

دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران) دانشکده مدیریت علم و فناوری

گزارش کار هفته دهم

رگرسیون

نگارش رضا اکبری مقدم

استاد دکتر مهدی قطعی

دی ماه ۹۹

فهرست مطالب

۴	مقدمه
۴	معرفی مجموعه داده
۴	مراحل انجام كارمراحل انجام كار
١٢	جدول نتیجه گیری
١٣	منابعمنابع

فهرست اشكال

۵	شکل ۱
۵	
۶	
٧	
۸	
٩	
٩	
٩	
٩	
1+	
11	
11	
17	
17	

مقدمه

رگرسیون یک روش آماری بوده و در اقتصاد، برنامه نویسی و فعالیت های دیگر استفاده می شود. هدف رگرسیون شناسایی قدرت و خواص یک متغیر وابسته نسبت به متغیرهای دیگر (که به متغیر های مستقل معروفند) می باشد.

رگرسیون را می توان در سه دسته تقسیم بندی کرد که عبار تند از رگرسیون خطی، غیرخطی و رگرسیون خطی چندگانه (چند متغیره). در روش خطی برای توصیف یا پیش بینی خروجی ناشی از چند متغیر مستقل، تنها بر اساس یک متغیر وابسته انجام می گیرد. در رگرسیون چند متغیره برای همین منظور از دو یا چند متغیر وابسته استفاده می شود.

رگرسیون غیر خطی برای مواردی استفاده می شود که به دنبال یافتن رابطهای غیر خطی بین متغیرها هستیم. از این روش در محاسبات بسیار پیچیده استفاده میشود.

معرفي مجموعه داده

مجموعه داده Combined Cycle Power Plant که اطلاعات چرخه نیروگاه ها طی ۶ سال زمانی که با حداکثر توان مشغول به کار بودند را جمع آوری نموده است. ویژگی ها از متغیرهای متوسط ساعتی دما (۲) ، فشار محیط (AP) ، رطوبت نسبی (RH) و خلا اگزوز (۷) برای پیش بینی خالص انرژی الکتریکی ساعتی (EP) نیروگاه تشکیل شده است.

مراحل انجام کار

در این گزارش با استفاده از ابزار پایتون به بررسی این مجموعه داده میپردازیم.

پس از اضافه کردن مجموعه داده نمایی از جدول این مجموعه داده میگیریم.

	AT	V	AP	RH	PE
0	14.96	41.76	1024.07	73.17	463.26
1	25.18	62.96	1020.04	59.08	444.37
2	5.11	39.40	1012.16	92.14	488.56
3	20.86	57.32	1010.24	76.64	446.48
4	10.82	37.50	1009.23	96.62	473.90
9563	16.65	49.69	1014.01	91.00	460.03
9564	13.19	39.18	1023.67	66.78	469.62
9565	31.32	74.33	1012.92	36.48	429.57
9566	24.48	69.45	1013.86	62.39	435.74
9567	21.60	62.52	1017.23	67.87	453.28

9568 rows × 5 columns

شكل ا

سپس یک شمای کلی از وضعیت آماری داده ها و ویژگی های این مجموعه داده به نمایش گذاشته شده است.

	AT	V	AP	RH	PE
count	9568.000000	9568.000000	9568.000000	9568.000000	9568.000000
mean	19.651231	54.305804	1013.259078	73.308978	454.365009
std	7.452473	12.707893	5.938784	14.600269	17.066995
min	1.810000	25.360000	992.890000	25.560000	420.260000
25%	13.510000	41.740000	1009.100000	63.327500	439.750000
50%	20.345000	52.080000	1012.940000	74.975000	451.550000
75%	25.720000	66.540000	1017.260000	84.830000	468.430000
max	37.110000	81.560000	1033.300000	100.160000	495.760000

شکل ۲

در این شمای کلی از آمار ویژگی ها مشاهده میشود که متوسط دمای این مجموعه داده ۱۹٫۵ درجه سانتی گراد و متوسط فشار ۱۰۱۳ میلی بار میباشد.

در این شکل نمودار پراکندگی هر کدام از ویژگی ها نمایش داده شده است. در این قسمت میخواهیم با استفاده از LinearRegression به بررسی رگرسیون خطی ساده بپردازیم.

همانطور که در شکل مشاهده میشود در رگرسیون خطی ساده یک خط به عنوان پیشبینی رگرسیون در نظر گرفته میشود که معادله مربوط آن در تصویر مشاهده میشود.

همچنین در معیار R2 مشاهده میشود که هر چه این مقدار آن به یک نزدیکتر باشد پیشبینی مدل ما دقیقتر است اما در مقادیر نزدیک ۱ مشاهده میشود که اورفیت رخ میدهد.

ویژگی PE که توان خروجی نیروگاه میباشد را به عنوان هدف و نسبت به بقیه ویژگی ها بررسی میکنیم. در اینجا فقط به بررسی یکی از ویژگی ها میپردازیم و ویژگی دما را نسبت به توان خروجی بررسی میکنیم. پس از اعمال مدل بر روی این بخش از داده ها معیار R2 را محاسبه میکنیم.

```
r_sq = model.score(w, y)
print('R Square:', r_sq)
```

R Square: 0.8989475964148236

مشاهده میشود که مقدار R2 برای این بخش از داده برابر با ۰٬۸۹ میباشد که مقدار قابل قبولی است. همچنین مقادیر intercept و slope را برای این بخش محاسبه میکنیم.

intercept: [497.03411989]

slope: [[-2.17131996]]

که در شکل بالا نمایی از نمودار پراکندگی و این مدل برای دو ویژگی AT و V نمایش داده شده است. در شکل زیر یک خلاصه ای از کارایی این مدل آورده شده است که نشان میدهد میزان خطاها مقدار قابل توجهی کم میباشد.

Performance of Simple Linear Regression:

MSE: 3.222

Absloute Error: 6.784445 Correlation: 0.8912554

R Square : 0.898947

شكل 9

Multiple Linear Regression

حال رگرسیون چندگانه این مجموعه داده را بر اساس تمامی ویژگی ها محاسبه میکنیم.

در شکل زیر مشاهده میشود که مقدار R2 برای این مدل ۹۳۱، و همینطور جدولی از سایر معیارها مانند coefficient نمایش داده شده است.

مشاده میشود که مقدار Pvalue برای این تمامی ویژگی ها صفر میباشد که نشان میدهد این مدل مناسب میباشد و تمامی متغیر ها در پیشبینی مدل تاثیرگذار هستند.

همچنین از بررسی معیار Coef که برای اکثر ویژگی ها کم میباشد و متغیر AT بر روی این مجموعه داده تاثیر زیادی دارد و نسبت به بقیه ویژگی ها برای پیشبینی مدل مناسبتر میباشد.

OLS Regression Results

Dep. Variable:		Р	E	R-squar	ed:		0.931
Model:		OL	S Ad	j. R-squar	ed:		0.931
Method:	Le	ast Square	s	F-statis	stic:	2.56	4e+04
Date:	Wed,	06 Jan 202	1 Prob	(F-statis	tic):		0.00
Time:		18:00:3	31 Lo ç	g-Likeliho	od:	-2	22352.
No. Observations:		765	54	1	AIC:	4.47	1e+04
Df Residuals:		764	19	E	BIC:	4.47	5e+04
Df Model:			4				
Covariance Type:		nonrobu	st				
					_		
coef	std err	t	P> t	[0.025	0.9	975]	
const 460.2499	10.790	42.656	0.000	439.099	481	401	
AT -1.9858	0.017	-116.830	0.000	-2.019	-1.	952	
V -0.2296	0.008	-28.380	0.000	-0.245	-0	214	
AP 0.0565	0.010	5.399	0.000	0.036	0.	.077	
RH -0.1587	0.005	-34.549	0.000	-0.168	-0	150	
Omnibus:	335.497	Durbii	n-Watso	n: 2	.000		
Prob(Omnibus):	0.000	Jarque-	Bera (JE	3): 909	.695		
Skew:	-0.204		Prob(JE	3): 2.90e	-198		
Kurtosis:	4.639	•	Cond. N	o. 2.14e	+05		

در شكل بالا نمودار پراكندگی این مدل نشان داده شده است.

همچنین در شکل زیر بررسی جامعی از کارایی این مدل آورده شده است.

Performance of Multiple Linear Regression:

MSE: 10.32

Absloute Error: 9.4875 Correlation: 0.920553

R Square : 0.931

شکل ۱۲

SVM

»ماشین بردار پشتیبان (SVM) «یک الگوریتم نظارتشده یادگیری ماشین است که هم برای مسائل طبقهبندی و هم مسائل رگرسیون قابل استفاده است؛ با این حال از آن بیشتر در مسائل طبقهبندی استفاده می شود. در الگوریتم SVM ، هر نمونه داده را به عنوان یک نقطه در فضای n بعدی روی نمودار پراکندگی داده ها ترسیم کرده (n تعداد ویژگی هایی است که یک نمونه داده دارد) و مقدار هر ویژگی مربوط به داده ها، یکی از مؤلفه های مختصات نقطه روی نمودار را مشخص می کند. سپس، با ترسیم یک خط راست، داده های

مختلف و متمایز از یکدیگر را دستهبندی می کند. بردارهای پشتیبان در واقع مختصات یک مشاهده منفرد هستند. ماشین بردار پشتیبان مرزی است که به بهترین شکل دستههای دادهها را از یکدیگر جدا می کند.

در شکل بالا نمایی از خروجی این مدل به صورت نموداری نشان داده شده است.

Performance of SVM :

MSE : 5.732

Absloute Error: 4.564

Correlation: 0.9601 R Square: 0.89966651

شکل ۱۶

در شكل بالا آمار كلى از اطلاعات اين مدل آورده شده است.

جدول نتيجه گيري

با توجه به خروجی تمامی مدل ها یک جدول کلی از عملکرد کارایی این مدل ها در جدول زیر آورده شده است تا به بررسی جامعی از کارایی این الگوریتم ها بپردازیم.

R2	Corr	AE	MSE	عملكرد
				مدل
۰,۸۹۸۹۴۷	۰,۸۹۱۲۵۵۴	۶,V <i>۸</i> ۴۴۵	٣,٢٢٢	SLR
٠,٩٣١	۰,۹۲۰۵۵۳	۹,۴۸۷۵	1.,47	MLR
۰,۸۹۹۶۶۶۵۱	٠,٩۶٠١	4,054	۵,۷۳۲	SVM

همانطور که در جدول بالا مشاهده میشود مدل رگرسیون چندگانه بهترین ضریب R2 را دارد ولی از نظر میانگین استاندارد خطاها نسبت به بقیه مدل ها بایشتر میباشد و همچنین مدل رگرسیون ساده کمترین میانگین استاندارد خطا را دارد اما ضریب R2 و correlation آن نسبت به بقیه کمتر میباشد اما از نظر عملکردی SVM متعادلتر بوده و خروجی های بهتری را داشته است که میتوان آن را بهترین مدل انتخاب نمود.

منابع

- https://scikit- -1
- <u>learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html</u>
 - https://realpython.com/logistic-regression-python/ Y
 - https://analica.ir/intro-regression-for-managers/ T
 - /polynomial-regression-python/ T/Y Y https://www.analyticsvidhya.com/blog/ £