Modéliser le comportement des systèmes mécaniques dans le

Chapitre 1 – Introduction à la dynamique du solide indéformable

Application 1

Application – Pompe à plateau

C. Gamelon & P. Dubois

Savoirs et compétences :

- Res1.C2: principe fondamental de la dynamique;
- Res1.C1.SF1: proposer une démarche permettant la détermination de la loi de mouvement.

Considérons le mécanisme de pompe représenté sur la figure ci-dessous.

L'arbre excentrique (1), animé d'un mouvement de ro-

tation autour de l'axe $(O, \overrightarrow{x_0})$ horizontal, agit sur le piston (2) en liaison pivot glissant d'axe $(O, \overrightarrow{z_0})$ avec le bâti (0). Pendant la phase de descente du piston (2), le contact ponctuel en I avec l'excentrique est maintenu par un ressort (r).

Paramétrage

Le repère $(O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ lié au bâti (0) est supposé galiléen. Le repère $(O; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ est lié à l'arbre excentrique (1). On a de plus:

- $(\overrightarrow{y_0}, \overrightarrow{y_1}) = (\overrightarrow{z_0}, \overrightarrow{z_1}) = \theta$;
- $\overrightarrow{OB} = e \overrightarrow{z_1}$;
- $\overrightarrow{BI} = R \overrightarrow{z_0}$; $\overrightarrow{OA} = z \overrightarrow{z_0}$.

1

Les liaisons pivot entre (0) et (1), ponctuelle entre (1) et (2), et pivot glissant entre (0) et (2) sont supposées sans frottement. Le solide (1) possède un moment d'inertie I_1 par rapport à l'axe $(O, \overrightarrow{x_0})$. Le piston (2) possède une masse m_2 . Le ressort (r), de raideur k, est toujours comprimé. Pour $\theta = \pm \frac{\pi}{2}$, l'effort de compression est égal à $\overrightarrow{F_0} = -\overrightarrow{F_0} \overrightarrow{z_0}$. Un moteur exerce un couple connu de moment $\overrightarrow{C_m} = C_m \overrightarrow{x_0}$ sur l'arbre (1). Le fluide exerce sur le piston une action connue, représentée par un glisseur d'axe $(O, \overrightarrow{z_0})$ et de résultante $\overrightarrow{F_h} = -F_h \overrightarrow{z_0}$.

Question 1 En utilisant une fermeture géométrique ou la méthode de votre choix, déterminer la exprimer z en fonction de θ et de constantes du problème. Déterminer alors $V(A \in 2/0)$ et $\Gamma(A \in 2/0)$.

Question 2 Proposer une méthode permettant de déterminer l'équation différentielle du mouvement relative au paramètre θ en utilisant le PFD.

Question 3 Mettre en œuvre la méthode proposée précédemment.

Question 4 En considérant un frottement sec au niveau de la liaison ponctuelle entre (1) et (2), déterminer l'équation différentielle du mouvement.

Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Chapitre 1 – Introduction à la dynamique du solide indéformable

Industrielles de

l'Ingénieur

Sciences

Application 1 - Corrigé

Application – Pompe à plateau

C. Gamelon & P. Dubois

Savoirs et compétences :

- Res1.C2: principe fondamental de la dynamique;
- Res1.C1.SF1: proposer une démarche permettant la détermination de la

Fermeture géométrique.

On a: $\overrightarrow{OB} + \overrightarrow{BI} + \overrightarrow{IA} + \overrightarrow{AO} = \overrightarrow{0}$.

En projection sur $\overrightarrow{z_0}$: $e\cos\theta + R = z$. Par dérivation successive, on $a: -e\dot{\theta}\sin\theta = \dot{z}$ et $-e\ddot{\theta}\sin\theta - e\dot{\theta}^2\cos\theta = \ddot{z}$. On isole le solide (1).

On réalise le bilan des actions mécaniques.

- Liaison pivot : $\{\mathcal{T}(0 \to 1)\} = \left\{ \begin{array}{c} X_{01}\overrightarrow{x_0} + Y_{01}\overrightarrow{y_0} + Z_{01}\overrightarrow{z_0} \\ M_{01}\overrightarrow{y_0} + N_{01}\overrightarrow{z_0} \end{array} \right\}_O = \left\{ \begin{array}{c} Y_{01}\overrightarrow{y_0} + Z_{01}\overrightarrow{z_0} \\ \overrightarrow{0} \end{array} \right\}_O$
- Liaison ponctuelle : $\{\mathcal{T}(2 \to 1)\} = \left\{\begin{array}{c} \frac{Y_{21} \overrightarrow{y_0} + Z_{21} \overrightarrow{z_0}}{0} \\ \end{array}\right\}$. On a $Z_{21} < 0$, $Y_{21} > 0$ et à la limite du glissement,

 $\underbrace{Y_{21} = -fZ_{21}}_{\mathcal{M}(O,2 \to 1)} = \underbrace{\mathcal{M}(I,2 \to 1)}_{\mathcal{H}(I,2 \to 1)} + \overrightarrow{OI} \wedge \overrightarrow{R(2 \to 1)} = \left(e \overrightarrow{z_1} + R \overrightarrow{z_0}\right) \wedge \left(Y_{21} \overrightarrow{y_0} + Z_{21} \overrightarrow{z_0}\right) = -e Y_{21} \cos\theta \overrightarrow{x_0} - e Z_{21} \sin\theta \overrightarrow{x_0} - e Z_{21} \cos\theta \overrightarrow{x_$ $RY_{21}\overrightarrow{x_0} = -((e\cos\theta + R)Y_{21} + eZ_{21}\sin\theta)\overrightarrow{x_0}.$

• Couple moteur : $\{\mathcal{T}(\text{Moteur} \to 1)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C \longrightarrow \overrightarrow{x_0} \end{array}\right\}$.

Calcul de $\overrightarrow{\delta}(O, 1/0) \cdot \overrightarrow{x_0}$.

O est un point fixe et I_1 moment d'inertie par rapport à $(O, \overrightarrow{x_0})$ on a donc : $\overrightarrow{\delta(O, 1/0)} \cdot \overrightarrow{x_0} = \begin{vmatrix} d\overrightarrow{\sigma(O, 1/0)} \\ dt \end{vmatrix} \overrightarrow{x_0} = \begin{vmatrix} d\overrightarrow{\sigma(O, 1/0)} \\ dt \end{vmatrix}$

$$\left[\frac{\overrightarrow{\mathrm{d}\sigma(O,1/0)}\cdot\overrightarrow{x_0}}{\mathrm{d}t}\right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d}I_O(1)\overrightarrow{\Omega(1/0)}\cdot\overrightarrow{x_0}}{\mathrm{d}t}\right]_{\mathscr{R}_0} = \left[\frac{\mathrm{d}I_1\dot{\theta}\overrightarrow{x_0}\cdot\overrightarrow{x_0}}{\mathrm{d}t}\right]_{\mathscr{R}_0} = I_1\ddot{\theta}.$$

Application du théorème du moment dynamique en projection sur $\overline{x_0}$

$$C_m - ((e\cos\theta + R)Y_{21} + eZ_{21}\sin\theta) = I_1\ddot{\theta}.$$

On isole le solide (2).

On réalise le bilan des actions mécaniques

- Liaison pivot glissant : $\{\mathcal{T}(0 \to 2)\} = \left\{ \begin{array}{c} Y_{02} \overrightarrow{y_0} \\ L_{02} \overrightarrow{x_0} \end{array} \right\}_{0}$
- Liaison ponctuelle: $\{\mathcal{T}(1 \to 2)\} = -\{\mathcal{T}(2 \to 1)\} = \left\{\begin{array}{c} -Y_{21}\overrightarrow{y_0} Z_{21}\overrightarrow{z_0} \\ \overrightarrow{0} \end{array}\right\}$.
- Ressort: $\{\mathcal{T}(\text{Ressort} \to 2)\} = \left\{\begin{array}{c} -F_0 kz\overrightarrow{z_0} \\ \overrightarrow{0} \end{array}\right\}$.
- Pesanteur : $\{\mathcal{T}(\text{Pesanteur} \to 2)\} = \left\{\begin{array}{c} -m_2 g \overrightarrow{z_0} \\ \overrightarrow{0} \end{array}\right\}$.
- Fluide: $\{\mathcal{T}(\text{Fluide} \to 2)\} = \left\{\begin{array}{c} -F_h \overline{z_0} \\ \hline 0 \end{array}\right\}$.

Calcul de $\overrightarrow{R_d(2/0)} \cdot \overrightarrow{z_0}$.

$$\overrightarrow{R_d(2/0)} \cdot \overrightarrow{z_0} = m_2 \ddot{z}$$

Application du théorème de la résultante dynamique en projection sur $\overrightarrow{z_0}$.

$$-F_h - Z_{21} - F_0 - kz - m_2 g = m_2 \ddot{z}.$$

Bilan:

$$C_m - ((e\cos\theta + R)Y_{21} + e(-F_h - F_0 - kz - m_2g - m_2\ddot{z})\sin\theta) = I_1\ddot{\theta}.$$

On a alors:

$$C_m - \left((e\cos\theta + R) Y_{21} - e\left(F_h + F_0 + k(e\cos\theta + R) + m_2 g - e m_2 \left(\ddot{\theta}\sin\theta + \dot{\theta}^2\cos\theta \right) \right) \sin\theta \right) = I_1 \ddot{\theta}.$$

Bilan sans frottement:

$$C_m + e\left(F_h + F_0 + k\left(e\cos\theta + R\right) + m_2g - e\,m_2\sin\theta\left(\ddot{\theta}\sin\theta + \dot{\theta}^2\cos\theta\right)\right) = I_1\ddot{\theta}.$$