Example 0.1

Let $X \neq \emptyset$, and $B \subseteq X$ be given. Show that the set:

$$\mathcal{E}_B = \{ A \subseteq X : B \subseteq A \text{ or } B \subseteq A^c \}.$$

Is a σ -algebra in X.

 σ 1: $X \in \mathcal{E}_B$ since $B \subseteq X$ by assumption.

 $\sigma 2$: If $A \in \mathcal{E}_B$, then either $B \subseteq A$ or $B \subseteq A^c$. If the first holds, then clearly $B \subseteq (A^c)^c = A$, and $A^c \in \mathcal{E}_B$. On the other hand, if $B \subseteq A^c$, then $A^c \in \mathcal{E}_B$. Therefore \mathcal{E}_B is closed under complements.

 $\sigma 3$: Suppose $\{A_n\}_{n\in\mathbb{N}}$ is a sequence of elements in \mathcal{E}_B . Partition \mathbb{N} into disjoint subsets I,J so that $B\subseteq A_i$ for $i\in I$, and $B\subseteq A_j^c$, for $j\in J$. The A_j require some consideration. By $\sigma 2$, we know that each A_j must also be in \mathcal{E}_B . Then $B\subseteq A_i$, for all i, and $B\subseteq J$ for all j. Since $I\cup J=\mathbb{N}$, we have

$$B\subseteq\bigcup_{i\in I}A_i\cup\bigcup_{j\in J}A_j=\bigcup_{n\in\mathbb{N}}A_n.$$

So \mathcal{E}_B is closed under countable union, and is therefore a σ -algebra.