Zadatak 11

Grupa 8

Februar 2025

1 Planarni grafovi

1.1 Definicija

Planarni graf je graf koji se može nacrtati u ravni (na papiru), a da se pri tom nijedne dve grane ne seku, osim u temenima koja ih povezuju.

Formalno, graf G = (V, E) je planaran ako postoji takva predstava grafa u ravni da su sve grane predstavljene kao krive koje se ne presecaju (osim u zajedničkim temenima).

Napomena

Važno je napomenuti da planarnost zavisi od načina crtanja grafa, a ne od njegove strukture. Neki grafovi na prvi pogled deluju neplanarno, ali postoje načini da se nacrtaju bez preseka grana.

Primeri planarnih grafova

Primer 1: Trougaoni graf (tri temena, tri grane)

Ovaj graf je očigledno planaran jer se može nacrtati bez presecanja grana.

Primer 2: Kvadrat sa dijagonalom (4 temena, 5 grana)

Iako sadrži dijagonalu, graf je i dalje planaran jer se sve grane mogu prikazati bez ukrštanja.

Primer 3: Graf K_4 (kompletan graf sa 4 temena)

Kompletan graf sa 4 temena (K_4) jeste planaran i može se prikazati bez ukrštanja grana.

Napomena o neplanarnim grafovima

Prvi neplanarni grafovi su:

- Kompletan graf sa 5 temena: K_5
- $\bullet\,$ Biplanarni graf $K_{3,3}$ (dvodeli graf sa po3temena u svakoj grupi)

Oni se ne mogu nacrtati u ravni bez preseka, što je dokazano u okviru Kuratovskog teorema.

1.2 Stepen oblasti

Neka je G planarni graf i neka je F neka oblast u planarnom ucrtanju grafa G. **Stepen oblasti** F (označava se sa $\deg(F)$) je broj ivica koje se nalaze na granici te oblasti. Ako se neka ivica nalazi više puta na granici iste oblasti, ona se broji više puta.

Primer 1: Trougao

Neka je graf G jednostavan trougao.

$$V = \{A, B, C\}, \quad E = \{\{A, B\}, \{B, C\}, \{C, A\}\}\$$

Ovaj graf ima dve oblasti: - **Unutrašnju oblast** (trougao) sa stepenom $\deg(F_1)=3$ - **Spoljašnju oblast** (okružuje trougao) takodje sa $\deg(F_2)=3$

Primer 2: Kvadrat sa dijagonalom

$$V = \{A, B, C, D\}, \quad E = \{\{A, B\}, \{B, C\}, \{C, D\}, \{D, A\}, \{A, C\}\}\}$$

Ovde imamo: - **Tri oblasti:** 1. Trokut ABC: $\deg = 3$ 2. Trokut ACD: $\deg = 3$ 3. Spoljašnja oblast (okružuje sve): $\deg = 4$

Napomena

Uvek važi formula Ejlere za planarne grafove:

$$n - m + f = 2$$

gde je: - n broj temena, - m broj ivica, - f broj oblasti.

Definicija 1.1 Neka je G = (V, E) planaran graf. Neka su D_1, \ldots, D_l oblasti u ravanskoj predstavi grafa G. Tada važi:

$$\sum_{1 \le i \le l} st(D_i) = 2|E(G)|.$$

Korolar 1.2 Neka je G = (V, E) planaran graf i $|V| \ge 3$. Tada važi:

$$|E| \le 3|V| - 6.$$

Dokaz 1.3 Ako je G planaran, tada je svaka oblast omedjena sa najmanje tri ivice, pa važi:

$$\sum_{1 \le i \le l} st(D_i) \ge 3f,$$

gde je f broj oblasti.

Po prethodnoj definiciji:

$$\sum_{1 \le i \le l} st(D_i) = 2|E|.$$

Kombinovanjem:

$$2|E| \ge 3f$$
.

Sa druge strane, iz Eulerove formule znamo da je f = |E| - |V| + 2. Zamenom:

$$\begin{split} 2|E| &\geq 3(|E| - |V| + 2), \\ 2|E| &\geq 3|E| - 3|V| + 6, \\ 0 &\geq |E| - 3|V| + 6, \\ |E| &< 3|V| - 6. \end{split}$$

Primer 1.4 Graf K_5 nije planaran.

Dokaz 1.5 Za graf K_5 važi:

$$|V| = 5, \quad |E| = {5 \choose 2} = 10.$$

Po korolaru, za planaran graf sa 5 temena važi:

$$|E| \le 3 \cdot 5 - 6 = 9.$$

Pošto K_5 ima 10 ivica, što je više od dozvoljenih 9, zaključujemo da K_5 nije planaran.

Definicija 1.6 Neka je $G=(V,E), |V|\geq 3$, povezan planaran prost graf bez kontura dužine 3. Tada je

$$|E| < 2|V| - 4$$
.

Dokaz 1.7 Ako u grafu ne postoje konture dužine tri, onda je stepen svake oblasti bar četiri. Odatle je

$$2|E| = \sum_{1 \le i \le f} st(D_i) \ge 4 \cdot f \Rightarrow f \le \frac{1}{2}|E|.$$

Iz Ojlerove formule dobijamo:

$$|E| - |V| + 2 \le \frac{1}{2}|E| \Leftrightarrow |E| \le 2|V| - 4.$$

Primer 1.8 Kompletan graf $K_{3,3}$ nije planaran.

Dokaz 1.9 Pretpostavimo da je $K_{3,3}$ planaran. Kako je $|V(K_{3,3})| = 6$ i $|E(K_{3,3})| = 3 \cdot 3 = 9$, na osnovu posledice 112,

$$9 \le 2 \cdot 6 - 4 \Leftrightarrow 9 \le 8$$

što dovodi do kontradikcije.

1.3 Homeomorfni grafovi

Definicija. Grafovi $G_1 = (V_1, E_1)$ i $G_2 = (V_2, E_2)$ su homeomorfni ako mogu biti dobijeni od istog grafa primenom konacno mnogo elementarnih deoba grana.

Primer. Grafovi G_1 i G_2 su homeomorfni, zato sto je G_1 dobijen od K_5 deobom grana $\{a, e\}$ i $\{e, d\}$, dok je G_2 dobijen od K_5 deobom grana $\{a, b\}$ i $\{c, d\}$.

Tvrdjenje Kuratovskog 1.4

Teorema (Kuratowski): Graf G = (V, E) nije planaran ako sadrži podgraf koji je homeomorfan sa $K_{3,3}$ ili K_5 .

Primer: Pokazaćemo da graf G nije planaran, zato što je homeomorfan grafu $K_{3,3}$. Graf Gje dobijen od grafa G_1 deobom grana $\{e,h\}$, $\{i,j\}$, $\{b,e\}$ i $\{f,c\}$. Kada dalje posmatramo G_1 , $mo\check{z}emo$ primetiti da skupovi $\{c,e,i\}$ i $\{b,f,h\}$ imaju osobinu da par čvorova iz istog skupa nije povezan granom, dok su parovi koji pripadaju različitim skupovima povezani granom. Ako čvorove drugačije rasporedimo onda graf G_1 možemo grafički predstaviti kao G_2 . Sada se vidi da je G $homeomorfan\ sa\ K_{3,3},\ odakle\ zaključujemo\ da\ nije\ planaran.$

1.5 Zadaci

1. Da li je potpuni graf K_4 planaran?

Rešenje: K_4 ima 4 čvora i $\binom{4}{2}=6$ grana. Može se nacrtati u ravni bez presecanja. **Zaključak:** K_4 je planaran.

2. Da li je potpuni graf K_5 planaran?

 $\textbf{Rešenje:}\ K_5$ ima 5 čvorova i 10 grana. Po Eulerovoj teoremi za planarnost:

$$|E| \le 3|V| - 6 = 3 \cdot 5 - 6 = 9$$

Ali |E|=10>9,dakle ne može biti planaran.

Zaključak: K_5 nije planaran.

3. Da li je potpuni bipartitni graf $K_{3,3}$ planaran?

Rešenje: $K_{3,3}$ ima 6 čvorova i $3 \cdot 3 = 9$ grana. Po uslovu:

$$|E| \le 2|V| - 4 = 2 \cdot 6 - 4 = 8$$

Ali 9 > 8, pa nije planaran. Takodje, Kuratowski kaže da je $K_{3,3}$ jedan od minimalnih neplanarnih grafova.

Zaključak: $K_{3,3}$ nije planaran.

4. Nacrtaj planaran graf koji ima 5 čvorova i 6 grana.

Rešenje: Ovaj graf je povezan, ali ne sadrži nijedan potgraf izomorfan K_5 ili $K_{3,3}$ i može se nacrtati bez preseka.

5. Dokaži da graf sa 8 čvorova i 21 granu nije planaran.

Rešenje: Za planarni graf važi:

$$|E| \le 3|V| - 6 = 3 \cdot 8 - 6 = 18$$

Ovde je |E| = 21 > 18, dakle graf nije planaran.

Zaključak: Graf sa 8 čvorova i 21 granu nije planaran.

6. Koliki je maksimalan broj grana koje može imati planaran graf sa 7 čvorova?

Rešenje: Po formuli:

$$|E| \le 3|V| - 6 = 3 \cdot 7 - 6 = 15$$

Dakle, najviše 15 grana.

Zaključak: Maksimalno 15 grana za planaran graf sa 7 čvorova.

7. Da li je kockasti graf (graf Q_3) planaran?

 $\textbf{Rešenje:}\ Q_3$ se može nacrtati u ravni bez ukrštanja. Dakle, jeste planaran.

Zaključak: Q_3 je planaran graf.

8. Neka je G graf sa 10 čvorova i 28 grana. Može li G biti planaran?

Rešenje: Po formuli:

$$|E| \le 3|V| - 6 = 3 \cdot 10 - 6 = 24$$

Ali 28 > 24, dakle graf nije planaran.

Zaključak: Ne, G nije planaran.

9. Da li graf sa 6 čvorova i 8 grana može biti planaran?

Rešenje:

$$3 \cdot 6 - 6 = 12 \Rightarrow 8 < 12$$

Pošto broj grana je manji od dozvoljenog maksimuma, i ako ne sadrži K_5 ili $K_{3,3}$, može biti planaran.

Zaključak: Da, može biti planaran.

10. Pronadji broj područja (lica) u planarnom grafu sa 6 čvorova i 9 grana.

Rešenje: Koristimo Eulerovu formulu:

$$f = |E| - |V| + 2 = 9 - 6 + 2 = 5$$

Zaključak: Graf ima 5 područja (lica).