Related Quantum Mechanics concepts

(simplified) (basic concepts)

(or any matter) can have the behaviours of both a particle and a

(refer to the double-slit experiment)

CC BY-SA 4.0,

By Original: NekoJaNekoJa Don't know interference? <u>Vector: Johannes Kalliauer,</u> Ask a near<u>by physics</u> teacher. (Wave Motion II 3B and Atomic World E2)

Wave function

It provides the probability for finding a particle in a particular position (or state). Below are two graphs demonstrating a single wave function

This is only possible because the particle is not measured. It exists in After measuring, the collapses. The particle exists in a definite state. (simplified)

"spooky action at a distance" -Albert Einstein

A phenomenon where two particles become , so that the state of one particle instantly influences the state of the other,

When particles are entangled, their cannot be described independently; they must be considered as a single system.

Visualisation of two entangled photons (yin-yang pattern) [5]

Quantum tunneling

A consequence of Wave-particle duality and Wave function

barrier

A phenomenon where particles can pass through a barrier that they

normally wouldn't be able to cross Below are two diagrams. One simplifies quantum tunneling, while the other is more detailed

Scanning Tunneling Microscopes (STM) are based on the concept of Quantum Tunneling

Consider a particle with energy E that is confined in a box which has a barrier of height V. Classically, the box will prevent these particles from escaping due to the insufficiency in kinetic energy of these particles to get over the barrier. However, if the thickness of the barrier is thin, the particles have some probability of penetrating through the barrier without sufficient energy and appear on the other side of the box

In Classical Mechanics, electrons must climb the potential hill to appear on the other side.

Quantum Mechanics allows electron with less energy to tunnel thru the barrier and appear on the other side.

There is still some probability behind the barrier, but it is diminished