Gaussian Processes in MAB algorithms

Exercise Lecture

Contents

Bidding Environment

Gaussian Thompson Sampling (GTS)

GP-Thompson Sampling (GPTS)

GTS vs GPTS

Standard Mab algorithms **perform poorly** in many complex real-world problems where the **arms space is large**

Standard MAB algorithms

Standard MAB algorithms

Standard Mab algorithms perform poorly in many complex real-world problems where the arms space is large

GP-Mab algorithms are suitable for real-world problems in which the arms space is large and the arms are correlated

Example: Bidding Environment

Time horizon: 60 days

Fixed Daily budget

20 possible bids

Example: Bidding Environment

Bidding Environment Class

The environment returns a stochastic reward (i.e., number of clicks)
depending on the pulled arm (choosen bid)

 We have to specify a function that maps a bid value to the corresponding expected number of clicks

The number of clicks is not deterministic

Let's implement it!

Gaussian TS-Learner Class

It extends the class Learner we implemented in the First Lecture

The GTS-Learner, at each round, updates the parameters of a normal distribution

associated to the pulled arm

Gaussian TS-Learner Class

It extends the class Learner we implemented in the First Lecture

The GTS-Learner, at each round, updates the parameters of a normal distribution

associated to the pulled arm

GPTS-Learner Class

At each round, the GPTS-Learner has to fit a GP with the chosen bids as inputs and the observed number of clicks as targets

It uses the GP to predict the means and variances of the distributions associated to each arm (bid value)

