Feedback — Problem Set 1

You submitted this homework on **Thu 10 Jan 2013 2:19 PM CET**. You got a score of **9.00** out of **9.00**. You can attempt again, if you'd like.

Question 1

Dominance

	1\2	X	у	z	
	а	1,2	2,2	5 ,1	
	b	4,1	3,5	<mark>3</mark> ,3	
-	С	5,2	4,4	7,0	1
	d	2,3	0,4	3,0	

Find the strictly dominant strategy:

- e 1) a;
- e 2) b;
- √ 3) c;
- 4) d;
- 6 5) x;
- 6 6) y;
- 6 7) z

Question 2

Dominance

1\2	X	у	z
а	1,2	2,2	5,1
b	4 ,1	3,5	3,3
c (5 ,2	4,4	7,0
d	<mark>2</mark> ,3	0,4	3,0

Find the very weakly (not only strictly) dominant strategy:

1

- e 1) a;
- 2) b;
- 3) c;
- 4) d;
- 6 5) x;

o 7) z

Question 3

Dominance

1\2	X	yχ	z
а	1,2	2,2	5 ,1
b	<mark>4</mark> ,1	3,5	3,3
С	5 ,2	4,4	7,0
d	<mark>2</mark> ,3	0,4	3,0

0 4 4 0 5 3 40 0 4 5 3 35 35 (5 6)

When player 1 plays d, what is player 2's best response:

- e a) Only x
- √ b) Only y
- c) Only z
- od) Both y and z

Pure Strategy Pash Equilibria 2 player game:

Question 4

Dominance

1\2	X	У	z
а	1,2	2 2,2	5 ,1
b	4,	1 3,5	3,3
С	5	24,4	7,0
d	2,	30,4	3,0

- for each strategy of opponent, upaderline own best result - a cell in 14 2 entires underlined represents a p-5 Mt.

Find all strategy profiles that form pure strategy Nash equilibria (there may be more than one, or none):

Question 5

Nash Equilibrium - Bargaining

There are 2 players that have to decide how to split one dollar. The bargaining process works as follows. Players simultaneously announce the share they would like to receive s_1 and s_2 , with $0 \le s_1$, $s_2 \le 1$. If $s_1 + s_2 \le 1$, then the players receive the shares they named and if $s_1 + s_2 > 1$, then both players fail to achieve an agreement and receive zero.

Question 6

Nash Equilibrium - Bargaining

There are 2 players that have to decide how to split one dollar. The bargaining process works as follows. Players simultaneously announce the share they would like to receive s_1 and s_2 , with $0 \le s_1$, $s_2 \le 1$. If $s_1 \ne s_2 \le 1$, then the players receive

the shares they named and if $s_1 + s_2 > 1$, then both players fail to achieve an agreement and receive zero.

Which of the following strategy profiles is a pure strategy Nash equilibrium?

- a) (0.3, 0.7);
- b) (0.5, 0.5);
- c) (1.0, 1.0);
- d) All of the above

Question 7

Bertrand Duopoly

- Two firms produce identical goods, with a production cost of c per unit.
- Each firm sets a nonnegative price $(p_1 \text{ and } p_2)$.
- All consumers buy from the firm with the lower price, if $p_i \neq p_j$. Half of the consumers buy from each firm if $p_i = p_j$.
- . D is the total demand.
- Profit of firm i is:

 - 0 if $p_i > p_j$ (no one buys from firm i); $D(p_i \leftarrow c) \text{ 2 if } p_i \leftarrow p_j \text{ (Half of customers buy from firm i);}$ $D(p_i \leftarrow c) \text{ if } p_i < p_j \text{ (All customers buy from firm i);}$

Find the pure strategy Nash equilibrium:

- \circ a) Both firms set p = 0.
- e b) Firm 1 sets p = 0, and firm 2 sets p = c.
- \forall c) Both firms set p = c.
- d) No pure strategy Nash equilibrium exists.

candidates

Question 8

Voting

- Three voters vote over two candidates (A and B), and each voter has two pure strategies: vote for A and vote for B.
- When A wins, voter 1 gets a payoff of 1, and 2 and 3 get payoffs of 0; when B wins, 1 gets 0 and 2 and 3 get 1. Thus, 1 prefers A, and 2 and 3 prefer B.
- The candidate getting 2 or more votes is the winner (majority rule).

Find all very weakly dominant strategies (there may be more than one, or none).

- b) Voter 1 voting for B.

> c) Voter 2 (or 3) voting for A.

d) Voter 2 (or 3) voting for B.

Question 9

Voting

- Three voters vote over two candidates (A and B), and each voter has two pure strategies: vote for A and vote for B.
- When A wins, voter 1 gets a payoff of 1, and 2 and 3 get payoffs of 0; when B wins, 1 gets 0 and 2 and 3 get 1. Thus, 1 prefers A, and 2 and 3 prefer B.
- The candidate getting 2 or more votes is the winner (majority rule).

Find all pure strategy Nash equilibria (there may be more than one, or none)?

- a) All voting for A.
- b) All voting for B.

c) 1 voting for A, and 2 and 3 voting for B.

d) 1 and 2 voting for A, and 3 voting for B.

1 can vote B = 0 2 can voke A 70 g

