Clifford Analysis and a Noncommutative Gelfand Representation

Colin Roberts

Overview

- 1 Introduction
- 2 Clifford analysis
- 3 Gelfand theory
- 4 Future work
- 5 Conclusions

Section 1

Introduction

Motivating problems

Motivating problems

■ Electrical Impedance Tomography (EIT) asks whether one can determine the conductivity of a medium from the voltage-to-current map.

Motivating problems

- Electrical Impedance Tomography (EIT) asks whether one can determine the conductivity of a medium from the voltage-to-current map.
- The *Calderón problem* replaces the medium with a manifold M, conductivity with g, and replaces the voltage-to-current map with the Dirichlet-to-Neumann operator Λ .

Other questions

lacktriangle What topological information can we retrieve from functions on a manifold M?

Other questions

- lacktriangle What topological information can we retrieve from functions on a manifold M?
- Do these functions also contain geometric information such as metric data?

Other questions

- lacktriangle What topological information can we retrieve from functions on a manifold M?
- Do these functions also contain geometric information such as metric data?
- \blacksquare How much can we learn about M if our data is supported only on the boundary?

Subsection 1

Preliminaries

■ Clifford algebra originated in 1878 with William Kingdon Clifford's work that extends Hermann Grassmann's exterior algebra.

- Clifford algebra originated in 1878 with William Kingdon Clifford's work that extends Hermann Grassmann's exterior algebra.
- Clifford analysis arrived in the 1980's due to Hestenes, Sobczyk, Sommen, Brackx, and Delenghe in order to enrich Élie Cartan's differential forms. See: [Hestenes, Sobczyk: 1984] and [Doran, Lasenby: 2003].

Clifford algebras

Let V be a vector space over a field \mathbb{F} with quadratic form Q.

Clifford algebras

Let V be a vector space over a field \mathbb{F} with quadratic form Q.

■ Define the tensor algebra

$$\mathcal{T}(V) \coloneqq \bigoplus_{j=0}^{\infty} V^{\otimes_j} = \mathbb{F} \oplus (V \otimes V) \oplus (V \otimes V \otimes V) \oplus \cdots$$

Clifford algebras

Let V be a vector space over a field \mathbb{F} with quadratic form Q.

■ Define the tensor algebra

$$\mathcal{T}(V) \coloneqq \bigoplus_{j=0}^{\infty} V^{\otimes_j} = \mathbb{F} \oplus (V \otimes V) \oplus (V \otimes V \otimes V) \oplus \cdots$$

■ Form the *Clifford algebra* via a quotient

$$C\ell(V,Q) \coloneqq \mathcal{T}(V)/\langle \mathbf{v} \otimes \mathbf{v} - Q(\mathbf{v}) \rangle.$$

Geometric and exterior algebras

■ Given a (pseudo) inner product g, we set $Q(\cdot) = g(\cdot, \cdot)$ and define a $geometric\ algebra$

$$\mathcal{G} \coloneqq C\ell(V,g).$$

Geometric and exterior algebras

■ Given a (pseudo) inner product g, we set $Q(\cdot) = g(\cdot, \cdot)$ and define a $geometric\ algebra$

$$\mathcal{G} \coloneqq C\ell(V, g).$$

lacktriangle The $exterior\ algebra$ is given by

$$\bigwedge(V) = C\ell(V,0).$$

Multiplication in \mathcal{G} is seen by looking at how \otimes acts in the quotient.

Multiplication in \mathcal{G} is seen by looking at how \otimes acts in the quotient.

■ Given $u, v \in \mathcal{G}$ we can take the product

$$uv = \underbrace{u \cdot v}_{\text{scalar}} + \underbrace{u \wedge v}_{\text{bivector}}$$

Multiplication in \mathcal{G} is seen by looking at how \otimes acts in the quotient.

■ Given $\mathbf{u}, \mathbf{v} \in \mathcal{G}$ we can take the product

$$uv = \underbrace{u \cdot v}_{\text{scalar}} + \underbrace{u \wedge v}_{\text{bivector}}$$

■ The scalar part is symmetric: $\mathbf{u} \cdot \mathbf{v} = g(\mathbf{u}, \mathbf{v})$.

Multiplication in \mathcal{G} is seen by looking at how \otimes acts in the quotient.

■ Given $u, v \in \mathcal{G}$ we can take the product

$$uv = \underbrace{u \cdot v}_{\text{scalar}} + \underbrace{u \wedge v}_{\text{bivector}}$$

- The scalar part is symmetric: $\mathbf{u} \cdot \mathbf{v} = g(\mathbf{u}, \mathbf{v})$.
- The bivector part is antisymmetric: $\boldsymbol{u} \wedge \boldsymbol{v} = -\boldsymbol{v} \wedge \boldsymbol{u}$.

■ \mathcal{G} is graded and of dimension 2^n .

- $\blacksquare \mathcal{G}$ is graded and of dimension 2^n .
 - There are $\binom{n}{r}$ elements in the space of grade-r elements, \mathcal{G}^r , called r-vectors.

- $\blacksquare \mathcal{G}$ is graded and of dimension 2^n .
 - There are $\binom{n}{r}$ elements in the space of grade-r elements, \mathcal{G}^r , called r-vectors.
 - Those that are exterior products of r independent vectors are r-blades. E.g., $\mathbf{A}_r = \mathbf{v}_1 \wedge \cdots \wedge \mathbf{v}_r$.

- $\blacksquare \mathcal{G}$ is graded and of dimension 2^n .
 - There are $\binom{n}{r}$ elements in the space of grade-r elements, \mathcal{G}^r , called r-vectors.
 - Those that are exterior products of r independent vectors are r-blades. E.g., $\mathbf{A_r} = \mathbf{v}_1 \wedge \cdots \wedge \mathbf{v}_r$.
 - Elements of the even grade subalgebra, \mathcal{G}^+ , are called *spinors*.

- $\blacksquare \mathcal{G}$ is graded and of dimension 2^n .
 - There are $\binom{n}{r}$ elements in the space of grade-r elements, \mathcal{G}^r , called r-vectors.
 - Those that are exterior products of r independent vectors are r-blades. E.g., $\mathbf{A_r} = \mathbf{v}_1 \wedge \cdots \wedge \mathbf{v}_r$.
 - Elements of the even grade subalgebra, \mathcal{G}^+ , are called *spinors*.
- The most general elements are *multivectors* and are given by

$$A = \sum_{r=0}^{n} \langle A \rangle_r,$$

where $\langle A \rangle_r \in \mathcal{G}^r$ extracts the grade r part of A. So $\mathcal{G} = \bigoplus_{i=1}^n \mathcal{G}^r$.

■ Extend the multiplication from vectors to multivectors.

- Extend the multiplication from vectors to multivectors.
- On homogeneous elements,

$$A_r B_s = \langle A_r B_s \rangle_{|r-s|} + \langle A_r B_s \rangle_{|r-s|+2} + \dots + \langle A_r B_s \rangle_{r+s}$$

- Extend the multiplication from vectors to multivectors.
- On homogeneous elements,

$$A_rB_s = \langle A_rB_s\rangle_{|r-s|} + \langle A_rB_s\rangle_{|r-s|+2} + \cdots + \langle A_rB_s\rangle_{r+s}$$

■ The most important products are

$$A_r \cdot B_s \coloneqq \langle A_r B_s \rangle_{|r-s|} \qquad \qquad A_r \wedge B_s \coloneqq \langle A_r B_s \rangle_{r+s}$$

$$A_r \rfloor B_s \coloneqq \langle A_r B_s \rangle_{s-r} \qquad \qquad A_r \lfloor B_s \coloneqq \langle A_r B_s \rangle_{r-s}$$

Reciprocals and reverses

Reciprocals and reverses

■ Given any vector basis \mathbf{v}_i , define the reciprocal vectors by $\mathbf{v}^i \cdot \mathbf{v}_j = \delta_i^i$.

Reciprocals and reverses

- Given any vector basis \mathbf{v}_i , define the reciprocal vectors by $\mathbf{v}^i \cdot \mathbf{v}_j = \delta_j^i$.
- The reverse of a multivector is extended linearly from the action on r-blades by

$$\mathbf{A_r}^{\dagger} = (\mathbf{v}_1 \wedge \cdots \wedge \mathbf{v}_r)^{\dagger} = \mathbf{v}_r \wedge \cdots \wedge \mathbf{v}_1.$$

Inner product and norm

■ Define the *multivector inner product* by

$$(A,B) \coloneqq \langle A^{\dagger}B \rangle$$

which is bilinear, symmetric, and positive definite if g is positive definite.

Inner product and norm

■ Define the *multivector inner product* by

$$(A,B) \coloneqq \langle A^{\dagger}B \rangle$$

which is bilinear, symmetric, and positive definite if g is positive definite.

■ Define the *multivector norm* by

$$|A| \coloneqq \sqrt{(A,A)}.$$

Adjoint

Note the reverse acts as an adjoint by

$$(CA, B) = (A, C^{\dagger}B)$$

 $(AC, B) = (A, BC^{\dagger}).$

${\bf Pseudoscalars}$

Pseudoscalars

lacktriangledown Pseudoscalars are the grade-n elements. For example, the volume element

$$\mu = \mathbf{v}_1 \wedge \cdots \wedge \mathbf{v}_n$$
.

Pseudoscalars

lacktriangledown Pseudoscalars are the grade-n elements. For example, the volume element

$$\mu = \mathbf{v}_1 \wedge \cdots \wedge \mathbf{v}_n$$
.

 \blacksquare We define the *unit pseudoscalar* by

$$I \coloneqq \frac{1}{|\boldsymbol{\mu}|} \boldsymbol{\mu}.$$

Blades and subspaces

■ If g is positive definite all blades are invertible [Chisholm: 2012].

Blades and subspaces

- If g is positive definite all blades are invertible [Chisholm: 2012].
- If $|A_r| = 1$, then A_r is a *unit blade*.

Blades and subspaces

- If g is positive definite all blades are invertible [Chisholm: 2012].
- If $|A_r| = 1$, then A_r is a *unit blade*.
- Unit r-blades correspond to r-dimensional subspaces so they correspond to points in Gr(r, n).

Duality

 \blacksquare Given any multivector A, we can take its dual

$$A^{\perp} \coloneqq A \mathbf{I}^{-1}.$$

Duality

 \blacksquare Given any multivector A, we can take its dual

$$A^{\perp} \coloneqq A \mathbf{I}^{-1}$$
.

■ Note $A_r^{\perp} \in \mathcal{G}^{n-r}$, like the Hodge star \star .

■ The *projection* of B into a subspace A_r by

$$P_{\boldsymbol{A_r}}(B) = B \rfloor \boldsymbol{A_r} \boldsymbol{A_r}^{-1}$$

■ The *projection* of B into a subspace A_r by

$$P_{\boldsymbol{A_r}}(B) = B \rfloor \boldsymbol{A_r} \boldsymbol{A_r}^{-1}$$

 \blacksquare The *rejection* by

$$R_{\boldsymbol{A_r}}(B) \coloneqq B \wedge \boldsymbol{A_r} \boldsymbol{A_r}^{-1}.$$

■ The *projection* of B into a subspace A_r by

$$P_{\boldsymbol{A_r}}(B) \coloneqq B \rfloor \boldsymbol{A_r} \boldsymbol{A_r}^{-1}$$

 \blacksquare The *rejection* by

$$R_{\boldsymbol{A_r}}(B) \coloneqq B \wedge \boldsymbol{A_r} \boldsymbol{A_r}^{-1}.$$

■ Both are grade preserving.

■ Define $\mathcal{G}_{p,q}$ by letting $\mathbf{e}_i^2 = -1$ for i = 1, ..., p and $\mathbf{e}_i^2 = +1$ otherwise.

- Define $\mathcal{G}_{p,q}$ by letting $\mathbf{e}_i^2 = -1$ for i = 1, ..., p and $\mathbf{e}_i^2 = +1$ otherwise.
- Claim: \mathbb{H} arises naturally as the even subalgebra $\mathcal{G}_3^+ \coloneqq \mathcal{G}_{0.3}^+$.

- Define $\mathcal{G}_{p,q}$ by letting $\mathbf{e}_i^2 = -1$ for i = 1, ..., p and $\mathbf{e}_i^2 = +1$ otherwise.
- Claim: \mathbb{H} arises naturally as the even subalgebra $\mathcal{G}_3^+ \coloneqq \mathcal{G}_{0,3}^+$.
- Claim: \mathbb{C} arises naturally as the even subalgebra $\mathcal{G}_2^+ = \mathcal{G}_{0,2}^+$.

- Define $\mathcal{G}_{p,q}$ by letting $\mathbf{e}_i^2 = -1$ for i = 1, ..., p and $\mathbf{e}_i^2 = +1$ otherwise.
- Claim: \mathbb{H} arises naturally as the even subalgebra $\mathcal{G}_3^+ \coloneqq \mathcal{G}_{0.3}^+$.
- Claim: \mathbb{C} arises naturally as the even subalgebra $\mathcal{G}_2^+ = \mathcal{G}_{0,2}^+$.
 - Take the standard basis e_1 , e_2 , and define $B_{12} = e_1e_2$ and note $B_{12}^2 = -1$. Thus,

$$(u_1 + v_1 \mathbf{B}_{12})(u_2 + v_2 \mathbf{B}_{12}) = u_1 u_2 - v_1 v_2 + (u_1 v_2 + u_2 v_1) \mathbf{B}_{12}.$$

- Define $\mathcal{G}_{p,q}$ by letting $\mathbf{e}_i^2 = -1$ for i = 1, ..., p and $\mathbf{e}_i^2 = +1$ otherwise.
- Claim: \mathbb{H} arises naturally as the even subalgebra $\mathcal{G}_3^+ = \mathcal{G}_{0,3}^+$.
- Claim: \mathbb{C} arises naturally as the even subalgebra $\mathcal{G}_2^+ = \mathcal{G}_{0,2}^+$.
 - Take the standard basis e_1 , e_2 , and define $B_{12} = e_1e_2$ and note $B_{12}^2 = -1$. Thus,

$$(u_1 + v_1 \mathbf{B}_{12})(u_2 + v_2 \mathbf{B}_{12}) = u_1 u_2 - v_1 v_2 + (u_1 v_2 + u_2 v_1) \mathbf{B}_{12}.$$

■ Right multiplication by B_{12} rotates counter-clockwise by $\pi/2$.

Section 2

Clifford analysis

■ Let M be a smooth, compact, connected, and oriented n-dimensional Riemannian manifold with metric q.

- Let M be a smooth, compact, connected, and oriented n-dimensional Riemannian manifold with metric g.
- <u>Idea:</u> Form the Clifford algebras on tangent spaces.

- Let M be a smooth, compact, connected, and oriented n-dimensional Riemannian manifold with metric g.
- **Idea:** Form the Clifford algebras on tangent spaces.
 - Each $C\ell(T_pM, g_p)$ is a geometric tangent space which we glue together to form

$$C\ell(TM,g) \coloneqq \bigsqcup_{p \in M} C\ell(T_pM,g_p).$$

- Let M be a smooth, compact, connected, and oriented n-dimensional Riemannian manifold with metric g.
- <u>Idea:</u> Form the Clifford algebras on tangent spaces.
 - Each $C\ell(T_pM, g_p)$ is a geometric tangent space which we glue together to form

$$C\ell(TM,g) \coloneqq \bigsqcup_{p \in M} C\ell(T_pM,g_p).$$

 \blacksquare The space of (smooth) multivector fields is

$$\mathcal{G}(M) \coloneqq \{C^{\infty}\text{-smooth sections of } C\ell(TM, g)\}.$$

- Let M be a smooth, compact, connected, and oriented n-dimensional Riemannian manifold with metric g.
- <u>Idea</u>: Form the Clifford algebras on tangent spaces.
 - Each $C\ell(T_pM, g_p)$ is a geometric tangent space which we glue together to form

$$C\ell(TM,g) \coloneqq \bigsqcup_{p \in M} C\ell(T_pM,g_p).$$

■ The space of (smooth) multivector fields is

$$\mathcal{G}(M) \coloneqq \{C^{\infty}\text{-smooth sections of } C\ell(TM, g)\}.$$

■ Retain the same naming scheme as before.

Multivector derivative

On M, take the unique Levi-Civita connection ∇ and covariant derivative $\nabla_{\pmb{u}}.$

Multivector derivative

On M, take the unique Levi-Civita connection ∇ and covariant derivative $\nabla_{\mathbf{u}}$.

■ ∇_u is extended to multivectors and is grade preserving [Schindler: 2018],

$$\nabla_{\mathbf{u}}A_r = \langle \nabla_{\mathbf{u}}A_r \rangle_r.$$

Multivector derivative

On M, take the unique Levi-Civita connection ∇ and covariant derivative ∇_u .

■ ∇_u is extended to multivectors and is grade preserving [Schindler: 2018],

$$\nabla_{\mathbf{u}}A_r = \langle \nabla_{\mathbf{u}}A_r \rangle_r.$$

 \blacksquare ∇_u is compatible with dot and wedge since

$$\nabla_{\mathbf{u}}(A \cdot B) = (\nabla_{\mathbf{u}}A) \cdot B + A \cdot (\nabla_{\mathbf{u}}B)$$
$$\nabla_{\mathbf{u}}(A \wedge B) = (\nabla_{\mathbf{u}}A) \wedge B + A \wedge (\nabla_{\mathbf{u}}B).$$

Gradient

■ Define the gradient (or Dirac operator) locally by

$$\nabla = \sum_{i=1}^{n} \mathbf{v}^{i} \nabla_{\mathbf{v}_{i}}$$

Gradient

■ Define the *gradient* (or *Dirac operator*) locally by

$$\nabla = \sum_{i=1}^{n} \mathbf{v}^{i} \nabla_{\mathbf{v}_{i}}$$

■ ∇ acts as a vector in $\mathcal{G}(M)$ and obeys the Leibniz rule

$$\nabla(AB) = \dot{\nabla}\dot{A}B + \dot{\nabla}A\dot{B}.$$

Gradient

■ Define the *gradient* (or *Dirac operator*) locally by

$$\nabla = \sum_{i=1}^{n} \mathbf{v}^{i} \nabla_{\mathbf{v}_{i}}$$

 \blacksquare ∇ acts as a vector in $\mathcal{G}(M)$ and obeys the Leibniz rule

$$\nabla(AB) = \dot{\nabla}\dot{A}B + \dot{\nabla}A\dot{B}.$$

■ Note $\nabla^2 = \Delta$, the Laplace-Beltrami operator.

Example

■ In $\mathcal{G}_3(\mathbb{R}^3)$, ∇_{e_i} is the partial derivative.

Example

- In $\mathcal{G}_3(\mathbb{R}^3)$, ∇_{e_i} is the partial derivative.
- \blacksquare Take a vector field \mathbf{v} , then

$$\nabla \mathbf{v} = \underbrace{\nabla \cdot \mathbf{v}}_{\text{divergence}} + \underbrace{\nabla \wedge \mathbf{v}}_{\text{curl}}$$

Example

- In $\mathcal{G}_3(\mathbb{R}^3)$, $\nabla_{\boldsymbol{e}_i}$ is the partial derivative.
- Take a vector field \mathbf{v} , then

$$\nabla \mathbf{v} = \underbrace{\nabla \cdot \mathbf{v}}_{\text{divergence}} + \underbrace{\nabla \wedge \mathbf{v}}_{\text{curl}}.$$

■ Specifically,

$$\operatorname{curl}(\boldsymbol{v}) = (\nabla \wedge \boldsymbol{v})^{\perp}$$

Differential forms

■ Define the r-dimensional directed measure

$$dX_r \coloneqq \mathbf{v}_{j_1} \wedge \dots \wedge \mathbf{v}_{j_r} dx^{j_1} \dots dx^{j_r}$$

where $1 \le j_1 < \dots < j_r \le n$ and summation is implied.

Differential forms

■ Define the r-dimensional directed measure

$$dX_r \coloneqq \mathbf{v}_{j_1} \wedge \dots \wedge \mathbf{v}_{j_r} dx^{j_1} \dots dx^{j_r}$$

where $1 \le j_1 < \dots < j_r \le n$ and summation is implied.

■ Define an r-form a_r by

$$\alpha_r = A_r \cdot dX_r^{\dagger}$$

where $A_r = \frac{1}{r!} a_{i_1 \cdots i_r} \mathbf{v}^{i_1} \wedge \cdots \wedge \mathbf{v}^{i_r}$.

Differential forms

■ Define the r-dimensional directed measure

$$dX_r \coloneqq \mathbf{v}_{j_1} \wedge \dots \wedge \mathbf{v}_{j_r} dx^{j_1} \dots dx^{j_r}$$

where $1 \le j_1 < \cdots < j_r \le n$ and summation is implied.

■ Define an r-form a_r by

$$\alpha_r = A_r \cdot dX_r^{\dagger}$$

where $A_r = \frac{1}{r!} a_{i_1 \cdots i_r} \mathbf{v}^{i_1} \wedge \cdots \wedge \mathbf{v}^{i_r}$.

■ Refer to A_r the multivector equivalent of α_r .

Exterior algebra and calculus

■ Given r-forms a_r , b_r , and an s-form c_s , we have

$$a_r + b_r = (A_r + B_r) \cdot dX_r^{\dagger}, \qquad a_r \wedge c_s = (A_r \wedge C_s) \cdot dX_{r+s}^{\dagger}.$$

Exterior algebra and calculus

■ Given r-forms a_r , b_r , and an s-form c_s , we have

$$a_r + b_r = (A_r + B_r) \cdot dX_r^{\dagger}, \qquad a_r \wedge c_s = (A_r \wedge C_s) \cdot dX_{r+s}^{\dagger}.$$

■ The exterior derivative on multivector equivalents is

$$da_r = (\nabla \wedge A_r) \cdot dX_{r+1}^{\dagger}$$

Exterior algebra and calculus

■ Given r-forms a_r , b_r , and an s-form c_s , we have

$$a_r + b_r = (A_r + B_r) \cdot dX_r^{\dagger}, \qquad a_r \wedge c_s = (A_r \wedge C_s) \cdot dX_{r+s}^{\dagger}.$$

■ The exterior derivative on multivector equivalents is

$$da_r = (\nabla \wedge A_r) \cdot dX_{r+1}^{\dagger}$$

■ The Hodge star on multivector equivalents is

$$\star a_r = (\boldsymbol{I}^{-1} A_r)^{\dagger} \cdot dX_{n-r}^{\dagger}$$

Volume form

 \blacksquare The *volume form* on M is given in local coordinates by

$$\mu = \sqrt{|g|} dx^1 \cdots dx^n = \mathbf{I}^{-1} \cdot dX_n$$

Volume form

 \blacksquare The *volume form* on M is given in local coordinates by

$$\mu = \sqrt{|g|} dx^1 \cdots dx^n = \mathbf{I}^{-1} \cdot dX_n$$

■ We integrate scalar fields A_0 on M by

$$\int_{M} A_0^{\perp} \cdot dX_n = \int_{M} A_0 \mu.$$

Multivector field inner product

• We define the L^2 -inner product on multivector fields by

$$\ll A, B \gg := \frac{1}{\operatorname{vol}(M)} \int_{M} (A, B) \mu$$

Multivector field inner product

• We define the L^2 -inner product on multivector fields by

$$\ll A, B \gg = \frac{1}{\text{vol}(M)} \int_{M} (A, B) \mu$$

 \blacksquare This realizes the r-form inner product

$$\int_{M} \alpha_r \wedge \star \beta_r = \int_{M} \langle A_r^{\dagger} B_r \rangle \mu = \text{vol}(M) \ll A, B \gg$$

Multivector field inner product

• We define the L^2 -inner product on multivector fields by

$$\ll A, B \gg := \frac{1}{\text{vol}(M)} \int_{M} (A, B) \mu$$

 \blacksquare This realizes the r-form inner product

$$\int_{M} \alpha_r \wedge \star \beta_r = \int_{M} \langle A_r^{\dagger} B_r \rangle \mu = \text{vol}(M) \ll A, B \gg$$

■ $\langle\langle A_r, B_s \rangle\rangle$ when $r \neq s$ so the L^2 -direct sum agrees with the grade based direct sum.

Boundary

• On ∂M , the boundary pseudoscalar I_{∂} induces the boundary normal

$$oldsymbol{
u}$$
 = $oldsymbol{I}_{\partial}^{\perp}$.

Boundary

■ On ∂M , the boundary pseudoscalar I_{∂} induces the boundary normal

$$oldsymbol{
u} = oldsymbol{I}_{\partial}^{\perp}.$$

■ The boundary volume form is

$$\mu_{\partial} \coloneqq \boldsymbol{I}_{\partial}^{-1} \cdot dX_{n-1}$$

and we define

$$\ll A, B \gg_{\partial} \coloneqq \frac{1}{\operatorname{vol}(M)} \int_{\partial M} (A, B) \mu_{\partial}.$$

Multivector valued integrals

We can define a multivector valued integral on an oriented submanifold R by taking $A \in \mathcal{G}(M)$ and computing

$$\int_R A \mathbf{I}_R \mu_R.$$

Theorem (Hestenes, Sobczyk, 1984)

Let
$$A, B \in \mathcal{G}(M)$$
, then

$$\int_{M} \dot{A} \dot{\nabla} \mathbf{I} \mu = \int_{\partial M} A \mathbf{I}_{\partial} \mu_{\partial}$$

 $\int_{M} \mathbf{I} \nabla B \mu = \int_{\partial M} \mathbf{I}_{\partial} B \mu_{\partial}$

 $\int_{\mathcal{M}} \dot{A} \dot{\nabla} \mathbf{I} B \mu = (-1)^n \int_{\mathcal{M}} A \mathbf{I} \nabla B \mu + \int_{\partial \mathcal{M}} A \mathbf{I}_{\partial} B \mu_{\partial}.$

Theorem

We have the Green's formula for the gradient

 $\ll A, \mathbf{I} \nabla B \gg = (-1)^n \ll \nabla A, \mathbf{I} B \gg + \ll A, \mathbf{I}_{\partial} B \gg_{\partial}.$

Special fields

■ Define the *monogenic fields*

$$\mathcal{M}(M) := \{ A \in \mathcal{G}(M) \mid \nabla A = 0 \}.$$

Special fields

■ Define the *monogenic fields*

$$\mathcal{M}(M) := \{ A \in \mathcal{G}(M) \mid \nabla A = 0 \}.$$

■ Let $f = u + v\mathbf{B} \in \mathcal{G}_2^+(\mathbb{R}^2)$ then $\nabla f = 0$ yields the Cauchy-Riemann equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Special fields

■ Define the monogenic fields

$$\mathcal{M}(M) := \{ A \in \mathcal{G}(M) \mid \nabla A = 0 \}.$$

■ Let $f = u + v\mathbf{B} \in \mathcal{G}_2^+(\mathbb{R}^2)$ then $\nabla f = 0$ yields the Cauchy-Riemann equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

■ Define the *gradients*

$$\nabla \mathcal{G}(M) \coloneqq \{ \nabla A \mid A \in \mathcal{G}(M) \text{ and } A|_{\partial M} = 0 \}.$$

■ For the remainder, take M imbedded in \mathbb{R}^n with $n \geq 2$.

- For the remainder, take M imbedded in \mathbb{R}^n with $n \geq 2$.
- Define the vector field

$$E(x) \coloneqq \frac{1}{S_n} \frac{x}{|x|^n}$$

where S_n is the surface area of the unit ball.

- For the remainder, take M imbedded in \mathbb{R}^n with $n \geq 2$.
- Define the vector field

$$E(x) \coloneqq \frac{1}{S_n} \frac{x}{|x|^n}$$

where S_n is the surface area of the unit ball.

■ Note,

$$\nabla E(x) = -\dot{E}(x)\dot{\nabla} = \delta(x).$$

- For the remainder, take M imbedded in \mathbb{R}^n with $n \geq 2$.
- Define the vector field

$$E(x) \coloneqq \frac{1}{S_n} \frac{x}{|x|^n}$$

where S_n is the surface area of the unit ball.

■ Note,

$$\nabla E(x) = -\dot{E}(x)\dot{\nabla} = \delta(x).$$

■ Define the Cauchy kernel by G(x, x') = E(x' - x).

Cauchy integral

■ Let $A \in \mathcal{M}(M)$, then we have the Cauchy integral formula

$$A(x) = (-1)^n \mathbf{I}^{-1} \int_{\partial M} G(x, x') \mathbf{I}_{\partial}(x') A(x') \mu_{\partial}(x').$$

Cauchy integral

■ Let $A \in \mathcal{M}(M)$, then we have the Cauchy integral formula

$$A(x) = (-1)^n \mathbf{I}^{-1} \int_{\partial M} G(x, x') \mathbf{I}_{\partial}(x') A(x') \mu_{\partial}(x').$$

■ This uniquely determines a monogenic field from boundary values.

Lemma

Let $A \in \mathcal{M}(M)$ be such that $A|_{\partial M} = 0$. Then A = 0 on all of M.

Lemma

Fix a multivector field
$$A \in \mathcal{G}(M)$$
. If

for all $B \in \mathcal{G}(M)$ with $B|_{\partial M} = 0$, then A = 0.

$$\ll A, B \gg = 0$$

$$A, B \gg = 0$$

$$A, B \gg = 0$$

Theorem (Clifford-Hodge-Morrey Decomposition)

The space of multivector fields $\mathcal{G}(M)$ has the L^2 -orthogonal decomposition

The space of manifector fields
$$g(m)$$
 has the B -orthogonal accomposition

 $\mathcal{G}(M) = \mathcal{M}(M) \oplus \mathbf{I} \nabla \mathcal{G}(M).$

Proof.

• Orthogonality: Let $A \in \mathcal{M}(M)$ and $\mathbf{I} \nabla B \in \mathbf{I} \nabla \mathcal{G}(M)$ and note

 $\ll A, \mathbf{I} \nabla B \gg = (-1)^n \ll \nabla A, \mathbf{I} B \gg + \ll A, \mathbf{I}_{\partial} B \gg = 0,$

by the multivector Green's formula.

■ Let $C \in \mathcal{G}(M)$ be in the orthogonal complement to $I \nabla \mathcal{G}(M)$.

- Let $C \in \mathcal{G}(M)$ be in the orthogonal complement to $I \nabla \mathcal{G}(M)$.
- lacktriangle Use the Cauchy integral formula, construct a monogenic field \tilde{C} from
- $C|_{\partial M}$ and note $C = \tilde{C} + C_0$ where $C_0|_{\partial M} = 0$.

■ Let $C \in \mathcal{G}(M)$ be in the orthogonal complement to $\mathbf{I}\nabla\mathcal{G}(M)$.

■ Note,

- Use the Cauchy integral formula, construct a monogenic field \tilde{C} from
- $C|_{\partial M}$ and note $C = \tilde{C} + C_0$ where $C_0|_{\partial M} = 0$.

 $0 = \ll C, \mathbf{I} \nabla B \gg = \ll \nabla C_0, \mathbf{I} B \gg .$

- Let $C \in \mathcal{G}(M)$ be in the orthogonal complement to $I \nabla \mathcal{G}(M)$.
- lacktriangle Use the Cauchy integral formula, construct a monogenic field \tilde{C} from $C|_{\partial M}$ and note $C = \tilde{C} + C_0$ where $C_0|_{\partial M} = 0$.
- Note, $0 = \langle C, \mathbf{I} \nabla B \rangle = \langle \nabla C_0, \mathbf{I} B \rangle$.

- By the previous lemmas, it must be that $C_0 = 0$. Hence the orthogonal
- complement to $\mathbf{I}\nabla\mathcal{G}(M)$ is $\mathcal{M}(M)$.

Comparing to Hodge-Morrey

Comparing to Hodge-Morrey

■ The Hodge-Morrey decomposition reads

$$\Omega^{r}(M) = \underbrace{\mathcal{E}_{D}^{r}(M)}_{\operatorname{Im}(\nabla \wedge)} \oplus \underbrace{\mathcal{C}_{N}^{r}(M)}_{\operatorname{Im}(\nabla \rfloor)} \oplus \underbrace{\mathcal{H}^{r}(M)}_{\operatorname{Ker}(\nabla)}.$$

via [Schwarz: 1995].

Comparing to Hodge-Morrey

■ The Hodge-Morrey decomposition reads

$$\Omega^{r}(M) = \underbrace{\mathcal{E}_{D}^{r}(M)}_{\operatorname{Im}(\nabla \wedge)} \oplus \underbrace{\mathcal{C}_{N}^{r}(M)}_{\operatorname{Im}(\nabla \rfloor)} \oplus \underbrace{\mathcal{H}^{r}(M)}_{\operatorname{Ker}(\nabla)}.$$

via [Schwarz: 1995].

■ Whereas the Clifford-Hodge-Morrey decomposition ignores specific grades

$$\mathcal{G}(M) = \mathcal{M}(M) \oplus \mathbf{I} \nabla \mathcal{G}(M).$$

Section 3

Gelfand theory

■ In [Belishev: 2003], we see an algebraic proof for the 2-dimensional Calderón problem.

- In [Belishev: 2003], we see an algebraic proof for the 2-dimensional Calderón problem.
- In [Belishev, Vakulenko: 2017], we see a proof for a noncommutative Gelfand representation using quaternion fields for a ball \mathbb{B} in \mathbb{R}^3 .

- In [Belishev: 2003], we see an algebraic proof for the 2-dimensional Calderón problem.
- In [Belishev, Vakulenko: 2017], we see a proof for a noncommutative Gelfand representation using quaternion fields for a ball \mathbb{B} in \mathbb{R}^3 .
- Belishev and Vakulenko as whether this is true in higher dimensions.

- In [Belishev: 2003], we see an algebraic proof for the 2-dimensional Calderón problem.
- In [Belishev, Vakulenko: 2017], we see a proof for a noncommutative Gelfand representation using quaternion fields for a ball \mathbb{B} in \mathbb{R}^3 .
- Belishev and Vakulenko as whether this is true in higher dimensions.
- We prove an analogous result for an arbitrary \mathbb{B} in \mathbb{R}^n .

- In [Belishev: 2003], we see an algebraic proof for the 2-dimensional Calderón problem.
- In [Belishev, Vakulenko: 2017], we see a proof for a noncommutative Gelfand representation using quaternion fields for a ball \mathbb{B} in \mathbb{R}^3 .
- Belishev and Vakulenko as whether this is true in higher dimensions.
- We prove an analogous result for an arbitrary \mathbb{B} in \mathbb{R}^n .
- \blacksquare This approach can hopefully be used to prove the analogous result for any smooth orientable Riemannian manifold M.

The boundary control (BC) method is implemented in [Belishev: 2003] in the following manner.

■ Determine the algebra $\mathcal{A}(M)$ of holomorphic functions on M from continuous function algebra on the boundary $\mathcal{A}(\partial M)$ using Λ .

- Determine the algebra $\mathcal{A}(M)$ of holomorphic functions on M from continuous function algebra on the boundary $\mathcal{A}(\partial M)$ using Λ .
- The classical Gelfand representation shows $\mathcal{A}(M)$ is homeomorphic to M via the weak-* topology.

- Determine the algebra $\mathcal{A}(M)$ of holomorphic functions on M from continuous function algebra on the boundary $\mathcal{A}(\partial M)$ using Λ .
- The classical Gelfand representation shows $\mathcal{A}(M)$ is homeomorphic to M via the weak-* topology.
- Functions in $\mathcal{A}(M)$ determine the complex structure on M.

- Determine the algebra $\mathcal{A}(M)$ of holomorphic functions on M from continuous function algebra on the boundary $\mathcal{A}(\partial M)$ using Λ .
- The classical Gelfand representation shows $\mathcal{A}(M)$ is homeomorphic to M via the weak-* topology.
- Functions in $\mathcal{A}(M)$ determine the complex structure on M.
- \blacksquare Thus, we can find a g that is conformal with the complex structure.

Subsurface spinor fields

■ Let $\mathbf{B} \in \mathcal{G}(M)$ be a constant unit 2-blade, then $f_+ \in \mathcal{G}^+(M)$ satisfying

$$f_+ = \mathbf{P}_{\boldsymbol{B}} \circ f_+ \circ \mathbf{P}_{\boldsymbol{B}}$$

is a $subsurface\ spinor\ field.$ Let $\mathcal{G}_B^+(M)$ denote the space such fields.

Subsurface spinor fields

■ Let $\mathbf{B} \in \mathcal{G}(M)$ be a constant unit 2-blade, then $f_+ \in \mathcal{G}^+(M)$ satisfying

$$f_+ = \mathrm{P}_{\boldsymbol{B}} \circ f_+ \circ \mathrm{P}_{\boldsymbol{B}}$$

is a subsurface spinor field. Let $\mathcal{G}_{B}^{+}(M)$ denote the space such fields.

■ The space of monogenic subsurface spinors

$$\mathcal{A}_{\mathbf{B}}(M) = \{ f_+ \in \mathcal{G}_{\mathbf{B}}^+(M) \mid \nabla f_+ = 0 \}$$

is a commutative unital Banach algebra.

Functionals

■ Define the *spinor dual* $\mathcal{M}^*(M)$ as the continuous right \mathcal{G}_n^+ -module homomorphisms

$$\mathcal{M}^*(M) \coloneqq \{l: \mathcal{M}^+(M) \to \mathcal{G}_n^+ \mid l(fs+g) = l(f)s + l(g), \ \forall f, g \in \mathcal{M}(M), \ s \in \mathcal{G}_n^+ \}$$

and refer to the elements as *spin functionals*.

Functionals

■ Define the *spinor dual* $\mathcal{M}^*(M)$ as the continuous right \mathcal{G}_n^+ -module homomorphisms

$$\mathcal{M}^*(M) \coloneqq \{l: \mathcal{M}^+(M) \to \mathcal{G}_n^+ \mid l(fs+g) = l(f)s + l(g), \ \forall f, g \in \mathcal{M}(M), \ s \in \mathcal{G}_n^+ \}$$

and refer to the elements as *spin functionals*.

■ Assert the weak-* topology on $\mathcal{M}^*(M)$ so that every $x \in M$ corresponds to a continuous map on $\mathcal{M}^*(M)$.

■ Define the algebra \mathbb{A}_{B} to be the algebra generated by 1 and B.

- Define the algebra \mathbb{A}_{B} to be the algebra generated by 1 and B.
- The $spinor\ spectrum\ \mathfrak{M}(M)$ is the set of algebra homomorphisms

$$\mathfrak{M}(M) \coloneqq \{ \delta \in \mathcal{M}^*(M) \mid \delta(f) \in \mathbb{A}_{\mathbf{B}}, \ \delta(fg) = \delta(f)\delta(g), \ \forall f, g \in \mathcal{A}_{\mathbf{B}}(M), \ \mathbf{B} \in \mathrm{Gr}(2,n) \}$$

and refer to the elements as *spin characters*.

- Define the algebra \mathbb{A}_{B} to be the algebra generated by 1 and B.
- The spinor spectrum $\mathfrak{M}(M)$ is the set of algebra homomorphisms

$$\mathfrak{M}(M) \coloneqq \{ \delta \in \mathcal{M}^*(M) \mid \delta(f) \in \mathbb{A}_{\mathbf{B}}, \ \delta(fg) = \delta(f)\delta(g), \ \forall f, g \in \mathcal{A}_{\mathbf{B}}(M), \ \mathbf{B} \in \mathrm{Gr}(2, n) \}$$

and refer to the elements as *spin characters*.

■ One example of such characters are point evaluations $\delta(f) = f(x^{\delta})$.

- Define the algebra \mathbb{A}_{B} to be the algebra generated by 1 and B.
- The spinor spectrum $\mathfrak{M}(M)$ is the set of algebra homomorphisms

$$\mathfrak{M}(M) \coloneqq \{ \delta \in \mathcal{M}^*(M) \mid \delta(f) \in \mathbb{A}_{\mathbf{B}}, \ \delta(fg) = \delta(f)\delta(g), \ \forall f, g \in \mathcal{A}_{\mathbf{B}}(M), \ \mathbf{B} \in \mathrm{Gr}(2, n) \}$$

and refer to the elements as spin characters.

- One example of such characters are point evaluations $\delta(f) = f(x^{\delta})$.
- We show these are the only elements in the spectrum.

■ Take the standard basis for \mathbb{R}^n , and consider $M = \mathbb{B}_{R,w}$.

- Take the standard basis for \mathbb{R}^n , and consider $M = \mathbb{B}_{R,w}$.
- Let $\mathbf{B}_{ij} = \mathbf{e}_i \mathbf{e}_j$, and define

$$z_{ij} = x_j - x_i \mathbf{B}_{ij}$$

- Take the standard basis for \mathbb{R}^n , and consider $M = \mathbb{B}_{R,w}$.
- Let $\mathbf{B}_{ij} = \mathbf{e}_i \mathbf{e}_j$, and define

$$z_{ij} = x_j - x_i \mathbf{B}_{ij}$$

■ Note $z_{ij} \in \mathcal{A}_{\boldsymbol{B}_{ij}}(\mathbb{B}_{R,w})$.

Monogenic polynomials

■ Let σ be a permutation of $\{2, 3, ..., n\}$, then

$$p_{j_2\cdots j_n}(x) = \frac{1}{j!} \sum_{\text{permutations}} z_{1\sigma(1)}(x)\cdots z_{1\sigma(j)}(x)$$

is a monogenic homogeneous polynomial of degree j.

Monogenic polynomials

■ Let σ be a permutation of $\{2, 3, \ldots, n\}$, then

$$p_{j_2\cdots j_n}(x) = \frac{1}{j!} \sum_{\text{permutations}} z_{1\sigma(1)}(x)\cdots z_{1\sigma(j)}(x)$$

is a monogenic homogeneous polynomial of degree j.

■ Collect these into the set of monogenic polynomials

$$\mathcal{M}^{\mathcal{P}}(\mathbb{B}_{R,w}) = \left\{ \sum_{j=0}^{N} \left(\sum_{\substack{j_2 \dots j_n \\ j_2 + \dots + j_n = j}} p_{j_2 \dots j_n} a_{j_2 \dots j_n} \right) \mid j_2 + \dots + j_n = j, N \in \mathbb{N}, \ a_{j_2 \dots j_n} \in \mathcal{G}_n \right\}.$$

Lemma (Density)

The space $\mathcal{M}^{\mathcal{P}}(\mathbb{B}_{R,w})$ is dense in $\mathcal{M}^{+}(\mathbb{B}_{R,w})$.

Proof sketch.

■ Let $f \in \mathcal{M}^+(\mathbb{B}_{R,w})$ and use the Cauchy integral formula to define the coefficients $a_{i_2...i_n} \in \mathcal{G}_n^+$ by

$$a_{j_2\cdots j_n} = \int_{\partial \mathbb{B}_{R,w}} \frac{\partial^j G(w,y)}{\partial y_2^{j_2}\cdots \partial y_n^{j_n}} \boldsymbol{\nu}(y) f(y) \mu_{\partial}(y),$$

Lemma (Density)

The space $\mathcal{M}^{\mathcal{P}}(\mathbb{B}_{R,w})$ is dense in $\mathcal{M}^{+}(\mathbb{B}_{R,w})$.

Proof sketch.

■ Let $f \in \mathcal{M}^+(\mathbb{B}_{R,w})$ and use the Cauchy integral formula to define the coefficients $a_{i_2...i_n} \in \mathcal{G}_n^+$ by

$$a_{j_2\cdots j_n} = \int_{\partial \mathbb{B}_{R,m}} \frac{\partial^j G(w,y)}{\partial u^{j_2}\cdots \partial u^{j_n}} \boldsymbol{\nu}(y) f(y) \mu_{\partial}(y),$$

■ Then

$$f(x) = \sum_{j=0}^{\infty} \left(\sum_{\substack{j_2 \dots j_n \\ j_2 + \dots + j_n = j}} p_{j_2 \dots j_n} (x - w) a_{j_2 \dots j_n} \right),$$

converges pointwise for $x \in \mathbb{B}_{R,w}$ by [Ryan, 2004].

Idea

■ By linearity, we can note that for $\delta \in \mathfrak{M}(\mathbb{B}_{R,w})$

$$\delta(f(x)) = \sum_{j=0}^{\infty} \left(\sum_{\substack{j_2 \dots j_n \\ j_2 + \dots + j_n = j}} \delta(p_{j_2 \dots j_n}(x-w)) a_{j_2 \dots j_n} \right)$$

Idea

■ By linearity, we can note that for $\delta \in \mathfrak{M}(\mathbb{B}_{R,w})$

$$\delta(f(x)) = \sum_{j=0}^{\infty} \left(\sum_{\substack{j_2 \dots j_n \\ j_2 + \dots + j_n = j}} \delta(p_{j_2 \dots j_n}(x - w)) a_{j_2 \dots j_n} \right)$$

■ On each monogenic polynomial

$$\delta(p_{j_2...j_n}(x)) = \frac{1}{j!} \sum_{\text{permutations}} \delta((z_{1\sigma(1)}(x)) \cdots \delta(z_{1\sigma(j)}(x)))$$

by the multiplicativity of δ .

Let $\delta \in \mathfrak{M}(\mathbb{B}_{R,w})$ and $z_{ij} \in \mathcal{A}_{\mathbf{B}_{ij}}(\mathbb{B}_{R,w})$, then $\delta(z_{ij}) = z_{ij}(x^{\delta})$ for some $x^{\delta} \in \mathbb{R}^n$.

Let $\delta \in \mathfrak{M}(\mathbb{B}_{R,w})$ and $z_{ij} \in \mathcal{A}_{\mathbf{B}_{ij}}(\mathbb{B}_{R,w})$, then $\delta(z_{ij}) = z_{ij}(x^{\delta})$ for some $x^{\delta} \in \mathbb{R}^n$.

 $Proof\ sketch.$

Let $\delta \in \mathfrak{M}(\mathbb{B}_{R,w})$ and $z_{ij} \in \mathcal{A}_{\mathbf{B}_{ij}}(\mathbb{B}_{R,w})$, then $\delta(z_{ij}) = z_{ij}(x^{\delta})$ for some $x^{\delta} \in \mathbb{R}^{n}$.

 $Proof\ sketch.$

■ We have $\delta(z_{ij}) = \alpha_{ij} + \beta_{ij} \mathbf{B}_{ij}$.

Let
$$\delta \in \mathfrak{M}(\mathbb{B}_{R,w})$$
 and $z_{ij} \in \mathcal{A}_{\mathbf{B}_{ij}}(\mathbb{B}_{R,w})$, then $\delta(z_{ij}) = z_{ij}(x^{\delta})$ for some $x^{\delta} \in \mathbb{R}^n$.

Proof sketch.

- We have $\delta(z_{ij}) = \alpha_{ij} + \beta_{ij} \mathbf{B}_{ij}$.
- Note $z_{ij}B_{ji} = -z_{ji}$ and $z_{ij} = z_{kj} + z_{ik}B_{kj}$ yield the relationships

$$\alpha_{ji} = -\beta_{ij}$$
 $\alpha_{ij} = \alpha_{kj}$ $\beta_{ij} = \beta_{ik}$ $\alpha_{ik} = -\beta_{kj}$.

Let
$$\delta \in \mathfrak{M}(\mathbb{B}_{R,w})$$
 and $z_{ij} \in \mathcal{A}_{\mathbf{B}_{ij}}(\mathbb{B}_{R,w})$, then $\delta(z_{ij}) = z_{ij}(x^{\delta})$ for some $x^{\delta} \in \mathbb{R}^n$.

Proof sketch.

- We have $\delta(z_{ij}) = \alpha_{ij} + \beta_{ij} \mathbf{B}_{ij}$.
- Note $z_{ij}B_{ji} = -z_{ji}$ and $z_{ij} = z_{kj} + z_{ik}B_{kj}$ yield the relationships

$$\alpha_{ji} = -\beta_{ij}$$
 $\alpha_{ij} = \alpha_{kj}$ $\beta_{ij} = \beta_{ik}$ $\alpha_{ik} = -\beta_{kj}$.

■ The set of constants α and β are determined by n independent numbers, so we can say $\delta(z_{ij}) = z_{ij}(x^{\delta})$ for some $x^{\delta} \in \mathbb{R}^n$.

Let $f \in \mathcal{M}(\mathbb{B}_{R,w})$, then $\delta(f) = f(x^{\delta})$ for some $x^{\delta} \in \mathbb{B}_{R,w}$.

Let $f \in \mathcal{M}(\mathbb{B}_{R,w})$, then $\delta(f) = f(x^{\delta})$ for some $x^{\delta} \in \mathbb{B}_{R,w}$.

Proof.

Let
$$f \in \mathcal{M}(\mathbb{B}_{R,w})$$
, then $\delta(f) = f(x^{\delta})$ for some $x^{\delta} \in \mathbb{B}_{R,w}$.

Proof.

■ Fix $\delta \in \mathfrak{M}(\mathbb{B}_{R,w})$ and suppose $x^{\delta} \notin \mathbb{B}_{R,w}$.

Let
$$f \in \mathcal{M}(\mathbb{B}_{R,w})$$
, then $\delta(f) = f(x^{\delta})$ for some $x^{\delta} \in \mathbb{B}_{R,w}$.

Proof.

- Fix $\delta \in \mathfrak{M}(\mathbb{B}_{R,w})$ and suppose $x^{\delta} \notin \mathbb{B}_{R,w}$.
- Take a sequence $x_n \to x^{\delta}$ with $x_n \notin \mathbb{B}_{R,w}$.

Let
$$f \in \mathcal{M}(\mathbb{B}_{R,w})$$
, then $\delta(f) = f(x^{\delta})$ for some $x^{\delta} \in \mathbb{B}_{R,w}$.

Proof.

- Fix $\delta \in \mathfrak{M}(\mathbb{B}_{R,w})$ and suppose $x^{\delta} \notin \mathbb{B}_{R,w}$.
- Take a sequence $x_n \to x^{\delta}$ with $x_n \notin \mathbb{B}_{R,w}$.
- Define $G_n(x) = G(x, x_n) \mathbf{e_1} \in \mathcal{M}^+(\mathbb{B}_{R,w}).$

Let
$$f \in \mathcal{M}(\mathbb{B}_{R,w})$$
, then $\delta(f) = f(x^{\delta})$ for some $x^{\delta} \in \mathbb{B}_{R,w}$.

Proof.

- Fix $\delta \in \mathfrak{M}(\mathbb{B}_{R,w})$ and suppose $x^{\delta} \notin \mathbb{B}_{R,w}$.
- Take a sequence $x_n \to x^{\delta}$ with $x_n \notin \mathbb{B}_{R,w}$.
- Define $G_n(x) := G(x, x_n) \mathbf{e_1} \in \mathcal{M}^+(\mathbb{B}_{R,w}).$
- Note,

$$\lim_{n\to\infty}\delta(G_n)=\lim_{n\to\infty}G_n(x^{\delta})$$

so this sequence not converge due to a singularity at x^{δ} .

Let
$$f \in \mathcal{M}(\mathbb{B}_{R,w})$$
, then $\delta(f) = f(x^{\delta})$ for some $x^{\delta} \in \mathbb{B}_{R,w}$.

Proof.

- Fix $\delta \in \mathfrak{M}(\mathbb{B}_{R,w})$ and suppose $x^{\delta} \notin \mathbb{B}_{R,w}$.
- Take a sequence $x_n \to x^{\delta}$ with $x_n \notin \mathbb{B}_{R,w}$.
- Define $G_n(x) := G(x, x_n) \mathbf{e_1} \in \mathcal{M}^+(\mathbb{B}_{R,w}).$
- Note,

$$\lim_{n\to\infty}\delta(G_n)=\lim_{n\to\infty}G_n(x^{\delta})$$

so this sequence not converge due to a singularity at x^{δ} .

■ Hence, it must be that $x^{\delta} \in \mathbb{B}_{R,w}$ by continuity of δ .

Theorem (Noncommutative Gelfand representation)

is a homeomorphism.

For any
$$\delta \in \mathfrak{M}(\mathbb{B}_{R,w})$$
, there is a point $x^{\delta} \in \mathbb{B}_{R,w}$ such the

For any $\delta \in \mathfrak{M}(\mathbb{B}_{R,w})$, there is a point $x^{\delta} \in \mathbb{B}_{R,w}$ such that $\delta(f) = f(x^{\delta})$ for any

 $f \in \mathcal{M}(\mathbb{B}_{R,w})$. Given the weak-* topology on $\mathcal{M}^*(\mathbb{B}_{r,w})$, the map

 $\gamma: \mathfrak{M}(\mathbb{B}_{R,w}) \to \mathbb{B}_{R,w}, \quad \delta \mapsto x^{\delta}$

■ The lemmas show that $\gamma:\mathfrak{M}(\mathbb{B}_{R,w})\to\mathbb{B}_{R,w}$ is bijective.

- The lemmas show that $\gamma: \mathfrak{M}(\mathbb{B}_{R,w}) \to \mathbb{B}_{R,w}$ is bijective.
- To see that γ is a homeomorphism, take a sequence $\delta_n \to \delta$ in $\mathfrak{M}(\mathbb{B}_{R,w})$.

- The lemmas show that $\gamma: \mathfrak{M}(\mathbb{B}_{R,w}) \to \mathbb{B}_{R,w}$ is bijective.
- To see that γ is a homeomorphism, take a sequence $\delta_n \to \delta$ in $\mathfrak{M}(\mathbb{B}_{R,w})$.
- For $f \in \mathcal{M}^+(\mathbb{B}_{R,w})$ we have

$$f(\gamma(\delta_n)) = f(x^{\delta_n}) = \delta_n(f) = \gamma^{-1}(x^{\delta_n})$$

$$f(\gamma(\delta_n)) = f(x^{\delta_n}) = \delta_n(f) = \gamma^{-1}(x^{\delta_n})(f).$$

- The lemmas show that $\gamma:\mathfrak{M}(\mathbb{B}_{R,w})\to\mathbb{B}_{R,w}$ is bijective.
- To see that γ is a homeomorphism, take a sequence $\delta_n \to \delta$ in $\mathfrak{M}(\mathbb{B}_{R,w})$.
- For $f \in \mathcal{M}^+(\mathbb{B}_{R,w})$ we have

$$f(\gamma(\delta_n)) = f(x^{\delta_n}) = \delta_n(f) = \gamma^{-1}(x^{\delta_n})(f).$$

■ Taking $n \to \infty$ shows γ and γ^{-1} are continuous so γ is a homeomorphism.

Section 4

Future work

Question: Let (M, g) be an unknown Riemannian manifold with known boundary ∂M . Consider the forward problem

$$\begin{cases} \Delta \omega = 0 & \text{in } M \\ \iota^* \omega = \phi & \text{on } \partial M \end{cases}$$

Question: Let (M, g) be an unknown Riemannian manifold with known boundary ∂M . Consider the forward problem

$$\begin{cases} \Delta \omega = 0 & \text{in } M \\ \iota^* \omega = \phi & \text{on } \partial M \end{cases}$$

■ Define the *Dirichlet-to-Neumann map* on forms by $\Lambda \phi = \iota^*(\star d\omega)$.

Question: Let (M, g) be an unknown Riemannian manifold with known boundary ∂M . Consider the forward problem

$$\begin{cases} \Delta \omega = 0 & \text{in } M \\ \iota^* \omega = \phi & \text{on } \partial M \end{cases}$$

- Define the *Dirichlet-to-Neumann map* on forms by $\Lambda \phi = \iota^*(\star d\omega)$.
- Can we determine (M, g) from Λ ?

■ This problem is equivalent to the electrical impedance tomography problem in dimension 3.

- This problem is equivalent to the electrical impedance tomography problem in dimension 3.
- The problem has been solved in dimension n = 2 [Belishev: 2003].

- This problem is equivalent to the electrical impedance tomography problem in dimension 3.
- The problem has been solved in dimension n = 2 [Belishev: 2003].
- Solved in dimensions $n \ge 3$ when M is an analytic manifold [Lassas, Taylor, Uhlmann: 2003].

- This problem is equivalent to the electrical impedance tomography problem in dimension 3.
- The problem has been solved in dimension n = 2 [Belishev: 2003].
- Solved in dimensions $n \ge 3$ when M is an analytic manifold [Lassas, Taylor, Uhlmann: 2003].
- The smooth cases is still unsolved.

■ Even monogenic fields have harmonic components. Given a harmonic r-vector A_r , can we reconstruct a monogenic multivector containing A_r ?

- Even monogenic fields have harmonic components. Given a harmonic r-vector A_r , can we reconstruct a monogenic multivector containing A_r ?
- For n = 3, the scalar potential u and magnetic bivector field b are two parts of a monogenic field f = u + b due to Ohm's and Ampere's laws

$$-\nabla \wedge u = \boldsymbol{j} = \nabla \rfloor b.$$

- Even monogenic fields have harmonic components. Given a harmonic r-vector A_r , can we reconstruct a monogenic multivector containing A_r ?
- For n = 3, the scalar potential u and magnetic bivector field b are two parts of a monogenic field f = u + b due to Ohm's and Ampere's laws

$$-\nabla \wedge u = \mathbf{j} = \nabla | b.$$

■ If Λ can provide us $b|_{\partial M}$, then we can possibly reconstruct $\mathcal{M}^+(M)$.

- Even monogenic fields have harmonic components. Given a harmonic r-vector A_r , can we reconstruct a monogenic multivector containing A_r ?
- For n = 3, the scalar potential u and magnetic bivector field b are two parts of a monogenic field f = u + b due to Ohm's and Ampere's laws

$$-\nabla \wedge u = \mathbf{j} = \nabla \rfloor b.$$

- If Λ can provide us $b|_{\partial M}$, then we can possibly reconstruct $\mathcal{M}^+(M)$.
- Given the algebraic structure of each $\mathcal{A}_{B}(M) \subset \mathcal{M}^{+}(M)$, can this be used to determine q?

■ Can the magnetic impedance tomography problem can provide some extra insight on the EIT problem?

- Can the magnetic impedance tomography problem can provide some extra insight on the EIT problem?
- The Hodge-Morrey decomposition is an instrumental tool for boundary value problems that, for example, allows one to show that Λ determines the Betti numbers of M [Belishev, Sharafutdinov: 2008].

- Can the magnetic impedance tomography problem can provide some extra insight on the EIT problem?
- The Hodge-Morrey decomposition is an instrumental tool for boundary value problems that, for example, allows one to show that Λ determines the Betti numbers of M [Belishev, Sharafutdinov: 2008].
- Can the Clifford-Hodge-Morrey decomposition can allow us to work on other related boundary inverse problems?

- Can the magnetic impedance tomography problem can provide some extra insight on the EIT problem?
- The Hodge-Morrey decomposition is an instrumental tool for boundary value problems that, for example, allows one to show that Λ determines the Betti numbers of M [Belishev, Sharafutdinov: 2008].
- Can the Clifford-Hodge-Morrey decomposition can allow us to work on other related boundary inverse problems?
- These problems could include spacetime problems where the metric g is of mixed signature.

Section 5

Conclusions

Conclusion

■ We have utilized multivector fields to serve as a meaningful generalization of both the complex numbers and differential forms.

Conclusion

- We have utilized multivector fields to serve as a meaningful generalization of both the complex numbers and differential forms.
- This provides a new way to decompose fields on domains of \mathbb{R}^n and this can likely be generalized to arbitrary compact orientable pseudo-Riemannian manifolds.

Conclusion

- We have utilized multivector fields to serve as a meaningful generalization of both the complex numbers and differential forms.
- This provides a new way to decompose fields on domains of \mathbb{R}^n and this can likely be generalized to arbitrary compact orientable pseudo-Riemannian manifolds.
- Likewise, we have proven that the monogenic fields contain a wealth of topological information and this information is supported on the boundary by the Cauchy integral formula.

■ Over the past two years I have also worked with a team on developing new techniques for data assimilation.

- Over the past two years I have also worked with a team on developing new techniques for data assimilation.
- We have submitted Model and Data Reduction for Data Assimilation:

 Particle Filters Employing Projected Forecasts and Data with Application
 to a Shallow Water Model.

- Over the past two years I have also worked with a team on developing new techniques for data assimilation.
- We have submitted Model and Data Reduction for Data Assimilation:

 Particle Filters Employing Projected Forecasts and Data with Application
 to a Shallow Water Model.
- We are continuing to work to apply our scheme to new models such as the Modular Arbitrary-Order Ocean-Atmospheric Model (MAOOAM).

