My Rendition of Hunter's Proof of Metatheorem 45.12

Branden Fitelson 03/22/07

Theorem. Let K be a consistent first order theory. And, let $K' = K + \{\alpha\}$, where α is an arbitrary (particular) well-formed formula of the following form (added as a new proper axiom to K to form K'):

$$(\alpha)$$
 $Ac/v \supset \bigwedge vA$

where (i) A is a well-formed formula of K, (ii) c does not occur in any proper axiom of K, (iii) c does not occur in A, and (iv) $\wedge vA$ is a closed formula of K (as a result, v is the only variable that possibly occurs free in A). Then, K' is also a consistent first order theory, and one which is an extension of K.

Proof. First, we will show that K' is a first order theory that extends K. Then, we will show that K' is consistent. To see that K' is a first order theory that extends K, note that any WFF of form α will be a *closed* formula. This is because (a) its consequent $\wedge vA$ is closed by hypothesis (iv) of the theorem, and (b) its antecedent Ac/v is closed (since, again by hypothesis (iv) of the theorem, v is the only variable that possibly occurs free in A, and we are replacing all of its free occurrences in A with a constant c). And, any conditional with a closed antecedent and a closed consequent is itself closed. Thus, since K' is just K plus a closed formula α , K' is just K with one additional proper axiom. So, since K is a first order theory, K' is a first order theory which extends K. That was the easy part. Now, we have to show that K' is *consistent*.

Assume, for *reductio*, that K' is inconsistent. That is, $K + \{\alpha\}$ is inconsistent. Then, we can reason:

1. $K + \{\alpha\}$ is inconsistent (*i.e.*, K' is inconsistent)

[reductio assumption]

2. $\vdash_{\kappa} \sim (Ac/v \supset \bigwedge vA)$ (i.e., $\vdash_{\kappa} \sim \alpha$)

[(1), metatheorem 45.6(b)]

3. $\vdash_{\mathsf{K}} \sim (Ac/v \supset \bigwedge vA) \supset Ac/v$

[45.3, instance of tautological schema]

4. $\vdash_{\kappa} \sim (Ac/v \supset \bigwedge vA) \supset \sim \bigwedge vA$

[45.3, instance of tautological schema]

5.
$$\vdash_{K} Ac/v$$
 [MP, (2), (3)]

6.
$$\vdash_{\kappa} \sim \bigwedge vA$$
 [MP, (2), (4)]

Now, the strategy will be to use (5) to show that $\vdash_K \land vA$. This, together with (6), will imply that K is inconsistent. That will contradict the hypothesis of the theorem, hence refuting our *reductio* assumption, and establishing that K' is in fact consistent. So, the goal is to prove $\vdash_K \land vA$ from $\vdash_K Ac/v$, using (i)–(iv). Since $\vdash_K Ac/v$, we know there is a proof $\langle B_1, \ldots, B_m \rangle$ of Ac/v in K. Let u be any variable that does not occur in this proof. As a result, note that u does not occur in A, since this proof is a proof of $\land vA$. Let B'_i be the result of substituting u for c in B_i . That is, $B'_i = B_i u/c$. Now, $\langle B'_1, \ldots, B'_m \rangle$ is also proof of in K. To see this, note that each B_i is either a logical axiom, a proper axiom, or an immediate consequence by modus ponens (MP) from two previous lines, and that this is also true for each B'_i . There are three cases:

- I. If B_i is a logical axiom, then so is B'_i . There are five sub-cases here:
 - (a) B_i is a logical axiom by K1-K3. Then, B_i is an instance of a propositional axiom schemata. In this case, $B'_i = B_i u/c$ is also an instance of a propositional axiom schemata, since merely substituting u for c in B_i cannot change the propositional logical form of any formula B_i .

 $^{^{1}}$ I am using the notation Au/c to stand for the formula obtained by substituting the variable u for *every* occurrence of the constant c in A. Hunter only uses this notation when variables appear on the right hand side of the slash. Recall, on this more standard usage of Hunter's, At/v stands for the formula obtained by substituting the term t for every *free* occurrence of the variable v in A. In my usage, this restriction will apply when a variable appears on the right hand side of the slash.

- (b) B_i is a logical axiom by K4. So, B_i is of the form $\bigwedge vC \supset Ct/v$, where t is free for v in C. Thus, $B'_i = (\bigwedge vC \supset Ct/v)u/c = (\bigwedge vCu/c \supset (Ct/v)u/c) = (\bigwedge vCu/c \supset (Cu/c)t/v)$, where t is free for v in C. This is because u does not occur in B_i (hence, u does not occur in C, Ct/v, or t), and so (Ct/v)u/c = (Cu/c)t/v. Therefore, B'_i is of the form $\wedge vD \supset Dt/v$ (with D = Cu/c), where t is free for v in D. So, B'_i is also a logical axiom by K4.
- (c) B_i is a logical axiom by K5. So, B_i is of the form $C \supset \bigwedge vC$, where v does not occur free in C. Thus, $B_i' = (C \supset \bigwedge vC)u/c = (Cu/c \supset \bigwedge vCu/c)$. Therefore, B_i' is of the form $D \supset \bigwedge vD$ (with D = Cu/c), where v does not occur free in D. So, B'_i is also a logical axiom by K5.
- (d) B_i is a logical axiom by K6. So, B_i is of the form $\bigwedge v(C \supset D) \supset (\bigwedge vC \supset \bigwedge vD)$. Thus, $B_i' = (\bigwedge v(C \supset D) \supset (\bigwedge vC \supset \bigwedge vD))u/c = \bigwedge v(Cu/c \supset Du/c) \supset (\bigwedge vCu/c \supset \bigwedge vDu/c),$ which is also a logical axiom by K6.
- (e) B_i is a logical axiom by K7. So, B_i is of the form $\wedge vC$, where C is a logical axiom by K1-K6. Thus, $B'_i = \bigwedge vCu/c$, where Cu/c is a logical axiom by the above six arguments (which show that if C is an axiom by K1-K6, then so is C' = Cu/c). Hence, by K7, B'_i is also a logical axiom.
- II. If B_i is a proper axiom of K, then so is B'_i . For, if B_i is a proper axiom, then $B'_i = B_i u/c = B_i$, since cdoes not occur in any proper axiom of K (so "replacing" c with u in B_i does nothing to B_i).
- III. If B_i is an immediate consequence by MP of two previous lines in $\langle B_1, \ldots, B_m \rangle$, then B_i' is an immediate consequence by MP of two previous lines in $\langle B'_1, \ldots, B'_m \rangle$. Assume B_i is an immediate consequence by MP of two previous lines B_j and $B_j \supset B_i$. Then, $(B_j \supset B_i)' = (B_i' \supset B_i')$, and B_i' will be an immediate consequence by MP of B'_i and $(B'_i \supset B'_i) = (B_j \supset B_i)'$.

Therefore, a proof of $\vdash_K Ac/v$ can be turned into a proof of $\vdash_K (Ac/v)'$, i.e., $\vdash_K (Ac/v)u/c$. And, we reason:

5. $\vdash_{\kappa} Ac/v$ [established above] 7. $\vdash_{\kappa} (Ac/v)u/c$ [(5), our proof above, and (Ac/v)' = (Ac/v)u/c] 8. $\vdash_{\kappa} Au/v$ [(7), c does not occur in A] 9. $\vdash_{\kappa} \land uAu/v$ [(8), metatheorem 45.4]10. $\vdash_{\mathsf{K}} \bigwedge u A u / v \supset (A u / v) v / u$ [axiom K4, v is free for u in Au/v since u does not occur in A] 11. $\vdash_{\kappa} \land uAu/v \supset A$ [(10), (Au/v)v/u = A]12. $\vdash_K A$ [(9), (11), MP] 13. $\vdash_{\kappa} \land vA$ [(12), metatheorem 45.4]

14. $\vdash_K \land vA$ and $\vdash_K \sim \land vA$ [(13) and (6)]

[(14), definition of inconsistency of K]

15. *K* is inconsistent.

Therefore, our assumption that $K' = K + \{\alpha\}$ is inconsistent has led to the conclusion that K is inconsistent.

But, K is consistent by the hypothesis of the theorem. Contradiction. And, by reductio ad absurdum, we conclude that $K' = K + \{\alpha\}$ is, in fact, consistent. This completes the proof of metatheorem 45.12.