Loglinear Models and Mosaic Displays

Michael Friendly

Psych 6136

October 1, 2017

Hartigan and Kleiner (1981), Friendly (1994, 1999)

UCB Admissions: Observed frequencies

- Area-proportional display of frequencies in an n-way table
- Tiles (cells): recursive splits of a unit square—
 - V1: width \sim marginal frequencies, n_{i++}
 - V2: height \sim relative frequencies $|V1, n_{ii+}/n_{i++}|$
 - V3: width \sim relative frequencies $| (V1, V2), n_{ijk}/n_{ij+} |$
- \Rightarrow area \sim cell frequency, n_{ijk}

Hartigan and Kleiner (1981), Friendly (1994, 1999)

- Area-proportional display of frequencies in an n-way table
- Tiles (cells): recursive splits of a unit square—
 - V1: width \sim marginal frequencies, n_{i++}
 - V2: height \sim relative frequencies $|V1, n_{ii+}/n_{i++}|$
 - V3: width \sim relative frequencies $| (V1, V2), n_{ijk}/n_{ij+} |$
- \Rightarrow area \sim cell frequency, n_{iik}

Hartigan and Kleiner (1981), Friendly (1994, 1999)

- Area-proportional display of frequencies in an n-way table
- Tiles (cells): recursive splits of a unit square—
 - V1: width ∼ marginal frequencies, n_{i++}
 - V2: height \sim relative frequencies $|V1, n_{ii+}/n_{i++}|$
 - V3: width \sim relative frequencies | (V1, V2), n_{ijk}/n_{ij+}
 - . . .
- ullet \Rightarrow area \sim cell frequency, n_{ijk}

- Independence: Two-way table
- Expected frequencies:

$$\widehat{m}_{ij} = \frac{n_{i+}n_{+j}}{n_{++}} = n_{++}$$
row %col %

 ⇒ rows & columns align when variables are independent

Independence: Expected frequencies

Mosaic displays: Residuals & shading

Pearson residuals:

$$d_{ij} = \frac{n_{ij} - \widehat{m}_{ij}}{\sqrt{\widehat{m}_{ij}}}$$

- Pearson $\chi^2 = \Sigma \Sigma d_{ij}^2 = \Sigma \Sigma \frac{(n_{ij} \hat{m}_{ij})^2}{\hat{m}_{ij}}$
- Other residuals: deviance (LR), Freeman-Tukey (FT), adjusted (ADJ), ...
- Shading:
 - Sign: negative in red; + positive in blue
 - Magnitude: intensity of shading: $|d_{ii}| > 0, 2, 4, ...$
- ⇒ Independence: rows align, or cells are empty!

UCB Admissions: ~ Admit + Gender

Mosaic displays: Animation

- \bullet A 3 \times 2 table, of answers to a question (Yes, ?, No), by sex.
- Marginal proportions of answers is fixed at (.40, .25, .35)
- Proportion of M, F is varied from frame to frame

Loglinear models: Perspectives

Loglinear approach

Loglinear models were first developed as an analog of classical ANOVA models, where *multiplicative* relations (under independence) are re-expressed in *additive* form as models for log(frequency).

$$\log m_{ij} = \mu + \lambda_i^{A} + \lambda_i^{B} \equiv [A][B] \equiv \sim A + B$$

- This expresses the model of independence for a two-way table (no A*B association)
- The notations $[A][B] \equiv \sim A + B$ are shorthands
- Fit using MASS: loglm()

```
loglm(Freq A + B + C, family = poisson) loglm(Freq A + B
* C, family = poisson)
```

Loglinear models: Perspectives

GLM approach

More generally, loglinear models are also generalized linear models (GLMs) for log(frequency), with a Poisson distribution for the cell counts.

$$\log \boldsymbol{m} = \boldsymbol{X}\boldsymbol{\beta}$$

- This looks just like the general linear ANOVA, regression model, but for log frequency
- This approach allows quantitative predictors and special ways of treating ordinal factors
- Fit using glm(), with family=poisson → a model for log (Freq)

```
glm(Freq ~ A + B + C, family = poisson)
glm(Freq ~ A + B * C, family = poisson)
```

Loglinear models: Perspectives

Logit models

When one table variable is a binary response, a logit model for that response is equivalent to a loglinear model (as discussed later).

$$\log(m_{1jk}/m_{2jk}) = \alpha + \beta_j^B + \beta_k^C \equiv [AB][AC][BC]$$

- $\log(m_{1jk}/m_{2jk})$ represents the \log odds of response category 1 vs. 2
- The model formula includes only terms for the effects on A of variables B and C
- The equivalent loglinear model is [AB] [AC] [BC]
- The logit model assumes [BC] association, and [AB] $op \beta_j^B$, [AC] $op \beta_k^C$
- Fit using glm(outcome=="survived" B + C),
 family=binomial

Loglinear models: Overview

Two-way tables: Loglinear approach

For two discrete variables, A and B, suppose a multinomial sample of total size n over the IJ cells of a two-way $I \times J$ contingency table, with cell frequencies n_{ij} , and cell probabilities $\pi_{ij} = n_{ij}/n$.

• The table variables are statistically independent when the cell (joint) probability equals the product of the marginal probabilities, $Pr(A = i \& B = j) = Pr(A = i) \times Pr(B = j)$, or,

$$\pi_{ij} = \pi_{i+}\pi_{+j} .$$

• An equivalent model in terms of expected frequencies, $m_{ij} = n\pi_{ij}$ is

$$m_{ij} = (1/n) m_{i+} m_{+j}$$
.

• This multiplicative model can be expressed in additive form as a model for $\log m_{ii}$,

$$\log m_{ij} = -\log n + \log m_{i+} + \log m_{+j} . \tag{1}$$

Loglinear models: Overview

Independence model

By anology with ANOVA models, the independence model (1) can be expressed as

$$\log m_{ij} = \mu + \lambda_i^{\mathsf{A}} + \lambda_j^{\mathsf{B}} , \qquad (2)$$

- μ is the grand mean of log m_{ij}
- the parameters λ_i^A and λ_j^B express the marginal frequencies of variables A and B "main effects"
- typically defined so that $\sum_i \lambda_i^A = \sum_i \lambda_i^B = 0$ as in ANOVA

Loglinear models: Overview

Saturated model

Dependence between the table variables is expressed by adding association parameters, λ^{AB}_{ij} , giving the *saturated model*,

$$\log m_{ij} = \mu + \lambda_i^A + \lambda_j^B + \lambda_{ij}^{AB} \equiv [AB] \equiv \sim A * B .$$
 (3)

- The saturated model fits the table perfectly $(\widehat{m}_{ij} = n_{ij})$: there are as many parameters as cell frequencies. Residual df = 0.
- A global test for association tests $H_0: \lambda_{ij}^{AB} = \mathbf{0}$.
- If reject H_0 , which $\lambda_{ij}^{AB} \neq 0$?
- For ordinal variables, the λ_{ij}^{AB} may be structured more simply, giving tests for ordinal association.

Example: Independence

Generate a table of Education by Party preference, strictly independent

```
educ <- c(50, 100, 50) # row marginal frequencies
names(educ) <- c("Low", "Med", "High")</pre>
party \leftarrow c(20, 50, 30) # col marginal frequencies
names(party) <- c("NDP", "Liberal", "Cons")</pre>
table <- outer(educ, party) / sum(party) # row x col / n
names(dimnames(table)) <- c("Education", "Party")</pre>
table
## Party
## Education NDP Liberal Cons
## Low 10 25 15
## Med 20 50 30
## High 10 25 15
```

Example: Independence

All row (and column) proportions are the same:

```
prop.table(table,1)

## Party
## Education NDP Liberal Cons
## Low 0.2 0.5 0.3
## Med 0.2 0.5 0.3
## High 0.2 0.5 0.3
```

All statistics are 0:

Mosaic plot shows equal row and column proportions:

library(vcd)
mosaic(table, shade=TRUE, legend=FALSE)

Two-way tables: GLM approach

In the GLM approach, the vector of cell frequencies, $\mathbf{n} = \{n_{ij}\}$ is specified to have a Poisson distribution with means $\mathbf{m} = \{m_{ij}\}$ given by

$$\log \boldsymbol{m} = \boldsymbol{X}\boldsymbol{\beta}$$

- X is a known design (model) matrix, expressing the table factors
- β is a column vector containing the unknown λ parameters.
- This is the same as the familiar matrix formulation of ANOVA/regression, except that
 - The response, log m makes multiplicative relations additive
 - The distribution is taken as Poisson rather than Gaussian (normal)

Example: 2 x 2 table

For a 2 \times 2 table, the saturated model (3) with the usual zero-sum constraints can be represented as

- only the linearly independent parameters are represented. $\lambda_2^A = -\lambda_1^A$, because $\lambda_1^A + \lambda_2^A = 0$, and so forth.
- association is represented by the parameter λ_{11}^{AB}
- can show that $\lambda_{11}^{AB} = \frac{1}{4} \log(\theta)$ (log odds ratio)
- Advantages of the GLM formulation: easier to express models with ordinal or quantitative variables, special terms, etc. Can also allow for over-dispersion.

Assessing goodness of fit

Goodness of fit of a specified model may be tested by the likelihood ratio G^2 ,

$$G^2 = 2\sum_i n_i \log \left(\frac{n_i}{\widehat{m}_i}\right) , \qquad (4)$$

or the Pearson X^2 ,

$$X^2 = \sum_i \frac{(n_i - \widehat{m}_i)^2}{\widehat{m}_i} , \qquad (5)$$

with degrees of freedom df = # cells - # estimated parameters.

- E.g., for the model of independence, [A][B], df = IJ [(I-1) (J-1)] = (I-1)(J-1)
- The terms summed in (4) and (5) are the squared cell residuals
- Other measures of balance goodness of fit against parsimony, e.g.,
 Akaike's Information Criterion (smaller is better)

$$AIC = G^2 - 2df$$
 or $AIC = G^2 + 2$ # parameters

R functions for loglinear models

- chisq.test() and vcd::assocstats() only χ^2 tests for two-way tables, not a model (no parameters, no residuals)
- MASS::loglm() general loglinear models for n-way tables

```
loglm(formula, data, subset, na.action, ...)
```

- glm() all generalized linear models; loglinear with family=poisson glm(formula, family = poisson, data, weights, subset, ...)
- Formulas have the form: ~ A + B + ... (independence); ~ A*B + C (allow A*B association)
- Both return an R object, with named components use names (object)
- Both have print(), summary(), coef(), residuals(), plot() and other methods

Example: Arthritis treatment

Data on effects of treatment for rheumatoid arthritis (in case form)

For now, examine the 2 × 3 table of Treatment and Improved

Example: Arthritis treatment

Fit the independence model, ~ Treatment + Improved

```
library (MASS)
(arth.mod <- loglm(~ Treatment + Improved, data=arth.tab, fitted=TRUE))
## Call:
## loglm(formula = "Treatment + Improved, data = arth.tab, fitted = TRUE)
##
## Statistics:
##
                     X^2 df P(> X^2)
## Likelihood Ratio 13.530 2 0.0011536
## Pearson 13.055 2 0.0014626
round (residuals (arth.mod), 3)
##
          Improved
## Treatment None Some Marked
## Placebo 1.535 -0.063 -2.152
## Treated -1.777 0.064 1.837
sum(residuals(arth.mod)^2) # Pearson chisquare
## [1] 13.53
```

Example: Arthritis treatment
Visualize association: mosaic() or plot() the model or table

mosaic(arth.mod, shade=TRUE, gp_args=list(interpolate=1:4))

Example: Hair color and eye color

```
haireye <- margin.table(HairEyeColor, 1:2)
(HE.mod <- loglm(~ Hair + Eye, data=haireye))
## Call:
## loglm(formula = ~Hair + Eye, data = haireye)
##
## Statistics:
                      X^2 df P(> X^2)
##
## Tikelihood Ratio 146.44 9
                   138.29 9
## Pearson
round (residuals (HE.mod), 2)
## Re-fitting to get frequencies and fitted values
##
         Eve
## Hair Brown Blue Hazel Green
##
    Black 4.00 - 3.39 - 0.49 - 2.21
## Brown 1.21 -2.02 1.31 -0.35
## Red -0.08 -1.85 0.82 2.04
## Blond -7.33 6.17 -2.47 0.60
```

Mosaic displays: Hair color and eye color

We know that hair color and eye color are associated ($\chi^2(9) = 138.29$). The question is how?

- Dark hair goes with dark eyes, light hair with light eyes
- Red hair, hazel eyes an exception?
- Effect ordering: Rows/cols permuted by CA Dimension 1
- ⇒ Opposite corner pattern

Three-way tables

Saturated model

For a 3-way table, of size $I \times J \times K$ for variables A, B, C, the saturated loglinear model includes associations between all pairs of variables, as well as a 3-way association term, λ_{ijk}^{ABC}

$$\log m_{ijk} = \mu + \lambda_i^A + \lambda_j^B + \lambda_k^C + \lambda_{ij}^{ABC} + \lambda_{ijk}^{ABC} + \lambda_{jk}^{ABC}$$

$$(6)$$

- One-way terms $(\lambda_i^A, \lambda_j^B, \lambda_k^C)$: differences in the *marginal frequencies* of the table variables.
- Two-way terms $(\lambda_{ij}^{AB}, \lambda_{ik}^{AC}, \lambda_{jk}^{BC})$ pertain to the *partial association* for each pair of variables, *controlling* for the remaining variable.
- The three-way term, λ_{ijk}^{ABC} allows the partial association between any pair of variables to vary over the categories of the third variable.
- Fits perfectly, but doesn't explain anything, so we hope for a simpler model!

Three-way tables: Reduced models

Reduced models

- Loglinear models are usually hierarchical: a high-order term, such as λ^{ABC}_{ijk} → all low-order relatives are automatically included.
 Thus, a short-hand notation for a loglinear model lists only the high-order
- Thus, a short-hand notation for a loglinear model lists only the high-order terms,
- i.e., the saturated model (6)

 [ABC], and implies all two-way and one-way terms
- The usual goal is to fit the *smallest* model (fewest high-order terms) that is sufficient to explain/describe the observed frequencies.
- This is similar to ANOVA/regression models with all possible interactions

Three-way tables: Reduced models

Reduced models

- For a 3-way table there are a variety of models between the mutual independence model, [A][B][C], and the saturated model, [ABC]
- Each such model has an independence interpretation: $A \perp B$ means an hypothesis that A is independent of B.

Table: Log-linear Models for Three-Way Tables

Model	Model symbol	Interpretation
Mutual independence	[A][B][C]	$A \perp B \perp C$
Joint independence	[AB][C]	$(A B) \perp C$
Conditional independence	[AC][BC]	$(A \perp B) \mid C$
All two-way associations	[AB][AC][BC]	homogeneous assoc.
Saturated model	[ABC]	ABC interaction

Three-way tables: Model types

• **Joint independence**: $(AB) \perp C$, allows A*B association, but asserts no A*C and B*C associations

$$[AB][C] \equiv \log m_{ijk} = \mu + \lambda_i^A + \lambda_j^B + \lambda_k^C + \lambda_{ij}^{AB}$$

Conditional independence: A ⊥ B, controlling for C

$$[AC][BC] \equiv \log m_{ijk} = \mu + \lambda_i^A + \lambda_j^B + \lambda_k^C + \lambda_{ik}^{AC} + \lambda_{jk}^{BC}$$

 Homogeneous association: All two-way, but each two-way is the same over the other factor

$$[AB][AC][BC] \equiv \log m_{ijk} = \mu + \lambda_i^A + \lambda_j^B + \lambda_k^C + \lambda_{ii}^{AB} + \lambda_{ik}^{AC} + \lambda_{ik}^{BC}$$

Collapsibility: Marginal and Conditional Associations

- Q: When can we legitimately collapse a table, ABC over some variable (C)?
- A: When the marginal association of AB is the same as the conditional association, AB | C
- Recall: Berkeley data
 - The marginal association of Admit, Gender ignoring Dept showed a strong association
 - The partial associations within Dept were mostly NS
 - This is an example of Simpson's paradox
- Three-way tables: The AB marginal and AB | C conditional associations are the same, if either
 - A and C are conditionally independent, $A \perp C \mid B \equiv [AB][CB]$
 - B and C are conditionally independent, $B \perp C \mid A \equiv [AB][AC]$
 - mo three-way interaction

Response vs. Association models

- In association models, the interest is just on which variabels are associated, and how
 - Hair-eye data: [Hair Eye]? [Hair Sex]? [Eye Sex]
 - \implies fit the homogeneous association model (or the saturated model)
 - Test the individual terms, delete those which are NS
- In response models, the interest is on which predictors are associated with the response
 - The minimal (null or baseline) model is the model of joint independence of the response (say, A) from all predictors, [A] [B C D . . .]
 - Associations among the predictors are fitted exactly (not analyzed)
 - Similar to regression, where predictors can be arbitrarily correlated
 - e.g., Berkeley data: fit the baseline model [Admit] [Gender Dept]
 - lack-of-fit ⇒ associations [Admit Gender] and/or [Admit Dept]

Goodness of fit tests

As noted earlier, overall goodness of fit of a specified model may be tested by the likelihood ratio G^2 , or the Pearson X^2 ,

$$G^2 = 2\sum_i n_i \log\left(\frac{n_i}{\widehat{m}_i}\right) \qquad X^2 = \sum_i \frac{(n_i - \widehat{m}_i)^2}{\widehat{m}_i}$$

with residual degrees of freedom ν = # cells - # estimated parameters.

- These measure the lack of fit of a given model— a large value ⇒ a poor model
- Both are distributed as $\chi^2(\nu)$ (in large samples: all $\hat{m}_i > 5$)
- $\mathcal{E}(\chi^2(\nu)) = \nu$, so G^2/ν (or X^2/ν) measures lack of fit per degree of freedom (overdispersion)
- But: how to compare or test competing models?

Nested models and ANOVA-type tests

Nested models

Two models, M_1 and M_2 are nested when one (say, M_2) is a special case of the other

- Model M_2 (with ν_2 df) fits a subset of the parameters of M_1 (with ν_1 df)
- M_2 is more restrictive cannot fit better than M_1 : $G^2(M_2) \ge G^2(M_1)$
- The least restrictive model is the saturated model [ABC...] with $G^2=0$ and $\nu=0$

Therefore, we can test the difference in G^2 as a specific test of the added restrictions in M_2 compared to M_1 . This test has has a χ^2 distribution with df = $\nu_2 - \nu_1$.

$$\Delta G^{2} \equiv G^{2}(M_{2} | M_{1}) = G^{2}(M_{2}) - G^{2}(M_{1})$$

$$= 2 \sum_{i} n_{i} \log(\widehat{m}_{i1}/\widehat{m}_{i2})$$
(7)

Example: Berkeley admissions data

For the UC Berkeley data, with table variables [A]dmit, [D]ept and [G]ender the following models form a nested chain

$$[A][D][G] \subset [A][DG] \subset [AD][AG][DG] \subset [ADG]$$

Table: Hierarchical G^2 tests for loglinear models fit to the UC Berkeley data

Туре	LLM terms	G^2	df	$\Delta(G^2)$	$\Delta(df)$	$Pr(>\Delta(G^2))$
Mutual ind	[A][D][G]	2097.67	16			
Joint	[A][DG]	877.06	11	1220.62	5	0.0000
All 2-way	[AD][AG][DG]	20.20	5	1128.70	5	0.0000
Saturated	[ADG]	0.0	0	20.20	5	0.0011

- Only testing decrease in G² from one model to the next
- Here, each model is significantly better than the previous
- Joint vs. all 2-way: does Admit depend on Dept and/or Gender?
- Absolute fit of the all 2-way model is not terrible. Investigate further!

Fitting loglinear models in R

loglm() - data in contingency table form (MASS package)

```
data(UCBAdmissions)
    ## conditional independence (AD, DG) in Berkeley data
mod.1 <- loglm(~ (Admit + Gender) * Dept, data=UCBAdmissions)
## all two-way model (AD, DG, AG)
mod.2 <- loglm(~ (Admit + Gender + Dept)^2, data=UCBAdmissions)</pre>
```

glm() - data in frequency form

```
berkeley <- as.data.frame(UCBAdmissions)
mod.3 <- glm(Freq ~ (Admit + Gender) * Dept, data=berkeley,
family='poisson')</pre>
```

- loglm() simpler for nominal variables
- glm() allows a wider class of models and quantitative predictors (covariates)
- gnm () fits models for structured association and generalized non-linear models
- vcdExtra package provides visualizations for all.

Example: Berkeley admission data

Fit the model of mutual independence using loglm()

Example: Berkeley admission data

Fit other models with loglm()

```
# conditional independence [AD] [AG]
berk.log1m1 <- log1m(~ Admit * (Dept + Gender), data=UCBAdmissions)
# joint independence [A] [DG]
berk.loglm2 <- loglm(~ Admit + (Dept * Gender), data=UCBAdmissions)
berk.loglm2
## Call:
## loglm(formula = ~Admit + (Dept * Gender), data = UCBAdmissions)
##
## Statistics:
##
                     X^2 df P(> X^2)
## Likelihood Ratio 877.06 11
## Pearson 797.70 11
# all two-way model [AD] [AG] [DG]
berk.loglm3 <-loglm(~(Admit+Dept+Gender)^2, data=UCBAdmissions)
```

Example: Berkeley admission data

Compare nested models with anova ()

```
anova (berk.loglm0, berk.loglm2, berk.loglm3, test="Chisq")
## LR tests for hierarchical log-linear models
##
## Model 1:
## ~Dept + Gender + Admit
## Model 2:
  ~Admit + (Dept * Gender)
## Model 3:
## ~ (Admit + Dept + Gender) ^2
##
##
      Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
## Model 1 2097.671 16
## Model 2 877.056 11 1220.615
                                                  0.00000
## Model 3 20.204 5 856.852
                                                  0.00000
## Saturated 0.000 0 20.204
                                                  0.00114
```

Example: Berkeley admission data

LRStats () in vcdExtra gives one line summaries of a collection of models

```
LRstats(berk.loglm0, berk.loglm1, berk.loglm2, berk.loglm3)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## berk.loglm0 2273 2282 2098 16 <2e-16 ***
## berk.loglm1 1336 1352 1149 10 <2e-16 ***
## berk.loglm2 1062 1077 877 11 <2e-16 ***
## berk.loglm3 217 240 20 5 0.0011 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1</pre>
```

- AIC and BIC are GOF measures adjusted for model parsimony
- Not not significance tests, but smaller is better
- Also apply to non-nested models

$$AIC = G^2 + 2 \times \#$$
 parameters
 $BIC = G^2 + 2 \log(n) \times \#$ parameters

Mosaic displays: Predictor variables

Berkeley data: Departments × Gender (ignoring Admit):

- Did departments differ in the total number of applicants?
- Did men and women apply differentially to departments?

- Model [Dept] [Gender]: $G_{(5)}^2 = 1220.6$.
- Note: Departments ordered A–F by overall rate of admission.
- Men more likely to apply to departments A,B; women more likely in depts C-F

Mosaic displays for multiway tables

- Generalizes to *n*-way tables: divide cells recursively
- Can fit any log-linear model (e.g., 2-way, 3-way, ...),
 - For a 3-way table: [A][B][C], [AB][C], [AB][AC], ..., [ABC]
- Each mosaics shows:
 - DATA (size of tiles)
 - (some) marginal frequencies (spacing → visual grouping)
 - RESIDUALS (shading) what associations have been omitted?
- Visual fitting:
 - ullet Pattern of lack-of-fit (residuals) o "better" model— smaller residuals
 - ullet "cleaning the mosaic" o "better" model— empty cells
 - best done interactively!

Joint independence, [DG][A] (null model, Admit as response) $[G_{(11)}^2 = 877.1]$:

Mosaic displays for multiway tables

Conditional independence, [AD] [DG]:

- E.g., Add [Admit Dept] association → Conditional independence:
 - Fits poorly: $(G_{(6)}^2 = 21.74)$
 - But, only in Department A!
- GLM approach allows fitting a special term for Dept. A
- Note: These displays use standardized residuals: better statistical properties.

Other variations: Double decker plots

- Visualize dependence of one categorical (typically binary) variable on predictors
- Formally: mosaic plots with vertical splits for all predictor dimensions, highlighting the response by shading

4-way example: Survival on the *Titanic*

Data on the fate of passengers and crew on the HMS *Titanic*, a $4 \times 2 \times 2 \times 2$ frequency table:

```
data(Titanic)
str(Titanic)

## table [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 ...
## - attr(*, "dimnames")=List of 4

## ..$ Class : chr [1:4] "1st" "2nd" "3rd" "Crew"

## ..$ Sex : chr [1:2] "Male" "Female"

## ..$ Age : chr [1:2] "Child" "Adult"

## ..$ Survived: chr [1:2] "No" "Yes"
```

What proportion survived? Ans: 711 / 2201 = 32.3 %

```
margin.table(Titanic, 4)

## Survived
## No Yes
## 1490 711
```

Zero cells

```
structable (Titanic)
              Sex
                     Male Female
              Survived No Yes
                                  No Yes
  Class Age
  1st
        Child
                         0
        Adult.
                       118 57
                                   4 140
  2nd Child
                          11
                                   0 13
        Adult.
                       154 14
                                  13 80
## 3rd Child
                       35 13
                                  17 14
                       387 75
                                  89 76
      Adult
## Crew
        Child
                         0
                                      Ω
        Adult.
                       670 192
                                      2.0
```

Two types of zero cells:

- structural zeros could not occur (children in crew)
- sampling zeros did not happen to occur (children in 1st & 2nd who died)
- Structural zeros can cause problems loss of df; 0/0 = NaN in χ^2 tests

Exploratory plots

One-way doubledecker plots against survival show what might be expected:

```
doubledecker(Survived ~ Sex, data=Titanic)
doubledecker(Survived ~ Class, data=Titanic)
```


Exploratory plots

Two-way doubledecker plot against survival shows different effects of Class for men and women:

doubledecker(Survived ~ Sex + Class, data=Titanic)

Fitting and visualizing models

In the model formulas for $\log lm()$, I use the variable numbers 1–4, and letters Class, Gender, Age and Survived

```
# mutual independence [C][G][A][S]
mod0 <- loglm(~ 1 + 2 + 3 + 4, data=Titanic)
# baseline (null) model
mod1 <- loglm(~ 1*2*3 + 4, data=Titanic)
mosaic(mod1, main="Model [CGA][S]")</pre>
```


- With S as response, the baseline model includes all associations among [CGA]
- But this model asserts no associations of these with survival
- $G^2(15) = 671.96$, a very poor fit

Adding associations

```
# main effects of C, G, A on survival: [CGA][CS][GS][AS]
mod2 <- log1m(~ 1*2*3 + (1+2+3)*4, data=Titanic)
mosaic(mod2, main="Model [CGA][CS][GS][AS]")</pre>
```

Model [CGA][CS][GS][AS]

- This model allows associations of each of C, G, A with Survived
- $G^2(10) = 112.57$, still not good
- Pattern of residuals suggests
 2-way interactions (3-way terms):
- "Women & children first": suggests a term [GAS]
- Allow interactions of Class with Gender [CGS] and Class with Age [CAS]

```
mod3 <- loglm(~ 1*2*3 + (1*2)*4 + (1*3)*4, data=Titanic)
mosaic(mod3, main="Model [CGA][CGS][CAS]")</pre>
```


Comparing models

As usual, anova () (and LRstats ()) give compact comparisons of a set of models

```
anova (mod0, mod1, mod2, mod3)
## LR tests for hierarchical log-linear models
##
## Model 1:
   ^{\sim}1 + 2 + 3 + 4
  Model 2:
   ^{\sim}1 + 2 + 3 + 4
## Model 3:
## ~1 * 2 * 3 + (1 + 2 + 3) * 4
## Model 4:
  ~1 * 2 * 3 + (1 * 2) * 4 + (1 * 3) * 4
##
##
             Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
## Model 1 1243,6632 25
## Model 2 671.9622 15
                         571.7010
                                                     0.00000
                                           10
## Model 3 112.5666 10
                         559.3956
                                                     0.00000
## Model 4 1.6855 4 110.8811
                                                     0.00000
## Saturated 0.0000 0 1.6855
                                                      0.79335
```

Model interpretation

- Regardless of Gender and Age, lower Class ⇒ decreased survival
- Differences in survival by Class were moderated by both Gender and Age
- term [CGS]: Women in 3rd class did not have an advantage, while men in 1st did vs. other classes
- term [CAS]: No children in 1st or 2nd class died, but nearly 2/3 in 3rd class did
- Summary:
 - Not so much "women and children first" as
 - "women and chilren, ordered by class and 1st class men"
 - •

Sequential plots and models

- Mosaic for an n-way table \rightarrow hierarchical decomposition of association
- Joint cell probabilities are decomposed as

$$p_{ijk\ell \dots} = \underbrace{\overbrace{p_i \times p_{j|i} \times p_{k|ij}}^{\{v_1 v_2\}} \times p_{k|ij}}_{\{v_1 v_2 v_3\}} \times p_{\ell|ijk} \times \dots \times p_{n|ijk \dots}$$

- First 2 terms \rightarrow mosaic for v_1 and v_2
- First 3 terms \rightarrow mosaic for v_1 , v_2 and v_3
- <u>. . . .</u>
- Roughly analogous to sequential fitting in regression: X₁, X₂|X₁, X₃|X₁X₂,
 ...
- The order of variables matters for interpretation

Sequential plots and models

Sequential models of *joint independence* \rightarrow additive decomposition of the total association, $G^2_{[\nu_1][\nu_2]...[\nu_p]}$ (mutual independence),

$$G^2_{[\nu_1][\nu_2]\dots[\nu_{\rho}]} = G^2_{[\nu_1][\nu_2]} + G^2_{[\nu_1\nu_2][\nu_3]} + G^2_{[\nu_1\nu_2\nu_3][\nu_4]} + \dots + G^2_{[\nu_1\dots\nu_{\rho-1}][\nu_{\rho}]}$$

e.g., for Hair Eye color data

Model	Model symbol	df	G^2
Marginal	[Hair] [Eye]	9	146.44
Joint	[Hair, Eye] [Sex]	15	19.86
Mutual	[Hair] [Eye] [Sex]	24	166.30

• Hair color x Eye color marginal table (ignoring Sex)

• 3-way table, Joint Independence Model [Hair Eye] [Sex]

• 3-way table, Mutual Independence Model [Hair] [Eye] [Sex]

Applications

Response models

- When one variable, R, is a response and E_1, E_2, \ldots are explantory, the baseline model is the model of joint independence, $[E_1, E_2, \ldots][R]$
- Sequential mosaics then show the associations among the predictors
- The last mosaic shows all associations with R
- Better-fitting models will need to add associations of the form [E_iR], [E_iE_iR]...

Causal models

Sometimes there is an assumed causal ordering of variables:

$$A \rightarrow B \rightarrow C \rightarrow D$$

- Each path of arrows: A → B, A → B → C is a sequential model of joint independence: [A][B], [AB] [C], [ABC] [D].
- Testing these decomposes all joint probabilities

Example: Marital status, pre- and extra-marital sex

? studied divorce patterns in relation to premarital and extramarital sex, a 24 table, PreSex in vcd

```
data("PreSex", package="vcd")
structable (Gender+PremaritalSex+ExtramaritalSex ~ MaritalStatus, PreSex)
##
                Gender
                                Women
                                                 Men
                PremaritalSex Yes
                                          Nο
                                                 Yes
                                                          No
                ExtramaritalSex Yes No Yes No Yes No Yes No
  MaritalStatus
  Divorced
                                      54 36 214 28
                                                      60 17 68
## Married
                                      25 4 322 11
                                                      42
                                                           4 130
```

Sub-models:

- [G][P]: do men and women differ in pre-marital sex?
- [GP][E]: given G & P, are there differences in extra-marital sex?
- [GPE][M]: given G, P & E, are there differences in divorce?

Example: Marital status, pre- and extra-marital sex

• Order the table variables as $G \rightarrow P \rightarrow E \rightarrow M$

```
PreSex <- aperm(PreSex, 4:1) # order variables G, P, E, M</pre>
```

Fit each sequential model to the marginal sub-table

```
mod.1 <- loglm(~ Gender + PremaritalSex, data=PreSex)
mod.2 <- loglm(~ Gender * PremaritalSex + ExtramaritalSex, data=PreSex
...</pre>
```

Model	df	G^2
[G] [P]	1	75.259
[GP] [E]	3	48.929
[GPE] [M]	7	107.956
[G] [P] [E] [M]	11	232.142

Mosaic plots:

Mosaic plots:

Mosaic matrices

- Analog of scatterplot matrix for categorical data (?)
 - Shows all p(p-1) pairwise views in a coherent display
 - Each pairwise mosaic shows bivariate (marginal) relation
 - Fit: marginal independence
 - Residuals: show marginal associations

Hair, Eye, Sex data:

Berkeley data:

Partial association, Partial mosaics

Stratified analysis:

- How does the association between two (or more) variables vary over levels of other variables?
- Mosaic plots for the main variables show partial association at each level of the other variables.
- E.g., Hair color, Eye color subset by Sex

Partial association, Partial mosaics

Stratified analysis: conditional decomposition of G^2

- Fit models of partial (conditional) independence, $A \perp B \mid C_k$ at each level of (controlling for) C.
- \Rightarrow partial G^2 s add to the overall G^2 for conditional independence, $A \perp B \mid C$

$$G^2_{A\perp B\mid C}=\sum_k G^2_{A\perp B\mid C(k)}$$

Table: Partial and Overall conditional tests, $Hair \perp Eye \mid Sex$

Model	df	G^2	<i>p</i> -value
[Hair][Eye] Male	9	44.445	0.000
[<i>Hair</i>][<i>Eye</i>] Female	9	112.233	0.000
[Hair][Eye] Sex	18	156.668	0.000

References I

- Friendly, M. Mosaic displays for multi-way contingency tables. *Journal of the American Statistical Association*, 89:190–200, 1994.
- Friendly, M. Extending mosaic displays: Marginal, conditional, and partial views of categorical data. *Journal of Computational and Graphical Statistics*, 8(3):373–395, 1999.
- Hartigan, J. A. and Kleiner, B. Mosaics for contingency tables. In Eddy, W. F., editor, *Computer Science and Statistics: Proceedings of the 13th Symposium on the Interface*, pp. 268–273. Springer-Verlag, New York, NY, 1981.
- Thornes, B. and Collard, J. *Who Divorces?* Routledge & Kegan, London, 1979.