Data Mining (Mining Knowledge from Data)

Statistics

Magda Friedjungová

- An observation point that is distant from the other observations.
- Due to variability in the measurement or it may indicate an experimental error or any other error in the dataset.

• Which of the points is an outlier?

• The blue data were generated from the Bell curve centered at [0, 0], the red dot was added later.

• Two-dimensional outliers.

- Download the dataset1.csv from EDUX.
- Start RapidMiner Studio.
- Load dataset1.csv to RapidMiner Studio.
- Find one outlier using the "Detect Outlier (Distances)" operator.

- Set the delimiter to "Tab" in the "Read CSV" block.
- Set the number of outliers in the "Detect Outlier (Distances)" to one outlier.
- Press the Play button.

The result is an outlier in the upper right corner.

What is the outlier now?

 The data were generated using two Bell curves positioned at [0, 0] and [40, 40]. The red dot was added later.

- Download the dataset2.csv from EDUX.
- Load dataset1.csv to RapidMiner Studio.
- Find one outlier by the "Detect Outlier (Distances)" operator.

This is not what we expected.

• Try to use "Detect Outliers (LOF)" block.

• Finally, the desired result.

Correlation Matrix

Calculate the correlation matrix for the Iris dataset.

Correlation Matrix

Attributes	a1	a2	a3	a4
al	1	-0.109	0.872	0.818
a2	-0.109	1	-0.421	-0.357
a3	0.872	-0.421	1	0.963
a4	0.818	-0.357	0.963	1

- How do you interpret it?
- Try to do the same for the Sonar dataset.

Sonar Correlation Matrix

Linear Dependencies

- Principal Component Analysis (PCA)
- Use the Sonar dataset

PCA - Cumulative Variance Plot

How do you interpret the graph?

How much the PCA helps/hurts the models?

- View the model as a "black box" for now.
- Learn the model, use it on training data and detect the error.

PCA Experiment

- Build an experiment as shown.
- Which classifier (Naive Bayes) gives better results?

Accuracy

PCA & Bayes

accuracy: 83.17%

	true Rock	true Mine	class precision
pred. Rock	77	15	83.70%
pred. Mine	20	96	82.76%
class recall	79.38%	86.49%	

Bayes

accuracy: 73.08%

	true Rock	true Mine	class precision
pred. Rock	86	45	65.65%
pred. Mine	11	66	85.71%
class recall	88.66%	59.46%	

Which one is more accurate and why?

Accuracy

- There are 60 attributes in the original dataset.
 When the PCA is used, 95% of the variance is captured in 17 attributes.
- This means that the model has simplified from 2^60 (considering binary attributes) to 2^17 possibilities.
- The dramatic simplification has led to classification accuracy increasing, even at the cost of losing 5% of the information.

Accuracy

- We committed several inaccuracies and errors for example assessing errors on the training data is not correct (as you will learn in later lecture).
- Also drawing conclusions from one value of success is quite risky (although it is a ten percent difference in our case).
- What is the **optimal** number of principal components?

Principal Components

 The ideal number is 16 or 54 attributes, depending on whether we want to save the computing time and memory, or we want to maximize accuracy.

Principal Components

How do we create such a plot?

