Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Факультет программной инженерии и компьютерной техники Кафедра информатики и прикладной математики

Методы цифровой обработки сигналов

Исследование метода подавления случайного шума путем когерентного накопления сигнала

Лабораторная работа 1

Вариант 8

Старался: Шкаруба Н.Е. Группа: Р3418 **Работу принял**: Тропченко А.А.

Цель работы

Определение возможностей метода когерентного накопления для случаев стационарного и квазистационарного сигнала.

Пусть на входе системы наблюдается смесь полезного сигнала и случайного белого шума (т.е. шума с равномерным распределением спектральной плотности). Сигнал является стационарным и описывается от выборки к выборке неизменной функцией (например, является синусоидальным сигналом постоянной частоты и с постоянной начальной фазой). При этом на входе шум по своей амплитуде в несколько раз превышает амплитуду сигнала. Путем когерентного накопления входной смеси для ряда выборок удается увеличить соотношение сигнал/шум.

№	Вид сигнала	Соотношение сигнал/шум	Число циклов накопления	Пределы изменения соотношения сигнал/шум
8	Стационарный меандр	0,3	До 2000	0,2 - 2

Результаты моделирования

Стационарный сигнал

а) Соотношения сигнал/шум в выходной смеси от длительности накопления, т.е. числа накапливаемых выборок при неизменном соотношении сигнал/шум на входе; (число выборок накопления варьируется)

	1
M	SNR out
25	4,8917
50	7,0423
100	8,9948
150	10,111
200	10,3712
250	11,4349
300	12,2648
350	13,0602
400	13,3954
450	12,7968
500	13,7574
550	13,8361
600	13,3643
650	14,0437
700	14,6655
750	14,6246
800	15,7649
850	15,7078
900	16,047
950	14,7807
1000	15,7

b) Соотношения сигнал/шум на выходе от соотношения сигнал/шум на входе для фиксированного числа выборок (M = 10, 25, 50) (SNR на входе варьируется)

M/SNR										
in	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	1,1
10	2,2745	3,582	4,5163	5,441	5,9127	6,7738	7,5356	8,0836	9,1118	9,7503
									11,918	11,748
25	3,8957	5,6055	6,2769	7,9895	9,4549	9,693	11,17	11,4713	1	6
				10,179	10,904		12,441		13,479	14,834
50	4,7502	7,407	8,628	6	4	9,9582	1	13,4539	4	6
M/SNR										
in	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2	
		11,047	10,133	11,007	11,354	11,608	12,612		13,757	
10	9,8171	4	3	7	3	2	4	12,8913	8	
	12,896	13,673	14,421	14,366		15,550	16,399	16,3383	15,788	
25	8	8	9	8	15,554	2	3	5	2	
	15,448	15,060	15,874	15,492	16,469	16,902	17,028		18,198	
50	3	2	7	6	6	7	1	18,6041	6	

Квазистационарный сигнал

а) соотношения сигнал/шум в выходной смеси от длительности накопления, т.е. числа накапливаемых выборок при неизменном соотношении сигнал/шум на входе; (число выборок накопления варьируется)

M	25	50	100	150	200	250	300	350	400	450
SNR out	1,0031	0,9961	1,0038	0,9981	1,005	1,0016	0,997	1,0084	1,0029	0,9929
500	550	600	650	700	750	800	850	900	950	1000
0,998	1,0046	0,9959	1,0008	0,9974	0,9987	1,0033	1,0008	1,0035	1,0047	0,9968

b) соотношения сигнал/шум на выходе от соотношения сигнал/шум на входе для фиксированного числа выборок ($M=10,\,25,\,50$) (SNR на входе варьируется)

M/SNR in	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
10	1,6143	1,971	2,0196	2,0769	2,2331	2,3653	2,2819	2,337	2,3794
25	1,0122	1,0068	1,0175	0,9994	1,0244	1,0193	1,0288	1,0076	1,021
50	0,9792	1,0068	1,0122	1,0077	0,996	1,009	0,9983	1,0051	0,9955
1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2
2,4372	2,4426	2,4177	2,4402	2,4275	2,4528	2,439	2,508	2,5357	2,4546
1,0133	1,0201	1,0187	1,0242	1,025	1,0205	1,0185	1,0199	1,0198	1,0233
1,0026	1,0047	1,0075	1,004	1,0033	0,9996	0,9991	1,0002	0,9989	0,9958

Схема устройства

Вывод

В ходе данной работе были построены зависимости соотношения сигнал/шум на выходе от количества накопления и соотношения сигнал/шум на выходе от соотношения на входе для фиксированного числа выборок для стационарного и квазистационарного сигналов. Полученные зависимости близки к линейным, однако так как в работе используется «Белый шум» (т.е. случайная величина), то видны некоторые отклонения от зависимости. Также была приведена функциональная схема устройства, выполняющего фильтрацию сигналов методом накопления.