CHRISTOPHER R. COLLINS

chris@crcollins.com • (678) 632-8759 http://github.com/crcollins http://crcollins.com

EDUCATION

Carnegie Mellon University

Pittsburgh, PA

2014 – 2019 Expected

Ph.D. in Theoretical/Computational Chemistry

Thesis Topic: Using Machine Learning and Molecular Similarity to Predict Chemical Properties

University of North Georgia

Dahlonega, GA

B.S. in Chemistry with Chemical Physics Concentration

2010 - 2014

Seminar Topic: Application of Machine Learning to Predict the Optoelectronic Properties of Benzobisazoles

Research

Carnegie Mellon University

Pittsburgh, PA

Graduate Student; Advisor: David Yaron

Aug. 2014 – *Present*

- Developed parallel and distributed code for optimizing INDO parameters (50x speedup on 60 core cluster)
- Achieved state-of-the-art performance for predicting properties of polymers with Deep Learning
- Constructed new molecular descriptors for machine learning in chemistry
- Developed method for predicting atomic forces by differentating Deep Learning models

University of North Georgia

Dahlonega, GA

Undergraduate Researcher; Advisor: Aimée Tomlinson

Aug. 2011 - May 2014

- Researched Benzobisazole Cruciform structures using DFT for use as efficient organic solar cells
- Built set of tools to automate research process (reduced hours of work to minutes)
- Formulated machine learning model for predicting Benzobisazole properties (orders of magnitude faster than comparable methods for the same accuracy)

Carnegie Mellon University

Pittsburgh, PA

Undergraduate Researcher; Advisor: David Yaron

May 2013 – *Aug.* 2013

- Researched decomposition of Thiaphospholes using quantum computational methods
- Wrote MATLAB code to automate running Gaussian/AMPAC calculations and parsing results

Work Experience

Pittsburgh, PA

Software Engineering Intern; Host: John Tantalo

Summer 2017

Tripwire, Inc.

Alpharetta, GA

Engineering Intern

May 2012 – *May* 2014

Rewrote entire test suite for Benchmark product using Selenium and PyTest (Python)

- Aided in migration of critical IP360 product and wrote automated test suite for API
- Expanded automated installation program for CCM product
- Wrote script to test for CSRF and XSS vulnerabilities in IP360 web application

TECHNICAL SKILLS

Proficient Languages: Python, MATLAB, Octave, Javascript, C, C++, Bash, Mathematica, LATEX, HTML/HTML5, SQL Familiar Languages: Go, CUDA C, TI-BASIC, CSS, Maple, Haskell, ASM (for my CPU), x86 ASM, Ruby, Java

Software: *nix (Linux, Centos, FreeBSD, AIX, Solaris), Vim, Gaussian/AMPAC, Git, SVN, SSH, rsync, coreutils, Make, Logisim, Vagrant, PostgreSQL, Varnish, nginx, Apache, Torque, ab, LabVIEW

Libraries: NumPy, SciPy, Matplotlib, Scikit-Learn, Django, CVXPY, CVX, Keras, PyBrain, Caffe, TensorFlow, Theano, Selenium, Paramiko, PyTest, Twitter Bootstrap, jQuery, jQueryUI, Swig, SDL, OpenMP, OpenMPI

MolML

(https://github.com/crcollins/molml)

- Library to extract features from molecules to interface with Scikit-Learn
 - * Extracts 4 classes of atom-wise and 4 classes of molecule-wise features (~20-30 descriptors)
 - * Parallel feature generation
- Full automated testing suite (100% code coverage)

Chemtools/Chemtools-Webapp

(http://gauss.crcollins.com)

- Implemented a set of tools for use in research
 - * Gaussian log output parser to collect molecular properties
 - * Machine learning model to predict polymer properties from oligomers
 - * Benzobisazole structure generator and machine learning predictor for optoelectronic properties
 - * Supercomputer job submitter and curator
- Full automated testing suite (over 95% code coverage on 12k LOC)
- Python/Django Application with a Bootstrap front end
- Vagrant VM build system

pyOS

(https://github.com/crcollins/pyos)

- Implementation of a *nix like operating system using Python
- Created shell similar to Bash Shell
- Reimplemented standard unix programs (cp, mv, rm, ls, etc)
- Included permissions, pipes, multiple users, and a virtual file system

Other

- Terminal Text Editor (C)
- 8 bit CPU (Logisim)
- Mandelbrot/Buddhabrot Generator (Python, Javascript, C, C++, CUDA C, TI-BASIC)
- Quadtree Visualizations (Python, C, C++ , Javascript)
- Cellular Automata Based Electronic Simulation (Javascript)
- Object Relation Management Library (Python/SQL)
- University Course Scraper (Python)
- Cryptography Library (Python, Logisim)
- Automated Peer Review System Web Application (Python/Django)
- Virtual Cluster and Server Architecture Vagrant Builds

Courses

(UNG) Linear Algebra

(UNG) Intro to Cryptography

(UNG) Computational Methods in Physics

(Udacity) Intro to Parallel Programming

(CMU) Introduction to Machine Learning

(CMU) Statistical Machine Learning (CMU) Graduate Artificial Intelligence

(CMU) Quantum Chemistry

(CMU) Special Topics in Computa-

tional Quantum Chemistry

(CMU) Computational Chemistry

(CMU) Convex Optimization

(CMU) Topics in Deep Learning

(CMU) Deep Reinforcement Learning and Control

Publications

Collins, C. R.; Li, H.; Gordon, G. J.; Yaron, D. J. Continuous Bag of Bonds: A Size-Consistent Way of Representing Molecules. *Submitted*.

Collins, C. R.; Gordon, G. J.; von Lilienfeld, O. A.; Yaron, D. J. Constant Size Molecular Descriptors For Use With Machine Learning. *Submitted*.

Collins, C. R.; Tomlinson, A. L. Application of Machine Learning to Predict the Optoelectronic Properties of Benzobisazoles. *In Progress*.

Collins, C. R.; Yaron, D. J. Developing Coarse-Grained Site Models for Excited Electronic States of Conjugated Polymers. *SPIE* **2015**.

Qiu, Y.; Worch, J. C.; Chirdon, D. N.; Kaur, A.; Maurer, A. B.; Amsterdam, S.; **Collins, C. R.**; Pintauer, T.; Yaron, D.; Bernhard, S.; Noonan, K. J. T. Tuning Thiophene with Phosphorus: Synthesis and Electronic Properties of Benzobisthiaphospholes. *Chem. Eur. J.* **2014**.

Tlach, B. C.; Tomlinson, A. L.; Morgan, K. D.; **Collins, C. R.**; Jeffries-EL, M. Evaluation of the Impact of Extended Conjugation on the Optoelectronic Properties Benzo[1,2-d:4,5-d']bisoxazole Polymers. *Aust. J. Chem.* **2013**.

TEACHING

- Teaching Assistant
 - 09-221 Laboratory I: Introduction to Chemical Analysis
 - 09-214 Physical Chemistry
 - 09-101 Introduction to Experimental Chemistry (2 times)
 - 09-103 Atoms, Molecules, and Chemical Change
 - 09-231 Mathematical Methods for Chemists
 - 09-106 Modern Chemistry II
- Weekly Lecture Series in Theory Suite (Organizer)
 - Intro to Python
 - Intro to Bash Scripting (2 lectures)
 - Intro to Object Oriented Programming
 - Intro to NumPy (2 lectures)

Pr

Accelerating the (Augmented) Roothaan-Hall Method in Solving the Density Functional Theory Problem	Pittsburgh, PA
CMU 10-725 Convex Optimization Term Project	2016
Constant Size Molecular Descriptors For Use With Machine Learning CMU Chemistry Department Retreat Poster Session	Valencia, PA 2016
Constant Size Molecular Descriptors For Use With Machine Learning Midwest Theoretical Chemistry Conference	Pittsburgh, PA 2016
Constant Size Molecular Descriptors For Use With Machine Learning CECAM Chemical Space Workshop	Zürich, Switzerland 2016
Using Data to Accelerate Quantum Chemical Calculations by Getting Better at Guessing	Pittsburgh, PA
CMU 15-780 Graduate Artificial Intelligence Term Project	2016
Using Machine Learning and Molecular Similarity to Predict Chemical Properties CMU Progress Report	Pittsburgh, PA 2016
Using Machine Learning and Molecular Similarity to Predict Chemical Properties CMU Chemistry Department Poster Session	Pittsburgh, PA 2016
Predicting Chemical Properties Using Machine Learning Methods CMU Chemistry Department Retreat Poster Session	Farmington, PA 2015
The Influence of Chemical Representations on the Efficiency of Molecular Screening CMU Graduate Seminar	Pittsburgh, PA 2015
A Mission to Multivariate Adaptive Regression Splines (MARS) and Its Otherworldly Neighbors	Pittsburgh, PA
CMU 10-702 Statistical Machine Learning Term Project	2015
Predicting Chemical Properties Using Machine Learning Methods CMU 10-701 Intro to Machine Learning Term Project	Pittsburgh, PA 2014
Application of Machine Learning to Predict the Optoelectronic Properties of Benzobisazoles	Dahlonega, GA
UNG Senior Seminar	2014
Machine Learning in Chemical Compound Space UNG Junior Seminar	Dahlonega, GA 2013
Donor-Acceptor Behavior of Benzobisazole Cruciformic Polymers American Chemical Society Southeastern Regional Meeting	Atlanta, GA 2013

The Impact of Conjugation Length on Benzobisazole Cruciforms American Chemical Society Southeastern Regional Meeting

- Runner-up Undergraduate Poster in Organic Chemistry

Raleigh, NC 2012