GANZE ALGEBRAISCHE ZAHLEN UND IDEALFAKTORISIERUNG

ANTONIO CASETTA

In diesem Abschnitt möchten wir zeigen, wie man die Faktorisierung von Idealen berechnen kann und diverse damit zusammenhängende Begriffe.

1. Erinnerung

Definition 1. Sei $\mathcal{O} \subseteq \mathcal{O}'$ eine Ringerweiterung, d.h. ein injektiver Ringhomomorphismus. Ein Element $x \in \mathcal{O}'$ heißt ganz (oder ganz-algebraisch) über \mathcal{O} , wenn x einer normierten Gleichung genügt, d.h. wenn es $a_1, \ldots, a_n \in \mathcal{O}$ gibt mit $x^n + a_1 x^{n-1} + \cdots + a_n = 0$. Die Menge $\mathcal{O} = \{x \in \mathcal{O}' \mid \exists a_1, \ldots, a_n \in \mathcal{O}: x^n + a_1 x^{n-1} + \cdots + a_n = 0\}$ heißt ganzer Abschluss von \mathcal{O} in \mathcal{O}' .

Satz 2. Eine rationale Zahl ist genau dann ganz-algebraisch, wenn sie in \mathbb{Z} liegt.

Definition 3. Wir definieren den Ring der ganzen Zahlen von einem Körper K als

$$\mathcal{O}_K \coloneqq \mathbb{Z}_K \coloneqq \{b \in K : b \ ganz \ \ddot{u}ber \ \mathbb{Z}\}\$$

Satz 4. \mathcal{O}_K ist ein Dedekind-Ring, i.e. ein noetherscher Integritätsbereich.

Definition 5. Sei \mathcal{O} ein Dedekind-Ring und K sein Quotientenkörper. Ein gebrochenes Ideal von K ist ein endlich erzeugter \mathcal{O} -Untermodul $\mathfrak{a} \neq 0$ von K.

Satz 6. Sei O ein Dedekind-Ring. Dann sind die folgenden Aussagen äquivalent:

- (i) O ist ein Dedekind-Ring.
- (ii) Jedes von 0 verschiedene Ideal a kann eindeutig als Produkt von Primidealen geschrieben werden:

$$\mathfrak{a} = \prod_{\mathfrak{p}} \mathfrak{p}^{\nu_{\mathfrak{p}}(\mathfrak{a})}, \qquad \nu_{\mathfrak{p}}(\mathfrak{a}) \in \mathbb{Z} \text{ fast alle gleich null}$$

- (iii) Jedes von 0 verschiedene Ideal kann als Produkt von Primidealen geschrieben werden.
- (iv) Die Menge der gebrochenen Ideale von K ungleich 0 ist eine Gruppe.

Korollar 7 (Chinesischer Restsatz). Sei \mathcal{O} ein Dedekind-Ring, $\mathfrak{a} \subseteq \mathcal{O}$ ein Ideal. Dann ist

$$\mathcal{O}/\mathfrak{a}\cong\prod_{\mathfrak{p}}\mathcal{O}/\mathfrak{p}^{\nu_{\mathfrak{p}}(\mathfrak{a})}$$

Definition 8. Sei \mathcal{O} ein Integritätsbereich mit Quotientenkörper K. Dann definieren wir:

- (1) Für zwei gebrochene Ideale $\mathfrak{a},\mathfrak{b}$ in \mathcal{O} ist $\mathfrak{a}|\mathfrak{b}$ genau dann, wenn ein ganzes Ideal \mathfrak{c} gibt, sodass $\mathfrak{b}=\mathfrak{ca}$. Dies is äquivalent zu $\nu_{\mathfrak{p}}(\mathfrak{b})\geqslant \nu_{\mathfrak{p}}(\mathfrak{a})$ für alle Primideale \mathfrak{p} . Desweiteren ist es auch äquivalent zu $\mathfrak{b}\subseteq\mathfrak{a}$.
- (2) Ein gebrochenes Ideal $\mathfrak{a} \subseteq \mathcal{O}$ heißt invertierbar, falls es ein gebrochenes Ideal \mathfrak{a}' gibt, so dass $\mathfrak{a} \cdot \mathfrak{a}' = \mathcal{O}$. Also für ein ganzes Ideal $\mathfrak{a} \subseteq \mathcal{O}$ definieren wir $\mathfrak{a}^{-1} \coloneqq \{x \in K \mid x\mathfrak{a} \subseteq \mathcal{O}\}.$

Lemma 9. Seien $\alpha_1, \ldots, \alpha_n$ eine \mathbb{Q} -Basis eines Körpers K mit alle α_i ganz über K. Falls $d = \operatorname{disk}(\bigoplus_i \alpha_i \mathbb{Z}) = \operatorname{det}(\operatorname{tr}(\alpha_i \alpha_j)_{i,j=1,\ldots,n})$ dann gilt $\bigoplus_i \alpha_i \mathbb{Z} \subseteq \mathbb{Z}_K \subseteq \frac{1}{d} \bigoplus_i \alpha_i \mathbb{Z}$.

2. Primidealfaktorisierung

Jedes Primideal $\mathfrak{p} \neq 0$ von \mathcal{O}_K enthält eine rationale Primzahl p und ist ein Teiler des Ideals $p\mathcal{O}_K$. Also fragen wir uns, wie eine Primzahl p in Primidealen des Rings \mathcal{O}_K zerfällt. Wir betrachten dies Problem in einem allgemeinen Kontext, und beginnen mit einem beliebigen Dedekind-Ring \mathcal{O} anstatt von \mathbb{Z} . Dann, anstatt von \mathcal{O}_K , wählen wir den ganzen Abschluss \mathcal{O} von \mathcal{O} in einer endlichen Erweiterung von seinem Quotientenkörper.

Für ein Primideal \mathfrak{p} in \mathcal{O} hat man immer $\mathfrak{p}\mathcal{O} \neq \mathcal{O}$. In der Tat, sei $\pi \in \mathfrak{p} \setminus \mathfrak{p}^2$ so, dass $\pi \mathcal{O} = \mathfrak{p}\mathfrak{a}$ mit $\mathfrak{p} \nmid \mathfrak{a}$, also $\mathfrak{p} + \mathfrak{a} = \mathcal{O}$. Betrachtet 1 = b + s, mit $b \in \mathfrak{p}$ und $s \in \mathfrak{a}$, finden wir $s \notin \mathfrak{p}$ und $s \mathfrak{p} \subseteq \mathfrak{p}\mathfrak{a} = \pi \mathcal{O}$.

Falls man $\mathfrak{pO} = \mathcal{O}$ hätte, dann würde es folgen, dass $s\mathcal{O} = s\mathfrak{pO} \subseteq \pi\mathcal{O}$, also, dass $s = \pi x$ für eine $x \in \mathcal{O} \cap K = \mathcal{O}$, i.e. $s \in \mathfrak{p}$, Widerspruch.

Ein Primideal $\mathfrak{p}\neq 0$ in dem Ring \mathcal{O} zerfällt in \mathcal{O} in einem eindeutigen Weg in einem Produkt von Primidealen

$$\mathfrak{p}\mathcal{O}=\prod_{i=1}^r\mathfrak{P}_i^{e_i}$$

Die Primideale \mathfrak{P}_i in der Faktorisierung sind genau die Primideale \mathfrak{P} in \mathcal{O} , die über \mathfrak{p} liegen, i.e. man hat die Relation $\mathfrak{p} = \mathfrak{P} \cap \mathcal{O}$. Dies bezeichnen wir als $\mathfrak{P}|\mathfrak{p}$, und wir nennen \mathfrak{P} ein Primteiler von \mathfrak{p} . Wir bemerken auch, dass $(\mathcal{O}/\mathfrak{P}_i)/(\mathcal{O}/\mathfrak{p})$ eine Körpererweiterung ist, weil die Abbildung $\mathcal{O} \to \mathcal{O} \to \mathcal{O}/\mathfrak{P}$ Kern $\mathfrak{P} \cap \mathcal{O} = \mathfrak{p}$ hat. Also ist die Abbildung $\mathcal{O}/\mathfrak{p} \hookrightarrow \mathcal{O}/\mathfrak{P}$ injektiv.

Definition 10. (1) Das Exponent e_i heißt Verzweigungsindex.

- (2) Der Grad von der Körpererweiterung $f_i = [\mathcal{O}/\mathfrak{P}_i : \mathcal{O}/\mathfrak{p}]$ wird **Trägheitsgrad** von \mathfrak{P}_i über \mathfrak{p} genannt.
- (3) \mathfrak{P}_i heißt unverzweigt über \mathfrak{p} , wenn $e_i = 1$ und wenn die Körpererweiterung $(\mathcal{O}/\mathfrak{P}_i)/(\mathcal{O}/\mathfrak{p})$ separabel ist.
- (4) \mathfrak{p} heißt unverzweigt in L/K, wenn für alle $i=1,\ldots,r:\mathfrak{P}_i/\mathfrak{p}$ unverzweigt über \mathfrak{p} sind.
- (5) \mathfrak{p} heißt unzerlegt in L/K, wenn r=1, d.h., wenn es nur ein Primideal \mathfrak{P} über \mathfrak{p} gibt, und träge, wenn zusätzlich \mathfrak{pO}_K prim ist.
- (6) \mathfrak{p} heißt total zerlegt in L/K, wenn für alle $i=1,\ldots,r:f_i=1$ und $e_i=1$.

Satz 11. Sei \circ ein Dedekind-Ring mit Quotientenkörper K und ganzem Abschluss \circ 0 in einem Körper L, sodass L/K eine separable Körpererweiterung mit Grad n=[L:K] ist. Für jede Primideal $\mathfrak{p}\neq 0$ in \circ 0, schreiben wir die Faktorisierung von \mathfrak{p} als

$$\mathfrak{p}\mathcal{O} = \prod_{i=1}^r \mathfrak{P}_i^{e_i}$$

mit Trägheitsgrade $f_i = [\mathcal{O}/\mathfrak{P}_i : \mathcal{O}/\mathfrak{p}]$. Dann gilt

$$\sum_{i=1}^{r} e_i f_i = n$$

Beweis. Der Beweis basiert auf dem Chinesichen Restsatz in der folgenden Variante:

$$\mathcal{O}/\mathfrak{p}\mathcal{O}\cong \bigoplus_{i=1}^r \mathcal{O}/\mathfrak{P}_i^{e_i}$$

 $\mathcal{O}/\mathfrak{p}\mathcal{O}$ und $\mathcal{O}/\mathfrak{P}_i^{e_i}$ sind Vektorräume über dem Körper $\kappa = \mathcal{O}/\mathfrak{p}$, und es ist genug zu zeigen

$$\dim_{\kappa}(\mathcal{O}/\mathfrak{p}\mathcal{O}) = n \quad \text{und} \quad \dim_{\kappa}(\mathcal{O}/\mathfrak{P}_{i}^{e_{i}}) = e_{i}f_{i}$$

Um die erste Identität zu beweisen, seien $\omega_1, \ldots, \omega_m \in \mathcal{O}$ Repräsentanten für eine Basis $\bar{\omega}_1, \ldots, \bar{\omega}_m$ von $\mathcal{O}/\mathfrak{p}\mathcal{O}$ über κ . Es ist genug zu zeigen, dass $\omega_1, \ldots, \omega_m$ eine Basis von L/K bilden. Wir nehmen an, dass $\omega_1, \ldots, \omega_m$ linear abhängig über K sind, und also über \mathcal{O} auch. Dann gibt es Elemente $a_1, \ldots, a_m \in \mathcal{O}$ nicht alle gleich Null, sodass $a_1\omega_1 + \cdots + a_m\omega_m = 0$. Definiere das Ideal $\mathfrak{a} = (a_1, \ldots, a_m)$ von \mathcal{O} und finde ein $a \in \mathfrak{a}^{-1}$ so, dass $a \notin \mathfrak{a}^{-1}\mathfrak{p}$, also $a\mathfrak{a} \notin \mathfrak{p}$. Dann liegen die Elemente aa_1, \ldots, aa_m in \mathcal{O} , aber nicht alle gehören zu \mathfrak{p} . Der Ausdruck $aa_1\omega_1 + \cdots + aa_m\omega_m \equiv 0 \mod \mathfrak{p}$ impliziert also die lineare Abhängigkeit zwischen die $\bar{\omega}_1, \ldots, \bar{\omega}_m$ über κ , Widerspruch. Die $\omega_1, \ldots, \omega_m$ sind also linear unabhängig über K. Um zu zeigen, dass alle ω_i eine Basis von L/K bilden, betrachten wir die \mathcal{O} -Module $M = \mathcal{O}\omega_1 + \cdots + \mathcal{O}\omega_m$ und $N = \mathcal{O}/M$. Seit $\mathcal{O} = M + \mathfrak{p}\mathcal{O}$, haben wir $\mathfrak{p}N = N$. Seit L/K separabel ist, sind \mathcal{O} und N endlich erzeugte \mathcal{O} -Module. Mit $\alpha_1, \ldots, \alpha_s$ als System von Erzeugenden von N, dann

$$\alpha_i = \sum_j a_{ij} \alpha_j$$
 für $a_{ij} \in \mathfrak{p}$

Sei A die Matrix $(a_{ij}) - I$, wo I ist die unitäre Matrix mit Rank s, und sei B die adjunkte Matrix von A, deren Elementen die Unterdeterminanten von Rank (s-1) von A sind. Dann haben wir $A(\alpha_1, \ldots, \alpha_s)^T = 0$ und BA = dI, mit $d = \det(A)$. Also

$$0 = BA(\alpha_1, \dots, \alpha_s)^T = (d\alpha_1, \dots, d\alpha_s)^T$$

und also dN = 0, i.e. $d\mathcal{O} \subseteq M = \mathcal{O}\omega_1 + \cdots + \mathcal{O}\omega_m$. Wir haben $d \neq 0$, weil wir mit $d = \det((a_{ij}) - I)$ finden, dass $d \equiv (-1)^s \mod \mathfrak{p}$, weil $a_{ij} \in \mathfrak{p}$. Es folgt, dass $L = dL = K\omega_1 + \cdots + K\omega_m$. $\omega_1, \ldots, \omega_m$ ist also eine Basis von L/K.

Um die zweite Identität zu zeigen, betrachten wir die absteigende Kette

$$\mathcal{O}/\mathfrak{P}_i^{e_i} \supseteq \mathfrak{P}_i/\mathfrak{P}_i^{e_i} \supseteq \cdots \supseteq \mathfrak{P}_i^{e_i-1}/\mathfrak{P}_i^{e_i} \supseteq (0)$$

von κ -Vektorräumen. Die sukzessive Quotienten $\mathfrak{P}_i^{\nu}/\mathfrak{P}_i^{\nu+1}$ in dieser Kette sind isomorph zu $\mathcal{O}/\mathfrak{P}_i$, für $\alpha \in \mathfrak{P}_i^{\nu}/\mathfrak{P}_i^{\nu+1}$, dann hat der Homomorphismus

$$\mathcal{O} \longrightarrow \mathfrak{P}_i^{\nu}/\mathfrak{P}_i^{\nu+1}, \quad a \mapsto a\alpha$$

Kern \mathfrak{P}_i und ist surjektiv, weil \mathfrak{P}_i^{ν} der ggT von $\mathfrak{P}_i^{\nu+1}$ und $(\alpha) = \alpha \mathcal{O}$ ist, also $\mathfrak{P}_i^{\nu} = \alpha \mathcal{O} + \mathfrak{P}_i^{\nu+1}$. Seit $f_i = [\mathcal{O}/\mathfrak{P}_i : \kappa]$, haben wir $\dim_{\kappa}(\mathfrak{P}_i^{\nu}/\mathfrak{P}_i^{\nu+1}) = f_i$ und also

$$\dim_{\kappa}(\mathcal{O}/\mathfrak{P}_{i}^{e_{i}}) = \sum_{\nu=0}^{e_{i}-1} \dim_{\kappa}(\mathfrak{P}_{i}^{\nu}/\mathfrak{P}_{i}^{\nu+1}) = e_{i}f_{i}$$

Falls $p \in \mathbb{Z}$ eine Primzahl ist, so lässt sich das Ideal $p\mathcal{O}_K = \prod_{i=1}^r \mathfrak{P}_i^{e_i}$ faktorisieren. Nun ist $\mathfrak{P}_i \cap \mathbb{Z} = p\mathbb{Z}$. Entsprechend hat man eine Körpererweiterung von endlichen Körpern: $\mathcal{O}_K/\mathfrak{P}_i$ über $\mathbb{Z}/p\mathbb{Z}$. Sagen wir jene ist vom Grad f_i . Nun hat man $[K:\mathbb{Q}] = \sum_{i=1}^r e_i f_i$.

Im nächsten Satz Wählen wir $K = \mathbb{Q}(\theta)$ für eine ganz-algebraische Zahl θ mit Minimalpolynom Q(X). Für die meisten Primzahlen p ist die Faktorisation $p\mathcal{O}_K = \prod_{i=1}^r \mathfrak{P}_i^{e_i}$ im Zusammenhang mit der Faktorisierung in $\mathbb{Z}/p\mathbb{Z}[X]$ von der Projektion von Q(X) zu $(\mathbb{Z}/p\mathbb{Z})[X]$.

Satz 12. Sei $\theta \in \mathbb{Z}_K$ eine ganze primitive Zahl von einem Zahlkörper $K = \mathbb{Q}(\theta)$ vom Grad n über \mathbb{Q} und $d = \operatorname{disk}(1, \theta, \dots, \theta^{n-1})$. Sei nun $p \in \mathbb{Z}$ eine Primzahl, welche zu d teilerfremd ist. Sei $Q(X) \in \mathbb{Z}[X]$ das Minimalpolynom von θ und nehme an, dass die Reduktion $\overline{Q}(X) \in \mathbb{Z}/p\mathbb{Z}[X]$ sich wie folgt

$$\overline{Q}(X) = \overline{Q}_1(X)^{e_1} \cdots \overline{Q}_r(X)^{e_r}$$

in irreduzible, paarweise teilerfemde Polynome $\overline{Q}_i(X)$ zerlegt. Seien ferner $Q_i(X) \in \mathbb{Z}[X]$ Polynome, welche sich auf \overline{Q}_i reduzieren, dann sind

$$\mathfrak{P}_i = p\mathbb{Z}_K + Q_i(\theta)\mathbb{Z}_K$$

die verschiedenen über (p) liegenden Primideale von \mathbb{Z}_K . Ferner ist der Trägheitsgrad von \mathfrak{P}_i über (p) gleich dem Grad von $\overline{Q}_i(X)$ und es gilt

$$p\mathbb{Z}_K = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r}$$

Beweis. Wir zeigen die Isomorphismen

$$\mathbb{Z}_K/p\mathbb{Z}_K \cong \mathbb{Z}[\theta]/p\mathbb{Z}[\theta] \cong (\mathbb{Z}/p\mathbb{Z})[X]/(\overline{Q}(X))$$

Wir anfangen mit dem ersten. $1, \theta, \dots, \theta^{n-1}$ bildet eine \mathbb{Z} -Basis von $\mathbb{Z}[\theta]$. $d = \operatorname{disk}(1, \theta, \dots, \theta^{n-1}) = \operatorname{det}(\operatorname{tr}(\theta^{i+j})_{i,j=0,\dots,n-1})$, also gilt $\mathbb{Z}[\theta] \subseteq \mathbb{Z}_K \subseteq \frac{1}{d}\mathbb{Z}[\theta]$. Falls nun (d,p)=1, dann ist d invertierbar in $\mathbb{Z}/p\mathbb{Z}$, daraus folgt dann, dass die Abbildung $\mathbb{Z}[\theta] \to \mathbb{Z}_K \to \mathbb{Z}_K/p\mathbb{Z}_K$ surjektiv ist mit Kern $p\mathbb{Z}[\theta]$ und somit $\mathbb{Z}_K/p\mathbb{Z}_K \cong \mathbb{Z}[\theta]/p\mathbb{Z}[\theta] \cong \mathbb{Z}[X]/(p,Q(X))$.

Der zweite Isomorphismus ist aus dem surjektiven Homomorphismus

$$\mathbb{Z}[X] \longrightarrow (\mathbb{Z}/p\mathbb{Z})[X]/(\overline{Q}(X))$$

ableitbar. Sein Kern ist das Ideal erzeugt von p und Q(X), und aus $\mathbb{Z}[\theta] = \mathbb{Z}[X]/(Q(X))$, haben wir $\mathbb{Z}[\theta]/p\mathbb{Z}[\theta] \cong (\mathbb{Z}/p\mathbb{Z})[X]/(\overline{Q}(X))$.

Seit $\overline{Q}(X) = \prod_{i=1}^r \overline{Q}_i(X)^{e_i}$, der Chinesiche Restsatz besagt endlich, dass

$$(\mathbb{Z}/p\mathbb{Z})[X]/(\overline{Q}(X)) \cong \bigoplus_{i=1}^r (\mathbb{Z}/p\mathbb{Z})[X]/(\overline{Q}_i(X))^{e_i}$$

Dies zeigt, dass die Primideale des Rings $R=(\mathbb{Z}/p\mathbb{Z})[X]/(\overline{Q}(X))$ die Hauptideale (\overline{Q}_i) sind, die erzeugt von den $\overline{Q}_i(X)$ mod $\overline{Q}(X)$, für $i=1,\ldots,r$, sind. Dies zeigt auch, dass der Grad

 $[R/(\overline{Q}_i):\mathbb{Z}/p\mathbb{Z}]$ gleich der Grad von $\overline{Q}_i(X)$ ist, und

$$(0) = (\overline{Q}) = \bigcap_{i=1}^{r} (\overline{Q}_i)^{e_i}$$

Aus dem Isomorphismus $(\mathbb{Z}/p\mathbb{Z})[X]/(\overline{Q}(X)) \cong \mathbb{Z}_K/p\mathbb{Z}_K$, $f(X) \mapsto f(\theta)$, gilt das gleiche für $\mathbb{Z}_K/p\mathbb{Z}_K$. Also sind die Primideale $\overline{\mathfrak{P}}_i$ von $\mathbb{Z}_K/p\mathbb{Z}_K$ die Primideale (\overline{Q}_i) , und sie sind die Primideale erzeugt von den $Q_i(\theta)$ mod $p\mathbb{Z}_K$. Der Grad $[(\mathbb{Z}_K/p\mathbb{Z}_K)/\overline{\mathfrak{P}}_i:\mathbb{Z}/p\mathbb{Z}]$ ist der Grad des Polynoms $\overline{Q}_i(X)$, und wir haben $(0) = \bigcap_{i=1}^r \overline{\mathfrak{P}}_i^{e_i}$. Jetzt sei $\mathfrak{P}_i = p\mathbb{Z}_K + Q_i(\theta)\mathbb{Z}_K$ das Vorbild von $\overline{\mathfrak{P}}_i$ bezüglich dem Homomorphismus

$$\mathbb{Z}_K \longrightarrow \mathbb{Z}_K/p\mathbb{Z}_K$$

Dann, für $i=1,\ldots,r$, variiert \mathfrak{P}_i über den Primidealen von \mathbb{Z}_K über p. $f_i=[\mathbb{Z}_K/\mathfrak{P}_i:\mathbb{Z}/p\mathbb{Z}]$ ist der Grad des Polynoms $\overline{Q}_i(X)$. Ausserdem ist $\mathfrak{P}_i^{e_i}$ das Vorbild von $\overline{\mathfrak{P}}_i^{e_i}$ (weil $e_i=\#\{\overline{\mathfrak{P}}^{\nu}\mid\nu\in\mathbb{N}\}$), und $p\mathbb{Z}_K\supseteq\bigcap_{i=1}^r\mathfrak{P}_i^{e_i}$ so, dass $p\mathbb{Z}_K|\prod_{i=1}^r\mathfrak{P}_i^{e_i}$ und folglich $p\mathbb{Z}_K=\prod_{i=1}^r\mathfrak{P}_i^{e_i}$, weil $\sum_i e_i f_i=n$. \square

Bemerkung 13. Desweiteren kann man auch zeigen, dass $d = (-1)^{n(n-1)/2} \operatorname{disk}(Q(X)) = \operatorname{Res}(Q(X), \frac{d}{dX}Q(X))$ gilt. Da nun (p, d) = 1 gilt, folgt, dass $\overline{Q}(X) \in \mathbb{Z}/p\mathbb{Z}$ keine mehrfache Nullstelle hat, insbesondere folgt sogar, dass alle $e_i = 1$ und somit p ist unverzweigt.

Beispiel 14. $\theta = \sqrt[3]{2}$ hat Minimal polynom $Q(X) = X^3 - 2 \in \mathbb{Z}[X]$.

Wir bemerken, dass $X^3 - 2 \equiv (X + 2)(X^2 + 3X + 4) \mod (5)$ wobei beide Faktoren irreduzibel in $\mathbb{Z}/5\mathbb{Z}[X]$ sind. Ferner sind 5 und die Diskriminante d = -108 von Q(X) teilerfremd. Daraus folgt

$$5\mathbb{Z}_{\mathbb{Q}(\sqrt[3]{2})} = \mathfrak{P}_1\mathfrak{P}_2 = \left(5\mathbb{Z}_{\mathbb{Q}(\sqrt[3]{2})} + (\sqrt[3]{2} + 2)\mathbb{Z}_{\mathbb{Q}(\sqrt[3]{2})}\right) \left(5\mathbb{Z}_{\mathbb{Q}(\sqrt[3]{2})} + (\sqrt[3]{4} + 3\sqrt[3]{2} + 4)\mathbb{Z}_{\mathbb{Q}(\sqrt[3]{2})}\right)$$

 $mit \ Tr\"{a}gheitsgraden \ f_1=1 \ und \ f_2=2.$

References

[1] A. Schmidt, Einfuhrung in die algebraische Zahlentheorie. Springer, Berlin, 2007

Email address: acasetta@student.ethz.ch