

Half-Bridge Driver

Features

- Floating channel designed for bootstrap operation
- Fully operational to +600V
- Tolerant to negative transient voltage
- dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout
- 3.3V, 5V and 15V input logic compatible
- Cross-conduction prevention logic
- Internally set dead-time
- High side output in phase with input
- Shut down input turns off both channels
- Matched propagation delay for both channels

Description

The IR25602 is a high voltage, high speed power MOSFET and IGBT driver with dependent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates from 10 to 600 V.

Product Summary

Voffset	600V max.
I _{O+/-}	130 mA/ 270 mA
V _{OUT}	10 – 20V
Ton/off (typ.)	680 & 150 ns
Dead time (typ.)	520 ns

Package Options

Ordering Information

Daga Dagt Neurolan	Standard Pack		Ondership Deat Noushan	
Base Part Number	Package Type	Form	Quantity	Orderable Part Number
IR25602SPBF	SO8N	Tube	95	IR25602SPBF
IR25602SPBF	SO8N	Tape and Reel	2500	IR25602STRPBF

Typical Connection Diagram

(Refer to Lead Assignment for correct pin configuration) This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units
V _B	High side floating absolute voltage	-0.3	625	
V _S	High side floating supply offset voltage	V _B - 25	$V_{B} + 0.3$	
V _{HO}	High side floating output voltage	V _S - 0.3	$V_{B} + 0.3$	V
V _C C	Low side and logic fixed supply voltage	-0.3	25	
V_{LO}	Low side output voltage	-0.3	V _{CC} + 0.3	
V_{IN}	Logic input voltage (IN & SD)	-0.3	V _{CC} + 0.3	
dVs/dt	Allowable offset supply voltage transient	_	50	V/ns
P _D	Package power dissipation @ T _A ≤ +25°C	_	0.625	W
Rth _{JA}	Thermal resistance, junction to ambient	_	200	°C/W
TJ	Junction temperature	_	150	
T _S	Storage temperature	-55	150	°C
TL	Lead temperature (soldering, 10 seconds)	_	300	

Recommended Operating Conditions

For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
V_{B}	High side floating supply absolute voltage	V _S + 10	V _S + 20	
Vs	High side floating supply offset voltage	†	600	
V _{HO}	High side floating output voltage	Vs	V_{B}	V
V _{CC}	Low side and logic fixed supply voltage	10	20	
V_{LO}	Low side output voltage	0	V _{CC}	
V _{IN}	Logic input voltage (IN & SD)	0	Vcc	
T _A	Ambient temperature	-40	125	°C

[†]Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to Design Tip DT97-3 for more details).

© 2012 International Rectifier April 2, 2012 | **PD#**

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 15V, C_L = 1000 pF and T_A = 25°C unless otherwise specified.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-on propagation delay	_	680	820		$V_S = 0V$
t _{off}	Turn-off propagation delay	_	150	220		V _S = 600V
t _{sd}	Shutdown propagation delay	_	160	220		
t _r	Turn-on rise time	_	100	170	ns	
t _f	Turn-off fall time	_	50	90		
DT	Dead time, LS turn-off to HS turn-on & HS turn-on to LS turn-off	400	520	650		
MT	Delay matching, HS & LS turn-on/off		_	60		

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" (HO) & Logic "0" (LO) input voltage	3	_	_		V _{CC} = 10V to 20V
V _{IL}	Logic "0" (HO) & Logic "1" (LO) input voltage	_	_	0.8	V	V _{CC} = 10V to 20V
V _{SD,TH+}	SD input positive going threshold	3	_			$V_{CC} = 10V \text{ to } 20V$
V _{SD,TH} -	SD input negative going threshold	_	_	0.8		$V_{CC} = 10V \text{ to } 20V$
V _{OH}	High level output voltage, V _{BIAS} - V _O	_		100	mV	I _O = 0A
V _{OL}	Low level output voltage, V _O	_	_	100		$I_O = 0A$
I_{LK}	Offset supply leakage current	_	_	50		$V_B = V_S = 600V$
I _{QBS}	Quiescent V _{BS} supply current	_	30	55] [$V_{IN} = 0V \text{ or } 5V$
IQCC	Quiescent V _{CC} supply current	_	150	270	μA	$V_{IN} = 0V \text{ or } 5V$
I _{IN+}	Logic "1" input bias current	_	3	10		$V_{IN} = 5V$
I_{IN-}	Logic "0" input bias current	_	_	1		$V_{IN} = 0V$
V _{CCUV+}	V _{CC} supply undervoltage positive going threshold	8	8.9	9.8	V	
V _{CCUV} -	V _{CC} supply undervoltage negative going threshold	7.4	8.2	9		
I _{O+}	Output high short circuit pulsed current	130	210		mA	V _O = 0V PW ≤ 10 μs
I _{O-}	Output low short circuit pulsed current	270	360	_		V _O = 15V PW ≤ 10 μs

Functional Block Diagram

5 www.irf.com

© 2012 International Rectifier April 13, 2012

Lead Definitions

Symbol	Description
IN	Logic input for high and low side gate driver outputs (HO and LO), in phase with HO
SD	Logic input for shutdown
V_B	High side floating supply
НО	High side gate drive output
Vs	High side floating supply return
Vcc	Low side and logic fixed supply
LO	Low side gate drive output
COM	Low side return

Lead Assignments

Advance Information

Figure 2. Switching Time Waveform Definitions

Figure 3. Shutdown Waveform Definitions

Figure 4. Deadtime Waveform Definitions

Figure 5. Delay Matching Waveform Definitions

Figure 6A. Turn-On Time vs Temperature

Figure 6C. Turn-On Time vs Input Voltage

Figure 7B. Turn-Off Time vs Supply Voltage

Figure 6B. Turn-On Time vs Supply Voltage

Figure 7A. Turn-Off Time vs Temperature

Figure 7C. Turn-Off Time vs Input Voltage

Figure 8A. Shutdown Time vs Temperature

Figure 9A. Turn-On Rise Time vs Temperature

Figure 10A. Turn-Off Fall Time vs Temperature

Figure 8B. Shutdown Time vs Voltage

Figure 9B. Turn-On Rise Time vs Voltage

Figure 10B. Turn-Off Fall Time vs Voltage

© 2012 International Rectifier

Figure 11A. Deadtime vs Temperature

Figure 12A. Logic "1" (HO) & Logic "0" (LO) & Inactive SD Input Voltage vs Temperature

Figure 13A. Logic "0" (HO) & Logic "1" (LO) & Active SD Input Voltage vs Temperature

Figure 11B. Deadtime vs Voltage

Figure 12B. Logic "1" (HO) & Logic "0" (LO) & Inactive SD Input Voltage vs Voltage

Figure 13B. Logic "0" (HO) & Logic "1" (LO) & Active SD Input Voltage vs Voltage

April 13, 2012

Figure 14A. High Level Output vs Temperature

Figure 14B. High Level Output vs Voltage

Figure 15A. Low Level Output vs Temperature

Figure 15B. Low level Output vs Voltage

Figure 16A. Offset Supply Current vs Temperature

Figure 16B. Offset Supply Current vs Voltage

April 13, 2012

www.irf.com © 2012 International Rectifier

Figure 17A. V_{Bs} Supply Current vs Temperature

Figure 18A. Vcc Supply Current vs Temperature

Figure 19A. Logic"1" Input Current vs Temperature

Figure 17B. V_{Bs} Supply Current vs Voltage

Figure 18B. Vcc Supply Current vs Voltage

Figure 19B. Logic"1" Input Current vs Voltage

12 www.irf.com

© 2012 International Rectifier

Figure 20A. Logic "0" Input Current vs Temperature

Figure 21A. Vcc Undervoltage Threshold(+) vs Temperature

Figure 22A. Output Source Current vs Temperature

13

Figure 20B. Logic "0" Input Current vs Voltage

Figure 21B. Vcc Undervoltage Threshold(-) vs Temperature

Figure 22B. Output Source Current vs Voltage

April 13, 2012

www.irf.com © 2012 International Rectifier

Figure 23B. Output Sink Current vs Voltage

Package Details

Tape and Reel Details

CARRIER TAPE DIMENSION FOR 8SOICN

	Metric		Imp	erial
Code	Min	Max	Min	Max
A	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	11.70	12.30	0.46	0.484
D	5.45	5.55	0.214	0.218
E	6.30	6.50	0.248	0.255
F	5.10	5.30	0.200	0.208
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062

REEL DIMENSIONS FOR 8SOICN

	Metric		Imp	erial
Code	Min	Max	Min	Max
A B C D F G	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
C	12.80	13.20	0.503	0.519
ם	1.95	2.45	0.767	0.096
Е	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566

Part Marking Information

Qualification Information[†]

	Industrial ^{††} (per JEDEC JESD 47E)
Qualification Level	Comments: This family of ICs has passed JEDEC's Industrial qualification. IR's Consumer qualification level is granted by extension of the higher Industrial level.
Moisture Sensitivity Level	MSL2 ^{†††} (per IPC/JEDEC J-STD-020C)
RoHS Compliant	Yes

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105