يا ذالامن والإمان

امنیت IP (IPSec)

از کتاب Network Security Essentials حمید رضا شهریاری

http://atlas.aut.ac.ir

فهرست مطالب

- 🗖 مقدمه
- IPSec معماري □
- IPSec سرویس های
 - مجمع امنیتی(SA)
- حالتهای انتقال بستهها
 - AH 🗖
 - ESP **□**
 - □ تركيب SAها
 - 🗖 مديريت كليد

مقدمه – مثالی از TCP/IP

IPV4

- □ راه حل های امنیتی وابسته به کاربرد(تاکنون)
- S/MIME و PGP: امنیت پست الکترونیکی
- Kerberos : امنیت بین کاربر-کارگزار(احراز هویت)
 - SSL: ایجاد یک کانال امن در وب
 - □ نیاز به امنیت در سطح IP
 - محرمانگی محتوای بسته های IP
 - احراز هویت فرستنده و گیرنده بسته ها

- □ IPSec یک پروتکل تنها نیست بلکه مجموعه ای از الگوریتمهای امنیتی و چارچوبی کلی فراهم می کند که به کمک آن ارتباط امنی برقرار کرد.
 - □ سرویسهای امنیتی فراهم شده توسط IPSec
 - احراز هویت (به همراه کنترل صحت داده ها)
 - محرمانگی بسته ها
 - مدیریت کلید (تبادل امن کلید)

- ☐ نمونه کاربردهای IPSec
- ایجاد VPN برای شعبه های مختلف یک سازمان از طریق اینترنت
 - دسترسی امن کارمندان شرکت به منابع شبکه از طریق اینترنت
 - امکان ارتباط امن بین چند سازمان
 - به وجود آوردن خدمات امنیتی برای کاربردهای دیگر(مثل تجارت الکترونیک)

IPSec

- □ مزایای استفاده از IPSec
- تامین امنیت قوی بین داخل و خارج LAN در صورت بکارگیری در راهیابها و حفاظ ها(Firewallها)
 - □ عدم سربار رمزنگاری در نقاط انتهایی
 - شفافیت از نظر کاربران
 - شفافیت از دید برنامه های کاربردی لایه های بالاتر
 - ایجاد ارتباط امن بین کارکنان سازمان از خارج به داخل

معماري IPSec: ويژگيها

- 🗖 ويژگيها
- دارای توصیف نسبتا مشکل
- الزامی در IPv6 و اختیاری در IPv4
 - در برگرفتن موارد زیر:
- پروتکل IPSec در سرآیند (Header)های توسعه یافته و بعد از سرآیند اصلی IP پیاده سازی می شود
 - مستدات IPSec بسیار حجیم بوده و به صورت زیر دسته بندی شده است:
- □ ESP) Encapsulating Security Payload (احراز) : رمزنگاری بسته ها (احراز هویت به صورت اختیاری)
 - □ AH) Authentication Header: تشخیص هویت بسته ها
 - □ مديريت كليد: تبادل امن كليدها
 - الگوریتم های رمزنگاری و احراز هویت

Figure 9.2 IPsec Architecture

معماري IPSec: سرويس ها

- □ سرویس های ارائه شده: IPSec این امکان را به سیستمها می دهد تا پروتکلها، الگوریتمها و کلیدهای لازم برای ارائه سرویسهای زیر را انتخاب کنند
 - کنترل دسترسی
 - تضمین صحت داده ها در ارتباط Connectionless
 - احراز هویت منبع داده ها (Data Origin)
 - تشخیص بسته های دوباره ارسال شده و رد آنها (Replay Attack)
 - محرمانگی بستهها
 - محرمانگی جریان ترافیک

معماري IPSec: سرويس ها

	AH	ESP (encryption only)	ESP (encryption plus authentication)
Access control	~	~	~
Connectionless integrity	~		~
Data origin authentication	~		~
Rejection of replayed packets	~	~	~
Confidentiality		~	~
Limited traffic flow confidentiality		~	~

Figure 9.1 An IP Security Scenario

عماری IPSec: Security Association

□ مجمع امنیتی(Security Association) یک مفهوم کلیدی در مکانیزمهای احراز هویت و محرمانگی برای IP بوده و یک رابطه یک طرفه بین فرستنده و گیرنده بسته ایجاد می کند و سرویس های امنیتی را برای ترافیک خط فراهم میکند.

□ SA در IP به نوعی معادل Connection در TCP است

عماری IPSec: Security Association

ويژگيها :

- □ یک SA بصورت یکتا با ۳ پارامتر تعیین می شود:
- SPI) Security Parameters Index): یک رشته بیتی نست داده شده به SA
 - SA آدرس مقصد نهایی: IP Destination Address
- Security Protocol Identifier : بیانگر تعلق SA به AH یا ESP

Security Association Database (SAD)

- 🗖 پارامترهای هر SA را تعیین میکند.
 - □ يارامترهاي SA:

- Sequence Number Counter
- Sequence Counter Overflow
- Anti Replay Windows
- AH Information
- ESP Information
- SA Lifetime
- IPSec Protocol Mode
- Maximum Transmission Unit (MTU)

Security Policy Database (SPD)

- □ مکانیزمی که مشخص می کند هر ترافیک IP مرتبط با کدام SA است.
- شامل سطرهایی که هر یک زیرمجموعهای از ترافیک IP و SA مربوط است.
- □ در محیطهای پیچیدهتر، ممکن است چند سطر مرتبط با یک SPD باشد.
 - هر مدخل SPD با مجموعهای از مقادیر فیلدهای IP و پروتکلهای لایه بالاتر تعریف میشود که selector نامیده میشوند.
 - برای نگاشت ترافیک به یک SA خاص استفاده میشوند.

فیلدهای SPD

selector میکنند. ایک سطر از SPD را مشخص میکنند.

Remote IP address

This may be a single IP address, an enumerated list or range of addresses, or a wildcard (mask) address

The latter two are required to support more than one destination system sharing the same SA

Local IP address

This may be a single IP address, an enumerated list or range of addresses, or a wildcard (mask) address

The latter two
are required to
support more
than one
source system
sharing the
same SA

Next layer protocol

The IP
protocol
header
includes a field
that
designates the
protocol
operating over
IP

Name

A user identifier from the operating system

Not a field in the IP or upperlayer headers but is available if IPsec is running on the same operating system as the user

Local and remote ports

These may be individual TCP or UDP port values, an enumerated list of ports, or a wildcard port

مثالی از جدول SPD

Protocol	Local IP	Port	Remote IP	Port	Action	Comment
UDP	1.2.3.101	500	*	500	BYPASS	IKE
ICMP	1.2.3.101	*	*	*	BYPASS	Error messages
*	1.2.3.101	*	1.2.3.0/24	*	PROTECT: ESP intransport-mode	Encrypt intranet traffic
TCP	1.2.3.101	*	1.2.4.10	80	PROTECT: ESP intransport-mode	Encrypt to server
ТСР	1.2.3.101	*	1.2.4.10	443	BYPASS	TLS: avoid double encryption
*	1.2.3.101	*	1.2.4.0/24	*	DISCARD	Others in DMZ
*	1.2.3.101	*	*	*	BYPASS	Internet

Figure 9.3 Processing Model for Outbound Packets

Figure 9.4 Processing Model for Inbound Packets

معماری IPSec: حالتهای انتقال بستهها

- در هر دوی AH و ESP دو حالت انتقال وجود دارد:
 - (Transport Mode) حالت انتقال
- تغییرات تنها روی محتوای بسته صورت می گیرد، بدون تغییر سرآیند IP
 - □ حالت تونل (Tunnel Mode)
- اعمال تغییرات روی کل بسته IP(سرآیند+Payload) و فرستادن نتیجه به عنوان یک بسته جدید

IPSec Modes

معماری IPSec: حالتهای انتقال بستهها

- □ حالت انتقال
- در کاربردهای انتها به انتها(end-to-end) مثل کارگزار/کارفرما
 استفاده می شود
 - ESP : رمزنگاری (ضروری) و احراز هویت (اختیاری) Payload بسته
 - AH: احراز هویت Payload بسته و قسمتهای انتخاب شده سر آیند بسته

(a) Transport-level security

Figure 9.7 Transport-Mode vs. Tunnel-Mode Encryption

معماری IPSec: حالتهای انتقال بستهها

- 🗖 حالت تونل
- مورد استفاده در ارتباط Gateway به Gateway
- هیچ مسیریاب(router) میانی قادر به تشخیص سرآیند داخلی نیست

Functionality of Modes

	Transport Mode SA	Tunnel Mode SA	
AH Authenticates IP payload selected portions of IP he and IPv6 extension heade			
ESP	Encrypts IP payload and any IPv6 extension headers following the ESP header.	Encrypts entire inner IP packet.	
ESP with Authentication	Encrypts IP payload and any IPv6 extension headers following the ESP header. Authenticates IP payload but not IP header.	Encrypts entire inner IP packet. Authenticates inner IP packet.	

http://atlas.aut.ac.ir

Authentication Header (AH)

- تضمین صحت و احراز هویت بستههای IP
- طرفین نیاز به توافق روی یک کلید مشترک متقارن دارند.

Authentication Header

AH

- □ فيلدهاي AH:
- Next Header(۸ بیت) : نوع سرآیند بعدی موجود در بسته
 - PayLoad Length(۸ بیت): بیانگر طول AH
 - Reserved(16 بیت): رزرو شده برای استفاده های آینده
- SA مربوط به SPI مربوط به Sec. Param. Index
 - Sequence Number = شمارنده
 - Authentication Data (متغیر): دربر گیرنده MAC یا ICV

AH

- □ محاسبه MAC
- □ خروجي الگوريتم HMAC
- محاسبه MAC روی مقادیر زیر انجام می گیرد
- □ سرآیند نامتغیر IP، سرآیند نامتغیر AH و محتوای بسته
- قسمتهایی از سرآیند که احتمالا در انتقال تغییر میکنند(مانند TTL)، در محاسبه MAC صفر منظور می شوند. آدرسهای فرستنده و گیرنده نیز در محاسبه MAC دخیل هستند(جهت جلوگیری از حمله

AH

- □ حالتهای انتقال و تونل در AH:
- حالت انتقال(Transport) : برای احراز هویت مستقیم بین کامپیوتر کاربر و کارگزار
 - حالت تونل(Tunnel) : برای احراز هویت بین کاربر و حفاظ(firewall)

Scope of AH Authentication Before Application

IP payload is TCP segment (data unit)

Scope of AH Authentication Transport Mode

IPv6: AH is end-to-end payload

Scope of AH Authentication Tunnel Mode

AH

- □ روش مقابله با حمله تكرار(Replay)
- اختصاص یک شمارنده با مقدار صفر به هر SA
- افزایش شمارنده به ازای هر بسته جدید که با این SA فرستاده می شود
- اگر شمارنده به مقدار 2^{32} برسد، باید از یک 2^{32} جدید با کلید جدید استفاده کرد
 - درنظرگرفتن یک پنجره به سایز (۲۶=) **W**
- لبه سمت راست پنجره به بزرگترین شماره بسته رسیده و تاییدشده از نظر صحت می باشد

AH

- □ مكانيسم برخورد با بسته جديد در پنجره
 - بسته جدید و داخل محدوده پنجره
- □ محاسبه MAC و علامت زدن خانه متناظر در پنجره در صورت تایید هویت
 - بسته خارج از محدود پنجره (سمت راست)
- □ محاسبه MAC ، تایید هویت و شیفت پنجره به سمت راست، به طوری که خانه متناظر سمت راست لبه پنجره را نشان دهد
 - ◄ بسته جدید خارج از محدوده پنجره یا عدم احراز هویت آن
 - 🗖 دور انداخته می شود!

ESP

- 🗖 ویژگیها
- پشتیبانی از محرمانگی داده و تا حدی محرمانگی ترافیک
 - امكان استفاده از احراز هويت (مشابه AH)
 - استفاده از الگوریتمهای متقارن برای رمزنگاری محتوا

ESP

- □ فىلدھاى ESP
- SA شناسه : SPI
- Sequence Number : شمارنده برای جلوگیری از حمله تکرار مشابه AH
 - Payload : محتوای بسته که رمز می شود
 - Padding : بیتهای اضافی
 - Pad Length : طول فيلد بالا
 - Next Header: نوع داده موجود در Next Header :
 - Authentication Data : مقدار MAC محاسبه شده (بدون در نظر گرفتن خود فیلد)

Encapsulating Security Payload

ESP

- □ حالت انتقال
- تضمین محرمانگی بین host ها
- رمزنگاری بسته داده، دنباله ESP و اضافه شدن MAC درصورت انتخاب احراز هویت توسط مبداء
 - تعیین مسیر توسط Router های میانی با استفاده از سرآیندهای اصلی(که رمز نشدهاند)
 - چک کردن سرآیند IP توسط مقصد و واگشایی رمز باقیمانده پیام
 - امكان تحليل ترافيك

Transport Mode ESP

o used for communication between hosts

scope

ESP

- 🗖 حالت تونل
- اضافه شدن آدرس مبداء و مقصد دروازه های خروجی فرستنده و گیرنده، سرآیند ESP و دنباله ESP و قسمت مربوط به MAC در صورت نیاز(برای هویتشناسی)
 - انجام مسیریابی در Routerهای میانی از روی آدرسهای جدید
 - رسیدن بسته به فایروال شبکه مقصد و مسیریابی از روی آدرس IP قبلی تا گره نهایی
 - حالت تونل IPSec یکی از روشهای ایجاد VPNها است

Tunnel Mode ESP

IPv6

hdr

ESP in Tunnel and Transport modes

تركيب SAها

- □ با توجه به اینکه هر SA تنها یکی از سرویسهای AH یا ESP را پیاده سازی کرده است، برای استفاده از هر دو سرویس باید آنها را باهم ترکیب کرد.
 - 🗖 ترکیبهای مختلف
 - پیاده سازی IPSec توسط host های متناظر
 - پیادہ سازی IPSec توسط gateway ها
 - تركيب دو حالت بالا

ترکیب SAها

Security association bundle

- دنباله SAها که با هم ترکیب میشوند تا سرویسهای مطلوب IPSec بدست آید.
- SA های یک باندل در دو نقطه متفاوت یا یک نقطه مشابه تمام میشوند.
 - دو روش ترکیب در یک باندل:
- اعمال بیش از یک پروتکل امنیتی روی: $oldsymbol{\mathsf{Transport adjacency}}$ یک بسته $oldsymbol{\mathsf{IP}}$ بدون تونل
 - □ Iterated tunneling: اعمال لایههای مختلف امنیتی با استفاده از تونل

Figure 9.10 Basic Combinations of Security Associations

مديريت كليد

□ عموما به دو زوج کلید، یکی برای AH و دیگری برای ESP نیازمندیم. برای تولید و توزیع این کلیدها به یک مکانیزم مدیریت کلید نیازمندیم.

دو زوج کلید از این جهت که برای ارسال و دریافت در دو حالت
 AH و ESP نیازمندیم.

مديريت كليد

□ مدیریت کلید دستی: تنها در سیستم های ایستا و کوچک قابل استفاده است

- 🗖 مديريت خودكار:
- پروتکل اتوماتیک و پیش فرض مدیریت و توزیع کلید IPSec اصطلاحا ISAKMP/Oakley نامیده می شود.

Internet Security Association and Key Management Protocol

مديريت كليد

- مدیریت کلید خودکار به نام ISAKMP/Oakley معروف است و شامل دو فاز است

 - Clogging Attack: از آنجا که پروتکل دیفی-هلمن سنگین است، منابع قربانی
 تلف می شود.
- با استفاده از تعریف مفهومی تحت عنوان Cookie مشکل این حمله را برطرف می کند
 - Man-In-The-Middle-Attack
 - Replay Attack •
 - با استفاده از Nonce با حمله های تکرار مقابله می کند.
 - □ پروتکل مدیریت کلید و SA در اینترنت(ISAKMP)
 - تعریف رویه ها و قالب بسته ها برای برقراری، مذاکره، تغییر یا حذف SA

برای مطالعه بیشتر

- The IPSec Working Group of the IETF. Charter for the group and latest RFCs and Internet Drafts for IPSec:
 - http://ietf.org/html.charters/ipsec-charter.html
- IPSec Resources: List of companies implementing IPSec, implementation survey, and other useful material:
 - http://web.mit.edu/tytso/www/ipsec/index.html

ISAKMP Header & Payload Header

پيوست الف

مروری بر IPv6

مرور IPv6

o IP نسخه ۲ عمدتا برای رسیدن به اهداف زیر توسعه یافت:

- افزودن فضای آدرس دهی : آدرسهای ۱۸ بایتی در مقابل آدرسهای ۶ بایتی در IP v4.0
 - سرآیندهای توسعه یافته (Extension Headers)
 - کاهش حجم پردازش در مسیریابها(Routerها)

IPV6

http://atlas.aut.ac.ir

60

IPV6 Extension Headers

مرور IPv6

- □ سرآيندهاي توسعه يافته IPv6.0
- Hop-by-Hop Options header hop به hop به بردازش hop به بردازش الم
 - Routing header •
- □ مسیریابی توسعه یافته، مثل امکان source routing در IPv4.0
 - Fragment header •
 - □ برای نگهداری اطلاعات بسته های شکسته شده
 - Authentication header: احراز هویت بسته ها
 - Encapsulating Security Header: رمزنگاری بسته ها
 - : Destination Options Header •
 - 🗖 اطلاعاتی که ممکن است توسط گیرنده چک شود