

UNIPAC

Universidade Presidente Antônio Carlos

Bacharelado em Ciência da Computação

Introdução a Programação Material de Apoio

Parte II

Prof. Nairon Neri Silva naironsilva@unipac.br

 1° sem / 2020

Linguagem algorítmica Portugol

 O PORTUGOL é uma pseudolinguagem de programação (simbiose do Português com o ALGOL e PASCAL).

Linguagem algorítmica Portugol

 A ideia é permitir que com um conjunto básico de primitivas seja possível ao projetista pensar no problema e não na máquina que vai executar o algoritmo e, por outro lado, não fique muito distante desta mesma máquina. Em outra perspectiva, que o projetista possa pensar na solução do problema e que esta solução seja facilmente implementada no computador. (Guimarães e Lages)

Portugol

 Objetivo: obter uma notação para algoritmos, a ser utilizada na definição, na criação, no desenvolvimento e na documentação de um programa.

Identificadores e Palavras reservadas

Identificadores:

 São nomes únicos definidos pelos programadores para identificar/distinguir os elementos de um algoritmo

Palavras Reservadas

 São instruções primitivas que têm significados prédeterminados e fazem parte da estrutura de qualquer linguagem de programação

Nomes de Identificadores

- Algumas regras para os nomes dos identificadores:
 - 1) Devem começar por um caractere alfabético;
 - 2) Podem ser seguidos por mais caracteres alfabéticos e/ou numéricos;
 - 3) Não é permitido o uso de espaço em branco ou de caracteres especiais, como: @, #, &, *, +, ?,\$ (exceto o _);
 - 4) Não poderá ser uma palavra reservada a uma instrução do algoritmo;
 - 5) Devem ser significativos.
 - 6) Não pode ser repetido dentro de um mesmo algoritmo/subalgoritmo

Variáveis

 Variável é um endereço físico da memória principal que é representado por um identificador ao qual, ao longo do seu tempo de existência, é usada para guardar um valor que pode ser modificado pelo programa.

Endereço Físico	Identificador	Conteúdo	Tipo
1000:2000	Nome	"João"	Caracter
2001:3000	RG	12345	Inteiro
3001:4000	Salário	999,99	Real
4001:5000	Fumante	F	Lógico

Variáveis

 Simplificando: Considere que a memória principal do seu computador é um armário, onde cada gaveta é a uma variável.

Declaração de variáveis – Tipos básicos

 No Portugol, temos quatro tipos básicos, isto é, tipos básicos de dados que podem ser utilizados:

Tipo Primitivo	Descrição
Inteiro	Representa o conjunto de números inteiros
Real	Representa o conjunto de números reais
Caracter	Representa um ou mais caracteres do teclado
Lógico	Representa um valor lógico (V ou F).

- Obs: Um Caracter SEMPRE devem estar entre " "
 - EX: "A", "Fone 3333-33333", "1",

Declaração de variáveis

Sintaxe para declaração de variáveis:

```
<tipo de dado> <var1>;

ou
<tipo de dado> <var1, ..., varN>;
```

 onde <var1> é o nome da variável a ser declarada (deve ser um identificador válido), e <var1, ..., varN> é uma lista de variáveis a serem declaradas.

- 4) Identifique os erros e reescreva os identificadores abaixo:
 - 13salário
 - salário\$
 - salário_mínimo
 - salário+reajuste
 - novoSalário
 - fumante?
 - preço médio
 - %desconto
 - km/h

5) Classifique os dados de acordo com o seu tipo, sendo (I = Inteiro, R = Real, C = Caracter e L = Lógico)

$$n() + 0.05$$

Algoritmo

Exemplo:

```
inteiro idade;
caracter nome_aluno;
```

Com estas linhas de comando, estamos criando um espaço na memória com o nome de <u>idade</u>, onde poderemos armazenar valores do tipo inteiro; e um espaço com o nome de <u>nome_aluno</u> onde iremos armazenar caracteres.

Algoritmo

Sintaxe para criação de algoritmos:

```
inicio
<declaração de variáveis>
<corpo do programa>
fim.
```

Exemplos

```
inicio
inteiro a,b;
fim.
```

```
inicio
inteiro a;
inteiro b;
fim.
```

```
inicio
inteiro a, b;
inteiro b; ERRO!
fim.
```

```
inicio
inteiro a;
inteiro b, c;
fim.
```

Constantes

 As constantes são criadas com base nas mesmas regras e tipos já vistos em variáveis.

 Diferem apenas no fato de armazenar um valor constante, ou seja, que não se modifica durante a execução de um programa.

 Assim, uma constante é uma variável com valor pré-definido que não pode ser modificado por nenhuma função de um programa.

Declaração de Constantes

• Sintaxe para declaração de constantes:

```
const <identificador> = <valor>;
```

 onde <identificador> é o nome da constante a ser declarada (deve ser um identificador válido), e <valor> é o valor a ser atribuído a essa constante (que não poderá ser modificado ao longo do programa).

Exemplos

```
inicio
const x = 10;
fim.
```

```
inicio

const b = 20;
inteiro b; ERRO!

fim.
```

```
inicio

const x = "Carro";
inteiro b;

fim.
```

```
inicio
const b; ERRO!
fim.
```

Comentários

 Comentários são escritos para facilitar o entendimento posterior do algoritmo, ou parte dele. Podem aparecer em qualquer parte do algoritmo e não influenciam em nada na execução do algoritmo.

Comentários

 Dica: Escreva comentários claros e objetivos no momento em que estiver escrevendo o algoritmo. Isto também facilita o entendimento do mesmo. Os comentários deverão acrescentar alguma coisa; não apenas frasear as instruções.

Comentários

- Os comentários podem ser de múltiplas linhas, utilizando os caracteres especiais: /* para iniciar um comentário e */ para finalizá-lo.
- Ou de uma linha utilizando os caracteres // (duas barras), neste caso até ao final da linha será comentário.
- Exemplos:

```
inteiro x;  /* isto é um
Comentário*/
inteiro y; //isto também é um comentário
```

Comando de atribuição

- Serve para atribuir um valor a uma variável.
- Operador de atribuição: ←

• Sintaxe:

```
<variável> ← <expressão ou valor>;
```

 A expressão do lado direito do operador é avaliada e seu resultado é armazenado na variável à esquerda, ela deve retornar o mesmo tipo da variável

Comando de atribuição

• Exemplos:

```
inicio
inteiro a,b;
a ← 5;
b ← "g"; {ERRO}
```

Expressões aritméticas

 Denominamos expressão aritmética aquela cujos operadores são aritméticos e cujos operandos são constantes do tipo numérico (inteiro ou real).

 Operadores aritméticos: símbolos que representam as operações básicas da matemática.

Operadores aritméticos

Operador	Operação	Exemplo	Resultado
+	Adição	4+3	7
-	Subtração	4-3	1
*	Multiplicação	4*3	12
1	Divisão	4/3	1,33
MOD	Resto da Divisão Inteira	4 MOD 3	1
DIV	Quociente da Divisão Inteira	4 DIV 3	1
POT(x,y)	Potênciação	POT (4,3)	64
RAD(x)	Radiciação	RAD(4)	2
+	Manutenção do Sinal	+- 4	- 4
-	Inversão do Sinal	4	+4

Prioridades

Operador	Tipo	Operação	Prioridade	Maior
-	Unário	Inversão do Sinal	1	
+	Unário	Manutenção do Sinal	1	
RAD(x)	Binário	Radiciação	2	prioridade
POT(x,y)	Binário	Potênciação	2	
DIV	Binário	Quociente da Divisão Inteira	3] 년
MOD	Binário	Resto da Divisão Inteira	3	
1	Binário	Divisão	3	Ordem
*	Binário	Multiplicação	3] \
-	Binário	Subtração	4	
+	Binário	Adição	4	Menor

- 6) Indique qual o resultado será obtido das seguintes expressões:
- a) 1/2
- b) 1 DIV 2
- c) 1 MOD 2
- d) (200 DIV 10) MOD 4
- e) POT(5,2) + 3
- f) RAD(25)+19-23
- g) 3.0*5.0+1
- h) 1/4+2
- i) 28,0/7+4
- j) 3/6,0-7

7) Escreva o comando de atribuição e resolva a expressão das seguintes fórmulas matemáticas:

a)
$$X = \frac{A + \frac{B}{C}}{D - \frac{E}{F}}$$
 onde A= 2, B= 6, C = 3, D=4, E=8, F=4

b)
$$Y = \frac{2X^2 - 3X^{(X+1)}}{2} + \frac{\sqrt{X+2}}{X}$$
 onde $x = 2$

8) Se X possui o valor 15 e foram executadas as seguintes instruções:

Qual será o valor armazenado em X?

9) Dado o seguinte algoritmo, qual o conteúdo das variáveis x, y e z após a execução do mesmo?

```
Inicio
   inteiro X, Y, Z;
   X \leftarrow 5;
   Y \leftarrow 1;
   Z \leftarrow 3;
   X \leftarrow 5 + Y * Z;
   Z \leftarrow X;
   Y \leftarrow Z;
   Y \leftarrow X;
   Z \leftarrow X + Y / 2 * 2;
   X \leftarrow Z;
fim.
```

81

Operadores relacionais

 Os operadores relacionais realizam comparações entre variáveis e/ou expressões. São eles:

Operador	Operação	Exemplo	Resultado
=	lgual	4=3	F
>	Maior	4>3	V
<	Menor	4<3	F
>=	Maior ou igual	4>=3	V
<=	Menor ou igual	4<=3	F
!=	Não igual (diferente)	4 != 3	V

Operadores lógicos

 Os operadores lógicos retornam V (Verdadeiro) ou F (Falso), de acordo com seus operandos. São eles:

Exemplos

Considerando o seguinte algoritmo:

 As seguintes expressões possuem os valores:

```
- X + Y > 10

5 + 1 > 10

6 > 10 => (F)

- (Z > 6) E (X - Y >= 5)

(3 > 6) E (5 - 1 >= 5)

F E F => (F)
```

10) Avalie as expressões abaixo:

```
-x>y
-x < z
-x=z
-x+z>y
- x * y < z
-y - x != z
-(x-y > 8) E (z + 2 = 10)
- (y * z >= 30) OU (x - y < 10)
-(y-z \le 10) E(z+y > 5) OU(z > 9)
```

Comandos de entrada e saída

 Os algoritmos precisam ser "alimentados" com dados para efetuarem as operações e cálculos que são necessários a fim de alcançar o resultado desejado. Com esta finalidade utilizaremos os comandos de entrada e saída.

 Precisamos de instruções básicas que efetuam tarefas essenciais para o recebimento e apresentação dos dados.

Entrada de dados

- A instrução de entrada de dados permite que informações dos usuários sejam transferidas para a memória do computador (variáveis).
- Sua função é atribuir o dado a ser fornecido à variável identificada.

• Sintaxe:

```
leia (<variável>);
    ou
leia (<var1,...,varN);</pre>
```

Entrada de dados

 Os dados são fornecidos ao computador por meio de um dispositivo de entrada (ex: teclado e mouse) e armazenados nas posições de memória das variáveis.

Exemplos:

```
leia (nome);
leia (nome, endereco);
```

Exemplo

 Crie um algoritmo que leia o preço unitário de um produto e também a quantidade desse produto em estoque. Calcule, também, o preço total do estoque.

```
inicio

real precoUnit, precoTot;
inteiro qtd;

leia(precoUnit, qtd);
precoTot ← precoUnit * qtd;

fim.
```

Saída de dados

 A instrução de saída de dados é o meio pelo qual variáveis, constantes e expressões têm seus dados exibidos pelos dispositivos de saída de um computador (ex: vídeo e impressora).

 Finalidade de fornecer dados ao ambiente exterior ao algoritmo.

Saída de dados

• Sintaxe:

```
imprima (<variável>);
    ou
imprima (<var1,...,varN);
    ou
imprima (<texto>);

ou
imprima (<texto, var1, ..., texto>);
```

 Usa-se "," (vírgula) para concatenar (juntar) o valor de uma variável com um texto explicativo.

Exemplo

```
inicio

real precoUnit, precoTot;
inteiro qtd;

leia(precoUnit, qtd);
precoTot ← precoUnit * qtd;
imprima(precoTot);
```

Exemplos

Melhorando a interface com o usuário do algoritmo.

```
inicio

real precoUnit, precoTot;
inteiro qtd;

imprima("Informe o preço e a quantidade: ");
leia(precoUnit, qtd);
precoTot ← precoUnit * qtd;
imprima("Preço total: ", precoTot);

fim.
```

Escreva algoritmos que:

- 11) Leia nome, idade e salário de um funcionário e exiba os mesmos dados, contudo o salário deve ser reajustado em 12%.
- 12) Leia a base e a altura de um triângulo. Em seguida, escreva a área do mesmo.
- 13) Leia 2 notas, calcule e exiba a média ponderada dessas notas. Considere nota1 com peso 6 e nota2 com peso 4.
- 14) Transforme de um valor em dólar para reais. Considere o dólar a R\$ 3,18.
- 15) Leia um valor inteiro em segundos e, depois converte-o no formato hh:mm:ss.

- 16) Leia o preço de fábrica de um automóvel e exiba seu preço final. Considere que o preço final é igual ao preço de fábrica mais o preço dos impostos (45% do preço de fábrica) mais a percentagem do revendedor (28% do preço de fábrica).
- 17) Leia as variáveis inteiras n1 e n2 e troque o valor destas variáveis. Isto é, n1 deve ficar com o valor de n2 e n2 deve ficar com o valor de n1.

Comando SE

• Sintaxe:

Comando SE

• Exemplo:

```
a<-4;
b<-2;
SE a>b ENTÃO
  imprima("A é maior")
FIM-SE
```

Comando SENÃO

• Sintaxe:

```
SE <condição> ENTÃO <comandos> SENÃO <comandos> <comandos> FIM-SE
```

Comando SE

• Exemplo:

```
a<-4;
b<-2;
SE a>b ENTÃO
    imprima("A é maior")
    SENÃO
    imprima("A é menor")
FIM-SE
```

- 18) Ler um valor e escrever a mensagem É MAIOR QUE 10! se o valor lido for maior que 10, caso contrário escrever NÃO É MAIOR QUE 10!
- 19) Ler dois números inteiros (considere que não serão lidos valores iguais) e escrever o maior deles.
- 20) Ler dois números inteiros (considere que não serão lidos valores iguais) e escrevê-los em ordem crescente.

- 21) Ler o ano atual e o ano de nascimento de uma pessoa. Escrever uma mensagem que diga se ela poderá ou não realizar o exame para obter a carteira nacional de habilitação (não é necessário considerar o mês em que a pessoa nasceu).
- 22) Faça um algoritmo para ler: número da conta do cliente, saldo, débito e crédito. Após, calcular e escrever o saldo atual (saldo atual = saldo débito + crédito). Também testar se o saldo atual for maior ou igual a zero escrever a mensagem 'Saldo Positivo', senão escrever a mensagem 'Saldo Negativo'.
- 23) Ler o nome de 2 times e o número de gols marcados na partida (para cada time). Escrever o nome do vencedor. Caso não haja vencedor deverá ser impressa a palavra EMPATE

Referências Bibliográficas

- FORBELLONE, André Luiz Villar; EBERSPACHER, Henri Frederico. *Lógica de Programação*. Makron books.
- GUIMARAES, Angelo de Moura; LAGES, Newton Alberto Castilho. *Algoritmos e estruturas de dados*. LTC Editora.
- FIDALGO, Robson. Material para aulas. UFRPE.
- LOPES, Anita; GARCIA, Guto. Introdução à programação 500 algoritmos resolvidos. Elsevier.
- http://www.ime.usp.br/~pf/algoritmos/