Introduction to Quantum Mechanics (from QC and QI)

by Michael A. Nielsen and Isaac L. Chuang

Quick Notes by Aaron Vontell, MIT EECS

08/31/2016

1 Linear Algebra

1.1 Overview of Dirac Notation

Notation	Description
z^*	Complex conjugate of the complex number z
$ \psi\rangle$	Column vector, also known as a ket
$\langle \psi $	Row vector, also known as a bra
$\langle \varphi \psi \rangle$	Inner product between vectors $ arphi angle$ and $ \psi angle$
$ \varphi\rangle\otimes \psi\rangle$	Tensor product of $ \varphi\rangle$ and $ \psi\rangle$
$ \varphi\rangle \psi\rangle$	Tensor product of $ \varphi\rangle$ and $ \psi\rangle$
A^*	Complex conjugate of the A matrix
A^T	Transposed of the A matrix
A^{\dagger}	Hermitian conjugate or adjoint of the A matrix $= (A^T)^*$

1.2 Bases and Linear Independence

Exercise 2.1 Linear Dependence Show that (1,-1),(1,2) and (2,1) are linearly dependent. This is equivalent to finding the set of complex numbers $a_1,...,a_n$ that satisfy the equation $a_1|v_1\rangle+a_2|v_2\rangle+...+a_n|v_n\rangle=0$. Therefore, we have

$$a_1(1,-1) + a_2(1,2) + a_3(2,1) = 0$$

One set that satisfies this equality (while maintaining $a_i \neq 0$ for at least one value of i) is

$$a_1 = 1, a_2 = 1, and a_3 = -1$$

Therefore, this set of vectors is linearly dependent.

1.3 Linear Operators and Matrices

An m by n matrix A with entries A_{ij} is a linear operator sending vectors in the vector space \mathbb{C}^n to the vector space \mathbb{C}^m . The operation can be written as (for all i)

$$A\left(\Sigma a_i|v_i\rangle\right) = \Sigma a_i A|v_i\rangle$$

Four important matrices are the **Pauli matrices**:

$$\sigma_0 = \sigma_I = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $\sigma_1 = \sigma_x = X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
$$\begin{bmatrix} 0 & -i \end{bmatrix}$$

$$\sigma_2 = \sigma_y = Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
 $\sigma_3 = \sigma_z = Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

1.4 Inner Products

$$((y_1, ..., y_n), (z_1, ..., z_n)) = \sum y_i^* z_i$$

Two vectors $|v\rangle$ and $|w\rangle$ are orthogonal if $\langle v|w\rangle=0$

Also note that in the context of this material, an inner product space is exactly the same thing as a Hilbert space.

The norm of a vector $|v\rangle$ is given by $||v\rangle|| = \sqrt{\langle v|v\rangle}$, where a norm of 1 indicates that v is a unit vector. If not a unit vector, we can normalize $|v\rangle$ by dividing it by its norm.