R Notebook

Loading library

```
library("DESeq2")
## Loading required package: S4Vectors
## Loading required package: stats4
## Loading required package: BiocGenerics
##
## Attaching package: 'BiocGenerics'
  The following objects are masked from 'package:stats':
##
##
##
       IQR, mad, sd, var, xtabs
  The following objects are masked from 'package:base':
##
##
       anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##
       dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##
##
       grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
       order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##
       rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##
       union, unique, unsplit, which.max, which.min
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
##
##
       expand.grid, I, unname
## Loading required package: IRanges
## Loading required package: GenomicRanges
## Loading required package: GenomeInfoDb
```

```
## Loading required package: SummarizedExperiment
## Loading required package: MatrixGenerics
## Loading required package: matrixStats
##
## Attaching package: 'MatrixGenerics'
## The following objects are masked from 'package:matrixStats':
##
##
       colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
##
       colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
##
       colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
##
       colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
##
       colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
##
       colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
       colWeightedMeans, colWeightedMedians, colWeightedSds,
##
##
       colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
##
       rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
##
       rowCumsums, rowDiffs, rowIORDiffs, rowIORs, rowLogSumExps,
##
       rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
       rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
##
##
       rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
       rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
##
##
       rowWeightedSds, rowWeightedVars
## Loading required package: Biobase
## Welcome to Bioconductor
##
       Vignettes contain introductory material; view with
##
##
       'browseVignettes()'. To cite Bioconductor, see
       'citation("Biobase")', and for packages 'citation("pkgname")'.
##
##
## Attaching package: 'Biobase'
## The following object is masked from 'package: MatrixGenerics':
##
##
       rowMedians
## The following objects are masked from 'package:matrixStats':
##
##
       anyMissing, rowMedians
```

```
library("apeglm")
library("ggplot2")
library("vsn")
library("pheatmap")
library("RColorBrewer")
```

The names of files have been changed by bash:

add suffix "Ductgroup" in the htseqcounts files of Duct group

add suffix "Lobulargroup" in the htseqcounts files of Lobular group

put them together in one folder named Lobular_Ductr to point it to this directory

Preparation

Set the Directory

The folder has been uploaded to Google Drive

```
directory <- "/Users/margery/Desktop/data/Lobular_Duct/"
#in my computer

#direction<- "~/TRGN510_Final_Project_Data/Lobular_Duct"</pre>
```

Set the sample condition & sampleFiles

Extract the information of Condition directly from file names which could guarantee the one-to-one correspondence of expressed matrix and samples

Use grep to select those files containing string group Use sub to chop up the sample filename to obtain the condition status

```
sampleFiles <- grep("group",list.files(directory),value=TRUE)</pre>
```

```
sampleCondition <- sub("(.*group).*","\\1",sampleFiles)</pre>
```

Build the DESeqDataSet

```
## class: DESeqDataSet
## dim: 60483 265
## metadata(1): version
## assays(1): counts
## rownames(60483): ENSG0000000003.13 ENSG0000000005.5 ...
    ENSGR0000280767.1 ENSGR0000281849.1
##
## rowData names(0):
## colnames(265): Ductgroup-TCGA-3C-AALK-01A-11R-A41B-07.htseq.counts.gz
##
    Ductgroup-TCGA-A2-A04N-01A-11R-A115-07.htseq.counts.gz ...
##
    Lobulargroup-TCGA-WT-AB44-01A-11R-A41B-07.htseq.counts.gz
##
    Lobulargroup-TCGA-XX-A89A-01A-11R-A36F-07.htseq.counts.gz
## colData names(1): condition
```

60483

Pre-filtering

Remove the genes with few reads (less than 10) to reduce the memory size and increase the speed

```
keep <- rowSums(counts(dds)) >= 10
dds <- dds[keep,]</pre>
```

After filtering, the number of elements has decreased from 60483 to 50860

By default, R will choose a reference level for factors based on alphabetical order

```
dds$condition
```

- /							
	##	r 1 1	Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##	[116]	Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##	[121]	Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##		Ductgroup	Ductgroup	Ductgroup	Ductgroup	Ductgroup
	##	[136]	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup
	##	[141]	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup
	##	[146]	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup
	##	[151]	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup
	##	[156]	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup
	##	[161]	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup
	##	[166]	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup
	##	[171]	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup
	##	[176]	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup
	##	[181]	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup
	##	[186]	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup
	##	[191]	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup
	##			Lobulargroup			
	##			Lobulargroup			
	##	-		Lobulargroup			
	##			Lobulargroup			
	##	-		Lobulargroup			
	##			Lobulargroup			
	##	-		Lobulargroup			
	##			Lobulargroup			
	##			Lobulargroup			
	##	-		Lobulargroup			
	##			Lobulargroup			
	##	-		Lobulargroup			
	##	[256]	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup	Lobulargroup

```
## [261] Lobulargroup Lobulargroup Lobulargroup Lobulargroup Lobulargroup ## Levels: Ductgroup Lobulargroup
```

In this case, Ductgroup is the reference, define it manually to make sure

log2 fold change and Wald test p value: last level / reference level log2 fold change: log2 (Lobulargroupt / Ductgroup)

Differential expression analysis

Use function DESeq to do differential expression analysis Use function results to generate results tables with log2 fold changes, p values and adjusted p values.

```
dds <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 10467 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
res <- results(dds)
res
```

```
## log2 fold change (MLE): condition Lobulargroup vs Ductgroup
## Wald test p-value: condition Lobulargroup vs Ductgroup
## DataFrame with 50860 rows and 6 columns
##
                       baseMean log2FoldChange
                                                               stat
                                                                         pvalue
                                     <numeric> <numeric>
##
                      <numeric>
                                                          <numeric>
                                                                      <numeric>
## ENSG0000000003.13 2994.2734
                                     0.0420056 0.0994397
                                                           0.422423 6.72717e-01
## ENSG0000000005.5
                                     1.0533486 0.2281769
                        53.8553
                                                           4.616369 3.90512e-06
  ENSG00000000419.11 2071.6910
                                    -0.3423046 0.0628977
                                                          -5.442241 5.26143e-08
  ENSG00000000457.12 2086.8536
                                     0.1151750 0.0637844
                                                           1.805693 7.09663e-02
## ENSG0000000460.15 744.0237
                                    -0.1224067 0.0822178 -1.488810 1.36537e-01
##
## ENSG00000281909.1
                       0.854753
                                     0.4452084 0.2666805 1.6694448 0.095029260
## ENSG00000281910.1
                       0.422694
                                    -0.0534396 0.5809119 -0.0919927 0.926703856
## ENSG00000281912.1 97.306569
                                    -0.0323205 0.0968381 -0.3337582 0.738561999
## ENSG00000281918.1
                       2.374675
                                     0.5346585 0.2594000
                                                          2.0611354 0.039290120
  ENSG00000281920.1
                       5.935921
                                     0.7656355 0.1668402 4.5890348 0.000004453
##
##
                        <numeric>
## ENSG0000000003.13 7.99464e-01
## ENSG0000000005.5
                     6.50184e-05
## ENSG00000000419.11 1.81304e-06
  ENSG00000000457.12 1.69797e-01
## ENSG00000000460.15 2.74298e-01
## ...
## ENSG00000281909.1 2.10845e-01
## ENSG00000281910.1 9.60304e-01
## ENSG00000281912.1 8.44083e-01
## ENSG00000281918.1 1.08932e-01
## ENSG00000281920.1 7.23534e-05
```

Export the results to csv file

```
write.csv(res,file="Lobular_Duct_res.csv")
```

Log fold change shrinkage for visualization and ranking

Use function lfcshrink to shrink the LFC apeglm: (Zhu, Ibrahim, and Love 2018) effect size shrinkage, which improves on the previous estimator

```
## using 'apeglm' for LFC shrinkage. If used in published research, please cite:
## Zhu, A., Ibrahim, J.G., Love, M.I. (2018) Heavy-tailed prior distributions for
## sequence count data: removing the noise and preserving large differences.
## Bioinformatics. https://doi.org/10.1093/bioinformatics/bty895
```

```
resLFC
```

```
## log2 fold change (MAP): condition Lobulargroup vs Ductgroup
## Wald test p-value: condition Lobulargroup vs Ductgroup
## DataFrame with 50860 rows and 5 columns
##
                       baseMean log2FoldChange
                                                   lfcSE
                                                              pvalue
                                                                            padi
                                     <numeric> <numeric>
##
                      <numeric>
                                                           <numeric>
                                                                       <numeric>
## ENSG0000000003.13 2994.2734
                                     0.0398904 0.0911447 6.72717e-01 7.99464e-01
## ENSG0000000005.5
                                     0.9556161 0.2381667 3.90512e-06 6.50184e-05
                        53.8553
## ENSG0000000419.11 2071.6910
                                    -0.3288230 0.0629304 5.26143e-08 1.81304e-06
## ENSG0000000457.12 2086.8536
                                     0.1079616 0.0620041 7.09663e-02 1.69797e-01
## ENSG0000000460.15 744.0237
                                    -0.1095951 0.0785919 1.36537e-01 2.74298e-01
## ...
## ENSG00000281909.1
                       0.854753
                                     0.2339201 0.2373185 0.095029260 2.10845e-01
## ENSG00000281910.1
                       0.422694
                                    -0.0631372 0.2217272 0.926703856 9.60304e-01
## ENSG00000281912.1 97.306569
                                    -0.0273729 0.0890516 0.738561999 8.44083e-01
## ENSG00000281918.1
                       2.374675
                                     0.3136781 0.2636270 0.039290120 1.08932e-01
## ENSG00000281920.1
                       5.935921
                                     0.6980221 0.1739988 0.000004453 7.23534e-05
```

resLFC is more compacted compared to res column stat is removed after shrinking

```
names(resLFC)

## [1] "baseMean" "log2FoldChange" "lfcSE" "pvalue"

names(res)

## [1] "baseMean" "log2FoldChange" "lfcSE" "stat"

## [5] "pvalue" "padj"
```

Speed up

Use parallel=TRUE and BPPARAM=MulticoreParam(4) to split the job over 4 cores

```
library("BiocParallel")
register(MulticoreParam(4))
```

p-values and adjusted p-values

order our results table by the smallest p value

```
resOrdered <- res[order(res$pvalue),]
summary(res)</pre>
```

```
##
## out of 50840 with nonzero total read count
## adjusted p-value < 0.1
## LFC > 0 (up) : 6735, 13%
## LFC < 0 (down) : 6960, 14%
## outliers [1] : 0, 0%
## low counts [2] : 11848, 23%
## (mean count < 0)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results</pre>
```

Find out How many adjusted p-values were less than 0.05?

```
sum(res$padj < 0.05, na.rm =T)</pre>
```

```
## [1] 11017
```

By default the argument alpha is set to 0.1, set the alpha = 0.05 means set the statistical significance to be 0.05

```
res05 <- results(dds, alpha=0.05)
summary(res05)</pre>
```

```
##
## out of 50840 with nonzero total read count
## adjusted p-value < 0.05
## LFC > 0 (up) : 5318, 10%
## LFC < 0 (down) : 5751, 11%
## outliers [1] : 0, 0%
## low counts [2] : 12834, 25%
## (mean count < 0)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results</pre>
```

Define the Differential Expressed Gene and Export the results

```
diff_gene_deseq2 <-subset(res, padj < 0.05 & abs(log2FoldChange) > 1)
dim(diff_gene_deseq2)
```

```
## [1] 1490     6
```

```
head(diff_gene_deseq2)
```

```
## log2 fold change (MLE): condition Lobulargroup vs Ductgroup
## Wald test p-value: condition Lobulargroup vs Ductgroup
## DataFrame with 6 rows and 6 columns
##
                       baseMean log2FoldChange
                                                   lfcSE
                                                              stat
                                                                        pvalue
##
                                     <numeric> <numeric> <numeric>
                      <numeric>
                                                                     <numeric>
## ENSG0000000005.5
                        53.8553
                                       1.05335
                                                0.228177
                                                           4.61637 3.90512e-06
                                                           5.97327 2.32548e-09
## ENSG0000001626.13
                        28.7633
                                       1.19972
                                                0.200847
## ENSG0000003249.12 2114.7789
                                      -1.00437 0.111452 -9.01169 2.02901e-19
## ENSG0000004799.7 4025.7035
                                       1.03231 0.170746
                                                           6.04589 1.48586e-09
## ENSG0000006377.10
                        12.2752
                                      -2.37282 0.269294 -8.81127 1.23735e-18
  ENSG00000010438.15
                                      -1.52541 0.254267 -5.99924 1.98239e-09
                        15.1358
##
                             padj
##
                        <numeric>
## ENSG0000000005.5
                     6.50184e-05
## ENSG0000001626.13 1.38041e-07
## ENSG00000003249.12 1.97889e-16
## ENSG00000004799.7 9.36451e-08
## ENSG0000006377.10 1.04938e-15
## ENSG0000010438.15 1.21028e-07
```

```
write.csv(diff_gene_deseq2,file = "DEG_Lobular_Duct.csv")
```

Visulization

MA-plot

plotMA shows the log2 fold changes attributable to a given variable over the mean of normalized counts for all the samples in the DESegDataSet.

```
plotMA(res, ylim=c(-2,2))
```


plotMA(resLFC, ylim=c(-2,2))

mean of normalized counts

```
library(ashr)
resNorm <- lfcShrink(dds, coef=2, type="normal")

## using 'normal' for LFC shrinkage, the Normal prior from Love et al (2014).
##
## Note that type='apeglm' and type='ashr' have shown to have less bias than type='normal'.
## See ?lfcShrink for more details on shrinkage type, and the DESeq2 vignette.
## Reference: https://doi.org/10.1093/bioinformatics/bty895</pre>
resAsh <- lfcShrink(dds, coef=2, type="ashr")
```

```
## using 'ashr' for LFC shrinkage. If used in published research, please cite:
## Stephens, M. (2016) False discovery rates: a new deal. Biostatistics, 18:2.
## https://doi.org/10.1093/biostatistics/kxw041
```

```
par(mfrow=c(1,3), mar=c(4,4,2,1))
xlim <- c(1,1e5); ylim <- c(-3,3)
plotMA(resLFC, xlim=xlim, ylim=ylim, main="apeglm")
plotMA(resNorm, xlim=xlim, ylim=ylim, main="normal")
plotMA(resAsh, xlim=xlim, ylim=ylim, main="ashr")</pre>
```


Plot counts

Examine the counts of reads for a single gene across the groups

Use function plotCounts to normalize counts by the estimated size factors and adds a pseudocount of 1/2 to allow for log scale plotting.

Here we specify the gene which had the **smallest p value** from the results table created above.

```
plotCounts(dds, gene=which.min(res$padj), intgroup="condition")
```

ENSG00000143452.14

For customized plotting, an argument returnData specifies that the function should only return a data.frame for plotting with ggplot.

More information on results columns

Use function mcols to find which variables and tests were used

```
mcols(res)$description

## [1] "mean of normalized counts for all samples"

## [2] "log2 fold change (MLE): condition Lobulargroup vs Ductgroup"

## [3] "standard error: condition Lobulargroup vs Ductgroup"

## [4] "Wald statistic: condition Lobulargroup vs Ductgroup"

## [5] "Wald test p-value: condition Lobulargroup vs Ductgroup"

## [6] "BH adjusted p-values"
```

For a particular gene, a log2 fold change of -1 for condition logroup vs ductgroup means that the logroup induces a multiplicative change in observed gene expression level of 2^-1 = 0.5 compared to the untreated condition.

Data transformations and visualization

Count data transformations

Use function vsd to remove the dependence of the variance on the mean instead of function rlog for it takes MUCH less time

```
vsd <- vst(dds, blind=FALSE)</pre>
```

It takes more than 24hrs, so I cut it off

```
#rld <- rlog(dds, blind=FALSE)</pre>
```

Extracting transformed values

```
# this gives log2(n + 1)
ntd <- normTransform(dds)</pre>
```

```
library("vsn")
meanSdPlot(assay(ntd))
```


meanSdPlot(assay(vsd))

Data quality assessment by sample clustering and visualization

Heatmap of the count matrix

```
df <- as.data.frame(sampleCondition)</pre>
```

```
rownames(df) <- colnames(ntd)
```


Heatmap of the sample-to-sample distances

Apply the dist function to the transpose of the transformed count matrix to get sample-to-sample distances.

Principal component plot of the samples

plotPCA(vsd, intgroup=c("condition"))

customize the PCA plot using the ggplot function.

```
pcaData <- plotPCA(vsd, intgroup=c("condition"), returnData=TRUE)
percentVar <- round(100 * attr(pcaData, "percentVar"))
ggplot(pcaData, aes(PC1, PC2, color=condition, shape=condition)) +
   geom_point(size=2) +
   xlab(paste0("PC1: ",percentVar[1],"% variance")) +
   ylab(paste0("PC2: ",percentVar[2],"% variance")) +
   coord_fixed()</pre>
```

