IF-THEN STATEMENTS

- (1) For each of the following statements, write its contrapositive and its converse. Is the original/contrapositive/converse true or false? Explain why (but don't bother proving). For all of the statements below, *a*, *b* are real numbers.
 - (a) If a and b are irrational, then ab is irrational.
 - (b) If a > 3, then $a^2 > 9$.
- (2) Let x and y be real numbers. Use the axioms of \mathbb{R} to prove¹ that x > y if and only if -x < -y.
- (3) Let x be a real number. Show that if x^2 is irrational, then x is irrational.
- (4) Let x be a real number. Use the axioms of \mathbb{R} and facts we have proven in class to show that if there exists a real number y such that xy = 1, then $x \neq 0$.

QUANTIFIER STATEMENTS

- (1) Let x be a real number. Prove that there exists a real number y such that xy = 1 if and only if $x \neq 0$.
- (2) Let $S \subseteq \mathbb{R}$ be a set of real numbers. Apply your results above to prove that if for every $x \in S$, x^2 is irrational, then for every $y \in S$, -y is irrational.

¹Hint: You may want to add something to both sides.