

Winning Space Race with Data Science

Kusum Subedi 01/05/2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Introduction

- Many Commercial Companies Aim to make space travel affordable for everyone
 - The Best one is SPACEX Falcon 9
- · Claims it only cost about 62 million dollars per person, a lot cheaper than other company

BUT HOW??

SPACEX can reuse the first stage, the most expensive stage

QUESTION FOR THIS REPORT

Methodology

Executive Summary

- Data collection methodology:
- Request to the SpaceX API using get request HTTP GET method to request the Falcon9 Launch HTML page(Wikipedia), as an HTTP response.
- Perform data wrangling
 - Filtered the data to include only Falcon 9 launches
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Logistic Regression, KNN, SVM, Decision Tree with cv=10
 - Compared the accuracy for each model.

Data Collection

- From SPACEXAPI
- Webscraping from Wikipedia

NEXT SLIDES please

Data Collection – SpaceX API

- spacex_url="https://api.spacexdata. com/v4/launches/past"
- https://github.com/skusum/Courser a-Capstone-Project-Kusum/blob/main/Lab1 dataCollec tionAPl.ipynb

Data Collection - Scraping

https://en.wikipedia.org/w/index.php?title=List of Falcon 9 and Falcon Heavy launches &oldid=1027686922

 https://github.com/skusum/Coursera-Capstone-Project-Kusum/blob/main/Lab2 webscraping.ipynb

Data Wrangling:

https://github.com/skusum/Coursera-Capstone-Project-Kusum/blob/main/Lab3_Data%20wrangling.ipynb

Data from web scraping Parse http response using BeautifulSoup Create a dictionary with keys as required features Create pd dataframe using pandas

Data from API call

Normalize the response data which is in json format Using pd.json_normalize(response.json())

Crteate a dictionary with keys as required features

Create pd dataframe using pandas

Filter the dataframe so as to include data for Falcon 9 only

Fill the missing values with the mean of corresponding column

Find the datatypes

In both cases successful and failure were replace as class = 1 and 0 respectively

EDA with Data Visualization

https://github.com/skusum/Coursera-Capstone-Project-Kusum/blob/main/Lab5 EDA dataviz.ipynb

Various scatter plots, line plot and bar chart were drawn for eg:

- Flight number vs PayloadMass (catplot with hue = class using seaborn)
- Flight number vs orbit type (catplot with hue = class using seaborn)
- Flight number vs Launch Site (catplot with hue = class using seaborn)
- Payload vs Orbit type (catplot with hue = class using seaborn)
- Orbit type vs SuccessRate (Bar chart)
- Success yearly rate (Line plot)

EDA with SQL

https://github.com/skusum/Coursera-Capstone-Project-Kusum/blob/main/Lab4 EDA SQL.ipynb

Following queries were performed:

- names of the unique launch sites
- 5 records where launch sites begin with the string 'CCA'
- the total payload mass carried by boosters launched by NASA (CRS)
- average payload mass carried by booster version F9 v1.1
- List the date when the first succesful landing outcome in ground pad was acheived.
- the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- the total number of successful and failure mission outcomes
- the names of the booster_versions which have carried the maximum payload mass.
- the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.
- Rank the count of successful landing_outcomes between the date 04-06-2010 and 20-03-2017 in descending order.

Build an Interactive Map with Folium

https://github.com/skusum/Coursera-Capstone-Project-Kusum/blob/main/Lab6 launch site location Folium.ipynb

The following tasks were performed

- Circle markers at Launch Sites with the names displayed just to see where they are
- Created marker clusters on each Launch sites with the cluster color indicating successful (green) and failed(red) landing
- Line connecting Launch Sites with its proximity showing the distance

Build a Dashboard with Plotly Dash

https://github.com/skusum/Coursera-Capstone-Project-Kusum/blob/main/Lab8 spacex dash app%20.py

Plotly dashboard was created with the following Features

- A dropdown list with the option for each site as well as all the sites.
- Pie chart object.
- Range slider for payload Mass
- Scatter plots
- # When the user selects a site it shows corresponding piechart with success and failures.
- # When the user pick a value on Range slider and a site from the dropdown list, It displays scatter plot of successes and failures for corresponding site.

Predictive Analysis (Classification)

https://github.com/skusum/Coursera-Capstone-Project-Kusum/blob/main/Lab7 SpaceX Machine%20Learning%20Prediction Part 5.ipynb

Accuracy: 0.7777

Accuracy:0.8888

Accuracy: 0.8333 Accuracy: 0.8888

Results

0.77777777777778

- Interactive analytics demo in screenshots
- Predictive analysis results

```
logreg_score = logreg_cv.score(X_test, Y_test)
  logreg score
  0.8888888888888888
  svm_score = svm_cv.score(X_test, Y_test)
 svm score
  0.888888888888888
 tree_score = tree_cv.score(X_test, Y_test)
  tree score
  0.8333333333333334
knn_score = knn_cv.score(X_test, Y_test)
knn score
```


EDA Results (continued)

FlightNumber	0.000		
Date	0.000		
BoosterVersion	0.000		
PayloadMass	0.000		
Orbit	0.000		
LaunchSite	0.000		
Outcome	0.000		
Flights	0.000		
GridFins	0.000		
Reused	0.000		
Legs	0.000		
LandingPad	40.625		
Block	0.000		
ReusedCount	0.000		
Serial	0.000		
Longitude	0.000		
Latitude	0.000		
dtype: float64			

```
df.dtypes
FlightNumber
                    int64
                   object
Date
BoosterVersion
                   object
PayloadMass
                  float64
Orbit
                   object
LaunchSite
                   object
Outcome
                   object
Flights
                    int64
GridFins
                     bool
Reused
                     bool
                     bool
Legs
LandingPad
                   object
Block
                  float64
ReusedCount
                    int64
Serial
                   object
Longitude
                  float64
Latitude
                  float64
dtype: object
```

```
# Apply value counts on orbit to
df['Orbit'].value counts()
GTO
         27
ISS
         21
VLEO
         14
PO
          9
          7
LEO
SSO
          5
MEO
ES-L1
          1
HEO
          1
SO
          1
GEO
          1
Name: Orbit, dtype: int64
```

```
# Apply value_counts() on column Launch:
df['LaunchSite'].value_counts()
```

```
CCAFS SLC 40 55
KSC LC 39A 22
VAFB SLC 4E 13
```

Name: LaunchSite, dtype: int64

Flight Number vs. Launch Site

Looks like the Launch site CCFS SLC -40 has deployed most of the flights constantly since the very beginning

Payload vs. Launch Site

CCFS SLC -40 has deployed flights for different amounts of Pay load Mass and almost all of the flights have payload mass less than 8000 kg

Success Rate vs. Orbit Type

Orbits ES-11, GEO, HEO, Sso have the highest success rate

Flight Number vs. Orbit Type

Most of the flights were performed at Orbits: ES-11, GEO, HEO, SSO

Payload vs. Orbit Type

Orbit GTO has flights with larger range of PayloadMass

Launch Success Yearly Trend

Success Rate has been increasing since the beginning higher in the following years.

All Launch Site Names

There were 55 Launches at CCFS SLC 40, 22 at KSC LC 39A and 13 at VAFB SLC 4E

```
# Apply value_counts() on column Launch:
df['LaunchSite'].value_counts()

CCAFS SLC 40 55
KSC LC 39A 22
VAFB SLC 4E 13
Name: LaunchSite, dtype: int64
```

Launch Site Names Begin with 'CCA'

Looks like there is something wrong in the first two launches because mass =0 does not make any sense

12]:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_
	04-06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0
	08-12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0
	22-05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525
	08-10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500
	01-03- 2013	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677

Total Payload Mass

Average Payload Mass by F9 v1.1

```
Display average payload mass carried by booster version F9 v1.1
: %sql select avg(PAYLOAD MASS KG ) from SPACEXTBL where BOOSTI
    * sqlite:///my data1.db
   Done.
   avg(PAYLOAD_MASS__KG_)
                     2928.4
```

First Successful Ground Landing Date

First Successful Landing was achieved in 01/01/17

```
]: %sql select min(DATE) from SPACEXTBL where "Landi
    * sqlite://my_data1.db
    Done.
]: min(DATE)
    01-05-2017
```

Successful Drone Ship Landing with Payload between 4000 and 6000

Out[48]:	Booster_Version	Landing _Outcome
	F9 FT B1022	Success (drone ship)
	F9 FT B1026	Success (drone ship)
	F9 FT B1021.2	Success (drone ship)
	F9 FT B1031.2	Success (drone ship)

Total Number of Successful and Failure Mission Outcomes

- Calculate the total number of successful and failure mission outcomes
- Present your query result with a short explanation here

Boosters Carried Maximum Payload

Out[49]:	Booster_Version	PAYLOAD_MASSKG_
	F9 B5 B1048.4	15600
	F9 B5 B1049.4	15600
	F9 B5 B1051.3	15600
	F9 B5 B1056.4	15600
	F9 B5 B1048.5	15600
	F9 B5 B1051.4	15600
	F9 B5 B1049.5	15600
	F9 B5 B1060.2	15600
	F9 B5 B1058.3	15600
	F9 B5 B1051.6	15600
	F9 B5 B1060.3	15600
	F9 B5 B1049.7	15600

2015 Launch Records

]:	Date	substr(Date, 4, 2)	Booster_Version	Launch_Site	Landing _Outcome
	10-01-2015	01	F9 v1.1 B1012	CCAFS LC-40	Failure (drone ship)
	14-04-2015	04	F9 v1.1 B1015	CCAFS LC-40	Failure (drone ship)

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

For this question I tried many different ways and none is working.

Please check my code.

Launch Sites

There are 4 Launch sites displayed, one in California and three in Florida. Since the three sites in Florida are very close, the markers are overlapped.

Successful and Failed Landing

• Successful(green) and Failing landings(red) at Site CCAFS LC 40

Distance from Landmarks

• The Displayed distance(0.58 KM) is distance of a Launch Site from a highway

< Dashboard Screenshot 1>

Piechart for successes for all 4 sites

Pie Chart for Individual Sites

Piechart for one of the site with successe(blue) s and failures(red)

Class (Success/Failure) Vs. Payload Mass for different Booster Version

Looks like Payload mass has similar effect for all those versions

Classification Accuracy

Confusion Matrix

Both LogReg and SVM classifications have exactly the same confusion Matrix

Conclusions

- Analysis was performed with the data consisted 4 Launch sites, 3 in Florida and 1 in California.
- Various classification model were applied to see the percentage of successful landings.
- Based on the results of the analysis the probability of Landing was about 88%
- Since there is a high chance of successful landing. So the first stage can be reused. Hence the cost of flight can be reduced.

Appendix

Different types of Falcon 9 Launches

