Note del corso di Geometria 1

Gabriel Antonio Videtta

26 aprile 2023

Titolo della lezione

Nota. Nel corso del documento, per V si intenderà uno spazio vettoriale di dimensione finita n e per φ un suo prodotto, hermitiano o scalare dipendentemente dal contesto.

Definizione (azione di un gruppo). Sia G un gruppo e sia X un insieme. Un'azione di G su X (a sinistra) è un'applicazione $G \times V \to X$ tale che $(g,x) \mapsto g.x$ e che:

- (i) $e.x = x \ \forall x \in X$,
- (ii) $g.(h.x) = (gh).x \ \forall x \in X, \ \forall g, h \in G.$

Si può dunque definire un'applicazione f_g , che, dato $g \in X$, è tale che $f_g(x) = g.x \ \forall x \in X$. Tale applicazione è bigettiva, dacché $f_{g^{-1}}$ è una sua inversa, sia destra che sinistra. La definizione equivale a dare un omomorfismo da G a S_X associando a g l'applicazione f_g , dove S_X è il gruppo delle bigezioni di X con la composizione.

L'azione di G si dice fedele se $g \mapsto f_g$ è iniettivo (ossia se $f_g(x) = x \,\forall x \in X \implies g = e$).

- (i) Per ogni insieme X, $G = S_X$ agisce su X in modo tale che g.x = g(x) $\forall x \in X$,
- (ii) \forall gruppo G, G agisce su X = G tramite g.g' = gg',
- (iii) Si può chiaramente definire un'azione destra in modo analogo, con la notazione $(g, x) \mapsto x.g.$

Se X subisce un'azione di G, si dice che X è un G-insieme. Si introduce la relazione di equivalenza $x \sim_G y \iff \exists g \in G \mid g.x = y$. Le classi di equivalenza si chiamano **orbite** di G (i.e. $O_X = \{g.x \mid g \in G\}$).

Esempio. (i) Se $G = GL(n, \mathbb{K})$, G opera su $M(n, \mathbb{K})$ tramite la similitudine. Le orbite sono le classi di similitudine della matrici.

- (ii) Se $G = \operatorname{GL}(n, \mathbb{K})$, G opera su $\operatorname{Sym}(n, \mathbb{K})$ tramite la congruenza. Le orbite sono le classi di congruenza delle matrici simmetriche. Analogamente si può fare per la matrici hermitiane.
- (iii) Se $G = O_n$, esso opera su \mathbb{R}^n tramite la moltiplicazione. Le orbite sono le sfere di raggio ||x||.

Definizione. Lo stabilizzatore di un punto $x \in X$ è $Stab_G(X) = \{g \in G \mid g.x = x\}$, sottogruppo di G.

Esempio. Sia $H \subseteq G$ e sia X = G/H. X è un G-insieme tramite l'azione g'.(gH) = g'gH. Vale in particolare che $\operatorname{Stab}_G(eH) = H$.

Proposizione. Sia X un G-insieme. Sia $x \in X$. $H = \operatorname{Stab}_G(x)$ e sia O_x l'orbita di x. Allora esiste un'applicazione bigettiva naturale $G/H \to O_x$.

Dimostrazione. Sia φ tale che $\varphi(gH)=g.x$. Si mostra che φ è ben definita: $g'=gh, \ \varphi(g'H)=(gh).x=g.(h.x)=g.x$. Chiaramente φ è anche surgettiva. Inoltre, $g.x=g'.x \implies x=(g^{-1}g').x \implies g^{-1}g'=h \in H \implies gH=g'H$, e pertanto φ è iniettiva. Allora φ è bigettiva.

Definizione. Si dice che G opera liberamente su X se $\forall x \in X$, l'applicazione $G \to O_x$ tale che $g \mapsto g.x$, ossia se $\operatorname{Stab}_G(x) = \{e\}$:

Definizione. G opera transitivamente su X se $x \sim_G y \ \forall x, y \in X$, cioè se c'è un'unica orbita, che coincide con X. In tal caso si dice che X è **omogeneo** per l'azione di G.

Esempio. (i) O_n opera su $S^{n-1} \subseteq \mathbb{R}^n$ transitivamente.

(ii) $\operatorname{Gr}_k(\mathbb{R}^n)=\{W\subseteq\mathbb{R}^n\mid \dim W=k\}$ (Grassmanniana). O_n opera transitivamente su $\operatorname{Gr}_K(\mathbb{R}^n)$.

Definizione. G opera in maniera semplicemente transitiva su X se $\exists x \in X$ tale che $g \mapsto g.x$ è una bigezione, ossia se G opera transitivamente e liberamente.

Definizione. Un insieme X con un'azione semplicemente transitiva di G è detto un G-insieme omogeneo principale.

- (i) X = G. L'azione naturale di G su X per moltiplicazione è semplicemente transitivo (per $g, g' \in G$, esiste un unico $h \in G$ tale che g = h.g' = hg'). Quindi X è G-omogeneo principale.
- (ii) Se X è G-omogeneo principale, l'azione è fedele.
- (iii) Se X è omogeneo per un gruppo G commutativo, allora G agisce fedelmente su $X \implies X$ è un G-insieme omogeneo principale.

Definizione (spazio affine). Sia V uno spazio vettoriale su un campo \mathbb{K} qualsiasi. Allora uno spazio affine E associato a V è un qualunque V-insieme omogeneo principale.

Pertanto, $\forall P, Q \in E$, esiste un unico vettore $\underline{v} \in V$ tale che $Q = \underline{v}.P$, denotato come $Q = P + \underline{v} = \underline{v} + P$. Si osserva che $\underline{v} + (\underline{w} + P) = (\underline{v} + \underline{w}) + P$. Essendo v unico, si scrive $v = Q - P = \overrightarrow{PQ}$.

Fissato $O \in E$, l'applicazione $\underline{v} \mapsto \underline{v} + O$, $V \to E$ è una bigezione.

Osservazione.

$$P - P = 0 \in V, P - Q = -(Q - P), (P_3 - P_2) + (P_2 - P_1) = P_3 - P_1.$$

 $ightharpoonup O \in E$ l'applicazione $P \mapsto P - O$ è una bigezione di E su V.

Siano
$$P_1, ..., P_n \in E. \ \forall \lambda_1, ..., \lambda_k \in \mathbb{K}. \ \forall O \in E$$
 possiamo individuare il punto $P = O + \sum_{i=1}^n \lambda_i (P_i - O).$
$$P = P' = \iff O + \sum_{i=1}^n \lambda_i (P_i - O) = O' + \sum_{i=1}^n \lambda_i (P_i - O') \iff O + \sum_{i=1}^n \lambda_i (O' - O) = O' \iff (\sum \lambda_i)(O' - O) = O' - O \iff \sum \lambda_i = 1.$$

Definizione. Un punto $P \in E$ è combinazione affine dei punti $P_1, ...,$ P_k se $P=O+\sum \lambda_i(P_i-O)$ se $\sum \lambda_i=1$. Si scriverà, in particolare, che $P = \sum \lambda_i P_i$.

Si chiama retta affine l'insieme dei punti che sono combinazione affine di due punti. Analogamente si fa per un piano e uno spazio.

Definizione. Un sottoinsieme $D \subseteq E$ si dirà sottospazio affine se è chiuso per combinazioni affini (finite).

Definizione. Il sottospazio affine $D \subseteq E$ generato da un sottoinsieme $S \subseteq$ E è l'insieme delle combinazioni affini (finite) di punti di S, detto D = Aff(S).