cache_dm.v

(1) Cycle time: 10 (ns)(2) General spec:

- Number of words: 32 words (8 blocks x 4 words)

Block	Tag (25 bits)	Data (4 words)
0		
1		
2		
3		
4		
5		
6		
7		

- Placement policy: directed mapped

- Address format:

Tag: 25 bitsIndex: 3 bitsOffset: 2 bitsBlock details:

• Total: 155 bits per block

Valid: 1 bit Dirty: 1 bit Tag: 25 bits

• Data: 128 bits (4 words)

(3) Read/write policy: write-back, write allocate

(4) FSM:

- IDLE: No operation.
- COMPARE_TAG: 讀取由processor傳來的proc_read或是proc_write的訊號,再執行讀或寫等動作。若block_hit為high,則直接讀取或是寫入cache block,再回到idle state。若block_hit為low,則視block是否為dirty再決定要不要先write back或是直接進行write allocate。
- WRITE_BACK: 若block_hit為low且block為dirty,則把該block的data寫回memory(更新memory)。Write back成功後進入allocate stage。
- ALLOCATE: 若block_hit為low且block為clean,表示cache block data和memory data 一致,所以直接把目標memory address的data直接寫入,再進到compare tag stage。

(5) Performance evaluation:

- No latch:

Inferred memory devices in process

in routine cache line 192 in file

'/home/raid7_2/userb05/b05013/DSD_HW4/cache_dm.v'.

Register Name	Type	======= Width	====== Bus	===== MB 	===== AR 	AS	SR	SS	ST
mem_addr_r_reg mem_wdata_r_reg current_state_reg block_reg proc_rdata_r_reg proc_stall_r_reg	Flip-flop Flip-flop Flip-flop Flip-flop Flip-flop Flip-flop	28 128 2 1240 32 1	Y	N N N N N N	N N N N N N	N			

report_area:

Report : area Design : cache

Version: N-2017.09-SP2

Date : Tue May 26 16:24:10 2020

Library(s) Used:

typical (File: /home/raid7_2/course/cvsd/CBDK_IC_Contest/CIC/SynopsysDC/db/ typical.db)

Number	of	ports:	386
Number	of	nets:	5698
Number	of	cells:	5471
Number	of	combinational cells:	4040
Number	of	sequential cells:	1431
Number	of	macros/black boxes:	0
Number	of	buf/inv:	1517
Number	of	references:	66

Combinational area:	38700.719633
Buf/Inv area:	8790.834643
Noncombinational area:	38868.762001
Macro/Black Box area:	0.000000
Net Interconnect area:	774764.137756

Total cell area: 77569.481634 Total area: 852333.619391

- report_timing:

Report : timing

-path full -delay max -max_paths 1
Design : cache

Version: N-2017.09-SP2 Date : Tue May 26 16:24:17 2020

A fanout number of 1000 was used for high fanout net computations.

Operating Conditions: slow Wire Load Model Mode: top Library: slow

Startpoint: proc_addr[4]

(input port clocked by CLK)

Endpoint: block_reg[0][0]

(rising edge-triggered flip-flop clocked by CLK)

Path Group: CLK Path Type: max

Des/Clust/Port	Wire Load Model	Library	
cache	tsmc13_wl10	slow	
Point		Incr	Path
clock CLK (rise ed clock network dela input external del proc_addr[4] (in) U4338/Y (CLKINVX1) U4373/Y (CLKINVX2) U5305/Y (NAND3X1) U5034/Y (INVX4) U4752/Y (BUFX20) U5004/Y (A022X1) U6256/Y (NOR4X1) U6257/Y (OAI22XL) U5444/Y (AOI221XL) U4340/Y (NAND4XL) U4329/Y (NAND3X2) U4325/Y (OAI21XL) U4324/Y (NAND2X2) U4323/Y (NOR2X1) U4374/Y (NOR2X1) U4374/Y (NOR2X1) U6718/Y (BUFX4) U6719/Y (NOR2X1) U4315/Y (BUFX20) U7350/Y (OAI222XL) block_reg[0][0]/D data arrival time	y (ideal) ay	0.00 0.50 0.30 0.01 0.20 0.30 0.36 0.33 0.34 0.29 0.40 0.19 0.35 0.18 0.42 0.29 0.40 0.32 0.61 0.27 0.36 0.65 0.46	0.00 0.50 0.80 f 0.81 f 1.01 r 1.31 f 1.67 r 2.00 f 2.34 f 2.63 f 3.21 f 3.56 r 3.75 f 4.17 r 4.46 f 4.86 r 5.19 f 5.80 r 6.43 f 7.76 f 7.76 f 7.76 f 7.76 f
<pre>clock CLK (rise ed clock network dela clock uncertainty block_reg[0][0]/CK library setup time data required time</pre>	y (ideal) (DFFQX2)	10.00 0.50 -0.10 0.00 -0.20	10.00 10.50 10.40 10.40 r 10.20 10.20
data required time data arrival time	:		10.20 -7.76
slack (MET)			2.44

- miss rate, execution cycles, stalled cycles: Processor: Read initial data from memory.

Done correctly so far! ^_^

>>>> Read session 1: 3588 cycles

>>>> hit: 1278

>>>> miss: 1279

>>>> miss rate: 50.02%

Processor: Write new data to memory.

Finish writing!

>>>> Write session: 5072 cycles

>>>> write hit: 1279

>>>> write miss: 1280

>>>> miss rate: 50.02%

Processor: Read new data from memory.

Done correctly so far! ^_'

>>>> Read session 2: 8240 cycles

>>>> hit: 3326

>>>> miss: 3327

>>>> miss rate: 50.01%

>>>> access: 3072

>>> stall cycles: 13823 (81.79% total cycles)

>>> execution cycles: 3076 (18.20% total cycles)

>>>> total cycles: 16900

==== CONGRATULATIONS! Pass cache read-write-read test. ====

cache_2way.v

(1) Cycle time: 10 (ns)

(2) General spec:

Number of words: 32 words (4 sets x 2 ways x 4 words)

Set0	Tag (26 bits)	Data (4 words)	Set1	Tag (26 bits)	Data (4 words)
0			0		
1			1		
2			2		
3			3		

- Placement policy: 2-way set associative
- Address format:
 - Tag: 26 bits

Index: 2 bitsOffset: 2 bitsBlock detail:

Total: 156 bits per block

Valid: 1 bit Dirty: 1 bit Tag: 26 bits

Data: 128 bits (4 words)

(3) Read/write policy: write-back, write allocate, LRU(4) FSM (same design architecture of cache dm.v):

- IDLE: No operation.
- COMPARE_TAG: 讀取由processor傳來的proc_read或是proc_write的訊號,再執行讀或寫等動作。若block_hit為high,則直接讀取或是寫入cache block,再回到idle state,least recently used(LRU)指標也會改變指向另一個block。若block_hit為low,則視block是否為dirty再決定要不要先write back或是直接進行write allocate。
- WRITE_BACK: 若block_hit為low且block為dirty,則把該block的data寫回memory(更新memory)。Write back成功後進入allocate stage。
- ALLOCATE: 若block_hit為low且block為clean,表示cache block data和memory data 一致,所以直接把目標memory address的data直接寫入,再進到compare tag stage。 此階段的LRU指標會改變指向另一個block。

(5) Performance evaluation:

- No latch:

Inferred memory devices in process

in routine cache line 232 in file '/home/raid7_2/userb05/b05013/DSD_HW4/cache_2way.v'.

==		=========	======	=====	=====	=====	=====	=====	=====	=====	=
1	<pre>proc_stall_r_reg</pre>	Flip-flop	1	N	N	N	N	N	N	N	Ι
-	mem_addr_r_reg	Flip-flop	28	Y	N	l N	N	l N	N	N	
ĺ	mem_wdata_r_reg	Flip-flop	128	j Y	j N	N	j N	N	j N	j N	Ĺ
Ĺ	current_state_reg	Flip-flop	2	Y	N	N	N	N	N	N	Ĺ
-	lru_reg	Flip-flop	4	Y	N	l N	N	l N	N	N	
-	block_reg	Flip-flop	1248	Y	N	N	N	N	N	N	1
-	proc_rdata_r_reg	Flip-flop	32	Y	N	N	N	N	N	N	

- report area:

Report : area Design : cache

Version: N-2017.09-SP2 Date : Thu May 28 21:35:47 2020

Library(s) Used:

typical (File: /home/raid7_2/course/cvsd/CBDK_IC_Contest/CIC/SynopsysDC/db/ typical.db)

Number of ports: 386 Number of nets: 7086 Number of cells: 6891 Number of combinational cells: 5448 Number of sequential cells: 1443 Number of macros/black boxes: 0 Number of buf/inv: 636 Number of references: 80

49567.474653 Combinational area: Buf/Inv area: 6261.708745 Noncombinational area: 39189.570597 Macro/Black Box area: 0.000000 Net Interconnect area: 956765.075287

Total cell area: 88757.045250 Total area: 1045522.120537

report_timing:

Report: timing -path full -delay max -max_paths 1

Design : cache

Version: N-2017.09-SP2

Date : Thu May 28 21:36:38 2020

A fanout number of 1000 was used for high fanout net computations.

Operating Conditions: slow Library: slow

Wire Load Model Mode: top

Startpoint: proc_addr[2]

(input port clocked by CLK)

Endpoint: block reg[1][1][26]

(rising edge-triggered flip-flop clocked by CLK)

Path Group: CLK Path Type: max

Des/Clust/Port Wire Load Model Library

cache	tsmc13_wl10	slow	
Point		Incr	Path
clock CLK (risc clock network input external proc_addr[2] (U5580/Y (INVX1 U5579/Y (NAND2) U5576/Y (INVX8 U6058/Y (A022X U10481/Y (A012) U10482/Y (OA12) U10211/Y (A012) U5584/Y (NAND3) U5566/Y (NAND3) U5565/Y (CLKIN) U5601/Y (NOR2X U5626/Y (A0121) U10550/Y (A0121) U10550/Y (NAND3) U6861/Y (NOR2X U5998/Y (INVX4 U5846/Y (BUFX1) U10939/Y (A0121) U10939/Y (A0121) U10940/Y (A0121) U	delay (ideal) delay in)) X2)) 11) 11X1) 2XL) 21XL) XL) XL) 1) X2) VX1) 1) 1X1) 4) X1) 1) 1) 1) 1) 6) 2XL) XL) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1)	0.00 0.50 0.30 0.05 0.17 0.24 0.47 0.23 0.15 0.35 0.15 0.31 0.30 0.47 0.33 0.24 0.25 0.28 0.39 0.41 0.34 0.18 0.39 0.47 0.19 0.28	0.00 0.80 f 0.85 f 1.027 f 1.74 r 1.97 f 2.12 f 2.47 f 2.88 f 3.34 r 4.45 f 4.45 f 4.93 r 5.60 f 6.35 f 7.59 r 7.87 r 8.02 f 8.02 f
clock CLK (risc clock network clock uncertai block_reg[1][1 library setup data required	delay (ideal) nty][26]/CK (DFFQX2) time	10.00 0.50 -0.10 0.00 -0.19	10.00 10.50 10.40 10.40 r 10.21 10.21
data required data arrival t	time ime		10.21 -8.02
slack (MET)			2.19

>>>> Read session 1: 3588 cycles

>>>> hit: 1278

>>>> miss: 1279

>>>> miss rate: 50.02%

Processor: Write new data to memory.

Finish writing!

>>>> Write session: 5072 cycles

>>>> write hit: 1279

>>>> write miss: 1280

>>>> miss rate: 50.02%

Processor: Read new data from memory.

Done correctly so far! ^_^

>>>> Read session 2: 3632 cycles

>>>> hit: 2558

>>>> miss: 2559

>>>> miss rate: 50.01%

>>>> access: 3072

>>>> stall cycles: 9215 (74.97% total cycles)

>>>> execution cycles: 3076 (25.02% total cycles)

>>>> total cycles: 12292

==== CONGRATULATIONS! Pass cache read-write-read test. ====

Comparison:

這次分別實作direct mapping cache和2-way associative cache,前兩階段模擬的成果差異不大。我推測是由於使用的testbench只有非常規則的循序讀和寫(依序讀memory -> 依序寫memory -> 依序讀memory),所以不能顯著表現出direct-mapping和2-way associative set 之間的效能差異。不過2-way associative cache比起direct mapping cache在第三階段的讀取出乎意料地少了約4700個stall cycles,這階段的效率就有很明顯的進步。兩種cache的miss penalty差不多,如果block是dirty那需要等兩個state transition(WRITE_BACK -> ALLOCATE),如果是clean那只需要等一個state transition(ALLOCATE),詳情請見FSM。

	miss rate	accesses	stall cycles	execution cycles	total cycles
cache_dm.v	50.01%	3072	13823	3076	16900
cache_2way.v	50.01%	3072	9215	3076	12292