Regression discontinuity design

Tutorial 6

Stanislav Avdeev

Goal for today's tutorial

- 1. Discuss (fuzzy) regression discontinuity design RDD
- 2. Discuss regression kink design RKD
- 3. Discuss functional form, bandwidth, and controls in RDD
- 4. Check assumptions of RDD
- 5. Discuss sensitivity checks

RDD

- The basic idea of RDD is to look for a treatment that is assigned on the basis of being above/below a **cutoff value** of a continuous variable, for example
 - \circ if a candidate gets 50.1% of the vote they're in, 40.9% and they're out
 - \circ if you're 65.1 years old you get Medicaid, if you're 64.9 years old you don't
 - if you score above **75**, you'll be admitted into a "gifted and talented" (GATE) program
- We call these continuous variables **running variables** because we run along them until we hit the cutoff
- Basically, the idea is that right around the cutoff, treatment is **randomly assigned**
 - \circ if you have a test score of 74.9 (not high enough for GATE), you're basically the same as someone who has a test score of 75.1 (just barely high enough)
- So we have two groups the just-barely-missed-outs and the just-barely-made-its that are basically exactly the same except that one happened to get treatment
 - this gives us the effect of treatment for people who are right around the cutoff LATE

RDD: graphically

The Effect of Treatment on Y using Regression Discontinuity 1. Start with raw data.

RDD: same slope

• The most basic version of RDD allows for a jump but forces the slope to be the **same** on either side

$$Y_i = \beta_0 + \beta_1 Treated_i + \beta_2 XC_i + U_i$$

where

- $\circ Treated_i$ is a binary variable equal to 1 if you are above the cutoff
- $\circ~XC_i$ is the running variable that is centered around the cutoff, i.e.

$$XC_i = X_i - Cutoff$$

- \circ eta_1 is how the intercept jumps that is the RDD effect
- Remember that the RDD estimates the average treatment effect among those just
 around the cutoff LATE

RDD: simulation

• Let us simulate a dataset with the same slope

Х	Treated	хс	Υ
0.4985591	0	-0.0014409	-0.2345307
0.4994985	0	-0.0005015	-0.2821893
0.5016948	1	0.0016948	0.8777840
0.5027101	1	0.0027101	0.5410091

RDD: simulation

```
# The true effect is 0.7

m \leftarrow lm(Y \sim Treated + XC, df)
```

	Model 1
(Intercept)	-0.032
	(0.029)
Treated	0.765***
	(0.053)
XC	0.930***
	(0.095)
Num.Obs.	500
+ p < 0.1, * p < 0.05, ** p	< 0.01, *** p < 0.001

RDD: varying slopes

- Typically, you will want to let the slope **vary** to either side
- In effect, we are fitting an entirely different regression line on each side of the cutoff
- We can do this by using the following regression

$$Y_i = \beta_0 + \beta_1 Treated_i + \beta_2 XC_i + \beta_3 Treated_i \times XC_i + U_i$$

where

- β_1 is how the intercept jumps that's the RDD effect
- eta_3 is how the slope changes that's the RKD effect

RDD: simulation

Let us simulate a dataset with the same slope

X	Treated	хс	Υ
0.4985591	0	-0.0014409	-0.2345307
0.4994985	0	-0.0005015	-0.2821893
0.5016948	1	0.0016948	0.8786314
0.5027101	1	0.0027101	0.5423641

RDD: simulation

The true RDD effect is 0.7, and the true RKD effect is 0.5 $m \leftarrow lm(Y \sim Treated*XC, df)$

	Model 1
(Intercept)	-0.039
	(0.035)
Treated	0.763***
	(0.054)
XC	0.899***
	(0.129)
Treated × XC	0.565**
	(0.190)
Num.Obs.	500
+ p < 0.1, * p < 0.05, ** p <	0.01, *** p < 0.001

RDD: graphically

ullet The true model is an RDD effect of 0.7 with a slope of 1 to the left of the cutoff and a slope of 1.5 to the right, so the RKD effect is 0.5

Choices

- Bandwidth
- Functional form
- Controls

Choices: bandwidth

- The idea of RDD is that people just around the cutoff are very much comparable
- So people far away from the cutoff are not too informative
 - at best they help determine the slope of the fitted lines
- So we might limit our analysis within just a **narrow window** around the cutoff
- This makes the exogenous-at-the-jump assumption more plausible
 - this lets us worry less about functional form over a narrow range, as there is not too much difference between a linear and a square term
 - but it reduces our sample size considerably
- There's a big literature on **optimal bandwidth selection** which balances the addition of bias (from adding people far away from the cutoff) vs. variance (from adding more people so as to improve estimator precision)
- Gelman & Imbens (2019) show that the "naive" RDD estimators place high weights on observations far from the threshold
 - so it's better to drop these observations

Choices: bandwidth

• Pay attention to the accuracy, standard errors, and sample sizes

```
# The true effect is 0.7

m1 \leftarrow lm(Y \sim Treated*XC, df)

m2 \leftarrow lm(Y \sim Treated*XC, df %>% filter(abs(XC) < 0.25))

m3 \leftarrow lm(Y \sim Treated*XC, df %>% filter(abs(XC) < 0.1))

m4 \leftarrow lm(Y \sim Treated*XC, df %>% filter(abs(XC) < 0.05))

m5 \leftarrow lm(Y \sim Treated*XC, df %>% filter(abs(XC) < 0.01))
```

	Model 1	Model 2	Model 3	Model 4	Model 5
Treated	0.763***	0.796***	0.730***	0.792***	1.065**
	(0.054)	(0.071)	(0.111)	(0.130)	(0.270)
Num.Obs.	500	259	95	53	19
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001					

- Why do we fit only a straight line on either side?
 - if the true relationship is curvy this will give us the wrong result
- We can be much more flexible, by including polynomials

$$egin{aligned} Y_i &= eta_0 + eta_1 Treated_i + eta_2 XC_i + eta_3 Treated_i imes XC_i \ &+ eta_4 XC_i^2 + eta_5 Treated_i imes XC_i^2 + U_i \end{aligned}$$

where

 \circ eta_1 remains our jump at the cutoff - the RDD estimate

- The interpretation is the same as before look for the jump
- We want to be careful with polynomials though, and not add too many
 - remember, the more polynomial terms we add, the stranger the behavior of the line at either end of the range of data
 - so we can get illusory effects generated by having too many terms
- A common approach is to use non-parametric regression or local linear regression
 - this does not impose any particular shape
 - and it's easy to get a prediction on either side of the cutoff
 - this allows for non-straight lines without dealing with polynomials

• Let's look at the same data with a few different functional forms

Х	Treated	хс	Υ
0.4985591	0	-0.0014409	-0.2345295
0.4994985	0	-0.0005015	-0.2821892
0.5016948	1	0.0016948	0.8777858
0.5027101	1	0.0027101	0.5410135

```
# The true effect is 0.7, and the true model is an order-2 polynomial m \leftarrow lm(Y \sim Treated, df)
```


The true effect is 0.7, and the true model is an order-2 polynomial $m \leftarrow lm(Y \sim Treated*XC, df)$


```
# The true effect is 0.7, and the true model is an order-2 polynomial m \leftarrow lm(Y \sim Treated*XC + Treated*I(XC^2), df)
```



```
# The true effect is 0.7, and the true model is an order-2 polynomial m \leftarrow lm(Y \sim Treated*XC + Treated*I(XC^2) + Treated*I(XC^3), df)
```



```
 m \leftarrow lm(Y \sim Treated*XC + Treated*I(XC^2) + Treated*I(XC^3) + Treated*I(XC^4) + Treated*I(XC^5) + Treated*I(XC^6) + Treated*I(XC^7) + Treated*I(XC^8), df)
```



```
# The true effect is 0.7, and the true model is an order-2 polynomial # The estimated model is recommended by Gelman & Imbens (2019)
```


- A conclusion is to **avoid** higher-order polynomials
 - even the true model can be worse than something simpler sometimes
 - o and fewer terms makes more sense too, once we apply a bandwidth and zoom in
 - consider a nonparametric approach
- Gelman & Imbens (2019) argue that controlling for global high-order polynomials in RDD has three major problems
 - noisy estimates
 - sensitivity to the degree of the polynomial
 - poor coverage of confidence intervals
- Be very suspicious if your fit is wildly off right around the cutoff

Choices: controls

- Generally you don't need control variables in an RDD
 - if the design is valid, RDD is almost like a randomised experiment
- Although maybe we want some controls if we a bandwidth is wide
 - this will remove some of the bias
- Control variables also allow us to perform **placebo tests** of our RDD model
 - we can rerun our RDD model, but simply use a **control** variable as the **outcome**
 - we should not find any effect
 - you can run these for every control variable you have

Assumptions

- We knew there must be some assumptions
 - some are more obvious, i.e. we should be using the correct functional form
 - o others are trickier, i.e. what are we assuming about the error term and endogeneity?
- Specifically, we are assuming that the only thing jumping at the cutoff is **treatment**
 - sort of like parallel trends, but maybe more believable since we've narrowed in
- ullet For example, if having an income below 150% of the poverty line gets you access to food stamps **and** to job training, then we can't really use that cutoff to get the effect of **just** food stamps
- The only thing different about just above/just below should be treatment
 - but what if the running variable is manipulated?

- ullet Imagine you are a teacher grading the gifted-and-talented exam. You see someone with an 74 and think "they are so close, I'll just give them an extra point"
 - suddenly, that treatment is a lot less randomly assigned around the cutoff
- If there's manipulation of the running variable around the cutoff, we can often see it in the presence of **bunching**
 - in other words, there is a big **cluster of observations** to one side of the cutoff and a seeming gap missing on the other side
- How can we check this?
 - we can look graphically by just checking for a jump at the cutoff in number of observations after binning
 - we can use the **McCrary density test** in rddensity package

• The first one looks pretty good. The second one looks not-so-good


```
library(rddensity)
test_density ← rddensity(df$X, c = 0.5)
```

ullet The p-value of a t-test 0.8959 shows no manipulation

```
##
## Manipulation testing using local polynomial density estimation.
###
## Number of obs =
                 500
## Model =
                    unrestricted
## Kernel =
           triangular
## BW method = estimated
## VCE method =
                       jackknife
##
                       Left of c
\# c = 0.5
                                          Right of c
## Number of obs
                                          243
                       257
## Eff. Number of obs
                    113
                                          71
## Order est. (p)
## Order bias (q)
                       3
                                          3
## BW est. (h)
                       0.193
                                          0.17
##
## Method
                                          P > |T|
                       Τ
## Robust
                                          0.8959
                       0.1309
```

```
plot_density_test ← rdplotdensity(rdd = test_density, X = df$X)
```


• Notice that the confidence intervals overlap substantially

Fuzzy RDD

- What if treatment is not determined sharply by the cutoff?
 - we can account for this with a model designed to take this into account
- Specifically, we can use the IV method
 - \circ basically, IV estimates how much the **chances of treatment** go up at the cutoff, and scales the **estimate of treatment** by that change (remember 4^{th} TA about LATE)
 - we can perform the IV method using feols() in fixest
- What happens if we just do RDD as normal?
 - the effect is underestimated because we have some untreated in the post-cutoff
 and treated in the pre-cutoff

Fuzzy RDD: simulation

• Let us simulate a dataset with imperfect compliance

Х	above_cut	хс	treatassign	random	Treated	Υ
0.4953558	0	-0.0046442	-0.0023221	0.9465440	0	-0.0136400
0.4987442	0	-0.0012558	-0.0006279	0.2720184	0	0.1128971
0.5012444	1	0.0012444	0.5006222	0.6340842	0	0.0068262
0.5035491	1	0.0035491	0.5017745	0.3932667	1	0.6196558

Fuzzy RDD: simulation

• Notice that the y-axis here is not the outcome, it is the percentage treated

Fuzzy RDD: simulation

```
# The true effect is 0.7
without_fuzzy ← lm(Y ~ above_cut*XC, df_fuzzy)
predict_treat ← lm(Treated ~ above_cut*XC, df_fuzzy)
fuzzy_rdd ← feols(Y ~ 1 | Treated*XC ~ above_cut*XC, df_fuzzy)
```

	Model 1	Model 2	Model 3
above_cut	0.251***	0.398***	
	(0.069)	(0.060)	
fit_Treated			0.639***
			(0.124)
Num.Obs.	500	500	500
+ p < 0.1, * p	< 0.05, **	o < 0.01, **	* p < 0.001

- The rdrobust package has the rdrobust() function which runs RDD with
 - optimal bandwidth selection
 - options for fuzzy RD
 - bias correction
 - lots of options (including the addition of covariates)

- We can estimate the RDD model by specifying
 - Y a dependent variable
 - x a running variable
 - o c a cutoff
 - o p the number of polynomials (it applies polynomials more locally than our OLS models do it avoids weird corner predictions)
 - h a bandwidth size (chosen automatically)
 - fuzzy actual treatment outside of the running variable/cutoff combo (IV)

```
## Call: rdrobust
###
## Number of Obs.
                               500
## BW type
                             mserd
## Kernel
                         Triangular
## VCE method
                                NN
##
## Number of Obs.
                               257
                                           243
## Eff. Number of Obs.
                               123
                                            91
## Order est. (p)
## Order bias (q)
## BW est. (h)
                             0.212
                                         0.212
## BW bias (b)
                             0.304 0.304
## rho (h/b)
                             0.697 0.697
## Unique Obs.
                               257
                                           243
##
                Coef. Std. Err.
         Method
                                         z P>|z|
                                                        [ 95% C.I. ]
##
###
    Conventional 0.769 0.075 10.288 0.000 [0.623 . 0.916]
                                - 8.875 0.000 [0.600 , 0.941]
###
         Robust
```

- ullet A previous model chose the bandwidth of 0.212
- A common approach to sensitivity analysis is to use
 - the ideal bandwidth
 - twice the ideal
 - half the ideal
 - and see if the estimate changes substantially

```
# The true effect is 0.7
library(rdrobust)
m1 ← rdrobust(df$Y, df$X, c = 0.5, h = 0.212)
m2 ← rdrobust(df$Y, df$X, c = 0.5, h = 2*0.212)
m3 ← rdrobust(df$Y, df$X, c = 0.5, h = 0.5*0.212)
## [1] 0.7691451 0.7809369 0.7656968
```

- Now plot the results
- Note that rdplot() uses order-4 polynomial, and rdrobust() local linear regression

```
rdplot(df$Y, df$X, c = 0.5)
```

References

Books

- Huntington-Klein, N. The Effect: An Introduction to Research Design and Causality,
 Chapter 20: Regression Discontinuity
- Cunningham, S. Causal Inference: The Mixtape, Chapter 6: Regression Discontinuity

Slides

- Huntington-Klein, N. Econometrics Course, Week 08: Regression Discontinuity
- Huntington-Klein, N. Causality Inference Course, Lecture 12: Regression Discontinuity
- Huntington-Klein, N. Causality Inference Course, Lecture 13: Estimating Regression
 Discontinuity

Articles

• Gelman, A., & Imbens, G. (2019). Why High-Order Polynomials Should not be Used in Regression Discontinuity Designs. Journal of Business & Economic Statistics, 37(3), 447-456.