F-128 – Física Geral I – 2º Semestre 2012

Respostas à Lista do Capítulo 8

1) a)
$$h = \frac{2}{3}L$$
; b) $v_x = \sqrt{\frac{16gL}{27}}$, $v_y = \sqrt{\frac{38gL}{27}}$.

- 2) Sim, pois temos a liberdade de escolher qualquer ponto como nossa origem de coordenadas, na qual $U_g=0$. Se o objeto está abaixo da origem escolhida, então $U_g<0$ para o sistema objeto-Terra.
- 3) $\frac{mgL}{32}$.
- 4) a) v = 2.0 m/s; b) $v_{\text{max}} = 2.4$ m/s; c) $T_{\text{max}} = 4.2$ N; d) $\cos \theta = 0.82$.
- 5) $\theta = \frac{\pi}{4}$.
- 6) a) $\mu_c = 0.25$; b) Sim, $F_{at} = 4$ N e $F_{mola} = 5$ N; c) No ponto de equilíbrio da mola
- 7) Se m = 70 kg e v = 5 m/s, então K = 875 J.
- 8) a) $\Delta U = -mgr(1-\cos\theta)$; b) $K = mgr(1-\cos\theta)$; c) $a_{tan} = g\sin\theta$, $a_{rad} = 2g(1-\cos\theta)$; d) $\cos\theta = \frac{2}{3}$.
- 9) Se m = 70 kg, $\Delta h = 15$ km.
- 10) Trocas de energia: $W_{\text{crianças}} = 5.2 \text{ J}$, $W_{atrito} = -2 \text{ J}$; velocidade no ponto 2: v = 3.6 m/s.

11)
$$\Delta x = \frac{mg}{k} (1 + \sqrt{1 + \frac{6kl_0}{mg}})$$
.

- 12) a) Demonstração; b) $W = 2\pi RF_0$; c) Não, pois o trabalho sobre o caminho fechado do item (b) não é zero.
- 13) a) Em x = 2 m, pois F = -dU/dx = 0; b) Alongar, pois |dU/dx| é menor para x > 2 m; c) 0,7N; d) Gráfico; e) Gráfico; f) 4,0 J.

14)
$$v = d\sqrt{\frac{g}{L}}$$
.

15)
$$v_{terminal} = \sqrt{\frac{mg}{\alpha}}$$
; $P = \alpha \left(\frac{mg}{\alpha}\right)^{\frac{3}{2}}$.

16) a) Gráfico; b) 0,295 nm; c)
$$F(x) = 4\epsilon \left(12 \frac{\sigma^{12}}{x^{13}} - 6 \frac{\sigma^6}{x^7} \right)$$
.

- 17) Sim. A força é não conservativa pois o trabalho ao longo do caminho fechado não é nulo.
- 18) a) $r \approx 1.5$ m (estável), $r \approx 2.3$ m (instável), $r \approx 3.2$ m (estável); b) E<1.0 J; c) 0.8 m < r < 3.5 m; d) 2.8 J; e) $r \approx 1.5$ m e $r \approx 3.5$ m; f) 4.0 J.

F-128 – Física Geral I – 2º Semestre 2012

Respostas à Lista do Capítulo 8

19) a) Os dois chegam com a mesma velocidade ao fim do toboágua pois tem a mesma altura inicial e toda a energia potencial é transformada em energia cinética ao final dos dois percursos;
b) Catarina, pois durante quase todo o percurso sua energia potencial é menor que a de Paulo e, portanto, sua energia cinética, isto é, sua velocidade é maior.

20)
$$U = \frac{1}{2} Mgh$$
; $U(\theta) = \frac{1}{2} Mgh \sin \theta$.

21) a)
$$v_1 = \sqrt{\frac{gx_2}{3}}$$
, $v_2 = -2\sqrt{\frac{gx_2}{3}}$; b) $a_1 = -\frac{g}{3}$, $a_2 = \frac{2g}{3}$.

- 22) a) Gráfico; b) $v(x = 2,0\text{m}) = \sqrt{13} \text{ m/s}$, $v(x = 5,0\text{m}) = \sqrt{11} \text{ m/s}$; c) Não, pois a energia potencial é sempre menor que a energia mecânica.
- 23) a) K = 2,20 J, v = 4,2 m/s; b) 90 cm nos três casos; c) 36 cm.
- 24) $\mu_c = 0.328$.
- 25) Resposta no livro-texto.

26) a)
$$\sqrt{70}$$
 m/s; b) $4\sqrt{10}$ m/s; c) $\frac{23}{3}$ m; d) $\frac{19}{11}$ m/s.

- 27) Resposta no livro-texto.
- 28) Resposta no livro-texto.