NAIST 入試 数学問題 解答編(線形代数・解析)

1 線形代数 (Strang 範囲内) 解答

1.1 問題 1 解答: 正定値行列

対称行列 $A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ が正定値行列であることを示す。

方法 1:固有値による判定 特性方程式: $\det(A - \lambda I) = 0$

$$\det\begin{pmatrix} 2-\lambda & -1\\ -1 & 2-\lambda \end{pmatrix} = (2-\lambda)^2 - 1 \tag{1}$$

$$= \lambda^2 - 4\lambda + 3 \tag{2}$$

$$= (\lambda - 1)(\lambda - 3) = 0 \tag{3}$$

固有值: $\lambda_1 = 1 > 0, \lambda_2 = 3 > 0$

すべての固有値が正なので、A は正定値行列である。

方法 2:シルベスターの判定法

主小行列式を計算:

$$M_1 = 2 > 0 \tag{4}$$

$$M_2 = \det(A) = 2 \cdot 2 - (-1) \cdot (-1) = 4 - 1 = 3 > 0$$
 (5)

すべての主小行列式が正なので、A は正定値行列である。

方法3:二次形式による判定

任意のベクトル $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \neq \mathbf{0}$ に対して:

$$\mathbf{x}^T A \mathbf{x} = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \tag{6}$$

$$=2x_1^2 - 2x_1x_2 + 2x_2^2 (7)$$

$$=2(x_1^2 - x_1 x_2 + x_2^2) (8)$$

$$=2\left[\left(x_1 - \frac{x_2}{2}\right)^2 + \frac{3x_2^2}{4}\right] > 0\tag{9}$$

よってAは正定値行列である。

1.2 問題 2 解答: 行列の余因子展開

行列 $A = \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix}$ の余因子展開による行列式計算。

第1行による展開:

$$\det(A) = 2 \cdot \det(1) - 0 \cdot \det(3) \tag{10}$$

$$= 2 \cdot 1 - 0 = 2 \tag{11}$$

第2列による展開:

$$\det(A) = -0 \cdot \det(3) + 1 \cdot \det(2) \tag{12}$$

$$= 0 + 1 \cdot 2 = 2 \tag{13}$$

検算(直接計算):

$$\det(A) = 2 \cdot 1 - 0 \cdot 3 = 2 \tag{14}$$

答え: $\det(A) = 2$

1.3 問題 3 解答: グラム・シュミットの直交化

ベクトル集合 $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ をグラム・シュミット法で直交化する。

Step 1: 第1ベクトルの設定

$$\mathbf{u}_1 = \mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Step 2:第2ベクトルの直交化

$$\mathbf{u}_2 = \mathbf{v}_2 - \frac{\mathbf{v}_2 \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1$$

内積計算:

$$\mathbf{v}_2 \cdot \mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 1 \cdot 1 + 0 \cdot 1 + 1 \cdot 0 = 1 \tag{15}$$

$$\mathbf{u}_1 \cdot \mathbf{u}_1 = 1^2 + 1^2 + 0^2 = 2 \tag{16}$$

したがって:

$$\mathbf{u}_2 = \begin{pmatrix} 1\\0\\1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1\\1\\0 \end{pmatrix} \tag{17}$$

$$= \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix} \tag{18}$$

$$= \begin{pmatrix} 1/2 \\ -1/2 \\ 1 \end{pmatrix} \tag{19}$$

正規化(必要に応じて):

$$\|\mathbf{u}_1\| = \sqrt{2} \tag{20}$$

$$\|\mathbf{u}_2\| = \sqrt{\frac{1}{4} + \frac{1}{4} + 1} = \sqrt{\frac{3}{2}}$$
 (21)

正規直交基底:

$$\mathbf{e}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{e}_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

1.4 問題 4 解答: 線形写像の判定

線形写像の判定基準:

1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ (加法性)

2. $T(c\mathbf{u}) = cT(\mathbf{u})$ (斉次性)

各写像について判定:

1. $T_1(x,y) = (2x+3y,x-y)$ 加法性:

$$T_1((x_1, y_1) + (x_2, y_2)) = T_1(x_1 + x_2, y_1 + y_2)$$
(22)

$$= (2(x_1 + x_2) + 3(y_1 + y_2), (x_1 + x_2) - (y_1 + y_2))$$
(23)

$$= (2x_1 + 3y_1, x_1 - y_1) + (2x_2 + 3y_2, x_2 - y_2)$$
(24)

$$=T_1(x_1, y_1) + T_1(x_2, y_2) (25)$$

斉次性:

$$T_1(c(x,y)) = T_1(cx,cy) = (2cx + 3cy, cx - cy)$$
 (26)

$$= c(2x + 3y, x - y) = cT_1(x, y)$$
(27)

 T_1 は**線形写像**である。

2. $T_2(x,y) = (x^2,y)$

斉次性をチェック:

$$T_2(c(x,y)) = T_2(cx,cy) = ((cx)^2,cy) = (c^2x^2,cy)$$
 (28)

$$cT_2(x,y) = c(x^2,y) = (cx^2,cy)$$
 (29)

 $c^2x^2 \neq cx^2$ (一般に) なので、 T_2 は**非線形写像**である。

3. $T_3(x,y) = (x+1,y)$

加法性をチェック:

$$T_3((x_1, y_1) + (x_2, y_2)) = T_3(x_1 + x_2, y_1 + y_2)$$
(30)

$$= ((x_1 + x_2) + 1, y_1 + y_2) (31)$$

$$T_3(x_1, y_1) + T_3(x_2, y_2) = (x_1 + 1, y_1) + (x_2 + 1, y_2)$$
(32)

$$= (x_1 + x_2 + 2, y_1 + y_2) (33)$$

 $(x_1+x_2)+1 \neq x_1+x_2+2$ なので、 T_3 は非線形写像である。

4. $T_4(x,y) = (xy, x + y)$

斉次性をチェック:

$$T_4(c(x,y)) = T_4(cx,cy) = (cx \cdot cy, cx + cy) = (c^2xy, c(x+y))$$
(34)

$$cT_4(x,y) = c(xy, x+y) = (cxy, c(x+y))$$
 (35)

 $c^2xy \neq cxy$ (一般に) なので、 T_4 は非線形写像である。

5. $T_5(x,y) = (-y,x)$

これは90度回転変換である。行列表現:

$$T_5(x,y) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

行列による変換なので、 T_5 は**線形写像**である。

6. $T_6(x,y) = (0,0)$

これは零写像である。任意の線形結合について:

$$T_6(c_1\mathbf{v}_1 + c_2\mathbf{v}_2) = (0,0) \tag{36}$$

$$c_1 T_6(\mathbf{v}_1) + c_2 T_6(\mathbf{v}_2) = c_1(0,0) + c_2(0,0) = (0,0)$$
(37)

 T_6 は**線形写像**である。

結論:

線形写像: T₁, T₅, T₆

非線形写像: T₂, T₃, T₄

1.5 問題 5 解答: 固有値・固有ベクトル

行列 $A = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$ の固有値と固有ベクトルを求める。

固有値の計算:

特性方程式: $\det(A - \lambda I) = 0$

$$\det\begin{pmatrix} 3-\lambda & 1\\ 0 & 3-\lambda \end{pmatrix} = (3-\lambda)^2 = 0 \tag{38}$$

固有値: $\lambda = 3$ (重複度 2)

固有ベクトルの計算:

 $(A - 3I)\mathbf{v} = \mathbf{0}$

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{39}$$

これより y=0、x は任意。

固有ベクトル: $\mathbf{v} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ (幾何的重複度 1)

結果

- 固有値: $\lambda = 3$ (代数的重複度 2)
- 固有ベクトル: $\mathbf{v} = c \begin{pmatrix} 1 \\ 0 \end{pmatrix} (c \neq 0)$

この行列は対角化不可能(ジョルダン標準形が必要)。

1.6 問題 6 解答: 対角化

行列 $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \end{pmatrix}$ を直交行列 U により対角化する。

Step 1:固有値の計算

特性方程式: $\det(A - \lambda I) = 0$

第1行による展開:

$$\det(A - \lambda I) = (1 - \lambda) \det\begin{pmatrix} -1 - \lambda & -2 \\ -2 & -\lambda \end{pmatrix} - 0 + 2 \det\begin{pmatrix} 0 & -1 - \lambda \\ 2 & -2 \end{pmatrix}$$
(40)

$$= (1 - \lambda)[\lambda(\lambda + 1) - 4] + 2[0 - 2(\lambda + 1)] \tag{41}$$

$$= (1 - \lambda)(\lambda^2 + \lambda - 4) - 4(\lambda + 1) \tag{42}$$

$$= -\lambda^3 + 3\lambda + 2 \tag{43}$$

$$= -(\lambda - 2)(\lambda + 1)^2 \tag{44}$$

固有值: $\lambda_1 = 2, \lambda_2 = \lambda_3 = -1$ Step 2:固有ベクトルの計算

 $\lambda_1 = 2$ の場合:

$$(A - 2I)\mathbf{v}_1 = \begin{pmatrix} -1 & 0 & 2\\ 0 & -3 & -2\\ 2 & -2 & -2 \end{pmatrix} \mathbf{v}_1 = \mathbf{0}$$
 (45)

解くと:
$$\mathbf{v}_1 = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$

 $\lambda_2 = \lambda_3 = -1$ の場合:

$$(A+I)\mathbf{v} = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 0 & -2 \\ 2 & -2 & 1 \end{pmatrix} \mathbf{v} = \mathbf{0}$$
 (46)

解くと:
$$\mathbf{v}_2 = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Step 3:正規化と直交行列の構成

各固有ベクトルを正規化:

$$\mathbf{u}_1 = \frac{1}{3} \begin{pmatrix} 2\\ -2\\ 1 \end{pmatrix} \tag{47}$$

$$\mathbf{u}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\ -1\\ 0 \end{pmatrix} \tag{48}$$

$$\mathbf{u}_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \tag{49}$$

直交行列:

$$U = \begin{pmatrix} 2/3 & -1/\sqrt{2} & 0\\ -2/3 & -1/\sqrt{2} & 1\\ 1/3 & 0 & 0 \end{pmatrix}$$

対角行列:

$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$U^T A U = D$$

解析(Lang 範囲内)解答 $\mathbf{2}$

問題 7 解答: 定積分

 $\int_e^{e^2} rac{\log x}{x} dx$ を計算する。 **置換積分:**

 $u = \log x$ とおく

• $du = \frac{1}{x}dx$

- x = e のとき u = 1
- $x = e^2$ のとき u = 2

$$\int_{e}^{e^{2}} \frac{\log x}{x} dx = \int_{1}^{2} u \, du \tag{50}$$

$$= \left\lceil \frac{u^2}{2} \right\rceil_1^2 \tag{51}$$

$$= \frac{4}{2} - \frac{1}{2}$$

$$= \frac{3}{2}$$
(52)

$$=\frac{3}{2}\tag{53}$$

答え: 3

問題 8 解答: 分数関数の定積分

 $\int_0^1 \frac{x}{x+1} dx$ を計算する。 部分分数による変形:

$$\frac{x}{x+1} = \frac{(x+1)-1}{x+1} = 1 - \frac{1}{x+1} \tag{54}$$

積分計算:

$$\int_0^1 \frac{x}{x+1} dx = \int_0^1 \left(1 - \frac{1}{x+1}\right) dx \tag{55}$$

$$= [x - \log(x+1)]_0^1 \tag{56}$$

$$= (1 - \log 2) - (0 - \log 1) \tag{57}$$

$$=1-\log 2\tag{58}$$

答え:1 - log 2

問題 9 解答: 対数不等式の面積証明

自然数 $n \in \mathbb{N}$ に対して、 $\frac{1}{n+1} < \log\left(1 + \frac{1}{n}\right) < \frac{1}{n}$ を面積により証明する。

関数 $f(x)=\frac{1}{x}$ を考える。区間 [n,n+1] において:右側の不等式: $\log\left(1+\frac{1}{n}\right)<\frac{1}{n}$

$$\log\left(1 + \frac{1}{n}\right) = \log\left(\frac{n+1}{n}\right) \tag{59}$$

$$= \log(n+1) - \log n \tag{60}$$

$$= \int_{n}^{n+1} \frac{1}{x} dx \tag{61}$$

 $f(x) = \frac{1}{x}$ は区間 [n, n+1] で単調減少なので:

$$\int_{n}^{n+1} \frac{1}{x} dx < \int_{n}^{n+1} \frac{1}{n} dx = \frac{1}{n} \cdot 1 = \frac{1}{n}$$
 (62)

左側の不等式: $\frac{1}{n+1} < \log \left(1 + \frac{1}{n}\right)$

同様に:

$$\int_{n}^{n+1} \frac{1}{x} dx > \int_{n}^{n+1} \frac{1}{n+1} dx = \frac{1}{n+1} \cdot 1 = \frac{1}{n+1}$$
 (63)

したがって:

$$\frac{1}{n+1} < \int_{n}^{n+1} \frac{1}{x} dx < \frac{1}{n}$$

すなわち:

$$\frac{1}{n+1} < \log \left(1 + \frac{1}{n}\right) < \frac{1}{n}$$

問題 10 解答: 増減表と最小値 2.4

関数 $f(x) = x^3 - 3x + 1$ の増減表と最小値。

1次導関数:

$$f'(x) = 3x^2 - 3 = 3(x^2 - 1) = 3(x - 1)(x + 1)$$
(64)

臨界点: f'(x) = 0 より x = -1, 1

2次導関数:

$$f''(x) = 6x \tag{65}$$

極値の判定:

• x = -1: f''(-1) = -6 < 0 なので極大

• x = 1: f''(1) = 6 > 0 なので極小

関数値:

$$f(-1) = (-1)^3 - 3(-1) + 1 = -1 + 3 + 1 = 3$$
(66)

$$f(1) = 1^3 - 3(1) + 1 = 1 - 3 + 1 = -1 \tag{67}$$

増減表:

ſ	x	$(-\infty, -1)$	-1	(-1,1)	1	$(1,\infty)$
ĺ	f'(x)	+	0	_	0	+
	f(x)	7	極大	¥	極小	7

最**小**値: f(1) = -1

問題 11 解答: 最適化問題

底面が正方形で表面積がS(定数)の直方体について、体積を最大化する底面の1辺の長さと高 さの比を求める。

問題設定:

底面の1辺をx、高さをhとする。

制約条件:

表面積: $S=x^2+4xh$ (底面+側面) これより: $h=\frac{S-x^2}{4x}$

体積: $V(x) = x^2 h = x^2 \cdot \frac{S - x^2}{4x} = \frac{x(S - x^2)}{4} = \frac{Sx - x^3}{4}$

最適化:

$$V'(x) = \frac{S - 3x^2}{4} \tag{68}$$

V'(x) = 0 より: $S - 3x^2 = 0$ 、つまり $x = \sqrt{\frac{S}{3}}$

2次導関数による確認:

$$V''(x) = \frac{-6x}{4} = -\frac{3x}{2} < 0 \quad (x > 0)$$
(69)

よって $x=\sqrt{\frac{S}{3}}$ で最大値をとる。 このときの高さ:

$$h = \frac{S - S/3}{4\sqrt{S/3}} = \frac{2S/3}{4\sqrt{S/3}} = \frac{S}{6} \cdot \sqrt{\frac{3}{S}} = \frac{\sqrt{3S}}{6} = \frac{\sqrt{S/3}}{2}$$
 (70)

比の計算:

$$\frac{x}{h} = \frac{\sqrt{S/3}}{\sqrt{S/3}/2} = 2\tag{71}$$

最適な直方体は底面の1辺の長さが高さの2倍のとき体積が最大となる。 すなわち、x: h = 2:1