В выпуклой оболочке столько же вершин, сколько и сторон в случае, если она невырожденная. Поэтому задача сводится к тому, чтобы для каждой пары несовпадающих точек A и B определить, сколько подмножеств содержат AB как сторону выпуклой оболочки, а также обработать вырожденные случаи.

Объединим совпадающие точки из входных данных в одну с весом, равным количеству совпадающих. Далее везде будем считать, что точка — это не только координаты, но еще и вес.

Зафиксируем A. Все остальные точки упорядочим по полярному углу относительно A (можно, например, считать, что точки верхней полуплоскости будут идти раньше точек нижней). Для каждой точки нам будет важно только расстояние (квадрат расстояния) до A и ее вес, координаты можно забыть.

Возьмем самую первую точку B_0 . Обозначим S_1 и S_2 — множества точек в верхней и нижней полуплоскостях от прямой AB_0 . Найдем веса S_1 и S_2 , мы будем их поддерживать во время работы.

Будем обрабатывать вектора в заданном порядке, на каждом из них точки в порядке удаления от A. Пусть текущая точка B, между A и B (не включая сами A и B) множество точек W, его вес известен. Также нам известны веса S_1 и S_2 .

АВ лежит в невырожденной выпуклой оболочке в двух случаях:

- 1) Если мы берем произвольный непустой набор точек из S_1 , произвольный из W и 0 точек из S_2 . $(2^{S_1}-1)\cdot 2^W$ вариантов.
- 2) Аналогично, если берем произвольный непустой набор точек из S_2 , произвольный из W и 0 точек из S_1 . $(2^{S_2}-1)\cdot 2^W$ вариантов.

AB лежит в вырожденной в отрезок выпуклой оболочке, когда мы не берем точек из S_1 и S_2 , а только из W. Соответственно, к ответу добавляется $2\cdot 2^W$, т.к. в этой случае имеем 2 вершины.

Перейдем к следующей точке, обновив веса S_1 и S_2 , для чего нам нужно знать суммарный вес точек на текущем векторе и на обратном ему. Если мы остались на том же векторе, то к W нужно прибавить вес B.

Чтобы не учитывать дважды отрезки AB и BA, можно обходить только В из верхней полуплоскости.