Ensemble Learning

Liang Liang

Notation

- a set of N data points $\{x_1, x_2, x_3, ..., x_N\}$ and $x_n \in \mathcal{R}^M$
- a data point $x_n \in \mathbb{R}^M$, it is a vector and has M elements
- a set of 'ground-truth' target values $\{y_1, y_2, y_3, ..., y_N\}$
- Each data point has M features

$$x_n = [x_{(n,1)}, x_{(n,2)}, x_{(n,3)}, \dots, x_{(n,m)}, \dots, x_{(n,M)}]^T$$

• Drop the index *n*

$$x = [x_{(1)}, x_{(2)}, x_{(3)}, \dots, x_{(m)}, \dots, x_{(M)}]^T$$

 x_1 is a data point/vector

 $x_{(1)}$ is a feature component of a vector, it is a scalar

Rationale: Combination of Models

- There is no algorithm/model that is always the most accurate
- We can build many models (e.g., simple classifiers or regressors) and combine them into a single "strong" model
- Different models may use different learning algorithms, hyper-parameters, training sets, model type/structure, etc

a single model/learner

Ensemble (many models, e.g., 100)

Three main strategies: Bagging, Boosting and Stacking

- Bagging
 - Train weak/simple models simultaneously on bootstrap replicates of the training set (randomly get a subset of the training data)
 - Regression: average the outputs from the simple models
 - Classification: take majority vote among the outputs (averaging)

Bagging

Combine the outputs:

Regression: average the outputs from the weak/simple models

Classification: take majority vote among the outputs (averaging)

Boosting

- Define a Loss function
- Simple models are trained one after another to minimize the loss
 - train model-2 after model-1 is trained
 - train model-3 after model-2 is trained
 - • •
 - add the outputs together

Stacking

• Train a model using the outputs from many other models

Bagging

- Why does it work?

 averaging the outputs may reduce the variance of estimation if the outputs are i.i.d. random variables or weakly correlated.
- A simple example:

We measure the length of an object 100 times and then get a sequence of samples $r_1, r_2, r_3, ..., r_{100}$, and we assume the samples have PDF: $\mathcal{N}(\mu, \sigma^2)$

The best estimation of the length is the average $\bar{r} = \frac{1}{100} \sum_{n=1}^{100} r_n$

the variance of the estimation

$$var(\bar{r}) = var\left(\frac{1}{100}\sum_{n=1}^{100}r_n\right) = \frac{1}{100^2}\sum_{n=1}^{100}var(r_n) = \frac{1}{100^2}\sum_{n=1}^{100}\sigma^2 = \frac{\sigma^2}{100}$$

Does Averaging always work?

$$y_{best} = f(x) = 1 + x + 2x^2 + 3x^3$$

 $y = y_{best} + \varepsilon$, where $\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$

The polynomial model of degree 22

Does Averaging always work?

Let's fit 100 polynomial models of degree 22 to different subsets of the data

```
idxlist = np.arange(0, N, 1)
M = 100
model list=[]
for n in range (0, M):
    rng.shuffle(idxlist)
    Xn = X[idxlist[0:int(N*0.6)],:]
    Yn = Y[idxlist[0:int(N*0.6)],:]
    model = make pipeline(PolynomialFeatures(degree=deg), LinearRegression())
    model.fit(Xn, Yn)
    model list.append(model)
print('len(model list) = ', len(model list))
len(model list) = 100
```

Does Averaging always work?

Let's average these 100 polynomial modes of degree 22

```
Yp_avg = np.mean(Yp, axis=0).reshape(N,1)
MSE = np.mean((Y-Yp_avg)**2)
MSE = '{:6f}'.format(MSE)
plt.plot(X, Y,'.b')
plt.plot(X, Y_best,'-r', linewidth=3)
plt.plot(X, Yp_avg, '-g', linewidth=3)
plt.title('degree='+str(deg)+', MSE='+str(MSE), fontsize=20)
```


Averaging may not work

the average polynomial model

No improvement, Why???

the single polynomial model

Averaging may not work if the models (outputs) are strongly correlated

```
1 C=np.corrcoef(Yp)
2 plt.imshow(C, cmap='gray')
```

<matplotlib.image.AxesImage at 0x1</pre>

1 C.min()

0.9976457145926244

N random variables, r_1 to r_N Each one has variance $var(r_n) = \sigma^2$ NOT i.i.d.

nonnegative pairwise correlation ρ in the range of 0 to 1

 $\rho = 0$ means no correlation

 $\rho = 1$ means the strongest correlation

the average $\bar{r} = \frac{1}{N} \sum_{n=1}^{N} r_n$, N is the number of models

$$var(\bar{r}) = \rho \sigma^2 + \frac{1-\rho}{N} \sigma^2$$

when $\rho \sim 0$, $var(\bar{r}) \sim \frac{1-\rho}{N} \sigma^2$ increase N => decrease $var(\bar{r})$

when $\rho \sim 1$, $var(\bar{r}) \sim \rho \sigma^2$ independent of N

Decision Tree and Random Forest

• A decision tree partitions the feature space into a set of disjoint regions, and then fit a simple model in each region.

- A random forest is a combination of decision trees by bagging reducing variance by
 - (1) randomly sampling data points <u>and features</u> when building a tree to reduce correlation between trees
 - (2) averaging (bagging) the trees

Decision Tree Example

Assume a person only knows the following 6 objects:

One day, a person saw a picture of an object, then this guy tried to figure out the name of the object using a decision tree.

The person asked many yes-no questions

A data sample has three binary features: [alive, fly, carry_more_than_10]

Decision Tree Example

Feature Vector x_n

$$x_n = \begin{bmatrix} x_{(n,1)} \\ x_{(n,2)} \end{bmatrix}$$
 width height

$$y_n = 1$$
 It is an apple

$$y_n = 0$$
 It is a lemon

Feature Space (Input Space)

Decision Tree Example

height $x_{(2)}$ training data points

split the feature space

 $x_{(1)} \le t_1$: apple (majority voting) because there are 3 apples and 1 lemon $\chi_{(2)}$

a sample has two features $x_{(1)}$ and $x_{(2)}$

right region left region

 $x_{(1)} \le t_1$: apple

 $x_{(1)} > t_1 : lemon$

partition the left region

Given $x_{(1)} \leq t_1$,

 $x_{(2)} \le t_2$: apple $x_{(2)} > t_2$: lemon

a tree is growing during training

partition of input space

the decision tree T1

test the decision tree T1

a testing data sample

another layer

We can further expand this tree such that every leaf node only contains one data sample

depth 0

6 samples [3, 3]

$$x_1 \leq t_1$$

$$x_1 > t_1$$

depth 1 ———

4 samples [3, 1]

2 samples

[0, 2]

 $x_2 > t_2$

1 sample [0, 1]

3 leaf (terminal) nodes do not have child nodes

The depth of the tree is 2

depth 2 — (

samples [3, 0]

 $x_2 \leq t_2$

partition of input space

the decision tree T2

partition of input space (three regions)

use the decision tree T2

a new data sample x

a region corresponds to a leaf node in the tree

partition of input space (three regions)

use the decision tree T2

a new data sample x

The data sample x falls into a region/node

Apply Decision Tree to the fruits dataset

The feature vector of a fruit sample: [width, height, color_score]

width ≤ 6.65 entropy = 1.869samples = 47value = [15, 4, 14, 14] 1:apple, 2:mandarin True False 3:orange color_score ≤ 0.755 height ≤ 7.95 4:lemon entropy = 0.863entropy = 1.411samples = 14 samples = 33value = [0, 4, 0, 10] value = [15, 0, 14, 4] width ≤ 7.35 width ≤ 7.4 entropy = 0.0entropy = 0.0entropy = 0.932entropy = 0.971samples = 10 samples = 4 samples = 23samples = 10 value = [0, 0, 0, 10] \forall alue = [0, 4, 0, 0] value = [15, 0, 8, 0] value = [0, 0, 6, 4] color_score ≤ 0.85 entropy = 0.0entropy = 0.0entropy = 0.0entropy = 0.845samples = 12 samples = 6samples = 4 samples = 11 value = [12, 0, 0, 0] value = [0, 0, 0, 4] \forall alue = [0, 0, 6, 0] value = [3, 0, 8, 0] color_score ≤ 0.725 dtree.score(X_train, Y_train) entropy = 0.0entropy = 0.503samples = 2samples = 9 value = [2, 0, 0, 0]1.0 value = [1, 0, 8, 0] dtree.score(X_test, Y_test) entropy = 0.0entropy = 0.0samples = 1samples = 8 0.8333333333333334 value = [1, 0, 0, 0]value = [0, 0, 8, 0]

$$x_{(1)}$$
 is width, $t_1 = 6.65$

width ≤ 6.65
entropy = 1.869
samples = 47
value = [15, 4, 14, 14]

 $x_{(1)} \le t_1$

True

False $x_{(1)} > t_1$
 $color_score \le 0.755$
entropy = 0.863
samples = 14
value = [0, 4, 0, 10]

 $x_{(3)}$ is color_score

 $x_{(2)}$ is height

 $x_{(3)} = 0.755$
 $x_{(2)} = 7.95$

width ≤ 6.65 entropy = 1.869 samples = 47 value = [15, 4, 14, 14]

PMF: probability mass function

On this node:

the distribution (PMF) over the 4 classes is $\begin{bmatrix} p_1 & p_2 & p_3 & p_4 \end{bmatrix}$

$$p_1 = \frac{15}{47}$$
, $p_2 = \frac{4}{47}$, $p_3 = \frac{14}{47}$, $p_4 = \frac{14}{47}$

Entropy
$$H(p) = -\sum_{k=1}^{4} p_k \log_2(p_k) = 1.869$$

entropy = 0.0 samples = 12 value = [12, 0, 0, 0] On this node:

the distribution (PMF) over the 4 classes is $[p_1 \quad p_2 \quad p_3 \quad p_4]$

$$p_1 = \frac{12}{12} = 1$$
, $p_2 = 0$, $p_3 = 0$, $p_4 = 0$

Entropy
$$H(p) = -\sum_{k=1}^{4} p_k \log_2(p_k) = 0$$

Define: $0 \log_2(0) \equiv 0$

This node only contains apples $(p_1 = 1)$. It is a pure node (of apples)

If we only have a limited number of samples on node-j, then we only have an estimation of the distribution (PMF) over the 4 classes, which is

$$[\hat{p}_{(j,1)} \quad \hat{p}_{(j,2)} \quad \hat{p}_{(j,3)} \quad \hat{p}_{(j,4)}]$$

$$\hat{p}_{(j,k)} = \frac{1}{N_j} \sum_{x_n \in R_j} I_k(y_n)$$

$$I_k(y_n) = 1 \text{ if } y_n = k$$

$$I_k(y_n) = 0 \text{ if } y_n \neq k$$
 k : the index of class k
 j : the index of region/node j

$$N_j \text{ is the number of training samples in node/region } R_j$$

$$p_k \text{ is the true probability}$$

$$p_k = \hat{p}_k \text{ when we have a large number of samples}$$
drop the node index $\hat{p}_k = \hat{p}_{(j,k)}$

• So, in previous examples on entropy calculation, we should use

$$[\hat{p}_1 \quad \hat{p}_2 \quad \hat{p}_3 \quad \hat{p}_4]$$
 PMF estimated from data

instead of

$$[p_1 \quad p_2 \quad p_3 \quad p_4]$$
 the 'true' PMF

because we only have a small number of (training) samples on each node

On node-j
The distribution (PMF) over the 4 classes is $[\hat{p}_{(j,1)} \quad \hat{p}_{(j,2)} \quad \hat{p}_{(j,3)} \quad \hat{p}_{(j,4)}]$

Entropy:
$$H = -\sum_{k=1}^{K} \hat{p}_{(j,k)} log \hat{p}_{(j,k)}$$

If H = 0, then the node is a pure node

If H > 0, then the node is not pure, it contains samples from many classes

Thus, Entropy measures the **impurity** of a node. Impurity: condition of being impure (not pure)

visualize a decision tree: using graphviz

visualize a decision tree: using plot tree in sk-learn

Use a trained decision tree for classification

- A training dataset $\{(x_n, y_n), n = 1, ..., N\}$ and $x_n \in \mathcal{R}^M$ $y_n = 1, 2, ..., K$, there are K classes
- After training, the feature space \mathcal{R}^M is partitioned into J regions, $R_1, R_2, ..., R_j, ..., R_J$: A tree is a partition of the feature space
- Each region corresponds to a leaf/terminal node of the tree
- At each node j, we have a distribution $\hat{p}_{(j,k)}$
- The predicted target label \hat{y} of the data point x is given by $\hat{y} = \operatorname*{argmax}\{\hat{p}_{(j,k)}\}$

if x falls into the node/region-j

• A training dataset $\{(x_n, y_n), n = 1, ..., N\}$ and $x_n \in \mathcal{R}^M$ $y_n = 1, 2, ..., K$, there are K classes

- Let R_0 be the feature space (the input space). N_0 is the number of data points in the region R_0
- We will partition the space into two regions R_1 and R_2 N_i is the number of data points in the region R_i
- step-1: randomly select a subset of features

$$\{x_{(1)}, x_{(2)}, \ldots\}$$

- $Q(R_j)$ measures the impurity of the node j
 - entropy $H = -\sum_{k=1}^{K} \hat{p}_{(j,k)} log \hat{p}_{(j,k)}$
 - Gini index: $\sum_{k=1}^K \hat{p}_{(j,k)} (1 \hat{p}_{(j,k)})$ very similar to entropy

• step-2: for each candidate feature $x_{(s)}$ in the subset, find the best split $t_{(s)}$ such that this function is <u>maximized</u>:

$$E = Q(R_0) - \frac{N_1}{N_0}Q(R_1) - \frac{N_2}{N_0}Q(R_2)$$

- $R_1 = \{x_{(s)} \le t_{(s)}\}$ and $R_2 = \{x_{(s)} > t_{(s)}\}$
- $Q(R_i)$ measures the impurity of the node j
- E is maximized when $Q(R_1)$ and $Q(R_2)$ are minimized
- step-3: use the best feature and split (leading to the maximum of E) to divide the region R_0 into R_1 and R_2
- Repeat the above steps until we get many regions/nodes

a closer look at the step 2

$$E(t_{(s)}) = Q(R_0) - \frac{N_1}{N_0} Q(R_1) - \frac{N_2}{N_0} Q(R_2)$$

$$R_1 = \{x_{(s)} \le t_{(s)}\} \text{ and } R_2 = \{x_{(s)} > t_{(s)}\}$$

Assume that three features are randomly selected from the M features:

feature	$x_{(1)}$	$\chi_{(2)}$	$x_{(11)}$
the best split	$t_{(1)}$	$t_{(2)}$	$t_{(11)}$
objective	$E(t_{(1)})$	$E(t_{(2)})$	$E(t_{(11)})$

if
$$E(t_{(11)}) = \max\{E(t_{(1)}), E(t_{(2)}), E(t_{(11)})\}$$

then $x_{(11)}$ and $t_{(11)}$ will be used for splitting the region R_0

• After training, the feature space (input space) is partitioned into many regions, $R_1, R_2, ..., R_j,...$

• A tree is a partition of the feature space

When will the algorithm stop growing the tree?

The algorithm can grow a deep tree such that every leaf node is a pure node (i.e., entropy=0). But a deep tree may not be good for your application.

```
class sklearn.tree. DecisionTreeClassifier(criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort='deprecated', ccp_alpha=0.0) [source]
```

A decision tree for regression $\hat{y} = f(x_{(1)}, x_{(2)})$

A tree is a partition of the input space

the predicted target values of the data points in the same region are the same. e.g., two data points x_{n1} and x_{n2} in region R2, then $\hat{y}_{n1} = \hat{y}_{n2}$ from the tree

A decision tree for regression $\hat{y} = f(x_{(1)}, x_{(2)})$

Stairs!

A tree is a partition of the input space

the predicted target values of the data points in the same region are the same. e.g. two data points x_a and x_b in region R2, then $\hat{y}_a = \hat{y}_b$ from the tree

 R_4

Use a trained decision tree for regression $\hat{y} = f(x_{(1)}, x_{(2)})$

Here is the rule for regression: If the input data sample $x = (x_{(1)}, x_{(2)})$ falls into the region R_j , Then the predicted target value is c_j .

 R_j is associated with c_j c_j could be a vector

Construct/train a decision tree for regression (1)

- A training dataset $\{(x_n, y_n), n = 1, ..., N\}$ and $x_n \in \mathbb{R}^M$
- Let R_0 be the input space.
- We will partition the space into two regions R_1 and R_2 in the following steps:
- Step-1: randomly select a subset of features

$$\{x_{(1)}(e.g., width), x_{(2)}(e.g., height),...\}$$

Construct/train a decision tree for regression (1)

• Step-2: for each selected feature $x_{(s)}$, find the best split t, such that this function is minimized:

$$SSE = \sum_{x_n \in R_1} (y_n - c_1)^2 + \sum_{x_n \in R_2} (y_n - c_2)^2$$

$$c_1 = average(y_n | x_n \in R_1), c_2 = average(y_n | x_n \in R_2)$$

$$R_1 = \{x_{(s)} \le t\}, \qquad R_2 = \{x_{(s)} > t\}$$

• Step-3: use the best feature and split (leading to the minimum of SSE) to divide the region R_0 into two regions R_1 and R_2 ,

• keep dividing the new regions until we get many regions/nodes

Construct/train a decision tree for regression (1)

Impurity of a node j:

$$Q(R_j) = MSE = \frac{1}{N_j} \sum_{x_n \in R_j} (y_n - c_j)^2$$

It is a pure node if the MSE is 0

We can also use MAE

Next, Let's revisit the process of growing a tree

Construct/train a decision tree for regression (2)

- A training dataset $\{(x_n, y_n), n = 1, ..., N\}$ and $x_n \in \mathbb{R}^M$
- Let R_0 be the input space.
- We will partition the space into two regions R_1 and R_2 in the following steps:
- Step-1: randomly select a subset of features

$$\{x_{(1)}(e.g., width), x_{(2)}(e.g., height),...\}$$

Construct/train a decision tree for regression (2)

• Step-2: for each selected feature $x_{(s)}$, find the best split $t_{(s)}$, such that this function is <u>maximized</u>:

$$E = Q(R_0) - \frac{N_1}{N_0}Q(R_1) - \frac{N_2}{N_0}Q(R_2)$$

$$c_1 = average(y_n|x_n \in R_1), c_2 = average(y_n|x_n \in R_2)$$

$$R_1 = \{x_{(s)} \le t_{(s)}\}, \qquad R_2 = \{x_{(s)} > t_{(s)}\}$$

• Step-3: use the best feature and split (leading to the maximum of E) to divide the region R_0 into two regions R_1 and R_2 ,

keep dividing the new regions until we get many regions/nodes

When will the algorithm stop growing the tree?

The algorithm can grow a deep tree such that every leaf node is a pure node (i.e., MSE=0). A deep tree may not be good for your application.

```
class sklearn.tree. DecisionTreeRegressor(criterion='mse', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, presort='deprecated', ccp_alpha=0.0) [source]
```

see the demo:

Decision Trees and Bandom Forests in

Decision_Trees_and_Random_Forests.ipynb

- from sklearn.tree import DecisionTreeClassifier
- 2 tree = DecisionTreeClassifier(max_depth=1).fit(X, y)

1 tree = DecisionTreeClassifier(max_depth=3).fit(X, y)

1 tree = DecisionTreeClassifier(max_depth=100).fit(X, y)

A very deep tree: the decision boundary is "noisy"

decision tree regression example

overfitting:

The tree with depth=5 fits to the outliers

Random Forest (a bag of trees)

- A random forest is a combination of many decision trees.
- Each tree is trained on a randomly selected subset of the training data
- The trees (i.e., the outputs) are weakly correlated (in theory) because of random selection of features when building a tree
- The output of a random forest is average for regression or majority vote for classification

Bagging

Combine the outputs:

Regression: average the outputs from the trees

Classification: take majority vote among the outputs

The Algorithm to build a Random Forest

- Step-0: set the number of trees and hyper-parameters (max_depth, etc)
- Step-1: randomly select a subset of training data points (bootstrap samples) build a tree using pre-defined hyper-parameters (max_depth, etc)
- Repeat Step-1 until we get all of the trees (e.g., 100).
- $T_i(x)$ denotes the output of a tree (predicted class label or target value of x)
- Regression: the predicted target value is $\hat{y} = \frac{1}{100} \sum_{i=1}^{100} T_i(x)$
- Classification: the predicted class label is $\hat{y} = majority\ vote\{T_1(x), ... T_{100}(x)\}$
- The output \hat{y} of the random forest may be a vector (multi-class, multi-output)

see the demo:

Decision Trees and Bandom Forests in

Decision_Trees_and_Random_Forests.ipynb

to handle large outliers, bagging is not enough, we need robust regression loss instead of MSE loss, or RANSAC.

Feature Importance in Random Forests

- Which feature is the most important for classification/regression?
- Measure feature importance:
 - vary a feature of the data points, and see how the outputs change
 - the average value of the function *E* used for node/region splitting *E* is used to find the best split for each feature take the average of *E* associated with a feature across the trees.

• Random forests are often used for feature selection

see demo Feature_Importance_RF.ipynb

RandomForestClassifier identified important pixels/features for facial recognition

Feature importance shows the importance of a feature across the entire dataset, not just for one data sample

Feature importance: subjective or objective?

- subjective: feature importance is only associated with a specific model Feature-1 is important for classifier-A, but not for classifier-B
- objective: feature importance is the same for all the models Feature-1 is important for classifier-A, classifier-B, etc
- Is this a good approach?

Use Random Forest to find the top 10 features and then fit a linear model on the data with 10 features, assuming that the 10 features are also important for the linear model?

Boosting

- Boosting
 - The weak models are trained one after another to minimize a loss train model-2 after model-1 is trained train model-3 after model-2 is trained

• Combine the outputs (e.g., linearly)

- Adaboost
- XGBoost
- LightGBM
- CatBoost

XGBoost: Boosting Trees

- A training dataset $\{(x_n, y_n), n = 1, ..., N\}$
- We combine K trees into a forest (not random forest)

 The predicted target value for x_n from the forest is

$$\hat{y}_n^{(K)} = \sum_{k=1}^K f_k(x_n)$$

where $f_k(x_n)$ is the output from the tree-k

The output is NOT the average!

XGBoost

- A training dataset $\{(x_n, y_n), n = 1, ..., N\}$
- We have K trees and combine them into a forest (not random forest)

 The predicted target value from the forest is

$$\hat{y}_n^{(K)} = \sum_{k=1}^K f_k(x_n)$$
 where $f_k(x_n)$ is the output from the tree-k

• The loss function of the forest:

$$L_K = \sum_{n=1}^{N} l\left(y_n, \hat{y}_n^{(K)}\right) + \lambda \sum_{k=1}^{K} \Omega(f_k)$$

e.g., $l(y_n, \hat{y}_n^{(K)}) = ||y_n - \hat{y}_n^{(K)}||_2^2$ (L2 norm squared) for regression $\Omega(f_k)$ could be the number of leaf nodes in the tree-k λ is a "user-defined" parameter (hyper-parameter), let's set $\lambda = 1$

XGBoost: additive training

- The loss function: $L_K = \sum_{n=1}^N l\left(y_n, \hat{y}_n^{(K)}\right) + \sum_{k=1}^K \Omega(f_k)$
- Tree-1: build the first tree f_1 , and the prediction is $\hat{y}_n^{(1)} = f_1(x_n)$ using the loss $L_1 = \sum_{n=1}^N l\left(y_n, \hat{y}_n^{(1)}\right) + \Omega(f_1)$
- Tree-2: build the second tree f_2 , and the prediction is

$$\hat{y}_n^{(2)} = f_1(x_n) + f_2(x_n) = \hat{y}_n^{(1)} + f_2(x_n)$$

using the loss
$$L_2 = \sum_{n=1}^{N} l\left(y_n, \hat{y}_n^{(2)}\right) + \Omega(f_2)$$

$$= \sum_{n=1}^{N} l\left(y_n, \hat{y}_n^{(1)} + f_2(x_n)\right) + \Omega(f_2)$$

in the loss L_2 , $\hat{y}_1^{(n)}$ is a constant, we only optimize/build the second tree f_2

Input data:
$$\{(x_n, y_n), n = 1, ..., N\}$$

Output K trees $f_1(x_n), ..., f_K(x_n)$
The prediction is $\hat{y}_n^{(K)} = \sum_{k=1}^K f_k(x_n)$

let's consider one data point (x, y)

Build the first tree $f_1(x)$, such that:

$$y \approx f_1(x)$$

the regression error is

$$|y - f_1(x)|$$

Build the third tree $f_3(x)$, such that:

$$y - (f_1(x) + f_2(x)) \approx f_3(x)$$

The regression error is

$$|y - f_1(x) - f_2(x) - f_3(x)|$$

< $|y - f_1(x) - f_2(x)|$

Build the second tree $f_2(x)$, such that:

$$y - f_1(x) \approx f_2(x)$$

the regression error is

$$|y - f_1(x) - f_2(x)| < |y - f_1(x)|$$

Combine the three trees for regression

$$y \approx \hat{y} = f_1(x) + f_2(x) + f_3(x)$$

Add trees one-by-one to reduce the regression error gradually

Boosting Trees

• XGBoost: https://xgboost.readthedocs.io

• LightGBM: https://lightgbm.readthedocs.io

• CatBoost : https://github.com/catboost/catboost

• The python packages can be downloaded from anaconda

• Boosting trees are very useful to handle tabular data (tables)

Bagging (RF) vs

$$f_{6}(x)$$

$$f_{1}(x) \qquad \star \qquad f_{5}(x)$$

$$\star \qquad y_{true}$$

$$f_{2}(x) \qquad \star \qquad f_{4}(x)$$

$$f_{3}(x)$$

$$y_{pred} = \frac{1}{6} \sum_{i=1}^{6} f_i(x)$$

the goal is to reduce variance

Boosting (XGBoost)

