E1	Les	nombres	parfaits	sont	des	nombres	égaux	à	la	somme	de	leurs	diviseurs	(sauf	eux-mêmes).
Par exe	emple	, le nor	mbre 6 est	parf	ait	car :									

$$1+2+3=6$$
.

- a. Vérification: Montre que 28 est un nombre parfait en calculant la somme de ses diviseurs.
- **b.** Recherche: Parmi les nombres suivants, lesquels sont des nombres parfaits? Justifie ta réponse en trouvant la somme de leurs diviseurs:

12 15 496 20

- c. Exploration: Trouve un nombre entre 30 et 100 qui n'est pas parfait, mais dont la somme des diviseurs strictement inférieurs à lui-même dépasse le nombre (nombres déficients). Trouve un nombre entre 30 et 100 qui n'est pas parfait, mais dont la somme des diviseurs strictement inférieurs à lui-même est inférieure au nombre (nombres abondants).
- ${\tt d.}$ Défi : Le prochain nombre parfait après 496 est 8128. Montre que 8128 est parfait en calculant la somme de ses diviseurs.

Les **nombres parfaits** sont des nombres égaux à la somme de leurs diviseurs (sauf eux-mêmes). Par exemple, le nombre 6 est parfait car :

$$1+2+3=6$$
.

- a. Vérification: Montre que 28 est un nombre parfait en calculant la somme de ses diviseurs.
- **b. Recherche :** Parmi les nombres suivants, lesquels sont des nombres parfaits ? Justifie ta réponse en trouvant la somme de leurs diviseurs :

12 15 496 20

- c. Exploration: Trouve un nombre entre 30 et 100 qui n'est pas parfait, mais dont la somme des diviseurs strictement inférieurs à lui-même dépasse le nombre (nombres déficients). Trouve un nombre entre 30 et 100 qui n'est pas parfait, mais dont la somme des diviseurs strictement inférieurs à lui-même est inférieure au nombre (nombres abondants).
- **d. Défi :** Le prochain nombre parfait après 496 est 8128. Montre que 8128 est parfait en calculant la somme de ses diviseurs.

Les **nombres parfaits** sont des nombres égaux à la somme de leurs diviseurs (sauf eux-mêmes). Par exemple, le nombre 6 est parfait car :

$$1+2+3=6$$
.

- a. Vérification: Montre que 28 est un nombre parfait en calculant la somme de ses diviseurs.
- **b. Recherche :** Parmi les nombres suivants, lesquels sont des nombres parfaits ? Justifie ta réponse en trouvant la somme de leurs diviseurs :

12 15 496 20

- c. Exploration: Trouve un nombre entre 30 et 100 qui n'est pas parfait, mais dont la somme des diviseurs strictement inférieurs à lui-même dépasse le nombre (nombres déficients). Trouve un nombre entre 30 et 100 qui n'est pas parfait, mais dont la somme des diviseurs strictement inférieurs à lui-même est inférieure au nombre (nombres abondants).
- **d. Défi :** Le prochain nombre parfait après 496 est 8128. Montre que 8128 est parfait en calculant la somme de ses diviseurs.

Les **nombres parfaits** sont des nombres égaux à la somme de leurs diviseurs (sauf eux-mêmes). Par exemple, le nombre 6 est parfait car :

$$1 + 2 + 3 = 6$$
.

- a. Vérification : Montre que 28 est un nombre parfait en calculant la somme de ses diviseurs.
- **b. Recherche :** Parmi les nombres suivants, lesquels sont des nombres parfaits ? Justifie ta réponse en trouvant la somme de leurs diviseurs :

12 15 496 20

- c. Exploration : Trouve un nombre entre 30 et 100 qui n'est pas parfait, mais dont la somme des diviseurs strictement inférieurs à lui-même dépasse le nombre (nombres déficients). Trouve un nombre entre 30 et 100 qui n'est pas parfait, mais dont la somme des diviseurs strictement inférieurs à lui-même est inférieure au nombre (nombres abondants).
- **d. Défi :** Le prochain nombre parfait après 496 est 8128. Montre que 8128 est parfait en calculant la somme de ses diviseurs.