Introducción a los algoritmos - 1er cuatrimestre 2018 Axiomas y Teoremas del Cálculo de Predicados

Notación

N1 Rango True de \forall :

$$\langle \forall x :: t.x \rangle \equiv \langle \forall x : True : t.x \rangle$$

N2 Anidado de \forall :

$$\langle \forall x, y : r.x.y : t.x.y \rangle \equiv \langle \forall x :: \langle \forall y : r.x.y : t.x.y \rangle \rangle$$

N3 Rango True de \exists :

$$\langle \exists x :: t.x \rangle \equiv \langle \exists x : True : t.x \rangle$$

N4 Anidado de \exists :

$$\langle \exists x, y : r.x.y : t.x.y \rangle \equiv \langle \exists x :: \langle \exists y : r.x.y : t.x.y \rangle \rangle$$

Axiomas

A1 Intercambio entre rango y término de \forall :

$$\langle \forall x : r.x : t.x \rangle \equiv \langle \forall x :: r.x \Rightarrow t.x \rangle$$

A2 Regla de término de \forall :

$$\langle \forall x :: t.x \rangle \land \langle \forall x :: s.x \rangle \equiv \langle \forall x :: t.x \land s.x \rangle$$

A3 Distributividad de \vee con \forall :

$$Z \lor \langle \forall x :: t.x \rangle \equiv \langle \forall x :: Z \lor t.x \rangle$$

 $si \ x \ no \ ocurre \ libre \ en \ Z$

A4 Rango unitario de \forall :

$$\langle \forall x : x = A : t.x \rangle \equiv t.A$$

donde A representa una constante del universo

A5 Definición de \exists :

$$\langle \exists x : r.x : t.x \rangle \equiv \neg \langle \forall x : r.x : \neg t.x \rangle$$

A6 Intercambio de cuantificadores del \forall :

$$\langle \forall x :: \langle \forall y :: t.x.y \rangle \rangle \equiv \langle \forall y :: \langle \forall x :: t.x.y \rangle \rangle$$

Teoremas Básicos del \forall

T1 Partición de rango de \forall :

$$\langle \forall x : r.x \lor s.x : t.x \rangle \equiv \langle \forall x : r.x : t.x \rangle \land \langle \forall x : s.x : t.x \rangle$$

T2 Instanciación:

$$\langle \forall x :: t.x \rangle \Rightarrow t.A$$

$$\langle \forall x :: t.x \rangle \equiv \langle \forall x :: t.x \rangle \wedge t.A$$

donde A representa una constante del universo

T3 Cambio de variable de \forall :

$$\langle \forall x : r.x : t.x \rangle \equiv \langle \forall y : r.y : t.y \rangle$$

si x no ocurre libre en t.y ni y en t.x

T4 Regla del término constante de \forall :

$$\langle \forall x :: C \rangle \equiv C$$

 $si \ x \ no \ ocurre \ libre \ en \ C$

T5 Rango Vacío de ∀:

$$\langle \forall x : False : t.x \rangle \equiv True$$

Teoremas Básicos del ∃

T6 Intercambio entre rango y término de ∃:

$$\langle \exists x : r.x : t.x \rangle \equiv \langle \exists x : : r.x \wedge t.x \rangle$$

T7 Regla del término de \exists :

$$\langle \exists x :: t.x \rangle \lor \langle \exists x :: s.x \rangle \equiv \langle \exists x :: t.x \lor s.x \rangle$$

T8 Distributividad de \land con \exists :

$$Z \wedge \langle \exists x :: t.x \rangle \equiv \langle \exists x :: Z \wedge t.x \rangle$$

si x no ocurre libre en Z

T9 Rango unitario de \exists :

$$\langle \exists x : x = X : t.x \rangle \equiv t.X$$

donde A representa una constante del universo

T10 Partición de rango de \exists :

$$\langle \exists x : r.x \lor s.x : t.x \rangle \equiv \langle \exists x : r.x : t.x \rangle \lor \langle \exists x : s.x : t.x \rangle$$

T11 Testigo:

$$t.A \Rightarrow \langle \exists x :: t.x \rangle$$

$$\langle \exists x :: t.x \rangle \equiv t.A \lor \langle \exists x :: t.x \rangle$$

donde A representa una constante del universo

T12 Cambio de variable de \exists :

$$\langle \exists x : r.x : t.x \rangle \equiv \langle \exists y : r.y : t.y \rangle$$

si x no ocurre libre en t.y ni y en t.x

T13 Regla del término constante de \exists :

$$\langle \exists x :: C \rangle \equiv C$$

si x no ocurre libre en C

T14 Rango Vacío de ∃:

$$\langle \exists x : False : t.x \rangle \equiv False$$

T15 Intercambio de cuantificadores del ∃:

$$\langle \exists x :: \langle \exists y :: t.x.y \rangle \rangle \equiv \langle \exists y :: \langle \exists x :: t.x.y \rangle \rangle$$