

One-mode and two-mode networks

Network Science '21: Session 1.3 (self-study content)

Claudio J. Tessone

Blockchain & Distributed Ledger Technologies
UZH Blockchain Center

Outlook

Contents

1 Outlook

One-mode and two-mode networks

Unipartite networks (one mode)

- + All nodes are of the same nature;
- E.g.: Social networks, Internet, WWW, Firms

Bipartite networks (two modes)

- + Nodes are of two well-differentiated nature
- Node of one type can only be connected to a node of another type;
- + e.g.:
 - Recommender systems (product/user)
 - Goods (buyer/product; buyer/seller; manufacturer/contractor)

- + Unweighted: $a_{ij} \in \{0, 1\}$, A is rectangular
- Weighted: a_{ij} ∈ ℝ, A is rectangular:

Bipartite networks (two modes)

- + Nodes are of two well-differentiated nature
- Node of one type can only be connected to a node of another type;
- + e.g.:
 - Recommender systems (product/user)
 - Goods (buyer/product; buyer/seller; manufacturer/contractor)

- + Unweighted: $a_{ij} \in \{0,1\}$, A is rectangular
- Weighted: a_{ij} ∈ ℝ, A is rectangular:

Bipartite networks (two modes)

- + Nodes are of two well-differentiated nature
- Node of one type can only be connected to a node of another type;
- + e.g.:
 - Recommender systems (product/user)
 - Goods (buyer/product; buyer/seller; manufacturer/contractor)

- + Unweighted: $a_{ij} \in \{0,1\}$, A is rectangular
- Weighted: $a_{ij} \in \mathbb{R}$, A is rectangular:

Bipartite networks (two modes)

- + Nodes are of two well-differentiated nature
- Node of one type can only be connected to a node of another type;
- + e.g.:
 - Recommender systems (product/user)
 - Goods (buyer/product; buyer/seller; manufacturer/contractor)

1. Outlook

- + Unweighted: $a_{ij} \in \{0, 1\}$, A is rectangular
- + Weighted: $a_{ij} \in \mathbb{R}$, A is rectangular:

Bipartite networks (two modes)

- + Nodes are of two well-differentiated nature
- Node of one type can only be connected to a node of another type;
- + e.g.:
 - Recommender systems (product/user)
 - Goods (buyer/product; buyer/seller; manufacturer/contractor)

- **+ Unweighted**: $a_{ij} \in \{0, 1\}$, A is rectangular
- **+ Weighted**: $a_{ij} \in \mathbb{R}$, A is rectangular;

Bipartite networks: example

A supermarket chain wants to know which products are frequently bought together.

They have the following data:

Receipt ID	Date	Product	Category	Shop ID
ID1	19.02.2014	Milch Naturaplan 1.5L	Milk	SID1
ID1	19.02.2014	Gruyère Reibkäse	Cheese	SID1
ID1	19.02.2014	Naturaplan Bio Butter	Butter	SID1
ID1	19.02.2014	Rispentomaten	Tomatoes	SID1
ID2	20.02.2014	De Cecco Olivenöl	Oil	SID1
ID2	20.02.2014	Vorzugsbutter	Butter	SID1
ID2	20.02.2014	Persil Gel Universal	Washing powder	SID1
ID2	20.02.2014	Naturaplan Bio Tomaten	Tomatoes	SID1
ID3	22.02.2014	Rispentomaten	Tomatoes	SID1
ID3	22.02.2014	Nero d'Avola Sicilia IGT	Wine	SID1

Bipartite network: Nodes

Node Index	Subject	Туре
Α	Milk	Product
В	Oil	Product
С	Cheese	Product
D	Butter	Product
E	Washing powder	Product
F	ID1	Receipt ID
G	ID2	Receipt ID
Н	Tomatoes	Product
I	ID3	Receipt ID
J	Wine	Product

Bipartite network: Edges

Receipt ID	Product
ID ₁	Milk
ID1	Cheese
ID1	Butter
ID1	Tomatoes
ID2	Oil
ID2	Butter
ID2	Washing powder
ID2	Tomatoes
ID ₃	Tomatoes
ID ₃	Wine

Bipartite networks: adjacency matrix

- + Blue nodes reciepts; Green nodes products
- + Edges exist only between nodes of different types.
- + Adjacency matrix for bipartite networks: block-matrix;

Bipartite networks: edge list

- + Blue nodes receipts; Green nodes products
- + Edges exist only between nodes of different types.

Source (Products)	Target (Receipts)
Α	F
В	G
С	F
D	F
D	G
E	G
Н	G
Н	F
Н	1
J	I

Link all products that were bought together on the same receipt

Consider receipt F first

Link all products that were bought together on the same receipt

Now consider receipt G

Link all products that were bought together on the same receipt

Finally, consider receipt I

Resulting graph is unipartite, undirected, unweighted

Network of ingredients

Network of ingredients that occur together more than by chance:

Claudio J. Tessone

Blockchain & Distributed Ledger Technologies
UZH Blockchain Center

claudio.tessone@uzh.ch

☑ http://www.ifi.uzh.ch/bdlt