

CMT107 Visual Computing

VII.1 Image Processing in Java

Xianfang Sun

School of Computer Science & Informatics
Cardiff University

Overview

- Images in Java
- Read (Load) an Image
- Draw an Image
- Process an Image
- Write (Save) an Image

Images in Java

- An image is typically a rectangular two-dimensional array of pixels
 - each pixel represents the colour at that position
 - dimensions represent the horizontal extent (width) and vertical extent (height) of the image as it is displayed
- Most important image class in Java 2D API
 - java.awt.image.BufferedImage
- Image programming Tasks:
 - Load an external image file
 - Draw an image onto a drawing surface
 - Manipulate the pixels of an image
 - Save the contents of an image to an external image file

Read (Load) an Image

Use javax.imageio package
BufferedImage img = null;
try {
 img = ImageIO.read(new File("Daffodil.jpg"));
} catch (IOException e) {
}

Draw An Image

Use Graphics Function boolean Graphics.drawImage(Image img, int x, int y, ImageObserver observer);

```
Example
    public void paint(Graphics g) {
        g.drawlmage(img, 0, 0, null);
    }
```

Process an Image

The width and height of the image can be obtained by width = img.getWidth(); height = img.getHeight(); \triangleright The pixel colour at (x, y) can be retrieved and set by Color pixel = new Color(img.getRGB(x, y)); img.setRGB(x, y, pixel.getRGB()); Example: convert a colour image to a grayscale image for (int y = 0; y < height; y++) for (int x = 0; $x < width; x++) {$ Color pixel = new Color(in.getRGB(x, y)); int r = pixel.getRed(); int g = pixel.getGreen(); int b = pixel.getBlue(); r = g = b = (int) (0.299*r + 0.587*g + 0.114*b); //grayscaleout.setRGB(x, y, (new Color(r, g, b)).getRGB());

Write (Save) an Image

Use javax.imageio package

```
BufferedImage out = getMyImage(); //Retrieve image
try {
    ImageIO.write(out, "jpg", new File("DaffodilG.jpg"));
} catch (IOException ex) {
}
```

Summary

- What is an image?
- ➤ What is a pixel?
- > How to load and save an image?
- ➤ How to draw an image?
- > How to access and set the pixels of an image?

CMT107 Visual Computing

VII.2 Image Filtering

Xianfang Sun

School of Computer Science & Informatics
Cardiff University

Overview

- Linear filtering
- Convolution
- ➤ Box Filtering
- Gaussian Filtering
- Separable Kernel
- Median Filter
- **>** Sharpening

Acknowledgement

The majority of the slides in this section are from Svetlana Lazebnik at University of Illinois at Urbana-Champaign

Image Filtering

- Filtering is a technique for modifying or enhancing an image.
 - Emphasise certain features or remove other features
- > Filtering is a neighbourhood operation
 - The output value of any given pixel is determined by the values of the pixels in the neighbourhood of the corresponding input pixel
- Linear filtering is filtering in which the value of an output pixel is a linear combination (weighted average) of the values of the pixels in the input pixel's neighbourhood
 - Linear filtering can be represented by convolution

Linear Filtering

Motivation: Image Denoising

> How can we reduce noise in a photograph?

Moving average

- ➤ Let's replace each pixel with a *weighted* average of its neighborhood
- > The weights are called the *filter kernel*
- ➤ What are the weights for the average of a 3x3 neighbourhood?

"box filter"

Convolution

 \triangleright Let f be the image and g be the kernel. The output of convolving f with g is denoted f * g.

$$(f * g)[m,n] = \sum_{k,l} f[m-k,n-l]g[k,l]$$

Convention: kernel is "flipped"

Key properties

- \triangleright Linearity: filter($f_1 + f_2$) = filter(f_1) + filter(f_2)
- ➤ Shift invariance: same behavior regardless of pixel location: filter(shift(f)) = shift(filter(f))
- Theoretical result: any linear shift-invariant operator can be represented as a convolution

More Properties

- \triangleright Commutative: a * b = b * a
 - Conceptually no difference between filter and signal
- \triangleright Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: a * (b₁ * b₂ * b₃)
- \rightarrow Distributive over addition: a * (b + c) = (a * b) + (a * c)
- \triangleright Scalars factor out: ka * b = a * kb = k (a * b)
- \triangleright Identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...], <math>a * e = a

Size of the Output

- > 'full': output size is the sum of sizes of f and g -1
- 'same': output size is the same as f
- 'valid': output size is the difference of the sizes of f and g

Boundary Pixels

- ➤ What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

22:14

Source: S. Marschner

Original

0	0	0
0	1	0
0	0	0

?

22:14

Original

0	0	0
0	1	0
0	0	0

Filtered (no change)

Original

0	0	0	
1	0	0	
0	0	0	

?

22:14

Original

0	0	0
1	0	0
0	0	0

Shifted *left*By 1 pixel

Original

1	1	1	1
<u> </u>	1	1	1
9	1	1	1

?

22:14

Original

Blur (with a box filter)

Original

0	0	0	1	1	1	1
0	2	0	<u> </u>	1	1	1
0	0	0	9	1	1	1

(Note that filter sums to 1)

CMT107 Visual Computing

0	0	0
0	2	0
0	0	0

Original

Sharpening filter

- Accentuates differences with local average

CMT107 Visual Computing 27
Source: D. Lowe

Smoothing with box filter revisited

- ➤ What's wrong with this picture?
- ➤ What's the solution?

22:14

Smoothing with box filter revisited

- > What's wrong with this picture?
- ➤ What's the solution?
 - To eliminate edge effects, weight contribution of neighbourhood pixels according to their closeness to the center

"fuzzy blob"

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

$$5 \times 5$$
, $\sigma = 1$

 Constant factor at front makes volume sum to 1 (can be ignored when computing the filter values, as we should renormalize weights to sum to 1 in any case)

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

• Standard deviation σ : determines extent of smoothing

Choosing kernel width

The Gaussian function has infinite support, but discrete filters use finite kernels

22:14

Choosing kernel width

 \triangleright Rule of thumb: set filter half-width to about 3σ

Gaussian vs. box filtering

Gaussian filters

- ➤ Remove "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian
 - So can smooth with small- σ kernel, repeat, and get same result as larger- σ kernel would have
 - Convolving two times with Gaussian kernel with std. dev. σ is same as convolving once with kernel with std. dev. $\sigma\sqrt{2}$
- > Separable kernel
 - Factors into product of two 1D Gaussians

Source: K. Grauman

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

22:14

CMT107 Visual Computing

Separability example

2D convolution (center location only)

1	2	1		2	3	3
2	4	2	*	3	5	5
1	2	1		4	4	6

The filter factors into a product of 1D filters:

Perform convolution along rows:

Followed by convolution along the remaining column:

Why is separability useful?

- ➤ What is the complexity of filtering an n×n image with an m×m kernel?
 - $O(n^2 m^2)$
- ➤ What if the kernel is separable?
 - O(n² m)

Noise

Original

Salt and pepper noise

Impulse noise

Gaussian noise

- ➤ Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Gaussian Noise

- > Mathematical model: sum of many independent factors
- > Good for small standard deviations
- > Assumption: independent, zero-mean noise

Reducing Gaussian noise

Smoothing with larger standard deviations suppresses noise, but also blurs the image

Reducing salt-and-pepper noise

> What's wrong with the results?

Alternative idea: Median filtering

A median filter operates over a window by selecting the median intensity in the window

➤ Is median filtering linear?

Median filter

- ➤ What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

filters have width 5:

Median filter

Salt-and-pepper noise

Median filtered

Gaussian vs. median filtering

22:14

Gaussian

CMT107 Visual Computing

Sharpening revisited

before

after

Sharpening revisited

➤ What does blurring take away?

+ α

Let's add it back:

Unsharp mask filter

Image Filtering with Java

- ➤ Use filter() function in BufferedImageOp
- > Implement filtering without using filter() function

Use filter() Function

Define a filter kernel

```
float[] km = { // low-pass filter kernel
       0.1f, 0.1f, 0.1f,
       0.1f, 0.2f, 0.1f,
       0.1f, 0.1f, 0.1f
    Kernel kernel = new Kernel(3, 3, km);
Define an Operator
    BufferedImageOp op = null;
    op = new ConvolveOp(kernel, ConvolveOp.EDGE_NO_OP, null);
    • ConvolveOp(Kernel kernel, int edgeCondition, RenderingHints hints)
        — edgeCondition: ConvolveOp.EDGE_NO_OP or
                          ConvolveOp.EDGE ZERO FILL
➤ Call the filter() function
   out = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB);
   op.filter(in, out);
```

Not Use filter() Function

Define a filter kernel matrix

Calculate convolution on each pixel

```
int[] rArray = new int[width*height]; //
for each pixel {
    get the neighbourhood colours of the pixel
    calculate the colour according to the convolution formula
    set the pixel colour in the output image
}
```

More details in Lab session 6

Summary

- ➤ What is filtering? What is linear filtering?
- What is convolution?
- ➤ How to do sharpening of image?
- > What is box filtering, Gaussian filtering, and median filtering?
- ➤ What is separable kernel? Why use separable kernel?

CMT107 Visual Computing

VII.3 Corner Extraction

Xianfang Sun

School of Computer Science & Informatics
Cardiff University

Overview

- Feature Extraction
 - Characteristics of Good Features
 - Applications
- Corner Detection
 - Basic Idea
 - Mathematics
- Harris Detector
- Invariance and Covariance

Acknowledgement

The majority of the slides in this section are from Svetlana Lazebnik at University of Illinois at Urbana-Champaign

Feature Extraction: Corners

Why Extract Features?

- ➤ Motivation: panorama stitching
 - We have two images how do we combine them?

Why Extract Features?

- > Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract features

Step 2: match features

Why Extract Features?

- > Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract features

Step 2: match features

Step 3: align images

Characteristics of Good Features

Repeatability

- The same feature can be found in several images despite geometric and photometric transformations
- Saliency
 - Each feature is distinctive
- Compactness and efficiency
 - Many fewer features than image pixels
- > Locality
 - A feature occupies a relatively small area of the image; robust to clutter and occlusion

Applications

> Feature points are used for:

- Image alignment
- 3D reconstruction
- Motion tracking
- Robot navigation
- Indexing and database retrieval
- Object recognition

Finding Corners

- Key property: in the region around a corner, image gradient has two or more dominant directions
- Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector."

Proceedings of the 4th Alvey Vision Conference, 1988: pages 147--151.

Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- ➤ Shifting a window in *any direction* should give *a large change* in intensity

"flat" region: no change in all directions

"edge":
no change
along the edge
direction

"corner":
significant
change in all
directions

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

I(x, y)

E(u, v)

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

I(x, y)

E(u, v)

Change in appearance of window w(x,y) for the shift [u,v]:

Window function w(x,y) =

Gaussian

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

We want to find out how this function behaves for small shifts

E(u, v)

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

We want to find out how this function behaves for small shifts

Local quadratic approximation of E(u,v) in the neighborhood of (0,0) is given by the *second-order Taylor expansion*:

$$E(u,v) \approx E(0,0) + \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_u(0,0) \\ E_v(0,0) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Second-order Taylor expansion of E(u,v) about (0,0):

$$E(u,v) \approx E(0,0) + [u \ v] \begin{bmatrix} E_{u}(0,0) \\ E_{v}(0,0) \end{bmatrix} + \frac{1}{2} [u \ v] \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$E_{u}(u,v) = \sum_{x,y} 2w(x,y) [I(x+u,y+v) - I(x,y)] I_{x}(x+u,y+v)$$

$$E_{uu}(u,v) = \sum_{x,y} 2w(x,y) I_{x}(x+u,y+v) I_{x}(x+u,y+v)$$

$$+ \sum_{x,y} 2w(x,y) [I(x+u,y+v) - I(x,y)] I_{xx}(x+u,y+v)$$

$$E_{uv}(u,v) = \sum_{x,y} 2w(x,y) I_{y}(x+u,y+v) I_{x}(x+u,y+v)$$

$$+ \sum_{x,y} 2w(x,y) [I(x+u,y+v) - I(x,y)] I_{xy}(x+u,y+v)$$

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Second-order Taylor expansion of E(u,v) about (0,0):

$$E(u,v) \approx E(0,0) + \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_u(0,0) \\ E_v(0,0) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$E(0,0) = 0$$

$$E_{u}(0,0) = 0$$

$$E_{v}(0,0) = 0$$

$$E_{uu}(0,0) = \sum_{x,y} 2w(x,y)I_x(x,y)I_x(x,y)$$

$$E_{vv}(0,0) = \sum_{x,y} 2w(x,y)I_{y}(x,y)I_{y}(x,y)$$

$$E_{uv}(0,0) = \sum_{x,y} 2w(x,y)I_x(x,y)I_y(x,y)$$

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Second-order Taylor expansion of E(u,v) about (0,0):

$$E(u,v) \approx [u \ v] \begin{bmatrix} \sum_{x,y}^{y} w(x,y)I_{x}^{2}(x,y) & \sum_{x,y}^{y} w(x,y)I_{y}(x,y) \\ \sum_{x,y}^{y} w(x,y)I_{x}(x,y)I_{y}(x,y) & \sum_{x,y}^{y} w(x,y)I_{y}^{2}(x,y) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$E(0,0) = 0$$

$$E_{u}(0,0) = 0$$

$$E_{v}(0,0) = 0$$

$$E_{uu}(0,0) = \sum_{x,y}^{y} 2w(x,y)I_{x}(x,y)I_{x}(x,y)$$

$$E_{vv}(0,0) = \sum_{x,y}^{y} 2w(x,y)I_{y}(x,y)I_{y}(x,y)$$

$$E_{uv}(0,0) = \sum_{x,y}^{y} 2w(x,y)I_{x}(x,y)I_{y}(x,y)$$

The quadratic approximation simplifies to

$$E(u,v) \approx [u \ v] M \begin{bmatrix} u \\ v \end{bmatrix}$$

where *M* is a *second moment matrix* computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$M = \begin{bmatrix} \sum_{I_x I_x} I_x & \sum_{I_x I_y} I_x I_y \\ \sum_{I_x I_y} I_y & \sum_{I_y I_y} \end{bmatrix} = \sum_{I_x I_y} \begin{bmatrix} I_x I_y \\ I_y \end{bmatrix} [I_x I_y] = \sum_{I_x I_y} \nabla I(\nabla I)^T$$

The surface E(u,v) is locally approximated by a quadratic form. Let's try to understand its shape.

$$E(u,v) \approx [u \ v] \ M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

First, consider the axis-aligned case (gradients are either horizontal or vertical)

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

If either λ is close to 0, then this is **not** a corner, so look for locations where both are large.

Consider a horizontal "slice" of
$$E(u, v)$$
: $\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$

This is the equation of an ellipse.

Consider a horizontal "slice" of E(u, v):

$$\begin{bmatrix} u & v \end{bmatrix} M \begin{vmatrix} u \\ v \end{vmatrix} = \text{const}$$

This is the equation of an ellipse.

Diagonalization of M:

$$M = R^{-1} \begin{vmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{vmatrix} R$$

The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by *R*

Visualization of Second Moment Matrices

Visualization of Second Moment Matrices

Interpreting the Eigenvalues

Classification of image points using eigenvalues of *M*:

Corner response function

$$R = \det(M) - \alpha \operatorname{trace}(M)^{2} = \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

 α : constant (0.04 to 0.06)

- 1. Compute Gaussian derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel
- 3. Compute corner response function *R*
- 4. Threshold R
- 5. Find local maxima of response function (nonmaximum suppression)

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

Compute corner response *R*

Find points with large corner response: R>threshold

Take only the points of local maxima of R

Invariance and Covariance

- ➤ We want corner locations to be *invariant* to photometric transformations and *covariant* to geometric transformations
 - Invariance: image is transformed and corner locations do not change
 - Covariance: if we have two transformed versions of the same image, features should be detected in corresponding locations

Affine Intensity Change

$$I \rightarrow a I + b$$

- ightharpoonup Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
- \blacktriangleright Intensity scaling: $I \rightarrow a I$

Partially invariant to affine intensity change

Image Translation

Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

Image Rotation

> Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

Scaling

All points will be classified as edges

Corner location is not covariant to scaling!

Summary

- ➤ Why we need feature extraction? What are the applications of feature extraction?
- What are Characteristics of Good Features?
- > Describe the basic idea of corner detection.
- ➤ How to decide whether a point is in a flat region, on an edge, or corner according to the two eigenvalues of the second moment matrix?
- Describe steps of Harris detector
- What is Invariance and Covariance?
- ➤ Is affine intensity change invariant? Is image translation, rotation, or scaling covariant?