Syntax and grounding in adjective learning¹

Adèle Hénot-Mortier (MIT)

February 27, 2025

Queen Mary University of London

¹Many thanks to Athulya Aravind, Ido Benbaji, Martin Hackl, Nina Haslinger, Roni Katzir, Yoon Kim, Keely New, Zhouyi Sun, and the audiences of my practice talks at MIT, of SuB28, and my classmates in the Fall 2022 24.S96 seminar and the Spring 2023 6.S986 seminar for their support, comments, and feedback.

Introduction

Which factors enable word learning in humans?

"You shall know a word by the company it keeps".

J. R. Firth, Studies in Linguistic Analysis, 1957

 Distributional Hypothesis (Harris, 1954): words with similar syntactic environments have similar meanings.

An example of distributional learning

• Distributions encode a lot of information, but comes with challenges!

```
Sunsets are so pretty
The red dress is pretti- er than the blue one
Jo finds Crocs pretty
Anglerfish do not look pretty
This is a pretty ugly way to say it
```

Human word learning results from entangled factors

 Both distributional cues¹ and grounding are used for word learning in humans, but these factors are hard to disentangle!

¹L. R. Gleitman, 1981; L. Gleitman, 1990; Naigles, 1990; Snedeker and Gleitman, 2004; Syrett, 2007; Yuan et al., 2012; Gotowski, 2022.

LLMs can help determine the limits of distributional learning

 Large Language Models, (LLMs) typically do not display grounding.² They therefore represent an interesting edge case re:

How far can distributional information alone take us?

 $^{^2}$ Cf. Bender and Koller (2020) for a position paper. Multimodal LLMs exist however (Alayrac et al., 2022 i.a.), and may arguably display more grounding. For this reason they appear less relevant to our research question.

Plan for today

Plan for today

- Two case studies focusing on adjective learning.
- They vary in how much distributional information can be used by LLMs to distinguish adjectives.
- Successes or failures inform us re:

How far can distributional information alone take us?

The two studies

- **Study 1** focuses on the argument structure of adjectives like **tough**, **pretty**, **brave**, and **short**.
 - The observed distinctions are distributionally clear...
 - but intuitively subtle.
- Study 2 focuses on antonymic adjectives (e.g. tall/short) and their behavior under negation.
 - The observed distinction is intuitively obvious...
 - but distributionally subtle.

Methods

Structure of both studies

- Two kinds of "assessment", inspired by psycholinguistics.
- "Behavioral": are LLMs differentially "surprised" when processing contrasting sentences that only differ in the adjectives used?
- "Neural": are the behavioral contrasts, rooted in the internal vector representations assigned by the models to the adjectives?

Models tested, and rationale

- Five Transformers: GPT-2, XLNet, BERT, RoBERTa, Mistral7B.³
- Though not state-of-the-art, open-access.
- Contrast with indirect prompting methods.⁴
- Allow to evaluate the robustness of the Transformer architecture.

Focus on the best-performing model, GPT-2.

 $^{^4\}mbox{Vaswani}$ et al., 2017; Devlin et al., 2018; Liu et al., 2019; Radford et al., 2019; Yang et al., 2019; Jiang et al., 2023

⁴Hu and Levy (2023) shows that prompting and probability assessment can yield significantly different outcomes.

Study 1

Distinguishing adjectives through their syntactic distribution. Code; Surprisal dataset.

Learning to distinguish categories of adjectives

- It seem hard to distinguish adjectives like short, tough, pretty, and brave at first blush.
- (1) a. This problem is **short/tough/?pretty/*brave**.
 - b. Jo is **short/tough/pretty/brave**.
 - c. This decision is *short/tough/*pretty/brave.
- The Distributional Hypothesis can help: short, tough, pretty, and brave can be easily and sharply teased apart in terms of their syntactic distributions.⁵

⁵Supported by syntactic theory: cf. Rosenbaum (1967), Lasnik and Fiengo (1974), Stowell (1991), and Keine and Poole (2017), among many others.

Differences in terms of clausal embedding

 Short-like adjectives cannot embed an infinitival clause, while the other adjectives can.

(2) This X is A to VP

- a. * This kid is short/old/poor to ride the rollercoaster.
- b. This problem is **tough/interesting/impossible** to solve.
- c. This vase is **pretty/harmonious** to look at.
- d. This student is **brave/rude/smart** to point out the issue.

Differences in the availability of an "impersonal" variant

 Tough- and brave-adjectives can take a dummy it as subject, while pretty- and short-like adjectives can't.

(3) It's Adj to VP

- a. It's tough to solve this problem.
- b. It's brave to point out the issue.
- c. * It's pretty to look at this vase.
- d. * It's short to ride the rollercoaster.

Two refinements of the impersonal construction

 The impersonal tough-construction allows for an extra experiencer introduced by for.

(4) It's Adj for X to VP

- a. It's tough for Jo to solve this problem.
- b. * It's brave for Jo to point out the issue.
- c. * It's pretty for Jo to look at this vase.
- d. * It's short for Jo to ride the rollercoaster.
- The impersonal brave-construction, allows for an extra theme introduced by of.

(5) It's Adj of X to VP

- a. * It's tough of Jo to solve this problem.
- b. It's brave of Jo to point out the issue.
- c. * It's pretty of Jo to look at this vase.
- d. * It's short of Jo to ride the rollercoaster.

Four classes of adjectives, three contrasting templates

 Templates (2), (4) and (5) are sufficient to tease apart our adjectives.

Template		short	tough	pretty	brave
(2)	X is Adj to VP	*			
(4)	It's Adj for X to VP	*		*	*
(5)	It's Adj of X to VP	*	*	*	

 These distributional differences correlate with broad semantic differences.

Can LLMs leverage the distributional contrasts between these adjectives, to distinguish between them on psycholinguistics-inspired tasks?

Behavioral assessment

"Templatic" stimuli

• We focus on template (4).6

```
(4) It's \begin{cases} 
\times \text{tough} 
    \times \text{short} 
    \times \text{pretty} 
    \times \text{brave} 
\end{cases} \text{for you to rible this zud.}
```

- We filled (4) with 64 adjectives (16 per class), 3 experiencer pronouns, 7 nonce verbs, 7 object nonce nouns.
- (4)+tough is more grammatical than (4)+{short, pretty, brave}.

⁶Templates (2) and (5) were also tested.

Surprisal as a dependent variable

- The surprisal \$\mathcal{S}\$ of a sentence is its negative log probability.
- In humans, word surprisal correlates with processing effort.⁷
- In LLMs, surprisal differences may reflect grammatical contrasts.⁸

⁸Hale, 2001; Levy, 2008

⁸See E. Wilcox et al. (2018), Futrell et al. (2019), and E. G. Wilcox et al. (2023). van Schijndel and Linzen (2021) and Arehalli et al. (2022) however suggest that LLM surprisal underestimates human slowdowns in garden-path effects.

Prediction for template (4)

```
(4) It's \begin{cases} 
\frac{\frac{\frac{\text{tough}}{\text{short}}}{\text{xpretty}} \\ \frac{\text{for you to rible this zud.}}{\text{tough}} \end{cases}
```

- In template (4), tough-adjectives should be the least surprising.
 - $\mathscr{S}(It's \frac{\text{short}}{\text{pretty}} \frac{\text{brave}}{\text{brave}} \text{ for you to rible this zud.})$
- \mathscr{S} (It's **tough** for **you** to **rible** this **zud**.) > 0

Focus on GPT-2 and template (4)

Differential surprisals (short, pretty, brave vs. tough) from GPT-2 Large. White squares display the means.

One-sided Wilcoxon test for matched pairs. p-values are Benjamini-Yekutieli-corrected. Effect sizes are Cohen's d. M=Medium, L=Large.

Neural assessment

What are LLMs' "neural" representations?

Does the "surprise" of LLMs correlate with their internal representation of the relevant adjectives?

Rationale behind underlying vector spaces

- Pre-LLM underlying vector spaces have been shown to capture semantic relations between words, e.g. analogies of the form "king man + woman = queen".⁹
- Do the vector spaces derived by our LLMs reflect a distinction between tough, pretty, brave, and short-like adjectives, in terms of clustering?

⁹Mikolov, Chen, et al., 2013; Mikolov, Sutskever, et al., 2013; Pennington et al., 2014.

Methodology

- Vectors extracted from the LLMs' penultimate layer and reduced via Principal Component Analysis (PCA).
- PCA kills uninformative dimensions.

GPT-2's internal representations

Study 1 shows distributional cues take us quite far!

- Distributional information seems sufficient to derive meaningful distinctions between different categories of adjectives.
- The models' performance contrasts with that of humans:
 - A classification of these adjectives in terms of e.g. polarity or subjectivity may seem more intuitive.
 - Some classes of adjectives appear in constructions that are comparatively late-acquired.¹⁰
- Did LLMs learn something brand new, or were they able to efficiently encode a pattern fully present in the input?
- We now investigate another distinction between adjectives, that is more primitive, but also more challenging to learn from a purely distributional perspective.

¹⁰Chomsky, 1969.

Study 2

Distinguishing antonymic adjectives through their behavior under negation.

Code; Surprisal dataset

Antonymic adjectives and the Distributional Hypothesis

- The opposition between positive and negative adjectives is easy to learn from an early age.¹¹
- But antonyms occur in very similar distributions! 12
- Earlier neural networks could not capture anonymity.¹³.

¹¹Clark, 1972; Jones and Murphy, 2005.

¹²Charles and Miller, 1989; Justeson and Katz, 1991.

¹³Aina et al., 2019.

Positive and negative adjectives lead to distinct inferences

- (6) a. Jo is not tall.
 → Jo is fairly short.
 "Inference Towards the Antonym" (ITA)¹⁴
 - b. Jo is **not short**. $\not\sim$ Jo is fairly **tall**.
- The ITA requires to distinguish between antonyms...
- but also, to grasp which antonym is positive and which one is negative, because they differentially interact with negation!
- This has to be done in the absence of clear distributional cues.

¹⁴Horn, 1989; Krifka, 2007; Ruytenbeek et al., 2017; Gotzner et al., 2018.

Behavioral assessment

Operationalizing the ITA contrasts in terms of surprisal

- The template in (7) captures ITA contrasts in terms of felicity.¹⁵
- (7) a. He is not tall. She too is short. Presupposes: not tall \sim short.
 - b. # He is not **short**. She too is **tall**. Presupposes: not **short** \sim **tall**.
- These pairs allow us to reuse the "differential surprisal" methodology from Study 1.

$$\mathscr{S}(7b) - \mathscr{S}(7a) > 0$$

• 111 antonymic pairs were used to measure this difference.

 $^{^{15}}$ Inspired by Ruytenbeek et al. (2017). Two other templates were tested, one where too appears after the second adjectives, and one "meta" template using the predicate mean to coordinate the two sentences.

GPT-2: sentence surprisals for $\mathscr{S}(7b)$ and $\mathscr{S}(7a)$

Surprisals of (7a) and (7b). Lines indicate minimal pairs. Green lines are ascending, i.e. are the ones for which the surprisal difference goes in the expected direction. Red lines are descending, and so go in the opposite direction.

GPT-2: differential surprisals for $\mathscr{S}(7b)$ and $\mathscr{S}(7a)$

Prediction:
$$\mathcal{S}(7b) - \mathcal{S}(7a) > 0$$

Paired differences in surprisal between (7b) and (7a). White squares display the means. One-sided Wilcoxon test for matched pairs. Effect size is Cohen's d. S=Small.

Refining the ITA

- LLMs display surprisal contrasts that suggest they learned something about adjective polarity. How did they do this?
- Morphologically transparent antonyms, like lucky/unlucky were experimentally shown to display bigger ITA contrasts than opaque ones (like tall/short).¹⁶
- (8) a. He is not **lucky**. She too is **unlucky**.
 - b. # He is not unlucky. She too is lucky.
- In transparent pairs, polarity is distributionally encoded, via a negative morpheme.

Can LLMs pick this up, and why would this matter?

¹⁶Ruytenbeek et al., 2017.

Results for GPT-2 (transparent vs. opaque)

Paired differences in surprisal between (7b) and (7a). All pairs together. White squares display the mean.

Paired differences in surprisal, transparent vs. opaque pairs. White squares are means. Within-group p-values are BY-corrected. Effect size is Cohen's d. N=Negligible.

• The ITA contrast is verified only for transparent adjectives!

Neural assessment

Methodology

How do LLMs represent positive and negative adjectives, and the influence of negation?

- Vectors for positive and negative adjectives were extracted, along with vectors for their respective negations (e.g. not tall/not short).
- Same methodology as in Study 1.

An idealized 2D vector space (Gaussians+Hungarian algorithm)

An idealized 2D representation of the (negated) adjectives' vectors. tall/not short and short/not tall cluster together, short/not tall being closer to each other than tall/not short due to the ITA. Dark line represent the effect of negation.

GPT-2's underlying vector space

GPT-2's vector space (after PCA). If a word was made of multiple tokens, its vector was computed as the mean of its tokens' vectors. Lines between points track the effect of negation, that is fairly stable, i.e. not contextualized.

Antonyms and their negations cluster together!

Study 2 outlines the limits of distributional learning

- The ITA was only captured when adjectives contained distributional information (negative morphemes) indicating their polarity.
- Additionally, the underlying vector space was characterized by counterintuitive topological regularities, suggesting the functional nature of negation was not captured.
- This behavior contrasts with our intuitive understanding of antonyms, that we grasp from early toddlerhood, even for opaque pairs like tall and short.

Main takeaways from the Studies

- The two studies allow to disentangle the importance of grounding from that of distributional information, in the context of adjective learning.
- Study 1 showed that distributional cues can take us far in distinguishing between adjective meanings, even when the distinctions are intuitively not obvious.
- Study 2 showed that when distributional information is not clearly present, adjectives cannot be properly distinguished, even if the criterion is pretty obvious from a human perspective.
- The results of these studies sharply contrast with children's acquisition of adjectives, and adult intuitions.
- This suggests that grounding and social cues are crucial for word learning, even when the goal is to simply distinguish between meanings.

Zooming out: why these findings matter

- Study 1 and 2 point to important differences in the **environments** in which human and machine are learning, offering insights into:
 - **Human learning**: how much do linguistic biases, and extra-linguistic factors matter for language acquisition?
 - Machine learning: where should our efforts lie in improving the models?

Zooming out: fostering a productive interdisciplinary dialogue

- The tools presented today provide a new type of testbed for a number of questions that matter to linguists.¹⁷
- The linguistic datapoints we investigated may also benefit computer scientists who design and train LLMs, stressing the need for more grounded, reliable, and robust models of natural language.

 $^{^{17}}$ Study 1 in fact emerged from prior theoretical and experimental work of mine Hénot-Mortier et al., 2022; Hénot-Mortier, submitted

Thank you!

Selected references i

Harris, Z. S. (1954). Distributional structure. WORD, 10(2-3), 146-162. https://doi.org/10.1080/00437956.1954.11659520

Rosenbaum, P. S. (1967). The grammar of english predicate complement constructions [Doctoral dissertation, MIT].

Chomsky, C. (1969). The acquisition of syntax in children from 5 to 10. Research Monograph 57.

Clark, E. V. (1972).On the child's acquisition of antonyms in two semantic fields.

Journal of Verbal Learning and Verbal Behavior, 11(6), 750–758.

https://doi.org/10.1016/s0022-5371(72)80009-4

Lasnik, H., & Fiengo, R. (1974). Complement object deletion. Linguistic Inquiry, 5(4), 535–571. Retrieved April 15, 2022, from http://www.jstor.org/stable/4177842

Gleitman, L. R. (1981). Maturational determinants of language growth. *Cognition*, 10(1–3), 103–114. https://doi.org/10.1016/0010-0277(81)90032-9

Charles, W. G., & Miller, G. A. (1989). Contexts of antonymous adjectives. Applied Psycholinguistics, 10(3), 357–375. https://doi.org/10.1017/S0142716400008675

Selected references ii

Horn, L. R. (1989). A natural history of negation. University of Chicago Press.

Gleitman, L. (1990). The structural sources of verb meanings. Language Acquisition, I(1), 3–55. https://doi.org/10.1207/s15327817la0101_2

Naigles, L. (1990). Children use syntax to learn verb meanings. Journal of Child Language, 17(2), 357-374. https://doi.org/10.1017/s0305000900013817

Justeson, J. S., & Katz, S. M. (1991).Co-occurrences of antonymous adjectives and their contexts. Computational Linguistics, 17(1), 1–20. https://aclanthology.org/J91-1001

Stowell, T. (1991, December). The alignment of arguments in adjective phrases. In S. Rothstein (Ed.), *Perspectives on phrase structure: Heads and licensing* (pp. 105–135). Academic Press. https://doi.org/10.1163/9789004373198_007

Hale, J. (2001). A probabilistic earley parser as a psycholinguistic model. Second meeting of the North American Chapter of the Association for Computational Linguistics on Language technologies 2001 - NAACL '01. https://doi.org/10.3115/1073336.1073357

Selected references iii

Snedeker, J., & Gleitman, L. R. (2004, January). Why it is hard to label our concepts. In Weaving a lexicon (pp. 257–294). The MIT Press. https://doi.org/10.7551/mitpress/7185.003.0012

Jones, S., & Murphy, M. L. (2005). Using corpora to investigate antonym acquisition. International Journal of Corpus Linguistics, 10(3), 401–422. https://doi.org/10.1075/ijcl.10.3.06jon

Krifka, M. (2007). Negated antonyms: Creating and filling the gap. In U. Sauerland & P. Stateva (Eds.), Presupposition and implicature in compositional semantics (pp. 163–177). Palgrave Macmillan UK. https://doi.org/10.1057/9780230210752_6

Syrett, K. L. (2007). Learning about the structure of scales: Adverbial modification and the acquisition of the semantics of gradable adjectives [Doctoral dissertation, Northwestern University].

Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 1126-1177. https://doi.org/10.1016/j.cognition.2007.05.006

Yuan, S., Fisher, C., & Snedeker, J. (2012). Counting the nouns: Simple structural cues to verb meaning. Child Development, 83(4), 1382–1399. https://doi.org/10.1111/j.1467-8624.2012.01783.x

Selected references iv

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. https://arxiv.org/abs/1301.3781

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. https://arxiv.org/abs/1310.4546

Pennington, J., Socher, R., & Manning, C. (2014, October). GloVe: Global vectors for word representation. In A. Moschitti, B. Pang, & W. Daelemans (Eds.), Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532–1543). Association for Computational Linguistics. https://doi.org/10.3115/v1/D14-1162

Keine, S., & Poole, E. (2017). Intervention in tough-constructions revisited. The Linguistic Review, 34(2), 295–329. https://doi.org/doi:10.1515/tlr-2017-0003

Ruytenbeek, N., Verheyen, S., & Spector, B. (2017). Asymmetric inference towards the antonym: Experiments into the polarity and morphology of negated adjectives. Glossa: a journal of general linguistics, 2(1). https://doi.org/10.5334/gjgl.151

Selected references v

- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. CoRR, abs/1706.03762.
- Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018).BERT: pre-training of deep bidirectional transformers for language understanding. CoRR, abs/1810.04805. http://arxiv.org/abs/1810.04805
- Gotzner, N., Solt, S., & Benz, A. (2018). Adjectival scales and three types of implicature. Semantics and Linguistic Theory, 28, 409. https://doi.org/10.3765/salt.v28i0.4445
- Wilcox, E., Levy, R., Morita, T., & Futrell, R. (2018). What do RNN language models learn about filler-gap dependencies? Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, 211–221. https://doi.org/10.18653/v1/W18-5423
- Aina, L., Bernardi, R., & Fernández, R. (2019). Negated adjectives and antonyms in distributional semantics: Not similar? Italian Journal of Computational Linguistics, 5(1), 57–71. https://doi.org/10.4000/ijcol.457

Selected references vi

Futrell, R., Wilcox, E., Morita, T., Qian, P., Ballesteros, M., & Levy, R. (2019). Neural language models as psycholinguistic subjects: Representations of syntactic state. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 32–42. https://doi.org/10.18653/v1/N19-1004

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J. G., Salakhutdinov, R., & Le, Q. V. (2019).

XInet: Generalized autoregressive pretraining for language understanding.

In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. B. Fox, & R. Garnett (Eds.), Advances in neural information processing systems 32:

Annual conference on neural information processing systems 2019, neurips 2019, december 8-14, 2019, vancouver, bc, canada (pp. 5754–5764).

https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html

Selected references vii

Bender, E. M., & Koller, A. (2020, July). Climbing towards NLU: On meaning, form, and understanding in the age of data. In D. Jurafsky, J. Chai, N. Schluter, & J. Tetreault (Eds.), *Proceedings of the 58th annual meeting of the association for computational linguistics* (pp. 5185–5198). Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.acl-main.463

van Schijndel, M., & Linzen, T. (2021). Single-stage prediction models do not explain the magnitude of syntactic disambiguation difficulty. *Cognitive Science*, 45(6). https://doi.org/10.1111/cogs.12988

Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., Lenc, K., Mensch, A., Millican, K., Reynolds, M., Ring, R., Rutherford, E., Cabi, S., Han, T., Gong, Z., Samangooei, S., Monteiro, M., Menick, J., Borgeaud, S., ... Simonyan, K. (2022). Flamingo: A visual language model for few-shot learning. https://arxiv.org/abs/2204.14198

Arehalli, S., Dillon, B., & Linzen, T. (2022, December). Syntactic surprisal from neural models predicts, but underestimates, human processing difficulty from syntactic ambiguities. In A. Fokkens & V. Srikumar (Eds.), Proceedings of the 26th conference on computational natural language learning (conll) (pp. 301–313). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.conll-1.20

Selected references viii

Gotowski, M. (2022). Syntactic bootstrapping in the adjectival domain: Learning subjective adjectives [Doctoral dissertation, Rutgers University].

Hénot-Mortier, A., Stacey, R., Torma, C., & Aravind, A. (2022). Two kinds of adjective-infinitive constructions in acquisition [Architectures and Mechanisms of Language Processing 2022 (AMLaP 28)]. https://adelemortier.github.io/files/AMLaP%5C_2022%5C_slides.pdf

Hu, J., & Levy, R. (2023). Prompting is not a substitute for probability measurements in large language models. https://arxiv.org/abs/2305.13264

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix, T., & Sayed, W. E. (2023). Mistral 7b. https://arxiv.org/abs/2310.06825

Nair, S., & Resnik, P. (2023, December). Words, subwords, and morphemes: What really matters in the surprisal-reading time relationship? In H. Bouamor, J. Pino, & K. Bali (Eds.), Findings of the association for computational linguistics: Emnlp 2023 (pp. 11251–11260). Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.findings-emnlp.752

Selected references ix

Wilcox, E. G., Futrell, R., & Levy, R. (2023). Using Computational Models to Test Syntactic Learnability. Linguistic Inquiry, 1–44. https://doi.org/10.1162/ling_a_00491

Peng, B., Narayanan, S., & Papadimitriou, C. (2024). On limitations of the transformer architecture. https://arxiv.org/abs/2402.08164

Hénot-Mortier, A. (submitted).It's tough to be pretty: On the semantic relatedness between tough and pretty predicates. *Glossa*.

Appendices

Links to Appendix slides

- General supplementary slides
- Supplementary slides Study 1
- Supplementary slides Study 2