Aprendizaje Reforzado: Regulación cuadrática lineal Lección 26

Dr. Pablo Alvarado Moya

CE5506 Introducción al reconocimiento de patrones Área de Ingeniería en Computadores Tecnológico de Costa Rica

II Semestre, 2019

Contenido

- Repaso
- Recompensas por estado-acción
- MDP de horizonte finito
- 4 Sistemas dinámicos lineales
 - Regulación cuadrática lineal (LQR)
 - Modelos
 - Ecuación de Riccati en tiempo discreto

- Definimos un MDP como la tupla $\langle S, A, \{P_{sa}\}, \gamma, R \rangle$ con estados.
- El factor de degradación $\gamma \in [0,1)$
- Función de recompensa $R: \mathcal{S} \to \mathbb{R}$.
- En la iteración de valor, repetimos hasta convergencia

$$V(s) \leftarrow R(s) + \max_{s \in \mathcal{A}} \gamma \sum_{s'} P_{sa}(s') V(s')$$

que al final será equivalente a $V^*(s)$

• Con $V^*(s)$ encontramos π^*

$$\pi(s) = \arg\max_{a \in \mathcal{A}} \sum_{s'} P_{sa}(s')V(s')$$

- En el caso de estados continuos, lo que hicimos fue aproximar V(s).
- En esos casos usamos regresión para la aproximación del siguiente estado $\underline{\mathbf{s}}_{(t+1)}$ y un simulador para poder estimar valores esperados.

Plan de acción

- Lo que haremos ahora es proponer algunas modificaciones comunes a MDP que
 - usan otra definición de la función de recompensa R
 - usan otra estrategia para degradar la recompensa
 - nos permiten calcular V(s) exactamente a pesar de continuidad de s

Recompensas por estado acción

- Después de usar una función de recompensa R : S → IR, regresaremos a la definición que considera también la acción a tomar.
- De nuevo usaremos $R: \mathcal{S} \times \mathcal{A} \to {\rm I\!R}$
- Con eso, redefinimos el saldo total como

$$R(s_{(0)},a_{(0)}) + \gamma R(s_{(1)},a_{(1)}) + \gamma^2 R(s_{(2)},a_{(2)}) + \dots$$

 Queremos encontrar la política que maximiza el valor esperado del saldo total:

$$E\left[R(s_{(0)},a_{(0)})+\gamma R(s_{(1)},a_{(1)})+\gamma^2 R(s_{(2)},a_{(2)})+\ldots\right]$$

• Esto permite incorporar diferencias entre el costo que conlleva tomar cierta acción.

Por ejemplo, "deténgase" es distinto a "acelere" en términos energéticos.

Ecuaciones de Bellman

Las ecuaciones de Bellman serían ahora

$$V^*(s) = \max_{a \in \mathcal{A}} \left(R(s,a) + \gamma \sum_{s'} P_{sa}(s') V^*(s') \right)$$

• En la iteración de valor, repetimos hasta convergencia

$$V(s) \leftarrow \max_{a \in \mathcal{A}} \left(R(s,a) + \gamma \sum_{s'} P_{sa}(s') V(s') \right)$$

que al final será equivalente a $V^*(s)$

• La política óptima estará dada por:

$$\pi^*(s) = \arg\max_{a \in \mathcal{A}} \left(R(s,a) + \gamma \sum_{s'} P_{sa}(s') V^*(s') \right)$$

MDP de horizonte finito

- Un MDP de **horizonte finito** es una tupla $\langle S, A, \{P_{\underline{sa}}\}, T, R \rangle$, donde T es el tiempo de horizonte.
- Redefinimos el saldo total como

$$R(s_{(0)},a_{(0)})+R(s_{(1)},a_{(1)})+\cdots+R(s_{(T)},a_{(T)})$$

- Queremos encontrar el valor esperado del saldo total, que ahora percibe solo una ventana de tiempo.
- La política óptima puede ser no-estacionaria, es decir, que depende del tiempo.
- ¡Las acciones óptimas dependerán de cuándo en el tiempo se deban tomar! pues existirán recompensas no visibles en la ventana de tiempo.

Probabilidades de transición no estacionarias

Hasta ahora hemos supuesto que

$$\underline{\mathbf{s}}_{(t+1)} \sim P_{\underline{\mathbf{s}}_t,\underline{\mathbf{a}}_t}$$

con $P_{\underline{s}_t,\underline{a}_t}$ estacionario (no depende del tiempo).

 Estas probabilidades pueden depender del tiempo (no-estacionarias):

$$\underline{\mathbf{s}}_{(t+1)} \sim P_{\underline{\mathbf{s}}_t,\underline{\mathbf{a}}_t}^{(t)}$$

- Ejemplos:
 - probabilidades de transición de un avión dependen de cuánto combustible tiene (pues la masa se reduce con el tiempo) o las condiciones climáticas.
 - 2 modelo de tránsito depende de la hora del día

Recompensas no-estacionarias

- Para generalizar el modelo anterior, también podemos suponer que la función de recompensa es no-estacionaria.
- Redefinimos el saldo total como

$$R_{(0)}(s_{(0)},a_{(0)}) + R_{(1)}(s_{(1)},a_{(1)}) + \ldots + R_{(T)}(s_{(T)},a_{(T)})$$

- Queremos un algoritmo que estime la política óptima
- Modifiquemos la definición de función de valor óptima:

$$V_{(t)}^*(\underline{\mathbf{s}}) = \mathsf{E}\left[R_{(t)}(\underline{\mathbf{s}}_t,\underline{\mathbf{a}}_t) + \ldots + R_{(T)}(\underline{\mathbf{s}}_{(T)},\underline{\mathbf{a}}_{(T)})\middle|\pi^*,\underline{\mathbf{s}}_{(t)} = \underline{\mathbf{s}}\right]$$

La iteración de valor para este caso es

$$V_{(t)}^*(\underline{\mathbf{s}}) = \max_{\underline{\mathbf{a}} \in \mathcal{A}} \left(R_{(t)}(\underline{\mathbf{s}},\underline{\mathbf{a}}) + \sum_{\underline{\mathbf{s}}' \in \mathcal{S}} P_{\underline{\mathbf{s}}\underline{\mathbf{a}}}^{(t)}(\underline{\mathbf{s}}') V_{(t+1)}^*(\underline{\mathbf{s}}') \right)$$

que es un problema de programación dinámica solucionable con recursión.

P. Alvarado — TEC — 2019

• Para iniciar la recursión usamos

$$V_{(T)}^*(\underline{\mathbf{s}}) = \max_{\underline{\mathbf{a}} \in \mathcal{A}} R_{(T)}(\underline{\mathbf{s}},\underline{\mathbf{a}})$$

pues no consideramos nada luego de \mathcal{T} , y retrocedemos en el tiempo.

Luego encontramos la política óptica con

$$\pi^*_{(t)}(\underline{\mathbf{s}}) = \arg\max_{\underline{\mathbf{a}} \in \mathcal{A}} \left(R_{(t)}(\underline{\mathbf{s}},\underline{\underline{\mathbf{a}}}) + \sum_{\underline{\mathbf{s}}' \in \mathcal{S}} P_{\underline{\mathbf{s}}\underline{\mathbf{a}}}(\underline{\mathbf{s}}') V^*_{(t+1)}(\underline{\mathbf{s}}') \right)$$

 Una diferencia de esta versión con tiempo de horizonte es que el resultado es directo, y no requiere iteraciones para convergencia asintótica.

• En la implementación, calculamos

$$V_{(T)}^*, V_{(T-1)}^*, V_{(T-2)}^*, \dots V_{(t)}^*$$

y con ellos calculamos

$$\pi^*_{(T)}, \pi^*_{(T-1)}, \pi^*_{(T-2)}, \dots \pi^*_{(t)}$$

Sistemas dinámicos lineales

- Vamos a usar los dos cambios anteriores: recompensas por estado-acción, y MDP con horizonte temporal finito, para resolver un tipo muy particular de sistemas, que sin embargo se encuentran a menudo.
- Regulación cuadrática lineal nos permitirá aplicar los conceptos anteriores a casos de espacios de estado y de acción contínuos.

Planteando el nuevo problema LQR

- Un MDP se especifica con quíntupla: $\langle S, A, \{P_{\underline{sa}}\}, T, R \rangle$
- Asumiremos el espacio de estados $S = \mathbb{R}^n$
- El espacio de acciones será $\mathcal{A} = \mathbb{R}^d$.
- Para las probabilidades de transición usaremos:

$$P_{\underline{\mathbf{s}}\underline{\mathbf{a}}}^{(t)}:\underline{\mathbf{s}}_{(t+1)}=\mathbf{A}_{(t)}\underline{\mathbf{s}}_{(t)}+\mathbf{B}_{(t)}\underline{\mathbf{a}}_{(t)}+\underline{\mathbf{w}}_{(t)}$$

con el ruido gaussiano $\underline{\mathbf{w}}_t \sim \mathcal{N}(\underline{\mathbf{0}}, \mathbf{\Sigma}_{\underline{\mathbf{w}}})$, y las matrices conocidas *a-priori* $\mathbf{A}_{(t)} \in \mathbb{R}^{n \times n}$, $\mathbf{B}_{(t)} \in \mathbb{R}^{n \times d}$

• Posteriormente veremos que $\underline{\mathbf{w}}_t$ no es muy importante y lo podremos ignorar.

Recompensa cuadrática en LQR

Supondremos que la recompensa está dada por

$$R_{(t)}\left(\underline{\mathbf{s}}_{(t)},\underline{\mathbf{a}}_{(t)}\right) = -\left(\underline{\mathbf{s}}_{(t)}^{\mathsf{T}}\mathbf{U}_{(t)}\underline{\mathbf{s}}_{(t)} + \underline{\mathbf{a}}_{(t)}^{\mathsf{T}}\mathbf{V}_{(t)}\underline{\mathbf{a}}_{(t)}\right)$$

con $\mathbf{U}_{(t)} \in \mathbb{R}^{n \times n}$ y $\mathbf{V}_{(t)} \in \mathbb{R}^{d \times d}$, ambas positivas semidefinidas, por lo que $R_{(t)} \leq 0$.

- Por ejemplo:
 - Supongamos un sistema diseñado tal que queremos $\underline{\mathbf{s}}_{(t)} pprox \mathbf{0}.$
 - ullet Podríamos elegir $oldsymbol{\mathsf{U}}_{(t)} = oldsymbol{\mathsf{I}}$, $oldsymbol{\mathsf{V}}_{(t)} = oldsymbol{\mathsf{I}}$ de modo que

$$R_{(t)}\left(\underline{\mathbf{s}}_{(t)},\underline{\mathbf{a}}_{(t)}\right) = -\left(\|\underline{\mathbf{s}}_{(t)}\|^2 + \|\underline{\mathbf{a}}_{(t)}\|^2\right)$$

donde la intención del término $\|\underline{\mathbf{a}}_{(t)}\|^2$ es desalentar un uso arbitrario y exagerado de acciones.

Dinámica no estacionaria

- Derivaremos ahora el caso general de dinámica no estacionaria.
- En este caso tendremos variación temporal en la recompensa y en la dinámica del sistema.
- Para simplificar la comprensión, las derivaciones pueden suponerse estacionarias, es decir, con $\mathbf{M} = \mathbf{M}_{(1)} = \ldots = \mathbf{M}_{(T)}$ con todas las matrices involucradas $\mathbf{A}, \mathbf{B}, \mathbf{U}$ y \mathbf{V} .

Modelo lineal

 La suposición principal en lo que sigue es que la dinámica del sistema es lineal:

$$\underline{\mathbf{s}}_{(t+1)} = \mathbf{A}\underline{\mathbf{s}}_{(t)} + \mathbf{B}\underline{\mathbf{a}}_{(t)}$$

• Realizamos *m* experimentos con el sistema:

$$\underline{\mathbf{s}}_{(0)}^{(1)} \xrightarrow{\underline{\mathbf{a}}_{(0)}^{(1)}} \underline{\mathbf{s}}_{(1)}^{(1)} \xrightarrow{\underline{\mathbf{a}}_{(1)}^{(1)}} \underline{\mathbf{s}}_{(2)}^{(1)} \xrightarrow{\underline{\mathbf{a}}_{(2)}^{(2)}} \cdots \underline{\mathbf{s}}_{(T)}^{(1)} \cdots \\
\underline{\mathbf{s}}_{(0)}^{(2)} \xrightarrow{\underline{\mathbf{a}}_{(0)}^{(2)}} \underline{\mathbf{s}}_{(1)}^{(2)} \xrightarrow{\underline{\mathbf{a}}_{(1)}^{(2)}} \underline{\mathbf{s}}_{(2)}^{(2)} \xrightarrow{\underline{\mathbf{a}}_{(2)}^{(2)}} \cdots \underline{\mathbf{s}}_{(T)}^{(2)} \\
\vdots \\
\underline{\mathbf{s}}_{(0)}^{(m)} \xrightarrow{\underline{\mathbf{a}}_{(0)}^{(m)}} \underline{\mathbf{s}}_{(1)}^{(m)} \xrightarrow{\underline{\mathbf{a}}_{(1)}^{(m)}} \underline{\mathbf{s}}_{(2)}^{(m)} \xrightarrow{\underline{\mathbf{a}}_{(2)}^{(m)}} \cdots \underline{\mathbf{s}}_{(T)}^{(m)}$$

Estimando modelo dinámico

Para encontrar el modelo dinámico entonces optimizamos

$$\arg\min_{\mathbf{A},\mathbf{B}} \frac{1}{2} \sum_{i=1}^{m} \sum_{t=0}^{T-1} \left\| \underline{\mathbf{s}}_{(t+1)} - \left(\mathbf{A} \underline{\mathbf{s}}_{(t)} + \mathbf{B} \underline{\mathbf{a}}_{(t)} \right) \right\|^{2}$$

 Otra forma de llegar a un sistema lineal es linealizando un sistema no-lineal.

Linealización

• Supongamos que tenemos una función f no-lineal tal que

$$\underline{\mathbf{s}}_{(t+1)} = f\left(\underline{\mathbf{s}}_{(t)}, \underline{\mathbf{a}}_{(t)}\right)$$

- Usamos una serie de Taylor de primer orden alrededor de un punto $(\underline{\bar{s}}_{(t)},\underline{\bar{a}}_{(t)})$ como aproximación lineal.
- Obviemos por un instante la dependencia de la acción:

$$\mathbf{\underline{s}}_{(t+1)} = f(\mathbf{\underline{s}}_{(t)})$$

$$\approx f(\mathbf{\underline{\overline{s}}}_{(t)}) + \mathbf{J}_f(\mathbf{\underline{\overline{s}}}_{(t)})(\mathbf{\underline{s}}_{(t)} - \mathbf{\underline{\overline{s}}}_{(t)})$$

con $\mathbf{J}_f(\mathbf{\underline{\bar{s}}}_{(t)})$ el jacobiano de f evaluado en $\mathbf{\underline{\bar{s}}}_{(t)}$.

- La linealización obviamente solo es válida en una pequeña vecindad alrededor de $(\underline{\bar{s}}_{(t)}, \underline{\bar{a}}_{(t)})$
- Por ello, empíricamente se debe linealizar alrededor de estado observado con frecuencia.

Ejemplo

• Por ejemplo, con el péndulo invertido

$$\underline{\mathbf{s}}_{(t+1)} = f \begin{pmatrix} \begin{bmatrix} x \\ \dot{x} \\ \theta \\ \dot{\theta} \end{bmatrix} \end{pmatrix}$$

si elegimos que el centro corresponde a x=0, y queremos que la base esté estática $(\dot{x}=0)$, que el poste esté vertical $(\theta=0)$ y que no se esté cayendo $(\dot{\theta}=0)$, entonces querremos linealizar alrededor de $\underline{\mathbf{s}}_{(t)}=\underline{\mathbf{0}}$.

Linealización general

 Considerando las acciones, la extensión con el jacobiano es directa:

$$\underline{\mathbf{s}}_{(t+1)} = f(\underline{\mathbf{s}}_{(t)}, \underline{\mathbf{a}}_{(t)})
\approx f(\underline{\overline{\mathbf{s}}}_{(t)}, \underline{\overline{\mathbf{a}}}_{(t)}) + \mathbf{J}_f(\underline{\overline{\mathbf{s}}}_{(t)}, \underline{\overline{\mathbf{a}}}_{(t)}) \begin{bmatrix} \underline{\mathbf{s}}_{(t)} - \underline{\overline{\mathbf{s}}}_{(t)} \\ \underline{\mathbf{a}}_{(t)} - \underline{\overline{\mathbf{a}}}_{(t)} \end{bmatrix}$$

donde de nuevo $(\underline{\overline{s}}_{(t)},\underline{\overline{a}}_{(t)})$ corresponden al centro de la serie, que es constante en la aproximación, seleccionado adecuadamente para la aplicación concreta.

• Con la linealización, ¿podemos reexpresar lo anterior como

$$\underline{\mathbf{s}}_{(t+1)} = \mathbf{A}\underline{\mathbf{s}}_{(t)} + \mathbf{B}\underline{\mathbf{a}}_{(t)}$$
?

Lidiando con el intercepto

Si expresamos la formula anterior como productos de matrices

$$\underline{\mathbf{s}}_{(t+1)} \approx \underbrace{f(\underline{\bar{\mathbf{s}}}_{(t)}, \underline{\bar{\mathbf{a}}}_{(t)})}_{\underline{\mathbf{c}}} + \mathbf{J}_f(\underline{\bar{\mathbf{s}}}_{(t)}, \underline{\bar{\mathbf{a}}}_{(t)}) \begin{bmatrix} \underline{\mathbf{s}}_{(t)} - \underline{\bar{\mathbf{s}}}_{(t)} \\ \underline{\mathbf{a}}_{(t)} - \underline{\bar{\mathbf{a}}}_{(t)} \end{bmatrix}$$
$$= \mathbf{A}\underline{\mathbf{s}}_{(t)} + \mathbf{B}\underline{\mathbf{a}}_{(t)} + \underbrace{\mathbf{c} - \mathbf{A}\underline{\bar{\mathbf{s}}}_{(t)} - \mathbf{B}\underline{\bar{\mathbf{a}}}_{(t)}}_{\overline{\mathbf{c}}}$$

- De la teoría de señales y sistemas sabemos que un sistema con intercepto no es lineal (sino afín)
- Si $\underline{\bar{\mathbf{c}}} \neq \underline{\mathbf{0}}$ podemos extender el estado $\underline{\mathbf{s}}_{(t)}$ en una dimensión con un 1 y así considerar el intercepto implícitamente en la matriz \mathbf{A} .
- Por ejemplo: $\underline{\mathbf{s}} = \begin{bmatrix} 1 & x & \dot{x} & \theta & \dot{\theta} \end{bmatrix}^T$ y el intercepto estará en la primera columna de **A**

- Un MDP de horizonte finito para LQR se especifica con la quíntupla: $\langle S, A, \{P_{sa}\}, T, R \rangle$ con $S = \mathbb{R}^n$, $A = \mathbb{R}^d$.
- Suponemos que para las probabilidades de transición se cumple

$$P_{\underline{\mathbf{s}}\underline{\mathbf{a}}}^{(t)}:\underline{\mathbf{s}}_{(t+1)}=\mathbf{A}_{(t)}\underline{\mathbf{s}}_{(t)}+\mathbf{B}_{(t)}\underline{\mathbf{a}}_{(t)}+\underline{\mathbf{w}}_{(t)}$$

Para las recompensas usamos

$$R_{(t)}\left(\underline{\mathbf{s}}_{(t)},\underline{\mathbf{a}}_{(t)}\right) = -\left(\underline{\mathbf{s}}_{(t)}^T\mathbf{U}_{(t)}\underline{\mathbf{s}}_{(t)} + \underline{\mathbf{a}}_{(t)}^T\mathbf{V}_{(t)}\underline{\mathbf{a}}_{(t)}\right)$$

con $\mathbf{U}_{(t)} \in \mathbb{R}^{n \times n}$ y $\mathbf{V}_{(t)} \in \mathbb{R}^{d \times d}$, ambas positivas semidefinidas.

- A, B, U y V son dadas en la especificación del problema LQR
- La meta es encontrar una política que maximice la recompensa en el tiempo de horizonte finito:

$$\mathsf{máx}: R_{(0)}(s_{(0)}, a_{(0)}) + R_{(1)}(s_{(1)}, a_{(1)}) + \ldots + R_{(T)}(s_{(T)}, a_{(T)})$$

Estrategia de solución

- La estrategia será primero encontrar $V_{(T)}^*(\underline{\mathbf{s}}_{(T)})$ y luego con programación dinámica (recursivamente) encontrar los valores en tiempos anteriores a T.
- ullet Luego encontraremos la política usando $V_{(t)}^*(ar{\mathbf{s}}_{(t)}).$

Encontrando la función de valor y la política

• El inicio de la recursión se encuentra con:

$$\begin{split} V_{(T)}^*(\underline{\mathbf{s}}_{(T)}) &= \max_{\underline{\mathbf{a}}_{(T)} \in \mathcal{A}} R_{(T)}(\underline{\mathbf{s}}_{(T)}, \underline{\mathbf{a}}_{(T)}) \\ &= \max_{\underline{\mathbf{a}}_{(T)} \in \mathcal{A}} \left(-\left(\underline{\mathbf{s}}_{(T)}^T \mathbf{U}_{(T)} \underline{\mathbf{s}}_{(T)} + \underline{\mathbf{a}}_{(T)}^T \mathbf{V}_{(T)} \underline{\mathbf{a}}_{(T)}\right) \right) \\ &= -\underline{\mathbf{s}}_{(T)}^T \mathbf{U}_{(T)} \underline{\mathbf{s}}_{(T)} \end{split}$$

donde se ha considerado que con $\underline{\mathbf{a}}_{(T)} = \underline{\mathbf{0}}$ se obtiene el máximo.

ullet Entonces, la acción óptima de la política en T es

$$\pi_{(T)}^*\left(\underline{\mathbf{s}}_{(T)}\right) = \arg\max_{\underline{\mathbf{a}}_{(T)}} R_{(T)}\left(\underline{\mathbf{s}}_{(T)},\underline{\mathbf{a}}_{(T)}\right) = \underline{\mathbf{0}}$$

Paso de programación dinámica

- El paso de programación dinámica que buscamos produce $V_{(t)}^*$ a partir de $V_{(t+1)}^*$, como lo hicimos antes.
- Para el caso de estados finitos teníamos

$$V_{(t)}^*(\underline{\mathbf{s}}_{(t)}) = \max_{\underline{\mathbf{a}}_{(t)}} \left(R_{(t)}(\underline{\mathbf{s}}_{(t)},\underline{\mathbf{a}}_{(t)}) + \sum_{\underline{\mathbf{s}}_{(t+1)}'} P_{\underline{\mathbf{s}}_{(t)}\underline{\mathbf{a}}_{(t)}}^{(t)}(\underline{\mathbf{s}}_{(t+1)}') V_{(t+1)}^*(\underline{\mathbf{s}}_{(t+1)}') \right)$$

 Para el caso continuo, la suma se convierte en integral, pero podemos expresar directamente el resultado como el valor esperado:

$$V_{(t)}^*(\underline{\mathbf{s}}_{(t)}) = \max_{\underline{\mathbf{a}}_{(t)}} \left(R_{(t)}(\underline{\mathbf{s}}_{(t)},\underline{\mathbf{a}}_{(t)}) + \mathsf{E}_{\underline{\mathbf{s}}_{(t+1)} \sim P_{\underline{\mathbf{s}}_{(t+1)}\underline{\mathbf{a}}_{(t)}}} \left[V_{(t+1)}^*(\underline{\mathbf{s}}_{(t+1)}) \right] \right)$$

 Por usar LQR, resulta que la expresión anterior se puede expresar de forma cuadrática.

Expresión cuadrática para función de valor

Supongamos que

$$V_{(t+1)}^*(\underline{\mathbf{s}}_{(t+1)}) = \underline{\mathbf{s}}_{(t+1)}^T \mathbf{\Phi}_{(t+1)} \underline{\mathbf{s}}_{(t+1)} + \psi_{(t+1)}$$

con
$$\Phi_{(t+1)} \in \mathbb{R}^{n \times n}$$
, y $\psi_{(t+1)} \in \mathbb{R}$

 Se puede demostrar que en un paso de la programación dinámica anterior, entonces

$$V_{(t)}^*(\underline{\mathbf{s}}_{(t)}) = \underline{\mathbf{s}}_{(t)}^T \mathbf{\Phi}_{(t)} \underline{\mathbf{s}}_{(t)} + \psi_{(t)}$$

para nueva matriz $\mathbf{\Phi}_{(t)}$ y valor $\psi_{(t)}$.

Con el primer paso habíamos encontrado que

$$V_{(T)}^*(\underline{\mathbf{s}}_{(T)}) = -\underline{\mathbf{s}}_{(T)}^T \mathbf{U}_{(T)}\underline{\mathbf{s}}_{(T)}$$

de modo que $\mathbf{\Phi}_{(T)} = -\mathbf{U}_{(T)}, \ \psi_{(T)} = 0$ para entonces

$$V_{(T)}^*(\underline{\mathbf{s}}_{(T)}) = \underline{\mathbf{s}}_{(T)}^T \mathbf{\Phi}_{(T)} \underline{\mathbf{s}}_{(T)} + \psi_{(T)}$$

Luego de varias derivaciones algebraicas se obtiene que

$$V_{(t)}^{*}(\underline{\mathbf{s}}_{(t)}) = \max_{\underline{\mathbf{a}}_{(t)}} \left(-\underline{\mathbf{s}}_{(t)}^{T} \mathbf{U}_{(t)} \underline{\mathbf{s}}_{(t)} - \underline{\mathbf{a}}_{(t)}^{T} \mathbf{V}_{(t)} \underline{\mathbf{a}}_{(t)} + \mathbf{E}_{\underline{\mathbf{s}}_{(t+1)} \sim P_{\underline{\mathbf{s}}_{(t)} \underline{\mathbf{a}}_{(t)}} \underbrace{\left[\underline{\mathbf{s}}_{(t+1)}^{T} \mathbf{\Phi}_{(t+1)} \underline{\mathbf{s}}_{(t+1)} + \psi_{(t+1)}\right]}_{V_{(t+1)}^{*}(\underline{\mathbf{s}}_{(t+1)})} \right)$$

$$\operatorname{con}\, P_{\underline{\mathbf{s}}_{(t)}\underline{\mathbf{a}}_{(t)}} = \mathcal{N}(\mathbf{A}_{(t)}\underline{\mathbf{s}}_{(t)} + \mathbf{B}_{(t)}\underline{\mathbf{a}}_{(t)}, \boldsymbol{\Sigma}_{\underline{\mathbf{w}}}).$$

La expresión anterior es a su vez cuadrática.

Encontrando las acciones óptimas

- Queremos maximizar lo anterior, que es una función cuadrática.
- Derivamos e igualamos a cero, con lo que se obtiene

$$\underline{\mathbf{a}}_{(t)} = \underbrace{\left(\mathbf{B}_{(t)}^{\mathsf{T}} \mathbf{\Phi}_{(t+1)} \mathbf{B}_{(t)} - \mathbf{V}_{(t)}\right)^{-1} \mathbf{B}_{(t)}^{\mathsf{T}} \mathbf{\Phi}_{(t+1)} \mathbf{A}_{(t)}}_{\mathbf{L}_{(t)}} \underline{\mathbf{s}}_{(t)}$$
$$= \mathbf{L}_{(t)} \underline{\mathbf{s}}_{(t)}$$

- Lo anterior implica que la acción óptima es una función lineal del estado $\underline{\mathbf{s}}_{(t)}$
- Para calcular la política óptima tenemos entonces:

$$\begin{split} \pi_{(t)}^*(\underline{\mathbf{s}}_{(t)}) &= \arg\max_{\underline{\mathbf{a}}_{(t)}} R_{(t)}(\underline{\mathbf{s}}_{(t)},\underline{\mathbf{a}}_{(t)}) + \mathsf{E}_{\underline{\mathbf{s}}_{(t+1)}} \left[V_{(t+1)}^*(\underline{\mathbf{s}}_{(t+1)}) \right] \\ &= \mathbf{L}_{(t)}\underline{\mathbf{s}}_{(t)} \end{split}$$

Ecuación de Riccati de tiempo discreto

 Si tomamos lo anterior y lo introducimos en la recursión de la programación dinámica, encontramos:

$$V_{(t)}^*(\underline{\mathbf{s}}_{(t)}) = \underline{\mathbf{s}}_{(t)}^T \mathbf{\Phi}_{(t)} \underline{\mathbf{s}}_{(t)} + \psi_{(t)}$$

con la ecuación de Riccati de tiempo discreto:

$$\begin{aligned} \boldsymbol{\Phi}_{(t)} = & \boldsymbol{\mathsf{A}}_{(t)}^T \left(\boldsymbol{\Phi}_{(t+1)} - \boldsymbol{\Phi}_{(t+1)} \boldsymbol{\mathsf{B}}_{(t)} \left(\boldsymbol{\mathsf{B}}_t^T \boldsymbol{\Phi}_{(t+1)} \boldsymbol{\mathsf{B}}_t - \boldsymbol{\mathsf{V}}_{(t)} \right)^{-1} \boldsymbol{\mathsf{B}}_{(t)}^T \boldsymbol{\Phi}_{(t+1)} \right) \boldsymbol{\mathsf{A}}_{(t)} \\ & - \boldsymbol{\mathsf{U}}_{(t)} \\ \psi_{(t)} = & - \operatorname{tr} \left[\boldsymbol{\Sigma}_{\mathbf{w}} \boldsymbol{\Phi}_{(t+1)} \right] + \psi_{(t+1)} \end{aligned}$$

• Observe la dependencia recursiva de los cálculos, que nos permite calcular la función de valor óptima a través de expresar $\Phi_{(t)}$ en términos de $\Phi_{(t+1)}$

Resumiendo...

- El algoritmo para encontrar la solución exacta de un LQR de horizonte finito se resume como sigue:
 - **1** Inicialice $\Phi_T = -\mathbf{U}_{(T)}$, $\psi_{(T)} = 0$.
 - **2** Calcule recursivamente $\Phi_{(t)}$, $\psi_{(t)}$ usando $\Phi_{(t+1)}$, $\psi_{(t+1)}$ con las ecuaciones de Riccati para $t = T 1, T 2, \dots, 0$.
 - **3** Calcule la matrix $\mathbf{L}_{(t)}$ usando $\mathbf{\Phi}_{(t+1)}$, $\psi_{(t+1)}$.
 - **4** Calcule la política $\pi^*(\underline{\mathbf{s}}_{(t)}) = \mathbf{L}_{(t)}\underline{\mathbf{s}}_{(t)}$.
- Observe que considerando la linealidad del sistema, y las suposición de que la recompensa es cuadrática, podemos obtener de forma exacta la función de valor óptima, a pesar de que los espacios de acción y de estado son contínuos.
- Este algoritmo escala con $\mathcal{O}(n^3)$ con n la dimensión del espacio de estados, que es mucho mejor que el crecimiento exponencial del método de discretización.

Efectos del ruido

- Nótese que la política óptima no depende de $\psi_{(t)}$ ni $\psi_{(t+1)}$.
- Como no depende de $\psi_{(t)}$, ¡el ruido no tiene efecto en la política óptima! pues $\Sigma_{\underline{\mathbf{w}}}$ solo aparece en los $\psi_{(t)}$.
- Esta es una propiedad única para los sistemas LQR.
- Si cambiamos la suposición de linealidad del sistema o la forma cuadrática de la recompensa, ya no se cumple esto.
- Note que la función de valor $\mathbf{s}\mathbf{i}$ depende de $\psi_{(t)}$ y por tanto $\mathbf{s}\mathbf{i}$ es afectada por el ruido.

Resumen

- Repaso
- Recompensas por estado-acción
- 3 MDP de horizonte finito
- Sistemas dinámicos lineales
 - Regulación cuadrática lineal (LQR)
 - Modelos
 - Ecuación de Riccati en tiempo discreto

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, GNU-Make y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-Licenciarlgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2017–2019 Pablo Alvarado-Moya Área de Ingeniería en Computadores Instituto Tecnológico de Costa Rica