Real Analysis Theorems

Zhiwei Zhang

April 22, 2019

1 Limsup and Liminf

Corollary 1.0.1. If $\lim_{n \to \infty} \left| \frac{s_{n+1}}{s_n} \right|$ exists [and equals L], then $\lim_{n \to \infty} \left| s_n \right|^{1/n}$ exists [and equals L].

2 Uniform Continuity

Theorem 2.1. Pass. ...

3 Power Series

Given power series $\sum_{n=0}^{\infty} a_n x^n$

Theorem 3.1. Given any (a_n) , one of the following holds true:

- 1. The power series converges for all $x \in \mathbb{R}$
- 2. The power series converges only for x = 0
- 3. The power series converges for all x in some bounded interval centered at 0; the interval walmay be open, half-open or closed.

Theorem 3.2. Let

$$\beta = \limsup |a_n|^{1/n}$$
 and $R = \frac{1}{\beta}$

Then

- 1. The power series converges for |x| < R
- 2. The power series diverges for |x| > R

Also notice that $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \beta$, therefore most of the time we will use $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ as it's easier to compute that β .

4 More on Uniform Convergence

Theorem 4.1. Let (f_n) be a sequence of continuous functions on [a,b], and suppose $f_n \to f$ uniformly on [a,b]. Then

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$$

Definition 4.2. A sequence (f_n) of functions defined on a set $S \subseteq \mathbb{R}$ is uniformly Cauchy on S if

for each
$$\epsilon > 0$$
 there exists a number N such that $|f_n(x) - f_m(x)| < \epsilon$ for all $x \in S$ and all $m, n > N$

Theorem 4.3. Let (f_n) be a sequence of functions defined and uniformly Cauchy on a set $S \subseteq \mathbb{R}$. Then there exists a function f on S such that $f_n \to f$ uniformly on S.

Theorem 4.4. Consider a series $\sum_{k=0}^{\infty} g_k$ of functions on a set $S \subseteq \mathbb{R}$. Suppose each g_k is continuous on S and the series converges uniformly on S. Then the series $\sum_{k=0}^{\infty} g_k$ represents a continuous function on S.

Theorem 4.5. If a series $\sum_{k=0}^{\infty} g_k$ of functions satisfies the Cauchy criterion uniformly on a set S, then the series converges uniformly on S.

Theorem 4.6. Let (M_k) be a sequence of nonnegative real numbers where $\sum M_k < \infty$. If $|g_k(x)| \leq M_k$ for all x in a set S, then $\sum g_k$ converges uniformly on S.

Theorem 4.7. Show that if the series $\sum g_n$ converges uniformly on a set S, then $\lim_{n\to\infty} \sup \{|g_n(x)| : x \in S\}$

5 Differentiation and Integration of Power Series

Theorem 5.1. Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with radius of convergence R > 0 [possibly $R = +\infty$]. If $0 < R_1 < R$, then the power series converges uniformly on $[-R_1, R_1]$ to a continuous function.

Lemma 5.2. If the power series $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R, then the power series

$$\sum_{n=1}^{\infty} n a_n x^{n-1}$$

and

$$\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$$

also have radius of convergence R.

Theorem 5.3 (Abel's Theorem). Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ be a power series with finite positive radius of convergence R. If the series converges at x = R, then f is continuous at x = R. If the series converges at x = -R, then f is continuous at x = -R.

6 Basic Properties of the Derivative

Theorem 6.1. Differentiability implies continuity.

7 Mean Value Theorem

Theorem 7.1. Let f be a continuous function on [a,b] that is differentiable on (a,b). Then there exists $[at least one] \ x \ in (a,b) \ such that$

$$f'(x) = \frac{f(b) - f(a)}{b - a}$$

Theorem 7.2 (Intermediate Value Theorem for Derivatives). Let f be a differentiable function on (a,b). If $a < x_1 < x_2 < b$, and if c lies between $f'(x_1)$ and $f'(x_2)$, there exists [at least one] x in (x_1, x_2) such that f'(x) = c

Theorem 7.3. Let f be a one-to-one continuous function on an open intervalI, and let J = f(I). If f is differentiable at $x_0 \in I$ and if $f'(x_0) \neq 0$, then f^{-1} is differentiable at $y_0 = f(x_0)$ and

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$

Corollary 7.3.1. Let f be a differentiable function on (a,b) such that f'(x) = 0 for all $x \in (a,b)$. Then f is a constant function on (a,b).

Corollary 7.3.2. Let f and g be differentiable functions on (a,b) such that f'=g' on (a,b). Then there exists a constant c such that f(x)=g(x)+c for all $x \in (a,b)$.

Theorem 7.4 (IVT for derivatives). Let f be a differentiable function on (a,b). If $a < x_1 < x_2 < b$, and if c lies between $f'(x_1)$ and $f'(x_2)$, there exists [at least one] x in (x_1, x_2) such that f'(x) = c

Theorem 7.5 (Rolle's Theorem). Let f be a continuous function on [a,b] that is differentiable on (a,b) and satisfies f(a) = f(b). There exists [at least one] x in (a,b) such that f'(x) = 0

8 Taylor's Theorem

Definition 8.1. Taylor's Theorem:

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x-c)^k$$

Remainder:

$$R_n(x) = f(x) - \sum_{k=0}^{n-1} \frac{f^{(k)}(c)}{k!} (x - c)^k$$

Theorem 8.2 (Taylor's Theorem). Let f be defined on (a,b) where a < c < b; here we allow $a = -\infty$ or $b = \infty$. Suppose the nth derivative $f^{(n)}$ exists on (a,b). Then for each $x \neq c$ in (a,b) there is some y between c and x such that

$$R_n(x) = \frac{f^{(n)}(y)}{n!}(x-c)^n$$

Corollary 8.2.1. Let f be defined on (a,b) where a < c < b. If all the derivatives $f^{(n)}$ exist on (a,b) and are bounded by a single constant C, then

$$\lim_{n \to \infty} R_n(x) = 0 \quad \text{for all} \quad x \in (a, b)$$

Theorem 8.3 (Taylor's Theorem (another one)). Let f be defined on (a,b) where a < c < b, and suppose the nth derivative $f^{(n)}$ exists and is continuous on (a,b). Then for $x \in (a,b)$ we have

$$R_n(x) = \int_c^x \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt$$

Corollary 8.3.1. If f is as in Theorem 31.5, then for each x in (a,b) different from c there is some y between c and x such that

$$R_n(x) = (x - c) \cdot \frac{(x - y)^{n-1}}{(n-1)!} f^{(n)}(y)$$

This form of R_n is known as Cauchy's form of the remainder.

Theorem 8.4 (Binomial Series Theorem). If $\alpha \in \mathbb{R}$ and |x| < 1, then

$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} x^k$$

Theorem 8.5. Newton's method for finding an approximate solution to f(x) = 0 is to begin with a reasonable initial guess x_0 and then compute

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$$
 for $n \ge 1$