Unit I

Supplementary Notes

3.1 Quadratic Functions

$$f(x) = \underbrace{ax^2 + bx + c}_{\text{expanded form}} = \underbrace{a(x-h)^2 + k}_{\text{vertex form}}$$

The graph of f is a parabola with the following properties

- opens up or down if a > 0 or a < 0
- vertex $(h,k) = (-\frac{b}{2a}, f(-\frac{b}{2a})) = (-\frac{b}{2a}, c \frac{b^2}{4a})$
- 0, 1, or 2 x-intercepts if $b^2 4ac < 0$, = 0, or > 0
- y-intercept: f(0) = c
- vertical axis of symmetry x = h
- \bullet minimum value of k

3.2 Power Functions

$$f(x) = a(x-h)^n + k$$
 click to see Supplementary Notes

3.3 Polynomial Functions

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 } expanded form
= $a(x - z_1)(x - z_2) \cdots (x - z_{n-1})(x - z_n)$ } factored form

- \bullet degree n
- $f(z) = 0 \Leftrightarrow z \text{ is a } zero \text{ of } f$

The graph of f has the following properties

- x-intercepts: real zeros of f
 - crosses or touches x-axis if multiplicity odd or even
- y-intercept: $f(0) = a_0$
- For large |x|, behaves like ax^n

3.4 Real Zeros of Polynomial Functions

$$\underbrace{f(x)}_{\text{dividend}} = \underbrace{q(x)}_{\text{quotient divisor}} \underbrace{g(x)}_{\text{remainder}} + \underbrace{r(x)}_{\text{remainder}}$$

- f(z) is the remainder of f divided by (x-z)
- (x-z) factor of $f \Leftrightarrow f(z) = 0$
- f continuous and f(a), f(b) opposite sign $\Rightarrow f$ has zero in (a,b)
- p/q rational zero of $f \Rightarrow p$ factor of a_0 and q factor of a_n

3.5 Complex Numbers

$$a + bi$$
 where $i^2 = -1$

- conjugate: a bi
- powers of i:
 - $i^{2n} = (i^2)^n = (-1)^n$
 - $i^{2n+1} = (i^2)^n i = (-1)^n \cdot i$

3.6 Complex Zeros, Fundamental Theorem of Algebra

The zeros of a polynomial f with real coefficients may be real or complex; if a + bi is a zero of f, so is its conjugate a - bi

3.7 Rational Functions

$$f(x) = \frac{g(x)}{h(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$

- domain: real x such that $h(x) \neq 0$
- vertical asymptotes: real x such that h(x) = 0 and $g(x) \neq 0$
- jump discontinuities: real x such that h(x) = g(x) = 0
- If $n \leq m$, horizontal asymptote:
 - y = 0 if n < m
 - $y = a_n/b_m$ if n = m
- If n = m+1, oblique asymptote: y = q(x) where g(x) = q(x)h(x)+r(x)

3.8 Polynomial and Rational Inequalities

The sign of a function may change at a zero or an x-value not in the domain of the function

4.1 One-to-one and Inverse Functions

- f is a function if any vertical line intersects graph of f at most once
- f is one-to-one if any horizontal line intersects graph of f at most once
- f one-to-one $\Rightarrow f$ has inverse f^{-1} such that
 - $x \xrightarrow{f} y$ if and only if $x \xleftarrow{f^{-1}} y$
 - (domain of f) = (range of f^{-1}); (range of f) = (domain of f^{-1})
 - The graphs of f and f^{-1} are symmetric about the line y=x

Unit II

Supplementary Notes

4.2 Exponential Functions

 $f(x) = a^x$ $(a > 0, a \ne 1)$

- domain: $(-\infty, \infty)$
- range: $(0,\infty)$
- y-intercept: 1
- horiz. asymp.: y = 0 (x-axis)
- $\begin{array}{ll} \text{decreasing} & \text{if } 0 < a < 1 \\ \text{increasing} & \text{if } a > 1 \end{array}$

	0 <a<1< th=""></a<1<>		
1			
0			
	-)	

Laws of Exponents

$a^s \cdot a^t = a^{s+t}$	
$(a \cdot b)^s = a^s \cdot b^s$	
$1^{s} - 1$	

$$(a^s)^t = a^{s \cdot t}$$

$$a^{-s} = \left(\frac{1}{a}\right)^s = \frac{1}{a^s}$$

$$a^0 = 1$$

Reflection and Translation $(h, k > 0)$, to obtain the graph of		
a^{-x-h}	translate the graph of a^x	rightward h units
	then reflect the graph of a^{x-h}	about the $y - axis$
a^{-x+h}	translate the graph of a^x	leftward h units
	then reflect the graph of a^{x+h}	about the $y - axis$
$-a^x + k$	reflect the graph of a^x	about the x -axis
	then translate the graph of $-a^x$	upward k units
$-a^x-k$	reflect the graph of a^x	about the x -axis
	then translate the graph of $-a^x$	downward k units

4.3 Logarithmic Functions

 $f(x) = \log_a x \quad (a > 0, a \neq 1)$

- domain: $(0, \infty)$
- range: $(-\infty, \infty)$
- x-intercept: 1
- vert. asymp.: x = 0 (y-axis)
- $\begin{cases} \text{ decreasing} & \text{if } 0 < a < 1\\ \text{increasing} & \text{if } a > 1 \end{cases}$

Special Logarithms		
$\log x - \log_{10} x$	$\ln r$	

 $\log x = \log_{10} x \mid \ln x = \log_e x$

4.4 Properties of Logarithms $(a, b, m, n > 0, a, b \neq 1, \text{ real number } p)$

- $\log_a 1 = 0$ $\log_a (mn) = \log_a m + \log_a n$ $\log_a n^p = p \log_a n$

- $\log_a a = 1$ $\log_a \left(\frac{m}{n}\right) = \log_a m \log_a n$ $\log_a n = \frac{\log_b n}{\log_b a}$

4.5 Log. and Exponential Equations $(a > 0, a \neq 1, \text{ real numbers } s, t > 0)$

- $x = \log_a y$ $\Leftrightarrow y = a^x$
- $\bullet \ a^s = a^t$

• $\log_a s = \log_a t$

 $\Leftrightarrow s = t$

 $\Leftrightarrow s = t$

4.6 Compound Interest

- Periodic: $A = P(1 + \frac{r}{n})^{nt}$
- A: future amount (\$)
- Continuous: $A = Pe^{rt}$
- P: initial amount a.k.a. principal (\$)
- r: annual interest rate (%) • Effective interest rate:
 - n: periods per year $r_e = (1 + \frac{r}{n})^n - 1$
 - t: time (years)

4.7 Exponential Growth and Decay

Exponential law a.k.a Law of uninhibited growth (k > 0) or decay (k < 0):

• $A(t) = A_0 e^{kt}$ where $A_0 = A(0)$ $(k \neq 0)$

9.2 The Parabola

- V: (h, k) d(V, F) = d(V, D) = a

Equation	Opens	F	D
$(x-h)^2 = 4a(y-k)$	up	(h, k+a)	y = k - a
$(x-h)^2 = -4a(y-k)$	down	(h, k-a)	y = k + a
$(y-k)^2 = 4a(x-h)$	right	(h+a,k)	x = h - a
$(y-k)^2 = -4a(x-h)$	left	(h-a,k)	x = h + a

9.3 The Ellipse

- center: (h, k)
- d(center, V) = a
- $c^2 = a^2 b^2$
- d(center, F) = c

Equation	M. Ax.	V	\mathbf{F}
$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	horiz.	$(h \pm a, k)$	$(h \pm c, k)$
$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$	vert.	$(h, k \pm a)$	$(h, k \pm c)$

9.4 The Hyperbola

- center: (h, k)
- d(center, V) = a
- $c^2 = a^2 + b^2$
- d(center, F) = c

Equation	Tr. Ax.	V	F
$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	horiz.	$h \pm a, k)$	$h \pm c, k)$
$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$	vert.	$(h, k \pm a)$	$(h, k \pm c)$

• asymptotes: set Equation = 0, solve for y

Unit III

Supplementary Notes

10.1 Systems of Linear Equations: Two Equations

$$\begin{cases} a_{11}x + a_{12}y &= b_1 \\ a_{21}x + a_{22}y &= b_2 \end{cases} \xrightarrow{\text{row reduce}} \begin{cases} c_{11}x + c_{12}y &= d_1 \\ c_{22}y &= d_2 \end{cases}$$

- $c_{22} \neq 0 \Rightarrow$ unique solution
- $c_{22} = 0$ and $d_2 \neq 0 \Rightarrow$ no solution
- $c_{22} = d_2 = 0 \Rightarrow$ infinitely many solutions

10.2 Systems of Linear Equations: Three Equations

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z &= b_1 \\ a_{21}x + a_{22}y + a_{23}z &= b_2 \\ a_{31}x + a_{32}y + a_{33}z &= b_3 \end{cases} \xrightarrow{\text{row reduce}} \begin{cases} c_{11}x + c_{12}y + c_{13}z &= d_1 \\ c_{22}y + c_{23}z &= d_2 \\ c_{33}z &= d_3 \end{cases}$$

- $c_{33} \neq 0 \Rightarrow$ unique solution
- $c_{33} = 0$ and $d_3 \neq 0 \Rightarrow$ no solution
- $c_{33} = d_3 = 0 \Rightarrow$ infinitely many solutions

10.3 Matrices

Valid row operations:

- Interchange two rows
- Multiply row by non-zero constant
- Replace row by non-zero multiple of itself plus multiple of another row

Reduced row echelon form:

- Leading non-zero entry in each row is 1, above and below leading 1, in the same column, is all 0's
- Leading 1 in a row is to the right of any leading 1 in above rows
- Any row of all 0's is at the bottom

10.4 Determinants

$$\left| \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right| = a_{11}a_{22} - a_{12}a_{21}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32} - a_{13}a_{22}a_{31} \end{vmatrix}$$

10.4 Determinants (ctd.)

Cramer's Rule: For
$$3 \times 3$$
 matrix A , if $A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ and $|A| \neq 0$, then $x = \frac{|A_x|}{|A|}$, $y = \frac{|A_y|}{|A|}$, and $z = \frac{|A_z|}{|A|}$

For a square matrix A

- |A| switches sign if two rows are interchanged
- \bullet |A| is multiplied by a nonzero constant if a row is multiplied by that
- \bullet |A| does not change if a row is replaced by itself plus a non-zero multiple of another row

10.5 Matrix Algebra

For $m \times n$ matrices $A = (a_{ij}), B = (b_{ij}), \text{ and } C = (c_{ij}) \text{ and real numbers}$ $c, c_1, \text{ and } c_2$

- $c, c_1, \text{ and } c_2$ $\bullet A = B \Leftrightarrow a_{ij} = b_{ij}$ $\bullet A + B = B + A = (a_{ij} + b_{ij})$ $\bullet c_1(c_2A) = (c_1c_2)A$

 - (A+B)+C = A+(B+C)
- \bullet c(A+B) = cA + cB• $(c_1 + c_2)A = c_1A + c_2A$

For $m \times n$ matrix A, $n \times p$ matrices B, B₁, B₂ and $p \times q$ matrix C

- ij^{th} entry of $m \times p$ matrix $AB = (\text{row } i \text{ of } A) \times (\text{col. } j \text{ of } B)$
- (AB)C = A(BC)
- \bullet $A(B_1 + B_2) = AB_1 + AB_2$

Inversion: $\begin{bmatrix} A \mid I \end{bmatrix} \xrightarrow{\text{row reduce}} \begin{bmatrix} I \mid A^{-1} \end{bmatrix}$

11.1 Sequences

sum of first n terms: recursive: explicit: $a_1 = a$ for real a $a_n = f(n)$ $S_n = \sum a_k = a_1 + a_2 + a_3 + \dots + a_n$ $a_n = f(a_{n-1})$ for n > 1for n > 2

11.2 Arithmetic Sequences

recursive: explicit:
$$a_1 = a \text{ for real } a$$

$$a_n = a_{n-1} + d$$
for $n \ge 2$

$$a_n = a_{n-1} + d$$
for $n \ge 1$

$$a_n = a_{n-1} + d$$

$$a_n = a_{n-1} + d$$
for $n \ge 1$

$$a_n = a_{n-1} + d$$

$$a_n = a_{n-1} + d$$
for $n \ge 1$

$$a_n = a_{n-1} + a_{n-1}$$

$$a_n = a_{n-1} + a_{n-1}$$

11.3 Geometric Sequences and Series

recursive: explicit:
$$a_1 = a$$
 for real a $a_n = a_1 r^{n-1}$ $a_n = a_{n-1} r$ for $n \ge 2$ $explicit: $a_n = a_1 r^{n-1}$ $a_n = a_1 r^{n-1}$$

Unit IV

Supplementary Notes

11.4 Mathematical Induction

• To prove by induction that P(n) is true for all positive integers n, we assume P(k) is true for some positive integer k and show that P(k+1) is true.

11.5 The Binomial Theorem

• factorial function:

$$0! = 1$$

 $n! = n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1$ for $n \ge 1$

• binomial coefficient:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \quad \text{for } 0 \le k \le n$$

• Pascal's triangle:

Row 0:
$$\binom{0}{0}$$
 1

Row 1: $\binom{1}{0} \binom{1}{1}$ 1 1

Row 2: $\binom{2}{0} \binom{2}{1} \binom{2}{2}$ 1 1 2 1

Row 3: $\binom{3}{0} \binom{3}{1} \binom{3}{2} \binom{3}{3}$ 1 3 3 1

Row 4: $\binom{4}{0} \binom{4}{1} \binom{4}{2} \binom{4}{3} \binom{4}{4}$ 1 4 6 4 1

Row 5: $\binom{5}{0} \binom{5}{1} \binom{5}{2} \binom{5}{3} \binom{5}{4} \binom{5}{5}$ 1 5 10 10 5 11

 \vdots \vdots \vdots \vdots

• binomial theorem:

$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k} \qquad (n \ge 0)$$

$$= \binom{n}{0} a^{n} + \binom{n}{1} a^{n-1} b^{1} + \dots + \binom{n}{k} a^{n-k} b^{k} + \dots + \binom{n}{n-1} a b^{n-1} + \binom{n}{n} b^{n}$$