

Fig. 1

Figure 2

Figure 3

Identify all sequences homologous to starting enzyme and align (eg using ClustalW)

A: Substitutions from homologous sequences

Reconstruct phylogenetic tree

RULE 1a:

- Calculate conservation index for each position
- · Select substitution sites with lowest conservation indices

RULE 2a

- · Calculate tolerated heterogeneity for each position
- Select most heterogeneous substitution sites

RULE 3a:

- Calculate relative rates of synonymous and non-synonymous substitution
- · Select sites with highest ratios

SCORE:

Weighted value for each rule satisfied

B: Substitutions from homologous structures

RULE 1b:

- Calculate ΔG change for all single substitutions
- Select changes with <a defined value Kcal/mol change in free energy RULE 2b:
- Superpose homologous structures from PDB
- Estimate mean RMSD for every window of a defined number of residues
- Select sites with a RMSD above a defined value

RULE 3b:

- · Identify changes found in homologous sequences
- Select varying sites within a defined distance of catalytic and binding sites
 SCORE:
- · Weighted value for each rule satisfied

C: Substitutions from substitution matrices

RULE 1c:

- Calculate substitution matrix for specific biopolymer family, rank all possible single substitutions for favorability
- · Select highest scoring positions

RULE 2c:

- Rank all possible single substitutions for favorability using a universal substitution matrix
- Select highest scoring positions

SCORE:

· Weighted value for each rule satisfied

D: Substitutions from PCA analysis

RULE 1d:

- Determine principal components of sequence variation in alignment of homologs
- Select highest scoring positions

SCORE:

· Weighted value for each rule satisfied

Select initial candidate antibody sequence(s)

A: Substitutions from homologous sequences in framework & CDR

Identify framework sequences within a defined evolutionary distance (PAM units)

Reconstruct phylogenetic tree for framework region only

RULE 1a:

Select a defined number of framework residues that have undergone advantageous change

RULE 2a:

 Select defined number of framework and defined number of CDR positions with highest mutability index

RULE 3a:

 Select <u>all</u> amino acid substitutions from sequences in the same Chothia class SCORE:: Weighted value for each rule satisfied

B: Substitutions from homologous structures

Superpose homologous structures from PDB

RULE 1b:

- Estimate mean RMSD for every window of a defined number of residues
- Select framework sites with an RMSD greater than a defined value RULE 2b;
- · Identify changes found in homologous sequences
- Select framework varying sites within a defined distance from CDR

SCORE:: Weighted value for each rule satisfied

C: Substitutions from substitution matrices

 Calculate substitution matrix for all framework regions and canonical classes, rank all possible single substitutions for favorability

RULE 1c:

Select highest scoring substitutions for each matrix

RULE 2c:

- Rank all possible single substitutions for favorability using a universal substitution matrix
- Select highest scoring positions

SCORE: Weighted value for each rule satisfied

D: Substitutions from PCA analysis

- Determine principal components of sequence variation in alignment of homologs RULE 1d:
- Group CDRs based on PCA of amino acid sequences in the CDR.
- Select highest scoring CDR positions that differentiate antibody sequences by function RULE 2d:
- Group CDR positions based on observed amino acid frequencies at each site
- Rank the groups based on contributions to one or more principal components
- Select the top groups of sites to vary.

SCORE: Weighted value for each rule satisfied

E: Substitutions from Binding pocket Analysis

RULE 1e:

 Select sites based where physico-chemical properties of residues are conserved in the pocket

RULE 2e:

 Select CDR changes derived from evolutionary models to correlate properties of amino acids.

SCORE: Weighted value for each rule satisfied

- A: Calculate average weight vectors:
- a) Build sequence-function model from data in which rows (sequence + function) and/or columns (substitutions) are randomly omitted. Calculate weight vectors.
- b) Repeat 1,000 times.
- c) Calculate average values and standard deviations for weight vectors and rank in order of importance.

Figure 6

- A: Calculate average weight vectors:
- a) Build sequence-function model from data in which rows (sequence + function) and/or columns (substitutions) are randomly omitted. Calculate weight vectors.
- b) Repeat 1,000 times.
- c) Calculate average values and standard deviations for weight vectors and rank in order of importance.

- B: Calculate weight vectors from randomized data:
- a) Randomly associate sequence data with function data
- b)Build sequence-function model and calculate weight vectors.
- c) Repeat 1,000 times.
- d) Calculate average value and standard deviations for weight vectors from randomized data.

C: Calculate number of standard deviations weight vector is above value from randomized data.

```
E coli leader peptide
           -10
MKKLLFAIPL VVPFYSHSTM (SEQ ID NO.: 1)
Proteinase K
           11
                      21
                                  31
APAVEQRSEA APLIEARGEM VANKYIVKFK EGSALSALDA AMEKISGKPD
           61
                      71
                                  81
HVYKNVFSGF AATLDENMVR VLRAHPDVEY IEQDAVVTIN AAQTNAPWGL
           111
                      121
                                  131
ARISSTSPGT STYYYDESAG QGSCVYVIDT GIEASHPEFE GRAOMVKTYY
                      171
                                  181
YSSRDGNGHG THCAGTVGSR TYGVAKKTQL FGVKVLDDNG SGQYSTIIAG
           211
                      221
MDFVASDKNN RNCPKGVVAS LSLGGGYSSS VNSAAARLQS SGVMVAVAAG
           261
                      271
                                  281
NNNADARNYS PASEPSVCTV GASDRYDRRS SFSNYGSVLD IFGPGTSILS
           311
                      321
                                  331
                                             341
TWIGGSTRSI SGTSMATPHV AGLAAYLMTL GKTTAASACR YIADTANKGD
           361
                      371
LSNIPFGTVN LLAYNNYQAV DHHHHHH (SEQ ID NO.: 2)
```

Figure 8

-60	-50	-40	-30	-20	-10 -1
atgaaaaaac	tgctgttcgc	gatteegetg	gtggtgccgt	tctatagcca	tagcaccatg
1	11	21	31	41	51
GCACCGGCCG	TTGAACAGCG	TTCTGAAGCA	GCTCCTCTGA	TTGAGGCACG	TGGT <u>G</u> AAATG
61	71	81	91	101	111
GTAGCAAACA	AGTACATCGT	GAAGTTCAAG	GAGGGTTCTG	CTCTGTCTGC	TCTGGATGCT
121	131	141	151	161	171
GCTATGGAAA	AGATCTCTGG	CAAGCCTGAT	CACGTCTATA	AGAACGTGTT	CAGCGGTTTC
181	191	201	211	221	231
GCAGCAACTC	TGGACGAGAA	CATGGTCCGT	GTACTGCGTG	CTCATCCAGA	CGTTGAATAC
241	251	261	271	281	291
ATCGAACAGG	ACGCTGTGGT	TACTATCAAC	GCGGCACAGA	CTAACGCACC	TTGGGGTCTG
301	311	321	331	341	351
GCACGTATTT	CTTCTACTTC	CCCGGGTACG	TCTACTTACT	ACTACGACGA	GTCTGCCGGT
361	371	381	391	401	411
CAAGGTTCTT	GCGTTTACGT	GATCGATACG	GGCATCGAGG	CTTCTCATCC	TGAGTTTGAA
421	431	441	451	461	471
GGCCGTGCAC	AAATGGTGAA	GACCTACTAC	TACTCTTCCC	GTGACGGTAA	TGGTCACGGT
481	491	501	511	521	531
ACTCATTGCG	CAGGTACTGT	TGGTAGCCGT	ACCTACGGTG	TTGCTAAGAA	AACGCAACTG
541	551	561	571	581	591
TTCGGCGTTA	AAGTGCTGGA	CGACAACGGT	TCTGGTCAGT	ACTCCACCAT	TATCGCGGGT
601	611	621	631	641	651
ATGGATTTCG	TAGCGAGCGA	TAAAAACAAC	CGCAACTGCC	CGAAAGGTGT	TGTGGCTTCT
661	671	681	691	701	711
CTGTCTCTGG	GTGGTGGTTA	CTCCTCTTCT	GTTAACAGCG	CAGCTGCACG	TCTGCAATCT
721	731	741	751	761	771
TCCGGTGTCA	TGGTCGCAGT	AGCAGCTGGT	AACAATAACG	CTGATGCACG	CAACTACTCT
781	791	801	811	821	831
CCTGCTAGCG	AGCCTTCTGT	TTGCACCGTG	GGTGCATCTG	ATCGTTATGA	TCGTCGTAGC
841	851	861	871	881	891
TCCTTCAGCA	ACTATGGTTC	CGTCCTGGAT	ATCTTCGGCC	CTGGTACTTC	TATCCTGTCT

Figure 9A

901 ACCTGGATTG	911 GCGGTAGCAC	921 TCGTTCCATT	931 TCCGGTACGA	941 GCATGGCTAC	951 TCCACATGTT
961 GCTGGTCTGG	971 CAGCATACCT	981 GATGACCCTG	991 GGTAAGACCA	1001 CTGCTGCATC	1011 CGCTTGTCGT
				1061 TCCCGTTCGG	1071 CACCGTTAAT
	1091 ACAACAACTA			1121 atcatcatca	1131 tag
(SEQ ID NO	.: 3)				

Figure 9B

```
gi|19171215|emb|CAD20578.1|/89
gi | 19171217 | emb | CAD20579.1 | /1-
gi|19171219|emb|CAD20580.1|/1-
gi|19171221|emb|CAD20581.1|/1-
gi|16215662|emb|CAC95042.1|/90
gi|16506136|dbj|BAB70705.1|/78
gi|16506134|dbj|BAB70704.1|/78
gi|16506140|dbj|BAB70707.1|/78
gi|16215677|emb|CAC95049.1|/90
gi|117631|sp|P29138|CUDP_METAN
gi | 6624958 | emb | CAB63911.1 | /90-
gi|16215669|emb|CAC95045.1|/90
qi|460032|gb|AAA91584.1|/84-36
gi|6634475|emb|CAB64346.1|/87-
gi|16215664|emb|CAC95043.1|/87
gi|2351388|gb|AAC49831.1|/86-3
gi|8671180|emb|CAB95012.1|/85-
gi|16215666|emb|CAC95044.1|/85
gi|16215671|emb|CAC95046.1|/85
gi|4092486|gb|AAC99421.1|/64-2
gi|18542429|gb|AAL75579.1|AF46
SUTIKA/91-367
gi|131077|sp|P06873|PRTK_TRIAL
gi|230675|pdb|2PRK|/1-277
gi | 494434 | pdb | 1PEK | E/1-277
gi|224977|prf||1205229A/1-275
gi|14278658|pdb|1IC6|A/1-277
gi | 131084 | sp | P23653 | PRTR_TRIAL
gi|4761119|gb|AAD29255.1|AF104
gi|14626933|gb|AAK70804.1|/81-
gi|639712|gb|AAC48979.1|/83-34
gi|742825|prf||2011184A/84-362
gi|628051|pir||JC2142/84-362
gi|15808791|gb|AAL08502.1|AF41
gi|15808805|gb|AAL08509.1|AF41
gi|28918475|gb|EAA28148.1|/90-
gi|10181226|gb|AAC27316.2|/92-
gi|131088|sp|P20015|PRTT_TRIAL
gi|9971109|emb|CAC07219.1|/86-
gi | 7543916 | emb | CAB87194.1 | /89-
gi|5813790|gb|AAD52013.1|AF082
gi|23894244|emb|CAD23614.1|/11
gi | 22652141 | gb | AAN03634.1 | AF40
gi|24528136|emb|CAD24010.1|/10
gi|24528132|emb|CAD24008.1|/10
A35742./126-403
gi|114081|sp|P08594|AQL1_THEAQ
AAA82980./129-408
gi|15640187|ref|NP_229814.1|/1
AAA22247./107-381
```

Figure 10

Figure 11

Figure 12

Figure 13

Residue	PC1 contrib.	PC2 contrib.	PC1+2 contrib.
15D	-0.0881	-0.0803	-0.1684
18D	-0.0881	-0.0803	-0.1684
19Q	-0.0881	-0.0803	-0.1684
22L	-0.0881	-0.0803	-0.1684
23P	-0.0881	-0.0803	-0.1684
65Y	-0.0881	-0.0803	-0.1684
66D	-0.0881	-0.0803	-0.1684
110R	-0.0881	-0.0803	-0.1684
137P	-0.0881	-0.0803	-0.1684
164D	-0.0881	-0.0803	-0.1684
189C	-0.0881	-0.0803	-0.1684
198R	-0.0881	-0.0803	-0.1684
8P	-0.0772	-0.0777	-0.1549
34T	-0.0772	-0.0777	-0.1549
67A	-0.0772	-0.0777	-0.1549
75Q	-0.0772	-0.0777	-0.1549
161T	-0.0772	-0.0777	-0.1549
199V	-0.0772	-0.0777	-0.1549
167V	-0.0899	-0.0589	-0.1488
21D	-0.0733	-0.0657	-0.1390
169N	-0.0613	-0.0746	-0.1359
134H	-0.0675	-0.0664	-0.1339

Figure 14

Variation S	Score	Primary contribution to score
N95C	5	Structural stability at higher temperature: from published literature
P97S	3	P to S for flexibility and structural perturbabtion
S107D	5	from active homologs
S123A	7	Thermostable consensus
E138A	5	From experiments in literature
M145F	5	From experiments to improve thermostability
Y151A	8	From experiments to improve thermostability
V167I	10	Allow user specified conservative changes (controlled perturbation)
L180I	10	Allow user specified conservative changes (controlled perturbation)
Y194S	10	Varaiation observed in highly active clone from our initial exp.
A199S	8	Allow user specified conservative changes (controlled perturbation)
K208H	7	PCA modelling of homologs collected from GenBank.
A236V	7	PCA modelling of homologs collected from GenBank.
R237N	5	From experiments to improve thermostability (in literature)
P265S	3	P to S for flexibility and structural perturbabtion
V267I	10	Allow user specified conservative changes (controlled perturbation)
S273T	15	Multiple sources identify this change. (thermostability and other)
G293A	8	For thermostability considerations (observed in thermitases)
L299C	5	For disulphide bridges with N95C (from literature)
I310K	5	from structural studies
K332R	8	for thermostability considerations (observed in thermitases)
S337N	8	for thermostability considerations (observed in thermitases)
P355S	3	P to S for flexibility and structural perturbabtion

Figure 15

variant-1: 123, 151, 293, 310, 332, 355 variant-2: 95, 145, 167, 199, 237, 273 variant-3: 97, 138, 180, 194, 236, 267 variant-4: 107, 132, 208, 265, 299, 337 variant-5: 123, 145, 151, 167, 273, 337 variant-6: 97, 107, 180, 236, 237, 310 variant-7: 123, 138, 199, 208, 265, 355 variant-8: 95, 194, 267, 293, 299, 332 variant-9: 95, 132, 138, 145, 167, 208 variant-10: 236, 237, 273, 293, 332, 355 variant-11: 97, 123, 265, 299, 310, 337 variant-12: 107, 151, 180, 194, 199, 267 variant-13: 95, 107, 123, 180, 194, 337 variant-14: 138, 151, 167, 199, 208, 299 variant-15: 97, 145, 237, 273, 293, 310 variant-16: 132, 236, 265, 267, 332, 355 variant-17: 97, 151, 199, 236, 299, 355 variant-18: 95, 107, 167, 180, 293, 310 variant-19: 145, 237, 265, 267, 332, 337 variant-20: 123, 132, 138, 194, 208, 273 variant-21: 123, 208, 236, 267, 293, 299 variant-22: 107, 132, 138, 145, 337, 355 variant-23: 97, 180, 194, 199, 265, 310 variant-24: 95, 151, 167, 237, 273, 332

Figure 16

Variant #	Changes	Reasons
variant-25	95	Confirm detrimental effect on enzyme
variant-26	97	Confirm detrimental effect on enzyme
variant-27	138	Confirm detrimental effect on enzyme
variant-28	208	Confirm detrimental effect on enzyme
variant-29	236	Confirm detrimental effect on enzyme
variant-30	237	Confirm detrimental effect on enzyme
		Confirm detrimental effect on enzyme
variant-31	265	•
variant-32	299	Confirm detrimental effect on enzyme
variant-33	107, 123, 145	New combinations of positive changes
variant-34	151, 167, 180	New combinations of positive changes
variant-35	194, 199, 267	New combinations of positive changes
variant-36	273, 293, 310	New combinations of positive changes
variant-37	332, 337, 355	New combinations of positive changes
variant-38	107, 151, 194, 273, 332	New combinations of positive changes
variant-39	123, 167, 199, 293, 337	New combinations of positive changes
variant-40	145, 180, 267, 310, 355	New combinations of positive changes
variant-41	107, 167, 267, 273, 337	New combinations of positive changes
variant-42	123, 180, 194, 293, 355	New combinations of positive changes
variant-43	145, 151, 199, 310, 332	New combinations of positive changes
variant-44	145, 167, 194	New combinations of positive changes
variant-45	180, 199, 273	New combinations of positive changes
variant-46	267, 293, 332	New combinations of positive changes
variant-47	310, 337, 107	New combinations of positive changes
variant-48	355, 123, 151	New combinations of positive changes
variant 10	JJU, 122, 101	• • • • • • • • • • • • • • • • • • •

Figure 17

Sequen	e cha	nges								V	arian	ts							
Position	WT	Mut	10	12	13	14	15	19	20	21	22	23	24	25	26	27	29	30	31
25	Y	Н											Н						
34	A	S													S			Ī	
48	K	Е																	
50	D	N								N									
55	N	S												S	L				
63	T	S																	
88	Т	I																	LI
95	N	С								L		L					<u> </u>		
97	P	S																<u></u>	
107	S	D				D									<u> </u>			D	D
123	S	Α		A								<u> </u>				<u> </u>	<u> </u>		
132	Ĭ	V			V												<u> </u>		
138	E	Α										<u> </u>	L	ļ					
145	M	F			F								<u></u>						
151	Y	Α		Α	A	<u>A</u>						A	A	A				A	A
167	V	I			I							I	I	I					
180	L	I				I						I	I	I				<u> </u>	
194	Y	S	S			S		<u></u>	<u></u>	<u> </u>					S			S	S
199	Α	S				S							<u> </u>		S		L	ļ	
208	K	H						H				<u> </u>	<u> </u>			<u> </u>		L	
209	N	K			L														
233	S	N		<u> </u>		<u></u>					ļ	ļ	<u> </u>			<u> </u>			
236	Α	V	<u> </u>										 	<u> </u>		<u> </u>		<u> </u>	
237	R	N					N		N	N		<u> </u>	ļ	<u> </u>				!	
265	P	S									S	 	<u> </u>	<u> </u>	<u> </u>	ļ			<u> </u>
267	V	I				I				<u> </u>					I	<u> </u>		-	
273	S	T			T		T	 		<u> </u>					ļ	T	-	T	T
293	G	Α	L	A	 _		A					ļ	 		<u> </u>	A	<u> </u>		\sqcup
299	L	С						<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	ļ	1			
310	I	K	ļ	K	ļ		<u> </u>	ļ		 		ļ	↓ —			K		-	
332	K	R	ļ	R		<u> </u>	R	L		ļ			ļ	<u> </u>			R	R	R
337	S	N	<u> </u>		N	<u> </u>	<u> </u>	<u> </u>		<u> </u>	ļ		ļ		<u> </u>	 	N	<u> </u>	
355	P	S	ļ	S			S	ļ	1				<u> </u>	<u> </u>	<u> </u>	<u> </u>	S	-	
362	L	M	<u> </u>			L			M		ļ	 ,,	ļ	<u> </u>	ļ	 		├	
363	A	V	 	<u> </u>	<u> </u>	 				 	<u> </u>	V	-		<u> </u>		<u> </u>	├ ──	
369	Α	V	<u> </u>	L		L	<u></u>		<u></u>	<u> </u>	<u> </u>	<u> </u>		L	L	L		L	

Figure 18A

Sequence	ce cha	nges			·	•				V	arian	its							
Position	WT	Mut	32	33	35	36	37	38	39	40	41	42	43	45	46	47	48	49	50
25	Y	Н																	
34	A	S																	
48	K	E																	
50	D	N																L	
55	N	S																	
63	T	·S										L	L						
88	T	I				<u> </u>	<u> </u>									I	1		$ldsymbol{ldsymbol{ldsymbol{eta}}}$
95	N	С							L										
97	P	S														<u> </u>			
107	S	D			D						<u> </u>	D	L			<u> </u>	L		<u> </u>
123	S	Α	Α	Α		A	Α			L	<u> </u>		A			<u> </u>	<u> </u>		
132	I	V							<u> </u>		<u> </u>					ļ	<u> </u>	<u> </u>	ļ
138	E	Α										<u> </u>							igsquare
145	M	F						F									ļ	<u> </u>	لبل
151	Y	A				ļ				<u> </u>			A	ļ		Α	A	A	A
167	V	I	I	I	I			I		<u></u>		<u> </u>				I	I	I	I
180	L	I	<u> </u>			I	I		I			<u> </u>			<u> </u>	I	I	I	I
194	Y	S		<u> </u>	L	S	S	S	<u> </u>	ļ		L		<u> </u>					
199	A	S	S	S			<u> </u>	<u> </u>	S							<u> </u>	<u> </u>		
208	K	Н	<u>L_</u>		<u></u>			ļ	<u> </u>			<u> </u>		ļ	<u> </u>	ļ	ļ	<u> </u>	ļ
209	N	K	<u> </u>				L	<u> </u>		<u> </u>		<u> </u>	ļ	ļ	<u> </u>	<u> </u>		ļ	
233	S	N	<u> </u>	<u> </u>				ļ	<u> </u>		ļ	<u> </u>	<u> </u>		<u> </u>	ļ	—	-	
236	Α	V				ļ		<u> </u>	<u> </u>			├	<u> </u>		<u> </u>		ļ	 	├ ─
237	R	N	<u> </u>			<u> </u>	ļ	<u> </u>		<u> </u>	ļ	↓	<u> </u>	N	N	ļ	ļ <u> </u>	ļ.,	
265	P	S	<u> </u>			<u> </u>	 	<u> </u>		ļ	ļ.,	├	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	
267	V	I	<u> </u>	<u> </u>	I	<u> </u>	<u> </u>	ļ	-	1	I	↓		<u> </u>			 	 	
273	S	T	<u> </u>	<u> </u>	T	 	<u> </u>	├	T	 	-	—	├	-	├	 	├	-	
293	G	A	A	A		A	A	 	ļ	A	A		 	 		} —	 	-	-
299	L	C	1	<u> </u>	<u> </u>	<u> </u>	ļ	-	<u> </u>	 	├	177	 	 	_		-		
310	I	K	<u> </u>	<u> </u>	<u> </u>	ļ		 	 -	L-	<u></u>	K	├	-	 			+-	
332	K	R	L	<u> </u>	-	 	 	 		R	R	1	 	 	 	├	-	 	
337	S	N	N	N	N	 _	 _	 	├ ─	 	 	N	 	-	-	 	├	 	┼
355	P	S	ļ	<u> </u>		S	S	-	├	—	├ ─	 	S	├		├		-	+-
362	L	M	_	<u> </u>	<u> </u>	 		 ,,	<u> </u>	 	├ ─	 	 	├		├—	-	┼	┼──
363	A	V	├ ──	├	<u> </u>	 	 —	V	├-	-	 	├ ─	 	V		 	├	1	
369	A	V	<u></u>	<u> </u>	<u> </u>	L	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_ v		Ц	Ц		—

Figure 18B

Sequenc	ce chai	nges							arian	ts				
Position	WT	Mut	N2	N3	N4	N6	N7	N8	N9	N10	NII	N13	N14	N15
25	Y	Н												
34	Α	S												
48	K	Е										L		
50	D	N												
55	N	S												
63	T	S									<u></u>			
88	T	I										<u> </u>		
95	N	C	С					C	C	ļ		C		
97	P	S		S		S					S		L	S
107	S	D			D	D						D	<u> </u>	L
123	S	Α					A		<u> </u>	<u> </u>	A	A	<u> </u>	ļ
132	1	V			V	L		ļ	V		ļ	ļ	<u> </u>	
138	Е	Α		A	<u> </u>	<u> </u>	A	<u> </u>	A			ļ	A	
145	M	F	F			<u> </u>	<u> </u>		F	<u> </u>		<u> </u>	<u> </u>	F
151	Y	Α				<u> </u>			<u> </u>	<u> </u>	<u> </u>	ļ	A	<u> </u>
167	_ V	I	I	<u> </u>		<u> </u>			I	ļ <u>.</u>	L	ļ	I	<u> </u>
180	L	I		I	<u> </u>	I		ļ	<u> </u>		ļ	I		<u> </u>
194	Y	S		S		<u> </u>		S	<u> </u>	<u> </u>	 	S		ļ
199	Α	S	S	<u> </u>	<u> </u>	<u> </u>	S	<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>	S	<u> </u>
208	K	Н		<u> </u>	H		H		H	<u> </u>	ļ		Н	ļ
209	N	K							ļ	<u> </u>	ļ	<u> </u>		ļ
233	S	N		<u> </u>					ļ			ļ	<u> </u>	
236	A	V	ļ	V	<u> </u>	V	ļ	ļ	<u> </u>	V	ļ		 	<u> </u>
237	R	N	N			N		<u> </u>		N	ļ	<u> </u>	 	N
265	P	S		<u> </u>	S	<u> </u>	S	<u> </u>	<u> </u>	<u> </u>	S	 	ļ	<u> </u>
267	V	I	<u> </u>	I		<u> </u>	<u> </u>	I	ļ	 	ļ			
273	S	Т	T	ļ	<u> </u>		 	 		T	<u> </u>	 	 	T
293	G	A	ļ	<u> </u>	<u> </u>	ļ	 	A	<u> </u>	A	 	-	+	A
299	L	С	 	ļ	C.		<u> </u>	С		 	C	 	C	17
310	I	K	<u> </u>		<u> </u>	K		 _		 	K	 		K
332	K	R	<u> </u>	-	 	-		R	<u> </u>	R	1	1 37	 	
337	S	N	 		N	<u> </u>	 	 	 	 _	N	N	 	
355	P	S		ļ	<u> </u>	 	S		-	S	 	 		-
362	L	M	<u> </u>	 	ļ		 	<u> </u>	 	 	 	 	 	
363	A	V	<u> </u>	ļ	ļ	<u> </u>		 	-	 	 		+	
369	A	V		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u>i</u>	<u> </u>	<u></u>		1	

Figure 18C

Sequen	ce cha	nges								V	arian	ts							
Position	WT	Mut	N16	N17	N18	N19	N20	N21	N22	N23	N24	N25	N26	N27	N28	N30	N33	N40	N43
25	Y	Н											<u> </u>			 			
34	A	S																	
48	K	Е																	
50	D	N					<u> </u>												
55_	N	S																	
63	T	S																	
88	T	I																	
95_	N	С			C						С	C							
97	P	S		S						S			S	S					
107	S	D			D				D								D		
123	S	Α					Α	Α									A		
132	I	V	V				V		V										
138	E	Α					Α		A						Α				
145	M	F				F			F								F	F	F
151	Y	Α		Α							Α								A
167	V	I			Ī						I								
180	L	I			I					I								Ī	
194	Y	S					S			S				S					
199	_A	S		S						S									S
208	K	H					H	Н											
209	N	K																	
233	_S	N																	
236	A	V	V	V				V								V			
237	R	N				N	·				N								
265	P	S	S			S				S									
267	V	I	1			I		I										I	
273	S	T					T				T								
293	_G	A			A			Α											
299	L	С		С				С					C	С					
310	I	K			K					K								K_	K
332	K	R	R			R					R								R
337	S	N				N			N										
355	P	S	S	S					S									S	
362	L	M										ļ							
363	<u>A</u>	V																	
369	A	V			1		1		1		1		1					- 1	

Figure 18D

Sequen	ce cha	nges								V	arian	its							
Position	WT	Mut	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
25	Y	Н																	
34	Α	S																	
48	K	E																	
50	D	N																	
55	N	S										I							
63	T	S																	
88	T	I	I																
95	N	С																	
97	P	S																	
107	S	D																	
123	S	Α																	
132	I	V																	
138	Е	Α																	
145	M	F									i								
151	Y	Α	Α	A	A	Α													
167	V	I	I	I	I	I						}	I	I			I	I	I
180	L	I	I	I	I	I													
194	Y	S					S	S	S	S									
199	A	S					S	S	S	S									
208	K	H									H	H							
209	N	K									K								
233	S	N										L	N						
236	A	V																	
237	R	N									L_				N	N	N	N	N
265	P	S										<u> </u>							
267	V	I					I	I	I	I	I	I	I	I	1	I			I
273	S	T													Ĺ				
293	G	Α									A	Α	Α	Α	Α	Α	Α	A	Α
299	L	С									L								
310	I	K													L		<u></u>		
332	K	R									R	R	R	R	R	R	R	R	R
337	S	N											N	N					N
355	P	S													S	S	S	S	S
362	L	M						L	<u> </u>	<u> </u>					<u> </u>	<u> </u>			
363	Α	V														L			
369	Α	V					L	L							<u> </u>	<u> </u>			

Figure 18E

Sequen	ce char	nges _							Vai	iants	-	 				 	
Position	WT	Mut	65	66	67	69	70	71	72	73	74		T	Γ	Γ		
25	Y	H														\Box	
34	Α	S			T -							T^-	1				
48	K	Е						E					\top				
50	D	N														\Box	П
55	N	S								T			T				
63	T	S							S				1				
88	T	I															
95	N	C															
97	P	S															
107	S	D															
123	S	Α															
132	I	V											Т				
138	E	A										\Box					
145	M	F											T			\Box	
151	Y	A								1							
167	V	I	I	I		Ī	I	I	I							\Box	П
180	L	I														П	
194	Y	S											\top				
199	A	S															
208	K	Н						H	Н	H	Н						
209	N	K											Π				
233	S	N															
236	Α	V											T			\Box	
237	R	N						N	N								
265	P	S											Π				
267	V	I	I	I	_ I	I	I	I	I	I	I						
273	S	T				T	T										
293	G	Α	A	Α				Α	Α	Α	Α						
299	L	С															
310	I	K															
332	K	R	R	R	R	R	R	R	R	R	R						
337	S	N			N	N	N	N	N								
355	P	S			S			S	S				\Box				
362	L	M															
363	Α	V															
369	Α	V								V	V						

Figure 18F

Variant	y1	y2	y4	у5	у6	у7
wt	0.7526	0.8774	0.7477	1.1850	0.6604	2
wt	1.2316	1.0877	1.2523	0.8150	1.3396	2
wt	1.0822	0.9082	1.0894	1.0850	0.9829	2
wt	0.8904	1.1423	0.9106	0.9158	1.0171	1 2
10	0.0263	1.7208	0.1682	-0.0125	0.0453	6
12	0.2211	0.1878	0.4486	0.2320	0.0415	2
13	0.0158	1.9119	0.2430	-0.0376	0.0302	1
14	0.0158	2.3899	0.3364	0.0251	0.0377	6
15	1.6789	0.0135	2.3738	1.6176	0.0226	
15	1.3945	0.4917	1.6260	1.2690	0.6857	
19	0.9000	0.9476	1.0280	1.0219	0.8528	1
19	0.6932	1.0442	0.6667	0.8143	0.7238	1
20	1.2737	0.0593	1.5327	1.5172	0.0755	0
20	0.5507	0.0484	0.5203	0.6472	0.0267	0
21	0.1632	0.9251	0.0935	0.1881	0.1509	0
22	0.1947	0.3294	0.1869	0.1884	0.0642	2
23	1.8053	0.0878	3.0280	2.0000	0.0042	3
23	1.6932	0.0900	2.0163	1.6709	0.1524	3
24	0.0579	0.9777	0.0374	0.0627	0.1524	4
25	0.3421	1.4891	0.6168	0.4514	0.5094	6
26	0.0053	10.7547	0.2056	0.0094	0.0566	2
26	0.0521	0.4391	0.0650	0.0094	0.0229	2
27	0.3474	1.3905	0.3178	0.3793	0.4830	1
29	1.4263	0.0079	1.6822	1.6144	0.4830	4
29	1.2740	0.0150	1.7398	1.3431	0.0113	4
30	0.0316	0.9560	0.0935	-0.0251	0.0302	8
31	0.0421	1.2547	0.1121	0.0502	0.0528	6
32	0.7316	1.2792	0.6916	1.0063	0.0328	4
33	0.3263	1.3530	0.5794	0.5235	0.4415	4
35	1.0737	0.1546	1.7009	1.4451	0.4413	1
36	0.0421	0.9858	0.2617	0.0752	0.1000	2
37	0.0316	0.9560	0.0187	-0.0094	0.0302	2
38	0.0053	9.3208	-0.0748	-0.0054	0.0302	0
39	0.2158	1.2416	0.2430	0.3730	0.2679	1
40	1.6737	1.5444	2.5794	2.0031	2.5849	2
40	0.9342	1.4557	0.9593	0.9666	1.3600	2
41	0.9421	1.8906	1.1402	1.2539	1.7811	2
42	0.0474	1.3543	0.0935	0.0784	0.0642	0
43	0.4105	0.1287	0.5794	0.6364	0.0528	
43	1.0466	0.0109	0.9919	0.6113	0.0328	4
46	0.4466	1.0919	0.3089	0.5245	0.4876	
47	0.6575	0.7763	0.6016	0.8143	0.5105	0.5 7
48	0.9370	0.8253	0.9919	1.1168	0.5105	4
51	0.0219	1.5643	-0.0488	0.0127	0.7733	1
55	1.0329	1.4901	1.0569	1.2986		
	1.0029	1.4301	1.0008	1.2800	1.5390	_5

Figure 19A

Variant	yl	y2	y4	y5	у6	у7
56	1.3178	1.3124	1.5447	1.3198	1.7295	2
57	1.3123	0.9957	1.3496	1.2986	1.3067	3
58	0.9699	0.4635	0.8943	1.0237	0.4495	2
59	0.5260	0.0435	0.2927	0.5753	0.0229	0.5
60	0.5863	0.0325	0.3740	0.6578	0.0190	0.5
61	0.8548	0.0089	0.9268	0.9137	0.0076	0.5
62	0.3041	0.0752	0.2276	0.3574	0.0229	0.5
63	0.9370	0.0447	0.9919	0.9941	0.0419	0.5
65	0.3699	0.3193	0.0976	0.3955	0.1181	2
66	0.9096	0.5445	0.7480	0.9835	0.4952	2
67	0.2932	0.0520	0.1626	0.3194	0.0152	2_
69	0.2301	0.2980	0.1951	0.1713	0.0686	2
70	0.5342	0.3066	0.2927	0.6028	0.1638	3
71	0.2411	0.3002	0.2114	0.2686	0.0724	0.5
72	0.4466	0.0427	0.2276	0.4611	0.0190	1
73	0.2219	0.7725	0.1138	0.2390	0.1714	4
74	0.7233	1.1113	0.4715	0.8164	0.8038	4

Figure 19B

Figure 20

Figure 21

Figure 22

Figure 23

Variation position	Casein hydrolysis	Thermal tolerance	AAPL-p-NA pH7.0	
	(y7)	(y6)	(y1)	
107	$\underline{\mathtt{D}}$	S	S	
123	<u>A</u>	. S	S	
151	<u>A</u>	Y	Α	
167	Ī	V	$\frac{\mathbf{A}}{\mathbf{V}}$	
180	<u>I</u>	L	Ī	
194	<u>S</u>	Y	$ar{ ilde{\mathbf{Y}}}$	
199	<u>S</u> <u>S</u>	Α	Α	
208	K	<u>H</u>	K	
267	V	Ī	V	
273	<u>T</u>	S	S	
293	$\overline{\mathbf{G}}$	<u>A</u>	Α	
332	<u>R</u>	$\overline{\underline{\mathbf{R}}}$	$\overline{\overline{R}}$	

Figure 24

Gene#	Pos 7	Pos 15	Pos 18	Pos 28	Pos 32	Pos 40	Pos 53
1	<u>.</u> Q	<u>. K</u>	E	N	I	S	E
2	_ Q	_ K	E	H	L	Q	D
: 3_	Q	E	K	N	I	O	D
4	Q	E	K	H	L	S	E
5	N	K	K	N	L	S	D
6	N	. K	K	H	I	0	E
7	N	. E	E	N	L	O	E
8	N	E	E	H	I	S	D

Figure 25

Identify all sequences homologous to MX PEP and align using ClustalW A: Substitutions set RULE 1a: Identify all substitutions seen in 35 homologs from Genbamk Consider only these susbtitutions (ie RULE 1a is a filter) B: Substitutions from homologous sequences · Reconstruct phylogenetic tree RULE 1b: Calculate evolutionary proximity of the closest homolog in which each substitution occurs (EP) RULE 2b: Calculate site heterogeneity at each substitution position (SH) RULE 3b: Calculate entropy at each substitution position (SE) Calculate number of times a substitution is seen at a position in the set of homologs (SN) C: Substitutions from substitution matrices RULE 1c: Calculate favorability of each substitution using a PAM250 matrix (SM).

Figure 26

Score = $f(EP) \times f(SH) \times f(SE) \times f(SN) \times f(SM)$

Align heavy chain sequences from Genbank accession # AAF21612 with human germline immunoglobulin heavy chain sequences from VBase using ClustalW.

A: Substitutions set

RULE 1a:

- Enumerate and classify the substitutions into 2 categories.
- (i) Substitutions found in the framework region (FW) and
- (ii) substitutions found in the complementarity determining region (CDR).
- Consider only these susbtitutions (ie RULE 1a is a filter), and consider them separately

B: Substitutions from human germline sequences

Reconstruct phylogenetic tree

RULE 1b:

 Calculate evolutionary proximity of the closest homolog in which each substitution occurs (EP)

RULE 2b:

- Calculate site heterogeneity at each substitution position (SH)
- RULE 3b:
- Calculate entropy at each substitution position (SE)

RULE 4b:

 Calculate number of times a substitution is seen at a position in the set of homologs (SN)

C: Substitutions from substitution matrices

RULE 1c:

Calculate favorability of each substitution using a PAM100 matrix (SM).

D: Score

 $Score_{FW} = f(EP) \times f(SH) \times f(SE) \times f(SN) \times f(SM)$

 $Score_{CDR} = f'(SE) \times f'(SN) \times f'(SM)$

Figure 27

Align RSV-19 heavy chain sequence with human germline ig heavy chain sequences from VBase using ClustalW.

A: Substitutions set

RULE 1a:

- Enumerate and classify the substitutions into 2 categories.
- · (i) Substitutions found in the framework region (FW) and
- · (ii) substitutions found in the complementarity determining region (CDR).
- Consider only these susbtitutions (ie RULE 1a is a filter), and consider them separately

B: Substitutions from human germline sequences

Reconstruct phylogenetic tree

RULE 1b:

 Calculate evolutionary proximity of the closest homolog in which each substitution occurs (EP)

RULE 2b:

- Calculate site heterogeneity at each substitution position (SH) RULE 3b:
- Calculate entropy at each substitution position (SE)

RULE 4b:

 Calculate number of times a substitution is seen at a position in the set of homologs (SN)

C: Substitutions from substitution matrices

RULE 1c:

Calculate favorability of each substitution using a PAM100 matrix (SM).

D: Score

 $Score_{FW} = f(EP) \times f(SH) \times f(SE) \times f(SN) \times f(SM)$

 $Score_{CDR} = f(SE) \times f(SN) \times f(SM)$

Figure 28