MATC27 Exam Study

Anmol Bhullar

December 8, 2017

Chapter 2: Section 12.

Definition 0.1. A **topology** on a set X is a collection τ of subsets of X having the following properties:

- 1. \emptyset and X are in τ
- 2. The union of the elements of any subcollection of τ is in τ
- 3. The intersection of the elements of any finite subcollction of τ is in τ

A set X for which a topology τ has been specified is called a **topological space**. We might write this as (X, τ) or as X if the topology put on X is unambigious.

Definition 0.2. If X is a topological space with topology τ , we say that a subset U of X is an **open set** of X if U belongs to the collection τ .

Examples 1. If X is any set, the collection of all subsets of X is a topology on X; it is called the **discrete topology**. The collection consisting of X and \emptyset only is also a topology on X; we shall call it the **indiscrete topology**, or the **trivial topology**. Let X be a set; let τ_f be the collection of all subsets U of X such that X - U either is finite or is all of X. Then τ_f is a topology on X, called the **finite complement topology**.

Definition 0.3. Suppose that τ and τ' are two topologies on a given set X. If $\tau' \supseteq \tau$, we say that τ' is **finer** than τ ; if τ' properly contains τ , we say that τ' is **strictly finer** than τ . We also say that τ is **coarser** than τ' , or **strictly coarser**, in these two respective situations. We say τ is **comparable** with τ' if either $\tau' \supseteq \tau$ or $\tau \supseteq \tau'$.

Chapter 2: Section 13.

Definition 0.4. If X is a set, a **basis** for a topology on X is a collection \mathcal{B} of subsets of X (called **basis elements**) such that

- 1. For each $x \in X$, there is at least one basis element B containing x.
- 2. If x belongs to the intersection of two basis elements B_1 and B_2 , then there is a basis element B_3 containing x such that $B_3 \subseteq B_1 \cap B_2$.

If \mathcal{B} satisfies these two conditions, then we define the **topology** τ **generated by** \mathcal{B} as follows: A subset U of X is said to be open in X (that is, to be an element of τ) if for each $x \in U$, there is a basis element $B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq U$. Note that each basis element is itself an element of τ .

Lemma 1 (Lemma 13.1). Let X be a set; let \mathcal{B} be a basis for a topology on X. Then τ equals the collection of all unions of of elements of \mathcal{B} .

Lemma 2 (Lemma 13.2). Let X be a topological space. Suppose that \mathcal{C} is a collection of open sets of X such that for each open set U of X and each x in U, there is an element C of \mathcal{C} such that $x \in C \subseteq U$. Then \mathcal{C} is a basis for the topology of X.

Lemma 3 (Lemma 13.3). Let \mathcal{B} and \mathcal{B}' be bases for the topologies τ and τ' , respectively, on X. Then the following are equivalent:

- 1. τ' is finer than τ
- 2. For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$.

Definition 0.5. If \mathcal{B} is the collection of all open intervals in the real line,

$$(a,b) = \{x : a < x < b\}$$

the topology generated by \mathcal{B} is called the **standard topology** on the real line. Whenever we consider \mathbb{R} , we shall suppose it is given this topology unless we specifically state otherwise. If \mathcal{B}' is the collection of all half open intervals of the form

$$[a,b) = \{x : a \le x \le b\}$$

where a < b, the topology generated by \mathcal{B}' is called the **lower limit topology** on \mathbb{R} . When \mathbb{R} is given the lower limit topology, we denote it by \mathbb{R}_l . Finally let K denote the set of all numbers of the form $\frac{1}{n}$, for $n \in \mathbb{Z}_+$, and let \mathcal{B}'' be the collection of all open intervals (a, b), along with the sets of the form (a, b) - K. The topology generated by \mathcal{B}'' will be called the **K-topology** on \mathbb{R} .

Lemma 4 (Lemma 13.4). The topologies of \mathbb{R}_l and \mathbb{R}_K are strictly finer than the standard topology on \mathbb{R} , but are not comparable with one another.

Definition 0.6. A subbasis S for a topology on X is a collection of subsets of X whose union equals X. The **topology generated by the subbasis** S is defined to be the collection τ of all unions of finite intersections of elements of S.

Chapter 2: Section 15.

Definition 0.7. Let X and Y be topological spaces. The **product topology** on $X \times Y$ is the topology having as basis the collection \mathcal{B} of all sets of the form $U \times V$, where U is an open subset of X and V is an open subset of Y.

Theorem 5 (Theorem 15.1). If \mathcal{B} is a basis for the topology of X and \mathcal{C} is basis for the topology of Y, then the collection

$$\mathcal{D} = \{ \mathcal{B} \times \mathcal{C} : B \in \mathcal{B} \ and \ C \in \mathcal{C} \}$$

is a basis for the topology of $X \times Y$.

Definition 0.8. Let $\pi_1: X \times Y \to X$ be defined by the equation

$$\pi_1(x,y)=x;$$

let $\pi_2: X \times Y \to Y$ be defined by the equation

$$\pi_2(x,y) = y.$$

The maps π_1 and π_2 are called **projections** of $X \times Y$ onto its first and second factors, respectively.

Theorem 6 (Theorem 15.2). The collection

$$S = \{\pi_1^{-1}(U) : U \text{ open in } X\} \cup \{\pi_2^{-1}(V) : V \text{ open in } Y\}$$

is a subbasis for the product topology on $X \times Y$.

Chapter 2: Section 16.

Definition 0.9. Let X be a topological space with topology τ . If Y is a subset of X, the collection

$$\tau_Y = \{Y \cap U : U \in \tau\}$$

is a topology on Y, called the **subspace topology**. With this topology, Y is called a **subspace** of X; its open sets consist of all intersections of open sets of X with Y.

Lemma 7 (Lemma 16.1). If \mathcal{B} is a basis for the topology of X then the collection

$$\mathcal{B}_Y = \{B \cap Y : B \in \mathcal{B}\}\$$

is a basis for the subspace topology on Y.

If Y is a subspace of X, we say that a set U is **open in** Y (or open relative to Y) if it belongs to the topology on Y; this implies in particular that it is a subset of Y. We say that U is **open in** X if it belongs to the topology of X.

Lemma 8 (Lemma 16.2). Let Y be a subspace of X. if U is open in Y and Y in X, then U is open in X.

Theorem 9 (Theorem 16.3). If A is a subspace of X and B is a subspace of Y, then the product topology on $A \times B$ is the same as the topology $A \times B$ inherits as a subspace of $X \times Y$.

Chapter 2: Section 17.

Definition 0.10. A subset A of a topological space X is said to be **closed** if the set X - A is open.

Theorem 10 (Theorem 17.1). Let X be a topological space. Then the following conditions hold:

- 1. \emptyset and X are closed
- 2. Arbitrary intersections of closed sets are closed
- 3. Finite unions of closed sets are closed

If Y is a subspace of X, we say that a set A is **closed in** Y if A is a subset of Y and if A is closed in the subspace topology of Y (that is, if Y - A is open in Y).

Theorem 11 (Theorem 17.2). Let Y be a subspace of X. Then a set A is closed in Y if and only if it equals the intersection of a closed set of X with Y.

Theorem 12 (Theorem 17.3). Let Y be a subspace of X. If A is closed in Y and Y is closed in X, then A is closed in X.

Definition 0.11. Given a subset A of a topological space X, the **interior** of A is defined as the union of all open sets contained in A i.e. the largest open set contained in A, and the **closure** of A is defined as the intersection of all closed sets contained in A i.e. the smallest closed set which contains A.

The interior of A is denoted by $\operatorname{int}(A)$ or A° and the closure of A is denoted $\operatorname{Cl} A$ or by \overline{A} .

Theorem 13 (Theorem 17.4). Let Y be a subspace of X; let A be a subset of Y; let \overline{A} denote the closure of A in X. Then the closure of A in Y equals $\overline{A} \cap Y$.

Say that a set A intersects a set B if the intersection $A \cap B$ is not empty.

Theorem 14 (Theorem 17.5). Let A be a subset of the topological space X.

- 1. Then $x \in \overline{A}$ if and only if every open set U containing x intersects A.
- 2. Supposing the topology of X is given by a basis, then $x \in \overline{A}$ if and only if every basis element B containing x intersects A.

Proof. Prove (a). We prove the contrapositive of (a):

 $x \notin \overline{A} \Leftrightarrow \text{there exists an open set } U \text{ containing } x \text{ that does not intersect } A$

If x is not in \overline{A} , the set $U=X-\overline{A}$ is an open set containing x that does not intersect A, as desired. Conversely, if there exists an open set U containing x which does not intersect A, then X-U is a closed set containing A. By definition of closure \overline{A} , the set X-U must contain \overline{A} ; therefore, x cannot be in A.

Say "U is a **neighbourhood** of x" if U is some open set containing x.

Definition 0.12. If A is a subset of the topological space X and if x is a point of X, we say that x is a **limit point** (or "cluster point," or "point of accumulation") of A if every neighborhood of x intersects A in some point other than x itself i.e. x is a limit point of A if it belongs to the closure of $A - \{x\}$

Theorem 15 (Theorem 17.6). Let A be a subset of the topological space X; let A' be the set of all limit points of A. Then

$$\overline{A} = A \cup A'$$

We may also denote A' by ∂A .

Corollary 15.1 (Corollary 17.7). A subset of a topological space is closed if and only if it contains all limit points.

In an arbitrary topological space, one says that a sequence x_1, x_2, \ldots of points of the space X converges to the point x of X provided that, corresponding to each neighborhood U of x, there is a positive integer N such that $x_n \in U$ for all $n \geq N$.

Definition 0.13. A topological space X is called a **Hausdorff space** if for each pair x_1, x_2 of distinct points of X, there exists a neighborhoods U_1 , and U_2 of x_1 and x_2 , respectively, that are disjoint.

Theorem 16 (Theorem 17.8). Every finite point set in a Hausdorff space X is closed.

The condition that finite point sets are closed is weaker than Hausdorff, if a topological space X has the condition that all finite point sets are closed, then it is said to be \mathbf{T}_1 . The property itself is called the \mathbf{T}_1 axiom.

Theorem 17 (Theorem 17.9). Let X be a space satisfying the T_1 axiom; let A be a subset of X. Then the point x is a limit point of A if and only if every neighborhood of x contains infinitely many points of A.

Theorem 18 (Theorem 17.10). If X is a Hausdorff space, then a sequence of points of X converges to at most one point of X.

Chapter 2: Section 18.

Definition 0.14. Let X and Y be topological spaces. A function $f: X \to Y$ is said to be **continuous** if for each open subset V of Y, the set $f^{-1}(V)$ is an open subset of X. Since the continuity on the definition of f and on the topologies on X and Y, we can also say f is continuous relative to specific topologies X and Y.

Example. Let us consider a function like those studied in analysis, a "real-valued function of a real variable,"

$$f: \mathbb{R} \to \mathbb{R}$$

In analysis, one defines continuity of f via the " $\epsilon - \delta$ definition". To prove that our definition implies the $\epsilon - \delta$ definition, for instance, we proceed as follows: Given $x_0 \in \mathbb{R}$, and given $\epsilon > 0$, the interval $V = (f(x_0) - \epsilon, f(x_0) + \epsilon)$ is an open set of the range space \mathbb{R} . Therefore, $f^{-1}(V)$ is an open set of the domain space \mathbb{R} (we assumed our topological definition holds). Because $f^{-1}(V)$ contains the point x_0 , it contains some basic element (a,b) about x_0 . We choose δ to be the smaller of the two numbers $x_0 - a$ and $b - x_0$. Then if $|x - x_0| < \delta$, the point x must be in (a,b), so that $f(x) \in V$, and $|f(x) - f(x_0)| < \epsilon$, as desired.

Example. Let

$$f: \mathbb{R} \to \mathbb{R}_l$$

be the identity function; f(x) = x for every real number x. Then f is not a continuous function; the inverse image of the open set [a,b) of \mathbb{R}_l equals itself, which is not open in \mathbb{R} . On the other hand, the identity function

$$g: \mathbb{R}_l \to \mathbb{R}$$

is continuous, because the inverse image of (a,b) is itself, which is open in \mathbb{R}_l .

Theorem 19 (Theorem 18.1). Let X and Y be topological spaces; let $f: X \to Y$. Then the following are equivalent:

- 1. f is continuous.
- 2. For every subset A of X, one has $f(\overline{A}) \subseteq \overline{f(A)}$.
- 3. For every closed set B of Y, the set $f^{-1}(B)$ is closed in X.
- 4. For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subseteq V$.

If the condition in (4) holds for the point x of X, we say that f is **continuous** at the point x.

Definition 0.15. Let X and Y be topological spaces; let $f: X \to Y$ be a bijection. If both the function f and the inverse function

$$f^{-1}: Y \to X$$

are continuous (and exist), then f is called a **homeomorphism**.

These functions have the property that any property that can be expressed solely via the open sets of a space are preserved when mapped onto a different space. Such a property (that can be expressed solely via open sets) is called a **topological property**.

Example. The function $F:(-1,1)\to\mathbb{R}$ defined by

$$F(x) = \frac{x}{1 - x^2}$$

is a homeomorphism. A bijective continuous function does not necessairly have to be continuous, for example, the identity map $g : \mathbb{R}_l \to \mathbb{R}$ is bijective continuous but it's inverse is not continuous as noted earlier.

Theorem 20 (Theorem 18.2). Let X, Y and Z be topological spaces.

- 1. (Constant function) If $f: X \to Y$ mapps all of X into the single point y_0 of Y, then f is continuous.
- 2. (Inclusion) If A is a subspace of X, the inclusion function $j: A \to X$ is continuous.
- 3. (Composites) If $f: X \to Y$ and $g: Y \to Z$ are continuous, then the map $g \circ f: X \to Z$ is continuous.
- 4. (Restricting the domain) If $f: X \to Y$ is continuous, and if A is a subspace of X, then the restricted function $f|_A: A \to Y$ is continuous.
- 5. (Restricting or expanding the range) Let $f: X \to Y$ be continuous. If Z is a subspace of Y containing the image set f(X), then the function $g: X \to Z$ obtained by restricting the range of f is continuous. If Z is a space having Y as a subspace, then the function $h: X \to Z$ obtained by expanding the range of f is continuous.
- 6. (Local formulation of continuity) The map $f: X \to Y$ is continuous if X can be written as the union of open sets U_{α} such that $f|_{U_{\alpha}}$ is continuous for each α .

Theorem 21 (Theorem 18.3). Let $X = A \cup B$, where A and B are closed in X. Let $f: A \to Y$ and $g: B \to Y$ be continuous. If f(x) = g(x) for every $x \in A \cap B$, then f and g combine to give a continuous function $h: X \to Y$, defined by setting h(x) = f(x) if $x \in A$, and h(x) = g(x) if $x \in B$.

Theorem 22 (Theorem 18.4). Let $f: A \to X \times Y$ be given by the equation

$$f(a) = (f_1(a), f_2(a))$$

Then f is continuous if and only if the functions

$$f_1: A \to X$$
 and $f_2: A \to Y$

are continuous.

Chapter 2: Section 19.

Definition 0.16. Let $\{A_{\alpha}\}_{{\alpha}\in J}$ be an indexed family of sets; let $X=\bigcup_{{\alpha}\in J}A_{\alpha}$. The **cartesian product** of this indexed family, denoted by

$$\prod_{\alpha \in J} A_{\alpha}$$

is defined to be the set of all J-tuples $(x_{\alpha})_{\alpha \in J}$ of elements of X such that $x_{\alpha} \in A_{\alpha}$ for each $\alpha \in J$. That is, it is the set of all functions

$$\mathbf{x}:J\to\bigcup_{\alpha\in J}A_\alpha$$

such that $\mathbf{x}(\alpha) \in A_{\alpha}$ for each $\alpha \in J$. If all $A_{\alpha} = X$, then the cartesian product is denoted by X^{J} .

Definition 0.17. Let $\{X_{\alpha}\}_{{\alpha}\in J}$ be an indexed family of topological spaces. Let us take as a basis for a topology on the product space

$$\prod_{\alpha \in J} X_{\alpha}$$

the collection of all sets of the form

$$\prod_{\alpha \in J} U_{\alpha}$$

where U_{α} is open in X_{α} , for each $\alpha \in J$. The topology generated by this basis is called the **the box topology**.

Now we generalize the subbasis formulation of this definition. Let

$$\pi_{\beta}: \prod_{\alpha \in J} X_{\alpha} \to X_{\beta}$$

be the function assigning to each element of the product space its β th coordinate,

$$\pi_{\beta}((x_{\alpha})_{\alpha \in J}) = x_{\beta};$$

it is called the **projection mapping** associated with the index β .

Definition 0.18. Let S_{β} denote the collection

$$S_{\beta} = \{ \pi_{\beta}^{-1}(U_{\beta}) : U_{\beta} \text{ open in } X_{\beta} \}$$

and let $\mathcal S$ denote the union of these collections,

$$\mathcal{S} = \bigcup_{\beta \in J} \mathcal{S}_{\beta}$$

The topology generated by the subbasis S is called the **product topology**. In this topology $\prod_{\alpha \in J} X_{\alpha}$ is called a **product space**.

The following two facts may be important:

$$(\prod_{\alpha \in J} U_{\alpha}) \cap (\prod_{\alpha \in J} V_{\alpha}) = \prod_{\alpha \in J} (U_{\alpha} \cap V_{\alpha})$$
$$\pi_{\beta}^{-1}(U_{\beta}) \cap \pi_{\beta}^{-1}(V_{\beta}) = \pi_{\beta}^{-1}(U_{\beta} \cap V_{\beta})$$

Theorem 23 (Theorem 19.1). The box topology on $\prod X_{\alpha}$ has as basis all sets of the form $\prod U_{\alpha}$, where U_{α} is open in X_{α} for each α . The product topology on $\prod X_{\alpha}$ has as basis all sets of the form $\prod U_{\alpha}$, where U_{α} is open in X_{α} for each α and U_{α} equals X_{α} except for finitely many values of α .

Theorem 24 (Theorem 19.2). Suppose the topology on each space X_{α} is given by a basis \mathcal{B}_{α} . The collection of all sets of the form

$$\prod_{\alpha \in J} B_{\alpha}$$

where $B_{\alpha} \in \mathcal{B}_{\alpha}$ for each α , will serve as a basis for the box topology on $\prod_{\alpha \in J} X_{\alpha}$. The collection of all sets of the same form, where $B_{\alpha} \in \mathcal{B}_{\alpha}$ for finitely many indices α and $B_{\alpha} = X_{\alpha}$ for all the remaining indices, will serve as a basis for the product topology $\prod_{\alpha \in J} X_{\alpha}$.

Theorem 25 (Theorem 19.3). Let A_{α} be a subspace of X_{α} , for each $\alpha \in J$. Then $\prod A_{\alpha}$ is a subspace of $\prod X_{\alpha}$ if both products are given the box topology, or if both products are given the same product topology.

Theorem 26 (Theorem 19.4). If each space X_{α} is a Hausdorff space, then $\prod X_{\alpha}$ is a Hausdorff space in both the box and product topologies.

Theorem 27 (Theorem 19.5). Let $\{X_{\alpha}\}$ be an indexed family of spaces; let $A_{\alpha} \subseteq X_{\alpha}$ for each α . If $\prod X_{\alpha}$ is given either the product or the box topology, then

$$\prod \overline{A_\alpha} = \overline{\prod A_\alpha}$$

Theorem 28 (Theorem 19.6). Let $f: A \to \prod_{\alpha \in J} X_{\alpha}$ be given by the equation

$$f(a) = (f_{\alpha}(a))_{\alpha \in J}$$

where $f_{\alpha}: A \to X_{\alpha}$ for each α . Let $\prod X_{\alpha}$ have the product topology. Then the function f is continuous if and only if each function f_{α} is continuous.

Chapter 2: Section 20.

Definition 0.19. A **metric** on a set X is a function

$$d: X \times X \to \mathbb{R}$$

having the following properties:

- 1. $d(x,y) \ge 0$ for all $x,y \in X$; equality holds if and only if x=y
- 2. d(x,y) = d(y,x) for all $x, y \in X$.
- 3. (Triangle Inequality) $d(x,y) + d(y,z) \ge d(x,z)$ for all $x,y,z \in X$.

Given a metric d on X, the number d(x,y) is often called the **distance** between x and y in the metric d. Given $\epsilon > 0$, consider the set

$$B_d(x,\epsilon) = \{y : d(x,y) < \epsilon\}$$

of all points y whose distance from x is less than ϵ . It is called the ϵ -ball centered at x.

Definition 0.20. If d is a metric on the set X, then the collection of all ϵ -balls $B_d(x, \epsilon)$, for $x \in X$ and $\epsilon > 0$, is a basis for a topology on X, called the **metric topology** induced by d.

Definition 0.21. If X is a topological space, X is said to be **metrizable** if there exists a metric d on the set X that induces the topology of X. A **metric space** is a metrizable space X together with a specific metric d that gives the topology of X.

Definition 0.22. Let X be a metric space with metric d. A subset A of X is said to be **bounded** if there is some number M such that

$$d(a_1, a_2) \le M$$

for every pair a_1, a_2 of points of A. If A is bounded and non-empty, the **diameter** of A is defined to be the number

diam
$$A = \sup\{d(a_1, a_2) : a_1, a_2 \in A\}.$$

Theorem 29 (Theorem 20.1). Let X be a metric space with metric d. Define $\overline{d}: X \times X \to \mathbb{R}$ by the equation

$$\overline{d}(x,y) = \min\{d(x,y),1\}$$

Then \overline{d} is a metric that induces the same topology as d. The metric \overline{d} is called the **standard bounded metric** corresponding to d.

Definition 0.23. Given $\mathbf{x} = (x_1, x_2, \dots, x_n)$ in \mathbb{R}^n , we define the **norm** of \mathbf{x} by the equation

 $||x|| = (x_1^2 + \ldots + x_n^2)^{\frac{1}{2}}$

and we define the **euclidean metric** d on \mathbb{R}^n by the equation

$$d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}|| = [(x_1 - y_1)^2 + \dots + (x_n - y_n)^2]^{\frac{1}{2}}.$$

We define the **square metric** ρ by the equation

$$\rho(\mathbf{x}, \mathbf{y}) = \max\{|x_1 - y_1|, \dots, |x_n - y_n|\}.$$

Lemma 30 (Lemma 20.2). Let d and d' be two metrics on the set X; let τ and τ' be the topologies they induce, respectively. Then τ' is finer than τ if and only if for each x in X and each $\epsilon > 0$, there exists $\delta > 0$ such that

$$B_{d'}(x,\delta) \subseteq B_d(x,\epsilon)$$
.

Theorem 31 (Theorem 21.1). Let $f: X \to Y$; let X and Y be metrizable with metrics d_X and d_Y , respectively. Then continuity of f is equivalent to the requirement that given $x \in X$ and given $\epsilon > 0$, there exists $\delta > 0$ such that

$$d_X(x,y) < \delta \implies d_Y(f(x), f(y)) < \epsilon.$$

Lemma 32 (Lemma 21.2). Let X be a topological space; let $A \subseteq X$. If there is a sequence of points of A converging to x, then $x \in \overline{A}$; the converse holds if X is metrizable.

Theorem 33 (Theorem 21.3). Let $f: X \to Y$. If the function f is continuous, then for every convergent sequence $x_n \to x$ in X, the sequence $f(x_n)$ converges to f(x). The converse holds if X is metrizable.

Lemma 34 (Lemma 21.4). The addition, subtraction, and multiplication operation are continous functions from $\mathbb{R} \times \mathbb{R}$ into \mathbb{R} ; and the quotient operation is continous function from $(\mathbb{R} \times (\mathbb{R} - \{0\}))$ into \mathbb{R} .

Theorem 35 (Theorem 21.5). If X is a topological space, and if $f, g: X \to \mathbb{R}$ are continuous functions, then f+g, f-g and $f \cdot g$ are continuous. If $g(x) \neq 0$ for all x, then f/g is continuous.

Definition 0.24. Let X and Y be topological spaces; let $p: X \to Y$ be a surjective map. The map p is said to be a **quotient map** provided a subset U of Y is open in Y if and only if $p^{-1}(U)$ is open in X.

Recall that a map $f: X \to Y$ is said to be an **open map** if for each open set U of X, the set f(U) is open in Y. It is said to be a closed map if for each closed set A of X, the set f(A) is closed in Y. Continuous and surjective open and closed maps are one type of quotient maps but not all quotient maps are open or closed.

Definition 0.25. If X is a space and A is a set and if $p: X \to A$ is a surjective map, then there exists exactly one topology τ on A relative to which p is a quotient map, it is called the **quotient topology** induced by p.

Example.

$$D^n \setminus S^{n-1} \cong S^n$$

The square in \mathbb{R}^2 quotients to the taurus.

An example of a quotient map which is neither open or closed.

Example. Let $\pi_1 : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a projection on the first coordinate. Let A be the subspace of $\mathbb{R} \times \mathbb{R}$ consisting of all points $x \times y$ for which either $x \geq 0$ or y = 0 (or both); let $q : A \to \mathbb{R}$ be obtained by restricting π_1 .

Definition 0.26. Let X be a topological space. A **separation** of X is a pair U, V of disjoint nonempty open subsets of X whose union is X. The space X is said to be **connected** if there does not exist a separation of X.

A space X is connected if and only if the only subsets of X that are clopen in X are the empty set and X itself.

Lemma 36 (Lemma 23.1). If Y is a subspace of X, a separation of Y is a pair of disjoint nonempty sets A and B whose union is Y, neither of which contains a limit point of the other (i.e. $\overline{A} \cap B = \emptyset$ and $A \cap \overline{B} = \emptyset$). The space Y is connected if there exists no separation of Y.

The following is an example of a subspace of \mathbb{R}^2 which is not connected.

Example (Page 149). Consider the following subset of the plane \mathbb{R}^2 :

$$X = \{x \times y : y = 0\} \cup \{x \times y : x > 0 \text{ and } y = 1/x\}$$

Then X is not connected; indeed, the two indicated sets form a separation of X because neither contains a limit point of the other. Refer to figure 23.1 on page 149.

Lemma 37 (Lemma 23.2). If the sets C and D form a separation of X, and if Y is a connected subspace of X, then Y lies entirely within C or D.

Theorem 38 (Theorem 23.3). The union of a collection of connected subspaces of X that a point in common is connected.

Theorem 39 (Theorem 23.4). Let A be a connected subspace of X. If $A \subseteq B \subseteq \overline{A}$, then B is also connected.

Proof. Let A be connected and let $A \subseteq B \subseteq \overline{A}$. Suppose $B = C \cup D$ is a separation of B. By Lemma 23.2, the set A must lie entirely within in C or D. Suppose it lies within C, so $A \subseteq C$. Then, $\overline{A} \subseteq \overline{C}$. By Lemma 23.1, we know $\overline{C} \cap D = \emptyset$ and more specifically, since $B \subseteq \overline{A}$, we know that $B \cap D = \emptyset$ implying D is empty which is a contradiction.

Theorem 40 (Theorem 23.5). The image of a connected space under a continuous map is connected.

Theorem 41. A finite cartesian product of connected spaces is connected.

Proof. We prove the theorem first for the product of two conncted spaces X and Y. Choose a base point $a \times b$ in the product $X \times Y$. Note that the horizontal slice $X \times b$ is connected (homeomorphic to X) and similarly $x \times Y$ is connected. As a result, each T-shaped space

$$T_x = (X \times b) \cup (x \times Y)$$

is connected since they have the point $x \times b$ in common. Now form union $\bigcup_{x \in X} T_x$ of all these T-shaped spaces. This union is connected because each T-shaped space contains $a \times b$ so that the union has $a \times b$ in common. Since this union equals $X \times Y$, the space $X \times Y$ is connected.

An arbitrary product of connected spaces is connected in the product topology but not in the box topology.

Definition 0.27. Given points x and y of the space X, a **path** in X from x to y is a continuous map $f:[a,b] \to X$ of some closed intervals in the real line into X, such that f(a) = x and f(b) = y. A space X is **path-connected** if every pair of points of X can be joined by a path in X.

Path connectedness implies connectedness.

Continuous image of a path-connected space is path connected.

Example. Let S denote the following subset of the plane.

$$S = \{x \times \sin(1/x) : 0 < x \le 1\}.$$

Because S is the image of the connected set (0,1] under a continuous map, S is connected. Therefore, its closure \overline{S} in \mathbb{R}^2 is also connected. The set \overline{S} is a classical example in topology called **topologist's sine curve**. It equals the union of S and the vertical interval $0 \times [-1, 1]$.

Definition 0.28. A collection \mathcal{A} of subsets of a space X is said to **cover** X, or to be a **covering** of X, if the union of the elements of \mathcal{A} is equal to X. It is called an **open covering** of X if its elements are open subsets of X.

Definition 0.29. A space X is said to be **compact** if every open covering A of X contains a finite subcollection that also covers X.

If Y is a subspace of X, a collection \mathcal{A} of subsets of X is said to **cover** Y if the union of its elements *contains* Y.

Lemma 42 (Lemma 26.1). Let Y be a subspace of X. Then Y is compact if and only if every covering of Y by sets open in X contains a finite subcollection covering Y.

Theorem 43 (Theorem 26.2). Every closed subspace of a compact space is compact.

Proof. Let Y be a closed subspace of the compact space X. Given a covering A of Y by sets open in X, let us form an open covering B of X adjoining to A the single open set X - Y, that is,

$$\mathcal{B} = \mathcal{A} \cup \{X - Y\}.$$

Some finite subcollection of \mathcal{B} covers X. If this subcollection contains the set X - Y, discard X - Y; otherwise, leave the subcollection alone. The resulting collection is a finite subcollection of \mathcal{A} that covers Y.

Theorem 44 (Theorem 26.3). Every compact subspace of Hausdorff space is closed.

Lemma 45 (Lemma 26.4). If Y is a compact subspace of the Hausdorff space X and x_0 is not in Y, then there exist disjoint open sets U and V of X containing x_0 and Y, respectively.

Theorem 46 (Theorem 26.5). The image of a compact space under a continuous map is compact.

Theorem 47 (Theorem 26.6). Let $f: X \to Y$ be a bijective continuous function. If X is compact and Y is Hausdorff, then f is a homeomorphism.

Theorem 48 (Theorem 26.7). The product of finitely many compact space is compact.

Theorem 49 (Theorem 27.3). A subspace A of \mathbb{R}^n is compact if and only if it is closed and is bounded in the euclidean metric d or the square metric ρ .

Proof. It will suffice to consider only the metric ρ ; the inequalities

$$\rho(x,y) \le d(x,y) \le \sqrt{n}\rho(x,y)$$

imply that A is bounded under d if and only if it is bounded under ρ . Suppose that A is compact. Then by Theorem 26.3, it is closed (\mathbb{R}^n Hausdorff). Consider the collection of open sets

$$\{B_{\rho}(\mathbf{0},m): m \in \mathbb{Z}_{+}\},\$$

whose union covers all of \mathbb{R}^n . Some finite subcollection covers A (A compact). It follows that $A \subseteq B_{\rho}(\mathbf{0}, M)$ for some M. Therefore, for any two points x and y of A, we have $\rho(x,y) \leq 2M$. Thus A is bounded under ρ so that A is closed and bounded.

Conversely, suppose that A is closed and bounded under ρ ; suppose that $\rho(x,y) \leq N$ for every pair x,y of points of A. choose a point x_0 of A, and let $\rho(x_0,\mathbf{0}) = b$. The triangle inequality implies that $\rho(x,\mathbf{0}) \leq N+b$ for every $x \in A$. If P=N+b, then A is a subset of the cube $[-P,P]^n$, which is compact. Being closed, A is also compact.

Definition 0.30. Let (X,d) be a metric space; let A be a nonempty subset of X. For each $x \in X$, we define the **distance from** x_0 **to** A by the equation

$$d(x, A) = \inf\{d(x, a) : a \in A\}$$

Definition 0.31. A space X is said to have a **countable basis at** x if there is a countable collection \mathbf{B} of neighborhood of x such that each neighborhood of x contains at least one of the elements of \mathcal{B} or equivalently, for every open neighborhood U of x, there exists an element of the countable collection contained in U. A space that has a countable basis at each of its points is said to satisfy the **first countability axiom**, or to be **first-countable**.

Theorem 50 (Theorem 30.1). Let X be a topological space.

- 1. Let A be a subset of X. If there is a sequence of points of A, converging to x, then $x \in \overline{A}$; the converse holds if X is first-countable.
- 2. Let $f: X \to Y$. If f is continuous, then for every convergent sequence $x_n \to x$ in X, the sequence $f(x_n)$ converges to f(x). The converse holds if X is first-countable.

Definition 0.32. IF a space X has a countable basis for its topology, then X is said to satisfy the **second countability axiom**, or to be **second-countable**.

Note not every metrizable space is second-countable. Every second countable space is Lindelöf. The product of two Lindelöf spaces need not be Lindelöf. The counter-example to this is the Sorgenfrey plane i.e. the topology generated by the basis which has sets of the form $[a,b) \times [c,d)$. The lower limit topology is first-countable but not second.

Theorem 51 (Theorem 30.2). A subspace of a first-countable space is first-countable, and a countable product of first-countable spaces is first-countable. A subspace of a second-countable space is second-countable, and a countable product of second-countable spaces is second-countable.

Definition 0.33. Suppose that one point sets are closed in X. Then X is said to be **regular** if for each pair consisting of a point x and a closed set B disjoint from x, there exist disjoint open sets containing x and B, respectively. The space X is said to be **normal** if for each pair A, B of disjoint closed sets of X, there exist disjoint open sets containing A and B, respectively.

The space \mathbb{R}_K is Hausdorff but not regular. The space \mathbb{R}_l is normal. The Sorgenfrey plane is not normal but is regular (this space is the product of two regular spaces namely $\mathbb{R}_l \times \mathbb{R}_l$). Thus, the cartesian product of two normal spaces need not be normal.

Lemma~52 (Lemma 31.1). Let X be a topological space. Let one points sets in X be closed.

- 1. X is regular if and only if given a point x of X and a neighborhood U of x, there is a neighborhood V of x such that $\overline{V} \subseteq U$.
- 2. X is normal if and only if given a closed set A and an open set U containing A, there is an open set V containing A such that $\overline{V} \subseteq U$.

Theorem 53 (Theorem 31.2). 1. A subspace of a Hausdorff space is Hausdorff; a product of Hausdorff spaces is Hausdorff.

2. A subspace of a regular space is regular; a product of regular spaces is regular.

Definition 0.34. A \mathbf{T}_0 or **Kolmogrov** space is defined to be a space where if $x, y \in X$, $x \neq y$, then there exists a neighborhood of x such that $y \notin U$ or vice versa.

A \mathbf{T}_1 or **Frechét** space is defined to be a space where if $x, y \in X$, then there exists U, V open sets such that $x \in U$ and $y \in V$ but $x \notin V$ and $y \notin U$.

Arbitrary products of normal spaces is not normal.

Theorem 54 (Theorem 32.1). Every regular space with a countable basis is normal.

Theorem 55 (Theorem 32.2). Every metrizable space is normal.

Proof. Let X be a metrizable space with metric d. Let A and B be disjoint closed subsets of X. For each $a \in A$, choose ϵ_a so that the ball $B(a, \epsilon_a)$ does not intersect B. Similarly, for each $b \in B$, choose ϵ_b so that the ball $B(b, \epsilon_b)$ does not intersect A. Define

$$U = \bigcup_{a \in A} B(a, \epsilon_a/2)$$
 and $V = \bigcup_{b \in B} B(b, \epsilon_b/2)$

Then U and V are disjoint open sets containing A and B, respectively; we assert they are disjoint. For if, $z \in U \cap V$, then

$$z \in B(a, \epsilon_a/2) \cap B(b, \epsilon_b/2)$$

for some $a \in A$ and $b \in B$. The triangle inequality applies to show that $d(a,b) < (\epsilon_a + \epsilon_b)/2$. If $\epsilon_a \le \epsilon_b$, then $d(a,b) < \epsilon_b$ so that the ball $B(b,\epsilon_b)$ contains a or vice versa, if $\epsilon_b \le \epsilon_a$, then $d(a,b) < \epsilon_a$, so that the ball $B(a,\epsilon_a)$ contains the point b. Neither situation is possible.

Theorem 56 (Theorem 32.3). Every compact Hausdorff space is normal.