# Group 17

Nick Ngare, Yuliya Kozina, Jimmy Zhang, Wendy Lu, Angie Shen, Bao Doan

#### The Motivation

- We all loved food and wanted to learn how others thought about it
- What can we learn by analyzing people's reviews?
  - Could predict the ratings of a review based on the words and the sentiments they convey?
- How do these findings vary geographically?

## **Getting the Data**

- We downloaded the JSON files from yelp and then converted them into CSV files or SQL tables using Python scripts
- limit our analysis to cities in the United States, which is a sample of 7 cities (Pittsburgh, Charlotte, Urbana-Champaign, Phoenix, Las Vegas, Madison, Cleveland).

## **Ratings Prediction**

- Goal: predict the ratings of a review based on the text of the review.
- Scope: restaurants in Charlotte, 122,322 reviews
- Features: words that are the most predictive of the rating, i.e. words that convey a strong negative or positive sentiment such as "great" and "awful".
- Response: rating of the review (1-5)

## **Data Set-up**

- Extract salient words from all reviews by calculating the TF/IDF score for all words
- Match our list of words with a list of words which convey strong positive and negative sentiments provided by the Multi-Perspective Question Answering (MPQA) Subjectivity Lexicon at University of Pittsburgh
- There are a total of 2,874 words in our reviews that convey strong positive and negative sentiments.
- To reduce the dimension of our feature space, we choose 1,000 words with the highest TF/IDF score as some of the words with low TF/IDF score, such as "ignominiously" and "sanguine" do not appear in many reviews would not be good features for prediction.
- Create a matrix of counts, i.e. count the number of times each word appears in each review. We end up with a 122,322 by 1,000 sparse matrix.

#### **Word Clouds**

Words





# **Algorithms**

- 34K training set, 3K test set
- Linear Regression
- Linear Regression with Regularization (elastic net)
- Decision Trees (CART)
- K Nearest Neighbors
- Naive Bayes
- Support Vector Machines
- Random Forests

#### **Predictive Performance**

|      | LR   | LR (rglr) | CART | KNN  | NB   | SVM  | RF |
|------|------|-----------|------|------|------|------|----|
| RMSE | 1.29 | 1.28      | 1.31 | 1.29 | 2.19 | 1.31 |    |

#### **Visualize Prediction Performance**





value

# Model Parameters of Linear Regression with Elastic Net Regularization

- Induce sparsity (selected 67 features out of 1000)
- Top positive words: Amazing, Delicious, Excellent,
  Best, Favorite, Awesome, Perfect, Creative,
  Fantastic, Great, Incredible, Love
  - Top negative words: Displeasure, Worst, Lure, Horrible, Terrible, Rude, Disgusted, Joke, Worse, Insult, Ache, Lousy, Nasty, Filthy, Awful
  - Note that the regularization resolves multi-colinearity: words that are highly correlated are removed

### More Insights on food preference

- We investigated the most popular categories of each state (international cities included)
- We defined most popular as having the most reviews and also the highest average stars ratings
- Interesting findings listed on following slides

|    | state <sup>‡</sup> | newc <sup>‡</sup> | total_reviews |  |  |  |  |  |
|----|--------------------|-------------------|---------------|--|--|--|--|--|
| 1  | AZ                 | Bars              | 143468        |  |  |  |  |  |
| 2  | BW                 | Nightlife         | 4016          |  |  |  |  |  |
| 3  | EDH                | Bars              | 4952          |  |  |  |  |  |
| 4  | ELN                | Cafes             | 40            |  |  |  |  |  |
| 5  | ELN                | Coffee & Tea      | 40            |  |  |  |  |  |
| 6  | ESX                | Pakistani         | 5             |  |  |  |  |  |
| 7  | ESX                | Indian            | 5             |  |  |  |  |  |
| 8  | FIF                | Bars              | 21            |  |  |  |  |  |
| 9  | HLD                | British           | 102           |  |  |  |  |  |
| 10 | IL                 | Bars              | 2815          |  |  |  |  |  |
| 11 | KHL                | Coffee & Tea      | 7             |  |  |  |  |  |
| 12 | KHL                | Sandwiches        | 7             |  |  |  |  |  |
| 13 | KHL                | Soup              | 7             |  |  |  |  |  |
| 14 | MLN                | Nightlife         | 205           |  |  |  |  |  |
| 15 | NC                 | Nightlife         | 28798         |  |  |  |  |  |
| 16 | NI                 | German            | 24            |  |  |  |  |  |
| 17 | NV                 | Nightlife         | 145956        |  |  |  |  |  |
| 18 | NY                 | Pizza             | 21            |  |  |  |  |  |
| 19 | ОН                 | Bars              | 30665         |  |  |  |  |  |
| 20 | ON                 | Nightlife         | 44663         |  |  |  |  |  |
| 21 | PA                 | Nightlife         | 27768         |  |  |  |  |  |
| 22 | PKN                | Italian           | 24            |  |  |  |  |  |
| 23 | QC                 | French            | 9658          |  |  |  |  |  |
| 24 | SC                 | Nightlife         | 813           |  |  |  |  |  |
| 25 | WI                 | Bars              | 14438         |  |  |  |  |  |
| 26 | WLN                | Fast Food         | 15            |  |  |  |  |  |

Top one food categories in each state based on number of reviews





#### Conclusion

- Linear regression with regularization performs the pest in terms of Root Mean Square Error (RMSE)
- Top positive words: Amazing, Delicious, Excellent, Best,
- Top negative words: Displeasure, Worst, Lure, Horrible,
- Analysis can be improved by including more reviews--we were only able to include 40K reviews due to time constraint

-

-