Physics Thinking

Casey Handmer and Jonathan Whitmore 2024-01-01

Table of contents

Pr	eface	ntroduction 1.1 Solving Problems with the 7D's and the little S	
1			
_			
2	Med		6
	2.1	Example Problem	6
		Diagram	6
			6
		Definitions & Data	6
		Diagnosis	6
		Derivation	7
		Determination	7
		Dimensions	7
		Limiting Cases	7
		Substitution	8
3	Sum	nmary	9
Re	eferer	ices	10

Preface

Consider this as an option for developing (and publishing?) the book.

To learn more about Quarto books visit https://quarto.org/docs/books.

1 Introduction

This is a book created from markdown and executable code.

Table 1.1: SI units

Base Quantity	Base Unit	Symbol
length	meter	\overline{m}
time	second	s
mass	kilogram	kg
electric current	ampere	A
Thermodynamic temperature	Kelvin	K
Amount of substance	mole	mol
Luminous Intensity	candela	cd

Table 1.2: Fundamental Units

length	time	mass	charge	temperature
m	\mathbf{s}	kg	\mathbf{C}	K

Table 1.3: Combinations

Concept	Units
Force	$kg \ m \ s^{-2} = N$
Energy	$kg \ m^2 \ s^{-2} = N \ m = J$
Power	$kg \ m^2 \ s^{-3} = J \ s^{-1} = W$
Current	$C s^{-1}$

Dimensional analysis: always checking and fudging (?).

Same units go to the same side of the equation!

Vectors vs scalars

Math is a tool, not the be all and end all – don't simply formula fit.

Sensible answers! Check!

1.1 Solving Problems with the 7D's and the little S

- Diagram: Big! (2/3 of a page) and as many as you need. Graphs
- Directions: Mark it (negative/positive)
- Definitions & Data: Put it on the page (all of them)
- Diagnosis: Type (how) conservation principles, force laws, angular momentum.
- Derivation: Equations (diagnosis in symbols) as many equations as variables add to diagram dimensions
- Determination D'algebra box the answer.
- Dimensions Check and limiting cases if makes sense then possibly right (if not prob wrong). LHS = RHS then :grinning:.
- Substitution: if necessary do rough calc by hand an dunits include error!

2 Mechanics

2.1 Example Problem

Diagram

TODO

Directions

TODO

Definitions & Data

Variable	Description
\overline{m}	Mass of object
H	Initial height
h	Final height
k	Spring constant
g	Acceleration due to gravity
\dot{x}	Compression of spring
U_{qpe}	gravitational potential energy
U_E^{gpc}	elastic potential energy
E	energy

Diagnosis

Conservation of Energy (E is conserved).

$$U_{gpe} \to U_E$$

$$mgH = mgh + \frac{1}{2}kx^2$$

Derivation

$$F = -kx$$

$$U = -\int F dx$$
$$= -\int_{x_i}^{x_f} kx dx$$
$$= \frac{1}{2}kx_f^2$$

Determination

$$mg\left(H-h\right) =\frac{1}{2}kx^{2}$$

$$\frac{2mg\left(H-h\right) }{k}=x^{2}$$

$$x = \sqrt{\frac{2mg(H-h)}{k}}$$

Dimensions

$$L = \sqrt{\frac{MLT^{-2}(L)}{MT^{-2}}}$$
$$= \sqrt{L^2}$$

Limiting Cases

$$H \to h$$

$$H - h = 0 \implies x = 0$$

makes sense!

$$m \to 0 \implies x \to 0$$

makes sense!

$$k \to \infty \implies x \to 0$$

makes sense!

$$k \to 0 \implies x \to \infty$$

makes sense!

Substitution

Not needed.

3 Summary

A work in progress.

References