Universidad Mayor de San Simón Facultad de Ciencias y Tecnología

Nota:	

UMSS

CIRCUITOS ELÉCTRICOS I

TEMA 6: LA INDUCTANCIA Y LA CAPACITANCIA PRÁCTICA 6

Grupo:		
Apellido (s) y Nombre (s):		
Docentes:	M.Sc. Ing. Juan José E. MONTERO G. – Ing. Yuri PÉREZ P.	
Auxiliares:		
Asignatura:	Circuitos Eléctricos I	
Carrera:	Ingeniería: Eléctrica - Electrónica - Electromecánica	
Semestre:	2° Semestre – 4° Semestre	
Fecha de entrega: Cbba / / 202		

Universidad Mayor de San Simón Facultad de Ciencias y Tecnología

Ingeniería: Eléctrica - Electrónica - Electromecánica

Circuitos Eléctricos I: 2º Semestre - 4º Semestre

TEMA 6: LA INDUCTANCIA Y LA CAPACITANCIA

PRÁCTICA 6

Problema 1.

La fuente de corriente independiente del circuito que se muestra en la siguiente figura genera una corriente nula para t < 0 y un pulso 10 t e^{-5} t para t > 0.

- a) ¿En qué instante se obtiene la máxima corriente?. R.: 0.2[s]
- b) Dibujar la forma de onda de la corriente.
- c) Expresar el voltaje entre las terminales del inductor de 100[mH] en función del tiempo.

R.:,
$$V = e^{-5t} (1 - 5t)[V]$$
 para $t > 0$; $V = 0$ para $t < 0$

- d) Dibujar la forma de onda del voltaje.
- e) ¿Se obtiene el máximo voltaje cuando la corriente es máxima?.

R.: No; el voltaje es proporcional a "di/dt", no a "i"

f) ¿En qué instante cambia la polaridad del voltaje?.

R.: 0.2[s]

Problema 2.

Se aplica a un inductor de 20[mH] el pulso de corriente triangular que se muestra en la figura.

a) Escribir las expresiones que describan la corriente i(t) en los cuatro intervalos $t < 0, 0 \le t \le 5[ms], 5[ms] \le t \le 10[ms]$ y $t \ge 10[ms]$.

R.: 20[V]

b) Obtener las expresiones para el voltaje, la potencia y la energía del inductor.

R.:
$$0[V]$$
; $1[V]$; $-1[V]$; $0[V]$; $0[J]$; $25 t^2 [J]$; $25 t^2 - 0.5 t + 2.5 \times 10^{-3} [J]$; $0[J]$

Problema 3.

El pulso de tensión aplicado a la bobina de 100[mH] que se muestra figura es 0 para t < 0 y está dado por la expresión 20 t e^{-10 t} [V] para t > 0, si la corriente es i = 0 para $t \le 0$ se pide:

- b) ¿En qué instante se obtiene la máxima corriente?. R.: 0.2[s]
- c) Expresar el voltaje entre las terminales del inductor de 100[mH] en función del tiempo. R.: , $V=e^{-5\,t}\,(1-5\,t)[V]$ para t>0 ; V=0 para t<0

Problema 4.

La tensión entre los terminales de la bobina de $200[\mu H]$ se muestra en la siguiente gráfica. Se sabe que la corriente "i" en el inductor es cero para t < 0[s].

a) Escribir las ecuaciones correspondientes a la corriente para $t \ge 0$ [ms].

R.: i = 0 para t < 0 [ms]; $i = 25 \text{ t [mA] } 0 \le t \le 2 \text{ [ms]}$; i = 0 para t > 2 [ms];

b) Graficar i = f(t) para $0 \le t \le \infty$ [ms].

Problema 5.

En los bornes o terminales de una bobina de 0,05[H], se aplica una tensión cuya forma de onda es la representada en la figura.

- a) Obtener la forma de onda correspondiente para la corriente.
- b) Obtener la forma de onda para la potencia.

Se sabe que la corriente en la bobina es cero para t<0

c)Hallar la energía en t=1.5[ms].

R: 31.64[mJ]

Problema 6.

Por una bobina pura de autoinducción de 3[mH], circula una corriente cuya forma de onda se representa en la figura.

- a) Graficar la forma de onda de la tensión.
- b) Graficar la potencia instantánea.
- c) Hallar la potencia media en W

Problema 7.

Sabemos que la corriente en la bobina de 2,5[mH] es 1[A] para t<0. La tensión en la bobina para t≥0 está dada por la expresión:

$$v=3 e^{-4t} mV$$
, $0 \le t \le 2[s] y v = -3e^{-4(t-2)} mV$, $2 \le t \le \infty$

Dibuje el voltaje y la corriente para $0 \le t \le \infty (sug : i(0) = 0)$

Problema 8.

Sabemos que la corriente en una bobina de 50[µH],es:

$$iL=18te^{-10t}$$
 [A] para $t\geq 0$

- a)Determine la tensión en bornes de la bobina para t > 0
- c) Calcule la energía (µJ), almacenada en la bobina en el instante t=200[ms].R.: 5,93[µJ]
- d) Calcule la energía máxima (en microjulios) almacenada en la bobina y el instante (en microsegundos) correspondiente. R::10,96[µJ];0,1 [s]
- e) Que sucede si invierte solamente la polaridad de la bobina?.

Problema 9.

Sabemos que la corriente que atraviesa una bobina de 5 H y que la tensión entre los terminales de la misma son cero para $t \le 0$. La tensión en bornes de la bobina está dada por la gráfica de la figura para $t \ge 0$.

- a) Deduzca la expresión de la corriente en función del tiempo en los intervalos $0 \le t \le 1$ [s], $1 \le t \le 3$ [s], $3 \le t \le 5$ [s], $5 \le t \le 6$ [s], $6 \le t \le \infty$ [s].
- b) Para t>0 cuál es la corriente en la bobina $_{-100}$ cuando la tensión es cero? R.: $40[{\rm A}]$
- c) Dibuje la corriente para $0 \le t \le \infty$.

Problema 10.

a) Calcule la corriente que atraviesa la bobina en el circuito de la figura si:

$$v = 30 \text{ sen } 500t [V], L = 15 \text{ mH } e i(O) = -4 [A]$$

b) Dibuje v, i, p y w en función de t. Al hacer dichas gráficas, utilice el formato empleado en la figura. Dibuje un ciclo completo de la forma de onda de la tensión.

Problema 11.

Suponga que la energía inicial almacenada en las bobinas de la figura es cero. Calcule la Inductancia equivalente con respecto a los terminales a y b.

R.: 8[H]; 15[H]

Problema 12

Reducir la red de la figura a una sola inductancia equivalente, respecto a los bornes a y b.

R.: 172,388 [pH]

Problema 13

La red de la figura consta de tres etapas en serie y cada una contiene un número correspondiente de inductores en paralelo.

- a) Determinar la inductancia equivalente si todos los inductores son de 1,5 [H].
- b) Obtener la expresión general de una red para N etapas.

Problema 14

Se aplica un pulso de tensión a los terminales de un capacitor de $0,5[\mu F]$, descrito por las siguientes ecuaciones:

$$v = \begin{cases} 0 & t \le 0 [s] \\ 4t & 0 \le t \le 1 [s] \\ 4e^{-(t-1)} & t \ge 1[s] \end{cases}$$

- a) Deduzca y grafique las expresiones correspondientes a la corriente, la potencia y la energía del condensador.
- b) Especifique el intervalo de tiempo durante el cual se está almacenando energía en el condensador. R.:0≤t≤1 [s]
- c) Especifique el intervalo de tiempo durante el cual se está extrayendo energía del condensador.

 R.: t>1[s]

Problema 15

La tensión entre los terminales del condensador de 0,6 [μ F] mostrado en la figura es 0 para t < 0 y $40e^{-15000t}$ sin 30000t [V] para $t \ge 0$. Calcule (a) i(0); (b) la potencia suministrada al condensador en $t = \pi/80$ [ms]; y (c) la energía almacenada en el condensador en $t = \pi/80$ [ms].

R.: a)0,72 [A];b)-649,2 [mW];c)126,13[μ J]

Problema 16

Aplicamos a un condensador de 0,25 F el pulso de corriente mostrado en la figura. La tensión inicial en el condensador es cero.

- a) Calcule la carga del condensador en t= 30 [ms].
- b) Calcule la tensión en el condensador en $t = 50 \, [\mu s]$.
- c) ¿Cuánta energía almacena el pulso de corriente en el condensador?

Problema 17

Sometemos a un condensador de $20[\mu F]$ a un pulso de tensión que tiene una duración de 1[s].El pulso esta descrito por las siguientes ecuaciones:

$$v = \begin{cases} 30t^2 & 0 \le t \le 0,5 \text{ [s]} \\ 30(t-1)^2 & 0,5 \le t \le 1 \text{ [s] [V]} \\ 0 & en \text{ todo los demas instantes} \end{cases}$$

Dibuje el pulso de corriente que atraviesa el condensador durante el intervalo de 1[s]

Problema 18

Calcular la capacitancia equivalente respecto a los bornes a y b de las siguientes redes.

R.: $(a)6[\mu F];(b)2[\mu F]$

Problema 19

Hallar el valor de C para que la capacidad del condensador equivalente sea de 0,5[µF]

R.: 0,4 [μF]

Problema 20

Por el circuito serie de la figura circula una corriente cuya forma de onda se indica. Hallar la tensión en cada elemento y representarlas gráficamente con la misma escala de tiempos. Representar así mismo la carga q del condensador.

