SystemC IDEA

Lucas Avelino - 13/0013072 Lucas Nascimento - 14/0151010 1.

IDEA

IDEA (International Data Encryption Algorithm) é um algoritmo com *chave secreta* de 128 bits e tanto o *texto legível* (entrada) quanto o *texto ilegível* (saída) de 64 bits.

Estrutura 4

Possui um número fixo de rounds de uma mesma função que utiliza sub-chaves distintas;

O mesmo algoritmo serve para *criptografar* e *decriptografar*, alterando apenas a forma de geração das sub-chaves.

É conhecido publicamente desde 1991 e até agora não foram reveladas vulnerabilidades, mesmo apos anos de criptoanálise feita por especialistas.

2.

Estrutura do IDEA

XOR

Ou-exclusivo de dois operandos de 16 bits (Detonado pelo símbolo \oplus).

ADIÇÃO mod 2¹⁶

Adição de dois operandos de 16 bits, ignorando qualquer *overflow* (Denotado pelo símbolo \blacksquare).

MULTIPLICAÇÃO mod 2¹⁶+1

Multiplicação de dois operandos de 16 bits, ignorando qualquer *overflow* (Denotado pelo símbolo •).

□ A partir da chave secreta de 128 bits, são geradas
 52 sub-chaves (K₁, K₂, K₃, ..., K₅₂) de 16 bits.

(n° de rounds)x(n° de sub-chaves de um round)+
(n° de sub-chaves do half-round) =

$$(8x6)+4=52$$

- ☐ Cada iteração é subdividida em duas partes:
 - 1 A primeira utiliza 4 sub-chaves K_a, K_b, K_c, K_d e uma entrada de 64 bits tratada como 4 sub-entradas de 16 bits X_a, X_b, X_c, X_d para obter as saídas X_a', X_b', X_c', X_d'.

2 A segunda utiliza duas sub-chaves K_e e K_f que são operadas com as 4 saídas de 16 bits da primeira parte X_a, X_b, X_c, X_d para formar novos X_a', X_b', X_c', X_d'.

Representação de um round, que é a junção da primeira e segunda parte de uma iteração.

- Após 8 repetições de um *round*, o resultado X_a', X_b', X_c', X_d' é fornecido como entrada para a última transformação T, também conhecida como *half-round*.
- As operações realizadas são idênticas às da primeira parte de cada iteração, com uma pequena diferença na ordem das chaves para as operações.

Half-round, o último passo do processo de criptografia.

- O IDEA foi feito de forma que o mesmo circuito ou software serve para criptografar ou decriptografar 64 bits.
- As 3 operações básicas do IDEA são facilmente inversíveis, e portanto não é complicado de se obter as subchaves inversas.
- Para realizar a decriptação é necessário:

- Calcular previamente as sub-chaves inversas para a primeira parte do algorítmo.
- A segunda parte é exatamente a mesma para encriptação e decriptação e portanto pode ser executada normalmente.
- Inverter a ordem em que as chaves são utilizadas

3.

Implementação em SystemC

Diagrama que representa a implementação do IDEA em SystemC.

21

- ☐ Os registradores (32 bits) são:
 - **□ [W0, W1]**, **[W2, W3]**: Entrada de 64 bits dividida em 4 palavras;

Comandos 22

- Gerar chaves para descifrar
- Gerar chaves para cifrar
- Descifrar
- Status

Diagrama que representa a conexão do módulo IDEA com a NoC.

Fim 24

Modelagem de Sistemas em Silício 1/2017 Professor Ricardo Jacobi

Grupo IDEA

Lucas Avelino - 13/0013072

Lucas Nascimento - 14/0151010