The Cartan and Iwasawa decompositions

Juan Manuel Lorenzo Naveiro Universidade de Santiago de Compostela

Seminar on Symmetric Spaces, 2022

- M connected Riemannian manifold.
- *M* is a **symmetric space** if for every $o \in M$ there exists $s_o \in I(M)$.

$$s_o(o) = o$$
, $(s_o)_{*o} = -\mathrm{Id}_{T_oM}$.

- M connected Riemannian manifold.
- *M* is a **symmetric space** if for every $o \in M$ there exists $s_o \in I(M)$.

$$s_o(o) = o$$
, $(s_o)_{*o} = -\mathrm{Id}_{T_oM}$.

Symmetric spaces are complete.

- *M* connected Riemannian manifold.
- *M* is a **symmetric space** if for every $o \in M$ there exists $s_o \in I(M)$.

$$s_o(o) = o$$
, $(s_o)_{*o} = -\mathrm{Id}_{T_oM}$.

Symmetric spaces are complete.

- *M* connected Riemannian manifold.
- *M* is a **symmetric space** if for every $o \in M$ there exists $s_o \in I(M)$.

$$s_o(o) = o$$
, $(s_o)_{*o} = -\mathrm{Id}_{T_oM}$.

Symmetric spaces are homogeneous.

- *M* connected Riemannian manifold.
- *M* is a **symmetric space** if for every $o \in M$ there exists $s_o \in I(M)$.

$$s_o(o) = o$$
, $(s_o)_{*o} = -\mathrm{Id}_{T_oM}$.

Symmetric spaces are homogeneous.

9

- *M* connected Riemannian manifold.
- *M* is a **symmetric space** if for every $o \in M$ there exists $s_o \in I(M)$.

$$s_o(o) = o$$
, $(s_o)_{*o} = -\mathrm{Id}_{T_oM}$.

Symmetric spaces are homogeneous.

From geometry to algebra

M symmetric space, $o \in M$ fixed.

- $G = I^{0}(M), K = G_{o}$. Then $M = G \cdot o = G/K$.
- $\sigma: G \to G$ given by $\sigma(g) = s_o g s_o$.
- M = G/K with $Fix(\sigma)^0 \subseteq K \subseteq Fix(\sigma)$.

From geometry to algebra

M symmetric space, $o \in M$ fixed.

- $G = I^{0}(M), K = G_{o}$. Then $M = G \cdot o = G/K$.
- $\sigma: G \to G$ given by $\sigma(g) = s_o g s_o$.
- M = G/K with $Fix(\sigma)^0 \subseteq K \subseteq Fix(\sigma)$.

Definition

A **symmetric pair** is a triple (G, K, σ) such that:

- G connected Lie group, $K \leq G$ compact subgroup.
- $\sigma: G \to G$ involution, $Fix(\sigma)^0 \subseteq K \subseteq Fix(\sigma)$.
- $G \curvearrowright G/K$ is almost effective.

From algebra to geometry

 (G, K, σ) symmetric pair, M = G/K, o = eK.

• $\theta = \sigma_*$: $g \to g$ is a Lie algebra involution.

$$g = \ker(\theta - 1) \oplus \ker(\theta + 1)$$
.

From algebra to geometry

 (G, K, σ) symmetric pair, M = G/K, o = eK.

• $\theta = \sigma_*$: $g \to g$ is a Lie algebra involution.

$$g = \mathfrak{f} \oplus \mathfrak{p}$$
.

• $\mathfrak{p} = T_o M$.

$$X \in \mathfrak{p} \mapsto X_o^*, \quad X_p^* = \frac{d}{dt}|_{t=0} \operatorname{Exp}(tX) \cdot p.$$

From algebra to geometry

 (G, K, σ) symmetric pair, M = G/K, o = eK.

• $\theta = \sigma_*$: $g \to g$ is a Lie algebra involution.

$$g = \mathfrak{f} \oplus \mathfrak{p}$$
.

- $\mathfrak{p} = T_o M$.
- *M* is a symmetric space with any *G*-invariant metric:

$$s_o(gK) = \sigma(g)K.$$

The Cartan decomposition

 (G, K, σ) symmetric pair, M = G/K, o = eK.

Definition

The decomposition $g = \mathfrak{k} \oplus \mathfrak{p}$ is the **Cartan decomposition**.

The map θ : $g \to g$ is the **Cartan involution**.

$$[\mathfrak{k},\mathfrak{k}]\subseteq\mathfrak{k},\ [\mathfrak{k},\mathfrak{p}]\subseteq\mathfrak{p},\ [\mathfrak{p},\mathfrak{p}]\subseteq\mathfrak{k}.$$

Proposition

The geodesics of *M* through *o* are

$$\exp_o(tX) = \operatorname{Exp}(tX) \cdot o.$$

Proof

Declare $\mathfrak{f} \perp \mathfrak{p} \Rightarrow \pi \colon g \in G \to g \cdot o \in M$ is a Riemannian submersion. Let $\widetilde{\nabla}$ be the connection of G. Take $X,Y \in \mathfrak{p}$.

$$2\langle \widetilde{\nabla}_X Y, Z \rangle = X\langle Y, Z \rangle + Y\langle X, Z \rangle - Z\langle X, Y \rangle + \langle [X, Y], Z \rangle + \langle [Z, X], Y \rangle - \langle [Y, Z], X \rangle$$

Proposition

The geodesics of *M* through *o* are

$$\exp_o(tX) = \operatorname{Exp}(tX) \cdot o.$$

Proof

Declare $\mathfrak{f} \perp \mathfrak{p} \Rightarrow \pi \colon g \in G \to g \cdot o \in M$ is a Riemannian submersion. Let $\widetilde{\nabla}$ be the connection of G. Take $X,Y \in \mathfrak{p}$.

$$2\langle \widetilde{\nabla}_X Y, Z \rangle = \langle [X, Y], Z \rangle$$

 $\operatorname{Exp}(tX)$ is a horizontal G-geodesic $\Rightarrow \operatorname{Exp}(tX) \cdot o$ is an M-geodesic.

Proposition

If $X \in \mathfrak{p}$ and $Y \in \Gamma(TM)$, then at o:

$$\nabla_X Y = [X^*, Y].$$

Proof

Define
$$T_t = L_{\text{Exp}(tX)} = s_{\text{Exp}(\frac{tX}{2}) \cdot o} s_o$$
. Then $(T_t)_{*o} = P_o^{\text{Exp}(tX) \cdot o}$.

$$\nabla_X Y = \frac{d}{dt} |_{t=0} (T_{-t})_{* \operatorname{Exp}(tX) \cdot o} Y_{\operatorname{Exp}(tX) \cdot o}$$

Proposition

If $X \in \mathfrak{p}$ and $Y \in \Gamma(TM)$, then at o:

$$\nabla_X Y = [X^*, Y].$$

Proof

Define
$$T_t = L_{\text{Exp}(tX)} = s_{\text{Exp}(\frac{tX}{2}) \cdot o} s_o$$
. Then $(T_t)_{*o} = P_o^{\text{Exp}(tX) \cdot o}$.

$$\nabla_X Y = \frac{d}{dt} |_{t=0} (L_{\text{Exp}(-tX)})_{*\text{Exp}(tX) \cdot o} Y_{\text{Exp}(tX) \cdot o}$$

Proposition

If $X \in \mathfrak{p}$ and $Y \in \Gamma(TM)$, then at o:

$$\nabla_X Y = [X^*, Y].$$

Proof

Define
$$T_t = L_{\text{Exp}(tX)} = s_{\text{Exp}(\frac{tX}{2}) \cdot o} s_o$$
. Then $(T_t)_{*o} = P_o^{\text{Exp}(tX) \cdot o}$.

$$\nabla_X Y = [X^*, Y].$$

Proposition

The curvature tensor $R(X,Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}$ at o is R(X,Y)Z = -[[X,Y],Z].

Theorem

Totally geodesic $\Sigma \subseteq M$ through o.

U

Flat t.g. $\Sigma \subseteq M$ through o.

Lie triple systems $V \subseteq \mathfrak{p}$ $[[V,V],V] \subseteq V.$

U

Abelian $V \subseteq \mathfrak{p}$.

Type

M = G/K symmetric space, $g = \mathfrak{t} \oplus \mathfrak{p}, B : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ Killing form:

$$B(X,Y) = tr(ad(X)ad(Y)).$$

M is of:

- Euclidean type if $B|_{\mathfrak{p}}$ is zero (\mathbb{R}^n ,...).
- Compact type if $B|_{\mathfrak{p}}$ is negative definite $(\mathbb{S}^n, \mathbb{F}P^n, \operatorname{Gr}_k(\mathbb{R}^n),...)$.
- **Noncompact type** if $B|_{\mathfrak{p}}$ is positive definite $(\mathbb{F}H^n, SL(n, \mathbb{R})/SO(n),...)$.

Type

$$M = G/K$$
 symmetric space, $g = \mathfrak{t} \oplus \mathfrak{p}, B : g \times g \to \mathbb{R}$ Killing form: $B(X,Y) = \text{tr}(\text{ad}(X)\text{ad}(Y)).$

Compact type

- *B* negative definite.
- *G* compact, semisimple.
- $\sec \ge 0$.

In both cases, g = i(M).

Noncompact type

- $B|_{f}$ negative definite.
- *G* noncompact, semisimple.
- $\sec \leq 0$.

M = G/K of noncompact type, $g = \mathfrak{t} \oplus \mathfrak{p}$.

$$\langle X, Y \rangle = -B(X, \theta Y), X, Y \in \mathfrak{g}.$$

- $\langle \cdot, \cdot \rangle$ is an inner product on g.
- $ad(X)^T = -ad(\theta X)$.
- ad(X) is symmetric (skew-symmetric) when $X \in \mathfrak{p}$ ($X \in \mathfrak{k}$).

We normalize the metric on M so that it coincides with $\langle \cdot, \cdot \rangle|_{\mathfrak{p}}$ at o.

M = G/K of noncompact type.

Theorem

M is a Hadamard manifold.

Proof

 $\exp_{\alpha}: \mathfrak{p} \to M$ is a covering map. Assume $\exp_{\alpha}(X) = \exp_{\alpha}(Y)$.

$$\operatorname{Exp}(X) \cdot o = \operatorname{Exp}(Y) \cdot o \Rightarrow \operatorname{Exp}(X) = \operatorname{Exp}(Y)k$$

M = G/K of noncompact type.

Theorem

M is a Hadamard manifold.

Proof

 $\exp_o: \mathfrak{p} \to M$ is a covering map. Assume $\exp_o(X) = \exp_o(Y)$.

$$\operatorname{Exp}(X) \cdot o = \operatorname{Exp}(Y) \cdot o \implies e^{\operatorname{ad}(X)} = e^{\operatorname{ad}(Y)} \operatorname{Ad}(k)$$
$$\Rightarrow Y - X \in \mathfrak{z}(\mathfrak{g}) = 0.$$

M = G/K of noncompact type.

Theorem

K is a maximal compact subgroup.

Proof

L compact subgroup, $K \subseteq L$.

L fixes a point $p = g \cdot o \Rightarrow K \subseteq L \subseteq G_p$.

M = G/K of noncompact type.

Theorem

K is a maximal compact subgroup.

Proof

L compact subgroup, $K \subseteq L$.

L fixes a point $p = g \cdot o \Rightarrow K \subseteq L \subseteq gKg^{-1}$.

$$K = gKg^{-1} = L.$$

Root space decomposition

Fix a maximal abelian $\mathfrak{a} \subseteq \mathfrak{p}$.

- $ad(a) \subseteq gl(g)$ commuting family of symmetric endomorphisms.
- We get the **root space decomposition**:

$$g_{\lambda} = \{X \in g \mid [H, X] = \lambda(H)X \text{ for all } H \in \mathfrak{a}\}.$$

(Root space)

$$\Delta = \{ \lambda \in \mathfrak{a}^* \mid \lambda \neq 0, \, \mathfrak{g}_{\lambda} \neq 0 \}.$$

(Roots)

$$g = g_0 \oplus \bigoplus_{\lambda \in \Delta} g_{\lambda}$$

•
$$[g_{\lambda}, g_{\mu}] \subseteq g_{\lambda+\mu}$$
.

$$X \in \mathfrak{g}_{\lambda}, Y \in \mathfrak{g}_{\mu}, H \in \mathfrak{a},$$

$$[H, [X, Y]] = -[X, [Y, H]] - [Y, [H, X]]$$

•
$$[g_{\lambda}, g_{\mu}] \subseteq g_{\lambda+\mu}$$
.

$$X \in \mathfrak{g}_{\lambda}, Y \in \mathfrak{g}_{\mu}, H \in \mathfrak{a},$$

$$[H, [X, Y]] = \lambda(H)[X, Y] + \mu(H)[X, Y]$$

•
$$[g_{\lambda}, g_{\mu}] \subseteq g_{\lambda+\mu}$$
.

$$X \in \mathfrak{g}_{\lambda}, Y \in \mathfrak{g}_{\mu}, H \in \mathfrak{a},$$

$$[H, [X, Y]] = (\lambda + \mu)(H)[X, Y]$$

•
$$[g_{\lambda}, g_{\mu}] \subseteq g_{\lambda+\mu}$$
.

•
$$\theta g_{\lambda} = g_{-\lambda}$$
.

$$X \in \mathfrak{g}_{\lambda}, H \in \mathfrak{a}$$

$$[H, \theta X] = \theta[\theta H, X]$$

•
$$[g_{\lambda}, g_{\mu}] \subseteq g_{\lambda+\mu}$$
.

•
$$\theta g_{\lambda} = g_{-\lambda}$$
.

$$X \in \mathfrak{g}_{\lambda}, H \in \mathfrak{a}$$

$$[H, \theta X] = -\theta [H, X]$$

•
$$[g_{\lambda}, g_{\mu}] \subseteq g_{\lambda+\mu}$$
.

•
$$\theta g_{\lambda} = g_{-\lambda}$$
.

$$X \in \mathfrak{g}_{\lambda}, H \in \mathfrak{a}$$

$$[H, \theta X] = -\lambda(H)\theta X.$$

- $[g_{\lambda}, g_{\mu}] \subseteq g_{\lambda+\mu}$.
- $\theta g_{\lambda} = g_{-\lambda}$.
- $g_0 = g_f(a) \oplus a$.

$$g_0 = (g_0 \cap f) \oplus (g_0 \cap p)$$

- $[g_{\lambda}, g_{\mu}] \subseteq g_{\lambda+\mu}$.
- $\theta g_{\lambda} = g_{-\lambda}$.
- $g_0 = g_f(a) \oplus a$.

$$g_0 = g_{\mathfrak{k}}(\mathfrak{a}) \oplus (g_0 \cap \mathfrak{p})$$

$$\mathfrak{a} \subseteq \mathfrak{g}_0 \cap \mathfrak{p}$$

$$X \in \mathfrak{g}_0 \cap \mathfrak{p} \Rightarrow \mathfrak{a} + \mathbb{R}X \text{ abelian}$$

•
$$[g_{\lambda}, g_{\mu}] \subseteq g_{\lambda+\mu}$$
.

- $\theta g_{\lambda} = g_{-\lambda}$.
- $g_0 = g_f(a) \oplus a$.

$$g_0 = g_{\mathfrak{k}}(\mathfrak{a}) \oplus (g_0 \cap \mathfrak{p})$$

$$\mathfrak{a} \subseteq \mathfrak{g}_0 \cap \mathfrak{p}$$

$$X \in \mathfrak{g}_0 \cap \mathfrak{p} \Rightarrow \mathfrak{a} + \mathbb{R}X = \mathfrak{a}$$

Positive roots

Notion of positivity $\Rightarrow \Delta = \Delta^+ \sqcup \Delta^-$.

Regular elements: elements of

$$\mathfrak{a} \setminus \bigcup_{\lambda \in \Delta} \ker \lambda$$

Definition

Fix a regular $H_0 \in \mathfrak{a}$. $\lambda \in \Delta$ is

- Positive $(\lambda \in \Delta^+)$ if $\lambda(H_0) > 0$.
- Negative $(\lambda \in \Delta^-)$ if $\lambda(H_0) < 0$.

Iwasawa decomposition

M = G/K of noncompact type, $\mathfrak{a} \subseteq \mathfrak{p}$ maximal abelian, Δ^+ positive roots.

$$\mathfrak{n}=\bigoplus_{\lambda\in\Lambda^+}\mathfrak{g}_{\lambda}.$$

n nilpotent subalgebra, $\mathfrak{a} \oplus \mathfrak{n}$ solvable, $[\mathfrak{a} \oplus \mathfrak{n}, \mathfrak{a} \oplus \mathfrak{n}] = \mathfrak{n}$.

Theorem (Iwasawa decomposition, Lie algebra level)

$$g = f \oplus a \oplus n$$
.

$$g = f \oplus a \oplus n$$
.

Key example

$$g = \mathfrak{sl}(n, \mathbb{R})$$

$$f = \mathfrak{so}(n)$$

 $a = \{diagonal matrices of trace zero\}$

n = {strictly upper triangular matrices}

$$g = f \oplus a \oplus n$$
.

Proof

 $a \cap n = 0$ by definition.

$$g_0 = g_{\mathfrak{k}}(\mathfrak{a}) \oplus \mathfrak{a}.$$

Assume $X \in \mathfrak{k} \cap (\mathfrak{a} \oplus \mathfrak{n})$.

$$X = X_{a} + \sum_{\lambda \in \Delta^{+}} X_{\lambda}$$

$$g = f \oplus a \oplus n$$
.

Proof

 $a \cap n = 0$ by definition.

$$g_0 = g_{\mathfrak{k}}(\mathfrak{a}) \oplus \mathfrak{a}.$$

Assume $X \in \mathfrak{k} \cap (\mathfrak{a} \oplus \mathfrak{n})$.

$$X = -X_{\alpha} + \sum_{\lambda \in \Delta^{+}} \theta X_{\lambda}$$

$$g = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$$
.

Proof

 $a \cap n = 0$ by definition.

$$g_0 = g_{\mathfrak{k}}(\mathfrak{a}) \oplus \mathfrak{a}.$$

Assume $X \in \mathfrak{f} \cap (\mathfrak{a} \oplus \mathfrak{n}) \Rightarrow X = 0$.

$$g = f \oplus a \oplus n$$
.

Proof

 $a \cap n = 0$ by definition.

$$g_0 = g_{\mathfrak{k}}(\mathfrak{a}) \oplus \mathfrak{a}.$$

$$X \in \mathfrak{g}$$

$$X = X_{3f(\alpha)} + X_{\alpha} + \sum_{\lambda \in \Delta^{-}} X_{\lambda} + \sum_{\lambda \in \Delta^{+}} X_{\lambda}$$

$$g = f \oplus a \oplus n$$
.

Proof

 $a \cap n = 0$ by definition.

$$g_0 = g_{\mathfrak{k}}(\mathfrak{a}) \oplus \mathfrak{a}.$$

$$X \in \mathfrak{g}$$

$$X = X_{3f(\alpha)} + X_{\alpha} + \sum_{\lambda \in \Delta^{-}} ((1 - \theta)X_{\lambda} + \theta X_{\lambda}) + \sum_{\lambda \in \Delta^{+}} X_{\lambda}$$

$$g = f \oplus a \oplus n$$
.

Proof

 $a \cap n = 0$ by definition.

$$g_0 = g_{\mathfrak{k}}(\mathfrak{a}) \oplus \mathfrak{a}.$$

$$X \in \mathfrak{g}$$

$$X = X_{3f(\alpha)} + X_{\alpha} + \sum_{\lambda \in \Delta^{-}} (1 - \theta)X_{\lambda} + \sum_{\lambda \in \Delta^{+}} (X_{\lambda} + \theta X_{-\lambda})$$

Iwasawa decomposition

M = G/K of noncompact type, $\mathfrak{a} \subseteq \mathfrak{p}$ maximal abelian, Δ^+ positive roots.

$$\mathfrak{n} = \bigoplus_{\lambda \in \Delta^+} \mathfrak{g}_{\lambda}$$

A, *N*, *AN* connected subgroups generated by \mathfrak{a} , \mathfrak{n} , $\mathfrak{a} \oplus \mathfrak{n}$.

Theorem (Iwasawa decomposition, Lie group level)

The multiplication maps $K \times A \times N \to G$ and $A \times N \to AN$ are diffeomorphisms.

The multiplication maps $K \times A \times N \rightarrow G$ and $A \times N \rightarrow AN$ are diffeomorphisms.

Proof (sketch)

Under a suitable basis:

```
ad(\mathfrak{f}) \subseteq \mathfrak{so}(\mathfrak{g}),

ad(\mathfrak{a}) \subseteq \{diagonal \ matrices\},

ad(\mathfrak{n}) \subseteq \{upper \ triangular \ matrices \ with \ zeros \ in \ the \ diagonal\}.
```

The multiplication maps $K \times A \times N \rightarrow G$ and $A \times N \rightarrow AN$ are diffeomorphisms.

Proof (sketch)

Use Ad to replace G by $G' = Ad(G) = (Aut g)^0$.

```
ad(\mathfrak{k}) \subseteq \mathfrak{so}(\mathfrak{g}),

ad(\mathfrak{a}) \subseteq \{diagonal \ matrices\},

ad(\mathfrak{n}) \subseteq \{upper \ triangular \ matrices \ with \ zeros \ in \ the \ diagonal\}.
```

The multiplication maps $K \times A \times N \to G$ and $A \times N \to AN$ are diffeomorphisms.

Proof (sketch)

Use Ad to replace G by $G' = Ad(G) = (Aut g)^0$.

 $K' \subseteq SO(g)$, $A' \subseteq \{\text{diagonal matrices with positive entries}\}$, $N' \subseteq \{\text{upper triangular matrices with ones in the diagonal}\}$.

First, prove the result for G'. Then, lift it to G by Ad: $G \to G'$.

The solvable model

M = G/K of noncompact type, G = KAN Iwasawa decomposition.

$$\phi: AN \to M$$
$$g \mapsto g \cdot o$$

is a diffeomorphism. The pullback metric is left-invariant.

Theorem

M is isometric to a simply connected solvable Lie group with a left-invariant metric.

The solvable model

M = G/K of noncompact type, G = KAN Iwasawa decomposition.

$$\phi: AN \to M$$
$$g \mapsto g \cdot o$$

is a diffeomorphism. The pullback metric is left-invariant.

$$\langle X, Y \rangle_{AN} = \langle X_{\alpha}, Y_{\alpha} \rangle + \frac{1}{2} \langle X_{n}, Y_{n} \rangle,$$

$$4 \langle \nabla_{X} Y, Z \rangle_{AN} = \langle [X, Y] + [\theta X, Y] - [X, \theta Y], Z \rangle.$$

