	 4 Loss=hinge, dual=False, fit_intercept=False 5 Dual=False, class_weight=Dict 6 Penalty=I1 7 Penalty=I1, dual = False, class_weight=Dict import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVC, SVC
	<pre>from sklearn.svm import LinearSVC, SVC from sklearn.metrics import confusion_matrix, classification_report, roc_curve import pickle X_train_smt = pickle.load(open("saved_feats/ShuffleSplit_X_train_smt", "rb")) X_test = pickle.load(open("saved_feats/ShuffleSplit_X_test", "rb")) y_train_smt = pickle.load(open("saved_feats/ShuffleSplit_y_train_smt", "rb")) y_test = pickle.load(open("saved_feats/ShuffleSplit_y_test", "rb")) # FORMATO DE PLOTS plt.style.use('bmh')</pre> Parámetros por defecto
In [2]:	<pre>clf_svc = LinearSVC(penalty='12', loss='squared_hinge', dual=True, tol=0.0001, C=1.0, multi_class='ovr',</pre>
	Predicted classes: ['Negative' 'Neutral' 'Positive'] Average accuracy: 88.05805621899687 Train accuracy: 88.05805621899687 CONFUSION MATRIX [[52
In [4]:	<pre>fpr = {} tpr = {} tpr = {} thresh = {} fpr[0], tpr[0], thresh[0] = roc_curve(y_test, pred_prob_svc[:, 0], pos_label='Negative') fpr[1], tpr[1], thresh[1] = roc_curve(y_test, pred_prob_svc[:, 1], pos_label='Neutral') fpr[2], tpr[2], thresh[2] = roc_curve(y_test, pred_prob_svc[:, 2], pos_label='Positive') # plotting plt.plot(fpr[0], tpr[0], linestyle='',</pre>
Out[4]:	color='blue', label='Positive vs Rest') plt.title('Multiclass ROC curve') plt.ylabel('False Positive Rate') plt.ylabel('True Positive rate') plt.legend(loc='best') <pre> </pre> <pre></pre>
l In [5]:	Clf_svc_2 = LinearSVC(penalty='l2', loss='hinge', dual=True, tol=0.0001, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0, random_state=clf_svc_2.fit(X_train_smt, y_train_smt) pred_svc_2 = clf_svc_2.predict(X_test) estim_prob_svc_2 = np.array(clf_svc_2.decision_function(
In [6]:	<pre>/usr/local/lib/python3.10/dist-packages/sklearn/svm/_base.py:1225: ConvergenceWarning: Liblinear failed to verge, increase the number of iterations. warnings.warn(print('Predicted classes:', clf_svc_2.classes_) print('Average accuracy:', np.mean(pred_svc_2 == y_test)*100) print('Train accuracy:', (clf_svc_2.score(</pre>
	Average accuracy: 87.34153959213668 Train accuracy: 96.29082068467048 Test accuracy: 87.34153959213668 CONFUSION MATRIX [[53
	<pre>fpr = {} tpr = {} tpr = {} thresh = {} fpr[0], tpr[0], thresh[0] = roc_curve(y_test, pred_prob_svc_2[:, 0], pos_label='Negative') fpr[1], tpr[1], thresh[1] = roc_curve(y_test, pred_prob_svc_2[:, 1], pos_label='Neutral') fpr[2], tpr[2], thresh[2] = roc_curve(y_test, pred_prob_svc_2[:, 2], pos_label='Positive') # plotting plt.plot(fpr[0], tpr[0], linestyle='', color='orange', label='Negative vs Rest') plt.plot(fpr[1], tpr[1], linestyle='', color='green', label='Neutral vs Rest') plt.plot(fpr[2], tpr[2], linestyle='', color='blue', label='Positive vs Rest') plt.title('Multiclass ROC curve')</pre>
Out[7]:	plt.Xlabel('False Positive Rate') plt.ylabel('True Positive rate') plt.legend(loc='best') <pre> </pre> <pre> </pre> <pre> <pre> <pre></pre></pre></pre>
In [8]:	Dual = False, fit_intercept=False clf_svc_3 = LinearSVC(penalty='l2', loss='squared_hinge', dual=False, tol=0.0001, C=1.0, multi_class='ovr' fit_intercept=False, intercept_scaling=1, class_weight=None, verbose=0, random_stateclf_svc_3.fit(X_train_smt, y_train_smt) pred_svc_3 = clf_svc_3.predict(X_test) estim_prob_svc_3 = np.array(clf_svc_3.decision_function(
	<pre>X_test, y_test))*100) print('\n CONFUSION MATRIX') print(confusion_matrix(y_test, pred_svc_3)) print('\n CLASSIFICATION REPORT') print(classification_report(y_test, pred_svc_3)) Predicted classes: ['Negative' 'Neutral' 'Positive'] Average accuracy : 87.58037846775674 Train accuracy : 97.2320783231487 Test accuracy : 87.58037846775674 CONFUSION MATRIX [[56</pre>
n [10]:	Positive 0.97 0.91 0.94 5074 accuracy 0.88 5443 macro avg 0.49 0.58 0.52 5443 weighted avg 0.92 0.88 0.89 5443 fpr = {} tpr = {} thresh = {} fpr[0], tpr[0], thresh[0] = roc_curve(y_test, pred_prob_svc_3[:, 0], pos_label='Negative') fpr[1], tpr[1], thresh[1] = roc_curve(y_test, pred_prob_svc_3[:, 1], pos_label='Neutral') fpr[2], tpr[2], thresh[2] = roc_curve(y_test, pred_prob_svc_3[:, 2], pos_label='Positive') # plotting plt.plot(fpr[0], tpr[0], linestyle='', color='orange', label='Negative vs Rest')
ut[10]:	plt.plot(fpr[1], tpr[1], linestyle='',
L n [11]:	Description of the content of the co
n [12]:	<pre>estim_prob_svc_4 = np.array(clf_svc_4.decision_function(</pre>
n [13]:	CONFUSION MATRIX [[53 33 33] [37 101 112] [84 415 4575]] CLASSIFICATION REPORT
ut[13]:	<pre>thresh = {} fpr[0], tpr[0], thresh[0] = roc_curve(y_test, pred_prob_svc_4[:, 0], pos_label='Negative') fpr[1], tpr[1], thresh[1] = roc_curve(y_test, pred_prob_svc_4[:, 1], pos_label='Neutral') fpr[2], tpr[2], thresh[2] = roc_curve(y_test, pred_prob_svc_4[:, 2], pos_label='Positive') # plotting plt.plot(fpr[0], tpr[0], linestyle='',</pre>
	Multiclass ROC curve 1.0 0.8 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate
n [14]:	<pre>Dual=False, class_weight=Dict clf_svc_5 = LinearSVC(penalty='l2', loss='squared_hinge', dual=False, tol=0.0001, C=1.0, multi_class='ovr'</pre>
	Predicted classes: ['Negative' 'Neutral' 'Positive'] Average accuracy: 89.10527282748484 Train accuracy: 97.13844536434719 Test accuracy: 89.10527282748484 CONFUSION MATRIX [[50
n [16]:	<pre>fpr = {} tpr = {} tpr = {} thresh = {} fpr[0], tpr[0], thresh[0] = roc_curve(</pre>
ut[16]:	plt.legend(loc='best') <pre></pre>
n [17]:	<pre>Penalty=I1, dual=False, fit_intercept=False clf_svc_6 = LinearSVC(penalty='l1', loss='squared_hinge', dual=False, tol=0.0001, C=1.0, multi_class='ovr'</pre>
n [19]:	<pre>print(confusion_matrix(y_test, pred_svc_6)) print('\n CLASSIFICATION REPORT') print(classification_report(y_test, pred_svc_6)) Predicted classes: ['Negative' 'Neutral' 'Positive'] Average accuracy: 87.13944515891971 Train accuracy: 97.70352848413168 Test accuracy: 87.13944515891971 CONFUSION MATRIX [[53 26 40] [37 92 121] [96 380 4598]] CLASSIFICATION REPORT</pre>
	<pre>accuracy</pre>
ut[19]:	plt.xlabel('False Positive Rate') plt.ylabel('True Positive rate') plt.legend(loc='best') <pre></pre>
	Penalty=I1, dual = False, class_weight=Dict (BEST RESULTS) clf_svc_7 = LinearSVC(penalty='l1', loss='squared_hinge', dual=False, tol=0.0001, C=1.0, multi_class='ovr' fit_intercept=True, intercept_scaling=1, class_weight={'Negative': 0.2, 'Neutral': 6 clf_svc_7.fit(X_train_smt, y_train_smt) pred_svc_7 = clf_svc_7.predict(X_test) estim_prob_svc_7 = np.array(clf_svc_7.decision_function(
n [20]:	<pre>print('Average accuracy :', np.mean(pred_svc_7 == y_test)*100)</pre>
n [20]:	<pre>print('Average accuracy :', np.mean(pred_svc_7 == y_test)*100) print('Train accuracy :', (clf_svc_7.score(</pre>
n [20]:	<pre>print('Average accuracy :', np.mean(pred_svc_7 == y_test)*100) print('Train accuracy :', (clf_svc_7.score(</pre>