Lista 2

Modelos Lineares Generalizados - 2/2023

César Augusto Galvão - 19/0011572

Laiza Mendes - 20/0067028

Table of contents

Questão 1	2
a) Proponha algum método para resolver o problema da multicolinearidade no con-	
junto de dados	2
b) Usando algum método de seleção de variáveis, obtenha o modelo final para o	
conjunto de dados	2
c) Apresente a tabela de Análise de Variância para testar a significância global dos	
coeficientes do modelo final. Apresente as hipóteses de teste e conclua	2
d) Com base no modelo obtido no item anterior, faça uma análise de resíduos e conclua.	2
Questão 2	2
a) Ajuste um modelo de regressão linear e interprete os resultados obtidos	3
b) Obtenha a tabela ANOVA para o modelo obtido no item (a) e interprete os resultados	4
c) Considere a possibilidade de incluir a interação entre as varáveis independentes .	4
Apêndice	8

Questão 1

Considere os dados sobre a qualidade do vinho tinto, apresentados no ficheiro Q01-data.txt. Ajuste o modelo de regressão linear múltipla, e faça uma análise completa desses dados. Que conclusões você tira dessa análise? (use 5% de significância durantes as análises).

- a) Proponha algum método para resolver o problema da multicolinearidade no conjunto de dados
- b) Usando algum método de seleção de variáveis, obtenha o modelo final para o conjunto de dados
- c) Apresente a tabela de Análise de Variância para testar a significância global dos coeficientes do modelo final. Apresente as hipóteses de teste e conclua.
- d) Com base no modelo obtido no item anterior, faça uma análise de resíduos e conclua.

Questão 2

Uma equipe de pesquisadores de saúde mental deseja comparar três métodos de tratamento da depressão grave (A, B e C=referência). Eles também gostariam de estudara relação entre idade e eficácia do tratamento, bem como a interação (se houver) entre idade e tratamento. Cada elemento da amostra aleatória simples de 36 pacientes, foi selecionado aleatoriamente para receber o tratamento A, B ou C. Os dados obtidos podem ser encontrados no ficheiro Q02-data.txt. A variável dependente y é a eficácia do tratamento; as variáveis independentes são: a idade do paciente no aniversário mais próximo e o tipo de tratamento administrado (use 1% de significância durantes as análises).

Uma amostra dos dados é exibida na tabela a seguir:

eficacia	idade	tratamento
56	21	A
41	23	В
40	30	В
28	19	\mathbf{C}
55	28	A
25	23	\mathbf{C}

a) Ajuste um modelo de regressão linear e interprete os resultados obtidos

Temos um potencial modelo de regressão linear que pode ou não conter interações entre as variáveis, o qual pode ser expresso em sua forma saturada, em que X_1 é a variável idade e X_2 a variável tratamento

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{1i} x_{2i} + \varepsilon_i, \quad i = 1, 2, \dots, n$$
 (1)

ou, de forma análoga, desmembrando X_2 em variáveis $dummy\ X_A$ e X_B , indicadores da presença do tratamento A e B, ambas assumindo valor 0 quando se trata do tratamento C

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{Ai} + \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i.$$
 (2)

Se simplesmente ajustamos um modelo de regressão linear – sem os termos de interação – utilizando (2) como referência na função lm(), obtemos os seguintes resultados:

Table 1: Modelo de regressão linear para tratamentos sem interação com idade sobre eficácia

Coeficiente	Estimativa	EP	Estatística t	p-valor
(Intercept)	22.291	3.505	6.359	0.000
idade	0.664	0.070	9.522	0.000
A	10.253	2.465	4.159	0.000
В	0.445	2.464	0.181	0.858

Ou seja, se considerarmos independentemente idade, tratamento A e tratamento B, podemos considerar que:

- Há uma linha de base na eficácia de aproximadamente 22.3, i.e. sob o tratamento C;
- A eficácia base para o tratamento A é de 32.3;
- A eficácia base para o tratamento B é de 22.75 mas poderíamos desconsiderar este coeficiente, se nos guiarmos pelo p-valor;
- Cada ano a mais de vida incrementa a eficácia em 0.644.

É possível considerar que um tamanho de amostra pequeno tenha grande influência sobre a significância de $H_0: \beta_3 = 0$ do modelo. No entanto, trata-se de um fenômeno para o qual o tratamento pode estar estreitamente associado à idade, caso em que teríamos que considerar o modelo (2) por completo.

b) Obtenha a tabela ANOVA para o modelo obtido no item (a) e interprete os resultados

Se montarmos uma tabela de Análise de Variância para o modelo de regressão linear ajustado, obtemos os resultados a seguir:

Table 2: Tabela ANOVA para o modelo linear sem interações

Fonte de Var.	g.l.	SQ	QM	F	p-valor
idade	1	3424.432	3424.432	94.015	0.000
A	1	803.804	803.804	22.068	0.000
В	1	1.189	1.189	0.033	0.858
Residuals	32	1165.575	36.424	NA	NA

Nota-se que a maioria da variância explicada pelo modelo está associada à variável idade, enquanto a soma de quadrados das variáveis de tratamento juntas não superam a soma de quadrados dos resíduos.

Se conjugarmos os resultados deste item com os do item a) vemos que isoladamente apenas idade, e interessantemente apenas o tratamento A, parecem ser variáveis que realmente contribuem para a explicação do fenômeno.

c) Considere a possibilidade de incluir a interação entre as varáveis independentes

Supõe-se que $\varepsilon_i \sim N(0, \sigma^2)$.

i) Lista de todos os submodelos possíveis

A partir do modelo (2), construimos todos os possíveis submodelos. Considerando que temos três covariáveis e dois termos de interação, temos $\sum_{n=1}^{5} {6 \choose n} = 62$ modelos

- 1. $y_i = \beta_0 + \varepsilon_i$
- $2. \ y_i = \beta_1 \, x_{1i} + \varepsilon_i$
- 3. $y_i = \beta_2 x_{Ai} + \varepsilon_i$
- 4. $y_i = \beta_3 x_{Bi} + \varepsilon_i$
- 5. $y_i = \beta_4 x_{1i} x_{Ai} + \varepsilon_i$
- 6. $y_i = \beta_5 x_{1i} x_{Bi} + \varepsilon_i$

7.
$$y_i = \beta_0 + \beta_1 x_{1i} + \varepsilon_i$$

8.
$$y_i = \beta_0 + \beta_2 x_{Ai} + \varepsilon_i$$

9.
$$y_i = \beta_0 + \beta_3 x_{Bi} + \varepsilon_i$$

$$10. \ y_i = \beta_0 + \beta_4 \, x_{1i} \, x_{Ai} + \varepsilon_i$$

11.
$$y_i = \beta_0 + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

12.
$$y_i = \beta_1 x_{1i} + \beta_2 x_{Ai} + \varepsilon_i$$

13.
$$y_i = \beta_1 x_{1i} + \beta_3 x_{Bi} + \varepsilon_i$$

14.
$$y_i = \beta_1 x_{1i} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

15.
$$y_i = \beta_1 x_{1i} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

16.
$$y_i = \beta_2 x_{Ai} + \beta_3 x_{Bi} + \varepsilon_i$$

17.
$$y_i = \beta_2 x_{Ai} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

18.
$$y_i = \beta_2 x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

19.
$$y_i = \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

$$20. \ y_i = \beta_3 \, x_{Bi} \beta_5 \, x_{1i} \, x_{Bi} + \varepsilon_i$$

21.
$$y_i = \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

22.
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{Ai} + \varepsilon_i$$

23.
$$y_i = \beta_0 + \beta_1 \, x_{1i} + \beta_3 \, x_{Bi} + \varepsilon_i$$

24.
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

25.
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

26.
$$y_i = \beta_0 + \beta_2 x_{Ai} + \beta_3 x_{Bi} + \varepsilon_i$$

27.
$$y_i = \beta_0 + \beta_2 x_{Ai} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

28.
$$y_i=\beta_0+\beta_2\,x_{Ai}+\beta_5\,x_{1i}\,x_{Bi}+\varepsilon_i$$

29.
$$y_i = \beta_0 + \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

30.
$$y_i = \beta_0 + \beta_3 x_{Bi} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

31.
$$y_i = \beta_0 + \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

32.
$$y_i = \beta_1 x_{1i} + \beta_2 x_{Ai} + \beta_3 x_{Bi} + \varepsilon_i$$

33.
$$y_i = \beta_1 x_{1i} + \beta_2 x_{Ai} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

34.
$$y_i = \beta_1 x_{1i} + \beta_2 x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

35.
$$y_i = \beta_1 x_{1i} + \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

36.
$$y_i = \beta_1 x_{1i} + \beta_3 x_{Bi} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

37.
$$y_i = \beta_1 x_{1i} + \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

38.
$$y_i = \beta_2 \, x_{Ai} + \beta_3 \, x_{Bi} + \beta_4 \, x_{1i} \, x_{Ai} + \varepsilon_i$$

39.
$$y_i = \beta_2 x_{Ai} + \beta_3 x_{Bi} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

40.
$$y_i = \beta_2 x_{Ai} + \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

41.
$$y_i = \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

42.
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{Ai} + \beta_3 x_{Bi} + \varepsilon_i$$

43.
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{Ai} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

44.
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

45.
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

46.
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_3 x_{Bi} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

47.
$$y_i = \beta_0 + \beta_1 \, x_{1i} + \beta_4 \, x_{1i} \, x_{Ai} + \beta_5 \, x_{1i} \, x_{Bi} + \varepsilon_i$$

48.
$$y_i = \beta_0 + \beta_2 x_{Ai} + \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

49.
$$y_i = \beta_0 + \beta_2 x_{Ai} + \beta_3 x_{Bi} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

50.
$$y_i = \beta_0 + \beta_2 x_{Ai} + \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

51.
$$y_i = \beta_0 + \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

52.
$$y_i = \beta_1 \, x_{1i} + \beta_2 \, x_{Ai} + \beta_3 \, x_{Bi} + \beta_4 \, x_{1i} \, x_{Ai} + \varepsilon_i$$

53.
$$y_i = \beta_1 x_{1i} + \beta_2 x_{Ai} + \beta_3 x_{Bi} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

54.
$$y_i = \beta_1 \, x_{1i} + \beta_2 \, x_{Ai} + \beta_4 \, x_{1i} \, x_{Ai} + \beta_5 \, x_{1i} \, x_{Bi} + \varepsilon_i$$

55.
$$y_i = \beta_1 x_{1i} + \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

56.
$$y_i = \beta_2 x_{Ai} + \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

57.
$$y_i = \beta_1 \, x_{1i} + \beta_2 \, x_{Ai} + \beta_3 \, x_{Bi} + \beta_4 \, x_{1i} \, x_{Ai} + \beta_5 \, x_{1i} \, x_{Bi} + \varepsilon_i$$

$$58. \ \ y_i = \beta_0 + \beta_2 \, x_{Ai} + \beta_3 \, x_{Bi} + \beta_4 \, x_{1i} \, x_{Ai} + \beta_5 \, x_{1i} \, x_{Bi} + \varepsilon_i$$

$$59. \ \ y_i = \beta_0 + \beta_1 \, x_{1i} + \beta_3 \, x_{Bi} + \beta_4 \, x_{1i} \, x_{Ai} + \beta_5 \, x_{1i} \, x_{Bi} + \varepsilon_i$$

60.
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{Ai} + \beta_4 x_{1i} x_{Ai} + \beta_5 x_{1i} x_{Bi} + \varepsilon_i$$

61.
$$y_i = \beta_0 + \beta_1 \, x_{1i} + \beta_2 \, x_{Ai} + \beta_3 \, x_{Bi} + \beta_5 \, x_{1i} \, x_{Bi} + \varepsilon_i$$

62.
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{Ai} + \beta_3 x_{Bi} + \beta_4 x_{1i} x_{Ai} + \varepsilon_i$$

ii) Interpretação de coeficientes de regressão de fatores de interação

Agora experimentamos ajustar exatamente o modelo (2) e, conforme suspeitas, verificamos que não apenas agora o coeficiente β_3 , correspondente ao tratamento B, é significativamente diferente de zero, como a interação dos tratamentos também o é.

Table 3: Modelo de regressão linear para tratamentos com interação com idade sobre eficácia

Coeficiente	Estimativa	EP	Estatística t	p-valor
(Intercept)	6.211	3.350	1.854	0.074
idade	1.033	0.072	14.288	0.000
A	41.304	5.085	8.124	0.000
В	22.707	5.091	4.460	0.000
idade:A	-0.703	0.109	-6.451	0.000
idade:B	-0.510	0.110	-4.617	0.000

Há várias mudanças na interpretação dos coeficientes estimados em relação ao primeiro modelo ajustado. Primeiramente, vemos que a linha de base dos tratamentos está bem diferente com efeitos C < B < A, com uma grande diferença entre o primeiro e último tratamento.

O efeito da interação entre idade e tratamentos pode ser melhor explicada se analisarmos graficamente primeiro. A figura a seguir ilustra as curvas de regressão para cada tratamento.

Cabe recapitularmos que o grupo de referência é o tratamento C, o que força a interpretação de que o intercepto β_0 do modelo é o seu efeito de tratamento isolado e $\beta_1 \, x_{1i}$ se refere à interação entre o tratamento C e a variável idade.

Enquanto este coeficiente, do grupo de referência, é positivo e muito próximo a 1, os demais são negativos. No entanto, isto não significa que suas retas têm coeficiente angular negativo. O sentido e magnitude desses estimadores indica quanto a inclinação das demais retas está deslocada no sentido horário em relação à referência. Pela tabela, notamos que $\beta_1 > \beta_4 > \beta_5$. Analogamente, se $\theta_j, j = A, B, C$ for o ângulo da curva de regressão em relação às abscissas, notamos que $\theta_C > \theta_B > \theta_A$.

Em termos reais, o modelo sugere que há uma grande influência da idade sobre a eficácia do tratamento C, enquanto essa influência é menor para o tratamento B e menor ainda para o tratamento A.

iii) tabela ANOVA

Figure 1: Curvas de regressão para modelo com interações.

Table 4: Tabela ANOVA para o modelo linear com interações

Fonte de Var.	g.l.	SQ	QM	F	p-valor
idade	1	3424.432	3424.432	222.295	0.000
A	1	803.804	803.804	52.178	0.000
В	1	1.189	1.189	0.077	0.783
idade:A	1	375.002	375.002	24.343	0.000
idade:B	1	328.424	328.424	21.319	0.000
Residuals	30	462.148	15.405	NA	NA

iv) Análise completa dos resíduos do modelo

Apêndice

Todo o projeto de composição deste documento pode ser encontrado aqui: $\frac{https://github.com/cesar-galvao/mlg}{cesar-galvao/mlg}$