Assignment-1

1. Consider a pressure driven flow (linear pressure gradient, $\frac{-dp}{dz} = \frac{p_i - p_f}{L}$) through a cylindrical pipe of length L and radius r. Find out the steady state velocity profile $(V_z(r))$ for Newtonian as well as Power law fluid. (Assume fully developed flow).

Hint: Use Cauchy Momentum Balance in cylindrical coordinate system (given below). The constitutive equation for Newtonain fluid: $\tau_{rz} = \eta \frac{\partial V_z}{\partial r}$, and for Power law fluid: $\tau_{rz} = \eta \left(\frac{\partial V_z}{\partial r}\right)^n$.

2. Consider a mechanistic rheological model shown in the figure below.

- a) Obtain the constitutive equation for the abovementioned mechanistic model. The constitutive equation is defined as the relationship between tress (σ), strain (γ) and their time derivatives ($\dot{\sigma},\dot{\gamma}$). The model parameters are: G_{01} , G_{02} , and η_2 .
 - b) The model undergoes a stress relaxation test, wherein a constant strain field, $\gamma = \gamma_0$ is imposed on the above system for $t \ge 0$. Solve the constitutive equation obtained in part (a) for step strain test and obtain stress (σ) as a function of time, plot $\sigma(t)$ as a function of t also.

3. Consider a mechanistic rheological model shown in the figure below.

The above model has been sujcted to the constant stress (within linear regime) up tp time G_1 , after which stress has been removed, and the strain starts getting recovered. Find out the expression of strain rate as a function of time during recovery step.

The constitutive

equation is defined as the relationship between stress (σ), strain (γ) and their time derivatives ($\dot{\sigma}$, $\dot{\gamma}$).

The model parameters are: $G_{\!\scriptscriptstyle 1}$, $G_{\!\scriptscriptstyle 2}$, and $\eta_{\scriptscriptstyle 2}$.

a) The model undergoes a step strain test, wherein a constant strain field, $\gamma = \gamma_0$ is imposed on the above system for $t \ge 0$. Solve the constitutive equation obtained in part (a) for step strain test and obtain stress (σ) as a function of time, plot $\sigma(t)$ as a function of t also.