COUNTING (RECAP)& PROBABILITY

Summer 21

Asst. Prof. Nattapol Aunsri, Ph.D.

IATE Research Unit

CCC Research Group
School of Information Technology, MFU

PREPARED FOR DIGITAL INDUSTRY INTEGRATION: DII, CAMT, CMU

- If an experiment E has k subexperiments E1, E2,..., Ek where Ei has ni outcomes, then E has $\prod_{i=1}^k n_i$
- The number of k-permutations of n distinguishable objects is

$$nPk = n(n-1)(n-2)\cdots(n-k+1) = \frac{n!}{(n-k)!}$$

Sampling WITHOUT replacement (Combination, order is not matter)

The number of ways to choose k objects out of n distinguishable objects is

$$nCk = \binom{n}{k} = \frac{nPk}{k!} = \frac{n!}{k! (n-k)!}$$

Sampling WITH replacement

Each object can be chosen repeatedly

Examples

- Number of picking 3 students from 5 students is $\binom{5}{3}$
- A baseball team has 15 field players and 10 pitchers. Each field player can take any of the 8 non pitching positions and one pitcher. Therefore, the number of possible starting lineups is $N = \binom{15}{8} \binom{10}{1} = 64350$.
- The number of ways to draw 7 cards from a deck is $\binom{52}{7}$.
- The number of ways to draw 7 cards from a deck without any queens is $\binom{48}{7}$.

- Given m distinguishable objects, there are m^n ways to choose with replacement an ordered sample of n objects
- For n repetitions of a subexperiment with sample space $S = \{s_1, s_2, ..., s_m\}$, there are m^n possible observation sequences.
- The number of observation sequences for n subexperiments with sample space $S = \{0,1\}$ with 0 appears n_0 times and 1 appears n_1 times is

$$\binom{n}{n_0} = \binom{n}{n-n_1}$$

Example

For five subexperiments with sample space $S = \{0,1\}$, how many observation sequences are there in which 0 appears $n_0 = 2$ times and 1 appears $n_1 = 3$ times?

• For n repetitions of a subexperiment with sample space $S=\{s_1,s_2,\dots,s_m\}$, the number of length $n=n_1+n_2+\cdots n_m$ observation sequences with s_i appearing n_i times is

$$\binom{n}{n_1, \cdots, n_m} = \frac{n!}{n_1! n_2! \cdots, n_m!}$$

Example

Consider a binary code with 4 bits (0 or 1) in each code word. An example of a code word is 1001.

- a. How many different code words are there?
- b. How many code words have exactly two zeroes?
- c. How many code words begin with a zero?
- d. In a constant-ration binary code, each code word has N bits. In very word, M of the N bits are 1 and the other N-M bits are 0. How many different code words are in the code with N=8 and M=3?

PROBABILITY AXIOMS

Definition Axioms of Probability

A probability measure $P[\cdot]$ is a function that maps events in the sample space to real numbers such that

- 1. for any event A, $P[A] \ge 0$.
- 2. P[S] = 1.
- 3. For any countable collections $A_1, A_2, ...$ of mutually exclusive events

$$P[A_1 \cup A_2 \cup \cdots] = P[A_1] + P[A_2] + \cdots$$

Consequent theorems

• If $A = A_1 \cup A_2 \cup \cdots \cup A_m$ and $A_i \cap A_j = \emptyset$ for $i \neq j$. Then

$$P[A] = \sum_{i=1}^{m} P[A_i].$$

PROBABILITY

Example

 Roll a six-sided die in which all faces are equally likely. What is the probability of each outcome? Find the probabilities of the events: "Roll 4 or higher." and "Roll the square of an integer"

Solution

$$P[i] = \frac{1}{6}$$
, for $i = 1,2,3,4,5,6$

$$P[Roll \ 4 \ or \ higher] = P[4] + P[5] + P[6] = \frac{3}{6} = \frac{1}{2}.$$

P[Roll the square of an integer] =
$$P[1] + P[4] = \frac{2}{6} = \frac{1}{3}$$

PROBABILITY

- **Theorem** consequence of axioms of Probability
- A probability measure $P[\cdot]$ satisfies
- 1. $P[\emptyset] = 0$.
- 2. $P[A^C] = 1 P[A]$.
- 3. For any A and B (not necessarily disjoint),

$$P[A \cup B] = P[A] + P[B] - P[A \cap B].$$

4. If $A \subset B$, then $P[A] \leq P[B]$.

PROBABILITY

Example

Monitor a phone call. Classify as a voice call (V) if someone is speaking, or a data call(D) if using data (fb, line chat, for eg.) Classify the call as long (L) if the call lasts for more than three minutes; otherwise classify as brief (B). Based on the data collected by the telephone company, we use the following probability model: P[V] = 0.7, P[L] = 0.6, P[VL] = 0.35. Find the following probabilities.

- \bullet P[DL]
- $P[D \cup L]$
- \bullet P[VB]
- $P[V \cup L]$
- $P[D \cup V]$
- P[LB]

Solution

	V	D
\overline{L}	0.35	?
B	?	?

CONDITIONAL PROBABILITY

• **Definition** The conditional probability of the event A given the occurrence of the event B is

$$P[A|B] = \frac{P[AB]}{P[B]}$$

Example

Roll two fair four-sided dice. Let X_1 and X_2 denote the number of dots that appear on die 1 and die 2, respectively. Let A be the event $X_1 \ge 2$. What is P[A]? Let B denote the event $X_2 > X_1$. What is P[B] and P[A|B]

CONDITIONAL PROBABILITY

Solution

It is easy to solve the problem using the diagram below.

CONDITIONAL PROBABILITY

Solution (cont'd)

$$P[A] = \frac{12}{16} = \frac{3}{4}.$$

$$P[B] = \frac{6}{16} = \frac{3}{8}.$$

$$P[AB] = \frac{3}{16} \to P[A|B] = \frac{P[AB]}{P[B]} = \frac{3/16}{3/8} = \frac{1}{2}.$$

LAW OF TOTAL PROBABILITY

• **Theorem** For an event space $\{B_1, B_2, ..., B_n\}$ with $P[B_i] > 0$ for all i, then A probability measure $P[\cdot]$ satisfies

$$P[A] = \sum_{i=1}^{n} P[A|B_i]P[B_i].$$

BAYES' THEOREM

Bayes' Theorem

$$P[B|A] = \frac{P[A|B]P[B]}{P[A]}$$

Using the law of total probability, we have

$$P[B_i|A] = \frac{P[A|B_i]P[B_i]}{\sum_{i=1}^{n} P[A|B_i]P[B_i]}$$

AN EXAMPLE USING BAYES' THEOREM

Suppose the probability (for anyone) to have AIDS is:

$$P(AIDS) = 0.001$$

 $P(no AIDS) = 0.999$

prior probabilities, i.e., before any test carried out

Consider an AIDS test: result is + or -

$$P(+|AIDS) = 0.98$$

 $P(-|AIDS) = 0.02$
 $P(+|no AIDS) = 0.03$
 $P(-|no AIDS) = 0.97$

- probabilities to (in)correctly identify an infected person
- probabilities to (in)correctly identify an uninfected person

Suppose your result is +. How worried should you be?

BAYES' THEOREM EXAMPLE (CONT.)

The probability to have AIDS given a + result is

$$P(\text{AIDS}|+) = \frac{P(+|\text{AIDS})P(\text{AIDS})}{P(+|\text{AIDS})P(\text{AIDS}) + P(+|\text{no AIDS})P(\text{no AIDS})}$$

$$= \frac{0.98 \times 0.001}{0.98 \times 0.001 + 0.03 \times 0.999}$$

i.e. you're probably OK!

Your viewpoint: my degree of belief that I have AIDS is 3.2%

Your doctor's viewpoint: 3.2% of people like this will have AIDS

- The method to effectively deal with sequential experiments.
- Tree diagram is used represents the sequence of subexperiments.
- The labels of the branches of second (an so on) subexperiment are the conditional probabilities of the events in the second (and so on) subexperiments.
- Nodes at the end of final subexperiments are leaves of the tree corresponding to an outcome of the entire sequential experiment.
- Probability of each outcome is the product of the probabilities and conditional probabilities of the path from the root to the leaf.

Example

Suppose traffic engineers have coordinated the timing of two traffic lights to encourage a run of green lights. In particular, the timing was designed so that with probability 0.8 a driver will find the second light to have the same color as the first. Assuming the first light is equally likely to be red or green, what is the probability $P[G_2]$ that the second light is green? Also, what is P[W], the probability that you wait for at least one light? Lastly, what is $P[G_1|R_2]$, the conditional probability of a green first light given a red second light?

Example

Suppose traffic engineers have coordinated the timing of two traffic lights to encourage a run of green lights. In particular, the timing was designed so that with probability 0.8 a driver will find the second light to have the same color as the first. Assuming the first light is equally likely to be red or green, what is the probability $P[G_2]$ that the second light is green? Also, what is P[W], the probability that you wait for at least one light? Lastly, what is $P[G_1|R_2]$, the conditional probability of a green first light given a red second light?

Example

Consider the game of Three. You shuffle a deck of three cards: ace, 2, 3. With the ace worth 1 point, you draw cards until your total is 3 or more. You win if your total is 3. What is P[W], the probability that you win?

Example

Consider the game of Three. You shuffle a deck of three cards: ace, 2, 3. With the ace worth 1 point, you draw cards until your total is 3 or more. You win if your total is 3. What is P[W], the probability that you win?

