

MITx: 14.310x Data Analysis for Social Scientists

<u>Help</u>

- Module 1: The Basics of R and Introduction to the Course
- Entrance Survey
- Module 2:

 Fundamentals of
 Probability, Random
 Variables,
 Distributions, and Joint
 Distributions
- Module 3: Gathering and Collecting Data, Ethics, and Kernel Density Estimates

Gathering and Collecting Data

Finger Exercises due Oct 17, 2016 05:00 IST Data > Kernel Density Estimation, Part I - Quiz

Module 3: Gathering and Collecting Data, Ethics, and Kernel Density Estimates > Summarizing and Describing

Kernel Density Estimation, Part I - Quiz

☐ Bookmark this page

Question 1

1 point possible (graded)

The choice of the boundaries for a kernel density plot is dictated by a trade off between ______ caused by too small of a bandwidth and ______ as a result of too large of a bandwidth.

	a. \	/ari	and	e,	bias
--	------	------	-----	----	------

\bigcirc	b.	bias,	varianc	E
------------	----	-------	---------	---

c. bias, smoothness

d. variance, smoothness

Explanation

If your bandwidth is smaller than optimal, your function will look very jagged. As Professor Duflo mentions, the smaller the bandwidth, the bigger the variance. When you pick a bandwidth that is too large for your data, the function will try to find data that does not exist. This will cause the

Summarizing and Describing Data

Finger Exercises due Oct 17, 2016 05:00 IST

Ø.

Module 3: Homework

<u>Homework due Oct 10, 2016</u> 05:00 IST

Sub

- Module 4: Joint,
 Marginal, and
 Conditional
 Distributions &
 Functions of Random
 Variable
- Module 5: Moments of a Random Variable,
 Applications to
 Auctions, & Intro to
 Regression
- Module 6: Special
 Distributions, the
 Sample Mean, the
 Central Limit Theorem,
 and Estimation

result kernel density function to be biased, meaning that there is an important characteristics of the data that you are missing as a result of selecting a non-optimal bandwidth.

Submit

You have used 0 of 2 attempts

Question 2

1 point possible (graded)

For which of the following scenarios would it be better to use a histogram over a kernel density plot?

- a. To show a continuous distribution function of student's math grades
- b. To demonstrate the impact of an intervention on school attendance rates
- c. To show the difference in the distribution of male and female height
- d. To display the proportion of the U.S. households that fall within certain income brackets (e.g. between 0 and \$15,000; between \$15,000 and \$30,000; etc.)

Explanation

- Module 7: Assessing and Deriving Estimators -Confidence Intervals, and Hypothesis Testing
- Module 8: Causality,
 Analyzing Randomized
 Experiments, &
 Nonparametric
 Regression
- Module 9: Single and Multivariate Linear Models
- Module 10: Practical Issues in Running Regressions, and Omitted Variable Bias
- Module 11: Intro to
 Machine Learning and
 Data Visualization
- Module 12: Endogeneity,

As discussed in this segment, a kernel density plot provides a continuous probability density function of a random variable. In the last segment, we learned that a histogram is also an estimate of a probability distribution for a continuous variable, but, unlike the kernel density function, it is not a continuous function. Instead, a histogram demonstrates the number of observations or the proportion of observations that fit into a certain "bin." From this, a histogram would be preferable to a kernel density function for cases in which we want to demonstrate the proportion of observations that fall into certain bins, such as when we want to show the proportion of households that fall within specified income brackets.

Submit You have used 0 of 2 attempts

Discussion
Topic: Module 3 / Kernel Density Estimation, Part I - Quiz

Show Discussion

Instrumental Variables,
and Experimental
<u>Design</u>

- Exit Survey
- ▶ Final Exam

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

