中学物理

田怿

2024年12月14日

目录

Chapte	r I 热	学																	1
1	分子动:	理论										 						 . .	3
	1.1	分子家	边理论	(mc	lecula	ar k	inet	ic t	hec	ory))	 						 	3
	1.2	固体	液体	气体								 						 . .	4
2	内能 .											 						 	5
	2.1	内能										 						 	5
	2.2	比热名	答									 						 . .	6
3	热机 .											 						 . .	7
	3.1	热机										 						 	. 7

Chapter I 热学

热学是研究物质热运动规律及其性质和应用的物理学分支.

1 分子动理论

1.1 分子动理论(molecular kinetic theory)

- 物质是由大量分子组成的.
- 分子在永不停息地做无规则运动.
- 分子之间存在相互作用力.
- 分子直径约为 10⁻¹⁰m.
- 18g 水中含有水分子的个数约为 6.02×10^{23} , 即为阿伏伽德罗常数 N_A .
- 在研究物体的热运动性质和规律时,不必区分它们在化学变化中所起的不同作用,而把组成物体的微粒统称为分子(molecule).
- 不同的物质在相互接触时**自发地**彼此进入对方的现象叫做**扩散**(diffusion).
- 扩散现象可以发生在气体、液体和固体之间.
- 扩散现象是物质分子永不停息地做无规则运动的证据之一.
- 悬浮微粒的无规则运动叫做布朗运动(Brownian motion).
- 悬浮微粒的无规则运动并不是分子的运动,但可以间接地反应液体分子运动的无规则性.
- 分子的无规则运动叫做热运动(thermal motion).
- 温度是分子热运动剧烈程度的标志.
- 分子之间存在引力,分子之间存在斥力.
- 分子之间,引力和斥力同时存在.
- 分子间的作用力 F 与分子间距离 r 有关. 即:

当 $r = r_0$ 时,分子间的作用力 F 为 0,这个位置被称为平衡位置.

当 $r > r_0$ 时,分子间的作用力 F 表现为引力.

当 $r < r_0$ 时,分子间的作用力 F 表现为斥力.

图 1.1 分子间的作用力与分子间的距离的关系

1.2 固体 液体 气体

- 固体分子间的距离小,不容易被压缩和拉伸,具有一定的体积和形状.
- 气体分子间的距离很大,彼此间几乎没有作用力. 具有流动性,容易被压缩.
- 液体分子间的距离比气体小、比固体大,液体分子间的作用力比固体小、比气体大,分子没有固定的位置,运动较自由. 液体较难被压缩,没有一定的形状,具有流动性.

物态	微对	见特性	宏观特性					
177.13	分子间距离	分子间作用力	固定形状	固定体积				
固态	很小	很大	是	是				
液态	较大	较大	否	是				
气态	很大	很小	否	否				

表 1.1 固体 液体 气体

2 内能

2.1 内能

- 分子由于热运动而具有的能叫做分子动能.
- 系统中所有分子的动能的平均值叫做分子热运动的平均动能.
- 物体温度升高时,分子热运动的平均动能增加.
- 温度是分子热运动的平均动能的标志.
- 单原子分子的平均动能 $\overline{E_k} = \frac{3}{2}kT$, 即 $\overline{E_k} \propto T$.
- 分子之间由于存在相互作用力而具有的能叫做分子势能.
- 分子势能 E_p 与分子间的距离 r 有关. 即: 当 $r = r_0$ 时,分子间的作用力 F 为 0,分子势能最小. 当 $r > r_0$ 时,分子间的作用力 F 表现为引力,分子势能减小. 当 $r < r_0$ 时,分子间的作用力 F 表现为斥力,分子势能增大.
- 分子势能的大小由**分子间的相对位置**决定. 如果选定分子间距离 r 为无穷远时的分子势能 E_p 为 0,则分子势能 E_p 随分子间距离变化的情况如图所示.

图 1.2 分子势能与分子间的距离的关系

- 分子势能与物体体积有关.
- 物体中所有分子的**分子动能与分子势能的总和**,叫做物体的**内能**(internal energy). 任何物体都具有内能. 内能的单位是**焦耳(J**).
- 物体的内能与温度和体积有关.

2.2 比热容

- 内能由高温物体转移到低温物体的过程叫做热传递.
- 热传递的基本方式包括传导、对流和辐射.
- 在热传递过程中,传递能量的多少叫做热量(quantityo of heat). 用符号 Q 表示. 单位是焦耳.
- 物体吸收热量是内能增加,放出热量时内能减少. 热量是物体内能改变的量度.
- 一定质量的某种物体,在温度升高(或降低)时吸收(或放出)的热量与它的质量和升高(或降低)的温度乘积之比,叫做这种物质的比热容(specific heat capacity). 用符号 c 表示. 单位是**焦每千克摄氏度(J**/($kg\cdot$ °C)). 有:

$$c = \frac{\Delta Q}{m\Delta t} \tag{1.1}$$

- 比热容反映物质自身性质的物理量.
- 不同的物质,比热容一般不同.
- 水的比热容为 $4.2 \times 10^3 \text{J/(kg} \cdot ^{\circ}\text{C})$.
- 热量的计算有 $\Delta Q = cm\Delta t$.
- 热平衡方程,即 $\Delta Q_{\text{w}} = \Delta Q_{\text{b}}$.

3 热机

3.1 热机

- 热机(heat engine),即利用内能做功(内能转化为机械能)的机械.
- 蒸汽机,即利用水蒸气膨胀做功的热机.蒸汽机属于外燃机.
- 活塞从气缸的一端运动到另一端的过程叫做一个冲程.
- 四冲程汽油机一般包括吸气、压缩、做功和排气四个冲程.
- 汽油机和柴油机都属于内燃机.
- 汽轮机和喷气发动机.