

A Morphological Analyzer for St. Lawrence Island / Central Siberian Yupik

Emily Chen

Lane Schwartz

University of Illinois Urbana-Champaign echen41@illinois.edu lanes@illinois.edu

1. Introduction

- ► Project Objectives: To develop and evaluate a morphological analyzer for Central Siberian Yupik, a highly agglutinative and polysynthetic language of the Inuit-Yupik language family
- ► The analyzer parses a given word into its component morphemes, in accordance with the established template of most Yupik words

2. Yupik Morphophonology

- ► Each suffix or **postbase** is associated with morphophonological processes that occur at the immediate left base-postbase boundary, where affixation of postbases proceeds serially
- ► (1) aghnaaguq aghnagh- - \sim :(ng)u- - \sim _f(g/t)u.q woman- -to.be.n- -INTR_IND.3sG 'She is a woman'

Symbol	Morphophonological Process				
(ng)	Affixes -ng- to V-final bases				
~	Drops penultimate and base-final -e				
:	Drops uvulars, -gh-, between vowels				
(g/t)	Affixes -g- to VV-final bases and				
	-t- to C-final bases				
\sim_{f}	Drops base-final -e				

aghnagh \sim :(ng)u \sim f(g/t)u.q

PARALLEL AFFIXATION SERIAL AFFIXATION aghnagh \sim :(**ng**)u \sim f(g/t)u.q $aghnagh \sim : (ng)u \sim_f (g/t)u.q$ aghnagh~:u~_fu.q aghnagh \sim :u $\sim_f(g/t)u.q$ aghnagh:u~fu.q aghnagh: $u \sim_f (g/t)u.q$ aghnau $\sim_f(g/t)u.q$ aghnau~fu.q aghnaa~fu.q aghnaa $\sim_f(\mathbf{g}/\mathbf{t})$ u.q aghnaau.q aghnaa~fgu.q aghnaauq X aghnaagu.q aghnaaguq ✓

3. Foma Toolkit

► The analyzer is implemented in a specialized finite-state toolkit called *Foma*

3.1 *Lexc* File

LEXICON NBase
aghnagh NPostbase;
LEXICON NPostbase
\sim %: (ng)u[N \rightarrow V]: \sim %: (ng)u VInfl;
LEXICON VInfl
[V] [Intr] [Ind] [3Sg]: $\sim_f (g/t)uq$ #;

- ► The *lexc* file constructs underlying forms according to Yupik morphotactics, which are mapped to corresponding intermediate forms
- ► aghnagh~:(ng)u[N \rightarrow V][V][Intr][Ind][3Sg] aghnagh \sim :(ng)u \sim f(g/t)uq

3.2 Foma File

- ► The *foma* file transforms underlying forms into surface forms via <u>rules</u> defined by the programmer
- ► To model serial affixation of morphemes
- 1. Insert a $^{\wedge}$ (MBndry) at each morpheme boundary
- 2. Specify a symbol / its morphonological process applies only if it is preceded by a single caret
- aghnagh \sim :(ng)u \sim f(g/t)uq

$$\begin{array}{c} \downarrow \\ \text{aghnagh}^{\wedge} \sim : (\text{ng}) \text{u}^{\wedge} \sim_{\text{f}} (\text{g/t}) \text{uq} \\ \downarrow \\ \text{aghnaa}^{\wedge} \sim_{\text{f}} (\text{g/t}) \text{uq} \\ \downarrow \\ \text{aghnaaguq} \end{array}$$

► The morphophonological rules are iterated eight times to account for seven potential derivational postbases and one inflectional postbase

```
define ResolveAllomorphy
 "(ng)" -> ng || V MBndry MPSym* _ .o.
 "(g/t)" -> g || V V MBndry MPSym* _ .o.
 "(g/t)" -> t || C MBndry MPSym* _ .o.
 "(ng)" -> 0,
 "(g/t)" -> 0 || WBndry Alph+ MBndry _;
define UvularDropping
 "gh" -> 0 || V _ MBndry MPSym* ":" V .o.
 ":" -> 0 || WBndry Alph+ MBndry _ ;
define FinalE
 e -> 0 || _ MBndry MPSym* "\sim_{f}" .o.
 "\sim_f" -> 0 || WBndry Alph+ MBndry _ ;
define VowelDominance
 a u -> a a ;
define Grammar [
 InsertMBndry .o.
 !! ITERATION 1 !!
 MP Rules Cascade .o.
 CleanupMBndry .o.
 !! ITERATION 8 !!
 MP Rules Cascade .o.
 CleanupMBndry .o.
```

4. Sample Output

✓ Sample Output

Piyukuvek qergesek qelpeghtikek 'Open the window(s) if you (take a) walk' piyukuvek piyug[V][Intr][Cond][2Sg] qergese[N][Abs][Unpd][Du] qergesek qelpeghtikek qelpeghte[V][Trns][Opt][PRS][2Sg][3Du]

Tukuqa neghsameng gaaghaquq

'My host is cooking seal'

tukugh[N][Abs][1SgPoss][SgPosd] neghsameng neghsagh[N][Abl_Mod][Unpd][Sg] gaaghaquq $gaagh \sim (g_1)aqe[V \rightarrow V][V][Intr][Ind][3Sg]$

X Sample Output

nuyaqatakestaaghhaaguq +? sivuqaghmun nome-emun aelqat

5. Evaluation

- ► The evaluation corpus consisted of 8 Yupik texts:
 - − 1 collection of translation exercises from a reference grammar (~ 800 words)
 - 4 anthologies of Yupik folk stories (~7000-16,000 words each)
- 3 elementary readers (~5000 words each)
- ► Coverage percentage of the analyzer for each of the eight evaluation texts at each stage of development was calculated, where

Evaluation Texts

	Evaluation Texts									
Stage	Ref	SLI1	SLI2	SLI3	Ungi	Lvl1	Lvl2	Lvl3		
1	92.07	32.51	35.54	37.64	47.29	38.65	39.53	38.25		
2	95.35	47.99	47.78	50.74	59.44	50.01	51.03	50.81		
3	95.35	51.45	51.43	54.25	63.95	52.74	53.96	53.71		
4	95.85	64.38	62.76	63.36	74.05	64.49	65.71	64.77		
5	96.60	73.41	73.57	73.29	82.66	73.86	72.45	74.66		