Analysis 2 S2

Raphael Nambiar

Version: 20. April 2022

Integrieren

f(x)	f'(x)
\mathbf{x}^{α} mit $\alpha \in \mathbb{R}$	$\alpha x^{\alpha-1}$
sin(x)	cos(x)
cos(x)	- sin(<i>x</i>)
tan(x)	$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$
cot(x)	$-1-\cot^2(x)=-\tfrac{1}{\sin^2(x)}$
e ^x	e ^x
a ^x	In(a) ⋅ a ^x
ln(x)	1 x
$\log_a(x)$	$\frac{1}{\ln(a)x}$
arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$
arccos(x)	$-\frac{1}{\sqrt{1-x^2}}$
arctan(x)	$\frac{1}{1+x^2}$

f(x)	F(x)
x^a mit $a \neq -1$	$\frac{1}{a+1}x^{a+1}+C$
sin(x)	$-\cos(x)+C$
cos(x)	sin(x) + C
$1 + \tan^2(x)$	tan(x) + C
e ^x	$e^x + C$
a ^x	$\frac{1}{\ln(a)} \cdot a^{x} + C$
$\frac{1}{x}$	ln(x) + C
$\frac{1}{\sqrt{1-x^2}}$	arcsin(x) + C
$-\frac{1}{\sqrt{1-x^2}}$	arccos(x) + C
$\frac{1}{1+x^2}$	arctan(x) + C

Integration durch Substitution

- $\widehat{\ \ }$ Substitutionsgleichung für x:u=g(x)
- \bigcirc Substitutionsgleichung für dx:

$$\frac{du}{dx} = g'(x)_{(Ableitung)} \to dx = \frac{du}{g'(x)}$$

- $\ensuremath{\ensuremath{\mathfrak{J}}}$ Integral substitution: Einsetzen von u und dx aus 1. und 2 in Ursprung
- 4 Integration von 3.
- (5) Rücksubstitution (nur unbestimmte Integrale)

Beispiel:

$$\underbrace{1}_{2} u = 2x$$

$$(2) dx = \frac{dx}{2}$$

$$3 \int e^u \frac{du}{2}$$

$$4 \int e^u \cdot \frac{1}{2} du = \frac{1}{2} \cdot \int e^u du \to \frac{1}{2} e^u + C$$

$$(5) \frac{1}{2}e^{u} + C \rightarrow \frac{1}{2}e^{2x} + C$$

Partielle Integration

$$u(x) \cdot v(x) - \int u'(x) \cdot v(x) dx$$

Beispiel:

$$u(x) = x; v'(x) = e^x$$

 $u'(x) = 1; v(x) = e^x$

$$\int x \cdot e^x = x \cdot e^x - \int \cdot e^x dx = x \cdot e^x - e^x + C$$

Integration durch Partialbruchzerlegung

TBD

Differentialgleichungen (DGL)

Begriffe

Ordnung: Ordnung = höchste Ableitung in der DGL

Linearität: Funktion und Ableitung sind linear $\rightarrow x^1$

Separierbare Differentialgleichungen

Eine Differentialgleichung 1. Ordnung heisst separierbar wenn:

$$y' = f(x) \cdot g(x)$$

How To:

- 3 Integration auf beiden Seiten der Gleichung (if possible):

$$\int \frac{dy}{g(y)} = \int f(x)dx$$

(4) Auflösen nach y (falls möglich!)

Beispiel:

(3)

$$y' = y^2 = \sin(x)$$

$$1 y' = \frac{dy}{dx} = \frac{\sin(x)}{y^2}$$

$$(2) y^2 \cdot dy = \sin(x) \cdot dx$$

Autonome Differentialgleichungen