Unsupervised Surrogate Anomaly Detection Appendix

Simon Klüttermann $^{1,3[0000-0001-9698-4339]},$ Tim Katzke $^{1,2[0009-0000-0154-7735]},$ and Emmanuel Müller $^{1,2,3[0000-0002-5409-6875]}$

TU Dortmund University, Germany
 Research Center Trustworthy Data Science and Security
 Lamarr Institute for Machine Learning and Artificial Intelligence firstname.lastname@cs.tu-dortmund.de

A Importance of Learnable Shifts

Trivial solutions are a common problem also for DeepSVDD [19]. Namely when the last layer learns a zero multiplicative weight, but the learnable shift is equal to the desired c. To combat this, Ruff et. al. propose to remove the learnable shifts entirely. And while this certainly helps in making this shift impossible, it also limits how complicated a function can be learned by the neural network [15].

We show this in Figure 1, where we task neural networks to approximate a simple sinus curve. Here, we use neural networks with three layers of 100 nodes and relu activation in each hidden layer. The three networks differ only by the learnable shifts they use. While the network with learnable shifts (green) is clearly able to approximate the sinus curve, the version without learnable shifts (blue) is not able to do so. And since real anomaly representations can be much more complicated than such a simple sinus curve, we do not think that limiting the neural network complexity is a reasonable choice.

Instead, we use other methods to remove the trivial solution of a constant network. This also includes using learnable shifts in each hidden layer but not in the output layer. This setup is still able to approximate complicated functions, as is shown in orange in Figure 1.

B Dataset Characteristics

While we follow the datasets suggested in Reference [7], we also state the dataset characteristics in Tables 1, 2, 3.

C Competitor Hyperparameters

We use the standard hyperparameters for each competitor algorithm. These follow either the author's recommendation or reasonable standards as implemented by the community. We provide a list of these in Tables 4 to 20. Please note that the ecod and copod algorithms do not have any notable hyperparameters and are thus not listed here.

Dataset		Training Samples	Test Samples	Test Anomalies
smtp	3	95096	60	30
skin	3	143339	101718	50859
http	3	563076	4422	2211
Wilt	5	4305	514	257
mammography	6	10663	520	260
vertebral	6	180	60	30
thyroid	6	3586	186	93
annthyroid	6	6132	1068	534
glass	7	196	18	9
Pima	8	232	536	268
yeast	8	470	1014	507
Stamps	9	278	62	31
shuttle	9	42075	7022	3511
breastw	9	205	478	239
WBC	9	203	20	10
magic.gamma	10	5644	13376	6688
PageBlocks	10	4373	1020	510
donors	10	545906	73420	36710
cover	10	280554	5494	2747
vowels	12	1356	100	50
wine	13	109	20	10
pendigits	16	6558	312	156
Lymphography	18	136	12	6
Hepatitis	19	54	26	13
cardio	21	1479	352	176
Cardiotocography	21	1182	932	466
Waveform	21	3243	200	100
fault	27	595	1346	673
ALOI	27	46518	3016	1508
fraud	29	283823	984	492
WDBC	30	347	20	10
Ionosphere	32	99	252	126
letter	32	1400	200	100
WPBC	33	104	94	47
satimage-2	36	5661	142	71
landsat	36	3769	2666	1333
satellite	36	2363	4072	2036
celeba	39	193505	9094	4547
SpamBase	57	849	3358	1679
campaign	62	31908	9280	4640
optdigits	64	4916	300	150
mnist	100	6203	1400	700
musk	166	2868	194	97
backdoor	196	90671	4658	2329
speech	400	3564	122	61
census	500	262149	37136	18568

 500
 262149
 37136

 Table 1: Dataset Characteristics (1/3)

Dataset	Features	Training Samples	Test Samples	Test Anomalies
CIFAR10 8	512	4737	526	263
FashionMNIST 0	512	5685	630	315
CIFAR10 4	512	4737	526	263
MNIST-C rotate	512	9000	1000	500
MVTec-AD bottle	512	166	126	63
MVTec-AD capsule	512	133	218	109
MVTec-AD carpet	512	219	178	89
SVHN 3	512	8050	894	447
MNIST-C shot noise	512	9000	1000	500
SVHN 6	512	5426	602	301
MNIST-C glass blur	512	9000	1000	500
	512	206	120	60
MVTec-AD_wood	512			294
SVHN_7		5301	588	
MNIST-C_spatter	512	9000	1000	500
SVHN_0	512	4688	520	260
CIFAR10_1	512	4737	526	263
FashionMNIST_9	512	5685	630	315
FashionMNIST_7	512	5685	630	315
SVHN_4	512	7066	784	392
MVTec-AD_cable	512	190	184	92
CIFAR10_5	512	4737	526	263
MVTec-AD_leather	512	185	184	92
FashionMNIST_6	512	5685	630	315
CIFAR10_0	512	4737	526	263
SVHN_5	512	6520	724	362
FashionMNIST_8	512	5685	630	315
$MNIST-C_brightness$	512	9000	1000	500
$MNIST-C_scale$	512	9000	1000	500
SVHN_9	512	4414	490	245
$MVTec-AD_grid$	512	228	114	57
MNIST-C_identity	512	9000	1000	500
CIFAR10_3	512	4737	526	263
FashionMNIST_1	512	5685	630	315
$MVTec-AD_screw$	512	242	238	119
SVHN_8	512	4780	530	265
MVTec-AD_zipper	512	153	238	119
MNIST-C_dotted_line	512	9000	1000	500
MVTec-AD metal nut	512	149	186	93
MVTec-AD hazelnut	512	361	140	70
FashionMNIST_2	512	5685	630	315
CIFAR10 7	512	4737	526	263
FashionMNIST 5	512	5685	630	315
MNIST-C translate	512	9000	1000	500
$MVTec-A\overline{D}$ pill	512	152	282	141
MNIST-C zigzag	512	9000	1000	500
FashionMNIST 4	512	5685	630	315
MNIST-C stripe	512	9000	1000	500
SVHN 2	512	9000	1000	500
MVTec-AD toothbrush		42	60	30
SVHN 1	512	9000	1000	500
	1 0 D /	5500	1000	500

Table 2: Dataset Characteristics (2/3)

Dataset	Features	Training Samples	Test Samples	Test Anomalies
MNIST-C shear	512	9000	1000	500
CIFAR10 6	512	4737	526	263
MVTec-AD tile	512	179	168	84
MVTec-AD transistor	512	233	80	40
CIFAR10 9	512	4737	526	263
MNIST-C canny edges	512	9000	1000	500
FashionMNIST 3	512	5685	630	315
CIFAR10 2	512	4737	526	263
MNIST-C fog	512	9000	1000	500
MNIST-C_motion_blur	512	9000	1000	500
MNIST-C impulse noise	512	9000	1000	500
20news 0	768	2782	308	154
yelp	768	9000	1000	500
imdb	768	9000	1000	500
$agnews_0$	768	9000	1000	500
agnews_2	768	9000	1000	500
20 news_4	768	1493	164	82
amazon	768	9000	1000	500
agnews_3	768	9000	1000	500
20news_2	768	2249	248	124
20news_3	768	555	60	30
20news_5	768	1380	152	76
20news_1	768	2264	250	125
$agnews_1$	768	9000	1000	500
InternetAds	1555	1230	736	368

Table 3: Dataset Characteristics (3/3)

Parameter	Value
num_epochs	200
patience	50
lr	0.00
lr milestone	50
batch size	256
latent_dim	1
n gmm	4
lambda energy	0.10
lambda_conv	0.01

Table 4: Hyperparameter for the DAGMM algorithm.

Parameter	Value
epochs	400
batch_size	64
lr	0.00
weight_decay	0.00
${ m T}$	400
num bins	7

Table 5: Hyperparameter for the DTE algorithm.

Parameter	Value
d_out	32
m	1
n_{rots}	256
n_{epoch}	1
ndf	8
$batch_size$	64
lmbda	0.10
eps	0
lr	0.00

Table 6: Hyperparameter for the GOAD algorithm.

Parameter	Value
K	10
epochs	200
batch_size	64
lr	0.00

 $\frac{\text{lr} \quad 0.00}{\text{Table 7: Hyperparameter for the normalizing flow algorithm.}}$

Parameter	Value
preprocessing	True
lr	0.00
epoch num	10
batch size	32
weight decay	0.00
hidden activation	relu
batch norm	True
dropout_rate	0.20

Table 8: Hyperparameter for the Autoencoder (AE) algorithm.

Parameter	Value
num_features	4
$latent_dim$	2
$hidden_activation$	relu
$output_activation$	$\operatorname{sigmoid}$
optimizer	adam
epochs	100
batch_size	32
dropout_rate	0.20
l2_regularizer	0.10
validation_size	0.10

Table 9: Hyperparameter for the variational AE algorithm.

Parameter	Value
use_ae	False
$hidden_activation$	relu
$output_activation$	$\operatorname{sigmoid}$
epochs	100
$batch_size$	32
$dropout_rate$	0.20
l2 regularizer	0.10

Table 10: Hyperparameter for the DeepSVDD algorithm.

Parameter		Value
n	components	100%
n	selected	100%

Table 11: Hyperparameter for the PCA algorithm.

Parameter	Value
batch_size	128
learning_rate	0.00
training_epochs	200
$latent_dim$	24
enc_hdim	24
enc_nlayers	5
num_trans	11
trans_nlayers	2
$trans_hdim$	24
loss	DCL
gamma	0.50
lr_shedule	200

Table 12: Hyperparameter for the NeuTral algorithm.

Parameter	Value
n_neighbors	20
ref_set	10
alpha	0.80

Table 13: Hyperparameter for the SOD algorithm.

Parameter	Value
kernel	rbf
degree	3
gamma	auto
coef0	0.00
tol	0.00
nu	0.50
shrinking	True
cache size	200

Table 14: Hyperparameter for the OCSVM algorithm.

Parameter	Value
n_neighbors	20
algorithm	auto
$leaf_size$	30
metric	minkowski
p	2

Table 15: Hyperparameter for the LOF algorithm.

Pa	rameter	Value
n	bins	10
n	random	cuts 100

Table 16: Hyperparameter for the Loda algorithm.

Parameter	Value
n_neighbors	5
method	largest
metric	minkowski

 $\frac{\text{metric} \qquad \text{minkowski}}{\text{Table 17: Hyperparameter for the KNN algorithm}}.$

Parameter	Value
n_estimators	100
\max_{samples}	auto
\max_{features}	1.00

Table 18: Hyperparameter for the IForest algorithm.

Fig. 1: Given complicated alinear data, the functions learned by three neural networks with relu activations are shown. The network without learnable shifts cannot capture the structure of the underlying data, while both a network with learnable shifts in each layer and a network with learnable shifts in all layers except the last can describe the alinearity.

Parameter	Value
n_bins	10
alpha	0.10
tol	0.50

Table 19: Hyperparameter for the HBOS algorithm.

D DEAN-Fair

To illustrate the adaptability of DEAN (see Section 6), we demonstrate its modification for improved fairness on a toy example using the COMPAS dataset [21]. In this context, we consider recidivism risk as the anomaly and employ fairness as a critical performance metric. The COMPAS dataset, which contains risk scores along with demographic and criminal history features, is widely used for evaluating such algorithmic fairness.

D.1 Setup

For our fairness evaluation, we compute the AUC-ROC separately for two subgroups defined by a protected attribute (age, binarized with a threshold at 25 years) and measure the deviation between them to showcase how DEAN can be guided towards equal treatment across different demographic groups in general.

Parameter	Value
n_clusters	8
alpha	0.90
beta	5

Table 20: Hyperparameter for the CBLOF algorithm.

We chose the AUC-ROC since it is a metric invariant to the fraction of anomalous samples and also handles non-binary anomaly scores. An ideal fairness score is 0.5, indicating no performance difference between groups. For this, we propose three adaptation strategies to improve fairness.

1. Modified Loss Function: We add a fairness regularization term to the original loss:

$$L = \sum_{\boldsymbol{x} \in X_{\text{train}}} \|f(\boldsymbol{x}) - 1\| + \theta \cdot L_{\text{fair}}$$
 (1)

where

$$L_{\text{fair}} = \frac{\|L_1 - L_0\|}{\|L_1\| + \|L_0\|} \tag{2}$$

and

$$L_{1/0} = \frac{1}{\|X_{\text{(un)protected}}\|} \sum_{\boldsymbol{x} \in X_{\text{(un)protected}}} f(\boldsymbol{x})$$
(3)

Here, L_1 and L_0 denote the mean outputs for the unprotected and protected groups, respectively, and we set $\theta = 0.1$.

- **2. Submodel Pruning:** In this approach, we iteratively remove the submodel that exhibits the greatest unfairness in a greedy manner. We test pruning rates of 1%, 5%, and 10% of the ensemble.
- **3. Non-uniform Weighting:** We assign different weights to submodels in the ensemble to maximize fairness. Due to the non-continuous nature of this optimization, we employ an evolutionary algorithm to determine the optimal weights.

D.2 Results

Table 21 summarizes the AUC-ROC performance and fairness (measured as the deviation from 0.5) for each method. Each experiment is repeated five times to obtain uncertainty estimates.

Adjustment	AUC-ROC	Fairness
Baseline	0.583 ± 0.003	0.644 ± 0.020
Loss function	0.594 ± 0.012	0.453 ± 0.080
Pruning (1%)	0.583 ± 0.003	0.625 ± 0.019
Pruning (5%)	0.577 ± 0.003	0.555 ± 0.015
Pruning (10%)	0.574 ± 0.003	0.506 ± 0.014
Non-uniform weighting	0.566 ± 0.004	0.520 ± 0.011

Table 21: AUC-ROC performance and fairness deviation on the COMPAS dataset for various fairness adaptations of DEAN. Notice that the performance is better the higher the value is, while the fairness is optimal at 0.5.

The baseline model exhibits a fairness deviation of over 14%, indicating a significant bias. With as little as 1% pruning, fairness improves, and pruning

10% of the submodels nearly eliminates the bias (deviation of only 0.6%, within experimental uncertainty), albeit with a slight reduction in overall performance (approximately 1% drop). Non-uniform weighting yields a more pronounced performance drop (1.7%) and a moderate fairness improvement (2% deviation). Notably, the modified loss function further increases performance by about 1.1% but overshoots fairness slightly, resulting in a 4.7% deviation.

Overall, these experiments confirm that the DEAN framework can be effectively adapted to enhance fairness, demonstrating its versatility and potential for broader real-world applications.

E Performance Result Plots with AUC-PR

Since our results are very similar whether we use AUC-ROC or AUC-PR, we only state most of our results in AUC-ROC and add the alternative plots here.

Table 22 gives an overview of the performance for all evaluated algorithms across all datasets when using AUC-PR instead of AUC-ROC. Figure 2 shows the critical difference plot when we use AUC-PR instead of AUC-ROC to compare the performance of algorithms. Additionally, Figure 3 shows the AUC-PR score as a function of the submodels used.

Table 22: Distribution of AUC-PR performance for all evaluated algorithms. Deep learning models (blue) and shallow models (yellow) are differentiated by surrogate status (squares for surrogates, triangles for non-surrogates). Mean and median values are shown in green and purple, respectively. Pendant to Table 1 in Section 5.2.

Fig. 2: Critical difference diagrams comparing the AUC-PR performance. A lower rank indicates better performance, while algorithms with no statistically significant differences are connected by a horizontal line. DEAN is depicted in green, other deep learning algorithms in blue. Pendant to Figure 2a in Section 5.2.

Fig. 3: AUC-PR performance changes with varying ensemble size, for DEAN. It reaches 2% less performance with the first 12% (instead of 13% for AUC-ROC) of submodels. Pendant to Figure 3b in Section 5.3.

F Individual Performance Scores

We state every performance in AUC-ROC in Tables 23, 24, 25, 26, 27 and 28. We also give the same performances in AUC-PR in Tables 29, 30, 31, 32, 33 and 34.

Table 23: AUC-ROC Scores for each datasets and algorithm (1/3|low performing algorithms)

Dataset	DEAN	HBOS	GOAD	ECOD	COPOD	LODA	NF	DAGMM	VAE	SOD
$20 news^2$	56%	44%	44%	44%	43%	46%		44%		46%
yeast	59%	42%	68%	45%	38%	55%		49%	41%	
vertebral	68%	38%	67%	41%	34%	26%		50%		38%
$MNISTC^{identity}$	47%	49%	48%	48%	48%	48%		49%	50%	
speech	59%	49%	50%	48%	50%	50%		57%		35%
imdb	53%	51%	54%	48%	53%	42%		46%	42%	
$20 news^5$	56%	49%	48%	48%	47%	55%		48%	53%	
WPBC	54%	53%	45%	52%	54%	58%		50%	48%	
Wilt	67%	36%	62%	38%	35%	37%		70%	50%	
$20 news^4$	59%	51%	53%	52%	50%	54%	42%	53%	48%	
$20 news^1$	64%	50%	52%	47%	50%	54%	51%	46%	44%	52%
$agnews^0$	63%	51%	53%	49%	52%	49%	50%	49%	50%	49%
$20 news^3$	50%	56%	55%	55%	56%	61%	57%	49%	41%	51%
$MVTecAD^{screw}$	60%	57%	52%	56%	56%	54%	47%	50%	57%	56%
ALOI	55%	54%	49%	54%	53%	52%		53%	52%	
amazon	62%	57%	56%	55%	58%	61%		50%	45%	
$SVHN^6$	65%	51%	64%	53%	52%	58%		58%	52%	
$CIFAR10^3$	67%	48%	69%	52%	49%	59%		54%	57%	
$CIFAR10^5$	67%	46%	69%	51%	47%	57%		59%	53%	
$SVHN^9$	66%	51%	60%	54%	52%	54%		55%	51%	
$SVHN^3$	65%	55%	60%	57%	56%	59%		47%	50%	
$MNISTC^{rotate}$	67%	56%	48%	55%	55%	50%		53%	55%	
$CIFAR10^2$	61%	55%	59%	56%	55%	58%		55%	55%	
lands at	77%	71%	61%	36%	42%	43%		53%	57%	
$SVHN^8$	70%	50%	62%	53%	51%	56%		55%	47%	
yelp	67%	60%	61%	58%	60%	59%		59%	42%	
$agnews^3$	64%	56%	54%	56%	56%	53%		56%	50%	
$SVHN^0$	76%	50%	65%	53%	51%	59%		59%	54%	
$CIFAR10^1$	75%	45%	73%	52%	47%	63%		54%	53%	
$SVHN^5$	70%	57%	61%	59%	58%	64%		57%	51%	
$MVTecAD^{pill}$	62%	64%	52%	61%	65%	66%		50%	50%	
$agnews^1$	69%	58%	50%	58%	52%	58%		52%	58%	
$SVHN^4$	66%	61%	54%	61%	61%	64%		58%	62%	
$SVHN^2$	69%	58%	62%	60%	58%	64%		50%	54%	
census	63%	66%	59%	66%	67%	55%		61%	62%	
fault	75%	67%	69%	46%	45%	48%		47%	52%	
Hepatitis	44%	82%	50%	73%	81%	74%		50%	52%	
$SVHN^7$	66%	62%	62%	63%	62%	61%		56%	62%	
$SVHN^1$	68%	62%	68%	63%	61%	55%		62%	63%	
Pima	65%	70%	61%	59%	65%	62%		50%	50%	
$20 news^0$	75%	62%	61%	60%	61%	61%		56%	51%	
$CIFAR10^7$	69%	56%	71%	61%	57%	65%		60%	65%	
$MNISTC^{translate}$	85%	54%	54%	56%	56%	57%		49%	50%	
$agnews^2$	74%	63%	61%	63%	63%	62%		57%	48%	
$MVTecAD^{grid}$	65%	61%	66%	62%	62%	59%		50%	34%	
$MVTecAD^{capsule}$	66%	67%	64%	66%	65%	65%		50%	49%	
$MNISTC^{shear}$	74%	64%	59%	64%	64%	60%		54%	50%	
letter	90%	57%	51%	53%	51%	52%		53%	49%	
$MVTecAD^{metal}$ - nut		63%	69%	64%	62%	67%		50%	46%	
SpamBase	68%	79%	44%	66%	69%	71%		58%	50%	

Table 24: AUC-ROC Scores for each datasets and algorithm (1/3|high performing algorithms)

ing algorithms)	DEAN	LOD	TENINI	CDLOD	N. CD. I	A T	TT.	DCA	D GUDD	OCCITA	DEE
Dataset									D.SVDD		
$20 news^2$	56%			48%	57%			43%		46%	49%
yeast	59%	47%		47%	57%			43%		45%	47%
vertebral	68%	53%		46%	59%			41%		41%	39%
$MNISTC^{identity}$	47%	49%		50%	49%			48%		47%	49%
speech	59%	53%		49%	44%			49%		48%	56%
imdb	53%	54%		53%	48%			49%		48%	56%
$20 news^5$	56%	52%		55%	57%			48%		49%	55%
WPBC	54%	55%		51%	43%			54%		54%	47%
Wilt	67%	90%		48%	80%			24%		85%	35%
$20 news^4$	59%	55%		55%	62%			51%		52%	46%
$20 news^1$	64%	60%		51%	62%			48%		50%	47%
$agnews^0_{2}$	63%	67%		56%	59%			51%		50%	54%
$20 news^3$	50%	55%		55%	69%			55%		53%	48%
$MVTecAD^{screw}$	60%	56%		56%	58%			60%		56%	47%
ALOI	55%	76%		55%	54%					52%	54%
amazon	62%	59%		57%	54%			56%		55%	49%
$SVHN^6$	65%	61%		55%	57%			56%		59%	59%
$CIFAR10^3$	67%	66%		62%	61%			56%		60%	57%
$CIFAR10^5$	67%	63%	57%	60%	67%			57%		60%	59%
$SVHN^9$	66%	64%		58%	61%			57%		57%	59%
$SVHN^3$	65%	66%		58%	64%	56%	58%	59%	59%	56%	60%
$MNISTC^{rotate}$	67%	75%	67%	59%	58%	59%	57%	56%	55%	54%	63%
$CIFAR10^2$	61%	65%	60%	60%	56%	58%	58%	59%	55%	59%	61%
lands at	77%	75%	77%	67%	83%	60%	61%	40%	49%	47%	58%
$SVHN^8$	70%	67%	64%	59%	62%	63%	55%	57%	65%	55%	58%
yelp	67%	67%	67%	63%	62%	65%	60%	59%	42%	57%	52%
$agnews^3$	64%	75%	65%	60%	66%	63%	60%	58%	59%	57%	60%
$SVHN^0$	76%	74%	69%	62%	68%	68%	55%	59%	61%	61%	59%
$CIFAR10^1$	75%	76%	63%	63%	73%	58%	52%	62%	63%	62%	72%
$SVHN^5$	70%	66%	64%	63%	61%	65%	59%	62%	57%	58%	61%
$MVTecAD^{pill}$	62%	66%	67%	64%	67%	53%	65%	64%	61%	61%	52%
$agnews^1$	69%	83%	69%	61%	69%	65%	61%	60%	57%	57%	75%
$SVHN^4$	66%	65%	66%	63%	61%	64%	61%	60%	59%	61%	63%
$SVHN^2$	69%	69%		62%	66%			62%		60%	65%
census	63%	55%		66%	54%			71%		55%	61%
fault	75%	63%		71%	73%			55%		59%	72%
Hepatitis	44%	60%		48%	55%				70%	47%	83%
$SVHN^7$	66%	66%		65%	61%				65%	66%	67%
$SVHN^1$	68%	63%		66%	66%			65%		67%	66%
Pima	65%	67%		68%	58%			72%		62%	70%
$20 news^0$	75%	78%		64%	69%			63%		61%	53%
$CIFAR10^7$	69%			65%	63%			65%		68%	66%
$MNISTC^{translate}$	85%			66%	76%			61%		55%	69%
$agnews^2$	74%			68%	64%			65%		63%	53%
$MVTecAD^{grid}$	65%	68%		65%	73%			64%		65%	76%
$MVTecAD^{capsule}$	66%	67%		71%	66%			66%		65%	63%
$MNISTC^{shear}$	74%	79%		70%	68%			66%		59%	75%
letter	90%	88%		78%	76%			54%		90%	77%
$MVTecAD^{metal}$ - nut											
		71%		72%	72%			71%		68%	75%
SpamBase	68%	64%	15%	70%	42%	70%	82%	80%	83%	76%	67%

Table 25: AUC-ROC Scores for each datasets and algorithm (2/3|low performing algorithms)

algorithms)										
Dataset					COPOD			DAGMM		
\overline{celeba}	68%	77%	64%	76%	75%	58%		62%		44%
$CIFAR10^9$	77%	60%	76%	64%	61%	65%		62%	62%	
$Fashion MNIST^6$	82%	52%	68%	60%	55%	68%		62%	66%	
Wave form	73%	69%	79%	58%	73%	69%	67%	55%	30%	49%
opt digits	99%	88%	52%	52%	60%	50%		46%	44%	
$MNISTC^{scale}$	89%	59%	56%	59%	57%	80%	53%	48%	61%	17%
$MVTecAD^{cable}$	67%	72%	66%	71%	71%	71%	51%	50%	51%	69%
$CIFAR10^8$	74%	66%	78%	68%	66%	68%	58%	61%	65%	58%
Cardiotocography	84%	57%	76%	79%	66%	79%	50%	74%	60%	39%
$CIFAR10^6$	77%	70%	72%	71%	71%	70%	56%	56%	63%	65%
InternetAds	86%	55%	75%	69%	69%	57%	79%	61%	71%	41%
$CIFAR10^0$	76%	70%	76%	71%	69%	72%	74%	58%	65%	63%
campaign	73%	80%	70%	77%	78%	65%	73%	56%	69%	63%
$MNISTC^{brightness}$	93%	64%	60%	64%	63%	67%		46%	61%	
$MVTecAD^{carpet}$	74%	75%	74%	71%	74%	74%		50%	53%	
satellite	77%	87%	79%	59%	64%	71%		72%	50%	
$MVTecAD^{hazelnut}$	68%	74%	70%	69%	72%	71%		65%	66%	
annthyroid	77%	71%	46%	81%	79%	60%		67%	68%	
$MNISTC^{canny}$ - edges	93%	73%	48%	69%	68%	72%		59%	83%	
cover	50%	65%	98%	92%	88%	95%		69%	50%	
magic.gamma	83%	75%	76%	64%	68%	67%		70%	68%	
glass	89%	85%	93%	65%	75%	67%		50%	59%	
$MVTecAD^{toothbrush}$	72%	81%	72%	77%	73%	59%		50%	57%	
$MVTecAD^{wood}$	74%	76%	75%	76%	76%	72%		50%	76%	
mnist	53%	73%	92%	75%	78%	80%		72%	50%	
$CIFAR10^4$	77%	76%	78%	76%	76%	74%		57%	71%	
$MNISTC^{shot}$ - noise	93%	71%	69%	71%	70%	74%		58%	66%	
PageBlocks	95% 85%	88%	72%	90%	87%	76%		92%	50%	
$FashionMNIST^8$	93%	70%	79%	73%	71%	74%		67%	68%	
$MVTecAD^{transistor}$	75%	80%	75%	78%	79%	80%		50%	76%	
MVIecAD backdoor	94%	80% 65%	75% 78%	84%	79% 79%	25%		56%	90%	
				56%	45%	71%			90% 58%	
$vowels \ MVTecAD^{zipper}$	94%	65%	90%					52%		
	77%	80%	77%	77%	80%	78%		50%	59%	
$MVTecAD^{tile}$	79%	82%	80%	79%	81%	81%		50%	54%	
$Fashion MNIST^4$	90%	70%	85%	77%	73%	80%		62%	71%	
wine	99%	85%	92%	68%	84%	78%		50%	99%	
$MNISTC^{zigzag}$	95%	79%	66%	79%	77%	76%		57%	67%	
skin	97%	77%	89%	49%	47%	82%		90%	50%	
$MNISTC^{dotted}$ - $line$	95%	75%	68%	76%	74%	69%		67%	78%	
$FashionMNIST^2$	92%	66%	85%	74%	70%	79%		74%	65%	
MNISTC ^{spatter}	93%	81%	80%	79%	79%	82%		76%	49%	
$MNISTC^{motion}$ - blur	98%	79%	78%	77%	77%	77%		76%	45%	
musk	53%	100%	87%	97%	96%	99%		89%	50%	
$Fashion MNIST^0$	91%	77%	81%	81%	78%	84%		72%	80%	
donors	100%	79%	50%	89%	82%	60%		90%	84%	
smtp	92%	82%	84%	90%	92%	87%		85%	21%	
$Fashion MNIST^3$	93%	82%	83%	84%	82%	77%		58%	82%	
$MNISTC^{fog}$	100%	79%	83%	79%	78%	89%	66%	71%	49%	37%
mammography	84%	84%	86%	90%	90%	90%		87%	50%	64%
Ionosphere	86%	72%	82%	71%	78%	79%	96%	50%	75%	88%

Table 26: AUC-ROC Scores for each datasets and algorithm (2/3|high performing algorithms)

ing algorithms)										
Dataset	DEAN				NeuTral		IFor PCA			
celeba	68%	46%	62%	59%	48%	67%	$69\% \ 80\%$	78%	72%	84%
$CIFAR10^9$	77%	78%	71%	71%	74%	73%	65% 70%	62%	69%	75%
$Fashion MNIST^6$	82%	82%	81%	74%	75%	78%	63% 71%	72%	65%	77%
Wave form	73%	80%		83%	67%	70%	$68\% \ 64\%$	68%	84%	66%
opt digits	99%	100%	100%	89%	64%	98%	86% 52%	47%	100%	50%
$MNISTC^{scale}$	89%	94%	91%	84%	80%	83%	66% 73%	82%	65%	68%
$MVTecAD^{cable}$	67%	78%	81%	75%	71%	72%	$72\%\ 71\%$	62%	74%	72%
$CIFAR10^8$	74%	76%	72%	71%	74%	73%	69% 72%	67%	72%	70%
Cardiotocography	84%	77%	76%	72%	64%	82%	79% 82%	73%	83%	51%
$CIFAR10^6$	77%	77%	79%	75%	76%	76%	74% $74%$	62%	68%	76%
InternetAds	86%	86%	82%	73%	87%	71%	47% 79%	76%	72%	73%
$CIFAR10^0$	76%	76%	75%	71%	76%	68%	71% $73%$	65%	71%	74%
campaign	73%	59%	74%	68%	78%	69%	75% $77%$	70%	69%	74%
$MNISTC^{brightness}$	93%	98%	92%	80%	80%	87%	73% 72%	76%	66%	84%
$MVTecAD^{carpet}$	74%	77%	78%	77%	74%	74%	$76\% \ 76\%$	75%	75%	71%
satellite	77%	83%	87%	84%	80%	62%	$79\% \ 66\%$	68%	87%	70%
$MVTecAD^{hazelnut}$	68%	81%	80%	77%	74%	79%	73% 72%	71%	69%	73%
annthy roid	77%	78%	78%	68%	85%	63%	92% 84%	80%	57%	58%
$MNISTC^{canny}_{-edges}$		98%	93%	84%	80%	83%	$73\% \ 76\%$	68%	70%	80%
cover	50%		100%	69%	99%	50%	88% 94%	93%	52%	50%
magic.gamma	83%	83%		76%	78%	76%	78% 71%	69%	73%	86%
glass	89%	80%		100%	97%	63%	89% 65%	73%	46%	59%
$MVTecAD^{toothbrush}$	72%	64%	87%	85%	88%	90%	87% 73%	76%	65%	85%
$MVTecAD^{wood}$	74%	77%	80%	77%	80%	78%	79% 78%	77%	75%	72%
mnist	53%	96%	94%	87%	98%	96%	87% 91%	87%	50%	50%
$CIFAR10^4$	77%	76%	80%	79%	78%	73%	77% 77%	79%	76%	79%
$MNISTC^{shot}$ - noise	93%	95%	96%	90%	81%	86%	78% 79%	74%	76%	84%
PageBlocks	85%	91%	66%	64%	97%	52%	92% 93%	90%	61%	66%
$Fashion MNIST^8$	93%	93%	92%	86%	72%	88%	77% 80%	72%	75%	90%
$MVTecAD^{transistor}$	75%	85%	79%	81%	81%	74%	82% 81%	74%	81%	72%
backdoor	94%	95%	95%	83%	90%	86%	76% 64%	57%	87%	89%
vowels	94%	97%	97%	90%	98%	90%	76% 61%	79%	81%	98%
$MVTecAD^{zipper}$	77%	88%	87%	84%	90%	79%	81% 81%	78%	79%	78%
$MVTecAD^{tile}$	79%	85%	86%	83%	79%	79%	84% 80%	79%	80%	84%
$Fashion MNIST^4$	90%	88%	88%	85%	87%	86%	78% 84%	84%	82%	82%
wine	99%	99%	99%	99%	84%		85% 90%	89%	90%	$\frac{3270}{2\%}$
$MNISTC^{zigzag}$	95%	96%	94%	85%	89%	89%	84% 85%	88%	78%	92%
skin	97%	93%	100%		89%	89%	89% 60%	66%	90%	92%
$MNISTC^{dotted}$ - line	95%	97%		84%	87%	87%	80% 82%	80%	80%	86%
$FashionMNIST^2$	92%	88%	91%	89%	90%	89%		81%	78%	90%
$MNISTC^{spatter}$	93%	96%	93%	86%	88%	90%	83% 85%	82%	77%	90%
$MNISTC^{-1}$ $MNISTC^{motion}$ - blur	98%			89%		90%				97%
					93%			84%	75%	
musk	53%			100%	100%		97% 100%		50%	46%
$Fashion MNIST^0$	91%	91%	92%		90%	90%	82% 86%	81%	81%	88%
donors	100%	99%	100%		40%	85%	92% 89%	92%	87%	99%
smtp	92%	93%		86%	78%	80%	90% 84%	78%	84%	90%
$Fashion MNIST^3$	93%	93%		89%	87%	91%	83% 88%	86%	84%	93%
$MNISTC^{fog}$	100%		100%		98%	99%	89% 91%	87%	82%	99%
mammography	84%	84%		87%	74%	91%	88% 90%	91%	88%	86%
Ionosphere	86%	91%	94%	93%	95%	88%	$87\% \ 87\%$	90%	80%	93%

Table 27: AUC-ROC Scores for each datasets and algorithm (3/3|low performing algorithms)

D :	DEAN	TTDOG	COAD	EGOD	COROR	TODA	ATT:	DAGMA	T 7 4 T	000
Dataset					COPOD			DAGMM		SOD
shuttle	100%	98%	82%	99%	99%	82%	9%	95%	50%	31%
pendigits	99%	94%	90%	92%	90%	88%	67%	64%	89%	21%
$MNISTC^{glass}$ - blur	100%	90%	92%	89%	88%	90%	74%	62%	52%	54%
cardio	89%	84%	95%	93%	91%	95%	90%	69%	95%	45%
http	100%	99%	1%	97%	99%	43%	99%	99%	100%	40%
$MVTecAD^{bottle}$	96%	96%	92%	92%	96%	95%	91%	50%	7%	97%
Stamps	89%	90%	88%	90%	91%	91%	89%	72%	91%	52%
satimage 2	100%	98%	92%	97%	98%	99%	61%	99%	50%	46%
WDBC	100%	99%	93%	97%	100%	100%	50%	82%	50%	79%
Lymphography	100%	100%	100%	100%	100%	58%	69%	50%	94%	58%
WBC	99%	99%	99%	100%	100%	99%	85%	50%	99%	75%
$Fashion MNIST^5$	96%	92%	96%	92%	91%	94%	73%	67%	79%	78%
$MNISTC^{stripe}$	100%	99%	90%	97%	97%	98%	40%	66%	87%	52%
fraud	94%	96%	91%	95%	95%	93%	92%	93%	95%	67%
thyroid	98%	99%	74%	98%	94%	93%	99%	83%	86%	66%
$Fashion MNIST^1$	99%	92%	96%	94%	93%	95%	80%	73%	93%	76%
$Fashion MNIST^9$	98%	94%	97%	95%	94%	94%	68%	83%	91%	83%
$MVTecAD^{leather}$	99%	99%	99%	97%	98%	98%	92%	50%	72%	98%
$MNISTC^{impulse}$ - noise	100%	99%	100%	98%	98%	100%	73%	98%	94%	41%
$Fashion MNIST^7$	98%	95%	96%	96%	95%	95%	91%	89%	92%	89%
breastw	100%	99%	99%	99%	100%	99%	97%	50%	100%	91%
Average	78%	71%	71%	70%	70%	69%	61%	61%	61%	56%
Rank	5.64	12.12	11.08	12.83	12.86	12.05		15.81		16.47

Table 28: AUC-ROC Scores for each datasets and algorithm (3/3|high performing algorithms)

ing aigorithins)											
Dataset	DEAN	LOF	KNN	CBLOF		AE	IFor	PCA	D.SVDD	OCSVM	
shuttle	100%	100%	100%	99%	100%	100%	100%	99%	99%	100%	50%
pendigits	99%	99%	100%	97%	62%	89%	98%	93%	94%	94%	98%
$MNISTC^{glass}$ - blur	100%	99%	100%	98%	96%	99%	95%	96%	97%	92%	99%
cardio	89%	93%	91%	92%	86%	91%	93%	95%	92%	94%	92%
http	100%	93%	100%	99%	100%	99%	99%	100%	100%	100%	99%
$MVTecAD^{bottle}$	96%	96%	96%	97%	96%	96%	97%	96%	96%	96%	95%
Stamps	89%	93%	95%	93%	99%	90%	92%	92%	93%	91%	92%
satimage 2	100%	99%	100%	100%	100%	99%	100%	98%	97%	97%	50%
WDBC	100%	100%	100%	100%	96%	100%	100%	100%	100%	100%	40%
Lymphography	100%	97%	100%	100%	72%	100%	100%	100%	97%	100%	94%
WBC	99%	92%	99%	100%	72%	99%	99%	99%	93%	99%	40%
$Fashion MNIST^5$	96%	93%	96%	96%	96%	95%	93%	94%	94%	94%	95%
$MNISTC^{stripe}$	100%	100%	100%	100%	100%	100%	99%	100%	100%	97%	100%
fraud	94%	74%	97%	96%	92%	95%	96%	96%	94%	95%	96%
thy roid	98%	98%	97%	94%	99%	95%	99%	98%	97%	88%	93%
$Fashion MNIST^1$	99%	98%	99%	97%	97%	99%	95%	97%	95%	96%	99%
$Fashion MNIST^9$	98%	98%	97%	96%	98%	97%	95%	96%	96%	96%	97%
$MVTecAD^{leather}$	99%	98%	99%	99%	99%	99%	99%	99%	99%	99%	99%
$MNISTC^{impulse}$ - noise	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
$Fashion MNIST^7$	98%	97%	97%	96%	97%	97%	95%	96%	96%	96%	96%
breastw	100%	96%	100%	100%	86%	99%	100%	99%	99%	99%	91%
Average	78%	80%	80%	76%	75%	75%	74%	73%	72%	72%	71%
Rank	5.64	5.00	4.33	7.13	7.35	8.31	8.93	9.00	10.45	10.81	9.20

Table 29: AUC-PR Scores for each datasets and algorithm (1/3|low performing algorithms)

Dataset	DEAN	GOAD	HBOS	ECOD	COPOD	LODA	NF	VAE	DAGMM	SOD
$\frac{20 news^2}{}$	56%	45%	44%	45%	44%	44%		52%		$\frac{305}{45\%}$
imdb	53%	50%	48%	46%	49%	48%		44%		46%
WPBC	54%	46%	48%	47%	49%	50%		49%		45%
$MNISTC^{identity}$	47%	49%	49%	49%	49%	49%		50%		48%
vertebral	68%	58%	42%	43%	39%	37%		50%		41%
yeast	59%	61%	49%	50%	46%	54%		45%		45%
$20 news^1$	64%	50%	49%	47%	49%	45%		45%		50%
speech	59%	50%	50%	50%	52%	48%		50%		39%
$20 news^5$	56%	50%	50%	50%	48%	49%		56%		49%
$20 news^4$	59%	52%	51%	51%	50%	52%		52%		48%
$20 news^3$	50%	51%	54%	51%	56%	49%		42%		50%
Wilt	67%	57%	41%	43%	39%	42%		50%		38%
$agnews^0$	63%	51%	52%	50%	52%	46%		49%		50%
amazon	62%	54%	55%	53%	56%	49%		47%		52%
census	63%	52%	57%	58%	59%	39%		54%		53%
$CIFAR10^2$	61%	57%	52%	53%	53%	59%		54%		50%
$MVTecAD^{screw}$	60%	53%	59%	58%	58%	55%		59%		55%
ALOI	55%	50%	54%	54%	52%	57%		55%		54%
$MNISTC^{rotate}$	67%	49%	54%	53%	53%	55%		56%		50%
$CIFAR10^5$	67%	67%	47%	50%	47%	61%		54%		48%
$agnews^3$	64%	53%	54%	54%	54%	54%		50%		54%
landsat	77%	59%	68%	42%	45%	44%		52%		49%
$SVHN^3$	65%	59%	53%	55%	54%	56%		49%		54%
$CIFAR10^3$	67%	67%	50%	53%	51%	53%		56%		53%
$agnews^1$	69%	48%	53%	55%	49%	50%		57%		50%
$SVHN^9$	66%	58%	52%	54%	53%	51%		51%		58%
yelp	67%	58%	59%	56%	59%	54%	50%	45%	59%	54%
$SVHN^8$	70%	60%	50%	53%	52%	49%		49%		59%
$CIFAR10^1$	75%	68%	45%	49%	47%	58%		52%		50%
$SVHN^6$	65%	63%	53%	55%	54%	64%	57%	53%	57%	54%
$SVHN^0$	76%	62%	52%	53%	52%	56%	44%	55%	60%	54%
$SVHN^5$	70%	61%	56%	58%	57%	56%	57%	50%	58%	58%
$SVHN^1$	68%	66%	60%	60%	59%	59%	49%	63%	63%	48%
$20 news^0$	75%	57%	59%	58%	59%	60%	55%	53%	55%	59%
$SVHN^2$	69%	62%	59%	61%	59%	57%	57%	55%	52%	60%
He patitis	44%	55%	74%	60%	67%	66%	75%	50%	50%	50%
$SVHN^4$	66%	54%	62%	62%	62%	63%	56%	63%	60%	56%
Pima	65%	59%	67%	61%	67%	60%	25%	50%	50%	55%
fault	75%	65%	66%	47%	46%	49%	60%	54%	49%	62%
$MNISTC^{translate}$	85%	55%	52%	54%	54%	59%	50%	51%	53%	57%
$SVHN^7$	66%	60%	64%	63%	63%	67%	55%	63%	60%	51%
$MVTecAD^{pill}$	62%	57%	65%	64%	66%	63%	60%	53%	50%	67%
$CIFAR10^7$	69%	70%	58%	61%	59%	64%	55%	64%	58%	57%
$agnews^2$	74%	62%	63%	61%	63%	64%	56%	50%	59%	64%
$MNISTC^{scale}$	89%	51%	53%	53%	52%	60%	53%	55%	46%	34%
$MNISTC^{shear}$	74%	61%	64%	64%	64%	67%	51%	52%	57%	60%
$Fashion MNIST^6$	82%	68%	49%	55%	51%	61%	53%	61%	61%	47%
letter	90%	51%	54%	55%	53%	50%		49%		57%
$MVTecAD^{capsule}$	66%	69%	68%	69%	68%	63%	59%	54%	50%	72%
$MVTecAD^{grid}$	65%	68%	61%	64%	64%	70%	77%	44%	50%	64%

Table 30: AUC-PR Scores for each datasets and algorithm (1/3|high performing algorithms)

algorithms)	DEAN	LOP	TZNINI	NT CD 1	ODI OF	DC	Dar	ID	000173.5	Darbe	<u> </u>
Dataset										D.SVDD	
$20 news^2$	56%	49%		57%	44%		51%			43%	47%
imdb	53%	52%		50%	49%		53%			45%	49%
WPBC	54%	50%		46%	47%			52%		51%	48%
$MNISTC^{identity}$	47%	50%		50%	51%			50%		49%	54%
vertebral	68%	51%		60%	47%			42%		44%	68%
yeast	59%		49%	57%	48%			47%		45%	48%
$20 news^1$	64%	60%		63%	50%			49%		52%	53%
speech	59%		53%	46%	51%		58%			58%	51%
20 news ⁵	56%	53%		58%	53%		54%			55%	47%
$20 news^4$	59%	54%		62%	52%					52%	51%
$20 news^3$	50%	52%		67%	52%		50%			52%	51%
Wilt	67%	89%		78%	47%			47%		40%	37%
$agnews^0$	63%	65%		60%	55%		51%			51%	58%
amazon	62%	54%		57%	55%		51%			52%	56%
census	63%	50%		55%	53%		56%			65%	53%
$CIFAR10^2$	61%	62%		56%	59%			53%		55%	56%
$MVTecAD^{screw}$	60%	55%		59%	54%		52%			61%	50%
ALOI	55%	74%	71%	55%	56%	56%	55%	54%		56%	55%
$MNISTC^{rotate}$	67%	74%	67%	58%	56%			54%		55%	56%
$CIFAR10^5$	67%	66%	59%	68%	59%	58%	59%	52%	60%	53%	50%
$agnews^3$	64%	75%	64%	66%	58%	55%	58%	55%	54%	57%	56%
lands at	77%	80%	75%	82%	64%	45%	58%	62%	48%	42%	56%
$SVHN^3$	65%	66%	60%	64%	57%	58%	61%	57%	54%	58%	52%
$CIFAR10^3$	67%	68%	63%	64%	62%	56%	59%	56%	59%	54%	59%
$agnews^1$	69%	83%	66%	70%	57%	55%	71%	55%	54%	56%	57%
$SVHN^9$	66%	66%	65%	62%	59%	59%	63%	55%	55%	59%	60%
yelp	67%	63%	63%	62%	59%	59%	52%	61%	57%	58%	60%
$SVHN^8$	70%	68%	66%	64%	60%	60%	60%	56%	54%	61%	59%
$CIFAR10^1$	75%	76%	61%	73%	59%	60%	71%	51%	59%	54%	55%
$SVHN^6$	65%	62%	61%	59%	63%	59%	63%	56%	59%	63%	51%
$SVHN^0$	76%	72%	69%	67%	64%	60%	62%	57%	58%	59%	61%
$SVHN^5$	70%	66%	65%	63%	63%	62%	63%	60%	57%	62%	59%
$SVHN^1$	68%	58%		66%	66%			62%		56%	58%
$20 news^0$	75%	75%		69%	61%		52%			58%	62%
$SVHN^2$	69%	66%		67%	62%			61%		63%	58%
Hepatitis	44%	64%		57%	50%					67%	58%
$SVHN^4$	66%	61%		61%	66%		63%			62%	58%
Pima	65%	65%		59%	68%			69%		66%	68%
fault	75%	60%		71%	70%		71%			61%	72%
$MNISTC^{translate}$	85%	89%		75%	61%		70%			62%	60%
$SVHN^7$	66%	64%		61%	64%			62%		61%	62%
$MVTecAD^{pill}$	62%	69%		68%	67%		60%			65%	60%
$CIFAR10^7$	69%		67%	63%	65%		67%			61%	57%
$agnews^2$	74%		73%	65%	67%		53%			60%	62%
$MNISTC^{scale}$	89%	91%		81%							72%
$MNISIC$ $MNISTC^{shear}$	89% 74%	91% 80%		67%	77% $69%$		77%			69% 67%	62%
FashionMNIST ⁶	82%	86%		74%	71%		77%			73%	68%
letter MVT - A Deapsule	90%	89%		75%	78%			58%		54%	78%
MVTecAD ^{capsule}	66%		71%	67%	73%		68%			68%	55%
$MVTecAD^{grid}$	65%	73%	77%	74%	69%	67%	78%	69%	67%	67%	57%

Table 31: AUC-PR Scores for each datasets and algorithm $(2/3|low\ performing\ algorithms)$

algorithms)										
Dataset	DEAN	GOAD	HBOS	ECOD	COPOD		NF	VAE	DAGMM	SOD
$\overline{MVTecAD^{metal}_{-nut}}$	67%	74%	60%	62%	60%	71%	56%	48%	50%	68%
SpamBase	68%	54%	76%	61%	63%	72%	77%	50%	55%	53%
celeba	68%	66%	78%	77%	76%	58%	73%	69%	59%	42%
opt digits	99%	48%	84%	47%	52%	46%	64%	46%	45%	35%
$CIFAR10^9$	77%	75%	62%	65%	63%	71%	53%	64%	63%	59%
$CIFAR10^8$	74%	78%	63%	65%	64%	75%	56%	65%	62%	57%
$CIFAR10^6$	77%	72%	65%	66%	65%	62%	60%	61%	56%	61%
Wave form	73%	74%	64%	58%	68%	65%	77%	39%	59%	51%
$MNISTC^{brightness}$	93%	57%	60%	60%	59%	65%	51%	58%	51%	47%
$CIFAR10^0$	76%	75%	69%	69%	68%	66%	73%	64%	57%	61%
$MVTecAD^{cable}$	67%	70%	72%	72%	71%	80%	56%	54%	50%	74%
$MNISTC^{canny}-^{edges}$	93%	44%	67%	63%	62%	65%	47%	81%	60%	41%
skin	97%	80%	66%	45%	44%	64%	85%	50%	76%	50%
campaign	73%	72%	80%	77%	78%	66%	74%	70%	54%	59%
Cardiotocography	84%	74%	63%	76%	67%	76%		59%	72%	46%
annthyroid	77%	49%	77%	79%	72%	57%	93%	69%	70%	61%
cover	50%	97%	65%	89%	85%	89%		50%	70%	32%
$MVTecAD^{carpet}$	74%	77%	77%	73%	76%	75%		59%	50%	71%
$MVTecAD^{hazelnut}$	68%	69%	78%	73%	76%	77%		70%	64%	69%
InternetAds	86%	80%	60%	75%	75%	43%		78%	64%	43%
$MNISTC^{shot}$ - noise	93%	63%	66%	67%	66%	82%		64%	56%	52%
$CIFAR10^4$	77%	79%	75%	76%	75%	76%		71%	56%	69%
$Fashion MNIST^8 \\$	93%	74%	67%	69%	68%	76%		64%	67%	52%
$MVTecAD^{toothbrush}$	72%	75%	85%	80%	75%	54%		63%	50%	87%
backdoor	94%	67%	58%	78%	73%	38%		93%	61%	62%
$MNISTC^{zigzag}$	95%	59%	73%	73%	71%	73%		65%	57%	60%
vowels	94%	90%	67%	62%	45%	65%		58%	51%	50%
donors	100%	46%	71%	84%	78%	39%		71%	85%	62%
satellite	77%	82%	89%	67%	71%	81%		50%	82%	55%
$Fashion MNIST^4$	90%	84%	65%	73%	68%	77%		68%	60%	54%
$MNISTC^{dotted_line}$	95%	59%	70%	71%	69%	72%		78%	67%	61%
$FashionMNIST^2$	92%	83%	58%	66%	61%	77%		60%	73%	53%
mnist	53%	91%	68%	68%	73%	81%		50%	72%	50%
PageBlocks	85%	74%	84%	87%	83%	75%		50%	91%	55%
magic.gamma	83%	81%	76%	67%	71%	73%		73%	73%	75%
$MVTecAD^{zipper}$	77%	75%	79%	77%	79%	75%		65%	50%	82%
$MVTecAD^{wood}$	74%	79%	79%	80%	80%	76%		80%	50%	76%
glass	89%	90%	86%	71%	79%	64%		68%	50%	82%
$MVTecAD^{transistor}$	75%	79%	83%	83%	83%	76%		80%	50%	76%
wine	99%	89%	85%	59%	71%	61%		99%	50%	35%
$MNISTC^{spatter}$	93%	78%	76%	75%	75%	79%		48%	77%	66%
$MNISTC^{motion}$ - blur	98%	73%	76%	73%	73%	82%		47%	72%	58%
$MVTecAD^{tile}$		84%	86%	84%	86%	82%		58%	50%	81%
$FashionMNIST^0$	79%	78%	73%	77%		82%		78%	71%	61%
	91%				74%					
$MNISTC^{fog} \ Fashion MNIST^3$	100%	81%	73%	74%	73%	78%		45%	71%	41%
	93%	83%	77%	79%	78%	82%		79%	62%	62%
http	100%	26%	86%	75%	85%	34%		100%		32%
Stamps	89%	89%	76%	82%	77%	78%		84%	71%	48%
Ionosphere	86%	80%	62%	74%	76%	69%		79%	50%	92%
mammography	84%	89%	82%	92%	92%	89%	12%	50%	88%	58%

Table 32: AUC-PR Scores for each datasets and algorithm (2/3|high performing algorithms)

algorithms)					~~~					_ ~	
Dataset	DEAN									D.SVDD	
$\overline{MVTecAD^{metal}_{-}^{nut}}$	67%	77%	78%	72%	77%		80%			71%	59%
SpamBase	68%	64%	75%	45%	70%	79%	66%			79%	72%
celeba	68%	45%	62%	49%	67%	81%			73%	76%	67%
optdigits	99%		100%		72%	46%	75%		100%	43%	97%
$CIFAR10^9$	77%	78%	72%	75%	70%	70%	73%		69%	68%	63%
$CIFAR10^{8}$	74%	76%	70%	74%	69%	70%			72%	66%	66%
$CIFAR10^6$	77%	76%	75%	75%	71%	70%	75%			72%	68%
Wave form	73%	84%	83%	68%	85%	62%	67%		85%	51%	76%
$MNISTC^{brightness}$	93%	98%	90%	81%	77%	70%			62%	73%	72%
$CIFAR10^0$	76%	74%	73%	76%	70%	72%	74%	68%	70%	74%	64%
$MVTecAD^{cable}$	67%	81%	82%	71%	74%	70%	75%	76%	74%	65%	63%
$MNISTC^{canny}-^{edges}$	93%	97%	91%	80%	78%	72%	79%	69%	63%	84%	68%
skin	97%	83%	100%	90%	79%	52%	80%	76%	76%	60%	51%
campaign	73%	53%	74%	76%	70%	77%	75%	73%	72%	71%	68%
Cardiotocography	84%	75%	74%	64%	75%	81%	55%	77%	82%	78%	84%
annthy roid	77%	81%	78%	83%	70%	84%	59%	91%	57%	84%	61%
cover	50%	100%	100%	98%	59%	90%	75%	78%	76%	78%	51%
$MVTecAD^{carpet}$	74%	81%	81%	73%	80%	78%	74%	78%	78%	76%	67%
$MVTecAD^{hazelnut}$	68%	85%	82%	75%	80%	76%	79%	78%	73%	77%	60%
InternetAds	86%	89%	86%	86%	80%	82%	76%		78%	82%	77%
$MNISTC^{shot}$ - noise	93%	94%	95%	79%	87%	77%			73%	80%	74%
$CIFAR10^4$	77%	77%	80%	78%	78%	78%	79%		76%	76%	64%
$Fashion MNIST^8 \\$	93%	93%	89%	73%	81%	76%	88%		70%	73%	78%
$MVTecAD^{toothbrush}$	72%	64%	88%	87%	86%	80%	88%		72%	79%	56%
backdoor	94%	96%	96%	91%	72%	58%			78%	61%	77%
$MNISTC^{zigzag}$	95%	96%	93%	88%	81%	84%	93%		72%	82%	73%
vowels	94%	96%	96%	98%	80%	63%	96%		82%	69%	89%
donors	100%	99%	100%		83%	82%			76%	68%	89%
satellite	77%	88%	90%	79%	89%	78%			89%	77%	71%
$Fashion MNIST^4$	90%	90%	89%	86%	84%	84%	86%		79%	84%	74%
$MNISTC^{dotted}$ - line	95%	96%	94%	86%	81%	81%	87%		75%	78%	71%
$FashionMNIST^2$	92%	90%	90%	90%	86%	83%	92%		73%	83%	78%
mnist	53%	96%	94%	96%	86%	90%			75%	88%	96%
PageBlocks	85%	92%	70%	96%	63%	91%	74%		71%	88%	58%
тадіс.gamma	83%	85%	86%	79%	79%	74%	88%		77%	72%	79%
$MVTecAD^{zipper}$	77%	88%	86%	89%	84%	81%	82%		80%	78%	70%
$MVTecAD^{wood}$	74%	83%	84%	79%	83%	83%	80%		80%	84%	60%
glass	89%	88%	100%		100%		61%		61%	67%	72%
$MVTecAD^{transistor}$	75%	88%		81%	83%		78%			79%	66%
	99%	99%	99%	83%	99%	85%		74%		86%	100%
$wine \\ MNISTC^{spatter}$	93%	97%	94%	87%	87%		93%			85%	77%
$MNISTC$ $MNISTC$ $motion_blur$											
$MNTSIC$ – $MVTecAD^{tile}$	98%	98%	96%	91%	86%		97%			85%	83%
	79%	88%	88%	77%	88%				83%	79%	58%
$FashionMNIST^0$	91%	91%	92%	91%	86%				78%	80%	81%
$MNISTC^{fog}$	100%		100%		95%		98%			85%	93%
$Fashion MNIST^3$	93%	93%	92%		87%				81%	89%	78%
http	100%	59%	100%		91%	99%			100%	99%	99%
Stamps	89%	89%	91%	98%	90%				83%	89%	86%
Ionosphere	86%	91%	94%	94%	95%	89%			84%	85%	88%
mammography	84%	86%	88%	74%	85%	91%	86%	90%	89%	91%	92%

Table 33: AUC-PR Scores for each datasets and algorithm (3/3|low performing algorithms)

Dataset	DEAN	GOAD	HBOS	ECOD	COPOD	LODA	NF	VAE	DAGMM	SOD
\overline{musk}	53%	74%	100%	97%	95%	99%	76%	50%	92%	31%
pendigits	99%	84%	92%	90%	87%	96%	58%	88%	56%	37%
smtp	92%	89%	88%	91%	93%	92%	96%	36%	89%	65%
$MNISTC^{glass}$ - blur	100%	89%	86%	84%	83%	93%	79%	49%	63%	52%
cardio	89%	94%	85%	90%	89%	89%	91%	91%	69%	48%
shuttle	100%	87%	99%	99%	100%	90%	32%	50%	95%	42%
WBC	99%	99%	99%	100%	100%	94%	71%	99%	50%	70%
satimage 2	100%	86%	98%	98%	98%	99%	53%	50%	99%	53%
$MVTecAD^{bottle}$	96%	95%	97%	93%	97%	96%	93%	31%	50%	97%
WDBC	100%	93%	99%	98%	100%	100%	75%	50%	77%	79%
thyroid	98%	73%	99%	98%	90%	91%	99%	86%	83%	58%
$Fashion MNIST^5$	96%	97%	93%	94%	93%	96%	77%	82%	68%	76%
$MNISTC^{stripe}$	100%	86%	98%	96%	96%	99%	55%	86%	65%	51%
Lymphography	100%	100%	100%	100%	100%	96%	82%	94%	50%	49%
$Fashion MNIST^1$	99%	93%	91%	92%	91%	95%	75%	92%	73%	74%
fraud	94%	94%	97%	97%	96%	97%	95%	97%	95%	67%
$Fashion MNIST^9$	98%	97%	94%	95%	94%	95%	78%	93%	84%	81%
breastw	100%	99%	99%	99%	100%	99%	94%	100%	50%	88%
$MVTecAD^{leather}$	99%	99%	99%	97%	98%	91%	95%	82%	50%	98%
$MNISTC^{impulse}$ - noise	100%	100%	98%	97%	96%	100%	84%	95%	97%	44%
$Fashion MNIST^7$	98%	97%	96%	96%	96%	97%	94%	93%	91%	90%
Average	78%	70%	69%	69%	68%	68%	64%	62%	61%	57%
Rank	5.72	10.90	12.34	12.62	12.95	12.14		14.95	15.38	16.28

Table 34: AUC-PR Scores for each datasets and algorithm (3/3|high performing algorithms)

Dataset	DEAN	LOF	KNN	NeuTral	CBLOF	PCA	DTE	IFor	OCSVM	D.SVDD	AE
\overline{musk}	53%	100%	100%	99%	100%	100%	43%	96%	75%	100%	100%
pendigits	99%	98%	100%	61%	98%	90%	98%	96%	91%	78%	84%
smtp	92%	95%	95%	77%	90%	89%	92%	80%	88%	87%	65%
$MNISTC^{glass}$ - blur	100%	99%	100%	94%	97%	95%	99%	91%	89%	95%	93%
cardio	89%	91%	90%	85%	89%	94%	90%	93%	91%	97%	91%
shuttle	100%	100%	99%	98%	98%	99%	75%	100%	100%	99%	99%
WBC	99%	92%	99%	73%	99%	99%	45%	99%	99%	97%	98%
satimage 2	100%	99%	100%	97%	100%	99%	75%	99%	97%	83%	99%
$MVTecAD^{bottle}$	96%	97%	97%	93%	97%	97%	97%	97%	97%	97%	87%
WDBC	100%	100%	100%	95%	100%	100%	40%	100%	100%	100%	100%
thy roid	98%	98%	97%	98%	92%	98%	93%	99%	88%	98%	85%
$Fashion MNIST^5$	96%	95%	97%	96%	96%	96%	96%	95%	96%	95%	90%
$MNISTC^{stripe}$	100%	100%	100%	98%	100%	100%	100%	99%	97%	100%	99%
Lymphography	100%	97%	100%	71%	100%	100%	94%	100%	100%	100%	100%
$Fashion MNIST^1$	99%	98%	98%	98%	94%	96%	98%	94%	94%	96%	96%
fraud	94%	71%	98%	92%	97%	97%	97%	96%	97%	96%	97%
$Fashion MNIST^9$	98%	98%	98%	96%	97%	96%	98%	95%	96%	96%	92%
breastw	100%	92%	100%	83%	100%	99%	89%	100%	99%	98%	99%
$MVTecAD^{leather}$	99%	98%	99%	97%	99%	99%	99%	99%	99%	98%	97%
$MNISTC^{impulse}$ - noise	100%	100%	100%	98%	100%	100%	100%	99%	100%	100%	100%
$Fashion MNIST^7 \\$	98%	98%	98%	95%	97%	97%	97%	97%	97%	96%	90%
Average	78%	80%	80%	75%	75%	73%	73%	72%	72%	72%	70%
Rank	5.72	4.88	4.57	7.87	7.33	8.62	8.19	9.61	10.24	9.91	11.31

References

- Bergman, L., Hoshen, Y.: Classification-based anomaly detection for general data. In: ICLR 2020 (2020), https://openreview.net/forum?id=H1lK lBtvS
- Bounsiar, A., Madden, M.G.: One-class support vector machines revisited. In: 2014 International Conference on Information Science Applications (ICISA). pp. 1–4 (2014). https://doi.org/10.1109/ICISA.2014.6847442
- 3. Breunig, M., Kröger, P., Ng, R., Sander, J.: Lof: Identifying density-based local outliers. vol. 29, pp. 93–104 (06 2000). https://doi.org/10.1145/342009.335388
- Callegari, C., Gazzarrini, L., Giordano, S., Pagano, M., Pepe, T.: A novel pcabased network anomaly detection. pp. 1 – 5 (07 2011). https://doi.org/10.1109/ icc.2011.5962595
- Cunningham, P., Delany, S.: k-nearest neighbour classifiers. Mult Classif Syst 54 (04 2007). https://doi.org/10.1145/3459665
- 6. Goldstein, M., Dengel, A.R.: Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm (2012)
- Han, S., Hu, X., Huang, H., Jiang, M., Zhao, Y.: Adbench: Anomaly detection benchmark. In: NeurIPS (2022)
- He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recognition Letters 24(9), 1641–1650 (2003). https://doi.org/https://doi.org/10.1016/S0167-8655(03)00003-5
- 9. Kingma, D., Welling, M.: Auto-encoding variational bayes (2014)
- Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: Outlier detection in axis-parallel subspaces of high dimensional data. In: Advances in Knowledge Discovery and Data Mining. pp. 831–838 (2009)
- Li, Z., Zhao, Y., Botta, N., Ionescu, C., Hu, X.: Copod: Copula-based outlier detection. In: 2020 IEEE International Conference on Data Mining (ICDM) (2020). https://doi.org/10.1109/ICDM50108.2020.00135
- 12. Li, Z., Zhao, Y., Hu, X., Botta, N., Ionescu, C., Chen, G.: Ecod: Unsupervised outlier detection using empirical cumulative distribution functions (01 2022)
- 13. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: ICDM (2008)
- 14. Livernoche, V., Jain, V., Hezaveh, Y., Ravanbakhsh, S.: On diffusion modeling for anomaly detection. In: ICLR 2024 (2024), https://openreview.net/forum?id=lR3rk7ysXz
- Lu, Z., Pu, H., Wang, F., Hu, Z., Wang, L.: The expressive power of neural networks: a view from the width. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. p. 6232–6240. NIPS'17, Curran Associates Inc., Red Hook, NY, USA (2017)
- Pevný, T.: Loda: Lightweight on-line detector of anomalies. Mach. Learn. 102(2) (feb 2016). https://doi.org/10.1007/s10994-015-5521-0
- Qiu, C., Pfrommer, T., Kloft, M., Mandt, S., Rudolph, M.: Neural transformation learning for deep anomaly detection beyond images (2022), https://arxiv.org/abs/ 2103.16440
- 18. Rezende, D.J., Mohamed, S.: Variational inference with normalizing flows. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning Volume 37. p. 1530–1538. ICML'15, JMLR.org (2015)
- Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: ICML (2018)
- 20. Sakurada, M., Yairi, T.: Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd Workshop on

- Machine Learning for Sensory Data Analysis. p. 4–11. MLSDA'14 (2014). https://doi.org/10.1145/2689746.2689747
- 21. W Flores, A., Bechtel, K., Lowenkamp, C.: False positives, false negatives, and false analyses: A rejoinder to "machine bias: There's software used across the country to predict future criminals. and it's biased against blacks.". Federal probation 80 (09 2016)
- 22. Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., ki Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018), https://api.semanticscholar.org/CorpusID:51805340