

ENASE 2020

5 May 2020

ATDx

Building an Architectural Technical Debt IndeX

R. Verdecchia*
r.verdecchia@vu.nl

P. Lago*

I. Malavolta*
i.malavolta@vu.nl

I.Ozkaya[†] ozkaya@sei.cmu.edu

Architectural Technical Debt

- Suboptimal decisions resulting in immature architectural artifacts¹
- Hinders long term maintainability and evolvability
- Widespread through code-bases, mostly invisible, and of high remediation cost²

¹ "A Systematic Literature Review and a Unified Model of ATD." IEEE, 2016, pp. 189-197. T. Besker, A. Martini, and J. Bosch

² "Technical debt: From metaphor to theory to practice". IEEE Software, 2012, pp. 18–21. P. Kruchten., R. L. Nord, and I. Ozkaya.

The problem

- Numerous industrial and academic¹ source-code analysis tools
- Fine-grained techniques
- Ad-hoc definitions of ATD and analyses
- Heterogeneous, context-independent, results
- The "bigger picture" gets easily lost

¹ Towards an architectural debt index". Roveda, R., Arcelli Fontana, F., Pigazzini, I., and Zanoni, M. (2018). In 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), pages 408–416. IEEE.

The goal

Gain an encompassing and intuitive overview of the architectural technical debt present in a software system

ATDx: an Architectural TD IndeX

- Data-driven approach
- Tool-, and language-independent
- Supports tool composability
- Multi-level granularity results
- Designed with extensibility in mind

ATDx in a nutshell

- Leverage pre-computed metrics of analysis tools
- Qualitative and quantitative metric aggregation
- Consider different ATD dimensions
- Intra-project normalization of metric values
- Inter-project large-scale statistical analysis

ATDx overview

ATDx, STEP 1 Architectural rules identification

ATDx, STEP 2 3-tuple formulation

ATDx, STEP 2 3-tuple formulation: Example

"Abstract classes without fields should be converted to interfaces" 1

- 1. Architectural Technical Debt rule

 Architectural, TD relevant
- 2. Granularity: Class level
- 3. ATD Dimension: Interface

¹ https://jira.sonarsource.com/browse/RSPEC-1610

ATDx, STEP 3 Dataset building

ATDx, STEP 4 Statistical Analysis

ATDx, STEP 4 Statistical Analysis

- 1. Normalize cumulative AR violations at system level
- 2. Establish cross-project dataset of normalized values
- 3. Identify projects with outlier violation values
- 4. Summarize per-project results into ATD dimensions
- 5. Calculate per-project summary ATDx value

ATDx, STEP 5 Analysis of a specific project

ATDx Prototyping

- Technical Report¹
- SonarQube-based
- 6,706 software projects
- ~90M SLOC
- 6 ATD dimensions

¹ https://github.com/ATDindeX/ATDx

Takeaways

- Source-code Architectural Technical Debt index
- Based on inter-project metric analysis
- Ideal for:
 - Comprehensive and intuitive overview of ATD
 - Software portfolio management
- Currently working on:
 - Approach refinement
 - Experimentation in industrial context

The goal

Gain an encompassing and intuitive overview of the architectural technical debt present in a software system

ATDx in a nutshell

- Leverage pre-computed metrics of analysis tools
- Qualitative and quantitative metric aggregation
- Consider different ATD dimensions
- Intra-project normalization of metric values
- Inter-project large-scale statistical analysis

ATDx: an Architectural TD IndeX

- Data-driven approach
- Tool-, and language-independent
- Supports tool composability
- Multi-level granularity results
- Designed with extensibility in mind

ATDx Prototyping

- Technical Report¹
- SonarQube-based
- 6,706 software projects
- ~90M SLOC
- 6 ATD dimensions

¹https://github.com/ATDindeX/ATDx

