12332294 李普双

1.1 [10 points] Compute monthly climatology for SST from Niño 3.4 region, and subtract climatology from SST time series to obtain anomalies.

代码思路

先导入文件,在用 slice 从中选取 *Niño 3.4* 区域(5N-5S, 170W-120W),170W-120W 转化为 360°格式,应该为 360-170 和 360-140,为 190°-240°即 ds.sst.sel(lat=slice(-5, 5), lon=slice(190, 240))

再按月对其进行分组,继而求每组的平均值,即可获得 climatology 再用原本的数据减去平均值,就可以获得 global mean anomalies,最后进行绘图。

结果

1.2 [10 points] Visualize the computed Niño 3.4. Your plot should look similar to this one.

代码思路

先求 anomalies 的三月滑动平均值,可以采用 rolling 函数实现该功能 rolling_mean = sst_anom.rolling(time=3, center=True).mean()

再求整个区域的平均值,最后绘制滑动平均曲线并填充其与 x 轴之间的距离 **结果**

2.1 [5 points] Make a 2D plot of the time-mean TOA longwave, shortwave, and solar radiation for all-sky conditions. Add up the three variables above and verify (visually) that they are equivalent to the TOA net flux.

代码思路

先将下载的文件导入,再提取相应的变量 TOA 长波辐射、TOA 短波辐射、TOA net flux、太阳辐射,先绘制长波辐射、短波辐射、太阳辐射的 2D 图 再用 TOA net flux=太阳辐射-TOA 长波辐射-TOA 短波辐射,可以得到计算出的 TOA net flux,绘制 2D 图,并与从文件中提取的 TOA net flux 进行对比。计算出的 TOA net flux 与文件中观测到的 TOA net flux 基本一致。

结果

计算出的 TOA net flux 与文件中观测到的 TOA net flux 基本一致。

2.2 [10 points] Calculate and verify that the TOA incoming solar, outgoing longwave, and outgoing shortwave approximately match up with the cartoon above.

代码思路

先计算每个单元网格的面积,在计算每个每个数据时间上的均值,二者相乘再除 以总的面积,得到单位面积上的数据通量。

在网格计算上要在末尾添加额外的差分以匹配网格大小 inspired by 朱煜光同学 发现: 全球平均入射太阳辐射为 340.29 W/m² 与图中 incoming solar radiation=340.4 基本吻合

全球平均出射长波辐射为 240.27 W/m² 与图中 total outgoing infrared radiation=239.9 基本吻合

全球平均出射短波波辐射为 99.14 W/m^2 与图中 total reflected solar radiation=99.9 基本吻合

结果

平均入射太阳辐射: 340.29 W/m²

平均出射长波辐射: 240.27 W/m²

平均出射短波辐射: 99.14 W/m²

全球平均入射太阳辐射为 340.29 W/m² 与图中 incoming solar radiation=340.4 基

本吻合

全球平均出射长波辐射为 240.27 W/m² 与图中 total outgoing infrared radiation=239.9 基本吻合

全球平均出射短波波辐射为 99.14 W/m² 与图中 total reflected solar radiation=99.9 基本吻合

2.3 [5 points] Calculate and plot the total amount of net radiation in each 1-degree latitude band. Label with correct units.

代码思路

先提取纬度值,再创建空的数据,用 for 循环,先选出所有符合纬度等于 lat 的值,再求和,将其添加到空的数据格,最后进行绘图,Net radiation 单位为(W/m) 结果

2.4 [5 points] Calculate and plot composites of time-mean outgoing shortwave and longwave radiation for low and high cloud area regions. Here we define low cloud area as \leq 25% and high cloud area as \geq 75%. Your results should be 2D maps.

代码思路

先用 where 函数区分出低云和高云区域,再求其时间上的平均值,最后进行绘图

2.5 [5 points] Calculate the global mean values of shortwave and longwave radiation, composited in high and low cloud regions. What is the overall effect of clouds on shortwave and longwave radiation?

代码思路

对高云区域和低云区域计算其范围上的平均值

结果

低云区域中短波辐射的全球平均值: 88.81645202636719 W/m^2 高云区域中短波辐射的全球平均值: 114.74327850341797 W/m^2 低云区域中长波辐射的全球平均值: 233.0670166015625 W/m^2 高云区域中长波辐射的全球平均值: 215.3734893798828 W/m^2

结论: 云对短波辐射起到增强作用,云的覆盖度越高,该区域短波辐射值越大云对长波辐射起到削弱作用,云的覆盖度越低,该区域长波辐射值越大

3.1 [5 points] Plot a time series of a certain variable with monthly seasonal cycle removed.

代码思路

先计算地表温度的每个月的平均值,再用源数据减去月平均值,即可获得剔除月季循环后的地表温度,再求全区域上的地表温度平均值进行绘图

结果

3.2 [5 points] Make at least 5 different plots using the dataset.

代码思路

图 1 绘制地表温度的 2D 图,图 2 绘制地表温度的季节循环图,先求全区的地表温度平均值再进行绘图,图 3 绘制每个纬度上的地表温度均值,图 4 绘制空气温度的 2D 图,图 5 绘制地表温度与空气温度的散点图进行对比

结果

