

2018 15/02/19

Página 1 de 5

DESCRIPCIÓN DE LA ASIGNATURA

Grado/Máster en: Graduado/a en Ingeniería Informática por la Universidad de Málaga

Centro: Escuela Técnica Superior de Ingeniería Informática

Asignatura: Sistemas Inteligentes II

Código:307Tipo:Obligatoria

Materia: Sistemas Inteligentes II

Módulo: Computación I

Experimentalidad: 69 % teórica y 31 % práctica

Idioma en el que se imparte: Español

Curso:3Semestre:2№ Créditos6№ Horas de dedicación del estudiante:150№ Horas presenciales:60Tamaño del Grupo Grande:72Tamaño del Grupo Reducido:30

Página web de la asignatura:

EQUIPO DOCENTE

Departamento: LENGUAJES Y CIENCIAS DE LA COMPUTACIÓN

Área: CIENCIA DE LA COMPUTACIÓN E INTELIGENCIA ARTIFICIAL

Nombre y Apellidos	Mail	Teléfono Laboral	Despacho	Horario Tutorías
Coordinador/a: EVA MILLAN VALLDEPERAS	emillan@uma.es	952132814	3.2.35 - E.T.S.I. INFORMÁTICA	Primer cuatrimestre: Martes 11:00 - 13:00, Miércoles 09:30 - 13:30 Segundo cuatrimestre: Martes 10:30 - 12:30, Miércoles 08:45 - 10:45, Jueves 10:30 - 12:30

RECOMENDACIONES Y ORIENTACIONES

Aunque no se establecen requisitos previos para poder cursar esta asignatura, se recomienda haber cursado las asignaturas de Cálculo, Métodos Estadísticos para la Computación y Sistemas Inteligentes I. En particular, es importante conocer los conceptos básicos de Teoría de la Probabilidad.

CONTEXTO

La asignatura es continuación de Sistemas Inteligentes I. Principalmente, en la asignatura se cubren técnicas de representación del conocimiento, métodos de razonamiento y aprendizaje. Necesita por tanto de cierta base matemática (se recomienda haber superado las asignaturas de Cálculo y Métodos Estadísticos de la Computación).

COMPETENCIAS

1 Competencias generales y básicas.

BÁSICAS

CB02	Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las
	competencias que suelen demostrarse, por medio de la elaboración y defensa de argumentos y la resolución de

problemas dentro de su área de estudio.

CB04 Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado

como no especializado.

Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios

posteriores con un alto grado de autonomía.

GENERALES

CB05

CG08 Conocimiento de las materias básicas y tecnologías, que capaciten para el aprendizaje y desarrollo de nuevos métodos y tecnologías, así como las que les doten de una gran versatilidad para adaptarse a nuevas situaciones.
 CG09 Capacidad para resolver problemas con iniciativa, toma de decisiones, autonomía y creatividad. Capacidad para saber comunicar y transmitir los conocimientos, habilidades y destrezas de la profesión de Ingeniero Técnico en

Informática.

2 Competencias específicas.

Competencias de Tecnología Específica en Computación

CE-C-02	Capacidad para conocer los fundamentos, paradigmas y técnicas propias de los sistemas inteligentes y analizar,
	diseñar y construir sistemas, servicios y aplicaciones informáticas que utilicen dichas técnicas en cualquier ámbito
	de anlicación

CE-C-03 Capacidad para adquirir, obtener, formalizar y representar el conocimiento humano en una forma computable para la resolución de problemas mediante un sistema informático en cualquier ámbito de aplicación, particularmente los

2018 15/02/19

Página 2 de 5

2 Competencias específicas.

Competencias de Tecnología Específica en Computación

relacionados con aspectos de computación, percepción y actuación en ambientes o entornos inteligentes.

CONTENIDOS DE LA ASIGNATURA

Sistemas basados en el conocimiento

Introducción

Sistemas basados en reglas

Motores de inferencias

Razonamiento difuso

Conjuntos y reglas difusas

Control difuso

Herramientas

Aplicaciones

Razonamiento bayesiano

Fundamentos teóricos

Modelado

Algoritmos de propagación

Herramientas

Aprendizaje computacional

Aprendizaje bayesiano

Otras técnicas

Herramientas

ACTIVIDADES FORMATIVAS

Actividades presenciales

Actividades expositivas

Lección magistral

Actividades prácticas en instalaciones específicas

Prácticas en laboratorio

Actividades no presenciales

Actividades prácticas

Resolución de problemas

Estudio personal

Estudio personal

Otras actividades no presenciales

Otras actividades no presenciales

ACTIVIDADES DE EVALUACIÓN

Actividades de evaluación presenciales

Actividades de evaluación del estudiante

Examen parcial

Examen final

Realización de trabajos y/o proyectos

RESULTADOS DE APRENDIZAJE / CRITERIOS DE EVALUACIÓN

- RA1. Definir el concepto de sistemas basado en el conocimiento
- RA2. Seleccionar el tipo de arquitectura y motor de inferencia más adecuado para su implementación
- RA3. Representar el conocimiento de un modo computable

2018

15/02/19

Página 3 de 5

- RA4. Conocer y aplicar las técnicas de razonamiento bajo incertidumbre y bajo imprecisión
- RA6. Conocer y aplicar técnicas de aprendizaje computacional
- RA5. Utilizar las herramientas software disponibles

Estos resultados de aprendizaje se relacionan con las competencias específicas de la siguiente forma: la competencia CE-C-02 se concreta en los resultados de aprendizaje RA1 y RA2, mientras que la competencia CE-C-03 se concreta en los resultados de aprendizaje RA3 a RA6.

Se evaluará la correcta adquisición de dichos resultados de aprendizaje mediante pruebas parciales, entrega obligatoria de prácticas y los exámenes que se realizarán en las convocatorias oficiales. En las pruebas y exámenes escritos se incluirán tanto los conceptos teóricos de la asignatura (CG08) como problemas del área del estudio de la misma que puedan resultar novedosos para los estudiantes (CB02 y CG09). Para la resolución de dichos problemas, será necesario que el estudiante demuestre cierto grado de autonomía (CB05). Se evaluará no sólo la corrección técnica de las soluciones propuestas, sino también su correcta redacción utilizando la terminología y estilo adecuados (CB04 y CB02).

PROCEDIMIENTO DE EVALUACIÓN

Se establecen dos procedimientos de evaluación diferenciados, de libre elección por parte del estudiante (incluidos los estudiantes a tiempo parcial y deportistas de élite).

PROCEDIMIENTO DE EVALUACIÓN CONTINUA:

Este procedimiento se considera el apropiado para aquellos estudiantes que quieran superar la asignatura por curso, y sin necesidad de acudir al examen final. Para ello el estudiante debe:

- Entregar las prácticas y problemas que se establezcan como de entrega obligatoria. La entrega se realizará a través del campus virtual, y en los plazos que se establezcan para ello.
- Superar dos pruebas escritas que se realizarán durante el curso. Para poder presentarse a cada una de dichas pruebas, el estudiante deberá haber realizado en tiempo y forma la entrega de todos los problemas y prácticas correspondientes a la misma.

Sea P1 la calificación correspondiente al primer bloque de la asignatura. Si P1>=5, el estudiante podrá presentarse también a la segunda prueba escrita. Sea P2 la calificación de la segunda prueba. Si P2>=5, el estudiante superará la asignatura, siendo su calificación 0.4*P1+0.6*P2.

Si el estudiante no supera la asignatura con este procedimiento, podrá superarla en cualquiera de las convocatorias oficiales (no se guardan las notas de las pruebas parciales).

PROCEDIMIENTO DE EVALUACIÓN EN LAS CONVOCATORIAS OFICIALES:

- En todas las convocatorias oficiales, el estudiante podrá superar la asignatura si supera el examen con una calificación mayor o igual a 5 puntos, siendo su calificación la obtenida en dicho examen.

BIBLIOGRAFÍA Y OTROS RECURSOS

Básica

Castillo, E., Gutiérrez, J.M., Hadi, A.S. Sistemas Expertos y Modelos de Redes Probabilísticas. Monografías de la Academia Española de Ingeniería 1997

Díez, F.J. Introducción al Razonamiento Aproximado. UNED. 2005.

Jensen, F.V. An Introduction to Bayesian Networks. UCL Press. 1996

Koller, D., Friedman, N. Probabilistic Graphical Models. MIT Press. 2009.

Millán, E. y Pérez de la Cruz, J.L. Apuntes de la asignatura. Disponibles en el Campus Virtual.

Neapolitan, R. Probabilistic Methods for Bioinformatics. Morgan Kaufmann. 2009

Russell, S., Norvig, P. Artificial Intelligence: A Modern Approach. Third edition. Pearson. 2010

Witten, I., Hall, M. & Frank, E. Data Mining: Practical Machine Learning Tools and Techniques. Third edition. Morgan Kaufmann Publishers. 2011.

2018 15/02/19

Página 4 de 5

Descripción	Horas	Grupo grande Grupos reducidos
Resolución de problemas	15	
Estudio personal	45	
Otras actividades no presenciales	15	
TOTAL HORAS ACTIVIDAD FORMATIVA NO PRESENCIAL	75	
TOTAL HORAS ACTIVIDAD EVALUACIÓN	15	
TOTAL HORAS DE TRABAJO DEL ESTUDIANTE	150	