

Université Abdelmalek Essaadi Ecole Nationale des Sciences Appliquées d'Al Hoceima

CP 2 / 2020-2021

ELECTRONIQUE ANALOGIQUE

T.D N° 4

Exercice I (8 points):

On considère le montage redresseur ci-contre, alimenté par le secondaire d'un transformateur qui fournit une tension altérnative sinusoidale V_e de pulsation ω . Le transformateur utilisé est considéré comme parfait. Il a 1500 spires au primaire, et 150 spires au secondaire. Le circuit primaire est alimenté par une tension sinusoïdale alternative de valeur efficace 220 V et de fréquence 50 Hz. Les diodes sont supposées parfaites. On donne $R=10~\Omega$.

- 1. Dans ce montage, quel est le rôle du pont de dides?
- 2. Quelle est la valeur efficace V_{eeff} de la tension v_e obtenue au secondaire, quelle est sa valeur maximale V_{emax} , sa valeur moyenne et la valeur de sa fréquence?
- 3. Soit $u = 220\sqrt{2}sin(\omega t)(V)$. Donner l'expression de v_e en fonction du temps t.
- 4. Quel est l'état des diodes quand $v_e>0$? En déduire la relation entre v_e et v_s .
- 5. Quel est l'état des diodes quand $v_e < 0$? En déduire la relation entre v_e et v_s .
- 6. Dessiner, en les justifiant, les chronogrammes de v_s , i, i_{D1} et i_{D2} .
- 7. Calculer les valeurs moyennes suivantes : $\langle v_s \rangle$, $\langle i \rangle$, $\langle i_{D1} \rangle$ et $\langle i_{D2} \rangle$.
- 8. Calculer v_{seff} . En déduire les valeurs efficaces des courants : i_{eff} , i_{D1eff} et i_{D2eff} .
- 9. Le courant qui traverse la résistance est-il toujours alternatif?
- 10. On désire que la tention aux bornes de la résistance R soit constante, que proposez vous comme solution?

Exercice 2:

On réalise le montage représenté sur la figure 3, qui comporte une source de tension E (redressée et filtrée) varie de 20% par rapport à sa valeur nominale 50 V. On veut réguler cette source à l'aide d'une diode Zener (Vz=45V) . On donne $R_L=1.8K\Omega$

- 1. Lorsque la tension E=40V, on mesure $I_L = 20mA$. On déduire la valeur de R_P .
- 2. A partie de quelle valeur de E, la régulation sera assurée.
- 3. Déterminer le courant I_{zmax} dans la diode. Déduire la puissance maximale dissipée dans la diode.

Exercice I (9 points):

On considère le montage de la figure ci-contre. On donne $R_C = 1K\Omega$, $R_B = 40K\Omega$, $V_{CC} = 10V$ et $\beta = 100$.

- 1. Donner l'équation de la droite d'attaque statique (en entrée).
- 2. Donner l'équation de la droite de charge statique (en sortie).
- 3. En déduire le point de blocage (la valeur de I_B , I_C , V_{BE} et V_{CE}).
- 4. On fait varier la tension V_E et on relève la valeur des autres paramètres, compléter alors le tableau suivant :

ιι									
	$V_E(V)$	0	0.5	1	2	3	4.5	5	7
	$I_B(\mu A)$			10	35	60	97		
	$I_C(mA)$	0	0				9.7	9.7	9.7
	$V_{BE}(V)$	0	0.5	0.6	0.6	0.6	0.62	0.65	0.65
	$V_{CE}(V)$			9	6.5	4			

- 5. Repérer dans le tabeau les colonnes pour lesquelles le transistor fonctionne en régime bloqué, en régime linéaire et en régime saturé (en justifiant votre réponse).
- 6. Donner le schéma équivalent du montage côté CE pour chaque régime de fonctionnement du transistor.
- 7. Après avoir rappelé les définitions des paramètres $I_{C_{Sat}}$, $V_{BE_{seuil}}$ et $V_{CE_{sat}}$, donner leurs valeurs.
- 8. Sachant que le courant de base et la tension collecteur-émetteur sont 200 μA et 0.3 V. Dire si le transistor est en régime bloqué, linéaire ou saturé en justifiant et donner sans calcul la valeur du courant de collecteur.