Recitation 4

Alex Dong

CDS, NYU

Fall 2020

Norms

- ▶ Norms measure distances!
- ► Think about all the "natural" properties of distance that make sense.
 - ightharpoonup distance = 0 means at the same point
 - ▶ distance is always non-negative
 - ▶ distance follows triangle inequality (at least in Euclidean space)

Norms

Shorthand way to remember what the properties do.

Definition (Norm)

A norm $\|\cdot\|$ on V verifies the following points:

- 1. Triangular inequality: $||u+v|| \le ||u|| + ||v||$ "Euclidean space"
- 2. Homogeneity: $\|\alpha v\| = |\alpha| \times \|v\|$ "farther actually means farther"
- 3. Positive definiteness: if $||v|| = 0 \implies v = 0$. "Non-negative"

Inner Products

Definition (Inner product)

Let V be a vector space. An inner product on V is a function $\langle \cdot, \cdot \rangle$ from $V \times V$ to \mathbb{R} that verifies the following points:

- 1. Symmetry: $\langle u, v \rangle = \langle v, u \rangle$ for all $u, v \in V$.
- 2. Linearity: $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle$ and $\langle \alpha v,w\rangle=\alpha\langle v,w\rangle$ for all $u,v,w\in V$ and $\alpha\in\mathbb{R}$.
- 3. Positive definiteness: $\langle v, v \rangle \geq 0$ with equality if and only if v = 0.
- ▶ Definition of inner product does not reveal it's purpose.
- ▶ In this class, we always use the Euclidean inner product.
 - $\blacktriangleright \langle u, v \rangle = u^T v$
- ▶ (!!) Inner products are (indirectly) used for a notion of angles.

Inner Products in Machine Learning (&)

- ▶ Inner products can be used as a measure of similarity
- ▶ Kernel Tricks (&) Increase Data Complexity
 - ▶ Sometimes you have to calculate $x_{old}^T x_{new}$, equivalently $\langle x_{old}, x_{new} \rangle$
 - ➤ You can replace the inner product with a inner product in a higher dimensional space
 - ▶ Instead of calculating $\langle x_{old}, x_{new} \rangle$, define a function K and calculate $\langle K(x_{old}), K(x_{new}) \rangle$
 - ▶ If you pick "the right" higher dimensional space, your data can be a lot easier to work with

⁰(&) denotes extra material not covered in this course

Questions 1: Norms and Inner Products

1. Which of the following functions are inner products for $x, y \in \mathbb{R}^3$?

i.
$$f(x,y) = x_1y_2 + x_2y_3 + x_3y_1$$

ii. $f(x,y) = x_1^2y_1^2 + x_2^2y_2^2 + x_1^2y_1^2$

iii.
$$f(x,y) = x_1y_1 + x_2y_2$$

iii. $f(x,y) = x_1y_1 + x_3y_3$

2. For $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$, prove that

$$||Ax|| \le ||x|| \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i,j}^2}$$

Solutions 1: Norms and Inner Products

1. Which of the following functions are inner products for $x, y \in \mathbb{R}^3$?

Solution

i.
$$f(x,y) = x_1y_2 + x_2y_3 + x_3y_1$$
 False
Consider $u = [1,0,0]^T$ and $v = [0,1,0]^T$.
 $\langle u,v \rangle = 1$, but $\langle v,u \rangle = 0$. (Not symmetric)

$$\begin{aligned} ii. \ \, &f(x,y) = x_1^2 y_1^2 + x_2^2 y_2^2 + x_3^2 y_3^2 \\ &\quad \, Consider \ v = [1,0,0]^T. \\ &\quad \, \langle 2v,v \rangle = 4, \ but \ 2 \langle v,v \rangle = 2. \ \, (Not \ linear) \end{aligned}$$

iii.
$$f(x,y) = x_1y_1 + x_3y_3$$
 False $Consider \ v = [0,1,0]^T$. $\langle v,v \rangle = 0$, but $v \neq 0$. (Not positive definite)

Solutions 1: Norms and Inner Products

2. For $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$, prove that

$$||Ax|| \le ||x|| \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i,j}^2}$$

Solution

Let
$$A = \begin{bmatrix} - & \mathbf{a_1}^T & - \\ \vdots & \vdots & \vdots \\ - & \mathbf{a_m}^T & - \end{bmatrix}$$
 and $x = \begin{bmatrix} 1 \\ x \\ 1 \end{bmatrix}$. Observe that $Ax = \begin{bmatrix} \langle \mathbf{a_1}, x \rangle \\ \vdots \\ \langle \mathbf{a_m}, x \rangle \end{bmatrix}$.

Now,

$$||Ax||^{2} = \sum_{i=1}^{m} |\langle \mathbf{a_{i}}, x \rangle^{2}| \quad by \ definition \ of \ norm$$

$$||Ax||^{2} \leq \sum_{i=1}^{m} ||\mathbf{a_{i}}||^{2} ||x||^{2} \quad by \ Cauchy-Schwarz$$

$$||Ax|| \leq (\sum_{i=1}^{m} ||\mathbf{a_{i}}||^{2} ||x||^{2})^{.5}$$

$$||Ax|| \leq ||x|| (\sum_{i=1}^{m} ||\mathbf{a_{i}}||^{2})^{.5}$$

$$||Ax|| \leq ||x|| (\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i,j})^{.5} \quad by \ definition \ of \ \mathbf{a_{i}}$$

Orthogonality

- ▶ Angles can be used as a measure of similarity
- ▶ Vectors u, v are orthogonal if and only if $\langle u, v \rangle = 0$
- lacktriangledown Vectors are orthogonal \implies vectors are as dissimilar as possible
- ▶ Orthogonal coordinate systems are nice because we can view each coordinate "independently" (we will prove later).
- ▶ Gram-Schmidt Process (Lec 5) allows us to change any basis into an orthonormal basis.

Orthogonal Projections

- ▶ Projections form an important part of linear algebra.
 - ▶ We can view the action of a matrix and how it affects a certain subspace
 - ▶ We can simplify our data by picking the subspace "closest" to the data (PCA, Lec 7)
 - ► We can find the best-fit line/plane/subspace (Linear regression, Lec 9)
- ▶ Orthogonal projections are a special kind of projection
 - ► They preserve the original vector components (in the orthogonal basis)

Questions: Orthogonality

- 1. Let $v_1, ..., v_k$ be a list of orthogonal vectors. Show that $v_1, ..., v_k$ are linearly independent.
- 2. Let U be the subspace of \mathbb{R}^n with orthonormal basis $u_1, ..., u_k$.
 - i. Prove that the orthogonal projection of $v \in \mathbb{R}^n$ onto U can be expressed as $P_U = \sum_{i=0}^k \langle v, u_i \rangle u_i$. (Use the fact that the orthonormal basis for a subspace of \mathbb{R} can be extended to obtain an orthonormal basis for \mathbb{R})
 - ii. Prove that $P_U(v) \leq ||v||$
 - iii. Prove that $v P_U(v)$ is orthogonal to $P_U(v)$

Let $\alpha_1, ..., \alpha_k \in \mathbb{R}$ s.t $\sum_{i=1}^k \alpha_i v_i = \vec{0}$.

Solution

1. Let $v_1, ..., v_k$ be a list of non-zero orthogonal vectors. Show that $v_1, ..., v_k$ are linearly independent.

$$\begin{split} Consider & \langle \sum_{i=1}^k \alpha_i v_i, \sum_{j=1}^k \alpha_j v_j \rangle. \\ & 0 = \langle \vec{0}, \vec{0} \rangle \\ & = \langle \sum_{i=1}^k \alpha_i v_i, \sum_{j=1}^k \alpha_j v_j \rangle \\ & = \sum_{i=1}^k \alpha_i^2 \langle v_i, v_i \rangle, \sum_{i \neq j} \alpha_i \alpha_j \langle v_i, v_j \rangle \\ & 0 = \sum_{i=1}^k \alpha_i^2 \qquad by \ orthonormality \ of \ v_i, v_j \end{split}$$

So
$$\alpha_1, ..., \alpha_k = 0$$
.

Solution

Let U be the subspace of \mathbb{R}^n with orthonormal basis $u_1, ..., u_k$.

2i. Prove that the orthogonal projection of $v \in \mathbb{R}^n$ onto U can be expressed as

$$P_U(v) = \sum_{i=0}^k \langle v, u_i \rangle u_i.$$

Let $u_{k+1}, ..., u_n$ be an orthonormal basis extension for $u_1, ..., u_k$.

Then $u_1,...,u_k,u_{k+1},...,u_n$ form an orthonormal basis for \mathbb{R}^n

Now, let $v = \sum_{i=1}^{n} \alpha_i u_i$ where $\alpha_i = \langle v, u_i \rangle$ and let $x \in U$, where $x = \sum_{j=1}^{k} \beta_i u_i$.

We want to find $\arg\min_{x\in U} \|v-x\|$.

$$\|v - x\| = \|\sum_{i=1}^{n} \alpha_i u_i - \sum_{j=1}^{k} \beta_i u_i\|$$

$$= \|\sum_{j=1}^{k} (\alpha_i - \beta_i) u_i - \sum_{i=k+1}^{n} \alpha_i u_i\|$$

$$= \sqrt{\sum_{j=1}^{k} (\alpha_i - \beta_i)^2 + \sum_{i=k+1}^{n} \alpha_i^2} \quad by \ orthonormality$$

||v - x|| is minimized when $\alpha_i = \beta_i$ $\forall i \in \{1, ..., k\}$

This implies that $\beta_i = \langle v, u_i \rangle$.

So $P_U(v) = argmin_{x \in U} ||v - x|| = \sum_{i=0}^k \langle v, u_i \rangle u_i$.

Solution

Let U be the subspace of \mathbb{R}^n with orthonormal basis $u_1, ..., u_k$. 2ii. Prove that $P_U(v) \leq ||v||$ $P_U(v) = \sum_{i=1}^k \langle v, u_i \rangle u_i$ from 2i $||P_U(v)||^2 = ||\sum_{i=1}^{n} \langle v, u_i \rangle u_i||^2$ $= \sum \|\langle v, u_i \rangle u_i \|^2$ by Pythagorean Theorem $\leq \sum \|\langle v, u_i \rangle u_i \|^2$ add extra components $= \|\sum \langle v, u_i \rangle u_i\|^2$ Pythagorean Theorem $= ||v||^2$ So $P_U(v) \leq ||v||$

Solution

Let U be the subspace of \mathbb{R}^n with orthonormal basis $u_1, ..., u_k$. 2iii. Prove that $v - P_U(v)$ is orthogonal to $P_U(v)$ $P_U(v) = \sum_{i=1}^k \langle v, u_i \rangle u_i \qquad \text{from 2i}$ $v = \sum_{i=0}^n \langle v, u_i \rangle u_i \qquad \text{since } u_1, ..., u_n \text{ is a orthonormal basis.}$ $v - P_U(v) = \sum_{i=1}^n \langle v, u_i \rangle u_i - \sum_{i=1}^k \langle v, u_i \rangle u_i$

 $=\sum \langle v, u_i \rangle u_i$

Questions: Orthogonal Complements

Let S, U be subspaces of a vector space V.

Prove the following statement:

1.
$$S \subset U \implies S^{\perp} \supset U^{\perp}$$

Let $A \in \mathbb{R}^{n \times m}$. Assume the Euclidean inner product.

2. (!) Prove that
$$Im(A^T) = Ker(A)^{\perp}$$
.

(Hint:
$$\implies$$
 is easy. Use (1) for \iff)

Solutions: Orthogonal Complements

1.
$$S \subset U \implies S^{\perp} \supset U^{\perp}$$

Solution

Let $x \in U^{\perp}$, and $z \in S$.

Since $z \in S$ and $S \subset U$, then $z \in U$.

Now, since $x \in U^{\perp}$ and $z \in U$, then $\langle x, z \rangle = 0$.

So $x \in S^{\perp}$.

Solutions: Orthogonal Complements

2. Prove that $Im(A^T) = Ker(A)^{\perp}$.

Solution

Let $x \in \text{Im}(A^T)$. Then $\exists y \text{ s.t } x = A^T y$. We show $x \in Ker(A)^{\perp}$.

Let $v \in Ker(A)$. Then Av = 0.

Consider $\langle x, v \rangle$.

$$\langle x, v \rangle = x^T v = y^T A v = \langle y, A v \rangle = \langle y, 0 \rangle = 0$$
 Then $x \in Ker(A)^{\perp}$.

← .

We use 1. to show $Im(A^T)^{\perp} \subset Ker(A)$ instead.

Let $x \in Im(A^T)^{\perp}$.

Consider Ax. We show $\langle x, A^T y \rangle = 0$ for all $y \in \mathbb{R}^n$.

Since $x \in Im(A^T)^{\perp}$, then $\forall y \in Im(A^T)$, $\langle x, y \rangle = x^T y = 0$.

Consider ||Ax||.

$$||Ax|| = x^T A^T A x = x(A^T A x).$$

Since $A^T Ax \in Im(A^T)$, then ||Ax|| = 0, so Ax = 0.

Now, by 1, we can conclude that $Ker(A)^{\perp} \subset Im(A^T)$.

Appendix starts after here

Idempotence

Lets take a step back.

- ▶ P_S is an orthogonal projection $\iff P_S = VV^T$
 - \blacktriangleright V has orthonormal columns that form a basis for S.
- ► There is a more general definition of a projection known as *idempotence*.

Definition (Idempotence)

An matrix P is idempotent when $P^2 = P$.

An idempotent matrix is also called a projection or projection matrix.

Questions: Orthogonal Projections vs Idempotence

Definition (Idempotence)

An matrix P is idempotent when $P^2 = P$.

- 1. Show that $X(X^TX)^{-1}X^T$ is idempotent.
- 2. Show that all orthogonal projections are idempotent.
- 3. Give an example of an idempotent matrix that is not an orthogonal projection.

(Hint: Show that your matrix does not minimize the distance to subspace it projects onto.)

Solutions: Orthogonal Projections vs Idempotence

Solution

1. Show that $X(X^TX)^{-1}X^T$ is idempotent.

$$\begin{split} P^2 &= (X(X^TX)^{-1}X^T)(X(X^TX)^{-1}X^T) \\ &= X(X^TX)^{-1}(X^TX)(X^TX)^{-1}X^T \\ &= X(X^TX)^{-1}X^T \end{split}$$

2. Show that all orthogonal projections are idempotent.

Let P be an orthogonal projection.

Recall that all orthogonal projections take the form VV^T , where $V \in \mathbb{R}^{n \times k}$ has orthonormal columns.

Note that $V^TV = I_k$, the identity matrix in $\mathbb{R}^{k \times k}$.

$$Then\ P^2=(VV^T)(VV^T)=V(V^TV)V^T=VI_kV^T=VV^T=P$$

Solutions: Orthogonal Projections vs Idempotence

Solution

3. Give an example of an idempotent matrix that is not an orthogonal projection.

Consider the matrix
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

It's easy to see
$$A^2 = A$$
, and $Im(A) = \{ \begin{bmatrix} x \\ 0 \end{bmatrix} \mid x \in \mathbb{R} \}$

Consider the vector
$$v = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

The closest vector in
$$Im(A)$$
 is $v_{Im(A)} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$, but $Av = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$

Note: Rigorously speaking, we need to prove that $v_{Im(A)} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ is the closest vector in Im(A). We can do this by constructing an orthogonal projection onto Im(A), which is found by setting $V = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, and calculating

$$VV^T = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$