Raport wyników

Michał Dobranowski

24 stycznia 2024

W ramach doświadczenia porównano poszukiwanie przypadkowe (ang. $Pure\ Random\ Search,\ PRS$) z algorytmem genetycznym (ang. $Genetic\ Algorithm,\ GA$) na przykładzie funkcji Ackley'a oraz funkcji Rosenbrocka dla wymiarów $n\in\{2,10,20\}$.

Funkcja Ackley'a

Porównanie znalezionych minimów dla obu algorytmów

Rozkład znalezionych minimów za pomocą PRS dla wymiaru $n \in \{2, 10, 20\}$

Rozkład znalezionych minimów za pomocą \emph{GA} dla wymiaru $n \in \{2, 10, 20\}$

Funkcja Rosenbrocka

Porównanie znalezionych minimów dla obu algorytmów

Rozkład znalezionych minimów za pomocą PRS dla wymiaru $n \in \{2, 10, 20\}$

Rozkład znalezionych minimów za pomocą \emph{GA} dla wymiaru $n \in \{2, 10, 20\}$

Analiza istotności statystycznej

Średnie minimów dla każdej z konfiguracji odpowiednio dla funkcji Ackley'a oraz Rosenbrocka przedstawiono w poniższych tabelach.

wymiar n	PRS	GA
2	4.082100246	0.003171711
10	18.112680	3.744855
20	19.805313	5.617581

$\overline{\text{wymiar } n}$	PRS	GA
2	0.94769323 28317.5324	0.02116179 414.4569
20	288709.646	7410.093

Przeprowadzono analizę porównawczą (za pomocą testu t Welcha) wyników dla każdej z dwóch metod optymalizacji oraz dla każdej z dwóch testowanych funkcji. Przedstawiony poniżej test prowadzi do odrzucenia hipotezy zerowej (dokładne wyniki w tabeli niżej).

t.test(results[[i]]\$PRS, results[[i]]\$GA, alternative = "greater")\$p.value

wymiar n	funkcja Ackley'a	funkcja Rosenbrocka
2	0.000100 10	$5.52709e \cdot 10^{-11}$
10	$2.939968 \cdot 10^{-86}$	$3.403517 \cdot 10^{-22}$
20	$7.163392 \cdot 10^{-117}$	$2.317767 \cdot 10^{-28}$