## SRAM 芯片和 DRAM 芯片

## 工作原理

通常把存放一个二进制位的物理器件称为存储元,它是存储器的最基本的构件。地址码相同的多个存储元构成一个存储单元。若干存储单元的集合构成存储体。

|                             |                                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                                             |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                             |                                                                                                                                             |                                                                                   |
| SRAM                        | 非性存度<br>使取快成<br>生物。<br>作成<br>作成<br>作成<br>作成<br>作成<br>作成<br>作成<br>作品<br>作品<br>作品<br>作品<br>作品<br>作品<br>作品<br>作品<br>作品<br>作品<br>作品<br>作品<br>作品 | 静态随机存储器 (SRAM) 的存储元是双稳态触发器 (六晶体管 MOS) 来记忆信息的,静态是指即使信息被读出后,它仍保持其原状态而不需要再生(非破坏性读出)。 |
| DRAM<br>SDRAM<br>同步<br>DRAM | 破坏性 读知 存度 度成 集高                                                                                                                             | 动态随机存储器 (DRAM) 是利用存储元电路上栅极电容上的电荷来存储信息的,DRAM 的基本存储元通常只使用一个晶体管,所以它比 SRAM的密度要高很多。    |
|                             | 600                                                                                                                                         | _(N)                                                                              |

## DRAM 刷新

DRAM 电容上的电荷一般只维持 1~2ms,因此即使电源不断电,信息也会自动消失。此外,读操作会使 其状态发生改变 (破坏性读出),需读后再生,这也是称其为动态存储器的原因。

刷新可采用读出的方法进行,根据读出内容对相应单元进行重写,即读后再生。对同一行进行相邻两次刷新的时间间隔称为刷新周期,通常取 2ms。

| 集中刷新 | 读/写操作时<br>不受刷新工作的影响<br>在集中刷新期间 (死区)<br>不能访问存储器<br>有死区 | 在一个刷新周期内,利用一段固定的时间,依次对存储器的所有行进行逐一再生,在此期间停止对存储器的读/写操作,称为死时间,也称访存死区。                                               |
|------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 分散刷新 | 没有死区<br>加长了系统<br>的存取周期                                | 将一个存储器系统的工作周期分为两部分: 前半部分用于正常的读/写操作: 后半部分用于刷新。这种刷新方式增加了系统的存取周期,如存储芯片的存取周期为 0.5µs,则系统的存取周期为 1µs。                   |
| 异步刷新 | 有死区                                                   | 结合了前两种方法,使得在一个刷新周期内每一行仅刷新一次。具体做法是将刷新周期除以行数,得到相邻两行之间刷新的时间间隔 t,每隔时间 t 产生一次刷新请求。这样就使"死时间"的分布更加分散,避免让 CPU 连续等待过长的时间。 |

#### SRAM 和 DRAM 的比较

|       | SRAM    | DRAM                |
|-------|---------|---------------------|
| 存储信息  | 触发器     | 电容                  |
| 破坏性读出 | 非       | 是                   |
| 需要刷新  | 不要      | 需要                  |
| 送行列地址 | 同时送     | 分两次送 (复用)           |
| 运行速度  | 快       | 慢                   |
| 集成度   | 低       | 高                   |
| 存储成本  | 高 rendl | 低 <sub>terrol</sub> |
| 主要用途  | 高速缓存    | 主机内存                |

#### 存储器芯片的内部结构

存储器芯片由存储体、I/O 读/写电路、地址译码器和控制电路等部分组成。



#### • 存储体 (存储矩阵)

存储体是存储单元的集合,它由行选择线 (X) 和列选择线 (Y) 来选择所访问单元,存储体的相同行、列上的多位 (位平面数) 同时被读出或写入。

#### • 地址译码器

用来将地址转换为译码输出线上的高电平,以便驱动相应的读/写电路。地址译码有单译码法 (一维译码) 和双译码法 (二维译码) 两种方式。

### • I/O 控制电路

用以控制被选中的单元的读出或写入,具有放大信息的作用。

## • 片选控制信号

单个芯片容量太小,往往满足不了计算机对存储器容量的要求,因此需要用一定数量的芯片进行存储器的扩展。在访问某个字时,必须"选中"该存储字所在的芯片,而其他芯片不被"选中",因此需要有片选控制信号。

### • 读/写控制信号

根据 CPU 给出的读命令或写命令,控制被选中单元进行读或写。

## 只读存储器

| 1.7                                 | <u> </u>                                                                                                                                   |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| ROM 的类型                             |                                                                                                                                            |
| MROM<br>掩模式只读<br>存储器                | \                                                                                                                                          |
| PROM<br>一次可编程<br>只读存储器              | \                                                                                                                                          |
| EPROM<br>可擦除可编<br>程只读存储<br>器        | 不仅可以由用户利用编程器写入信息,而且可以对其内容进行多次改写。EPROM<br>虽然既可读又可写,但它不能取代 RAM,因为 EPROM 的编程次数有限,且写入<br>时间过长。                                                 |
| Flash 存储<br>器                       | Flash 存储器是在 EPROM 的基础上发展起来的,它兼有 ROM 和 RAM 的优点,可在不加电的情况下长期保存信息,又能在线进行快速擦除与重写。Flash 存储器 既有 EPROM 价格便宜、集成度高的优点,又有 E2PROM 电可擦除重写的特点,且擦除重写的速度快。 |
| 固态硬盘<br>Solid State<br>Drive<br>SSD | 基于闪存的固态硬盘是用固态电子存储芯片阵列制成的硬盘,由控制单元和存储单元 (Flash 芯片) 组成。保留了 Flash 存储器长期保存信息、快速擦除与重写的特性。对比传统硬盘也具有读/写速度快、低功耗的特性,缺点是价格较高。                         |

# 多模块存储器

CPU 的速度比存储器快得多,若同时从存储器中取出 n 条指令,就可以充分利用 CPU 资源,提高运行速度。

| 10                  |                                                                                                                                                                                                          |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 单体<br>多字<br>存储<br>器 | 在单体多字系统中,每个存储单元存储 m 个字,总线宽度也为 m 个字,一次并行读出 m 个字。在一个存取周期内,从同一地址取出 m 条指令,然后将指令逐条送至 CPU 执行,即每隔 1/m 存取周期,CPU 向主存取一条指令。这显然提高了单体存储器的工作速度。 缺点:只有指令和数据在主存中连续存放时,这种方法才能有效提升存取速度。一旦遇到转移指令,或操作数不能连续存放时,这种方法的提升效果不明显。 |
| 多体<br>并行<br>存储<br>器 | 多体并行存储器由多体模块组成。每个模块都有相同的容量和存取速度,各模块都有独立的读/写控制电路、地址寄存器和数据寄存器。它们既能并行工作,又能交叉工作。                                                                                                                             |

engbaochens

enghaochens





Length autherns

Length and the rid

地址译码 体内地址 体号 图 3.8 低位交叉编址的多体存储器

| 多体并<br>行存储<br>器          |                                      |          |                                                                                                                                         |
|--------------------------|--------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 高位交<br>叉编址<br>(顺序<br>方式) | 高位地址表示模块号 (或体号), 低位地址为模块内地址 (或体内地址)。 | 1 20     | 在高位交叉方式下,总把低位的体内地址送到由高位体<br>号确定的模块内进行译码。访问一个连续主存块时,总<br>是先在一个模块内访问,等到该模块访问完才转到下一<br>个模块访问,CPU 总是按顺序访问存储模块,各模块不<br>能被并行访问,因而不能提高存储器的吞吐率。 |
| 低位交<br>叉编址<br>(交叉<br>方式) | 低位地址为模块<br>号,高位地址为<br>模块内地址。         | 轮流启动同时启动 | 低位交叉方式下,总是把高位的体内地址送到由低位体<br>号所确定的模块内进行译码。程序连续存放在相邻模块<br>中,因此称采用此编址方式的存储器为交叉存储器。                                                         |

| V              |                                                                                                                                      |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| 低位<br>交叉<br>编址 |                                                                                                                                      |  |
| 轮流<br>启动       | 若每个模块一次读/写的位数正好等于数据总线位数,模块的存取周期为 T,总线周期为 r,为实现轮流启动方式,存储器交叉模块数应大于或等于 m=T/r。                                                           |  |
| 同时启动           | 若所有模块一次并行读/写的总位数正好等于数据总线位数,则可以同时启动所有模块进行读/写。设每个模块一次读/写的位数为 16 位,模块数 m=4,数据总线位数为 64 位,4 个模块一共提供 64 位,正好构成一个存储字,因此应该同时启动 4 个模块进行并行读/写。 |  |

### 交叉存储器存取时间和带宽的计算



图 3.9 低位交叉轮流启动的存取时间示意图

按每隔 1/m 个存取周期轮流启动各模块,则每隔 1/m 个存取周期就可读出或写入一个数据,存取速度提高 m 倍,上图展示了 4 体交叉轮流启动的时间关系。交叉存储器要求其模块数大于或等于 m,以保证启动某模块后经过 m×r 的时间后再次启动该模块时,其上次的存取操作已经完成 (以保证流水线不间断)。这样连续存取 m 个字所需的时间为

$$t_1 = T + (m-1)r$$
  
而顺序方式连续读取 m 个字所需的时间为 
$$t_2 = mT$$

#### 交叉存储器中访存冲突的分析

ONO)

在理想情况下,m 体交叉存储器每隔 1/m 存取周期可读/写一个数据,若相邻的 m 次访问的访存地址出现在同一个模块内,则会发生访存冲突,此时需延迟发生冲突的访问请求。

(P)

or<sup>(2)</sup>