Double Turán Problem

Ray Tsai

November 2024

Contents

1	Introduction		2
	1.1	Definitions and Notation	2
	1.2	Problem Statement	2
2	Induced Case		3
	2.1	Triangle F	3
	2.2	Non-bipartite F	4
	General Case		6
	3.1	Triangle F	7
	3 2	Binartite F	8

1 Introduction

1.1 Definitions and Notation

Let G = (V, E) be a graph. Let V(G) = V denote the vertex set and E(G) = E denote the edge set of G. We note by v(G) = |V| the number of vertices and e(G) = |E| the number of edges in G. For vertex $v \in V(G)$, we denote by $N_G(v) = \{u \in V(G) : \{u, v\} \in E(G)\}$ the neighborhood of v.

Given G_1, \ldots, G_m subgraphs of G, we denote G_{i_1,\ldots,i_k} as the subgraph of G with edge set $E(G_{i_1,\ldots,i_k}) = \bigcap_{\alpha=1}^k E(G_{\alpha})$.

In this thesis, we reserve n to denote the number of vertices in a graph. Given a graph F, we denote $\operatorname{ex}(n,F)$ to be the extremal number for F on a graph with n vertices, i.e. the maximum number of edges in a n-vertex graph that does not contain F as a subgraph. We define the Turán density of F as

$$\pi(F) := \lim_{n \to \infty} \frac{\operatorname{ex}(n, F)}{\binom{n}{2}}.$$

1.2 Problem Statement

Given graph G with n vertices, let G_1, \ldots, G_m be subgraphs of G. Let F be a graph with at least one edge. Our goal is to determine the maximum sum of the number of edges over all G_i 's, i.e. $\sum_{i=1}^m e(G_i)$, with the constraint of $E(G_i) \cap E(G_j)$ not including some graph F for all distinct i, j.

In this thesis, we mainly put our attention on the case where F is non-bipartite. We will first consider the case where G_1, \ldots, G_m are induced subgraphs, and then shift our focus to the general case. At the end, we will discuss the case where F is bipartite.

2 Induced Case

In this section, we assume that G_1, \ldots, G_m are induced subgraphs of G. Given graph H, let $\mathcal{T}(H)$ be the graph with an additional vertex connecting to all vertices in H.

We first show a simplier case where F is a triangle.

2.1 Triangle F

Theorem 2.1. Suppose that $E(G_i) \cap E(G_j)$ does not include K_3 for distinct i, j. Then

$$\sum_{i=1}^{n} e(G_i) \le n \left\lfloor \frac{n^2}{4} \right\rfloor,\,$$

with equality if and only if $G_1 = G_2 = \cdots = G_n = K_{\lceil \frac{n}{2} \rceil, \lceil \frac{n}{2} \rceil}$.

Lemma 2.1.1. Suppose $E(G_1) \cap E(G_2)$ does not include K_3 . Then

$$e(G_1) + e(G_2) \le 2 \left\lfloor \frac{n^2}{4} \right\rfloor,$$

with equality if and only if $G_1 = G_2 = K_{\lceil \frac{n}{2} \rceil, \lfloor \frac{n}{2} \rfloor}$, unless n is odd and $G_1 = K_{\lceil \frac{n-1}{2} \rceil, \lfloor \frac{n-1}{2} \rfloor}$ and $G_2 = \mathcal{T}(K_{\lceil \frac{n-1}{2} \rceil, \lfloor \frac{n-1}{2} \rfloor})$.

Proof. Let $C = V(G_1) \cap V(G_2)$, the set of vertices in both G_1 and G_2 . Let $A = V(G_1) \setminus C$, and let $B = V(G_2) \setminus C$. For simplicity, put a = |A|, b = |B|, and c = |C|. We may assume that a + b + c = n.

We now find an upper bound of $e(G_1) + e(G_2)$ with respect to a, b, c. Since G_1, G_2 are induced graphs, we have $\{u, v\} \in E(G_1)$ if and only if $\{u, v\} \in E(G_2)$, for $u, v \in C$. This implies the subgraph of G_1 induced by C is identical to the subgraph of G_2 induced by C. In other words, $E(G_1[C]) = E(G_2[C]) = E(G_i) \cap E(G_j)$, which is triangle-free. By Mantel's Theorem, $e(G_1[C]) \leq \left\lfloor \frac{c^2}{4} \right\rfloor$, with equality if and only if $G_1[C] = K_{\left\lceil \frac{c}{2} \right\rceil, \left\lfloor \frac{c}{2} \right\rfloor}$. Hence, we may write

$$e(G_1) + e(G_2) \le {|V(G_1)| \choose 2} + {|V(G_2)| \choose 2} - 2\left[{c \choose 2} - \left\lfloor \frac{c^2}{4} \right\rfloor\right]$$

$$= {a+c \choose 2} + {b+c \choose 2} - 2\left[{c \choose 2} - \left\lfloor \frac{c^2}{4} \right\rfloor\right]. \tag{2.1}$$

Define f(a, b, c) as the function on the right-hand-side of (1). We show that f(a, b, c) attains its maximum at a = b = 0 and c = n. Note that

$$f(a, b-2, c+2) - f(a, b, c) = {a+c+2 \choose 2} - {a+c \choose 2}$$
$$-2\left[{c+2 \choose 2} - {c \choose 2} - \left\lfloor \frac{(c+2)^2}{4} \right\rfloor + \left\lfloor \frac{c^2}{4} \right\rfloor\right]$$
$$= 2(a+c) + 1 - 2[2c+1 - (c+1)]$$
$$= 2a+1 > 0.$$

By symmetry, f(a-2,b,c+2) > f(a,b,c), and thus f attains its maximum when c is n-1 or n, that is, $a+b \le 1$. Equation (1) now yields,

$$e(G_1) + e(G_2) \le f(a, b, c) \le 2 \left| \frac{n^2}{4} \right|.$$

Assume that a=0. When c=n, the equality holds only if $G_1=G_2=K_{\left\lceil\frac{n}{2}\right\rceil,\left\lfloor\frac{n}{2}\right\rfloor}$. If c=n-1, then the equality holds only if n is odd and $G_1=G[C]=K_{\left\lceil\frac{n-1}{2}\right\rceil,\left\lfloor\frac{n-1}{2}\right\rfloor}$ and G_2 is G_1 with all vertices connected with the only remaining vertex, that is, $G_2=\mathcal{T}(K_{\left\lceil\frac{n-1}{2}\right\rceil,\left\lfloor\frac{n-1}{2}\right\rfloor})$.

We now prove Theorem 2.1.

Proof of Theorem 2.1. We may assume that n > 1. Put $G_{n+i} = G_i$. By Lemma 3.2,

$$\sum_{i=1}^{n} e(G_i) = \frac{1}{2} \sum_{i=1}^{n} (e(G_i) + e(G_{i+1})) \le \frac{1}{2} \sum_{i=1}^{n} 2 \left\lfloor \frac{n^2}{4} \right\rfloor = n \left\lfloor \frac{n^2}{4} \right\rfloor.$$

Suppose the equality holds. By Lemma 3.2, we are done if n is even. Suppose n is odd and $G_i = \mathcal{T}(K_{\lceil \frac{n-1}{2} \rceil, \lfloor \frac{n-1}{2} \rfloor})$ for some i. By Lemma 3.2, one of G_i and G_{i+1} is $K_{\lceil \frac{n-1}{2} \rceil, \lfloor \frac{n-1}{2} \rfloor}$ and the other is $\mathcal{T}(K_{\lceil \frac{n-1}{2} \rceil, \lfloor \frac{n-1}{2} \rfloor})$, for all i. Hence,

$$G_{i+1} = K_{\lceil \frac{n-1}{2} \rceil, \lceil \frac{n-1}{2} \rceil}, G_{i+2} = \mathcal{T}(K_{\lceil \frac{n-1}{2} \rceil, \lceil \frac{n-1}{2} \rceil}), \dots$$

and the alternation proceeds. But then $G_{n+i} = G_i = K_{\lceil \frac{n-1}{2} \rceil, \lfloor \frac{n-1}{2} \rfloor}$ as n is odd, and this contradiction completes the proof.

2.2 Non-bipartite F

Theorem 2.2. Let F be (r+1)-colorable, with $r \geq 2$. Suppose that $E(G_i) \cap E(G_j)$ is F-free for distinct i, j. For large enough n,

$$\sum_{i=1}^{n} e(G_i) \le n \cdot \exp(n, F),$$

with equality if and only if $G_1 = G_2 = \cdots = G_n$ are n-vertex extremal graphs for F.

By the same argument as in Theorem 2.1, it suffices to prove the following lemma:

Lemma 2.2.1. Let F be (r+1)-colorable, with $r \geq 2$. Suppose $E(G_1) \cap E(G_2)$ does not include F. For large enough n,

$$e(G_1) + e(G_2) \le 2 \cdot \operatorname{ex}(n, F),$$

with equality if and only if $G_1 = G_2$ are n-vertex extremal graphs for F, unless n is odd, G_1 is an (n-1)-vertex extremal graph for F, and $G_2 = \mathcal{T}(G_1)$.

Proof. TODO: fix this proof. Let $C = V(G_1) \cap V(G_2)$, the set of vertices in both G_1 and G_2 . Let $A = V(G_1) \setminus C$, and let $B = V(G_2) \setminus C$. For simplicity, put a = |A|, b = |B|, c = |C|, and $r = \chi(F)$.

We now find an upper bound of $e(G_1) + e(G_2)$ with respect to a, b, c. Since G_1, G_2 are induced graphs, we have $E(G_1[C]) = E(G_2[C]) = E(G[C]) = E(G_i) \cap E(G_j)$, which is F-free. Hence, we may write

$$e(G_1) + e(G_2) \le {a+c \choose 2} + {b+c \choose 2} - 2\left[{c \choose 2} - \exp(c, F)\right].$$
 (2.2)

Define f(a, b, c) as the function on the right-hand-side. We show that f(a, b, c) attains its maximum at a = b = 0 and c = n. By a theorem of Simonovits, for large enough c, $ex(c, F) = ex(c, K_{r+1}) + ex(c, \tilde{F})$, where \tilde{F} is the family of residue subgraphs of F after F is embedded into $T_r(c)$. Hence, we may write

$$f(a, b-2, c+2) - f(a, b, c) = {a+c+2 \choose 2} - {a+c \choose 2}$$
$$-2\left[{c+2 \choose 2} - {c \choose 2} - \exp(c+2, F) + \exp(c, F)\right]$$
$$\ge 2a - 2c - 1 + 2\left[\exp(c+2, K_{r+1}) - \exp(c, K_{r+1})\right] > 0,$$

as shown in the proof of Lemma 3.4. By symmetry, we also have f(a-2,b,c+2) > f(a,b,c). Thus, f attains its maximum when c is n-1 or n. Equation (5) now yields,

$$e(G_1) + e(G_2) \le \max[2 \cdot \exp(n, F), 2 \cdot \exp(n - 1, F) + n - 1].$$

Assume that a = 0. Since

$$2 \cdot \exp(n, F) - [2 \cdot \exp(n - 1, F) + n - 1] \ge 2[\exp(n, K_{r+1}) - \exp(n - 1, K_{r+1})]$$
 (2.3)

$$-n+1 \tag{2.4}$$

$$= 2\left(n - \left\lceil \frac{n}{r} \right\rceil\right) - n + 1$$

$$\geq n + 1 - 2\left\lceil \frac{n}{2} \right\rceil \geq 0,$$

$$(2.5)$$

we have

$$e(G_1) + e(G_2) \le 2 \cdot ex(n, F).$$
 (2.6)

If c = n, the equality for (9) holds only if $G_1 = G_2$ are *n*-vertex extramal graphs for F. Suppose c = n - 1 and the equality holds. Observe that equation (6) is equal to zero only when r = 2 and n is odd. Hence, if c = n - 1, the equality for (9) could only be achieved when r = 2, n is odd, G_1 is an (n - 1)-vertex extremal graph for F, and $G_2 = \mathcal{T}(G_1)$. \square

3 General Case

We now relax the assumption that G_1, \ldots, G_m are induced subgraphs. The trivial construction of putting $G_1 = K_n$ and G_2, \ldots, G_m to be extremal graphs for F yields the lower bound

$$\sum_{i=1}^{m} e(G_i) = \binom{n}{2} + (m-1)ex(n, F). \tag{3.1}$$

In this section we examine whether this bound is tight. The following is an asymptotic result on the number of G_i 's:

Theorem 3.1. Suppose that $E(G_i) \cap E(G_j)$ does not include r-vertex graph F for distinct i, j. Then for large enough n,

$$\sum_{i=1}^{m} e(G_i) \le m(1 + o_m(1)) \exp(n, F),$$

as $m \to \infty$.

Proof. Fix $\epsilon > 0$. Reorder the G_i 's such that $G_1, \ldots, G_{m'}$ are all the G_i 's containing at least $(\pi_n(F) + \epsilon)\binom{n}{2}$ edges. A theorem of Simonovits states that G contains at least δn^r copies of F for some $\delta = \delta(\epsilon)$. Since there can be at most $\binom{n}{r}$ copies of F across all G_i 's, we have

$$m'\delta n^r \le \binom{n}{r} \le n^r \implies m' \le \frac{1}{\delta}.$$

It now follows that

$$\sum_{i=1}^{m} e(G_i) \le \sum_{i=1}^{m'} e(G_i) + \sum_{i=m'+1}^{m} e(G_i)$$

$$\le m' \binom{n}{2} + (m - m')(\pi_n(F) + \epsilon) \binom{n}{2}$$

$$\le m \left[\pi_n(F) + \epsilon - \frac{m'}{m} (1 - \pi_n(F) - \epsilon) \right] \binom{n}{2}$$

$$= m(1 + o_m(1)) \operatorname{ex}(n, F),$$

as $m \to \infty$.

3.1 Triangle F

Consider F to be a triangle. Simply counting the number of triangles in each G_i shows the following:

Theorem 3.2. For any $\epsilon > 0$, if $E(G_i) \cap E(G_j)$ does not include K_3 for distinct i, j, then

$$\sum_{i=1}^{m} e(G_i) < m(1+\epsilon) \frac{n^2}{4} + (1-\epsilon) \frac{n^2}{2\epsilon}.$$

Claim 3.2.1. There are less than $\frac{2}{\epsilon}$ number of G_i 's with $e(G_i) \geq (1+\epsilon)\frac{n^2}{4}$.

Proof. Suppose $e(G_i) \geq (1+\epsilon)\frac{n^2}{4}$ for $1 \leq i \leq k$. Let $K_3(G)$ denote the number of triangles in graph G. By the Moon-Moser inequality,

$$K_3(G_i) \ge \epsilon (1+\epsilon) \frac{n^3}{12}.$$

Since there are no overlapping traingles from different G_i 's,

$$\binom{n}{3} \ge \sum_{i=1}^{k} K_3(G_i) \ge \frac{\epsilon(1+\epsilon)}{12} k n^3.$$

Rearranging yields $k < \frac{2}{\epsilon}$.

By the claim,

$$\sum_{i=1}^{m} e(G_i) < \frac{2}{\epsilon} \binom{n}{2} + \left(m - \frac{2}{\epsilon}\right) (1+\epsilon) \frac{n^2}{4} \le m(1+\epsilon) \frac{n^2}{4} + (1-\epsilon) \frac{n^2}{2\epsilon},$$

which proves Theorem 3.2.

It can be easily shown that the bound in Theorem 3.2 is tight when m=2, as

$$e(G_1) + e(G_2) \le \binom{n}{2} + e(G_{1,2}) \le \binom{n}{2} + \left| \frac{n^2}{4} \right|.$$

This result is also true for m = 3:

Proposition 3.3. Let G_1, G_2, G_3 be subgraphs of some G such that no triangle is contained in any two graphs, then

$$e(G_1) + e(G_2) + e(G_3) \le \binom{n}{2} + \frac{n^2}{2}.$$

Proof. Define $H_k \subseteq G$ be the graph with edges contained in at least k number of G_i 's and note that $e(G_1) + e(G_2) + e(G_3) = e(H_1) + e(H_2) + e(H_3)$. Thus it suffices to show that $e(H_2) + e(H_3) \le \frac{n^2}{2}$. Notice H_2 must not contain any triangles with two edges in H_3 , so

$$e(H_2) + e(H_3) \le \binom{n}{2} + e(H_3) - |\{\{u, v\} : u \ne v, N_{H_3}(u) \cap N_{H_3}(v) \ne \emptyset\}|.$$

Let H_3' be the graph with the same vertex set as H_3 and edge set $\{\{u,v\}: u \neq v, N_{H_3}(u) \cap N_{H_3}(v) \neq \emptyset\}$. It suffices to show that $\frac{n}{2} \geq e(H_3) - e(H_3')$.

Let $d_1 \geq d_2 \geq \cdots \geq d_n$ and $f_1 \geq f_2 \geq \cdots \geq f_n$ each be the degree sequence of H_3 and H_3' , respectively. We show that $f_i \geq d_i - 1$ for all i. Let v_i denote the vertex in H with degree d_i and u_i be the vertex in H with degree f_i . Let $S_i = |N_{H_3}(v_1) \cup \cdots \cup N_{H_3}(v_i)|$. Since

$$\sum_{u \in S_i} d_{H_3}(u) \ge d_1 + \dots + d_i,$$

we have that $|S_i| \geq i$. But then $S_i \setminus \{u_1, \ldots, u_{i-1}\}$ is non-empty, and every $u \in S_i$ has degree $d_{H'_3}(u) \geq d_i - 1$. Hence, $f_i \geq d_i - 1$ for all i, which yields

$$e(H_3') = \frac{1}{2} \sum_{i=1}^n f_i \ge \frac{1}{2} \sum_{i=1}^n (d_i - 1) = e(H_3) - \frac{n}{2}.$$

However, the bound in Proposition 3.1 is not tight for $m \ge 4$, as shown in the following graph:

The number on each edge denotes the set of G_i 's that contain the edge.

The above graph contains 29 edges, which exceeds the bound $\binom{5}{2} + 3\lfloor \frac{5^2}{4} \rfloor = 28$ by 1. By blowing up the above graph, we can construct a graph with $n \in 10\mathbb{Z}$ vertices that contains

$$5\binom{n/5}{2} + 29 \cdot \frac{(n/5)^2}{4}$$

edges, which exceeds the bound $\binom{n}{2} + 3\lfloor \frac{n^2}{4} \rfloor$ by $\frac{n^2}{100}$.

3.2 Bipartite F