Nomenclature en chimie minérale

I - Composés avec un élément chimique :

1) Les composés positifs (cations):

 $\mathrm{Mn^{2+}}$ Manganèse $\mathrm{Na^{+}}$ Sodium

2) Les composés neutres :

Cl₂ Dichlore

3) Les composés négatifs (anions) :

 $\begin{tabular}{lll} Br^- & Bromure \\ Cl^- & Chlorure \\ F^- & Fluorure \\ I^- & Iodure \\ \end{tabular}$

N₃ Azoture ou azide

 $0^{2^{-}}$ Oxyde $0_{2}^{2^{-}}$ Peroxyde $S^{2^{-}}$ Sulfure

II - Composés avec deux éléments chimiques :

1) Les composés positifs (cations):

 H_3O^+ Oxonium $NH_4^{\ +}$ Ammonium VO^{2+} Oxovanadium

2) Les composés neutres :

Ag₂O Oxyde d'argent
AlBr₃ Bromure d'aluminium
AlCl₃ (Tri)chlorure d'aluminium

AsH₃ Hydrure d'arsenic
BN Nitrure de Bore
CaCl₂ Chlorure de calcium

CaF₂ Flurure de calcium ou fluorine

CaO Chaux

CIF Fluorure de chlore
CO Monoxyde de carbone
CO₂ Dioxyde de carbone

CN Cyanure

 $\begin{array}{ccc} {\rm CrO_3} & & {\rm Acide\ chromique} \\ {\rm Cr_2O_3} & & {\rm Oxyde\ de\ chrome\ (III)} \\ {\rm CsF} & & {\rm Fluorure\ de\ cesium} \\ {\rm CuCl} & & {\rm Chlorure\ de\ cuivre\ (I)} \\ {\rm FeCl_2} & & {\rm Chlorure\ de\ fer\ (III)} \\ {\rm FeCl_3} & & {\rm Chlorure\ de\ fer\ (II)} \\ \end{array}$

HBr Bromure d'hydrogène ou acide bromhydrique (liquide) HCl Chlorure d'hydrogène ou acide chlorhydrique (liquide)

 $\begin{array}{cc} \text{HgCl} & \text{Chlorure de mercure (II)} \\ \text{HgO} & \text{Oxyde de mercure (II)} \\ \text{Hg}_2\text{O} & \text{Oxyde de mercure (I)} \\ \end{array}$

HI Iodure d'hydrogène ou acide iodhydrique (liquide)

 H_2O Eau

 $\begin{array}{ccc} {\rm H_2S} & & {\rm Dioxyde~de~souffre} \\ {\rm KH} & & {\rm Hydrure~de~potassium} \\ {\rm KO_2} & & {\rm Superxoyde~de~potassium} \end{array}$

 $\begin{array}{ccc} \text{LiH} & & \text{Hydrure de lithium} \\ \text{Li}_2\text{O}_2 & & \text{Peroxyde de lithium} \\ \text{MnO}_2 & & \text{Dioxyde de manganèse} \end{array}$

NH₃ Ammoniac (gaz) ou ammoniaque (liquide)

 NH_4 **Ammonium** NO Oxyde d'azote Dioxyde d'azote NO_2 N_2O Oxyde de diazote Trioxyde de diazote N_2O_3 N_2O_4 Tétr(a)oxyde de diazote N_2O_5 Pent(a)oxyde de diazote NaCl Chlorure de sodium

NaH Hydrure de sodium ou sodium

 $\begin{array}{ccc} \operatorname{NaN_3} & & \operatorname{Azoture} \ \operatorname{de} \ \operatorname{sodium} \\ \operatorname{OsO_4} & & \operatorname{T\'etroxyde} \ \operatorname{d'osmium} \\ \operatorname{PBr_3} & & \operatorname{Tribromure} \ \operatorname{de} \ \operatorname{phosphore} \\ \operatorname{PCl_5} & & \operatorname{Pentachlorure} \ \operatorname{de} \ \operatorname{phosphore} \end{array}$

 ${\rm SnCl_2}$ Chlorure d'étain (II) Ti ${\rm Cl_4}$ Tétrachlorure de titane

TiO₂ Rutile

VCl₅ Pentachlorure de vanadium

ZnI₂ Iodure de zinc

ZnS Sulfure de zinc : Blende ou würtzite

3) Les composés négatifs (anions) :

 CN^{-} Cyanure $C_2O_4^{\ 2^{-}}$ Oxalate

CIO-Hypochlorite CIO₂ Chlorite CIO₃ Chlorate CIO₄ Perchlorate CO_3^{2-} Carbonate CrO₄ Chromate $Cr_2O_7^{2-}$ Dichromate MnO_4^{2-} Manganate MnO_4^- Permanganate

 NH^{2-} Amidure $\mathrm{NO_3}^-$ Nitrate OH^- Hydroxyde $\mathrm{SO_4}^{2-}$ Sulfate

 VO_3^- Métavanadate VO_4^{3-} (Ortho)vanadate

III - Composés avec trois éléments chimiques :

1) Les composés positifs (cations):

 $Ag(NH_3)^+$ Argent diammine $[Fe(H_2O)_6]^{3+}$ Hexaaquofer III

2) Les composés neutres :

Al(HO)₃ Hydroxyde d'aluminium

AlLiH₄ Hydrure de lithium aluminium

BaSO₄ Sulfate de baryum
CaCO₃ Carbonate de calcium
Ca(HO)₂ Sulfate de calcium
CrO₃ Trioxyde de chrome

Cs₂[CuBr₄] Tétrabromocurate de césium

 $\begin{array}{lll} \text{CuSO}_4 & & \text{Sulfate de cuivre} \\ \text{Fe}(\text{CO})_5 & & \text{Fer carbonyle} \\ \text{Fe}(\text{NO}_3)_3 & & \text{Nitrate ferrique} \\ \text{FeOH}_2 & & \text{Hydroxyde de fer (II)} \\ \text{FeOH}_3 & & \text{Hydroxyde de fer (III)} \end{array}$

FeTiO₃ Ilménite

 $\begin{array}{ccc} \text{K}_2\text{CO}_3 & \text{Carbonate de potassium} \\ \text{KBrO}_3 & \text{Bromate de potassium} \\ \text{KCIO}_3 & \text{Chromate de potassium} \\ \text{K}_2\text{Cr}_2\text{O}_7 & \text{Dichromate de potassium} \end{array}$

KOH Potasse

HCN Chlorure de cyanure ou acide cyanhydrique (liquide)

 $\begin{array}{lll} \text{HCIO} & \text{Acide hyppochloreux} \\ \text{HCIO}_2 & \text{Acide chloreux} \\ \text{HCIO}_3 & \text{Acide chlorique} \\ \text{HCIO}_4 & \text{Acide perchlorique} \\ \text{HNO}_3 & \text{Acide nitrique} \\ \text{H}_3\text{PO}_4 & \text{Acide phosphorique} \\ \text{HSO}_4 & \text{Acide sulfurique} \\ \end{array}$

KMnO₄ Permanganate de potassium

 $\begin{array}{ccc} \text{Li}_2\text{CO}_3 & \text{Carbonate de lithium} \\ \text{LiNH}_2 & \text{Amidure de lithium} \\ \text{LiOH} & \text{Hydroxyde de lithium} \\ \text{H}_2\text{CrO}_4 & \text{Acide chromique} \\ \text{MnO(OH)} & \text{Manganite} \\ \end{array}$

NaAlH₄ Tétrahydruroaluminate de sodium

NaOH Soude

 $Na_2S_2O_2$ Tetraoxodisulfate / dithionite de dissodium

Na₂SO₄ Sulfate de sodium

POCl₃ Oxyde trichlorure de phosphore

SOCl₂ Chlorure de thyonyle

3) Les composés négatifs (anions) :

 $[Ag(CN)_2]^-$ Dicyanoargentate I

 $Al(HO)_4^-$ Tétrahydroxoaluminate $[Ag(S_2O_3)_2]^{3-}$ Dithiosulfatoargentate I $[Fe(CN)_6]^{4-}$ Hexacyanoferrate (II) $[Fe(CN)_6]^{3-}$ Hexacyanoferrate (III)

HC₂O₄ Hydrohénoxalate

 $HPO_4^{\ 2^-}$ Hydrogénophosphate $H_2PO_4^{\ -}$ Dihydrogénophosphate

 ${\rm HSO_3}^-$ Hydrogénosulfite ${\rm HSO_4}^-$ Hydrogénosulfate

IV - Composés avec quatre éléments chimiques :

1) Les composés positifs (cations) :

 $[CaCl_2(NH_3)_4]^+$ Dichlorotetraamminecobalt III

2) Les composés neutres :

3) Les composés négatifs (anions) :

V - Composés avec cinq éléments chimiques :

1) Les composés positifs (cations):

2) Les composés neutres :

NaBH₃CN

Cyanoborohydrure de sodium

3) Les composés négatifs (anions) :

VI - Règles générales pour nommer un composé :

1) Composés ioniques binaires :

Ils sont formés d'un cation et d'un anion toujours nommé en premier. Le nom du cation découle de l'élément correspondant, alors que le nom de l'anion est formé en ajoutant le sufixe " ure ".

Auparavant, on utilisait le suffixe " eux " pour l'élément ayant un degré d'oxydation de valeur inférieure et le suffixe " ique " pour un degré d'oxydation de valeur supérieure.

2) Composés ioniques avec des ions polyatomiques :

On ajoute le suffixe " ate " pour le composé le plus stable et le suffixe " ite " pour celui qui contient le moins d'hydrogène.

Si il y a plus de 2 ions, on utilise les préfixes " hypo " (moins de) pour celui qui en a le moins, et " per " (plus de) pour celui qui en a le plus.

3) Composés binaires covalents:

Ils sont constitués d'ions non métalliques. Le premier élément porte le nom de l'élément, tandis que le deuxième élément, toujours nommé en premier, porte le nom de l'anion correspondant. Pour indiquer le nombre d'atome présent, on utilise les préfixes mono / di / tri...

4) Les acides :

Un acide est reconnaissable à la présence d'un hydrogène en début de la formule.

Si l'anion ne contient pas d'oxygène, on ajoute le suffixe " idrique " en phase aqueuse.

Si l'anion contient de l'oxygène, on utilise la racine de l'anion avec un suffixe :

- Si l'anion prend le suffixe " ate ", alors l'acide correspondant prendra le suffixe " (r)ique ".
- Si l'anion prend le suffixe " ite ", alors l'acide correspondant prendra le suffixe " eux ".