Income Prediction

محمد ابراهيم جمال الدين ابراهيم 2021170445 مهند خالد علي محمد 2021170558 بيشوي سدرة صابر سدرة 2021170130 مازن سامح عبد الفتاح صابر 2021170437 مصطفى محمود مصطفى يونس 2021170531

- Preprocessing Techniques
- Visualization and Analysis
- Models and Hyperparameters used

Preprocessing Techniques

Mode Imputation

➤ We decided to replace null values with their mode as we had no more than 5% of the data missing (null values).

Dealing with outliers

- ➤ We replaced any value more than (q3+1.5*IQR) with (q3+1.5*IQR)
- ➤ We replaced any value less than (q1-1.5*IQR) with (q1-1.5*IQR)

Feature Selection

- ➤ We decided to drop:
 - "capital-gain", "capital-loss", "race": biased data
 - "relationship": had the same effect as "marital status"
 - "fnlwgt": not relevant to our target "income"

Visualization

Income count

• Boxplot BEFORE handling the outliers

• Boxplot AFTER handling the outliers

Correlation

Logistic Regression (Confusion Matrix)

• Decision Tree (Confusion Matrix)

• SVM (Confusion Matrix)

• RandomForest(Confusion Matrix)

Analysis

- We studied the dataset and found that there were many categorical features so we converted them to numerical features by LabelEncoding
- Due to the wide range of our features' values we had to scale all the features using StandardScaler
- We found out that there were no nulls but instead there were (?) mark so we replaced all "?" With Nulls
- Correlation was weak between all features so we abandoned this method in our feature selection

Models and Hyperparameters

- Logistic Regression: (accuracy 80%)
 - Solver Function is the main hyperparameter here .. we tried tuning it but the default(<u>lbfgs</u>) seemed to have the best accuracy
- Decision Tree : (accuracy 83%)
 - We used Grid Search Function and tuned the hyperparameters .. this led to increasing the accuracy from 82% when using the default to 83%
- **SVM** : (accuracy 83%)
 - Kernel Function is the main hyperparameter here .. we tried tuning it as well but the default(<u>rbf</u>) seemed to have the best accuracy
- Random Forest: (accuracy 84%)
 - We tried tuning two hyperparametrs .. the Max-Depth of each forest(different decision tree) to 10 and N-estimators to 100

Other Techniques

Grid Search(decision tree hyperparameter tuning):

 We use it as it is a hyperparameter optimization technique used to find the best combination of hyperparameters for a machine learning model. It involves exhaustively searching through a predefined grid of hyperparameter values and evaluating the model's performance on each combination.

Conclusion

After tuning the different hyperparameters in each model and trying out 4 models (**Logistic Regression**, **Decision Tree**, **SVM**, **Random Forest**) .. We set the default hyperparameters in Logistic Regression and SVM but tuned the Decision Tree and Random Forest.

We concluded that Random Forest got the best accuracy in the 4 models with 84% accuracy