CS 4072 - Topics in CS Process Mining

Lecture # 10

March 22, 2022

Spring 2022

FAST - NUCES, CFD Campus

Dr. Rabia Maqsood

rabia.maqsood@nu.edu.pk

Today's Topics

► Alpha algorithm (continued)

Process Mining | Spring 2022

α-algorithm

- ightharpoonup The α -algorithm scans the event log for particular patterns.
- ► Four *log-based ordering relations* are defined to capture relevant patterns in an event log.
 - ▶ Direct succession (>)
 - ► Causality (→)
 - Parallelism (||) **Table 6.1** Footprint of L_1 :
 - $\text{Choice (\#)} \qquad \qquad a\#_{L_1}a,\, a\to_{L_1}b,\, a\to_{L_1}c,\\ \text{etc.}$

22	а	b	С	d	e	
а	$\#_{L_1}$	\rightarrow_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$	\rightarrow_{L_1}	
b	\leftarrow_{L_1}	$\#_{L_1}$	$\ _{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$	
\boldsymbol{c}	\leftarrow_{L_1}	$\ _{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$	
d	$\#_{L_1}$	\leftarrow_{L_1}	\leftarrow_{L_1}	$\#_{L_1}$	\leftarrow_{L_1}	
e	\leftarrow_{L_1}	$\#_{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$	

- \triangleright (α -algorithm): Let L be an event log over T $\subseteq \mathcal{A}$. $\alpha(L)$ is defined as follows:
- 1. $T_L = \{t \in T \mid \exists_{\sigma \in L} \ t \in \sigma\},\$
- 2. $T_I = \{t \in T \mid \exists_{\sigma \in L} \ t = first(\sigma)\},\$
- 3. $T_O = \{t \in T \mid \exists_{\sigma \in L} \ t = last(\sigma)\},\$
- 4. $X_L = \{(A, B) \mid A \subseteq T_L \land A \neq \emptyset \land B \subseteq T_L \land B \neq \emptyset \land \forall_{a \in A} \forall_{b \in B} \ a \rightarrow_L b \land \forall_{a_1, a_2 \in A} \ a_1 \#_L a_2 \land \forall_{b_1, b_2 \in B} \ b_1 \#_L b_2\},$
- 5. $Y_L = \{(A, B) \in X_L \mid \forall_{(A', B') \in X_L} A \subseteq A' \land B \subseteq B' \Longrightarrow (A, B) = (A', B')\},\$
- 6. $P_L = \{p_{(A,B)} \mid (A,B) \in Y_L\} \cup \{i_L,o_L\},\$
- 7. $F_L = \{(a, p_{(A,B)}) \mid (A, B) \in Y_L \land a \in A\} \cup \{(p_{(A,B)}, b) \mid (A, B) \in Y_L \land b \in B\} \cup \{(i_L, t) \mid t \in T_I\} \cup \{(t, o_L) \mid t \in T_O\}, \text{ and }$
- 8. $\alpha(L) = (P_L, T_L, F_L)$.

Process Mining | Spring 2022

- \triangleright (α -algorithm): Let L be an event log over T $\subseteq \mathcal{A}$. $\alpha(L)$ is defined as follows:
- 1. $T_L = \{t \in T \mid \exists_{\sigma \in L} \ t \in \sigma\},\$
- 2. $T_I = \{t \in T \mid \exists_{\sigma \in L} \ t = first(\sigma)\},\$
- 3. $T_O = \{t \in T \mid \exists_{\sigma \in L} \ t = last(\sigma)\},\$
- 4. $X_L = \{(A, B) \mid A \subseteq T_L \land A \neq \emptyset \land B \subseteq T_L \land B \neq \emptyset \land \forall_{a \in A} \forall_{b \in B} \ a \rightarrow_L b \land \forall_{a_1, a_2 \in A} \ a_1 \#_L a_2 \land \forall_{b_1, b_2 \in B} \ b_1 \#_L b_2\},$
- 5. $Y_L = \{(A, B) \in X_L \mid \forall_{(A', B') \in X_L} A \subseteq A' \land B \subseteq B' \Longrightarrow (A, B) = (A', B')\},$
- 6. $P_L = \{p_{(A,B)} \mid (A,B) \in Y_L\} \cup \{i_L,o_L\},\$
- 7. $F_L = \{(a, p_{(A,B)}) \mid (A, B) \in Y_L \land a \in A\} \cup \{(p_{(A,B)}, b) \mid (A, B) \in Y_L \land b \in B\} \cup \{(i_L, t) \mid t \in T_I\} \cup \{(t, o_L) \mid t \in T_O\}, \text{ and}$
- 8. $\alpha(L) = (P_L, T_L, F_L)$.

These are core steps of the α -algorithm.

The challenge is to to determine the places of the WF-net and their connections.

We aim at constructing places named p(A,B) such that A is the set of input transitions $(\bullet p(A,B) = A)$ and B is the set of output transitions $(p(A,B) \bullet = B)$ of p(A,B).

Fig. 6.7 Place $p_{(A,B)}$ connects the transitions in set A to the transitions in set B

Table 6.4 How to identify $(A, B) \in X_L$? Rearrange the rows and columns corresponding to $A = \{a_1, a_2, \dots, a_m\}$ and $B = \{b_1, b_2, \dots, b_n\}$ and remove the other rows and columns from the footprint

Check for the four quadrants

77	a_1	a_2	 a_m	b_1	b_2	 b_n
a_1	#	#	 #	\rightarrow	\rightarrow	 \rightarrow
a_2	#	#	 #	\rightarrow	\rightarrow	 \rightarrow
a_m	#	#	 #	\rightarrow	\rightarrow	 \rightarrow
b_1	←	\leftarrow	 ←	#	#	 #
b_2	\leftarrow	\leftarrow	 ←	#	#	 #
b_n	←	\leftarrow	 ←	#	#	 #

Table 6.1 Footprint of L_1 : $a\#_{L_1}a$, $a\to_{L_1}b$, $a\to_{L_1}c$, etc.

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

		, -, - ,	, .,,	, ., ., .	
	а	b	С	d	e
a	$\#_{L_1}$	\rightarrow_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$	\rightarrow_{L_1}
b	\leftarrow_{L_1}	$\#_{L_1}$	$\ _{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
c	\leftarrow_{L_1}	$\ _{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
d	$\#_{L_1}$	\leftarrow_{L_1}	\leftarrow_{L_1}	$\#_{L_1}$	\leftarrow_{L_1}
e	\leftarrow_{L_1}	$\#_{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$

Following is the set of all pairs that meet the requirements of Step 4

$$X_{L_1} = \{ (\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{e\}), (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b\}, \{d\}), (\{c\}, \{d\}), (\{e\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

Inserting a place for any element in X_{L1} would introduce too many places.

Therefore, only the "maximal pairs" (A,B) should be included.

- \blacktriangleright (α -algorithm): Let L be an event log over T $\subseteq \mathcal{A}$. $\alpha(L)$ is defined as follows:
- 1. $T_L = \{t \in T \mid \exists_{\sigma \in L} \ t \in \sigma\},\$
- 2. $T_I = \{t \in T \mid \exists_{\sigma \in L} \ t = first(\sigma)\},\$
- 3. $T_O = \{t \in T \mid \exists_{\sigma \in L} \ t = last(\sigma)\},\$
- 4. $X_L = \{(A, B) \mid A \subseteq T_L \land A \neq \emptyset \land B \subseteq T_L \land B \neq \emptyset \land \forall_{a \in A} \forall_{b \in B} a \rightarrow_L b \land \forall_{a_1, a_2 \in A} a_1 \#_L a_2 \land \forall_{b_1, b_2 \in B} b_1 \#_L b_2\},$
- 5. $Y_L = \{(A, B) \in X_L \mid \forall_{(A', B') \in X_L} A \subseteq A' \land B \subseteq B' \Longrightarrow (A, B) = (A', B')\},$
- 6. $P_L = \{p_{(A,B)} \mid (A,B) \in Y_L\} \cup \{i_L,o_L\},\$
- 7. $F_L = \{(a, p_{(A,B)}) \mid (A, B) \in Y_L \land a \in A\} \cup \{(p_{(A,B)}, b) \mid (A, B) \in Y_L \land b \in B\} \cup \{(i_L, t) \mid t \in T_I\} \cup \{(t, o_L) \mid t \in T_O\}, \text{ and }$
- 8. $\alpha(L) = (P_L, T_L, F_L)$.

Step 5 removes all non-maximal pairs.

Note that for any pair $(A, B) \in X_L$, non-empty set $A' \subseteq A$, and non-empty set $B' \subseteq B$, it is implied that $(A', B') \in X_L$.

Alpha Algorithm: removing non-maximal pairs

Note that for any pair $(A, B) \in X_L$, non-empty set $A' \subseteq A$, and non-empty set $B' \subseteq B$, it is implied that $(A', B') \in X_L$.

Table 6.1 Footprint of L_1 : $a\#_{L_1}a$, $a\to_{L_1}b$, $a\to_{L_1}c$, etc.

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

	а	b	С	d	e			
a	$\#_{L_1}$	\rightarrow_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$	\rightarrow_{L_1}			
b	\leftarrow_{L_1}	$\#_{L_1}$	$\ _{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$			
c	\leftarrow_{L_1}	$\ _{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$			
d	$\#_{L_1}$	\leftarrow_{L_1}	\leftarrow_{L_1}	$\#_{L_1}$	\leftarrow_{L_1}			
e	\leftarrow_{L_1}	$\#_{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$			

$$X_{L_1} = \{ (\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{e\}), (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b\}, \{d\}), (\{c\}, \{d\}), (\{e\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

 X_{L1} after the removal of non-maximal pairs:

$$Y_{L_1} = \{ (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

- \triangleright (α -algorithm): Let L be an event log over T $\subseteq \mathcal{A}$. $\alpha(L)$ is defined as follows:
- 1. $T_L = \{t \in T \mid \exists_{\sigma \in L} \ t \in \sigma\},\$
- 2. $T_I = \{t \in T \mid \exists_{\sigma \in L} \ t = first(\sigma)\},\$
- 3. $T_O = \{t \in T \mid \exists_{\sigma \in L} \ t = last(\sigma)\},\$
- 4. $X_L = \{(A, B) \mid A \subseteq T_L \land A \neq \emptyset \land B \subseteq T_L \land B \neq \emptyset \land \forall_{a \in A} \forall_{b \in B} \ a \rightarrow_L b \land \forall_{a_1, a_2 \in A} \ a_1 \#_L a_2 \land \forall_{b_1, b_2 \in B} \ b_1 \#_L b_2\},$
- 5. $Y_L = \{(A, B) \in X_L \mid \forall_{(A', B') \in X_L} A \subseteq A' \land B \subseteq B' \Longrightarrow (A, B) = (A', B')\},\$
- 6. $P_L = \{p_{(A,B)} \mid (A,B) \in Y_L\} \cup \{i_L,o_L\},\$
- 7. $F_L = \{(a, p_{(A,B)}) \mid (A, B) \in Y_L \land a \in A\} \cup \{(p_{(A,B)}, b) \mid (A, B) \in Y_L \land b \in B\} \cup \{(i_L, t) \mid t \in T_I\} \cup \{(t, o_L) \mid t \in T_O\}, \text{ and }$
- 8. $\alpha(L) = (P_L, T_L, F_L)$.

Step 6: Every element of $(A, B) \in Y_L$ corresponds to a place $p_{(A,B)}$ connecting transitions A to transitions B (in union with a special input and output place).

FLOCE22 WILLING | 2011ING TOTAL

Table 6.1 Footprint of L_1 : $a\#_{L_1}a$, $a\to_{L_1}b$, $a\to_{L_1}c$, etc.

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

	а	b	c	d	e		
a	$\#_{L_1}$	\rightarrow_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$	\rightarrow_{L_1}		
b	\leftarrow_{L_1}	$\#_{L_1}$	$\ _{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$		
\boldsymbol{c}	\leftarrow_{L_1}	$\ _{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$		
d	$\#_{L_1}$	\leftarrow_{L_1}	\leftarrow_{L_1}	$\#_{L_1}$	\leftarrow_{L_1}		
e	\leftarrow_{L_1}	$\#_{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$		

$$\begin{split} X_{L_1} &= \big\{ \big(\{a\}, \{b\} \big), \big(\{a\}, \{c\} \big), \big(\{a\}, \{e\} \big), \big(\{a\}, \{b, e\} \big), \big(\{a\}, \{c, e\} \big), \\ & \big(\{b\}, \{d\} \big), \big(\{c\}, \{d\} \big), \big(\{e\}, \{d\} \big), \big(\{b, e\}, \{d\} \big), \big(\{c, e\}, \{d\} \big) \big\} \end{split}$$

$$Y_{L_1} &= \big\{ \big(\{a\}, \{b, e\} \big), \big(\{a\}, \{c, e\} \big), \big(\{b, e\}, \{d\} \big), \big(\{c, e\}, \{d\} \big) \big\}$$

Every element of $(A, B) \in Y_L$ corresponds to a place $p_{(A,B)}$ connecting transitions A to transitions B (in union with a special input and output place).

$$P_{L} = \{p_{(\{a\}, \{b,e\})}, p_{(\{a\}, \{c,e\})}, p_{(\{b,e\}, \{d\})}, p_{(\{c,e\}, \{d\})}), i_{L}, o_{L}\}$$

- \triangleright (α -algorithm): Let L be an event log over T $\subseteq \mathcal{A}$. $\alpha(L)$ is defined as follows:
- 1. $T_L = \{t \in T \mid \exists_{\sigma \in L} \ t \in \sigma\},\$
- 2. $T_I = \{t \in T \mid \exists_{\sigma \in L} \ t = first(\sigma)\},\$
- 3. $T_O = \{t \in T \mid \exists_{\sigma \in L} \ t = last(\sigma)\},\$
- 4. $X_L = \{(A, B) \mid A \subseteq T_L \land A \neq \emptyset \land B \subseteq T_L \land B \neq \emptyset \land \forall_{a \in A} \forall_{b \in B} \ a \rightarrow_L b \land \forall_{a_1, a_2 \in A} \ a_1 \#_L a_2 \land \forall_{b_1, b_2 \in B} \ b_1 \#_L b_2\},$
- 5. $Y_L = \{(A, B) \in X_L \mid \forall_{(A', B') \in X_L} A \subseteq A' \land B \subseteq B' \Longrightarrow (A, B) = (A', B')\},\$
- 6. $P_L = \{p_{(A,B)} \mid (A,B) \in Y_L\} \cup \{i_L,o_L\},\$
- 7. $F_L = \{(a, p_{(A,B)}) \mid (A, B) \in Y_L \land a \in A\} \cup \{(p_{(A,B)}, b) \mid (A, B) \in Y_L \land b \in B\} \cup \{(i_L, t) \mid t \in T_I\} \cup \{(t, o_L) \mid t \in T_O\}, \text{ and }$
- 8. $\alpha(L) = (P_L, T_L, F_L)$.

Step 7: The arcs of the WF-net are generated.

All places p(A,B) have A as input nodes and B as output nodes.

All start transitions in T_1 have i_L as an input place and all end transitions T_0 have o_L as output place.

Table 6.1 Footprint of L_1 : $a\#_{L_1}a$, $a\to_{L_1}b$, $a\to_{L_1}c$, etc.

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

2.5				, , ,	-
	а	b	c	d	e
а	$\#_{L_1}$	\rightarrow_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$	\rightarrow_{L_1}
b	\leftarrow_{L_1}	$\#_{L_1}$	$\ _{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
\boldsymbol{c}	\leftarrow_{L_1}	$\ _{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
d	$\#_{L_1}$	\leftarrow_{L_1}	\leftarrow_{L_1}	$\#_{L_1}$	\leftarrow_{L_1}
e	\leftarrow_{L_1}	$\#_{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$

$$T_L = \{a, b, c, d, e\}$$

 $T_I = \{a\}$
 $T_O = \{d\}$

Step 7: The arcs of the WF-net are generated. All places p(A,B) have A as input nodes and B as output nodes.

All start transitions in T_I have i_L as an input place and all end transitions T_O have o_L as output place.

$$Y_{L_1} = \{ (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

$$P_L = \{p_{(\{a\},\;\{b,e\})},\; p_{(\{a\},\;\{c,e\})},\; p_{(\{b,e\},\;\{d\})},\; p_{(\{c,e\},\;\{d\})}),\; i_L,\; o_L\}$$

$$\begin{split} F_L &= \{(a,p_{(\{a\},\;\{b,e\})}),\; (p_{(\{a\},\;\{b,e\})},b),\; (p_{(\{a\},\;\{b,e\})},e),\\ &\quad (a,p_{(\{a\},\;\{c,e\})}),\; (p_{(\{a\},\;\{c,e\})},c),\; (p_{(\{a\},\;\{c,e\})},e),\\ &\quad (b,p_{(\{b,e\},\;\{d\})}),\; (e,p_{(\{b,e\},\;\{d\})}),\; (p_{(\{b,e\},\;\{d\})},d),\\ &\quad (c,p_{(\{c,e\},\;\{d\})}),\; (e,p_{(\{c,e\},\;\{d\})}),\; (p_{(\{c,e\},\;\{d\})},d),\\ &\quad (i_L,a),\\ &\quad (d,o_L)\} \end{split}$$

- \blacktriangleright (α -algorithm): Let L be an event log over $T \subseteq \mathcal{A}$. $\alpha(L)$ is defined as follows:
- 1. $T_L = \{t \in T \mid \exists_{\sigma \in L} \ t \in \sigma\},\$
- 2. $T_I = \{t \in T \mid \exists_{\sigma \in L} \ t = first(\sigma)\},\$
- 3. $T_O = \{t \in T \mid \exists_{\sigma \in L} \ t = last(\sigma)\},\$
- 4. $X_L = \{(A, B) \mid A \subseteq T_L \land A \neq \emptyset \land B \subseteq T_L \land B \neq \emptyset \land \forall_{a \in A} \forall_{b \in B} \ a \rightarrow_L b \land \forall_{a_1, a_2 \in A} \ a_1 \#_L a_2 \land \forall_{b_1, b_2 \in B} \ b_1 \#_L b_2\},$
- 5. $Y_L = \{(A, B) \in X_L \mid \forall_{(A', B') \in X_L} A \subseteq A' \land B \subseteq B' \Longrightarrow (A, B) = (A', B')\},\$
- 6. $P_L = \{p_{(A,B)} \mid (A,B) \in Y_L\} \cup \{i_L,o_L\},\$
- 7. $F_L = \{(a, p_{(A,B)}) \mid (A, B) \in Y_L \land a \in A\} \cup \{(p_{(A,B)}, b) \mid (A, B) \in Y_L \land b \in B\} \cup \{(i_L, t) \mid t \in T_I\} \cup \{(t, o_L) \mid t \in T_O\}, \text{ and }$
- 8. $\alpha(L) = (P_L, T_L, F_L)$.

Step 8: resultant Petri-net that describes the behavior of input event log L.

Table 6.1 Footprint of L_1 : $a\#_{L_1}a$, $a\to_{L_1}b$, $a\to_{L_1}c$, etc.

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

-					_
	а	b	С	d	e
а	$\#_{L_1}$	\rightarrow_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$	\rightarrow_{L_1}
b	\leftarrow_{L_1}	$\#_{L_1}$	$\ _{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
c	\leftarrow_{L_1}	$\ _{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
d	$\#_{L_1}$	\leftarrow_{L_1}	\leftarrow_{L_1}	$\#_{L_1}$	\leftarrow_{L_1}
e	\leftarrow_{L_1}	$\#_{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$

$$T_L = \{a, b, c, d, e\}$$

 $T_I = \{a\}$
 $T_O = \{d\}$

$$P_{L} = \{p_{(\{a\}, \{b,e\})}, p_{(\{a\}, \{c,e\})}, p_{(\{b,e\}, \{d\})}, p_{(\{c,e\}, \{d\})}), i_{L}, o_{L}\}$$

$$\begin{split} F_L &= \{(a,p_{(\{a\},\;\{b,e\})}),\; (p_{(\{a\},\;\{b,e\})},b),\; (p_{(\{a\},\;\{b,e\})},e),\\ &\quad (a,p_{(\{a\},\;\{c,e\})}),\; (p_{(\{a\},\;\{c,e\})},c),\; (p_{(\{a\},\;\{c,e\})},e),\\ &\quad (b,p_{(\{b,e\},\;\{d\})}),\; (e,p_{(\{b,e\},\;\{d\})}),\; (p_{(\{b,e\},\;\{d\})},d),\\ &\quad (c,p_{(\{c,e\},\;\{d\})}),\; (e,p_{(\{c,e\},\;\{d\})}),\; (p_{(\{c,e\},\;\{d\})},d),\\ &\quad (i_L,a),\\ &\quad (d,o_L)\} \end{split}$$

Table 6.1 Footprint of L_1 : $a\#_{L_1}a$, $a\to_{L_1}b$, $a\to_{L_1}c$, etc.

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

6.5	I	, ,	, , ,	, , ,	-
	а	b	С	d	e
а	$\#_{L_1}$	\rightarrow_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$	\rightarrow_{L_1}
b	\leftarrow_{L_1}	$\#_{L_1}$	$\ _{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
\boldsymbol{c}	\leftarrow_{L_1}	$\ _{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
d	$\#_{L_1}$	\leftarrow_{L_1}	\leftarrow_{L_1}	$\#_{L_1}$	\leftarrow_{L_1}
e	\leftarrow_{L_1}	$\#_{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$

 $T_L = \{a, b, c, d, e\}$ $T_I = \{a\}$ $T_O = \{d\}$

start

- 1. $T_L = \{t \in T \mid \exists_{\sigma \in L} \ t \in \sigma\},\$
- 2. $T_I = \{t \in T \mid \exists_{\sigma \in L} \ t = first(\sigma)\},\$
- 3. $T_O = \{t \in T \mid \exists_{\sigma \in I}, t = last(\sigma)\},\$
- 4. $X_L = \{(A, B) \mid A \subseteq T_L \land A \neq \emptyset \land B \subseteq T_L \land B \neq \emptyset \land \forall_{a \in A} \forall_{b \in B} \ a \rightarrow_L b \land \forall_{a_1, a_2 \in A} \ a_1 \#_L a_2 \land \forall_{b_1, b_2 \in B} \ b_1 \#_L b_2\},$
- 5. $Y_L = \{(A, B) \in X_L \mid \forall_{(A', B') \in X_L} A \subseteq A' \land B \subseteq B' \Longrightarrow (A, B) = (A', B')\},\$
- 6. $P_L = \{p_{(A,B)} \mid (A,B) \in Y_L\} \cup \{i_L,o_L\},\$
- 7. $F_L = \{(a, p_{(A,B)}) \mid (A, B) \in Y_L \land a \in A\} \cup \{(p_{(A,B)}, b) \mid (A, B) \in Y_L \land b \in B\} \cup \{(i_L, t) \mid t \in T_I\} \cup \{(t, o_L) \mid t \in T_O\},$ and
- 8. $\alpha(L) = (P_L, T_L, F_L)$.

$$\begin{split} X_{L_1} &= \left\{ \left(\{a\}, \{b\} \right), \left(\{a\}, \{c\} \right), \left(\{a\}, \{e\} \right), \left(\{a\}, \{b, e\} \right), \left(\{a\}, \{c, e\} \right), \\ & \left(\{b\}, \{d\} \right), \left(\{c\}, \{d\} \right), \left(\{e\}, \{d\} \right), \left(\{b, e\}, \{d\} \right), \left(\{c, e\}, \{d\} \right) \right\} \end{split} \right. \end{split}$$

$$Y_{L_1} = \{ (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

$$P_L = \{p_{(\{a\}, \{b,e\})}, p_{(\{a\}, \{c,e\})}, p_{(\{b,e\}, \{d\})}, p_{(\{c,e\}, \{d\})}), i_L, o_L\}$$

$$\begin{split} F_L &= \{(a,p_{(\{a\},\;\{b,e\})}),\; (p_{(\{a\},\;\{b,e\})},b),\; (p_{(\{a\},\;\{b,e\})},e),\\ &\quad (a,p_{(\{a\},\;\{c,e\})}),\; (p_{(\{a\},\;\{c,e\})},c),\; (p_{(\{a\},\;\{c,e\})},e),\\ &\quad (b,p_{(\{b,e\},\;\{d\})}),\; (e,p_{(\{b,e\},\;\{d\})}),\; (p_{(\{b,e\},\;\{d\})},d),\\ &\quad (c,p_{(\{c,e\},\;\{d\})}),\; (e,p_{(\{c,e\},\;\{d\})}),\; (p_{(\{c,e\},\;\{d\})},d),\\ &\quad (i_L,a),\\ &\quad (d,o_L)\} \end{split}$$

Reading Material

Chapter 6: Aalst

Process Mining | Spring 2022