BACKPACK CHEAT SHEET

- Assumptions
 - Feedforward network

$$\boldsymbol{z}_{n}^{(0)} \xrightarrow{T_{\boldsymbol{\theta}^{(1)}}^{(1)}(\boldsymbol{z}_{n}^{(0)})} \boldsymbol{z}_{n}^{(1)} \xrightarrow{T_{\boldsymbol{\theta}^{(2)}}^{(2)}(\boldsymbol{z}_{n}^{(1)})} \dots \xrightarrow{T_{\boldsymbol{\theta}^{(L)}}^{(L)}(\boldsymbol{z}_{n}^{(L-1)})} \boldsymbol{z}^{(L)} \xrightarrow{\ell(\boldsymbol{z}_{n}^{(L)}, \boldsymbol{y})} \ell(\boldsymbol{\theta})$$

- Dimension of parameter $\boldsymbol{\theta}^{(i)}$: $\dim(\boldsymbol{\theta}^{(i)}) = d^{(i)}$
- Empirical risk

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{n=1}^{N} \ell(f(\boldsymbol{\theta}, \boldsymbol{x}_n), \boldsymbol{y}_n).$$

• Shorthands

$$\ell_n(\boldsymbol{\theta}) = \ell(f(\boldsymbol{\theta}, \boldsymbol{x}_n), \boldsymbol{y}_n), \quad n = 1, \dots, N,$$

 $f_n(\boldsymbol{\theta}) = f(\boldsymbol{\theta}, \boldsymbol{x}_n) = \boldsymbol{z}_n^{(L)}(\boldsymbol{\theta}), \quad n = 1, \dots, N$

• Generalized Gauss-Newton matrix

$$G(\boldsymbol{\theta}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{J}_{\boldsymbol{\theta}} f_n)^{\top} \nabla_{f_n}^2 \ell_n(\boldsymbol{\theta}) (\mathbf{J}_{\boldsymbol{\theta}} f_n)$$

• Approximative GGN via MC sampling

$$\tilde{\boldsymbol{G}}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{J}_{\boldsymbol{\theta}} f_n)^{\top} \left[\nabla_{\boldsymbol{\theta}} \ell(f_n(\boldsymbol{\theta}), \hat{\boldsymbol{y}}) \nabla_{\boldsymbol{\theta}} \ell(f_n(\boldsymbol{\theta}), \hat{\boldsymbol{y}}_n)^{\top} \right]_{\hat{y}_n \sim p_{f_n(\boldsymbol{x}_n)}} (\mathbf{J}_{\boldsymbol{\theta}} f_n)$$

Table 5: Overview of the features supported in the first release of BACKPACK. The quantities are computed separately for all module parameters, i.e. $i=1,\ldots,L$.

Feature	Details
Individual gradients	$\frac{1}{N} \nabla_{\boldsymbol{\theta}^{(i)}} \ell_n(\boldsymbol{\theta}), n = 1, \dots, N$
Batch variance	$\frac{1}{N}\sum_{n=1}^{N}\left[\nabla_{\boldsymbol{\theta}^{(i)}}\ell_{n}(\boldsymbol{\theta})\right]_{j}^{2}-\left[\nabla_{\boldsymbol{\theta}^{(i)}}\mathcal{L}(\boldsymbol{\theta})\right]_{j}^{2}, \qquad j=1,\ldots,d^{(i)}$
2 nd moment	$\frac{1}{N} \sum_{n=1}^{N} \left[\nabla_{\boldsymbol{\theta}^{(i)}} \ell_n(\boldsymbol{\theta}) \right]_j^2 - \left[\nabla_{\boldsymbol{\theta}^{(i)}} \mathcal{L}(\boldsymbol{\theta}) \right]_j^2, \qquad j = 1, \dots, d^{(i)}$ $\frac{1}{N} \sum_{n=1}^{N} \left[\nabla_{\boldsymbol{\theta}^{(i)}} \ell_n(\boldsymbol{\theta}) \right]_j^2, \qquad j = 1, \dots, d^{(i)}.$
Indiv. gradient L_2 norm	$\left\ \frac{1}{N} \nabla_{\boldsymbol{\theta}^{(i)}} \ell_n(\boldsymbol{\theta}) \right\ _2^2, n = 1, \dots, N$
DIAGGGN	$\operatorname{diag}\left(oldsymbol{G}(oldsymbol{ heta}^{(i)}) ight)^{-1}$
DIAGGGN-MC	$\operatorname{diag}\left(ilde{m{G}}(m{ heta}^{(i)}) ight)$
Hessian diagonal	$\operatorname{diag}\left(abla^2_{oldsymbol{ heta}^{(i)}} \mathcal{L}(oldsymbol{ heta}) ight)$
KFAC	$ ilde{m{G}}(m{ heta}^{(i)}) pprox m{A}^{(i)} \otimes m{B}_{ ext{KFAC}}^{(i)}$
KFLR	$m{G}(m{ heta}^{(i)})pprox m{A}^{(i)}\otimes m{B}_{ ext{KFLR}}^{(i)}$
KFRA	$oldsymbol{G(heta^{(i)})}pprox oldsymbol{A^{(i)}}pprox oldsymbol{A^{(i)}}pprox oldsymbol{A^{(i)}}$