T.	heoretische	Infom	atile	Solbe	etetudium	2
	пеогеызспе	11110111	allik:	Sems	ststuatum	Z

Abgabe bis 21. November 2014

 $Prof.\ Welzl$

Vincent von Rotz, David Bimmler und Kevin Klein

Aufgabe 4

Wir wollen einen Automaten zu E = (0 + 11)*0 erstellen. Dazu gehen wir Schritt für Schritt vor.

1. Für (11) können wir leicht den folgenden EA zu sich selbst konkatenieren:

Konkatenation:

2. Für (0+11) vereinigen wir einfach den folgenden und den vorherigen EA:

Vereinigung:

3. Für $(0+11)^*$ muss jetzt sichergestellt werden, dass die Wiederholung ebenfalls akzeptiert wird, und als Spezialfall der Wiederholung das leere Wort.

4. (0+11)*0 Jetzt müssen wir den Automaten nur noch mit dem "Hilfs"-Automaten aus dem zweiten Schritt konkatenieren.

5. Somit haben wir einen ϵ -NEA erhalten, welchen wir zu einem NEA umformen können, indem wir auf die ϵ -Kanten verzichten.

Dieser NEA ist ziemlich kompliziert, aber er lässt sich vereinfachen:

6. Nun können wir mit etwas Übersicht diesen NEA zu einem EA umformen.

Aufgabe 5

Wir suchen $R^3_{13} \cup R^3_{11}.$ Es ist offensichtlich, dass:

$$\begin{array}{c|c} R_{11}^0 & c + \lambda \\ R_{12}^0 & a + b \\ R_{13}^0 & \emptyset \\ R_{21}^0 & \emptyset \\ R_{22}^0 & a + c + \lambda \\ R_{23}^0 & b \\ R_{31}^0 & \emptyset \\ R_{32}^0 & c \\ R_{33}^0 & a + b + \lambda \\ \end{array}$$

Mit Hilfe der Formel $R_{ij}=R_{ij}^{k-1}+R_{ik}^{k-1}(R_{kk}^{k-1})^*R_{kj}^{k-1}$ können wir nun $R_{13}^{(k)}$ für aufsteigende k berechnen.

\bullet k=1

	direktes Einfügen	vereinfacht
R_{11}^{1}	$(c+\lambda) + (c+\lambda)(c+\lambda)^*(c+\lambda)$	c^*
R_{12}^{1}	$(a+b) + (c+\lambda)(c+\lambda)^*(a+b)$	$c^*(a+b)$
R_{13}^{1}	$\emptyset + cc^*\emptyset$	Ø
R_{21}^{1}	$\emptyset + \emptyset c^*(a+b)$	Ø
R_{22}^{1}	$(a+c+\lambda) + \emptyset c^*(a+b)$	$a + c + \lambda$
R_{23}^{1}	$b + \emptyset c * (a + b)$	b
R_{31}^{1}	$\emptyset + \emptyset c^*$	Ø
R_{32}^{1}	$c + \emptyset c^*(a+b)$	c
R_{33}^{1}	$(a+b+\lambda) + \emptyset c^*\emptyset$	$a+b+\lambda$

• k = 2

	direktes Einfügen	vereinfacht
R_{11}^{2}	$c^* + c^*(a+b)(a+c+\lambda)^*\emptyset$	c^*
R_{12}^{2}	$c^*(a+b) + c^*(a+b)(a+c+\lambda)^*(a+c+\lambda)$	$c^*(a+b)(a+c)^*$
R_{13}^{2}	$\emptyset + c^*(a+b)(a+c+\lambda)^*b$	$c^*(a+b)(a+c)^*b$
R_{21}^{2}	$\emptyset + (a+c)^*\emptyset$	Ø
R_{22}^{2}	$(a+c) + (a+c)^*$	$(a+c)^*$
R_{23}^{2}	$b + (a+c)^*b$	$(a+c)^*b$
R_{31}^{2}	$\emptyset + \emptyset(a+c)^*\emptyset$	Ø
R_{32}^{2}	$c + c(a + c + \lambda)^*(a + c + \lambda)$	$c(a+c)^*$
R_{33}^{2}	$(a+b+\lambda) + c(a+c)^*b$	$(a+b+\lambda) + c(a+c)^*b$

• k = 3

		direktes Einfügen	vereinfacht
	R_{11}^{3}	$c^* + c^*(a+b)(a+c)^*b((a+b) + c(a+c)^*b)^*\emptyset$	c^*
	R_{13}^{3}	$(c^*(a+b)(a+c)^*b) + c^*(a+b)(a+c)^*b((a+b+\lambda) +$	$c^*(a+b)(a+c)^*b((a+b)+c(a+c)^*b)^*$
l		$c(a+c)^*b)^*$	

Unser regulärer Ausdruck ist nun die Union der beiden Ausdrücke:

$$A = R_{11}^3 + R_{13}^k = c^* + c^*(a+b)(a+c)^*b((a+b) + c(a+c)^*b)^*$$