

Experimentelle Physik Vb
Astroteilchenphysik

Experimentelle Physik Vb
Astroteilchenphysik

Data-Mining - Teil 1

- Diskriminanzanalyse
- Grundbegriffe des Data-Minings
- Typischer Aufbau eines Data-Mining-Prozesses
- Datenauswahl
- Datenbereinigung
- Datenreduktion und –transformation
 - Hauptkomponentenanalyse
 - Feature Selection

Vorlesung

Data-Mining - Teil 1

Prof. Dr. Dr. Wolfgang Rhode

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb Astroteilchenphys

Motivation

Ziel ist es die Punkte in zwei Populationen zu trennen

Prof. Dr. Dr. W. Rhode

Data-Mining - Teil 1

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Motivation

- Ziel ist es die Punkte in zwei Populationen zu trennen
- Im Monte Carlo ist die Zugehörigkeit der Elemente bekannt

Motivation

- Ziel ist es die Punkte in zwei Populationen zu trennen
- Im Monte Carlo ist die Zugehörigkeit der Elemente bekannt

Experimentelle Physik Vb

Motivation

- Ziel ist es die Punkte in zwei Populationen zu trennen
- Im Monte Carlo ist die Zugehörigkeit der Elemente bekannt
- Idee: Suche im Monte-Carlo den besten eindimensionalen Schnitt

Motivation

- Ziel ist es die Punkte in zwei Populationen zu trennen
- Im Monte Carlo ist die Zugehörigkeit der Elemente bekannt
- Idee: Suche im Monte-Carlo den besten eindimensionalen Schnitt

Experimentelle Physik Vb Astroteilchenphysik

Motivation

Was ist der beste Schnitt?

Motivation

- Was ist der beste Schnitt?
 - true positiv (tp)
 - "positiv" Elemente die nach der Trennung im "positiv" Bereich liegen

Prof. Dr. Dr. W. Rhode

Data-Mining - Teil 1

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Astroteilchenphysik

Motivation

- Was ist der beste Schnitt?
 - true positiv (tp)
 - "positiv" Elemente die nach der Trennung im "positiv" Bereich liegen
 - false negativ (fn)
 - "positive" Elemente die nach der Trennung im "negativ" Bereich liegen
 - true negativ (tn)
 - "negativ" Elemente die nach der Trennung im "negativ" Bereich liegen

Motivation

- Was ist der beste Schnitt?
 - true positiv (tp)

false negativ (fn)

 "positive" Elemente die nach der Trennung im "negativ" Bereich liegen

Prof. Dr. Dr. W. Rhode

Data-Mining – Teil 1

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb
Astroteilchenphysik

Motivation

- Was ist der beste Schnitt?
 - true positiv (tp)
 - "positiv" Elemente die nach der Trennung im "positiv" Bereich liegen
 - false negativ (fn)
 - "positive" Elemente die nach der Trennung im "negativ" Bereich liegen
 - true negativ (tn)
 - "negativ" Elemente die nach der Trennung im "negativ" Bereich liegen
 - false positiv (fp)
 - "negativ" Elemente die nach der Trennung im "positiv" Bereich liegen

Data-Mining – Teil 1

Statistische Methoden der Datenanalyse

Data-Mining – Teil 1

Statistische Methoden der Datenanalyse

Motivation

- Was ist der beste Schnitt?
 - Qualitätsmaße für zwei Populationen:
 - Reinheit (bzgl. Population₁):

Prof. Dr. Dr. W. Rhode

Data-Mining - Teil 1

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Motivation

- Was ist der beste Schnitt?
 - Qualitätsmaße für zwei Populationen:
 - Reinheit (bzgl. Population₁):

Effizienz (bzgl. Population₁):

Genauigkeit:

Motivation

- Was ist der beste Schnitt?
 - Qualitätsmaße für zwei Populationen:

 Reinheit (bzgl. Population₁): Reinheit= ("perecision")

Effizienz (bzgl. Population₁):

Prof. Dr. Dr. W. Rhode

Data-Mining - Teil 1

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb Astroteilchenphysik

Motivation

- Was ist der beste Schnitt?
 - Qualitätsmaße für zwei Populationen:

			True condition			
		Total population	Condition positive	Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	
	Predicted condition	Predicted condition positive	True positive	False positive (Type I error)	Positive predictive value (PPV), Precision $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}}$	False discovery rate (FDR) $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Test outcome positive}}$
		Predicted condition negative	False negative (Type II error)	True negative	False omission rate (FOR) $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Test outcome negative}}$	$\begin{aligned} & \text{Negative predictive value} \\ & & \text{(NPV)} \\ & = \frac{\Sigma \text{ True negative}}{\Sigma \text{ Test outcome negative}} \end{aligned}$
		Accuracy (ACC) =	True positive rate (TPR), Sensitivity, Recall $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	$\begin{aligned} & \text{False positive rate (FPR),} \\ & & \text{Fall-out} \\ & = \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}} \end{aligned}$	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$	Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$
		$\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$	False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	$\begin{aligned} & \text{True negative rate} \\ & \text{(TNR), Specificity (SPC)} \\ & = \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}} \end{aligned}$	Negative likelihood ratio $(LR-) = \frac{FNR}{TNR}$	

Motivation

- Ziel ist es bei die Punkte in zwei Populationen zu trennen
- Im Monte Carlo ist die Zugehörigkeit der Elemente bekannt
- Idee: Suche im Monte-Carlo den besten eindimensionalen Schnitt

Prof. Dr. Dr. W. Rhode

Data-Mining - Teil 1

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb
Astroteilchenphysil

Motivation

- Ziel ist es bei die Punkte in zwei Populationen zu trennen
- Im Monte Carlo ist die Zugehörigkeit der Elemente bekannt
- Idee: Suche im Monte-Carlo den besten (n-1)-dimensionalen Schnitt

Population₁ = positiv Population₂ = negativ

> Statistische Methoden der Datenanalyse

Motivation

- Ziel ist es bei die Punkte in zwei Populationen zu trennen
- Im Monte Carlo ist die Zugehörigkeit der Elemente bekannt
- Idee: Suche im Monte-Carlo den besten (n-1)-dimensionalen Schnitt

Experimentelle Physik Vb

Beispiel:

Prof. Dr. Dr. W. Rhode

- Aufgabe: Trennen zweier Populationen
 - Grün: "Untergrund"
 - Rot: "Signal"
- Elemente beider Populationen über Wertepaare (x, y) beschrieben
 - Untergrund: Gaußverteilung mit dem Mittelwert (8, 8) und der Standardabweichungen (2.5, 2.5)
 - Signal: Gau
 ßverteilung mit dem Mittelwert (2, 2) und der Standardabweichungen (1.5, 1.5)
- Suche den besten eindimensionalen Schnitt (trennende Hyperebene)

Experimentelle Physik Vb

Astroteilchenphysik

Lineare Fisher Diskriminanzanalyse

- Um eine gute Projektion $\vec{\lambda}$ ($\vec{x}' = \vec{\lambda}^T \vec{x}$) zu finden, muss ein Maß für die Trennbarkeit der Klassen definiert werden
 - Erste (naive) Idee:
 Abstand der Mittelwerte der Klassen auf der Projektionsachse

$$D_{\text{naiv}}(\vec{\lambda}) = |\vec{\mu}_1' - \vec{\mu}_2'| = |\vec{\lambda}^T (\vec{\mu}_1 - \vec{\mu}_2)|$$

Beispiel:

- Aufgabe: Trennen zweier Populationen
 - Grün: "Untergrund"
 - Rot: "Signal"
- Elemente beider Populationen über Wertepaare (x, y) beschrieben
 - Untergrund: Gaußverteilung mit dem Mittelwert (8, 8) und der Standardabweichungen (2.5, 2.5)
 - Signal: Gau
 ßverteilung mit dem Mittelwert (2, 2) und der Standardabweichungen (1.5, 1.5)
- Suche den besten eindimensionalen Schnitt (trennende Hyperebene)
 - → Projektion auf den Normalenvektor der Hyperebene muss die Klassen maximal trennen

Prof. Dr. Dr. W. Rhode

Data-Mining - Teil 1

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Prof. Dr. Dr. W. Rhode

Data-Mining - Teil 1

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Prof. Dr. Dr. W. Rhode

Data-Mining – Teil 1

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Astroteilchenphysik

Lineare Fisher Diskriminanzanalyse

- Um eine gute Projektion $\vec{\lambda}$ ($\vec{x}' = \vec{\lambda}^T \vec{x}$) zu finden, muss ein Maß für die Trennbarkeit der Klassen definiert werden
 - Erste (naive) Idee:

Abstand der Mittelwerte der Klassen auf der Projektionsachse

$$D_{\text{naiv}}(\vec{\lambda}) = |\vec{\mu}_1' - \vec{\mu}_2'| = \left|\vec{\lambda}^T (\vec{\mu}_1 - \vec{\mu}_2)\right|$$

Problem: Varianz innerhalb der Klassen wird nicht berücksichtig!

Experimentelle Physik Vb

Prof. Dr. Dr. W. Rhode

Data-Mining – Teil 1

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Lineare Fisher Diskriminanzanalyse

- Um eine gute Projektion $\vec{\lambda}$ ($\vec{x}' = \vec{\lambda}^T \vec{x}$) zu finden, muss ein Maß für die Trennbarkeit der Klassen definiert werden
 - Erste (naive) Idee:

Abstand der Mittelwerte der Klassen auf der Projektionsachse

$$D_{\text{naiv}}(\vec{\lambda}) = |\vec{\mu}_1' - \vec{\mu}_2'| = \left|\vec{\lambda}^T (\vec{\mu}_1 - \vec{\mu}_2)\right|$$

Problem: Varianz innerhalb der Klassen wird nicht berücksichtig!

Idee nach Fisher:

Quadrat des Abstandes der Mittelwerte der Klassen auf der Projektionsachse, normalisiert mit der Streuung der Klassen

$$D(\vec{\lambda}) = \frac{|\vec{\mu}_1' - \vec{\mu}_2'|^2}{s_1'^2 + s_2'^2}$$

Lineare Fisher Diskriminanzanalyse

- Optimale Trennung zweier Klassen mit je n Observablen durch eine (n-1)dimensionale Hyperebene
- Gesucht wir die Projektion $\vec{\lambda}$ die $D(\vec{\lambda})$ maximiert
 - 1. Berechnung der n-dimensionalen Mittelwertvektoren

Prof. Dr. Dr. W. Rhode

Data-Mining – Teil 1

Statistische Methoden der Datenanalyse

. . . .

Experimentelle Physik Vb

Lineare Fisher Diskriminanzanalyse

- Optimale Trennung zweier Klassen mit n Observablen durch eine (n-1)dimensionale Hyperebene
- Gesucht wir die Projektion $\vec{\lambda}$ die $D(\vec{\lambda})$ maximiert
 - 1. Berechnung der n-dimensionalen Mittelwertvektoren
 - 2. Berechnung der Streumatrizen

Lineare Fisher Diskriminanzanalyse

- 1. Berechnung der n-dimensionalen Mittelwertvektoren
 - Allgemein

$$\vec{\mu}_j = \begin{pmatrix} \bar{x}_{j,1} \\ \dots \\ \bar{x}_{j,n} \end{pmatrix} = \frac{1}{N_j} \begin{pmatrix} \sum x_{j,1,i} \\ \dots \\ \sum x_{j,n,i} \end{pmatrix}$$

Beispiel

$$\vec{\mu}_1 = \left(\begin{array}{c} \bar{x}_1 \\ \bar{y}_1 \end{array}\right) = \frac{1}{N_1} \left(\begin{array}{c} \sum_{i} x_{1,i} \\ \sum_{i} y_{1,i} \end{array}\right)$$

$$\vec{\mu}_2 = \begin{pmatrix} \bar{x}_2 \\ \bar{y}_2 \end{pmatrix} = \frac{1}{N_2} \begin{pmatrix} \sum x_{2,i} \\ \sum y_{2,i} \end{pmatrix}$$

Prof. Dr. Dr. W. Rhode

Data-Mining - Teil 1

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Lineare Fisher Diskriminanzanalyse

- 2. Berechnung der Streumatrizen S_W und S_B
 - Streuung innerhalb der Klassen ("Within-class scatter matrix")

Gesamtstreuung:
$$S_W = \sum_{n_j}^{N_{\rm Klassen}} S_j$$
 Streuung der Klasse j: $S_j = \sum_{i}^{n_j} (\vec{x}_i - \vec{\mu}_j) (\vec{x}_i - \vec{\mu}_j)^T$

• Mit dieser Matrix wird $s_1'^2 + s_2'^2 = \vec{\lambda}^T S_W \vec{\lambda}$, da:

$$s_{j}^{\prime 2} = \sum_{j} (\vec{x}' - \vec{\mu}')^{2} = \sum_{j} (\vec{\lambda}^{T} \vec{x} - \vec{\lambda}^{T} \vec{\mu})^{2} = \sum_{j} (\vec{\lambda}^{T} (\vec{x} - \vec{\mu}))^{2}$$
$$= \sum_{j} (\vec{\lambda}^{T} (\vec{x} - \vec{\mu})) (\vec{\lambda}^{T} (\vec{x} - \vec{\mu}))^{T} = \sum_{j} \vec{\lambda}^{T} (\vec{x} - \vec{\mu}) (\vec{x} - \vec{\mu})^{T} \vec{\lambda} = \vec{\lambda}^{T} S_{j} \vec{\lambda}$$

Lineare Fisher Diskriminanzanalyse

- 2. Berechnung der Streumatrizen S_W und $\overline{S_B}$
 - Streuung zwischen den Klassen ("Between-class scatter matrix")

$$S_B = (\vec{\mu}_1 - \vec{\mu}_2)(\vec{\mu}_1 - \vec{\mu}_2)^T$$

• Mit dieser Matrix wird $|ec{\mu}_1' - ec{\mu}_2'|^2 = ec{\lambda}^T S_B ec{\lambda}$, da:

$$|\vec{\mu}'_1 - \vec{\mu}'_2|^2 = (\vec{\lambda}^T \vec{\mu}_1 - \vec{\lambda}^T \vec{\mu}_2)^2$$

= $\vec{\lambda}^T (\vec{\mu}_1 - \vec{\mu}_2) (\vec{\mu}_1 - \vec{\mu}_2)^T \vec{\lambda}$
= $\vec{\lambda}^T S_B \vec{\lambda}$

Prof. Dr. Dr. W. Rhode

Data-Mining - Teil 1

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Astroteilchenphysik

Lineare Fisher Diskriminanzanalyse

- Optimale Trennung zweier Klassen mit n Observablen durch eine (n-1)dimensionale Hyperebene
- Gesucht wir die Projektion $\vec{\lambda}$ die $D(\vec{\lambda})$ maximiert
 - 1. Berechnung der n-dimensionalen Mittelwertvektoren
 - 2. Berechnung der Streumatrizen
 - 3. Projektion $\vec{\lambda}^*$ berechnen

Lineare Fisher Diskriminanzanalyse

- 2. Berechnung der Streumatrizen S_W und S_R
 - Mit den Matrizen S_W und S_B gilt:

$$D(\vec{\lambda}) = \frac{|\vec{\mu}_1' - \vec{\mu}_2'|^2}{s_1'^2 + s_2'^2} = \frac{\vec{\lambda}^T S_B \vec{\lambda}}{\vec{\lambda}^T S_W \vec{\lambda}}$$

Dieser Ausdruck soll nun maximiert werden

$$\vec{\lambda^*} = \arg\max\left[\frac{\vec{\lambda}^T S_B \vec{\lambda}}{\vec{\lambda}^T S_W \vec{\lambda}}\right]$$

Prof. Dr. Dr. W. Rhode

Data-Mining – Teil 1

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Lineare Fisher Diskriminanzanalyse

- 3. Projektion $\vec{\lambda}^*$ berechnen
 - $\quad \text{Zu zeigen:} \quad \vec{\lambda^*} = \arg\max \left[\frac{\vec{\lambda}^T S_B \vec{\lambda}}{\vec{\lambda}^T S_W \vec{\lambda}} \right] = S_W^{-1} \left(\mu_1 \mu_2 \right)$

Ableitung von $D(\vec{\lambda})$ und mit 0 gleichsetzen:

$$\frac{\mathrm{d}}{\mathrm{d}\vec{\lambda}} \left[D(\vec{\lambda}) \right] = \frac{\mathrm{d}}{\mathrm{d}\vec{\lambda}} \left[\frac{\vec{\lambda}^T S_B \vec{\lambda}}{\vec{\lambda}^T S_W \vec{\lambda}} \right] = 0$$

$$\Leftrightarrow \left[\vec{\lambda}^T S_W \vec{\lambda} \right] \frac{\mathrm{d} \left[\vec{\lambda}^T S_B \vec{\lambda} \right]}{\mathrm{d}\vec{\lambda}} - \left[\vec{\lambda}^T S_B \vec{\lambda} \right] \frac{\mathrm{d} \left[\vec{\lambda}^T S_W \vec{\lambda} \right]}{\mathrm{d}\vec{\lambda}} = 0$$

$$\Leftrightarrow \left[\vec{\lambda}^T S_W \vec{\lambda} \right] 2S_B \vec{\lambda} - \left[\vec{\lambda}^T S_B \vec{\lambda} \right] 2S_W \vec{\lambda} = 0$$

Lineare Fisher Diskriminanzanalyse

3. Projektion $\vec{\lambda}^*$ berechnen (Fortsetzung)

$$\Leftrightarrow \left[\vec{\lambda}^T S_W \vec{\lambda}\right] 2S_B \vec{\lambda} - \left[\vec{\lambda}^T S_B \vec{\lambda}\right] 2S_W \vec{\lambda} = 0$$

- Durch $\vec{\lambda}^T S_W \vec{\lambda}$ teilen:

$$\Leftrightarrow \begin{bmatrix} \vec{\lambda}^T S_W \vec{\lambda} \\ \frac{\vec{\lambda}^T S_W \vec{\lambda}}{\vec{\lambda}^T S_W \vec{\lambda}} \end{bmatrix} S_B \vec{\lambda} - \begin{bmatrix} \vec{\lambda}^T S_B \vec{\lambda} \\ \frac{\vec{\lambda}^T S_W \vec{\lambda}}{\vec{\lambda}^T S_W \vec{\lambda}} \end{bmatrix} S_W \vec{\lambda} = 0$$

$$\Leftrightarrow S_B \vec{\lambda} - DS_W \vec{\lambda} = 0$$

$$\Leftrightarrow S_W^{-1} S_B \vec{\lambda} = D \vec{\lambda}$$

- Lösung des Eigenwert-Problems $S_W^{-1}S_B\vec{\lambda}=D\vec{\lambda}$

Prof. Dr. Dr. W. Rhode

Data-Mining - Teil 1

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Lineare Fisher Diskriminanzanalyse

- Optimale Trennung zweier Klassen mit n Observablen durch eine (n-1)dimensionale Hyperebene
- Gesucht wir die Projektionsachse $\vec{\lambda}$ die $D(\vec{\lambda})$ maximiert
 - 1. Berechnung der n-dimensionalen Mittelwertvektoren
 - 2. Berechnung der Streumatrizen
 - Projektion $\vec{\lambda}^*$ berechnen
 - 4. Schnitt auf der Projektionsachse festlegen

Lineare Fisher Diskriminanzanalyse

- 3. Projektion $\vec{\lambda}^*$ berechnen (Fortsetzung)
 - Lösung des Eigenwert-Problems $S_W^{-1}S_B\vec{\lambda}=D\vec{\lambda}$:

Erinnerung:
$$S_B=(\vec{\mu}_1-\vec{\mu}_2)(\vec{\mu}_1-\vec{\mu}_2)^T$$
 d.h. S_B auf einen beliebigen Vektor \vec{v} angewendet liefert immer einen Vektor in Richtung $(\vec{\mu}_1-\vec{\mu}_2)$

$$S_B \vec{v} = (\vec{\mu}_1 - \vec{\mu}_2) \underbrace{(\vec{\mu}_1 - \vec{\mu}_2)^T \vec{v}}_{k} = k(\vec{\mu}_1 - \vec{\mu}_2)$$
$$\Rightarrow S_W^{-1} S_B \vec{\lambda} = k S_W^{-1} (\vec{\mu}_1 - \vec{\mu}_2) = D \vec{\lambda}$$

Offensichtlich ist eine mögliche Lösung:

$$\vec{\lambda^*} = \arg\max\left[\frac{\vec{\lambda}^T S_B \vec{\lambda}}{\vec{\lambda}^T S_W \vec{\lambda}}\right] = S_W^{-1} (\vec{\mu}_1 - \vec{\mu}_2)$$

Prof. Dr. Dr. W. Rhode

Data-Mining - Teil 1

Statistische Methoder der Datenanalyse

Experimentelle Physik Vb

Lineare Fisher Diskriminanzanalyse

- 4. Schnitt auf der Projektionsachse festlegen
 - Jeder n-dimensionale Punkt wir dein eine Dimension projeziert
 - Gesucht ist ein Schnitt in auf der Projektionsachse, anhand dessen zwischen beiden Populationen entschieden wird

0,30

0.25

0.20

0.15 0.10

0.05

Signal Untergrund

Projektion der Fisher Diskriminanzanalyse

Data-Mining - Teil 1

Prof. Dr. Dr. W. Rhode

Statistische Methoden der Datenanalyse

dortmund

Prof. Dr. Dr. W. Rhode

Experimentelle Physik Vb Astroteilchenphysik

Statistische Methoden

der Datenanalyse

--- Effizienz Reinheit Genauigkei

Data-Mining - Teil 1

Prof. Dr. Dr. W. Rhode

Experimentelle Physik Vb Astroteilchenphysik

Data-Mining - Teil 1

Statistische Methoden der Datenanalyse

technische universität

Data-Mining - Teil 1

Statistische Methoden der Datenanalyse

Prof. Dr. Dr. W. Rhode

-15

-10

Lineare Fisher Diskriminanzanalyse

- 4. Schnitt auf der Projektionsachse festlegen
 - Jeder n-dimensionale Punkt wird auf eine Dimension projeziert
 - Gesucht ist ein Schnitt in auf der Projektionsachse, anhand dessen zwischen beiden Populationen entschieden wird
 - Allgemein kann kein bester Schnitt angegeben werden
 - Muss für jedes konkrete Problem motiviert werden
 - Trade-Off zwischen Effizienz und Reinheit

Prof. Dr. Dr. W. Rhode

Data-Mining - Teil 1

der Datenanalyse

Statistische Methoden

der Datenanalyse

Experimentelle Physik Vb

Data-Mining

- Ursprünglich ein Schritt von sogenannten "Knowledge Discovery in Databases"-Prozessen; mittlerweile meist gleichbedeutend zu KDD
- Data-Mining meint häufig die Anwendung von Algorithmen des maschinellen Lernens
 - "[Machine learning is a] field of study that gives computers the ability to learn without being explicitly programmed." (Arthus Smith, 1959)
 - "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E." (Tom M. Mitchell, 1997)
- Dieser Teil der Vorlesung soll einen Einblick in das große Feld des Data Minings geben

Experimentelle Physik Vb

"The capacity of digital data storage worldwide has doubled every nine months for at least a decade, at twice the rate predicted by Moore's Law for the growth of computing power during the same period. (Fayyad et al., 2002)

Prof. Dr. Dr. W. Rhode

Data-Mining - Teil 1

Statistische Methoder der Datenanalyse

Experimentelle Physik Vb Astroteilchenphysik

Data Mining

- Die Teilschritte eines Data Mining-Prozesses sind (Fayyad et al.):
- Definition der Ziele der Wissensfindung
- (2) Bereitstellung von Hintergrundwissen für den ieweiligen Fachbereich
- (3) Datenauswahl
- Datenbereinigung
- Datenreduktion und -transformation
- (6) Auswahl eines Modells
- Data-Mining
- Interpretation

- KDD-/Data-Mining-Prozesse sind iterativ und interaktiv
- In der Praxis sind manche Schritte nicht voneinander zu trennen und die Reihenfolge kann leicht unterschiedlich sein

Kleines Data Mining Wörterbuch

- Feature: Attribut, Observable, Messgröße, Merkmal
- Label: Zielgröße → labeled/unlabeled: Wert der Zielgröße bekannt/unbekannt
- Klassen: Werte einer diskreten Zielgröße (häufig wird Label und Klasse äquivalent genutzt)
- Überwachtes Lernen: "Supervised learning is the machine learning task of inferring a function from labeled training data." (Foundations of Machine Learning, 2012)
- Unüberwachtes Lernen: Erkennen von Strukturen unabhänig von Zielgrößen,
 Optimierungskriterien, Feedback Signalen oder sonstiger Informationen, die über die tatsächlichen Daten hinausgehen
- Warnung: Selten sind die Bedeutungen der Begriffe allgemeingültig definiert

Prof. Dr. Dr. W. Rhode

Data-Mining — Teil 1

Statistische Methoden
der Datenanalyse