Defenses Against Adversarial Examples

Neil Gong

Defending against adversarial examples

- General philosophy for security solutions
 - Prevention
 - Detection
 - Response
- Prevention
 - robust classifiers
- Detection
 - detecting adversarial examples
- Response
 - manual labeling?
 - collecting more data?

Detecting adversarial examples

- Binary classification
 - Normal example vs. adversarial example

- Add one more label "adversarial"
 - E.g., 0, 1, 2, ..., 9, adversarial

Extracting features and building detectors

Challenges of detecting adversarial examples

Attackers are adaptive

Evaluating a detection method

Evaluating a detection method

Metric 1

- Whether human perceives x" and x as the same
- no-> Detection is effective
- Hard to implement

Metric 2

- d(x',x) vs. d(x'', x)
- $d(x'', x) > d(x', x) \rightarrow$ detection is effective
- d(x", x) d(x',x) measures effectiveness
- Consider strong adaptive attacks

Response

- Manual labeling
- Collecting more data
 - Other sensor data
- Forensics
 - Root cause analysis
 - Attack source
- Recovery

Prevention – robust classifiers

- Empirically robust classifier
 - A particular attack cannot find adversarial example within a L_p norm ball
 - (p, ε) -robust against an attack for x, if the attack does not find adversarial perturbation whose L_p norm is no larger than ε .
- Certifiably robust classifier
 - No adversarial examples exist within a L_p norm ball.
 - (p, ε) -certifiably robust for x, if no adversarial perturbation whose L_p norm is no larger than ε exists.

Training empirically robust classifier

An attack

$$\max_{\delta \in B_p(x,\varepsilon)} L(x+\delta,y|\theta)$$

Adversarial training

$$\min_{\theta} \sum_{(x,y)} \max_{\delta \in B_p(x,\varepsilon)} L(x+\delta,y|\theta)$$

Adversarial training

$$\min_{\theta} \sum_{(x,y)} \max_{\delta \in B_p(x,\varepsilon)} L(x+\delta,y|\theta)$$

- Alternate between max and min
- Inner max
 - Finding adversarial perturbation δ , e.g., Projected Gradient Descent (PGD)
- Outer min
 - Updating model parameters heta using both normal and adversarial examples

Issues of adversarial training

No certifiable guarantee

- May not be empirically robust against unseen attacks
 - Use multiple attacks during training

• May not be robust to perturbation larger than arepsilon used in training

--- PGD adv. trained

─ DBA adv. trained

PGD standard

→ DBA standard

DBA: decision boundary attack

(a) MNIST, ℓ_{∞} -norm

Evaluating an empirically robust classifier

Evaluating an empirically robust classifier

Metric 1

- Whether human perceives x" and x as the same
- no-> defense is effective
- Hard to implement

Metric 2

- d(x',x) vs. d(x'', x)
- $d(x'', x) > d(x',x) \rightarrow$ defense is effective
- d(x", x) d(x',x) measures effectiveness
- Consider strong adaptive attacks