Problema 6. Siguin I, J_1, J_2 ideals d'un anell A. Proveu que

- 1. $I + (J_1 \cap J_2) \subseteq (I + J_1) \cap (I + J_2)$. Si $I \subseteq J_1$ o bé $I \subseteq J_2$ llavors tenim igualtat.
- 2. $I \cap (J_1 + J_2) \supseteq (I \cap J_1) + (I \cap J_2)$. Si $I \supseteq J_1$ o bé $I \supseteq J_2$ llavors tenim igualtat.

Solució: Siguin $I, J_1, J_2 \subset A$ tres ideals d'un anell A commutatiu i unitari.

1. • Demostrarem primerament que $I + (J_1 \cap J_2) \subseteq (I + J_1) \cap (I + J_2)$. Sigui $x \in I + (J_1 \cap J_2)$, llavors podem escriure x de la manera següent:

$$x = i + j$$
, on $i \in I$, $j \in J_1 \cap J_2$ (1)

Per tant, j és, alhora, un element de J_1 i un element de J_2 . Podem expressar l'element j com:

$$j = j_1 \text{ amb } j_1 \in J_1$$

$$(2)$$

i també el podem expressar com:

$$j = j_2 \text{ amb } j_2 \in J_2$$

$$\tag{3}$$

En substituir (2) en (1), obtenim l'expressió següent: $x = i + j_1 \in I + J_1$. De la mateixa manera, en substituir (3) en (1) obtenim que: $x = i + j_2 \in I + J_2$. Per tant, veiem que $x \in (I + J_1) \cap (I + J_2)$.

Suposem ara que I ⊆ J₁ i volem veure que es compleix la igualtat.
 Com que al primer apartat hem demostrat la primera inclusió, en tenim prou amb demostrar que I + (J₁ ∩ J₂) ⊇ (I + J₁) ∩ (I + J₂).

Observem primerament que $I \subseteq J_1 \Rightarrow I + J_1 = J_1$; per tant,

$$(I + J_1) \cap (I + J_2) = J_1 \cap (I + J_2).$$

Sigui doncs $x \in J_1 \cap (I + J_2)$ i volem arribar a que $x \in I + (J_1 \cap J_2)$.

Tenim que x és a la vegada un element de J_1 i un element de $I+J_2$, llavors:

$$\begin{cases} x \in J_1 \\ x \in I + J_2 \end{cases} \Rightarrow \begin{cases} x = j_1, j_1 \in J_1 \\ x = i + j_2, i \in I, j_2 \in J_2 \end{cases}$$
$$\Rightarrow \begin{cases} x = i + j_2, i \in I, j_2 \in J_2 \\ j_2 = j_1 - i, i \in I \subseteq J_1, j_1 \in J_1 \end{cases}$$
$$\Rightarrow \begin{cases} x = i + j_2, i \in I, j_2 \in J_2 \\ j_2 \in J_1 \end{cases}$$

$$\Rightarrow x = i + j, i \in I, j = j_2 \in J_1 \cap J_2$$
.

D'això obtenim allò que voliem demostrar, que $x \in I + (J_1 \cap J_2)$.

Per a $I \subseteq J_2$ la demostració és anàloga.

2. • En primer lloc, demostrem la llei modular suposant que I, J_1, J_2 són tres ideals qualssevol de A.

Hem de veure doncs que $(I \cap J_1) + (I \cap J_2) \subseteq I \cap (J_1 + J_2)$.

Sigui $x \in (I \cap J_1) + (I \cap J_2)$, aleshores x = y + z de manera que $y \in I \cap J_1$ i $z \in I \cap J_2$. Per tant, veïem que:

$$\begin{cases} y \in I \cap J_1 \\ z \in I \cap J_2 \end{cases} \Rightarrow \begin{cases} y = y' \in I, y = y_1 \in J_1 \\ z = z' \in I, z = z_2 \in J_2 \end{cases}$$

Deduïm que $x = y' + z' \in I + I = I$ i doncs $x = y_1 + z_2 \in J_1 + J_2$.

Per tant, $x \in I \cap (J_1 + J_2)$.

• Suposem ara que $J_1 \subseteq I$ i volem veure que es compleix la igualtat.

Com que a l'altra apartat hem demostrat la primera inclusió en tenim prou amb demostrar que $(I \cap J_1) + (I \cap J_2) \supseteq I \cap (J_1 + J_2)$.

Sigui $x \in I \cap (J_1 + J_2)$, llavors $x \in I$ i $x \in (J_1 + J_2)$. D'aqui treiem que x = a + b per a uns certs $a \in J_1$ i $b \in J_2$.

Podem escriure també b=x-a, de manera que $x\in I$ i $a\in J_1$; llavors $b\in I+J_1=I$ ja que J_1 és un ideal contingut en I.

Per tant, com que b és de I i de $J_2 \Rightarrow b \in I \cap J_2$, i com que $J_1 \subseteq I$, es compleix que $I \cap J_1 = J_1$, llavors, finalment veiem que $x = a + b \in J_1 + (I \cap J_2)$; és a dir:

$$x \in (I \cap J_1) + (I \cap J_2).$$

Per a $J_2 \subseteq I$ la demostració és anàloga.