关于STM32F103C8T6芯片的一些重要引脚功能的整理

S blog.csdn.net/qq_42810361/article/details/102729236

Pins	Pin name	ADC	TIM	CAN	I2C	SPI	USART	USB
10	PA0- WKUP	ADC1_IN0 ADC2_IN0	SYS_WKUP TIM2_CH1 TIM2_ETR				USART2_CTS	
11	PA1	ADC1_IN1 ADC2_IN1	TIM2_CH2				USART2_RTS	
12	PA2	ADC1_IN2 ADC2_IN2	TIM2_CH3				USART2_TX	
13	PA3	ADC1_IN3 ADC2_IN3	TIM2_CH4				USART2_RX	
14	PA4	ADC1_IN4 ADC2_IN4				SPI1_NSS	USART2_CK	
15	PA5	ADC1_IN5 ADC2_IN5				SPI1_SCK		
16	PA6	ADC1_IN6 ADC2_IN6	TIM1_BKIN TIM3_CH1			SPI1_MISO		
17	PA7	ADC1_IN7 ADC2_IN7	TIM1_CH1N TIM3_CH2			SPI1_MOSI		
29	PA8		RCC_MCO TIM1_CH1				USART1_CK	
30	PA9		TIM1_CH2				USART1_TX	
31	PA10		TIM1_CH3				USART1_RX	
32	PA11	ADC1_IN11 ADC2_IN11	TIM1_CH4	CAN_RX			USART1_CTS	USB_DM
33	PA12		TIM1_ETR	CAN_TX			USART1_RTS	USB_DP
34	PA13							JTMS SWDIO
37	PA14							JTCK SWCLK
38	PA15	ADC1_IN15 ADC2_IN15	TIM2_CH1 TIM2_ETR			SPI1_NSS		JTDI
18	PB0	ADC1_IN8 ADC2_IN8	TIM1_CH2N TIM3_CH3					
19	PB1	ADC1_IN9 ADC2_IN9	TIM1_CH3N TIM3_CH4					
20	PB2							
39	PB3		TIM2_CH2			SPI1_SCK		JTDO SWO
40	PB4		TIM3_CH1			SPI1_MISO		NJTRST
41	PB5		TIM3_CH2		I2C1_SMBA	SPI1_MOSI		
42	PB6		TIM4_CH1		I2C1_SCL		USART1_TX	
43	PB7		TIM4_CH2		I2C1_SDA		USART1_RX	

Pins	Pin name	ADC	TIM	CAN	I2C	SPI	USART	USB
45	PB8		TIM4_CH3	CAN_RX	I2C1_SCL			
46	PB9		TIM4_CH4	CAN_TX	I2C1_SDA			
21	PB10		TIM2_CH3		I2C2_SCL		USART3_TX	
22	PB11	ADC1_IN11 ADC2_IN11	TIM2_CH4		I2C2_SDA		USART3_RX	
25	PB12		TIM1_BKIN		I2C2_SMBA	SPI2_NSS	USART3_CK	
26	PB13		TIM1_CH1N			SPI2_SCK	USART3_CTS	
27	PB14		TIM1_CH2N			SPI2_MISO	USART3_RTS	
28	PB15	ADC1_IN15 ADC2_IN15	TIM1_CH3N			SPI2_MOSI		
2	PC13		RTC_OUT RTC_TAMPER					
3	PC14		RCC_OSC32_IN					
4	PC15	ADC1_IN15 ADC2_IN15	RCC_OSC32_OUT					
5	PD0		RCC_OSC_IN					
6	PD1		RCC_OSC_OUT					

0 7万+

STM32F103C8T6单片机简介

6万+

3万+

STM32F103C8T6引脚功能分布

逸凌Time

的

STM32F103C8T6芯片的引脚分布,及注意事项(用干芯片选型)

fiveboo的博客 4万+

 $STM_{32}F10_{3}C8T6$ 这款芯片,是我们使用单片机做项目常用到的一款芯片。它具有价格便宜、性能强大、资源齐全等各种优点。 我常常使用的是黑金的c8t6核心板,如下:以下将介绍他的资源配置该款芯片各个管脚的功能分配如下(注意:凡是引脚标注有ADC功能的,该引脚都是3.3V耐压,不可接5V信号,否则会使该引脚烧毁或者芯片烧毁) 附件为: 1.官方c8t6的数据手册(中英文) 2....

STM32F103C8T6引脚图下载

11-03

STM32F103C8T6引脚图

<u>单片机 STM32F103C8T6</u> 串口1 串口2 串口3 标准库 DMA x1131230123的博客

4619

文章目录0 引脚1 串口12 串口23 串口3 0 引脚1 串口1 void uart init(u32 bound) { /* GPIO端口设置*/
GPIO InitTypeDef GPIO InitStructure; USART InitTypeDef USART InitStructure; NVIC InitTypeDef
NVIC InitStructure; RCC APB2PeriphClockCmd(RCC APB2Periph USART1 | RC

STM32F103C8T6脚位分布图.pdf

12-10

STM32F103C8T6单片机引脚封装资源的分布,介绍了STM32F103C8T6的内部引脚功能,方便在画图的时候使用。

基于STM32F103C8T6的超声波测距示例

gw2279985369的博客

3万+

<u>需要以下源码工程请扫码关注大海电子,回复"基于STM32F103C8T6超声波测距源码及接线",建议直接复制双引号里面的</u>内容。(免费) 整个工程文件及整体套件(淘宝购买): https://item.taobao.com/item.htm?spm=a1z10.3-c.w4002-22156600417.12.64b73961pgTEXp&id=60656061503...

STM32f103c8t6引脚定义

MCP的博客

3073

文件下载: 下载链接

《STM32》F103C8T6最小系统

BelleDiao的博客

7万+

复位电路:复位电路是一种用来使电路恢复到起始状态的电路设备,它的操作原理与计算器有着异曲同工之妙,只是启动原理和手段有所不同。复位电路,就是利用它把电路恢复到起始状态。就像计算器的清零按钮的作用一样,以便回到原始状态,重新进行计算。和计算器清零按钮有所不同的是,复位电路启动的手段有所不同。一是在给电路通电时马上进行复位操作;二是在必要时可以由手动操作;三是根...

*关于STM32F103C8T6的*基础ADC 单通道 单次 软件触发-测量*功能* LP的博客

3万+

让自己别忘了大学里学的东西,那么就把它记录下下来,效率会比忘记然后重新再去找资料再重头学高的多对于ADC的基础电压转换功能:1.先是它的原理:(1).adc是将模拟量转化成数字量的东西,对于单片机而言,它需要一个输入的基准电压,用于和待测的模拟电压做对比。 (2).adc功能在单片机里面的流程是这样的: 1. 单片机的AIN引脚接收到外部的待测S模拟电压量 ...

STM32F030 使用引脚输入

zhjmyx的专栏

3443

STM32F030 使用引脚输入-2019-5-28 GPIO InitTypeDef GPIO InitStructure; /* Enable the BUTTON Clock */RCC AHBPeriph GPIOA, ENABLE); /* Configure Button pin as input */...

<u>STM32F103C8T6核心板——引脚</u>使用注意!!! weixin_50183638的博客

1973

STM32F103C8T6核心板——引脚使用注意!!! 有的引脚与下载JTAG端口复用,有的与BOOT复用,若发生引脚不够使用的情况,可以将他们进行一点特殊的设置,变成普通引脚使用该开发板上有几点需要注意: 1) PA13、PA14没有单独引出,分别对应SWDIO、SWCLK,可以在SW模式烧写程序后,再使用PA13、PA14两个引脚; 2) PB2与BOOT1共用一个引脚,没有单独引出。因为C8T6启动引导可不需要BOOT1,该引脚悬空也可以下载程序。下载模式说明第一种启动方式是最常用的用

设计师:白松林 返回首页

- <u>关于我们</u>
- 招贤纳士
- 广告服务
- 开发助手
- 400-660-0108
- kefu@csdn.net
- 在线客服
- 工作时间 8:30-22:00
- 公安备案号11010502030143
- <u>京ICP备19004658号</u>
- 京网文〔2020〕1039-165号
- 经营性网站备案信息
- 北京互联网违法和不良信息举报中心
- 网络110报警服务

- 中国互联网举报中心
- 家长监护
- Chrome商店下载
 ©1999-2021北京创新乐知网络技术有限公司
 版权与免责声明
 版权申诉

- 出版物许可证营业执照