Groups:

Def: Let * be a binary operation on a set A. An identity for * is an element e of A satisfying $e*a = a*e = a \quad \forall a \in A$.

Ex: 19 A=7/2, x=+, 0xa=axo=a Va6A.

Ex: if A=M, x=., 1*a=a*1=a + aEA.

Prop: If eeA is an identity for A, Ilun e is unique.
Proof: S'pose & eA is also an identity

(1) e*a=a*e=a YaEA.

(2) exa=axe=a VaeA.)

 $= e^{e} = e^{e} = e^{e}$ by (1) $e = e^{e}$ ere by (2)

Def: Let * be a binary operation on a set A and Suppose * has an identity e. If $a \in A$, then an inverse of a is an element $b \in A$ sotisfying a*b = b*a = e.

Ex: A= 1/2, +=+. e=0

Q: What is the inverse of 4?

hooking for XEThs with X*H=H*X=e

X+H=H+X=0

x = -4

Ex: A = 72, x = -1, e = 1Q: What is the mineral of 4?

hoolowy for $x \in 72$, with $x \times 4 = 4$, x = 2 $x^4 = 4$, x = 1 x = 4, x = 1

Def: A group G is a set with a binary operation *
howing three properties

(1) * is associative

(2) * has an identity e

(3) every element of & has an inverse

Notation: we write x' to mean the owerse of x.

What if * was also commutative?

Def: A group & whose binary operation * is commutative TS called Abelian.

Why groups?

Groups arise naturally all over in the real world as collections of transformations

Clock Group:

Transformations = $\frac{2}{1}$, 2, 3, 4, 5, ..., 12 }

In terms of clock geometry 3+5 = 8 7+7=2

Set
$$75 = 1/2, \dots (12)^{\frac{1}{2}}$$
 identity

Browny operation is tock

 $X + y = (x+y, x+y \le 12)$
 $x+y = (x+y, x+y \le 12)$

Abution

Ex:

Symmetries of the triangle.

 $x+y = (x+y, x+y \le 12)$
 $x+y = (x+y, x+y \le 12)$
 $x+y = (x+y, x+y \le 12)$

Abution

Ex:

Symmetries of the triangle.

 $x+y = (x+y) =$

Multiples of the matrices above are also symmetries

8+9 = 5

 $S^{-1} = S$ because $\begin{bmatrix} -10 \end{bmatrix} \begin{bmatrix} -10 \end{bmatrix} = \begin{bmatrix} 10 \end{bmatrix}$

Collection of symmetries: {I,S,R,R2, SR,SR2}

This forms a group with (e elements (dihedral group D3)

		Ч	V	N	122	SIZ	SRZ
	H						
	5			医			
_	12						
	62						
	12 512 512						
_	SIL		\				
		1					

$$SR \neq RS$$

 $RS = S12^2$

The group The

Men = {0,1,2,...,n-1}

binary operation +n = modular addition

 $\frac{E_{x}}{2+_{4}} = 1$

 $\frac{\partial u}{\partial x}$: $a + b = remainder of <math>\frac{a + b}{n}$.

Theorem Then is a group with the binary operation to

Proof: NTS associative *

° identity * inverses

 $a \in \mathcal{H}_n$, $a + n \circ = a = o + n \circ = 0$ Thus the identity $75 \circ 0$

a ethen, a to. Then

 $a + n(n-a) = remainder of \frac{n-a+a}{n}$

= remarder of $\frac{n}{n} = 0$.