

A Comptonized Fireball Bubble

Fits the Second Extragalactic Magnetar Giant Flare GRB 231115A

Yi-Han Iris Yin

Nanjing University

2024.7.14

GCN Circular 35035

Subject

GRB 231115A: Fermi GBM Final Real-time Localization **Date**

2023-11-15T15:46:53Z (8 months ago)

From

Fermi GBM Team at MSFC/Fermi-GBM <do_not_reply@GIOC.nsstc.nasa.gov>

Via

email

The Fermi GBM team reports the detection of a likely SHORT GRB

At 15:36:21 UT on 15 Nov 2023, the Fermi Gamma-ray Burst Monitor (GBM) triggered and located GRB 231115A (trigger 721755386.20138 / 231115650).

The on-ground calculated location, using the Fermi GBM trigger data, is RA = 131.0, Dec = 73.5 (J2000 degrees, equivalent to J2000 08h 43m, 73d 30'), with a statistical uncertainty of 8.7 degrees.

The angle from the Fermi LAT boresight is 38.0 degrees.

The position of GRB 231115A coincides with the nearby starburst galaxy M82.*

- length of the burst
- spectral properties
- limits on X-ray and optical counterparts*

• lack of a gravitational wave signal

• ..

likely-short-GRB trigger

position consistency

further evidences

*reference: Mereghetti et al., 2024, Nature, doi:10.1038/s41586-024-07285-4

- Magnetar giant flare (MGF)
- Similarities to MGF GRB 200415A
- The Comptonized fireball bubble model
- Spectral fits and implications
- Conclusion

Magnetar Giant Flare (MGF)

Schematic representation of MGF light curve*

Light curves of GRB 200415A**

The first confirmed extragalactic MGF GRB 200415A

*reference: Elenbaas et al., 2016, MNRAS, doi: 10.1093/mnras/stv2860

**reference: Yang et al., 2021, ApJ, doi: 10.3847/1538-4357/aba745

MGF GRB 231115A

Observed properties of MGF GRB 231115A*

Observed Properties	GRB 231115A
$T_{90} \; ({ m ms})$	$55.90^{+3.43}_{-1.91}$
Total spanning time (ms)	~ 79
Minimum variability timescale (ms)	~ 13.95
Effective amplitude	4.24 ± 1.29
Spectral index α (CPL)	$0.16^{+0.21}_{-0.19}$
Peak energy (keV) (CPL)	$605.54_{-67.84}^{+84.72}$
Peak energy (keV)	$606.15^{+113.94}_{-30.47}$
Peak flux $(erg cm^{-2} s^{-1})$	$1.85^{+0.31}_{-0.13} \times 10^{-5}$
Total fluence $(erg cm^{-2})$	$6.20^{+0.54}_{-0.40} \times 10^{-7}$
Peak luminosity $(erg s^{-1})$	$2.71^{+0.46}_{-0.18} \times 10^{46}$
Isotropic energy (erg)	$9.08^{+0.80}_{-0.58} \times 10^{44}$
Possible host galaxy	Cigar galaxy (NGC 3034)
Distance (Mpc)	3.5
Event rate density $(Gpc^{-3} yr^{-1})$	

*reference: Yin et al., 2024, ApJL, doi: 10.3847/2041-8213/ad2839

MGF GRB 231115A

Property diagrams of GRBs

The Comptonized Fireball Model

A schematic diagram of the Comptonized fireball bubble model*

The Comptonized Fireball Model

Schematic diagram for energy fractions of different components*

Spectral fits

Spectral fitting results and corresponding statistics

Time Intervals	CPL Parameters					BB Parameters			
(t_1,t_2) (s)	α	$E_{\rm p}~({\rm keV})$	PGSTAT/d.o.f	BI	C	$kT \; (\text{keV})$	PGSTAT/d.o.f	BIC	
(-0.018, 0.061)	$0.16^{+0.21}_{-0.19}$	$605.54^{+84.72}_{-67.84}$	468.89/463	487.	32	$119.66^{+8.32}_{-8.12}$	487.51/464	499.79	
(-0.018, -0.008)	$0.75^{+0.58}_{-0.42}$	$478.50^{+84.43}_{-54.65}$	321.99/463	340.	42	$115.16^{+13.69}_{-9.85}$	322.62/464	334.91	
(-0.008, 0.001)	$-0.33^{+0.29}_{-0.24}$	$907.55^{+404.02}_{-193.04}$	336.11/463	354.	54	$144.77^{+17.53}_{-16.32}$	349.98/464	362.27	
(0.001,0.012)	$0.32^{+0.64}_{-0.24}$	$573.73^{+83.60}_{-117.56}$	313.13/463	331.	56	$119.28^{+16.46}_{-14.31}$	316.62/464	328.91	
(0.012, 0.061)	$0.14^{+0.71}_{-0.42}$	$533.27^{+271.80}_{-149.56}$	387.60/463	406.	03	$96.61^{+19.32}_{-15.14}$	391.03/464	403.32	
Time Intervals	MGF Parameters								
(t_1,t_2) (s)	$\log(n_\pm)$	kT	$\log(B_*)$	$\log(l_0)$		α	PGSTAT/d.o.f	BIC	
(-0.018, 0.061)	$23.24^{+0.08}_{-0.27}$	$12.22^{+3.21}_{-0.67}$	16.35 (fixed)	5.44 (fixed)		$3.67^{+1.65}_{-0.41}$	467.56/463	485.99	
(-0.018, -0.008)	$23.35^{+1.19}_{-0.23}$	$8.75^{+1.85}_{-1.43}$				$2.58^{+0.36}_{-1.90}$	321.94/461	335.28	
(-0.008, 0.001)	$22.77^{+1.22}_{-0.17}$	$13.65^{+2.53}_{-3.50}$	$16.35^{+0.08}_{-0.26}$	5.44^{+}_{-}	0.01	$5.28^{+0.14}_{-2.08}$	336.69/461	350.03	
(0.001,0.012)	$23.20^{+1.04}_{-0.36}$	$10.79^{+4.08}_{-1.60}$	$-0.30_{-0.26}$	0.44_	0.31	$3.46^{+1.73}_{-1.23}$	313.96/461	327.30	
(0.012, 0.061)	$23.41^{+0.95}_{-0.37}$	$13.53^{+6.24}_{-2.11}$				$3.82^{+1.71}_{-1.00}$	388.17/461	401.52	

- We found that the second observed extragalactic MGF, GRB 231115A, is similar to GRB 200415A with respect to the temporal and spectral properties.
- We further employed the Comptonized fireball model to successfully infer the radiation origin of the burst, establishing a clear and self-consistent scenario to explain these peculiar bursts.
- The fits indicate relatively higher local magnetic fields (2.5×10¹⁶ G), increasing the likelihood of detecting gravitational waves generated by magnetar oscillations, making MGF GRBs promising candidates for kilohertz GW sources, especially if they can occur within our Galaxy.

Thank you.