# Lecture Notes on Data Structures

M1522.000900

© 2014 - 2022 by Bongki Moon

Seoul National University

Fall 2022



Part VI

Graph

### Graph: Definitions

- A graph: G = (V, E), where V is a set of vertices and E is a set of edges. If  $e \in E$ , then there exist u and v such that  $e = \overline{uv}$ , and  $u, v \in V$ .
- A directed graph: G = (V, E), where each edge has a direction;  $\vec{uv} \neq \vec{vu}$ .
- A weighted graph: G = (V, E, W), where each edge has a weight  $w \in W$ .









SNU

Bongki Moon

Data Structures

Fall 2022

3 / 70

- A graph G = (V, E) is connected iff  $\forall u, v \in V, \exists$  a path from u to v.
- A directed graph G = (V, E) is strongly connected iff  $\forall u, v \in V, \exists$  a path from u to v, and vice versa (*i.e.*, mutually reachable).



Data Structures

### **Graph Implementations**

Adjacency Matrix: for a graph G = (V, E), use a  $|V| \times |V|$  matrix M such that

$$M[i,j] = \begin{cases} 1 & \text{if } \overline{v_i v_j} \in E \text{ (or } v_i \vec{v}_j \in E) \\ 0 & \text{otherwise.} \end{cases}$$





SNU

NU Bongki Moon

Data Structure

Fall 2022

5 / 70

 $lue{}$  If a graph is undirected, the matrix M is symmetric.



- Adjacency List: for each vertex, create a list of neighbors.
  - A directory of vertices
  - A list of adjacent vertices per each vertex



SNU

Bongki Moon

Fall 2022

## Adjacency Matrix vs. Adjacency List

|                            | Adjacency Matrix | Adjacency List                    |
|----------------------------|------------------|-----------------------------------|
| Space requirement          | $\Theta( V ^2)$  | $\Theta( V + E )$                 |
| Is $\overline{uv} \in E$ ? | $\mathcal{O}(1)$ | $\mathcal{O}(\textit{degree}(v))$ |
| Print all neighbors of v   | $\Theta( V )$    | $\Theta(degree(v))$               |
| Print all edges $\in E$    | $\Theta( V ^2)$  | $\Theta( V + E )$                 |

### Graph Traversal

Visit each and every vertex in a graph G exactly once.

- There is no root. Any vertex can be a starting point.
- Order is determined by the topology of a graph, but may not be unique.

There are two difficulties in the graph traversal.

- A graph may be disconnected.
- A graph may contain circles.



### Graph Traversal: DFS

#### Algorithm 1 (Depth First Search)

```
DFS(G,v)  \begin{array}{c} \text{print v;} \\ \text{for each u such that } \overline{uv} \in E \\ \text{if (u is not visited) DFS(G,u);} \end{array}
```

- Whenever a vertex *v* is visited, visit all of its *unvisited* neighbors *recursively*.
- A stack is used implicitly by recursion.



#### Example 1

Perform DFS for a graph given below, starting from vertex A.



```
DFS(A)
    print A
    DFS (C)
    print C
    DFS(B)
    print B
    DFS(F)
        print F
    DFS(D)
        print D
    DFS(E)
        print E
    DFS(F)??
    DFS(E)??
```

SNU Bongki Moon Data Structures Fall 2022 11 / 70





### Graph Traversal: BFS

#### Algorithm 2 (Breadth First Search)

- BFS is an iterative algorithm. A queue is used explicitly.
- Invariant: all vertices in the queue are already visited.



SNU

Bongki Moon

Data Structures

Fall 2022

13 / 70

#### Example 2

Perform BFS for the following graph starting from vertex A.



- Visit the start vertex s.
- Then, visit all vertices adjacent to s.
- Then, visit all vertices two edges away from s.
- Then, visit all vertices three edges away from s.
- **5** . . .





SNL

SNU Bongki Moon

Data Structures

Fall 2022

15 / 70

### Analysis of Graph Traversals

- DFS visits each vertex once and processes each edge twice (or once if directed).
- BFS enqueues (or dequeues) each vertex once and processes each edge twice (or once if directed).
- lacktriangle The running time is  $\mathcal{O}(|V|+|E|)$  if an adjacency list is used, because

$$\sum_{v \in V} degree(v) = 2 \times |E|.$$

- The running time is  $\mathcal{O}(|V|^2)$  if an adjacency matrix is used.
- The size of a stack or a queue is  $\mathcal{O}(|V|)$ .



### Topological Sort

- Given a *directed acyclic graph* (*DAG*) *G*, find a linear ordering of vertices of *G* such that
  - ightharpoonup if  $\vec{uv} \in E$ , then u appears before v in the ordering.
- Topological order does not exist for a cyclic graph.
- Note that the edges represent precedence or prerequisites. For example, activity-on-vertex (AOV) networks in the project management.

SNU Bongki Moon Data Structures Fall 2022 17 / 70

### Example: CS Curriculum chart

#### **Computer Science BS Degree Curriculum Chart** 2010-2011 COMPLETE EITHER CMPS 12A/L or CMPS 5J & CMPS 11 COMPLETE EITHER \* MATH 19A or 2 PHYS & Labs or 2 CHEM & Labs 20A Calculus \* CMPS 5J Intro to Prog: Java \* PHYS 6A/6L\*\* CHEM 1B/1M \* CMPS 12A/L Intro to Physics I Mechanics General Chemistry Intro to Programming (Accelerated) CMPS 11 MATH 19B or 20B Calculus Intermediate Prog PHYS 6B/6M\*\* CHEM 1C/1N Intro to Physics II Waves General Chemistry OR \* CMPE 12/L CMPS 12B/M MATH 23A PHYS 6C/6N\*\* Computer Systems & Assembly Language Intro to Physics III Electricity & Multivariable Calculus Magnetisr \* CMPE 16 Discrete Math \* AMS 10 Engr Math Methods I \* CMPE 107 Intro to Probability Theory \* MATH 21 **CMPE 110** Linear Algebra \* AMS 131 CMPE 112 **CMPS 101** Abstract Data Type Architecture CMPS 112 **CMPS 130** CMPS 104A **CMPS 111 CMPS 102** Comparative Programming Languages Analysis of Algorithms Models

Courtesy of University of California, Santa Cruz



#### Algorithm 3 (Topological Sort)

Invariant: all vertices in the queue are already visited.



SNU

Bongki Moon

Data Structures

Fall 2022

19 / 70

#### Example 3

Find a topological ordering for the following DAG.



#### indegree

| $J_1$ | $J_2$       | $J_3$             | $J_4$             | $J_5$            | $J_6$             | $J_7$                  | Queue                            |
|-------|-------------|-------------------|-------------------|------------------|-------------------|------------------------|----------------------------------|
| 0     | 1           | 1                 | 2                 | 2                | 1                 | 1                      | $J_1$                            |
| 0     | 0           | 0                 | 2                 | 2                | 1                 | 1                      | $J_2, J_3$ $J_3, J_6$ $J_6, J_4$ |
| 0     | 0           | 0                 | 1                 | 1                |                   | 1                      | $J_3, J_6$                       |
| 0     | 0           | 0                 | 0                 | 1                | 0                 | 1                      | $J_6, J_4$                       |
| 0     | 0           | 0                 | 0                 | 1                | 0                 | 1                      | $J_4$ $J_5$ $J_7$                |
| 0     | 0           | 0                 | 0                 | 0                | 0                 | 1                      | $J_5$                            |
| 0     | 0           | 0                 | 0                 | 0                | 0                 | 0                      | $J_7$                            |
|       |             |                   |                   |                  |                   |                        | '                                |
| $J_1$ | ightarrow J | $I_2 \rightarrow$ | $J_3 \rightarrow$ | J <sub>6</sub> - | $\rightarrow J_4$ | $ ightarrow J_{arphi}$ | $_5 	o J_7$                      |



SNU

Bongki Moon

Data Structures

#### Problem 1

Add an edge  $J_7 \rightarrow J_4$  to the DAG of Example 3 and run Algorithm 3 (Topological Sort) for the modified graph. Does Algorithm 3 terminates? If it does, does it produce a correct topological order?

#### Problem 2

Add an edge  $J_4 \rightarrow J_6$  to the DAG of Example 3 and answer the same questions.



### Analysis of Topological Sort

|                  | Adjacency List     | Adjacency Matrix     |
|------------------|--------------------|----------------------|
| The 1st for-loop | $\mathcal{O}( E )$ | $\mathcal{O}( V ^2)$ |
| The 2nd for-loop | $\mathcal{O}( V )$ | $\mathcal{O}( V )$   |
| The while-loop   | $\mathcal{O}( E )$ | $\mathcal{O}( V ^2)$ |

■ The running time of Topological Sort is  $\mathcal{O}(|V| + |E|)$  (or  $\mathcal{O}(|V|^2)$ ).

#### Shortest Paths: Problems

- Single-Pair: Given a pair of vertices s (start) and t (end), find the shortest path from s to t.
- Single-Source: Given a start vertex s, find the shortest paths from s to all the other vertices.
  - All-Pair: For each pair of vertices  $u, v \in E$ , find the shortest path from u to v.
  - The three problems will be addressed by two algorithms: Dijkstra's and Floyd's.



### Single-Source Shortest Paths

- If all edges have the same weight, BFS can find all S.S.S.P.
  - All vertices k + 1 edges away from the source are visited after all vertices k edges away from the source are visited.
  - In the tree resulting from the BFS traversal, the source is the root node and the level of a non-root node (or vertex) is the distance from the source vertex.
- What about DFS?
  - A vertex close to the source may be visited later than another vertex farther from the source.
- Dijkstra's algorithm is a weighted version of BFS.



### Dijkstra's Algorithm for Single-Source [1959]

- All weights are assumed to be non-negative.
- Find the shortest path for vertices in the increasing order of distance (rather than "one edge away, then two edges away, then ...").
  - If the shortest paths are found for  $v_1, v_2, \ldots, v_{i-1}$  in the given order, then  $d(s, v_1) \le d(s, v_2) \le \ldots \le d(s, v_{i-1})$ .
- Suppose the shortest paths have been found for  $S = \{s, v_1, v_2, \dots, v_{i-1}\}$ , and  $v_i$  is the next one for which SP will be found. Then,  $v_i$  is one of the *direct* neighbors of the vertices in S.
  - $d(s, v_i) = min_{v_i \in S} \{d(s, v_i) + w_{ii}\}$
  - See Theorem 5.
  - $\triangleright$   $v_1$  is a neighbor of s.
  - $\triangleright$   $v_2$  is a neighbor of s or  $v_1$ .
  - $\triangleright$   $v_3$  is a neighbor of s,  $v_1$  or  $v_2$ .
  - **.**..



Are the following statements true or false?

- The shortest distance from A to C is 7.
- The shortest distance from A to E is 9.



Are the following statements true or false?

- The shortest distance from A to D is 8.
- The shortest distance from A to E (or F) is 9.





SNU

Bongki Moon

Data Structures

Fall 2022

27 / 70

#### Algorithm 4 (Dijkstra's Single-Source Shortest Paths)

```
// Assume s is the source vertex.

// Initially, S = \{s\} and d[s] = 0.

for each v \in V - S, d[v] = \begin{cases} w_{sv} & \text{if } \overline{sv} \in E \\ \infty & \text{otherwise} \end{cases}

while (V - S \neq \varnothing) {
	find v \in V - S such that d[v] is minimum;
		// v is among the vertices on the fringe of S.
	print d[v];
	// Shortest path to v found.
	S = S \cup \{v\};
	for each fringe u \in V - S such that \overline{vu} \in E
		if (d[v] + w_{vu} < d[u]) d[u] = d[v] + w_{vu};
}
```



#### Example 4

Find the shortest paths from vertex A to all the other vertices.





SNU

Bongki Moon

Data Structure

Fall 2022

29 / 70





| V | Α | В        | С | D        | Ε | F        |
|---|---|----------|---|----------|---|----------|
| d | 0 | $\infty$ | 7 | $\infty$ | 9 | $\infty$ |

$$S = \{A\}$$

$$V - S = \{B, C, D, E, F\}$$

$$S = \{A, C\}$$

$$V - S = \{B, D, E, F\}$$





| V | Α | В  | C | D | Ε | F |
|---|---|----|---|---|---|---|
| d | 0 | 12 | 7 | 8 | 9 | 9 |

$$S = \{A, C, D\}$$

$$V - S = \{B, E, F\}$$

$$S = \{A, C, D, E\}$$

$$V - S = \{B, F\}$$

SNU Bon

Bongki Moon

Data Structure

Fall 2022

31 / 70





| V | Α | В  | С | D | Ε | F |
|---|---|----|---|---|---|---|
| d | 0 | 12 | 7 | 8 | 9 | 9 |

$$S = \{A, C, D, E, F\}$$

$$V - S = \{B\}$$

$$S = \{A, B, C, D, E, F\}$$

$$V - S = \{\}$$

### Analysis of Dijkstra's Algorithm

The running time of Dijkstra's algorithm depends on how d[] values are maintained.

If d[] values are stored in an (unsorted) array,

- ullet  $\mathcal{O}(|V| \times |V|)$  for finding (and removing) the minimum d[] value,
- $\mathcal{O}(|E|)$  for updating d[] values.

Therefore, the running time is  $\mathcal{O}(|V|^2)$  because  $|E| \leq |V|^2$ .



SNU

Bongki Moon

Data Structures

Fall 2022

33 / 70

If d[] values are stored in a min-heap H,

- Finding and removing the minimum d[] value,
  - $\triangleright$   $\mathcal{O}(\log |H|)$  with a min-heap.
  - ightharpoonup Repeated  $\mathcal{O}(|V|)$  times.
- Updating d[u] by deleting its old value and inserting a new one.
  - $\triangleright$   $\mathcal{O}(|H|)$  for deleting an old d[] value.
  - $ightharpoonup \mathcal{O}(\log |H|)$  for inserting a new d[] value.
  - ▶ Repeated  $\mathcal{O}(|E|)$  times.

The size of the min-heap |H| is  $\mathcal{O}(|V|)$ . Thus, the running time of Dijkstra's algorithm is

$$\mathcal{O}(|V| \times \log |V| + |E| \times |V|) = \mathcal{O}(|E| \times |V|).$$

Worse than  $\mathcal{O}(|V|^2)!!$ 



NU

If the step for "deleting old d[] values" is omitted,

- Finding and removing the minimum d[] value,
  - $\triangleright$   $\mathcal{O}(\log |H|)$  with a min-heap.
  - ▶ Repeated  $\mathcal{O}(\max\{|V|,|H|\})$  (or  $\mathcal{O}(|E|)$ ) times.
- Inserting a new d[u] value without deleting its old one.
  - $ightharpoonup \mathcal{O}(\log |H|)$  for inserting a new d[] value.
  - ▶ Repeated  $\mathcal{O}(|E|)$  times.

Now, |H| can grow as large as |E| (i.e.,  $|H| \in \mathcal{O}(|E|)$  instead of  $\mathcal{O}(|V|)$ ). Thus, the running time will be

$$\mathcal{O}(|E| \times \log |E| + |E| \times \log |E|) = \mathcal{O}(|E| \log |E|).$$

This is better than  $\mathcal{O}(|V|^2)$  (and  $\mathcal{O}(|E| \times |V|)$ ) if G is sparse  $(|E| \approx |V|)$ .



Other choices for storing the d[] values:

- With a heap with locator,  $\mathcal{O}(|V|\log|V|) + \mathcal{O}(|E|\log|V|)$ .
- With a Fibonacci heap,  $\mathcal{O}(|V|\log|V|+|E|)$ .

NU

### Correctness of Dijkstra's Shortest Path Algorithm

- Once a vertex (say v) is visited or added to the set S, Dijkstra's algorithm declares that a shortest path to v has been found. From this point on, its distance (i.e., d[v]) never gets updated any more.
- We need to show that d[v] = d(s, v) when v is visited.
- Well, a few lemmas first ...



SNU

Bongki Moon

Data Structures

Fall 2022

37 / 70

#### Lemma 1

A subpath of a shortest path is a shortest path. If  $v_1, v_2, v_3, \ldots, v_k$  is a shortest path from  $v_1$  to  $v_k$ , then a subpath  $v_i, v_{i+1}, \ldots, v_j$  is a shortest path from  $v_i$  to  $v_j$  for any i and j such that  $1 \le i \le j \le k$ .

<u>Proof.</u> (By contradiction) Suppose  $v_i, v_{i+1}, \ldots, v_j$  is not a shortest path. Then, there exists a shorter path  $v_i \rightsquigarrow v_j$ . Therefore  $v_1, v_2, v_3, \ldots, v_k$  cannot a shortest path from  $v_1$  to  $v_k$ , because it will be longer than  $v_1, v_2, \ldots, v_i \rightsquigarrow v_i, v_{i+1}, \ldots, v_k$ .

#### Corollary 2

For any vertex v on a shortest path  $s \rightsquigarrow u$ , d(s, v) + d(v, u) = d(s, u).



NU

Bongki Moon

Data Structures

#### Lemma 3

For any edge  $\overline{uv} \in E$ ,  $d(s, v) \leq d(s, u) + w_{uv}$ .

<u>Proof.</u> (By contradiction) Let  $s \rightsquigarrow v$  a shortest path from s to v whose length is d(s,v). Suppose  $d(s,v) > d(s,u) + w_{uv}$ . Then,  $s \rightsquigarrow u \rightarrow v$  is a path from s to v shorter than  $s \rightsquigarrow v$ .



SNU

Bongki Moon

Data Structures

Fall 2022

39 / 70

#### Lemma 4

If  $v_1 \rightsquigarrow v_{k-1}, v_k$  is a shortest path from  $v_1$  to  $v_k$ , then

$$d(v_1, v_k) = d(v_1, v_{k-1}) + w_{v_{k-1}v_k}.$$

<u>Proof.</u> (By contradiction) Since  $v_1 \rightsquigarrow v_{k-1}, v_k$  is a shortest path,  $d(v_1, v_k) \leq d(v_1, v_{k-1}) + w_{v_{k-1}v_k}$  by Lemma 3. Suppose  $d(v_1, v_k) < d(v_1, v_{k-1}) + w_{v_{k-1}v_k}$ . Then, there exists a path  $v_1 \rightsquigarrow v_k$  shorter than a shortest path  $v_1 \rightsquigarrow v_{k-1}, v_k$ .

This Lemma can also be derived from Corollary 2.



NU

#### Theorem 5

When a vertex v is pulled into the set S by Dijkstra's algorithm,

$$d[v]=d(s,v),$$

where d(s, v) is the length of a shortest path from s to v.

*Proof.* (By contradiction) Suppose u is the **first** vertex pulled to S such that d[u] > d(s, u).

From d[u] > d(s, u), we know that  $d(s, u) < \infty$  and there exists a shortest path from s to u. Consider the moment right before u is pulled into S. Let x and y be the vertices on the shortest path  $(s \rightsquigarrow u)$  such that  $x \in S, y \notin S$ , and  $\overline{xy} \in E$  is on the shortest path.



SNU Bongki Moon

Data Structures

Fall 2022

$$d[x] = d(s,x)$$

$$d[y] \le d[x] + w_{xy}$$

$$d(s,y) = d(s,x) + w_{xy}$$

 $x \in S$  and u is the first incorrect one invariant right after x is pulled to S ( $y \notin S$ ) by Lemma 4

From the equations above, it follows that  $d[y] \leq d(s,x) + w_{xy} = d(s,y)$ . Therefore, d[y] = d(s, y).

$$d(s, y) \le d(s, u) \qquad y$$
$$d[u] < d[v] \qquad f$$

 $d(s, y) \le d(s, u)$  y occurs before u on the shortest path  $d[u] \le d[y]$  from that u, not y, is pulled into S

Then, from the three equations above,

$$d[u] \leq d[y] = d(s, y) \leq d(s, u).$$

This is a contraction to the assumption that d[u] > d(s, u).



Bongki Moon

Data Structures

#### Problem 3

Algorithm 4 (Dijkstra's shortest path) just computes the length of shortest paths. Modify it to print actual paths.

HINT: When a vertex v is pulled to S, whatever vertex updated d[v] most recently is the previous vertex on the path from the source to v.



SNU

Bongki Moon

Data Structures

Fall 2022

43 / 70

### Negative weights



- Dijkstra's algorithm determines that a shortest path to  $v_j$  has been found and its length is 4.
- There is a shorter path  $s \rightsquigarrow v_k \rightsquigarrow v_j$  whose length is 9 + (-7) = 2.
- This is because Dijkstra's algorithm only considers the fringe edges between S and V-S.

#### Remark 1

In an undirected graph, even a single negative-weight edge constitutes a negative-weight cycle.



### Bellman-Ford Algorithm for Single-Source

#### Algorithm 5 (Bellman-Ford's Single-Source Shortest Paths)

When negative weights are allowed, it will not be enough to consider edges between S and V-S. All edges must be considered.

- There is no set *S* which vertices are pulled into.
- Every edge is processed |V| 1 times to update d[] values.



SNU

Bongki Moon

Data Structures

Fall 2022

45 / 70

#### Theorem 6

At the end of the execution of the Bellman-Ford algorithm (Algorithm 5),

$$d[v] = d(s, v)$$

for each vertex  $v \in V$  if there is no negative-weight cycle in the graph.

<u>Proof.</u> (Sketch) Let  $d_k(s,v)$  denote the length of a shortest path from s to v that contains <u>at most</u> k edges. After the k-th iteration of the main for-loop,  $d[v] = d_k(s,v)$ . After the (n-1)-th iteration, d[v] = d(s,v), because  $d_{n-1}(s,v) = d(s,v)$ .



### Notes on Bellman-Ford algorithm

- The running time of Bellman-Ford algorithm is  $\mathcal{O}(|V| \times |E|)$ .
- Bellman-Ford algorithm does not work correctly if there exists a negative-weight cycle in a graph.
  - In an undirected graph with even a single negative-weight edge, there exists no shortest path for any pair of vertices in the graph.
  - So, Bellman-Ford algorithm will work for
    - 1 an undirected graph with no negative-weight edge, and
    - a directed graph with no negative-weight cycle.



SNU Bongki Moon

Data Structures

Fall 2022

47 / 70

#### All-Pair Shortest Paths

For each pair of vertices  $u, v \in V$ , find the shortest distance from u to v.

- We could run Dijkstra's algorithm |V| times.
- The running time is not so bad:  $\mathcal{O}(|V|^3)$  or  $\mathcal{O}(|V| \times |E| \log |E|)$ .

Floyd proposed an algorithm with a dynamic programming flavor.

- Dijkstra's one-dimensional array d[] is not enough.
- Use a  $|V| \times |V|$  matrix A[] instead of the array.

U Bongki Moon

### Floyd's Algorithm for All-Pair [1962]

- Assume that vertices are indexed (or numbered) from 0 to n-1.
- $A^k[i,j]$  stores the length of a shortest k-path from  $v_i$  to  $v_j$ .
- A k-path is a path all intermediate vertices of which are indexed by a number less than k. For example,  $v_8 \rightarrow v_1 \rightarrow v_5 \rightarrow v_3$  is a 6-path (or 7-path, . . . ).
- The matrix A is initialized as follows.  $A^0[i,j] = \begin{cases} 0 & \text{if } i = j \\ w_{ij} & \text{if } \overline{v_i v_j} \in E \\ \infty & \text{otherwise.} \end{cases}$
- Compute  $A^{k+1}[i,j]$  from  $A^k[i,j]$ .
- $A^n[i,j]$  is the length of a shortest path from  $v_i$  to  $v_j$ .



- A shortest (k+1)-path from  $v_i$  to  $v_j$  is
  - **o** either a shortest  $v_i \rightsquigarrow v_j$  k-path,
  - **2** or a shortest  $v_i \rightsquigarrow v_k$  *k-path* followed by a shortest  $v_k \rightsquigarrow v_j$  *k-path*.
- $A^{k+1}[i,j] = \min\{A^k[i,j], A^k[i,k] + A^k[k,j]\}.$
- This algorithm is an example of Dynamic Programming.
  - A kind of divide-and-conquer.
  - ▶ Break a problem down to simpler subproblems in a recursive manner.
  - Algorithms are iterative rather than recursive.
  - Non-recursive algorithms systematically record the answers to the sub-problems in a table.



#### Algorithm 6 (Floyd's All-Pair Shortest Paths)

■ Floyd's algorithm works for a graph with negative-weight edges but no negative-weight cycles.

SNU

Bongki Moon

Data Structures

Fall 2022

51 / 70

#### Example 5

Find the shortest path lengths for all pairs of vertices.





#### Problem 4

Floyd's algorithm takes advantage of the fact that the next matrix (*i.e.*,  $A^{k+1}$ ) in the sequence can be written over its predecessor (*i.e.*,  $A^k$ ). Is this safe? How can you be sure that if  $A^{k+1}[i,j]$  is updated then it will be updated by  $A^k$  values but not  $A^{k+1}$  values?

#### Problem 5

Algorithm 6 (Floyd's shortest path) just computes the length of shortest paths. Modify it to produce actual paths.

HINT: Use another matrix  $B^k$  to keep track of preceding vertices on the shortest paths. That is,  $B^k[i,j]$  stores the predecessor of  $v_j$  on the shortest k-path from  $v_i$ .



### MST: Minimum Spanning Tree

Suppose you need to install a set of secure phone lines that connect all the branch offices with a minimum cost. What should you do?

- All the branch offices stay connected.
- The aggregate length of phone lines is minimal.
- No redundant phone lines are appreciated.

There is a long list of applications such as

- VLSI layout, wireless communication ...
- medical imaging, proteomics, bioterrorism ...



#### Definition 1

Given an undirected and weighted graph G = (V, E, W), a Minimum Spanning Tree (MST) T = (V', E', W') is a subset of G such that

- $V' = V, E' \subseteq E$ , and  $W' \subseteq W$ ,
- $\sum_{e \in E'} w(e)$  is minimal,
- T is connected.





SNU

Bongki Moon

Data Structures

Fall 2022

55 / 70

### Prim's MST Algorithm

Outline of Prim's algorithm: Let S denote a set of visited vertices.

- Start with  $S = \{s\}$ , where s is an arbitrary start vertex in V.
- Pick the least-weight edge  $\overline{uv} \in E$  such that  $u \in S$  and  $v \in V S$ .
- Add the vertex v to S; add the edge  $\overline{uv}$  to MST.
- Repeat until V S becomes empty.



#### Algorithm 7 (Prim's MST (Naive version))

```
S = \{s\}; \qquad // \ s \ \text{is an arbitrary start vertex.} while (V - S \neq \varnothing) \{ find the least-weight edge \overline{uv} \in E such that u \in S and v \in V - S; print \overline{uv}; // \overline{uv} becomes part of MST S = S \cup \{v\}; // v is pulled to S
```



SNU

Bongki Moon

Data Structures

Fall 2022

57 / 70

### Analysis of the Naive version

What is the running time of the naive version of Prim's MST algorithm?

- Finding the least-weight edge makes  $|S| \times |V S|$  comparisons in the worst case (i.e., fully connected).
- The total number of comparisons is (with k being |S|)

$$\leq \sum_{k=1}^{|V|} k \times (|V| - k) = |V| \sum_{k=1}^{|V|} k - \sum_{k=1}^{|V|} k^{2}$$
$$= \frac{|V|^{2}(|V| + 1)}{2} - \frac{|V|(|V| + 1)(2|V| + 1)}{6}.$$

■ The running time is  $\mathcal{O}(|V|^3)$ .



l**U** Bongki Moon

### Prim's MST: Improved Algorithm

Use an array d[] in a similar way Dijkstra's algorithm does. Also, use another array neighbor[] to keep track of candidate edges.

- For each fringe vertex  $v \in V S$ ,
  - $\triangleright$  Keep track of the shortest edge from v to ANY vertex in S.
  - For lengths,  $d[v] = min\{w(\overline{uv}) \mid u \in S\}$
  - For edges, neighbor[v] = u such that  $w_{uv} = d[v]$ .
- Whenever a vertex x is added to S,
  - If x reduces d[v], then update d[v] and neighbor [v] for  $\forall v \in V S$ .
  - ▶ That is, if  $w(\overline{xv}) < d[v]$ , then  $d[v] = w(\overline{xv})$ ; neighbor[v] = x;



SNU

Bongki Moon

Data Structures

Fall 2022

59 / 70

#### Algorithm 8 (Prim's Minimum Spanning Tree (Improved version))

```
S = \{s\};
                                           // s is an arbitrary start vertex.
for each v \in V - S {
   d[v], neighbor[v] = \begin{cases} w_{sv}, s; & \text{if } \overline{sv} \in E \\ \infty, s \text{ or null}; & \text{otherwise} \end{cases}
}
while (V - S \neq \emptyset) {
    find v \in V - S such that d[v] is minimum;
    print v, neighbor[v];
                                           // This edge becomes part of MST.
    S = S \cup \{v\};
    for each u \in V - S such that \overline{vu} \in E {
        if (w_{uv} < d[u]) {
                                              //\overline{uv} is a new fringe edge.
            d[u] = w_{uv}; // the shortest distance to ANY vertex in S.
            neighbor[u] = v;
}
```

Data Structures

### Example 6

Find a minimum spanning tree using Prim's MST algorithm.



SNU

**NU** Bongki Moon

Data Structures

Fall 2022

В

5

61 / 70





$$\begin{array}{l} \mathsf{S} = \{\mathsf{A}\} \\ \mathsf{MST} = \varnothing \end{array}$$

C

7

Α

D

 $\infty$ 

Α

Ε

9

Α

F

 $\infty$ 

Α

В

 $\infty$ 

Α

Α

0

٧

d

n

$$S = \{A, C\}$$
$$MST = \{\overline{AC}\}$$



F

2

C





| V | Α | В | C | D | Ε | F |
|---|---|---|---|---|---|---|
| d | 0 | 5 | 7 | 1 | 9 | 2 |
| n | _ | C | Α | C | Α | C |

$$S = \{A, C, D\}$$

$$MST = \{\overline{AC}, \overline{CD}\}$$

$$S = \{A, C, D, F\}$$

$$MST = \{\overline{AC}, \overline{CD}, \overline{CF}\}$$



SNU

Bongki Moon

Data Structure

Fall 2022

63 / 70





|   | Α |   |   |   |   |   |
|---|---|---|---|---|---|---|
| d |   |   | 7 | 1 | 1 | 2 |
| n | _ | С | Α | С | F | C |

$$S = \{A, C, D, F, E\}$$

$$MST = \{\overline{AC}, \overline{CD}, \overline{CF}, \overline{EF}\}$$

$$S = \{A, C, D, F, E, B\}$$

$$MST = \{\overline{AC}, \overline{CD}, \overline{CF}, \overline{EF}, \overline{BC}\}$$

### Analysis of the Improved version

What is the running time of the improved version of Prim's MST algorithm? (Recall that an unsorted list is used to store d[].)

- Finding the minimum d[v] makes |V S| comparisons.
- The total number of comparisons is  $\sum_{k=1}^{|V|} (|V| k) = \frac{|V|(|V|+1)}{2}$ .
- For each  $v \in V$ , d[v] (and neighbor[v]) is updated degree(v) times.
- The total number of updates is  $\sum_{v \in V} degree(v) = |E|$ .

The running time is  $\mathcal{O}(|V|^2 + |E|) = \mathcal{O}(|V|^2)$ .

With a heap with locator for d[], the running time is  $O(|E| \log |V|)$ .

■ Better than  $\mathcal{O}(|V|^2)$  if G is sparse  $(|E| \approx |V|)$ .



SNU

Bongki Moon

Data Structures

Fall 2022

65 / 70

### Correctness of Prim's MST Algorithm

#### Theorem 7

Prim's algorithm produces a minimum spanning tree.

<u>Proof.</u> (By contradiction) Suppose  $\overline{uv}$  is the first wrong edge chosen by Prim's algorithm. Then, there must exist an MST T(V, E', W') of G(V, E, W) such that  $\overline{uv} \notin E'$ . Consider the moment when  $\overline{uv}$  is selected.  $\overline{uv}$  is a fringe edge connecting S and V-S. Although  $\overline{uv} \notin E'$ , there exists a path between u and v in T because  $u, v \in V$ . This implies that there exists another fringe edge  $\overline{xy} \in T$  connecting S and V-S.

 $T \cup \{\overline{uv}\}$  has a cyple, but  $T \cup \{\overline{uv}\} - \{\overline{xy}\}$  will be another spanning tree because  $\overline{uv}$  and  $\overline{xy}$  are part of a cycle. Since Prim's algorithm selects  $\overline{uv}$  instead of  $\overline{xy}$  when both are fringe edges between S and V - S, it must be that  $w(\overline{uv}) \leq w(\overline{xy})$ . Therefore,  $w(T \cup \{\overline{uv}\} - \{\overline{xy}\}) \leq w(T)$ . This makes  $T \cup \{\overline{uv}\} - \{\overline{xy}\}$  another MST, which is a contradiction to the assumption that  $\overline{uv}$  is a wrong edge.



### Kruskal's MST algorithm

#### Outline of Kruskal's algorithm

- Start with |V| equivalence classes (one vertex in each class).
- Merge the classes until an MST is found (a single eq. class).



Bongki Moon

Data Structures

Fall 2022

67 / 70

#### Algorithm 9 (Kruskal's Minimum Spanning Tree)

```
Assign each vertex to a separate class; F = \{e \in E \mid \text{ in an increasing order of weights}\}; while (number of printed edges < |V|-1) { Pick an edge \overline{uv} \in F in the order; if (u and v are in different classes) { print \overline{uv}; merge their classes; } }
```



#### Example 7

Find a minimum spanning tree using Kruskal's MST algorithm.



| edges          | CD | <del>EF</del> | <del>CF</del> | $\overline{\mathit{DF}}$ | $\overline{BC}$ | $\overline{\mathit{BF}}$ | $\overline{AC}$ | $\overline{AE}$ |
|----------------|----|---------------|---------------|--------------------------|-----------------|--------------------------|-----------------|-----------------|
| weights<br>MST | 1  | 1             | 2             | 2                        | 5               | 6                        | 7               | 9               |



SNU

Bongki Moon

Data Structures

Fall 2022

69 / 70

### Analysis of Kruskal's MST

- Sort the edges in increasing order of weights:  $\mathcal{O}(|E|\log|E|)$ .
- Pick edges in the order:  $\mathcal{O}(|E|)$ .
- Check and merge classes:  $\mathcal{O}(|E| \times |V|)$  or  $\mathcal{O}(|E| \times \log |V|)$  by UNION/FIND.

If UNION/FIND algorithm is used, the running time is

$$\mathcal{O}(|E|\log|E|+|E|\log|V|)=\mathcal{O}(|E|\log|E|).$$

- Can be better or worse than Prim's  $\mathcal{O}(|V|^2)$ .
- Comparable to Prim's  $\mathcal{O}(|E|\log|V|)$  (with a heap with locator) for both sparse  $(|E| \approx |V|)$  or dense  $(|E| \approx |V|^2)$  graphs.

