

Logika Predikat

Kuantor dengan Domain Terbatas

Contoh:

Diberikan formula logika predikat $\forall x(x^2 > 0)$ untuk x bilangan riil negatif

Formula tersebut dapat dinyatakan sebagai $\forall x < 0 (x^2 > 0)$ dengan $x \in \mathbb{R}$ yang sama artinya dengan $\forall x (x < 0 \rightarrow x^2 > 0)$ dengan $x \in \mathbb{R}$

Domain bilangan riil untuk variabel x dibatasi oleh kondisi x < 0.

Contoh lain: Apa maksud dari formula berikut jika domain x adalah bilangan riil?

$$\forall y \neq 0 (y^3 \neq 0)$$

$$\blacksquare \exists z > 0(z^2 = 2)$$

Penggunaan Kuantor dalam Logika Predikat

- Presedensi Kuantor
 - Kuantor universal maupun eksistensial memiliki presedensi tertinggi dibandingkan dengan operator logika yang lain. Hati-hati dalam penulisannya.
 - Contoh:
 - $\forall x P(x) \rightarrow Q(x)$ menunjukkan bahwa kuantor \forall hanya membatasi predikat P(x)
 - Jika yang dimaksud adalah kuantor \forall membatasi predikat P(x) dan Q(x), maka perlu digunakan tanda kurung, menjadi $\forall x (P(x) \rightarrow Q(x))$
- Perhatikan bahwa setiap variabel yang digunakan pada predikat bersifat terikat/binding variable.
 - Contoh:
 - $\forall x(x+y>2)$ tidak tepat karena formula ini tidak memiliki nilai kebenaran, variabel y tidak terikat/dibatasi oleh nilai tertentu maupun kuantor *(free variable)*.

Kesetaraan Logika yang Melibatkan Kuantor

Contoh:

Tunjukkan bahwa $\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$ setara.

- Sesuai dengan definisi kesetaraan logika, kita perlu menunjukkan bahwa berntuk $\forall x (P(x) \land Q(x)) \leftrightarrow \forall x P(x) \land \forall x Q(x)$ merupakan tautology (valid).
- Kita tunjukkan bahwa berlaku implikasi dua arah, yaitu:

$$\forall x (P(x) \land Q(x)) \rightarrow \forall x P(x) \land \forall x Q(x)$$

$$\forall x P(x) \land \forall x Q(x) \rightarrow \forall x (P(x) \land Q(x))$$

Kesetaraan Logika yang Melibatkan Kuantor

Langkah 1: Menunjukkan bahwa jika $\forall x (P(x) \land Q(x))$ berlaku, maka $\forall x P(x) \land \forall x \ Q(x)$ juga berlaku.

- Misalkan pernyataan $\forall x(P(x) \land Q(x))$ benar.
- Jika a berada dalam domain maka pernyataan $P(a) \wedge Q(a)$ benar. Berdasarkan sifat konjungsi, maka P(a) benar dan Q(a) juga benar.
- Karena P(a) benar untuk **setiap nilai** a **dalam domain** seperti halnya Q(a), maka $\forall x P(x)$ benar, demikian juga dengan $\forall x Q(x)$.
- Sehingga dapat disimpulkan bahwa $\forall x P(x) \land \forall x Q(x)$ juga benar.

Kesetaraan Logika yang Melibatkan Kuantor

Langkah 2: Menunjukkan bahwa jika $\forall x P(x) \land \forall x \ Q(x)$ berlaku, maka $\forall x \left(P(x) \land Q(x)\right)$ juga berlaku.

- Misalkan pernyataan $\forall x P(x) \land \forall x \ Q(x)$ benar, maka berlaku $\forall x P(x)$ benar dan juga $\forall x Q(x)$ benar.
- Jika a berada dalam domain, maka P(a) benar dan Q(a) juga benar. Sehingga $P(a) \wedge Q(a)$ benar **untuk setiap** a **dalam domain**.
- Dengan demikian dapat disimpulkan bahwa $\forall x (P(x) \land Q(x))$ juga benar.

Apa yang sudah dipelajari...

- Kuantor (Universal & Eksistensial)
 - Penggunaan kuantor dengan domain terbatas.
 - Aturan penggunaan kuantor untuk mengkuantifikasi variabel pada predikat.
 - Kesetaraan logika pada logika predikat.

Materi selanjutnya: Negasi pada formula predikat