Homework 3

1. Answers

a. 2.5

b. $\frac{x^5+1}{2}$

c. 0.502

d. 0.83

2. Answers

		x						
у	0	1	2	3	4	5	P _y (y)	
0	0.040	0.010	0.025	0	0.025	0	0.1	
1	0.200	0	0.050	0.300	0	0	0.55	
2	0.100	0.100	0	0	0	0.150	0.35	
P _x (x)	0.34	0.11	0.075	0.3	0.025	0.15	1	

a. Because $P_x(x)$ and $P_y(y) = 1$ that means this is a valid joint probability distribution

b. See bottom row of table (bolded)

c. See last column of table (bolded)

	0	1	2	3	4	5
F(x y=0)	0.4	0.1	0.25	0	0.25	0
F(x y=1)	0.36	0	0.09	0.5454	0	0
F(x y=2)	0.285	0.285	0	0	0	0.428

d. See table above

e. 0.6

f. They are dependent, see work in the how I solved section

3. Answers

a. 4

b. 0.04

c. 2x, $0 \le x \le 1$ (marginal density of x)

d. 2y, $0 \le y \le 1$ (marginal density of y)

e. 2x, $0 \le x \le 1$ (f(x|y))

f. 2y, $0 \le y \le 1$ (f(y | x))

g. 2x, $0 \le x \le 1$ (f(x | y=0.5))

h. Independent

How I solved:

- 1. Density Function (Continuous Random Variables)
 - a. We know that the density function integrated with infinity and negative infinity as the bounds should equal 1. So we integrate cx^4 and set it equal to 1 with the bounds given to us (-1 to 1)

i.
$$\int_{-1}^{1} cx^4 = 1$$
. Which gives us 5/2 or 2.5

b.
$$\int_{-1}^{x} \frac{5}{2} x^4 = \frac{x^5 + 1}{2}$$

- i. So now we have F(x) = 0 if $x \le -1$, $\frac{x^5 + 1}{2}$ if -1 < x < 1, and 1 if $x \ge 1$.
- c. To solve F(1/3) plug 1/3 in for x which gives you 0.502
- d. |x| means we would have to integrate f(x) from -1 to -0.7 added to the integration of f(x) from 0.7 to 1, however, P(|x|>0.7) is equivalent to F(0.7)*2 which is 0.83

2. Joint Probability Distribution

	х						
у	0	1	2	3	4	5	$P_y(y)$
0	0.040	0.010	0.025	0	0.025	0	0.1
1	0.200	0	0.050	0.300	0	0	0.55
2	0.100	0.100	0	0	0	0.150	0.35
P _x (x)	0.34	0.11	0.075	0.3	0.025	0.15	1

- a. Looked at table
- b. Add whats in the columns together
- c. Add whats in the rows together
- d. F(x|y) = f(x,y)/f(y), plug and chug
- e. $P(X > 0 \mid Y = 0)$ i.e for all values of X greater than 0 given Y = 0
 - a. P(X=1,2,3,4,5, Y=0)/P(Y=0)
 - b. 0.01+0.025+0.025/0.1=0.6
- f. Independence defined as $p(x,y) = p_x(x)p_y(y)$
 - a. So we'll take P(2,2) = 0.075*0.35 = 0.026 but it should be 0 to be independent, so the variables are dependent
 - b. As a sanity check we'll look at P(1,0) = 0.11*0.1 = 0.011 but should be 0.010
- 3. Joint Density
 - a. Take double integral with limits being 0 to 1 for both x and y
 - i. Gives you 1/4. So we have c1/4 = 1 which makes c = 4
 - b. P(x < 0.4, Y < 0.5)
 - i. Take the double integral of 4xy with the limits 0 to 0.5 for y and 0 to 0.4 for x
 - c. Take the integral of f(x,y) with the limits of 0 to 1 with respect to y
 - d. Do the same as did to find marginal density of X but with respect to x

- e. F(y|x) = f(x,y)/f(x)
- f. F(x|y) = f(x,y)/f(y)
- g. F(x|y=0.5) = f(x, 0.5)/f(y) = 4x(0.5)/2(0.5)
- h. $f(x,y) = f_x(x)f_y(y)$
 - i. 4xy = 2x*2y = 4xy, which means independent