

به نام خدا دانشگاه تهران پردیس دانشکدههای فنی دانشکده مهندسی برق و کامپیوتر

درس الكترونيك ديجيتال

نيمسال اول (02-01)

استاد درس: دكتر شقايق وحدت

تمرین کامپیوتری سوم:

Logic Families

محمدمهدى عبدالحسينى 810 198 434

Digital Electronic Circuits

فهرست مطالب

1	بخش اول: ساختار MUX 2:1
1	الف) طراحی و پیادهسازی با منطق Static CMOS :
1	ب) طراحی و پیادهسازی با منطق Pseudo NMOS :
1	شبيهسازى:
3	محاسبه توان مصرفی:
	تحليل:
4	بخش دوم: ساختار XOR
	بخش دوم: ساختار XOR الف) طراحی و پیادهسازی با منطق Dynamic CMOS :
4	
4	الف) طراحی و پیادهسازی با منطق Dynamic CMOS :
44 44	

بخش اول: ساختار 2:1 MUX

الف) طراحی و پیادهسازی با منطق Static CMOS :

ب) طراحی و پیادهسازی با منطق Pseudo NMOS:

شبيهسازى:

*nnnnn *		innnnnnnn IVERTER	ınnnnnnn	nn* *				
uuuuuuuuuuuuuuuuuuuuuu								
.SUBCK	.SUBCKT INVERTERin			out				
vdd	vdd	gnd	gnd vdd					
Мр	out	in	vdd	vdd	pmos	w = Wpmos	l = Lmin	
Mn	out	in gnd		gnd	nmos	w = Wnmos	l = Lmin	
.ENDS		INVER	TER					

		nnnnnnnn		n*							
		c CMOS 2:		*							
		Juuuuuuuu									
.SUBCK			_CMOS_MUX	(Α	В	S	out			
vdd	vdd	gnd	vdd								
*M	ND	NG	NS	NB	Model	W		L			
Mp1	n1	Α	vdd	vdd	pmos	w = v	•	1 = Lmi			
Mp2	n1	SBar	vdd	vdd	pmos	w = v	•	1 = Lmi			
Мр3	n2	В	n1	vdd	pmos	w = v	•	1 = Lmi			
Мр4	n2	S	n1	vdd	pmos	w = b	lpmos	1 = Lmi	n		
Mn1	n2	Α	n3	gnd	nmos	w = b	Inmos	1 = Lmi	n		
Mn2	n2	В	n4	gnd	nmos	w = b	Inmos	1 = Lmi	n		
Mn3	n3	SBar	gnd	gnd	nmos	w = v	Inmos	1 = Lmi	n		
Mn4	n4	S	gnd	gnd	nmos	w = v	Inmos	1 = Lmi	n		
X1	S	SBar	INVERT	ER							
X2	n2	out	INVERT	ER							
.ENDS		Statio	_CMOS_MUX	(
*				*							
		nnnnnnnn		n↑ *							
		NMOS 2:									
		uuuuuuuu				_	_				
.SUBCK			_NMOS_MUX	(Α	В	S	out			
vdd	vdd	gnd	vdd	N.D.							
*M	ND	NG .	NS	NB	Model	W .		L			
Mp1	n1	gnd	vdd	vdd	pmos	w = V	•	1 = Lmi			
Mn1	n1	A	n2	gnd	nmos	w = V	•	1 = Lmi			
Mn2	n1	В	n3	gnd	nmos	w = V	•	1 = Lmi			
Mn3	n2	SBar	gnd	gnd	nmos	w = V	•	l = Lmi			
Mn4	n3	S	gnd	gnd	nmos	w = v	Ipmos	l = Lmi	n		
X1	S	SBar	INVERT								
X2	n1	out	INVERT								
.ENDS		Pseudo	_NMOS_MUX	(
nnnnn	nnnnnnn	nnnnnnnn	nnnnnnnn	n							
*		OMPONENTS		*							
		Juuuuuuuuu		u*							
X1	A	В	S		Static_CMOS	MIIX	Stat	ic CMOS MUX			
X2	A	В	S		seudo NMOS			do NMOS MUX			
N Z		b	3	out_i	3eudo_Ninos	5_1107	1 300	uo_IIIIO3_IIIOX			
nnnnn	nnnnnnn	nnnnnnnn	nnnnnnnn	n							
*	==> I			*							
uuuuu		Juuuuuuuu	uuuuuuuu	u							
VA	А	gnd	Pulse	gnd	vdd	0	0	0	200ns	400ns	
VB	В	gnd	Pulse	gnd	vdd	0	0	ø	400ns	800ns	
VS	S	gnd	Pulse	gnd	vdd	ø	0	ø	100ns	200ns	
	-	8…∞		₽~		-	•	•			

محاسبه توان مصرفى:

<pre>avg_power_static_cmos_mux=</pre>	46.8003n	from=	0.	to=	2.0000u
avg power pseudo nmos mux=	17.0103u	from=	0.	to=	2.0000u

تحليل:

در طراحی Static CMOS در کل از 12 ترانزیستور استفاده کردیم. در مقابل، در طراحی Static CMOS بهتر است. اما از 9 ترانزیستور استفاده شده است. بنابراین از نظر تعداد ترانزیستور، طراحی Pseudo NMOS بهتر است. اما اگر توان مصرفی هر یک از دو طراحی را با هم مقایسه کنیم، مشاهده میکنیم در طراحی Pseudo NMOS توان مصرفی به مراتب بیشتر از طراحی Static CMOS میباشد. علت این است که در طراحی NMOS NMOS ، گیت ترانزیستور 1 زمین شده و همواره روشن است و توان مصرف میکند. همین امر باعث میشود در گره 1 مقدار صفر مطلق ظاهر نشود. بدلیل استفاده از Inverter در خروجی، مقدار یک به خوبی ظاهر نخواهد شد. بنابراین زمانی که خروجی یک منطقی میباشد، در طراحی Static CMOS ، همان یک ظاهر میشود، اما در طراحی Pseudo NMOS ، مشاهده خواهیم کرد.

بخش دوم: ساختار XOR

الف) طراحي و پيادهسازي با منطق Dynamic CMOS

XOR: OUT = AB + AB

ب) طراحی و پیادهسازی با منطق Transmission Gate:

شبیهسازی:

```
*nnnnnnnnnnnnnnnnnnnnnnnnnnn*
     ==> Dynamic CMOS XOR
*uuuuuuuuuuuuuuuuuuuuu*
.SUBCKT
                 Dynamic_CMOS_XOR A
                                                    \mathsf{CLK}
vdd
        vdd
                 gnd
                          vdd
*M
        ND
                 NG
                                           Model
                          NS
Mp1
        out
                 \mathsf{CLK}
                          vdd
                                           pmos
                                                                     1 = Lmin
                                                                     1 = Lmin
Mn1
        out
                          n1
                                   gnd
                                           nmos
                                                        '3*Wnmos'
                 Α
                                                         '3*Wnmos'
                                                                     1 = Lmin
Mn2
                 ABar
        out
                          n2
                                   gnd
                                           nmos
Mn3
                          n3
                                  gnd
                                           nmos
                                                                     1 = Lmin
                                  gnd
                 BBar
Mn4
        n2
                          n3
                                                        '3*Wnmos'
                                                                     1 = Lmin
                                           nmos
Mn5
        n3
                 CLK
                                                         '3*Wnmos'
                                                                     1 = Lmin
                          gnd
                                   gnd
                                           nmos
Х1
```

X2 .ENDS	В	BBar Dynami	INVERT .c_CMOS_X								
nnnnn	ınnnnnnn	nnnnnnn	nnnnnnn	nn							
* ==	> Transn	nission G	ate XOR	*							
		เนนนนนนนน		ıu*							
.SUBCK			ission G			Α	В	out			
vdd	vdd	gnd	vdd _	_							
*M	ND	NG	NS	NB	Model	W		L			
Mp1	out	Α	В	vdd	pmos	w = k	lpmos	1 = Lr	nin		
Mn1	out	Α	BBar	gnd	nmos	w = k	Inmos	1 = Lr	nin		
Mn2	Α	BBar	out	gnd	nmos	w = v	Inmos	1 = Lr	nin		
Mp2	out	В	Α	vdd	pmos	w = v	lpmos	1 = Lr	nin		
X1	В	BBar	INVERT	ER							
.ENDS		Transm	ission_G	ate_XOR							
nnnnn	ınnnnnnr	nnnnnnn	nnnnnnnr	nn							
*	==> C(OMPONENTS		*							
uuuuu	เนนนนนนน	เนนนนนนนน	นนนนนนนเ	ıu							
X1	Α	В	CLK	out_D	ynamic_CM	OS_XOR		Dynami	c_CMOS_X	OR	
X2	Α	В		out_T	ransmissi	on_Gate	_XOR	Transr	nission_G	ate_XOR	
nnnnn	ınnnnnnr	nnnnnnn	nnnnnnnr	nn							
*	==> II			*							
uuuuu	เนนนนนนน	เนนนนนนนน	นนนนนนนน	ıu							
VA	Α	gnd	Pulse	gnd	vdd	0	0	0	20ns	40ns	
VB	В	gnd	Pulse	gnd	vdd	0	0	0	40ns	80ns	
VCLK	CLK	gnd	Pulse	gnd	vdd	0	0	0	10ns	20ns	

محاسبه تأخير و توان مصرفي:

avg_power_dynamic_cmos_xor= 66.6296n from= 0. to= 200.0000n $avg_power_transmission_gate_xor=~549.7303n \quad from=~~0.$ to= 200.0000n

تحليل:

در طراحی Dynamic CMOS در کل از 10 ترانزیستور استفاده کردیم. در مقابل، در طراحی TG ترانزیستور استفاده شده است. بنابراین از نظر تعداد ترانزیستور، طراحی TG بهتر است. اما اگر توان مصرفی

هر یک از دو طراحی را با هم مقایسه کنیم، مشاهده میکنیم در طراحی TG ، توان مصرفی به مراتب بیشتر از طراحی Dynamic CMOS میباشد. همچنین در طراحی Dynamic CMOS ، زمانی که کلاک صفر باشد خروجی مقدار نادرستی را نشان میدهد. در این طراحی بدلیل آنکه از خازن بار در خروجی استفاده نشده، مقدار خروجی در طراحی Dynamic CMOS هیچوقت به مقدار مطلق یک ولت نرسیده و متناسب با زمان شارژ خازنها و زمان تغییرات ورودی متفاوت است. بطور مثال برای حالتی که زمان تغییرات ورودی را 10 برابر کنیم، نمودارها مجددا رسم شده است. بطور کلی میتوان گفت طراحی Dynamic CMOS مقدار یک را خوب عبور نمیدهد و در ترنزیشن های صفر به یک بسیار ضعیف است، اما در ترنزیشن های از یک به صفر موفق ظاهر شده است.

