Problem 2:

Data collected in coordination with Param Popat and Karthik Subramanian

1,2. Coeffecient of Variation: Ratio of variance to the mean, and wild images accuracy

Run #	Machine	TTA (91%) (hrs)	Accuracy on Wild Images
1.	V100	4.581	92%
2.	V 100	4.033	90%
3.		3.833	88%
4.		4.433	90%
5.		3.667	98%
	Mean	4.110	90
Std Dev		0.381	2.608
Coeff of Variance		9.47%	-
1.	TPU	3.012	88
2.	170	3.050	86
3.		3.117	92
4.		3.565	92
5.		3.667	90
Mean		92	90
Std Dev		3.85	2.608
Coeff o	f Variance	4.20	-

The coeffecient of variance values obtained are similar to that of the paper:

S.No	Machine Type	Our Value	ColeMan et al
1.	V100	9.47	11.2
2.	TPU	4.2	4.5

3. GPU utilization varied between 85% and 100% throughout the phases of training. Epoch 10:

Epoch 150:

jupyter@pytorch:~\$ nvidia-smi
Wed Dec 11 20:37:27 2019

						410.104		on: 10.0
GPU	Name	Perf	Persist Pwr:Usa	ence-M age/Cap	Bus-Id		Volatile GPU-Util	Uncorr. ECC Compute M.
N/A	56C	V100- P0	SXM2 90W /	Off 300W	0000000 13857M	0:00:04.0 Off iB / 16130MiB	100%	0
Proce GPU	esses:	PID	Туре	Process	name			GPU Memory Usage
0	:=====	1677	C	/opt/an	aconda3/l	====== bin/python		13847MiB

4. If the GPU utilization was indeed low, one measure we can take is to increase the batch size. This increases the amount of computation on the GPU. But we should be wary of the overall impact this has on our accuracy in itself.

If we do do so, we should also increase the learning rate as the batch size increases. This ensures the time to convergence will be in the same order of the initial setup.