Using Machine Learning Tools

Convolutional Neural Networks

University of Adelaide

Previously ...

- Network architecture: fully connected layers, one to next
- Neurons: importance of nonlinear activation functions (ReLU)
- Parameters: weights and biases, number of parameters
- Loss functions, epochs, batches, optimisers
- Regression:
 - loss = mean squared error; mean absolute error
 - activation = None, ReLU, sigmoid
- Classification:
 - loss = cross entropy variants
 - activation = softmax (with one-hot representation)

Today

- Convolutional Neural Networks (CNNs)
- Architecture:
 - convolution layer
 - pooling layer
 - stride
 - number of filters
- Convergence and overfitting
- Ensembles

Introduction to Neural Networks

Traditional Machine Learning

Deep Learning

Neural Network

Neural Network

Input values as 1D vector

Reshaping into a 1D vector means that spatial relationships are lost

Instead, use a linear operation that works with images and has few parameters:

convolution

Input values as 2D or 3D image

Each layer *only* connects to next layer

are not shown but implicit

Image

Filter

x derivative

-1	0	1
-2	0	2
-1	0	1

Image

4	8	3	5	0
2	4	5	3	0
1	9	1	7	0
7	6	0	0	0
0	0	0	0	0

Image

Filter

4	8	3	5	0
2	4	5	3	0
1	9	1	7	0
7	6	0	0	0
0	0	0	0	0

-1	2	-1
-2	4	-2
-1	2	-1

4	8	3	5	0
2	4	5	3	0
1	9	1	7	0
7	6	0	0	0
0	0	0	0	0

-1	2	-1
-2	4	-2
-1	2	-1

0	19	-11	15	-13
-7	27	-15	22	-18
-6	38	-31	27	-17
9	26	-26	13	-7
8	5	-6	0	0

Filter

Output

-1	2	-1
-2	4	-2
-1	2	-1

0	19	-11	15	-13
-7	27	-15	22	-18
-6	38	-31	27	-17
9	26	-26	13	-7
8	5	-6	0	0

Filter

0	19	-11	15	-13
-7	27	-15	22	-18
-6	38	-31	27	-17
9	26	-26	13	-7
8	5	-6	0	0

Output

Filter

0	19	-11	15	-13
-7	27	-15	22	-18
-6	38	-31	27	-17
9	26	-26	13	-7
8	5	-6	0	0

Output

4	8	3	5	0
2	4	5	3	0
1	9	1	7	0
7	6	0	0	0
0	0	0	0	0

-1	2	-1
-2	4	-2
-1	2	-1

0	19	-11	15	-13
-7	27	-15	22	-18
-6	38	-31	27	-17
9	26	-26	13	-7
8	5	-6	0	0

4	8	3	5	0
2	4	5	3	0
1	9	1	7	0
7	6	0	0	0
0	0	0	0	0

-1	2	-1
-2	4	-2
-1	2	-1

0	19	-11	15	-13
-7	27	-15	22	-18
-6	38	-31	27	-17
9	26	-26	13	-7
8	5	-6	0	0

4	8	3	5	0	
2	4	5	3	0	
1	9	1	7	0	
7	6	0	0	0	
0	0	0	0	0	

-1	2	-1
-2	4	-2
-1	2	-1

0	19	-11	15	-13
-7	27	-15	22	-18
-6	38	-31	27	-17
9	26	-26	13	-7
8	5	-6	0	0

Filter Output Image -11 -13 -1 -1 -7 -15 -18 -2 -2 -31 -6 -17

-1

Activation is also applied to outputs

-1

Bias inputs are not shown but implicit

-7

-26

-6

Input values as 2D or 3D image

Each layer *only* connects to next layer

are not shown but implicit

Input Hidden Layer 1

Have many filters (kernels)

Each filter used to make another output image, stacked together

Apply each convolutional filter in term

Input values as 2D or 3D image

Each layer *only* connects to next layer

Input Hidden Layer Layer 1

Have many filters (kernels)

Each filter used to make another output image, stacked together

Apply each convolutional filter in term

Input values as 2D or 3D image

Each layer *only* connects to next layer

Input Hidden Layer Layer 1

Have many filters (kernels)

Each filter used to make another output image, stacked together

e.g. depth = 4

Apply each convolutional filter in term

Input values as 2D or 3D image

Each layer *only* connects to next layer

Input Hidden Hidden Layer 1 Layer 2

Input values as 2D or 3D image

Each layer *only* connects to next layer

Have many filters (kernels)

Each filter used to make another output image, stacked together

Apply each convolutional filter in term

Each filter acts across all depths

Max Pooling Layer

Take maximum value within 2x2 filter
Move in steps of 2 *(stride = 2)*

Zero parameters

Max Pooling Layer

Take maximum value within 2x2 filter
Move in steps of 2 *(stride = 2)*

Zero parameters

Average Pooling is also an option

Parameters

Size of 3x3 is most common

Output

Number of parameters is 3x3 = 9

- - = 10 parameters

+ 1 bias input (implicit) ... for a scalar input image (depth=1)

NB: depth = 3 for colour channels

Independent of image size!

For deeper stacks, the number of parameters in *each filter* is:

depth * filter size + bias

e.g.
$$4 * 3*3 + 1 = 37$$

Have many filters (kernels)

Each filter used to make another output image, stacked together

Apply each convolutional filter in term

Each filter acts across all depths

Number of filters = depth of next layer

e.g. 10 filters = 370 parameters

For deeper stacks, the number of parameters in *each filter* is:

depth * filter size + bias e.g. 4 * 3*3 + 1 = 37

Parameters

Example

Lin et al., Convolutional Neural Networks-Based MRI Image Analysis for the Alzheimer's Disease Prediction From Mild Cognitive Impairment, Front. Neurosci., 2018

Example

Lots of decisions about architecture

Lin et al., Convolutional Neural Networks-Based MRI Image Analysis for the Alzheimer's Disease Prediction From Mild Cognitive Impairment, Front. Neurosci., 2018

Example

Patch-based application for segmentation Apply separately at each location

Convergence and Overfitting

- Batch size, epochs and convergence are the same as before
- Overfitting is more likely when number of parameters exceeds number of training data inputs
 - validation acc/loss much worse than training acc/loss
- Underfitting occurs when insufficient number of parameters or insufficient richness in data
 - training acc/loss is poor
- Can help guide network choices
- Empirical selection is still most common

Ensembles

- Results of optimisation (training) will depend on many things (e.g. initialisation, number of epochs, order of data, etc.)
- Most of the time it will end up in a local minima
 - Though that might be good enough
- Can combine together different trained models and average outputs to get an improved model
 - Initialised differently
 - Trained differently
 - Different architectures / parameters
- Well studied in traditional machine learning
 - Random forests = ensemble of decision trees
 - This is one of the best models in traditional ML
- Approach is also common and powerful for Deep Learning

Summary

- Convolutional Neural Networks (CNNs)
- Architecture:
 - convolution layer (size & number of filters)
 - pooling layer (max or average downsizes)
 - stride (can also apply to convolution)
 - number of filters and number of parameters
- Convergence and overfitting
- Ensembles