# Dimensionality Reduction

Machine Learning and Deep Learning Lesson #2



#### Multimedia DBs

- Many multimedia applications require efficient indexing in highdimensions (time-series, images and videos, etc)
- Answering similarity queries in high-dimensions is a difficult problem due to "curse of dimensionality"
   A solution is to use Dimensionality reduction
- The main idea: reduce the dimensionality of the space.
- Project the d-dimensional points in a k-dimensional space so that:
  - k << d</li>
  - distances are preserved as well as possible
- Solve the problem in low dimensions

# Multi-Dimensional Scaling (MDS)

Map the items in a k-dimensional space trying to minimize the stress

$$stress = \sqrt{\frac{\sum_{i,j} (\hat{d}_{i,j} - d_{i,j})^2}{\sum_{i,j} d_{i,j}^2}} with$$

$$d_{i,j} = |o_j - o_i|$$

$$\hat{d}_{i,j} = |\hat{o}_j - \hat{o}_i|$$

#### Steepest Descent algorithm:

- Start with an assignment
- Minimize stress by moving points
- But the running time is O(N2) and O(N) to add a new item

- Given a metric distance matrix D, embed the objects in a k-dimensional vector space using a mapping F such that
  - D(i,j) is close to D'(F(i),F(j))
- Two types of mapping according to distances (Embedding):
  - Isometric mapping:
    - D'(F(i),F(j)) = D(i,j)
  - Contractive mapping:
    - D'(F(i),F(j)) <= D(i,j)

Where d'is some Lp measure

- Two types of embeddings according to warping technique
  - Linear -> data points are projected by a liear transformation (PCA)
  - Non linear -> data points are projected non linearly (Laplacian ISOMAP, T-sne)

# **PCA Algorithm**

- PCA algorithm:
  - 1. X ← Create N x d data matrix, with one row vector x<sub>n</sub> per data point
  - 2. X subtract mean x from each row vector  $x_n$  in X
  - 3.  $\Sigma \leftarrow$  covariance matrix of X
  - Find eigenvectors and eigenvalues of  $\Sigma$
  - PC's ← the M eigenvectors with largest eigenvalues

#### Geometric Rationale of PCA

- objective of PCA is to rigidly rotate the axes of this p-dimensional space to new positions (principal axes) that have the following properties:
- ordered such that principal axis 1 has the highest variance, axis 2 has the next highest variance, ...., and axis p has the lowest variance
- covariance among each pair of the principal axes is zero (the principal axes are uncorrelated).
   PCA principal AXIS





# How many components?

Check the distribution of eigen-values

• Take enough eigenvectors to cover 80-90% of the variance



# **Example Sensor networks**



Sensors in Intel Berkeley Lab

# Pairwise link quality vs. distance



### PCA in action

- Given a 54x54 matrix of pairwise link qualities
- Do PCA
- Project down to 2 principal dimensions
- PCA discovered the map of the lab



#### Problems and limitations of PCA

- What if very large dimensional data?
  - e.g., Images (d ≥ 10<sup>4</sup>)
- Problem:
  - Covariance matrix Σ is size (d²)
  - $d=10_4 \rightarrow |\Sigma| = 10^8$
- Singular Value Decomposition (SVD)!
  - efficient algorithms available
  - some implementations find just top N eigenvectors

# Laplacian Eigenmaps

#### Manifold

• A manifold is a **topological space** which is **locally Euclidean.** In general, any object which is nearly "flat" on small scales is a manifold.

Examples of 1-D manifolds include a line, a circle, and two separate circles.



cross surface Klein Bottle



An embedding is a **representation of a topological object,** manifold, graph, field, etc. in a certain space in such a way that its connectivity or algebraic properties are preserved.

Examples:



An embedding is a **representation of a topological object**, manifold, graph, field, etc. in a certain space in such a way that its connectivity or algebraic properties are preserved.

Examples: Real Rational

An embedding is a **representation of a topological object**, manifold, graph, field, etc. in a certain space in such a way that its connectivity or algebraic properties are preserved.



An embedding is a **representation of a topological object**, manifold, graph, field, etc. in a certain space in such a way that its connectivity or algebraic properties are preserved.



An embedding is a **representation of a topological object**, manifold, graph, field, etc. in a certain space in such a way that its connectivity or algebraic properties are preserved.



An embedding is a **representation of a topological object,** manifold, graph, field, etc. in a certain space in such a way that its connectivity or algebraic properties are preserved.

#### Examples:



- Manifold: generalized "subspace" in Rn
- Points in a local region on a manifold can be indexed by a subset of  $\mathbf{R}^k$  (k<<n)



- Manifold: generalized "subspace" in Rn
- Points in a local region on a manifold can be indexed by a subset of  $\mathbf{R}^k$  (k<<n)



- Manifold: generalized "subspace" in Rn
- Points in a local region on a manifold can be indexed by a subset of  $\mathbf{R}^k$  (k<<n)



- Manifold: generalized "subspace" in Rn
- Points in a local region on a manifold can be indexed by a subset of  $\mathbf{R}^k$  (k<<n)



- Manifold: generalized "subspace" in Rn
- Points in a local region on a manifold can be indexed by a subset of  $\mathbf{R}^k$  (k<<n)



- Manifold: generalized "subspace" in Rn
- Points in a local region on a manifold can be indexed by a subset of R<sup>k</sup> (k<<n)</li>



• If there is a global indexing scheme for M that maps a data point y on M



• If there is a global indexing scheme for M that maps a data point y on M



• If there is a global indexing scheme for M that maps a data point y on M



• If there is a global indexing scheme for M that maps a data point y on M



• If there is a global indexing scheme for M that maps a data point y on M



x : coordinate of z → reduced dimension representation of y

- **Geodesic**: the shortest curve on a manifold that connects two points on the manifold
  - Example: on a sphere, geodesics are great circles
- Geodesic distance: length of the geodesic



- **Geodesic**: the shortest curve on a manifold that connects two points on the manifold
  - Example: on a sphere, geodesics are great circles
- Geodesic distance: length of the geodesic



- **Geodesic**: the shortest curve on a manifold that connects two points on the manifold
  - Example: on a sphere, geodesics are great circles
- Geodesic distance: length of the geodesic



- **Geodesic**: the shortest curve on a manifold that connects two points on the manifold
  - Example: on a sphere, geodesics are great circles
- Geodesic distance: length of the geodesic



 Euclidean distance may not be a good measure between two points on a manifold

• Length of geodesic is more appropriate



# LLE and Laplacian Eigenmap

• The graph-based algorithms have 3 basic steps:

- 1. Find K nearest neighbors.
- 2. Estimate local properties of manifold by looking at neighborhoods found in Step 1.
- 3. Find a global embedding that preserves the properties found in Step 2.

### Lapalcian of a Graph

Let G(V,E) be a undirected graph without graph loops.
 The Un-normalized Laplacian of the graph is





$$L = \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 2 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

### Laplacian Eigenmap

• Consider that X is a set o points in M, and M is a manifold embedded in R<sup>n</sup>.

• Find  $y_1,..., y_n$  in  $\mathbb{R}^m$  such that  $y_i$  represents  $\underline{x}_i(m << n)$ 



## Laplacian Eigenmap

Construct the adjacency graph to approximate the manifold



## Laplacian Eigenmap

There are two variations for W (weight matrix)

• simple-minded (1 if connected, 0 o.w.)

• heat kernel (t is real)

$$A_{ij} = e^{-\frac{\left\|x_i - x_j\right\|^2}{t}}$$

### Laplacian Eigenmap N-Dimensional case

- Now we consider the more general problem of embedding the graph into m-dimensional Euclidean space
- Let Y be such a nxm map

$$Y = \begin{bmatrix} y_{11} & y_{12} & \dots & y_{1m} \\ y_{21} & y_{22} & \dots & y_{2m} \\ \vdots & \vdots & \dots & y_{nm} \end{bmatrix}$$

N-dimensional dirichlet energy

$$argmin_{Y} trace(Y'LY)$$
 $with$ 
 $Y'Y = I$ 

Solutions are the first m eigenvectors

### **Applications**

- We can apply manifold learning to pattern recognition (face, handwriting etc)
- Recently, ISOMAP and Laplacian eigenmap are used to initialize the human body model.



#### Handwritten digit visualization



#### Considerations

• PROS:

Laplacian eigenmap provides a computationally efficient approach to non-linear dimensionality reduction that has locality preserving properties

BUT

Laplacian Eigenmap attempts to approximate or preserve neighborhood information

If you need GLOBAL consistency? -> Look at the ISOMAP method

### T-SNE



#### T - SNE

- Map point from High Dimensional space (x) to low dimensional space (y) preserving points distributions
- density distribution around single points are preserved by the objective



#### T - SNE

- Map point from High Dimensional space (x) to low dimensional space (y) preserving points distributions
- density distribution around single points are preserved by the objective



### Stochastic neighbour embedding

Similarity of datapoint is converted to probabilities

$$p_{j|i} = \frac{exp(-||x_i - x_j||^2/2\sigma_i^2)}{\sum_{k \neq i} exp(-||x_i - x_k||^2/2\sigma_i^2)}$$

Similarity in the low dimensional space y

$$q_{j|i} = \frac{exp(-||y_i - y_j||^2)}{\sum_{k \neq i} exp(-||y_i - y_k||^2)}$$

• OBJECTIVE:

Make the two distributions be as close as possible

Minimize the Kullback Liebler Divergence

$$C = \sum_{i} KL(P_i||Q_i) = \sum_{i} \sum_{j} p_{j|i} log \frac{p_{j|i}}{q_{j|i}}$$

#### Gradient descent solution

Solve the problem pointwise by taking gradient of C w.r.t. points i=1...n

$$\frac{\partial C}{\partial y_i} = \sum_{j \neq i} (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)$$

- 1. Start with random  $y_i$  with i=1...n with n number of points
- 2. Move y<sub>i</sub> using gradient step update
- 3. DO it for all points in Y using momentum

$$Y^{(t)} = Y^{(t-1)} + \eta \frac{\partial C}{\partial y_i} + \beta(t)(Y^{(t-1)} - Y^{(t-2)})$$

#### Gradient proof here:

L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9 https://lvdmaaten.github.io/publications/papers/JMLR\_2008.pdf

# **Gradient Interpretation**

Similar to N body problem





# **Gradient Interpretation**

Similar to N body problem





### **Example Netflix movies**

 More examples can be found here https://lvdmaaten.github.io/tsne/



#### T-sne code and additional resources

- T-SNE is the most popular embedding visualization method now.
- It is in most of the ML packages
- Inside SCIKIT LEARN
- Code and implementation for different languages here <a href="https://lvdmaaten.github.io/tsne/">https://lvdmaaten.github.io/tsne/</a>
- Sigma is crucial a good example on how sigma affect mapping <a href="https://distill.pub/2016/misread-tsne/">https://distill.pub/2016/misread-tsne/</a>
- Different TSNE variants: Symmetric, BH, Random Tree based