Switching Transistors PNP Silicon

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	-25	Vdc
Collector-Emitter Voltage	VCES	-25	Vdc
Collector-Base Voltage	VCBO	-25	Vdc
Emitter-Base Voltage	V _{EBO}	-4.0	Vdc
Collector Current — Continuous	IC	-500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{Stg}	-55 to +150	°C

MPS3638,A

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	R _{0JA} (1)	200	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage (I _C = –100 μAdc, V _{BE} = 0)	V(BR)CES	-25	_	Vdc	
Collector-Emitter Sustaining Voltage ⁽²⁾ $(I_C = -10 \text{ mAdc}, I_B = 0)$	VCEO(sus)	-25	_	Vdc	
Collector–Base Breakdown Voltage (I _C = –100 μAdc, I _E = 0)	V(BR)CBO	-25	_	Vdc	
Emitter-Base Breakdown Voltage ($I_E = -100 \mu Adc$, $I_C = 0$)	V(BR)EBO	-4.0	_	Vdc	
Collector Cutoff Current $(V_{CE} = -15 \text{ Vdc}, V_{BE} = 0)$ $(V_{CE} = -15 \text{ Vdc}, V_{BE} = 0, T_{A} = -65^{\circ}\text{C})$	ICES	_ _ _	-0.035 -2.0	μAdc	
Emitter Cutoff Current $(V_{EB} = -3.0 \text{ V, I}_{C} = 0)$	I _{EBO}	_	-35	nA	
Base Current (V _{CE} = -15 Vdc, V _{BE} = 0)	ΙΒ	_	-0.035	μAdc	

- 1. $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board.
- 2. Pulse Test: Pulse Width \leq 300 μ s; Duty Cycle \leq 2.0%.

MPS3638,A

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Continued)

	Characteristic		Symbol	Min	Max	Unit
ON CHARACTER	ISTICS(2)		•			•
DC Current Gain (I _C = -1.0 mAdc,	V _{CE} = -10 Vdc)	MPS3638A	hFE	80	_	_
$(I_C = -10 \text{ mAdc},$	V _{CE} = -10 Vdc)	MPS3638 MPS3638A		20 100	_ _	
$(I_C = -50 \text{ mAdc},$	$V_{CE} = -1.0 \text{ Vdc}$	MPS3638 MPS3638A		30 100	_ _	
(IC = -300 mAdc)	, $V_{CE} = -2.0 \text{ Vdc}$	MPS3638 MPS3638A		20 20	_ _	
Collector-Emitter S (I _C = -50 mAdc, (I _C = -300 mAdc	$I_B = -2.5 \text{ mAdc}$		VCE(sat)	_ _	-0.25 -1.0	Vdc
Base-Emitter Satu (I _C = -50 mAdc, (I _C = -300 mAdc	$I_B = -2.5 \text{ mAdc}$		VBE(sat)	 _0.80	-1.1 -2.0	Vdc
SMALL-SIGNAL	CHARACTERISTICS				-	-
Current-Gain — Ba (V _{CE} = -3.0 Vdc	andwidth Product , I _C = −50 mAdc, f = 100 MHz)	MPS3638 MPS3638A	fΤ	100 150		MHz
Output Capacitance (V _{CB} = -10 Vdc,	e I _E = 0, f = 1.0 MHz)	MPS3638 MPS3638A	C _{obo}		20 10	pF
Input Capacitance (V _{EB} = -0.5 Vdc,	I _C = 0, f = 1.0 MHz)	MPS3638 MPS3638A	C _{ibo}	_ _	65 25	pF
Input Impedance (I _C = -10 mAdc,	V _{CE} = −10 Vdc, f = 1.0 kHz)		h _{ie}	_	2000	kΩ
Voltage Feedback F (I _C = -10 mAdc,	Ratio V _{CE} = -10 Vdc, f = 1.0 kHz)	MPS3638 MPS3638A	h _{re}	_ _	26 15	X 10 ⁻⁴
Small–Signal Curre (I _C = -10 mAdc,	nt Gain VCE = -10 Vdc, f = 1.0 kHz)	MPS3638 MPS3638A	h _{fe}	25 100	_ _	_
Output Admittance (I _C = -10 mAdc,	V _{CE} = -10 Vdc, f = 1.0 kHz)		h _{oe}	_	1.2	mmhos
SWITCHING CHA	RACTERISTICS		•	-	-	•
Delay Time	Delay Time		t _d	_	20	ns
Rise Time	$V_{CC} = -10 \text{ Vdc}, I_{C} = -300 \text{ mAdc}, I_{B}$	1 = -30 MAUC)	t _r	_	70	ns
Storage Time	(VCC = 10 Vds, 1C = 000 111 Vds,		t _S	_	140	ns
Fall Time			t _f	_	70	ns
Turn-On Time	$(I_C = -300 \text{ mAdc}, I_{B1} = -30 \text{ mAdc})$		^t on	_	75	ns
Turn-Off Time	$(I_C = -300 \text{ mAdc}, I_{B1} = -30 \text{ mAdc}, I_{E1})$	32 = 30 mAdc)	t _{off}	_	170	ns

^{2.} Pulse Test: Pulse Width \leq 300 μ s; Duty Cycle \leq 2.0%.

SWITCHING TIME EQUIVALENT TEST CIRCUIT

Figure 1. Turn-On Time

Figure 2. Turn-Off Time

TRANSIENT CHARACTERISTICS

- 25°C

Figure 4. Charge Data

TRANSIENT CHARACTERISTICS (Continued)

—— 25°C —— 100°C

100 70 $V_{CC} = 30 \text{ V}$ $I_{C}/I_{B} = 10$ 50 t_{Γ} , RISE TIME (ns) 30 20 10 7.0 5.0 10 20 50 70 100 300 500 IC, COLLECTOR CURRENT (mA)

Figure 5. Turn-On Time

Figure 6. Rise Time

Figure 7. Storage Time

SMALL-SIGNAL CHARACTERISTICS **NOISE FIGURE**

 $V_{CE} = -10 \text{ Vdc}, T_A = 25^{\circ}\text{C}$ Bandwidth = 1.0 Hz

NF, NOISE FIGURE (dB) $IC = 50 \mu A$ 100 μΑ $500 \mu A$ 1.0 mA 200 2 k 100 10 k 50 k 50 1 k RS, SOURCE RESISTANCE (OHMS)

Figure 8. Frequency Effects

Figure 9. Source Resistance Effects

h PARAMETERS

 $V_{CE} = -10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C}$

This group of graphs illustrates the relationship between hfe and other "h" parameters for this series of transistors. To obtain these curves, a high-gain and a low-gain unit were

same units were used to develop the correspondinglynumbered curves on each graph.

selected from both the 2N4402 and 2N4403 lines, and the

Figure 10. Current Gain

Figure 12. Voltage Feedback Ratio

Figure 11. Input Impedance

Figure 13. Output Admittance

STATIC CHARACTERISTICS

Figure 14. DC Current Gain

Figure 15. Collector Saturation Region

Figure 16. "On" Voltages

Figure 17. Temperature Coefficients

6

PACKAGE DIMENSIONS

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 4. DIMENSION F APPLIES BETWEEN P AND L. DIMENSION D AND J APPLY BETWEEN L AND K MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
C	0.125	0.165	3.18	4.19
D	0.016	0.022	0.41	0.55
F	0.016	0.019	0.41	0.48
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
7	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.115		2.93	
٧	0.135		3 43	

STYLE 1: PIN 1. EMITTER

2. BASE 3. COLLECTOR

MPS3638,A

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and a material registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

