ROBOTICA (10 CFU)

DOCENTE

Antonio BICCHI Dipartimento di Sistemi Elettrici e Automazione Tel: 050554134,

Email: bicchi@ing.unipi.it

FINALITÀ DEL CORSO

Il corso si propone di fornire agli allievi le nozioni fondamentali e gli strumenti necessari per l'analisi, la progettazione ed il controllo di sistemi robotici, intesi nella loro più ampia accezione: sistemi meccanici controllati da un processore digitale, dotati di capacità sensoriali e di intervento sull'ambiente, con caratteristiche di elevata autonomia e di facile interazione con l'uomo.

OBIETTIVI DEL CORSO

Lo studente al termine del corso sarà posto in grado di: Conoscere le tipologie e le applicazioni dei sistemi robotici usati nell'industria e in altri settori dell'economia e dei servizi; Saper definire i modelli geometrici, cinematici e dinamici dei sistemi meccanici utilizzati in robotica; Saper pianificare, programmare e controllare le operazioni di tali macchine.

METODOLOGIA

Le lezioni sono prevalentemente tenute proiettando appunti schematici, che sono resi disponibili agli studenti in rete. Il corso si avvale per le esercitazioni di strumenti informatici (software di analisi e simulazione – Matlab) disponibili presso le strutture della facoltà, e di un telelaboratorio con esperimenti reali accessibili in rete senza limitazioni di orario. Gli studenti sono invitati durante il corso a predisporre un certo numero di Tavole o esercitazioni scritte, raccolte e consegnate al docente al termine dell'anno.

PRE-REQUISITI

Conoscenze di Meccanica razionale ed Applicata. Teoria dei Sistemi e del Controllo.

MODALITÀ DI VERIFICA

Prova orale articolata in uno o piu' esercizi da svolgere autonomamente, con l'uso del materiale del corso e di ogni altro materiale ritenuto utile; ed in una o piu' domande cui rispondere oralmente interagendo con la commissione.

Valutazione delle Tavole o dei Progetti eventualmente svolti dai candidati;

CONTENUTI E ARTICOLAZIONE TEMPORALE

INTRODUZIONE (L4, E0): Modalità del corso; Automazione industriale e robotica; Origini, impieghi e prospettive della robotica; Classificazione dei robot industriali: veicoli autonomi, bracci articolati; Contenuti del corso.

GEOMETRIA E CINETO-STATICA (L15, E8): Descrizione delle posizioni e delle orientazioni dei corpi rigidi; Matrici di rotazione e coordinate omogenee; Notazione di Denavit-Hartenberg; Cinematica diretta e inversa dei manipolatori; Matrici Jacobiane e singolarità cinematiche; Metodi iterativi per la soluzione del problema cinematico inverso; Trasformazioni di sistemi di forze; Dualità cineto-statica; Indici di destrezza;

DINAMICA (L10, E6): Dinamica del corpo rigido; Equazioni e metodo di Eulero--Lagrange; Energia cinetica e potenziale di un manipolatore; Metodo di Newton--Eulero (cenni); Confronto tra gli algoritmi per la dinamica dei robot: metodi simbolici e numerici; Simulazione del moto di un manipolatore; Dinamica del manipolatore nel proprio spazio operativo; Proprietà della dinamica dei sistemi meccanici classici.

SISTEMI CON VINCOLI (L6, E4): Vincoli cinematici. Vincoli olonomi e anolonomi; Sistemi articolati cooperanti. Forze interne ed equilibrio; Elasticità dei vincoli; Robot paralleli; Veicoli anolonomi; Indici di destrezza per sistemi vincolati; Dinamica dei sistemi vincolati;

PIANIFICAZIONE AUTOMATICA (L6,E4): Cenni sui metodi di pianificazione del compito (task planning); Generalità sulla generazione automatica dei percorsi (path planning); Il problema del 'piano mover' e tecniche di costruzione dello spazio delle configurazioni per poligoni convessi; Rappresentazioni dello spazio libero e metodi globali di ricerca del percorso; Metodi locali (campo potenziale artificiale, pianificazione non basate su modello); Pianificazione per sistemi anolonomi; Interpolazione di traiettorie (trajectory planning);

CONTROLLO (L15,E8): Nonlinearità intrinseche ed accidentali nel modello dei robot; Tecniche di controllo nonlineare: metodi di geometria differenziale; Controllabilità e osservabilità di sistemi nonlineari; Linearizzazione in retroazione; Tecniche di controllo disaccoppiato sui giunti. Applicazione di controllori PD e PID; Effetti della flessibilità dei giunti e dei links; Tecniche di controllo centralizzato; Controllo robusto; Controllo adattivo; Controllo dell'interazione: controllo di forza e di impedenza; Controllo di veicoli anolonomi: stabilizzazione su una configurazione, su un percorso, su una traiettoria.

SENSORISTICA (L4,E2): Trasduttori adottati nei robot articolati industriali; Trasduttori adottati nei veicoli autonomi industriali; Sistemi di trasduttori eterogenei: problemi di fusione sensoriale; Progetto di sistemi sensoriali: formulazione del problema; Equazioni di misura e matrice di informazione; Propagazione dell'errore di misura; Criteri di ottimizzazione del progetto di sensori.

TESTI CONSIGLIATI

- L. Sciavicco e B. Siciliano, "Robotica Industriale-Modellistica e controllo di manipolatori", McGraw--Hill, 1998.
- R. E. Murray, Z. Li, and S.S. Sastry: "A Mathematical Introduction to Robotic Manipulation", CRC Press, 1994.
- M.W. Spong, M. Vidyasagar: "Robot Dynamics and Control", J. Wiley, 1989.
- J.C. Latombe: "Robot Motion Planning", Kluwer, 1991.
- J. Borenstein, H.R. Everett: "Navigating mobile robots: systems and techniques", A.K. Peters, 1996.