《微积分 1》(第一层次)期末试卷 2015.1.7

一、填空(本题满分 7×3=21 分)

1. 已知
$$\lim_{x\to 0} \frac{\int_0^{x^2} t \arctan(at)dt}{x^6} = 2$$
,则 $a =$ _____;

$$3. \int \frac{x \cos x}{\sin^3 x} dx = \underline{\qquad} ;$$

- 4. 设一平面过原点及M(6,-3,2)且与4x-y+2z=8垂直,则该平面的方程为______;
- 5. 已知三点 A(1,0,2), B(2,1,-1), C(0,2,1),则三角形ABC的面积 $S_{\Delta ABC}$ = ______;

6.
$$\lim_{x \to -\infty} (\sqrt{x^2 + 3x + 2} - \sqrt{x^2 - 7x + 5}) =$$
______;

- 7. 已知广义积分 $\int_{2}^{+\infty} \frac{dx}{x \ln^{k} x}$ 收敛,则 k 的最大取值范围为_____.
- 二、计算下列各题(本题满分 8×5=40 分)

1.
$$\Re \lim_{n\to\infty} \frac{1}{n} \sqrt[n]{n(n+1)(n+2)\cdots(2n-1)}$$
;

2. 设直线 L 的方程为: $\frac{x+1}{4} = \frac{y-2}{-1} = \frac{z-1}{5}$,平面 Π 的方程为: 3x+y+2z+20=0,求直线 L 与平面 Π 的夹角和交点 M ;

3. 设连续函数
$$f(x)$$
 满足 $f(x) = x + x^2 \int_0^1 f(x) dx + x^3 \int_0^2 f(x) dx$, 求 $f(x)$;

4. 计算积分
$$\int_0^1 \frac{xe^x}{(1+x)^2} dx$$
; 5. 求曲线 $y = x(1-x^2)$ 与 x 轴所围平面图形的面积;

7. 设
$$\vec{a}$$
, \vec{b} 为非零向量, $|\vec{b}|=1, <\vec{a}$, $\vec{b}>=\pi/3$,求 $\lim_{x\to 0} \frac{|\vec{a}+x\vec{b}|-|\vec{a}|}{x}$;

8. 计算积分
$$\int \frac{1}{\sqrt{1+e^x}} dx$$
.

三、(本题满分 15 分)讨论函数 $f(x) = \left(\frac{1+x}{1-x}\right)^4$ 的定义域,单调区间,极值,凹向与拐点,渐近线,并作出草图.

四、(本题满分 10 分)求曲线 $y = \ln x$ 的一条切线, 使得这条切线与原曲线以及直线

 $x = 1, x = e^2$ 所围成的图形面积最小.

五、(本题满分8分)设f(x)在区间 [0,1]上具有二阶的连续导数,并且f(0) = f(1) = 0,

当 $x \in [0,1]$ 时, $|f''(x)| \le M$. 证明: 当 $x \in [0,1]$ 时,有 $|f'(x)| \le M/2$.

六、(本题满分 6 分)设函数 f(x) 是 $[1,+\infty)$ 上的可微函数,并且满足 f(1)=1,

$$f'(x) = \frac{1}{x^2 + [f(x)]^2}$$
. 证明: $\lim_{x \to +\infty} f(x)$ 存在并且满足 $\lim_{x \to +\infty} f(x) \le 1 + \frac{\pi}{4}$.

《微积分 1》(第一层次)期末试卷 2016.1.5

- 一. 计算下列各题(本题满分 10 分×5=50 分)
 - 1. 求极限 $\lim_{x \to \infty} \left(\sin \frac{1}{x^2} + \cos \frac{1}{x^2} \right)^{3x^2}$.
 - 2. 计算积分 $\int x^2 (\ln x)^2 dx$.
 - 3. 计算极限 $\lim_{x\to 0} \frac{\int_{x^2}^x \frac{\sin xt}{t} dt}{x^2}$.
 - 4. 计算积分 $\int_0^1 \ln(x + \sqrt{x^2 + 1}) dx$.
 - 5. 求过原点且经过两平面 $\begin{cases} 2x-y+3z=8; \\ x+5y-z=2 \end{cases}$ 的交线的平面方程.
 - 6. 计算广义积分 $\int_0^{+\infty} \frac{\arctan x}{(1+x^2)^{3/2}} dx.$
 - 7. 计算极限 $\lim_{n\to\infty} \sin \frac{\pi}{n} \sum_{k=1}^{n} \frac{n}{n+k}$.
 - 8. 求心脏线 $r = a(1 + \cos \theta)$ 的全长 .

 - 10. 已知 $|\vec{a}|=4, |\vec{b}|=1, \langle \vec{a}, \vec{b} \rangle = \frac{\pi}{3}$. 求 $\vec{A}=2\vec{a}+\vec{b}, \vec{B}=-\vec{a}+3\vec{b}$ 的夹角 .
 - 二、设 $f(\ln x) = \frac{\ln(1+x)}{x}$,计算 $\int f(x)dx$. (10 分)
 - 三、(本题满分 10 分)已知当 $x \to 0$ 时, $e^x \frac{1+ax}{1+bx}$ 是关于 x 的 3 阶无穷小,求常数 a,b 之值.

第二页共六页

四、(本题满分 14 分) 讨论函数 $f(x) = \frac{x^3}{(x-1)^2}$ 的定义域,单调区间,极值,凹向与拐点,并作出草图.

五、(本题满分 10 分) 设 $S(x) = \int_0^x |\cos t| dt$,

- 1. 当n为正整数,且 $n\pi \le x \le (n+1)\pi$ 时证明不等式 $2n \le S(x) \le 2(n+1)$;
- 2. $\Re \lim_{x\to +\infty} \frac{S(x)}{x}$.

六、(本题满分 6 分)设函数 f(x) 在[0,1]上连续,在(0,1)内可导,并且存在 M>0 使

得|
$$f'(x)$$
| $\leq M$. 设 n 是正整数,证明: $\left| \sum_{k=0}^{n-1} \frac{f(k/n)}{n} - \int_0^1 f(x) dx \right| \leq \frac{M}{2n}$.

《微积分 1》(第一层次)期末试卷 2016.12.28

一、填空(每小题3分,共8题,计24分)

1.
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \frac{1}{\sqrt{n^2+3}} + \dots + \frac{1}{\sqrt{n^2+n}} \right) = \underline{\hspace{1cm}};$$

- 2. 设参数方程为 $\left\{ \begin{array}{l} x = te', \\ y = 2t + t^2; \end{array} \right.$ 则 $\left. \frac{dy}{dx} \right|_{t=0} =$ _____;
- 3. 函数 $f(x) = \sqrt[3]{x^2} (1-x)$ 的单调增加区间为_______;
- 5. 已知曲线 y = f(x) 与 $y = \int_0^{\arctan x} e^{-t^2} dt$ 在点 (0, 0) 处的切线相同,则 y = f(x) 在点
- (0, 0) 处的法线方程为____;

6. 设函数
$$f(x) = \frac{1}{e^{\frac{x+2}{x-3}} - 1}$$
,则 $x = 3$ 是 $f(x)$ 的_____间断点;

- 8. $\lim_{x\to 0} \frac{\tan x \sin x}{x^2(e^x 1)} = \underline{\hspace{1cm}}$
- 二、计算下列各题(每小题6分,共6题,计36分)

第三页共六页

3. 求过点
$$M(1, 2, -1)$$
 且与直线
$$\begin{cases} x = -t + 2 \\ y = 3t - 4$$
 垂直的平面方程.
$$z = t - 1$$

4. 计算
$$\int \frac{\ln x}{x\sqrt{1+\ln x}} \, dx$$
. 5. 计算 $\int_{1}^{+\infty} \frac{dx}{e^{x+1} + e^{3-x}}$.

6. 计算
$$\int_0^1 x^2 f(x) dx$$
, 其中 $f(x) = \int_1^x e^{-t^2} dt$.

三、(本题 10 分)设 f(x) 连续, $\varphi(x) = \int_0^1 f(xt)dt$,且 $\lim_{x\to 0} \frac{f(x)}{x} = A$ (A为常数),求 $\varphi'(x)$ 并讨论 $\varphi'(x)$ 在 x=0 处的连续性.

四、(本题 12 分)讨论函数 $y=x^2+\frac{1}{x}$ 的定义域,单调增减区间,极值,凹凸区间,拐点,渐近线,并作出函数的图像.

五、(本题 10 分)设函数 y = f(x) 具有二阶导数且 f''(x) < 0,直线 L_t 是曲线 y = f(x) 上任一点 (t, f(t)) 处的切线($t \in [0, 1]$).记直线 L_t 与曲线 y = f(x) 以及直线 x = 0,x = 1 所围成的图形的面积为 A(t).证明: A(t) 的最小值 $\min_{0 \le t \le 1} A(t) = f\left(\frac{1}{2}\right) - \int_0^1 f(x) dx$.

六、(本题非商学院的学生做,满分 8 分)设 f(x) 在 [0,1] 上连续且非负,(1) 试证存在 $x_0 \in (0,1)$,使得 $[0,x_0]$ 上以 $f(x_0)$ 为高的矩形面积,等于 $[x_0,1]$ 上以 y=f(x) 为曲边的曲边梯形面积;(2) 又设 f(x) 在 (0,1) 内可导,且 $f'(x)>-\frac{2f(x)}{x}$,证明 (1) 中的 x_0 是唯一的.

七、(本题商学院的学生做,满分 8 分)设函数 f(x) 在闭区间 [0,1] 上可导,且 f(0)=0, f(1)=1,试证: (1)存在 $\xi\in(0,1)$,使 $f(\xi)=1-\xi$; (2)存在两个不同的点 $\eta_1,\eta_2\in(0,1)$,使 $f'(\eta_1)\cdot f'(\eta_2)=1$.

参考答案:

14 级: 一、1. 6; 2.
$$e^{-1} - 1$$
; 3. $-\frac{1}{2}(x\csc^2 x + \cot x) + C$; 4. $2x + 2y - 3z = 0$; 5. $\sqrt{50}/2$; 6. -5 ; 7. $(1, +\infty)$

$$\equiv$$
, 1. 4/e; 2. $\pi/3$, $M(-5,3,-4)$; 3. $f(x) = x + \frac{3}{8}x^2 - x^3$; 4. $\frac{e}{2} - 1$; 5. $\frac{1}{2}$;

第四页共六页

6.
$$\frac{n!}{(1-x)^{n+1}}$$
; 7. $\frac{1}{2}$; 8. $\ln \left| \frac{\sqrt{1+e^x}-1}{\sqrt{1+e^x}+1} \right| + C$. Ξ , #\lefth{6}.

四、切线方程为:
$$y = \frac{2}{e^2 + 1}x + \ln \frac{e^2 + 1}{2} - 1$$
.

五、设 $x_0 \in [0,1]$,由泰勒公式有: $f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(\varsigma)}{2}(x - x_0)^2$,其中 ς 在x与 x_0 之间.将x = 0, x = 1分别代人上式,得

$$0 = f(0) = f(x_0) - f'(x_0)x_0 + \frac{f''(\xi_1)}{2}x_0^2, \ \xi_1 \in (0, x_0) \quad (1)$$

$$0 = f(1) = f(x_0) + f'(x_0)(1 - x_0) + \frac{f''(\xi_2)}{2}(1 - x_0)^2, \ \xi_2 \in (x_0, 1) \quad (2)$$

$$(2) - (1) \quad \text{$\begin{subarray}{l} \begin{subarray}{l} \begin{subarray}{l}$$

六、因为 $f'(x) = \frac{1}{x^2 + [f(x)]^2} > 0$, 所以 f(x) 在 $[1, +\infty)$ 上为严格单调增加函数,当 x > 1 时,

$$f(x) > f(1) = 1$$
, 所以 $f'(x) = \frac{1}{x^2 + [f(x)]^2} < \frac{1}{x^2 + 1}$, 而 $f(x) = f(1) + \int_1^x f'(t)dt$

 $<1+\int_{1}^{x}\frac{1}{1+t^{2}}dt<1+\int_{1}^{+\infty}\frac{1}{1+t^{2}}dt=1+\frac{\pi}{4}$. 故 f(x) 在 $[1,+\infty)$ 上为单调增加有界函数,所

以 $\lim_{x \to +\infty} f(x)$ 存在并且满足 $\lim_{x \to +\infty} f(x) \le 1 + \frac{\pi}{4}$

15级:

$$-1.e^{3}; 2.\frac{1}{3}x^{3} \ln^{2} x - \frac{2}{9}x^{3} \ln x + \frac{2}{27}x^{3} + C; 3.1; 4. \ln(1+\sqrt{2}) - \sqrt{2} + 1;$$

$$5.2x + 21y - 7z = 0; 6.\frac{\pi}{2} - 1; 7.\pi \ln 2; 8.8a; 9.(-1)^{n} \frac{n!}{6} (\frac{1}{(x-4)^{n+1}} \frac{1}{(x+2)^{n+1}});$$

10.
$$\arccos \frac{-19}{\sqrt{73\times13}}$$
. $\equiv x - (1+e^{-x})\ln(1+e^{x}) + C$; $\equiv a = 0.5, b = -0.5$

四、定义域 $x \neq 1$,单调增区间为($-\infty$,1),(3,+ ∞),减区间为(13),极小值f(3)=27/4; 凹区间为(0,1),(1,+ ∞),凸区间为($-\infty$,0),拐点(0.0),渐近线x=1,y=x+2. 图略

第五页共六页

$$\left| \sum_{k=0}^{n-1} \frac{f(k/n)}{n} - \int_{0}^{1} f(x) dx \right| = \left| \sum_{k=0}^{n-1} \left(\frac{f(k/n)}{n} - \int_{k/n}^{(k+1)/n} f(x) dx \right) \right|$$

$$\leq \sum_{k=0}^{n-1} \int_{k/n}^{(k+1)/n} |f(\frac{k}{n}) - f(x)| dx \leq \sum_{k=0}^{n-1} \int_{k/n}^{(k+1)/n} |f'(\xi_n)(x - \frac{k}{n})| dx$$

$$\leq M \sum_{k=0}^{n-1} \int_{k/n}^{(k+1)/n} (x - \frac{k}{n}) dx = \frac{M}{2n}.$$

16 级:

一、1.1; 2.2; 3. $(0,\frac{2}{5})$; 4.2; 5. y = -x; 6.第一类跳跃; $7.\pi/2$; 8.1/2.

$$\equiv$$
, 1. $\pi/6$; 2. $\pi/7$; 3. $x-3y-z+4=0$; 4. $x-3y-z+4=0$

5.
$$\frac{2}{3}(1+\ln x)^{\frac{3}{2}}-2\sqrt{1+\ln x}+C$$
; 6. $\pi/(4e^2)$; 7. $\frac{1}{3e}-\frac{1}{6}$. Ξ , Ξ

四、定义域为
$$(-\infty,0)$$
 $\cup (0,+\infty)$.令 $y'=0$,得 $x=\frac{1}{\sqrt[3]{2}}$;令 $y''=0$,得 $x=-1$,

x	(-∞,-1)	-1	(-1,0)	0	$\left(0,\frac{1}{\sqrt[3]{2}}\right)$	$\frac{1}{\sqrt[3]{2}}$	$\left(\frac{1}{\sqrt[3]{2}},+\infty\right)$
V'	_	_	_		_	0	+
,,,,	+	0	_		+	+	+
У	7 7 7 7 T	拐点	凸、减		凹、减	极小	凹、增
У	凹、减	1万 点	<u></u> П, 1987				

有一条垂直渐近线 x=0, 图形无水平、斜渐近线.图形上的点 (-1,0), $\left(\frac{1}{\sqrt[3]{2}},\frac{3}{2}\sqrt[3]{2}\right)$. 图略.

五、略; 六、略; 七、(1) 令
$$F(x) = f(x) - 1 + x$$

(2) 提示: 在 $(0, \xi)$, $(\xi, 1)$ 使用拉格朗日公式.