University of Vienna Faculty of Mathematics

Applied Analysis Problems

Milutin Popovic

March 20, 2022

Contents

1	Sheet 2			
	1.1	Problem 1		
		l. <mark>1.1</mark>		
		1. <u>1.2</u>		
		1.1.3		
	1.2	Problem 2		
		1. <mark>2.1</mark>		
		1.2.2		
		1.2.3		
	1.3	Problem 3		
		1.3.1		
		1.3.2		
		1.3.3		
	1.4	Problem 4		
		l.4.1		
		1.4.2		
		1.4.3		
	1.5	Problem 5		
		l.5.1		
		1.5.2		

1 Sheet 2

1.1 Problem 1

1.1.1

We let $\rho(A)$ be the spectral radius of a matrix $A \in \mathbb{R}^{n \times n}$. A matrix norm $\|\cdot\|_1$ is consistent with the vector norm $\|\cdot\|_2$ if

$$||Ax||_2 \le ||A||_1 ||x||_2 \tag{1}$$

for all $x \in \mathbb{R}^n$ and all $A \in \mathbb{R}^{n \times n}$. Indeed every matrix norm induced by a vector norm is consistent. To show this let $\|\cdot\|_M$ be a matrix norm and $\|\cdot\|_v$ be a vector norm, defined as

$$||x||_v = ||xv^T||_M \tag{2}$$

for all $x \in \mathbb{R}^n$ and some $v \neq 0$, of $\mathbb{R}^{n \times n}$ and \mathbb{R}^n respectively. Then we have

$$||Ax||_v = ||Axv^T|| \le ||A||_M ||xv^T||_M = ||A||_M ||v||_v \quad \Box$$
(3)

2

Note that for $\mathbb{C}^{n\times n}$ and \mathbb{C}^n use $v^*\neq 0$ the conjugate transpose.

1.1.2

Now we consider a splitting of A = D - (L + U), were D, L and U are defined as

$$D = \operatorname{diag}(a_{11}, \dots, a_{nn}), \tag{4}$$

$$(L)_{ij} = \begin{cases} -(A)_{ij} & i > j \\ 0 & i \le 0 \end{cases}, \qquad (U)_{ij} = \begin{cases} -(A)_{ij} & i < j \\ 0 & i \ge 0 \end{cases}, \tag{5}$$

Then the matrix of a single Jacobi iteration method is

$$B_J = D^{-1}(L + U) (6)$$

We can show that if A is strictly diagonally dominant then

$$\rho(B_J) \le ||B_J||_{\infty} < 1. \tag{7}$$

If A is strictly diagonally dominant, this means that

$$|A_{ii}| > \sum_{j \neq i}^{n} |A_{ij}| \quad \forall i \in \{1, \dots, n\}$$
 (8)

$$\Leftrightarrow \sum_{j \neq i} \frac{|A_{ij}|}{|A_{ii}|} < 1. \tag{9}$$

Now let (λ, v) be an eigen-pair of B_J , then

$$B_J v = D^{-1}(L+U)v = \lambda v \tag{10}$$

$$(L+U)v = \lambda Dv. (11)$$

For a chosen i this means

$$|\lambda| |A_{ii}| |v_i| = \left| -\sum_{j>i} A_{ij} v_i - \sum_{j (12)$$

$$\leq \sum_{j>i} |A_{ij}| |v_i| + \sum_{j$$

$$= \sum_{i \neq i} |A_{ij}| |v_i|. \tag{14}$$

We can choose and i such that $|v_i| \leq ||v||_{\infty}$, then

$$|\lambda| |A_{ii}| |v_i| \le \sum_{j \ne i} |A_{ij}| ||v||_{\infty}$$
 (15)

$$\Rightarrow |\lambda| \, |A_{ii}| \le \sum_{j \ne i} |A_{ij}| \tag{16}$$

$$\Rightarrow |\lambda| \le \sum_{i \ne i} \frac{|A_{ij}|}{|A_{ii}|} < 1. \quad \Box \tag{17}$$

1.1.3

Next we show that the Jacobi method converges for every initial guess x^0 to the solution of the equation Ax = b, given that A is strictly diagonally dominant. So with any initial guess x^0 at the k-th iteration we have

$$Dx^{(k)} = (L+U)x^{(k-1)} + b (18)$$

$$\Leftrightarrow x^{(k)} = D^{-1}(L+U)x^{(k-1)} + D^{-1}B \tag{19}$$

$$=B_J x^{(k-1} + D^{-1}b (20)$$

3

Now let x be the exact solution, then the error at the k-th iteration is

$$e^{(k)} = x - x^{(k)} = B_J (x - x^{(k-1)}) = \dots$$
 (21)

$$=B_{J}^{k}e^{(0)} \tag{22}$$

Assume that $e^{(0)} \neq 0$, then we need $\lim_{n\to\infty} B_J^k = 0$. If A is **diagonally dominant** we have $\rho(B_J) < 1$ this means for an eigen-pair (λ, v) of B_J we have

$$\lim_{n \to \infty} B_J^k v = \lim_{n \to \infty} \lambda^k v \tag{23}$$

$$\Rightarrow \lim_{n \to \infty} \lambda^k = 0, \tag{24}$$

for all λ because $\rho(B_J) < 1$.

Problem 2 1.2

Now consider a $A \in \mathbb{R}^{n \times n}$.

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}. \tag{25}$$

Let A = D - (L + U) like in the above problem. The Gauss-Siedel method has the iteration matrix $B_G = (D-L)^{-1}U$ and the Jacobi method has the iteration matrix $B_J = D^{-1}(L+U)$.

1.2.1

We show that the spectral radii of B_J and B_G satisfy

$$\rho(B_J) = \sqrt{|\rho(B_G)|},\tag{26}$$

by directly calculating the eigenvalues of B_J and B_G respectively. We start with B_J ,

$$\det(B_J - \lambda I) = \det\begin{pmatrix} -\lambda & -\frac{a_{12}}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & -\lambda \end{pmatrix}$$

$$= \lambda^2 - \frac{a_{12}a_{21}}{a_{11}a_{22}} = 0$$

$$\Rightarrow \lambda^2 = \frac{a_{12}a_{21}}{a_{11}a_{22}}$$
(29)

$$=\lambda^2 - \frac{a_{12}a_{21}}{a_{11}a_{22}} = 0 (28)$$

$$\Rightarrow \lambda^2 = \frac{a_{12}a_{21}}{a_{11}a_{22}} \tag{29}$$

For B_G we have

$$\det(B_G - \lambda I) = \det\begin{pmatrix} -\lambda & -\frac{a_{12}}{a_{11}} \\ 0 & -\lambda -\frac{a_{21}a_{12}}{a_{11}a_{22}} \end{pmatrix}$$
(30)

$$= -\lambda \left(-\lambda - \frac{a_{21}a_{12}}{a_{11}a_{22}} \right) - 0$$

$$\Rightarrow \lambda_1 = 0, \qquad \lambda_2 = -\frac{a_{21}a_{12}}{a_{11}a_{22}}.$$
(31)

$$\Rightarrow \lambda_1 = 0, \qquad \lambda_2 = -\frac{a_{21}a_{12}}{a_{11}a_{22}}.\tag{32}$$

Which satisfies the above condition, remember

$$\rho(A) = \max\{|\lambda| : \lambda \text{ is eigenvalue } A\},\tag{33}$$

especially note the absolute value.

1.2.2

Indeed the error of the Gauss-Siedel iteration converges to 0 if $\rho(B_G)$ < 1. Which is the case, because exactly then $\rho(B_G) = \rho(B_J)^2 < 1$. Where we can also conclude that the Gauss-Siedel method converges twines as fast as the Jacobi method for 2×2 matrices.

1.2.3

Now let $r \in \mathbb{R}$ and

$$A_r = \begin{pmatrix} 1 & r & r \\ r & 1 & r \\ r & r & 1 \end{pmatrix} \tag{34}$$

We can show that the Gauss-Siedel method for A_r converges, provided that $t \in (-\frac{1}{2},1)$ and the Jacobi methods for A_r does not converge for $r \in (\frac{1}{2},2)$. We start of with calculating the iteration matrices, then calculating their eigenvalues. Then r is determined by $\rho(A) < 1$. For the Jacobi method we have

$$B_J = D^{-1}(E+F) = \begin{pmatrix} 0 & -r & -r \\ -r & 0 & -r \\ -r & -r & 0 \end{pmatrix}.$$
 (35)

Then the eigenvalues of the matrix are

$$\det(B_J - \lambda I) = -\lambda^3 - 2r^4 + 3r^3\lambda = 0$$
(36)

$$\lambda_1 = r \qquad \lambda_2 = -2r \tag{37}$$

Then $\rho(A) < 1$ determines the range of r

$$|\lambda_m ax| = 2|r| < 1 \Rightarrow |r| < \frac{1}{2} \tag{38}$$

We conclude that for $r \in (\frac{1}{2}, 1)$ does not converge. Now for the Gauss-Siedel method

$$B_G = (D - E)^{-1}F = \begin{pmatrix} 0 & -r & -r \\ 0 & r^2 & r^2 - r \\ 0 & -r^3 + r^2 & -r^3 + 2r^2 \end{pmatrix}.$$
 (39)

then

$$\det(B_G - \lambda I) = -\lambda^3 - r^3 \lambda^2 3r^2 \lambda^2 - r^3 \lambda = 0$$

$$\tag{40}$$

$$\Rightarrow \lambda_{1/2} = \frac{1}{2} \left(\pm \sqrt{r - 4} (r - 1) r^{\frac{3}{2}} - r^3 + 3r^2 \right), \tag{41}$$

 $\lambda < 1 \text{ for } r \in \left(-\frac{1}{2}, 1\right).$

1.3 Problem 3

Let $Q \in \mathbb{R}^{n \times n}$ be the Poisson matrix, the matrix of the finite difference method on a $n \times n$ grid,

$$Q = \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix}$$
 (42)

1.3.1

(Can also be done with Gershorin disks)

The eigenvalues of Q lie in the interval [0,4]. To show this let (λ, v) be an eigen-pair of Q, they satisfy the equation

$$Qv = \lambda v \tag{43}$$

At the k-th $(k \in \{1, ..., n\})$ step we have $v^{(0)} = 0$, $v^{(1)} = 1$ and $v^{(n+1)} = 0$

$$-v^{(k+1} + 2v^{(k)} - v^{(k+1)} = \lambda v^{(k)}$$
(44)

$$\Rightarrow v^{(k+1)} = (2 - \lambda)v^{(k)} - v^{(k-1)},\tag{45}$$

which are the Chebyshev polynomials of the second kind, where $(2 - \lambda_k)$ satisfies

$$(2 - \lambda_k) = 2 \cdot \cos\left(\frac{k\pi}{n+1}\right) \tag{46}$$

$$\Rightarrow \lambda_k = 2\left(1 - \cos\left(\frac{k\pi}{n+1}\right)\right) \tag{47}$$

$$=4\cdot\sin^2\left(\frac{k\pi}{n+1}\right),\tag{48}$$

thereby we can conclude that $\lambda_k \in [0,4] \ \forall k \in \{1,\ldots n\}.$

1.3.2

1.3.3

In this section we write a Python script that returns the matrix Q given n and for $b = (1, ..., 1)^T$ n = 20 implements the Gauss-Siedel method for to solve Qx = b for x.

1.4 Problem 4

Now let $P_n \in \mathbb{R}^{n \times n}$ be the matrix

$$P_{n} = \begin{pmatrix} 2 & -1 & & & -1 \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ -1 & & & -1 & 2 \end{pmatrix}$$
(49)

1.4.1

(Can also be done with Gershorin disks)

We can show that all the eigenvalues of P_n are in [0,4] because P_n is the finite difference/laplacian matrix for periodic boundary conditions and can be diagonalized by a DFT. So let (λ, v) be the eigen-pair of P_n , which satisfy the equation

$$P_n v = \lambda v \tag{50}$$

This she standard Possion with periodic boundary conditions, with the eigenvector $v_j = \omega^{jk} = e^{2\pi i \frac{jk}{n}}$ for a $j \in \{1, ..., n\}$.

$$(P_n v)_j = 2\omega^{jk} - \omega^{(j-1)k} - \omega^{(j+1)k}$$
(51)

$$=\omega^{jk}(2-\omega^{-k}-\omega^k)\tag{52}$$

6

$$=\omega^{jk}(2-2\cos\left(\frac{2\pi k}{n}\right)\tag{53}$$

$$=4\sin^2\left(\frac{2\pi k}{n}\right)\omega^{jk} = \lambda_k v_j^k,\tag{54}$$

thereby we can conclude that $\lambda_k \in [0,4]$ for all k.

1.4.2

Because P_n is a real, symmetric, cercular matrix the orthogonal components of the eigenvalues are also eigenvectors, i.e. Re (v) and Im (v). We may conclude this by pure calculation. In the j-th component we have k eigenvalues

$$(P_n \operatorname{Re}(v^k))_j = 2\operatorname{Re}(\omega^{jk}) - \operatorname{Re}(\omega^{(j-1)k}) - \operatorname{Re}(\omega^{(j+1)k})$$
(55)

$$=\omega^{jk}+\omega^{-jk}-\frac{1}{2}\omega^{(j-1)k}-\frac{1}{2}\omega^{-(j-1)k}-\frac{1}{2}\omega^{(j+1)k}-\frac{1}{2}\omega^{-(j+1)k} \tag{56}$$

$$= \left(\omega^{jk} + \omega^{-jk}\right) - \frac{1}{2} \left(\omega^{jk} \left(\omega^k + \omega^{-k}\right) + \omega^{-jk} \left(\omega^k + \omega^{-k}\right)\right) \tag{57}$$

$$=\frac{1}{2}\left(\omega^{jk}+\omega^{-jk}\right)\left(2-\left(\omega^{k}+\omega^{-k}\right)\right)\tag{58}$$

$$= \operatorname{Re}\left(\omega^{jk}\right) \left(2 - 2\cos\left(\frac{2\pi k}{n}\right)\right) \tag{59}$$

$$=4\sin^2\left(2\pi\frac{k}{n}\right)\operatorname{Re}\left(\omega^{jk}\right)=\lambda_k\operatorname{Re}(v_j^k). \tag{60}$$

1.4.3

We define the quantity $m(n) = \min\{|\lambda| : \lambda \text{ eigenvalue of } P_n\}$. We can show that the quantity converges to 0 as n goes to infinity by calculating for a k that minimises k which is for a $k \neq 0$.

$$\lim_{n \to \infty} m(n) = \lim_{n \to \infty} \min_{k \in \{1, \dots, n\}} \{ |\lambda_k(n)| \} = \lim_{n \to \infty} 4 \sin^2 \left(2\pi \frac{k}{n} \right)$$
 (61)

$$= \lim_{n \to \infty} 4 \cdot \left(\frac{x^2}{n^2} + \frac{x^4}{n^4} + O(\frac{1}{n^6}) \right) = 0, \tag{62}$$

where $x = 2\pi k$.

1.5 Problem 5

Let Q be like in Problem 3. And split Q as

$$Q = D - N, (63)$$

where D consists of diagonal entries of Q. For $p \in \mathbb{N}$ let C_p be the Neumann polynomial preconditioner, defined as

$$C_p = D^{-1} \sum_{k=0}^{p} \left(N D^{-1} \right)^k \tag{64}$$

1.5.1

1.5.2

The following is a Phython script, that takes n, p as an Input and returns C_p furthermore calculates the spectral condition number of the matrix C_pQ

```
[5]: def neumann_polynomial_preconditioner(n, p):
          Q = poisson_mat(n)
         \label{eq:defD} D = \text{np.reshape}([\mathbb{Q}[\text{i}][\text{j}] \text{ if } \text{i==j else 0 for i in range(n) for j in}_{\square}
       →range(n)], (n ,n))
         N = D-Q
         C_p = np.zeros([n, n])
          for k in range(p+1):
             C_p += np.linalg.matrix_power(N @ np.linalg.inv(D), k)
          return np.linalg.inv(D) @ C_p
     n = 20
     Q = poisson_mat(n)
     P = np.arange(1, 50)
     cond_2 = []
     for p in P:
         C_p = neumann_polynomial_preconditioner(n, p)
          cond_2.append(np.linalg.cond(C_p @ Q, p=2))
         if p in np.arange(1, 10):
              print(p, cond_2[p-1], sep='\t')
     plt.figure(figsize=[7, 4])
     plt.scatter(P, cond_2)
     \textbf{print("Max. and Min. Singular value are far apart from each other for $uneaven_{\square}$}
             44.76606865271519
    1
    2
             59.35975010638131
             22.760834328149002
    3
             35.62184004487854
    4
             15.344146462132624
    6
             25.450588757787248
    7
             11.636387156050118
    8
             19.801556558635184
             9.41247817754299
    {\tt Max.} and {\tt Min.} Singular value are far apart from each other for uneaven p
```

