TD 10

Du programme en mémoire aux actions dans le processeur

L'objectif de ce TD est de détailler le fonctionnement du processeur construit aux séances précédentes. Le codage du jeu d'instructions pour cette séance est le suivant :

Instruction	b_7	b_6	b_5	b_4	b_3	b_2	b_1	b_0
Opérations de la forme $rd := rd \ op \ rs$								
or rs, rd	0	0	0	0	rs_1	rs_0	rd_1	rd_0
xor rs, rd	0	0	0	1	rs_1	rs_0	rd_1	rd_0
and rs, rd	0	0	1	0	rs_1	rs_0	rd_1	rd_0
add rs, rd	0	1	0	0	rs_1	rs_0	rd_1	rd_0
sub rs, rd	0	1	0	1	rs_1	rs_0	rd_1	rd_0
Opérations de la forme $rd := op \ rd$								
not rd	0	0	1	1	0	0	rd_1	rd_0
shl rd	0	1	1	0	0	0	rd_1	rd_0
shr rd	0	1	1	1	0	0	rd_1	rd_0
Chargement : $rd := MEM(AD)$								
ld AD, rd	1	0	0	0	0	0	rd_1	rd_0
	ADH							
	ADL							
$\mathbf{Stockage}: MEM(AD) := rs$								
st rs, AD	1	1	0	0	0	0	rs_1	rs_0
	ADH							
	ADL							

Question 1 Soit le contenu de la mémoire donné cicontre. En faisant l'hypothèse que le registre pc est initialisé à 0x4000, réécrire ce programme en langage d'assemblage. Que fait ce programme? Contenu de la mémoire :

Adresse	Valeur			
0x1230	0x00			
0x1231	OxOA			
0x1232	0x1A			
0x1233	0x12			
:	:			
0x4000	0x80			
0x4001	0x12			
0x4002	0x31			
0x4003	0x81			
0x4004	0x12			
0x4005	0x32			
0x4006	0x44			
0x4007	0x60			
0x4008	0x81			
0x4009	0x12			
0x400A	0x33			
0x400B	0x54			
0x400C	0xC0			
0x400D	0x12			
0x400E	0x30			
:	:			

Question 2 On s'intéresse à l'instruction présente à l'adresse 0x4006. Quels sont les chemins de données utilisés dans la PO durant l'exécution? Quels sont les états empruntés par la PC pour traiter cette instruction? En combien de cycles la traite t-on? Pour résumer cette analyse, dessiner un chronogramme faisant apparaître l'horloge et la valeur des signaux importants de la PC et de la PO durant le traitement de cette instruction.

Pour aller plus loin...

Question 3 Même exercice avec l'instruction à l'adresse 0x4008.