Counting district elevents in data streams

Elements amble (ai) from a domain [m]= {1..m} a_1...an

Goal: Court # district tens (Fo)

 $F_k = \sum_{i \in A}^k f_i^k$ where f_i is the frequency of on item $f_i^k = \sum_{i \in A}^k f_i^k$ where $f_i^k = f_i^k$ is the distinct set of items.

Result: with a small amount of nemory we will approximate For with high probability. confidence parameter.

Pr[$|F_6-F_6| \le 5.F_6$] > 1-8.

Exercise parameter

Choose a radom hash knotion $h: [m] \rightarrow [M]$ $M=m^3$.

Choose a radom hash knotion $h: [m] \rightarrow [M]$ $M=m^3$.

Note: ensures that the probability of a collision is very small $(\leq \frac{1}{m})$.

Bosic Idea: Let t = c c = constant. (TBD)

Apply $h(q_i)$, and maintain $\frac{m_i}{V}$ $V \equiv \max_i \frac{1}{2} \frac{1$

Output $F_0 = \frac{tM}{V}$.

ai h(ai) h(ai) h(ap) h(ap) M2 smalled values , V = h(ai)

Suppose Fo > (I+E) Fo. let b, b2., bp be a listing of

The Fo distinct values

A (bi), h(b2) - h(bpo)

contains of elements smaller than V.

$$\frac{\pm M}{V}$$
 > (HE) Fo \Rightarrow $V < \frac{\pm M}{F_0(1+\epsilon)}$

What is $Pr[h(bi)] < \frac{tM}{Fo(1+\epsilon)}$?

If h(bi) is uniforly dishribted, then it is $\frac{t}{Fo(1+\epsilon)}$

We have Fo (pairwise indep.) events happening. Each event has prob $p = \langle \frac{t}{Fo(1+\epsilon)} \rangle$. What is the chance that >t happen?

Let
$$X_i = 1$$
 iff $h(bi) < \frac{+M}{F_b(H_E)}$

= 0 otherwise

$$E[X_i] < \frac{t}{f_0(1+\epsilon)}$$
 $E[\underbrace{\xi}_{X_i}] < \frac{t}{1+\epsilon}$

Let
$$Y = \begin{cases} \frac{6}{5} \\ \frac{2}{1+\epsilon} \end{cases}$$

$$E[Y] < \frac{t}{1+\epsilon}$$

 $Vor[Y] = \begin{cases} Fo \\ Vor[Xi] \end{cases} \begin{cases} \frac{t}{1+\epsilon} \end{cases}$ [THIS MEEDS "PAIRMSE INDEPENDENCE"] $P_F(XAY) = P_F(X) \cdot P_F(Y)$

Note that vor [xi] is actually P(I-P). BECXY] = E[XY] = E[X] = E[X] = E[XY] =

Use Chebyshev's Bound

$$Pr\left[|Y-E(Y)| >, a \right] \leq \frac{Vor\left[Y \right]}{a^2}$$

$$\Rightarrow R\left[|Y-\frac{t}{1+\epsilon}| > \alpha\right] \leq \frac{\frac{t}{1+\epsilon}}{a^2}$$

$$Pr[Y/t] \le Pr[|Y-\frac{t}{HE}| > \frac{t-E}{1+E}] \le \frac{\frac{t}{HE}}{\frac{t^2 E^2}{(1+E)^2}} = \frac{(1+E)}{t \cdot E^2}$$

Since
$$t = \frac{c}{\xi^2}$$
 we get $\frac{1+\xi}{c}$.

Similer proof when Fo < (1+E) Fo.

$$\frac{\text{Defn}}{\text{Defn}} \quad \text{Var}[X] = \mathbb{E}[(X - \mu_X)^2] = \mathbb{E}[X^2] - (\mu_X)^2 \qquad \mu_X = \mathbb{E}[X]$$

$$(\text{easy proof})$$

$$= E \left[(X+Y-E(X+Y))^{2} \right]$$

$$= E \left[(X-MX)+(Y-MY))^{2} \right] = E \left[(X-MX)^{2} \right] + E \left[(Y-MY)^{2} \right]$$

$$+ 2 E \left[(X-MX)(Y-MY) \right]$$