Name:	
VIP ID:	

- Write your name and your VIP ID in the space provided above.
- The test has twelve (12) pages, including this one.
- You have 150 minutes to complete it.
- Each problem is worth 5 points.
- There is an extra page containing a extra credit problem worth 20 points.
- Enter your answer in the box(es) provided.
- You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- No books, notes or calculators may be used on this test.

Problem 1 (5 pts). Find the distance d from the point (3,7,-5) to the z-axis.

$$d =$$

Problem 2 (5 pts). Find an exact expression for the angle θ between the vectors $\mathbf{v} = \langle 3, -1, 5 \rangle$ and $\mathbf{w} = \langle -2, 4, 3 \rangle$.

$$\theta =$$

Problem 3 (5 pts). Find the length ℓ of the curve $r(t) = i + t^2 j + t^3 k$ for $0 \le t \le 1$.

$$\ell =$$

Problem 4 (5 pts). At what points does the helix $r(t) = \langle \sin t, \cos t, t \rangle$ intersect the sphere $x^2 + y^2 + z^2 = 5$?

points:

Problem 5 (5 pts). Find a unit vector v that is orthogonal to both i + j and i + k.

$$v =$$

Problem 6 (5 pts). Determine whether the points A = (0, -5, 5), B = (1, -2, 4) and C = (3, 4, 2) lie on a straight line.

Problem 7 (5 pts). Find parametric equations for the line of intersections of the planes x+y+z=1 and x+2y+2z=1.

$$\theta =$$

Problem 8 (5 pts). Sketch the domain of $f(x,y) = \frac{\sqrt{4-x^2}}{y^2+3}$.

Problem 9 (5 pts). Evaluate the limit, if it exists, or show that the limit does not exist.

$$\lim_{(x,y)\to(0,0)} \frac{6x^3y}{2x^4 + y^4}$$

Problem 10 (5 pts). Find the first partial derivatives of the function $f(x, y, z, t) = \frac{xy^2}{t+2z}$

Problem 11 (5 pts). Use the method of Lagrange multipliers to find the dimensions of a rectangle with perimeter 250 cm and maximum area.

width:

height:

Problem 12 (5 pts). Recall the formula for the volume of a right circular cone of radius r and height h. Suppose that the height decreases from 20 to 19.95 inches, and the radius increases from 4 to 4.05 inches. Compare the change in volume of the cone with an approximation of this change using a total differential.

$$dV =$$

$$\Delta V =$$

Problem 13 (5 pts). Find an equation for the tangent plane to the surface $z = xe^{-y}$ at the point P = (1, 0, 1).

tangent plane:

Problem 14 (5 pts). Find the absolute extrema of the function f(x,y) = xy - x - 3y on the triangular region R with vertices (0,0), (0,4) and (5,0).

absolute max:

absolute min:

Problem 15 (5 pts). Evaluate $\iint_R y \sin(xy) dA$, where $R = [1, 2] \times [0, \pi]$.

Problem 16 (5 pts). Find the volume of the solid S that is bounded by the elliptic paraboloid $x^2 + 2y^2 + z = 16$, the planes x = 2 and y = 2, and the three coordinate planes.

Problem 17 (5 pts). Evaluate the integral $\iint_D \sin(y^2) dA$ where D is the triangle with vertices (0,0), (1,1) and (0,1).

Problem 18 (5 pts). Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$, above the xy-plane, and inside the cylinder $x^2 + y^2 = 2x$.

Problem 19 (5 pts). Evaluate $\iiint_E \sqrt{x^2 + z^2} \, dV$, where E is the region bounded by the paraboloid $y = x^2 + z^2$ and the plane y = 4.

Problem 20 (5 pts). Evaluate $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{2} (x^2+y^2) dz dy dx$ by passing the description of the region E in terms of cylindrical coordinates (Trust me, it is **way** easier than evaluating the integral above directly)

Problem 21 (Extra credit—20 pts). A transformation is defined by the equations $x = u^2 - v^2$, y = 2uv.

- (a) Find the image of the square $S = \{(u, v) : 0 \le u \le 1, 0 \le v \le 1\}$, and sketch it.
- (b) Use the same change of variables to evaluate the integral $\iint_R y \, dA$, where R is the region bounded by the x-axis and the parabolas $y^2 = 4 4x$ and $y^2 = 4 + 4x$, $y \ge 0$.

$\iint_{R} y dA =$		
---------------------	--	--