

Pautes

Continguts i Pautes

Sessió de teoria del 28/05/2021

Contingut

De: 6.2.4 Nombre de coordinació i geometria dels compostos de coordinació (des de nombre de Fins: exercici 6.16

Fins: 6.2.6 Isomeria (fins isomeria estructural)

coordinació = 6)

Alfonso Polo Ortiz Departament de Química (Química Inorgànica) Universitat de Girona

© Alfonso Polo Ortiz [Nom del titular dels drets d'explotació], 2021 Els continguts d'aquest document (excepte textos i imatges no creats per l'autor) estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-CompartirIgual 4.0

Exercici 6.14. Raona quins són els orbitals atòmics del metall que s'han d'hibridar per explicar la geometria dels següents complexos:

- a) Complex tricoordinat sobre el pla yz
- b) Complex pla quadrat que situa els lligands sobre els eixos x i y.
- c) Complex amb geometria de bipiràmide trigonal amb el pla equatorial paral·lel al pla xy

Resposta: a)ns, np_y, np_z; b) ns, np_x, np_y, (n-1) $d_{x^2-y^2}$; c) ns, np_x, np_y, np_z, (n-1) d_{z^2}

a) Complex tricoordinat sobre el pla yz

Hibridació $sp^2: s, p_y, p_z$

Exercici 6.14. Raona quins són els orbitals atòmics del metall que s'han d'hibridar per explicar la geometria dels següents complexos:

- a) Complex tricoordinat sobre el pla yz
- b) Complex pla quadrat que situa els lligands sobre els eixos x i y.
- c) Complex amb geometria de bipiràmide trigonal amb el pla equatorial paral·lel al pla xy

Resposta: a)ns, np_y, np_z; b) ns, np_x, np_y, (n-1) $d_{x^2-y^2}$; c) ns, np_x, np_y, np_z, (n-1) d_{z^2}

b) Complex pla quadrat que situa els lligands sobre els eixos x i y

Hibridació dsp^2 o d^2p^2

Hibridació $dsp^2:d_{x^2-y^2}, s, p_x, p_y$

Exercici 6.14. Raona quins són els orbitals atòmics del metall que s'han d'hibridar per explicar la geometria dels següents complexos:

- a) Complex tricoordinat sobre el pla yz
- b) Complex pla quadrat que situa els lligands sobre els eixos x i y.
- c) Complex amb geometria de bipiràmide trigonal amb el pla equatorial paral·lel al pla xy

Resposta: a)ns, np_y, np_z; b) ns, np_x, np_y, (n-1) $d_{x^2-y^2}$; c) ns, np_x, np_y, np_z, (n-1) d_{z^2}

b) Complex pla quadrat que situa els lligands sobre els eixos x i y

Hibridació dsp^2 o d^2p^2

Hibridació $d^2p^2:d_{x^2-y^2},d_{xy},p_x,p_y$

Exercici 6.14. Raona quins són els orbitals atòmics del metall que s'han d'hibridar per explicar la geometria dels següents complexos:

- a) Complex tricoordinat sobre el pla yz
- b) Complex pla quadrat que situa els lligands sobre els eixos x i y.
- c) Complex amb geometria de bipiràmide trigonal amb el pla equatorial paral·lel al pla xy

Resposta: a)ns, np_y, np_z; b) ns, np_x, np_y, (n-1) $d_{x^2-y^2}$; c) ns, np_x, np_y, np_z, (n-1) d_{z^2}

b) Complex amb geometria de bipiràmide trigonal amb el pla equatorial paral·lel al pla xy

XY

$$NC = 5$$
, bpt \Rightarrow hibridació dsp^3

Posicions equatorials \Rightarrow geometria pla trigonal : $sp^2(p_x, p_y)$

Posicions axials \Rightarrow geometria lineal : $dp (d_{z^2}, p_z)$

$$dsp^3 \Rightarrow d_{z^2}, s, p_x, p_y, p_z$$

Exercici 6.15. Formula els primers dos compostos de coordinació i anomena els dos segons (utilitza els diferents sistemes possibles).

- a) diclorurobis(trifenilfosfina)pal·ladi(ll)
- b) tetracarbonilcobaltat(1-) de potassi
- c) [CrBr(OH₂)₅](NO₃)₂
- d) [Pt(NH₃)₄][PtCl₆]

Resposta: $[PdCl_2(PPh_3)_2]$, $K[Co(CO)_4]$, nitrat de petaaquabromurocrom(III), hexacloruroplatinat(IV) de teraamminaplatí(II)

- a) $[PdCl_2(PPh_3)_2]$ o $[Pd^{II}Cl_2(PPh_3)_2]$
- b) **K**[**Co**(**CO**)₄] o **K**[**Co**^{-I}(**CO**)₄]
- c) Nitrat de pentaaquabromurocrom(III) Nitrat de pentaaquabromurocrom(2+) Dinitrat de pentaaquabromurocrom
- c) Hexacloruroplatinat(IV) de tetraamminaplatí(II) Hexacloruroplatinat(2-) de tetraamminaplatí(2+) Hexacloruroplatinat de tetraamminaplatí

Exercici 6.16. Dibuixa les estructures dels següents parells de compostos de coordinació i raona quin tipus de isomeria presenta cada parell:

- a) $[Co(NH_3)_6][Cr(CN)_6]$ i $[Cr(NH_3)_6][Co(CN)_6]$
- b) [Cr(H₂O)₆]Cl₃ i [CrCl(H₂O)₅]Cl₂·H₂O

Resposta: a) Estructural de coordinació b) estructural de ionització

Els anions i cations s'intercanvien entre ells mitjançant bescanvi de lligands

₽

Isomeria estructural de coordinació

Exercici 6.16. Dibuixa les estructures dels següents parells de compostos de coordinació i raona quin tipus de isomeria presenta cada parell:

- a) $[Co(NH_3)_6][Cr(CN)_6]$ i $[Cr(NH_3)_6][Co(CN)_6]$
- b) $[Cr(H_2O)_6]Cl_3$ i $[CrCl(H_2O)_5]Cl_2 \cdot H_2O$

Resposta: a) Estructural de coordinació b) estructural de ionització

b)

Anions que poden actuar com a lligands o com a contranions

Isomeria estructural de ionització