Chapitre 7

Coordonnées curvilignes

Sommaire

7.1	Repères rectilignes et curvilignes	23
7.2	Changement de base	24
7.3	Notion de tenseur absolu et relatif	25

7.1 Repères rectilignes et curvilignes

La position d'un point M peut être repéré dans un système de référence fixe orthonormé, appelé repère cartésien (ou repère rectiligne) $\overrightarrow{I_a}$. On a alors :

$$\overrightarrow{OM} = \overrightarrow{M} = X^a (M) \overrightarrow{I_a} = X^a \overrightarrow{I_a}$$
(7.1)

Mais les coordonnées X^a peuvent être fonctions de paramètres θ^i avec i=1,...,3.

On ainsi : $\theta^i \in \mathbb{R} \rightleftharpoons M(\theta^i)$.

Dans le cas général, les termes X^a sont des fonctions qui dépendent de θ^i . On a alors :

$$\overrightarrow{OM} = \overrightarrow{M} = X^a \left(\theta^i\right) \overrightarrow{I_a} \tag{7.2}$$

Les θ^i forment un système de coordonnées appelées coordonnées curvilignes. Ces coordonnées définissent un repère curviligne $\overrightarrow{g_i}$ qui évolue dans le temps et dépend du point M choisi :

$$\overrightarrow{g_i} = \frac{\partial \overrightarrow{OM}}{\partial \theta^i} = \frac{\partial X^a(\theta^i)}{\partial \theta^i} \overrightarrow{I_a} = X_{,i}^a \overrightarrow{I_a}$$
(7.3)

Remarque : On suppose que les fonctions $X^a(\theta^i)$ sont n fois différentiables par rapport à θ^i .

Les vecteurs $\overrightarrow{g_i}$ sont tangents à la courbe décrite par M lorsque seul le paramètre θ^i varie (voir figure (7.1)).

La base $\overrightarrow{g_i}$ (base naturelle) est appelée également base curviligne relativement au paramétrage θ^i . On définira de la même façon, la base duale $\overrightarrow{g^i}$ de la base base curviligne $\overrightarrow{g_i}$ par :

$$\overrightarrow{g_j} \cdot \overrightarrow{g^i} = \delta_j^i \tag{7.4}$$

On a une relation entre X^a et θ^i définit par la transformation des coordonnées $X^a \longrightarrow \theta^i$ et caractérisé par la matrice jacobienne :

$$[J] = \left\lceil \frac{\partial X^a}{\partial \theta^i} \right\rceil \tag{7.5}$$

Dans le cas où le déterminant de la matrice jacobienne de la transformation : $f_i: X^a \longrightarrow \theta^i$ est différent de 0, la transformation est réversible. Il existe alors la fonction : $p_i: \theta^i \longrightarrow X^a$, et donc f_i et p_i sont des bijections.

FIGURE 7.1 – Définition des vecteurs de base g_i

Changement de base 7.2

Soit 2 paramétrages curvilignes θ^i et θ'^i et les bases curvilignes associées $\overrightarrow{g_j}$ et $\overrightarrow{g_i'}$. Supposons que l'on peut exprimer $\overrightarrow{g_i'}$ en fonction de $\overrightarrow{g_j}$, c'est-à-dire qu'il existe la matrice de changement de base β_i^j telle que :

$$\overrightarrow{g_i'} = \beta_i^j \overrightarrow{g_j} \tag{7.6}$$

Cherchons à expliciter les termes β_i^j . On sait que : $\overrightarrow{g_j} = \frac{\partial \overrightarrow{M}}{\partial \theta^j} = \frac{\partial X^k}{\partial \theta^j} \overrightarrow{I_k}$ et $\overrightarrow{g_i} = \frac{\partial X^k}{\partial \theta^{ri}} \overrightarrow{I_k}$ Donc avec la relation (7.6) :

$$\frac{\partial X^k}{\partial \theta'^i} \overrightarrow{I_k} = \beta_i^j \frac{\partial X^k}{\partial \theta^j} \overrightarrow{I_k}$$

Or, on peut écrire : $\frac{\partial X^k}{\partial \theta'^i} = \frac{\partial X^k}{\partial \theta^j} \cdot \frac{\partial \theta^j}{\partial \theta'^i}$, et il vient :

$$\beta_i^j = \frac{\partial \theta^j}{\partial \theta'^i} \tag{7.7}$$

ce qui correspond à la matrice jacobienne de la transformation : $\theta^j \longrightarrow \theta'^i$.

Soit un tenseur T du 2^{nd} ordre définit en un point M. Les composantes de ce tenseur dans les bases $\overrightarrow{g_i} \otimes \overrightarrow{g_j}$ et $\overrightarrow{g_i'} \otimes \overrightarrow{g_j'}$:

$$T = T^{ij}\overrightarrow{g_i} \otimes \overrightarrow{g_j} = T'^{ij}\overrightarrow{g_i'} \otimes \overrightarrow{g_j'}$$

On sait que : $T^{ij} = T'^{kl} \beta_k^i \beta_l^j$. D'après (7.7) on a donc :

$$T^{ij} = T^{\prime kl} \frac{\partial \theta^i}{\partial \theta^{\prime k}} \frac{\partial \theta^j}{\partial \theta^{\prime l}} \tag{7.8}$$

ce qui correspond à une nouvelle définition du critère de tensorialité que nous avons déjà vu au paragraphe $\S 4.2$.

La relation inverse s'écrit :

$$T^{\prime kl} = T^{ij} \frac{\partial \theta^{\prime k}}{\partial \theta^i} \frac{\partial \theta^{\prime l}}{\partial \theta^j} \tag{7.9}$$

Les règles de transformation des composantes d'un tenseur, n fois contravariant, p fois covariant sont données par :

$$relation 10$$
 (7.10)

Remarque : Dans le cas où les grandeurs T^{ij} sont définis $\forall M$ et que la formule (7.8) est vérifiée $\forall M$, on parle de champ de tenseurs. Dans la pratique, c'est le cas le plus utilisé et on oublie souvent le terme "champ", on parle alors simplement de tenseur lorsqu'il n'y a pas de confusion possible.

Exemple d'application : Soit un tenseur T exprimé dans la base naturelle $\overrightarrow{g_i}$, on veut ces composantes dans le repère absolu $\overrightarrow{I_k}$:

$$T = T^{ij}\overrightarrow{g_i} \otimes \overrightarrow{g_j} = T'^{kl}\overrightarrow{I_k} \otimes \overrightarrow{I_l}$$

- méthode 1 : on utilise la formule de changement de base (7.8) où θ^i sont les anciennes coordonnées et X^j sont les nouvelles coordonnées, soit : $T'^{kl} = T^{ij} \frac{\partial X^k}{\partial \theta^i} \frac{\partial X^l}{\partial \theta^j}$

$$T^{\prime kl} = T^{ij} \frac{\partial \dot{X}^k}{\partial \theta^i} \frac{\partial X^l}{\partial \theta^j}$$

- méthode 2 :

$$T^{ij}\overrightarrow{g_i}\otimes\overrightarrow{g_j} = T^{ij}\left(\frac{\partial X^k}{\partial \theta^i}\overrightarrow{I_k}\right)\otimes\left(\frac{\partial X^l}{\partial \theta^j}\overrightarrow{I_l}\right)$$

$$T^{ij}\overrightarrow{g_i}\otimes\overrightarrow{g_j} = T^{ij}\left(\frac{\partial X^k}{\partial \theta^i}\overrightarrow{I_k}\right)\otimes\left(\frac{\partial X^l}{\partial \theta^j}\overrightarrow{I_l}\right)$$

$$= T^{ij}\frac{\partial X^k}{\partial \theta^i}\frac{\partial X^l}{\partial \theta^j}\overrightarrow{I_k}\otimes\overrightarrow{I_l}$$

$$= T^{ij}\overrightarrow{I_k}\otimes\overrightarrow{I_k}$$

Notion de tenseur absolu et relatif 7.3

Soit 2 systèmes de coordonnées θ^i et θ'^i et la matrice jacobienne de passage d'un système à l'autre :

$$[j] = \left[\frac{\partial \theta^k}{\partial \theta'^i}\right] \tag{7.11}$$

Le jacobien de la transformation correspond au déterminant de la matrice jacobienne J soit |J|. On dit qu'un tenseur est relatif de poids *M* s'il se transforme selon la formule :

$$T^{\prime kl} = T^{ij} \left| J \right|^M \frac{\partial \theta^{\prime k}}{\partial \theta^i} \frac{\partial \theta^{\prime l}}{\partial \theta^j} \tag{7.12}$$

Lorsque M=0, on parlera de tenseur absolu. Dans la pratique, les seuls tenseurs relatifs utilisés seront de poids 1 ou -1.

A part les opérations de changement de base, les opérations sont identiques pour les tenseurs relatifs et absolus.

NB: Le produit d'un tenseur relatif de poids -1 et d'un de poids 1 donne un tenseur absolu. On peut toujours obtenir un tenseur absolu à partir d'un tenseur relatif, soit en le multipliant ou en le divisant par |J|.