Pontifícia Universidade Católica do Paraná Escola Politécnica

Matemática Di	
Matemática Discreta - Exercícios - Relações Valor: 1	1,0 - Prof. Guilherme
Schnirmann	
Nome: RODRIGO OF Silva Aus	Data:
 Indique quatro pares ordenados (se existirem) que pertence a. xρy ↔ x + y < 7 = { (1,1) (1,2) (1,3) (1,2) (1,3) (1,2) (1,3) (1,2) (1,3) (1,2) (1,3) (1,2) (1,3) (1,2) (1,3) (1,2) (1,2) (1,3) (1,2)	cem a cada relação em N a seguir
Encontre a relação e liste quatro pares ordenados (case a) $\rho_1 \cup \rho_2 $ { $(1,1)(1,3)(2,4)(2,6)$ } b) $\rho_1 \cap \rho_2$ c) $(\rho_1)'$ d) $(\rho_2)'$ 4) Sejam A = {1,2,3,4}, B = {a,b,c} e ρ e σ de A em S defini	o existam) de:
$\rho = \{(1,a), (1,b), (2,b), (2,c), (2$	
$\sigma = \{(1,b), (2,c), (3,b), (4,c), (4$	
 Calcule: a) O grafo de ρ b) O grafo de σ c) A matriz M_ρ d) A matriz M_σ e) A matriz M_ρ, f) A matriz A matriz M_σ, g) A matriz A matriz M_ρ o σ h) A matriz A matriz M_ρ o σ 5) Sejam os conjuntos A={2,4,6} e B={1,3,5}, e un R={(2,1),(4,1),(6,1),(2,3),(6,5)}. Faça a representação por g 6) Seja S={0,1,2,4,6}. Teste se as relações em S dadas a segui ou transitivas 	grafo, por conjuntos e por matriz. ir são reflexivas, simétricas, antissimétri
a. $R = \{(0,0),(1,1),(2,2),(4,4),(6,6),(0,1),(1,2),(2,4),(4,6,6,6,6,6,4)\}$ b. $R = \{(0,1),(1,0),(2,4),(4,2),(4,6),(6,4)\}$ c. $R = \{(0,1),(1,2),(0,2),(2,0),(2,1),(1,0),(0,0),(1,1),(2,2,6,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,$)}-REFERENCE, SILVETINGE, MOT

- 7) Encontre os fechos reflexivo, simétrico e transitivo para cada uma das relações do exercício 6.
- 8) Encontre o fecho reflexivo, simétrico e transitivo em cada caso

$$R = \{(a,b)(a,d)(a,c)(b,a)(b,d)(c,a)(d,b)\}$$

$$(a,b)(b,a) = (a,a) \times (c,a)(a,c) = (c,c) \times (a,b)(b,d) = (a,d) \times (a,b)(b,a) = (d,a) \times (a,b)(b,d) = (a,d) \times (a,b)(a,b) = (a,b) \times R = \{(a,a)(b,b)(b,c)(c,b)(c,d)\}$$

$$(b,a)(a,b) = (b,b) \times R = \{(a,a)(b,b)(b,c)(c,b)(c,d)\}$$

$$(b,a)(a,d) = (b,a) \times (b,c)(c,d) = (b,a) \times (b,a)(a,b) = (b,b) \times (a,a)(a,c) = (a,c) \times (a,c) \times (a,c) = \{(a,c)\}\}$$

$$(b,a)(a,b) = (b,b) \times (a,a)(a,c) = \{(a,c)\}\}$$

$$(b,a)(a,b) = (b,b) \times (a,a)(a,c) = \{(a,c)\}\}$$

$$(b,a)(a,b) = (c,b) \times R = \{(a,c)\}\}$$

$$(b,a)(a,b) = (c,b) \times R = \{(a,c)\}\}$$

$$(b,a)(a,b) = (c,b) \times R = \{(a,c)\}\}$$

9) Suponha uma relação R representada pela seguinte matriz:

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \quad \begin{array}{c} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array}$$

Responda se R é reflexiva? Simétrica? Anti-Simétrica? Transitiva? Encontre os fechos dessa relação.

EXERCISE PORDUE A MATRIZ TRANSPORTA I TO GOTAL

NÃO É ANTI-SIMETRICA, PORQUE TEMOS (a,b), (b,c), mas NÃO TEMOS (a,c)

R= $\{a,a\}, (a,b), (b,a), (b,b), (b,c), (c,b), (c,c)\}$ $\{a,a\}, (a,b) \rightarrow (a,b) \lor (b,b), (b,c), (c,b), (c,c)\}$ $\{a,b\}, (b,a) \rightarrow (a,b) \lor (b,b), (b,c), (c,b), (c,c)\}$ $\{a,b\}, (b,a) \rightarrow (a,a) \times (b,b), (b,c), (c,b), (c,c), (c,a)\}$ $\{a,b\}, (b,a) \rightarrow (a,a) \times (b,b), (b,c), (c,c), (c,b), (c,c), (c,a)\}$ $\{a,b\}, (b,a) \rightarrow (a,a) \times (b,b), (c,c), (c,b), (c,c), (c,a)\}$ $\{a,b\}, (b,a) \rightarrow (a,b) \lor (b,c), (c,b), (c,c), (c,b), (c,$

b) R* = R U {(0,0), (1,1), (2,2), (4,4), (6,6)}

$$(0,1)(1,0) \rightarrow (0,0) \times \mathcal{L}_{T}^{*} = \{(0,0)(1,1)(2,2)(2,6)(4,4)(6,2)(6,6)\}$$

$$(1,0)(6,1) \rightarrow (1,1) \times$$

$$(2,4)(4,2) \rightarrow (2,2) \times (2,6)(6,4) \rightarrow (2,4) \times$$

$$(2,4)(4,6) \rightarrow (2,6) \times (2,6)(6,2) \rightarrow (2,2) \times$$

$$(4,2)(2,4) \rightarrow (4,4) \times (6,2)(2,4) \rightarrow (6,4) \times$$

$$(4,6)(6,4) \rightarrow (4,4) \times (6,2)(2,6) \rightarrow (6,6) \times$$

$$(6,4)(4,6) \rightarrow (6,6) \times \mathcal{L}_{T}^{*} = \mathcal{R}_{T}^{*} \cup \mathcal{R}$$

$$(6,4)(4,6) \rightarrow (6,6) \times \mathcal{L}_{T}^{*} = \mathcal{R}_{T}^{*} \cup \mathcal{R}$$

8) a)
$$R_{R}^{*} = R \cup \{(a,a)(b,b)(c,c)(d,d)\}$$

 $R_{S}^{*} = R \cup \{(e,a)(b,d)\}$
 $R_{T}^{*} = R \cup \{(b,c)(a,d)(d,a)(a,a)\}$

b)
$$R_{R}^{*} = R \cup \{(b,b)(c,c)\}$$

 $R_{T}^{*} = R \cup \{(b,a)(c,b)(a,c)\}$
 $R_{T}^{*} = R \cup \{(a,c)(b,a)(b,b)(c,b)\}$

