

Code Generation as a Dual Task of Code Summarization

Bolin Wei¹, Ge Li¹, Xin Xia², Zhiyi Fu¹, Zhi Jin¹

¹Key Laboratory of High Confidence Software Technologies (Peking University) Ministry of Education, China; ¹Software Institute, Peking University, China ²Faculty of Information Technology, Monash University, Australia

Introduction

Code summarization (CS) **Code Generation** and code generation (CG) are two crucial tasks in **Dual Constraints** the field of software development. None of Code Snippets Code Comments the previous studies **Code Summarization** before have considered

the relations between the two tasks or exploited the relations to improve each other. Thus, we design a dual learning framework to train a CS and a CG model simultaneously to exploit the duality of them. Besides a probabilistic correlation, we design a novel dual constraint about attention mechanism.

CS & CG Model

Dual Constraints

Probability:

$$p(x|y) * p(y) = p(y|x) * p(x)$$

$$\log p(x) + \log p(y|x) - \log p(x|y) - \log p(y)$$

Attention Weights:

$$b_i = softmax(A_{xy}^i)$$
 from CS
 $b'_i = softmax(A_{yx}^i)$ from CG

Algorithm

Algorithm 1 Algorithm Description

Input: Language models $\hat{P}(x)$ and $\hat{P}(y)$ for any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$; hyper parameters λ_{dual1} , λ_{dual2} , λ_{att1} and λ_{att2} ; optimizers opt1 and opt2repeat

Get a minibatch of k pairs $\langle (x_i, y_i) \rangle_{i=1}^k$; Calculate the gradients for θ_{xy} and θ_{yx} .

$$G_{xy} = \nabla_{\theta_{xy}} (1/k) \sum_{i=1}^{\kappa} [l_{xy} + \lambda_{dual1} l_{dual} + \lambda_{att1} l_{att}];$$

$$G_{yx} = \nabla_{\theta_{yx}} (1/k) \sum_{i=1}^{k} [l_{yx} + \lambda_{dual2} l_{dual} + \lambda_{att2} l_{att}];$$

Update θ_{xy} and θ_{yx} $\theta_{xy} \leftarrow opt_1(\theta_{xy}, G_{xy}), \ \theta_{yx} \leftarrow opt_2(\theta_{yx}, G_{yx})$ until models converged

CS Results

Table 2: The overall performance of our CS models compared with baselines

Methods	Java			Python		
	BLEU	METEOR	ROUGE-L	BLEU	METEOR	ROUGE-L
CODE-NN	27.60	12.61	41.10	17.36	9.288	37.81
DeepCom	39.75	23.06	52.67	20.78	9.979	37.35
Tree2Seq	37.88	22.55	51.50	20.07	8.957	35.64
RL+Hybrid2Seq	38.22	22.75	51.91	19.28	9.752	39.34
API+CODE	41.31	23.73	52.25	15.36	8.571	33.65
Basic Model	41.01	23.26	51.64	20.47	10.38	38.77
Dual Model	42.39	25.77	53.61	21.80	11.14	39.45

Our dual model obviously outperforms all the baselines on three metrics at the same time. The results of Wilcoxon Rank Sum test and Cliff's delta both indicate the improvements are significant.

CG Results

Table 3: BLEU scores and percentage of valid code (PoV) on CG task

Methods	Ja	va	Python		
Methous	BLEU	PoV	BLEU	PoV	
SEQ2TREE	13.80	22.6%	4.472	22.7%	
Basic Model	10.86	19.6%	10.43	41.8%	
Dual Model	17.17	27.4%	12.09	51.9%	

Although the BLEU score is very low, dual training can still improve the performance of individually trained basic model, proving the effectiveness of dual training.

Conclusion

We aim to build a framework which uses the CG as a dual task for the CS. We applied two constraints on the dual training loss function. Experimental results show that the dual training process helps the CS and CG model surpass the existing SOTA methods on two datasets.