Optymalizacja jednowymiarowa Metody zerowego rzędu Metody pierwszego rzędu Metody drugiego rzędu Uzupełnienia

METODY OBLICZENIOWE OPTYMALIZACJI

2

Arkadiusz Tomczyk

Instytut Informatyki Politechniki Łódzkiej

23 marca 2011

Optymalizacja kierunkowa

Funkcja jednowymiarowa argumentu $\lambda \in \mathbb{R}$ wyznaczana dla punktu $\mathbf{x} \in \mathbb{R}^n$ w kierunku $\mathbf{d} \in \mathbb{R}^n$:

$$\phi(\lambda) = f(\mathbf{x} + \lambda \mathbf{d})$$

Oznaczenia

$$\phi \leftrightarrow f$$

$$\lambda \leftrightarrow x$$

Unimodalność

$$p > l > x^* \Rightarrow f(l) < f(p)$$

Wyznaczanie przedziałów unimodalności

W przypadku funkcji ciągłej można dokonywać próbkowania w celu znalezienia takiej trójki $a \in \mathbb{R}, \, x \in \mathbb{R}$ i $b \in \mathbb{R}, \, \text{że } f(a) > f(x)$ i f(b) > f(x). Wówczas można podejrzewać, że w przedziale [a,b] funkcja jest unimodalna. Większa dokładność próbkowania wpływa na skuteczność wyznaczania przedziału unimodalności lecz wydłuża proces znajdowania tego przedziału (zwiększa się liczba wyznaczeń wartości funkcji celu).

Ze względu na sposób wyznaczania rozwiązania

 Metody wyznaczające przedział zawierający minimum oparte o założenie unimodalności:

$$a < l < p < b \text{ i } f(l) < f(p) \Rightarrow x^* \in [a,p]$$

$$a < l < p < b \text{ i } f(l) > f(p) \Rightarrow x^* \in [l,b]$$

$$a < l < p < b \text{ i } f(l) = f(p) \Rightarrow x^* \in [l,p]$$

 Metody wyznaczające przedział zawierający minimum oparte o znajdowanie miejsc zerowych pierwszej pochodnej:

$$a < c < b \text{ i } f'(a)f'(c) < 0 \Rightarrow x^* \in [a, c]$$

$$a < c < b \text{ i } f'(c)f'(b) < 0 \Rightarrow x^* \in [c, b]$$

• Metody wyznaczające kolejne przybliżenia minimum.

Ze względu na wymagania dotyczące funkcji celu

- Metody zerowego rzędu.
- Metody pierwszego rzędu.
- Metody drugiego rzędu.

Warunki stopu

- Zadana liczba iteracji.
- Brak zmian.
- Warunek na długość przedziału:

$$b_k - a_k < \epsilon$$

Warunek na wartość pochodnej:

$$|f'(x_k)| < \epsilon$$

Metoda przedziałowania

- Oceń wartości funkcji w punkcie początkowym i w punkcie oddalonym o wybrany krok.
- Jeśli wartość w punkcie oddalonym o zadany krok jest mniejsza to sprawdzaj w tym samym kierunku aż do znalezienia punktu zwiększającego wartość funkcji celu (punkt ostatni i drugi od końca wyznaczają przedział zawierający minimum).
- Jeśli wartość w punkcie oddalonym o zadany krok jest większa sprawdź wartość funkcji w kierunku przeciwnym zgodnie z przyjętym krokiem.
- Jesli wartość w punkcie wyznaczonym w kierunku przeciwnym jest większa od wartości w punkcie początkowym to punkty po obu stronach punktu początkowego wyznaczają przedział zawierający minimum.
- Jeśli wartość w punkcie wyznaczonym w kierunku przeciwnym jest mniejsza od wartości w punkcie początkowym to sprawdzaj w tym samym kierunku aż do znalezienia punktu zwiększającego wartość funkcji celu (punkt ostatni i drugi od końca wyznaczają przedział zawierający minimum).
- Powyższe kroki powtórz dla dodwolnego krańca wyznaczonego przedziału ze zredukowaną długością kroku.

Metoda dychotomii

$$l_k = b_k - d_k(b_k - a_k)$$

$$p_k = a_k + d_k(b_k - a_k)$$

$$d_k \in (0,1)$$

- ullet W metodzie dychotomii d_k ma zwykle stałą wartość.
- W każdej iteracji konieczne jest dwukrotne wyznaczenie wartości funkcji celu.
- ullet Redukcja długości przedziału w każdym kroku wynosi $1-d_k$.

Metoda złotego podziału

$$l_k = b_k - \tau(b_k - a_k)$$
$$p_k = a_k + \tau(b_k - a_k)$$
$$\tau = \frac{\sqrt{5} - 1}{2} \approx 0.618$$

$$b_k - a_k = \tau^{k-1}(b_1 - a_1)$$

- Jedno wyznaczanie funkcji celu.
- Redukcja długości przedziału w każdym kroku wynosi $1-\tau$.

Metoda Fibonacciego

$$l_k = b_k - \frac{F_{n-k}}{F_{n-k+1}}(b_k - a_k)$$

$$p_k = a_k + \frac{F_{n-k}}{F_{n-k+1}}(b_k - a_k)$$

$$F_0 = 1, F_1 = 1, \dots, F_n = F_{n-1} + F_{n-2}$$

$$b_k - a_k = \frac{F_{n-k+1}}{F_n} (b_1 - a_1)$$
$$\lim_{n \to \infty} \frac{F_{n-1}}{F_n} = \tau$$

- Jedno wyznaczanie funkcji celu i szybko redukowana długość przedziału.
- Z góry należy ograniczyć ilość iteracji.
- Redukcja długości przedziału w każdym kroku wynosi $1 \frac{F_{n-k}}{F_{n-k+1}}$.

Metoda bisekcji

$$c_k = \frac{a_k + b_k}{2}$$

- Odpowiada poszukiwaniu miejsca zerowego pochodnej metodą bisekcji.
- Wykorzystuje wartości pochodnych w celu zawężenia przedziału.

Metod siecznych

$$c_k = a_k - f'(a_k) \frac{b_k - a_k}{f'(b_k) - f'(a_k)}$$

Uwagi

 Odpowiada poszukiwaniu miejsca zerowego pochodnej metodą siecznych zwanej również regułą falsi.

Metod quasi-Newtona

$$x_{k+1} = x_k - f'(x_k) \frac{x_k - x_{k-1}}{f'(x_k) - f'(x_{k-1})}$$

- Jest to szczególny wypadek metody wielowymiarowej, w której stosowane są metody przybliżonego wyznaczania odwrotności hesjanu w oparciu o wartości pochodnych cząstkowych.
- Istnieje ścisły związek tej metody zarówno z metodą siecznych, jak i z metodą Newtona.

Metoda Newtona

$$x_{k+1} = x_k - f'(x_k) \frac{1}{f''(x_k)}$$

- Odpowiada poszukiwaniu miejsca zerowego pochodnej metodą stycznych.
- Można ją wyprowadzić z rozwinięcia w szereg Taylora pochodnej funkcji celu.

Inne metody

- Metoda interpolacji kwadratowej
- Metoda interpolacji sześciennej

Minimum

$$x^* = \frac{a_k + b_k}{2}$$