Part I

$\begin{array}{c} \textit{Real Analysis I}, \; \text{by Elon L.} \\ \text{Lima} \end{array}$

Chapter 3

Sequences of Real Numbers

Definition (Limit of a Sequence; Convergence). a is a *limit* of the sequence (x_n) if for every $\epsilon > 0$ the sequence is eventually ϵ -closed to a. We say that (x_n) converges to a, and that (x_n) is convergent.

Theorem 1. Limits of sequences are unique.

Theorem 2. If $\lim x_n = a$ then every subsequence of (x_n) converges to a.

Theorem 3. Every congervent sequence is limited.

Fact. If a monotone sequence (x_n) has a limited subsequence, then (x_n) itself is limited.

Theorem 4. Every limited monotone sequence is convergent.

Corollary (Bolzano–Weierstrass Theorem). Every limited sequence has a convergent subsequence.

Theorem 5. If $b < \lim x_n$, then eventually $b < (x_n)$. Analogously, $b > \lim x_n$ implies that $b > (x_n)$ eventually.

Corollary. If eventually $(x_n) \leq (y_n)$, then $\lim x_n \leq \lim y_n$. In particular, if eventually $(x_n) \leq c$, then $\lim x_n \leq c$.

Theorem 6 (Sandwich's Theorem). If $\lim x_n = \lim z_n = l$ and eventually $(x_n) \leq (y_n) \leq (z_n)$, then $\lim y_n = l$.

Theorem 7. If $\lim x_n = 0$ and (y_n) is a limited sequence, then $\lim x_n y_n = 0$.

Fact. $\lim x_n = a \iff \lim (x_n - a) = 0 \iff \lim |x_n - a| = 0.$

Theorem 8. If $\lim x_n = a$ and $\lim y_n = b$, then

- 1. $\lim (x_n \pm y_n) = a \pm b.$
- 2. $\lim x_n y_n = ab$.

3. $\lim \frac{x_n}{y_n} = a/b$ given that $b \neq 0$.

Fact. If $(x_n) > 0$ and $\lim \frac{x_{n+1}}{x_n} < 1$ then $\lim x_n = 0$.

Fact. If a > 1 and $k \in \mathbb{N}$ then

$$\lim_{n \to \infty} \frac{n^k}{a^n} = \lim_{n \to \infty} \frac{a^n}{n!} = \lim_{n \to \infty} \frac{n!}{n^n} = 0$$

Fact. If a > 0 then $\lim a^{1/n} = 1$.

Fact. $\lim \left(\frac{n+1}{n}\right)^n = \sum_{n=0}^{\infty} \frac{1}{n} = e$

Fact. $\lim n^{1/n} = 1$

Fact. $\lim \frac{x_n + a/x_n}{2} = \sqrt{a}, a > 0$

Definition (Infinite Limits). We say that $\lim x_n = \infty$ when for each M > 0 eventually $(x_n) > M$. Analogously, $\lim x_n = -\infty$ when for each N < 0 eventually $(x_n) < N$.

Fact. $\lim x_n = -\infty \iff \lim -x_n = \infty$

Theorem 9.

- 1. If $\lim x_n = \infty$ and (y_n) has a lower bound then $\lim (x_n + y_n) = \infty$.
- 2. If $\lim x_n = \infty$ and $(y_n) > c$ for some c > 0 then $\lim x_n y_n = \infty$.
- 3. If $(x_n) > c$ for some c > 0 and $(y_n) > 0$ then $\lim \frac{x_n}{y_n} = \infty$.
- 4. If (x_n) é limitada e $\lim y_n = \infty$ then $\lim \frac{x_n}{y_n} = 0$.

Fact. $\lim \frac{\log n}{n} = 0$

Chapter 4

Numeric Series

Definition (Series, Partial Sums). A series is a limit of the form $\lim(a_1 + \cdots + a_n)$. The numbers $s_n = a_1 + \cdots + a_n$ are the partial sums of the series, and the term a_n is its general term.

Definition (Congervence). When the limit corresponding to a series exists, the series is *convergent*. Otherwise, it is *divergent*.

Fact. The series $1+a+a^2+\ldots$ is the *geometric series*. It converges to 1/1-a.

Fact. A series of nonnegative terms converges iff there's a constant that limits each of its partial sums.

Fact. The series $\sum 1/n$ is the harmonic series. It diverges.

Theorem 10 (Comparison Criteria). Let $\sum a_n$ and $\sum b_n$ be series with non-negative terms. If there's some c > 0 such that eventually $(a_n) \leq c(b_n)$, then the convergence of $\sum b_n$ implies that $\sum a_n$ converges; and if $\sum a_n$ diverges then so does $\sum b_n$.

Chapter 5

Some Topological Notions

Definition (Interior Point). The point a is *interior* to the set $X \subseteq \mathbb{R}$ when there is some $\epsilon > 0$ st $(a - \epsilon, a + \epsilon) \subseteq \mathbb{R}$. The set of interior points of X, called the *interior* of X, is represented as int X.

Definition (Neighborhood). If $a \in \text{int } X$, then X is a *neighborhood* of a.

Definition (Open Set). $X \subseteq \mathbb{R}$ is open iff int X = X.

Fact (Limit of a Sequence in Terms of Open Sets). $a = \lim x_n$ iff for every open set A containing a, x_n is eventually contained in A.

Theorem 11. Arbitrary unions of opens are open; finite intersections of opens are open.

Definition (Adherent Point). a is adherent to the set $X \subseteq \mathbb{R}$ when a is the limit of a sequence of points of X.

Definition (Closure). The *closure* of $X \subseteq R$ is the set of points that adhere to X. It is denoted by \overline{X} .

Definition (Closed Set). A set X is *closed* when $\overline{X} = X$.

Definition (Dense Set). Let $X \subseteq Y$. X is dense on Y if $Y \subseteq \overline{X}$.

Theorem 12. a adheres to X iff every neighborhood of a intersects X.

Corollary. Closures are closed.

Theorem 13. A set is closed iff its complement in R is open.

Theorem 14. Arbitrary intersections of closeds are closed; finite unions of closeds are closed.

Definition (Cision). The sets A and B are a cision of $X = A \cup B$ if $A \cap \overline{B} = \overline{A} \cap B = \emptyset$.

Theorem 15. Intervals of the rect only admit the trivial cision.

Corollary. The only clopen subsets of R are \emptyset and R.

Definition (Accumulation Point). a is an accumulation point of X if every neighborhood of a intersects $X \setminus \{a\}$. The set of accumulation points of X is denoted as X'.

Definition (Isolated Point). $a \in X$ is a point *isolated* from X if a is not an accumulation point of X.

Definition (Discrete Set). A set is *discrete* if all of its elements are isolated points.

Theorem 16. Given $X \subseteq \mathbb{R}$ and $a \in \mathbb{R}$, the following are equivalent:

- 1. $a \in X'$
- 2. $a \in \overline{X \setminus \{a\}}$
- 3. Every interval centered in a has infinite elements of X.

Theorem 17. Every bounded infinite set has an accumulation point.

Definition (Compact Set). A set $X \subseteq \mathbb{R}$ is *compact* if it is limited and closed.

Theorem 18. A set $X \subseteq \mathbb{R}$ is compact iff every sequence of points of X has a subsequence that converges to a point of X.

Fact. Every compact set has a mininum and a maximum element.

Theorem 19. Given a sequence $X_1 \supseteq X_2 \supseteq \ldots$ of compact nonempty sets, there exists an element belonging to each X_i .

Theorem 20 (Borel-Lebesgue). Every open covering of a compact set has a finite subcovering.