

Principe de Raisonnement par Récurrence

Pour démontrer que la proposition $(\forall n \in IN)$; $P(\mathbf{n})$ est vraie, on utilise généralement un raisonnement par Récurrence, qui est basé sur trois étapes :

Première étape : on vérifie que la proposition $P(\mathbf{n})$ est vraie pour le première valeur de \mathbf{n} .

Deuxième étape : on suppose que P(n) est vraie et on démontre que P(n+1) est vraie.

Troixième étape: on donne la conclusion : d'après le principe de récurrence ; on a $(\forall n \in IN)$; P(n)

Comment répondre à ces	Suite minorée	Suite majorée
questions?		
Montrer que (U_n) est minorée par	Une suite (U_n) est minorée par m	Une suite (U_n) est majorée par M
\boldsymbol{m} .	ssi: $(\forall n \in IN)$; $m \le U_n$	ssi: $(\forall n \in IN)$; $U_n \leq M$
Montrer que (U_n) est majorée par M .	Pratiquement : On montre par la différence ou par récurrence que : $(\forall n \in IN)$; $m \leq U_n$	Pratiquement : On montre par la différence ou par récurrence que : $(\forall n \in IN)$; $U_n \leq M$
Comment répondre à ces questions ?	Suite croissante	Suite décroissante
Montrer que (U_n) est croissante.	Une suite (U_n) est croissnate ssi:	Une suite (U _n) est décroissnate ssi :
Montrer que (U_n) est décroissante .	$(\forall n \in IN)$; $U_n \leq U_{n+1}$ Pratiquement: On montre que la différence $U_{n+1} - U_n$ est positive.	$(\forall n \in IN)$; $U_{n+1} \leq U_n$ Pratiquement: On montre que la différence $U_{n+1} - U_n$ est négative.

Comment répondre à ces questions ?	Suite Aritmétrique	Suite Géométrique
Montrer que (U _n) est	Une suite (V _n) est Aritmétrique	Une suite (V_n) est Géométrique ssi;
Aritmétrique.	ssi ; il existe un réel r tel que :	il existe un réel q tel que :
	$(\forall n \in IN)$; $V_{n+1} = V_n + r$	$(\forall n \in IN)$; $V_{n+1} = qV_n$
Montrer que (U_n) est	Pratiquement:	Pratiquement:
Géométrique.	On calcul la différence $U_{n+1} - U_n$	On montre que $V_{n+1} = = qV_n$
Calculer V_n en fonction de V_n et	$V_n = V_p q^{n-p}$	$\mathbf{V}_{\mathbf{n}} = \mathbf{V}_{\mathbf{p}} + (\mathbf{n} - \mathbf{p})\mathbf{r}$
n .		
	$S_n = V_p + V_{p+1} + \dots + V_n$	$S_n = V_p + V_{p+1} + \dots + V_n$
Calcul de S _n	$S_{n} = \frac{n - p + 1}{2} \left(V_{p} + V_{n} \right)$	$S_{n} = U_{p} \left(\frac{1 - q^{n-p+1}}{1 - q} \right)$

Limite d'une Suite			
limite de a ⁿ	Propriétés des limites d'une suite		
 Propriété :1 Toute suite croissante et majorée est convergente. Toute suite décroissante et minorée est convergente Propriété :2 (U_n) et (V_n) suites telles que : (∀n ∈ IN); U_n ≤ V_n 	• Si $-1 < a < 1$ Alors $\lim_{n \to +\infty} a^n = 0$ • Si $1 < a$ Alors $\lim_{n \to +\infty} a^n = +\infty$		
• Si $\lim_{n \to +\infty} U_n = +\infty$ Alors $\lim_{n \to +\infty} V_n = +\infty$ • Si $\lim_{n \to +\infty} V_n = -\infty$ Alors $\lim_{n \to +\infty} U_n = -\infty$ Propriété :3 (a _n) et (V _n) et (V _n) suites telles que :	 Si a ≤ -1 Alors la suite aⁿ est Altérnée et n'a pas de limite 		
	• Si $a=1$ Alors $\lim_{n\to+\infty} a^n = 1$		