DSO530 Statistical Learning Methods

Lecture 6 part I: Linear Model Selection

Dr. Xin Tong
Department of Data Sciences and Operations
Marshall School of Business
University of Southern California

Outline

- This lecture is based on the first part of Chap. 6 in ISLR
- Previously, we studied the linear regression model

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \epsilon.$$

- One typically fits this model using least squares (go back to Lecture 2. if you do not recall the concept).
- We might want to use another fitting procedure instead of least squares to yield better prediction accuracy and model interpretability
- In this lecture, we discuss one alternative approach to using least squares to fit linear models: subset selection.
- This set of slides only covers the subset selection methods ideas. A
 Python tutorial will be released later.

Subset Selection

- Subset selection methods include best subset selection, stepwise selection.
- To perform best subset selection, we fit a separate least squares regression for each possible combination of the p predictors
- Potential problem: selecting the best model from among too many possibilities considered by best subset selection is not trivial.
- Best subset selection is usually implemented by:

Algorithm 6.1 Best subset selection

- 1. Let \mathcal{M}_0 denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For $k = 1, 2, \dots p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

A few questions on best subset selection

- In step 2b), why can we just look at the RSS on training error?
- In step 3), why don't we just look at the RSS on training error?
- How many models do we search through in best subset selection?

Forward Stepwise Selection

Algorithm 6.2 Forward stepwise selection

- 1. Let \mathcal{M}_0 denote the *null* model, which contains no predictors.
- 2. For $k = 0, \ldots, p 1$:
 - (a) Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - (b) Choose the *best* among these p-k models, and call it \mathcal{M}_{k+1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Figure 1

Backward Stepwise Selection

Algorithm 6.3 Backward stepwise selection

- 1. Let \mathcal{M}_p denote the full model, which contains all p predictors.
- 2. For $k = p, p 1, \dots, 1$:
 - (a) Consider all k models that contain all but one of the predictors in \mathcal{M}_k , for a total of k-1 predictors.
 - (b) Choose the *best* among these k models, and call it \mathcal{M}_{k-1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Figure 2

- In either forward or backward selection, we search through 1+p(p+1)/2 models. This is a huge saving compared with best subset selection
- However, forward stepwise selection and backward stepwise selection might miss the optimal subset of features. This is a price we have to pay for computational advantages.
- (Optional) There are hybrid approaches that combine forward and backward selection (p. 210 of ISLR)

Choose the model in Step 3)

In best subset, forward and backward selection algorithms, the step 3)'s are the same. There are essentially two ideas in this step

- directly estimate the test error, using either a validation set approach
 or a cross-validation approach, as discussed in Chapter 5. A variant of
 the cv approach is the one-standard-error rule.
- indirectly estimate test error by making an adjustment to the training error (e.g., adjusted R^2 , AIC, BIC and C_p).

•

$$\textit{Adjusted } R^2 = 1 - \frac{\textit{RSS}/(\textit{n}-\textit{d}-1)}{\textit{TSS}/(\textit{n}-1)}$$

Q: how is adjusted R^2 different from R^2 ?

• Q: The *d* is clear in least squares regression. But what if we have some restrictions on the variable coefficients?

C_p , AIC and BIC (for linear regression)

• Mallow's C_p

$$C_p = \frac{1}{n} \left(RSS + 2d\hat{\sigma}^2 \right)$$

• Akaike information criterion (AIC)

$$AIC = \frac{1}{n\hat{\sigma}^2} \left(RSS + 2d\hat{\sigma}^2 \right)$$

Bayesian information criterion(BIC)

$$BIC = \frac{1}{n} \left(RSS + \log(n) d\hat{\sigma}^2 \right)$$

- Note that $\hat{\sigma}^2$ is the estimated variance of random error term ϵ using the full model (i.e., p predictors).
- The definitions of AIC and BIC ignored some constant

A few questions

- For linear regression, will C_p and AIC give the same ranking of models?
- When n is bigger than 7, log n > 2. This means BIC penalizes larger models heavier compared to AIC. So which criterion encourages smaller models?
- In the definitions of adjusted R^2 , AIC, BIC and C_p , do you see the trade-offs between fitting on training data and model complexity?
- When p > n, estimating $\hat{\sigma}^2$ is a big problem. Then which method do you prefer for model selection?
- Among adjusted R^2 , AIC, C_p , BIC and cross-validation, which one is the most easily generalizable beyond least squares linear regression?