## 作品二、Python 迴圈、矩陣與外部檔案的練習

### 410978040 統計三 黃冠翔

本作品藉由繪圖和製作卡方表練習(1)迴圈與矩陣的運算、(2)繪製散佈圖、(3)線性代數的矩陣運算處理重複性計算、(4)利用 Pandas 與 Scipy 套件, 處裡資料、(5)將矩陣儲存到 EXCEL 檔案

# 1.繪製下圖 (線條顏色、符號與數量都可以由程式輕易變更)

繪製6圈的同心圓, 半徑分別為10、12、14、16、18和20, 並在各圈的圓上均勻畫上12個方框。

#### 注意事項:

將數量的決定放在 code 第一條,譬如,n = 6

將符號的決定放在 code 第二條,譬如,marker = 's'

不論畫同心圓或圓上方塊符號,可以採用迴圈方式或非迴圈的矩陣計算方式。最好兩者都試試看(從自己最有把握的方法先做),才知道 python 的長處(可以先不論顏色)。

上述方式可以迅速變更設定,看到結果。



```
In [ ]: from cmath import sqrt
        import numpy as np
        import matplotlib.pyplot as plt
        import turtle
        figure, ax = plt.subplots()
        r=np.linspace(10, 20, 6)
        theta=np.linspace(0, 2*np.pi, 100)
        theta1=np.linspace(0, 2*np.pi, 13)
        for i in r:
            x=i*np.cos(theta)
            y=i*np.sin(theta)
            plt.plot(x, y)
        for i in r:
            x=i*np.cos(theta1)
            y=i*np.sin(theta1)
            plt.scatter(x, y, marker='s', alpha=0.4)
        ax.set_aspect(1)
        ax.set_xlim([-22, 22])
        ax.set_ylim([-22, 22])
        ax.grid(True)
```



# 2. 繪製下圖 (線條顏色與數量都可以由程式輕易決定)

### 注意事項:

將方框數量的決定放在 code 第一條,譬如,n=8,改變 n 值,便能看到結果的改變,譬如,n=128 得到右圖。





```
In [ ]: import numpy as np
    import matplotlib.pyplot as plt

figure, ax = plt.subplots()

x=[0, 0, -1, -1, 1, 1, 0]
y=[0, 3, 3, 5, 5, 3, 3]
ax.set_xlim([-6, 6])
ax.set_ylim([-6, 6])
S=np.array([[0, 0, -1, -1, 1, 1, 0], [0, 3, 3, 5, 5, 3, 3]])

#n=8
n=128

for i in range(n):
    A=np.array([[np.cos(i*np.pi/(n/2)), np.sin(i*np.pi/(n/2))], [-np.sin(i*np.pi/(n/2)), np.cos(i*np.pi/(n/2))]]).dot(S
B=A[0, ]
C=A[1, ]
plt.plot(B, C)
```



3.計算如下右圖的卡方右尾面積與自由度對照表,並輸出到 EXCEL 檔,檔名為:Chi2Table.xlsx,含欄與列的名稱,如下左圖。

### 注意事項:

提示的套件與程式碼如下方 code 區所示。

利用 pandas 將矩陣內容儲存到 EXCEL 檔,製作方式請參考 pandas 手冊。

|    | A  | В        | С        | D        | Е        | F        | G        | Н        | I        | J        | K        |
|----|----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 1  |    | 0.995    | 0.99     | 0.975    | 0.95     | 0.9      | 0.1      | 0.05     | 0.025    | 0.01     | 0.005    |
| 2  | 1  | 3.93E-05 | 0.000157 | 0.000982 | 0.003932 | 0.015791 | 2.705543 | 3.841459 | 5.023886 | 6.634897 | 7.879439 |
| 3  | 2  | 0.010025 | 0.020101 | 0.050636 | 0.102587 | 0.210721 | 4.60517  | 5.991465 | 7.377759 | 9.21034  | 10.59663 |
| 4  | 3  | 0.071722 | 0.114832 | 0.215795 | 0.351846 | 0.584374 | 6.251389 | 7.814728 | 9.348404 | 11.34487 | 12.83816 |
| 5  | 4  | 0.206989 | 0.297109 | 0.484419 | 0.710723 | 1.063623 | 7.77944  | 9.487729 | 11.14329 | 13.2767  | 14.86026 |
| 6  | 5  | 0.411742 | 0.554298 | 0.831212 | 1.145476 | 1.610308 | 9.236357 | 11.0705  | 12.8325  | 15.08627 | 16.7496  |
| 7  | 6  | 0.675727 | 0.87209  | 1.237344 | 1.635383 | 2.204131 | 10.64464 | 12.59159 | 14.44938 | 16.81189 | 18.54758 |
| 8  | 7  | 0.989256 | 1.239042 | 1.689869 | 2.16735  | 2.833107 | 12.01704 | 14.06714 | 16.01276 | 18.47531 | 20.27774 |
| 9  | 8  | 1.344413 | 1.646497 | 2.179731 | 2.732637 | 3.489539 | 13.36157 | 15.50731 | 17.53455 | 20.09024 | 21.95495 |
| 10 | 9  | 1.734933 | 2.087901 | 2.700389 | 3.325113 | 4.168159 | 14.68366 | 16.91898 | 19.02277 | 21.66599 | 23.58935 |
| 11 | 10 | 2.155856 | 2.558212 | 3.246973 | 3.940299 | 4.865182 | 15.98718 | 18.30704 | 20.48318 | 23.20925 | 25.18818 |
| 12 | 11 | 2.603222 | 3.053484 | 3.815748 | 4.574813 | 5.577785 | 17.27501 | 19.67514 | 21.92005 | 24.72497 | 26.75685 |
| 13 | 12 | 3.073824 | 3.570569 | 4.403789 | 5.226029 | 6.303796 | 18.54935 | 21.02607 | 23.33666 | 26.21697 | 28.29952 |
| 14 | 13 | 3.565035 | 4.106915 | 5.008751 | 5.891864 | 7.041505 | 19.81193 | 22.36203 | 24.7356  | 27.68825 | 29.81947 |
| 15 | 14 | 4.074675 | 4.660425 | 5.628726 | 6.570631 | 7.789534 | 21.06414 | 23.68479 | 26.11895 | 29.14124 | 31.31935 |
| 16 | 15 | 4.600916 | 5.229349 | 6.262138 | 7.260944 | 8.546756 | 22.30713 | 24.99579 | 27.48839 | 30.57791 | 32.80132 |



Entries in the table give  $\chi^2_\alpha$  values, where  $\alpha$  is the area or probability in the upper tail of the chi-square distribution. For example, with 10 degrees of freedom and a .01 area in the upper tail,  $\chi^2_{01}=23.209$ .

| Degrees    |        |        |        |        |                |                |                  |                  |                  |        |  |
|------------|--------|--------|--------|--------|----------------|----------------|------------------|------------------|------------------|--------|--|
| of Freedom | .995   | .99    | .975   | .95    | .90            | .10            | .05              | .025             | .01              | .005   |  |
| 1          | .000   | .000   | .001   | .004   | .016           |                |                  |                  |                  | 7.879  |  |
| 2          | .010   | .020   | .051   | .103   | .211           | 2.706          | 3.841            | 5.024            | 6.635            | 10.597 |  |
| 3          | .072   | .115   | .216   | .352   |                | 4.605          | 5.991            | 7.378            | 9.210            | 12.838 |  |
| 4          | .207   | .297   | .484   | .711   | .584           | 6.251          | 7.815            | 9.348            | 11.345           | 14.860 |  |
| 5          | .412   | .554   | .831   | 1.145  | 1.064<br>1.610 | 7.779<br>9.236 | 9.488<br>11.070  | 11.143<br>12.832 | 13.277<br>15.086 | 16.750 |  |
| 6          | .676   | .872   | 1.237  | 1.635  | 2.204          | 10.645         | 12.592           | 14.449           | 16.812           | 18.548 |  |
| 7          | .989   | 1.239  | 1.690  | 2.167  | 2.833          | 12.017         | 14.067           | 16,013           | 18,475           | 20.278 |  |
| 8          | 1.344  | 1.647  | 2.180  | 2.733  | 3.490          | 13.362         | 15.507           | 17.535           | 20.090           | 21.955 |  |
| 9          | 1.735  | 2.088  | 2.700  | 3.325  | 4.168          | 14.684         | 16.919           | 19.023           | 21.666           | 23.589 |  |
| 10         | 2.156  | 2.558  | 3.247  | 3.940  | 4.865          | 15.987         | 18.307           | 20.483           | 23.209           | 25.188 |  |
| 11         | 2.603  | 3.053  | 3.816  | 4.575  | 5.578          | 17.275         | 19.675           | 21.920           | 24.725           | 26.75  |  |
| 12         | 3.074  | 3.571  | 4.404  | 5.226  | 6.304          | 18.549         | 21.026           | 23.337           | 26.217           | 28.30  |  |
| 13         | 3.565  | 4.107  | 5.009  | 5.892  | 7.041          | 19.812         | 22.362           | 24.736           | 27.688           | 29.81  |  |
| 14         | 4.075  | 4.660  | 5.629  | 6.571  | 7.790          | 21.064         | 23.685           | 26.119           | 29.141           | 31.31  |  |
| 15         | 4.601  | 5.229  | 6.262  | 7.261  | 8.547          | 22.307         | 24.996           | 27.488           | 30.578           | 32.80  |  |
| 16         | 5.142  | 5.812  | 6.908  | 7.962  | 9.312          | 23.542         | 26.296           | 28.845           | 32.000           | 34.26  |  |
| 17         | 5.697  | 6.408  | 7.564  | 8.672  | 10.085         | 24.769         | 27.587           | 30.191           | 33.409           | 35.71  |  |
| 18         | 6.265  | 7.015  | 8.231  | 9.390  | 10.865         | 25.989         | 28.869           | 31.526           | 34.805           | 37.15  |  |
| 19         | 6.844  | 7.633  | 8.907  | 10.117 | 11.651         | 27.204         | 30.144           | 32.852           | 36.191           | 38.58  |  |
| 20         | 7.434  | 8.260  | 9.591  | 10.851 | 12.443         | 28.412         | 31.410           | 34.170           | 37.566           | 39.99  |  |
| 21         | 8.034  | 8.897  | 10.283 | 11.591 | 13.240         | 29.615         | 32.671           | 35.479           | 38.932           | 41.40  |  |
| 22         | 8.643  | 9.542  | 10.982 | 12.338 | 14.041         | 30.813         | 33.924           | 36.781           | 40.289           | 42.79  |  |
| 23         | 9.260  | 10.196 | 11.689 | 13.091 | 14.848         | 32.007         | 35.172           | 38.076           | 41.638           | 44.18  |  |
| 24         | 9.886  | 10.856 | 12.401 | 13,848 | 15.659         | 33.196         | 36.415           | 39.364           | 42.980           | 45.55  |  |
| 25         | 10.520 | 11.524 | 13.120 | 14.611 | 16.473         | 34.382         | 37.652           | 40.646           | 44.314           | 46.92  |  |
| 26         | 11.160 | 12.198 | 13.844 | 15.379 | 17.292         | 35.563         | 38.885           | 41.923           | 45.642           | 48.29  |  |
| 27         | 11.808 | 12.878 | 14.573 | 16.151 | 18.114         | 36.741         | 40.113           | 43.195           | 46.963           | 49.64  |  |
| 28         | 12.461 | 13.565 | 15.308 | 16.928 | 18.939         | 37.916         | 41.337<br>42.557 | 44.461<br>45.722 | 48.278<br>49.588 | 50.99  |  |
| 29         | 13.121 | 14.256 | 16.047 | 17.708 | 19.768         | 39.087         | 42.55/           | 45./22           | 47.588           | 52.33  |  |

```
In [ ]: from scipy.stats import chi2
        import pandas as pd
        import numpy as np
        import math
        #F = 0.995 # cumulative to 1
        \#df = 1
        \#x = chi2.ppf(F, df) \# inverse of CDF
        #print(x)
        df=np.linspace(1, 29, 29)
        F=np.array([[0.995], [0.99], [0.975], [0.95], [0.9], [0.1], [0.05], [0.025], [0.01], [0.005]])
        x = chi2.ppf(1-F, df)
        A = pd.DataFrame(x)
        B=A.T
        B.columns=["0.995", "0.99", "0.975", "0.95", "0.9", "0.1", "0.05", "0.025", "0.01", "0.005"]
        B.index=[np.linspace(1, 29, 29)]
        file name = 'Chi2Table.xlsx'
        B.to_excel(file_name)
        #for i in F:
         # for j in df:
          \# x=chi2.ppf(1-i, j)
           # print(x)
```