AutoML: Interpretability

Overview: Automated Empirical Analysis

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

Idea

- Big challenge of ML: Interpretability
 - ▶ In some applications, it is required to "understand" a prediction
 - ▶ Users have less trust in systems, they can't understand

Idea

- Big challenge of ML: Interpretability
 - ▶ In some applications, it is required to "understand" a prediction
 - Users have less trust in systems, they can't understand
- AutoML is even worse?
 - AutoML is a black-box that automates the design of another blackbox (ML)
 - ► Also ML-developers have a basic understanding of the design of their ML pipelines
- Automated empirical interpretability helps to
 - understand the finally returned ML system
 - understand the AutoML process

- Insights:
 - AutoML is yet another optimization problem
 - ▶ (Most) AutoML approach are iterative in nature
- --- AutoML generates a lot of empirical data

Cost cBudgets

Design Space Λ

- Insights:
 - AutoML is yet another optimization problem
 - ▶ (Most) AutoML approach are iterative in nature
- --- AutoML generates a lot of empirical data

- Insights:
 - AutoML is yet another optimization problem
 - ▶ (Most) AutoML approach are iterative in nature
- → AutoML generates a lot of empirical data

- Insights:
 - AutoML is yet another optimization problem
 - ▶ (Most) AutoML approach are iterative in nature
- → AutoML generates a lot of empirical data

 \rightsquigarrow Let's use this data to learn something about our AutoML problem

Basic Examples

- ullet Visualize final incumbent $\hat{oldsymbol{\lambda}}$
 - ML pipeline with its components
 - ► Neural architecture

Basic Examples

- ullet Visualize final incumbent $\hat{oldsymbol{\lambda}}$
 - ▶ ML pipeline with its components
 - Neural architecture
- ullet Compare what changed between λ_{def} and $\hat{\lambda}$

Basic Examples

- ullet Visualize final incumbent $\hat{oldsymbol{\lambda}}$
 - ML pipeline with its components
 - Neural architecture
- ullet Compare what changed between λ_{def} and $\hat{\lambda}$
- $oldsymbol{\circ}$ Show $oldsymbol{\hat{\lambda}}$ on different budgets (if you used a multi-fideltiy approach)

Source: [Lindauer et al. 2019]

 Study how your AutoML tool improves cost (or loss) over time

Source: [Lindauer et al. 2019]

- Study how your AutoML tool improves cost (or loss) over time
- Allows to identify whether
 - ▶ you need less time next time or

Source: [Lindauer et al. 2019]

- Study how your AutoML tool improves cost (or loss) over time
- Allows to identify whether
 - you need less time next time or
 - the AutoML system is still improving; so you should give it more time

Source: [Lindauer et al. 2019]

- Study how your AutoML tool improves cost (or loss) over time
- Allows to identify whether
 - you need less time next time or
 - the AutoML system is still improving; so you should give it more time
- Notes:
 - ▶ Plot on log-scale to see details in the beginning
 - If you have done several runs, plot distribution (e.g., median and 25/75%-quartiles)