Cours 4

Bases de Données Réparties

Motivation

Plan

- 1) Définition de BDR
- 2) Conception de BDR
- 3) Architectures
- 4) Fragmentation de données
- 5) Allocation

Base de données reparties

Définitions

- ➤ Base de données répartie (BDR)
 - Ensemble de bases localisées sur différents sites, perçues par l'utilisateur comme une base unique
- ➤ Niveaux de schémas
 - Chaque base possède son schéma local
 - Le schéma de la base répartie constitue le schéma global
 - Il assure la transparence à la localisation des données
 - Il permet des recompositions de tables par union/jointure
 - il n'y a pas de base globale physique correspondant à ce schéma

Fonctions d'un SGBD réparti

- Rend la répartition (ou distribution) transparente
 - dictionnaire des données réparties
 - traitement des requêtes réparties
 - gestion de transactions réparties
 - gestion de la cohérence et de la confidentialité

Evaluation de l'approche BDR

• Avantages

- extensibilité
- partage des données hétérogènes et réparties
- performances
- disponibilité des données

• Inconvénients

- administration complexe
- distribution du contrôle

Constituants du schéma global

- schéma conceptuel global
 - donne la description globale et unifiée de toutes les données de la BDR (e.g., des relations globales)
 - indépendance à la répartition
- schéma de placement
 - règles de correspondance avec les données locales
 - indépendance à la localisation, la fragmentation et la duplication
- Le schéma global fait partie du dictionnaire de la BDR et peut être conçu comme une BDR (dupliqué ou fragmenté)

Exemple de schéma global

☐ Schéma conceptuel global

Client (nclient, nom, ville)

Cde (ncde, nclient, produit, qté)

☐ Schéma de placement

Client = Client 1 @ Site 1 U Client 1 @ Site 2

Cde = Cde @ Site3

Conception des bases réparties

Conception par décomposition

Modèles de distribution

- Photocopie (Snapshot)
 - Périodiquement écrire les données à une base de données distante
- Copie vivante
 - Conserver des jeux de données identiques en synchronisme
- Fragmentation
 - Partager des données entre plusieurs sites

Une classification de techniques d'optimisation

Fragmentation

- Elle consiste à découper les relations en sous-relations appelées fragments.
- La répartition se fait donc en deux étapes: la fragmentation et l'allocation de ces fragments aux sites intéressés.

➤ Pourquoi fragmenter?

- Généralement les applications utilisent des sous-ensembles de relations.
- Une relation entière peut représenter une unité de distribution très grande
- Utilisation de petits fragments permet de faire tourner plus d'un processus simultanément.
- performances en favorisant les accès locaux
- équilibrer la charge de travail entre les sites (parallélisme)

➤ Comment fragmenter?

- On distingue trois possibilité de fragmentation:
 - Fragmentation Horizontale
 - Fragmentation Verticale
 - Fragmentation Hybride
- Conception guidée par des heuristiques

Fragmentation horizontale

Fragments définis par sélection

- Client1 = Client where ville = "Paris"
- Client2 = Client where ville ≠ "Paris"

Reconstruction

Client = Client1 U Client2

Client

nclient	nom	ville
C 1	Dupont	Paris
C 2	Martin	Lyon
C 3	Martin	Paris
C 4	Smith	Lille

Client1

nclient	nom	ville
C 1	Dupont	Paris
C 3	Martin	Paris

Client2

nclient	nom	ville
C 2	Martin	Lyon
C 4	Smith	Lille

Fragmentation horizontale dérivée

Fragments définis par jointure

Cde1 = Cde where

Cde.nclient = Client1.nclient

Cde2 = Cde where

Cde.nclient = Client2.nclient

Cde

ncde	nclient	produit	qté
D 1	C 1	P 1	10
D 2	C 1	P 2	20
D 3	C 2	P 3	5
D 4	C 4	P 4	10

Reconstruction

Cde = Cde1 U Cde2

Cde1

ncde	nclient	produit	qté
D 1	C 1	P 1	10
D 2	C 1	P 2	20

Cde2

ncde	nclient	produit	qté
D 3	C 2	P3	5
D 4	C 4	P4	10

Fragmentation verticale

- Fragments définis par projection
 - Cde1 = Cde (ncde, nclient)
 - Cde2 = Cde (ncde, produit, qté)
- Reconstruction
 - Cde = [ncde, nclient, produit, qté] where Cde1.ncde = Cde2.ncde
- Utile si forte affinité d'attributs

Cde

ncde	nclient	produit	qté
D 1	C 1	P1	10
D 2	C 1	P2	20
D 3	C 2	P3	5
D 4	C 4	P4	10

Cde1

ncde	nclient
D 1	C 1
D 2	C 1
D 3	C 2
D 4	C 4

Cde2

ncde	produit	qté
D 1	P1	10
D 2	P2	20
D 3	P3	5
D 4	P4	10

Exemple: Fragmentation cas de SGBD Oracle

```
SELECT ename, sal, yearly_sal FROM emp_year_sal PARTITION (low_sal);
```

```
CREATE TABLE emp_year_sal
(ename VARCHAR2(20),
sal NUMBER,
yearly_sal AS (sal*12) VIRTUAL)
PARTITION BY RANGE (yearly_sal)
(PARTITION low_sal VALUES LESS THAN (20000),
PARTITION mid_sal VALUES LESS THAN (40000),
PARTITION high_sal VALUES LESS THAN (60000),
PARTITION others VALUES LESS THAN (MAXVALUE));
```

Extended Composite Partitioning

Data is partitioned along two dimesions

Introduced in Oracle 8i with Range/Hash

9*i* extended to Range/List

11g extended to all combinations

	Range	List	Hash
Range	11g	9i	8i
List	11g	11g	11g

Range/Range List/Range List/List Order Date, Shipping Date Salesman, Date of Sale State, County

Problème de sélection de schéma de fragmentation

o Entrées:

- Schéma de BD S (T₁, T₂, ..., T_k)
- Ensemble de requêtes fréquentes Q
- Contrainte de maintenance : nombre maximal de fragments de la table des faits

O Sortie:

• Ensemble de sous-schémas en étoile minimisant le coût d'exécution de requêtes et satisfaisant la contrainte de maintenance

Exemple

- Optimisation des requêtes de jointure
- → Parallélisme
- Utilisation des structures redondantes sur un schéma fragmenté

$$N = \prod_{i=1}^{k} M_{i}$$

- M_i : le nombre de fragments de la table de dimension D_i

- k : nombre de tables de dimensions fragmentées

- CLIENT: 50 fragments sur l'attribut "Etat"

- TEMPS: 48 fragments sur l'attribut "Mois"

- PRODUIT: 100 fragments sur l'attribut "type de produit".

N=: $50 \times 48 \times 100 = 240\,000$ fragments de la table des faits

Procédure de fragmentation

Débat

Inconvénients de la FH Avantages de la FH

Allocation des fragments aux sites

■ Non-dupliquée

partitionnée : chaque fragment réside sur un seul site

Dupliquée

- chaque fragment sur un ou plusieurs sites
- maintien de la cohérence des copies multiples

□ Règle intuitive:

 si le ratio est [lectures/màj] > 1, la duplication est avantageuse

Exemple d'allocation de fragments

Client1

nclient	nom	ville
C 1	Dupont	Paris
C 3	Martin	Paris

Cde1

ncde	client	produit	qté
D 1	C 1	P 1	10
D 2	C 1	P 2	20

Site 1

Client2

nclient	nom	ville
C 2	Martin	Lyon
C 4	Smith	Lille

Cde2

ncde	client	produit	qté
D 3	C 2	P 3	5
D 4	C 4	P 4	10

Site 2

SGBD réparti hétérogène

Solution 1: intégration virtuelle

Inconvénients?

Solution 1: Architecture entrepôt

Difficultés des bases réparties

➤ Choix et maintien des fragments

- En fonction des besoins des applications
- Heuristiques basées sur l'affinité d'attributs et le regroupement

➤ Disponibilité des données

 Dépend de la robustesse du protocole 2PC; implique une grande fiabilité du réseau et des participants

Echelle

 Le nombre de sessions simultanées est limité par l'architecture 2-tiers; grande échelle nécessite un moniteur transactionnel

Fonctionnalités d'intégration BDR

Fonctionnalité	Réponse BDR
Définition de vues intégrées	Modèle relationnel – vues par fragmentation et réplication à partir des données locales.
	Schéma global, droits d'accès, contraintes d'intégrité simples
Langage de manipulation de données	Requêtes SQL de sélection et de mise à jour. Transactions ACID réparties
Interfaces applicatives	Idem SGBD

Débat ? (Fragmentation vs duplication (ou réplication))

Fragmentation

- trois types : horizontale, verticale, mixte
- performances en favorisant les accès locaux
- équilibrer la charge de travail entre les sites (parallélisme)

Duplication (ou réplication)

- favoriser les accès locaux
- augmenter la disponibilité des données