

Machine Learning and Intelligent Systems

Supervised Learning

Maria A. Zuluaga

October 6 2023

EURECOM - Data Science Department

Table of contents

Setup

The Learning Process

Training Data

The Hypothesis

The Loss Function

Generalization

Summary: Supervised Learning Formalization

Wrap-Up

Setup

Machine Learning: Definition

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E (Tom M. Mitchell).

Machine Learning: Definition

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E (Tom M. Mitchell).

Goal

Starting from Tom Mitchell's definition, we will formalize the supervised learning setup

Supervised Learning: Procedure

Condensed View of Supervised Learning:

Supervised Learning: Procedure

Condensed View of Supervised Learning:

Decompressed View:

Training Phase

Testing Phase

The training data comes in input pairs (\mathbf{x}, \mathbf{y}) , with $\mathbf{x} \in \mathbb{R}^D$ and $\mathbf{y} \in \mathcal{C}$.

The entire training set is denoted as:

$$\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N \subseteq \mathbb{R}^D \times \mathcal{C}$$

with

- \bullet \mathbb{R}^D D-dimensional feature space
- ullet C label space
- x_i input vector of the i^{th} training sample
- y_i label of the i^{th} training sample
- N number of training samples

Question: In the previous slide, what is x? and y?

The **training set** points $(\mathbf{x}_i, \mathbf{y}_i)$ are drawn from an unknown probability distribution $\mathcal{P}(X, Y)$.

The **training set** points $(\mathbf{x}_i, \mathbf{y}_i)$ are drawn from an unknown probability distribution $\mathcal{P}(\mathbf{X}, \mathbf{Y})$.

Goal of Supervised Learning:

Use \mathcal{D} to learn a function h, such that for an **unseen point** $(\mathbf{x}, \mathbf{y}) \sim \mathcal{P}$:

$$h(\mathbf{x}) \approx \mathbf{y}$$

with high probability

The **training set** points $(\mathbf{x}_i, \mathbf{y}_i)$ are drawn from an unknown probability distribution $\mathcal{P}(\mathbf{X}, \mathbf{Y})$.

Goal of Supervised Learning:

Use \mathcal{D} to learn a function h, such that for an **unseen point** $(\mathbf{x}, \mathbf{y}) \sim \mathcal{P}$:

$$h(\mathbf{x}) \approx \mathbf{y}$$

with high probability

Goal of this course (75%):

To present different methods to obtain h

- $y \in C$: Output, Target, Label, Dependent Variable.
- ullet The output or label space ${\cal C}$ can take different forms.
- Depending on this, we use a specific term to refer to the supervised learning task

The Output Space ${\cal C}$

- $y \in C$: Output, Target, Label, Dependent Variable.
- ullet The output or label space ${\cal C}$ can take different forms.
- Depending on this, we use a specific term to refer to the supervised learning task

Binary Classification

$$\mathcal{C} = \{0,1\}$$
 or $\mathcal{C} = \{-1,+1\}$

- $y \in C$: Output, Target, Label, Dependent Variable.
- ullet The output or label space ${\cal C}$ can take different forms.
- Depending on this, we use a specific term to refer to the supervised learning task

Binary Classification

$$\mathcal{C} = \{0,1\}$$
 or $\mathcal{C} = \{-1,+1\}$

Example: 1) Red/blue ball labeling - red (1/+1), blue (0/-1)

- $y \in C$: Output, Target, Label, Dependent Variable.
- ullet The output or label space ${\cal C}$ can take different forms.
- Depending on this, we use a specific term to refer to the supervised learning task

Binary Classification

$$\mathcal{C} = \{0,1\}$$
 or $\mathcal{C} = \{-1,+1\}$

```
Example: 1) Red/blue ball labeling - red (1/+1), blue (0/-1) 2) Spam filtering (how?)
```

- $y \in C$: Output, Target, Label, Dependent Variable.
- ullet The output or label space ${\cal C}$ can take different forms.
- Depending on this, we use a specific term to refer to the supervised learning task

Binary Classification

$$\mathcal{C} = \{0,1\}$$
 or $\mathcal{C} = \{-1,+1\}$

Example: 1) Red/blue ball labeling - red (1/+1), blue (0/-1) 2) Spam filtering (how?)

Multi-class Classification

$$\mathcal{C} = \{1, 2, \dots, K\}$$
 with $K \geq 2$

Example: Fruit classification from photos (how?)

The Output Space $\mathcal C$

- $y \in C$: Output, Target, Label, Dependent Variable.
- ullet The output or label space ${\mathcal C}$ can take different forms.
- Depending on this, we use a specific term to refer to the supervised learning task

Binary Classification

$$\mathcal{C} = \{0,1\}$$
 or $\mathcal{C} = \{-1,+1\}$

Example: 1) Red/blue ball labeling - red (1/+1), blue (0/-1) 2) Spam filtering (how?)

Multi-class Classification

$$\mathcal{C} = \{1, 2, \dots, K\}$$
 with $K \geq 2$

Example: Fruit classification from photos (how?)

Regression

$$\mathcal{C} = \mathbb{R}^O$$

In this course, $O = 1$

Example: Predict MALIS grades (O = 1)

- $y \in C$: Output, Target, Label, Dependent Variable.
- ullet The output or label space ${\mathcal C}$ can take different forms.
- Depending on this, we use a specific term to refer to the supervised learning task

Binary Classification

$$\mathcal{C} = \{0,1\}$$
 or $\mathcal{C} = \{-1,+1\}$

Example: 1) Red/blue ball labeling - red (1/+1), blue (0/-1) 2) Spam filtering (how?)

Multi-class Classification

$$\mathcal{C} = \{1, 2, \dots, K\}$$
 with $K > 2$

Example: Fruit classification from photos (how?)

Regression

$$\mathcal{C} = \mathbb{R}^O$$

In this course, $O = 1$

Example: Predict MALIS grades (O = 1)Predict weight and height of a person (O = 2)

The Feature Space

The feature vector \mathbf{x}_i is a D-dimensional vector containing D attributes (or features) describing the i^{th} sample.

Often x is referred to as:

- Input
- Feature vector
- Attributes
- Independent variable

The Feature Space: Examples

MALIS students data. $\mathbf{x}_i = (\mathbf{x}_i^1, \mathbf{x}_i^2, \mathbf{x}_i^3)$, with \mathbf{x}_i^1 encoding the gender $(\mathbf{x}_i^1 = 0 \text{ or } 1)$, \mathbf{x}_i^2 the height (cm) and \mathbf{x}_i^3 the age (years). Here D = 3. It is a **dense** vector, since the number of non-zero coordinates in $\mathbf{x} \gg D$.

The Feature Space: Examples

MALIS students data. $\mathbf{x}_i = (\mathbf{x}_i^1, \mathbf{x}_i^2, \mathbf{x}_i^3)$, with \mathbf{x}_i^1 encoding the gender $(\mathbf{x}_i^1 = 0 \text{ or } 1)$, \mathbf{x}_i^2 the height (cm) and \mathbf{x}_i^3 the age (years). Here D = 3. It is a **dense** vector, since the number of non-zero coordinates in $\mathbf{x} \gg D$.

Text document. The bag-of-words encoding counts the occurrences of a dictionary word in a text. Hence, in $\mathbf{x}_i = (\mathbf{x}_i^1, \mathbf{x}_i^2, \dots \mathbf{x}_i^D)$, \mathbf{x}_i^{α} is the count for the α^{th} word. Most entries will have zeros. It is a **sparse** feature vector.

The Feature Space: Examples

MALIS students data. $\mathbf{x}_i = (\mathbf{x}_i^1, \mathbf{x}_i^2, \mathbf{x}_i^3)$, with \mathbf{x}_i^1 encoding the gender $(\mathbf{x}_i^1 = 0 \text{ or } 1)$, \mathbf{x}_i^2 the height (cm) and \mathbf{x}_i^3 the age (years). Here D = 3. It is a **dense** vector, since the number of non-zero coordinates in $\mathbf{x} \gg D$.

Text document. The bag-of-words encoding counts the occurrences of a dictionary word in a text. Hence, in $\mathbf{x}_i = (\mathbf{x}_i^1, \mathbf{x}_i^2, \dots \mathbf{x}_i^D)$, \mathbf{x}_i^{α} is the count for the α^{th} word. Most entries will have zeros. It is a **sparse** feature vector.

Medical image. The features represent the gray scale pixel values $\mathbf{x}_i = (\mathbf{x}_i^1, \mathbf{x}_i^2, \dots \mathbf{x}_i^D)$. Here, D represents the total number of pixels.

Question: Is this a sparse or a dense feature vector?

Summary: Notation

Symbol	Reads as
X	Input variable (\mathbb{R}^D)
\mathbf{x}_{i}	i^{th} feature vector. Observed value of X .
$\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)^T$	Matrix of N input D -dimensional vectors \mathbf{x}_i
× j	j^{th} element of the i^{th} input vector \mathbf{x}_i , i.e. \mathbf{x}_i^j
Y	Output variable (\mathcal{C})
<mark>y</mark> i	<i>ith</i> output label
$\mathbf{y} = (\mathbf{y}_1, \dots, \mathbf{y}_N)^T$	Observed vector of outputs y_i

Table 1: Different notation for the input and output variables

Note

For regression, we will deal with $\mathbf{y} \in \mathcal{C} = \mathbb{R}^{O=1}$

Setup: Where are we?

Training data

A computer program is said to learn from experience E with respect to some class of tasks \underline{I} and performance measure P if its performance at tasks in \underline{I} , as measured by P, improves with experience E (Tom M. Mitchell).

Recall: The goal of supervised learning is to use \mathcal{D} to learn a function $h: \mathbb{R}^D \to \mathcal{C}$ that can predict y from x.

Recall: The goal of supervised learning is to use \mathcal{D} to learn a function $h: \mathbb{R}^D \to \mathcal{C}$ that can predict y from x.

Example:

Recall: The goal of supervised learning is to use \mathcal{D} to learn a function $h: \mathbb{R}^D \to \mathcal{C}$ that can predict y from x.

Example:

- D=
- h(x) = +1
- Is this a hypothesis?

Recall: The goal of supervised learning is to use \mathcal{D} to learn a function $h: \mathbb{R}^D \to \mathcal{C}$ that can predict y from x.

Example:

- D=
- h(x) = +1
- Is this a hypothesis?
- Is this a good hypothesis?

- We have $h \in \mathcal{H}$, where \mathcal{H} denotes the hypothesis class
- Examples:
 - Linear Classifiers
 - Decision Trees
 - Neural Networks
 - Support Vector Machines
- First task: Pick a hypothesis class
- Warning: No Free Lunch Theorem

No Free Lunch

- Which hypothesis class $\mathcal H$ to choose?
- Every ML algorithm has to make assumptions
- The choice will depend on the data
- $oldsymbol{ ilde{\mathcal{H}}}$ encodes assumptions about the data and its distribution

No Free Lunch: There is no single perfect choice for all problems

ullet First task: Pick a hypothesis class ${\cal H}$, i.e. pick a type of machine learning algorithm.

- ullet First task: Pick a hypothesis class \mathcal{H} , i.e. pick a type of machine learning algorithm.
- **Second task:** Find the best function within the hypothesis class, $h \in \mathcal{H}$.

- First task: Pick a hypothesis class \mathcal{H} , i.e. pick a type of machine learning algorithm.
- **Second task:** Find the best function within the hypothesis class, $h \in \mathcal{H}$.
- Finding the best $h \in \mathcal{H}$ using \mathcal{D} is denoted the **learning process**.

- First task: Pick a hypothesis class \mathcal{H} , i.e. pick a type of machine learning algorithm.
- **Second task:** Find the best function within the hypothesis class, $h \in \mathcal{H}$.
- Finding the best $h \in \mathcal{H}$ using \mathcal{D} is denoted the **learning process**.

How?

- First task: Pick a hypothesis class \mathcal{H} , i.e. pick a type of machine learning algorithm.
- **Second task:** Find the best function within the hypothesis class, $h \in \mathcal{H}$.
- Finding the best $h \in \mathcal{H}$ using \mathcal{D} is denoted the **learning process**.

How?

• Idea: Pick $h \in \mathcal{H}$ making the least mistakes in \mathcal{D} and, preferably, the simplest.

- First task: Pick a hypothesis class \mathcal{H} , i.e. pick a type of machine learning algorithm.
- **Second task:** Find the best function within the hypothesis class, $h \in \mathcal{H}$.
- Finding the best $h \in \mathcal{H}$ using \mathcal{D} is denoted the **learning process**.

How?

- Idea: Pick $h \in \mathcal{H}$ making the least mistakes in \mathcal{D} and, preferably, the simplest.
- Measure: Loss function

The Loss Function

• A loss or risk function $I: \mathbb{R} \to \mathbb{R}$ quantifies how well $h(\mathbf{x})$ approximates y.

I(a,b)

The Loss Function

• A loss or risk function $I: \mathbb{R} \to \mathbb{R}$ quantifies how well $h(\mathbf{x})$ approximates y.

- The lower the value of l(y, h(x)) the better the approximation
- l(y, y) = 0
- Typically (but not always) $I(y, h(x)) \ge 0$ for all y, h(x)

The Loss Function

• A loss or risk function $I: \mathbb{R} \to \mathbb{R}$ quantifies how well h(x) approximates y.

- The lower the value of I(y, h(x)) the better the approximation
- l(y, y) = 0
- Typically (but not always) $I(y, h(x)) \ge 0$ for all y, h(x)

Loss	Expression	Task
0/1 Loss	$I(y, h(x)) = \begin{cases} 1 & \text{if } h(x) \neq y \\ 0 & \text{otherwise} \end{cases}$	Classification
Quadratic loss	$I(y, h(x)) = (y - h(x))^2$	Regression
Absolute loss	$I(y, h(\mathbf{x})) = y - h(\mathbf{x}) $	Regression

Table 2: Common loss functions

Loss Minimization

ullet Using the training data \mathcal{D} , we can compute the average loss over all the data points

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} I(\mathbf{y}_i, h(\mathbf{x}_i))$$

Loss Minimization

• Using the training data \mathcal{D} , we can compute the average loss over all the data points

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} I(\mathbf{y}_i, h(\mathbf{x}_i))$$

- Finding the best hypothesis means finding the h that minimizes the loss.
- This can be formalized as

$$h^* = \arg\min_{h \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} I(\mathbf{y}_i, h(\mathbf{x}_i))$$

Suppose the following hypothesis:

$$h(\mathbf{x}) = \begin{cases} y_i & \text{if } \exists (\mathbf{x}_i, y_i) \in \mathcal{D} \text{ s.t.} \mathbf{x} = \mathbf{x}_i \\ 0 & \text{otherwise} \end{cases}$$

Suppose the following hypothesis:

$$h(\mathbf{x}) = \begin{cases} \mathbf{y}_i & \text{if } \exists (\mathbf{x}_i, \mathbf{y}_i) \in \mathcal{D} \text{ s.t.} \mathbf{x} = \mathbf{x}_i \\ 0 & \text{otherwise} \end{cases}$$

Questions:

ullet What is the value of the loss \mathcal{L} ? Pick the loss you prefer.

Suppose the following hypothesis:

$$h(\mathbf{x}) = \begin{cases} y_i & \text{if } \exists (\mathbf{x}_i, y_i) \in \mathcal{D} \text{ s.t.} \mathbf{x} = \mathbf{x}_i \\ 0 & \text{otherwise} \end{cases}$$

Questions:

- What is the value of the loss \mathcal{L} ? Pick the loss you prefer.
- When new samples arrive $\mathbf{x} \notin \mathcal{D}$, how will $h(\cdot)$ perform?

When $h(\cdot)$ has a very low loss, but it does not perform well in unseen data, we say there is **overfitting** causing that our model does not **generalize** well.

Reminder: The goal is to find h such that, for an unseen point $(x, y) \sim \mathcal{P}$, $h(x) \approx y$.

In other words, we want h to **generalize**.

Reminder: The goal is to find h such that, for an unseen point $(x, y) \sim \mathcal{P}$, $h(x) \approx y$.

In other words, we want h to generalize.

However, the loss over the training set does not give us information about the generalization capabilities of the trained model.

Reminder: The goal is to find h such that, for an unseen point $(x, y) \sim \mathcal{P}$, $h(x) \approx y$.

In other words, we want h to generalize.

However, the loss over the training set does not give us information about the generalization capabilities of the trained model.

Generalization loss:

$$\epsilon = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{P}}[I(\mathbf{y}, h(\mathbf{x}))]$$

We can resort to data splitting to obtain an estimate of the generalization loss.

Train/Test Splits

- We split \mathcal{D} into three sets:
 - Training set \mathcal{D}_{TR} Used to learn h
 - Validation set \mathcal{D}_{VAL} To check for overfitting
 - Test set \mathcal{D}_{TEST} Used to evaluate the chosen h and have an estimate of the **generalization** error or loss

- Typical splits are 70/10/20, 80/10/10, 60/20/20.
- If the samples are drawn i.i.d. from the same distribution P, then the testing loss is an unbiased estimator of the true generalization loss.

Train/Test Splits

 It is important to split the data properly to simulate a real life scenario and to avoid data leakage.

- How to split?
 - By time: if the data is collected temporally, the split needs to be done in time. Example: First 70% point will be for training, next 10% for validation, last 20% for test.
 - Uniformly at random if the data is independent and identically distributed

Formalization

Summary: Supervised Learning

Back to the Definition

Back to the Supervised Learning Process

Training Phase

Testing Phase

The Learning Algorithm

Given a hypothesis class \mathcal{H} :

1. Train a model by minimizing the training loss:

$$h^* = \operatorname*{arg\ min}_{h \in \mathcal{H}} \frac{1}{|\mathcal{D}_{TR}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}_{TR}} I(\mathbf{y}, h(\mathbf{x}))$$

2. Evaluate the testing loss of the model:

$$\epsilon_{TEST} = \frac{1}{|\mathcal{D}_{TEST}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}_{TEST}} I(\mathbf{y}, h(\mathbf{x}))$$

Question: As $|\mathcal{D}_{TEST}| \to \infty$, $\epsilon_{TEST} \to \epsilon$, why?

Wrap-Up

Recap

- We introduced the basic terminology used in supervised learning
- We formalized the supervised learning setup

Key Concepts

- Feature vector, attributes, input
- Label, target output
- Classification & regression
- Hypothesis class
- Loss function
- Generalization
- Overfitting
- Data splits
- Training, validation and testing data
- No Free Lunch [link]

