

Attorney's Docket No. 35800/238853(5800-13B)

PATENT

#4
#4/A

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Appl. No.: Glucksmann et al. Group Art Unit: Not assigned
Filed: To be Assigned Examiner: Not assigned
For: Filed Concurrently Herewith
15625 RECEPTOR, A NOVEL G-PROTEIN COUPLED RECEPTOR

September 26, 2001

**REQUEST FOR TRANSFER OF COMPUTER READABLE FORM OF SEQUENCE
LISTING UNDER 37 CFR §1.821(e) AND MPEP 2422.05**

RECEIVED

Box Patent Application
Commissioner for Patents
Washington, DC 20231

FEB 25 2005

Sir:

TECH CENTER 1600/2900

Applicants hereby request transfer of previously filed sequence information into the above-mentioned application, concurrently filed herewith.

I hereby state that the paper copy of the sequence listing included in the specification of the above-mentioned application is identical to the computer-readable copy of the sequence listing filed in U.S. Application No. 09/187,134, filed on November 6, 1998. In accordance with 37 CFR §1.821(e) and MPEP 2422.05, please use the only filed computer-readable form filed in that application as the computer-readable form for the above-mentioned application. It is understood that the Patent and Trademark Office will make the necessary change in application number and filing date for the present application.

Respectfully submitted,

Kathryn L. Coulter

Kathryn L. Coulter
Agent for Applicant
Registration No. 45,889

Customer No. 00826
Alston & Bird LLP
Bank of America Plaza
101 South Tryon Street, Suite 4000
Charlotte, NC 28280-4000
Tel Raleigh Office (919) 862-2200
Fax Raleigh Office (919) 862-2260

"Express Mail" Mailing Label Number EL868637424US
Date of Deposit: September 26, 2001
I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to Box Patent Application, Commissioner for Patents, Washington, DC 20231.

Nora C Martinez
Nora C. Martinez

SEQUENCE LISTING

<110> Glucksmann, Maria A.
Gu, Wei

<120> 15625 Receptor, A Novel G-Protein Coupled Receptor

<130> 5800-13, 035800-171548

<140> 09/187,134
<141> 1998-11-06

<160> 5

<170> PatentIn Ver. 2.0

<210> 1
<211> 342
<212> PRT
<213> Homo sapiens

<400> 1

Met Gln Ala Val Asp Asn Leu Thr Ser Ala Pro Gly Asn Thr Ser Leu
1 5 10 15

Cys Thr Arg Asp Tyr Lys Ile Thr Gln Val Leu Phe Pro Leu Leu Tyr
20 25 30

Thr Val Leu Phe Phe Val Gly Leu Ile Thr Asn Gly Leu Ala Met Arg
35 40 45

Ile Phe Phe Gln Ile Arg Ser Lys Ser Asn Phe Ile Ile Phe Leu Lys
50 55 60

Asn Thr Val Ile Ser Asp Leu Leu Met Ile Leu Thr Phe Pro Phe Lys
65 70 75 80

Ile Leu Ser Asp Ala Lys Leu Gly Thr Gly Pro Leu Arg Thr Phe Val
85 90 95

Cys Gln Val Thr Ser Val Ile Phe Tyr Phe Thr Met Tyr Ile Ser Ile
100 105 110

Ser Phe Leu Gly Leu Ile Thr Ile Asp Arg Tyr Gln Lys Thr Thr Arg
115 120 125

Pro Phe Lys Thr Ser Asn Pro Lys Asn Leu Leu Gly Ala Lys Ile Leu
130 135 140

RECEIVED

FEB 25 2005

TECH CENTER 1600/2900

Ser Val Val Ile Trp Ala Phe Met Phe Leu Leu Ser Leu Pro Asn Met
145 150 155 160

Ile Leu Thr Asn Arg Gln Pro Arg Asp Lys Asn Val Lys Lys Cys Ser
165 170 175

Phe Leu Lys Ser Glu Phe Gly Leu Val Trp His Glu Ile Val Asn Tyr
180 185 190

Ile Cys Gln Val Ile Phe Trp Ile Asn Phe Leu Ile Val Ile Val Cys
195 200 205

Tyr Thr Leu Ile Thr Lys Glu Leu Tyr Arg Ser Tyr Val Arg Thr Arg
210 215 220

Gly Val Gly Lys Val Pro Arg Lys Lys Val Asn Val Lys Val Phe Ile
225 230 235 240

Ile Ile Ala Val Phe Phe Ile Cys Phe Val Pro Phe His Phe Ala Arg
245 250 255

Ile Pro Tyr Thr Leu Ser Gln Thr Arg Asp Val Phe Asp Cys Thr Ala
260 265 270

Glu Asn Thr Leu Phe Tyr Val Lys Glu Ser Thr Leu Trp Leu Thr Ser
275 280 285

Leu Asn Ala Cys Leu Asp Pro Phe Ile Tyr Phe Phe Leu Cys Lys Ser
290 295 300

Phe Arg Asn Ser Leu Ile Ser Met Leu Lys Cys Pro Asn Ser Ala Thr
305 310 315 320

Ser Leu Ser Gln Asp Asn Arg Lys Lys Glu Gln Asp Gly Gly Asp Pro
325 330 335

Asn Glu Glu Thr Pro Met
340

<210> 2

<211> 2286

<212> DNA

<213> Homo sapiens

<400> 2

cgtccgttagc tttgagtcca gtgttgaag acaatctctg attgtgaagc cctcttttc 60

Al

tctccttcta tttctctcta gagcactcaa gacttactg acgaaaactc agaaaatcct 120
ctatcacaaa gaggttgac aactaaacta agacattaaa agaaaaatac cagatgccac 180
tctcaggct gcaataacta ctacttactg gatacattca aaccctccag aatcaacagt 240
tatcaggtaa ccaacaagaa atgcaagccg tcgacaacct cacctctgcg cctgggacca 300
ccagtctgtg caccagagac tacaaaatca cccaggtctt cttcccactg ctctacactg 360
tcctgtttt tggactt atcacaatg gcctggcgat gaggatttc tttcaaatcc 420
ggagtaaatc aaactttatt attttctta agaacacagt catttctgat cttctcatga 480
ttctgacttt tccattcaaa attcttagtg atgccaact gggAACAGGA ccactgagaa 540
cttttgtgtg tcaagttacc tccgtcatat tttatTTcac aatgtatATC agtatttcat 600
tcctggact gataactatc gatcgctacc agaagaccac caggccattt aaaacatcca 660
accccaaaaa tctctgggg gctaagattc tctctgtgt catctggca ttcattgttct 720
tactctctt gcctaacatg attctgacca acaggcagcc gagagacaag aatgtgaaga 780
aatgctctt cttaaatca gagttcggtc tagtctggca tgaaatagta aattacatct 840
gtcaagtcat tttctggatt aatttcttaa ttgttattgt atgttataca ctcattacaa 900
aagaactgta ccggtcatac gtaagaacga ggggtgttagg taaagtcccc aggaaaaagg 960
tgaacgtcaa agtttcatt atcattgctg tattctttat ttgtttgtt ctttccatt 1020
ttgcccgaat tccttacacc ctgagccaaa cccgggatgt ctttgcactgc actgctgaaa 1080
atactctgtt ctatgtgaaa gagagactc tgtggtaac ttccttaat gcatgcctgg 1140
atccgttcat ctatTTTTC ctttgcagt cttcagaaa ttccttgata agtatgctga 1200
agtccccaa ttctgcaaca tctctgtccc aggacaatac gaaaaaaagg caggatggg 1260
gtgaccaaaa tgaagagact ccaatgtaaa caaattaact aagaaatat ttcaatctct 1320
ttgtgttcag aactcgtaa agcaaagcgc taagtaaaaa tattaactga cgaagaagca 1380
actaagttaa taataatgac tctaaagaaa cagaagatta caaaagcaat tttcatttac 1440
ctttccagta tgaaaagcta tcttaaaaata tagaaaacta atctaaactg tagctgtatt 1500
agcagcaaaa caaacgacat ccaattgtca tgctgcattgc aaaactacac agaattcatg 1560
ttttgcagag ttttgcääaa atgagtaatc atataatatt tactgttaatt tttaaataac 1620
attatcgttc acaattttat ttttcataa tcaactaagg aagaacgatc aattggatat 1680
aatttcttac caaaaatgat agttaaaatg tatataatatc ctagtcccct aaccaaatcc 1740
tgacctattg ggatacttat aaaaattaa gtaagtgggta tacacaaga ataataacta 1800
ttaacttttcaatttagca aaaacctaag ggatttaaac taattgaaac tgtatttgat 1860
tggacttaat tttttatgtt tatttagaag ataaagattt aaagaagacc ttacaataa 1920
agagaagaaa tatcgaagtc attaaaataa ggagacttac ttttatgaca ttctaaact 1980
aaaaaatata gaaatatttc cttaaattcta gagaaactag ttttactaat tttttacaac 2040
ttcaataata ccatcactga cacttacctt tattaattag cttctagaaa atagctgcta 2100
attaggtaa tgaacatttt accttagtga aaaaattaa ttaaatatga ttacaagtt 2160
gcacacgata actactgaga ggaaagtgtat tgatctgttt gtaattactt gtttgtattg 2220
gtgtgtataa aatacaaaa ttacattaa ctctaaaaaa aaaaaaaaaa aaaaaaaaaa 2280
ggcg 2286

<210> 3
<211> 342
<212> PRT
<213> Macaca sp.

<400> 3

Met Gln Ala Ile Asp Asn Leu Thr Ser Ala Pro Gly Asn Thr Ser Leu

1

5

10

15

Cys Thr Arg Asp Tyr Lys Ile Thr Gln Val Leu Phe Pro Leu Leu Tyr
20 25 30

Thr Val Leu Phe Phe Val Gly Leu Ile Thr Asn Ser Leu Ala Met Arg
35 40 45

Ile Phe Phe Gln Ile Arg Ser Lys Ser Asn Phe Ile Ile Phe Leu Lys
50 55 60

Asn Thr Val Ile Ser Asp Leu Leu Met Ile Leu Thr Phe Pro Phe Lys
65 70 75 80

Ile Leu Ser Asp Ala Lys Leu Gly Thr Gly Pro Leu Arg Thr Phe Val
85 90 95

Cys Gln Val Thr Ser Val Ile Phe Tyr Phe Thr Met Tyr Ile Ser Ile
100 105 110

Ser Phe Leu Gly Leu Ile Thr Ile Asp Arg Tyr Gln Lys Thr Thr Arg
115 120 125

Pro Phe Lys Thr Ser Asn Pro Lys Asn Leu Leu Gly Ala Lys Ile Leu
130 135 140

Ser Val Leu Ile Trp Ala Phe Met Phe Leu Leu Ser Leu Pro Asn Met
145 150 155 160

Ile Leu Thr Asn Arg Arg Pro Arg Asp Lys Asn Val Lys Lys Cys Ser
165 170 175

Phe Leu Lys Ser Glu Phe Gly Leu Val Trp His Glu Ile Val Asn Tyr
180 185 190

Ile Cys Gln Val Ile Phe Trp Ile Asn Phe Leu Ile Val Ile Val Cys
195 200 205

Tyr Thr Leu Ile Thr Lys Glu Leu Tyr Arg Ser Tyr Val Arg Thr Arg
210 215 220

Gly Val Gly Lys Val Pro Arg Lys Lys Val Asn Val Lys Val Phe Ile
225 230 235 240

Ile Ile Ala Val Phe Phe Ile Cys Phe Val Pro Phe His Phe Ala Arg
245 250 255

Ile Pro Tyr Thr Leu Ser Gln Thr Arg Asp Val Phe Asp Cys Ala Ala
260 265 270

Glu Asn Thr Leu Phe Tyr Val Lys Glu Ser Thr Leu Trp Leu Thr Ser
275 280 285

Leu Asn Ala Cys Leu Asp Pro Phe Thr Tyr Phe Phe Leu Cys Lys Ser
290 295 300

Phe Arg Asn Ser Leu Ile Ser Met Leu Lys Cys Pro Asn Ser Ala Thr
305 310 315 320

Ser Gln Ser Gln Asp Asn Arg Lys Lys Glu Gln Asp Gly Gly Asp Pro
325 330 335

Asn Glu Glu Thr Pro Met
340

<210> 4

<211> 2272

<212> DNA

<213> Macaca sp.

<400> 4

acgcgtccgc aatctctgat tgtaaagccc tctcttcctc tccttctatt tctctataga 60
acactcaaga cttaactgat gaaaactcgag gaaattctct atcacacaaga ggtttggcaa 120
ctaaactaag acattaaaag gaaaatacca gatgccactc tgacacgttgc aataactact 180
atttactgga tacattcaaa tcctccagaa tcaacggtta tcaggttaacc aacaagaaat 240
gcaagccatc gacaacctca cgtctgcgcc tggaaacacc agtctgtgca ccagagacta 300
caaaatcacc caggtcctct tcccactgct ctacactgtc ctgttttttggactcat 360
cacaatagc ctggcgatga ggattttctt tcaaattcgg agtaaatcaa actttattat 420
ttttcttaag aacacagtca tttccgatct tctcatgatt ctgacttttc cattcaaaat 480
tcttagtgat gccaaactgg gaacaggacc actgagaact tttgtgtgca aagttacctc 540
cgtcatattt tatttcaccaa tgtatatcag tatttcattc ctgggactga taactatcga 600
tcgctaccag aagaccacca ggcatttaa aacatccaaac cccaaaaatc tcttggggc 660
taagattctc tctgttctca tctggcatt catgttctta ctctctttgc ctaacatgat 720
tctgactaac aggccgccaag gagacaagaa tgtgaagaaa tgctcttcc taaaatcaga 780
gttccgccta gtctggcatg aaatagtaaa ttacatctgt caagtcattt tctggattaa 840
tttcttaatt gtcattgtat gttacacaat cattacaaaa gaactgtacc ggtcatatgt 900
aagaacaaagg ggtgttaggta aagtccccag gaaaaaggtg aacgtcaaag ttttcattat 960
cattgctgta ttcttttattt gttttgttcc tttccatttt gcccgaattc cttataccct 1020
gagccaaacc cggatgtct ttgactgcgc cgctgaaaat actctgttct atgtgaaaga 1080
gagttactctg tggtaactt ccttaaatgc atgcctggat ccgttcaccc attttttccct 1140
ttgcaagtcc ttcagaaatt ccttgataag tatgctgaag tgccccaaatt ctgcaacatc 1200
tcagtcccaag gacaatagga aaaaagaaca ggtatgggtgacccaaatg aagagactcc 1260
aatgtaaaca tattaactga ggaatatgt caatctttt gcgttcagaa ctcattaaag 1320
caaagcgcta cgtaaaaata ttaactgacg aagaagcaac tgagttata acaatgactc 1380
ttaaaaacatg taatagaaga tttacaaaag caattttcat ttaccttcc agtatgaaaa 1440
gctatgttaa aatatagaaa actaatctaa cctgttagctg tatagtatca aaacaaatga 1500
catccaatttgc gcatgctgca tgcaaaaacta cacagaattc acgttttgca gagttttgcc 1560

aaaatgagta atcatataat atctaccgta atgtttaaaa tacattattg ctcacgattt 1620
tatttcttca taatcaacta aggaagaatt atcaattgga tacaatcttc ttacaaaaaa 1680
tgacacttaa aatgtatata tattccttagcc cctaaccaa tcctgaccta ttgggatact 1740
tataaaaatt tgtagtaagtggatacacaa agaataataa ctattaactt ttaattatga 1800
gcaaaaacct aagggttaaa tttaaactaa ttgaaactgt atttgattgg acttaatttt 1860
tttggttatt aagaagacac ttgaagaaga cctttacaat aaagagaaga aatatcaaag 1920
tcattaaat aaggagagtt acttttatga tattctaaca ctaaacaata tagaaatatt 1980
tccttaatat tagttctag agaaactagt ttactaatt tttacaacc tcaataatac 2040
catcattgac acttacctt attaactagc ttctagaaaa tacctgctaa ttaggttaat 2100
gaacattta tgtagtgaa aaaaattaat taaatatgt tacaaagttg cacagcataa 2160
ctactgaaag tgattgatcc atttgttaatt atttgttgc actgggtgt ataaaataca 2220
aaatttacat taaaactctaa atcaccaaaa aaaaaaaaaa aaaaaaggc gg 2272

<210> 5

<211> 269

<212> PRT

<213> Unknown

<220>

<223> Description of Unknown Organism: Rhodopsin family
transmembrane receptor

AJ
<400> 5

Gly	Asn	Ile	Leu	Val	Ile	Trp	Val	Ile	Cys	Arg	Tyr	Arg	Arg	Met	Arg
1				5				10						15	

Thr	Pro	Met	Asn	Tyr	Phe	Ile	Val	Asn	Leu	Ala	Val	Ala	Asp	Leu	Leu
		20					25					30			

Phe	Ser	Leu	Phe	Thr	Met	Pro	Phe	Trp	Met	Val	Tyr	Tyr	Val	Met	Gly
		35			40						45				

Gly	Arg	Trp	Pro	Phe	Gly	Asp	Phe	Met	Cys	Arg	Ile	Trp	Met	Tyr	Phe
		50			55				60						

Asp	Tyr	Met	Asn	Met	Tyr	Ala	Ser	Ile	Phe	Phe	Leu	Thr	Cys	Ile	Ser
		65			70			75				80			

Ile	Asp	Arg	Tyr	Leu	Trp	Ala	Ile	Cys	His	Pro	Met	Arg	Tyr	Met	Arg
				85				90				95			

Trp	Met	Thr	Pro	Arg	His	Arg	Ala	Trp	Val	Met	Ile	Ile	Ile	Trp	
			100					105				110			

Val	Met	Ser	Phe	Leu	Ile	Ser	Met	Pro	Pro	Phe	Leu	Met	Phe	Arg	Trp
				115			120					125			

Ser Thr Tyr Arg Asp Glu Asn Glu Trp Asn Met Thr Trp Cys Met Ile

130

135

140

Tyr Asp Trp Pro Glu Trp Met Trp Arg Trp Tyr Val Ile Leu Met Thr
145 150 155 160

Ile Ile Met Gly Phe Tyr Ile Pro Met Ile Ile Met Leu Phe Cys Tyr
165 170 175

Trp Arg Ile Tyr Arg Ile Ala Arg Leu Trp Met Arg Met Ile Pro Ser
180 185 190

Trp Gln Arg Arg Arg Met Ser Met Arg Arg Glu Arg Arg Ile Val
195 200 205

Lys Met Leu Ile Ile Met Val Val Phe Ile Ile Cys Trp Leu Pro
210 215 220

Tyr Phe Ile Val Met Phe Met Asp Thr Leu Met Met Trp Trp Phe Cys
225 230 235 240

Glu Phe Cys Ile Trp Arg Arg Leu Trp Met Tyr Ile Phe Glu Trp Leu
245 250 255

Ala Tyr Val Asn Cys Pro Cys Ile Asn Pro Ile Ile Tyr
260 265