Yakeen NEET 2.0 2026

Physical Chemistry By Amit Mahajan Sir **Electrochemistry**

DPP: 2

- **Q1** When equilibrium is reached, the potential difference between the two electrodes is
 - (A) < 1
- (B) > 1

(C) 0

- (D) None
- **Q2** In the construction of a salt bridge, saturated solution of KNO_3 is used because:
 - (A) Velocity of $\,K^+$ & $NO_{\overline{3}}$ are same.
 - (B) Velocity of NO_3^- is greater than that of K^+ .
 - (C) Velocity of K^+ is greater than that of NO_3^- .
 - (D) KNO_3 is highly soluble in water.
- Q3 In an electrochemical cell, the electrode having a higher reduction potential will act as:
 - (A) Salt
- (B) Electrolyte
- (C) Anode
- (D) Cathode
- Q4 A cell is prepared by dipping a copper rod in 1M $CuSO_4$ solution and an iron rod in $2MFeSO_4$ solution. What are the cathode & anode respectively?
 - (A) Cathode ightarrow Iron ; Anode ightarrow Copper
 - (B) Cathode \rightarrow Copper; Anode \rightarrow Iron
 - (C) Cathode \rightarrow Iron; Anode \rightarrow Iron
 - (D) Cathode \rightarrow Copper; Anode \rightarrow Copper
- Q5 Daniell cell is represented as
 - (A) $Zn \mid Zn^{+2}$ (aq) $\parallel Cu^{+2}$ (aq) $\mid Cu$
 - (B) $\operatorname{Cu} \left| \operatorname{Cu}^{+2}(\operatorname{aq}) \right\| \operatorname{Zn}^{+2}(\operatorname{aq}) \left| \operatorname{Zn} \right|$
 - (C) $Zn \mid Zn^{+2}$ (aq) $\parallel Zn^{+2}$ (aq) $\mid Zn$
 - (D) $Cu \mid Cu^{+2}(aq) \| Cu^{+2}$ (aq) | Cu
- Q6 The equilibrium constant for a cell reaction: $Cu(g) + 2Ag^+(aq) \rightarrow Cu^{+2}(aq) + 2Ag(s)$ is 4×10^{16} . Find E^o_{cell} for the cell reaction. (A) 0.63~V

- (B) $0.49~{
 m V}$
- (C) 1.23 V
- (D) $3.24~{
 m V}$
- Q7 The standard electrode potential of zinc ions is 0.76 V. What will be the potential of a 2M solution at 300~K?
 - (A) 0.83~V
 - (B) 0.76 V
 - (C) 0.23 V
 - (D) 0.98 V
- **Q8** ΔG° for the reaction

$$Cu^{+2} + Fe \rightarrow Fe^{+2} + Cu$$
 is

$$\left[{
m E_{Cu^{+2}/Cu}^o} = 0.34 \ {
m V}, {
m E_{Fe^{+2}/Fe}^o} = 0.44 \ {
m V}
ight]$$

- (A) 19.3 kJ
- (B) 180.8 kJ
- (C) 150.5 kJ
- (D) 28.5 kJ
- **Q9** Equilibrium constant for the reaction at equilibrium will be:

$$Cu^{+2} + Fe \rightleftharpoons Fe^{+2} + Cu$$

$$E^{o}_{Cu^{+2} \; / \; Cu} = 0.\,54 \; V \quad E^{o}_{Fe^{+2} \; / \; Fe} = 0.\,44 \; V$$

- (A) 3442
- (B) 1450
- (C) 3926
- (D) 2422
- **Q10** The potential of single electrode depends upon
 - (A) The nature of the electrode
 - (B) Temperature
 - (C) Concentration of the ion with respect to which it is reversible
 - (D) All of the above
- **Q11** The relationship between standard reduction potential of a cell and equilibrium constant is

shown by

$$\begin{array}{l} \text{(A) } E_{cell}^o = \frac{n}{0.059} log \, K_C \\ \text{(B) } E_{cell}^o = \frac{0.059}{n} log \, K_C \\ \text{(C) } E_{cell}^o = 0.059 n log \, K_C \\ \text{(D) } E_{cell}^o = \frac{log \, K_C}{n} \end{array}$$

(B)
$$E_{cell}^{o}=rac{0.059}{n}log\,K_{C}$$

(C)
$$E_{\mathrm{cell}}^{\mathrm{o}} = 0.059 \mathrm{n} \log \mathrm{K_{\mathrm{C}}}$$

(D)
$$E_{\mathrm{cell}}^{\mathrm{o}} = \frac{\log K_{\mathrm{C}}}{n}$$

 $\mbox{\bf Q12} \ \ \, \mbox{If } E^0_{cell}$ for a given reaction has a positive value, then which of the following is correct?

(A)
$$\Delta G^0>0,~K_C<1$$

(B)
$$\Delta G^0>0,\;K_C>1$$

(C)
$$\Delta G^0 < 0, \; K_C > 1$$

(D)
$$\Delta G^0 < 0, \; K_C < 1$$

Q13 The equilibrium constant of the reaction if

$$\mathrm{E_{cell}^o} = 0.4~\mathrm{V}$$

$$\mathrm{Fe}(\mathrm{s}) + 2\mathrm{Ag}^+(\mathrm{aq}) \to \mathrm{Fe}^{+2}(\mathrm{aq}) + 2\mathrm{Ag}(\mathrm{s})$$

at $298\ K$ is

(A)
$$2.5 imes 10^{12}$$

(B)
$$3.5 imes 10^{13}$$

(C)
$$1.5 imes 10^{12}$$

(D)
$$4.5 imes 10^{15}$$

Q14 Find equilibrium constant when the reaction reaches equilibrium

$$\mathrm{I_2} + 2\mathrm{e^-}
ightarrow 2\mathrm{I^-} \left(\mathrm{E^0} = 0.59 \; \mathrm{V}
ight)$$

(A)
$$10^{20}$$

(B)
$$10^{25}$$

(C)
$$10^{30}$$

(D)
$$10^{15}$$

Answer	Key
---------------	-----

Q1	(C)	Q8	(A)
Q2	(A)	Q9	(D)
Q3	(D)	Q10	(D)
Q4	(B)	Q11	(B)
Q5	(A)	Q12	(C)
Q6	(B)	Q13	(B)
Q 7	(B)	Q14	(A)

Master NCERT with PW Books APP