Data Analytics EEE 4774 & 6777

Module 2

Frequentist vs. Bayesian Probability

Spring 2022

Uncertainty & Probability

• *Uncertainty* in data:

- inherent in the observed physical process (e.g., voltage measurement in power grid, # customers in a market)
- noise in measurement (e.g., hardware/software limitations)
- finite data size (i.e., lack of access to the entire population)

Probability:

- a consistent framework for quantification and manipulation of uncertainty
- helps in decision making (e.g., our brains)

Probability & Statistics in Data Science

- Compute statistics such as mean and variance to get insight
 - E.g., mean and standard deviation of age or height data in this class
- Build probabilistic models of data to use statistics in a systematic way
 - Classify data instances
 - Predict future values
 - Estimate missing values
 - Generate realistic (simulated) data
 - Assess the confidence in decisions
 - class probabilities, confidence intervals for predictions

Frequentist probability

- Frequency of observations
 - marginal probability

$$p(X=r, Y=g) = n_{rg}/n$$

conditional probability

$$p(Y = o) = n_o/n$$
 $p(X = r, Y = g) = n_{rg}/n$ $p(Y = g|X = b) = n_{bg}/n_b$

• Sum rule:
$$p(X) = \sum_{Y} p(X, Y)$$

Product rule:

$$p(X,Y) = p(Y|X)p(X)$$

• Bayes Theorem:

$$p(X|Y) = \frac{p(X,Y)}{p(Y)} = \frac{p(Y|X)p(X)}{\sum_{X} p(Y|X)p(X)}$$

$$p(X = b|Y = g) = ?$$

Probability

• p(x): Probability density/mass function of a continuous/discrete variable

			+
$p(x \in (a,b)) = \int_a^b p(x) dx$	$p(x) \ge 0$	$\int_{-\infty}^{\infty} p(x) \ dx = 1$	p(x) $P(x)$
$P(y) = \int_{-\infty}^{y} p(x) dx$	$p(\mathbf{x}) \ge 0$	$\iiint p(\mathbf{x}) \ d\mathbf{x} = 1$	
$p(x) = \int p(x, y) dy$	p(x,y) = p(y x)p(x)	$E[f(x)] = \sum_{x} f(x)p(x)$	
$E[f(x)] = \int f(x)p(x)dx$	$E_x[f(x,y)] = \int f(x,y)p(x,y)dx$	$E_{x y}[f(x,y) y] = \int f(x,y)p(x y)dx$	δx x
Var[f]	Cov[x, y]	$Cov[\mathbf{x}, \mathbf{y}]$	
$= E[(f(x) - E[f(x)])^2]$	$= E_{x,y}[(x - E[x])(y - E[y])]$	$= E_{\mathbf{x},\mathbf{y}}[(\mathbf{x} - E[\mathbf{x}])($	$(\mathbf{y} - E[\mathbf{y}])^T$
$= E[f(x)^2] - E[f(x)]^2$	$= E_{x,y}[xy] - E[x]E[y]$	$= E_{\mathbf{x},\mathbf{y}}[\mathbf{x}\mathbf{y}^T] - E[\mathbf{x}]$	$]E[\mathbf{y}^T]$

Bayesian Probability

- Classical/Frequentist interpretation of probability ~ frequencies of <u>repeatable</u> events
- Bayesian probability ~ a quantification of uncertainty
 - repeatable and <u>non-repeatable</u> events, e.g., the probability of <u>a dragon flying through the window</u>
 - *update with evidence*, e.g., it is shown that there exist dragons in Florida, and there are small ones that can fit through a window.

$$p(\mathbf{x}|D) = \frac{p(D|\mathbf{x}) p(\mathbf{x})}{p(D)}$$

posterior a likelihood x prior

Bayesian Probability

$$p(\mathbf{x}|D) = \frac{p(D|\mathbf{x}) p(\mathbf{x})}{p(D)}$$

posterior α *likelihood* x *prior*

Prior probability is not an arbitrary choice, <u>reflects common sense</u> (or uninformative)

• Challenge: for predictions and model comparison, marginalization typically difficult!

$$p(D) = \iiint p(D|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

Bayesian vs. Frequentist

	Bayesian	Frequentist
Likelihood	fixed data, random parameters	random data, fixed parameters
Model Selection	training data: evidence (Occam's razor)	training + validation data: cross validation (may be computationally cumbersome)
Regularization	naturally provided by <i>prior</i> (prevents overfitting)	needs additional penalty
Accuracy	naturally provided by <i>posterior</i> (quality evaluation)	needs additional techniques (confidence interval, bootstrap)

- Bayesian *prior may not be realistic*, but *more and more training data* decreases the effect of prior
- Advances in *computational power*, as well as *techniques for computing posterior & marginal* (e.g., *sampling techniques* such as MCMC, and *approximate inference* such as variational Bayes) *promote* Bayesian approach, enable its use in *Big Datasets*.