CORRIGÉ DU DS N°8

EXERCICE – extrait de CCP PSI 2002 –

1. a) Sur $]-\infty,0[$ et $]0,+\infty[$, (E_0) s'écrit y''-y=0 et donc :

La solution générale de (E_0) sur $]-\infty,0[$ ou $]0,+\infty[$ est $y=A\operatorname{ch} x+B\operatorname{sh} x,\ (A,B)\in\mathbb{R}^2]$.

b) Par conséquent, si f est solution de (E_0) sur \mathbb{R} , il existe (A,B,C,D) dans \mathbb{R}^4 tel que

$$f(x) = \begin{cases} A \operatorname{ch} x + B \operatorname{sh} x & \text{si } x < 0 \\ C \operatorname{ch} x + D \operatorname{sh} x & \text{si } x > 0 \end{cases}$$

et la continuité de f en 0 nécessite A=C, sa dérivabilité en 0 nécessite B=D. Réciproquement, $f:x\mapsto A\operatorname{ch} x+B\operatorname{sh} x$ est solution sur $\mathbb R$:

La solution générale de (E_0) sur \mathbb{R} est $y = A \operatorname{ch} x + B \operatorname{sh} x$, $(A, B) \in \mathbb{R}^2$

2. a) En tant que somme d'une série entière, y est de classe C^{∞} sur]-R,R[avec :

$$\forall x \in]-R, R[, x^2y''(x) = \sum_{k=2}^{\infty} k(k-1)u_k x^k \text{ et } x^2y(x) = \sum_{k=2}^{\infty} u_{k-2} x^k.$$

d'où les relations traduisant le fait que y est solution de (E_n) :

$$(n-n^2)u_0 = (n-n^2)u_1 = 0$$
 et $\forall k \ge 2$ $(k(k-1) + (n-n^2))u_k - u_{k-2} = 0$.

Puisqu'ici $n \ge 2$, $n - n^2$ est non nul et on en déduit : $u_0 = u_1 = 0$.

- **b)** D'après ce qui précède : $\forall k \ge 2 \quad (k-n)(k+n-1)u_k = u_{k-2}$
- c) Pour $k \in [2, n-1]$, on a $(k-n)(k+n-1) \neq 0$ et donc

$$u_k = \frac{u_{k-2}}{(k-n)(k+n-1)}.$$

Comme $u_0 = u_1 = 0$ d'après **I.2.1.**, une récurrence immédiate fournit :

$$\forall k \in \llbracket 0, n-1 \rrbracket \quad u_k = 0 \quad .$$

d) En particulier, $u_{n-1}=0$; or, en remplaçant k par n+2p+1 dans la relation précédente, on obtient :

$$\forall p \in \mathbb{N} \quad u_{n+2p+1} = \frac{u_{n+2p-1}}{(2p+1)(2p+2n)}$$

d'où, toujours par récurrence,

$$\forall p \in \mathbb{N} \ , \ u_{n+2p+1} = 0.$$

e) De même, en remplaçant k par n+2p, on obtient

$$\forall p \in \mathbb{N}^* \quad u_{n+2p} = \frac{u_{n+2p-2}}{2p(2p+2n-1)}.$$

d'où l'on déduit par récurrence :

$$\forall p \in \mathbb{N} \text{ , } u_{n+2p} = \frac{(2n)!}{n!} \cdot \frac{(p+n)!}{p!(2p+2n)!} \cdot u_n$$

f) Compte tenu des résultats précédents, y(x) est de la forme : $y(x) = x^n \sum_{p=0}^{\infty} u_{n+2p} x^{2p}$. Pour $x \neq 0$, on a

$$\left| \frac{u_{n+2p+2}x^{2p+2}}{u_{n+2p}x^{2p}} \right| = \frac{1}{(2p+2)(2p+2n+1)}x^2p \to \infty$$

donc d'après la règle de d'Alembert; la série $\sum_{p=0}^{\infty}u_{n+2p}x^{2p}$ est absolument convergente pour tout x réel. Autrement dit :

$$R = +\infty$$
.

g) D'après les deux questions précédentes, l'ensemble des solutions développables en série entière de (E_n) est une droite vectorielle, ces solutions étant toutes de la forme $y(x) = u_n x^n \sum_{p=0}^{\infty} \left[\frac{(2n)!}{n!} \cdot \frac{(p+n)!}{p! (2p+2n)!} \right] x^{2p}$ pour tout $x \in \mathbb{R}$, avec u_n constante arbitraire dans \mathbb{R} .

PROBLÈME - E3A PC 2004 -

Préliminaires

1. Pour $i \in \mathbb{N}$, on a, avec une intégration par parties :

$$\alpha_{i+2} = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 - \cos^2 u) (\sin u)^i \, du = \alpha_i - \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \underbrace{\cos u \cos u (\sin u)^i}_{=f} \, du$$

$$= \alpha_i - \frac{1}{(i+1)\pi} [\cos u \sin^{i+1} u]_{\frac{\pi}{2}}^{\frac{\pi}{2}} - \frac{1}{i+1} \alpha_{i+2}.$$

Et finalement : $\alpha_{i+2} = \frac{i+1}{i+2}\alpha_i$.

2. On remarque que $\alpha_0 = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} du = 1$ et $\alpha_1 = 0$.

De là, pour i impair, on a clairement $\alpha_i = 0$.

Enfin, on a successivement : $\alpha_2 = \frac{1}{2}$, $\alpha_4 = \frac{3}{4} \cdot \frac{1}{2}$, $\alpha_6 = \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2}$... et donc, pour i entier naturel pair $\geqslant 2$, on a : $\alpha_i = \frac{(i-1)(i-3.)...1}{i(i-2)..2}$.

Partie I

1. Le théorème utilisé est le suivant (Cauchy-Lipschitz) :

Soient a, b, c trois fonctions continues sur I, et telles que a ne s'annule pas sur I. Soit $x_0 \in I$ et $y_0 \in \mathbb{R}$. Alors l'équation différentielle a(x)y' + b(x)y = c(x) a une unique solution sur I vérifiant $y(x_0) = y_0$.

On applique ici ce théorème avec $a(x) = 1 - x^2$ (continue et non nulle sur]-1,1[=I, b(x) = -x] et c(x) = f(x) (toutes deux continues sur I) et $x_0 = 0$.

On a alors bien le résultat voulu.

- **2.** Soit φ une solution de (\mathcal{E}_f) . Posons, pour $n \in \mathbb{N}$, $HR_n : \ll \varphi$ est n fois dérivable sur $I \gg$.
 - HR₁ est vraie par définition même d'une solution.
 - Soit $n \ge 1$ tel que HR_n soit vraie. On a alors, pour $x \in I$: $\varphi^{\uparrow}(x) = \frac{1}{1-x^2}(x\varphi(x)+f(x))$, et $x \to \frac{1}{1-x^2}(x\varphi(x)+f(x))$ est d'après HR_n n fois dérivable sur I. Donc HR_{n+1} est bien vraie.

On a donc montré par récurrence que φ est dérivable à tout ordre, en d'autres termes que φ est \mathscr{C}^{∞} sur I .

3. a) (\mathcal{E}_0) s'écrit : $y' = \frac{x}{1-x^2}y$. On sait d'après le cours que sa solution générale s'écrit : $y = \lambda \exp\left(\int \frac{x}{1-x^2} dx\right)$ avec λ décrivant \mathbb{R} .

Ainsi, la solution générale de (\mathcal{E}_0) est : $y = \lambda \exp\left(-\frac{1}{2}\ln(1-x^2)\right) = \frac{\lambda}{\sqrt{1-x^2}}$.

b) On peut faire la recherche d'une solution particulière par la variation de la constante, mais cela n'est pas utile puisqu'une solution particulière nous est suggérée : on pose $\varphi_0(x) = \frac{1}{\sqrt{1-x^2}} \int_0^x \frac{f(t)}{\sqrt{1-t^2}} \, \mathrm{d}t.$ Comme f est continue, φ est dérivable sur I et on a :

$$\varphi_0'(x) = \frac{f(x)}{1 - x^2} + \frac{x}{(1 - x^2)^{\frac{3}{2}}} \int_0^x \frac{f(t)}{\sqrt{1 - t^2}} dt.$$

Donc:

$$(1 - x^2)\varphi_0'(x) - x\varphi_0(x) = f(x).$$

Ce qui montre bien que φ_0 est solution de (\mathcal{E}_f) sur I.

Par suite la solution générale de (\mathcal{E}_f) sur I est $y=\frac{\lambda}{\sqrt{1-x^2}}+\frac{1}{\sqrt{1-x^2}}\int_0^x\frac{f(t)}{\sqrt{1-t^2}}\mathrm{d}t$. La solution φ vérifiant $\varphi(0)=y_0$ est alors obtenue pour $\lambda=y_0$, ce qui donne finalement :

$$\varphi(x) = \frac{1}{\sqrt{1-x^2}} \left(y_0 + \int_0^x \frac{f(t)}{\sqrt{1-t^2}} dt \right).$$

c) On reprend la forme générale des solutions de (\mathcal{E}_f) avec f(t) = 1:

$$y = \frac{\lambda}{\sqrt{1 - x^2}} + \frac{1}{\sqrt{1 - x^2}} \int_0^x \frac{1}{\sqrt{1 - t^2}} dt.$$

Donc la solution générale de (\mathcal{E}_1) est :

$$y = \frac{\lambda}{\sqrt{1 - x^2}} + \frac{\arcsin x}{\sqrt{1 - x^2}} \ .$$

Partie II

1. Puisque $\mathbb{R}[X]$ est une algèbre et que la dérivée d'un polynôme est un polynôme, on en déduit que pour $P \in \mathbb{R}[X]$, on a $\Delta(P) \in \mathbb{R}[X]$.

Soit n le degré du polynôme $P = \sum_{k=0}^{n} a_k X^k$. Alors, si $n \ge 1$, on a $d^o(P') = n-1$ et donc $(1-X^2)P'$ est de degré n+1, tout comme XP. Donc $\Delta(P)$ est de degré au plus n+1.

Le coefficient du terme de degré n+1 est $-na_n-a_n\neq 0$. Donc, dans ce cas, on a $d^o(\Delta(P))=n+1$. Si n=0, c'est-à-dire si P est une constante non nulle k, alors $\Delta(P)=-kX$ et le résultat reste vrai.

Enfin $\Delta(0)=0$, donc avec la convention habituelle « $-\infty+1=-\infty$ » on peut dire que dans tous les cas : $\boxed{d^o(\Delta(P))=1+d^o(P)}$.

- 2. Soit Δ_m la restriction de Δ à $\mathbb{R}_m[X]$. Alors pour $P \in \mathbb{R}_m[X]$, on a $d^o(P) \leqslant m$, et donc $d^o(\Delta(P)) = 1 + d^o(P) \leqslant m + 1$, donc Δ_m est bien à valeurs dans $\mathbb{R}_{m+1}[X]$. La linéarité est immédiate. Ainsi Δ_m est bien une application linéaire de $\mathbb{R}_m[X]$ dans $\mathbb{R}_{m+1}[X]$.
- 3. Il résulte de la question 1 sur les degrés que si $P \neq 0$, alors $\Delta(P) \neq 0$. Donc $Ker(\Delta_m) = \{0\}$ et Δ_m est injective.
- **4.** Par application du théorème du rang, on a : $\operatorname{rg}(\Delta_m) = \dim(\mathbb{R}_m[X]) = m+1$. Ainsi, $[\operatorname{Im}(\Delta_{m+1}) \text{ est un hyperplan de } \mathbb{R}_{m+1}[X]]$.
- 5. Pour k entier entre 0 et m, on calcule $\Delta_m(\mathbf{X}^k)$:

$$\Delta_m(X^k) = (1 - X^2)kX^{k-1} - X^{k+1} = -(k+1)X^{k+1} + kX^{k-1} \text{ si } k \neq 0, \quad \text{ et } \Delta_m(1) = -X.$$

Donc la matrice A_m , qui est de type (m+2, m+1) s'écrit :

$$A_{m} = \begin{pmatrix} 0 & 1 & 0 & \dots & \dots & \dots & 0 \\ -1 & 0 & 2 & 0 & \dots & \dots & 0 \\ 0 & -2 & 0 & 3 & 0 & \dots & 0 \\ 0 & 0 & -3 & 0 & 4 & \ddots & \vdots \\ & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ & & 0 & -m+1 & 0 & m \\ 0 & & & 0 & m & 0 \\ & & & & 0 & -m-1 \end{pmatrix}$$

- 6. Si P est une solution polynomiale de (\mathcal{E}_f) , on a alors $\Delta(P) = f$, et on a vu que pour un pour tout polynôme P, $\Delta(P)$ est aussi un polynôme. Donc : f est le polynôme $\Delta(P)$.
- 7. a) Dire que le polynôme P est solution de l'équation différentielle (\mathcal{E}_Q) revient à dire :

$$\Delta_{n-1}(\mathbf{P}) = \mathbf{Q},$$

ce qui se traduit matriciellement par : $A_{n-1}U = V$

- **b)** On le montre par implications circulaires :
 - $-(i) \Rightarrow (ii)$: Si (\mathcal{E}_Q) admet une solution polynomiale P, alors $\Delta(P) = Q$ et donc, d'après II.1 $d^o(Q) = d^o(P) + 1$, et donc $d^o(P) = n 1$. Donc $\Delta_{n-1}(P) = Q$, et (ii) est établi.
 - $(ii) \Rightarrow (iii)$: immédiat avec le II.7.a.
 - $(iii) \Rightarrow (i)$: Si S est solution de $A_{n-1}S = V$ avec S de coordonnées s_0, \ldots, s_{n-1} , alors

(d'après le II.7.a) le polynôme $P = \sum_{k=0}^{n-1} s_k X^k$ est solution de (\mathcal{E}_Q) , ce qui prouve (i).

Donc l'équivalence des trois propositions est démontrée.

$$\textbf{c) i)} \ \ A_3S = V \ \, \text{s'\'ecrit}: \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ -1 & 0 & 2 & 0 \\ 0 & -2 & 0 & 3 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -4 \end{array} \right) \cdot \left(\begin{array}{c} s_0 \\ s_1 \\ s_2 \\ s_3 \end{array} \right) = \left(\begin{array}{c} q_0 \\ q_1 \\ q_2 \\ q_3 \\ q_4 \end{array} \right) \text{, ce qui s'\'ecrit aussi}:$$

$$\begin{cases} s_1=q_0\\ -s_0+2s_2=q_1\\ -2s_1+3s_3=q_2. \end{cases}$$
 Une résolution par substitution conduit au système équivalent suivant :
$$-3s_2=q_3\\ -4s_3=q_4 \end{cases}$$

$$\begin{cases} s_1 = q_0 \\ s_2 = -\frac{1}{3}q_3 \\ s_0 = -\frac{2}{3}q_3 - q_1 \\ s_3 = \frac{1}{3}q_2 + \frac{2}{3}q_0 \\ -\frac{4}{3}q_2 - \frac{8}{3}q_0 = q_4 \end{cases}$$

Ainsi ce système admet une solution s, et seulement si $3q_4 + 4q_2 + 8q_0 = 0$, et dans ce cas, cette solution est unique et est : $(s_0, \ldots, s_3) = \left(-\frac{2}{3}q_3 - q_1, q_0, -\frac{1}{3}q_3, \frac{1}{3}q_2 + \frac{2}{3}q_0\right)$.

ii) On a donc, lorsque $3q_4 + 4q_2 + 8q_0 = 0$, l'unique solution P de (\mathcal{E}_O) qui est :

$$P = \left(-\frac{2}{3}q_3 - q_1\right) + q_0X - \frac{1}{3}q_3X^2 + \left(\frac{1}{3}q_2 + \frac{2}{3}q_0\right)X^3$$

ou encore, compte tenu de $q_2 = -\frac{3}{4}q_4 - 2q_0$:

$$P = \left(-\frac{2}{3}q_3 - q_1\right) + q_0X - \frac{1}{3}q_3X^2 - \frac{1}{4}q_4X^3.$$

- iii) $3q_4+4q_2+8q_0=0$ est une CNS pour que $Q\in\mathbb{R}_4[X]$ ait un antécédent par Δ_3 . En d'autres termes, $\boxed{3q_4+4q_2+8q_0=0}$ est une équation de l'hyperplan $\mathrm{Im}(\Delta_3)$.
- d) i) L'existence de l'intégrale et la linéarité de λ_n sont immédiates.

De plus, en prenant pour R le polynôme 1 (constant), on a : $\lambda_n(1) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \mathrm{d}u = \pi$, donc λ_n est une forme linéaire non nulle.

ii) Soit $P \in \mathbb{R}_{n-1}[X]$.

$$\lambda_n(\Delta_n(P)) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} [(1 - \sin^2 u)P'(\sin u) - \sin u.P(\sin u)] du = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} [\cos^2 u.P'(\sin u) - \sin u.P(\sin u)] du$$

Or, à l'aide d'une intégration par parties :

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin u \cdot P(\sin u) \, du = \left[-\cos u \cdot P(\sin u) \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 u \cdot P^{\uparrow}(\sin u) \, du = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 u \cdot P'(\sin u) \, du.$$

Finalement, on obtient bien : $\lambda_n(\Delta_n(P)) = 0$.

- iii) Ceci montre donc que $\operatorname{Im}(\Delta_n) \subset \operatorname{Ker}(\lambda_n)$. Or il a été établi que $\operatorname{Im}(\Delta_n)$ est un hyperplan de $\mathbb{R}_n[X]$, et c'est aussi le cas du noyau de la forme linéaire non nulle λ_n . Ces deux sousespaces vectoriels sont donc de même dimension (finie), et donc $\overline{\operatorname{Im}(\Delta_n) = \operatorname{Ker}(\lambda_n)}$.
- iv) On va en fait chercher à déterminer $\operatorname{Ker}(\lambda_n)$. Soit $P \in \mathbb{R}_n[X]$, avec $P = \sum_{k=0}^n p_k X^k$. Alors :

$$\lambda_n(P) = \sum_{k=0}^n p_k \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin u)^k du = \sum_{k=0}^n \pi p_k \alpha_k = \pi \left(p_0 + \sum_{\substack{k=2\\k \text{ pair}}}^n p_k \frac{(k-1)(k-3.)...1}{k(k-2)..2} \right).$$

Puisque
$$P \in Im(\Delta_n) \iff \lambda_n(P) = 0$$
, une équation de $Im(\Delta_n)$ est donc : $\sum_{k=0}^n \alpha_k p_k = 0$ or encore $p_0 + \sum_{\substack{k=2 \ k \text{ pair}}}^n \frac{(k-1)(k-3.)\dots 1}{k(k-2)..2} p_k = 0$).

e) D'après l'équivalence entre les propriétés (i) et (ii) du II.7.b, on peut dire qu'une CNS pour que (\mathcal{E}_O) admette une solution polynomiale est que $Q \in Im(\Delta_n)$, $c^1 est - \grave{a}$ -dire :

$$q_0 + \sum_{\substack{k=2\\k \text{ pair}}}^n \frac{(k-1)(k-3.)...1}{k(k-2)...2} q_k = 0.$$

f) Pour n=4, cette condition s'écrit donc : $q_0 + \frac{1}{2}q_2 + \frac{3}{8}q_4 = 0$, ou encore : $8q_0 + 4q_2 + 3q_4 = 0$: on retrouve bien l'expression du 7.c.ii.

Partie III

1. a) Soit φ une solution de (\mathcal{E}_f) , et soit $y_0 = \varphi(0)$. On a alors :

$$\forall x \in I , \ \varphi(x) = \frac{1}{\sqrt{1-x^2}} \left(y_0 + \int_0^x \frac{f(t)}{\sqrt{1-t^2}} dt \right).$$

Par hypothèse, f est développable en série entière (DSE en abrégé pour la suite) de rayon de convergence > 1. Or, $t \mapsto (1+t)^{\frac{1}{2}}$ est, d'après le cours DSE de rayon 1. Donc, en substituant $-t^2$ à t, on en déduit que $t \mapsto \frac{1}{\sqrt{1-t^2}}$ est DES de rayon $\sqrt{1}=1$, et donc par utilisation de la série produit de Cauchy des deux séries entières, $t \mapsto \frac{f(t)}{\sqrt{1-t^2}}$ est DSE de rayon $\geqslant 1$. Enfin, par primitivation de série entière, $x \mapsto \int_0^x \frac{f(t)}{\sqrt{1-t^2}} \, \mathrm{d}t$ est DES de rayon $\geqslant 1$. Puis on applique à nouveau le théorème sur la série produit, et finalement ϕ est DES de rayon $\geqslant 1$.

b) i) On a alors, pour tout $x \in I$: $(1-x^2)\sum_{k=1}^{\infty}ka_kx^{k-1}-\sum_{k=0}^{+\infty}a_kx^{k+1}=\sum_{k=0}^{+\infty}b_kx^k$. Donc, en développant et en réindiciant, on obtient :

$$\sum_{k=0}^{+\infty} (k+1)a_{k+1}x^k - \sum_{\substack{k \neq 2 \\ k=1}}^{+\infty} (k-1)a_{k-1}x^k - \sum_{k=1}^{+\infty} a_{k-1}x^k = \sum_{k=0}^{+\infty} b_k x^k$$

On met tout sous une même somme :

$$a_1 + \sum_{k=1}^{+\infty} ((k+1)a_{k+1} - ka_{k-1})x^k = \sum_{k=0}^{+\infty} b_k x^k$$

ce qui, d'après l'unicité du DES équivaut à :

$$\begin{cases} a_1 = b_0 \\ \forall k \ge 1, \ (k+1)a_{k+1} - ka_{k-1} = b_k \end{cases}$$

donc:

$$\forall k \ge 1, a_{k+1} = \frac{k}{k+1} a_{k-1} + \frac{1}{k+1} b_k.$$

ii) On rappelle d'abord que, pour
$$i \in \mathbb{N}$$
, on a : $\alpha_{i+2} = \frac{i+1}{i+2}\alpha_i$ et que $\alpha_i \neq 0$ pour i pair.

Donc, pour
$$k \ge 1$$
: $a_{2k} = \frac{2k-1}{2k} a_{2(k-1)} + \frac{1}{2k} b_{2k-1}$ et $\alpha_{2k} = \frac{2k-1}{2k} \alpha_{2(k-1)}$; donc:

$$\frac{a_{2k}}{\alpha_{2k}} = \frac{a_{2(k-1)}}{\alpha_{2(k-1)}} + \frac{1}{2k-1} \cdot \frac{b_{2k-1}}{\alpha_{2(k-1)}}.$$

iii) Il s'ensuit que pour
$$p \in \mathbb{N}$$
, on a : $\frac{a_{2p}}{\alpha_{2p}} = \sum_{k=1}^p \frac{1}{2k-1} \cdot \frac{b_{2k-1}}{\alpha_{2(k-1)}} + \frac{a_0}{\alpha_0}$, ou encore :

$$a_{2p} = \alpha_{2p} \left(\sum_{k=1}^{p} \frac{1}{2k-1} \cdot \frac{b_{2k-1}}{\alpha_{2(k-1)}} + \frac{a_0}{\alpha_0} \right).$$

iv) On a, pour
$$k \ge 1$$
: $(2k+1)a_{2k+1} = 2ka_{2k-1} + b_{2k}$, puis on multiplie par $\alpha_{2k} = \frac{2k-1}{2k}\alpha_{2(k-1)}$:

$$(2k+1)a_{2k+1}\alpha_{2k} = (2k-1)a_{2k-1}\alpha_{2(k-1)} + b_{2k}\alpha_{2k}$$

v) Ainsi, si on pose
$$u_k = (2k+1)a_{2k+1}\alpha_{2k}$$
, on a alors $u_k = u_{k-1} + b_{2k}\alpha_{2k}$, et par suite $u_p = u_0 + \sum_{k=1}^p b_{2k}\alpha_{2k}$, soit : $(2p+1)a_{2p+1}\alpha_{2p} = a_1\alpha_0 + \sum_{k=1}^p b_{2k}\alpha_{2k}$, et finalement (sachant que $a_1 = b_0$) :

$$a_{2p+1} = \frac{1}{(2p+1)\alpha_{2p}} \left(b_0 \alpha_0 + \sum_{k=1}^p b_{2k} \alpha_{2k} \right) = \frac{1}{(2p+1)\alpha_{2p}} \sum_{k=0}^p b_{2k} \alpha_{2k}.$$

2. a) Le seul problème réside dans l'existence de l'intégrale.

Pour $x \in]-1,1[$, $t \mapsto \frac{f(t)}{\sqrt{1-t^2}}$ est continue sur [x,1[[et f est continue en 1 (car DSE de rayon R > 1). Donc f(t) = O(1), et $\left| \frac{f(t)}{\sqrt{1-t^2}} \right| = O\left(\frac{1}{\sqrt{1-t}}\right)$ (écrire $\sqrt{1-t^2} = \sqrt{(1-t)(1+t)} \sim \sqrt{2(1-t)}$); or $t \to \frac{1}{\sqrt{1-t}}$ est intégrable sur [x,1[pour x < 1, et donc φ est bien définie sur]-1,1[.

b) Posons
$$y_0 = \varphi(0) = -\int_0^1 \frac{f(t)}{\sqrt{1-t^2}} dt$$
; ainsi $\varphi(x) = \frac{1}{\sqrt{1-x^2}} \left(\int_0^x \frac{f(t)}{\sqrt{1-t^2}} dt + y_0 \right)$, et donc d'après I.3.a : φ est la solution de (\mathcal{E}) qui vérifie $\varphi(0) = y_0$.

c) i) On a, puisque $\theta \in]0,\pi[$:

$$\varphi(x) = \frac{1}{\sqrt{1 - \cos^2 \theta}} \left(\int_1^{\cos \theta} \frac{f(t)}{\sqrt{1 - t^2}} dt + y_0 \right) = \frac{1}{\sin \theta} \left(\int_1^{\cos \theta} \frac{f(t)}{\sqrt{1 - t^2}} dt + y_0 \right).$$

Puis on fait le changement de variable $t = \cos u$, qui est un \mathscr{C}^1 -difféomorphisme de $]0,\theta]$ sur $[\cos \theta,1[$:

$$\int_{1}^{\cos \theta} \frac{f(t)}{\sqrt{1-t^2}} dt = \int_{0}^{\theta} \frac{f(\cos u)}{\sqrt{\sin^2 u}} (-\sin u) du. \text{ Or, sur l'intervalle considéré, on a } \sin u > 0$$

$$\varphi(x) = \frac{-1}{\sin \theta} \int_0^{\theta} f(\cos u) \, \mathrm{d}u.$$

ii) La fonction $u \mapsto \cos u$ est continue sur $]-\pi,\pi[$ et à valeurs dans]-1,1[, et f est continue sur]-1,1[(car DSE de rayon R>1). Donc $u\mapsto f(\cos u)$ est continue sur $]-\pi,\pi[$, et donc:

F est dérivable sur $]-\pi,\pi[$ et pour $\theta\in]-\pi,\pi[$, on a $F'(\theta)=f(\cos\theta)$.

Le théorème utilisé est le suivant :

Si g est une fonction continue sur un intervalle I d'intérieur non vide, et si $a \in I$, alors $G: x \mapsto \int_a^x g(t) dt$ est une primitive de g sur I.

iii) Par suite,
$$-\frac{F(\theta)}{\sin \theta} = -\frac{F(\theta) - F(0)}{\sin \theta} \underset{\theta \to 0^+}{\sim} -\frac{F(\theta) - F(0)}{\theta} \underset{\theta \to 0^+}{\rightarrow} -F'(0) = -f(1). \text{ Donc}:$$

$$\lim_{x \to 1} \varphi(x) = -f(1).$$

d) i) On calcule:

$$\varphi_0(x) = \frac{1}{\sqrt{1 - x^2}} \int_1^x \frac{\mathrm{d}t}{\sqrt{1 - t^2}} = \frac{1}{\sqrt{1 - x^2}} \left[\operatorname{Arc} \sin t \right]_1^x = \frac{\operatorname{Arc} \sin x - \frac{\pi}{2}}{\sqrt{1 - x^2}} = \frac{-\operatorname{Arc} \cos x}{\sqrt{1 - x^2}}.$$

$$\varphi_1(x) = \frac{1}{\sqrt{1 - x^2}} \int_1^x \frac{t \, \mathrm{d}t}{\sqrt{1 - t^2}} = \frac{-1}{\sqrt{1 - x^2}} \left[\sqrt{1 - t^2} \right]_1^x = 1.$$

ii) Soit $k \ge 2$ et $x \in I$. Pour $0 < \varepsilon \le 2$

$$\int_{1-\varepsilon}^{x} \frac{t^{k} \, \mathrm{d}t}{\sqrt{1-t^{2}}} = \left[-t^{k-1} \sqrt{1-t^{2}} \right]_{1-\varepsilon}^{x} + (k-1) \int_{1-\varepsilon}^{x} t^{k-2} \sqrt{1-t^{2}} \, \mathrm{d}t, \text{ puis, en faisant tendre } \varepsilon \text{ vers } 0 :$$

$$\varphi_{k}(x) = -x^{k-1} + \frac{k-1}{\sqrt{1-x^{2}}} \int_{1}^{x} t^{k-2} \sqrt{1-t^{2}} \, \mathrm{d}t = -x^{k-1} + \frac{k-1}{\sqrt{1-x^{2}}} \int_{1}^{x} \frac{t^{k-2} (1-t^{2})}{\sqrt{1-t^{2}}} \, \mathrm{d}t.$$

Donc : $\varphi_k(x) = -x^{k-1} + (k-1)(\varphi_{k-2}(x) - \varphi_k(x))$, et finalement :

$$\varphi_k(x) = \frac{-x^{k-1}}{k} + \frac{k-1}{k} \varphi_{k-2}(x).$$

- iii) Sachant $\varphi_1(x)=1$ et la formule de récurrence ci-dessus, il est immédiat (avec une récurrence) que pour $p\in\mathbb{N}$: φ_{2p+1} est une fonction polynomiale de degré 2p.
- iv) Soit HR_p la propriété à montrer :

$$\forall X \in \mathbb{R}[X] \text{ tq } d^{o}(P_{2p}) = 2p-1 \text{ et } \forall X \in \mathbb{I}, \ \varphi_{2p}(X) = P_{2p}(X) + \alpha_{2p}\varphi_{0}(X) \gg 0$$

- Pour HR_0 , il faut bien sûr adopter la convention que un polynôme de degré négatif est le polynôme nul. Il s'agit alors d'établir que $\phi_0=\alpha_0\phi_0$, ce qui est vrai car $\alpha_0=1$. Donc HR_0 est vraie avec $P_0=0$.
- Soit $p \ge 0$ tel que HR_p soit vraie. Alors (pour $x \in I$), on a :

$$\varphi_{2p+2}(x) = \frac{-x^{2p+1}}{2p+2} + \frac{2p+1}{2p+2} (P_{2p}(x) + \alpha_{2p}\varphi_0(x)).$$

On pose alors $P_{2p+2}=-\frac{X^{2p+1}}{2p+2}+\frac{2p+1}{2p+2}P_{2p}$: P_{2p+2} est bien un polynôme de degré 2p+1 (car P_{2p} est de degré 2p-1<2p+1), de sorte que :

$$\varphi_{2p+2}(x) = P_{2p+2}(x) + \frac{2p+1}{2p+2}\alpha_{2p}\varphi_0(x) = P_{2p+2}(x) + \alpha_{2p+2}\varphi_0(x)$$

Ce qui prouve HR_{p+1} et achève la récurrence.

v) D'après 2.d.iii, si k est impair alors φ_k est polynomiale et a donc par continuité une limite finie en-l.

Si k est pair, le résultat de la question précédente assure que ϕ_k a une limite finie en 1 si et seulement si c'est le cas de ϕ_0 . Or $\phi_0(x) = \frac{-\operatorname{Arc}\cos x}{\sqrt{1-x^2}}$ et $\operatorname{Arc}\cos x \sim \sqrt{2(1-x)}$ et donc ϕ_0 tend vers -l en 1.

Finalement, φ_k a une limite finie en 1 pour tout $k \in \mathbb{N}$

Rem: On pouvait aussi remarquer que φ_k n'est autre que φ lorsqu'on prend $f(x) = x^k$; puisque une telle fonction f est bien somme d'une série entière de rayon > 1 ($R = \infty$), la question 2.c.iii assure alors directement le résultat.

e) Soit $x \in]-1,1[$. On considère les sommes partielles : $\sum_{k=0}^{n} b_k \varphi_k(x)$:

Posons, pour $t \in [x, 1[: g_k(t) = \frac{b_k t^k}{\sqrt{1 - t^2}}]$.

Les g_k sont continues et intégrables sur [x,1[, et $\sum g_k$ converge simplement sur [x,1[vers g définie par : $g(x)=\frac{f(x)}{\sqrt{1-x^2}}$ (car $\sum b_k t^k$ est une série entière de rayon > 1, de somme f).

Enfin, $\int_{x}^{1} \left| \frac{b_k t^k}{\sqrt{1-t^2}} \right| dt \le |b_k| \int_{-1}^{1} \frac{dt}{\sqrt{1-t^2}} = \pi |b_k|$, et de la convergence absolue en t=1 de $\sum b_k t^k$, on déduit que $\sum \pi |b_k|$ converge, et donc $\sum \int_{[x,1]} |g_k|$ converge.

Donc, d'après le théorème d'intégration terme à terme (convergence en norme 1), on en déduit que $\sum \int_x^1 g_k$ converge et que : $\sum_{k=0}^{\infty} \int_x^1 g_k = \int_x^1 \frac{f(x)}{\sqrt{1-x^2}} dx$, et par suite

 $\sum_{k=0}^{\infty} b_k \varphi_k(x) = \varphi(x) \text{ ; en conclusion :}$

 $\sum b_k \varphi_k$ converge simplement vers φ sur]-1,1[.

