인공위성 데이터를 활용한

베트남 개발현황과 변화예측

- 에너지 수요량 예측 관점에서 -

리얼툴즈 / 김철민 성결대 국제개발협력학과 객원교수 cmman75@gmail.com - 목 차 -

1. 서론

2. 이론적 배경

3. 분석방법론

4. 분석결과

5. 결론

1. 서론

- 국가발전의 핵심 → 사회간접자본(SOC)

· 과거: 도로, 철도 등 운송기반 구축이 중요

· 최근: 전력 같은 에너지 관련시설 구축이 중요

1. 서론

- -개발도상국들은 현대적 에너지를 제대로 공급받지 못하고 있음
- 에너지 접근성 부족은 개발도상국과 최빈국의 발전에 악영향을 미침

서론

- 베트남 같은 개발도상국의 경우 에너지 부족 문제를 해결하기 위하여 전기 에너지 수요량을 예측하는 것이 필요함

INSIDE VINA

UPDATED. 2023-12-05 19:10 (화)

산업 금융/부동산 정책/경제 문화/생활 여행/이곳 VN-&-KOR V-어학당

HOME > 정책/경제 > 섹션TOP

베트남,전력부족예상보다심각...주요도시계획단전속속실시

○ 떤풍(Tan phung) 기자 □ ② 승인 2023.06.05 08:46 □ ♥ 댓글 0

- -폭염·가뭄 장기화, 발전용 석탄 부족...전력수요 많은 7월까지 전력난 계속될 듯
- 호치민, 하노이 이어 하이퐁, 다낭, 꽝닌성도 계획단전 나서

최신뉴스

1. 서론

- 신흥 시장으로 성장하고 있는 베트남 전력량을 지속적으로 증가
- 하지만 여전히 전력 부족으로 인한 단전이 지속되고 있음

계획단전으로 꺼져 있는 하이퐁시 오페라하우스 조명

1. 서론

- 베트남 급격한 사회변화와 발전이 이루어지고 있음
- 이에 대규모 에너지 인프라 구축 투자 계획 수립
- 이를 위하여 에너지 수요와 공급에 대한 예측 모델이 필요한 상황

- 선행 연구: 경제성장 모형을 기반으로 미래 에너지 수요 예측 BUT. 공간적 특성 고려 X / 관련 자료 부족 국가에서 활용 X

산출투입			중간과정부문				최종 수요	총산출	
			2		j		N	D	Х
	1	Χ11	X 12		Хъ		Χ _{1N}	D ₁	Х1
줖	2	Χ21	Xz		Х _{гј}		Хгм	D2	Х2
간 과	:	:		:		:	:	:	:
정기과정마만	i	χ11	Χ _{IZ}		Х11		Χ _{IN}	Dı	X,
분	:	:					:	:	:
	N	Х _{N 1}	X _{NZ}		Χ _{NJ}		X _{NN}	D _N	XΝ
지불	Р	P ₁	Pz		PJ		P _N		
총투입	Χ	Χ,	Χ2		ΧJ		Χ _N		

투입산출모형

전력 에너지 수요 시나리오 예시

- 베트남 에너지 계획의 문제
- 어디에서 얼마나 수요 증가할 것인지 예측하기 어려움

(예측 근거로 사용할 만한 자료가 부족하다!!!)

Use Case #2: Predicting Buildings'

Energy Consumption using Machine Learning

Part 1: Exploratory Data Analysis

선진국은 데이터가 넘쳐난다 (프랑스 사례)

- 인공위성 데이터를 활용해보자!!!
- 야간조도 수준과 에너지 사용량은 Positive correlation 관계

(선행연구 참고)

Energy Consumption Prediction in Vietnam with an Artificial Neural Network-Based Urban Growth Model

Hye-Yeong Lee, Kee Moon Jang and Youngchul Kim *

KAIST Urban Design Lab, Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, Korea; leehy305@kaist.ac.kr (H.-Y.L.); keemoonjang@kaist.ac.kr (K.M.J.)

* Correspondence: youngchulkim@kaist.ac.kr; Tel.: +82-42-350-3636

KAIST "AI로 북한 경제지표 추정"

입력 2023.11.21. 오전 11:38 기사원문

아~ 완벽히 이해했어!

- 데이터가 없으면 만들자!!!
- 여기저기 디벼보자…. 뭔가 쓸만한게 나오겠지…. T.T

가난한 데이터 분석가가 살아남는 법!!!

- 인공위성 야간조도 데이터 분석 방법론 참고

Animated hexbin map of light pollution in Europe

January 02, 2022 | Milos Popovic

- 본 분석에서 사용되는 야간조도 데이터는 미국 군사위성 데이터를 사용함
- 군사기상위성은 가시광선과 적외선영역에서 구름영상을 찍어 폭풍, 모래바람, 허리<mark>케인, 태풍 등의</mark> 현황 정보를 수집하는 위성
- 미국 국방부는 군사작전 수행과 관련된 자료수집 및 정보 분석을 위하여 방위기상위성프로그램 (DMSP)을 운용하고 있음
- 방위기상위성 프로그램에서는 별도로 야간 조명 데이터 세트(DMSP-OLS)를 제공하고 있음
- DMSP-OLS는 데이터는 NOAA NGDC에서 제공하는 위성사진으로 야간의 도시, 유전지대

산불 등과 같은 불빛을 감지하는데 뛰어남

- # DMSP(Defense Meteorological Satellite Program): 방위기상위성프로그램
- # DMSP-OLS(DMSP-Operational Linescan System): DMSP 오퍼레이셔널 라인 스캔 시스템
- # NOAA NGDC(National Geophysical Data Center): 미국 국립해양대기청(NOAA)에 소속되어 있는 국가 지구물리 데이터 센터

- 1992년 부터 2022년 까지 시계열 야간조도 위성자료(tif) 다운로드

- 1992년 부터 2022년 까지 시계열 야간조도 위성자료(tif) 다운로드


```
# 2-02. 세계지도 불러오기
library(sf) # install.packages("sf")
library(giscoR) # install.packages("giscoR")

map <- giscoR::gisco_get_countries(
    year = "2020", # 지도 연도
    epsg = "4326", # 좌표계 / EPSG: 4326 / 구글 및 GPS 사용 좌표계
    resolution = "10", # 해상도
    region = "Asia" # 지역
)
library(ggplot2) # install.packages("ggplot2")
ggplot() + geom_sf(data = map)
```



```
# 2-03_특정국가 지도 불러오기
library(dplyr)
map <- map |> filter(NAME_ENGL == 'Vietnam')
library(ggplot2) # install.packages("ggplot2")
ggplot() + geom_sf(data = map, col="red", lwd=1)
```


- 베트남 전역을 20km * 20km 폴리곤으로 구분

```
# 2-02. 세계지도 불러오기
library(sf) # install.packages("sf")
library(giscoR) # install.packages("giscoR")

map <- giscoR::gisco_get_countries(
  year = "2020", # 지도 연도
  epsg = "4326", # 좌표계 / EPSG: 4326 / 구글 및 GPS 사용 좌표계
  resolution = "10", # 해상도
  region = "Asia" # 지역
)
library(ggplot2) # install.packages("ggplot2")
ggplot() + geom_sf(data = map)
```


			_	
^	id [‡]	VARNAME_1	ENGTYPE_1	geometry
1	1	Ha Giang	Province	MULTIPOLYGON (((105.3337 23 Q
2	2	Ha Giang	Province	MULTIPOLYGON (((105.2398 23 Q
3	3	Ha Giang	Province	MULTIPOLYGON (((105.3715 23 Q
4	4	Ha Giang	Province	MULTIPOLYGON (((105.0916 23 Q
5	5	Ha Giang	Province	MULTIPOLYGON (((105.2398 23 Q
6	6	Cao Bang	Province	MULTIPOLYGON (((105.5085 23 Q
7	7	Cao Bang	Province	MULTIPOLYGON (((105.7862 22 🥄
8	8	Cao Bang	Province	MULTIPOLYGON (((106.1598 22 Q
9	9	NA	NA	MULTIPOLYGON (((106.4396 22 Q
10	10	Cao Bang	Province	MULTIPOLYGON (((106.7192 22 Q
11	11	Ha Giang	Province	MULTIPOLYGON (((104.9439 23 Q
12	12	Ha Giang	Province	MULTIPOLYGON (((105.0916 23 🥄
13	13	Ha Giang	Province	MULTIPOLYGON (((105.3729 23 Q
14	14	Cao Bang	Province	MULTIPOLYGON (((105.634 23 Q
15	15	Cao Bang	Province	MULTIPOLYGON (((106.0664 22 Q
16	16	Cao Bang	Province	MULTIPOLYGON (((106.1824 22 Q
17	17	Cao Bang	Province	MULTIPOLYGON (((106.4529 22 Q

- 해당 폴리곤 내 연도별 조도 average를 산출 (1992-2020)

^	Y_1992 [‡]	Y_1993 [‡]	Y_1994	Y_1995	Y_1996
Hallilollizeu_DIA_IATE_2004_CalDIAI3F+ill	0.2310340413	0.000000000	LUCALINI	ひしししつサンシャンラ	U.UUUUUUUU
Harmonized_DN_NTL_2005_calDMSP.tif	0.1834943146	0.000000000	0.7582765	0.1187239140	0.00000000
Harmonized_DN_NTL_2006_calDMSP.tif	0.0687547475	0.000000000	0.4119413	0.0423499234	0.00000000
Harmonized_DN_NTL_2007_calDMSP.tif	0.0000000000	0.000000000	0.2507724	0.0674302354	0.00000000
Harmonized_DN_NTL_2008_calDMSP.tif	0.0545280874	0.000000000	0.2405998	0.0000000000	0.00000000
Harmonized_DN_NTL_2009_calDMSP.tif	0.0006519819	0.000000000	0.2261035	0.0375883430	0.00000000
Harmonized_DN_NTL_2010_calDMSP.tif	0.0000000000	0.000000000	0.1669149	0.0000000000	0.00000000
Harmonized_DN_NTL_2011_calDMSP.tif	0.0377563760	0.000000000	0.4149288	0.0001567157	0.00000000

- 1992년 2022년 조도 값을 기반으로 향후 10년 추세 예측
- LSTM 같은 모형을 쓰는게 좋지만… 연습삼아 해보는 거라
- 간단하게 시계열 예측할 수 있는 prophet 알고리즘 사용(페이스북 개발)

4. 분석결과

- 학습 데이터를 기반으로 향후 10년 에너지 수요 예측 시뮬레이션 ⋯
- 2000년 조도 max가 40 → 2030년 max가 80 (두배 증가)

학습

예측

4. 분석결과

- 행정구역별 정량적 시뮬레이션도 기

1992

가능		7
	202	2
VARNAME_1	‡	Y_2022

VARNAME_1 [‡]	Y_1992 T		VARNAME_1 [‡]	Y_2022 ~
Ha Noi	7.390250000		Bac Ninh	41.176667
Ho Chi Minh	5.721333333		Ho Chi Minh	37.590167
Bac Ninh	5.446000000	박닌성	Da Nang	34.974000
Hai Duong	4.477200000	에너지 사용량	Ha Noi	34.545625
Thai Binh	4.430000000	6배 증가	Hung Yen	34.489000
Hung Yen	4.217333333	(와?)	Ba Ria - Vung Tau	34.464857
Hai Phong	4.139500000		_	22.022000
Nam Dinh	2.832375000		Tien Giang	32.833000
Vinh Phuc	2.312500000		Binh Thuan	29.414741
Ba Ria - Vung Tau	2.248285714		Ha Nam	28.851667
Da Nang	2.245750000		Hai Phong	27.349000

•	VARNAME_1 =	Y_2032
_ _	Bac Ninh	49.304333
	Da Nang	46.975000
	Ho Chi Minh	44.925833
	Ha Noi	41.384875
	Binh Thuan	40.102852
	Hung Yen	39.174000
	Ba Ria - Vung Tau	39.065143
	Tien Giang	38.582250
	Binh Duong	34.552667
	Hai Phong	30.331333

5. 결론

- 간단하게 야간조도를 이용하여 미래 에너지 사용 추세 예측 시뮬레이션 가능
- 도시성장 / 인구 / 지형 특성 등 다양한 변수를 투입하고

인공신경망(ANN) 알고리즘 사용하면 보다 정교한 모델로 활용 가능

- 하지만 본 모델은 실제 에너지 사용량 데이터를 확보하기 어려워서

모형의 실효성을 검증을 진행하기 어렵다는 한계가 있음

(탐색적 연구 데이터로 활용 가능한 수준임)

감사합니다.