Algebra: Chapter 0 Exercises Chapter 2, Section 1

David Melendez

May 19, 2017

Problem 2.2. If $d \leq n$, then S_n contains elements of order d.

Proposition. Let c_d , called a d-cycle in S_n , be defined as follows:

$$c_d(m) = \begin{cases} d & m = 1\\ d - 1 & 1 < m \le d\\ m & m > d \end{cases}$$

For example, if we're working in S_6 , then $c_4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 2 & 3 & 5 & 6 \end{pmatrix}$. Then $|c_d| = d$ for $1 \le d \le n$.

Proof. Note that if 0 < k < d, then $c_d^k(d) = d - k \ge 1$ (c_d^k never "reaches" the point at which it cycles from 1 to d since k < d), so $|c_d| \ge d$. Then, we have, for $m \le d$,

$$c_d^d(m) = (c_d^m \cdot c_d^{d-m})(m)$$
$$= c_d^{d-m}(d)$$
$$= d - (d-m)$$
$$= m$$

Clearly $c_d^d(m) = m$ if m > d, so c_d^d is the identity, as desired.

Problem 2.5. Describe generators and relations for all dihedral groups D_{2n} .

Solution. We will define the dihedral group D_{2n} as follows:

$$D_{2n} = \langle x, y \mid x^2 = y^n = (xy)^2 = e \rangle$$

Proposition. With this definition of D_{2n} , every combination $x^{i_1}y^{i_2}x^{i_4}y^{i_5}\cdots$ equals x^iy^j for some $0 \le i \le 1, 0 \le j < n$.

Proof. We will use induction on m, the number of elements we're composing. The cases for $0 \le m \le 2$ are obvious.

Suppose this reduction holds for m. Then, if m is odd, we have

$$(x^{k_1}y^{k_2}\cdots x^{k_m})y^{k_{m+1}} = x^iy^jy^{k_{m+1}}$$

= $x^iy^{j+k_{m+1}}$

The case where m is even is more interesting. First, we will establish the following based off of the third relation:

$$(xy)^{2} = e \implies xyxy = e$$

$$\implies x(yxy) = e$$

$$\implies x^{-1} = yxy$$

$$\implies yx = x^{-1}y^{-1}$$

$$= xy^{n-1}$$

Now, suppose m is even. We then have, with $\leq i \leq 1$, $0 \leq j < n$, and $0 \leq k \leq 1$:

$$(x^{k_1}y^{k_2}\cdots x^{k_{m-1}}y^{k_m}) x^{k_{m+1}} = x^iy^jx^k$$

Since every other case is trivial, we will assume $0 \neq j \neq n$ and k = 1. Additionally, we will assume wlog that j < n. Then, we have

$$x^{i}y^{j}x^{k} = x^{i}y^{j}x$$

$$= x^{i}y^{j-1}(yx)$$

$$= x^{i}y^{j-1}xy^{n-1}$$

$$= x^{i}y^{j-2}xy^{2n-2}$$

$$= x^{i}y^{j-2}xy^{n-2}$$

$$= x^{i}y^{j-3}xy^{n-3}$$

$$= \cdots$$

$$= x^{i}y^{0}xy^{n-j}$$

$$= x^{i+1}y^{n-j}$$

as desired.