```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

athletes = pd.read_csv('/content/athlete_events.csv')

regions = pd.read_csv('/content/noc_regions.csv')

athletes.head()
```

	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Sŧ
0	1	A Dijiang	М	24.0	180.0	80.0	China	CHN	1992 Summer	1992	Su
1	2	A Lamusi	М	23.0	170.0	60.0	China	CHN	2012 Summer	2012	Su
2	3	Gunnar Nielsen Aaby	М	24.0	NaN	NaN	Denmark	DEN	1920 Summer	1920	Su
3	4	Edgar Lindenau Aabye	М	34.0	NaN	NaN	Denmark/Sweden	DEN	1900 Summer	1900	Su
4	5	Christine Jacoba Aaftink	F	21.0	185.0	82.0	Netherlands	NED	1988 Winter	1988	٧
7	‡										
4											•

regions.head()

	NOC	region	notes	1
0	AFG	Afghanistan	NaN	
1	АНО	Curacao	Netherlands Antilles	
2	ALB	Albania	NaN	
3	ALG	Algeria	NaN	
4	AND	Andorra	NaN	

athletes_df = athletes.merge(regions, how = 'left', on = 'NOC')
athletes_df.head()

		ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Sŧ
	0	1	A Dijiang	М	24.0	180.0	80.0	China	CHN	1992 Summer	1992	Su
athle:	1	2	A Lamusi	М	23.0	170.0	60.0	China	CHN	2012 Summer	2012	Su
	2 tes	3 df.	Gunnar Nielsen shape	М	24.0	NaN	NaN	Denmark	DEN	1920 Summer	1920	Su
	(89	- 283,	17)									

Aabye

athletes_df.rename(columns={'region': 'Region', 'notes': 'Notes'}, inplace=True) athletes_df.head()

	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Sŧ
0	1	A Dijiang	М	24.0	180.0	80.0	China	CHN	1992 Summer	1992	Su
1	2	A Lamusi	М	23.0	170.0	60.0	China	CHN	2012 Summer	2012	Su
2	3	Gunnar Nielsen Aaby	М	24.0	NaN	NaN	Denmark	DEN	1920 Summer	1920	Su
3	4	Edgar Lindenau Aabye	М	34.0	NaN	NaN	Denmark/Sweden	DEN	1900 Summer	1900	Su
4	5	Christine Jacoba Aaftink	F	21.0	185.0	82.0	Netherlands	NED	1988 Winter	1988	٧
7											
4							_				•

athletes_df.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 89283 entries, 0 to 89282 Data columns (total 17 columns): # Column Non-Null Count Dtype -----ID 89283 non-null int64 0 Name 89283 non-null object 1 Sex 89283 non-null object 3 85938 non-null float64 Age Height 68625 non-null float64 Weight 67567 non-null float64 5 6 Team 89283 non-null object 89283 non-null object NOC 7 Games 89283 non-null object 8 Year 89283 non-null int64 9 10 Season 89283 non-null object 11 City 89283 non-null object 12 Sport 89283 non-null object 13 Event 89283 non-null object 14 Medal 12600 non-null object 15 Region 89211 non-null object 16 Notes 1564 non-null object dtypes: float64(3), int64(2), object(12) memory usage: 12.3+ MB

athletes_df.describe()

```
1
                 ID
                              Age
                                         Height
                                                       Weight
                                                                       Year
count 89283.000000
                    85938.000000
                                   68625.000000 67567.000000 89283.000000
                        25.625672
                                     175.559301
                                                    70.935412
                                                                1977.741832
mean
       22910.426498
       12979.158701
                         6.453792
                                      10.392730
                                                    14.169830
                                                                  30.118858
 std
min
           1.000000
                        11.000000
                                     127.000000
                                                    25.000000
                                                                1896.000000
25%
                        21.000000
                                     168.000000
                                                    61.000000
       11749.000000
                                                                1960.000000
50%
       23002.000000
                        25.000000
                                     175.000000
                                                    70.000000
                                                                1984.000000
75%
       34252.500000
                        28.000000
                                     183.000000
                                                    79.000000
                                                                2002.000000
       45248.000000
                        88.000000
                                     223.000000
                                                   214.000000
                                                                2016.000000
max
```

```
nan_values = athletes_df.isna()
nan_columns = nan_values.any()
nan_columns
```

ID False Name False Sex False Age True Height True Weight True Team False NOC False False Games Year False False Season City False Sport False Event False Medal True Region True True Notes dtype: bool

athletes_df.isnull().sum()

ID 0 Name 0 0 Sex Age 3345 Height 20658 Weight 21716 Team 0 NOC 0 Games 0 Year 0 Season City 0 Sport 0 Event 0 Medal 76683 Region 72 Notes 87719 dtype: int64

athletes_df.query('Team =="India"').head(5)

		ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	
	505	281	S. Abdul Hamid	М	NaN	NaN	NaN	India	IND	1928 Summer	1928	Summer	ı
	506	281	S. Abdul Hamid	M	NaN	NaN	NaN	India	IND	1928 Summer	1928	Summer	A
	895	512	Shiny Kurisingal Abraham- Wilson	F	19.0	167.0	53.0	India	IND	1984 Summer	1984	Summer	
	896	512	Shiny Kurisingal Abraham-	F	19.0	167.0	53.0	India	IND	1984 Summer	1984	Summer	
le†	tes_d	f.que	ry('Team =	="Jap	pan"')	.head(5))						

	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	
625	362	Isao Ko Abe	М	24.0	177.0	75.0	Japan	JPN	1936 Summer	1936	Summer	
629	363	Kazumi Abe	М	28.0	178.0	67.0	Japan	JPN	1976 Winter	1976	Winter	lnı
630	364	Kazuo Abe	М	25.0	166.0	69.0	Japan	JPN	1960 Summer	1960	Summer	
631	365	Kinya Abe	М	23.0	168.0	68.0	Japan	JPN	1992 Summer	1992	Summer	Ва
632	366	Kiyoshi Abe	М	25.0	167.0	62.0	Japan	JPN	1972 Summer	1972	Summer	

top_10_countries = athletes_df.Team.value_counts().sort_values(ascending = False).head(10)
top_10_countries

```
United States
                6305
               5695
France
Italy
               4910
Great Britain
               4094
Canada
               3295
Australia
               2820
Germany
               2797
Sweden
               2634
Spain
               2425
Switzerland
               2215
Name: Team, dtype: int64
```

```
plt.figure(figsize=(12,6))
#plt.xticks(rotation = 20)
plt.title('overall participation by countries')
sns.barplot(x = top_10_countries.index, y = top_10_countries, palette = "Set2");
```



```
plt.figure(figsize = (12,6))
plt.title("age distribution of the athletes")
plt.xlabel("age")
plt.ylabel("number of participants")
plt.hist(athletes_df.Age, bins = np.arange(10,80,2), color = 'orange', edgecolor = 'orange');
```



```
plt.figure(figsize=(12,6))
plt.title('gender distribution')
plt.pie(gender_counts, labels = gender_counts.index, autopct = '%1.1f%%', startangle = 180, shadow = True)
```

gender distribution

athletes_df.Medal.value_counts()

Gold 4268 Bronze 4175 Silver 4157

Name: Medal, dtype: int64

female_participants = athletes_df[(athletes_df.Sex == 'F') & (athletes_df.Season == 'Summer')][['Sex', 'Year']]
female_participants = female_participants.groupby('Year').count().reset_index()
female_participants.head()


```
female_participants = athletes_df[(athletes_df.Sex == 'F') & (athletes_df.Season == 'Summer')][['Sex', 'Year']]
female_participants = female_participants.groupby('Year').count().reset_index()
female_participants.tail()
```

	Year	Sex	1
23	2000	1717	
24	2004	1649	
25	2008	1803	
26	2012	1882	
27	2016	1977	

```
womenolympics = athletes_df[(athletes_df.Sex == 'F')&(athletes_df.Season == 'Summer')]
sns.set(style = 'darkgrid')
plt.figure(figsize = (20,10))
sns.countplot(x = 'Year', data = womenolympics, palette = 'Spectral')
plt.title('women participation')
```

Text(0.5, 1.0, 'women participation')


```
part = womenolympics.groupby('Year')['Sex'].value_counts()
plt.figure(figsize= (20,10))
part.loc[:,'F'].plot()
plt.title('plot of female athletes over time')
```

Text(0.5, 1.0, 'plot of female athletes over time')

gM = athletes_df[(athletes_df.Medal == 'Gold')]
gM.head()

	ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Se
3	4	Edgar Lindenau Aabye	М	34.0	NaN	NaN	Denmark/Sweden	DEN	1900 Summer	1900	Sun
42	17	Paavo Johannes Aaltonen	М	28.0	175.0	64.0	Finland	FIN	1948 Summer	1948	Sun
44	17	Paavo Johannes Aaltonen	М	28.0	175.0	64.0	Finland	FIN	1948 Summer	1948	Sun
48	17	Paavo Johannes Aaltonen	М	28.0	175.0	64.0	Finland	FIN	1948 Summer	1948	Sun
60	20	Kjetil Andr Aamodt	М	20.0	176.0	85.0	Norway	NOR	1992 Winter	1992	W
<i>7</i> .											

```
gM = gM[np.isfinite(gM['Age'])]
gM['ID'][gM['Age']>60].count()
```

0

```
sporting_event = gM['Sport'][gM['Age'] > 60]
plt.figure(figsize=(150,50))
plt.tight_layout()
sns.countplot(data=gM, x='Sport', hue='Age', palette='Set2')
plt.title('gold medal for athletes over 60 year')
```

```
Text(0.5, 1.0, 'gold medal for athletes over 60 year')
```

```
gM.Region.value_counts().reset_index(name = 'Medal').head(5)
```

	index	Medal	1
0	USA	934	
1	Russia	389	
2	Germany	380	
3	Italy	265	
4	UK	249	

```
totalgM = gM.Region.value_counts().reset_index(name = 'Medal').head(6)
g = sns.catplot(x = "index", y = "Medal", data = totalgM, height = 5, kind = "bar", palette = "rocket" )
g.despine(left = True)
g.set_xlabels("top 5 countries")
g.set_ylabels("number of medals")
plt.title("gold medals per country")
```

Text(0.5, 1.0, 'gold medals per country')

gold medals per country


```
totalgM = gM.Region.value_counts().reset_index(name = 'Medal').tail(6)
g = sns.catplot(x = "index", y = "Medal", data = totalgM, height = 5, kind = "bar", palette = "rocket" )
g.despine(left = True)
g.set_xlabels("top 5 countries")
g.set_ylabels("number of medals")
plt.title("gold medals per country")
```

Text(0.5, 1.0, 'gold medals per country')

gold medals per country 1.0 0.8 0.6

```
max_year = athletes_df.Year.max()
print(max_year)
team_names = athletes_df[(athletes_df.Year == max_year ) & (athletes_df.Medal == 'Gold')].Team
team_names.value_counts().head(10)
```

2016 United States 60 Great Britain 21 Brazil 13 13 Australia Germany 12 Russia 12 China France 6 Jamaica 6 Italy 5

Name: Team, dtype: int64

```
team_counts = team_names.value_counts().head(20)

if not team_counts.empty:
    Team = team_counts.min()
    sns.barplot(x=team_counts.values, y=team_counts.index)
    plt.ylabel(None)
    plt.xlabel('country wise medals for the year 2016')
    plt.show()
else:
    print("No data available to generate the bar plot.")
```

```
United States
Great Britain
```

```
not_null_medals = athletes_df[(athletes_df['Height'].notnull()) & (athletes_df['Weight'].notnull())]
plt.figure(figsize = (12,10))
axis = sns.scatterplot(x = 'Height', y = 'Weight', data = not_null_medals, hue = 'Sex')
plt.title("height vs weight of olympic medalists")
```

Text(0.5, 1.0, 'height vs weight of olympic medalists')

✓ 6s completed at 12:29 PM