Scan dine Polygon:

Polygon 7

properties - It consist of line regments.

-) It must be closed circuit.

Types of Polygon 5

Complex Polygon;

to create the complex.

11/ Intersection crossoner is must

* Convex Polygon: If the two interior points of the line lies inside the polygon then it is

* Concare Polygon: of the two interior points of the line lies outside the polygon then it is called concane polygon

Eg:

if the angle of polygon is less than 180° then it is called as convex polygon

it is called concane greater than 180°

anside Test Polygon: -

4) It is used to identify the pixel/pts. is neither the polygion er outside the polygon.

Algoof Ray Casting: -

- 1 Dean the horizontal line from the point
- 2) Count the no. of times the line intersect with the edge.
- 3) of the number of count is number = = odd then it is inside

else mumber == even then it is outside

Point &	Lutersection	lied at
- P ₁	3 (odd)	duside
P ₂	2 (even)	outside
]

i. P, lies inside the polygon P2 lies outside the polygon

Special Case: - If the line pass / cross at the nestex of crosssection point of the two lines.

we use:

Mending Number Algerithm:

- 1) Check the respective line segment of that
- check the other end of the line segment
- check if both point is same side, consider even different side of the line segment, consider
- count the no. of intersection = 8.

Respective Line => not same side = odd

Intersection = 1

Then > I + odd = even.

.. P_l lies outside the polygon

<u>g</u> 2

Respectue Line => Same side > even

Intersection = 1

Then, It even = odd.

i. P, lies inside the polygon

Boundary fill Algorithm 5 -

- Ly color fill algorithm
- 4) Boundary color is different
- 1) nuttin the polygon color is different.

Let 'P' take the point inside the polygon

- (2) start with co-ordinate (x,y)
- (3) 'inside color is 'F' < fill color
- (4) boundary color is 'b'

Points to remember before going to algo: -

	(n, y+1)	
61-114)	(M/A)	(71+1, y)
	(M 17-1)	

4 connected

(n-1, y+1)	(21y+1)	(n+1,y+1)
(1-1 y)	(71.4)	(2H, y)
(M-1, y-1)	(114-1)	(oc+1, y-1)

& connected

9

boundary (x, y, F, b)§

if (get pixel(x, y)) = b (get pixel(x, y)) = F§

						1-7
	1					
	R	R	R	R		
	R			R		
	R			R		
	R			R	R	R
-	R	R	R			R
			R			R
			R	R	R	R
				-	1	

putpixel (n, y, F)

, convected

boundary (x+1, y, F, b)

boundary (x, y+1, F, b)

boundary (x-1, y, F, b)

boundary (x, y-1, F, b)

boundary (x-1, y-1, F,b)

boundary (x-1, y+1, F,b)

boundary (x+1, y+1, F,b)

koundary (x+1, y-1, F,b)

8-connected Pixel algorithm Flood fill Algorithm:

Flood (x, y, N, Q)

Algorithm:

Flood (x, y, N, Q)

if	(get pixel	, K	y)==	0-)
S				

	V		•	
ξ				
_				
	Flood (x+1	171	N,Q)	
	Flood (n			

Flood (x+1, y, N, Q)

Flood (x-1, y, N, Q)

Flood (x-1, y-1, N, Q)

Flood (x-1, y-1, N, Q)

Flood (x-1, y-1, N, Q) Flood (x-1, y+1, N,0) Flood (n+1, y-1, N, 0) Flood (n-1, y+1, N, 0)

-	1						17
-		•	R	R	R		
-		R		-	9		
		R			9	9	R
		R	9	4			R
				9	0		8
				R	K	K	1
-					-		
					-		