אלגברה לינארית (2) ־ סמסטר ב' תשע'ט ־ תרגיל 15

התרגיל אינו להגשה, אך החומר בתרגיל הוא חלק מהחומר לבחינה הסופית!

- . $\det B = c^2 \det A$ כך ש־ $0 \neq c \in \mathbb{F}$ כיים כי קיים או לאו. הוכיחו $A, B \in M_n(\mathbb{F})$ מטריצות ומטריצות. 1
 - . $g\left(\left[egin{array}{c} x_1\\ x_2\\ x_3 \end{array}
 ight], \left[egin{array}{c} y_1\\ y_2\\ y_3 \end{array}
 ight]
 ight)=\sum_{i=1}^3\sum_{j=1}^3x_iy_j$ מוגדרת ע'י מוגדרת $g:\mathbb{R}^3 imes\mathbb{R}^3 o\mathbb{R}$ מוגדרת מוגדרת ע'י מו

$$v=\left[egin{array}{cccc}1\\0\\-1\end{array}
ight]$$
 (ב $v=\left[egin{array}{cccc}1\\0\\1\end{array}
ight]$ (א כאשר א $v=\left[egin{array}{cccc}1\\0\\1\end{array}
ight]$ ביחס ל־ g כאשר את המשלים הניצב של $Span\{v\}$ ביחס ל־

- . V של U ממימד סופי מעל שדה $g:V\times V\to\mathbb{R}$ תבנית סימטרית בילינארית , \mathbb{F} העל שדה סופי מעל ממימד מיונים מ'ו W=U הוא המשלים הניצב של Z ביחס ל־Z הוא המשלים הניצב של ביחס ל־Z ביחס ל־Z הוא המשלים הניצב של ביחס ל־
 - . פונקציונלים לינאריים פונקציונלים וה $l_1,l_2{:}V\to \mathbb{F}$ ור שדה של סופי מעל ממימד מ'ו מ'ו יהי

. $g(v,w)=l_1(v)l_2(w)$ מוגדרת ע'י מוגדרת $g{:}\ V\times V\to \mathbb{F}$ העתקה דו־מקומית

. V א) הוכיחו כי g היא תבנית בילינארית על

. $w \in V$ לכל g(v,w) = 0 כך ש
ד $0 \neq v \in V$ הוכיחו כי הוכיחו . $\dim V \geqslant 2$ ש

. V מ'ו מעל שדה \mathbb{F} כך ש־f ב \mathbb{F} תהי \mathbb{F} תהי f תבנית בילינארית על היי גו מעל שדה \mathbb{F} כך ש־

$$A=\left[egin{array}{ccc} 1 & 3 & 0 \ 3 & 9 & 2 \ 0 & 2 & 0 \end{array}
ight]\in M_3(\mathbb{R})$$
 מתונה מטריצה .6

אלכסונית. P^tAP כך שהמטריצה ארכסונית ראכסונית או מטריצה הפיכה מטריצה או מטריצה או

 $\{-1,0,1\}$ ב) מצאו מטריצה הפיכה על שייך קהמטריצה Q^tAQ אלכסונית כך על פארכסון אייך לקבוצה (Q^tAQ כך שהמטריצה $S^tAS=I_3$ כך שמתקיים או הפיכה ($S^tAS=I_3$ כך שמתקיים בימת מטריצה הפיכה ($S^tAS=I_3$

$$(\mathbb{C}$$
 או או בשאלה בשאלה לב שהשדה . $A=\left[\begin{array}{ccc}1&3&0\\3&9&2\\0&2&0\end{array}\right]\in M_3(\mathbb{C})$ מתונה מטריצה .7

$$S^tAS=\left[egin{array}{ccc} 1&0&0\\0&1&0\\0&0&0 \end{array}
ight]$$
 ב) בי שמתקיים כך אפיכה $S\in M_3(\mathbb C)$ בי האם קיימת מטריצה הפיכה כה

כאשר \mathbb{F}_5 כאשר ו־ B ו־ A ו־ A האם $A,B\in M_2(\mathbb{F}_5)$ מתונות מטריצות .8

אטלה 1 לעיל. ?
$$A=I_2$$
 , $B=\left[egin{array}{cc} 2 & 0 \\ 0 & 1 \end{array}
ight]$ (ג $A=I_2$, $B=I_2$, $B=I_2$, $B=I_2$, $B=I_2$), $B=I_2$ (א

. מטריצה סימטרית. רובה $A\in M_n(\mathbb{F})$ ותהי ותהי רובה כך ש־ שדה כך ש־ פריצה יהי .9

. עם P^tAP כך שהמטריצה לבסונית. עם $\det(P) \in \{-1,1\}$ עם עם אלכסונית מטריצה ליימת מטריצה אלכסונית.

.
$$q\left(\left[egin{array}{c} x_1\\ x_2\\ x_3 \end{array}
ight]
ight)=x_1^2-4x_1x_2+3x_2^2-6x_2x_3-9x_3^2$$
 .10 .10 .10

הגדירו משתנים חדשים התבנית ביטוויים לינאריים בי x_1,x_2,x_3 כך שבמשתנים החדשים התבנית הריבועית מיטוויים לינאריים בי $a,b,c\in\{-1,0,1\}$ עם , $ax'^2+by'^2+cz'^2$

- . q(v)=0 כך ש־ $0 \neq v \in V$ מ'ו מעל $0 \neq v \in V$ תבנית ריבועית. הוכיחו $0 \neq v \in V$ נותהי $0 \neq v \in V$ ההי $0 \neq v \in V$ מ'ו מעל
- . q(w)=0 די q(u)=0 כך שי $u,w\in V$ תבנית ריבועית. תונים $q:V o \mathbb{F}$ ו־ $q:V o \mathbb{F}$ ו־ (מ') מ'ו מעל שדה $q:V o \mathbb{F}$

q(v)=0 אז $v\in \mathrm{Span}\,\{u,w\}$ ב) אם ב q(v)=0 אז $v\in \mathrm{Span}\,\{u\}$ אם אם פריכו את הפריכו את הפריכו את אם פריכו אם הבאות: