

李 磊

eniac@ncic.ac.cn

智能中心HPC-OG组 2003-10-22

内容

- RC: what&why
- RC的体系结构
- RC的研究项目
- RC与DSAG

RC: What & Why

- 可重构计算: Reconfigurable Computing, RC FPGA-based RC
- 历史:50年代,80年代
- 目标: "the performance of hardware with the flexibility of software."

ASIC - 专用, processor - 通用性能 - 成本

■ 我们的目的

DSAG:光互连-"拆"; RC-"聚", 聚的过程需要重构研究RC体系结构理论和方法对DSAG理论的指导研究如何利用现有的RC技术和产品构建DSAG

RC的研究主题

- ■体系结构 逻辑,连接
- ■软件技术 描述,编译,开发环境
- ●快速可重构技术实时性,更高的动态性
- ■应用
 ASIC(小雨点卡), design/verification(龙芯), DSAG
 (?)

Why Reconfigurable Computing?

Bit-Level Parallelism

```
Reverse(int v) {
   int x. r;

   for (x=0; x<WIDTH; x++) {
      r |= v&1;
      v = v >> 1;
      r = r << 1;
   }
   return r;
}
```


Pipeline Parallelism

```
for (j=0; j<MAX; j++)
  b[j] = popcount(a[j]);</pre>
```


Why Reconfigurable Computing?

Performance (~ 10x Speedup)

Algorithm	FPGA system	Comparison CPU	Speedup
DNA Matching	SPLASH 2	SPARC 10	4300
RSA Crypto	PAM	Alpha 150MHz	17.8
Ray Casting	RIPP-10	Pentium 75MHz	33.8
FIR filter	1 Xilinx FPGA	DSP 50MHz	17.9
Hidden	1 Xilinx	SPARC 10	24.4
Markov Model	FPGA		
Spec92	MIPS+RC	MIPS	1.12

From CMU, 1998

FPGA

■FPGA: Field Programmable Gate Array现场可编程门阵列

■家族历史:PAL,GAL,PLD,CPLD,FPGA

■工艺实现:乘积项/查找表,SRAM/flash/EEPROM

■厂商与产品

产品: MAX, FLEX, APEX, Stratix, cyclone等。开发工具: MaxplusII, QuartusII。

产品:XC, Spartan, Vertix等,开发工具:Foundation, ISE。

产品:LSI, MACH等。

产品:反熔丝技术的PLD。

其他厂商: cypress, Quicklogic, atmel, WSI, lucent....

RC的原理

基于乘积项 (product-term)的PLD原理

AND3的输出f = (A+B) *C*(!D) = A*C*!D+B*C*!D

基于乘积项 (product-term)的PLD原理(续)

PLD宏单元

基于乘积项 (product-term)的PLD原理(续)

宏单元,可编程连线,IO控制块,公用信号专用通道

硬件可编程技术

SRAM可编程位

可编程连线

基于查找表(Look-up Table, LUT)的FPGA

查找表:Look Up Table

实际逻辑电路		LUT的实现方式		
a b c d		地址线 a b c d	16x1 RAM (LUT)	输出
a,b,c,d 输入	逻辑输出	地址	RAM中存储的内容	
0000	0	0000	0	
0001	0	0001	0	
0		0		
1111	1	1111	1	

当用户用HDL或原理图描述了一个逻辑电路后,FPGA软件会自动计算所有可能的结果,事先写入RAM,以逻辑输入作为地址来查找,输出结果。

FPGA典型结构

基于查找表(Look-up Table, LUT)的FPGA(续)

Xilinx SpartanII

逻辑块的粒度

面向应用:datapath,computing,co-processor

重构时间:

RC与计算机系统的耦合模式

In HPC?

连接结构

一岛段层次式式式式式式式

布线资源的设计

- ■任意逻辑块之间的任意连接方式
- ■布线资源占用的面积大 线的延迟 线的交叉
- ■提高布线资源利用率
- 局部连线,全局连线

多FPGA系统

信息安全的串匹配,并行协议栈生物信息处理专用机

Hybrid FPGA

- ■在FPGA中嵌入各种专用硬核
- ■FPGA不再只是逻辑块和连线构成的fabric,而是功能更强大的开发平台
- ■主动互连技术使得不同厂商的 Ipcore可以嵌入
- ■提供硬核和软核服务(试用,购买,免费),促进IP核服务?
- ■灵活性和性能的进一步提升
- Altera ARM9 , Xilinx PPC

RC的软件

■描述

原理图, HDL(VHDL, verilogHDL,C,Java) 电路描述,算法描述

- ■编译1 综合,翻译,映射,布局,布线
- ■编译2 指令集,优化编译
- ■测试 约束生成,激励生成
- ■开发平台 工程管理,电路库,电路生成器,测试生成器,资源分配器,仿真调试器

实时可重构技术

RTR: Run-Time RC

快速:s,ms,ns,

实时:运行时

■改变"预制而非动态"的状况

实时重构模式

Multi-context: 一个可编程bit有多个选择

Partial: 只覆盖需要重构的部分

Pipelined:

快速可重构

- ■预取,执行和配置过程并行;
- ■压缩,减小配置数据量;
- ■重定位和碎片整理,可以配置到未用的区域,从而使得已经配置的 区域将来可以重复利用;
- ■缓存

提高处理器和操作系统的性能的方法用于了重构加速。

带来的问题

- ■长线
- 进程切换带来的配置保护问题

缺点与局限

- ■性能:尚不如ASIC
- ■灵活性:开发和测试比软件复杂
- ■成本:量产成本,工具成本,人力成本
- ■缺乏体系结构支持:面向应用

RC的研究项目

■ PRISC,PAM, GARP,DISC,OneChip,WASMII, PipeRench, splash2, DPGA, Matrix, IRAM, RAW, BRASS......

■面向的应用:

■ 涵盖的模式:

■ 关注的点: 面向应用, 快速可重构, 软硬件界面

PRISC

PRISC在处理器寄存器堆加入了一个可编程的功能单元(PFU),实现面向应用的可重用,但是PFU的指令是固定的并且是串行的,因此并没有真正使得rchitecture具有扩展性和并行性。

OneChip

与流水线紧密结合,以获得高带宽

DISC

动态指令集 由处理器核和可定制指令空间组成 基于部分重构FPGA

Pi peRench

硬件分为若干块,时分复用,实现硬件的换入换出,动态配置。实现 <u>面向应用的流水化硬件;</u>增量可重构;

GARP

用于加速的硬件协处理器;需要额外的指令从处理器和GARP之间移动数据;从内存读入可重构配置;缓存;

基于GARP技术的Xilinx XC6200 可重构时间<1ms

MARTIX: Multiple Alu archiTecture with Reconfigurable Interconnect experiment

RAW: 可变指令集

可重构计算与DSAG

- ■网格化:功能部件形成一种独立的具有自我描述功能的网络服务。
- 动态:资源通过网络进行动态的申请和释放和调配,没有一个物理的、固定的系统。
- ■自组织: 根据应用需求自动搜索、协商和分配资源,自动 建立功能部件间的关联,以组织成一个完整的计算机系统

Architecure On Demand

- ■基于DSAG的FPGA芯片系统设计:结合DSAG的思想,可以将FPGA的可重构处理单元(RPU)的结构按功能单元进行划分和动态组织,从减少重新定制开发RPU的周期,甚至最终打破原有高性能计算中硬件/软件的分界线
- ■FPGA在DSAG的构造中的应用

cluster

Intranet/internet

不同层次的RC:开关级,结构级,进程级,系统级

自相似:功能单元与互连单元

芯片->板卡->节点->机群->网络

From FPGA to internet

	1	
	ш	
	ш	
_	1	

	FPGA	板卡	HPC (cluser)	Intranet/internet
级别	芯片内	板 , 卡	系统	网络
功能单元	逻辑块	芯片,模块	节点	各类计算设备
互连单元	可编程连线	总线	交换机等	路由器,交换机
重构方式	在线配置	跳线,嵌入式 OS	进程调度,迁 移	拓扑,路由
发展趋势				•••

系统互连的趋势

- ■交换式结构代替总线式
- ■高速串行点对点连接代替并行总线
- ■基于包交换的协议代替独立控制信号
- ■异步协议代替同步协议
- ■传统意义上的互联走向通信模式?
- ■为可重构互连带来了机会? 模块化 异步性

"拆"和"聚"

用于网络服务器或并行处理的 8×8光学 crosshar 网络

- ■光互连让"拆"成为了可能: 长距离传输,带宽
- ■可重构计算为"聚"提供了支持:

编制新的应用程序时,可直接调用共享内存或消息传递算法模块,利用已有成果,加速程序的开发。一个应用程序可能包括对三类结构库函数的并行调用。例如程序员开发通过投票方式确定基因比对结果的程序(一组数据调用三组函数库独立处理,结果比对,2:1为执行完),机器将自动调整为三部分(SMP、MPP、Cluster),并行执行三个独立的程序,数据可以共享!

我们可以做的工作

- ■小雨点卡
- ■可重构的多功能卡
- ■HPC OG的可重构仿真
- ■故障屏蔽和恢复

小雨点卡

面向应用的可重构板卡

可重构仿真

龙芯的引脚兼容

HPC-OG仿真

HPC的设计、验证、评价平台

■全系统模拟器

从CPU流水线、存储器体系、网络等级别的全系统模拟

基于轻型OS和远程系统调用的软件环境

大规模并行模拟器研究

远期目标:灵活的体系结构模拟器

■基干可重构技术的仿真平台

可重构的功能节点

可重构的连接方式

内置的统计功能

Thanks!