PRACTICA 16

EVAPORACION CON UN EFECTO

CONJUNTO DE EVAPORADORES

OBJETIVOS

- A) En papel milimetrado construir un gráfico para cada una de las evaporaciones, de la masa de condensado de vapor vivo y de la masa de condensado del vapor producido en función del tiempo.
- B) Realizar el balance de energía completo para el evaporador y establecer las pérdidas de calor.
- C) Determinar la economía de la evaporación.

D) Determinar el coeficiente global aparente de transferencia de calor.

PROCEDIMIENTO

- Revisión del equipo. Para cumplir con los objetivos propuestos ver qué válvulas deben permanecer cerradas y cuáles abiertas.
- 2) Colocar una caneca para recolección de condensado sobre una balanza.
- 3) Abrir la válvula que da paso de agua a la bomba de vacío y conectar la bomba hasta obtener la presión de vacío deseada. Hay que verificar si efectivamente hay paso de agua por la bomba.
- 4) Alimentar vapor de agua y mantener la presión constante durante la práctica en el valor indicado por el profesor.
- 5) Cuando la temperatura del agua se aproxima al punto de ebullición esperado para la presión seleccionada, suministrar agua de refrigeración al condensador (válvula de entrada) abriendo más o menos media vuelta. La cantidad de agua dependerá de la temperatura del condensado.
- 6) Cuando el sistema esté estable, anotar los datos solicitados.
- 7) Llevar el equipo a presión atmosférica, apagando la bomba de vacío, y abriendo muy lentamente la válvula que comunica el tanque de condensado con la atmósfera.
- 8) Estabilizar nuevamente el equipo y tomar los datos correspondientes.
- 9) Suprimir la alimentación de vapor, cerrando la válvula correspondiente.
- Luego de algunos minutos, cerrar la válvula de agua de refrigeración del condensador (entrada).
- 11) Tarar el tanque de condensado.

EQUIPO

- 1) Evaporador de tubos horizontales. El área de transferencia de calor está formada por 22 tubos de cobre de 48 cm de longitud útil y cuyos diámetros interno y externo son de 35 y 39.5 mm respectivamente.
- 2) Condensador.
- 3) Bomba de vacío.
- 4) Caneca y tanque para condensados.
- 5) Báscula e instrumentos de medida.

NOMENCLATURA DE DATOS

Los subíndices hacen referencia al diagrama de flujo.

P₆: presión de vacío en el tanque de recolección (pulg Hg).

P₃: presión de vacío en el evaporador (pulg Hg).

P₂: presión del vapor de agua alimentado al evaporador (psig).

T₆: temperatura de los vapores de cima (°F).

T₄: temperatura de salida de condensado de vapor vivo (°C).

T₉: temperatura del condensado producido en el evaporador (°C).

T₅: temperatura del agua en el evaporador (°F).

m_{S1}: masa de vapor de agua (kg).

m_{E1}: masa de agua evaporada (kg).

 θ : tiempo (mi).

Z : altura en el tanque de recolección (cm).

(m/Z): tara del tanque (kg/cm).

CALCULOS

Todos los cálculos hacen referencia al siguiente diagrama de flujo simplificado.

A) A partir de los gráficos se determina el flujo de condensado de vapor vivo (m_S) y el flujo de condensado de vapor producido que corresponde al flujo de agua alimentada (m_F) . Cada flujo corresponde a la pendiente de la recta ajustada.

Para determinar el flujo de vapor producido se multiplica la tara del tanque (m/Z) por la diferencia de alturas (Δz) en el tanque durante un intervalo de tiempo ($\Delta \theta$).

B) El balance de energía se determina por la siguiente ecuación:

$$H_F + H_{S1} = H_{E1} + H_{S2} + Q_p$$

donde:

 H_F = entalpía total del agua alimentada = m_F . h_F

La entalpía específica h_F para el agua alimentada se evalúa conociendo la temperatura del agua y tomando la entalpía de líquido saturado (h_f) a ésta temperatura.

 H_{S1} = entalpía total del vapor vivo alimentado al evaporador. = $m_{S_1} h_{S1}$ La entalpía específica del vapor vivo (h_{S1}) se determina suponiendo vapor saturado seco (h_g) en función de la presión absoluta de alimentación.

La presión atmosférica (Patm) en Santafé de Bogotá es 10.83 psi.

La presión absoluta (P_{abs}) se calcula:

$$P_{abs} = P_{atm} + P_{man}$$

 P_{man} = presión indicada por el manómetro.

 H_{E1} = entalpía total del vapor producido = m_{E1} . h_{E1}

La entalpía específica h_{E1} se calcula suponiendo vapor saturado seco (h_g) a la presión absoluta en la cámara de evaporación. Si se está trabajando al vacío la presión absoluta se determina:

$$P_{abs} = P_{atm} - P_{v}$$

P_v = presión de vacío indicada por el vacuómetro.

 H_{S2} = entalpía total del condensado de vapor vivo = m_S . h_{S2}

La entalpía específica $h_{\rm S2}$ se calcula suponiendo líquido sub-enfriado a la temperatura medida con el termómetro de la línea de condensado a la salida del evaporador. Puede suponerse la entalpía de líquido saturado ($h_{\rm f}$) a ésta temperatura.

Despejando Q_p se determina el flujo de calor perdido.

C) La economía de la evaporación se calcula:

D) Determinación del coeficiente global aparente.

$$U_{D} = \frac{Q}{A (\Delta t)_{a}}$$

Q = Flujo de calor entregado por el vapor vivo = m_S (h_{S2} - h_{S1})

A = área total de transferencia de calor.

$$A = N_t \times L \times \pi \times DE$$

 N_t = número de tubos.

L = longitud de los tubos.

DE = diámetro exterior de cada tubo.

 $(\Delta t)_a$ = diferencia aparente de temperatura = $(T_{S1} - T_{E1})$

T_{S1} = temperatura de saturación del vapor vivo.

T_{E1} = temperatura de saturación a la presión de la cámara de evaporación.

DIAGRAMA DE FLUJO **EQUIPO DE EVAPORACION**

LABORATORIO DE OPERACIONES UNITARIAS II

TABLA DE DATOS: PRACTICA 16

EVAPORACION CON UN EFECTO

ENSAYO 1 - EVAPORACION AL VACIO												
DATOS		1	2	3	4	5	6	7	8	9	10	
INTERVALO DE TIEMPO	θ	mi										
ALTURA TANQUE DE CONDENSADO 24	Z ₂₄	cm										
ALTURA TANQUE DE CONDENSADO 25	Z ₂₅	cm										
TEMPERATURA AGUA EVAPORADOR	T ₅	°C										
PRESION DE LA CALDERA	Pc	psig										

PRESION DEL VAPOR DE AGUA	P_2	psig	TEMPERATURA VAPOR PRODUCIDO	T_6	°F	
PRESION DE VACIO TANQUE	P_6	in Hg	TEMPERATURA CONDENSADO VAPOR	T_4	ပ္	
PRESION DE VACIO EVAPORADOR	P_3	in Hg	TEMPERATURA SALIDA CONDENSADOR	T ₉	ွှပ	

ENSAYO 2 - EVAPORACION A PRESION ATMOSFERICA (560 mm												
DATOS			1	2	3	4	5	6	7	8	9	10
INTERVALO DE TIEMPO	θ	mi										
ALTURA TANQUE DE CONDENSADO 24	Z ₂₄	cm										
ALTURA TANQUE DE CONDENSADO 25	Z ₂₅	cm										
TEMPERATURA AGUA EVAPORADOR	T ₅	°C										
PRESION DE LA CALDERA	Pc	psig										

PRESION DEL VAPOR DE AGUA	P ₂	psig	TEMPERATURA VAPOR PRODUCIDO	T_6	°F	
PRESION DEL EVAPORADOR	P_3	psig	TEMPERATURA CONDENSADO VAPOR	T_4	ဂိ	
TARA TANQUE DE CONDENSADO 24	Z_{24}	kg/cm	TARA TANQUE DE CONDENSADO 25	Z_{25}	kg/cm	

PROFESOR :	GRUPO N°	FECHA : D	M	Α	

FOTOCOPIA DILIGENCIADA DE ESTA TABLA DEBE SER ENTREGADA AL PROFESOR AL FINALIZAR LA PRACTICA