ω Cross-Section Studies

Omega Cross-Section

Mainz, March 2019 Institute for Nuclear Physics

Omega Cross-Section

Martin Sobotzik

Mainz, March 2019

Institute for Nuclear Physics Johannes Gutenberg-University of Mainz

 $\cos(\theta)_{cm}$ Olis Cross Section; Dip at about $cos(\theta) = -0.3$

0 0.2 0.6

-0.4 -0.2

-0.6

-Starting Point

Increasing the Number of Bins

Increased number of bins to 40; now there is still a dip at $\cos(\theta)=-0.3$ but also a peak at $\cos(\theta)=-0.4$

Comparing 10 Bin to 40 Bin Cross Section

Both Cross Sections are shown.

 $\gamma p \rightarrow$

There is a 1:1 correlation between the polar angle of p and ω for fixed $E(\gamma)$!

 ω Cross-Section Studies Taking a closer Look

$$\gamma p \rightarrow \qquad \qquad \omega \qquad \qquad p \qquad \qquad \qquad p$$

There is a 1:1 correlation between the polar angle of p and ω for fixed $E(\gamma)$!

W Cross-Section Studies

There is + 11 consistent because the place and of p and or fixed £(γ)

Taking a closer Look

Energy of protons for $\cos(\theta_{\omega}) = [-0.45, -0.35]$. Red are MC and blue are

nergy of Proton for cos(0.) - [-0.45, -0.35] (Peak)

 θ of Proton for $\cos(\theta_{\omega})=[-0.45,-0.35]$ (Peak)

 θ of protons for $\cos(\theta_{\omega}) = [-0.45, -0.35]$. Red are MC and blue are beamtime data. Left side is just measured, right side is after KFit.

 ω Cross-Section Studies

of Proton for $cos(\theta_{-}) = [-0.45, -0.35]$ (Peak)

Energy of protons for $\cos(\theta_{\omega}) = [-0.35, -0.25]$. Red are MC and blue are beamtime data. Left side is just measured, right side is after KFit.

nergy of Protons for $cos(\theta_{-}) = [-0.35, -0.25]$ (Dip)

 θ of Proton for $\cos(\theta_\omega) = [-0.35, -0.25]$ (Dip)

 θ of protons for $\cos(\theta_{\omega}) = [-0.35, -0.25]$. Red are MC and blue are beamtime data. Left side is just measured, right side is after KFit.

 ω Cross-Section Studies

 θ of Proton for $cos(\theta_{\omega}) = [-0.35, -0.25]$ (Dip)

Energy of protons for $\cos(\theta_\omega)=[0.35,0.45]$. Red are MC and blue are beamtime data. Left side is just measured, right side is after KFit.

Martin Sobotzik - ω Cross-Section Studies

 θ of protons for $\cos(\theta_{\omega}) = [0.35, 0.45]$. Red are MC and blue are beamtime data.

 ω Cross-Section Studies

 $cos(\theta_{fit})$ vs. $cos(\theta_{gen})$ for all protons.

 ω : θ_{fit} vs. θ_{gen}

 $\cos(\theta_{\it fit})$ vs. $\cos(\theta_{\it gen})$ for all ω .

 \sqsubseteq_{ω} : θ_{fit} vs. θ_{gen}

Unfolding

 ω Cross-Section Studies
Unfolding

Unfolding

2019-03-21

• Use numerical methods to invert the migration matrix

distribution by inverting the migration matrix

 ω Cross-Section Studies

-Motivation

-Unfolding

· u is the true distribution given by nature · detector effects are then described by the migration matrix R. (inefficiencies, bias and smearing)

. This results in the distribution a

 $\mu = R^{-1}\nu$

 $\nu_i = \sum_{i=1}^{M} R_i \mu_i$ · With infinite statistics, it would be possible to recover the original

• With infinite statistics, it would be possible to recover the original

 $\mu = R^{-1}\nu$

• detector effects are then described by the migration matrix *R*.

 $\nu_i = \sum_{j=1}^M R_{ij} \mu_j$

• μ is the *true* distribution given by nature

(inefficiencies, bias and smearing) • This results in the distribution ν .

Unfold Example

Example for Unfolding. Blue is true distribution. Red is measured distribution. Black Dots are the unfolded distribution. Green is the fit of the unfolded distribution

In region of $cos\theta(\omega)_{gen}\approx -0.35$, see broader distribution of $cos\theta(\omega)_{fit}$ –¿ simple 1D efficiency correction may not work well enough

Flat ω ; Folded MC Data

Flat ω was used. MC fitted data were unfolded.

Flat ω ; Folded MC Data

Flat ω was used. MC fitted data were unfolded.

- ω are generated with a flat phase space
- A migration matrix is calculated
 - than used to unfold realistic MC

• This migration matrix is

- Unfortunately, the unfolded cross section does not have the desired shape
 - . → Unfolding was unsuccessful

- ullet Drop in the measured cross section at $\cos(heta_\omega) pprox -0.35$ is caused by a drop in the efficiency at that region
- Inefficiency is caused by the protons hitting the edge of the CB
 - → They are not reconstructed properly
- There are differences between MC and Data
- The differences are too big to make the Unfolding work

Martin Sobotzik - ω Cross-Section Studies - Unfolding

Flat generated ω

