.7	**************************************		**************************************	(10-1)
	MEICHT BETAINED		PASSING SI	
SIEVE OR SCREEN	OH SIEVE (4m.)	· P[1681 (40.	,	
3/8	0			100
4	0	2/8.	7	100
	0.3	2/8.	y	99.9
30	22.0	196.	91	89.8
50	99.2	97.		. 44.4
100	81.0	16.	2	7.4
				
NUMBER 200	10.5	5-9		2.6
. OLIGNI SILTLO INNOVAN NO. 200	(4)	RROR (Original col	(ht - 1010) 's	olghs of freetlene)(go.)
. TASHING (055) (40.)	5.6		0. 3	·
OIAL FASSING NO. 200 (gm.) (A	5.9	INCENT ENABA		
OIAL WEIGHT OF FRACTIONS (Total	2 (8.9	(क्तक	tion (lai)	······································
(WAAAS				
SAMPL	الدن که ۱۶	PLASTIC		
				}
Stake H Sofrier	CONFULED DE CSIONALE	E A	Job Number	90-25 A

Q (

2.

11

1

· . . .

0/0

μ . \

ENG 2087

SIEVE AHALYSIS DATA					5/1/90
	L INVESTIGAT HASE I	-107	CCB /		SAMPLE MUMBER 9/
DESCRIPTION OF SAMPLE	SC				PACIFICA PEZ 163
30 % 7	VEIGHT AFTER FRE	6.2		ASPIRE LOSS	78,5
SIEYE OR SCREEN	ON ZICAE (4=-) ALICHI BLIVINED		#E16#1 (40.)	PASSING SI	PERCENT
3/8	0		304	7	100
3/8	4.0		300,		98.7
4	9,2		291,5		95.7
/0	17.9		273	6	89.8
	56.6		217.	0	. 71.2
	60.8		156.		51.3
100	49.0		107	۷	35-2
NUMBER 200	24,9		82	3	27,0
. TASHING LOSS! (4)		(8808	(Original wald	6 - (joight of fractions)(go.,
GIAL TASSING ND: 200 (am.) (A. + a GIAL WEIGHT OF FRACTIONS (fotol) (am.)	e L. L	_	(OFTE	in the state of th	100) , 0)
EMARKS	301.				
P. L. = P. T =	28 19 9				
CONNICIANT (SIGNOLOUS)	COMPUTED ST (STA	~ (1000) 2 /	1000	lob Numbe	

	SIE	TE AHALYSIS DATA	٨		5/1/90
PROJECT	REMEDIAL	INVESTIGAT	CCB 2		SANFLE RUNDLA
S. I.A.D DESCRIPTION D		ML	1228	MWA	PAGPASHED TES
	12 SAMPLE (10-1) 136,8	VEIGHT AFTER PRESS	ASHING! (40.)	FASHING LOSS	7/,9
		CIGHT RETAINED		PASSING SI	נינ
SIEYE		SIEVE (4)	· TEIGHT (4=.	,	PEACEA1
ر ح	3/8	0			100
	4	0	136.	9	180
	0	0.1	136.	7	99,9
3	0	1.9	134,	8	985
ی	-0	3,9	/30.	9	. 95.7
10	0	18.7	112.	٧	82.0
					
~			ļ		
NUMBER 200		29.9	82,3	7	60.2
. acieni 31Cv	(9 INAOVEN NO. 209 (4		tanon (Original vai	161 - 16101	
. TASHING LOS	31 (40.)				. 2
GIAL PASSING	HO; 200 (4m.) (A. + 8.)	71.9	PERCENT ERROR		
01AL =(1GH1 0	F FRACTIONS (Fotal of al.	82.(1 anicles in col.b) 1 36.6	(वरादा	Beros (12.)	······································
CHARKS			^		
٠,	SAMA	ze ,s	مام کره	4877C	
ICHNICON (3)	"HILL	COMPUTER OF COLOR	W. B	Job Numbe	590-25 A

	SIEYE AHALYSIS DAT	A	5/7/90
5. I.A.D. 7	IAL INVESTIGAT PHASE I	CCB 2 Ma	SAMPLE MUMBLES
OESCRIPTION OF SAMPLE	SM		PACEASACO TES
PEIGHT DATETHAL SAMPLE (60.) 2 8/.7	VEIGNI AFTER PAGE	asning! (4) vasning	(10.5) (10.1) D.10
SIEVE OR SCREEN	WEIGHT RETAINED	PASSIA	G SIEYE PERCENT
	ON SIEVE (4)		
3/8	0	281.7	100
4	0,2	2 81.5	99,9
10	6-1	275.4	97.8
30	39.2	236.2	83.9
50	J-3, J	182.7	· 61.9
100	51,6	131-1	46.5
NUMBER 200	41.5	89.6	31,8
OTAL TEIGHT OF FRACTIONS (FOR	8.3 81.1 29.4	tanon (Original rolgh) - los , Z reactal engon	
CHARKS			
. L.L. P.L. P.T	= 23 = 20 = 3		
Stight H Softman	converte de (3100	Job Num	nber 90-25 A

	SIEYE AHALYSIS DA	TA		5/4/90
S.I.A.D. PA	L INVESTIGA YASE I		CCB 1 5B	SAMPLE MUMBER 40'
DESCRIPTION OF SAMPLE	SP		<u> </u>	/#E143HE0 163
VEIGHT BAIGHAL SAMPLE (ja.) 628.3	VEIGHT AFTER FRE	ASHING (TASHING LO	/2.8
SIEVE ON SCREEM	VEIGHT RETAINED ON SIEVE (4m.)		DRISSAT () TRAID	SIEVE PERCENT
3/8	0		628.3	100
4	1.0	-	627.3	99.8
10	7. 3	_	620.0	98.7
30	72,3		547,7	87,2
50	255,2	_	292,5	. 46.6
100	239.4		53.1	8.5
		-		
		-		
NUMBER 200	33.9		19,2	3./
. WEIGHT STEVED INFOVEN NO. 200	5,9	CARDA (O	idinat voidht - total	roight of fractions;(40.)
. TASHING LOSS! (40.)	12.8	-	O	- J
DIAL TASSING NO. 200 (14.) (A. + #	, /8,7	PEACENT	AAOA (Orldinol voldhi	(40.) -0 100) _ 08
()	627.8	<u></u>		
•	ره در ۱۵ سے	s pe.	4 (7)(
Style H Somit	COUPUICE DE COLON	Kh	Job Numb	er 90-25 A

2002 Dio = ...6

	·			Tears
	SIEYE AHALYSIS DA			5/4/90
	L INVESTIGA	1 .		SANFLE NUMBER /
S. I. A. D. PA	ASE I	CCB 1	<u>5B</u>	70
	5 M			Ø
VEIENT DAIGINAL SANFLE (12.) 5-61. Z	TEIGHT AFTER THE	BASHING! (40.)	TASHING LOS	147.7
			PASSING S	
SIEVE OR SCREEN	WEIGHT RETAINED ON SIEVE (40.)	· BLIGHT (40.		PEACENT
3/8	0	561.		100
4	1.0	560.		99.8
	5.5	554.	7	98.8
30	36.8	517.	9	923
50	97,0	420.	9	. 75-0
100	153.6	267.	3	47.6
			i	
		,		
NUMBER 200	107.0	160.3	3	28.6
. WEIGHT SIEVED INAQUEM NO. 200	12,0	CARON (Original vel	thi - 10101	roight of fractions)(ga.)
. TASRING LOSS (4)	147.0		0.6	
STAL FASSING ND: 200 (4) (A 8	159.7	PEACENT ERADA	·	
OTAL REIGHT OF FRACTIONS (Fotal o	5 60-6	(0711)	nol vollai (((0.) - 0 (68) .//
(HAARS		· *		
•••	SAMPLE 13	א בא נגפנג ו	STIC	·
(CHRISTIN (SIGNOTURE)	CONPULLED 1 (SIGN	FA	Job Numbe	790-25 A

	SIEVE AHALYSIS DAI	A		5/7/90
	YASE I		-2-58	SANFLE NUMBER
DESCRIPTION OF SAMPLE	SP-5M			PACEASHED PES 163
Tient original saufle (40.) 569, 9	ocioni arien raen		TASHING LOS	22,3
SIEVE OR SCREEN	VEIGHT RETAINED ON SIEVE (40.)	· otient (2 2k18845	PERCENT
3/8	0	56	9.9	100
4	2.8	56	7.1	99.5
10	5-1	567	2.0	98.6
30	64.0	498	3,0	87.4
50	265.8	237	٤, ٦	· 40.7
/00	159.0	7 3	3.2	/2.8
NUMBER 200	43.3	29.	9	ح ہی
. utient situte innoven no. 200				oight of frontiene/(go.)
. TASHING LOSS! (4)	22.3		0.5	
OTAL PASSING ND: 200 (so.) (A. + B OTAL PLIGHT OF FRACTIONS (Fotal o	29,4	PEACERI LAAGA	131 00 (10.)	100) - 09
()	569.4	<u> </u>	<u></u>	
•,	مهم کره در م	rtic	·	
Steph H Sofwit	COUPULED AT (SIGNAL)	Khi A	Job Number	90-25 A

T

 \mathbf{j}^{1}

:

	SIEYE AHALYSIS DATA	١		5/7/90
	AL INVESTIGAT YASE I	102	164741 198 4940(A CCB - Z - SZ	3 SAMPLE MUTTER 70
DESCRIPTION OF SAMPLE	5 M	_		74 (14.3) (15.
T 26. 5	eciani afica facol	4, 8		71.7
SIEVE OR SCREEN	WICHT RITAINED ON SIEVE (40.)		PASSIA 	FERCENT PERCENT
3/8	0			100
4	0		526.5	100
	3.8		522.7	99,3
30	63.3		459.4	87.3
50	152.5		306.9	. 58.3
100	168.0		138.9	26.4
·				
NUMBER 200	55.7		83.2	15.8
. TASHING LOSS! (fo.)	70.7	(ARBA (O	•	(=) yought of fractions)(ga.)
OTAL PASSING NO. 200 (dm.) (A OTAL MISEN OF FRACTIONS (Fotal dm.)	el all eatrice in Col. b)	PEACENI	(anon (original vo lg)	······································
IEMARAS	525.4	·		· · · · · · · · · · · · · · · · · · ·
·,	nRE 15 /	که ه د	PLASTIC	
State H Safaria	CONFVIEW AT (31ga	PL	Job Nu	mber 90-25 A

				1000
SIEVE AHALYSIS DATA			5/7/90	
S.I.A.D. P	HASE I	CCB-C		SAUFIL BUUGA /
OESCRIFTION OF SAMPLE				PREMAINED
	SP-SM			1 10 10 10 10 10 10 10 10 10 10 10 10 10
VETERT BRIEFRAL SAMPLE (22.)	VEIGNE AFTER FREE	9. 4	*45#1#6 (055	(40.)
			PASSING SI	
SIEVE OR SCREEN	OR SIEVE (10-)	· 9616#1 (40.	,	PERCENT 4
3/8	0	600.	9	100
4	1.1	599.	8	99.8
10	15.8	584	0	97.2
30	159.8	424.	۷	70.6
50	188.5	235.	2	· 39.2
100	142.9	92	8	15.4
		-		W
HUMBER 200	42.1	507		8-4
. atient situte innoven no. 20		ERROR (Original sei	thi . lotel t	oight of fractions)(ga.)
. EASHING (055 (4m.)	41.5		0.6	
OTAL FASSING NO. 200 (10.) (A	50.1	PEACENI LANGA		
01AL ={16P1 07 7PACTIONS (Total	of all entries in Col. b)	(Original coldat (do.) = 100) ./O		
(MARKS	600.3	L-,		
	لره ند ۱۶ کا	PLASTIC		·
		1		
(CHRISSEN (SIGNOTOTO)	COMPULED OF (SIGN	ا دروانانا	lah Mumba	_

	SIEVE AMALYSIS DATA			5/7/90
S. I.A.D. P	AL INVESTIGATI YASE I	CCB 4		SANFLE NUMBER YO'
OESCRIPTION OF SAWPLE	SP- 5M			PACEASHED TCS
veiens uniginal sample (40.) 5/7, 8	VEIGNI AFIER FREVASI		WASHING LOSS	(10.) 45.5
SIEVE OR SCREEN	WEIGHT RETAINED ON SIEVE (4m.)	• • • • • • • • • • • • • • • • • • •) PASSIAG 511	PEACENT
3/8	0	517,8	?	100
4	5.2	5/2.		99.0
	11.5	501.1	,	96.8
30	76.5	424.	6	82.0
50	182.8	241.	8	. 46.7
100	153.1	88.	7	17-1
NUMBER 200	33,6	55.1		10.6
. HEIGHT SIETED IMMOUGH NO. 200	8.2			right of frantions)(qu.)
DIAL TASSING ND. 200 (40.) (A. + 4 DIAL GLIGHT OF FRACTIONS (Fotal (45.5 53.7 1011 onto to cot, 0)	Geldi	Tree (40.)	., · 100) , L7
inaars SAMPLE	لەەنە ئ	PLANTIC		
Style H Solmin	COMPUTED ST (SIGNATURE)	KLA.	Job Number	90-25 A

11

I

	SIEYE AHALYSIS DAT	A		5/7/90
	L INVESTIGATIONS	CCB		SAUPLE AVOREA 40'
DESCRIPTION OF SAUPLE	SP- SM			71(145)(0 (X) 1(5
VEIGHT ORIGINAL SAMPLE (10.) 773,7	VEIGHT AFTER PRES	ASHING (40.) 4. 2	VASA146 LOS	×9.5
			PASSIAG S	ILYE
SIEVE OR SCREEN	MLICHT BLLVINGO ON SIEAE (40.)	· #616#1 (40.		PERCENT 4
3/8	0	773.	7	100
3/8	1.5	772.	2	99.8
4	6.7	765		98.9
	36,0	729.	<u> </u>	94.3
30	145.9	583.	6	. 75.4
50	264.8	318.	8	41.2
	194.7	124.	/	16.0
RUMBER 200	60,6	63.5		8.2
. HEIGHT SIEVED INNOUGH HO. 200		CAROR (Original se	141 - 10101	toithi of fractions)(fa.)
1. TASHING 1035 (10.)	12.6	·	1.4	4
101AL FASSING NO. 200 (40.) (A.		PEACENI LANDA		
OTAL WEIGHT OF FRACTIONS (Fotal	62.1 •(*) •(*) •(*) •(*) •(*) •(*) •(*)	1	inel coldair	(e.) · (ee) ·/8
SAMPLE IS NON PLASTIC				
(CHRICIAN (SIgnolore)	COMPUIED 6.1 (314m	····)	Job Numbe	er

PERCENT COARSER BY WEIGHT 40, 8 SIG 4/11/20 HYDROMETER SET OR CLAY BONK NA CCA å •3 2 8 2 U.S. STANDARD SIEVE NUMBERS
1 10 14 16 20 30 40 50 GRAM SIZE IN MILLIMETERS
SANO
SANO Nat w % CURVES GRADATION 2 ٠٥ ، د ، ۲ OPENING IN GRAVEL 11 11 U. S. STAMBARD SIEVE Я Er a Dram 8 23 MB000 Samore Me. PERCENT FINER BY WEIGHT

0,0

	SIEYE AHALYSIS DAT	^		PATE -/3 /
				5/2/90
S. I.A.D. F	IAL INVESTIGAT	TION CACAVATION A	MWA	SANFLE AUNDER 35'
DESCRIPTION OF SAMPLE				PREFASRED
-	sw sm			₩
VETERI DATETRAL SABPLE (20.)	VEIGNI AFIER FREE		TASHING LOSS	10,/
770,0		9.9	PA3314G 31	
SIEVE OR SCREEM	WEIGHT RETAINED ON SIEVE (4m.)	· PEIGHT (40.		PERCENT
3/8	0	140.0		100
4	5.9	134	/	95.8
10	24.4	109.	7	78.4
30	38.9	70.0	9	50.6
50	17. 9	52.	9	. 37,8
100	21.8	31,		22.2
NUMBER 200	18.5	12.6		9.0
. witchi stirio inacuen no. 29	2.2	(ARDA (Original -oi	thi - total t	oight of frontionoj(go.)
. EASHING LOSS! (40.)	10.1		, 3	
OTAL FASSING NO. 200 (4) (A.	12.3	PEACENT LANDA		
Olat ations of fractions (fotal	(वटाका	ior oo (lai)	٠٠٠ . ١١٠١	
(MARA\$	139.7			
SAMPLE IS NON PLASTIC				
ICHRISTAN (Signotore)	COMPULET DE (SIANA	(41.5)2		

	5/3/90		
	OIAL INVESTIGAT PHASE I	DMO 3 MM	JA JANFLE RUNGER /
DESCRIPTION OF SAMPLE	S C		PACEASHED TES
J 71, 1		ASHING (em.) VASHING	(0)) (40.) / 4 4. /
SIEVE ON SCREEM	ACIUNI BELVINED	PASSIA - PEIGHT (4)	G SICYC
	ON SIEVE (4m.)		PERCENT
3/8	0		100
4		371.1	/00
	٥ , ٥	366.1	98.6
30	52.9	313.2	34.4
50	3 8.8	274.4	. 73.9
100	58.3	216.1	58.2
		·	
NUMBER 200	57.9	15-8.2	42.6
. HEIGHT SIEVED INNOUGH NO.	14,0	CAROR (Original voight - 101	ol roight of frontionoj(go.)
. TASHING (055 (60.)	144.1	•	/
OIAL FASSING ND: 200 (gm.) (A	158.1	PERCENI ERABA	· · · · · · · · · · · · · · · · · · ·
OTAL SCIENT OF FRACTIONS (FO		(original colds	;, (10.) - 1001 , 03
CHARAS	5 //.0		
;	L.L. = 28 $P, L. = 20$		
	QT = 8		
Style H Sofre	it Courself of (31000	Job Num	nber 90 - 25 A

45 South Roop Street • Susanville, California 96130 Telephona (916) 257-5173

				PATE
	SIEYE AHALYSIS DAT	· A		5-/2/90
S. I. A. D.	PHASE I	DMO 4		SAUFIC RUSSIA
ociscalifica of saurce				**************************************
VEIGHT ORIGINAL SAMPLE (Ja.)	PETERT AFTER PAGE		TASHING LOSS	
155.2		45.8		9.4
SIEVE ON SCREEN	WEIGHT RETAINED ON SIEVE (40.)	· veieni (40.	PASSING SI	PEACENT
3/8	0			100
4	0	155.	2	100
	2,8	/52.	. 4	98.2
30	24.8	127,	6	82.2
50	34.9	92.	7	59.7
100	50.8	41.	9	27.0
·				
NUMBER 200	29.0	12.9		8.3
. utieni sitrio innoven no.	100 (4)	CARBA (Original est	141 - 10101 7	
. FASHING LOSS! (4)	3.7 9 4		. 2	
01AL FASSING EQ. 200 (4m.) (A	9.4	PEACENT LANDA		
DIAL TEIGHT OF FRACTIONS (For	(कराहा	lerer (lai)	······································	
(MARRS				
SAMPLE IS NON PLASTIC				

Job Number 90-25 A

	5/2/90			
S. I. A. D. P.	AL INVESTIGA. HASE I	DMO	4 MW	344/1E #010E# / /00'
OESCRIPTION OF SAMPLE	5 C			78 (14.5 HCS
veiens daiginal sample (10-1) 368,7	S S ALIEN THEN SAFE	(7.9	******* CO	120.8
SIEVE OR SCREEN	WIGHT RITAINED ON SIEVE (40.)	· 1(1681 (4e	- PASSING	PEACENT .
3/8	O	368.	7	100
4	1.4	367.	3	99.6
10	11.0	356.	3	96.6
30	66.2	290	-/	78.7
50	73.8	2/6	. 3	. 58.7
/00	543	162	,0	43.9
NUMBER 200				
. afichi sifafo invonch no. 500	32.7	IRROA (Original as		35./
. TASHING LOSS! (4)	8.7	·	. 7	٤
OTAL PASSING NO. 200 (4) (A	/20.8 •/	PLACENI LAADA	.	
OTAL MEIGHT OF FRACTIONS (Fotal	129.5 •1•11 ••1•1•• In col. b) 368.9	Gell		(40.) - 0 100) . 0 5
(MARK)	J G 0.7	<u> </u>		
. 4.6	_ = 27			
P. C	. = 20			
P. I				
Stahn H Sofmise	CONFULL DI (31900	SC A	Job Numb	er 90 - 25 A

	SIEVE AHALYSIS DAT			5/3/90
	AL INVESTIGAT NASE I		S MWA	JANYLE RUNDER /
OESCRIPTION OF SAMPLE	5P-5M		<u> </u>	PACEASACE TES
TEIGHT DATETHAL SAMPLE (40.)	ocioni apica paco		PASAIRE LO	35, 2
SIEVE OR SCREEN	VEIGHT RETAINED ON SIEVE (40.)	· ## ## (PASSIAG	SILYE PEACENT
3/8	0		-	100
4	0	380	. 7	100
	0.7	38	6.0	99.8
30	14.8	37,	1.2	96.0
50	53.5	317.7		. 82,2
100	167.5	148	3.2	J 8-3
	-			
NUMBER 200	102.8	45.	4	11.7
. utient litres innoven no. 200			<u> </u>	voight of frantiene)(go.)
. EASHING (055) (4)	35. 2		-	3
BIAL FASSING MB: 200 (40.) (A		PERCENT LABOR	# (#)	
DIAL WEIGHT OF FRACTIONS (Fotal	3 e 7,0	(बरा	TIME TO THE T	(((·) · ((()
CHARRS TA	mple 15 NO	J PLAST		
CERNICAIN (SIGNOIDED)	COMPUTED DE (SIGNA	الردادا	Joh Numb	er 90 - 2.5 A

			BIAS
	SIEYE AHALYSIS DAT		5/3/90
	IAL INVESTIGATION	DMO 5 MW	A /00
DESCRIPTION OF SAMPLE		107.0 0 14.0	PREMAINED
	$C \perp$		₩
TEIGHT ORIGINAL SAMPLE ()	PEIGNI AFIER PRES		1913 (40-)
257.1		33.5.	123.6
SIEVE OR SCREEN	WEIGHT RETAINED ON SIEVE (40.)	PASSING . TELEGRE (40.)	PEACENT
3/8	0	257_/	100
4	0,9	256.2	99.7
	3,9	252.3	98.1
30	13,3	239.0	93.0
50	20.0	2/9.0	. 85.2
100	37.7	181.3	70.5
		·	
NUMBER 200	42.8	138.5	53.9
. TEIGHT SIETED THAOUGH NO. 29	14,9	IRROR (Original voight - tota	d goight of fractions)(go.)
. TASHING (055) (4)	1236	1	0
OIAL TASSING NO. 200 (40.) (A.		PEACENT LANDA	
DIAL CLIGHT OF FRACTIONS (Fore	138,5 101011 0010100 10 001.0) 257./	Gridinol coldina	1 (40.) -0 141) 0
(MAANS		1	
	, ,,		
	4, 32		
	۷, ٤3		.]
P.	T. 9		·
(CHRICAIN (SIgnotore)	CONFUEE DE CSION	Job Num	har

45 South Roop Street • Susanville, California 96130
Telephona (916) 257-5173

V constitution of			
	5/2/90		
MONICE REMEDI S. I.A.D. P.	AL INVESTIGAT	OMO 6	SB 30'
OESCRIPTION OF SAMPLE	S W		PACTASHED TES
VEIGHT DAIGHAL SAMPLE (A.)	VEIGNI AFTER FACE	ASHING [†] (40.) VASHI 2 4. 8	20.4
SIEYE OR SCREEN	WEIGHT RETAINED ON SIEVE (de.)		SING SIEVE PERCENT
3/8	0	545.2	100
4	0.3	544.9	99.9
10	15.4	529.5	97./
30	399.5	130.0	23.8
50	54.4	75.6	13.9
100	30.4	45.2	8.3
·			
		-	
RUMBER 200	19.5	25.7	4.7
A. OLIGNI SILVED INNOUGH NO. 200	(40.)		total roight of fractions)(ga.)
T. BASHING LOSS! (40.)			1.1
101AL PASSING NO. 200 (da.) (A	246	PERCENT LANDA	(10:) 20
OTAL WEIGHT OF FRACTIONS (Fotob	of all advisor in Col. b) 544.1	Gridinal a	Tichi (io.)
LEMARKS			
·.	AMPLE IS	NOJ PLASTIC	

Job Number 90-25 A

C.F.	VE ANALYSIS DA	T A		PATE
	AE YHYTASIZ DY			5/2/90
S.I.A.D. PHA.	SE I	DMO	6 S B	3447([1040(4 80 /
DESCRIPTION OF SAMPLE	SP			78 (84 SR (8
VEIGHT PRIGINAL SAMPLE (40.)	VEIGHT AFTER PRE	(94. 4	******* (**)	15.8
	FIGHT RETAINED		PASSING S	
	OR SIEVE (e=.)	* *************************************	.,	**************************************
• 3/8	0	510	, 2	100
4	5.4	501.	8	98.4
10	38.5	463.	3	90.8
30	134.6	3 28.	. 7	644
50	174.4	154.	_ح	. 30.2
100	115.5	3 8.	8	7.6
	···-			
NUMBER 200	19.9	18.	9	3.7
. atieni sityto innoven ng. 200 (40.		(AROR (Original sol	idht - total	roight of frontionoj(qu.)
. WASHING LOSS! (40.)	15 8	-	•	9
OTAL FASSING NO. 200 (4) (A. + 8.)	18.0	PERCENT CHARA		
OTAL REIGHT OF FRACTIONS (Total of al	1	(ortal	indi dal la l	······································
(HARR)				
•		LOW PLAS	T/e ·	
CA m	FLE /- ^		, , _	
State H Sofwit	CONFULLATION (SIA	t Schitz	Job Numbe	1 90-25 A

Ħ 100

. 18

0/0

وازن

1001

V			
	SIEYE AHALYSIS DAT		5/3/90
5. I.A.D. P.	AL INVESTIGAT MASE I	DMO 7 SB	344/10 EV=0(8 , 80)
DESCRIPTION OF SAMPLE	5P-5M		7A(44)A(8 7A(44)A(8
VEIGHT DAIGHAL SAMPLE (10-1) 5 73.0	OCIGNI AFICA PACE	ASHING (4-1) VASHING L	26.6
		PASSING	SILYE
SIEVE OR SCREEN	WEIGHT RETAINED OR SIEVE (40.)	· BEISHT (da.)	PERELET
3/8	0	573.0	100
4	<i>3.</i> 2	564.8	98.6
	3/,2	573.6	93.1
30	216.6	317.0	55.3
50	191.4	125.6	` 21.9
100	66.0	59.6	10-4
NUMBER 200	25.4	34.2	6.0
. utient Sity(o Innoven no. 200	(40.)	CRADA (Original velgat - tota	
. EASHING (055 (40.)	26.6	1.	/
DIAL FASSING NO. 200 (gm.) (A. v. DIAL GEIGHI OF FRACTIONS (Fotal)		PERCENT ERROR (Bree (40.	(40-) - (41) . /9
(MARK)	J //. 7		
•	PAPLE 15 P	od PLASTIC	
Stake H Sofreigh	(Ourvies at (Signa	Job Numl	ber 90-25 A

11 Ç., CNI

787 POBL

	SIEYE AHALYSIS DATA	\		5/2/90
	L INVESTIGATIONS	DMO 8	S B	SAUPLE NUMBER /
DESCRIPTION OF SAMPLE	SW-51			/1(11)1(1) Ø(11)
G Z 3. 6	VEIGHT AFTER PACES	5 4	745# IA 6 LOS	3/, 2
SIEVE OR SCREEN	WEIGHT RETAINED ON SIEVE (40.)	· 9(16#1 (40.)	PASSING S	PERCENT
1/2	0	623.	6	100
3/8	3.5	620.	/	994
	5.0	615.	./	98.6
	73.3	5'41.	8	86,9
	336.4	205.		. 22.9
50	5° 8- 4	147. 87.		23,6
/00				
NUMBER 200	ر جی ک	3 % C)	Totable of frontions)(qo.)
. WASHING LOSS (()	7,0		. 2	
DIAL FASSING NO. 200 (de.) (A	3 4. 2 •1 •11 •n1:1•• in col. b)	reacent enada	irror (40;)	٤٥. (١١١)
() ENARKS	6 63.8	ped peds	TIC	
CENTICIAN (SIGNALAND)	COMPUTED ST (STANS	(***)/	Job Numbe	er

45 South Roop Street . Susanville, California 96130 Telephone (916) 257-5173

	5/2/90		
SIAD	SAUPLE BUNGA So'-81'		
DESCRIPTION OF SAMPLE	5W-S	M	PACEASHCO PEZ ICS
VEIGHT ORIGINAL SAMPLE (10-1)	VEIGHT AFTER PRES	76.0	37.3
SIEVE ON SCREEN	ON SIEAE (40-) ALICHI MLIVINEO	PASSING . BLIGHT (40.)	PERCENT
• //_	0	7/3.3	100
1/8	26.7	686.6	96.3
<u> </u>	45.7	640.9	899
. 10	133.0	507.9	71,2
	258.5	249.4	. 35-0
	115.5	130.9	18.4
/00	ر-4.2	7%.7	10.5
NUMBER 200	2 <i>9</i> .6	46.1	6.6
. atieni Sitrea inaguen no. 29	7.8	[RROR [Gridinoi voight · toto	i totable of irections)(go.)
. TASHING LOSS! (fe.)	37.3	1 4	0
OTAL FASSING NO. 200 (40.) (A 8.)		PERCENT ERROR)
DIAL CLIGHT OF FRACTIONS (Fotal	1011 entries in Col. b)	(original soliki	(10.) - 14
ENAARS			
·,	- /c .) o A	PLASTIC	

Job Number 90-25 A

ر ۶

Įŧ. 0/0

MOP

	5/2/90			
S. I. A. D. P.	AL INVESTIGA HASE I		avalla 9 SB	340716 AUGUSTA / 40
GESCRIFTION OF SAMPLE	5 M			PACEASHED TES
VEIGHT DAIGHNAL SAMPLE (10-1) 474. 8	veigni arien rae	PASHING (40.)	TASRIRE LO	1/3,3
SIEVE OR SCREEN	WIGHT RETAINED ON SIEVE (40.)	· PEIGHT (da	PASSIAG	SIEVE PERCENT
3/8	0	474.	8	100
4	1.3	473	-5	99.7
10	28-5	445	.0	93.7
30	91-0	و س ح	40	74.6
50	85.6	268	9.4	. 56.5
/00	73.6	199	4.8	41.0
	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			
NUMBER 200	59.1	/35	7	28.6
. WEIGHT SIEVED IMPONDEN NO. 200		· — — — — — — — — — — — — — — — — — —		reight of frontionoj(qu.).
. BASHING LOSS! (gm.)	// 3.3	0.9		
OIAL FASSING NO. 200 (40.) (A		PERCENT ERROR (OFFEIRE OF (10.) - 0 100) . /9		
OTAL METERS OF PRACTIONS (Social of all of a		Gett	lasi eelski	(10-1) . (9
(WAAR)				
	ع لده <i>در</i> 5	PLASTIC	•	
		•		
Stight H Sofmit	CONTUITO (3100	Ich A	Job Numbe	er 90-25 A

	SIEYE AHALYSIS DAT	٨	-		5/2/90	
S.I.A.D. PH						
OESCRIPTION OF SAMPLE	M			Alexande Do		
SY6.0	CIGNI AFICA FACE	2 4 , 8		TASRING LOS	2/,2	
	WEIGHT RETAINED			PASSING S	ונינ	
SIEVE OR SCREEN	ON SIEVE (40.)		EIGHT (des,)	PEACEB1 	
3/8	0		546	.0	100	
4	0,2		545	9	99.9	
	1.1		5-44	. 7	99.8	
30	48.7		496.	0	90.8	
50	283.0		2/3	.0	. 39.0	
100	157.0	56.0		10 3		
·						
NUMBER 200	28.0		28.0		5.1	
. BEIGHT STETED THROUGH NO. 200 (6.0	LARDA (OF	dinel veld	hi - total	olght of freeliene)(go.)	
. #ASHIRG LOSS! (()	21,2	0,8				
DIAL FASSING #0: 200 (4) (A. + 8.		PLACENT L				
DIAL ACIGNI OF FRACTIONS (Fotal of	(old online in col. b)	(Original voidhi (40.) a 100) 15				
MARAS	0 70.0	·····				
C 4	10	م کا جو در	25T1			
SAMPLE IS NON PLASTIC						
State H Sofwitt	CONFULD & CSIONS	16	R	ob Numbe	90-25 A	

0,00 ×0.14

	ATAU SISYJAKA BYBIS			- / - / co
PROJECT REMEDIAL INVESTIGATION EXCAVATION NUMBER				5/3/90
S.I.A.D. PI	10 58	140716 BARRE 40,		
OLSCRIPTION OF SAUPLE	5 M			PACTASACO DE TES
VEIGNE ORIGINAL SAMPLE (20.) 600, 7	VEIGHT AFTER PACEAS	7-9	TASRING LOSS	/42. B
SIEVE OR SCREEM	WEIGHT REFAINED		PASSING SI	
	OH SIEVE (40.)	· #116#1 (40	•••	*
3/8	0	600	5.7	100
4	1.1	59	9.6	99.8
	25,2	J 74	4	95.6
30	196.0	37	8.4	63.0
50	50.5	٠ ع تـ	7-9	. 54.6
100	68.7	25	9. 2	43.2
		-		
IUMBER 200	95.5	163.		27.3
. utical situte language no. 196	19.7	ARDR (Original va	T into . 1411	eight of frequiency(go.)
. WASHING LOSS (40.)	142.8	1.2		
DIAL FASSING NO. 200 (40.) (A. + 4	,	CACENI CAROA		
TAL TELEPT OF FRACILORS (Forel o		(priginal validation) - 2 0		
PARRS	5995			
,				
••		_	•	
5A-	PLE 15 NON	PLASTIC	• -	
State H Safraire	CONTUITAT (SIGNATO	·//	Job Number	90-25 A
1the A James	1 Steel	Church		10-63

			PATE	
	SIEYE ANALYSIS DATA		5/3/90	
PROJECT REMED	IAL INVESTIGAT		SAMPLE RYMOCA	
S. I. A. D. 7 DESCRIPTION OF SAUPLE	PHASE I	DMO 11 5B	40'	
OCSCRIPTION OF SAMPLE			SECOVENCE.	
	5M		₩	
VEIGHT ORIGINAL SAMPLE (Je.)	FEIGNI AFIER FREEA	SHING (40.) PASHING LOS	J	
470.1	299	4. 2	175.9	
	WEIGHT RETAINED	PASSIAG S		
SIEVE OR SCREEN	ON SIEVE (40.)	· BEIGHT (40.)	/{#C{a1	
3/8	0	470-1	100	
4	O. Z	469.9	99.9	
	3.4	466.5	99.2	
30	57.0	409.5	87.1	
50	40.5	369.0	· 78.5	
100	65.4	3036	64.6	
NUMBER 200	91.8	205.8	43.8	
. Eligni Silvie innoven no.		(RRDR (Original vaight - tate)	roight of freetiens)(fe.)	
	29.6		2	
. EASHING LOSS (4)	15-6-6	•		
	175.9			
01A(FASSING ND: 200 (4) (A	205.5	(Original valent (da.) = 100) _ O G		
dial milghi of thactions (for	101 01 011 0010100 In Col. b) 469. 8	. Grifium contuct		
CHAARS				
·. SA~	مرد ۱۶ ماما	PLASTIC		
ICHNISAN (Signotore)	COMPUIST DI (SION	····		

	5/2/90				
	L INVESTIGAT	۲۵۰	DMO 12 SB	SARFIE RURGER	
SESCRIPTION OF SAMPLE	514			/A(145R(8 /ZZ 165	
GOGHE ORIGINAL SAMPLE (10.)	PEIGNI AFTER FACE	8.4	(4) FASHING (76.6	
SIEVE OR SCREEN	WCIGHT RETAINCD ON SIEVE (4m.) A	-	PASSIA	PERCENT	
· //2	Q		675.0	100	
3/8	3.7		671.3	99.5	
	10.2	_	661,1	97.9	
	55.9	_	605.2	89.7	
30	175.3	_	429.9	. 63.7	
50	148.6	_	281.3	41.7	
/00	///7		169.6	25.1	
IUMBER 200 . VEIGNI SIETEO INNOUGH NO. 200	81,6	(AROA (88.0	/3,0	
. TASHING LOSS! (4)	76.6		./		
DIAL FASSING NO. 200 (gm.) (A. + M.) 87.9 DIAL OLIGHI OF FRACTIONS (Fold of all emission in Col. b)			(Original voight (do.) . 0 /		
MARKS	674.9		· · · · · · · · · · · · · · · · · · ·		
·, \$\int \text{Am}_2	ادو ده عاما) P	LASTIC		
CHAICIAN (SIGNATURE)	CONFUICO ST (STATE	,	Job Num	iber 90-25 A	

	SIEVE AHALYSIS DA	TA		5/2/90	
MOJICI REMEDIA					
S.I.A.D. Ph	ASE I	DMO	3 5B	SANFLE AVERSER ,	
OESCRIPTION OF SAWPLE	54			74(14.5H(0 16.5	
VEIGHT DRIGINAL SAMPLE (40.) 5 20.9	TERM AFTER FAC	FASHING (4)		64,4	
3 20.7		36.3	PASSING S		
SIEVE OR SCREEN	ON SIEVE (40.)	· BLIGHT (40.		PERCLOT	
3/8	0	.20	9	100	
4	1.9	519.	0	99.6	
	28.6	490.	4	94.1	
30	129.1	361.	3	69.4	
50	108.1.	253		. 48.6	
100	103,2	150.0		Z 8.8	
·					
		-			
		-			
		-			
NUMBER 200	69.0	81.0		15-6	
. afichi Sififo innoven no. 200 (16.2	IRROR (Original vel	tht - total t	eight of fractions;(go.)	
. TASHING LOSS' (4)	64.4	-		. 4	
PIAL FASSING NO. 200 (gm.) (A. + B.,	80.6	PERCENT LANDA			
DIAL SEIGHT OF FRACTIONS (Fotal of		(Orthodoxidation) . CB			
HAARS		· · · · · · · · · · · · · · · · · · ·			
•					
CAM	APLE 15 ~	DLAS	TIC	ļ	
Stacken H Sofrait	COMPUTER OF CASE	PLA.	lob Number	90-25 A	

	SIEYE AHALYSIS DAT	A		5/8/90
INDIECT REMEDIAL INVESTIGATION EXCAVATION NUMBER				
	PHASE I	TNT 15	• •	349716 RUNGEA 70
OESCRIPTION OF SAMPLE	50			PREMASHED DZ 165
VEIGHT ORIGINAL SAMPLE (20.7)	ocigni afica faces		IASMING LOSS	6.5
0 , , , ,			PASSIAG SI	
SIEVE OR SCREEN	WEIGHT RETAINED ON SIEVE (40.)	· UEIGHT (de.)		PERCENT
3/8	0	371.6		100
4	0.3	371.3	3	99.9
10	4.7	366.	6	98.7
30	84.7	281.	9	75.9
50	120.2	161.	7	. 43.5
100	135.5	26.	۷	7./
	· · · · · · · · · · · · · · · · · · ·			
		·		
NUMBER 200	18.7	7.5		2.0
. TIGHT SICTED THROUGH NO. 2	0,6	LARDA (Original voigi	1 - 10101 1	oight of frontions)(ga.)
. TASHING 1955 (10.)	6.5	0,4		
DIAL FASSING ND: 200 (40.) (A.	• 2.)	PEARL INJOA		
OIAL MEIGHT OF FRACTIONS (Fota	7, / 101011 0010100 10 501.8) 371.2	(original coldat (doi) a 100) . //		
(HARRS		· · · · · · · · · · · · · · · · · · ·		
SAMP	له وله ۱۶ ک	PLASTIC		
(CARTECIEN (SIgnoture)	COUPULET DE CSIONS	2d	ob Number	90-25 A

16 tour, 2082 Die = .17

	SIEYE AHALYSIS DATA	· · · · · · · · · · · · · · · · · · ·		5/8/90
	AL INVESTIGAT	102 (ACAVALION)	16 MWA	SAUCE EVENER /
OESCRIPTION OF SAMPLE	SP - 5 ^		7 - 7 - 7	7A(141R(0)
WEIGHT BRIGINAL SAMPLE (10.) 472. 9	PETERL AFTER PACEA	shine (4)	PASAINE LOSS	20,8
			PASSIAG SI	(YE
SIEVE OR SCREEN	WEIGHT RETAINED ON SIEVE (40.)	· #[6# {4#.		PERCENT
• 3/8	0	472.	9	100
4	0.5	472	4	99.9
	36.2	436.	_ کے	92.2
30	242.8	193	4	40-9
. 50	71.1	122.	3	. 25.9
100	67.1	55,	۷	11.7
				
NUMBER 200	30.7	24,5	_	ح. ک
. utieni Sitrto innoven no. 200	(40.)	IRROA (Original sal	tht - total t	eight of fractions)(4m.)
. tasmine (055) (1)	20.8	•	. 6	
OTAL PASSING NO. 200 (40.) (A A OTAL OCIGNI OF PARTIONS (FORAL	23,9	reactal tanga		
····	472,3	·· · · · · · · · · · · · · · · · · · ·		
SAMPLE	- لده د	PLASTIC		
Stak H Sofmist	CONFULL OF (SIGNOR	PC B	Job Number	90-25 A

0

C

0/0

_				DATE
:	SIEYE AHALYSIS DATA	1		5/8/90
S.I.A.D. PH	L INVESTIGAT VASE I	102 CICATALION I	GMWA	540/16 AVAGEA / 71 /
DESCRIPTION OF SAMPLE	710 -			PACCASHED
	5P-5M			□ 103
	2 P - 3 M			, , , , , , , , ,
VEIGHT ORIGINAL SAMPLE (10.)	TEIGHI AFILM FALDA		PASHING LOSS	
420.8	39/	-5	<u> </u>	29.3
	WF 1644 - BFF 4 1 HF 5		PASSING S	
SIEVE ON SCREEM	OR SIEVE (40.)	. BEIGHT (40.	.)	PERCENT
3/8	0	420	.8	100
4	0,2	420.	6	99.9
10	12.1	408	5	97.1
30	63.2	3 %5.	3	82.1
50	98.1	247	2	. 58.8
100	139.7	167.	5	25.6
		·		
HUMBER 200	73,5	34,0	,	8.1
A. TEIGHT SIETED INADUGH NO. 200	3.5	tanon (original vol	thi . letel	toldyr of fractions/(fa.)
7. BASHIRG LOSS (40.)	ر د ج ع		1	1,2
101AL TASSING NO. 200 (de.) (A. + 8).)	PEACENT LAAGA	•	
IDIAL BEIGHT OF FRACTIONS (FOIGE	3 2.8	Corta	### (## (##)	100) -29
4)	419.6			
1(BAARS				
	SAMPLE	له ه له کر	PLAST	٠,٠
ilenniefin (Signotore)	COMPULITAT (SIANO	·	Job Numbe	8 90 - 2 C A

٢ ٢ -

ď 4

& ~`

၁ ၃

090

SIEVE AHALYSIS DATA					5/8/70
	L INVESTIGATI HASE I	نده	TUT 7		SAMPLE MUMBER 25
OESCRIPTION OF SAWPLE	SP - SM				PACEASHED TES
VEIGHT DAIGHAL SAMPLE (40.)	VEIGHT AFTER PREST		(4= ·)	SHIRE LOSS	36.7
SIEVE ON SCREEN	ON SIEVE (4=+) ALICHI BLIVED	•	veignt (40.)	PASSING SI	PERCENT 4
· //2	0		5595		100
3/8	2.1	.	557.4	·	99.6
4	2,9		5545		99.1
/0	18.5		536.0		95,8
30	128.2		407.8		` 72.9
50	148,9	.	258.9		46.3
/00	144.2		114.7		20.5
NUMBER 200	6 J. K		د. اسی		9.2
. eticni situto innoven no. 200	(4)	(AROA (Original weigh	_	oldhi of freetiens)(de.)
. TASHING LOSS (4)	36.7			. 5	
101AL TASSING ND: 200 (40.) (A. + 8.)			reacent canda (prisingle original and the control of the control original and the control of the control or c		
oral actions or chactions (foral of old entries in col. b)			`014100	1 ++14A1 (4	,
CHARAS					
COMPUTED & (SIGNOLOUS) Job Number					

PERCENT COARSER BY WEIGHT R SBS HYDROMETER SET OR CLAY ã Bonne No. T.J.T 8 8= 13 E 8 8 2 ď U. S. STANDARD SIEVE NUMBERS
8 10 14 16 20 30 40 50 GRAIN SIZE IN MULLIMETERS 7 Ξ = Not to & | CURVES Name of GRADATION IN INCHES 2 GRAVEL OPENING 8 U. S. STANDAND SIEVE Я Elev or Droom 8 COBBLES Sample Ma PERCENT FINER BY WEIGHT

0,0

	5/8/90			
S.I.A.D. P	3 SAUPLE AVEREA 25			
DESCRIPTION OF SAMPLE	5W - 5M	TNT 8 S	7A(14A5H(B	
VEIGHT ORIGINAL SAMPLE (10.) 599.7	GEIGHT AFTER PRESASH		38.4 38.4	
SIEVE ON SCHEEN	WEIGHT RETAINED ON SIEVE (dm.)	PASSII	ACUTE STEAM	
3/8	0	599.7	100	
4	1.4	598.3	998	
10	19.5	578.8	96.5	
30	157.5	421.3	70.3	
50	155.3	266.0	. 44.4	
100	122.4	143.6	24.0	
·				
				
				
NUMBER 200	750	68.6	11.4	
. afient ?ifite invonem no. 100	29.0	IAN (OLITINAL ASIEN) - 191	ed goight of (rections)(ga.)	
. BASHING LOSS (40.)	38.4	1.2		
01AL FASSING NO. 200 (4) (A. + 4	67.4	ICENI LARDA		
DIAL SEIGHT OF FRACTIONS (Social office)	(ell entries in cel. b) 5 98. 5	(orthor ool)	100) . 20	
(MAARS				
`. 5A M	PLE 15 202	PLASTIC		
ICARICGA (SIgnature)	COMPUTER OF (SIGNATURE	Job Nur	nber 90 - 25 A	

100.

P 20

.07

Vicingineering)		.p		
	SIEYE AHALYSIS DAT	A	5/8/90	
	AL INVESTIGATI PHASE I	TUT 9 5B	SAMPLE NUMBER / 25	
DESCRIPTION OF SAMPLE	su - sm		75 1CS	
elient original saufil (40.) 6/6, 7	ocieni Afica face	ASMINS (40.) CASMINS (93.9	
SIEVE OR SCREEN	WEIGHT RETAINED ON SIEVE (40.)	· TEIGHT (40.)	PERCENT	
· //2 -3/8	0	616.7	100	
3/8	<i>3.</i> 2	613.5	99.5	
4	4, 8	608.7	98,7	
	46.0	562.7	91.2	
30	212.5	350.2	. 56.8	
50	153.0	197.2	32.0	
100	89.4	107.8	17.5	
NUMBER 200	48.5	59.3	9.6	
. seichi Si(res innough no. 26	14.8 43.9		of total of transland)(10.)	
OTAL PASSING NO. 200 (40.) (A. v B.) 50.7 OTAL SELIGIT OF PRACTIONS (Foral of all sacries in Col. b) 66.		reacent tanga		
SA ma		PLASTIC		

Job Number 90-25 A	ı	·		
	ı	J. G. H. S. L. T	Last of Segretarion	Job Number 90-25 A

PERCENT COARSER BY WEIGHT 50 HYDROMETER SET OR CLAY 121 Bonne Na _ 13 E 9 8 2 2 GRAIN SLEE IN MILLIMETERS U.S. STANDARD SIEVE MUMBERS
8 10 14 16 20 30 40 50 3 Ne e X CURVES GRADATION 2 GRAVEL OPENING IN 9 U. S. STAMBARD SIEVE Я Elev or Oroth 8 278802 Samore No. PERCENT FINER BY WEIGHT

7

	5/8/90				
	L INVESTIGATI PHASE I	ON ERCAVALION OF		340718 NUMBER , 25	
DESCRIPTION OF SAMPLE			/A(143H(0		
VEIGHT DATETHAL SAMPLE (4=.) 6 86,6	VEIGNI AFTER FREDA	shine (40.)	TASHING LOS	37.4	
SIEVE ON SCREEN	WEIGHT AFTAINED ON SIEVE (40.)	· #[16#1 (4#.	PASSIAG 5	PERCENT 4	
• / ₂	0	686.	6	100	
<i>3</i> e	E-1	678,	5	98.8	
4	16.9	661	6	96.4	
(0	89.0		.6	83.4	
30	247,2	325	4	· 47.4	
50	163.2	162.	. 2	23.6	
100	81.3	80.	9	11.8	
NUMBER 200	J 2,0	48.	9	7.1	
. etient Sitvto Innough no. 200		CARON (Original vol	4A6 - 10603 1	reight of fractional(go.)	
. WASHING 1033 (40.)	37.4		1.0	0	
91AL FASSING ND. 200 (ge.) (A		reacent landa			
DIAL METERN OF FRACTIONS (FOIAL)	6856	0111			
(MARRS					
SAMPLE IS NOD PLASTIC					
ICHRICIAN (SIGNALANA)	COMPUTED ST (STERNET	//	Job Numbe		

VEngineering/	, 61	epitona (310/ 257-5173		
	SIEYE AHALYSIS DAT	· A	5/8/90	
	AL INVESTIGAT PHASE I	TAT 11 SB	SANFLE RUNNER 25	
DESCRIPTION OF SAMPLE			/R(TASR(B	
	54		⊠ iu	
etient datethal saufle (10.) 933.0	veigni arien face 80	ASHING (40.) VASHING	131.3	
		PASSIA	G \$1646	
SIEVE OR SCREEN	ON SIEVE (***)	# # # # # # # # # # # # # # # # # # #	PERCENT	
· /2	0	933.0	100	
3/8	4,2	928.8	79.6	
4	8.2	920.6	98,7	
10	48.0	872.6	93.5	
30	322.7	549.9	. 58.9	
50	208.6	341.3	36,6	
/00	130.8	2/0.5	22.6	
NUMBER 200	55.0	155.5	16.7	
. 4(16H1 SIETEO INAGUEN NO. 20		ERROR (Original voight - tot	\ 	
. TASHING 1055 (10.)	/31,3	7.6		
01AL FASSING NO. 200 (4) (A. + B.)		PLACERI LARDA		
OTAL WEIGHT OF FRACTIONS (Fotal of all carries in Col. b.		(ariginal valika (dan) . /;		
LHARAS		<u> </u>		
			1	
•				
CAMPL	، لدولد کا ع	PLASTIC		
	-		}	

	PLASTIC		
CONFUITO (1 (31)	4 16.5	Job Number	90-25 A
		COMPUTED OT (SIGNATURE)	Confui(a) (3/4noture) Job Number

S	IEYE AHALYSIS DATA			DATE -	
		5/8/90			
S. I. A.D. PH	INVESTIGATI	ON CICAVALION OF		SAMPLE RUMPLA 25	
OESCRIPTION OF SAMPLE		<u> </u>		78 E441 HED	
	s w - s m			运 临	
	PEIGNI AFTER FREE		155 55 5		
TIGHT DATE THAT SAUPLE (10.)		77.0	*ASRIRE (0)	58.7	
	WEIGHT RETAINED		PASSING S	ונינ	
SIEVE OR SCREEN	ON SIEVE (40.)	· #116#1 (4#.	1	PERCENT 4	
· /2	0	.ک ج 7	7	100	
3/8	3.6	732	./	99-5	
4	7.1	725	-0	98.6	
10	72,3	652	.7	88.7	
30	228.5	424.	2	. 57.7	
50	172.5	251.	7	34.2	
100	117.2	134.	<u></u>	18.3	
NUMBER 200	53.6	04.6	,	11.0	
. WEIGHT SIEVED THROUGH NO. 200 ((a.)	80.9 (1808 (01111111) **1	481 - 10101	totable of freetlenes(fee.)	
. TASHING (035) (4)	20.7	1.5			
DIAL FASSING MD. 200 (gm.) (A. + B.)	58.7	PLACENT LANGA			
DIAL MEIGHT OF FRACTIONS (THESE F	79.4 ************************************	(original oright (4=.) = 100) _ 2 0			
(0.)					
EMARK;					
•,					
SAMPLE 18 NON PLASTIC					
CHRICIAN (SIGNALATO)	COMPULID 47 (31400)	(***)/_	Job Numbe	er	

315	5/8/90				
PROJECT REMEDIAL S.I.A.D. PHA	INVESTIGATI	TUT)		SANTIC AVAIGA ,	
OESCRIPTION OF SAUPLE	· · · · · · · · · · · · · · · · · · ·	1,72,7	<u> </u>	/ACTASHED	
	5 M			Æius	
	,		.,		
e 26.7	TO COMPANY THE PACE	19.0	445#IA6 L03	<u>/07.7</u>	
] .	ALICHE MELVINCO		PASSING S	ICYC	
STEVE ON SCHEEN	ON SIEVE (40.)	· #[16#1 (4#	.,	PERCENT 4	
• //2	0	826	.7	100	
3/8	4.0	828	2.7	99.5	
4	7.5	815	- 2	98.6	
10	46.2	769	2,0	93.0	
30	234,0	52	5.0	. 64.7	
50	168.4	3 66	.6	443	
100	141.0	22.	5.6	27.3	
NUMBER 200	81.3	144.	3	17.5	
. atieni sitre innoven no. 200 (4)			oight of frontions)(go.)	
	6 - کر جی	· ·	,	_	
. EASHING (055) (fm.)	107,7		1.		
OTAL TASSING NO. 200 (4m.) (A. + M.)	143,3	PEACENI LARGA			
OIAL GEIGHT OF FRACTIONS (Fotal of oide)	(0,111,001 (0)111 (10.) - 101) 				
CHAAAS	825.7				
				1	
				1	
SAMPLE IS NON PLASTIC					
	_			ì	
ICANICIAN (SIGNALION)	CONTUILO de Calena	()	Job Number		
AGE A LLA	Kit of	165		90-25 A	

	SIEYE AHALYSIS DA	TA		5/8/90	
S. I. A.D.	Mark the transfer of the trans				
OESCRIPTION OF SAWFLE	SP-SA		<u></u>	PACIFICATION TO THE SECOND TO	
VEIGHT ONIGINAL SAMPLE 8 /6 / 8			#43#I#6 LOSS	26.2	
SIEVE OR SCREEN	OR SIEVE (4m.)	· TLIGHT (40.	PASSING SI	PERCENT	
3/8	0	816.	8	100	
3/8	3_/	813,	Z _	79.6	
	7.3	806.	4	98.7	
/0	17.5	788.	9	96.6	
30	202.0	5-86		71.9	
50	308.4 174.0	278		3 %. / /2 . 8	
NUMBER 200 . weight sieven innough	52.7	S/, 8	444 - 10401 8	G, J	
. EASHING LOSS (40.)	24.9 26.2	-	0.9		
DIAL TASSING ND. 200 (6 DIAL NEIGHT OF FRACTION (m.)	reacent tanda (Original colent (do.) - 1 100)				
BISTA PLE IS NON PLASTIC					
Atal A	(Ourvie) \$1 (3100)	16	Job Number	90-25 A	

	5-/8/90				
	S.I.A.D. PHASE I THE 15 5B				
OCSCRIPTION OF SAMPLE	54		7A (14.5H (8		
VEIGHT DAIGHAL SAMPLE (10.1)	j	ASHING (4) VASHING	76.8		
	WEIGHT RETAINED		G SIEVE		
SIEVE OR SCHEEN	ON SIEVE (40.)	· V(16HT (40.)	PEACES		
· //2	O	704.0	100		
· //2	6.9	697.1	99.0		
<u> </u>	11.0	686,1	97.5		
10	44.5	641.6	91-1		
30	182.6	459.0	. 65.2		
50	177.0	282.0	40.1		
100	138.4	143.6	20.4		
NUMBER 200	56.5	87./	12.4		
. WEIGHT SICTED THROUGH NO.	100 (4m.)	CARON (Original soldh) - 101			
. TASHING LOSS! (se.)	9.0 76.8		1.3		
OTAL PASSING NO. 200 (40.) (A	. • 0.)	PEACENT CHAOR			
OIAL WIGHT OF FRACTIONS (Fed	85.8 101011 0011100 10 CO1.3) 702.7	(Griding) of the	:) , / 3		
(MAAA)	7 0 0, 7				
SAMOLE IS NON PERSTIC					
Attack No letter	CONTUICO (1 (31000	Job Num	90-25 A		

	5/8/90				
	L INVESTIGAT	102	TUT 1	970(A 6 5B	30
DESCRIPTION OF SAUFLE	sw-5M				/A(145)(0 /22 165
GBS, 1	GEIGHI AFIER PRES G 4/		(40.)	*45#1#6 LOS	(10.) 43.9
SIEVE OR SCREEN	WEIGHT RETAINED ON SIEVE (40.)	-	TLIGAT (40.	PASSING S	PEACEN1
1/2	0		685-1	/	100
3/8	4.7		6 80.	4	99.3
4	7, 6	_	672.	8	98.2
10	60.0	_	612.	8	89.5
30	240.4	_	372	.4	· 54.4
50	172.4	_	200.	. 0	29.2
/00	110,0	-	90.	<u>o</u>	/3.1
NUMBER 200	36.4		57.1	6	7. 8
. TEIGHT SIETE THROUGH NO. 200		(ROA)	Original val	141 - 10101	oight of treations)(go.)
. WASHING LOSS (4)	43.9	-]		ک ,	
OTAL TASSING ND: 200 (40.) (A. + M.) ST. / OTAL VELICAL OF FRACTIONS (Foral of all emirine in col. b)			reactal targa		
(maar;	684.6	L			
SAMPLE 1	<i>حر</i> لہوںہ ی	'C& 5"	TIC		
ATTEMPORAL	COMPUTED SE (SIEN	11.	1	Job Numbe	90-25 A

5-75

1014

7007

0/0

CMI

s	SIEVE AHALYSIS DATA			5/8/90
	L INVESTIGATI			SANFLE NUMBER 35"
S. I. A. D. PH	713 2 2	TUT 1	7 3 8	PACEASACE
·	SM			>
VEIGHT BRIGINAL SAMPLE (20.)	reigni atten taleas		**********	174-1
			PASSING SI	
SIEVE OR SCREEN	WEIGHT RETAINED ON SIEVE (40.)	TEIGHT (40.	,	Plactes
3/8	O	754.	7	100
4	1.6	753.	/	9 9,8
	27.1	726.	0	96.2
30	145.8	580	,	76.9
50	130.2	450	.0	. 59.6
100	145.5	304,	5	40,4
<u> </u>				
				
				
NUMBER 200	102,6	201.	7	26.8
. utient little innoven no. 200 (()	RROR (Original voi	the - total t	oight of fractions)(jo.)
. PASHING LOSS! (4)	174.1	·	1.5	-
OTAL FASSING ND: 200 (40.) (A. + B.	,	CACCAL CRADA		
OTAL SCIENT OF FRACTIONS (Fotolog	200, 4 1011 0010100 in Col. b) 753-2	(ortal	in on (and the	······································
(MAAR\$,,,,,,		·	
SAMPLE	لەەنە دى	PLASTIC		
State H Sofwist	CONPULIS DE (SIGNALA	KIA	Job Number	90-25 A

	SIEVE AHALYSIS DATA			PATE
				5/8/90
	AL INVESTIGATION PHASE I		185B	SAMPLE AVERSES /
DESCRIPTION OF SAMPLE				PACHASHED
	5~-5	M		Z 113
VEIGHT ORIGINAL SAMPLE (40.)	PEIGNI AFTER PREBASHI	#5 (40.)	TASAIRE LOSS	(49.4
946.4	906			39.6
SIEVE ON SCREEM	WEIGHT RETAINED	PEISHT (40	PASSING SI	PEACENT
	DA SIEVE (10.)		• • • • • • • • • • • • • • • • • • • •	
1/2	0	946.	4	100
3/8	2.1	944		99.8
4	5.5	938	i.a	99.2
10	61,4	877.	4	92.7
30	408,2	469		. 49.6
50	205.4	763.	ع	27.9
100	1344	129.	4	/3.7
NUMBER 200	67.0	۷2,4		6.6
. WEIGHT SICTED INADUGH NO. 20	0 (4) (AR	DA (Original ve	1461 - 10101 1	
. BASHING LOSS! (40.)	39.6	·	a 8	
DIAL FASSING NO. 200 (40.) (A.	# (A	CENI LABOR		
OTAL OCIGNI OF PRACTIONS (foto)	61,6 101011 entries in col. b) 9456	(orta	Breer (40.)	100) , 08
[MARKS	770-6			
`,			•	
SAMPLE	- 15 NON P	LASTIC		
		· · · · · · · · · · · · · · · · · · ·		
CRAICING (SIGNALANA)	CONFUICO SE (SIgnoture	///	Job Number	90-254

	SIEYE AHALYSIS DAT				5/8/90
	AL INVESTIGAT HASE I		TNT /		SAMPLE ANNOLA 30'
OCSCRIPTION OF SAWFLE	5W - 5M				/4(145E(8)22) 1(5
736,9	GENERALIER PACE	76,1		*43#1#6 1033	40.8
SIEVE ON SCREEN	WEIGHT RETAINED ON SIEVE (40.)		BEIGHT (des,	PASSING SI	PERCENT
3/8	0		736.	9	100
4	4.5		732.	+	99.4
10	103.7		628.	7	85.3
30	354.8		273	9	372
50	114.0		159.	9	. 21.7
100	66.4		93,	5	12.7
NUMBER 200	38.8		54,7		7-4
. TASHING (055) (40.)	/2,2	IRROR (O	/141mel ==14		oight of frautions)(go.)
01AL FASSING SO: 200 (g=.) (A	40.8	PLACERI	11464		· 7
OIAL OCIGNI OF FRACTIONS (Fotal)	53.0 (1011 **********************************			eror (1º.)	
CHARRS	ر ری ر				
', SAMPLE	א נהם נה ז,	> ८&\$	ア・こ	·	
Style H Sofrier	CONFULT OF CSIONS	Kh		ob Number	90-25 A

	3/24/90			
S.I.A.D. P.	AL INVESTIGAT YASE I	102 (1	CAVALION NUMBER DSB /	30 - 34
OESCRIPTION OF SAMPLE	- M			/aceasn:0
FIRM DRIGINAL SAMPLE (40.)	ecigni afila falsi 26/	_		119.8
SIEYE OR SCREEN	METCHT RETAINED ON SIEVE (dm.) b		PASSIAG ()	PERCENT #
3/3	O	3	81.5	100
4	0.2	<u></u>	81.3	99.9
10	2.0		79.3	99.4
30	5,4	تا	73.9	98.0
50	14.2	ن	359.7	. 94.3
100	85,0		274.7	72.0
NUMBER 200	112.6	1	162.1	42.5
. TASMING LOSS (40.)	119.8	[ARBA { 0 r	- 4	toldbl of [roctlone][do.]
DIAL FASSING ND: 200 (40.) (A	0.) /62.5 	FERCERI C	AAGA Gridinol ooldhi	(40-) . (
(#AARS	381.9			
SAMPLE 15	- 1245 - اده لد	ric		
Style H Sohin	CONFULTAL (SIGN	K	Job Numi	ber 90-25 A

	3/24/90			
S. I. A. D. P.	AL INVESTIGAT YNSE I	DSB /	SAUPLE AVEOLA	
DESCRIFTION OF SAMPLE	S M		PACIFICATION TO THE STATE OF TH	
J87.5	CIGNI AFIER FALVA	9-0	118.5	
SIEVE ON SCHEEN	WEIGHT RETAINED ON SIEVE (em.)	PASSING DETERT (40.)	SILYE PEACEOT	
3/8	0	387,5	100	
4	3.1	384.4	992	
	/3.7	370.7	95.7	
30	44.0	3 26.7	84.3	
50	49,2	277.5	. 71.6	
100	52./	225.4	58.2	
NUMBER 200	70,8	154.6	39.9	
. stieni sitrto innoven no. 20		(RROR (Original voight - tota	i folght of frantions)(ga.)	
1. TASHING (055 (4)	118,5	٠2		
OTAL PASSING NO. 200 (go.) (A. C		TEACERI GARDA	1(10.) - 05	
(#ARRS	387.3			
	15 NON-PL	ASTIC		
Stola H Soland	coursito for (31)	Job Num	ber 90-25 A	

	SIEYE AHALYSIS DATA			3/24/90
S. I.A.D.	PHASE I		VALION NUMBER SS /	SANFLE RUNDER 100'-104'
OESCRIPTION OF SAWPLE	5			PACTATE ICE
VEIGHT ORIGINAL SAMPLE (20.)	VEIGHT AFTER PALVA	SHING (4,	V438186 L	39.6
SIEVE OR SCREEM	WEIGHT RETAINED		PASSING	
	ON SIEVE (4m.)		CHI (40.)	PEACES
3/8	0			100
4	0		92./	100
10	27.3		14.8	85.8
30	46.6		8.2	61.5
50	27.8		90.4	· 47.1
100	30.8		79.6	31.0
NUMBER 200	14.5	4	5-1	23.5
. ettent stere innoven no. 1	100 (4)	RADA (OFIE	not volght - total	reight of fractions)(go.)
. WASHING LOSS! (pe.)	39.6	·	0	
GIAL FASSING NO. 200 (40.) (A.	45.1	TACENT TAA		
OTAL WEIGHT OF FRACTIONS (FOR	el el ell enteles in cel. b) / 92. /		(analistica) (ki	(10-) - (00)
(WAAR)			· · · · · · · · · · · · · · · · · · ·	
P.L. = 10. P.L. = 41	4		·	
(charetan (signature)	CONFULIDATE (SIGNOT	Fr x	Job Numb	per 90 - 25 A

	3/24/90					
S.I.A.D. P	S.I.A.D. PHASE I DSB 1					
DESCRIPTION OF SAMPLE	· C			720 1€2		
Z/8,8	VEISNI AFTER PAC	10.5H ing ((e)	7450186 L	49.0		
SIEVE OR SCREEN	OR SIEVE (4m.)	· #[16#1 (PASSING	SILYE PERCENT		
3/8	0	2/8	. 8	100		
4	0.6	218.	۷	99.7		
10	12.0	206	, ک	94.2		
30	45.7	160	_ی.	73.4		
50	40.8	119	. 7	.547		
100	41.5	78	. ک	35.7		
				·		
·						
NUMBER 200	20.4	57		26.4		
. BASAIRG LOSS! (4)	<u> </u>	CRRON (Original)		d golghi of fractions)(go.)		
DIAL FASSING ND. 200 (4) (A	49,0	PEACENI LAADA		· · · · · · · · · · · · · · · · · · ·		
OIAL WEIGHT OF FRACTIONS (Foral	57.5 01 011 001110 in 501.1 218.5	7	131 861 66 148	1(10-) - (3		
P. L. = P. I =						
ICANIGEAN (SIGNATURE)	CONFUICO DE CSIA		Joh Num	iber a		

	SIEYE AHALYSIS DAI	٨	3/24/90
5. I.A.D.	PHASE I	TION ENCAVALION NUMBER DSB /	140716 EVERE / 79 / 79
OLSCRIPTION OF SAWFLE	5		PACTASACO TES
VEIGHT DAIGHAL SAUPLE (44.) /33,0		ASHING (40.) VASHING	1015 (ga.) 41,/
	WEIGHT RETAINED		G SIEVE
SIEVE ON SCHEEN	ON SIEVE (40.)	" #E16#1 (40.)	PERCENT
3/8	0	/33.0	100
4	0.4	132.6	9 9.7
10	11.7	120.9	90.9
30	32.9	88.0	66.2
50	20.5	67.5	. 50.8
100	16.2	51,3	38.6
NUMBER 200	7.4	43.9	33.0
. atient sittle innoven no.	2.5	LARGA (Original volgh) - 101	of goight of freetiene)(ga.)
. TASHING LOSS! (40.)	41.1	1	3
OIAL FASSING ND. 200 (4m.) (A	. 4 4.1	PEACENT CARDA	
OTAL WEIGHT OF FRACTIONS (FOR	43.6 10101011 0010100 in col. 6)	(0.111201 00)	1 (10.7-0 100) _ Z Z
LHAARS	/ 3 = /		
. L.L.	108 51 57		
ICHAICEAN (SIGNATURE)		Job Nur	nber 90 - 25 A
	111111111111111111111111111111111111111		

45 South Roop Street • Susanville, California 96130
Telephona (916) 257-5173

<u> </u>		· · · · · · · · · · · · · · · · · · ·		
	4/6/90			
PROJECT REMEDIT	AL INVESTIGAT			SAMPLE MUMBER
S. I.A.D. P.	YASE I	051	<u> </u>	197-202
DESCRIPTION OF SAMPLE				PRETASHED
	5 M			
VEIGHT DAIGHAL SAMPLE (4) 2/0.3	VEIGNI AFIER PALE	ASHING [†] (q=٠) سرح سرح		84.9
SIEVE OR SCREEN	WEIGHT RETAINED ON SIEVE (4)	· utlent (4=	PASSIAG	FLACENT 4
3/8	0			100
4	0	210,3		100
10	8.0	202.	3	96,2
30	19.4	182.	9	87,0
50	16.0	166.	9	· 79.4
100	244	142		67.8
NUMBER 200	50,2	92,	3	43.9
. etieni sitrte innough no. 200	(40.)	IRROR (Original wa	1441 - 1414	I reight of fractions; (40.
. TASHING 1055 (4)	7.8 8 4,9	-	•	, 4
01AL FASSING HO. 200 (40.) (A		PEACENT ERROR	fror (fr	(40.) - (100) . 19
OTAL MEIGHT OF FRACTIONS (Form)	2/0,7	1011	inal valeki	(40.)
SAMPLE 1.	.24 لده در ک	57/C		

Job Number 90-25 A

SIEYE AHALYSIS DAIA					DATE
MOJICI REMEDI	AL INVESTIGAT				+/c/90
	YASE I	782	252		140016 AVENCE 250'
DESCRIPTION OF SAMPLE	514				/16 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
ecient original sample (10.) 274.4	veieni after falo / 80		(40.)	TASHING LOS	94.3
SIEVE ON SCREEN	WEIGHT RETAINED ON SIEVE (do.)	ļ 	VEIGHT (40.	PASSIAG S	PERCENT
· 3/8	0		274.	4	100
4	4.7	.	269.	7	98.3
10	46.1		229.	6	83.7
30	50.8	-	178.	8	65.2
50	30.8	-	148.0	2	. 53.9
100	23,7	-	1243		45.3
					
		-			
NUMBER 200	25.5		98.6	,	36.0
. WEIGHT SIEVED INAQUEN NO. 200		(RROR (tetet . th	rotthe of treations)(40.)
. EASHING LOSS (6)	94.3			•	ک
GIAL FASSING NO. 200 (40.) (A	98.6	PEACERI		irror (40.)	······································
OTAL WISHI OF FRACTIONS (Foral	01 oll eateloo in col. b) 274. Z		(वराहाः	iar aa lake (40.)
EMARKS					
·. SAMPLE 1	ريم ده دد ع	25T/	rc .		
(CANTERIAN (SI INCTOTO)	COMPUTER DE CELONIO	מניייו	,	lah Numbe	1 90-25 A

	4/6/90		
S.I.A.D.	LYASE I	1100 LICATALION NUMBER OSB - 2	Jamell Hungla 5/ - 56
DESCRIPTION OF SAMPLE	SM		/AC 163
VEIGHT ORIGINAL SAMPLE (20.)	GIGHT AFTER FACE 46	Ashing (4) Pashing (80.9
	WEIGHT ALTER	PASSING	
SIEVE ON SCREEN	OH SIEVE (dm.)	· = E16#1 (40.)	PERCE=1
3/8	0	550.0	100
4	0.7	549.3	99.9
10	0,7	548.6	99.7
30	45.6	503.0	91.5
50	183.0	320,0	· 5-8.2
100	1490	171.0	3/./
RUMBER 200	75.7	95.3	/7.3
. HEIGHT STEVEN THANKS HO. 20	80 7		oi yoldhi of frontiono)(do.)
OTAL TASSING NO. 200 (go.) (A. OTAL TEIGHT OF FRACTIONS (Foto go.)	75. j 101011 ontrion in col. b. 49.8	TRACENT CARDA	1 (10-) - 04
SAMPLE 1	s LAS		
Style H School	in Control to to (31 or	Job Num	nber 90 - 25 A

	4/6/90		
	PHASE I	ON ELCAVALION NUMBER DSB 2	79'-84'
OCSCRIPTION OF SAMPLE	SM		72 1CS
WEIGHT ORIGINAL SAUPLE (44.)	VEIGHI AFTER FREVA	9. 2	(033) (40.) 55,5
SIEVE ON SCREEN	WEIGHT AFTAINED ON SIEVE (40.)	PASSING	\$1 <u>[</u> P[PC[81
3/8	<u>_</u>		100
4	0	504.7	100
10	0,6	504.1	99.9
30	32.5	471,6	93.4
50	109.7	361.9	. 7/,7
100	201.0	160-9	31.9
NUMBER 200	94.9	CRRON (Original voight - total	/ 3 . /
7. #ASMING LOSS! (40.)	10.2	. 3	
DIAL FASSING NO. 200 (40.) (A	65.7	PENCENT ENNON (GFTGTNOT CO.) 4A	1 (100) .06
()	50 4, 4		
·. SAMPLE	رده در در	NST/C	
Selighan Holom	in Courses (sien	Job Num	nber 90-25 A

45 South Roop Street • Susanville, California 96130 Telephona (916) 257-5173

٧			
	4/6/90		
S.I.A.D.	1015-103 1015-103		
DESCRIPTION OF SAUPLE	SP - S	M D S B Z	7817458(8
VEIGHT GRIGINAL SAMPLE (40.)	CIGNI AFIER PRESA		1013 (40.)
373,3	349		23.5
		PASSING	
SIEVE OR SCREEN	ON SIEVE (40.)	· #[16#] (##.)	PEACENT
• 3/8	0	313.3	100
4	J.5	369.8	99.1
	2.0	367.8	98,5
30	105.7	262./	70,2
50	148.0	114.1	. 30,6
100	64.1	50.0	13.4
NUMBER 200	23.8	26.2	7.0
. =(1CN1 51(7(0 1MAGNGM NO. 200 (4=.)		CAROR (Original valght - tall	ol tolith of freetiens)(fo.)
. MASHING LOSS! (ge.)	23.5		1
OIAL PASSING NO. 200 (4) (A.	. • 8.)	PERCENI ERADA	
CG.3 OTAL OCIGNI OF FRACTIONS (Foral of all emerico in col. b) 373. 4		رور (۱۹۱۱ - روی این استانی ۱۹۱۱) ۱۹۱۱ استانی ۱۹۱۱ استانی استانی این استانی این استانی این استانی این استانی استان استانی استانی استانی استانی استانی استانی استانی استانی استان استانی استانی استانی استان	
[HARKS		\ <u>-</u>	
. SAMPLE	אשר לנטנה זין	4571C	

State A Selection Job Number 90-25 A

ENG , 2087 Die , !! Cu 4.5

45

:

-

	4/6/90		
S. I. A. D.	DIAL INVESTIGAT PHASE I	POS S S	126'-129'
OESCRIFFION OF SAMPLE	572-5	м	78.1843HE9 163
ocieni daiginal sauple (do.)	vileni ariin raisa 48		26.2
SIEVE ON SCREEN	WEIGHT RETAINED ON SIEVE (so.)	PASSIA TEIGHT (40.)	PEACENT
3/8	0		100
4	0	514.5	100
	1.5	5/3.0	99.7
30	79.8	433.2	84,2
50	221.2	2/2.0	. 41.2
100	145.2	66.8	/3-0
NUMBER 200	34.0	31.8	6.4
. #41GHT \$1(Y(@ 1HHOYGH HO.	26.2	ERROR (Original weight - tage	of voight of frontionoj(go.)
OTAL PEIGHT OF PRACTIONS (FoTAL of all anti-coo in col. b) 3 2 - 7 01AL REIGHT OF PRACTIONS (FoTAL of all anti-coo in col. b) 4)		(Gridinol coldis (40.) - 100) . O Z	
(MARK)			
. SAMPLE	هره که در در	STIC	
CHRICIAN (SIGNOTORO)	constitution (Stand	Job Num	ber 90-25 A

	4/6/90			
	HASE I		04 HVIO(4 S B 2	150'- 152
OCSCRIPTION OF SAMPLE	5 M			781445818
336.1	VEIGHT AFTER FACE 2 9	S. 7	TASRIRG (40,4
SIEVE ON SCREEN	WEIGHT RETAINED ON SIEVE (40.)	· PEIGNI	PASSIAC ()	PERCENT
3/8	0	ح د	6.1	100
4	0,8	ح ج	5,3	99,8
10	3, 3	ح در	2.0	98.8
30	44.6	2.8	7.4	85.5
50	116.2		7, 2	. 50.9
100	93.0		8. Z	23,3
UMBER 200		45	-, ,	/3.4
PASHING LOSS (go.)	40.4	CRROR (Original		of teastions (in)
IAL TASSING MD; 200 (4m.) (A. 1 IAL MEIGHI OF FRACTIONS (Fold) M.)	101011 0011100 10 Col. b 725.9	PLACENI LABOA	777 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1(40.) - 0 100) . 0 6
MARAS		<u> </u>		
. SAMPLE	: 2AS - KOK 2	ric		
CARISTAN (31 ansiers)	COUPUICO DI (SION	Les de la company	Job Num	ber 90-25 A

	4/6/90			
S.I.A.D. P	AL INVESTIGAT YNSE I		141108 AUNOCA 058 - 2	211 - 216
DESCRIPTION OF SAMPLE	5 M			/AL FASHED
VEIGHT DAIGHAL SAUPLE (10-1) 276.2	veigni Arien Pales		yasmine L	78.9
21EAE OU 2CUECH	WIGHT ATTAINED ON SIEVE (40.)		PASSING GRE (40.)	SIEYE PERCENT
3/8	0	7	276.2	100
4	0.5		275.7	99.8
10	1.9		73.8	99.1
30	30.4		43.4	88-1
. 50	62.8		80.6	. 65.4
100	75.1		105.1	38./
NUMBER 200	20.3		85.2	30.8
. etichi Si(tto Innouch no. 200		ERROR (Or14		
. #ASHING LOSS! (4m.)	78.9			. ک
TOTAL TASSING NO. 200 (go.) (A. + B.) 85.0 TOTAL REIGHT OF FRACTIONS (Foral of all natrice in Col. b) (Griginal colenia)				1007
EMANAS	276.0 402 PLAST	ر <u>د</u>	······	
· SAMPLE 15	202 - 203	-		
See of the Soloming	COMPULATE (SIGN	16	Job Num	ber 90 - 25 A

	SIEYE AHALYSIS DAI	Α		4/6/90
S. I. A. D. P.	AL INVESTIGATION YASE I	DS C	**************************************	226'-23/
DESCRIPTION OF SAMPLE				Lutavauta
	5 M			⊅ 113
J32.7	VEIGHT AFTER FREE	3, 9	*******	68.8
			PASSING	
SIEVE OR SCREEN	WEIGHT RETAINED ON SIEVE (40.)			PERCENT
3/8	0			100
4		332	7	100
10	1-1	33/	6	99.7
30	35.9	295	7	88.8
50	66.2	229	. 5	. 69.0
100	107.3	/22	. 2	36.7
NUMBER 200	45.5	76.7		23./
. WIIGHT SILVED IMAGUEN NO. 200	7.6	(ARBA (Original vo	14ht - 1+101	tolths of freestenes(se.)
. TASHING LOSS! (#4.)	68.8		.)	
DIAL FASSING NO. 200 (40.) (A		PLACENT CHAGA	(45.)	4.6
OTAL TRIGHT OF TRACTIONS (Total	(177)	n a i da lair	(60.) . (80) . 0 9	
LHAAAS	3324			
••	SAMPLE 15	מטט <i>P</i> e	ASTIC	
ICANICIAN (Signotore)	COUPUICO DI (SIANO	ورو ۱۰۰۰	lah Mush	

	4/6/90		
INDUCT REMED	DIAL INVESTIGAT		Sample aumota
S. I.A.D.	MYASE I	<u> 058 2</u>	246'-250
OESCRIPTION OF SAUPLE			PACEASACE
1	5 M		> ⊅ :::
I	- ,		
VEIGHT ORIGINAL SAMPLE (Ja.)	TEIGHT AFTER PRET	ASHING (4) #45HING	1 (015 (40.)
225.9	/:	72,8	53.1
		PASS	ING SIEVE
SIEYE ON SCREEN	WEIGHT RETAINED ON SIEVE (40.)	* #E16#T (40.)	PERCENT
			_
3/8	0		100
		-	
4	0	225.9	100
10	3,4	2225	98.5
30	37,1	185.4	82.1
50	49.7	135.7	. 60,1
140	100	3.6.0	3.44.6
100	58.8	76.9	340
			1
·		·	
]	
			ļ
			-
NUMBER 200	20,9	56.0	24.8
. etical sittle inacuen no.	100 (4)	ERROR (Original weight - to	
	<u> </u>		_
1. BASRIEG LOSS! (4)	<u> </u>		3
	53.1		
101A(12551HG HD. 200 (40.) (A	56.3	PEACENI ERROR	
		(5777140)	(a) (a)
IDIAL MEIGHT OF FRACTIONS (FO	141 of all carries in col. b)	ALITHOI AAT	حرر المستحدد
I (NARR)	<u> </u>	<u> </u>	
: 🔟 : :: ་་་་་་་་་་་་་་་་་			j
SAMPLE	اح دهد ۱۶	ast/c	
2 -(///			1
			ļ
			1
			ł
ACREICAN (Streeters)	Confuse 2. (ele-	111110	
Solvation H Solvan	× 1/1	Job Ni	umber 90 - 25 A
The state of the s	- Totales	- comme	

]	SIEVE AHALYSIS DAT		PATE
	4/5/90		
radici REMED. S.I.A.D. F	IAL INVESTIGAT	TION CECAVALION NUMBER DSB	3 /25 - /28 - /28
DESCRIPTION OF SAMPLE		·	PREVASRED
	5M		☆ 165
	•		
VEIGHT DATETHAL SAMPLE (10.)	PEIGHI AFIER FREE	A1H 1HE (40.) TASH	10 (01)
149.9		72.8	57.1
			SING SIEVE
SIEVE OR SCREEN	WIGHT RETAINED ON SIEVE (40.)	· #(16HT (40.)	PERCENT
3/8	0		100
4	0	149 9	100
		149.9	
10	5.6	144.3	96.3
30	18-4	125-9	84.0
50	20.0	105.9	. 70.6
			56.6
100	21.0	84.9	<u> </u>
			Ì
			_
1			(
		-	
1			1
		-	
NUMBER 200	21.7	62.2	51,5
. atient sitves innoven no. 2	700 (40.)	tanen (original saight .	total reight of freetiens/(fo.)
	5.3	:	
. HASHING LOSS! (4)			. 20
	57.1		
101AL PASSING NO. 200 (4) (A.		PEACENT CAADA	
		(acidael 90	(10.) 010hi (40.) . /
IOIAL MEIGHT OF FRACTIONS (FOR	161 01 011 001:100 in Col. b.	1	regue 1 gv
TEMARS	/50//	<u> </u>	
IEMANAS			
. 6.6.	= 62		
•	<u>-</u> 59		
P. L.	•		
·	_ 3		
P. I	>	•	
l			
ILCANISIAN (SIANOLOTO)	CONPULÇÃI (SIA		
Stick H Sofran	in Converse to Calen	1 // 100	Number 90 - 25 A
	- Jugana		

	4/5/90		
S. I.A.D. 3	IAL INVESTIGA: PHASE I	TION EXCAVATION NUMBER DSB 3	SAMPLE MUMBLA 150 - 152
OESCRIPTION OF SAWPLE	MH		1411451111
etieni daiginat saufte (40.) /52.8	VEIGNE AFTER FACE	ASHING ³ (q=.) VASHING (80.8
SIEVE ON SCREEN	WEIGHT RETAINED	PASSIAC	PERCENT
	OH SIEVE (40.)		
· 3/8	O		100
4	0	152.8	/00
	7,6	145.2	95.0
30	14.8	130.4	85,3
50	11.4	119.0	. 77.9
100	17.7	101.3	66.3
NUMBER 200	18.7	82.6	54.1
. WEIGHT SIEVED THROUGH HO. 2	(.7	CAROR (Original volume - 1010	of goight of frontionoj(go.)
. BASHING LOSS! (fe.)	80,8	-/	
OIAL FASSING ND: 200 (4m.) (A.		PEACENT LANDA	
OIAL MEIGHT OF FRACTIONS (Fore		(Gridino) ooldk	1 (10-1) .07
(WARRS	/ •	<u> </u>	
·. L. L. P. L.	= 68 = 36		
	- 32		
Stight & Sohow	coursily by (sign	Job Num	iber 90 - 25 A

	4/5/90			
S.I.A.D. P.	208 - 2/2			
DESCRIPTION OF SAWFLE	5 M		70 163	
VEIGHT BAIGTHAL SAMPLE (10-1) /6 4. 7	TEIGHT AFTER FREE	ASHING! (40.) VASHIN	2 9, 3	
SIEVE OR SCREEN	WIGHT RITAINED ON SIEVE (40.)	· ** *********************************	1AG STEVE PEACEUT	
3/8	0		100	
	00	104.7	100	
	6.7	98.0	93.6	
30	20.0	78.0	745	
50	14.7	63.3	. 60.5	
100	12.2	51.1	48.8	
		-	-	
NUMBER 200				
. WEIGHT SIEVES THAOUGH NO. 200		CARON (Original voigh) - 1	old toldhi of frontional(do.)	
. FASHIRG LOSS ¹ (4)	7. 3 29. 3	. 2		
OTAL TASSING ND: 200 (go.) (A	36.6	TEACERS ERROR (Designal voides (40.) = 100) = 2		
(=.) EMARRS	1045			
. 4.4	-, = 76			
P.L.	. = 48			
P. I	. = 28		· ·	
CONTICION (SIGNATURA)	CONFUILE OF (SIGN	Job N	umber 90 - 25 A	

	BAIL		
	4/5/90		
S.I.A.D.	PYASE I	ON CECAVATION NUMBER OSB 3	34m/16 ####64 2 2 8 - 2 30
SESCRIPTION OF SAUPLE	5 14		74 (4.1816) 16.5
VETERT CATETRAL SAMPLE (20.7)	*CIGNI AFICA FACOAS	7. 2	3 % 2
	WEIGHT RETAINED	PASSIA	SILYC
SIEVE ON SCHEEN	ON SIEVE (40.)	· #EIGHT (40.)	/{#C{#1
3/8	0		100
4	0	101.4	/00
10	0.9	100.5	99.1
30		83.2	82.1
50	17.4	65.8	. 64.9
100	11.5	54.3	53.6
NUMBER 200	/3.0	41.3	40.7
. TERMI SIETED IMPOUGH NO. 2	6.9	ARBA (Original valght - tati	i volght of frontions)(go.)
. MASHING LOSS (60.)	34.2	•	2
01AL FASSING NO. 200 (40.) (A.	41.1	CACCAI LAADA	
OTAL REIGHT OF FRACTIONS (For		Geldlast esta	·) · (4#-)
CHAARS			
. /.4.	= 79		
P. L.	. = 79 = 49		
P. I			
Stight H Sohm	in Coursile is (Signal)	Job Num	ber 90-25 A

	4/5/90		
	DAL INVESTIGAT	DSB 3	247'-25/
S. T. A. D. A	MH		/AL *****C\$
etieni original saufic (a=.) 228-4	PEIGNI AFIER FACES		105-1
SIEVE OR SCREEN	WEIGHT RETAINED ON SIEVE (am.)	* # # # PASSING	PERCENT
3/8	0		100
4	0	228.4	100
10	10.1	2/8.3	95.6
30	41.2	177.1	77.5
50	٧8.3	148.8	. 65.2
100	18.2	130.6	57.2
NUMBER 200	(3, 7	INDA COLIGINAL POLICE - 101	of youth of fractions)(40.)
1. EASHING LOSS! (4)	11.9	! :	- /
DIAL FASSING NO. 200 (so.) (A.	117.0	PEACENT ERADA (OFTAINOT OO) AA	1110-1 0 100) . 0 %
TEMARS	6 6 0 . 3		
P.	.L. = 99 L. = 56 T = 43		
Style H Solm	CONFULLY DE (3100)	Job Nur	nber 90 - 25 A

	4/7/90			
S. I. A. D. P	AL INVESTIGAT YASE I	102 (ICAVALION N		265-3/-
OESCRIPTION OF SAWPLE	5 M			Attacked to the state of the st
33/. 8	C C C C C C C C C C C C C C C C C C C	50,0	TASHING LOSS	81.8
SIEVE ON SCREEM	ON SIEVE (40.)	· BEISHT (de.	PASSIAG SI	PERCENT
3/8	0	33%	9	100
4	1,1	300.		99.7
	7./	323.	6	97.5
30	58,9	264.	7	79.8
50	82.0	182.	7	. 55.1
100	64.8	117.	9	35.5
RUHBER 200	32,5	85-	gr	25.7
A. WEIGHT SIETED IMPOUGN NO. 200		(ARDA (Original soi	1486 - 10504 1	
. EASHING LOSS (4)	81.8		. /	,
OTAL PASSING NO. 200 (ga.) (A OTAL REIGHT OF FRACTIONS (Fotal ga.)	85,3	CACCHI CARDA	greer (1º.)	(m) .03
(HAAAS	331.7	<u> </u>		
·. SAMPLE	ער פנג צי ב	- PLASTIC		
(CHRISTAN (SIGNATURA)	COMPUTED & COLOR		Job Numbe	r 90-25 A

45 South Roop Street • Susanville, California 96130 Telephona (916) 257-5173

4				
		4/7/90		
MOJEL REMED		SAUPLE BURGER		
	PHASE I	058 4	50 - 55	
OESCRIPTION OF SAWPLE	5 M		☆ 113	
TLG.6	ocieni arien presa 448		77,8	
SIEVE ON SCREEN	ON ZIEAE (4=+) ALICHI MLIVINED	- UEIGHT (40.)	PERCENT 4	
3/8	0		100	
4	0	526.6	100	
	3.0	523.6	99.4	
30	103.6	420.0	79.8	
50	146.8	273.2	. 51.9	
100	122.7	150.5	28,6	
			-	
AUHBER 200	61.6	89.5	17.0	
. etieni sitrto innoven no. 2	00 (4)	(AROR (Original voight - 10te	i telly of frantisme)(fa.)	
1. EASHING LOSS! (4)	10.0	/.	. /	
OIAL FASSING NO. 200 (4) (A.	77,8	PLACENT LANGA		
OTAL MEIGHT OF FRACTIONS (FOR		(petglant voidhi (40.) = 100) , Z/		
CHARKS				
. SAMPLE	اح - لدهد ۱۶	ATTIC		

Job Number 90 - 25 A

				DATE
	SIEVE ANALYSIS DAT			4/7/90
S.I.A.D. P	CAL INVESTIGAT	USB		76'-80'
DESCRIPTION OF SAMPLE				PREMASHED
ł.	SM			<u> </u>
•	2 /1			/-
l				<u></u>
POLIGHT DRIGINAL SAMPLE (40.)	VEIGHT AFTER PAGE		TASHING LOS	
. 421,4		7,3	1	54.1
	MUCHI BLIVE		PASSING S	
SIEVE ON SCREEM	ON SIEVE (40.)	. BEICHT (44	··)	PEACEAT
3/8	0			100
		·	 -	
4	0	421	<i>y y</i>	100
·		·		
10	3.6	417.	a	99.2
		· · · · · · · · · · · · · · · · · · ·	 -	
30	69.1	3 4	97	g 2, 9
<u> </u>		<u>-</u> -		
50	110,2	238	9 5-	. 56.6
	 			24.5
100	135,3	/03		<u> </u>
1		}	1	
]			J	
		.		
i		1	1	
		.		
		.]		
NUMBER 200	413 /	59.6	İ	14.1
	43.6			
1. BEIGHT SICTED INFOUGH NO. 20	0 (40.)	CARON (Original as	1481 - 10101	soithi of frontions)(so.)
	5.4		•	
7. TASHING LOSS (6)		1	-1	
	54,1			
101AL FASSING ND: 200 (4) (A.	• 4.1	PEACENT ERROR		
	59.5		1000 (191),	10.) · (111) · O L
TOTAL METERS OF FRACTIONS (Foto		'Orli	JANE TO JANE !	10.)
(4.)	421.3	<u> </u>		
TEMAAAS		-		
•				
SAMPLE	لره در ۱۶	PLASTIC		
-				
		·	.,	
ICANICIAN (3) gastore)	ire Stand At	م- مراوسا	Job Numbe	90-25 A
Istalia He Motore	1 Stake 1	16 hours		70-63
			Į.	

				BATE
	SIEVE AHALYSIS UAI/			4/7/90
	DIAL INVESTIGAT			1407LE BURGEA 5 /
	PHISE I	050	<u> 4</u>	
OESCRIPTION OF SAMPLE				/A(#ASA(#
	58-52	7		
			7::::::::	
J 35. 6		15.8	TASHING LO	19.8
		_	PASSING	
SIEVE ON SCREEN	ON SIEAE (40.) Alichi Bilvined	- #EIGHT (4m		PERCET
3/8	0		_	100
4	0	235	. 6	100
	0,7	334.	9	99.8
30	14.5	320.	4	95,5
50	945	225	9	. 67.3
100	168.5	56.	4	16.8
	/ 6/.3	<u> </u>		7 3. 5
			-	
				
			_	
NUMBER 200	33,4	23.	0	6.9
· · · · · · · · · · · · · · · · · · ·	200 (4)	(ARBA (Original so	1481 - 10101	reight of freetiene)(go.)
	3.5	:		. 3
. BASHING LOSS! (4)				•
	19.8			
101AL FASSING NO. 200 (40.) (4	z 3. 3	PEACENI ERROR		00
OTAL WEIGHT OF FRACTIONS (F.		(वराइ	7 5:10: \{\$;	(10.) - 09
(0.)	3 35.7	_		
EMAAA;				
•				
SAMPLE IS NON PLASTIC				
(CARICIAN (SIGNOTORO)	(84741 (8))) (\$1400	121.10	l	

· · · · · · · · · · · · · · · · · · ·			
	SIEYE AHALYSIS DAI/		4/7/90
FROJECT REMEDI S. I. A. D. F	IAL INVESTIGAT	102 (acatal 108 number 258 4	14071E 8080ER /26'-/27
DESCRIPTION OF SAMPLE			PREMARKS
	SW - S	M	Ø
ocieni driginal sauple () 270,8	VEIGHT AFTER FREE	2.6 VASAI	16 1933 (go.) (8.2
			SING SILYL
SIEVE ON SCREEN	WIGHT RITAINED ON SIEVE (40.)	• #16PT (de.)	PERCENT
3/8	0	370.8	100
4	1.8	369.0	99.5
10	16.3	352.7	95-1
30	241.5	111.2	30,0
50	54.3	56.9	.15.4
100	٤ 3. 9	J 3.0	8.9
1			
NUMBER 200	12.6	20,4	5.5
A. TEIGHI SIETED IMAGUSH NO. 2	2.1	(RROR (Original valgh) -	total gaight of frontional(go.)
. #ASRING LOSS (()	18.2		. (
01AL FASSING BD. 200 (go.) (A.	20.3	PERCENT CARBA	((a.) (a.) (a.)
OTAL SCIENT OF PACTIONS (FOR	270.7	Ocidines as	
(MAARS	·		
SAMPLE	١٥ ١٥ ١٥ -	PLASTIC	'
ICHRICIAN (SIGNOISO)	CONPUTED AT (STATE	Job	Number on 2 C A

1. ∞ 3 8/. 11 0,0

	SIEYE AHALYSIS DAIA	\			4/7/90
S. J. A. D. P.	AL INVESTIGAT YASE I	לאם/	DSB	V=====================================	149 E - 123
DESCRIPTION OF SAMPLE	5 M				/ACC+45HC0 /20 1C5
VEIGHT DATE HALL SAUPLE (12-1) 288.7	ecieni afice facea	3 9. T		TASMING LOS	99.5
SIEVE OR SCREEN	OR SIEVE (40.)	-	#E16#1 (40.	PASSIAG S	PERCENT
3/8	0			_	100
4	0		388	-7	100
	1.0		387	. 7	99.7
30	13.3		374	4	96.3
50	31,0		343,	. 4	· 88.4
100	92.3		251	-	64.6
NUMBER 200	126.8		12%.	3	32.0
. WIGHT SIEVED IMPOUGH NO. 200		CRROA		4A1 · 10101	reight of freetiens)(ja.)
. BASHING LOSS (()	99.5	d 		0.8	7
GIAL FASSING NO. 200 (de.) (A		(Original os) shi (so.) = 100) _ Z/			
(MARKS	387.9				
	<i>الد کا عا</i> ه	۔ د	PLAST	<i>ر</i> د -	
Stale H Solomin	coursite to (sign	Leh.	7	Job Numbe	Pr 90-25 A

	4/7/90		
	PHASE I	102 (ACAVALION NUMBER DSB 4	173 -176
GESCRIFFION OF SAWFLE	SM		72 165
VETERT DATETRAL SAMPLE (20.) 282.0	VEIGHT AFTER PRESE	asning! (a=.)	50,5
			ING SIEVE
SIEVE OR SCREEN	OR SIEVE (4m.)	· •(1681 (40.)	PERCEN
3/8	0		100
4	0	282.0	100
10	2.8	279.2	99,0
30	35.6	243.6	86.4
50	82.2	161.4	. 57.2
100	67.0	94.4	33.5
NUMBER 200	38.2	56.2	19.9
1. TASHING LOSS (40.)	50.5		2
101AL FASSING NO. 200 (go.) (A 101AL NEIGHT OF FRACTIONS (FO. 10.)	56.0	Gettinol coldat (40.) .07	
SA MOLY	م له ه در - ا	PLASTIC	
Stigh H. Sofra	CONTUITOR (SIGN	Job N	lumber 90 - 25 A

	SIEVE AHALYSIS DAI	A	4/7/90	
	PHASE I	TON EXCAVALLER AUGUSER OSB 4	SAUFLE RUBER	
OESCRIPTION OF SAWFLE	50		/agrasage 	
VETERT DATETRAL SAMPLE (12.7)		ASSISTED TASSISTED TASSIST	(8.8	
SIEVE ON SCHEEN	ON SIEVE (4m.)	- TETERT (40.)	PERCENT	
3/8	0	351.4	100	
14	0.6	350.8	99.8	
	9,2	341.6	97.2	
30	87.9	253,7	72.2	
50	86.8	166.9	. 47.5	
/10	61.5	105.4	30.0	
NUMBER 200	30.7	7 K. 7	21.3	
. atieni sitria innoven no.	5.7	(ARDA (Original valgh) - tog	of testions (testions) (40.)	
. EASHING LOSS! (4)	68.8		, ک	
OIAL TASSING NO. 200 (40.) (A	74,5 101-1-11 ontries in Col. b)	(Original volghi (40.) = 100) , 06		
(HARRS	351,2			
. L.L. P.L. P.I.	= 23			
Selaha H Solom	ir Courulty by (stens	Job Num	iber 90 - 25 A	

	SIEYE AHALYSIS DATA			4/7/90
S. I.A.D. P	YASE I		1 4446 (A B &	224556
OESCRIPTION OF SAMPLE	SP -	-		78(1438(0
VEIGHT ONIGINAL SAMPLE (4=1) 540, 3	VEIGHT AFTER PAGE		*******	¥0,3
SIEVE ON SCREEN	WEIGHT RETAINED ON SIEVE (40.)	- BE16HT (PASSING S	PEACENT
3/8	0			100
4	0	5-40	, 3	100
10	2.7	53	7,6	99.5
30	78.4	45	9.2	85.0
50	117.5	34	1.7	. 63.2
100	181.8	1	9.9	29,6
NUMBER 200	108.0	S /,		9,6
. TASHING LOSS (40.)	<u>/0.9</u> 40.3	÷	4	2.7
OIAL FASSING NO. 200 (40.) (A		PEACENT CAADA		
OTAL SCIGHT OF FRACTIONS (Fore)	(97	iai di di di	(100) . /3	
SAMPLE	15 29.6 15 202 - P	LAST/C	·	

P 30 ENG 2087

| SIEVE ON SCREEN PAGENTION OF SAMPLE SIEVE ON SCREEN PASSING SIEVE ON SIEVE (40.) PASSING SIEVE 4247 |
|---|-----------|
| OLSCRIPTION OF SAUPLE OCIGHT GRIGINAL SAUPLE (40.) PASSING SILVE ON SILVE (40.) OCIGHT (40.) | |
| ZJ8, J / P8, 7 J8, SIEVE ON SCREEN WEIGHT AFFAIRED ON SIEVE (40.) - BEIGHT (40.) | 1168 |
| STEVE ON SCREEN ON STEVE (40) ON STEVE (40) ON STEVE (40) | |
| 3/_ 0 | PERCENT |
| 238.3 | 100 |
| 4 1.2 237.1 | 59.5 |
| 10 8.0 229.1 | 96.1 |
| 30 52.8 176.3 | 74.0 |
| 50 55-6 120.7 | 50.7 |
| 100 54,1 66.6 3 | 2 8.0 |
| | |
| NUMBER 200 23.9 42.7 / | 7. 9 |
| CARDA (Original volghs - lotal volghs - | |
| - FASHING (055) (10.) 39.6 | ! |
| GIAL TASSING NO. 200 (40.) (A. + B.) 42.6 GIAL GEIGHT OF TRACETORS (Focal of oil operion in col. b) GEIGHT OF TRACETORS (Focal of oil operion in col. b) | ··· . 0 % |
| CONFULE (SIGNALUS) CONFULE (SIGNALUS) CONFULE (SIGNALUS) Job Number 90 | |

	4/11.190			
	IAL INVESTIGAT	10N CACATALION I	S S	3611 AVADER - 39=
OESCRIPTION OF SAMPLE	5 M	,		Ò∑ it? \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
ocieni original saufic (20.) 167, 4	religni After faces	sning! (4) 9. 9	*ASAIR6 (0)	37.
SIEVE ON SCHEEN	WEIGHT RETAINED ON SIEVE (40.)	· #116#1 (40	7A\$31#G \$	PEACENT
3/8	0		-	100
4	0	167.	4	100
	1.1	166	>	99.3
30	1.4	164.	9	98-5
50	5.0	15-9.	9	. 95.5
100	5-9.2	100,	7	60.2
NUMBER 200	57.4	43.5	2	25.9
4. WEIGHT SIEVED IMAGUEM NO. 2	6,0	IRROR (Original so	1661 - 1461	relable of freeliene)(am.)
7. WASHING LOSS (()	27.5		ے . 	
TOTAL FASSING NO. 200 (40.) (A.)	43.5	riacini iaada	1 (o o o o o o o o o o o o o o o o o o	(e.) · / \
1EMARS	/ 6 / . 5			
· SAMPLY	ק גם צי	LASTIC		
		-		
Stoken Holom	consultation (stand	Seli-18	Job Numb	90-25 A

	SIEVE AHALYSIS DAI	_		PATE
		4/16/90		
S.I.A.D.	PHASE I	COV CICATALION NO		340716 880018 48'-53
OLICALPTION OF SAMPLE				PACTASHO
	6.3			ÇZ) ıts
	SP - 5M			
SEIGHT CAIGINAL SAMPLE (40.)	VEIGHT AFTER PACE	ASHING (40.)		
2502	2	36,5		13.7
	WEIGHT RETAINED		PASSIAG SI	
SIEVE OR SCREEN	ON SIEVE (4)	. BEIGHT (40.)	1	PERCENT
• 3/8	0		1	100
73				
4	0	250,2		160
10	2.0	248.2		996
		- · 		
70	774	224	.	899
30	23.4	224.8	7	0 / 7
			_	. ,
50	61.0	. /63.	8	. 65.5
100	136.0	27,8	l	11.1
			1	
		- - 		
1		ļ		,
			1	
1		ļ	1	
NUMBER 200	12.0	15.8	ľ	6.3
			4-4-4-6	
. BEIGHT SICTED THROUGH NO.		CHRON CONTINON DOIL	nı - 10101 (oight of freetiens)(go.)
	2.0	.		·
. EASHING LOSS ((+.)			. /	!
	13.7			
GIAL PASSING NO. 200 (40.) (A		PEACENT ERADA		
	15.7		(40.)	- 1441
OIAL TEIGHT OF FRACTIONS (FOR		(5777)	of tollar to	(a.) a (41)
(**)	250,1			, ,
(MARS		·		
(mann)				
· Samo	لده در ۱۲ ما ما	PLAITIC	-	
= /, : 2/10	,, ,,			
				1
ICHRICAR (Signature)	COMPULID AT (114	111110		· <u></u>
State H Solm	in Convice in (Sien	FI A	lob Numbe	90-25 A
The think the the same	1 tokan 1	Me.s. America		
	i			

ENG , "..., 2087

	4/16/90		
S. I.A.D.	DIAL INVESTIGATION PHASE I	TION CACAVATION NUMBER OSE 5	340716 BURGE 76'- 78'
TOESCRIPTION OF SAMPLE	SP - SM		7A(145A(0) 1(5
veieni Original Sauple (10. 243.)) reigni arien paei		2 4. 9
SIEVE ON SCREEN	ON ZIERE (10.) ALICHT ALLVINCO	PASSING . BEIGHT (40.)	PEPCEN
3/8	0	343.1	100
4	0.3	342.8	99.9
	3.7	239.1	98.8
30	38.4	300.7	87.6
50	186.5	114.2	· 333
100	69.9	44.3	12-9
NUMBER 200	16.0	28.3	e,3
. atieni sitrto innoven no.		CREA (Crisino) voight - 1010	
. #ASHING LOSS! (4)	24.9		, <i>Y</i>
GIAL FASSING NO. 200 (4m.) (27.9	FERCENI ENROR	1(10.) - / 2
oral afichs or thycison? (Le	3427	Original value	-/-
(WARS			
. SAMPLE	عم لده در در	ASTIC	
State Holom	ise Consultation (Sign	Job Num	ber 90-25 A

0/. 0,0 ENG 2087

		4/16/90		
INDUCT REMED	IAL INVESTIGA			SANFLE BUNGSA O
S.I.A.D. 1	PIYISE I	03	585	105-9-/10-
DESCRIPTION OF SAMPLE	_			PREMASHED
1	5M			
1				
GEIGHT ORIGINAL SAMPLE (40.)	PEIGNI AFIER FAE	BASHING (44.)	VASHING L	053 (40.)
408.6		مس ريح		84,1
		 -	PASSING	
SIEVE OR SCREEN	WIGHT RETAINED ON SIEYE (40.)	· PLIGHT (PERCE
3/8	0			100
4	0	408	4	100
· 			·	
10	0.6	408	0	99.9
				
30	٤,3	400	C 7	993
. 50	35.5	37	0.7	90.6
100	194.0	/2	6, 2	43.1
		_		
			1	
				
			1	
		-		
NUMBER 200	79.5	96.	7	23.7
. atieni siteto innovem mo. 2		CRAON (Original		
2 2 2 2 3 3 4 4 4 4	12.7	1		
. BASHING (055 (40.)	<u></u>	-	. 1	
	841		- ,	
DIAL FASSING NO. 200 (6) (A.	• 0.)	PEACENI ERROR	,	
	96.8	-	11101 (10)	ح ٥ ر (١٩١) • حرر
OTAL MEIGHT OF PRACTIONS (FOR	il of all entries in Col. b	1	idinei veight	140.7
· · · · · · · · · · · · · · · · · · ·	408,7	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
(MARR;				
· SAMPLE IS NON PLASTIC				
1/2 mrte 13 res				
Complete Change of	Communication (Co.)		- ₁	
CHAICIAN (SIgnature)	convito bi (sien	LEF A	Job Numb	per 90-25 A
- Triple of The Park	Attechan it	Me Samuel		/ 5 25

	4/16/90		
FROJET REMED S.I.A.D.	PHASE I	DSB 5	SAUPLE BURNER C
DESCRIPTION OF SAMPLE	SW - SM		72 1C3
elient odiethal saufil (do.)	JETH AFTER PACE.		28.0
SIEVE ON SCREEN	WEIGHT RETAINED	PASSIA	PERCENT
	OR SIEVE (4m.)		
3/8	0	395.5	100
4	9.5	386.0	97.6
	49.0	337.0	85.2
30	129.0	208.0	52.6
50	111.9	96.1	. 24.3
100	48.0	48.1	/2,2
NUMBER 200	16.5	21,6	6,0
1. 4658146 (055) (4)	2,7	(AROR (Original valgh) - tol	of volume of freetlenes(qui)
	28.0		
OTAL PASSING AD. 200 (40.) (30.7	PLACENI LANGA	:) (100) . 23
OTAL BEIGHT OF FRACTIONS (F-	3 9 4.6	orlainel colak	(10.)
I(MARRS			
. SAMOLE	15 NON PL	ASTIC .	
		1	
I Sent (Signature)	Course to (3100)	Job Nun	nber 90 - 25 A

	4/10/50					
S.I.A.D. P.	AL INVESTIGAT	102	EXCATATION NUMBER	SAMPLE MUMBER ,		
COLSCRIPTION OF SAUFLE				72 1CS		
ecigni driginal sample (a=.) 393.0	361.8					
		/. 8 3/. 2 PASSING SIEVE				
SIEVE ON SCREEN	WEIGHT RETAINED ON SIEVE (4)		#[GR (dm.)	PERCENT 4		
• 3/8	0	.	393.0	100		
4	14.2	.	378.8	96.4		
10	53,0		325.8	82,9		
30	91.0		234,8	598		
50	115.1		119.7	. 30.5		
100	66.0		53.7	13.7		
AUMBER 200	19.2	(AADA (3 % J	8, 8 el veight of freetions)(go.)		
4, 0 1. BASHING LOSS ¹ (go.)			. 7			
TOTAL PETERS OF FRACTIONS (Fotal of all emission in Col. b)			(Original coldat (de.) ./ 8			
(=.)	393.7	L				
SAMPLE IS NON PLASTIC						
ISANISIAN (Stanolore)	Conful (o) bi (sign	مردورو				

45 South Roop Street • Susanville, California 96130

/Engineering/		epnone (916) 25/-			
	4/16/90				
radici REMEDI S.I.A.D. P.	140/18 NUMBER 170'-175'				
DESCRIPTION OF SAMPLE	SP - SM	DSB		/AL 1443H (8	
GEIGHT ORIGINAL SAUPLE (Ja.)	veigni after fals 2 8	ASHING (40.) 8. 4	VASHING LOS	29,3	
SIEVE ON SCREEN	WEIGHT RETAINED ON SIEVE (40.)	· BEIGHT (40.	PASSING S	PERCENT	
3/8	0	317,	7	100	
4	2.1	315.6		99.3	
	12.4	303.2		95.4	
30	26.4	276.8		87,1	
50	124 8	152.0		. 47,8	
100	96.0	5-6.	0	17,6	
					
NUMBER 200	23.0	33.0		10,4	
. eticni Sitto innougn no. 200	(4)	·	144 - 10101	rotchs of freetions)(es.)	
3. 2 . BASHING (035) (60.) 29.3		0.5			
		PEACENT LARGA			
ITAL BEIGHT OF FRACTIONS (Foral	(67737 00) (ki (40.7 0 100) , /6				
BAR;	317,2				
SAMPLE	مشتم لدن دد د	.ASTIC			

State Helanist

State of Selection

Job Number 90-25 A

くし Q

Ć.

7087

100 L L

		ATE					
 		4-16-90					
S. I.A.D. F	PHASE I	D 2 B	5	200'-203'			
DESCRIPTION OF SAMPLE	5 M	· · · · · · · · · · · · · · · · · · ·		1845960			
			Þ ⊅105				
ellent datginal sauple (10.) 282.7	TS3	snine (40.) PASRINE LOSS (40.)					
SIEVE OR SCREEN	WEIGHT RETAINED ON SIEVE (40.)	· #[6# (4#.)		PERCENT			
3/8	0	282.		100			
4	<i>ن</i> . 3	282.4		17.4			
10	1.4	291.0		77-4			
30	78.6	252.4		89.3			
50	* 1.5	164.9		58.3			
100	104.6	60.9		21.5			
NUMBER 200	26.2	<u> </u>		/2.3			
. TEIGHT SIETEO THAOUGH NO. 20	• (1-1)	CARDA (Original value	i · tetal get	the of fractions)(go.)			
. PASHING LOSS (40.)	29.6	.2					
OTAL PASSING NO. 200 (40.) (A 8.)							
OTAL SEIGHT OF PRACTIONS (Foto	(Original ooligis (100.) . C7						
EMARAS	2 82.5						
SAMPLE IS NON-PLASTIC							
JAMPLE 13	HOW PLANT						
				į			
				1			
(Chalcan (Signotoro)	CONFUICO DI (SIANO	(B)	ob Number	90-25 A			
Total I July	1 Treater to	101		, , , , ,			

PERCENT COARSER BY WEIGHT 250 <u>8</u> 8 Я 2 46 SAT OR CLAY HTDROMETER 250 Bonny Na . Polect g 8 ₹ 3 •3 8 E z 2 U. S. STANDARD SIEVE NUMBERS 8 10 14 16 20 30 40 50 CANN SYE IN MILLIMETERS = = ____ Net w % 200 ברום ובכ 9 IN INCHES GRAVEL. OPENING 8 L. S. STANDAND SIEVE Я e Depa 8 E G CORRECTS Sampre Me. PERCENT FINER BY WEIGHT

45 South Roop Street • Susanville, California 96130
Telephona (916) 257-5173

		4/30/90		
S.I.A.D. PA	(102) (11CAYALION	aunsea T	246' - 250'	
OLSCRIPTION OF SAMPLE	5P 5 ^			PACTASHCO DE 163
SB3.9	TEIGNI AFIER FREE	ASRING (4)	TASAIRE LOSS	25.6
SIEVE ON SCREEN	WIGHT RETAINED ON SIEVE (40.)	· DEIGHT (40	PASSIAG SI	PERCENT
3/8	0	583	2.9	100
4	10.6	573	. 3	98.2
10	36./	57.		92.0
30	208.8	328	24	56.2
50	186.4	142	.0	· 24.3
100	85.2	56	.8	9.7
	·			·
NUMBER 200	22.7	34.1		5-8
. TEIGHI SIETED IMMOUGH NO. 200	7.2 25.6	RROR (Original va	1-3	olithe of froctions){fo.}
OLAL FASSING NO. 200 (40.) (A. + #		PEACENI ENDAN		
OIAL WEIGHT OF FRACTIONS (Fotof o	(۱۰۱۱ مهرورون ۱۰۱۱ (۱۰۱۲ مهرورون) کرچس	Gela	ind soldki (a	······································
EHAARS		<u> </u>		
``,	SAMPLE 13	ماهم هوار	Kotič	
Style H Sohnit	COUPULED & (SION	Khik	Job Number	90-25 A

45 South Roop Street • Susanville, California 96130 Telephone (916) 257-5173

SIEVE AHALYSIS DATA					
S. I. A. D. 7	22023/				
DESCRIPTION OF SAMPLE	-		PREMARED		
1	5 M		ÇZ) 113		
1	-				
VEIGHT GAIGINAL SAMPLE ()	TEIGHI AFTER FREEA		1013 (40.)		
419.0	رک می از		73.8_		
SIEVE ON SCREEN	WEIGHT RETAINED	• OCIGRI (40.)	G SILYE		
Stere on seneen	ON SIEVE (4)		PERCENT		
3/8	0		100		
			-		
4	0	419.0	100		
10	12.8	406.2	97.0		
30	840	322,2	76.9		
			78:7		
50	95.3	226.9	٠ 542		
100	87.7	139.2	33.2		
			}		
ļ					
					
	ì	•			
	·····				
NUMBER 200	53.5	85.7	20.5		
. afieni sitata invanen no. 5		CARDA (Original solida) ADARA			
Tient sittle innogen my	12.1	cures fortiums anital . Lat			
. BASHING 1055 (40.)		0.	7		
. ENSHIEL (022, (10-)	73.8) · · ·			
DIAL FASSING MD: 200 (4m.) (A.		PEACENT CAADA			
	85.9		,		
OIAL GEIGHT OF FRACTIONS (FOR		(6,141601 0014 6	ilian 1111 , 05		
4)	419.2	30030			
(MAARS					
<u>-</u>			1		
SAMPLE IS NOW PLASTIC					
· · · · · · · · · · · · · · · · · · ·					
			1		
			1		
CONFULDAT (Signature) (CONFULDAT (Signature))					
Stale H Salur	Stephe H Sahmir Stephen A Schuir Job Number 90-25 A				
	- July				

FNG , " ON" , 2087 010 : . . . 8

45 South Roop Street • Susanville, California 96130 Telephona (916) 257-5173

	4/30/90			
FROJECT REMED S.I.A.D.	3AM/16 AVHOCA 20/ - 206			
DESCRIPTION OF SAMPLE	SP-SM		72 165	
VEIGHT ORIGINAL SAUFLE (10.)	TEIGNI AFTER PRESI	9. 0	3 4. 9	
	WEIGHT RETAINED	PASSIAG		
SIEVE ON SCREEN	ON SIEVE (40.)	· **!GR! (40.)	PERCENT	
• 3/8	0	573.9	100	
4	4.6	569.3	99.2	
10	30.6	538.7	93.9	
30	108.7	430.7	75-1	
50	125.2	304.8	. 53./	
100	172.7	/32./	23.0	
	·			
RUMBER 200	86.1	46.0	8.0	
A. TEIGHI SIETES INROUGH NO. 2	10.9	IRROR (Original relight - tett	i reight of frantiene)(am.)	
1. EASHING LOSS! (4)	34.9	,	2	
QIAL TASSING NO. 200 (go.) (A.		PEACENI LANGA		
OTAL MEIGHT OF FRACTIONS (For		(arial fol oo) (k	1140-1 - 0 3	
I (MARKS	<u> </u>			
·. SAMPLE IS NON PLACTIC				
Stight H Sobride State A Sehina Job Number 90-25 A				

0 بدائ

ن ۲

45 South Roop Street • Susanville, California 96130 Telephone (916) 257-5173

SIEYE AHALYSIS DATA					7/30/90
S.I.A.D. PHASE I DSB 6					153' - 158'
DESCRIPTION OF SAMPLE	5w-5m				74 143 143
FLIGHT DRIGHAL SAMPLE (10-1)	TEIGNI AFTER PRES	ASHING!		FASRIRE 1013	7 8. G
SIEVE ON SCREEN	WEIGHT RETAINED ON SIEVE (40.)	-	#[G#F (40.)	PASSIAG SI	PERCENT
3/8	0		574.		100
4	5.1		569.	ب	99./
	543	-l	514.	6	896
30	1513	_	363.	3	63.2
50	130.8		232	.5	· 40.5
/00	119.8	-	1/2,	7	19.6
NUMBER 200	65.0		47,7		8.3
. aficus Sifato suvoden no. 500		CARDA (oight of frontional(so.)
. EASHING (055' (4)	38.6				4
01AL FASSING #0: 200 (4) (A. + 0.) 47.3 01AL MEIGHT OF FFACTIONS (FOIAL of all emission in col. b)		reacent tanon (artification (40.) a 100) -07			
(MARS	574.1	1	, , , , , , , , , , , , , , , , , , , 		
SAMPLE	ו גם גם	PLAJ	TIC	·	
State H Solming	CONTUITO DI CELONI	Ich.	المزا	ob Number	90-25 A

45 South Roop Street • Susenville, California 96130 Telephone (916) 257-5173

\$1	EYE AHALYSIS DATA			4/30/90
S.I.A.D. PHI	INVESTIGATIONSE I	CACATALION I	IVE 6	1AMPLE MUMOLA, /26 - /3/
OESCRIPTION OF SAUPLE		1 000		PACHASHED
	5 M			Þ ⊅ ····
TEIGHT ORIGINAL SAMPLE (10.) 7 46. 8	VEIGHT AFTER PREPASE 66	0.7	TASMING LO	8G,/
*15×1 00 *C011#	WEIGHT RETAINED	21122 (PASSING	
SIEVE OR SCREEN	ON SIEVE (4m.)	9616#1 {40.	.,	PEPELU1
3/8	0	746	8	100
4	2.3	744,	5-	99.7
10	25-1	708	9. 4	95.0
30	145.0	564	4	75.6
50	151.0	413.4		. 55.4
100	171,6	24	1. 8	32.4
NUMBER 200	131.0	110.	و	14.8
A. WEISHI SIEVED IMMOUGH NO. 200 (6		ROA (Original so	1441 - 14101	tolable of freelienes(go.)
1. BASHING LOSS (40.)	26.1		•	0,9
OTAL FASSING NO. 200 (40.) (A. + 8.)		ACERI ERADA		
DIAL WEIGHT OF FRACTIONS (Fotal of	(oria		(40-) . / 2	
I (WAAR 2	745-9			
· SAMPLE	15 NON P	245710		
State # Solomit	CONFULED & (SIGNAL)	EL A	Job Numb	er 90-25 A

45 South Roop Street • Susanville, California 96130 Telephone (916) 257-5173

	4/30/ 90			
S. I.A.D.	DIAL INVESTIGAT PHASE I	CACAVATION NUMBER DCB 6	SAMPLE NUMBER 5	
OESCRIPTION OF SAMPLE	ML		PA (145H (8)	
CIGHT ORIGINAL SAMPLE (20. 254.7	4	isning (40.) VASAING	1033 (40.)	
SIEVE ON SCREEM	ALICHE BELVINED	PASSI	G SIEVE	
	ON SIEVE (am.)	* TEIGHT (40.)	PEACENT	
3/8	0	2547	100	
4	0.2	2545	79.9	
	1-1	253.4	99.5	
30	ا ع. ک	250.2	98.2	
50	1.5	248.7	. 97.6	
100	15.5	2 23, 2	91.6	
NUMBER 200	81.4	151.8	59.6	
. HEIGHT STETE THROUGH NO. 200 (4m.) 30.7				
. EASHING LOSS! (4)			. 5	
GIAL PASSING #0: 200 (4) (A. + B.)	PEACENT LANDA		
OIAL WEIGHT OF PRACTIONS (FO	/2/.6 A. O.) /52.3 (al of all satisfies in Col. b) 255,2	Great of Cartains Control	ح , (۱۹۹) ، ک	
(HAAR;	٤٥٥, ك			
SAMPLE	مع کره در	(STIC		
Set of the Solom	convitor (siene	Job Nur	nber 90 - 25 A	

45 South Roop Street • Susanville, California 96130 Telephona (916) 257-5173

SIEYE AHALYSIS DATA					4/30/90
MOJICI REMEDIA	. FOI 144A3	· · · - · ·	SAMPLE MUMBER		
S.I.A.D. PHASE I OSB 6					267-607
COESCRIPTION OF SAMPLE	<i>5</i> c				TAEFASHED
VETENT DATETRAL SAMPLE (10.) 3 / 9 /	VEIGHT AFTER FREE	ASHING! ())	******* ** ***************************	148.1
				PASSIAG SI	
SIEVE ON SCREEN	WEIGHT RETAINED ON SIEVE (40.)	'	Elight (de.	,	PERCENT
• 3/8		_	319		100
4	0.9		3/8	. ك	99.7
10	6.9		3 11.	3	97.6
30	30.4		280	, 9	88.0
50	33.3		247.	6	. 77.6
100	51.9		195.	7	61.3
NUMBER 200	37.9	. i	157.		49.5
. alieni silvlə innoven no. 200 (CARGA (OF	icinol vol	141 - 14141 4	ight of freetiens)(go.)
. EASHING LOSS! (4)	9.0	0.7			
GIAL PASSING NO. 200 (4) (A. + B.)		PERCENT L	RADA		
01AL WEIGHT OF FRACTIONS (Foral of all emission in Col. b) 3/8.4			(Original tool (Ani (an.) - 100) . 2 ~		
(MARK)					
L-L. = 29 P.L. = 19 P.I. = 10					
Stalm H Salmit	COUPUILO DI (3100)	l'h	J.F.	lob Number	90-25 A

45 South Roop Street • Susanville, California 96130 Telephona (916) 257-5173

	SIEYE AHALYSIS DAT	Ā	4/30/90	
S. I. A. D.	DIAL INVESTIGA. PHASE I	CON EXCAVATION NUMBER OSB 6	140/16 AVAGE 2 2 - 2 G 5	
SESCRIPTION OF SAMPLE	SM		PACTASRED TES	
etient oniethal sample (i.e.) 29, 4		ASHING (4) PASHING	83.0	
	WEIGHT RETAINED	PASSIA	G SILYE	
SIEVE OR SCREEN	OH SIEVE (4m.)	- TEIGHT (40.)	PEACENT	
3/8	0	309.6	100	
4	0.3	309.3	99.9	
	1,9	307,4	99.3	
30	41.9	265.5	85.8	
50	91.9	173.6	. 56.1	
100	566	117.0	37,8	
			·	
NUMBER 200	26.6	90.4	29.2	
. eticni Sitvto innoven no.		tanon (original vaight - total	of totable of franctions)(4m.)	
. TASHING LOSS (40.)		·	1. G	
DIAL PASSING NO. 200 (40.) (A	83,0	PEACENT ERADA		
OTAL METERS OF PRACTIONS (FO	89.8	Gridinal voide	1 (10.) - 100) . 19	
(*,)	309.0			
(MAAR;	• •			
. 4.4.	= 25			
P. L. = 2/				
P. I.	= 4			
Stight H Sohm	ir Courvies is (31900	Job Num	aber 90 - 25 A	

Ç

(

45 South Roop Street • Susanville, California 96130 Telephona (916) 257-5173

	1-16-90				
S.I.A.D.	247 - 249				
DESCRIPTION OF SAMPLE	SP-5M		71 (14.5) (16.5) (17.5) (17.5) (17.5) (17.5)		
TETENT DATETHAL SAUFECTION	FIGHT APIER PRES		35.0		
	WEIGHT RETAINED	PASSIAG	SILVE		
SIEVE ON SCRECM	OR SIEVE (4m.)	· #[16#1 (4#.)	PERCENT		
3/8	0	415.9	100		
4	2	415.6	99.9		
10	-1-5	411.1	98-8		
30	72.0	339.1	81.5		
50	170.0	169.1	. 40.7		
100	95.6	73.5	17.7		
NUMBER 200	31.5	42.0	10-1		
. TEIGHT SIETES THAOUGH NO.	6- 2	CRROR (Original solice - total	i totable of frontienes((a.)		
. BASHING LOSS! (4)	35.0	<u>'</u>	3		
OIAL FASSING NO. 100 (4) (4	41.2	PEACENT CRADA			
OTAL BEIGHT OF PRACTIONS (FO	ببخ كالمستوسية ينبشي كسور والم	(57 3 1 7 5 7 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1(10.) . 19		
(WAARS	VI ² - ² -I	<u> </u>			
SAMPLE IS NON-PLASTIC					
Stight H Solow	in Course (Signal)	Job Num	ber 90-25 A		

1000

11/2 (1)

45 South Roop Street • Susanville, California 96130 Telephona (916) 257-5173

SIEYE ANALYSIS DATA					4-15-90
S.I.A.D. PHASE I			D5B	5	22 5 - 230
OESCRIPTION OF SAMPLE	-P-5M				PACEASINED DES
elient oniethal sample (100.)	TIGHT AFTER PALEA	SHINET	(4=+)	20	-
				PASSIAG S	IEAE
SIEVE ON SCHEEM	WEIGHT RETAINED ON SIEVE (40.)		BLIGHT (40.	,	PERCENT 4
3/8	0		358.3	3	100
4	2.5	ļ	355.8	3	99.3
	24.3		331.5	5	92.5
30	153.0		178-5	5	49.8
50	۶٦.۶		91.0	<u> </u>	.25.4
100	50.5		40.5	<u> </u>	11.3
NUMBER 200	16-4		24-1		6.7
. stient Sitves innoven as. 10	° (4-1) ₹ -1	CRROA ((Original **i	tyl . lefel	tolable of freeliene)(am.)
. TASHING LOSS (40.)				-7	
101AL TASSING NO. 200 (60.) (A.	ZC-()	PLACIA	I (AAOA		
TOTAL WEIGHT OF FRACTIONS (Fota	7 3 1		(क्ता	Error (fri)	101) . CO
(0.)	3516				
I (BAAR)					
•					
CNVIDI -	IC MANI- DIA	5710	-		
SAMPLE IS NON- PLASTIC					
(1211)	COMPUNITAL (SIAM	مدورو	- 		
State H Solomin Consultation (SIgnature) State H Solomin Job Number 90-25 A					

Appendix H

Borehole Geophysical Survey

James M. Montgomery

Consulting Engineers Inc.

APPENDIX H BOREHOLE GEOPHYSICAL SURVEY

H.1 - Techniques and Field Operations Procedures

The borehole geophysical survey for SIAD Phase I RI was conducted by Welenco Incorporated of Sparks, Nevada. Surveys performed were electric logging which consisted of spontaneous potential and resistivity, caliper logging, and gamma ray logging. Electric and caliper logs were run on all six deep soil borings while the gamma ray log was run only on DSB-3. In each case the Welenco technician would arrive on site soon after the boring was completed. The logs would be run by lowering the instruments downhole and raising them back up by a means of a boom and winch mounted on the Welenco van. A field copy of each log was presented to the JMM Field Operations Leader upon completion of each survey run. A more detailed description of the geophysical logs, compiled from the Welenco manual, follows this discussion.

H.2 - Quality Assurance

The quality of data collected on the geophysical logs was assured by implementation of a few simple steps prior to and during the logging procedure. These steps included calibration of the caliper, gamma ray, and electric log equipment prior to use, circulation of fresh drilling mud into the borehole prior to geophysical logging, and measurement of the fresh drilling mud for temperature and resistivity. The caliper survey increases the accuracy of the gamma ray and electric logs since borehole diameter affects the results of these two surveys. The caliper was calibrated by lowering the instrument down the borehole to the bottom. The caliper log was then run from the bottom of the borehole to the ground surface.

H.3 - Log Procedures

The caliper log was run by lowering the caliper downhole suspended from a armoured cable running through the beam on the Welenco van. The caliper scale was calibrated as the caliper was lowered downhole. When the bottom of the borehole was reached the recorder was switched on and the caliper was raised in the borehole until the surface was reached. All data was recorded on the surface. The log for each borehole was complete when the caliper reached the surface.

The electric log and gamma ray log were both run in a similar manner to the caliper log. Each of these instruments was calibrated on the downhole run prior to running the survey. In the case of the electric log a sample of the drilling mud was measured for resistivity and temperature to provide a point of reference for the survey.

H.4 - Log Interpretation

The caliper log is easily interpreted since it records average borehole diameter along the entire borehole depth. At SIAD, it was used to help interpret the electric and gamma ray logs since these logs are dependent on borehole diameter.

The electric log measures spontaneous potential and resistivity. A more detailed definition of spontaneous potential and resistivity may be found in Appendix H.1. Spontaneous potential is a useful tool for determining water quality. A positive spontaneous potential indicates that the drilling mud is saltier than the formation water and a negative spontaneous potential indicates that the drilling mud is fresher than the formation water. If water is present in a formation or strata and the permeability is high either a positive or negative spontaneous potential would be recorded on the electric log depending on water quality. If there is no water present in a formation or if the permeability is very low a spontaneous potential of zero or close to zero would be recorded. This data can be used to separate clay layers from sand or gravel layers within a formation.

Resistivity is the resistance of a sediment to the passage of an electrical current per unit volume. Since water in pore spaces is primarily responsible for the conductance of electricity in sediments, the resistivity log is used to interpret the presence, quantity and quality of water in a formation. This in turn aids in the estimation of porosity of a sediment which may be correlated to grain size.

The gamma ray log measures the naturally occurring gamma emissions from the formation surrounding the borehole. The most common naturally occurring source of gamma emissions is Potassium 40 (K40). K40 is found in many common clay minerals thus making the gamma ray log a useful tool for determining the presence of clay minerals in a sediment. This makes it possible to estimate grain size and consequently permeability and porosity. It is primarily useful as a correlation tool with electric logs. These logs were used in correlation with the boring logs to interpret the nature of the subsurface and to help determine depositional environment.

H.5 - Summary of Logging Results

The caliper log was used solely to determine borehole diameter thus facilitating the interpretation of the electric and gamma ray logs.

The gamma ray log was run only on one deep soil boring, DSB-3. It was determined at that time that the gamma ray log had no correlation to the substrate at Sierra Army Depot. This could be due to the presence of a radioactive isotope that emits gamma rays but is not present in clay minerals (i.e., Uranium 235 or Uranium 238) or the presence of clay minerals that contain very little or no K40 or Thorium 232 (TH232) which is another common isotope found in clay minerals.

The electric logs were found to correlate very closely with the boring logs recorded by the JMM site geologist on the deep soil borings. The SP logs and the resistivity logs both indicated relatively fine-grained layers and coarser grained layers that coincided with those logged during borehole advancement. In the case of DSB-4, the electric log showed very little evidence of changing SP or resistivity. This was in complete

correlation with the JMM geologist log which documented a silty sand for almost the entire 250 foot depth.

The results of the electric log also gave an indication of water quality at SIAD. All water in the formations down to 250 feet in depth were determined to be Class II or Class III water. Class II water has a total dissolved solids (TDS) concentration of 700 to 2,000 mg/l and Class III water has a TDS concentration of greater than 2,000 mg/l. Copies of the geophysical logs may be found at the end of Appendix H.

1

INTRODUCTION

Today's tremendous and ever-increasing demands for water for suburban homes, for industries, for modern farming and for expanding cities have rendered yesterday's hit-and-miss methods of water seeking hopelessly inadequate. The effective investigation of underground water in any area requires (1) locating the water-bearing formations; (2) determining their water quality and (3) estimating their yield. Although surface exploration methods can be used to obtain general geological information on the area, only drilling, logging and testing of wells will accurately solve these problems.

The geophysical logs commonly run in water wells are similar in every respect to those run in oil and gas wells. In 1927, what would become the widest application of electrical surveying was attempted: the electrical surveying of a borehole by running a probe attached to the end of a cable into the well bore. Now, nearly all wells drilled for gas and oil along with a goodly number drilled for water are systematically logged. It is not surprising that, pursuant to the federal Clean Water Act, many California counties now require that logs be run under conditions where waters of different qualities may be encountered during drilling.

The purpose of this paper is to provide an explanation of some of the more commonly used geophysical logging techniques, how they work and what can be done with them to enhance the search for and recovery of more water.

Chart I-1 lists the tools that are generally available to the water well industry and how they are used in solving a variety of problems. Some of these tools can be used in both open and cased hole surveys, while others are restricted to use in open holes only because they depend on electrical signals that are short circuited by steel casing. The tools listed are run into wells on an armored cable which surrounds from one to seven insulated copper conductors. The tools which have electronics in the downhole sonde usually can be run on a cable that has one conductor, while those that have multiple contact points on the downhole sonde and no electronics downhole require one conductor for each measuring contact and are run on cables with four to seven conductors. Figure I-1 is a block diagram of the logging equipment used to obtain the logs described in this paper. The equipment is usually truck mounted and may make use of a very short, small diameter cable or, in the case of equipment also used for logging oil wells, be mounted in a large truck with 30,000 feet of heavy cable.

Figure I-1
Schematic of Geophysical Well Logging System

In order to obtain the greatest amount of information from a logging program, some pre-planning is definitely in order. It has been stated that log interpretation is more of an art than a science because different phenomena can cause similar log responses. For that reason it is imperative that the proper logs be run in any given situation, that the logs be properly calibrated and presented, that necessary associated information be obtained and tabulated and that the analysis of these logs be made by an analyst familiar with the area. For optimum information from an electric log, borehole geometry and some drilling fluid control should be considered. Logging tool sizes and access to well bores must be taken into account for some of the logs that might be run during the producing life of a well. Proper planning is the only way to obtain the greatest benefit from logs for the least expense.

The cardinal problem at the well is what to do with the hole you have just drilled. In few cases can the operator simply run a log and solve all his problems. To be of any great value, the log must distinguish between non-productive and possible productive formations. In wildcat areas, aside from indicating clear cut dry holes, all that should be expected of the initial log by itself is that it form a basis for wisely and economically selecting the various auxilliary evaluation or testing methods that may be necessary for deciding to pass up a dry hole or setting pipe in a productive well. Proper evaluation of the initial electric log may greatly reduce the number of unknowns and save unnecessary and costly mistakes. The spending of a few hours on the study of the log and other available information at the well is certainly not out of proportion to the total investment. Electric logs supply many known values from which to work.

Different wells call for different evaluation methods. Where drill cuttings and electric log studies may be all that are needed for a particular well, additional logs and studies may be necessary for evaluation of other wells. Today it is almost universally conceded that drill cutting study and an electric log are bare essentials for rotary holes. If the use of these two parameters answer all of your questions you need go no further. When there are still some unanswered questions, the question then arises, "how much information can I afford?"

Usually, the most difficult logs to interpret are those on which only a few sands are logged. Electric log interpretation is not really a science, but rather an art. Nature cannot be put into equations in a straightforward manner except through the intermediate process of data collection and statistical studies; and Geology is a natural science.

Not all problems encountered in log analysis are attributable to nature. The human being has his responsibilities too.

The logging engineer bears the largest responsibility. His measurements must be correct and he must be able to recognize that they are. So should the hydrogeologist who is going to interpret the results.

ELECTRIC LOGGING

Although primitive electric logs were made throughout Europe on a more or less experimental basis for many years, electric logging was not introduced on a commerical basis until 1929 when the Schlumberger brothers began running crude resistivity logs on oil wells near Alsace, France. These logs were an outgrowth of surface resistivity plots. In 1931, during the course of running one of these resistivity logs, the downhole current supply was accidentally disconnected and, instead of recording zero signal as expected, a signal was still present on the recording meter. The equipment was simply measuring a potential which was being generated in the borehole, hence the discovery of the Spontaneous Potential or SP which is still a part of every electric log run today.

The present day conventional electric log consists of the SP curve along with two or more resistivity curves of varying depths of investigation into the wall of the borehole, often implemented by several distinct types of electrode arrangements.

The electric log is an excellent correlation tool. This means that the electric log gives a good indication of the general type of material of which each bed is composed (sand, clay, limestone, etc.) as well as exactly where they are located in depth relative to some point at the surface. This, in turn, allows many beds to be recognized by some commonly-used name and to be fitted into the known geologic sequence in the area. Also it is possible to determine the amount of pore space contained in the formation and the amount and kind of fluids contained in this pore space. How well the porosity and fluid information can be determined depends on how accurately the interpreter knows a number of factors in the well, such as mud resistivity, temperature, formation water resistivity, depth of invasion into the formation by the mud filtrate, etc. The value of these determinations is also affected by how well the interpreter can correct certain inherent errors caused by geometric factors such as sonde diameter. borehole diameter and bed thickness. The amount of information that can be derived from logs is generally a function of the background information available, the number of different types of logs run and the experience of the analyst. Electric log interpretation is not really a science, but rather an art. Nature cannot be put into equations in a straight-forward manner except through the intermediate process of data collection and statistical studies.

The format for log presentation was established many years ago by the

American Petroleum Institute (API) in order that all of the service companies record similar electrical measurements on a standard width chart so that direct comparisons could be made of logs. In addition, log headings were standardized with pertinent information in the same order for every service company. In the absence of a better system, water well logs are usually presented in the same format. For electric logs, the standard log is 8½ inches wide and has three vertical columns each 2½ inches wide divided into 10 divisions. The left hand column is separated from the other two by a ½ inch column in which depths are recorded. The SP is recorded in the left hand track, the short and long normal resistivity curves are recorded in the center track and are differentiated by recording the long normal as a dotted trace. The far right column is used to record either a long lateral curve or a point resistance detail curve.

The Spontaneous Potential Curve

It should be understood that potential is just another term for voltage. Thus, a common flashlight cell generates a potential of 1.5 volts. Potentials of much smaller magnitude are encountered in the well bore. In fact, these potentials are so small that the volt is too large a unit for conveniently measuring them, so a much smaller unit called a millivolt is employed. A millivolt is 1/1000 of a volt or 0.001 volt. Figure II-1 shows a simplified SP circuit.

Figure II-1
Simplified S P Circuit

The SP is mainly used for geologic correlation, for finding bed thickness, for separating non-porous from porous beds in shale-sandstone and shale-carbonate sequences. There are three connected media needed to generate the SP; a permeable bed having water in the pores, a clay or shale bed, and a borehole filled with mud or water. Figure II-2 shows the current generated within the three media. II-2-A shows a condition where formation water is

Figure II-2
Positive and Negative SP Curves Relative to Mud and Water Resistivities

less resistive (saltier) than the drilling mud. In II-2-B the formation water is more resistive (fresher) than the mud. The larger the resistivity difference, the larger the magnitude of the potential.

There are three methods by which potentials are spontaneously generated in mu. filled holes. First, a potential can be generated by an electrolyte being rorced under pressure through a pervious membrane, and is called a *streaming* potential. Second, a *liquid junction* potential is generated when two electrolytes with different concentrations and/or ions come in contact or are separated by a pervious membrane. The third, *shale* potential is generated by a diffusion mechanism.

Since streaming potentials are of little consequence in water wells, they will not be discussed here. Liquid junction potentials are generated when two electrolytes of different concentrations containing ions of different mobilities come in contact with each other or are separated by a pervious membrane. In the bore hole region these conditions exist. If the formation fluid is saltier than the fluid in the hole (mud or water), a normal occurrence, there will be an excess of ions in the formation fluid. Many of these ions, both positive and negative, will migrate or diffuse into the bore hole. Sodium chloride is normally the dominant chemical compound in solution. Both sodium ions and chloride ions have an electrical charge. The

charges are of equal magnitude but of opposite sign. Sodium ions are positive and chloride ions are negative. Chloride ions, having greater mobility than sodium ions, move faster. Thus, there will always be more chloride ions in the borehole than there will be sodium ions. The fluid in the hole in front of a porous, permeable formation, containing saltier fluid than is in the hole, will always have an excess of negative ions and therefore a potential which is also negative with respect to its surroundings.

Shale potentials also are generated by a diffusion mechanism. However, in this case, the shale acts as a selectively permeable membrane, allowing the slower moving sodium ions to pass through into the borehole while holding back the negative chloride ions by electrostatic repulsion. Therefore, the fluid in the hole in front of a shale section, containing saltier fluid than is in the hole, will always have an excess of positive ions and also a potential which is positive relative to its surroundings. It is these differences of potential opposite shales and adjacent permeable formations which are recorded as the SP curve. Like the liquid junction potential, the shale potential becomes greater with a greater contrast in resistivity between the water in the borehole and the water in the formation. The total potential recorded is the sum of the liquid junction and shale potentials. The liquid junction potential makes up about 17 percent of the actual observed value while the shale potential contributes the other 83 percent.

The SP curve can be used with the proper charts and formulae to calculate the formation water resistivity. Other information needed to do the calculations includes the resistivity and temperature of the mud, resistivity and temperature of the mud filtrate, and the formation temperature.

The amplitude of the SP curve is mainly affected by the bed thickness in relation to the borehole diameter and by the bed resistivity in relation to the borehole mud resistivity. As the ratio of bed thickness to borehole diameter increases, full potential development is achieved and called Static SP (SSP). As the ratio is reduced, a correction factor is needed. Also, when the ratio of bed resistivity to mud resistivity is high, a correction factor is needed. A low bed to mud resistivity will allow full SP deflection.

The ions contained in the solutions (mud and formation water) and their concentrations also affect the SP curve. The presence of the divalent cations magnesium and calcium (Mg^{++}, Ca^{++}) cause an SP that looks saltier than it really is.

The calculation of electrical conductivity (EC) and total dissolved solids (TDS) requires several measurements, the use of charts and curves, and most important of all, adaptation and refinement for each geographic area.

Water Quality Calculation from the SP

Using the example log in Figure II-3 and the Salinity-Resistivity chart in Figure II-4 along with some appropriate formulas, we can show one of the methods used in the determination of water quality:

1. Obtain a circulated mud sample just before the drill pipe is pulled from the well. Measure the resistivity and temperature of the mud sample. R_m = 32.6 @ 63° F.

- 2. Using the mud press, obtain a mud filtrate sample. Measure the resistivity and temperature of the filtrate. Rmf 32.6 @ 63° F.
- 3. Convert R_{mf} at the measured temperature to is value at 77° F. using the chart in Figure II-4. $R_{mf} = 26.5 @ 77°$ F.
- 4. Determine $R_{mfe} @ 77^{\circ} F$. $R_{mfe} = R_{mf}$ for NaCl muds. $R_{mfe} = 0.85$ R_{mf} for non-NaCl muds. This case is non-NaCl. $R_{mfe} = 22.5 @ 77^{\circ} F$.
- 5. Determine the zones of interest from the electric log. In this case, we will study the sand just below 700 feet. SP = -6 MV.
- 6. For each zone of interest, determine Rwe from the appropriate formula:

NaCl mud and NaCl formation waters: $R_{\rm w} = 10 {\rm SP}/70 \ {\rm X} \ {\rm R}_{\rm mf}$ NcCl mud and non NaCl formation waters: $R_{\rm we} = 10 {\rm SP}/70 \ {\rm X} \ {\rm R}_{\rm mf}$ Non NaCl mud and non NaCl formation waters: $R_{\rm we} = 10 {\rm SP}/70 \ {\rm X} \ {\rm R}_{\rm mfe}$

 $R_{\text{we}} = 10\text{SP}/70\text{X Rmfe}$ = 10-6/70 X 22.5 = 18.5

7. Determine Rw @ 77° F.

 $R_w = R_{we}$ for NcCl formation waters

 $R_{W} = R_{We} \times 1.75$ for NaHCO, formation waters

 $R_{W} = 32.4$

8. Determine TDS @ 77° F. with the following formula:

TDS in PPM = K/R_W Where K = 12,000 for $Ca(HCO_3)2$ solutions K = 10,000 for NaHCO₃ solutions K = 6,700 for MgSO₄ solutions K = 5,300 for NaCl solutions K = 4,200 for MgCl₂ solutions

TDS in PPM = 10,000/32.4

Since nature is never simple, we need to constantly upgrade our methods of interpretation by the inclusion of more and more information from nearby wells. You can see from the above formulae that a knowledge of ionic assemblages is essential to accurate interpretation. A laboratory analysis should be obtained of water from each completed well. The cost is very reasonable and will help the log analyst immeasurably in plotting geographical distributions.

The Resistivity Curves

Resistance is the opposition offered by a body to the passage of an electrical current through it. The unit of measurement is the *ohm*, and a body has a resistance of one ohm when a potential of one volt across it causes one ampere of current to flow.

Resistance is directly proportional to length (as the length is increased or decreased, the resistance is changed the same amount). On the other hand resistance is inversely proportional to cross sectional area (as the cross sectional area decreases, the resistance increases). Another term used in logging is resistivity, and it is a material's resistance per unit volume. The units of resistivity are ohm-meters squared per meter.

Unlike resistance, resistivity is not merely a characteristic of some

Figure II-3

Example - SP Curve Used For Water Quality Calculation

particular piece of a material, but is one of its basic physical properties, and is true of all pieces of that material at a given temperature and pressure.

All rock formations conduct electricity to a greater or lesser extent. Electrical conductivity is a measure of the ability of rocks to conduct electricity. Resistivity, on the other hand, measures the ability of rocks to oppose the flow of electricity. In fact, resistivity is the reciprocal of conductivity.

Unlike metallic conductivity (by electron flow) or semi-conductor conductivity (by electrons and holes), rock conductivity is due to the presence of ions of salt dissolved in the water filling the pore spaces of the rocks. Water samples containing dissolved salts are called solutions and we are mainly concerned with the electrolytic conductivity of solutions. The larger the ionic content, the larger the conductivity and, conversely, the smaller the resistivity. It is to be noted that perfectly pure distilled water is not a conductor at all; instead, it is a perfect insulator. Such a situation does not conform to reality since the purest waters contain at least traces of dissolved salts, which make them slightly conductive.

Table II-1
Typical Resistivities For Various Electrolytes

Electrolyte	Resistivity (ohm-Meters)		
Brine	.04		
Brackish water	.2 to .5		
Sea Water	.2		
Drilling mud	.04 to 5.00		
Tap water	7 to 15		
Distilled water	several hundred ohms		

The conductivity of an electrolyte is, among other things which can be neglected for the time being, a function of two factors:

- 1. The salt concentration in the solution, that is the amount of dissolved salt in parts per million (ppm), or grains per gallon, etc.; the higher the concentration, the higher the conductivity.
- 2. The nature of the salt, or the nature of the ions; some ions being better conductors than others.

Figure II-5 indicates the conductivity of various salt solutions versus concentrations.

CONCENTRATION - PPM

Figure 11-5
Conductivity Versus Concentration For Salt Solutions at 18 C

Temperature also affects the resistivity of electrolytes. As the temperature increases, the resistivity of the electrolyte decreases. The chart of Figure II-4 indicates the magnitude of resistivity variations for sodium chloride solutions under variations in solution temperature. This chart also indicates the ion concentrations in parts per million (ppm).

Some rocks will conduct electricity through the interconnecting pore channels filled with formation water, which is an electrolytic solution and, therefore, is a conductive medium. In most cases of interest (shaly or clayey sands are the exceptions), the matrix surrounding the pores is non-conductive. The conductivity of a given volume of formation will be lower than that of an equal volume of the same water only. By the same token, an identical volume of pure matrix (no water) would have no conductivity (or infinite resistivity).

The early method of logging made use of a single monoelectrode probe, Figure 11-6-A. An electric current was fed from the surface to the electrode. This current then spread from the electrode into the formation, returning to the surface and back to the current generator through a surface electrode return (a mud pit electrode, a casing clamp, a stake planted in the ground, etc.). The main shortcoming of the monoelectrode was the lack of depth of investigation. Very broadly, half of the measurement originates from a spherical shell which has a thickness equal to the radius of the electrode. It is obvious that this type of measurement will be highly influenced by the mud in the borehole. For this reason, this system has been superseded by the multi-electrode system.

Figure II-6-A, B

Comparison — Monoelectrode Versus Normal Devices

The normal device is a two electrode system as shown in Figure II-6-B. Electrode A is a current emitting electrode and electrode M is a voltage potential measurement electrode. Surface electrodes B and N are current return and voltage reference electrodes respectively.

We see that if I is constant, VM is proportional to P (AM is obviously constant) and that the measurement consists of continuously recording the voltage VM which varies in proportion to the resistivity P.

The depth of investigation of a normal device is equivalent to that of a large monoelectrode of radius AM. It is easily seen that by the use of two electrodes, the depth of investigation has been largely increased.

In actual practice, the cable armor is used for the current return B. The reason for this is to eliminate the noise pickup on the conductor carrying the signal potential of M (VM), this noise being generated by the alternating current fed to A by mutual induction between conductors.

Figure II-7 shows the depth of investigation of the normal device, and the variation of the measured voltage in terms of distance from the probe, the unit of distance being the spacing itself. Fifty per cent of the measured voltage originates in a shell of formation thickness 2AM, 75 per cent in a shell of thickness 4AM. As we go further away from the probe, the voltage diminishes considerably while the contribution of the formation to the signal voltage diminishes more and more. This means one thing, the probe collects most of its signal from a region close to the probe and practically no signal from regions remote.

This makes electric logging possible. If the signal did not decrease so rapidly as the distance increases, the measurement would be influenced by many factors such as casing, unconformities, etc. A confined measurement is really what is needed.

To investigate deep into formations we must sacrifice detail for depth penetration, because we average the resistivities in the vicinity of the A and M electrodes. It is the distance between current electrode A and potential electrode M (the AM spacing) that determines the penetration of the normal resistivity measurement. The longer this distance, the deeper the investigation into the formation, and the poorer the detail afforded. When we refer to 16-inch and 64-inch normal resistivity curves it is this type of electrode arrangement that is meant, and the 16-inch and 64-inch figures refer to AM spacings of 16 inches and 64 inches. The effective point of the measurement for the normal device is midway between the current electrode A and the potential electrode M.

Figure II-7
Depth of Investigation of Normal Device

There are two general types of resistivity curves employed in electric logging; those of shallow penetration and those of deep penetration.

Curves of shallow penetration are those that measure, predominantly, the resistivity of the zone near the bore hole. This zone has, in varying degrees, some of its natural fluid displaced; as water or mud filtrate from the bore is forced into it by the pressure of drilling or by the weight of the fluid column. For this reason it is known as the *invaded zone*. Many factors influence the invasion process.

Since non-fractured shale has no permeability, there is no invasion in most shale beds, and resistivities are the same in uniform shales at any distance from the bore hole. Although the resistivities of hard non-porous beds are vastly different from those of shales, these beds are also uninvaded, and if they are uniform, their resistivities remain the same at any distance from the bore hole.

In permeable beds drilled with rotary tools using drilling mud, the porosity affects the depth the invaded zone extends from the bore hole. The shallowest invasion occurs in the highest porosities, and the deepest invasion in the lowest porosities.

Although there are specialized and complex penetration curves for measuring the resistivity of the invaded zone, the one most used is the 16-inch normal resistivity curve. The 16-inch curve is shown on the electric log graph as the solid curve in the center column. It is calibrated so that the right-hand edge of the depth-marking column represents 0 ohm M²/M and resistivity increases with increasing deflection to the right.

Curves of deep penetration are those that measure, predominantly, the resistivity of a zone further away from the bore hole, and except for deep invasion, a zone largely beyond the invaded zone where conditions are still as they were before the well was drilled. The resistivity of the uninvaded zone is shown as the *true resistivity* of the bed. The true resistivity is useful

in estimating the type and relative quantities of fluids contained in the pore space.

As was the case with shallow penetration curves, there are specialized and complex deep penetration curves for measuring or deriving true resistivity, but the one most used is the 64-inch normal resistivity curve. The 64-inch curve is shown on the electric log graph as the dotted curve in the center column. It is calibrated in exactly the same manner as the 16-inch normal resistivity curve and uses the same scale markings.

In rock with no continuous path of pore space through the rock, called non-connected porosity, the resistivity of the fluid does not greatly affect the total resistivity. Instead, the rock surrounding the fluid is the major influence on the resistivity reading that we get. The situation is equivalent to a current going through a series of resistors, and the total resistance is the sum of the separate resistances. With the standard electric log alone, we cannot distinguish between zero porosity and non-connected porosity.

The thickness of the bed we attempt to measure, also has a pronounced affect on the accuracy of the results. The amount of inaccuracy is dependent upon the comparison between the probe spacing and the bed thickness. When a resistive bed is thinner than the spacing of the normal device and is surrounded by beds of low resistivity, it will be recorded on the

Figure II-8 A, B and C.

Examples - Bed Thickness. I, Versus Electrode Spacing For Normal Device,

AM = 64 Inches

log as low resistivity. If this thin, resistive bed is between two low-resistivity shale beds, this erronious value will be even less than the resistivity of the shales. This phenomenon is known simply as a reversal. This can be illustrated by showing a highly-resistive bed thicker than the 16-inch short normal spacing, but thinner than the 64-inch long normal spacing. Under this condition the 64-inch resistivity curve will reverse and falsely indicate a low resistivity, since the bed is thinner than its spacing. This example is pictured in Figure II- 8-A.

When the thickness of a bed is equal to the spacing, the recording is almost flat and the bed is said to be of critical thickness. See Figure II-8-B.

If a bed had a thickness many times the spacing, the value recorded follows the pattern of the regular response. Normal resistivity curves always show resistive beds thinner than they actually are by an amount equal to the spacing. Half of this error is at the top boundary. This effect is pictured in Figure II-8-C.

Lateral Curve

With the lateral device we can measure the resistivity of the formation further from the hole than by the normal devices. The distance depends on the spacing of the electrodes. The lateral tool is a 3-electrode device (see Figure II-9) comprised of two voltage measuring electrodes (M, N) and a current electrode (A). The two voltage measuring electrodes are close to each other but remotely located from the current electrode.

The effective measuring point of the lateral device is midway between the potential electrodes M and N and is labled O. The nominal spacing of the device is the distance from this midpoint O, to current electrode A and is called the AO spacing. Electric logs which include a lateral curve indicate the AO spacing on the log heading. Common AO spacings are in the neighborhood of 15 feet.

The lateral device measures the resistivity of a small volume of material far out in the formation without involving the material nearer the borehole, as the normal devices do. The dashed circle shows the equipotential sphere the tool measures. There are some particular responses that show up on the lateral logs. The following is an explanation of the responses.

First, in a thick resistive bed (several times the AO spacing) between two beds of low resistivity a response as in Figure II-10-A occurs. As electrode A leaves the bed, a part of the resistive bed equal to the AO spacing is falsely indicated as having a low resistivity. From the bottom of this interval to the bottom of the bed, the resistivity indication increases to a value which is greater than the true resistivity. A good procedure for picking the true resistivity (RT) from the lateral curve in thick, resistive beds is to choose the indicated value as shown in Figure II-10-A. It is to be noted that the lateral resistivity curve is not symmetrical, whereas the normal curves have symmetry.

As we make the resistive bed thinner, the peak deflection of the lateral curve exceeds the true resistivity by less and less, until when the bed thickness is $1\frac{1}{2}$ times the AO spacing, the true resistivity may be chosen as the indication at a point 2/3 of the distance out on the slope, below a

Figure II-9
Schematic Lateral Device

distance AO from the top of the bed. This choice is illustrated in Figure II-10-B.

When the bed thickness decreases to $1\frac{1}{3}$ times the AO spacing, the peak response may be chosen as the true resistivity. Figure II-10-C shows this case. When the bed thickness reaches the AO spacing, the lateral device has its minimum response. Although the true resistivity can only be guessed at this critical thickness, the indication of the graph is likely about $\frac{1}{3}$ to $\frac{1}{3}$ of the true resistivity. The response of the lateral device to a bed of critical thickness (thickness = AO) is shown in Figure II-10-D.

As the bed becomes thinner than the AP spacing, unlike the normal, the indicated resistivity from the lateral device increases, although the apparent resistivity never again reaches the true resistivity. With bed thicknesses of $\frac{1}{2}$ to $\frac{1}{2}$ the AO spacing, the true resistivity is estimated by multiplying the peak value (RMAX) in the bed by the resistivity of the adjacent shale (R_S) and dividing this product (RMAX x R_S) by the minimum value (RMIN) below the thin bed. Figure II-10-E illustrates this procedure.

Several more peculiarities of the lateral device must be mentioned. Below beds which are thinner than the AO spacing, the lateral device falsely indicates a very low resistivity for a distance below the bed equal to the difference between the AO spacing and the bed thickness (AO - bed thickness). Because the lateral is incapable of indicating any high resistivities in this zone even if they exist, this zone is known as the blind or dead zone.

Another interesting phenomenon manifests itself below these beds, which are thinner than the AO spacing. At the botton of the dead zone, when the current electrode A is entering the top of the thin, resistive bed above, the resistivity indication begins to increase, and it continues to increase until

Figure II-10 - A, B and C Example Bed Thickness Versus Electrode Spacings For Lateral Device

For Lateral Device

current electrode A leaves the bottom of the thin resistive bed above. This increase in indicated resistivity does not necessarily represent a formation resistivity change but is caused by the current electrode A passing through the thin resistive bed above. This false indication of increased resistivity is known as the reflection peak. Figure II-10-F points out these peculiarities.

We have shown that the lateral resistivity curve, even in homogeneous beds, has some peculiar responses. In sequences of beds and heterogeneous beds, the response may become so confusing as to be of little value.

Although, as mentioned, the lateral curve is often confusing and sometimes worthless, it does have several advantages. In extremely thick beds, it yields a relatively uninvaded value of true resistivity and, also for this reason, it is useful in estimating the extent of invasion existent in the long normal curve. Since the lateral does not reverse in thin beds, it permits an estimate of true resistivity of those beds.

Induction Electric Log (IEL)

The Induction Electric Log measures conductivity from alternating currents that are induced into the formation. It is very accurate for medium to low resistivity values (less than 50 ohm-meters) and where the ratio of resistivity of the mud filtrate to the resistivity of the formation water is 2.5 or greater. The IEL produces its best results in medium to high porosity formations drilled with fresh mud, or air drilled (dry) holes.

The induction device measures conductivity rather than resistivity. Conductivity and resistivity are mathematically related as follows:

$$C = \frac{1000}{R} \qquad \text{or} \qquad R = \frac{1000}{C}$$

Where: C is conductivity in millimhos/meter and R is resistivity in ohmmeters.

Since most people who work with logs are more familiar with resistivity measurements, the conductivity measurement of the induction tool is put through an electronic reciprocator and converted to a resistivity curve on the log. This along with the short normal and SP curves are then displayed. The most common format for displaying the IEL has recently changed so that the resistivity curves are recorded on a logarithmic scale.

Figure II-11 is a simplified depiction of an induction logging device. An oscillator supplies alternating current to the transmitter coil at D. This in turn creates an alternating field which creates current in a ground loop surrounding the well bore. This alternating current B then creates a field C around the imaginary ground loop which induces a voltage at the receiver coil E. The amount of voltage induced in the receiver coil is a function of the conductivity of the ground loop. If the formation material of which the ground loop is made has low conductivity, there will be less voltage induced in the receiver coil. The receiver response can then be calibrated to give conductivity figures for the formation through which the induction device is moved.

Electrodes A and M are used to record a 16 inch Normal Curve and an S.P. Curve at the same time the induction curve is being run.

Actual induction logging devices have more coils than depicted in order

to more precisely focus the voltages that reach the receiver coils. A common configuration is one that has a total of six coils with a radius of investigation of 40 inches.

Figure II-11
Schematic-Induction Logging Device

NUCLEAR LOGGING

Nuclear logs are related to the measurement of fundamental particles or radiations from the nucleus of an atom. The most common logs are natural gamma ray, neutron and gamma-gamma or density logs. Nuclear logs may be run in a variety of downhole environments in either open holes or cased holes.

Since the radiation measured in nuclear logs is random in nature, minor fluctuations are present on all logs, and the logs will not repeat exactly. Repeat logging runs are a positive means of separating random changes from deflections related to lithology. Figure III-1 shows a combination gamma ray-neutron tool that may be used to record either log separately or both logs simultaneously. Also shown is a density tool of the type commonly used in water and mineral exploration.

Gamma Ray Log

Gamma ray logs measure the naturally occurring gamma emissions from the formation surrounding the borehole. These emissions are electromagnetic radiations that are released by a nuclei of an unstable element, decaying to a more stable state. In nature, the most significant of these elements occurring in abundance is potassium 40 (K40), uranium 238 (U238), uranium 235 (U235) and thorium 232 (TH232). The most plentiful of these elements is potassium 40.

As the unstable element decays, issuing electromagnetic radiation, the gamma ray probe detects the events by recording the number of particles or photon emissions. This detection is accomplished by use of a sodium iodide crystal optically coupled to a photomultiplier. As the incident photon enters the crystal a release of energy takes place in the form of illumination that is detected by the photomultiplier. A corresponding voltage is delivered to the surface where it is counted and averaged over a specific time period. Since radiation is of a statistical nature it is necessary to average the measurement of radiation over a selectable time period in order to derive a representative sample of the amount of radiation being emitted.

The greater the counting rate the more events the gamma detector is measuring, which in turn corresponds to the greater amount of an unstable element present in the formation. As mentioned, potassium 40 is by far the most abundant of these elements found in rock strata. K40 is found in all potassium bearing minerals such as potassium feldspars, biotite, orthoclase and several clay minerals rendering detection of these minerals via the

Figure [[]-]
Gamma-Neutron Log Showing Upward Fining

gamma ray log. Consequently, as the content of these minerals increases within the rock strata the response of the gamma ray probe increases. Inversely, as the content of the clay minerals decreases the response of the gamma ray probe decreases. Gamma ray logs show decreasing strengths from shales and clays, to siltstones, to sandy siltstones, to clean sandstones and gravels.

Dependent on how clay is present within the quartz matrix, as dispersed particles, structural grains, or as laminations, both porosity and permeability of the rock will be affected. To arrive at accurate porosity readings one must know the fraction of clay volume to total rock volume.

Clay fraction = Clay volume/Total rock volume

The gamma ray log is often used to determine fraction of clay, when clay minerals contribute to a significant response on the log. An example mineral is illite. The formula for deriving clay fraction is:

Clay fraction = (GR - GRc1) / (GRs - GRc1)

Where: GR = the zone of interest

GRci = clay bed

GRs = clean sand bed

A word of caution with regards to calibrating the log response, when the area of interest is near a clay bed, is the assumption that the area of interest contains the same clay minerals. While potassium and thorium are considered good clay indicators, uranium may be present in the rock strata that contains no clay, causing a false indication. Montmorillonite has little or no gamma ray response.

When gamma active clays are present, a gamma ray log can be useful in revealing stratigraphic development. Figure III-1 displays a sloping gamma response that is corresponding to changes in grain sizes. The fining trend is upwards. This log response can be revealing and easily identified.

When logging in metamorphic and igneous rocks of low porosity, the gamma ray response is dependent on the minerals within the rock. The one exception being along open, water bearing fractures where high gamma activity is recorded. This response is derived normally from either uranium becoming water soluble under acidic conditions, or the alteration of the host rock by water movement that has precipitated radioactive enriched minerals along the fracture wall.

Because the gamma ray log is a passive measurement of naturally occurring radioactive elements, and being lithologically dependent, it is an excellent correlation log. Gamma ray logs are normally run with all porosity tools and with an electric log when SP response lacks definition.

The vertical resolution of the gamma ray probe is a function of counting rate, time constant and logging speed. When all three are at optimum settings the vertical resolution is approximately one foot. Because of the statistical nature of radiation emission, repeatability of the log is not exact with respect to statistical variation of the counts. For this reason, the log will show repeatability in the shape of the curve but the individual curve peaks may be slightly different.

Since the energy of gamma emission is inversely proportional to distance,

the greater the borehole diameter the less effective the gamma ray log response. Gamma ray logs can be run in gas filled holes of either open or cased wells.

CALIPER LOGGING

Although they are not regularly run on water wells, caliper logs have many useful applications in both open and cased holes.

Caliper logs measure the average diameter of drilled holes by the use of two or more arms which are mechanically linked to a precision potentiometer that biases an electronic circuit within the tool body. Changes in hole diameter are converted to pulses that are transmitted to the surface for recording. Logs are usually presented as a single trace that displays the average hole diameter in inches.

When run with an electric or nuclear log, the caliper is very useful as an interpretive aid in substantiating the differences in log readouts that result from hole diameter effects rather than from lithologic changes. Most logs that respond to lithology are also affected by changes in hole diameter. On all charts used for log interpretation, hole size must be known in order to arrive at proper quantitative values.

A caliper log can be used to determine quite accurately the proper amount of gravel needed to fill the annular space between the casing and the borehole wall. Figure IV-1 is the log of a well in which a great deal of formation washout was experienced during the reverse drilling of a 28 inch hole, until at a depth of 600 feet it was deemed necessary to add mud in order to stabilize the hole. With the exception of a 30 foot zone below 900 feet, the hole remained fairly true to gauge for the balance of the drilling, even showing some undersize hole where mud cake built up across some permeable zones. Calculations of the gravel required to fill the annular space showed that an excess of 20% more gravel would be required to fill the annulus than would be expected without benefit of the log. A caliper log is also essential for selecting seats for straddle or isolation packers. Packers have an effective range of hole diameters beyond which they will not set or will fail when inflated.

Calipers in cased holes are used to determine casing diameters where remedial work must be performed on the well. For various reasons, records of casing diameters and other information about existing water wells may be difficult to find. When video inspection of a well indicates that remedial work is necessary, and the work to be performed, such as casing repair, depends on a knowledge of the exact well diameters, then the caliper becomes a valuable device.

Figure IV-2 is the caliper log of a well that was thought to contain two different sizes of casing. The caliper clearly indicates that a third diameter

was either placed when the well was drilled, or put in at a later date during a repair job. The caliper log confirms a visual inspection made previously of badly damaged casing just below 200 feet and a breached hole at 215 feet in 14 inch casing that is the result of a compression failure.

Figure IV-1
Caliper Log of Open Hole

Figure IV-2
Caliper Log of Cased Hole

Caliper Gamma-Ray

								0
		COMPANY	JAMES M. M	IONTGO	MERY, CO	ONS. ENG.	INC	
		WELL	DSB - 3			· ————————————————————————————————————		
		PRES	SIERRA AR	1Y DEP	от			· · · · · · · · · · · · · · · · · · ·
		STATE	CALIFORNIA	<u> </u>	UNITL	ASSEN		
	·	10CATION					Опива	BEVICEL
	Ì	986	1907	 	100		ELE	CTRIC LOG
Penka	STORT BARVA		G.L.		N		E.I	<u> </u>
100 M	-	OM	G.L.		ABOVE PEN			,
	• MANNE	D FROM	G.L.					
			1 2 12 2		0 1 2 2			
9459		4	2-19-90		2-19-90	<u></u>	+	
			ONE CAMMA DAY	∤	ONE		+	·
THE M		·	GAMMA RAY 251'		3 ARM C	ALIPER	+	
90778-4			250'		250'		+-	
	1 140000 1	MINA	248'		245'		+	
	-		0'		0'	-, -,,	+	
	A10 IN NO		BENTONITE	—— i	BENTONI	TE	1	
	DC. 1947.,		N/A		N/A			
	(4)		ROBERTI		ROBERTI			
William			MARINAI		MARINAI			
		BORS-HOLD IN				CASING N		
100.	817	FROM .	70	\$4 28	WST.	PROM		70
	5"	5'	251'	6	COND	SURF	ACE	51
			 		1			
	 		 		 			
	 	 	 		 			}
	 	·	 		 			
	L	1	4		1 1			1

				ł		EQUIPMENT DATA	r Data				
		3	Gerrane Rey						•		
Run No.		ONE					Run Ne.	F			
Top	Tool Madel No.	G27X4LD	97,				Log Type				
å	Disserter	2.					Tool Model No.	-			
Pater	Detector Model No.	å					Diameter				
178	2	SCINT.					Detector Model No.	-			
٤	Length	٧.,					Type	-			
Dietan	Distance to N. Source	NONE					Length				
							Source Model No.	<u> </u> 			
		٦	General				Seriel No.				
Hoist	Hoist Truck No.	1 SB81					Spacing	<u> </u> -			
Instru	Instrument Truck No.	SB81	ļ				Type	<u> </u> 			
Ted S	Tool Serial No.	153					Strength	<u> </u>			
						LOGGING DATA	DATA				
	General	Į,				Gamma Ray		_			
Run	Depths		Speed	T.C.	Sens.	Zero	API G.R. Units	TC	Sens.	Zero	API N. Units
Z o	From	To	PL/Min.		Settings	Div. Lor R	per Log Div.	Sec.	Settings	Div. Lor R	per Log Div.
F	.877	٥.	20	5	100/1000	51.	5				
-	50.	.0	20	~	500/1000	10	25 (XS SC	SCALE)			
				_							
];	-										
Refer	Reference Literature:										
Remarks:	ks:										
				Ì							
						Fold Here	22				

GAMMA RAY

DEPTHS

CALIPER HOLE DAWFTER IN NOVES

Caliper Survey

COMPANY	JAMES M. M	ONTGOM	ERY, CO	NS. EN	G. INC	•
	DSB - 4					
WILL						· · · · · · · · · · · · · · · · · · ·
PRED	SIERRA ARM	Y DEPO	Γ	•		
STATE	CALIFORNIA		meryL	ASSEN		
					T	
LOCATION						services.
					ELEC	CTRIC LOG
10C			–		ــــــــــــــــــــــــــــــــــــــ	·····
FEMALENT SARM	G.L.	RA	/		848V.1 K.1	
100 MARKED FROM	G.L. G.L.		ADOVE PEN	A. DATOM	0.1	,
SONAMO MANDRO POOM	G.L.				€.	<u> </u>
Balle	3-16-90					
tions sets.	ONE					
11110 100	3 ARM CALI	PER				
beauties	250'					
perm-upoetq	248'		·			
POLICE FORES MAINTY	0'		·			
toy cheeds of Tarrey	BENTONITE					
TITLE PLANE OF MINU	N/A					·
Mail, and, 1984, 100. 1.	ROBERTI					
encourse IT	SHELLY HIL	 				
Assistant &		=				
SOM SOME-HOLE IN	com			CASING	MCCOM	
NO. OTT POOM	10	8120	WOT,	4	iom.	10
1 '5" SURFACE	250'	NONE				
	<u> </u>					<u> </u>
			L			<u> </u>
				<u> </u>		ļ
	↓					ļ
	L	<u> </u>	<u></u>			<u> </u>

4	
	2 2
	FIRST READING

ELECTRIC LOG PILING NO JAMES M. MONTGOMERY, CONS. ENG. INC. COMPANY___ Seale Up Hole leade Changes DSB - 4 WRL____ SIERRA ARMY DEPOT FIELD___ CALIFORNIA ___ COUNTY__LASSEN STATE_ LOCATION: OTHER SERVICES " CALIPER SURVEY API Ç RGE. TWP _ G.L. Elev.: K.B. Dev. G.L. Pt. Above Perm. Datum D.F.__ Los Messered From G.L. G.L Drilling Mossured From 3 3-16-90 ONE Heading 250' 248' 247 Ē 501 NONE • Type Phild in Hote BENTONITE N/A N/A CIRC. The Park 5.19 5.19 Ŧ N/A Changes in Med Typ M Date | Sample No. N/A 2 HOURS SB81 RENO ROBERTI SHELLY HILL

The Vier.			_					
Paul Les	1	-	\mid					
res of Stampto			-			To a last	it Data	
O Mean Temp.	•	•	╁	Run No.	Too Type	Pad Type	Pad Type Tool Position	Other
Res 6 Mont Tomp.	•	•	-	ONE	ELECTRIC LOG	•	FREE	
	•	•	-					
Source: Rat Rat	_		f					
BHT		3	-					
Ref BHT	•	•	-					
Re. @ BHT	4. 0	•	P.					
SPONTANEOUS POTENTIAL millivolts	POTENTIAL	Deptha		2 2	RESISTIVITY Ohms. m ¹ /m		RESISTIVITY ohms. m'/m	IVITY m//m

ELECTRIC LOG ANALYSIS

COMPANY:_	COMPANY: J.M. MONTCOMERY	WFLI: DSB - 4	- 4	BIT SIZE: 5"
FIELD:	FIELD: SIERRA ARMY DEPOT	COUNTY: LASSEN		Log T.D. 247
STATE:	STATE: CALIFORNIA	SFC:	SFC: TWP: RGF:	

Rin = 5.19t 75 "F

Rmf =5.19at 75 "F

ELECTRIC LOG ANALYSIS

COMPANY:	COMPANY: J.H. MONTCOMERY	WELL: DSB - 4	SB - 4		BIT SIZE: 5"
FIELD:	FIELD: SIERRA ARMY DEPOT	COUNTY:	COUNTY: LASSEN		LOG T.D. 247'
STATE:	STATE: CALIFORNIA	SEC:	TWP: RGE:	RGE:	
Rm = 5.	Rm = 5.18t 75 °F				
Rmf =5.19	Rmf =5.19at 75 °F				

сос рертн	S.P.	R S e	Rw F (ohm NaCl	Rw RANGE (ohm m2/m) NaCl NaHCO ₃	E.C. (Um NAC1	E.C. RANGE (Umhos) NAC1 NAHCO3	TDS (F	TDS RANGE (ppm)	REMARKS
50' - 130'	-12	3.51	3.51	4.13	2849	2421	1510	2420	CLASS II OR III
130'- 180'	0	5.19	5.19	6.11	1927	1637	1021	1640	CLASS II
180'- 247'	01+	7.19	7.19	97.8	1391	1182	737	1180	CLASS 11
									·
			·						
									•

		·							
			•						
		•			·				
•									
						,			
	,								
						مد و			
						3.			
CLASS II	1180 🕶	737	1182	1391	8.46	7.19	7.19	+10	180*- 247*
CLASS II	1640	1021	1637	1927	6.11	5.19	5.19	0	130 180.
CLASS 11 OR 111	2420	1510	2421	2849	4.13	3.51	3.51	-12	. 50 130.

CHEMICAL PROPERTIES	CLASS 1	CEASS 11	CLASS 111
	(Excellent to Good)	(Good to Injurious)	(In)urious to Unsatisfactory)
TOTAL DISSOLVED·SOLIDS ppm (mg/1)	LESS THAN 700	700 - 2,000	MORE THAN 2,000

THIS INTERPRETATION REPRESENTS OUR BEST JUDGEMENT. NEVERTHELESS, SINCE ALL INTERPRETATIONS ARE OPINIONS BASED SOLELY ON INFERENCES FROM ELECTRICAL AND OTHER MEASUREMENTS, WE CANNOT AND DO NOT CUARANTEE THE ACCURACY OR CORRECTNESS OF THIS INTERPRETATION AND SHALL NOT BE LIABLE FOR ANY COSTS, DAMAGES OR EXPENSES THAT MAY BE INCURRED FROM THIS OR ANY OTHER INTERPRETATION.

DATE: 3-19-90

ROBERTI WELENCO LOC ANALYST

STATE TO STATE OF

;:

. .

The state of the s

Caliper Survey

	VIEL PRO STATE	JAMES M. DSB - 6 SIERRA AR CALIFORNI	MY DEPO		ns. eng	INC		
	IORAMONI SOC	1997					CTRIC I	LOG
MANAGET BARRA. 19 AMAGETA PAR MANAGETA MANAGETA	NGM.	G.L. G.L. G.L.	W.SV	AGOVE FEMA	. SATUR	NJV.: E.E 9.I 0.I		
48)		3-6-90						
		ONE						
77 14T	· · · · · · · · · · · · · · · · · · ·	3 ARM CAL	IPER				 	
arhi espita		250'	<u>·</u>					
S477666	·	250'						
ende reason in	TETVAL	249'						
P teres prop	<u>, 51</u>	BENTONITE				+		
		N/A						·
	A. R.	ROBERTI				+		
		MARINAI				+-		
	 		-				***************************************	
	- BORB-HOLE III		T		CASING		····	
80. OT 1	/NOM	70	923	WOT.	Mo		N	,
	SURFACE	250'	NONE					
16 (19.0)	. * / 4							
が大いな話								
福港校園	B. 174.	\mathcal{A}_{i}	· ^ .					
新国 李雄明		2.00					,	
11.0	• • • • • • • • • • • • • • • • • • • •							

75 'F	AMES M. MONTGOMERY, CONS. ENG. INC. SB - 1 IERRA ARMY DEPOT ALIFORNIA COUNTY LASSEN OTHER SERVICES CALIPER TWP RGE PL Above Perm. Datum G.L TF TF IIIIIIIIIIIIIIIIIIIIIIIIIIIII	AMES M. MONTGOMERY, CONS. ENG. INC. SB - 1 IERRA ARMY DEPOT ALIFORNIA COUNTY LASSEN OTHER SERVICES CALIPER TWP RGE. D.F. D.F. G.L. D.F. G.L. D.F. G.L. PL Above Perm. Datum G.L. TEL TOTAL SERVICES CALIPER D.F. G.L. D.F. G.L. D.F. G.L. D.F. G.L. D.F. G.L. D.F. D.F. G.L. D.F. D.F. G.L. D.F. G.L. D.F. D.F. G.L. D.F. D	Finid in Role Vice. N/A Finid Lose N/A Finid Lose N/A Wess. Temp. 4.52 Mess. Temp. 4.52 Mess. Temp. 4.52 Mess. Temp. N/A Mess. Temp	3-3-90 NE Driller 250' Logger 250' g later. 249' Inter. 40' Driller NONE	G.L.	FIELD S	ELI
T COUNTY_LASSEN OTHER SERVICES CALIPER Elev.: K.B D.F G.L snl snl	COUNTY_LASSEN OTHER SERVICES CALIPER Above Perm. Datum D.F G.L Property In the services of the s	ERY, CONS. ENG. INC. T COUNTY LASSEN OTHER SERVICES CALIPER Above Perm. Datum G.L. D.F. G.L. Above Perm. Datum Ini Ini Ini Ini Ini Ini Ini In	75 'F		El	SB - 1 IERRA ARMY DEPO	ECTRI
SEN OTHER SERVICES CALIPER Elev.: K.B	SEN OTHER SERVICES CALIPER Elev.: K.B. D.F. G.L. Fig. Hoppy The property of the property o	This Heading and Log Conform To API RP 31 A This Heading and Log Conform To API RP 31 A This Heading and Log Conform To API RP 31 A This Heading and Log Conform To API RP 31 A This Heading and Log Conform To API RP 31 A This Heading and Log Conform To API RP 31 A This Heading and Log Conform To API RP 31 A The Log Log Changes This Heading and Log Conform To API RP 31 A	'y (ev	T	C LO
R I	This Heading and Log Conform To API RP 31	This Heading and Log Conform To API RP 31 Ap The or Additional Samples 3-3-90 Type Log Depth Scale Changes AAKE UP WATER	* P		CALIPE Elev.: K.B D.F	SEN	G
	This Heading and Log Conform To API RP 31	This Heading and Leg Conform To API RP 31 Ap Type or Additional Samples 13-3-90 Type Log Depth Scale Up Hole MAKE UP WATER	• 'j • 'j		R		
pe er Additional Samples		MAKE UP WATER	13-3-90 1	Typ	307	Scale Up Hole	Sce
Type or Additional Samples 13-3-90 Type Log Depth Scale Up Hole	13-3-90 Scale Up Hole	MAKE UP	H				
Pype or Additional Samples 13-3-90 Type Log Depth Scale Up Hole	13-3-90 Type Log Depth Scale Up Hole		HAKE UP				
Type or Additional Samples 3-3-90	3-3-90! MAKE UP WATER MAKE UP WATER		3				

Pold Horo		This Headi	ng and Log C	This Heading and Log Conform To API RP 31	31 40		
REMARKS							
Changes in Med Type or Addition	Additional Samples		-		Seale Change	Page	
Date Sample No. 13.			Type Log	Log Depth	Scale	Scale Up Hole	Scale Down Hole
Type Pluid in Hole	MAKE UP WATER		_				
ŀ							
T		_					
	 Tale						
Source of Sample	6				Equipmen	eat Data	
ھ	0 0 75.0	•	P Run No.	Tool Type	Ped Type	Pad Type Teel Position	Other
1	l	•	L	FLECTRIC LOG		FREE	
Res @ Mend. Temp.	•	•	24			-	
Source: Rat Rat	-	-		_			
R. O BHT	4. 0	•	44				
L. O BHT	4. 0	•	4				
Ra. @ BHT	4. 0	•	1p		-		
		• .					
SPONTANEOUS POTENTIAL	POTENTIAL	Depth		RESISTIVITY		RESISTIVITY	rivit Y
Hillyofts	ofe -	<u> </u>		ohms. m1/m		ohms. m/m	E/,E

BIT SIZE: WELL: DSB-1 COMPANY: J.H. MONTGOMERY

LOG T.D. 249* COUNTY: LASSEN FIELD: SIERRA ARMY DEPOT

STATE: CALIFORNIA

SEC

Rm = 4.52 at 75 °F Rmf =4.52 at 75 °F

гос рертн	S.P.	Rwe	RW F (obm	Rw RANGE (ohm m ² /m)		E.C. RANGE (Umbos)		TDS RANGE (ppm)	REMARKS
			1.18			}		3	
110246.	4-	3.97	3.97	4.67	2519	2141	1340	2140	CLASS II OR III
		`~				•			•
									•
			٠						
						٠			
		•							
-		~							

5

th

	ıt.		ı	1	3	1		,			
	CLASS II OR III	•									
ì	2140	;									
	1340										
`	2141	•									
	2519						•				
•	4.67										
	3.97										
	3.97	i t						•			
	-4										
	110'-249'			•					-	-	

CHEMICAL PROPERTIES	CLASS 1 (Excellent to Good)	CLASS II (Good to Injurious)	CLASS III (In)urious to Unsatisfactory)
TOTAL DISSOLVED SOLIDS ppm (mg/1)	LESS THAN 700	700 - 2,000	MORE THAN 2,000

THIS INTERPRETATION REPRESENTS OUR BEST JUDGEMENT, NEVERTHELESS, SINCE ALL INTERPRETATIONS ARE OPINIONS BASED SOLELY ON INFERENCES FROM ELECTRICAL AND OTHER MEASUREMENTS, WE CANNOT AND DO NO GUARANTEE THE ACCURACY OR CORRECTNESS OF THIS INTERPRETATION AND SHALL NOT BE LIABLE FOR ANY CO DAMAGES OR EXPENSES THAT MAY BE INCURRED FROM THIS OR ANY OTHER INTERPRETATION.

DATE: 3-7-90

ROBERTI WELENCO LOG ANALYST

ivelence)

Caliper Survey

		. COMPANT:	JAMES M. M	ONTGOM	ERY. CO	NS. ENG	. INC.		
		Will	DSB - 6	· 					
27		. 	SIERRA ARM	Y DEPC	T		•		
20.00	al c	STATE	CALIFORNIA		LINETYI	ASSEN	•		_
		LOCATION.					91100	esevicas.	
	*	•••					ELE	CTRIC LO	S
4 3 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	التنبيب		G.L.						
May 200		<u> </u>	G.L.	بد بسب	•		W. C.		
			G.L.				9.1	<u>'</u>	
							6. 1		
2410			3-6-90						
-			ONE						
7079 M	3.5		3 ARM CALI	PER					
perha	P. C.	•	250'						
PERM			250'						
197790	140400	INTERVAL .	249						
700 10		My	0'						
777		î	BENTONITE					·····	
1	A TOP	PS. F	N/A						
		4	ROBERTI						
			MARINAI						
		*	<u> </u>	,					
1994	• • •	BORN HOLE M				CASHIO	100000		
. 200.	(41)	POGES	70	973	wer.	FRE		10	
1 (4)		SURFACE	250'	NONE					•
	11	114						·	
	TAN IS								سهد
12	loa	Section 19	and the second	1					
	99	14.		 	1	****			-
1				-					

Fold Here

Caliper Survey

<u></u>								
		COMPANY	JAMES M. MO	ONTGOME	ERY, CO	NS. EN	G. INC.	
1								
		W8L	DSB - 2					
		PRED	SIERRA ARM	Y DEPOT				
		STATE	CALIFORNIA	cou	MTYL	ASSEN		· · · · · · · · · · · · · · · · · · ·
		LOCATION					ones	MEMICS.
							ELI	ECTRIC LOG
		996	TWP	1	M		.1	
			G.L.	<u> </u>				
100.00		••••••••••••••••••••••••••••••••••••••	G.L.	#UN	ABOVE PRE			
-			G.L.		APOVE PER	L DATOM		
							•	
BATT			3-13-90					
MAN 14			ONE				_	
	<u> </u>		3 ARM CALII	PER				
00775			251' 251'					
DOPTILA			249'					
	Sept.		0'				+	·
	70) ji 100		BENTONITE					
	oc. Hear,		N/A					
	40 FT		ROBERTI					
WINOS			MYERS					
			T					
		BORS-HOLE NE	CORD			CASING	NECORD	
HO.	997	POM	10	9125	WOT.	7	OM	70
ONE	5".	SURFACE	251'	NONE				
•								
	1,0							· · · · · · · · · · · · · · · · · · ·
	10							
							-	
Li			1	L		L		

OG Fold Here DEPTHS CALIPER HOLE DAWFTER IN INCHES Remarks:

		•	
	. 1		
<u> </u>			
٠			
•			
		1 1 1	
\sim			
			A CONTRACTOR OF THE PROPERTY O
1:			
	•		
^			
	200		
-			
-			
1			
		•	
: 1:			
Ellesi	8		
	:		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	-		

, **1**

•

--

.

Scale Down Hole ELECTRIC LOG PRIMO NO. COMPANY JAMES M. MONTGOMERY CONS FNG INC Scale Up Hote Seale Changes DSB - 6 WELL_ SIERRA ARMY DEPOT FIELD___ CALIFORNIA COUNTY_ LASSEN STATE_ This Heading and Log Conform To API RP 31. LOCATION: OTHER SERVICES CALIPER RGE G.L. Elev.: K.B. neest Dates:__ 72 106 G.L. Ft. Above Perm. Datum D.P. Log Mostered Prom. G.L. G.L. Drilling Monsured From ... Date . 3-6-90 Run No. Depth—Driller ONE 250 Dopth-Lagger 250' ha leg later. 249' Top Log Inter. 46' NONE • Carles-Legger --Type Phale in Male BENTONITE Dean View N/A N/A Source of Sample CIRC 7 O Hose Tong 6.71 7 Ŧ 6.71 N/A Changes in Med Type Yet 1600 M Type Place in Mode Date | Semple No. N/A 2 HOURS SB81 RENO ROBERTI MARINAI

T. IEAD WG		BIT SIZE: 5"	LOG T.D. 249'		•	REMARKS	CLASS II .						ķ	
		BIT	907	; , 1		S RANGE (ppm)	1540	•				·		
				RGE:		TDS (p	096							
	ELECTRIC LOG ANALYSIS	DSB-6	LASSEN	TWP:		C. RANGE (Umhos) 1 NaHCO ₃	1541			,				
	TRIC LO	WELL:	COUNTY:	SEC	-	E.C. (Um	1811							
. .	ELECTR		TC			Rw RANGE (ohm m²/m) CI Na,HCO ₃	6,49					·		
	I.	J.H. MONTCOMERY	ARMY DEPOT	4IA		Rw R (ohm	5.52							
		J.H. #0	SIERRA /	CALIFORN	75 °F	Rwe	5.52							
		1			5.71 at 5.71 at	S. P.	-5							
		COMPANY	FIELDS	STATE:	Rmf -6.71	LOG DEPTH	65'-249'	 			ı		 	

<u>.</u>	l	1	ļ)	1	ı	3	,	•	11
_	-	\vdash			-	-		-		1
_	-	_	-	_		-		-		
_		_								
								٠		
					-					
1										
-			. 1							خدي

CLASS I CLASS II CLASS III CLASS III (Excellent to Good) (Good to Injurious) (Injurious to Unsatisfactory)	MORE THAN 2,000
CLASS II (Good to Injurious)	700 - 2,000
CLASS I (Excellent to Good)	LESS THAN 700
CHEMICAL PROPERTIES	TOTAL DISSOLVED SOLIDS ppm (mg/l)

THIS INTERPRETATION REPRESENTS OUR BEST JUDGEMENT, NEVERTHELESS, SINCE ALL INTERPRETATIONS ARE OPINIONS BASED SOLELY ON INFERENCES FROM ELECTRICAL AND OTHER MEASUREMENTS, WE CANNOT AND DO NOT GUARANTEE THE ACCURACY OR CORRECTNESS OF THIS INTERPRETATION AND SHALL NOT BE LIABLE FOR ANY COSTS, DAMAGES OR EXPENSES THAT MAY BE INCURRED FROM THIS OR ANY OTHER INTERPRETATION.

DATE: 3-7-90

ROBERTI WELENCO LOG ANALYST 機器のようない

Scale Down Hose ELECTRIC LOG PILING NO COMPANY JAMES H. MONTGOMERY, CONS. ENG. INC. Scale Up Hole DSB - 3 WELL___ SIERRA ARMY DEPOT FIELD___ jes CALIFORNIA COUNTY LASSEN STATE_ Q 5 OTHER SERVICES LOCATION: 8 GAMMA RAY API CALIPER £ TWP _____ RGE _ SEC _ Log Conform G.L. Elev.: K.B.____ . Elev... Permanent Datum:_ G.L. D.F. __ Pt. Above Perm. Datum Log Measured From. G.L. Drilling Measured From Date 2-19-90 This Heading and Rua No. ONE Depth-Driller 251' Depth-Logger 2501 Dies Log Inter. 2491 Top Log later. 421 Casing-Driller 9 5' 6" Caring-Logger 5 ' No See 5" Type Fluid in Hole BENTONITE Dene. Viee N/A pH | Pluid Loss لص mi mi N/A Searce of Sample PIT Ro O Mont. Tomp. 4 75 3.9 P Lat O Moon Temp. 3.9 5 • F Res & Meas Temp. N/A Bource: Rad Ra O BET M ype Muid in Hole Date | Sample No. in Ked N/A Time Slace Cire. 1 HOUR REMARKS. Max. Ret. Temp. N/A Fold Here Location SB81 RENO Recorded By ROBERTI sound by MARINAI

Equipment Date Ped Type Teal Peattion Other	RESISTIVITY ohms. m²/m	10	RESISTANCE Detail Curve	
Hun No. Teal Type ONE ELECTRIC LOG ONE	RESISTIVITY ohms. m'/m	SHORT NORMAL 16 Inch	1 ONG NORMAL 64 Inch	So Long Normal
Done. Viec. Lead Lead	SPONTANEOUS POTENTIAL millivolts	* 1		

•	1 ~***	rav.	٠٠ غد ا	F0 '^"	1	7 %	1	r	,	:	T
		1									
		,									
 	-	-		-		-	-		-	 	
 								 		 	
-	-			-							
<u>'</u>											
-											
											1
-											
	}							ļ	1	ļ	

CHEMICAL PROPERTIES (F	CLASS 1 Excellent to Good)	CLASS II . (Good to Injurious)	CLASS 1 CLASS II CLASS III Excellent to Good) (Good to Injurious) (Injurious to Unsatisfactory)
TOTAL DISSOLVED SOLIDS ppm (mg/l)	LESS THAN 700	700 - 2,000	MORE THAN 2,000

OPINIONS BASED SOLELY ON INFERENCES FROM ELECTRICAL AND OTHER MEASUREMENTS, WE CANNOT AND DO NOT GUARANTEE THE ACCURACY OR CORRECTNESS OF THIS INTERPRETATION AND SHALL NOT BE LIABLE FOR ANY COSTS. THIS INTERPRETATION REPRESENTS OUR BEST JUDGEMENT. NEVERTHELESS, SINCE ALL INTERPRETATIONS ARE DAMAGES OR EXPENSES THAT MAY BE INCURRED FROM THIS OR ANY OTHER INTERPRETATION.

ATE: 2-20-90

ROBERTI WELENCO LOG ANALYST

med no								-	
	co	WPANY.	•		GOMERY.	CONS. ENG	. IN	C	
	w	u	DSB - 2	?		 			
	818	LD	SIERRA	ARMY D	EPOT				
3	rie		CALIFOR	NTA		LASS	EN.		
1000	STA	NTE	CHETFOR		COUN	TY			
	LOCAT	ion:				•	OTHE	e stanices.	
		•				·	CA	LIPER SU	DALA
								LIFLK SU	KA C I
AND THE STATE OF T	SEC.		TWP _		RGE				
Edward St. Am		G.L.			_, Elev		Ele	r.: K.B	
Lag Brokens !	7100	G.L			.Pt. Above	Perm. Datum		D.F	
Detting Homes	od Pro	G.L						G.L.	
Delta		3-13-	90						
		ONE							
The second second		251'							
The state of the s		251' 250'				•		·	
Top Left Subse.		45'	,						
		MONE			•	•		•	
Same of receive						4 3 4 5			
3		5"							
		RENTO	NITE						
Bonne el Vie	2	N/A			}			7	
Part Floid		N/A					ml		
	plo ,	CIRC							
	ant.	3.14	75		• '7	-	**		4.
		3.14	75		4 7				
		N/A	Y	 -	-			- T	
		N/A	9		• '7		. 7		4.
Total Con-		2 HO	JRS						
	-	N/A_	.,,		7		44.		7
			RENO		1			 	
The seal of		ROBE							

	Scale Down Hole													
	Scale D.										RESISTIVITY ohms. m³/m		RESISTANCE Detail Curve	
Seale Changes	Scale Up Role				Total	FREE					Ē.	•		Vw w
3	Dopth Se					7							20	
	Type Log				- 6	ELECTRIC LOG					RESISTIVITY ohms. m*/m	SHORT NORMAL 16 Inch	LONG NORMAL 64 Inch	
	47					F	de		d.			SH	0	
¥	-					•	•	_	•	•	Depthe			• • • • • • • • • • • • • • • • • • •
			-	7			4. •	-	4.		IS POTENTIAL rolts	+	·	
ges in Med Type or Additional Sam	Date Sample No.	Depth—Driller	ŀ	Pluff Loss			۴	Source: Res Res	● BHT	F. O BRT	SPONTANEOUS POTENTIAL MILIPORTS	~ 1	- ·	
ð	200			2	1			3	4	نان				-

ELECTRIC LOG ANALYSIS

LOG T.D. 250' BIT SIZE: 5" COUNTY: LASSEN WELL: DSB - 2 FIELD: SIERRA ARMY DEPOT COMPANY: J.M. MONTGOMERY CALIFORNIA STATE:

Rm =3.14 at 75 °F

Rmf 9.14 at 75 °F

	CO NAC. I NAHCO3	4 3580 5710 CLASS 111	0 880 1410 CLASS 11			
E.C. RANGE (Umbos)	NaHCO }	5714	1410			
E.C.	ואאו	6757	1991			
Rw RANGE (ohm m ² /m)	(Math(, U)	1.75 6757 5714	7.09 [1661			
Re F (ohm	I WGW I	1.48	6.02			
Rwo		-23 1.48	20 6.02			
S.P.		-23	20		_	
гос рертн		50' - 175'	175' - 250'	-		

		_							
CLASS 111	CLASS 11								
5710	1410			·					
3580	880								
5714	1410								
6757	1991								
1.75	7.09		,						•
1.48	6.02		* '9						
1.48	6.02						•		•
-23	20								
šo [*] - 175°	175' - 250'							•	•

CLASS I CLASS II CLASS III Excellent to Good) (Good to Injurious) (Injurious to Unsatisfactory)	700 - 2,000 MORE THAN 2,000
CLASS 1 Excellent to Go	LESS THAN 700
CHEMICAL PROPERTIES	TOTAL DISSOLVED SOLIDS ppm (mg/l)

GUARANTEE THE ACCURACY OR CORRECTNESS OF THIS INTERPRETATION AND SHALL NOT BE LIABLE FOR ANY COSTS, DAMAGES OR EXPENSES THAT MAY BE INCURRED FROM THIS OR ANY OTHER INTERPRETATION. OPINIONS BASED SOLELY ON INFERENCES FROM ELECTRICAL AND OTHER MEASUREMENTS, WE CANNOT AND DO NOT THIS INTERPRETATION REPRESENTS OUR BEST JUDGEMENT. NEVERTHELESS, SINCE ALL INTERPRETATIONS ARE

DATE: 3-14-90

MELENCO LOG ANALYST

Caliper Survey

		COMPANY	JAMES M. I	MONTGO	IERY, CO	ONS. E	NG. IN	C
			DSB - 1					

		MAD	SIERRA ARI	MY DEPO)T			
•		STATE	CALIFORNIA	Acou	MITY	LASSEN		
	•	LOCATION					Omma	SOUVICES.
		94	TWP	1) O (ELEC	CTRIC LOG
			G.L.	, \$\)	·		BUTY.1 E.I	
100 #	-		G.L.		A00VE FEEL	L BARMS	₽.	·
	i min		G.L.				٠.	<u> </u>
DATE:			3-3-90					
			ONE					
TIPE M			3 ARM CAL	IPER				
1070		•	250'					
			250'					
00110	14000		249'					
	-		0'					
THE R	400 M HO	4	BENTONITE					
MAL I	OL THUS.	966, F.	N/A					
	W W		ROBERTI					
Time.	W W		MARINAI	I				
	,		! !					
2000		OGAS-HOLE M				CASHN	MCCORD	•
86		/ROM	10	9123	WOT.	Pl	OM.	70
1	2,	SURFACE	250'	NONE				
	,				ļ			

evelence!

Caliper Survey

						
COMPANY	JAMES M. MO	ONTGOM	ERY, COI	NS. ENG	. INC.	
	DSB - 5					
			- 			
PRO.	SIERRA ARM	V DEPO	<u> </u>			
* STATE	CALIFORNIA	co	PRETY	LASSEN		
MCATION					ones serv	
	SKEET RANGE	Ξ			1	RIC LOG
	787					
	G.L.					
TOTAL MARKET TOTAL	C 1		ASOVE PERM	207	8.6V.: K.S	
	G.L.				0.1	
	3-1-90				1	
SATE	ONE		···			
7170 LGG ::	3 ARM CALIE	ER				
OCTU-DOLLAR	255'					
99791400000	255'					
BOTTOM LOGGED INTERVAL	250'					
TOP LODGED HITEMAL	0.					
TYPE PLATE IN HELE	BENTONITE					
MAR. 19C. 1989, 900. F.	N/A					
8800000 07	ROBERTI					
yrmine or	MYERS					
	<u> </u>	I				
- SERI DOES-HOLE II	70	auto.	wet.	CASHIO	MCCOMD	70
3" 5'	255'	6"	COND.	SURF		5'
	 	- -	-	35111		
			 			
			1			
					1	

Pald Uare

-

							-							•	1		- 1	The same of the sa								1						
*														i		: :	1															
		,	•				4 4										1			٠.,				***************************************					÷ : : : : : : : : : : : : : : : : : : :	* !		-
						:											11							***************************************							•	
DEPTHS			j	 1.:	<u> </u>	<u>.i.</u> {	-1 <u>+</u>		ــاــ	<u> </u>	L	l.i			Li.		3		 L.L.		لد	ــــــــــــــــــــــــــــــــــــــ	∐.	1			L	•	 2			ــ الــ
CALPR HOLE DAMETER IN INCHES	12				5								7				1		+			-			4							
NOTE DI	2	•								ì			1														+		1	^		-

 8	9	8
Harm		

Appendix I

Groundwater Sampling Program

James M. Montgomery

Consulting Engineers Inc.

Consulting Engine	ers, inc.					PAGEOF/
PROJECT 5/4D			JOB NO). <i>3573</i> .	2040 DATE	w/17/90
SAMPLE LOCATION I.D.	ALFIME	14	LOCAT	ON ACTIV	START:	730 END: 9:00
		WATER LEVEL /	WELL DA	TA	_	
WELL DEPTH 105. 2	7 FT HISTO			ASING STIC ROM GROI	JND)	FT
WATER DEPTH 9/. 3/		vc 🗆	WELL LOCK WYES NO	ED? WEL	DIA. 2 INCH 4 INCH 6 INCH	ELECT.COND.PROBE
HEIGHT OF 3. 76	> FT × Ø .6	6 GAL/FT (2 IN.) 5 GAL/FT (4 IN.) 5 GAL/FT (6 IN.) GAL/FT (IN.)	8,99 Gowles can New York 16	GALVOL	200	L INTEGRITY: YES T. CASING SECURE CRETE COLLAR INTACT
		EQUIPMENT DOC	UMENTA	TION		DECONTAMINATION
URGING/SAMPLING EQUIP. U	SED: PURGING	SED FOR: SAMPLING		EQUIPM	ENT I.D.	METHOD: Steam elecad
	රුත්තය	PERISTALTIC SUBMERSIBLE		Grude	os 3 A wse	PVC Mon
		Ø BAILER ☐ PVC/SILICON	TUBING	<u>a"55</u>		PVC 1/22
·		TEFLON/SILIC				Jalue
	ä	HAND PUMP				V - VC
		☐ IN-LINE FILTE				
		FIELD ANAL	YSIS DAT	A		
AMBIENT AIR VO	A PF	WELL MOUTH	PPN	FIELD	DATA COLLEC	TED IN-LINE IN CONTAINER
PURGE DATA	0 20 au	0 100 cm 0 16	O GAL O	GAL	OGAL	SAMPLE OBSERVATION
TEMPERATURE, DEG C	12.5	13 12	.5			TURBID
						COLORED
pH, units SPECIFIC CONDUCTIVITY	7.49	7.61 7.	50			COLORED
pH, units			50			
pH, units SPECIFIC CONDUCTIVITY	7.49	7.61 7.	50			CLOUDY CLEAR
pM. units SPECIFIC CONDUCTIVITY (umnos/on. @ 25 deg.d) AMPLE COLLECTION R	7.49 890	7.6/ 7 . 890 90	50			CLOUDY CLEAR
PM. Units SPECIFIC CONDUCTIVITY (umnos/on. @ 25 dag.c) AMPLE COLLECTION R / IF REQUIRED AT THIS LOCATIO	7.49 890 EQUIREMEN	7.6/ 7 . 890 90	50			CLOUDY CLEAR
PM. UNISE SPECIFIC CONDUCTIVITY (umnosion. @ 25 dag.c) AMPLE COLLECTION R / IF REQUIRED AT THIS LOCATIO // NALYTICAL PARAMETER FI	290 EQUIREMENT IF FELD PRESE	7.6/ 7. 890 90	SAMPLE COLLECTE		LE BOTTLE I.D.:	CLOUDY CLEAR ODOR
PM. UNISE SPECIFIC CONDUCTIVITY (umnosion. @ 25 dag.c) AMPLE COLLECTION R / IF REQUIRED AT THIS LOCATIO // NALYTICAL PARAMETER FI	290 EQUIREMENT IF FELD PRESE	7.6/ 7. 890 90 ITS ERVATION VOLUME	SAMPLE COLLECTE		LE BOTTLE I.D.:	CLOUDY CLEAR ODOR
PM. UNISE SPECIFIC CONDUCTIVITY (umnosion. @ 25 dag.c) AMPLE COLLECTION R / IF REQUIRED AT THIS LOCATIO // NALYTICAL PARAMETER FI	290 EQUIREMENT IF FELD PRESE	7.6/ 7. 890 90 ITS ERVATION VOLUME	SAMPLE COLLECTE		LE SOTTLE LO.S	CLOUDY CLEAR ODOR
PM. UNISE SPECIFIC CONDUCTIVITY (umnosion. @ 25 dag.c) AMPLE COLLECTION R / IF REQUIRED AT THIS LOCATIO // NALYTICAL PARAMETER FI	290 EQUIREMENT IF FELD PRESE	7.6/ 7. 890 90 ITS ERVATION VOLUME	SAMPLE COLLECTE		LE BOTTLE I.D.:	CLOUDY CLEAR ODOR
AMPLE COLLECTION R	290 EQUIREMENT IF FELD PRESE	7.6/ 7. 890 90 ITS ERVATION VOLUME	50 00		LE SOTTLE I.D.:	CLOUDY CLEAR COOR
PH. UNITS SPECIFIC CONDUCTIVITY (UMNOS/OTH. @ 25 dog.d) AMPLE COLLECTION R / IF REQUIRED AT THIS LOCATION NALYTICAL PARAMETER FI	290 EQUIREMENT IF FELD PRESE	7.6/ 7. 890 90 ITS ERVATION VOLUME	SAMPLE COLLECTE		LE BOTTLE I.D.:	CLOUDY CLEAR ODOR
PH. UnitE SPECIFIC CONDUCTIVITY (umnos/cm. @ 25 deg.c) AMPLE COLLECTION R / IF REQUIRED AT THIS LOCATIONALYTICAL PARAMETER FI	290 EQUIREMENT IF FELD PRESE	7.6/ 7. 890 90 ITS ERVATION VOLUME	SAMPLE COLLECTE			CLOUDY CLEAR ODOR

James M. Montgom	ery			- PAGE/_ OF
Consulting Enginee	rs, Inc.			
PROJECT 5/AD		JOB NO.	2573.3343 DATE	4/17/20
SAMPLE LOCATION I.D.	ALFOMWA	LOCATIO	N ACTIVITY START: U.9	39 END: 10-7
	WATER LE	VEL / WELL DAT	A	
WELL DEPTH /09 22			ING STICK-UP / 9" F	F]
WATER DEPTH \$7.51	WELL MATERIAL: FT G PVC G SS	WELL LOCKED WES ONO	9? WELL DIA. 2 INCH 24 INCH 6 INCH	WATER LEVEL EQUIP. USED: ELECT.COND.PROBE FLOAT ACTIVATED PRESS. TRANSDUCER
HEIGHT OF WATER COLUMN	FT X Ø .65 GAUFT (2 IN.) 1.5 GAUFT (6 IN.) GAUFT (Well vol. F.	PROT.	INTEGRITY: YES NO CASING SECURE Z
		T DOCUMENTAT	ION	DECONTAMINATION METHOD:
Purging/Sampling Equip. US	PERIS SUBMI	ILICON TUBING INSILICON TUBING FT	EQUIPMENT I.D.	Steam Cleenie Onilor, 1-n PVC value
	FIELD	ANALYSIS DATA		i
AMBIENT AIR VOA	PPM WELL MOL	лтн РРМ	FIELD DATA COLLECTE	IN-UNE IN-UNE IN CONTAINER
PURGE DATA	0 10 GM 0 132 GM	€ 263 CAL €_	GAL @GAL	SAMPLE OBSERVATIONS
TEMPERATURE, DEG C	140 140	153		TURBID
pH, units SPECIFIC CONDUCTIVITY	7.41 7.35	7.27		Cronby
(umnos/am. @ 25 deg.c)	1150 1150	1/93		☑ CLEAR □ ODOR
				1
SAMPLE COLLECTION RE				
	FIELD PRESERVATION VOL	JIF LUME SAMPLE UIRED COLLECTED	CALADI E DOTTO E LO -O	
	Ener METHOU MED		SAMPLE BOTTLE I.D.'S	
ğ		9		
ğ		Q		
0000000		موموموم		
NOTES.				
			\sim /	11 / 1
		SIGNATUR	E OF SAMPLER (/ UL	- 16/1

Consulting Series			PAGE OF _/_
Consulting Enginee	rs, inc.		
PROJECT SAID		JOB NO. 2575. 20	O DATE 4/17 63
SAMPLE LOCATION I.D.	ALF 3MU4	LOCATION ACTIVIT	START: 1908 END: 1450
	WATER LEVEL /	WELL DATA	
WELL DEPTH /07.65	MEASURED TOP OF W		
WATER DEPTH 4 5.45	FT PVC	NELL LOCKED? WELL D Z YES I NO	A. 2 INCH WATER LEVEL EQUIP USED 4 INCH ELECT.COND.PROBE 5 INCH PRESS. TRANSDUCER
HEIGHT OF 19.30	FT X Ø .65 GAUFT (2 IN.) 1.5 GAUFT (6 IN.) GAUFT (_ IN.)	7.97 GALVOL	WELL INTEGRITY: YES NO PROT. CASING SECURE CONCRETE COLLAR INTACT COTHER COLLAR INTACT
	EQUIPMENT DOC	UMENTATION	DECONTAMINATION
	PERISTALTIC SUBMERSIBLE BAILER PVC/SILICON TEFLON/SILIC AIR LIFT HAND PUMP IN-LINE FILTEI PRESS/VAC FI	FUMP Grackus TUBING ON TUBING	TI.D. Steen cleaned Thurse pump bailor PVC
	FIELD ANALY	SIS DATA	——————————————————————————————————————
AMBIENT AIR VOA	PPM WELL MOUTH	PPM FIELD DA	TA COLLECTED [] IN-LINE
PURGE DATA	0 10 CM 0 4/0 CM 0 8	D GAL DGAL G	IN CONTAINER SAMPLE OBSERVATIONS
TEMPERATURE, DEG C	136 733 7	5	TURBID COLORED
SPECIFIC CONDUCTIVITY (umnos/am. @ 25 deg.c)	1300 /320 /35		☐ CLOUDY ☐ CLEAR ☐ ODOR
SAMPLE COLLECTION RE		/#	
·····	FIELD PRESERVATION VOLUME TERED METHOD REQUIRED	SAMPLE	BOTTLE I.D.'S
000			
0000000			
NOTES:			
		SIGNATURE OF SAMPL	ER /6 Huli
			/ y

JAM James M. Montgomery

JIM James M. Montgomery				PAGE OF
Consulting Engineers, Inc.				
PROJECT 5/4)		JOB NO. 2573.	DATE	4/16/90
SAMPLE LOCATION I.D. CBIMW		LOCATION ACTIV	ITY START: &	15 END: 1205
,	WATER LEVEL / W			
WELL DEPTH 2. 78 FT HISTO		LL CASING STIC SING (FROM GRO	K-UP 2 2" FT	
WATER DEPTH 70 32 FT PV	MATERIAL WI	ELL LOCKED? WELL YES NO	DIA. 2 INCH 4 INCH 6 INCH 	WATER LEVEL EQUIP. USED: ELECT.COND. PROBE FLOAT ACTIVATED PRESS. TRANSDUCER
WATER COLLINS 73.56 FT X 2 .65	GALIFT (2 IN.) GALIFT (4 IN.) GALIFT (6 IN.) GALIFT (IN.)	8.86 GALNOL		INTEGRITY: YES NO CASING SECURE OF COLLAR INTACT OF COLLA
	EQUIPMENT DOCL	MENTATION		DECONTAMINATION
PURGING/SAMPLING EQUIP. USED: PURGING	D FOR: SAMPLING PERISTALTIC PI SUBMERSIBLE I BAILER PVC/SILICON TO TEFLON/SILICO AIR LIFT HAND PUMP IN-LINE FILTER PRESS/VAC FIL	JMP JBING N TUBING	ENT I.D. 2	METHOD: Steem c'ee~ H" SS seilsr - " SS seilsr -
	FIELD ANALYS	SIS DATA		
AMBIENT AIR VOA PPA	WELL MOUTH	PPM FIELD	DATA COLLECTE	D [IN-LINE] IN CONTAINER
PURGE DATA	€ 70 GM € 130	CON 0 /50 CM	GAL S	SAMPLE OBSERVATIONS
TEMPERATURE. DEG C 14.5	15.5 16° 7.63 7.66	7.67		TURBID
SPECIFIC CONDUCTIVITY (umhos/cm. @ 25 deg.c) / 050	1090 59			CLOUDY CLEAR ODOR
				L ODOA
SAMPLE COLLECTION REQUIREMENT (/ F REQUIRED AT THIS LOCATION)	'S	/#		
ANALYTICAL PARAMETER FILTERED METI		SAMPLE COLLECTED SAM	LE BOTTLE I.D.'S	
g g				
מסססססס				
NOTES:				
			()/	-44.11
		SIGNATURE OF SAI	WPLER /6~	- 7 Null

James M. Morrigomer			- PAGE OF
Consulting Engineers.	, inc.		-
PROJECT SIAD		JOB NO. 2573 2040 DATE	4/16/70
SAMPLE LOCATION I.D.	CB-02-MWA	LOCATION ACTIVITY START: /2	-50 END: 1502
	WATER LEVEL / WE	ELL DATA	
WELL DEPTH 105.90 FT	MEASURED TOP OF WELL	CASING STICK-UP / . 1 FI]
WATER DEPTH 86.35 FT	WELL MATERIAL: WELL DE PVC	LL LOCKED? WELL DIA. 2 INCH YES 24 INCH NO 6 INCH	WATER LEVEL EQUIP USED ELECT.COND.PRCBE FLOAT ACTIVATED PRESS. TRANSDUCER
HEIGHT OF 19.55 FT	X ☑ .65 GAUFT (4 IN.) - □ □ 1.5 GAUFT (6 IN.) □ □ 1.5 GAUFT (6 IN.)		INTEGRITY: YES NO CASING SECURE
	EQUIPMENT DOCU	MENTATION	DECONTAMINATION
	PERISTALTIC PUI SUBMERSIBLE PU BAILER PVC/SILICON TUB TEFLON/SILICON AIR LIFT HAND PUMP IN-LINE FILTER PRESS/VAC FILTE	JMP <u>Gr-Jins 3 Lra.</u> 1° 55 BING TUBING	Steem cheerd bulors pumb fuc, sul value
	FIELD ANALYS	S DATA	
AMBIENT AIR VOA	PPM WELL MOUTH	PPM FIELD DATA COLLECTE	D IN-LINE
PURGE DATA	GAL _0GAL _0	GN 0GN 0GN	SAMPLE OBSERVATIONS
TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (umnowam. @ 25 deg.c)			☐ TURBID ☐ COLORED ☐ CLOUDY ☐ CLEAR ☐ ODOR
SAMPLE COLLECTION REQU // IF REQUIRED AT THIS LOCATION)		18	<u> </u>
ANALYTICAL PARAMETER FILTER		SAMPLE DILECTED SAMPLE BOTTLE I.D.'S	
0000000			
NOTES.		SIGNATURE OF SAMPLER	Luci

Consulting Engineers, Inc.

PROJECT SIAD	JOB NO. 05-73. 00-10 DATE 4/19/90
SAMPLE LOCATION I.D. DRMO3MW	LOCATION ACTIVITY START: 1430 END: 1683
WATER LEVEL / \	WELL DATA
MEASURED DIOP OF W	ELL CASING STICK-UP 1'L' ET
WELL DEPTH 110.07 FT HISTORICAL TOP OF CA	ISING (FHOM GHOUND)
WATER DEPTH QL // FT D PVC	VELL LOCKED? WELL DIA. 2 INCH WATER LEVEL EQUIP. USED: Z YES Z 4 INCH Z ELECT.COND.PROBE NO G INCH PRESS, TRANSDUCER
HEIGHT OF /3.96 FT x 12.65 GAL/FT (2 IN.) - 1.5 GAL/FT (6 IN.) - GAL/FT (1 IN.)	WELL INTEGRITY: YES NO PROT. CASING SECURE CONCRETE COLLAR INTACT OF CONTRETE COLLAR INTACT OF C
EQUIPMENT DOC	DECONTAMINATION
PURGING/SAMPLING EQUIP. USED: PURGING SAMPLING	EQUIPMENT I.D.
PERISTALTIC Submersible	PUMP Grandfue 3 Larse
BAILER PVC/SILICON	TUBING PLAND PS, PVC
PERISTALTIC SUBMERSIBLE SUBMERSIBLE BAILER PVC/SILICON TEFLON/SILICON AIR LIFT HAND PUMP IN-LINE FILTER	Deling Distribution Tubing Value
☐ IN-LINE FILTER	
PRESS/VAC FI	LIER
FIELD ANALY	SIS DATA
AMBIENT AIR VOA PPM WELL MOUTH	PPM FIELD DATA COLLECTED AN-LINE
PURGE DATA 0 10 GAL 0 30 GAL 0 4	O GAL O GAL O GAL SAMPLE OBSERVATIONS
TEMPERATURE DEGG 17 17	TURBID
SOCIAL CONTRACTOR	CLOUDY CLEAR
(umros/cm. • 25 dog.d)	ODOR
SAMPLE COLLECTION REQUIREMENTS	
(/ F REQUIRED AT THIS LOCATION) / F FIELD PRESERVATION VOLUME	/ F SAMPLE
ANALYTICAL PARAMETER FILTERED METHOD REQUIRED	COLLECTED SAMPLE BOTTLE I.D.'S
) <u>8</u>	
00000	
NOTES:	
1741 54.	
	SIGNATURE OF SAMPLER

James M. Montgomery PAGE/_ OF/_ Consulting Engineers, Inc.
PROJECT SAID JOB NO. J573, OUND DATE 4 12 90
SAMPLE LOCATION I.D. 1919 END: 13/5
WATER LEVEL / WELL DATA
WELL DEPTH //O OO FT HISTORICAL TOP OF CASING (FROM GROUND) / 5" FT
WATER DEPTH 96.32 FT WELL MATERIAL: WELL LOCKED? WELL DIA. 2 INCH WATER LEVEL EQUIP. USED: WATER DEPTH 96.32 FT W PVC WYES W4 INCH WATER LEVEL EQUIP. USED: WELL LOCKED? WELL DIA. 2 INCH WATER LEVEL EQUIP. USED: WATER DEPTH 96.32 FT WATER LEVEL EQUIP. USED: NO WATER LEVEL EQUIP. USED: OF A INCH WATER LEVEL EQUIP.
HEIGHT OF /3.6% FT X 0.65 GALFT (4 IN.) - (7.6) 3 GALVOL WELL INTEGRITY: YES NO PROTECTION SECURE OF CONCRETE COLLAR INTACT OF CONCRETE CONCRETE COL
EQUIPMENT DOCUMENTATION VIFUSED FOR: PURGING/SAMPLING EQUIP USED: PURGING SAMPLING PERISTALTIC PUMP SUBMERSIBLE PUMP SUBMERSIBLE PUMP BAILER PVC/SILICON TUBING TEFLON/SILICON TUBING AIR LIFT HAND PUMP IN-LINE FILTER PRESS/VAC FILTER DECONTAMINATION METHOD: SFC and Clecked Soliours PVC Value
FIELD ANALYSIS DATA
AMBIENT AIR VOA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE IN CONTAINER
PURGE DATA PURGE
TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (umroswam. @ 25 deg.c) Thus Th
SAMPLE COLLECTION REQUIREMENTS (/ IF REQUIRED AT THIS LOCATION) / IF ANALYTICAL PARAMETER FILTERED METHOD REQUIRED COLLECTED SAMPLE BOTTLE I.D.'S

SIGNATURE OF SAMPLER

James M. Montgomery	
Consulting Engineers, Inc.	
PROJECT SIAD	JOB NO. 2573 034 DATE 4/14/90
SAMPLE LOCATION I.D. DMO5MLJ	LOCATION ACTIVITY START: §35 END: //)0
WATER LEVEL	./ WELL DATA
VELL DEPTH /09.98 FT HISTORICAL TOP OF	WELL CASING STICK-UP / / / 0" FT FT CASING (FROM GROUND)
VATER DEPTH 95 08 FT DE PVC 0 SS	WELL LOCKED? WELL DIA. 2'INCH WATER LEVEL EQUIP. USEI VES
16 GAL/FT (2 IN.) VATER COLUMN	9.60 GALVOL WELL INTEGRITY: YES NO PROT. CASING SECURE CONCRETE COLLAR INTACT OTHER
EQUIPMENT DO	OCUMENTATION WELL RESERVED TO CONTAMINATION
URGING/SAMPLING EQUIP. USED: PURGING SAMPLING PERISTALT SUBMERSIE BAILER PVC/SILICO TEFLON/SIL AIR LIFT HAND PUMI PRESS/VAC	ELE PUMP Grading 3 for Dailors, pump and Tubing LICON TUBING PLOTE TER
FIELD ANA	LYSIS DATA
PURGE DATA PPM WELL MOUTH	PPM FIELD DATA COLLECTED IN-LINE IN CONTAINER 15 GAL G GAL G GAL SAMPLE OBSERVATIONS
TEMPERATURE, DEG C OH, units SPECIFIC COMPLICATIVITY	TURBIO COLORED CLOUDY CLEAR ODOR
AMPLE COLLECTION REQUIREMENTS	
/ IF REQUIRED AT THIS LOCATION) / IF FIELD PRESERVATION VOLUME NALYTICAL PARAMETER FILTERED METHOD REQUIRED	
TRIENES NEITHOU PEGGINES	
OTES:	

James M. Montgom					PA	GEOF
Consulting Engineer	rs, inc.					
PROJECT SIAS			JOB NO	. 2573. 35:10	DATE 4	1/24/60
SAMPLE LOCATION I.D.	158 4 1	4W	LOCATI	ON ACTIVITY	TART: /4 30	END: 530
		WATER LEVI	EL / WELL DA	TA		
WELL DEPTH 4/70	FT HISTOR	RED TOP	OF WELL CA OF CASING (F	SING STICK-UP ROM GROUND)	Z O FT	
WATER DEPTH 34.45	WELL M	IATERIAL:	WELL LOCKE — 12 YES 1 NO	-	4 INCH E	
HEIGHT OF WATER COLUMN /7.05	FT X □ .65 (□ 1.5 (GALIFT (2 IN.) GALIFT (4 IN.) GALIFT (6 IN.) GALIFT (IN.)	2.73 [aamla [call w/o]	FOTAL GAL PURGE	WELL INTE	AC SECURE 3
	(QUIPMENT	DOCUMENTA	TION	DEC	CONTAMINATION
Purging/Sampling Equip. USI	ED: PURGING:	PERISTAL SUBMER BAILER PVC/SILIC TEFLONS AIR LIFT HAND PU IN-LINE F		EQUIPMENT I.C	- 5Fe - 6	allor with, on value.
		FIELD AN	IALYSIS DATA	\		
AMBIENT AIR VOA	РРМ	WELL MOUTH	PPM	FIELD DATA C		IN-UNE
PURGE DATA	@GAL (GAL @	GAL	GAL @		IN CONTAINER LE OBSERVATIONS
TEMPERATURE, DEGIC pH, units SPECIFIC CONDUCTIVITY (umnos/am. @ 25 deg.c)						TURBID COLORED CLOUDY CLEAR ODOR
SAMPLE COLLECTION RE (/ IF REQUIRED AT THIS LOCATION)	QUIREMENT		/ IF		- "	
ANALYTICAL PARAMETER FILT	RED METH		ED COLLECTED	SAMPLE BOT	TLE I.D.'S	/
0000000			aaaaaaaa			
NOTES.						
			SIGNATU	IRE OF SAMPLER		hill

SIGNATURE OF SAMPLER

4 NIA : Not available

James M. Montgomery PAGE OF				
Consulting Engineers, Inc.				
PROJECT 5/A) JOB NO. 2573 DATE 4/80 50				
SAMPLE LOCATION I.D. TNTIMUC LOCATION ACTIVITY START: \$30 END: 1145				
WATER LEVEL / WELL DATA				
WELL DEPTH 140,17 FT HISTORICAL TOP OF CASING (FROM GROUND) 01" FT				
WATER DEPTH 5 / 3 FT WELL MATERIAL: WELL LOCKED? WELL DIA. 2 INCH WATER LEVEL EQUIP. USED: WATER DEPTH 5 / 3 FT W PVC				
MEIGHT OF WATER COLUMN 30.06 FT X 65 GAUFT (4 IN.) 53.34 GALVOL WELL INTEGRITY: " YES NO				
EQUIPMENT DOCUMENTATION DECONTAMINATION				
FURGING/SAMPLING EQUIP. USED: PURGING SAMPLING PERISTALTIC PUMP SUBMERSIBLE PUMP BAILER PVC/SILICON TUBING TEFLON/SILICON TUBING AIR LIFT HAND PUMP IN-LINE FILTER PRESS/VAC FILTER				
FIELD ANALYSIS DATA				
AMBIENT AIR VOA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE				
PURGE DATA 0 10 GAL 0 100 GAL 0 300 GAL 0 GAL SAMPLE OBSERVATIONS				
TEMPERATURE, DEG C 15 14 16 16 TURBID (COLORED)				
SPECIFIC CONDUCTIVITY (umnosum. @ 25 deg.c) 950 950 1000 CLEAR ODOR				
AMPLE COLLECTION REQUIREMENTS / IF REQUIRED AT THIS LOCATION) / IF				
WALYTICAL PARAMETER FILTERED METHOD REQUIRED COLLECTED SAMPLE BOTTLE I.D.'S				

NOTES: 00000

Consulting Engineers, Inc.	PAGE CF _/_
PROJECT S/AD	JOB NO. 35-13.00-10 DATE 4/31/90
SAMPLE LOCATION I.D. TNTAMOJA	LOCATION ACTIVITY START: 1415 END: 1540
WATER LEVEL / V	VELL DATA
WELL DEPTH 75.74 FT HISTORICAL TOP OF CA	
WATER DEPTH 56.49 FT DE PVC	ELL LOCKED? WELL DIA. 2 INCH WATER LEVEL EQUIP USED. YES
HEIGHT OF 79.25 FT X 0 .16 GAUFT (2 IN.) WATER COLUMN 79.25 FT X 0 .65 GAUFT (4 IN.) 1.5 GAUFT (6 IN.) GAUFT (10.)	3. US GALVOL WELL INTEGRITY: YES NO PROT. CASING SECURE CONCRETE COLLAR INTACT TO THER
EQUIPMENT DOC	UMENTATION DECONTAMINATION METHOD: //
PURGING/SAMPLING EQUIP. USED: PURGING SAMPLING PERISTALTIC F SUBMERSIBLE BAILER PVC/SILICON T TEFLON/SILICO AIR LIFT HAND PUMP IN-UNE FILTER PRESS/VAC FIL	PUMP J= 10 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -
FIELD ANALY	SIS DATA
PURGE DATA PPM WELL MOUTH FURGE DATA DEG C JS. S JU MA FURGE DATA TEMPERATURE, DEG C JS. S JU MA MIA NIA NIA NIA 1300 1396 1300	73.€ □ TURBID □ COLORED ☑ CLOUDY
SAMPLE COLLECTION REQUIREMENTS (/ IF REQUIRED AT THIS LOCATION) ANALYTICAL PARAMETER FILTERED METHOD REQUIRED OCCUPANT OF THE PROPERTY OF TH	SAMPLE COLLECTED SAMPLE BOTTLE I.D.'S
NOTES:	SIGNATURE OF SAMPLER

_____ PAGE ______ OF ____

James M. Montgorn Consulting Enginee				·	PAGE OF
PROJECT SIAI	<u> </u>		JOB NO.	3575 0240 DAT	E 4/21/90
SAMPLE LOCATION I.D.	TNTOM	WB	LOCATIO	N ACTIVITY START:	//30 END: /335
		WATER LEVEL /	WELL DAT	A	
WELL DEPTH /01. 03	FT HISTO	URED DOP OF V	VELL CAS ASING (FRO	SING STICK-UP / 10"	⁽ FT
WATER CEPTH 56.44		C 🗆	WELL LOCKED WE YES	O? WELL DIA. 2 INC 2 4 INC 6 INC	H W ELECT COND.PROBE
HEIGHT OF WATER COLUMN 44.59	FT X Ø .65 □ 1.5	GAL/FT (2 IN.) GAL/FT (4 IN.) = GAL/FT (6 IN.) GAL/FT (IN.)	28.98 (10110 = 1701	PROTAL GAL PURGED CON	ILL INTEGRITY: YES NO OT. CASING SECURE ZO NICRETE COLLAR INTACT ZO HER
urging/sampling Equip. Us	F USE	D FOR: SAMPLING PERISTALTIC SUBMERSIBL BAILER PVC/SILICON TEFLON/SILIC AIR LIFT HAND PUMP IN-LINE FILTE PRESS/VAC F	E PUMP TUBING CON TUBING	EQUIPMENT I.D.	DECONTAMINATION METHOD: JECAN CLEEN Value, Pump. Dailors
		FIELD ANAL	YSIS DATA		
AMBIENT AIR VOA	PPN	WELL MOUTH	PPM	FIELD DATA COLLEC	TEDIN-UNE
WEST DATA	0 /0 00	• 130 GA • 30	<u> </u>		IN CONTAINER
PURGE DATA	14°		GAL @_	GAL @GAL	SAMPLE OBSERVATIONS
TEMPERATURE, DEG C	# N/A				COLORED
SPECIFIC CONDUCTIVITY (unnoted). # 25 deg.c)	/030	1090 104			CLOUDY CLEAR COOR
DALYTICAL PARAMETER FILT	QUIREMENT) FRELD PRESERTERED MET	VATION VOLUME	SAMPLE COLLECTED	SAMPLE BOTTLE I.D.	s
			! 1		
IOTES. * N/A : Nut avalit			<u> </u>	_====	

٠,

James M. Montgom Consulting Enginee		······································	PAGE _ / _ OF _ /
"			
PROJECT SIAS		JOB NO. 2573.0040 DATE	5/1/20
AMPLE LOCATION I.D.	TNT 3 MWA	LOCATION ACTIVITY START: /3	45 ENO: /2.40
	WATER LEVEL	WELL DATA	
ELL DEPTH 67. 72	MEASURED TOP OF C		
ATER DEPTH 55.93		WELL LOCKED? WELL DIA. 2 INCH 2 YES 4 INCH 6 INCH	WATER LEVEL EQUIP USES ELECT COND PROBE FLOAT ACTIVATED PRESS. TRANSDUCES
EIGHT OF // 11.89	FT X □ .65 GAL/FT (2 IN.) □ .65 GAL/FT (4 IN.) = □ 1.5 GAL/FT (6 IN.) □ GAL/FT (IN.)		
	EQUIPMENT DO	CUMENTATION	DECONTAMINATION
	PERISTALTIC SUBMERSIBL BAILER PVC/SILICON TEFLON/SILIC AIR LIFT HAND PUMP IN-LINE FILTE PRESS/VAC F	TUBING CON TUBING	Triple rissed
	FIELD ANAL	YSIS DATA	
AMBIENT AIR VOA	PPM WELL MOUTH	PPM FIELD DATA COLLECTE	D
PURGE DATA	0GAL 0GAL 0		SAMPLE OBSERVATIONS TURBID
TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (umnos/cm. @ 25 deg.c)			COLORED CLOUDY CLEAR ODOR
AMPLE COLLECTION RE		/#	73.00
	FIELD PRESERVATION VOLUME TERED METHOD REQUIRED	SAMPLE COLLECTED SAMPLE BOTTLE LD.'S	<u> </u>
DTES.			

James M. Montgom Consulting Enginee			PAGE OF
PROJECT 51-1		JOB NO. 8573 334/3	DATE 5 20
SAMPLE LOCATION I.D.	-NTOUMLY!	LOCATION ACTIVITY S	TART: 3:3 END: -4
	/	EL / WELL DATA OF WELL CASING STICK-UP	
WATER DEPTH 56.22		OF CASING (FROM GROUND) WELL DIA. G	2 INCH WATER LEVEL EQUIP US
	☐ SS ☐ SAL/FT (2 IN.)		6 INCH FLOAT ACTIVATED PRESS. TRANSDUC
HEIGHT OF ATTER COLUMN	FT X		WELL INTEGRITY: YES PROT. CASING SECURE CONCRETE COLLAR INTACT OTHER
URGING/SAMPLING EQUIP. US	JIF USED FOR: IED: PURGING SAMPLING PERISTAL SUBMERS BAILER PVC/SILIC TEFLONS AIR LIFT HAND PUI		DECONTAMINATION METHOD:
	FIELD AN	ALYSIS DATA	
AMBIENT AIR VOA			IN CONTAINER
PURGE DATA TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (umnos/cm. @ 25 deg.c)	-5 GN - 5 GN - 5 GN - 6 - 7 GN	25 GM ●GM ●	SAMPLE OBSERVATION TURBID COLORED CLOUDY CLEAR ODOR
NALYTICAL PARAMETER FILT			TLE 1.0.'S
OTES:			

P

Consulting Engineers, Inc.	PAGEOF
PROJECT SIAD	JOB NO. 2573 2040 DATE 5/2/90
SAMPLE LOCATION I.D. TNT5MW	LOCATION ACTIVITY START: 1524 END: 1720
WATER LEY	VEL / WELL DATA
WELL DEPTH 68 84 FT HISTORICAL CO TO	P OF WELL CASING STICK-UP 2. 2 FT
WATER DEPTH 60.48 FT PVC S	WELL LOCKED? WELL DIA. \$\text{M2 INCH}\$ WATER LEVEL EQUIP USED. PROBE FLOAT ACTIVATED PRESS. TRANSDUCER
HEIGHT OF X 16 GAUFT (2 IN.) WATER COLUMN X 1.5 GAUFT (4 IN.) 1.5 GAUFT (6 IN.) GAUFT (_ IN.)	WELL INTEGRITY: YES NO PROT. CASING SECURE CONCRETE COLLAR INTACT Z CONCRETE CONCRETE COLLAR INTACT Z CONCRETE CO
EQUIPMENT	DECONTAMINATION METHOD:
SUBME SU	LICON TUBING VSILICON TUBING T PUMP FILTER WAC FILTER
FIELD A	NALYSIS DATA
PURGE DATA PM WELL MOU	TH PPM FIELD DATA COLLECTED IN-LINE IN IN CONTAINER GAL G GAL G GAL SAMPLE OBSERVATIONS
TEMPERATURE, DEG C pH. units SPECIFIC CONDUCTIVITY (umnos/cm. 25 deg.c) 7.75 7.75 7.75 800 800	76 7.67 COLORED COLORED CLEAR CODOR
	UME SAMPLE UIRED COLLECTED SAMPLE BOTTLE I.D.'S
NOTES.	

James M. Montgomery Consulting Engineers, Inc.	PAGE OF
PROJECT SIAI) JOB NO.	3573.33-13 DATE 5/0/90
SAMPLE LOCATION I.D. TNT6MW LOCATION	ACTIVITY START: 14/0 END: 1570
WATER LEVEL / WELL DATA	
WELL DEPTH 48.56 FT HISTORICAL TOP OF WELL CASH	M GROUND) 2 "FT
WELL MATERIAL: WELL LOCKED? WELL MATERIAL: WELL LOCKED? OF PVC OF PVC OF NO	WELL DIA. 2 INCH WATER LEVEL EQUIP. USED 4 INCH 6 INCH PRESS. TRANSDUCER
WATER COLUMN C. A FT X 65 GAL/FT (4 IN.)	WELL INTEGRITY: YES NO PROT. CASING SECURE OTHER OTHER
EQUIPMENT DOCUMENTATION	ON DECONTAMINATION
PURGING/SAMPLING EQUIP. USED: PURGING SAMPLING PERISTALTIC PUMP SUBMERSIBLE PUMP BAILER PVC/SILICON TUBING TEFLON/SILICON TUBING AIR LIFT HAND PUMP IN-LINE FILTER PRESS/VAC FILTER	METHOD: Secon Ciento Bailons 2'32 22 6
FIELD ANALYSIS DATA	
AMBIENT AIR VOA PPM WELL MOUTH PPM	FIELD DATA COLLECTED IN-LINE IN CONTAINER
PURGE DATA PURGE	GAL @GAL SAMPLE OBSERVATIONS
pH, units 7.56 7.40 7.24	CLOUDY
(umnos/cm.	CLEAR ODOR
SAMPLE COLLECTION REQUIREMENTS IF REQUIRED AT THIS LOCATION ANALYTICAL PARAMETER FILTERED PRESERVATION VOLUME SAMPLE ANALYTICAL PRESERVATION VOLUME SAMPLE ANAL	
The series well and the content of t	SAMPLE BOTTLE I.D.'S
NOTES:	
* N/A = Not aveloble	
SIGNATURE	OF SAMPLER

James M. Montgomery	PAGEOF
Consulting Engineers, Inc.	 •·
PROJECT 5/1.25 JOB NO. 2573.3040	DATE -/12/20
SAMPLE LOCATION I.D. TNT7MWG LOCATION ACTIVITY ST	ART: 1930 END: /405
WATER LEVEL / WELL DATA	
WELL DEPTH STORICAL TOP OF WELL CASING STICK-UP TOP OF CASING (FROM GROUND)	/ 0 /°FT
	2 INCH WATER LEVEL EQUIP. USED 4 INCH ELECT.COND.PROBE 5 INCH PRESS. TRANSDUCER
HEIGHT OF WATER COLUMN // 47 FT X . 16 GAL/FT (2 IN.) . 55 GAL/FT (4 IN.)	WELL INTEGRITY: YES NO PROT. CASING SECURE CONCRETE COLLAR INTACT OTHER
PURGING/SAMPLING EQUIP. USED: PURGING SAMPLING PERISTALTIC PUMP SUBMERSIBLE PUMP BAILER PVC/SILICON TUBING TEFLON/SILICON TUBING AIR LIFT HAND PUMP IN-UNE FILTER PRESS/VAC FILTER	DECONTAMINATION METHOD: Deciso bailer Clan value
FIELD ANALYSIS DATA	
AMBIENT AIR VOA PPM WELL MOUTH PPM FIELD DATA CO	DLLECTED [] IN-LINE [] IN CONTAINER
PURGE DATA O GAL O SGAL O SGAL O SGAL O SGAL O SGAL O SGAL	
TEMPERATURE, DEG C	TURBID COLORED
SPECIFIC CONDUCTIVITY (umnos/cm. ● 25 deg.c) 100 950 1000 95	CLOUDY CLEAR ODOR
SAMPLE COLLECTION REQUIREMENTS (/ IF REQUIRED AT THIS LOCATION)	
ANALYTICAL PARAMETER FILTERED METHOD REQUIRED COLLECTED SAMPLE BOTTO	LE 1.D.'S
	<u>'</u>
	/
Ö	
NOTES.	
SIGNATURE OF SAMPLER	-) L 1 - 4 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

WATER LEVEL / WELL DATA WELL DEPTH	OF
WATER LEVEL / WELL DATA WELL DEPTH	190
WELL DEPTH 103.57 FT MEASURED TOP OF WELL CASING STICK-UP 75" FT HISTORICAL TOP OF CASING (FROM GROUND) 75" FT WELL DEPTH 58" 40 FT WELL MATERIAL: WELL LOCKED? WELL DIA. 2 INCH WATERIAL: WELL LOCKED? WELL DIA. 2 INCH WATERIAL: SS WELL DIA. 2 INCH WATERIAL: WELL LOCKED? WELL DIA. 2 INCH WATERIAL: WELL COKED? WELL DIA. 2 INCH WATERIAL: WELL MATERIAL: WELL MA	o: //∂5
WELL DEPTH 733.57 FT HISTORICAL GTOP OF CASING (FROM GROUND) 73 FT WELL DEPTH 79.57 FT HISTORICAL GTOP OF CASING (FROM GROUND) 75 FT WELL DEPTH 79.57 FT WELL MATERIAL GTOP OF CASING (FROM GROUND) 75 FT WELL MATERIAL GTOP OF CASING SINCH GENCY GEN	
WELL INCH GRAPT (2 IN.) WATER COLUMN	
WELL INTEGRIN 1.5 GAL/FT (6 IN.) GA	EVEL EQUIP. L CT.COND.PRO AT ACTIVATED ESS. TRANSDU
FIELD ANALYSIS DATA AMBIENT AIR VOA PPM WELL MOUTH PPM FIELD DATA COLLECTED PH. B. SAMPLE PURP PRESERVATION VOLUME SAMPLE SAMPLE BOTILE I.D. S AMPLE COLLECTION REQUIREMENTS / F FELD PRESERVATION VOLUME SAMPLE BOTILE I.D. S	CURE 💆
FIELD ANALYSIS DATA AMBIENT AIR VOA PPM WELL MOUTH PPM FIELD DATA COLLECTED PURGE DATA PURGE DATA O O GAL O O GAL O O GAL O O GAL O GAL SAMPLE TEMPERATURE, DEG C O O GAL O O O O GAL O O O O GAL O O O O O O O O O O O O O O O O O O O	en clee
AMBIENT AIR VOA PPM WELL MOUTH PPM FIELD DATA COLLECTED PURGE DATA PPM WELL MOUTH PPM FIELD DATA COLLECTED PURGE DATA PPM WELL MOUTH PPM FIELD DATA COLLECTED PPM FIE	
PURGE DATA PURGE	
TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (urmba/gm. © 25 deg.g) AMPLE COLLECTION REQUIREMENTS / IF REQUIRED AT THIS LOCATION) NALYTICAL PARAMETER FRITERED J 5	N-LINE N CONTAINER
AMPLE COLLECTION REQUIREMENTS // F FIELD PRESERVATION VOLUME SAMPLE BOTTLE I.D.'S	BSERVATIO
SPECIFIC CONDUCTIVITY (ummos/am. @ 25 deg.c) /// // // // // // // // // // // // /	URBID OLORED
AMPLE COLLECTION REQUIREMENTS / IF REQUIRED AT THIS LOCATION) / IF FIELD PRESERVATION VOLUME SAMPLE NALYTICAL PARAMETER FILTERED METHOD REQUIRED COLLECTED SAMPLE BOTTLE 1.D.'S	CLOUDY CLEAR DOOR
/ IF REQUIRED AT THIS LOCATION) / IF FIELD PRESERVATION VOLUME SAMPLE NALYTICAL PARAMETER FILTERED METHOD REQUIRED COLLECTED SAMPLE BOTTLE I.D.'S	
NALYTICAL PARAMETER FILTERED METHOD REQUIRED COLLECTED SAMPLE BOTTLE I.D.'S	
TOTAL METING REGISTED CONTROL CONTROL CO. C.	
OTES.	

MM James M. Montgom						PAGE/ OF)_
Consulting Enginee	rs, inc.					
PROJECT SIAO			JOE	NO. 25-73.00	DATE	4-18-90
SAMPLE LOCATION I.D.	THE MET U	v.C	roc	ATION ACTIVIT	Y START: 14.	30 END: 1710
		WATER LEV	EL / WELL	DATA		
VELL DEPTH 141.76	FT MEAS		OF WELL OF CASING	CASING STICK-I (FROM GROUND	UP 210" FT	
VATER DEPTH 57.75	FT Ø PV		WELL LO	OCKED? WELL DI	A. 2 INCH 24 INCH 6 INCH	WATER LEVEL EQUIP USED ELECT.COND.PROBE FLOAT ACTIVATED PRESS. TRANSDUCER
EIGHT OF \$2.8(FT X 2 .65	B GAL/FT (2 IN.) B GAL/FT (4 IN.) B GAL/FT (6 IN.) _ GAL/FT (IN.)	Aurula	7 GALVOL	PROT.	INTEGRITY: YES NO CASING SECURE SECURE SECURE
		EQUIPMENT	DOCUMEN	ITATION		DECONTAMINATION
urging/sampling Equip. Us	/ IF USI ED: PURGING	ED FOR: SAMPLING		EQUIPMEN	T I.D.	METHOD: Stem Clew
		BAILER PYC/SILIA TEPLONA AIR LIFT HAND PL	JMP	24 55 24 55	<u></u>	Port Bailer Pla Flow Value
		FIELD AN	VALYSIS D	ATA		
AMBIENT AIR VOA					TA COLLECTE	D []/IN-LINE [] IN CONTAINER
PURGE DATA	0 10 GN	• 100 GAL	200 cm	• Jagar •	GAL S	AMPLE OBSERVATIONS
TEMPERATURE, DEG C pH, units	4007.77	7.52	1.60	7.50		COLORED
SPECIFIC CONDUCTIVITY (umnoevam. @ 25 deg.c)	1080	/000	/2007	1090		☑ CLOUDY ☐ CLEAR ☐ ODOR
VALYTICAL PARAMETER FIL) FIELD PRESEI	TS RVATION VOLUM HOD REQUIR	RED COLLE	PLE CTED SAMPLE	BOTTLE I.D.'S	
			0000000			
					<u> </u>	
OTES.				NATURE OF SAMPL	ER	_:\footage = \footage
				Section 1	0	

James M. Montgon Consulting Engineer			PAGE OF
PROJECT SIAT)	JOB NO. 2573.0040	DATE 5/3/90
SAMPLE LOCATION I.D.	TN-8MWA	LOCATION ACTIVITY ST.	ART: /3/5 END: /54/5
	WATER LEVEL /	WELL DATA	
WELL DEPTH 58.65	FT		'6" FT
WATER DEPTH 58.77	FT V PVC C SS	_	2 INCH WATER LEVEL EQUIP USI 4 INCH DELECT COND PROBE 6 INCH DEPT FLOAT ACTIVATED PRESS. TRANSDUCE
HEIGHT OF A. 77	FT X : .16 GAUFT (2 IN.)	1.59 GALVOL	WELL INTEGRITY: YES PROT. CASING SECURE CONCRETE COLLAR INTACT
	EQUIPMENT DO	CUMENTATION	DECONTAMINATION
	SUBMERSIBLE BAILER PVC/SILICON TEFLON/SILIC AIR LIFT HAND PUMP IN-LINE FILTE PRESS/VAC F	CON TUBING	flow value
	FIELD ANAL	YSIS DATA	
AMBIENT AIR VO	A PPM WELL MOUTH	PPM FIELD DATA CO	DLLECTED
PURGE DATA TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (uninos/cm. @ 25 deg.c)		4	SAMPLE OBSERVATIONS TURBID COLORED CLOUDY CLEAR ODOR
AMPLE COLLECTION RE		/F SAMPLE	
	TERED METHOD REQUIRED	COLLECTED SAMPLE BOTTL	E 1.0.'S

Consulting Engineers, Inc.
PROJECT SIAD JOB NO. JS73 2040 DATE 5/3 /60
SAMPLE LOCATION I.D. TNT9MUA LOCATION ACTIVITY START: \$45 END: 1020
WATER LEVEL / WELL DATA
WELL DEPTH 6691 FT HISTORICAL TOP OF WELL CASING STICK-UP 2'5" FT
WATER DEPTH 57.47 FT WELL MATERIAL: WELL LOCKED? WELL DIA. 2 INCH WATER LEVEL EQUIP USED.
HEIGHT OF WATER COLUMN 7.43 FT X 65 GAL/FT (4 IN.) - 1.5 GAL/FT (6 IN.) WELL INTEGRITY: YES NO PROT. CASING SECURE OTHER COLLAR INTACT 2 CONCRETE COLLAR INTACT 2
EQUIPMENT DOCUMENTATION /F USED FOR: PURGING/SAMPLING EQUIP USED: PURGING SAMPLING PERISTALTIC PUMP SUBMERSIBLE PUMP
FIELD ANALYSIS DATA
AMBIENT AIR VOA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE
PURGE DATA PURGE
SAMPLE COLLECTION REQUIREMENTS If REQUIRED AT THIS LOCATION) If FIELD PRESERVATION VOLUME SAMPLE ANALYTICAL PARAMETER FILTERED METHOD REQUIRED COLLECTED SAMPLE BOTTLE I.D.'S
NOTES: We'l demained
SIGNATURE OF SAMPLER

James M. Morrigon						- PAGE OF
Consulting Enginee	rs, Inc.					
PROJECT 5/40			JO	B NO. 2573	TAD OPCO,	4/30/90
SAMPLE LOCATION I.D.	TNT 10	M-4	LO	CATION ACT	IVITY START: /3	50 ENO: /500
		WATER LE	VEL / WELL	L DATA		
WELL DEPTH 68.81	FT MEAS		OP OF WELL OP OF CASING	CASING ST (FROM GRO		न
WATER DEPTH 59.64	WELL FT Ø P' □ S		WELL L		LL DIA. BY 2 INCH 4 INCH 6 INCH	WATER LEVEL EQUIP USED ELECT COND.PROBE FLOAT ACTIVATED PRESS. TRANSDUCER
HEIGHT OF 9.77	FT X [] 64	6 GAUFT (2 IN.) 5 GAUFT (4 IN.) 5 GAUFT (6 IN.) _ GAUFT (0	For TOTAL G	PROT	INTEGRITY: YES NO. CASING SECURE TO
		EQUIPMEN	IT DOCUME	NOITATION		DECONTAMINATION
PURGING/SAMPLING EQUIP. US		ED FOR: SAMPLING		EQUIP	MENT I.D.	METHOD:
		_	ITALTIC PUMP ERSIBLE PUMF	, <u> </u>		Secon clean
		☐ BAILE		<u> </u>	55	actors, Low
	Ē		DNSILICON TU		ı	ya/ur
	ă	HAND	PUMP E FILTER			•
		_	SVAC FILTER			
			ANALYSIS (DATA		
			ANAL 1313 (
AMBIENT AIR VOA	РР	METT WO	итн	PPM FIELD	DATA COLLECTI	ED [] IN-LINE [2] IN CONTAINER
PURGE DATA	•gu	@GAL	@GAL	. OGA	L @GAL	SAMPLE OBSERVATIONS
TEMPERATURE, DEG C					-	TURBID COLORED
SPECIFIC CONDUCTIVITY						☐ CLOUDY ☐ CLEAR
(umnos/cm. @ 25 deg.c)					-	ODOR
) FIELD PRESE	RVATION VO	LUME SAI	/ IF MPLE	40 E 2077 E 10 40	
	TERED ME	THOO REC			MPLE BOTTLE 1.0.'S	
			(
<u> </u>			Ì			
NOTES.					А	
			.	KSNATI IOF OF O		-H.A.
				IGNATURE OF S	()	
					~	

James M. Montgom					·	PAGEOF
Consulting Engineer	rs, inc.					
PROJECT SIAD			JOB	NO. 3 573. o	DATE	4/30/90
SAMPLE LOCATION I.D.	TNT 10	MUB	LOCA	TION ACTIVIT	START: //	30 END: /340
	1	WATER LEV	EL / WELL (ATA		
WELL DEPTH 101.91	FT HISTOR		OF WELL OF CASING	CASING STICK (FROM GROUN	-UP J.3 FT	
WATER DEPTH 58.95	FT PVC	MATERIAL:	WELL LOC	CKED? WELL D	DIA. 2 INCH 24 INCH 6 INCH	WATER LEVEL EQUIP USED. ZELECT COND.PROBE FLOAT ACTIVATED PRESS. TRANSDUCER:
HEIGHT OF WATER COLUMN 4/3.02	FT X 2 .65 (GAUFT (2 IN.) GAUFT (4 IN.) GAUFT (6 IN.) GAUFT (IN.	Brank	GALVOL	PROT	INTEGRITY: YES NO CASING SECURE
	E	EQUIPMENT	DOCUMENT	TATION	_	DECONTAMINATION
PURGING/SAMPLING EQUIP USED: PURGING SAMPLING PERISTALTIC PUMP SUBMERSIBLE PUMP BAILER PVC/SILICON TUBING TEFLON/SILICON TUBING AIR LIFT HAND PUMP IN-LINE FILTER PRESS/VAC FILTER						
	· · · · · · · · · · · · · · · · · · ·	FIELD A	NALYSIS DA	TA	· · · · · · · · · · · · · · · · · · ·	
AMBIENT AIR VOA	PPM	WELL MOUT	н	PM FIELD DA	ATA COLLECTE	D IN-LINE IN CONTAINER
PURGE DATA	@GAL	•gu	ogu	@GAL @	9 GAL	SAMPLE OBSERVATIONS
TEMPERATURE, DEG C						COLORED
SPECIFIC CONDUCTIVITY (umhos/cm. @ 25 deg.cj)						CLOUDY CLEAR ODOR
SAMPLE COLLECTION REQUIREMENTS (/ IF REQUIRED AT THIS LOCATION)						
ANALYTICAL PARAMETER FIL	FIELD PRESERY				E BOTTLE I.D.'S	
anannnaa			0000000			
NOTES. EC Metern	ot wo-k	J	SiGI	NATURE OF SAMP	LERO L	-HM
					17	

James M. Montgon	nery		PAGE _ /_ CF _}
Consulting Enginee	ers, Inc.		
PROJECT SIAS		JOB NO. 2573 0040 DAT	E 4/30/9J
SAMPLE LOCATION I.D.	TNT 10 MWC	LOCATION ACTIVITY START:	00 END: /055
	WATER LEVEL / W	ELL DATA	
WELL DEPTH /38-10	MEASURED TOP OF WEI		FT
WATER DEPTH 58.93	FT PVC - Z	FILLOCKED? WELL DIA. 2 INC YES 24 INC NO 6 INC	H Z ELECT COND PROBE
HEIGHT OF WATER COLUMN 79.17	FT X Z 65 GAL/FT (2 IN.) 1.5 GAL/FT (6 IN.) GAL/FT (_ IN.)		LL INTEGRITY YES NO OT. CASING SECURE CASING SECURE COLLAR INTACT
	EQUIPMENT DOCU	IMENTATION	DECONTAMINATION
PURGING/SAMPLING EQUIP. US	✓ IF USED FOR: SED: PURGING SAMPLING	EQUIPMENT I.D.	METHOD: Steen clean
	PERISTALTIC PL SUBMERSIBLE F BAILER PVC/SILICON TL TEFLON/SILICOI AIR LIFT HAND PUMP IN-LINE FILTER PRESS/VAC FILT	JENG N TUBING	Clow very PVC
	FIELD ANALYS	SIS DATA	
AMBIENT AIR VO	A PPM WELL MOUTH	PPM FIELD DATA COLLEC	TED IN-LINE Z IN CONTAINER
PURGE DATA	0GAL 0GAL 0	_GATGATGA	7
TEMPERATURE, DEG C			COLORED
SPECIFIC CONDUCTIVITY (umnos/cm. @ 25 deg.c)			CLOUDY CLEAR COOR
1			
SAMPLE COLLECTION RI		/ IF SAMPLE	
ANALYTICAL PARAMETER FR		COLLECTED SAMPLE BOTTLE I.D.	<u> </u>
חחחחחחחח			
NOTES.			
:		SIGNATURE OF SAMPLER	1_4,00

		_ PAGEOF _/
's, inc.		
	JOB NO. 2573. 2040 DATE	5/3/90
TNT 11 MUP	LOCATION ACTIVITY START: /(74/0 END: 1245
WATER LEVEL / V	WELL DATA	
		7
FT 1/2 PVC [2	☑ YES ☐ 4 INCH	
FT X = .65 GAUFT (2 IN.) =	PROT	LINTEGRITY: YES NO CONTROL OF THE COLLAR INTACT TO THE RESERVE TO THE COLLAR INTACT TO THE RESERVE TO THE COLLAR INTACT TO THE COLLAR I
EQUIPMENT DOC	UMENTATION	DECONTAMINATION METHOD:
PERISTALTIC P SUBMERSIBLE BAILER PYC/SILICON TI TEFLON/SILICO AIR LIFT HAND PUMP IN-LINE FILTER	PUMP J' 33 UBING ON TUBING	Steem Cleaner Bailors L'on Value
FIELD ANALYS	SIS DATA	
PPM WELL MOUTH	PPM FIELD DATA COLLECT	ED [/IN-LINE]
0 5 GA 0 10 GA 0 15	_GAL @GAL @GAL	SAMPLE OBSERVATIONS
16 75 7	7	☐ TURBID ☐ COLORED
		CLOUDY CLEAR ODOR
FIELD PRESERVATION VOLUME	SAMPLE COLLECTED SAMPLE BOTTLE I.D.'S	
	FT MEASURED TOP OF WE HISTORICAL TOP OF CA WELL MATERIAL WELL MATE	JOB NO. 233.0040 DATE WATER LEVEL / WELL DATA WELL MATERIAL

James M. Montgomery Consulting Engineers, Inc.	PAGE / CF /
PROJECT SIAD JOB NO. 2573.0040 DATE SAMPLE LOCATION I.D. TNT 12 MWA LOCATION ACTIVITY START: 8	
WATER LEVEL / WELL DATA WELL DEPTH 60.22 FT HISTORICAL TOP OF CASING (FROM GROUND) 2.2 F	т
WELL MATERIAL: WELL LOCKED? WELL DIA. \$\infty\$ 2 INCH WATER DEPTH 52.59 FT \$\infty\$ PVC \$\subseteq\$ YES \$\subseteq\$ 4 INCH SS \$\subseteq\$ NO \$\subseteq\$ 6 INCH	WATER LEVEL EQUIP USED 2 ELECT COND PROBE
WATER COLUMN 1.5 GAUFT (6 IN.)	INTEGRITY: YES NO CASING SECURE SECURE RETE COLLAR INTACT RETERMINED
EQUIPMENT DOCUMENTATION	DECONTAMINATION
PURGING/SAMPLING EQUIP. USED: PURGING SAMPLING EQUIPMENT I.D. PERISTALTIC PUMP SUBMERSIBLE PUMP BAILER PVC/SILICON TUBING TEFLON/SILICON TUBING AIR LIFT HAND PUMP IN-LINE FILTER PRESS/VAC FILTER	Steam Cleand bailors Now ve vi
FIELD ANALYSIS DATA	
AMBIENT AIR VOA PPM WELL MOUTH PPM FIELD DATA COLLECT	ED IN-LINE IN CONTAINER
PURGE DATA	SAMPLE OBSERVATIONS
TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (umnos/cm. @ 25 deg.c)	☐ TURBID ☐ COLORED ☐ CLOUDY ☐ CLEAR ☐ ODOR
SAMPLE COLLECTION REQUIREMENTS (/ IF REQUIRED AT THIS LOCATION) / IF FIELD PRESERVATION VOLUME SAMPLE ANALYTICAL PARAMETER FILTERED METHOD REQUIRED COLLECTED SAMPLE BOTTLE I.D.S.	•
NOTES. SIGNATURE OF SAMPLER	Hull

James M. Montgom Consulting Enginee			_ PAGEOF
PROJECT 5/AS		JOB NO. 2573, 0040 DAT	5/1/90
SAMPLE LOCATION I.D.	THY 13 MWA	LOCATION ACTIVITY START:	830 END: 950
	WATER LEVEL / V		_
WELL DEPTH 69.24	MEASURED TOP OF WE TOP OF CA		FT
WATER DEPTH 58.42	FT 2 PVC	FELL LOCKED? WELL DIA. 22 INCI 2 YES 4 INCI 3 NO 6 INCI	ELECT.COND.PROBE
HEIGHT OF WATER COLUMN 70.82		PRO	LINTEGRITY: YES NOT T. CASING SECURE TO CRETE COLLAR INTACT TO CRETE
	EQUIPMENT DOC	UMENTATION	DECONTAMINATION METHOD:
Purging/Sampling Equip. US	ED: PURGING SAMPLING PERISTALTIC P SUBMERSIBLE BAILER PVC/SILICON T TEFLON/SILICO AIR LIFT HAND PUMP IN-LINE FILTER PRESS/VAC FIL		Triple Triple Tinsel bactor and flow value Uith DI withor
	FIELD ANALY	SIS DATA	
AMBIENT AIR VOA	PPM WELL MOUTH	PPM FIELD DATA COLLEC	TED IN-LINE IN CONTAINER
PURGE DATA	•	_GALGALGAL	SAMPLE OBSERVATIONS TURBID
pH, units SPECIFIC CONDUCTIVITY (urrinos/am, @ 25 deg.c)			CLOARD CLEAR ODOR
) FIELD PRESERVATION VOLUME	/F SAMPLE	
	TERED METHOD REQUIRED	COLLECTED SAMPLE BOTTLE I.D.S	
סססססססס			
NOTES.			
		SIGNATURE OF SAMPLER	LAIL
		0	

Į

PROJECT SIA	JOB NO. 0573, 0040 DATE 4/84/90
SAMPLE LOCATION LD. TNTHMWA	LOCATION ACTIVITY START: 735 END: /150
WATER LEVEL / \	WELL DATA
WELL DEPTH 65. 12 FT HISTORICAL TOP OF CA	
WATER DEPTH TO MY FT D PVC - B	VELL LOCKED? WELL DIA. 2 INCH WATER LEVEL EQUIP. USED: WYES 4 INCH 2 ELECT.COND.PROSE NO 6 INCH 5 FLOAT ACTIVATED PRESS. TRANSDUCER
HEIGHT OF WATER COLUMN 4.69 FT X 65 GAUFT (2 IN.) - 1.5 GAUFT (6 IN.) - GAUFT (IN.)	WELL INTEGRITY: YES NO PROT. CARRY SECURE CONCRETE TOLLAR INTACT WORLD
PURGING/SAMPLING EQUIP. USED: PURGING/SAMPLING EQUIP. USED: PURGING SAMPLING PERISTALTIC F SUBMERSIBLE BAILER PVC/SILICON T TEFLON/SILICO AIR LIFT AIR LIFT PRESS/VAC FILE PRESS/VAC F	EQUIPMENT I.D. PUMP PUMP TUBING DECONTAMINATION METHOD: IT I p le r I r Sed Dailors P Clow valve With DI Wehr
FIELD ANALY	SIS DATA
PURGE DATA G S GAL G C GAL G CO	PPM FIELD DATA COLLECTED IN-LINE IN CONTAINER
PURGE DATA DEGRATURE. DEG C PH. UNITS SPECIFIC CONDUCTIVITY (umnos/on. @ 25 dog.c) PURGE DATA DEGRATURE. DEG C 1.5 1.5 1.7 1.7 1.7 1.7 1.7 1.7	TURBID CLOUDY
SAMPLE COLLECTION REQUIREMENTS (/ IF REQUIRED AT THIS LOCATION) ANALYTICAL PARAMETER / FRITERED METHOD REQUIRED OUT OUT OUT NOTES:	SAMPLE COLLECTED SAMPLE BOTTLE I.D.'S
	SIGNATURE OF SAMPLER

SIGNATURE OF SAMPLER

NOTES. Water Was very 5,144

, 61-Hell'

 ;
<u></u> /

SIGNATURE OF SAMPLERS UL NO

James M. Montgom					PAGE L OF 1
Consulting Enginee	rs, inc.				
PROJECT SIAD P	HASE I RI/H	<u> </u>	JOB NO. 287	300H) DATE	5/31/20
SAMPLE LOCATION I.D.	LF-91-1	nu A	LOCATION ACT	IVITY START:	80 END: 1740
	WA*	TER LEVEL / W	ELL DATA		
WELL DEPTH /05.07	MEASURED HISTORICAL	☐ TOP OF WEL			
WATER DEPTH 91.83	FT WELL MATE] 5	LL LOCKED? WEI YES NO	LL DIA. 2 INCH 84 INCH 6 INCH	WATER LEVEL EQUIP USED: ELECT.COND.PROBE FLOAT ACTIVATED PRESS. TRANSDUCER
HEIGHT OF WATER COLUMN 13.24	FT X PX 65 GALF	FT (4 IN.)	8.61 GALVOL	PROT.	NTEGRITY YES NO CASING SECURE ETE COLLAR INTACT
	EQU	IPMENT DOCU	MENTATION		DECONTAMINATION
Purging/Sampling Equip. US	F USED FOR SAMP		BING TUBING	_	METHOD: EMM CLEAN Bailer Pung Hoses
	[FIELD ANALYS	SIS DATA		
AMBIENT AIR VOA	WA-PPM W	ELL MOUTH	PPM FIELD	DATA COLLECTE	D _ IN-LINE IN CONTAINER
PURGE DATA		O GN 0 100	GAL 0/50 GA	L @GAL S	AMPLE OBSERVATIONS
TEMPERATURE, DEG C	1.1 2	7.0	7.0		COLORED
SPECIFIC CONDUCTIVITY (umnos/cm. @ 25 deg.c)	1000 100	0 1000	1000		CLEAR ODOR
					3 00011
SAMPLE COLLECTION RE			18		
ANALYTICAL PARAMETER FILT	FIELD PRESERVATION METHOD		SAMPLE COLLECTED SAM	PLE BOTTLE I.D.'S	
200000000			00000000		
NOTES:				\bigcap_{I}	- holi
			SIGNATURE OF SI	AMPLER 62	- nu-

James M. Montgor Consulting Engine				<u> </u>	PAGE OF
PROJECT SIAO P	HASE 1 RI/FS	JOB N	0.2573.	OCH DATE	6/1/90
SAMPLE LOCATION I.D.	ALF- Ø2-MW)	LOCAT	TION ACTIV	START: O	745 ENO: 0900
		EVEL / WELL D	ATA		
WELL DEPTH 79 22			CASING STICE FROM GROU		
WATER DEPTH 7=93	WELL MATERIAL: FT SPVC SS	WELL LOCK	KED? WELL	DIA. 2 INCH 584 INCH 6 INCH	WATER LEVEL EQUIP USED ELECT COND PROBE FLOAT ACTIVATED PRESS. TRANSDUCER
HEIGHT OF WATER COLUMN 21.24	☐ .16 GAUFT (2 IN. / FT X Ø .65 GAUFT (4 IN. ☐ 1.5 GAUFT (6 IN. ☐)	GAL/VOL TOTAL GAL	PROT.	INTEGRITY: YES NO CASING SECURE RETE COLLAR INTACT
	EQUIPME	NT DOCUMENT	ATION		DECONTAMINATION
PURGING/SAMPLING EQUIP. U	PERII SUBA BAILE PVCA TEFL AIR L IN-LIN	SILICON TUBING ON/SILICON TUBING	EQUIPME	5\ 	eam Clear Bailer Punp 1+0ses
	FIELD	ANALYSIS DAT	ra -		
AMBIENT AIR VO	A W PPM WELL MO	PP OF HTU	M FIELD D	ATA COLLECTE	D IN-LINE
PURGE DATA	0.50 GM 0.160 GM	0/50 GM 0	200 GAL	@ 250 GAL	SAMPLE OBSERVATIONS
TEMPERATURE, DEG C PH, units SPECIFIC CONDUCTIVITY	6.0 6.6	6.6	6.6	6.6	COLORED
(umnos/am. @ 25 deg.c)	1600 1600	1600 1	ovo	1600	CLEAR COOR
SAMPLE COLLECTION R	EQUIREMENTS				
	FFIELD PRESERVATION VO	/IF DUINE SAMPLE DUINED COLLECTI		E BOTTLE I.D.'S	
מססססססח					
		مودوووو			
NOTES.					
		SIGNA	TURE OF SAM	PLEAT, 6L	HU1
				U	

Consulting Engine				·		PAGE OF
	, -					
PROJECT SIAD PHI	HSE I RI	F3	Jo	08 NO. 257	3.0041 DATE	6/1/90
SAMPLE LOCATION I.D.	7LF-03	3-MWA	ro	CATION ACT	IVITY STARTO	700 END: 1055
		WATER LE	VEL / WEL	L DATA		
WELL DEPTH 107.65	FT HISTO		OP OF WELL OP OF CASING	CASING ST		न
WATER DEPTH 95.83			WELL!	S	LL DIA. 2 INCH 2 INCH 6 INCH 	ELECT. COND PROBE
HEIGHT OF WATER COLUMN 11.82	FT X 是 65	GAL/FT (2 IN.) GAL/FT (4 IN.) GAL/FT (6 IN.) GAL/FT (I			PRO1	L INTEGRITY: YES NO CASING SECURE COLLAR INTACT
		EQUIPMEN	T DOCUME	NTATION		DECONTAMINATION
PURGING/SAMPLING EQUIP. U		ED FOR: SAMPLING		EQUIP	MENTI.D.	METHOD:
	8	SUBM	TALTIC PUMP ERSIBLE PUM			Pump
			ILICON TUBIN			BAILER
		☐ TEFLO	ON/SILICON TU	BING		HUSES
		☐ HAND	PUMP E FILTER			
		_	SVAC FILTER			
		FIELD	ANALYSIS	DATA	-	
AMBIENT AIR VO	A - 00	_				
AMBIENT AIR VO		<u>-</u>			DATA COLLECT	M IN CONTAINER
PURGE DATA	0 /0 GAL	0 25 GAL	0 50 GN	L 0 100 GA	- 150 GAL	SAMPLE OBSERVATIONS TURBID
TEMPERATURE, DEG C	6.8	68	7.0	7.1	7.,	COLORED
SPECIFIC CONDUCTIVITY (umnos/cm. @ 25 deg.c)	1500	1500	1400	1200	1200	CLEAR COOR
						- V
SAMPLE COLLECTION R		TS		/ F		
	FFIELD PRESE		LUME SA	MPLE	IPLE BOTTLE I.D.'S	
מתססמרוממ						
NOTES.		<u>.</u>		<u> </u>		
··· ♥ E ♥.						
				IGNATURE OF SA	IMPLER 6	<u> </u>
					ί,	

Consulting Enginee	ers, Inc.		PAGE _ /_ OF _ /
PROJECT SIAJ PAS	E 1 R1/FS	JOB NO. 2573 004 (DATE 5/1/95
SAMPLE LOCATION I.D.	CB-81-MUA	LOCATION ACTIVITY ST	*ART: 1-36 END: 1520
	WATER LEV	EL / WELL DATA	
VELL DEPTH		OF WELL CASING STICK-UP (FROM GROUND)	2.2 FT
VATER DEPTH 79.69	WELL MATERIAL:	-	2 INCH WATER LEVEL EQUIP USES A INCH ELECT COND PROBE FLOAT ACTIVATED PRESS, TRANSCUCES
HEIGHT OF 13.19	FT X 5.65 GAUFT (2 IN.) 1.5 GAUFT (6 IN.) GAUFT (_ IN	- STORE S. STGALNOL 150 TOTAL GAL PURGE	WELL INTEGRITY SES NO PROT. CASING SECURE CONCRETE COLLAR INTACT
urging/sampling Equip. Us	F USED FOR: SED: PURGING SAMPLING PERIST SUBME BAILER PVC/SIL TEFLON HAND P	UMP	DECONTAMINATION METHOD Stewn (lein Punp Benin Hoses
	FIELD A	NALYSIS DATA	
AMBIENT AIR VO	PPM WELL MOU	TH PPM FIELD DATA CO	OLLECTED IN-LINE
PURGE DATA TEMPERATURE, DEG C pH. units SPECIFIC CONDUCTIVITY (umnos/am. @ 25 deg.c)	600 590	70 69 590 600	GAL SAMPLE OBSERVATIONS TURBID COLORED CLOUDY CLEAR ODOR
			LE 1.0.'S

Consulting Engine		PAGE OF
	JOB NO. 2573 3 C 3 - 82 - M J LOCATION ACTIV	DATE <u>3/デーラン</u> ITY START: ひきつと END: 0554
	WATER LEVEL / WELL DATA MEASURED TOP OF WELL CASING STICE	K-UP
WELL DEPTH 3762	WELL MATERIAL: WELL LOCKED? WELL FT ST PVC SS SS NO	·
HEIGHT OF WATER COLUMN /Y. 88	FT X 8 .65 GAUFT (2 IN.) 1.5 GAUFT (6 IN.) GAUFT (IN.) 727 GALVOL 240 TOTAL GAL	WELL INTEGRITY: YES NO PROT. CASING SECURE CONCRETE COLLAR INTACT OTHER
PURGING/SAMPLING EQUIP. US	EQUIPMENT DOCUMENTATION /# USED FOR: ED: PURGING SAMPLING EQUIPME PERISTALTIC PUMP SUBMERSIBLE PUMP BAILER PVC/SILICON TUBING TEFLON/SILICON TUBING AIR LIFT HAND PUMP IN-LINE FILTER PRESS/VAC FILTER	DECONTAMINATION METHOD: Steam Crean Parm Heses
AMBIENT AIR VO	FIELD ANALYSIS DATA PPM WELL MOUTH — PPM FIELD D	ATA COLLECTED [IN-LINE
PURGE DATA TEMPERATURE, DEG C pH. units SPECIFIC CONDUCTIVITY (umnos/gm. @ 25 deg.c)	10 GA 0 30 GA 0 100 GA 0 150 G	SAMPLE OBSERVATIONS TURBID COLORED CLOUDY CLEAR ODOR
OCCUPARAMETER FIL) FIELD PRESERVATION VOLUME SAMPLE	E BOTTLE I.D 'S
NOTES.	SIGNATURE OF SAMP	LER Of 135

Consulting Engine	ers, Inc.			PAGE _/_ OF
PROJECT SIAO PHO	DE I RI/FS - ROC	JOB NO	D. 2573 00 41 DA	TE 3/3//70
SAMPLE LOCATION I.D.	DMO - 23 - MW	A LOCAT	ION ACTIVITY START:	0845 END: /140
	WATER	LEVEL / WELL DA	ITA	
WELL DEPTH 110 03			ASING STICK-UP 1.3	FT
WATER DEPTH 96 28	WELL MATERIAL FT Z PVC T	WELL LOCK	ED? WELL DIA. 2 IN EY4 IN 5 6 IN	CH ELECT COND PACEE
HEIGHT OF NATER COLUMN 13.75	.16 GAUFT (2 FT X 22 .65 GAUFT (4 1.5 GAUFT (6 GAUFT (IN.) = 0.17	TOTAL GAL PURGED CO	ELL INTEGRITY YES NOT. CASING SECURE 20 CHAR INTACT 20 CHER
	EQUIPM	ENT DOCUMENTA	TION	DECONTAMINATION
	DR 84	11 60		O., m D
	P FE AIF	ILER CASILICON TUBING FLON/SILICON TUBING R LIFT IND PUMP LINE FILTER RESS/VAC FILTER		pump pos <u>e</u>
		CASILICON TUBING FLON/SILICON TUBING R LIFT LIND PUMP LUNE FILTER		•
AMBIENT AIR VO	FIEL	CSILICON TUBING FLONSILICON TUBING R LIFT LND PUMP LUNE FILTER RESS/VAC FILTER		CTED [IN-LINE
PURGE DATA	FIELDA PPM WELL!	CSILICON TUBING FLONSILICON TUBING R LIFT LIND PUMP LUNE FILTER RESS/VAC FILTER LD ANALYSIS DAT MOUTH PPM GAL @ 200 GAL @	A FIELD DATA COLLE	CTED [IN-LINE] IN CONTAINER SAMPLE OBSERVATIONS
PURGE DATA TEMPERATURE, DEG C pH, units	FIEL	CSILICON TUBING FLONSILICON TUBING R LIFT IND PUMP LUNE FILTER IESS/VAC FILTER D ANALYSIS DAT MOUTH PPA	A FIELD DATA COLLE	CTED IN-LINE IN CONTAINER SAMPLE OBSERVATIONS TURBID COLORED
PURGE DATA TEMPERATURE, DEG C	FIEL PR PR PR PR PR PR PR PR PR P	CSILICON TUBING FLONSILICON TUBING R LIFT LIND PUMP LUNE FILTER RESS/VAC FILTER MOUTH PPN GAL @ 200 GAL @	FIELD DATA COLLE	CTED IN-LINE IN CONTAINER SAMPLE OBSERVATIONS TURBID
PURGE DATA TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (umnosion. © 25 deg.c) AMPLE COLLECTION F IF REQUIRED AT THIS LOCATION MALYTICAL PARAMETER F	FIEL PPM WELL PPM WEL PPM WELL P	CSILICON TUBING FLONSILICON TUBING R LIFT IND PUMP LUNE FILTER RESS/VAC FILTER PPN MOUTH PPN GAL 9 200 GAL 9 / 2 00 / 2 00 VOLUME REQUIRED COLLECTE	FIELD DATA COLLE	CTED IN-LINE IN CONTAINER SAMPLE OBSERVATIONS TURBID COLORED CLOUDY CLEAR ODOR
PURGE DATA TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (umnosion. © 25 deg.c) AMPLE COLLECTION F IF REQUIRED AT THIS LOCATION MALYTICAL PARAMETER F	FIEL PPM WELL PPM WEL PPM WELL P	CSILICON TUBING FLONSILICON TUBING R LIFT IND PUMP LUNE FILTER RESS/VAC FILTER PPN MOUTH PPN GAL 9 200 GAL 9 / 2 00 / 2 00 VOLUME REQUIRED COLLECTE	FIELD DATA COLLE	CTED IN-LINE IN CONTAINER SAMPLE OBSERVATIONS TURBID COLORED COLORED CLOUDY CLEAR ODOR
PURGE DATA TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (umnosion. © 25 deg.c) AMPLE COLLECTION F IF REQUIRED AT THIS LOCATION MALYTICAL PARAMETER F	FIEL PPM WELL PPM WEL PPM WELL P	CSILICON TUBING FLONSILICON TUBING R LIFT IND PUMP LUNE FILTER RESS/VAC FILTER PPN MOUTH PPN GAL 9 200 GAL 9 / 2 00 / 2 00 VOLUME REQUIRED COLLECTE	FIELD DATA COLLE	CTED IN-LINE IN CONTAINER SAMPLE OBSERVATIONS TURBID COLORED CLOUDY CLEAR ODOR
PURGE DATA TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (umnos/cm. © 25 deg.c) AMPLE COLLECTION F / IF REQUIRED AT THIS LOCATION	FIEL PPM WELL PPM WEL PPM WELL P	CSILICON TUBING FLONSILICON TUBING R LIFT IND PUMP LUNE FILTER RESS/VAC FILTER MOUTH PPN GAL 9 200 GAL 9 / 2 00 / 2 00 / 2 00 / 2 00 VOLUME SAMPLE	FIELD DATA COLLE	CTED IN-LINE IN CONTAINER SAMPLE OBSERVATIONS TURBID COLORED CLOUDY CLEAR ODOR
PURGE DATA TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (umnosion. © 25 deg.c) AMPLE COLLECTION F IF REQUIRED AT THIS LOCATION MALYTICAL PARAMETER F	FIEL PPM WELL PPM WEL PPM WELL P	CSILICON TUBING FLONSILICON TUBING R LIFT IND PUMP LUNE FILTER RESS/VAC FILTER PPN MOUTH PPN GAL 9 200 GAL 9 / 2 00 / 2 00 VOLUME REQUIRED COLLECTE	FIELD DATA COLLE	CTED IN-LINE IN CONTAINER SAMPLE OBSERVATIONS TURBID COLORED COLORED CLOUDY CLEAR ODOR

James M. Montgom	nery			_ PAGE OF
Consulting Enginee	rs, Inc.			
PROJECT SIAD PH	ADEI RIFS	JOB NO.	25 73 0041 DATE	5/3,/50
SAMPLE LOCATION I.D.	40-94-MWA	LOCATIO	N ACTIVITY START: /	2/15 END: 14 25
	WATER L	EVEL / WELL DAT	Ά	
WELL DEPTH //0.00	FT HISTORICAL ST		SING STICK-UP 1.4	ना
WATER DEPTH 96 48	WELL MATERIAL: FT PVC	WELL LOCKED VES NO	D? WELL DIA. □ 2 INCH SE « INCH □ 6 INCH	ELECT.COND PROBE
HEIGHT OF WATER COLUMN 13.52	FT X) - 0.11	PRO	L INTEGRITY: YES NOT TO CASING SECURE CRETE COLLAR INTACT
	EQUIPME	NT DOCUMENTAT	TON	DECONTAMINATION
PURGING/SAMPLING EQUIP. US	PERIS SUBA SUBA PVCS TEFL AIR L IN-LIF	SILICON TUBING ON/SILICON TUBING	EQUIPMENT I.D.	METHOD: Steam Clean Bailers Pump Hoses
	FIELD	ANALYSIS DATA		
AMBIENT AIR VOA	PPM WELL MO	UTH PPM	FIELD DATA COLLEC	TED IN-LINE IN CONTAINER
PURGE DATA	0 10 GAL 0 50 GA	0 /00 GAL 0 /.	50 GAL @GAL	SAMPLE OBSERVATIONS
TEMPERATURE, DEG C pH, units	7.5 7.0	6.8	. 7	TURBID COLORED
SPECIFIC CONDUCTIVITY (umnowam. @ 25 deg.c)	1900 1100	1100 11	00	CLEAR CODOR
	f) FFIELD PRESERVATION VO	DLUME SAMPLE OUIRED COLLECTED	SAMPLE BOTTLE I.D.'S	.7
		SIGNATU	RE OF SAMPLER	-401

JAN James M. Montgomery	1 OF 1
Consulting Engineers, Inc.	
PROJECT SIAP PHASE ! RI/FS JOB NO. 2573004/ DATE 5/3	1/50
SAMPLE LOCATION I.D. DMO-05-MWA LOCATION ACTIVITY START: 1425	ND: /545
WATER LEVEL / WELL DATA	
WELL DEPTH 109.98 FT HISTORICAL TOP OF WELL CASING STICK-UP TOP OF CASING (FROM GROUND)	
WATER DEPTH 95. 55 FT SEPVC = STYES STAINCH SE	LEVEL EQUIP USED: LECT COND PROBE LOAT ACTIVATED RESS. TRANSDUCER
HEIGHT OF WATER COLUMN 14.43 FT X 25-65 GAL/FT (4 IN.) - 9.37 GAL/OL WELL INTEGR PROT. CASING CONCRETE COLUMN GAL/FT (6 IN.) - 40 TOTAL GAL PURGED CONCRETE COLUMN GAL/FT (10.)	SECURE 🙎 🖺
1	NTAMINATION
PURGING/SAMPLING EQUIP. USED: PURGING SAMPLING PERISTALTIC PUMP SUBMERSIBLE PUMP BAILER PVC/SILICON TUBING TEFLON/SILICON TUBING AIR LIFT HAND PUMP IN-LINE FILTER PRESS/VAC FILTER	n Clen ng a.ley 14020
FIELD ANALYSIS DATA	
	IN-LINE IN CONTAINER
	OBSERVATIONS TURBID
TEMPERATURE. DEG C pH. units G. 9 G. 9 G. G	COLORED
SPECIFIC CONDUCTIVITY (umnos/cm. @ 25 deg.c) // // // // // // // // // // // // //	CLOUDY CLEAR ODOR
SAMPLE COLLECTION REQUIREMENTS (/ IF REQUIRED AT THIS LOCATION) / F FIELD PRESERVATION VOLUME SAMPLE	
ANALYTICAL PARAMETER FILTERED METHOD REQUIRED COLLECTED SAMPLE BOTTLE I.D.'S	
L 	
NOTES:	
	M. HULL

James M. Montgo						- PAGE / OF L
Consulting Engine	ers, Inc.					
PROJECT SIAD 9	HASE ?	.२।	JOE	NO. 3573	CTI DATE	6/8/96
SAMPLE LOCATION I.D.	DS3-4-	Mw 4	LOC	ATION ACTIV	START: /	CQC END: 1/3C
		WATER LE	VEL / WELL	DATA		
VELL DEPTH 71.70	FT HISTO	URED DO	P OF WELL P OF CASING	CASING STIC (FROM GROU		7
VATER DEPTH 24.74	FT 2 PV		WEHLLO	OCKED? WELL	DIA. 22 INCH 4 INCH 6 INCH	ELECT.COND.PROBE
VATER COLUMN 16.96	X □ .65 □ 1.5	GAUFT (2 IN.) GAUFT (4 IN.) GAUFT (6 IN.) GAUFT (II	2.7/	GALWOL	PRO	L INTEGRITY: YES NOT CASING SECURE CRETE COLLAR INTACT
		EQUIPMEN	T DOCUME!	ITATION		DECONTAMINATION
JRGING/SAMPLING EQUIP. U		SAMPLING	FAL 370 DU 110	EQUIPM	ENT I.D.	METHOD: Steen
		SUBME	TALTIC PUMP ERSIBLE PUMP			Crescin
		=	LICON TUBING			Ba 25
	ğ	AIR LIF	·=·	ing		5 55 Jul ≈€
		☐ IN-LINE	FILTER WAC FILTER) 5 🐱
		FIELD /	NALYSIS D	ATA		
AMBIENT AIR VO	A PPI	WELL MOU	тн	PPM FIELD	DATA COLLECT	TED IN-LINE
PURGE DATA	0_2_GAL	0 77 GAL	@ GAL	6 GAL	 GN	SAMPLE OBSERVATIONS
TEMPERATURE, DEG C pH, units	6.3	6 C				TURBID COLORED CLOUDY
SPECIFIC CONDUCTIVITY (umnos/cm. @ 25 deg.c)	7300	16,000				CLEAR COOR
AMPLE COLLECTION F						
IF REQUIRED AT THIS LOCATIO	N)		UNE SAM	F or E		
VALYTICAL PARAMETER F			UIRED COLLE	CTED SAME	LE BOTTLE I.D.:S	<u> </u>
			Č			
otes.					_	1 id
			لاھ	MATI :05 05 044	()	
			SK	ENATURE OF SAM	m LER	

James M. Montgom Consulting Engineer		7	PAGE OF
PROJECT 5/AD PH	43E 1 3 1	JOB NO. 25 73 CCHI DATE	-18192
SAMPLE LOCATION I.D.	105-01-17WA	LOCATION ACTIVITY START:073	SS END:/CC3
	WATER LEVEL / WI	ELL DATA	
WELL DEPTH 78 60	MEASURED TOP OF WELL	L CASING STICK-UP Z.6 FT	
WATER DEPTH 5815	FT ZE PVC C C CS	LL LOCKED? WELL DIA. 22 INCH YES	WATER LEVEL EQUIP USED ELECT COND PROBE FLOAT ACTIVATED PRESS. TRANSDUCER
HEIGHT OF WATER COLUMN Zo. 45	FT X		NTEGRITY: YES NO LASING SECURE COLLAR INTACT
Purging/Sampling Equip. Us	EQUIPMENT DOCUI IF USED FOR: ED: PURGING SAMPLING PERISTALTIC PURGING SUBMERSIBLE PURGING SAMPLING PERISTALTIC PURGING SUBMERSIBLE PURGING SAILER PVC/SILICON TURGING SAIR LIFT AIR LIFT HAND PUMP IN-LINE FILTER PRESS/VAC FILTI	EQUIPMENT I.D. 5+ MP UMP BING TUBING	DECONTAMINATION METHOD: exc.n Cleven Beliles
	FIELD ANALYS	IS DATA	
AMBIENT AIR VOA	PPM WELL MOUTH	PPM FIELD DATA COLLECTE	IN-LINE IN CONTAINER
PURGE DATA	€ 2 an € 38 an € 50	gn 0 <u>55</u> gn 0 gn s	AMPLE OBSERVATIONS
TEMPERATURE, DEG C	7.2 70 6.8	6.8	TURBID
SPECIFIC CONDUCTIVITY (umnos/cm. @ 25 deg.c)	300 /500 730		CLOUDY CLEAR ODOR
ANALYTICAL PARAMETER FIL) FIELD PRESERVATION VOLUME	SAMPLE SAMPLE BOTTLE I.D.'S	
9099999			
OTES:		<u> </u>	
110 1 20.		SIGNATURE OF SAMPLER Tist	j ne
		SIGNATURE OF SAMPLER	

James M. Montgome	ery	PAGE _/_OF_/
Consulting Engineer	s, inc.	
PROJECT S,43 DH	452 1 21 JOB NO. 2573 COH DA	TE 6/5/90
SAMPLE LOCATION I.D.	WT-91-MWB LOCATION ACTIVITY START:	1005 END: 1,25
	WATER LEVEL / WELL DATA	
WELL DEPTH 102 55	TOP OF WELL CASING STICK-UP 3.2 (FROM GROUND)	FT
WATER DEPTH 59,55	WELL MATERIAL: WELL LOCKED? WELL DIA. 2 INI FT B PVC D DYES D 4 INI C SS NO C 6 INI C	CH Z ELECT COND PROBE
HEIGHT OF WATER COLUMN 43.40	1.5 GAL/FT (6 IN.) TOTAL GAL PURGED CO	ELL INTEGRITY: YES NO! IOT. CASING SECURE INCRETE COLLAR INTACT SET THER
	EQUIPMENT DOCUMENTATION	DECONTAMINATION
Purging/Sampling Equip. USE	PED: PURGING SAMPLING EQUIPMENT I.D. PERISTALTIC PUMP SUBMERSIBLE PUMP BAILER PVC/SILICON TUBING TEFLON/SILICON TUBING AIR LIFT HAND PUMP IN-LINE FILTER PRESS/VAC FILTER	gheein Cleen Beiling Pung Hores
- <u> </u>	FIELD ANALYSIS DATA	
AMBIENT AIR VOA	PPM WELL MOUTH PPM FIELD DATA COLLE	CTED IN-LINE IN CONTAINER
PURGE DATA	0 20 GAL 0 120 GAL 0 190 GAL 0 300 GAL 0GA	OF
TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (umnos/cm. @ 25 deg.c)	6.5 5.4 6.3 5.5 1000 1000 1000 1000	TURBID COLORED CLOUDY CLEAR COMPA
SAMPLE COLLECTION RE (/ IF REQUIRED AT THIS LOCATION)		
ANALYTICAL PARAMETER FILT	ERED METHOD REQUIRED COLLECTED SAMPLE BOTTLE 1.0).'S
NOTES:		
	SIGNATURE OF SAMPLER	hlas

James M. Montgom Consulting Enginee		PAGE/_ OF/_
PROJECT 5/40 P	1452 1 12 JOB NO. 2573 3541 DATE	6/5/8
SAMPLE LOCATION I.D.	NT-Ø1-MWC LOCATION ACTIVITY START:	1800 END: C555
	WATER LEVEL / WELL DATA	
WELL DEPTH 140 19	FT HISTORICAL TOP OF CASING (FROM GROUND) 2.2 F	न
WATER DEPTH 58 5	WELL MATERIAL: WELL LOCKED? WELL DIA. 2 INCH	ELECT COND PROBE
HEIGHT OF WATER COLUMN 81.68	1 5 GAL/FT (6 IN.)	LINTEGRITY: YES NO CONTROL OF THE COLLAR INTACT TO
Purging/Sampling Equip. US	FIF USED FOR: PURGING SAMPLING PERISTALTIC PUMP SUBMERSIBLE PUMP BAILER PVC/SILICON TUBING TEFLON/SILICON TUBING AIR LIFT HAND PUMP IN-LINE FILTER PRESS/VAC FILTER	METHOD: Paum of Bain Bailer Hotes
AMBIENT AIR VOA	FIELD ANALYSIS DATA PPM WELL MOUTH PPM FIELD DATA COLLECT	
PURGE DATA	• 20 an • 200 an • 30 an • 420 an • an	IN CONTAINER SAMPLE OBSERVATIONS
TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (umnos/cm. @ 25 deg.c)	6.6 0.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	TURBID COLORED CLOUDY CLEAR COOOR
agaaga:a		
NOTES:	SIGNATURE OF SAMPLER	11362

James M. Montgomery Consulting Engineers, Inc.		_ PAGE/_OF _/_
Consulting Engineers, Inc.		
PROJECT 5/40 PHASE	2) JOB NO. 2573 CCT/ DATE	6/4/90
SAMPLE LOCATION I.D. THT-	L-MW 4 LOCATION ACTIVITY START: 7.4	OC END: 153C
	WATER LEVEL / WELL DATA	
WELL DEPTH 75 74 FT D HIS	ASURED TOP OF WELL CASING STICK-UP 2.0 F	7
WATER DEPTH 56 67 FT 2	WELL LOCKED? WELL DIA. 22 INCH	WATER LEVEL EQUIP USED: BLECT COND.PROBE FLOAT ACTIVATED PRESS. TRANSDUCER
WATER COLUMN /9.07 FT X	1.5 GAL/FT (6 IN) PROT	INTEGRITY: YES NO CASING SECURE SECURE RETE COLLAR INTACT
	EQUIPMENT DOCUMENTATION	DECONTAMINATION
	USED FOR: NG SAMPLING PERISTALTIC PUMP SUBMERSIBLE PUMP BAILER PVC/SILICON TUBING TEFLON/SILICON TUBING AIR LIFT HAND PUMP IN-LINE FILTER PRESS/VAC FILTER	METHOD: Fecin Clean SS Ballac Tethan Billec SS a re
	FIELD ANALYSIS DATA	:
	PPM WELL MOUTH PPM FIELD DATA COLLECT AL 3C GAL 55 GAL 6 GAL 6 GAL 63 62 /300 /300	ED
SAMPLE COLLECTION REQUIREMS	· · · · -	!
JIF FIELD PRE	SERVATION VOLUME SAMPLE METHOD REQUIRED COLLECTED SAMPLE BOTTLE I.D.'S	:
0000000		
NOTES:	SIGNATURE OF SAMPLER	h Jac

James M. Montgon Consulting Enginee		PAGE OF
PROJECT Sing 3	4.25E 1 ,21 JOB NO. 2573 00	DATE 6/4/50
SAMPLE LOCATION I.D.	NT-2-MWB LOCATION ACTIVIT	Y START:/ 실 장 ENO: // 크리
	WATER LEVEL / WELL DATA	
WELL DEPTH /C/03	MEASURED TOP OF WELL CASING STICK-I	
WATER DEPTH 56.68	WELL MATERIAL: WELL LOCKED? WELL DI	A. 2 INCH WATER LEVEL EQUIP USE: 24 INCH CLECT COND PROBE 5 INCH CLECT COND PROBE PRESS. TRANSDUCE:
HEIGHT OF WATER COLUMN 44.35	FT X 53 .65 GAL/FT (2 IN.) - ZT. 33 GAL/OL 1.5 GAL/FT (6 IN.) GAL/FT (_ IN.) 300 TOTAL GAL PL	WELL INTEGRITY: SS N PROT. CASING SECURE ST IRGED CONCRETE COLLAR INTACT
	EQUIPMENT DOCUMENTATION	DECONTAMINATION METHOD:
	PERISTALTIC PUMP SUBMERSIBLE PUMP BAILER PVC/SILICON TUBING TEFLON/SILICON TUBING AIR LIFT HAND PUMP IN-LINE FILTER PRESS/VAC FILTER	Bunpouses
	FIELD ANALYSIS DATA	
AMBIENT AIR VO		TA COLLECTED IN-LINE
PURGE DATA	● 10 GM ● 120 GM ● 240 GM ● 200 GM ●	
TEMPERATURE, DEG C	7.6 7.8 77 7.5	TURBID COLORED
SPECIFIC CONDUCTIVITY		CLOUDY
(umnos/cm. @ 25 deg.c)	1600 920 900 900	CLEAR ODOR
SAMPLE COLLECTION RI		
ANALYTICAL PARAMETER FIL	ERED METHOD REQUIRED COLLECTED SAMPLE	BOTTLE I.D. S
Ä	<u> </u>	
ğ	<u> </u>	= /===================================
aaaaaaa		
NOTES:		
NOTES.	SIGNATURE OF SAMPL	ER (71/1) (36)

İ

Í

F

James M. Montgom		PAGE / OF !
Consulting Engineer	's, inc.	
PROJECT SIAO PI	1ASE 1 3 1 JOB NO. 2573 CC71 DAT	TE 6/4/90
SAMPLE LOCATION I.D.	NT-2-MWC LOCATION ACTIVITY STARTED	5\$50 END: /030
	WATER LEVEL / WELL DATA	
WELL DEPTH /42.07	FT MEASURED TOP OF WELL CASING STICK-UP 3.0	FT
WATER DEPTH 5732	WELL MATERIAL: WELL LOCKED? WELL DIA. 2 INC	H ELECT.COND PROBE
HEIGHT OF WATER COLUMN 84.75	1.5 GALFT (6 IN.) HOCK TOTAL GAL PURGED CO	ELL INTEGRITY: YES NO OT, CASING SECURE SINCERE COLLAR INTACT SINCERE COLLAR INTACT SINCERE SI
	EQUIPMENT DOCUMENTATION	DECONTAMINATION METHOD:
	PERISTALTIC PUMP SUBMERSIBLE PUMP BAILER PVC/SILICON TUBING TEFLON/SILICON TUBING AIR LIFT HAND PUMP IN-LINE FILTER PRESS/VAC FILTER	Beiler Beiler Pump Itoses
	FIELD ANALYSIS DATA	
AMBIENT AIR VOA	PPM WELL MOUTH PPM FIELD DATA COLLEC	CTED IN-LINE
PURGE DATA	● 10 GN ● 340 GN ● 300 GN ● 360 GN ● 400 GN	SAMPLE OBSERVATIONS
TEMPERATURE, DEG C pH, units	7.8 7.7 76 7.6 76	TURBID COLORED
SPECIFIC CONDUCTIVITY (umnos/cm. @ 25 deg.c)	760 500 9,0 920 920	CLOUDY CLEAR ODOR
SAMPLE COLLECTION RE	QUIREMENTS	
ANALYTICAL PARAMETER FILT	FIELD PRESERVATION VOLUME SAMPLE TERED METHOD REQUIRED COLLECTED SAMPLE BOTTLE I.D.	<u>s</u>
3000000C		
NOTES:		1 i c
		1.136
····	SIGNATURE OF SAMPLER	

/

James M. Montgomery	PAGE _/_ OF _/
Consulting Engineers, Inc.	
PROJECT SIND PHASE I RI JOB NO. 2573.00	DATE 6/8/90
SAMPLE LOCATION I.D. TNT-Q3/MWA LOCATION ACTIVIT	Y START: // 4 O END: /= 5
WATER LEVEL / WELL DATA	
WELL DEPTH 67.82 FT HISTORICAL TOP OF CASING STICK-	UP 3.2 FT
WATER DEPTH 56.08 FT SPVC C WELL DO YES ON NO	IA. 13 2 INCH WATER LEVEL EQUIP USED 14 INCH SELECT.COND.PROBE 15 INCH PRESS. TRANSDUCER
HEIGHT OF WATER COLUMN 11.74 FT X 65 GALFT (6 IN.)	WELL INTEGRITY: YES NO PROT. CASING SECURE GONCRETE COLLAR INTACT OTHER
EQUIPMENT DOCUMENTATION	DECONTAMINATION
PURGING/SAMPLING EQUIP. USED: PURGING SAMPLING EQUIPMEN PERISTALTIC PUMP	Steam Clam Eailers when
FIELD ANALYSIS DATA	
AMBIENT AIR VOA PPM WELL MOUTH PPM FIELD DA	TA COLLECTED IN-LINE
PURGEDATA - 2 GAL - 20 GAL - 33 GAL - GAL -	GAL SAMPLE OBSERVATIONS
TEMPERATURE, DEG C OH, units	TURBID COLORED
SPECIFIC CONDUCTIVITY	CLOUDY
(umnos/cm. € 25 deg.c) /(3-0-0) /(3-0-0)	CUEAR
SAMPLE COLLECTION REQUIREMENTS	
(/ IF REQUIRED AT THIS LOCATION) / IF FIELD PRESERVATION VOLUME SAMPLE ANALYTICAL PARAMETER FILTERED METHOD REQUIRED COLLECTED SAMPLE	SOTTLE I.D.'S
NOTES. SIGNATURE OF SAMPL	OU 120
SIGNATURE OF SAME	

į.

James M. Montgon				PAGE/_ OF _/
Consulting Enginee	ers, inc.	-		
		<u>-</u> · _ —		
PROJECT SIAP PI	TASE I RI	JOB N	10. 2573.0041	DATE 6/8/90
SAMPLE LOCATION I.D.	TNT-04-MW	LOCA	TION ACTIVITY STA	RT: 125 END: 1400
	WATER L	EVEL / WELL D	ATA	
WELL DEPTH 68 76	FT HISTORICAL		CASING STICK-UP Z	.5 FT
	WELL MATERIAL:		KED? WELL DIA. 22	INCH WATER LEVEL EQUIP. USED.
WATER DEPTH 56-37	FT S PVC	& YES		FINCH ELECT.COND.PROBE FLOAT ACTIVATED PRESS. TRANSDUCER
	 	1.98		
WATER COLUMN 12.39	FT X .65 GAL/FT (4 IN	.) •	GALNOL	WELL INTEGRITY: YES NO PROT. CASING SECURE
	GAL/FT (' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	TOTAL GAL PURGED	
	EQUIPME	NT DOCUMENT	ATION	DECONTAMINATION
	/ IF USED FOR:			METHOD:
PURGING/SAMPLING EQUIP. US		STALTIC PUMP	EQUIPMENT I.D.	Stann Clan
	SUBA	MERSIBLE PUMP Er		2a 1255
	PVC/	SILICON TUBING ON/SILICON TUBIN	G	7
	O AIR L			ω.re_
	☐ IN-UI	NE FILTER		_
		SAVAC FILTER	·	
	FIELD	ANALYSIS DA	TA	
AMBIENT AIR VOA	PPM WELL MO	NTH PF	PM FIELD DATA COL	LECTED [IN-UNE
PURGE DATA	0 3 au 0 15 au	30 cm	GAL Ø	IN CONTAINER
TEMPERATURE, DEG C				TURBID
SPECIFIC CONDUCTIVITY	3 15	6.8		CLOUDY
(umnos/am. @ 25 deg.c)	3 15	30		CLEAR
SAMPLE COLLECTION RE		4.00		
/#	FIELD PRESERVATION VO	/ F DLUME SAMPLE OUIRED COLLECT		:10.4
<u> </u>				
0000000		0000000		
NOTES.	·····			
170153.			/	0/10-
				MAS
		SIGN	ATURE OF SAMPLER	110
			l'	

JAM James M. Montgomery

SIERRA ARMY DEPOT DRAWDOWN CURVE

SIERRA ARMY DEPOT MONITORING WELL & SOIL BORING LOCATIONS: ABANDONED LANDFILL/CHEMICAL BURIAL SITE/CONSTRUCTION DEBRIS LANDFILL

SIERRA ARMY DEPOT MONITORING WELLS: TNT LEACHING BEDS AREA

SIERRA ARMY DEPOT MONITORING WELL AND SOIL BORING LOCATIONS: DRMO TRENCH AREA

APPENDIX K

BASIN-WIDE FLOW MODEL AT HONEY LAKE VALLEY

K.1 Introduction

A three-dimensional finite-difference code, commonly referred to as the U.S. Geological Survey (USGS) modular flow model, or MODFLOW, was used to simulate current and future groundwater conditions in Honey Lake Basin. Primary objectives of the basin-wide groundwater flow model included:

- Gaining a better understanding of the regional hydrogeologic framework.
- Determination of boundary conditions and delineation of flow fields for site-specific solute transport models.
- Evaluation of potential impacts due to increasing groundwater development within Honey Lake Basin.
- Evaluation of potential impacts to water supply wells due to different remedial alternatives.
- Assessing the implications of pump-and-treat alternatives on safe yield of the aquifer and water levels of Honey Lake.

K.2 MODFLOW Overview

Finite-difference models have been used extensively by the USGS and others in recent years to simulate groundwater flow. Among these computer codes, MODFLOW is highly regarded because of its flexibility, portability, and numerous options which allow simulation of the effects of wells, drains, recharge, evapotranspiration, rivers, and general-head (variable-head) boundaries.

Flexibility of the model derives from a design in which the main program has been separated from a series of independent subroutines or modules. MODFLOW can use either the Strongly Implicit Procedure (SIP), or the Slice-Successive Overrelaxation

method (SSOR) as solution techniques. McDonald and Harbaugh (1988) describe the model development, numerical solutions, module documentation, and computer code in detail.

K.3 Model Setup

An investigation of the groundwater resources of Honey Lake Valley by the USGS (Handman, et al, 1990) and the Northeastern Counties Groundwater Investigation (California Department of Water Resources, 1963a,b) were important references for the development of this model.

The USGS modeled subsurface flow in the Honey Lake area primarily to assess the impact of increasing groundwater development within the basin and, specifically, a proposed pumping increase of 15,000 acre-feet/year to supply the Reno-Sparks area in western Nevada (Handman, et al, 1990). Important differences between the JMM model and the USGS model include:

- The JMM model has a variable mesh grid with cells as small as 1,000 by 1,000 feet in the SIAD area. The USGS model has a constant grid size (1 square mile).
- The JMM model looks at the shallow aquifer system, to a depth of only about 600 feet below the water table. The USGS modeled entire saturated thickness within the basin with model layers extending to depths of more than 5,000 feet in places.
- The JMM model extends farther west than the USGS model to encompass the Sierra Army Depot and portions of Honey Lake and Long Valley Creek.

The USGS model used the 1988-1989 water year for steady-state calibration. Input parameters of this model were thus taken from 1989, and the steady-state calibration was made against the piezometric surface simulated by the USGS model.

An aquifer system must be spatially discretized to be represented in a finite-difference

model. This is accomplished by dividing it vertically into layers, and horizontally into a rectangular grid composed of rows and columns. Each resulting cell represents a three-dimensional block within the aquifer. A dimensionless node at the center of each cell represents the average value of each aquifer parameter being taken into account within the cell (i.e., head, recharge, hydraulic conductivity).

Model Grid and Layers

A 64 by 70 node grid with four layers was used to model Honey Lake Basin. A finer mesh was used in the vicinity of the Sierra Army Depot (1,000 by 1,000 feet), and a coarser mesh towards the outer boundaries of the model (up to 5,000 by 5,000 feet). Total area of the model was approximately 488 square miles (Figure K-1). Areas outside the model boundary in Figure K-1 are inactive cells, although data for model input was gathered from these areas.

Layer thicknesses for the model were assigned on the basis of two primary considerations: 1) evaluation of potential impacts of remedial actions to the Herlong production wells, and 2) site-specific characterization of groundwater flow. Figure K-2 is a cross section through the four Herlong production wells. Layers were assigned to correspond with production zones in these wells. These intervals were considered likely pathways for any potential solute migration into the wells. Layer 1 was given a thickness of 50 feet starting at the phreatic water surface. Layers 2, 3, and 4 were assigned thicknesses of 80, 150, and 300 feet, respectively.

The water table was simulated as a free-surface boundary whose elevation could respond vertically to changes in flux. Initial head values for the model were taken from the USGS simulation (Handman, et al, 1990) and from wells at the Sierra Army Depot and other locations in Honey Lake Valley.

Model Boundaries

Model boundaries are delineated in Figure K-3. A no-flow boundary was assigned in the northwestern portion of the model boundary where groundwater flow parallel to the Loundary indicates the absence of flux across it (boundary 1 in Figure K-3). The granitic

JAMES M. MONTGOMERY
CONSULTING ENGINEERS, INC PREPARED BY

FIGURE K. I. MODEL GRID AND BOUNDARY HONEY LAKE VALLEY, CALIFORNIA

KEMEDIAL INVESTIGATIONS SIERRA ARMY DEPOT USATHAMA

GEOLOGIC CROSS SECTION THROUGH POTABLE SUPPLY WELLS 2, 5, 8, AND 9 SHOWING SCREENED WELL INTERVALS & MODEL LAYERS

FIGURE K-2

JAMES M. MONTGOMERY CONSULTING ENGINEERS, INC.

FIGURE K-3: BOUNDARY CONDITIONS FOR MODEL

Diamond and Fort Sage mountains in the southwest and south-central model areas were also simulated as no-flow boundaries, however, recharge from these mountains was accounted for by simulating injection wells at localities where stream runoff should provide aquifer recharge (boundary 2). This recharge was varied during the transient model calibration to account for seasonal variations.

All other model boundaries were designated as general-head boundaries in which hydraulic head could vary as a result of flow in or out of the cell (boundary 3). These boundaries were placed at the margins of the basin where data was insufficient to accurately define model fluxes, and far enough from areas of interest in the central portion of the basin so as not erroneously influence model calibration.

Simulated Recharge

Recharge in Honey Lake Basin (other than granitic mountains) was simulated in the model by converting a portion of annual precipitation into an average recharge flux to the groundwater. Precipitation contours were taken from mean seasonal values (California Department of Water Resources, 1963b) and adjusted for 1989 values at several gauging stations. Figure K-4 shows 1989 precipitation in the model area. Three to four percent of total precipitation was found to approximate aquifer recharge during model calibration. Because of high evapotranspiration and low permeabilities within the basin, model areas with less than 7 inches of annual precipitation (most of the central Honey Lake Basin) were given zero recharge. Evapotranspiration was assumed to be accounted for in all recharge values.

The total thickness of all model layers (580 feet) was only about 10 percent of the total saturated sediment thickness in the northern part of the basin (>5,000 feet). Recharge to basin sediments from the northern volcanics aquifer must occur throughout this 5,000 foot plus interval and, therefore, only some fraction of recharge from the northern volcanics area would directly recharge the model layers. Simulated recharge from this area was reduced to compensate for this discrepancy. Recharge from agricultural irrigation was not considered separately.

Wells

Locations of the four active production wells at Herlong appear in Figure K-5. Production from these wells in 1989 was estimated from pumping records and is shown in Table K-1. Total well production at Herlong was approximately 750 acre-feet in 1989. This data was input into the model as average rates of discharge for the steady-state model calibration. For the transient calibration well discharge was simulated for the stress periods during which it occurred.

Groundwater discharge from five deep agricultural supply wells located in the southeast quadrant of the model, near the Fish Springs Ranch area in Nevada, were simulated in model cells of layer 4 corresponding to the locations of these wells. Total simulated groundwater withdrawal was about 5,900 acre-feet based on the estimate used by the USGS (Handman, et al., 1990).

Aquifer Properties

The USGS model had hydraulic conductivity inputs ranging from 0.01 to 45 feet/day, with conductivity decreasing at depth in basin-fill deposits. These values were taken as starting points for calibration of this model, however, since the JMM model layer thicknesses were much less than those in the USGS model, reduction in permeability with depth was considered negligible. Transmissivities for areas west of the USGS model were estimated from pump tests performed on several wells at Sierra Army Depot, and from specific capacities of a small number of wells outside the base. The basin-fill deposits were found to be extremely heterogenous on a large-scale, both vertically and laterally, with conductivities varying by several orders of magnitude over small intervals. The prevalence of sandy lenses separated by more silty/clayey layers was probably responsible for this extreme aquifer heterogeneity.

Specific capacities for Herlong wells (U.S. Army Corps of Engineers, 1961, 1964; and Walters, et al, 1969) were used to estimate aquifer transmissivities using the method described by Driscoll (1986). Transmissivity estimates were 16,700 ft²/day, 3,600 ft²/day, 15,800 ft²/day, and 3,000 ft²/day for wells 2,5,8, and 9, respectively. Calculations of aquifer transmissivity based on estimated thickness of saturated permeable zones within

TABLE K-1

1989 PRODUCTION DATA FOR HERLONG WELLS
(TOTAL MONTHLY PUMPAGE IN CUBIC FEET)

Month	Well 2	Weil 5	Well 8	Well 9
April	80,200	1,550,000	2,206,000	361,000
May	134	4,117,000	1,163,000	1,990,000
June		,	989,000	0
July	1,230,00	3,877,000	0	1,200,000
August	2,300,000	361,000	267,000	0
September	401,000	294,000	107,000	0
October	0	2,740,000	1,056,000	0
November	44,700	2,780,000	13,400	2,607,000
December	0	0	922,000	0
Total	4,056,034	15,719,000	6,723,400	6,158,000

the well intervals appear below.

ESTIMATES OF HYDRAULIC CONDUCTIVITY AROUND HERLONG WELLS

WELL	2	5	8	9
b(ft)	320		285	400
K(ft/day)	52.0		55.4	7.5

b = saturated aquifer thickness

K = hydraulic conductivity

Aquifer parameters which were specified for each cell in the model included horizontal and vertical hydraulic conductivity, and leakage between layers. Zones of similar aquifer materials for layer 1 appear in Figure K-6. Their respective conductivity values are shown below. Vertical conductivities, which directly relate to vertical leakage between model layers of differing heads, were given a typical estimate of about 1/100 of horizontal conductivity (Freeze and Cherry, 1979).

Hydraulic Conductivities Used in Model

Model Area	K (ft/day)
 Granitics (Diamond and Fort Sage Mountains) Fault Zone 	Inactive Nodes 0.3-0.4
3. Northern Volcanics (Amedee, Skedaddle Mountains)	2-5
4. Central Basin-Fill Deposits	1-4
5. Perimeter Basin-Fill Deposits	4-6
6. Southern Volcanics (Virginia Mountains)	. 10-45
7. Fluvial Deposits (Long Valley Creek)	10-50
8. Lacustrine (Honey Lake) Deposits	1-3

River Recharge

Long Valley Creek transects the southwestern corner of the model area. River recharge was simulated with wells in the same way that recharge from southern granitic mountains was simulated, because available data was considered insufficient to properly define parameters for the MODFLOW river package. Streamflow in 1988 for Long Valley

CENTRAL BASIN-FILL DEPOSITS BASIN PERIMETER DEPOSITS

NORTHERN VOLCANICS

INACTIVE CELLS

EXPLANATION:

FAULT ZONE

LACUSTRINE (HONEY LAKE)

÷ ;;

DEPOSITS

SOUTHERN VOLCANICS FLUVIAL DEPOSITS

BASIN-FILL AND

USATHAMA REMEDIAL INVESTIGATIONS SUPPLY ARMY DEPOY

FIGURE K-6: ZONES OF HYDRAULIC CONDUCTIVITY HEIGH IN BASIN-WIDE MODEL.

JAMES M. MONTGOMERY
CONSULTING ENGINEERS, INC.

Creek was estimated as 17,000 acre-feet near Doyle (Handman, et al. .990). A recharge value of 1,500-2,000 acre-feet/yr from Long Valley Creek was found to produce water levels in that area consistent with assumed steady-state conditions. Recharge was varied seasonally during transient model calibration. Flux from Long Valley Creek was considered the major source of recharge to the production wells at Herlong.

K.4 Steady-State Model Calibration

The model was calibrated against 12 wells located throughout the central basin area (Figure K-7), and compared with the simulated piezometric surface generated by the USGS model. Various model parameters, primarily general-head boundaries and hydraulic conductivities, were varied until a reasonable match (within 5 feet in the west-central basin, within 10 feet elsewhere) was produced between average well levels measured during the two-year period between April 1987 and March 1990, and corresponding simulated head values (Table K-2).

Figure K-8 shows simulated steady-state water level contours for layer 1. Matches with USGS contours were less precise in the northern and southern mountain areas (wells 9 and 12) because of inadequate data in these areas. Well discharge and aquifer discharge is simulated in the model over the area of the entire cell and will generally not correspond closely with water levels at a single point, such as a well, in areas with significant changes in hydraulic head. Mountainous areas generally exhibit large variations in head and aquifer parameters and were not areas of interest in this study. The focus of model calibration was around SIAD where solute-transport model sites exist.

Wells in the eastern model area were influenced by the agricultural pumping in the basin. Correlation between simulated and measured levels in these wells is strongly dependent on the time and accuracy with which these measurements were taken, and the accuracy of well discharge records. Some well monitoring data which had to be discarded indicated drawdowns of approximately 20 feet in some of these wells, although water levels were apparently very stable during continuous pumping. Well 3 is a pumped well

TABLE K-2

COMPARISON BETWEEN SIMULATED AND MEASURED WATER LEVELS IN STEADY-STATE MODEL (FEET)

Layer 1		Sim.	Meas.	Diff.
Head at Well Number 1	=	3971.4	3971.9	5
Head at Well Number 2	=	3966.7	3966.4	.3
Head at Well Number 3	=	3973.2	3971.0	2.2
Head at Well Number 4	=	3965.8	3957.0	8.7
Head at Well Number 5	=	3983.6	3985.1	-1.5
Head at Well Number 6	=	3985.2	3984.0	1.2
Head at Well Number 7	=	3985.1	3975.0	.1
Head at Well Number 8	=	3978.7	3980.4	-1.7
Head at Well Number 9	=	3969.1	3963.0	6.1
Head at Well Number 10	=	3963.9	3960.6	3.3
Head at Well Number 11	=	3957.8	3964.4	-6.6
Head at Well Number 12	=	3988.5	3985.8	2.7
Layer 2		Sim.	Meas.	Diff.
Head at Well Number 1	=	3971.4	3971.9	5
Head at Well Number 2	=	3966.7	3966.4	.3
Head at Well Number 3	=	3972.9	3971.0	1.9
Head at Well Number 4	=	3965.8	3957.1	8.7
Head at Well Number 5	=	3983.6	3985.1	-1.5
Head at Well Number 6	=	3985.2	3984.0	1.2
Head at Well Number 7	=	3985.1	3985.0	1
Head at Well Number 8	#	3978.7	3980.4	-1.7
Head at Well Number 9	=	3969.1	3963.0	6.1
Head at Well Number 10	=	3963.9	3960.6	3.3
Head at Well Number 11	=	3957.8	3964.4	-6.6
Head at Well Number 12	=	3988.5	3985.8	2.7

TABLE K-2 (Continued)

COMPARISON BETWEEN SIMULATED AND MEASURED WATER LEVELS IN STEADY-STATE MODEL (FEET)

		G.		
Layer 3		Sim.	Meas.	Diff.
Head at Well Number 1	=	3971.4	3971.9	5
Head at Well Number 2	=	39 66.7	3966.4	.3
Head at Well Number 3	=	3972.1	3971.0	1.1
Head at Well Number 4	=	3965.8	3957.1	8.7
Head at Well Number 5	=	3983.5	3985.1	-1.6
Head at Well Number 6	=	3985.2	3984.0	1.2
Head at Well Number 7	=	3985.1	3985.0	.1
Head at Well Number 8	=	3978.7	3980.4	-1.7
Head at Well Number 9	=	3969.1	3963.0	6.1
Head at Well Number 10	=	3963.9	3960.6	3.3
Head at Well Number 11	=	3957.8	3964.4	-6.6
Head at Well Number 12	=	3988.5	3985.8	2.7
Layer 4		Sim.	Meas.	Diff.
Head at Well Number 1	=	3971.4	3971.9	5
Iead at Well Number 2	=	3966.5	3966.4	.1
lead at Well Number 3	=	3967.3	3971.0	-3.7
Iead at Well Number 4	=	39 65.8	3957.1	8.7
Head at Well Number 5	=	3983.5	3985.1	-1.6
Head at Well Number 6	=	3985.2	3984.0	1.2
Head at Well Number 7	=	3985.1	3985.0	.1
Iead at Well Number 8	=	3978.7	3980.4	-1.7
7 4 -4 117-11 AT C	=	3969.0	3963.0	6.0
icad at well number 9				
	=	3963.9	39 60.6	3.3
Head at Well Number 9 Head at Well Number 10 Head at Well Number 11	=	3963.9 39 5 7.8	3960.6 3964.4	3.3 -6.6

and correlated relatively poorly with model simulations. Since simulated discharge was averaged over a 3,000-by-5,000-footcell area, and actual discharge occurs only at a well, producing a close match at this cell location would have required redefining the model grid, which would have been an unwarranted effort considering the distance to SIAD at this location. Wells 4 and 11 were influenced by pumping and boundary conditions and did not correlate as well with measured values as did other wells.

Little data was available from which to contour initial water table conditions over much of the western model area. Data from wells 5,6, and 7 near Honey Lake indicated water levels to be very stable in this area.

The lake level and areal extent of Honey Lake undergoes large fluctuations in response to annual precipitation and snowpack. The years 1987-1989 had below normal amounts of precipitation (Handman, et al., 1990). Consequently the surface of the lake declined during this time, and the shoreline receded significantly from what was depicted in Figure 8. Head, contours passing through the lake were therefore considered to be representative.

Water table contours simulated by the model indicated the presence of a low groundwater divide several miles east of Honey Lake, and groundwater outflow across the eastern boundary of the model. The hydraulic gradient in the central portion of Honey Lake Valley was extremely flat. The gradient rapidly steepened south of the Herlong wells where groundwater is entering the basin through Long Valley. Water table contours were affected by these wells.

Hydraulic conductivities at SIAD generally increased southward towards fluvial deposits of Long Valley Creek. Model values averaged 3 to 5 ft/day in the northern part of the base to over 50 feet/day in near Long Valley Creek. Recharge from Long Valley and Long Valley Creek appeared to be the major source of water for the production wells at Herlong.

In summary, the deviation of simulated water levels from initial levels under steady-state

conditions was approximately 3.0 feet or less in all calibrations wells, with the exceptions of wells 4,9, and 11 as previously noted. These wells matched measured values to within 6 to 9 feet. Simulated heads at wells 5,6, and 7 near SIAD matched initial values to within about one foot. It should be noted that because of the limited number of wells throughout most of Honey Lake Basin, the piezometric surface at any specific location was somewhat conjectural.

K.5 Transient Model Calibration

After reasonable approximations of model parameters were attained from steady-state calibration runs, the model was simulated under transient conditions to observe and calibrate the response of the model to changes in recharge and discharge over time. The transient run simulated conditions over the two-year period mentioned in the section on steady-state calibration (April 1987 through March 1990). This simulation interval consisted of 24 stress periods of one month each.

Aquifer Storativity

Under transient conditions, the amount of water stored in a formation, aquifer storativity, becomes a factor in aquifer response. Storativity, or storage coefficient (S) is volume of water an aquifer will absorb or discharge from storage per unit surface area per unit change in head. In unconfined units water can also come from dewatering of aquifer materials, as well as compression of the aquifer mineral skeleton and expansion of water in the formation as with confined aquifers. Storativity in unconfined aquifers is described by specific yield (Sy) which varies directly with changes in saturated aquifer thickness.

Specific yields assigned to model layer 1 ranged from approximately 1 percent to 25 percent depending on lithology. Specific yield for central basin deposits was designated as 6 percent, and up to 25 percent for fluvial sediments. Values of storativity for deeper layers was assumed to be about 1,000 to 2,000 times smaller than specific yield.

Variable Model Parameters in Transient Calibration

Pertinent model factors that varied during the transient calibration were seasonal

variations in recharge, and fluctuations in well discharge. Changes in pumping for the production wells at Herlong are shown in Table K-1. This pumping pattern was assumed to repeat during the two-year transient simulation. Pumping of agricultural supply wells in Nevada occurs from April to October, and peaks in July and August. Model input simulated this pattern.

The most significant factor affecting transient simulations was seasonal variations in precipitation and consequently aquifer recharge. Most precipitation in Honey Lake Valley and the surrounding mountains occurs in the winter, from October through March, with the greatest amounts in December and January (California National Climatic Center, 1989). Aquifer recharge lags a month or two behind precipitation (Figure 9) with maximum recharge occurring in February and March (Handman, et al, 1990). For the transient calibration monthly recharge was simulated as the proportion of total yearly recharge in Figure K-9. This was also the basis for varying recharge from Long Valley Creek which was simulated by injection wells, although the pattern of river recharge was not identical that of precipitation recharge.

Finally, general-head values in boundary cells were varied seasonally on a trial and error basis until simulated water levels emulated measured values.

Calibration Results

Hydrographs were plotted for the twelve wells used for model calibration and the respective head values simulated by the model for layer 1 (Figures K-10 through K-21). Water level elevations above mean sea level were plotted against 24 one month stress periods starting in April 1987.

Water levels were very stable through the simulation period in most of the wells. Well 3 showed large head fluctuations due to pumping which were not duplicated by the model. Figure K-12 indicated two major pumping and recovery events within the simulation period, with water level minima occurring in September 1987, and August 1988. Poor model correlation in this well was explained earlier by the fact that the model averaged drawdown over the entire area of the cell in which pumping occurred, and the

FIGURE K-9: MEAN MONTHLY RECHARGE (HONEY LAKE VALLEY) (DATA FROM HANDMAN, et al, 1990)

FIGURE K-10: WELL 1 HYDROGRAPH FOR TRANSIENT SIMULATION

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ■ MEASURED HEAD [] SIMULATION STRESS PERIOD (MONTHS) œ S T E 3980 R 3990 3985 F 3960 E E 3955 3975 V 3970 3950 **ы** ...

FIGURE K-11: WELL 2 HYDROGRAPH

FIGURE K-12: WELL 3 HYDROGRAPH FOR TRANSIENT CALIBRATION

FIGURE K-13 : WELL 4 HYDROGRAPH

FIGURE K-14: WELL 5 HYDROGRAPH

24 23 22 21 20 17 18 19 [] BASELINE SIMULATION 9 10 11 12 13 14 15 16 STRESS PERIOD (MONTHS) ■ MEASURED HEAD œ 9 S L E V 3985 (E L 4000 F E 3975 T 3970 3995 3990 3980 **K F E X**

FIGURE K-15: WELL 6 HYDROGRAPH

23 24 10 11 12 13 14 15 16 17 18 19 20 21 22 FIGURE K-16: WELL 7 HYDROGRAPH STRESS PERIOD (MONTHS) 9 വ L E V 3985 E L ж 11 3995 13 3000 E 3975 T 4000 3990 3980 3970 Ĺ.

[] BASELINE SIMULATION

MEASURED HEAD

FIGURE K-17: WELL 8 HYDROGRAPH FOR TRANSIENT SIMULATION L E V 3985 E L 3980

3990

3995

4 F E X

F E 3975 T

3970

4000

■ MEASURED HEAD ||SIMULATION:

STRESS PERIOD (MONTHS)

24

23

21

20

FIGURE K-18: WELL 9 HYDROGRAPH

FIGURE K-19: WELL 10 HYDROGRAPH

23 24 22 9 10 11 12 13 14 15 16 17 18 19 20 21 STRESS PERIOD (MONTHS) æ ~ 9 S 3970 W A T 3968 E R L 3966
E V
E L 3964 F E 3962 T 3960

[] BASELINE SIMULATION

■ MEASURED HEAD

FIGURE K-20: WELL 11 HYDROGRAPH

FIGURE K-21: WELL 12 HYDROGRAPH

model grid was very coarse in this area.

Most simulated water levels matched measured values fairly closely. The anomalously high measured value for Well 2 (Figure K-11) can be disregarded as a measuring error or recording error. Pumping influences in Well 4 (Figure K-13) may explain the divergence of simulated water levels with measured levels. Wells near SIAD showed good to very good matches between measured and simulated values (Figures K-14, K-15, and K-17).

The paucity of water level monitoring data at Well 9, its location at the margin of the basin, and possibly unaccounted for pumping influences, elicited a less accurate model simulation at this location than for most other wells. The transient calibration can be refined as additional data becomes available.

Changes in aquifer storativity and recharge had only minor impact on transient model calibration, probably due to low conductivity within the central-basin area, and the relatively short simulation period. Changes in these model inputs should have greater significance over longer simulation periods.

K.6 Model Sensitivity

The model was sensitive to overall changes in hydraulic conductivity, recharge, and to changes along any large section of the general-head boundaries. Root-mean-square deviation (or error) was used to estimate model accuracy by quantifying the differences between simulated and measured head values. Root-mean-square deviation (RMSD) is defined by the following equation:

$$RMSD = \sqrt{\Sigma (M - C)}$$

where M = measured water level

C = head simulated by model

N = number of water level measurements

The RMS error for the steady-state calibration was about 3.8 feet, and the greatest difference between measured and simulated heads was 8.5 feet. Most wells in the eastern portion of the model area were influenced by groundwater pumping and had depressed water levels which may have yet to reach steady-state equilibrium.

Model sensitivity was evaluated by varying individual model parameters in the steady-state runs from baseline values and comparing those deviations against baseline RMSD. Figure K-22 is a plot of RMS error against the ratio of a modified model parameter value against the baseline value for that factor. An increase in the RMS error is a measure of the sensitivity of the model to changes in that parameter. Changes in hydraulic conductivity, and increases in recharge, produced a large change in RMS error with a relatively small change from the baseline value, whereas sensitivity to changes in vertical leakage between layers and reduction in recharge are much less pronounced.

The mass-balance discrepancy between flow in and out of the aquifer under baseline conditions was approximately 0.5 percent.

K.7 Conclusions

The primary focus of the modeling effort at Honey Lake Valley was to define groundwater flow conditions in the vicinity of Sierra Army Depot and, to a lesser extent. Honey Lake Basin. Hydraulic conductivity is generally low throughout the central-basin sediments, and higher towards the periphery of the basin, in the volcanic mountains surrounding the basin, and in the vicinity of Long Valley Creek. Groundwater recharge occurs primarily from southern and northern mountain areas and infiltrates the basin through alluvial fans along the basin perimeter. Groundwater flow is mainly eastward through the basin and exits at the northeastern boundary towards the Smoke Creek Desert.

Hydraulic gradients in the central Honey Lake basin are extremely flat. A low groundwater divide several miles east of Honey Lake indicates flow towards the lake in shallower aquifer zones. Aquifer properties in the shallow zones at SIAD were very

FIGURE K-22: SENSITIVITY ANALYSIS FOR STEADY-STATE CALIBRATION ROOT-MEAN-SQUARE DEVIATION FROM BASELINE CONDITIONS

heterogeneous and suggested a mixture of silt/clay and sandy lenses within the aquifer.

The model was sensitive to estimation of conductivities throughout the model area, and relatively insensitive to changes in other model parameters. Further refinement of the model should continue as new data becomes available.

REFERENCES

California Department of Water Resources, 1963a, Northeastern counties ground water investigation: California Department of Water Resources Bulletin 98, v.1.224 p.

----- 1963b, Northeastern counties ground water investigation: California Department of Water Resources Bulletin 98, v.2, 224 p.

California National Climatic Data Center, 1989, Monthly Summarized Station and Divisional Data, Ashville, North Carolina, Dept. of Commerce.

Driscoll, F.G., 1986, Groundwater and Wells, Johnson Division, St. Paul, Minnesota, 1089 p.

Freeze, R.A., and Cherry, J.A., 1979, Groundwater: Englewood Cliffs, N.J., Prentice-Hall, 604 P.

Handman, E.H., C.J. Londquist, and D.K. Maurer, 1990, Ground-water Resources of Honey Lake Valley, Lassen County, California, and Washoe County, Nevada, U.S.G.S. Water-Resources Investigations Report 90-4050, 128 p.

McDonald, M.G., and Harbaugh, A.W., 1988, A modular three dimensional finite-difference ground-water flow model: U.S. Geological Survey Techniques of Water-Resource Investigations, Book 6, Chapter A1, 586p.

U.S. Army Corp of Engineers, 1961, Report on New Water Well No. 2 for Sierra Ordnance Depot, Herlong, California, U.S. Engineer District Corp of Engineers, Sacramento, California, 6 p.

U.S. Army Corp of Engineers, 1964, Report on New Water Well No. 8 for Sierra Ordnance Depot, Herlong, California, U.S. Engineer District Corp of Engineers, Sacramento, California, 6 p.

Walters, Ball, Hibdon, and Shaw Civil Engineering Consultants, Reno Nevada, 1969, Report on New Water Well No. 9 for Sierra Depot, Herlong, California, for Department of the Army, Sacramento District, Corp of Engineers, Sacramento, California, 11 p.

Appendix L Aquifer Test Results

James M. Montgomery

Consulting Engineers Inc.

APPENDIX L AQUIFER TEST RESULTS

A series of pump tests were conducted at SIAD to obtain estimates of aquifer transmissivity, vertical conductivity, and storage coefficient. These tests fell into two categories: 1) one hour constant discharge pump tests conducted on all newly installed water table monitoring wells, and 2) four hour step-drawdown tests at the "B" and "C" zone wells at the TNT Leaching Beds Area. The Jacob analysis (Cooper and Jacob, 1946) was used to estimate aquifer parameters. In all cases wells were only partially penetrating and the true aquifer thickness was unknown. However, good estimates of localized hydraulic conductivity can still be obtained if there is little vertical flow towards the wells, which appears to be the case at SIAD. The saturated wellbore thicknesses were used in calculating apparent transmissivities and, subsequently, hydraulic conductivities. Table L-1 summarizes results of these aquifer tests.

Constant-discharge Pump Tests

One hour pump tests were performed at the Abandoned Landfill, Chemical Burial Site, Construction Debris Landfill, DRMO Trench Area, and the TNT Leaching Beds Area. Data for drawdown vs. time for semi-log is presented at the end of this Appendix. Data from several of the tests plotted erratically, primarily due to fluctuations in discharge. However, in most cases, good values of transmissivity were obtained from the straight-line portions of the data. No observation well was expected in tests of such short duration, and no observation wells were monitored in any of the one-hour pump tests. Wells used in these tests were screened in the top 13 to 15 feet of the aquifer.

Analysis Methodology

The Theis nonequilibrium formula (Theis, 1935) for transient aquifer drawdown is

$$s = \frac{Q}{4\pi T} W(u)$$

TABLE 1: PUMP TESTS AT SIAD

APPENDIX L

Well	TD (ft)	b' (ft)	T (ft ² /day)	Test	K' (ft/Day)	r (ft)	S
ALF 1 MWA	105	14	1510	PT	108		
ALF 2 MWA	101	14	142.8	PT	10.2		
ALF 3 MWA	100	14	65.8	PT	4.7		
CCB 1 MWA	93	14	899.5	PT	64.3		
CCB 2 MWA	100	14	63.5	PT	4.5		
DMO 3 MWA	110	14	ND	PT	ND		
DMO 3R MWA	110	14	2.94	PT	0.21		,
DMO 4 MWA	110	14	22.9	PT	1.6		
DMO 4R MWA	110	14	10.9	PT	0.78		
TNT 16 MWA	73	14	27.6	PT	2		
TNT 16R MWA	73	14	17.2	PT	1.2		-
TNT 1B-PROD	100	40.8	6.61	ST	0.16		
TNT 1C-PROD	140	82	448.7	ST	5.47		
TNT 2B-PROD	100	43.6	1636.5*	ST	ND		
TNT 2B-OBS3		43.6	2100.6*	ST	ND	8	0.081
TNT 7B-PROD	100	41.6	138	ST	3.32		
TNT 7B-OBS3			2647.5	ST	ND	10	ND
TNT 7C-PROD	140	81	22.9	ST	0.28		
TNT 10B-PROD	100	41	53.3	ST	1.3		

PT = 1-hour pump test. ST = Step-drawdown test.

ND = Not determined.

Not considered valid, substantial vertical flow.

where

s=drawdown
Q=well discharge
T=aquifer transmissivity
W(u) = the well function of u
u=<u>r2S</u>
4Tt
r=radial distance from well
t=time since start of pumping
S=aquifer storage coefficient

in consistent units. For small values of u, the Theis equation can be approximated by the Jacob equation (Cooper and Jacob, 1946) as

$$s = \frac{2.3 Q}{4\pi T} \log \frac{2.25 Tt}{r^2 S}$$

Aquifer transmissivity and storativity are therefore defined by the following equations:

$$T = \frac{2.3 Q}{4\pi\Delta s} \qquad S = \frac{2.25 Tt_o}{r^2}$$

When pumping well data is used for aquifer analysis, the Jacob approximation becomes valid almost immediately because r is so small.

Constant-discharge Test Results

Transmissivities from these tests ranged from approximately 2.9 ft²/day to 1500 ft²/day. This wide range of transmissivity reflects the heterogenous nature of aquifer materials SIAD. In general, transmissivities were lowest at the DRMO Trench Area, and highest at the Abandoned Landfill.

Step-drawdown Tests

The aquifer tests at the TNT site were originally planned to consist of four one-hour steps. However, during the course of the tests, it was decided to use the first pumping step to estimate the maximum expected drawdown, and then maintain the highest sustainable discharge for the remainder of the test, in order to stress the aquifer as much as possible.

The Birsoy and Summers (1980) method of correcting time for later pumping steps was used to analyze the step-test data. Three to four observation wells were monitored during each test. Two observation wells were very close to each pumping well (~ 10 feet) but screened at different intervals. Remaining observation wells were more distant (100 to 400 feet) and also screened at different intervals. Only one of the tests showed any usable response in an observation well. Well TNT-07-MWC (TNT-7B-OBS3 in Table I-1) showed a slight response to the pumping well (10 feet away), but was considered to have a poor hydraulic connection to that well and, therefore, unusable data. The water table observation well for TNT-2B-PROD (TNT-02-MWA) appeared to have a usable response. Transmissivity of the observation well (2100 ft2/day) compared well with the production well value (1636 ft2/day). Response in the observation well suggested more homogeneous conditions here than elsewhere at the site, and a higher vertical conductivity in this zone. However, because of these facts, the assumption of negligible vertical flow towards the pumping well explicit in the Theis equation (Theis, 1935), upon which the Jacob method was based, was considered to have been violated, negating the quantitative usefulness of this data.

Summary

Based on the pump tests discussed above, it was concluded that, in general, the aquifer at SIAD is extremely heterogenous on a large-scale, and has a very low vertical permeability. Efforts to contour transmissivity from pump tests were unsuccessful because of these extreme variations, however, they did provide general estimates of aquifer parameters.

AQUIFER TESTS AT SIAD

SEMI-LOG PLOTS:

CONSTANT-DISCHARGE TESTS

WELL:

ALF-01-MWA

ALF-02-MWA

ALF-03-MWA

CCB-01-MWA

CCB-02-MWA

DMO-03-MWA

DMO-03-MWA (RECOVERY)

DMO-04-MWA

DMO-04-MWA (RECOVERY)

TNT-16-MWA

TNT-16-MWA (RECOVERY)

STEP-DRAWDOWN TESTS:

TNT-01-MWB

TNT-01-MWC

TNT-02-MWB

TNT-02-MWB OBSERVATION WELL (TNT-02-MWC)

TNT-07-MWB

TNT-07-MWC

TNT-10-MWB

Step-drawdown Tests

The aquifer tests at the TNT site were originally planned to consist of four one-hour steps. However, during the course of the tests, it was decided to use the first pumping step to estimate the maximum expected drawdown, and then maintain the highest sustainable discharge for the remainder of the test, in order to stress the aquifer as much as possible.

The Birsoy and Summers (1980) method of correcting time for later pumping steps was used to analyze the step-test data. Three to four observation wells were monitored during each test. Two observation wells were very close to each pumping well (~ 10 feet) but screened at different intervals. Remaining observation wells were more distant (100 to 400 feet) and also screened at different intervals. Only one of the tests showed any usable response in an observation well. Well TNT-07-MWC (TNT-7B-OBS3 in Table I-1) showed a slight response to the pumping well (10 feet away), but was considered to have a poor hydraulic connection to that well and, therefore, unusable data. The water table observation well for TNT-2B-PROD (TNT-02-MWA) appeared to have a usable response. Transmissivity of the observation well (2100 ft2/day) compared well with the production well value (1636 ft2/day). Response in the observation well suggested more homogeneous conditions here than elsewhere at the site, and a higher vertical conductivity in this zone. However, because of these facts, the assumption of negligible vertical flow towards the pumping well explicit in the Theis equation (Theis, 1935), upon which the Jacob method was based, was considered to have been violated, negating the quantitative usefulness of this data.

Summary

Based on the pump tests discussed above, it was concluded that, in general, the aquifer at SIAD is extremely heterogenous on a large-scale, and has a very low vertical permeability. Efforts to contour transmissivity from pump tests were unsuccessful because of these extreme variations, however, they did provide general estimates of aquifer parameters.

	ers, Inc.					_ PAGEOF/
PROJECT SIAO S	0114521 73	1	JOB	NO. 2573	CC1) DATE	6/7/90
SAMPLE LOCATION I.D.	TNT-05-1	nu 4	LOCA	ATION ACTIV	START: C	800 END: C954
		WATER LEV	'EL / WELL (DATA		
WELL DEPTH 65 54	FT HISTO	URED TOP	OF WELL OF CASING	CASING STIC	K-UP 2.0 F	<u> </u>
WATER DEPTH 60.60	FT Ø PV	MATERIAL:	WELL LO	KED? WELL	DIA. 2 INCH 4 INCH 6 INCH	WATER LEVEL EQUIP USES ELECT COND PROBE FLOAT ACTIVATED PRESS. TRANSDUCES
HEIGHT OF WATER COLUMN 8.24	FT X	GAUFT (2 IN.) GAUFT (4 IN.) GAUFT (6 IN.) GAUFT (IN.	7.7		PROT	INTEGRITY YES NO CASING SECURE TO SE
		EQUIPMENT	DOCUMENT	FATION		DECONTAMINATION
	00)	SUBMEF BAILER PVC/SIL TEFLON AIR LIFT HAND PI	UMP	4G		13011 1275 55+-241011 55 2
		FIELD A	NALYSIS DA	TA		
		WELL MOUT				
AMBIENT AIR VO	PP	M WELLINGS	н	PM FIELD	DATA COLLECTI	
PURGE DATA	PPA			PM FIELD		A IN CONTAINER SAMPLE OBSERVATIONS
						A IN CONTAINER
PURGE DATA TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (unnox/orn. @ 25 deg.c) AMPLE COLLECTION R / IF REQUIRED AT THIS LOCATIO	7.3 780 REQUIREMENT ON OF FIELD PRESER	7.1 780	6.9 900	@GAL	GAL	MINIONTAINER SAMPLE OBSERVATIONS TURBID COLORED CLOUDY CLEAR
PURGE DATA TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (unnowari). 25 deg.c) AMPLE COLLECTION R / IF REQUIRED AT THIS LOCATION (NALYTICAL PARAMETER)	7.3 780 REQUIREMENT ON OF FIELD PRESER	7.1 780	6.9 900	@GAL		EN IN CONTAINER SAMPLE OBSERVATIONS TURBID COLORED CLOUDY CLEAR
PURGE DATA TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (unnox/orn. @ 25 deg.c) AMPLE COLLECTION R / IF REQUIRED AT THIS LOCATIO	7.3 780 REQUIREMENT ON OF FIELD PRESER	7.1 780	6.9 900	@GAL	GAL	EN IN CONTAINER SAMPLE OBSERVATIONS TURBID COLORED COLORED CLOUDY CLEAR

James M. Montgomery Consulting Engineers, Inc.		PAGE OF
PROJECT SIAD PINASE 1 21	JOB NO. 2573 0011 D	ATF 6/6/90
SAMPLE LOCATION I.D. TNT - Ø6-MU		
SAMPLE LOCATION I.D. 7/0 7 5 06 5 1110	CA LOCATION ACTIVITY COM	.,,,2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	ER LEVEL / WELL DATA	
WELL DEPTH 68 56 FT HISTORICAL	TOP OF WELL CASING STICK-UP 2.0	7 FT
WELL MATER ST PVC ST SS SS	MAL: WELL LOCKED? WELL DIA. 821 5 YES 41 0 NO 6	NCH ELECT COND PROBE
HEIGHT OF 70.76 FT X 0.65 GALF WATER COLUMN 70.76 FT X 0.65 GALF 1.5 GALF	T (4 IN.) = T (6 IN.) TOTAL GAL PURGED (WELL INTEGRITY: YES NO PROT. CASING SECURE ECONCRETE COLLAR INTACT TO THER
PURGING/SAMPLING EQUIP. USED: PURGING SAMPLING EQUIP. USED: PURGING EQUIP.		METHOD: Steum Clean Ballow SS+Tetion SS wire
F	TIELD ANALYSIS DATA	
AMBIENT AIR VOA PPM WE	PPM FIELD DATA COLL	ECTED IN-LINE
TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY		SAMPLE OBSERVATIONS TURBID COLORED SCLOUDY CLEAR COOR
SAMPLE COLLECTION REQUIREMENTS JEF REQUIRED AT THIS LOCATION) ANALYTICAL PARAMETER FILTERED PRESERVATION METHOD	REQUIRED COLLECTED SAMPLE BOTTLE	10·s
מסמממסמם		
NOTES.	SIGNATURE OF SAMPLER	ah Bac

James M. Montgomery	PAGE/_ OF
Consulting Engineers, Inc.	
PROJECT SIAD PABEL RI JOB NO. 2573 CCT/ DATE	6/6/90
SAMPLE LOCATION I.D. TUT-Q7-MWA LOCATION ACTIVITY START:),	10 END: 1290
WATER LEVEL / WELL DATA	
WELL DEPTH 68.74 FT HISTORICAL TOP OF WELL CASING STICK-UP /./ FT	
WATER DEPTH 5750 FT PVC D YES A INCH	WATER LEVEL EQUIP USES ELECT COND PROBE FLOAT ACTIVATED PRESS. TRANSDUCES
EQUIPMENT DOCUMENTATION	DECONTAMINATION
SUBMERSIBLE PUMP BAILER PVC/SILICON TUBING TEFLON/SILICON TUBING AIR LIFT HAND PUMP	METHOD: Steam Clacin Ballers Testion = 15)
FIELD ANALYSIS DATA	
PURGE DATA PPM WELL MOUTH PPM FIELD DATA COLLECTE PURGE DATA PM GAL © 20 GAL © 35 GAL © GAL TEMPERATURE. DEG C pH. units SPECIFIC CONDUCTIVITY (uminos/cm. © 25 deg.d) PM FIELD DATA COLLECTE PDM FIELD DATA COLLECTE PPM FIELD DATA COLLEC	IN-LINE IN CONTAINER SAMPLE OBSERVATIONS COLORED COLORED CLOUDY CLEAR COOOR
SAMPLE COLLECTION REQUIREMENTS (/ IF REQUIRED AT THIS LOCATION) ANALYTICAL PARAMETER FILTERED METHOD REQUIRED COLLECTED SAMPLE BOTTLE I.D.'S OF SAMPLE BOTTLE I.D.'S OF SAMPLE BOTTLE I.D.'S OF SAMPLE BOTTLE I.D.'S OF SAMPLE BOTTLE I.D.'S OF SAMPLE BOTTLE I.D.'S OF SAMPLE BOTTLE I.D.'S OF SAMPLE BOTTLE I.D.'S OF SAMPLE BOTTLE I.D.'S OF SAMPLE BOTTLE I.D.'S OF SAMPLE BOTTLE I.D.'S OF SAMPLE BOTTLE I.D.'S	
SIGNATURE OF SAMPLER ONLY	BC

ı

ł

ŀ

JAME James M. Montgomery	PAGEOF
Consulting Engineers, Inc.	
PROJECT S140 PHASE 1 - 21 JOB NO. 2573 0011 DA	TE 6/6/91
SAMPLE LOCATION I.D. 7/UT - 07 - MWB LOCATION ACTIVITY START:	1008 END: 1055
WATER LEVEL / WELL DATA	
WELL DEPTH /03.57 FT MEASURED TOP OF WELL CASING STICK-UP 2.4	
WATER DEPTH SS 70 FT D PVC D D YES D INO D G IN	CH ZELECT COND PROBE
WATER COLUMN 77.0 1.5 GAL/FT (6 IN.)	ELL INTEGRITY: YES NO ROT. CASING SECURE SONCRETE COLLAR INTACT
PURGING/SAMPLING EQUIP. USED: PURGING/SAMPLING EQUIP. USED: PURGING SAMPLING PERISTALTIC PUMP SUBMERSIBLE PUMP BAILER PVC/SILICON TUBING TEFLON/SILICON TUBING AIR LIFT HAND PUMP IN-LINE FILTER PRESS/VAC FILTER	DECONTAMINATION METHOD: Stacing Clecus Parlies Points
FIELD ANALYSIS DATA	<u></u>
AMBIENT AIR VOA PPM WELL MOUTH PPM FIELD DATA COLLE	CTED _ IN-LINE
PURGE DATA • 20 GAL • 80 GAL • 300 GAL •	SAMPLE OBSERVATIONS TURBID COLORED CLOUDY CLEAR ODOR
SAMPLE COLLECTION REQUIREMENTS (/ IF REQUIRED AT THIS LOCATION) / IF FIELD PRESERVATION VOLUME SAMPLE ANALYTICAL PARAMETER FILTERED METHOO REQUIRED COLLECTED SAMPLE BOTTLE I.E.).s
NOTES. SIGNATURE OF SAMPLER &	1366

***	nery PAGE C	
PROJECT 5/40 0	145 = 1 R1/FS JOB NO. 2573 OCH DATE 6/6/90	
SAMPLE LOCATION I.D.	TUT- 07. MWC LOCATION ACTIVITY START: 0830 END: /CC	5
	WATER LEVEL / WELL DATA	
WELL DEPTH 77146	MEASURED TOP OF WELL CASING STICK-UP 3.0 FT	
VATER DEPTH 59,35	WELL MATERIAL: WELL LOCKED? WELL DIA. 2 INCH WATER LEVEL ED FT PVC 2 YES 4 INCH ELECT CON SS NO 6 INCH PRESS. TRA	D PRO
HEIGHT OF VATER COLUMN 82.11	FT X & 65 GAUFT (2 IN.) 1.5 GAUFT (6 IN.) GAUFT (1.) GAUFT (1.) TOTAL GAL PURGED CONCRETE COLLAR INTAC	¥ <u>\$</u>
	EQUIPMENT DOCUMENTATION DECONTAMINA	TICN
	PERISTALTIC PUMP SUBMERSIBLE PUMP BAILER PVC/SILICON TUBING TEFLON/SILICON TUBING AIR LIFT HAND PUMP IN-UNE FILTER PRESS/VAC FILTER	
	FIELD ANALYSIS DATA	
AMBIENT AIR VO	FIELD ANALYSIS DATA DA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE	AINE
AMBIENT AIR VO	FIELD ANALYSIS DATA DA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE IN CONT. DA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE IN CONT. DA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE IN CONT.	
PURGE DATA TEMPERATURE, DEG C	FIELD ANALYSIS DATA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE IN CONTACT IN CONTA	ATIC
PURGE DATA	FIELD ANALYSIS DATA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE IN CONTACT IN CONTA	ATIC
PURGE DATA TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (umnos/cm. @ 25 deg.c)	FIELD ANALYSIS DATA OA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE IN CONT. O 20 GAL 9/90GAL 0 300 GAL 0 400 GAL GAL SAMPLE OBSERV TURBID COLORE CLOUDY OCO /000 /000 /000 /000 /000	ATIC
PURGE DATA TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (umnos/on). @ 25 deg.c) AMPLE COLLECTION &	FIELD ANALYSIS DATA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE IN CONTACT IN CONTA	ATIC
PURGE DATA TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (ummos/on). ② 25 deg.c) AMPLE COLLECTION F / IF REQUIRED AT THIS LOCATION NALYTICAL PARAMETER	FIELD ANALYSIS DATA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE IN CONT. DA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE IN CONT. DA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE DA IN-	ATIC
PURGE DATA TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (ummos/on). ② 25 deg.c) AMPLE COLLECTION F / IF REQUIRED AT THIS LOCATION NALYTICAL PARAMETER	FIELD ANALYSIS DATA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE IN CONT. DA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE IN CONT. DA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE DA IN-	ATIC
PURGE DATA TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (ummos/on). ② 25 deg.c) AMPLE COLLECTION F / IF REQUIRED AT THIS LOCATION NALYTICAL PARAMETER	FIELD ANALYSIS DATA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE IN CONT. DA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE IN CONT. DA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE DA IN-	ATIC
PURGE DATA TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (ummos/on). ② 25 deg.c) AMPLE COLLECTION F / IF REQUIRED AT THIS LOCATION NALYTICAL PARAMETER	FIELD ANALYSIS DATA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE IN CONT. DA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE IN CONT. DA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE DA IN-	ATIC
PURGE DATA TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (umnos/om. @ 25 deg.c) AMPLE COLLECTION F / IF REQUIRED AT THIS LOCATION	FIELD ANALYSIS DATA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE IN CONT. DA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE IN CONT. DA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE IN CONT. SAMPLE OBSERVATION COLUME SAMPLE IF FIELD PRESERVATION VOLUME SAMPLE	ATIC
PURGE DATA TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (umnowan, @ 25 deg.c) AMPLE COLLECTION F / IF REQUIRED AT THIS LOCATION NALYTICAL PARAMETER	FIELD ANALYSIS DATA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE IN CONT. DA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE IN CONT. DA PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE DA IN-	ATIC

James M. Montgome	ry		_ PAGE/_ OF /
Consulting Engineers	, Inc.		
PROJECT SIAD PHA	SEI RI	JOB NO. 2573 0041 DATE	6/7/22
SAMPLE LOCATION I.D.)T-08-MWA	LOCATION ACTIVITY START: /	930 END: 2100
	WATER LEVEL / W	ELL DATA	
WELL DEPTH 68 65 F	MEASURED DOP OF WEI	LL CASING STICK-UP 3.5 F	न
WATER DEPTH 58% F	T PVC - M	ELL LOCKED? WELL DIA 22 INCH YES 4 INCH NO 6 INCH	ELECT COND PROBE
HEIGHT OF 9.69 F	7 X .65 GAL/FT (2 IN.) 1.5 GAL/FT (4 IN.) =	PROT	L INTEGRITY YES NO CASING SECURE COLLAR INTACT
!	EQUIPMENT DOCU	JMENTATION	DECONTAMINATION
PURGING/SAMPLING EQUIP. USE	F USED FOR: PURGING SAMPLING PERISTALTIC PU SUBMERSIBLE F BAILER PVC/SILICON TU TEFLON/SILICON AIR LIFT HAND PUMP IN-UNE FILTER PRESS/VAC FILT	JBING N TUBING	METHOD: Sterin Clerin Bailer T
	FIELD ANALYS	SIS DATA	
AMBIENT AIR VOA	PPM WELL MOUTH	PPM FIELD DATA COLLECT	ED IN-LINE ZI IN CONTAINER
TEMPERATURE, DEG C	7.0 7.0 7.0 890 910 100		SAMPLE OBSERVATIONS TURBID COLORED CLOUDY CLEAR ODOR
SAMPLE COLLECTION REC (*/ IF REQUIRED AT THIS LOCATION) ANALYTICAL PARAMETER FILTE COLLECTION REC (**) IF REQUIRED AT THIS LOCATION) ANALYTICAL PARAMETER FILTE COLLECTION REC (**) IF REQUIRED AT THIS LOCATION ANALYTICAL PARAMETER FILTE COLLECTION REC (**) IF REQUIRED AT THIS LOCATION ANALYTICAL PARAMETER FILTE COLLECTION REC (**) IF REQUIRED AT THIS LOCATION ANALYTICAL PARAMETER FILTE COLLECTION REC (**) IF REQUIRED AT THIS LOCATION ANALYTICAL PARAMETER FILTE COLLECTION REC (**) IF REQUIRED AT THIS LOCATION ANALYTICAL PARAMETER FILTE COLLECTION REC (**) IF REQUIRED AT THIS LOCATION ANALYTICAL PARAMETER FILTE COLLECTION REC (**) IF REQUIRED AT THIS LOCATION ANALYTICAL PARAMETER FILTE COLLECTION REC (**) IF REQUIRED AT THIS LOCATION COLLECTION REC (**) IF REC (**)	ELD PRESERVATION VOLUME	SAMPLE COLLECTED SAMPLE BOTTLE 1D.S	
NOTES:			1.36

James M. Montgo Consulting Engine	
PROJECT 2	
SAMPLE LOCATION I.D.	NT-99-MWA LOCATION ACTIVITY START: (550 END: 700
	WATER LEVEL / WELL DATA
WELL DEPTH 66.91	FT HISTORICAL TOP OF WELL CASING STICK-UP 2.5 FT
WATER DEPTH 57.54	WELL MATERIAL: WELL LOCKED? WELL DIA. 32 INCH WATER LEVEL EQUIP USI
HEIGHT OF 9.37	FT X 0 65 GAUFT (2 IN.) TOTAL GAL PURGED CONCRETE COLLAR INTACT & OTHER
	EQUIPMENT DOCUMENTATION DECONTAMINATION
	PERISTALTIC PUMP SUBMERSIBLE PUMP BAILER PVC/SILICON TUBING TEFLON/SILICON TUBING AIR LIFT HAND PUMP IN-LINE FILTER PRESS/VAC FILTER
	FIELD ANALYSIS DATA
AMBIENT AIR VO	PPM WELL MOUTH PPM FIELD DATA COLLECTED IN-LINE
PURGE DATA	O 3 GAL O 4 GAL O 8 GAL O GAL O GAL SAMPLE OBSERVATIONS
TEMPERATURE, DEG C	TURBID COLORED CLOUDY
SPECIFIC CONDUCTIVITY (umnde/cm. @ 25 deg.c)	970 960 960 CLEAR COOR
MALYTICAL PARAMETER F	FIELD PRESERVATION VOLUME SAMPLE TERED METHOD REQUIRED COLLECTED SAMPLE BOTTLE I.D.'S
<u></u>	
NOTES:	
	SIGNATURE OF SAMPLER CELLS -

James M. Montgome	у		PAGE / OF
Consulting Engineers	, Inc.		- AGE UF
PROJECT SIAO PHA	SE 1 RI/FS J	OB NO. 25 73 CC-11 DATE	6/3/50
SAMPLE LOCATION I.D.	17-10-muA	OCATION ACTIVITY START: // 5	8 END: 1400
	WATER LEVEL / WEI	L DATA	
WELL DEPTH 6551 F	MEASURED TOP OF WELL TOP OF CASING	CASING STICK-UP 3.5 FT	,
WATER DEPTH 59.83 F	WELL MATERIAL: WELL T PVC - BYYE SS - N		WATER LEVEL EQUIP USED: ELECT COND PROBE FLOAT ACTIVATED PRESS. TRANSDUCER
HEIGHT OF WATER COLUMN 8.98 F	T X .16 GAL/FT (2 IN.) /. 1		NTEGRITY: YES NO ASING SECURE OF THE COLLAR INTACT
1	EQUIPMENT DOCUM	ENTATION	DECONTAMINATION
PURGING/SAMPLING EQUIP. USE	F USED FOR: PURGING SAMPLING PERISTALTIC PUMI SUBMERSIBLE PUM BAILER PVC/SILICON TUBII TEFLON/SILICON TI AR LIFT HAND PUMP IN-UNE FILTER PRESS/VAC FILTER	EOUIPMENT I.D. STE	METHOD: FAM CLEAN BAILERS SS-WIZE
AMBIENT AIR VOA	FIELD ANALYSIS	DATA PPM FIELD DATA COLLECTED	☐ IN-LINE
	2 au 0 10 au 0 28 a		IN CONTAINER
PURGE DATA TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (umnos/cm. @ 25 deg.c)	7.2 7.1 7.3 /000 /000 /000	- GAL OGAL S/	MPLE OBSERVATIONS TURBID COLORED CLOUDY CLEAR ODOR
SAMPLE COLLECTION REG		/F	:
ANALYTICAL PARAMETER FILTE		LECTED SAMPLE BOTTLE I.D.'S	
onooooo			
NOTES.		SIGNATURE OF SAMPLER	166

JAM James M. Montgon		PAGE _/_ OF _/
Consulting Enginee	ers, Inc.	
PROJECT SIAO PA	ASE 1 RI/FS JOB NO. 25 73 CC71 D	ATE 6/3/70
SAMPLE LOCATION I.D. 7	NT-16-MWB LOCATION ACTIVITY STAR	T: 1105 END: 1150
	WATER LEVEL / WELL DATA	
WELL DEPTH 10/97	FT HISTORICAL TOP OF WELL CASING STICK-UP 2.	3 FT
WATER DEPTH 59.45	WELL MATERIAL: WELL LOCKED? WELL DIA. 21 FT ZI PVC	
HEIGHT OF WATER COLUMN 45.52	1.5 GALFT (6 IN.)	WELL INTEGRITY: YES PROT. CASING SECURE CONCRETE COLLAR INTACT
Purging/Sampling Equip. US	FUSED FOR: PURGING SAMPLING PERISTALTIC PUMP SUBMERSIBLE PUMP BAILER PVC/SILICON TUBING TEFLON/SILICON TUBING AIR LIFT HAND PUMP IN-LINE FILTER PRESS/VAC FILTER	DECONTAMINATION METHOD: Steem Clan Piump Baller Hoses
AMBIENT AIR VO	FIELD ANALYSIS DATA PPM WELL MOUTH PPM FIELD DATA COLL	ECTED [IN-LINE
PURGE DATA TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (umhos/om. @ 25 deg.c)	6.4 6.0 6.1 6.0 1000 1000 1000	SAMPLE OBSERVATIONS TURBID COLORED EXCLOUDY CLEAR ODOR
HALYTICAL PARAMETER FR		1.D.·S
NOTES.	SIGNATURE OF SAMPLER	J. J. Bak

James M. Montgomery			- PAGE / OF /		
Consulting Engineers, Ir	· · · · · · · · · · · · · · · · · · ·				
PROJECT SIAO PHASE) Q1//=S	JOB NO. 2573.0011 DATE	6/3/90		
SAMPLE LOCATION I.D. TN	·- 10- mwc	LOCATION ACTIVITY START: 0	930 END: 1050		
	WATER LEVEL / WELL DATA				
WELL DEPTH /39 1 FT	MEASURED TOP OF WELL TOP OF CAS				
WATER DEPTH 59 34 FT	⊠ PVC □ ⊆	ELL LOCKED? WELL DIA. 2 INCH YES 34 INCH NO 6 INCH	WATER LEVEL EQUIP USED.! ELECT. COND. PROBE FLOAT ACTIVATED PRESS. TRANSDUCER		
HEIGHT OF 78.86 FT	1.5 GAL/FT (6 IN.)	PROT	INTEGRITY: YES NO CASING SECURE SECURE		
	EQUIPMENT DOCU	MENTATION	DECONTAMINATION		
PURGING/SAMPLING EQUIP. USED:	✓ IF USED FOR: METHOD:				
	FIELD ANALYS	SIS DATA			
AMBIENT AIR VOA	— PPM WELL MOUTH	PPM FIELD DATA COLLECTE	BNIJ-NI DE BANIATNOO NI LO		
	10 an 0 50 an 0 150	an 6 300 an 6 400 an	SAMPLE OBSERVATIONS TURBID		
1 -	7.9 7.6	6.6 6.6	COLORED CLOUDY		
SPECIFIC CONDUCTIVITY (umhowarn. @ 25 dag.c)	D 1000 926	920 920	CLEAR ODOR		
SAMPLE COLLECTION REQUI		∕ F SAMPLE	<u> </u>		
ANALYTICAL PARAMETER FILTERED		COLLECTED SAMPLE BOTTLE I.D.'S			
anaconaa					
NOTES.					
			1 11.81		
		SIGNATURE OF SAMPLER	<u> </u>		

James M. Montgomery Consulting Engineers, Inc.	PAGE OF _/
PROJECT SIAD PHASE 1 21 JOB NO. 2573 CC+1 DATE SAMPLE LOCATION I.D. TUTI-ML 4 LOCATION ACTIVITY START:	
WATER LEVEL / WELL DATA	
WELL DEPTH 74.28 FT THISTORICAL TOP OF WELL CASING STICK-UP 1.6	FT
WATER DEPTH 67.05 FT SPVC SS SNO SO	H ELECT COND PROBE
WATER COLUMN 1.5 GAL/FT (6 IN.) 2 7 TOTAL GAL PURGED COL	LL INTEGRITY YES NOT CASING SECURE OF SECURE
PURGING/SAMPLING EQUIP. USED: PURGING SAMPLING PERISTALTIC PUMP SUBMERSIBLE PUMP BAILER PVC/SILICON TUBING TEFLON/SILICON TUBING AIR LIFT HAND PUMP IN-LINE FILTER PRESS/VAC FILTER	Stean Clean Balley ISalve
FIELD ANALYSIS DATA AMBIENT AIR VOA PPM WELL MOUTH PPM FIELD DATA COLLECT	TED [IN-LINE]
PURGE DATA PURGE	-
SAMPLE COLLECTION REQUIREMENTS :/ IF REQUIRED AT THIS LOCATION) ANALYTICAL PARAMETER FILTERED METHOD REQUIRED COLLECTED SAMPLE BOTTLE I.D.	s
NOTES.	iNDO

•

James M. Montgom							PAGE	_/_ OF)
Consulting Enginee	rs, Inc.		·					
PROJECT SIAD PH	RE1 181			JOB NO.	2573	∞d1 DAT	E 6/7	1c ₁
SAMPLE LOCATION I.D.	ひナー12-	mu 4		LOCATIO	N ACTIV	START: /	/20 ENO	1315
		WATER LE	VEL / WI	ELL DAT	Α.			
WELL DEPTH 60.22	FT HISTO		P OF WEL	_	SING STIC OM GROU		म	
WATER DEPTH 5284	FT B PV	MATERIAL:	z	LL LOCKEI YES NO	D? WELL	DIA. 2 2 INC. 4 INC. 4 INC. 6 INC.	H ZE ELEC	EVEL EQUIP USED CT.COND.PROBE AT ACTIVATED SS. TRANSDUCER
HEIGHT OF WATER COLUMN 7.38	FT X .65	GAUFT (2 IN.) GAUFT (4 IN.) GAUFT (6 IN.) GAUFT (II			GALNOL TOTAL GA	PRO	LL INTEGRITO OT. CASING SEI ICRETE COLLA IER	CURE E I
		EQUIPMEN	TDOCU	MENTAT	NOI		DECONT	AMINATION
Purging/Sampling Equip. US		SUBME BAILEF PVC/SI TEFLO AIR LIF HAND IN-LINE	ILICON TUI INSILICON FT	UMP BING I TUBING		ENT I.D.	૽ૢૺ૱ૡ	(Clain le-je sur-e
		FIELD /	ANALYS	IS DATA	1	 		
AMBIENT AIR VOA	PPA	WELL MOU	лн	PPM	FIELD	DATA COLLEC		-LINE CONTAINER
PURGE DATA	• <u>3</u> eu	•GAL	•	GAL O_	GAL	@ GA	SAMPLE O	BSERVATIONS JRBID
TEMPERATURE, DEG C	7.1							DLORED LOUDY
SPECIFIC CONDUCTIVITY (umnos/am. @ 25 deg.c)	720			_			☐ ci	LEAR DOR
	<u></u>		1					~ ∩
) FRELD PRESER	IVATION VOL	.UME UIRED O	/F SAMPLE COLLECTED	SALA	LE BOTTLE (.D.:	s	
			<u> </u>					
				age			=	
ממחממחמס				0000000				
NOTES:	<u></u>				==			
				QI/ZDIA TI I	IRE OF SAM		Bok	
				SHARIU	ine of SAI	TLENC ST		

James M. Montgor Consulting Engine					_ PAGE/_ OF/
PROJECT 5/43		JOB	NO. 2573.	DATE	6 1/90
SAMPLE LOCATION I.D.	TNT 3 MWA	LOC	ATION ACTIV	/ITY START: /"	755 END: 19.20
	WATER	LEVEL / WELL	DATA		
WELL DEPTH 69.24	~ ! -	TOP OF WELL TOP OF CASING	CASING STIC (FROM GROU		
WATER DEPTH 58. 48	WELL MATERIAL: FT	WELL LO	CKED? WELI	DIA. Ø 2 INCH 4 INCH 5 INCH	WATER LEVEL EQUIP USE LECT COND PROBE FLOAT ACTIVATED PRESS, TRANSDUCE
HEIGHT OF WATER COLUMN 10.76	7 .16 GAUFT (21 FT X	N.)	TOTAL GA	PROT	INTEGRITY: YES N CASING SECURE LI RETE COLLAR INTAGT IN
	EQUIPMI	ENT DOCUMEN	TATION		DECONTAMINATION
Purging/Sampling Equip. U	PEI SUI SUI SUI SUI SUI SUI SUI SUI SUI SU	RISTALTIC PUMP BMERSIBLE PUMP LER C/SILICON TUBING FLON/SILICON TUBI LIFT ND PUMP JNE FILTER ESS/VAC FILTER			METHOD: Steam cleans be, lors - Lion value wirk
	FIEL	D ANALYSIS D	ATA		
AMBIENT AIR VO	A PPM WELL N	OUTH F	PM FIELD	DATA COLLECTI	ED [IN-LINE]
PURGE DATA	● 1 GM ● 30 G	AL 0 30 GAL	•ar	•GAL	SAMPLE OBSERVATIONS TURBID
TEMPERATURE, DEG C	7.4 7.3	68			COLORED
(umnosiam. @ 25 deg.c)	1000 9.60	960			CLEAR COOR
	N) F FIELD PRESERVATION	VOLUME SAMP	LE		
	TERED METHOD F	EQUIRED COLLEC	TED SAM	LE BOTTLE I.D.'S	
		JOB			
		0000000	=	<u> </u>	
NOTES:			=	/	
					1
		SIG	V TURE OF SA	PLER 6	Lill
				(/	

James M. Montgome	Ŋ		PAGE/_ OF !	
Consulting Engineers	i, Inc.			
PROJECT 5/20 PH4	SE 1 21	JOB NO. 2573 004	DATE 6/3/90	
SAMPLE LOCATION I.D.	4T-14-mwA	LOCATION ACTIVITY S	TART:/5 ℃ END: /840	
	WATER LE	VEL / WELL DATA		
WELL DEPTH 65.1.2		P OF WELL CASING STICK-UP (FROM GROUND)	/- D FT	
WATER DEPTH 49.801	WELL MATERIAL:		2 INCH WATER LEVEL EQUIP USED: 4 INCH 2 ELECT COND PROBE FLOAT ACTIVATED PRESS. TRANSDUCER	
HEIGHT OF WATER COLUMN 15.32-1	☐ .16 GAL/FT (2 IN.) T X ☐ .65 GAL/FT (4 IN.) ☐ 1.5 GAL/FT (6 IN.) ☐ GAL/FT (1)	2.45 GALVOL 4// TOTAL GAL PURGE	WELL INTEGRITY: YES NO PROT. CASING SECURE CONCRETE COLLAR INTACT OF COTHER	
	EQUIPMEN	T DOCUMENTATION	DECONTAMINATION	
PURGING/SAMPUNG EQUIP. USE	PERIS: SUBME SUBME BAILEF PVC/SI TEFLO AIR LIF	ILICON TUBING NYSILICON TUBING PT	METHOD: Stean (lean Tetlen Berlan SS Barler SS Currer	
	FIELD /	ANALYSIS DATA		
AMBIENT AIR VOA	PPM WELL MOU	TH PPM FIELD DATA C	OLLECTED IN-LINE	
PURGE DATA	€ 5 GN € 20 GN	0 40 GM 0 GM 0_	GAL SAMPLE OBSERVATIONS	
TEMPERATURE, DEG C			TURBIO COLORED	
pH, units SPECIFIC CONDUCTIVITY	7.0 6.6	6.8	☑ CLOUDY	
(umnos/cm. @ 25 deg.c)	1000 1000	7000	CLEAR ODOR	
SAMPLE COLLECTION REQUIREMENTS (/ IF REQUIRED AT THIS LOCATION) / IF / IF FIELD PRESERVATION VOLUME SAMPLE ANALYTICAL PARAMETER FILTERED METHOO REQUIRED COLLECTED SAMPLE BOTTLE I.D.'S				
· · · · · · · · · · · · · · · · · · ·	RED METHOD REC		/	
		ğ <u> </u>		
			/	
			/	
NOTES:		Signature of Sampler	Och JBO	
			70	

James M. Montgomery	PAGE OF			
Consulting Engineers, Inc.				
PROJECT SIAD PHASE I RIJFS JOB NO. 2573 COLL DATE	6/2/50			
SAMPLE LOCATION I.D. TNT - 16- MW A LOCATION ACTIVITY START: // 2	25 END: /308			
WATER LEVEL / WELL DATA				
WELL DEPTH 7/88 FT HISTORICAL TOP OF CASING (FROM GROUND) /-8 FT				
WATER DEPTH 58.75 FT WELL MATERIAL: WELL LOCKED? WELL DIA. 2 INCH YES 64 INCH 6 INCH	WATER LEVEL EQUIP. USED. ELECT.COND.PROBE FLOAT ACTIVATED PRESS. TRANSDUCER			
WATER COLUMN 15 GAL/FT (8 IN)	INTEGRITY: YES NO CASING SECURE Z C C C C C C C C C C C C C C C C C C			
PURGING/SAMPLING EQUIP. USED: PURGING/SAMPLING EQUIP. USED: PURGING SAMPLING PERISTALTIC PUMP SUBMERSIBLE PUMP BAILER PVC/SILICON TUBING AIR LIFT AND PUMP IN-LINE FILTER PRESS/VAC FILTER	DECONTAMINATION METHOD: team Clear Pamp Baleir Itoses			
FIELD ANALYSIS DATA				
AMBIENT AIR VOA PPM WELL MOUTH PPM FIELD DATA COLLECTE	ED IN-LINE			
PURGE DATA	SAMPLE OBSERVATIONS TURBID			
pH, units SPECIFIC CONDUCTIVITY (umnos/cm. ● 25 deg.s) Column Colum	COLORED ACCLOUDY CLEAR CODOR			
SAMPLE COLLECTION REQUIREMENTS (/ IF REQUIRED AT THIS LOCATION) / F / F / F / F / F / F / F /				
ANALYTICAL PARAMETER FILTERED METHOD REQUIRED COLLECTED SAMPLE BOTTLE I.D.'S				
NOTES.	1126			
SIGNATURE OF SAMPLER	100			

James M. Montgomery	PAGE OF			
Consulting Engineers, Inc.	·			
PROJECT SIAD PHASE) R \ JOB NO. 2573 CG41 DATE				
SAMPLE LOCATION I.D. TNT-15 MW A LOCATION ACTIVITY STARTS /	320 END: /500			
WATER LEVEL / WELL DATA				
WELL DEPTH 7/25 FT MEASURED TOP OF WELL CASING STICK-UP 2.4 F	-			
WATER DEPTH 5-1.63 FT PVC DYES Z4 INCH	ELECT COND.PROBE			
WATER COLUMN PRO	L INTEGRITY: YES N. T. CASING SECURE CRETE COLLAR INTACT			
EQUIPMENT DOCUMENTATION PURGING SAMPLING PURGING SAMPLING PURGING SAMPLING PURGING SAMPLING PURGING SAMPLING STEAM Claun Steam C				
TEMPERATURE, DEG C pH, units SPECIFIC CONDUCTIVITY (uninosition. @ 25 deg.c) 1400 1400 1400	TURBID COLORED CLOUDY CLEAR CODOR			
SAMPLE COLLECTION REQUIREMENTS (/ IF REQUIRED AT THIS LOCATION) ANALYTICAL PARAMETER FILTERED METHOD REQUIRED COLLECTED SAMPLE BOTTLE I.D. S				
NOTES:	130			

Appendix J

Land Survey Data

James M. Montgomery

Consulting Engineers Inc.

TABLE J-1

LAND SURVEY DATA

MONITORING WELL LOCATIONS AND ELEVATIONS

Well Number	Cooi	Elevation**	
ALF-01-MWA	304504.567 N	2525117.952 E	4080.02
ALF-02-MWA	304057.763 N	2523896.817 E	4078.54
ALF-03-MWA	302896.271 N	2524736.532 E	4087.39
CCB-01-MWA	306151.574 N	2524664.786 E	4067.76
CCB-02-MWA	305215.678 N	2524516.586 E	4075.67
DMO-03-MWA	303742.865 N	2528129.764 E	4085.40
DMO-04-MWA	303578.791 N	2528027.429 E	4085.41
DMO-05-MWA	303338.121 N	2528087.794 E	4084.25
DSB-01-MWA	344400.442 N	2506267.987 E	3996.29
DSB-02-MWA	329658.793 N	3516081.364 E	4002.29
DSB-04-MWA	325655.829 N	2525802.389 E	4009.28
DSB-06-MWA	309661.704 N	2527171.419 E	4044.33
TNT-01-MWA	309893.728 N	2527032.313 E	4044.61
TNT-01-MWB	309883.468 N	2527033.442 E	4045.41
TNT-01-MWC	309873.126 N	2527033.130 E	4044.21
INT-02-MWA	310188.088 N	2527656.303 E	4043.05
INT-02-MWB	310179.713 N	2527654.934 E	4042.95
INT-02-MWC	310168.593 N	2527653.566 E	4043.17
TNT-03-MWA	310320.910 N	2527311.930 E	4042.57
TNT-04-MWA	309901.321 N	2527657.510 E	4043.10
INT-05-MWA	309391.870 N	2527998.456 E	4047.41
ΓNT-06-MWA	309667.021 N	2527338.992 E	4044.29
ΓNT-07-MWA	310320.457 N	2526872.422 E	4043.83
INT-07-MWB	310321.094 N	2526882.055 E	4044.83
INT-07-MWC	310324.911 N	2526896.823 E	4045.14
TNT-08-MWA	309892.691 N	2526712.055 E	4045.91
TNT-09-MWA	309562.610 N	2526780.449 E	4044.77
TNT-10-MWA	309623.837 N	2526116.021 E	4046.47
TNT-10-MWB	309626.062 N	2526127.072 E	4045.25
TNT-10-MBC	309637.563 N	2526128.343 E	4044.73
TNT-11-MWA	309438.992 N	2525933.389 E	4047.85
TNT-12-MWA	309887.666 N	2526066.235 E	4039.18
TNT-13-MWA	309608.557 N	2526552.871 E	4045.40
TNT-14-MWA	309953.728 N	2525470.719 E	4036.90
TNT-15-MWA	310409.421 N	2587688.949 E	4039.55
TNT-16-MWA	310406.116 N	2528134.451 E	4044.91
LF-A-MW	308061.481 N	2513813.665 E	4020.44
LF-B-MW	308332.399 N	2513357.943 E	4017.04
LF-C-MW	308868.170 N	2511744.438 E	4011.18

TABLE J-1 (Continued)

LAND SURVEY DATA MONITORING WELL LOCATIONS AND ELEVATIONS

Well Number	Coor	dinates*	Elevation**
LF-D-MW	309023.034 N ·	2513885.281 E	4014.45
LF-E-MW	308698.622 N	2573989.418 E	4016.51
LF-F-MW	308085.422 N	2515003.648 E	4022.37
LF-G-MW	307317.079 N	2514019.234 E	4022.62
LF-H-MW	307633.915 N	2514106.031 E	4022.48
LF-I-MW	306467.855 N	2515561.719 E	4022.75
LF-J-MW	306659.491 N	2514341.309 E	4024.64
LF-K-MW	305456.887 N	2514865.851 E	4023.38
LF-L-MW	307367.760 N	2512738.726 E	4020.37
LF-M-MW	308868.170 N	2511744.438 E	4010.03
LF-N-MW	309135.883 N	2515591.187 E	4016.02
LF-O-MW	306029.595 N	2517424.767 E	4030.60
LF-1-MW	307042.312 N	2515124.375 E	4024.38
LF-2-MW	308293.152 N	2514128.450 E	4019.62
LBG-1-MW	344312.362 N	2530847.759 E	4011.43
LBG-2-MW	339349.749 N	2525553.715 E	4006.25
P-1-MW	302435.811 N	2523751.716 E	4086.45
P-2-MW	302431.882 N	2523637.031 E	4086.20
P-3-MW	302298.537 N	2523690.769 E	4086.14
DF-1-MW	309252.820 N	2526525.753 E	4086.82

^{*} California State Plane Coordinates

^{**} Top of PVC casing elevation, feet above mean sea level

TABLE J-2

LAND SURVEY DATA
SOIL BORING LOCATIONS AND ELEVATIONS

Number	Coor	rdinates*	Elevation**
			<u> </u>
ALF-01-SB	303009.381 N	2525436.011 E	4081.00
ALF-02-SB	304146.639 N	2524645.244 E	4077.03
ALF-03-SB	304141.276 N	2525284.355 E	4077.87
ALF-04-SB	304077.326 N	2524806.352 E	4077.88
CCB-01-SB	305938.798 N	2524616.885 E	4066.42
CCB-02-SB	305780.565 N	2524598.015 E	4068.12
CCB-03-SB	305599.121 N	2524631.686 E	4071.33
CCB-04-SB	305029.048 N	2524659.961 E	4076.66
CCB-05-SB	304450.501 N	2524982.320 E	4076.98
DMO-06-SB	303658.901 N	2328105.724 E	4082 .80
DMO-07-SB	303615.858 N	2528110.664 E	4083.02
DMO-08-SB	303553.051 N	2528120.492 E	4082.50
DMO-09-SB	303498.582 N	2528114.706 E	4082.47
DMO-10-SB	303663.159 N	2528232.117 E	4082.43
DMO-11 -SB	303623.412 N	2528234.975 E	4082.25
DMO-12-SB	303693.457 N	2528270.733 E	4082.90
DMO-13-SB	303617.739 N	2528287.343 E	4082.80
DSB-01-SB	344467.331 N	2506259.269 E	3993.49
DSB-02-SB	329566.370 N	2516070.479 E	4000.27
DSB-03-SB	339415.945 N	2525689.278 E	4003.84
DSB-04-SB	325657.442 N	2525792.586 E	4006.97
DSB-05-SB	300987.501 N	2517749.046 E	4105.51
DSB-06-SB	309679.540 N	2527096.071 E	4042.01
TNT-07-SB	309485.659 N	2525945.351 E	4044.54
TNT-08-SB	309448.747 N	2526071.278 E	4047.24
TNT-09-SB	309474.306 N	2526125.735 E	4045.90
TNT-10-SB	309503.348 N	2526199.962 E	4044.15
TNT-11-SB	309589.823 N	2526162.990 E	4043.39
TNT-12-SB	310003.719 N	2527166.207 E	4038.08
TNT-13-SB	309990.217 N	2527100.207 E 2527192.222 E	4038.88
TNT-14-SB	309947.012 N	2527167.296 E	4039.07
TNT-15-SB	309959.865 N	2527142.820 E	4039.58
TNT-15-SB TNT-16-SB	309912.520 N	2527142.820 E 2527109.116 E	4039.48
TNT-10-3B TNT-17-SB	309898.452 N	2527109.110 E 2527129.095 E	4039.58
TNT-18-SB		2527129.095 E 2527120.996 E	4039.38
TNT-10-SB TNT-19-SB	309882.257 N 309895.843 N	2527120.996 E 2527100.367 E	4040.20

^{*} California State Plane Coordinates

^{**} Ground Surface Elevation, feet above Mean Sea Level

Appendix K

Basin-wide Flow Model at Honey Lake Valley

James M. Montgomery

Consulting Engineers Inc.

FN: ALF1MWA.PP. PUMPING DAT' FOR WELL ALF-01-MWA

Step 0 04/10 13:25:03

Elapsed Time	INPUT 1
0.0000 0.0083 0.0166 0.0250 0.0333 0.0416 0.0500 0.0583 0.0666 0.0750	0.247 0.111 0.080 0.095 0.116 0.126 0.126 0.131 0.151
0.0833 0.1000 0.1166 0.1333 0.1500 0.1666 0.1833 0.2000 0.2166 0.2333	0.156 0.176 0.176 0.186 0.191 0.207 0.202 0.217 0.212
0.2500 0.2666 0.2833 0.3000 0.3166 0.3333 0.4166 0.5000 0.5833 0.6666	0.227 0.232 0.227 0.237 0.232 0.242 0.247 0.257 0.257
0.8333 0.9166 1.0000 1.0833 1.1666 1.2500 1.3333 1.4166 1.5000 1.5833	0.262 0.267 0.257 0.272 0.272 0.262 0.267 0.267 0.277
1.6666 1.7500 1.8333 1.9166 2.0000 2.5000 3.0000 3.5000 4.0000 4.5000 5.0000	0.282 0.272 0.287 0.277 0.287 0.293 0.293 0.287 0.298 0.308

FN: ALF2MWA.PRN
PUMPING DATA FOR WELL ALF-02-MWA

Step 0 04/11 14:55:36

Elapsed Time	INPUT 1
0.0000	-0.678 0.489
0.0166	0.299
0.0250	0.489
0.0333 0.0416	0.520 0.584
0.0500	0.631
0.0583	0.694
0.0666 0.0750	0.742 0.773
0.0833	0.836
0.1000	0.915
0.1166 0.1333	0.994 1.073
0.1500	1.136
0.1666	1.199
0.1833 0.2000	1.263 1.310
0.2166	1.357
0.2333	1.420
0.2500 0.2666	1.468 1.515
0.2833	1.515
0.3000	1.594
0.3166 0.3333	1.641 1.673
0.4166	1.799
0.5000	1.910
0.5833 0.6666	2.020 2.099
0.7500	2.162
0.8333	2.226
0.9166 1.0000	2.241 2.305
1.0833	2.289
1.1666	2.305
1.2500 1.3333	2.305 2.320
1.4166	2.320
1.5000	2.336
1.5833 1.6666	2.320 2.368
1.7500	2.415
1.8333	2.478
1.9166 2.0000	2.541 2.573
2.5000	2.810
3.0000	2.952
3.5000 4.0000	3.031 3.078
4.5000	3.125
5.0000	3.141

5.5000	3.173
6.0000	3.189
6.5000	3.189
7.0000	3.236
7.5000	3.236
8.0000	3,268
8.5000	3.268
9.0000	3.252
9.5000	3.299
10.0000	3.315
12.0000	3.346
14.0000	3.394
16.0000	3.457
18.0000	3.473
20.0000	3.473
22.0000	3.504
24.0000	3.536
26.0000	3.536
28.0000	3.568
30.0000	3.583
32.0000	3.583
34.0000	3.599
36.0000	3.631
38.0000	3.615
40.0000	3.631
42.0000	3.678
44.0000	3.646
46.0000	3.662
48.0000	3.646
50.0000	3.678
52.0000	3.678
54.0000	3.678
56.0000	3.694
58.0000	3.694
60.0000	3.741
62.0000	3.710
64.0000	3.678
66.0000	3.741
68.0000	3.725
70.0000	3.741

END

FN: ALF3MWA.PRN

PUMPING DATA FOR WELL ALF-03-MWA

Step 0 04/11 10:48:19

Elapsed Time	INPUT 1
0.0000	0.599
0.0083	-0.410
0.0166	0.189
0.0250	0.347
0.0333	0.363
0.0416	0.394
0.0500	0.331
0.0583	0.394
0.0666	0.378
0.0750	0.363
0.0833	0.442
0.1000	0.363
0.1166	0.394
0.1333	0.442
0.1500	0.410
0.1666	0.442
0.1833	0.552
0.2000	0.489
0.2166	0.473
0.2333	0.505
0.2500	0.568
0.2666	0.489
0.2833	0.615
0.3000	0.615
0.3166	0.568
0.3333	0.599
0.4166	0.599
0.5000	0.694
0.5833	0.789
0.6666	0.852
0.7500	0.805
0.8333	0.868
0.9166	0.963
1.0000	0.899
1.0833	1.041
1.1666	0.963
1.2500	1.010
1.3333	1.089
1.4166	1.089
1.5000	1.120
1.5833	1.215
1.6666	1.120
1.7500	1.168
1.8333	1.215
1.9166	1.215
2.0000	1.326
2.5000	1.357
3.0000 3.5000	1.484
4.0000	1.547 1.436
4.5000	1.436
5.0000	1.484

5.5000 6.0000 6.5000 7.0000 7.5000 8.0000 9.0000 9.5000	1.515 1.389 1.389 1.420 1.468 1.452 1.420
10.0000 12.0000	1.499 1.452
14.0000	1.484
16.0000	1.452
18.0000	1.436
20.0000	1.436 1.531
22.0000 24.0000	1.452
26.0000	1.452
28.0000	1.499
30.0000	1.468
32.0000 34.0000	1.562 1.562
36.0000	1.562
38.0000	1.562
40.0000	1.499
42.0000	1.578
44.0000 46.0000	1.594 1.499
48.0000	1.531
50.0000	1.547
52.0000	1.562
54.0000	1.562
56.0000 58.0000	1.562 1.594
60.0000	1.547
62.0000	1.515
64.0000	1.562
66.0000 68.0000	1.610
70.0000	1.562 1.562
72.0000	1.578
74.0000	1.578

END

FN: CCB1MWA.PRN
PUMPING DATA FOR WELL CCB-01-MWA

Step 0 04/09 12:24:50

Elapsed Time	INPU	T 1
0.001	3.86	4079.53
0.0083	3.98	4079.65
0.0166	3.89	4079.56
0.025	3.95	4079.62
0.0333	3.93	4079.6
0.0416	3.92	4079.59
0.05	3.89	4079.56
0.0583	3.93	4079.6
0.0666	3.95	4079.62
0.075	3.9	4079.57
0.0833	3.98	4079.65
0.1	3.98	4079.65
0.1166	3.93	4079.6
0.1333	4.01	4079.68
0.15	3.95	4079.62
0.1666	4.11	4079.78
0.1833	4.01	4079.68
0.2	4	4079.67
0.2166	4.06	4079.73
0.2333	4.03	4079.7
0.25	4.06	4079.73
0.2666	4.04	4079.71
0.2833	4.09	4079.76
0.3	4.06	4079.73
0.3166	4.06	4079.73
0.3333	4.09	4079.76
0.4166	4.11	4079.78
0.5 0.5833	4.12	4079.79
0.6666	4.14	4079.81
0.75	4.15	4079.79 4079.82
0.8333	4.13	4079.82
0.9166		4079.86
1		4079.84
1.0833		4079.89
1.1666	4.2	4079.87
1.25	4.23	4079.9
1.3333	4.22	4079.89
1.4166	4.23	4079.9
1.5	4.23	4079.9
1.5833	4.19	4079.86
1.6666	4.28	4079.95
1.75	4.17	4079.84
1.8333	4.25	4079.92
1.9166	4.23	4079.9
2	4.25	4079.92
	4.25	4079.92
3	4.3	4079.97
	4.23	4079.9
4	4.34	4080.01
4.5	4.3	4079.97
5	4.28	4079.95

5.5	4.33	4080
6	4.25	4079.92
6.5	4.28	4079.95
7	4.3	
=		
7.5	4.3	4079.97
8	4.31	4079.98
8.5	4.28	4079.95
9	4.28	4079.95
_	4.28	4079.95
9.5		
10	4.31	4079.98
12	4.28	4079.95
14	4.33	4080
16	4.38	4080.05
18	4.26	4079.93
20	4.28	4079.95
22	4.38	4080.05
24	4.36	4080.03
26	4.38	4080.05
28	4.31	4079.98
30	4.38	4080.05
32	4.33	4080
34	4.31	4079.98
36	4.41	4080.08
38	4.38	4080.05
40	4.42	4080.09
42	4.41	4080.08
44	4.41	4080.08
46	4.34	4080.01
48	4.38	4080.05
50	4.41	4080.08
52	4.41	4080.08
54		
	4.34	4080.01
56	4.36	4080.03
58	4.39	4080.06
60	4.44	4080.11
62	4.38	4080.05
64	4.44	4080.11
66	4.44	4080.11
68	4.36	4080.03
70	4.38	4080.05
72	4.36	4080.03
74	4.31	4079.98
, 4		40.3.30

fn: CCB2MWA.PRN
PUMPING DATA FOR WELL CCB-02-MWA

Step 0 04/09 16:10:20

Elapsed Time	INPUT	1
0	0.78	4076.45
0.0083	1.13	4076.8
0.0166	0.64	4076.31
0.025	0.67	4076.34
0.0333	0.72	4076.39
	0.69	4076.36
0.05	0.8	4076.47
0.0583	0.77	4076.44
0.0666	0.77	4076.44 4076.47
0.075 0.0833	0.92	4076.59
0.0033	0.96	4076.63
0.1166	1.05	4076.72
0.1333	1.11	4076.78
0.15	1.11	4076.78
0.1666	1.22	4076.89
0.1833	1.26	4076.93
0.2	1.29	4076.96
0.2166	1.4	4077.07
0.2333	1.46	4077.13 4077.15
0.25 0.2666	1.48 1.52	4077.19
0.2833	1.62	4077.29
0.2833	1.63	4077.3
0.3166	1.63	4077.3
0.3333	1.67	4077.34
0.4166	1.92	4077.59
0.5	2.15	4077.82
0.5833	2.23	4077.9
0.6666	2.33	4078
0.75	2.59	4078.26
0.8333	2.58	4078.25
0.9166	2.72	4078.39
1 0023	2.86 2.97	4078.53 4078.64
1.0833 1.1666	3.1	4078.77
1.25	3.21	4078.88
1.3333	3.32	4078.99
1.4166	3.46	4079.13
1.5	3.51	4079.18
1.5833	3.51	4079.18
1.6666	3.6	4079.27
1.75	3.71	4079.38
1.8333	3.79	4079.46
1.9166	3.89	4079.56
2 2.5	3.87 4.19	4079.54 4079.86
3	4.15	4079.88
3.5	4.64	4080.31
4	4.82	4080.49
4.5	4.96	4080.63
5	5.01	4080.68

5.5	5.19	4000 00
		4080.86
6	5.19	4080.86
6.5	5.32	4080.99
7	5.4	4081.07
7.5	5.45	4081.12
8	5.45	4081.12
8.5	5.53	4081.2
9	5.56	4081.23
9.5	5.57	4081.24
10	5.65	4081.32
12	5.71	4081.38
14	5.84	4081.51
16	5.97	4081.64
18	6.03	4081.7
20	6.05	4081.72
22	6.12	4081.79
24	6.17	4081.84
26	6.2	4081.87
28	6.23	4081.9
30	6.27	4081.94
32	6.19	4081.86
34	6.25	4081.92
36	6.27	4081.94
38	6.2	4081.87
40	6.28	4081.95
42	6.33	4082
44	6.22	4081.89
46	6.3	4081.97
48	6.28	4081.95
50	6.34	4082.01
52	6.34	4082.01
54	6.39	4082.06
56	6.38	4082.05
58	6.47	4082.14
60	6.44	4082.11
62	6.38	4082.05
64	6.49	4082.16
66	6.38	4082.05
00	J. JO	7002.03

END

FN: DMO3MWA.PRN
PUMPING DATA FOR WELL DMO-03-MWA

t(MINUTES)	s(FT)
0.0083 0.0166 0.0250 0.0333 0.0416 0.0500 0.0583 0.0666 0.0750 0.0833 0.1000 0.1166 0.1333 0.1500 0.1666 0.2333 0.2000 0.2166 0.2333 0.2500 0.2666 0.2833 0.3000 0.2666 0.3333 0.4166 0.5000 0.5833 0.4166 0.5000 0.5833 0.4166 0.7500 0.8333 0.4166 0.7500 0.8333 0.4166 0.7500 0.8333 0.4166 0.7500 0.8333 0.4166 0.7500 0.8333 0.4166 0.7500 0.8333 0.4166 0.7500 0.8333 0.4166 0.7500 0.5833 0.4166 0.7500 0.8333 0.4166 0.7500 0.5833 0.4166 0.7500 0.5833 0.4166	-0.252 -0.094 0.410 0.221 0.229 0.299 0.284 0.315 0.457 0.457 0.555 0.599 0.584 0.555 0.599 0.647 0.647 0.647 0.852 0.963 1.047 1.152 1.278 1.357 1.429 1.499 1.499 1.610
0.9166 1.0000 1.0833 1.1666 1.2500 1.3333 1.4166 1.5000 1.5833 1.6666	1.215 1.278 1.357 1.420 1.499
1.7500 1.8333 1.9166 2.0000 2.5000 3.0000 4.0000 4.5000 5.0000 6.0000 6.5000	1.784 1.831 1.989 1.926 2.005 2.447 2.810 3.047 3.362 3.710 3.946 4.215 4.578 4.862

7.0000	5.178
7.5000	5.509
8.0000	5.825
8.5000	6.109
9.0000	6.362
9.5000	6.583
10.0000	6.836
12.0000	7.846
14.0000	8.777
EMP	

END

FN: DMO3RMWA.WKQ

RECOVERY DATA FOR WELL DMO-03-MWA

Step 1 04/12 11:32:07

Elapsed Time INPUT 1

*RECOVERY	BEGUN @	14.88	MIN. ELAPSED T	'IME
			FN= DMO3RMW	
t'	t		t/t'	S
_				
0.0083				9.156
0.0166	14.8966		897.3855	9.141
0.025	14.905		596.2	9.125
0.0333	14.9133		447.8468	9.109
0.0416	14.9216		358.6923	9.093
0.05	14.93		298.6	9.093
0.0583	14.9383		256.2316	9.077
0.0666	14.9466		224.4234	9.077
0.075	14.955		199.4	9.062
0.0833	14.9633		179.6315	9.062
0.1	14.98		149.8	9.062
0.1166	14.9966		128.6158	9.046
0.1333	15.0133		112.6279	9.03
0.15	15.03		100.2	9.014
0.1666	15.0466		90.31573	9.014
0.1833	15.0633		82.1784	8.999
0.2	15.08		75.4	8.983
0.2166	15.0966		69.69806	8.967
0.2333	15.1133		64.78054	8.967
0.25	15.13		60.52	8.951
0.2666	15.1466		56.81395	8.935
0.2833			53.52383	
	15.1633			8.92
0.3	15.18		50.6	8.92
0.3166	15.1966		47.99937	8.904
0.3333	15.2133		45.64446	8.904
0.4166	15.2966		36.71771	8.841
0.5	15.38		30.76	8.793
0.5833	15.4633		26.51003	8.746
0.6666	15.5466		23.32223	8.699
0.75	15.63		20.84	8.651
0.8333	15.7133		18.85671	8.604
0.9166	15.7966		17.23391	8.556
1	15.88		15.88	8.509
1.0833	15.9633		14.73581	8.478
1.1666	16.0466		13.75501	8.414
1.25	16.13		12.904	8.383
1.3333	16.2133		12.16028	8.32
1.4166	16.2966		11.50402	8.288
1.5	16.38		10.92	8.241
1.5833	16.4633		10.39809	8.193
1.6666	16.5466		9.928357	8.146
1.75	16.63		9.502857	8.099
1.8333	16.7133		9.116511	8.067
1.9166	16.7966		8.763748	8.02
2				7.972
	16.88		8.44	
2.5	17.38		6.952	7.672
3	17.88		5.96	7.388
3.5	18.38		5.251429	7.136
4	18.88		4.72	6.883

4.5	19.38	4.306667	6.646
5	19.88	3.976	6.409
5.5	20.38	3.705455	6.188
6	20.88	3.48	5.967
6.5	21.38	3.289231	5.746
7	21.88	3.125714	5.478
7.5	22.38	2.984	5.209
8	22.88	2.86	4.988
8.5	23.38	2.750588	4.767
9	23.88	2.653333	4.562
9.5	24.38	2.566316	4.341
10	24.88	2.488	4.12
12	26.88	2.24	3.473
14	28.88	2.062857	2.983
16	30.88	1.93	2.541
18	32.88	1.826667	2.162
20	34.88	1.744	1.831
22	36.88	1.676364	1.547
24	38.88	1.62	1.31
26	40.88	1.572308	1.105
28		1.531429	0.915
	42.88		
30	44.88	1.496	0.773
32	46.88	1.465	0.647
34	48.88	1.437647	0.52
36	50.88	1.413333	0.426
38	52.88	1.391579	0.347
40	54.88	1.372	0.284
42		1.354286	
	56.88		0.236
44	58.88	1.338182	0.189
46	60.88	1.323478	0.142
48	62.88	1.31	0.11
50	64.88	1.2976	0.078
52	66.88	1.286154	0.047
54	68.88	1.275556	0.015
56	70.88	1.265714	0
58	72.88	1.256552	-0.015
60	74.88	1.248	-0.031
62	76.88	1.24	
			-0.063
64	78.88	1.2325	-0.078
66	80.88	1.225455	-0.094
68	82.88	1.218824	-0.094
70	84.88	1.212571	-0.11
72	86.88	1.206667	-0.142
74	88.88	1.201081	-0.142
76	90.88	1.195789	-0.142
78	92.88	1.190769	-0.157
80	94.88	1.186	-0.173
-		2.240	/

FN: DMO4RMWA.WKQ

RECOVERY DATA FOR WELL DMO-04-MWA

Step 1 04/12 11:32:07

Elapsed Time INPUT 1

*RECOVERY	BEGUN @	81.567	MIN. ELAPSED	
	_		FN: DMO4RM	
t'	t		t/t'	S
	81.5753		9828.349	9.156
0.0166	81.5836		4914.675	9.141
0.025	81.592		3263.68	9.125
0.0333	81.6003		2450.459	9.109
0.0416	81.6086		1961.745	9.093
0.05	81.617		1632.34	9.093
0.0583	81.6253		1400.091	9.077
0.0666	81.6336		1225.73	9.077
0.075	81.642		1088.56	9.062
0.0833	81.6503		980.1957	9.062
0.1	81.667		816.67	9.062
0.1166	81.6836		700.5455	9.046
0.1333	81.7003		612.9055	9.03
0.15	81.717		544.78	9.014
0.1666	81.7336		490.5978	9.014
0.1833	81.7503		445.9918	8.999
0.2	81.767		408.835	8.983
0.2166	81.7836		377.5789	8.967
0.2333	81.8003		350.6228	8.967
0.25	81.817		327.268	8.951
0.2666	81.8336		306.9527	8.935
0.2833	81.8503		288.9174	8.92
0.3	81.867		272.89	8.92
0.3166	81.8836		258.6342	8.904
0.3333	81.9003		245.7255	8.904
0.4166	81.9836		196.7921	
0.5	82.067			8.841
			164.134	8.793
0.5833	82.1503		140.8371	8.746
0.6666	82.2336		123.3627	8.699
0.75	82.317		109.756	8.651
	82.4003		98.88432	8.604
	82.4836		89.98865	8.556
1	82.567		82.567	8.509
	82.6503		76.29493	8.478
1.1666	82.7336		70.91857	8.414
1.25	82.817		66.2536	8.383
1.3333	82.9003		62.17678	8.32
1.4166	82.9836		58.57942	8.288
1.5	83.067		55.378	8.241
1.5833	83.1503		52.51708	8.193
1.6666	83.2336		49.94216	8.146
1.75	83.317		47.60971	8.099
1.8333	83.4003		45.4919	8.067
1.9166	83.4836		43.55818	8.02
2	83.567		41.7835	7.972
2.5	84.067		33.6268	7.672
3	84.567		28.189	7.388
3.5	85.067		24.30486	7.136
4	85.567		21.39175	6.883

4.5	86.067	19.126	6.646
5	86.567	17.3134	6.409
5.5	87.067	15.83036	6.188
6	87.567	14.5945	5.967
6.5	88.067	13.54877	5.746
7	88.567	12.65243	5.478
7.5	89.067	11.8756	5.209
8	89.567	11.19587	4.988
8.5	90.067	10.59612	4.767
9	90.567	10.063	4.562
9.5	91.067	9.586	4.341
10	91.567	9.1567	4.12
12	93.567	7.79725	3.473
14	95.567	6.826214	2.983
16	97.567	6.097937	2.541
18	99.567	5.5315	2.162
20	101.567	5.07835	1.831
22 24	103.567 105.567	4.707591 4.398625	1.547
26	103.567	4.137192	1.31 1.105
28	109.567	3.913107	0.915
30	111.567	3.7189	0.773
32	113.567	3.548969	0.647
34	115.567	3.399029	0.52
36	117.567	3.26575	0.426
38	119.567	3.1465	0.347
40	121.567	3.039175	0.284
42	123.567	2.942071	0.236
44	125.567	2.853795	0.189
46	127.567	2.773196	0.142
48	129.567	2.699313	0.11
50	131.567	2.63134	0.078
52	133.567	2.568596	0.047
54	135.567	2.5105	0.015
56	137.567	2.456554	0
58	139.567	2.406328	-0.015
60	141.567	2.35945	-0.031
62	143.567	2.315597	-0.063
64	145.567	2.274484	-0.078
66	147.567	2.235864	-0.094
68	149.567	2.199515	-0.094
70	151.567	2.165243	-0.11.
72	153.567	2.132875	-0.142
74	155.567	2.102257	-0.142
76 78	157.567	2.07325	-0.142
78	159.567	2.045731	-0.157
80 82	161.567	2.019588	-0.173
04	163.567	1.99472	-0.173

FN: DMO4MWA.PRN
PUMPING DATA FOR WELL DMO-04-MWA

Step 0 04/12 15:32:19

Elapsed Time	INPUT 1
0.0000 0.0083	-0.363
0.0166	0.252 0.394
0.0250	0.426
0.0333	0.378
0.0416 0.0500	0.457 0.568
0.0583	0.599
0.0666	0.536
0.0750 0.0833	0.631 0.726
0.1000	0.736
0.1166 0.1333	0.852
0.1500	0.899 0.931
0.1666	1.105
0.1833 0.2000	1.089
0.2166	1.184 1.341
0.2333	1.357
0.2500 0.2666	1.484
0.2833	1.578 1.578
0.3000	1.610
0.3166 0.3333	1.815
0.4166	1.752 2.068
0.5000	2.289
0.5833 0.6666	2.368
0.7500	2.526 2.904
0.8333	2.936
0.9166 1.0000	3.031
1.0833	3.189 3.315
1.1666	3.552
1.2500 1.3333	3.583 3.725
1.4166	3.725
1.5000	4.041
1.5833 1.6666	4.183 4.294
1.7500	4.294
1.8333	4.373
1.9166 2.0000	4.436
2.5000	4.420 4.688
3.0000	4.720
3.5000 4.0000	4.688
4.5000	4.594 4.483
5.0000	4.420

5.5000	4.420
6.0000 6.5000	4.515 4.388
7.0000	4.483
7.5000	4.483
8.0000	4.436
8.5000	4.357
9.0000	4.420
9.5000	4.436
10.0000	4.404
12.0000 14.0000	4.452
16.0000	4.610 4.610
18.0000	4.673
20.0000	4.752
22.0000	4.878
24.0000	4.815
26.0000	4.799
28.0000	4.704
30.0000	4.941
32.0000	4.941
34.0000 36.0000	4.957 4.973
38.0000	4.941
40.0000	4.925
42.0000	4.973
44.0000	4.973
46.0000	4.909
48.0000	4.894
50.0000	5.036
52.0000	5.052
54.0000	5.004
56.0000	5.020
58.0000 60.0000	4.941
62.0000	4.988 5.020
64.0000	5.020
66.0000	5.004
68.0000	5.036
70.0000	5.004
72.0000	4.957
74.0000	5.052
76.0000	5.004
78.0000	4.988
80.0000	4.957
END	

FN: TNT16MWA.PRN
PUMPING DATA FOR WELL TNT-16-MWA

Step 0 04/13 11:44:36

0.0000 0.742 0.0083 0.489 0.0166 0.236 0.0250 0.157 0.0333 0.142 0.0416 0.189 0.0500 0.252 0.0583 0.284 0.0666 0.315 0.0750 0.284 0.0833 0.315 0.1000 0.363 0.1166 0.457 0.1333 0.505 0.1500 0.552 0.1666 0.552 0.1833 0.584 0.2000 0.631 0.2166 0.710 0.2333 0.710 0.2500 0.789 0.2666 0.884 0.3000 0.884 0.3166 0.947 0.3333 1.010 0.4166 1.52 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894 0.8333 2.005
0.0083 0.489 0.0166 0.236 0.0250 0.157 0.0333 0.142 0.0416 0.189 0.0500 0.252 0.0583 0.284 0.0666 0.315 0.0750 0.284 0.0833 0.315 0.1000 0.363 0.1166 0.457 0.1333 0.505 0.1500 0.552 0.1833 0.584 0.2000 0.631 0.2166 0.710 0.2333 0.710 0.2500 0.789 0.2666 0.884 0.3000 0.884 0.3166 0.947 0.3333 1.010 0.4166 1.52 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.0250 0.157 0.0333 0.142 0.0416 0.189 0.0500 0.252 0.0583 0.284 0.0666 0.315 0.0750 0.284 0.0833 0.315 0.1000 0.363 0.1166 0.457 0.1333 0.505 0.1500 0.552 0.1833 0.584 0.2000 0.631 0.2166 0.710 0.2333 0.710 0.2500 0.789 0.2666 0.884 0.3000 0.884 0.3166 0.947 0.3333 1.010 0.4166 1.52 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.0333 0.142 0.0416 0.189 0.0500 0.252 0.0583 0.284 0.0666 0.315 0.0750 0.284 0.0833 0.315 0.1000 0.363 0.1166 0.457 0.1333 0.505 0.1500 0.552 0.1833 0.584 0.2000 0.631 0.2166 0.710 0.2333 0.710 0.2500 0.789 0.2666 0.884 0.3000 0.884 0.3166 0.947 0.3333 1.010 0.4166 1.152 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.0416 0.189 0.0500 0.252 0.0583 0.284 0.0666 0.315 0.0750 0.284 0.0833 0.315 0.1000 0.363 0.1166 0.457 0.1333 0.505 0.1500 0.552 0.1833 0.584 0.2000 0.631 0.2166 0.710 0.2333 0.710 0.2500 0.789 0.2666 0.884 0.3000 0.884 0.3166 0.947 0.3333 1.010 0.4166 1.152 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.0500 0.252 0.0583 0.284 0.0666 0.315 0.0750 0.284 0.0833 0.315 0.1000 0.363 0.1166 0.457 0.1333 0.505 0.1500 0.552 0.1666 0.552 0.1833 0.584 0.2000 0.631 0.2166 0.710 0.2333 0.710 0.2500 0.789 0.2666 0.884 0.3000 0.884 0.3166 0.947 0.3333 1.010 0.4166 1.152 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.0583 0.284 0.0666 0.315 0.0750 0.284 0.0833 0.315 0.1000 0.363 0.1166 0.457 0.1333 0.505 0.1500 0.552 0.1666 0.552 0.1833 0.584 0.2000 0.631 0.2166 0.710 0.2333 0.710 0.2500 0.789 0.2666 0.884 0.3000 0.884 0.3166 0.947 0.3333 1.010 0.4166 1.152 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.0666 0.315 0.0750 0.284 0.0833 0.315 0.1000 0.363 0.1166 0.457 0.1333 0.505 0.1500 0.552 0.1666 0.552 0.1833 0.584 0.2000 0.631 0.2166 0.710 0.2333 0.710 0.2500 0.789 0.2666 0.884 0.3000 0.884 0.3166 0.947 0.3333 1.010 0.4166 1.152 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.0750 0.284 0.0833 0.315 0.1000 0.363 0.1166 0.457 0.1333 0.505 0.1500 0.552 0.1666 0.552 0.1833 0.584 0.2000 0.631 0.2166 0.710 0.2333 0.710 0.2500 0.789 0.2666 0.884 0.3000 0.884 0.3166 0.947 0.3333 1.010 0.4166 1.152 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.1000 0.363 0.1166 0.457 0.1333 0.505 0.1500 0.552 0.1666 0.552 0.1833 0.584 0.2000 0.631 0.2166 0.710 0.2333 0.710 0.2500 0.789 0.2666 0.884 0.3000 0.884 0.3166 0.947 0.3333 1.010 0.4166 1.152 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.1166 0.457 0.1333 0.505 0.1500 0.552 0.1666 0.552 0.1833 0.584 0.2000 0.631 0.2166 0.710 0.2333 0.710 0.2500 0.789 0.2666 0.884 0.3000 0.884 0.3166 0.947 0.3333 1.010 0.4166 1.152 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.1333 0.505 0.1500 0.552 0.1666 0.552 0.1833 0.584 0.2000 0.631 0.2166 0.710 0.2333 0.710 0.2500 0.789 0.2666 0.884 0.3000 0.884 0.3166 0.947 0.3333 1.010 0.4166 1.152 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.1500 0.552 0.1666 0.552 0.1833 0.584 0.2000 0.631 0.2166 0.710 0.2333 0.710 0.2500 0.789 0.2666 0.884 0.3000 0.884 0.3166 0.947 0.3333 1.010 0.4166 1.152 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.1666 0.552 0.1833 0.584 0.2000 0.631 0.2166 0.710 0.2333 0.710 0.2500 0.789 0.2666 0.884 0.3000 0.884 0.3166 0.947 0.3333 1.010 0.4166 1.152 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.1833 0.584 0.2000 0.631 0.2166 0.710 0.2333 0.710 0.2500 0.789 0.2666 0.884 0.3000 0.884 0.3166 0.947 0.3333 1.010 0.4166 1.152 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.2166 0.710 0.2333 0.710 0.2500 0.789 0.2666 0.884 0.2833 0.884 0.3000 0.884 0.3166 0.947 0.3333 1.010 0.4166 1.152 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.2333 0.710 0.2500 0.789 0.2666 0.884 0.2833 0.884 0.3000 0.884 0.3166 0.947 0.3333 1.010 0.4166 1.152 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.2500 0.789 0.2666 0.884 0.2833 0.884 0.3000 0.884 0.3166 0.947 0.3333 1.010 0.4166 1.152 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.2666 0.884 0.2833 0.884 0.3000 0.884 0.3166 0.947 0.3333 1.010 0.4166 1.152 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.2833 0.884 0.3000 0.884 0.3166 0.947 0.3333 1.010 0.4166 1.152 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.3000 0.884 0.3166 0.947 0.3333 1.010 0.4166 1.152 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.3166 0.947 0.3333 1.010 0.4166 1.152 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.4166 1.152 0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.5000 1.326 0.5833 1.531 0.6666 1.657 0.7500 1.894
0.5833 1.531 0.6666 1.657 0.7500 1.894
0.6666 1.657 0.7500 1.894
0.7500 1.894
0.8333 2.005
0.9166 2.099
1.0000 2.241
1.0833 2.383 1.1666 2.494
1.2500 2.589
1.3333 2.762
1.4166 2.778
1.5000 2.968
1.5833 3.078
1.66663.1891.75003.268
1.8333 3.425
1.9166 3.520
2.0000 3.583
2.5000 3.978
3.0000 4.436
3.5000 4.831 4.0000 5.036
4.5000 5.320
5.0000 5.636

5.5000 6.0000 6.5000 7.0000	5.778 6.046 6.173 6.299
7.5000	6.425
8.0000	6.615
8.5000	6.630
9.0000	6.693
9.5000	6.851
10.0000 12.0000	6.836 7.088
14.0000	7.214
16.0000	7.341
18.0000	7.483
20.0000	7.514
22.0000	7.514
24.0000 26.0000	7.593 7.641
28.0000	7.783
30.0000	7.688
32.0000	7.735
34.0000	7.814
36.0000	7.767
38.0000 40.0000	7.814 7.893
42.0000	7.862
44.0000	7.925
46.0000	7.846
48.0000	7.909
50.0000	7.893
52.0000	7.972
54.0000 56.0000	7.957
58.0000	7.925 8.035
60.0000	8.035
62.0000	7.988
64.0000	7.925
66.0000	8.035
68.0000 70.0000	8.051
72.0000	8.020 7.988
74.0000	8.020
76.0000	7.941
78.0000	8.020
80.0000	8.004
82.0000	8.099
84.0000	8.051
86.0000 88.0000	8.099 8.083
END	0.003

FN: TNT16R.WKQ RECOVERY DATA FOR WELL TNT16MWA

Step 1 04/13 13:12:58

Elapsed Time INPUT 1

RECOVERY STARTED AT 28.4 MINUTES

T'	T	T/T'	s
0.0083	28.4083	3422.687	7.941
0.0166	28.4166	1711.843	7.893
0.025	28.425	1137	7.846
0.0333	28.4333	853.8529	7.799
0.0416	28.4416	683.6923	7.751
0.05	28.45	569	7.704
0.0583	28.4583	488.1355	7.672
0.0666	28.4666	427.4264	7.625
0.075	28.475	379.6667	7.593
0.0833	28.4833	341.9364	7.546
0.1	28.5	285	7.483
0.1166	28.5166	244.5678	7.42
0.1333	28.5333	214.0533	7.357
0.15	28.55	190.3333	7.309
0.1666	28.5666	171.4682	7.246
0.1833	28.5833	155.9373	7.199
0.2	28.6	143	7.151
0.2166	28.6166	132.1173	7.104
0.2333	28.6333	122.7317	7.072
0.25	28.65	114.6	7.025
0.2666	28.6666	107.5266	6.993
0.2833	28.6833	101.2471	6.946
0.3	28.7	95.66667	6.899
0.3166	28.7166	90.7031	6.851
0.3333	28.7333	86.20852	6.804
0.4166	28.8166	69.17091	6.599
0.5	28.9	57.8	6.394
0.5833	28.9833	49.6885	6.173
0.6666	29.0666	43.60426	5.967
0.75	29.15	38.86667	5.762
0.8333	29.2333	35.08136	5.541
0.9166	29.3166	31.98407	5.304
1	29.4	29.4	5.115
1.0833	29.4833	27.21619	4.957
1.1666	29.5666	25.34425	4.799
1.25	29.65	23.72	4.657
1.3333	29.7333	22.30053	4.515
1.4166	29.8166	21.048	4.278
1.5	29.9	19.93333	4.136
1.5833	29.9833	18.93722	3.962
1.6666	30.0666	18.04068	3.836
1.75	30.15	17.22857	3.725
1.8333	30.2333	16.49119	3.552
1.9166	30.3166	15.81791	3.362
2	30.4	15.2	3.173
2.5	30.9	12.36	2.336
3	31.4	10.46667	1.815
3.5	31.9	, 9.114286	1.357
4	32.4	8.1	1.01

4.5	32.9	7.311111	0.726
5	33.4	6.68	0.52
5.5	33.9	6.163636	0.378
6	34.4	5.733333	0.252
6.5	34.9	5.369231	0.157
7	35.4	5.057143	0.078
7.5	35.9	4.786667	0.031
8	36.4	4.55	-0.015
8.5	36.9	4.341176	-0.047
9	37.4	4.155556	-0.078
9.5	37.9	3.989474	-0.11
10	38.4	3.84	-0.126
12	40.4	3.366667	-0.157
14	42.4	3.028571	-0.173
16	44.4	2.775	-0.189
18	46.4	2.577778	-0.205
			-0.205
20 22	48.4 50.4	2.42 2.290909	
			-0.205
24	52.4	2.183333	-0.205 -0.305
26	54.4	2.092308	-0.205
28	56.4	2.014286	-0.205
30	58.4	1.946667	-0.221
32	60.4	1.8875	-0.221
34	62.4	1.835294	-0.221
36	64.4	1.788889	-0.221
38	66.4	1.747368	-0.221
40	68.4	1.71	-0.221
42	70.4	1.67619	-0.221
44	72.4	1.645455	-0.221
46	74.4	1.617391	-0.221
48	76.4	1.591667	-0.221
50	78.4	1.568	-0.221
52	80.4	1.546154	-0.221
54	82.4	1.525926	-0.221
56	84.4	1.507143	-0.236
58	86.4	1.489655	-0.236
60	88.4	1.473333	-0.221
62	90.4	1.458065	-0.221
64	92.4	1.44375	-0.236
66	94.4	1.430303	-0.221
68	96.4	1.417647	-0.236
70	98.4	1.405714	-0.236
72	100.4	1.394444	-0.236
74	102.4	1.383784	-0.236
76	104.4	1.373684	-0.236
78	106.4	1.364103	-0.236
80	108.4	1.355	-0.236
82	110.4	1.346341	-0.236
84	112.4	1.338095	-0.236
		=:====	

FN: TNT1B.PRN: TNT-01-MWB STEP-TEST

0.836,0.945 0,118.9,122.08

STEP 1	5/9	17:01:53	(0	MIN	ELAPSED)	
--------	-----	----------	----	-----	----------	--

2=1B-PROD. 3=1B-OBS1.5

T ELAPSED	INPUT 1	INPUT 2	INPUT 3	INPUT 4	
0.0083	0.063	-0.693	0	0.012	
0.0166	0.063	0.819	0	0.012	
0.025	0.063	0.299	0	0.012	
0.0333	0.063	0.504	0	0.018	
0.0416	0.094	0.677	0	0.012	
0.05	0.094	0.709	0	0.018	
0.0583	0.094	0.866	0	0.018	
0.0666	0.094	0.945	0	0.012	
0.075	0.094	1.055	0	0.018	
0.0833	0.094	1.15	0	0.018	
0.1	0.063	1.355	0	0.018	
0.1166	0.063	1.575	0	0.012	
0.1333	0.063	1.764	0	0.018	
0.15	0.063	1.953	0	0.018	
0.1666	0.063	2.158	0	0.012	
0.1833 _0.2	0.063 0.063	2.347 2.552	0	0.018	
0.2166	0.063	2.725	0	0.018 0.018	
0.2333	0.063	2.93	0	0.018	
0.25	0.063	3.119	Ö	0.018	
0.2666	0.063	3.308	ŏ	0.018	
0.2833	0.063	3.497	ŏ	0.018	
0.3	0.063	3.671	ŏ	0.018	
0.3166	0.063	3.876	ŏ	0.018	
0.3333	0.063	4.049	Ö	0.018	
0.4166	0.063	4.947	Ō	0.018	
0.5	0.031	5.798	Ŏ	0.018	
0.5833	0.063	6.649	0	0.018	
0.6666	0.063	7.468	0	0.018	
0.75	0.031	8.224	0	0.018	
0.8333	0.063	8.981	0	0.025	
0.9166	0.063	9.69	0	0.025	
1	0.063	10.399	0	0.025	
1.0833	0.063	11.013	0	0.018	
1.1666	0.063	11.738	0	0.018	
1.25	0.063	12.352	0	0.018	
1.3333	0.063	12.951	0	0.012	
1.4166	0.063	13.534	-0.006	0.018	
1.5	0.063	14.133	0	0.018	
1.5833	0.063	14.716	0	0.018	
1.6666	0.063	15.267	-0.006	0.018	
1.75	0.063	15.803	-0.006	0.037	
1.8333	0.063	16.339	-0.006 -0.006	0.012	
1.9166 2	0.063	16.843	-0.006	0.006	
2.5	0.063	17.347	-0.006	0	
3	0.063 0.031	20.23 22.751	-0.012 -0.012	-0.006 -0.006	
3.5	0.031	24.957	-0.012	-0.006 0	
4	0.031	26.832	-0.018	-0.006	
4.5	0.031	28.455	-0.012	0	

92	0	29.842	-0.025	-0.006
94	0	29.857	-0.018	0
96	0	29.873	-0.018	Ö
98	0	29.826	-0.025	-0.006
100	0	29.81	-0.025	-0.006
105	0	29.873	-0.018	0
110	0	29.857	-0.018	0.006
115	0	29.889	-0.018	0

STEP 3 5/9 19:00:01 (118.9 MIN ELAPSED)

T ELAPSED	INPUT 1	2	3	4	
118.9083	0.031	29.889	-0.018	0.006	
118.9166	0.063	29.889	-0.018	0.006	
118.925	0.063	29.889	-0.018	0.006	
118.9333	0.094	29.889	-0.018	0.006	
118.9416	0.094	29.889	-0.018	0.006	
118.95	0.094	29.889	-0.018	0.006	
118.9583	0.094	29.889	-0.018	0.006	
118.9666	0.094	29.889	-0.018	0.006	
118.975	0.094	29.905	-0.018	0.006	
118.9833	0.094	29.889	-0.018	0.006	
119	0.094	29.889	-0.018	0.006	
119.0166	0.063	29.889	-0.018	0.006	
119.0333	0.063	29.889	-0.018	0.006	
119.05	0.063	29.889	-0.018	0.006	
119.0666	0.063	29.889	-0.018	0.006	
119.0833	0.063	29.889	-0.018	0.006	
119.1	0.063	29.889	-0.018	0.006	
119.1166	0.063	29.889	-0.018	0.006	
119.1333	0.063	29.905	-0.018	0.006	
119.15	0.063	29.889	-0.018	0.006	
119.1666	0.063	29.905	-0.018	0.006	
119.1833	0.094	29.889	-0.018	0.006	
119.2 119.2166	0.063	29.889	-0.018	0	
119.2333	0.063	29.889	-0.018	0.006	
119.2333	0.094	29.889	-0.018	0.006	
119.4	0.063 0.063	30.094	-0.018	0.006	
119.4833	0.063	30.598	-0.018	0	
119.5666	0.063	31.071 31.48	-0.018	0.006	
119.65	0.063	31.46	-0.018 -0.018	0.006	
119.7333	0.063	32.3	-0.018	0	
119.8166	0.063	32.678	-0.018	0	
119.9	0.063	33.04	-0.018	0	
119.9833	0.063	33.371	-0.025	Ö	
120.0666	0.063	33.639	-0.025	0.006	
120.15	0.063	33.828	-0.018	-0.012	
120.2333	0.063	33.97	-0.025	-0.006	
120.3166	0.063	34.096	-0.031	-0.012	
		· · · · · ·			

120.4	0.063	34.238	-0.025	-0.006
120.4833	0.063	34.364	-0.025	-0.006
120.5666	0.063	34.474	-0.031	-0.012
120.65	0.063	34.6	-0.025	-0.018
120.7333	0.063	34.695	-0.031	-0.006
120.8166	0.063	34.805	-0.031	-0.006
120.9	0.063	34.931	-0.031	-0.012
121.4	0.063	35.12	-0.031	-0.012
121.9	0.063	35.12	-0.025	-0.006

STEP 2 5/9 19:03:12 (122.08 MIN ELAPSED)

ELAPSED T	INPUT 1	INPUT 2	INPUT 3	INPUT 4
122.0883	0.094	35.12	-0.025	-0.006
122.0966	0.126	35.104	-0.025	-0.006
122.105	0.126	35.104	-0.025	-0.012
122.1133	0.126	35.104	-0.025	-0.006

122.1216	0.126	35.104	-0.025	0
122.13	0.126	35.104	-0.025	-0.006
122.1383	0.126	35.104	-0.025	-0.006
122.1466	0.126	35.104	-0.025	-0.006
122.155	0.126	35.104	-0.025	-0.006
122.1633	0.126	35.104	-0.025	-0.006
122.18	0.094	35.104	-0.025	-0.006
122.1966	0.094	35.041	-0.025	-0.006
122.2133	0.094	34.962	-0.025	-0.006
122.23	0.094	34.836	-0.025	-0.006
122.2466	0.094	34.742	-0.025	-0.006
122.2633	0.094	34.647	-0.025	-0.012
122.28	0.094	34.553	-0.025	-0.006
122.2966	0.094	34.474	-0.025	-0.006
122.3133	0.094	34.379	-0.025	-0.006
122.33	0.094	34.301	-0.025	-0.006.
122.3466	0.094	34.206	-0.025	-0.012
122.3633	0.094	34.127	-0.025	-0.006
122.38	0.094	34.049	-0.025	-0.006
122.3966	0.094	33.954	-0.025	-0.006
122.4133	0.094	33.875	-0.025	-0.006
122.4966	0.063	33.466	-0.025	-0.006
122.58	0.094	32.867	-0.025	-0.006
122.6633	0.063	32.221	-0.025	0
122.7466	0.063	31.575	-0.025	-0.012
122.83	0.094	30.945	-0.025	-0.006
122.9133	0.094	30.314	-0.025	-0.006
122.9966	0.063	29.7	-0.025	0
123.08	0.063	29.101	-0.025	-0.012
123.1633	0.063	28.502	-0.025	-0.012
123.2466	0.094	27.935	-0.025	-0.006
123.33	0.063	27.368	-0.025	-0.006
123.4133	0.094	26.816	-0.031	-0.012

123.4966	0.094	26.281	-0.025	-0.006
123.58	0.094	25.761	-0.031	-0.006
123.6633	0.094	25.241	-0.025	-0.006
123.7466	0.094	24.737	-0.025	-0.006
123.83	0.094	24.232	-0.025	-0.006
123.9133	0.094	23.744	-0.025	-0.006
123.9966	0.094	23.256	-0.025	-0.006
124.08	0.094	22.767	-0.025	-0.006
124.58	0.094	20.073	-0.025	-0.006
125.08	0.394	17.694	-0.025	-0.006
125.58	0.094	15.472	-0.018	0
126.08	0.094	13.581	-0.018	0.006
126.58	0.094	11.911	-0.018	0
127.08	0.094	10.446	-0.018	0.006
127.58	0.094	9.201	-0.018	0
128.08	0.094	7.988	-0.018	0.006
128.58	0.094	6.979	-0.018	0
129.08	0.094	6.097	-0.018	0
129.58	0.094	5.309	-0.018	0
130.08	0.094	4.616	-0.018	0
130.58	0.094	4.002	-0.012	0.006
131.08	0.094	3.466	-0.012	0.006
131.58	0.094	3.009	-0.018	-0.006
132.08	0.094	2.599	-0.031	-0.018
134.08	0.094	1.402	-0.018	-0.006

0.661 0.236 -0.031 -0.018 -0.018 0.006

136.08 138.08 0.063 0.094 FN: TNT1C.PRN

WELL THT-01-MWC STEP-TEST DATA

4				
0.757,2.23				
0,58.93,227.38				
STEP 1	5/9/90	10:22:30	(0	ELAPSED)
1CPROD	1C0B5	S.STP		·

3	1CPROD	1COBS.ST	•	(ELAPSED)	
T ELAPSED	INPUT 1	2	3	4	
I ELAFSED					
0.0083	0.22	0.015	0	0.018	
0.0166	0.252	0.015	Ō	0.018	
0.025	0.347	0.015	0	0.018	
0.0333	0.441	0.015	0	0.018	
0.0416	0.536	0.015	0	0.018	
0.05	0.631	0.015	0	0.018	
0.0583	0.725	0.015	0	0.018	
0.0666	0.789	0.015	0	0.018	
0.075	0.852	0.015	0	0.018	
0.0833	0.915	0.015	0	0.018	
0.1	0.946	0.015	0	0.018	
0.1166	0.978	0.031	0	0.018	
0.1333	1.041	0.015	0	0.018	
0.15	1.073	0.015	0	0.018	
0.1666	1.104	0.015	0	0.018	
0.1833	1.104	0.015	0	0.018	
0.2 0.2166	1.136	0.015	0	0.018	
0.2333	1.136	0.015	0	0.018	
0.25	1.136 1.167	0.031 0.015	0	0.018 0.018	
0.2666	1.136	0.015	0	0.018	
0.2833	1.167	0.015	0	0.018	
0.3	1.167	0.015	0	0.018	
0.3166	1.167	0.015	0	0.018	
0.3333	1.199	0.015	Ŏ	0.018	
0.4166	1.104	0.015	Ö	0.018	
0.5	1.073	0.015	ō	6.018	
0.5833	1.073	0.015	ō	0.018	
0.6666	1.041	0.015	ō	0.018	
0.75	1.01	0.015	Ō	0.018	
0.8333	1.01	0.015	Ö	0.018	
0.9166	1.01	0.015	0	0.018	
1	1.01	0.015	0	0.018	
1.0833	1.01	0.015	0	0.018	
1.1666	1.041	0.015	0	0.018	
1.25	1.041	0.015	0	0.018	
1.3333	1.041	0.015	0	0.018	
1.4166	1.041	0.015	0	0.012	
1.5	1.041	0.015	0	0.012	
1.5833	1.01	0.015	0	0.012	
1.6666	1.01	0.015	0	0.012	
1.75	1.041	0.015	0	0.012	
1.8333	1.01	0.015	0	0.012	
1.9166	1.041	0.015	0	0.012	
2	1.01	0.015	0	0.012	
2.5	0.946	0.015	0	0.012	
3 5	0.915	0.015	-0.006	0.012	
3.5 4	0.883	0.015	-0.006	0.006	
4.5	0.915	0.015	-0.006 -0.006	0.012 0.012	
4.3	0.915	0.015	-0.006	0.012	

5	0.946	0.015	-0.006	0.018
5.5	0.946	0.015	-0.006	0.018
6	0.915	0.015	-0.006	0.018
6.5	-1.041	0.015	-0.006	0.025

7	-1.01	0.015	-0.006	0.025
7.5	-1.073	0.015	-0.006	0.025
8	-1.041	0.015	-0.006	0.025
8.5	-1.01	0.015	-0.006	0.018
9	-0.978	0	-0.006	0.006
9.5	-0.978	0	-0.006	0.012
10	-0.915	0.015	-0.006	0.012
12	-0.946	0	-0.006	0.012
14	-0.946	0	-0.006	0.012
16	-0.915	0.015	-0.006	0.018
18	-0.946	0	-0.012	0.006
20	-0.915	0	-0.012	0.018
22	-0.978	0	-0.012	0.006
24	-0.978	0	-0.012	0.012
26	-0.915	0	-0.012	0.006
28	-0.978	0	-0.012	0
30	-0.978	0	-0.012	0.012
32	-1.01	0	-0.025	0
34	-0.946	0	-0.012	0.006
36	-0.978	0	-0.018	-0.006
38	-0.915	0	-0.012	0
40	-0.946	0	-0.006	0.006
42	-0.946	0	-0.018	0
44	-0.915	0.015	-0.018	0.012
46	-0.946	0.015	-0.018	-0.025
48	-0.915	0.015	-0.012	-0.006
50	-0.915	0.015	-0.018	0
52	-0.946	0.015	-0.018	-0.012
54	-0.915	0.015	-0.006	0.006
56	-0.915	0.015	-0.012	0
58	-0.915	0.015	-0.012	-0.018

STEP 2 5/9/90 11:21:26 (58.93 ELAPSED)

T ELAPSED	INPUT 1	2	3	4
58.9383	-0.757	0.015	-0.012	-0.018
58.9466	-0.284	0.015	-0.012	-0.006
58.955	-0.315	0.015	-0.012	0
58.9633	-0.41	0.015	-0.012	-0.018
58.9716	-0.347	0.015	-0.018	-0.012
58.98	-0.189	0.015	-0.018	-0.012
58.9883	-0.126	0.015	-0.012	-0.006
58.9966	0	0.015	-0.012	-0.018
59.005	0.126	0.015	-0.012	0
59.0133	0.22	0.015	-0.012	-0.018
59.03	0.347	0.015	-0.012	-0.018

59.0466	0.505	0.015	-0.012	-0.006
59.0633	0.631	0.015	-0.012	-0.006
59.08	0.725	0.015	-0.012	-0.018
59.0966	0.82	0.015	-0.012	-0.018
59.1133	0.915	0.015	-0.012	-0.018
59.13	0.946	0.015	-0.012	-0.012
59.1466	1.041	0.015	-0.012	-0.018
59.1633	1.073	0.015	-0.012	-0.006
59.18	1.136	0.015	-0.012	-0.018
59.1966	1.199	0.015	-0.012	-0.012
59.2133	1.199	0.015	-0.012	-0.012

59.23	1.262	0.031	-0.012	-0.018
59.2466	1.262	0.015	-0.012	-0.012
59.2633	1.294	0.015	-0.012	-0.006
59.3466	1.388	0.015	-0.012	-0.018
59.43	1.451	0.015	-0.012	-0.012
59.5133	1.483	0.015	-0.018	-0.012
59.5966	1.546	0.015	-0.018	-0.012
59.68	1.578	0.015	-0.018	-0.018
59.7633	1.578	0.015	-0.018	-0.012
59.8466	1.578	0.015	-0.018	-0.012
59.93	1.641	0.015	-0.018	-0.018
60.0133	1.641	0.015	-0.025	-0.012
60.0966	1.672	0.015	-0.025	-0.012
60.18	1.704	0.015	-0.025	-0.018
60.2633	1.735	0.015	-0.025	-0.018
60.3466	1.735	0.015	-0.C25	-0.018
60.43	1.767	0.015	-0.025	-0.012
60.5133	1.799	0.015	-0.018	-0.012
60.5966	1.799	0.015	-0.018	-0.012
60.68	1.83	0.015	-0.018	-0.012
60.7633	1.83	0.015	-0.018	-0.012
60.8466	1.83	0.015	-0.018	-0.012
60.93	1.83	0.015	-0.018	-0.012
61.43	1.893	0.015	-0.025	-0.018
61.93	1.925	0.015	-0.025	-0.025
62.43	1.956	0.015	-0.018	-0.012
62.93	1.956	0	-0.025	-0.006
63.43	2.02	0	-0.025	-0.006
63.93	2.051	0	-0.025	-0.012
64.43	2.051	0	-0.025	-0.012
64.93	2.083	0	-0.025	-0.012
65.43	2.146	. 0.015	-0.018	0
65.93	2.146	0	-0.018	-0.006
66.43	2.177	0.015	-0.018	-0.006
66.93	2.177	0.015	-0.018	0
67.43	2.177	0	-0.037	-0.012
67.93	2.177	0	-0.031	-0.018
68.43	2.209	0	-0.031	-0.006
68.93	2.209	0.015	-0.031	-0.006
70.93	2.24	0	-0.037	-0.025

72.93	2.304	0.015	-0.025	-0.006
74.93	2.304	0	-0.025	-0.012
76.93	2.304	0.015	-0.025	0
	2.335	0.015	-0.025	_
78.93				-0.018
80.93	2.304	0.015	-0.025	-0.018
82.93	2.367	0.015	-0.025	-0.006
84.93	2.367	0.015	-0.031	-0.012
86.93	2.367	0.015	-0.031	-0.018
88.93	2.398	0.015	-0.031	-0.025
90.93	2.398	0.015	-0.031	-0.018
92.93	2.398	0.031	-0.025	-0.018
94.93	2.43	0.031	-0.025	-0.012
96.93	2.43	0.031	-0.025	-0.012
98.93	2.398	0.031	-0.025	-0.006
100.93	2.43	0.031	-0.031	-0.018
102.93	2.43	0.031	-0.025	-0.012
104.93	2.398	0.031	-0.025	-0.018
106.93	2.43	0.031	-0.025	-0.018

108.93	2.43	0.031	-0.031	-0.018	
110.93	2.43	0.047	-0.025	-0.012 ·	
112.93	2.43	0.047	-0.018	-0.012	
114.93	2.43	0.047	-0.018	-0.012	
116.93	2.43	0.047	-0.037	-0.025	
118.93	2.43	0.047	-0.025	-0.012	
120.93	2.461	0.047	-0.037	-0.037	
122.93	2.43	0.047	-0.031	-0.025	
124.93	2.461	0.047	-0.025	0	
126.93	2.43	0.047	-0.025	-0.012	
128.93	2.461	0.047	-0.031	-0.025	
130.93	2.43	0.047	-0.031	-0.025	
132.93	2.461	0.047	-0.031	-0.031	
134.93	2.461	0.063	-0.025	-0.018	
136.93	2.43	0.063	-0.031	-0.025	
138.93	2.43	0.063	-0.037	-0.025	
140.93	2.461	0.063	-0.025	-0.012	
142.93	2.461	0.063	-0.018	-0.018	
144.93	2.461	0.063	-0.018	-0.012	
146.93	2.461	0.063	-0.018	-0.012	
148.93	2.461	0.063	-0.025	-0.031	
150.93	2.461	0.063	-0.031	-0.031	
152.93	2.398	0.078	-0.044	-0.037	
154.93	2.461	0.063	-0.037	-0.012	
156.93	2.43	0.063	-0.031	-0.031	
158.93	2.461	0.063	-0.031	-0.037	
163.93	2.43	0.063	-0.031	-0.012	
168.93	2.461	0.063	-0.031	-0.031	
173.93	2.461	0.063	-0.031	-0.018	
178.93	2.43	0.063	-0.037	-0.025	
183.93	2.461	0.063	-0.031	-0.018	
188.93	2.461	0.063	-0.025	-0.025	
193.93	2.461	0.063	-0.031	-0.044	

198.93	2.43	0.063	-0.031	-0.018
203.93	2.43	0.063	-0.031	-0.044
208.93	2.461	0.063	-0.031	-0.025
213.93	2.493	0.063	-0.037	-0.018
218.93	2.493	0.078	-0.031	-0.031
223.93	2.493	0.078	-0.031	-0.025

STEP 3 (RECOVERY) 5/9/90 14:09:53 (227.38 E

T ELAPSED	INPUT 1	2	3	4
227.3883	1.672	0.078	-0.031	-0.025
227.3966	2.02	0.078	-0.031	-0.025
227.405	2.02	0.078	-0.031	-0.018
227.4133	1.893	0.078	-0.031	-0.018
227.4216	1.672	0.094	-0.031	-0.018
227.43	1.483	0.094	-0.031	-0.018
227.4383	1.325	0.094	-0.025	-0.018
227.4466	1.167	0.094	-0.031	-0.025
227.455	1.041	0.094	-0.025	-0.018
227.4633	0.946	0.094	-0.025	-0.025
227.48	0.662	0.094	-0.025	-0.025
227.4966	0.441	0.094	-0.025	-0.025
227.5133	0.252	0.094	-0.025	-0.018
227.53	0.126	0.094	-0.025	-0.018

227.5466	0	0.094	-0.025	-0.018
227.5633	-0.094	0.094	-0.025	-0.018
227.58	-0.189	0.094	-0.025	-0.018
227.5966	-0.252	0.094	-0.025	-0.018
227.6133	-0.315	0.094	-0.025	-0.018
227.63	-0.378	0.094	-0.025	-0.018
227.6466	-0.441	0.094	-0.025	-0.018
227.6633	-0.473	0.094	-0.025	-0.018
227.68	-0.505	0.094	-0.025	-0.018
227.6966	-0.568	0.094	-0.025	-0.018
227.7133	-0.599	0.094	-0.025	-0.018
227.7966	-0.725	0.094	-0.025	-0.018
227.88	-0.82	0.094	-0.025	-0.018
227.9633	-0.883	0.094	-0.025	-0.018
228.0466	-0.946	0.094	-0.025	-0.025
228.13	-1.01	0.094	-0.025	-0.025
228.2133	-1.041	0.094	-0.025	-0.025
228.2966	-1.073	0.094	-0.025	-0.025
228.38	-1.104	0.094	-0.025	-0.031
228.4633	-1.136	0.094	-0.025	-0.025
228.5466	-1.167	0.094	-0.025	-0.025
228.63	-1.199	0.094	-0.025	-0.025
228.7133	-1.199	0.094	-0.025	-0.018
228.7966	-1.23	0.094	-0.025	-0.018
228.88	-1.23	0.094	-0.018	-0.018
228.9633	-1.23	0.094	-0.018	-0.018

229.0466	-1.262	0.094	-0.025	-0.018
229.13	-1.294	0.094	-0.025	-0.018
229.2133	-1.325	0.094	-0.031	-0.018
229.2966	-1.325	0.094	-0.031	-0.018
229.38	-1.357	0.094	-0.031	-0.025
229.88	-1.451	0.094	-0.031	-0.037
230.38	-1.483	0.094	-0.025	-0.031
230.88	-1.546	0.094	-0.031	-0.031
231.38	-1.609	0.094	-0.025	-0.044
231.88	-1.641	0.094	-0.031	-0.037
232.38	-1.704	0.094	-0.031	-0.044
232.88	-1.704	0.094	-0.025	-0.031
233.38	-1.767	0.094	-0.031	-0.037
233.88	-1.799	0.094	-0.031	-0.05
234.38	-1.799	0.094	-0.025	-0.031
234.88	-1.83	0.094	-0.025	-0.037
235.38	-1.862	0.094	-0.031	-0.031
235.88	-1.862	0.094	-0.025	-0.031
236.38	-1.893	0.094	-0.025	-0.031
236.88	-1.893	0.094	-0.025	-0.044
237.38	-1.925	0.094	-0.025	-0.05
239.38	-1.988	0.094	-0.025	-0.037
241.38	-2.051	0.094	-0.025	-0.031
243.38	-2.114	0.094	-0.031	-0.063
245.38	-2.146	0.094	-0.018	-0.025
247.38	-2.177	0.078	-0.031	-0.044
249.38	-2.209	0.078	-0.031	-0.056
251.38	-2.209	0.078	-0.031	-0.044
253.38	-2.24	0.078	-0.025	-0.037
255.38	-2.24	0.078	-0.025	-0.037
257.38	-2.272	0.078	-0.031	-0.031
259.38	-2.272	0.063	-0.031	-0.031

261.38	-2.304	0.063	-0.025	-0.031
263.38	-2.304	0.063	-0.031	-0.025
265.38	-2.304	0.063	-0.025	-0.05
267.38	-2.304	0.063	-0.031	-0.044
269.38	-2.335	0.047	-0.037	-0.05
271.38	-2.335	0.047	-0.031	-0.037
273.38	-2.335	0.047	-0.037	-0.025
275.38	-2.367	0.047	-0.031	-0.018
277.38	-2.367	0.047	-0.025	-0.037
279.38	-2.367	0.047	-0.044	-0.05

FN: TNT2B.PRN

WELL TNT-02-MWB STEP-TEST DATA

2

1.0,2.67

0,64.15,227.35

STEP	1	5/10/90	12:13:19	(0	ELAPSED)
		מספב בני	28-0863		

3			2B-0BS3	(U ELAPSED)	
T ELAPSED	INPUT 1	2B-PROD 2	3	4	
I ELAPSED				7 	
0.0083	0.094	0.031	0.025	0.006	
0.0166	0.094	0.283	0.025	0.012	
0.025	0.094	0.393	0.025	0.012	
0.0333	0.094	0.504	0.031	0.012	
0.0416	0.094	0.614	0.031	0.012	
0.05	0.094	0.709	0.025	0.012	
0.0583	0.094	0.724	0.031	0.012	
0.0666	0.094	0.819	0.031	0.012	
0.075	0.094	0.866	0.031	0.006	
0.0833	0.094	0.913	0.025	0.012	
0.1	0.094	1.008	0.025	0.012	
0.1166	0.063	1.071	0.025	0.012	
0.1333	0.063	1.134	0.025	0.012	
0.15	0.094	1.197	0.031	0.006	
0.1666 0.1833	0.063	1.244	0.025	0.006	
0.1833	0.063 0.063	1.292	0.025 0.025	0.006	•
0.2166	0.063	1.355 1.402	0.025	0.012 0.006	
0.2333	0.094	1.433	0.025	0.012	
0.25	0.063	1.481	0.025	0.012	
0.2666	0.094	1.496	0.025	0.006	
0.2833	0.094	1.544	0.025	0.006	
0.3	0.094	1.544	0.025	0.006	
0.3166	0.094	1.591	0.025	0.006	
0.3333	0.094	1.607	0.025	0.006	
0.4166	0.063	1.701	0.025	0.006	
0.5	0.063	1.764	0.025	0.006	
0.5833	0.063	1.811	0.018	0.006	
0.6666	0.063	1.843	0.025	0.012	
0.75	0.063	1.874	0.018	0.012	
0.8333	0.063	1.89	0.018	0.012	
0.9166	0.063	1.922	0.018	0.012	
1	0.063	1.938	0.018	0.012	
1.0833	0.063	1.953	0.018	0.012	
1.1666	0.063	1.969	0.025	0.012	
1.25	0.063	1.985	0.025	0.012	
1.3333	0.063	1.985	0.025	0.018	
1.4166	0.063	2.001	0.025	0.018	
1.5	0.063	2.016	0.018	0.018	
1.5833	0.063	2.001	0.018	0.012	
1.6666	0.063	2.001	0.025	0.012	
1.75 1.8333	0.063 0.063	2.016 2.001	0.025	0.006 0.006	
1.9166	0.063	2.032	0.025 0.025	0.006	
2	0.063	2.032	0.025	0	
2.5	0.063	1.78	0.037	0	
3	0.063	1.717	0.056	Ŏ	
3.5	0.063	1.67	0.069	0.006	
4	0.063	1.67	0.075	0.006	
•					

4.5	0.063	1.685	0.088	0.006
5	0.063	1.827	0.088	-0.006
5.5	0.063	1.843	0.101	-0.006
6	0.063	1.859	0.107	0

6.5	0.063	1.764	0.12	0
7	0.063	1.607	0.126	0
7.5	0.063	1.591	0.126	-0.012
8	0.063	1.575	0.126	-0.012
8.5	0.063	1.591	0.139	-0.018
9	0.094	1.575	0.145	-0.012
9.5	0.094	1.575	0.158	-0.006
10	0.094	1.591	0.158	-0.006
12	0.063	1.591	0.164	0.012
14	0.063	1.622	0.177	0.006
16	0.094	1.622	0.189	0.000
18	0.063	1.638	0.189	-0.012
20	0.063	1.638	0.196	-0.006
_ 22	0.063	1.638	0.208	0.000
24	0.063	1.654	0.215	-0.006
26	0.063	1.654	0.221	-0.006
28	0.063	1.67	0.221	-0.012
30	0.063	1.67	0.227	-0.006
32	0.063	1.67	0.234	0.000
34	0.063	1.685	0.24	0.012
36	0.063	1.685	0.234	-0.012
38	0.063	1.685	0.252	0.012
40	0.063	1.701	0.259	0.012
42	0.063	1.701	0.246	0.012
44	0.063	1.701	0.259	
46	0.063	1.717	0.252	0.006
48	0.063	1.717	0.259	
50	0.063	1.717	0.259	0.006
52	0.063	1.717		-0.006
54	0.063	1.717	0.265	0
56	0.063		0.271	-0.006
58	0.063	1.733	0.278	0.006
60	0.063	1.733	0.271	-0.025
62	0.063	1.717	0.278	-0.012
64	0.063	1.733	0.278	0.012
07	0.063	1.67	0.284	0.012

STEP 2 5/10/90 13:17:28 (64.15 ELAPSED)

T ELAPSED	INPUT1	2	3	4
64.1583 64.1666 64.175 64.1833 64.1916 64.2	0.094 0.094 0.126 0.126 0.126 0.126	2.064 2.032 2.221 2.379 2.568 2.741	0.29 0.29 0.29 0.29 0.29 0.29	0.012 0.012 0.012 0.006 0.012 0.006
64.2083	0.126	2.914	0.29	0.006

64.2166 64.225 64.2333 64.25 64.2666 64.2833 64.3 64.3166 64.3333 64.35 64.35	0.126 0.126 0.126 0.094 0.094 0.094 0.094 0.094	3.056 3.198 3.34 3.576 3.797 3.986 4.143 4.301 4.443 4.553 4.679	0.29 0.29 0.29 0.29 0.284 0.284 0.284 0.284	0.012 0.012 0.006 0.012 0.012 0.012 0.012 0.012 0.012
64.3833 64.4 64.4166 64.4333 64.4666 64.4833 64.5666 64.7333 64.8166 64.9 64.9 65.2333 65.3166 65.2333 65.3166 65.4833 65.5666 65.4833 65.5666 65.7333 65.65 65.7333 65.65 65.7333 65.65 65.7333 65.65 65.7336 65.65 67.15 67.65 67.15 67.65 67.15 67.65 67.15 67.15 77.65 77.65 77.65	0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.093 0.063	4.831 774 4.931 5.05.1992 5.1992 5.55.633 5.953 6.036 6.177	0.284 0.284 0.284 0.284 0.2884 0.278 0.265 0.265 0.265 0.265 0.265 0.265 0.271 0.278 0.278 0.278 0.278 0.278 0.278 0.278 0.271 0.2788 0.27888 0.2788 0.2788 0.2788 0.2788 0.2788 0.2788 0.2788 0.2788 0.278	0.006 0.006 0.012 0.006 0.0012 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.0012 0.006

73.15	0.094	6.869	0.6	-0.025
73.65	0.094	6.885	0.607	-0.031
74.15	0.094	6.916	0.632	-0.018
76.15	0.094	6.979	0.683	-0.006
78.15	0.094	7.043	0.733	-0.018
80.15	0.094	7.074	0.765	-0.006
82.15	0.063	7.137	0.796	-0.018
84.15	0.063	7.184	0.828	-0.012
86.15	0.063	7.216	0.86	0
88.15	0.094	7.232	0.885	0.012
90.15	0.063	7.279	0.904	-0.018
92.15	0.063	7.295	0.929	-0.012
94.15	0.094	7.326	0.948	0
96.15	0.063	7.342	0.974	0.006
98.15	0.094	7.358	0.98	0.018
100.15	0.063	7.373	0.993	-0.006
102.15	0.063	7.389	0.999	-0.018
104.15	0.063	7.421	1.011	-0.025

106.15	0.063	7.421	1.037	0.006
108.15	0.063	7.452	1.049	0
110.15	0.063	7.468	1.056	0
112.15	0.063	7.484	1.075	-0.006
114.15	0.063	7.484	1.081	0
116.15	0.063	7.515	1.087	-0.012
118.15	0.063	7.531	1.106	0
120.15	0.063	7.547	1.113	0.006
122.15	0.063	7.562	1.125	0.018
124.15	0.063	7.562	1.125	0
126.15	0.063	7.578	1.125	0
128.15	0.063	7.562	1.138	-0.012
130.15	0.063	7.594	1.157	0.006
132.15	0.063	7.61	1.163	0.006
134.15	0.063	7.61	1.163	0
136.15	0.063	7.625	1.176	0
138.15	0.063	7.625	1.176	0
140.15	0.063	7.641	1.195	0.018
142.15	0.063	7.641	1.189	0
144.15	0.063	7.657	1.189	-0.018
146.15	0.063	7.657	1.214	0.018
148.15	0.063	7.673	1.214	0.012
150.15	0.063	7.673	1.22	-0.018
152.15	0.063	7.673	1.227	0.018
154.15	0.063	7.673	1.201	-0.006
156.15	0.031	7.689	1.176	-0.12
158.15	0.063	7.689	1.208	-0.069
160.15	0.063	7.689	1.239	-0.006
162.15	0.094	7.704	1.258	0.05
164.15	0.063	7.72	1.258	0.044
169.15	0.063	7.736	1.258	0.012
174.15	0.063	7.736	1.277	0.025
179.15	0.063	7.736	1.258	-0.018

184.15	0.063	7.752	1.271	-0.031
189.15	0.063	7.752	1.277	-0.037
194.15	0.031	7.767	1.283	-0.018
199.15	0.031	7.767	1.296	0.006
204.15	0.031	7.799	1.302	
209.15	0.063	7.815	1.315	0.018
214.15	0.063	7.83	1.347	0.082
219.15	0.031	7.83	1.315	-0.012
224.15	0.063	7.846	1.34	0.031

STEP 2 16:00:40 (227.35 ELAPSED)

T ELAPSED	INPUT 1	· 2	3	4
227.3583	0.094	7.389	1.359	0.069
227.3565	0.126	7.058	1.359	0.069
227.375	0.126	6.822	1.359	0.069
227.3833	0.126	6.586	1.359	0.069
227.3916	0.126	6.365	1.366	0.069
227.4	0.126	6.16	1.366	0.069
227.4083	0.157	5.971	1.366	0.069
227.4166 227.425	0.157 0.157	5.798 5.624	1.366 1.366	0.069
227.4333	0.137	5.467	1.366	0.069
227.45	0.126	5.168	1.366	0.069

227.4666	0.094	4.915	1.366	0.069
227.4833	0.094	4.679	1.366	0.069
227.5	0.126	4.474	1.366	0.069
227.5166	0.126	4.285	1.366	0.069
227.5333	0.126	4.128	1.366	0.069
227.55	0.126	3.97	1.372	0.069
227.5666	0.126	3.828	1.372	0.069
227.5833	0.126	3.718	1.372	0.069
227.6	0.126	3.608	1.372	0.069
227.6166	0.126	3.497	1.372	0.069
227.6333	0.126	3.419	1.372	0.069
227.65	0.126	3.324	1.372	0.069
227.6666	0.126	3.245	1.372	0.069
227.6833	0.126	3.182	1.372	0.075
227.7666	0.126	2.899	1.378	0.069
227.85	0.126	2.71	1.378	0.075
227.9333	0.126	2.568	1.385	0.075
228.0166	0.126	2.457	1.385	0.075
228.1	0.126	2.379	1.391	0.075
228.1833	0.126	2.3	1.385	0.075
228.2666	0.126	2.237	1.385	0.075
228.35	0.126	2.19	1.385	0.075
228.4333	0.126	2.142	1.378	0.069
228.5166	0.126	2.095	1.378	0.069
228.6	0.126	2.064	1.378	0.069
228.6833	0.126	2.016	1.372	0.063

228.7666	0.126	1.985	1.372	0.063
228.85	0.126	1.953	1.366	0.063
228.9333	0.126	1.922	1.366	0.069
229.0166	0.126	1.89	1.353	0.056
229.1	0.126	1.874	1.359	0.05
229.1833	0.126	1.843	1.347	0.044
229.2666	0.126	1.827	1.34	0.044
229.35	0.126	1.796	1.334	0.037
229.85	0.126	1.67	1.302	0.037
230.35	0.126	1.591	1.264	0.031
230.85	0.157	1.496	1.227	0.018
231.35	0.126	1.433	1.195	0.018
231.85	0.157	1.386	1.163	0.037
232.35	0.126	1.323	1.132	0.031
232.85	0.126	1.276	1.094	0.018
233.35	0.126	1.228	1.068	0.012
233.85	0.126	1.181	1.03	0
234.35	0.126	1.15	1.005	ŏ
234.85	0.126	1.118	0.986	-0.006
235.35	0.126	1.087	0.961	-0.006
235.85	0.157	1.055	0.942	0
236.35	0.126	1.039	0.923	Ö
236.85	0.157	1.008	0.91	0.012
237.35	0.157	0.992	0.891	0.012
239.35	0.157	0.898	0.847	0.075
241.35	0.157	0.819	0.765	0.012
243.35	0.126	0.756	0.714	0.006
245.35	0.126	0.709	0.67	0.012
247.35	0.126	0.661	0.626	0.006
249.35	0.126	0.614	0.619	0.05
251.35	0.157	0.582	0.613	0.107
253.35	0.126	0.551	0.588	0.107
255.35	0 126	0 510	A 556	

.

255.35	0.126	0.519	0.556	0.082
257.35	0.126	0.488	0.505	0.037
259.35	0.126	0.456	0.487	0.025
261.35	0.126	0.425	0.461	0.012
263.35	0.094	0.409	0.43	-0.018
265.35	0.126	0.378	0.43	0.006
267.35	0.126	0.362	0.411	0.012
269.35	0.094	0.346	0.392	0.006
271,35	0.094	0.315	0.373	-0.031
273.35	0.094	0.299		
275.35	0.094	0.283	0.36	-0.031
277.35	0.094		0.347	-0.025
· · ·		0.267	0.328	-0.018
279.35	0.126	0.252	0.328	-0.012
281.35	0.094	0.236	0.322	0.006
283.35	0.094	0.22	0.316	0.012
285.35	0.094	0.204	0.303	0.018
287.35	0.094	0.189	0.297	0.012
289.35	0.094	0.189	0.284	0.006
291.35	0.094	0.173	0.271	0.008

FN: TNT7B.PRN

WELL THT-07-MWB STEP-TEST DATA

1.48,2.23 0,169.7,227.57

STEP 1 7/7/90 10:34:46 7B-PROD 7B-OBS

		7B-PROD	7B-OBS		
T ELAPSED	INPUT 1	2	3	4	5
0.0083	-0.11	0.189	0	-0.012	0
0.0166	-0.11	0.473	0	-0.012	0.006
0.025	-0.055	0.725	0	-0.006	0.006
0.0333	-0.11	1.262	0	-0.012	0.006
0.0416	-0.11	1.388	0	-0.012	0.006
0.05	-0.11	1.294	0	-0.006	0.006
0.0583	-0.11	1.388	0	-0.012	0.006
0.0666	-0.11	1.515	0	-0.012	0.006
0.075	-0.11	1.893	0	-0.006	0.006
0.0833	-0.11	2.209	0	-0.012	0.006
0.1	-0.055	2.083	0	-0.006	0.006
0.1166	-0.11	2.651	0	-0.006	0.006
0.1333	-0.11	2.809	0	-0.012	0.006
0.15	-0.11	2.651	0	-0.012	0.006
0.1666	-0.11	2.966	0	-0.012	0.006
0.1833	-0.055	3.535	0	-0.006	0.006
0.2	-0.11	3.692	0	-0.012	0.006
0.2166	-0.11	3.44	0	-0.012	0.006
0.2333	-0.11	3.85	0	-0.006	0
0.25	-0.11	4.355	0	-0.012	0.012
0.2666	-0.11	4.324	0	-0.012	0.006
0.2833	-0.11	3.945	0	-0.018	0.006
0.3	-0.11	4.923	0	-0.012	0.006
0.3166	-0.11	4.955	0	-0.018	0
0.3333	-0.11	4.829	0	-0.006	0.006
0.4166	-0.11	5.27	0	-0.006	0.006
0.5	-0.11	5.965	-0.015	-0.006	0.006
0.5833	-0.11	5.965	-0.015	-0.018	0.006
0.6666	-0.11	5.965	-0.015	-0.018	0.006
0.75	-0.11	6.975	-0.015	-0.012	0.006
0.8333	-0.11	6.47	-0.015	-0.018	0.006
0.9166	-0.11	6.501	-0.015	-0.012	0
1 1.0833	-0.11	6.88	-0.015	-0.018	0.006
1.1666	-0.11 -0.11	7.259 7.354	-0.015 -0.015	-0.018 -0.018	0.006 0.006
1.25	-0.11	6.754	-0.015	-0.012	0.006
1.3333	-0.11	7.227	-0.015	-0.025	0.000
1.4166	-0.11	7.291	-0.015	-0.006	0.006
1.5	-0.11	7.448	-0.015	-0.025	0.006
1.5833	-0.11	7.227	-0.015	-0.012	0.006
1.6666	-0.11	7.701	-0.015	-0.025	0.006
1.75	-0.11	7.291	-0.015	-0.012	0.006
1.8333	-0.055	7.48	-0.015	-0.018	0.006
1.9166	-0.11	7.575	-0.015	-0.018	0.012
2	-0.11	7.48	-0.015	-0.012	0.006
2.5	-0.11	7.385	-0.015	-0.012	0.006
3	-0.11	7.385	-0.015	-0.018	0.006
3.5	-0.165	7.606	-0.015	-0.025	-0.006
4	-0.11	7.89	0	-0.018	-0.012
-			•		

4.5	-0.11	7.48	0	-0.018	-0.006
5	-0.165	7.101	Ō	-0.018	_
					0
5.5	-0.11	7.227	0	-0.018	0
6	-0.11	7.89	0.015	-0.018	0
6.5	-0.11	7.385	0.015	-0.012	-0.006
7	-0.11	7.385	0.015	-0.012	-0.006
7.5	-0.165	7.48	0.015	-0.006	-0.006
8	-0.11	7.701	0.031	-0.006	0
8.5	-0.11	7.038	0.031	0	0
9	-0.11	7.511	0.031	0	0.012
9.5	-0.11	7.511	0.031	0	0.012
10	-0.11	7.48	0.047		
				0	0
12	-0.11	7.354	0.063	-0.031	0.006
14	-0.11	7.448	0.063	-0.025	-0.006
16	-0.11	7.196	0.078	-0.012	-0.006
18	-0.055	6.628	0.094		
				-0.006	0
20	-0.11	7.164	0.094	-0.018	0
22	-0.11	7.322	0.11	-0.006	0.018
24	-0.11	6.754	0.126	0.012	0.006
26	-0.11	7.259			
			0.126	-0.012	0
28	-0.165	7.227	0.126	-0.018	0
30	-0.11	7.354	0.141	-0.012	0.012
32	-0.11	7.448	0.157	0	0.018
34					
	-0.11	7.322	0.157	0	0.018
36	-0.11	7.006	0.173	0.006	0.006
38	-0.11	6.786	0.173	0	0
40	-0.11	6.912	0.173	-0.012	0.018
42	-0.11	6.943	0.189	0	0.018
44	-0.11	7.511	0.189	0.012	0.018
46	-0.11	7.385	0.189	0.012	0.018
48	-0.11	7.827	0.204	0.025	
					0.025
50	-0.11	7.575	0.204	-0.006	0.012
52	-0.11	7.259	0.204	0.012	0.018
54	-0.165	7.417	0.204	0	0.006
56	-0.11	7.291	0.204	0.006	
					0.006
58	-0.11	7.006	0.204	0.018	0.012
60	-0.165	7.227	0.22	0.012	0.025
62	-0.11	7.196	0.22	0.037	0.025
64	-0.11	7.732	0.22		_
				0.037	0.031
66	-0.11	7.196	0.236	0.037	0.031
68	-0.11	7.606	0.236	0.031	0.031
70	-0.11	7.417	0.236	0.031	0.031
72	-0.165	7.354			
			0.252	0.025	0.037
74	-0.11	7.227	0.252	0.037	0.037
76	-0.11	7.385	0.252	0.05	0.031
78	-0.165	7.354	0.252	0.012	0.025
80	-0.11	7.385			
			0.252	0.018	0.018
82	-0.11	7.354	0.252	0.044	0.025
84	-0.11	7.448	0.252	0.031	0.037
86	-0.165	6.912	0.267	0.037	0.031
88	-0.11	7.701	0.267	0.025	0.025
90	-0.11	7.48	0.252	0.037	0.044
92	-0.165	6.975	0.267	0.05	0.031
94	-0.11	7.638	0.267	0.006	0.031
96					
	-0.165	6.975	0.267	0.012	0.031
98	-0.165	7.417	0.267	0.044	0.031
100	-0.165	7.543	0.267	0.056	0.037
105	-0.165	7.732	0.283	0.044	0.031
110					
110	-0.11	7.291	0.283	0.056	0.031

I

115	-0.11	7.385	0.283	0.056	0.031
120	-0.165	7.322	0.283	0.063	0.031
125	-0.165	7.006	0.283	0.05	0.031
130	-0.165	7.196	0.283	0.069	0.031
135	-0.165	7.511	0.283	0.069	0.031
140	-0.165	7.322	0.283	0.063	0.044
145	-0.165	7.322	0.299	0.069	0.05
150	-0.165	6.849	0.299	0.075	0.037
155	-0.165	7.196	0.299	0.063	0.031
160	-0.165	7.322	0.299	0.075	0.05
165	-0.165	7.07	0.299	0.063	0.044

STEP 2 13:24:04 (169.7 ELAPSED)

T ELAPSED	INPUT 1	2	3	4	5
169.7083	-0.165	7.101	0.299	0.075	0.037
169.7166	-0.165	7.859	0.299	0.082	0.037
169.725	-0.165	7.385	0.299	0.082	0.031
169.7333	-0.165	8.174	0.299	0.075	0.037
169.7416	-0.165	7.732	0.299	0.082	0.031
169.75	-0.165	8.395	0.315	0.075	0.037
169.7583	-0.165	8.174	0.299	0.075	0.037
169.7666	-0.165	8.49	0.299	0.075	0.031
169.775	-0.165	8.521	0.315	0.075	0.031
169.7833	-0.165	8.111	0.315	0.082	0.031
169.8	-0.221	8.269	0.315	0.082	0.031
169.8166	-0.165	8.585	0.315	0.075	0.031
169.8333	-0.165	8.963	0.299	0.082	0.031
169.85	-0.165	8.963	0.299	0.082	0.031
169.8666	-0.165	9.153	0.315	0.082	0.037
169.8833	-0.165	9.216	0.299	0.082	0.031
169.9	-0.165	9.5	0.299	0.082	0.031
169.9166	-0.165	9.816	0.315	0.082	0.031
169.9333	-0.165	9.658	0.299	0.075	0.031
169.95 169.9666	-0.221	9.184 9.247	0.315 0.315	0.075 0.082	0.331
169.9833	-0.165 -0.165	9.311	0.299	0.082	0.037
170	-0.221	9.626	0.315	0.075	0.031 0.031
170.0166	-0.165	9.784	0.299	0.082	0.031
170.0333	-0.165	10.163	0.315	0.075	0.031
170.1166	-0.165	10.415	0.315	0.075	0.031
170.2	-0.221	10.889	0.315	0.088	0.031
170.2833	-0.221	10.352	0.315	0.082	0.031
170.3666	-0.165	10.952	0.315	0.088	0.031
170.45	-0.165	11.078	0.315	0.088	0.037
170.5333	-0.165	11.551	0.315	0.088	0.031
170.6166	-0.165	11.141	0.315	0.075	0.031
170.7	-0.221	11.551	0.315	0.082	0.031
170.7833	-0.165	11.015	0.315	0.082	0.031
170.8666	-0.165	11.583	0.315	0.082	0.037
170.95	-0.221	11.836	0.315	0.082	0.031
171.0333	-0.165	11.267	0.315	0.088	0.037
171.1166	-0.221	11.772	0.315	0.082	0.037
171.2	-0.165	11.993	0.315	0.082	0.037
171.2833	-0.221	11.331	0.315	0.075	0.037
171.3666	-0.221	11.678	0.315	0.075	0.031
171.45	-0.221	11.867	0.315	0.082	0.031
171.5333	-0.221	11.836	0.315	0.069	0.031

171.6166	-0.165	12.12	0.315	0.069	0 031
171.7	-0.165	11.488	0.315	0.009	0.031 0.037
172.2	-0.165	11.867	0.315	0.063	0.037
172.7	-0.221	11.836	0.315	0.063	0.037
173.2	-0.221	11.615	0.33	0.075	0.044
173.7	-0.221	11.741	0.33	0.075	0.05
174.2	-0.221	11.836	0.33	0.063	0.044
174.7	-0.221	11.836	0.33	0.056	0.037
175.2	-0.221	11.867	0.33	0.063	0.031
175.7	-0.221	11.425	0.346	0.082	0.037
176.2	-0.165	11.615	0.346	0.069	0.037
176.7	-0.221	11.772	0.346	0.063	0.037
177.2	-0.165	11.457	0.346	0.056	0.037
177.7	-0.221	11.867	0.346	0.05	0.037
178.2	-0.165	11.394	0.362	0.069	0.044
178.7	-0.221	11.836	0.362	0.056	0.044
179.2	-0.165	11.867	0.362	0.031	0.037
179.7	-0.165	11.993	0.362	0.037	0.025
181.7	-0.165	11.804	0.393	0.063	0.031
183.7	-0.165	11.899	0.393	0.082	0.037
185.7	-0.165	11.299	0.393	0.082	0.037
187.7	-0.165	11.772	0.393	0.094	0.031
189.7	-0.165	11.899	0.409	0.101	0.037
191.7	-0.221	11.899	0.409	0.094	0.037
193.7	-0.165	11.457	0.425	0.05	0.05
195.7	-0.165	11.772	0.441	0.056	0.031
197.7	-0.165	11.867	0.425	0.069	0.044
199.7 201.7	-0.165 -0.165	11.836	0.441 0.441	0.069	0.044
201.7	-0.165	11.741 11.804	0.441	0.094 0.094	0.037
205.7	-0.165	11.836	0.441	0.101	0.044 0.037
207.7	-0.165	11.962	0.441	0.069	0.037
207.7	-0.165	11.678	0.456	0.107	0.044
211.7	-0.165	11.583	0.456	0.094	0.044
213.7	-0.165	12.025	0.456	0.101	0.044
215.7	-0.165	11.899	0.472	0.113	0.044
217.7	-0.165	12.277	0.456	0.082	0.037
219.7	-0.221	12.12	0.472	0.082	0.018
221.7	-0.165	11.646	0.472	0.082	0.044
223.7	-0.165	11.993	0.472	0.113	0.05
225.7	-0.165	12.341	0.472	0.101	0.05
227.5	-0.165	11.615	0.472	0.126	0.044
· -					

STEP 3 (RECOVERY) 14:22:34 (227.57 ELAPSED)

Elapsed Ti	me INPUI	NPUT 2	INPUT	3	INPUT	4	INPUT	5
227.5783	-0.165	11.551	0.4	72	0.1	07	0.0	44
227.5866	-0.165	11.394	0.4	72	0.1	01	0.	05
227.595	-0.165	11.173	0.4	72	0.0	94	0.	05
227.6033	-0.165	10.983	0.4	72	0.1	01	0.0	44
227.6116	-0.165	10.762	0.4	72	0.1	01	0.	05
227.62	-0.165	10.478	0.4	56	0.1	01	0.	05
227.6283	-0.165	10.257	0.4	72	0.0	94	0.	05
227.6366	-0.165	10.068	0.4	72	0.1	01	0.0	44
227.645	-0.165	9.879	0.4	56	0.0	94	0.	05
227.6533	-0.165	9.658	0.4	72	0.1	07	0.	05
227.67	-0.221	9.279	0.4	56	0.1	07	0.0	44
227.6866	-0.221	8.932	0.4	72	0.1	01	0.0	44

227.7033	-0.165	8.49	0.472	0.107	0.044
227.72	-0.165	8.143	0.488	0.101	0.037
227.7366	-0.221	7.827	0.472	0.094	0.044
227.7533	-0.221	7.48	0.472	0.094	0.044
227.77	-0.221	7.164	0.472	0.094	0.044
227.7866	-0.221	6.88	0.488	0.094	
227.8033	-0.221	6.596	0.488	0.094	0.037
227.82	-0.221	6.344	0.472	0.094	0.037
227.8366	-0.221	6.091	0.472		0.037
227.8533	-0.221	5.839	0.488	0.094	0.037
227.87	-0.221	5.618		0.094	0.037
227.8866	-0.221	5.397	0.488	0.094	0.037
227.9033	-0.221	5.176	0.488	0.088	0.037
227.9866	-0.221	4.197	0.488	0.088	0.037
228.07	-0.221	3.44	0.488	0.082	0.037
228.1533	-0.221	2.84	0.488	0.082	0.037
228.2366	-0.221	2.367	0.488	0.075	0.037
228.32	-0.221		0.488	0.082	0.037
228.4033	-0.221	2.02	0.488	0.075	0.037
228.4866	-0.221	1.704	0.488	0.075	0.037
228.57		1.515	0.488	0.075	0.037
228.6533	-0.221	1.325	0.488	0.082	0.044
228.7366	-0.221	1.167	0.488	0.082	0.044
	-0.221	1.073	0.488	0.082	0.05
228.82	-0.221	0.978	0.488	0.075	0.05
228.9033	-0.221	0.883	0.488	0.075	0.05
228.9866	-0.221	0.82	0.488	0.075	0.05
229.07	-0.221	0.82	0.488	0.082	0.05
229.1533	-0.221	0.757	0.472	0.082	0.05
229.2366	-0.221	0.725	0.472	0.082	0.05
229.32	-0.221	0.694	0.472	0.082	0.044
229.4033	-0.221	0.662	0.472	0.075	0.044
229.4866	-0.221	0.662	0.472	0.069	0.044
229.57	-0.221	0.631	0.472	0.069	0.037
230.07	-0.221	0.505	0.456	0.075	0.037
230.57	-0.221	0.41	0.441	0.088	0.044
231.07	-0.221	0.315	0.425	0.082	0.044
231.57	-0.221	0.252	0.409	0.101	0.037
232.07	-0.221	0.22	0.393	0.113	0.037
232.57	-0.221	0.189	0.393	0.113	0.044
233.07	-0.221	0.157	0.393	0.107	0.044
233.57	-0.221	0.126	0.378	0.088	0.044
234.07	-0.221	0.063	0.378	0.082	0.044
234.57	-0.221	0.063	0.362	0.101	0.044
235.07	-0.221	0.063	0.346	0.113	0.044
235.57	-0.221	0.063	0.346	0.113	0.044
236.07	-0.221	0.031	0.33	0.113	0.044
236.57	-0.221	0.031	0.315	0.088	0.044
237.07	-0.221	0	0.315	0.075	0.05
237.57	-0.221	0	0.315	0.075	0.044
239.57	-0.165	-0.094	0.299	0.069	0.044
241.57	-0.165	-0.126	0.267	0.101	0.05
243.57	-0.165	-0.252	0.236	0.088	0.031
245.57	-0.221	-0.284	0.22	0.101	0.05
247.57	-0.221	-0.315	0.204	0.088	0.044
249.57	-0.221	-0.347	0.173	0.094	0.037
251.57	-0.221	-0.347	0.173	0.082	0.037
253.57	-0.221	-0.347	0.157	0.107	0.037
255.57	-0.165	-0.378	0.141	0.101	0.025
257.57	-0.221	-0.378	0.126	0.107	0.025
	- 			0.10/	0.044

259.57 261.57 263.57 265.57 267.57 269.57 271.57 273.57	-0.221 -0.221 -0.221 -0.221 -0.221 -0.221 -0.221	-0.347 -0.347 -0.378 -0.41 -0.41 -0.378 -0.41	0.126 0.11 0.11 0.094 0.094 0.078 0.078	0.119 0.107 0.069 0.094 0.101 0.088 0.088	0.05 0.044 0.05 0.044 0.05 0.044 0.05
279.57 281.57 283.57 285.57 287.57 289.57	-0.221 -0.221 -0.221 -0.221 -0.221 -0.221	-0.41 -0.41 -0.41 -0.441 -0.441	0.047 0.031 0.031 0.015 0.015	0.075 0.037 0.031 0.063 0.037	0.031 0.025 0.031 0.012 0.018
291.57 293.57 295.57	-0.221 -0.221 -0.276	-0.41 -0.441 -0.41	0 0 0	0.056 0.056 0.05 0.018	0.018 0.037 0.031 0.012

.

ı

FN: TNT7C.PRN

STEP TEST: WELL TNT-07-MWC

STEPS: 2

Q (CFM): 1.31,2.67 START TIMES (MIN): 0,59.9,240.1

1.31,2.67 0.59.9,240.1

	0,59.9,24					
1	FN:TNT7C.S	TP	TNT7B.STP	TNT7A.S	TP	
ELAPSED T	ELAP. T	TNT7C	TNT7B	TNT7A	TNT3A	TNT8A
(STEP)	(TOTAL)					
0.001	0.001	4.591	21.596	4.719	8.781	8.347
0.0083	0.0083	5.365	21.583	4.719	8.778	8.336
0.0166	0.0166	4.812	21.555	4.725	8.781	8.344
0.025	0.025	5.974	21.459	4.705	8.781	8.328
0.0333	0.0333	7.633	21.501	4.698	8.781	8.328
0.0416	0.0416	4.203	21.459	4.691	8.781	8.328
0.05		6.471			8.778	8.336
0.0583		6.139		4.719		8.339
0.0666	0.0666			4.698		
0.075	0.075	6.637		4.691	8.781	8.336
0.0833	0.0833	6.693		4.712	8.778	8.341
0.1	0.1	7.356		4.712	8.778	
0.1166	0.1166	7.522		4.691	8.778	8.333
0.1333	0.1333	7.799		4.712	8.778	8.33
0.15	0.15	8.241		4.691	8.778	8.336
0.1666	0.1666	8.684		4.712	8.778	8.336
0.1833	0.1833	8.85		4.691	8.778	8.325
0.2	0.2	9.237 9.569 9.348	21.459	4.712	8.781	8.33
0.2166	0.2166	9.569	21.432	4.712	8.781	8.325
0.2333	0.2333	9.348	21.459	4.712	8.781	8.336
0.25	0.25	9.901	21.377	4.691	8.778	8.328
0.2666	0.2666	10.288	21.364	4.691	8.778	8.33
0.2833	0.2833	10.897	21.364	4.691	8.778	8.33
0.3	0.3	11.173	21.364	4.691	8.778	8.33
0.3166	0.3166	10.786		4.712	8.778	
0.3333	0.3333	10.897		4.712	8.778	8.325
0.4166	0.4166	11.892		4.691	8.778	8.328
0.5	0.5	12.113		4.698	8.781	8.333
0.5833	0.5833	12.335		4.691	8.778	
0.6666	0.6666	11.892		4.698		
0.75	0.75	11.948		4.698		
	0.8333	11.948				8.33
0.9166	0.9166		21.432	4.698		
1	1	12.169		4.698	8.781	8.333
1.0833	1.0833	11.726	21.432	4.691	8.781	8.339
1.1666	1.1666	12.169	21.391	4.698	8.781	8.336
1.25	1.25	12.003	21.391	4.691	8.778	8.336
1.3333	1.3333	11.892	21.418	4.698	8.781	8.344
1.4166	1.4166	11.671	21.418	4.698	8.781	8.339
1.5	1.5	12.279	21.391	4.698	8.781	8.336
1.5833	1.5833	12.003	21.432	4.698	8.781	8.341
1.6666	1.6666	12.169	21.432	4.698	8.781	8.339
1.75	1.75	12.113	21.391	4.698	8.781	8.336
1.8333	1.8333	12.058	21.418	4.698	8.784	8.333
1.9166	1.9166	12.501	21.418	4.698	8.781	8.336
2	2	12.113	21.418	4.698	8.784	8.336
2.5	2.5	12.335	21.501	4.698	8.786	8.341
3	3	11.892	21.528	4.698	8.778	8.341

3.5	3.5	12.556	21.542	4.698	8.77	8.333
4	4	12.556	21.514	4.698	8.767	8.333
4.5	4.5	12.999	21.514	4.698	8.77	8.336
5	5	12.777	21.514	4.698	8.767	8.339
5.5	5.5	12.556	21.528	4.698	8.773	8.339
6	6	13.22	21.501	4.698	8.778	
6.5	6.5	12.722	21.542	4.698		8.333
7	7	12.722			8.778	8.333
7.5			21.542	4.698	8.778	8.336
	7.5	13.441	21.514	4.698	8.775	8.339
8	8	13.275	21.501	4.705	8.775	8.336
8.5	8.5	12.888	21.528	4.698	8.781	8.333
9	9	12.888	21.528	4.705	8.778	8.333
9.5	9.5	12.943	21.542	4.705	8.775	8.33
10	10	12.943	21.555	4.705	8.778	8.339
12	12	12.999	21.542	4.691	8.775	8.339
14	14	13.164	21.542	4.691	8.784	8.341
16	16	12.943	21.542	4.705	8.786	8.35
18	18	13.386	21.528	4.698	8.784	8.336
20	20	12.943	21.555	4.705		
22	22	13.386	21.555		8.775	8.347
24				4.698	-	8.341
	24	13.109	21.569	4.698	_	8.341
26	26	13.496	21.555	4.698	8.773	8.33
28	28	12.888	21.569	4.698	8.786	8.344
30	30	13.496	21.569	4.691	8.781	8.344
32	32	13.441	21.569	4.705	8.789	8.344
34	34	13.607	21.569	4.691	8.784	8.341
36	36	13.33	21.569	4.698	8.792	8.336
38	38	13.275	21.569	4.698	8.781	8.344
40	40	13.33	21.569	4.698	8.781	
42	42	13.718	21.569	4.698		8.341
44	44	13.33			8.792	8.347
46			21.583	4.712	8.797	8.358
48	46	13.441	21.569	4.698	8.784	8.339
	48	13.441	21.569	4.698	8.784	8.352
50	50	13.275	21.569	4.691	8.786	8.344
52	52	13.22	21.583	4.698	8.786	8.347
54	54	13.441	21.569	4.698	8.789	8.347
56	56	13.441	21.583	4.698	8.778	8.341
58	58	13.33	21.569	4.698	8.792	8.347
0	60	13.884	21.596	4.712	8.794	8.352
0.0083	60.0083	13.662	21.569	4.712	8.794	8.352
0.0166	60.0166	14.16	21.569	4.712	8.794	8.352
0.025	60.025	13.884	21.555	4.712	8.792	8.352
0.0333	60.0333	13.552	21.542	4.712	8.792	
0.0416	60.0416	14.271	21.542	4.712		8.352
0.05	60.05	14.215	21.528		8.792	8.352
0.0583	60.0583			4.712	8.792	8.352
		14.658	21.514	4.712	8.792	8.352
0.0666	60.0666	14.381	21.501	4.712	8.792	8.352
0.075	60.075	14.824	21.487	4.712	8.792	8.35
0.0833	60.0833	14.824	21.459	4.712	8.792	8.35
0.1	60.1	15.156	21.446	4.712	8.792	8.35
0.1166	60.1166	15.543	21.446	4.712	8.792	8.35
0.1333	60.1333	15.543	21.432	4.712	8.792	8.35
0.15	60.15	16.096	21.418	4.712	8.792	8.347
0.1666	60.1666	16.262	21.405	4.705	8.792	8.347
0.1833	60.1833	15.875	21.418	4.712	8.789	8.347
0.2	60.2	16.041	21.405	4.712	8.792	8.347
0.2166	60.2166	16.207	21.405	4.712		
0.2333	60.2333				8.792	8.347
0.25		16.649	21.405	4.719	8.789	8.347
0.23	60.25	16.705	21.377	4.712	8.789	8.344

0.2666	60.2666	17.092	21.391	4.712	8.789	8.347
0.2833	60.2833	17.645	21.377	4.712	8.792	8.344
0.3	60.3	17.811	21.377	4.712	8.789	8.347
0.3166	60.3166	17.534	21.364	4.712	8.792	8.344
0.3333	60.3333	17.59	21.364	4.712	8.789	8.344
0.4166	60.4166	18.862	21.391	4.705	8.792	8.344
0.5	60.5	19.249	21.418	4.712	8.792	8.347
0.5833	60.5833	20.079	21.418	4.705	8.792	8.347
0.6666	60.6666	20.743	21.405	4.712	8.792	
		21.406	21.405	4.712	8.792	8.344
0.75	60.75				8.792	8.344
0.8333	60.8333	21.904	21.391	4.712		8.347
0.9166	60.9166	22.291	21.405	4.712	8.792	8.347
1	61	22.679	21.377	4.705	8.792	8.347
1.0833	61.0833	23.121	21.391	4.712	8.794	8.35
1.1666	61.1666	23.453	21.391	4.712	8.794	8.35
1.25	61.25	23.619	21.364	4.712	8.794	8.35
1.3333	61.3333	24.283	21.377	4.712	8.794	8.352
1.4166	61.4166	24.283	21.364	4.712	8.797	8.352
1.5	61.5	24.559	21.364	4.712	8.797	8.35
1.5833	61.5833	25.278	21.377	4.712	8.797	8.35
1.6666	61.6666	25.666	21.364	4.712	8.797	8.35
1.75	61.75	25.776	21.364	4.712	8.794	8.35
1.8333	61.8333	25.998	21.364	4.712	8.794	8.35
1.9166	61.9166	26.274	21.364	4.712	8.794	8.35
2	62	26.44	21.364	4.712	8.794	8.347
2.5	62.5	27.712	21.432	4.712	8.792	8.35
~ 3	63	28.376	21.446	4.712	8.789	8.355
3.5	63.5	28.597	21.418	4.712	8.794	8.352
4	64	29.095	21.446	4.712	8.794	8.35
4.5	64.5	29.704	21.459	4.719	8.797	8.352
5	65	29.759	21.473	4.719	8.803	8.35
5.5	65.5	30.367	21.336	4.719	8.797	8.352
6	66	30.423	21.309	4.725	8.803	8.352
6.5	66.5	30.201	21.418	4.725	8.8	8.352
7	67	30.478	21.487	4.719	8.794	8.358
7.5	67.5	30.755	21.473	4.719	8.792	
8			21.323	4.719	8.792	8.355
	68	30.755				8.352
8.5	68.5	30.976	21.418	4.719	8.794	8.352
9	69	31.031	21.432	4.719	8.792	8.352
9.5	69.5	31.308	21.487	4.719	8.797	8.352
10	70	31.142	21.432	4.719	8.792	8.355
12	72	32.027	21.514	4.705	8.797	8.361
14	74	32.027	21.501	4.712	8.803	8.355
16	76	32.027	21.487	4.712	8.803	8.355
18	78	32.303	21.487	4.712	8.797	8.347
20	80	32.691	21.542	4.712	8.789	8.344
22	82	32.359	21.542	4.705	8.797	8.363
24	84	32.801	21.528	4.712	8.794	8.35
26	86	32.746	21.528	4.712	8.805	8.35
28	88	33.133	21.542	4.712	8.8	8.366
30	90	33.078	21.542	4.712	8.8	8.358
32	92	33.133	21.596	4.712	8.805	8.352
34	94	33.188	21.528	4.712	8.8	8.355
36	96	33.41	21.596	4.712	8.8	8.358
38	98	33.078	21.569	4.705	8.794	8.358
40	100	33.576	21.542	4.712	8.8	8.358
42	102	33.299	21.596	4.712	8.797	8.361
44	104	33.686	21.555	4.705	8.794	8.352
46	106	33.465	21.555	4.712	8.797	8.35
70	400	22.402		71/46	4,	0.33

48	108	33.465	21.596	4.712	8.797	8.355
50	110	33.686	21.555	4.705	8.797	8.352
52	112	33.963	21.555	4.705	8.805	8.352
54	114	33.52	21.569	4.705	8.808	8.355
56	116	33.631	21.542	4.712	8.8	8.361
58	118	33.963	21.596	4.712	8.8	8.363
60	120	33.576	21.596	4.705	8.8	8.361
62	122	34.129	21.596	4.705	8.805	8.347
64	124	34.074	21.583	4.705	8.814	
66	126	33.963	21.596	4.712	8.805	8.361
		34.129	21.596	4.705		8.361
68 70	128	34.129	21.555	4.712	8.797	8.361
70 72	130	34.461	21.555	4.712	8.808	8.355
	132		21.542		8.814	8.358
74	134	34.239		4.712	8.805	8.355
76	136	34.018	21.542	4.712	8.797	8.352
78	138	34.571	21.555	4.712	8.8	8.363
80	140	34.129	21.555	4.712	8.811	8.352
82	142	34.405	21.542	4.712	8.805	8.352
84	144	34.35	21.542	4.712	8.803	8.363
86	146	34.405	21.528	4.712	8.794	8.355
88	148	34.405	21.542	4.712	8.811	8.358
90	150	34.627	21.583	4.705	8.8	8.355
92	152	34.405	21.583	4.705	8.8	8.358
94	154	34.627	21.528	4.705	8.797	8.355
96	156	34.405	21.583	4.705	8.8	8.355
98	158	34.627	21.569	4.705	8.811	8.363
100	160	34.903	21.583	4.712	8.814	8.358
105	165	34.627	21.542	4.712	8.803	8.363
110	170	34.35	21.569	4.719	8.803	8.374
115	175	34.571	21.569	4.719	8.805	8.358
120	180	34.571	21.596	4.719	8.805	8.361
125	185	34.571	21.528	4.719	8.811	8.366
130	190	34.627	21.528	4.719	8.803	8.358
135	195	34.903	21.528	4.719	8.811	8.363
140	200	34.959	21.528	4.712	8.814	8.361
145	205	34.903	21.528	4.712	8.805	8.361
150	210	34.903	21.542	4.719	8.819	8.377
155	215	35.06 9	21.528	4.719	8.808	8.369
160	220	35.069	21.528	4.719	8.805	8.363
165	225	34.848	21.555	4.719	8.816	8.361
170	230	34.959	21.583	4.739	8.816	8.385
175	235	35.014	21.542	4.732	8.814	8.369
180	240	34.848	21.583	4.732	8.816	8.366
0	240.1	34.129	21.569	4.732	8.814	8.361
	240.1083	33.908	21.542	4.732	8.811	8.361
	240.1166	33.963		4.732	8.811	8.358
	240.125	33.742	21.501	4.725	8.811	8.361
	240.1333	33.465	21.514	4.725	8.811	
	240.1416	33.188	21.542			8.358
0.0416	240.1416	32.912	21.542	4.732 4.725	8.811	8.358
	240.15		21.328	4.725	8.811	8.358
	240.1565	32.801			8.808	8.358
		32.469	21.487	4.732	8.811	8.355
0.075		32.082	21.473	4.732	8.811	8.358
	240.1833	32.027	21.487	4.739	8.811	8.358
0.1	240.2	31.584	21.473	4.732	8.811	8.358
	240.2166	31.031	21.446	4.725	8.808	8.358
	240.2333	30.533	21.459	4.739	8.811	8.358
0.15	240.25	29.98	21.432	4.732	8.811	8.358
0.1000	240.2666	29.482	21.405	4.725	8.808	8.358

			_			
0.1833	240.2833	29.261	21.418	4.725	808	8.358
0.2	240.3	28.653	21.405	4.725	8.808	8.358
0.2166	240.3166	28.321	21.391	4.725	8.808	8.358
	240.3333	28.155	21.391	4.725	8.808	8.358
0.25		27.38	21.377	4.725	8.808	8.358
		26.938				
	240.3666			4.725	8.808	8.358
	240.3833		21.364	4.725	8.808	8.358
0.3	240.4	26.108	21.364	4.725	8.808	8.358
0.3166	240.4166	25.721	21.35	4.725	8.805	8.358
0.3333	240.4333	25.334	21.35	4.725	8.805	
	240.5166	23.398		4.725		
0.5		21.462	21.391	4.725		
		- - -				
	240.6833	19.636		4.725		
	240.7666	17.977	21.391	4.725		
0.75		16.428	21.391	4.725		8.361
0.8333	240.9333	14.99	21.377	4.725	8.805	8.361
0.9166	241.0166	13.662	21.377	4.725	8.805	8.363
1	241.1	12.501	21.364	4.725	8.805	8.363
	241.1833	11.394	21.364	4.725	8.805	8.363
	241.2666	10.343	21.364	4.725	8.805	
						8.366
1.25	_	9.403	21.364	4.725	8.805	8.363
	241.4333	8.573	21.364	4.725	8.805	8.363
1.4166	241.5166	7.744	21.364	4.725	8.805	8.366
1.5	241.6	7.025	21.35	4.725	8.805	8.366
	241.6833	6.416	21.35	4.719	8.805	8.363
	241.7666	5.808	21.35	4.719	8.805	8.363
1.75		5.254	21.336	4.719	•	
					8.805	8.363
	241.9333	4.812	21.35	4.719	8.805	8.363
	242.0166	4.369	21.336	4.719	8.805	8.363
2	242.1	3.982	21.336	4.719	8.805	8.363
2.5	242.6	2.323	21.418	4.719	8.805	8.369
3	243.1	1.438	21.446	4.719	8.808	8.374
3.5	243.6	0.94		4.719		8.371
4	244.1	0.663		4.712		8.369
4.5						
	244.6	0.497		4.712		8.369
5	245.1	0.387		4.712		8.369
5.5	245.6	0.331	21.473	4.712	8.811	8.369
6	246.1	0.331	21.459	4.705	8.814	8.361
6.5	246.6	0.331	21.446	4.698	8.811	8.361
7	247.1	0.276	21.446	4.698	8.814	8.361
7.5	247.6	0.276	21.446	4.698	8.814	8.363
8	248.1	0.221	21.446	4.698	8.816	8.363
8.5	248.6	0.221	21.432	4.698	8.814	8.366
9	249.1	0.165	21.432	4.698	8.814	8.366
9.5	249.6	0.165	21.432	4.698	8.814	8.366
10	250.1	0.11	21.446	4.712	8.816	8.369
12	252.1	0.11	21.473	4.705	8.811	8.366
14	254.1	0.11	21.487	4.705	8.811	8.371
16	256.1	0.055	21.487	-3.003	2.796	2.8
18	258.1	0	-6.017	-3.003	2.796	2.8
20	260.1	0	-6.017	-3.003	2.796	2.8
22	262.1	0	-6.017	-3.003	2.796	2.8
24	264.1	-0.055	-6.017	-3.003	2.796	2.8

fn: TNT10B.PRN

DATA FILES: TNT10B.STP (PROD), TNT10B.OB1 (INPUT 1)

2.67 0,122.23

STEP 0 05/08 18:09:39

	10B-OBS	10BPROD	18:09:39		
Elapsed Ti			2 INPUT	3 INPUT 4	
0.0083	0.063	-0.488	0.012	-0.006	
0.0166	0.094	0.677	0.012	-0.006	
0.025	0.126	1.26	0.012	0	
0.0333	0.157	1.748	0.012	0	
0.0416	0.157	2.237	0.012	-0.006	
0.05	0.157	2.71	0.012	-0.006	
0.0583	0.157	3.166	0.012	-0.006	
0.0666	0.189	3.592	0.012	0	
0.075	0.189	4.002		0	
0.0833 0.1	0.189 0.157	4.38 4.821	0.012 0.012	0	
0.1166	0.157	5.656	0.012	-0.006 -0.006	
0.1333	0.157	6.207	0.012	-0.006	
0.15	0.157	6.696	0.012	-0.006	
0.1666	0.157	7.153	0.012	0.000	
0.1833	0.157	7.61	0.012	-0.006	
0.2	0.157	8.067	0.012	-0.006	
0.2166	0.157	8.492	0.012	0.006	
0.2333	0.157	8.949	0.012	0	
0.25	0.157	9.374	0.012	0	
0.2666	0.157	9.784	0.012	-0.006	
0.2833	0.157	10,194	0.012	-0.006	
0.3	0.189	10.588	0.012	0	
0.3166	0.189	10.982	0.012	-0.006	
0.3333	0.189	11.375	0.012	-0.006	
0.4166	0.157	13.124	0.012	0	
0.5	0.126	14.7	0.006	0	
0.5833 0.6666	0.126 0.126	16.165	0.012	0	
0.75	0.126	17.489 18.686	0.012	0	
0.8333	0.126	19.742	0	0	
0.9166		20.735	Ö	0	
1		21.617	ŏ	0.006	
1.0833		22.405	ŏ	0.006	
1.1666	0.126	23.145	Ö	0.012	
1.25	0.126	23.823	Ŏ	0.006	
1.3333	0.126	24.469	Ō	0.012	
1.4166	0.126	25.036	0.006	0	
1.5	0.126	25.572	0.006	0	
1.5833	0.157	26.06	0.006	0.006	
1.6666	0.157	26.517	0.006	0.006	
1.75	0.126	26.943	0	0.006	
1.8333	0.157	27.321	0	0.006	
1.9166	0.157	27.683	0	0	
2	0.157	28.014	0	0.006	
2.5	0.126	29.464	0.006	0.006	
3 3.5	0.126	30.346	0.006	0	
3.5 4	0.094 0.094	30.897	0.006	0	
4.5	0.094	31.275 31.528	0.006 0.006	0.006 0.006	
7.3	U. UJ4	31.340	0.000	0.006	

5	0.126	31.748	0.006	0.012
5.5	0.094	31.874	0.006	0.012
6	0.094	32	0.006	0.012
6.5	0.126	32.079	0.006	0.006
7 8 9 11112222468024680246802468024680246802468024	0.126 0.094 0.094 0.126 0.094 0.126 0.063	32.158 32.284 32.284 32.378 32.662 32.851 32.898 33.135 33.371 33.702 33.812 33.749 33.781 33.938 33.938 33.938 34.064 34.127 34.159	0 0 0 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.012 0.006 0.012 0.012 0.012 0.012 0.012 0.012	0.012 0.012 0.006 0.006 0.006 0.018 0.025 0.012 0.012 0.012 0.012 0.012 0.006
84	0.063	34.19	0.012	0.006
86	0.094	34.364	0.012	0.006
88	0.063	34.411	0.012	0.012
90	0.063	34.411	0.012	0

92	0.094	34.474	0.018	0.012
94	0.063	34.411	0.018	0.006
96	0.063	34.49	0.012	0.006
98	0.063	34.474	0.018	0.006
100	0.063	34.49	0.018	0.012
105	0.157	34.647	0.018	0.006
110	0.094	35.01	0.025	0.006
115	0.063	34.695	0.012	0.006
120	0.063	34.695	0.012	0.006

Step 1 5/08 20:11:53

RECOVERY STARTED AT 122.23 MINUTES ELAPSED TIME

ELAPSED	TINPUT 1	INPUT 2	INPUT 3	INPUT 4
100 000	A 153	24 270	0.010	
122.2383		34.379	0.018	0.012
122.2466		34.238 34.112	0.018 0.018	0.018
122.2633		33.97	0.015	0.018 0.018
122.2716		33.828	0.018	0.018
122.28		33.686	0.018	0.018
122.2883		33.56	0.018	0.018
122.2966		33.403	0.018	0.018
122.305		33.261	0.018	0.018
122.3133		33.119	0.018	0.018
122.33	0.252	32.851	0.018	0.018
122.3466		32.252	0.018	0.018
122.3633		31.386	0.018	0.018
122.38		30.535	0.018	0.012
122.3966		29.668	0.018	0.012
122.4133		28.833	0.018	0.018
122.43		28.03	0.025	0.012
122.4466		27.226	0.018	0.018
122.4633		26.47	0.018	0.012
122.48		25.714	0.018	0.012
122.4966		24.973	0.018	0.018
122.5133		24.28	0.018	0.018
122.53 122.5466		23.586		0.018
122.5466		22.893 22.231	0.025 0.018	0.018 0.018
122.5635		19.159	0.018	0.018
122.73		16.449		0.013
122.8133		14.07	0.018	0.012
122.8966		11.911	0.012	0.012
122.98		10.083	0.012	0.012
123.0633		8.539	0.012	0.012
123.1466		7.106		0.012
123.23	0.22	5.735	0.018	0.012
123.3133		4.742	0.018	0.012
123.3966		3.812	0.018	0.012
123.48	0.22	2.977	0.018	0.012

123.5633	0.22	2.3	0.018	0.012
123.6466	0.22	1.748	0.018	0.012
123.73	0.22	1.244	0.018	0.012
123.8133	0.22	0.85	0.018	0.012
123.8966	0.22	0.504	0.018	0.012
123.98	0.22	0.189	0.018	0.012
124.0633	0.22	-0.063	0.018	0.012
124.1466	0.22	-0.315	0.018	0.012
124.23	0.22	-0.519	0.018	0.012
124.73	0.189	-1.37	0.018	0.006
125.23	0.189	-1.843	0.018	0.006
125.73	0.189	-2.095	0.018	0.006
126.23	0.189	-2.237	0.018	0
126.73	0.189	-2.3	0.025	0
127.23	0.189	-2.3	0.018	0
127.73	0.189	-2.316	0.025	0
128.23	0.22	-2.316	0.025	0
128.73	0.189	-2.316	0.025	0.006

129.23	0.22	-2.3	0.025	0.006
129.73	0.22	-2.3	0.025	0.006
130.23	0.22	-2.253	0.025	0.006
130.73	0.22	-2.205	0.025	0.006
131.23	0.22	-2.205	0.025	0.006
131.73	0.22	-2.221	0.025	0.006
132.23	0.22	-2.174	0.025	0.006
134.23	0.157	-1.591	0.025	0.006
136.23	0.126	0.504	0.025	0.006
138.23	0.126	0.724	0.025	0.006
140.23	0.126	1.087	0.025	0.012
142.23	0.126	1.307	0.025	0.006
144.23	0.126	1.323	0.025	0.012
146.23	0.126	1.323	0.025	0.012
148.23	0.126	1.323	0.025	0.012
150.23	0.126	1.323	0.025	0.012
152.23	0.126	1.323	0.025	0.012
154.23	0.126	1.307	0.025	0.012
156.23	0.094	1.307	0.018	0.012
158.23	0.094	1.307	0.031	0.012

REFERENCES

- Birsoy, Y.K, and W.K. Summers, 1980, Determination of aquifer parameters from step tests and intermittent pumping data, Ground Water, v.18, no.2, p.137-146.
- Cooper, H.H., Jr., and C.E. Jacob, 1946, A generalized graphical method for evaluating formation constants and summarizing well field history, Trans. Amer. Geophys. Union, 27 p., p.526-534.
- Kruseman, G.P., and N.A. DeRidder, 1983, Analysis and Evaluation of Pumping Test Data, Internat. Inst. for Land Reclamation and Improvement, Wageningen, The Netherlands.
- Theis, C.V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage: Trans. Am. Geophys. Union, v. 16, p 519-524.

Appendix M

Chemical Data Tables

James M. Montgomery

Consulting Engineers Inc.

INSTALLATION RESTORATION PROGRAM

CHEMICAL REPORT
Sun Sep 9 13:40:47 1990

For Parameters :

Installation = Sierra Ordnance Depot
Beginning Date = 01-jan-75
Ending Date = 09/07/90
Media Type = Chemical Ground Water (CGW)
Maximum (X, Y) = (746167, 4460707)
Minimum (X, Y) = (736000, 4441000)
Booleans = N

Installation: Sierra Ordnance Depot

Page 1

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 09/07/90 (Scoleans LT and NO are excluded)

Site: WELL ALF-01-MMA

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	*******	•••••	•••••	••••		••••
90.4	17-apr-1990	99	TDS		762000.000	UGL
90.4	31-may-1990	99	TDS		900000.000	UGL
90.4	31-may-1990	99	TDS		884000.000	UGL
90.4	17-epr-1990	S801	HG		0.488	UGL
90.4	17-apr-1990	SD21	SE		16.300	UGL
90.4	31-may-1990	SD21	SE		18.600	UGL
90.4	31-may-1990	SD21	SE		18.300	UGL
90.4	31-may-1990	SD 22	AS		3.410	UGL
90.4	17-apr-1990	TT10	CL		100000.000	UGL
90.4	31-may-1990	TT10	CL		100000.000	UGL
90.4	31-may-1990	TT10	CL		100000.000	UGL
90.4	17-apr-1990	TT10	\$04		300000.000	UGL
90.4	31-may-1990	TT10	504		320000.000	UGL
90.4	31-may-1990	TT10	SO4		310000.000	UGL

Site: WELL ALF-02-MMA

SAMPLE	SAPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	800L	CONCENTRATION	UNITS
•••••	• • • • • • • • • • • • • • • • • • • •			••••		•••••
85.5	17-apr-1990	99	TDS		4060000.000	UGL
85.5	01-jun-1990	99	TDS		1100000.000	UGL
85.5	17-apr-1990	SD21	SE		6.070	UGL
85.5	01 - jun - 1 990	5021	SE		6.790	UGL
85.5	01-jun-1 990	SD22	AS		6.720	NGL
85.5	01-jun-1 990	TF18	CYN		3.310	UGL
85.5	17-apr-1990	TT10	CL		67000.000	UGL
85.5	01-jun-1990	TT10	CL		66000.000	UGL
85.5	17-apr-1990	TT10	SO4		450000.000	UGL
85.5	01 - jun - 1 990	TT10	SO4		440000.000	UGL
85.5	17-apr-1990	UNI20	TRCLE		41.000	UGL

Installation: Sierra Ordnance Depot

Page 2

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 09/07/90 (Socieons LT and ND are excluded)

Site: WELL ALF-03-MWA

SAMPLE	SAMPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••		•••••	*******	••••	•••••	••••
83.3	17-apr-1990	99	TDS		1250000,000	UGL
83.3	17-apr-1990	99	TDS		1300000.000	UGL
83.3	01-jun-1 990	99	TDS		1250000,000	UGL
83.3	17-apr-1990	SD21	SE		14.900	UGL
83.3	17-apr-1990	SD21	38		15.300	UGL
83.3	01-jun-1 990	SD21	SE		16.600	UGL
83.3	01-jun-1990	SD22	AS		4,160	UGL
83.3	17-apr-1990	TT10	CL		270000.000	UGL
83.3	01 - jun - 1 990	TT10	CL		270000.000	UGL
83.3	17-apr-1990	TT10	504		260000.000	UGL
83.3	01 - jun - 1990	TT10	\$04		260000.000	UGL
83.3	17-apr-1990	UH20	CHCL3		1.130	UGL
83.3	17-epr-1990	UH20	CHCL3		1.030	UGL

Site: WELL CCB-01-MMA

SAMPLE DEPTH (ft	SAMPLE) DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	•••••		*******			•••••
77.1	16-apr-1990	99	TDS		516000.000	UGL
77.1	01-jun-1990	99	TDS		564000,000	UGL
77.1	16-apr-1990	5021	SE		3.410	UGL
77.1	01-jun-1990	5021	SE		3.330	UGL
77.1	01-jun-1990	\$022	AS		8.640	UGL
77.1	16-epr-1990	7710	CL		33000.000	UGL
77.1	01 - jun - 1990	TT10	CL		32200.000	UGL
77.1	16-apr-1990	TT10	SO4		116000.000	UGL
77.1	01-jun-1990	TT10	504		111000.000	UGL

Installation: Sierra Ordnance Depot

Page 3

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 09/07/90 (Sociesns LT and NO are excluded)

Site: WELL CCS-02-MMA

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITE
	•••••	•••••	*******	••••	•••••	•••••
82.2	16-apr-1990	99	TOS		740000.000	UGL
85.2	02- jun-1990	99	TDS		808000.000	UGL
82.2	16-apr-1990	\$801	HG		0.488	UGL
82.2	16-apr-1990	SD21	SE		9.690	UGL
85.2	02- jun-1990	SD21	æ		10.600	UGL
85.2	02- jun-1990	\$022	AS		7.140	UGL
82.2	16-apr-1990	TT10	CL		100000.000	UGL
85.2	02- jun- 1990	TT10	CL		97000.000	UGL
82.2	16-apr-1990	1110	504		260000.000	UGL
85.2	02- jun-1990	TT10	\$04		238000.000	UGL

Site: WELL DHO-03-MMA

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	800L	CONCENTRATION	UNITS
•••••		•••••		••••	***********	••••
94.8	19- apr-1990	99	TDS		902000.000	UGL
94.8	31-may-1990	99	TDS		1070000.000	UGL
94.8	31-may-1990	99	TDS		1090000.000	UGL
94.8	19-apr-1990	5021	SE		11.300	UGL
94.8	31-may-1990	SD21	SE		13.200	UGL
94.8	31-may-1990	5021	æ		12.600	UGL
94.8	31-may-1990	SO22	AS		2.770	UGL
94.8	19-apr-1990	TT10	CL		66000.000	UGL
94.8	31-may-1990	TT10	CL		52000.000	UGL
94.8	31-may-1990	TT10	CL		53000.000	UGL
94.8	19-apr-1990	TT10	504		450000.000	UGL
94.8	31-may-1990	TT10	SO4		380000.000	UGL
94.8	31-may-1990	TT10	SO4		380000.000	UGL
94.8	19-apr-1990	un20	TRCLE		10.500	UGL

Installation: Sierra Ordnance Depot Page 4

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 09/07/90 (Socieans LT and NO are excluded)

Site: WELL DHO-04-MA

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	HETHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
			•••••	••••		•••••
94.9	19-apr-1990	99	TD\$		710000.000	UGL
94.9	31-may-1990	99	TDS		776000.000	UGL
94.9	19-apr-1990	5021	SE		5.110	UGL
94.9	31-may-1990	5021	SE		6.220	UGL
94.9	31-may-1990	\$022	AS		4.260	ner
94.9	19- apr -1990	TT10	CL		60000.000	UGL
94.9	31-may-1990	TT10	CL		50000.000	UGL
94.9	19-apr-1990	1110	SO4		224000.000	UGL
94.9	31-may-1990	TT10	SO4		223000.000	UGL
94.9	19-apr-1990	UN20	TRCLE		4.190	UGL

Site: WELL DHO-05-MMA

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	HETHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	*******		•••••			••••
94.1	19-apr-1990	99	TDS		826000.000	UGL
94.1	19-apr-1990	99	TDS		840000.000	UGL
94.1	31-may-1990	99	TDS		916000.000	UGL
94.1	19-apr-1990	5021	Œ		11.600	UGL
94.1	19-apr-1990	5021	SE		11.800	UGL
94.1	31-may-1990	5021	SE		11.400	UGL
94.1	31-may-1990	\$022	AS		4.480	UGL
%.1	19- apr -1990	7710	CL		60000.000	UGL
94.1	19-epr-1990	TT10	CL		60000.000	UGL
94.1	31-my-1990	TT10	CL		60000.000	UGL
94.1	19-apr-1990	TT10	504		330000.000	UGL
94.1	19-apr-1990	TT10	904		330000.000	UGL
94.1	31-may-1990	TT10	\$04		280000.000	UGL
94.1	19-apr-1990	LB(20	TRCLE		20.000	UGL

Installation: Sierra Ordnance Depot Page 5
Analytical Results for Chemical Ground Water

From: 01-jen-75 To: 09/07/90 (Socieens LT and NO are excluded)

Site: WELL DS8-04-MA

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
*****			•••••			
22.9	08- jun-1990	5021	SE		7.700	UGL
22.9	08- jun-1990	5023	AG		0.425	UGL

Site: WELL PSW-02

SAMPLE	SAPLE	TEST				
DEPTH (ft	DATE	METHOD	COMPOUND	800L	CONCENTRATION	UNITS
•••••	• • • • • • • • • • • • • • • • • • • •	*****	******	••••	***********	••••
120.0	07-may-1990	99	TDS		850000.000	UGL
120.0	07-may-1990	99	TDS		680000.000	UGL
120.0	07- jun-1990	99	TDS		732000.000	UGL
120.0	07- jun-1990	99	TDS		754000.000	UGL
120.0	07- jun-1990	SD20	PB		3.470	UGL
120.0	07- jun-1990	302 0	PB		3.250	UGL
120.0	07- jun-1990	5021	SE		4.370	UGL
120.0	07-may-1990	\$022	AS		5.970	UGL
120.0	07-may-1990	5022	AS		5.970	UGL
120.0	07- jun-1990	TF18	CYN		11.300	UGL
120.0	07-may-1990	TT10	CL		60000.000	UGL
120.0	07-may-1990	TT10	CL		60000.000	UGL
120.0	07-jun-1990	TT10	CL		66000.000	UGL
120.0	07- jun-1990	TT10	Cr.		66000.000	UGL
120.0	07-may-1990	TT10	304		380000.000	UGL
120.0	07-may-1990	TT10	904		370000.000	UGL
120.0	07- jun-1990	TT10	504		293000.000	UGL
120.0	07- jun-1990	TT10	904		300000.000	UGL

Site: WELL PSV-08

SAMPLE DEPTH (ft:	SAMPLE DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	•••••	•••••	•••••	••••	•••••	••••
120.0	07-my-1990	99	TDS		740000.000	UGL
120.0	07- jun- 1990	99	TDS		666000.000	UGL
120.0	07- jun-1990	\$020	P8		3.900	UGL
120.0	07-may-1990	\$022	AS		7.460	UGL
120.0	07-may-1990	TT10	CL		44000.000	UGL

Installation: Sierra Ordmance Depot Page 6 Analytical Results for Chemical Ground Water From: 01-jan-75 To: 09/07/90 (Socieens LT and ND are excluded)

Site: WELL PSW-08 (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
			•••••	••••		••••
120.0	07- jun-1990	7710	CL		44000.000	UGL
120.0	07-may-1990	TT10	SO4		310000.000	UGL
120.0	07- jun-1 990	TT10	SO4		289000.000	UGL

Site: WELL PSW-09

SAMPLE DEPTH (fi	•	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
120.0	07-may-1990	99	TOS		340000.000	UGL
120.0	07- jun-1990	99	TD\$		310000.000	UGL
120.0	07- jun- 1990	\$020	PB		1.950	UGL
120.0	07-may-1990	5022	AS		3.200	UGL
120.0	07-jun-1990	TF18	CYN		11.200	UGL
120.0	07-may-1990	TT10	CL		17100.000	UGL
120.0	07- jun-1990	TT10	CL		16900.000	UGL
120.0	07-may-1990	TT10	SO4		57100.000	UGL
120.0	07- jun-1990	7710	SO4		50000.000	UGL

Site: WELL THT-01-MA

SAMPLE	SAIPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
		•••••			**********	
55.4	20-apr-1990	99	TDS		864000.000	UGL
55.4	20-apr-1990	99	TOS		854000.000	UGL
55.4	08- Jun-1990	99	TDS		830000.000	UGL
55.4	08-jun-1990	99	TDS		840000.000	UGL
55.4	08-jun-1990	5 020	PS		7.480	UGL
55.4	08-jun-1990	2020	PS		10.200	UGL
55.4	20-apr-1990	SD22	AS		18.200	UGL
55.4	20-apr-1990	TT10	Cr		47000.000	UGL
55.4	20-apr-1990	TT10	CL		53000.000	UGL
55.4	08-jun-1990	TT10	CL		40000.000	UGL
55.4	08-jun-1990	TT10	CL		41000.000	UGL
55.4	20-apr-1990	7710	SO4		190000.000	UGL
55.4	20-apr-1990	TT10	504		200000.000	UGL
55.4	08- jun-1990	TT10	504		188000.000	UGL
55.4	08- jun-1990	1110	\$04		185000.000	UGL

Installation: Sierra Ordnance Depot Page 7
Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 09/07/90 (Scoteans LT and MD are excluded)

Site: WELL THT-01-MMA (continued)

SAPLE	SAIPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	800L	CONCENTRATION	UNITS
		•••••		••••		
55.4	08- jun-1990	UN(20	TRCLE		29.500	N CT
55.4	08-jun-1990	UN20	TRCLE		30.500	UGL
55.4	20-apr-1990	UN14	135TN8		950.000	UGL
55.4	20-apr-1990	UN14	135TH8		1100.000	UGL
55.4	08- jun-1990	W14	135TNB		640.000	UGL
55.4	08-jun-1990	W14	135TMB		1100.000	UGL
55.4	20-apr-1990	UU14	246TNT		1.050	UGL
55.4	08-jun-1990	W14	246THT		1.220	UGL
55.4	20-apr-1990	UN14	24DNT		66.000	UGL
55.4	20-apr-1990	W14	240HT		90.000	UGL
55.4	06-jun-1990	UM14	24DNT		46.700	UGL
55.4	08-jun-1990	UU14	24DNT		86.000	UCL
55.4	20-apr-1990	UU14	HOCK		3.700	UGL
55.4	20-apr-1990	UM14	HIPDC		1.950	UGL
55.4	20-apr-1990	UN14	RDX		90.000	UGL
55.4	20-apr-1990	UW14	RDX		99.000	UGL
55.4	08-jun-1990	UN14	RDX		54.000	UGL
55.4	08- jun-1990	UM14	RDX		87.000	UGL
55.4	20-apr-1990	UU14	TETRYL		9.920	UGL
55.4	20-apr-1990	UM14	TETRYL		9.680	UGL

Site: WELL THT-01-MUS

SAMPLE DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
	•••••	•••••		**********	
20-apr-1990	99	TOS		878000.000	UGL
05- jun- 1990	99	TDS		946000.000	UGL
05- jun-1990	5022	AS		5.440	UGL
20-apr-1990	TT10	CL		120000.000	UGL
20- apr -1990	1110	\$04		260000.000	UGL
		0ATE METHOD 20-apr-1990 99 05-jun-1990 99 05-jun-1990 99 20-apr-1990 TT10	DATE METHOD COMPOUND 20-apr-1990 99 TDS 05-jun-1990 99 TDS 05-jun-1990 SD22 AS 20-apr-1990 TT10 CL	DATE METHOD COMPOUND BOOL 20-apr-1990 99 TDS 05-jun-1990 99 TDS 05-jun-1990 SD22 AS 20-apr-1990 TT10 CL	DATE METHOD COMPOUND BOOL CONCENTRATION 20-apr-1990 99 TDS 878000.000 05-jun-1990 99 TDS 946000.000 05-jun-1990 SD22 AS 5.440 20-apr-1990 TT10 CL 120000.000

Site: WELL THT-01-MUC

SUPLE DEPTH (ft	SAIPLE) DATE	TEST	COMPOUND	900L	CONCENTRATION	UNITS
55.9 55.9	20-apr-1990 05-jun-1990	99 99	TDS TDS		806000.000 766000.000	ner
55.9	05- jun-1990	5022	AS		6.180	UGL
55.9	20-epr-1990	TT10	CL		90000.000	UGL

Installation: Sierra Ordnance Depot

Page 8

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 09/07/90 (Booleans LT and NO are excluded)

Site: WELL THT-01-MWC (continued)

SAMPLE DEPTH (ft	SAMPLE :) DATE	TEST METHOD	COMPOUND	SOOL	CONCENTRATION	UNITS
			•••••	••••		••••
55.9	20-apr-1990	7710	SO4		250000.000	UGL
55.9	20-apr-1990	UN14	135TNB		0.793	UGL
55.9	05-jun-1990	UN14	RDX		4.180	UGL

Site: WELL THT-02-MMA

SAMPLE DEPTH (ft)	SAMPLE DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
		*****		••••	**********	••••
54.3	21- apr- 1990	99	TDS		1280000.000	UGL
54.3	04- jun-1990	99	TDS		1280000.000	UGL
54.3	21-apr-1990	SD21	SE		4.050	UGL
54.3	04- jun-1990	5021	SE		3.910	UGL
54.3	04-jun-1990	SD22	AS		7.360	UGL
54.3	21-apr-1990	TT1 Q	CL		160000.000	UGL
54.3	21-apr-1990	T T10	504		260000.000	UGL
54.3	21-apr-1990	UW14	135TH8		230.000	UGL
54.3	04-jun-1990	UN14	135THB		220.000	UGL
54.3	21-apr-1990	UW14	246THT		7.860	UGL
54.3	04-jun-1990	UN14	246TNT		8.140	UGL
54.3	21-apr-1990	UM14	240NT		6.920	UGL
54.3	04- jun- 1990	UN14	240NT		5.930	UGL
54.3	21-apr-1990	UW14	HIPCK		3.760	UGL
54.3	21-apr-1990	UM14	RDX		250.000	UGL
54.3	04-jun-1990	UN14	ROX		220.000	UGL

Site: WELL THT-02-MAS

SAMPLE DEPTH (ft	SAMPLE () DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••					•••••	
54.6	21-epr-1990	99	TDS		976000.000	UGL
54.6	04- jun- 1990	99	TDS		900000.000	UGL
54.6	04-jun-1990	5022	AS		14.000	UGL
54.6	21-apr-1990	TT10	CL		140000.000	UGL
54.6	21-apr-1990	TT10	SO4		250000.000	UGL
54.6	04-jun-1990	UM14	135THB		1.380	UGL
54.6	04-jun-1990	UU14	TETRYL		0.754	UGL

Installation: Sierra Ordnance Depot

Page 9

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 09/07/90 (Socieens LT and NO are excluded)

Site: WELL THT-02-MUC

SAMPLE DEPTH (f	SAMPLE t) DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
		•••••	******	••••		
53.9	21-epr-1990	99	TDS		738000.000	UGL
54.0	04-jun-1990	99	TDS		726000.000	UGL
53.9	04-jun-1990	SD22	AS		5.120	UGL
53.9	21-apr-1990	1110	CL		77000.000	UGL
53.9	21-apr-1990	TT10	\$04		240000.000	UGL
53.9	04-jun-1990	UU14	TETRYL		0.813	UGL

Site: WELL THT-03-MMA

SAMPLE DEPTH (f	SAIPLE t) DATE	TEST	COMPOUND	800L	CONCENTRATION	UNITS
52.7	01-may-1990	99	TDS		956000.000	UGL
52.7	08- jun-1990	99	TOS		808000.000	UGL
52.7	01-may-1990	TT10	CL		44000.000	UGL
\$2.7	08- jun-1990	TT10	CL		46000.000	UGL
52.7	01-may-1990	TT10	SO4		107000.000	UGL
52.7	08- jun-1990	TT10	SO4		102000.000	UGL
52.7	08- jun-1990	UN14	135TNB		13.000	UGL
52.7	08- jun-1990	UN14	240NT		6.190	UGL
52.7	08- jun-1990	UN14	ROX		34.200	UGL

Site: WELL THT-04-MMA

SAMPLE	SAPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	•••••	•••••	•••••	••••		
53.7	01-my-1990	99	TDS		996000.000	UGL
53.7	08-jun-1990	99	TDS		940000.000	UGL
53.7	01-may-1990	5021	SE		4.370	UGL
53.7	08- jun-1990	9021	SE		3.620	UGL
53.7	01-may-1990	TT10	CL		200000.000	UGL
53.7	08-jun-1990	TT10	CL		180000.000	UGL
53.7	01-may-1990	TT10	\$04		260000.000	UGL
53.7	08- jun-1990	TT10	504		243000.000	UGL
53.7	08-jun-1990	UW14	135TNB		3.380	UGL
53.7	08-jun-1990	UN14	246TNT		1.030	UGL
53.7	06-jun-1990	UL14	240NT		10.300	UGL

Installation: Sierra Ordnance Depot

Page 10

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 09/07/90 (Socieons LT and MD are excluded)

Site: WELL THT-05-MA

SAMPLE DEPTH (f	SAMPLE t) DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
			•••••	••••		••••
58.5	02-may-1990	99	TOS		786000.000	UGL
58.5	07-jun-1990	99	TDS		716000.000	UGL
58.5	02-may-1990	SD21	SE		4.150	UGL
58.5	07-jun-1990	\$021	SE		3.510	UGL
58.5	02-may-1990	TT10	CL		71000.000	UGL
58.5	07-jun-1990	7710	CL		66000.000	UGL
58.5	02-may-1990	TT10	SO4		115000,000	UGL
58.5	07- jun-1990	TT10	\$04		138000.000	UGL
58.5	07- jun-1990	UN14	1357NB		6.470	UGL

Site: WELL THT-06-MMA

SAMPLE	SAIPLE	TEST				
DEPTH (ft	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
		•••••	•••••		**********	
54.6	02-may-1990	99	TOS		1570000.000	UGL
54.6	06- jun-1990	99	TOS		1530000.000	UGL
54.6	06- jun-1990	S 8 01	HG		0.251	UGL
54.6	06- jun-1990	SD20	PE		7.050	UGL
54.6	02-may-1990	SD21	SE		8.840	UGL
54.6	06- jun-1990	5021	SE	•	6.820	UGL
54.6	02-may-1990	1 110	CL		240000.000	UGL
54.6	02-may-1990	T710	\$04		440000.000	UGL
54.6	06-jun-1990	UN14	135TNB		2.340	ugl.
54.6	06-jun-1990	UN14	240NT		0.850	UGL

Site: WELL THT-07-MMA

SAMPLE DEPTH (ft)	SAMPLE DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
56.1	18-apr-1990	99	703		978000.000	UGL
56.1	06- jun-1990	99	TDS		802000.000	ner
56.1	06- jun- 1990	5020	PB		6.620	UGL
56.1	18-epr-1990	TT10	CL		99000.000	UGL
56.1	18-apr-1990	TT10	SO4		181000.000	UGL

Installation: Sierra Ordnance Depot

Page 11

Analytical Results for Chamical Ground Water

From: 01-jan-75 To: 09/07/90 (Scoleans LT and ND are excluded)

Site: WELL THT-07-MMA (continued)

SAMPLE DEPTH (ft	SAMPLE :) DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
		•••••		••••		*****
56.1	18-apr-1990	UU14	135TN6		5.590	UGL
56.1	06-jun-1990	UM14	135TN8		4.980	UGL
56.1	18-apr-1990	UM14	24DNT		2.040	UGL
56.1	06-jun-1990	UU14	24DNT		2.560	UGL
56.1	18-apr-1990	UW14	TETRYL		2.790	UGL

Site: WELL THT-07-MAR

SAMPLE DEPTH (ft)	SAMPLE DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
56.0	18-apr-1990	99	TDS		1160000.000	UGL
56.0	06- jun-1990	99	TDS		814000.000	UGL
56.0	06- jun-1990	3020	PB		9.000	UGL
56.0	18-apr-1990	7710	CL		150000.000	UGL
56.0	18-apr-1990	TT10	\$04		260000.000	UGL

Site: WELL THT-07-MMC

SAMPLE DEPTH (ft)	SAMPLE DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
56.0	18-apr-1990	99	TDS		812000.000	UGL
56.0	06- jun-1990	99	TDS		760000.000	UGL
56.0	06-jun-1990	\$020	PB		8.790	UGL
56.0	18-apr-1990	1710	CL		99000.000	UGL
56.0	18-epr-1990	TT10	SO4		260000.000	UGL

Site: WELL THT-08-MMA

SAMPLE	SAMPLE	TEST				
DEPTH (ft		METHOD	COMPOUND	800L	CONCENTRATION	UNITS
•••••		•••••		••••		••••
55.3	03-may-1990	99	TDS		792000.000	UGL
55.3	07- jun- 1990	99	TDS		778000.000	UGL
55.3	07- jun-1990	SD20	PB		2.170	UGL
55.3	03-may-1990	\$022	AS		13.300	UGL
55.3	03-may-1990	TT10	CL		48000.000	UGL

Installation: Sierra Ordnance Depot

Page 12

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 09/07/90 (Scoteans LT and NO are excluded)

Site: WELL INT-08-MMA (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	HETHOD	COMPOUND	800L	CONCENTRATION	UNITS
		•••••	••••••			
55.3	07- jun-1990	TT10	CL		52000.000	UGL
55.3	03-may-1990	TT10	SO4		240000.000	UGL
55.3	07- jun-1990	TT10	SO4		239000.000	UGL
55.3	03-may-1990	UM20	TRCLE		7.430	UGL
55.3	07- jun-1990	UM20	TRCLE		9.330	UGL
55.3	07- jun-1990	UN14	135TN6		0.885	UGL

Site: WELL THT-09-MMA

SAMPLE DEPTH (ft	SAMPLE) DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	•••••			••••		
55.0	03-may-1990	99	TDS		752000.000	UGL
55.0	06- jun-1990	99	TDS		736000.000	UGL
55.0	06-jun-1990	SD20	PS		10.700	UGL
55.0	03-may-1990	SO22	AS		8.960	UGL
55.0	03-may-1990	TT10	CL		43000.000	UGL
55.0	03-may-1990	TT10	SO4		280000.000	UGL
55.0	06- jun- 1990	UW14	135TNB		3.810	UGL

Site: WELL THT-10-MMA

SAPLE	SAIPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
						••••
56.0	30-apr-1990	99	TDS		1050000.000	UGL
56.0	30-epr-1990	99	TDS		994000.000	UGL
56.0	03-jun-1990	99	TOS		1010000.000	UGL
56.0	03- jun-1990	99	TDS		932000.000	UGL
56.0	30-apr-1990	58 01	HG		0.255	UGL
56.0	30-apr-1990	5022	AS		12.000	UGL
56.0	30-apr-1990	2022	AS		11.500	UGL
56.0	03-jun-1990	5022	AS.		10.200	UGL
56.0	03-jun-1990	2022	AS		10.600	UGL
56.0	30-apr-1990	TT10	CL		88000.000	UGL
56.0	30-apr-1990	TT10	CL		86000.000	UGL
56.0	30-apr-1990	TT10	SO4		190000.000	UGL

Installation: Sierra Ordnance Depot Page 13

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 09/07/90 (Scoleans LT and ND are excluded)

Site: WELL THT-10-MMA (continued)

SAMPLE DEPTH (ft	SAMPLE) DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
			•••••			
56.0	30-apr-1990	TT10	SO4		189000.000	UGL
56.0	30-apr-1990	UN20	120CLE		101.000	UGL
56.0	30-apr-1990	LM20	CCL4		190.000	UGL
56.0	30-apr-1990	LB120	CHCL3		923.000	UGL
56.0	30-apr-1990	UN20	TRCLE		952.000	UGL

Site: WELL THT-10-MAR

SAMPLE	SAIPLE	TEST				
DEPTH (f	t) DATE	HETHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
			•••••		•••••	••••
56.8	30-apr-1990	99	TDS		802000.000	UGL
56.8	03-jun-1990	99	TDS		830000.000	UGL
56.8	30-apr-1990	5022	AS		11.400	UGL
56.8	03- jun-1990	5022	AS		12.800	ner
56.8	30-apr-1990	TT10	CL		130000.000	UGL
56.8	30-epr-1990	1110	SO4		233000.000	UGL

Site: WELL THT-10-MUC

SAMPLE DEPTH (ft	SAMPLE) DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
				••••		••••
55.9	30-apr-1990	99	TDS		636000.000	UGL
55.9	03-jun-1990	99	TOS		640000.000	UGL
55.9	30-apr-1990	9022	AS		12.400	UGL
55.9	03-jun-1990	\$022	A\$		9.380	UGL
55.9	30-apr-1990	TT10	CL		71000.000	UGL
55.9	30-apr-1990	1110	504		212000.000	UGL

Installation: Sierra Ordnance Depot Page 14
Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 09/07/90 (Booleans LT and NO are excluded)

Site: WELL THT-11-MUA

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	800L	CONCENTRATION	UNITS
•••••	•••••			••••		
59.2	03-may-1990	99	TDS		2180000.000	NGT
59.2	07- jun-1990	99	TDS		2090000.000	UGL
59.2	03-may-1990	SD21	SE		9.160	ngr
59.2	07- jun-1990	SD21	SE		7.990	UGL
59.2	03-may-1990	5022	AS		15.200	UGL
59.2	03-may-1990	TT10	CL		190000.000	UGL
59.2	07- jun- 1990	TT10	CL		180000.000	UGL
59.2	03-may-1990	TT10	SQ4		790000.000	UGL
59.2	07- jun-1990	TT10	504		700000.000	UGL
59.2	03-may-1990	UH20	120CLE		0.824	UGL
59.2	03-may-1990	UNI20	CCL4		11.400	UGL
59.2	07- jun-1990	UNI20	CCL4		19.000	UCL
59.2	03-may-1990	UN20	CHCL3		21.500	UCL
59.2	07- jun- 1990	UN20	CHCL3		41.000	UGL
59.2	03-may-1990	UN20	TRCLE		114.000	UGL
59.2	07- jun-1990	UN20	TRCLE		190.000	UGL
59.2	07-jun-1990	UM14	135TN8		0.867	UGL

Site: WELL THT-12-MMA

SAMPLE	SAIPLE	TEST				
DEPTH (ft) DATE	HETHOD	COMPOUND	SOOL	CONCENTRATION	UNITS
				••••		
50.3	25-apr-1990	99	TDS		1180000.000	UGL
50.3	07- jun-1990	99	TDS		1150000.000	UGL
50.3	25-apr-1990	SD21	SE		3.410	UGL
50.3	25-epr-1990	5022	AS		28.400	UGL
50.3	25-apr-1990	TT10	CL		77000.000	UGL
50.3	07-jun-1990	7710	CL		82000.000	UGL
50.3	25-apr-1990	TT10	SO4		380000.000	UGL
50.3	07- jun-1990	TT10	504		400000.000	UGL
50.3	07- jun-1990	UNI20	CHCL3		0.749	UGL
50.3	07- jun-1990	UN20	TRCLE		0.819	UGL
50.3	07- jun-1990	UN14	135TN8		1.120	UGL
50.3	07- jun-1990	UW14	240NT		0.7 69	UGL

Installation: Sierra Ordnance Depot Page 15

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 09/07/90 (Sooteens LT and NO are excluded)

Site: WELL THT-13-MA

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	*********	•••••	•••••	••••		••••
52.2	01-may-1990	99	TDS		892000.000	UGL
52.2	07- jun-1990	99	TDS		918000.000	UGL
52.2	G7- jun-1990	S 8 01	HG		0.526	UGL
52.2	07- jun-1990	SD20	PB		9.440	UGL
52.2	01-may-1990	SD22	AS		13.600	UGL
52.2	01-may-1990	TT10	CL		55000.000	UGL
52.2	07- jun-1990	TT10	CL		60000.000	UGL
52.2	01-may-1990	TT10	SO4		230000.000	UGL
52.2	07- jun-1990	TT10	\$04		228000.000	UGL
52.2	07- jun-1990	UN20	CHCL3		0.533	UGL
52.2	07- jun-1990	UH20	TRCLE		9.520	UGL

Site: WELL THT-14-MA

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	•••••			••••		••••
49.5	24-apr-1990	99	TDS		1030000.000	UGL
49.5	03-jun-1990	99	TDS		938000.000	UGL
49.5	24-apr-1990	58 01	HG		0.402	UGL
49.5	24-epr-1990	SD21	SE		46.600	UGL
49.5	03- jun-1990	SD21	SE		52.200	UGL
49.5	24-apr-1990	5022	AS		31.400	UGL
49.5	03- jun- 1990	5022	AS		27.300	UCL
49.5	24-apr-1990	TT10	CL		66000.000	UGL
49.5	24- apr-1990	TT10	504		132000.000	UGL
49.5	24-apr-1990	UN14	135TH8		11.900	UGL
49.5	03- jun-1990	UM14	135TN8		13.500	UGL

Installation: Sierra Ordnance Depot Page 16 Analytical Results for Chemical Ground Water From: 01-jan-75 fo: 09/07/90

(Booleans LT and MD are excluded)

Site: WELL THT-15-MMA

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
		•••••				
52.0	02-may-1990	99	TDS		1310000.000	UGL
52.0	02-jun-1990	99	TDS		1320000.000	UGL
52.0	02-may-1990	5021	SE		7.450	UGL
52.0	02- jun-1990	5021	SE		7.370	UGL
52.0	02-may-1990	5022	AS		8.850	UGL
52.0	02- jun-1990	\$022	AS		7.140	UGL
52.0	02-may-1990	7710	CL		290000.000	UGL
52.0	02-jun-1990	TT10	CL		210000.000	UGL
52.0	02-may-1990	1110	SO4		400000.000	UGL
52.0	02- jun-1990	TT10	904		280000.000	UGL
52.0	02-jun-1990	UM14	RDX		6.720	UGL

Site: WELL THT-16-MA

SAPLE	SAPLE	TEST				
DEPTH (fi	C) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
				••••		••••
56.7	02-may-1990	99	TDS		658000.000	UGL
56.7	02- jun-1990	99	TDS		692000.000	UGL
56.7	02-may-1990	5022	AS		7.360	UGL
56.7	02- jun-1 990	5022	AS		8.740	UGL
56.7	02-may-1990	TT10	Cr		66000.000	UGL
56.7	02- jun-1990	1110	CL		66000.000	UGL
56.7	02-may-1990	1110	504		220000.000	UGL
56.7	02- jun-1990	1110	504		220000.000	UGL

Program ended normally.\$

INSTALLATION RESTORATION PROGRAM

CHEMICAL REPORT
Sun Sep 9 13:14:54 1990

For Parameters :

Installation = Sierra Ordnance Depot Beginning Date = 01-jan-75 Ending Date = 09/07/90 Hedia Type = Chemical Soil (CSO) Haximum (X, Y) = (746167, 4460707) Hinimum (X, Y) = (736000, 4441000) Booleans = N

Analytical Results for Chamical Soil

From: 01-jan-75 To: 09/07/90 (Socieons LT and MD are excluded)

Site: BORE ALF-01-SB

S.0 13-mar-1990 99 PHENOL 0.195 UGG	SAMPLE DEPTH (ft)	SAMPLE DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
10.0 17-mar-1990 99 PHENOL 0.190 UGG 20.0 17-mar-1990 99 PHENOL 0.225 UGG 25.0 17-mar-1990 99 PHENOL 1.840 UGG 35.0 17-mar-1990 99 PHENOL 0.129 UGG 70.0 17-mar-1990 99 PHENOL 0.380 UGG 80.0 17-mar-1990 99 PHENOL 0.380 UGG 80.0 17-mar-1990 99 PHENOL 0.625 UGG 95.0 17-mar-1990 99 PHENOL 0.625 UGG 95.0 17-mar-1990 99 PHENOL 0.130 UGG 50.0 17-mar-1990 99 PHENOL 0.130 UGG 50.0 17-mar-1990 JD19 AS 7.110 UGG 10.0 17-mar-1990 JD19 AS 9.500 UGG 15.0 17-mar-1990 JD19 AS 9.500 UGG 15.0 17-mar-1990 JD19 AS 8.490 UGG 20.0 17-mar-1990 JD19 AS 8.490 UGG 25.0 17-mar-1990 JD19 AS 8.53.810 UGG 35.0 17-mar-1990 JD19 AS 8.130 UGG 35.0 17-mar-1990 JD19 AS 8.130 UGG 40.0 17-mar-1990 JD19 AS 8.130 UGG 40.0 17-mar-1990 JD19 AS 10.100 UGG 45.0 17-mar-1990 JD19 AS 3.710 UGG 45.0 17-mar-1990 JD19 AS 3.710 UGG 45.0 17-mar-1990 JD19 AS 1.300 UGG 50.0 17-mar-1990 JD19 AS 1.300 UGG 50.0 17-mar-1990 JD19 AS 3.590 UGG 60.0 17-mar-1990 JD19 AS 3.590 UGG 90.0 17-mar-1990 JD19 AS 3.590 UGG 90.0 17-mar-1990 JD19 AS 3.590 UGG 91.0 17-mar-1990 JD19 AS 3.590 UGG 95.0 17-mar-1990 JD19 AS	•••••						
20.0 17-mar-1990 99 PHENOL 1.840 UGG 25.0 17-mar-1990 99 PHENOL 1.840 UGG 35.0 17-mar-1990 99 PHENOL 0.129 UGG 70.0 17-mar-1990 99 PHENOL 0.380 UGG 80.0 17-mar-1990 99 PHENOL 0.625 UGG 90.0 17-mar-1990 99 PHENOL 0.625 UGG 95.0 17-mar-1990 99 PHENOL 0.625 UGG 95.0 17-mar-1990 99 PHENOL 0.130 UGG 50.0 17-mar-1990 99 PHENOL 0.130 UGG 50.0 17-mar-1990 JD19 AS 7.110 UGG 10.0 17-mar-1990 JD19 AS 9.500 UGG 15.0 17-mar-1990 JD19 AS 9.500 UGG 20.0 17-mar-1990 JD19 AS 8.490 UGG 25.0 17-mar-1990 JD19 AS 8.490 UGG 25.0 17-mar-1990 JD19 AS 8.130 UGG 30.0 17-mar-1990 JD19 AS 8.130 UGG 35.0 17-mar-1990 JD19 AS 8.130 UGG 40.0 17-mar-1990 JD19 AS 10.100 UGG 40.0 17-mar-1990 JD19 AS 10.100 UGG 45.0 17-mar-1990 JD19 AS 1.300 UGG 60.0 17-mar-1990 JD19 AS 3.710 UGG 60.0 17-mar-1990 JD19 AS 1.300 UGG 70.0 17-mar-1990 JD19 AS 3.590 UGG 95.0 17-mar-1990 JD19 AS 3.590 UGG 60.0 17-mar-1990 JD19 AS 3.590 UGG 70.0 17-mar-1990 JD19 AS 3.590 UGG 95.0 17-mar-1990 JB11 PB 10.300 UGG 95.0 17-mar-1990 JB11 PB 131.000 UGG 95.0 17-mar-1990 JB11 PB 131.000 UGG 95.0 17-mar-1990 JB11 PB 3311.000 UGG 95.0 17-mar-1990 JB11 PB 3311.000 UGG 95.0 17-mar-1990 JB11 PB 3311.000 UGG							
25.0 17-mar-1990 99 PHENOL 0.129 UGG 35.0 17-mar-1990 99 PHENOL 0.129 UGG 70.0 17-mar-1990 99 PHENOL 0.380 UGG 80.0 17-mar-1990 99 PHENOL 0.114 UGG 90.0 17-mar-1990 99 PHENOL 0.625 UGG 55.0 17-mar-1990 99 PHENOL 0.130 UGG 55.0 17-mar-1990 99 PHENOL 0.130 UGG 50.0 17-mar-1990 99 PHENOL 0.149 UGG 50.0 17-mar-1990 JD19 AS 7.110 UGG 10.0 17-mar-1990 JD19 AS 9.500 UGG 15.0 17-mar-1990 JD19 AS 9.500 UGG 15.0 17-mar-1990 JD19 AS 8.490 UGG 20.0 17-mar-1990 JD19 AS 8.490 UGG 25.0 17-mar-1990 JD19 AS 8.490 UGG 35.0 17-mar-1990 JD19 AS 8.130 UGG 64.0 17-mar-1990 JD19 AS 1.300 UGG 65.0 17-mar-1990 JD19 AS 3.710 UGG 65.0 17-mar-1990 JD19 AS 3.590 UGG 67.0 17-mar-1990 JD19 AS 3.590 UGG 60.0 17-mar-1990 JD19 AS 3.590 UGG 50.0 17-mar-1990 JD19 AS 3.590 UGG 60.0 17-mar-1990 JD19 AS 4.180 UGG 60.0 17-mar-1990 JD19 AS 6.180 UGG 60.0 17-mar-1990 JD19 AS 6.180 UGG			• •				
35.0 17-mar-1990 99 PHENOL 0.129 UGG 70.0 17-mar-1990 99 PHENOL 0.380 UGG 80.0 17-mar-1990 99 PHENOL 0.114 UGG 90.0 17-mar-1990 99 PHENOL 0.625 UGG 95.0 17-mar-1990 99 PHENOL 0.130 UGG 50.0 17-mar-1990 99 PHENOL 0.130 UGG 50.0 17-mar-1990 99 PHENOL 0.449 UGG 5.0 13-mar-1990 JD19 AS 7.110 UGG 10.0 17-mar-1990 JD19 AS 9.500 UGG 15.0 17-mar-1990 JD19 AS 9.500 UGG 20.0 17-mar-1990 JD19 AS 8.490 UGG 25.0 17-mar-1990 JD19 AS 8.490 UGG 35.0 17-mar-1990 JD19 AS 8.130 UGG 40.0 17-mar-1990 JD19 AS 10.100 UGG 40.0 17-mar-1990 JD19 AS 1.300 UGG 50.0 17-mar-1990 JD19 AS 1.300 UGG 50.0 17-mar-1990 JD19 AS 1.300 UGG 60.0 17-mar-1990 JD19 AS 1.300 UGG 60.0 17-mar-1990 JD19 AS 3.590 UGG 60			• •				
70.0 17-mar-1990 99 PHENOL 0.380 UGG 80.0 17-mar-1990 99 PHENOL 0.114 UGG 90.0 17-mar-1990 99 PHENOL 0.625 UGG 95.0 17-mar-1990 99 PHENOL 0.130 UGG 50.0 17-mar-1990 99 PHENOL 0.449 UGG 50.0 17-mar-1990 JD19 AS 7.110 UGG 10.0 17-mar-1990 JD19 AS 9.500 UGG 15.0 17-mar-1990 JD19 AS 9.500 UGG 20.0 17-mar-1990 JD19 AS 8.490 UGG 25.0 17-mar-1990 JD19 AS 8.490 UGG 25.0 17-mar-1990 JD19 AS 8.130 UGG 30.0 17-mar-1990 JD19 AS 8.130 UGG 30.0 17-mar-1990 JD19 AS 8.130 UGG 40.0 17-mar-1990 JD19 AS 8.130 UGG 40.0 17-mar-1990 JD19 AS 10.100 UGG 45.0 17-mar-1990 JD19 AS 1.300 UGG 45.0 17-mar-1990 JD19 AS 1.300 UGG 60.0 17-mar-1990 JD19 AS 3.050 UGG 60.0 17-mar-1990 JD19 AS 3.050 UGG 60.0 17-mar-1990 JD19 AS 3.590 UGG 60.0	_		• •				
80.0 17-mar-1990 99 PHENOL 0.114 UGG 90.0 17-mar-1990 99 PHENOL 0.625 UGG 95.0 17-mar-1990 99 PHENOL 0.130 UGG 50.0 17-mar-1990 99 PHENOL 0.449 UGG 50.0 17-mar-1990 JD19 AS 7.110 UGG 10.0 17-mar-1990 JD19 AS 9.500 UGG 15.0 17-mar-1990 JD19 AS 9.500 UGG 20.0 17-mar-1990 JD19 AS 8.490 UGG 25.0 17-mar-1990 JD19 AS 8.490 UGG 25.0 17-mar-1990 JD19 AS 8.490 UGG 30.0 17-mar-1990 JD19 AS 8.130 UGG 35.0 17-mar-1990 JD19 AS 8.130 UGG 35.0 17-mar-1990 JD19 AS 8.130 UGG 40.0 17-mar-1990 JD19 AS 8.1300 UGG 45.0 17-mar-1990 JD19 AS 10.100 UGG 45.0 17-mar-1990 JD19 AS 1.300 UGG 60.0 17-mar-1990 JD19 AS 1.300 UGG 60.0 17-mar-1990 JD19 AS 1.400 UGG 60.0 17-mar-1990 JD19 AS 3.590 UGG 60.0 17-mar-1990 JD19 AS 3.590 UGG 80.0 17-mar-1990 JD19 AS 3.590 UGG 90.0 17-mar-1990 JD19 AS 3.590 UGG 50.0 17-mar-1990 JD19 AS 3.590 UGG 50.0 17-mar-1990 JD19 AS 1.360 UGG 95.0 17-mar-1990 JD19 AS 3.590 UGG 95.0 17-mar-1990 JS11 PB 3.1000 UGG 95.0 17-mar-1990 JS11 ZH 143.000 UGG 95.0 17-mar-1990 JS11 ZH 153.000 UGG	•	-				· · · - · -	
90.0 17-mar-1990 99 PHENOL 0.625 UGG 95.0 17-mar-1990 99 PHENOL 0.130 UGG 50.0 17-mar-1990 99 PHENOL 0.130 UGG 50.0 17-mar-1990 99 PHENOL 0.449 UGG 5.0 13-mar-1990 JD19 AS 7.110 UGG 10.0 17-mar-1990 JD19 AS 9.500 UGG 15.0 17-mar-1990 JD19 AS 8.490 UGG 20.0 17-mar-1990 JD19 AS 8.490 UGG 25.0 17-mar-1990 JD19 AS 8.490 UGG 30.0 17-mar-1990 JD19 AS 8.130 UGG 35.0 17-mar-1990 JD19 AS 8.130 UGG 35.0 17-mar-1990 JD19 AS 8.130 UGG 40.0 17-mar-1990 JD19 AS 10.100 UGG 40.0 17-mar-1990 JD19 AS 1.300 UGG 50.0 17-mar-1990 JD19 AS 1.400 UGG 60.0 17-mar-1990 JD19 AS 1.400 UGG 60.0 17-mar-1990 JD19 AS 3.050 UGG 60.0 17-mar-1990 JD19 AS 3.050 UGG 80.0 17-mar-1990 JD19 AS 3.590 UGG 80.0 17-mar-1990 JD19 AS 3.590 UGG 80.0 17-mar-1990 JD19 AS 3.590 UGG 50.0 17-mar-1990 JD19 AS 3.590 UGG 50.0 17-mar-1990 JD19 AS 1.360 UGG 95.0 17-mar-1990 JS11 PB 131.000 UGG 97.0 17-mar-1990 JS11 ZH 143.000 UGG 97.0 17-mar-1990 JS11 ZH 143.000 UGG 97.0 17-mar-1990 JS11 ZH 143.000 UGG							
95.0 17-mar-1990 99 PHENOL 0.130 UGG 50.0 17-mar-1990 99 PHENOL 0.449 UGG 5.0 13-mar-1990 JD19 AS 7.110 UGG 10.0 17-mar-1990 JD19 AS 9.500 UGG 15.0 17-mar-1990 JD19 AS 9.500 UGG 20.0 17-mar-1990 JD19 AS 8.490 UGG 25.0 17-mar-1990 JD19 AS 8.490 UGG 30.0 17-mar-1990 JD19 AS 8.130 UGG 30.0 17-mar-1990 JD19 AS 8.10.100 UGG 35.0 17-mar-1990 JD19 AS 10.100 UGG 40.0 17-mar-1990 JD19 AS 10.100 UGG 45.0 17-mar-1990 JD19 AS 1.300 UGG 50.0 17-mar-1990 JD19 AS 1.300 UGG 50.0 17-mar-1990 JD19 AS 1.400 UGG 60.0 17-mar-1990 JD19 AS 1.400 UGG 60.0 17-mar-1990 JD19 AS 3.590 UGG 70.0 17-mar-1990 JD19 AS 3.590 UGG 50.0 17-						= -	
50.0 17-mar-1990 99 PHEMOL 0.449 UGG 5.0 13-mar-1990 JD19 AS 7.110 UGG 10.0 17-mar-1990 JD19 AS 9.500 UGG 15.0 17-mar-1990 JD19 AS 6.490 UGG 20.0 17-mar-1990 JD19 AS 8.490 UGG 25.0 17-mar-1990 JD19 AS 3.810 UGG 30.0 17-mar-1990 JD19 AS 10.100 UGG 30.0 17-mar-1990 JD19 AS 10.100 UGG 40.0 17-mar-1990 JD19 AS 1.300 UGG 45.0 17-mar-1990 JD19 AS 1.400 UGG 50.0 17-mar-1990 JD19 AS 3.050 UGG 80.0 17-mar-1990 JD19 AS 3.590 UGG 90.0 17-mar-1990 JD19 AS 2.790 UGG			-				
5.0 13-mar-1990 JD19 AS 7.110 UGG 10.0 17-mar-1990 JD19 AS 9.500 UGG 15.0 17-mar-1990 JD19 AS 6.490 UGG 20.0 17-mar-1990 JD19 AS 8.490 UGG 25.0 17-mar-1990 JD19 AS 8.490 UGG 30.0 17-mar-1990 JD19 AS 8.130 UGG 35.0 17-mar-1990 JD19 AS 8.130 UGG 40.0 17-mar-1990 JD19 AS 10.100 UGG 40.0 17-mar-1990 JD19 AS 3.710 UGG 45.0 17-mar-1990 JD19 AS 1.300 UGG 50.0 17-mar-1990 JD19 AS 1.400 UGG 60.0 17-mar-1990 JD19 AS 5.100 UGG 60.0 17-mar-1990 JD19 AS 5.590 UGG 70.0 17-mar-1990 JD19 AS 3.550 UGG 80.0 17-mar-1990 JD19 AS 3.590 UGG 90.0 17-mar-1990 JD19 AS 4.180 UGG 95.0 17-mar-1990 JD19 AS 2.790 UGG 95.0 17-mar-1990 JD19 AS 2.790 UGG 50.0 17-mar-1990 JD19 AS 3.500 UGG 95.0 17-mar-1990 JD19 AS 2.790 UGG 95.0 17-mar-1990 JD19 AS 3.500 UGG 15.0 17-mar-1990 JD19 AS 1.360 UGG 95.0 17-mar-1990 JD19 AS 1.360 UGG 95.0 17-mar-1990 JD19 AS 1.360 UGG 90.0 17-mar-1990 JD11 PB 10.300 UGG 90.0 17-mar-1990 JS11 PB 131.000 UGG 95.0 17-mar-1990 JS11 PB 131.000 UGG		_	• •				
10.0 17-mmr-1990 J019 AS 9.500 UGG 15.0 17-mmr-1990 J019 AS 6.490 UGG 20.0 17-mmr-1990 J019 AS 8.490 UGG 25.0 17-mmr-1990 J019 AS 3.810 UGG 30.0 17-mmr-1990 J019 AS 8.130 UGG 30.0 17-mmr-1990 J019 AS 8.130 UGG 35.0 17-mmr-1990 J019 AS 10.100 UGG 40.0 17-mmr-1990 J019 AS 10.100 UGG 45.0 17-mmr-1990 J019 AS 1.300 UGG 50.0 17-mmr-1990 J019 AS 1.400 UGG 60.0 17-mmr-1990 J019 AS 1.400 UGG 60.0 17-mmr-1990 J019 AS 3.050 UGG 70.0 17-mmr-1990 J019 AS 3.050 UGG 80.0 17-mmr-1990 J019 AS 3.590 UGG 90.0 17-mmr-1990 J019 AS 3.590 UGG 90.0 17-mmr-1990 J019 AS 3.590 UGG 95.0 17-mmr-1990 J019 AS 3.590 UGG 15.0 17-mmr-1990 J019 AS 1.360 UGG 95.0 17-mmr-1990 J019 AS 1.360 UGG 95.0 17-mmr-1990 J019 AS 1.360 UGG 15.0 17-mmr-1990 J019 AS 1.360 UGG 95.0 17-mmr-1990 J019 AS 1.360 UGG 95.0 17-mmr-1990 J019 AS 1.360 UGG 15.0 17-mmr-1990 J019 AS 1.3600 UGG 95.0 17-mmr-1990 J011 P0 10.300 UGG 90.0 17-mmr-1990 J011 P0 10.300 UGG 95.0 17-mmr-1990 J011 P0 10.300 UGG 95.0 17-mmr-1990 J011 P0 311.000 UGG 95.0 17-mmr-1990 J011 P0 311.000 UGG 95.0 17-mmr-1990 J011 P0 311.000 UGG 95.0 17-mmr-1990 J011 Z01 I0.300 UGG 95.0 17-mmr-1990 J011 Z01 I0.300 UGG 95.0 17-mmr-1990 J011 Z01 I0.300 UGG	50.0	17-mar-1990	99	PHENOL		0.449	UGG
15.0 17-mmr-1990 J019 AS 6.490 UGG 20.0 17-mmr-1990 J019 AS 3.810 UGG 25.0 17-mmr-1990 J019 AS 3.810 UGG 30.0 17-mmr-1990 J019 AS 8.130 UGG 35.0 17-mmr-1990 J019 AS 10.100 UGG 40.0 17-mmr-1990 J019 AS 10.100 UGG 40.0 17-mmr-1990 J019 AS 3.710 UGG 45.0 17-mmr-1990 J019 AS 1.300 UGG 50.0 17-mmr-1990 J019 AS 1.400 UGG 60.0 17-mmr-1990 J019 AS 1.400 UGG 60.0 17-mmr-1990 J019 AS 6.120 UGG 70.0 17-mmr-1990 J019 AS 3.050 UGG 80.0 17-mmr-1990 J019 AS 3.590 UGG 80.0 17-mmr-1990 J019 AS 3.590 UGG 90.0 17-mmr-1990 J019 AS 3.590 UGG 95.0 17-mmr-1990 J019 AS 2.790 UGG 50.0 17-mmr-1990 J019 AS 1.360 UGG 15.0 17-mmr-1990 J019 AS 1.360 UGG 15.0 17-mmr-1990 J019 AS 1.360 UGG 95.0 17-mmr-1990 J019 AS 1.360 UGG 15.0 17-mmr-1990 J019 AS 1.3600 UGG 95.0 17-mmr-1990 J019 AS 1.3600 UGG 97.0 17-mmr-1990 J011 P0 10.300 UGG 98.0 17-mmr-1990 J011 P0 10.300 UGG 99.0 17-mmr-1990 J011 Z0 10.300 UGG 99.0 17-mmr-1990 J011 Z0 10.300 UGG 99.0 17-mmr-1990 J011 Z0 10.300 UGG	5.0	13-mar-1990	JD19	AS		7.110	UGG
20.0 17-mmr-1990 JD19 AS 3.810 UGG 25.0 17-mmr-1990 JD19 AS 3.810 UGG 30.0 17-mmr-1990 JD19 AS 8.130 UGG 35.0 17-mmr-1990 JD19 AS 10.100 UGG 40.0 17-mmr-1990 JD19 AS 10.100 UGG 45.0 17-mmr-1990 JD19 AS 1.300 UGG 50.0 17-mmr-1990 JD19 AS 1.400 UGG 60.0 17-mmr-1990 JD19 AS 1.400 UGG 70.0 17-mmr-1990 JD19 AS 3.050 UGG 80.0 17-mmr-1990 JD19 AS 3.050 UGG 80.0 17-mmr-1990 JD19 AS 3.590 UGG 90.0 17-mmr-1990 JD19 AS 3.590 UGG 95.0 17-mmr-1990 JD19 AS 3.590 UGG 15.0 17-mmr-1990 JD19 AS 2.790 UGG 50.0 17-mmr-1990 JD19 AS 1.360 UGG 15.0 17-mmr-1990 JD19 AS 1.360 UGG 15.0 17-mmr-1990 JD19 AS 1.360 UGG 95.0 17-mmr-1990 JD19 AS 1.360 UGG 15.0 17-mmr-1990 JD19 AS 1.360 UGG 95.0 17-mmr-1990 JD19 AS 1.360 UGG 15.0 17-mmr-1990 JD19 AS 1.360 UGG 15.0 17-mmr-1990 JD19 AS 1.360 UGG 95.0 17-mmr-1990 JD11 PB 1.36.000 UGG 95.0 17-mmr-1990 JD11 PB 1.31.000 UGG 95.0 17-mmr-1990 JD11 PB 1.31.000 UGG 15.0 17-mmr-1990 JD11 PB 1.31.000 UGG 15.0 17-mmr-1990 JD11 ZD 1.31 ZD 1.35.000 UGG 15.0 17-mmr-1990 JD11 ZD 1.31 ZD 1.35.000 UGG	10.0	17-mar-1990	JD 19	AS		9.500	UGG
25.0 17-mmr-1990 JD19 AS 3.810 UGG 30.0 17-mmr-1990 JD19 AS 8.130 UGG 35.0 17-mmr-1990 JD19 AS 10.100 UGG 40.0 17-mmr-1990 JD19 AS 3.710 UGG 45.0 17-mmr-1990 JD19 AS 1.300 UGG 50.0 17-mmr-1990 JD19 AS 1.400 UGG 60.0 17-mmr-1990 JD19 AS 1.400 UGG 70.0 17-mmr-1990 JD19 AS 3.050 UGG 80.0 17-mmr-1990 JD19 AS 3.050 UGG 80.0 17-mmr-1990 JD19 AS 3.590 UGG 90.0 17-mmr-1990 JD19 AS 3.590 UGG 95.0 17-mmr-1990 JD19 AS 2.790 UGG 50.0 17-mmr-1990 JD19 AS 2.790 UGG 50.0 17-mmr-1990 JD19 AS 1.360 UGG 15.0 17-mmr-1990 JD19 AS 1.360 UGG 15.0 17-mmr-1990 JD19 AS 1.360 UGG 15.0 17-mmr-1990 JD19 AS 1.360 UGG 95.0 17-mmr-1990 JD19 AS 1.360 UGG 15.0 17-mmr-1990 JD11 PB 23.000 UGG 45.0 17-mmr-1990 JS11 PB 10.300 UGG 90.0 17-mmr-1990 JS11 PB 131.000 UGG 95.0 17-mmr-1990 JS11 PB 311.000 UGG 95.0 17-mmr-1990 JS11 PB 311.000 UGG 95.0 17-mmr-1990 JS11 PB 311.000 UGG 15.0 17-mmr-1990 JS11 ZB 95.400 UGG 15.0 17-mmr-1990 JS11 ZB 95.400 UGG	15.0	17-mar-1990	JD19	AS		6.490	UGG
30.0 17-mar-1990 JD19 AS 8.130 UGG 35.0 17-mar-1990 JD19 AS 10.100 UGG 40.0 17-mar-1990 JD19 AS 3.710 UGG 45.0 17-mar-1990 JD19 AS 1.300 UGG 50.0 17-mar-1990 JD19 AS 1.400 UGG 60.0 17-mar-1990 JD19 AS 6.120 UGG 70.0 17-mar-1990 JD19 AS 3.050 UGG 80.0 17-mar-1990 JD19 AS 3.050 UGG 80.0 17-mar-1990 JD19 AS 3.590 UGG 90.0 17-mar-1990 JD19 AS 3.590 UGG 95.0 17-mar-1990 JD19 AS 2.790 UGG 50.0 17-mar-1990 JD19 AS 1.360 UGG 15.0 17-mar-1990 JS11 CR 37.600 UGG 40.0 17-mar-1990 JS11 PB 23.000 UGG 45.0 17-mar-1990 JS11 PB 10.300 UGG 95.0 17-mar-1990 JS11 PB 10.300 UGG 95.0 17-mar-1990 JS11 PB 311.000 UGG 95.0 17-mar-1990 JS11 PB 311.000 UGG 15.0 17-mar-1990 JS11 PB 311.000 UGG 15.0 17-mar-1990 JS11 ZN 95.400 UGG 15.0 17-mar-1990 JS11 ZN 95.400 UGG 15.0 17-mar-1990 JS11 ZN 143.000 UGG	20.0	17-mar-1990	JD 19	AS		8.490	UGG
35.0 17-mmr-1990 JD19 AS 10.100 UGG 40.0 17-mmr-1990 JD19 AS 3.710 UGG 45.0 17-mmr-1990 JD19 AS 1.300 UGG 50.0 17-mmr-1990 JD19 AS 1.400 UGG 60.0 17-mmr-1990 JD19 AS 1.400 UGG 70.0 17-mmr-1990 JD19 AS 3.050 UGG 80.0 17-mmr-1990 JD19 AS 3.050 UGG 80.0 17-mmr-1990 JD19 AS 3.590 UGG 90.0 17-mmr-1990 JD19 AS 3.590 UGG 95.0 17-mmr-1990 JD19 AS 2.790 UGG 50.0 17-mmr-1990 JD19 AS 1.360 UGG 15.0 17-mmr-1990 JD19 AS 1.360 UGG 15.0 17-mmr-1990 JD19 AS 1.360 UGG 15.0 17-mmr-1990 JD19 AS 1.360 UGG 95.0 17-mmr-1990 JS11 NI 36.000 UGG 40.0 17-mmr-1990 JS11 PB 23.000 UGG 45.0 17-mmr-1990 JS11 PB 10.300 UGG 90.0 17-mmr-1990 JS11 PB 311.000 UGG 95.0 17-mmr-1990 JS11 PB 311.000 UGG 95.0 17-mmr-1990 JS11 PB 311.000 UGG 15.0 17-mmr-1990 JS11 PB 311.000 UGG 15.0 17-mmr-1990 JS11 ZII JZII 95.400 UGG 15.0 17-mmr-1990 JS11 ZII JZII 95.400 UGG	25.0	17-mar-1990	JD19	AS		3.810	UGG
40.0 17-mmr-1990 JD19 AS 3.710 UGG 45.0 17-mmr-1990 JD19 AS 1.300 UGG 50.0 17-mmr-1990 JD19 AS 1.400 UGG 60.0 17-mmr-1990 JD19 AS 1.400 UGG 70.0 17-mmr-1990 JD19 AS 3.050 UGG 80.0 17-mmr-1990 JD19 AS 3.050 UGG 80.0 17-mmr-1990 JD19 AS 3.590 UGG 90.0 17-mmr-1990 JD19 AS 3.590 UGG 95.0 17-mmr-1990 JD19 AS 2.790 UGG 50.0 17-mmr-1990 JD19 AS 2.790 UGG 15.0 17-mmr-1990 JD19 AS 1.360 UGG 15.0 17-mmr-1990 JD19 AS 1.360 UGG 40.0 17-mmr-1990 JS11 CR 37.600 UGG 40.0 17-mmr-1990 JS11 PB 23.000 UGG 40.0 17-mmr-1990 JS11 PB 10.300 UGG 90.0 17-mmr-1990 JS11 PB 10.300 UGG 90.0 17-mmr-1990 JS11 PB 131.000 UGG 95.0 17-mmr-1990 JS11 PB 311.000 UGG 15.0 17-mmr-1990 JS11 PB 311.000 UGG 15.0 17-mmr-1990 JS11 PB 311.000 UGG 95.0 17-mmr-1990 JS11 ZH 95.400 UGG 15.0 17-mmr-1990 JS11 ZH 95.400 UGG 15.0 17-mmr-1990 JS11 ZH 143.000 UGG	30.0	17-mar-1990	JD19	AS		8.130	UGG
45.0 17-mmr-1990 JD19 AS 1.300 UGG 50.0 17-mmr-1990 JD19 AS 1.400 UGG 60.0 17-mmr-1990 JD19 AS 6.120 UGG 70.0 17-mmr-1990 JD19 AS 3.050 UGG 80.0 17-mmr-1990 JD19 AS 3.590 UGG 90.0 17-mmr-1990 JD19 AS 3.590 UGG 95.0 17-mmr-1990 JD19 AS 4.180 UGG 95.0 17-mmr-1990 JD19 AS 2.790 UGG 50.0 17-mmr-1990 JD19 AS 1.360 UGG 15.0 17-mmr-1990 JD19 AS 1.360 UGG 15.0 17-mmr-1990 JD19 AS 1.360 UGG 40.0 17-mmr-1990 JS11 NI 36.000 UGG 40.0 17-mmr-1990 JS11 PB 23.000 UGG 45.0 17-mmr-1990 JS11 PB 10.300 UGG 90.0 17-mmr-1990 JS11 PB 131.000 UGG 95.0 17-mmr-1990 JS11 PB 311.000 UGG 10.0 17-mmr-1990 JS11 PB 311.000 UGG 15.0 17-mmr-1990 JS11 PB 311.000 UGG 95.0 17-mmr-1990 JS11 PB 311.000 UGG 15.0 17-mmr-1990 JS11 ZN 95.400 UGG 15.0 17-mmr-1990 JS11 ZN 95.400 UGG	35.0	17-mr-1990	JD19	AS		10.100	UGG
50.0 17-mmr-1990 J019 AS 1.400 UGG 60.0 17-mmr-1990 J019 AS 6.120 UGG 70.0 17-mmr-1990 J019 AS 3.050 UGG 80.0 17-mmr-1990 J019 AS 3.590 UGG 90.0 17-mmr-1990 J019 AS 3.590 UGG 95.0 17-mmr-1990 J019 AS 4.180 UGG 95.0 17-mmr-1990 J019 AS 2.790 UGG 50.0 17-mmr-1990 J019 AS 1.360 UGG 15.0 17-mmr-1990 J019 AS 1.360 UGG 15.0 17-mmr-1990 J011 CR 37.600 UGG 15.0 17-mmr-1990 J011 HI 36.000 UGG 40.0 17-mmr-1990 J011 PB 23.000 UGG 45.0 17-mmr-1990 J011 PB 10.300 UGG 90.0 17-mmr-1990 J011 PB 10.300 UGG 95.0 17-mmr-1990 J011 PB 311.000 UGG 95.0 17-mmr-1990 J011 PB 311.000 UGG 15.0 17-mmr-1990 J011 PB 311.000 UGG 95.0 17-mmr-1990 J011 PB 311.000 UGG 95.0 17-mmr-1990 J011 PB 311.000 UGG	40.0	17-mar-1990	JD19	AS		3.710	UGG
60.0 17-mmr-1990 J019 AS 6.120 UGG 70.0 17-mmr-1990 JD19 AS 3.050 UGG 80.0 17-mmr-1990 JD19 AS 3.590 UGG 90.0 17-mmr-1990 JD19 AS 3.590 UGG 95.0 17-mmr-1990 JD19 AS 2.790 UGG 50.0 17-mmr-1990 JD19 AS 2.790 UGG 50.0 17-mmr-1990 JD19 AS 1.360 UGG 15.0 17-mmr-1990 JS11 CR 37.600 UGG 15.0 17-mmr-1990 JS11 NI 36.000 UGG 40.0 17-mmr-1990 JS11 PB 23.000 UGG 40.0 17-mmr-1990 JS11 PB 10.300 UGG 90.0 17-mmr-1990 JS11 PB 131.000 UGG 95.0 17-mmr-1990 JS11 PB 311.000 UGG 95.0 17-mmr-1990 JS11 PB 311.000 UGG 10.0 17-mmr-1990 JS11 PB 311.000 UGG 15.0 17-mmr-1990 JS11 PB 311.000 UGG 20.0 17-mmr-1990 JS11 ZN 95.400 UGG	45.0	17-mr-1990	JD 19	AS		1.300	UGG
70.0 17-mmr-1990 JD19 AS 3.050 UGG 80.0 17-mmr-1990 JD19 AS 3.590 UGG 90.0 17-mmr-1990 JD19 AS 4.180 UGG 95.0 17-mmr-1990 JD19 AS 2.790 UGG 50.0 17-mmr-1990 JD19 AS 1.360 UGG 15.0 17-mmr-1990 JD19 AS 1.360 UGG 15.0 17-mmr-1990 JS11 CR 37.600 UGG 15.0 17-mmr-1990 JS11 NI 36.000 UGG 40.0 17-mmr-1990 JS11 PB 23.000 UGG 45.0 17-mmr-1990 JS11 PB 10.300 UGG 90.0 17-mmr-1990 JS11 PB 10.300 UGG 95.0 17-mmr-1990 JS11 PB 311.000 UGG 95.0 17-mmr-1990 JS11 PB 311.000 UGG 10.0 17-mmr-1990 JS11 PB 311.000 UGG 15.0 17-mmr-1990 JS11 PB 311.000 UGG 20.0 17-mmr-1990 JS11 ZN 95.400 UGG	50.0	17-mar-1990	JD19	AS		1,400	UGG
80.0 17-mar-1990 JD19 AS 3.590 UGG 90.0 17-mar-1990 JD19 AS 4.180 UGG 95.0 17-mar-1990 JD19 AS 2.790 UGG 50.0 17-mar-1990 JD19 AS 1.360 UGG 15.0 17-mar-1990 JS11 CR 37.600 UGG 15.0 17-mar-1990 JS11 NI 36.000 UGG 40.0 17-mar-1990 JS11 PB 23.000 UGG 45.0 17-mar-1990 JS11 PB 10.300 UGG 90.0 17-mar-1990 JS11 PB 131.000 UGG 95.0 17-mar-1990 JS11 PB 311.000 UGG 10.0 17-mar-1990 JS11 PB 311.000 UGG 10.0 17-mar-1990 JS11 PB 311.000 UGG 15.0 17-mar-1990 JS11 PB 311.000 UGG 10.0 17-mar-1990 JS11 ZN 95.400 UGG 15.0 17-mar-1990 JS11 ZN 95.400 UGG	60.0	17-mar-1990	JD19	AS		6.120	UGG
90.0 17-mar-1990 JD19 AS 4.180 UGG 95.0 17-mar-1990 JD19 AS 2.790 UGG 50.0 17-mar-1990 JD19 AS 1.360 UGG 15.0 17-mar-1990 JS11 CR 37.600 UGG 15.0 17-mar-1990 JS11 NI 36.000 UGG 40.0 17-mar-1990 JS11 PB 23.000 UGG 45.0 17-mar-1990 JS11 PB 10.300 UGG 90.0 17-mar-1990 JS11 PB 131.000 UGG 95.0 17-mar-1990 JS11 PB 311.000 UGG 10.0 17-mar-1990 JS11 PB 311.000 UGG 15.0 17-mar-1990 JS11 PB 311.000 UGG 15.0 17-mar-1990 JS11 ZN 95.400 UGG 20.0 17-mar-1990 JS11 ZN 143.000 UGG	70.0	17-mar-1990	JD19	AS		3.050	UGG
95.0 17-mar-1990 J019 AS 2.790 UGG 50.0 17-mar-1990 J019 AS 1.360 UGG 15.0 17-mar-1990 J511 CR 37.600 UGG 15.0 17-mar-1990 J511 NI 36.000 UGG 40.0 17-mar-1990 J511 PB 23.000 UGG 45.0 17-mar-1990 J511 PB 10.300 UGG 90.0 17-mar-1990 J511 PB 131.000 UGG 95.0 17-mar-1990 J511 PB 311.000 UGG 10.0 17-mar-1990 J511 PB 311.000 UGG 10.0 17-mar-1990 J511 ZN 95.400 UGG 15.0 17-mar-1990 J511 ZN 95.400 UGG 20.0 17-mar-1990 J511 ZN 143.000 UGG	80.0	17-mar-1990	JD19	AS		3.590	UGG
50.0 17-mar-1990 J019 AS 1.360 UGG 15.0 17-mar-1990 JS11 CR 37.600 UGG 15.0 17-mar-1990 JS11 NI 36.000 UGG 40.0 17-mar-1990 JS11 PB 23.000 UGG 45.0 17-mar-1990 JS11 PB 10.300 UGG 90.0 17-mar-1990 JS11 PB 131.000 UGG 95.0 17-mar-1990 JS11 PB 311.000 UGG 10.0 17-mar-1990 JS11 PB 311.000 UGG 15.0 17-mar-1990 JS11 ZN 95.400 UGG 20.0 17-mar-1990 JS11 ZN 153.000 UGG	90.0	17-mar-1990	JD19	AS		4.180	UGG
15.0 17-mar-1990 JS11 CR 37.600 UGG 15.0 17-mar-1990 JS11 NI 36.000 UGG 40.0 17-mar-1990 JS11 PB 23.000 UGG 45.0 17-mar-1990 JS11 PB 10.300 UGG 90.0 17-mar-1990 JS11 PB 131.000 UGG 95.0 17-mar-1990 JS11 PB 311.000 UGG 10.0 17-mar-1990 JS11 PB 311.000 UGG 15.0 17-mar-1990 JS11 ZN 95.400 UGG 15.0 17-mar-1990 JS11 ZN 143.000 UGG 20.0 17-mar-1990 JS11 ZN 105.000 UGG	95.0	17-mar-1990	JD 19	AS		2.790	UGG
15.0 17-mmr-1990 JS11 NE 36.000 UGG 40.0 17-mmr-1990 JS11 PB 23.000 UGG 45.0 17-mmr-1990 JS11 PB 10.300 UGG 90.0 17-mmr-1990 JS11 PB 131.000 UGG 95.0 17-mmr-1990 JS11 PB 311.000 UGG 10.0 17-mmr-1990 JS11 PB 311.000 UGG 15.0 17-mmr-1990 JS11 ZN 95.400 UGG 20.0 17-mmr-1990 JS11 ZN 143.000 UGG	50.0	17-mar-1990	JD19	AS		1.360	UGG
15.0 17-mmr-1990 JS11 NE 36.000 UGG 40.0 17-mmr-1990 JS11 PB 23.000 UGG 45.0 17-mmr-1990 JS11 PB 10.300 UGG 90.0 17-mmr-1990 JS11 PB 131.000 UGG 95.0 17-mmr-1990 JS11 PB 311.000 UGG 10.0 17-mmr-1990 JS11 ZN 95.400 UGG 15.0 17-mmr-1990 JS11 ZN 143.000 UGG 20.0 17-mmr-1990 JS11 ZN 105.000 UGG	15.0	17-me-1990	J S11	CIR.		37.600	UGG
40.0 17-mmr-1990 JS11 PB 23.000 UGG 45.0 17-mmr-1990 JS11 PB 10.300 UGG 90.0 17-mmr-1990 JS11 PB 131.000 UGG 95.0 17-mmr-1990 JS11 PB 311.000 UGG 10.0 17-mmr-1990 JS11 ZN 95.400 UGG 15.0 17-mmr-1990 JS11 ZN 143.000 UGG 20.0 17-mmr-1990 JS11 ZN 105.000 UGG				_			UGG
45.0 17-mar-1990 JS11 PS 10.300 UGG 90.0 17-mar-1990 JS11 PS 131.000 UGG 95.0 17-mar-1990 JS11 PS 311.000 UGG 10.0 17-mar-1990 JS11 ZN 95.400 UGG 15.0 17-mar-1990 JS11 ZN 143.000 UGG 20.0 17-mar-1990 JS11 ZN 105.000 UGG			• • • • • • • • • • • • • • • • • • • •			23,000	UGG
90.0 17-mmr-1990 JS11 P8 131.000 UGG 95.0 17-mmr-1990 JS11 P8 311.000 UGG 10.0 17-mmr-1990 JS11 ZN 95.400 UGG 15.0 17-mmr-1990 JS11 ZN 143.000 UGG 20.0 17-mmr-1990 JS11 ZN 105.000 UGG						10.300	UGG
95.0 17-mar-1990 JS11 PB 311.000 UGG 10.0 17-mar-1990 JS11 ZH 95.400 UGG 15.0 17-mar-1990 JS11 ZH 143.000 UGG 20.0 17-mar-1990 JS11 ZH 105.000 UGG							
10.0 17-mmr-1990 JS11 ZN 95.400 UGG 15.0 17-mmr-1990 JS11 ZN 143.000 UGG 20.0 17-mmr-1990 JS11 ZN 105.000 UGG							UGG
15.0 17-mmr-1990 JS11 ZN 143.000 UGG 20.0 17-mmr-1990 JS11 ZN 105.000 UGG			* -				
20.0 17-mar-1990 JS11 ZN 105.000 UGG			• • •				
				 -			

Page 1

Page 2

Analytical Results for Chemical Soil From: 01-jan-75 To: 09/07/90

(Scoleans LT and NO are excluded)

Site: BORE ALF-02-SB

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
			•••••	••••	************	*****
5.0	13-mar-1990	99	PHENOL		0.113	UGG
10.0	18-mar-1990	99	PHENOL		0.276	UGG
30.0	18-mar-1990	99	PHENOL		0.233	UGG
35.0	18-mar-1990	99	PHENOL		0.192	UGG
40.0	18-mar-1990	99	PHENOL		. 0.152	UGG
45.0	18-mar-1990	99	PHENOL		0.112	UGG
70.0	15-mar-1990	99	PHENOL		0.175	UGG
80.0	18-mar-1990	99	PHENOL		0.200	UGG
89.0	18-mar-1990	99	PHENOL		0.235	UGG
30.0	18-mar-1990	JD 15	SE		0.481	UGG
5.0	13-mar-1990	JB19	AS		9.900	UGG
10.0	18-mar-1990	JD 19	AS		3.600	UCC
15.0	18-mar-1990	JD19	AS		4.600	UGG
20.0	18-mar-1990	JD19	AS		3.700	UGG
25.0	18-mar-1990	J019	AS		2.700	UGG
30.0	18-mar-1990	JD19	AS		14.000	UGG
35.0	18-mar-1990	JD19	AS		3.500	UGG
40.0	18-mar-1990	JD19	AS		4.800	UGG
45.0	18-mer-1990	JD19	AS		1.500	UGG
50.0	18-mar-1990	JD19	AS		2.500	UGG
60.0	18-mar-1990	JD19	AS		6.600	UGG
70.0 80 .0	18-mar-1990	J019	AS		4.400	UGG
89.0	18-mar-1990	JD19	AS		4.000	UGG
50.0	18-mar-1990 18-mar-1990	JD19	AS		2.700	UGG
JU.U	19-1997-1990	J019	AS		1.590	UGG
10.0	18-mar-1990	J S 11	PS		55.400	UGG
15.0	18-mar-1990	J S11	PE		7.080	UGG
30.0	18-mar-1990	J\$11	PB		82.500	UGG
35.0	18-mar-1990	J S 11	PB		33.000	UGG
40.0	18-mar-1990	J \$ 11	PS		15.700	UGG
50.0	18-mar-1990	J\$11	PB		12.200	UGG
60.0	18-mar-1990	J S 11	PS		23.500	UGG
70.0	18-mer-1990	J S 11	PB		131.000	UGG
80.0	18-mer-1990	J\$11	PB		62.100	UGG
30.0	18-mar-1990	J\$11	ZM		105.000	UGG
70.0	18-mar-1990	J\$11	ZM		83.100	UGG
80.0	18-mer-1990	J S 11	ZM		81.700	UGG
20.0	18-mer-1990	LH10	HPCL		0.011	UGG
50.0	18-mar-1990	LN19	MECSH5		0.001	UGG
50.0	18-mar-1990	LH19	UMC071		0.315	UGG
50.0	18-mar-1990	LH19	UWK076		0.021	UGG

Page 3

Analytical Results for Chemical Soil From: 01-jan-75 To: 09/07/90 (Booleans LT and NO are excluded)

Site: BORE ALF-03-SE

SAMPLE	SAMPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
		•••••	•••••	••••		••••
5.0	13-mar-1990	99	PHENOL		0.254	UGG
10.0	19-mar-1990	99	PHENOL		0.303	UGG
15.0	19-mar-1990	99	PHENOL		0.121	UGG
20.0	19-mar-1990	99	PHENOL		0.157	UGG
25.0	19-mer-1990	99	PHENOL		0.112	UGG
40.0	19-mar-1990	99	PHENOL		0.122	UGG
90.0	19-mar-1990	99	PHENOL		0.133	UGG
5.0	13-mar-1990	JD15	SE		0.441	UGG
30.0	19-mar-1990	JD15	SE		0.535	UGG
5.0	13-mar-1990	JD19	A\$		11.000	UGG
10.0	19-mar-1990	JD 19	AS		3.900	ugg
15.0	19-mar-1990	JD19	AS		2.900	UGG
20.0	19-mer-1990	JD19	AS		3.400	UGG
25.0	19-mar-1990	JD 19	AS		4.700	UGG
30.0	19-mar-1990	JD 19	AS		15.000	UGG
35.0	19-mar-1990	JD19	AS		9.800	ues
40.0	19-mar-1990	JD19	AS		5.500	UGG
45.0	19-mer-1990	JD 19	AS		3.300	UGG
50.0	19-mer-1990	JB19	AS		1.300	UGG
60.0	19-mar-1990	JD 19	AS		3,900	UGG
70.0	19-mar-1990	JD 19	AS		2.200	UGG
80.0	19-mar-1990	JD 19	AS		4.200	UGG
90.0	19-mar-1990	JD 19	AS		5,200	UGG
50.0	19-mar-1990	JD19	AS		0.794	UGG
10.0	19-mar-1990	JS11	PE		37.800	UGG
30.0	19-mar-1990	J\$11	ZN		88.800	UGG
10.0	19-mar-1990	J\$11	ZM		132.000	UGG
20.0	19-mar-1990	LN1Q	HPCL		0.007	UGG
45.0	19-mar-1990	19ال	ACET		0.024	UGG
5.0	13-mr-1990	UI19	CCL3F		0.015	UGG
50.0	19-mar-1990	UH19	MECAHS		0.001	UGS
5.0	13-mar-1990	U119	TRCLE		0.019	UGG
10.0	19-mar-1990	LH19	TRCLE		0.003	UGG
50.0	19-mer-1990	LN19	UMK071		0.206	UGG
50.0	19-mar-1990	LH19	UNK076		0.021	UGS

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 09/07/90 Page 4

(Scoleans LT and NO are excluded)

Site: BORE ALF-04-SB

SAMPLE	SAIPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		***********	
30.0	18-mar-1990	JD15	SE		0.444	UGG
5.0	13-mar-1990	JD 19	AS		23.000	UGG
10.0	18-mar-1990	JD 19	AS		4.800	UGG
15.0	18-mer-1990	JD 19	AS		3.100	UGG
20.0	18-mer-1990	· JD19	AS		4.100	UGG
25.0	18-mar-1990	JD19	AS		4.900	UGG
30.0	18-mer-1990	JD19	AS		14.000	UGG
35.0	18-mer-1990	JD 19	AS		3.900	UGG
40.0	18-mar-1990	JD 19	AS		2.300	UGG
45.0	18-mar-1990	JD19	AS		1.800	UGG
50.0	19-mar-1990	JD19	AS		2.600	UGG
60.0	19-mer-1990	JD19	AS		5.900	UGG
70.0	19-mar-1990	JD19	AS		8.800	UGG
80.0	19-mar-1990	JD19	AS		4.900	UGG
85.0	19-mar-1990	JD 19	AS		6.100	UEG
50.0	19-mar-1990	JD 19	AS		1.410	UGG
30.0	18-mar-1990	J\$11	ZN		89.100	UGG
85.0	19-mar-1990	J\$11	ZN		59.600	UGG
70.0	19-mar-1990	LN19	ACET		0.022	UGG
85.0	19-mar-1990	LN19	MEC6H5		0.002	UGG
5.0	13-mar-1990	LH19	UNK070		0.010	UGG
85.0	19-mar-1990	LH19	UNK071		0.222	UGG
85.0	19-mar-1990	LH19	UNK076		0.033	UGG

Site: SCRE CCB-01-SB

SAMPLE	SAPLE	TEST				
DEPTH (ft) DATE	HETHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	*******	•••••	••••••		•••••	
15.0	13-apr-1990	99	PHENOL		0.175	UGG
25.0	13-apr-1990	99	PHENOL		0.110	UGG
60.0	13-apr-1990	99	PHENOL		4.440	UGG
70.0	13-apr-1990	99	PHENOL		4.600	UGG
5.0	14-mar-1990	JD 19	AS		3.490	UGG
50.0	13-apr-1990	JD 19	AS		3.130	UGG
10.0	13-apr-1990	JD 19	AS		4.890	UGG
15.0	13-apr-1990	JD 19	AS .		4.740	UGG
20.0	13-epr-1990	JO 19	AS		2.700	UGG
25.0	13-apr-1990	JD 19	AS		10.100	UGG
30.0	13-apr-1990	JD 19	AS.		8.040	UGG
35.0	13-apr-1990	JD19	AS		2.190	UGG
40.0	13- apr-1990	JD 19	AS		2.070	UGG
45.0	13-apr-1990	J019	AS		2.930	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: O1-jan-75 To: 09/07/90 (Socieons LT and ND are excluded) Page 5

Site: SORE CCS-01-SB (continued)

SAMPLE	SAMPLE	TEST	COMPOLINO	800L	CONCENTRATION	UNITS
DEPTH (ft)	DATE	METHOD		••••	CONCENTRATION	
50.0	13-apr-1990	191عد	AS 2A	••••	3.470	UGG
60.0	13-apr-1990	JD 19	AS .		4.740	UGG
70.0	13-apr-1990	JD19	AS		13.000	UGG
88.0	13-apr-1990	JD 19	AS		3.650	UGG
5.0	14-mar-1990	LH10	CLDAN		1.040	UGG
5.0	14-mgr-1990	LH10	HPCL		0.007	UGG
5.0	14-mar-1990	LH10	HPCLE		0.006	UGG
5.0	14-mar-1990	LN19	CCL3F		0.009	UGG
25.0	13-epr-1990	LH19	UNK170		0.010	UGG
30.0	13-apr-1990	LH19	UNK170		0.007	UGG
35.0	13-apr-1990	LH19	UNK170		0.010	UGG
40.0	13-apr-1990	LH19	UMK170		0.010	UGG
45.0	13-apr-1990	LH19	UNK170		0.007	UGG
70.0	13-apr-1990	LN19	UMK170		0.009	UGG
86.0	13-apr-1990	UN19	UNK171		0.007	UGG
35.0	13-apr-1990	LN19	UNK175		0.008	UGG

Site: SORE CCS-02-SB

SAMPLE	SAMPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
10.0	12-apr-1990	99	PHENOL	••••	0.222	UGG
15.0	12-apr-1990	99	PHENOL		0.110	UGG
20.0	12-apr-1990	99	PHENOL		0.103	UGG
	12-apr-1990	99	PHENOL		0.107	UGG
	12-apr-1990	99	PHEHOL		0.115	UGG
70.0	13-apr-1990	99	PHENOL		0.208	UGG
80.0	13-apr-1990	99	PHENOL		0.160	UGG
5.0	14-mr-1990	JD19	AS		2.550	UGG
20.0	12-apr-1990	JD 19	AS		4.820	UGG
10.0	12-apr-1990	JD 19	AS		4.310	UGG
15.0	12-apr-1990	JD 19	AS.		4.700	UGG
20.0	12-apr-1990	J019	AS		4.890	UGG
25.0	12-apr-1990	JD 19	AS .		7.650	UGG
30.0	12-apr-1990	JD 19	AS.		11.600	UGG
35.0	12-apr-1990	JD 19	AS		2.300	UGG
40.0	12-apr-1990	J019	AS		1.850	UGG
45.0	12-apr-1990	JD19	AS		21.000	UGG
50.0	12-apr-1990	JQ 19	AS		36.000	UGG
60.0	12-apr-1990	JQ19	AS		3.130	UGG
80.0	13-apr-1990	JD 19	AS		4.930	UGG
70.0	13-apr-1990	J019	AS		2.970	UGG
80.0	13-epr-1990	JD 19	AS		3.600	UGG

Installation: Sierra Ordnance Jepot

pot .

Page 6

Analytical Results for Chemical Soil From: 01-jan-75 To: 09/07/90 (Sooleans LT and NO ere excluded)

Site: BORE CCB-02-SB (continued)

SAMPLE DEPTH (fi	SAMPLE () DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
				••••		••••
20.0	12-apr-1990	JS11	ZM		56.700	UGG
80.0	13-apr-1990	J\$11	ZN		106.000	UGG
5.0	14-mar-1990	LH10	CLDAN		0.576	UGG
5.0	14-mar-1990	LH10	HPCL		0.007	UGG
5.0	14-mar-1990	LM19	CCL3F		0.008	UGG
80.0	13-apr-1990	LH19	UNK170		0.007	UGG
80.0	13-apr-1990	LM19	UNK170		0.008	UGG
70.0	13-apr-1990	LM19	UNK171		0.010	UGG
80.0	13-epr-1990	LM19	UNK176		0.008	UGG

Site: BORE CCB-03-SB

SAMPLE	SAPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	•••••	•••••		••••		••••
10.0	12-apr-1990	99	PHENOL		2.190	UGG
50.0	12-apr-1990	99	PHENOL		0.198	UGG
60.0	12-apr-1990	99	PHENOL		0.264	UGG
70.0	12-epr-1990	99	PHENOL		0.125	UGG
80.0	12-apr-1990	99	PHENOL		0.148	UGG
5.0	14-mar-1990	JD 19	AS		2.800	UGG
10.0	12-apr-1990	JD19	AS		15.000	UGG
15.0	12-apr-1990	JD19	AS		16.000	UGG
20.0	12-apr-1990	JD19	AS		6.360	UGG
25.0	12-apr-1990	JD19	AS		5.990	UGG
30.0	12-apr-1990	JD 19	AS		19.000	UGG
35.0	12-epr-1990	JD 19	AS		2.840	UGG
40.0	12-apr-1990	JD 19	AS		3.320	UGG
45.0	12-apr-1990	JD 19	AS		1.950	UGG
50.0	12-apr-1990	JD19	AS		15.000	UGG
60.0	12-apr-1990	JD 19	AS		6.350	UGG
70.0	12-apr-1990	JD19	AS		7.800	UGG
80.0	12-apr-1990	JD19	AS		4.100	UGG
88.0	12-apr-1990	JD 19	AS .		5.480	UGG
35.0	12-apr-1990	JD 19	AS .		1.970	UGG
5.0	14-mar-1990	LH19	CCL3F		0.008	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 09/07/90 (Sociens LT and NO are excluded) Page 7

Site: BORE CC8-04-S8

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	SCOL	CONCENTRATION	UNITS
90.0	12-apr-1990	99	PHENOL	••••	0.143	UGG
5.0	11-apr-1990	JD 19	AS		13.000	UGG
50.0	11-apr-1990	JD19	AS		2.070	UGG
5.0	11-apr-1990	JD19	AS		10.200	UGG
10.0	11-apr-1990	JD19	AS		6.480	UGG
15.0	11-apr-1990	JD19	AS		3.720	UGG
20.0	11-apr-1990	JD19	AS		5.080	UGG
25.0	11-apr-1990	JD19	AS		5.720	UGG
30.0	11-apr-1990	JD19	AS		14.000	UGG
35.0	11-apr-1990	JD19	AS		5.790	UGG
40.0	11-apr-1990	JD19	AS		3.360	UGG
45.0	11-apr-1990	JD19	AS		1.920	UGG
50.0	11-apr-1990	JD 19	AS		2.210	UGG
60.0	11-apr-1990	JD 19	AS		2.340	UGG
70.0	12-epr-1990	JD 19	AS		5.150	UGG
80.0	12-apr-1990	JD19	AS .		2.670	UGG
90.0	12-apr-1990	JD 19	AS		5.420	UGG
30.0	11-apr-1990	J S 11	ZN		106.000	UGG
35.0	11-apr-1990	J\$11	ZM		101.000	UGG
90.0	12-apr-1990	J\$11	ZM		74.000	UGG

Site: BORE CC8-05-58

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
		•••••				••••
30.0	11- epr-1990	99	PHENOL		0.262	UGG
5.0	15-mar-1990	JD19	AS		6.390	UGG
10.0	11-apr-1990	JD 19	A\$		2.830	UGG
15.0	11-apr-1990	JO 19	AS		3.280	UGG
20.0	11-apr-1990	JD19	AS		3.090	UGG
25.0	11-apr-1990	JD 19	AS		1.780	UGG
30.0	11-apr-1990	JD 19	AS		15.000	UGG
35.0	11-apr-1990	JD 19	AS		4.910	UGG
40.0	11-apr-1990	JD19	AS		3.050	UGG
45.0	11-epr-1990	JD19	AS		1.250	UGG
50.0	11-apr-1990	JD19	AS		2.160	UGG
60.0	11-epr-1990	J019	AS		2.900	UGG
30.0	11-apr-1990	JD19	AS		16.000	UGG
30.0	11-epr-1990	J S 11	ZM		71.000	UGG
50.0	11-apr-1990	J\$11	ZM		62.500	UGG
30.0	11-apr-1990	J S 11	211		66,100	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jen-75 To: 09/07/90

(Scoleans LT and ND are excluded)

Page 8

Site: BORE DHO-06-SB

SAMPLE	SAPLE	TEST	companyo	2001	CONCENTRATION	IMITE
DEPTH (ft) DATE	METHOD	COMPOUND	8001	CONCENTRATION	UNITS
20.0	26-mar-1990	JD 19	AS		5.840	uge
25.0	26-mr-1990	JD19	AS		3.460	UGG
30.0	26-mar-1990	JD19	AS		1.470	UGG
35.0	26-mar-1990	JD19	AS		1.060	UGG
40.0	26-mar-1990	JD 19	AS		6.280	UGG
45.0	26-mar-1990	JD19	AS		2.480	UGG
50.0	26-mar-1990	JD 19	AS		4.170	uge
60.0	26-mar-1990	JD19	AS		8.680	UGG
70.0	26-mar-1990	JD 19	AS		5.290	UGG
80.0	26-mar-1990	JD19	AS		4.290	UGG
90.0	26-mar-1990	JD19	AS		7.960	UGG
95.0	26-mar-1990	JD19	AS		4.420	UGG
50.0	26-mar-1990	J019	AS		6.830	UGG
10.0	26-mer-1990	JD19	A\$		5.100	UGG
15.0	26-mar-1990	JD19	AS		17.000	UGG
10.0	26-mr-1990	1011	SA		82.200	UGG
10.0 15.0	26-mar-1990	J811 J811	EA		392.000	UGG
20.0	26-mr-1990	J\$11	EA .		56.900	UGG
25.0	26-mar-1990	J\$11	M		118.000	UGG
30.0	26-mar-1990	J\$11	EA .		55.900	UGG
40.0	26-mar-1990	J\$11	BA		111.000	UGG
45.0	26-mar-1990	J S 11	BA		133.000	UGG
50.0	26-mar-1990	J\$11	BA		204.000	UGG
60.0	26-mar-1990	J S 11	BA		103.000	UGG
70.0	26-mar-1990	J\$11	BA		250.000	UGG
80.0	26-mar-1990	J\$11	EA		53.800	UGG
90.0	26-mar-1990	J\$11	BA		228.000	UGG
95.0	26-mar-1990	JS11	BA .		285.000	UGG
50.0	26-mr-1990	J S 11	BA		215.000	UGG
15.0	26-mr-1990	J\$11	œ		28.600	UGG
15.0	26-mar-1990	J 811	MO		2.590	UGG
70.0	26-mr-1990	J 811	MO		3.390	UGG
50.0	26-mr-1990	J811	110		5.960	UGG
15.0	26-mr-1990	J 811	PB		8.880	UGG
10.0	26-mar-1990	J\$11	V		23.000	UGG
15.0	26-mar-1990 26-mar-1990	J\$11	V		118.000 43.000	UGG
25.0 43. 0	26-mar-1990	J S 11 J S 11	V		40.700	UGG
45.0	26-mar-1990	J\$11	V		38.500	UGG
50.0	26-mar-1990	J\$11	٧		86.500	UGG
60.0	26-mr-1990	J S 11	v		30.600	UGG
70.0	26-mar-1990	J S 11	v		65.500	UGG
80.0	26-mr-1990	J\$11	v		37.500	UGG
90.0	26-mar-1990	J\$11	٧		59.200	UGG
95.0	26-mar-1990	J\$11	٧		63.400	UGG
50.0	26-mr-1990	J\$11	٧		83.200	UGG
15.0	26-mr-1990	J\$11	2M		155.000	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 09/07/90 (Booleans LT and NO are excluded) Page 9

Site: BORE DMO-06-SB (continued)

SAMPLE DEPTH (f	SAMPLE t) DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
			•••••	••••		••••
50.0	26-mar-1990	JS11	ZM		72.300	UGG
90.0	26-mar-1990	JS11	ZN		71.000	UGG
95.0	26-mar-1990	J\$11	ZN		67.600	UGG
50.0	26-mar-1990	JS11	ZM		77.900	UGG
50.0	26-mar-1990	LM19	UNK071		0.023	UGG

Site: BORE DMQ-07-SB

SAMPLE	SAMPLE	TEST				
DEPTH (ft)		METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
10.0	26-mar-1990	1019	AS	••••	5.230	UGG
15.0	26-mar-1990	JD19	AS		6.520	UGG
20.0	26-mr-1990	JD19	AS		2.570	UGG
25.0	26-mgr-1990	JD19	AS		6.550	UGG
30.0	26-mar-1990	JD19	AS .		1.280	UGG
35.0	26-mar-1990	JD19	AS		1.510	UGG
5.0	26-mar-1990	JD 19	AS		19.000	UGG
45.0	29-mar-1990	JD19	AS		3.820	UGG
50.0	29-mar-1990	JD19	AS		3.640	UGG
60.0	29-mar-1990	JD19	AS.		14.000	UGG
70.0	29-mar-1990	JD 19	AS		5.960	UGG
80.C	29-mar-1990	JD 19	AS		6.060	UGG
90.0	29-mar-1990	JD19	AS.		14.000	UGG
50.0	29-mar-1990	JD 19	AS .		6.130	UGG
90.0	29-mar-1990	JD19	AS		4.340	UGG
5.0	26-mar-1990	J S 11	EA .		410.000	UGG
10.0	26-mar-1990	J 8 11	BA		76.500	UGG
15.0	26-mar-1990	J S 11	BA		269.000	UGG
20.0	26-mar-1990	J811	BA		62.100	UGG
25.0	26-mer-1990	J\$11	BA		113.000	UGG
30.0	26-mr-1990	J S 11	BA		155.000	UGG
35.0	26-mor-1990	J S 11	BA		54.400	UGG
80.0	29-mar-1990	J S 11	BA		56.900	UGG
90.0	29-mar-1990	JS11	8A		136.000	UGG
45.0	29-mar-1990	J\$11	BA		145.000	UGG
50.0	29-mar-1990	J S 11	BA		259.000	UGG
60.0	29-mr-1990	J S 11	BA		186.000	UGG
70.0	29-mar-1990	J\$11	BA		144.000	UGG
50.0	29-mar-1990	J S 11	BA		229.000	UGS
90.0	29-mar-1990	J S 11	SA		172.000	UGG
25.0	26-mar-1990	J S 11	HO		2.170	UGG
50.0	29-mar-1990	J\$11	MO		2.470	UGG
70.0	29-mar-1990	J S 11	MO		2.060	UGG
50.0	29-mar-1990	J\$11	MO		2.290	UGG

Installation: Sierra Ordnance Depot

Page 10

Analytical Results for Chemical Soil From: 01-jan-75 To: 09/07/90 (Booleans LT and ND are excluded)

Site: BORE DMO-07-SB (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	800L	CONCENTRATION	UNITS
•••••		•••••	•••••			••••
90.0	29-mar-1990	J\$11	PS		67.500	UGG
5.0	26-mar-1990	J S 11	٧		61.200	UGG
15.0	26-mar-1990	J S 11	٧		81.100	UGG
20.0	26-mar-1990	J\$11	٧		35.200	UGG
25.0	26-mar-1990	JS11	٧		37.400	UGG
30.0	26-mar-1990	JS11	٧		23.900	UGG
35.0	26-mar-1990	J\$11	٧		25.900	UGG
80.0	29-mar-1990	J\$11	٧		23.000	UGG
90.0	29-mar-1990	1\$11	٧		48.200	UGG
45.0	29-mer-1990	J S 11	٧		45.600	UGG
50.0	29-mar-1990	J\$11	٧		73.400	UGG
60.0	29-mar-1990	JS11	٧		43.300	UGG
70.0	29-mar-1990	J S 11	٧		35.000	UGG
50.0	29-mar-1990	J\$11	٧		75.000	UGG
90.0	29-mar-1990	J\$11	٧		60.700	UGG
5.0	26-mar-1990	J S 11	ZM		76.900	UGG
15.0	26-mar-1990	J S 11	ZN		104.000	UGG
90.0	29-mar-1990	IST	ZN		61.000	UGG
50.0	29-mar-1990	J\$11	ZN		83.500	UGG
50.0	29-mar-1990	J\$11	ZN		87.100	UGG
90.0	29-mar-1990	JS11	ZN		64.700	UGG
5.0	26-mar-1990	1 405	CRHEX		1.120	UGG
90.0	29-mer-1990	LM19	TRCLE		0.004	UGG
35.0	26-mar-1990	LH19	UNK071		0.021	UGG
25.0	26-mar-1990	LM19	UNK071		0.021	UGG
20.0	26-mar-1990	LH19	UNK071		0.010	UGG

Site: BORE DHO-08-SB

SAMPLE DEPTH (ft)	SAMPLE DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	********		*******	••••	•••••	••••
25.0	27-mar-1990	99	HPCL		0.010	UGG
10.0	27-mar-1990	J 8 01	HG		0.086	UGG
5.0	27-mar-1990	JD 19	AS		11.400	UGG
10.0	27-mar-1990	JD 19	AS		5.520	UGG
15.0	27-mar-1990	JD19	A\$		4.130	UGG
20.0	27-mar-1990	JD19	AS .		4.090	UGG
25.0	27-mar-1990	JD 19	AS.		3.210	UGG
30.0	27-mar-1990	J019	AS		2.220	UGG
35.0	27-mer-1990	JD 19	AS.		1.830	UGG
40.0	27-mar-1990	JD 19	AS		4.410	UGG
45.0	27-mar-1990	JD 19	AS.		3.720	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 09/07/90 (Booleans LT and NO are excluded)

Site: BORE DMO-08-SB (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
		•••••	•••••			••••
50.0	27-mar-1990	JD19	AS		4.670	UGG
60.0	27-mar-1990	JD19	AS		12.000	UGG
70.0	27-mar-1990	JD 19	AS		9.270	UGG
80.0	27-mar-1990	JD19	AS		7.360	UGG
90.0	27-mer-1990	JD19	AS		6.240	UGG
95.0	27-mer-1990	JD19	AS		2.750	UGG
50.0	27-mar-1990	JD 19	AS		4.910	UGG
5.0	27-mar-1990	JS11	BA		244.000	UGG
15.0	27-mar-1990	JS11	BA		163.000	UGG
25.0	27-mer-1990	JS11	BA		142.000	UGG
30.0	27-mar-1990	J\$11	BA		73.200	UGG
35.0	27-mar-1990	J\$11	8A		57.300	UGG
40.0	27-mar-1990	J S 11	EA		110.000	UGG
45.0	27-mar-1990	J\$11	BA .		164.000	UGG
50.0	27-mar-1990	J S11	BA .		121.000	UGG
60.0	27-mar-1990	J S 11	BA		92.600	UGG
70.0	27-mar-1990	J S 11	BA		128.000	UGG
90.0	27-mar-1990	J\$11	BA		135.000	UGG
95.0	27-mar-1990	J S 11	BA		198.000	UGG
50.0	27-mar-1990	J \$ 11	EA		137.000	UGG
50.0	27-mar-1990	J\$11	HO		2.380	UGG
60.0	27-mar-1990	J S11	HO		2.310	UGG
70.0	27-mar-1990	J S11	MO		2.240	UGG
50.0	27-mar-1990	J\$11	MO		2.280	UGG
5.0	27-mar-1990	J S 11	PS		7.500	UGG
25.0	27-mmr-1990	J S 11	PS		11.900	UGG
70.0	27-mar-1990	J S 11	PE		13.600	UGG
90.0	27-mar-1990	J\$11	PB		21.400	UGG
5.0	27-mar-1990	J S 11	٧		54.700	UGG
10.0	27-mr-1990	J\$11	٧		20.900	UGG
15.0	27-mar-1990	J\$11	٧		57.000	UGG
25.0	27-mar-1990	J S 11	٧		35.500	UGG
30.0	27-mr-1990	J S 11	٧		27.000	UGG
40.0	27-mr-1990	J 8 11	٧		36.300	UGG
45.0	27-mar-1990	J\$11	٧		38.300	UGG
50.0	27-mar-1990	J\$11	٧		46.100	UGG
60.0	27-mer-1990	J\$11	٧		37.000	UGG
70.0	27-mar-1990	J S 11	٧		32.700	UGG
90.0	27-mer-1990	J\$11	٧		40.	UGG
95.0	27-mar-1990	J\$11	٧		51.500	UGG
50.0	27-mar-1990	J\$11	∀		57.800	UGG
5.0	27-mar-1990	J S 11	ZM		64.800	UGG
15.0	27-mar-1990	J\$11	ZM		67.900	UGG
45.0	27-mer-1990	J S 11	ZM		59.200	UGG
95.0	27-mar-1990	J\$11	ZM		62.500	UGG
50.0	27-mar-1990	J\$11	ZM		58.200	UGG

Analytical Results for Chemical Soil From: 01-jan-75 To: 09/07/90 (Booleans LT and NO are excluded) Page 12

Site: BORE DMO-08-SB (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	•••••	•••••	•••••			••••
35.0	27-mar-1990	LH19	MECAHS		0.001	UGG
70.0	27-mar-1990	UN19	MECANS		0.001	UGG
5.0	27-mar-1990	LM19	TRCLE		0.019	UGG
15.0	27-mar-1990	LH19	UNK071		0.011	UGG
10.0	27-mar-1990	UN19	UNK071		0.021	UGG
5.0	27-mar-1990	LH19	UNK071		0.011	UGG

Site: SORE DHO-09-SE

SAMPLE	SAMPLE	TEST				
DEPTH (ft)		METHOD	CONVILIND	BOOL	CONCENTRATION	UNITS
•••••		•••••	•••••	••••		••••
5.0	28-mar-1990	JD19	AS		14.000	UGG
-	28-mer-1990	JD19	AS		6.570	UGG
	28-mar-1990	JD19	AS		6.990	UGG
20.0	28-mar-1990	JD19	AS		2.920	UGG
25.0	28-mar-1990	JD 19	AS		1.730	UGG
30 .0	28-mar-1990	JD19	AS		2.720	UGG
35.0	28-mar-1990	JD19	AS		1.650	UGG
40.0	28-mar-1990	JD19	AS		2.600	UGG
45.0	28-mar-1990	JD19	AS		3.360	UGG
50.0	28-mar-1990	JD19	AS		7.430	UGG
60.0	28-mr-1990	JD19	AS		5.840	UGG
70.0	28-mar-1990	JD19	AS		14.000	UGG
80.0	28-mar-1990	JD19	AS		3.490	UGG
90.0	28-mar-1990	J019	AS		4.260	UGG
50.0	28-mar-1990	JD 19	AS		7.360	UGG
5.0	28-mr-1990	JS11	BA .		276.000	UGG
10.0	28-mar-1990	J S 11	BA		106.000	UGG
15.0	28-mr-1990	J811	BA		137.000	UGG
25.0	28-mar-1990	J\$11	BA		135.000	UGG
30.0	28-mar-1990	J S 11	BA		81,400	UGE
40.0	28-mr-1990	J\$11	BA		90.900	UGE
45.0	28-mar-1990	J S 11	BA		109.000	UGG
50.0	28-mer-1990	J\$11	BA		180.000	UGG
60.0	28-mr-1990	JS11	BA .		78.400	uge
70.0	28-mar-1990	J\$11	BA		221.000	UGG
80.0	28-mar-1990	JS11	BA		61.700	UGG
90.0	28-mar-1990	J\$11	SA.		195.000	UGG
50.0	28-mar-1990	J S 11	BA .		98.600	220
50.0	28-mar-1990	J\$11	MO		2.800	UGE
70.0	28-mar-1990	JS11	MO		4.660	UGG
50.0	28-mr-1990	J\$11	MO		2.280	UGG
25.0	28-mar-1990	J S 11	PE		19.200	UGG
30.0	28-mer-1990	J\$11	PB		21.700	UGG
50.0	28-mar-1990	J811	PS		7.610	UGG
						-

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jen-75 To: 09/07/90

Page 13

(Booleans LT and ND are excluded)

Site: SORE DMO-09-SB (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (f	C) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
90.0	28-mar-1990	 1211	PB		8.580	UGG
5.0	28-mr-1990	JS11	٧		53.300	UGG
10.0	28-mar-1990	JS11	٧		30.200	UGG
15.0	28-mar-1990	JS11	٧		52.100	UGG
25.0	28-mar-1990	J\$11	٧		44.400	UGG
30.0	28-mar-1990	J S 11	٧		36.200	UGG
35.0	28-mar-1990	J\$11	٧		22.600	UGG
40.0	25-mar-1990	J\$11	٧		26.700	UGG
45.0	28-mar-1990	J\$11	٧		35.700	UGG
50.0	28-mar-1990	J S 11	٧		51.000	UGG
60.0	28-mar-1990	J\$11	٧		33.400	UGG
70.0	28-mar-1990	J\$11	٧		57.000	UGG
80.0	28-mar-1990	J\$11	٧		49.400	UGG
90.0	28-mar-1990	J\$11	٧		60.100	UGG
50.0	28-mar-1990	JS11	٧		34.600	UGG
5.0	28-mar-1990	J\$11	216		71.800	UGG
25.0	28-mar-1990	J S 11	214		58.400	UGG
50.0	28-mar-1990	J\$11	ZN		60.300	UGG
90.0	28-mar-1990	J\$11	ZN		64.300	UGG
5.0	28-mar-1990	207 L	CRHEX	•	0.729	UGG

Site: BORE DMO-10-SB

SAMPLE	SAMPLE	TEST				
DEPTH (fi) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	••••••					
90.0	29-mar-1990	J801	HG		0.071	UGG
5.0	28-mar-1990	19 مد	AS		9.270	UGG
50.0	28-mar-1990	J019	AS		3.490	UGG
10.0	28-mar-1990	J019	AS		8.900	UGG
15.0	28-mr-1990	J019	AS		10.400	UGS
20.0	28-mar-1990	JD 19	AS .		6.460	UGG
25.0	28-mar-1990	JD 19	AS		1.310	UGG
30.0	28-mr-1990	J019	AS		1.360	UGG
40.0	28-mar-1990	JD 19	AS		9.880	UGG
45.0	28-mar-1990	JD 19	AS		2 .8 50	UGG
50.0	28-mar-1990	J019	AS		3.950	UGE
80.0	29-mar-1990	JD 19	AS		4.210	UGG
60.0	29-mar-1990	JD19	AS		10.000	UGG
70.0	29-mar-1990	JD19	AS		2.780	UGG
80.0	29-mar-1990	JD19	AS		4.350	UGG
90.0	29-mar-1990	JD 19	AS		10.800	UGG
5.0	28-mar-1990	J\$11	BA		261.000	UGG
10.0	28-mer-1990	J\$11	M		148.000	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil Page 14

From: 01-jan-75 To: 09/07/90 (Sociens LT and ND are excluded)

Site: BORE DMO-10-SB (continued)

SAMPLE	SAIPLE	TEST				
DEPTH (fi	· · ·	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	********	••••	******	••••		••••
15.0	28-mar-1990	J S 11	BA		246.000	UGG
20.0	28-mar-1990	J\$11	BA		73.600	UGG
30.0	28-mar-1990	J S 11	BA		75.500	UGG
40.0	28-mer-1990	J\$11	BA		139.000	UGG
45.0	28-mar-1990	JS11	BA		118.000	UGG
50.0	28-mar-1990	*J\$11	BA		205.000	UGG
50.0	28-mar-1990	J\$11	BA		166.000	UGG
60.0	29-mar-1990	J\$11	BA		470.000	UGG
70.0	29-mar-1990	JS11	BA		204.000	UGG
80.0	29-mar-1990	J\$11	BA		95.100	UGG
90.0	29-mar-1990	J S 11	8.4		193.000	UGG
80.0	29-mar-1990	J\$11	BA		153.000	UGG
5.0	28-mer-1990	J S 11	MO		2.030	UGG
15.0	28-mer-1990	J\$11	MO		5.310	UGG
40.0	28-mar-1990	J\$11	MO		4.050	UGG
60.0	29-mar-1990	J\$11	MO		3.340	UGG
5.0	28-mar-1990	J\$11	PE		16.100	UGG
40.0	28-mar-1990	JS11	PE		9.500	UGG
60.0	29-mar-1990	J S 11	PS		16.100	UGG
90.0	29-mar-1990	J\$11	PE		17,700	UGG
5.0	28-mar-1990	J S 11	٧		49.800	UGG
10.0	28-mar-1990	J\$11	٧		34,700	UGG
15.0	28-mar-1990	JS11	٧		65.800	UGG
20.0	28-mar-1990	J\$11	٧		24.000	UGG
30.0	28-mar-1990	J S 11	٧		32,400	UGG
40.0	28-mar-1990	J\$11	٧		48.900	UGG
45.0	28-mr-1990	J S 11	٧		36.900	UGG
50.0	28-mar-1990	J\$11	٧		55.100	UGG
50.0	28-mar-1990	J S 11	٧		50.700	UGG
60.0	29-mar-1990	J S 11	٧		102.000	UGG
70.0	29-mar-1990	J\$11	٧		67.400	UGG
80.0	29-mar-1990	J S 11	٧		46.800	UGG
90.0	29-mar-1990	J S 11	٧		69.100	UGG
80.0	29- ser- 1990	J\$11	٧		55.600	UGG
5.0	28-mar-1990	JS11	ZN		142.000	UGG
15.0	28-mar-1990	J 8 11	ZM		73.300	UGG
50.0	28-mar-1990	J\$11	ZN		58.600	UGG
60.0	29-mar-1990	J\$11	ZM		103.000	UGG
70.0	29-mar-1990	J S 11	ZN		66.100	UGG
90.0	29-mar-1990	J\$11	ZN		62.400	UGG
80.0	29-mar-1990	J \$ 11	ZN		58.300	UGG
5.0	28-mar-1990	1405	CRHEX		1.230	UGG
10.0	28-mar-1990	LH10	HPCL		0.007	UGG
60.0	29-mar-1990	LH19	CH2CL2		0.197	UGG
70.0	29-mar-1990	LM19	CH2CL2		0.032	UGG

Installation: Sierra Ordnance Depot

Page 15

Analytical Results for Chemical Soil From: 01-jan-75 To: 09/07/90 (Booleans LT and NO are excluded)

Site: BORE DMO-10-SB (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	•••••					••••
5.0	28-mar-1990	LM19	TRCLE		0.006	UGG
60.0	29-mar-1990	LM19	TRCLE		0.210	UGG
70.0	29-mar-1990	LM19	TRCLE		0.089	UGG
90.0	29-mar-1990	LH19	TRCLE		0.016	UGG
60.0	29-mar-1990	LN19	UNK129		0.024	UGG

Site: BORE DMO-11-SB

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	********		•••••			••••
45.0	30-mar-1990	JD19	AS		2.570	UGG
5.0	30-mer-1990	JD19	AS		11.000	UGG
10.0	30-mar-1990	JD19	AS		9.240	UGG
15.0	30-mar-1990	JD19	AS .		5.090	UGG
20.0	30-mar-1990	JD 19	AS .		8.410	UGG
25.0	30-mar-1990	JD 19	AS		7,960	UGG
30.0	30-mar-1990	JD19	AS .		2.740	UGG
35.0	30-mar-1990	JD19	AS		9.270	UGG
40.0	30-mar-1990	JD19	AS		5.070	UGG
45.0	30-mar-1990	JD19	AS		3.170	UGG
50.0	30-mar-1990	JD 19	AS		2.700	UGG
60.0	30-mar-1990	J0 19	AS		6.100	UGG
70.0	30-mar-1990	JD19	AS		3.110	UGG
80.0	30-mar-1990	JD19	AS		4.240	UGG
90.0	30-mar-1990	JD19	AS		3.410	UGG
5.0	30-mar-1990	J\$11	BA		257,000	UGG
10.0	30-mar-1990	J\$11	BA		225.000	UGG
15.0	30-mar-1990	J S 11	BA .		299.000	UGG
20.0	30-mar-1990	J S 11			130.000	UGG
25.0	30-mar-1990	J S 11	BA .		215.000	UGG
30.0	30-mar-1990	J S 11	BA .		121.000	UGG
40.0	30-mar-1990	J\$11	BA		86.800	UGG
45.0	30-mar-1990	J 8 11	BA		201.000	UGG
50.0	30-mar-1990	J\$11	BA .		64.200	UGG
60.0	30-mar-1990	J\$11	BA		135.000	UGG
70.0	30-mar-1990	J S 11	M		226.000	UGG
80.0	30-mar-1990	J\$11	BA		58.200	UGG
90.0	30-mar-1990	J 811	BA		85.600	UGG
45.0	30-mer-1990	J S 11	BA		251.000	UGG
5.0	30-mar-1990	J S 11	NO		1.920	UGG
15.0	30-mar-1990	J\$11	MO		2.090	UGG
20.0	30-mer-1990	J\$11	MO		3.640	UGG
25.0	30-mar-1990	J\$11	MO		2.150	UGG
60.0	30-mar-1990	J\$11	MO		2.510	UGG
70.0	30-mar-1990	J\$11	MO		2.150	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chamical Soil

Page 16

From: 01-jan-75 To: 09/07/90 (Scoteens LT and NO are excluded)

Site: BORE DMO-11-SB (continued)

SAMPLE	SAIPLE	TEST				
DEPTH (fi		METHOD	COMPOUND	800L	CONCENTRATION	UMITS
•••••	•••••			••••	••••••	••••
5.0	30-mar-1990	J\$11	PS		14.400	UGG
10.0	30-mer-1990	JS11	PS		10.700	UGG
15.0	30-mar-1990	J\$11	PE		9.600	UGG
20.0	30-mar-1990	J\$11	PB.		8.060	UGG
5.0	30-mar-1990	JS11	v		43.300	UGG
10.0	30-mar-1990	JS11	٧		44.300	UGG
15.0	30-mar-1990	JS11	٧		99.300	UGG
20.0	30-mar-1990	JS11	٧		50.500	UGG
25.0	30-mer-1990	J\$11	٧		72.400	UGG
30.0	30-mar-1990	JS11	٧		35.200	UGG
40.0	30-mar-1990	JS11	V		29.500	UGG
45.0	30-mer-1990	J\$11	٧		53.700	UGG
50.0	30-mar-1990	J 3 11	٧		35.800	UGG
60.0	30-mar-1990	J\$11	٧		67.600	UGG
70.0	30-mar-1990	J\$11	٧		77.400	UGG
80.0	30-mar-1990	J\$11	٧		53.300	UGG
90.0	30-mar-1990	J\$11	٧		30.500	UGG
45.0	30-mar-1990	J\$11	V		62.700	UGG
10.0	30-mar-1990	J\$11	ZM		64.700	UGG
15.0	30-mar-1990	J S 11	ZN		124.000	UGG
25.0	30-mar-1990	J\$11	ZM		65.100	UGG
45.0	30-mar-1990	J S 11	ZN		66.100	UGG
70.0	30-mar-1990	J S 11	ZM		73.500	UGG
45.0	30-mar-1990	JSTT	ZN		78.100	UGG
15.0	30-mer-1990	LH10	ALDRN		0.058	UGG
15.0	30-mar-1990	LH10	PP000		2.200	UGG
15.0	30-mer-1990	LH10	PPODE		0.024	UGG
15.0	30-mer-1990	LN10	PPDOT		2.530	UGG
20.0	30-mer-1990	LH10	PPOOT		0.014	UGG
80.0	30-mar-1990	LH18	12EPCH		0.106	UGG
90.0	30-mar-1990	LH18	12EPCH		0.105	UGG
90.0	30-mar-1990	LH18	MEC6H5		0.105	UGG
15.0	30-mr-1990	LH19	111TCE	GT	1.000	UGG
15.0	30-mer-1990	LH19	11 3M CH		3.890	UGG
15.0	30-mar-1990	LM19	1 1DCE		0.156	UGG
15.0	30-mar-1990	LN19	120CLE		0.109	UGG
15.0	30-mer-1990	LH19	120CLP		0.051	UGG
15.0	30-mar-1990	LH19	C6H6		1.090	UGG
25.0	30-mor-1990	LH19	CHSCT5		0.014	UGG
15.0	30-mar-1990	LN19	CHSCFS		0.562	UGG
15.0	30-mar-1990	LH19	CHCL3		0.054	UGG
15.0	30-mar-1990	LH19	CL282		222.000	UGG
15.0	30-mr-1990	LH19	CLC6H5	GT	1.000	UGG
15.0	30-mr-1990	LM19	ETC6H5	GT	1.000	UGG
15.0	30-mar-1990	LH19	MECONS	GT	1.000	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 09/07/90 Page 17

From: 01-jan-75 To: 09/07/90 (Booleans LT and NO are excluded)

Site: BORE DMO-11-SB (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	SCOL	CONCENTRATION	UNITS
•••••	• • • • • • • • • • • • • • • • • • • •		•••••	••••		••••
15.0	30-mar-1990	LN19	HECYPE		0.555	UGG
15.0	30-mar-1990	LH19	TCLEA	GT	1.000	UGG
15.0	30-mer-1990	LM19	TCLEE	GT	1.000	UGG
25.0	30-mar-1990	LM19	TRCLE		0.028	UGG
15.0	30-mar-1990	LH19	TRCLE	GT	1.000	UGG
5.0	30-mar-1990	LH19	UNKO76		0.007	UGG
25.0	30-mar-1990	LH19	UNK092		0.012	UGG
30.0	30-mer-1990	LM19	UNKO92		0.021	UGG
15.0	30-mar-1990	LH19	UNKO94		0.389	UGG
15.0	30-mar-1990	LH19	UNKO98		1.110	UGG
15.0	30-mar-1990	LH19	UNK103		0.555	UGG
15.0	30-mar-1990	LH19	UNK115		2.220	UGG
50.0	30-mar-1990	LH19	UNK128		0.007	UGG
60.0	30-mer-1990	LH19	UNK128		0.022	UGG
15.0	30-mar-1990	LH19	UNK128		0.555	UGG
15.0	30-mar-1990	LH19	UNK138		3.330	UGG
15.0	30-mer-1990	U119	UNK143		0.555	UGG
15.0	30-mer-1990	LM19	XYLEN	GT	1.000	UGG

Site: BORE DMO-12-SE

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	800L	CONCENTRATION	UNITS
	•••••			••••		
5.0	20-mar-1990	JD19	AS		23.000	UGG
10.0	20-mar-1990	JD19	AS		3.860	UGG
15.0	20-mar-1990	JD 19	AS		6.310	UGG
20.0	20-mar-1990	JD 19	AS.		6.150	UGG
25.0	20-mar-1990	JD19	AS.		1.560	UGG
30.0	20-mar-1990	JD19	AS		4.170	UGG
35.0	20-mar-1990	JD 19	AS		1.840	UGB
40.0	20-mar-1990	JD19	AS		9.150	UGG
45.0	20-mar-1990	J019	AS.		3.800	UGG
50.0	20-mar-1990	JD 19	AS		7. 630	UGE
60.0	20-mr-1990	JD 19	AS.		3.870	UGG
70.0	20-mar-1990	JD 19	AS		4.070	UGG
80.0	20-mar-1990	JD19	AS.		4.540	UGG
90.0	20-mar-1990	JD 19	A\$		4.860	UGE
95.0	20-mer-1990	JD 19	AS .		3.550	UGE
20.0	20-mar-1990	JD19	AS		4.630	UGG
5.0	20-mar-1990	J811	BA .		330.000	UGG
10.0	20-mar-1990	J 8 11	BA		69.200	UGG
15.0	20-mar-1990	J S 11	BA		121.000	UGG
20.0	20-mar-1990	J S 11	BA		111.000	UGG
25.0	20-mer-1990	J211	BA		84.000	UGG
40.0	20-mar-1990	J S 11	BA		217.000	UGG

Page 18

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 09/07/90 (Booleans LT and ND are excluded)

Site: BORE DMO-12-58 (continued)

CAMBI E	CAMBI E	7507				
SAMPLE DEPTH (ft	SAMPLE	TEST				
DEPIR (TI) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
45.0	20-mar-1990	J S 11				
50.0	20-mar-1990		BA		159.000	UGG
		J\$11	BA		195.000	UGG
20.0	20-mer-1990	J\$11	SA SA		53.400	UGG
60.0	20-mar-1990	JS11	BA SA		290.000	UGG
70.0 80.0	20-mar-1990	JS11	BA DA		139.000	UGG
90.0	20-mar-1990	J\$11	SA SA		76.700	UGG
95.0	20-mar-1990	1811 121	BA A		152.000	UGG
5.0	20-mar-1990		BA WA		342.000	UGG
20.0	20-mer-1990	JS11	MO		2.260	UGG
	20-mar-1990	JS11	MO		2.720	UGG
40.0	20-mar-1990	J\$11	NO ···		2.700	UGG
50.0 40.0	20-mar-1990	J S 11	MO		2.130	UGG
	20-mar-1990	J\$11	PS		21.800	UGG
5.0	20-mar-1990	J\$11	V		39.200	UGG
10.0	20-mar-1990	J S 11	V		23.100	UGG
15.0	20-mar-1990	J 8 11	٧		33.900	UGG
20.0	20-mar-1990	J S 11	٧		35.300	UGG
25.0	20-mar-1990	J811	٧		28.100	UGG
40.0	20-mar-1990	J\$11	V		61.800	UGG
45.0	20-mar-1990	J\$11	V		40.600	UGG
50.0	20-mar-1990	J\$11	٧		54.200	UGG
20.0	20-mar-1990	J S 11	٧		22.400	UGG
60.0	20-mar-1990	J\$11	٧		80.000	UGG
70.0	20-mar-1990	J\$11	٧		49.900	UGG
80.0	20-mar-1990	J S 11	٧		47.300	UGG
90.0	20-mar-1990	J S 11	٧		56.000	UGG
95.0	20-mar-1990	J811	٧		79.800	UGG
40.0	20-mer-1990	J S 11	ZM		68.500	UGG
50.0	20-mar-1990	J\$11	ZM		65.700	UGG
60.0	20-mr-1990	J 8 11	ZM		83.700	UGG
90.0	20-mr-1990	J S 11	ZM		63.400	UGG
95.0	20-mar-1990	J S 11	ZM		90.300	UGG
		_				
40.0	20-mar-1990	LN19	ACET		0.020	UGG
40.0	20-mar-1990	LH19	OSCLEE		0.034	UGG
45.0	20-mar-1990	LH19	85CFEE		0.021	UGG
60.0	20-mer-1990	U119	BSCLEE		0.116	UGG
5.0	20-mar-1990	LH19	MECAHS		0.001	UGG
10.0	20-mar-1990	LN19	MEC6H5		0.001	UGG
15.0	20-mar-1990	LN19	MECAH5		0.001	UGG
20.0	20-mar-1990	U119	MEC6H5		0.001	UGG
5.0	20-mer-1990	LH19	UHK071		0.108	UGG
10.0	20-mar-1990	LN19	UNK071		0.105	UGG
15.0	20-mar-1990	U119	UNK071		0.207	UGG
20.0	20-mar-1990	LN19	UNK071		0.104	UGE
5.0	20-mr-1990	LH19	UNK076		0.011	UGG
10.0	20-mer-1990	LH19	UNK076		0.010	UGG
15.0	20-mar- 1990	UI19	UNK076		0.021	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil Page 19

From: 01-jan-75 To: 09/07/90 (Booleans LT and NO are excluded)

Site: SORE DMO-12-SB (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	•••••					••••
20.0	20-mar-1990	LM19	UNK076		0.010	UGG

Site: BORE DMO-13-SB

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••		•••••				•••••
5.0	20-mar-1990	JD19	AS		19.000	UGG
10.0	20-mer-1990	JD19	AS	•	2.410	UGG
15.0	20-mar-1990	JD19	AS		10.100	UGG
20.0	20-mar-1990	JD19	AS		3.570	UGG
25.0	20-mar-1990	J019	AS		3.060	UGG
30.0	20-mar-1990	JD19	AS		3.380	UGG
35.0	20-mar-1990	JD19	AS		1.210	UGG
40.0	20-mar-1990	JD19 .	AS		7.930	UGG
45.0	20-mar-1990	JD19	AS		3.100	uee
50.0	20-mar-1990	JD19	AS		3,440	UGG
60.0	20-mar-1990	JD19	AS		4.110	UGG
70.0	20-mar-1990	JD19	AS		8.250	UGG
80.0	20-mer-1990	JD19	AS		7.930	UGG
90.0	20-mar-1990	JD19	AS		8.130	UGG
95.0	20-mer-1990	JD19	AS		2.820	UGG
50.0	20-mar-1990	JD 19	AS		3.210	UGG
5.0	20-mar-1990	J S 11	84		410.000	UGG
15.0	20-mar-1990	J\$11	EA .		376.000	UGG
20.0	20-mar-1990	JS11	5 A		61.000	UGG
25.0	20-mer-1990	JS11	2A		122.000	UGG
40.0	20-mar-1990	J S 11	BA		173.000	UGG
45.0	20-mar-1990	J S 11	BA		144.000	UGG
50.0	20-mar-1990	J 8 11			119.000	UGG
60.0	20-mar-1990	J\$11	SA		300.000	UGG
70.0	20-mar-1990	J S 11	BA		204.000	UGG
50.0	20-mar-1990	J 8 11	BA		122.000	UGG
80.0	20-mar-1990	J S 11	BA		145.000	UGG
90.0	20-mar-1990	J S 11	BA		234.000	UGS
95.0	20-mar-1990	J S 11	BA		370.000	UEG
5.0	20-mar-1990	J S 11	MO		3.470	UGG
15.0	20-mar-1990	J S 11	MO		2.690	UGG
40.0	20-mar-1990	J S 11	MG		2.890	UGG
70.0	20-mar-1990	J811	MO		3.410	UGG
15.0	20-mer-1990	J S 11	PB		17.800	UGG
95.0	20-mer-1990	J 811	PB		11.600	UGE
5.0	20-mer-1990	J\$11	٧		66.900	UGG
15.0	20-mar-1990	J\$11	V		106.000	UGG
20.0	20-mar-1990	J\$11	V		23.700	UGG
25.0	20-mar-1990	J\$11	٧		42.700	UGE

Page 20

Analytical Results for Chemical Soil From: 01-jan-75 To: 09/07/90 (Booleans LT and ND are excluded)

Site: SORE DMO-13-\$8 (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	•••••			••••		
40.0	20-mar-1990	J\$11	٧		48.800	UGG
45.0	20-mar-1990	J\$11	٧		44.600	UGG
50.0	20-mar-1990	J\$11	٧		28.300	UGG
60.0	20-mar-1990	JS11	٧		78.500	UGG
70.0	20-mar-1990	J\$11	٧		43.900	UGG
50.0	20-mar-1990	J\$11	٧		44.100	UGG
80.0	20-mar-1990	J\$11	٧		64.000	UGG
90.0	20-mar-1990	J S 11	٧		58.600	UGG
95.0	20-mar-1990	J\$11	٧		84.500	UGG
5.0	20-mar-1990	J\$11	ZM		80.300	UGG
15.0	20-mar-1990	JS11	ZM		151.000	UGG
40.0	20-mar-1990	J\$11	ZN		57.700	UGG
45.0	20-mar-1990	J\$11	ZM		57.900	UGG
60.0	20-mar-1990	J\$11	ZN		81.900	UGG
80.0	20-mar-1990	JS11	ZM		67.300	UGG
90.0	20-mer-1990	J\$11	ZN		88.200	UGG
95.0	20-mar-1990	J S 11	ZN		96.300	UGG
10.0	20-mar-1990	LN10	HPCL		0.006	UGG
70.0	20-mar-1990	LH19	BZCLEE		0.011	UGG
25.0	20-mar-1990	LH19	UNK055		0.011	UGG
50.0	20-mar-1990	LH19	UMK055		0.022	UGG
50.0	20-mar-1990	LH19	UNK055		0.011	UGG

Site: SORE DS8-01-MA

SAMPLE	SAPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	•••••		*******	••••		••••
0.0	03-mar-1990	JD 19	AS		3.330	UGG
5.0	03-mar-1990	JD 19	AS		6.120	UGG
13.0	03-mar-1990	JD 19	AS		16.000	UGG

Site: BORE DS8-02-MMA

SAMPLE	SAPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	SOOL	CONCENTRATION	UNITS
•••••			•••••			••••
1.0	04-mer-1990	J019	AS		2.010	UGG
5.0	04-mar-1990	J019	AS		2.320	UGG
35.0	04-mar-1990	J019	AS		3.150	UGG
40.0	04-mar-1990	JD19	AS		10.400	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil Page 21

From: 01-jan-75 To: 09/07/90 (Sociens LT and MO are excluded)

Site: BORE DS8-04-MMA

SAMPLE DEPTH (f	SAMPLE t) DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
			•••••	• • • •		••••
1.0	05-mar-1990	JD 19	AS		7.530	UGG
5.0	05-mar-1990	JD 19	AS		2.620	UGG
20.0	05-mer-1990	JD19	AS		5.050	UGG

Site: BORE THT-07-SB

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	600L	CONCENTRATION	UNITS
	•••••	*****	******	••••		
35.0	03-apr-1990	JD 15	SE		0.385	UGG
5.0	03-apr-1990	JD 19	AS		3.550	UGG
10.0	03-apr-1990	JD19	AS		2.940	UGG
15.0	03-apr-1990	J019	AS		9.690	UGG
20.0	03-apr-1990	JD19	AS		4.700	UGG
25.0	03-apr-1990	JD19	A\$		4.880	UGG
30.0	03-apr-1990	JD19	AS		5.350	UGG
35.0	03-apr-1990	JD19	AS		4.080	UGG
40.0	03-epr-1990	JD 19	AS		6.370	UGG
45.0	03-apr-1990	JD19	AS		9.570	UGG
50.0	03-apr-1990	JD19	AS		5.940	UGG
55.0	03-apr-1990	JD19	AS		15,000	UGG
40.0	03-epr-1990	JD19	AS		6.180	UGG
35.0	03-apr-1990	LW12	246TNT		2.540	UGG
35.0	03-epr-1990	LW12	240WT		0.935	UGE
35.0	03-apr-1990	LW12	TETRYL		0.750	UGG

S: te: | GORE THT-08-58

SAMPLE	SAPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
*****		*****	•••••	••••	*********	•••••
5.0	03-epr-1990	JD19	AS		5.160	UGG
10.0	03-epr-1990	JD19	AS.		3.640	UGG
15.0	03-apr-1990	JD19	AS		2.800	UGG
20.0	03-apr-1990	JD19	AS		7.760	UGS
25.0	03-apr-1990	J019	AS		2.960	UGG
30.0	03-apr-1990	JD19	AS		2.750	UGG
35.0	03-epr-1990	JD 19	AS		3.220	UGG
40.0	03-epr-1990	JD19	AS		4,150	UGG
45.0	03-epr-1990	JD19	AS		3.240	UGG
50.0	03-apr-1990	JD 19	AS		4.530	UGG
55.0	03-epr-1990	JD 19	AS		14,000	UGG
35.0	03-eor-1990	JD 19	AS.		3.250	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil Page 22

From: 01-jan-75 To: 09/07/90 (Sociens LT and ND are excluded)

Site: BORE TNT-08-SB (continued)

SAMPLE	SAIPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	•••••	•••••	•••••		••••••	••••
5.0	03-apr-1990	JS11	PB		29.500	UGS

Site: BORE THT-09-S8

SAMPLE	SAIPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	••••••	•••••	•••••	••••		
5.0	03-apr-1990	JD 19	AS		5.780	UGG
10.0	03-apr-1990	JD 19	AS		3.180	UGG
15.0	03-apr-1990	JD 19	AS		6.470	UGG
20.0	03-apr-1990	J019	AS		5.090	UGG
25.0	03-apr-1990	JD 19	AS .		3.480	UGG
30.0	03-apr-1990	JD 19	AS		3.640	UGG
35.0	03-apr-1990	JD 19	AS		5.000	UGG
40.0	03-apr-1990	J019	AS .		5.020	UGG
45.0	03-apr-1990	JD19	AS .		3.180	UGG
50.0	03-apr-1990	JD 19	AS		3.680	UGG
55.0	03-apr-1990	JD19	AS.		10.700	UGG
35.0	03- apr-1990	JD19	AS		6.550	UGG
5.0	03-apr-1990	J\$11	PB		13.100	UGG
35.0	03-apr-1990	J S 11	ZM		64.100	UGG

Site: SORE THT-10-SB

SAPLE	TEST				
DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	27100
*********		******	••••		••••
02-apr-1990	JD 19	AS		8.860	UGG
02-apr-1990	JD19	AS .		4.060	UGG
02-apr-1990	JD19	AS .		8.320	UGG
02-epr-1990	J019	AS		9.170	UGG
02-epr-1990	JD 19	AS		4.360	UGG
02-apr-1990	JD 19	AS		4.370	UGE
02-apr-1990	J019	AS		2.670	UGG
02-apr-1990	JD19	AS		6.490	UGG
02-apr-1990	JD19	AS		1.610	UGS
02-apr-1990	JD19	AS		10.700	UGG
02-apr-1990	JD 19	AS		6.550	UCG
02-apr-1990	J S 11	PS		8.280	200
02-apr-1990	J\$11	ZM		57.500	UGG
02-apr-1990	J\$11	ZM		67.900	UGG
02-apr-1990	J S 11	ZN		61.500	UGG
02-apr-1990	J\$11	ZN		71.000	UGG
	02-apr-1990 02-apr-1990 02-apr-1990 02-apr-1990 02-apr-1990 02-apr-1990 02-apr-1990 02-apr-1990 02-apr-1990 02-apr-1990 02-apr-1990 02-apr-1990 02-apr-1990 02-apr-1990 02-apr-1990 02-apr-1990	O2-apr-1990 JD19 O2-apr-1990 JD19 O2-apr-1990 JD19 O2-apr-1990 JD19 O2-apr-1990 JD19 O2-apr-1990 JD19 O2-apr-1990 JD19 O2-apr-1990 JD19 O2-apr-1990 JD19 O2-apr-1990 JD19 O2-apr-1990 JD19 O2-apr-1990 JD19 O2-apr-1990 JD19 O2-apr-1990 JD19 O2-apr-1990 JD19 O2-apr-1990 JD19 O2-apr-1990 JD19	O2-apr-1990 JD19 AS O2-apr-1990 JD19 AS O2-apr-1990 JD19 AS O2-apr-1990 JD19 AS O2-apr-1990 JD19 AS O2-apr-1990 JD19 AS O2-apr-1990 JD19 AS O2-apr-1990 JD19 AS O2-apr-1990 JD19 AS O2-apr-1990 JD19 AS O2-apr-1990 JD19 AS O2-apr-1990 JD19 AS O2-apr-1990 JD19 AS O2-apr-1990 JD19 AS O2-apr-1990 JD19 AS O2-apr-1990 JD19 AS	O2-apr-1990 J019 AS 02-apr-1990 J019 AS	O2-apr-1990 J019 AS 8.860 O2-apr-1990 J019 AS 8.860 O2-apr-1990 J019 AS 4.060 O2-apr-1990 J019 AS 8.320 O2-apr-1990 J019 AS 8.320 O2-apr-1990 J019 AS 9.170 O2-apr-1990 J019 AS 9.170 O2-apr-1990 J019 AS 4.360 O2-apr-1990 J019 AS 2.670 O2-apr-1990 J019 AS 2.670 O2-apr-1990 J019 AS 1.610 O2-apr-1990 J019 AS 1.610 O2-apr-1990 J019 AS 1.610 O2-apr-1990 J019 AS 10.700 O2-apr-1990 J019 AS 5.50 O2-apr-1990 J019 AS 5.50 O2-apr-1990 J019 AS 5.50 O2-apr-1990 J019 AS 6.550

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil Page 23

From: 01-jan-75 To: 09/07/90 (Sooleans LT and ND are excluded)

Site: BORE THT-10-SB (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
		•••••	•••••			
35.0	02-apr-1990	LN19	MEC6H5		0.001	UGG
15.0	02-apr-1990	LM19	UNK071		0.021	UGG

Site: BORE THT-11-58

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
		•••••	******	••••	**********	•••••
5.0	02-apr-1990	JD19	AS		2.900	UGG
10.0	02- apr-1990	JD19	AS		3. <i>7</i> 50	UGG
15.0	02-apr-1990	JD19	AS		16.000	UGG
20.0	02-apr-1990	JD19	AS		5.620	UGG
25.0	02-apr-1990	JD19	AS.		1.820	UGG
30.0	02-apr-1990	JD19	AS		2.080	UGG
35.0	02-apr-1990	JD 19	AS		4.120	UGG
40.0	02-apr-1990	JD 19	AS		3.580	UGG
45.0	02-apr-1990	JD19	AS		3.140	UGG
50.0	02-apr-1990	JD 19	AS		8.120	UGG
35.0	02- apr-1990	JD19	AS ·		3.530	UGG
15.0	02-epr-1990	J S 11	ZN		80.300	UGG
35.0	02-spr-1990	LN19	UNK112		0.008	UGG

Sice: BORE THT-12-58

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
		•••••				
40.0	04-epr-1990	JD 19	AS		2.820	UGG
35.0	04-apr-1990	J\$11	ZN		65.600	UGG
40.0	04-apr-1990	LH19	TRCLE		0.003	UGG
5.0	04-apr-1990	LW12	135TNB		18.000	UGG
10.0	04-apr-1990	LW12	135TNB		38.000	UGG
15.0	04-apr-1990	LW12	135TNB		49.000	UGG
20.0	04-apr-1990	LW12	135TH8		14.900	UGG
25.0	04-apr-1990	LW12	135TH8		11.700	UGG
30.0	04-epr-1990	LW12	135TN#		7.780	UGG
35.0	04-epr-1990	LW12	135TH8		7.980	UGG
40.0	04-apr-1990	LW12	135TN6		1.320	UGG
45.0	04-epr-1950	LW12	135TN6		1.300	UGG
50.0	04-apr-1990	LW12	135THB		2.350	UGG
40.0	04-apr-1990	LW12	135TH8		0.837	UGG

Page 24

Analytical Results for Chemical Soil From: 01-jan-75 To: 09/07/90 (Scoleans LT and ND are excluded)

Site: SCRE THT-12-SB (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	•••••		••••••		•••••	
5.0	04-apr-1990	LW12	246TNT		26.000	UGG
10.0	04-epr-1990	LW12	246TNT		4.010	UGG
15.0	04-apr-1990	L¥12	246TNT		14.500	UGG
20.0	04-apr-1990	LW12	246TNT		9.480	UGG
25.0	04-apr-1990	LW12	246TNT		3.730	UGG
30.0	04-epr-1990	LW12	246TNT		4.620	UGG
35.0	04-apr-1990	LW12	246TNT		0.494	UGG
10.0	04-apr-1990	LW12	24DNT		0.959	UGG
15.0	04-apr-1990	LW12	24DNT		1.940	UGG
20.0	04-apr-1990	LW12	24DNT		0.995	UGG
25.0	04-apr-1990	LW12	24DNT		0.7 69	UGG
30.0	04-apr-1990	LW12	240NT		0.739	UGG
5.0	04-epr-1990	LW12	HPCK		4.980	UGG
10.0	04- apr-1990	LW12	HPCC		14.900	UGG
15.0	04-apr-1990	LW12	:MOX		3.860	UGG
20.0	04-apr-1990	LW12	HPCC		1.410	UGE
25.0	04-apr-1990	LW12	HOC		3.120	UGG
30.0	04-apr-1990	LW12	HINDL		2.280	UGG
33.0	04-apr-1990	LW12	HPCK		2.320	UGG
5.0	04-apr-1990	LW12	ROX		59.000	UGG
10.0	04-apr-1990	LW12	RDX		16.200	UGG
15.0	04-apr-1990	LW12	ROX		4.720	UGG
20.0	04-apr-1990	LW12	ROX		2.720	UGG
25.0	04-apr-1990	LW12	ROX		9.560	UGG
30.0	04-apr-1990	LW12	RDX		4.350	UGG
35.0	04-apr-1990	LU1Z	ROX		12.000	UGG
40.0	04-apr-1990	LW12	RDX		1.980	UGG
45.0	04-apr-1990	LU12	RDX		1.340	UGG
50.0	04-epr-1990	LW12	RDX		1.770	UGG
40.0	04-epr-1990	LW12	RDX		1.260	UGG

Site: BORE THT-13-SB

SAMPLE DEPTH (ft)	SAMPLE DATE	TEST METHOD	СОМРОИМО	BOOL	CONCENTRATION	UNITS
*****	••••••	•••••	• • • • • • • • •	• • • •	•••••	
40.0	05-apr-1990	J 019	A8		3.040	UGG
5.0	05-epr-1990	LH19	TRCLE		0.028	UGG
5.0	05-epr-1990	LW12	35THE		29.000	UGG
10.0	05-apr-1990	LW12	135TH8		25.000	UGG
15.0	05-apr-1990	LU12	135TH8		30.000	UGG
20.0	05-epr-1990	LW12	135THB		22.000	UGG
25.0	05-apr-1990	LW12	135TH6		35.000	UGG
30.0	05-err-1990	LW12	135TH8		6.930	UGG
35.0	05- apr-199 0	LW12	135TM8		3.810	UGG

Analytical Results for Chemical Soil from: 01-jan-75 To: 09/07/90 (Booleans LT and NO are excluded) Page 25

Site: BORE THT-13-SB (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
						••••
40.0	05-apr-1990	LW12	135TNB		10.200	UGG
45.0	05-apr-1990	LW12	135TNB		3.320	UGG
50.0	05-epr-1990	LU12	135TNB		6.620	UGG
40.0	05-apr-1990	LW12	135TNB		11.200	UGG
10.0	05-apr-1990	LW12	246TNT		1.230	UGG
15.0	05-apr-1990	L¥12	246TNT		2.260	UGG
20.0	05-apr-1990	LW12	246TNT		5.260	UGG
25.0	05-apr-1990	LW12	246TNT		11.400	UGG
30.0	05-apr-1990	LW12	246TNT		3.690	UGG
35.0	05-apr-1990	LW12	246TNT		1.120	UGG
40.0	05-apr-1990	LW12	246TNT		1.720	UGG
40.0	05-apr-1990	LW12	246TNT		1.120	UGG
15.0	05-apr-1990	LW12	240NT		1.640	UGG
20.0	05-apr-1990	LW12	240NT		0.895	UGG
25.0	05-apr-1990	LW12	24DNT		3. <i>9</i> 90	UGG
40.0	05-apr-1990	LW12	24DNT		0.496	UGG
40.0	05-apr-1990	LW12	24DNT		0.608	UGG
5.0	05-apr-1990	LW12	HMDC		4.730	UGG
10.0	05-epr-1990	L¥12	HPCK		5.330	UGG
15.0	05-apr-1990	LW12	HIPCE		5.250	UGG
20.0	05-apr-1990	LW12	HPO(3.950	UGG
25.0	05-epr-1990	LW12	HORK		17.900	UGG
30.0	05-apr-1990	LU12	HOCK		1.270	UGG
35.0	05-apr-1990	LW12	HMDC		0.817	UGG
40.0	05-apr-1990	LW12	HOSE		0.921	UGG
40.0	05-apr-1990	LW12	HPDC		0.921	UGG
5.0	05-apr-1990	LW12	ROX		2.100	UGG
10.0	05-epr-1990	LW12	ROX		2.650	UGG
15.0	05-apr-1990	LW12	ROX		3.470	UGG
20.0	05-epr-1990	LW12	RDX		4.980	UGG
25.0	05- apr-1990	LW12	RDX		13.300	UGG
30.0	05-epr-1990	LW12	ROX		2.800	UGG
35.0	05-epr-1990	LW12	ROX		6.520	UGG
40.0	05-apr-1990	LW12	RDX		8.440	UGG
45.0	05-epr-1990	LW12	RDX		2.890	UGG
50.0	05-apr-1990	LW12	ROX		1.870	UGG
40.0	05-apr-1990	LW12	RDX		8.710	UGG

Installation: Sierra Ordnance Depot

Analytical Results for Chemical Soil From: 01-jan-75 To: 09/07/90

(Socieens LT and ND are excluded)

Page 26

Site: BORE THT-14-SB

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	*******	•••••	•••••	••••	**********	•••••
5.0	09-apr-1990	LW12	135TMB		22.200	ues
10.0	09-apr-1990	LW12	135TNB		16.600	ugg
15.0	09-apr-1990	LW12	135TNB		3.770	ugg
20.0	09-apr-1940	LW12	135TN8		7.170	ugs .
25.0	09-apr-1990	LW12	135TNB		5.900	ues
30.0	09-apr-1990	LW12	135TNB		5.260	ugg
35.0	09-apr-1990	LW12	135TNB		9.280	UGG
45.0	09-apr-1990	LW12	135TNB		9.970	UGG
50.0	09-apr-1990	LW12	135TNB		10.400	UGG
40.0	09-apr-1990	LW12	135TH8		3.730	UGG
20.0	09- apr- 1990	LW12	246TNT		3.420	UGG
25.0	09-apr-1990	LW12	246TNT		1.190	UGG
30.0	09-apr-1990	LW12	246TNT		1.150	UGS
50.0	09-apr-1990	LW12	246TNT		1.130	ues
5.0	09-apr-1990	LW12	24DNT		1.160	UGG
20.0	09-apr-1990	LW12	24DNT		1.120	UGG
50.0	09-apr-1990	LW12	24DNT		0.557	uee
5.0	09-apr-1990	LW12	HMDC		5.190	UGG
10.0	09-apr-1990	LW12	HIPOX		5.280	UGG
20.0	09-apr-1990	LW12	HPCK		1.870	uee
25.0	09-apr-1990	LW12	HOCK		1,040	UGG
35.0	09-apr-1990	LW12	HPCK		0.713	UGG
10.0	09-apr-1990	LW12	ROX		0.790	UGG
15.0	09-apr-1990	LW12	ROX		1.140	UGG
20.0	09-apr-1990	LW12	ROX		2.460	UGG
25.0	09-apr-1990	LW12	RDX		3.840	UGG
30.0	09-apr-1990	LW12	ROX		1.360	
35.0	09-apr-1990	LW12	ROX		6.630	UGG
40.0	09-apr-1990	LW12	ROX		1.400	UGG
45.0	09-apr-1990	LW12	RDX			UGG
50.0	09-apr-1990	LW12	ROX		3.550	UGS
40.0	09-apr-1990	LW12	RDX		5.700	UGG
	·		~~		3.420	UGG

Site: SORE THT-15-58

SAMPLE DEPTH (ft	SAMPLE) DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
•••••	*******	•••••	•••••		••••••	
5.0	05-apr-1990	JD19	AS		4.510	UGG
10.0	05-apr-1990	JD 19	AS .		3.090	UGG
15.0	05-epr-1990	JD 19	AS		13.000	ugg
20.0	05-epr-1990	JD19	AS		1.230	UGG
25.0	05-apr-1990	JD 19	AS		2.910	ugg
30.0	05-apr-1990	JD19	AS		9.570	ugg
35.0	05-apr-1990	JD19	AS		4.220	
_	05-apr-1990	JD 19	AS		5.300	UGG
45.0	05-apr-1990	JD19	AS		2.440	ugg ugg

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 09/07/90 Page 27

From: 01-jan-75 To: 09/07/90 (Scoleans LT and HD are excluded)

Site: SORE THT-15-S8 (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft)		METHOD	COMPOUND	800L	CONCENTRATION	UNITS
UEPIN (TE				••••		
50.0	05-apr-1990	JD19	AS		3,060	UGG
40.0	05-apr-1990	JD19	AS		4.470	UGG
40.0	03- 0 44 (990	••••	N •			-
5.0	05-apr-1990	LY12	135TNB		28.000	UGG
10.0	05-apr-1990	LU12	135TH8		20.600	UGG
15.0	05-apr-1990	L¥12	135TNB		19.200	UGG
20.0	05-apr-1990	LY12	135TN8		7.990	UGG
25.0	05-apr-1990	LU12	135TN8		15.700	UGG
30.0	05-apr-1990	L¥12	135TNB		6.230	UGG
35.0	05-apr-1990	LW12	135TNB		7.270	UGG
40.0	05-apr-1990	LW12	135TH8		14.700	UGG
45.0	05-apr-1990	LW12	135TH8		9.270	UGG
50.0	05-apr-1990	LW12	135TN8		1.380	UGG
40.0	05-apr-1990	LW12	135TN8		14.400	UGG
5.0	05-apr-1990	LW1Z	246TNT		1.020	UGG
10.0	05-epr-1990	LW12	246TNT		0.817	UGG
15.0	05-apr-1990	LU12	246THT		7.540	UGG
20.0	05-apr-1990	LW12	246TNT		0.589	UGG
25.0	05-apr-1990	LW12	246TNT		4.650	UGG
30.0	05-apr-1990	LW12	246TNT		2.140	UCG
40.0	05-epr-1990	LW12	246TNT		0.621	UGG
45.0	05-apr-1990	LV12	246TNT		0.901	UGG
40.0	05-epr-1990	LW12	246THT		0.658	UGG
5.0	05-apr-1990	LW12	240NT		0.627	UGG
15.0	05-apr-1990	LW12	240NT		1.420	UGG
25.0	05-apr-1990	LW12	240NT		1.250	UGG
45.0	05-epr-1990	FA15	24DNT		0.548	UGG
5.0	05-apr-1990	LW12	HINDE		4.730	UGG
10.0	05-apr-1990	LW12	HACK		3.300	UGG
15.0	05-apr-1990	LW12	MAC		3.990	UGG
20.0	05-epr-1990	FR15	HOCK		0.814	UGG
25.0	05-apr-1990	LU12	HINDE		5.600	UGG
30.0	05-epr-1990	FAIS	HIPCK		0.870	UGG
40.0	05-apr-1990	FAJS	HIPOC		0.852	UGG
45.0	05-epr-1990	LW12	HACK		0.690	UGG
40.0	05-epr-1990	FR15	HIPEX		0.939	UGG
5.0	05-apr-1990	LW12	ROX		5.840	UGG
10.0	05-apr-1990	LV12	ROX		1.450	UGG
15.0	05-apr-1990	LY12	RDX		6.460	UGG
20.0	05-apr-1990	L¥12	RDX		3.060	290
25.0	05-epr-1990	L¥12	ROX		15.800	UGG
30.0	05-epr-1990	LV12	ROX		2.940	UGS
35.0	05-epr-1990	LW12	RDX		3.150 5.060	ugg
40.0	05-apr-1990	LW12	ROX		5.060 5.960	UGG
45.0	05-apr-1990	LW12	ROX		5.960 3.520	UGG
50.0	05-epr-1990	LW12	ROX			UGG
40.0	05-apr-1990	LW1Z	ROX		6.640	966

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-ian-75 To: 09/07/90

Page 28

From: 01-jan-75 To: 09/07/90 (Booleans LT and HD are excluded)

Site: BORE THT-16-SB

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••		•••••		••••		••••
5.0	10-apr-1990	JD 19	AS		5.700	UGG
10.0	10-apr-1990	JD 19	AS		3.520	UGG
15.0	10-apr-1990	J019	AS		15.000	UGG
20.0	10-apr-1990	JD 19	AS		1.680	UGG
25.0	10- apr-1990	JD19	AS		7.940	UGG
30.0	10- apr-1990	JD19	AS		7.710	UGG
35.0	10- apr-1990	JD19	AS .		4.210	UGG
40.0	10- apr-1990	JD19	AS		4.430	UGG
45.0	10-apr-1990	JD19	AS .		2.380	UGG
50.0	10- apr-1990	JD 19	AS		3.080	UGG
45.0	10-apr-1990	J\$11	ZN		57.600	UGG
5.0	10-apr-1990	LW1Z	135TNB		19.300	UGG
10.0	10-apr-1990	LW12	135TN8		33.000	UGG
15.0	10-apr-1990	LW12	135TNB		42.000	UGG
20.0	10-apr-1990	LW12	135TN8		12.400	UGG
25.0	10-apr-1990	LW12	135TN8		7.260	UGG
30.0	10-apr-1990	LW12	135TH6		4.870	UGG
35.0	10-apr-1990	LW12	135TH8		10.100	UGG
40.0	10-apr-1990	LW12	135TH8		8,540	UGG
25.0	10-apr-1990	LW12	135TH8		7.060	UGG
5.0	10-apr-1990	LW12	246TNT		16.700	UGG
10.0	10-apr-1990	LW12	246TNT		2.060	UGG
20.0	10-apr-1990	LW12	246TNT		2.720	UGG
20.0	10-epr-1990	LW12	240NT		1,640	UGG
20.0	10-apr-1990	LW12	RDX		0.929	UGG
25.0	10-apr-1990	LV12	ROX		0.711	ugg
30.0	10-apr-1990	LW12	ROX		0.686	UGG
35.0	10-apr-1990	LW12	ADX .		0.892	ugg
40.0	10-epr-1990	LW12	ROX		1,740	UGG
45.0	10-apr-1990	LW12	ROX		2.080	UGG
50.0	10-apr-1990	FA15	ROX		1.720	UGG
		****	-W-A		1.720	-

Site: BORE THT-17-SE

SAPLE	SAPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	800L	CONCENTRATION	UNITS
	*********	•••••		••••		
5.0	09-epr-1990	JD19	AS		3.580	UGG
10.0	09-apr-1990	J019	AS		3.250	UGG
15.0	09-epr-1990	JD19	AS		5.180	UGG
20.0	09-apr-1990	J019	AS		1.680	UGG
25.0	09-apr-1990	JD19	AS		4.360	UGG
30.0	09-apr-1990	JD19	AS		13.000	UGS
35.0	09-epr-1990	JD 19	AS.		4.470	UGG
40.0	09-apr-1990	JD19	AS		3.700	ugg

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 09/07/90 (Booleans LT and NO are excluded) Page 29

Site: SORE THT-17-SB (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	500L	CONCENTRATION	UNITS
		•••••	••••••	••••		
45.0	09-apr-1990	JD 19	AS		6.090	UGG
50.0	09-apr-1990	JD 19	AS		2.500	UGG
40.0	09-apr-1990	J S 11	ZN		66.100	UGG
5.0	09-apr-1990	LW12	135TNB		16.900	UGG
10.0	09-apr-1990	LW12	135TN#		21.500	UGG
15.0	09-epr-1990	LW12	135TNB		14.800	UGG
20.0	09-apr-1990	LW12	135TNB		6.600	UGG
25.0	09-apr-1990	LW12	135TN8		11.200	UGG
30.0	09-apr-1990	L¥12	135TN8		4.960	UGG
35.0	09-apr-1990	LW12	135TN#		12.200	UGG
40.0	09-apr-1990	LW12	135THB		17.400	UGG
45.0	09-apr-1990	LW12	135TN#		2.150	UGG
50.0	09-apr-1990	LU12	135TN6		12.900	UGG
25.0	09-epr-1990	LW12	135TN6		8.610	UGG
5.0	09-apr-1990	LW12	246TNT		2.650	UGG
15.0	09-apr-1990	LW12	246TNT		1.910	UGG
40.0	09-apr-1990	LW12	RDX		1.510	UGG
50.0	09-apr-1990	LW12	ROX		1.900	UGG

Site: BORE THT-18-58

SAMPLE	SAMPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	8001	CONCENTRATION	UNITS
•••••			••••••	••••	- /94	
5.0	09-epr-1990	JD19	AS		3,420	UGG
10.0	09-epr-1990	J019	AS		4.810	UGG
15.0	09-apr-1990	J019	AS		3.840	UGG
20.0	09-epr-1990	JD 19	AS		2.460	UGG
25.0	09-epr-1990	JD19	AS		8.510	UGG
30.0	09-apr-1990	JD 19	AS		10.800	UGG
35.0	09-apr-1990	JD 19	AS		4.240	UGG
40.0	09-apr-1990	JD 19	AS		2.080	UGG
45.0	09-apr-1990	JD 19	AS		3.280	UGG
50.0	09-apr-1990	J019	AS		3.960	UGG
25.0	09-apr-1990	LW12	135TM8		7.360	UGG
5.0	09-apr-1990	LW12	135TH6		22.100	UGG
10.0	09-apr-1990	LW12	1357 118		21.000	UGG
15.0	09-apr-1990	LW12	1357NB		27.000	UGG
20.0	09-apr-1990	LV12	135716		4.350	UGG
25.0	09-apr-1990	LV12	135TH8		7.460	UGG
30.0	09-epr-1990	LV12	135TNB		5.730	UQQ
35.0	09-apr-1990	LW12	135TH6		11,000	UGG
40.0	09-epr-1990	LW12	135TNB		4.830	UGG
45.0	09-mar-1990	LW12	1357MB		1.950	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 09/07/90 (Sooleans LT and ND are excluded) Page 30

Site: BORE THT-18-SB (continued)

SAMPLE	SAIPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••			••••••	••••	•••••	••••
50.0	09-apr-1990	LW12	135TNB		0.715	UGG
25.0	09-apr-1990	LW12	246TNT		0.477	UGG
5.0	09-apr-1990	LW12	246TNT		1.870	UGG
10.0	09-apr-1990	LW12	246TNT		0.955	UGG
15.0	09-apr-1990	LW12	246TNT		8.710	UGG
25.0	09-apr-1990	LW12	246TNT		0.722	UGG
25.0	09-apr-1990	LW12	24DNT		0.461	UGG
15.0	09-apr-1990	LW12	24DNT		1.440	UGG
25.0	09-apr-1990	LW12	24DNT		0.723	UGG
15.0	09-epr-1990	LW12	RDX		0.875	UGG
35.0	09-apr-1990	LW12	ROX		1.100	UGG
40.0	09-apr-1990	LW12	RDX		0.650	UGG
45.0	09-apr-1990	LW12	RDX		0.645	UGG

Site: BORE THT-19-SB

SAMPLE	SAMPLE	TEST				
DEPTH (fi	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	•••••	•••••	•••••		•••••	••••
5.0	10-apr-1990	JD19	AS		4.220	UGG
10.0	10-apr-1990	JD19	AS		3.630	UGG
15.0	10-apr-1990	JD19	AS		8.340	UGG
20.0	10-apr-1990	JD 19	AS		2.830	UGG
25.0	10-apr-1990	JD19	AS		6.710	UGG
30.0	10-apr-1990	JD19	AS		29.000	UGG
35.0	10-apr-1990	JD19	AS		4.240	UGG
40.0	10-apr-1990	JD 19	AS		1.180	UGG
45.0	10-apr-1990	JD 19	AS		4.520	UGG
50.0	10-epr-1990	JD19	AS		2.580	UGG
25.0	10-apr-1990	LW12	135TN8		4.080	UGG
5.0	10-apr-1990	LU12	1357MB		16,400	UGG
10.0	10-apr-1990	LW12	1357NB		26.000	UGG
15.0	10-apr-1990	LV12	135TNB		9.830	uee
20.0	10-apr-1990	LV12	135THB		4.480	UGG
25.0	10-epr-1990	LW12	135THB		5.160	UGG
30.0	10-apr-1990	LW12	135TNB		2.720	UGG
35.0	10-apr-1990	LW12	135TNB		10.500	UGG
40.0	10-apr-1990	LW12	135TNB		11.400	UGG
5.0	10-apr-1990	LW12	246TNT		7.360	UGG
15.0	10-apr-1990	LW12	24DNT		1.000	UGG
35.0	10-apr-1990	LU12	240NT		0.445	UGG
40.0	10-apr-1990	LW12	24DNT		0.469	UGG
35.0	10-apr-1990	LW12	RDX		1.260	UGG
40.0	10-apr-1990	LW12	ROX		1.190	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 09/07/90 (Sooleans LT and ND are excluded)

Page 31

Site: COMP THT-01-SS

SAMPLE DEPTH (ft)	SAMPLE DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
				•-••		•••••
0.5	04-apr-1990	00	IGNIT		25.000	DEGC
0.5	04-apr-1990	JD 19	AS		3.640	UGG
0.5	04-apr-1990	LW12	135TNB		110.000	UGG
0.5	04-apr-1990	LW12	246TNT		12000.000	UGG
0.5	04-apr-1990	LW12	HPCC		7.000	UGG
0.5	04-apr-1990	LW12	ROX		310.000	UGG

Site: COMP THT-02-55

SAMPLE DEPTH (ft	SAMPLE DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
•••••	•••••	*****		••••		••••
0.5	04-apr-1990	00	IGNIT		85.000	DEGC
0.5	04-apr-1990	J019	AS		4.570	UGG
0.5	04-apr-1990	LW12	135TNB		120.000	UGG
0.5	04-apr-1990	LW12	246THT		4600.000	UGG
0.5	04-epr-1990	LW12	24DNT		19.000	UGG
0.5	04-apr-1990	LW12	HPOC		23.000	UGG
0.5	04-apr-1990	LW12	ROX		1300.000	UGG

Site: COMP THT-03-55

SAMPLE DEPTH (ft)	SAMPLE DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
	•••••			••••		****
0.5	04-epr-1990	00	IGNIT		90.000	DEGC
0.5	04-apr-1990	JD19	AS		5.870	UGG
0.5	04-apr-1990	LW12	135TNB		48.000	UGG
0.5	04-apr-1990	LW12	246TNT		2200.000	UGG
0.5	04-apr-1990	LW12	Z4DNT		8.200	UGG
0.5	04-epr-1990	LW12	HPDE		10.000	UGG
0.5	04-apr-1990	LW12	ROX		370.000	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil

From: 01-jan-75 To: 09/07/90 (Socieens LT and MD are excluded)

Site: COMP THT-04-SS

SAMPLE DEPTH (ft	SAMPLE) DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••			••••••	••••	••••	••••
0.5	04- apr-1990	00	IGNIT		90.000	DEGC
0.5	04-apr-1990	JD19	AS		5.040	UGG
0.5	04-epr-1990	LW12	135TN8		94.000	UGG
0.5	04-apr-1990	LW12	246THT		8300.000	UGG
0.5	04-apr-1990	LW12	ROX		110.000	UGG

Site: COMP THT-05-SS

SAMPLE	SAPLE	TEST				
DEPTH (fi) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	********	•••••	*******		*********	
0.5	04-apr-1990	00	IGNIT		50.000	DEGC
0.5	04-epr-1990	00	IGNIT	GT	100.000	DEGC
0.5	04-apr-1990	JD 19	AS		5,990	UGG
0.5	04-apr-1990	JD 19	AS		4.180	UGG
0.5	04-apr-1990	LW12	135TNB		41.000	UGG
0.5	04-apr-1990	LW12	135TNB		43.000	UGG
0.5	04-apr-1990	LW12	246TNT		6500,000	UGG
0.5	04-apr-1990	LW12	246TNT		9900,000	UGG
0.5	04-apr-1990	LW12	RDX		2.720	UGG

Site: COMP THT-06-SS

SAMPLE	SAPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	••••••		•••••	••••		
0.5	04-apr-1990	00	IGNIT	GT	100.000	DEGC
0.5	04-apr-1990	J019	A\$		3.440	UGG
0.5	04-apr-1990	LW12	135TNG		22.000	UGG
0.5	04-apr-1990	LW12	246TNT		5900.000	UGG

Page 32

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil

Page 33

From: 01-jan-75 To: 09/07/90 (Sooleans LT and NO are excluded)

Site: COMP THT-07-SS

SAMPLE DEPTH (1	SAMPLE 11) DATE 04-apr-1990	TEST METHOD	COMPOUND	800L	CONCENTRATION 72.000	UNITS
0.5	04-apr-1990	910L	AS		3.210	UGG
0.5 0.5	04-apr-1990 04-apr-1990	LW12 LW12	1357NB 2467NT		11.000 290.000	UGG

Site: COMP THT-08-SS

SAMPLE DEPTH (f	SAMPLE t) DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	2TIMU
0.5	04-apr-1990	00	IGNIT	GT	100.000	OEGC
0.5	04-apr-1998	J019	AS		3.030	UGG
0.5 0.5	04-apr-1990 04-apr-1990	LW12	1357 ng 2467NT		1.420 7.780	UGG

Program ended normally.5

ROUND 2 GROUNDWATER SAMPLE RESULTS
ABANDONED LANDFILL

AEI D. 10	ALF-01-MWA	ALF-02-MWA	ALF-03-MWA	ALF-GW-RB	ALP-01-MWADUP
	SIA DWD+4	CIADUNA?	SIADW7+R	SIADWO	SIADW2+10
	0.7MOVIC	1.7MAYIS	74075	× 74045	
COLLECTION DATE	8/31/90	06/1/30 6/1/30	3	96/1/8	06/15/6
COLLECTKON TIME	17:15	8:45	10:45	9:35	17:25
DEPTH (FEET)	9 0.4	85.5	83.3	•	4 .
PARAMETER NAME	ng/L	ug/L	1/7n	ug/L	
HE D PABAMETERS					
on (Sd. Italia)	7	9	7.1		7
SPECIFIC CONDUCTIVITY @ 25C (umHos/cm)	001	0001	1200		1000
WATER TEMPERATURE (deg.C)					
INORGANES					
ARSENIC	<2.54	6.72	4.16	<2.54	3.41
Mark	19.9	191	52.3	< 5.00	20.2
LFAD	2.6	1.1	3.4	2.1	2.9
SELENIOM	18.7	8.9	16.6	<3.0	¥.
CALCIUM (we/L-CA)	11900	134606	17466	£	11600
SUDRIM (ue/L-NA)	00605	122000	96396	=======================================	53000
	3	=	1250	2	3
CHLORIDE	163606	6550	272886	<2.30	•
SULFATE	322000	430000	251000	<10000	3118
VOLATILE ORGANIC COMPOUNDS					;
CHLOROFORM	<0.50	< 0.50	8 :	9,65	9 50 >
1.2 DICHLUROETHENE	< 0.50	0.62	< 0.50	< 0.50	9 50>
TRCHLOROETHENE	< 0.50	78.3	< 0.50	< 0.50	95 .0 >
EXTRACTABLE ORGANIC COMPOUNDS					
BISZ ETHYLHEXYL)PHTHALATE	<4.8	8.4 >	6.1	8. 4 .8	8 .
	36/	1 11	<2.5	<2.5	<2.5

ROUND 2 GROUNDWATER SAMPLE RESULTS CHEMICAL BURIAL SITE/CONSTRUCTION DEBRIS LANDFILL

	CCB-OI-MAY	CCB 02-MWA	CC B CW KB
Q1 97 1	SIADW2*11	SIADW2+12	SIADW2•13
COLLECTION DATE	06/1/9	6/2/90	06/2/90
COLLECTION TIME	15:10	9:50	8:45
DEPTH (FEBT)	1.11	68.3	•
PARAMETER NAME	ug/L	ug/l.	ug/L
PIRLD PARAMETERS			
pH (Std. Units)	6.9	6.7	
SPECIFIC CONDUCTIVITY @ 25 C (unithus/cm) WATER TEMPERATURE (deg. C)	999	0001	
INCREANES			
ARSENIC	7.8	7.14	<25.4
BARIUM	53.9	31.2	10.3
COPPER	25.1	8.27	8 8 8
LEAD	2.5	2.9	<1.3
SELENIUM	3.3	9.01	< 3.0
ZINC	<21.1	<21.1	77
CALCIUM (wg/L-CA)	72400	113000	1380
SODIUM (ug/L-NA)	37300	\$1500	3
RESIDUE	3.	303	77
CHLORIDE	32100	96800	<2130
SULFATE	•••	236000	0000? >
VOLATHE ORGANIC COMPOUNDS			
CHLOROPORM	<0.0>	< 0.50	2.0
Total Abyertiene	95 0 >	4.67	050 >

ROUND 2 GROUNDWATER SAMPLE RESULTS
DRAW TRENCH SITE

FELD ID	DMO-03-MWA	DMO OF MWA	DMO-05-MWA	DMO GW.RB	DMO 03 MWADUP
C Q Q Y	SIADWZ+1	SIADWO	SIADWOOD	SIA DWO *A	S+CMU VIS
CALL ECTION DATE		- Marie	C TANGED	1-7MAVIC	C-7MOVIE
	2 /31/ 2	2/31/20	2/31/30	2/31/20	5/31/90
COLLECTION TIME	10:20	14:05	15:30	13:45	10:25
DEPTH (FEET)	3	8	7.3	•	8 .
PARAMETER NAME	ug/L	UK/L	ug/L	ug/L	ug/L
FIELD PARAMETERS					
pH (Std. Umits)	9.9	9.9	6.9		***
SPECIFIC CONDUCTIVITY @ 25C (uniflus/cm)	1200	8 11	8		1200
WATER TEMPERATURE (deg. C)					
INORGANES					
ARSENIC	1.7	4.26	4.6	<2.54	<2.54
BARIUM	36.4	18.7	22	< 5.00	34.3
LEAD	7	2.3	<1.3	1.7	4.3
SELENIUM	13.2	6.3	7.11	< 3.0	12.6
CALCIUM (ug/L-CA)	127888	85200	96788	<u>*</u>	12600
SODIUM (vg/LNA)	***	67086	15786	3	7764
RESIDUE	2	3 2	916	=	<u> </u>
CHLORIDE	\$1946	9888	9888	<2130	52500
SULFATE	377000	223000	277888	< 10000	383000
VOLATHE ORGANIC COMPOUNDS					
CHLOROFURM	< 0.50	<0.50 <0.50	95.0>	2.2	05.0 >
METHYLENE CHLARIDE	7.5	< 0.23	<0.23	< 0.23	3
TRICHLOROETHENE	2.56	2.16	5.5	950>	27.2

ROUND 2 GROUNDWATER SAMPLE RESULTS
BASE PRODUCTION WELLS

O CTELD ID	PSW-02	PSW-06	PSW-09	PSW-02DUP
CIEVE	SIADW2*14	SIADW2*16	SIADW2-17	SIADW2*18
COLLECTION DATE	06/1/9	06/1/9	06/1/9	06/1/30
COLLECTION TIME	9:00	9:25	9:35	9:10
DEPTH (FEET)	120	120	120	120
PARAMETER NAME	ug/L	ug/L	J/Jn	ug/L
FIELD PARAMETERS				
pH (34d. Umiu) SPECIFIC CONDUCTIVITY @ 25 C (umHod/cm) WATER TEMPERATURE (ddg. C)				
INORGANICS				
ARSENIC	3.8	4 .	4.37	3.41
BARIUM	39.1	37.7	9.3	25.4
CUPPER	8.26	60.8 >	60° 8 >	C 100
LEAD	3.5	3.9	*	3.3
SELECTOR	< 3.0	<3.0	<3.0	4.4
ZINC	<21.1	50.3	<21.1	51.5
CALCIUM (up/L-C)	10960	96200	3000	117000
SODIUM (we/L'NA)	72800	78406	2698	71400
RESIDUE DISS	131	3	316	25.
CHLORIDE	8183	44400	1690	67500
SULFATE	293000	289000	2000	294000
EXTRACTABLE ORGANIC COMPOUNDS				
CYANIDE	<2.50	<2.50	11.2	1 .3

ROUND 2 GRUUNDWATER SAMPLE RESULTS BACKGROUND WELL

DSB-04-MWA	SIADW2 72	06/8/9	11:25	22.9	1/01				6. 1	8.8	7.7	:	
LABID	COLLECTION DATE	COLLECTION TIME	DEPTH (FIRET.)		PARAMETER NAME	FIELD PARAMETERS pH (84d. Units) SPECIFIC CONDUCTIVITY @ 25 C (unitsalcm) WATER TEMPERATURE (deg. C)	INDRGANCS	ARSENIC	BARIUM	SELENIIV	SILVER	CALCHINA	「マンコルコン 国っていこ

ROUND 2 GROUNDWATER SAMPLE RESULTS TNT LEACHING BEDS

LAB UD COLLECTION DATE COLLECTION TIME DEPTH (FEET)	SIADWOOT					DAM TO INT	TAME OF THE	YAM GOLVE
COLLECTION DATE COLLECTION TIME DEPTH (FEET)		SIADW2-52	SIADW228	SIADW2*29	SIADW2+30	SIADW2•31	SIADW2•32	SIADW2*33
COLLECTION TIME DEPTH (FEET)	00/8/9	09/8/30	06/5/40	06/5/40	0/4/90	0/4/90	06/4/90	06/8/90
DEPTH (FEET)	49	5.0	11.25	9:45	17.40	95	10.20	12:46
		3	5	6 5 5	3	475	3	20.7
			}	<u>.</u>			i	Ì
PARAMETER NAME	ug/L	ug/L	UK/L	ug/L	ug/f.	ug/1.	ug/l.	ug/l.
A (Sed Their)	•	6	6.5	9.9	6.3	7.6	7.6	6.9
SPECIFIC CONDUCTIVITY © 25 C (unification)	8	98	1000	1000	1300	906	920	1000
WATER TEMPERATURE (deg. C)	1	!						
INORGATICS								
ARSENIC	15	12.9	5.44	6.18	7.36	=	5.12	7.5
BARIUM	*	23	21.8	30.6	38.86	18.7	37.39	*
CHROMIUM	<6.02	<6.02	< 6.02	< 6.02	6.07	<6.02	3 .6	<6.02
LEAD	7.5	10.2	9:1	3.4	5.4	3.3	2.9	<1.3
MERCURY	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2
SELENION	< 3.0	<3.0	<3.0	<3.0	3.9	<3.0	<3.0	<3.0
ZINC	<21.1	<21.1	135	562	23.8	.	<21.1	<21.1
CALCIUM (ue/L-CA)	<u>=</u>	15300	81200	84586	26,96	8 15	8428	26606
SODIUM (Me/L-NA)	1990	209000	187000	133000	274600	211000	167000	217000
RESIDUE	3	3	*	3,	1288	8	77.	1
CHLURIDE	# #	9000	132000	3	176066	14000	39567	46.346
SULFATE	18600	185666	76600	216400	258000	257000	233000	102000
VOLATILE ORGANICE COMPOUNDS								
CARBON TETRACHLURIDE	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250
BENZENE	< 0.50	< 0.50	< 0.50	95.0 > 0	< 0.50	< 0.50	< 0.50	9 0.50
CARBON TETRACHLORIDE	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	<0.250
CHLOROBENZENE	<0.50	<0.50	< 0.50	<0.50 <	< 0.50 < 0.50	0 × 0 ×	<0.50	0.50 V
CHLURUFORM	<0.50	< 0.50	<0.50	=	<0.50	0 · 0 · 0	< 0.50	95.0 V
1,2.DICHLUROETHANE	<0.50	< 0.50	< 0.50	< 0.50	<0.50 <	< 0.50	√ 0.50	95 :0 >
METHYLENE CHLORIDE	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23	<.023	<023
TOLUENE	<0.50	6.9 0	< 0.50	< 0.50	< 0.50	<0.50 <	< 0.50	95.0 >
TRICHLOROETHENE	29.7	36.7	<0.50	1.98	2.53	% 0>	< 0.50	0 .50
EXTRACTABLE ORGANIC COMPOUNDS					,	;	;	•
BISC ETHYLHEXYL, PHTHALATE	8 7 >	∞	**	6.5	^ 4	£.5	₹	•
2.4 DINITROTOLUENE	53	\$	<4.5	<45	<45	<45	<45	3
EXPLASIVES								!
2,4 DINITROTOLUENE	4.7	\$. Q	< 0 612	₹0.015	5.93	< 0 612	· 0 012	5
MUX	S. 8	8 . 9	<211	4.18	217	< 3 H	, 2 II	7.7
TETRYI.	90,	90,	90%	90,	۰ 0 0	* :	8 .0	90 >
1, 3, 5 TRINITROBENZENE	643	¥9.2	• 0 626	0.000	215	¥5.	0.00	.
2,4,5 TKINIKOTOI UFNE	. 0 >88	1.22	. 0 188	KRS O	7 2	. C 388	. O SAR	. 0 >88

ROUND 2 GROUNDWATER SAMPLE RESULTS TNT LEACHING BEDS

	TAT OF MWA	TNT-05-MWA	TNT 06 MWA	TNT 07 MWA	TINT-OT-MWB	TNT-01-MWC	F	ייו
	614 (1942) 634	SIADWO 15	STADWO+16	SIADW2+37	SIADW2*38	SIADW2+39	SIADW2•40	SIADW2*41
CIEVI	PC THOUSE		00/9/7	A/A/00	O0/4/4	06/9/90	06/1/30	06/9/9
COLLECTION DATE	0/1/20	26/26	2600	205	2 5		36.00	2.00
CALECTEN TIME	9: * :	9:30 6:30	15:25	12:25	10:55	4:55	CC:07	3 ;
	53.7	58.5	54.6	Se.	Z	*	55.3	2
								,
SA SALETES NAME	nF/F	J/Zn	ug/L	7/ 3 n	ug/L	1/8 0	ug/L	7/80
Thomas in the second se								
ENGLIN PARAMETERS						,	,	•
A Contract of the contract of	6.8	6.7	8 .9	1	6.5	6.7		- }
pri (an One)	0001	008	1600	1000	0001	000	000	98
WATER TEMPERATURE (deg. C)								
INOPCANKS				,		•	•	ţ
	5.65	12	5.65	9.81	7.6	5.65		
AFORNE	15.4	8 .2	52.5	17.6	15.5	**	*	7 .
	× 6.02	<6.02	<6.02	9.5	7.81	<6.02	<6.02	<6.02
CHECOMIUM	6-7	<13	1	9.9	•	=	1.1	19.7
LEAD		<0.7	<0.2	<0.7	<0.2	<0.2	<0.2	<0.2
MERCURY	7.0		3	< 3.0	<3.0	<3.0	<3.0	<3.0
SELENION SELENION		? ?		7 167	<21.1	10.3	*	<21.1
ZINC	1722	Q 9		1000		7500	98682	75.00
CALCIUM (ug/L-CA)								137888
SODIUM (ue/L-NA)	21600	1678	2000	24500		2000		316
RESIDISE	3	716	1536	78				
CHIMINE	18666	96799	233000	95300				
SULFATE	243000	138000	49,960	17600	25,568	808	73388	
SUM EXPRESS CAR STACK OF STACK								
VILATILE URGANE COMPONIS	2,50	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	<0.250
CARBON TETRACHLURIDE	5	95 0>	95.0>	<0.50	<0.50	<0.50	< 0.50	9 .0 ×
BENZENE	55.67	<0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250
CARBON TETRACHLORIDE	5	507	95 0>	<0.50	<0.50	<0.50	<0.50	9.0 >
CHLURCHENZENE	R 5	95 0	95.0>	0.52	<0.50	<0.50	<0.50	0.50
CHLOROFORM	2 S	5	5	<0.50 <0.50 <0.50	<0.50 <0.50	<0.50	<0.50	0.90
I,2 DICHLOROETHANE	5 C C	2023	<0.33	< 0.23	< 0.23	< 0.23	< 0.23	< 0.23
METHYLENE CHLORIDE	67.0	5	50>	< 0.50	<0 50	< 0.50	05 O >	<0.50
TOLUENE TRICHLAROETHENE	05.0 >	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	95. 0 >
SCINCE PROCESSION STATES OF THE PROPERTY OF TH								,
PARACL ABLE VINCENTAL COMMENSAGE BELLEVING	84 >	8 7 >	<4.8	< 4 8	⋄	3	8 .4	4.6
SINTERPOLITION OF THE STATE OF	< 4.5	10.3	<4.5	<4.5	<45	<45	<4.5	\$
EXPLASSIVES	•	9	-	5	50.00	< 0 162	< 0 162	< 0.162
2,4 DANITROTOLUENE	c 0 162	701 n v	168.9	3 7		2	< 2.11	<2.11
KDX	-2 =	= ;	1177	= ***		900	90	90°
1 FTRY!	90 >	90,	00 >		4,40°	< 0.026	0.8885	3.81
L'S'S ININITROBENZENE	3.37	\$	7.34	4.70	0700	9850	SXS O	0.588
2,4 THINIT ROLLING	1.03	, O 588	. 0.588	. 0.588	Suc O .			

ROUND 2 GROUNDWATER SAMPLE RESULTS TIME LEACHING BEDS

PIELD ID	TNT-10-MWA	TNT-10 MWADUP	TNT-10 MWB	TNT 10 MWC	TNT-11 MWA	TNT-12 MWA	TNT 13 MWA	TNT-14-MWA
CAB ID	SIADW2•42	SIADW2*51	SIADW2•43	SIADW2-44	SIADW2*45			SIADW2-48
COLLECTION DATE	06/2/9	06/2/90	06/5/90	06/3/90	06/1/90	06/2/30	06/2/90	0/1/40
COLLECTION TIME	13:30	13:30	11:45	10:45	17:30	12:45	90:61	01:81
DEPTH (FEET)	3	3	\$.95 \$.08	6.53	59.2	803	\$2.2	49.5
PARAMETER NAME	ug/L	ug/L	ug/L	ug/l.	ug/l.	ug/1.	ug/l.	ug/L
PELD PARAMETERS								
pH (Sad. Units)	7.3	7.3	٠	9.9	7	7.1	6	4
SPECIFIC CONDUCTIVITY @ 25 C (umblos/cm)	901	0001	000	920	0081	006	99	900
WATER TEMPERATURE (deg. C)				į		1	}	<u> </u>
NORGANES								
ARSENIC	10.2	9.61	12.8	35.0	16.0	17.7	35	77.1
BARIUM	£.5	\$.	2	32.1	2	25.1	45.6	7
CHROMIUM	213	223	< 6.02	<6.02	< 6.02	<6.02	< 6.02	20:9 >
LEAD	3.8	2.3	2.8	2.9	<1.3	<1.3	**	_
MERCURY	<0.2	<0.2	<02	<0.2	<0.2	< 0.2	9.5	<0.2
SELENIUM	<3.0	<3.0	< 3.0	< 3.0	*	< 3.0	< 3.0	53.2
ZINC	<21.1	<21.1	175	<21.1	<21.1	<21.1	<21.1	<21.1
CALCIUM (ug/L-CA)	8 23	90859	5 73	98800	137600	38786	316	32800
SODIUM (ug/L-NA)	26988	225860	179080	130000	570000	296000	212000	257000
RESIDUE	•	932	23	3	2696	9511	316	976
CHLORIDE	77200	26300	102000	58780	176000	\$	6178	71286
SULFATE	17986	177000	231000	202000	96400	39600	228000	137860
VOLATHE ORGANIC COMPOUNDS								
CARBON TETRACHLARIDE	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	0.267	< 0.250
BENZENE	05:0 >	9 .9	05.0 ×	< 0.50	0.50	< 0.50	95 :0 >	< 0.50
CARBON TETRACHLORIDE	120	=	< 0.250	< 0.250	23	< 0.250	< 0.250	< 0.250
CHLUROBENZENE	05.0 	6.75	0.50	< 0.50	<0.50	90 %	0.50	< 0.50
CHLUROFORM	3 , i	\$ '	05.0 ×	<0.50	3	9.75	0.53	95.0 >
1,2-DICHLARGETHANE	74	23	< 0.50	<0.50 <0.50 <0.50	0.50	0.50	<0.50 <	0
METHYLENE CHLORIDE	<0.23	70°	<0.23	<0.23	<0.23	<0.20>	<0.23	<0.23
	000	6.5	00.00	05.0>	0 . e.	~ ° ×	0X 0 X	93 e?
	8.9	2	R .	96 90	177	78.0	\$	3
EXTRACTABLE ORGANIC COMPOUNDS								
BISQ: ETHYLHEXYL)PHTHALATE	37 >	8 7 >	1.4 >	< 4 8	8 7 ×	# * *	8.4 >	1 • •
2,4 DINITROTOLUENE	<45	< 4 S	<4.5	<45	<4.5	<45	<45	<45
EXPLASSIVES								
2,4 DINFTROTOLUENE	<0012	< 0.012	<0.612	< 0 612	. 0 612	9.769	· 0 012	< 0.612
RDX	<211	· 2 H	< 2.11	<2 H	~2 H	<2 H	<2.11 -2.11	<.2 11
TETRYL	90>	90 >	90×	٠ 0 ٥	90,	90,	90.	90,
1,1,5 TRINITROBENZENE	< 0 626	0.00.	~ 0 626 ·	v. 0 6.26	0.800	1.12	. 0 626	13.4
ELS TRINING TO TO THE SECOND S	NRS O	NRS 0 >	HRS O V	· 0 588	. 0 588	. 0 588	. C 588	. 0 588

ROUND 2 GROUNDWATER SAMPLE RESULTS TAT LEACHING BEDS

FELD ID	TNT-15-MWA	TNT-16 MWA	TNT GW-RB
LAB ID	SIADW2•49	SIADW2+50	SIADW2•53
CALL ECTION DATE	06/2/9	06/09	00/9/9
	37.77	97.7	36.01
	<u> </u>	3.5	67:01
DEPTH (FEET)	7	3	•
PARAMETER NAME	ug/L	ug/L	ug/L
PIELL) PARAMETERS			
pH (Std. Units)	9 .	7.2	
SPECIFIC CONDUCTIVITY @ 25 C (um WATER TEMPERATURE (deg. C)	1400	0001	
ARSENIC	7.14	8.74	<2.54
BARIUM	37.8	12.6	< 5.00
CIROMIUM	<6.02	<6.02	<6.02
LEAD	3.8	2.3	<1.3
MERCIRY	<0.2	<0.2	<0.2
SELENION	7.4	<3.0	<3.0
ZINC	<21.1	<21.1	<21.1
CALCIUM (nell-CA)	27000	9573	819
SODIUM (me/l. NA)	275000	10,200	\$6
	1324	3	\$
	3	3	<2130
SULFATE	229000	221000	00001>
VOLATILE ORGANIC COMPOUNDS			
CARBON TETRACHLORIDE	< 0.250	< 0.250	< 0.250
BENZENE	<0.50	<0.50 <	< 0.50
CARBON TETRACHLORIDE	< 0.250	< 0.250	< 0.250
CHLOROBENZENE	< 0.50	<0.50	0.50
CHLOROFORM	05.0 >	95.0 >	6.63
1,2 DICHLUROETHANE	< 0.50	<0.50 <	< 0.50 <
METHYLENE CHLURIDE	< 0.23	< 0.23	5.4
TOLUENE	<0.50	< 0.50	< 0.50
TRICHLOROETHENE	< 0.50	<0.50	< 0.50
EXTRACTABLE ORGANIC COMPOUNDS	S (
BIS(2-ETHYLHEXYL)PHTHALATE	8 7 >	<4.8	8 : 4 >
2,4 DINITROTOLUENE	<4.5	<4.5	<4.5
EXPLÓSIVES			
2,4 DINITROTOLUENE	< 0 612	< 0 612	<0.612
RDX	6.72	< 2.11	C2.H
TETRYL	90>	<0.0>	007
1,3,5 TRINITROBENZENE	< 0.626	< 0.626	< 0 626
2,4,6 TRINIIROTOI UENE	< 0.588	₹ 0 588	· 0 588

Analytical Method Reporting Limits James M. Montgomery Consulting Engineers Inc.

Table ! (Page 1 of 2)

LM18 EXTRACTABLE ORGANICS IN SOIL BY GC/MS

	F-60 +				
SHORT NAME	STORET	LONG NAME	CKL	UCR	SLOPE
12/768	99492	1,2,4-TRICHLOROBENZENE	0.04	13	0.801
124TCB 12DCLB	99470	1,2-DICHLOROBENZENE	0.11	13	0.734
13DCLB	39472	1,3-DICHLOROBENZENE	0.13	13	0.724
	99469	1.4-DICHLOROBENZENE	0.098	13	0.715
14DCLB 24DCLP	95498	2.4-DICHLOROPHENOL	0.18	13	0.909
24 DMPN	99499	2.4-DIMETHYLPHENOL	0.69	1.3	0.917
24 DNP	99495		2.1	6.7	0.816
24DNT	99474	2,4-DINITROTOLUENE	0.14	13	0.936
ZCLP	99497		0.06	13	0.745
ZCNAP	99464	2-CHLORONAPHTHALENE	0.036		0.847
2NP	99495	2-NITROPHENOL	0.14	13	0.915
33DCBD	99471	3.3-dichlorobenzidine	6.3	13	0.633
46DN2C	99686	2-meteyl-4.6-dinitrophenol	0.55	13	1.060
4BRPPE	99462		0.033		0.921
4CL3C	99683	3-metetl-4-celorophenol	0.095		0.894
4CLPPE	99465	4-celorophenylphenyl ether	0.033		0.826
4NP	99496	4-NITROPHENOL	1.4	33	0.921
ANAPYL	99451	acenapethylene	0.033		0.881
ANTRO	99452	anteracene	0.033		0.870
BECEXM	99459	BIS(2-CHLOROETHOXY) METHANE	0.059		0.863
B2CIPE	99461	BIS(2-CHLOROISOPROPYL) ETHER	0.2	13	0.819
82CLEE	99458	BIS(2-CHLOROETHYL) ETHER	0.033		0.802
BAANTR	99453	Benzo (A) Anteracene	0.17		1.06
BAPTR	99456	Benzo (a) Pyrene	0.25		0.840
SBFANT	99454	Benzo (B) fluorantheme	0.21		0.785
BBZP	99463	BUTTLBENZYL PETEALATZ	0.17		0.963
BCHIPY	99691	BENZO (G.E.I) PERYLENE	0.25		1.020
BRFANT	99454	Benzo (K) fluoranthene		0.67	
CHRY	99690	CERTZENE	0.12		0.816
CL6BZ	99478	eexacelorob enzene	0.033		0.907
CL6CP	98647	Hexacelorocyclopentadiene	6.2	13	0.131
CLSET	99480	HEXACELOROETHANE	0.15	13	0.716
ABABO	99466	DIBENZ [A.H] ANTHRACTHENE	0.21	13	0.999
DEP	99472	DISTRYL PHIRALATE	0.24	6.7	0.927
DMP	99473	DIMETRYL PRIRALATE	0.17	13	
DNBP	99467	DI-W-BUTTL PHTHALATE	0.061		0.935
FANT	9 968 9	PLUOROANTEENE	0.068		0.863
flrene	99692	FLUORENE	0.033		0.856
ECBD	99479	HEXACELOROBUTADIENE	0.23	13	0.747 0.948
ICDPYR	99482	INDENO (1,2,3-CD) PYRENE	0.29	13	0.833
isoper	99483	isophorone	0.033		0.858
NAP	99696	Satiately	0.037		0.840
NB	99485	NITROBENZENE	0.04		0.849
NNDNPA	99487	N-HITROSO, DI-N-PROPYLAMINE	0.2	13	0.848
NNDPA	99488	N-HITROSODIPEZNTLAMINE	0.19	6.7	0.790
PCP	99682	PENTACHLOROPHENOL	1.3		0.790
PHANTR	99489	PSENANTERENE	0.033	3.3	0.909
Pernol	99685	PEZNOL	0.11	3.3	0.845
PYR	99490	Pyrene	U. U.J.	د. د د	U.U-J

LM18 EXTRACTABLE ORGANICS IN SOIL BY GC/MS

SHORT NAME	STORET	LONG NAME	CRL HCR	SLOPE
246TCP	99684	2.4.6-TRICHLOROPHENOL	0.17 13	0.948
26DNT	99475	2.6-DINITROTOLUENE	0.085 13	0.954
DNOP	99476	DI-N-OCTYL PHTHALATE	0.19 6.7	0.712
			NON-CERTIFIED	
NON-CE	RTIFIED AN	VALYTES	CRI	
BENZID	99457	BENZIDINE	0.85	
NNDMEA	99486	n-nitrosodimethylamine	0.14	
12DPH	99477	1.2-DIPHENYL HYDRAZINE	0.14	
CRL UCR SLOPE	UPPER	FIED REPORTING LIMIT IN (mi CERTIFIED RANGE IN (micros SENTS AVERAGE ACCURACY OVER	rams per gram)	Σ

LM18 EXTRACTABLE ORGANICS IN SOIL BY GC/MS SURROGATES

SHORT						-	trol L: AA	IMITS
NAME	SICREI	CONG_NAME	CRL	UCR	SLOPE	ICI	<u>uc:</u>	MAP
-	27//2	2 / C 23 13 24 25 21 21	0.10		0.010	77 /	104 0	
246TBP	97448	2.4.6-TRIBROMOPHENOL		13	0.910	77.4	106.9	
2FBP	98814	2-fluorobiphenyl	0.021	6.7	0.903	65.7	113.8	60.5
2FP	98325	2-FLUOROPHENOL	0.17	13	0.744	61.2	89.5	35.7
NBD5	97022	NITROBENZENE-D5	0.025	6.7	0.858	70.9	103.3	40.8
TRPD14	97449	TERPHENOL-D14	0.34	6.7	1.070	84.6	113.4	36.2
PHEND6	97023	PHENOL-D6	0.23	13	0.824	66.1	98.2	40.4

NOTE: ALL CONTROL LIMITS ARE SUBJECT TO CHANGE AS PER THE USATHAMA QA PLAN CONTROL CHART PROTOCOL

CRL	CERTIFIED REPORTING LIMIT IN (micrograms per gram)
UCR	UPPER CERTIFIED RANGE IN (micrograms per gram)
SLOPE	REPRESENTS AVERAGE ACCURACY OVER THE CERTIFIED RANGE
MAA.	MOVING AVERAGE ACCURACY (percent recovery)
LCL	LOWER CONTROL LIMIT OF THE ACCURACY
UCL	UPPER CONTROL LIMIT OF THE ACCURACY
MAP.	MOVING AVERAGE PRECISION

Source: Hunter/ESE, 1990

1 I

VOLATILE ORGANICS IN SOIL BY GC/MS AND GC CRLs (METHODS LM19 AND LO02)

SHORT		,	LN	419	LO	02*
NAME	STORET	LONG NAME	CRL	UCR	CRL	UCR
	00/00	1.1.1-TRICHLOROETHANE	4.4			-
IIITCE	98692	1,1,1-TRICHLOROETHANE	4.4	200	0.040	5.0
112TCE	98693	1.1-DICHLOROETHENE	5.4	200	0.061	5.0
11DCE	98789	1.1-DICHLOROETHANE	3.9	100	0.051	5.0
11DCLE	98683	1.2-DICHLOROETHENE	23	200	0. 055	5.0
12DCE	97721	1.2-DICHLOROETHANE	3.0	100		_
12DCLE	98684	1.2-DICHLOROPROPANE	1.7	200	0.070	5.0
12DCLP	9 6790 97020	ACETONE	29	200	0.043	5.0
ACET		BROMODICHLOROMETHANE	17.0	100		-
BRDCLM	9 679 1	CIS-1.3-DICHLOROPROPENE	29	200	0.047	5.0
CI3DCP	97723	VINYL ACETATE	3.2 3.2	248	0.062	5.0
CZAVE	97723 9 8795	VINYL CHLORIDE		100	-	-
CHICL	9 6786	CHLOROETHANE	6.2	200	0.031	5.00
CZH5CL		BENZENE	12.0	200	0.029	5.0
C6H6	9 6699 9 6794	TRICHLOROFLUOROMETHANE	1.5	200	0.085	5.0
CCLIF	96680	CARBON TETRACHLORIDE	5.9	100	0.037	5.0
CCLA	98689	METHYLINE CHLORIDE	7.0	200	0.044	5.0
CH2CL2		BROMOMETHANE	12.0	200	0.083	5.0
CHIBER	96785	CHLOROMETHANE	5.7	200	0.031	5.0
CHICL	96787	BROMOFORM	8.8	100	0.18	5.0
CHBR3	96784	CHLOROFORM	6.9	200 .	0.89	5.0
CHCLI	96682		0.87	200	0.038	5.0
CLC6HS	96651	CHLOROBENZENE	0.86	200	0.026	5.0
CSZ	97472	CARBON DISULFIDE	4.4	100	-,-	-
DBRCLM		DIBROMOCHLOROMETHANE	3.1	200	0.081	5.0
ETC6H5	96688	ETHYLBENZENE	1.7	200	0.062	5.0
MEC6H5	98691	TOLUENE	0.78	200	0.028	5.0
MOEK	98801	METHYL ETHYL KETONE	70.0	200	•	-
MIBK	98696	METHYL ISOBUTYL KETONE	27.0	100	•,	-
MNBK	9772	METHYL-N-BUTYL KETONE	32.0	100	•	-
STYR	97734	STYRENE	2.6	200	-,-	-
TI3DCP	96792	TRANS-1,3-DICHLOROPROPENE	2.8	152	0.061	5.0
TCLEA	98793	1,1,2,2-TETRACHLOROETHANE	24	200	0.045	5.0
TCLEE	98690	TETRACHLOROETHENE	0.81	200	0.045	5.0
TRCLE	98694	TRICHLOROETHENE	2.8	200	0.049	5.0
XYLEN	97724	XYLENE	1.5	200	0.086	10.0
CL2BC	96803	DICHLOROBENZENE (TOTAL)	NC 100	_	0.060	10.0
ACROLN		ACROLEIN	NC 100	-	•.•	-
ACRYLO		ACRYLONITRILE	NC 100	-	•.•	-
2CLEVE	96796	2-CHLOROETHYLVINYL ETHER	•.•	-	0.075	5.0
CCL2FZ		DICHLORODIFLUOROMETHANE	•,•	-	0.032	5.0
TIZDCE		TRANS-1,2-DICHLOROETHENE	•,•	-	0.063	5.0
13DCLB		1,3-DICHLOROBENZENE	•,•	-	0.032	5.0
13DMB		m-XYLENE	•.•	-	0.056	10.0

NOTE: ALL LIMITS ARE SUBJECT TO CHANGE AS PER THE USATHAMA QA PLAN CONTROL CHART PROTOCOL

CRL CERTIFIED REPORTING LIMIT IN UCR UPPER CERTIFIED RANGE IN

NC NON-CERTIFIED ANALYTES FOR METHOD LM19 ONLY

. THE CONCENTRATIONS FOR LM19 ARE IN UG/KG

+ THE CONCENTRATIONS FOR LOOZ ANR IN UG/G

LM19
VOLATILE ORGANICS IN SOIL BY GC/MS

SHORT NAME	STORET	CONG NAME	CRL	CZ	SLOPE
LLLTCE	98692	1,1,1-TRICHLOROETHANE	4.4	200	1.200
LIZTCE	98693	1,1,2-TRICHLOROETHANE	5.4	200	1.100
LIDCE	38789	1.1-DICHLOROETHENE	3.9	200	1.070
LIDCLE	98683	1,1-DICHLOROETHANE	2.3	200	1.030
LZDCE	97721	1.2-dichloroethene	3.0	100	0.986
12DCLE	98684	1,2-dichloroethane	1.7	200	1.020
12DCLP	98790	1,2-dichloropropane	2.9	200	1.100
ACET	97020	ACETONE	17.0	100	0.970
BRDCLM	98783	Bromodiceloromethane	2.9	200	1.180
C13DCP	98791	cis-1.3-diceloropropene	3.2	248	1.130
C2AVE	97723	VINYL ACETATE	3.2	100	1.370
C2H3CL	98795	VINYL CELORIDE	6.2	200	1.090
C2H5CL	98786	Celoroethane	12.0	000	1.050
C6 86	9 8699	Benzene	1.5	200	1.020
CCLJF	98794	trichlorofluoromethane	5.9	100	1.170
CCL4	98680	CARBON TETRACELORIDE	7.0	200	1.270
CB2CL2	98689	METHYLINE CELORIDE	12.0	200	0.988
CHIBR	98785	Bromomethane	5.7	200	0.891
CH3CL	98787	Celorometeane	8.8	100	0.882
CHBR3	98784	Bromoform	6.9	200	1.330
CHCL3	98682	Celoroform	0.87	200	1.030
CLC6H5	98681	Calorobenzene	0.86	200	1.070
CS2	97472	CARBON DISULFIDE	4.4	100	0.993
DBRCLM	98788	dibromochloromethane	3.1	200	1.230
etc6H5	98688	etatlbenzene	1.7	200	1.030
MEC685	98691	Toluene	0.78	200	1.020
MEK	98801	methyl ethyl retone	70.0	200	1.140
HIBK	98696	METRYL ISOBUTYL KETONE	27.0	100	1.300
Hnbr		METRYL-N-BUTYL RETONE	32.0	100	1.240
STTR	97734	STYRENE	2.6	200	1.030
T13DCP	98792	Trans-1, 3-Diceloropropene	2.8	152	1.150
TCLEA	98793	1.1.2.2-Tetraceloroethane	2.4	200	1.130
TCLEE	98690	Tetraceloroeteene	0.81	200	1.030
TRCLE	98694	Triceloroethene	2.8	200	1.160
XYLEN	97724	ITLENE	1.5	200	1.010

NOM	NON-CERTIFIED		
CL2BC	98803	DICELOROBENZENE (TOTAL)	100
ACROLN	97028	ACROLEIN	100
ACRYLO	97029	ACRYLONITRILE	100

CRL CERTIFIED REPORTING LIMIT IN (micrograms per kilo-grams)
UCR UPPER CERTIFIED RANGE IN (micrograms per kilo-grams)
SLOPE REPRESENTS AVERAGE ACCURACY OVER THE CERTIFIED RANGE

LM19 VOLATILE ORGANICS IN SOIL BY GC/MS

SURROGATES

SHORT NAME STORET		CONG NAME	CRL	UCR	SLOPE	CONTROL LIMITS MAA LCL UCL MAR			
12DCD4 48FB MEC6D8		1.2-dichloroethane-d4 4-bromofluorobenzene Toluene-d8		200	1.100	91.0 103.2 91.0 107.8 87.0 109.4	21.1		

NOTE: ALL CONTROL LIMITS ARE SUBJECT TO CHANGE AS PER THE USATHAMA QA PLAN CONTROL CHART PROTOCOL

CRL	CERTIFIED REPORTING LIMIT IN (micrograms per kilo-grams)
UCR	UPPER CERTIFIED RANGE IN (micrograms per kilo-grams)
SLOPE	REPRESENTS AVERAGE ACCURACY OVER THE CERTIFIED RANGE
MAA.	MOVING AVERAGE ACCURACY (percent recovery)
LCL	LOWER CONTROL LIMIT OF THE ACCURACY
UCL	UPPER CONTROL LIMIT OF THE ACCURACY
MAP.	MOVING AVERAGE PRECISION

1002
VOLATILE ORGANICS IN SOIL BY GC

SHORT YE	ME	STORET	LONG YAME	CRI	TCE	SLOPE
111705	3	38692	1.1.1-TRICHLOROETHANE	0.04	5.0	0.988
112705	•	98693	1.1.2-TRICHLOROETHANE	0.081	5.0	0.957
LIDCE	ğ	98789	1.1-DICHLOROETHENE	0.051	5.0	0.941
LIDCLE	•	98683	1.1-DICHLOROETHANE	0.055	5.0	0.948
12DCLE		98684	1.2-DICHLOROETHANE	0.071	5.0	0.902
LZDCLP		98790	1.2-Dichloropropane	0.043	5.0	1.00
CCLEVE		98796	2-CHLOROETHYLVINYL ETHER	0.075	5.0	0.799
BRDCLM		98783	Bromodiceloromethane	0.047	5.0	0.921
C13DCP		9 879 1	CIS-1.3-DICHLOROPROPENE	0.062	5.0	0.860
C2H3CL		98795	VINYL CHLORIDE	0.031	5.0	0.921
C2H5CL		98786	Celoroethane	0.029	5.0	0.961
C686	•	9 8699	Benzene	0.085	5.0	0.952
CCL3F		98794	Trichlorofluoromethane	0.037	5.0	0.929
CCL4		9 8680	CARBON TETRACELORIDE	0.044	5.0	0.965
CH2CL2		98689	methyline chloride	0.083	5.0	0.956
CHIBR		98785	Bromometeane	0.031	5.0	0.399
CHICL		98787	Celoromethane	0.18	5.0	0.933
CHBRJ		98784	BROMOFORM	0.031	5.0	0.856
CHCL3	•	98682	Celoroform	0.038	5.0	0.969
CLC6H5	•	98681	Chlorobenzene	0.026	5.0	0.925
DBRCLM		98788	Dibromochloromethane	0.081	5.0	0.957
ETC685	•	98688	etatlbenzene	0.062	5.0	1.03
MEC685	•	98691	TOLUENE	0.028	5.0	0.970
TIJDCP		98792	trans-1.3-dichloropropene	0.081	5.0	0.957
TCLEA		98793	1.1.2.2-Tetrachloroethane	0.045	5.0	0.906
TCLEE	•	98690	TETRACHLOROETHENE	0.045	5.0	0.906
TRCLE	•	98694	TRICHLOROETHENE	0.049	5.0	0.972
XYLEN		97353	XTLENE	0.086	10	1.01
13DCLB		99468	l. 3-dichloros enzene	0.032	5.0	1.01
13DMB		9 8799	1.3-Dimeteylbenzene/m-xylene	0.056	5.0	1.01
CCL2F2		97015	Dicelorodifluorometeame	0.032	5.0	0.921
CL2BZ		98803	Dicelorobenzene	0.06	10	0.990
TIZDCE		98687	TRANS-1,2-DICHLOROETHYLENE	0.063	5.0	0.948

e THESE ARE THE CONTROL AMALITES FOR THIS METHOD
CRL CERTIFIED REPORTING LIMIT IN (micrograms per gram)
UCR UPPER CERTIFIED RANGE IN (micrograms per gram)
SLOPE REFRESENTS AVERAGE ACCURACY OVER THE CERTIFIED RANGE

JS11 METALS IN SOIL BY ICAP

						CON	ITROL L	IMITS
SHORT						MAA		ACCU.
NAME	SICREI	LONG NAME	CRL	UCZ	SLOPE	ICL UCL	MAP	ici ver bee
AG +	1078	SILVER	2.50	50.0	0.965	88.0 118.7	38.6	81.5 110.4 25
AL	1108	ALUMINUM	14.10	5000.0	1.00			
BA	1008	BARIUM	29.6	200.0	0.629			-
BE -	1013	BERYLLIUM	1.86	20.0	0.739	40.3 109.5	87.0	67.2 78.4 9
CD .	1028	CADMIUM	3.05	20.0	0.826	46.6 113.8	84.6	29.1 83.8 47
co	1038	COBALT	15.0	5000.0	0.608			
CR .	99584	CEROMIUM	12.7	5000.0	0.613	40.8 74.8	42.7	56.5 72.2 13.
CU •	1043	COPPER	58.6	5000.0	0.675	31.3 89.9	73.6	25.8 120.5 32
MO	99224	MOLTBDENUM	1.15	5000.0	0.650			
NI •	1068	NICKEL	12.6	5000.0	0.593	38.9 75.0	45.4	54.8 73.3 16.
PB •	1052	LEAD	6.62	50.0	1.05	91.0 126.4	43.8	91.7 119.8 24
SB	1098	ANTIMONY	3.8	5000.0	0.581			
TL .	34480	THALLIUM	31.3	5000.0	0.580	44.9 83.3	48.3	24.3 118.9 82.
7	1088	VANADIUM	13.0	5000.0	0.650			
zn •	1093	ZINC	30.2	5000.0	0.573	88.0 118.7	38.6	81.5 110.4 25

. THESE ELEMENTS ARE THE CONTROL SPIKES FOR THIS METHOD

NOTE: ALL CONTROL LIMITS ARE SUBJECT TO CHANGE AS PER THE USATHAMA QA PLAN CONTROL CHART PROTOCOL

CRL	CERTIFIED REPORTING LIMIT IN (micrograms per gram)
UCR	UPPER CERTIFIED RANGE IN (micrograms per gram)
SLOPE	REPRESENTS AVERAGE ACCURACY OVER THE CERTIFIED RANGE
MAA.	MOVING AVERAGE ACCURACY (percent recovery)
LCL	LOWER CONTROL LIMIT OF THE ACCURACT
UCL	UPPER CONTROL LIMIT OF THE ACCURACT
MAP.	HOVING AVERAGE PRECISION
PREC.	PRECISION OF THE REPLICATE HIGH SPIKE
ACCU.	ACCURACY OF THE REPLICATE HIGH SPIKE

Table δ Metals in Soil by Atomic Absorption

Short Name	Long Name	Method	CRL	UCR	Slope
AS	Arsenic	J D1 9	0.25	10.0	0.842
SE	Selenium	JD15	0.25	10.0	0.757
PB	Lead	J D1 7	0.177	10.0	0.890
AG	Silver	JD18	0.025	1.00	0.882
HG	Mercury	J B01	0.05	1.00	1.02

Note: CRL - Certified Reporting Limit in micrograms per gram.

UCR - Upper Certified Range in micrograms per gram.

Slope - Represents average accuracy over the certified range.

Source: Hunter/ESE, 1990.

LH10
ORGANOCHLORINE PESTICIDES IN SOIL BY GC-EC

SHORT N	AME	STORET	LONG NAME	CRL	UCR	SLOPE
ABHC		98357	BEC. A	9.07	27	0.919
AENSLF	•	98366	endosulfan. A	6.01	24.4	1.030
ALDRN	•	98356	ALDRIN	7.29	25.7	0.988
BBHC		98358	BHC. B	2.57	25.4	0.975
BENSLF	•	98367	ENDOSULFAN. B	6.63	24.4	1.100
DBHC		98359	BHC. D	5.55	25.2	1.280
DLDRN	•	98365	DIELDRIN	6.29	25.4	1.040
ENDRN	•	98369	ENDRIN	6.57	25.2	1.090
ENDRNA		98370	ENDRIN ALDEHYDE	24.0	30.2	0.871
ESFS04		98368	ENDOSULFAN SULFATE	7.63	28.6	1.060
HPCL	•	98371	HEPTACHLOR	6.18	26.2	1.040
HPCLE		98372	HEPTACHLOR EPOXIDE	6.2	26.0	1.040
LIN	•	98360	LINDANE	6.38	26.2	1.030
MEXCLR	•	97818	METROXYCHLOR	71.1	249.0	1.200
PPDDD		98362	DDD-PP	8.26	24.6	1.110
PPDDE		98363	DDE-PP	7.65	28.6	1.060
PPDDT	•	98364	DDT-PP	7.07	28.1	1.010
TXPHEN		98373	Toxaphene	444	1120	1.350
ISODR	•	98649	ISODRIN	4.61	41.2	0.941
CLDAN		98361	CELORDANE	17.7	197	0.839

THESE ARE USED AS CONTROL ANALYTES FOR THIS METHOD

CRL CERTIFIED REPORTING LIMIT IN (micrograms per kilo-grams)

UCR UPPER CERTIFIED RANGE IN (micrograms per kilo-gram)

SLOPE REPRESENTS AVERAGE ACCURACY OVER THE CERTIFIED RANGE

LH16
PCBs IN SOIL BY GCEC

SHORT NAME	STORET	CONG NAME		CRL	UCR	SLOPE
PCB016	98140	PCB 1016		56.6	367	1.19
PC8260	98139	PCB 1260		80.4	407	1.06
PCB221	98351	PCB 1221	NC	66.6		
PC8232	98352	PCB 1232	NC	66.6		
PCB242	98353	PCB 1242	NC	80.4		
PCB248	98802	PCB 1248	NC	80.4		
PC3254	98354	PCB 1254	NC	80.4		

CRL CERTIFIED REPORTING LIMIT IN (micrograms per kilogram)

UCR UPPER CERTIFIED RANGE IN (micrograms per kilogram)

SLOPE REPRESENTS AVERAGE ACCURACY OVER THE CERTIFIED RANGE

NO NON-CERTIFIED ANALYTES AND RLs

LW12 NITROAROMATICS IN SOIL BY EPIC

HORT					MAA		ACCU	_ 3
IAME	LONG NAME	CRL	<u>ucr</u>	SLOPE	<u>ici "ci</u>	MAP	<u>:c: </u>	=
35TNB+	1.3.5-TRINITROBENZENE	0.488	24.4	0.991	74.7 91.2	25.0	90.6 39.6	-
3DNB	1.3-DINITROBENZENE	0.496	24.8	0.952				1
46TNT	2.4.6-TRINITROTOLUENE	0.456	22.8	1.01				
24 DNT -	2.4-DINITRIROLUENE	0.424	21.2	0.938	84.1 105.7	21.7	76.9 38.1	7
CONT	2.6-DINITROTOLUENE	0.524	26.2	0.977				4
MX	CYCLOTETRAMETHYLENE							•
	TETRANITRAMINE	0.666	33.3	1.000				4
· 81	NITROBENZENE	2.41	27.4	0.793	68.9 95.9	27.1	69.7 82.5	11
_	CYCLONITE	0.587	21.9	0.929	67.2 101.8	43.5	71.5 32.5	3
TETRYL	NITRAMINE	0.731	20.2	1.130				1

	40040000 440446000 (TUTE TU /
CRL	CERTIFIED REPORTING LIMIT IN (microgram per gram)
UCR	UPPER CERTIFIED RANGE IN (micrograms per gram)
SLOPE	REPRESENTS AVERAGE ACCURACY OVER THE CERTIFIED RANGE
MAA	MOVING AVERAGE ACCURACY (percent recovery)
LCL	LOWER CONTROL LIMIT OF THE ACCURACY
UCL	UPPER CONTROL LIMIT OF THE ACCURACY
MAP	MOVING AVERAGE PRECISION
PREC	PRECISION OF THE REPLICATE HICH SPIKES
ACCII	ACCURACY OF THE REPLICATE HIGH SPIRES

CONTROL CHART PROTOCOL

Source: Hunter/ESE, 1990

UM18
EXTRACTABLE ORGANICS IN WATER BY GC/MS

	444				
SHORT NAME	STORET	LONG NAME	CRL	UCR	SLOPE
124708	34551	1.2.4-TRICHLOROBENZENE	1.8	50	0.824
120013	34536	1,2-DICHLOROSENZENE	1.7	50	0.856
13DCLB	34566	1.3-DICHLOROBENZENE	1.7	200	0.790
14DCLB	34571	1,4-DICHLOROBENZENE	1.7	200	9.786
24DCLP	34601	2.4-DICHLOROPHENOL	2.9	200	0.930
24 DMPN	34606	2.4-DIMETHYLPHENOL	5.8	100	0.938
24 DNP	34616	2.4-DINITROPHENOL	21.0	100	1.370
24 DNT	34611	2.4-DINITROTOLUENE	4.5	200	0.954
2CLP	34586	2-CELOROPHENOL	0.99	200	0.967
2CNAP	34581	2-CHLORONAPHTHALENE	0.5	200	0.880
2NP	34591	2-NITROPHENOL	3.7	100	0.986
33DCBD	34631	3,3-DICHLOROBENZIDINE	12.0	100	1.530
46DN2C	34657	2-METHYL-4,6-DINITROPHENOL	17.0	100	1.220
48RPPE	34636	4-BROMOPHENTLPHENTL ETHER	4.2	100	0.902
4CL3C	34452	3-METETL-4-CELOROPHENOL	4.0	200	0.989
4CLPPE	34641	4-CHLOROPHENYLPHENYL ETHER	5.1	100	0.856
4CLFFE	34646	4-NITROPBENOL	12.0	100	0.662
ANAPYL	34200	ACENAPHTHYLENE	0.5	50	0.966
ANTRO	34220	ANTERACENE	0.5	100	0.974
B2CEXM	34278	BIS(2-CHLOROETHOXY) METRANE	1.5	50	0.928
B2CIPE	34283	BIS(2-CHLOROISOPROPYL) ETHER	5.3	200	0.834
B2CLEE	34273	BIS(2-CHLOROETHYL) ETHER	1.9	50	0.943
=	34526	BENZO [A] ANTHRACENE	1.6	100	0.996
Baantr Bapyr	34247	BENZO (A) PYRENE	4.7	100	1.120
BBFANT	34230	BENZO (B) FLUORANTEENE	5.4	50	1.050
38ZP	34292	BUTYLBENZYL PETEALATE	3.4	100	1.060
BGRIPY	34521	BENZO (G.E.I) PERYLENE	6.1	50	1.300
BEFANT	34242	BENZO (K) FLUORANTEENE	0.87	100	1.020
CERT	34320	CHRIZINI	2.40	100	0.967
CL6BZ	39700	HEXACELOROBENZENE	1.6	100	0.949
CLOCP	34386	exacelorocyclopentadiene	8.6	100	0.707
CLOCF	34396	HEXACHLOROETHANE	1.5	50	0.818
	34556	DIBENZ (A.E.) ANTERACTEENE	6.5	50	1.160
DBAHA	34336	DISTRYL PHIHALATE	. 2.0	200	0.863
DEP	34341	DIMETEYL PETRALATE	1.5	100	0.807
DMP	39110	DI-W-SUTYL PHIHALATE	3.7	200	1.100
DNBP	34376	FLUOROANTEENE	3.3	100	0.996
FANT	34381	FLUORENE	3.7	50	0.960
FLRENE	34391	HEXACHLOROBUTADIENE	3.4	100	0.731
ECBD	34403	INDENO (1.2.3-CD) PYRENE	8.6	100	1.170
ICDPYR	34408	ISOPHORONE	4.8	50	0.971
ISOPER	34696	NAPHTEALENE .	0.5	20	1.150
NAP	34447	nitrobenzene	0.5	50	0.887
nb Nndnpa	34428	N-NITROSO. DI-N-PROPTLAMINE	4.4	50	0.987
	34428	N-WITROSODIPEENTLAMINE	3.0	200	0.956
nnd p a PCP	39032	PENTACELOROPEENOL	18.0	100	1.260
PHANTR	34461	Phenanterene	0.5	100	1.000
PHENOL	34694	PHENOL	9.2	200	0.542
PYR	34469	PYRENE	2.8	100	0.995
6 4 K	J7797	1000			

UM18 EXTRACTABLE ORGANICS IN WATER BY GC/MS

SHORT NAME	STORET	LONG NAME	CRL	UCR	SLOPE
246TCP	34621	2,4,6-TRICHLOROPHENOL	4.2	100	1.02
26DNT	34626	2.6-DINITROTOLUENE	0.79	200	1.09
DNOP	34596	DI-N-OCTYL PHTHALATE	15.0	100	1.28
			NON-CERTIF	IED	
NON-CE	RITTIED AN	YALYTT	CRL		
BENZID	39120	BENZIDINE	10.0		
NNDMEA	34438	N-NITROSODIMETHYLAMINE	2.0		
LZDPH	34346	1.2-DIPHENYL HYDRAZINE	2.0		
CRL	upper	FIED REPORTING LIMIT IN (mi CERTIFIED RANGE IN (micros	rams per lite	(E)	
Slope	REPRES	SENTS AVERAGE ACCURACY OVER	THE CERTIFIE	D RANG	GE

UM18 EXTRACTABLE ORGANICS IN WATER BY GC/MS

SURROGATES

SEORT							itrol l Ma	IMITS
NAME	STORET	LONG NAME	CRI	IIC B	SLOPE	ICI	UCI	MAP
246TBP		2.4.6-TRIBROMOPEENOL	13.0	200	1.260	64.3	107.6	54.5
2FBP	98321	2-FLUOROBIPHENYL	12.0	100			100.8	44.0
ZFP ·	98316	2-fluoropeenol	17.0	200	0.657	50.6	87.1	46.0
NBDS	98318	NIT ROBENZENE -D5	11.0	100	0.845	66.5	102.0	44.6
TRPD14	97447	TERPEZNOL-D14	14.0	100	0.878	78.0	112.0	42.8
PHEND6	98317	PHINOL-D6	36.0	200	0.50	38.8	63.3	30.9

NOTE: ALL CONTROL LIMITS ARE SUBJECT TO CHANGE AS PER THE USATHAMA QA PLAN CONTROL CHART PROTOCOL

CRL	CERTIFIED REPORTING LIMIT IN (micrograms per liter)
UCR	UPPER CRETIFIED RANGE IN (microgram per liter)
SLOPE	REPRESENTS AVERAGE ACCURACY OVER THE CERTIFIED RANGE
MAA.	HOVING AVERAGE ACCURACY (percent recovery)
LCL	LOWER CONTROL LIMIT OF THE ACCURACY
UCL	UPPER CONTROL LIMIT OF THE ACCURACY
MAP.	MOVING AVERAGE PRECISION

VOLATILE ORGANICS IN WATER BY GC/MS AND GC CRLs (METHODS UMZI AND UO02)

SHORT				UN	/12 0	UC	002
NAME	STORET	LONG NAME		<u>CRL</u>	UCR	CRL	UCR
HITCE	3 4506	1.1.1-TRICHLOROETHANE		0.5	200	2.90	50.0
112TCE	34511	1.1.2-TRICHLOROETHANE		1.2	200	0.667	49.0
11DCE	34501	1.1-DICHLOROETHENE		0.50	200	0.273	51.0
11DCLE	34496	1.1-DICHLOROETHANE		0.68	200	0.773	49. 5
12DCLE	34531	1.2-DICHLOROETHANE		0.50	50	2.95	49.0
12DCLP	34541	1.2-DICHLOROPROPANE		0.50	200	3.16	49.0 49.0
2CLEVE	34576	2-CHLOROETHYLVINYL ETHER		0.71	200	22.1	49.5
BRDCLM		BROMODICHLOROMETHANE		0.59	200	3.06	50.5
CI3DCP	34704	CIS-1.3-DICHLOROPROPENE		0.58	230	3.23	48.5
CHICL	39175	VINYL CHLORIDE		2.6	200	207	50.0
CHICL	34311	CHILOROETHANE		1.9	200	1.60	50.0
C6H6	34030	BENZENE		0.50	200	2.85	49.0
CCLIF	34488	TRICHLOROFLUOROMETHANE		1.4	50	0.828	51. 5
CCLA	32102	CARBON TETRACHILORIDE		0.58	200	2.81	49.0
CHECLE	34423	METHYLINE CHLORIDE		23	100	3.10	49.0
CHIBER	34413	BROMOMETHANE		5.8	100	2.68	50.0
CHECL	34418	CHLOROMETHANE		32	200	1.98	50.0 50.0
CHBR3	32104	BROMOPORM		2.60	200	4.03	52.0
CHCLI	32106	CHLOROFORM		0.5	200	1.26	50.0
CLC6HS	34301	CHLOROBENZENE		0.5	200	0.928	50.5
DBRCLM		DIBROMOCHLOROMETHANE		0.67	100	0.709	51.5
ETC6H5	34371	ETHYLBENZENE		0.5	200	0.990	49.5
MEC6H5	34010	TOLUENE		0.5	200	0.990	49.5
TISDCP	34699	TRANS-1.3-DICHLOROPROPENE		0.70	280	0.675	49.5
TCLEA	34516	1.1.2.2-TETRACHLOROETHANE		0.51	200	1.09	520
TCLEE	34475	TETRACHLOROETHENE		1.6	200	0.677	51.0
TRCLE	39180	TRICHLOROETHENE		0.50	200	3.59	50.0
XYLEN	99649	XYLENE		0.54	200	2.04	102.0
ACET	81552	ACETONE		13.0	200	•.•	
CS2	77041	CARBONDISULFIDE		0.5	200	•.•	-
12DCE	99642	1,2-DICHLOROETHENE (TOTAL)		0.5	200	•.•	_
MEK	81595	2-BUTANONE		6.4	200	•,•	_
CAVE	77057	VINYL ACETATE		8.3	50	•.•	-
MIBK	81596	4-METHYL-2-PENTANONE		3.0	200	•.•	_
MNBK	77103	2-HEXANONE		3.6	200	•.•	_
STYR	77128	STYRENE		0.5	200	•.•	-
CL2BZ	51524	DICHLOROBENZENE	NC	10	_	5.55	111.0
ACROLN	34210	ACROLEIN	NC 1	.00	_	•.•	-
ACRYLO	34215	ACRYLONITRILE	NC 1		_	· •.•	_
CCLIE		DICHLORODIFLUOROMETHANE		•,•	-	2.04	50
TIZDCE		TRANS-1.2-DICHLOROETHENE		-,-	-	0.735	49.0
13DCLB		m-DICHLOROSENZENE		•,•	-	2.50	50.0
13DMB		DI-XYLENE		•.•	-	249	49.5
NOTE:	ALL CO	NTROL LIMITS ARE SUBJECT TO	CHAN	ige as	PER '	THE US	ATHAM

NOTE: ALL CONTROL LIMITS ARE SUBJECT TO CHANGE AS PER THE USATHAMA QA PLAN CONTROL CHART PROTOCOL

CRL CERTIFIED REPORTING LIMIT IN (micrograms per liter)
UCR UPPER CERTIFIED RANGE IN (micrograms per liter)
NC NON-CERTIFIED ANALYTES FOR METHOD UM20 ONLY

UM20 VOLATILE ORGANICS IN WATER BY GC/MS

SHORT NAME	STORET	CONG NAME	CRL	UCR	SLOPE
111705	34506	1.1.1-TRICHLOROETHANE	0.5	200	1.010
112TCE	34511	1.1.2-TRICHLOROETHANE	1.2	200	0.943
LIDCE	34501	l.l-dichloroethene	0.5	200	1.060
IIDCLE	34496	l.l-Dichloroethane	0.68	200	0.983
12DCE	99642	1.2-Dichloroethene	0.5	200	1.030
12DCLE	34531	1.2-Dichloroethane	0.5	50	0.995
12DCLP	34541	1.2-DICHLOROPROPANE	0.5	200	1.020
2CLEVE	34576	2-CHLOROETHYLVINYL ETHER	0.71	200	1.010
ACET		ACETONE	13.0	50	0.907
BRDCLM		- BROMODICELOROMETHANE	0.59	20 0	1.020
C13DCP	34704	CIS-1.3-DICHLOROPROPENE	0.58	230	1.020
CZAVE		VINYL ACETATE	8.3	50	0.984
C2H3CL	39175	VINTL CHLORIDE	2.6	200	0.964
C2H5CL	34311	CHLOROETHANE	1.9	200	0.980
C6E6	34030	BENZENE	0.5	200	1.010
CCL3F	34488	TRICELOROFLUOROMETHANE	1.4	50	0.998
CCL4	32102	CARBON TETRACHLORIDE	0.58	200	1.050
CH2CL2	34423	METHYLINE CHLURIDE	2.3	100	1.060
CHIBR		BROMOMETEANE	5.8	100	1.010
CH3CL	34418	CELOROMETHANE	3.2	200	0.952
CHER3 CHCL3	32104 32106	Bromoform Celoroform	2.6	200	1.050
	34301	CRICROFORM	0.5	200	0.975
CLC6H5 CS2		CALOROBERZERE CARBON DISULFIDE	0.5	200	1.040
DBRCLM	32105	DIBROMOCHLOROMETHANE	0.5	200	0.882
ETC6H5	34371	ETHYLBENZENE	0.67	100	0.981 1.050
MEC6H5	34010	TOLUENE	0.5 0.5	200 200	1.030
MEE		METHYL ETHYL KETONE	_	200	0.992
MIBK	81596	METHYL ISOBUTYL KETONE	6.4 3.0	200	0.918
MNBK	77103	METETL-N-BUTTL RETONE	3.6	200	0.917
STYR	77128	STYRENE	0.5	200	1.100
TIBDCP		TRANS-1, 3-DICHLOROPROPENE	0.5	280	0.964
TCLEA	34516	1,1,2,2-TETRACHLOROETHANE	0.7	200	1.030
TCLEE	34415	TETRACELOROETEENE	1.6	200	0.984
TRCLE	39180	TRICELOROETHEN	0.5	200	1.050
XYLEN	99649	XYLENE	0.3	200	1.060
rs a beat a co	,,,,,	# # # # # # # # # # # # # # # # # # #	V. 84	200	1.000

NON_CE	RTIFIED A	NALYTES	NOM-CERTIFIED
CL28C	81524	DICELOROBENZENE (TOTAL)	10
ACROLN	34210	ACROLEIN	100
ACRYLO	34215	ACRYLONITRILE	100
CRL UCR		FIED REPORTING LIMIT IN (mi CERTIFIED RANGE IN (microg	
SLOPE		SENTS AVERAGE ACCURACY OVER	

UM20 VOLATILE ORGANICS IN WATER BY GC/MS

SURROGATES

						CONTROL 1:	TIMI
SHORT						MAA	
YAME	<u> </u>	LONG NAME	CRI	TCR	SLOPE	ici uci	MAP
120004	98812	1.2-DICHLOROETHANE-D4	23.0	200	0.881	86.2 102.8	
⊸BFB		4-bromofluorobenzene	6.5	200	1.110	92.2 107.2	19.3
MEC6D8	98810	TOLUENE-D8	0.5	200	1.060	92.0 110.0	22.7
NOTE:		TROL LIMITS ARE SUBJECT NTROL CHART PROTOCOL	TO CH	ANGE	AS PER	THE USATHAMA	QA
UC SI MA	RL IR LOPE IA.	CERTIFIED REPORTING LI UPPER CERTIFIED RANGE REPRESENTS AVERAGE ACC MOVING AVERAGE ACCURAC LOWER CONTROL LIMIT OF	IN (mi URACY Y (per THE A	crosi OVER cent CCURA	THE CER THE CER THEOVER	Liter)	
	P.	UPPER CONTROL LIMIT OF MOVING AVERAGE PRECISE		CCURA	ic i		

UO02 VOLATILE ORGANICS IN WATER BY GC

SHORT NAME	STORET	CONG NAME	CRL	UCR	SLOPE
IIITCE 3	34506	1.1.1-TRICHLOROETHANE	2.9	50	1.08
112TCE	34511	1,1,2-TRICHLOROETHANE	0.332	49	1.10
LIDCE 3	34501	1.1-dichloroethene	0.393	51	1.06
LIDCLE	34496	1.1-DICHLOROETHANE	0.334	49.5	1.03
12DCLE	34531	1,2-dichloroethane	2.95	49	1.08
12DCLP	34541	1.2-DICHLOROPROPANE	3.16	49	1.09
2CLEVE	34576	2-CHLOROETHYLVINYL ETHER	22.1	49.5	
BRDCLM	32101	Bromodiceloromethane	3.06	50.5	
Clidcp	34704	CIS-1.3-DICELOROPROPENE	3.23	48.5	
C2H3CL	39175	VINTL CHLORIDE	2.07	50	1.16
C2H5CL	34311	CHLOROETHANE	1.6	50	1.24
C6 H6 3	34030	Benzene	0.651	49	1.07
CCL3F	34488	TRICELOROFLUOROMETHANE	0.503		1.06
CCL4	32102	CARBON TETRACELORIDE	2.81	49	1.03
CH2CL2	34423	METHYLINE CHLORIDE	3.1	49	1.05
CH3BR	34413	BROMOMETHANE	2.68	50	1.20
CH3CL	34418	CHLOROMETHANE	1.98	50	1.04
CHBR3	32104	BROMOFORM	4.03	52	1.06
CHCL3 @	32106	CELOROFORM	1.26	50	1.05
CLC6H5 @	34301	CHLOROBENZENE	0.582	_	0.988
DBRCLM	34306	Dibromochloromethane	0.352		1.10
etc6H5 @	34371	ETHYLBENZENE	0.857		0.999
MEC685 @	34010	Toluene	0.716	_	0.990
T13DCP	34699	Trans-1.3-diceloropropene	0.326	_	1.10
TCLEA	34516	1,1,2,2-Tetrachloroethane	1.09	52	0.935
TCLEE @	34475	Tetraceloroethene	0.677		0.996
TRCLE @	39180	Trichloroethene	3.59	50	1.05
XYLEN	81551	XYLENE	1.73	102	0.995
13DCLB	34566	1.3-dichlorobenzene	1.34	50	0.921
13DMB	77348	1.3-dimethylbenzene	1.56		1.00
CCL2F2	34668	Dicelorodifluoromethane	2.04	50	1.25
CL2BZ	81524	dicelorobenzene	6.22	111	0.942
T12DCE	34546	trans-1.2-dichloroethene	0.427	4.9	1.04

These compounds are used as control spikes for this method.

CRL CERTIFIED REPORTING LIMIT. IN (micrograms per liter)

UCR UPPER CERTIFIED RANGE IN (micrograms per liter)

SLOPE REPRESENTS AVERAGE ACCURACY OVER THE CERTIFIED RANGE

SS10 METALS IN WATER BY ICP

CONTRO	L L	IMI	TS

						,					
SHORT						MAA			AC	כט	
YAME	STORET	LONG NAME	CRL	222	SLOPE		7.5	MAP	: 21	,	PREC
-											
AG	1077	SILVER	4.6	2500	0.989						
AL	1105	ALUMINUM	141	45000	0.891						
8	1022	BORON	50	50000	0.880						
BA	1007	BARIUM	5	10000	1.08						
BE .	1012	BERRYLIUM	5	1000	0.893	71.8	91.8	25.2	92.1	97.1	4.3
BI	1017	BISMUTH	109	25000	1.02						
CA	82032	CALCIUM	500	20000	0.974						
CD +	1027	CADMIUM	4	5000	1.00	75.2 13	28.5	67.1	86.7	109.3	20.1
co	1037	COBALT	25	50000	0.879						
CR .	1034	CHROMIUM	6	5000	1.01	94.1 13	35.4	52.0	92.7	105.6	11.2
cu -	1042	COPPER	8.1	10000	0.985	70.0 13	23.9	67.7	91.5	103.4	10.3
FE	1045	IRON	42.7	500000	0.907						
K	82034	POTASSIUM	375	12500	0.881						
MG	82033	MAGNESIUM	500	20000	0.988						
MN	1055	MANGANESE	2.75	2000	0.934						
MO	1062	HOLY BDENUM	15.3	8000	0.883						
NA	82035	SODIUM	500	50000	0.954						
NI .	1067	NICKEL	34.3	15000	0.860	88.9 10	03.8	18.8	93.0	96.5	3.I
PS	1051	LEAD	18.6	5000	0.945						
58 .	1097	ANTIMONY	38	6000	0.844	59.4 10	08.4	61.0	86.7	96.0	3.1
SE	1147	SELENIUM	71.1	75000	0.928						
TE	1064	TELLURIUM	103	2000	0.994						
TL	1059	THALLIUM	81.4	40000	0.857						
y	1087	VANADIUM	11	1000	0.958						
zn •	1092	ZINC	21.1	20000	0.949	76.8 13	20.8	55.8	85.7	103.2	15.2

THESE ELEMENTS ARE THE CONTROL SPIKES FOR THIS METHOD

NOTE: ALL CONTROL LIMITS ARE SUBJECT TO CHANGE AS PER THE USATHAMA QA PLAN CONTROL CHART PROTOCOL

CRL	CERTIFIED REPORTING LIMIT IN (micrograms per liter)
UCR	UPPER CERTIFIED RANGE IN (micrograms per liter)
SLOPE	REPRESENTS AVERAGE ACCURACY OVER THE CERTIFIED RANGE
HAA.	MOVING AVERAGE ACCURACY (percent recovery)
LCL	LOWER CONTROL LIMIT OF THE ACCURACY
UCL	UPPER CONTROL LIMIT OF THE ACCURACY
MAP.	MOVING AVERAGE PRECISION
PREC.	PRECISION OF THE REPLICATE HIGH SPIKE
ACCU.	ACCURACY OF THE REPLICATE HIGH SPIRE

Table 18 Metals in Water by Atomic Absorption

Short Name	Long Name	Method	CRL	UCR	Slope
AS	Arsenic	SD22	0.25	10.0	0.938
SE	Selenium	SD21	3.02	100	0.939
PB	Lead	SD20	1.26	100	0.922
AG	Silver	SD23	0.189	10.0	1.06
TL	Thallium	SD09	6.99	25.0	0.905
HG	Mercury	5801	0.243	10.0	1.03

Note: CRL - Certified Reporting Limit in micrograms per liter.

UCR - Upper Certified Range in micrograms per liter.

Slope - Represents average accuracy over the certified range.

Source: Hunter/ESE, 1990.

-UH13
PESTICIDES IN WATER BY GC-EC

SHORT MAM	E STORET	LONG NAME	CEL	UCR	SLOPE
ABEC	39337	BHC: A	0.038	0.638	0.941
AENSLF -	34361	endosulfan. A	0.022	0.575	1.020
ALDRN -	39330	ALDRIN	0.092	0.606	0.756
3 BHC	39338	BEC. 3	0.018	0.600	0.891
BENSLF -	34356	ENDOSULFAN. B	0.013	0.575	1.160
CLDAN	39 35 0	CHLORDANE	0.246	5.300	0.962
DBHC	34259	BHC. D	0.029	0.594	1.150
DLDRN -	39380	DEILDRIN	0.018	0.600	1.040
ENDRN -	39 39 0	ENDRIN	0.018	0.594	1.320
ENDRNA	34366	ENDRIN ALDEHYDE	0.026	0.713	1.000
ESFS04	34351	endosulfan sulfate	0.079	0.675	0.961
HPCL -	39410	HEPTACHLOR	0.042	0.619	0.849
HPCLE	39420	HEPTACHLOR EPOXIDE	0.024	0.613	1.010
LIN -	39782	LINDANE (BHC, C)	0.051	0.619	0.964
HEXCLR .	39480	METHOXYCHLOR	0.057	1.160	1.260
PPDDD	39310	DDD.PP	0.019	0.581	1.170
PPDDE	39320	DDE.PP	0.025	0.675	0.999
PPDDT -	39300	DDT.PP	0.034	0.663	0.949
TRPBEN	39400	Toxaphene	1.350	11.60	1.000
ISODR -	39430	ISODRIN	0.056	1.1	0.910

CRL CERTIFIED REPORTING LIMIT IN (micrograms per liter)
UCR UPPER CERTIFIED RANGE IN (micrograms per liter)
SLOPE REPRESENTS AVERAGE ACCURACY OVER THE CERTIFIED RANGE
- CONTROL ANALYTES

UH02 PCBs IN WATER BY GCEC

SHORT NAME	STORET	LONG NAME		CRL UCR	SICPE
PCB016 PCB260 PCB221 PCB232 PCB242	34671 39508 39488 39492 39496	PCB 1016 PCB 1260 PCB 1221 PCB 1232 PCB 1242	NC NC NC	0.16 5.4 0.19 6.3 0.160 0.160 0.190	0.826 0.925
PCB248 PCB254	39 5 00 39 5 04	PCB 1248 PCB 1254	NC NC	0.190 0.190	

CRL CERTIFIED REPORTING LIMIT IN (micrograms per liter)
UCR UPPER CERTIFIED RANGE IN (micrograms per liter)
SLOPE REPRESENTS AVERAGE ACCURACY OVER THE CERTIFIED RANGE
NO NON-CERTIFIED ANALYTES AND CRLs

Source: Hunter/ESE, 1990

--

--

. -

. •

•

C-CH90_1/SAD-H_2 02/16/90

Table 2 Miscellaneous Parameters in Water Samples

Short Name	Long Name	USATHAMA Method	CRL	UCR	Slope
CYN PHENLC SO4 CL TDS	Cyanida Total Phanola Sulfate Chloride Total Dissolved Solids	TF18 H2 TT10 TT10 NC*	2.5 7.12 10,000 2120 10,000+	50.0 50.0 300,000 30,000 NA4*	1.00 0.878 0.878 1.00 0.911

*NC - not certified.

+This is the method detection limit.

CRL - certified reporting limit in micrograms per liter. UCR - upper certified range in micrograms per liter.

Slope - average recovery over the certified range.

**NA - not applicable.

Source: Hunter/ESE, 1990.

UW14 NITROAROMATICS IN WATER BY HPLC

					CC	NTROL	LIMITS	-
SHORT					MAA		ACCU	
NAME	LONG NAME	CRI	HCR	SLOPE	151 1701	MAP	101	250
нмх	CYCLOTETRAMETHYLENE							_
	TETRANITRAMINE	1.65	28.9	0.932				
RDX -	CYCLONITE	2.11	43.9	0.851	74.2 110.2	45.3	80.8 113.6	254.
135TNB+	1.3.5-TRINITROBENZENE	0.626	42.1	0.817	60.4 93.4	41.5	70.6 92.4	18.9
13DNB	1,3-DINITROBENZENE	0.519	40.1	0.832				
NB .	NITROBENZENE	1.07	54.9	0.795	63.3 98.5	44.3	66.8 97.7	2 3
TETRYL	NITRAMINE	0.556	44.5	0.749				
246TNT-	2.4.6-TRINITROTOLUENE	0.588	40.2	0.855	57.5 99.3	52.5	74.4 97.4	12-9
26DNT	2.6-DINITROTOLUENE	1.15	52.4	0.767				
24 DNT -		0.612	40.2	0.835	67.8 96.0	35.5	71.8 96.6	21.6
NO		MITS A		JECT TO	CHANGE AS 1	PER THE	USATEAMA QA	PL

NOTE:	ALL CONTROL LIMITS ARE SUBJECT TO CHANGE AS PER THE US
	CONTROL CHART PROTOCOL
•	THESE ELEMENTS ARE THE CONTROL SPIKES FOR THIS METHOD
CRL	CERTIFIED REPORTING LIMIT IN (micrograms per liter)
UCR	UPPER CERTIFIED RANCE IN (micrograms per liter)
MAA	MOVING AVERAGE ACCURACY (percent recovery)
LCL	LOWER CONTROL LIMIT OF THE ACCURACY
UCL	UPPER CONTROL LIMIT OF THE ACCURACY
MAP	MOVING AVERAGE PRECISION
PREC	PRECISION OF THE REPLICATE HIGH SPIKES
ACCU	ACCURACY OF THE REPLICATE HIGH SPIKES

Source: Hunter/ESE, 1990

_

, <u>,</u> ,

.]

Appendix N

Quality Control Results

James M. Montgomery

Consulting Engineers Inc.

TABLE N-1

FIELD DUPLICATE RESIN TS FOR SOIL SANPLES

	_							S-20-133			25 - 103 - 25 10 - 103	
5	Original	2	1000(%)	Pris.		PP0(X)	ودنو	9	PODLY	9.15	9	(X)000
8		0.5		2	2		8	3			ž	
	6/8	8/85		6/60	6/80		8/Bn	6/60		6/60	8/60	
×	B.7	8	12	3.0	3.1	0 1	4.1	18.2	126•	15.6	12.1	×
X	4.21	8.6	35.7	8.	4.63	1.66	3.61	5.1	ž	2.91	2.80	37.0
X	218	208	69.4									
æ	9.11	\$.62	¥				29.9	c6.62	ž			
X	33.6	23.1	\$9.0 °									
X;				<30.2	26.7	MC	7.27	110	36.			
Ignitability (deg. C	, 00,	2	꾶									
58	42.6	9.05	4.81									
58	9630	9 200	*8.07	_								
2				0.1	<0.10	MC	0.16	<0.12	Ş			
00000	-											
L'imit		25-90-833			CCB - 04 - SB			CCB-05-SB			ALF-02-58	
2	Original	go	RPD(X)	Oria.	O.O	RPD(X)	Orie.	gro	RPD(X)	Orio.	g d	RPO(X)
8		'n		S	2		2	2		20	3	
	6/85	6/60		8/8n	6/80		6/60	6/60		6/65	6/60	
;		•	į		•		ý	:	5	•		;
C X	ć.;		2 5	• •	9 9	97.4	0. c.	- 2	1 77			97 37
C X	2.6	2.4	-1.73	77.7	8.	6.0	<u>.</u>	7.01		1.5	8.4	,
C X							7 27	29	91.6	:	9.9	!
C 8					-		7.27	, ,	2			
9								0.67				
Control	of ,											
Limit	t	ALF-03-SB			ALF-04-58			88-90-0H0			DMO-07-58	
268	ઢ	<u>.</u>	(X)	orig.	<u>a</u> 5	(X) QL	oris.	g 5	3 6 6 6 7	orie G	9	(X)
E) C		٠ ز	ָ ק		2 %	9 6		2 5	9,6	
	7/65	2/35		7,75	2		7/85	7.75		2 /25	1/200	
X	3.0	5.9	3.4	6.7	7.0	32•	12.5	12.7	1.59	14.7	13.4	9.25
\$ 2	1.28	0.769	46.65	2.66	1.42	60.8	4.24	6.93	48.5	3.71	6.24	\$0.0
\$2							202	218	5.18	592	233	12.8
52							<1.15	6.07	ž	2.53	2.32	3.
\$2							67.8	97.9	3.83	75.0	76.5	1.98
52							73.5	79.2	7.47	85.4	88.8	8.8
**												

TABLE N-1 (continued) FIELD DUPLICATE RESULTS FOR SOIL SAMPLES

	Control			-									•
	Limit	ı	Deco-07-58			DNO-06-58			DMO-10-SE			Deto - 10 - 58	
Benth (fr.)	88 83	Original 90	9 9 8	(X)Odu	0rig. S0	drig S	RPD(X)	ori g. So	d o	RPD(X)	Orig.	2	(X)OU
	;	, ,	9		9/05))))	2 2		3 %	3	
Noisture (X)	X	10.7	7.2	39*	7.6	11.4	16.1	9.1	9.1	0.0	6.1	5.7	6.8
Arsenic	×	14.4	4.36	107°	7.50	7.45	29.0	3.8	3.51	12.8	4.37	4.22	3.49
Berica	x	<u>3</u>	172	21.9	162	001	58.2*	202	167	21.4	8.6	153	46.2
Lead	\$2	\$	\$6.62)¥	7.32	<6.62)ě						
Mol ybedrus	×				2.31	<1.15	Ş						
Venedium	\$2	48.8	6.03	22.1	35.0	33.4	99.4	55.5	51.1	8.26	47.1	55.8	16.9
Zinc	\$	61.6	65	5.37				59.1	<30.2	¥C	<30.2	58.5	2
	Control												
	Limit		DHO-11-58			Det0-12-SB			DMO-13-SB			TMT-07-58	_
	200	Original	œ B	RPD(X)	Orig.	ang G	RPD(X)	Orig.	9	RPD(X)	Orig.	gro O	RPD(X)
Depth (ft)	8	57	45		2	2		2	. 2		9,	.04	
		8/6n	9/6n		6/60	ug/g		6/60	UQ/9		6/Bn	6/60	
Moisture (X)	\$	=:	- -	8. 8.	۳. م	6.4	53	2	9 .7	*	3.6	4.3	2
Arsenic	x	3.20	5.60	20.7	6.15	4.65	27.8	3.48	3.24	7.14			
Berick	×	36	253	21.4	==	53.4	70.1	120	123	2.47			
Nol ybdenum	\$				2.73	<1.15	ž						
Venedium	\$	54.3	63.4	15.5	35.4	22.5	.9.77	58.6	44.4	43.3*			
2inc	œ	6.83	0.6	13.66									
	Control			•									•
	Limit		THT-08-58			THT-09-SE			THT - 10 - 58			THI - 11-52	
	RPO	Original	One.	RPD(X)	Orig.	dng	(X)QdU	Orig.	grid	(X)OdU	Orig.	dng	RPD(X)
Depth (ft.)	8	32	32		35	35		35	35	_	35	32	
		6/6n	6/60		6/6n	ug/g		6/8n	19/8		6/6n	0/6n	
Noisture (X)	×	4.8	6.0	18.2	10.6	11.5	8.14	12.5	14.5	14.8	12.6	8.8	%
Arsenic	\$2	3.23	3.25	0.62	5.07	\$.6	26.8	6.70	6.55	5.26	4.18	3.56	16.0
Zinc	æ				\$.7	<30.2	NC	9.99	<30.2	NC			

Fage 5

TABLE N-1 (concluded) FIELD DUPLICATE RESULTS FOR SOIL SAMPLES

	ופטנים												
	Limit		THT-12-58			TMT-13-58			INT-14-58			141-15-SB	
	890	Original	ġ O	(X)Odu	Orig.	ding	(X)QJU	Orig.	dig	RPD(X)	Orig.	ğ	RPD(X)
Depth (ft.)	8	3	9		07	0,		9	0,		07	9	
		6/5	6/00		8/80	8/80		9/80	8/80		8/80	8/80	
toleture (X)	×	ş	0	6	1 01	17.5	72 8	9.71	13.1	9	5 71	15.7	8
	3					•				2	}		
treenic	×	4.22	2.05	S	3.55	3.14	12.3	1.92	3.33	2.53	27.5	4.57	17.0
Chronium	×										<12.7	25.2	¥
tickel	×							<12.6	22	2			
linc	X				<30.2	85.3)¥	72.5	85.2	12.5	86.3	2. %	13.9
2,4-041	92				0.5	0.613	20.3						
	58				0.922	0.922	90.0			_	0.652	96.0	9.82
Ž	36	8	1.27	43.7	8.45	8.72	3.15	1.41	3.43	63.5*	5.06	\$.9	27.0
1,3,5-1148	28	1.33	0.837	45.5*	10.2	11.2	9.35	<0.488	3.74	2	14.7	14.5	1.37
2,4,6-181	92				1.72	1.12	42.2				0.621	0.658	2.3
TCE	%	90.0	<0.003	JHC									

	Control			•			•			•			
	Limit		42-61-THT			TMT-17-58			THT - 18-SE			TNT - 19-58	
	26	Original	-dag	RPD(X)	Orig.	di d	RPD(X)	Orig.	фq	RPD(X)	Orig.	фq	RPO(X)
Depth (ft)	8		£		ĸ	X		×	X		×	æ	
		8/85	8/8n		6/81	0/00		8/80	6/60		8/81	8/80	
Moisture (X)	Ø	4.3	4.3	8.0	9.6	9.9	8.30	5.2	2.7	9.5	3.3	5.6	52.7
Arsenic	X	8.2	9.41	16.7	4.4	3.	5.31	8.53	10.8	23.5	22.9	6.2	8 .65
Zinc	X				<30.2	58.3	2						
×Q	36	0.712	<0.587	DE C					_				
1,3,5-1148	92	7.26	7.06	2.2	11.2	8.61	2.92	7.47	2.05	8.3	5.17	4.07	23.8
2,4-DNT	92							0.728	0.456	*0.9 *			
2.4.6-DMT	9 2							0.722	0.477	*6.0%			

Relative percent difference Mot calculated Compound was not detected above listed detection limit RPD is greater than the control limit

TABLE N-2

FIELD DUPLICATE RESULTS FOR ROUND I GROUNDWATER SAMPLES

	200									
	Limit		ALF-03-MA			DHO-05-MA			PSN-02	
PARAVETER	£	orig.	9	2	Orig.	4	2	Orig.	de de	2
		1/80	1/80	(X)	1/85	1/ 6 0	3	1/80	1/60	(X)
INDECALL CS										
ARSENIC	K	×.	7.80	19.7	4.8	4.58	4.69	5.97	5.97	0.00
BARIUM	×	53.5	54.7	27.55	28.9	21.3	30.2	28.4	22.4	23.6
CADMIUM	×									
CHROMIUM	×									
COPPER	×				11.5	6 9. 8 >	¥			
LEAD	23							3.6	9.2	25.00
MERCURY	ĸ									
SELENIUM	×	14.9	15.3	2.65	11.6	11.8	1.71			
Z11C	ĸ	7.75	43.1	9.0	72.1	<21.1	꾶	61.6	61.7	0.16
CALCIUM (ug/L-CA)	×	192000	188000	2.11	009%	95300	1.56	104000	102000	<u>-</u> .
SODIUM (ug/t-NA)	S.	49200	48700	1.02	71300	64300	10.3	87000	11300	154•
RESIDUE, DISS	ĸ	1250	1300	3.92	929	940	99.1	850	99	25.2
CMLORIDE	×	ž	267000	2	63100	59100	6.55	2000	57900	3.23
SULFATE	ĸ	\$	265000	SE SE	323000	326000	0.92	378000	371000	1.87
VOLATILE ORGANIC COMPOUNDS	_									
CARBON TETRACHLORIDE (+)	;	<0.250	0.288)M						
CMLOROFORM	2		1.1	0.00						
TRICHLOROE TWEWE	2				19.6	26.0	28.1			
EXTRACTABLE DREAMIC COMPOUNDS										
BIS(2-ETHYLMENYL) PHTHALATE	25				4.8	4.6	SE SE			
ł										

Results based on semi-quantitative GC analysis. All other VOC results based on GC/MS analysis. Indicates result is greater than control limit. Not calculated.

(concluded) FIELD DUPLICATE RESULTS FOR ROUND I GROUNDWATER SAMPLES TABLE N-2

	1890 Limic		TNT-01-M4A	4		TMT-10-MJA		
FIELD 10	(X)	Orig. ug/L	Dup ug/L	RP0 (X)	Orig.	Ord Ord	84 (X)	
INTEGALICS								
ARSENIC	×	17.0	18.2	6.82	12.0	11.5	4.26	
BARIUM	×	19.2	21.5	11.3	1.75	1.97	0.05	
CADMIUM	×							
CHRONIUM	×				526	757	0.89	
COPPER	X							
0431	x	<1.3	2.1	골	5.2	4.3	3	
MERCURY	×				0.3	<0.2	S.	
SELENIUM	×							
2116	×							
CALCIUM (ug/t-CA)	×	16600	17100	2.97	28400	90909	3.20	
SODIUM (va/L-MA)	×	191000	228000	17.7	267000	271000	1.49	
RESIDUE DISS	×	ž	8 56	0.93	1050	ž	2.48	
CHLORIDE	82	47400	53000	11.2	87900	85500	2.71	
SIM FATE	\$2	186000	196000	6.25	190000	189000	0.53	
WALATHE DECANIC COMPOUNDS								
CARBON TETRACHLORIDE (a)	:							
CHLOROFORM	2							
TRICHLORDETMENE	2							
EXTRACTABLE DEGANIC COMPOUNDS								
BIS(2-ETHYLNEXYL) PHTHALATE	æ							

(a): Results based on semi-quantitative GC analysis. All other VOC results based on GC/MS analysis.
 MC: Mot calculated.
 MA: Not available.

SURROGATE RECOVERIES OUTSIDE CONTROL LIMITS FOR SOIL SAMPLES

Sample ID	Depth ft.	Method	Compound	Recovery %	Control Limits %
ALF-02-SB-MS	40	VOA	Toluene-d8	120	81-117
ALF-03-SB	5	VOA	Toluene-d8	120	81-117
ALF-03-SB	20	VOA	Toluene-d8	120	81-117
ALF-03-SB	25	VOA	Taluene-d8	120	81-117
ALF-03-SB	30	VOA	Toluene-d8	120	81-117
ALF-03-SB	. 35	VOA	4-Bromofluorobenzene	122	74 - 121
• •		VOA	Toluene-d8	120	81-117
ALF-03-SB-DUP	50	SV	2-Fluorobiphenyl	120	30 - 115
ALF-03-SB-MS	25	VOA	Toluene-d8	120	81-117
ALF-04-SB	70	VOA	Toluene-d8	80	81-117
CCB-01-SB	40	VOA	Toluene-d8	80	81-117
CCB-03-SB	88	VOA	Toluene-d8	80	81-117
CCB-04-SB	30	VOA	Toluene-d8	120	81-117
CCB-04-SB-MS	45	VOA	Toluene-d8	80	81-117
DMO-06-SB	90	VOA	Toluene-d8	80	81-117
DMO-07-SBDUP	50	VOA	Toluene-d8	120	81-117
DMO-08-SB	30	VOA	Toluene-d8	80	81-117
DMO-08-SB	35	VOA	Toluene-d8	80	81-117
DMO-08-SB-MS	35	VOA	Toluene-d8	80	81-117
DMO-08-SB	45	VOA	Toluene-d8	80	81-117
DMO-08-SB	50	VOA	Toluene-d8	80	81-117
DMO-08-SB	60	VOA	Toluene-d8	80	81-117
DMO-08-SB	70	VOA	Toluene-d8	80	81-117
DMO-08-SB	80	VOA	Toluene-d8	80	81-117
DMO-09-SB-MS	10	VOA	Toluene-d8	120	81-117
DMO-11-SB	15	SV	2,4,6-Tribromophenol	0	19 -122
• •		SV	2-Fluorobipheny!	0	30 -115
• •		SV	2-Fluorophenol	0	25 - 121
• •		SV	Terphenyl-d14	0	18 - 137
• •		SV	Nitrobenzene-d5	0	23 - 120
• •		SV	Phenol-d5	0	24 - 113
• •		VOA	Toluene-d8	140	81-117
DMO-12-SB	15	SV	2,4,6-Tribromophenol	160	19 - 122
DMO-12-SB-MS	5	SV	2,4,6-Tribromophenol	150	19 - 122
• •		SV	2-Fluorobiphenyl	120	30 - 115
DMO-13-SB	50	VOA	Toluene-d8	120	81-117
DMO-13-SB	70	VOA	Toluene-d8	120	81-117
DMO-13-SBDUP	70	VOA	Toluene-d8	120	81-117
TNT-15-SB	5	VOA	Toluene-d8	120	81-117
TNT-19-SB	35	VOA	Toluene-d8	80	81-117

VOA: Volatile organic analysis, Method LM19 SV: Semivolatile organic analysis, Method LM18

TABLE N-4
SURROGATE RECOVERIES OUTSIDE CONTROL LIMITS
FOR ROUND 1 GROUNDWATER SAMPLES

Sample ID	Method	Compound	Recovery %	Control Limits
ALF-01-MWA	VOA	Toluene-d8	86	88 - 110
ALF-01-MWA-MS	VOA	4-Bromofluorobenzene	82	86 - 115
ALF-03-MWA	VOA	4-Bromofluorobenzene	84	86 - 115
ALF-03-MWA-MS	VOA	4-Bromofluorobenzene	82	86 - 115
DMO-05-MWA	VOA	4-Bromofluorobenzene	84	86 - 115
PSW-02	SV	2,4,6-Tribromophenol	0.99	10 - 123
• •	SV	2-Fluorophenol	0.25	21 - 100
• •	SV	Phenoi-d5	0.17	10 - 94
PSW-02-MS	SV	2-Fluorophenol	1.9	21 - 100
• •	SV	Phenol-d5	1.9	10 - 94
PSW-02-MSD	SV	2.4,6-Tribromophenol	6.7	10 - 123
• •	SV	2-Fluorophenol	1.3	21 - 100
• •	SV	Phenol-d5	1.4	10 - 94
PSW-02DUP	SV	2,4,6-Tribromophenol	1.1	10 - 123
• •	SV	2-Fluorophenol	0	21 - 100
• •	SV	Phenoi-d5	0	10 - 94
PSW-08	SV	2,4,6-Tribromophenol	0	10 - 123
• •	SV	2-Fluorophenol	0	21 - 100
• •	SV	Phenoi-d5	0.14	10 - 94
PSW-09-MS	VOA	Toluene-d8	78	88 - 110
TNT-01-MWADUP	SV	2.4.6-Tribromophenol	130	10 - 123
• •	VOA	4-Bromofluorobenzene	82	86 - 115
• •	VOA	Toluene-d8	86	88 - 110
TNT-02-MWA	VOA	4-Bromofluorobenzene	120	86 - 115
TNT-03-MWA	VOA	Toluene-d8	80	88 - 110
TNT-04-MWA	VOA	Toluene-d8	80	88 - 110
TNT-05-MWA-MS	VOA	Toluene-d8	84	88 - 110
TNT-06-MWA-MS	SV	2,4,6-Tribromophenol	140	10 - 123
TNT-07-MWA	VOA	Toluene-d8	80	88 - 110
TNT-07-MWC	VOA	Toluene-d8	82	88 - 110
TNT-09-MWA	VOA	Toluene-d8	82	88 - 110
TNT-10-MWB	VOA	Toluene-d8	82	88 - 110
TNT-10-MWC	VOA	Toluene-d8	82	88 - 110
	VOA			

TABLE N-4
(concluded)
SURROGATE RECOVERIES OUTSIDE CONTROL LIMITS
FOR ROUND 1 GROUNDWATER SAMPLES

Sample ID	Method	Compound	Recovery	Control
			<u> </u>	Limits
TNT-14-MWA	VOA	Toluene-d8	84	88 - 110
TNT-15-MWA	VOA	Toluene-d8	86	88 - 110
TNT-16-MWA	VOA	Toluene-d8	82	88 - 110
TNT-GW-RB	VOA	Toluene-d8	84	88 - 110
GW-TB, 4/17	VOA	Toluene-d8	86	88 - 110
GW-TB, 4/18	VOA	4-Bromofluorobenzene	84	86 - 115
GW-TB, 4/24	VOA	Toluene-d8	86	88 - 110
GW-TB, 4/25a	VOA	Toluene-d8	80	88 - 110
GW-TB, 4/25b	VOA	Toluene-d8	84	88 - 110
GW-TB, 5/2a	VOA	Toluene-d8	84	88 - 110
GW-TB, 5/2b	VOA	Toluene-d8	84	88 - 110
GW-TB, 5/1	VOA	Toluene-d8	82	88 - 110

VOA: Volatile organic analysis, Method UM20 SV: Semivolatile organic analysis, Method UM18

GW-TB: Groundwater trip blank, followed by the day sample was shipped.

TABLE N-5
SUMMARY OF SOIL MATRIX SPIKE RESULTS

		Control	Total No.		% of Spike
		Limit	Spiked	No. Spikes	Outside
Method	Compound	*	Results	Outside Limits	Limits
Semivolatile Org	ganic Compounds				
(LM18)	Phenol	26 - 90	34	11	32
•	2-Chlorophenol	25 - 102	34	3	8.8
	1,4-Dichlorobenzene	28 - 104	34	1	2.9
	N-Nitroso-di-n-propylamine	41 - 126	34	0	0
	1,2,4-Trichlorobenzene	38 - 107	34	0	0
	4-Chioro-3-methylphenol	26 - 103	34	6	18
	Acenaphthene	31 - 137	34	0	0
	4-Nitrophenol	11 - 114	34	1	2.9
	2,4-DNT	28 - 89	34	13	38
	Pentachlorophenol	17 - 109	34	14	41
	Pyrene	35 - 142	34	0	0
olatile Organic	Compounds				
(LM19)	1,1-Dichloroethene	59 - 172	36	0	0
, ,,	Trichloroethene	62 - 137	36	0	0
	Benzene	66 - 142	36	0	0
	Toluene	59 - 139	36	0	0
	Chlorobenzene	60 - 133	36	0	0
Metals					
(JD19)	Arsenic	75 - 125	50	7	14
(JD15)	Selenium	75 - 125	50	· 50	100
(JB01)	Mercury	75 - 125	50	0	0
(JS11)	Silver	75 - 125	45	5	11
	Beryllium	75 - 125	45	0	0
	Cadmium	75 - 125	45	0	0
	Copper	75 - 125	45	0	0
	Nickel	75 - 125	45	0	0
	Thailium	75 - 125	45	6	13
	Zinc	75 - 125	45	2	4.4

TABLE N-6
(concluded)
SUMMARY OF SOIL MATRIX SPIKE RESULTS

Method	1 Compound	Control Limit %	Total No. Spiked Results	No. Spikes Outside Limits	% of Spike: Outside Limits
Pesticid es					
(LH10)	BHC, G	46 - 127	31	3	9.7
(Heptachlor	35 - 110	31	3	9.7
	Aldrin	34 - 132	31	1	3.2
	Dieldrin	31 - 134	31	2	6.4
	Endrin	42 - 139	31	1	3.2
	DDT,PP	23 - 134	31	4	13
PCBs					
(LH16)	PCB 1016	50 - 114	33	3	9.1
	PCB 1260	8 - 127	33	5	15
Explosives	•				
(LW12)	2,4-DNT	83 - 106 (1)	19	5	26
	RDX	68 - 100 (1)	19	1	5.2
	1,3,5-TNB	73 - 96 (1)	19	9	47
Misc. Method					
1	Chromium +6	60 - 140	5	0	0
KY01	Cyanide	70 - 120	18	0	0
ı	Total Phenois	75 - 125	15	0	0

⁽¹⁾ General Limits

TABLE N-6

MATRIX SPIKE RESULTS OUTSIDE
CONTROL LIMITS FOR ROUND 1
GROUNDWATER SAMPLES

Sample	Method	Compound	Control	Recovery
ID			Limit	%
			<u>%</u>	
DMO-03-MWA (a)	SD21	Selenium	75-125	74.0
J (4)	SD22	Arsenic	75-125	54.5
	SD23	Silver	75-125	54.4
	SD23	Silver	75-125	59.9
DMO-04-MWA (a)	SD21	Selenium	75-125	36.7
(=)	SD22	Arsenic	75-125	35.2
	SD23	Silver	75-125	61.3
	SD23	Silver	75-125	56.9
	SS10	Calcium	75-125	63.6
	SS10	Sodium	75-125	60.5
	UM18	4-Chioro-3-methylphenol	23 - 97	110
	UM18	Pentachlorophenol	9 - 103	110
PSW-02 (a)	SS10	Calcium	75-125	126
 	SS10	Sodium	75-125	144
	UM18	1,2,4-Trichlorobenzene	3 9 - 98	100
	UM18	2,4-Dinitrotoluene	24 - 96	100
	UM18	4-Chioro-3-methylphenol	23 - 97	3.8
	UM18	4-Chloro-3-methylphenol	23 - 97	2.7
	UM18	4-Nitrophenol	10 - 80	90
	UM18	4-Nitrophenol	10 - 80	81
	UM18	Phenol	12 - 89	1.7
	UM18	Phenoi	12 - 89	1.2
PSW-02DUP	UH13	Aldrin	40 - 120	133
	UH13	BHC, G	56 - 123	130
TNT-01-MWC	UM18	2,4-Dinitrotoluene	24 - 96	110
TNT-02-MWC	UM18	1,2,4-Trichlorobenzene	3 9 - 98	99.0
	UM18	2,4-Dinitrotoluene	24 - 96	120
	UM18	Pentachiorophenol	9 - 103	130
	UM18	Pyrene	26 - 127	130
TNT-06-MWA	UM18	1,2,4-Trichlorobenzene	39 - 98	110
	UM18	2,4-Dinitrotoluene	24 - 96	98.0
	UM18	4-Chloro-3-methylphenol	23 - 97	110
	UM18	Pentachlorophenol	9 - 103	150
	UM18	Pyrene	26 - 127	130
DMO-GW-RB	UH13	Endrin	56 - 121	2.68
RB-2	UM18	2,4-Dinitrotoluene	24 - 96	98.0

⁽a) Two separate matrix spikes were prepared and analyzed for some methods.

TABLE N-7
SUMMARY OF POSITIVE
SOIL METHOD BLANK RESULTS

	بر + د مقبود ی			
			Method	_
		_	Blank	CRL
Lot No.	Method	Compound	ug/g	ug/g
Pesticides				
PPT	LH10	Aldrin	0.0008	< 0.007
PPL	LH10	BHC,A	0.0033	< 0.009
PPK	LH10	BHC,G	0.0002	< 0.006
PPT	LH10	BHC,G	0.0001	< 0.006
PPU	LH10	Chlordane	0.0002	< 0.018
PPH	LH10	DDT, PP	0.0001	< 0.007
PPH	LH10	Dieldrin	0.00006	< 0.006
PPT	LH10	Dieldrin	0.0003	< 0.006
PPK	LH10	EndosulfanA	0.0004	< 0.006
PPT	LH10	EndosulfanA	0.0004	< 0.006
PPH	LH10	EndosulfanB	0.00009	< 0.007
PPH	LH10	Endrin	0.0004	< 0.007
PPT	LH10	Endrin	0.0002	< 0.007
PPI	LH10	Heptachlor	0.008	< 0.006
PPK	LH10	Heptachlor	0.009	< 0.006
PPT	LH10	Heptachlor	0.005	< 0.006
PPK	LH10	Isodrin	0.00007	< 0.005
PPT	LH10	Isodrin	0.001	< 0.005
PPH	LH10	Methlxychlor	0.003	< 0.071
/olatile Compounds				
PNW	LM19	Acetone	0.01	< 0.02
PNY	LM19	Acetone	0.006	< 0.02
PNZ	LM19	Acetone	0.006	< 0.02
RZG	LM19	Acetone	0.009	< 0.02
RZH	LM19	Acetone	0.01	< 0.02
RZK	LM19	Acetone	0.008	< 0.02
RZL	LM19	Acetone	0.02	< 0.02
RZM	LM19	Acetone	0.007	< 0.02
RZK	LM19	Acrylonitrile	0.03	< 0.02
RZL	LM19	Acrylonitrile	0.002	< 0.1
RZL	LM19	Benzene	0.0002	< 0.002
RZV	LM19	Methylene chloride	0.002	< 0.012
PNW	LM19	Methylene chloride	0.002	< 0.012
PNY	LM19	Methylene chloride	0.002	<0.012
F 141	WW 13	Well yield Cilling	0.003	-0.012

TABLE N-7
SUMMARY OF POSITIVE
SOIL METHOD BLANK RESULTS

			Method Blank	CRL
Lot	No. Method	Compound	ug/g	ug/g
RNY	LM19	Methylene chloride	0.003	< 0.012
RZG	LM19	Methylene chloride	0.001	< 0.012
RZH	LM19	Methylene chloride	0.002	< 0.012
RZL	LM19	Methylene chloride	0.001	< 0.012
RZV	LM19	Toluene	0.0007	< 0.0008
PNX	LM19	Toluene	0.0009	<0.0008
PNY	LM19	Toluene	0.0005	< 0.0008
PNZ	LM19	Toluene	0.001	< 0.0008
RZG	LM19	Toluene	0.0005	< 0.0008
RZL	LM19	Toluene	0.0009	< 0.0008
RZB	LM19	Trichlorofluoromethane	0.01	< 0.006
RZC	LM19	Trichlorofluoromethane	0.009	< 0.006
RZD	LM19	Trichlorofluoromethane	0.01	< 0.006
RZE	LM19	Trichlorofluoromethane	0.009	< 0.006
RZF	LM19	Trichlorofluoromethane	0.01	< 0.006
RZG	LM19	Trichlorofluoromethane	0.02	< 0.006
RZK	LM19	Trichlorofluoromethane	0.02	< 0.006
RZL	LM19	Trichlorofluoromethane	0.02	< 0.006
RZM	LM19	Trichlorofluoromethane	0.02	< 0.006
Explosives				
RPO	LW12	2,4,6-TNT	0.316	< 0.456
RPP	LW12	2,4,6-TNT	0.187	< 0.456
RPR	LW12	2,4,6-TNT	0.125	< 0.456
RPP	LW12	HMX	0.111	< 0.424
RPR	LW12	HMX	0.227	< 0.424
RPN	LW12	RDX	0.255	< 0.587

CRL: Certified Reporting Limit

SUMMARY OF POSITIVE ROUND 1
GROUNDWATER METHOD BLANK RESULTS

				Method Blank	CRL
	Lot No.	Method	Compound	ug/L	ug/L
	RCE	H2	Total Phenois	0.3	<7.1
Inorganic	Anaivtes				
. 0	RYW	I	Disolved Residue	0.5	<5
	RUH	SS10	Calcium	478	<21.1
	RUH	SS10	Chromium	2.29	< 6.02
	RUH	SS10	Copper	2.44	< 8.09
	RUH	SS10	Sodium	93.4	<21.1
	RUH	SS10	Zinc	18.6	<21.1
Pesticides					
	OEL	UH13	ВНС,А	0.004	< 0.039
	OEL	UH13	BHC,D	0.003	< 0.029
	OEL	UH13	BHS,B	0.003	< 0.024
	OEL	UH13	DDD,PP	0.002	< 0.023
	OEL	UH13	DDE,PP	0.002	< 0.027
	OEL	UH13	Isodrin	0.002	< 0.056
	OEL	UH13	Lindane	0.004	< 0.051
Semivolati	le Compo	unds			
	SAL	UM18	Bis(2-Ethylhexyl)-phthalate	6.3	<4.8
	SAN	UM18	Bis(2-Ethylhexyl)-phthalate	16	< 4.8
	RQO	UM20	1,1,2-Trichloroethane	0.31	< 1.2
Volatile C	ompounds	,			
	RQS	UM20	Benzene	0.03	< 0.50
	RQO	UM20	Chlorobenzene	0.05	< 0.50
	RQO	UM20	Dibromochloromethane	0.13	< 0.67
	RQO	UM20	Ethylbenzene	0.06	< 0.50
	RQO	UM20	Toluene	0.23	< 0.50
	RQO	UM20	Trichlorofluoromethane	0.15	< 1.4
	RQP	UM20	Trichlorofluoromethane	0.40	< 1.4
Explosives	i				
	SCC	UW14	1,3,5-TNB	0.154	< 0.626
	SCE	UW14	1,3,5-TNB	0.135	< 0.626
	SCK	UW14	1,3,5-TNB	0.118	< 0.626
	SCL	UW14	1,3,5-TNB	0.119	< 0.626
	SCC	UW14	2,4,6-TNT	0.122	< 0.588
	SCE	UW14	2,4,6-TNT	0.140	< 0.588

TABLE N-4 (concluded) SUMMARY OF POSITIVE ROUND 1 GROUNDWATER METHOD BLANK RESULTS

Lot No.	Method	Compound	Method Blank ug/L	CRL ug/L
SCK	UW14	24,6-TNT	0.089	< 0.588
SCC	UW14	2,4-Dinitrotoluene	0.203	< 0.612
SCE	UW14	2,4-Dinitrotoluene	0.280	< 0.612
SCL	UW14	2,4-Dinitrotoluene	0.169	< 0.612
SCC	UW14	2,6-Dinitrotoluene	0.146	< 1.15
SCC	UW14	HMX	0.472	< 1.65
SCE	UW14	HMX	0.279	< 1.65
SCK	UW14	HMX	0.187	< 1.65
SCL	UW14	HMX	0.210	< 1.65
SCC	UW14	RDX	0.242	< 2.11
SCE	UW14	RDX	0.1 69	< 2.11
SCK	UW14	RDX	0.232	< 2.11
SCL	UW14	RDX	0.011	< 2.11
SCE	UW14	Tetryi	0.2	< 0.6
SCL	UW14	Tetryi	0.2	< 0.6

ROLMO 1 GROUNDLATER TRIP BLANK RESULTS

FIELD ID	22-TB	GU-18	2 TE	22-TB	\$ =	2 · 3	2-13	ST-75	5.43 T-43	2-13
1.46 10	SIADMI*54	S1ADW1*55	SIADU1*56	SIADUI-57	SIADV1+58	SIADA1*59	SIADW1*60	SIADVI*61	SIADU1.62	SIADUI*63
COLLECTION DATE	4/16/90	06/21/7	06/81/7	4/19/90	06/02/5	4/23/90	4/54/90	4/52/90	6/52/4	06/08/7
PARAMETER MAME	ug/L	1/80	1/80	1/60	Ug/L	1/6n	ng/L	ug/t	ng/L	1/60
VOLATILE ORGANIC COMPOUNDS										
TRANS-1,3-DICHLOROPROPENE (a)	60.250	<0.250	<0.250	<0.250	.0.250	<0.250	<0.250	•0.250	<0.250	.0.250
CARBON TETRACHLORIDE (a)	60.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	6.250	<0.250	<0.250
TOLUENE (b)	<0.50	<0.50	<0.50	<0.50	9.0	<0.50	<0.50	<0.50	<0.50	<0.50

(a) Results based on semi-quantitative GC analysis. (b) Results based on GC/MS analysis.

TABLE N-9
(concluded)
ROUND 1 GROUNDMATER TRIP BLANK RESULTS

FIELD ID	2-78	25 - TS	235	£-13	2.3 2.3	5115
LAB 10	79-LAGVIS	SIADU1*65	SIADU1*66	SIADW1*67	SIADU1*71	SIADUI*72
COLLECTION DATE	5/1/90	5/2/90	5/2/90	8/4/90	2/1/90	2/1/90
COLLECTION TIME				9 6 6		
DEPTM (FEET)	0	0	•	•	0	0
PARAMETER MANE	1/80	1/80	1/ č n	1/60	1/60	1/80
VOLATILE ORGANIC CONPOUNDS						
TRAMS-1,3-DICHLOROPROPENE (+)	<0.250	c0.250	<0.250	<0.250	0.363	<0.250
CARBON TETRACHLORIDE(a)	<0.250	<0.250	<0.250	<0.250	0.25	c0.250
10(1EME (b)	<0.50	<0.50	¢0.50	6 0.50	<0.50	<0.50

(a) Results based on semi-quantitative GC analysis. (b) Results based on GC/NS analysis.

ROUND 1 GROUNDWATER
FILTER BLANK RESULTS

Field ID	FILTER BLK	FILTER BLK	FILTER BLK
Lab ID	SIADW1*24	SIADW1*25	SIADW1*26
Collection Date	4/24/90	4/30/90	5/2/90
Collection Time	15:40	11:00	16:00
Depth (feet)	0	0	0
Parameter Name	ug/L	ug/L	ug/L
INORGANICS			
Copper	8.56	<8.09	<8.09
Calcium (ug/L-CA)	536	629	577
Sodium (ug/L-NA)	1940	< 500	< 500

Appendix O

Contaminant Fate and Transport Model

James M. Montgomery

Consulting Engineers Inc.

APPENDIX O CONTAMINANT FATE AND TRANSPORT MODEL

O.1 Introduction

Saturated and unsaturated zone contaminant transport models were run by using data from the TNT Leaching Beds Area. Indicator contaminants were 1,3,5-trinitrobenzene (TNB) and TCE.

Vadose and saturated zone modeling was performed on 1,3,5-TNB from the TNT Leaching Beds subsite. It was selected as an indicator compound because it is the most mobile explosive compound detected and had the highest frequency of occurrence in the vadose and saturated zones. Therefore, 1,3,5-TBN represents the most conservative estimate of the lateral and vertical extent of the total explosives plume in the TNT Leaching Beds Area.

Saturated zone modeling was performed on TCE from the Vehicle Maintenance Area Subsite. This compound was chosen to model because it had the highest concentration and frequency of occurrence of the VOCs found at this site. TCE vadose zone modeling was not performed because of the absence of data. Five soil borings were installed in the Vehicle Maintenance Area Subsite. Borings placement was based on the distribution of TCE in soil gas at this site. However, TCE was not detected ion any of the soil samples and therefore could not be modeled.

Vadose and saturated zone modeling could not be performed at that Abandoned Landfill, Chemical Burial Site, Construction Debris Landfill, and DRMO Trench Area due to the insufficient data from these sites.

O.2 Routes of Migration

The pathways for exposure from potential contaminant migration are:

- 1. Surface exposure/dermal contact and ingestion
- 2. Atmospheric transport/wind-blow fugitive dust and volatilization
- 3. Surface runoff/dissolved contaminants and particulate transport/dermal contact and ingestion
- 4. Unsaturated-zone transport with subsequent saturated zone transport
- 5. Saturated zone transport to domestic and irrigation wells/dermal contact and ingestion

Additionally, some of the contaminants present in surface soils may be subject to degradation (biological or chemical transformation) or by biotic uptake. In order to provide a conservative estimate of potential contaminant migration, the quantitative analytical modeling did not factor in degradation processes that could occur in the saturated and unsaturated zones, and therefore, the concentrations calculated would be conservative. Lower concentrations would be expected if degradation processes were taken into account.

O.3 Model Objectives

Models were used to simulate solute transport in the unsaturated and saturated zones at the TNT Leaching Beds Area at SIAD. These processes are modeled because they are the primary exposure pathways (Section O.2), along with direct ingestion/inhalation or dermal contact with surface soils at the site. The model objectives are five-fold:

- 1. Simulation of current conditions;
- 2. Sensitivity analyses;
- 3. Simulation of future conditions:
- 4. Guide Phase II field work:
- 5. Risk assessment.

The solute transport modeling integrates the five objectives. Simulation of current conditions allows for the verification that the model can successfully forecast present values using an estimate of contaminant release and reasonable parameter values (although the mechanisms of solute transport and fate may not be represented exactly). Reasonable parameter values are those expected to fall within a given range based on chemical and hydrogeochemical properties. Model behavior as a function of each of these parameters is tested in the sensitivity analyses. Although the simulation of current conditions is not a calibration, it imparts some levels of confidence in simulation of future conditions. These simulations are used for two purposes: the strategic planning of Phase II field work (i.e., the placement of monitoring wells), and an assessment of risk posed by existing contamination associated with each of the sites.

O.4 Theory

The general principals of unsaturated transport of organic chemicals are addressed in this section. The migration of chemicals in soil-water systems is governed by convection-dispersion processes, which can be divided into three distinct mechanisms: (i) mass flow, or passive movement of the contaminant with the mass of water in which it is dissolved; (ii) liquid and gaseous diffusion, movement caused by molecular collisions; and (iii) chemical potential gradients in both liquid and vapor phases (Jury and Valentine, 1986). Hydrodynamic dispersion, which is the spreading of particles caused by three-dimensional mass flow at pore-scale, is not often accounted for in a volume averaged mathematical treatment of flow, or factored into the liquid diffusion term. A wide variety of biogeochemical processes influence the actual rate of chemical migration through a dense web of complicated interactions. These processes are grouped generally into five categories (Rao and Jessup, 1983; Donigan and Rao, 1986).

- 1. Advection
- 2. Sorption/desorption
- 3. Transformation/(bio)degradation
- 4. Volatilization

5. Plant processes

O.5 Sorption/Desorption

Sorption/desorption is one of the most important processes influencing the movement or leaching of a chemical. It is generally thought of as a partitioning between a solid (sorbed) phase and the liquid phase (i.e., infiltrating water), caused by hydrophobic and weak electrostatic interactions. The term "sorption" is used here so that no mechanistic connotations are implied; "adsorption" is a two-dimensional (i.e., monolayer) surface reaction. This partition is described mathematically by the distribution coefficient K_D, (Lyman, et al, 1982; Jury and Valentine 1986):

$$K_D = \frac{\mu g \text{ adsorbed contaminant/g soil}}{\mu g \text{ contaminant/mL solution}}$$

Not only does sorption/desorption by the solid phase influence chemical movement, the resident time on soil surface leads indirectly to increased potential for degradation. On the other hand, a more highly sorbed chemical would not be volatilize as readily as a nonsorbing chemical (given identical Henry's Law constant and geochemical parameters) because of lower concentrations in the liquid phase. The role of the distribution coefficient in mitigating chemical migration is given in an approximation of nonuniform flow by using average values for K_D , volumetric water content, diffusion-dispersion coefficient, and drainage flux (i.e., long time simulations) (Smith, et al., 1984) give the following form of the convection-dispersion equation:

$$K_{\rm D} \frac{\partial CL}{\partial t} = \frac{D\partial^2 CL}{\partial x^2} - \frac{V\partial CL}{\partial x} + r$$

where:

 $V = J_{\psi}/\phi$, the macroscopic average pore water velocity (ft/yr)

 J_{w} = Drainage flux (ft/yr)

 C_L = Mass of contaminant per soil water volume (mg/l)

D = Diffusion-dispersion coefficient (ft^2/day)

 ϕ = Water content

r = Reaction mass loss rate (mg/day)

The distribution coefficient as defined above is valid only if the sorption isotherm is linear, and the reactions are reversible and fast (i.e., relative to the time-scale of water flux). The linearity of isotherms for organic chemical sorption processes has been demonstrated for benzene (Rogers, et al, 1980), halogenated hydrocarbons and some substituted benzene compounds (Wilson, et al, 1981). However, Elabd (1984) and Johnson (1985) found that sorption behavior could be fit equally well with either a linear isotherm or the van Bemmelmen-Freundlich isotherm. If K_D is zero, then the chemical species of concern is unaffected by physiochemical reactions and moves with the same velocity as the water.

Because of the large variations in K_D , a parameter, K_{∞} is introduced for organic compounds:

$$K_{re} = f(K_{re})$$

where: f_{∞} = soil organic carbon fraction

 K_{∞} is the organic carbon partition coefficient and is defined as the ratio of the concentration associated with the organic fraction of soil to the concentration in aqueous solution.

Previous work (Lambert, 1967, 1968; Lambert, et al, 1965; Weed and Weber, 1974) demonstrated that the sorption of nonionic organic compounds could be correlated

statistically to the organic carbon content of a soil since it behaved as a solvent in a solvent extraction process. Chiou, et al, (1979) postulated that the sorption mechanism is equivalent on a macroscopic scale to a simple partition between two immiscible phases: water and soil organic matter. Karickhoff, et al, (1979) demonstrated the relation between sorption processes and the aqueous solubility of the sorbate. The parameter, K_{oc} , is nearly independent of soil type and particle size. The octanol-water partition coefficient, K_{oc} , is the ratio of concentrations in a selected organic phase (octanol) to that in water, and can be correlated statistically to K_{oc} :

$$K_{\infty} = f(K_{\infty})$$

If $K_D > 0$, then chemical movement is retarded as defined by the retardation coefficient, R:

$$R = 1 + \frac{P_b}{e} K_d = \frac{V}{V_E}$$

where: P_h = Soil bulk density

e = Effective porosity

W = Macroscopic average pore water velocity (annual average drainage in unsaturated conditions)

V_E = Macroscopic average velocity of chemical

The retardation of dissolved organic compounds is therefore dependent on the following parameters:

- 1. Soil bulk density
- 2. Effective porosity

- 3. Organic carbon partition coefficient
- 4. Soil organic carbon fraction

The soil bulk density and effective porosity can be determined in the laboratory for representative samples of varying lithology. The organic carbon partition coefficient can be found in literature or estimated from other chemical parameters, e.g., solubility in water of K_{on} (Lyman, et al. 1982).

O.6 Biodegradation/Transformation

The biodegradation rate of a dissolved organic chemical is dependent on the species and activity of the soil microbial population. The active biomass that could degrade the organic chemicals to potentially innocuous forms varies with depth, as a result of decreasing soil temperature, oxidation-reduction potential and organic matter content. Because of the expected limited substrate in a high desert environment, the microbial population is likely to be limited to very shallow zones. Hence, once the organic chemical has moved past the zone of microbial activity, the only reactions are sorption and abiotic degradation processes.

0.7 Analytical Solutions to the Convection-Dipersion Equation

Analytical solutions to the one dimensional convection-dispersion equation can be applied to predict concentrations of organic chemicals in the unsaturated zone and in groundwater. The first solution is for steady uniform flow through a porous medium in which the source term, C_0 , is a constant (steady, continuous injection). This would be the case if the soil or groundwater contamination at the source was to remain at the same concentration, indefinitely. An approximation of the solution of the convection-dispersion equation for this initial condition is given by:

where: C_0 = Initial concentration of the contaminant in soil or groundwater

$$\frac{C}{C_0} = \frac{1}{2} erfc \frac{[x - V_{\rm g}t]}{[2(D_{\rm g}t)^1/2]}$$

C = Concentration of the contaminant at a distance downgradient x, and a time, t

D_x = Longitudinal dispersion coefficient

erfc = Complementary error function

The second solution is for steady, uniform flow through a porous medium in which the source term, C_0 , is a constant when $0 < t \le t_0$. For $t > t_0$, $C_0 = 0$ (Crenel-type injection). This would be the case if the source for current contamination would cease to exist after a period of time. At some time later (t), the leakage of contaminants into soil or groundwater is stopped (i.e., contaminated soil is removed). This also assumes that there are no other sources in the area which affect the concentrations of the contaminants.

An approximation of the solution for this initial condition is given by:

$$\frac{C}{C_0} = \frac{1}{2} \operatorname{erfc} \frac{[x - V_E t]}{[2(D_x)^1/2]} - \frac{1}{2} \operatorname{erfc} \frac{[x - V_E (t - t_0)]}{2[D_x (t - t_0)]^1/2}$$

for $t > t_0$

In the unsaturated zone, the infiltration rate of water is a function of net precipitation (plus net applied water) and the soil characteristics. The estimated seepage velocity of groundwater is give by:

$$V = (K \cdot i)/_{e}$$

where:

 $K = Hydraulic conductivity (gal/day \cdot ft^2)$

e = Effective porosity

i = Hydraulic gradient

The retardation factor has a major impact on solute migration in groundwater. The solute will migrate 1/R times as far as the surrounding groundwater over a given time period. Assumed values were considered to be conservative.

O.8 TNT Leaching Beds Unsaturated Zone Model

O.8.1 Introduction

The objectives of the unsaturated zone model were to simulate the distribution of 1,3,5 TNB in the soil at the TNT Leaching Beds subsite, and to estimate the quantity of 1,3,5 TNB discharged from the soil into the groundwater system. The simulated distribution of 1,3,5 TNB in the soil can be used to assist soil remediation planning. The simulated mass loading from the soil to groundwater was used as the boundary condition for the groundwater contaminant transport model. The model SESOIL was selected for this modeling effort.

SESOIL is a seasonal compartmental model designed to simulate the one dimensional transport of contaminant through an unsaturated soil column. The model was developed for the U.S. Environmental Protection Agency, Office of Toxic Substance, by Arthur D. Little Company (Bonazountas and Wagner, 1984).

The model employs theoretically derived equations driven by climatic, soil property, geometric and chemical compound property data. The model simulates pollutant fate cycle by taking into account: advection, diffusion, volatilization, adsorption and desorption, chemical degradation or decay, biological transformation, hydrolysis, cation exchange, complexation chemistry, and other processes.

SESOIL has been evaluated and tested by Battelle Pacific Laboratory, Oak Ridge National Laboratory, and an EPA Laboratory (Murarka, 1984; Hetrick, et al. 1987). SESOIL was selected by the State of California for leaking underground fuel tank study (State of California, 1989). Review and comparison of SESOIL with other vadose zone model can be found in a publication by Hern and Melancon (1989).

O.8.2 Model Configuration

The model is structured as a 4-layer model having a surface area of 4413 square feet. The first layer simulated the soil from the ground surface to a depth of 0.5 feet, the thickness of the layer of explosive chemicals. Simulated depths for the base of the second, third, and fourth layers were located at 17,42.5, and 55 feet below grade respectively. The maximum depth of 55 feet represents the interface with the groundwater surface. Since the thickness of the vadose zone was only 55 feet, soil property was assumed to be homogeneous. Based on field study, soil layers 1,2,3,and 4 were modeled as loamy sand. The soil density was assumed to be 1.85 grams per cubic centimeter, and porosity 28%.

The SESOIL model requires data of precipitation, temperature, cloud cover, humidity, albeto, and the latitude of the site as model input. Sierra Army Depot is located on 40.15 degree latitude. The annual precipitation was determined to be about 4 inches per year. The climatic data on Sierra Army Depot site as required by SESOIL model were obtained from the U.S. Weather Bureau.

SESOIL model also requires data of chemical properties as model input. The general chemical properties of 1,3,5 TNB such as solubility, diffusion coefficient in air, molecular weight, and valence were found in standard chemical handbooks (Windholz, 1976; Dean, 1989). Since organic carbon content was not measured on the site, a value of 0.5% was used in this study. This was based on the field measurement of a similar study at Nellis Air Force Base site in Nevada.

Biologic degradation of organic compounds is generally simulated using both zero and first order reactions. A zero order reaction for biologic degradation is generally valid only in zones of high biologic activity. In contrast, first order reactions are used to describe the degradation of organic compounds in zones where biologic activity is at lower or residual values. At TNT Leaching Beds area, the biological degradation of 1,3,5 TNB was simulated as a first order decay function. Since 1,3,5 TNB is a stable chemical, the half-life period used to calculate degradation rate was selected as 10 years.

The actual values of SESOIL model input parameters are summarized in Table O.1.

O.9 Solute Transport Model at TNT Leaching Beds Site

0.9.1 Introduction

A two-dimensional finite difference solute transport and dispersion model was used to simulate movement of trichloroethylene (TCE) and 1,3,5 trinitrobenzene (TNB) at the TNT Leaching Beds Area. The Method Of Characteristics model (MOC) (Konikow and Bredehoeft, 1988) calculates transient changes in a solute dissolved in groundwater. The MOC model can take convective transport, hydrodynamic dispersion, and fluid sources into account, and has been updated to also account for chemical reactions which are likely to occur, such as adsorption, desorption, and chemical decay (Konikow and Bredehoeft, 1987). 1,3,5 TNB was chosen as a representative TNT compound to model because it was the most mobile of the explosives compounds found at the TNT Leaching Beds Area, and thus could conservatively represent the presence of other explosive compounds at this site. Numerous VOCs were found in the groundwater at this site. TCE was the most widely distributed of these and was modeled as a representative VOC at this site.

0.9.2 Model Configuration

A single 50-foot thick layer was used to simulate solute-transport at the TNT Leaching Beds Site. This roughly coincides with the maximum depth at which any compounds on

SUMMARY OF INPUT PARAMETERS
USED TO MODEL THE TRANSPORT OF TNB IN VADOSE ZONE

Parameter	Value	Units	Data Source
Meteorologic Data			
Precipation	4.0	in/y r	U.S. Weather Bureau. Data compiled by General Science Corp.
Range in Temperature	-1 to 21	degree	Same as above
Range in Cloud Cover	0.25 to 0.7	%	Same as above
Range in Humidity	0.3 to 0.7	%	Same as above
Average Albedo	0.27		Same as above
Latitude	41.5	degree	Topographic map
1,3,5-TNB Chemical Data			
Solubility	350	ppm	Merck Index
Air Diffusion Coefficient	0.0498	cm*cm/sec	Calculated
Henry's Law Constant	4.468E-07	atm*m**3/mol	Calculated
Molecular Weight	213	g/mol	Merck Index
Biodegration Rate (soil)	.00019	/day	Calculated
Biodegration Rate (water)	.00019	/day	Calculated
Koc	37	ppm	Calculated

TABLE O-1 (Continued)

SUMMARY OF INPUT PARAMETERS USED TO MODEL THE TRANSPORT OF THB IN VADOSE ZONE

Value	Units	Data Source
loamy sand		Estimated from field
1.85	g/cm*3	information Same as above
28	%	Same as above
.5	%	Estimated
	loamy sand 1.85 28	loamy sand 1.85 g/cm*3 28 %

the site were detected, and puts cell nodes at a depth of 25 feet where higher solute concentrations were detected. The model was divided horizontally in 90 columns and 60 rows, equally spaced in both directions (Figure O-1). Grid spacing was 50 feet to allow greater model resolution of plume movement, with a total area of 0.48 square miles.

Water level data from wells on the site were contoured at 0.2 foot intervals to obtain initial head values for the model (Figure O-2). Groundwater flow was mainly northwards at the TNT Leaching Beds. An apparent groundwater ridge bisected the site, although the gradient was extremely flat.

Longitudinal dispersivity over the TNT site was initially assigned a value of 100 feet in the model, and later modified to 130 feet. Transverse dispersivity was 20 percent of the longitudinal value. Effective porosity and storage coefficient were both assigned a value of 0.18. A storage coefficient of 0.18 indicates unconfined conditions, however, some parts of the aquifer may have been partially confined by localized silt/clay units. Bulk soil density was estimated to be 1.8 g/cc.

An important parameter which the MOC model took into account was the distribution factor, KD, from which the retardation factor, R, was calculated. The following assumptions and calculations were made for TCE and TNB to obtain the model input.

KD = foc*Koc + fio*Kio (for foc > .001) where foc = fraction of organic carbon
Koc = partition coefficient for organic carbon
fio (fraction of inorganic carbon) = 1-foc
Kio = SA/Kow^{0.16}
SA = surface area of soil (m²/g)
Kow = octanol-water partition coefficient

The fraction of organic carbon at the TNT site was estimated to be approximately .005, and the surface area of the soil as 0.02, equal to a fine, loamy sand. KD and R values calculated from these numbers were:

FIGURE 0-1: MOC MODEL GRID FOR THY LEAGHING BEDS SITE

FIGURE 0-2: 1990 GROUNDWATER SURFACE AT TNT SITE

	TCE	NB	
Kow	194 3	7.1	
Koc	125 4	1.7	
KD	.634 .2	220	
R	2.34 3	.20	$R = 1 + \frac{pKD}{n}$
where:	p = Bulk soil densityn = effective porosity	(g/cc)	= 1.8 = 0.18

The retardation factor has a major impact on solute migration in groundwater. The solute will migrate 1/R times as far as the surrounding groundwater over a given time period. Assumed values were considered to be conservative.

Appendix P

Installation Restoration Data Management System (IRDMS) Data Tables

James M. Montgomery

Consulting Engineers Inc.

Location and Elevation Data from the **GMA File of the IRDMS** James M. Montgomery Consulting Engineers Inc.

LSMP (MAP) REPORT
Wed Jan 9 15:37:19 1991

Installation = Sierra Ordnance Depot

SAMPLING POINT COORDINATE REPORT INSTALLATION: Sierra Ordnance Depot

S	ITE .	STATE F	PLANAR	U T					
TYPE	ID	X-COORD	Y-COORD	X-COORD	Y-COORD	ELEV	AQUIFER	BORE NO.	DESCRIPTION
			• • • • • • • • • • • • • • • • • • • •		**********	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •
BORE	ALF-01-MMA	2525115	304503	745197	4448586	4079.1			
BORE	ALF-01-SB	2525433	303007	7452 99	4448131	4081.0			
BORE	ALF-02-MMA	2523896	304057	744827	4448446	4076.7			
BORE	ALF-02-58	2524642	304144	745054	4448475	4077.0			
BORE	ALF-03-MHA	2524736	302893	745087	4448094	4085.4			
BORE	ALF-03-58	2525281	304140	745249	4448476	4077.9			
BORE	ALF-04-58	2524805	304076	745104	4448455	4077.9			
BORE	CC8-01-NWA	2524664	306151	745054	4449087	4065.6			
30RE	CC8-01-\$8	2524615	305938	745040	4449022	4066.4			
BORE	CCB-02-MMA	2524516	305214	745012	4448801	4074.6			
BORE	CC8-02-58	2524597	305777	745035	4448973	4068.1			
BORE	CC8-03-\$8	2524631	305597	745046	4448918	4071.3			•
BORE	CC8-04-58	2524658	305026	745056	4448744	4076.7			
BORE	CC8-05-S8	2524979	304448	745156	4448569	4077.0			
BORE	DMO-03-MWA	2528127	303741	746118	4448364	4084.1			
BORE	DMO-04-MUA	2528023	303578	746087	4448314	4084.0			
BORE	DMO-05-MWA	2528086	303335	746107	4448240	4083.1			
BORE	DMO-06-SB	2528103	303656	746111	4448338	4082.8			
BORE	DMO-07-58	2528109	303614	746113	4448325	4083.0			
SORE	DMO-08-58	2528118	303551	746116	4448306	4082.5			
BORE	DMO-09-58	2528114	303496	746115	4448289	4082.5			
BORE	DMO-10-58	2528231	303661	746150	4448340	4082.4			•
BORE	DMO-11-SB	2528234	303622	746151	4448328	4082.3			
BORE	DMO-12-58	2528267	303691	746161	4448349	4082.9			
BORE	DMO-13-58	2528286	303615	746167	4448326	4082.8			
BORE	DSB-01-MMA	2506265	344399	739316	4460687	3994.0			
BORE	DS8-01-S8	2506256	344465	739313	4460707	3993.5			
BORE	058-02-MMA	2516080	329656	742358	4456225	4000.1			
SORE	058-02-58	2516069	329565	742355	4456197	4000.3			
BORE	058-03-58	2525686	339413	745254	4459232	4003.8			
BORE	DSB-04-MUA	2525800	325653	745335	4455037	4007.3			
BORE	DS8-04-S8	2525790	325656	745332	4455038	4007.0			
BORE	058-05-SB	2517746	300985	742962	4447489	4105.5			
BORE	DSB-06-MUA	2527169	309659	745806	4450165	4042.3			
BORE	DSB-06-SB	2527093	309679	745783	4450171	4042.0			
BORE	THT-01-MAS	2527030	309880	745763	4450232	4042.2			
BORE	THT-01-MUC	2527030	309870	745763	4450229	4042.0			
BORE	THT-02-MUS	2527653	310178	745952	4450325	4041.2		•	
BORE	THT-02-MUC	2527653	310168	745952	4450322	4040.2			
BORE	THT-07-MJB	2526881	310318	745716	4450365	4042.4			
BORE	THT-07-MUC	2526894	310324	745720	4450367	4042.1			
BORE	THT-07-58	2525943	309485	745433	4450108	4044.5			
BORE	THT-08-58	2526067	309445	745471	4450096	4047.2			
BORE	THT-09-58	2526124	309473	745488	4450105	4045.9			
BORE	THT-10-MAG	2526125	309624						
BORE	THT-10-MAC			74 5488	4450151	4043.0			
BORE		2526125 2524100	309637	745488 74844	4450155	4041.8			
BORE	TNT-10-58 TNT-11-58	2526199 2526141	309502	745511	4450114	4044.2			
BORE		2526161 2527142	309588	745499	4450140	4043.4			
BORE	TNT-12-58	2527162	310003	745803	4450270	4038.1			
	TNT-13-58	2527189	30 998 7	745811	4450265	4038.9			

SAMPLING POINT COORDINATE REPORT INSTALLATION: Sierra Ordnance Depot

s	ITE	STATE	PLANAR	U 1	. H				
TYPE	ID	X-COORD	Y-COORD		Y-COORD	ELEV	AQUI FER	BORE NO.	DESCRIPTION
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••		•••••	•••••	************	••••••••••
BABE	TMT-14-CB	2527145	7000//	7/500/	//50053	1000 4			
BORE BORE	TNT-14-SB TNT-15-MMA	2527165 2527688	30 9944 310407	745 8 04 745962	4450252	4039.1			
BORE	TNT-15-SB	2527142	309958	745797	4450395	4037.2			
BORE	THT-16-MHA	2528131	310403	746097	4450256	4038.6			
BORE	TNT-16-58	2527106	309912	745786	4450395 4450242	4043.1			
BORE	TNT-17-58	2527128	309895	745793	4450237	4039.5 4039.6			
BORE	TNT-18-58	2527118	309879	745790	4450232	4040.2			
BORE	TNT-19-58	2527099	309892	745784	4450236	4039.7			
COMP	TNT-01-SS	2527162	310003	745803	4450270	4038.1			
COMP	TNT-02-SS	2527189	309987	745811	4450265	4038.9			
COMP	TNT-03-SS	2527165	309944	745804	4450252	4039.1			
COMP	TNT-04-SS	2527142	309958	745797	4450256	4038.6			
COMP	TNT-05-SS	2527106	30 99 12	745786	4450242	4039.5			
COMP	TNT-06-SS	2527128	309895	745793	4450237	4039.6			
COMP	TNT-07-SS	2527118	309879	745790	4450232	4040.2			
COMP	TNT-08-SS	2527099	309892	745784	4450236	4039.7			
WELL	ALF-01-MMA	2525115	304503	745197	4448586	4079.1			
WELL	ALF-02-MMA	2523896	304057	744827	4448446	4076.7			
WELL	ALF-03-MHA	2524736	302893	745087	4448094	4085.4			
WELL	CCB-01-MMA	2524664	306151	745054	4449087	4065.6			
WELL	CCB-02-MHA	2524516	305214	745012	4448801	4074.6			•
WELL	DF-1-MW	2526524	309249	745611	4450038	4050.8			
WELL	DMO-03-MHA	2528127	303741	746118	4448364	4084.1			
WELL	DMO-04-MHA	2528023	303578	746087	4448314	4084.0			
WELL	DMO-05-MMA	2528086	303335	746107	4448240	4083.1			
WELL	DS8-01-MMA	2506265	344399	739316	4460687	3994.0			
WELL	DSB-02-MMA	2516080	329656	742358	4456225	4000.1			
WELL	DSB-04-MHA	2525800	325653	745335	4455037	4007.3			
WELL	DSB-06-MHA	2527169	309659	745806	4450165	4042.3			
WELL	LSG-1-MW	2530846	344311	746811	4460743	4011.4			
WELL	LBG-2-MV	2525551	339349	745213	4459212	4006.3			
WELL	LF-1-NV	2515122	307039	742142	4449326	4024.4			
WELL	LF-2-MV	2514126	308290	741834	4449704	4019.6			
WELL	LF-8-MJ	2513812 2513356	308057	741739	4449632	4020.4			
MELL	LF-C-MI	2512493	30 8331 30 89 11	741599 741334	4449714	4017.0			
WELL	LF-D-MW	2513882	309021	741334 741757	4449888	4011.2			
WELL	LF-E-MW	2513986	308698		4449926	4014.5			
WELL	LF-F-MN	2515003	308084	7417 9 0 742102	4449828 4449644	4016.5 4022.4			
WELL	LF-G-MW	2514017	307314	741804	4449406	4022.6			
WELL	LF-H-MW	2514102	307631	741829	4449503	4022.5			
WELL	LF-I-NU	2515559	306467	742277	4449153	4022.8			
WELL	LF-J-MW	2514338	306658	741904	4449207	4024.6			
WELL	LF-K-MW	2514862	305455	742068	4448842	4023.4			
WELL	LF-L-MV	2512738	307367	741414	4449418	4020.4			
WELL	LF-M-MW	2511741	308867	741105	4449872	4010.0			
WELL	LF-N-MW	2515588	309133	742277	4449966	4016.0			
WELL	LF-O-MJ	2517424	306027	742847	4449025	4030.6			
WELL	P-1-MW	2523750	302435	744788	4447951	4086.5			
WELL	P-2-MJ	2523636	302430	744753	4447949	4086.2			

SAMPLING POINT COORDINATE REPORT INSTALLATION: Sierra Ordnance Depot

s	ITE	STATE	PLANAR	U 1	r w				
TYPE	10	X-COORD	Y-COORD	X-COORD	Y-COORD	ELEV	AQUIFER	BORE NO.	DESCRIPTION
•••••	•••••••••••		•••••••		**********	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	
WELL	P-3-MW	2523890	302296	744831	4447909	4086.1			
WELL	PSW-02	2525612	301434	745359	4447652				
WELL	PSW-05	2519621	300945	743534	4447483				
WELL	PSW-08	2524359	301405	744977	4447639				
WELL	PSW-09	2519724	298687	743573	4446795				
WELL	TESTPT	2494680	279955	736000	4441000	0.0			
WELL	THT-01-MMA	2527030	309893	745763	4450236	4042.0			
WELL	THT-01-MUS	2527030	309880	745763	4450232	4042.2			
WELL	THT-01-MWC	2527030	309870	745763	4450229	4042.0			
WELL	TNT-02-MWA	2527653	310185	745952	4450327	4041.0			
WELL	THT-02-MWB	2527653	310178	745952	4450325	4041.2			
WELL	TNT-02-MMC	2527653	310168	745952	4450322	4040.2			
WELL	THT-03-MMA	2527310	310320	745847	4450367	4039.4			
WELL	TNT-04-MUA	2527657	309899	745954	4450240	4040.6			
WELL	THT-05-MMA	2527995	309391	746059	4450086	4045.4			
WELL	THT-06-MWA	2527336	309663	745857	4450167	4041.4			
WELL	THT-07-MMA	2526871	310318	745713	4450365	4042.7			
WELL	TNT-07-MUB	2526881	310318	745716	4450365	4042.4			
WELL	TNT-07-MWC	2526894	310324	745720	4450367	4042.1			
WELL	THT-08-MA	2526709	309890	745665	4450234	4042.4			
WELL	THT-09-MMA	2526777	309561	745687	4450134	4042.3			
WELL	TNT-10-MMA	2526115	309621	745485	4450150	4043.0			
WELL	THT-10-MUB	2526125	309624	745488	4450151	4043.0			
WELL	TNT-10-MUC	2526125	309637	745488	4450155	4041.8			
WELL	THT-11-MMA	2525930	309436	745429	4450093	4046.3			
WELL	THT-12-MMA	2526062	309878	745468	4450228	4037.0			
WELL	THT-13-MA	2526551	309606	745618	4450147	4043.2			
WELL	TNT-14-MUA	2525470	309953	745287	4450249	4035.9			
WELL	TNT-15-MMA	2527688	310407	745962	4450395	4037.2			
WELL	THT-16-MMA	2528131	310403	746097	4450395	4043.1			
			3.0.00	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-416911				

Program ended normally.\$

Geotechnical and Field Drilling Data from the GFD File of the IRDMS

James M. Montgomery

Consulting Engineers Inc.

GEOTECHNICAL FIELD DRILLING (GFD) Installation: Sierra Ordnance Depot (SA)

Measurement Date Range: 01-jan-75 to 20-sep-90

Min (X,Y): (736000, 441000	00) Max	(X,Y):	(746167,	4460707)
(M) . / . (,,	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	******

Site Type/Site id Org Date Heasurement Method Depth Interval Value Meas. Entry		Unit						Action	Heasurement			
DPTOT 01 -9999.0 -9999.0 106.5 FT GRDWT 02 -9999.0 -9999.0 90.0 FT USCS 01 0.0 35.0 -9999.0 SP 01 35.0 1.0 -9999.0 SM 01 36.0 4.5 -9999.0 SP 01 40.5 8.0 -9999.0 SM 01 48.5 11.5 -9999.0 SW 01 60.0 8.0 -9999.0 SM 01 68.0 3.0 -9999.0 SM 01 71.0 1.0 -9999.0 SP	ntry			Value	Interval	Depth	Method			Org	Type/Site id	şit
DPTOT 01 -9999.0 -9999.0 106.5 FT GRDWT 02 -9999.0 -9999.0 90.0 FT USCS 01 0.0 35.0 -9999.0 SP 01 35.0 1.0 -9999.0 SM 01 36.0 4.5 -9999.0 SP 01 40.5 8.0 -9999.0 SM 01 48.5 11.5 -9999.0 SW 01 60.0 8.0 -9999.0 SM 01 68.0 3.0 -9999.0 SM 01 71.0 1.0 -9999.0 SP				.0000 A	104 E	0.0	03	ABVALL	48 4-1 4000	***		
GRDWT 02 -9999.0 -9999.0 90.0 FT USCS 01 0.0 35.0 -9999.0 SP 01 35.0 1.0 -9999.0 SM 01 36.0 4.5 -9999.0 SP 01 40.5 8.0 -9999.0 SM 01 48.5 11.5 -9999.0 SW 01 60.0 8.0 -9999.0 SM 01 68.0 3.0 -9999.0 SM 01 71.0 1.0 -9999.0 SP		£7							13-160-1994	JM	ALF-UT-MUA	SORE
USCS 01 0.0 35.0 -9999.0 SP 01 35.0 1.0 -9999.0 SM 01 36.0 4.5 -9999.0 SP 01 40.5 8.0 -9999.0 SM 01 48.5 11.5 -9999.0 SW 01 60.0 8.0 -9999.0 SM 01 68.0 3.0 -9999.0 SM 01 71.0 1.0 -9999.0 SP												
01 35.0 1.0 -9999.0 SM 01 36.0 4.5 -9999.0 SP 01 40.5 8.0 -9999.0 SM 01 48.5 11.5 -9999.0 SW 01 60.0 8.0 -9999.0 SM 01 68.0 3.0 -9999.0 SP 01 71.0 1.0 -9999.0 SC 01 72.0 8.5 -9999.0 SP	•											
01 36.0 4.5 -9999.0 SP 01 40.5 8.0 -9999.0 SM 01 48.5 11.5 -9999.0 SW 01 60.0 8.0 -9999.0 SM 01 68.0 3.0 -9999.0 SP 01 71.0 1.0 -9999.0 SC 01 72.0 8.5 -9999.0 SP								0000				
01 40.5 8.0 -9999.0 SM 01 48.5 11.5 -9999.0 SW 01 60.0 8.0 -9999.0 SM 01 68.0 3.0 -9999.0 SP 01 71.0 1.0 -9999.0 SC 01 72.0 8.5 -9999.0 SP												
01 48.5 11.5 -9999.0 SW 01 60.0 8.0 -9999.0 SM 01 68.0 3.0 -9999.0 SP 01 71.0 1.0 -9999.0 SC 01 72.0 8.5 -9999.0 SP												
01 60.0 8.0 -9999.0 SM 01 68.0 3.0 -9999.0 SP 01 71.0 1.0 -9999.0 SC 01 72.0 8.5 -9999.0 SP				-9999.0								
01 71.0 1.0 -9999.0 SC 01 72.0 8.5 -9999.0 SP	M			-9999.0			01					
01 72.0 8.5 -9999.0 SP	P			-9 999 .0		68.0	01					
	C			-9 999 .0	1.0	71.0	01					
01 80.5 1.0 -9999.0 ML	P		i	- 9999 .0	8.5	72.0	01					
	L		1	-9 999 .0	1.0	80.5	01					
01 81.5 8.5 -9999.0 SP	P			-	8.5	81.5	01					
01 90.0 7.0 -9999.0 ML	L				7.0	90.0	01					
01 97.0 8.5 -9999.0 SP	P						01					
01 105.5 0.5 -9999.0 ML												
01 106.0 0.5 -9999.0 SP	P)	-9999.0	0.5	106.0	01					
BORE ALF-01-SB JM 17-mar-1990 ADVAU 01 0.0 95.0 -9999.0)	-9999.0	95.0	0.0	01	ADVAU	17-mar-1990	JM	ALF-01-SB	RORE
DPTOT 01 -9999.0 -9999.0 95.0 FT		FT)	95.0	-9999.0					***		505
GRDWT 02 -9999.0 -9999.0 94.5 FT		FT	j	94.5		-9999.0		GROWT				
USCS 01 0.0 10.0 -9999.0 SP	P)	-9999.0	10.0	0.0	01					
01 10.0 0.7 -9999.0 SM	M)	-9999.0	0.7	10.0	01					
01 10.7 8.3 -9999.0 ML	IL.)	-9 999 .0	8.3	10.7	01					
01 19.0 0.2 -9999.0 CL	iL.				0.2	19.0	01					
01 19.2 4.8 -9999.0 ML	L)	-9999.0	4.8	19.2	01					
01 24.0 5.0 -9999 .0 SP	P)	-9 999 .0	5.0	24.0	01					
01 29.0 5.0 -9999.0 S⊌	¥)	-9999.0	5.0	29.0	01					
01 34.0 0.7 -9999.0 ML	IL.)	-9999.0	0.7	34.0	01					
01 34.7 4.3 -9999.0 CL)	-9999.0	4.3	34.7	01					
01 39.0 5.0 -9999 .0 SP	P)	-9 999 .0		39.0	01					
01 44.0 5.0 -9999.0 SH-SM	H-SM				5.0	44.0	01					
01 49.0 10.0 -9999 .0 SM												
01 59.0 5.0 -9999 .0 s⊌												
01 64.0 5.0 -9999.0 SP												
01 69.0 0.7 -9999.0 SW												
01 69.7 4.39999.0 ML												
01 74.0 10.0 -9999.0 SP					-		=					
01 84. 0 6.0 -9999.0 SM												
01 90.0 3.0 -9999.0 ML			-									
01 93.0 1.5 -9999.0 SM												
01 94.5 0.5 -9999.0 ML	4L		0	-9999.0	0.5	94.5	01					
BORE ALF-02-MMA JM 17-feb-1990 ADVAU 02 0.0 107.0 -9999.0			0	-9999,(107.0	0.0	02	ADVAU	17-feb-1990	JM	ALF-02-MIA	SORE
DPTOT 01 -9999.0 -9999.0 107.0 FT		FT			- 9999 .0			DPTOT				
GRDWT 02 -9999.0 -9999.0 92.0 FT		FT	0	92.0	-9999.0			GRDWT				
USCS 01 0.0 25.5 -9999.0 SP	SP				25.5	0.0		USCS				
01 25.5 0.5 - 9999 .0 SM	ŞM		0	-9999.0								

. 1 -

GEOTECHNICAL FIELD DRILLING (GFD) Installation: Sierra Ordnance Depot (SA)

Measurement Date Range: 01-jan-75 to 20-sep-90

<u> Şite</u>	Type/Site id	Org	Messurement Date	Action <u>Measurement</u>	Method	Depth	Interval	<u>Val ue</u>	Unit <u>Mess</u> .	Entry	
	44.5.00	124	17-feb-1990	uscs	01	26.0	4.0	-9999.0		SM	
BORE	ALF-02-MIA	JM	17-160-1770	UJCJ	01	30.0	0.2	-9999.0		ML	
					01	30.2	5.0	-9999.0		ML	1
					01	35.2	0.2	-9999.0		CL	
					01	35.4	4.6	- 9999 .0		SP	
					01	40.0	0.5	- 9999 .0		ML	
					01	40.5	4.5	- 9999 .0		SM	1
					01	45.0	0.5	- 9999 .0		ML	
					01	45.5	4.5	- 9999 .0		SH	
					01	50.0	0.6	- 9999 .0		CL	,
					01	50.6	0.1	- 9999 .0		OL	
					01	50.7	10.6	- 9999 .0		SW	
					01	61.3	0.2	- 9999 .0		ML	
					01	61.5	8.5	-9999.0		SW	
					01	70.0	0.4	-9999.0		ML	
					01	70.4	9.6	-9999.0		SW	
					01	80.0	2.0	-99 99 .0		SM	
					01	82.0	5.0	-9999.0		CL	
					01	87.0	2.0	-9999.0		SM-ML	١
					01	89.0	1.8	-9999.0 -9999.0		CL	
					01 01	90.8	9.2 0.6	·9999.0		SM SM	
					01	100.0 100.6	_	-9999.0		SP	
				-	. 01	100.6	6.4	-9999.0		36	
BORE	ALF-02-58	JM	18-mar-1990	ADVAU	01	0.0	89.0	- 9999 .0			
				OPTOT	01	- <i>9</i> 999.0	-9999.0	89.0	FT		
				GROWT	02	- 9999 .0	-9 999 .0	86.0	FT		
				USCS	01	0.0	9.0	-9999.0		SP	
					01	9.0	2.0	- 9999 .0		NR	
					01	11.0	3.0	- 9999 .0		SP-SM	
					01	14.0	15.0	- 9999 .0		SF	
					01	29.0	5.0	-9999.0		ML	
					01	34.0	5.4	-9999.0		SP	
					01	39.4	0.2	-9999.0		SM SP	
					01	39.6	19.4	- 9999 .0 - 9999 .0		SP-HL	
					01	59.0	11.0 18.0	- 9999 .0		ML ML	
					01 01	70.0	1.0	-9999.0		S¥	
					01	88.0	7.0	-7777.0		38	
BORE	ALF-03-MMA	JM	19-feb-1990	ADVAU	02	0.0	107.5	·9999.0			
				DPTOT	01	-9999.0	-9999.0	107.5	FT		
				GROWT	02	-9999.0	-9999.0	91.5	FT		
				USCS	01	0.0	9.0	-9999.0		SP	
					01	9.0	6.6	-9999.0		SM	
					01	15.6	0.1	-9999.0		CL-SM	
					01	15.7	5.2	-9999.0		SH	
					01	20.9	0.1	-9999.0		en Cr	
					01	21.0	4.0	- 9999 .0 - 9999 .0		SW SM	
					01	25.0	0.3 0.8	-9999.0 -9999.0		SP SP	
					01 01	25.3	0.1	-9999.0		SM	
					01	26.1	U. 1	- 7777.0		3 M	

GEOTECHNICAL FIELD DRILLING (GFD) Installation: Sierra Ordnance Depot (SA)

Measurement Date Range: 01-jan-75 to 20-sep-90

			Heasurement	Action					Unit	
Sit	te Type/Site id	org	Date	Measurement	Method	Depth	Interval	<u>Value</u>	Meas.	Entry
<u> </u>	<u> </u>					<u> </u>	********			<u> </u>
SORE	ALF-03-MMA	JM	19-feb-1990	USCS	01	26.2	4.0	-9 999 .0		SP
-					01	30.2	4.8	- 9999 .0		SP-CL
					01	35.0	0.5	-9999.0		ML
					01	35.5	0.2	-9999.0		CL-ML
					01	35.7	0.8	-9999.0		SW
					01	36.5	3.9	-9999.0		SM
					01	40.4	0.1	-9 999 .0		CL
					01	40.5	4.5	-9 999 .0		SP
					01	45.0	6.3	-9999.0		SM
					01	51.3	3.7	-9999.0		SM
					01	55.0	0.3	-9 999 .0		SP
					01	55.3	0.9	- 9999 .0		CL-ML
					01	56.2	3.8	-9999.0		SH
					01	60.0	0.4	-9999.0		ML
					01	60.4	9.6	-9999.0		SW
				•	01	70.0	0.3	-9999.0		ML
					01	70.3	0.2	-9999.0		SP
					01	70.5	4.5	-9999.0		CL
					01	75.0	5.0	-9999.0 -9999.0		SW
					01	80.0	10.0			SP
					01	90.0	0.6	-9999.0 -9999.0		SM
					01	90.6 100.0	9.4 0.7	-9999.0		2P 2M
					01	100.0	0.7	-9999.0 -9999.0		SM SM
					01 01	101.0	6.5	-9999.0		CL CL
					01	101.0	6.3	- 7777.0		CL
BORE	ALF-03-58	JM	19-mar-1990	ADVAU	01	0.0	90.0	-9999.0		
••••				DPTOT	01	-9999.0	-9999.0	90.0	FT	
				NOGWT	01	-9999.0	-9999.0	-9999.0		
				USCS	01	0.0	9.0	- 9999 .0		NTLOGO
					01	9.0	21.0	-9999.0		SP
					01	30.0	4.0	-9999.0		SP-ML
					01	34.0	6.0	- 9999. 0		SP-CL
					01	40.0	4.0	- 9999. 0		SP
					01	44.0	5.0	- 9999 .0		SP-CL
					01	49.0	10.0	- 9999. 0		SP
					01	59.0	11.0	- 9999 .0		ML-SP
					01	70.0	7.0	- 9999 .0		SP
					01	77.0	3.0 ·	-9999.0		SM
					01	80.0	5.0	-9 999 .0		SP
					01	85.0	2.5	-9 999 .0		SM-SP
					01	87.5	1.5	-9 999 .0		SP-SM
					01	89.0	1.0	- 9999 .0		SP
			40 4000		•		** *	****		
SORE	ALF-04-58	JM	18-mar-1990	ADVAU	01	0.0	86.0	-9999.0	67	
				DPTOT	01	-9999.0	-9999.0	86.0	FT FT	
				GROWT	02	-9999.0	-9999.0	85.0 -9999.0	PI	SP
				USC\$	01 01	0.0 29 .0	29.0 5.0	-9999.0		ML ML
					01 01	27.0 34.0	5.0	-9999.0		SP
					01 01	39.0	0.5	-9999.0 -9999.0		SM-MF
					01	37.0	V.3	,,,,,,		en ⊓6

GEOTECHNICAL FIELD DRILLING (GFD)

Installation: Sierra Ordnance Depot (SA)

Measurement Date Range: 01-jan-75 to 20-sep-90 Min (X,Y): (736000, 4410000) Max (X,Y): (746167, 4460707)

			Heesurement	Action					Unit	
Site	<u>Type/Site id</u>	Org	Date	Measurement	Method	<u>Depth</u>	Interval	Value	<u>Heas</u> .	Entry
BORE	ALF-04-58	JM	18-mar-1990	uscs	Q1	39.5	10.0	-9999.0		SP
		***			01	49.5	0.2	-9999.0		ML
					01	49.7	10.1	- 9999 .0		SP
					01	59.8	0.2	- 9999 .0		SM
					01	60.0	10.0	- 9999 .0		SW
					01	70.0	5.0	- 9999 .0		ML
					01	75.0	5.3	-9999.0		SM
					01	80.3	4.7	- 9999 .0		SP
					01	85.0	1.0	- 9999 .0		SM
BORE	CCB-01-NNA	JM	20-feb-1990	ADVAU	02	0.0	92.5	- 9999 .0		
		_		DPTOT	01	- 9999 .0	- 9999 .0	92.5	FT	
			•	GROWT	02	- 9999 .0	- 9999 .0	76.0	FT	
				USCS	01	0.0	5.0	- 9999 .0		SH
					01	5.0	5.0	-9999.0		SP
					01	10.0	5.0	- 9999 .0		SW
					01	15.0	3.0	- 9999 .0		SM
					01	18.0	7.0	- 9999 .0		SP
					01	25.0	1.5	- 9999 .0		SP-HL
					01	26.5	4.9	- 9999 .0		ML
					01	31.4	3.6	- 9999 .0		SP
					01	35.0	5.0	-9999. 0		SW
					01	40.0	5.0	- 9999 .0		SP-CL
	•				01	45.0	0.6	- 9999 .0		SM
					01	45.6	4.4	- 9999 .0		ML
					01	50.0	0.2	- 9999 .0		SM
					01	50.2	0.3	- 9999 .0		CL
					01	50.5	4.5	- 9999 .0		SM-CL
					01	55.0	5.0	- 9999 .0		ML - SM
					01	60.0	10.2	- 9999 .0		SM
					01	70.2	0.3	- 9999 .0		CL
•					01	70.5	0.2	- 9999 .0		ML
					01	70.7	0.5	- 9999. 0		\$P
					01	71.2	13.8	-9 999 .0		ML
					01	85.0	1.0	-9 999 .0		SW
					01	86.0	5.4	- 9999 .0		ML-SP
					01	91.4	0.3	- 9999 .0		SP
					01	9 1.7	0.3	-9 999 .0		ML
					01	92.0	0.5	-9 999 .0		CF
BORE	CC8-01-S8	JM	13-apr-1990	ADVAU	01	0.0	80.0	-9999.0		
				DPTOT	01	- 9999 .0	-9999.0	80.0	FT	
				GROWT	02	- 9999 .0	-9999.0	79.0	FT	
				USCS	01	0.0	39.0	- 9999 .0		ML
					01	39.0	5.0	-9 999 .0		SM
					01	44.0	5.0	- 9999 .0		SP
					01	49.0	30.0	- 9999 .0		ML
					01	79.0	1.0	-9999.0		SW
BORE	CC8-02-MA	JM	26-feb-1990	ADVAU	02	0.0	104.5	- 9999 .0		
				DPTOT	01	-9 999 .0	-9999.0	104.5	FT	

GEOTECHNICAL FIELD DRILLING (GFD) Installation: Sierra Ordnence Depot (SA)

Measurement Date Range: 01-jan-75 to 20-sep-90 Min (X,Y): (736000, 4410000) Max (X,Y): (746167, 4460707)

			Hessurement	Action					Unit	
<u>Si te</u>	Type/Site id	Org	Date	Measurement	Method	Depth	Interval	Value	Meas.	Entry
2005	CCB-02-MA	JM	26-feb-1990	GROWT	02	-9999.0	-9999.0	88.0	FT	
BORE	CCB-05-MMM	314	20-140-1770	USCS	01	0.0	5.0	-9999.0	, ,	SH
					01	5.0	5.7	-9999.0		S≌
					01	10.7	4.3	-9999.0		SM
					01	15.0	5.0	-9999.0		SP
					01	20.0	0.2	-9 999 .0		SU
					01	20.2	14.8	- 9999 .0		SM
					01	35.0	5.0	-9999.0		ML
					01	40.0	5.0	- 9999 .0		ML-CL
					01	45.0	1.1	-9 999 .0		SM
					01	46.1	3.9	- 9999 .0		SW
					01	50.0	10.0	- 9999 .0		SM
					01	60.0	1.0	-9 999 .0		SW
					01	61.0	9.0	-9 999 .0		SP
					01	70.0	10.2	-9999.0		SM
					01	80.2	9.8	-9 999 .0		SM-CL
					01	90.0	1.2	-9 999 .0		SM
					01	91.2	8.9	- 9999 .0		ML
					01	100.1	0.9	- 9999 .0		SM
					01	101.0	2.3	- 9999 .0		CL
					01	103.3	0.8	-9 999 .0		SM
					01	104.1	0.4	- 9999 .0		CL
BORE	CC8-02-58	JM	12-apr-1990	ADVAU	01	0.0	88.0	-9 999 .0		
			•	DPTOT	01	- 9999 .0	-9999.0	88.0	FT	
				GROWT	02	-9999.0	-9 999 .0	81.0	FT	
				USCS	01	0.0	14.0	- 9999 .0		MŁ
					01	14.0	5.0	- 9999 .0		SP
					01	19.0	25.0	- 9999 .0		ML
					01	44.0	0.2	- 9999 .0		SW
					01	44.2	26.3	- 9999. 0		ML
					01	70.5	1.0	- 9999 .0		NR
					01	71.5	0.1	-9999.0		SM
					01	71.6	7.4	- 9999 .0		ML
					01	79.0	9.0	- 9999 .0		SM
BORE	CCB-03-58	JM	12-apr-1990	ADVAU	01	0.0	88.0	- 9999 .0		
				OPTOT	01	-9 999 .0	- 9999 .0	88.0	FT	
				NOGLIT	01	-9 999. 0	- 9999 .0	-9 999 .0		
				USCS	01	0.0	39.0	-9999.0		ML
					01	39.0	1.0	-9 999 .0		SM
					01	40.0	19.0	-9 999 .0		ML
					01	59.0	10.0	-9999.0		CL
					01	69.0	19.0	- 9999 .0		ML
SORE	CC8-04-58	J96	11-apr-1990	ADVAU	01	0.0	90.0	-9999.0		
				DPTOT	01	-9999.0	-9999.0	90.0	FT	
				GROUT	02	-9999.0	- 9999 .0	89.0	FT	
				USCS	01	0.0	14.0	- 9999 .0		ML
					01	14.0	5.0	- 9999 .0		SP
					01	19.0	5.0	- 9999 .0		SM

. 5 .

GEOTECHNICAL FIELD DRILLING (GFD) Installation: Sierra Ordnance Depot (SA) Heasurement Date Range: 01-jan-75 to 20-sep-90

Min (X,Y): (736000, 4410000) Max (X,Y): (746167, 4460707)

			Nessurement	Action					Unit	
Site	Type/Site id	<u>Qra</u>	Dete	Measurement	Method	Depth	Interval	Value	Heas.	Entry
SORE	CC8-04-\$8	JM	11-apr-1990	USCS	01	24.0	35.0	- 9999 .0		ML
					01	59.0	20.0	-9 999 .0		SM
					01	79.0	10.5	- 9999 .0		ML
					01	89.5	0.5	- 9999 .0		SU
SORE	CC8-05-SE	JM	11-apr-1990	ADVAU	01	0.0	70.0	-9999.0		
				DPTOT	01	-9 999 .0	- 9999 .0	70.0	FT	
				NOGWT	01	-9999.0	-9999.0	- 9999 .0		
				USCS	01	0.0	34.0	-9999.0		ML
					Q1	34.0	5.0	-9999.0		ML - SM
					01	39.0	1.5	- 9999 .0		ML
					01	40.5	1.0	-9999.0		NR
					01	41.5	2.5	-9999.0		ML
					01	44.0	5.0	- 9999 .0		SW
					01	49.0	1.3	-9999.0		CL
					01	50.3	19.7	- 9999 .0		ML
SORE	DMO-03-MMA	JM	26-feb-1990	ADVAU	02	0.0	109.0	- 9999 .0		
				DPTOT	01	·9999.0	- 9999 .0	109.0	FT	
				GROWT	02	- 9999 .0	- 9999 .0	93.0	FT	
				USCS	01	0.0	10.0	-9999.0		SH
					01	10.0	15.0	- 9999 .0		SW
					01	25.0	0.3	-9999.0		ML
					01	25.3	1.0	-9999.0		SW
					01	26.3	0.2	-9999.0		CF
					01	26.5	8.5	-9999.0		SP
					01	35.0	5.4	-9999.0		SW
					01 01	40.4 40.8	0.4	-9999.0		CL-ML
					01	45.0	4.2 5.0	-9999.0 -9999.0		SH
					01	50.0	0.5	-9999.0		SP
					01	50.5	9.5	-9999.0		ML Sw
					01	60.0	10.7	-9999.G		
					01	70.7	0.2	-9999.0		SP
					01	70.9	19.1	-9999.0		CL SP
					01	90.0	1.0	- 9999 .0		Cr
					01	91.0	9.0	-9999.0		SM
					01	100.0	0.3	-9999.0		CL
					01	100.3	0.5	-9999.0		SC
					01	100.8	6.7	- 9999 .0		CL
					01	107.5	0.5	-9999.0		SM
					01	108.0	1.0	-9999.0		CL
BORE	DMO-04-MMA	JM	28-feb-1990	ADVAU	02	0.0	109.5	-9999.0		
-				DPTOT	01	-9999.0	-9999.0	109.5	FT	
				GROWT	02	-9999.0	-9999.0	93.0	FT	
				uscs	01	0.0	10.6	- 9999 .0	, ,	ML
					01	10.6	0.2	-9999.0		SP
					01	10.8	9.2	- 9999 .0		ML
					01	20.0	1.2	- 9999 .0		SH
					01	21.2	0.2	-9999.0		ML

6 -

GEOTECHNICAL FIELD DRILLING (GFD)

Installation: Sierra Ordnance Depot (SA) Measurement Date Range: 01-jan-75 to 20-sep-90

			Measurement	Action					Unit	
ei:	te Type/Site id	Sica	Date	Measurement	Method	Depth	Interval	Value	Meas.	Entry
<u> </u>	22 :TEN 9:(4 :4		44.1			<u> </u>	111101 301	••••	-433	<u> </u>
SORE	0MO-0/ #4A	JM	28-feb-1990	uscs	01	21.4	9.3	-9999.0		SXI
					01	30.7	9.3	-9 999 .0		ML
					01	40.0	0.2	- 9999 .0		SM
					01	40.2	0.6	- 9999 .0		ML
					01	40.8	4.2	-9999.0		SM
					01	45.0	1.0	- 9999 .0		SW
					01	46.0	4.0	· 9999 .0		HL.
					01	50.0	0.2	- 9999 .0		SM
					01	50.2	0.2	-9999.0		ML
					01 01	50.4	9.6	-9999.0		SM
					01	60.0 60.8	0. 8 9.2	-9999.0 -9999.0		SP
					01	70.0	6.0	- 9999 .0		¥L S⊎
					01	76.0	4.0	-9999.0		25 20
					01	80.0	0.5	-9999.0		SM Sh
					01	80.5	0.5	-9999.0		HL.
					01	81.0	9.0	-99+9.0		SH.
					01	90.0	0.4	-9999.0		ML
					01	90.4	0.4	-9999.0		SP
					01	90.8	4.2	-9999.0		ML - SM
					91	95.0	5.5	-9999.0		SM
					01	100.5	0.6	-9 999 .0		ML
					01	101.1	7.9	- 9999 .0		SM
					01	109.0	0.3	- 9999 .0		SP
					01	109.3	0.2	-9 999 .0		SM
SORE	DHO-05-MA	JM	27-feb-1990	ADVAU	02	0.0	110.5	-9999.0		
				DPTOT	01	-9 999 .0	-9 999 .0	110.5	FT	
				GROWT	02	-9 999 .0	- 9999 .0	94.0	FT	
				USCS	01	0.0	10.0	-9999.0		SM
					01	10.0	5.0	- 9999 .0		SP
					01	15.0	5.0	- 9999 .0		SM
					01	20.0	5.6	- 9999 .0		SP
					01	25.6	4.4	-9999.0		ML
					01	30.0	10.0	-9999.0		SP
					01	40.0	0.5	-9999.0		ML
					01	40.5	19.5	-9999.0		SP
					01 01	60.0	1.2	-9999.0 -9999.0		ML
						61.2	8.8			SP
					01 01	70.0 70.4	0.4 0.4	-9999.0 -9999.0		ML
					01	70.8	0.7	-9999.0		CL SP
					01	71.5	8.5	-9999.0		SC
					01	80.0	0.2	-9999.0		Cr
					01	80.2	9.8	-9999.0		SM
					01	90.0	1.0	-9999.0		SM
					01	91.0	0.6	-9999.0		2M
					01	91.6	2.4	-9999.0		SM
					01	94.0	15.9	-9999.0		ML
					01	109.9	0.1	- 9999 .0		SM
					01	110.0	0.5	-9999.0		ML
							• • •			-

GEOTECHNICAL FIELD DRILLING (GFD)

Installation: Sierra Ordnance Depot (SA)

Measurement Date Range: 01-jan-75 to 20-sep-90

			Messurement	Action					Unit	
eira	Type/Site id	Org	Date	Measurement	Method	Depth	Interval	Value	Heas.	Entry
3/13	1700/0114	4.1	<u> </u>			<u> </u>	<u> </u>			<u> </u>
								2222 4		
BORE	DMO-06-58	JM	26-mar-1990	ADVAU	01	0.0	96.0	- 9999 .0		
				DPTOT	01	-9999.0	-9999.0 -9999.0	96.0	FT	
				GROWT	02	-9999.0		96.0	FT	
				USCS	01	0.0	5.0	-9999.0		SW
					01	5.0	5.0	-9999.0		NR
					01	10.0	5.0	-9999.0 -9999.0		SP
					01	15.0	5.0	-9999.0		SM
					01	20.0	5.0	-9999.0		SP
					01	25.0	15.0	- 9999 .0		2M
					01	40.0	0.5	-9999.0		SM 92
					01	40.5	9.5	-9999.0 -9999.0		
					01	50.0	0.2			SM ***
					01	50.2	9.8	-9999.0 -9999.0		ML.
					01	60.0	10.0			SH
					01	70.0	10.0	-9999.0		\$M
					01	80.0	10.0	-9999.0		SM
					01	90.0	5.0	- 9999 .0		CL
					01	95.0	0.5	-9999.0		ML
					01	95.5	0.5	- 9999 .0		\$M
SORE	DMO-07-58	JM	26-mar-1990	ADVAU	01	0.0	94.0	-9999. 0		
				DPTGT	01	-9999.0	-9999.0	94.0	FT	
				GROWT	02	- 9999 .0	-9999.0	94.0	FT	
				USCS	01	0.0	24.4	- 9999 .0		SP
					01	24.4	0.3	-9 999 .0		ML
					01	24.7	4.3	- 9999 .0		SP
					01	29.0	5.3	-9 999 .0		SM
					01	34.3	0.2	-9999.0		SP
					01	34.5	9.5	-9999.0		SW
					01	44.0	5.0	-9999.0		ML
					01	49.0	0.2	-9999.0		CL
					01	49.2	0.5	-9999.0		SM
					01	49.7	0.7	-9999.0		ML
					01	50.4	8.6	-9999.0		CL
					01	59.0	10.0	·9999.0		ML
					01	69.0	10.0	- 9999 .0		SM-ML
					01	79.0	15.0	-9999.0		SM
BORE	DMO-08-58	JM	27-mar-1990	ADVAU	01	0.0	95.0	-9999.0	FT	
				DPTOT	01	-9999.0	-9999.0	95.0		
				GROWT	02	-9999.0	-9 999 .0	94.5	FT	
				USCS	01	0.0	9.0	-9999.0		SP
					01	9.0	0.5	-9999.0		ML
					01	9.5	4.5	-9999.0		SM
					01	14.0	5.0	-9999.0		ML
					01	19.0	5.0	-9999.0		SP
					01	24.0	5.0	-9999.0		SM
					01	29.0	5.0	-9999.0		SP
					01	34.0	1.0	- 9999 .0		SM
					01	35.0	4.0	- 9999 .0		SP

GEOTECHNICAL FIELD DRILLING (GFD) Installation: Sierra Ordnance Depot (SA) Measurement Date Range: 01-jan-75 to 20-sep-90

Min (X,Y): (736000, 4410000) Max (X,Y): (746167, 4460707)

			Measurement	Action					Unit	
Site	Type/Site id	Org	Date	Measurement	Method	Deoth	Interval	<u>Value</u>	Meas.	Entry
BORE	DMQ-08-S8	JM	27-mar-1990	uscs	01	39.0	0.7	-9999.0		SH
	J. 10 10 10	4			01	39.7	4.3	-9999.0		ML
					01	44.0	5.0	-9999.0		SP
					01	49.0	0.6	-9999.0		SM
					01	49.6	0.9	- 9999 .0		ML
					01	50.5	11.5	-9999.0		SP
					01	62.0	17.0	-9 999 .0		SM
					01	79.0	1.0	-9 999 .0		NR
					01	80.0	9.0	-9 999 .0		SM
					01	89.0	0.6	- 9999 .0		ML
					01	89.6	4.9	- 9999 .0		SM
					01	94.5	0.5	- 9999 .0		ML
BORE	DMO-09-58	ML	28-mar-1990	ADVAU	01	0.0	94.0	-9999.0		
				DPTOT	01	-9 999 .0	- 9999 .0	94.0	FT	
				GROWT	02	-9 999 .0	-9 999 .0	94.0	FT	
				USCS	01	0.0	9.0	- 9999 .0		ML
					01	9.0	5.0	-9 999 .0		SP
					01	14.0	5.0	- 9999 .0		ML
					01	19.0	10.0	- 9999 .0		SP
					01	29.0	5.0	- 9999 .0		ML
					01	34.0	6.0	-9 999 .0		SM
					01	40.0	9.0	- 9999 .0		ML
					01	49.0	1.0	-9 999 .0		SM
					01	50.0	9.0	- 9999 .0		ML
					01	59.0	70.0	- 9999 .0		SW
					01	69 .0	10.0	- 9999 .0		MŁ
					01	79.0	1.0	· 9999 .0		S
					01	80.0	9.0	- 9999 .0		SP
					01	89.0	5.0	- 9999 .0		ML
SORE	DMO-10-58	JM	28-mar-1990	ADVAU	01	0.0	95.0	-9999.0		
				DPTOT	01	- 9999 .0	- 9999 .0	95.0	FT	
				GROWT	02	- 9999 .0	- 9999 .0	95.0	FT	
				USCS	01	0.0	9.0	- 9999 .0		ML
					01	9.0	5.0	- 9999 .0		SM
					01	14.0	5.0	- 9999 .0		ML
					01	19.0	5.0	- 9999 .0		SP
					01	24.0	10.0	- 9999 .0		SW
					01	34.0	2.0	-9 999 .0		NR
					01	36.0	3.0	- 9999 .0		SM
					01	39.0	1.0	- 9999 .0		ML
					01	40.0	0.5	- 9999 .0		SP
					01	40.5	9.7	-9999.0		ML
					01	50.2	8.8	- 9999 .0		SM
					01	59.0	10.0	- 9999 .0		ĦL
					01	69.0	0.5	·9 999 .0		CF
					01	69.5	9.5	· 9999 .0		ML
					01	79.0	0.7	- 9999 .0		SM
					01	79.7	9.3	- 9999 .0		SP
					01	89.0	0.3	- 9999 .0		ML

. 9.

GEOTECHNICAL FIELD DRILLING (GFD) Installation: Sierra Ordnance Depot (SA)

Measurement Date Range: 01-jan-75 to 20-sep-90

			Measurement	Action					Unit	
Site	Type/Site id	Org	Dete	Measurement	Method	Depth	Interval	Value	Meas.	Entry
-								444		<u> </u>
BORE	DMO-10-58	ML	28-mar-1990	USCS	01	89.3	0.4	- 9999 .0		SU
					01	89.7	5.3	-9999.0		SM
BORE	DMO-11-58	JM	30-mar-1990	ADVAU	01	0.0	94.5	-9999.0		
-	JAJ 11 30	•••	30 1131 1770	OPTOT	01	-9999.0	-9999.0	94.5	FT	
				GROWT	02	-9999.0	-9999.0	94.5	FT	
				USCS	01	0.0	19.0	-9999.0	• •	ML
					01	19.0	0.3	-9999.0		SM
					01	19.3	4.7	- 9999 .0		ML
					01	24.0	5.7	-9 999 .0		SM
					01	29.7	4.3	- 9999 .0		ML
					01	34.0	1.0	- 9999 .0		NR
					01	35.0	4.0	-9 999 .0		SP
					01	39.0	0.7	-9999.0		SM
					01	39.7	1.0	- 9999 .0		ML
					01	40.7	3.3	- 9999 .0		SM
					01	44.0	5.8	- 9999 .0		ML
					01	49.8	9.2	-9 999 .0		SP
					01	59.0	20.0	- 9999 .0		ML
					01	79.0	0.8	- 9999 .0		CL
					01	79.8	9.2	- 9999 .0		#L
					01	89.0	5.5	- 9999 .0		SW
BORE	DMO-12-58	JM	20-mar-1990	ADVAU	01	0.0	95.0	- 9999 .0		
				DPTOT	01	-9 999 .0	- 9999 .0	95.0	FT	
				GROWT	02	- 9999 .0	-9999.0	95.0	FT	
				USCS	01	0.0	20.6	- 9999 .0		SP
					01	20.6	3.4	- 9999 .0		SM
					01	24.0	10.0	- 9999 .0		SP
					01	34.0	5.0	- 9999 .0		SM
					01	39.0	0.5	-9 999 .0		ML
					01	39.5	0.1	- 9999 .0		CL
					01	39.6	9.4	- 9999 .0		SP
					01	49.0	10.0	- 9999 .0		SM
					01	59.0	5.0	- 9999 .0		CL
					01	64.0	5.9	-9999.0		SM
					01	69.9	4.1	-9999.0		CL
					01	74.0	5.0	-9999.0		ML
					01	79.0	10.3	-9999.0		SM
					01	89.3	0.3	·9999.0		CL
					01	89.6	5.4	- 9999 .0		SM
SORE	DMO-13-58	JN	20-mar-1990	ADVAU	01	0.0	100.0	-9999 .0		
				DPTOT	01	-99 99 .0	- 9999 .0	100.0	FT	
				GROWT	02	- 9999 .0	- 9999 .0	99.0	FT	
				USCS	01	0.0	9.0	- 9999 .0		ML
					01	9.0	5.0	- 9999 .0		SW
					01	14.0	5.0	- 9999 .0		ML
					01	19.0	5.0	- 9999 .0		SW
					01	24.0	5.0	- 9999 .0		SM
					01	29.0	10.0	- 9999 .0		SP

GEOTECHNICAL FIELD DRILLING (GFD) Installation: Sierra Ordnance Depot (SA) Measurement Date Range: 01-jan-75 to 20-sep-90

		_	Heasurement	Action	44 - 44 - 4	9ab		Malina	Unit	P
Site	Type/Site id	Org	Date	Measurement	Method	Depth	Interval	<u>Value</u>	Meas.	Entry
BORE	DMQ-13-58	JM	20-mar-1990	uscs	01	39.0	10.0	-9999.0		ML
BURG	UNG-13-38	•••	20		01	49.0	0.4	-9999.0		CL
					01	49.4	0.6	- 9999 .0		SW
					01	50.0	9.0	-9 999 .0		ML
					01	59.0	10.0	- 9999 .0		CL
					01	69.0	5.0	-9999.0		\$34
					01	74.0	5.0	- 9999 .0		ML
					01	79.0	10.0	- 9999 .0		SM-CL
					01	89.0	10.0	-9999.0		CL
					01	99.0	1.0	- 9999 .0		SM-CL
BORE	DSB-01-MMA	JM	03-mar-1990	ADVAU	08	0.0	33.0	-9999.0		
- Some		•••		DPTOT	01	-9999.0	-9999.0	33.0	FT	
				GROWT	02	-9999.0	-9 999 .0	12.0	FT	
				USCS	01	0.0	5.0	- 9999 .0		SM
					01	5.0	10.0	-9 999 .0		ML
					01	15.0	1.5	-9 999 .0		SM
					01	16.5	3.5	-9999.0		ML
					01	20.0	5.0	-9999.0		SM
					01	25.0	8.0	-9999.0		ML
BORE	DS8-01-S8	JM	01-mar-1990	ADVAU	26	0.0	250.0	-9999.0		
oons.	333 51 53	•••		DPTOT	01	-9999.0	-9999.0	250.0	FT	
				GROWT	02	-9999.0	- 9999 .0	15.0	FT	
				uscs	01	0.0	3.3	- 9999 .0		SM
					01	3.3	1.6	-9999.0		ML
					01	4.9	0.9	- 9999 .0		SM
					01	5.8	5.7	- 9999 .0		ML
					01	11.5	3.5	-9 999 .0		CL
					01	15.0	4.0	- 9999 .0		ML
					01	19.0	0.5	-9 999 .0		SM
					01	19.5	0.5	- 9999 .0		MR
					01	20.0	2.6	- 9999 .0		SM
					01	22.6	8.7	- 9999 .0		ML
					01	31.3	0.7	- 9999 .0		NR
					01	32.0	2.0	- 9999 .0		ML
					01	34.0	6.5	- 9999 .0		SM-ML
					01	40.5	0.5	-9999.0		SM
					01	41.0	9.3	-9999.0		ML
					01	50.3	1.3	-9999.0		ML-SM
					01	51.6	0.4	-9999.0		NR
					01	52.0	4.5	-9999.0		ML
					01	56.5	0.5	-9999.0		NR M
					01	57.0	3.2	-9999.0		ML - SM
					01	60.2	0.4	-9999.0		ML-SM
					01	60.6	1.2	-9999.0		SH
					01	61.8	0.2	-9999.0		NR CM
					01	62.0	2.1	-9999.0		SM
					01	64.1	2.7	-9999.0		ML
					01	66.8	0.7	-9999.0		NR
					01	67.5	4.9	-9999.0		ML

GEOTECHNICAL FIELD DRILLING (GFD) 13:14:26

Installation: Sierra Ordnance Depot (SA) Measurement Date Range: 01-jan-75 to 20-sep-90

			Hessurement	Action					Unit	
\$1+4	Type/Site id	910	Date	Measurement	Method	<u>Qepth</u>	Interval	<u>Value</u>	Meas.	Entry
3.11		هند								
BORE	DSB-01-SB	JM	01-mar-1990	USCS	01	72.4	0.7	- 9999 .0		CL
					01	73.1	9.6	- 9999 .0		ML
					01	82.7	0.3	- 9999 .0		NR
					01	83.0	2.5	- 9999 .0		ML
					01	85.5	2.5	- 9999 .0		CL
					01	88.0	5.0	- 9999 .0		ML-CL
					01	93.0	19.5	- 9999 .0		ML
					01	112.5	0.5	- 9999 .0		NR
				•	01	113.0	4.5	- 9999 .0		ML
					01	117.5	0.5	- 9999 .0		NR
					01	118.0	4.0	- 9999 .0		ML
					01	122.0	0.2	-9999.0		SM
					01	122.2	0.3	-9999.0		ML
					01	122.5	0.5	-9999.0		NR
					01	123.0	35.8	-9999.0 -9999.0		ML
					01	158.8	0.2			NR
					01	159.0	20.5	-9999.0		ML
					01	179.5	0.5	-9999.0 -9999.0		NR
					01	180.0	54.7	-9999.0 -9999.0		ML
					01	234.7	0.3	-9999.0		NR
					01	235.0	15.0	-9999.0		ML
BORE	DS8-02-MMA	JM	04-mar-1990	ADVAU	08	0.0	41.5	-9999.0		
				DPTOT	01	-9 999 .0	- 9999 .0	41.5	FT	
				GROWT	02	-9999.0	-9999.0	20.0	FT	
				USCS	01	0.0	5.0	- 9999 .0		ML
					01	5.0	10.0	- 9999 .0		SM
					01	15.0	5.0	- 9999 .0		ML
					01	20.0	5.0	- 9999 .0		ML-CL
					01	25.0	16.5	- 9999 .0		ML
BORE	DS8-02-S8	JM	06-mar-1990	ADVAU	26	0.0	250.0	-9999.0		
DOME	030 00 30	•••	40 mg/ 1770	DPTOT	01	-9999.0	-9999.0	250.0	FT	
				GROWT	02	-9999.0	-9999.0	20.0	FT	
				USCS	01	0.0	2.1	-9999.0	• •	ML
				•	01	2.1	0.9	-9 999 .0		NR
					01	3.0	3.0	-9999.0		SM
					01	6.0	1.8	-9999.0		ML
					01	7.8	1.0	-9999.0		SP
					01	8.8	1.2	-9999.0		ML
					01	10.0	4.7	-9999.0		SM
					01	14.7	0.3	-9999.0		NR
					01	15.0	4.7	-9 999 .0		SM
					01	19.7	0.3	-9999.0		NR
					01	20.0	2.2	-9999.0		SM
					01	22.2	1.1	-9999.0		CL
					01	23.3	1.2	-9999.0		ML
					01	24.5	0.5	-9999.0		NR
					01	25.0	1.0	- 9999 .0		ML
					01	26.0	2.0	- 9999 .0		SM
					01	28.0	3.7	-9 999 .0		ML

GEOTECHNICAL FIELD DRILLING (GFD)

Installation: Sierra Ordnance Depot (SA) Measurement Date Range: 01-jan-75 to 20-sep-90

			Heasurement	Action					Unit	
\$1	te Type/Site id	019	Date	Measurement	Method	Depth	Interval	<u>Value</u>	Meas.	Entry
31.	20 1780/ 51/4		1311							4
SORE	058-02-58	JM	06-mar-1990	uscs	01	31.7	0.3	-9 999 .0		NR
					01	32.0	4.5	- 9999 .0		SM
					01	36.5	0.5	-9 999 .0		NR
					01	37.0	2.2	- 9999 .0		ML - SM
					01	39.2	2.8	-9 999 .0		MR
					01	42.0	3.5	- 9999 .0		SM
					01	45.5	1.5	- 9999 .0		MR
					01	47.0	1.8	-9999.0		SM
					01	48.8	2.2	-9999.0		NR
					01	51.0	1.0	- 9999 .0		SM
					01	52.0	0.5	-9999.0		ML
					01	52.5	0.5	-9999.0		S™
					01	53.0	1.5	-9999.0		ML
					01	54.5	1.5	-9999.0		NR
					01	56.0	0.6	-9 999 .0 -9999.0		SM
					01 01	56.6 57.7	1.1	-9999.0 -9999.0		ML
					01	60.7	3.0 0.3	-9999.0		SM NR
					01	61.0	10.0	-9999.0		SH
					01	71.0	0.5	-9999.0		NR
					01	71.5	13.5	-9999.0		SH
					01	85.0	2.0	-9999.0		ML
					01	87.0	5.7	-9999.0		SN .
					01	92.7	0.3	-9999.0		NR
					01	93.0	1.5	-9999.0		SM
					01	94.5	1.5	-9999.0		NR
					01	96.0	2.2	-9999.0		SM
					01	98.2	0.3	-9999.0		NR
					01	98.5	2.7	-9999.0		SM
					01	101.2	0.3	- 9999 .0		NR
					01	101.5	3.3	-9999.0		SM
					01	104.8	0.2	-9999.0		ML
					01	105.0	0.8	- 9999 .0		SP
					01	105.8	0.9	-9999.0		CL
					01	106.7	3.3	-9999.0		NR
					01	110.0	1.9	-9999.0		SM
					01	111.9	0.9	-9999.0		ML
					01	112.8	0.2	-9999.0		SM
					01	113.0	0.5	-9999.0		NR
					01	113.5	7.2	-9999.0		SM
					01	120.7	3.3	-9999.0		NR
					Q1	124.0	1.8	-9999.0		SM
					01	125.8	0.2	- 9999 .0		NR
					01	126.0	3.5	-9 999 .0		SM
					01	129.5	2.0	- 9999 .0		ML
					01	131.5	2.0	- 9999 .0		SM
					01	133.5	2.5	-9999.0		SP
					01	136.0	2.0	-9999.0		ML
					01	138.0	0.5	-9 999 .0		NR
					01	138.5	2.3	- 9999 .0		SH
	•				01	140.8	0.7	-9 999 .0		NR

GEOTECHNICAL FIELD DRILLING (GFD) Installation: Sierra Ordnance Depot (SA) Measurement Date Range: 01-jan-75 to 20-sep-90

			Measurement	Action					Unit	
eisa	Type/Size id	Oca	Date	Measurement	Method	Depth	Interval	Value	Meas.	Entry
31.64	Type/Site id	Org	4474	Medder director	- Constant	<u> </u>	MAN VAL	14104		EITELY
BORE	058-02-58	JM	06-mar-1990	USCS	01	141.5	8.3	-9999.0		SM
••••					01	149.8	0.2	-9 999 .0		NR
					01	150.0	4.7	-9 999 .0		SM
					01	154.7	0.3	-9 999 .0		NR
					01	155.0	5.5	-9 999 .0		SM
					01	160.5	4.5	- 9999 .0		ML
					01	165.0	0.4	- 9999 .0		CL
					01	165.4	0.6	- 9999 .0		SM
	٠				01	166.0	0.5	- 9999 .0		ML
					01	166.5	2.5	- 9999 .0		SM
					01	169.0	2.8	-9999.0		ML
			•		01	171.8	0.7	-9999.0		SM
					01	172.5	2.0	-9999.0		ML
					01	174.5 175.7	1.2	-9999.0		SM
					01	175.7	0.3 3.7	-9999.0 -9999.0		NR
					01 01	179.7	0.3	-9999.0 -9999.0		SM NR
					01	180.0	4.8	-9999.0		SH
					01	184.8	0.2	-9999.0		NR
					01	185.0	4.5	-9999.0		SM
					01	189.5	0.5	-9999.0		NR
					01	190.0	4.8	-9999.0		SM
					01	194.8	0.2	-9999.0		HR
					01	195.0	3.0	- 9999 .0		SH
					01	198.0	0.3	-9999.0		ML
					01	198.3	0.2	-9999.0		NR
					01	198.5	1.5	-9999.0		ML-CL
					01	200.0	1.0	-9999.0		NR
					01	201.0	1.5	- 9999 .0		ML-CL
					01	202.5	1.2	-9 999 .0		ML
					01	203.7	0.3	-9 999 .0		NR
•					01	204.0	0.8	- 9999. 0		ML
					01	204.8	0.9	-9999.0		SM
					01	205.7	3.9	-9999.0		ML
					01	209.6	0.4	- 9999 .0		SM
					01	210.0	0.7	- 9999 .0		ML
					01	210.7	0.3	- 9999 .0		NR
					01	211.0	0.4	-9999.0		ML
					01	211.4	1.0	- 9999 .0		SM
					01	212.4	2.1	-9999.0		ML
					01	214.5	1.5	-9999.0		NR
					01	216.0	4.0	-9999.0		ML
					01	220.0	0.2	-9999.0		SM
					01	220.2	0.8	-9999.0		ML
					01 01	221.0 224.3	3.3 1.5	-9 999. 0 -9 999 .0		SM ML
					01 01	224.3 225.8	0.2	-9999.0		NR
					01 01	225.8	0.8	-9999.0		ML
					01	226.8	1.7	-9999.0		SM
					01	228.5	1.0	-9999.0		ML
					01	229.5	6.5	-9999.0		SM
					••					-

GEOTECHNICAL FIELD DRILLING (GFD)

Installation: Sierra Ordnance Depot (SA)

Measurement Date Range: 01-jan-75 to 20-sep-90

			Measurement	Action					Unit	
Site	Type/Site id	<u>Org</u>	Pate	Messurement	Method	Depth	Interval	Value	Meas.	Entry
BORE	058-02-58	JM	06-mar-1990	uscs	01	236.0	3.0	- 9999 .0		ML
55.15					01	239.0	1.5	- 9999 .0		SM
					01	240.5	0.5	- 9999 .0		NR
					01	241.0	7.0	- 9999 .0		ML
					01	248.0	1.1	- 9999 .0		SM
					01	249.1	0.9	- 9999 .0		ML
SORE	058-03-58	JM	15-feb-1990	ADVAU	26	0.0	250.0	-9999.0		
				DPTQT	01	-9 999 .0	-9 999 .0	250.0	FT	
	•			GRDWT	02	-9 999 .0	-9 999 .0	85.0	FT	
				USES	01	0.0	0.8	-9999.0		ML
					01	0.8	0.7	-9999.0		NR
					01	1.5	2.0	-9999.0		ML
					01	3.5	1.7	-9999.0 -9999.0		SM
					01 01	5.2 6.0	0. 8 1.0	-9999.0		CL SM
					01	7.0	1.5	-9999.0		ML
					01	8.5	0.5	-9999.0		NR
					01	9.0	3.2	-9999.0		SH
					01	12.2	8.3	-9999.0		CL
					01	20.5	0.5	-9999.0		NR
					01	21.0	0.8	-9999.0		CL-SM
					01	21.8	3.0	- 9999 .0		SM
					01	24.8	0.2	- 9999 .0		NR
					01	25.0	1.5	-9 999 .0		SM
					01	26.5	4.5	-9 999 .0		NR
					01	31.0	4.0	- 9999 .0		SM
					01	35.0	1.0	- 9999 .0		NR
					01	36.0	2.5	- 9999 .0		SM
					01	38.5	1.0	-9999.0		NR
					01	39.5	1.1	-9999.0		ML
					01	40.6	0.7	-9999.0		SM
					01	41.3	1.7	-9999.0		HL
					01	43.0	0.5	-9999.0		NR
					01	43.5	2.5	-9999.0		SM
					01	46.0	2.5	-9999.0 -9999.0		ML ML-CI
					01 01	48.5 49.6	1.1 5.6	-9999.0		ML-CL CL
					01	55.2	1.5	·9999.0		CL-ML
					01	56.7	12.5	-9999.0		ML
					01	69.2	5.3	-9999.0		CL
					01	74.5	1.7	-9999.0		SH
					01	76.2	0.3	-9999.0		ML
					01	76.5	9.9	-9999.0		SM
					01	86.4	7.5	-9999.0		ML
					01	93.9	0.3	-9999.0		SM
					01	94.2	6.7	-9999.0		ML
					01	100.9	0.6	-9999.0		NR
					01	101.5	1.4	- 9999 .0		ML
					01	102.9	0.3	-9999.0		SM

GEOTECHNICAL FIELD DRILLING (GFD)

Installation: Sierra Ordnance Depot (SA) Measurement Date Range: 01-jan-75 to 20-sep-90

			Measurement	Action					Unit	
Sit	e Type/Site id	Ora	Date	Measurement	Method	Depth	Interval	<u>Value</u>	Meas.	Entry
<u> </u>		هينية.								
BORE	DS8-03-S8	JM	15-feb-1990	USCS	01	106.1	0.8	-9999.0		SM
					01	106.9	2.1	-9999.0		ML
					01	109.0	0.3	- 9999 .0		SM
					01	109.3	7.2	-9999.0		ML
					01	116.5	0.2	-9999.0		SM
					01	116.7	3.3	-9999.0		ML
					01	120.0	1.9	- 9999 .0 - 9999 .0		SM ML
					01	121.9 130.5	8.6 1.0	-9999.0		NR NR
					01 01	131.5	1.4	-9999.0		ML
					01	132.9	0.1	-9999.0		SM-ML
					01	133.0	1.0	- 999 9.0		NR
					01	134.0	0.2	-9 999 .0		SN
					01	134.2	2.0	- 9999 .0		ML
					01	136.2	0.3	-9999.0		SM
					01	136.5	1.2	-9999.0		ML
					01	137.7	0.3	-9999.0		NR
					01	138.0	7.0	-9999.0		ML
					01	145.0	4.5	- 9999 .0		MR
					01	149.5	3.3	-9999 .0		ML
					01	152.8	1.1	- 9999 .0		SM
					01	153.9	6.1	- 9999 .0		ML
					01	160.0	0.3	- 9999 .0		SM
					01	160.3	4.1	-9 999 .0		ML
					01	164.4	0.6	- 9999 .0		SM
					01	165.0	1.0	- 9999 .0		ML
					01	166.0	1.0	- 9999 .0		NR
					01	167.0	0.3	- 9999 .0		SM
					01	167.3	3.4	- 9999 .0		ML
					01	170.7	0.3	-9999.0		SM
					01	171.0	11.3	- 9999 .0		ML
					01	182.3	0.8	-9999.0		HR
					01	183.1	7.7	-9999.0		ML
					01	190.8	1.0	-9999.0		NR
					01	191.8	3.5	-9999.0		ML
					01	195.3	0.7	-9999.0		NR
					01	196.0	0.9	-9999.0		ML
					01	196.9	1.0	-9999.0		NR M
					01	197.9	14.6	-9999.0		ML NR
					01	212.5	0.5	-9999.0 -9999.0		ML
					01	213.0	7.5 0.3	-9999.0		SM
					01	220.5		-9999.0		NR
					01 01	220.8 221.8	1.0 0.2	-9999.0		ML
					01 01	222.0	0.2	-9999.0		SH
					01	222.7	0.7	-9999.0		HL
					01	222.7	5.1	-9999.0		NR
					01	228.0	4.0	-9999.0		ML
					01	232.0	0.1	-9999.0		SM
					01	232.1	4.1	-9999.0		ML
					01	236.2	1.0	-9999.0		NR
					UI	2,0.2	1.0	- 7777.0		77.5

GEOTECHNICAL FIELD DRILLING (GFD)

Installation: Sierra Ordnance Depot (SA)

Measurement Date Range: 01-jan-75 to 20-sep-90

			Measurement	Action					Unit	
Sit	e Type/Site id	Org	Dete	Measurement	Method	Depth	Interval	Value	Meas.	Entry
,										
SORE	0\$8-03-\$8	JM	15-feb-1990	uscs	01	237.2	4.1	-9999.0		ML
					01	241.3	5.6	- 9999 .0		NR
					01	246.9	3.1	- 9999 .0		ML
BORE	DSB-04-MMA	JM	05-mer-1990	ADVAU	08	0.0	46.5	- 9999 .0		
DONE	000 00 1121	•••		DPTOT	01	-9999.0	-9999.0	46.5	FT	
				GROUT	02	-9999.0	-9999.0	25.5	FT	
				USCS	01	0.0	15.0	-9999.0		SM
					01	15.0	5.0	- 9999 .0		SW
					01	20.0	5.0	- 9999 .0		SP
					01	25.0	5.0	-9999.0		ML
					01	30.0	6.0	- 9999 .0		SM
					01	36.0	4.0	- 9999 .0		MŁ
					01	40.0	1.0	-9999.0		SM
					01	41.0	4.0	- 9999 .0		ME
					01	45.0	1.5	- 9999 .0		SM
BORE	DS8-04-S8	JM	14-mar-1990	ADVAU	26	0.0	250.0	-9999.0		
SCAE	030-04-30	U H	(4 mg) 1770	OPTOT	01	-9999.0	-9999.0	250.0	FT	
				GROWT	02	-9999.0	·9999.0	20.0	FT	
				USCS	01	0.0	0.7	-9999.0	• •	ML
				4333	01	0.7	0.8	-9999.0		NR
					01	1.5	0.7	-9999.0		ML
					01	2.2	4.8	-9999.0		SM
					01	7.0	1.2	- 9999 .0		ML
					01	8.2	0.3	-9999.0		NR
					01	8.5	0.3	- 9999 .0		SM
					01	8.8	0.7	-9 999 .0		NR
					01	9.5	4.2	- 9999 .0		SM
					01	13.7	1.3	-9 999 .0		NR
					01	15.0	3.5	- <i>9</i> 999.0		SM
					01	18.5	0.2	-9 999 .0		HR
					01	18.7	3.8	- 9999 .0		SM
					01	22.5	0.5	- 9999 .0		NR
					01	23.0	1.0	-9999.0		SM
					01	24.0	1.9	·9999.0		ML
					01	25.9	0.6	-9999.0		HR
					01	26.5	2.5	-9999.0 -9999.0		SM
					01	29.0	2.0	-9999.0		ML-CL
					01	31.0 31.5	0.5 3.0	-9999.0		NR SM
					01 01	34.5	1.5	-9999.0		NR
					01	36.0	0.8	-9999.0		SU
					01	36.8	0.7	-9999.0		ML
					01	37.5	2.5	-9999.0		NR
					01	40.0	2.5	-9999.0		SP
					01	42.5	0.5	-9999.0		NR
					01	43.0	2.2	-9 999 .0		SM
					01	45.2	0.8	-9999.0		NR
					01	46.0	0.8	-9999.0		SM
					01	46.8	0.7	-9999.0		ML
					. .					-

GEOTECHNICAL FIELD DRILLING (GFD) Installation: Sierra Ordnance Depot (SA)

Measurement Date Range: 01-jan-75 to 20-sep-90
Min (X,Y): (736000, 4410000) Max (X,Y): (746167, 4460707)

			Measurement	Action					Unit	
Site	Type/Site id	<u>Ora</u>	Dete	Measurement	Method	Depth	Interval	Value	Meas.	Entry
3:13		2.2	1111				11111111	11.00		EITETY
BORE	058-04-58	JM	14-mar-1990	USCS	01	47.5	0.8	- 9999 .0		SM
					01	48.3	1.0	- 9999 .0		ML
					01	49.3	0.7	- 9999 .0		MR
					01	50.0	2.3	- 9999 .0		SM
					01	52.3	1.5	- 9999 .0		ML
					01	53.8	1.0	-9999.0		SM
					01	54.8	0.2	-9999.0		MR
					01	55.0	4.0	-9999.0		SW
					01 01	59.0 61.0	2.0	-9999.0 -9999.0		SM
					01	63.0	2.0 1.0	-9999.0		ML
					01	64.0	0.8	-9999.0		HR
					01	64.8	1.5	-9999.0		ML SM
					01	66.3	0.2	-9999.0		NR
					01	66.5	0.4	- 9999 .0		2A
					01	66.9	1.0	-9999.0		ML
					01	67.9	1.1	-9999.0		NR
					01	69.0	4.3	-9999.0		SH
					01	73.3	0.7	- 9999 .0		NR
					01	74.0	1.7	- 9999 .0		SM
					01	75.7	0.3	-9999.0		NR
					01	76.0	3.5	-9999.0	i	SM
					01	79.5	0.5	-9999.0		NR
					01	80.0	2.5	-9999.0		SM
					01	82.5	0.5	- 9999. 0		NR
					01	83.0	2.3	- 9999 .0		SM
					01	85.3	0.7	- 9999 .0		MR
					01	86.0	1.0	- 9999 .0		SM
					01	87.0	0.5	-9 999 .0		ML - SM
					01	87.5	1.5	-9 999. 0		NR
					01	89.0	2.0	- 9999. 0		SM
					01	91.0	1.0	- 9999 .0		NR
					01	92.0	3.5	- 9999 .0		SM
					01	95.5	2.0	- 9999 .0		NR
					01	97.5	1.4	-9999.0		SM
					01	98.9	3.1	- 9999 .0		NR
					01	102.0	2.7	-9999.0		SN
					01	104.7 106.0	1.3	-9999.0		NR
					01		0.5	-9999.0		ML
					01	106.5 109.5	3.0	-9999.0		SM
					01		1.5	-9999.0		NR M
					01 01	111.0 112.2	1.2 8.3	-9999.0 -9999.0		ML
					01 01	120.5	0.5	-9999.0		SM
					01	121.0	0.9	- 9999 .0		NR SM
					01	121.9	0.9	-9999.0		ML
					01	122.8	2.1	-9999.0		SM
					01	124.9	1.1	-9999.0		NR
					01	126.0	0.5	-9999.0		SU
					01	126.5	1.2	-9999.0		SM
					01	127.7	2.3	- 9999 .0		NR
					••		• • •			

GEOTECHNICAL FIELD DRILLING (GFD)

Installation: Sierra Ordnance Depot (SA)

Measurement Date Range: 01-jan-75 to 20-sep-90 Min (X,Y): (736000, 4410000) Max (X,Y): (746167, 4460707)

Measurement Action Unit Org Measurement <u>Method</u> Depth Interval Value Heas. Site Type/Site id PIPO Entry 14-mer-1990 uscs 130.0 -9999.0 JM 01 2.3 DS8-04-S8 MŁ BORE -9999.0 132.3 01 3.1 SM -9999.0 135.4 01 0.6 NR 136.0 -9999.0 01 0.9 SM -9999.0 01 136.9 0.1 HR -9999.0 137.0 01 4.7 SM -9999.0 01 141.7 0.3 NR -9999.0 01 142.0 21 1.3 -9999.0 143.3 NR 01 0.2 -9999.0 01 143.5 4.0 SM. -9999.0 01 147.5 0.5 NR -9999.0 01 148.0 1.0 SH 01 149.0 0.5 -9999.0 NR 01 149.5 2.0 -9999.0 SM 01 151.5 3.0 -9999.0 ML -9999.0 01 154.5 3.2 SH -9999.0 01 157.7 0.3 HR 01 158.0 2.0 -9999.0 SM -9999.0 01 160.0 0.9 MŁ -9999.0 01 160.9 0.1 NR 01 161.0 3.5 -9999.0 ML -9999.0 01 164.5 1.5 MR -9999.0 01 166.0 4.2 ML 01 170.2 0.8 -9999.0 MR -9999.0 01 171.0 2.4 SH -9999.0 01 173.4 2.6 NR -9999.0 01 176.0 3.7 ML 01 179.7 8.0 -9999.0 NR -9999.0 01 180.5 4.7 SM 01 185.2 0.3 -9999.0 NR -9999.0 01 185.5 2.9 SM -9999.0 01 188.4 0.6 NR -9999.0 01 189.0 2.4 SM -9999.0 01 191.4 1.6 NR 01 193.0 9.8 -9999.0 SM 01 8.505 0.2 -9999.0 NR -9999.0 01 203.0 6.3 SM -9999.0 01 209.3 0.7 NR -9999.0 01 210.0 13.6 SM -9999.0 01 223.6 0.4 NR 01 224.0 2.3 -9999.0 SH -9999.0 01 226.3 0.2 NR 01 226.5 4.0 -9999.0 SM -9999.0 01 230.5 0.5 MR -9999.0 01 231.0 1.2 SW -9999.0 01 232.2 0.5 ML 01 232.7 3.3 -9999.0 NR 01 236.0 2.2 -9999.0 SM 01 238.2 2.8 -9999.0 NR 01 241.0 -9999.0 SH 4.7

01

245.7

0.3

-9999.0

NR

GEOTECHNICAL FIELD DRILLING (GFD) Installation: Sierra Ordnance Depot (SA) Measurement Date Range: 01-jan-75 to 20-sep-90

Min (X,Y): (736000, 4410000) Max (X,Y): (746167, 4460707)

			AIR (A,I):		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1): (/4010/,				
Site	Type/Site id	Org	Meesurement Date	Action Measurement	Method	Depth	Interval	Value	Unit Meas	Entry
BORE	DSB-04-SB	JM	14-mar-1990	USCS	01	246.0	1.3	-9999.0		SH
			-		01	247.3	2.7	-9 999 .0		NR
BORE	DSB-05-SB	JM	20-feb-1990	ADVAU	26	0.0	249.0	-9999.0		
				DPTOT	01	- 9999 .0	- 9999 .0	249.0	FT	
				GROWT	02	-9999.0	- 9999 .0	80.0	FT	
				USCS	01	0.0	8.9	-9999.0		SN
					01 01	8.9 9.0	0.1 0.1	-9999.0 -9999.0		ML
					01	9.1	1.9	-9999.0		SP SH
					01	11.0	0.6	- 9999 .0		M.
					01	11.6	6.6	· 9999 .0		SM
					01	18.2	0.2	-9999.0		ML
					01	18.4	1.2	- 9999 .0		NR
					01	19.6	5.0	- 9999 .0		SM
					01	24.6	0.9	- 9999 .0		NR
					01	25.5	8.5	- 9999 .0		SM
					01	34.0	1.0	-9999.0		NR
					01 01	35.0	0.6	-9999.0		SM
					01	35.6 35.7	0.1 0.7	-9999.0 -9999.0		Cr
					01	36.4	0.7	-9999.0		SM CL
					01	36.6	3.3	-9999.0		SH
					01	39.9	0.8	-9999.0		NR
					01	40.7	3.5	-9999.0		SM
					01	44.2	2.8	-9999.0		SP
					01	47.0	1.0	- 9999 .0		NR
					01	48.0	2.3	- 9999 .0		SM
					01	50.3	3.7	- 9999 .0		NR
					01	54.0	0.8	-9999.0		SM
					01	54.8	1.0	-9999.0		NR
					01 01	55.8 56.5	0.7 2.1	-9999.0 -9999.0		SM
					01	58.6	2.2	-9999.0 -9999.0		SP SU
					01	60.8	0.3	-9999.0		SM
					01	61.1	0.2	-9999.0		SV
					01	61.3	1.0	- 9999 .0		NR
					01	62.3	2.6	-9999.0		SP
					01	64.9	0.2	- 9999 .0		HR
					01	65.1	1.7	- 9999 .0		SP
					01	66.8	3.7	- 9999 .0		NR
					01	70.5	0.4	-9999.0		SP
					01	70.9	2.0	-9999.0		MR
					01 01	72.9	0.2	-9999.0		SM
					01 01	73.1 74.0	0.9 1.0	-9999.0 -9999.0		NA SP
					01	74.0 75.0	1.0	-9999.0 -9999.0		NR
					01	76.0	2.0	-9999.0		SP
					01	78.0	2.6	- 9999 .0		SH
					01	80.6	2.4	-9999.0		NR
					01	83.0	3.7	-9999.0		SM

GEOTECHNICAL FIELD DRILLING (GFD)

Installation: Sierra Ordnance Depot (SA)

Measurement Date Range: 01-jan-75 to 20-sep-90

			Messurement	Action					Unit	
şi t	e Type/Site id	Org	Date	Measurement	Method	<u>0epth</u>	Interval	Value	Heas.	Entry
BORE	058-05-58	JM	20-feb-1990	uscs	01	86.7	1.0	-9999.0		HR
••••					01	87.7	1.1	- 9999 .0		SM
					01	88.8	1.0	-9999.0		NR
					01	89.8	1.7	- 9999 .0		SH
					01	91.5	3.8	-9 999 .0		SW
					01	95.3	3.5	- 9999 .0		SM
					01	98.8	7.0	-9999.0		NR
					01 01	105.8 115.6	9. 8 0.2	-9999.0 -9999.0		SM NR
					01	115.8	2.5	-9999.0		SM
					01	118.3	0.2	-9999.0		CL
					01	118.5	0.4	-9999.0		SM
					01	118.9	0.8	-9 999 .0		SM
					01	119.7	3.5	-9999.0		MR
					01	123.2	7.6	- 9999 .0		SM
					01	130.8	0.2	-9999.0		MR
					01	131.0	2.3	-9999.0		S₩
					01	133.3	0.3	-9999.0 -9999.0		ML
					01 01	133.6 135.5	1.9 9.8	-9999.0		NR Su
					01	145.3	9.0	-9999.0		NR
					01	145.5	8.8	-9999.0		SN
					01	154.3	0.2	-9999.0		NR
					01	154.5	6.0	-9999.0		SW
					01	160.5	0.6	- 9999 .0		MR
					01	161.1	9.9	-9 999 .0		SW
					01	171.0	6.5	-9 999 .0		SM
					01	177.5	10.5	- 9999 .0		SM
					01	188.0	1.0	-9999.0		NR
					01 01	189.0	1.2	-9999.0 -9999.0		SW
					01 01	190.2 191.0	0.8 3.0	-9999.0		nr Sv
					01	194.0	2.0	-9999.0		NR
					01	196.0	1.0	-9999.0		SU
					01	197.0	1.0	-9 999 .0		NR
					01	198.0	0.5	-9999.0		SW
					01	198.5	0.5	- 9999 .0		SM
					01	199.0	0.4	- 9999 .0		SH
					01	199.4	3.6	- 9999 .0		SM
					01	203.0	0.3	- 9999 .0		SM
					01	203.3	0.7	-9999.0		NR
					01	204.0	0.3	-9999.0		SW
					01 01	204.3 205.0	0.7	-9999.0 -9999.0		MR SM
					01 01	205.0	0.3 0.6	-9999.0		SH SU
					01	205.9	4.1	-9999.0		NR
					01	210.0	1.5	-9999.0		SU
					01	211.5	3.5	-9999.0		NR
					01	215.0	0.3	-9999.0		SH
					01	215.3	4.7	-9999.0		NR
					01	220.0	3.0	-9999.0		SW

20-SEP-1990

GEOTECHNICAL FIELD DRILLING (GFD) Installation: Sierra Ordnance Depot (SA)

Measurement Date Range: 01-jan-75 to 20-sep-90 Min (X,Y): (736000, 4410000) Max (X,Y): (746167, 4460707)

			Heesurement	Action					Unit	
ties	Type/Site id	009	Date	Measurement	Method	Depth	Interval	Value	Meas.	Entry
9114	1754/ 3114 10	21.2	1311		-					
BORE	DS8-05-S8	JM	20-feb-1990	USCS	01	223.0	2.0	- 9999 .0		HR
					01	225.0	1.5	- 9999 .0		25
					01	226.5	3.5	- 9999 .0		NR
					01	230.0	0.4	-9 999 .0		SM
					01	230.4	4.5	-9999.0		MR
					01	234.9	0.2	-9999.0		SH
					01	235.1	11.9	-9999.0 -9999.0		WR
					01	247.0	2.0	·****.U		294
SORE	DSB-06-MMA	JM	05-mar-1990	ADVAU	08	0.0	73.0	-9999.0		
		•		DPTOT	01	-9999.0	- 9999 .0	73.0	FT	
				GRDVT	02	-9999.0	- 9999 .0	52.0	FT	
				USCS	01	0.0	7.0	- 9999 .0		SM
					01	7.0	33.0	-9999.0		SP
					01	40.0	10.8	- 9999 .0		SM
					01	50.8	0.4	-9 999 .0		SP
					01	51.2	3.8	- 9999 .0		SM
					01	55.0	0.8	-9 999 .0		\$P
					01	55.8	17.2	- 9999 .0		SM
	058-06-58	JM	03-mar-1990	ADVAU	26	0.0	250.0	-9999.0		
BORE	026-00-26	9 6	Q3-mg/ - 177Q	DPTOT	01	-9999.0	-9999.0	250.0	FT	
				GROWT	02	-9999.0	-9999.0	60.0	FT	
				USCS	01	0.0	2.0	-9999.0		SP
				••••	01	2.0	1.0	-9999.0		ML
					01	3.0	0.5	-9999.0		SM
					01	3.5	0.5	-9999.0		ML
					01	4.0	0.5	- 9999 .0		NR
					01	4.5	1.5	-9999.0		SP
					01	6.0	1.5	- 9999 .0		MR
					01	7.5	3.7	- 9999 .0		SP
					01	11.2	1.3	- 9999 .0		NR
					01	12.5	1.5	- 9999 .0		SP
					01	14.0	0.8	- 9999 .0		SH
					01	14.8	0.7	-9999.0		NR
					01	15.5	0.5	- 9999 .0		SP
					01	16.0	1.0	- 9999 .0		SM
					01	17.0	3.5	- 9999 .0		NR
					01	20.5	1.0	- 9999 .0		SM
					01	21.5	0.5	- 9999 .0		NR
					01	22.0	0.6	- 9999 .0		SM
					01	22.6	1.5	-999 9.0		ML
					01	24.1	2.4	-9 999 .0		MR
					01	26.5	1.4	-9 999 .0		ML - SM
					01	27.9	0.6	-9999.0		NR .
					01	28.5	2.0	-9999.0		SW
					01	30.5	0.3	-9999.0		ML
					01	30.8	2.7	-9999.0		NR
					01	33.5	0.5	-9999.0		\$?
					01	34.0	1.8	-9999.0		ML - \$M
					01	35.8	0.7	- 9999 .0		MR

GEOTECHNICAL FIELD DRILLING (GFD)

Installation: Sierra Ordnance Depot (\$A)

Measurement Date Range: 01-jan-75 to 20-sep-90

			MIN (X,T): \		7 MWA (A,1): (1 40 101,	44007017			
* **-	Time (Block Link	0-6	Measurement	Action <u>Measurement</u>	Method	Depth	Interval	<u>Value</u>	Unit <u>Meas</u> .	Entry
2116	Type/Site id	Org	Dete	Heady ellers		940(1)	11101 101	*****		<u>Crici y</u>
BORE	DS8-06-S8	JM	03-mar-1990	USCS	01	36.5	0.6	- 9999 .0		ML-SM
					01	37.1	0.8	- 9999 .0		CF
					01	37.9	0.2	-9999.0		SP
					01	38.1	1.1	-9999.0		ML-SM
					01	39.2	0.4	-9999.0		HR
					01	39.6	1.6	-9999.0		SP
					01	41.2	1.1 0. 8	-9999.0 -9999.0		CL SM
					01 01	42.3 43.1	0.5	-9999.0		HR
			•		01	43.6	2.7	-9999.0		SW
					01	46.3	0.3	- 9999 .0		NR
					01	46.6	1.2	-9999.0		SW
					01	47.8	0.5	-9 999 .0		SM
					01	48.3	1.3	- 9999 .0		NR
					01	49.6	2.3	-9 999 .0		SW
					G1	51.9	0.7	-9 999. 0		NR
					01	52.6	1.4	- 9999 .0		SM-ML
					01	54.0	2.5	-9999.0		NR
					01	56.5	1.0	-9999.0		ML
					01	57.5	5.2	-9999.0 -9999.0		CL
					01	62.7	6.8	-9999.0		SM SP
					01	69.5 70.0	0.5 0.5	-9999.0		SP MR
					01 01	70.5	1.5	-9999.0		SP
					01	72.0	3.0	-9999.0		ML-SM
					01	75.0	0.5	-9999.0		NR
					01	75.5	10.8	-9999.0		ML
					01	86.3	8.7	-9999.0		SW
					01	95.0	0.5	- 9999 .0		NR
					01	95.5	1.2	-9 999 .0		SM
					01	96.7	0.6	- 9999 .0		SW
					01	97.3	1.3	-9 999 .0		SM
					01	98.6	1.2	- 9999 .0		ML
					01	99.8	1.7	-9999.0		SM
					01	101.5	1.5	-9999.0		NR
					01	103.0	0.6	-9999.0		SM
					01	103.6	0.4	-9999.0 -9999.0		ML SM
					01	104.0	5.9 1.1	-9999.0		NR NR
					01 01	109.9 111.0	1.5	-9999.0		SM
					01	112.5	0.7	-9999.0		SM-ML
					01	113.2	2.4	-9999.0		SW
					01	115.6	0.4	-9999.0		NR
					01	116.0	2.5	-9999.0		SH
					01	118.5	0.5	- 9999 .0		92
					01	119.0	1.5	- 9999 .0		SW
					01	120.5	0.5	- 9999 .0		NR
					01	121.0	2.5	- 9999 .0		SP
					01	123.5	2.0	-9999.0		SH
					01	125.5	0.5	-9999.0		NR
					01	126.0	2.9	- 9999 .0		SH

20-SEP-1990

GEOTECHNICAL FIELD DRILLING (GFD) Installation: Sierra Ordnance Depot (SA) Measurement Date Range: 01-jan-75 to 20-sep-90

Min (X,Y): (736000, 4410000) Max (X,Y): (746167, 4460707)

Action Unit Measurement Measurement <u>Method</u> Depth Interval Value Meas. Entry Site Type/Site id Date <u>Ora</u> -9999.0 128.9 1.9 S¥ 03-mar-1990 USCS 01 SORE DS8-06-SB JM -9999.0 01 130.8 0.2 NR -9999.0 01 131.0 1.7 SM -9999.0 01 132.7 2.8 SW -9999.0 01 135.5 0.5 HR 01 136.0 4.6 -9999.0 SM -9999.0 01 140.6 0.4 NR -9999.0 01 141.0 11.5 SM -9999.0 81 152.5 0.5 NR -9999.0 SH 01 153.0 3.0 -9999.0 SW 01 156.0 1.5 -9999.0 157.5 \$14 01 0.5 -9999.0 01 158.0 1.8 SW -9999.0 01 159.8 1,0 514 -9999.0 0.7 NR 160.8 01 -9999.0 SM 01 161.5 1.1 -9999.0 162.6 1.9 SM 01 -9999.0 164.5 3.7 SP 01 -9999.0 01 168.2 1.3 NR -9999.0 SM 01 169.5 1.5 -9999.0 01 171.0 0.1 ML -9999.0 01 171.1 3.9 NR 01 175.0 5.0 -9999.0 SW -9999.0 01 180.0 0.2 ML 01 180.2 3.8 -9999.0 SP -9999.0 01 184.0 1.0 SM -9999.0 01 185.0 1.5 SP 01 186.5 0.7 -9999.0 ML 01 187.2 0.8 -9999.0 SM 01 188.0 0.5 -9999.0 NR 01 188.5 4.5 -9999.0 SP 01 193.0 2.0 -9999.0 SM 01 0.7 -9999.0 SW 195.0 01 0.3 -9999.0 ML 195.7 -9999.0 NR 01 196.0 0.5 -9999.0 SW 01 196.5 0.5 01 197.0 7.5 -9999.0 SM -9999.0 SP 01 204.5 . 1.3 -9999.0 NR 01 205.8 0.7 01 206.5 0.8 -9999.0 SP -9999.0 ML 01 207.3 2.2 209.5 NR 0.5 -9999.0 01 210.0 7.0 -9999.0 SM 01 01 217.0 9.0 -9999.0 SW NR 0.5 -9999.0 01 226.0 6.0 SM 226.5 -9999.0 01 -9999.0 MŁ 232.5 1.5 01 -9999.0 SM 2.0 234.0 01 -9999.0 ML 01 236.0 4.8 0.2 -9999.0 MR 01 240.8 -9999.0 01 241.0 3.0

GEOTECHNICAL FIELD DRILLING (GFD)

Installation: Sierra Ordnance Depot (SA)
Heasurement Date Range: 01-jan-75 to 20-sep-90

			Measurement	Action					Unit	
Sit	e Type/Site id	Org	Date	Measurement	Hethod	Depth	Interval	Value	Meas.	Entry
3.1	3 <u>1124 - 112 11</u>							337.33		<u> </u>
BORE	D\$8-06-\$8	JM	03-mar-1990	USCS	01	244.0	5.3	- 9999 .0		SH
					01	249.3	0.7	- 9999 .0		NR
BORE	THT-01-MUS	JM	29-mar-1990	ADVAU	25	0.0	103.0	-9999.0		
				DPTOT	01	-9999.0	-9999.0	103.0	FT	
				GROWT	02	-9999.0	-9999.0	60.0	FT	
				USCS	01	0.0	103.0	- 9999 .0		SM
BORE	TNT-01-NUC	JM	26-mar-1990	ADVAU	25	0.0	147.0	- 9999 .0		
				DPTOT	01	-9 999 .0	-9999.0	147.0	FT	
				CROWT	02	-9 999 .0	- 9999 .0	60.0	FT	
				USCS	01	0.0	61.5	- 9999 .0		SM
					01	61.5	59.0	- 9999 .0		SP
					01	120.5	26.5	- 9999 .0		SM
BORE	TNT-02-NUB	JM	05-mar-1990	ADVAU	01	0.0	100.0	-9999.0		
00mE	141 05 140	•••	03 Mai 1770	DPTOT	01	-9999.0	-9999.0	100.0	FT	
				GROWT	02	-9999.0	-9999.0	61.0	FT	
				USCS	01	0.0	100.0	-9999.0	• •	SM
					- -					<u></u>
BORE	THT-02-MUC	JM	18-mar-1990	LAVAU	25	0.0	147.0	-9 999 .0		
				DPTOT	01	- 9999 .0	·9999.0	147.0	FT	
				GROWT	02	- 9999 .0	·9 999 .0	58.0	FT	
				USCS	01	0.0	147.0	-9999.0		SM
BORE	THT-07-MM8	J94	07-mar-1990	ADVAU	02	0.0	103.0	-9999.0		
505			·	DPTOT	01	-9999.0	-9999.0	103.0	FT	
				GROWT	02	-9999.0	-9999.0	54.0	FT	
				USCS	01	0.0	33.0	-9999.0		SM
					01	33.0	17.0	-9999.0		SP
					01	50.0	25.0	-9999.0		sc
					01	75.0	22.0	-9999.0		SM-SC
					01	97.0	6.0	-9999.0		SM
			70 4000	40	20		4.5 4			
BORE	THT-07-MUC	JM	20-mar-1990	ADVAU DPTOT	25 01	0.0 -9999.0	147.0 -9999.0	- 9999. 0 147.0	FT	
				GROWT	02	-9999.0	-9 999 .0	60.0	FT FT	•
				USCS	01	0.0	147.0	-9999.0	FI	***
				V3C3	01	0.0	147.0	-7777.0		SM
BORE	THT-07-58	JM	03-apr-1990	ADVAU	01	0.0	57.0	-9999.0		
				DPTOT	01	- 9999 .0	- 9999 .0	57.0	FT	
				GROWT	02	-9999.0	- 9999 .0	57.0	FT	
				USCS	01	0.0	19.0	-9999.0		ML
					01	19.0	0.2	-9 999 .0		SP
					Q1	19.2	5.5	-99 99 .0		ML
					01	24.7	3.4	-9 999 .0		SM
		•	•		01	28.1	0.3	-9 999 .0		NL
					01	28.4	0.6	- 9999 .0		SM
					01	29.0	0.6	- 9999 .0		ML
					01	29.6	9.4	-9 999 .0		CL
					01	39.0	2.4	- 9999 .0		SP

GEOTECHNICAL FIELD DRILLING (GFD)

Installation: Sierra Ordnance Depot (SA)

13:14:26

Heasurement Date Range: 01-jan-75 to 20-sep-90

BORE				Heasurement	Action					Unit	
BORE TNT-09-38 JM 03-apr-1990 ADVAU 01 0.0 55.5 0.0099.0 0	Site	Type/Site id	Org	9269	Measurement	Method	Depth	Interval	Value	Meas.	Entry
BORE TNT-09-88 JM 03-epr-1990 ADVAU 01 0.0 57.0 -9999.0 57.0 58.5 58.5 58.	2005	TNT-07-SB	JM	03-apr-1990	USCS	01	41.4	0.4	-9999.0		SW
BORE			•••			01	41.8	2.2	-9 999 .0		ML
BORE						01	44.0	5.0	-9999.0		SW
BORE THT-09-SB JM 03-apr-1990 ADVAU 01 0.00 55.5 FT GROWT 02 -9999.0 -9999.0 FT GROWT 02 -9999.0 -9999.0 FT GROWT 03 -9999.0 -9999.0 -9999.0 FT GROWT 02 -9999.0 -9999.0 FT GROWT 02 -9999.0 -9999.0 FT GROWT 03 -9999.0 -9999.0 FT GROWT 02 -9999.0 FT GROWT 02 -9999.0 FT GROWT 03 -9999.0 F								5.0	-9999.0		SM
BORE									-9999.0		SW
DPTOT 01 -9999.0 -9999.0 57.0 FT GROWT 02 -9999.0 -9999.0 55.0 FT USCS 01 0.0 9.0 -9999.0 SP.0 SP.0 SP.0 SP.0 SP.0 SP.0 SP.0 SP									-9999.0		SM
BORE TNT-10-MAE JN 28-mar-1990 ADVAU DPTOT 01 -9999.0 -9999.0 57.0 FT GROWT 02 -9999.0 -9999.0 55.0 FT USCS 01 0.0 9.0 -9999.0 SP SP SP SP SP SP SP S	BORE	TNT-08-58	JM	03-apr-1990	ADVAU	01	0.0	57.0	- 9999 .0		
USCS 01 0.0 9.0 -9999.0 ML 01 19.0 0.1 -9999.0 ML 01 19.0 0.1 -9999.0 ML 01 19.0 0.1 -9999.0 ML 01 19.9 0.1 -9999.0 ML 01 22.0 10.0 -9999.0 ML 01 39.0 0.8 -9999.0 ML 01 39.0 0.8 -9999.0 ML 01 39.8 14.9 -9999.0 ML 01 39.8 14.9 -9999.0 ML 01 39.8 14.9 -9999.0 ML 01 39.8 14.9 -9999.0 ML 01 39.8 14.9 -9999.0 ML 01 39.8 14.9 -9999.0 ML 01 15.2 3.8 -9999.0 ML 01 15.2 3.8 -9999.0 SP 01 14.0 1.2 -9999.0 SP 01 15.2 3.8 -9999.0 SP 01 15.2 3.8 -9999.0 SP 01 15.0 1.0 -9999.0 SP 01 39.0 5.0 5.0 -9999.0 SP 01 39.0 5.0 5.0 -9999.0 SP 01 39.0 5.0 5.0 5.0 5.0 SP				·	DPTOT	01	- 9999 .0	- 9999 .0	57.0	FT	
BORE TNT-10-MAS JM 28-mar-1990 ADVAU 02 0.0 0.0 0.999.0 SP 0.0					GROWT	02	-9 999 .0	- 9999 .0	55.0	FT	
BORE TNT-10-MMB					USCS	01	0.0	9.0	- 9999 .0		ML
BORE TNT-10-MAS JM 28-mar-1990 ADVAU DPTOT D1 19.0 19.						01	9.0	5.0	- 9999 .0		SP
BORE TNT-10-MAS JM 28-mar-1990 ADVAU DPTOT DT 19-0 10-						01	14.0	5.0	-9999.0		ML
BORE THT-10-MMS						01	19.0	0.1	-9999.0		SM
BORE THT-10-MMB						01			-9999.0		SH
THT-10-MMS											ML
BORE TNT-10-MAB						01			-9 999 .0		CL
BORE THT-10-MMB JM 28-mar-1990 ADVAU 02 0.0 102.0 -9999.0 ML BORE THT-10-MMB JM 28-mar-1990 ADVAU 02 0.0 102.0 -9999.0 ML BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 0.0 143.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 0.0 143.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 05 0.0 0.0 143.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 05 0.0 0.0 143.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 05 0.0 0.0 143.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 05 0.0 0.0 0.0 143.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						01			-9999.0		
BORE THT-10-MMB JM 28-mar-1990 ADVAU 02 0.0 102.0 -9999.0 ML BORE THT-10-MMB JM 28-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 FT GROUT 02 -9999.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 FT GROUT 02 -9999.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 102.0 FT BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 102.0 -9999.0 SM BORE JM 16-mar-1990 ADVAU 25 0.0 102.0 -9999.0 SM BORE JM 16-mar-1990 ADVAU 25 0.0 102.0 -9999.0 SM BORE JM 16-mar-1990 ADVAU 25 0.0 102.0 -9999.0 SM BORE JM 16-mar-1990 ADVAU 25 0.0 102.0 -9999.0 SM BORE JM 16-mar-1990 ADVAU 25 0.0 102.0 SM BORE JM 16-						-			-9999.0		
BORE THT-10-MMS JM 28-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 143.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 143.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 143.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 123.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 123.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 123.0 -9999.0 SM BORE JM 143.0 5.0 SM BORE JM 144.0 SM BORE JM 14									-9999.0		
DPTOT 01 -9999.0 -9999.0 55.5 FT GROWT 02 -9999.0 -9999.0 55.5 FT USCS 01 0.0 14.0 -9999.0 SP 01 14.0 1.2 -9999.0 SP 01 15.2 3.8 -9999.0 SP 01 19.0 10.0 -9999.0 SP 01 29.0 5.0 -9999.0 SP 01 34.0 5.0 -9999.0 ML 01 34.0 5.0 -9999.0 SM 01 34.0 5.0 -9999.0 SM 01 34.0 10.0 -9999.0 SM 01 24.0 10.0 -9999.0 ML BORE TNT-10-MMB JM 28-mar-1990 ADVAU 02 0.0 102.0 -9999.0 DPTOT 01 -9999.0 -9999.0 102.0 FT GROWT 02 -9999.0 -9999.0 60.0 FT USCS 01 0.0 102.0 -9999.0 SM DPTOT 01 -9999.0 -9999.0 46.0 FT USCS 01 0.0 23.0 -9999.0 SP 01 28.0 21.0 -9999.0 SP 01 28.0 21.0 -9999.0 SP 01 28.0 21.0 -9999.0 SP									- 9999 .0		
OPTOT 01 -9999.0 -9999.0 55.5 FT GROWT 02 -9999.0 -9999.0 55.5 FT USCS 01 0.0 14.0 -9999.0 55.5 FT USCS 01 14.0 1.2 -9999.0 ML 01 15.2 3.8 -9999.0 ML 01 15.2 3.8 -9999.0 SP 01 19.0 10.0 -9999.0 SP 01 29.0 5.0 -9999.0 ML 01 34.0 5.0 -9999.0 CL 01 39.0 5.0 -9999.0 CL 01 39.0 5.0 -9999.0 SM 01 44.0 10.0 -9999.0 SM 01 44.0 10.0 -9999.0 SM 01 54.0 1.5 -9999.0 ML 01 54.0 1.5 -9999.0 ML 02 0.0 102.0 -9999.0 ML 02 0.0 102.0 -9999.0 ML 03.0	BORE	TNT-09-58	JM	03-apr-1990	ADVAU	01	0.0	55.5	-9 999 .0		
GRDWT 02 -9999.0 -9999.0 55.5 FT USCS 01 0.0 14.0 -9999.0 SP 01 14.0 1.2 -9999.0 ML 01 15.2 3.8 -9999.0 ML 01 15.2 3.8 -9999.0 SP 01 19.0 10.0 -9999.0 SP 01 34.0 5.0 -9999.0 ML 01 34.0 5.0 -9999.0 CL 01 39.0 5.0 -9999.0 SW 01 44.0 10.0 -9999.0 SW 01 44.0 10.0 -9999.0 SW 01 54.0 1.5 -9999.0 ML 01 54.0 1.5 -9999.0 ML 01 54.0 1.5 -9999.0 ML 02 0.0 102.0 -9999.0 ML 02 0.0 102.0 FT 03 0.0		27 22			DPTOT	01	- 9999 .0		55.5	FT	
SORE THT-10-MAS JM 28-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SP 07 07 07 07 07 07 07 0					GRDWT	02	-9 999 .0	- 9999 .0		FT	
BORE THT-10-MMC					uscs	01	0.0	14.0			SP
BORE THT-10-MME											
BORE THT-10-MMS JM 28-mar-1990 ADVAU DPTOT O1 0.0											
BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 143.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 143.0 -9999.0 SM									-9999.0		SP
BORE THT-10-MMS JM 28-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMS JM 28-mar-1990 ADVAU 02 0.0 102.0 -9999.0 HL BORE THT-10-MMS JM 16-mar-1990 ADVAU 02 0.0 102.0 -9999.0 FT GROWT 02 -9999.0 -9999.0 60.0 FT USCS 01 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 143.0 -9999.0 SM DPTOT 01 -9999.0 -9999.0 143.0 FT GROWT 02 -9999.0 -9999.0 143.0 FT USCS 01 0.0 23.0 -9999.0 SP 01 23.0 5.0 -9999.0 SM 01 28.0 21.0 -9999.0 SM											
BORE THT-10-MMS JM 28-mar-1990 ADVAU 02 0.0 102.0 -9999.0 SM BORE THT-10-MMS JM 28-mar-1990 ADVAU 02 0.0 102.0 -9999.0 HL BORE THT-10-MMS JM 28-mar-1990 ADVAU 02 0.0 102.0 -9999.0 FT GROWT 02 -9999.0 -9999.0 40.0 FT USCS 01 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 143.0 -9999.0 SM BORE THT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 143.0 -9999.0 SM DPTOT 01 -9999.0 -9999.0 143.0 FT USCS 01 0.0 23.0 -9999.0 SP 01 23.0 5.0 -9999.0 SM 01 28.0 21.0 -9999.0 SM						÷ .					
BORE THT-10-MANS JM 28-mar-1990 ADVAU 02 0.0 102.0 -9999.0 ML BORE THT-10-MANS JM 28-mar-1990 ADVAU 02 0.0 102.0 -9999.0 FT											
BORE TNT-10-MMB JM 28-mar-1990 ADVAU 02 0.0 102.0 -9999.0 FT GROWT 02 -9999.0 -9999.0 102.0 FT USCS 01 0.0 102.0 -9999.0 SM BORE TNT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 143.0 -9999.0 SM BORE TNT-10-MMC JM 16-mar-1990 ADVAU 25 0.0 143.0 -9999.0 FT GROWT 02 -9999.0 -9999.0 143.0 FT GROWT 02 -9999.0 -9999.0 143.0 FT USCS 01 0.0 23.0 -9999.0 SP 01 23.0 5.0 -9999.0 SP 01 28.0 21.0 -9999.0 SM											_
BORE THT-10-MMC JM 16-mmr-1990 ADVAU 25 0.0 143.0 -9999.0 SM BORE THT-10-MMC JM 16-mmr-1990 ADVAU 25 0.0 143.0 -9999.0 SM DPTOT 01 -9999.0 -9999.0 143.0 FT GROWT 02 -9999.0 -9999.0 143.0 FT USCS 01 0.0 23.0 -9999.0 SP 01 23.0 5.0 -9999.0 SM 01 28.0 21.0 -9999.0 SP 01 49.0 11.0 -9999.0 SM											
DPTOT 01 -9999.0 -9999.0 102.0 FT GROWT 02 -9999.0 -9999.0 60.0 FT USCS 01 0.0 102.0 -9999.0 SM BORE TNT-10-NMC JM 16-mmr-1990 ADVAU 25 0.0 143.0 -9999.0 DPTOT 01 -9999.0 -9999.0 143.0 FT GROWT 02 -9999.0 -9999.0 46.0 FT USCS 01 0.0 23.0 -9999.0 SP 01 23.0 5.0 -9999.0 SM 01 28.0 21.0 -9999.0 SP 01 49.0 11.0 -9999.0 SM	SORE	TNT-10-MAR	JM	28-mar-1990	ADVAU	02	0.0	102.0	-9999.0		
GROWT 02 -9999.0 -9999.0 60.0 FT USCS 01 0.0 102.0 -9999.0 SM BORE THT-10-NMC JM 16-mmr-1990 ADVAU 25 0.0 143.0 -9999.0 DPTOT 01 -9999.0 -9999.0 143.0 FT GROWT 02 -9999.0 -9999.0 46.0 FT USCS 01 0.0 23.0 -9999.0 SP 01 23.0 5.0 -9999.0 SM 01 28.0 21.0 -9999.0 SP 01 49.0 11.0 -9999.0 SM	/-			· · · · · · · ·					102.0	FT	
USCS 01 0.0 102.0 -9999.0 SM BORE THT-10-MMC JM 16-mmr-1990 ADVAU 25 0.0 143.0 -9999.0 DPTOT 01 -9999.0 -9999.0 143.0 FT GROWT 02 -9999.0 -9999.0 46.0 FT USCS 01 0.0 23.0 -9999.0 SP 01 23.0 5.0 -9999.0 SM 01 28.0 21.0 -9999.0 SP 01 49.0 11.0 -9999.0 SM						_	-9999.0	-9999.0		FT	
DPTOT 01 -9999.0 -9999.0 143.0 FT GRDWT 02 -9999.0 -9999.0 46.0 FT USCS 01 0.0 23.0 -9999.0 SP 01 23.0 5.0 -9999.0 SM 01 28.0 21.0 -9999.0 SP 01 49.0 11.0 -9999.0 SM					USCS		0.0	102.0	-9999.0		SM
DPTOT 01 -9999.0 -9999.0 143.0 FT GRDWT 02 -9999.0 -9999.0 46.0 FT USCS 01 0.0 23.0 -9999.0 SP 01 23.0 5.0 -9999.0 SM 01 28.0 21.0 -9999.0 SP 01 49.0 11.0 -9999.0 SM	SORE	THT-10-MMC	JM	16-mar-1990	ADVAU	25	0.0	143.0	-9999.0		
GRDWT 02 -9999.0 -9999.0 46.0 FT USCS 01 0.0 23.0 -9999.0 SP 01 23.0 5.0 -9999.0 SM 01 28.0 21.0 -9999.0 SP 01 49.0 11.0 -9999.0 SM				_	DPTOT		-9999.0	-9999.0	143.0	FT	
USCS 01 0.0 23.0 -9999.0 SP 01 23.0 5.0 -9999.0 SM 01 28.0 21.0 -9999.0 SP 01 49.0 11.0 -9999.0 SM						02	-9999.0	-9999.0	46.0	FT	
01 23.0 5.0 -9999.0 SM 01 28.0 21.0 -9999.0 SP 01 49.0 11.0 -9999.0 SM									-9999.0		SP
01 28. 0 21.0 -9999.0 SP 01 49.0 11.0 -9999.0 SM					•						SM
01 49.0 11.0 -9999.0 SM											SP
											SM
01 60.0 41.0 %						01	60.0	41.0	-9999.0		ML
											ML-SM
											SM

BORE

THT-13-58

05-apr-1990

GEOTECHNICAL FIELD DRILLING (GFD) Installation: Sierra Ordnance Depot (SA)

Measurement Date Range: 01-jan-75 to 20-sep-90 Min (X,Y): (736000, 4410000) Max (X,Y): (746167, 4460707)

Heasurement Action Unit Site Type/Site id 909 Date Measurement Method Depth Interval Value Heas. Entry -9999.0 BORE THT-10-58 JM 02-apr-1990 **ADVAU** 01 0.0 50.5 -9999.0 DPTOT 01 -9999.0 50.5 FT -9999.0 CROWT 02 -9999.0 50.5 FT -9999.0 USCS 01 0.0 9.0 ML 01 9.0 -9999.0 5.0 SM -9999.0 01 14.0 5.0 ML -9999.0 01 19.0 5.0 SP 01 24.0 5.0 -9999.0 SW-SM 29.0 01 10.0 -9999.0 CL 01 39.0 0.8 -9999.0 SW 01 39.8 9.2 -9999.0 ML 01 49.0 1.2 -9999.0 CL 01 50.2 -9999.0 0.3 ML BORE TNT-11-58 02-apr-1990 **ADVAU** 01 0.0 50.5 -9999.0 DPTOT 01 -9999.0 -9999.0 50.5 FT GROWT 02 -9999.0 -9999.0 50.0 FT USCS 01 0.0 14.0 -9999.0 SP 01 14.0 1.0 -9999.0 MŁ 01 15.0 10.5 -9999.0 SM 01 25.5 1.1 -9999.0 SW 01 26.6 0.2 -9999.0 ML 01 26.8 2.2 -9999.0 SM 01 29.0 1.2 -9999.0 SW 01 30.2 3.8 -9999.0 SM 01 34.0 0.8 -9999.0 ML 01 34.8 0.2 -9999.0 SM 01 35.0 0.3 -9999.0 ML 01 35.3 3.7 -9999.0 CL 01 39.0 0.8 -9999.0 SW 01 39.8 5.3 -9999.0 ML 01 45.1 3.9 -9999.0 SW-SM 01 49.0 1.5 -9999.0 SM BORE THT-12-58 04-apr-1990 ADVAU 01 0.0 50.5 -9999.0 DPTOT 01 -9999.0 -9999.0 50.5 FT GROWT 02 -9999.0 -9999.0 48.5 FT USCS 01 0.0 9.0 -9999.0 HL. 01 9.0 -9999.0 1.2 SM 01 10.2 -9999.0 3.8 **SM** 01 -9999.0 14.0 5.8 SH 01 19.8 -9999.0 4.2 SM 01 24.0 1.4 -9999.0 CL -9999.0 01 25.4 0.4 ML -9999.0 01 25.8 3.2 SV -9999.0 01 29.0 5.0 SM -9999.0 01 34.0 5.0 ML 01 39.0 5.0 -9999.0 CL -9999.0 01 44.0 6.5 CH

01

0.0

ADVAU

-9999.0

50.5

GEOTECHNICAL FIELD DRILLING (GFD) 13:14:26

Installation: Sierra Ordnance Depot (SA) Measurement Date Range: 01-jan-75 to 20-sep-90

			Manayanaa	Action						
et	te Type/Site id	Oca	Messurement	Measurement	Mathad	Deneh	Intomoi	Value	Unit	Ent.
311	1404/31/4 10	<u>Ora</u>	Dete	HARACI GIRELLE	Method	Depth	Interval	Value	Meas.	Entry
BORE	TNT-13-58	JM	05-apr-1990	DPTGT	01	-9999.0	-9999.0	50.5	FT	
			·	GROWT	02	-9999.0	- 9999 .0	50.0	FT	
				USCS	01	0.0	14.0	-9999.0		ML
					01	14.0	10.0	-9999.0		SP
					01	24.0	1.3	-9999.0		CL
					01	25.3	0.2	- 9999 .0		SW
					01	25.5	3.5	-9999.0		CL
					01	29.0	5.0	-9999.0		SW-SM
					01	34.0	16.5	- 9999 .0		ML
			40.							
BORE	TNT-14-58	JM	09-apr-1990	ADVAU	01	0.0 - 9999 .0	51.0	-9999.0		
				DPTOT	01 03		-9999.0	51.0	FT	
				GRDWT USCS	02 01	-9999.0	- 9999 .0	51.0 - 9999 .0	FT	
				0363	01	0.0 9.0	9.0	-9999.0		SP
					01	14.0	5.0 5.0	-9999.0		ML St. SM
					01	19.0	0.6	-9999.0		SW-SM
					01	19.6	4.4	- 9999 .0		SH SM
					01	24.0	0.4	- 9999 .0		SPI ML
					01	24.4	1.4	-9999.0		SM
					01	25.8	3.2	-9999.0		2M 2A
					01	29.0	5.0	-9999.0		SH SH
					01	34.0	5.0	- 9999 .0		CL
					01	39.0	1.5	-9999.0		ML
					01	40.5	3.5	-9999.0		CL
					01	44.0	5.0	-9999.0		ML-CL
					01	49.0	2.0	-9999.0		SM.
					••	•				
BORE	THT-15-MMA	ML	27-feb-1990	ADVAU	02	0.0	71.0	- 9999 .0		
				DPTOT	01	- 9999 .0	- 9999 .0	71.0	FT	
				GROWT	02	- 9999 .0	- 9999 .0	54.0	FT	
				USCS	01	0.0	15.3	- 9999 .0		SP
					01	15.3	4.7	- 9999 .0		SM
					01	20.0	10.0	- 9999 .0		SP
					01	30.0	6.0	- 9999 .0		ML
					01	36.0	4.0	-9999.0		SP
					01	40.0	0.5	- 9999 .0		SM
					01	40.5	5.2 ·			SP
					01	45.7	4.3	-9 999 .0		SC
					01	50.0	10.0	- 9999 .0		SP
					01	60.0	10.0	- 9999 .0		ML
					01	70.0	1.0	- 9999 .0		SP
BORE	TNT-15-58	JM	05-apr-1990	ADVAU	01	0.0	50.5	-9999.0		
	12 23			DPTOT	01	-9999.0	-9999.0	50.5	FT	
				GROWT	02	-9999.0	-9999.0	50.0	FT	
				USCS	01	0.0	14.0	-9999.0		SP
					01	14.0	0.8	-9999.0		CL
					01	14.8	9.2	-9999.0		ML
					01	24.0	5.0	-9999.0		CL
					01	29.0	5.0	-9999.0		SH
					٠.	27.0	J. 4	,,,,,		

GEOTECHNICAL FIELD DRILLING (GFD)
Installation: Sierra Ordnance Depot (SA)

Measurement Date Range: 01-jan-75 to 20-sep-90

			Measurement	Action					Unit	
Site	Type/Site id	919	Date	Measurement	Method	Depth	Interval	<u>Value</u>	Meas.	Entry
SORE	TNT-15-58	JM	05-apr-1990	uscs	01	34.0	5.0	-9999.0		CL
			·		01	39.0	5.0	-9999.0		ML
					01	44.0	5.0	-9999.0		CL
					01	49.0	1.5	·9999.0		SH
SORE	TNT-16-MA	JM	28-feb-1990	ADVAU	02	0.0	72.0	-9999.0		
				DPTOT	01	-9999.0	- 9999 .0	72.0	FT	
				GROWT	02	- 9999 .0	- 9999 .0	55.0	FT	
				USCS	01	0.0	19.5	- 9999 .0		SP
					01	19.5	0.7	-9 999 .0		SM
					01	20.2	5.4	-9999.0		SP
					01	25.6	3.9	-9999.0		SM
					01 01	29.5	0.6	-9999.0 -9999.0		SC
					01	30.1 34.8	4.7	-9999.0		ML
					01	35.2	0.4 4.3	-9999.0		SP
					01	39.5	0.2	-9999.0		ML SM
					01	39.7	0.2	-9999.0		SP SP
					01	40.0	0.5	-9999.0		ML
					01	40.5	4.0	-9999.0		SP
					01	44.5	0.8	-9999.0		SH
					01	45.3	14.2	-9999.0		CL
					01	59.5	1.5	-9999.0		SP
					01	61.0	11.0	-9999.0		SM
SORE	TNT-16-58	JM	10-apr-1990	ADVAU	01	0.0	50.5	-9999.0		
				DPTOT	01	- 9999 .0	-9 999 .0	50.5	FT	
				NOGHT	01	- 9999 .0	- 9999 .0	- 9999 .0		
				USCS	01	0.0	26.4	- 9999 .0		ML
					01	26.4	2.6	- 9999 .0		CL
					01	29.0	1.5	- 9999 .0		ML
					01	30.5	3.5	- 9999 .0		SM-CL
					01	34.0	5.3	-9999.0		ML
					01	39.3	0.3	-9999.0		SM
					01	39.6	4.4	-9999.0		ML
					01 <i>0</i> 1	44.0 44.7	0.7 5.8	-9999.0 -9999.0		SM M
					01	44./		·****.u		ML
BORE	TNT-17-58	JM	09-apr-1990	ADVAU	01	0.0	51.0	- 9999 .0		
				OPTOT	01	-9 999 .0	- 9999 .0	51.0	FT	
				GROWT	02	-9 999 .0	-9999.0	51.0	FT	
				USCS	01	0.0	9.0	- 9999 .0		SP
					01	9.0	5.0	-9999.0		ML
					01	14.0	5.0	-9999.0		SW
					01	19.0	5.0	-9999.0		ML .
					01	24.0	5.0	-9999.0		ML-CL
					01	29.0	5.0	-9999.0		SW
					01 01	34.0	10.0	-9999.0		ML
					01	44.0	5.0	-9999.0 -9999.0		SN
					01 01	49.0 49.9	0.9 1.1	-9999.0		SW ML
					UI	47.7	1.1	-7777.0		PL.

20-SEP-1990

GEOTECHNICAL FIELD DRILLING (GFD) Installation: Sierra Ordnance Depot (SA) Measurement Date Range: 01-jan-75 to 20-sep-90

Min (X,Y): (736000, 4410000) Max (X,Y): (746167, 4460707)

13:14:26

Action Unit Measurement Site Type/Site id Date Measurement <u>Method</u> Depth Interval Value Meas. Entry Org -9999.0 09-apr-1990 ADVAU 01 0.0 51.0 THT-18-58 JM SORE DPTOT 01 -9999.0 -9999.0 51.0 FT GROWT 02 -9999.0 -9999.0 51.0 FT uscs 01 0.0 9.0 -9999.0 SP 01 9.0 5.0 -9999.0 ML 01 14.0 5.0 -9999.0 SP -9999.0 01 19.0 10.0 ML -9999.0 01 29.0 1.5 SM-ML 01 30.5 0.6 -9999.0 NR -9999.0 01 31.1 4.1 ML -9999.0 CL 01 35.2 3.8 39.0 -9999.0 01 0.5 HL 39.5 -9999.0 CL 01 4.5 -9999.0 01 44.0 0.6 MŁ -9999.0 CL 01 44.6 0.6 -9999.0 45.2 01 5.8 ML 0.0 51.0 -9999.0 LAVQA 01 BORE THT-19-58 10-apr-1990 -9999.0 -9999.0 DPTOT 51.0 01 FT -9999.0 -9999.0 51.0 FT GROWT 02 -9999.0 0.0 30.5 USCS 01 MŁ 30.5 -9999.0 NR 01 0.8 -9999.0 31.3 SM 01 2.7 34.0 5.8 -9999.0 ML 01 -9999.0 01 39.8 4.2 CL -9999.0 ML - CL 01 44.0 5.0 -9999.0 49.0 ĦL 2.0 01

Well Construction Data from the GWC File of the IRDMS

James M. Montgomery

Consulting Engineers Inc.

GEOTECHNICAL MELL CONSTRUCTION (GMC) REPORT Installation: Sierra Ordnance Depot (SA)

Heasurement Date Range: 1/1/75 to 7-aug-90

Min (X,Y): (736000, 4441000) Max (X,Y): (746167, 4460707)

			Measurement	Action					Unit	
Site	Type/Site id	Org	Date	Measurement	Method	Depth	Interval	Value	Meas.	Entry
	مستند الشر					-				
JELL	ALF-01-MMA	JM	15-feb-1990	BSEAL	01	72.0	8.0	- 9999 .0		SMH
				CASE	01	-9 999 .0	- 9999 .0	85.0	FT	SMH
				CASED	01	-9 999 .0	-9 999 .0	0.3	FŤ	SMH
				DPTQT	01	-9 999 .0	- 9999 .0	105.0	FT	SMH
				GFILT	01	80.0	25.0	-9 999 .0		SMH
				GROUT	04	2.0	70.0	- 9999 .0		SMH
				ŞCREN	02	85.0	19.5	-9 999 .0		SMH
				STKUP	01	-9999.0	-9999.0	0.9	FT	SMH
WELL	ALF-02-MHA	J#4	18-feb-1990	BSEAL	01	77.0	4.5	-9999.3		SMH
4666	727 US 11804	•,.		CASE	01	-9999.0	-9999.0	87.0	FT	SMH
				CASED	01	-9999.0	-9999.0	0.3	FT	SMH
				DPTOT	01	-9999.0	-9999.0	107.0	FT	SMH
				GFILT	01	81.5	25.5	-9 999 .0		SMH
				GROUT	04	2.0	75.0	-9999.0		SMH
				SCREN	02	87.0	19.8	-9999.0		SMH
				STKUP	01	-9999.0	-9999.0	1.8	FT	SMH
			40.4.5.4000	****	01	75.5	5.0	-9999.0		SMH
WELL	ALF-03-HWA	JM	19-feb-1990	SSEAL	01 01	•9999.0	-9999.0	86.0	FT	SMH
				CASE	-	·9999.0	-9999.0	0.3	FT	SMH
				CASED	01	-9999.0	-9999.0	106.0	FT	SMH
				DPTOT	01			-9999.0	F 1	
				GFILT	01	86.0	20.0			SMH
				GROUT	04	2.0	73.5	-9999.0		SMH
				SCREN	02	86.0	19.8	-9 999 .0	FT	SMH
				STKUP	Q1	- 9999 .0	- 9999 .0	2.0	P 7	SMH
WELL	CCB-01-MWA	J#	21-feb-1990	BSEAL	01	60.2	5.3	-9999.0		SMH
				CASE	01	-9999.0	- 9999 .0	71.0	FT	SMH
				CASED	01	-9 999 .0	-9999.0	0.3	FT	SMH
				DPTQT	01	-9 999. 0	- 9999 .0	91.5	FT	SMH
				GFILT	01	65.5	26.0	- 9999 .0		SMH
				GROUT	04	2.0	58.2	-9 999 .0		SMH
				SCREN	02	71.0	19.0	-9 999 .0		SMH
				STICUP	01	-9999.0	-9999.0	2.2	FT	SMH
	CCB-02-MA	J#	26-feb-1990	BSEAL	01	72.0	5.0	-9999.0		SMH
WELL	CC9-05-148K	314	20-100-1770	CASE	01	9999.	-9999.0	83.0	FT	SMH
				CASED	01	-9999.0	-9999.0	0.3	FT	SMH
				DPTOT	01	-9999.0	·9 999 .0	104.0	FT	SMH
					01	77.0	27.0	-9999.0		SMH
				GFILT		2.0	70.0	-9999.0		SMH
				GROUT	04	83.0	20.8	·9999.0		SMH
				SCREN	02	-9999.0	· 9999 .0	1.1	FT	SMH
				STRUP	01	·*************************************	· **** . U	1.1	• •	4 711
WELL	DMO-03-MA	J#	27-feb-1990	BSEAL	01	77.0	5.6	-9999.0	•	SMH
				CASE	01	·9999.0	-9999.0	86.7	FT	SMH
				CASED	01	·9 999 .0	·9999.0	0.3	FT	SMH
				OPTOT	01	- 9999 .0	- 9999 .0	109.0	FT	SMH

. 1 -

16:08:57

GEOTECHNICAL WELL CONSTRUCTION (GMC) Installation: Sierra Ordnance Depot (SA)

Measurement Date Range: 1/1/75 to 7-aug-90 Min (X,Y): (736000, 4441000) Max (X,Y): (746167, 4460707)

			Messurement	Action					Unit	
Site	e Type/Site id	Ore	Date	Messurement	Method	Depth	Interval	Value	Meas.	Entry
₩ELL	DMO-03-MHA	JM	27-feb-1990	GFILT	01	82.6	26.4	-9999.0		SMH
		•		GROUT	04	2.0	75.0	-9999.0		SMH
				SCREN	02	86.7	20.0	-9 999 .0		SMH
				STRUP	01	-9999.0	- 9999 .0	1.3	FT	SMH
WELL	DMO-04-MMA	JM	04-mar-1990	BSEAL	01	77.5	5.5	- 9999 .0		SMH
				CASE	01	-9999.0	-9 999 .0	88.8	FT	SMH
				CASED	01	-9999.0	- 9999 .0	0.3	FT	SMH
				DPTOT	01	-9 999 .0	- 9999 .0	109.0	FT	SMH
			•	GFILT	01	83.0	26.0	- 9999 .0		SMH
				GROUT	04	2.0	75.5	-9999.0		SMH
				SCREN	02	88.8	20.0	-9999.0		SMH
				STRUP	01	- 9999 .0	-9 999 .0	1.4	FT	SMH
HELL	DMO-05-MUA	JM	28-feb-1990	BSEAL	01	77.0	6.4	-9999.0		SMH
				CASE	01	- 9999 .0	- 9999 .0	89.6	FT	SMH
				CASED	01	-9 999 .0	- 9999 .0	0.3	FT	SMH
				OPTOT	01	-9999.0	-9 999 .0	110.0	FT	SMH
				GFILT	01	83.4	26.6	- 9999 .0		SMH
				GROUT	04	2.0	75.0	-9999.0		SMH
				SCREN	02	89.6	20.0	-9999.0		SMH
				STICUP	01	- 9999 .0	-9999.0	1.2	FT	SMH
WELL	058-01-MMA	JM	03-mer-1990	SSEAL	01	16.0	5.0	- 9999 .0		128
				CASE	01	-9 999 .0	- 9999 .0	27.0	FT	128
				CASED	01	-9999.0	- 9999 .0	0.2	FT	728
				DPTOT	01	-9 999 .0	-9 999 .0	33.0	FT	158
				GFILT	01	21.0	11.0	-9999.0		128
				GROUT	04	2.0	14.0	-9999.0		421
				SCREN	01	27.0	5.0	-9999.0		. SB
				STRUP	01	- 9999 .0	- 9999 .0	2.3	FT	TZB
WELL	DS8-02-MHA	JM	04-mar-1990	BSEAL	01	25.0	5.0	-9999.0		JSB
				CASE	01	-9999.0	-9999.0	35.0	FT	1SB
				CASED	01	-9999.0	-9999.0	0.2	FT	158
				OPTOT	01	-9999.0	-9999.0	41.5	FT	128
				GFILT	01	30.0	10.0	-9999.0		128
				GROUT	04	2.0	23.0	-9999.0 -9999.0		128
				SCREN	01	35.0	5.0			J SB
				STICUP	01	-9999.0	-9 999 .0	2.0	FT	128
JELL	058-04-MJA	JM	05-mar-1990	BSEAL	01	10.0	5.0	-9999.0	4-	128
				CASE	01	-9999.0	-9999.0	20.0	FT	JSB
				CASED	01	-9999.0	-9999.0	0.2	FT	J\$8
				DPTOT	01	-9999.0	-99 99 .0	45.0	FT	128
				GFILT	01	15.0	25.0	·9999.0		128
				GROUT	04	2.0	8.0	-9999.0		J\$8
				SCREN	01	20.0	20.0	-9999.0		128
				STKUP	01	- 9999 .0	- 9999 .0	2.0	FT	BZL
WELL	DSB-06-HNA	ML	05-mer-1990	BSEAL	01	55.0	5.0	- 9999 .0		SMH

7-AUG-1990

GEOTECHNICAL WELL CONSTRUCTION (GUC) Installation: Sierra Ordnance Depot (SA) Heasurement Date Range: 1/1/75 to 7-aug-90 Min (X,Y): (736000, 4441000) Max (X,Y): (746167, 4460707)

			Heasurement	Action					บคาร	
Site	Type/Site id	Ore	Date	Measurement	Method	Depth	Interval	Value	Heas .	Entry
					••			44.0	FT	CM III
WELL	ALM-60-820	194	05-mar-1990	CASE	01 01	-9999.0 -9999.0	-9999.0 -9999.0	66.0 0.2	FT	SMH SMH
				CASED	01	-9999.0	-9999 D	73.0	FT	SMH
				DPTOT	-	60.0	13.0	-9999.0		SMH
				GFILT	01	2.0	53.0	-9999.0		SMH
				GROUT	04		5.0	·9999.0		SMH
				SCREN	01	66.0	-9 999 .0	2.0	FT	SMH
			•	STICUP	01	-9999.0	-7777.0	2.0	,,	4-11
WELL	TNT-01-MWE	JM	29-mar-1990	BSEAL	01	80.0	5.0	-9 999 .0		CXM
MECE	141 01 1140	•		CASE	01	-9 999 .0	- 9999 .0	90.0	FT	MXC
				CASED	01	-9 999 .0	-9 999 ,0	0.3	FT	MXC
				OPTOT	01	-9999.0	-9 999 .0	103.0	FT	OXM
				GFILT	01	85.0	18.0	- 9999 .0		MXC
				GROUT	04	2.0	78.0	- 9999 .0		MXC
				SCREN	02	90.0	10.0	-9 999 .0		DXM
				STKUP	01	-9999.0	- 9999 .0	3.2	FT	OXM
					01	118.0	5.0	-9999.0		DXM
WELL	THT-01-MWC	JM	27-mar-1990	BSEAL		-9999.0	-9999.0	128.0	FT	DXX
				CASE	01	·9999.0	-9999.0	0.3	FT	DXM
				CASED	01	·9999.0	·9999.0	147.0	FT	DXM
				DPTOT	01	123.0	24.0	-9999.0	Γ,	OXM
				GFILT	01		116.0	-9999.0		DXM
				GROUT	04	2.0		-9999.0		DAH
				SCREN	02	128.0	10.0		FT	DXM
				STKUP	01	-9 999 .0	- 9999 .0	2.2	F1	JAM
WELL	TNT-02-MW8	J34	06-mar-1990	BSEAL	01	75.0	10.0	-9999.0		.58
MELL	141 02 1140	•••	•••	CASE	01	-9999.0	-9 999 .0	90.0	FT	.58
				CASED	01	-9999.0	-9999.0	0.3	FT	.58
				DPTOT	01	-9999.0	-9999.0	102.0	FT	JS8
				GFILT	01	85.0	15.0	- 9999 .0		JS8
				GROUT	04	2.0	73.0	- 9999 .0		JSB
				SCREN	02	90.0	10.0	-9999.0		JS8
				STICUP	01	-9 999 .0	- 9999 .0	1.8	FT	158
								- 9999 .0		128
WELL	THT-02-MAC	JM	19-mar-1990	BSEAL	01	120.0	5.0		FT	128
				CASE	01	-9999.0	-9999.0	130.0	FT	128
				CASED	01	-9999.0	-9999.0	0.3	FT	128
				DPTOT	01 -	-9999.0	- 9999 .0	143.0	PI	_
				GFILT	01	125.0	18.0	-9999.0 -9999.0		BZL
				CROUT	04	2.0	118.0			128
				SCREN	02	130.0	10.0	-9999.0		128
				STILLP	01	- 9999 .0	- 9999 .0	3.0	FT	128
	TNT-07-MMS	JM	12-mar-1990	8SEAL	01	82.0	5.0	-9999 .0		SMH
METT	1817U/788	3PT	16-Hell - 1770	CASE	01	-9999.0	-9999.0	92.0	FT	SMH
				CASED	01	-9999,G	·9999.0	0.3	FT	SMH
				09101	01	-9999.0	-9999.0	104.0	FT	SMH
				GFILT	01	87.0	17.0	- 9999 .0		SPH
				GROUT	04	2.0	80.0	-9999.0		SHH
				SCREN	02	92.0	10.0	-9999.0		SMM
					~~					

. 3.

16:08:57

GEOTECHNICAL WELL CONSTRUCTION (GWC) Installation: Sierra Ordnence Depot (SA) Heasurement Date Range: 1/1/75 to 7-aug-90

Min (X,Y): (736000, 4441000) Mex (X,Y): (746167, 4460707)

			Measurement	Action					Unit	
Site	Type/Site id	Org	Dete	Measurament	Method	Depth	Interval	Value	Meas.	Ent-
3,118	200, 524, 19	2.2	2411							
WELL	TNT-07-MUS	ML	12-mar-1990	STICUP	01	- 9999 .0	· 9999 .0	2.4	FT	SMH
JELL	THT-07-MMC	ML	21-mar-1990	BSEAL	01	120.0	5.0	- 9999 .0		DXM
				CASE	01	·9999.0	- 9999 .0	130.0	FT	MXC
				CASED	01	-9 999 .0	- 9999 .0	0.3	FT	MXC
				DPTOT	01	- 9999 .0	- 9999 .0	147.0	FT	DXM
	•			GFILT	01	120.0	10.0	- 9999 .0		DXM
				GROUT	04	2.0	118.0	-9 999 .0		MXC
				SCREN	02	130.0	10.0	- 9999 .0		MXC
				STICUP	01	-9999.0	- 9999 .0	3.0	FT	MXC
WELL	THT-10-MUS	JM	28-mar-1990	BSEAL	01	80.0	5.0	-9999.0		MXC
				CASE	01	- 9999. 0	- 9999 .0	90.0	FT	DXM
				CASED	01	- 9999. 0	- 9999 .0	0.3	FT	MXC
				DPTOT	01	- 9999 .0	- 9999 .0	102.0	FT	MXC
				GFILT	01	85.0	17.0	·9 999 .0		DXM
				GROUT	04	2.0	78.0	- 9999 .0		DXM
				SCREN	02	90.0	10.0	- 9999 .0		DXM
				STKUP	01	-9 999 .0	- 9999 .0	2.3	FT	DXM
ÆLL	TNT-10-MUC	JM	17-mar-1990	BSEAL	01	115.0	5.0	- 9999 .0		DXX4
				CASE	01	·9999.0	- 9999 .0	125.0	FŤ	DXM
				CASED	01	- 9999 .0	- 9999 .0	0.3	FT	DXM
				DPTOT	01	- 9999 .0	-9999.0	146.0	FT	MXC
				GFILT	01	120.0	26.0	- 9999 .0		MXC
				GROUT	04	2.0	113.0	- 9999 .0		OXM
				SCREN	02	125.0	10.0	-9 999 .0		MXC
				STICUP	01	-9999.0	- 9999 .0	2.9	FT	DXM
d ELL	TNT-15-MMA	JM	03-mar-1990	BSEAL	01	40.9	4.8	- 9999 .0		JS8
				CASE	01	9999.0	-9999.0	50.0	FT	128
				CASED	01	· 9999 .0	-9999.0	0.3	FT	JSB
				DPTOT	01	-9999.0	-9999.0	74.0	FŤ	128
				GFILT	Q1	45.7	28.3	-9999.0		JSB
				GROUT	04	2.0	38.9	- 9999 .0		JSB
				SCREN	02	50.0	20.0	- 9999 .0		JSB
				STICUP	01	-9999.0	-9 999 .0	2.4	FT	128
JELL	TNT-16-MA	M	28-feb-1990	BSEAL	01	41.5	5.0	·9999.0		JSB
				CASE	01	-9999.0	-9999.0	51.0	FT	JS8
				CASED	01	-9999.0	-9999.0	0.3	FT	J S8
				DPTOT	01	-9999.0	-99 99 .0	72.0	FT	J\$8
				GFILT	01	46.5	25.5	-9999.0		128
				GROUT	04	2.0	39.5	-9999.0		J 58
				SCREN	02	51.0	20.0	-9999.0	.,	# \$ B
				STICUP	01	-9 999 .0	-9 999 .0	1.8	FT	JS8

Groundwater Stabilized Elevation Data from the GGS File of the IRDMS James M. Montgomery Consulting Engineers Inc.

GROUND WATER STABILIZED REPORT Sun Sep 9 14:03:52 1990

For Parameters :

Installation = Sierra Ordnance Depot Beginning Date = 01/01/75 Ending Date = 09/07/90

INSTALLATION RESTORATION PROGRAM GROUND WATER STABILIZED REPORT INSTALLATION: Siegra Ordnance Depo

INSTALLATION: Sierre Ordnence Depot DEPTH FROM STABILIZED SURFACE SAPLING WELL AGFR ELEV(FT) GR SUR(FT) ELEV(FT) DATE ORG NUMBER NAME 4079.1 90.4 3988.7 16-apr-1990 JM ALF-01-MMA 90.9 3968.2 31-may-1990 JM 4076.7 85.5 3991.2 16-apr-1990 JM ALF-02-MA 86.2 3990.5 01 - jun - 1990 JM 83.3 4002.1 16-apr-1990 JM 4085.4 ALF-03-MA 3991.6 93.8 01 - jun - 1990 JM 16-apr-1990 77.1 3986.5 4065.6 JM CCB-01-MMA 77.5 3988.1 01-jun-1990 JM 85.3 3989.3 4074.6 16-apr-1990 JM CCR-02-MA 3986.7 85.9 02-jun-1990 JH 3989.3 19-apr-1990 94.8 4084.1 DMO-03-MM JM 95.0 3989.1 31-may-1990 JM 95.0 3989.0 19-apr-1990 JH 4084.0 DND-04-MMA 3988.9 95.1 31-may-1990 JM 94.1 19-apr-1990 3989.0 JM 4083.1 DMO-05-MMA 94.3 3905.8 31-may-1990 JM 3982.0 12.0 16-apr-1990 JM 3994.0 DS8-01-MA 07- jun-1990 12.1 3961.9 106 18.1 3982.0 DS8-02-MA 16-apr-1990 JH 4000.1 3981.9 07-jun-1990 18.2 JH 16-apr-1990 4007.3 22.9 3984.4 圳 DS8-04-MM 3984.6 22.7 08- jun- 1990 JH 55.4 3986.6 17-apr-1990 JM 4042.0 THT-01-MA 55.6 3986.4 05-jun-1990 JM 3986.2 56.0 17-apr-1990 4042.2 THT-01-MAS Щ 3985.8 56.4 05-jun-1990 JM 3984.1 17-apr-1990 JH 4042.0 55.9 THT-01-MAC 3985.7 05 - jun - 1990 JH 56.3 3986.7 54.3 THT-02-MA 17-apr-1990 JH 4041.0 54.6 3906.4 04-jun-1990 JH 4041.2 54.6 3906.6 17-apr-1990 . THT-02-MUS 54.9 3986.3 04-jun-1990 W 3966.2 4040.2 54.0 17-apr-1990 ... THT-02-MAC 3965.9 54.3 04-jun-1990 JH 3986.7 52,7 THT-03-HA 19-mr-1990 JM 4039.4 3906.5 06- jun-1990 ... 52.9 53.7 3986.9 17-apr-1990 JH 4040.6 THT-04-MA 3986.7 53.9 06- jun-1990 JH 3986.9 25-mar-1990 ,jij 4045.4 58.5 THT-05-MA 3906.8 58.6 07- jun-1990 JH 54.6 3986.8 17-apr-1990 JH. 4041.4 THT-06-MA 54.9 3986.5 06-jun-1990 JH 3906.6 56,1 19-apr-1990 JH 4042.7 THT-07-MMA 3986.3 56.4 06- jun-1990 JH 3986.4 56.0 THT-07-MAR 17-apr-1990 JИ 4042.4 3986.1 56.3 06-jun-1990 JH 56.0 3986.1 17-apr-1990 4042.1 THT-07-MAC JH 3965.7 06-jun-1990 JH 56.4 3987.1 17-apr-1990 JM 4042.4 55.3 THT-08-MA

07- jun-1990

Page 1

3906.9

55.5

Sep 9, 1990

INSTALLATION RESTORATION PROGRAM
GROUND WATER STABILIZED REPORT
INSTALLATION: Sierre Ordnence Depot

Page 2

WELL	AGFR	SAMPLING DATE	arc	SURFACE ELEV(FT)	DEPTH FROM GR SUR(FT)	STABILIZED ELEV(FT)
NUMBER	NAME	DAIE	•••			
THT-09-MA		19-apr-1990	.184	4042.3	55.0	3987.3
141-09-Han		06-jun-1990	JM	***************************************	55.0	3987.3
THT-10-MA		16-apr-1990	JM	4043.0	56.0	3967.0
741 10 744		03-jun-1990	J#		56.3	3986.7
TNT - 10-HLB		16-apr-1990	JM	4043.0	56.8	3986.2
147 10 200		03-jun-1990	J#		57 2	3965.8
THT-10-MAC		16-epr-1990	JM	4041.8	55.9	3985.9
		03-jun-1990	JM		56.3	3965.5
THT-11-MMA		19-apr-1990	JM	4046.3	59.2	3987.1
		07- jun-1990	JM		59.5	3986.8
THT-12-MA		25-apr-1990	JM	4037.0	50.3	3986.7
		07-jun-1990	JM		50.6	3986.4
THT-13-MA		25-apr-1990	JM	4043.2	52.2	399 1.0
		07-jun-1990	JM		56.3	3986.9
THT-14-MA		23-epr-1990	JM	4035.9	49.5	3986.4
		03 - jun - 1990	JM		48.8	3987. 1
THT-15-MA		19-apr-1990	JM	4037.2	52.0	39 6 5.2
		02- jun-1990	JM		52.2	3965.0
THT-16-MA		17-apr-1990	JM	4043.1	56.7	3986.4
		02-jun-1990	JM		57.0	3986.1

Program ended normally.\$

Chemical Groundwater Data (for detects only) from the CGW File of the IRDMS

James M. Montgomery

Consulting Engineers Inc.

INSTALLATION RESTORATION PROGRAM

CHEMICAL REPORT Tue Jan 22 16:04:46 1991

For Parameters :

Installation = Sierra Ordnance Depot
Reginning Date = 01-jan-75
Ending Date = 22-jan-91
Media Type = Chemical Ground Water (CGW)
Maximum (X, Y) = (746811, 4460743)
Minimum (X, Y) = (736000, 4441000)
Booleans = N

Installation: Sierra Ordnance Depot Page 1

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 22-jan-91 (Socieans LT and NO are excluded)

Site: WELL ALF-01-MMA

SAMPLE	SAMPLE	TEST				
DEPTH (ft)) DATE	METHOD	COMPOUND	800L	CONCENTRATION	UNITS
90.4	17-apr-1990	99	TDS	****	762000.000	UGL
90.4	31-may-1990	99	TDS		900000.000	UGL
90.4	31-may-1990	99	TDS		884000.000	UGL
90.4	17-apr-1990	SB01	HG		0.488	UGL
90.4	31-may-1990	\$020	PB		2.600	UGL
90.4	31-may-1990	SD20	PS		2.930	UGL
90.4	17-apr-1990	SD21	SE		16.300	UGL
90.4	31-may-1990	SD21	SE		18.600	UGL
90.4	31-may-1990	S 021	SE		18.300	UGL
90.4	17-apr-1990	SD22	AS		3.730	UGL
90.4	31-may-1990	SD22	AS		3.410	UGL
90.4	17-apr-1990	\$\$10	BA		19.900	UGL
90.4	31-may-1990	S\$10	BA		19.900	UGL
90.4	31-may-1990	\$\$10	BA		20.200	UGL
90.4	17-apr-1990	SS 10	CA		110000.000	UGL
90.4	31-may-1990	5510	CA		120000.000	UGL
90.4	31-may-1990	SS10	CA		110000.000	UGL
90.4	17-apr-1990	SS10	cu		8.710	UGL
90.4	17-apr-1990	SS10	NA		50500.000	UGL
90.4	31-may-1990	\$\$10	NA		50900.000	UGL
90.4	31-may-1990	5510	NA		53000.000	UGL
90.4	17-apr-1990	\$\$10	ZN		62.500	UGL
90.4	17-apr-1990	TT10	CL		100000.000	UGL
90.4	31-may-1990	TT10	CL		100000.000	UGL
90.4	31-may-1990	TT10	CL		100000.000	UGL
90.4	17-apr-1990	TT10	\$04		300000.000	UGL
90.4	31-may-1990	TT10	SO4		320000.000	UGL
90.4	31-may-1990	7710	\$04		310000.000	NCF
90.4	17-apr-1990	UH18	UNK600		10.000	UGL

Installation: Sierra Ordnance Depot
Analytical Results for Chemical Ground Water

Page 2

From: 01-jan-75 To: 22-jan-91 (Sooleans LT and ND are excluded)

Site: WELL ALF-02-MMA

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••		•••••			••••••	•••••
85.5	17-apr-1990	99	TDS		4060000.000	UGL
85.5	01-jun-1990	99	TDS		1100000.000	UGL
85.5	01-jun-1990	SD20	PS		2.170	UGL
85.5	17-apr-1990	SD21	SE		6.070	UGL
85.5	01-jun-1990	SD21	SE		6.790	UGL
85.5	17-apr-1990	\$022	AS		7.460	UGL
85.5	01-jun-1990	SD22	AS		6.720	UGL
85.5	17-apr-1990	· SS10	BA		16.200	UGL
85.5	01-jun-1990	\$\$10	BA		16.100	UGL
85.5	17-apr-1990	SS10	CA		130000.000	UGL
85.5	01-jun-1990	5510	CA		130000.000	UGL
85.5	17-apr-1990	\$\$10	NA		78000.000	UGL
85.5	01 - jun - 1990	5\$10	NA		130000.000	UGL
85.5	17-apr-1990	5510	ZN		38.000	UGL
85.5	01-jun-1990	TF18	CYN		3.310	UGL
85.5	17-apr-1990	TT10	CL		67000.000	UGL
85.5	01-jun-1990	TT10	CL		66000.000	UGL
85.5	17-apr-1990	TT10	SO4		450000.000	UGL
85.5	01-jun-1990	TT10	so4		440000.000	UGL
85.5	17-apr-1990	UM18	UNKS76		5.000	UGL
85.5	17-apr-1990	UM18	UNK600		5.000	UGL
85.5	01-jun-1990	UM20	120CE		0.621	UGL
85.5	17-apr-1990	UN20	TRCLE		41.000	UGL
85.5	01-jun-1990	UM20	TRCLE		70.500	UGL

Site: WELL ALF-03-MMA

SAMPLE	SAMPLE) DATE	TEST				
DEPTH (ft	DATE	HETHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	•••••			••••		
83.3	17-apr-1990	99	TDS		1250000.000	UGL
83.3	17-apr-1990	99	TDS		1300000.000	UGL
83.3	01-jun-1990	99	TDS		1250000.000	UGL
83.3	01-jun-1990	\$020	PB		3.360	UGL
83.3	17-apr-1990	SD21	SE		14.900	UGL
83.3	17-apr-1990	SD21	SE		15.300	UGL
83.3	01 - jun-1990	S 021	SE		16.600	UGL

Installation: Sierra Ordnance Depot Page 3
Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 22-jan-91 (Booleans LT and MD are excluded)

Site: WELL ALF-03-MAA (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (fi) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	•••••	•••••	•••••		•••••	••••
83.3	17-apr-1990	SD22	AS		3.940	UGL
83.3	17-apr-1990	SD22	AS		4.800	UGL
83.3	01 - jun - 1990	5022	AS		4.160	UGL
83.3	17-apr-1990	SS 10	BA		53.500	UGL
83.3	17-apr-1990	SS10	BA		54.700	UGL
83.3	01 - jun - 1990	\$\$10	, BA		52.300	UGL
83.3	17-apr-1990	SS10	CA		200000.000	UGL
83.3	17-apr-1990	5510	CA		180000.000	UGL
83.3	01 - jun - 1990	\$\$10	CA		170000.000	UGL
83.3	17-apr-1990	SS10	MA		49200.000	UGL
83.3	17-apr-1990	5510	NA		48000.000	UGL
83.3	01 - jun - 1990	\$\$10	NA		57000.000	UGL
83.3	17-apr-1990	5510	ZM		47.200	UGL
83.3	17-apr-1990	\$\$10	ZN		43.100	UGL
83.3	17-apr-1990	TT10	CL		270000.000	UGL
83.3	01 - jun - 1990	TT10	CL		270000.000	UGL
83.3	17-apr-1990	TT10	SO4		260000.000	UGL
83.3	01-jun-1 99 0	TT10	\$04		260000.000	UGL
83.3	01-jun-1990	UH18	82EHP		6.090	UGL
83.3	01 - jun - 1990	UN18	TCLEA		9.000	UGL
83.3	17-apr-1990	UN18	UNK600		4.000	UGL
83.3	17-apr-1990	UN18	UNK600		5.000	UGL
83.3	17-apr-1990	UM18	UNK648		9.000	UGL
83.3	17-apr-1990	UH20	CHCL3		1.130	UGL
83.3	17-apr-1990	UNI20	CHCL3		1.030	UGL
83.3	01-jun-1990	UM20	CHCL3		0.985	UGL

Site: WELL CCB-01-MMA

SAMPLE DEPTH (ft)	SAMPLE DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
77.1	16-apr-1990	99	TDS	••••	516000.000	UGL
77.1	01-jun-1990	99	TDS		564000.000	UGL
77.1	01-jun-1990	\$020	PS		2.490	UGL
77.1	16-apr-1990	SD21	SE		3.410	UGL
77.1	01-jun-1990	S 021	SE		3.330	UGL
77,1	16-apr-1990	\$022	AS		9.380	UGL
	•					
77.1	01 - jun - 1990	\$022	AS		8.640	UGL

Installation: Sierra Ordnance Depot Page 4
Analytical Results for Chemical Ground Water
From: 01-jan-75 To: 22-jan-91

From: 01-jan-75 To: 22-jan-91 (Booleans LT and ND are excluded)

Site: WELL CCB-01-MMA (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
				• • • •		••••
77.1	16-apr-1990	5\$10	BA		38.300	UGL
77.1	01 - jun - 1990	\$\$10	BA		53.900	UGL
77.1	16-apr-1990	\$\$10	CA		63000.000	UGL
77.1	01-jun-1990	SS10	CA		72000.000	UGL
77.1	16-apr-1990	5510	ထ		8.710	UGL
77.1	01 - jun - 1990	\$\$10	a		25.100	UGL
77.1	16-apr-1990	SS10	NA		41400.000	UGL
77.1	01 - jun - 1990	SS10	NA		37300.000	UGL
77.1	16-apr-1990	TT10	CL		33000.000	UGL
77.1	01-jun-1990	TT10	CL		32200.000	UGL
77.1	16-apr-1990	7710	SO4		116000.000	UGL
77.1	01-jun-1990	TT10	\$04		111000.000	UGL

Site: WELL CCB-02-MMA

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	SOOL	CONCENTRATION	UNITS
		•••••		••••		
82.2	16-apr-1990	99	TDS		740000.000	UGL
85.2	02-jun-1990	99	TDS		808000.000	UGL
82.2	16-apr-1990	\$801	HG		0.488	UGL
85.2	02- jun-1990	5020	PS		2.930	UGL
82.2	16-apr-1990	S 021	SE		9.690	UGL
85.2	02-jun-1990	\$021	SE		10.600	UGL
82.2	16-apr-1990	\$022	AS		7.250	UGL
85.2	02-jun-1990	\$022	AS		7.140	UGL
82.3	16-apr-1990	\$\$10	BA		24.700	UGL
85.2	02-jun-1990	\$\$ 10	BA		31.200	UGL
82.3	16-apr-1990	\$\$ 10	CA		88000.000	UGL
85.2	02-jun-1990	\$\$10	CA		110000.000	UGL
85.2	02-jun-1990	\$\$10	ထ		8.270	UGL
82.3	16-apr-1990	55 10	NA		48000.000	UGL
85.2	02-jun-1990	55 10	MA		51600.000	UGL
82.3	16-apr-1990	\$\$10	ZN		48.700	UGL
82.2	16-apr-1990	7710	CL		100000.000	UGL
85.2	02-jun-1990	TT10	CL		97000.000	UGL
82.2	16-apr-1990	TT10	304		260000.000	UGL
85.2	02-jun-1990	TT10	\$04		238000.000	UGL
82.3	16-apr-1990	UM18	UNK600		7.000	UGL

Installation: Sierra Ordnance Depot Page 5
Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 22-jan-91 (Socteans LT and ND are excluded)

Site: WELL CCB-02-MMA (continued)

SAMPLE DEPTH (f	SAMPLE t) DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
				••••		••••
82.3	16-apr-1990	UN20	TRCLE		6.760	UGL
85.2	02- jun-1990	UN20	TRCLE		4.670	UGL

Site: WELL DMO-03-MMA

	3	ILE: WELL	OUO-03-Her			
SAMPLE	SAMPLE	TEST				
DEPTH (ft		METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
94.8	19-apr-1990	99	TDS		902000.000	UGL
94.8	31-may-1990	99	TDS		1070000.000	UGL
94.8	31-may-1990	99	TDS		1090000.000	UGL
94.8	31-may-1990	\$020	PE		1.950	UGL
94.8	31-may-1990	\$020	PB		4.340	UGL
74.0	31-may-1990	3020	ru		4.340	•••
94.8	19-apr-1990	\$021	SE		11.300	UGL
94.8	31-may-1990	\$021	SE		13.200	UGL
94.8	31-may-1990	SD21 -	SE		12.600	UGL
94.8	19-apr-1990	\$022	AS		2.880	UGL
94.8	31-may-1990	\$022	AS		2.770	UGL
94.8	19-apr-1990	\$\$10	BA		35.000	UGL
94.8	31-may-1990	\$\$10	BA		36.400	UGL
94.8	31-may-1990	\$\$10	SA		34.400	UGL
94.8	19-apr-1990	\$\$10	CA		120000.000	UGL
94.8	31-may-1990	\$\$10	CA		120000.000	UGL
94.8	31-may-1990	\$\$10	CA		120000.000	UGL
94.8	19-apr-1990	\$\$10	NA		77000.000	UGL
94.8	31-may-1990	\$\$10	MA		69000.000	UGL
94.8	31-may-1990	35 10	NA		78000.000	UGL
94.8	19-apr-1990	5510	ZN		25.300	UGL
94.8	19-apr-1990	TT10	CL		66000.000	UGL
94.8	31-may-1990	TT10	CL		52000.000	UGL
94.8	31-may-1990	TT10	CL		53000.000	UGL
94.8	19-apr-1990	TT10	\$04		450000.000	UGL
94.8	31-may-1990	TT10	204		380000.000	UGL
94.8	31-may-1990	TT10	904		380000.000	UGL
94.8	19-apr-1990	UH18	UWK557		2.000	UGL
94.8	31-may-1990	UN18	UNK558		5.000	UGL
94.8	19-apr-1990	UM18	UNKS59		1.000	UGL
94.8	19-apr-1990	UM18	UNK598		10.000	UGL
94.8	31-may-1990	UM20	CH2CL2		6,600	UGL
94.8	31-may-1990	UM20	CH2CL2		7.450	UGL
74.6	21 may - 1770	UNEU	CHECLE		7.734	

Installation: Sierra Ordnance Depot Analytical Results for Chemical Ground Water

Page 6

From: 01-jan-75 To: 22-jan-91 (Sooleans LT and ND are excluded)

Site: WELL DMO-03-MWA (continued)

SAMPLE DEPTH (ft	SAMPLE :) DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
		•••••	•••••	••••		••••
94.8	19-apr-1990	UM20	TRCLE		10.500	UGL
94.8	31-may-1990	UM20	TRCLE		2.570	UGL
94.8	31-may-1990	UM20	TRCLE		2.570	UGL

Site: WELL DHO-04-MMA

SAMPLE DEPTH (ft)	· · ·	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
94.9	19-apr-1990	99	TDS		710000.000	UGL
94.9	31-may-1990	99	TDS		776000.000	UGL
94.9	31-may-1990	SD20	PS		2.280	UGL
94.9	19-apr-1990	SD21	SE		5.110	UGL
94.9	31-may-1990	S D21	SE		6.220	UGL
94.9	19-apr-1990	SD22	AS		7.040	UGL
94.9	31-may-1990	S D22	AS		4.260	UGL
95.0	19-apr-1990	SS 10	8A		17.100	UGL
95.0	31-may-1990	\$\$10	BA		18.700	UGL
95.0	19-apr-1990	SS10	CA		91000.000	UGL
95.0	31-may-1990	SS10	CA		85000.000	UGL
95.0	19-apr-1990	\$\$10	NA		64000.000	UGL
95.0	31-may-1990	SS10	NA		67000.000	UGL
95.0	19-apr-1990	\$\$10	ZN		34.700	UGL
94.9	19-apr-1990	TT10	CL		60000.000	UGL
94.9	31-may-1990	TT10	CL		50000.000	UGL
94.9	19-apr-1990	TT10	\$04		224000.000	UGL
94.9	31-may-1990	TT10	\$04		223000.000	UGL
94.9	19-apr-1990	UM18	UNK598		2.000	UGL
94.9	19-apr-1990	UN20	TRCLE		4.190	UGL
94.9	31-may-1990	UN20	TRCLE		2.190	UGL

Installation: Sierra Ordnance Depot Page 7 Analytical Results for Chemical Ground Nater From: 01-jan-75 To: 22-jan-91

(Booleans LT and ND are excluded)

Site: WELL DMO-05-MMA

SAMPLE		TEST				
DEPTH	(ft) DATE	METHOD	COMPOUND	800L	CONCENTRATION	UNITS
94.1	19-apr-1990	99	TDS	••••	***********	*****
94.1		99	TDS		826000.000	UGL
94.1	31-may-1990	99	TDS		840000.000	UCL
		• • •	103		916000.000	UGL
94.1	19-apr-1990	\$021	SE		11,600	
94.1	19-apr-1990	SD21	SE		11.800	UGL
94.1	31-may-1990	\$021	SE		11.400	UGL
94.1	19-apr-1990	SD22	AS			
94.1	19-apr-1990	\$022	AS AS		4.800	UGL
94.1	31-may-1990	\$022	***		4.580	UGL
		3022	AS		4.480	UGL
94.1	19-apr-1990	5510	BA		28.900	
94.1	19-apr-1990	SS 10	8A		21.400	UGL
94.1	31-may-1990	\$\$10	8A		23.100	
94.1	19-apr-1990	\$\$10	CA		97000.000	NGT
94.1	19-apr-1990	\$\$10	CA		95000.000	UGL
94.1	31-may-1990	\$\$10	CA		97000.000	ÜĞL
94.1	19-apr-1990	\$\$10	മ		11.500	UGL
94.1	19-apr-1990	\$\$10	MA		71000.000	UGL
94.1	19-apr-1990	\$\$10	NA		64000,000	NGT
94.1	31-may-1990	S\$10	NA		75000.000	UGL
94.1	19-apr-1990	\$\$10	ZN		72.100	UGL
94.1	19-apr-1990	TT10	~ 1			
94.1	19-apr-1990	1710	CT CT		60000.000	UGL
94.1	31-may-1990	TT10	Cr		60000.000	NGT
94.1	19-apr-1990	TT10	504		60000.000	UGL
94.1	19-apr-1990	TT10	504		330000.000	UGL
94.1	31-may-1990	TT10	SO4		330000.000	UGL
	,,	,,,,	304		280000.000	UGL
94.1	19-apr-1990	UN18	BZEHP		4.640	UGL
94.1	19-apr-1990	UM20	TRCLE		20.000	
94.1	19-apr-1990	UN20	TRCLE		20.000 25.700	UGL
94.1	31-may-1990	UN20	TRCLE		· - -	UGL
					18.100	UGL

Installation: Sierra Ordnance Depot Page 8
Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 22-jan-91 (Booleans LT and ND are excluded)

Site: WELL DS8-04-MMA

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
22.9	08-jun-1990	SD21	SE		7.700	UGL
22.9	24-apr-1990	SD22	AS		190.000	UGL
22.9	08-jun-1990	SD22	AS		170.000	UGL
22.9	08-jun-1990	SD23	AG		0.425	UGL
22.9	24-apr-1990	SS10	BA		24.400	UGL
22.9	08-jun-1990	\$\$10	BA		18.800	UGL
22.9	24-apr-1990	SS10	CA		220000.000	UGL
22.9	08-jun-1990	S\$10	CA		220000.000	UGL
22.9	24-apr-1990	SS10	CD CD		4.070	UGL
22.9	24-apr-1990	SS10	ထ		20.100	UGL
22.9	24-apr-1990	SS10	NA		2300000.000	UGL
22.9	08-jun-1990	\$\$10	NA		2300000.000	UGL
22.9	24-apr-1990	SS10	ZN		28.700	UGL

Site: WELL PSW-02

SAMPLE	SAMPLE	TEST				
DEPTH (ft	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	********		•••••	••••	••••••	
120.0	07-mey-1990	99	TDS		850000.000	UGL
120.0	07-may-1990	99	TDS		680000.000	UGL
120.0	07-jun-1990	99	TDS		732000.000	UGL
120.0	07- jun- 1990	99	TDS		754000.000	UGL
120.0	07-may-1990	50 20	PE		3.580	UGL
120.0	07-may-1990	SD20	P 6		2.820	UGL
120.0	07- jun- 1990	SD20	PS		3.470	UGL
120.0	07- jun-1990	2050	P S		3.250	UGL
120.0	07- jun-1990	\$021	SE		4.370	UGL
120.0	07-may-1990	\$022	AS		5.970	UGL
120.0	07-may-1990	SD22	AS		5.970	UGL
120.0	07- jun-1990	SD22	AS.		3.940	UGL
120.0	07-jun-1990	2022	AS		3.410	UGL
120.0	07-may-1990	3810	BA		28.400	UGL
120.0	07-may-1990	55 10	BA		22.400	UGL
120.0	07- jun-1990	5510	BA		39.100	UGL
120.0	07-jun-1990	\$\$10	BA		25.500	UGL
120.0	07-may-1990	\$\$10	CA		100000.000	UGL
120.0	07-may-1990	\$\$10	CA		100000.000	UGL
120.0	07- jun-1990	\$\$10	CA		110000.000	UGL
120.0	07- jun-1990	\$\$10	CA		110000.000	UGL

Installation: Sierra Ordnance Depot

Page 9

Analytical Results for Chemical Ground Water

From: 01-jan-75 fo: 22-jan-91 (Booleans LT and ND are excluded)

Site: WELL PSW-02

(continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	•••••		******	••••	•••••	••••
120.0	07- jun-1990	SS 10	a		8.260	UGL
120.0	07-may-1990	SS10	NA		87000.000	UGL
120.0	07-may-1990	5510	NA		12000.000	UGL
120.0	07- jun-1990	SS10	NA		72000.000	UGL
120.0	07- jun- 1990	SS10	NA		71000.000	UGL
120.0	07-may-1990	\$\$ 10	ZM		61.600	UGL
120.0	07-may-1990	SS 10	ZN		61.600	UGL
120.0	07- jun-1990	SS10	ZN		51.500	UGL
120.0	07- jun-1990	TF18	CYN		11.300	UGL
120.0	07-may-1990	TT10	CL		60000.000	UGL
120.0	07-may-1990	TT10	CL		60000.000	UGL
120.0	07- jun-1990	TT10	CL		66000.000	UGL
120.0	07- jun-1990	TT10	CL		66000.000	UGL
120.0	07-may-1990	TT10	\$04		380000.000	UGL
120.0	07-may-1990	TT10	\$04		370000.000	UGL
120.0	07- jun-1990	TT10	\$04		293000.000	UGL
120.0	07- jun-1990	TT10	50 2		300000.000	UGL
120.0	07-may-1990	UN18	12EPCH		2.000	UGL
120.0	07-may-1990	UN18	12EPCH		2.000	UGL
120.0	07-may-1990	UN18	2CHE1L		2.000	UGL
120.0	07-may-1990	UN18	2CHE1L		2.000	UGL
120.0	07-may-1990	UN18	SCHE10		2.000	UGL
120.0	07-may-1990	UN18	SCHE10		1.000	UGL
120.0	07-may-1990	UN18	UNK537		7.000	UGL
120.0	07-may-1990	UN18	UWK537		8.000	UGL
120.0	07-may-1990	UN18	UNKSS5		2.000	UGL
120.0	07-may-1990	UN18	UNKS55		4.000	UGL
120.0	07-may-1990	UN18	UNK557		3.000	UGL
120.0	07-mey-1990	UN18	UMC557		4.000	UGL
120.0	07- jun-1990	UN18	UNKS58		6.000	UGL
120.0	07-may-1990	UN18	UMC563		10.000	UGL
120.0	07-may-1990	un18	UMC563		10.000	UGL
120.0	07- jun-1990	UN18	UNIC564		10.000	UGL
120.0	07-jun-1990	UN18	UNICS64		10.000	UGL
120.0	07-may-1990	UN18	UNK599		1.000	UGL

Installation: Sierra Ordnance Depot

Page 10

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 22-jan-91 (Booleans LT and NO are excluded)

Site: WELL PSW-08

SAMPLE	SAMPLE	TEST				
DEPTH (ft	•	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	07 1000	99	TOS	••••	740000.000	UGL
120.0	07-may-1990	99	TDS		666000.000	UGL
120.0	07-jun-1990	77	103		335000.000	OGL
120.0	07-may-1990	\$020	PB		4.770	UGL
120.0	07-jun-1990	SD20	PS		3.900	UGL
120.0	07-may-1990	SD22	AS		7.460	UGL
120.0	07-jun-1990	5022	AS		4.800	UGL
120.0	07-may-1990	SS10	BA		35.200	UGL
120.0	07-jun-1990	SS10	BA		37.700	UGL
120.0	07-may-1990	\$\$10	CA		84000.000	UGL
120.0	07-jun-1990	SS10	CA		97000.000	UGL
120.0	07-may-1990	SS10	NA		71000.000	UGL
120.0	07-jun-1990	SS10	MA		79000.000	UGL
120.0	07-may-1990	SS10	ZN		43.400	UGL
120.0	07-jun-1990	SS10	ZN		50.300	UGL
120.0	07-may-1990	TT10	CL		44000.000	UGL
120.0	07-jun-1990	TT10	CL		44000.000	UGL
120.0	07-may-1990	TT10	504		310000.000	UGL
120.0	07-jun-1990	1710	s04		289000.000	NGF
120.0	07-may-1990	UM18	12EPCH		2.000	ŲGL
120.0	07-may-1990	UH18	2CHE1L		2.000	UGL
120.0	07-may-1990	UN18	2CHE10		1.000	UGL
120.0	07-may-1990	UN18	UNK537		9.000	UGL
120.0	07-jun-1990	UM18	UNK538		5.000	UGL
120.0	07-jun-1990	UN18	UNK539		4.000	UGL
120.0	07-may-1990	UN18	UNK555		1.000	UGL
120.0	07-may-1990	UN18	UNK563		9.000	UGL
120.0	07- jun-1990	UM18	UNK564		8.000	UGL
	-					

Site: WELL PSW-09

SAMPLE	SAMPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••						••••
120.0	07-may-1990	99	TDS		340000.000	UGL
120.0	07- jun-1990	99	TDS		310000.000	UGL
120.0	07-may-1990	SD20	PB		1.950	UGL
120.0	07- jun- 1990	S 020	PB		1.950	UGL
120.0	07-may-1990	\$022	A\$		3.200	UGL
120.0	07-jun-1990	SD 22	AS		4.370	UGL

Installation: Sierra Ordnance Depot Page 11
Analytical Results for Chemical Ground Water
From: 01-jan-75 To: 22-jan-91
(Booleans LT and ND are excluded)

Site: WELL PSW-09 (continued)

SAMPLE	SAIPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	••••				•••••	••••
120.0	07-ma, 1990	5510	BA		55.300	UGL
120.0	07- jun-1990	\$\$10	BA		60.600	UGL
120.0	07-may-1990	\$\$10	CA		28000.000	UGL
120.0	07- jun- 1990	\$\$10	CA		31000.000	UGL
120.0	07-may-1990	\$\$10	, NA		50100.000	UGL
120.0	07- jun-1990	SS10	NA		50800.000	UGL
120.0	07-jun-1990	TF18	CYN		11.200	UGL
120.0	07-may-1990	TT10	CL		17100.000	UGL
120.0	07- jun-1990	TT10	CL		16900.000	UGL
120.0	07-may-1990	TT10	SO4		57100.000	UGL
120.0	07- jun-1990	TT10	SO4		50000.000	UGL
120.0	07-may-1990	UH18	UNK537		6.000	UGL

Site: WELL THT-01-MMA

SAMPLE	SAMPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
55.4	20	••••	********	••••	944999 000	
	20-apr-1990	99 ~~	TDS		864000.000	UGL
55.4		99	TDS		856000.000	UGL
55.4	08-jun-1990	99	TDS		830000.000	UGL
55.4	08- jun-1990	99	TDS		840000.000	UGL
55.4	20-apr-1990	SD20	PS		2.060	UGL
55.4	08-jun-1990	\$020	PS		7.480	UGL
55.4	08-jun-1990	S 020	PB		10.200	UGL
55.4	20-apr-1990	S 022	AS		17.000	UGL
55.4	20-apr-1990	\$022	AS		18.200	UGL
55.4	08- jun-1990	SD22	AS		15.000	UGL
55.4	08-jun-1990	\$ 022	AS		12.900	UGL
55.4	20-apr-1990	\$\$10	BA		19.200	UGL
55.4	20-apr-1990	\$\$10	EA		21.500	UGL
55.4	08-jun-1990	SS 10	94		26.000	UGL
55.4	08-jun-1990	\$\$10	24		23.000	UGL
55.4	20-apr-1990	\$\$10	CA		16600.000	UGL
55.4	20-apr-1990	\$\$10	CA		17100.000	UGL
55.4	08-jun-1990	\$\$10	CA		14800.000	UGL
55.4	08- jun-1990	5510	CA		15300.000	UGL
55.4	20-apr-1990	\$\$10	NA NA		190000.000	UGL
55.4	20-apr-1990	\$\$10	NA		230000.000	UGL
55.4	08-jun-1990	\$\$10	NA		190000.000	UGL
55.4	08- jun- 1990	\$\$10	NA		210000.000	UGL
	,,,,				£ 10000.000	COL

Installation: Sierra Ordnance Depot

Page 12

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 22-jan-91 (Booleans LT and ND are excluded)

Site: WELL THT-01-MMA (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
		•••••			•••••	*****
55.4	20-apr-1990	TT10	CL		47000.000	UGL
55.4	20-apr-1990	TT10	CL		53000.000	UGL
55.4	08- jun-1990	TT10	CL		40000.000	UGL
55.4	08- jun-1990	TT10	CL		41000.000	UGL
55.4	20-apr-1990	TT10	SO4		190000.000	UGL
55.4	20-apr-1990	TT10	SO4		200000.000	UGL
55.4	08-jun-1990	TT10	SO4		188000.000	UGL
55.4	08- jun-1990	TT10	SO4		185000.000	UGL
55.4	20-apr-1990	UM18	240NT		78.600	UGL
55.4	20-apr-1990	UN18	24DNT		88.100	UGL
55.4	08-jun-1990	UN18	24DNT		52.400	UGL
55.4	08-jun-1990	UM18	24DNT		49.300	UGL
55.4	20-apr-1990	UN18	UNKS87		4.000	UGL
55.4	20-apr-1990	UN18	UNKS87		5.000	UGL
55.4	20-apr-1990	UN18	UNK594		400.000	UGL
55.4	20-apr-1990	UN18	UNK595		400.000	UGL
55.4	08- jun-1990	UM18	UNK595		200.000	UGL
55.4	20-apr-1990	UM20	TRCLE		26.700	UGL
55.4	20-apr-1990	UH20	TRCLE		24.800	UGL
55.4	08-jun-1990	UN20	TRCLE		29.500	UGL
55.4	08- jun-1990	UH20	TRCLE		30.500	UGL
55.4	20-apr-1990	UN14	135TNB		950.000	UGL
55.4	20-apr-1990	UW14	135TN8		1100.000	UGL
55.4	08- jun-1990	UW14	135TNB		640.000	UGL
55.4	08-jun-1990	U¥14	135TNB		1100.000	UGL
55.4	20-apr-1990	UW14	246TNT		1.050	UGL
55.4	08- jun-1990	UW14	246TNT		1.220	UGL
55.4	20-apr-1990	UW14	240NT		66.000	UGL
55.4	20-apr-1990	UW14	24DNT		90.000	UGL
55.4	08- jun-1990	UW14	24DNT		46.700	UGL
55.4	08-jun-1990	UW14	24DNT		86.000	UGL
55.4	20-apr-1990	UM14	HARDC		3.700	UGL
55.4	20-apr-1990	UW14	HOCK		1.950	UGL
55.4	20-apr-1990	UN14	RDX		90.000	UGL
55.4	20-apr-1990	UM14	RDX		99.000	UGL
55.4	08-jun-1990	UN14	ROX		54.000	UGL
55.4	08-jun-1990	UW14	RDX		87.000	UGL
55.4	20-apr-1990	UW14	TETRYL		9.920	UGL
55.4	20-apr-1990	UW14	TETRYL		9.680	UGL

Installation: Sierra Ordnance Depot Page 13
Analytical Results for Chemical Ground Water
From: 01-jan-75 To: 22-jan-91
(Booleans LT and ND are excluded)

Site: WELL THT-01-MAS

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••		•••••	••••••	••••	**********	
56.0	20-apr-1990	99	TDS		878000.000	UGL
56.0	05-jun-1990	99	TDS		946000.000	UGL
56.0	05-jun-1990	S 020	PS		1.630	UGL
56.0	20-apr-1990	S 022	AS		7.250	UGL
56.0	05-jun-1990	SD22	AS		5.440	UGL
56.0	20-apr-1990	SS10	BA		22.000	UGL
56.0	05 - jun - 1990	\$\$10	BA		21.900	UGL
56.0	20-apr-1990	\$\$10	CA		69000.000	UGL
56.0	05-jun-1990	\$\$10	CA		81000.000	UGL
56.0	20-apr-1990	5 \$10	NA		180000.000	UGL
56.0	05- jun-1990	SS10	NA		190000.000	UGL
56.0	20-apr-1990	S\$10	ZN		26.900	UGL
56.0	05-jun-1990	SS10	ZM		135.000	UGL
56.0	20-apr-1990	TT10	CL		120000.000	UGL
56.0	05-jun-1990	TT10	CL		130000.000	UGL
56.0	20-apr-1990	TT10	504		260000.000	UGL
56.0	05-jun-1990	TT10	\$04		270000.000	UGL
56.0	05- jun-1990	UN18	28EET0		800,000	UGL
56.0	20-apr-1990	UH18	82EHP		4.820	UGL
56.0	20-apr-1990	UM18	UWK537		3.000	UGL
56.0	20-apr-1990	UN18	UNK557		7.000	UGL
56.0	05-jun-1990	UH18	UNK558		4.000	UGL
56.0	20-apr-1990	UN18	UNKS59		6.000	UGL
56.0	20-apr-1990	UN18	UMC563		3.000	UGL
56.0	20-apr-1990	UN18	UMC572		2.000	UGL
56.0	05-jun-1990	UN18	UNIC598		10.000	UGL

Site: WELL THT-01-MAC

SAMPLE DEPTH (ft	SAMPLE) DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••			••••••	••••	**********	•••••
55.9	20-apr-1990	99	TDS		806000,000	UGL
55.9	05-jun-1990	99	TDS		766000.000	UGL
55.9	05-jun-1990	\$020	P S		3.360	UGL
55.9	20-apr-1990	SD22	AS		6.930	UGL
55.9	05-jun-1990	SD22	AS		6.180	UGL
55.9	20-apr-1990	SS 10	BA		34.900	UGL
55.9	05-jun-1990	\$\$10	BA		30.600	UGL

. Jan 22, 1991

Installation: Sierra Ordnance Depot Page 14 Analytical Results for Chemical Ground Water From: 01-jan-75 To: 22-jan-91

From: 01-jan-75 To: 22-jan-91 (Sooleans LT and ND are excluded)

Site: WELL THT-01-MMC (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
55.9	20-apr-1990	\$\$10	CA		70000,000	UGL
55.9	05-jun-1990	SS10	CA CA		84000.000	UGL
55.9	20-apr-1990	SS10	NA NA		140000.000	UGL
55.9	05-jun-1990	SS10	NA NA		140000.000	UGL
	20-apr-1990	SS10	ZN		109.000	UGL
55.9		SS10	ZN		210.000	UGL
55.9	05-jun-1990	2210	ZM		210.000	OGL
55.9	20-apr-1990	TT10	CL		90000.000	UGL
55.9	05-jun-1990	TT10	CL		82000.000	UGL
55.9	20-apr-1990	TT10	\$04		250000.000	UGL
55.9	05-jun-1990	TT10	504		220000.000	UGL
55.9	05-jun-1990	UM18	28EETO		4000.000	UGL
55.9	05- jun-1990	UM18	82EHP		6.450	UGL
55.9	20-apr-1990	UN18	UNK537		3.000	UGL
55.9	05-jun-1990	UN18	UNK537		5.000	.GL
55.9	20-apr-1990	UN18	UNK557		5.000	UGL
55.9	20-apr-1990	UM18	UNK559		4.000	UGL
55.9	05-jun-1990	UM18	UNK559		20.000	UGL
55.9	20-apr-1990	UN18	UNK563		4.000	UGL
55.9	05-jun-1990	UM18	UNKS95		30.000	UGL
55.9	05-jun-1990	UM20	CHCL3		1.130	UGL
55.9	05-jun-1990	UM20	TRCLE		2.000	UGL
55.9	20-apr-1990	UW14	135TNB		0.793	UGL
55.9	05- jun-1990	UW14	RDX		4.180	UGL

Site: WELL THT-02-MMA

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
• • • • •		•••••			•••••	••••
54.3	21-apr-1990	99	TD\$		1280000.000	UGL
54.3	04-jun-1990	99	TDS		1280000.000	UGL
54.3	04-jun-1990	\$020	PS		5.420	UGL
54.3	21-apr-1990	s 021	SE .		4.050	UGL
54.3	04 - jun - 1990	\$021	Æ		3.910	UGL
54.3	21-apr-1990	\$022	AS		6.500	UGL
54.3	04-jun-1990	5022	A\$		7.360	UGL
54.3	21-apr-1990	\$\$10	BA		31.600	UGL
54.3	04-jun-1990	SS10	BA		38.800	UGL
54.3	21-apr-1990	5510	CA		49000.000	UGL
	· ·					

Installation: Sierra Ordnance Depot

Page 15 Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 22-jan-91 (Booleans LT and ND are excluded)

Site: WELL THT-02-MAA (continued)

SAMPLE DEPTH (f	- -	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
54.3	04-jun-1990	SS10	CA	••••	56000.000	UGL
54.3	04- jun-1990	\$\$10	CR		6.070	UGL
54.3	21-apr-1990	\$\$10	NA		270000.000	UGL
54.3	04-jun-1990	SS10	NA		270000.000	UGL
54.3	04-jun-1990	\$\$10	ZN		23.800	UGL
54.3	21-apr-1990	TT10	CL		160000.000	UGL
54.3	04-jun-1990	TT10	CL		160000.000	UGL
54.3	21-apr-1990	TT10	SO4		260000.000	UGL
54.3	04-jun-1990	TT10	\$04		260000.000	UGL
54.3	21-apr-1990	UN18	2CHE10		1.000	UGL
54.3	04 - jun - 1990	UN18	2CHE10		4.000	UGL
54.3	21-apr-1990	UN18	UNK\$17		5.000	UGL
54.3	21-apr-1990	UH18	UNK533		1.000	UGL
54.3	21-apr-1990	UN18	UMC554		1.000	UGL
54.3	21-apr-1990	UM18	UNK563		0.800	UGL
54.3	21-apr-1990	UN18	UMC565		0.800	UGL
54.3	21-apr-1990	UN18	UNKS83		0.700	UGL
54.3	21-apr-1990	UN18	UMKS85		2.000	UGL
54.3	21-apr-1990	UN18	UNK587		2.000	UGL
54.3	21-apr-1990	UN18	UNK595		80.000	UGL
54.3	04- jun-1990	UN18	UNK595		30.000	UGL
54.3	21-apr-1990	UN18	UNK604		1.000	UGL
54.3	21-apr-1990	UN18	UNK607		1.000	UGL
54.3	21-apr-1990	UH20	TRCLE		3.520	UGL
54.3	04-jun-1990	UN20	TRCLE		2.570	UGL
54.3	21-apr-1990	UN14	135TNB		230.000	UGL
54.3	04-jun-1990	UW14	135TM8		220.000	UGL
54.3	21-apr-1990	UW14	246TNT		7.860	UGL
54.3	04-jun-1990	UU14	246TNT		8.140	UGL
54.3	21-apr-1990	UN14	24DNT		6.920	UGL
54.3	04-jun-1990	UN14	240NT		5.930	UGL
54.3	21-apr-1990	UN14	HOCK		3.760	UGL
54.3	21-apr-1990	UW14	RDX		250.000	UGL
54.3	04 - jun - 1990	UN14	ROX		220.000	UGL

Installation: Sierra Ordnance Depot Page 16
Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 22-jan-91 (Scoleans LT and ND are excluded)

Site: WELL THT-02-NUB

SAMPLE	SAMPLE	TEST				
DEPTH (ft	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	•••••			••••	••••••	••••
54.6	21-apr-1990	99	TDS		976000.000	UGL
54.6	04-jun-1990	99	TDS		900000.000	UGL
54.6	04-jun-1990	S 020	PB		3.250	UGL
54.6	21-apr-1990	SD22	AS		6.930	UGL
54.6	04-jun-1990	SD22	AS		14.000	UGL
54.6	21-apr-1990	SS10	BA		20.600	UGL
54.6	04 - jun - 1990	\$\$10	BA		18.700	UGL
54.6	21-apr-1990	SS10	CA		57000.000	UGL
54.6	04-jun-1990	S\$10	CA		62000.000	UGL
54.6	21-apr-1990	\$\$10	NA		180000.000	UGL
54.6	04-jun-1990	55 10	NA		210000.000	UGL
54.6	21-apr-1990	SS10	ZN		46.600	UGL
54.6	04- jun-1990	SS10	ZN		90.100	UGL
54.6	21-apr-1990	TT10	CL		140000.000	UGL
54.6	04-jun-1990	TT10	CL		140000.000	UGL
54.6	21-apr-1990	TT10	\$04		250000.000	UGL
54.6	04-jun-1990	TT10	SO4		260000.000	UGL
54.6	04-jun-1990	UM18	28EETO		3000.000	UGL
54.6	04-jun-1990	UN18	2BUXEL		30.000	UGL
54.6	04-jun-1990	UN18	B2EHP		4.550	UGL
54.6	04 - jun - 1990	UN18	STZ		6.000	UGL
54.6	21-apr-1990	UN18	UNK546		1.000	UGL
54.6	04-jun-1990	UN18	UWK559		50.000	UGL
54.6	04 - jun - 1990	UN18	UNK595		10.000	UGL
54.6	04-jun-1990	UN18	UNK599		500.000	UGL
54.6	04-jun-1990	UH18	UNK601		4.000	UGL
54.6	04-jun-1990	UN18	UNK613		20.000	UGL
54.6	04-jun-1990	UM18	UNK634		6.000	UGL
54.6	04-jun-1990	UW14	135TNB		1.380	UGL
54.6	04 - jun - 1990	UW14	TETRYL		0.754	UGL

Installation: Sierra Ordnence Depot Page 17
Analytical Results for Chemical Ground Water

From: 01-jen-75 To: 22-jen-91 (Booleans LT and MD are excluded)

Site: WELL THT-02-MAC

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	•••••		•••••		*******	
53.9	21-apr-1990	99	TDS		738000.000	UGL
54.0	04-jun-1990	99	TDS		726000.000	UGL
53.9	04-jun-1990	SD20	PB		2.930	UGL
53.9	21-apr-1990	SD22	AS		5.650	UGL
53.9	04-jun-1990	SD22	AS		5.120	UGL
53.9	21-apr-1990	SS 10	BA		7.130	UGL
54.0	04-jun-1990	SS 10	BA		8.800	UGL
53.9	21-apr-1990	\$\$ 10	CA		14600.000	UGL
54.0	04-jun-1990	SS10	CA		8420.000	UGL
53.9	21-apr-1990	\$\$10	CR		11.800	UGL
54.0	04- jun-1990	\$\$10	CR		9.060	UGL
53.9	21-apr-1990	5510	NA		160000.000	UGL
54.0	04- jun-1990	SS10	NA		170000.000	UGL
53.9	21-apr-1990	TT10	CL		77000.000	UGL
54.0	04- jun-1990	TT10	CL		77000.000	UGL
53.9	21-apr-1990	TT10	\$04		240000.000	UGL
54.0	04-jun-1990	TT10	504		233000.000	UGL
54.0	04- jun-1990	UM18	28EET0		4000.000	UGL
54.0	04-jun-1990	UN18	BZEHP		14.500	UGL
54.0	04 - jun - 1990	UM18	BTZ		9.000	UGL
54.0	21-apr-1990	UM18	UNK557		1.000	UGL
54.0	04-jun-1990	UM18	UNK559		20.000	UGL
54.0	04 - jun - 1990	UN18	UNK575		10.000	UGL
54.0	04-jun-1990	UM18	UNK595		30.000	UGL
54.0	04-jun-1990	UN18	UNK598		9.000	UGL
54.0	04-jun-1990	UN18	UNK614		70.000	UGL
54.0	21-apr-1990	UN18	UNK619		10.000	UGL
54.0	04- jun-1990	UN18	UMK634		20.000	UGL
54.0	21-apr-1990	UN20	CH2CL2		8.490	UGL
53.9	04-jun-1990	UN14	TETRYL		0.813	UGL

Installation: Sierra Ordnance Depot Page 18

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 22-jan-91 (Socieens LT and ND are excluded)

Site: WELL THT-03-MMA

SAMPLE	SAMPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
						•••••
52.7	01-may-1990	99	TOS		956000.000	UGL
52.7	08-jun-1990	99	TDS		808000.000	UGL
52.7	01-may-1990	S 022	AS		10.300	UGL
52.7	08-jun-1990	5022	AS		7.890	UGL
52.7	01-may-1990	SS10	BA		46.400	UGL
52.7	08-jun-1990	SS10	BA		34.000	UGL
	01-may-1990	SS10	CA		40000.000	UGL
52.7	08- jun-1990	SS10	CA		27000.000	UGL
52.7	01-may-1990	SS10	NA		220000.000	UGL
	08-jun-1990	\$\$10	NA		220000.000	UGL
52.7	01-may-1990	TT10	CL		44000.000	UGL
52.7	08- jun-1990	TT10	CL		46000.000	UGL
52.7	01-may-1990	TT 10	so4		107000.000	UGL
52.7	08-jun-1990	TT10	SO4		102000.000	UGL
52.7	01-may-1990	UN18	240NP		17.500	UGL
	01-may-1990	UN18	24DNT		13.600	UGL
52.7	01-may-1990	UN18	UNK\$17		5.000	UGL
52.7	01-may-1990	UN18	UNK555		2.000	UGL
52.7	01-may-1990	UN18	UNK557		1.000	UGL
52.7	01-may-1990	UN18	UNK569		3.000	UCL
52.7	01-may-1990	UN18	UNK574		1.000	UGL
52.7	01-may-1990	UN18	UNK607		10.000	UGL
52.7	01-may-1990	UW14	135TNB		9.960	UGL
52.7	08-jun-1990	UW14	135TN8		13.000	UGL
52.7	01-may-1990	UW14	246TNT		2.940	UGL
52.7	01-may-1990	UW14	240NT		12.600	UGL
52.7	08- jun-1990	UW14	240NT		6.190	UGL
52.7	01-may-1990	UW14	HIPOC		7. 690	UGL
52.7	01-may-1990	UW14	RDX		220.000	UGL
52.7	08- jun-1990	UM14	ROX		34.200	UGL

Site: WELL THT-04-MA

SAMPLE	SAIPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
				••••		••••
53.7	01-may-1990	99	TDS		996000.000	UGL
53.7	08- jun- 1990	99	TDS		940000.000	UGL
53.7	01-may-1990	SD21	SE		4.370	UGL
53.7	08-jun-1990	S 021	SE		3.620	UGL

Installation: Sierra Ordnance Depot

Page 19

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 22-jan-91 (Booleans LT and ND are excluded)

Site: WELL THT-04-MMA (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	••••••		•••••		••••••	
53.7	01-may-1990	SD22	AS		8.100	UGL
53.7	06- jun-1990	SD22	AS		5.650	UGL
53.7	01-may-1990	SS 10	BA		40.400	UGL
53.7	08- jun-1990	SS10	BA		35.500	UGL
53.7	01-may-1990	\$\$10	CA		43000.000	UGL
53.7	08-jun-1990	\$\$10	CA		46000.000	UGL
53.7	01-may-1990	S\$10	NA		200000.000	UGL
53.7	08-jun-1990	\$\$10	NA		220000.000	UGL
53.7	01-may-1990	TT10	CL		200000.000	UGL
53.7	08- jun-1990	TT10	CL		180000.000	UGL
53.7	01-may-1990	TT10	SO4		260000.000	UGL
53.7	08- jun-1990	TT10	\$04		243000.000	UGL
53.7	01-may-1990	UN18	240NT		6.810	UGL
53.7	01-may-1990	UH18	UNKS33		2.000	UGL
53.7	01-may-1990	UW14	135TNB		2.990	UGL
53.7	08-jun-1990	UW14	135TNB		3.380	UGL
53.7	01-may-1990	UW14	246TNT		1.240	UGL
53.7	08-jun-1990	UW14	246TNT		1.030	UGL
53.7	01-may-1990	UW14	24DNT		8.140	UGL
53.7	08-jun-1990	UU14	24DNT		10.300	UGL

Site: WELL THT-05-MA

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••			•••••		••••••	•
58.5	02-may-1990	99	TDS		786000.000	UGL
58.5	07- jun-1990	99	TDS		716000.000	UGL
58.5	02-may-1990	SD21	SE		4.150	UGL
58.5	07- jun-1990	\$021	æ		3.510	UGL
58.5	02-may-1990	SD22	AS		17.100	UGL
58.5	07- jun-1990	\$022	AS .		17.000	UGL
58.5	02-may-1990	\$\$10	84		33.200	UGL
58.5	07- jun-1990	SS 10	BA		40.200	UGL
58.5	02-may-1990	SS10	CA		39000.000	UGL
58.5	07- jun-1990	SS 10	CA		47000.000	UGL
58.5	02-may-1990	55 10	NA		150000.000	UGL
58.5	07- jun-1990	\$\$10	MA		170000.000	UGL
58.5	07-jun-1990	\$\$10	ZN		25.100	UGL

Installation: Sierra Ordnance Depot Analytical Results for Chemical Ground Water

Page 20

from: 01-ion-75 to: 22-ion-91

From: 01-jan-75 To: 22-jan-91 (Booleans LT and ND are excluded)

Site: WELL TNT-05-MWA (continued)

SAMPLE DEPTH (fi	SAMPLE t) DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	•••••			••••		
58.5	02-may-1990	TT10	CL		71000.000	UGL
58.5	07- jun-1990	TT10	CL		66000.000	UGL
58.5	02-may-1990	TT10	SO4		115000.000	UGL
58.5	07-jun-1990	7710	SO4		138000.000	UGL
58.5	02-may-1990	UM18	2CHE10		1.000	UGL
58.5	02-may-1990	UH18	BZEHP		7.820	UGL
58.5	02-may-1990	UM18	UNK556		1.000	UGL
58.5	02-may-1990	UN14	135TNB		5.280	UGL
58.5	07- jun-1990	UW14	135TNB		6.470	UGL

Site: WELL THT-06-MMA

SAMPLE	SAMPLE	TEST				
DEPTH (ft		METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
54.6	02-may-1990	99	TDS	••••	1570000.000	UGL
54.6	06-jun-1990	99	TDS		1530000.000	UGL
54.6	06-jun-1990	SB01	HG		0.251	UGL
54.6	06- jun-1990	SD20	PS		7.050	UGL
54.6	02-may-1990	SD21	SE		8.840	UGL
54.6	06-jun-1990	SD21	SE		6.820	UGL
54.6	02-may-1990	\$022	AS		9.700	UGL
54.6	06- jun-1990	\$022	AS		5.650	UGL
54.6	02-may-1990	SS 10	BA		46.400	UGL
54.6	06-jun-1990	SS10	BA		52.500	UGL
54.6	02-may-1990	5510	CA		66000.000	UGL
54.6	06-jun-1990	55 10	CA		70000.000	UGL
54.6	02-may-1990	55 10	NA		390000.000	UGL
54.6	06- jun-1990	55 10	NA		370000.000	UGL
54.6	06- jun-1990	\$\$10	ZM		23.300	UGL
54.6	02-may-1990	TT10	CL		240000.000	UGL
54.6	06-jun-1990	TT10	CL		240000.000	UGL
54.6	02-may-1990	TT10	504		440000.000	UGL
54.6	06- jun-1990	TT10	SO4		400000.000	UGL
54.6	02-may-1990	UN18	UNKS17		1.000	UGL
54.6	02-may-1990	UN18	UNK556		1.000	UGL
54.6	02-may-1990	UH18	UNK634		5.000	UGL

Installation: Sierra Ordnance Depot

Page 21

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 22-jan-91 (Booleans LT and ND are excluded)

Site: WELL THT-06-MMA (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	••••••					••••
54.6	02-may-1990	∪ ⊌14	135TNB		1.650	UGL
54.6	06- jun-1990	UW14	135TNB		2.340	UGL
54.6	06- jun-1990	UW14	240NT		0.850	UGL

Site: WELL THT-07-MMA

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	•••••	•••••	******			
56.1	18-apr-1990	99	TDS		978000.000	UGL
56.1	06- jun-1990	99	TDS		802000.000	UGL
56.1	06- jun-1990	\$020	PS		6.620	UGL
56.1	18-apr-1990	S 022	AS		15.400	UGL
56.1	06-jun-1990	S 022	AS		9.810	UGL
56.1	18-apr-1990	SS10	BA		14.300	UGL
56.1	06- jun-1990	SS10	BA		17.600	UGL
56.1	18-apr-1990	\$\$10	CA		15600.000	UGL
56.1	06-jun-1990	\$\$10	CA		18500.000	UGL
56.1	18-apr-1990	5510	CR		6.890	UGL
56.1	06- jun-1990	SS10	CR		9.500	UGL
56.1	18-apr-1990	\$\$ 10	NA		220000.000	UGL
56.1	06-jun-1990	SS10	NA		240000.000	UGL
56.1	18-apr-1990	\$\$ 10	ZN		68.000	UGL
56.1	18-apr-1990	TT10	CL		99000.000	UGL
56.1	06- jun-1990	TT10	CL		93000.000	UGL
56.1	18-apr-1990	TT10	SO4		181000.000	UGL
56.1	06- jun-1990	TT10	504		176000.000	UGL
56.1	06-jun-1990	UH20	CHCL3		0.523	UGL
56.1	18-apr-1990	UH20	TRCLE		2.290	UGL
56.1	06-jun-1990	UH20	TRCLE		2.480	UGL
56.1	18-apr-1990	UW14	135TNB		5.590	UGL
56.1	06- jun-1990	UW14	135TNB		4.980	UGL
56.1	18-apr-1990	UN14	24DNT		2.040	UGL
56.1	06-jun-1990	UW14	24DNT		2.560	UGL
56.1	18-apr-1990	UW14	TETRYL		2.790	UGL

Installation: Sierra Ordnance Depot

Page 22

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 22-jan-91 (Sooleans LT and ND are excluded)

Site: WELL THT-07-MUS

SAMPLE DEPTH (ft	SAMPLE) DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
56.0	18-apr-1990	99	TDS		1160000.000	UGL
56.0	06- jun-1990	99	TOS		814000.000	UGL
56.0	06-jun-1990	SD20	P B		9.000	UGL
56.0	18-apr-1990	5022	AS		8.960	UGL
56.0	06-jun-1990	\$022	AS		7. 89 0	UGL
56.0	18-apr-1990	SS10	BA		22.400	UGL
56.0	06-jun-1990	5510	BA		15.500	UGL
56.0	18-apr-1990	SS10	CA		44000.000	UGL
56.0	06-jun-1990	SS10	CA		31000.000	UGL
56.0	06-jun-1990	SS10	CR		7.810	UGL
56.0	18-apr-1990	SS10	CU.		9.560	UGL
56.0	18-apr-1990	SS10	NA		210000.000	UGL
56.0	06-jun-1990	S\$10	NA		220000.000	UGL
56.0	18-apr-1990	SS10	ZN		77.100	UGL
56.0	18-apr-1990	TT10	CL		150000.000	UGL
56.0	06- jun-1990	TT10	CL		110000.000	UGL
56.0	18-apr-1990	TT10	\$04		260000.000	UGL
56.0	06- jun-1990	TT10	so4		203000.000	UGL
56.0	06- jun-1990	UN18	2 8 EET0		2000.000	UGL
56.0	06-jun-1990	UN18	BTZ		4.000	UGL
56.0	06-jun-1990	UH18	UNK595		8.000	UGL

Site: WELL INT-07-MMC

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
		•••••	•••••		•••••	••••
56.0	18-apr-1990	99	TDS		812000.000	UGL
56.0	06- jun-1990	99	TDS		760000.000	UGL
56.0	06- jun-1990	SD20	PS		8.790	UGL
56.0	18-apr-1990	\$022	AS		8.530	UGL
56.0	06-jun-1990	\$022	AS		5.450	UGL
56.0	18-apr-1990	\$\$10	BA		27.500	UGL
56.0	06-jun-1990	SS10	SA		28.100	UGL
56.0	18-apr-1990	\$\$ 10	CA		57000.000	UGL
56.0	06- jun-1990	\$\$10	CA		76000.000	UGL
56.0	18-apr-1990	\$\$10	NA		150000.000	UGL
56.0	06-jun-1990	55 10	NA		150000.000	UGL
56.0	18-apr-1990	5810	ZN		32.700	UGL

Installation: Sierra Ordnence Depot Page 23
Analytical Results for Chemical Ground Water
From: 01-jan-75 To: 22-jan-91
(Booleans LT and ND are excluded)

Site: WELL THT-07-MWC (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	•••••	•••••	•••••	****	***********	••••
56.0	06-jun-1990	\$\$10	ZN		47.300	UGL
56.0	18-apr-1990	TT10	CL		99000.000	UGL
56.0	06- jun-1990	TT10	CL		99000.000	UGL
56.0	18-apr-1990	TT10	SO4		260000.000	UGL
56.0	06-jun-1990	TT10	SO4		211000.000	UGL
56.0	06-jun-1990	UN18 -	28EETO		3000.000	UGL
56.0	06- jun-1990	UM18	STZ		4.000	UGL
56.0	18-apr-1990	UH18	UNK557		3.000	UGL
56.0	18-apr-1990	UN18	UNK559		2.000	UGL
56.0	06- jun-1990	UN18	UNK559		5,000	UGL
56.0	18-apr-1990	UN18	UNK563		2,000	UGL
56.0	06- jun-1990	UM18	UNK595		20.000	UGL
56.0	06-jun-1990	UM18	UNK598		20.000	UGL
56.0	06- jun-1990	UM18	UNK614		10.000	UGL
56.0	06- jun-1990	UN18	UNK634		5.000	UGL
56.0	06-jun-1990	UN18	UNK643		40.000	UGL

Site: LELL THT-08-MA

SAMPLE	SAMPLE	TEST				
DEPTH (ft	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
55.3	03-may-1990	99		••••		
	,		TDS		792000.000	UGL
55.3	07- jun-1990	99	TDS		778000.000	UGL
55.3	03-may-1990	SD 20	PB		5.210	UGL
55.3	07-jun-1990	SD20	PB		2.170	UGL
55.3	03-may-1990	\$022	AS		13.300	UGL
55.3	07- jun-1990	S022	AS		10.100	UGL
55.3	03-may-1990	\$\$10	BA .		27.100	UGL
55.3	07- jun-1990	\$\$10	BA .		46.000	UGL
55.3	03-may-1990	\$\$10	CA		18000,000	UGL
55.3	07- jun-1990	\$\$10	CA		18900,000	UGL
55.3	03-may-1990	\$\$10	NA		200000,000	UGL
55.3	07- jun-1990	\$\$10	NA		200000.000	UGL
55.3	07-jun-1990	\$\$10	ZN		26.000	UGL
55.3	03-may-1990	TT10	CL		48000.000	UGL
55.3	07- jun-1990	TT10	CL		52000,000	UGL
55.3	03-may-1990	TT10	504		240000,000	UGL
55.3	07- jun-1990	TT10	\$04		239000.000	UGL
55.3	03-may-1990	UM18	UNK533		2.000	UGL

Installation: Sierra Ordnance Depot Page 24

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 22-jan-91 (Booleans LT and NO are excluded)

Site: WELL THT-08-MMA (continued)

SAMPLE DEPTH (ft)	SAMPLE DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
DEPIN (TE)	UAIE	HEIMOD	COM COM			
				••••		
55.3	03-may-1990	UM18	UNKS56		2.000	UGL
55.3	03-may-1990	UM20	TRCLE		7.430	UGL
55.3	07-jun-1990	UM20	TRCLE		9.330	UGL
55.3	03-may-1990	UW14	135TN8		0.892	UGL
55.3	07- jun-1990	UW14	135TMB		0.885	UGL
55.3	03-may-1990	UW14	TETRYL		1.560	UGL

Site: WELL THT-09-MMA

SAMPLE	SAMPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
		•••••			T2000 000	UGL
	03-may-1990	99	TDS		752000.000	
55.0	06-jun-1990	99	TDS		736000.000	UGL
55.0	03-may-1990	SD20	PB		2.930	UGL
55.0	06-jun-1990	SD20	P S		10.700	UGL
55.0	03-may-1990	SD22	AS		8.960	UGL
55.0	06- jun-1990	\$022	AS		4.900	UGL
55.0	03-may-1990	SS10	BA		52.200	UGL
55.0	06-jun-1990	SS10	BA		56.300	UGL
55.0	03-may-1990	5510	CA		66000.000	UGL
55.0	06- jun-1990	SS10	CA		75000.000	ŲGL
55.0	03-may-1990	SS10	NA		120000.000	UGL
55.0	06-jun-1990	S\$10	NA		140000.000	UGL
55.0	03-may-1990	7710	CL		43000.000	UGL
55.0	06- jun-1990	TT10	CL		43000.000	UGL
55.0	03-may-1990	TT10	SO4		280000.000	UGL
55.0	06-jun-1990	TT10	SO4		280000.000	UGL
55.0	03-may-1990	UN18	UNK556		6.000	UGL
55.0	03-may-1990	UN20	TRCLE		0.924	UGL
55.0	06- jun-1990	UM20	TRCLE		1.050	UGL
55.0	03-may-1990	UW14	135TNB		1.470	UGL
55.0	06-jun-1990	UW14	135TNB		3.810	UGL

Installation: Sierra Ordnance Depot

Page 25

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 22-jan-91 (Sooleans LT and ND are excluded)

Site: WELL THT-10-MMA

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	900 L	CONCENTRATION	UNITS
56.0	30-apr-1990	99	TDS	••••	1050000.000	UGL
56.0	30-apr-1990	99	TDS		994000.000	UGL
56.0	03-jun-1990	99	TDS		1010000,000	UGL
56.0	03-jun-1990	99	TDS		932000.000	UGL
,	03 ,4	• • • • • • • • • • • • • • • • • • • •	,,,,		/250001000	042
56.0	30-apr-1990	SB01	HG		0.255	UGL
56.0	30-apr-1990	\$020	PB		2.490	UGL
56.0	03 - jun - 1990	\$ D20	PB		3.800	UGL
56.0	03-jun-1990	SD20	PB		2.280	UGL
56.0	30-apr-1990	SD22	AS		12.000	UGL
56.0	30-apr-1990	SD22	AS		11.500	UGL
56.0	03-jun-1990	S D22	AS		10.200	UGL
56.0	03-jun-1990	\$022	AS		10.600	UGL
56.0	30-apr-1990	SS10	BA		47.100	UGL
56.0	30-apr-1990	SS10	BA		46.700	UGL
56.0	03-jun-1990	\$\$10	BA		49.400	UGL
56.0	03-jun-1990	SS10	BA		49.800	UGL
56.0	30-apr-1990	SS10	CA		59000.000	UGL
56.0	30-apr-1990	SS10	CA		61000.000	UGL
56.0	03-jun-1990	\$\$10	CA		65000.000	UGL
56.0	03-jun-1990	S\$10	CA		64000.000	UGL
56.0	30-apr-1990	SS10	CR		227.000	UGL
56.0	30-apr-1990	5510	CR		225.000	UGL
56.0	03- jun-1990	SS10	CR		213.000	UGL
56.0	03- jun-1990	\$\$10	CR		223,000	UGL
56.0	30-apr-1990	\$\$10	NA		260000.000	UGL
56.0	30-apr-1990	\$\$10	NA		270000,000	UGL
56.0	03-jun-1990	5510	NA		270000.000	UGL
56.0	03-jun-1990	\$\$10	NA		220000.000	UGL
56.0	30-apr-1990	TT10	CL		88000.000	UGL
56.0	30-apr-1990	TT10	CL		86000.000	UGL
56.0	03 - jun - 1990	TT10	CL		77000.000	UGL
56.0	03-jun-1990	TT10	CL		77000.000	UGL
56.0	30-apr-1990	TT10	504		190000.000	UGL
56.0	30-apr-1990	TT10	504		189000.000	UGL
56.0	03-jun-1990	TT10	\$04		179000.000	UGL
56.0	03-jun-1990	TT10	SO4		177000.000	UGL
56.0	30-apr-1990	UH18	UNK532		2.000	UGL
56.0	30-apr-1990	UM18	UNK532		2.000	UGL
56.0	30-apr-1990	UN18	UNK532		5.000	UGL
56.0	30-apr-1990	UM18	UNK537		4.000	UGL
56.0	03 - jun - 1990	UM18	UNK538		8.000	UGL
56.0	03-jun-1990	UN18	UNK538		8.000	UGL
	1 1770	Gm 10	OHA JO		9.000	JUL

Installation: Sierra Ordnance Depot Page 26 Analytical Results for Chemical Ground Water From: 01-jan-75 To: 22-jan-91

(Booleans LT and ND are excluded)

Site: WELL THT-10-MAA (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft)) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	•••••	•••••		••••		••••
56.0	30-apr-1990	UM18	UNK587		1.000	UGL
56.0	30-apr-1990	UM20	120CLE		101.000	UGL
56.0	30-apr-1990	UH20	12DCLE		101.000	UGL
56.0	03-jun-1990	UH20	12DCLE		50.300	UGL
56.0	03-jun-1990	UM20	120CLE		70.400	UGL
56.0	03-jun-1990	UM20	C6H6		5.940	UGL
56.0	30-apr-1990	UM20	CCL4		190.000	UGL
56.0	30-apr-1990	UM20	CCL4		190.000	UGL
56.0	03 - jun - 1990	UM20	CCL4		95.200	UGL
56.0	03-jun-1990	UM20	CCL4		95.200	UGL
56.0	30-apr-1990	UN20	CHCL3		923.000	UGL
56.0	30-apr-1990	UM20	CHCL3		513.000	UGL
56.0	03-jun-1990	UH20	CHCL3		513.000	UGL
56.0	03-jun-1990	UH20	CHCL3		513.000	UGL
56.0	03-jun-1990	UH20	CLC6H5		6.730	UGL
56.0	30-apr-1990	UN20	MEC6H5		2.450	UGL
56.0	03-jun-1990	UH20	MEC6H5		7.840	UGL
56.0	30-apr-1990	UM20	TRCLE		952.000	UGL
56.0	30-apr-1990	UM20	TRCLE	•	952.000	UGL
56.0	03-jun-1990	UH20	TRCLE		476.000	UGL
56.0	03-jun-1990	UM20	TRCLE		571.000	UGL

Site: WELL THT-10-MUB

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
56.8	30-apr-1990	99	TDS	••••	802000.000	UGL
56.8	03-jun-1990	99	TOS		830000.000	UGL
56.8	03-jun-1990	SD20	P 6		2.820	UGL
56.8	30-apr-1990	5022	AS		11.400	UGL
56.8	03-jun-1990	\$022	AS .		12.800	UGL
56.8	30-apr-1990	\$\$10	SA.		23.900	UGL
56.8	03-jun-1990	\$\$10	BA		19.100	UGL
56.8	30-apr-1990	\$\$10	CA		55000.000	UGL
56.8	03-jun-1990	\$\$10	CA		61000.000	UGL
56.8	30-apr-1990	\$\$10	CD		12.900	UGL
56.8	30-apr-1990	\$\$10	NA		180000.000	UGL
56.8	03 - jun - 1990	\$\$10	NA		180000.000	UGL
56.8	30-apr-1990	\$\$10	ZN		81.700	UGL
56.8	03-jun-1990	\$\$10	ZM		176.000	UGL
56.8	30-apr-1990	TT10	CL		130000.000	UGL

Installation: Sierra Ordnance Depot

Page 27 Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 22-jan-91 (Scoleans LT and ND are excluded)

Site: WELL THT-10-MAB (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE		METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••
56.8	03 - jun - 1990	TT10	CL		100000.000	UGL
56.8	30-apr-1990	TT10	SO4		233000.000	UGL
56.8	03-jun-1990	TT10	SO4		231000.000	UGL
56.8	03- jun-1990	UM18	28EETO		2000.000	UGL
56.8	30-apr-1990	UM18	UNK557		3.000	UGL
56.8	30-apr-1990	UM18	UNK559		2.000	UGL
56.8	30-apr-1990	UM18	UNK563		2.000	UGL
56.8	03-jun-1990	UH18	UNK596		70.000	UGL
56.8	30-apr-1990	UM20	CHCL3		0.697	UGL
56.8	30-apr-1990	UM20	TRCLE		0.724	UGL
56.8	03-jun-1990	UM20	TRCLE		0.838	UGL

Site: WELL THT-10-MMC

SAMPLE	SAMPLE DATE	TEST	COMPOUND	BOOL	CONCENTRATION	UNITS
DEPTH (ft		HETHOD				
55.9	30-apr-1990	99	TDS		636000.000	UGL
55.9	03-jun-1990	99	TDS		640000.000	UGL
55.9	03-jun-1990	S 020	PB		2.930	UGL
55.9	30-apr-1990	5022	AS		12.400	UGL
55.9	03-jun-1990	SD22	AS		9.380	UGL
55.9	30-apr-1990	5510	SA		33.600	UGL
55.9	03-jun-1990	5510	BA		32.100	UGL
55.9	30-apr-1990	5510	CA		55000.000	UGL
55.9	03-jun-1990	SS10	CA		61000.000	UGL
55.9	30-apr-1990	SS10	NA		130000.000	UGL
55.9	03 - jun - 1990	SS10	NA		130000.000	UGL
55.9	30-apr-1990	TT10	CL		71000.000	UGL
55.9	03-jun-1990	TT10	CL		60000.000	UGL
55.9	30-apr-1990	TT10	504		212000.000	UGL
55.9	03- jun-1990	TT10	504		202000.000	UGL
55.9	30-apr-1990	UN18	UNK557		3.000	UGL
55.9	30-apr-1990	UN18	UNK559		2.000	UGL
55.9	30-apr-1990	UN18	UNK563		1.000	UGL
55.9	30-apr-1990	UH20	CHCL3		1.230	UGL
55.9	30-apr-1990	UN20	TRCLE		2.000	UGL

Installation: Sierra Ordnance Depot Page 28

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 22-jan-91 (Booleans LT and NO are excluded)

Site: WELL THT-11-MA

SAMPLE	SAMPLE	TEST				
DEPTH (ft		METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
59.2	03-may-1990	99	TDS	••••	2180000.000	UGL
59.2	07-jun-1990	99	TDS		2090000.000	UGL
59.2	03-may-1990	\$020	PS		1.520	UGL
59.2	03-may-1990	SD21	SE		9.160	UGL
59.2	07-jun-1990	SD21	SE		7.990	UGL
59.2	03-may-1990	SD 22	AS		15.200	UGL
59.2	07-jun-1990	SD 22	AS		9.910	UGL
59.2	03-may-1990	SS10	8A		17.300	UGL
59.2	07-jun-1990	SS10	BA		18.100	UGL
59.2	03-may-1990	SS10	CA		130000.000	UGL
59.2	07- jun-1990	SS10	CA		130000.000	UGL
59.2	03-may-1990	SS10	NA		470000.000	UGL
59.2	07- jun-1990	SS10	NA		570000.000	UGL
59.2	03-may-1990	TT10	CL		190000.000	UGL
59.2	07- jun-1990	TT10	CL		180000.000	UGL
59.2	03-may-1990	TT10	SO4		790000.000	UGL
59.2	07- jun- 1 99 0	TT10	SO4		700000.000	UGL
59.2	03-may-1990	UM18	UNK556		3.000	UGL
59.2	03-may-1990	UM20	12DCLE		0.824	UGL
59.2	03-may-1990	UN20	CCL4		11.400	UGL
59.2	07- jun-1990	UM20	CCL4		19.000	UGL
59.2	03-may-1990	UN20	CHCL3		21.500	UGL
59.2	07- jun-1990	UN20	CHCL3		41.000	UGL
59.2	03-may-1990	UH20	TRCLE		114.000	UGL
59.2	07- jun-1990	UH20	TRCLE		190.000	UGL
59.2	07- jun-1990	UW14	135TNB		0.867	UGL

Site: WELL THT-12-MA

SAMPLE DEPTH (f	SAMPLE t) DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
			******		**********	••••
50.3	25-apr-1990	99	TDS		1180000.000	UGL
50.3	07- jun-1990	99	TDS		1150000.000	UGL
50.3	25-apr-1990	\$ 020	PB		2.280	UGL
50.3	25-apr-1990	S 021	SE		3.410	UGL

Installation: Sierra Ordnance Depot Page 29 Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 22-jan-91

(Booleans LT and ND are excluded)

Site: WELL THT-12-MMA (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	•••••	•••••	•••••	••••		••••
50.3	25-apr-1990	S D22	AS		28.400	UGL
50.3	07- jun-1990	\$ 022	AS		17.700	UGL
50.3	25-apr-1990	\$\$10	BA		24.600	UGL
50.3	07- jun- 1990	\$\$10	BA		25.100	UGL
50.3	25-apr-1990	SS10	CA		42000.000	UGL
50.3	07- jun- 1990	SS10	CA		39000.000	UGL
50.3	25-apr-1990	SS 10	NA		290000.000	UGL
50.3	07- jun-1990	SS10	NA		290000.000	UGL
50.3	25-apr-1990	TT10	CL		77000.000	UGL
50.3	07- jun-1990	TT10	CL		82000.000	UGL
50.3	25-apr-1990	TT10	SO4		380000.000	UGL
50.3	07-jun-1990	TT10	SO4		400000.000	UGL
50.3	25-apr-1990	UN18	82EHP		7.180	UGL
50.3	25-apr-1990	UN18	UNK546		1.000	UGL
50.3	07- jun-1990	UH20	CHCL3		0.749	UGL
50.3	25-apr-1990	UH20	TRCLE		1.050	UGL
50.3	07-jun-1990	UM20	TRCLE		0.819	UGL
50.3	07- jun-1990	UW14	135TNB		1.120	UGL
50.3	07- jun- 1990	UW14	24DNT		0.769	UGL

Site: WELL THT-13-MMA

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	•••••		•••••			
52.2	01-may-1990	99	TDS		892000.000	UGL
52.2	07- jun-1990	99	TDS		918000.000	UGL
52.2	07- jun-1990	58 01	HG		0.526	UGL
52.2	07-jun-1990	\$020	P8		9.440	UGL
52.2	01-may-1990	5022	AS		13.600	UGL
52.2	07-jun-1990	\$022	AS		9.380	UGL
52.2	01-may-1990	\$\$10	BA		44.400	UGL
52.2	07- jun-1990	SS 10	BA		45.600	UGL
52.2	01-may-1990	5510	CA		34000.000	UGL
52.2	07- jun-1990	\$\$10	CA		32000.000	UGL
52.2	01-may-1990	5510	NA		220000.000	UGL
52.2	07- jun-1990	5510	NA		210000.000	UGL

Installation: Sierra Ordnance Depot Page 30

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 22-jan-91 (Booleans LT and ND are excluded)

Site: WELL THT-13-MMA (continued)

SAMPLE DEPTH (ft	SAMPLE) DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
	•••••					
52.2	01-may-1990	TT10	CL		55000.000	UGŁ
52.2	07- jun-1990	TT10	CL		60000.000	UGL
52.2	01-may-1990	TT10	SO4		230000.000	UGL
52.2	07-jun-1990	TT10	so4		228000.000	UGL
52.2	07- jun-1990	UM20	CHCL3		0.533	UGL
52.2	01-may-1990	UM20	TRCLE		8.570	UGL
52.2	07- jun-1990	UM20	TRCLE		9.520	UGL

Site: WELL THT-14-MMA

		TEST				
SAMPLE	SAMPLE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
DEPTH (ft) DATE	ME I MUU	CONTODIO		CONCENTRATION	*****
49.5	24-apr-1990	99	TDS		1030000,000	LIGL
49.5	03-jun-1990	99	TDS		938000.000	UGL
47.3	03 /41/1//0	• •			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
49.5	24-apr-1990	S 8 01	HG		0.402	UGL
49.5	03-jun-1990	S 020	PB		3.040	UGL
49.5	24-apr-1990	S 021	SE		46.600	UGL
49.5	03-jun-1990	S021	SE		52.200	UGL
49.5	24-apr-1990	S 022	AS		31.400	UGL
49.5	03-jun-1990	5022	AS		27.300	UGL
49.5	24-apr-1990	5510	8A		44.200	UGL
49.5	03-jun-1990	\$\$10	SA		46.200	UGL
49.5	24-apr-1990	SS10	CA		28000.000	UGL
49.5	03-jun-1990	5510	CA		33000.000	UGL
49.5	24-apr-1990	SS10	NA		290000.000	UGL
49.5	03-jun-1990	\$\$10	NA		260000.000	UGL
49.5	24-apr-1990	TT10	CL		66000.000	UGL
49.5	03-jun-1990	TT10	CL		71000.000	UGL
49.5	24-apr-1990	TT10	\$04		132000.000	UGL
49.5	03-jun-1990	TT10	\$04		137000.000	UGL
49.5	24-apr-1990	UN18	UNKS46		1.000	UGL
49.5	24-apr-1990	UN18	UNKS57		2.000	UGL
49.5	24-apr-1990	UW14	135TMB		11.900	UGL
49.5	03-jun-1990	W14	135 7NB		13.500	UGL

Installation: Sierra Ordnance Depot

Page 31

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 22-jan-91 (Booleans LT and NO are excluded)

Site: WELL THT-15-MMA

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
52.0	02-may-1990	99	TDS	••••	1310000.000	UGL
52.0	02- jun- 1990	99	TDS		1320000.000	UGL
52.0	02-jun-1990	SD 20	PS		3.800	UGL
52.0	02-may-1990	SD21	SE		7.450	UGL
52.0	02-jun-1990	SD21	SE		7.370	UGL
52.0	02-may-1990	S 022	AS		8.850	UGL
52.0	02-jun-1990	S D22	AS		7.140	UGL
52.0	02-may-1990	SS 10	8A		36.300	UGL
52.0	02-jun-1990	SS10	BA		37.800	UGL
52.0	02-may-1990	\$\$10	CA		60000.000	UGL
52.0	02-jun-1990	\$\$10	CA		57000.000	UGL
52.0	02-may-1990	SS10	NA		35000.000	UGL
52.0	02-jun-1990	SS 10	NA		270000.000	UGL
52.0	02-may-1990	TT10	CL		290000.000	UGL
52.0	02- jun-1990	TT10	CL		210000.000	UGL
52.0	02-may-1990	TT10	S 04		400000.000	UGL
52.0	02-jun-1990	TT10	SO4		280000.000	UGL
52.0	02-jun-1990	UM18	2 8 EET0		40.000	UGL
52.0	02- jun-1990	UW14	RDX		6.720	UGL
52.0	02-may-1990	UM14	TETRYL		1.120	UGL

Site: WELL THT-16-MA

SAMPLE	SAMPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	•	•••••		••••	***************************************	••••
56.7	02-may-1990	99	TDS		658000.000	UGL
56.7	02-jun-1990	99	TDS		692000.000	UGL
56.7	02-may-1990	\$020	PB		2.060	UGL
56.7	02-jun-1990	\$020	PB		2.280	UGL
56.7	02-may-1990	5022	AS		7.360	UGL
56.7	02-jun-1990	\$022	AS		8.740	UGL
56.7	02-may-1990	\$\$10	BA		26.400	UGL
56.7	02-jun-1990	\$\$10	BA		22.600	UGL
56.7	02-may-1990	5\$10	CA		51000.000	UGL
56.7	02-jun-1990	\$\$10	CA		65000.000	UGL
56.7	02-may-1990	5510	NA		140000.000	UGL

Installation: Sierra Ordnance Depot

Page 32

Analytical Results for Chemical Ground Water

From: 01-jan-75 To: 22-jan-91 (Booleans LT and NO are excluded)

Site: WELL THT-16-MMA (continued)

SAMPLE DEPTH (ft	SAMPLE) DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	•••••	•••••		••••		
56.7	02-jun-1990	SS10	NA		100000.000	UGL
56.7	02-may-1990	TT10	CL		66000.000	UGL
56.7	02-jun-1990	TT10	CL		66000.000	UGL
56.7	02-may-1990	TT10	SO4		220000.000	UGL
56.7	02-jun-1990	TT10	\$04		220000.000	UGL
56.7	02-may-1990	UH18	UNK598		1.000	UGL

Program ended normally.\$

Chemical Soil Data (for detects only) from the CSO File of the IRDMS James M. Montgomery Consulting Engineers Inc.

INSTALLATION RESTORATION PROGRAM

CHEMICAL REPORT Wed Mar 13 14:04:02 1991

For Parameters :

Installation = Sierra Ordnance Depot Reginning Date = 01-jan-75 Ending Date = 13-mar-91 Hedia Type = Chemical Soil (CSO) Maximum (X, Y) = (746811, 4460743) Minimum (X, Y) = (739313, 4446795) Booleans = N

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 (Sooleans LT and ND are excluded) Page 1

Site: SORE ALF-01-SB

SAMPLE	SAMPLE	TEST				
DEPTH (ft)		METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
				• • • •		• • • • •
5.0	13-mer-1990	99	PHENOL		0.200	UGG
	17-mar-1990	99	PHENOL		0.190	UGG
20.0	17-mar-1990	99	PHENOL		0.240	UGG
25.0	17-mar-1990	99	PHENOL		1.850	UGG
35.0	17-mar-1990	99	PHENOL		0.130	UGG
70.0	17-mar-1990	99	PHENOL		0.380	UGG
80.0	17-mar-1990	99	PHENOL		0.110	UGG
90.0	17-mar-1990	99	PHENOL		0.640	UGG
95.0	17-mar-1990	99	PHENOL		0.130	UGG
50.0	17-mer-1990	99	PHENOL		0.450	UGG
5.0	13-mar-1990	JD 19	AS		7,100	UGG
10.0	17-mar-1990	JD 19	AS		9.500	UGG
15.3	17-mar-1990	J019	AS		6,600	UGG
20.0	17-mar-1990	JD19	AS		8,900	UGG
25.0	17-mar-1990	JD19	AS		3.800	UGG
30.0	17-mar-1990	JD 19	AS		8.100	UGG
35.0	17-mar-1990	JD 19	AS		10.300	UGG
40.0	17-mar-1990	JD19	AS		3.700	ugg
45.0	17-mar-1990	JD19	AS		1.300	UGG
50.0	17-mar-1990	JD 19	AS		1,400	UGG
60.0	17-mer-1990	JD19	AS		4.100	UGG
70.0	17-mar-1990	JD 19	AS		3.100	UGG
80.0	17-mar-1990	JD 19	AS		3.600	UGG
90.0	17-mar-1990	JD 19	AS		4,300	UGG
95.0	17-mar-1990	JD 19	AS		2,900	UGG
50.0	17-mer-1990	JD 19	AS		1.400	UGG
15.0	17-mar-1990	J\$11	CR		38.300	UGG
15.0	17-mar-1990	J S 11	NI		36.700	UGG
40.0	17-mar-1990	J\$11	PB		23.000	UGG
45.0	17-mar-1990	JS11	PS		10.300	UGG
90.0	17-mar-1990	J\$11	PB		134.200	UGG
95.0	17-mar-1990	J\$11	PS		320.100	UGG
5.0	13-mar-1990	J\$11	ZM		56.300	UGG
10.0	17-mar-1990	JS11	ZM		95.800	UGG
15.0	17-mar-1990	J\$11	ZM		145.800	UGG
20.0	17-mar-1990	J\$11	ZN		109.500	UGG
90.0	17-mar-1990	J S 11	ZM		98.200	UGG
		=				
95.0	16-mer-1990	LH18	DIACAL		0.480	UGG
30.0	16-mar-1990	LH18	UNK\$12		0.310	UGG
20.0	16-mar-1990	LM18	UNK613		0.250	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 (Socleans LT and ND are excluded) Page 2

Site: BORE ALF-02-SB

SAMPLE	SAMPLE	TEST				
DEPTH (ft	DATE	METHOD	COMPOUND	800L	CONCENTRATION	UNITS
•••••	•••••	•••••		••••		
5.3	13-mar-1990	99	PHENOL		0.110	UGG
10.3	18-mar-1990	99	PHENOL		0.280	UGG
30.3	18-mer-1990	99	PHENOL		0.250	UGG
35.0	18-mar-1990	99	PHENOL		0.190 0.150	UGG
40.0	18-mar-1990	99	PHENOL		0.130	UGG
45.3	18-mar-1990	99	PHENOL		0.180	UGG
70.0	18-mar-1990	99 99	PHENOL PHENOL		0.200	UGG
80.0	18-mer-1990	99	PHENOL		0.240	UGG
59.3	18-mar-1990 13-mar-1990	99	THPCDD		0.000	UGG
5.3 5.3	13-mar-1990	99	TOCOD		0.001	UGG
5.0	13-mar-1990	99	TOCOF		0.000	UGG
3.4	13-1001-1990	**			31333	
30.0	18-mar-1990	JD 15	SE		0.500	UGG
5.0	13-mar-1990	JD 19	AS		9.900	UGG
10.3	18-mar-1990	JD 19	AS		3.600	UGG
15.0	18-mar-1990	JD 19	A\$		4.600	UGG
20.0	18-mar-1990	JD 19	AS		3.700	UGG
25.0	18-mar-1990	JD 19	AS		2.700	UGG
30.0	18-mar-1990	JD 19	AS		14.600	UGG
35.0	18-mar-1990	JD 19	AS		3.500	UGG
40.0	18-mar-1990	JD 19	AS		4.800	UGG
45.3	18-mar-1990	1019	AS		1.500	UGG
50.0	18-mar-1990	JD 19	AS		2.500	UGG
60.0	18-mar-1990	JD 19	A\$		6.700	UGG
70.0	18-mar-1990	JD 19	A\$		4.500	UGG
80.0	18-mer-1990	JD 19	A\$		4.000	UGG
89.0	18-mar-1990	JD 19	A\$		2.700	UGG
50.0	18-mar-1990	JD19	A\$		1.600	UGE
5.0	13-mar-1990	J\$11	CR .		24.400	UGG
5.0	13-mar-1990	JS11	PB		84.800	UGG
10.0	18-mar-1990	JS11	PS		55.400	UGG
15.0	18-mar-1990	J\$11	PB		7.100	UGG
30.0	18-mar-1990	J\$11	PS		87.300	UGG
35.0	18-mar-1990	J S 11	PB		33.000	UGG
40.0	18-mar-1990	JS11	PE		15.700	UGG
50.0	18-mar-1990	J S 11	PB		12.200	UGE
60.0	18-mar-1990	J\$11	PE		23.800	UGG
70.0	18-mar-1990	J\$11	PE		134.200	UGE
80.0	18-mer-1990	J\$11	PE		62.900	UGG
5.0	13-mer-1990	J\$11	ZM		140.700	UGG
30.0	18-mar-1990	J\$11	ZM		111.300	UGG
70.0	18-mar-1990	J\$11	ZM		85.200	UGG
80.0	18-mar-1990	J\$11	216		82.700	UGG
20.0	18-mar-1990	LH10	HFCL		0.010	UGG

Installation: Sierra Ordnence Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 Page 3

(Socieons LT and NO are excluded)

Site: BORE ALF-02-SB (continued)

SAMPLE DEPTH (ft	SAMPLE 1) DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
		•••••	•••••	• • • •		••••
60.0	18-mar-1990	LM18	4H3MBA		0.790	UGG
70.0	18-mer-1990	LM18	4H3MEA		0.830	UGG
50.0	18-mar-1990	LH19	MEC6H5		0.000	UGG
50.0	18-mar-1990	LM19	UNK071		0.320	UGG
50.0	18-mar-1990	LM19	UNK076		0.020	UGG

Site: BORE ALF-03-SB

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	•••••	•••••	••••••	••••		••••
5.0	13-mar-1990	99	PHENOL		0.260	UGG
10.0	19-mar-1990	99	PHENOL		0.300	UGG
15.0	19-mar-1990	99	PHENOL		0.120	UGG
20.0	19-mar-1990	99	PHENOL		0.160	UGG
25.0	19-mar-1990	99	PHENOL		0.110	UGG
40.0	19-mar-1990	99	PHENOL		0.1 20	UGG
90.0	19-mar-1990	99	PHENOL		0.140	UGG
5.0	13-mar-1990	99	TCDO		0.000	UGG
5.0	13-mar-1990	99	TOF		0.000	UGG
5.0	13-mar-1990	99	THODF		0.000	UGG
5.0	13-mar-1993	99	THPCDO		0.000	UGG
5.0	13-mar-1990	99	THPCDF		0.000	UGG
5.0	13-mar-1990	99	TOCOO		0.000	UGG
5.0	13-mar-1990	99	TPCDF		0.000	UGG
5.0	13-mar-1990	JD 15	SE		0.400	UGG
30.0	19-mar-1990	JD 15	SE		0.600	UGG
5.0	13-mar-1990	JD19	A\$		11.200	UGG
10.0	19-mar-1990	JD 19	AS		3.900	UGG
15.0	19-mar-1990	JD 19	AS		3.000	UGG
20.0	19-mar-1990	JD 19	AS .		3.400	UGG
25.0	19-mar-1990	J019	AS.		4.700	UGG
30.0	19-mar-1990	JD 19	AS		15.600	UGG
35.0	19-mar-1990	JD 19	AS .		9.800	UGG
40.0	19-mar-1990	JO 19	AS .		5.500	UGG
45.0	19-mar-1990	JD19	AS		3.400	UGG
50.0	19-mar-1990	JQ 19	AS		1.300	UGG
60.0	19-mar-1990	JO 19	AS		4.000	UGG
70.0	19-mar-1990	J019	AS		2.200	UGG
80.0	19-mar-1990	JB 19	AS .		4.200	UGG
90.0	19-mar-1990	J019	AS		5.300	UGG
30.0	19-mar-1990	JD19	AS		0.800	UGG
5.0	13-mar-1990	J\$11	co		6.200	uge

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-/5 for 13-mar-91 (Sooleans LT and ND are excluded) Page 4

Site: BORE ALF-03-SB (continued)

SAMPLE DEPTH (fc	SAMPLE) DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
5.0	13-mar-1990	J S 11	CR	••••	48,400	UGG
5.0	13-mar-1990	JS11	au au		446.500	UGG
5.3	13-mar-1990	J S 11	NI.		43.600	UGG
5.0	13-mer-1990	J\$11	PØ		440.200	UGG
13.3	19-mar-1990	J\$11	PB		37.800	UGG
5.0	13-mar-1990	J\$11	ZM		1091.200	UGG
30.0	19-mar-1990	J\$11	ZN		92.800	UGG
10.0	19-mer-1990	J S 11	ZM		132.000	UGG
20.0	19-mar-1990	LH10	HPCL		0.010	UGG
45.0	19-mar-1990	LM19	ACET		0.020	UGG
5.0	13-mar-1990	LM19	CCL3F		0.020	UGG
50.0	19-mar-1990	LH19	MECONS		0.000	UGG
5.3	13-mar-1990	LM19	TRCLE		0.020	UGG
10.3	19-mgr-1990	LH19	TRCLE		0.000	UGG
50.0	19-mar-1990	LM19	UNKO71		0.210	UGG
50.3	19-mar-1990	LM19	UNKO76		0.020	UGG

Site: BORE ALF-04-SB

SAMPLE	SAMPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	•••••	•••••		• • • •		•••••
30.0	18-mar-1990	JD 15	SE		0.500	UGG
5.0	13-mar-1990	JD 19	A\$		23.100	UGG
10.0	18-mar-1990	4019	AS.		4.800	UGG
15.0	18-mar-1990	JD 19	AS		3.100	UGG
20.0	18-mar-1990	JO 19	AS		4.200	UGG
25.0	18-mar-1990	JD 19	AS		4.900	UGG
30.0	18-mar-1990	JD 19	AS		14.000	UGG
35.0	18-mgr-1990	J019	AS		3.900	UGG
40.0	18-mar-1990	JD 19	AS		2.300	UGG
45.0	18-mar-1990	JD 19	AS		1,800	UGG
50.0	19-mr-1990	JD 19	AS		2.600	UGG
60.0	19-mar-1990	JD 19	A\$		6.000	UGG
70.0	19	JD 19	AS.		9.000	UGG
50.0	19-mr-1990	J019	AS.		4.900	USS
85.0	19-mar-1990	JD 19	AS.		6.100	UGG
50.0	19-mar-1990	JD 19	AS		1.400	UGG
30.0	18-mr-1990	J\$11	216		91.700	UGG
85.0	19-mr-1990	J\$11	210		60.300	UGS
20.0	18-mar-1990	UH18	UMC529		0.310	UGG
45.0	18-mer-1990	UHS	UNK592		0.310	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91

Page 5

(Socieens LT and ND are excluded)

Site: BORE ALF-04-SB (continued)

SAMPLE DEPTH (fi	SAMPLE t) DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
			•••••	••••	• • • • • • • • • • • • • • • • • • • •	••••
70.0	19-mar-1990	LM19	ACET		0.020	UGG
85.0	19-mar-1990	LH19	MECONS		0.000	UGG
5.0	13-mar-1990	LM19	UMK070		0.010	UGG
85.0	19-mar-1990	LH19	UNK071		0.220	UGG
85.0	19-mar-1990	LM19	UNK076		0.030	UGG

Site: SORE CCS-01-58

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	*******		•••••	••••	• • • • • • • • • • • • • • • • • • • •	••••
15.0	13-apr-1990	99	PHENOL		0.180	UGG
25.0	13-apr-1990	99	PHENOL		0.110	UGG
60.0	13-apr-1990	99	PHENOL		4.540	UGG
70.0	13-apr-1990	99	PHENOL		4.700	UGG
5.0	14-mar-1990	JD19	AS		3.500	UGG
50.0	13-apr-1990	JD 19	AS		3.100	UGG
10.0	13-apr-1990	JD 19	AS .		4.900	UGG
15.0	13-apr-1990	JD 19	AS		4.700	UGG
20.0	13-apr-1990	JD 19	AS		2.700	UGG
25.0	13-apr-1990	JD 19	AS		10.200	UGG
30.0	13-apr-1990	JD 19	AS		8.400	UGG
35.0	13-apr-1990	JQ 19	AS		2,200	UGG
40.0	13-apr-1990	JD 19	AS		2.100	UGG
45.0	13-apr-1990	JD 19	AS		2.900	UGG
50.0	13-apr-1990	JD 19	AS		3.500	UGG
60.0	13-apr-1990	JD 19	AS		4.800	UGG
70.0	13-apr-1990	JD 19	AS		13.300	UGG
88.0	13-apr-1990	JD 19	AS		3,700	UGG
25.0	13-apr-1990	J\$11	ZN		69.600	UGG
30.0	13-apr-1990	J\$11	236		76.800	UGG
70.0	13-apr-1990	J\$11	214		92.500	UGG
5.0	14-mar-1990	LH10	CLDAN		1.040	UGG
15.0	13-apr-1990	LH10	CLDAN		0.110	UGG
5.0	14-mor-1990	LH10	HPCL		0.010	UGG
5.0	14-mer-1990	LH10	HPCLE		0.010	UGG
10.0	13-apr-1990	UI18	12EPCH		0.100	UGG
15.0	13-apr-1990	LH18	12EPCH		0.100	UGG
20.0	13-apr-1990	UI18	12EPCH		0.100	UGG
25.0	13-apr-1990	UI18	12EPCH		0.110	VCC
30.0	13-apr-1990	UH8	12EPCH		0,130	UGS
35.0	13-apr-1990	LH18	12EPCH		0.110	UQS
40.0	13-apr-1990	U118	12EPCH		0.100	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 fo: 13-mar-91 (Sooleans LT and ND are excluded) Page 6

Site: SORE CCB-01-SB (continued)

SAMPLE	SAMPLE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
DEPTH (ft) DATE	mc:mus				
45.0	13-apr-1990	LM18	12EPCH		0.110	UGG
50.0	13-apr-1990	L#18	12EPCH		0.100	UGG
60.0	13-apr-1990	LM18	12EPCH		0.120	UGG
70.0	13-apr-1990	LM18	12EPCH		0.120	UGG
58.0	13-apr-1990	LH18	12EPCH		0.230	UGG
10.0	13-apr-1990	LM18	2CHE1L		0.050	UGG
30.0	13-apr-1990	LM18	2CHE1L		0.130	UGG
10.0	13-apr-1990	LH18	2CHE10		0.050	UGG
30.0	13-apr-1990	LH18	SCHE 10		0.080	UGG
ć 0.0	13-apr-1990	LH18	UNKS33		0.110	UGG
88.0	13-apr-1990	LM18	UNKS33		0.110	UGG
10.0	13-epr-1990	LH18	UNK539		0.060	UGG
25.0	13-apr-1990	LM18	UNKS85		0.320	UGG
5.0	14-mar-1990	L#19	CCL3F		0.010	UGG
25.0	13-apr-1990	LM19	UNK170		0.010	UGG
30.0	13-apr-1990	LH19	UNK170		0.010	UGG
35.0	13-apr-1990	LN19	UNK170		0.010	UGG
40.0	13-apr-1990	LM19	UNK170		0.010	UGG
45.0	13-apr-1990	LM19	UNK 170		0.010	UGG
70.0	13-apr-1990	LM19	UNK170		0.010	UGG
88.0	13-apr-1990	LM19	UNK171		0.010	UGG
35.0	13-apr-1990	LM19	UNK175		0.010	UGG

Site: SORE CCS-02-58

SAMPLE	SAMPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOLINO	800L	CONCENTRATION	UNITS
		•••••	•••••	••••	••••••	••••
10.0	12-apr-1990	99	PHENOL		0.220	UGG
15.0	12-apr-1990	99	PHENOL		0.110	UGG
20.0	12-apr-1990	99	PHENOL		0.100	UGG
25.0	12-apr-1990	99	PHENOL		0.110	UGG
60.0	12-apr-1990	99	PHENOL		0.120	UGG
70.0	13-apr-1990	99	PHENOL		0.210	UGG
80.0	13-epr-1990	99	PHENOL		0.160	UGG
5.0	14-mar-1990	J019	AS.		2.600	UGG
20.0	12-apr-1990	JD 19	AS .		4.800	UGG
10.0	12-apr-1990	J019	AS.		4.300	UGG
15.0	12-apr-1990	JD 19	AS		4.700	UGG
20.0	12-apr-1990	JD 19	AS.		4.900	UGG
25.0	12-apr-1990	JD 19	AS.		7.700	UGG
30.0	12-apr-1990	JD 19	AS		12.200	UGG
35.0	12-apr-1990	JB 19	AS.		2.300	UGG
40.0	12-apr-1990	JD 19	AS		1.900	UGG
45.0	12-apr-1990	JD 19	AS.		21.500	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: O1-jan-75 To: 13-mar-91 Page 7

From: 01-jan-75 To: 13-mar-91 (Sociesms LT and MD are excluded)

Site: SORE CCB-02-SB (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	SCOL	CONCENTRATION	UNITS
• • • • • •	••••••	•••••	•••••			•••••
50.0	12-apr-1990	JD 19	AS		37.100	UGG
60.0	12-apr-1990	JD 19	AS		3.200	UGG
80.0	13-apr-1990	JD 19	AS		5.100	UGG
70.0	13-apr-1990	JD 19	AS		3.000	UGG
80.0	13-apr-1990	JD 19	AS		3.600	UGG
25.0	12-apr-1990	JS11	CR		22.500	UGG
35.0	12-apr-1990	JS11	CR		31.100	UGG
25.0	12-apr-1990	· JS11	MI		27.400	UGG
35.0	12-apr-1990	J\$11	NI		30.400	UGG
80.0	13-apr-1990	J\$11	PS		6.700	UGG
20.0	12-apr-1990	J\$11	ZW		56.700	UGG
25.0	12-apr-1990	J\$11	ZN		87.400	UGG
30.0	12-apr-1990	J S 11	ZN		107.800	UGG
35.0	12-apr-1990	JS11	ZN		57.000	UGG
45.0	12-apr-1990	J\$11	ZN		91.100	UGG
50.0	12-epr-1990	J\$11	ZM		73.300	UGG
60.9	12-apr-1990	J\$11	ZM		75.120	UGG
80.0	13-apr-1990	J\$11	ZN		109.400	UGG
80.0	13-apr-1990	J\$11	ZM		74.600	UGG
5.0	14-mar-1990	LM10	CLDAN		0.580	UGG
10.0	12-apr-1990	LH10	CLDAN		0.060	UGG
5.0	14-mer-1990	LH10	HPCL		0.010	UGG
5.0	14-mar-1990	LM19	CCL3F		o. o1 0	UGG
80.0	13-apr-1990	LM19	UNK170		0.010	UGG
80.0	13-apr-1990	LM19	UNK170		0.010	UGG
70.0	13-apr-1990	LM19	UNK171		0.010	UGG
80.0	13-apr-1990	LH19	UNK 176		0.010	UGG
		6717				

Site: BORE CCS-03-58

SAMPLE	SAIPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	••••••	*****	•••••	••••		
10.0	12-apr-1990	99	PHENOL		2.190	UGG
50.0	12-apr-1990	99	PHENOL		0.210	UGG
60.0	12-apr-1990	99	PHENOL		0.270	UGG
70.0	12-apr-1990	99	PHENOL		0.130	UGG
80.0	12-apr-1990	99	PHENOL		0.150	UGG
5.0	14-mar-1990	99	TOCOO		0.001	UGG
5.0	14-mer-1990	JO 19	AS		2 100	UGE
10.0	12-apr-1990	JD 19	AS.		15.:.	UGG
15.0	12-apr-1990	JD 19	AS		15.700	UGB
20.0	12-apr-1990	JD 19	AS .		6.400	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 Page 8

Site: SORE CCB-03-SB (continued)

(Socieens LT and NO are excluded)

SAMPLE DEPTH (ft	SAMPLE) DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
		•••••	•••••			••••
25.0	12-apr-1990	JD 19	AS		6.000	UGG
30.0	12-apr-1990	JD 19	AS		19.000	UGG
35.3	12-apr-1990	JD 19	AS		2.900	UGG
40.0	12-apr-1990	JD 19	AS		3.400	UGG
45.0	12-apr-1990	JD 19	AS		2.000	UGG
50.0	12-apr-1990	JD 19	AS		16.300	UGG
60.0	12-apr-1990	JD 19	AS		6.400	UGG
70.0	12-apr-1990	JD19	AS		8.000	UGG
80.0	12-epr-1990	JD 19	AS		4.200	UGG
58.0	12-apr-1990	JD 19	AS		5.700	UGG
35.0	12-apr-1990	JD 19	AS		2.000	UGG
15.0	12-apr-1990	JS11	ZM		69.000	UGG
20.0	12-apr-1990	J\$11	ZN		95.900	UGG
25.0	12-apr-1990	J\$11	ZM		64.500	UGG
30.0	12-apr-1990	J\$11	ZN		97.300	UGG
50.0	12-apr-1990	J\$11	210		127.700	UGG
70.0	12-apr-1990	J S 11	ZM		73.100	UGG
50.0	12-apr-1990	JSTT	ZN		108.400	UGG
88.0	12-apr-1990	J S 11	ZN		102.000	UGG
15.0	12-apr-1990	LM18	12EPCH		0.100	UGG
20.0	12-epr-1990	LH18	12EPCH		0.110	UGG
25.0	12-apr-1990	LH18	12EPCH		0.110	UGG
30.0	12-apr-1990	UI18	12EPCH		0.240	UGG
35.0	12-apr-1990	LM18	12EPCH		0.120	UGG
40.0	12-apr-1990	LHIS	12EPCH		0.110	UGG
45.0	12-apr-1990	LH18	12EPCH		0.110	UGG
60.0	12-apr-1990	LH18	12 5 PCH		0.230	UGG
70.0	12-apr-1990	LH18	12EPCH		0.240	UGG
80.0	12-apr-1990	LN18	12EPCH		0.240	UGG
35.0	12-apr-1990	LH18	12EPCH		0.110	UGG
10.0	12-apr-1990	LH18	MECANS		0.720	UGG
15.0	12-apr-1990	LH18	MECANS		0.310	UGG
20.0	12-apr-1990	U118	MECANS		0.110	UGS
70.0	12-apr-1990	UI18	MECANS		0.000	UGG
5.0	14-mar-1990	UIII	CCL3F		0.010	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 (Sooleans LT and ND are excluded) Page 9

Site: BORE CCB-04-SB

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••		•••••	•••••	••••	••••••	••••
90.0	12-apr-1990	99	PHEHOL		0.150	UGG
5.0	11-apr-1990	JD19	AS .		13.300	UGG
50.0	11-apr-1990	JD 19	AS		2.100	UGG
5.0	11-apr-1990	JD 19	AS		10.200	UGG
10.0	11-apr-1990	JD 19	AS		6.500	UGG
15.0	11-apr-1990	JD 19	AS		3.700	UGG
20.0	11-apr-1990	JD 19	AS		5.100	UGG
25.0	11-apr-1990	JD 19	AS		5.700	UGG
30.0	11-apr-1990	JD19	AS		13.800	UGG
35.0	11-apr-1990	JD 19	AS		6.000	UGG
40.0	11-apr-1990	JD 19	AS		3.400	UGG
45.0	11- apr-1990	JD 19	AS		1.900	UGG
50.0	11- apr -1990	JD 19	AS		2.200	UGG
60.0	11-apr-1990	JD19	AS		2.300	UGG
70.0	12- apr -1990	JD 19	AS		5.200	UGG
80.0	12-apr-1990	JD 19	AS		2.700	UGG
90.0	12-apr-1990	JD19	AS		5.700	UGG
30.0	11-apr-1990	J\$11	ZM		107.000	UGG
35.0	11-apr-1990	J S 11	214		104.700	UGG
20.0	11-apr-1990	J\$11	216		130.200	UGG
25.0	11-apr-1990	JS11	ZM		139.400	UGG
90.0	12-apr-1990	J\$11	ZM		77.200	UGG
5.0	11-apr-1990	LH18	12EPCH		0.100	UGG
50.0	11-apr-1990	LH18	12EPCN		0.090	UGG
70.0	12-apr-1990	LH18	12EPCH		0.110	UGG
80.0	12-apr-1990	LH18	12EPCH		0.120	UGG
90.0	12-apr-1990	UH18	12EPCH		0.130	UGG
70.0	12-apr-1990	L M18	SMZHXO		0.860	UGG
80.0	12-apr-1990	LM18	SM2HXO		0.820	UGG

Site: BORE CC8-05-58

SAMPLE	SAMPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	• • • • • • • • • •		•••••	••••		••••
30.0	11-apr-1990	99	PHENOL		0.270	UGG
5.0	14-mar-1990	99	TOCOO		0.001	UGG
5.0	15-mr-1990	99	10000		0.001	UGG
5.0	15-mr-1990	JD 19	AS		6.÷00	UGG
10.0	11-apr-1990	JD 19	AS.		2.800	UGG
15.0	11-apr-1990	JD 19	AS		3.300	UGG
20.0	11-apr-1990	J019	AS		3.100	UGG
25.0	11-apr-1990	JD 19	AS		1.800	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 (Socieens LT and NO are excluded)

Page 10

Site: SORE CCS-05-58 (continued)

SAMPLE	SAPLE	TEST				
DEPTH (ft	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
				••••	••••••	•••••
30.0	11-apr-1990	JB 19	AS		15.600	UGG
35.0	11-apr-1990	JD 19	AS		4.900	UGG
40.0	11-apr-1990	JD 19	A\$		3.100	UGG
45.0	11-apr-1990	JD 19	AS		1.200	UGG
50.0	11-apr-1990	JD 19	AS		2.200	UGG
60.0	11-apr-1990	JB 19	A\$		2.900	UGG
30.0	11-apr-1990	J019	AS		16.000	UGG
					TO THA	
30.0	11-apr-1990	J\$11	ZM		72.700 63.000	UGG
50.0	11-apr-1990	J\$11	ZN			UGG
30.0	11-apr-1990	J\$11	ZM		66.900	Vide
20.0	11-apr-1990	LM18	12EPCH		0.080	UGG
25.0	11-apr-1990	LM18	12EPCH		0.200	UGG
30.0	11-apr-1990	LH18	12EPCH		0.240	UGG
35.0	11-apr-1990	LM18	12EPCH		0.210	UGG
40.0	11-epr-1990	LH18	12EPCH		0.220	UGG
45.0	11-apr-1990	LN18	12EPCH		0.310	UGG
50.0	11-apr-1990	LN18	12EPCH		0.220	UGG
60.0	11-apr-1990	LM18	12EPCH		0.210	UGG
30.0	11-apr-1990	LN18	12EPCH		0.220	UGG
25.0	11-apr-1990	LM18	SM2HXQ		0.200	UGG
30.0	11-apr-1990	LM18	SM2NXO		0.240	UGG
40.0	11-apr-1990	LM18	SM2HXO		0.110	UGG
45.0	11-apr-1990	LH18	SM2HXO		0.210	UGG
50.0	11-apr-1990	LM18	SM2HXG		0.220	UGG
30.0	11-apr-1990	LM18	5M2HXO		0.220	UGG
35.0	11-apr-1990	LH18	BZEHP		2.030	UGG
35.0	11-epr-1990	LH18	C16ABE		0.520	UGG
35.0	11-apr-1990	LN18	C18ASE		0.310	UGG

Site: BORE DMO-06-58

SAMPLE	SAIPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
						••••
20.0	26-mar-1990	JD 19	A\$		5.800	UGG
25.0	26-mar-1990	JD 19	AS		3.500	UGG
30.0	26-mar-1990	JD19	A\$		1.500	UGG
35.0	26-mr-1990	JD 19	AS.		1.100	UGG
40.0	26-mar-1990	J019	AS .		6.300	UGG
45.0	26-mar-1990	J019	AS		2.500	UGB
50.0	26-mar-1990	JD19	AS		4.200	UGG
60.0	26-mr-1990	JB 19	AS		8.700	UGG
70.0	26-mar-1990	JD 19	AS		5.300	UGS
80.0	26-mar-1990	JD 19	AS		4.300	UGG
90.0	26-mar-1990	19 مد	AS		8.200	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 (Sooleans LT and ND are excluded) Page 11

Site: BORE DMO-06-SB (continued)

SAMPLE	SAIPLE	TEST				
DEPTH (ft		METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
				••••	/ 550	
95.0	26-mar-1990	JD19	AS		4.500	UGG
50.0	26-mar-1990	JD 19	AS		6.900	
10.0	26-mar-1990	JD 19	AS		5.100	UGG
15.0	26-mar-1990	JD 19	AS		17.100	UGG
10.0	26-mar-1990	J\$11	BA		82.300	UGG
15.0	26-mer-1990	J\$11	SA ·		399.800	UGG
20.0	26-mar-1990	J\$11	BA		57.000	UGG
25.0	26-mar-1990	JS11	BA .		117.900	UGG
30.0	26-mar-1990	J\$11	8A		56.000	UGG
40.0	26-mar-1990	JS11	BA		111.600	UGG
45.0	26-mer-1990	J\$11	M		133.200	UGG
50.0	26-mar-1990	J\$11	M.		207.100	UGG
60.0	26-mar-1990	J\$11	8A		102.700	UGG
70.0	26-mar-1990	J\$11	IA .		251.900	UGG
80.0	26-mer-1990	J\$11	M		53.900	UGG
90.0	26-mar-1990	JS11	M.		234.400	UGG
95.0	26-mar-1990	JS11	M		292.300	UGG
50.0	26-mer-1990	J\$11	BA		218.500	UGG
15.0	26-mar-1990	JS11	œ		29.200	UGG
15.0	26-mar-1990	J\$11	HO		2.600	UGG
70.0	26-mer-1990	J\$11	MO		3.400	UGG
50.0	26-mer-1990	J\$11	MO		6.100	UGG
15.0	26-mar-1990	JS11	PS		9.000	UGG
10.0	26-mar-1990	J\$11	٧		23.100	UGG
15.0	26-mar-1990	JS11	٧		120.500	UGG
25.0	26-mar-1990	J\$11	٧		43.100	UGG
40.0	26-mar-1990	J S 11	٧		41.000	UGG
45.0	26-mar-1990	J\$11	٧		38.700	UGG
50.0	26-mar-1990	J\$11	٧		87.900	UGG
60.0	26-mar-1990	J\$11	٧		30.400	UGG
70.0	26-mar-1990	JS11	٧		66.000	UGG
80.0	26-mar-1990	J\$11	٧		37.600	UGG
90.0	26-mar-1990	J\$11	٧		60.700	UGG
95.0	26-mar-1990	JS11	٧		65.000	UGG
50.0	26-mar-1990	J\$11	٧		84.600	UGG
15.0	26-mar-1990	JS11	211		157.900	UGG
50.0	26-mar-1990	J\$11	211		73.400	UGG
90.0	26-mar-1990	J S 11	216		72.800	UGG
95.0	26-mr-1990	J\$11	230		69.400	UGG
50.0	26-mar-1990	J\$11	211		79.200	UGG
15.0	26-mar-1990	LH18	82EMP		1.550	ugg
40.0	26-mar-1990	UH18	82EHP		1,800	UGG
70.0	26-mr-1990	UH18	82EHP		1.030	UGE
35.0	26-mar-1990	LH18	UNICS 773		0.100	UGG
40.0	26-mar-1990	LHIS	UNK614		0.110	UGG
70.0	-0-mg/ -177V	CH (4	January 19		V. 7 10	UUG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: O1-jan-75 for 13-mar-91 (Sooleans LT and ND are excluded) Page 12

Site: SORE DMD-06-SB (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
				• • • •		••••
50.0	26-mar-1990	LM19	UNKO71		0.020	UGG

Site: SORE DMO-07-58

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
		•••••		••••		
10.0	26-mar-1990	JD19	AS .		5.200	UGG
15.0	26-mar-1990	JD 19	AS		6.600	UGG
20.0	26-mar-1990	JD 19	AS		2.600	UGG
25.0	26-mar-1990	JD 19	AS		6.600	UGG
30.0	26-mer-1990	JD 19	A\$		1.300	UGG
35.0	26-mar-1990	JD 19	AS		1.500	UGG
5.0	26-mar-1990	J019	AS		18.900	UGG
45.0	29-mar-1990	JD19	A\$		3.800	UGG
50.0	29-mer-1990	J019	AS		3.700	UGG
60.0	29-mar-1990	JD 19	AS		13.900	UGG
70.0	29-mar-1990	JD19	AS		6.000	UGG
80.0	29-mar-1990	JD19	AS		6.100	UGG
90.0	29-mar-1990	J019	AS		14.400	UGG
50.0	29-mar-1990	JD19	AS		6.200	UGG
90.0	29-mar-1990	J019	AS		4.400	UGG
• •	14 1000	J S 11	SA		409.800	UGG
5.0	26-mar-1990 26-mar-1990	J\$11	M.		76.600	UGG
10.0	26-mar-1990	J\$11	EA		270.500	UGG
15.0		J\$11	6A		62.200	UGG
20.0	26-mar-1990 26-mar-1990	J211	BA		113.100	UGE
25.0	26-mar-1990		84		155.000	UGG
30.0		3 311	EA		54.400	ugg
35.0	26-mar-1990 29-mar-1990	JS11 JS11	EA		56.900	UGG
80.0	29-mar-1990	JS11	M		137.600	UGG
90.0	29-mar-1990	JS11	W .		145.400	UGG
45.0 50.0	29-mar-1990	J S 11	# H		264.700	UGB
60.0	29-mar-1990	J S 11	W		184.400	UGG
70.0	29-mar-1990	J\$11	M .		144,400	UGG
50.0	29-mar-1990	J S 11	- M		233,100	UGG
90.0	29-mar-1990	4211	M M		173,000	UGE
25.0	24-mar-1990	J211	** 0		2.200	220
50.0	29-mar-1990	J211	MO		2.500	DOC
70.0	29-mar-1990	J\$11	NO.		2.100	ugg
50.0	29-mr-1990	JS11	HC		2,300	UGE
90.0	29-mr-1990	JS11	75		64.300	UGG
5.0	26-mr-1990	J211	٧		61.500	220
15.0	26-mar-1990	JS11	Ÿ		81.700	UGS
20.0	26-mar-1990	J811	v		35.200	UGG
25.0	26-mar-1990	J211	v		37.500	UGG
43.0	40-mg/-177V	4811	•		ar 1.000	

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 (Sooleans LT and ND are excluded) Page 13

Site: BORE DMQ-07-58 (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	•••••		•••••	••••	•••••	•••••
30.0	26-mar-1990	J\$11	٧		23.900	UGG
35.0	26-mar-1990	J\$11	٧		26.000	UGG
80.0	29-mar-1990	J\$11	٧		23.100	UGG
90.0	29-mar-1990	J\$11	٧		48.800	UGG
45.0	29-mar-1990	J\$11	٧		45.700	UGG
50.0	29-mar-1990	JS11	٧		75.000	UGG
60.0	29-mar-1990	J\$11	٧		43.500	UGG
70.0	29-mar-1990	J\$11	٧		35.100	UGG
50.0	29-mar-1990	J\$11	٧		76.400	UGG
90.0	29-mar-1990	J\$11	٧		61.000	UGG
5.0	26-mar-1990	JS11	ZM		77.200	UGG
15.0	26-mar-1990	J\$11	ZM		104.700	UGG
90.0	29-mar-1990	JS11	ZM		61.800	UGG
50.0	29-mar-1990	JS11	ZM		85.300	UGG
50.0	29-mar-1990	J\$11	ZM		88.700	UGG
90.0	29-mar-1990	JS11	ZN		65.100	UGG
5.0	26-mar-1990	1405	CRHEX		1.100	UGG
10.0	26-mar-1990	LN10	HPCL		0.010	UGG
25.0	26-mar-1990	U118	82EHP		17.490	UGG
25.0	26-mar-1990	LH18	HXADOE		0. 320	UGG
5.0	26-mar-1990	LH18	UNK614		0.110	UGG
50.0	29-mar-1990	LH18	UMK614		0.090	UGG
90.0	29-mar-1990	LM19	TRCLE		0.000	UGG
35.0	26-mar-1990	LN19	UNK071		0.020	UGG
25.0	26-mar-1990	UI19	UNK071		0.020	UGG
20.0	26-mar-1990	LN19	UMK071		0.010	UGG

Site: BORE DHO-08-SE

SAMPLE DEPTH (ft)	SAMPLE DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
	•••••		••••••		•••••	•••••
25.0	27-mar - 1990	99	MPCL		0.010	UGG
10.0	27-mar-1990	J801	NG		0.100	UGG
5.0	27-mar-1990	JD19	A\$		11.400	ugg
10.0	27-mar-1990	JD 19	AS		5.500	UGG
15.0	27-mar-1990	JD 19	AS		4.200	UGG
20.0	27-mr-1990	JD 19	AS		4.100	UGG
25.0	27-mar-1990	JD 19	AS .		3.200	UGG
30.0	27-mar-1990	JD19	AS		2.200	UGG
35.0	27-mar-1990	JO 19	AS		1.800	UGG

Installation: Sierra Ordrance Depot Analytical Results for Unemical Soil From: 01-jan-75 for 13-mar-91 (Soeleans LT and ND are excluded)

Depot Page 14

Site: BORE DMG-08-58 (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft		METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	• • • • • • • • •		•••••	••••	•••••	•••••
40.0	27-mar-1990	JD 19	AS		4.400	UGG
45.0	27-mar-1990	91 OL	AS		3.700	UGG
50.0	27-mar-1990	JD19	A\$		4.700	UGG
50. 0	27-mar-1990	JD 19	AS		11.700	UGG
70.0	27-mar-1990	JD 19	AS		9.300	UGG
50.0	27-mar-1990	JD19	AS		7.400	UGG
90.0	27-mar-1990	JD19	AS		6.300	UGG
95.0	27-mar-1990	JD19	AS		2.800 4.900	UGG
50.0	27-mar-1990	JD 19	AS		7.700	000
5.0	27-mar-1990	J S 11	8A		245.800	UGG
15.0	27-mar-1990	J\$11	SA .		163.900	UGG
25.0	27-mar-1990	J\$11	BA		143.400	UGG
30.0	27-mar-1990	JS11	SA.		73.400	UGG
35.0	27-mar-1990	J S 11	SA		57.400	UGG
40.0	27-mar-1990	JS11	84		110.600	UGG
45.0	27-mar-1990	J\$11	BA		164.300	UGG
50.0	27-mar-1990	J\$11	SA		121,000	UGG
60.0	27-mar-1990	JS11	BA .		92.600	UGG
70.0	27-mr-1990	J\$11	84		128,700	UGG
90.0	27-mar-1990	J\$11	8 A		136,000	UGG
95.0	27-mar-1990	J\$11	M		203.200	UGG
50.0	27-mr-1990	JS11	EA .		138.100	UGG
50.0	27-mar-1990	JS11	110		2.400	UGG
60.0	27-mar-1990	J\$11	MO		2.300	UGG
70.0	27-mar-1990	J\$11	MO		2.200	UGG
50.0	27-mar-1990	J\$11	MO		2.300	UGG
5.0	27-mr-1990	JS11	PB		7.500	UGG
25.0	27-mar-1990	J S 11	PE		12,000	UGG
70.0	27-mar-1990	J\$11	24		13.600	UGG
90.0	27-mr-1990	JS11	PS		21.500	UGG
5.0	27-mar-1990	J\$11	٧		55.100	UGG
10.0	27-mar-1990	J S 11	٧		20.900	UGG
15.0	27-mar-1990	J\$11	٧		57.500	UGG
25.0	27-mar-1990	J S 11	V		35.800	UGG
30.0	27-mar-1990	J 8 11	٧		27.100	UGG
40.0	27-mar-1990	J 8 11	٧		36.400	UGG
45.0	27-mar-1990	J 8 11	v		38.400	UGG
50.0	27-mr-1990	J 8 11	٧		44.200	UGG
60.0	27-mr-1990	J 8 11	٧		37.000	UGG
70.0	27-mar-1990	J\$11	٧		32.700	UGG
90.0	27-mr-1990	J811	٧		40.000	UGG
95.0	27-mr-1990	J811	٧		52.900	UGE
50.0	27-mar-1990	J811	٧		58.100	UGG
5.0	27-mr-1990	J\$11	ZN		67.200	UCG
15.0	27-mar-1990	J\$11	230		68.500	UGG
45.0	27-mr-1990	J811	230		59.300	UGG
95.0	27-mr-1990	J\$11	230		64.200	UGS
			-		-	

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 for 13-mar-91 (Sooleans LT and ND are excluded) Page 15

Site: BORE DMO-08-S8 (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	800L	CONCENTRATION	UNITS
50.0	27-mar-1990	JS11	ZN	••••	58.500	UGG
15.0	27-mar-1990	LH18	12EPCH		0.110	UGG
20.0	27-mar-1990	LH18	12EPCH		0.100	UGG
35.0	27-mar-1990	LH18	12EPCH		0.080	UGG
40.0	27-mr-1990	LM18	UNK512		0.110	UGG
50.0	27-mar-1990	LM18	UWK512		0.070	UGG
60.0	27-mar-1990	LM18	UNK\$12		0.100	UGG
70.0	27-mar-1990	LH18	UNK512		0.100	UGG
80.0	27-mar-1990	LH18	UNKS12		0.100	UGG
90.0	27-mer-1990	LH18	UMK512		0.110	UGG
95.0	27-mar-1990	LH18	UNK512		0.120	UGG
50.0	27-mar-1990	LM18	UNK512		0.110	UGG
35.0	27-mar-1990	LM19	MEC6H5		0.000	UGG
70.0	27-mar-1990	LH19	MECAH5		0.000	UGG
5.0	27-mar-1990	LM19	TRCLE		0.020	UGG
15.0	27-mar-1990	LN19	UNICO71		0.010	UGG
10.0	27-mar-1990	LH19	UNK071		0.020	UGG
5.0	27-mar-1990	LH19	UNK071		0.010	UGG

Site: BORE DMO-09-SB

SAMPLE	SAMPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••			••••
5.0	28-mar-1990	JD 19	AS		14.100	UGG
10.0	28-mar-1990	JD 19	AS		6.600	UGG
15.0	28-mar-1990	JD 19	AS		7.100	UGG
20.0	28-mar-1990	JD 19	AS		2.900	UGG
25.0	25-mar-1990	J019	AS		1.700	UGG
30.0	28-mar-1990	JD 19	AS		2.700	UGG
35.0	28-mar-1990	JQ 19	AS		1.600	UGG
40.0	28-mar-1990	JO 19	AS.		2.600	UGG
45.0	28-mar-1990	JQ 19	AS .		3.400	UGG
50.0	28-mor-1990	JD19	AS		7.500	UGG
60.0	28-mr-1990	JD 19	AS .		5.800	UGG
70.0	28-mar-1990	JD 19	AS		14.500	UGG
80.0	28-mar-1990	JQ 19	AS		3.500	UGG
90.0	28-mar-1990	JD 19	AS		4.300	UGG
50.0	28-mar-1990	JD 19	AS		7.500	UGG
5.0	28-mar-1990	J\$11	M		277.500	UGG
10.0	28-mar-1990	J 811	BA		105.800	UGG
15.0	28-mar-1990	J S 11	BA		139.100	UGG
25.0	28-mar-1990	J\$11	BA		135.100	UGG
30.0	28-mar-1990	J\$11	BA		81.700	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 (Booleans LT and MD are excluded) Page 16

Site: BORE DMO-09-SB (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	SOOL	CONCENTRATION	UNITS
				••••		••••
40.0	28-mar-1990	J\$11	SA.		90.900	UGG
45.0	28-mar-1990	J\$11	BA		109.300	UGG
50.0	28-mar-1990	JS11	BA		181.300	UGG
60.0	28-mer-1990	JS11	BA .		78.400	UGG
70.3	28-mar-1990	J\$11	8A		223.600	UGG
80.0	28-mar-1990	J\$11	BA		61.800	UGG
90.0	28-mar-1990	JSTT	EA		196.500	UGG
50.0	28-mar-1990	JS11	8A		99.900	UGG
50.0	28-mar-1990	J\$11	MO		2.800	UGG
70.0	28-mar-1990	J\$11	MO		4.700	UGG
50.0	28-mar-1990	J\$11	MO		2.300	UGG
25.0	28-mar-1990	J\$11	PS		19.200	UGG
30.0	28-mar-1990	J\$11	PS.		21.800	UGG
50.0	28-mar-1990	1511	P6		7.700	UGG
90.0	28-mar-1990	JS11	PE		8.700	UGG
5.0	28-mer-1990	J S 11	٧		53.500	UGG
10.0	28-mar-1990	1511	٧		30.200	UGG
15.0	28-mar-1990	J\$11	٧		52.900	UGG
25.0	28-mar-1990	JS11	٧		44.500	UGG
30.0	28-mar-1990	J\$11	٧		36.300	UGG
35.0	28-mer-1990	1211	٧		22.600	UGG
40.0	28-mar-1990	JS11	٧		26.700	UGG
45.0	28-mar-1990	JS11	٧		35.900	UGG
50.0	25-mar-1990	J S 11	٧		51.500	UGG
60.0	28-mar-1990	J S 11	٧		33.500	UGG
70.0	28-mar-1990	JS11	٧		57.600	UGG
80.0	28-mar-1990	J S 11	٧		49.400	UGG
90.0	28-mar-1990	J\$11	٧		60.600	UGG
50.0	28-mar-1990	J S 11	٧		35.100	UGG
5.0	28-mar-1990	J S 11	291		72.200	UGG
25.0	28-mar-1990	J\$11	ZM		58.500	UGG
50.0	28-mer-1990	J\$11	216		60.900	UGG
90.0	28-mar-1990	J\$11	ZN		64.900	UGG
5.0	28-mar-1990	2071	CRHEX		0.700	UGG
5.0	28-mar-1990	U118	UNK512		0.220	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil

From: 01-jan-75 To: 13-mar-91 (Booleans LT and NO are excluded)

Site: BORE DMO-10-SB

SAMPLE	SAIPLE	TEST				
DEPTH (ft	DATE	METHOD	COMPOUND	800L	CONCENTRATION	UNITS
• • • • •		•••••	•••••		*********	*****
90.0	29-mar-1990	J 801	HG		0.100	UGG
					9.300	ugg
5.0	28-mar-1990	1019 91 QL	AS AS		7.500 3.500	UGG
50.0	28-mar-1990 28-mar-1990	10 19 91 0L	2A 2A		8.900	UGG
10.0 15.0	28-mar-1990	JD 19	AS		10.400	UGG
20.0	28-mar-1990	J0 19	AS		6,500	ucc
25.0	28-mar-1990	JD 19	AS		1.300	UGG
30.0	28-mar-1990	JD19	AS		1,400	UGG
40.0	28-mar-1990	JD 19	AS		10.000	UGG
45.0	28-mar-1990	JD 19	AS		2.900	UGG
50.0	28-mar-1990	JD 19	AS		4.000	UGG
80.0	29-mar-1990	JD19	AS		4.200	UGG
60.0	29-mar-1990	JD 19	AS		10.600	UGG
70.0	29-mar-1990	JD 19	AS		2.800	UGG
80.0	29-mar-1990	JD 19	AS		4.400	UGG
90.0	29-mar-1990	JD 19	AS		11.000	UGG
5.0	28-mar-1990	JS11	BA		260.900	UGG
10.0	28-mar-1990	J\$11	SA.		148.300	UGG
15.0	28-mar-1990	J\$11	BA		247.500	UGG
20.0	28-mar-1990	JS11	BA		73.800	UGG
30.0	28-mar-1990	J\$11	BA		75.600	UGE
40.0	28-mar-1990	J S 11	BA		140.400	UGG
45.0	28-mar-1990	J\$11	BA		118.400	UGG
50.0	·28-mer-1990	J S 11	BA		206.400	UGG
50.0	28-mar-1990	J\$11	SA.		167.200	UGG
60.0	29-mar-1990	JS11	BA		488.600	UGG
70.0	29-mar-1990	J S 11	BA		208.400	UGG
80.0	29-mar-1990	J\$11	BA		95.500	UGG
90.0	29-mar-1990	J\$11	M.		196.700	UGG
80.0	29-mar-1990	J\$11	M 		153.300	UGG
5.0	28-mar-1990	J\$11	MO		2.000	UGG
15.0	28-mar-1990	J S 11	HO		5.300 4.100	UGG
40.0	28-mar-1990	J 8 11	MO ****		3.500	UGG
60.0	29-mar-1990	J 8 11	HG		16.100	UGG
5.0	28-mar-1990	J811 J211	PB PB		9.600	UGG
40.0	28-mar-1990 29-mar-1990		70		17.000	UGG
60.0 90.0	29-mar-1990	J811 J811	70		18.100	UGG
5.0	28-mar-1990	J\$11	v		49.900	UGG
10.0	28-mar-1990	JS11	v		34.700	UGG
15.0	28-mar-1990	JS11	Ÿ		66.300	UGG
20.0	28-mar-1990	JS11	Ÿ		24.100	UGG
30.0	28-mar-1990	1121	Ÿ		32.500	ugg
40.0	28-mar-1990	J\$11	v		49.400	UGG
45.0	28-mar-1990	J\$11	Ÿ		37.000	uer
50.0	28-mar-1990	J211	Ÿ		55.500	UG
		••••	•			

Page 17

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91

Page 18

(Booleans LT and NO are excluded)

Site: SORE DMO-10-SB (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
				• • • •		••••
50.0	28-mar-1990	JST1	٧		51.100	UGG
60.0	29-mar-1990	J S 11	٧		107.400	UGG
70.0	29-mar-1990	J S 11	٧		68.700	UGG
80.0	29-mar-1990	J\$11	٧		47.000	UGG
90.0	29-mar-1990	JS11	٧		70.400	UGG
80.0	29-mar-1990	J\$11	V		55.800	UGG
5.0	28-mar-1990	JS11	ZN		141.700	UGG
15.0	28-mar-1990	J\$11	ZN		73.900	UGG
50.0	28-mar-1990	J\$11	211		59.100	UGG
60.0	29-mar-1990	J\$11	ZX		10 8.200 67.400	UGG
70.0	29-mar-1990	J\$11	214		63.600	UGG
90.0	29-mar-1990 29-mar-1990	JS11 JS11	ZN ZN		58.500	UGG
80.0	53-WEL- 1330	3311	2M		30.300	700
5.0	28-mar-1990	JYGZ	CRHEX		1.200	UGG
10.0	28-mar-1990	LH10	HPCL		0.010	UGG
5.0	28-mar-1990	LN18	12EPCH		0.100	UGG
15.0	28-mar-1990	LMTS	82EHP		0.920	UGG
5.0	28-mar-1990	LM18	TCLEA		0.210	UGG
5.0	28-mar-1990	LM18	UNK536		0.100	UGG
5.0	28-mar-1990	U118	UMK538		0,100	UGG
5.0	28-mar-1990	LH18	UNIC556		0,1 00	UGG
5.0	28-mer-1990	UH18	UNIC583		0.520	UGG
60.0	29-mar-1990	LH18	UNK589		0.900	UGG
70.0	29-mar-1990	LM18	UNK589		0.700	UGG
80.0	29-mar-1990	LH18	UNK589		0.210	UGG
90.0	29-mar-1990	LM18	UNICS89		0.120	UGG
15.0	28-mar-1990	LH18	UNK614		0.100	UGG
10.0	28-mar-1990	LH18	UNK641		0.090	UGG
10.0	28-mar-1990	LH18	UNK645		0.310	UGG
15.0	28-mar-1990	LM18	UNK648		0.770	UGG
60.0	29-mar-1990	U119	CH2CL2		0.210	UGG
70.0	29-mar-1990	LH19	CH2CL2		0.030	UGG
5.0	28-mar-1990	LH19	TRCLE		0.010	UGG
60.0	29-mar-1990	UH19	TRCLE		0.220	UGS
70.0	29-mar-1990	UN19	TRCLE		0.090	UGS
90.0	29-mar-1990	LH19	TRCLE		0.020	UGG
60.0	29-mar-1990	LH19	UNK129		0.030	UGG

Installation: Sierra Ordnence Depot Analytical Results for Chemical Soil From: 01-jan-75 fo: 13-mar-91 (Sooleans LT and ND are excluded) Page 19

Site: BORE DMO-11-58

SAMPLE	SAMPLE	TEST				
DEPTH (ft	DATE (METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	•••••	•••••	•••••			****
45.0	30-mar-1990	JD 19	AS .		2.600	UGG
5.0	30-mer-1990	JD 19	AS		11.000	UGG
10.0	30-mer-1990	JD 19	AS		9.200	UGG
15.0	30-mar-1990	J019	AS		5.200	UGG
20.0	30-mar-1990	JD 19	A\$		8.400	UGG
25.0	30-mer-1990	JD19	AS		8.100	UGG
30.0	30-mar-1990	JD 19	AS		2.700	UGG
35.0	30-mar-1990	JD19	AS		9.300	UGG
40.0	30-mar-1990	JD19	AS		5.100 3.200	UGG
45.0	30-mar-1990	JD19	AS AS		3.200 2.700	UGG UGG
50.0	30-mar-1990 30-mar-1990	JD 19 JD 19	AS AS		6,100	UGG
60.0			AS AS		3.200	UGG
70.0 80.0	30-mer-1990 30-mer-1990	JD 19 JD 19	AS		4.300	UGG
90.0	30-mar-1990	JD 19	AS		3.400	UGG
90.0	20-MBL-1330	30 17	n a		3.400	Udd
5.0	30-mar-1990	J\$11	SA.		257.300	UGG
10.0	30-mar-1990	JS11	BA		224.800	UGG
15.0	30-mr-1990	J\$11	BA .		302,200	UGG
20.0	30-mar-1990	J\$11	84		130,100	UGG
25.0	30-mer-1990	J\$11	BA		220,200	UGG
30.0	30-mar-1990	J\$11	BA		120.900	UGG
40.0	30-mar-1990	J\$11	BA		87,000	UGG
45.0	30-mar-1990	J\$11	BA		203.900	UGG
50.0	30-mar-1990	J 811	BA		64.400	UGG
60.0	30-mar-1990	J\$11	BA		135.300	UGG
70.0	30-mar-1990	J211	BA		232.000	UGG
80.0	30-mar-1990	J S 11	BA		58.600	UGG
90.0	30-mar-1990	J\$11	BA		85.800	UGG
45.0	30-mer-1990	J\$11	BA		253.700	UGG
5.0	30-mar-1990	J\$11	MO		1.900	UGG
15.0	30-mar-1990	J211	MO		2.100	UGG
20.0	30-mar-1990	J 8 11	MO		3.700	UGG
25.0	30-mar-1990	J\$11	MO		2.200	UGG
60.0	30-mar-1990	J\$11	HD		2.500	UGG
70.0	30-mer-1990	J\$11	HD		2.200	UGG
5.0	30-mar-1990	J 8 11	PS		14.400	UGG
10.0	30- mar-1990	J\$11	PB		10 <i>.7</i> 06	UGG
15.0	30-mar-1990	J 8 11	PB		9.700	UGG
20.0	30-mar-1990	J 8 11	PB		4.100	UGG
5.0	30-mar-1990	J\$11	٧		43.300	UGG
10.0	30-mar-1990	J 211	٧		4 300	UGG
15.0	30-mar-1990	J\$11	٧		100.500	UGG
20.0	30-mar-1990	J811	٧		50.600	UGG
25.0	30-mer-1990	J\$11	٧		74.000	UGG
30.0	30-mar-1990	J\$11	٧		35.300	UGS
40.0	30-mar-1990	J\$11	٧		29.600	UGG
45.0	30-mar-1990	J811	٧		54.300	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chamical Soil From: 01-jan-75 To: 13-mar-91 (Booleans LT and HD are excluded)

Site: SORE DMO-11-SB (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (fi		METHOD	COMPOUND	SOOL	CONCENTRATION	UNITS
			******	••••	***********	••••
50.0	30-mar-1990	JS11	٧		35.900	UGG
60.0	30-mar-1990	J\$11	٧		68,000	UGG
70.0	30-mar-1990	J\$11	٧		79.500	ugg
50.0	30-mar-1990	J\$11	٧		53.700	UGG
90.0	30-mar-1990	J\$11	¥		30.500	UGG
45.0	30-mer-1990	J\$11	٧		63.400	UGG
10.0	30-mgr-1990	J S 11	ZN		<i>54.7</i> 00	UGG
15.0	30-mar-1990	J\$11	ZM		125.800	UGG
25.0	30-mar-1990	J\$11	ZN		66.600	UGG
45.0	30-mar-1990	J S 11	ZN		68.900	UGG
70.0	30-mar-1990	J\$11	ZN		75.600	UGG
45.0	30-mar-1990	J\$11	ZN		79.000	UGG
15.0	30-mar-1990	LH10	ALDEN		0.060	
15.0	30-mer-1990	LHIO	PP000		2.230	UGG
15.0	30-mr-1990	LN10	PPOOE		0.020	UGG
15.0	30-mar-1990	LHIG	PPOOT		2.560	UGG
20.0	30-mar-1990	LH10	PPOOT		0.010	
	33		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.019	UGG
15.0	30-mar-1990	LH18	120CL8		76.630	ucc
50.0	30-mar-1990	LH18	12EPCH		0.110	UGG
90.0	30-mar-1990	LH18	12EPCH		0.110	UGG
15.0	30-mar-1990	LH18	140CLB		23.600	UGG
15.0	30-mar-1990	LH18	24016.0		22.500	UGS
15.0	30-mar-1990	13418	277490		44.990	UGG
20.0	30-mar-1990	LH18	271490		2.100	UGG
25.0	30-mar-1990	LN18	277490		0.350	UGG
15.0	30-mar-1990	LH18	C12		5.620	UGG
15.0	30-mar-1990	LM18	C13		112.490	UGG
20.0	30-mer-1990	LH18	C13		1.050	UGG
15.0	30-mar-1990	LH18	C14		56.240	UGG
20.0	30-mar-1990	LH18	C14		2.100	UGG
25.0	30-mar-1990	LH18	C14		0.120	UGG
15.0	30-mr-1990	LH18	C15		112.490	UGG
20.0	30-mar-1990	LN18	C15		2.100	UGG
25.0	30-mer-1990	LH18	C15		0.470	UGG
15.0	30-mer-1990	LH18	C16		56.240	UGS
20.0	30-mar-1990	LH18	C16		2.100	UGG
25.0	30-mr-1990	LH18	C16		0.700	UGG
15.0	30-mar-1990	LH18	C17		56.240	UGG
20.0	30-mar-1990	LH18	C17		3.150	UGG
25.0	30-mar-1990	LH18	C17		0.590	UGG
25.0	30-mar-1990	LH18	C18		0.230	UGG
15.0	30-mr-1990	LH18	C19		33.750	UGG
25.0	30-mr-1990	LH18	C19		0.350	UGG
15.0	30-mar-1990	LM18	C20		22.500	UGG
20.0	30-mar-1990	LH18	C20		1.050	UGE
25.0	30-mr-1990	LHTE	C50		0.230	UBB

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 (Scoleans LT and ND are excluded)

Site: SORE DMO-11-58 (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft)		METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
			•••••	••••	**********	••••
50.0	30-mar-1990	LM18	CHONE		0.530	UGG
90.0	30-mer-1990	LH18	MECANS		0.110	UGG
50.0	30-mar-1990	L#18	PHENOL		1.820	UGG
45.0	30-mar-1990	LM18	PHENOL		0.670	UGG
15.0	30-mar-1990	LH18	UMK539		22.500	UGG
20.0	30-mer-1990	LN18	UNIC542		0.420	UGG
15.0	30-mer-1990	LM18	UNKS45		39.370	UGG
15.0	30-mer-1990	LM18	UMC552		33.750	UGG
15.0	30-mar-1990	UN18	UNK\$58		16.870	UGG
15.0	30-mar-1990	LH18	UMK567		28.120	UGG
	30-mar-1990	LM18	UNK\$67		0.320	UGG
•	30-mar-1990	L#18	UNICS74		22.500	UGG
	30-mar-1990	LN18	UNK578		0.110	UGG
	30-mar-1990	LM18	UNK579		16.870	UGG
	30-mar-1990	LN18	UNICS 79		0.320	UGG
• • •	30-mar-1990	LH18	UNKS80		39.370	UGG
	30-mar-1990	LH18	UNKS80		0.210	UGG
	30-mar-1990	LN18	UNK581		0.950	UGG
25.0	30-mar-1990	LH18	UNK581		0.120	UGG
	30-mar-1990	LH18	UNKS86		0.210	UGG
	30-mar-1990	LM18	UNKS87		0.320	UGG
5.0	30-mer-1990	LH18	UNKS89		0.100	UGG
	30-mar-1990	L#18	UNKS89		0.090	UGG
	30-mer-1990	LN18	UNKS89		0.090	UGG
	30-mer-1990	LM18	UMK392		28.120	UGG
* '	30-mer-1990	LH18	UNK592		0.230	UGG
	30-mer-1990	LM18	UNK601		28.120 0.630	UGG
20.0	30-mar-1990	LH18	UNK601			UGG
20.0	30-mr-1990	UI18	UNK606		2.1 00 0.210	UGG
20.0	30-mr-1990	U118	UNK615		*	UGG
20.0	30-mar-1990	LH18	UNK616		0.840	UGG
25.0	30-mr-1990	LN18	UNK616		0.230	UGG
20.0	30-mr-1990	LH18	UNK623		0.740	UGG
25.0	30-mar-1990	LH18	UNK623		0.230	UGG
	70 1000		*****			ugg
15.0	30-mer-1990	LH19	111705	GT	1.000 3.940	UGG
15.0 15.0	30-mar-1990 30-mar-1990	UN19 UN19	113MCH 110CE		0.160	220
15.0	30-mar-1990	LH19	120CLE		0.110	UGG
15.0	30-mar-1990	U119	120CLP		0.050	UGG
15.0	30-mar-1990	U119	CANA		1.100	UGG
25.0	30-mar-1990	LH19	CH2CL2		0.010	UGG
15.0	30-mar-1990	LH19	CH2CL2		0.570	UGG
15.0	30-mr-1990	U119	CHCL3		0.050	UGG
15.0	30-mar-1990	U19	CL 282		224.970	UGG
15.0	30-mar-1990	LH19	CLCANS	GT	1.000	UGG
15.0	30-mar-1990	LH19	ETCANS	GT	1.000	UGG
15.0	30-mar-1990	LH19	MECANS	GT	1.000	USE
13.4		UT 17	-E	41	1.000	V-V-V-

Page 21

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 (Booleans LT and ND are excluded) Page 22

Site: SORE DMG-11-SB (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft)	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
				••••		*****
15.0	30-mer-1990	L#19	MECYPE		0. 560	UGG
15.0	30-mar-1990	LH19	TCLEA	GT	1.000	UGG
15.0	30-mer-1990	LN19	. TCLEE	GT	1.000	UGG
25.0	30-mar-1990	LH19	TRCLE		0.030	UGG
15.0	30-mer-1990	LH19	TRCLE	GT	1.000	UGG
5.0	30-mer-1990	LH19	UNKQ76		0.010	UGG
25.0	30-mer-1990	LH19	UNK092		0.010	UGG
30.0	30-mer-1990	LH19	UNKO92		0.020	UGG
15.0	30-mer-1990	LH19	UNKO94		0.390	UGG
15.0	30-mer-1990	LH19	UNK098		1.120	UGG
15.0	30-mar-1990	LH19	UNK 103		0.560	UGG
15.0	30-mer-1990	LM19	UNK115		2.250	UGG
50.0	30-mer-1990	L#19	UNK128		0.010	UGG
60.0	30-mar-1990	LH19	UNK128		0.020	UGG
15.0	30-mer-1990	LM19	UNKTZB		0.560	UGG
15.0	30-mar-1990	LN19	UNK138		3.370	UGG
15.0	30-mar-1990	LH19	UNK143		0.560	UGG
15.0	30-mer-1990	LH19	XYLEN	GT	1.000	UGG

Site: SORE DMO-12-58

SAMPLE	SAMPLE	TEST				
GEPTH (fo) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
				••••		
5.0	20-mer-1990	J019	AS .		22.700	UGG
10.Q	20-mar-1990	JD 19	AS .		3.900	UGG
15.0	20-mar-1990	JD 19	A\$		6.300	UGG
20.0	20-mer-1990	JD 19	AS .		6.200	UGG
25.0	20-mar-1990	JD 19	AS		1.600	UGG
30.0	20-mar-1998	<i>J</i> 019	AS		4.200	UGG
35.0	20-mar-1990	JD 19	AS .		1.800	UGG
40.0	20-mar-1990	JD 19	AS		9.300	UGG
45.0	20-mar-1990	JD 19	AS .		3.900	UGG
50.0	20-mar-1990	JD 19	AS		7.800	UGG
60.0	20-mar-1990	JD 19	AS		4.000	UGS
70.0	20-mar-1990	JD 19	AS		4.100	UGG
80.0	20-mar-1990	J019	AS		4.500	UGG
90.0	20-mar-1990	JD 19	AS		4.900	UGG
95.0	20-mar-1990	JD 19	AS		3.700	UGG
20.0	20-mr-1990	JO19	AS		4.600	UGG
5.0	20-mar-1990	J\$11	BA		332.200	UGG
10.0	20-mar-1990	J 8 11	BA		69.400	uce
15.0	20-mr-1990	J 8 11	BA .		121.600	UGG
20.0	20-mer-1990	J\$11	EA		111.300	UCG
25.0	20-mar-1990	J\$11	EA .		84.100	UGG
40.0	20-mar-1990	J 811	8A		221.300	UGG

Page 23

Site: BORE DNO-12-58 (continued)

SAMPLE	SAMPLE	TEST				
06PTH (t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	LINETS
•••••	••••••	•••••			********	
45.0	20-mer-1 990	J\$11	BA		159.800	UGG
50.0	20-mar-1990	J\$11	M		200.200	UGG
20.0	20-mar-,1 990	J211	BA		53.500	UGG
60.0	20-mar-1 990	J\$11	SA.		297.600	UGG
70.0	20-mar-1 990	J\$11	M		141.800	UGG
80.0	20-mer-1990	J\$11	BA .		76.800	UGG
90.0	20-mer-1990	J\$11	BA		153.700	UGG
95.0	20-mar-1990	J\$11	BA		353.900	UGG
5.0	20-mar-1990	J\$11	MO		2.300	UGG
20.0	20-mar-1990	JS11	MO		2.700	UGG
40.0	20-mer-1990	J\$11	MO		2.700	UGG
50.0	20-mar-1990	J\$11	#0		2.200	UGG
40.0	20-mer-1990	J\$11	PS.		22.300	UGG
5.0	20-mar-1990	J\$11	٧		39.500	UGG
10.0 15.0	20-mar-1990	J\$11	٧		23.200	UGG
20.0	20-mar-1990 20-mar-1990	J S 11	٧		34.000	UGG
25.0		J\$11	V		35.400	UGG
40.0	20-mar-1990	J\$11	٧		28.100	UGG
45.0	20-mar-1990 20-mar-1990	J\$11	V		63.000	ugg
50.0	20-mar-1990	J\$11	V		40.800	UGG
20.0		J\$11	V		55.700	ugg
60.0	20-mar-1990 20-mar-1990	J\$11	V		22.500	ugg
70.0	20-mar-1990	J\$11	V		82.000	UGG
80.0	20-mar-1990	J\$11	٧		50.900	UGG
90.0	20-mar-1990	J\$11	٧		47.400	UGG
95.0	20-mar-1990	J\$11	٧		56.500	UGG
40.0	20-mar-1990	J\$11 J\$11	٧		82.700	UGG
50.0	20-mar-1990	J\$11	2N		69.800	UGG
60.0	20-mar-1990	J\$11	ZN		67.600	UGG
90.0	20-mar-1990	J\$11	29)		85.800	UGG
95.0	20-mar-1990		ZN		64.000	UGG
,,	70.1001 133A	J 8 11	231		93.600	UGG
60.0	20-mar-1990	UITS	12EPCH		0.940	
70.0	20-mar-1990	LHIS	128PCH		0.240	UGG
80.0	20-mar-1990	LH18	12EPCH		0.230	UGG
90.0	20-mar-1990	LHIS	12EPCH		0.210	UGG
95.0	20-mar-1990	UNS	126PCH		0.110 0.250	UGG
15.0	20-mar-1990	LINS	UNIXA14		0.210	UGG
•	· · · · · · · · · · · · · · · · · · ·				4.210	UGG
40.0	20-mar-1990	LHIP	ACET		0.020	UGG
40.0	20-mar-1990	LM19	82CL 88		0.030	UGG
45.0	20-mar-1990	LHIP	82CL81		0.020	UGE
60.0	20-mar-1990	LH19	VSCFEE		0.120	UGG
5.0	20-mar-1990	LN19	MECANS		0.006	UGG
10.0	20-mar-1990	LH19	PECANS		0.000	UGG
15.0	20-mar-1990	U119	MECANS		0.000	UGG
20.0	20-mar-1990	LH19	MECANS		0.000	UGG
					T. 500	

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 (Booleans LT and ND are excluded)

Page 24

Site: BORE DMQ-12-SB (continued)

SAMPLE CEPTH (ft)	SAMPLE DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
				• • • •		
5.0	20-mar-1990	LN19	UNKQ71		0.110	UGG
	20-mar-1990	LN19	UNK071		0.110	UGG
15.0	20-mar-1990	LN19	UHK071		0.210	UGG
20.0	20-mar-1990	LH19	UNK071		0.100	UGG
5.0	20-mar-1990	LM19	UNK076		0.010	UGG
10.0	20-mar-1990	LN19	UMKQ76		0.010	UGG
15.0	20-mar-1990	LN19	UNKO76		0.020	UGG
20.0	20-mer-1990	LH19	UNKO76		0.010	UGG

Site: SORE DMO-13-58

SAMPLE	SAMPLE	TEST				
DEPTH (ft)		METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
		 19	AS		19.200	UGG
5.0	20-mar-1990	JU 19	AS		2,400	UGG
10.0	20-mer-1990	JD 19	AS		10.300	UGG
15.0	20-mar-1990 20-mar-1990	JD 19	AS		3,600	UGG
20.0 25.0	20-mar-1990	JD 19	AS		3,100	UGG
30.0	20-mar-1990	JD 19	AS		3.400	UGG
35.0	20-mar-1990	JD 19	AS.		1.200	UGG
40.0	20-mar-1990	JD 19	AS		8.000	UGE
45.0	20-mar-1990	JD 19	AS		3,100	UGG
50.0	20-mar-1990	JD 19	AS		3.500	UGG
60.0	20-mar-1990	JD 19	AS		4.200	UGS
70.0	20-mar-1990	4019	AS		8.300	UGG
80.0	20-mar-1990	19 مد	AS		8,100	UGG
90.0	20-mar-1990	JD 19	AS		8.300	UGG
95.0	20-mar-1990	JD 19	AS		2.900	UGG
50.0	20-mar-1990	J019	AS		3.200	UGG
5.0	20-mer-1 990	J\$11	BA		415.000	UGG
15.0	20-mar-1990	J\$11	BA		383.600	UGG
20.0	20-mer-1990	J\$11	BA		61.100	UGG
25.0	20-mar-1990	J\$11	BA		123.200	UGG
40.0	20-mer-1990	J S 11	BA		174.900	UGG
45.0	20-mar-1990	J 8 11	BA		144.900	UGG
50.0	20-mar-1990	J 8 11	BA		120.300	UGG
60.0	20-mar-1990	J 8 11	BA		308.400	UGG
70.0	20-mar-1990	JS11	BA		205.000	UGG
50.0	20- mr-1990	J S 11	BA		122.800	UGE
80.0	20-mr-1990	J S 11	BA		147.200	UGE
90.0	20-mor-1990	J 8 11	M		239.700	UGG
95.0	20-mar-1990	J 8 11	M		385.100	UGS
5.0	20-mar-1990	J811	110		3.500	UGS
15.0	20-mar-1990	J S 11	140		2.700	UGG
40.0	20-mar-1990	J\$11	140		2.900	uce

Installation: Sierra Ordnence Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 (Sooleans LT and NO are excluded) Page 25

Site: SORE DMG-13-SE (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft.	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••		*****				•••••
70.0	20-mar-1990	JS11	HO		3.400	UGG
15.0	20-mer-1990	J\$11	PS		18.200	UGG
95.0	20-mar-1990	J\$11	PB		12.000	UGG
5.0	20-mar-1990	J S 11	٧		67.200	UGG
15.0	20-mar-1990	JS11	٧		108.100	UGG
20.0	20-mar-1990	J\$11	٧		23.700	UGG
25.0	20-mar-1990	J\$11	٧		43.000	UGG
40.0	20-mar-1990	J\$11	٧		49.300	UGG
45.0	20-mar-1990	J\$11	٧		44.800	UGG
50.0	20-mar-1990	J\$11	٧		28.500	UGG
60.0	20-mar-1990	JS11	٧		80.700	UGG
70.0	20-mar-1990	J\$11	٧		44.200	UGG
50.0	20-mar-1990	J\$11	٧		44.500	UGG
80.0	20-mar-1990	J\$11	٧		65.000	UGG
90.0	20-mar-1990	J\$11	٧		60.000	UGG
95.0	20-mar-1990	J\$11	٧		86.900	UGG
5.0	20-mar-1990	J\$11	ZM		80.800	UGG
15.0	20-mar-1990	J\$11	211		154.400	UGG
40.0	20-mar-1990	J\$11	ZM		58.200	UGG
45.0	20-mar-1990	J\$11	ZM		58.100	UGG
50.0	20-mar-1990	J\$11	234		84.200	UGG
80.0	20-mar-1990	J\$11	210		68.300	UGG
90.0	20-mar-1990	J\$11	ZM		90.200	UGG
95.0	20-mar-1990	J\$11	ZM		99.000	UGG
10.0	20-mar-1990	LH10	MPCL		0.010	UGG
70.0	20-mar-1990	LH18	12EPCH		0.220	UGG
30.0	20-mar-1990	LN18	12EPCH		0.230	UGG
95.0	20-mar-1990	LH18	12EPCN		0.240	UGG
70.0	20-mar-1990	LN19	SSCFEE		0.010	UGG
25.0	20-mar-1990	UN19	UMK055		0.010	UGG
50.0	20-mar-1990	LN19	UNKOSS		0.020	UGG
50.0	20-mar-1990	LH19	UNK055		0.010	UGS

Site: BORE DSS-01-MA

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	••••••	•••••	*******	••••		• • • • •
0.0	03-mar-1990	JD19	AS		3.400	UGG
5.0	03-mar-1990	JO 19	AS		4.600	UGG
13.0	03-mar-1990	JD19	AS		17.800	UGG
1.0	03-mar-1990	JS11	3 A		347.500	UGG
5.0	03-mar-1990	J S 11	54		472.000	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 (Sooleans LT and ND are excluded) Page 26

Site: SORE DSB-01-MMA (continued)

SAMPLE DEPTH (ft	SAMPLE) DATE	TEST METHOD	COMPOUNO	800L	CONCENTRATION	UNITS
				••••		••••
13.3	03-mer-1990	JS11	BA		373.400	UGG
13.0	03-mar-1990	J\$11	CR		31.000	UGG
13.0	03-mar-1990	J\$11	HO		4.000	UGG
1.0	03-mer-1990	J\$11	P S		7.800	UGG
1.3	03-mar-1990	J\$11	٧		45.100	UGG
5.0	03-mer-1990	J\$11	٧		130.200	UGG
13.0	03-mer-1990	J\$11	٧		100.900	UGG
5.0	03-mar-1990	J\$11	ZN		73.500	UGG
13.0	03-mar-1990	J\$11	ZN		84.200	UGG

Site: BORE DS8-02-MAA

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	800L	CONCENTRATION	UNITS
			•••••	••••		
1.0	04-mar-1990	JD19	AS		2.100	UGG
5.0	04-mer-1990	JD 19	AS .		2.300	UGG
35.0	04-mer-1990	JD19	AS		3.200	UGG
40.0	04-mer-1990	J019	AS		12.500	UGG
1.0	04-mar-1990	J\$11	M.		436.700	UGG
5.0	04-mar-1990	J\$11	BA		198.300	UGG
35.0	04-mar-1990	J\$11	BA		72.900	UGG
40.0	04-mar-1990	JS11	BA		626.300	UGG
1.0	04-mar-1990	1 511	PE		8.500	UGG
1.0	04-mar-1990	J\$11	٧		54.500	UGG
5.0	04-mar-1990	J\$11	٧		42.400	UGG
35.0	04-mar-1990	J\$11	٧		44.900	UGG
40.0	04-mer-1990	J\$11	٧		115.800	UGG

Site: SORE DS8-04-MA

SAMPLE DEPTH (ft	SAMPLE) DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
		•••••	•••••			
1.0	05-mar-1990	J019	AS		7.700	UGG
5.0	05-mar-1990	JD 19	AS		2.600	UGG
20.0	05-mar-1990	JD19	AS		5.200	UGG
1.0	05-mar-1990	J\$11	•		315.700	UGG
5.0	05-mar-1990	J811	SA.		72.300	UGG
20.0	05-mar-1990	J 811	SA		146.000	UGE
1.0	05-mar-1990	J\$11	PS		18.500	UGG
1.0	05-mar-1990	J 811	٧		49.700	UGG
5.0	05-mar-1990	J S 11	٧		30.200	UGG
20.0	05-mar-1990	J\$11	٧		51.000	UGG

Installation: Sierra Ordnence Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 (Sooleans LT and ND are excluded) Page 27

Site: BORE DS8-04-MMA (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft	DATE	METHOD	COMPOUND	800L	CONCENTRATION	UNITS
		•••••	• • • • • • • •	••••	•••••	••••
1.0	05-mer-1990	J\$11	ZM		79.900	UGG

Site: BORE THT-07-SB

SAMPLE DEPTH (f	SAMPLE t) Date	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	•••••			••••		
35.0	03-apr-1990	J015	SE		0.400	UGG
5.0	03-apr-1990	JD19	AS		3.500	UGG
10.0	03-apr-1990	JD 19	AS		2.900	UGG
15.0	03-apr-1990	J0 19	AS .		9.700	UGG
20.0	03-apr-1990	JD 19	AS		4.700	UGG
25.0	03-apr-1990	JD 19	AS		4.900	UGG
30.0	03-apr-1990	JD 19	AS		5.400	UGG
35.0	03-apr-1990	J019	AS		4.200	UGG
40.0	03-apr-1990	JD 19	AS		6.400	UGG
45.0	03-apr-1990	JD19	AS		9.600	UGG
50.0	03-apr-1990	JD 19	AS		4.000	UGS
55.0	03-apr-1990	JD 19	AS		14.900	UGG
40.0	03-apr-1990	J019	A\$		6.200	UGG
35.0	03-epr-1990	LW12	246TNT		2.500	UGG
35.0	03-apr-1990	LW12	24DNT		0.900	UGG
35.0	03-apr-1990	LW12	TETRYL		0.800	UGG

Site: BORE THT-08-SB

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	SCOL	CONCENTRATION	UNITS
	••••••	•••••	•••••	••••		••••
5.0	03-apr-1990	JD 19	AS		5.200	UCG
10.0	03-apr-1990	J019	AS		3.700	UCC
15.0	03-apr-1990	JD19	AS		2.800	UGG
20.0	03-apr-1990	JD 19	AS		7.800	UGG
25.0	03-apr-1990	J019	AS.		3.000	UGG
30.0	03-apr-1990	J019	AS.		2.800	UGG
35.0	03-apr-1990	JO19	AS		3.200	UGG
40.0	03-apr-1990	· JD 19	AS		4.200	UGG
45.0	03-apr-1990	JD19	AS.		3.200	UGG
50.0	03-apr-1990	JD 19	AS		4.600	UGG
55.0	03-apr-1990	JD 19	AS.		14.200	UGG
35.0	03-apr-1990	J019	AS		3.300	UGG
5.0	03-apr-1990	J\$11	PB		29.600	UGG

Installation: Sierra Ordnence Depot Analytical Results for Chamical Soil Page 28

From: 01-jan-75 To: 13-mar-91 (Booleans LT and ND are excluded)

Site: BORE THT-09-58

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	800L	CONCENTRATION	UNITS
		• • • • •		••••		••••
5.0	03-apr-1990	JD 19	AS		5.800	UGG
10.0	03-apr-1990	JD 19	AS		3.200	UGG
15.3	03-apr-1990	JD 19	AS		6.500	UGG
20.0	33-apr-1990	JD 19	AS		5.100	UGG
25.0	03-apr-1990	JD 19	AS		3.500	UGG
30.0	03-apr-1990	JD 19	AS		3.700	UGG
35.0	03-apr-1990	JQ 19	AS		5.100	UGG
40.0	03-apr-1990	JD 19	AS		5.000	UGG
45.0	03-apr-1990	JQ 19	AS		3.200	UGG
50.0	03-apr-1990	JQ 19	AS		3.700	UGG
55.0	03-apr-1990	JD19	AS		10.700	UGG
35.0	03-apr-1990	JD 19	A\$		6.600	UGG
5.0	03-apr-1990	J\$11	P6		13.100	UGG
35.0	03-apr-1990	J\$11	230		64.800	UGG

Site: BORE THT-10-58

SAMPLE	SAMPLE	TEST				
DEPTH (fi	DATE	METHOD	COMPOUND	SCOL	CONCENTRATION	UNITS
•••••	43 4556			••••		
5.0	02-apr-1990	J019	AS		8.900	UGG
10.0	02-apr-1990	J019	AS		4.100	UGG
15.0	02-apr-1990	JD 19	AS.		8.300	UGG
20.0	02-apr-1990	J019	AS .		9.200	UGG
25.0	02-apr-1990	JD 19	AS		4.400	UGG
30.0	02-apr-1990	JD 19	AS		4.400	UGG
35.0	02-apr-1990	JD 19	AS		2.700	UGG
40.0	02-apr-1990	JD 19	AS		6.500	UGG
45.0	02-apr-1990	JD 19	AS		1,600	UGG
50.0	02-apr-1990	J019	AS.		11.000	UGG
35.0	02-apr-1990	J019	AS		6.700	UGG
5.0	02-apr-1990	J S 11	M		8.300	UGG
15.0	02-apr-1990	J811	28		57,700	UGG
30.0	02-apr-1990	J S 11	ZN		69.000	UGG
35.0	02-apr-1990	J 8 11	21		62.400	UGG
45.0	02-apr-1990	J\$11	21 1		72.400	UGG
35.0	02-apr-1990	J 8 11	201		86.300	UGG
35.0	02-apr-1990	LH19	MEC6HS		0.000	UGG
15.0	02-apr-1990	U119	UMK071		0.020	UGG

Site: BORE THT-11-58

SAMPLE	SAMPLE	TEST				
DEPTH (f:	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
		•••••	••••••			
5.0	02-spr-1990	JD 19	A\$		2.900	UGG
10.0	02-apr-1990	JD 19	AS .		3.800	UGG
15.0	02-apr-1990	JD 19	AS .		16.100	UGG
20.0	02-apr-1990	1919	AS		5.600	UGG
25.0	02-apr-1990	JD19	AS		1.800	UGG
30.0	02-apr-1990	JD 19	AS		2.100	UGG
35.0	02-apr-1990	JD 19	A\$		4.200	UGG
40.0	02-apr-1990	JD19	AS.		3.600	UGG
45.0	02-apr-1990	JD19	AS .		3.200	UGG
50.0	02-apr-1990	1019	AS .		8.300	ugg
35.0	02-apr-1990	JD 19	AS		3.600	UGG
15.0	02-apr-1 990	JS11	ZM		82.100	UGG
35.0	02-apr-1990	LH19	UNK112		0.010	UGG

Site: SORE THT-12-58

SAMPLE	SAMPLE	TEST				
DEPTH (ft	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
• • • • •		•••••	••••••	••••		• • • • •
40.0	04-apr-1990	JD 19	AS .		2.900	UGG
5.0	04-apr-1990	JD 19	AS.		5.800	UGG
10.0	04-apr-1990	JØ 19	A\$		2.600	UGG
15.0	04-apr-1990	JD 19	A\$		9.100	UGG
20.0	04 - apr - 1990	JD 19	AS .		5.700	UGG
25.0	04-apr-1990	JD 19	AS		9.700	UGG
30.0	04 - apr - 1990	JD 19	A\$		6.600	UGG
35.0	04-apr-1990	JD 19	AS.		10.000	UGG
40.0	04-apr-1990	JD19	AS		4.200	UGG
45.0	04-apr-1990	JD 19	AS.		3.400	UGG
50.0	04-apr-1990	JD 19	AS		3.500	UGG
35.0	04-apr-1990	J\$11	236		67.100	UGG
40.0	04-apr-1990	U119	TRCLE		0.000	UGG
5.0	04-apr-1990	LW12	135710		18.200	UGG
10.0	04-apr-1990	LU1Z	1357mg		38.500	UGG
15.0	04-apr-1990	LY12	135710		48.500	UGG
20.0	04-epr-1990	LU1Z	135TH8		14.900	UGG
25.0	04-apr-1990	LW12	135TM8		11.700	UGG
30.g	04-apr-1990	LW12	135THB		7.800	uee
35.0	04-apr-1990	LW1Z	135716		8.000	UGG
40.0	04-apr-1990	LW12	135TM		1.300	UGE
45.0	04-apr-1990	LW12	1357118		1.300	UGG
50.0	04-apr-1990	LW12	135TMB		2.400	UGS

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 (Sooleans LT and NO are excluded) Page 30

Site: BORE THT-12-SB (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	\$00L	CONCENTRATION	UNITS
		• • • • • •	******	••••		••••
40.0	04-apr-1990	LW12	135TNB		0.800	UGG
5.0	04-epr-1990	L¥12	246TNT		25.800	UGG
10.3	04-spr-1990	LH12	246THT		4.000	UGG
15.0	04-apr-1990	LW12	246THT		14.500	UGG
20.0	04-apr-1990	LW12	246TNT		9.500	UGG
25.0	04-apr-1990	LW12	246TNT		3.700	UGG
30.0	04-apr-1990	LW12	246TNT		4.600	UGG
35.0	04-apr-1990	LW12	246THT		0.500	UGG
10.0	04-apr-1990	LW12	24DNT		1.000	UGG
15.0	04-apr-1990	LW12	24DNT		1.900	UGG
20.0	04-apr-1990	LW12	240NT		1.000	UGG
25.0	04-apr-1990	LW12	240NT		0.800	UGG
30.0	04-apr-1990	LH12	240NT		0.700	UGG
5.0	04-apr-1990	LW12	HOR		5.000	UGG
10.0	04-apr-1990	LW12	HIPOX		14,900	UGG
15.0	04-apr-1990	F#15	HARDE		3.900	UGG
20.0	04-apr-1990	LW12	HPDE		1.400	UGG
25.0	04-apr-1990	LU12	HPOL		3.100	UGG
30.0	04-apr-1990	LW12	HPEK		2.300	UGG
35.0	04-apr-1990	LW12	HIPOX		2.300	UGG
5.0	04-apr-1990	LW12	ROX		59.400	UGG
10.0	04-apr-1990	LW1Z	ROX		16.200	UGG
15.0	04-apr-1990	LU12	RDX		4.700	UGG
20.0	04-apr-1990	LW12	RDX		2.700	UGG
25.0	04-apr-1990	LW1Z	ROX		9.600	UGG
30.0	04-apr-1990	LW12	RDX		4.300	UGG
35.0	04-apr-1990	LW12	ROX		12.000	UGG
40.0	04-apr-1990	L¥12	ROX		2.000	UGG
45.0	04-apr-1990	LW12	ROX		1.300	UGG
50.0	04-apr-1990	LW12	RD X		1.800	UGG
40.0	04-apr-1990	LW1Z	ROX		1.300	UGG

Site: BORE THT-13-58

SAMPLE	TEST				
DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
		******			•••••
05-apr-1990	.019	AS		3.100	UGG
05-apr-1990	JD 19	AS		2.700	UGE
05-apr-1990	.019	AS .		3.200	UGE
05-apr-1990	JD 19	AS		3.400	UGS
05-apr-1990	.019	AS		1.400	UCG
05-apr-1990	JD 19	AS .		6.700	UGS
05-apr-1990	.019	AS		13.400	UGG
05-apr-1990	.019	AS		4.400	990
05-apr-1990	.019	AS		3.400	UGS
05-apr-1990	J019	AS		2.400	UCG
	OATE 05-apr-1990 05-apr-1990 05-apr-1990 05-apr-1990 05-apr-1990 05-apr-1990 05-apr-1990 05-apr-1990 05-apr-1990	OATE NETHOD 05-apr-1990 JB19 DATE METHOD COMPOUND 05-apr-1990 J019 A8 DATE NETHOD CONFOLNO BOOL 05-apr-1990 J019 A8 DATE NETHOR COMPOUND BOOL CONCENTRATION 05-apr-1990 JB 19 AS 3.100 05-apr-1990 JB 19 AS 2.700 05-apr-1990 JB 19 AS 3.200 05-apr-1990 JB 19 AS 3.600 05-apr-1990 JB 19 AS 1.400 05-apr-1990 JB 19 AS 6.700 05-apr-1990 JB 19 AS 13.400 05-apr-1990 JB 19 AS 4.400 05-apr-1990 JB 19 AS 3.400			

Installation: Sferre Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 (Sooleans LT and ND are excluded) Page 31

Site: BORE THT-13-58 (continued)

SAMPLE	SAMPLE DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
DEPTH (ft)) UATE					•••••
50.0	05-apr-1990	JO 19	AS		2.900	UGG
40.0	05-apr-1990	J\$11	ZN		85.300	UGG
5.0	05-apr-1990	L#19	TRCLE		0.030	UGG
5.0	05-apr-1990	L¥12	135TH8		29.300	UGG
10.0	05-apr-1990	LW12	135TNB		25.300	UGG
15.0	05-apr-1990	LW12	135TNB		30.400	UGG
20.0	05-apr-1990	LW12	135TH6		22.200	UGG
25.0	05-apr-1990	LW12	135716		34.800	UGG
30.0	05-apr-1990	FM15	135TMB		6.900	UGG
35.0	05-apr-1990	LW12	135TH8		3.800	UGG
40.0	05-apr-1990	LW12	135TN8		10.200	UGG
45.0	05-apr-1990	LU12	135TNB		3.300	UGG
50.0	05-apr-1990	LW12	135TNB		6.600	UGE
40.0	05-apr-1990	LW12	135TME		11.200	UGG
10.0	05-apr-1990	LW12	246TNT		1.200	UGG
15.0	05-apr-1990	LW12	246TNT		2.300	UGG
20.0	05-apr-1990	LU12	246THT		5.300	UGG
25.0	05-apr-1990	LW12	246TNT		11.400	UGG
30.0	05-apr-1990	LU1Z	246THT		3.700	UGG
35.0	05-apr-1990	LW12	246THT		1.100	UGG
40.0	05-apr-1990	LW12	246THT		1.700	UGG
40.0	05-apr-1990	LW12	246THT		1.100	UGG
15.0	05-apr-1990	LW12	24DN7		1.600	UGG
20.0	05-apr-1990	LW12	240NT		0.900	UGG
25.0	05-apr-1990	LW12	24DNT		4.000	UGG
40.0	05-apr-1990	LW12	240NT		0.500	UGG
40.0	05-apr-1990	LW12	240NT		0.400	UGG
5.0	05-epr-1990	LW12	HPEK		4.700	UGG
10.0	05-apr-1990	LW12	HIPEK		5.300	UGG
15.0	05-apr-1990	LW12	MPCK		5.200	UGG
20.0	05-apr-1990	LW12	HIPOX		3.900	UGG
25.0	05-apr-1990	LW12	HIPOX		17.900	UGG
30.0	05-apr-1990	LW12	IPE		1.300	UGG
35.0	05-apr-1990	LW12	1000		0.800	UGG
40.0	05-apr-1990	LW12	1000		0.900	UGG
40.0	05-apr-1990	LW12	HPR		0.900	UGG
5.0	05-apr-1990	LW12	ROX		2.100	UGG
10.0	05-apr-1990	LW12	ROX		2.400	UGG
15.0	05-apr-1990	LW12	RDX		3.700	UGG
20.0	05-apr-1990	LW12	ROX		5.000	UGG
25.0	05-apr-1990	LW12	RDX		13.300	UGG
30.0	05-apr-1990	LW12	RDX		2.800	UGG
35.0	05-apr-1990	LU12	NOX		6.500	UGG
40.0	05-apr-1990	LW12	NDX		8.500	UGG
45.0	05-epr-1990	LW12	MOX		2.900	nec

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 (Booleans LT and NO are excluded) Page 32

Site: SORE THT-13-58 (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
		•••••		••••		••••
50.3	05-apr-1990	LW12	ROX		1.900	UGG
40.0	05-apr-1990	LW12	ROX		8.700	UGG

Site: BORE THT-14-SB

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	800L	CONCENTRATION	UNITS
5.0	09-apr-1990	JD 19	AS		5.100	ugg
10.0	09-apr-1990	JD 19	AS		3.100	UGG
15.0	09-apr-1990	JD 19	AS		6.900	UGG
20.0	09-apr-1990	JD 19	AS		2.600	UGG
25.0	09-apr-1990	JD 19	AS		3.900	UGG
30.0	09-apr-1990	J019	AS.		8.100	UGG
35.0	09-apr-1990	JD 19	AS		6.400	UGG
40.0	09-apr-1990	JD 19	AS		1.900	UGG
45.0	09-apr-1990	JD 19	AS		3.400	UGG
50.0	09-apr-1990	JB 19	AS		4.400	UGG
40.0	09-apr-1990	JD 19	AS		3.300	UGG
40.0	09-apr-1990	J S 11	MI		27.000	UGG
48.0	09-apr-1990	J\$11	ZN		75.200	UGG
40.0	09-apr-1990	J\$11	ZM		85.200	UGG
			4 7 7 7 1 1		40 000	
5.0	09-apr-1990	LW12	135TNG		22.200	UGG
10.0	09-apr-1990	LW12	1357NB		16.600	UGG
15.0	09-apr-1990	LW12	135TH8		3.800	UGG
20.0	09-apr-1990	LW12	135TNB		7.200	UGG
25.0	09-apr-1990	LW1Z	135TNB		5.900	UGG
30.0	09-apr-1990	LW12	135710		5.300	UGG
35.0	09-apr-1990	LW12	135TH8		9.300	UGG
45.0 50.0	09-apr-1990 09-apr-1990	LW12	135TNB		10.000	UGG
40.0	09-apr-1990	LW12 LW12	135THS 135THB		10.400 3.700	UGG
20.0	09-apr-1990		135 TMS 246 TMT		3.400 3.400	UGB
25.0	09-apr-1990	LW12 LW12	2467NT		1,200	UGG
30.0	09-ser-1990	LW12	244797		1,200	UGG
50.0	09-apr-1990	LW12	244797		1.100	UGG
5.0	09-apr-1990	LV12	24041		1.200	UGE
20.0	09-aar-1990	LV12	2406T		1.100	UGS
50.0	09-apr-1990	LW12	24007		0.400	UGS
5.0	09-apr-1990	LV12	HORK .		5.200	UGE
10.0	09-apr-1990	LV12	NAME .		5.300	UGE
20.0	09-apr-1990	LU1Z	HOCK		1.900	UGE
25.0	09-apr-1990	LV12	HEL		1,000	UGE
35.0	09-apr-1990	LW12	HOOK		0.700	UGE
10.0	09-apr-1990	LW12	SOX.		0.800	UGG
••••	1774					***

Installation: Sierra Ordnence Depot

Page 33

Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 (Scotegns LT and ND are excluded)

Site: SORE THT-14-SB (continued)

SAMPLE DEPTH (ft	SAMPLE () DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
•••••		•••••	•••••	••••	************	••••
15.0	09-apr-1990	LW1Z	ROX		1.100	UGG
20.0	09-apr-1990	LW12	RDX		2.500	UGG
25.0	09-apr-1990	LW12	ROX		3.800	UGG
30.0	09-epr-1990	LW12	ROX		1.400	UGG
35.0	09-apr-1990	LW12	RDX		6.600	UGG
40.0	09-apr-1990	LW12	ROX		1.400	UGG
45.0	09-apr-1990	LW12	ROX		3.600	UGG
50.0	09-apr-1990	LW12	ROX		5.700	UGG
40.0	09-apr-1990	LW12	ROX		3.400	UGG

Site: BORE THT-15-SB

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	•••••	•••••	*******		•••••	••••
5.0	05-apr-1990	JD 19	AS		4.500	UGG
10.0	05-apr-1990	JD 19	AS		3.100	UGG
15.0	05-epr-1990	JD 19	AS		13.100	UGG
20.0	05-apr-1990	J0 19	AS		1.200	UGG
25.0	05- apr-1990	JD 19	AS		3.000	UGG
30.0	05-apr-1990	JD 19	AS		9.600	UGG
35.0	05-apr-1990	JD 19	AS		4.200	UGG
40.0	05-apr-1990	J019	AS		5.400	UGG
45.0	05-apr-1990	JD19	AS .		2.500	UGG
50.0	05-apr-1990	J019	AS		3.100	UGG
40.0	05-apr-1990	JD 19	AS		4.600	UGG
40.0	05-apr-1990	J\$11	CR		25.200	UGG
25.0	05-apr-1990	J\$11	2 16		64.400	UGG
40.0	05-apr-1990	J S 11	ZM		86.300	UGG
40.0	05-apr-1990	J\$11	ZM		99.200	UGG
5.0	05-apr-1990	LW12	135TH6		28.300	UGG
10.0	05-apr-1990	LW12	135716		20.400	UGG
15.0	05-apr-1990	LW12	135710		19.200	UGG
20.0	05-apr-1990	LW12	135716		8.000	UGG
25.0	05-apr-1990	LW12	1357NB		15.700	UGE
30.0	05-apr-1990	LW12	135TH8		4.200	UGS
35.0	05-apr-1990	LW12	135THB		7.300	UGG
40.0	05-apr-1990	LW12	135710		14.700	UGG
45.0	05-apr-1990	LW12	135TH6		9.300	UGS
50.0	05-apr-1990	LW12	135TH8		1.400	UGG
40.0	05-apr-1990	LW12	135716		14.400	UGG
5.0	05-apr-1990	LW12	246TWT		1.000	UGG
10.0	05-apr-1990	LW12	246THT		0.800	UCS
15.0	05-apr-1990	LW12	246TWT		7.500	UGS
20.0	05-apr-1990	LW12	246TNT		0.400	UGS

Installation: Sierra Ordnance Depot Analytical Results for Chamical Soil From: O1-jan-75 To: 13-mar-91 (Sooleans LT and HD are excluded) Page 34

Site: BORE THT-15-SB (continued)

SAMPLE	SAIPLE	TEST				UNITS
DEPTH (ft)	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	URL13
		•••••			4 488	UGG
25.0	05-epr-1990	LW12	246THT		4.600	
30.0	35-apr-1990	LW12	246TNT		2.100	UGG
40.0	Q5-apr-1990	L¥12	246THT		0.600	UGG
45.0	05-apr-1990	LW12	246THT		0.900	UGG
40.0	05-apr-1990	LY12	246THT		0.700	UGG
5.0	05-apr-1990	LW12	240MT		0.600	UGG
15.0	05-apr-1990	LW12	24DNT		1.400	UGG
25.0	05-apr-1990	LW12	24DNT		1.300	UGG
45.0	05-apr-1990	L¥12	24DNT		0.500	UGG
5.0	05-apr-1990	LW1Z	HARK		4.700	UGG
10.0	05-apr-1990	LW1Z	HOCK		3.300	UGG
15.0	05-apr-1990	L¥12	HARK		4.000	UGG
20.0	05-apr-1990	LW12	14063E		0.800	UGG
25.0	05-apr-1990	<u>L</u> W12	HACK		5.600	UGG
	05-apr-1990	LW12	HOCK		0.900	UGG
40.0	05-epr-1990	LH12	HOOK		0.900	UGG
45.0	05-apr-1990	LH12	HPDE		0.700	UGG
40.0	05-apr-1990	LW12	HORSE		0.900	UGG
5.0	05-apr-1990	LW12	ROX		5.800	UGG
10.0	05-apr-1990	LW1Z	ROX		1.400	UGG
15.0	05-apr-1990	LW12	ROX		6.500	UGG
20.0	05-epr-1990	LW12	ROX		3.100	UGG
25.0	05-apr-1990	LW1Z	ROX		15.800	UGG
30.0	05-apr-1990	LW12	ROX		2.900	UGG
35.0	05-apr-1990	LW12	ROX		3.200	UGG
40.0	05-apr-1990	LW12	ROX		5.100	UGG
45.0	05-apr-1990	LW12	ROX		6.000	UGG
50.0	05-apr-1990	LW12	ROX		3.500	UGG
40.0	05-apr-1990	LW12	ROX		6.600	UGG

Site: BORE THT-16-98

SAMPLE DEPTH (ft)	SAMPLE DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UMITS
			*******	••••		
25.0	10-apr-1990	. 019	AS		9.400	UGG
5.0	10-ser-1990	JD 19	AS		5.700	UGG
10.0	10-apr-1990	.019	AS		3.500	UGS
15.0	10-apr-1990	JD19	AS		15.100	UGS
20.0	10-apr-1990	JD 19	AS		1.700	UGS
25.0	10-apr-1990	JD 19	AS		8.000	UGS
30.0	10-apr-1990	JD 19	AS		7.700	UCG
35.0	10-apr-1990	19 هـ	AS		4.300	UGG
40.0	10-apr-1990	JD 19	AS		4.500	UGS
					2,400	uca
45.0	10- apr-1990	2019	AS			
50.0	10-apr-1990	J019	AS		3.200	UGS

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 (Sooleans LT and ND are excluded) Page 35

Site: BORE THT-16-SB (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
45.0	10-apr-1990	J\$11	ZN	••••	58.000	UGG
5.0	10-apr-1990	LW12	135TH8		19.300	UGG
10.0	10-apr-1990	LH12	135TMB		33.400	UGG
15.0	10-apr-1990	LW12	135TH8		41.600	UGG
20.0	10-apr-1990	LW12	135TH6		12.400	UGG
25.0	10-apr-1990	LW12	135TH8		7.300	UGG
30.0	10-epr-1990	LW12	1 357NB		4.900	UGG
35.0	10-apr-1990	LW12	135TNB		10.100	UGG
40.0	10-apr-1990	LW12	135THB		8.500	UGG
25.0	10-apr-1990	LW12	135TW8		7.100	UGG
5.0	10-apr-1990	LW12	246THT		16.700	UGG
10.0	10-apr-1990	LW12	246TNT		2.100	UGG
20.0	10-apr-1990	LW1Z	246THT		2.700	UGG
20.0	10-apr-1990	LW12	24DNT		1.600	UGG
20.0	10-apr-1990	LW12	ROX		0.900	UGG
25.0	10-apr-1990	LW12	ROX		0.700	UGG
30.0	10-apr-1990	LW12	ROX		0.700	UGG
35.0	10-apr-1990	LW1Z	RDX		0.900	UGG
40.0	10-apr-1990	LW12	ROX		1.700	UGG
45.0	10-apr-1990	LW12	ROX		2.100	UGG
50.0	10-apr-1990	LW12	ROX		1.700	UGG

Site: BORE THT-17-58

SAMPLE	SAMPLE	TEST				
DEPTH (ft:	DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	•••••		******		•••••	
25.0	09-apr-1990	JD 19	AS		4.600	UGG
5.0	09-apr-1990	JD 19	AS		3.400	UGG
10.0	09-apr-1990	JO 19	AS		3.300	UGG
15.0	09-apr-1990	JD 19	AS .		5.200	UGG
20.0	09-apr-1990	JD19	AS		1.700	UGG
25.0	09-apr-1990	JO 19	AS		4.400	UGG
30.0	09-apr-1990	JD 19	AS		13.200	UGG
35.0	09-apr-1990	JD 19	AS		4.500	UGG
40.0	09-apr-1990	JD 19	AS		3.800	UGG
45.0	09-apr-1990	JD 19	AS		6.100	UGG
50.0	09-apr-1990	J 019	AS		2.500	UGG
40.0	09-apr-1990	J\$11	211		67.700	UGE
25.0	09-apr-1990	J811	20		58.400	UGG
5.0	09-apr-1990	LW12	135TH6		16.900	UGS
10.0	09-apr-1990	LW12	135THB		21.500	UGG
15.0	09-apr-1990	LW12	135TH6		14.800	UGS
20.0	09-apr-1990	LW12	135THB		6.600	UGS

Installation: Sierre Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 (Sooleans LT and ND are excluded) Page 37

Site: SCRE THT-18-58 (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
				••••		
25.0	09-apr-1990	LW12	246THT		0.700	UGG
25.0	09-apr-1990	LW12	240NT		0.500	UGG
15.0	09-apr-1990	LW12	24DNT		1.400	UGG
25.0	09-apr-1990	LW12	24DNT		0.700	UGG
15.0	09-apr-1990	LW12	ROX		0.900	UGG
35.0	09-apr-1990	LW12	ROX		1.100	UGG
40.0	09-apr-1990	LW12	ROX		0.600	UGG
45.0	09-apr-1990	LW12	ROX		0.400	UGG

Site: BORE THT-19-SE

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	SOOL	CONCENTRATION	UNITS
•••••	•••••	•••••	*******	••••	••••••	••••
25.0	10-apr-1990	JD 19	AS		6.200	UGG
5.0	10-apr-1990	JD 19	AS		4.200	UGG
10.0	10-apr-1990	JD 19	AS		3.600	UGG
15.0	10-apr-1990	JD 19	AS		8.400	UGG
20.0	10-apr-1990	J019	AS		2.800	UGG
25.0	10-apr-1990	JD 19	AS		6.700	UGG
30.0	10-apr-1990	JD 19	AS		28.900	UGG
35.0	10-apr-1990	JD 19	AS		4.300	UGG
40.0	10-apr-1990	JD 19	AS		1.200	UGG
45.0	10-apr-1990	JD 19	AS		4.500	UGG
50.0	10-apr-1990	JD 19	AS		2.400	UGG
50.0	10-apr-1990	JS11	210		68.000	UGG
25.0	10-apr-1990	LW12	135TH8		4.100	UGG
5.0	10-apr-1990	LW12	135THB		16.400	UGG
10.0	10-apr-1990	LU12	135TNB		26.300	UGG
15.0	10-apr-1990	LW12	135TMB		9.800	UGG
20.0	10-apr-1990	LW12	135TNB		4.500	UGG
25.0	10-apr-1990	LW12	135TH8		5.200	UGG
30.0	10-apr-1990	LW12	135716		2.700	UGG
35.0	10-apr-1990	LW12	135 THE		10.400	UGG
40.0	10-apr-1990	LU12	1357118		11.400	UGG
5.0	10-apr-1990	LW12	246TNT		7.400	UGG
15.0	10-apr-1990	LW12	24DNT		1.000	UGG
35.0	10-apr-1990	LW12	24007		0.500	UGG
40.0	10-apr-1990	LU12	24DWT		0.500	UGG
35.0	10-apr-1990	LW12	RDX		1.200	UGG
40.0	10-apr-1990	LW12	KOX		1.200	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 To: 13-mar-91 (Socieans LT and NO are excluded)

Page 36

Site: SCRE THT-17-58 (continued)

SAMPLE DEPTH (ft	SAMPLE :) DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
		•••••	• • • • • • • •	• • • •	•••••	••••
25.0	09-apr-1990	LW12	135TN8		11.200	UGG
30.0	09-apr-1990	LW12	1357NB		5.000	UGG
35.0	09-apr-1990	LU12	135TNB		12.200	UGG
40.0	09-apr-1990	LW12	135TH8		17.500	UGG
45.0	09-epr-1990	LU12	1357MB		2.200	UGG
50.0	09-apr-1990	LU12	135THB		12.900	UGG
25.0	09-apr-1990	LW12	135TH6		8.600	UGG
5.0	09-apr-1990	LU12	246THT		2.600	UGG
15.0	09-apr-1990	LW12	246THT		1.900	UGG
40.0	09-apr-1990	LU1Z	ROX		1.500	UGG
50.3	09-apr-1990	LW12	ROX		1.900	UGG

Site: BORE THT-18-SE

SAMPLE	SAMPLE	TEST				
DEPTH (ft) DATE	METHOD	COMPOUND	800L	CONCENTRATION	UNITS
		•••••		••••	**********	••••
25.0	09-apr-1990	JD 19	AS		10.800	UGG
5.0	09-apr-1990	JD 19	AS		3.400	UGG
10.0	09-apr-1990	JD 19	AS	_	4.800	UGG
15.0	09-apr-1990	JD 19	AS .		3.800	UGG
20.0	09-apr-1990	JO 1 9	AS		2.500	UGG
25.0	09- apr-1990	JD 19	AS		8.500	UGG
30.0	09- apr-1990	JD 19	AS		10.800	UGG
35.0	09-apr-1990	J019	AS		4.300	UGG
40.0	09-apr-1990	JD 19	AS		2.100	UGG
45.0	09-apr-1990	JD 19	A\$		3.300	UGG
50.0	09-apr-1990	JD 19	AS.		4.100	UGG
45.0	09-apr-1990	JS11	ZN		62.600	UGG
50.0	09-apr-1990	J\$11	ZN		85.700	UGG
25.0	09-apr-1990	LW12	135TH8		7.100	UGG
5.0	09-apr-1990	LW12	135TH8		22.100	UGE
10.0	09-apr-1990	LW12	1357148		21.000	UGG
15.0	09-apr-1990	LW12	135TM8		27.400	UGE
20.0	09-apr-1990	LM12	135TMB		4.400	UGG
25.0	09-apr-1990	FR15	1351116		7.500	UGG
30.0	09-apr-1990	LW12	135710		5.700	UGG
35.0	09-apr-1990	LW12	135TM		10.900	UGG
40.0	09-apr-1990	LW12	135TH6		4.800	UGG
45.0	09-apr-1990	LW12	1 35716		1.900	UGG
50.0	09-apr-1990	LV12	1357118		0.700	UGG
25.0	09-apr-1998	LW12	246THT		0.500	UGG
5.0	09-apr-1990	LU1Z	246TWT		1.900	UGS
10.0	09-apr-1990	FR15	244THT		1.000	UGG
15.0	09-apr-1990	LW12	246TWT		8.700	VGS

Installation: Sierra Ordnance Deput Analytical Results for Chemical Soil From: 01-jen-75 To: 13-mar-91 (Sooleans LT and MD are excluded) Page 38

Site: COMP THT-01-55

SAMPLE DEPTH (ft	SAMPLE) DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	UNITS
		•••••		• • • •	***********	•••••
0.5	34-apr-1990	00	IGNIT		25.000	DEGC
0.5	04-apr-1990	1019	AS		3.600	UGG
0.5	04-apr-1990	JS11	BA .		131.800	UGG
0.5	04-apr-1990	JS11	PE		19.300	UGG
0.5	04-apr-1990	1211	A		21.100	UGG
0.5	04-apr-1990	LW12	135TNB		111.400	UGG
0.5	04-apr-1990	LW12	246THT		11928.900	UGG
0.5	04-apr-1990	LW12	HOUSE		7.000	UGG
0.5	04-apr-1990	LW1Z	ROX		313.400	UGG

Site: COMP THT-02-55

SAMPLE DEPTH (fo	SAMPLE DATE	TEST METHOD	COMPOUND	8004	CONCENTRATION	UNITS
	••••••	•••••	•••••	••••	***********	•••••
0.5	04-apr-1990	00	IGNIT		85.000	DEGC
0.5	04-apr-1990	JD 19	AS		4.600	UGG
0.5	04-apr-1990	J\$11	SA		181.400	UGG
0.5	04-apr-1990	J\$11	PB		9.800	UGG
0.5	04-apr-1990	J\$11	٧		35.300	UGG
0.5	04-apr-1990	LW12	135THB		121.700	UGG
0.5	04-apr-1990	LW1Z	246THT		4577. 300	UGG
0.5	04-apr-1990	LW12	240MT		19.300	UGG
0.5	04-apr-1990	LW12	HPOL		23.100	UGG
0.5	04-apr-1998	LW12	RDX		1298.200	UGG

Site: COMP THT-03-SS

SAMPLE DEPTH (f	SAMPLE t) DATE	TEST METHOD	COMPOUND	8001	CONCENTRATION	UNITS
	••••••		••••••	••••	•••••••	•••••
0.5	04-apr-1990	00	IGNIT		90.000	DEGC
0.5	04-apr-1990	J019	AS		5.900	UGG
0.5	04-apr-1990	JS11	BA		337.500	UGG
0.5	04-apr-1990	J S 11	PB		20.400	UGG
0.5	04-apr-1990	J S 11	٧		47.500	UGG
0.5	04-apr-1990	LW12	135TM8		47.900	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chamical Soil From: 01-jan-75 To: 13-mar-91 (Sooleans LT and MD are excluded) Page 39

Site: COMP THT-03-SS (continued)

SAMPLE	SAMPLE	TEST				
DEPTH (fi	t) DATE	METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	••••••	•••••		••••	***********	••••
0.5	04-apr-1990	LW12	246THT		2198.000	UGG
0.5	04-apr-1990	LW12	240NT		8.200	UGG
0.5	04-apr-1990	LW12	HPDE		10.000	UGG
0.5	04-apr-1990	LU1Z	RDX		369.300	UGG

Site: COMP THT-04-SS

SAMPLE DEPTH (ft)	SAMPLE DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
•••••	•••••	•••••	•••••		***********	••••
0.5	04-apr-1990	00	IGNIT		90.000	DEGC
0.5	04-apr-1990	JD19	AS		5.000	UGG
0.5	04-apr-1990	J\$11	BA		263.300	UGG
0.5	04-apr-1990	J\$11	PS		24.300	UGG
0.5	04-apr-1990	J S11	٧		37.300	UGG
0.5	04-apr-1990	LW12	1357NB		93.600	UGG
0.5	04-epr-1990	LW12	246THT		8284.100	UGG
0.5	04-apr-1990	LH12	RDX		108.500	UGG

Site: COMP THT-05-SS

SAMPLE DEPTH (ft)	SAMPLE DATE	TEST METHOD	COMPOUND	BOOL	CONCENTRATION	UNITS
	•••••			••••		••••
0.5	04-apr-1990	00	IGNIT		50.000	DEGC
0.5	04-apr-1990	00	IGNET	GT	100.000	DEGC
0.5	04-apr-1990	JD 19	AS		4.000	UGG
0.5	04-apr-1990	JD19	A\$		4.200	UGG
0.5	04-apr-1990	J\$11	BA .		208.000	UGG
0.5	04-apr-1990	J\$11	BA		217.700	UGG
0.5	04-apr-1990	J811	PO		9.100	UGG
0.5	04-apr-1990	J 8 11	٧		25.100	UGG
0.5	04- epr-1990	JS11	٧		33.500	UGG
0.5	04-apr-1990	LW12	135TH6		40.800	UGG
0.5	04-apr-1990	LW12	1357118		42.700	UGG
0.5	04-apr-1990	LW12	246THT		4507.200	UGG
0.5	04-apr-1990	LW12	246TWT		9871.100	UGG
0.5	04-epr-1990	LN15	RDX		2.700	UGG

Installation: Sierra Ordnance Depot Analytical Results for Chemical Soil From: 01-jan-75 fo: 13-mar-91 (Sooleans LT and ND are excluded)

Page 40

Site: COMP THT-06-SS

SAMPLE DEPTH (ft)	SAMPLE DATE	TEST METHOD	COMPOUND	800L	CONCENTRATION	imits
			•••••		••••••	****
0.5	04-apr-1990	00	IGNIT	GT	100.000	DEGC
0.5	04- apr-1990	JB 19	AS		3.500	UGG
0.5	04-apr-1990	JS11	BA		213,500	UGG
0.5	34-apr-1990	J S 11	٧		34.400	UGG
0.5	04-apr-1990	LW12	135TNB		22.300	UGG
a.s	34 - apr - 1990	LM15	246THT		5865.000	UGG

Site: COMP THT-07-SS

SAMPLE	SAMPLE	TEST				
DEPTH (ft	DATE	HETHOD	COMPOUND	800L	CONCENTRATION	UNITS
			•••••			
0.5	04-apr-1990	90	IGNET		72.000	DEGC
0.5	04-apr-1990	JD 19	AS		3.200	UGG
0.5	04-apr-1990	J\$11	EA .		113.300	UGG
0.5	04-apr-1990	LW12	135TN6		11,100	UGG
0.5	04-apr-1990	LW12	246THT		288.300	UGG

Site: COMP THT-08-SS

SAMPLE	SAMPLE	TEST				
DEPTH (f	t) DATE	METHOD	COMPOUND	800L	CONCENTRATION	UNITS
			• • • • • • • • •	****		
0.5	04-apr-1990	00	IGNIT	GT	100.000	DEGC
0.5	04-epr-1990	JD 19	AS		3.000	UGG
0.5	04-apr-1990	J S 11	84		106,900	UGG
0.5	04-apr-1990	J S 11	٧		20.800	UGG
0.5	04-apr-1998	LM13	135THB		1.400	UGG
0.5	04-apr-1990	LV12	246TWT		7.800	UGE

Program ended normally.

Appendix Q1

Shower Inhalation Exposure Model

James M. Montgomery

Consulting Engineers Inc.

SHOWER INHALATION EXPOSURE MODEL

Q.1.0.1. This model, used to represent the inhalation of VOCs while showering, was developed by Foster and Chrostowski (1987). The model was developed in response to experiments performed by Andelman (1985). There is extremely good agreement between the model and the experiments.

Q.1.0.2. The model assumes that there is a two-film boundary between the water and air across which VOCs can volatilize. The VOCs build up in the room for the duration of the shower; after the shower is turned off, the VOC concentration in the bathroom gradually declines. The complete inhalation exposure can be calculated by Equation A-1:

Dose =
$$\frac{IR}{BW} \frac{1 \text{ mg}}{1,000\mu g} \frac{1 \text{ m}^3}{1,000 \text{ L}} D_o \setminus C_a(t) dt$$

A-I

where: Dose = Dose per shower (mg/kg/shower),

IR = Air inhalation rate (1/min),

BW = Body weight (kg),

Dt = Total duration in the shower room (min), and

Ca(t) = Concentration of the VOC in air as a function of time $(\mu g/m^3)$.

Q.1.0.3. The VOC concentration in air can be estimated by using a simple box model.

$$\frac{dC_a}{dt} = -R_aC_b + S$$

A-2

where: Ra = Air exchange rate (min-1), and

S = VOC emission rate per unit volume ($\mu g/m3 - min$).

This type of model assumes instantaneous mixing throughout the shower room. This may result in underestimating the VOC exposure by the individual, as VOC concentrations should be higher by the shower spray (where the individual stands) than in the rest of the room.

Q.1.0.4. The VOC emission rate has two values. One corresponds to when the shower is on. This value is calculated. The emission rate is zero when the shower is off. By solving Equation A-2 for Ca and substituting into Equation A-1, an expression is obtained for the total inhalation dose.

Dose: =
$$\frac{IR \ S}{BW \ R_a} = \frac{1 \ mg}{1,000 \mu g} = \frac{1m^3}{1,000 \ 1} = \frac{[(D_s + \exp(-R_aD_s))]}{R_a} = \frac{\exp(R_aD_s - D_s)]}{R_a}$$

A-3

where:

Ds = Shower duration (min).

Q.1.0.5. In order to solve Equation A-3, the VOC emission rate while the shower is operating must be calculated. The emission rate can be expressed by:

$$S = \frac{C_{u}FR}{SV}$$

A-4

where:

Cwd = Reduction in concentration of VOC in water droplet while falling $(\mu g/l)$,

FR = Shower flow rate (1/min), and

SV = Shower room volume (m3).

While the flow rate and the room volume can be estimated, (the values of all parameters used are given in Tables A-1 to A-3) Cwd must be calculated.

Q.1.0.6. Cwd is calculated by assuming that the shower water immediately forms uniformly sized droplets and that VOCs will cross each droplet boundary into the air while the droplet falls straight to the ground. The latter assumption will result in some underestimation of emissions, since some water will stick to the walls, the individual, and the shower floor before being fully drained. The water will continue to emit VOCs during this time.

$$C_{\rm nd} = C_{\rm no} 1 - \exp \frac{(-K_{AL} t_i)}{60 d}$$

A-5

where: $C_{wo} = VOC$ concentration in water $(\mu g/l)$,

K_{AL} = Adjusted overall mass transfer coefficient (cm/hr),

t, = Shower droplet drop time (sec), and

d = Shower droplet diameter (mm).

This equation is based on an overall mass balance approach, which is explained in Foster and Chrostowski (1986). The number 60 in the equation is a conversion factor which corrects for the different units in KAL, ts, and d.

Q.1.0.7. The VOC concentration in water is taken as that found in the groundwater, although this concentration may actually be reduced by filtering and volatilization before the water reaches the shower head. The adjusted overall mass transfer coefficient (KAL) is calculated from the overall mass transfer coefficient (KL). The word "adjusted" refers to the correction made to convert a value of KL determined at one temperature to a different temperature. The adjustment is made using Equation A-6:

$$KAL = KL \frac{(T_1 \mu_s)}{T_s \mu_1} 0.5$$

A-6

where: T_1 = Calibration water temperature of KL (oK),

 T_s = Shower water temperature (oK),

 μ_1 = Water viscosity at T1 (cp),

 μ_{\bullet} = Water viscosity at Ts (cp), and

KL = Overall mass transfer coefficient (cm/hr).

Q.1.0.8. KL is calculated by Equation A-7:

$$KL = \frac{(1}{K_1} + \frac{RT}{Hk_{\epsilon}} - 0.5$$

A-7

where: k₁ = Liquid-film mass transfer coefficient (cm/hr),

k_g = Gas-film mass transfer coefficient (cm/hr),

R = Ideal gas constant (m3 - atm/mol-oK),

T = Temperature at which kl was determined (oK), and

H = Henry's Law Constant (m3 - atm/mol).

This equation was derived by Liss and Slater (1974). It assumes that at the gas-liquid interface, there is a gas film and a liquid film in which the concentration of the solute is different from the solute concentration in the bulk media. It also assumes that there is a steady state situation in which the solute flux from the liquid film to the gas film equals the solute flux from the gas film to the liquid film. The rate of diffusion through the films is determined by the concentration gradient between the film and the bulk media multiplied by the appropriate mass transfer coefficient. It would seem questionable whether this model should work in the first several minutes of operating the shower, as initially there are no VOCs in the gas phase to diffuse into the liquid phase. Interestingly enough, there is almost perfect agreement between model and experiment for the first 10 minutes of shower operation.

Q.1.0.9. Typical values of kl and kg have been measured for a lake-air interface (a water-air system which has been carefully studied). kl has a value of about 20 cm/hr for CO2, while kg has a value of 3,000 cm/hr for H2O. These values can be related to other compounds by the following relationships:

$$k_{a} (VOC) = k_{a} (H_{2}O) \frac{(18 \text{ g/mol})}{MW_{VOC}} 0.5$$

A-8

where: MW = Molecular weight (g/mol).

$$k_1 (VOC) = k_1(CO_2) \frac{(44 g/mol)}{MW_{VOC}} 0.5$$

A-9

where: MW = Molecular weight (g/mol).

TABLE Q1-1
CONSTANT SHOWER EXPOSURE PARAMETERS

	Variable	Value Used	Rationale
IR -	Air Inhalation Rate (l/min)	10	Representative rate for light adult activity (USEPA, 1989).
BW -	Body Weight (kg)	70	National average.
D _t -	Total Durationtin Shower Room (min)	20	Best professional judgement, based on a 15 minute shower.
D, -	Shower Duration (min)	15	95th percentile of a range of 1 to 20 minutes, with an average value of 7 minutes (USEPA, 1989).
R _a -	Air Exchange Rate (min-1)	0.0083	Most conservative of 0.0083 to 0.025 min-1 range given by Foster and Chrostowski (1987).
FR -	Shower Flow Rate (l/min)	22.5	Best professional judgement assuming a 40 gallon hot water heater and that half of the water used during a shower is contributed by the hot water heater. These factors limit the flow rate for a 15 minute shower.
sv -	Shower Room Volume (m³)	5.66	Best professional judgement. Based on a room measuring 5' x 5' x 8', which is conservatively small.
t, -	Shower Droplet Drop Time (s)	2	Foster and Chrostowski (1987).
d -	Shower Droplet Diameter (mm)	2	Foster and Chrostowski (1987).
T -	Temperature at which Mass Transfer Coefficients were Determined (*K)	293	Liss and Slater (1974).
T	Temperature of Shower (*K)	316	Best professional judgement; equal to 110°F.
Water	Viscosity (cp)		
	μ _i (293°K)	1.002	CRC Handbook (1977-78)
	$\mu_{\rm a}(316^{\circ}{\rm K})$	0.618	CRC Handbook (1977-78)
R - Id	eal Gas Constant (m³-atm/mol-°K)	8.21 x 10°5	CRC Handbook (1977-78)

TABLE Q1-2

VOC SHOWER EXPOSURE PARAMETERS

VOC	Molecular Weight (g/mol)	Adjusted Mass Transfer Coefficient(K _{AL}) (cm/hr)	Liquid-Film Mass Transfer Coefficien(k ₁) (cm/lur)	Gas-Film Mass Transfer Coefficient(k _e) (cm/hr)	Henry's ⁽¹⁾ Law Constant(H) (m³afm/mol)
Carbon Tetrachloride	154	4	Ξ	1030	0.063
Chloroform	611	91	12	1170	0.011
1,2-Dichloroethane	8	91	12	1280	0.0026
Trichloroethene	131.5	15	=	0111	0.021

⁽¹⁾ Calculated by methods of Howe et. al. (1987) for 110°F.

TABLE Q1-3

SHOWER INHALATION EXPOSURE DOSE

VIC	VOC Concentration in Groundwater (ug/1.)	VOC Concentration Leaving Water Brepht (ug/L)	VOC Emission Rate (eg/m³-min)	Adult Exposure Dece (mg/kg/shower)	Child (6-5) Exposure Dose (mg/kg/shewer)	Child (4-17) Expense Dee (mg/kg/shower)
Abandoned Landfill Trichloroethylene Carbon Tetrachloride	41	16	2 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	1.6 X 1-3 1.2 X 10 ³	1.1 X 18 ⁻² 8.0 X 10 ⁻⁵	4 6 X 10 ⁻³ 3.4 X 10 ⁻³
Chemical Burial Site Trickloroethyleae	6.70	C :1	9.01	2.7 X 10*	1.8 × 10 ⁻³	7.5 X 10 ⁴
DRMO Treach Tricklorusthylese	23	0.6	36	9.1 X 104	8.9 X 10 ^{.3}	2.5 X 10³
TNT Leach Beds - Leach Beds Subsite Tricklorrethyless	79	01	\$	1.0 X 10 3	6.7 X 10 ³	2.9 X 10 ³
TNT Leach Beds - Vehicle Maintenance Area Subsite	Area Subsite 900	360	1400	3.6 X 10 ²	2.3 X 10 '	1.0 X 10.1
Carbon Tetrachloride	210	2	310	7.9 X 10.3	5.2 X 10 ²	2.2 X 10 ³
Chloroform 1,2-Dichloroethane	8 20 120	330 50	200	3.4 × 10° 5.0 × 10°	3.3 X 10 ²	7.4 X 10°
TNT Leach Beds - Site Average Trickloroethyleae	150	3	240	6.0 X 10.3	4.0 X 10.3	1.7 X 10.2
Carbon Tetrachloride	32	22	7	1.2 X 10°3	7.8 X 10 ³	1.3 × 10 ·
Chloroform 1.2-Dichloroethane	126 1.7	£ C.	36 <u>38</u>	7.3 X 104	4.7 X 10 ³	9.1 X 10 ²

Appendix Q2

Determination of Chemicals of Concern

James M. Montgomery

Consulting Engineers Inc.

TABLE Q2-1

NATIVE AND SIAD SURFACE SOIL (≤5 FT.) METAL CONCENTRATIONS, RANGE AND TTLC VALUES FOR ABANDONED LANDFILL

Element	Typical Range U.S. Soils	Typical Range U.S. Desert Soils ^b	SIAD Range	Maximum Level, µg/gm	TTLLC' mg/kg	ls Upper Level > Federal/State Standard? Y/N	1
Aluminum	;		;	:	1	;	
Arsenic	0.1-97	1.2-18	2.1-17.9	11.0	200	Z	
Beryllium	15		;	ł		;	
Barium	10-5,000		72-428	1	10,000	;	
Cadmium	0.41-0.57	:	!	6.18	8	Z	
Chromium	1-2,000	10-200	12.7-30.9	48.4	2,500	Z	
Copper	1-700	2-100	:	446	2,500	Z	
Lead	10-700	10-70	6-17.2	440	000,1	z	
Mercury	0.1-4.6	0.02-0.32	;	;	20	:	
Nickel	5-700	7-150	;		2,000	z	
Selenium	0.1-4.3	<0.1-1.1	;	0.441	901	Z	
Vanadium	7-500	i	30.2-130	:	2,400	:	
Zinc	5-2,900	25-150	30.2-79	1,090	2,000	Z	

* Shaklette & Boerngen, 1984

* Kabata-Pendias and Pendias, 1984 * California State Register 86, No. 8-23-86 Title 26

TABLE Q2-2

COMPARISON OF MAXIMUM CONCENTRATION OF INORGANIC AND ORGANIC CONSTITUENTS OF WELL WATERS WITH CONCENTRATIONS CORRESPONDING TO FEDERAL AND STATE MAXIMUM CONTAMINANT LEVELS (MCLs) AND STATE ACTION LEVELS (ALs) FOR DRIF'KING AND WATER AT THE ALF SITE

		Regula	Regulatory Limits for	ts for		Is concentration	
Constituent	Units	Federal MCL	State MCL	ite AL	Maximum Concentration µg/L	Standard ? V/N	
Inorganics							
Arsenic	mg/L	0.05	0.02	;	7.46	z	
Barium	mg/L	0.1	0.1	.1	54.7	Z	
Copper	mg/L	0.1	0.1	;	8.71	Z	
Mercury	mg/L	0.002	0.003	;	0.5	Z	
Selenium	mg/L	0.01	0.01	:	18.6	> -	
Zinc	mg/L	9.0	5.0	:	62.5	Z	
Volatile Organic Commounds							
Carbon tetrachloride	µg/L	5.0	0.5	:	1	>	
Carbon disulfide	µg/L	;	ł	;	:	1	
Chloroform	µg/L	;	;	;	1:1	:	
1,2-dichloroethene	µg/L	7.0	9	1	0.62	z	
Ethylbenzene	µg/L	:	989	;	•	Z	
1, 1, 2, 2-tetrachloroethane	µg/L	;	1.0	:	9.6	>	
Toluene	µg/L	;	;	;	í	Z	
1, 1, 1-trichloroethane	µg/L	2.0	200	901	:	Z	
Trichloroethene	µg/L	5.0	5.0		70.5	>	
Trichlorofluoromethane	µg/L	;	;	;	í	z	
Extractable Organic Compounds	<u>:s</u>						
bis(2-ethylhexyl)phthalate	µg/L	1	:	:	60.9	* -	

TABLE Q2-3
SOIL CONTAMINANTS DETECTED AT THE 5-FOOT LEVEL
ABANDONED LANDFILL

		SITE NU	MBER		·
	ALF-01-SB	ALF-02-SB	ALF-03-SB	ALF-04-SB	CRL
COMPOUND	ug/g	ug/g	ug/g	ug/g	
MOISTURE CONTENT (%)	1.7	4.5	11.4	3.5	
INORGANICS					
ARSENIC	7.12	9.95	11.0	23.0	< 0.25
CADMIUM	< 3.05	< 3.05	6.18	< 3.05	< 3.05
CHROMIUM	< 12.7	24.4	48.4	< 12.7	< 12.7
COPPER	< 58.6	< 58.6	447	< 58.6	< 58.6
LEAD	< 6.62	85.0	440	< 6.62	< 6.62
NICKEL	< 12.6	< 12.6	43.6	< 12.6	< 12.6
SELENIUM	< 0.250	< 0.250	0.441	< 0.250	< 0.250
ZINC	56.3	141	1090	< 30.2	< 30.2
VOLATILE ORGANIC COMPOUNDS					
ACETONE	< 0.195	< 0.02	< 0.02	< 0.02	< 0.02
TOLUENE	< 0.0008	< 0.0008	< 0.008	< 0.0008	< 0.0008
TRICHLOROETHENE	< 0.019	< 0.003	0.019	< 0.003	< 0.003
TRICHLOROFLUOROMETHANE	< 0.015	< 0.006	0.015	< 0.006	< 0.006
EXTRACTABLE ORGANIC COMPOU	NDS				
TOTAL PHENOLS	0.195	0.276	0.254	< 0.10	< 0.10
HEPTACHLOR	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
DIOXIN/FURAN(b)					
TCDFs	< 0.0000039	< 0.0000073	0.00032	< 0.0000063	(a)
PeCDFs	< 0.0000052	< 0.0000056	0.000021	< 0.000012	(a)
HxCDFs	< 0.0000058	< 0.000011	0.000082	< 0.0000028	(a)
HpCDFs	< 0.0000086	< 0.000016	0.00013	< 0.0000049	(a)
OCDF	< 0.000028	< 0.00020	< 0.000091	< 0.000043	(a)
TCDDs	< 0.0000063	< 0.0000083	0.000035	< 0.0000059	(a)
HpCDDs	< 0.000012	0.00038	0.00017	< 0.0000081	(a)
OCDD	< 0.000043	0.0013	0.00022	< 0.0000093	(a)

- (a) Detection limit varies depending on sample volume.
- (b) TCDD (2,3,7,8-Tetrachlorodibenzo-p-dioxin)

HpCDD (2,3,4,7,8-Heptachlorodibenzo-p-dioxin)

OCDD (2,3,4,5,6,7,8,9-Octachlorodibenzo-p-dioxin)

TCDF (2,3,7,8-Tetrachlorodibenzofuran)

PeCDF (2,3,4,7,8-pentachlorodibenzofuran)

HxCDF (2,3,4,6,7,8-Hexachlorodibenzofuran)

HpCDF (2,3,4,6,7,8,9-Heptachlorodibenzofuran)

Only analytes detected in site samples are listed on the table. A less than sign ("<") followed by the detection limit indicates that the analyte was not detected in the sample.

TABLE Q2-4
CONTAMINANTS DETECTED IN GROUNDWATER
ABANDONED LANDFILL(a)

		SITE NUMBER		
	ALF-01-MWA	ALF-02-MWA	ALF-03-MWA	CRL
COMPOUND	ug/L_	ug/L	ug/L	
FIELD PARAMETERS				
pH (Std. Units)	7.50	7.22	7.18	
SPECIFIC CONDUCTIVITY @25C (umHos/cm)	900	1100	1350	
WATER TEMPERATURE (deg. C)				
INORGANICS				
ARSENIC	3.73	7.46	4.80	< 0.25
BARIUM	19.9	16.2	53.5	< 5.0
COPPER	8.71	< 8.09	< 8.09	< 8.09
MERCURY	0.5	< 0.2	< 0.2	< 0.2
SELENIUM	18.6	6.79	16.6	< 3.02
ZINC	62.5	38.1	47.2	<21.1
CALCIUM (ug/L-CA)	108000	131000	192000	< 500
SODIUM (ug/L-NA)	50600	77300	49200	< 500
RESIDUE, DISS	762	4060	1250	< 500
CHLORIDE	10 5000	67400	<2.30	< 2.30
SULFATE	303000	453000	< 10000	< 10000
VOLATILE ORGANIC COMPOUNDS				
CARBON TETRACHLORIDE(b)	< 0.250	< .250	< 0.250	< 0.250
CARBON TETRACHLORIDE	< 0.58	< 0.58	< 0.58	< 0.58
CARBON DISULFIDE	< 0.50	< 0.50	< 0.50	< 0.50
CHLOROFORM	< 0.50	< 0.50	1.13	< 0.50
1,2-DICHLOROETHENE	< 0.50	< 0.621	< 0.50	< 0.50
ETHYLBENZENE	< 0.50	< 0.50	< 0.50	< 0.50
1,1,2,2-TETRACHLOROETHANE	< 0.51	< 0.51	9.0	< 0.51
TOLUENE	< 0.50	< 0.50	< 0.50	< 0.50
1,1,1-TRICHLOROETHANE	< 0.50	< 0.50	< 0.50	< 0.50
TRICHLOROETHENE	< 0.50	70.5	70.5	< 0.50
TRICHLOROFLUOROMETHANE	<1.3	<1.3	<1.3	< 1.3
EXTRACTABLE ORGANIC COMPOUNDS				
BIS(2-ETHYLHEXYL) PHTHALATE	< 4.8	< 4.8	< 4.8	< 4.8

⁽a) Groundwater value is the highest reported value for either Round 1 or Round 2 of sampling

⁽b) GC limit of detection

TABLE Q2-5

RANGE AND TILC VALUES FOR CHEMICAL BURIAL SITE/CONSTRUCTION DEBRIS LANDFILL SITE

Flement	Typical Range	Typical Range	SIAD	Maximum Level, 40/0m	TTLC	Is Upper Level > Federal/State Standard? Y/N
Alumiana		1				
	2010	9 6	0 41 1 4			: 2
Arsenic	0.1-97	01-7-1	7.1-1.7	10.2	3	Z
Barium	10-5,000		72-48	ţ	000,01	;
Beryllium	1-15	L-1>	:	;	;	:
Cadmium	0.41-0.57	:	;	:	<u>8</u>	:
Chromium	1-2,000	10-200	12.7-30.9	<12.7	2,500	Z
Copper	1-700	5-100	1	;	2,500	;
Lead	10-700	10-70	6.6-17.2	< 6.12	000,1	Z
Mercury	0.1-4.6	0.02-0.32	;	1	20	;
Nickel	2-700	7-150	1	<12.6	2,000	z
Selenium	0.1-4.30	<0.1-1.1	i	;	8	;
Vanadium	7-500	;	30.2-130	;	2,400	;
Zinc	5-2,900	25-150	30.5-79	<30.2	2,000	z

* Shaklette & Boerngen, 1984

* Kabata-Pendias and Pendias, 1984

* California State Register 86, No. 8-23-86 Title 26

TABLE Q2-6

OF WELL WATERS WITH CONCENTRATIONS CORRESPONDING TO FEDERAL AND STATE MAXIMUM COMPARISON OF MAXIMUM CONCENTRATION OF INORGANIC AND ORGANIC CONSTITUENTS CONTAMINANT LEVELS (MCLs) AND STATE ACTION LEVELS (ALs) FOR DRINKING WATER AT THE CHEMICAL BURIAL SITE/CONSTRUCTION DEBRIS LANDFILL

		Regula Dri	Regulatory Limits for Drinking Water	ts for ter	Maximum	Is concentration	
Constituent	Units	Federal MCL	State MCL	te AL	Concentration µg/L	Standard ?	
Inorganics							
Arsenic	mg/L	0.05	0.05	;	9 38	2	
Barium	mg/L	1.0	1.0	:	38.3	. 2	
Copper	mg/L	1.0	0.1	:	 7. ×	2 2	
Mercury	mg/L	0.002	0.002	;	0.71	2 2	
Selenium	mg/L	0.01	0.01	;	10 6	٤ >	
Zinc	mg/L	5.0	5.0	:	48.7	·z	
Volatile Organic Compounds trans-1,3-dichloropropene Trichloroethene	HB/L HB/L	5.0	0.05	; ;	6.76	z >	

TABLE Q2-7
SOIL CONTAMINANTS DETECTED AT THE 5-FOOT LEVEL
FOR THE CHEMICAL BURIAL SITE/CHEMICAL DEBRIS LANDFILL

			SITE NUMBER	بسري <u>د هجيدا استاسي</u> ا		
	CCB-01-SB	CCB-02-SB	CCB-03-SB	CCB-04-SB	CCB-05-SB	CRL
COMPOUND	ug/g	ug/g	បខ្/ខ្	ug/g	ug/g	
MOISTURE CONTENT (%)	3.4	2.8	2.4	2.5	2.1	
INORGANICS						
ARSENIC	3.49	2.55	2.8	13	6.39	< 0.25
CHROMIUM	< 12.7	< 12.7	< 12.7	< 12.7	< 12.7	< 12.7
LEAD	< 6.62	< 6.62	< 6.62	< 6.62	< 6.62	< 6.62
NICKEL	< 12.6	< 12.6	< 12.6	< 12.6	< 12.6	< 12.6
ZINC	< 30.2	< 30.2	< 30.2	< 30.2	< 30.2	< 30.2
VOLATILE ORGANIC COMPOUNDS						
TRICHLOROFLUOROMETHANE	0.009	0.008	0.008	< 0.006	< 0.006	< 0.006
EXTRACTABLE ORGANIC COMPOU	NDS					
TOTAL PHENOLS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
BIS(2-ETHYLHEXYL)PHTHALATE	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62
CHLORDANE	1.04	0.576	< 0.018	< 0.018	< 0.018	< 0.018
HEPTACHLOR	0.007	0.007	< 0.006	< 0.006	< 0.006	< 0.006
HEPTACHLOR EPOXIDE	0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
DIOXIN						
OCDD(b)	< 0.0000061	0.000062	0.000064	< 0.000058	100.0	(a)

⁽a) Detection limit varies depending on sample volume.

Only analytes detected in site samples are listed on the table. A less than sign ("<") followed by the detection limit indicates that the analyte was not detected in the sample.

⁽b) 2,3,4,5,6,7,8,9 - Octachlorodibenzo-p-dioxin

TABLE Q2.8
GROUNDWATER SAMPLE RESULTS
CHEMICAL BURIAL SITE/CONSTRUCTION DEBRIS LANDFILL(a)

	SITE	TUMBER	
	CCB-01-MWA	CCB-02-MWA	CRL
COMPOUND	ug/L	ug/L	
FIELD PARAMETERS			
pH (Std. Units)	7.67	7.49	
SPECIFIC CONDUCTIVITY @25C (umHos/cm) WATER TEMPERATURE (deg C)	590	890	
INORGANICS			
ARSENIC	9.38	7.25	< 0.25
BARIUM	38.3	24.7	< 5.0
COPPER	8.71	< 8.09	< 8.09
MERCURY	< 0.2	0.488	< 0.2
SELENIUM	3.41	10.6	< 3.02
ZINC	<21.1	48.7	<21.1
CALCIUM (ug/L-CA)	72,000	110,000	< 500
SODIUM (ug/L-NA)	41,400	51,600	< 500
RESIDUE, DISSOLVED	516	740	< 500
CHLORIDE	33,000	100,000	< 2.30
SULFATE	116,000	260,000	< 10,000
VOLATILE ORGANIC COMPOUNDS			
TRANS-1,3-DICHLOROPROPENE (a)	< 0.250	< 0.250	< 0.250
TRICHLOROE!THENE	< 0.50	6.76	< 0.50

⁽a) Groundwater value is the highest reported value for either Round 1 or Round 2 of sampling

TABLE Q2-9

NATIVE AND SIAD SURFACE SOIL (≤5 FT.) METAL CONCENTRATIONS, RANGE AND TYLC VALUES FOR DRMO TRENCH AREA

Element	Typical Range U.S. Soils	Typical Range U.S. Desert Soils	SIAD	Maximum Level, rg/gm	TTLC. mg/kg	Is Upper Level > Federal/State Standard? Y/N	[
Arsenic	0.1-97	1.2-18	2.1-17.9	19.0	200	z	
Barium	10-5,000	ŀ	72-428	410	000'01	Z	
Chromium	1-2,000	10-200	12.7-30.9	1.12	2,500	Z	
Cobalt	:	:	;	<15	8,000	z	
Lead	10-700	02-01	6-17.2	16.1	000,1	Z	
Mercury	0.1-4.6	0.02-0.32	;	< 0.05	20	Z	
Molybdenum	;	:	;	2.09	3,500	Z	
Vanadium	7-500	:	30.2-130	99.3	2,400	Z	
Zinc	20-108	25-150	30.2-79	142	2,000	z	

• Shaklette & Boerngen, 1984 • Kabata-Pendias and Pendias, 1984 • California State Register 86, No. 8-23-86 Title 26

TABLE Q2-10

COMPARISON OF MAXIMUM CONCENTRATIONS OF INORGANIC AND ORGANIC CONSTITUENTS OF WELL WATER WITH CONCENTRATION CORRESPONDING TO FEDERAL AND STATE MAXIMUM CONTAMINANT LEVELS (MCLS) AND STATE ACTION LEVELS (ALS) FOR DRINKING WATER AT THE DRMO TRENCH AREA

		Regul	Regulatory Limits for Drinking Water	ts for ter	Maximim	Is concentration	
Constituent	Units	Federal MCL	State	AL	Concentration RE/L	Standard ?	
Inorganics							
Arsenic	mg/L	0.05	5 0 0				
Barium	me/I.) -	3 -	ì	7.02	Z	
Copper	1/54		0.	ł	35.0	Z	
Selenium	11/2/II	0.0	0.5	;	11.5	: 2	
Zinc	mg/L	0.0 -	0.01	1	8	: >	
	mg/L	2.0	2.0	i	72.1	- 2	
Volatile Organic Compounds						•	
Chloroform	ue/L	9					
Trichloroethene	l [/6]	3 3	; ;	;	<0.5	Z	
	7/94	2.0	5.0	ł	25.7	: >-	
Extractable Organic Compounds	<u>~</u>					•	
Dis(2-ethylhexyl)phthalate	#g/L	;	;	;	< 4.8	ı	

TABLE Q2-11
SOIL COMTAMINANTS DETECTED AT THE 5-FOOT LEVEL
FOR THE DRMO TRENCH AREA

MOISTURE CONTENT (%) 6.9 7.5 7.2 3.1 11.1 8.1 7.3					SITE NUMBER				
NOISTURE CONTENT (%) 6.9 7.5 7.2 3.1 11.1 8.1 7.3 NORGANICS ARSENIC 19 11.4 14.0 9.27 5.09 23 19 BARIUM 415 245 277 361 299.0 330 410 COBALT <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0	SB CRL	DMO-13-SB	DMO-12-SB	DMO-11-SB(a)	DMO-10-SB	DMO-09-SB	DMO-08-SB	DMO-07-SB	
NORGANICS ARSENIC 19 11.4 14.0 9.27 5.09 330 410 COBALT <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0		ug/g	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g	COMPOUND
ARSENIC 19 11.4 14.0 9.27 5.09 23 19 BARIUM 415 245 277 261 299.0 330 410 COBALT < <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <		7.3	8.1	11.1	3.1	7.2	7.5	6.9	MOISTURE CONTENT (%)
BARIUM 415 245 277 261 299.0 330 410 COBALT <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <15.0 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.050 <10.05									INORGANICS
COBALT	< 0.25	19	23	5.09	9.27	14.0	11.4	19	ARSENIC
LEAD	< 29 6	410	330	299.0	261	277	245	415	BARIUM
MERCURY	< 15.0	< 15.0	< 15.0	<15.0	< 15.0	<15.0	< 15.0	< 15.0	COBALT
MOLYBDENUM	< 6.62	< 6.62	< 6.62	9.6	15.4	< 6.62	7.19	< 6.62	LEAD
VANADIUM 61.5 55.0 53.5 49.9 99.3 39.2 66.9 ZINC 77.2 67.1 72.1 142 124 <30.2 80.3 VOLATILE ORGANIC COMPOUNDS ACETONE <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0009 <0.0002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	MERCURY
ZINC 77.2 67.1 72.1 142 124 <30.2 80.3 VOLATILE ORGANIC COMPOUNDS ACETONE < 0.02	< 1.15	3.47	2.26	2.09	2.03		< 1.15	<1.15	MOLYBDENUM
VOLATILE ORGANIC COMPOUNDS ACETONE	< 13.0	66.9	39.2	99.3	49.9	53.5	55.0	61.5	VANADIUM
ACETONE	< 30.2	80.3	<30.2	124	142	72.1	67.1	77.2	ZINC
BENZENE								DS	VOLATILE ORGANIC COMPOUN
CHLOROBENZENE	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	ACETONE
CHLOROFORM	< 0.002	< 0.002	< 0.002	1.09	< 0.002	< 0.002	< 0.002	< 0.002	BENZENE
1.2-DICHLOROETHANE <0.002	9 < 0.0009	< 0.0009	< 0.0009	>1.00 *	< 0.0009	< 0.0009	< 0.0009	< 0.0009	CHLOROBENZENE
1,1-DICHLOROETHENE < 0.004	9 < 0.0009	< 0.0009	< 0.0009	0.054	< 0.0009	< 0.0009	< 0.0009	< 0.0009	CHLOROFORM
1.2-DICHLOROPROPANE	< 0.002	< 0.002	< 0.002	0.109	< 0.002	< 0.002	< 0.002	< 0.002	1,2-DICHLOROETHANE
ETHYLBENZENE	< 0.004	< 0.004	< 0.004	0.156	< 0.004	< 0.004	< 0.004	< 0.004	1.1-DICHLOROETHENE
ETHYLBENZENE	< 0.003	< 0.003	< 0.003	0.051	< 0.003	< 0.003	< 0.003	< 0.003	1.2-DICHLOROPROPANE
METHYLENE CHLORIDE <0.012	. < ວ ນວລ	< 0.002	< 0.002	>1.00*	< 0.002		< 0.002	< 0.002	ETHYLBENZENE
1,1,2,2-TETRACHLOROETHANE < 0.002									
TETRACHLOROETHENE	< 0.002	< 0.002	< 0.002				< 0.002	< 0.002	1.1.2.2-TETRACHLOROETHANE
TOLUENE				=					····
1.1,1-TRICHLOROETHANE < 0.004									
TRICHLOROETHENE <0.003 0.02 <0.003 0.006 >1.00° <0.003 <0.003 <0.003 XYLENES <0.002 <0.002 <0.002 <0.002 >1.0° <0.002 <0.002 <0.002 >1.0° <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 >1.0° <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.00									
XYLENES									
DICHLOROBENZENE, TOTAL < 0.10									· · - · · · · · · · · · · · · · · · · ·
BIS(2-E-H)PHTHALATE <0.62			_				_		
BIS(2-E-H)PHTHALATE <0.62								OUNDS	EXTRACTABLE ORGANIC COMP
1.2-DICHLOROBENZENE <0.11 <0.11 <0.11 <0.11 76.6 <0.11 <0.11 1.4-DICHLOROBENZENE <0.10 <0.10 <0.10 23.6 <0.10 <0.10	< 0.62	< 0.62	< 0.62	<31	< 0.62	< 0.62	< 0.62		
1.4-DICHLOROBENZENE <0.10 <0.10 <0.10 23.6 <0.10 <0.10	< 0.11						-		
		< 0.11	< 0.11	< 5.5	< 0.11	< 0.11	< 0.11	< 0.11	PHENOL
ALDRIN <0.007 <0.007 <0.007 0.058 <0.007 <0.007									
DDD,PP' <0.008 <0.008 <0.008 <0.008 2.56 <0.008 <0.008									
DDE,PP' <0.008 <0.008 <0.008 <0.008 0.024 <0.008 <0.008									
·		< 0.007							·
		< 0.007					- -		

^{* -} Concentration is greater than the Upper Certified Limit.

⁽a) Sample best approximates the 5-foot level at the bottom of the DRMO trench. See text pg. 7-8 for details.

TABLE Q2-12 GROUNDWATER SAMPLE RESULTS DRMO TRENCH AREA(a)

		SITE NUMBER		
	DMO-03-MWA	DMO-04-MWA	DMO-05-MWA	CRL
COMPOUND	ug/L	ug/L	ug/L	
FIELD PARAMETERS	•			
pH (Std. Units)	7.25	7.14	7.63	
SPECIFIC CONDUCTIVITY @25C (umhos/cm)	1050	800	950	
WATER TEMPERATURE (deg. C)	16		16	
INORGANICS				
ARSENIC	2.88	7.04	4.8	< 0.25
BARIUM	36.4	118.7	28.9	< 5.0
COPPER	< 8.09	< 8.09	11.5	< 8.09
SELENIUM	13.2	6.2	11.8	< 3.02
ZINC	25.3	34.7	72.1	<21.1
CALCIUM (ug/L-CA)	120,000	91,000	97,000	< 500
SODIUM (ug/L-NA)	78,000	67,000	75,000	< 500
RESIDUE, DISS	902	710	826	< 500
CHLORIDE	66,100	60,000	63,100	< 2.30
SULFATE	444,000	224,000	323,000	< 10,000
VOLATILE ORGANIC COMPOUNDS				
CHLOROFORM	< 0.50	< 0.50	< 0.50	< 0.50
TRICHLOROETHENE	10.2	4.18	25.7	< 0.50
EXTRACTABLE ORGANIC COMPOUNDS				
BIS(2-ETHYLHEXYL) PHTHALATE	<4.8	< 4.8	< 4.8	< 4.8

⁽a) Groundwater value is the highest reported value for either Round 1 or Round 2 of sampling.

TABLE Q2-13

NATIVE AND SIAD SURFACE SOIL (<5 FT.) METAL CONCENTRATIONS, RANGE AND TILC VALUES FOR TNT LEACHING BEDS AREA

						Is Upper Level
Element	Typical Range U.S. Soils	Typical Range U.S. Desert Soils ^b	SIAD Range	Maximum Level, µg/gs	TILC	> Federal/State Standard? Y/N
		1	.	;	:	;
Aluminum A specie	0 1.97	1.2-18	2.1-17.9	8.86	200	Z
Rarium	10-5.000	: ;	72-428	336	000'01	z
Reryllinm	1-15	<i>L-1></i>	;	;		;
Cadmina	0.41	0.57	1	;	9	;
Chromium	1-2.000	10-200	12.7-30.9	ł	2,500	;
Lagran Lagran	1.700	2-100	;	:	2,500	;
I ead	10-700	10-70	6-17.2	26.4	000,1	z
Mercilia	0.1-4.6	0.02-0.32	;	;	20	;
Nickel	5-700	7-150	;	ŀ	2,000	:
Selenium	< 0.01-2.0	<0.1-1.1	:	;	<u>8</u>	;
Vanadium	7-500	;	:	i	2,400	;
Zinc	20-108	25-150	:	64.7	2,000	Z

• Shaklette & Boerngen, 1984 • Kabata-Pendias and Pendias, 1984 • California State Register 86, No. 8-23-86 Title 26

TABLE Q2-14

COMPARISON OF MAXIMUM CONCENTRATION OF INORGANIC AND ORGANIC CONSTITUENTS OF WELL WATER WITH CONCENTRATION CORRESPONDING TO FEDERAL AND STATE MAXIMUM CONTAMINANT LEVELS (MCLs) AND STATE ACTION LEVELS (ALs) FOR DRINKING WATER AT TNT LEACHING BEDS AREA, A ZONE WELLS

		Regula	Regulatory Limits for	s for		Is concentration	
	1	Federal	Drinking Water		Maximum Concentration	> Federal/State Standard ?	
Constitution	CIRES	MCL	MCL	7	7/24	NI	
Inorganics							
Arsenic	mg/L	0.05	0.02	;	31.4	Z	
Barium	mg/L	0.1	1.0	;	52.1	Z	
Copper	mg/L	1.0	0.1	;	<8.09	z	
Mercury	mg/L	0.002	0.003	;	0.4	Z	
Selenium	mg/L	0.01	0.01	;	52.2	> -	
Zinc	mg/L	5.0	5.0	;	0.89	Z	
Veletile Omenia							
rans-1.3-dichloropropene	1/8n	i	0.5	;	•	i	
Carbon tetrachloride	HB/L	5.0	0.5	;	<u>8</u>	>	
Chloroform	µg/L	;	:	;	923	:	
1,2-dichloroethane	µg/L	5.0	0.5	;	101	>-	
Tolucne	µg/L	;	;	<u>8</u>	6.73	z	
Methylene chloride	µg/L	;	;	9	<23	1	
Trichloroethene	HB/L	5.0	9.0	;	952	>	
Extractable Organic Compounds	sp						
bis(2-ethylhexyl)phthalate		:	ł	ì	7.8	;	
2,4-dinitrophenol	µg/1.	ł	ŀ	:	17.5	:	
2,4-dinitrotoluene	µg/L	;	:	ŀ	6	;	

TABLE Q2-14 (Continued)

COMPARISON OF MAXIMUM CONCENTRATION OF INORGANIC AND ORGANIC CONSTITUENTS OF WELL WATER WITH CONCENTRATION CORRESPONDING TO FEDERAL AND STATE MAXIMUM CONTAMINANT LEVELS (MCLS) AND STATE ACTION LEVELS (ALS) FOR DRINKING WATER AT TNT LEACHING BEDS AREA, A ZONE WELLS

		Regula Dri	itory Limit nking Wat	is for	Maximum	Is concentration > Federal/State	
Constituent	Units	Federal	Federal State MCL AL	AL	Concentration #g/L	Standard ? Y/N	
Explosives							
2,4-dinitrotoluene	mg/L	ł	;	;	8	;	
HMX	mg/L	1	1	!	69.2	ţ	
RDX	mg/L		:	;	250	;	
Tetryl	mg/L	ŀ	ł	;	9.92	;	
1,3,5-trinitrobenzene	mg/L	!	ł	i	1,100	;	
2,4,6-trinitrotoluene	mg/L	:	ŀ	;	8.14	;	

TABLE Q2-15

COMPARISON OF MAXIMUM CONCENTRATION OF INORGANIC AND ORGANIC CONSTITUENTS OF WELL WATER WITH CONCENTRATION CORRESPONDING TO FEDERAL AND STATE MAXIMUM CONTAMINANT LEVELS (MCLS) AND STATE ACTION LEVELS (ALS) FOR DRINKING WATER AT TNT LEACHING BEDS AREA, B ZONE WELLS

		Regula Dri	Regulatory Limits for Drinking Water	s for	Maximum	Is concentration > Federal/State	
Constituent	Units	Federal	State	AL	Concentration #g/L	Standard ? Y/N	
Inorganics							
Arsenic	mg/L	0.05	0.05	:	14.0	Z	
Barium	mg/L	1.0	1.0	;	23.9	Z	
Copper	mg/L	1.0	0.1	:	9.56	Z	
Mercury	mg/L	0.005	0.00	;	0.2	Z	
Selenium	mg/L	0.01	0.0	:	<3.0	Z	
Zinc	mg/L	5.0	5.0	ŀ	81.7	Z	
Volatile Organic Compounds							
trans-1,3-dichloropropene	µg/L				:		
Carbon tetrachloride	HB/L	5.0	0.5	1	0.899/<0.58	Y/N	
Chloroform	µg/L	ì	:	;	0.697		
1.2-dichloroethane	ug/L	5.0	0.5		<0.50		
Toluene	ug/L	:	1	<u>8</u>	<0.50		
Methylene chloride	ug/L	;	;	9	<2.3		
Trichloroethene	HB/L	5.0	9.0	ŀ	0.838		
Extractable Organic Compounds	Sp.						
bis(2-ethylhexyl)phthalate		;	í	•	4 .8	1	
2,4-dinitrophenol	µg/L	:	í	;	<21	:	
2,4-dinitrotoluene	µg/L	;	;	:	<4.5	:	

TABLE Q2-15 (Continued)

COMPARISON OF MAXIMUM CONCENTRATION OF INORGANIC AND ORGANIC CONSTITUENTS OF WELL WATER WITH CONCENTRATION CORRESPONDING TO FEDERAL AND STATE MAXIMUM CONTAMINANT LEVELS (MCLS) AND STATE ACTION LEVELS (ALS) FOR DRINKING WATER AT THT LEACHING BEDS AREA, B ZONE WELLS

		Regula	Regulatory Limits for Orinking Water	s for	Maximum	ls concentration > Federal/State	
Constituent	Units	Federal MCL	State MCL A	AL	Concentration #g/L	Standard ? Y/N	
Fynlocives							
2 4-dinitrololuene	ue/L	1	:	;	<0.612	:	
HMX	HE/L	;	:	1	<1.65	1	
RDX	MR/L	!	:	:	<2.11	1	
Teat	49/L	;	;	:	9.0>		
1.3 Serinitrobenzene	1/6n	1	;	;	< 0.626	:	
2,4,6-trinitrotoluene	18/F	ł	:	:	<0.588	:	
•							

TABLE Q2-16

COMPARISON OF MAXIMUM CONCENTRATION OF INORGANIC AND ORGANIC CONSTITUENTS OF WELL WATER WITH CONCENTRATION CORRESPONDING TO FEDERAL AND STATE MAXIMUM CONTAMINANT LEVELS (MCLS) AND STATE ACTION LEVELS (ALS) FOR DRINKING WATER AT TNT LEACHING BEDS AREA, C ZONE WELLS

		Regulat Drir	Regulatory Limits for Drinking Water	r for	Maximum	Is concentration > Federal/State	
Constituent	Units	Federal MCL	MCL	AL	Concentration $\mu g/L$	Standard ? Y/N	
Inorganics							
Arsenic	mg/L	0.05	0.05	:	12.8	Z	
Barium	mg/L	1.0	0.1	:	34.9	Z	
Copper	mg/L	1.0	1.0	;	<8.09	Z	
Mercury	mg/L	0.002	0.00	;	< 0.2	Z	
Selenium	mg/L	0.01	0.01	;	<3.0	Z	
Zinc	mg/L	2.0	2.0		109	z	
Volatile Organic Compounds							
trans-1,3-dichloropropene	µg/L				< 0.250	;	
Carbon tetrachloride	µg/L	2.0	0.5	:	< 0.250/0.58	Z	
Chloroform	µg/L	;	!	;	1.23	1	
1,2-dichloroethane	µg/L	5.0	0.5		< 0.50	N/A	
Toluene	µg/L	i	ł	8	< 0.50	i	
Methylene chloride	µg/L	i	;	\$	8.49	*	
Trichloroethene	µg/L	2.0	2.0	:	2.0	Z	
Extractable Organic Compounds	হ						
bis(2-ethylhexyl)phthalate		:	;		< 4.8	;	
2,4-dinitrophenol	μg/L	;	;	;	<21	;	
2,4-dinitrotoluene	µg/L	;	÷	;	<4.5	:	

TABLE Q2-16 (Continued)

COMPARISON OF MAXIMUM CONCENTRATION OF INORGANIC AND ORGANIC CONSTITUENTS OF WELL WATER WITH CONCENTRATION CORRESPONDING TO FEDERAL AND STATE MAXIMUM CONTAMINANT LEVELS (MCLS) AND STATE ACTION LEVELS (ALS) FOR DRINKING WATER AT TNT LEACHING BEDS AREA, C ZONE WELLS

		Regula	Regulatory Limits for	s for		Is concentration	
		Federal	Drinking Water deral State	e er	Maximum Concentration	> rederal/State Standard ?	
Constituent	Units	MCL	1 2 1	AL	Ag/L	Y/N	
Explosives							
2,4-dinitrotuelene	µg/L	;	:	ł	<0.612	:	
HMX	µg/L	ł	1	1	<1.65	}	
RDX	µg/L	:	:	ŀ	< 4.18	;	
Tetry	µg/L	;	:	;	0.810	;	
1.3.5-trinitrobenzene	µg/L	ļ	:	:	0.793	;	
2,4,6-trinitrotoluene	µg/L	:	;	ŧ	<0.588	1	

TABLE Q2-17
SOIL CONTAMINANTS DETECTED AT THE 5-FOOT LEVEL
FOR THE TNT VEHICLE MAINTENANCE AREA SUBSITE

			SITE NUMBER	}		
	TNT-08-SB	TNT-09-SB	TNT-07-SB	TNT-10-SB	TNT-11-SB	CRL
COMPOUND	ug/g	ug/g	ug/g	ug/g	ug/g	
MOISTURE CONTENT (%)	6.8	4.0	1.9	1.6	3.9	
INORGANICS						
ARSENIC	5.16	5.78	3.55	8.86	2.9	< 0.25
CHROMIUM	< 12.7	< 12.7	< 12.7	< 12.7	< 12.7	< 12.7
LEAD	29.5	13.1	< 6.62	8.28	< 6.62	< 6.62
NICKEL	< 12.6	< 12.6	< 12.6	< 12.6	< 12.6	< 12.6
SELENIUM	< 0.250	< 0.250	< 0.250	< 0.250	< 0.250	. < 0.250
ZINC	< 30.2	< 30.2	<30.2	< 30.2	< 30.2	< 30.2
EXPLOSIVES						
2,4-DNT	< 0.424	< 0.424	< 0.424	< 0.424	< 0.424	< 0.424
нмх	< 0.666	< 0.666	< 0.666	< 0.666	< 0.666	< 0.666
RDX	< 0.587	< 0.587	< 0.587	< 0.587	< 0.587	< 0.587
TETRYL	< 0.731	< 0.731	< 0.731	< 0.731	< 0.731	< 0.731
1,3,5-TNB	< 0.488	< 0.488	< 0.488	< 0.488	< 0.488	< 0.488
2,4,6-TNT	< 0.456	< 0.456	< 0.456	< 0.456	< 0.456	< 0.456
VOLATILE ORGANIC COM	POUNDS					
TOLUENE	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008
TRICHLOROETHENE	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003

Only analytes detected in site samples are listed on the table. A less than sign ("<") followed by the detection limit indicates that the analyte was not detected in the sample.

TABLE Q2-18. GROUNDWATER SAMPLE RESULTS TNT LEACHING BEDS AREA*

		SITE NUMBER		
	TNT-10-MWA	TNT-11-MWA	TNT-12-MWA	CRL
COMPOUND	ug/L	ug/L	ug/L	
FIELD PARAMETERS				
pH (Std. Units)	7.19	7.72	7.55	
SPECIFIC CONDUCTIVITY @25C (umbos/cm)	1190	2420	1290	
WATER TEMPERATURE (deg. C)	15	17	14	
INORGANIC				
ARSENIC	12.0	15.2	28.4	< 0.25
BARIUM	47.1	17.3	24.7	< 5.0
CADMIUM	< 4.01	< 4.01	< 4.01	< 4.01
CHROMIUM	227	< 6.02	< 6.02	< 6.02
COPPER	< 8.09	< 8.09	< 8.09	< 8.09
LEAD	3.8	1.5	2.28	< 1.26
MERCURY	0.255	< 0.2	< 0.2	< 0.2
SELENIUM	< 3.0	9.16	3.41	< 3.02
ZINC	<21.1	<21.1	<21.1	<21.1
VOLATILE ORGANIC COMPOUNDS				
TRANS-1,3-DICHLOROPROPENE (a)	< 0.250	< 0.250	< 0.250	< 0.250
CARBON TETRACHLORIDE (a)	>5.00	>5.00	< 0.250	< 0.250
CARBON TETRACHLORIDE	190	19	< 0.58	< 0.58
CHLOROFORM	923	41	0.749	< 0.50
1,2-DICHLOROETHANE	101	0.82	< 0.50	< 0.50
TOLUENE	< 5.00	< 0.50	< 0.50	< 0.50
METHYLENE CHLORIDE	<23	< 2.3	<2.3	< 2.3
TRICHLOROETHENE	952	190	1.05	< 0.50
EXTRACTABLE ORGANIC COMPOUNDS				
BIS(2-ETHYLHEXYL)PHTHALATE	<4.8	<4.8	7.1	< 4.8
2,4-DINITROPHENOL	<21	<21	<21	< 21
2,4-DINITROTOLUENE (b)	<4.5	<4.5	<4.5	< 4.5
EXPLOSIVES				
2,4-DINITROTOLUENE (c)	< 0.612	< 0.612	< 0.769	< 0.612
HMX	< 1.65	< 1.65	< 1.65	< 1.65
RDX	< 2.11	<2.11	< 2.11	< 2.11
TETRYL	< 0.6	< 0.6	< 0.6	< 0.6
1,3,5-TRINITROBENZENE	< 0.626	0.867	1.12	< 0.626
2,4,6-TRINITROTOLUENE	< 0.588	< 0.588	< 0.588	< 0.588

Notes:

⁽a) Results based on semiquantitative GC analysis.

⁽b) Result based on GC/MS analysis.

⁽c) Result based on HPLC analysis.

^{*} Vehicle Maintenance Subsite, maximum reported values

TABLE 02-19

CALCHLATION OF ARITHMETIC AVERAGE AND 95TH PERCENTILE CONCENTRATIONS OF CHEMICALS DETECTED IN SURFACE SOIL.
TNT LEACHING BEDS SUBSITE

				,	; ;						•	:	950	
	TNT 41-SS	TNT-02-SS	AMMS THE SS-LB-THT - 82-5S-THT - 83-18-THT - 84-SS	*	pte Identification Code	Identification Code TNT-45-SS TNT-46-SS TNT-47-SS TNT-46-SS	TNT-66-SS	TNT-47-SS	TNT-66-SS	TNT -05(a)	Number	Arithmetic Average	Percentife Upper Bound	
	3/30	3/37	2/3	9/24	2/3h	1/3	2/30	2/2	3/3m	¥/\$	Values	14/5m	mg/kg(95%)	
Atwink	3.6E+00	4 6E + 00	5.9E+00	5.1E+00	4.2E+00	6.0E+00	3.5E+00	3.2E+00	3.0€ + 00	S. IE + 00	••	4.3E+00	5.0E+00	1
Barren	1.36.102	1 8E + 02	3.4E+02	2.6E+02	2.2E+02	2.1E+02	2.1E+02	1.1E+02	1.1E+02	2.16+02	60	1.9E + 02	2.5E+02	
76.	101361	9.8E+00	2.0E + 01	2.4E+01	9.16+00	3.3E + 00(b)	3.3E+00(b) 3.3E+00(b) 3.3E+00(b) 3.3E+00(h) 4.7E+00	3.3E+00(b)	3.3E+00(b)	4 7E+00	80	1.16+01	1.76+01	
Vanadung	2 16 + 01	3.5E+01	4.8E+01	3.7E+01	3.46+01	2.5E+01	3.4E+01	6.5E+00(b) 2.1E+01	2.1E+01	2.9E+01	•	2.9E+01	3.85 (01	
2.4 DNF	2 1E+00(b) 2.0E+01	2.0E+01	8.3E+00	2.1E+00(b)	2. IE + 00(b)	2.1E-01(b)	2.1E+00(b)	2.1E+00(b) 2.1E+00(b) 2.1E-01(b)	2.1E-01(h)	1.2E + 00(h)	•••	4.7E+00	9,115 + 00	
XMI	7.015 + 00	2.3E+01	1.0€+01	3.3E+00(h)	3.3E + 00(b)	3.3E-01(b)	3.3E+00(b)	3.3E+00(h) 3.3E+00(h) 3.3E-01(h)	3.3E-01(h)	1.8E+00(b)	••	6.5E+00	1.115 + 01	
KDX	3 16 + 02	1.3E + 03	3.76+02	1.1E+02	2.9E + (M(b)	2.7E+00	2.9E + 00(b)	2.9E+00(b) 2.9E+00(b) 2.9E-01(h)	2.9E-01(h)	2.8E+00	••	2.6E+02	5.5E+02	
I, 3,5 TNB	1 16 + 02	1.2E+02	4.8E+01	9.3E+01	4.36+01	4.1E+01	2.3E+01	1.16+01	1.46+00	4.2E+01	•	5.7E+01	8.8E+01	
2,4,6 TNF	1 2E + 04	4.6E+03	2.2E+03	8.3E+03	9.8E+03	6.5E+03	5.9E+03	2.9E + 02	7.8E+00	8.2E+03	•	5.1E+03	7.96+03	

(a) Arithmetic average of TNT-05-SS and TNT-05-SSDUP. (b) Not detected, value is entered as 1/2 the detection hint. (c) Cakulated haved on df=10 and $\alpha/2$ 0.975 = 2.306

TABLE Q2.20

CALCULATION OF ARTHUGETIC AVERAGE AND 95TH PERCENTILE CONCENTRATIONS OF CHEMICALS DETECTED IN GROUNDWATER AT THE TITL LEACHING BEDS SUBSTITE

					Sart It	Sample Identification Code				ı			
	TNT-42-MWA	THE 42-HWA THE 43-HWA THE 44-HWA THE 44	TAT-64 MWA	THE SEAMA	THE ST-MWA	6-MWA THE-27-MWA THE-88-MWA THE-89-MWA THE-11-MWA THE-12-MWA THE-13-MWA	TNT-09-MWA	TNT-11-MWA	TNT-12-MWA	TNT-13-MWA	į	Arithmetic	Percentite
mrg saics				2		1	100	794	MAT.	MP/L	Values	161	No.
Aisenc Chiomann I ead Mercury Schaium Organis	2.36 6.07 5.42 0.10** 4.05	10.3 3.01*** 0.10*** 1.51**	2.1 0.01 0.02 4.37	9.7 3.01 ⁴⁴ 7.05 0.251 8.84	15.4 9.5 0.63 ⁴⁴ 6.62	13.3 3.01™ 5.21 0.10™ 1.51™	8.96 3.01 ⁶⁰ 10.7 0.10 ⁶⁰ 1.51 ⁶⁰	15.2 3.01 ⁶⁴ 1.52 0.10 ⁶⁴	28.4 3.01 ^{to} 2.28 0.10 ^{to} 3.41	13.6 3.01.00 9.44 0.526	2 2 2 2 2	13 03 3.96 4 29 4 25	17 12 5.08 6.87 6.26
Carbon letrachloride 0.29*** Chloroform 0.25** 1.2 dechlorosthese 0.25** 2.4 distruphenol 10.5** HMX 3.76 RDX 250.0 2.1.35 trinstrobenzene 230.0 2.4,6 trinstrobenzene 8.14 TCE 3.52 Tetryl 0.30***	0.29m 0.25m 0.25m 10.5m 1.76 250.0 230.0 1.14 1.52 0.30m	0.29** 0.25** 0.25** 17.5 7.69 220.0 13.01 2.94 0.25** 0.30**	0.25 ⁶⁶ 0.25 ⁶⁶ 0.25 ⁶⁶ 1.05 ⁶⁶ 1.05 ⁶⁶ 3.38 1.24 0.25 ⁶⁶	0.29m 0.25m 0.25m 10.5m 1.05m 2.34 0.29m 0.29m	0.29** 0.25** 0.25** 1.05** 5.59 0.294** 2.48 2.79	0.25*** 0.25*** 0.25*** 0.25*** 0.25*** 0.25*** 0.25*** 0.29** 0.29*** 0.29*** 1.36***	0.29** 0.25** 0.25** 10.5** 1.05** 1.05** 0.294** 1.05	19 0 41 0 0 824 10.5 ⁴⁴ 0 825 ⁴⁴ 1.05 ⁴⁴ 0.254 ⁴⁴ 0.30 ⁴⁴	0.29** 0.749 0.25** 10.5** 1.05** 1.12 0.294** 0.294**	0.29*** 0.553 0.553 0.25*** 10.5*** 0.125*** 0.294*** 0.294*** 0.294*** 0.294*** 0.30**** 0.30****	222222222	2.28 0.307 11.2 1 805 47.84 26.132 1.438 21.77 0.675	6.21 0 436 12 619 3 318 113 94 74.07 3 81 1 46

... Not detected, value in entered as 1/2 the detection limit $^{\rm out}$ Cal. vloted base on of = 10 and a/2 0.975 = 2.228

Appendix Q3

Public Health Assessment-Toxicity Profiles

James M. Montgomery

Consulting Engineers Inc.

The following toxicology profiles are contained in this section: Arsenic, Chromium, Lead, Mercury, Selenium, Zinc, Benzene, Carbon tetrachloride, Chloroform, Chlorobenzene, 1,2-Dichlorobenzene, 1,3-Dichlorobenzene, Chloroform, Chlorobenzene, 1,2-Dichlorobenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, 1,2-Dichloroethane, bis(2-Ethylhexyl)phthalate, 1,1,2,2-Tetrachloroethane, 1,1,1-Trichloroethylene tetrachloroethylene, Trichlorofluoromethane, Phenol, Toluene, Xylene, Aldrin, Chlordane, DDD, DDE, DDT, Heptachlor, Heptachlor epoxide, Dioxins/dibenzofurans, 2,4-Dinitrophenol, 2,4-Dinitrotoluene, HMX, RDX, Tetryl, 1,3,5-Trinitrobenzene, and 2,4,6-Trinitrotoluene.

ARSENIC

Arsenic toxicity depends upon its chemical form. In general, compounds containing As⁺³ (arsenites) have somewhat higher acute toxicity than compounds of As⁺⁵ (arsenates) (ATSDR 1989a, USEPA 1984). Readily soluble arsenic compounds tend to be somewhat more toxic than poorly soluble forms. However, conversions in valence state and solubility may occur both in the environment and in the body (USEPA 1988c), so valence state is usually not a critical consideration in evaluating the toxicity of arsenic compounds.

Noncarcinogenic Effects

Inhalation exposure to arsenic compounds in air can produce gastrointestinal irritation, but the effects are usually very mild. The chief effect is usually irritation to the skin and mucous membranes of the eyes, nose and throat (ATSDR 1989). Skin darkening and corns have been noted in workers who were exposed chronically to airborne levels of about 0.4 mg/m³ (Perry et al. 1948), while levels of 0.1 to 0.2 mg/m³ have been reported to cause mild skin irritation (Pinto and McGill 1953). Blom et al. (1985) concluded that the risk of neurological effects is minimal at exposure levels of 0.05 mg/m³, and the ATSDR (1989) has estimated that chronic inhalation of 0.02 mg/m³ poses minimal risk of noncarcinogenic effects in humans. The USEPA has not derived any inhalation RfDs for arsenic (USEPA 1990b).

Oral exposure to high doses of arsenic produces marked irritation of the gastrointestinal tract, leading to nausea and vomiting. Symptoms of chronic ingestion of lower levels of arsenic often begin with a vague weakness and nausea. As exposure continues, symptoms become more characteristic and include diarrhea, vomiting, decreased blood cell formation, injury to blood vessels, damage to kidney and liver and impaired nerve function that leads to "pins and needles" sensations in the hands and feet. The most diagnostic sign of chronic arsenic exposure is an unusual pattern of skin abnormalities, including dark and white spots and a pattern of small "corns," especially on the palms and soles (ATSDR 1989).

The average daily intake of arsenic producing the effects described above varies from person to person. Some individuals may ingest 0.15 mg/kg-day (10 mg/day in an adult) without any obvious ill effects, while doses as low as 0.02 mg/kg-day (about 1 mg/day in an adult) can produce one or more of the signs of arsenic intoxication in more sensitive individuals (Tseng et al. 1968, Cebrian et al. 1983).

Based on keratosis and hyperpigmentation of the skin reported by Tseng (1977), the USEPA has derived an oral RfD for arsenic of 1E-3 mg/kg-day for evaluating both subchronic and chronic oral exposure to arsenic (USEPA 1990a). This value is currently undergoing review (USEPA 1990a).

Carcinogenic Effects

The USEPA has classified arsenic as a Group A carcinogen (known human carcinogen) by the inhalation and oral routes (USEPA 1990b).

Lung Cancer

There have been a number of epidemiological studies in humans which indicate that chronic inhalation exposure to arsenic is associated with increased risk of lung cancer (USEPA 1984, ATSDR 1989). As with many epidemiological studies, confounding factors such as smoking and exposure to other lung carcinogens may complicate data interpretation, but the consistent findings among studies constitute convincing evidence that arsenic does increase lung cancer incidence. Increased lung cancer risk has been reported most frequently in smelter workers predominantly exposed to As⁺³ (e.g., Lee and Fraumeni 1969). Increased incidence of lung cancer also has been reported in worker populations exposed mainly to As⁺⁵ (Ott et al. 1974). Based on the combined results of several studies of exposed humans, the USEPA (1984) has calculated a unit risk of 4.3E-3 (g/m³)⁻¹ (USEPA 1990b). Assuming inhalation of 20 m³/day by a 70-kg adult, this corresponds to a SF of 1.5E+1 (mg/kg-day)⁻¹.

Skin Cancer

There is strong evidence from a number of human studies that oral exposure to arsenic increases the risk of skin cancer (USEPA 1984, ATSDR 1989). The most common type of cancer is squamous cell carcinoma, which appears to develop from some skin corns. In addition, basal cell carcinoma may also occur, typically arising from cells not associated with the corns. Although these cancers may be easily removed, they can be painful and disfiguring and can be fatal if left untreated.

The amount of arsenic ingestion that leads to skin cancer is controversial. Based on a study of skin cancer incidence in Taiwanese residents exposed mostly to As⁺⁵ in drinking water (Tseng et al. 1968, USEPA 1984), the USEPA has calculated a unit risk of 5E-5 [g/L (USEPA 1990b)]. Assuming intake of 2 L/day by a 70-kg adult, this corresponds to a SF of 1.75E+0 (mg/kg-day)⁻¹. This study has been criticized on several grounds, including uncertainty about exposure levels, possible effects of poor nutrition in the exposed population, potential exposure to other substances besides arsenic and lack of blinding in the examiners. Consequently, some quantitative uncertainty exists in the cancer slope factor derived from the Tseng data. Nevertheless, these criticisms do not challenge the fundamental conclusion that arsenic ingestion is associated with increased risk of skin cancer, and the Tseng study is considered to be the best study currently available for quantitative estimation of skin cancer risk (USEPA 1988c).

Other Cancers

Although the evidence is limited, there are some reports which indicate that chronic oral arsenic exposure may increase risk of internal cancers, including cancer of the liver, bladder and lung (Chen et al. 1985, 1986, 1988a, 1988b). This is supported by limited evidence that inhalation exposure may also increase risk of gastrointestinal, renal or bladder cancers (Lee-Feldstein 1983, Enterline and Marsh 1982).

Low-Dose Detoxification of Arsenic

Most evaluations of cancer risk from a chemical depend on extrapolation from high dose to low dose, and it is usually assumed that the dose-response curve is linear in the low-dose region. In the case of arsenic, some researchers have suggested that arsenic is effectively detoxified by metabolic methylation at low doses, leading to a nonlinear dose response curve (Marcus and Rispin 1988, Loehr et al. 1989). If so, low dose cancer risk estimates based on an assumed linear relationship are likely to be too high. The USEPA (1984) has carefully considered all the available data on metabolic detoxification of arsenic, along with other relevant considerations, and has concluded that a more complete understanding of these data is needed before they can be factored with confidence into the cancer risk assessment process for arsenic.

Beneficial Effects

Several studies in animals suggest that low levels of arsenic in the diet may be beneficial for reproduction and normal postnatal development (Schwartz 1977, Anke et al. 1978, 1987, Uthus et al. 1983). However, these studies were not well controlled, and some researchers believe the data are not adequate to show that arsenic is beneficial (Solomons 1984, Hindmarsh and McCurdy 1986). The USEPA (1988d) has carefully reviewed the evidence and concluded that the essentiality of low levels of arsenic in animals has not been established but is plausible.

If arsenic is beneficial or essential in animals, it is also likely to be so for humans. Based on the animal data, the estimated beneficial dose for humans is approximately 10 to 50 [g/day (USEPA 1988c). This level of arsenic intake is usually provided in a normal diet, and no cases of arsenic deficiency in humans have been reported (ATSDR 1989).

CHROMIUM

The principal use for pure chromium (Cr) is in the metal plating industry. Many household appliances and other manufactured items including automobiles are chrome plated. It is used for alloying with several other metals and is used in radiological medicine.

Chromium is reported in ranges from 35 to 200 mg/kg in the earth's crust and occurs in the ocean at a level of 0.0005 mg/l. A USGS Survey showed a general range for surface water of 0.006 to 0.05 mg/l of hexavalent chromium Cr (IV) as trivalent chromium salts Cr (III) are insoluble.

The U.S. EPA drinking water standard for Cr (VI) in drinking water supplies is 0.05 mg/l.

Cr is essential nutrient for animals, being required along with insulin for the metabolism of carbohydrates. The average daily dose is around 1 mg per day. Excess Cr is rapidly excreted by the body and therefore, not cumulative in the body.

Cr occurs in oxidation stages ranging from Cr (II) to Cr (VI), but only Cr (III) and Cr (VI) are of biologic importance. There is no evidence that trivalent will form in biological systems but hexavalent Cr readily crosses cell membranes and is reduced intracellularly to trivalent Cr.

The known adverse health effects have been attributed to the hexavalent form. Acute systemic toxicity may result may result from accidental exposure during previous therapeutic uses or suicide attempts. The major effect from ingestion of Cr (VI) is acute renal (kidney) tubular necrosis.

Cr (VI) is corrosive and causes chronic ulceration and preformation of the nasal septum and other skin surfaces. Cr (III) is considerably less toxic and is neither irritating or corrosive.

Systemic Health Effects of Chromium III

Chromium (III) compounds generally do not produce increased mutation rates in microbial test systems. In one study, chromium (III) was weakly mutagenic in Bacillus subtilin (U.S.EPA, 1984a). Several mammalian cell assays have indicated chromosomal alterations due to chromium (III), however, contradictions have been reported (U.S. EPA, 1984a).

The NOEL is divided by a safety factor of 1,000 to yield an ADI of 1.467 mg/kg/day, or 102.7 mg/day. The target concentration in water and air are 51.4 mg/l and 0.41 mg/m3, respectively.

Systemic Health Effects of Chromium

Chromium (VI) is more toxic than chromium (III) following both acute and chronic exposures. Chromium (VI) compounds are very strong skin irritants and sensitizers. These compounds have been demonstrated to produce nasal irritation, skin ulceration, irritant dermatitis and allergic contact dermatitis in humans. Nasal irritation in workers has been

observed at airborne (soluble) chromium (VI) concentrations of 0.068 mg/m3. At higher concentrations, perforations of the nasal septum have been observed. Chrome skin ulcers are deep round holes that develop at sites where hexavalent chrome compounds a redeposited on broken skin. Favored sites for ulcer development include nail root areas, knuckles and finger webs, and on the back of hands and forearms. The ulcer heals slowly and may persist for months. Allergic dermatitis may result after one or more exposures to chromium (VI). Subsequent exposures result in dermatitis are of varying severity. Allergic eczematous dermatitis due to chromium VI has been described in a variety of people, including those without occupational exposure. Skin patch tests indicate that 8-15% of all patients suffering from eczematous dermatitis react positively with chromium. In some individuals, chromium (chromate) sensitization has resulted in asthmatic attacks upon subsequent reexposure (U.S.EPA, 1984b).

In occupational settings, chromium (VI) exposure has resulted in local lung effects such as pneumoconiosis and acute upper respiratory disease. There have been reports of kidney damage in workers where chromium (VI) was absorbed through damaged skin (which can be sustained due to the irritant effects of chromium (VI), as described previously. In adults, ingestion of 1 to 2 grams of chromate has resulted in kidney and liver damage that appears 1 to 4 days following ingestion. Ingestion of about 5 grams of chromate results in the appearance of liver and kidney damage within 12 hours of the intake. Gastrointestinal bleeding and massive fluid loss may also occur after this exposure (U.S EPA, 1984b).

No studies on possible teratogenic effects resulting from ingestion of chromium are available (IRIS, 1988).

Carcinogenic Effects of Chromium VI

Hexavalent chromium compounds have produced excess tumors in several animal bioassays, although chromium (VI) has not produced lung tumors following inhalation exposures (IRIS, 1988).

Workers employed in chromate production have had increased incidences of lung cancer. ACPF of 41 (mg/kg/day) from the inhalation route has been estimated from chromium (VI) by EPA's Cancer Assessment Group based on an epidemiology study performed by Mancuso (1975).

A review of the histologic classification of lung cancer cases in chromate workers attributed the greatest risk to cancer due to acid-soluble, water-insoluble Cr (VI) rather than trivalent compounds. Other studies have supported this hypothesis.

A slight increase in cancer of the gastrointestinal tract has been reported in other studies, but each involved only a small group of workers. Animal studies support the human data that Cr (VI) is the carcinogenic chromium compound. Trivalent compounds have little to nomutagenic activity in bacterial systems.

EPA classifies chromium (VI) as a Group 'A', human carcinogen by inhalation. There are no studies indicating that chromium VI is carcinogenic following ingestion exposure (IRIS,1988). Studies have found in vivo conversion of Cr (VI) to Cr (III) and the reverse. Therefore exposure to one form involves exposure to both.

Pharmacokinetics

Chromium (III) compounds are not readily absorbed relative to chromium (VI) salts by either inhalation or oral routes of exposure. In the gastrointestinal tract, about 0.4% chromium (III) and 10% chromium (VI) is absorbed (U.S. EPA, 1984a). Chromium is bound by constituents in the gastric juices which reduce intestinal uptake. Absorption also occurs through the skin with diffusion constants reported to be 314 x 106 cm2/min and Θ 26.6 x 106 cm2/min for hexavalent and trivalent chromium, respectively (Mali, 1963).

Factors influencing dermal absorption include the chromium salt employed, the valencestate (III or VI), anionic form, concentration and pH (U.S. EPA, 1984a).

Once absorbed, chromium (III) is transported by binding to proteins in the blood. Chromium (VI), however, crosses the red blood cell membrane where it can bind to cellular compounds or undergo reduction to chromium (III). Chromium (III) is cleared rapidly from the blood and slowly from tissues, while chromium (VI) is distributed to the liver, spleen, bone marrow, lung and kidney. There is some indication that accumulation mayalso occur in the testes, brain and heart.

Excretion primarily occurs through the urine (about 50-60%) with some fecal elimination (about 8%) (U.S. EPA, 1984c). The remainder is deposited in various tissue compartments and has a long biological half-life. Chromium (VI) is eliminated much faster than Cr (III). Adipose and muscle tissue retain chromium for about 2 weeks while liver and spleen tissue retain chromium for about 1 year.

Human Epidemiology Studies of Chromium VI

Epidemiological studies of chromate production facilities in the United States, Great Britain, Norway, Japan and West Germany have established an association between chromium exposure and lung cancer. Most of these studies did not establish whether chromium (III) or chromium (VI) was the causative agent. Three studies of workers in the chrome pigment industry also found an association between occupational chromium (predominantly hexavalent) exposure, and lung cancer (IRIS, 1988).

Mancuso (1975) divided a 332-member cohort into three groups of workers who began work between 1931 and 1932, between 1933 and 1934, and between 1935 and 1937. Of all the cancer deaths in the cohort up until 1974, 63.6 percent, 62.5 percent and 58.3 percent were attributed to lung cancer in the first, second and third groups, respectively. Workers were exposed to both chromium (III) and chromium (VI) and, therefore, the risk estimation for chromium (VI) is actually based on exposure to total chromium.

LEAD

ACUTE EFFECTS

Many neurotoxic effects are associated with lead intoxication. In children, acute encephalopathy can result from blood lead levels greater than 80 μ g/dl. It is initially characterized by irritability, loss of memory and inability to concentrate. It can progress to delirium, convulsions, coma and death (EPA, 1986).

At high lead exposure, the gastrointestinal system is one of the earliest to show symptoms of acute lead intoxication. Colic (acute abdominal pain) is a consistent early symptom of lead poisoning. It is most often seen in cases of occupational lead exposure, and has been observed in workers with blood lead levels exceeding 40 μ g/dl (ATSDR, 1988).

SYSTEMIC HEALTH EFFECTS

Inorganic lead is primarily absorbed through the gastrointestinal tract and the lungs. Absorption through the skin appears to be limited. The absorption of lead in the gastrointestinal tract is dependent upon numerous factors including: the age and nutritional status (e.g., iron, zinc, and calcium stores) of the individual ingesting the lead, how recently the individual has eaten, and the form of the lead (e.g., solubility and particle size). It has been estimated that, on the average, 6-15 percent of normal adult dietary lead (including beverages) is absorbed (EPA, 1986).

Toxic effects resulting from lead exposure area well documented and many have been associated with a range of blood-lead (PbB) levels. Children have been found to develop symptoms at lower PbB levels than do adults. Dose related toxic effects are observed in the following areas: heme synthesis and hematological (blood system) effects, neurological system, kidney, reproduction/development, and the cardiovascular system.

Central Nervous System Effects

Less severe neurotoxic effects have been observed at lower blood lead levels. For example, decreased nerve conduction velocities, indicative of peripheral nerve dysfunction, have been noted in children and adults at blood levels of 30 to 40 μ g/dl (ATSDR, 1988). Recently, it has been determined that blood lead levels as low as 30 to 40 μ g/dl are associated with IQ deficits and other central nervous system effects in children. Altered auditory and electrophysiological responses have been observed in children at blood lead levels of 15 μ g/dl.

Neuro behavioral deficits have been observed in infants and young children with blood lead levels of $10-15 \mu g/dl$, although these may be reversible in later years is exposure ceases. A variety of behavior changes, developmental delays in motor abilities, and learning deficits have been observed in young animals with prenatal or early postnatal lead exposures (ATSDR, 1988).

Hemolytic Effects

Blood lead can have many diverse effects due to its interference with the synthesis of heme, a compound that functions in many tissues including blood, kidney, liver and nerves. Lead interference with heme synthesis, as indicated by elevated levels of erythrocyteprotoporphyrin (EP), has been associated with blood lead levels of 15-30 μ g/dl in adults and 15 μ g/dl in children. Changes in heme synthesis enzyme activity levels have been observed at blood lead levels as low as 10 μ g/dl, although it is not clear whether this has any physiological effects. In the blood, heme is a critical component of hemoglobin, the protein that transports oxygen throughout the body. Anemia, a functional and potentially serious deficit in the amount of hemoglobin has been observed at 80 μ g/dl blood lead in adults and 70 μ g/dl blood lead in children. In the kidney, reduced heme content results in reduced vitamin D metabolism, which in turn, interferes with several hormonally regulated effects. In the liver, reduced heme synthesis may result in the impairment of detoxification of toxic organic compounds and drugs, as the P450 metabolism enzymes require heme as a cofactor (ATSDR, 1988).

Toxic effects resulting from chronic lead exposure are well documented and many have been associated with accompanying blood-lead (PbB) levels. Children have been found to develop symptoms at lower PbB levels than do adults. The most serious effects associated with lead intoxication are the neurotoxic effects. Lead encephalopathy can result from blood lead levels greater than $100 \mu g/100$ ml and is characterized by irritability, loss of memory and ability to concentrate, delirium, hallucinations, cerebral edema, and coma (EPA, 1980). Less severe neurotoxic effects have been observed at lower blood lead levels. For example, lowered nerve conduction velocities, indicative of peripheral nerve dysfunction, have been noted in adults at blood levels of 30 to 40 $\mu g/100$ ml (EPA, 1985).

Hematologic effects appears to be among the most sensitive indicators of lead absorption. Lead interference with heme synthesis has been noted in humans and other mammalian species at levels below 10-15 μ g/100 ml. The step most sensitive to lead in the heme synthetic pathway is that mediated by the enzyme 7-aminolevulinic acid dehydratase (7-ALAD), although the health significance of 7-ALAD inhibition at low blood-lead levels is unclear. Lead can also lead to the accumulation of porphyrin in erythrocytes with elevated levels of erythrocyte protoporphyrin (EP) associated with blood lead levels of 25-30 μ g/100 ml in adults and 15 μ g/100 ml in children (EPA, 1985). Anemia is characteristic of more severe cases of lead, poisoning, resulting from erythrocyte destruction and reduced hemoglobin synthesis (EPA, 1977).

Nephrotoxicity

Renal (kidney) toxicity has been observed in victims of lead intoxication. Reversible proximal tubule damage has been observed primarily in cases of short exposure. Reduced glomerular function has been associated with chronic exposures and blood lead levels ranging from 40 to more than $100 \mu g/dl$ (EPA, 1986).

Cardiovascular Effects

Cardiovascular effects, including increased blood pressure and hypertension, have been associated with lead exposure to adults. The EPA (ATSDR, 1988) considers that sufficient evidence exists from four large-scale general population studies, as well as smaller studies, to make the following conclusions: "that a small but positive association exists between blood lead levels and increases in blood pressure. Quantitatively, the relationship appears to hold across a wide range of blood lead values, extending possibly down to as low as $7 \mu g/dl$ for middle-aged men."

REPRODUCTIVE EFFECTS

Several occupational studies have suggested a relationship between lead exposure and adverse reproductive effects in both women and men. However, the data were all obtained at moderate to high lead exposure levels, and the number of individuals was small. These studies are not considered definitive (EPA, 1986). Animal studies, primarily in rodents, also indicate there are adverse reproductive, but not teratogenic, effects following chronic exposure to lead in food and/or drinking water (EPA, 1986). Delays in neuro behavioral development were described previously. Other developmental effects that have been associated with lead exposure include low birth weight and decreased gestational age, which occurs at maternal blood lead levels above 12-14 μ g/dl, and reductions in childhood growth (IRIS, 1989).

An approach to determining hazard-associated levels of lead in soil is the determination of lead soil levels that are not associated with elevated blood lead levels in children. According to the report "Preventing Lead Poisoning in Young Children" (ATSDR, 1988): lead in soil and dust appears to be responsible for blood lead levels in children increasing above background levels when the concentration in the soil or dust exceeds 500-1000 ppm.

CARCINOGENIC EFFECTS

Inhalation

The EPA has concluded that inorganic lead is a probable human carcinogen, with a weight of evidence classification of B2. Although human evidence is inadequate, several animal bioassays have shown statistically significant increases in renal tumors following dietary and drinking water exposure to lead acetate or lead subacetate, two soluble lead salts (IRIS, 1989). No quantitative cancer potency factor has been derived for lead because of the large uncertainties involved in the derivation, including the effect of age, health, nutritional status and body burden (IRIS, 1989). Lead has been associated with several mutagenic and other genotoxic effects under certain conditions.

All studies regarding exposure to lead do not report quantified exposure concentrations and are further limited due to smoking and exposure to other metals. Two studies found no association between exposure to lead and cancer mortality (Dingwall-Fordyce and Lane, 1963; Nelson et al, 1982); one found a slight association (Selevan et al, 1985); and one found

a significant excess of total cancer mortality (Cooper and Goffey, 1975; Cooper 1985 update).

The animal evidence is considered sufficient to classify it as a probable human carcinogen. Statistically significant increases of renal tumors associated with oral exposure to lead have been reported in 10 bioassays in rats and one in the mouse. Results have been reproduced in several laboratories in several strains of rats with evidence of multiple tumor sites (IRIS, 1989).

INGESTION

Two two-year feeding studies in rats were conducted by Azar et al., (1973). Exposure concentrations ranged from 10 to 2,000 ppm of lead acetate. Male rats in exposure groups of 500 ppm and above exhibited an increased incidence of renal tumors. No tumors were observed in rats of either sex at 10 to 100 ppm or in control groups. The study is limited however, by each of experimental detail.

Koller et al., (1986) also reported an increased incidence of renal tumors in male rats at a dietary exposure concentration of 2,600 ppm of lead in lead acetate. Eighty-one percent of the rats of the treatment groups had renal tumors after 76 weeks of exposure.

Male rats were fed 8,500 ppm for 79 weeks in a study by Kasprzak et al., (1985). Approximately 45 percent of surviving treatment group rats had renal tumors.

One study (Van Esch and Kroes, 1969) reported a low incidence of renal tumors in treatment group of 1.0 percent lead acetate. The investigator felt that the low incidence of renal tumors was due to early mortality. No significant increase of renal tumors was observed in hamsters at 0.5 percent and 1 percent dietary concentrations.

MERCURY

Mercury is a transition metal and, in its elemental state, occurs at room temperature as a liquid. It is commonly produced as a byproduct to gold mining and is produced from mining operations. It is commonly used in thermometers, barometers and other pressure-sensing devices and in electrical components. World production of mercury exceeds 6.5 million kilograms annually.

Mercury occurs naturally in the environment and is distributed throughout the world. It occurs in three valence states; as a metal and various inorganic and organic complexes. It is discharged into the environment in the form of gaseous emissions, various salts in industrial processes, and is capable of bioaccumulation into terrestrial and aquatic food chains. A saturated atmosphere of elemental mercury can contain up to 18 mg/m³ and it can exist in the monatomic state as a vapor. Inorganic mercury (Hg⁺¹ and Hg⁺²) readily forms complexes with organics, especially sulfhydryl groups and can form salts with organic and inorganic acids. Organic mercury consists of primarily methyl, ethyl, phenyl and alkoxyalkyl mercury compounds in the form of organic and inorganic acid salts. The compounds readily bioaccumulate due to their lipophilic nature and can interact with biologically significant ligands. These compounds are capable of passing placental barriers.

Acute Effects

Acute human exposure to high concentrations of mercury vapor results in loss of respiratory function and death due to pulmonary tissue necrosis and edema (Teng and Brennan, 1959). Organic mercury exposure involving diethylmercury at concentrations up to 1 mg/m³ for up to four months resulted in death with major tissue damage being in the gastrointestinal tract. Acute inhalation exposure of mercury vapor and organic mercury to experimental animals results in death due to pulmonary edema.

Inhalation of metallic mercury vapor results in systemic toxicity to humans and experimental animals. The effects are dose related such that at low levels, the central nervous system and kidney are target organs while at higher doses, the respiratory tract, cardiovascular and gastrointestinal organs are targeted. Respiratory effects in humans and rodents include pulmonary edema, lobar pneumonia, desquamation of bronchiolar epithelium, necrosis and death (Ashe et al. 1953). Cardiovascular effect include initial increase in blood pressure followed by degeneration and myocardial necrosis. Gastrointestinal effects include nausea, vomiting, gingivitis, mercurial stomatitis and necrosis of the intestinal mucosa (Lillis. 1985). Renal effects include proteinuria, hematuria, degeneration of the convoluted tubules and death (Campbell, 1948). Creatine excretion increased in exposed individuals with increasing dose suggesting that this marker might be a useful gauge for the level of mercury exposure (Buch et al. 1980). In rodents, renal tubular epithelium degeneration is noted at moderate doses (3 mg/m³) (Kishi et al. 1978). Based on these studies, a level of from 1 to 3 mg/m³ resulted in a LOAEL.

The central nervous system is a major target organ for elemental mercury exposure. Elemental mercury rapidly passes the blood-brain barrier and can exert toxicity based on conversion to inorganic forms and interaction with sulfhydryl groups in the neuronal tissue. Acute exposure results in excitability, tremors, decreased motor and muscular function, headache, visual disturbances, ataxia, dysarthria and with severe exposure, paralysis an death (Cassarett and Doull, 1986; Hanninen, 1982). Chronic exposure to elemental mercury results in tremors, loss of short-term memory, decreased psychomotor skill and general neurological dysfunction that becomes irreversible after prolonged exposure (Fawer, et al. 1983). Elevated urinary excretion of mercury generally correlates with neurological symptoms. Due to the cumulative nature of mercury intoxication, a chronic inhalation MRL of 0.00026 mg/3 has been suggested for a long-term exposure level of atmospheric mercury.

Rodent exposure to metallic mercury results in neurological and behavioral effects similar to those manifested in humans although rodents appear less sensitive than humans to mercury inhalation (Armstrong, 1963; Ganser and Kirschner, 1985)

Investigations in humans following prenatal exposure to mercury suggests increased spontaneous abortion and menstrual disturbances. Due to the rapid absorption of mercury via inhalation, transfer of mercury from maternal blood to maternal milk can result in neonatal exposure to mercury (Cassarett and Doull, 1986).

Elemental mercury vapor caused increased fetal toxicity in rodents, the number of resorptions and fetal mortality increased with treatment groups. Rat exposed to doses of 0.5 mg/m³ during days 10 to 15 of gestation resulted in increased resorptions and increased skeletal malformations (Steffek et al. 1987). Based on rodent and human data, mercury exposure during mid to late pregnancy could result in developmental and/or reproductive toxicity.

Chronic Exposure

Chronic exposure to elemental mercury vapor results in prolonged neurological symptoms which include tremors, loss of memory, decreased psychomotor skill and neurological dysfunction (Fawer, et al. 1983). Increased urinary excretion of mercury and the development of proteinuria indicate chronic mercury intoxication as does the elevated creatine excretion (Ganser and Kirschner, 1985).

Genotoxicity

Genotoxic effect of elemental and inorganic mercury via inhalation include elevated chromosomal abnormalities in lymphocytes. conflicting report indicate the potential for development of both chromosomal aberrations and aneuploidy in humans. Bone marrow chromosomal aberrations have been demonstrated in mice exposed to organic mercury vapors. Shot-term mutagenicity assays in various cultured cells indicate a lack if direct mutagenic activity of mercury or mercury salts.

Carcinogenicity

Based on fairly extensive human epidemiological investigations, there is no correlation between occupational mercury exposure and increased tumor burden. There is no experimental animal data or bioassays that indicated that various forms of mercury could enhance tumor development in rodents. Based on these data, U.S. EPA has classified mercury as a class D compound and there are n cancer potency values for mercury (IRIS, 1989).

SELENIUM

Selenium toxicity depends on total body levels since its deficiency and excess result in several disorders (ASTDR, 1989). The nature of the toxicity does not appear to correlate with the oxidation state of selenium but absorption and bio-availability depend on the form of selenium (e.e. organic or inorganic).

Non-carcinogenic Effects

Low body and tissue levels of selenium result in diminished glutathione peroxidase enzyme activity in whole blood and erythrocytes which adversely effects the protection of cells from oxidation damage (Valentine et. al, 1988). Depressed selenium levels result in at least two chronic, non-cancerous, metabolic diseases: Keshan disease and Kashin-Beck disease (Yang et. al, 1988). Keshan disease manifests its symptoms by increased necrosis of the myocardial muscle, while Kashin-Beck disease results in degeneration, atrophy, and necrosis of cartilage. Low selenium intake in other instances results in increased cardiomyopathy resulting in increased cardiovascular deaths in man (Oster et. al, 1983; Salonen et. al, 1982).

Excessive body levels of selenium manifest their symptoms as increased garlic breath, increased skin rashes, dental carie increase, brittle and discolored nails, hair loss and increased nervous system disorders (Kilness and Hochberg, 1977; Yang et. al, 1983). Severe selenosis can result in chronic nervous system degeneration and depression.

In rodent species, oral ingestion of selenium and selenium salts produce acute toxicity to mice, rats, guinea pigs, and rabbits (ASTDR, 1989. Nonlethal doses of selenium sulfide or selenium disulfide result in pulmonary edema and respiratory congestion (Carter, 1966; Koppel et. at, 1986). Ingestion of high levels of selenacious plants results in respiratory failure in livestock (NAS, 1976a).

Oral dosage of mice and rats with selenium salts results in myocardial hyperemia, hemorrhage, and degeneration, and pericardial edema (Schroeder and Mitchener, 1972). In chronic exposure settings with mice, myocardial amyloidosis of the heart was observed but the significance of this finding is unclear.

Severe gastrointestinal distress, abdominal cramping and fluid imbalance result from acute dosage with selenium salt in humans (Koppel, 1986). Livestock suffering from "blind staggers" exhibit severe gastrointestinal distress and upon necropsy, pronounced gastrointestinal necrosis (Shamberger, 1986). Gastrointestinal disorders in rodents fed grains high in selenium resulted in NOAELs of 0.5 mg/kg/day (ASTDR, 1989).

Limited investigations in humans suggest that hepatic effects occur following short-term and chronic ingestion of selenium compounds. Abnormal liver function (serum bilirubin and alkaline phosphatase activity) has been demonstrated in one patient (Civil and MacDonald, 1978).

Hepatic congestion in ruminants and rodents have been noted (Hoppee et. al, 1985; Palmer and Olsen, 1974). Chronic exposure to selenium compounds in rodents also results in depressed liver weight and eventually cirrhosis (Harr et.al, 1967) (NOAEL 0.68 mg/kg/day).

Selenium intoxication has resulted in effects on other organ systems in rodents and humans. Renal effects such as nephritis and severe interstitial nephritis and any lordosis have been noted following oral ingestion of selenium compounds (Harr et. al, 1967). Oral ingestion of selenium has been associated with delayed eye lid development in mice (Ostadalova and Babicky, 1980).

Reproductive and Developmental Effects

There have been no investigations demonstrating that selenium or selenacious containing plants induce developmental anomalies in humans (ASTDR, 1989). Selenium does not induce terata in rodent species under very stringent conditions (Barlow and Sullivan, 1982). Avian species appear to be highly susceptible to selenium induced terata (Palmer et. at, 1973). Selenium ingestion elicits decreased fetal body weights in rats and mice and impairs fertility and conception rates in rodents (Chowdhury and Venkatakrishna-Ghatt, 1983). Selenium also decreases fecundacy in swine (Wahlstrom and Olson, 1959b). Recent investigations in primates indicate that selenium does not induce fetal malformations under continuous dosing prior to conception through parturition (Tarental et al, in press).

Genotoxic and Carcinogenic Effects

Selenium by itself has not been shown mutagenic in bacterial or mammalian cell mutagenesis assays (ASTDR, 1989). In fact, the presence of selenium in the mutation assays as a media supplement or as an adjunct to the S9 metabolic activation system decrease mutagenic activity of known mutagens (Gairola and Chow, 1982).

Selenium and selenium containing plants do not enhance the development of tumors in humans (ASTDR, 1989). In fact, in areas where high indigenous selenium occurs in the diet, tumor rates for tongue, esophagus, stomach, intestine, rectum, liver, pancreas, lung and bladder are significantly lower in males and females than in low selenium exposure diets (Shamberger et. at, 1976). The possible mechanism may relate to effects on glutathione peroxidase levels (Valentine et. al, 1988).

Carcinogenicity data in rodents for dietary selenium present conflicting results. Early reports indicate that sodium selenate or selenacious plant material enhanced hepatic tumor incidence in rodents (Volgarev and Tscherkes, 1967; Schroder and Mitchener 1971a). Later reports indicate that dietary selenium inhibits spontaneous tumor development or chemically induced (N-2-fluorenylacetamide) tumors (Harr et.al, 1967). Selenium sulfide is the only compound known to consistently increase tumor incidence in the form of hepatocellular carcinomas and alveolar/bronchiolar carcinomas in rats and mice (NTP, 1980c). Selenium sulfide is only used in topical pharmaceutical preparations and not taken orally. Lastly, in 1975, IARC concluded from the literature that selenium in the forms of selenite, selenate, and organic forms was non-carcinogenic to rodents and humans and is not considered to be a carcinogen.

ZINC

Systemic Health Effects of Zinc. As the zinc ion is too poorly 00 absorbed to induce systemic intoxication, zinc compounds are relatively non-toxic by mouth. Zinc is an essential component of numerous enzyme systems of diverse activities in the body. Zinc has also exerted protective effects in many disease states (Klaasson, 1986).

In brass foundry workers, zinc oxide was found to produce zinc fume fevers due to inhalation of fumes during manufacturing processes. Clinical recovery is usually complete in 24 to 48 hours. Chronic exposure to fumes has not shown adverse effects (NIOSH, 1976).

Fine salt of strong mineral acids can be corrosive to the skin and irritating to the gastrointestinal tract. However, the use of zinc oxide in many topical dermatologic preparations has demonstrated a low potential for skin irritation. An occupational dermatitis "Oxidepox" was reported by Mogelivskaya in workers. The author concluded that zinc oxide particulate and lack of personal hygiene contributed to the minor eruptions. These were reversible with the institution of good hygiene practices (Clayton, 1981).

Gastrointestinal disturbances with peptic ulcer-like symptoms have been supported in workers employed for years in brass foundries (Clayton, 1981).

Clinically latent liver dysfunction has been reported in workers exposed to high levels of zincoxide. Evidence of peptic ulcers was felt to be indicative of gastrointestinal tract damage(NIOSH, 1976).

Zinc is a nutritionally essential metal and deficiency results in several health consequences. Excessive exposure to zinc is relatively uncommon and requires very heavy exposure.

BENZENE

The occurrence of benzene in the environment is through both natural sources and coal and oil production. It is component of gasoline and issued as an ingredient in the production of plastics, detergents and pesticides. Some paint strippers and cleaning products contain benzene. Since benzene in a gas at normal temperatures, human exposure in most likely to occur through inhalation. Ingestion of contaminated water is also a route of exposure.

Acute Effects of Benzene. Death due to inhalation of high benzene concentrations has been documented. In these cases, a tank spill or intentional misuse of benzene containing products has caused CNS depression or cardiac arrythmia.

For exposures to high concentrations which are below lethal levels, the central nervous system is the organ of concern. Liquid and vapor can irritate the mucus membranes. Contact with liquid can cause an itching dermatitis. Headache, dizziness, nausea can occur.

Through inhalation studies of animals the LC 50 was found to be 13,700 ppm for a 4 hour exposure (Drew and Fouts, 1974). Lethality to humans by inhalation has been estimated at 19,000 to 20,000 ppm for a 5 to 10 minute exposure (Sandmeyer, 1981).

Benzene is considered to be of low acute toxicity to animals when ingested (O'Bryan and Ross, 1986). In rats the lowest LD found is 930 mg/kg. In humans, concentrations in the range of 10 ml up to 30g of benzene has been estimated to be a lethal dose (Thienes and Haley, 1972 and Von Oettingen, 1940, as reported in Sandmeyer, 1981). When converted to weight per weight, the LOAEL for human lethality is 128 mg/kg.

Systemic Effects of Benzene

Inhalation Exposure. At lower exposure concentrations, the hematopoietic, immune and neurological systems are the organs most vulnerable to benzene. Humans have shown a decrease in various blood cell counts, due to bone marrow depression. As the blood composition is altered so is the organisms immune response. These studies are verified by animal testing.

Numerous animal studies have shown bone marrow depression due to damage of the stem cells in white and red blood cell production. The result is a decrease in the number of circulating blood cells (pancytopenia). The bone marrow depression can advance to myelogenous leukemia which will be discussed under carcinogenic effects.

Animal studies conducted by Li (1986) examined blood in female rats exposed to 0 to 3,000 ppm benzene for 8 hours per day for 7 days per week. At 20 ppm, leucocyte counts were significantly inhibited. At 300 ppm, leucocyte enzyme levels were increased. Similar studies by Rozen, et al. in 1984, focussed on different cells of the blood. Red blood cells and lymphocytes counts were depressed. Of the varying cell types in the blood, the lymphocyte was found to be the most sensitive. Lymphocytes are critical to the immune response. The granulocytes were found to be the most resistent cell type. It is hypothesized that metabolites of benzene, not benzene are the most toxic form.

The hematotoxic effects of benzene inhalation are also observed in studies of humans. Hypoplasia of the bone marrow and a resulting decrease in various cells of the blood is noted. Aksoy (1972) studied workers exposed to 150 to 650 ppm for 4 months to 15 years. Severe blood disorders were observed.

An impact on the immune system has also been noted in animal studies. Studies of the erythroid celline found a decrease in the incorporation of 59 Fe into bone marrow precursors and developing erythrocytes. Valle Paul and Snyder (1986) demonstrated that repeated exposure to 10 ppm of benzene reduced progenitor red cells in mice.

The cause of pancytopenia may be due to destruction of bone marrow cells impairment of cell differentiation or destruction of cell precursors and circulating cells, (Goldstein, 1971). Benzene induced myelo suppression was investigated by Kalf et al. 1987. Post et al. 1985 the impact of benzene on DNA and RNA synthesis.

The impact of benzene inhalation on the human immunological system is indicated by alteration of the immunoglobulin levels. B and T cell antibody production decreases (Lange et al, 1973; Roth, et al, 1972; Smolik, 1973 as reported in Goldstein, 1986). Rozen et al (1984) showed that B cells derived in bone marrow and splenic T cells had a decreased proliferative response following short term inhalation exposure.

The neurotoxic effects of benzene are similar to the acute effects. Low level, long term exposure to benzene through inhalation has caused CNS lesions in human (Brzecki et al, 1973 as reported in Sandmeyer, 1981).

Oral Exposure. A study of benzene by rats over a 6 month period of doses ranging from 0 to 100 mg/kg/day showed that the hematological damage should also be caused through ingestion. Leukopenia was slight at the 20 mg/kg/day dose and increased with increasing doses.

No data has been found on the impact of oral exposure and human hematological effects.

No data is available on impact of ingestion of benzene on animal or human immune system.

Pharmacokinetics

The toxicity of benzene has been attributed to it metabolites (Kalf et al., 1987). Benzene is readily absorbed dermally, via inhalation and ingestion and is metabolized via the hepatic cytochrome P₄₅₀ system. Differential species absorption and metabolism result in intoxication and detoxication of benzene to a series of phenols, glucuronide, hydroquinones, catechol, 1,2,4-benzene-triol; some of which bind covalently to RNA, DNA and protein (Medinsky, et al, 1989). A recent summary on benzene metabolism, toxicity and carcinogenesis has been published (Goldstein et al., 1989).

Genotoxicity

Benzene was examined for mutagenic activity in bacterial and mammalian cell mutagenesis assays. It is negative in the majority of Salmonella Ames assays (Shimizu, 1983) and has been reported positive in only limited instances in the mouse L5178Y lymphoma assay and the Chinese hamster V79 cell mutagenesis assays. the positive results were with metabolic activation and point mutational activity of benzene is inconclusive (Garner, 1985).

Benzene treatment induces chromosomal aberrations and aneuploidy in cultured human lymphocytes and CHO cells (Howard et al., 1985; Danford, 1985). SCE potency for benzene metabolites ranged from catechol > 1,4-benzoquinone > hydroquinone > 1,2,4-benzenetriol > phenol > benzene in the human lymphocyte assay (Erexson et al., 1985). In vivo benzene induces dose-dependent increase in peripheral blood micronuclei in B6C3F1 mice (Choy et al., 1985). In humans, chromosomal aberrations were noted in workers inhaling up to 12 ppm benzene for up to 18 years in an aged, sex, smoking-habits, site of residence matched control study (Sarto et al., 1984).

Carcinogenicity

Etiological association between benzene and leukemia was suggested by several epidemiological studies involving occupational exposure to benzene in various manufacturing industries. Retrospective cohort mortality studies of male rubber products workers indicated a significant increase in leukemia compared to the general U.S. population (Infante et al., 1977). In a follow up study, Rinsky et al. (1987) found elevated risk to benzene inhalation exposure at doses of 40 ppm-years up to greater than 400 ppm-years; a clear dose-response human study.

Benzene induces tumors in rodents via inhalation and gavage and shows a clear dose-response from 50 to 500 mg/kg in rats (Maltoni et al., 1983). In the NTP bioassay (NTP, 1986) both rats and mice developed multiple tumors in various organs and sites (Zymbal gland, oral cavity, lymphoma, lung tumors and male had increased incidence of harderian gland and preputial gland tumors while females had increased incidence of mammary gland and ovarian tumors). Based on the above data and numerous other reports (Goldstein et al., 1989), benzene is classified as a class A carcinogen with an oral and inhalation potency factor of 2.9 E-02 (mg/kg/day)⁻¹. The risk to humans was calculated to be about 5 times less than for animals based on pharmacokinetic parameters. A drinking water unit risk of $8.3E-07~\mu g/L$ was set but the RfD is pending (IRIS, 1990). The State of California has recently set the drinking water standard at $1.0~\mu g/L$.

CARBON TETRACHLORIDE

Carbon tetrachloride is a colorless, heavy liquid with an aromatic, sweet odor. It readily volatilizes and therefore is rarely found as a liquid in the environment. Most environmental carbon tetrachloride is in a gaseous state or in small quantities dissolved in water. Historically carbon tetrachloride has been used for a variety of purposes. This man-made compound has been used in the production of refrigerants and propellants of aerosol cans. It was also used as a common industrial solvent and degreaser until the mid-1960s. Carbon tetrachloride was used as a dry-cleaning agent and fire extinguisher due to its non-flammability. The toxic potential of carbon tetrachloride was realized and its use discontinued thereafter. However once carbon tetrachloride is introduced into the environment, it can take between 30 and 100 years to be broken down. Carbon tetrachloride is therefore considered to be very persistent in the environment (Sittig, 1985; ATSDR, 1990).

ACUTE EFFECTS

Inhalation

Most human data regarding acute inhalation exposure of carbon tetrachloride is drawn from case studies of people following accidental spills, use of the compound as a cleaning agent or fire extinguisher. Exposure concentrations are therefore seldom quantified. One commonly encountered characteristic of carbon tetrachloride sensitivity in humans is an associated tendency for alcoholism (Smyth, 1935; Umiker and Pearce, 1953).

Once case study of an alcoholic worker estimated to have been exposed to 250 ppm of carbon tetrachloride for 15 minutes produced death whereas non-alcoholic workers were exposed for 4 hours with only a slight headache (Norwood et al, 1950; Umiker and Pearce, 1953).

In animals, the lethal potential of carbon tetrachloride is dependent on both concentration and duration of exposure. An eight-hour LC50 value for mice is reported to be 9,500 ppm (Svirbely et al, 1947) whereas 50 percent mortality is reported after 4 to 6 hours of exposure to 7,300 ppm in rats.

Ingestion

Typically oral exposure to carbon tetrachloride results from an intentional and monitored consumption for the treatment of hookworm, accidental ingestion, or suicide attempts. The medical treatment of hookworm generally ranges between 3 to 5 ml (5 to 8 g), whereas suicide attempts are of 300 g or more. More accidents and suicides occurred prior to 1960 when the widespread use of carbon tetrachloride as an anthelminthic and cleaning fluid ceased. Again the most extreme reactions to carbon tetrachloride followed the consumption of alcohol (ATSDR, 1990).

Death from the ingestion occurs in humans within hours to days of exposure. The most common clinical effects producing death are severe liver and/or kidney damage. Other symptoms include cardiovascular, central nervous system effects and gastrointestinal irrigation (Guild et al. 1958; von Oettingen, 1964).

Carbon Tetrachloride

Concentrations reported to cause death in humans following oral exposure range from a slow as 1.5 ml (40 mg/kg) in alcoholics up to 10 ml (200 mg/kg) with some suicide victims ingesting as much as 150 ml of carbon tetrachloride (Umiker and Pearce, 1953; von Oettingen, 1964; Lamson et al, 1928; Phelps and Hu, 1924).

Studies in rodents have reported LD50s ranging from 6,000 to 24,000 mg/kg (McLean and 21 pH-McLean, 1966; Pound et al, 1973; Hayes et al, 1986). Other studies have reported deaths in cats and rats at concentrations of 400 to 800 mg/kg (Chandler and Chopra, 1926; Hayeset al, 1986). The primary cause of death in animals, as in humans, is central nervous system depression and liver and kidney toxicity.

Dermal

Most human data regarding dermal exposure to carbon tetrachloride also involves inhalation exposure with very limited quantification for exposure concentrations precluding any estimation of an acutely lethal dermal dose.

Studies in animals report mortality within 5 days of 25 percent of all guinea pigs exposed to 260 mg/cm3 of carbon tetrachloride applied to the skin and 65 percent mortality at 1,000 mg/cm3 (Wahlberg and Boman, 1979). Another study reported the LD50 of dermal exposure in guinea pigs and rabbits to be greater than 15,000 mg/kg (Roudabush et al,1965).

SYSTEMIC EFFECTS

Respiratory Effects, Inhalation

Severe respiratory effects such as edema, hemorrhage and congestion usually do not appear until six to eight days after exposure. Pulmonary edema is found commonly in humans but is not considered the primary cause when death occurs (Umiker and Pearce, 1953).

In animals, the pulmonary effects of carbon tetrachloride appears to be less pronounced. Adams et al (1952) reported no observation of respiratory toxicity in rats exposed to concentrations up to 3,000 ppm and higher. The same study exposed rats and monkeys to 100 ppm for 200 days again with no report of lung injury.

Ingestion

Oral exposure in humans to carbon tetrachloride results in similar effects as following inhalation exposure. Umiker and Pearce (1953) also evaluated case reports of deaths resulting from oral exposure and found pulmonary edema and hemorrhage appearing eight days after exposure but still considered it secondary to other possible causes of mortality.

Respiratory effects in animals resulting from ingestion seem more prominent than those observed from inhalation of carbon tetrachloride. Dose-response effects such as pulmonary epithelial damage as concentrations as low as 160 mg/kg (Hollinger, 1982). Pulmonary

edema and hemorrhage as well as subcellular changes occurred at reported concentrations up to 4,000 mg/kg (Gould and Smuckler, 1971; Boyd et al, 1980; Hollinger, 12982).

Dermal

No studies found.

Cardiovascular Effects, Inhalation

Exposure via inhalation to carbon tetrachloride produced no significant cardiovascular effects, even at concentrations which produce liver and/or kidney toxicity (Adams et al, 1952; Prendergast et al, 1967; Smyth et al, 1936; Stewart et al, 1961; Umiker and Pearce, 1953). A few studies reported slight changes in blood pressure and heart rate which again were considered secondary to renal and kidney effects (Ashe and Sailer, 1942; Guild et al, 1958; Kittleson and Borden, 1956).

Ingestion

The little data available regarding oral exposure to carbon tetrachloride in humans and animals indicates little potential for cardiovascular effects. No major histopathological changes of the heart were reported even at concentrations that produce hepatic and renal effects (Gardner et al, 1925; Leach, 1922; MacMahon and Weiss, 1929; Korsrud et al, 1972).

Dermal

No studies found.

Gastrointestinal Effects, Inhalation

Gastrointestinal effects such as vomiting, nausea and pain are commonly the initial signs of acute exposure (Stewart and Witts, 1944; Guild et al, 1958; Norwood et al, 1950). Gastrointestinal effects are also commonly associated with longer-term exposure also(Elkin, 1942; Smyth et al, 1936). It is thought that any gastrointestinal effects are secondary to autonomic nervous system effects (Stewart and Witts, 1944).

Ingestion£

Traditionally, carbon tetrachloride was used for treatment of hookworms at doses of 3 to 5ml (70 to 110 mg/kg). Exposure at these levels produced only mild gastrointestinal effects(Hall, 1921; Leach, 1922). Ingestion of 30 to 40 ml (600-900 mg/kg) produces nausea, vomiting and abdominal pain (Hardin, 1954; von Oettingen, 1964; Smetana, 1935; Umiker and Pearce, 1953). These effects are considered to possibly be a secondary result of central nervous system effects rather than a direct gastrointestinal effect (ATSDR, 1990).

Dermal

No studies found.

Hematological Effects, Inhalation

The hematological system is not considered to be a target system of exposure through inhalation of carbon tetrachloride. The only associated symptoms are a slight increase in white cell count or mild anemia in some cases (Gray, 1947). Other researchers observe no significant hematological effects in humans (Heimann and Ford, 1941; Norwood et al, 1950; Smyth et al, 1936).

No study reported hematological effects following inhalation exposure in rats, mice or guinea pigs. Concentrations of exposure were reported to be up to 200 ppm for 170 days(Adams et al, 1952; Prendergast et al, 1967; Smyth et al, 1936).

Ingestion

Studies regarding oral exposure to carbon tetrachloride in human and animals report no association between exposure and hematological changes. Some hemorrhage and anemia was observed but attributed to other primary causes (Guild et al, 1958; Stewart et al, 1963; Hayes et al, 1986).

Dermal

No studies found.

Hepatic Effects, Inhalation

Carbon tetrachloride has been identified as a compound with market hepatic toxicity. Some of the most common signs and symptoms of carbon tetrachloride poisoning are tender and swollen liver, jaundice, increased levels hepatic enzymes and serum bilirubin and decreased levels of liver protein serum (Ashe and Sailer, 1942; McGuire, 1932; New et al, 1962; Norwood et al, 1950; Straus, 1954).

There is only limited specific and quantified data of hepatic damage in humans, however a study by Stewart et al (1961) exposed volunteers to 50 ppm for 70 minutes or 10 pm for three hours. Fifty (50) ppm is considered the lowest observed adverse effect level (LOAEL) based on changes in serum enzymes and iron. Studies monitoring workers exposed to 10 to 100 ppm for up to years were observed to have elevations in serumbilirubin levels (Smyth et al, 1936). Workers exposed to concentrations up to 200 ppm exhibited the same effects indicating slight liver damage (Barnes and Jones, 1967).

Animal data supports the potential hepatic toxicity of carbon tetrachloride. Signs of hepatic effects are parallel to those found in humans. Exposure of rats to 10 to 50 ppm results in signs of moderate to mild hepatic toxicity on both short and long-term exposures (Adams et al 1952; Paustenbach et al, 1986 a,b; Smyth et al, 1936). Monkeys seem to be less sensitive while guinea pigs seem more sensitive than rats (Adams et al, 1952; Prendergastet al 1967).

Ingestion

Signs and symptoms of hepatic injury resulting from ingestion of carbon tetrachloride are the same as those characteristic of inhalation exposure. Concentrations sufficient to produce mortality usually do so within 15 days after exposure. Upon autopsy findings include marked accumulation of fat and necrosis typically the centrilobular region (Umiker and Pearce, 1953; Jennings, 1955).

The U.S. Environmental Protection Service, Integrated Risk Information System (IRIS) reports an oral reference dose (RfD) of 7 E-4 mg/kg/day for liver lesions based on a no observed adverse effect level (NOAEL) of 1 mg/kg/day (standardized to 0.71 mg/kg/day) reported by Bruckner et al (1986). The researchers exposed rats to 0 to 33 mg/kg/day carbon tetrachloride orally for 5 days/week for 12 weeks. Significant increases in serum activity and increase in liver lesions was observed at exposure concentrations at 10 mg/kg and above.

The results of the work by Bruckner et al (1986) are supported by other studies by Alumotet al (1976) and Hayes et al (1986) which reported signs of mild hepatic toxicity at concentrations of 12 to 40 mg/kg/day for 35 to 90 days in mice and rats. There appeared to be a dose-response relationship with severity of hepatic injury increasing with dosing levels. Most researchers agreed that the kidney seemed to be the most sensitive organ.

Dermal

No quantified concentration of dermal exposure to carbon tetrachloride were found. However, Perez et al (1987) and Kroneri et al (1979) noted an apparent association between dermal exposure and the development of slight liver and/or kidney toxicity amongother more non specific systemic effects. No definite conclusions can be drawn due to limited number of cases cited and no quantified data.

Renal Effects, Inhalation

In conjunction with the characteristic hepatic effects, renal toxicity due to carbontetrachloride exposure is common, especially in humans more so than animals. Clinical signs of toxicity include nephritis, nephrosis, edema, proteinuria, and mild degeneration of the kidney tissue (McGuire, 1932; Norwood et al, 1950; Smetana, 1939; Guild et al, 1958; Ashe and Sailer, 1942). The specific mechanism of toxic effect is not known.

Very little quantitative human data is available and therefore has precluded a definite set exposure level. Some concentration estimations of occupational exposure have been reported. An approximate concentration of 200 ppm was associated with an increase in proteinuria in workers (Barnes and Jones, 1967), whereas 50 ppm for 70 minutes and 10 ppm for three hours cause no urinary changes.

Animals seem slightly less sensitive with no evidence of renal toxicity apparent at exposure in rats, cats, monkeys, or guinea pigs of up to 200 ppm for 90 days (Adams et al, 1952; Bogers et al, 1987; Prendergast et al, 1967).

Ingestion

Renal failure is thought to be a contributing factor in some fatal cases of poisoning but is not considered to be the cause of death. Signs are parallel to those observed in inhalation exposure with development delayed up to six days after exposure. Most cases not proven to be fatal are reversible (Smetana, 1939; Umiker and Pearce, 1953; Gosselin et al, 1976; von Oettingen, 1964).

Animals again are less sensitive than humans with exposures of up to 4,000 mg/kg returning to normal within 5 days (Striker et al, 1968). Some concentrations which produced clear hepatoxicity resulted in only mild renal effects (Hayes et al, 1986).

Dermai

Dermal exposure is thought to act in a similar fashion has hepatic toxicity and likewise is not considered a primary route of exposure for kidney toxicity.

Neurological Effects, Inhalation

Carbon tetrachloride is a volatile halocarbon and, as such produces central nervous system depression. It was used as an anesthetic at one time before other compounds proved more efficacious and less toxic. Common signs vary with exposure concentration and include weakness, lethargy, headaches, blurred vision, and some degeneration of the brain(Hardin, 1954; Cohen, 1957; Stevens and Forster, 1953; Smyth et al, 1936; Ashe and Sailer, 1942). Some studies report headache and giddiness in workers exposed to 20-125 ppm for 8 hr/day (Elkins, 1942; Kazantzis and Bomford, 1960). it is suggested that a threshold for 8 hour exposure to carbon tetrachloride is 20 ppm.

Rats exposed to 4,000 ppm experienced ataxia and to 12,000 ppm experienced unconsciousness and death at 19,000 (Adams et al, 1952). Smyth et al, 1936 reported no observed effects in animals exposed to 400 ppm for more than 10 months.

Ingestion

Symptoms following ingestion usually are slightly delayed but result in depression of the central nervous system. Characteristic signs are similar to that observed via inhalation and have been reported to occur after single doses of five to several hundred ml (Stevens and Forster, 1953; Cohen, 1957). Recovery again is considered reversible.

Dermai

No conclusive studies found.

DEVELOPMENTAL EFFECTS

No information on human via any route of exposure is available. However animal studies indicate that does sufficient to produce maternal toxicity do not produce marked

developmental effects. Concentrations reported are up to 1,000 ppm (inhalation) and 1,400 mg/kg/day (ingestion) (Wilson, 1954; Schwetz et al, 1974).

REPRODUCTIVE EFFECTS

Inhalation

No human data is available. However the few animal data indicate the potential for a decrease in fertility in rats at 200 ppm and greater (Smyth et al, 1936; Adams et al, 1952).

Ingestion

Of the few available studies, none identified any dose-related adverse effect following oral exposure to carbon tetrachloride in rats (Alumot et al, 1976).

Dermal

No studies found.

GENOTOXIC EFFECTS

There is very little information available following exposure through either inhalation, ingestion or skin. Two studies of oral exposure found that a single dose of 100 mg/kg did not produce genotoxic effects (Mirsalis and Butterworth, 1980).

Another study with similar exposure concentrations found an increase in DNA synthesis but did not consider it adverse (Craddock and Henderson, 1978).

CARCINOGENIC EFFECTS

Carbon tetrachloride is classified by the USEPAs weight-of-evidence as B2, a probable human carcinogen. No one study was judged able to stand alone so several studies were used as a basis to calculate the oral cancer potency factor (CPF) which is reported to be 1.3E-1 mg/kg/day (ATSDR, 1989; IRIS, 1990).

Inhalation

No structure studies of inhalation exposure in either humans or animals was found. Reports have associated the incidence of liver cancer to exposure to carbon tetrachloride fumes in both short and long-term exposure durations (Tracey and Sherlock, 1968; Johnstone, 1948). IRIS (1990) reports an extrapolated CPF for inhalation to be the same as for ingestion at 1.3 E-1 mg/kg/day for the hepatic tumorigenic potential of carbontetrachloride.

Ingestion.

The evidence of carcinogenic toxicity is based on the animal data derived from several studies. Again the oral CPF is 1.3 E-1 mg/kg/day primarily for hepatic carcinogenicity. The

incidence of hepatocellular carcinomas was associated with treatment and dose of carbon tetrachloride. Concentrations ranged from 0 to 94 mg/kg for 5 days/week for 78 weeks. The higher dosing groups exhibited low survival however a dose-dependent association was established (NCI, 1976 a,b; 1977). Another study reported the incidence of hepato tumors in mice exposed to concentrations as low as 20 mg/kg for 120 days(Eschenbrenner and Miller, 1946). Della Porta et al (1961) as well as Edwards et al (1942)were also used to derive the CPF. Della Porte et al (1961) exposed hamsters to 6.25 g to 12.5 l for 30 weeks with additional observation for 25 weeks. Each hamster that survived had liver cell carcinomas. Edwards et al (1942) treated a species mice traditionally resistant to carcinogenesis with 0.1 ml of a 40 percent carbon tetrachloride solution for 4 months with a least 3 months of observation following treatment. The incidence of hepatocellular carcinomas was much greater in those that were exposed than those which were not.

Dermal

No studies found.

CHLOROFORM

The main use for chloroform in industry is as an ingredient in the production of fluorocarbons. The remainder is used in a variety of ways including solvents. Numerous sources of environmental chloroform exist. Industries such as the paper and pulp bleaching plants which use chlorine or drinking water that is chlorinated generates chloroform. Chloroform is also formed in the environment through the degation of trichloroethylene.

Acute Effects of Chloroform. As with the other compounds discussed, exposure to high concentrations of chloroform can cause acute effects such as dizziness and headache. A very high exposure can result in death. The LC 50 for rats is 10,000 ppm for a 4 hour exposure (Lundberg, et at., 1986). The lethal inhalation concentration from humans is not known.

A range of value are reported for oral LD 50 levels for rats ranging from 118 mg/kg to 444 mg/kg. A lethal ingested dose for humans is 211 mg/kg (Schroeder, 1965).

Systemic Effects of Chloroform. The organs which are the target of long term chloroform exposure are the liver kidney and CNS. Animal inhalation studies have shown liver effects including necrosis in rats, rabbits and guinea pigs exposed to 25 ppm for 7 hours per day 5 days per week for 6 months (Torkelson et al., 1976).

Toxic jaundice and hepatitis has been reported in humans exposed occupationally to 2 to 205 ppm for 1 to 4 years (Bomski, et al 1967).

Carcinogenic Effects of Chloroform. Chloroform is classified by the EPA as a B2 probable human carcinogen. In humans there is insufficient data on chloroform itself to draw any conclusions. In typical exposure, the chloroform occurs with other chlorinated organics to the individual effects cannot be studied alone.

There is sufficient animal data to prove the carcinogenicity of chloroform. Eight strains of mice have been tested as well as two strains of rats and beagle dogs. A study of ingestion of chloroform in oil by rats and mice 5 times per week for 78 weeks was performed by NCI in 1976. Varying concentrations of chloroform were administered. Kidney epithelial tumors were observed in the male rats as well as significant increases in hepatocellular carcinomas in all mice. In the low dose male mice, which did not develop hepatocellular carcinoma, liver nodular hyperplasia was observed.

Chloroform was administered to rats and mice in a study by Jorgenson et al., in 1985. A significant increase in renal tumors in the rats was observed at 1,800 mg/l (160 mg/kg/day).

Ingestion of chloroform in toothpaste was not carcinogenic to mice and beagles. Another study administered 60 mg/kg/day to mice and found an increased incidence of kidney epithelial tumors (Roe et al 1979).

CHLOROBENZENE

Chlorobenzene is a colorless liquid that has a mild aromatic odor. it is @@ also known as phenyl chloride, monochlorobenzene and chlorobenzol. Chlorobenzene is used in the manufacture of other compounds such as aniline, phenol, chloronitrobenzene and pesticides as well as an intermediate in the production of dyestuffs. (Sittig) Chlorobenzene has been detected in the finished water of several water supply systems at concentrations ranging from $4.7 \mu g/6$ to $5.6 \mu g/6$. The compound may be produced as a result of chlorination during water treatment. (EPA, 1975a)

Acute Effects

Chlorobenzene is not considered an extremely acute toxin. Rozenbaum (1947) reported an LC50 in mice of 20 μ g/L (4,300 ppm) after exposure through inhalation. Another study reported the death of all animals (cats)2 hours after exposure to 8,000 ppm and 7 hours after exposure to 3,700 ppm (Irish, 1963).

No studies regarding inhalation, dermal or oral exposure in humans were located.

Animals study of oral exposure to chlorobenzene report lethality in rats after one exposure to 4,000 mg/kg and 1,000 mg/kg in mice. The same study exposed rats to 1,000 mg/kg/day for 14 days and also observed lethality. Decreased survival was also observed in rats after intermediate exposure to 500 mg/kg/day and in mice at 250 mg/kg/day.

It is also reported that chronic oral exposure to chlorobenzene at 120 mg/kg lowers survival significantly with no compound induced toxic lesions identified as responsible for the reduced survival.

Systemic Effects

Human data on the effects of chlorobenzene on various organ systems is limited via all routes of exposure. Available animal data is presented.

Hematological. A limited number of studies in animals suggest that chlorobenzene may cause hematological changes. Dilley (1977) observed some dose and time related effects in rats. The primary affect was increased reticulocyte count at exposure concentrations >75 ppm for 24 weeks.

In another more inconclusive study, Zub (1978) reported slight leukopenia and lymphocytosis in mice exposed to 0.1 mg/l chlorobenzene for 3 months. Hematological affects have not been duplicated in other species and are considered insensitive indicators of chlorobenzene toxicity.

Hepatic. The study previously cited by Dilley (1977) reported observation of liver congestion in male rats and male rabbits after exposure to >75 ppm chlorobenzene for 24) weeks. Inhalation of 150 and 450 ppm chlorobenzene is reported to have produced increased liver weights and liver hypertrophy in male rats. (Nair et al., 1987).

Experimental evidence in animals suggest that human exposure to chlorobenzene via inhalation may potentially produce liver toxicity.

Liver effects in animals has also been reported after oral exposure. Effects include increased serum enzymes, altered liver weights, necrosis, degeneration and porphyrin metabolism interference. Doses which cause toxic effects have been observed at 1,140 mg/kg/day for exposure of 5 days or less (Remington and Ziegler 1963) and at 100 and 125 mg/kg/day for longer term exposures in rats and mice (Hazleton, 1967; NTP, 1985). Theno observed effects level is considered to be 60 mg/kg/day and is used as the basis for the derivation of an intermediate oral MRL of 0.4 mg/kg/day.

Renal. Based on a small number of studies in animals, chlorobenzene demonstrates kidney toxicity. Effects are observed at concentration levels similar to those found in the liver toxicity of the compound. The inhalation studies conducted by Nair et al (1977) and Dilley (1977) as cited above reported adverse kidney effects that are considered treatment related at concentrations of 75 to 450 ppm.

Toxic effects to the kidney after oral exposure were observed at concentrations >1,005 mg/kg/day (Hazelton 1967) and at >250 mg/kg (NTP 1985). Again, chlorobenzene seems to produce kidney effects at comparable concentrations found to produce liver effects. The compound is therefore considered a potential area of concern in human exposure and the subsequent development of kidney effects.

Immunological Effects. Only one study of oral exposure to chlorobenzene in animals regarding immunological effects was available. The study showed necrosis of the thymusand lymphoid or myeloid depletion of bone marrow, spleen, and thymus at exposure of >250 mg/kg/day for 13 weeks. However, there were no immune function test conducted and therefore no NOAEL established. A LOAEL of 250 mg/kg/day was noted. (NTP1985)

No substantial assumptions or conclusions can be made regarding the immunotoxic effects of chlorobenzene in humans based on the limited animal data.

Neurological Effects. Human inhalation exposure to unspecified quantities of chlorobenzene have produce central nervous system effects. Intermittent occupational exposure for up to 2 years has produced numbness, cyanosis, hyperesthesia and muscle spasms. Results provide only qualitative evidence of the neurotoxicity of chlorobenzene in humans. (Rozenbaum 1947)

Some qualitative data regarding urotoxicity in animals is provide by the study in cats by Irish (1963). Findings include narcosis at inhalation of 5.5 mg/L (1,200 ppm) and 37 mg/L(8,000 ppm). Other more general central nervous system effects were observed also at 1 to 3 mg/L (2,400 to 2,900 ppm). Concentrations of 1 to 3 mg/L (220 to 660 ppm) produced no significant neurological effects.

Only one case study of oral exposure to chlorobenzene constitutes the available data regarding neurotoxicity following oral exposure in humans. A two year old male ingested 5 to 10 cc of solution used for removing stains which was largely made of chlorobenzene. The odor of chlorobenzene was evident in the child's urine and exhaled air. Adverse effects included

unconsciousness, non response to stimuli, muscle spasms, and cyanosis. The child did undergo a full recovery. (Reich, 1934)

Because of the paucity of dose response data either animal or human, no quantitative determination of the effects of chlorobenzene on the central nervous system is available.

Developmental and Reproductive Effects. Little data exist on the developmental and/or reproductive toxicity potential of chlorobenzene. A study by John et al (1989) reported no structural malformations at inhalation exposure in rats and rabbits concentrations of up to 590 ppm. Nair et al (1987) reported no adverse effects on reproductive performance or fertility.

The available data does not allow for any prediction of the developmental or reproductive effects of chlorobenzene in humans. However the data does suggest that it may not be an area of prime concern in human exposure.

Carcinogenic Effects

The present data is inadequate to characterize the carcinogenic potential of chlorobenzene in humans. In a chronic bioassay in rats and mice produce inconclusive results in dose concentrations of up to 120 mg/kg/day. There was reported a significant increase inneo plastic modules of the liver in male rats which where not observed in female rats or maleor female mice. Nodules have historically been characterized by a progression to carcinomas. However, the existing data cannot be interpreted as a certain indication of the carcinogenic potential of chlorobenzene in humans.

Environmental Effects

There have been no studies that demonstrate relationship between environmental levels of chlorobenzene and the development of adverse health effects in humans. Ambient air concentrations have been found to range from 60 to 300 ng/m3. (Barkley et al 1980) Concentrations in drinking water range from 10 to 60 mg/L (Barkley et al 1980) and from 4.7 mg/L to 5.6 mg/L. (EPA 1975)

Air is an important, if not the most important, medium for the transport of chlorobenzene due to its high volatility and low water solubility. Biodegradation is rapid with no residues detected after 1 or 2 weeks in soil (Tabak et al 1981). Bio accumulation is considered moderate due to its liquid solubility.

Occupational workers are probably at highest risk for exposure due to its volatility and extensive use as a solvent in industry. The concentration in the work place has been reported to be as high as 6,000 times the mean urban air level. (Brodzinsky and Singh 1983).

Barkley et al (1980) found levels in blood ranging from 0.05 to 17 ng/L and in urine ranging from 25 to 120 μ g/L in residents living near a former toxic chemical dump.

No studies found any demonstrated relationship between levels found in humans and any adverse biological effect.

1,2- and 1,3-DICHLOROBENZENES

The dichlorobenzenes are halogenated aromatic hydrocarbons with the molecular formula C6H4C2 and a molecular weight of 147.01. Three isomers are known to exist: ortho-dichlorobenzene (1,2-dichlorobenzene, DCB), meta-dichlorobenzene (1,3-dichlorobenzene, m-DCB) and para-dichlorobenzene (1,4-dichlorobenzene -DCB) (U.S. EPA, 1980). All three compounds have low water solubilities but are nonetheless toxic to aquatic organisms. They are readily soluble in fats and fat-soluble substances (U.S. EPA, 1980).

Ortho-dichlorobenzene, a clear liquid, is available in the United States as a technical grade containing 98.7% by weight of the ortho isomer, with the remaining 1.3% consisting of the meta and para isomers combined. It is also available in a grade containing 83% of the ortho isomer and 17% of the meta and para isomers (IARC, 1974). It is produced commercially by the direct chlorination of benzene in the liquid phase in the presence of a catalyst, usually ferric chloride, and fractionation of the resulting mixture of chlorinated benzenes. Total U.S. production in 1979 was 26 million kg; an undisclosed amount of a mixture of ortho- and para-dichlorobenzenes was produced (IARC, 1982).

Seventy percent of the o-DCB produced in 1978 was used in the synthesis of 3,4-dichloroaniline, a key intermediate in the production of herbicides (propanol, diuron and linuron). Another fifteen percent was used in the production of toluene disocyanates, important raw materials in the manufacture of such products as flexible foams. Ortho-dichlorobenzene is also used as a solvent in paints, paint-and grease-removing formulations and rust preventatives, and is also used in the manufacture of dyes (IARC, 1982).

Little information is available concerning the production and use of meta-dichlorobenzene, also a liquid. It may occur as a contaminant of o-DCB and p-DCB formulations (U.S.EPA, 1980). Production estimates for 1977 were reported to be 0.2-2.0 x 106 pounds; its major uses are as a fumigant and as an insecticide (U.S. EPA, 1985).

Para-dichlorobenzene, a white solid, is produced commercially by the same method used in the manufacture of o-DCB. Production in the U.S. in 1979 amounted to 37.9 million kg. Para-dichlorobenzene is used primarily as a space deodorant, blocks with and without perfume being used in toilets and refuse containers. Fifty-five percent of the p-DCB produced in 1978 was used in this manner. Thirty-five percent was used in moth repellents. it also can be used as a mildew and fungus control agent, an animal repellant, and as a chemical intermediate for dyes, insecticides, pharamceuticals and other organic chemicals (IARC, 1982).

An estimated 5-10% of the annual U.S. production of o-DCB and an estimated 70-90% of the annual production of o-DCB have been reported to be released into the air (Johnston et al., 1979). Metadichlorobenzene has also been detected in the atmosphere (Brodzinsky and Singh, 1982). All three isomers have also been detected in raw and finished drinking water (Shackelford and Keith, 1976; U.S. EPA, 1985). Residues have been found in fish and other aquatic organisms, beef, pork and eggs, and in human fat, blood, breath and urine (IARC, 1982; U.S. EPA, 1985).

Because of their low water solubility and high fat solubility, dichlorobenzene easily penetrate most biological membranes by diffusion, including the lung and gastrointestinal tract epithelia, the brain, the liver, the renal tubules, the placenta and the skin (Ware and West, 1977; U.S. EPA, 1985). Studies have shown that within 4-12 hours of exposure, peak concentrations are reached in all tissues. Distribution, following single-dose or multiple exposures, is primarily to adipose tissue, and to lung and kidney tissues more than to liver, muscle and plasm.

Acute Effects

Riedel (1941) applied o-DCB for 15 minutes to the skin of human volunteers. A burning sensation was produced, which intensified with continued exposure up to one hour and subsided when the compound was removed. However, hyperemia and blisters later developed at the site of application, followed by a brown pigmentation of the skin that lasted for up to three months (Hollingsworth et al., 1958).

Hollingsworth et al. (1958) have stated that at the air concentration of o-DCB detected by the average individual (300 mg/M3, or 50 ppm), eye and nose irritation do not occur. The ACGIH (1986) however, has indicted that a ceiling limit of 300 mg/M3 would protect against serious but not all eye and nose irritation. Elkins (1959) reported that irritation but no other effects occur at air concentrations nearing 600 mg/M3.

The taste and odor thresholds for o-DCB in water were reported by Varshavskaya (1967a) to be 0.002 and 0.0001 mg/L, respectively.

Hollingsworth et al (1956) surveyed workers in o-DCB production facilities. Reported. results included detection of a faint odor at 90-180 mg/m3, detection of a strong odor at 180-360 mg/m3, painful eye/nose irritation at 480-960 mg/m3 and intolerable irritation at >960 mg/m3. Workers had complained of eye and nose irritation at concentrations of 800-1020 mg/m3 and had not complained at concentrations of 90-510 mg/M3.

The authors indicated that solid o-DCB caused significant irritation of intact skin only after prolonged contact, which produces a burning sensation. Warm fumes or strong solutions may also irritate skin with repeated or prolonged contact. In general, however, o-DCB is not considered a significant hazard from skin irritation or skin absorption unless exposures are unusually severe or prolonged.

A three-year-old male developed acute hemolytic anemia after ingesting de-mothing crystals(o-DCB) (Hallowell, 1959). Symptoms included listlessness, jaundice, oliguria, methemoglobinuria and other urine abnormalities, anemia, and hypothermia.

Ten guinea pigs were intubated and given single oral doses (800 mg/kg) of o-DCB (50% in olive oil). The only effect observed was a loss of body weight. However, single oral doses of 2000 mg/kg were fatal to all animals (Hollingsworth et al., 1958). Two drops of undiluted o-DCB in rabbits' eyes resulted in pain and conjunctival irritation which cleared within a week (Holingsworth et al., 1958).

Varshavaskaya (1967a) reported LD50 values for o-DCB in four animal species dosed by stomach tube: white mice 2,000 mg/kg; white rats 2,128 mg/kg; rabbits 1,875 mg/kg; guinea pigs 3,375 mg/kg. Acute poisoning was manifested similarly in all species. The animals exhibited increased lacrimation and salivation, excitation, ataxia, paraparesis, paraplegia and dyspnea. Histologic examination revealed vascular and necrotic changes in the liver, stomach mucosa and kidneys and edema of the brain.

Oral LD₅₀ values for o-DCB were also reported by Varshavskaya (1967a): white mice 3,220 mg/kg; white rats 2,152 mg/kg; rabbits 2,812 mg/kg; guinea pigs 7,593 mg/kg. These LD50 values were higher than those for 0-DCB, indicating that o-DCB is more toxic for these same species. The symptoms of poisoning, however, were similar for the two compounds.

Groups of male rats were given o-DCB in olive oil five days/week for four weeks at dosage levels of 10,000 and 5,000 mg/kg. At the highest dose level there was marked cloudy selling and necrosis in the central areas of the liver lobules and marked cloudy swelling of the renal tubular epithelium with cast formation. At the lower dosage levels there was no evidence of any adverse effects (Hollingsworth et al., 1956).

Reid and Krishia (1973) found that o-DCB binds to liver protein more strongly than does p-DCB upon intraperitoneal administration of 0.5 mmol/kg. Hepatic toxicity was attributed to reactive intermediates (area oxides) produced by the binding and metabolism and was enhanced by pretreatment with phenobarbital. Para-DCB is therefore considered less toxic to the liver.

Meta-dichlorobenzene when given orally at 800 mg/kg produces a biphasic excretion of coproporphyrin. The authors believed that m-DCB stimulates its own metabolisms in the observation of this effect. The same pattern of excretion was observed in 2,4-dichlorophenol (m-DCB metabolite) and p-DCB at 900 mg/kg/day. (Poland et al., 1971)

Results also indicated that the induction of hepatic microsomal enzymes is due to the activity of methyl sulfone metabolites rather than the m-DCB. In an earlier study, Kimura et al(1985) also demonstrated that 3,5-dichlorophenyl methyl sulfone is a major contributing factor in the inducing activity of m-DCB

Systemic Toxicity

A number of clinical cases of chronic dichlorobenzene poisoning have been reported in the literature. Most of these cases involved exposure primarily to o-DCB and the remainder primarily to o-DCB; in the other cases mixtures of dichlorobenzenes including m-DCB were involved. In the majority of instances exposure was by inhalation and occurred in the workplace.

Chronic exposure to o-DCB has reportedly caused severe acute hemolytic anemia (Gadrat et al., 1962). A 47-year-old male chronically exposed dermally in the workplace to a mixture containing o-DCB developed contact eczem² old dermatitis on his hands, arms and face(Downing, 1939).

Hollingsworth et al. (1958) reported on the analysis of 40 samples of workroom air in an area where o-DCB was manufactured. Concentrations ranged from 6-264 mg/M² and averaged 90 mg/M³. Periodic physical examinations of the workers, including hemograms and urinalyses, revealed no adverse effects which could be attributed to o-DCB exposure.

Chronic exposure to o-DCB or to mixtures containing mostly o-DCB has reportedly caused blood disorders (anemia, primarily) and liver damage (Sumers et al., 1952; Cotter, 1953; Petit and Champeix, 1948; Perrin, 1941; Ware and West, 1977). A case of pulmonary granulocytosis was reported by Weller and Crellin (1953) in a 53-year-old female exposed in her home for 12-15 years to a moth eradicator product. A 19-year-old female who ingested (pica) four to five month pellets daily for two and on-half years developed increased skin pigmentation in areas 3 to 7 cm in diameter on her limbs, mental sluggishness and tremor. Upon withdrawal she had an unsteady gait along with decreased pigmentation (Frank and Cohen, 1961).

In their report on surveys of o-DCB exposure in plants, Hollingsworth et at. (1956) stated that periodic health examinations of the workers detected no adverse effects that were attributable to the exposure. Repeated exposure may lead to tolerance or acclimation, however, so sensory warnings may eventually be less protective in chronically-exposed individuals. After reviewing considerable human data, the authors stated they did not believe that chronic exposure to o-DCB caused cataracts.

Hollingsworth et al., (1958) investigated the toxicity of o-DCB in several species by several routes of exposure. Groups of rats, guinea pigs, rabbits and monkeys were exposed to o-DCB vapor seven hours/day, five days/week, for six or seven months at an average concentration of 560 mg/M³. No effect was noted in any of the animals on gross appearance, behavior, growth, organ weights, urinalysis, blood urea nitrogen, mortality, or gross or microscopic appearance of tissues. Hematological studies in the rabbits and monkeys were normal. In another inhalation study, the authors exposed rats, guinea pigs and mice to 290 mg/M3 for seven hours/day, five days/week for six and one-half months. Again, no adverse effects were noted.

Hollingsworth et al., (1958) also dosed groups of white rats by stomach tube with o-DCB in olive oil emulsified with acacia. The animals were dosed five days/week for a total of 138 doses in 192 days at dose levels of 18.8, and 386 mg/kg. No adverse effects were seen at the low-dose level. At 188 mg/kg, liver and kidney weights were increased slightly. At the highest dose level there was an increase in liver and kidney weights, decreased spleen weight, and slight to moderate cloudy swelling on microscopic examination of the liver.

Varshavaskaya (1967a) dosed rats orally with 0.001, 0.01, and 0.1 mg/kg of o-DCB for five months. The lowest dose (0.001 mg/kg) showed no hemopoietic or enzymatic effects. The 0.01 mg/kg dosing group exhibited some hemopoietic effects that were more pronounced at 0.1 mg/kg. The highest dosing level also produced liver, kidney, and enzymatic effects.

Hollingsworth et al. (1956) exposed rats and guinea pigs through inhalations to an average p-DCB concentration of 341 ppm seven hours/day, five days/week for six months. Observations included slight histological changes of the liver and increased liver and kidney

weights. Exposure to 96 ppm seven hours/day, five days/week for six months in the same species produced no observed adverse effects.

Groups of female rats were fed p-DCB in olive oil by gavage five days/week at dosage levels of 18.8, 188 or 376 mg/kg for a total of 138 doses in 192 days. At the highest dosage level there was moderate increase in the average weight of the liver; microscopic examination revealed slight cirrhosis and focal necrosis. There was also a slight increase in the average weight of the kidneys. At the 188 mg/kg level there was a slight increase in the average weight of the liver and the kidneys. No adverse effects were noted at the lowest dose (Hollingsworth et al., 1956).

Rabbits were fed p-DCB in olive oil by gavage for as many as 92 doses in 219 days at a level of 1000 mg/kg or five days /week for 263 doses in 367 days at a level of 500 mg/kg. There were some deaths at the 1000 mg/kg level. At both dosage levels rabbits exhibited loss of weight, definite to marked tremors, weakness and slight liver changes. Hematological values were normal, and no cataracts were produced (Hollingsworth et al., 1956).

Groups of 76-79 rats of both sexes were exposed by inhalation to p-DCB vapor concentrations of 0, 75 or 500 ppm for five hours/day, five days/week for a total of 76 weeks. (Riley et al., 1980a). Surviving rats were left unexposed for up to 36 weeks following the exposure period. Some statistically significant changes in blood biochemistry and hematology were noted, however, the changes were not dose related. In the 500 ppm group, urinary protein and coproporphyrin output were slightly elevated and liver and kidney weights were increased, although there was no histological evidence for an effect in these organs. No other treatment-related effects were noted. The investigators considered the noeffect-level to be 75 ppm.

Groups of 75 female SPF Swiss mice were exposed to p-DCB vapor concentrations of 0 to 500 ppm for a total of 57 weeks. Surviving mice were left unexposed until the terminal kill at 75-76 weeks. Clinical conditions were recorded at regular intervals, and detailed histopathology examinations were performed on all mice which had been exposed for at least 52 weeks. No evidence of treatment-related non-neoplastic effects was noted (Riley et al., 1980b).

Teratogenic and Reproductive Effects

A study conducted by Hayes et al (1985) exposing rats and rabbits to o-DCB and p-DCB via inhalation at concentrations up to 400 ppm. Ortho-dichlorobenzene was not teratogenic or fetotoxic in either species.

Anderson and Hodge (1976) found no relation between inhalation exposure to p-DCB and male-related fertility problems. Hodge et al (1977) found no evidence of embryo toxicity, fetotoxicity or teratogenicity in rats exposed to 0-500 ppm of p-DCB by inhalation.

Giavini et al (1986) exposed rats orally to 0-100 mg/kg/day of p-DCB. Slight embryotoxic effects were observed at doses of 500 mg/kg/day and greater. The effects were considered to potentially an indirect result rather that a direct result of maternal consumption of p-DCB

due to decreased maternal food consumption at the dosing range where effects where observed.

Carcinogenic and Mutagenic Effects

Zapata-Gayon et al. (1982) examined the chromosomes of eight males and eighteen females who were accidentally exposed to vapors of o-DCB being used as a pest control for eight hours/day for four days. Karyotypes of cells from exposed subjects were compared with those of eight male and eight female controls. Most of those exposed to o-DCB experienced dizziness, headaches, fatigue, nausea and eye and nose irritation. The karyotype analysis revealed that the total number of cells having clastogenic chromosal alternations was greater in the exposed group than in the controls (8.9% vs. 2.0%, p < 0.001). In addition, the total number of single chromosomal breaks (6.2% vs. 0.9%, p < 0.001) and double breaks (6.4 vs. 1.6%, p < 0.01) were different.

Fifteen of the original exposed cases were followed up six months after initial exposure. The number of altered cells and single breaks was not significantly different (p < 0.05) from the original control frequencies, but the number of double breaks was still increased (3.7%vs. 1.6%, p < 0.01). Polyploidy and ring formation were also noted, but the difference between exposed and control was not significantly different.

Two cases of chronic lymphoid leukemia, two cases of acute myeloblastic leukemia and one case of myeloproliferative syndrome were reported by Girard et al. (1969) as occurring after exposure to dichlorobenzenes. The chronic lymphoid leukemia developed in an individual who had been exposed to a glue containing 2% o-DCB from 1945-1961 and in an individual who had been exposed to a solvent used to clean electrical parts containing a mixture of o-DCB (80%), m-DCB (2%) and p-DCB (15%) from 1940-1950. This same cleaning solvent had been taken home from the factory and used for cleaning clothes (two liters a year for several years) by one of the subjects who subsequently developed acute myeloblastic leukemia. The other individual with acute leukemia had a history of chronic repeated dermal contact form compulsive use of a cleaning solution (containing 37% o-DCB) to clean clothes (in place).

Veljkovi'c and Lalovi'c (1977) looked at the correlation between the quasi-valence number, or Z*, and the known carcinogenic activity of a number of compounds. The Z* is a parameter which takes into consideration such factors as valence electrons, atoms and elements in a compound's formula. The authors reported a strong correlation between these factors and carcinogenicity. A Z* below 3.20 corresponded to a potential carcinogen, while a Z* above this value corresponded to a noncarcinogen. Dichlorobenzene (isomer not specified) fell into the class of potential carcinogens with a Z* of 2.50.

Ortho-dichlorobenzene was administered in corn oil by gavage five times/week for 103 weeks to rats and mice at doses of 60 and 120 mg/kg. There was no evidence of carcinogenicity under the conditions of the studies. Groups of 16 male mice were exposed by inhalation to p-DCB at 75, 225 or 450 ppm for six hours/day for five days. Following exposure, the males were mated with untreated virgin females each week for eight weeks. Paradichlorobenzene was not mutagenic in this assay by various measures of early fetal death.

Positive responses were produced in three concurrent positive control groups exposed to known mutagenic chemical (Anderson and Hodge, 1976).

Anderson and Richardson (1976) exposed groups of rats by inhalation for either two hours at a concentration of 299 or 682 ppm, five hours/day for five days or at a concentration of 75 or 500 ppm for five hours/day, five days/week for three months. No significant increase in the number of chromosomal abnormalities was noted in the p-DCB exposed animals when compared to controls.

Male and female Swiss mice were treated topically three times with 0.1 ml of a solution of 104 mg dichlorobenzene/L acetone (isomer not specified). After 10 days the animals were sacrificed, and the treated skin examined for sebaceous gland atrophy and epithelial hyperplasia. These results were interpreted as indicating the dichlorobenzene tested was not carcinogenic (Guerin and Cuzin, 1961).

The toxicity experiments of Hollingsworth et al (1956, 1958) and Varshavskaya (1967b) have previously been described. No evidence of carcinogenic activity was noted in these experiments. However, since they were not designed to assess carcinogenicity, the results of these studies are inconclusive and inadequate to use in the evaluation of the cancer-causing potential of the dichlorobenzenes (U.S. EPA, 1980).

Parsons (1942) administered a single subcutaneous injection of 0.2 ml of a 0.2 percent solution of p-DCB in sesame oil to each of six irradiated mice, and four days later injected 0.2 ml of silica in suspension into the site. On the tenth day the intraperitoneally-injected mouse was sacrificed and was noted to have wide-spread sarcomatous growth throughout the peritoneum. Three irradiated mice died by the tenth day. Ten nonirradiated mice received the same p-DCB preparation subcutaneously for nine doses over two months, also receiving the silica suspension at two-week intervals. Four of these animals died within 30 days. By the 77th day, a nonirradiated survivor had developed a large sarcoma and secondary growths in the lymph glands and peritoneum.

The IARC (1987) has stated that there is "inadequate evidence" for the carcinogenicity of dichlorobenzenes to humans, while noting the series of cases reported by Girard et al. (1969) that suggested an association between exposure to dichlorobenzenes and leukemia.

The IARC (1987) has stated that there is "inadequate evidence" for the carcinogenicity of ortho-dichlorobenzene to animals. Based on the results of the recent (1987) NTP study in mice and rats, the organization has stated that there is "sufficient evidence" for the carcinogenicity of para-dichlorobenzene to animals (IARC, 1987). Therefore, o-DCB has been put in Group 3 not classiable as to carcinogenicity to humans; p-DCB has been put into group 2B possibly carcinogenic to humans (IARC, 1987). Meta-dichlorobenzene has not been evaluated for carcinogenesis by the IARC.

InVitro Studies

Carey and McDonough (1943) found evident of chromosomal abnormalities in Allium exposed to p-DCB. A study by Sharma and Bhattacharyya (1956) reported the same results

in plant tissues. Sharma and Sarkar (1957) found p-DCB caused meiotic cell abnormalities in flower buds. Srivastava (1966) and Prasad (1970) also came to the same conclusion various genera of the tribe vicieae.

Anderson's (1976) study of p-DCB exposure in various strains of Salmonella typhinurium found no dose-related mutagenic effects.

Ortho-dichlorobenzene was very weekly mutagenic in aspergillus nidulans in a 1970 study. AD study by Prasad (1970). No point mutations or mutagenic activity observed in studies by Anderson et al. (1972) or Lawler et al. (1979) in Salmonella typhimurium.

Ortho-dichlorobenzene, m-DCB and p-DCB were all nonmutagenic in the Ames test (Haworth et al., 1983). None of the three isomers induced unscheduled DNA synthesis uncultivated human lymphocytes (Perocco et al., 1983).

1,4-DICHLOROBENZENE

The dichlorobenzenes are halogenated aromatic hydrocarbons with the molecular formula $C_6H_4C1_2$ and a molecular weight of 147.01. Three isomers are known to exist: orthodichlorobenzene (1,2-dichlorobenzene, o-DCB), meta-dichlorobenzene (1,3-dichlorobenzene, m-DCB) and para-dichlorobenzene (1,4-dichlorobenzene, p-DCB) (U.S. EPA, 1980). All three compounds have low water solubilities but are nonetheless toxic to aquatic organisms. They are readily soluble in fats and fat-soluble substances (U.S. EPA, 1980).

Para-dichlorobenzene, a white solid, is produced commercially by the same method used in the manufacture of o-DCB. Production in the U.S. in 1979 amounted to 37.9 million kg. Para-dichlorobenzene is used primarily as a space deodorant, blocks with and without perfume being used in toilets and refuse containers. Fifty-five percent of the p-DCB produced in 1978 was used in this manner. Thirty-five percent was used in moth repellents. It also can be used as a mildew and fungus control agent, an animal repellant, and as a chemical intermediate for dyes, insecticides, pharamceuticals and other organic chemicals (IARC, 1982).

Because of their low water solubility and high fat solubility, dichlorobenzene easily penetrate most biological membranes by diffusion, including the lung and gastrointestinal tract epithelia, the brain, the liver, the renal tubules, the placenta and the skin (Ware and West, 1977; U.S. EPA, 1985). Studies have shown that within 4-12 hours of exposure, peak concentrations are reached in all tissues. Distribution, following single-dose or multiple exposures, is primarily to adipose tissue, and to lung and kidney tissues more than to liver, muscle and plasma.

Acute Effects

Hollingsworth et al (1956) surveyed workers in p-DCB production facilities. Reported. results included detection of a faint odor at 90-180 mg/m³, detection of a strong odor at 180-360 mg/m³, painful eye/nose irritation at 480-960 mg/m³ and intolerable irritation at > 960 mg/m³. Workers have complained of eye and nose irritation at concentrations of 800-1020 mg/m³ and had not complained at concentrations of 90-510 mg/m³.

The authors indicated that solid p-DCB caused significant irritation of intact skin only after prolonged contact, which produces a burning sensation. Warm fumes or strong solutions may also irritate skin with repeated or prolonged contact. In general, however, p-DCB is not considered a significant hazard from skin irritation or skin absorption unless exposures are unusually severe or prolonged.

Groups of male rats were given p-DCB in olive oil five days/week for four weeks at dosage levels of 10,000 and 5,000 mg/kg. At the highest dose level there was marked cloudy selling and necrosis in the central areas of the liver lobules and marked cloudy swelling of the renal tubular epithelium with cast formation. At the lower dosage levels there was no evidence of any adverse effects (Hollingsworth et al., 1956).

Reid and Krishia (1973) found that o-DCB binds to liver protein more strongly than does p-DCB upon intraperitoneal administration of 0.5 mmol/kg. Hepatic toxicity was attributed to reactive intermediates (area oxides) produced by the binding and metabolism and was enhanced by pretreatment with phenobarbital. Para-DCB is therefore considered less toxic to the liver.

Meta-dichlorobenzene when given orally at 800 mg/kg produces a biphasic excretion of coproporphyrin. The authors believed that m-DCB stimulates its own metabolism in the observation of this effect. The same pattern of excretion was observed in 2,4-dichlorophenol (a m-DCB metabolite) and p-DCB at 900 mg/kg/day. (Poland et al., 1971)

Results also indicated that the induction of hepatic microsomal enzymes is due to the activity of methyl sulfone metabolites rather than the m-DCB. In an earlier study, Kimura et al(1985) also demonstrated that 3,5-dichlorophenyl methyl sulfone is a major contributing factor in the inducing activity of m-DCB.

Systemic Toxicity

A number of clinical cases of chronic dichlorobenzene poisoning have been reported in the literature. Most of these cases involved exposure primarily to o-DCB and the remainder primarily to p-DCB; in the other cases mixtures of dichlorobenzenes including m-DCB were involved. In the majority of instances exposure was by inhalation and occurred in the workplace.

In their report on surveys of p-DCB exposure in plants, Hollingsworth et at. (1956) stated that periodic health examinations of the workers detected no adverse effects that were attributable to the exposure. Repeated exposure may lead to tolerance or acclimation, however, so sensory warnings may eventually be less protective in chronically-exposed individuals. After reviewing considerable human data, the authors stated they did not believe that chronic exposure to p-DCB caused cataracts.

Hollingsworth et al. (1956) exposed rats and guinea pigs through inhalations to an average p-DCB concentration of 341 ppm seven hours/day, five days/week for six months. Observations included slight histological changes of the liver and increased liver and kidney weights. Exposure to 96 ppm seven hours/day, five days/week for six months in the same species produced no observed adverse effects.

Groups of female rats were fed p-DCB in olive oil by gavage five days/week at dosage levels of 18.8, 188 or 376 mg/kg for a total of 138 doses in 192 days. At the highest dosage level there was moderate increase in the average weight of the liver; microscopic examination revealed slight cirrhosis and focal necrosis. There was also a slight increase in the average weight of the kidneys. At the 188 mg/kg level there was a slight increase in the average weight of the liver and the kidneys. No adverse effects were noted at the lowest dose (Hollingsworth et al., 1956).

Rabbits were fed p-DCB in olive oil by gavage for as many as 92 doses in 219 days at a level of 1000 mg/kg or five days /week for 263 doses in 367 days at a level of 500 mg/kg. There

were some deaths at the 1000 mg/kg level. At both dosage levels rabbits exhibited loss of weight, definite to marked tremors, weakness and slight liver changes. Hematological values were normal, and no cataracts were produced (Hollingsworth et al., 1956).

Groups of 76-79 rats of both sexes were exposed by inhalation to p-DCB vapor concentrations of 0, 75 or 500 ppm for five hours/day, five days/week for a total of 76 weeks. (Riley et al., 1980a). Surviving rats were left unexposed for up to 36 weeks following the exposure period. Some statistically significant changes in blood biochemistry and hematology were noted, however, the changes were not dose related. In the 500 ppm group, urinary protein and coproporphyrin output were slightly elevated and liver and kidney weights were increased, although there was no histological evidence for an effect in these organs. No other treatment-related effects were noted. The investigators considered the noeffect-level to be 75 ppm.

Groups of 75 female SPF Swiss mice were exposed to p-DCB vapor concentrations of 0 to 500 ppm for a total of 57 weeks. Surviving mice were left unexposed until the terminal kill at 75-76 weeks. Clinical conditions were recorded at regular intervals, and detailed histopathology examinations were performed on all mice which had been exposed for at least 52 weeks. No evidence of treatment-related non-neoplastic effects was noted (Riley et al., 1980b).

Teratogenic and Reproductive Effects

Anderson and Hodge (1976) found no relation between inhalation exposure to p-DCB and male-related fertility problems. Hodge et al (1977) found no evidence of embryo toxicity, fetotoxicity or teratogenicity in rats exposed to 0-500 ppm of p-DCB by inhalation.

Giavini et al (1986) exposed rats orally to 0-100 mg/kg/day of p-DCB. Slight embryotoxic effects were observed at doses of 500 mg/kg/day and greater. The effects were considered to potentially an indirect result rather that a direct result of maternal consumption of p-DCB due to decreased maternal food consumption at the dosing range where effects where observed.

Carcinogenic and Mutagenic Effects

Zapata-Gayon et al. (1982) examined the chromosomes of eight males and eighteen females who were accidentally exposed to vapors of o-DCB being used as a pest control for eight hours/day for four days. Karyotypes of cells from exposed subjects were compared with those of eight male and eight female controls. Most of those exposed to o-DCB experienced dizziness, headaches, fatigue, nausea and eye and nose irritation. The karyotype analysis revealed that the total number of cells having clastogenic chromosal alternations was greater in the exposed group than in the controls (8.9% vs. 2.0%, p < 0.001). In addition, the total number of single chromosomal breaks (6.2% vs. 0.9%, p < 0.001) and double breaks (6.4 vs. 1.6%, p < 0.01) were different.

Fifteen of the original exposed cases were followed up six months after initial exposure. The number of altered cells and single breaks was not significantly different (p < 0.05) from the original control frequencies, but the number of double breaks was still increased (3.7%vs. 1.6%, p < 0.01). Polyploidy and ring formation were also noted, but the difference between exposed and control was not significantly different.

Two cases of chronic lymphoid leukemia, two cases of acute myeloblastic leukemia and one case of myeloproliferative syndrome were reported by Girard et al. (1969) as occurring after exposure to dichlorobenzenes. The chronic lymphoid leukemia developed in an individual who had been exposed to a glue containing 2% o-DCB from 1945-1961 and in an individual who had been exposed to a solvent used to clean electrical parts containing a mixture of o-DCB (80%), m-DCB (2%) and p-DCB (15%) from 1940-1950. This same cleaning solvent had been taken home from the factory and used for cleaning clothes (two liters a year for several years) by one of the subjects who subsequently developed acute myeloblastic leukemia. The other individual with acute leukemia had a history of chronic repeated dermal contact form compulsive use of a cleaning solution (containing 37% o-DCB) to clean clothes (in place).

Ortho-dichlorobenzene was administered in corn oil by gavage five times/week for 103 weeks to rats and mice at doses of 60 and 120 mg/kg. There was no evidence of carcinogenicity under the conditions of the studies. Groups of 16 male mice were exposed by inhalation to p-DCB at 75, 225 or 450 ppm for six hours/day for five days. Following exposure, the males were mated with untreated virgin females each week for eight weeks. Paradichlorobenzene was not mutagenic in this assay by various measures of early fetal death. Positive responses were produced in three concurrent positive control groups exposed to known mutagenic chemical (Anderson and Hodge, 1976).

Anderson and Richardson (1976) exposed groups of rats by inhalation for either two hours at a concentration of 299 or 682 ppm, five hours/day for five days or at a concentration of 75 or 500 ppm for five hours/day, five days/week for three months. No significant increase in the number of chromosomal abnormalities was noted in the p-DCB exposed animals when compared to controls.

Male and female Swiss mice were treated topically three times with 0.1 ml of a solution of 104 mg dichlorobenzene/L acetone (isomer not specified). After 10 days the animals were sacrificed, and the treated skin examined for sebaceous gland atrophy and epithelial hyperplasia. These results were interpreted as indicating the dichlorobenzene tested was not carcinogenic (Guerin and Cuzin, 1961).

The toxicity experiments of Hollingsworth et al (1956, 1958) have previously been described. No evidence of carcinogenic activity was noted in these experiments. However, since they were not designed to assess carcinogenicity, the results of these studies are inconclusive and inadequate to use in the evaluation of the cancer-causing potential of the dichlorobenzenes (U.S. EPA, 1980).

Parsons (1942) administered a single subcutaneous injection of 0.2 ml of a 0.2 percent solution of p-DCB in sesame oil to each of six irradiated mice, and four days later injected 0.2 ml of silica in suspension into the site. On the tenth day the intraperitoneally-injected mouse was sacrificed and was noted to have wide-spread sarcomatous growth throughout the peritoneum. Three irradiated mice died by the tenth day. Ten nonirradiated mice received the same p-DCB preparation subcutaneously for nine doses over two months, also receiving the silica suspension at two-week intervals. Four of these animals died within 30 days. By the 77th day, a nonirradiated survivor had developed a large sarcoma and secondary growths in the lymph glands and peritoneum.

The IARC (1987) has stated that there is "inadequate evidence" for the carcinogenicity of dichlorobenzenes to humans, while noting the series of cases reported by Girard et al. (1969) that suggested an association between exposure to dichlorobenzenes and leukemia.

The IARC (1987) has stated that there is "inadequate evidence" for the carcinogenicity of ortho-dichlorobenzene to animals. Based on the results of the recent (1987) NTP study in mice and rats, the organization has stated that there is "sufficient evidence" for the carcinogenicity of para-dichlorobenzene to animals (IARC, 1987). Therefore, o-DCB has been put in Group 3 not classiable as to carcinogenicity to humans; p-DCB has been put into group B2 possibly carcinogenic to humans (IARC, 1987). Meta dichlorobenzene has not been evaluated for carcinogenesis by the IARC. The p-DCB NTP bioassay resulted in equivical results for F344/N ratio and B6C3F1 mice with renal tumors and p-DCB may act as a promoter (NTP, 1987).

InVitro Studies

Carey and McDonough (1943) found evident of chromosomal abnormalities in Allium exposed to p-DCB. A study by Sharma and Bhattacharyya (1956) reported the same results in plant tissues. Sharma and Sarkar (1957) found p-DCB caused meiotic cell abnormalities in flower buds. Srivastava (1966) and Prasad (1970) also came to the same conclusion various genera of the tribe vicieae.

Anderson's (1976) study of p-DCB exposure in various strains of Salmonella typhinurium found no dose-related mutagenic effects.

Ortho-dichlorobenzene, m-DCB and p-DCB were all nonmutagenic in the Ames test (Haworth et al., 1983). None of the three isomers induced unscheduled DNA synthesis uncultivated human lymphocytes (Perocco et al., 1983).

1,2-DICHLOROETHANE

- 1,2-Dichloroethane is used in the manufacture of vinyl chloride, solvents used for degreasing and tetraethyl lead. It is a man-made compound which has a pleasant smell. It was used in the past in household cleansers, pesticides, as tobacco flavoring as well as in wallpaper and carpet adhesives and some paint, varnish and finish removers. (Drinking Water and Health, 1977; ATSDR, 1989)
- 1,2-Dichloroethane is released in small amounts into water or onto soil and from there it can evaporate in to air. 1,2-dichloroethane is rapidly broken down by the sun after evaporation. 1,2-Dichloroethane can move through into water and remain in water or soil for 40 days. (ATSDR, 1989)

Human exposure occurs primarily through breathing it in air or through drinking contaminated water. Environmental contamination is usually a result of improper disposal or accidental spills onto the ground.

POTENTIAL ACUTE EFFECTS

Inhalation

Short-term exposure to high concentrations of 1,2-dichloroethane can relust in eye, nose and throat irritation. Some nausea and vomiting have also been reported case studies have reported death due to inhalation of 1,2-dichloroethane. No quantification of the total amount of exposure was reported. Evidence of toxicity at autopsy included congestion of the lungs, liver, and kidney necrosis, myocardial degeneration and shrunken nerve cells of the brain. (Nouchi et al 1984, Drinking Water and Health, 1980)

Acute inhalation in animals is also known to cause death. Lethal acute concentrations are reported at 400 ppm for guinea pigs and 1,500 ppm for mice, rabbits and dogs. (Spencer et al, 1951) Signs of toxicity at autopsy included liver and kidney effects ranging from increased organ weight to necrosis, degeneration of the myocardium and pulmonary congestion. (Heppel et al, 1945, 1946; Spencer et al, 1951). Spencer et al (1951) derivedan 8-hour LC50 for rats to be 1,000 ppm.

Intermediate exposure of 6 to 25 weeks results in death in rats and guinea pigs at 200 ppm and at 400 ppm in rabbits. Concentrations as low as 1000 ppm of intermittent exposure cause death in cats, dogs and monkeys. Observations were similar to those found in acute exposure and included effects on the liver, kidney, heart and lungs. (Spencer et al, 1951; Heppel et al, 1946)

Ingestion

Toxicity due to ingestion is reported as having very similar effects to those following inhalation. Death due to ingestion of 15 to 60 ml is cited in the literature. Most information is derived from case studies and reports. The specific quantity and the purity of the compound are generally not known. Reported quantities are therefore usually

estimations. (Smyth et al, 1969; Hueper and Smith, 1935; Lockhead and Close, 1951; Garrison and Leadingham, 1954; Shconborn et al 1970).

Ingestion of 1,2-dichloroethane by animals has also been observed to cause death. An acute LD50 of 680 mg/kg was reported for rats by McCollister et al (1956). Munson et al. (1982) derived an LD-1 50-1 of 489 mg/kg for male and 413 mg/kg for female mice.

POTENTIAL SYSTEMIC EFFECTS

Longer-term health advisories (HA) for children and adults have been derived based on the studies conducted by Heppel et al, 1946; Hofman et al, 1971; Spencer et al, 1951. The NOAEL is considered to be 100 ppm and is converted to 7.4 mg/kg/day. Applying an uncertainty factor of 100, the longer-term HA for a child is 7.4E-1 mg/l and 2.6 E + O mg/l for an adult. (IRIS, 1989)

Respiratory Effects

Inhalation

Nouchi et al (1984) reported a case study of 1,2-dichloroethane short-term exposure. concentrations were not quantified however, respiratory distress was observed 20 hours after exposure. Findings at autopsy included edema and severe congestion of the lungs.

Pulmonary congestion was observed in mice, rats, rabbits, and guinea pigs after a one time 7-hour 3000 ppm exposure. Rats and mice exposed intermittently for 4-15 weeks to 100 ppm showed no signs of respiratory toxicity. The same is true for 25 week intermittent exposure to 200 ppm in rabbits and monkeys and 400 ppm intermittent exposure for 8 months in dogs. (Heppel et al. 1984)

Ingestion

Pulmonary edema, congestion and bronchitis have been reported after an acute lethal oral dose of 1,2-dichloroethane (Hueper and Smith, 1935; Lockhead and Close, 1951; Martinet al, 1969; Yodarken Babcock, 1973)

There is no evidence in the animal data to indicate that 1,2-dichloroethane produces respiratory toxicity after ingestion in animals. (ATSDR,1989)

Cardiovascular Effects

Inhalation

In the case study by Nouchi et al (1984) the cause of death was attributed to cardiac arrythmia. Findings of cardiac toxicity at autopsy included degenerative changes in the myocardium, interstitial edema, and loss of myocardia fiber nuclei.

Exposure to low dosed of 1,2 -dichloroethane does not appear to have cardiovascular effects. No cardiovascular effects were observed at concentrations ranging from 100 ppm in rats to 400 ppm in dogs.

Higher concentration exposure resulting in death has been associated with myocarditis and fatty infiltration of the heart in animals exposed to 200 ppm for 25 weeks (Heppel et al, 1945, 1946)

Ingestion

Case studies of victims of acute ingestion exposure to 1,2-dichloroethane include cardiovascular effects in contributing factors to death. (Garrison and Leadingham, 1954; Hueper and Smith, 1935; Martin et al, 1969)

No studies regarding cardiovascular toxicity in animals after oral exposure to 1,2 -dichloroethane were located. (ATSDR, 1989)

Gastrointestinal Effects

Inhalation

Several case studies of patients exposed to 1,2 -dichloroethane have reported gastrointestinal effects including nausea and vomiting. (Nouchi, 1984; PCOC, 1966)

Exposure to 1,500 ppm 1,2 -dichloroethane for 7 hours/day for 6 days produced gastrointestinal tract effects in animals. (Heppel et al, 1945)

Ingestion

Gastrointestinal effects have been observed in victims of oral exposure to 1,2-dichloroethane. Symptoms include nausea, vomiting, and diarrhea. (Hueper and Smith, 1935; Lockhead and Close, 1951; Yodarken and Babcock. 1973) Findings at autopsy include hemorrhagic colitis, hemorrhagic gastritis and focal hemorrhages. (Garrison and Leadingham, 1954; Hueper and Smith, 1935; Lockhead and Close, 1951)

No studies regarding oral exposure and gastrointestinal effects in animals were found.

Hematological Effects

Inhalation

One study of only two monkeys was reported by Spencer et al (1951.) Hematological effects were observed in the monkeys at an exposure of 400 ppm for 7 hours a day, 5 days a week for 8-12 days.

Ingestion

Hematological effects including increased prothrombin time and reduced blood clotting were reported in case studies of patients who ingested approximately 40 ml (Martin et al, 1969) and 15 ml of 1,2 -dichloroethane. (Yodarken and Babcock, 1973)

Hematological effects have also been observed in animals. A 30% decrease in leukocytes was reported in mice who received 49 mg/kg/day (258 ppm) of 1,2 -dichloroethane. (Munson et al, 1982) In another part of the study, Munson et al, 1982 saw no changes as compared to controls when mice were exposed to up to 189 mg/kg/day. The authors suggest that a longer exposure time may allow 1,2 -dichloroethane to induce its own metabolism which contributes to lower toxicity.

Hepatic Effects

Inhalation

1,2-Dichloroethane is considered to be a powerful liver toxin. (Klaassen et al, 1986) The case study by Nouchi et al (1984) noted an enlarged liver, high serum levels of lactate, increased levels of hepatic enzymes and ammonia following inhalation exposure to 1,2-dichloroethane. Histopathological examination showed extensive necrosis.

Hepatic effects have been observed in animals. Brondeau et al (1983) reported liver enzyme induction in animals exposed to 850 to 1,340 ppm 1,2 -dichloroethane for 4 hours. Exposure to the same concentrations for 2 to 4 days resulted in lower enzyme induction. Exposure to 400 ppm for 8-12 days in monkeys produced degeneration of the liver. No effects were observed was observed at 100 ppm for 14 days. (Spencer et al, 1951) It should be noted that the studies consisted of small numbers of test animals.

An exposure concentration of 100 ppm, 200 ppm, 400 ppm for 6-30 weeks produced no signs of hepatic toxicity in mice, rats or rabbits. Guinea pigs showed a fatty liver and increased liver weight at 100 ppm. Guinea pigs and monkeys exhibited liver degeneration at 200 ppm. Dogs showed liver degeneration at 400 ppm 1,2 -dichloroethane. (Heppel etal, 1945, 1946; Spencer et al, 1951; Hofman et al, 1971)

Ingestion

Signs of hepatic toxicity also appear after oral exposure to 1,2 -dichloroethane. Case studies of poisoning of 30 to 40 ml of 1,2 -dichloroethane report severe liver cirrhosis, hepatocellular damage and necrosis (Przezdziak and Bakula, 1975; Garrison and Leadingham, 1954; Lockhead and Close, 1951)

A study in mice exposed to 4.9 and 49 mg/kg/day of 1,2 -dichloroethane showed no effect on liver weight or enzymes. Levels of up to 189 mg/kg for 90 days showed no signs of hepatoxicity. (Munson et al, 1982)

Another study exposed rats to dietary 1,2 -dichloroethane at 80 mg/kg/day for 5-7 weeks with no observation of increased liver weight. Another part of the study exposed to 25 mg/kg in the diet of mice for two years also showed no abnormal liver function. (Alumot etal, 1976)

Renal Effects

Inhalation

1,2-Dichloroethane is considered a powerful kidney toxic. (Klaassen et al, 1986) It is an acutely nephrotoxic as evidenced in the case study by Nouchi et al (1984). Kidney failure in conjunction with general organ failure was followed by cardiac arrest. Examination at autopsy showed tubular necrosis.

Only the study by Spencer et al (1951) reported on renal toxicity after acute exposure to 1,2-dichloroethane. Intermittent exposure to 400 ppm for 8-12 days produced increased kidney weight and tubular epithelium swelling in guinea pigs and degeneration of tubular epithelium in monkeys. No signs of nephrotoxicity were observed in monkeys exposed to 100 ppm of 1,2-dichloroethane. Lower concentrations at longer exposure intervals in rats, guinea pigs, rabbits and mice produced no observed renal effects. Dogs exposed to 400 ppm intermittently for 8 months showed fatty changes of the kidney. (Spencer et al, 1951; Heppel et al, 1945, 1946; Hofman et al, 1971)

Ingestion

One non quantified case study reported slight adverse kidney effects before recovery of the patient. (Pryezdziak and Bakula, 1975) Other case studies reported more severe renal toxicity upon autopsy following ingestion of 15-30 ml of 1,2 -dichloroethane. (Hueper and Smith, 1935; Lockhead and Close, 1951; Yodaiken and Babcock, 1973.

No adverse renal effects were noted in oral administration of 49-189 mg/kg d of 1,2 - dichluroethane in mice for 90 days or in rats at 25 mg/kg for 2 years. (Munson et al, 1982; Alumot et al; 1976)

Humans are more sensitive to the renal toxicity for 1,2-dichloroethane. The lower response in animals may be due to inter species metabolic differences (ATSDR, 1989)

Neurological Effects Inhalation

Neurological effects such as central nervous system depression, irritability, headache, nausea, partial paralysis, coma, and Purkinge cell changes in the cerebellum have been reported in the case studies of acute inhalation poisoning of 1,2 -dichloroethane. (Nouchi;1984; PCOC, 1966)

Rats exposed to 12,000 pm and 20,000 ppm for 30 minutes exhibited central nervous system depression. Exposure to 20,000 ppm for 15 minutes resulted in central nervous system depression to the point of death. (Spencer et al, 1951) Effects in rats, guinea pigs and rabbits exposed to 3,000 ppm of 1,2-dichloroethane for 7 hours included tremors, abnormal gait and narcosis. (Heppel et al, 1945) Dogs exposed to 400 ppm 1,2-dichloroethane showed no central nervous system effects. (Heppel et al 1946)

Ingestion

The case studies of acute oral exposure to 1,2-dichloroethane is also associated with central nervous system depression as well as morphological changes. Abnormalities include changes in cerebellar cells, changes in parenchyma of brain and spinal cord, degeneration of the myelin sheet, as well as hemorrhage of the brain. 1,2-Dichloroethane is equally toxic to gasoline, benzene, carbon tetrachloride and chloroform in humans at greater than 1 hour exposure. (Harrison and Leadingham, 1954; Hueper and Smith, 1935; Lochhead and Close, 1951)

No studies regarding neurological effects in animals after ingestion were found. (ATSDR,1989)

POTENTIAL CARCINOGENIC EFFECTS

1,2-Dichloroethane is classified by EPA's weight of evidence as a B2 carcinogen. It is therefore considered a probable human carcinogen. There is sufficient evidence in animals but not in humans. (IRIS, 1989, ATSDR, 1989)

The maximum contaminant level goal (MCLG) for Drinking Water is 0 mg/l. This MCLG is based on the carcinogenic effects of oral exposure in mice and rats. The maximum contaminant level (MCL) is set at 5 ug/l when technological and feasibility factors are considered. (IRIS, 1989)

Inhalation

Epidemiological studies investigating a possible excess incidence of brain tumors in two petrochemical plants and excess stomach cancer and leukemia in a ethylene oxide plant failed to provide a specific association between exposure to 1,2-dichloroethane and the development of cancer, probably due to confounding exposures to other chemical and solvents. (Austin and Schnatter 1983a, 1983b; Reeve et al, 1983; Waxweiler et al, 1983; Hogstedt et al, 1979)

Studies by Maltoni et al (1980) and Spencer et al (1951) provided no evidence of 1,2 - dichloroethane exposure associated with an increased risk of cancer in mice. The Maltoni(1980) study is considered inconclusive due to several factors limiting the study. However, metabolic pathway differences may affect the amount of the compound that reaches a target organ. (ASTDR, 1989)

The inhalation slope factor is calculated from oral data and is estimated to be 9.1 E-2mg/kg/day. (HEAST, 1989; IRIS, 1989)

Ingestion

Study information on human ingestion exposure to 1,2-dichloroethane is limited. One study reported an association between exposure of 1,2-dichloroethane in drinking water and the development of colon cancer in men 55 or older. (Isacson et al, 1985) It is noted that exposure to other chemicals occurred and possibly confounded the conclusion. (ATSDR, 1989)

1,2-Dichloroethane's B2 classification is based on the positive carcinogenic evidence in rats and mice. The oral slope factor is 9.1 E-2 mg/kg/day and is based on the following study by NCI. (1978)

Remote location tumors have resulted from doses as low as 47 mg/kg/day in rats. Both malignant and nonmalignant tumors were reported in both rats at concentrations of 47 mg/kg/day and 95 mg/kg/day. Tumor locations in both dosage groups in rats included neoplasms of the spleen, pancreas, liver, and adrenal gland among others. Tumors were observed in the high-dose group in male rats in squamous cells of the forestomach and in the mammary gland in female rats. (NCI, 1978)

Female mice included in the NCI (1978) were exposed to 149 mg/kg/day and 299 mg/kg/day and male mice to 97 mg/kg/day and 195 mg/kg/day. Males in the 195 mg/kg/day group had an increased incidence of hepatocellular carcinomas and pulmonary adenomas. Females in both exposure groups showed increased incidence of endometrial polyps and sarcomas, mammary adenocarcinomas, and pulmonary adenomas.

POTENTIAL IMMUNOLOGICAL EFFECTS

Inhalation

No studies found regarding immunological effects after inhalation in humans. (ATSDR, 1989)

A study by Sherwood et al (1987) provided some evidence that 1,2-dichloroethane affects the immological defense of mice and rats against microbial infection. A 5 ppm exposure concentration for mice is reported to increased susceptibility to infection.

Ingestion

No studies were located to provide data on immunological effects often human ingestion of 1,2-dichloroethane. (ATSDR, 1989)

Suppressed immune responses however, was observed in mice following oral exposure through gavage to 4.9 (26 ppm) and 49 mg of 1,2-dichloroethane for two weeks. A 30% reduction in leukocytes was reported at the 49 mg/kg/day dose. However, exposure to 189 mg/kg/day in drinking waste resulted in no observed immunologic effects. The change in observations is suggested to be attributable to differences in administration and exposure duration. (Munson et al, 1982)

POTENTIAL DEVELOPMENTAL EFFECTS

Inhalation

No studies regarding developmental toxicity in humans were found. (ATSDR, 1989)

1,2-Dichloroethane did not produce a significant increase in development effects in rats during days 6-15 of gestation. Exposure concentration of 300 ppm in rats resulted in high maternal mortally and one example of total resorption of the litter. (Rao et al, 1980)

Rabbits exposed to 100 ppm and 300 ppm during showed no effects on pregnancy, litter size or fetal body measurements. Maternal death was observed at both exposure concentrations. (Rao, 1980)

Ingestion

Studies reported by Kavlock et al (1979) and Lane (1982) found no evidence of a positive association between exposure to 1,2-dichloroethane in drinking water and developmental toxicity in animals.

POTENTIAL REPRODUCTIVE EFFECTS

Inhalation

Two studies provide conflicting results on the reproductive toxicity in animals due to exposure through inhalation. Vozovaya (1977) found a significant increase in embryo mortality in rats following maternal exposure to 4.69 7 ppm 4 months prior to mating and during pregnancy. A one generation study by Rao et al (1980) however, found no adverse effects on fertility, gestation, and pup survival in rats at exposure doses up to 150 ppm.

Ingestion

Lane et al (1982) found no dose-dependent reproductive effects in mice due to oral exposure to 1,2-dichloroethane. Alumot et al (1976) reported the same in rats.

POTENTIAL GENOTOXIC EFFECTS

Inhalation

A study by Storer et al (1984) was inconclusive because of high mortality of the mice at the exposure doses. However, irreversible DNA damage was evident in mouse hepatocytes at 1,000 ppm 1,2-dichloroethane for 4 hours.

Ingestion

Oral exposure to 100 mg/kg 1,2-dichloroethane resulted in irreversible DNA damage in mice. (Stour et al, 1984)

BIS[2-ETHYLHEXYL] PHTHALATE

Bis [2-ethylhexyl]phthalate (BEHP) is a member of a large group of phthalate estes utilized in the manufacture of plastics and plastic containers. BEHP is a commonly detected compound in environmental samples due to its widespread usage and as a potential laboratory contaminant (eg., organic solvents dissolve phthalates from plastic containers of unlined lids).

Non-Carcinogenic Effects

BEHP orally administered to rats and guinea pigs at doses of 19 and 64 mg/kg/day enhanced liver weight in female species. Slight nephritis was noted in kidney and the spleen had elevated eosninophilic granulocytes. The guinea pig was more susceptible to BEHP induced toxity than the rat (Carpenter et al., 1953). Based on this work, an oral RfD of 19 mg/kg/day was established.

Developmental Reproduction Effects

Administration of dietary levels of BEHP (up to 0.3%) resulted in dose-dependent decreases in fertility and increase embryo/fetal toxicity. At the high dose, damage to seminiferous tubules was apparent (NTP 1984; Singhe 1972; Shicot and Nishimura 1982).

Carcinogenicity

In an NTP chronic bioassay, hepatoullular carcinomas were noted on both male and female B6C3F1 mice and in female rates (NTP, 1982). The dose-response was positive and based on the data, a potency factor of 1.4 E-2 (mg/kg/day)⁻¹ was determined.

Genotoxicity assays indicate that BEHP is not a direct acting mutagen. BEHP is a peroxisome proliferator and is classified as a B2 carcinogen.

1,1,1-TRICHLOROETHYLENE

Trichloroethylene (TCE) is a man made or manufactured chemical. It has no natural source in the environment. TCE is used mainly for removing grease from metals in the automobile and metal industry. Eighty percent of the TCE produced is used in this industry. Other uses are as a solvent in household products such as paint strippers, cleaning fluids, and use as an ingredient in the manufacture of other chemicals.

In the general environment traces of TCE can be found in the air at 0.03 ppb and in the water at 1 to 2 ppb. Although the primary release is from evaporation during degreasing operations the chemical can also escape by leaching in water or evaporating from waste treatment or disposal operations.

Acute Effects of TCE. TCE in the air and water can enter the body via inhalation and ingestion respectively. Entry through skin contact is a much less important route of entry tot he body in environmental exposure. When breathed at high concentrations, TCE can cause dizziness, slowed reaction time, sleepiness and facial numbness. Irritation of the mucus membranes occurs simultaneously. Acute exposure to high levels can also cause liver and kidney damage and has caused cancer of the kidney, lung and liver in animals.

The LC50 for rats exposed for a four hour duration is 12,4000 ppm (Seigel et al. 1971). For humans the LC_{10} was reported at 2900 ppm by NIOSH in 1984.

Animal studies found 7,330 mg/kg to be a lethal oral dose for rabbits (NIOSH 1984). A lethal ingestion for humans is 7000 mg/kg (Sorgo 1976).

Systemic Effects. When inhaled, TCE effects the CNS, liver, kidney and bone marrow. In mice and rats inhalation exposure to 37 to greater than 75 ppm from 1 to 4 months cause defects such as liver and kidney enlargement and altered hepatic indices.

In rats exposed to greater than or equal to 50 ppm, for 8 hours per day for 5 days per week for 12 weeks, liver weight increased by approximately 25%. Kidney weight increased in mice exposed to greater than 75 ppm (Kjellstand, 1983).

Intermediate exposure to 320 ppm for 24 hours per day for 30 to 90 days changed the brain fatty acid composition in rats (Kyrkland, et. al, 1985).

Hematologic effects have been observed as well with continuous exposure to concentrations greater than 50 ppm in rats. Certain liver and bone marrow enzyme levels decreased while related heme synthesis enzymes in the liver increased (Fujita, et al 1984). Exposure to 2,790 ppm for 4 hours per day for 6 days per week for 45 days caused myelotoxic anemia in rabbits (Mazza and Brancaccio, 1967).

In humans, the short term effects as described previously can occur when concentrations reach a threshold of 81 to 110 ppm Noyiyama and Noyiyama, 1974, found that exposures 81 ppm for four hours caused headaches in human volunteers.

Exposure studies of TCE by ingestion indicates that the kidney, liver and immunological system are the principal target organs. Acute short term exposure found that liver weights increased and the hematocrit decreased. The immune response also decreased. Dosages of greater than 500 ppm for 5 day per week for 3 weeks caused liver weight increases in mice (Stott et al 1982).

Studies of the immune status of mice exposed to TCE in drinking water showed that females were more susceptible. Depressed cell mediated immunity to foreign erythrocytes occurred with exposure to greater than 18/mg/kg/day for four months. Bone marrow stem cells were effected after 4 to 6 months.

Carcinogenic Effects of TCE. To date, the available human data is insufficient to confirm or refute carcinogenicity of TCE (EPA Group B2). At the time of this writing the carcinogen assessment summary in the IRIS data base had been withdrawn for further review.

Several studies have confirmed an association to specific cancer forms while others have found no relationship. Cancers in workers occupationally exposed found that workers usually had also been exposed to multiple solvents so the effects of TCE alone could not be determined (Blair, et al 1979).

Animal studies have been able to determine a relationship between TCE inhalation exposure and cancer. In animal inhalation studies, hepatocellular carcinomas in mice exposed for 6hr/day for 5 days per week for 24 months occurred but the results were not reproduced by rat studies. Other cancers such as of the testicles, renal adenoma and lung adenoma have also been found in TCE testing (Maltoni, et al, 1986).

Other Effects of TCE. Inhalation studies with rats and mice indicate that TCE is feto toxic but not teratogenic (ATSDR 1988). Skeletal anomalies were observed. Oral studies have not shown any effect on reproduction.

TETRACHLOROETHYLENE

Tetrachloroethylene is a liquid solvent used widely in the dry-cleaning industry. It is also used for degreasing metals. In addition, tetrachloroethylene is used in the manufacture of other man made chemicals. (ATSDR)

Tetrachloroethylene is also known as perchloroethylene, perc, PCE, perclene and perchlor.

Environmental levels of tetrachloroethylene are very low. Higher concentrations are encountered in occupational settings such as dry-cleaning or degreasing operations.

Potential Acute Effects

Inhalation

Human

One reported death due to acute exposure to tetrachloroethylene was found. The exposure concentrations was unknown but high levels were found in the blood and brain (4.4 mg/100 ml and 36 mg/100 g respectively). (Lukaszewski, 1979)

Animal

The lowest concentrations of a study by Friberg et al (1953) in mice exposed for four hours observed to produce death was 3,000 ppm. Another study reported a lowest concentration to produce death in mice or rats was 2445 ppm. (NTP 1986)

Ingestion

Human

Tetrachloroethylene is not considered to be highly toxic to humans if ingested. It is used medically for the treatment of hookworms. Medically, beneficial doses of 2.8 to 4.0 ml is considered safe with the only side effect being inebriation-like symptoms. (ATSDR Toxicological Profile)

Animal.

An oral LD50 for mice was reported at 8100 mg/kg by Wenzel and Gibson (1951). A study by Hayes et al., (1986) fed rats 3835 and 3005 mg/kg. General CNS depression were observed before death but no abnormal findings except lung and adrenal hemorrhage was reported at autopsy.

Potential Systemic Effects

Neurotoxicity

Inhalation

Human

A study by Rowe et al (1952) exposed subjects to 106 to 1060 ppm of tetrachloroethylene. No CNS effects were observed at the lowest concentrations after 1 hour. Some reports of slight dizziness at 216 ppm for 2 hours were recorded. Exposure to 1060 ppm proved so irritating to the eyes and upper respiratory tract that the longest exposure periods attained was 1 to 2 minutes. Complete recovery occurred upon cessation of exposure.

Stewart et al., (1970) found that exposure to 101 ppm for 7 hours produced headache, dizziness and general CNS depression. Only one exposure concentration was used and no controls were included.

Stewart et al., (1977) studied exposure to 0, 25, or 100 ppm tetrachloroethylene. Effects at 100 ppm included changes in Flanagan coordination scores. A study by Hake and Stewart (1977) also concluded the same. These studies suggest a threshold of 100 to 200 ppm for CNS effects after acute exposure humans.

Inhalation

Animal

Studies show CNS effects after acute exposure to tetrachloroethylene concentrations ranging from 0 to 320 and 7100 ppm. (Savolainen et al, 1977; Rosengren et al, 1986; Briving et al, 1986; Kyrklund et al, 1984; Carpenter 1937; Rowe et al, 1952; Goldberg et al, 1964)

Oral

Human

Few studies report the effects of ingesting tetrachloroethylene. The effects seem to parallel those observed after inhalation (ATSDR Toxicological Profile)

Hepatic Effects

Inhalation

Human

Tetrachloroethylene is considered to be a hepatoxin in animals and humans. The types of effects observed are documented but exposure concentrations are often not available. Human exposure is often accidental and impossible to quantitate. Animal data is difficult to interpret due to different exposure schedules and endpoints.

Tetrachloroethylene is thought to be hepatotoxic. However, the only available evidence consist of case studies with unreliable quantitative exposure information. Effects observed include cirrhosis and toxic hepatitis. (Hake and Stewart, 1977; Levine et al, 1981)

Inhalation

Animal

Fatty degeneration of the liver was reported by Kylin et al (1963) after one four hour exposure to 200 ppm tetrachloroethylene.

Other studies report in mice increased liver weight and histological alterations at concentrations from 0 to 150 ppm. (Kjellstrand et al, 1984; Carpenter, 1937; Rowe et al., 1952; NTP, 1986)

In a 1952 study by Rowe et al guinea pigs were found more susceptible to tetrachloroethylene.

An oral RFD of 1E-2 mg/kg/day was based on a study by Buben and O'Flaherty (1985). Mice were exposed to tetrachloroethylene in concentrations from 0 to 2000 mg/kg 5 days/wk for 6 weeks. 100 mg/kg was the dosage where the first signs of toxicity were observed. Liver weights were significantly increased at 100 mg/kg. Decreased DNA content, increased SGPT, decreased GGP, necrosis and degeneration were observed at higher concentrations.

Oral

Human

Fatty degeneration of the liver, and hepatomegaly were reported after human ingestion of tetra (Koppel et al, 1985)

Oral

Animal

Hayes et al (1986) exposed rats to 0 to 1400 mg/kg/day of tetrachloroethylene in drinking water. Liver weight was increased at 1400 mg/kg/day. No gross pathological changes were reported, but overall body weights were lowered in the highest dosage groups of males. This study was used as a basis to estimate a no observed effect level of 14 mg/kg/day. (IRIS)

Renal Effects

Effects of tetrachloroethylene in the kidneys is documented in animals (rodents) but not in humans. However, it is an expected renal toxin in humans due to the correlation of effects incase studies.

Inhalation

Human

Reports of unquantified exposure concentrations and related nephrotoxicity imply but do not document a causal relationship (Hake & Stewart, 1977); Larsen et al, 1977)

Inhalation

Animal

Carpenter (1937) exposed rats to tetrachloroethylene ranging from 0 to 470 ppm for 8h/day, 5 day/week for 7 months. Kidney effects were reported at concentrations at 230 and 470 ppm.

Rowe et al (1952) did not observe abnormal renal function or changes in rats, rabbits, guinea pigs, or monkeys exposed to 0400 ppm for 7 hours/day, 5 days/week, for 6 months. Another group of guinea pigs in the study received 14 exposures to 400 ppm in 18 days with a resulting increase in kidney weight.

Oral

Human

Specific studies of renal effects after ingestion of tetra chloroethylenein humans was not available. However, Koppel (1985) reported acute renal failure as possible late state results of acute ingestion of tetrachloroethylene.

Oral

Animal

Concentrations of 0-1400 mg/kg/day were given to rats in drinking water for 90 days. Kidney weight was increased in males at > 400 mg/kg/day and also in females at 14 mg/kg/day. No) histological changes were observed in any dose group (Hayes et al, 1986)

Another study included exposure to 450 and 550 mg/kg/day for male mice, 300 and 400mg/kd/day for finally mice 471 and 941 mg/kg/day male rats and 474 and 949 mg/kg/day for female rats for 5 days/wk for 78 wks. Signs of nephrotoxicity were observed at all dosage concentrations for each groups (NCI, 1977)

Immunotoxicity

Inhalation

Animal

One study suggests a possible association between tetrachloroethylene exposure and increased susceptibility to respiratory infections in mice. (Aranyi et al, 1986) The interpretation of data is not conclusive. No human data was available.

Cardiotoxicity

Case studies of occupationally - exposed workers suggests an association between exposure to tetrachloroethylene - and the development of heart effects. However, definitive human evidence is lacking because of lack of exposure quantification. Animal studies provide data for enhanced sensitivity after intravenous injection but not inhalation.

Inhalation

Human

A study by Hara et al (1985) evaluated occupationally exposed workers. Exposure levels were not quantified but intensity of cardiac effects seemed to correlate with increased exposure levels. The researchers stated that there was no evidence of a cause and effect relationship and exposure to other solvents could have confused results.

A case study of one dry-cleaning worker who experienced symptoms one month after employment provides evidence for an association. Symptom ceased upon cessation of exposure and returned up re-entering work at the dry-cleaners. (Abedin et al, 1980) Exposure concentrations however were not know.

Inhalation

Animal

A study by Reinhardt et al (1973) evaluated the potential for tetrachloroethylene - to sensitize the heart to epinephrine in dogs. No causal relationship was reported.

A study on rabbits, cats, and dogs to intravenous injections of tetrachloroethylene and subsequent sensitivity to epinephrine was reported by Kobayashi et al (1982). It was concluded that increased sensitivity occurred in all three species. The authors also noted that the same effects may not be seen in humans due to limited pulmonary absorption.

Developmental Toxicity

Inhalation

Human

No conclusive evidence of a cause and effect relationships between inhaled tetrachloroethylene and developmental effects in humans was available.

Inhalation

Animal

The observation of feto toxicity at concentrations also toxic to the mother have been reported in rats and mice. The effects are observed at 300 ppm. (Schwetz et al (1975)). Ghantous et al (1986) reported high amniotic fluid of mice concentration of a tetrachloroethylene metabolite after exposure through inhalation. It has been postulated that this observation may serve as the basis for defining the mechanism of embryo toxicity.

Reproductive Toxicity

Little information regarding the effects of tetrachloroethylene on reproduction exits. Conclusive evidence that tetrachloroethylene or its metabolites produces changes in genetic material of animals or humans is unavailable.

Genotoxicity

Human

No increased in chromosomal aberrations in lymphocytes observed in occupationally exposed workers in a study by Ikeda et at (1980)

Nonhuman

Studies in prokaryotes provide negative evidence of genotoxicity. Studies in yeast or mammalian cells provide mixed results probably due to impurities in cultures. (ATSDR Tox Profile)

Potential Carcinogenic Effects

Tetrahclorethylene is classified in Group B2 according to EPA's weight-of-evidence criteria. It is a probable human carcinogen, but unequivocal human data does not exist at this time. There is definitive animal data to support it's carcinogenicity.

Inhalation

Human

Occupationally exposed workers in the dry-cleaning industry participating in epidemiological studies show an increased cancer mortality. Cancer of the lung, cervix, kidney, skin and/orcolon ar predominant. The data must be considered inconclusive because of exposure to other solvents, smoking, and socioeconomic status as confounding factors. (Blair et al, 1979; Kaplan, 1980; Katz and Jowett, 1981; Duh and et al, 1984; Brown and Kaplan, 1985)

A subgroup of the Brown and Kaplan (1985) group with 23 years of employment showed 1 an increased risk of kidney, bladder and cervical cancer.

Inhalation

Animal

A study on rats and mice with exposures ranging from 0-400 ppm for rats and 0-200 ppm for mice found a significant increase of mononuclear cell leukemia in rats. Although not statistically significant, usually uncommon renal tubular cell adenomas or adenocarcinomas were also observed in males. In mice, the incidence of hepatocellular carcinomas was increased. (NTP, 1986)

One study by Rampy et al (1978) found no statistically significant increase of tumor incidence in rats.

Ingestion

Human

Data no available

Ingestion

Animal

Rats and mice were exposed through gavage to tetrachloroethylene in the NCI (1977) study. No increase risk of cancer was observed in rats. However, the incidence hepatocellularcarcinomas in mice was increased.

Dermal

Animal

Tetrachloroethylene when applied to the skin of mice was not found to be carcinogenic (Van Duuren et al., 1979)

TABLE INFORMATION

		Inhalation	Ingestion=0
1)	RfD Uncertainty Factor	NA	1000
2)	CPF	5E-3 [3.3E-3]	5.1E-2
3)	Carcinogenicity Classification	B2	B2

TRIHALOMETHANES

Trihalomethanes (THMs) can be formed when chlorine used to disinfect drinking water reacts with organic compounds in the water (precursors) at levels typically in chlorinated municipal supplies. The most common THMs formed are chloroform, and bromodichloromethane.

However, when bromide ions are present in water, dibromochloromethane and bromoform are also frequently produced (Cancer Rates and Risks, 1983; Crump and Guess, 1982; Zierler et al,1988; Viessman and Hammer, 1985). In certain cases the brominated THMs are the most dominant. Many natural water contain bromideions which are oxidized to bromine. Bromine in drinking water can greatly increase the THM level because of its increased reactivity(Viessman and Hammer, 1985).

There are some weak associations that THMs may increase risk of gastrointestinal and urinary tract cancer (Crump and Guess, 1982).

Acute Toxicity

Acute toxicity is characterized by necrosis and cirrhosis of the liver and kidney as well as central nervous system effects. THMs left on the skin may produce burns (DW&H, 1977; Sittig, ASTSDR, 1989).

Systemic Effects

Occupationally exposed workers exhibit hepatic effects. Dogs and rats are also found to be sensitive to the hepatic effects of THMs (ATSDR). Alcoholics appear to be more sensitive to chloroform exposure. In additional, central nervous system effects and renal toxicity are evident but not as prevalent (Sittig, 1985).

Carcinogenic Effects

Some studies have found a statistically significant increase in the incidence of certain types of cancer correlated to exposure to THM's.

Carlo and Mettline (1980) found a increase of pancreatic cancer in while males due to exposure to THMs. Gottlieb et al (1989, 1981) found a strong association between rectal cancer and Mississippi River water.

Kanarek and Young (1980) examined the relationship of chlorinated drinking water and cancer at several sites. A significant association between colon cancer and chlorination of water was found.

Chlorinated water as cited in case control studies carries with it about 1.1 to 2.0 times higher risk of rectal, bladder, and colon cancers.

Chloroform is classified as a B2 carcinogen due to its weight of evidence in animals. The human data is not considered sufficient to classify it as a definite human carcinogen (IRIS).

Extensive studies in rats and mice indicate an association between exposure to chloroform and other THMs and the development of tumors in the kidney and liver. Exposure concentration ranged from 0 to 1800 mg/l of chloroform. The key studies as cited are the basis for its cancer potency factor set by EPA are the NCI (1976) bioassay in rats and mice, the study by Roe et al (1979) in mice and Jorgenson et al (1985) in rats and mice.

Chloroform has been listed as a Class B2 carcinogen with an oral potency of 6.1E-03 (mg/kg/day)⁻¹. Bromofirm, bromodichloromethane and dibromochloromethane are currently being reviewed by NTP for possible carcinogenicity (IRIS, 1990).

Fetotoxicity/Developmental Toxicity

The embryotoxic potential of THMs has been identified in animals. Schwety et al (1974) and Murray et al (1979) found evidence of developmental toxicity of chloroform at exposure concentrations of 100 ppm and above.

The embryotoxic potential of THMs has been identified in animals. Schwety et. al. (1974) and Murray et. al. (1979) found evidence of developmental toxicity of chloroform at exposure concentratoins of 100 ppm and above.

The ambient water quality level suggested by EPA (1979) is zero. However a maximum contaminant level (MCL) for total trihalomethanes is proposed at 0.1 mg/l.

Toxicity Values

A RfD for trihalomethane has been established at 2E-02 mg/kg/day based on chronic gavage investigation. NOAL and LOAEL values for dibromochloromethane, bromodichloromethane and bromoform range from 17.8 to 42.0 mg/kg/day for hepatic lesions in rats and cytomegaly in mice.

	Oral Cancer Potency Factor	Weight of	_
Compound	mg/kg/day	Evidence	
Source			
bromodichloromethane	1.30 E-01	B2 a,b	
chlorodibromomethane	8.40 E-02	B2 a,b	
bromoform	7.90 E-03	B2 a,b	
chloroform	6.10 E-03	B2 a	

b = HEAST, 1989

REFERENCE DOSE

Total Trihalomethanes RfD = 2E-2 mg/kg/d MF = 1

UF = 1000

NOEL/LOAEL'S

NOEL—LOAEL	(mg/kg/day)			
Dibromochloromethane	21.4	42.9	(hepatic lesions in rats)	
Bromoform	17.9	35.7	(hepatic lesions in rats)	
Bromodichloromethane	None	17.9	(renal cytomegaly in mice)	

The ambient water quality level suggested by EPA (1979) is zero. However a maximum contaminant level (MCL) for total trihalomethanes is proposed at 0.1 mg/l.

PHENOL

Phenol is white crystalline solid which is used widely in the production and manufacture of a variety of products. It has an acrid, aromatic odor. It has been estimated that as many as 10,000 workers are occupationally exposed to phenol during the production of paints, paint removers, asbestos goods, wood preservatives, rubber, fertilizer, coke and illuminating gas among others. It is also used as a disinfectant in other industry processes, such as the manufacture of soap, toys, leather and paper as well as in agriculture. Phenol is also known as carbolic acid, phenic acid, phenyl hydrate and hydroxybenzene among other synonyms (Sittig, 1985).

Acute Effects

Phenol is a primary skin irritant producing corrosion of tissue upon contact. It causes a whitening of skin but does not cause pain, whereas it causes damage to the point of blindness in eyes. If the phenol is not removed quickly absorption can occur potentially leading to systemic toxicity (Sittig, 1985).

An acute lethality study done in conjunction with another study exposed rats to 10,000 ppm (780 mg/kg/day) in drinking water for 90 days. All animals survived the specified exposure period (NCI, 1980).

Systemic Effects

Developmental Effects

The oral reference dose (RFD) as reported by USEPAs Integrated Risk Information System (IRIS) is based on a study by NTP (1983) regarding the developmental effects of phenol is 6 E-1 mg/kg/day. The study included oral exposure of pregnant rats to 0, 30, 60 and 120 mg/kg/day on days 6 to 15 of gestation. Rats were sacrificed and examined on day 20 of gestation. Researchers observed no maternal or clinical signs of toxicity as related to dose received. Reported observations of significance included a reduction in fetal body weights in the 120 mg/kg/day dose group. A no observed adverse effect level(NOAEL) of 60 mg/kg/day was reported and is used as the basis for the derived RfD cited above.

Other Systemic Effects

Other studies report symptoms of the systemic toxicity of phenol as limited to reduced bodyweight or unspecified kidney inflammation in animals. A study by NCI (1980) exposured rats to 0 to 344 mg/kg/day and mice to 0 to 500 mg/kg/day for 103 weeks. Findings included both a dose-related reduction in body weight of male and female rats and mice and an increase in chronic inflammation of the kidney in all dosage groups of female rats and the highest dosage group of male rats. Comparable results were reported by a study conducted by the Armed Forces Institute of Pathology (1980). A lowest observed adverse effects level (LOAEL) of 313 mg/kg/day in mice and 344 mg/kg/day is reported in rats based on depression of body weight.

Another study by Dow (1945) reported lower NOAELs and LOAELs than the NCI (1980) study possibly due to differences in the mode of administration.

Carcinogenic Effects

The available data are considered insufficient at this time to completely assess the carcinogenic potential of phenol. The USEPA has evaluated the compound and is currently reviewing its findings (IRIS, 1990).

TOLUENE

Toluene is produced both naturally and as a by-product of certain refining and manufacturing processes. The vast majority of toluene is used as a component of gasoline. Toluene is a clear, sweet-smelling liquid that can be found in crude oil and the Tolu tree. It can also be found as a by-product of styrene production, petroleum refining, and coke-oven operations. Toluene is also known as methylbenzene and phenylmethane and has a molecular weight of 92.15. Toluene is classified as a hazardous waste under the Resource Conservation and Recovery Act (ATSDR, 1989).

Acute Effects

Inhalation. Very few studies regarding the acute toxicity and lethality of toluene. Human data is limited to case studies of workers who have occupational exposure or case studies of abusers of solvents for recreational use. It is noted that either of the potential exposure pathways above may involve simultaneous exposure to a variety of compounds.

There have been no deaths attributed to toluene exposure in the United States, whereas 80 deaths per year are attributed to toluene associated with solvent abuse in Great Britain(Anderson et al, 1985). Signs and symptoms of exposure are primarily characteristic of central nervous system depression. High concentration exposure produces reversible depression of the central nervous system. Even acute exposure concentrations sufficient to produce unconsciousness are not observed to produce long-term organ damage.

Central nervous system depression is also the most typical adverse effect observed in animals. A few animal studies of inhalation exposure in rats and mice suggest that mice area more sensitive species than rats. LC50 values have been reported at 5, 320 ppm (920 PP mg/kg) in mice (Svirbely et al, 1943) and 8,800 ppm (365 mg/kg) in rats (Carpenter et al, 1976).

Ingestion Dermal. No data regarding actual oral exposure in humans and very little in animals was found.

The potential for acute lethality of toluene in animals following ingestion has been investigated by a number of studies. The range of LD50s found was 5.5 to 7.3 g/kg. Some evidence suggests that age may play a role with juvenile rats the most sensitive (Kimura et al, 1971; Smyth et al, 1969; Withey and Hall, 1975; Wolf et al, 1956).

No data was located on the acute toxicity of toluene through dermal exposure in either humans or animals.

systemic Effects

Respiratory Effects, Inhalation. Toluene is considered a respiratory irritant in both humans and animals. Occupationally exposed workers were observed to experience upper respiratory irritation at concentrations of 200 to 800 ppm of toluene over the course of several years (Parmeggiani and Sassi, 1954). A study by von Oettingen et al (1942)

Toluene reported no irritant effects in volunteers exposed to 800 ppm for 7 to 8 hours. Most other human data is occupational with confounding exposure to other solvents that proves the data to be equivocal.

Animal data also provides data on the upper respiratory effects of toluene. Effects in rats range from upper airway irritation (600 ppm) to pulmonary lesions (2,500 ppm and 5,000 ppm) (von Oettingen et al, 1942). A study by Bruckner and Peterson (1981b) which is considered comprehensive and well conducted reported no irritation or histologic changes of the respiratory tract at concentrations up to 12,000 ppm in rats and mice. No explanation was cited for the difference in results between the studies cited above.

The 1980 study by CIIT observed no histopathological changes attributable to toluene at a concentration of 300 ppm in rats. Concentrations of 600 ppm to 1,200 ppm produced inflammation of the nasal mucosa and degeneration of the epithelium in the 1989 study by NTP.

Ingestion/Dermal. Toluene is not considered toxic to the respiratory system through either ingestion or dermal exposure.

Cardiovascular Effects, Inhalation. Most deaths in Great Britain of solvent abusers are attributed to arrhythmia; however, toluene does not seem directly toxic to the cardiovascular system as to produce lesions or other histopathological effects. No histopathological lesions of the heart were observed in rats at concentrations up to 12,000 ppm for 8 weeks and 1,200 ppm for 24 months (Bruckner and Peterson, 1981b; CIIT, 1980; NTP, 1989). A no observed adverse effect level (NOAEL) of 1,200 ppm for chronic non-neoplastic cardiovascular effects based on the NTP (1989) study.

Ingestion/Dermal. The NTP (1989) also exposed rats to toluene through ingestion. Findings included and increase in heart weight in rats at 1,250 mg/kg/day for 13 weeks and myocardial degeneration in mice at 5,000 mg/kg/day for 13 weeks.

No oral exposure in humans or dermal exposure in animals or humans is reported regarding cardiovascular toxicity.

Gastrointestinal Effects, Inhalation. The NTP (1989) study reported slight but not significant increase in stomach ulcers in rats after 2 years exposure to concentrations up to 1,200 ppm of toluene.

Ingestion/Dermal. No adverse gastrointestinal effects were observed at exposure concentrations up to 5,000 mg/kg/day of toluene for 13 weeks (NTP 1989).

No studies were found regarding cardiovascular effects of toluene following dermal exposure in animals or humans.

Hematologic Effects, Inhalation. Hematological effects once associated with toluene in occupational exposures have since been re-evaluated and partially attributed to exposure to other compounds historically found as contaminants of toluene in the workplace such as

benzene (Greenburg et al, 1942; Wilson, 1943; EPA, 1985c). The most recent studies have for the most part been negative with the only potential adverse effect being a reversible decrease in blood leukocytes. Exposure concentrations of toluene (with benzene <0.01%) ranged from 20 to 200 ppm in the studies by Tahti et al (1981), Banfer (1961) and Capellini and Alessio (1971). The results of Tahti et al (1981) are considered neither conclusive nor completely invalid due to possible confounding exposure to other solvents and limited cohort size.

The USEPAs Integrated Risk Information System (IRIS, 1989) and the Health Effects Assessment Summary Tables (HEAST, 1989) report the Reference Dose (RFD) for toluene to be 3E-1 mg/kg/day based on hematological effects (IRIS, 1989) as well as central nervous system effects and eye and nose irritation (HEAST, 1989) as based on data reported in several studies by Anderson et al (1983) and CIIT (1980). The study conducted by CIIT (1980) exposed rat to concentrations of toluene of 30, 100, and 300 ppm for 6 hours/day, 5 days/week for 24 months. The only dose-related effect observed was reduce hematocrit values in females in the 100 and 300 ppm groups. A NOAEL based on 300 ppm was derived to be 1,130 mg/m3.

Ingestion/Dermal. No data found.

Musculoskeletal Effects, Inhalation. No data of musculoskeletal effects in humans follow inhalation exposure to toluene were found.

No adverse musculoskeletal effects were reported by the NTP (1989) study in mice and rats exposed to dosage levels up to 1,200 ppm of toluene for two years through inhalation. Similar results were reported by the NTP (1989) study following oral exposure at dosage levels up to 5,000 mg/kg/day.

Ingestion/Dermal. No studies found.

Hepatic Effects, Inhalation. The liver is not considered to be a primary target organ following toluene exposure. This is thought to be due to the extensive metabolism of toluene by the liver to possibly more nontoxic metabolites. Studies by Seiji et al (1987) and Lundberg and Hakansson (1985) found no significant hapatic effects attributable to toluene exposure.

Toxic hepatic effects in animals are limited to increases and decreases in liver weight with no significant changes in what is considered serious parameters of liver toxicity. A lowest observed adverse effect level (LOAEL) of 800 ppm for 7 days in rats, mice, and rabbits is reported based on data gathered by Ungvary et al (1982). Increased liver weights were observed by the same study at longer exposure times (3 weeks) at 800 ppm, whereas Bruckner and Peterson (1981b) reported decreased liver weights in rats at a concentration of toluene of 12,000 ppm for eight weeks. The 1989 study by NTP also reported increased liver weights in rats exposed to 1,250 ppm for 15 week.

Ingestion/Dermal. No data regarding ingestion exposure in humans or animals or dermal exposure in humans was located. Only one inconclusive study in animals following dermal exposure was found.

Renal Effects, Inhalation. The majority of the qualitative human data regarding adverse kidney effects through inhalation exposure comes from case studies of solvent abusers. Most effects on the kidneys could possibly be associated with exposure to other solvents so only limited if any conclusions can be drawn. However, the kidney does not appear to be a primary target organ of toluene in humans.

The most recent studies in animals observe no adverse histopathological changes in the kidneys of rats and mice at concentrations up to 12,000 ppm for eight weeks (Bruckner and Peterson, 1981b) or concentrations up to 1,250 ppm for 15 weeks (NTP, 1989). The NTP (1989) study did however report an increase in liver weight at the exposure concentration and duration cited above. The NTP (1989) study reported nephropathy an observed in tabular cysts at doses of 600 to 1,200 ppm. The conclusion that the renal tubular cysts are adose-related effect is backed up by the CIIT (1980) study which observed no such cysts at 300 ppm for 24 months.

Ingestion/Dermal. No studies were located regarding the ingestion or dermal exposure in humans or dermal exposure in humans. Again, only one study considered in conclusive was found of dermal exposure to toluene in animals and any associated renal effect.

Dermal/Ocular Effects, Inhalation/Ingestion. No studies found.

Dermal. Dermal exposure to toluene may cause skin damage. Some workers experiencing long-term exposure report unspecified abnormal skin conditions of the hands (Winchester and Madjar, 1986).

Testing of dermal/ocular irritation in animals proves toluene to be a moderate skin and eye irritant (Kronevi et al, 1979; Hazelton Laboratories, 1962; Carpenter and Smyth, 1946).

Neurological Effects, Inhalation. Central nervous system (CNS) effects following exposure to toluene through inhalation seems to be the primary effect in humans. Human volunteers exposed to 40 ppm did not experience significantly changed CNS response(Anderson et al, 1983). Exposure to moderate concentrations (200 to 800 ppm) produced CNS excitatory effects followed by narcosis. The development of CNS depression is reported to increase with increased exposure concentration and duration (EPA, 1985c; von Oettingen et al, 1942). Exposure to sufficiently high concentrations can depress the CNS to the point of death. High concentrations can also produce symptoms such as tremors, ataxia, speech, hearing and vision impairment, and intellectual and neuromuscular effects (Devathasan et al, 1984; King et al, 1981; Suzuki et al, 1983; Iregren, 1986; Hanninen etal, 1976).

The reported effects in humans are supported by animal studies. Bruckner and Peterson(1981a) observed a correlation between CNS depression and toluene levels in the brain. Hartmann et al (1984) studied toluene exposure in monkeys and found impairment of

both cognitive performance and motor abilities at concentrations below those which cause more severe CNS effects such as tremors and ataxia.

Honma et al (1982) reported changes in brain neurotransmitter levels in rodents following exposure to 4,000 ppm. Ikeda et al (1986) and Arito et al (1985) observed similar results at 400 ppm for 30 days.

Changes in brain morphology were reported by Kyrklund et al (1987) following exposure 2 to 320 pm for 30 days. In contrast, NTP (1989) did not report any microscopic changes in morphology at 1,200 ppm for two years. The NTP (1989) study did however report an increase in brain weight in rats and mice.

Toluene is also considered to produce changes in the auditory system. The 1984 (a,b)studies by Pryor et al considered 700 and 1,000 ppm to be the threshold for hearing loss in rats. Hearing loss was permanent in the high-frequency range.

Ingestion/Dermal. The 1989 study by NTP reported an increase in brain weight after oral exposure to 1,250 mg/kg/day of toluene for 13 weeks in rats.

Immunological Effects, Inhalation. Slight immunological effects in humans is thought to possibly be associated with the decrease in leukocytes in humans and animals. No definite data has been found to support this theory (Moszcynski and Lisiewicz, 1984;ATSDR, 1989).

Toluene exposure at concentrations of 2.5 to 500 ppm have been associated with an increased potential for upper respiratory infections (Arany et al, 1985; Suleiman, 1987).

Ingestion/Dermal. No studies found.

Developmental Effects

Inhalation. Toluene has been shown to produce adverse developmental effects in both-humans and animals. Solvent abuse in pregnant women produced CNS dysfunction, limb anomalies and growth retardation in case studies of eight women. There is a great probability of confounding exposures to other solvents so limited conclusions can be drawn from these case studies (Holmberg, 1979; Goodwin et al, 1988).

Studies in animals have provided quantitative evidence for the developmental toxicity of toluene. A study by Courtney et al (1986) reported reproductive and fetal changes at exposure concentrations of 200 and 400 ppm. Based on these data a LOAEL of 200 ppm is indicated in mice.

Studies by Ungvary and Tatrai (1985) in mice and rabbits and Unguary (1985) in rats also provide evidence of developmental toxicity at moderate concentrations (100 to 400 ppm). ALOAEL of 267 ppm is reported for developmental effects in rats and rabbits.

Ingestion/Dermal

Toluene was not reported as a developmental toxicant following oral exposure by Seidenberg et al (1986) and Smith (1983). The LOAEL for developmental effects due to oral exposure is 2,350 mg/kg/day based on the study by Smith (1983).

Reproductive Effects

Inhalation. Data gathered from animals studies did not indicate toluene to be a reproductive toxicant. Exposure concentrations up to 2,000 ppm in mice showed no treatment-related reproductive or survival effects (API, 1981 and 1985). Rats exposed to 300 ppm for 24 months produced no histopathological changes of the testes or ovaries attributable to toluene exposure (CIIT, 1980).

Ingestion/Dermal. The study by Smith (1983) reported no effect on viable litter production after 2,350 mg/kg/day administered orally.

Genotoxic Effects

Inhalation. Available data, though inconclusive, suggests that toluene is not a human or (animal genotoxic agent. Some case studies of occupationally exposed workers reported an increase in sister chromated exchange (Schmid et al, 1985; Bauchinger et al, 1982). The importance of these findings in regard to the severity of genotoxic toxicity is not known. Other studies have found no correlation between occupational toluene exposure and changes in chromosomes or sister chromatic exchange (Haglund et al, 1980; Maki-Paakkanen et al, 1980).

The only study found regarding genotoxic toxicity due to inhalation exposure in animals reported no induction of dominant lethal mutations in sperm cells of male mice (API, 1981).

Ingestion/Dermal No studies found.

CARCINOGENIC EFFECTS

Inhalation. No available data suggest that toluene is a cancer causing agent due to inhalation exposure. In fact, on retrospective cohort mortality study of oil refinery workers exposed to toluene as well as other chemicals indicated a rate of cancer deaths for the 1,008 male workers involved lower than that of the general population. The study did identify an apparent though not significantly significant association between the incidence of cancer and the duration of exposure (Wen et al, 1985). Limited confidence in the study is noted due to lack of historical monitoring and insufficient size of study population to detect small increases in the incidence of cancer.

No study in rats or mice produced an increased incidence of cancer at concentrations up to 1,200 ppm for two years (CIIT, 1980; NTP, 1989). Some limitations are noted regarding the CIIT (1980) study due to the fact that animals were thought to have been able to withstand higher dosing concentrations.

Ingestion/Dermal. Dermal exposure of toluene in mice was investigated by Weiss et al (1986). Increased inhibition of skin tumorigenesis in conjunction with the use of apromoter. Toluene is postulated to interfere through competition with the promoter compound receptor site or interferences with biological cell processes.

XYLENE

Xylene is found naturally in petroleum and coal tar. However, it is primarily a man-made chemical. Xylene occurs in three forms: meta-,ortho-, and para-xylene. "Total xylenes" is a mixture of the three isomers. Xylene is used to produce thinners, solvents, fuels, paints and cleaners. Xylene evaporates quickly and does not mix well with water.

ACUTE EFFECTS

Inhalation

Acute effects from high level exposure concentration includes central nervous system depression. Only one death is reported in a case study of three men exposed to paint fumes containing an estimated 10,000 ppm xylene for an exposure duration of several hours (Morley et al, 1979).

Acute xylene exposure in animals, as in man, is considered slightly toxic with LC50 values above 6,000 ppm (Hine and Yuidema, 1970; Carpenter et al, 1975).

Ingestion

Oral exposure to xylene in man has a low relatively acute toxicity with only one case reported death after a large quantity of xylene (ASTDR, 1990).

No deaths were observed in rats after ingestion of up to 1,000 mg/kg/day of xylene (ASTDR,1990).

SYSTEMIC EFFECTS

Respiratory Effects

Inhalation. Respiratory effects including nose and throat irritation, pulminary edema and lung congestion have been observed in humans and animals at concentrations as low as 100 ppm in short-term exposures and 20 ppm for longer-term exposures (Goldie, 1960; Hake et al, 1981; Klauche et al, 1982; Nersesian et al, 1985; Morley et al, 1970). No histopathological changes were reported.

Ingestion. No human studies were located. No significant histopathological changes were noted in rats at concentrations as high as 800 ppm (Hazleton Lake, 1988a, 1988b).

Cardiovascular Effects

Inhalation. There is limited human data available. No cardiovascular effects in humans were observed after exposure to 299 ppm xylene (Gamberale, et al, 1978).

Animal data is also limited but does not indicate high potential for carcinogenic effects (ASTDR, 1990).

Ingestion. Few exposure related cardiovascular effects were observed in the limited amount of data regarding oral exposure to xylene in either man or animals (ASTDR, 1990).

Gastrointestinal Effects

Inhalation. Nausea, vomiting and gastric irritation were noted after inhalation of xylene. Symptoms ceased upon cessation of exposure (Goldie, 1960; Klaucke, et al, 1982; Nersesian, et al 1985).

Ingestion. Ingestion of up to 1,000 mg/kg/day of xylene in rats produced no adverse gastrointestinal histopathologic responses (NTP, 1986).

Hematological Effects

Studies of inhalation or ingestion exposure to xylene provide no evidence of memotalogical effects in humans or animals (ASTDR, 1990).

Hepatic Effects

Inhalation. Animal studies of xylene inhalation exposure show induction of a wide variety of hepatic enzymes in rats. Other effects include increased hepatic weight and ultrastructural changes (Kyrklund et al, 1987; Toftgard et al, 1981; Tatrai and Ungvary, 1980). Most effects result from intermediate length exposure periods.

Ingestion. Effects of hepatic toxicity after oral exposure are similar to that of inhalation exposure (ASTDR, 1990).

Renal Effects

Both inhalation and ingestion of xylene produce increased renal weight and increased renal cytochrome P-450 with no sign of histopathologic changes in animals (NTP, 1986; Hazleton Labs, 1988a, 1988b).

NEUROLOGICAL EFFECTS

Inhalation

Humans have been noted to experience short-term memory loss, impaired reaction lime and decreased numeric ability after intermediate length inhalation exposure to xylene. As noted before acute exposure to xylene causes general central nervous system depression (Gamberale, 1978; Riihimaki and Savolainen, 1980; Savolainen and Fiihimaki, 1981b; Klaucke et al, 1982). It is noted that occupational exposures and case studies are usually confounded by exposure to other solvents.

Xylene studies in animals also provides evidence for neurotoxity following inhalation exposure. Signs of toxicity in animals include narcosis, incoordination, tremor, labored breathing, hearing loss and changes in brain biochemistry (Andersson et al, 1981, Carpenter et al, 1975; DeCeaurrizet al, 1983; Kyrklund et al, 1987; Rank, 1985; Wimolwattanapaun et al, 1987). Quantification of exposure concentrations producing toxicity in arrivals ranges from 113 ppm (in acute exposures to 2,000 ppm and 300 ppm to 800 ppm after intermediate exposures.

Ingestion

Neurotoxic effects after ingestion of xylene is less well defined than inhalation exposure. Signs of toxicity in animals included hyperactivity, convulsions, salivation and epistaxis (NTP, 1986; Dyeret al, 1988).

DEVELOPMENTAL EFFECTS

Both inhalation and ingestion of xylene produces and increased indicences of developmental effects including left palate and decreased body weight after maternal exposure. Inhalation exposure also produces fetal skeletal variations, resorptions and fetal organ hemorrhages (Bio/dynamics, 1983; Hudak and Ungrary, 1978; Litton Bionitics, 1978a; Mirkova et al, 1983; Shigeta et al, 1983; Marks et al, 1982).

CARCINOGENIC EFFECTS

Xylene is classified in Group D in EPA's weight-of-evidence classifications. It is not considered carcinogenic. There are not studies to implicate the positive carcinogenic potential of xylene (IRIS, 1989, ASTDR, 1990).

ALDRIN

Aldrin is a member of the chlorinated cyclodiene insecticide family. Aldrin (45, 4aS, 5S, 8R, 8aR)-1,2,3,4,10,10-hexachloro 1,4,1a,5,8,8a-hexahydro-1,4:5,8-dimethanonaphthalene) (CAS No. 309-00-2)) is environmentally very persistant and is not registered for use in the United Sates.

Toxicity

As a member of the chlorinated cyclodiene insecticide family, aldrins toxicity is similar to chlordene and heptachlor. For a general toxicity profile, plan refer to chlordene in this section.

CHLORDANE

Chlordane is a light yellow viscous liquid used primarily for the control of insects in crops and soil pests such as termites. It is similar to other chlorinated cyclodiene insecticides in use and toxicity. Prior to 1950 "early chlordane" contained an intermediate (hexachlorocyclo-pentadiene) which was later held to below one percent in the mixture (Hayes 1982). Chlordane produced after 1951 is known as "later chlordane" and is a mixture of at least 26 different components. Chlordane's only approved use in the USA since 1983 is for the control of underground termites (IPCS 1984).

Chlordane is stable in light and shows slow biodegradation. It is lipid soluble and therefore will tend to accumulate in adipose tissue. Chlordane shows little migration except for surface runoff due to its easy adsorption on soil particles. Leaching into groundwater is also minimized (IPCS 1984).

Most poisonings occur through accidental spills or attempted suicides. Studies have shown that human uptake through residues on food are rare and adverse outcomes are minimal. Reports of adverse occupational effects are also minimal (IPCS 1984).

POTENTIAL ACUTE EFFECTS

"Early chlordane" was known to be a respiratory tract irritant whereas" later chlordane" is not as irritating (Hayes 1982). Onset of symptoms usually occur 30 minutes to three hours after exposure. A human fatal dose is reported to be in a range of 6-60 g (IRIS). CNS effects are the most sensitive in acute human exposure. Chlordane is considered to be in the upper range of moderate toxicity (IRIS).

A study by Stohlman et al (1950) reported 100 percent fatality of 12 male rats within 10 days after being fed a diet containing 1000 mg/kg of chlordane, and after 70 days at concentrations of 500 mg/kg. Nine (9) out of 12 mice died within 100 days when fed 300 mg/kg of chlordane. It was also reported that daily doses of 50 mg/kg produced signs of toxicity (IPCS 1984).

POTENTIAL SYSTEMIC EFFECTS

Gastrointestinal Effects

Human

Ingestion

Residents of Chattanooga, Tennessee reported gastrointestinal symptoms after ingestion of chlordane contaminated drinking water. Eighteen percent of the residents of the 42 homes affected were symptomatic. Those affected by signs gastrointestinal irritation also showed CNS effects. Concentration exposure ranged from 0.1 to 92,500 ppb (Harrington et al. 1978).

Inhalation

Inhalation exposure can also result in gastrointestinal distress. After a spill of one percent chlordane in a subterranean library room there was observed a correlation with exposure and GI and CNS effects. Clean-up workers seemed to be most severely affected (NIOSH 1984).

Hepatic Effects

Human

Ingestion

There is little human oral exposure data with regard to liver function. A report by EPA (1980) suggest that liver effects are not a primary part of acute oral chlordane exposure.

Inhalation

The same report by EPA above did find an association in the development of jaundice and inhalation exposure to chlordane in termite-treated homes.

Several studies have concluded that there is no association between occupational exposure for chlordane and liver effects (Alvarey and Hyman 1953, Tishbein et al 1964, Princi and Spurbeck 1951).

Animal

Ingestion

The animal study by Velsicol Chemical Company which fed Fisher 344 rats 0, 1, 5 and 25 ppm of chlordane for 130 weeks. The first review of the data reported an increase in liver lesions in male rats at 25 ppm. However, a subsequent review and reevaluation reported no liver lesions in males at 25 ppm but did report liver lesions at 5 ppm in female rats (IRIS).

Growth Retardation Effects

Ingle (1969) fed 20 male and 20 female rats chlordane in a range from 0 to 35 mg/kg of alpha-chlordane; gamma-chlordane in a range from 15 to 75 mg/kg; or a 1:1 mixture from 5 to 75 mg/kg. Earliest growth retardation was apparent in rats fed 2 alpha-chlordane. Rats fed 35 mg/kg showed growth retardation after four months in males and five months in females (IPCS 1984).

Accumulation in Tissues

Studies of human adipose tissue have reported an average level of 0.1 ppm of the chlordane metabolite oxychlordane in the U.S. population. Individuals were not symptomatic so levels are not associated with toxic effects of chlordane. There was no significant change in the concentration over the five year period from 1979 to 1975 (Kutz et al. 1976, 1979).

Oxychlordane in human breast milk was found to range from 0.002 mg/l to 0.005 mg/l in random samples from subjects with asymptomatic infants (Barnett et al. 1979, Strassman and Kutz 1977).

Taguchi and Yakushiji (1988) reported a correlation between the length of inhalation exposure of chlordane in homes treated for termites and the concentrations in human milk fat. It is noted that air concentrations were not quantified.

Takamujai 1987 and Saito et al. (1986) found a strong correlation between chlordane residues in blood of pest control workers and the duration of exposure. Again concentration levels were not quantified.

POTENTIAL CARCINOGENIC EFFECTS

Chlordane is classified in the B2 category based on weight-of-evidence. It is therefore a probable human carcinogen. Three human epidemiological studies provided inadequate data because of problems in sample size, follow-up or confounding factors (IRIS).

Human

Inhalation

Cohort studies of occupationally exposed chlordane workers demonstrated no increase in general mortality or death due to specific cause including cancer (Ditraglia et al 1981, MacMahon et al 1988, Shindell and Ulrich 1986, Wang and MacMahon 1979. It should be noted that all the studies noted do have limitations due to unquantified exposure or confounding exposure to other pesticides.

Ingestion

No human oral carcinogenity was found.

Animal

Ingestion

Animal studies have shown increased incidence of liver carcinoma. Velsicol Chemical Company (1983) carried out a 130 week study on 80 male and 80 female F344 rats. The rats were fed 0, 1, 5, and 25 ppm of chlordane. No tumors were observed in female rats. However, a significant increased in liver adenomas in male rats was reported at 25 ppm.

A 1977 study by the NCI in rats found an increased incidence of neoplastic nodules of the liver in females but not in males.

Becker and Sell (1979) reported a 27 percent incidence of hepatocellular carcinoma after dietary exposure to a concentration of 3.25 mg/kg/day in mice.

There has been some discussion that chlordane could possibly be a species specific carcinogen in rats. The probability of chlordane as a human carcinogen would then be diminished.

Table Information

1. CPF

Oral

1.3 E + O (mg/kg/day)-1 (HEAST)

Inhalation

3.7 E - 4 (mg/kg/day)-1 (HEAST)

2. RFD

Oral

6 E - 5 mg/kg/day (HEAST)

Carcinogenicity Group

B2

p,p' DDT

p,p1' DDT is a toxic, chlorinated insecticide that is environmentally persistent, highly lipophilic and subject to bioaccumulation. The insecticide was removed from general licensing in 1972 and has an oral RfD of 5.0 x 10⁴ mg/kg/day.

Noncarcinogenic Effects

DDT and its family of conginers DDD and DDE originated as insecticides in the early 1940's. It is acutely toxic to mammals and insects ($LD_{50 \text{ cral}, ret} = 115-800 \text{ mg/kg}$) and its mechanism of toxicity is primarily neurological.

Oral administration of 10 mg DDT/kg body weight/day did not induce respiratory effects in rodents and no respiratory effects have been noted in humans exposed to DDT (ACTDR 1989). Likewise, no cardiovascular or gastro-intestinal effects were noted in laboratory animals or humans (deWaziers and Azais 1987 Hayes et. at, 1956).

Hepatic effects include induction of mixed function oxidase enzymes, increased liver weight, increased serum GST and SGPT and histopathological changes (Garcia and Mourelle, 1984). Chronic exposure to DDT (10-80 mg/kg/day) in various rodent species results in increased liner weight and cellular necosis (NCI 1978). NOAEL values for hepatic effects range from 0.05 mg/kg/day to 32 mg/kg/day (ATDR, 1989).

Developmental and Reproductive Effects

Developmental effects of oral DDT include fetal mortality, decreased fetal body weight and neurological/behavioral anomalies (ASTDR, 1589). There are no current developmental investigations for man. Tissue level DDT concentrations have been associated with decreased reproductive success in several ecologically important species due to egg shell fragility.

Reproductive effects of DDT include decreased implantation, decreased male fertility and decreased testicular weight (Krause et. at 1975). Multigeneration, reproductive assays with chronic DDT dosing resulted in delayed estrus, lack of mammary gland development and enhanced still births and resorption (Deichmann et. al 1971). There are not human reports of reproductive effects due to DDT.

Genotoxicity and Carcinogenicity

DDT induces an increase in the dominant lethal response in mice (Clark 1974). DDT at chronic levels induced a decrease in sperm cell development and delayed spermatogenesis. No chromosomal aberrations have been attributable to DDT.

DDT, DDD and DDE are tumorigenic in rodent species but not in dogs, primates and there are no epidemiological reports for man (ASTDR, 1989). The major organ site for tumor development is the liver with the induction of hepatocellular carcinomas in mice, rats and hamsters. Chronic doses range from 0.26 mg/kg/day up to 83 mg/kg/day (Cabral et.al 1982a; Agthe et.al 1980). Dose-response investigations support the concept that DDT is a

hepatocellular carcinogen in CFI mice, inducer of lung adenoma of CFI mice and thyroid tumors in F344 rats (MCI 1978). Based on dose response studies, DDT has an oral potency factor of 3.4 x 10⁻¹ (mg/kg/day)⁻¹ (EPA 1988) and classified as a B2 carcinogen.

HEPTACHLOR

Heptachlor is a highly toxic member of the persistent chlorinated cyclopentadiene family that was utilized as an insecticide until 1978. The compound is highly lipophilic, bioaccumulates and does not degrade rapidly. The oral RFD for heptachlor is 0.0005 mg/kg/day.

Non-carcinogenic effects

Acute oral toxicity to rodents and insects places heptachlor in the very toxic category (LD_{50} , oral, rat = 60 mg/kg) (Podowski et.al, 1979). In acute doses, heptachlor induces neurologic hyperactivity, tremors, convulsions and death by respiratory paralysis (ASTDR, 1987). No published human data adequately describes neurological symptoms or effects.

Oral administration in acute investigations indicated increased incidence of kidney granulomas, histiocytes, and eosinophilic granulocytes (Akay and Alp, 1981). There is no human data on this reported effect.

Oral administration of 1 mg/kg/day heptachlor to rats for 28 days resulted in increased numbers of red blood cells and eosinophilic white blood cells and splenic fibrosis was noted (Enan et. al, 1982). The data base indicates no appropriate human data.

Developmental and Reproductive Effects

Cataracts were noted in the progeny of rats fed up to 6 mg/kg/day for 3 months prior to mating (WHO 1984). Examination of human populations in Hawaii exposed to unknown but environmentally significant levels of heptachlor and heptachlor epoxide (sufficient to increase levels of up to 5 ppm in human milk) indicate no significant effects on fetal or neonatal death or incidence of decreased birth weight (Le Marchand et.al, 1986). Investigations in rodents indicate that in a three generation reproductive study, the number of resorbed fetuses increased and fertility decreased (Cerey and Ruttkay-Nedecka, 1971).

Genotoxicity and Carcinogenicity

Gene mutation assays in rodent and bacterial cells indicated inconclusive results for mutagenicity (ASTDR, 1987). Weak mutagenic activity was detected in plant cells (Gentile et. al, 1982). Chromosomal aberrations in CHO cells indicate clastogenic activity in vitro (NTP 1987). A dominant lethal assay of orally administered heptachlor indicated negative results for clastogenic activity in male germinal cells (Epstein et. al, 1972). In contrast, heptachlor and heptachlor epoxide induced dose-dependant increases in UDS in a transformed, human cell line (Ahmed et. al, 1977). Heptachlor and its epoxide interfere with gap junctional communication in rat liver epithelial cells which is indicative of potential epigenetic activity (Kurata et. al, 1982; Telang et. al, 1982).

Chronic oral ingestion of heptachlor increased the incidence of hepatocellular carcinomas in both C3H and B6C3F1 mice and CFN rats (CAG, 1986). Based on published rodent data, heptachlor as a human potency (Q_1^*) of from 0.83 mg/kg/day to 36.2mg/kg/day.

In human cohort investigations involving pesticide applicators and termite control operators exposed predominantly to heptachlor and chlordane, skin tumors and bladder tumors were significantly enhanced. (Wang and MacMahon 1979a). A study of workers involved in heptachlor production indicated a statistically significant enhancement of lung cancer in workers less than 35 years of age at occupation initiation and less than 50 years of age (Wang and MacMahon 1979b). There have been no human investigations that indicate the liver as a target organ as it is in rodents. Nevertheless, heptachlor and it epoxide have been classified as probable human carcinogens Group B2 with a cancer potency slope factor of 4.5 mg/kg/day.

HEPTACHLOR EPOXIDE

See Heptachlor

POLYCHLORINATED DIBENZO DIOXINS AND FURANS

Polychlorinated dibenzo dioxins (PCDD) and furans (PCDF) are often considered together because of their close structural relationship and comparable toxicity. The literature published on dioxins, specifically 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is extensive. In contrast, literature pertaining to the toxicity of the PCDFs is limited. For the purposes of assessing human health risks, the PCDFs and the PCDDs are assumed to exhibit similar toxicities with varying potencies.

Physical and Chemical Properties

PCDDs and PCDFs are tricyclic, chlorinated aromatic compounds. They are normally byproducts of the production, use, and disposal of chlorinated phenols and their derivatives. PCDFs occur during the manufacture and incineration of PCBs (Brinkman and DeKok, 1980). Some PCDDS and PCDFs were generated during early manufacturing preparations of the herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) which was one of the constituents of Agent Orange used extensively in Vietnam. Hence, this was a major source of human exposure to PCDDs (IARC, 1977).

Human Toxicity

Symptoms of acute exposure to mixtures containing PCDDS include nausea, vomiting, headache and signs of irritation of the eyes, skin and respiratory tract. Chloracne is the most characteristic and frequently observed effect of PCDD exposures (acute and chronic). In addition, systemic signs of chronic exposure include altered function of the neuromuscular system, liver, kidneys, pancreas, altered serum enzymes, hyperpigmentation and hyperkeratosis.

Chlorinated dibenzodioxins and dibenzofurans, most notably the 2,3,7,8-tetrachlorodibenzo-p-dioxin, are suspected of causing or contributing to soft tissue sarcomas (STS), lymphomas (Hodgkin's and non-Hodgkin's), and stomach cancer. Their carcinogenic potency has been examined through a number of cohort and case-control studies of occupational exposure to herbicides. The exposures were not to pure TCDD or TCDF, rather chemical mixtures contaminated with low levels of several congeners of these compounds. Exposure has occurred primarily in forestry and agricultural workers handling herbicides 2,4-dichlorophenoxyacetic acid salts (2,4-5-T) and through exposure to mixtures of trichlorophenolic wood preservatives. Widespread accidental environmental contamination occurred in Yusho, Japan in 1968 and in Seveso, Italy in 1976.

Two case-control studies conducted in Sweden (Hardell and Sandstrom, 1979; Hardell and Eriksson, 1981) detected a five to six-fold increase in STS in workers exposed to herbicides believed to contain chlorinated dibenzodioxins and dibenzofurans. Subsequent cohort investigations from the US (Zack and Suskind, 1980; Cook et al. 1980; Ott et al. 1980) and New Zealand (Smith et al. 1983) have not substantiated the earlier Swedish findings. However, Coggon and Acheson (1982) point out that 3 out of 4 of the negative studies were designed to detect only very high relative risk estimates. Axelson et al. (1980) reported

increases in death due to stomach cancer based on 3 deaths among 348 Swedish railroad workers. Theiss et al. (1982) also found an excess stomach cancer mortality in 74 workers at a trichlorophenol manufacturing plant in West Germany.

These epidemiologic data do not specifically implicate TCDD or TCDF in the etiology of STS, malignant lymphomas, or stomach cancer. Therefore, epidemiological studies so far have provided only qualitative information on the possible human carcinogenicity of the dibenzodioxins and dibenzofurans.

Few positive associations between 2,4,5-T herbicide exposure and increases in birth defects have been reported (USEPA,1984). Most of these reports have been based on geographic correlation studies. The uncertainties in the epidemiological methods, as well as the difficulty in distinguishing the causative agents, has not allowed for a definitive correlation between PCDD exposure and human birth defects.

In addition to the other sources of human exposure, low levels of PCDDs and PCDFs have been detected in human breast milk (Rappe et al. 1984 a,b). The levels are normally in the parts per trillion range, and the less toxic octachlorinated dibenzodioxins and dibenzofurans are the predominant congeners. Human breast milk and adipose tissue exhibit comparable levels of PCDDs and PCDFs (approximately 500 ppt). These results demonstrate that PCDDs and PCDFs are readily bioaccumulated and suggest that breast feeding may by a source of infant exposure to PCDDs and PCDFs under the correct circumstances.

Laboratory Animal Investigations

The median lethal dose of TCDD has been investigated in several species of animals. There is from 5000 to 10,000-fold difference between the most sensitive species (guinea pig) and the least sensitive (hamster). 2,3,7,8-TCDD is the most potent congener in producing lethal and other toxic effects in animals. Studies on the acute effects of multiple or single exposure to TCDD in rats, mice, and guinea pigs, clearly suggest that a threshold dose exists for several toxicities including lethality, loss of body weight and thymic atrophy (USEPA, 1984: Moore et al. 1979).

Liver toxicity has been studied extensively and is a sensitive indicator of subchronic and chronic toxicity associated with the PCDDs and PCDFs. The induction of liver damage is species-specific as is the minimal effective dose or the no observable adverse effect level (NOAEL) for TCDD. TCDD and the PCDFs are extremely potent liver enzyme inducers and the ability of the respective isomer to induce cytochrome P₄₅₀ enzymes correlates with the toxicity of the congener, the level of chlorination, the planarity of the molecule, and the ability of the compound to bind to a specific cytocellular receptor (Safe, 1986). Chronic administration of TCDD in laboratory animals may also produce hyperplasia of several epithelial tissues (e.g. epidermis, intestinal mucosa, urinary tract), dermatitis (chloracne), and other epidermal changes and necrosis or atrophy of several tissues or organs (Poland and Knutson, 1982). The effects of TCDD exposure on the immune system has been extensively reviewed (Vos, 1977; USEPA, 1984). Decreases in thymic and splenic weight have been observed in all animals exposed to high levels of TCDD.

TCDD is the most potent animal teratogen known, producing effects at doses as low as 1 μ g/kg/day. Cleft palate and embryotoxicity can be induced in mice at 0.1 ppm, a level as it appears in the herbicide 2,4,5-T (Hart, 1984). TCDD induces a high percentage of cleft palate in mouse fetuses when administered during organogenesis (Pratt et al., 1984).

Chronic rodent bioassays to assess carcinogenicity of TCDD have indicated that 2,3,7,8-TCDD is the most potent of the congeners. The result of these assays have been extensively reviewed (IARC, 1977; Hart, 1984; USEPA, 1984; Kociba et al., 1984; CDHS, 1985; Smith, 1985). Several long-term animal studies determined that TCDD is a species-specific carcinogen. Two of these investigations have been utilized for quantitative risk assessment (Korciba et al. 1978, 1979; NTP 1980) and are summarized in detail in several reviews (USEPA, 1984; CDHS, 1985; Smith, 1985). In general, an increase in hepatocellular carcinomas and neoplastic nodules was observed in both mice and rats administered 2,3,7,8-TCDD orally in corn oil for two years. Other significant tumors occurred as squamous cell carcinoma of the lung, nasal turbinates, and subcutaneous tissue fibromas and fibrosarcomas, thyroid follicular cell adenomas, adrenal cortical adenomas and lymphomas. Tumor incidence in rats administered a mixture to two hexachlordibenzo-p-dioxins was increased for hepatocellular carcinomas, adenomas and preneoplastic nodules (NTP, 1982).

The ability of TCDD to initiate cells has not been firmly established. TCDD does not form detectable covalent DNA adducts and is not mutagenic in several mutagenicity assays (USEPA, 1984). TCDD promoted diethylnitrosamine-initiated hepatocellular tumors in rats given TCDD as a promoter in an initiation/promotion protocol (Pitot et al. 1980). In the two-stage mouse skin tumorigenesis system, no tumor-promoting activity could be attributed to TCDD in DMBA initiated mouse skin carcinogenicity assays utilizing CD-1 mice (Berry et al. 1978); however, TCDD promoted DMBA initiated skin tumors in the nr/nr mouse (Herbert et al., 1990). TCDD has also been demonstrated to act as a promoter with 3-methylcholanthrene in mice, presumably by inducing AHH activity in responsive mice (Kouri et al. 1978). Further research on the mechanism of TCDD in tumorigenesis indicates that the dioxins are capable of binding to specific nuclear proteins and activating promoter sequences which in turn switch on and off specific gene sequences (Whitlock, 1987). Based on animal data, the USEPA has classified TCDD and the dioxin congeners as probable human carcinogens (B2).

Environmental Fate and Transport

PCDDs and PCDFs are extremely stable to chemical action. The compounds are stable in the presence of strong mineral acids, alkalis and heat. Only after 15 minutes at 700 C is there 99 percent destruction of TCDD (Hart, 1984). PCDDs tend to photodecompose to produce less chlorinated species. Photoreductive dechlorination (loss of chlorine) of PCDDs will also occur in the presence of a hydrogen donor. TCDD is relatively resistant to biodegradation (USEPA, 1984).

PCDDs emitted to the atmosphere from combustion processes are often adsorbed to particulate matter emitted as fly ash. The degree of adsorption onto particulates may be a function of particle size and the chlorine substitution of the molecule (USEPA, 1984). TCDD appears to adsorb to larger particles of possible significance (3 to $10 \mu m$) than do the more

heavily chlorinated dioxins. Photdegradation and wet and dry deposition of particulate-bound PCDDs are the most important transport and fate processes for the atmospheric PCDDs (USEPA, 1984).

Under experimental conditions, the half-life of TCDD in water is approximately one year (NRCC, 1981; USEPA, 1984), although volatilization via air/water interface may account for greater loss of TCDD than biodegradation. In general, the greater the chlorine substitution of the dibenzodioxin, the more resistant the compound is towards biodegradation. In sediment-containing lake waters the half-life for TCDD was found to be 550 to 590 days (Hart, 1984).

PCDDs demonstrate a high affinity for soils, particularly those containing high organic matter. The soil/water partition coefficient for TCDD in soils is high, indicating that PCDDs may exhibit a greater affinity towards soils than water. Because of this property, and the low water solubility of the dioxins, PCDDs tend to remain near the surface of soils (NRCC, 1981; Hart, 1984). Vertical movement of PCDDs is negligible in soils with high organic material while migration is increased in soils as the organic material decreases. This process is further influenced by heavy rainfall, saturation of particulate binding sites in soil and human activity (e.g., excavation). Photodecomposition in soils is also negligible. TCDD is not likely to be metabolized readily by soil microbes since the compounds tend to sorb strongly to soil particles. The biodegradation half-life of TCDD in the soil is estimated to range from 1 to 12 years, depending of the soil constituents (Kimbrough, 1984).

2,4-DINITROPHENOL

Noncarcinogenic Effects

Numerous cases of human poisoning with 2,4-dinitrophenol (2,4-DNP) have been reported. Most exposures were associated with the use of 2,4-DNP as a component of explosives during World War I and as a weight reducing drug during the early 1930s (USEPA 1980). A lethal oral dose of 2,4-DNP for humans as low as 4.3 mg/kg has been reported. Effects of acute exposure include sudden pallor, burning thirst, agitation, dyspnea, profuse sweating, hyperpyrexia and death (Horner 1942). Symptoms associated with longer-term oral or inhalation exposure to 2,4-DNP include gastrointestinal disturbances, sweating, weakness, dizziness, headache and weight loss. Chronic oral exposure is associated with cataract formation at doses as low as 2 mg/kg-day (Horner 1942) and skin rashes (Tainter 1935).

Oral LD50s reported for laboratory animals range from 20 to 200 mg/kg in dogs, rats and rabbits (USEPA 1980). Longer-term studies in animals indicate that 2,4-DNP causes weight loss and damage to the spleen and testes. Embryotoxicity, but not teratogenicity, was also observed at doses causing maternal toxicity. No effects in rats were observed at doses below 5.4 mg/kg-day (Spencer et al. 1948).

The USEPA has calculated an oral chronic RfD for 2,4-DNP of 2E-3 mg/kg-day, based upon the report by Horner (1942) of cataract formation in humans at doses of 2,4-DNP as low as 2 mg/kg-day (USEPA 1990b). Confidence in the RfD is low, since the principal study provides only anecdotal data and the supporting data base is meager (USEPA 1990b).

USEPA has not derived subchronic RfD for 2,4-DNP. However, the chronic oral RfD was derived from information on subchronic exposures from Horner (1942), using an uncertainty factor that included a factor of 10 for extrapolation from subchronic to chronic duration (USEPA 1990b). On this basis, to evaluate subchronic effects of 2,4-DNP at the site, a subchronic RfD of 2E-2 mg/kg-day will be used. The USEPA has not derived inhalation RfDs for 2,4-DNP (USEPA 1990b).

Carcinogenic Effects

No chronic bioassays assessing the carcinogenic potential of 2,4-DNP were located. The results of shorter-term studies indicate that 2,4-DNP does not cause or promote tumor formation in mice (USEPA 1980). 2,4-DNP was reported to be mutagenic in one bacterial system (Demerec et al. 1951), but was not found to be mutagenic in mammalian cells (Friedman and Staub 1976, Swenberg et al. 1976). Mitra and Manna (1971) observed chromosome aberrations in mouse bone marrow cells following in vivo treatment with 2,4-DNP, but no linear dose-effect relationship was observed. The USEPA has not evaluated the carcinogenic potential of 2,4-DNP (USEPA 1990b).

2.4-DINITROTOLUENE

Noncarcinogenic Effects

In humans, inhalation and/or dermal exposure to 2,4-dinitrotoluene (2,4-DNT) in occupational settings has been associated with cyanosis, anemia, neurological symptoms, reduced sperm counts and increased mortality due to ischemic heart disease (ATSDR 1988a). The magnitude and duration of the exposures that led to these symptoms were generally not measured, so dose-response data are not available. No studies were located on health effects in animals following inhalation exposure to 2,4-DNT.

Oral administration of 2,4-DNT to several animal species results in adverse effects on the hepatic, renal, nervous, reproductive and hematopoietic systems (ATSDR 1988a). In a 24-month oral study (Ellis et al. 1979), hepatic lesions were observed in dogs and mice and hepatic dysplasia was observed in rats. In the same study, cystic degeneration and other serious renal effects were observed in mice at a dose of 97 mg/kg-day. Neurological effects ranging from central nervous system depression to paralysis in dogs, rats and mice were reported in subchronic and chronic studies (ATSDR 1988a).

Subchronic and chronic exposure to 2,4-DNT resulted in hematological changes, primarily anemia, in dogs, rats and mice (Lee et al. 1978, Ellis et al. 1979). Ellis et al. (1979) reported mild anemia in dogs administered 1.5 mg/kg-day 2,4-DNT, rats given 40 mg/kg-day and mice given 898 mg/kg-day for 24 months.

The USEPA has not calculated oral or inhalation RfDs for 2,4-DNT (USEPA 1990a). However, oral MRLs have been calculated (ATSDR 1988a). A subchronic oral MRL of 5E-2 mg/kg-day was derived from a NOAEL of 5 mg/kg-day for hematological effects in dogs in the study by Lee et al. (1978). A chronic oral MRL of 1E-3 was derived from the NOAEL of 0.2 mg/kg-day for hematological effects in dogs in the study by Ellis et al. (1979) (ATSDR 1988a).

Carcinogenic Effects

The carcinogenic potential of dinitrotoluenes has been studied in chronic bioassays and some less-than-lifetime studies. 2,4-DNT was moderately hepatocarcinogenic in rats and produced renal tumors in male mice (ATSDR 1988a). Ellis et al. (1979) reported statistically significant increases in renal tumors in male mice fed 97 mg/kg-day of 2,4-DNT (98% 2,4-DNT, 2% 2,6-DNT) for two years and in liver tumors in rats fed 40 mg/kg-day. Significant increases in subcutaneous tissue fibromas in male rats and mammary gland fibroadenomas in female rats were also observed. Based on this study, the USEPA classified both 2,4-DNT and 2,6-DNT in Group B2 (probable human carcinogen) and calculated an oral slope factor (SF) of 6.8E-1 (mg/kg-day). for a mixture of both isomers (USEPA 1990a).

TOLUENE

Toluene is produced both naturally and as a by-product of certain refining and manufacturing processes. The vast majority of toluene is used as a component of gasoline. Toluene is a clear, sweet-smelling liquid that can be found in crude oil and the Tolu tree. It can also be found as a by-product of styrene production, petroleum refining, and coke-oven operations. Toluene is also known as methylbenzene and phenylmethane and has a molecular weight of 92.15. Toluene is classified as a hazardous waste under the Resource Conservation and Recovery Act (ATSDR, 1989).

Acute Effects

Inhalation. Very few studies regarding the acute toxicity and lethality of toluene. Human data is limited to case studies of workers who have occupational exposure or case studies of abusers of solvents for recreational use. It is noted that either of the potential exposure pathways above may involve simultaneous exposure to a variety of compounds.

There have been no deaths attributed to toluene exposure in the United States, whereas 80 deaths per year are attributed to toluene associated with solvent abuse in Great Britain(Anderson et al, 1985). Signs and symptoms of exposure are primarily characteristic of central nervous system depression. High concentration exposure produces reversible depression of the central nervous system. Even acute exposure concentrations sufficient to produce unconsciousness are not observed to produce long-term organ damage.

Central nervous system depression is also the most typical adverse effect observed in animals. A few animal studies of inhalation exposure in rats and mice suggest that mice area more sensitive species than rats. LC50 values have been reported at 5, 320 ppm (920 PP mg/kg) in mice (Svirbely et al, 1943) and 8,800 ppm (365 mg/kg) in rats (Carpenter et al, 1976).

Ingestion Dermal. No data regarding actual oral exposure in humans and very little in animals was found.

The potential for acute lethality of toluene in animals following ingestion has been investigated by a number of studies. The range of LD50s found was 5.5 to 7.3 g/kg. Some evidence suggests that age may play a role with juvenile rats the most sensitive (Kimura et al, 1971; Smyth et al, 1969; Withey and Hall, 1975; Wolf et al, 1956).

No data was located on the acute toxicity of toluene through dermal exposure in either humans or animals.

Systemic Effects

Respiratory Effects, Inhalation. Toluene is considered a respiratory irritant in both humans and animals. Occupationally exposed workers were observed to experience upper respiratory irritation at concentrations of 200 to 800 ppm of toluene over the course of several years (Parmeggiani and Sassi, 1954). A study by von Oettingen et al (1942)

Toluene reported no irritant effects in volunteers exposed to 800 ppm for 7 to 8 hours. Most other human data is occupational with confounding exposure to other solvents that proves the data to be equivocal.

Animal data also provides data on the upper respiratory effects of toluene. Effects in rats range from upper airway irritation (600 ppm) to pulmonary lesions (2,500 ppm and 5,000 ppm) (von Oettingen et al, 1942). A study by Bruckner and Peterson (1981b) which is considered comprehensive and well conducted reported no irritation or histologic changes of the respiratory tract at concentrations up to 12,000 ppm in rats and mice. No explanation was cited for the difference in results between the studies cited above.

The 1980 study by CIIT observed no histopathological changes attributable to toluene at a concentration of 300 ppm in rats. Concentrations of 600 ppm to 1,200 ppm produced inflammation of the nasal mucosa and degeneration of the epithelium in the 1989 study by NTP.

Ingestion/Dermal. Toluene is not considered toxic to the respiratory system through either ingestion or dermal exposure.

Cardiovascular Effects, Inhalation. Most deaths in Great Britain of solvent abusers are attributed to arrhythmia; however, toluene does not seem directly toxic to the cardiovascular system as to produce lesions or other histopathological effects. No histopathological lesions of the heart were observed in rats at concentrations up to 12,000 ppm for 8 weeks and 1,200 ppm for 24 months (Bruckner and Peterson, 1981b; CIIT, 1980; NTP, 1989). A no observed adverse effect level (NOAEL) of 1,200 ppm for chronic non-neoplastic cardiovascular effects based on the NTP (1989) study.

Ingestion/Dermal. The NTP (1989) also exposed rats to toluene through ingestion. Findings included and increase in heart weight in rats at 1,250 mg/kg/day for 13 weeks and myocardial degeneration in mice at 5,000 mg/kg/day for 13 weeks.

No oral exposure in humans or dermal exposure in animals or humans is reported regarding cardiovascular toxicity.

Gastrointestinal Effects, Inhalation. The NTP (1989) study reported slight but not significant increase in stomach ulcers in rats after 2 years exposure to concentrations up to 1,200 ppm of toluene.

Ingestion/Dermal. No adverse gastrointestinal effects were observed at exposure concentrations up to 5,000 mg/kg/day of toluene for 13 weeks (NTP 1989).

No studies were found regarding cardiovascular effects of toluene following dermal exposure in animals or humans.

Hematologic Effects, Inhalation. Hematological effects once associated with toluene in occupational exposures have since been re-evaluated and partially attributed to exposure to other compounds historically found as contaminants of toluene in the workplace such as

benzene (Greenburg et al, 1942; Wilson, 1943; EPA, 1985c). The most recent studies have for the most part been negative with the only potential adverse effect being a reversible decrease in blood leukocytes. Exposure concentrations of toluene (with benzene <0.01%) ranged from 20 to 200 ppm in the studies by Tahti et al (1981), Banfer (1961) and Capellini and Alessio (1971). The results of Tahti et al (1981) are considered neither conclusive nor completely invalid due to possible confounding exposure to other solvents and limited cohort size.

The USEPAs Integrated Risk Information System (IRIS, 1989) and the Health Effects Assessment Summary Tables (HEAST, 1989) report the Reference Dose (RFD) for toluene to be 3E-1 mg/kg/day based on hematological effects (IRIS, 1989) as well as central nervous system effects and eye and nose irritation (HEAST, 1989) as based on data reported in several studies by Anderson et al (1983) and CIIT (1980). The study conducted by CIIT (1980) exposed rat to concentrations of toluene of 30, 100, and 300 ppm for 6 hours/day, 5 days/week for 24 months. The only dose-related effect observed was reduce hematocrit values in females in the 100 and 300 ppm groups. A NOAEL based on 300 ppm was derived to be 1,130 mg/m3.

Ingestion/Dermal. No data found.

Musculoskeletal Effects, Inhalation. No data of musculoskeletal effects in humans follow inhalation exposure to toluene were found.

No adverse musculoskeletal effects were reported by the NTP (1989) study in mice and rats exposed to dosage levels up to 1,200 ppm of toluene for two years through inhalation. Similar results were reported by the NTP (1989) study following oral exposure at dosage levels up to 5,000 mg/kg/day.

Ingestion/Dermal. No studies found.

Hepatic Effects, Inhalation. The liver is not considered to be a primary target organ following toluene exposure. This is thought to be due to the extensive metabolism of toluene by the liver to possibly more nontoxic metabolites. Studies by Seiji et al (1987) and Lundberg and Hakansson (1985) found no significant hapatic effects attributable to toluene exposure.

Toxic hepatic effects in animals are limited to increases and decreases in liver weight with no significant changes in what is considered serious parameters of liver toxicity. A lowest observed adverse effect level (LOAEL) of 800 ppm for 7 days in rats, mice, and rabbits is reported based on data gathered by Ungvary et al (1982). Increased liver weights were observed by the same study at longer exposure times (3 weeks) at 800 ppm, whereas Bruckner and Peterson (1981b) reported decreased liver weights in rats at a concentration of toluene of 12,000 ppm for eight weeks. The 1989 study by NTP also reported increased liver weights in rats exposed to 1,250 ppm for 15 week.

Ingestion/Dermal. No data regarding ingestion exposure in humans or animals or dermal exposure in humans was located. Only one inconclusive study in animals following dermal exposure was found.

Renal Effects, Inhalation. The majority of the qualitative human data regarding adverse kidney effects through inhalation exposure comes from case studies of solvent abusers. Most effects on the kidneys could possibly be associated with exposure to other solvents so only limited if any conclusions can be drawn. However, the kidney does not appear to be a primary target organ of toluene in humans.

The most recent studies in animals observe no adverse histopathological changes in the kidneys of rats and mice at concentrations up to 12,000 ppm for eight weeks (Bruckner and Peterson, 1981b) or concentrations up to 1,250 ppm for 15 weeks (NTP, 1989). The NTP (1989) study did however report an increase in liver weight at the exposure concentration and duration cited above. The NTP (1989) study reported nephropathy an observed in tabular cysts at doses of 600 to 1,200 ppm. The conclusion that the renal tubular cysts are adose-related effect is backed up by the CIIT (1980) study which observed no such cysts at 300 ppm for 24 months.

Ingestion/Dermal. No studies were located regarding the ingestion or dermal exposure in humans or dermal exposure in humans. Again, only one study considered in conclusive was found of dermal exposure to toluene in animals and any associated renal effect.

Dermal/Ocular Effects, Inhalation/Ingestion. No studies found.

Dermal. Dermal exposure to toluene may cause skin damage. Some workers experiencing long-term exposure report unspecified abnormal skin conditions of the hands (Winchester and Madjar, 1986).

Testing of dermal/ocular irritation in animals proves toluene to be a moderate skin and eye irritant (Kronevi et al, 1979; Hazelton Laboratories, 1962; Carpenter and Smyth, 1946).

Neurological Effects, Inhalation. Central nervous system (CNS) effects following exposure to toluene through inhalation seems to be the primary effect in humans. Human volunteers exposed to 40 ppm did not experience significantly changed CNS response(Anderson et al, 1983). Exposure to moderate concentrations (200 to 800 ppm) produced CNS excitatory effects followed by narcosis. The development of CNS depression is reported to increase with increased exposure concentration and duration (EPA, 1985c; von Oettingen et al, 1942). Exposure to sufficiently high concentrations can depress the CNS to the point of death. High concentrations can also produce symptoms such as tremors, ataxia, speech, hearing and vision impairment, and intellectual and neuromuscular effects (Devathasan et al, 1984; King et al, 1981; Suzuki et al, 1983; Iregren, 1986; Hanninen etal, 1976).

The reported effects in humans are supported by animal studies. Bruckner and Peterson(1981a) observed a correlation between CNS depression and toluene levels in the brain. Hartmann et al (1984) studied toluene exposure in monkeys and found impairment of

both cognitive performance and motor abilities at concentrations below those which cause more severe CNS effects such as tremors and ataxia.

Honma et al (1982) reported changes in brain neurotransmitter levels in rodents following exposure to 4,000 ppm. Ikeda et al (1986) and Arito et al (1985) observed similar results at 400 ppm for 30 days.

Changes in brain morphology were reported by Kyrklund et al (1987) following exposure 2 to 320 pm for 30 days. In contrast, NTP (1989) did not report any microscopic changes in morphology at 1,200 ppm for two years. The NTP (1989) study did however report an increase in brain weight in rats and mice.

Toluene is also considered to produce changes in the auditory system. The 1984 (a,b)studies by Pryor et al considered 700 and 1,000 ppm to be the threshold for hearing loss in rats. Hearing loss was permanent in the high-frequency range.

Ingestion/Dermal. The 1989 study by NTP reported an increase in brain weight after oral exposure to 1,250 mg/kg/day of toluene for 13 weeks in rats.

Immunological Effects, Inhalation. Slight immunological effects in humans is thought to possibly be associated with the decrease in leukocytes in humans and animals. No definite data has been found to support this theory (Moszcynski and Lisiewicz, 1984; ATSDR, 1989).

Toluene exposure at concentrations of 2.5 to 500 ppm have been associated with an increased potential for upper respiratory infections (Arany et al., 1985; Suleiman, 1987).

Ingestion/Dermal. No studies found.

Developmental Effects

Inhalation. Toluene has been shown to produce adverse developmental effects in both-humans and animals. Solvent abuse in pregnant women produced CNS dysfunction, limb anomalies and growth retardation in case studies of eight women. There is a great probability of confounding exposures to other solvents so limited conclusions can be drawn from these case studies (Holmberg, 1979; Goodwin et al, 1988).

Studies in animals have provided quantitative evidence for the developmental toxicity of toluene. A study by Courtney et al (1986) reported reproductive and fetal changes at exposure concentrations of 200 and 400 ppm. Based on these data a LOAEL of 200 ppm is indicated in mice.

Studies by Ungvary and Tatrai (1985) in mice and rabbits and Unguary (1985) in rats also provide evidence of developmental toxicity at moderate concentrations (100 to 400 ppm). ALOAEL of 267 ppm is reported for developmental effects in rats and rabbits.

Ingestion/Dermal

Toluene was not reported as a developmental toxicant following oral exposure by Seidenberg et al (1986) and Smith (1983). The LOAEL for developmental effects due to oral exposure is 2,350 mg/kg/day based on the study by Smith (1983).

Reproductive Effects

Inhalation. Data gathered from animals studies did not indicate toluene to be a reproductive toxicant. Exposure concentrations up to 2,000 ppm in mice showed no treatment-related reproductive or survival effects (API, 1981 and 1985). Rats exposed to 300 ppm for 24 months produced no histopathological changes of the testes or ovaries attributable to toluene exposure (CIIT, 1980).

Ingestion/Dermal. The study by Smith (1983) reported no effect on viable litter production after 2,350 mg/kg/day administered orally.

Genotoxic Effects

Inhalation. Available data, though inconclusive, suggests that toluene is not a human or (animal genotoxic agent. Some case studies of occupationally exposed workers reported an increase in sister chromated exchange (Schmid et al, 1985; Bauchinger et al, 1982). The importance of these findings in regard to the severity of genotoxic toxicity is not known. Other studies have found no correlation between occupational toluene exposure and changes in chromosomes or sister chromatic exchange (Haglund et al, 1980; Maki-Paakkanen et al, 1980).

The only study found regarding genotoxic toxicity due to inhalation exposure in animals reported no induction of dominant lethal mutations in sperm cells of male mice (API, 1981).

Ingestion/Dermal No studies found.

CARCINOGENIC EFFECTS

Inhalation. No available data suggest that toluene is a cancer causing agent due to inhalation exposure. In fact, on retrospective cohort mortality study of oil refinery workers exposed to toluene as well as other chemicals indicated a rate of cancer deaths for the 1,008 male workers involved lower than that of the general population. The study did identify an apparent though not significantly significant association between the incidence of cancer and the duration of exposure (Wen et al, 1985). Limited confidence in the study is noted due to lack of historical monitoring and insufficient size of study population to detect small increases in the incidence of cancer.

No study in rats or mice produced an increased incidence of cancer at concentrations up to 1,200 ppm for two years (CIIT, 1980; NTP, 1989). Some limitations are noted regarding the CIIT (1980) study due to the fact that animals were thought to have been able to withstand higher dosing concentrations.

Ingestion/Dermal. Dermal exposure of toluene in mice was investigated by Weiss et al (1986). Increased inhibition of skin tumorigenesis in conjunction with the use of apromoter. Toluene is postulated to interfere through competition with the promoter compound receptor site or interferences with biological cell processes.

HMX

Noncarcinogenic Effects

In humans, HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) has been reported to cause skin irritation by direct application, but no other adverse effects were observed during possible occupational exposure (USEPA 1988b). HMX is poorly absorbed from the gastrointestinal tract of laboratory animals (USEPA 1988b); about 70% of the original dose is recovered unmetabolized in the feces. The AF_o for HMX is assumed to be 0.30. Toxic effects are observed only at relatively high doses; the oral LD₅₀ values range from 2,300 mg/kg in rats to 6,300 mg/kg in mice (USEPA 1988b).

Adverse effects to the liver and kidneys were observed in rats and central nervous system effects and increased mortality were reported in mice following subchronic oral exposure to HMX (USEPA 1988b). Central nervous system effects (hyperkinesia and excitability) were observed in mice given doses as low as 100 mg/kg-day in the diet for 14 days (Greenough and McDonald 1985) and increased mortality was reported at higher doses.

It appears that the target organ response of rats to HMX is sex-specific. Everett et al. (1985) reported liver lesions in male rats and kidney lesions in female rats following administration of HMX in the diet for 13 weeks at doses of 150 mg/kg-day and 270 mg/kg-day, respectively. No adverse effects were reported in males given 50 mg/kg-day or in females given 115 mg/kg-day. Based on the NOAEL of 50 mg/kg-day in male rats, the USEPA calculated a chronic oral RfD of 5E-2 mg/kg-day (USEPA 1990b). The confidence rating of the RfD is low, since interpretation of some data from the principal study was difficult, some endpoints were not evaluated at lower doses and no long-term studies or studies on reproductive effects or developmental toxicity were available (USEPA 1990b). USEPA did not consider available data adequate to calculate an inhalation RfD (USEPA 1990b).

USEPA has not derived a subchronic RfD for HMX. However, the chronic oral RfD was derived from the 13-week study of Everett et al. (1985), with an uncertainty factor that included a factor of 10 for extrapolation from subchronic to chronic duration (USEPA 1990b). On this basis, to evaluate subchronic effects of HMX at the site, a subchronic RfD of 5E-1 mg/kg-day will be used.

Carcinogenic Effects

No studies were located on the carcinogenicity of HMX to any species by any route of exposure. HMX was found not to be mutagenic in several microbial systems (USEPA 1988b). Gene mutation assays in several strains of <u>Salmonella</u> tyertainty factor that included a factor of 10 for extrapolation from subchronic to chronic duration (USEPA 1990b). On this basis, to evaluate subchronic effects of HMX at the site, a subchronic RfD of 5E-1 mg/kg-day will be used.

Carcinogenic Effects

No studies were located on the carcinogenicity of HMX to any species by any route of exposure. HMX was found not to be mutagenic in several microbial systems (USEPA 1988b). Gene mutation assays in several strains of Salmonella typhimurium were negative (Simmon et al. 1977, Stilwell et al., 1977, Whong et al. 1980) and a mitotic gene conversion assay in Saccharomyces cerevisiae was also negative (Simmon et al. 1977). However, these results are considered inconclusive because of the low concentrations assayed or the lack of data in the reports (USEPA 1988b). Based on the lack of epidemiological studies or cancer bioassays, the USEPA has classified HMX in Group D (not classifiable as to human carcinogenicity) (USEPA 1990b).

RDX

Noncarcinogenic Effects

Occupational exposure (primarily by inhalation) to RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) is associated with central nervous system effects, including insomnia, irritability, amnesia, headache, nausea, convulsions and unconsciousness. Accidental ingestion of RDX by humans has caused similar central nervous system effects (USEPA 1988a).

Adverse effects following subchronic and chronic oral administration of RDX to laboratory animals include central nervous system symptoms, increased mortality, weight loss, anemia, hepatotoxicity, renal toxicity, testicular degeneration and inflammation of the prostate (USEPA 1988a). Cholakis et al. (1980) reported anemia in male mice and rats following oral administration of RDX at doses of 160 mg/kg-day and 28 mg/kg-day, respectively, for 90 days. Increased liver weights were reported in both species at higher doses. Vomiting and central nervous system disturbances were reported in monkeys given oral doses of RDX of 10 mg/kg-day for 90 days (Martin and Hart 1974).

In a chronic study in mice, Lish et al. (1984) observed testicular degeneration at a dose of 35 mg/kg-day, increased liver weights at 100 mg/kg-day and increased mortality at 175 mg/kg-day. Developmental toxicity resulting from RDX ingestion has also been reported in rats and rabbits at doses of 16 mg/kg-day and 20 mg/kg-day, respectively (USEPA 1988a).

Levine et al. (1983a) administered RDX in the diet to Fisher 344 rats at doses of 0.3, 1.5, 8.0 or 40 mg/kg-day for two years. They observed anemia, increased mortality, liver enlargement and kidney enlargement accompanied by histologic changes at the 40 mg/kg-day dose level. Inflammation of the prostate was reported at a dose of 1.5 mg/kg-day. No adverse effects were observed at the lowest dose level (0.3 mg/kg-day). Based on the NOAEL of 0.3 mg/kg-day from this study, USEPA calculated chronic and subchronic oral RfDs of 3E-3 mg/kg-day (USEPA 1990a, 1990b). The confidence level of the RfDs is rated high, based on a well-executed, long-term study with a clear NOEL and LOAEL and an extensive supporting database (USEPA 1990b). USEPA did not consider available data adequate to calculate an inhalation RfD (USEPA 1990b).

Carcinogenic Effects

RDX was not found to be carcinogenic to two strains of rats following oral administration of up to 10 mg/kg-day and 40 mg/kg-day for two years (Hart 1977, Levine et al. 1983a). However, statistically significant increases of hepatocellular carcinomas and adenomas (combined) were reported in female mice fed RDX at doses of 7 mg/kg-day and greater for two years (Lish et al. 1984). A nonsignificant increase in alveolar and bronchiolar carcinomas and a slight increase in malignant lymphoma of the kidney were also observed. Based on these studies, the USEPA has classified RDX in Group C (possible human carcinogen) by inhalation and oral routes of exposure (USEPA 1988a), and calculated an oral slope factor (SF) of 1.1E-1 (mg/kg-day)⁻¹ based on the incidence of liver tumors in mice (USEPA 1990a). USEPA did not consider available data adequate to calculate an inhalation SF (USEPA 1990b).

TETRYL

Noncarcinogenic Effects

Occupational (inhalation/dermal) exposure to tetryl (2,4,6-trinitrophenyl methyl nitramine) reportedly causes dermatitis, dermal sensitization, respiratory tract irritation and gastrointestinal symptoms at air concentrations not exceeding 1.5 mg/m³ (ACGIH 1986). Other effects following heavy exposure included yellow pigmentation of the skin and possible liver, hematopoietic and neurological damage.

Reported effects of acute administration of tetryl to laboratory animals, observed during histopathological tissue examination following fatal doses, included toxic degeneration of the kidneys, varying degrees of liver necrosis and edema of the lungs and bronchi (ACGIH 1986). The smallest fatal dose of tetryl was 500 mg/kg administered subcutaneously in olive oil to a dog.

No studies were located on subchronic or chronic oral or inhalation exposure to tetryl. Therefore, data were unavailable for calculation of any RfD values for tetryl (USEPA 1990b).

Carcinogenic Effects

No studies were located on the carcinogenicity of tetryl to any species by any route of exposure. Tetryl was reported to be mutagenic in Salmonella typhimurium strains TA 1535, TA 1537, TA 98 and TA 100 with and without metabolic activation (McGregor et al. 1980). Whong et al. (1980) also reported tetryl to be mutagenic in three microbial test systems.

USEPA has not classified the carcinogenicity of tetryl and has not calculated a slope factor for tetryl (USEPA 1990b).

1,3,5-TRINITROBENZENE

Noncarcinogenic Effects

No information on the subchronic or chronic toxicity of 1,3,5-trinitrobenzene (1,3,5-TNB) to humans or laboratory animals by inhalation or oral exposure is available (USEPA 1989e). Acute oral LD₅₀ values range from 450 mg/kg to 730 mg/kg in mice, rats and guinea pigs (USEPA 1989e). Reported acute toxic effects included central nervous system and respiratory disorders and cyanosis. A single oral or intraperitoneal dose of 1,3,5-TNB was reported to increase blood levels of methemoglobin in rats (Senczuk et al. 1976, Watanabe et al. 1976). Korolev et al. (1977) administered 1,3,5-TNB orally to rats, mice and guinea pigs and observed adverse effects to the central nervous system, blood and liver. No further details on doses, duration or toxicity were available (USEPA 1990b).

Since insufficient data are available for 1,3,5-TNB, the USEPA has calculated chronic and subchronic oral RfDs for 1,3,5-TNB based on its structural and toxicological similarity to 1,3-dinitrobenzene (1,3-DNB), (USEPA 1989e, 1990b. This is considered appropriate since the oral LD₅₀ for 1,3-DNB in the rat is 83 mg/kg, considerably lower than the corresponding value for 1,3,5-TNB, 450 mg/kg, and both 1,3-DNB and 1,3,5-TNB were reported to cause similar increases in blood levels of methemoglobin in rats (USEPA 1989e, 1990b). Cody et al. (1981) administered 1,3-DNB in drinking water to rats at doses of 0, 3, 8, or 20 ppm for 16 weeks. Increases in spleen weight were detected at the 8 ppm dose level but not at 3 ppm. Based on this NOAEL (converted to 0.51 mg 1,3,5-TNB/kg-day), the USEPA calculated a chronic oral RfD of 5E-5 mg/kg-day (USEPA 1990b) and a subchronic oral RfD of 5E-4 mg/kg-day (USEPA 1990a). The confidence in the RfD is rated as low due to the lack of toxicological or pharmacokinetic data on 1,3,5-TNB (USEPA 1990b). The USEPA has not derived any inhalation RfDs for 1,3,5-TNB (USEPA 1990b).

Carcinogenic Effects

No information is available on the carcinogenicity of 1,3,5-TNB to humans or laboratory animals by inhalation or oral exposure (USEPA 1989e). Slaga et al. (1985) administered 1,3,5-TNB by intraperitoneal injection three times/week for eight weeks to mice at doses of 600, 1,500 or 3,000 mg/kg and reported that no lung tumors were observed. These authors also reported that single topical applications of 1,3,5-TNB to mouse skin caused inflammation, epidermal hyperplasia and cell darkening, but that no skin tumors were observed. The results of this study were judged to be inconclusive by USEPA (1989e) because (1) benzo(a)pyrene, a known carcinogen included as a positive control, did not produce lung tumors either and (2) direct tests of the potential of 1,3,5-TNB to promote mouse skin tumors in the presence of a known initiator were not conducted. 1,3,5-TNB was reported to be mutagenic with and without metabolic activation in bacterial assays (USEPA 1989e). The USEPA has classified 1,3,5-TNB in Group D (not classifiable as to human carcinogenicity) due to insufficient data (USEPA 1989e).

2.4.6-TRINITROTOLUENE

Noncarcinogenic Effects

In humans, occupational exposure (primarily inhalation and dermal) to 2,4,6-trinitrotoluene (2,4,6-TNT) has been reported to initially produce relatively mild effects such as respiratory irritation, skin lesions and gastrointestinal disorders and more severe symptoms such as methemoglobinemia, jaundice, aplastic anemia, cataract formation, menstrual disorders, neurological dysfunction and nephrotoxicity following prolonged exposure or exposure to high concentrations (Zakhari and Villaume 1978). Of these disorders, the most consistently observed are hepatitis and aplastic anemia (Zakhari and Villaume 1978).

Acute oral LD₅₀ values ranging from 500 to 1,850 mg/kg have been reported in several animal species. Toxic signs following acute administration include lassitude, cyanosis, occasional muscular twitching, convulsions and discolored urine. When applied to the skin of rabbits, 2,4,6-TNT produced mild dermal irritation (NIOSH 1988). About 60% of 2,4,6-TNT is absorbed through the gastrointestinal tract (USEPA 1989f), so AF_o for 2,4,6-TNT is assumed to be 0,60.

In animals, significant and consistent findings following oral administration of 2,4,6-TNT include hemolytic anemia with compensatory responses such as reticulocytosis, methemoglobinemia and increased spleen weight usually associated with hemosiderosis. In lifetime studies, the most consistent signs are congestion and extramedullary hematopoiesis, increased liver weight associated with hyperplasia and hepatocytomegaly (Dilley et al. 1978, Levine et al. 1981, 1983b, Furedi et al. 1984a,b). Testicular atrophy and hyperplasia have been observed in rats treated with 160 mg/kg-day of 2,4,6-TNT for up to 13 weeks (Dilley et al. 1978) and similar effects were seen in rats fed 125 to 300 mg/kg-day in the diet (Levine et al. 1981).

Based on an evaluation of these studies, USEPA concluded that dogs are somewhat more sensitive to the hepatic effects of 2,4,6-TNT than either mice or rats. In a 26-week study in dogs, 2 mg/kg-day TNT administered by capsule produced clearly toxic effects to the liver, spleen and hematopoietic system (Levine et al. 1983b), while 0.5 mg/kg-day produced mild effects on the liver (hepatocytomegalia with hepatocytic cloudy swelling). Based on the LOAEL of 0.5 mg/kg-day from this study, and supporting studies in mice and rats (Furedi et al. 1984a,b), the USEPA calculated a chronic oral RfD of 5E-4 mg/kg-day (USEPA 1990b). Confidence in the RfD is rated medium (USEPA 1990b), since the principal study was well-designed, but the method of administration (capsule) is not ideal and a NOAEL was not established. USEPA did not consider available data adequate to calculate an inhalation RfD (USEPA 1990b).

USEPA has not derived subchronic RfD for 2,4,6-TNT. However, the chronic oral RfD was derived from the 26-week study of Levine et al. (1983b), with an uncertainty factor that included a factor of 10 for extrapolation from subchronic to chronic duration (USEPA 1990b). On this basis, to evaluate subchronic effects of 2,4,6-TNT at the site, a subchronic RfD of 5E-3 mg/kg-day will be used.

Carcinogenic Effects

No data are available on the carcinogenic effects of 2,4,6-TNT in humans. The carcinogenic potential of 2,4,6-TNT was evaluated in 24-month studies in Fischer 344 rats and in hybrid B6C3Fl mice (Furedi et al. 1984a,b). In the rat study, the animals were administered 0, 0.4, 2, 10 or 50 mg/kg-day of 2,4,6-TNT in the diet. In female rats, treatment produced an increase in the incidence and severity of hyperplastic, preneoplastic and neoplastic lesions of the mucosal epithelium of the urinary bladder. In the mouse study, the animals were administered 0, 1.5, 10 or 70 mg/kg-day of 2,4,6-TNT. Microscopic examination of the spleens revealed an increase in the incidence of leukemia and malignant lymphoma in the high-dose female mice which was not considered to be statistically significant (USEPA 1989f).

2,4,6-Trinitrotoluene was strongly mutagenic to <u>Salmonella typhimurium</u> strains TA-98, TA-1538 and TA-1537 with or without metabolic activation, indicating it is a frameshift mutagen (Ellis et al. 1980). Similar results were reported by Dilley et al. (1978).

Based on the occurrence of urinary bladder tumors in female rats and the supporting evidence of carcinogenicity provided by the mutagenic activity in <u>Salmonella</u>, USEPA has classified 2,4,6-TNT in group C (possible human carcinogen) and has calculated an oral slope factor (SF) of 3.0E-2 (mg/kg-day)⁻¹ (USEPA 1990b). USEPA did not consider available data adequate to calculate an inhalation SF (USEPA 1990b).

ARSENIC REFERENCES

- ACGIH. 1986. American Conference of Governmental Industrial Hygienists.

 Documentation of the threshold limit values and biological exposure indices, 5th ed.

 Cincinnati, OH: American Conference of Governmental Industrial Hygienists.
- Anke M, Grun M, Partschefeld M, Groppel B, Hennig A. 1978. Essentiality and function of arsenic. In: Kirchgessner M, ed. Trace element metabolism in man and animals, Vol. 3. Munich, West Germany: Freising-Weihenstephen Tech. University, 248-252.
- Anke M, Krause U, Groppel D. 1987. The essentiality of arsenic. In: Hemphill DD, ed. Trace substances in environmental health. Columbia, MO: University of Missouri.
- ATSDR. 1989. Agency for Toxic Substances and Disease Registry. Toxicological profile for arsenic. Atlanta, GA: Agency for Toxic Substances and Disease Registry.
- Blom S, Lagerkvist B, Linderholm H. 1985. Arsenic exposure to smelter workers. Clinical and neurophysiological studies. Scand. J. Work Environ. Health 11:265-269.
- Cebrian ME, Albores A, Aguilar M, Blakely E. 1983. Chronic arsenic poisoning in the north of Mexico. Human Toxicol. 2:121-133.
- Chen CJ, Kuo TL, Wu MM. 1988a. Arsenic and cancers. Lancet I(575/6):414-415.
- Chen CJ, Wu MM, Lee SS, et al. 1988b. Atherogenicity and carcinogenicity of higharsenic artesian well water. Multiple risk factors and related malignant neoplasms of blackfoot disease. Arteriosclerosis 8:452-460.
- Chen CJ, Chuang YC, You SL, Lin TM, Wu HY. 1986. A retrospective study on malignant neoplasms of bladder, lung and liver in blackfoot disease endemic area in Taiwan. Br. J. Cancer 53:399-405.
- Chen CJ, Chuang YC, Lin TM, Wu HY. 1985. Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high arsenic artesian well water and cancers. Cancer Res. 45:5895-5899.
- Enterline PE, Marsh GM. 1982. Mortality among workers exposed to arsenic and other substances in a copper smelter. Am. J. Epidemiol. 116:895-910.
- Hindmarsh JT, McCurdy RF. 1986. Clinical and environmental aspects of arsenic toxicity. CRC Crit. Rev. Clin. Lab. Sci. 23:315-347.
- Lee AM, Fraumemi JF Jr. 1969. Arsenic and respiratory cancer in man: An occupational study. J. Natl. Cancer Inst. 42:1045-1052.

- Lee-Feldstein A. 1983. Arsenic and respiratory cancer in man: follow up of an occupational study. In: Lederer W, Fensterheim R, ed. Arsenic: industrial, biomedial and environmental perspectives. New York, NY: Van Nostrand Reinhold.
- Loehr RC, Upton A, Carlson GP. 1989. Letter and attached report from Science Advisory Board to William K. Reilly (Administrator), dated September 28, 1989. EPA-SAB-ECH-89-038.
- Ott MG, Holder BB, Gordon HI. 1974. Respiratory cancer and occupational exposure to arsenicals. Arch. Env. Health 29:250-255.
- Perry K, Bowler RG, Buckell HM, Druett HA, Schilling RSF. 1948. Studies in the incidence of cancer in a factory handling inorganic compounds of arsenic--II: clinical and environmental investigations. Br. J. Ind. Med. 5:6-15.
- Pinto SS, McGill CM. 1953. Arsenic trioxide exposure in industry. Ind. Med. Surg. 22:281-287.
- Schwartz K. 1977. Essentiality versus toxicity of metals. In: Brown SS, ed. Clinical chemistry and chemical toxicology of metals, Vol. 1. Amsterdam, The Netherlands: Elsevier, pp. 3-22.
- Solomons NW. 1984. The other trace minerals. Manganese, molybdeneum, vanadium, nickel, silicon and arsenic. In: Nutrition and disease. Absorption and malabsorption of mineral nutrients. New York: Alan R. Liss, Inc. pp. 269-296.
- Tseng WP. 1977. Effects and dose-response relationships of skin cancer and blackfoot disease with arsenic. Environ. Health Perspect. 19:109-119.
- Tseng WP, Chu HM, How SW, et al. 1968. Prevalence of skin cancer in an endemic area of chronic arsenism in Taiwan. J. Natl. Cancer Inst. 40:453-463.
- USEPA. 1990a. U.S. Environmental Protection Agency. Health effects assessment summary tables. First/Second quarters FY1990. Washington, DC: OERR 9200.6-303-(90-1/2).
- USEPA. 1984. U.S. Environmental Protection Agency. Office of Health and Environmental Assessment. Health assessment document for inorganic arsenic. Final report. Research Triangle Park, NC: U.S. Environmental Protection Agency. EPA 600/8-83-021F.
- Uthus E, Cornatzer W, Nielsen F. 1983. Consequences of arsenic deprivation in laboratory animals, In: Lederer W, Fensterheim R, eds. Arsenic: industrial, biomedical and environmental perspectives. New York: Van Nostrand Reinhold.

CHROMIUM REFERENCES

- Ivankovic, S., and Preussman, R., 1975. Absence of toxic and carcinogenic effects after administration of high doses of chromic oxide pigment in subacute and long-term feeding experiments in rats. Food Cosmet. Toxicol; 13:347-351.
- Langard, S. and Norseth T., 1975. A cohort study of bronchial carcinomas in workers producing chromate pigments. British Journal of Industrial Medicine; 32:62-65.
- Mali, J.W.H., Vankooten, W.J., and VanNeer, F.C.J., 1963. Some aspects of the behavior of chromium compounds in the skin. Journal Investigative Dermatology; 41:111-22.
- Mancuso, T.F., 1975. International Conference on Heavy Metals in the Environment. Toronto, Ontario, Canada.
- U.S. Environmental Protection Agency (U.S. EPA 1984a). Health Assessment Document for Chromium. EPA-600/8-83-014F. Research Triangle Park.
- U.S. Environmental Protection Agency (U.S. EPA 1984b). Health Effects Assessment for Hexavalent Chromium-Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati, OH.
- U.S. Environmental Protection Agency (U.S. EPA 1984c). Health Effects Assessment for Trivalent Chromium. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Cincinnati, OH.

LEAD REFERENCES

- Agency for Toxic Substances and Disease Registry (ATSDR). 1988. Toxicological Profile for Lead. Oak Ridge National Laboratory, TN.
- Azar, A, Trochimowicz, HJ, Maxfield, ME. 1973. Review of Lead Studies in Animals Carried Out at Haskell Laboratory: Two Year Feeding Study and Response to Hemorrhage Study. In: Barth, A, Engal, R, Recht, P, Smeets, J, eds. Environmental Health Aspects of Lead: Proceedings, International Symposium, October 1972, Amsterdam, The Netherlands. Luxembourg: Commission of the European Communities; 199-210.
- Cooper, WC and Gaffey, WR. 1975. Mortality of Lead Workers. J Occup Med; 17: 100-107
- Cooper, WC. 1985. Mortality Among Employees of Lead Battery Plants and Lead Producing plants, 1947-1980. Scand J Work Environ Health; 11: 331-345.
- Dingwall-Fordyce, I and Lane, RE. 1963. A Follow-up Study of Lead Workers. Br J Ind Med; 20:313-315.
- Kasprzak, KS, Hoover, KL, Poirier, LA. 1985. Effects of Dietary Calcium Acetate on Lead Sebacetate Carcinogenicity in Kidneys of Male Aprague-Dawlry Rats. Carcinogenesis. 6(2): 279-282.
- Koller, LO, Kerkvliet, NI, Exon, JH. 1985. Neoplasia Induced in Male Rats Fed Lead Acetate, Ethylurea and Sodium Nitrate. Toxicologic Pathol; 13: 50-57.
- Nelson, BJ, Kiremidjian-Schumacher, L, Stotzky, JH. 1985. Effects of Cadmium, Lead, and Zinc on Macrophage-mediated Cytotoxicity Toward Tumor Cells. Environ Res. 23:154-163.
- Selevan, SG, Landrigan, PJ, Stern, FB, Jones, JH. 1985. Mortality of Lead Smelter Workers. Am J Epidemiol; 122: 673-683.
- U.S. Environmental Protection Agency (EPA). 1977. Air Quality Criteria for Lead. EPA-600/8-77-017, PB-280411. Office of Research and Development. Washington, D.C.
- U.S. Environmental Protection Agency (EPA). 1980. Ambient Water Quality Criteria for Lead. EPA-440/5-80-057, PB-81-117681. Office of Water Regulations and Standards, Criteria and Standards Division. Washington, D.C.
- U.S. Environmental Protection Agency (EPA). 1985. National Primary Drinking Water Regulations; Synthetic Organic Chemicals, Inorganic Chemicals and Microorganisms. Proposed Rule, Fed. Reg. 50 (November 13): 46960 (40 CFR Part 141).

- U.S. Environmental Protection Agency (EPA). 1986. Superfund Public Health Evaluation Manual, EPA 640/1-86/060.
- U.S. Environmental Protection Agency Integrated Risk Information System (IRIS). 1989. Lead.
- Van Esch, GJ and Kroes, R. 1969. The Induction of Renal Tumors by Feeding Basic Lead Acetate to Mice and Hamsters. Br J Cancer; 23:765-771.

MERCURY REFERENCES

- Agency for Toxic Substances and Disease Registry 1988. Toxicological Profile for Mercury.

 Agency for Toxic Substances and Disease Registry, U.S. Public Health Service (Draft).
- Armstrong, R.L., L. Leach, P. Belluscio et al. 1963. Behavioral change in the pigeon following inhalation of mercury vapor. Am Ind Hyg Assoc. J. 24:336-375.
- Ashe, W., E.Largent and F. Dutra 1953. Behavior of the animal organism following inhalation of mercury. Arc. Ind. Hyg Occup. Med. 17:19-43.
- Buchet, J. H. Roels, and A. Bernard. Assessment of renal function of workers exposed to inorganic lead, cadmium or mercury vapor. J. Occup. Med. 22:741-750.
- Campbell, J. 1948. Acute mercurial poisoning by inhalation of metallic vapor in an infant. Can. Med. Assoc. J. 58:72-75.
- Casserett and Doull's Toxicology: The Basic Science of Poisons. 1986. C.D. Klassen, M.O. Amdur and J. Doull, Eds., 3rd edition, MacMillan Publishing Company, New York, pp.605-609.
- Fawer, R.F., Y. DeRibaupierre, M. Guillemin et al. 1983. Measurement of hand tremor induced by industrial exposure to metallic mercury. Br. J. Ind Med 40:204-208.
- Ganser, A.L. and D.A.Kirschner. 1985. The interaction of mercurials with myelin: comparison of in vitro and in vivo effects. Neurotoxicology 6:63-78.
- Hanninen, H. 1982. Behavior effect of occupational exposure to mercury and lead. Acta Neurol Scand 66:167-175.
- IRIS 1989. Mercury.
- Lilis, R., A. Miller and Y Lerman. 1985. Acute mercury poisoning with severe chronic pulmonary manifestations. Chest 88:306-309.
- Steffek, A.J., R. Clayton, C. Siew et al. 1987. Effects of elemental mercury vapor exposure on pregnant Sprague-Dawley rats. Teratology 35:59A.
- Teng, C. and J. Brennan. 1959. Acute mercury vapor poisoning. A report of four cases with radiographic and pathologic correlation. Radiology 73:354-361.

SELENIUM REFERENCES

- ASTDR. 1989. Agency for Toxic Substances and Disease Registry. Toxicological Profile for Selenium. Atlanta, GA: ASTDR.
- Barlow WM and Sullivan FM, Reproductive Hazards of Industrial Chemicals: Selenium. Academic Press, New York, NY, 1982 pp 483-500.
- Carter RF. 1966. Acute selenium poisoning. Med J Aust 1:525-528.
- Chowdhury AR, Venkatakrishna-Bhatt H. 1983. Effect of selenium dioxide on the testes of rat. Ind J Physiol Pharmacol 27:237-240.
- Civil IES, McDonald MJA. 1978. Acute selenium poisoning: Case report. NZ Med J (May) 1978:354-356.
- Gairola C, Chow CK. 1982 Dietary selenium, hepatic arylhydrocarbon hydroxylase and mutagenic activation of benzopyrene, 2-aminoanthracene and 2-aminofluorene. Toxicol Lett 11:281-287.
- Harr JR, Bone JF, Tinsley IJ, et al. 1967. Selenium toxicity in rat. Histopathology. In: Muth OH, Oldfield JE, Weswig PH, ed. Selenium Biomed Proc 1st Int Symp, Oregon State Univ, 1966. Vol. II, Westport, Conn: AVI Publishing Co, 153-178.
- Hopper SA, Greig A, McMurray CH. 1985. Selenium poisoning in lambs. Vet Record 116:569-571.
- Koppel C, Baudisch H, Beyer K-H, et al. 1986. Fatal poisoning with selenium dioxide. J clini Toxicol 24:21-35.
- NAS 1976a. Selenium. Comm Med Biol Effects Environ Pollut Subcomm Selenium. Washington, DC: National Academy of Sciences.
- NTP. 1980c. Bioassay of selenium sulfide (gavage) for possible carcinogenicity. Bethesda, MD: National Toxicology Program, National Cancer Institutes of Health. NCI Technical Report Series No. 194, NTP No. 80-17.
- Oster O, Prellwitz W. 1982. A methodological comparison of hydride and carbon furnace atomic absorption spectroscopy for the determination of selenium in serum. Clin Chim Acta 124:277-291.
- Ostadalova, I. and Babicky, A. 1980 Toxic effects of various selenium compounds on the rat in the early postnatal period. Arch tosical 45:207-211.
- Palmer IS, Arnold RC, Carlson CW. 1973 Toxicity of various selenium derivatives to chick embryos. Poult sci 52:1841-1846.

- Palmer IS, Olson OE. 1974. Relative toxicities of selenite and selenate in the drinking water of rats. J Nutr 104:306-314.
- Salonen JT, Alfthan G, Huttenen JK, et al. 1982. Association between cardiovascular death myocardial infarction and serum selenium in matched pair longitudinal study. Lancet 2:175-179.
- Schroeder HA, Mitchener M. 1971a. Selenium and tellurium in rats: Effects on growth, survival, and tumors. J Nutr 101:1531-1540.
- Schroeder HA, Mitchener M. 1971b. Toxic effects of trace elements on reproduction of mice and rats. Arch Environ Health 23:102-106.
- Schroeder HA, Mitchener M. 1972. Selenium and tellurium in mice: Effects on growth, survival and tumors. Arch Environ Health 24:66-71.
- Shamberger RJ, Tytko SA, Willis CE. 1976. Antioxidants and cancer part VI. Selenium and age-adjusted human cancer mortality. Arch Environ Health 31:231-235.
- Shamberger RJ. 1986 Selenium metabolism and function. Clin Physiol Biochem 4:42-49.
- Tarantal AR, Willhite CC, Laslsey BL, Murphy CJ, Miller CJ, Cukierski MF, Book SA, and Hendrickx AG. In Press. Developmental Toxicity of L-selnomethionine in Macaca fascicularis. Fund. Appl. Toxicol.
- Valentine JL, Faraji B, Kang HK. 1988. Human glutathione peroxidase activity in cases of high selenium exposures. Environ Res 45:16-27.
- Volgarev MN, Tscherkes LA. 1967. Further studies in tissue changes associated with sodium selenate. In: Muth OH, ed. Selenium in Biomedicine, Proceedings of the 1st International Symposium, Oregon State University. Westport, CT: AVI Publishing Co, 1979-184.
- Wahlstrom RC, Olson OE. 1959a. The relation of pre-natal and pre-weanling treatment to the effect of arsanilic acid on selenium poisoning in weanling pigs. J Anim Sci 18:579-582.
- Yang G, Ge K, Chen J, et al. 1988. Selenium-related endemic diseases and the daily selenium requirement of humans. In: Borne GH, ed. World review of nutrition and dietetics. Sociological and medical aspects. Vol. 55, Basel: Karger, 98-152.

ZINC REFERENCES

- Clayton, GD and Clayton, FE. 1981. Patty's Industrial Hygiene and Toxicology. 3rd ed. Vol. II New York, NY: Wiley and Sons.
- Kaassen, CD, Amdur, MO, Doull, JD. 1986. Casarett and Doull's Toxicology: The Basic Science of Pousons, 3rd ed. Macmillan Publishing Co., New York.
- National Institute for Occupational Safety and Health (NIOSH). 1986. Registry of Toxic Effects of Chemical Substances. Data Base. Washington, D.C.

BENZENE REFERENCES

- Aksoy M., Dincol K, Erdem S, Akgun T, Dincol G. 1972. Details of blood changes in 32 patients with pancytopenia associated with long term exposure to benzene. Brit J Industr Med 29:56:64.
- Aksoy M, Erdem S, Dincol G. 1974. Leukemia in shoe workers exposed chronically to benzene. Blood 44:837.
- Choy, W.N., J.T.MacGregor, M.D. Shelby and R.R. Maronport. 1985. Induction of micronuclei in the perpherial blood of mice exposed chronically to benzene. Mutat. Res. 143:55-59.
- Danford, N.C. 1985. Tests for chromosome aberrations and aneuploidy in the Chinese hamster fibroblast cell line CH1-L. In: Evaluation of Short-term Tests for Carcinogenicity: Report on the International Program on Chemical Safety Collaborative Study on In Vitro Assays. J. Ashby, F.J. deSerres, M. Draper et al. Eds., Elsevier, Amsterdam, pp. 156-169.
- Drew RT, Fouts JR. 1974. The lack of effects of pretreatment with phenobarbital and chlorpromazine on the acute toxicity of benzene in rats. Toxicol Appl Pharmacol 27:183-193.
- Erexsen, G.L., J.L. Wilner, A.D. Klingerman. 1985. Sister chromatid exchange induction of human lymphocytes exposed to benzene and its metabolites in vitro. Cancer Res. 45: 2471-2477.
- Garner, R.C. 1985. Summary report on the performance of gene mutation assays in mammalian cells in culture. In: Evaluation of Short-term Tests for Carcinogenicity: Report on the International Program on Chemical Safety Collaborative Study on In Vitro Assays. J. Ashby, F.J. deSerres, M. Draper et al. Eds., Elsevier, Amsterdam, pp. 85-94.
- Gill DP, Ahmed AE. 1981. Covalent binding of [14C] benzene to cellular organelles and bone marrow nucleic acids. Biochem Pharmacol 30:1127-1131.
- Goldstein, B.D. 1989. Symposium on benzene Metabolism, Toxicity and Carcinogenesis. Environ. Health Perspect. 82:3-310.
- Howard, C.A., T. Sheldon, C.R. Richardson. 1985. Chromosomal analysis of human lymphocytes exposed in vitro to five chemicals. In: Evaluation of Short-term Tests for Carcinogenicity: Report on the International Program on Chemical Safety Collaborative Study on In Vitro Assays. J. Ashby, F.J. deSerres, M. Draper et al. Eds., Elsevier, Amsterdam, pp. 124-137.

- IARC. 1982. International Agency for Research on Cancer. Monographs on the evaluation of the carcinogenic risk of chemicals to humans. Some industrial chemicals and dyestuffs. IARC Monogr Eval Carcinog Risk Chem Man 29:93-148, Supplement 4, pp. 56-57.
- Infante, P.F., R.A. Rinsky, J.K. Wagner and R.J. Young. 1977. Benzene and leukemia. the Lancet 2(8043):867-869.
- Kalf, G.F., G.B.Post, R. Snyder. 1987. Solvent toxicity: Recent advances in the toxicity of benzene, the glycol ethers and carbon tetrachloride. Ann. Rev. Pharmacol. Toxicol. 27:399-427.
- Keller KA, Snyder CA. 1986. Mice exposed in utero to low concentrations of benzene exhibit enduring changes in their colony forming hematopoietic cells. Toxicology 42:171-181.
- Kissling M, Speck B. 1972. Further studies on experimental benzene induced aplastic anemia. Blut 25:97-103.
- Li GL, Yin N, Watanabe T. et al. 1986. Benzene specific increase in leukocyte alkaline phosphatase activity in rats exposed to vapors of various organic solvents. J Toxicol Environ Health 19:581-589.
- Maltoni C. 1983a. Myths and facts in the history of benzene carcinogenicity. Adv Mod Environ Toxicol 4:1-15.
- Maltoni, C., B.Conti, and G. Cotti. 1983. Benzene: A multipotential carcinogen. Results of long-term bioassays performed at the Bologna Institute of Oncology. Am. J. Ind. Med. 4:589-630.
- Maltoni C, Conti B, Cotti G. 1983b. Benzene: a multi potential carcinogen. Results of long term bioassays performed at the Bologna Institute of Oncology. Am J Ind Med 4:589-630.
- Medinsky, M.A., P.J. Sabourin, G. Lucier et al. 1989. A physiological model for stimulation of benzene metabolism by rats and mice. Toxicol. Appl. Pharmacol. 99:193-206.
- Meyne J, Legator MS. 1980. Sex related differences in cytogenetic effects of benzene in the bone marrow of Swiss mice. Environ Mutagen 2:43-50.
- NTP 1986. Toxicology and carcinogenesis studies of benzene (CAS No. 71-43-2) in F344/N rats and B6C3F1 mice (gavage studies). NTP Technical report Series No. 289. NIH Publication No. 86-2545.
- O'Bryan TO, Ross R. 1986. Chemical scoring system for hazard and exposure assessment. IR&A, Oak Ridge National Laboratory.

- Ott MG, Townsend JC, Fishbeck WA, Languer RA. 1978. Mortality among workers occupationally exposed to benzene. Arch Environ Health 33:3-10.
- Rinsky, R.A., B. Alexander, R. Hornung, T.G. Filloon, R.J. Young, A.H Okun and P.J. Landrigan. 1987. Benzene and Leukemia: An Epidemiologic Risk Assessment. New Eng. J. Med. 316:1044-1050.
- Rinsky RA, young RJ, Smith AB. 1981. Leukemia in benzene workers. Am J Ind Med 2:217-245.
- Sandmeyer EE. 1981. Aromatic hydrocarbons. In: Patty's industrial hygiene and toxicology, Vol. 2, 3rd rev. ed., Clayton GD, Clayton, FE, eds. New York: Interscience Publishers: pp. 3253-3283.
- Sarto, F., I. Cominato, A.M. Pinton et al. 1984. A Cytogenetic study on workers exposed to low concentrations of benzene. Carcinogenesis 5:827-834.
- Shimizu, M., Y. Yasui, and N. Matsumoto. 1983. Structural specificity of aromatic compounds with special reference to mutagenic activity in <u>Salmonella typhimurium</u>: A series of chloro- or fluoro-nitrobenzenes. Mutat. Res. 116:217-238.
- Snyder CA. 1987. Benzene. In: Ethyl Browning's toxicity and metabolism of industrial solvents, 2nd ed., Vol. 1: Hydrocarbons. Snyder R, ed.
- Thienes H, Haley TJ. 1972. Title not given. In: Clinical toxicology. Philadelphia, PA: Lea & Fegiger. (As reported in Sandmeyer 1981).
- Toft K, Olofsson T, Tunek A, Berlin M. 1982. Toxic effects on mouse bone marrow caused by inhalation of benzene. Arch Toxicol 51:295-302.
- Von Oettingen WF. 1940. Title not given. Public Health Bulletin No. 255. Washington, DC: U.S. Public Health Service. (As reported in Sandmeyer 1981)
- Yin, et al 1987 Occupational exposure to benzene in China BR. J Ind Med 44:192-195.

CARBON TETRACHLORIDE REFERENCES

- Adams EM, Spencer HC, Rowe VK, et al. 1952. Vapor toxicity of carbontetrachloride determined by experiments on laboratory animals. Arch Ind Hyg Occup Med 6:50-66.
- Agency for Toxic Substances and Disease Register, U.S. Public Health Service (ATSDR). 1990. Toxicological Profile for Carbon Tetrachloride.
- Alumot E, Nachtomi E, Mandel E, et al. 1976. Tolerance and acceptable daily intake of chlorinated fumigants in the rat diet. Food Cosmet Toxicol 14:105-110.
- Ashe WF, Sailer S. 1942. Fatal uremia following single exposure to carbon tetrachloride fumes. Ohio State Med J 38:553-555.
- Barnes R, Jones RC. 1967. Carbon tetrachloride poisoning. Am Ind Hyg Assoc J28:557-560.
- Bogers M, Appelman LM, Feron VJ, et al. 1987. Effects of the exposure profile on the inhalation toxicity of carbon tetrachloride in male rats. J Appl Toxicol 7:185-191.
- Boyd MR, Statham CN, Longo NS. 1980. The pulmonary Clara cell as a target for toxic chemicals requiring metabolic activation; studies with carbon tetrachloride. J Pharmacol Exp Ther 212:109-114.
- Bruckner JV, MaKenzie WF, Muralidhara S, et al. 1986. Oral toxicity of carbontetrachloride: acute, subacute and subchornic studies in rats. Fund Appl Toxicol 6:16-34.
- Cohen MM. 1957. Central nervous system in carbon tetrachloride intoxication. Neurology 7:238-244.
- Craddock VM, Henderson AR. 1978 De novo and repair replication of DNA in liver of carcinogen-treated animals. Cancer Res 38:2135-2143.
- Della Porta GD, Terracini B, Shubik P. 1961. Induction with carbon tetrachloride of liver cell carcinomas in hamsters. J Natl Cancer Inst 26:855-863.
- Edwards J, Heston WE, Dalton AJ. 1942. Induction of the carbon tetrachloride hepatomain strain L mice. J Natl Cancer Inst 3:297-301.
- Elkins HB. 1942. Maximal allowable concentrations. II. Carbon tetrachloride. J Ind Hyg Toxicol 24:233-235.
- Eschenbrenner AB, Miller E. 1946. Liver necrosis and the induction of carbontetrachloride hepatomas in strain A mice. J Natl Cancer Inst 6:325-341.

- Gardner GH, Gove RC, Gustafson RK, et al. 1925. Studies on the pathological histology of experimental carbon tetrachloride poisoning. Bull Johns Hopkins Hosp 36:107-133.
- Gosselin RE, Hodge HC, Smith RP, Gleason MN, eds. 1976. Clinical toxicology of commercial products. Acute poisoning. 4th ed., Baltimore, MD: The Williams and Wilkins Co. 13, 92-97, 110.
- Gould VE, Smuckler EA. 1971. Alveolar injury in acute carbon tetrachloride intoxication. Arch Intern Med 128:109-117.
- Gary I. 1947. Carbon tetrachloride poisoning -- Report of seven cases with two deaths. NY State J Med 47:2311-2315.
- Guild WR, Young JV, Merrill JP. 1958. Anuria due to carbon tetrachloride intoxication.

 Ann Intern Med 48:1221-1227.
- Hall MC. 1921. The use of carbon tetrachloride for the removal of hookworms. J Am Med Assoc 77:1641-1643.
- Hardin BL. 1954. Carbon tetrachloride poisoning. A review. Ind Med Surg 23:93-105.
- Hayes JR, Condie LW, Berzelleca JF. 1986. Acute, 14-day repeated dosing, and 90-day subchronic toxicity studies of carbon tetrachloride in CD-1 mice. Fund Appl Toxicol 7:454 7463.
- Heimann H, Ford CA. 1941. Low concentration of carbon tetrachloride capable of causing mild narcosis. Ind Bull 20, July-August.
- Hollinger MA. 1982. Biochemical evidence for pulmonary endothelial cell injury after carbon tetrachloride administration in mide. J Pharmacol Exp Therap 222:641-4.
- Jennings RB. 1955. Fata fulminant acute carbon tetrachloride poisoning. Arch Pathol 59:269-284.
- Johnstone RT. 1948. Occupational medicine and industrial hygiene. St. Louis, MO: CV Mosby Co., pp 148-158.
- Kazantzis G, Bomford RR. 1960. Dyspepsia due to inhalation of carbon tetrachloride vapor. Lancet, February 13, 360-362.
- Kittleson KD, Borden CW. 1956. Acute renal failure due to carbon tetrachloride poisoning. Northwestern Univ Med School Mag 30:117-123.
- Korsrud GO, Grice HC, McLaughlan JM. 1972. Sensitivity of several serum enzymes in detecting carbon tetrachloride-induced liver damage in rats. Toxicol Appl Pharmacol 22:474-483.

- Kronevi T, Wahlberg J, Holmberg B. 1979. HIstopathology of skin, liver, and kidney after epicutaneous administration of five industrial solvents to guinea pigs. Environ Res 19:56-69.
- Lamson PD, Minot AS, Robbins BH. 1928. The prevention and treatment of carbontetrachloride intexication. J Am Med Assoc 90:345-346.
- Leach CN. 1922 Carbon tetrachloride in the treatment of hookworm disease. J Am Med Assoc 78:1789-1790.
- MacMahon HE, Weiss S. 1929. Carbon tetrachloride poisoning with microscopic fat in the pulmonary artery. Am J Pathol 5:623-630.
- McGuire LW. 1932. Carbon tetrachloride poisoning. J Am Med Assoc 99:988-989.
- McLean AEM, McLean EK. 1966. The effect of diet and 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane (DDT) on microsomal hydroxylating enzymes and on sensitivity of rats to carbon tetrachloride poisoning. Biochem J 100:564-571.
- Mirsalis, JC, Butterworth BE. 1980. Detection of unscheduled DNA synthesis in hepatocytes isolated from rats treated with genotoxic agents: an in vivo-in vitro assay for potential carcinogens and mutagens. Carcinogenesis 1:621-625.
- NCI. 1976. Report on carcinogenesis bioassay of chloroform. Bethesda, MD: National Cancer Institute, March 1, 1976.
- NCI (National Cancer Institute). 1976b. Carcinogenesis Bioassay of Trichloroethylene. National Cancer Institute Carcinogenesis Technical Report Series, No. 2. NCI-CG-TR-2. February.
- NCI (National Cancer Institute). 1977. Bioassay of 1,1,1-Trichlorethane for Possible Carcinogenicity. National Cancer Institute Carcinogenesis Technical Report Series, No. 3. NCI-CG-TR-3. January.
- New PS, Lubash GD, Scherr L, et al. 1962. Acute renal failure associated with carbontetrachloride intoxication. J Am Med Assoc 181:903-906.
- Norwood WD, Fuqua PA, Scudder BC. 1950. Carbon tetrachloride poisoning. Arch Ind Hyg Occup Med 1:90-100.
- Paustenbach DJ, Carlson GP, Christian JE, et al. 1986a. A comparative study of the pharmacokinetics of carbon tetrachloride in the rat following repeated inhalation exposures of eight and 11.5 hr/day. Fund Appl. Toxicol 6:484-497.
- Paustenbach DJ, Christian JE, Carlson GP, et al. 1986b. The effect of an 11.5-hr/day exposure schedule on the distribution and toxicity of inhaled carbon tetrachloride in the rat. Fund Appl Toxicol 6:472-483.

- Perez AJ, Courel M, Sobrado J, et al. 1987. Acute renal failure after topical application of carbon tetrachloride. Letter to editor. Lancet: February 28, 515-516.
- Phelps BM, Hu CH. 1924. Carbon tetrachloride poisoning. Report of two fatal cases and a series of animal experiments. J Am Med Assoc 82:1254-1256.
- Pound AW, Horn L, Lawson TA. 1973. Decreased toxicity of dimethylnitrosamine in rats after treatment with carbon tetrachloride. Pathology 5:233-242.
- Prendergast JA, Jones RA, Jenkins LJ, et al. Effects on experimental animals of long-term inhalation of trichloroethylene, carbon tetrachloride, 1,1,1-trichloroethane, dichloroflouromethane, and 1,1-dichloroethylene. Toxicol Appl Pharmacol 10:270-289.
- Roudabush RL, Terhaar CJ, Fassett DW, et al. 1965. Comparative acute effects of some chemicals on the skin of rabbits and guinea pigs. Toxicol Appl Pharmacol 7:559-565.
- Schwetz BA, Leong BKJ, Behring PJ. 1974. Embryo- and fetotoxicity of inhaled carbontetrachloride, 1,1-dichloroethane and methyl ethyl ketone in rats. Toxicol Appl Pharmacol 28:452-64.
- Sittig, M. 1985. Handbook of Hazardous Chemicals and Carcinogens, 2nd ed. Noyes Publications, Park Ridge, New Jersey.
- Smetana J. 1939. Nephrosis due to carbon tetrachloride. Arch Intern Med 63:760-777.
- Smyth HF. 1935. Carbon tetrachloride in industry-the present status and plans for further necessary studies. Ind Med 4:12-15.
- Smyth HF, Smyth HF Jr., Carpenter CP. 1936. The chronic toxicity of carbontetrachloride; animal exposure and field studies. J Ind Hyg Toxicol 18:277-298.
- Stevens H, Forster FM. 1953. Effect of carbon tetrachloride on the nervous system. Arch Neurol Psychiat 70:635-649.
- Stewart A, Witts LJ. 1944. Chronic carbon tetrachloride intoxication. Br J Ind Med 1:11-19.
- Stewart, RD, Gay HH, Erley DS, et al. 1961. Human exposure to carbon tetrachloride vapor. J Occup Expos 3:586-590.
- Stewart RD, Boettner EA, Southworth RR, et al. 1963. Acute carbon tetrachloride intoxication. J Am Med Assoc 183:94-97.
- Straus B. 1954. Aplastic anemia following exposure to carbon tetrachloride. J Am Med Assoc 155:737-739.

- Striker GE, Smuckler EA, Kohnen PW, et al. 1968. Structural and functional changes in rat kidney during CC14 intoxication. Am J Pathol 53:769-789.
- Svirbely JL, Highman B, Slford WC, et al. 1947. The toxicity and narcotic action of monochloromonbromomethane with special reference to inorganic and volatile bromide in blood, urine and brain. J Ind Hyg 29:382-389.
- Tracey, JP, Sherlock P. 1968. Hepatoma following carbon tetrachloride poisoning. New York J Med 68:2202-2204.
- Environmental Protection Agency. Integrated Risk Information System (IRIS). 1990. Carbon Tetrachloride.
- Umiker W, Pearce J. 1953. Nature and genesis of pulmonary alternations in carbontetrachloride poisoning. Arch Pathol 55:203-217.
- von Oettingen WF. 1964. The halogenated hydrocarbons of industrial and toxicological importance. In: Browning E, ed. Elsevier Monographs on Toxic Agents. New York, NY: Elsevier Publishing Co.
- Wahlberg JE, Boman A. 1979. Comparative percutaneous toxicity of ten industrial solvents in the guinea pig. Scand J Work Environ Health 5:345-351.
- Wilson JG. 1954. Influence of the offspring of altered physiologic states during pregnancy in the rat. Ann NY Acad Sci. 57:517-525.

CHLOROFORM REFERENCES

- Bomski, H, Sobolweska, A, Strakowski, A. 1967. Toxic damage of the liver by chloroform in chemical industry workers. Arch Gewerbepathol Gewerbehy 24:127-134 (FRG) (translated from German).
- Jorgenson, TA, Meierhenry, EF, Rushbrook, CJ, et al. 1985. Carcinogenicity of chloroform in drinking water to male Osborne-Mendel rats and female B6G3F1 mice. Fund Appl Toxicol (USA)5(4):760-769.
- Lundberg, I, Ekdahl, M, Kronevi, T, Lidmus, V, Lundberg, S. 1986. Relative hepatotoxicity of some industrial solvents after intraperitoneal injection or inhalation exposure to rats. Environ Res 40(2):411-420.
- NCI (National Cancer Institute). 1976. Report on Carcinogenesis Bioassay of Chloroform. NTIS PB-264018.
- Roe, FJC, Palmer, AAK, Worden, AN, Van Abbe, NJ. 1979. Safety evaluation of toothpaste containing chloroform. I. Long-term studies in mice. J Environ Toxicol 2:799-819.
- Schroeder, HG. 1965. Acute and delayed chloroform poisoning. A case report. Br J Anaesth 37:972-975.
- Torkelson, TR, Oyen, F, Rowe, VK. 1976. The toxicity of chloroform as determined by single and repeated exposure of laboratory animals. Am Ind Hyg Assoc J 37:697-704.

CHLOROBENZENE REFERENCES

- Barkely J, Bunch J, Bursey JT, et al., 1980. Gas chromatography mass spectrometry computer analysis of volatile halogenated hydrocarbons in man and his environment a multi media environmental study. Biomed Mass Spectrum 7:139:147.
- A. Brodzinsky R, Singh HB. 1983. Volatile organic chemicals in the atmosphere: An assessment of pp available data. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Research and Development. EPA 600/3:83:0270a.
- Dilley JV. 1977. Toxic evaluation of inhaled chlorobenzene (monochlorobenzene). Cincinnati, OH: National Institute of Occupational Safety and Health, Division of Biomedical and Behavioral Sciences. NTIS No. PB:276623.
- EPA. 1985. Health assessment document for chlorinated benzenes: Final Report. Cincinnati, OH: U.S. Environmental Protection Agency, Office of Research and Development. EPA/600/8:84/0154F.
- Hazleton Laboratories. 1967. Three month subacute oral study rats: Monochlorobenzene. Final Report. Submitted to Monsanto Company. Project No. 241:104. March 9.
- Irish DD. 1963. Halogenated hydrocarbons. II. Cyclic. In: Patty FA, ed. Industrial hygiene and toxicology. Vol 2. 2nd ed., New York, NY: John Wiley and Sons, 1333.
- John JA, Hayes WC, Hanley TR Jr, et al. 1984. Inhalation teratology study on monochlorobenzene in rats and rabbits. Toxicol Appl Pharmacol 76:365:373.
- Nair RS, Barter JA, Schroeder RE, et al. 1987. A two generation reproduction study with DD monochlorobenzene vapor in rats. Fundam Appl Toxicol 9:678:686.
- NTP. 1985. Toxicology and carcinogenesis studies of chlorobenzene (CAS No. 108-90-70) hh in F344/N rats and B6C3F mice (gavage studies). Technical report series No. 261. Research Triangle Park, NC: U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, National Toxicology Program. NIH Publication No. 86:2517.
- Reich H. 1934. [Puran (monochlorobenzene) poisoning in a 2 year old child.] Sammlvon Vergiftungsfallen 5:193-194. (German)
- Rimington C, Ziegler G. 1963. Experimental porphyria in rats induced by chlorinated benzenes. Biochem Pharmacol 12:1387-1397.
- Rozenbaum ND, Blekh RS, Kremneva SN, et al. 1947. [Use of chlorobenzene as a solvent from the standpoint of industrial hygiene.] Gig Sanit 12:21-24. (Russian)

- Sittig M. 1985. Handbook of toxic and hazardous chemicals and carcinogens. 2nd ed. (Park Ridge, NJ: Noyes Publications, 225-227.
- Tabak HH. Quave SA, Mashni CI, et al. 1981. Biodegradability studies with organic LL priority pollutant compounds. J Water Pollut Control Fed 53:1503-1518.
- Zub M. 1978. Reactivity of the white blood cell system to toxic action of benzene and its pp derivatives. Acta Biol Cracov 21:163-174.

1,2- and 1,3-DICHLOROBENZENE REFERENCES

- ACGIH (American Conference of Governmental Industrial Hygienists). PP 1986
 Documentation of the Threshold Limit Values and Biological Exposure Indices. 5th
 Ed. Cincinnati, OH: American Conference of Governmental Industrial Hygienists,
 Inc. pp. 428; 435-436.
- Anderson, D. 1976. Paradichlorobenzene: Estimation of its mutagenic potential in the Salmonella typhimurium plate incorporation mutagenicity assay. Unpublished report: Imperial Chemical Industries Ltd, Central Toxicology Laboratory, Alderley Park, Macclesfield, Cheshire, V.K. (cited in Loeser and Litchflied, 1983).
- Anderson, D. and Hodge, M.C.E. 1976. Paradichlorobenzene: Dominant lethal study in the mouse. Unpublished report: Imperial chemical Industries Ltd., Central Toxicology Laboratory, Alderly Park, Macclesfield, Cheshire, U.K. (cited in Loeser and Litchfield, 1983).
- Anderson, D. and Richardson, C.R. 1976. Paradichlorobenzene: Cytogenetic study in the rat. Unpublished report: Imperial chemical Industries Ltd., Central Toxicology Laboratory, Alderly Park, Macclesfield, Cheshire, UK (cited in Loeser and Litchfield, 1983).
- Andersen, K.J., Leighty, E.G. and Takahashi, M.T. 1972. Evaluation of herbicides for possible mutagenic properties. J. Agric. Food Chem. 20(3): 649-656.
- Azouz, W.M., Parke, D.V. and Williams, R.T. 1955. Studies in detoxication. The metabolism of halogenobenzenes. Ortho and para-dichlorobenzenes. Biochem. J. 59(3): 410-415.
- Brodzinsky, R. and Singh, H.B. 1982. Volatile organic chemicals in the atmosphere: an assessment of available data. Contract No. 68-02-3452. Environ. Sci. Res. Lab., ORD, U.S. EPA, Research Triangle Park, NC. (Cited in EPA, 1985.)
- Carey, G.P. and McDonough, E.S. 1943. On the production of polyploidy in Allium with paradichlorobenzene. Jour. of Hereditary. 34:238.
- Cotter, L.H. 1953. Case Reports: Paradichlorobenzene poisoning from insecticides. N.Y. State J. Med. 53: 1690-1692.
- Downing, J.G. 1939. Dermatitis from orthodichlorobenzene. JAMA 112:1457.
- Elkins, H.B. 1959. The Chemistry of Industrial Toxicology. New York: John Wiley and Sons, Inc.
- Frank, S.B. and Cohen, H.J. 1961. Fixed drug eruption due to paradichloro-benzene. New York J. Med. 61:4079.

- Gadrat, J., Monnier, J., Ribet, A and Bourse, R. 1962. Acute hemolytic anemia in a female worker of a dyeing and dry-cleaning shop exposed to inhalation of chlorobenzenes. Arch. Maladies Prof. Med. Travail Secrite Sociale. 23 (10/11):710-174 (Fre). (Cited in EPA, 1985.)
- Giavini, E., Broccia, M.L., Prati, M. and Vismara, C. 1986. Teratologic evaluation of p-dichlorobenzene in the rat. Bull. Environ. Contam. Toxicol. 37:164-168.
- Girard, R., Tolot, F., Martin, P. and Bourret, J. 1969. Serious blood disorders and exposure to chlorine derivatives of benzene (A report of seven cases). J. Med. Lyon. 50(1164):771-773 (Fre.) (Cited in U.S. EPA, 1985.)
- Guerin, M. and Cuzin, J. 1961. Skin tests on mice for determining the carcinogenic activity of cigarette smoke tar. Bull. de l'Assoc. Français pour l'Etude du Cancer. 48:112 (Fre). (Cited in U.S. EPA, 1980.)
- Hallowell, M. 1959. Acute hemolytic anemia following the ingestion of paradichlorobenzene. Arch. Dis. Child. 34: 74-75.
- Hawkins, D.R., Chassequd, L.F., Woodhouse, R.N. and Cresswell, D.G. 1980. The distribution, excretion and biotransformation of p-dichloro (14C) benzene in rats after repeated inhalation, oral and subcutaneous doses. Xenobiotica. 10(2):81-95.
- Haworth, S. Lawlor, T., Mortelmans, K., Speck W. and Zeiger, E. 1983. Salmonellamutagenicity test results for 250 chemicals. Environ. Mutagen. (Suppl.1.):34-142.
- Hayes, W.C., Hanley, T.R. Jr., Gushow, T.S. Johnson, K.A. and John, J.A. 1985. Teratogenic potential of inhaled dichlorobenzenes in rats and rabbits. Fundam. Appl. Toxicol.5(1) 190-202.
- Hollingsworth, R.L., Rowe, V.K., Oyen, F., Hoyle, H.R. and Spencer, H.C. 1956. Toxicity of paradichlorobenzene. Determinations on experimental animals and human subjects. Arch. Ind. Hlth. 14:138-147.
- Hollingsworth, R.L., Rowe, V.K. Oyen, F., Torkelson, T.R. and Adams, I.M. 1958. Toxicity of o-dichlorobenzene. Studies on animals and industrial experience. Arch. Ind. Health. 17(19):180:187.
- Hodge, M.C.E., Palmer, S., Wilson, J. and Bennett, I.P. 1977.

 Paradichlorobenzeneteratogenicity study in rats. Unpublished report: Imperial Chemical Industries Ltd., Central Toxicology Laboratory, Alderly Park, Macclesfield, Cheshire, UK. (cited in Loeser and Litchfield, 1983; Hayes et al., 1985).

- IARC (International Agency for Research on Cancer). 1974. IARC monographs on the evaluation of the carcinogenic risk of chemicals to man. Vol 7: Some antithyroid and related substances, nitrofurans and industrial chemicals: Ortho and paradichlorobenzenes. pp 231-244.
- IARC (International Agency for Research on Cancer). 1982. IARC monographs on the evaluation of the carcinogenic risk of chemicals to man. Vol. 29: Ortho-and paradichlorobenzenes pp 213 7218.
- IARC (International Agency for Research on Cancer). 1987. IARC monographs on the evaluation of carcinogenic risks to humans. Overall evaluations of carcinogencity: an updating of IARC monographs Volumes 1 to 42. Suppl 7. pp. 192-193.
- Johnston, P., Hodge, V. and Slimak, K. 1979. Materials Balance-Task 4-Chlorobenzenes. (EPA-560/13-80-001). Washington, D.C. U.S. Environmental Protection Agency, Office of Pesticides and Toxic Substances, pp. 2-19 3-10.
- Kimura, R., Hayashi, T., Sato, M., Aimoto, T. and Murata, T. 1979. Identification of sulfur-containing metabolites of p-dichlorobenzene and their distribution in rats. J. Pharm. Dyn. 2(4):237-244.
- Kimura, R., Kawai, M., Kato, Y., Sato, M., Aimoto, T. and Murata, T. Role of 3,5-dichloromethylsulfone, a metabolite of m-dichlorobenzene, in the induction of hepaticmicrosomal drug-metabolizing enzymes by m-dichlorobenzenes in rats. Toxicol. Appl. Pharmacol. 78(2):300-309.
- Lawlor, T., Haworth, S.R. and Boytek, P. 1979. Evaluation of the genetic activity of nine chlorinated phenols, seven chlorinated benzenes, and three chlorinated hexanes (Abstract no. Ca \(\)10). Environ. Mutagenesis. 1:143.
- NTP (National Toxicology Programme) 1985. Toxicology and Carcinogenesis Studies of 1,2-Dichlorobenzene (o-Dichlorobenzene). (CAS No. 95-50-1) in F344/N Rats and B6C3F1 Mice (Gavage Studies) (NTP TR 255; NIH. Publ. No. 86-2511), Research Triangle Park, NC.
- NTP (National Toxicology Program). 1987. Toxicology and Carcinogenesis Studies of 1,4-Dichlorobenzene (CAS No. 106-46-7) in F344/N Rats and B6C3F1 mice (Gavage Studies) (NTP TR No. 319; NIH Publ. No. 87-2575), Research Triangle Park. (Cited in IARC 1987).
- Parsons, D.L. 1942. On early tumour formation in pure-line mice treated with carcinogenic compounds and the associated blood and tissue changes. J. Path. Bact. 54:321-330.
- Perrin, M. 1941. Possible harmfulness of paradichlorobenzene used as a moth killer. Bull. de l'Acad. de Med. 125:302.

- Perocco, P. Bolognesi, S. and Alberghini, W. 1983. Toxic activity of seventeen industrial solvents and halogenated compounds on human lymphocytes cultured in vitro. Toxicol. Lett. 16:69-75.
- Petit, G. and Champeix, J. 1948. Does an intoxication caused by paradichlorobenzene exist? Arch. Malad. Profess. Med. 9:311-312. (Cited in EPA, 1985.)
- Poland, A. Goldstein, J., Hickman, P. and Burse, V.W. 1971. A reciprocal relationship between the induction of aminolevulinic acid synthetase and drug metabolism produced by m-dichlorobenzene. Biochem. Pharmacol. 20(6):1281-1290.
- Prasad, I. 1970. Mutagenic effects of the herbicide 3', 4'-dichloroproprionanilide and its degradation products. Can. J. Microbiol. 16:369-372.
- Reid, W.D. and Krishna, G. 1973. Centrilobular hepatic necrosis related to covalent binding of metabolites of halogenated aromatic hydrocarbons. Ex. Mo. Pathol. 18:80-99.
- Riedel, H. 1941. Einge beobachtungen uber orthodichlorobenzol. Arch. Gewerbepath. Bewerbehyg. 10:546-549. (Cited in EPA, 1985).
- Riley, R.A., Chart, I.S. Doss, A., Gore, C.W., Patton, D. and Weight, T.M. 1980a. Paradichlorobenzene: Long term inhalation study in the rat. Unpublished report: Imperial Chemical Industries Ltd., Central Toxicology laboratory, Alderly Park, Macclesfield, Cheshire, U.K. (Cited in Loeser and Litchfield, 1983.)
- Riley, R.A. Chart, I.S., Gaskell, B. and Gore, C.W. 1980b. Para-dichlorobenzene: Long term inhalation study in the mouse. Unpublished report: Imperial Chemical Industries Ltd., Central Toxicology Laboratory, Alderly Park, Macclesifled, Cheshire, U.K. (Cited in Loeser and Litchfield, 1983).
- Rimington, C. and Ziegler, G. 1963. Experimental porphyria in rats induced by chlorinated benzene. Biochem. Pharmacol. 12:1387-1397.
- Shackelford, W.M. and Keith, L.H. 1976. Frequency of Organic Compounds Identified in Water. (EPA-600)/4-76-062), Athens GA, Environmental Research Laboratory, U.S. Environmental Protection Agency, pp. 37, 72, 76-77.
- Sharma, A.K. and Bhattacharyya. 1956. Chromosome breakage through paradichlorobenzene treatment. Cytologia 21:353-360.
- Sharma, A.K. and Sarkar, S.K. 1957. A study on the comparative effect of chemicals on chromosomes of roots, pollen mother cells and pollen grains. Proc. Indian Acad. Sci. Sect. B. 45(6):288-293.
- Srivastava, L.M. 1966. Induction of mitotic abnormalities in certain genera of tribe Vicieae by paradichlorobenzene. Cytologia, 31:166-171.

- Sumers, J., Fuhrman, M. and Kelman, A. 1952. Hepatitis with concomitant esophageal varices following exposure to moth ball vapors. N.Y. State J. Med 52:1048-1049.
- U.S. EPA (U.S. Environmental Protection Agency) 1980. Ambient Water Quality Criteria for Dichlorobenzenes. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division.
- U.S. EPA (U.S. Environmental Protection Agency) 1985. Health Assessment Document for Chlorinated Benzenes. Cincinnati, OH: Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Office of Research and Development.
- Varshavskaya, S.P. 1967a. The hygienic standardization of mono- and dichlorobenzenes in reservoir waters. Nauch. Tr. Aspir. I. Ordin. Pervyi Mosk. Med. Institut. 175. (in Russian) (Cited in U.S. EPA, 1980).
- Varshavskaya, S.P. 1967b. Comparative toxicological characteristics of chlorobenzene and dichlorobenzene (ortho- and para-isomers) in relation to the sanitary.

1,4-DICHLOROBENZENE REFERENCES

- ACGIH (American Conference of Governmental Industrial Hygienists). PP 1986
 Documentation of the Threshold Limit Values and Biological Exposure Indices. 5th
 Ed. Cincinnati, OH: American Conference of Governmental Industrial Hygienists,
 Inc. pp. 428; 435-436.
- Anderson, D. 1976. Paradichlorobenzene: Estimation of its mutagenic potential in the Salmonella typhimurium plate incorporation mutagenicity assay. Unpublished report: Imperial Chemical Industries Ltd, Central Toxicology Laboratory, Alderley Park, Macclesfield, Cheshire, V.K. (cited in Loeser and Litchflied, 1983).
- Anderson, D. and Hodge, M.C.E. 1976. Paradichlorobenzene: Dominant lethal study in the mouse. Unpublished report: Imperial chemical Industries Ltd., Central Toxicology Laboratory, Alderly Park, Macclesfield, Cheshire, U.K. (cited in Loeser and Litchfield, 1983).
- Anderson, D. and Richardson, C.R. 1976. Paradichlorobenzene: Cytogenetic study in the rat. Unpublished report: Imperial chemical Industries Ltd., Central Toxicology Laboratory, Alderly Park, Macclesfield, Cheshire, UK (cited in Loeser and Litchfield, 1983).
- Andersen, K.J., Leighty, E.G. and Takahashi, M.T. 1972. Evaluation of herbicides for possible mutagenic properties. J. Agric. Food Chem. 20(3): 649-656.
- Azouz, W.M., Parke, D.V. and Williams, R.T. 1955. Studies in detoxication. The metabolism of halogenobenzenes. Ortho and para-dichlorobenzenes. Biochem. J. 59(3): 410-415.
- Brodzinsky, R. and Singh, H.B. 1982. Volatile organic chemicals in the atmosphere: an assessment of available data. Contract No. 68-02-3452. Environ. Sci. Res. Lab., ORD, U.S. EPA, Research Triangle Park, NC. (Cited in EPA, 1985.)
- Carey, G.P. and McDonough, E.S. 1943. On the production of polyploidy in Allium with paradichlorobenzene. Jour. of Hereditary. 34:238.
- Cotter, L.H. 1953. Case Reports: Paradichlorobenzene poisoning from insecticides. N.Y. State J. Med. 53: 1690-1692.
- Downing, J.G. 1939. Dermatitis from orthodichlorobenzene. JAMA 112:1457.
- Elkins, H.B. 1959. The Chemistry of Industrial Toxicology. New York: John Wiley and Sons, Inc.
- Frank, S.B. and Cohen, H.J. 1961. Fixed drug eruption due to paradichloro-benzene. New York J. Med. 61:4079.

- Gadrat, J., Monnier, J., Ribet, A and Bourse, R. 1962. Acute hemolytic anemia in a female worker of a dyeing and dry-cleaning shop exposed to inhalation of chlorobenzenes. Arch. Maladies Prof. Med. Travail Secrite Sociale. 23 (10/11):710-174 (Fre). (Cited in EPA, 1985.)
- Giavini, E., Broccia, M.L., Prati, M. and Vismara, C. 1986. Teratologic evaluation of p-dichlorobenzene in the rat. Bull. Environ. Contam. Toxicol. 37:164-168.
- Girard, R., Tolot, F., Martin, P. and Bourret, J. 1969. Serious blood disorders and exposure to chlorine derivatives of benzene (A report of seven cases). J. Med. Lyon. 50(1164):771-773 (Fre.) (Cited in U.S. EPA, 1985.)
- Guerin, M. and Cuzin, J. 1961. Skin tests on mice for determining the carcinogenic activity of cigarette smoke tar. Bull. de l'Assoc. Français pour l'Etude du Cancer. 48:112 (Fre). (Cited in U.S. EPA, 1980.)
- Hallowell, M. 1959. Acute hemolytic anemia following the ingestion of paradichlorobenzene. Arch. Dis. Child. 34: 74-75.
- Hawkins, D.R., Chassequd, L.F., Woodhouse, R.N. and Cresswell, D.G. 1980. The distribution, excretion and biotransformation of p-dichloro (14C) benzene in rats after repeated inhalation, oral and subcutaneous doses. Xenobiotica. 10(2):81-95.
- Haworth, S. Lawlor, T., Mortelmans, K., Speck W. and Zeiger, E. 1983. Salmonellamutagenicity test results for 250 chemicals. Environ. Mutagen. (Suppl. 1.):34-142.
- Hayes, W.C., Hanley, T.R. Jr., Gushow, T.S. Johnson, K.A. and John, J.A. 1985. Teratogenic potential of inhaled dichlorobenzenes in rats and rabbits. Fundam. Appl. Toxicol.5(1) 190-202.
- Hollingsworth, R.L., Rowe, V.K., Oyen, F., Hoyle, H.R. and Spencer, H.C. 1956. Toxicity of paradichlorobenzene. Determinations on experimental animals and human subjects. Arch. Ind. Hlth. 14:138-147.
- Hollingsworth, R.L., Rowe, V.K. Oyen, F., Torkelson, T.R. and Adams, I.M. 1958. Toxicity of o-dichlorobenzene. Studies on animals and industrial experience. Arch. Ind. Health. 17(19):180:187.
- Hodge, M.C.E., Palmer, S., Wilson, J. and Bennett, I.P. 1977.

 Paradichlorobenzeneteratogenicity study in rats. Unpublished report: Imperial Chemical Industries Ltd., Central Toxicology Laboratory, Alderly Park, Macclesfield, Cheshire, UK. (cited in Loeser and Litchfield, 1983; Hayes et al., 1985).

- IARC (International Agency for Research on Cancer). 1974. IARC monographs on the evaluation of the carcinogenic risk of chemicals to man. Vol 7: Some antithyroid and related substances, nitrofurans and industrial chemicals: Ortho and paradichlorobenzenes. pp 231-244.
- IARC (International Agency for Research on Cancer). 1982. IARC monographs on the evaluation of the carcinogenic risk of chemicals to man. Vol. 29: Ortho-and paradichlorobenzenes pp 213 7218.
- IARC (International Agency for Research on Cancer). 1987. IARC monographs on the evaluation of carcinogenic risks to humans. Overall evaluations of carcinogencity: an updating of IARC monographs Volumes 1 to 42. Suppl 7. pp. 192-193.
- Johnston, P., Hodge, V. and Slimak, K. 1979. Materials Balance-Task 4-Chlorobenzenes. (EPA-560/13-80-001). Washington, D.C. U.S. Environmental Protection Agency, Office of Pesticides and Toxic Substances, pp. 2-19 3-10.
- Kimura, R., Hayashi, T., Sato, M., Aimoto, T. and Murata, T. 1979. Identification of sulfur-containing metabolites of p-dichlorobenzene and their distribution in rats. J. Pharm. Dyn. 2(4):237-244.
- Kimura, R., Kawai, M., Kato, Y., Sato, M., Aimoto, T. and Murata, T. Role of 3,5-dichloromethylsulfone, a metabolite of m-dichlorobenzene, in the induction of hepaticmicrosomal drug-metabolizing enzymes by m-dichlorobenzenes in rats. Toxicol. Appl. Pharmacol. 78(2):300-309.
- Lawlor, T., Haworth, S.R. and Boytek, P. 1979. Evaluation of the genetic activity of nine chlorinated phenols, seven chlorinated benzenes, and three chlorinated hexanes (Abstract no. Ca \(\)10). Environ. Mutagenesis. 1:143.
- NTP (National Toxicology Programme) 1985. Toxicology and Carcinogenesis Studies of 1,2-Dichlorobenzene (o-Dichlorobenzene). (CAS No. 95-50-1) in F344/N Rats and B6C3F1 Mice (Gavage Studies) (NTP TR 255; NIH. Publ. No. 86-2511), Research Triangle Park, NC.
- NTP (National Toxicology Program). 1987. Toxicology and Carcinogenesis Studies of 1,4-Dichlorobenzene (CAS No. 106-46-7) in F344/N Rats and B6C3F1 mice (Gavage Studies) (NTP TR No. 319; NIH Publ. No. 87-2575), Research Triangle Park. (Cited in IARC 1987).
- Parsons, D.L. 1942. On early tumour formation in pure-line mice treated with carcinogenic compounds and the associated blood and tissue chang. J. Path. Bact. 54:321-330.
- Perrin, M. 1941. Possible harmfulness of paradichlorobenzene used as a moth killer. Bull. de l'Acad. de Med. 125:302.

- Perocco, P. Bolognesi, S. and Alberghini, W. 1983. Toxic activity of seventeen industrial solvents and halogenated compounds on human lymphocytes cultured in vitro. Toxicol. Lett. 16:69-75.
- Petit, G. and Champeix, J. 1948. Does an intoxication caused by paradichlorobenzene exist? Arch. Malad. Profess. Med. 9:311-312. (Cited in EPA, 1985.)
- Poland, A. Goldstein, J., Hickman, P. and Burse, V.W. 1971. A reciprocal relationship between the induction of aminolevulinic acid synthetase and drug metabolism produced by m-dichlorobenzene. Biochem. Pharmacol. 20(6):1281-1290.
- Prasad, I. 1970. Mutagenic effects of the herbicide 3', 4'-dichloroproprionanilide and its degradation products. Can. J. Microbiol. 16:369-372.
- Reid, W.D. and Krishna, G. 1973. Centrilobular hepatic necrosis related to covalent binding of metabolites of halogenated aromatic hydrocarbons. Ex. Mo. Pathol. 18:80-99.
- Riedel, H. 1941. Einge beobachtungen über orthodichlorobenzol. Arch. Gewerbepath. Bewerbehyg. 10:546-549. (Cited in EPA, 1985).
- Riley, R.A., Chart, I.S. Doss, A., Gore, C.W., Patton, D. and Weight, T.M. 1980a. Paradichlorobenzene: Long term inhalation study in the rat. Unpublished report: Imperial Chemical Industries Ltd., Central Toxicology laboratory, Alderly Park, Macclesfield, Cheshire, U.K. (Cited in Loeser and Litchfield, 1983.)
- Riley, R.A. Chart, I.S., Gaskell, B. and Gore, C.W. 1980b. Para-dichlorobenzene: Long term inhalation study in the mouse. Unpublished report: Imperial Chemical Industries Ltd., Central Toxicology Laboratory, Alderly Park, Macclesifled, Cheshire, U.K. (Cited in Loeser and Litchfield, 1983).
- Rimington, C. and Ziegler, G. 1963. Experimental porphyria in rats induced by chlorinated benzene. Biochem. Pharmacol. 12:1387-1397.
- Shackelford, W.M. and Keith, L.H. 1976. Frequency of Organic Compounds Identified in Water. (EPA-600)/4-76-062), Athens GA, Environmental Research Laboratory, U.S. Environmental Protection Agency, pp. 37, 72, 76-77.
- Sharma, A.K. and Bhattacharyya. 1956. Chromosome breakage through paradichlorobenzene treatment. Cytologia 21:353-360.
- Sharma, A.K. and Sarkar, S.K. 1957. A study on the comparative effect of chemicals on chromosomes of roots, pollen mother cells and pollen grains. Proc. Indian Acad. Sci. Sect. B. 45(6):288-293.

- Srivastava, L.M. 1966. Induction of mitotic abnormalities in certain genera of tribe Vicieae by paradichlorobenzene. Cytologia, 31:166-171. U.S. EPA (U.S. Environmental Protection Agency) 1985. Health Assessment Document for Chlorinated Benzenes. Cincinnati, OH: Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Office of Research and Development.
- Sumers, J., Fuhrman, M. and Kelman, A. 1952. Hepatitis with concomitant esophageal varices following exposure to moth ball vapors. N.Y. State J. Med 52:1048-1049.
- U.S. EPA (U.S. Environmental Protection Agency) 1980. Ambient Water Quality Criteria for Dichlorobenzenes. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division.
- U.S. EPA (U.S. Environmental Protection Agency) 1985. Health Assessment Document for Chlorinated Benzenes. Cincinnati, OH: Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Office of Research and Development.

Ware and West, 1977.

1,2-DICHLOROETHANE REFERENCES

- Agency for Toxic Substances and Disease Registry (ATSDR), U.S. Public Health Service, 1989. Toxicolgocial Profile for 1,2-Dichloroethane
- Alumot E, Nachtomi E, Mandel E, et al. 1976. Tolerance and acceptable daily intake of chlorinate furnigants in the rat diet. Food Cosmet Toxicol 14:105-110.
- Austin SB, Schnatter AR. 1983a. A case-control study of chemical exposures and brain tumors in petrochemical workers. J Occup med 25:313-320.
- Austin SG, Schnatter AR. 1983b. A cohort mortality study of petrochemical workers. J Occup Med 25:304-312.
- Brondeau GR, Bonnet P, Guenier JP, et al. 1983. Short-term inhalation test for evaluating industrial hepatotoxicants in rats. Toxicol Lett 19:139-146.
- Drinking Water and Health. 1977. 1980. National Academy of Sciences. National Academy of Sciences. Printing and Publishing Offices, Washington, D.C.
- Garrison SC, Leadingham RS. 1954. A fatal case of ethylene dichloride poisoning in an occupational therapy department of a neuropsychiatric hospital. Am J Phys Med 33:230-237.
- Heppel LA, Neal PA, Perin TL, et al. 1945. The toxicology of 1,2 dichloroethane(ethylene). III. Its acute toxicity and the effect of protective agents. J. Pharmacol Exp Ther 84:53-63.
- Heppel LA, Neal PA, Perrin TL, et al. 1946. The toxicology of 1,2-dichloroethane (ethyldichloride). V. The effects of daily inhalations. J Ind Hyg Toxicol 28:113-120.
- Hofmann HT, Birnsteil H, Jobst P. 1971. Zur inhalations toxicant von 1,1-and 1,2-dichloroathan. Arch Toxikol 27:248-265. (German)
- Hogstedt C, Rohlen O, Berndtsson BS, et al. 1979. A cohort study of mortality and cancer incidence in ethylene oxide production workers. Br J Ind Med 36:276-280.
- Hueper WC, Smith C. 1935. Fatal ethylene dichloride [sic] poisoning. Am J Med Sci 189:778-784.
- Isacson P, Bean JA, Splinter R, et al. 1985. Drinking water and cancer incidence in Iowa. III. Association of cancer with indices of contamination. Am J Epid 121:856-869.
- Kavlock R, Chernoff N, Carver B, et al. 1979. Teratology studies in mice exposed to municipal drinking-water concentrates during organogenesis. Food Cosmet Toxicol 17:343-347.

- Klaassen, C D, Amdur, M D and Douil, J, eds. 1986. <u>Casarett and Douil's Toxicology</u>, The Basic Science of Poison, Third Edition. Macmillan Publishing Company, New York, New York.
- Lane RW, Riddle BL, Borzelleca JF. 1982. Effects of 1,2-dichloroethane and 1,1,1-trichloroethane in drinking water on reproduction and development in mice. Toxicol Appl Pharmacol 63:409-421.
- Lochhead HB, Close HP. 1951. Ethylene dichloride plastic cement: A case of fatal poisoning. JAMA 146: 1323.
- Maltoni C, Valgimigli L, Scarnato C. 1980. Long-term carcinogenic bioassays on ethylene dichloride administered by inhalation to rats and mice. IN: Ames BN, Infante P,Reitz R, ed. Ethylene Dichloride: A Potential Health Risk? Banbury Report No. 5. cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 3-33.
- McCollister DD, Hollingsworth RL, Oyen F, et al. 1956. Comparative inhalation toxicity of fumigant mixtures. Individual and joint effects of ethylene dichloride, carbon tetrachloride, and ethylene dibromide. Arch Ind Health 13:1-7.
- Munson AE, Sanders VM, Douglas KA, et al. 1982. In vivo assessment of immunotoxicity. Environ Health Perspect 43:41-52.
- NCI. 1978. Bioassay of technical grade 1,2-dichloroethane for possible carcinogenicity. Bethesda, MD: National Cancer Institute, Division of Cancer Cause and Prevention, Carcinogenesis Testing Program. NCI-CG-TR 55.
- Nouchi T, Miura H, Kanayama M, et al. 1984. Fatal intoxication by 1,2-dichloroethane--A case report. Int Arch Occup Environ health 54: 111-113.
- PCOG. 1966. Pesticide chemicals official compendium. Association of American Pesticide Control Officials, Inc., Topeka, KS.
- Przezdziak J, Bakula S. 1975. [Acute poisoning with 1,2-dichloroethane.] Wiad Lek 28:983-987. (Polish)
- Rao KS, Murray JS, Deacon MM, et al. 1980. Teratogenicity and reproduction studies in animals inhaling ethylene dichloride. IN: Ames B, Infante P, Reitz R, ed. Ethylene Dichloride: A Potential Health Risk? Banbury Report No. 5. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 149-166.
- Reeve GR, Bond GG, Lloyd JW, et al. 1983. An investigation of brain tumors among chemical plant employees using a sample-based cohort method. J Occup Med 25:387-393.
- Schonborn H, Prellwitz W, Baum P. 1970. {Consumption coagulation pathology of 1,2-dichloroethane poisoning.] Klin Wochenschr 48:822-824. (German)

- Sherwood RL, O'Shea W, Thomas PT, et al. 1987. Effects of inhalation of ethylenedichloride on pulmonary defenses of mice and rats. Toxicol Appl Pharmacol 91:491-496.
- Spencer HC, Rowe VK, Adams EM, et al. 1951. Vapor toxicity of ethylene dichloride determined by experiments on laboratory animals. AMA Arch Ind Hyg Occup Med 4:482-493.
- Storer RD, Jackson NM, Conolly RB. 1984. In vivo genotoxicity and acute hepatotoxicity of 1,2-dichlorethane in mice: Comparison of oral, intraperitoneal, and inhalation routes of exposure. Cancer Res 44:4267-4271.
- Vozovaya M. 1977. [The effect of dichloroethane on the sexual cycle and embryogenesis of experimental animals.] Akusk Ginekol (Mosco) 2:57-59. (Russian)
- Waxweiler RJ, Alexander V, Leffingwell SS, et al. 1983. Mortality from brain tumor and other causes in a cohort of petrochemical workers. JNCI 70:75-81.
- Yodaiken RE, Babcock JR. 1973. 1,2-Dichloroethane poisoning. Arch Environ health 26:281-284.
- U.S. Environmental Protection Agency. 1985. Health Assessment Document for 1,2-Dichloroethane. Prepared by the office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Research Triangle Park, NC. EPA 600/8-34-006F.
- U.S. Environmental Protection Agency Integrated Risk Information System (IRIS), 1,2-Dichloroethane, 1989.

BIS[2-ETHYLHEXYL] PHTHALATE REFERENCES

- Carpenter G.P., C.S. Weil and H.F. Smythe 1953. Chronic oral toxicity of bis(2-ethylhexyl) phthalate for rats and guinea pigs and dogs. Ata Indust. Hyg. Occup. Med 8:219-226.
- NTP, 1982. Carcinogenesis bioassay of bis(2-ethylhexyl) phthalate (CAS No. 117-81-7) in F344 rats and B6C3F1 mice (feed study). NTP Tech. Report Ser. TR No. 217, NTP Research Triangle Pack, N.C.
- NTP 1984. Bis(2-ethylhexyl) phthalate: reproduction and fertility in CD-1 mice when administered by gavage. Final Report NTP 84-079. NTP, Research Triangle Park, N.C.
- Shiota K. and H. Nishimura 1982. Teratogenicity of bis(2-ethylhexyl) phthalate and di(n-butyl) phthalate in mice. Envirn, Health Respect 45:65-70.
- Singhe, A.R. W.H. Lawrence and J. Autian 1972. Teratogenicity of phthalate esters in rats J. Pharmacol Sci 61:51.

TRICHLOROETHYLENE REFERENCES

- Blair, A, Decoufle, P, Grauman, D. 1979. Causes of death among laundry and dry cleaning workers. Am J Pub Health; 695087-511.
- Kjellstrand, P, Holmquist, B, Alm, P, Kanje, M, Romare, S, Jonsson, I, Mannson, L, Bjerkamo, M. 1983. Trichloroethylene: Further studies of the effects on body and organ weights and plasma butyryl cholinesterase activity in mice. Acta Pharmacol Toxiccol; 53:375-384.
- Kyrklund, T, Kjellstrand, P, Haglid, KG. 1985. The development and rehabilitation of changes among polyunsaturated fatty acids in cerebral cortex ethanolamine phosphoglycerate, following exposure of rats to trichloroethylene. Acta Neuro Scan; 72(2):264.
- Maltoni, C. Lafemine, G, Cotti, G et al 1986. Experimental Research on Trichloroethylene Carcinogenesis. Archiv. Res. Industrial Carcinogenesis Series. Maltoni, C, Mehlman MA, eds., Vol. V., Princeton Scientific Publishing co., Inc., Princeton, NJ; p. 393. (Cited in EPA 1987a).
- Mazza, V, Brancaccio, A. 1967. Characteristics of the formed elements of the blood and bone marrow in experimental trichloroethylene intoxication. Folia Med; 50:318-324. (Cited in EPA1985b)
- Nomiyama, K, Nomiyama, H. 1974. Respiratory retention, uptake, and excretion of organic solvents in man. Int Arch Arbeitsmed: 32:75-83.
- Simmon, VF, Kauhanen, K, Tardiff, RG. 1978. Mutagenic activity of chemicals identified in drinking water. Pp 249-264 in Scott, D, Bridges, BA, Sobels, FH, eds., Progress in Genetic Toxicology: Proceedings of the 2nd International Conference on Environmental Mutagens, Edinburgh. Elsevier/North-Holland, New York.
- Sorgo, G. 1976. Trichloroethylene, carbon tetrachloride, and gasoline intoxication asetiological factors in the development of arterio and coronary sclerosis. Arch Toxicol; 35:295-318. (Ger.) (Cited in WHO 1985).
- Stott WT, Quast JF, Watanabe PG. 1982. Pharmacokinetics and macromolecular interactions of trichloroethylene in mice and rats. Toxicol Appl Pharmacol; 62-137-151.

TETRACHLOROETHYLENE REFERENCES

- Abedin, Z., Cook, R.C., and Milberg, R.M., 1980. Cardiac toxicity of PP perchloroethylene (a dry cleaning agent). Southern Med J; 73(8): 1081-1083.
- Aranyi, C., O'Shea, W.J., Graham, J.A., and Miller, F.J., 1986. The effects of inhalation of organic chemical air contaminants on murine lung host defenses. Fund Appl Toxicol; 6(4):713-720.
- Blari, A., Docoufle, P., and Grauman, D., 1979. Causes of death among laundry and dry cleaning workers. Am J Pub Health; 69:508-511.
- Briving, C., Jacobson, I., Hamberger, A., Kjellstrand, P., Haglid, K.G., and Rosengren, L.E., 1986. Chronic effects of perchloroethylene and trichloroethylene on the gerbil brainamino acids and glutathione. Neurotoxicologist; 7(1):101-108.
- Brown, D.P., and Kaplan, S.D., 1985. Retrospective cohort mortality study of dry cleaner workers using perchloroethylene. Cincinnati, OH: NIOSH, U.S. Department of Health and Human Services.
- Buben, J.A., and O'Flaherty, E.F., 1985. Delineation of the role of metabolism in the hepatotoxicity of trichloroethylene and perchloroethylene: A dose effect study. Toxicol Appl Pharmacol; 78(1):105-122.
- Carpenter, C.P., 1937. The chronic toxicity of tetrachloroethylene. J. Ind Hyg Toxicol; 19:323-336.
- Duh, R.W., and Asal, N.R., 1984. Mortality among laundry and dry-cleaning workers in Oklahoma Am J. Public Health; 74(11):1278-1280.
- Ghantous, H., Danielsson, B.R.G., Dencker, L., Gorczak, J., and Versterberg O., 1986. Trichloroacetic acid accumulates in murine amniotic fluid after tri- and tetrachloroethylene inhalation. Acta Pharmacol Toxicol; 58:105-114.
- Goldberg, M.E., Johnson, H.E., Pozzani, U.C., and Smyth, H.F., 1964. Effect of repeated inhalation of vapors of industrial solvents on animal behavior. I. Evaluation of nine solvent vapors on pole-climb performance in rats. Am Ind Hyg Assoc J; 25:369-375.
- Hake, C.L., and Stewart, R.D., 1977. Human exposure to tetrachloroethylene: in halation and skin contact. Environ Health Persp; 21:231-238.
- Hara, M., Kino, M., Yamamoto, et al., 1985. Cardiovascular effects of organic solvents(perchloroethylene) (PERC). Jap Circ J; 49(8):887-888. (Abstract).
- Hayes, J.R., Condie, L.W., and Borzelleca, J.F., 1986. The subchronic toxicity of tetrachloroethylene (perchloroethylene) administered in the drinking water of rats. Fund Appl Toxicol; 7(1):119-125.

- Ideda, M., Koisumi, A., Watanabe, T., Endo, A., and Sato, K., 1980. Cytogenetic and cytokinetic investigations on ymphoytes from workers occupationally exposed to tetrachloroethylene. Toxicol Lett; 5:251 -256.
- Kaplan, S.D., 1980. Dry-Cleaner Workers Exposed to Perchloroethylene. A Retrospective Cohort Mortality Study. U.S. DHEW Contract No. 210-77-0094. Cincinnati, OH:NIOSH. (Cited in IARC 1982).
- Katz, R.M., and Jowett, D., 1981. Female Laundry and dry-cleaning workers in Wisconsin. a mortality analysis. Am J Pub Health; 71:305-307.
- Kjellstrand, P., Holmquist, B., Kanje, M., et al., 1984. Perchloroethylene: Effects on body and organ weights and plasma butyrylcholinesterase activity in mice. Acta Pharmacol Toxicol; 54(5):414-424.
- Kobayashi, S., Hutcheon, D.E., and Regan, John, 1982. Cardiopulmonary Toxicity of Tetrachloroethylene. J Toxicol Environ Health; 10:23-30.
- Koppel, C., Arndt, I., Arendt, U., Koeppe, P., 1985. Acute tetrachloroethylene poisoning:Blood elimination kinetics during hyperventilation therapy. J Toxicol Clin Toxicol; 23(2-3):103-116.
- Kylin, B., Reichard, H., Sumegi, I., and Yllner, S., 1963. Hepatotoxicity of inhaled trichloroethylene, tetrachloroethylene, and chloroform-single exposure. Acta Pharmacol Toxicol; 20:16-26. (Cited in EPA 1985a)
- Kyrklund, T., Alling, C., Kjellstrand, P., and Haglid, K.G., 1984. Chronic effects of perchloroethylene on the composition of lipid and acyl groups in cerebral cortex and hippocampus of the gerbil. Toxicol Lett; 22:343-349.
- Larson, N.A., Nielsen, B., and Ravin-Nielsen, A., 1977. Perchloroethylene intoxication-a hazard in the use of coin laundries. Ugeskr Laeg; 3995:270-275. (English translation)(Cited in EPA 1985a).
- Levine, B., Fierro, M.F., Goza, S.W., and Valentour, C., 1981. A tetrachloroethylene fatality. J. Forensic Sci; 26:206-209. (Cited in EPA 1985a).
- Lukaszewski, T., 1979. Acute tetrachloroethylene fatality. Clin. Toxicol. 15(4): 411-415.
- NCI (National Cancer Institute). 1977. Bioassay of tetrachloroethylene for possible carcinogenicity. Bethesda, MD: U.S. Department of Health, Education and Welfare, Public Health Service, National Institutes of Health. DHEW Pub. No. (NIH) 77-813.
- NTP (National Toxicology program). 1986. Toxicology and carcinogenesistetrachloroethylene (perchloroethylene) (CAS No. 127-184) in F344/N rats and B6C3F1 mice (inhalation studies). Natl. Toxicol. Program Tech. Rep. Serv. Issue. 311.

- Rampy, L.W., Quast, J.F., Balmer, M.F., Leong, B.K.J., and Gehring, P.J., 1978. Results of a long-term inhalation toxicity study. Perchloroethylene in rats. Toxicology Research Laboratory, Health and Environmental Research, The Dow Chemical Company, Midland, MI. Unpublished. (Cited in EPA 1985a).
- Reinhardt, C.F., Mullin, L.S., and Maxfield, M.E., 1973. Epinephrine-induced cardiacarrhythmia potential of some common industrial solvents. J Occup Med; 15(12):953-955.
- Rosengren, L.E., Kjellstrand, P., and Haglid, K.G., 1986. Tetrachloroethylene: levels of KNA and S-100 in the gerbil CNS after chronic exposure. Neuro behave Toxicol Teratol; 8(2):201-206.
- Rowe, V.K., McCollister, D.D., Spencer, H.C., Adams, E.M., and Irish, D.D., 1952. Vapor toxicity of tetrachloroethylene for laboratory animals and human subjects. AMA Arch Ind Hyg Occup Med; 5:566-579.
- Savolainen, H., Pfaffli, P., Tengen, M., and Vainio, H. 1977. Biochemical and behavioral effects on inhalation exposure to tetrachloroethylene and dichloromethane. J Neuropath Exp Neurology; 36:941-949.
- Schwetz, B.A., Leong, B.K.J., and Gehring, P.J., 1975. The effect of maternally inhaled trichloroethylene, perchloroethylene, methylchloroform, and methylene chloride on embryonal and fetal development in mice and rats. Toxicol Appl Pharmacol; 32:84-96.
- Stewart, R.D., Baretta, E., Dod, H.C., Torkelson, T.R., 19970. Experimental human exposure to tetrachloroethylene. Arch Environ Health; 20:224-229.
- Stewart, R.D., Hake, C.L., Wu, A., et al. 1977. Effects of perchloroethylene/drug interaction behavior and neurological function. Final report. Washington, DC: NIOSH. (Cited in EPA 1985a).
- U.S. Public Health Service, Agency for Toxic Substances and Disease Registry, 1989. Toxicological Profile for Tetrachloroethylene. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Van Duuren, B.L., Goldschmidt, M., Loewengart, G., Smith, C., Melchione, S., Seidman, I., and Roth, D., 1979. Carcinogenicity of halogenated olefinic and aliphatichydrocarbons in mice. JNCI;63:1433-1439.
- Wenzel, D.G., and Gibson, R.D., 1951. Toxicity and anthelminthic activity of n-butylidene chloride. J Pharm Pharmacol; 3:169-176. (Cited in EPA 1985a).

TRIHALOMETHANE REFERENCES

- Carlo, GL and Mettlin, CJ. 1980. Cancer Incidence and Trichloromethane Concentrations in a Public Water System. Am. J. Public Health. 7:523-25
- Crump, KS and Quess, HA. 1982. Drinking Water and Cancer: Review of Recent Epidemiological Findings and Assessment of Risks. Ann. Rev. Public Health. 3: 339-357.
- Gottlieb, MS, Carr, JK, Clarkson, JR. 1980. Drinking Water and Cancer in Louisiana.

 Mortality Stuly. Prepared for Health Effects Research Research Laboratory, U. S. Environmental Protection Agency, Cincinnati, Ohio. Submitted for publication.
- Gottlieb, MS, Carr, JK, Mirris, DT. 1981. Cancer and Drinking Water in Louisiana: Colon and rectum. Intl. J. Epidemiol. 10:117-25.
- Jorgenson, TA, Meierhenry, EF, Rushbrook, CJ, et al. 1985. Carcinogenicity of Chloroform in Drinking Water to Ma'e Osborne-Mendel Rats and Female B6C3F1 Mice. Fund. Appl. Toxicol. (USA) 5(4): 760-769.
- Kanarek, MS and Young, TB. 1980. Drinking Water Chlorination and Female Cancer in Wisconsin. 1961-1977. Prepared for Health Effects Research Laboratory, U. S. Environmental Protection Agency, Cincinnati, Ohio.
- National Cancer Institute (NCI). 1985. Cancer Rates and Risks. NIH Publication No. 85-691.
- Schwetz, BA, Leong, BKJ, Gehring, PJ. 1974. Embryo and Fetotoxicity of Inhaled Chloroform in Rats. Toxicol. Appl. Pharmacol. 28: 442-451.
- Sittig, M. 1985. Handbook of Toxic and Hazardous Chemicals and Carcinogens, 2nd ed. Noyes Publications, Park Ridge, New Jersey.
- Roe, FLC, Palmer, AAK, Worden, AN, Van Abbe, NJ. 1979. Safety Evaluation of Toothpaste Containing Chloroform. I. Long-term Studies in Mice. J. Environ. Toxicol. 2: 799-819.
- Viessman, W and Hammer, MJ. 1985. Water Supply and Pollution Control, 4th ed. Harper and Row Publishers. New York, New York.
- Zierlier, S, Feingold, L, Danley, RA, and Craun, G. 1988. Bladder Cancer in Massachusetts Related to Chlorinated Drinking Water: A Case-Control Study. Archives of Environmental Health. 43(2).
- U.S. Environmental Protection Agency, Agency for Toxic Substances and Disease Registry (ATSDR). 1989. Toxicological Profile for Chloroform.

U. S. Environmental Protection Agency, Integrated Risk Information System (IRIS). 1989. Chloroform.

IRIS 1989. Dibromochloromethane.

IRIS 1989. Bromoform.

IRIS 1989. Bromodichloromethane.

PHENOL REFERENCES

- Dow Chemical Co. 1945. The toxicity of phenol. Biochem. Res. Lab. Unpublished report.
- National Cancer Institute (NCI). 1980. Bioassay of phenol for possible carcinogenicity in F344 rats and B6C3F1 mice. NIH Publ. No. 80-1759. August 1980.
- National Toxicology Program (NTP). 1983. Teratologic evaluation of phenol in CD rats and mice. Report prepared by Research Triangle Institute, Research Triangle Park, NC. NTIS PB83-247726. Gov. Rep. Announce. Index. 83(25):6247.
- Sittig, M. 1985. Handbook of Toxic and Hazardous Chemicals and Carcinogens, 2nd ed. Noyes Publications, Park Ridge, New Jersey.
- U.S. Environmental Protection Agency, Integrated Risk Information System (IRIS). 1990. Phenol.

TOLUENE REFERENCES

- Agency for Toxic Substances and Disease Registry (ATSDR), U.S. Public Health Service. 1989. Toxicological Profile for Toluene.
- Anderson HR, Macnair RS, Ramsey JD. 1985. Epidemiology: Deaths from abuse of volatile substances: A national epidemiological study. Br Med J 290:304-307.
- Andersson R, Carlsson A, Nordqvist MB, et al. 1983. Urinary excretion of hippuric acid and o-cresol after laboratory exposure of humans to toluene. Int Arch Occup Environ Health 53:101-108.
- API. 1981. American Petroleum Institute. Mutagenicity evaluation of toluene in the mouse dominant lethal assay. Litton Bionetics, Inc. Proj. no. 21141-05. Final report.
- API. 1985. American Petroleum Institute. Two-generation reproduction/fertility study on a petroleum-derived hydrocarbon (i.e.,) toluene [Volume 1].
- Aranyi C, OShea WJ, Sherwood RL, et al. 1985. Effects of toluene inhalation on pulmonary host defenses of mice. Toxicol Lett 25:103-110.
- Banfer W. 1961. Studies on the effect of pure toluene on the blood picture of photograture printers and helper workers. Zentral fur Arbeitsmed 11:35-40.
- Bauchinger M, Schmid E, Dresp J, et al. 1982. Chromosome change in lymphocytes after occupational exposure to toluene. Mutat Res 102:439-445.
- Bruckner JV, Peterson RG. 1981a. Evaluation of toluene and acetone inhalant abuse. I. Pharmacology and pharmacodynamics. Toxicol Appl Pharmacol 61:27-38.
- Bruckner JV, Peterson RG. 1981b. Evaluation of toluene and acetone inhalant abuse. II. Model development and toxicology. Toxicol Appl Pharmacol 61:302-312.
- Capellini A, Alessio L. 1971. The urinary excretion of hippuric acid in workers exposed to toluene. Med Lavoro 62:196-201.
- Carpenter CP, Smyth HF. 1946. Chemical burns of the rabbit comea. Am J Ophthalmo 129:1363-1372.
- Carpenter CP, Geary DL, Myers RC, et al. 1976. Petroleum hydrocarbon toxicity studies. XIII. Animal and human response to vapors of toluene concentrate. Toxicol Appl Pharmacol 36:473-490.

- CIIT. 1980. Chemical Industry Institute of Toxicology. A twenty-four month inhalation toxicology study in Fischer-344 rat exposed to atmospheric toluene. Executive Summary and Data Tables. Conducted by Industrial Bio-Test Laboratories, Inc., Decatur, IL, and Experimental Pathology Laboratories, Inc., Raleigh, NC for CIIT, Research Triangle Park, NC. October 15, 1980.
- Courtney KD, Andrews JE, Springer J, et al. 1986. A perinatal study of toluene in CD-1 mice. Fundam Appl Toxicol 6:145-154.
- Devathasan G, Low D, Teoh PC, et al. 1984. Complications of chornic glue (toluene) abuse in adolescents. Aust NZ J Med 14:39-43.
- Goodwin TM. 1988. Toluene abuse and renal tubular acidosis in pregnancy. Obstet Gynecol 71:715-718.
- Greenburg L, Mayers MR, Heimann H, et al. 1942. The effects of exposure to toluene in industry. J Am Med Assoc 118:573-578.
- Haglund U, Lundberg I, Zech L. 1980. Chromosome aberrations and sister chromatic exchanges in Swedish paint industry workers. Scan J Environ Health 6:291-298.
- Hanninen H, Eskelinen L., Husman K, et al. 1976. Behavioral effects of long-term exposure to a mixture of organic solvents. Scand J Work Environ Health 4:240-255.
- Hartmann RJ, Gause EM, Mendez V, et al. 1984. Effect of exposure to toluene and ethanol alone or in combination on a match-to-sample discrimination task in the juvenile baboon. Proc West Pharmacol Soc 27:251-253.
- Hazleton Laboratories. 1962. Acute eye application albino rabbits. ESSO Research and Engineering Company. Falls Church VA.
- Holmberg PC. 1979. Central nervous system defects in children born to mothers exposed to organic solvents during pregnancy. Lancet 2:177.
- Honma T, Miyagawa M, Sato M, et al. 1982. Increase in glutamine content of ratmid brain induced by short-term exposure to toluene and hexane. Ind Health 20:109-115.
- Ikeda M, Koizumi A, Kasahara M, et al. 1986. Combined effects of n-hexane and toluene on norepinephrine and dopamine levels in rat brain tissues after long-term exposure. Bull Environ Contam Toxicol 36:510-517.
- Iregren A. 1986. Subjective and objective signs of organic solvent toxicity among occupationally exposed workers. Scand J Work Environ Health 12:469-475.
- Kimura ET, Ebert DM, Dodge PW. 1971. Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol 19:699-704.

- Kronevi T, Wahlberg J, Holmberg B. 1979. Histopathology of skin, liver, and kidney after epicutaneous administration of five industrial solvents to guinea pigs. Environ Res 19:56-69.
- Kyrklund T, Kjellstrand P, Haglid K. 1987. Brain lipid changes in rats exposed to xylene and toluene. Toxicology 5:123-133.
- Lundberg I, Hakansson M. 1985. Normal serum activities of liver enzymes in Swedish paint industry workers with heavy exposure to organic solvents. Br J Ind Med 42:596-600.
- Maki-Paakkanen J, Husgafvel-Pursiainen K, Kalliomaki PL, et al. 1980. Toluene-exposed workers and chromosome aberrations. J Toxicol Environ Health 6:775-781.
- Moszcynski P, Lisiewicz J. 1984. Occupational exposure to benzene, toluene and xylene and the T lymphocyte functions. Haematologia 17:449-453.
- NTP 1989. NTP technical report on the toxicology and carcinogenesis studies of tolune (CAS No. 108-88-3) in F344/N rats and B6C3F1 mice. NIH publications no. 89-2826.
- Parmeggiani L, Sassi C. 1954. Occupational risk of toluene: environmental studies and clinic investigations of chrome intoxication. Med Lavoro 45:574-587.
- Pryor GT, Dickinson J, Feeney E, et al. 1984a. Hearing loss in rats first exposed to toluene as weanlings or as young adults. Neurobehav Toxicol Teratol 6:111-119.
- Pryor GT, Rebert CS, Dickinson J, et al. 1984b. Factors affecting toluene-induced to toxicity in rats. Neurobehav Toxicol Teratol 6:223-238.
- Schmid E, Bauchinger M, Hauf R. 1985. Chromosome changes with time inlymphocytes after occupational exposure to toluene. Mutat Res 142:37-39.
- Seidenberg JM, Becker RA. 1987. A summary of the results of 55 chemicals screened for developmental toxicity in mice. Teratogen Carcinogen Mutagen 7:17-28.
- Seiji K, Inoque O, Nakatsuka H, et al. 1987. No biologically significant changes in liver function after occupational exposure to toluene at over-OEL levels. Ind Health 25:163-168.
- Smith KN. 1983. Determination of the reproductive effects in mice of nine selected chemicals. Bioassay Systems Corporation. NIOSH Contract No. 210-81-6011. BSC Project No. 10867.
- Smyth HF, Weil CS, West JS, et al. 1969. An exploration of joint toxic action: Twenty-seven industrial chemicals incubated in rats in all possible pairs. Toxicol Appl Pharmacol 14:340-347.

- Suleiman SA. 1987. Petroleum hydrocarbon toxicity in vitro: effect of n-alkanes, benzene and toluene on pulmonary alveolar macrophges and lysosomal enzymes of the lung. Arch Toxicol 59:402-407.
- Tahti H, Karkkainen S, Pyykko K, et al. 1981. Chronic occupational exposure to toluene. Int Arch Occup Environ Health 48:61-69.
- U. S. Environmental Protection Agency (EPA). 1985. Drinking water criteria document for toluene. Washington, D.C.: U.S. Environmental Protection Agency Office of Drinking Water. ECAO-CIN-408.
- U.S. Environmental Protection Agency, Integrated Risk Information System (IRIS). 1989.

 Toluene.
- U.S. Environmental Protection Agency, Health Effects Assessment Summary Tables (HEAST). 1989. Toluene.
- Ungvary G, Tatrai E, Szeberenyi S, et al. 1982. Effect of toluene exposure on the liver under different experimental conditions. Exp Mol Pathol 36:347-360.
- Ungvary G, Tatrai E. 1985. On the embryo toxic effects of benzene and its alkyl derivatives in mice, rats and rabbits. Arch Toxicol (Supplement) 8:425-430.
- Ungvary G. 1985. The possible contribution of industrial chemicals (organic solvents) to the incidence of congenital defects caused by teratogenic drugs and consumer goods: An experimental study. In: Marois, M., ed. Prevention of physical and mental congenital defects. Part B: Epidemiology, early detection and therapy, and environmental factors. New York: Alan R. Liss, Inc. pp 295-300.
- von Oettingen WF, Neal PA, Donahue DD, et al. 1942. The toxicity and potential dangers of toluene with special reference to its maximal permissible concentration. U.S. Public Health Service Publication Health Bull No. 279:50.
- Wen CP, Tsai SP, Weiss NS, et al. 1985. Long-term mortality study of oil refinery workers. IV. Exposure to the lubricating-dewaxing process. J Natl Cancer Inst 74:11-18.
- Wilson RH. 1943. Toluene poisoning. J Am Med Assoc 123:1106-1108.
- Winchester RV, Madjar VM. 1986. Solvent effects on workers in the paint, adhesive and printing industries. Ann Occup Hyg 30:307-317.
- Withey RJ, Hall JW. 1975. The joint toxic action of perchloroethylene with benzene or toluene in rats. Toxicology 4:5-15.
- Wolf MA, Rowe VK, McCollister DD, et al. 1956. Toxicological studies of certain alkylated benzenes and benzene. AMA ARch Ind Health 14:387-398.

XYLENE REFERENCES

- Agency for Toxic Substances and Disease Registry Integrated Risk Information System (IRIS). 1989.
- Anderson K, Fuxe K, Nilsen OG, et al. 1981. Production of discrete changes in dopamine and noradrenaline levels and turnover in various parts of the rat brain following exposure to xylene, ortho-, meta-, and para-xylene, and ethylbenzene. Toxicol Appl Pharmacol 60:535-548.
- Bio/dynamics Inc. 1983. File with FYI-AX-0982-0209: Parental and fetal reproduction toxicity study. EPA/OTS Public Files. Submitted by American Petroleum Institute. document No. FYI-AX-0983-0209.
- Carpenter CP, Kinkead ER, Geary DJ, et al. 1975. Petroleum hydrocarbon toxicity studies. V. Animal and human response to vapors of mixed xylenes. Toxicol Appl Pharmacol 33:543-558.
- De Caeurriz JC, Micillino JC, Bonnet P, et al. 1981. Sensory irritation caused by various industrial airborne chemicals. Toxicol Lett 9:137-143.
- Dyer RS, Bercegeay MS, Mayo LM. 1988. Acute exposures to p-xylene and toluene alter visual information processing. Neurotoxicol Teratol 10:147-153.
- Gamberale F, Annwall G, Hultengren M. 1978. Exposure to xylene and ethylbenzene: III. Effects on central nervous functions. Scand J. Work Environ Health 4:204-211.
- Goldie I. 1960. Can xylene (xylol) provoke convulsive seizures. Ind Med Surg 29:33-35.
- Hake CLR, Stewart RD, Wu A, et al. 1981. p-Xylene: Development of a biological standard for the industrial worker. Report to the National Institute for Occupational Safety and Health, Cincinnati, OH, by the Medical College of Wisconsin, Inc., Milwaukee, WI. PB82-152844.
- Hazleton Labs. 1988a. Subchronic toxicity study in rats with m-xylene. Report by Hazleton Laboratories America, Inc., Rockville MD for Dynamac Corporation, Rockville, MD(unpublished).
- Hazleton Labs. 1988b. Subchronic toxicity study in rats with p-xylene. Report by Hazleton Laboratories America, Inc., Rockville MD for Dynamac Corporation, Rockville, MD(unpublished).
- Hine CH, Zuidema HH. 1970. The toxicological properties of hydrocarbon solvents. Industrial Medicine 39:39-44.
- Hudak A, Ungvary G. 1978. Embryo toxic effects of benzene and its methyl derivatives: toluene, xylene. Toxicol 11:55-63.

- Klaucke DN, Johansen M. Vogt RL. 1982. An outbreak of xylene intoxication in a hospital. AMJ Ind Med 3:173-178.
- Kyrklund, T, Kjellstrand P, Haglid K. 1987. Brain lipid changes in rats exposed to xylene and toluene. Toxicology 45:123-133.
- Litton Bionetics. 1978. Teratology study in rats xylene final report. EPA/OTS Public Files. Submitted by American petroleum Institute. Document No. 878210350.
- Marks TA, Ledoux TA, Moore JA > 1982. Teratogenicity of a commercial xylene mixture in the mouse. J Toxicol Environ Health 9:97-105.
- Mirkova E, Hinkova L, Vassileva L, et al. 1979. Xylene neurotoxicity in pregnant rats and fetuses. Activ Nerv Supp (Praha) 21:265-268.
- Morley R, Eccleston DW, Douglas CP, et al. 1970. Xylene poisoning: A report on one fatal case and two cases of recovery after prolonged unconsciousness. Br Med J 3:442-443.
- NTP. 1986. NTP technical report on the toxicology and carcinogenesis studies of xylenes (mixed) (60% m-xylene, 14% p-xylene, 9% o-xylene, and 17% ethylbenzene) (CAS no. 1330-20-7) in F344/N rats and B6C3F1 mice (gavage studies). US Department of Health and Human Services, Public Health Service, National Institutes of Health, National Toxicology Program. NTP TR327, NIH Publication No. 87-2583.
- Nersesian W, Booth H, Hoxie D, et al. 1985. Illness in office attributed to xylene (Letter). Occup Health Saf 54:88.
- Rank J. 1985. Xylene induced feeding and drinking behavior and central adrenergic receptor binding. Neurobehav Toxicol Teratol 7:421-426.
- Shigeta S, Aikawa H, Misawa T, et al. 1983. Fetotoxicity of inhaled xylene in mice (Abstract). Teratology 28:22A.
- Tatrai E, Ungvary G. 1980. Changes induced by o-xylene inhalations in the rat liver. Acta MedAcad Sci Hung 37:211-216.
- Toftgard, R, Nilsen, O G, 1982. Effects of xylene and xylene isomers on cytochrome P-450 and in vitro enzymatic activities in rat liver kidney and lung. Toxicology 23:197-212.
- Wimolwattanapun S, Ghosh TK, Mookherjee S, et al. 1987. Effect of inhalation of xylene on intracranial self-stimulation behavior in rat. Neuropharmacology 26:1629-1632.

CHLORDANE REFERENCES

- Alvarez, W.C., and Hyman S., 1953. Absence of Toxic Manifestations in Workers Exposed to Chlordane. AMA Arch Ind Hyg Occup Med; 8:480:483.
- Barnett, R.W., D'Ercole A.J., and Cain J.D., et al., 1979. Organochlorine Pesticide Residues in Human Milk Samples from Women Living in Northwest and Northeast Mississippi, 1973-1975. Pest Monit J; 13:47:51.
- Becker, F.F., and Sell, S., 1979. Alpha feto protein Levels and Hepatic Alterations During Chemical Carcinogenesis in C57BL/6N Mice. Cancer Research; 39:3491:3494.
- Ditraglia D., Brown, D.P., and Manekata, T., et al., 1981. Mortality Study of Workers Employed at Organochlorine Pesticide Manufacturing Plants. Scand J Work Environ Health; 7:140:146.
- U. S. Environmental Protection Agency (U. S. EPA), 1980. Summary of Reported Pesticide Incidents Involving Chlordane. Pesticide Incident Monitoring System Report No.360; Office of Pesticide Programs, Washington, DC.
- Fishbein, W.I., White. J.V., and Isaacs, H.F., 1964. Survey of Workers Exposed to Chlordane. Ind Med Surg; 10:726:727.
- Harrington, J.M., Baker, E.L., Jr, and Folland, D.S., et al., 1978. Chlordane Contamination of a Municipal Water System. Environ Res; 15:155:159.
- Hayes, Wayland J., Jr., MD, Ph.D., 1982. Pesticides Studied in Man, Williams and Williams, Baltimore.
- Ingle, L. (1952) Chronic oral toxicity of chlordane to rats. Arch. inc. Hyg. occup. Med., 6:357:367.
- International Programme on Chemical Safety (IPCS), 1984. Environmental Health Criteria 34, Chlordane, WHO, Geneva.
- Kutz, F.W., Yobs, A.R., and Strassman S.C., 1976. Organochlorine Pesticide Residues in Human Adipose Tissue. Bull Soc Pharm Environ Pathol; 4:17:19.
- Kutz, F.W., Strassman, S.C., and Sperling, J.F., 1979. Survey of Selected Organochlorine Pesticides in the General Population of the United States. Annals of the New York Academy of Sciences; 320:60:68.
- MacMahon, B., Monson, R.R., and Wang, H.H., et al., 1988. A Second Follow-up of Mortality in a Cohort of Pesticide Applicators. J Occup Med; 30:429:432.

- National Cancer Institute (NCI), 1977. Bioassay of Chlordane for Possible Carcinogenicity. Technical Report Series No. 8. U.S. Dept. of Health, Education and Welfare; NIH PB 271 977.
- National Institute for Occupational Safety and Health (NIOSH), 1984. Health Hazard Evaluation Report; HETA 83:424:1403. Ozark National Scenic Riverways, Van Buren, MO., Cincinnati, OH.
- Princi, F., and Spurbeck, G.H., 1951. A Study of Workers Exposed to the Insecticides Chlordane, Aldrin, Dieldrin. Ind Hyg Occup Med; 3:64:72.
- Saito, I., Kawamura N., and Uno K., et al., 1986. Relationship between chlordane and its metabolites in blood of pest control operators and spraying conditions. Int Arch Occup Environ Health; 58:91:97.
- Shindell, S., and Ulrich, S., 1986. Mortality of workers employed in the manufacture of chlordane: An update. J Occup Med; 28:497:501.
- Stohlman, E.F., Thorp, W.T.S., and Smith, M.I., 1950. Toxic action of chlordane. Arch Ind Hyg Occ Med; 1:13.
- Strassman, S.C., and Kutz, F.W., 1977. Insecticide residues in human milk from Arkansas and Mississippi, 1973:74. Pestic Monit J; 10:130:133.
- Taguchi, S., and Yakushiji, T., 1988. Influence of termite treatment in the home on the chlordane concentration in human milk. Arch Environ Contam Toxicol; 17:65:72.
- Takamiya, K., 1987. Residual levels of plasma oxychlordane and transnonachlor in pest control operators and some characteristics of these accumulations. Bull Environ contam Toxicol; 39: 750:755.
- Velsicol Chemical Co. 1983. Thirty month chronic toxicity and tumorigenicity test in rats by chlordane technical. Unpublished study by Research Institute for Animal Science in Biochemistry and Toxicology (RIASBT), Japan. (Cited in EPA 1985a, b, c; EPA 1988c).
- Wang, H.H., and MacMahon, B., 1979. Mortality of workers employed in the manufacture of chlordane and heptachlor. J Occup Med; 21:745:748.

p,p' DDT REFERENCES

- ASTDR, 1989. Toxicological Profile for p,p1 DDT, p,p1 DDE and p,p1 DDD. Atlanta, GA: ASTDR.
- Agthe C, Garcia H, Shubic P, et al., 1970. Study of the potential carcinogenicity of DDT in the Syrian golden hamster (347-40). Proc Soc Exp Biol Med 134:113-116.
- Cabral J, Hall R, Rossi L, et al., 1982. Lack of carcinogenicity of DDT in hamsters. Tumori 68:5-10.
- Clark J. 1974. Mutagenicity of DDT in mice, <u>Drosophila melanogaster</u> and <u>Neurospora crassa</u>. Aust J. Biol Sci 27:427-40.
- De Waziers I, Azais V. 1987. Drug-metabolizing enzyme activities in the liver and intestine of rats exposed to DDT: effects of Vitamin A status. Arch Environ Contam Toxicol 16:343-348.
- Deichman W, MacDonald W, Beasley A, et al., 1971. Subnormal reproduction in beagle dogs induced by DDT and aldrin. Ind Med 40:10-20.
- EPA, 1988. Integrated Risk Information System (IRIS). Environmental Criteria and Assessment Office, Cincinnati, Ohio.
- Garcia M, Mourelle M. 1984. Gamma-glutamyl transpeptidase: A sensitive marker in DDT and toxaphene exposure. J Appl Toxicol 4: 246-248.
- Krause W, Hamm K, Weissmuller J. 1975. The effect of DDT on spermatogenesis of the juvenile rat. Bull Environ Contam Toxicol 14:171-179.
- NCI. 1978. Bioassays of DDT, TDE, and p,p1 DDE for possible carcinogenicity. National Cancer Institute. CAS No. 50-29-3, 72-54-8, 72-55-9 NCI-CG-TR-131.

HEPTACHLOR REFERENCES

- Ahmed FE, Hart RW, Lewis NJ. 1977. Pesticide induced DNA damage and its repair in cultured human cells. Mutat. Res. 42:161-174.
- Akay MT, Alp U. 1981. The effects of BHC and heptachlor on mice. Haceteppe Bull. Nat. Sci. Eng. 10:11-22.
- ASTDR, 1987. Agency for Toxic Substances and Disease Registry. Toxicological Profile for Heptachloric Epoxide. Atlanta, GA: ASTDR.
- CAG. 1986. Carcinogen Assessment Group. Carcinogenicity assessment of chlordane and heptachlor/heptachlor epoxide. Washington, DC: Office of Health and Environmental Assessment, U.S. Environmental Protection Agency.
- Cerey K, and Ruttkay-Nedecka J. 1971. The influence of heptachlor on rat fertility and growth. Z. Versuchstierkd. 13:243-244.
- Enan EE, El-Sebae AH, Enan OH. 1982. Effects of liver functions by some chlorinated hydrocarbon insecticides in white rats. Meded. Fac. Landbouwet., Ruklsikov. Gent. 47 (1):447-457.
- Epstein SS, Arnold E, Andrea J, Bass W, and Bishop Y. 1972. Detection of chemical mutagens by the dominant lethal assay in the mouse. Toxicol. Appl. Pharmacol. 23:288-325.
- Gentile JM, Gentile GJ, Bultman J, Sechriest R, Wagner ED, Plewa MJ. 1982. An evaluation of the genotoxic properties of insecticides following plant and animal activation. Mutat. Res. 101:19-29.
- Kurata M, Hirose K, Umeda M. 1982 Inhibition of metabolic cooperation in Chinese hamster cells by organochlorine pesticides. Gann 73:217-221.
- NTP. 1987. National Toxicology Program. Unpublished Results from B. Tainer, Toxicology Research Testing Programs, Cellular Genetic Toxicology Branch, NTP, to J. Rowland, Dynamac Corporation; April 15.
- Podowski AA, Banerjee BC, Feroz M, Dudek MA, Willey RL, Khan MAQ. 1979.

 Photolysis of heptachlor and cis-chlordane and toxicity of their photoisomers to animals. Arch. Environ. Contam. Tosicol. 8:509-518.
- Telang S, Ton C, Williams GM. 1982. Epigenetic membrane effects of a possible tumor promoting type on cultured liver cells by the non-genotoxic organochlorine pesticide chlordane and heptachlor. Carcinogenesis 310):1175-1178.
- Wang HH, MacMahon B. 1979a. Mortality of pesticide applicators. J. Occup. Med 21(11):741-744.

- Wang HH, MacMahon B. 1979b. Mortality of workers employed in the manufacture of chlordane and heptachlor. J. Occup. Med. 21(11):745-748.
- WHO. 1984. World Health Organization. Environmental Health Criteria 38. Heptachlor. Geneva, Switzerland: WHO.

HEPTACHLOR EPOXIDE

See Heptachlor

POLYCHLORINATED DIBENZO DIOXINS AND FURANS REFERENCES

- Axelson, O., L. Sundell, K. Anderson, C. Edling, C. Hogstedt, and H. Kling. 1980. Herbicide Exposureand Tumor Mortality: An Updated Epidemiologic Investigation on Swedish Railroad Workers. Sand. J. Work Environ. Health. 6:73-79.
- Berry, D.L., T.J. Slaga, J. DiGiovanni and M.R. Juchau, 1978. Studies with Chlorinated Dibenzo-p-dioxins, Polybrominated Biphenyls, and Polychlorinated Biphenyls in a Two-Stage System of Mouse Skin Tumorigenesis: Potent Anti-Carcinogenic Effects. Ann. NY Acad. Sci. 320:405-415.
- Brinkman, U.A., and A. DeKok. 1980. Production, Properties, and Usage. In: "Halogenated Biphenyls, Terphenyls, Naphthalenes, Dibenzodioxins and Related Products," R.D. Kimbrough, Ed. Elsevier/North-Holland Biomedical Press, Oxford. Chap. 1.
- CDHS. 1985. Report to Scientific Review Panel on Chlorinated Dioxins and Dibenzofurans.

 Department of Health Services, Sacramento, CAlifornia.
- Coggon, D. and E.D. Acheson. 1982. Do Phenoxy Herbicides Cause Cancer in Man? Lancet 1:1057-1059.
- Cook, R.R., J.C. Townsend, M.G. Ott, and L.G. Silverstein. 1980. Mortality Experience of Employees Exposed to 2,3,7,8-Tetrachlordibenzo-p-dioxin (TCDD). J. Occup. Med. 22(8):530-532.
- Hardell, L. and M. Eriksson. 1981. Soft-tissue Sarcomas, Phenoxy Herbicides and Chlorinated Phenols. Lancet 2:250.
- Hardell, L. and A. Sandstrom, 1979. Case-Control Study: Soft-tissue Sarcomas and Exposure to Phenoxyacetic Acids or Chlorphenols. Br. J. Cancer 39:711-717
- Hart, F.C. 1984. Assessment of Potential Public Health Impacts Associated with Predicted Emissions of Polychlorinated Dibenzo-Dioxins and Polychlorinated Dibenzo-Furans from the Brooklyn Navy Yard Resource Recovery Facility. Prepare by Fred C. Hart Associates, Inc., New York, New York.
- Herbert, C.D., M.W. Harris, M.R. Elwell and L.S. Birnbaum. 1990. Relative toxicity and tumor promoting activity of 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,4,7,8-pentachlorodibenzofuran (PCDF) and 1,2,3,4,7,8-hexachlorodibenzofuran (HCDF) in hairless mice. Toxicol. Appl. Pharmacol. 102:362-377.
- IARC. 1977. IARC Monograph on the Evaluation of the Carcinogenic Risk of Chemicals to Man: Some Fumigants, the Herbicides 2,4-D and 2,4,5-T, Chlorinated Dibenzodioxins and Miscellaneous Industrial Chemicals. Vol. 15.

- Kimbrough, R.D., H. Falk, P. Stehr, and G. Fries. 1984. Health Implication of 2,3,7,8-Tetrachlordibenzodioxin (TCDD) Contamination of Residential Soil. J. Toxicol. Environ. Health 14:47-93.
- Kocibia, R. J. 1984. Evaluation of the Carcinogenic and Mutagenic Potential of 2,3,7,8-TCDD and Other Chlorinated Dioxins. In: "Banbury Report 18: Biological Mechanisms of Dioxin Action." Cold Spring Harbor Laboratory, Cold Springs, NY. pp.73-84.
- Kociba, R.J., D.G. Keyes, J.E. Beyer, R.M. Carreon, and P.J. Gehring. 1979. Long-Term Toxicological Studies of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) in Laboratory Animals. Ann. NY Acad. Sci. 320:397-404.
- Kociba, R.J., D.G. Keyes, J.E. Beyer, R.M Carreon, C.E. Wade, D.A. Dittenber, R.P. Kalnins, L.E.Frauson, C.N. Park, S.D. Barnard, R.A. Hummel, and C.G. Humiston. 1978. Results of a Two-YearChronic Toxicity and Oncogenicity Study of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. Toxicol. Appl. Pharmacol. 46:279-303.
- Kouri, R.E., T.H. Rude, R. Joglekar et al. 1978. 2,3,7,8-Tetrachlorodibenzo-p-dioxin as Cocarcinogen Causing 3-Methylcholanthrene-initiated Subcutaneous Tumors in Mice genetically "nonresponsive" at Ah Locus. Cancer Res. 38(9):2777-2783.
- Ott, M.G., B.B. Holder, and R.D. Olson. 1980. A mortality Analysis of Employees engaged in Manufacture of 2,4,5-Trichlorophenoxyacetic Acid. J. Occup. Med. 22(1):47-50.
- Pitot, H.C. T. Goldsworthy, H.a. Campbell, and A. Poland. 1980. Quantitative Evaluation of the Promotion of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the Rat. Environmental Health Perspect. 5:24'-244.
- Poland, A. and A. Kende. 1976. 2,3,7,8-Tetrachlorodibenzo-p-dioxin: Environmental Contaminant and Molecular Probe. Fed. Proc. 35(12):2404-2411.
- Poland, A. and J. Knutson. 1982. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Related Halogenated Aromatic Hydrocarbons: Examination of the Mechanism of Toxicity. Ann Rev Pharmacol Toxicol 22:517-554.
- Pratt, R.M., L.Dencker and V. M Diewwert. 1984. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-Induced Cleft Palate in the Mouse: Evidence for alterations in Palatal shelf Fusion. Teratogenesis, Carciong. Mutagen. 4:427-436.
- Rappe, C. and M. Nygen. 1984a. Chemical Analysis of Human Samples Identification and Quantification of Polychlorinated Dioxins and dibenzofurans. In: "Individual Susceptibility to Genotoxic Agents in the Human Population." F.J. de Serres and R.W. Paro, Eds. Plenum Publishing Co. New York, NY. pp. 305-314.

- Rappe, C. 1984b. Source and Identification, Especially with Respect to PCDDs and PCDFs Found in the Emission of Incinerators. Presented at the Consultation of Organohalogen Compounds in Human Milk and Related Hazards. Bilthoven, Netherlands.
- Rappe, C., S. Marklund, L.O.Kjeller, P.A. Bergqvist, and M. Hansson. 1985. Strategies and Techniques for Sample Collection and Analysis: Experiences from Swedish PCB Accidents. Environ. Health. Perspect. 60:279-292.
- Safe, S. 1986. Toxicity of Chlorinated Dioxins and Chlorinated Benzofurans. Ann Rev Pharmacol toxicol 46:315-347.
- Smith, A.H., D.O. Fisher, H.J. Giles, and N. Pearce. 1983. The New Zealand Soft-tissue Sarcoma Case-Control Study: Interview Findings Concerning Phenoxyacetic Acid Exposure. Chemosphere 12:565-571.
- Thiess, A. M., R. Frentzel-Beyme, and R. Link. 1982. Mortality Study of Persons exposed to Dioxin in a Trichlorophenol-Process Accident that occurred in the BASF AG on November 17, 1953. Am. J. Ind. Med. 3:179-189.
- U.S. Environmental Protection Agency. 1984. Health Assessment Document for Polychlorinated Dibenzo-p-dioxins. Pt. 1 and 2. Washington, D.C. August.
- Vos, J.G. 1977. Immune Suppression as Related to Toxicity. C R C Crit. Rev. Toxicol. 5(1):67-101.
- Wipf, H.K., E. Homberger, N. Neimer, U.B. Ranalder, W. Vetter, and J.P Vuilleumier. 1982. TCDD-levels in Soil and Plant Samples from the Seveso Area. In: "Chlorinated Dioxins and Related Compounds: Impact on the Environment," O. Hutziner, R.W.Frei, E. Merian and F. Pocchiari, Eds. Pergamon, Press, New York, NY. Vol. 5, pp.115-126.
- Whitlock, J.P. 1987. The regulation of gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Pharmacol. Rev.39:147-161.
- Zack, J.A. and R.R Suskind. 1980, the Mortality Experience of Workers Exposed to Tetrachlorodibenzodioxin in a Trichlorophenol Process Accident. J. Occup. Med. 22(1):11-14.

2,4-DINITROPHENOL REFERENCES

- Demerec M, Bertani G, Flint J. 1951. A survey of chemicals for mutagenic action on E. coli. Am. Natur. 85:119.
- Friedman MA, Staub J. 1976. Inhibition of mouse testicular DNA synthesis by mutagens and carcinogens as a potential simple mammalian assay for mutagenesis. Mutat. Res. 37:67.
- Horner WD. 1942. Dinitrophenol and its relation to formation of cataracts. Arch. Ophthalmol. 27:1097.
- Mitra AB, Manna GK. 1971. Effect of some phenolic compounds on chromosomes of bone marrow cells of mice. Indian J. Med. Res. 59:1442.
- Spencer HC, Rowe VK, Adams EM, Irish DC. 1948. Toxicological studies on laboratory animals of certain alkyl dinitrophenols used in agriculture. J. Ind. Hyg. Toxicol. 30:10.
- Swenberg JA, Petzgold GL, Harbach PR. 1976. In vitro DNA damage/alkaline elution assay for predicting carcinogenic potential. Biochem. Biophys. Res. Commun. 72:732.
- Tainter ML, Stockton AB, Cutting WC. 1935. Dinitrophenol in the treatment of obesity: final report. J. Am. Med. Assoc. 105:332-337.
- USEPA. 1980. U.S. Environmental Protection Agency. Office of Water Regulations and Standards. Ambient water quality criteria for nitrophenols. Washington, DC: U.S. Environmental Protection Agency. EPA 440/5-80-063. PB81-117749.

2,4-DINITROTOLUENE REFERENCES

- ATSDR. 1988a. Agency for Toxic Substances and Disease Registry. Toxicological profile for 2,4-dinitrotoluene and 2,6-dinitrotoluene (draft). Atlanta, GA: Agency for Toxic Substances and Disease Registry.
- Ellis HV, Hong BC, Lee CC. 1980. Mammalian toxicity of munitions compounds. Summary of toxicity of nitrotoluenes. Progress Report No. 11. USAMBRDC Contract No. DAMD-17-74-C-4073.
- Ellis HV, Hagenson JH, Hodgson JR, Minor JL, Hong CB. Midwest Research Institute. 1979. Mammalian toxicity of munition compounds. Phase III. Effects of lifetime exposure. Part I. 2,4-Dinitrotoluene. Kansas City, MO: Midwest Research Institute. U.S. Army Medical Research and Development Command. Contract no. DAMD17-74-C-4073. AD-A077692.
- Etnier EL. 1987a. Water quality criteria for 2,4-dinitrotoluene and 2,6-dinitrotoluene. Final report prepared for U.S. Army Medical Research and Development Command. Oak Ridge National Laboratory: Oak Ridge, TN. ORNL-6312.
- Lee CC, Hong CB, Ellis HV, Dacre JC, Glennon JP. 1985. Subchronic and chronic toxicity studies of 2,4-dinitrotoluene. Part II. CD rats. J. Am. Coll. Toxicol. 4:243-255.
- Lee CC, Ellis HV, Kowalski JJ, et al. 1978. Mammalian toxicity of munitions compounds. Phase II: Effects of multiple doses. Part II: 2,4-dinitrotoluene. Progress report No. 3. Midwest Research Institute, Kansas City, MO. Contract No. DAMD 17-74-C-4073.
- McCormick NG, Cornell JH, Kaplan AM. 1978. Identification of biotransformation products from 2,4-dinitrotoluene. Appl. Environ. Microbiol. 35:945-948.

TOLUENE REFERENCES

- Agency for Toxic Substances and Disease Registry (ATSDR), U.S. Public Health Service. 1989. Toxicological Profile for Toluene.
- Anderson HR, Macnair RS, Ramsey JD. 1985. Epidemiology: Deaths from abuse of volatile substances: A national epidemiological study. Br Med J 290:304-307.
- Andersson R, Carlsson A, Nordqvist MB, et al. 1983. Urinary excretion of hippuric acid and o-cresol after laboratory exposure of humans to toluene. Int Arch Occup Environ Health 53:101-108.
- API. 1981. American Petroleum Institute. Mutagenicity evaluation of toluene in the mouse dominant lethal assay. Litton Bionetics, Inc. Proj. no. 21141-05. Final report.
- API. 1985. American Petroleum Institute. Two-generation reproduction/fertility study on a petroleum-derived hydrocarbon (i.e.,) toluene [Volume 1].
- Aranyi C, OShea WJ, Sherwood RL, et al. 1985. Effects of toluene inhalation on pulmonary host defenses of mice. Toxicol Lett 25:103-110.
- Banfer W. 1961. Studies on the effect of pure toluene on the blood picture of photograture printers and helper workers. Zentral fur Arbeitsmed 11:35-40.
- Bauchinger M, Schmid E, Dresp J, et al. 1982. Chromosome change in lymphocytes after occupational exposure to toluene. Mutat Res 102:439-445.
- Bruckner JV, Peterson RG. 1981a. Evaluation of toluene and acetone inhalant abuse. I. Pharmacology and pharmacodynamics. Toxicol Appl Pharmacol 61:27-38.
- Bruckner JV, Peterson RG. 1981b. Evaluation of toluene and acetone inhalant abuse. II. Model development and toxicology. Toxicol Appl Pharmacol 61:302-312.
- Capellini A, Alessio L. 1971. The urinary excretion of hippuric acid in workers exposed to toluene. Med Lavoro 62:196-201.
- Carpenter CP, Smyth HF. 1946. Chemical burns of the rabbit cornea. Am J Ophthalmo 129:1363-1372.
- Carpenter CP, Geary DL, Myers RC, et al. 1976. Petroleum hydrocarbon toxicity studies. XIII. Animal and human response to vapors of toluene concentrate. Toxicol Appl Pharmacol 36:473-490.

- CIIT. 1980. Chemical Industry Institute of Toxicology. A twenty-four month inhalation toxicology study in Fischer-344 rat exposed to atmospheric toluene. Executive Summary and Data Tables. Conducted by Industrial Bio-Test Laboratories, Inc., Decatur, IL, and Experimental Pathology Laboratories, Inc., Raleigh, NC for CIIT, Research Triangle Park, NC. October 15, 1980.
- Courtney KD, Andrews JE, Springer J, et al. 1986. A perinatal study of toluene in CD-1 mice. Fundam Appl Toxicol 6:145-154.
- Devathasan G, Low D, Teoh PC, et al. 1984. Complications of chornic glue (toluene) abuse in adolescents. Aust NZ J Med 14:39-43.
- Goodwin TM. 1988. Toluene abuse and renal tubular acidosis in pregnancy. Obstet Gynecol 71:715-718.
- Greenburg L, Mayers MR, Heimann H, et al. 1942. The effects of exposure to toluene in industry. J Am Med Assoc 118:573-578.
- Haglund U, Lundberg I, Zech L. 1980. Chromosome aberrations and sister chromatic exchanges in Swedish paint industry workers. Scan J Environ Health 6:291-298.
- Hanninen H, Eskelinen L., Husman K, et al. 1976. Behavioral effects of long-term exposure to a mixture of organic solvents. Scand J Work Environ Health 4:240-255.
- Hartmann RJ, Gause EM, Mendez V, et al. 1984. Effect of exposure to toluene and ethanol alone or in combination on a match-to-sample discrimination task in the juvenile baboon. Proc West Pharmacol Soc 27:251-253.
- Hazleton Laboratories. 1962. Acute eye application albino rabbits. ESSO Research and Engineering Company. Falls Church VA.
- Holmberg PC. 1979. Central nervous system defects in children born to mothers exposed to organic solvents during pregnancy. Lancet 2:177.
- Honma T, Miyagawa M, Sato M, et al. 1982. Increase in glutamine content of ratmid brain induced by short-term exposure to toluene and hexane. Ind Health 20:109-115.
- Ikeda M, Koizumi A, Kasahara M, et al. 1986. Combined effects of n-hexane and toluene on norepinephrine and dopamine levels in rat brain tissues after long-term exposure. Bull Environ Contam Toxicol 36:510-517.
- Iregren A. 1986. Subjective and objective signs of organic solvent toxicity among occupationally exposed workers. Scand J Work Environ Health 12:469-475.
- Kimura ET, Ebert DM, Dodge PW. 1971. Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol 19:699-704.

- Kronevi T, Wahlberg J, Holmberg B. 1979. Histopathology of skin, liver, and kidney after epicutaneous administration of five industrial solvents to guinea pigs. Environ Res 19:56-69.
- Kyrklund T, Kjellstrand P, Haglid K. 1987. Brain lipid changes in rats exposed to xylene and toluene. Toxicology 5:123-133.
- Lundberg I, Hakansson M. 1985. Normal serum activities of liver enzymes in Swedish paint industry workers with heavy exposure to organic solvents. Br J Ind Med 42:596-600.
- Maki-Paakkanen J, Husgafvel-Pursiainen K, Kalliomaki PL, et al. 1980. Toluene-exposed workers and chromosome aberrations. J Toxicol Environ Health 6:775-781.
- Moszcynski P, Lisiewicz J. 1984. Occupational exposure to benzene, toluene and xylene and the T lymphocyte functions. Haematologia 17:449-453.
- NTP 1989. NTP technical report on the toxicology and carcinogenesis studies of tolune (CAS No. 108-88-3) in F344/N rats and B6C3F1 mice. NIH publications no. 89-2826.
- Parmeggiani L, Sassi C. 1954. Occupational risk of toluene: environmental studies and clinic investigations of chrome intoxication. Med Lavoro 45:574-587.
- Pryor GT, Dickinson J, Feeney E, et al. 1984a. Hearing loss in rats first exposed to toluene as weanlings or as young adults. Neurobehav Toxicol Teratol 6:111-119.
- Pryor GT, Rebert CS, Dickinson J, et al. 1984b. Factors affecting toluene-induced to toxicity in rats. Neurobehav Toxicol Teratol 6:223-238.
- Schmid E, Bauchinger M, Hauf R. 1985. Chromosome changes with time inlymphocytes after occupational exposure to toluene. Mutat Res 142:37-39.
- Seidenberg JM, Becker RA. 1987. A summary of the results of 55 chemicals screened for developmental toxicity in mice. Teratogen Carcinogen Mutagen 7:17-28.
- Seiji K, Inoque O, Nakatsuka H, et al. 1987. No biologically significant changes in liver function after occupational exposure to toluene at over-OEL levels. Ind Health 25:163-168.
- Smith KN. 1983. Determination of the reproductive effects in mice of nine selected chemicals. Bioassay Systems Corporation. NIOSH Contract No. 210-81-6011. BSC Project No. 10867.
- Smyth HF, Weil CS, West JS, et al. 1969. An exploration of joint toxic action: Twenty-seven industrial chemicals incubated in rats in all possible pairs. Toxicol Appl Pharmacol 14:340-347.

- Suleiman SA. 1987. Petroleum hydrocarbon toxicity in vitro: effect of n-alkanes, benzene and toluene on pulmonary alveolar macrophges and lysosomal enzymes of the lung. Arch Toxicol 59:402-407.
- Tahti H, Karkkainen S, Pyykko K, et al. 1981. Chronic occupational exposure to toluene. Int Arch Occup Environ Health 48:61-69.
- U. S. Environmental Protection Agency (EPA). 1985. Drinking water criteria document for toluene. Washington, D.C.: U.S. Environmental Protection Agency Office of Drinking Water. ECAO-CIN-408.
- U.S. Environmental Protection Agency, Integrated Risk Information System (IRIS). 1989.

 Toluene.
- U.S. Environmental Protection Agency, Health Effects Assessment Summary Tables (HEAST). 1989. Toluene.
- Ungvary G, Tatrai E, Szeberenyi S, et al. 1982. Effect of toluene exposure on the liver under different experimental conditions. Exp Mol Pathol 36:347-360.
- Ungvary G, Tatrai E. 1985. On the embryo toxic effects of benzene and its alkyl derivatives in mice, rats and rabbits. Arch Toxicol (Supplement) 8:425-430.
- Ungvary G. 1985. The possible contribution of industrial chemicals (organic solvents) to the incidence of congenital defects caused by teratogenic drugs and consumer goods:

 An experimental study. In: Marois, M., ed. Prevention of physical and mental congenital defects. Part B: Epidemiology, early detection and therapy, and environmental factors. New York: Alan R. Liss, Inc. pp 295-300.
- von Oettingen WF, Neal PA, Donahue DD, et al. 1942. The toxicity and potential dangers of toluene with special reference to its maximal permissible concentration. U.S. Public Health Service Publication Health Bull No. 279:50.
- Wen CP, Tsai SP, Weiss NS, et al. 1985. Long-term mortality study of oil refinery workers. IV. Exposure to the lubricating-dewaxing process. J Natl Cancer Inst 74:11-18.
- Wilson RH. 1943. Toluene poisoning. J Am Med Assoc 123:1106-1108.
- Winchester RV, Madjar VM. 1986. Solvent effects on workers in the paint, adhesive and printing industries. Ann Occup Hyg 30:307-317.
- Withey RJ, Hall JW. 1975. The joint toxic action of perchloroethylene with benzene or toluene in rats. Toxicology 4:5-15.
- Wolf MA, Rowe VK, McCollister DD, et al. 1956. Toxicological studies of certain alkylated benzenes and benzene. AMA ARch Ind Health 14:387-398.

HMX REFERENCES

- Everett DJ, Johnson IR, Hudson P, Jones M. Inveresk Research International, Ltd. 1985. HMX: 13 week toxicity study in rats by aletary administration. Final report. Musselburgh, Scotland: Inveresk Research International. Contract no. DAMD17-80-C0053. AD A171601.
- Greenough RJ, McDonald P. Inveresk Research International, Ltd. 1985. HMX: 14 day toxicity in mice by dietary administration. Final report. Musselburgh, Scotland: Inveresk Research International. Contract no. DAMD17-80-C-0053. AD A171596. Hart ER. 1977. Two-year feeding study in rats. Kensington, MD: Litton Bionetics, Inc. Office of Naval Research Contract no. N00014-73-C-0162. AD A040161.
- McLellan W, Hartley WR, Brower M. 1988a. Health advisory for octahydro-1,3,5,7-tetranitro-1,3,5-triazine. U.S. Environmental Protection Agency, Washington, DC: Office of Drinking Water.
- Simmon VF, Spanggord RJ, Eckford S, McClurg V. 1977. Mutagenicity of some munition wastewater chemicals and chronic test kit reagents. Report to U.S. Army Medical Research and Development Command, Contract No. DAMD 17-76-C-6013.
- Stilwell TM, Eischen MA, Margard WL, Matthews MC, Standford TB. 1977. Toxicology investigations of pilot treatment plant wastewaters at Holston Army ammunition plant. Report to U.S. Army Medical Research and Development Command contract no. DAMD 17-74-C-4123. ADA042601.
- USEPA. 1988b. U.S. Environmental Protection Agency. Office of Drinking Water. Health advisory for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). Washington, DC: U.S. Environmental Protection Agency.
- Whong WZ, Speciner ND, Edwards GS. 1980. Mutagenic activity of tetryl, a nitroaromatic explosive, in three microbial test systems. Toxicol. Lett. 5:11-17.

RDX REFERENCES

- Cholakis JM, Wong LCK, Van Goethem DL, et al. Midwest Research Institute. 1980.

 Mammalian toxicological evaluation of RDX. Kansas City, MO: Midwest Research Institute, U.S. Army Medical Research and Development Command, Contract no. DAMD17-78-C-8027. AD A092531.
- Ellis HV, Hong BC, Lee CC. 1980. Mammalian toxicity of munitions compounds. Summary of toxicity of nitrotoluenes. Progress Report No. 11. USAMBRDC Contract No. DAMD-17-74-C-4073.
- Etnier EL. 1987b. Water quality criteria for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Final report prepared for U.S. Army Medical Research and Development Command. Oak Ridge National Laboratory: Oak Ridge, TN. ORNL-6178.
- Etnier EL. 1986. Water quality criteria for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Final report prepared for U.S. Army Medical Research and Development Command. Oak Ridge National Laboratory: Oak Ridge, TN. ORNL-6178.
- Levine BS, Furedi EM, Gordon DE, Barkley JJ, Lish PM. 1990. Toxic interactions of the munitions compounds TNT and RDX in F344 rats. Fund. Appl. Toxicol. 15:373-380.
- Levine BS, Furedi EM, Rac VS, Gordon DE, Lish PM. 1983a. Determination of the chronic mammalian toxicological effects of RDX: Twenty-four month chronic toxicity/carcinogenicity study of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in the Fischer 344 rat. Phase V. Vol. 1. Chicago, IL: ITT Research Institute. U.S. Army Medical Research and Development Command contract no. DAMD17-79-C-9161. AD A160774.
- Levine BS, Furedi EM, Gordon DE, Burns JM, Lish PM. 1981. Thirteen-week oral (diet) study of trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5- triazine (RDX) and TNT/RDX mixtures in the Fischer 344 rat. Chicago, IL: ITT Research Institute. IITRI project nos. L6116/L6121.
- Lish PM, Levine BS, Furedi EM, Sagartz EM, Rac VS. 1984. Determination of the chronic mammalian toxicological effects of RDX: Twenty-four month chronic toxicity/carcinogenicity study of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in the B6C3F₁ hybrid mouse. Phase VI. Vol. 1. Chicago, IL: IIT Research Institute. U.S. Army Medical Research and Development Command contract no. DAMD17-C-9161. AD A160774.
- Martin DP, Hart ER. 1974. Subacute toxicity of RDX and TNT in monkeys. Kensington, MD: Litton Bionetics, Inc. Office of Naval Research contract no. N00014-73-C-0162; NR108-985. AD A044650.

- McLellan W, Hartley WR, Brower M. 1988b. Health advisory for hexahydro-1,3,5-trinitro-1,3,5-triazine. U.S. Environmental Protection Agency, Washington, DC: Office of Drinking Water.
- Schneider NR, Bradley SL, Anderson ME. 1978. The distribution and metabolism of cyclotrimethylenetrinitramine (RDX) in the rat after subchronic administration. Toxicol. Appl. Pharmacol. 46:163-171.
- Schneider NR, Bradley SL, Anderson ME. 1977. Toxicology of cyclotrimethylenetrinitramine: distribution and metabolism in the rat and the miniature swine. Toxicol. Appl. Pharmacol. 39:531-541.
- USEPA. 1990b. U.S. Environmental Protection Agency. Integrated Risk Information System (IRIS). Data retrieval on Sierra contaminants of potential concern. August 1, 1990.
- USEPA. 1988a. U.S. Environmental Protection Agency. Office of Drinking Water. Health advisory for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Washington, DC: U.S. Environmental Protection Agency.

TETRYL REFERENCES

- McGregor DB, Riach CG, Hastwell RM, Dacre JC. 1980. Genotoxic activity of microorganisms of tetryl, 1,3-dinitrobenzene and 1,3,5-trinitrobenzene. Environ. Mutagen. 2(4):531.
- Whong WZ, Speciner ND, Edwards GS. 1980. Mutagenic activity of tetryl, a nitroaromatic explosive, in three microbial test systems. Toxicol. Lett. 5:11-17.

1,3,5-TRINITROBENZENE REFERENCES

- Cody TE, Witherup S, Hastings L, Stemmer K, Chustion RT. 1981. 1-3-dinitrobenzene: toxic effect in vivo. J. Toxicol. Environ. Health 7:829-847.
- Korolev AA, Vo'itesekhovskaia T, Bogdanov MV, Arsen'eva MV, Azkharova TA. 1977. Experimental data on the hygenic standardization of dinitroluene and trintrobenzol in the water reservoirs. Gig. Sanit. 10:17-20. (Russ.)
- Senczuk W, Jodynis J, Rogal H. 1976. Effect of the chemical structure of some aromatic compounds on their methemoglobin-inducing properties aromatic nitro compounds. Bromat. Chem. Toksykol. 9(3):289-294. (Russ.) (Taken from NIOSH Abstr. 00107007).
- Slaga TJ, Triplett LL, Smith LH, Witshi HP. 1985. Carcinogenesis of nitrated toluenes and benzenes, skin and lung tumor assays in mice. Final Report. Govt. Reports Announcements and Index. 19:DE85012081. 33 p.
- USEPA. 1989e. U.S. Environmental Protection Agency. Office of Health and Environmental Assessment. Health and environmental effects document for 1,3,5-trinitrobenzene. Cincinnati, OH: U.S. Environmental Protection Agency. ECAO-CIN-G071.
- Watanabe T, Ishihara N, Ikeda M. 1976. Toxicity of and biological monitoring for 1,3-diamino-2,4,6-trinitrobenzene and other nitro-amino derivatives of benzene and chlorobenzene. Int. Arch. Occup. Environ. Health. 37:157-168.

2,4,6-TRINITROTOLUENE REFERENCES

- Dilley JV, Tyson CA, Newell GW. 1979. Mammalian toxicological evaluation of TNT wastewaters. Volume II. Acute and subacute mammalian toxicity of TNT and LAP wastewaters. Final Report prepared for U.S. Army Medical Research and Development Command. Menlo Park, CA: SRI International. Contract no. DAMD17-76-C-6050. AD-A081590.
- Dilley JV, Tyson CA, Newell GW. 1978. Mammalian toxicological evaluation of TNT wastewaters. Volume II. Acute and subacute mammalian toxicity of TNT and the LAP mixture. Final Report. Menlo Park, CA: SRI International. DAMD17-76-C-6050. AD-A080 957.
- Enzinger RM. 1971. Special study of the effect of a-TNT on microbiological systems and the determination of the biodegradability of a-TNT. U.S. Army Environmental Health Agency, Aberdeen Proving Ground, MD. AD-738497.
- Furedi EM, Levine BS, Gordon DE, Rac VS, Lish PM. 1984a. Determination of the chronic mammalian toxicological effects of TNT (Twenty-four month chronic toxicity/carcinogenicity study of trinitroltoluene (TNT) in the Fischer 344 rat). Final Report Phase III, Volumes 1 to 2. Chicago, IL: IIT Research Institute. Project No. L6116-Study No. 9. DAMD17-79-C-9120. AD-A168637.
- Furedi EM, Levine BS, Sagartz JW, Rac VS, Lish PM. 1984b. Determination of the chronic mammalian toxicological effects of TNT (Twenty-four month chronic toxicity/carcinogenicity study of trinitroltoluene (TNT) in the B6C3F1 hybrid mouse). Final Report Phase IV, Volumes 1 to 3. Chicago, IL: IIT Research Institute. Project No. L6116-Study No. 11. DAMD17-79-C-9120. AD-A168 754.
- Levine BS, Furedi EM, Gordon DE, Lish PM, Barkely JJ. 1984. Subchronic toxicity of trinitrotoluene in Fischer 344 rats. Toxicology 32:253-265.
- Levine BS, Rust JH, Burns JM, Lish PM. 1983b. Determination of the chronic mammalian toxicological effects of TNT. Twenty-six week subchronic oral toxicity study of trinitrotoluene (TNT) in the beagle dog. Phase II. Final Report. Chicago, IL: ITT Research Institute. Report no. L6116, study no. 5. DAMD 17-79-C-9120. AD-A157 082.
- Levine BS, Rust JH, Burns JM, Lish PM. 1983c. Twenty-six week subchronic oral toxicity study of TNT in the beagle dog. Final report. Phase III. Chicago, IL: ITT Research Institute. U.S. Army Medical Research and Development Command contract no. DAMD17-79-C-9120. AD-A157082.
- NIOSH. 1988. National Library of Medicine. Registry of toxic effects of chemical substances (RTECS) database. Bethesda, MD: National Library of Medicine, Specialized Information Services.

- USEPA. 1989f. U.S. Environmental Protection Agency. Office of Drinking Water. Trinitrotoluene health advisory. Washingtin, DC: U.S. Environmental Protection Agency.
- Won WD, Heckly RJ, Glover DJ, Hoffsommer JC. 1974. Metabolic disposition of 2,4,6-trinitrotoluene. Appl. Microbiol. 27:513-516.
- Zakhari S, Villaume JE. 1978. A literature review. Problem definition studies on selected toxic chemicals. Vol. 3. Occupational health and safety aspects of 2,4,6-trinitrotoluene (TNT). Philadelphia, PA: The Franklin Institute Research Laboratories. AD A0-55683.

Appendix Q4

Risk Characterization

James M. Montgomery

Consulting Engineers Inc.

Risk Calculations

The following spreadsheets provide the necessary data and physical-chemical information to calculate the cancer risk and the hazard index for all of the exposure scenarios at SAID. The calculations are based on the maximum detected value for ALF, CCB, DRMO and TNT Vehicle Maintenance Subsite and on the average and 95th percentile upper bound (RME)value for the TNT Leaching Beds Subsite. For the casual visitor and worker exposure scenarios, the exposure dose is multiplied by a factor 0.28 (20/70 years) to calculate the 70 year adjusted cancer risk level. For the future residential scenario, the exposure dose is multiplied by a factor 0.42 (30/70 years) to calculate the adjusted cancer risk level.

	-						Table (24-1						
				Calculate	d Risk Esti	mates For F	d Risk Estimates For Future Resident Scenario	nt Scenario	• _	ALF Groundwater			
	GROUNDW	GROUNDWATER INGESTION RISKS - ADULT	TION RISKS	- ADULT									
	ABONDON	ABONDONED LANDFILL (ALF)	(ALF)										
Chemical	Seg	5	3	Years	9 8	8	9	Cancer	Hezerd		. !	1	
	(1/Bn)	(l/dex)	(Ba)		(mg/kg/	(mg/kg/	(mg/kg/	Ask Ask	Index				
		2	0,	30	Q8A)	dey.1)	dey)						
105	70.5	2	70	30	2 0E-03	0.011	0	9E-06	0E+00				
Cyanide	3.3	~	20	30	9.4E.05	0	0.05	0E+00	5E-03	: ;			
							TOTAL	96.06	SE.03	-			
									20.30				
	SHOWER B	SHOWER BHALATION EXPOSURE MODEL	XPOSURE M	DOEL									
Chambool	>	3	č	3	•	Ğ	Pag.	8	>>	3	K		•
	(1) (min)	(64)	(uju)	(minA.1)	(uo/mv3.	(ujw)	(1/07)	(1/mjn)	(Ever)	(1)011)	(cm/hr)	(900)	(##)
	1	78.	7		min)								
											i		
2	10	70	20	0.0083	110.78	. 5	2.8E+01	22.5	5.66		15.09	2	-
!	1						:	:	:		:	i :	
	1						:		:				
	GROUNDW	GROUNDWATER INGESTION RISKS		CHED									
1	_	ABONDONED LANDFILL (ALF)	1								THE PERSON NAMED IN COLUMN 1		
Chemical	Seg	5	E	3	ž	Residence	Residence	Age 0.5	Age 6-17	¥	RIO	Cancer	Hezerd
	(1/Bn)	Age 0-5	Age 6-17	Age 0-5	Age 6-17	Age 0-5	Age 6-17	(mg/kg/	(mg/kg/	(mg/kg/	(mg/kg/	Risk	Index
		(/dey)	(I/dey)	(B)	(68)			dey)	dey	dey-1)	dey)		
100	70.5	8.0	-		150	9	. 21	3.8E.03	1 7E 03	0 0 11		7E.06	0E+00
Cyanide	33	80	-	15	45	9	12	1 BE 04	8 1E 05	0	0 02	0E 100	6E-03
											TOTAL:	76.06	6E-03
1													
	SHOWER	SHOWER BHALATION EXPOSURE MODEL	XPOSUME N							-		;	:
Chemical	^	^	3	*	0(3	S	90	Cwd	Œ	>S	CWO	Kal
	Age 0.5	_	Age 0.5	Age 6-17	(mlm)	(min^-1)	(ug/m/3-	(wjw)	(1/Bn)	(ujw/i)	(m ² 3)	(1/87)	(cm/hr)
	(L/m/1)	(L/mln)	(B	6.			î E						
					7								

_	_	_	_	_	-	_	_
7.1E+01 15.09							
7.16+01							
99 \$							
22.5							
2.8E+01							
15							
110.78							
0.0083							
20							
45			*				
15							
18							
*-							
705					,		

	345	2	TOTAL		Residence Age 0-5
		1.7E 02			BAN (g/mol)
	88	(mg/kg/shr) 2 80E-03			Kg(H2O) (cm/hr)
		(g/mol)			KI(CO2)
	KaHZO	(cm/hr)			kg(VOC) (cm/hr)
	Kircoz)	(cm/hr) 20			H (m3-sim/ mol)
	Mayyoc	(cm/hr)		1 1	() () () () () () () () () () () () () (
	 	(m3.etm/ mol) 0 021		1 1 1	(m3-etm/ mol-K)
	-	(deg K)			ki(VOC)
		mol-K) mol-K) 8.21E-05		; '	(GD)
:	(SOA)	(cm/hr)			u 1 (GP)
		(cp)			(degK)
	 	(cp)			T1
		(degK) 316			Ki (diess)
	1	(degK)			P (EE)
		(dless)			19 (80C)

	_	_	_		_	 _
9				1		
131.5			:			
3000						
20						
1110						
0 021			:			
293				* * :		
11 57 8 21E 05						
11 57			:			
0.6176			!			
1 002						
316						
11.43 293						
11.43						
1						
8						

x epuj	Aisk					(mg/kg/shr)	(mg/kg/shr)	
Total	Total	Hazard	Cencer	inhei	la hel	Dose	Dose	Residence
							;	
		:			:			
		:		:			1	
					5E-03		D MOEX	TAL HAZAR
					3E-05		A RISK	TOTAL CANCER RISK
:	1	:					00-30	2E.05
					0.0E+00	3.0E.05	00€+00	2 0E 05
i	:	:						
					Index	Risk	Index	Risk
		:		!	Hezerd	Cancer	Hezerd	Cancer
		!						
i ; ;								
	: :							

						•	Table 04-2				
					Calculated R	culated Risk Estimates For Future Resident Scenario - CCB Groundwater	Future Residen	(Scenario - C	B Groundwater		
	GROUNDWA	GROUNDWATER MGESTION RISKS - ADULT	ON RISKS -	ADULT							
	CHEMICAL	CHEMICAL BURIAL SITE									
		9			: 2	ğ	Ç	Cencer	Hazard		
CHOMMON		(200)))	(64)		(ma/ka/dev)	(ma/ka/dev.1)	(mayka/day)	40.5	X 0055		
		2	70	30		7	77 - X - X - X - X				
					1	100					
7	9 29	7	70	30	1.9E-04	0011	01	9E-07	8÷		:
Arsenic	7.25	2	70	30	2.1E-04	6	0 001	2E.04	2E.01		
Mercury	0.488	2	0/	30	1.4E.05	0	0 0003	0E+00	5E-02		
Selenium	10 6	2	70	30	3 0E 04	0	0.003	0E+00	16.01		
1								1			
:							2	10-97			,
	SHOWER IN	SHOWER WHAT ATION EXPOSIBLE MODEL	OSUME MO	Jeg.							
Chemical	>	3	õ	36	S	0	Cwd	F	28	Cwo	Kei
	(L/min)	(Kg)	(mfm)	(min^-1)	(ulm-c^m/bn)	(III	(i/Bn)	(i/mln)	(m ² 3)	(1/8n)	(cm/hr)
105	0	7.0	20	0 0083	10.62	15	2 7E+00	22.5	5 66	6 8E+00	15 09
1	1	!	j †	!							
:		;	:		,						
	GHOUNDWA	GROUNDWATER INGESTION RISKS - CHILD	ON HISKS						:		:
Chemical	Ş	<u>«</u>	€	3	MB	Residence	Residence	Dose	Dose	8	3,0
	(VBV)	Age 0-5	Age 6-17	4	Age 6-17	Age 0.5	Age 6-17	Age 0-5	Age 6-17	(mg/kg/dey-1)	(mg/kg/dey)
		(I/dey)		(kg)	(kg)			(mg/kg/dey)	(mg/kg/dey)		
2	A 76	e c	-	Ý	145		Ç	2 AF 04	1 7F.04	0.011	-
Arsenic	7.25		_	. 10		; o • •	. ~	3.96.04	1 8 0 0 4	-	0 001
Mercury	0 488	0.0	-	15	45	9	12	2.6E.05	1.2E.05	0	0.0003
Selenium	106	90		15	45	9	12	5.7E.04	2.6E.04	0	0 003
!	-										
:									:		TOTAL
	SHOWER IN	SHOWER INHAL ATION EXPOSURE MODEL	POSURE MOL	XEL							
							S				
Chemical	>	>	≥ ,	≥ '	ة آة	2	Shellow Aq	•	P.A.	Œ	>S:
	Age 0:0	Age 6-17	Age 0-3) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Ê	(1-veille)	("II" : "" "" "" "" "" "" ""	(E)	(v6n)	(4144)	(C_H)
				7							

	15	45	20	0.0083	10 62	15	2.7E+00	22.5
ĺ					:			

						_								_	
	*		:												:
			İ	;	,										
Chemical			i	-	-									:	
														i	:
TCK Assessive	:	:								:				-	:
Mercury															
Sefenium															
														,	
	:				1		-;		:						;
Chemical	(800)	(mm)	(Gioop)	(degk)	Te (degk)	(cb)	(db)	k1(VOC) (cm/hr)	R (m3-etm/	T (deg K)	(m3-etm)	(cm/hr)	KI(CO2) (cm/hr)	Kg(H2O) (cm/hr)	(iom/6)
									1961-R		TOBE				
70	2	-	11.43	293	316	1 002	0 6178	11.57	8 21E 05	293	0 021	1110	20	3000	131 5
: .		† † *						. :							N E
Chemical	Cancer	Hezerd	: .			_				. :					
	10.01	00					-								
Arsenic	2.0	2E 01			•		-								
Mercury	9E+00	6E · 02													
Enles	96.90	1E 01					-								
		4E-01													
							 - !					,			
Chemical	Cwo (ug/I)	Kel (cm/hr)	() es()	PE)	(dless)	(degK)	Te (degK)	(GD)	(db)	k1(VOC) (cm/hr)	A (m3-etm/	T (deg K)	H (m3-etm)	kg(VOC) (cm/hr)	KI(CO2) (cm/hr)
											mol·K)		(IOE		

6 76 15.09 2 1 11.43 293	6	6	6	6	293	(316	1 002	0.6178	11 57	8 21E 05	293	0 021 1110	1110	20
	:							-							
The second secon					_			-							
							1								

			:	i						
Chemical	!			1						
									-	
2					1		:			
Arsenic										
Mercury										
Selenium										
						,				
1		-				!				
		intel	Inhei	Cencer	Hezerd					
Chemical	200	380	D)B	Diek	Logor					
	(mg/kg/ghr)					THE STATE OF THE S		,		
100	2 69E 04	1 7E 02		2E.06	0.0E,00					
:	!	ì				-				
		:	7 2		00+		:	!		
	TOTAL CANCER RISK	RISK			2E-04					
	TOTAL HAZARD	MDEX			4E-01					
,									-	····•
Chemical							•			
:		:				_				
Arreste Arreste										
7										
Setenium										
Chemicat	Kg(H20)	***	Residence	Residence	Dose	Dose	Inhat	ie de la	Cancer	Hezerd
						/ 100/kg/shr)	5 .	<u>.</u>		

			_
0E . 00		1E-04	46.01
5E 06 0E,00			
		ER RISK	AD INDEX
1 7E-02		TOTAL CANCER RISK	TOTAL HAZARD INDEX
7 52F 04			
7 25 03 7 59 04	50.30		
:	71		
	9		1
	131 5		i
	3000		
	106		

2	s For Ful	isk Estimates For Ful	culated Risk Estimates For Future Resident Scenario - DRMO Groundwater	Calculated Risk Estimates For Fut	_	_
! i						
•		S-ADULT	STON RISKS - ADULT	R MGESTION RISKS - ADULT	DWATER INGESTION RISKS - ADULT	GROUNDWATER INGESTION RISKS - ADULT TAT., FACHING BEDS
Cancer						
Risk	RIO	CPF	Vears Dose CPF	Vears Dose CPF	Vears Dose CPF	BW Years Dose CPF
	<u> =</u>	(mg/kg/	(mg/kg/(mg/kg/	(48) (mg/kg/(mg/kg/	(1/day) (kg) (mg/kg/(mg/kg/	(48) (mg/kg/(mg/kg/
	7 400	dey-1)	30 day) day-1)	30 day) day-1)	30 day) day-1)	70 30 day) day-1)
3E-06	0	0 011	7 3E 04 0 011	7 3E 04 0 011	30 7 35 04 0 011	70 30 7 35 04 0 011
-	0	9	9	30 1.46.04 1.6	70 30 1.46.04 1.6	2 70 30 1.4E.04 1.8
0 003 0E+00	0	0	3.3E.04 0	30 3.3E.04 0	70 30 3.3E.04 0	11.7 2 70 30 3.35.04 0
TOTAL 1E-04	10	TOT	101	101	101	101
<u> </u>						
	-		1	1		
	-	MODEL	₩!	₩!	NHALATION EXPOSURE	₩!
F	Cwd	o o o	å	å	Re 8 De	Di Re & De
(I/mfn)	(1/Bn)	(mim)	min^- ug/m^3 (min)	(min) min. (ug/m.) (min)	(kg) (min) min^. (ug/m^3 (min)	(L/min) (kg) (min) min^-(ug/m^3 (min)
300	١		mini	min)	min)	ala)
1	100	6	+	40.36	0 0008 40 38	20 0 008 40 38 15
		(S. CHILD	•	•	•	GROUNDWATER INCESTION RISKS - CHILD
Dose	Geeldenc	BW Residencesider	5W Residence	5W Residence	BW Residence	IR BW Residence
6-11 Age 0-5 (mg/kg/da	2 80	Age 0-5	(kg) (kg)	(kg) (kg)	No 0-100 6-100 0-100 6-1 Age 0-5	Conc Age 0-6ge 6-8ge 0-8ge 6-1 Age 0-5
		45 6	45	11 15 45	11 15 45	11 15 45
1		9	9	11 15 45 6	15 45 6	11 15 45 6
2 6 2E 04	-	45 6 1	45 6	1.1 15 45 6 1	1.1 15 45 6 1	11.7 0.8 1.1 15 45 6 1
+	+	+				
		MODEL	EXPOSURE MODEL			SHOWER WHALATION EXPOSURE MODEL
_	-					
	5	đ	\$ 0 S	\$ 0 S		
E E	E-E/87	(min^-1)	(1-vuju) (mim) 1-0 -0	(min.) (min.) (min.) (min1)	(min.) (min.) (min.) (min1)	Age 0-996 6-1100 0-100 6-1 (min.) (min1)
				/5x) /5x)	/5x) /5x)	
15	3 40 38	20 0 0083 40 3	0 0083	15 45 20 0 0083	45 20 0 0083	15 45 20 0 0083
		!				
		!	!	:		
1				_		

2																																			1							1					-		ļ			Haz	Index			30	3		>		1E-04
9					_		_			-																											-															Cancer	a a		-	30 30	20.75		ZE-03	_	
3							_	_		:	 														_																-											inte	_	!			-		2	_	NCER R
76							-																			•	Hazard	x epu				0.0									-		-									Inhal	ğ			1 15 02	3	1			TOTAL CANCER RISK
33	_				-					-							!		_			_	_		1000	-	Cancer	Aie		1		1.1E-05							_								1					Dose	Ace 6.17			1000	70.00				
3.5				_			_	_															_				Hazard	- xepul			÷	0.0E+00		0E+00			- 0 - H	2E-01		_				1								Dose			, , , , , , , , , , , , , , , , , , ,	_	20.070		-		
				_	-	_	_	-	-				_	-								-	_				Cancer	Risk	-	-	4	7.4E.06		7E.06	1		_			_	-					+						sidence	_		<u>.</u> _		,	-			1
200		•					_	_										1					-			_	_	0						TOTAL	+	-	IOIAL CANCEN MSK	TOTAL HAZARD INDEX			•					+						esidencelesidence	Age 0.5 Age			-	9	i		-	
2				_	-		_	_							-									_			land	ğ	E						İ	_	DIVIDI	TOTAL H								1						₹	-			3	2				
•	7	1	,																		:					:		900	1000	fina /Bu /But		1 02E.03																				Kg(H2O)		7		0000			!	:	
/ / /		-		_			_	_					_										_	_		1		}		7000		131 5					_										1					KI(CO2)	, W		-		2			,	
97																												C) KI(CO2) Ka(H2O)		The second second		3000																				kg(VOC)	(cm/hr)	7			2!	1		1	
6.3																												KICOS		(CM/M/)		20																				I	M 3 . 6 . W			0 0 0	700			:	
4.4							1															- - - -						ka(VOC)		Tau/mal		1110				1			i	;												-	(den K)			,	683	i	i	3	;
53				:																			-	!				I			30	0.021																				-				-		İ		:	1
*	_			:	i	_		-															_					1	3	2		293					i		j		: : :											LICOCI			:		/2				-
7							1																					Œ			MOI-K)																					3	1	1221		96.39				1	
20		-			!																							Chemical 1/VOC		Com/me		11.57																				5	_	7251	!		705				1
-		1		!	1		1			1						TCE		Arsonic	Selenica									Chemica				TCE							240		-			TCE	Areaele	Simon Mark	Selenium					Chemica		:		100	2				i
7		J	~	,	7	•	١.	-	•	Т		•	•	J					13	_			-	-	ŀ	=	10	2016	ŀ		7	23	=	2.5	:	9		2		T	9		32	5	Ī			=	37		5			:	:	_				-	-

3.8			ì											ļ	:			1									1 1	-								Total	Tazard	200		0	• i			
3.8		:		į	!										İ	1	1	1								-	1	İ								Total	Cencer	E	!				-	-
				:	1	Chemica				TCE	Arsenic	Selenica		1	:	•	:	:	S E E		1	2			-			-			Arsenic	Selenium					Chemica	!	-	100				
	ŀ	- ~	7	•	•	~	•	•	9	Ξ	12	=	3	-		:				;	7		?	2			2		25	2	?	35	=	=	36	•	•	=	?					

				í									
		Calcul	Calculated Risk Estimate	:01	For Future Resident Scenario	ident Scena	~ T.V.J SL	- TNT Maintenance Groundwater RME	Groundwat	er RME			
		GROUNDWAT	GROUNDWATER INGESTION RISKS	RISKS - ADULT	11								
		TNT-VEHICLE	MAINTENANC	E AREA (TN	A (TNT-MWA-10)								
						Dose	CPF	RO					
Chemical	Chemical	ğ	E	3	Years	(mg/kg/	(mg/kg/	(mg/kg/	Cencer	Hezerd			
		(/Bn)	(I/dey)	(49)	1	(Aēp	dey-1)	(Au)	E.	Lidex			
			2	20	30								
Benzene	Benzene	5.94	2	70	30	1 7E-04	0 029	0	2E 06	0E+00			
CCI4	CCI4	190	8	7.0	30	5 4E 03	0.13	0 0007	3E.04	9E+00			
Chloroform	Chloroform	923	~	0.2	30	2 6E 02	0 0061	10.0	7E.05	3E+00			
1,2-DCA	1,2-DCA	101	8	7.0	30	2 9E 03	0 091	0	1E.04	0E+00			
72	100	952	~	20	30	2 7E-02	0 011	0	1E 04	0E+00			
Arsenic	Arsenic	12	2	70	30	3.4E.04	18	0.001	3E.04	3E 01			
Chromium	Chromban	227	8	70	30	6.5E.03	0	0 005	06.00	15.00			
								7074	70	16.01			
:				-			_); 4; 5;			_	
		SHOWER BUHL	SHOWER INHALATION EXPOSURE A	SURE MODEL									-
						S							
Chemical	Chemical	>	3	õ	2	(ua/mv3.	Ds	Cwd	Œ	AS	CWO	Kel	181
		(L/min)	ے		(min^.1)		(ulm)	(1/07)	(m/m/)	(m/3)	(1/07)	(cm/hr)	(300)
:			104		7	•	7			7		7	7:::1
Benzene	Benzene	10	70	20	0 0083	11 22	15	2 BE+00	22 5	5.66	5 9E +00	19.34	8
617	200	10	70	20	0.0083	282.52	15	7.1E+01	22 5	99 9	1 9E +02	14 05	8
Chloroform	Chloroform	10	0,2	50	0 0083	1484 63	15	3 BE+02	22.5	99 5	9 2E+02	15 69	84
1,2-DCA	1,2-DCA	10	2	50	0 0083	166.36	5	4 2E 101	22 5	99.5	1 0E +02	16 05	~ :
100	706	10	7.0	20	0.0083	1495 95	15	3.0E+02	22 5	99 9	9.5E+02	15 09	7
							_						
		GROUNDWAT	GROUNDWATER INGESTION RISKS	RISKS . CHILD	a								
100	100		9	ā	CONT	770	Decidence	0.0140	Dose	Dose	38		20000
			400	Ann 6.17	And And	Ann 6.17	Age 0.5	Ace 6.17	, 04/0m/	1000	/mo/ko/	(mo/ko/	4010
i	- I representation of the second		(Kep/ii)	(Kep/II)	(G 3)	(63)			(Asp	(Asp	dey-1)	(Aēp	
Benzene	Benzene	5.94	0.0		15	45	9	12	3 2E 04	1.5E.04	0.029	0	2E.06
CCI4	CCIA	180	90	-	15	45	9	12	1 0E 02	4 6E 03	0.13	0 0007	2E-04
Chloroform	Chloroform	923	80	1.1	15	45	9	12	4 9E 02	2.3E 02	1900 0	0 01	5E-05
1,2.DCA	1,2.DCA	-01	80	=	5	45	9	2	5 4E 03	2 5E 03	0 091	0	8E 05
TCE	10	952	90	-	15	45	9	2	5 1E 02	2 3E 02	0 011	0	9E.05
Arsenic	Arsenic	12	0.8	-	15	45	9	12	6 4E 04	2 9E 04	9	0 001	2E 04
Chromium	Chromium	227		=	15	45	9	12	1 2E 02	5 5E 03	0	0 002	0E+00
		SHOWER INHA	SHOWER INHALATION EXPOSURE IN	SURE MODEL								TOTAL:	6E-04
				-									

	-	(40/1)		30 30	Ť	+	1.0E+02	9.5E+02		
	100	=		¥ 6.6	2 6 6	5.66	2 66	999		
	8	(ulm/i)		22.5	22.5	22.5	22.5	22.5		
	Cwd	(I/Bn)		2.8E+00	7.1E+01	3.8E+02	4.2E+01	3.0E+02		
	å	(ulm)		15	15	15	o: v	2		
	s	(ug/m^3.	Ē	11 22	282.52	1494.63	1495.95			
	2	(min^-1)	:	0.0083	0.0083	0.0083	0 0083			
	ă	E		20	200	000	20			
3		/de 6-1/		45	4	45	4.5			
3	7000			0 4	15	51	5			!
>	Ann 6.17	(L/min)	•	9	0	18	0			
>	Ace 0.5	(L/min)	1	-	14	*	*			+
Chemical			Denzene	100	Chieroform	1,2-DCA	3			
Chemical			enzene		٤	Z-DCA				

			-	_		~				_				
1														
,														
	!	'							_					
Chemical		ı												
	!	:												
Benzene														
VI 00											:			
Planaform														
												_		
- V.D.					,		_					_		1
₩														
Arsenic														
Chromium														
			1											
1		!	1											
:	1											_		
	Ţ	3			1		10000	•	•	1	130101	100000	100000	
		2			3.	S :	1300	E :		2	7	NICOS)	(DZIJA)	ì
	E	(0)	(MBeb)	(469K)	(db)	(d ₂)	CH/HIS	(ma-em)	(A 00 (X)	(m3-cm)	(cm/m)	(cu/uc)	(cm/hc)	(lom/d)
Bensene	•	14 66	203	216	1 002	0.6178	15.02	A 21E OK	203	TION O	1441	20	0000	7.0
2000					3	200		200	200	200			200	
		000	583	0	200	9/100	800	6 212 00	293	5000	9701	0.7	3000	40
		20.11	2 0	210	200		9:0	0.715.03	S ()	1100	7011	2 6	2000	ם: - -
Z-DCA		2 10	283	9	700	9/19	55.5	8 21E 05	293	0 0026	6/21	0 7	3000	.
W	_	11 43	293	316	1 002	0 6178	11 57	8 21E 05	293	0 021	011	20	3000	131 5
					-									
											:			
		i												
:														
Chemical	Hezerd													
	Index													
										_				
į			1											
Benzene	0E+00													
CCI4	00·36													
Chloroform	3€+00						ļ							
2-DCA	0E • 00				_									
W	0E + 00													
Arsenic	4E-01													
Chromium	2E+00					!					,	;		
	(•							
	1E+01													
				T	TT		7		-				1	

2 1 14.65 233 316 1002 06176 15.02 06176 16103 203 001 1441		1000		0	2	-	-	5	*3	k1(VOC)	Œ	1	1	10000	100017
16.55		L m/m	208	EE	(diess)	(Ageb)	(degK)	(db)	(cp)	(cm/hr)	(m3.etm/	(dea K)	(m3-etm/		1202)
10 10 10 10 10 10 10 10		1	1								mol-K)		mol)		CW/WC
100 100	Benzene CCI 4	19.34	~		14 65	293	316	1.002	0.6178	15.02	8 21E 05	293	6	****	00
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Chloroform	15.60	*		20.00	293	316	1 002	0.6178	10.69	8.21E.05	293	0.063	1026	200
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2-DCA	16.05	-		AD: -	283	316	1 002	0.6178	12.16	8.21E.05	293	0.011	1167	200
	.	200		-		293		1 002	0.6178	13.33	8 21E 05	293	0.0026	1279	20
		1								•	60.31.90	S.	0.021	1110	50
			1												
	<i>;</i>														
		•													
										•					

į i ;

Chemical	Kg(H2O)	APR	Residence	Residence	Dose	Dose	Inhei	jequi	Cancer	PrezeH	Cencer	Hezerd
	(cm/hr)	(low/B)	Age 0-5	Age 6-17	Age 0-5	Age 6-17	3	GJH	Risk	Index	Risk	Index
					(mg/kg/shr)	(wa/By/Bw)						
Benzene	3000	7.8	ø	12	1 85E 03	7 95E-04	2 9E 02	1 4E 03	9E 06	8E-01	1.0E-05	8.2E.01
100	3000	154	9	12	4 67E-02	2 00E 02	1.3E.01	7 0E 04	1E 03	4E+01	1.2E-03	5.1E+01
Chloroform	3000	119	9	12	2.47E-01	1.06E-01	8.1E.02	1 0E 02	3E-03	2E+01	3.2E-03	1.8E+01
1.2-DCA	3000	66	9	12	2 75E 02	1.18E.02	9.1E.02	0.0E+00	4E 04	0E+00	4.9E-04	0.0E+00
2	3000	131.5	9	2	2 47E 01	1 06E 01	1.7E.02	0 0E+00	7E.04	0E+00	9.6E.04	4.1E-01
								TOTAL	SE.03	6F+01		
	1							TOTAL CANCER RISK TOTAL HAZARD INDEX	CER RISK LAD INDEX			6E-03 7E-01

				-			j	į									-										_	5	(d 0		0 62	0.62	0 62	0.62	29 0						Ì	-	
=						-	-							_			1										_	5	1_		-	-	-	-	-	·					-	!	_
17	-			1	1										_										•			•	5		316	316	316	316	316					-		:	
16				<u> </u>		-	-	-																				Ξ	(degK)		293	293	293	293	293					!	-	1	
15		erage																										ž			14 65	10 65	11 89	12.16	7				-			1	
1		iler, Av																								_		70	(EE		-	-	-	-	-				BiezeL	× PC			31 02
13		Mpuno												_														:	(300)		~	2	2	2	2				Canc er	E .		26 04	00. 10
12		seds (ir		-!										_														¥	(ca/ec)		19 34	14 05	15.69	16.05	15 09				2	184/8E	/dey)	-	0 005
=	_	enching i				-																					_	CWO	-		0 OE +00	2 2E+00	4 4E+00	3 OE :01	2 2E + 01					1/84/8E)	dey-1)	1 8	
0		INI			Hazard	ndex xepu			4E 01	2E 02	2E 02	4E 02	0E+00	9E 02	1E 02	0E+00	0E+00	2E 01	1E-01	1E-03	7E-01	0E+00	1E+01	0E .02	1 1	2E+01		>	(E,E)		\neg	5 66		99 9	99 5					_		3 2E-04	9 OF 05
6	Table Q4-5	Scenario			Cancer	488			3E 04	0E+00	0E+00	0E+00	9E+98	4E.06	3E-07	3E-07	36.06	0E+00	3E-05	0E+00	6E-05	84.90	0E+00	5E.07		4E-04		£	(/mln)		22.5	22.5	22.5	22.5	22.5				200	Age 0.5	/Ba/Bm) /Ba/Bm)	6 9f. 04	
•	<u> </u>	Resident			2	/84/8m)	day)		0 001	0 005	0.0003	0.003	0	0 0000	500	0	0	0 002	0 001	0.05	0.002	0	0.00005	0.0005	1	TOTAL:	!	Cwd			0 OE +00	8.2E.01	1 9E+00	1 2E-01	8 7E+00					Age 6-17		12	12
1	_	r Future				$\overline{}$	dey-1)		18	0	0	0	0 029	0 13	0 0061	160 0	0 011	0	0 68	0	0.11	0	0	0 03) 	•	-	8	(mlm)		15		15	15	15			•	Residence Residence	Age 0.5		1	9
•		Estimates For Future Resident Scenario - TNT Leaching Beds Groundwater, Average	. ADULT		Dose	(mg/kg/	day)		3.7E 04	1.1E-04	4 6E 06	1.1E.04	0.0E+00	6 3E 05	136-04	90-39 Đ	6.3E.04	3 1E 04	1 OE 04	5 1E-05	1.4E.03	1.9E.05	7.4E.04	4.0E.05				Ø	(ug/m^3.	min)	000	3.27	7.13	0.49	34 57		HLD			Age 6-17	(88)	4.5	4.5
S		Risk Est	RISKS - A		Xee 2		30		30	30	30	30	င္ပ	30	90	30	e	30	30	30	30	30	30	30				2	=	_	0.0083	0.0083	0 0083	0.0083	0 0083	;	FISKS CHILD		2	9	(88)	15	15
7		Calculated	STON		3	(Ba)	70		70	70	20	70	2	0,	2	2	2	70	70	70	7.0	20	70	7.0				ŏ	(mim)		20	20	20	20	20		 NGESTION		=	Age 6-17	(Vdex)	-	-
9		3	GROUNDWATER INGE AVERAGE SCENARIO		=	(Vdex)	~		7	~	~	~	~	~	~	~;	~	~	2	2	2	~	~	~			5	3	(6,0)		7.0	2	20	70	20						(Vday)	0 8	0.8
2			GROUND		Sogo	(1/87)			13	3.7	91.0	3.7	0			0			36	1.8	9	0.68	26	L			A STATE	>	(L/mln)		10			0	0		GROUNDWATER			S	(1/87)	13	37
			; ;	1	Chemica				Arsenic			Seleniun	Denzene	Carbon	Chloreta Chloreta	1,2-DCA	7 5	2,4-DNP	2.4-DNT	TEC.	ğ	Telry		2 4.6.TN				Chemica			Benzene	Carbon	Chlorofa Chlorofa	1,2-DCA	TCE		-		Chemica Chemica			Arsenic	Chromic
•					Chemica				Arsenic	Chromic	Mercury	Selentun	Benzene	Carbon	Chlorete	1,2-DCA	TCE	2,4-DNP	2,4-DNT	Ĭ		Tetrvi	1.3.5.TN	2.4.6-TN2.4.6-TN				Chemica				Carbon 1	Chlorofa	1,2-DCA	TCE			: !	Chemica			Arsenic	Chromlu
	•	7		•	7	•	•	10	Ξ	7	-	_	1 3	_		-	=	20	21		23		-			28		2	_	33	3.4	Į	ĺ	37	3	200	7 ?	Ç	-	4.5	7	_	

W W W W	- 5	<u>-</u>	5 45	9	12	8 SE-06	3.9E.06	0	0 0003	-	2E 02	2		+	
W W W	2		45	. 9	12	2.0E.04	9.0E.05	0	0 003		4E 02				-
			\$	9	15	0 OE +00	0 0E+00	0.029	0	0E +00	0E+00	1	+	1	+
+			45	۰ م	12) 2E 04	5.4E-05	0.13		31.06	10.0		1	1	+
			5	ی ه	7 2	1 6E 05	7.36.06	0 091	50	2E 07	0E+00		+		
+		1	45	9	12	1 2E.03	5.4E.04	0.011	0	2E.06	0E+00		-		
Н		ا ــ ا	4.5	9	12	5.9E-04	2.7E.04	0	0.002	0E+00	2E-01				
	, ,	اا	45	9	15	1.9E-04	8.8E-05	0.68	.0.00	2E.05	1E-01				
			4	٠	12	9	É.O	0	0.05	0E +00	•	,		1	
			45	(9)	~	Ė	2E.0	0	0.002	5E-05	-	-			i
1	1		45	40	~	3.6E-05	1.7E.05	0	0	9E+08	0E+00	_	í	-	
- !	-		4.5	ا ک	2	4	9	0	SE-05	0E+08	-			:	-
			4	9	12	5	4E.0	0 03	0.0005	4E.07			. ,	ļ	
				_											
1		П							TOTAL:	3E-04	2E+01				
155	ğ	1300#													
			٥	2	8	De De	Cwd	Œ	8	ÇÃ	Kei	:	7	¥	11
1	7	11-9	(min)	(min^-1) (ug/m^3	٦	(1/6n)	(1/m/u)	(m^3)	(1/8n)	(cm/hr)	7 (500)	(ww)	dless	degK KdegK
		1			min)										
		;			-										
	·		20	0.0083			0.0E+00	22.5		0		~	<u> </u>	65	-
•	!	!	20	0.0083	3.27	5	8.2E 01	22.5	2.66	22	14.05	~		10.65	293 31
. '			50	0.0083			1 8E+00	22.5		7		~	_	1 00	_
	_			0.0083	_	6	1.2E.01	22.5		03		7	_	2.16	_
			20	0.0063	_		8 7E+00	22.5		22		2	1	1.43	_
Į į	П	Г													
1															
			_												

		67	***	2.7
			\perp	+
		1		
			'	
		:	1	
			1 '	
			- 1	
		1		-
			1 1	
				-
	:	-	- 1	
inhat	1;	1 .		
	3	OCJ KKCO2) KA(H2O)		릵
Phr)	/) g/mol mg/kg/ehr	/hr) (cm/hr) (cm/hr)		
00 88888 1 46.03 0.05.00 0.05.00	78 0.00E+00	20 3000		1
#### 7.0E.04 4.6E.06	154	\vdash		0.063 1026
##### 0 01 6 3E 06	9	20 3000		_
#### 00E+00 4 9E-07	8	+		4
04 #### 00E+00 6 4E 06 0 0E+00	131 5 8 74E 04	20 3000		-110
TOTAL: 2E-05 1E-01				
TOTAL CANCER RISK 4E.04	<u>.</u>			
		_ -		
		-	•	-
	-			

	-	20	~	22	23	-	,	-	:										
200	Mercury									•	2	2	31	32	93	34	3.5	36	3.7
5	Selenter		,																
5.2	Benzene					 -	+				-				_	_			
53	Carbo															-			
3.4	Chlorofa						-												
55 1	1.2.DCA							1											
36 7	3						-		-										
57 2	2.4-DNP										1								
502	4-DMT							-			-						L		
3.9 X	ğ							-										İ	
9	ğ	•		_	-											_			
-	Tetrvi			,		:	;												
-	3 5. Th		i		1	-	-	_											
		:	!		: i		:	1			_				_				
		:	:		:		:	-:-	_		_				_				
	+	1	-												_	1			
2																			
:																			
•																			
3	Chemica	7	3	k1(VOC)	æ	-	I	ko/VOC)	KICOSI	1	+				-				
:		(cp)	(65)	(cm/hr)	E3-CE	(deg K)	m 3.0.0	() () () () () () () () ()								_	I P	Cancer	ž
7.0			Г		100]		7		Tau/mas	TOE /B	Age 0-3	48e 6-17	Age 0-5	Age 6-17	t C	2	Alsk	T opu
=	-								1					(ma/kg/	(mg/kg/				
72	0402A0			15 02		207		÷	-	0	:			Shr.	- Par				
73	repor	_		9 01		10	200	_	2:0	0000	P	•	~	00E+00	0.00E+00		****	0E+00	0E+00
7.2	Morola	-		2		216	2	_	0	3000	154	9	2:	5.41E-04	2.32E-04			1E.05	5F.01
13	1.2.0CA	1 002	#Z 19 0			216	200	201	0	3000	2	9 :	2	18E 03	5.05E-04			2E 05	7E 02
=	,	_				210	0.0020	_	202	3000	66	•	2	8.17E-05	3.50E-05		06 + 00	1E.06	00,00
11	1	+-	31	2	- 1	282	1200		20	3000	131 \$	9	12	71E-03	2.45E.03	1.7E 02	9 1	2E.05	0
7.	-																		
=	-																TOTAL	4E.05	6E.01
•	<u> </u>																	٠.	
=	+	-	1													TOTAL CANCER RISK	NCER R		3E.04
	1															TOTAL HAZARD INDEX	ZARD IN	Ī	2E.01

3.0		-		_							1											-	!	1											_			t 1		
5		•							1		1										1	!	ļ	ļ																
-		, :	Chemica			Arsenic	Chromk	Mercury	Selentur	Benzene	5	Chlorota	1.2.DCA	2 4.DNP	-	ě	Ş	Totryl	1.3.5-TN	2,4,0.TN		1		Chemica			Benzene	Carbon	Chlorofa	1,2-DCA	TCE					Chemica			Arsenic	Chromiu
	- ~ ~		-	•	9	=	12	13	=	5	=	-		2	2	22	23	7.7	2.5	2	22	20	2		:	:	3.4	3.5	36	3.7	3.6	?	?	;		7	4 5	1		4.9

3.9														!				Total	Hazard	Hadek		-		:		:					
3.6												:						Total	Cancer	Risk		3		:		3					
-	Mercury	Selentur	Benzene	Carbon 1	Chlorola	1,2-DCA	TCE	2.4.DNP	2,4-DNT	Ĭ	Ž	Tetry	1,3,5.TK	2,4,6-TH					Chemica			Penzene	Celto	Chiorota	1,2 DCA	35					
	8.0	51	52	53	5.4	5 8	9.6	5.7	38	5.9	•	6.1	13	63	3	5	•	6.7	:		7.0	7.2	73	74	7.5	7.6	11	7.0	7.9	9.0	-

					;	Ī	-	-	:		<u> </u>		_	_		,	-		_		;	:					7	-	<u> </u>	719	210	12				•			7
=							!	i ·		<u>!</u>	-	_				!			!	1	i	<u>.</u>				3	_	_	0 62	5	200	0			_!		:		_
=				i	!		;			i	-					:	1				į					3			- -		-¦- -	-					:		-
17				į	-	!		i	!	1						:	i	1	:	•		-				4	(degK) (degK)		910	2	2 5	316			İ	:			
16						1	-		!	:	!					•	; ;		1			:				-				- 5	203					i			
15		ME							!							-	1					1				₹	dless		14.65	200	12 16	11 43			1			:	
1.		Waler, R							ļ							!					-					70	2		-	- -	- -	-			Hazard	H D		66 01	- 1
13				!	}				!	1 :						1	1		Ì							:	(208)		2	,	7	~			Canc er	Z Z		36 04	3
13	Hode .						!	-																		×	(cm/hr)		19 34	3	30 97	15.09			RIO	0 1/0 E	11.00/	0 001	2000
=	- day	· I've Learning Deus Groundwaler, Kivir.																								CWO	(1/87)		0 0E+00	200	1 2E+01	5 6E+01			*	(mg/kg/	7	9	7
10	<u>:</u> 2 :			Hazard	, 900			SE 01	3E 02	2E 02	SE 02	0E+00	2E 01	3E 02	0E+00	812	VE :01	5 5	25.50	8	46.01	2F.01		4E+01		20	(E~m)		\dashv	+	2 0 0	5 66			Dose	00	(Awp	4 2E 04	* 0
6	Table Q4-6			Canada	_			4E 04	0E+00	0E 100	0E+00	06 + 00	90 36	9E 07	5E 07	900	313	60.00	15.0	18	+	-););	6E-04		æ	(I/mln)		22.5	6 22	22.5	22.5		-	900	Age 0-5 Age 6-17	(Au)	4	5
•	T. mehden		 .	Ç		(App	172	100 0	0 00	0 0003	0 003	0	0 000 0	500	0:1	0	7000	500	200	6	0 00005	0 0005		TOTAL		Cwd			0 0E +00	2 15 000	2 LE - 20	2 2E+01	;		Sidence	6-17 10-17		212	1
,	— Futura			i d	ī		1	8 -	0	0	0	0 029	0 13	0 0061	0 091	1100		200	5		Τ	0 03				8	(mlm)	7	15	\dagger	0 5	T			ResidenceResidence	¥ 0 0.8		(0)	3
9	Calculated Dick Retinates Rock Suture Decident Scenario		ארד	900			T	4.9E.04	1.3E.04	6 9E .06	1 6E 04	0 OE +00	1 6E 04	3 4E 04	1.2E.05	1 61 03	50	100	16.03	3 4F.05	1 96 03	8 3F 05				øs.	(ug/m^3.	mla)	000	2 2 3 3 S	2 6	98		١	W BW	71-0-05	77.5	. S. K	7
8		- LS	RISKS A	Year	+	30		30	30	30	30	90		_	8	+	+	05	+	Ť		+		-		2	7		0.0083	0 0003	0 00 00	0 0083	1	AISK8 - C		Age 0-5	3		7
7	— Polesteria		INGESTION RISKS - ADULT	1	Ť	100	2	70	70	02	7.0	20	2		20	2 5	2	0 5	2 2	22	20	7.0		_	SHOWER BRIALATION EXPOSUR	٥	4				200	T		INGESTION PISKS - CHILD	<u>E</u>	į	77.007.1		
3	`	<u> </u>	WATER IN	9	11/4001	1	•	2	~	2	~	~		~	~ !	2	7	~ (,	-	- 2	,	yi	-!	1	3	(kg)		0,	2	9,5	20,		WATER	Œ!	Age 0.5	111000	8 0	
2			GROUNDWATER I	į	+	-		1.7	9 7	0 24	5.5	, 0	•//		_	- 1	_1	7	, ;	•	1_				MANONEH	>	(L/mln)				0	9		GROUNDWATER		Con		11	
-				a of mode				Arsenic	Chromic	Mercury		Benzene	Carbon	Chlorela	1,2.0CA 1,2.0CA	30	Z.4. DWP	2.4.DNT		1	1.3 S-TN	2 A A.Th		1		Chemica			Benzene	Carbon	Chlorela	105	1 : :		Chemica Chemica			Arsenic	Z E E
-				1000				Arsenic	-				Carbon	horota	1,2-DCA	3	Z 4 DWP	2.4-DNT	T	72	3 S.TN	2 4 6.Th 2 4 4.Th				Chemica			Benzene	Certon	Chlorefa Chlorefa	706			hemica			Arsenic Arsenic	TO MICE
П	- 6	~ ~	- 5	•	Т	• •	. 9	-	12	-	-	_	=	=	=		202	7					_	2	2 5	-	-	33	7					43	$\overline{}$	5	2 4		_

\Box	_	_	_	_	_	_	_	_	_	_		_		_	_	_	_	_		¥	_	_	-	_			_	_	_	_	_	\neg
19												_			_				-			_	316	316	316	316	316				j	╛
18																			1.1	(degK)			293	293	293	293	293			1		
17																			ž	:			14 65	10 65	11 89	12.16	11 43					
16																			70	(EE)			_	_	_	-	-					
15											_								:	(sec)			~	~	~	~~	~		_			
14	3E 02	3E 02)E +00	3E 01	1E 02	0€+00	E+00	2E-01	E-01	2E 03	SE+00	SE+00	5E+01	2E-01		5E+01			Xa.	(cm/hr)			19 34	14 05	15 69	16 05	15 09					
13	_	0E+00	_	I	_	_	_	_	_	0E+00	_	_	_	_	_	4E-04			ÇW.O				•	2 6	12	170	26					
_	0003 0	_	$\overline{}$	0007	-	-	-	-	001	-	0002	_	_	_	_	-	-	_	-		_	H	9			99					_	-
12	00 0	0	0	0	0.0	0	0	0	0	0.0	0	_	ŞĘ.	0		TOTAL			8	(m,3)	_					2					_	_
=	0	0	0 029	0.13	0.0061	0 091	0.011	0	0 68	0	-	0	0	0.03	•				£	(I/mln)			22.5	22.5	22 5	22.5	22.5					
10	96 9E	1.3E.04	00 + 30 C	1.4E.04	2 9E .04	1 0E 05	4E 03	2 9E 04	6E 04	7 6E-05	2 7E-03	2 9E 05	6E-03	7 1E-05	;				DW C	(I/Bn)			0E+00	2 1E+00	1 9E+00	1 7E 01	2 2E+01					
6	_	9E 04	0E +00	0E 04	4E 04	2E 05	0E 03	4E-04	4E-04	7E-04	9E 03	4E-05	6E-03	5E 04	_				å	(mlm)				_	_	-	_					
	_	2	-	3	9	7		9	3	_	2	9		_								_	0	e-	_		2		_			-
•	-	12	12	1.2	12	13	-	13	13	7	_	-	_	_	_				S	1/6n)	ale.		00	6	19.	0 68	98					
7	φ.	9	•	9	9	9	9	G	g	•	.	•	4		;				2	(min^-1) (ug/m^3-			0 0083	0 0083	0.0083	0 0083	0.0063					
•	45	4.5	45	4.5	45	4.5	5	45	4.5	5	5	4	5	5			_		ŏ	(mlm)			50	50	50	50	50					
8	1.5	15	15	15	15	15	12	15	15	15	2	5	5	2	į		RE MODEL		3	11-9 0EV	(kg)		5	5	5	\$	5					
	-	_	-	.1	-	-	-	-	_		_	_	_	_	<u> </u>		XPOSU.		3	Age 0-5 Ag	_		-	S		•	· •					\dashv
	_	1	-	•	_	-	_	-	-	i	_	_	_		1		MOL		_	_	_		_	_	_	_	_		-			
6	0.0	0.0	0.0	0	0	0	0	0	0		0						MAL		>	Age 6-1	[/min		-	•	-	-						
2	P Z 0	5.5	0	5 6	12	0	56		9	-	100	1.2	29	8	!		SHOWER INHALATION EXPOSURE		>	Age 0-5Age	(L/min)(L/min)		=	=	=	-	=					
-	Mercury	Selentur	Benzene	Carbon 1	Chlorota	1,2-DCA	TCE TCE	4.DNP	2,4-DNT	Ž	ğ	Tetry	1,3,5.TN	2,4,6-TR					Chemica	-			Denzene	Carbon	hiorofa	1,2-DCA 1,2-DCA	2					
_	Hercury 1	Selentun Selentu	Benzene	Carbon	Chiorota Chiorota	2-DCA	3	2,4-DNP 2,4-DNP	2,4-DNT		ğ	ž	3.5.TM	2,4,6 TN	:				Chemica Chemic			,	Benzene	Carbon 10	Chlorofa Chlorof	2-DCA	8					
-	80 H	5 1 8	52 B	_	\$ 4 C		1 0 S		5 8 2	8 9 H	8	6.1	6.2			5	:	2	2	3	7.0	1	72 0	73 C	74 C	78	76	7.7	7.0	6.	3	=
L_					<u> </u>		Γ.	Щ.	Ц.	تت	_	ニ		뜨	_	_	드	ニ	_	_	ட				끄		二	<u>`</u>				ت

-

37		
36		-
35		
34	Total Taxard Index Total Ind	i 1 !
33	Total Cancer Riek Riek Riek Riek Riek Riek Riek Riek	!
32	Hezard Index 100	
31	ncer 186 (197) 198 (197) 198 (197) 198 (197)	
30	CPF RID RID RESERVENCE	
29	TOTAL C	
28	Dose mg/kg/shr)	
27	2 8 1 19 8 9 9 1 13 1.5 5 1 13 1.	
26	Sa(H2O) (cm/hr) 3000 3000 3000	
2.5		
7.7	Mg(VOC) (em/hr) 1026 1167 1110	:
23	H m3-8 m mol) 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0	1
22	293 293 293 293 293 293 293	
12	moi-K)	
20	(WOC)	
-	Chemica Chemica Chemica Chromica Chromica Chromica Carbon 1,2-0CA TOE Chemica	Arsenic
		===

Γ	-	20	21	22	23	24	2.5	26	27	2.8	28	30	31	32	33	34	38	36	37
_	Mercury																		
	Selenium	1																	
52																			
53	Carbon 1																		
_	Chlorata																		
,																			
	2.4-DNP																		
	79																		
	ğ					ł			_				:						
:	Telry	ı								1						:	_	-	
5	1 3 S. TR	1								:			:	!	í			:	
3	2 4 6.78	: :	:								_			1			_	:	
3			1				:			1									•
:																			
:																			
5																			
-	Chemica	5	5	k1(VOC)	Œ	-	Ξ	14g(VOC) KI(CO2)	KI(C02)	Kg(H2O)	3	Tesidence	ResidenceResidence	Dose	200	- total	Inhal	Cancer	Hez
3		(db)	(d 5)	(cm/hr)	m3-etm	(deg K)	m3.etm		. n/hr	(cm/hr)	Iow/B	g/mol Age 0-5	Age 6-17 Age 0-5		Age 6-17	CPF	RtD	Risk	Index
7.0					mol-K)		(joE							(mg/kg/	(mg/fg/				
1										:				ehr)					
7.2	Benzene	_	0.6178			203	10.0	1441	20	3000	78	9	!	0.00E+00	0 00E+00	N:			9E + 60
2	Carteon	1.002	0 6178			293	0 063	1026	20	3000	154	9	2	1.38E-03	5 90E 04	1 36 01		3E 05	1E+00
7.4	Chloroto	1 002	0 6178			293	0.01	1167	50	3000	119	9		3.21E 03		•		_	2E.01
7.5	1.2.DCA	- 000	0 6178			293	0.0026	1279	50	3000	66	9		1.12E 04	•	6	_		0E +00
	TCE	1 002	0.6178	11.57		293	0 021	1110	20	3000	1315	•	12	1 45E 02	6.23E 03	1 7E.02	0E+00	4E-05	0E+00
11																		;	
7.0																	TOTAL	1E-04	1E+00
7.9																			
:																TOTAL CANCER RISK	INCER R		5E-04
																TOTAL HAZARD INDEX	LZARD IN		5E+01

	_						_	_	_			, -	_	_								_	_			_								_	_	_				_				_	_						_	_
5																														:	1	:																	-	1	:	
36			4		!	ļ.									-		i	i i	:											-		1																	1		1	
1						!	Chemica				Areenic	Chromba		1000	Selentur	Benzene	Carbon	Chlorota	1 2.DCA	1	070.4		W	ğ	ADK.	Totryl	1.3.S.TH	2.4.6.TN			!		101-040				-	Carbon	Chloroto	1.2-0CA	TCE		:	,		Chemica				Accord		Chromit
	ŀ	-[~	ŀ	•	ŀ	•	Т	•	9	=	-		1	•	2	•	1	-	ŀ				N	23	4	8	_	7				•	-	,			50		37	:	-	9		:	~	-	9	17			-

38																		Total	Hazard	Index		1	-	3	3		3	ł				
3.6																		Total	Cancer	Riek			-	3	:		:					
-	Ancour		Jenzene	erbon 1	hlorota	ADC-E	S.	4-DNP	4-DN	¥	ğ	Cotry	3.5-TM	4.0.TR					homica				Jenzene	e tog	Morola	2-DCA	Ç					
	9	-1		\$3		8	•	7	•	8 S	•	-	2		_	6.9	•	6.3	9	8.8	7.0	7.1	2	•	Ŧ	751	•	77	7.0	7.9	•	-

.

.

	-	2	3	•	5	9	7	•	6	10	1.1	12	13	14
_							Table Q4-7							
~					Calculated	Risk Estim	culated Risk Estimates For Casual Visitor	sual Visitor	- ALF Soil	-				
•				:						.				
•	ABANDO	ABANDONED LANDFILL	- CASUAL V	VISITOR										
50	WIND ER	WIND EROSION - UNLIMPTED EROSION POTENTIAL	RTED EROSK	ON POTENTIA										
•										-		_		
~ •		(V) 2000 000	mean wind	thresh wind	E(x)	PUIDENS	Area							
•			ㅗ	(CM/8)		(g/m2.hr)	(m2)							
0														
=		0.7	194	40	161	2.4	187000							
12					Crosswind					•				
	Chemical	Concentration	Cont. Emis	Box Helph	Width	Wind Speed	Wind Speed Contam Conc	Hrs/day	Inhal Rate	Expos Dose	ਲ	RID	Cancer Risk	Haz Index
- 2		_	_	ε	(w)	(m/s)	(mg/m3)		(m3/hr)	_	mg/kg/day 1	(mg/kg/day)		
-														
12	Cadmium	6.18	2.7E+06	8	200	1 94	3.9E.04	_	90	2 2E 07	6 1	0	3 9E 07	0 0E+00
=	Chromium		2.1E.07	8	200	1.94	3 OE 03	-	90	1 7E 06	-	0	2 0E 05	0 0E+00
=	Lead	440	1.9€+08	2	200	1 94	2 BE-02	_	90	1 6E 05	0	0	0 OE +00	0 OE . 00
20	Nickel	43.6	1.9E+07	2	200	1.94	2 7E 03	-	90	1.6E.06	0	0 02	0 0E + 00	7 BE 05
21	Selenium	0.441	1.9E+05	2	ļ	1.94	2 BE 05	-	90	1 6E 08	0	0 003	0 0E+00	5 3E 06
22	Zinc		4.85.00	8	200	76	6.9E.02	_	90	3.9E.05	0	0 0 0	0 0E + 00	2 OE 04
	0001	0.000035	1.5€+01	~	200	1.94	2 2E 09	_	9.0	1.3E.12	156000	0	5 6E 08	0 OE +00
	4C00	0 00017	7.5E+01	2	200	1.94	1.16.08	-	90	6.1E.12	1560	0	2 7E 09	0 0E +00
	0000	0.00022	9.7E+01	2	200	1 94	1 4E 08	-	90	7.9E.12	156	0	3 SE 10	0 OE •00
26	100	0.00032	1.4E+02	2	200	1.94	2 0E 08	-	90	1 2E 11	15600	0	5 1E 08	0 0E 100
	2	0.000021	9.2E+00	8	200	76	1 3E 09	-	9.	7 6E 13	78000	0	1 7E 08	0 0E +00
	FCDF	0.000082	3 6E+01	2	200	1 94	4		90	3 0E 12	15600	0	1 35 08	0000
	90	0 00013	5.7E+01	2	200	1 94	8 2E 09		90	4 7E-12	1360	0	2 15 09	00=+00
30												TOTAL	26.06	26.04
5	SOM MOSETTON	FETTOM	:		:								60.3	2
33	1	-	1							Total	Totat			
7	Chemical	Concentrations Ing	rool ing Rais	Expos. Freq	Exposure Dose	72	RID	Cancer Rish	Haz Index	Cancer Risk	Hez Index			
35			(g/day)		(mg/kg/day)	/kg/day) mg/kg/day	(mg/kg/day)							
5			.00				5	000	S OF OS	2 8785.07	6F.05			
		D 4	5:0	v . c	A 6 F. 02			200	95.05	2 041E-05	96.05			
2	Pag			-		0	0	00E 00	00E.00	0	0E+00			
9	Nickel	43.6	0 0	2		0	0 02	0 0E+00	2 1E 05	0	1E.04			
	Selection		100	8		0	0 003	0 0E ,00	1 4E 06	0	7E.06			
42	Zinc		0 0	· 0	1 0E 05	•	0	0 0E .00	5 2E 05	0:	2E-04			
43	000	0 000035	0 01	~	3 3E · 13	156000	0	1 5E 08	0 0E 100	7.103E.08	0E+00	:		1
*	00 00 1	0 00017	0 01	8	1 6E 12	1560	0	7.2E.10	0 0E + 00	3.45E-09	0E+00	1		:
4.5	QQQQ	0 00022	0 01	8	2 1E-12	156	0:	9.36-11	0 OE 100	4.465E-10	0E+00			1
•	5	0 00032	0 01	~	3 0E 12	15600	0 (1 4E 08	00 E 100	6.494E-08	0E+00			
•	PCD.	0 000021	001	8	2 0E 13	0008/	9 0	א ה	001100	2.131E-08	06 + 00			
•	14X,UT	0 000082	100	7		13000	7	2 30 03	0000	90.36.00	7			

1

8 8

•

HCDF 0 00013 0 01 2 1 2E-12 1560 0 55E-10 0 0E-00 2.630E-09 0E-00 TOTAL CANCER RISK	L	-	-	-	•	5	9	2	•	6	10	=	12	13	14
TOTAL: 4E-00 2E-04	13	- 100			,	1 25 12	1,560		K KE 10	O. DE. OO	2 KRAF.00				
TOTAL: 4E-08 2E-04	۲	3	51000.0	חח	,	71.37	200)	2	3					
TOTAL: 4E-00 2E-04	•						_								
			:					10101		-					
		_					_			77.37			_		10
TOTAL HAZARD MDEX		-			_		_					TOTAL CANC	ER RISK		2E.05
	1											TOTAL HAZAI	TO INDEX		SE-04

15					Ī												İ															-			-				1	_	_
•			+	!			,			Prototi	Index			0 0E +00	0 0E 100	00,00	5 6	20 20 00	200.00	0 OE .00	0 OE , 00	0 0E +00	0 OE , 00	00 E 00	3	3E-03			-		-•	1					-	-	-		_
13										, accord		÷				00,300					1 BE 10 0		7E 09	6.8E.09	3	1E.05			<u> </u> 								-				-
12			1	1							Rio	(mg/kg/	dayı			T	1	200		. 0	Ī			0 0	1	TOTAL										-					
-			i			-					쌍	/6x/6m)		6 1	=	0	-	2	000991	1560	156	15600	78000	15600		<u> </u>		Total	Hezerd	Index	06-100	0E+00	0E+00	6E-03	4E.04	2E . 02	90.00			0E + 00	
2						_	-			1/	xpos Dos	(mg/kg/	day	2 3E 06	1 BE 05	104	5	70 20	5 u	6 3E 11	8 2E-11	1 2E 10	7 BE- 12	3 0E 11	1			Total	Cancer	Risk	26.06	0E-05	0	0	0	•	2E.07		2 0	6E-08	
2		- AI. F.									Inhal Rate Expos Dos	(m3/hr)				90	Ī	T		9				9 9			:		Hazard	Index	00.50	00E+00	0 0E+00	5 3E · 03	3 6E 04	1 3E 02	0 0E .00	0000	30.00	0 0E 100	
•	_									1000		=		8	co :	80	D	3010	D : Q	o; co	90	8	60	co i α					Cancer	Risk	1 3E 0E	6 9 6 05	0 0E+00	0 0E+00	0 0E +00	0 0E+00	1 9E-07	80 25	75 07	5 7E 08	
	Table C4-8	nates For				_				Lesimod	Concen	(mq/m3)		9 41E 05	7 37E 04	6 70E 03	0 04E U4	9 10	20 200 I	2 59E 09	3.35E.09	4 87E 09	3 20E 10	1 25E-09				-	<u>8</u>	/64/6m)	day)	:0	0	0 02	0 003	0 2	0	0	9	. 0	
٩	- :	Calculated Risk Estimates For Worker		-		Daily PM10	Emissions	(kg/day)	7.7E+00		Wind Speed	(m/s)		184	76	700	5	84		9	1 94	1 84	1.94	2:2			-	-	ঠ	ng/kg/day 1		Ţ	0	0	o:	0:	156000	0961	15600	78000	
0	;	Calculat		GATE	7	Агва	Trenched	(m2/day)	100	Croscowing	Width	€)		-		- -	-	-	- +	-	-	•	-						Exposure Dose	s/day) (mg/kg/day) mg/kg/day 1	36.05	1 2E 04	1 1E 03	1 1E-04	1 1 <u>E</u> 06	2 7E 03	8 SE-11	0 0	7 AF 10	5 1E 11	
•				TOR SURPOGATE		PM10	Emissions	(kg/m2)	7 7E 02		Box Height			3	e :	6	7) (7)	7	: د د	າ ຕ	9	3	6	ص ر د	,			Work	ale	(days/day)		900	0 36	0 36			0 36	900	9 0		
7			VORKER	KHOE (TRAC		PM10		kg/hectare)	7.7E+02		Cont. Emis	т-		4.7E+01	3 7E .02	3.46.03	336+02	300	20.50	1 3E 03	1 7E-03	2.4E.03	1 6E 04	6.3E.04				:	oil Ing Rate	(g/day)	87.0	0.0	0 48	0 48	0 48	4	0 48		44		
2		:	ABANDONE ABANDONED I ANDEN I - WORKER	MIST GENE DUST GENERATED BY BACKHOE (TRACTO		Percent	-		20		Concentration	L_		6.18	707	0440	43.0	660	0000	0.00017	0.00022	0.00032	0.000021	0.000082			3	E	ConcentrationSoil Ing	(mg/kg)	9, 4	4.0	440	436	0 441	1080	0 000035	0.00017	0 00032	0 000021	
-			NRANDOMEC	NIST GENER		Fraction of	PM10 (k)		0.21		Chemical			Cadmium	Chromium	Lead	NICKE		TOD	1000	0000	TCDF	PecDF				- 101	SOF MUES SOF MUES IN	Chemical		wini ambig	Chromium	Lead	Nickel	Selenium	Zinc	1000		100	Pecor	
-		•	PANDOME !	UST GENE		Fraction of Fraction	PM10 (k)	-	0.21	-	Chemical	Т		_	E		_	E	בישני					1006				THE MACE	Chemical		o minute o	_	_	Nickel	Ę	:					
+	7	~	7	1	1	T	-		0	= :	_		1.5		_	_		202		200		25 TC		년 2 2 3		30		7 CC	_	3.5	36			_	_				3 2	_	

Total Hezard Index

8E-05

7E-05 2E-02

=					_					İ	1	az Index	_		217	5 !!	4E 07	4E 07	5E.04		-		-	_								2E.08	7E.04
13							1					Cancer Risk Haz Index			00.00	+	+																\dashv
12							:	: :				9	(mg/kg/day)	,	5000	00000	0 000 0	0 0000	TOTAL		1											TOTAL CANCER RISK	TOTAL HAZARD INDEX
1.1								1				3 5	mg/kg/day 1	(o (,	7	5	16			1	1	Tote	Ī		1E.09	76.04	5E-04	SE.07				
10												Expos Dose	(mg/kg/day)	i i	2 7E 10	3.2E 08	2 1E 10	1 BE 10					Total	Cancer Risk		0E+00	2E.08	1E-08	4E-10				
6	<u> </u>	r - CCB So								:		Inhal Rale	(m3/hr)		90	90	90	90					Cancer Bist Haz Index			3E · 10	2E 04	1E 07	1E-07		2E-04		
		sual Visito										Hrs/day			-	-		_					Cancer Rish			0E+00	4E 09	9E-11	1E 10		4E 09		
7	Table Q4-9	ites For Ca					Area	(m2)	0013	3		Contam Conc	(Em/6m)		4 77E 07	5 52E-05	3 71E 07	3 18E 07					G	(mo/ka/dav)		0 3	90000 0	0 0005	0 0000		TOTAL:		
9	•	Risk Estimates For Casual Visitor - CCB Soil			·		PM10 EMS	(g/m2-hr)	ď	D (Wind Speed	(s/w)	!	1 94	1 94	194	1.94	-				y	/ka/dav/mo/ka/dav: 1 (mo/ka/dav)		0	C 1	\$	9.1				
2		Calculated					F(x)				Crosswind	Width	€		27	27	27	27					Pxposure	(mo/ko/dav		8 6E-11		6 7E-11					
-				N POTENTIA		mean wind thresh wind	((i)n) peeds	(cm/s)				Box Height	(E)		2	2	8	2	1				dioce/aveC			2	1	~	2				
6		:		TED EROSIO		mean wind	(n) peeds	(cm/s)		2		Cont Emis	(ng/hr)		1 8E+02	2 1E .04	1 45.02	1.2E+02	:				Are Date	(veb)o)	77.57	0.01	0.01	0 01	0 01				
2		!	BLIRIAL SITE	WAND EROSION - UNLIMITED EROSION POTENTIA			veg cover (V)			ρ. Ο		Chemical Concentration Cont Emis	(6/6n)		600 0	1.04	0 007	900 0			1001	E	thought of the Day of the Control of		78,85	600 0	1 04	0 007	900 0			:	
-		1	CHEMICAL BURIAL	WIND EROS	_							Chemical C			TCP.	Chlordane	Heptachio	Heptachlor				SOF MEEN TON				TCFM	Chlordane						
	-	~ .	,	Т	_	-	•	0	=	2 5	=	_		17	=	•	20	2	_	23		_	25		2	30	3.1	32	33	34	35	36	3

27

~ ~ ~ ~

13

===

2000

1.5						!															:								1		90.4		Total			X 00 C	16.00	4	, c					S. 0.	Ü
-											Hazard	Index				¥	5 2E 06	SE		6E-03	!								:		,	Y	Total	ì		Z Z	0	AE AB			7		-		×
F			CHEMICAL BURL	UST GENERA		Fraction of	PM10 (K)		0.21			Chemical			TCPM	Chlordane	Heptachlor	Heptachlor Epoxid				SOR INGESTION	Pomicel	CHEMICA		TCP.	Chlordane	-1	Heptachlor Epoxie	•			OSHA DOST BEN		Chemica		1CDJ			Treprecino.	Heprachior	1			
	-	~ ~	1	-	•	-	•	•	9	=	-2	=	-	5	=	17	=	•	20	21	22	23	24	<u>:</u>	2/2	2	23	2	7	32	5	34	5				2		:[:		7				

1

į

I

Ь.	1	2	3		- 5		7]			10	7.	1 2	• 1	- 4
1							Table Q4-11							
2	<u>i </u>		l	Cal	culated l	Risk Estima	tes For Casa	iai Visito	r - DRMC) Soil				
3														
			WAL VISITOR								 			
	WIND EROS	ON - UNL	MITED EROS	BON POTEN	TIAL									
7	-			lbassaa										
8	1	veQ	mean wind	speed (u(t))	F(x)	PM10 EMS	Area				 		•	
9		cover (V)		(CIT/8)	<u>' 12/</u>	(g/m2-hr)	(m2)							
10	<u> </u>			,										
11		0.7	194	40	1.91	2.4	187000							
12	I													
13					Crosswing									
	Chemicai	Conc		Box Height			Contam Conc	HISIDAY				A1D	Cancer Rise	mazrced
1 5		(ug/g)	(ug/hr)	(m)	(m)	(m/s)	(mg/m3)		(ma/nr)	(mg/kg/day)	d/rd/gay-	(mg/kg/day		
	Barrum	299	1.3E+08	2	500	1.94	1.9E-02	1	0.6	1.1E-05	-	0.0001	0.0E+00	1 1E 21
_	Malybdenum	2.09	9.2E+05	2	500	1.94	1.3E-04	- -	0.6	7.5E-08	Ö	0	3 0E - 0C	3 0E - 33
	Vanadium	99.3	4 4E-07	2	500	1.94	6.3E-03		3.6	3.6E-06	C	0.007	0.0E+00	5 E 14
	2-DCB	~6.6	3.4E+07	2	500	1 94	4.8E-03	1	0.6	2.8E-06	0.04	C	3 2E-J8	3 0E-33
	1.3-DC8	. 55	5.4E+07	2	500	1.94	7.7E-03	1	0.6	4.4E-06	0	0	0.0E+00	0.0E+30
22		23.6	1.0E+07	- 2	500	1.94	1.5E-03		0.6	8.5E-07	0	0.2	0 0E+00	4 2E 26
	Aldrin DDD	2.25	2.6E+04 9.9E+05	2	500	1.94	3.7E-06	1	0.6	2.1E-09	1 7E+C1	0.00003	. 0E-08	7 CE 35
	DOT	2.23	1.1E+06	2 2	500	94	1.6E-04		0.6	8.1E-08	0.0E+00	0 0005	3 3E+00	0 0E+35
	Benzene	1 09	4.8E+05	- 2	500	94	6 9E-05		0.6	9.1E-08 3.9E-08	3.4E-01 0.029	0.0014	8 8E-09	2 8E 15
27		24.5	1 1E+07	2	500	94	5E-03	•	0.6	8.8E-07	0.023	0.006	2 0E - 0C	5E 14
28	Chiaroterm	0.054	2.4E+04	2	500	1 94	3.4E-06	•	0.6	9E-09	0.081	0.01	4 5E-11	9E :
29			4.8E+04	2	500	1.94	6.9E-06		0.6	3 9E-09	3 091		DE-10	0.0E-00
30		3.156	6.9E+04	2	500	. 94	9.8E-06		0.6	5.6E-09	· 2	<u> </u>	. 36.09	0 0E+00
31			2.2E+04 2.4E+06	2	500	1.94	3.2E-06	1	0.6	1.9E-07		;. _	3.0E+00	0.0E-30
	Ethylbenzen CH2CL2	0.562	2.58+05	- 2	500	1 94	3.4E-04 3.5E-05		0.6	2.0E-08	0.014	0.9	8.1E-11	8E 36
	1122-TCA	1.5	6.6E+05	2	500	1.94	9.5E-05	 -	0.6	5.4E-08	0.2		3 'E 09	0.0E+30
	PCE	17	7.5E+05	2	500	1 94	1 1E-04	1	0.6	6.1E-08	0.0033	0.01	5.8E 1	6 'E-36
	Toluene	33	1.5E+07	2	500	1,94	2.1E-03	1.	0.6	1.2E-06	-3	3.6	2 0E+00	2.0E 06
	11-TCA	1 44	6.3E+05	2	500	1 94	9.1E-05	1	0.6	5.2E-08	0	0.3	0.0€+00	* 7E 37
	TOE	314	1.4E+07		500	1 94	2.0E-03		0.6	1.1E-06	0.017	3	5.5E-09	0 CE -00
	Xylenes	29.1	1.3E+07	2	500	1 94	1 8E-03	1	0.6	. DE-06	<u> </u>	0.09	0.0E+00	· 2E 05
41												TOTAL:	6E 08	1 E-01
	SOIL INGES	TION							-			TOTAL.	02.00	
43					Ехров					Total	Total		*	
	Chemical	Conc	Son ing. Rate			9₹		Cancer Ris	MH82. Index	Cancer Risk	Hez Index			
45		(ug/g)	(g/day)	(dy/mnth)	mg/kg/da	mg/kg/day-	(mg/kg/day)							
46			 _											
	Barium	299	0.01	2	2.8E-06	0	0 05	0.0E+00	5.7E-05	0E+00	1 E - 01			
	Molybdenum Vanadium	2.09 99.3	0.01	2 2	2.0E-08 9.5E-07	0	0.007	0.0E+00	0.0E+00	0E+00	0E+00		•——	
	1.2-DC8	76.6	0.01	2	7.3E-07		0.09	0.0E+00	8.1E-06	3E-08	8E-06		•	
	1.3-DCB	122	0.01	2	1.2E-06		0	0.0E+00	0.0E+00	0E+00	0E+00	· · · · · · · · · · · · · · · · · · ·		
52	1.4-DC8	23.6	0.01	2	2.2E-07	0.024	0	5E-09	0.0E+00	2E-09	4E-06			
	Aldrin	0.058	0.01	2	5.5E-10	1 7E+01	0.00003	2.7E-09	1.8E-05	1 E - 08	9E-05			
	000 007	2.25	0.01	2	2.1E-08	2.4E-01	0	1.5E-09	0.0E+00	18.08	0E+00			;
	DOT Benzene	1.09	0.01	- 2	2.4E-08	3.4E-01	0.0005	2.3E-09 8.6E-11	4 8E-05	1 E - 08	2E-04			
	Chiorobenza	24.5	3.01	2	1 0E-08 2.3E-07	0.029	0.02	0.0E+00	0.0E+00 1.2E-05	4E-10	3E-05			
	Chloroform	0.054	0.01	2	5.1E-10	0.0061	0.02	9.0E-13	5.1E-08	5E-11	2E-07			
	1 2-Dichiore		0.01	2	0E-09	0.091	0	2.7E-11			02+00		·	
60	1.1-DCE	0.156	0.01	2	1.5E-09	0.6	0.009	2.5E-10		2E-09	2E-07			
	1.2-dichlore		0.01	2	4.9E-10	0.068	0		0.0E+00	9E-12	0E+00			
	Ethylbenzen		0.01	2	5.1E-08	3	0.1	0 0E+00			2E-06			
	1122-TCA	0.562	0.01	- 2	5.4E-09		0 06	1 1E-11		9E-11	1E-07			
	POE	• 5	0.01	2 2	1 6E-08	0 2	0 01	8.2E-10 2.4E-10	0 0E-00	4E-09	0E-00			
	Taluene	33	0.01	2	3.1E-07	3331	0.3	3.0E+00	3E-06		3E-06			
	111-TCA	1 44	0.01	2	1.4E-08	- 6	0.09	0.0E-00	5E-07	0E-00	3E-07			
6.8	™ZE	31.4	0.01	2	3.0E-07		0	9 4E-10	0.0E+00	6E-09	0E+00			
	Xylenes	29.1	0.01	2	2.8E-07	0	2	C 0E - 00	4E-07	0E-00	1€.05			
70														
71			-			 -	TOTAL:	1 E - 0 8	3E-04				 	 -
72							<u> </u>					NCER MISK		7E-08
بالم	L			:							IUIAL RA	ZARD (NOE)	•	.E.3.

						_						_		мф			90	9	07	7	03	05		7		_						-					- 26	
1.4														Haz Index			2 BE	2 BE	7 9E	5 1E	99 9	6 2E 02	1	7E-02													P E.	1
13				1										Cancer Rish			0 06 00	5 4E-09	0 0E 100	4 BE 08	00 • 30 0	2 6E 07		3E-07														
12				†										RIO	mg/kg/day		00 0	0 001	0 05	0 003	0 00005	0 0005		TOTAL													ER RISK	A INDEX
11		4.												ঠ	mg/kg/day 1		o :	0 68	0	0 11	0	0 03				Total	Hez Index			7E-05	7E-05	2E-06	1E.03	2E.02	2E-01		TOTAL CANC	TOTAL HAZARD INDEX
10		k Estimates For Casual Visitor - TNT Leaching Beds Soil, Average									,			Expos Dose			2 0E 07	2 BE 08	4 OE 08	1 SE 06	3 3E 07	3 1E 05				Totel	Cancer Risk			0E+00	1 E.08	0E+00	1E.07	0E+00	7E-07		<u> </u>	
6		hing Beds												Inhal Rale	(m3/hr)		90				90	90					Risk Haz Index			4 5E.05	4 SE 05	1 3E 06	8 3E 04	1 1E 02	9 9E 02		- -	
•		TNT Lead												Hrs/day				-	_	-	-						Cancer Risk			00 T	8 7E 09	0 OE . 00	7 BE 08	00+300	4 2E 07) 	
7	Table Q4-12	ual Visitor						Area	(m2)		450			Contam Conc	(mg/m3)		3 4E 04	4.9E.05	6 9E 05	2 7E 03	5 BE-04	5 4E 02				i	9	(mg/kg/day)		0.007	000	0.05	0 003	0.00005	0.0005	. 10.101	<u>.</u>	
9		ites For Cas						PMIDEMS	(g/m2 hr)		7.8			Wind Speed	(w/s)	:	1.94	1 94	1 94	1 94	1 94	194					ප ැ	mg/kg/day-		0	89.0	0	0.11	0	0 03	١		
S.		Risk Estima						F(x)			191		Crosswind	Width	(m)		24.4	24.4	24.4	24.4	24.4						Exposure Dose	(mg/kg/day)		3 1E-07	4 SE 08	6 4E-08	2.5E 06	5 3E-07	5 0E 05			
4		Calculated Ris		5	POTENTIAL		thresh wind	speed (u(I))	(cm/s)		0+			Box Heigh	(m)		8	2	2	2	8	NI					Expos Freq	(dium/kp)		2	~	N	~	2	2		•	
C				ASUAL VISIT	ED EROSION		mean wind	speed (u)	(cm/s)		194			Cont Emis	(ug/hr)		1.2E+05	1.7E+04	2 4E+04	9 2E+05	2.0E+05	1 BE . 07						(Ap/B)		0.01	100	0 0 0		0 01	0 01			
2		- -		THE LEACHING BEDS - CASUAL VISITOR	WIND EROSION - UNLIMITED EROSION POTENTIAL		1	veg cover (V)			0			Concentration	(ng/g)		33	4.7	6.7	260	99	5200			TION		Concentration boil Ing. Rate	(6/8n)		33	4.7	6.7	260	56	5200		:	
1			1	THI LEACH	WIND EROS	:						į		Chemical			Musbene V	2.4 DNT	HMK	Ž	1.3.5.TNB	2,4,6.TNT			SOIL INGESTION		Chemical			Vanadium	2.4.DNT	¥	Ž	1.3,5 TNB	2,4,6.TNT	-	-	
П	-	~	٦	1	-	•	7	•	•	10	Ξ	12	13	14	15	=	Í	102	6.	20	21	22	2		25	26		2	2	90	31	32	33	34	35	_		

ſ

				Cancer Risk Haz. Index	O O O	90 00 00 00 00 00 00 00 00 00 00 00 00 0	13 13 13 13 13 13 13 13 13 13 13 13 13 1	12 00 00 00 00 00 00 00 00 00 00 00 00 00	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 00 00 00 00 CO CO CO CO CO CO CO CO CO CO CO CO CO	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8:88688
				RIO M9/kg/day	RID Mg/kg/day	HID Mg/kg/day 0 007 0 001 0 005	RID Mg/kg/day 0 0007 0 000 0 000 0 0000 0 0000 0 0000 0 0000	RID Mg/kg/day 0 0007 0 000 0 000 0 0000 0 00005 0 00005 0 00005	RID 0 007 0 0007 0 0001 0 00005 0 00005 0 00005	RID RIQ/Kg/day 0 007 0 0001 0 00005 0 00005 0 00005 TOTAL:	BID Mg/kg/day 0 0007 0 005 0 000 0 005 0 000005 0 00005 0 00005 0 00005 0 00005 0 00005 0 00005 0 00005 0 000005 0 00005 0 00005 0 00005 0 00005 0 00005 0 00005 0 00005 0 00005 0 00005 0 00005 0 00005 0 00005 0 00005 0 00005 0 00005 0 000005 0 00005 0 00005 0 00005 0 00005 0 00005 0 00005 0 00005 0 000005 0 00005 0 00005 0 00005 0 00005 0 00005 0 00005 0 00005 0 0	RID mg/kg/day 0 0007 0 0001 0 0003 0 00005 0 00005 0 00005	HID mg/kg/day 0 0007 0 000 0 00003 0 00005 0 00005 0 00005
				s Dose SF (g/day) mg/kg/day 1								────────────────────────────────────	والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع
				inhal Rate Expos Dose (m3/hr) (mg/kg/day)				▗┊ ╌ ╒╶╒╒┋┋┋ ╒╒╒╒ ╒ ┋					
				Нга/дау	Hrs/day	Hrs/day	Hrs/day	Hrs/day	Hrs/day 1 1 1 1 1 1				
		EMS Area		[Cons									
		F(x) PM10EMS	2						F(x) 1 91 1 91 Width Width (m) (m) 24 4 24 4 24 4 24 4 24 4 24 4 24 4	F(x) 1 91 1 91 Width Width (m) (m) 24 4 24 4 24 4 24 4 24 4 24 4 24 4 24	F(x) Moth Moth Moth Moth Moth Moth Moth Mot	F(x) (m) (m) (m) (m) (24 4 24 4 24 4 (24 4 (24 4 (24 4 (24 4 (24 4 (24 4 (24 4 (26 0) (36 0) (6 0) (6 0) (7 0)	F(x) 1.91 1.91 (m) (m) (m) (24.4 224.4 224.4 224.4 224.4 224.4 224.4 224.4 224.4 224.4 224.4 224.4 224.4 224.4 224.4 224.4 226.0 226.
	•	speed (u(1))	(u(U))	wind (u(i))	Puis ((1))	Duis (8)	Puim Puim		(a) (a) (a) (a) (a) (a) (a) (a) (a) (a)	(u(l)) (u(l)) (u(l)) (u(l)) (upo	Free Erpo	Freq Eppe	
THT LEACHING BEDS - CASUAL VISITOR WIND EROSION - UNLIMITED EROSION POTENTIAL		mean wind speed (u) (cm/s)	speed (u) (cm/s)	speed (u) (cm/s) (cm/s) 194 Cont Emis (ug/hr)	Speed (u) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s) (cm/hr) (c	Cont. Emis (ug/hr) 1 3 - 0.05 2 0 - 0.05	Cont Emis 194 194 196	Cont. Emis (ug/hr) 1 3E.05 3 1E.04 4 1E.04 2 0E.05 2 0E.05 2 0E.05	Cont. Emis (ug/hr) 1 3E 05 3 1E 04 4 1E 04 4 1E 04 4 1E 06 2 0E 06 2 0E 06 2 0E 06 3 1E 04 2 0E 06 3 1E 04 4 1E 04 4 1E 04 4 1E 04 6 06 06 8 0				
TINT LEACHING BEDS - CASUAL WIND EROSION - UNLIMITED ERC		veg cover (V)	veg cover (V)	veg cover (V) Concentration (ug/g)	veg cover (V) 0 Concentration (ug/g)	Concentration (US/9) 38 8 9 11 5 550							
THT LEACH		1	1	Chemical	Chemical Vanadium 2,4. DNT	Chemical Vanadium 2.4 DNT HAK	Chemical Chemical Vanadium 2.4. DNT HAK RDK 1.3.5. TNB		Chemical Vanadium V. A. dull Vanadium V. dull	Chemical Vanadium 2,4 DNT HAK HDK 1,3,5 TNB 2,4,6 TNT 2,4,6 TNT Chemical	Chemical Chemical Light Port First 1.3,5.1NB 2,4,6.1NI 2,4,6.1NI 2,4,6.1NI Chemical Chemical Vanadium 1946	Chemical Chamadium 2.4-DNT HAK HAK HOK 1.5-1NB 2.4-6-TNT 2.4-6-TNT Chemical Chemical RDK HOK HOK HOK HOK HOK HOK HOK HOK HOK HO	Chemical Chemical 2,4-bit 1,3,5-TNB 2,4,6-TNT 2,4-bit 1,3,5-TNB 2,4-bit 1,3,5-TNB 1,3,5-TNB 2,4-bit 1,3,5-TNB 1,3,5-

	9	4	5	9	7	•	6	10	=	12	13	+-	15
Calcu		culated	ed Risk Està	Risk Estimates For Worker - TNT	Worker - TN	NT Leach	Leaching Beds Soil, Average	Soil, Ave	- Jage				
TWT LEACH THT LEACHING BEDS - WORKER		•									:		
(TRACTOR	CTOR SURA		SURROGATE)										
PM10	PM10		Area	Daily PM10									
Sit (s) Emissions Emissions	Emissions	- 1	Trenched	Emissions					Ì	1	-		
7.7E+02 7.7E 02	7.7E.02	i	100	7.7E+00					!				
	:]	Crosswind		Chemical	Work			:		Cancer	Hazard	
Concentration Con. Emis Box Height	e opt	1	Width	Wind Speed	Concen		Inhal Rate Expos Dose	xpos Dose	Ь	Arc	Risk	Index	
шg/day) (п	Œ	1	Œ	(m/s)	(mg/m3)	=	(m3/hr)	(mg/kg/	(mg/kg/	(mg/kg/			
								dayi	day:1]	day			
			_	1 94	5 02E .04		90	1 2E 05	•	0 007	0 0E , 00	1 8E 03	
3 6€+01			-	1 94	7 15E 05		90		0.68	0.05	1 7E 08	3 SE 05	
	3		1	1.94	1 02E 04		90	2 SE 06	0	0.5	0 0E + 00	5 OE 06	
	0		-	1.94	3 96E 03		90	9 7E 05	=	0 003	1 SE 07	3 2E	1
4.3E+02	6	į	_:	18	8 52E 04	40 :	9:	2.1E.05	0.	0 0005	0 0E+00	4 2E 02	
-	6		_;	1.84	7 916 02	45 1	90	1 9E 03	000	500 o	8 3E 07	3 96 01	
		11								TOTAL:	1E.06	5E-01	
	177								-				
Concentration Soil Ing. Rate Rate Exp		Ä	Exposure Dose	b	SIG.	Cancer	Hazard	Cencer	Hazard				
(days/day)		틸	(mg/kg/day)	mg/kg/day 1	(mg/kg/	Risk	index	Risk	index				
		1			(Ap					-			
0.48		:	8 1E 05	0	0 007	0 0E . 00	1.2E-02		1E-02				
4.7 0 48 0 36	0 36		1.1E.05	0 68	0 05	1 1E 07	2 3E 04	1E.07	3E.04				į
0 48	90 0		1 6E-05	0	0.5	0 0E + 00	3 3E-05	0	4E.05				
	96 0	ļ	6 3E 04	0.11	0.003	1 OE-06	2 1E 01	1E.06	2E.01				
5200 0 48 0 36	8: 9: 0:0		1 4E 04 1 3E 02	0 03	0 0005	0 0E+00 5 4E-06	2 7E 01 2 5E 00	0 6E.06	3E-01	ı			•
					TOTAL.	7E-06	3E+00			TOTAL CA	TOTAL CANCER RISK	¥	. E. O.
										TOTAL HA	ZARD IND	ΕX	3E+00
MHALATION SCENARIO					Vork	Work	Exposure					Totel	Totel
Concentration Soil Conc. PM10 Conc. Ch	S		Chem Conc	Inhal Rate	Day	Rate	Dose	ઝ	A:O	Cancer	Hazard	Cancer	Hezerd
(Em/6m) (Em/6m)	m3)		(mg/m3)	(m3/hr)	(hrs/day)	days/day	(mg/kg/ day)	(mg/kg/ day 1)	(mg/kg/ day)_	Risk	Index	R	¥ .
33 10 21	2		9E	90	6 0 :	0 36	7E	0 0	0 00 0	0 0E ,00	2 4E 04	0	1E.02
10	21	i	9 3E 06	9 0	20	0 36	2 4E 0/	0 68	coo	2.35 09	4 BE Ob	16-07	ZE-04

J

L	1	-	2	0	•	50	9	7	•	۰	-	=	7	<u>.</u>	7	2
-	¥	TAR	6.7	10	2.1	1 4E 05	90	60	98 0	3 4E 07	0	0.5	005+00	110	0	3E-05
20	ğ	Ž		10	2.1	5 5E 04	90	60	0 36	1.3E 05	0 ==	0.003	2.1E.08	4 4E-03	1E-06	2E-01
5	1.3.5 TNB	1.3.5 TNB	99	9	2	1 2E 04	90	60	90 0	2 9E 06	0	0 0005	0.0E+00	5 7E 03	•	3E-01
\$2	2.4.6 TNT	1 2.4,6 TNT 2,4,6 TNT		01	2.1	1.1E 02	90	•	96 0	2.7E 04	0 03	0.005	1.1E.07	5 3E 02	6E-06	3E+00
33																
3												TOTAL:	16.07	6E-02		
5.5														-		
26	-											i	TOTAL CANCER RISK	NCER RISE	. ت	7E-06
3													TOTAL HA	ZARD INDE	×	3E+00

			:	Ţ	ī		ī	Ī	Ī	_	i	i		_		Ī	1	-			!	i	_		- :	<u> </u>	-	_		<u> </u>	i i			10	,,,		. 7	1 .			7
15																																		T.	6E+00		Heres			1 E - 02	4E-04
14			-							Hazard	Index			2 OF 03	6 6F 05	9 SE 06	9	S SE OS	9).)	7E-01	1													X			1		•	2E.07
13				!	:					Cancer	Pisk			005,00	3 2E 08	0 OE + 00	3 3E 07	5	1 3F 06	}. : :	2E-06													CEB BIS	ARD IND		Hazard	1000		2 BE 04	9 1E 06
12								1			2	(mg/kg/	day)	0 00 0	0 05			1):):):	TOTAL:			-										TOTAL CAN	TOTAL HAZARD INDEX		Cancer	300	¥0.	0 0E +00	4 4E 09
11	•	¥	i					:			35	/6x/6m)	day 1)		990	0	0 11	0	0 03	}				Total	Piezel	× PC		2E.02	5E-04	6E.05	5E-01	5E-01	SE +00	-			G	1 2 2	day)	0 007	0 05
10	_	Soil, RN _							!		xpos Dos	130/kg/	(Xep	1 4F 05	3 3E 06	4 3E 06	2 1E 04	3.2F.05	3 OF 03) i				Total		Z.		•	2E.07	0	2E-06	0	1E-05		:		9		day. 1)	•	9 0
6		hing Bed									Inhal Rate Expos Dos	(M3/hr)			_	9		9	010						Hazard	Ndex		1.3E.02	4.3E.04	5 6E 05	4.6E.01	4.2E.01	3 9E + 00	SE.OO			Doce	2	day)	1 9E 06	4 6E 07
6	·-	- TNT Leaching Beds Soil, RME					-				-+	(Nrs/day)		•	: 60	8	8	•							Cancer	HISK		0 0E +00	2 1E 07	0 0E + 00	2 1E-06	00E+00	8 4E 06	16.05		 	N O		days/day	0 36	0 36
7	Table ()4-15	Worker - `								Chemical	_	(mg/m3)		5 78E-04	1 35E 04	1 75E 04	8 52E 03	1 32E 03	1 22E 01	11 11 11				-		/6x/6m7	- dey		0 05				0000	TOTAL			ž č	1000		•	89
9	<u>:</u>	imates For				Daily PM10	(ko/dav)	7.7E.00			Wind Speed	(8/W)		*6	96	1 94	1 94	1 84	76						7	mg/kg/day n		0	0 68	0	0.11	0:	žo o				John Bain	1		90	90
5		Cakulated Risk Estimates For		SURROGATE)	•	Area	(m2/dav)	100		Crosswind	Widin	Œ		-	-	-	-	-								mg/kg/day) m		9 3E 05	2 2E 05	2 BE 05	1 4E 03	2 1E 04	2 0E 02				Chem Conc	16,000	7	0E	1 9E 05
•	 ;	Calcula		TOR SURR		PM10	(ka/m2)	7 7E 02			Box Helgh!	Œ			0	3	6	6		!				 . 1	9 1	days/day)		0.36	90 0	0 36	0 36	96 0	9:				PM10 Conc	16 8/08/	2	2.1	2.1
C			- WORKER	CKHOE (TRAC		PW10	(ko/heclare)	7.7E+02				(MBO/GW)		2 9E . 02	6 BE + 01	8 6E+01	4 3E+03	6 7E .02	9						DE LOS	(400d)		0 48		0 48	0 48	87.0	4:			SCENARIO	Soil Conc	1	11	10	0
2			4G BEDS - W	DUST GENE DUST GENERATED BY BACKHOF (TRACTOR		Percent	Т	20			Concentration	(mg/kg)		3.8	0.00	11.5	560	8.7	8000				3		Concentrations and	(By/Bill)		8	8	11 5	260	67	0000			MHALATION	Concentration	(20/60)	7	60	6 8
-			THT LEACH THT LEACHING BEDS	WST GENER	1	Fraction of		0.21			Chemical	+	1	Vanadium	2.4-DNT	HAK	Ş	3.5.TNB	2 4 6 TNT	-			MOESSOR MOESTION		Chemical			Vanadium	2,4 DNT	¥	Ž	1,3,5 TNB	2 P				Chemical	Т		Vanadium	2.4 DNT
-			WT LEACH	WST GENE L		Fraction of		0.21		-	Chemical			Vanadium	•	Г	FDX FDX		2.4.6 TNT 2				SON INCES		Chemical			ء	DNT		X	1.3,5 TNB	N 9			OSHA DUSTOSHA DUST	Chamical	1		F	2.4 DNT 2
	-	~ ~	T	П	_	1	╈	0	=		_		2	_	-	:	20 A	21	22	23	24				_	2 6	3 5	32 <			35		37	9	0	7	_		18		1 1 5

1.5	F. 0.5		\$E-01			1E+00					15.05		5E+00
-	٠	1	2E-06	1	_	9E-06 4							
- 2	20 20	20.37	6F.03		8 9E 03	8 2E-02			1E-01		CED DICK		ARD INDE
12	20.00	3	A SE OB		0 0E +00 8 9E 03	1.8E.07			2E.07		TOTAL SATOR	401 401	TOTAL HAZARD INDEX
11	•	_	_	-	0.0005	_			TOTAL				
10		0		-	0	0.03							
•		5.9E 07	200	CO 38 7	4 SE 06	4 1E.04							
		960		2	96 0	36.0	3						
[,	œ		D	60	•	•						
•	•	9		90	90		2						
	6	2 45 05	20.32	1.2E.03	AE DA	1.1.1	1 / 5 02						•
-	•	,	*	7			2.1						
	~		2	10		2 (9						
	~		C	l				-					
	_		_ ¥	2	200	0 N	2.4.6.TNT	_					:
	-		<u>=</u>	2	- ·	13.5 INB	2 4 6 TNT						
			- 6 7	3	2	5	5.2		2	54	55	•	26

		<u> </u>					; 	:					1 :				:			:	2	z i	3	318	70	5 6	2		-		
							<u> </u>	<u> </u> 	1		1									į	Hezard	2	_	-10		~ -	26.00		<u> </u>	:	
=	1						Ì	ļ							1		-		: 	{ ;	Cance	\$	00.300	200	1 36 06	8 8	90 H		 		
91			 i		Hazard	2 06 04	90 98 9	3 76 03 4 05 02	4 56 01	. O.		•						<u>_</u>	((Kep/Bu/Bu)	0000	+	-	0 0000	+				!
18		1			Cancer	0 06 .00	00.30	5 36 07	2 0E 06	3E 06			11111111111								35	Yeb/Bu/Bm		900	- }	0 00			1		
-					440	0000	50	0 0000	0000	TOTAL					:				16 04 26.01	!		ma/ka/day	4 OF 06	5 /E 0/	3 1E 05	6 3E 04	1 1		:		
6.	Average	:	:	;	Ti Kep/64/6m]	0 5		50	0 03							_			: :		Enpos Dose	(MO/40/0M)	9 36 06	36 06	7 36 05	1 SE 03		Total		# 04 04	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12	Beds Sull				Enpos Dose (mg/kg/day)	1 45 06	296 07	1 1E 05	2 2E 04										TOTAL CANCER RISK			(4.17)	00	80	90 1	88		Total		0E.00	90.4
=	Lesching				Inhai Rale (M3/hr)			0 0	•			Her Index		7E-03	7E-03	# 5	26.00		TOTAL CAN		Inhal Rate	3,45	•	3	•	300		. H		2 2	7 16 02
0	Resident Scenario - TNF				Wind		0	0.0	0			Carrier Bin		96.00	2E 06	9.0					Pu A	Fraction	0	010	0	4 4		Cancer Right		90 30 0	9 + 0 9 0 + 0
•	coldent Seen				Daysiv	338	336	336	2			tez inde		6 7E -03	1 7£ 03	300	3 5 5 5 5 5	2E - 0 1			Days/Yr		330		336	200		G G	g/kg/day	0 000	0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Fulure				Hrs/day	-10		•	-			Cancer Bush	П	06.90	96 OF	8181	66.05		:		Hrs/day		•	-				25	7	90	0,00
,	Risk Estimates For		Area (m2)	977	Contam Conc (mg/m3)	\$ 66.05	1 16 05	4 4E 04	9 BE 03			Q.	Ē	0000	8	0 0 003	0 0000	TOTAL			Contam Conc	(E W) (W)	\$ 66.05	90 00	3	\$ 60		F 100 Bulle Dose		7 3E 05 1 0E 05	2 2 2 2
•	Cakulated Risk E		PMIDENS (g/m2 hr)	7.0	Wind Speed (m/s)	3:3	101		76	i		3	(mg/kg/day 1)	e .	0 68	9.5	0 03				Wind Speed	(8/8)	181	2.0	70	2 2		3	(4 p)(8 y/8 w)	4 %	3 SF 03
	Cake		F(R)	101	Signa Z (metera)	7.5	7.5	7.5	1.5	: : :		Fundante Dose	(mg/kg/day)	4 7E 05	6 7E 06	8:5: 9:5:	7 46 03				Sigma Z	(301010)	7.5		7.5	2.5		Filos Frad	{\J, \f	365	90 80
		POTENTAL	(Carles alad	40	Sugena Y (motore)	12.5	12.5	12.5	12.5			From Free	(97/1)		365	5 5	365				1	melers	12.5	25.5	12.5	2 2 2		Se Inc	(4-6/8) (4-6/8) (4-6) (6-6)		0.00
		UTURE ADUL	(s/ws) (n) peads pum usew	194	Con Emb (ug/hr)	8	2 36 50	2 00 00	1 65 +07				_	-	ē	00	5 5			UTURE CHE	Cont Eme	(n8/k/)	1 25 +05	4	6 50	206.00		Soul less	(6.6)		0 0 0
2		THE LEACHING BEDS - FUTURE ADLE T	(A) sence Ben	0	Concentation (ug/g)	8.7	-	260	\$200		700	Coecentration	(8/8n)	26	1.0	260	\$200			THY LEACHING BEDS - FUTURE CHE D	9	(8/8n)	33		. !	\$6 \$200	لل	Tion	(B/Bn)		260
					Chemical	Vanadium		35 T	2.4.6 TNT		SON MOESTION	1		Vanadelin	2 4 DMT	10	2.4.6.TNT				Chemical		Vanadum	2 4 DNT	ĕ	2,4,6 TNT		SON MOES		Vanadium 2 4 DNT	62 148 63 15 1 18
Ц				= = =			=	2 2	7	2 2	2	* :	12	2	=	22	: :	215	22:	15	13				=	3 5	33	3 2 2	15 3	35	253

L

1

	-				7	
=				36.04	2E.00	
•				BOX	MOEX	
	36.86		:	TOTAL CANCER RISK	TOTAL HAZARD	
22	36.04					
=	7	3	2E.01			
9,		¥	36.04			
•		600	TOTAL		1	
-		6		-		
		1 26 02	;			
	-	6 0E 02	1			
	-	365	:			
	•	-				
	-	20	i			
	~	\$200	-			
	-	16 2 4 6. THT		-		
	_	_			_	

П	_	11	-	i				-	1			-		į	;	-	į		_				i	81		_	21	6 6	:=	8	_		_		,		_
=										İ	1	-									!			Hazard	Inden	35	39	3 5	306	2 000	36.00		1 			:	
1		1 !							:	1	:	1	1		1		:						į	nce.	Risk	8.	,E 02	00E 00	18	8	E 05		1				_
	_		-					+	-	-	· -	-	· :	-	· i		-		+				-	-	÷	-	2		-		:=:	·	<u>;</u>		•		
•						Haz ard	2 36 04	90	1 16 03	2 SE 02			i	-										£	(Mg/kg/day)	0000	1000	000	0 00000	\$000 0) -		į				
H		1		 ;				-		<u> </u>	-	1	: !	-	1		-		4	-	-		-		=				-		TOTAL		_				
1.5				!		Cance	0 06 +00	0	1 16 06	8 8	1 2				1		1							35	Mg/kg/der	0	9	- =	0	0 0							
	-					OIN OIN OIN		500	6	0 00000		اد	<u> </u>	-	-		+		<u>:</u>		i	2.5	-	3	٠ ا	8	90	8 8	6	:							
-				•		14 Am	0 007	3,0	6	9 8	101		_	-	_				<u>.</u>			36.01		r spo	2	39	-	1 46 06 6 10 05	=	-			_:				
=					,	15 75 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 5	; 8;0	= .	: 0 0	: }			1	:		1		i					- 31	(s e)	16 05 F	SE 06	3 26 06	5£ 05	36 03			Hot Indes		16.03		5 6
	:		- :					-	_	!	!	•	!	1	-		_		-	_						È-	~		~	.~						-	
2	3	Deas Soul	:	:	:	E spos Dose (mg/kg/der)	1 6E 06	0E 07	46 05	2E 06		1										PUSK MOEK		Inhal Rate	17.91	2		8 8		80		10101	Concer Rist		90.9	9.3	. 6
Ц	j							-	-		<u>!</u> 	-	!	<u> </u>	-		-	_			:	ANCER AZAND	-	_	÷				1	! !	_		_				
=			!		;	inhal Rate [m3/hr]	9.4		0	00			=	Ter 500		9E 03	20 91	2 5	36.00			TOTAL CANCER PUSK TOTAL HAZAND INDEX	!	Inhal Rate	5 01		3	.		0	í		Hat Index		39 9	218	7.7
								Ť				i	•	-	+			2:=	9:	•:		<u> </u>			5				1		•	· · · ·	\$ E		8 8	818	. 8i
2	7		}			Wind	•	0	•	0			1919	Conce Bish		8.8	7	9 0						Wind	Fraction		0	• •	0		:	i	Cencer		0 00	8	3
•	Fable (24-17	STATE OF CHAPTER				Daysvvr	330	330	336	2 2		i		夏	+	E 03	26 95	276 0	8	5 K	JE . 0 1			Derever	Ì	::	336	200	336	9.00				Aej/By/B	/000	60	
Н				 :				1	<u> -</u>	+	-	+		20 TO	\dagger		7				_		<u> </u>	_		_		_			;		•				
						Hrb/day	•	•	-	-				Cancer		30	376	3 5 5	9		2E 04			His/day		•	-	• •					Ösi	ng/kg/oey	0	01	, 0
				Ates (M2)	9	Conc	8:8	8	3	2 8				0	200	~	5	0 0	8	ŝ	-			S	<u>و</u>	S	ŝ	8 3	8	70		-	Dog	200	ខទ	8:3	
				₹:5	.	Contam Conc (mg/m3)	\$6 05 56 05		95.0			i			140/64/6W	0	٥	5.0	0		TOTAL			Contam Conc	È	6 SE	35 1	8.8	- 5	- 46			Espoaure Doc	(# 17) (#8/kg/day)	9 4	3,5	3
	1	\$ 2		IO EMS	Ē	Speed m/s)	3 :3		Z	Z Z				25	(A	_	2			3:				Speed	7.61			3 3		I.			ure Dose	5. 7dey)	100	318	: 6:
			į	PMIGENS (g/m2 hr)	•	P E		-	-	-			١.		Ē		•	•		5 ;				A M	٤	Ξ.	-		-	-			Exposur	(mg/kg/gey)	\$ 1E		: 2:
	_{5			(E)		Sigms 2 (motots)	7.5		5				,	E spoerre Dose	1/68XI	S	S	8 8	3					7 8	(meters)	•	3	w	5	S					2.5	5	
			1		-								L	8		5	1 30		7	-				8-97	Ē	_	,	` `					Eupos Freq	Ē	7.7	, A12	; ×:
			POTENTAL	Speed (v(t))	40	Stare V	125	2 5	2	2 5				•	64/41	500	500	200	5				İ	Sigme V	(motota)	5 2	2 5	5:0 5:0	2 5	12.5			Ing Rau	(ë-13) (ë/dēk)		 Old	
H		1	2	2 -			! [\downarrow	Ľ	1		_	_	-	+		1			i	-		2	_	+	!	Ц		L		Ļ	_	8				_
-		DEDB - FUTURE ADAL T	ENOS	meen wind speed (v) (cm/s)	1	Cont Ems (ug/ht)	9	3	90.0	6 6 6 6				2 Te	17 P	ó	5	0,0		 9 i			THT LEACHING DEDB - FUTURE CHE	Cont Ente	(vg/hr)	X 0	3 16 +04		300	2 BE +0.			I Ing A	(6 o) (8,0 sk)	200	~	, e
H		15	72	Σ	_	9 2		+		\dagger	-	+		ш.	+	1 :	+		+	_		1	2	_	_				Ť	-	-	-	.21			Ţ	
~		9	3	ANCO BA	•	Oncentration (ug/g)	710	3	95	200		ð		Concentration	(7 8/8)	•		2.0	-	5	•		20	Concentration	(6/8n)		•	* §	-	000		3	Concentration	(6/8/	0.0	S : 3	1
		EAC	MANO EROSION	5			E .			2 2		SON MOESTION		┱	+	5	 	•	2			•	EACHE	-		5	5	!	92	IX.	\dagger	SOIL MOESTION	_		E .		9
		E	•	-, ,		Chamical	Van de de	7 7		2 4 6 TNT		ğ	_	Chemica	1	Vanadeum	2 ONT	Ē	1.3 5 TNB	2				Chemical		Vanadeum		Ž	135	2.4.6 TMT		ğ	Chamical	1.1	Vanadum	1	1.3.5 INB
	-	~ ~ ~			= = =	222	= = :		7	~ ~	2	12	?	2			7	22	7		: :	2 2 3		:			•		3	= :		: :	3			3	113

U

		-		
-				
1.				
1.6			6E-04	3E - 00
1.			_	
•			RISK	HAZARD MOEX
13	36.00		TOTAL CANCER RISK	TOTAL MAZARD
1.2	10 3 T			
11	4 2E 03	26.01		
1 01	3 76 04	\$6.04		
•	0 0003	TOTAL		
•	ço o			
	1 86 92			
•	1 16 01	: :		
•	36.5			
•				
6	ō S			
2	000			
-	INT OF			
-		12	=	: