

- A hash function maps bit strings of arbitrary finite length to bit strings of fixed length (*n* bits).
- Many-to-one mapping \rightarrow collisions are unavoidable.
- However, finding collisions are difficult → the hash value of a message can serve as a compact representative image of the message (similar to fingerprints).

Alice

 $\begin{aligned} \mathbf{M} \\ \mathbf{E}_k(\mathbf{M}) &= \mathbf{C} \\ \mathbf{h1}(\mathbf{M}) \end{aligned}$

Bob

C $D_k(C)=M$ h1(M)=h2(M)?

Desirable properties of hash functions

- ease of computation
 - given an input x, the hash value h(x) of x is easy to compute;
- weak collision resistance (2nd preimage resistance)
 - given an input x, it is computationally infeasible to find a second input x' such that h(x') = h(x);
- strong collision resistance (collision resistance)
 - it is computationally infeasible to find any two distinct inputs x and x' such that h(x) = h(x');
- **one-way property** (preimage resistance)
 - given a hash value y (for which no preimage is known), it is computationally infeasible to find any input x s.t. h(x) = y

- Given a set of N elements, from which we draw k elements randomly (with replacement). What is the probability of encountering at least one repeating element?
- first, compute the probability of no repetition:
 - the first element x_1 can be anything
 - when choosing the second element x_2 , the probability of $x_2^{1\neq} x_1$ is 1-1/N
 - when choosing x_3 , the probability of $x_3^1 x_2$ and $x_3^1 x_1$ is 1-2/N
 - •

- when choosing the k-th element, the probability of no repetition is 1-(k-1)/N
- the probability of no repetition is (1 1/N)(1 2/N)...(1 (k-1)/N)
- when x is small, $(1-x) \approx e^{-x}$
- $(1 1/N)(1 2/N)...(1 (k-1)/N) \approx e^{-1/N}e^{-2/N}...e^{-(k-1)/N} = e^{-k(k-1)/2N}$
- the probability of at least one repetition after k drawing is $(1-e^{-k(k-1)/2N})$

- How many drawings do you need, if you want the probability of at least one repetition to be ε ?
- solve the following for k:

$$\varepsilon = 1 - e^{-k(k-1)/2N} \rightarrow k(k-1) = 2N \ln(1/(1-\varepsilon)) \rightarrow$$

$$k \approx \text{sqrt}(2N \ln(1/(1-\varepsilon)))$$

The Birthday Paradox (cont'd)

examples:

$$\varepsilon = 0.50 \rightarrow k \approx 1.177 \text{ sqrt(N)}$$

 $\varepsilon = 0.75 \rightarrow k \approx 1.665 \text{ sqrt(N)}$
 $\varepsilon = 0.90 \rightarrow k \approx 2.146 \text{ sqrt(N)}$

- origin of the name "Birthday Paradox":
 - elements are dates in a year (N = 365): among 1.177 sqrt(365) \approx 23 randomly selected people, there will be at least two that have the same birthday with probability $\frac{1}{2}$

The following table shows the probability for some other values of *n* (This table ignores the existence of leap years):

n	p(n)
10	11.7%
20	41.1%
23	50.7%
30	70.6%
50	97.0%
57	99.0%
100	99.99997%
200	99.9999999999999999998%
300	(100 - (6×10 ⁻⁸⁰))%
350	(100 - (3×10 ⁻¹²⁹))%
366	100%*

Iterated hash functions

- input is divided into fixed length blocks $x_1, x_2, ..., x_L$
- last block is padded if necessary
 - Merkle-Damgard strengthening: padding contains the length of the message
- each input block is processed according to the following scheme; f is called the compression function
 - can be based on a block cipher, or
 - can be a dedicated compression function

Iterated hash functions

Authentication via hash function

