LLOV: A FAST STATIC DATA-RACE CHECKER FOR OPENMP PROGRAMS

Utpal Bora¹ and Santanu Das¹ and Pankaj Kukreja¹ and Saurabh Joshi¹ and Ramakrishna Upadrasta¹ and Sanjay Rajopadhye²

¹Computer Science and Engineering, IIT Hyderabad ²Computer Science and Engineering, Colorado State University

Data Race Definition

Theorem 1 (Data Race) An execution of a concurrent program is said to have a data race when two different threads access the same memory location, these accesses are not protected by a mutual exclusion mechanism (e.g., locks), the order of the two accesses is non-deterministic and one of these accesses is a write.

Problem Statement

Data races are common source of bugs in parallel programs. Specifying parallelism with frameworks such as OpenMP is relatively easy, but data races in these programs are an important source of bugs. There exists dynamic bug detection tools for these programs. However, they take a lot of time to report bugs or miss data races altogether. In this paper, we propose LLOV, a fast, language agnostic, and static data race checker for OpenMP programs.

Methodology

Figure 1: Dependence Polyhedra

Figure 2: Projection of the Dependence Polyhedra on i-dimension

Figure 3: Projection of the Dependence Polyhedra on j-dimension

Workflow

Fig. 1: LLOV Flow Diagram

Results

Table 1: Race detection tools with the version numbers used for comparison

Tools	Source	Version / Commit
HELGRIND [5]	Valgrind	3.13.0
VALGRIND DRD [4]	Valgrind	3.13.0
TSAN-LLVM [3]	LLVM	6.0.1
ARCHER [1]	git master branch	fc17353
SWORD [2]	git master branch	7a08f3c

Table 2: Maximum number of Races reported by different tools in DataRaceBench

Tools	Race: Yes		Race: No		Coverage/116	
10015	TP	FN	TN	FP	Coverage/110	
HELGRIND	56	3	2	55	116	
VALGRIND DRD	56	3	26	31	116	
TSAN-LLVM	57	2	2	55	116	
ARCHER	56	3	2	55	116	
SWORD	47	4	24	4	79	
LLOV	48	2	36	5	91	

Table 3: Performance of the tools on DataRaceBench 1.2

Tools	Precision	Recall	Accuracy	F1 Score	Diagnostic odds rati		
HELGRIND	0.50	0.95	0.50	0.66	0.68		
VALGRIND DRD	0.64	0.95	0.71	0.77	15.66		
TSAN-LLVM	0.51	0.97	0.51	0.67	1.04		
ARCHER	0.50	0.95	0.50	0.66	0.68		
SWORD	0.92	0.92	0.90	0.92	70.50		
LLOV	0.91	0.96	0.92	0.93	172.80		

Results

Figure 4: DataRaceBench v1.2 total execution time by different tools on logarithmic scale

Figure 5: DataRaceBench v1.2 total time taken by different tools for common 61 kernels on logarithmic scale

Conclusion

We propose and implemented a fast, static data-race checker for OpenMP programs. LLOV is freely available for download.

- Link: https://github.com/utpalbora/llov
- Blog: https://compilers.cse.iith.ac.in/projects/llov/
- DataRaceBench FORTRAN: https://github.com/IITH-Compilers/drb_fortran

Acknowledgements

We thank Tobias Grosser, Johannes Doerfert, Michael Kruse for their help with the initial version of Polly as an analysis pass, which we extended for this work. We also thank Govindarajan Ramaswamy and V Krishna Nandivada for their feedback on this work.

References

- [1] Simone Atzeni et al. "ARCHER: effectively spotting data races in large OpenMP applications". In: *Parallel and Distributed Processing Symposium, 2016 IEEE International*. IEEE. Chicago, IL, USA: IEEE, 2016, pp. 53–62.
- [2] Simone Atzeni et al. "Sword: A bounded memory-overhead detector of OpenMP data races in production runs". In: *2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS)*. IEEE. Vancouver, BC, Canada: IEEE, 2018, pp. 845–854.
- [3] Konstantin Serebryany and Timur Iskhodzhanov. "ThreadSanitizer: Data Race Detection in Practice". In: *Proceedings of the Workshop on Binary Instrumentation and Applications*. WBIA '09. New York, New York, USA: ACM, 2009, pp. 62–71. ISBN: 978-1-60558-793-6. DOI: 10.1145/1791194.1791203. URL: http://doi.acm.org/10.1145/1791194.1791203.
- [4] Valgrind-project. *DRD: a thread error detector*. http://valgrind.org/docs/manual/drd-manual.html. [Online; accessed 08-May-2019]. 2007.
- [5] Valgrind-project. Helgrind: a thread error detector. http://valgrind.org/docs/manual/