Abstract Algebra

Notes - Year 1, Semester 2

Angel Cervera Roldan 21319203

Angel	Cervera	Roldan
Aligu	CUIVUIA	Notuan

CONTENTS

3

	١.		4.		4~
┖.	A)	n	te	ın	18

Lecture Feb 28 2023

Lecture Feb 28 2023

Definition

Take V, W to be vector spaces over \mathbb{F} . Take T, S

$$T: V \to W$$

$$S:V\to W$$

And define T + S to be:

$$(T+S)(v) = T(v) + S(v)$$

and, for any $\lambda \in \mathbb{F}$

$$(\lambda T)(v) = \lambda T(v)$$

Definition

Show that T + S and lambda T are linear maps V to W

Let's call

$$L(V, W) = \{T : V \to W \text{ such that } T \text{ is linear } \}$$

Then, $(L(V, W), \mathbb{F}, +, \cdot)$ is a vector space.

Another operation:

$$T:V\to W$$

$$S:W\to U$$

We can define the composition of *T* and *S* to be $(T \circ S)(v) = S(T(v))$.

Claim: S, T being linear $\implies S \circ T$ is linear

$$\begin{split} S(T(\lambda v + \mu w)) &= S(\lambda T(v) + \mu T(w)) \\ &= \lambda S(T(v)) + \mu S(T(w)) \\ &= \lambda (S \circ T)(v) + \mu (S \circ T)(w) \end{split}$$

If V = W, we write L(V, V) = L(V)

Properties of composition

- 1. $R \circ (S \circ T) = (R \circ S) \circ T$
- 2. $R \circ (S+T) = R \circ S + R \circ T$
- 3. $S \circ (\lambda \cdot T) = \lambda \cdot (S \circ T) = (\lambda \cdot S) \circ T$

Side note: All of these properties make L(v) an **algebra**

Invertible linear maps

Definition Identity Map

The identity map I is defined by

$$I(v) = v$$

Where $I \in L(V)$

We can see that $\forall T \in L(V), T \circ I = T = I \circ T$

Definition

A linear map $T \in L(V)$ is invertible iff $\exists S \in L(V)$ such that:

$$S \circ T = I = T \circ S$$

Theorem The right inverse and the left inverse are always the same

Suppose that $R, S \in L(v)$, if ST = I, and TR = I, then S = R

To prove this, we can see the following:

$$(ST)R = STR$$

$$= S(TR)$$

$$= SI$$

$$= S$$

$$(ST)R = IR$$

$$= R$$

Therefore, S = R

This also leads us to believe that if T is inversible, then its inverse is unique. To show this, we can assume that there exist two different inverses of T, S_1 , S_2 .

Then,

$$S_1T = I = TS_1$$

$$S_2T = I = TS_2$$

$$S_1T = I = TS_2$$

$$\implies S_1 = S_2$$

Since the inverse is unique, we can denote it by T^{-1} .

Lemma

V, W are vector spaces over $\mathbb{F}, T \in L(V, W)$

T is injective
$$\iff$$
 $(T(v) = 0 \implies v = 0)$

To prove this, assume that T is injective. Then, if $v \neq 0$,

$$T(v) \neq T(0) = 0$$

Assume that $T(v) = 0 \Leftrightarrow v = 0$. Suppose that there are $v, u \in V$ such that

$$T(v) = T(u)$$

By linearity, we have

$$0 = T(v) - T(u) = T(v - u) \implies v - u = 0$$
 meaning that $v = u$

Lemma

 $T \in L(V)$ is injective iff

- 1. T is injective
- 2. T is surjective

To prove this, we can assume that T s a bijection. Then we define

$$T^{-1}(w) = \text{the unique } v \in V \text{ st } T(v) = w$$

We need to show that T^1 is linear.

$$T^{-1}(\lambda_1 w_1 + \lambda_2 w_2) = u$$
 such that $T(u) = \lambda_1 w_1 + \lambda_2 w_2$

$$u = \lambda_1 w_1 + \lambda_2 w_2$$

Now we need to prove it the other way around.