

KONKURS CHEMICZNY

DLA UCZNIÓW GIMNAZJÓW

III ETAP WOJEWÓDZKI

11 stycznia 2014

Ważne informacje:

- 1. Masz 120 minut na rozwiązanie wszystkich zadań.
- 2. Pisz długopisem lub piórem, nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i zaznacz inną odpowiedź.
- 3. Pisz czytelnie i zamieszczaj odpowiedzi w miejscu na to przeznaczonym. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 4. Podczas pracy możesz korzystać z układu okresowego pierwiastków oraz z tabeli rozpuszczalności soli i wodorotlenków w wodzie zamieszczonych na końcu arkusza.
- 5. Wartości mas molowych pierwiastków potrzebne do obliczeń odczytuj z tabeli układu okresowego. W obliczeniach przyjmij wartości: liczba Avogadro: $N_A=6,02\cdot 10^{23}\,\frac{1}{\text{mol}}$; objętość molowa gazów w warunkach normalnych: $V_0=22,4\,\frac{\text{dm}^3}{\text{mol}}$.

Życzymy powodzenia!

Maksymalna liczba punktów	35	100%
Uzyskana liczba punktów		%
Podpis osoby sprawdzającej		

Zadanie 1. (0 – 1 pkt)

W 1 dm³ wody o temperaturze 288 K można rozpuścić maksymalnie 490 dm³ chlorowodoru odmierzonego pod ciśnieniem 997 hPa.

Zaznacz poprawne dokończenie zdania: "W 1 dm³ wody o temperaturze 278 K można rozpuścić, uzyskując roztwór nasycony...

- A. mniej niż 490 dm³ chlorowodoru odmierzonego pod ciśnieniem 997 hPa.
- B. więcej niż 490 dm³ chlorowodoru odmierzonego pod ciśnieniem 997 hPa.
- C. 490 dm³ chlorowodoru odmierzonego pod ciśnieniem 997 hPa.
- D. Na podstawie podanych informacji i wiedząc, że pod stałym ciśnieniem rozpuszczalność gazów maleje ze wzrostem temperatury, nie można wskazać prawdziwego dokończenia zdania.

Zadanie 2. (0 – 1 pkt)

Wskaż równanie reakcji usuwania tzw. twardości przemijającej wody – procesu zachodzącego w czasie gotowania twardej wody. **Zaznacz poprawną odpowiedź.**

A.
$$2CaCO_3 + H_2O \rightarrow Ca(HCO_3)_2 + CaO$$

B.
$$Ca^{2+} + CO_3^{2-} \to CaCO_3$$

C.
$$Ca^{2+} + 2HCO_3 \rightarrow Ca(HCO_3)_2$$

D.
$$Ca(HCO_3)_2 \rightarrow CaCO_3 + H_2O + CO_2$$

Zadanie 3. (0 – 1 pkt)

Wskaż zdania prawdziwe. Zaznacz poprawną odpowiedź.

1.	Wodny roztwór amoniaku przewodzi prąd elektryczny i dlatego
	można go nazwać elektrolitem.
2.	W wyniku zobojętnienia roztworu amoniaku kwasem solnym
	otrzymuje się roztwór o odczynie kwasowym.
3.	pH roztworu otrzymanego wskutek rozpuszczenia tlenku fosforu(V)
	P ₄ O ₁₀ w wodzie jest mniejsze niż 7,0.
4.	Po zmieszaniu roztworów wodnych azotanu(V) potasu KNO ₃
	i azotanu(V) sodu NaNO ₃ nie zachodzi żadna reakcja chemiczna.

A. wszystkie B. tylko 2, 3, 4 C. tylko 1, 2, 3 D. tylko 2, 3

Numer zadania	1	2	3	Razem
Maksymalna liczba punktów	1	1	1	3
Przyznana liczba punktów				

Zadanie 4. (0 – 1 pkt)

Sporządzono roztwór wodny węglanu potasu K₂CO₃ i zmierzono jego pH przy użyciu przyrządu zwanego pH-metrem. Otrzymano wartość pH=8,1. Wskaż właściwe wyjaśnienie rezultatu opisanego doświadczenia. **Zaznacz poprawną odpowiedź.**

- A. Węglan potasu jest solą słabego kwasu i mocnej zasady, więc w roztworze wodnym tej soli stężenie jonów wodorotlenkowych jest większe niż stężenie jonów wodorowych.
- B. Węglan potasu jest solą mocnego kwasu i słabej zasady, więc w roztworze wodnym tej soli stężenie jonów wodorotlenkowych jest większe niż stężenie jonów wodorowych.
- C. Węglan potasu jest solą słabego kwasu i mocnej zasady, więc w roztworze wodnym tej soli stężenie jonów wodorowych jest większe niż stężenie jonów wodorotlenkowych.
- D. Węglan potasu jest solą mocnego kwasu i słabej zasady, więc w roztworze wodnym tej soli stężenie jonów wodorowych jest większe niż stężenie jonów wodorotlenkowych.

Zadanie 5. (0 – 1 pkt)

Ustal liczbę wodorosoli jakie może tworzyć kwas octowy CH₃COOH. **Zaznacz poprawną** odpowiedź.

A. 3 B. 2 C. 1 D. 0

Zadanie 6. (0 – 1 pkt)

Zidentyfikuj <u>właściwości fizyczne i chemiczne sodu</u>, jakie wynikają z obserwacji dokonanych w czasie badania zachowania tego metalu po wprowadzeniu go do wody. **Zaznacz poprawną odpowiedź.**

"Kawałek sodu, wielkości ziarna grochu, wrzucony do krystalizatora z zimną wodą z dodatkiem kilku kropel alkoholowego roztworu fenoloftaleiny przybiera kształt kulki i porusza się na powierzchni cieczy odbijając się od ścianek krystalizatora. Wydziela się bezbarwny gaz, który czasami zapala się żółtym płomieniem. Początkowo bezbarwny roztwór przyjmuje malinowe zabarwienie. Dotykając ręką krystalizatora, po zakończeniu reakcji, można zauważyć, że jest on cieplejszy niż przed wrzuceniem sodu do wody."

- A. Endotermiczna reakcja sodu z wodą zachodzi z dużą szybkością. Jej produktami są wodorotlenek sodu i wodór.
- B. Sód jest miękkim, srebrzystobiałym, aktywnym chemicznie metalem o gęstości większej od gęstości wody, ma charakter zasadowy bo rozpuszczony w wodzie tworzy zasadę sodową.
- C. Sód jest metalem aktywnym chemicznie bo gwałtownie utlenia wodę tworząc wodorotlenek sodu i wodór. Reakcja sodu z wodą jest procesem endotermicznym.
- D. Sód jest niskotopliwym metalem o gęstości mniejszej od gęstości wody. Sód jest pierwiastkiem aktywnym chemicznie bo gwałtownie redukuje wodę.

Numer zadania	4	5	6	Razem
Maksymalna liczba punktów	1	1	1	3
Przyznana liczba punktów				

Zadanie 7. (0-1 pkt)

Wskaż nazwę systematyczną węglowodoru o podanym wzorze. **Zaznacz poprawną** odpowiedź.

$$CH_3 - CH - CH_2 - CH - CH_3$$
A. 2-etylo-4-metylopentan
B. 2-metylo-4-etylopentan
C. 2,4-dimetyloheksan
D. 3,5-dimetyloheksan
$$CH_3 - CH - CH_2 - CH - CH_3$$

$$CH_2 - CH_3$$

$$CH_3$$

⊃ Informacja do zadań 8. i 9.

Propen, nazywany też propylenem jest związkiem chemicznym o dużym znaczeniu, stanowi substrat wielu reakcji chemicznych realizowanych w przemyśle syntezy organicznej na wielką skalę. Podany poniżej schemat ilustruje trzy przemiany (1, 2 i 3), których substratem jest propen.

Zadanie 8. (0 – 1 pkt)

Wskaż nazwy odczynników, których użycie pozwoli, w odpowiednich warunkach, przekształcić propen w produkty o nazwach podanych w schemacie. **Zaznacz poprawną odpowiedź.**

	1	2	3
A.	woda	chlorowodór	chlor
B.	tlenek wodoru	roztwór wodny chlorku sodu	kwas solny
C.	wodorotlenek potasu	kwas solny	roztwór chloru w wodzie
D.	zasada sodowa	chlor	chlorek sodu

Zadanie 9. (0-1 pkt)

Wskaż wzory głównych produktów reakcji oznaczonych w schemacie cyframi 1, 2 i 3 (pamiętaj o regule Markownikowa). **Zaznacz poprawną odpowiedź.**

	1	2	3
A.	CH ₃ CH ₂ CH ₂	CH₃CH₂CH₂	CH ₃ CH-CH ₂
	OH	Cl	Cl Cl
В.	CH₃ CH-CH₃	CH₃ CH-CH₃	CH ₂ CH ₂ CH ₂
	OH	Cl	Cl Cl
C.	CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₃	CH ₂ CH-CH ₃
	OH	Cl	Cl Cl
D.	CH₃CH-CH₃	CH₃CH-CH₃	CH ₃ CH-CH ₂
	OH	Cl	Cl Cl

⊃ Informacja do zadania 10.

Na zajęciach koła chemicznego uczniowie otrzymali od nauczyciela zadanie wykonania doświadczenia, którego przebieg dowiedzie, że glukoza wykazuje właściwości redukujące.

- Marcin dodał wodny roztwór wodorotlenku sodu do probówki z wodnym roztworem azotanu(V) srebra, po czym do uzyskanej mieszaniny wprowadził roztwór wodny glukozy i probówkę umieścił w zlewce z gorącą wodą.
- Karol dodawał roztwór wodny amoniaku do probówki z roztworem azotanu(V) srebra aż uzyskał klarowny, bezbarwny roztwór. Następnie do wytworzonej mieszaniny wprowadził roztwór wodny glukozy i probówkę umieścił w zlewce z gorącą wodą.
- Damian dodał zasadę sodową do probówki z roztworem wodnym siarczanu(VI) miedzi(II). Następnie, do uzyskanej zawiesiny wprowadził roztwór wodny glukozy i probówkę ostrożnie ogrzewał w płomieniu palnika.
- Franek wkroplił roztwór wodny wodorotlenku sodu do probówki zawierającej roztwór wodny siarczanu(VI) miedzi(II) i do uzyskanej zawiesiny wprowadził roztwór wodny glukozy.

Zadanie 10. (0 – 1 pkt)

Ustal, który chłopiec poprawnie wykonał zadanie zlecone przez nauczyciela, czyli dowiódł, że glukoza wykazuje właściwości redukujące. **Zaznacz poprawną odpowiedź.**

- A. Marcin i Franek błędnie przeprowadzili badanie właściwości redukujących glukozy. Karol prawidłowo wykonał próbę Tollensa, a Damian bezbłędnie próbę Trommera.
- B. Marcin i Karol prawidłowo wykonali próbę Tollensa. Damian poprawnie wykonał próbę Trommera, a Franek błędnie przeprowadził badanie właściwości redukujących glukozy.
- C. Marcin i Karol prawidłowo wykonali próbę Tollensa. Damian i Franek poprawnie wykonali próbę Trommera.
- D. Marcin prawidłowo przeprowadził próbę Tollensa, a Franek poprawnie wykonał próbę Trommera. Damian i Karol nie udowodnili, że glukoza ma właściwości redukujące.

Numer zadania	7	8	9	10	Razem
Maksymalna liczba punktów	1	1	1	1	4
Przyznana liczba punktów					

Zadanie	11.	(0 -	3	pkt)
---------	-----	------	---	------

Do zlewki zawierającej 200,00 g kwasu solnego o stężeniu 10% masowych wrzucono 4,00 g
wapnia. Napisz, w formie cząsteczkowej równanie reakcji kwasu solnego z wapniem. Oblicz
stężenie procentowe (z dokładnością do dwóch miejsc po przecinku) kwasu solnego w chwili,
gdy przereagowało 40% wziętego do doświadczenia wapnia. Przyjmij, że mimo wydzielania
gazu, masa roztworu nie uległa zmianie podczas trwania reakcji.

gdy przereagowało 40% wziętego do doświadczenia wapnia. Przyjmij, że mimo wydzielani gazu, masa roztworu nie uległa zmianie podczas trwania reakcji.
Obliczenia:
Odpowiedź:

Zadanie 12. (0 – 7 pkt)

W pięciu ponumerowanych probówkach (I - V) zawarte są stężone roztwory wodne: chlorku wapnia $CaCl_2$, węglanu sodu Na_2CO_3 , węglanu amonu $(NH_4)_2CO_3$, siarczanu(VI) miedzi(II) $CuSO_4$ i wodorotlenku potasu KOH o takim samym stężeniu, równym 1,0 mol/dm³. Wiadomo ponadto, że w każdej probówce znajduje się roztwór tylko jednej substancji.

W celu identyfikacji zawartości probówek, uczeń przeprowadził szereg obserwacji i uzyskał następujące wyniki:

- 1. roztwór w probówce III jest niebieski, a roztwory w pozostałych probówkach są bezbarwne;
- 2. po zmieszaniu roztworów z probówek I i II wytrąca się biały osad;
- 3. po zmieszaniu roztworów z probówek II i III wytraca się biały, krystaliczny osad;
- 4. po zmieszaniu roztworów z probówek III i IV wytrąca się niebieski, galaretowaty osad, który w czasie ogrzewania zmienia barwę na czarną;
- 5. po zmieszaniu roztworów z probówek IV i V wydziela się gaz o odrażającym zapachu;
- 6. roztwór z probówki II barwi płomień palnika gazowego na kolor ceglasty, a roztwór z probówki IV na kolor różowofioletowy.
- a) Zidentyfikuj zawartość probówek. Napisz w odpowiednich rubrykach poniższej tabeli wzory substancji, których wodne roztwory były zawarte w probówkach I V.

Nr probówki	I	II	III	IV	V
Wzór					
substancji					

b) **Napisz**, w formie cząsteczkowej, równanie reakcji zachodzącej po zmieszaniu roztworów z probówek IV i V, a następnie ustal liczbę cząsteczek gazowego produktu, jaki powstanie po

zmieszaniu 2 cm³ roztworu z probówki IV i 1cm³ roztworu z probówki V.

ównanie reakcji:	
bliczenia:	
dnowiedó:	
dpowiedź:	•••••

Zadanie 13. (0 – 6 pkt)

Dwa związki organiczne A i B o tej samej wartości mas molowych, które nie są ani izomerami ani homologami stanowią w warunkach panujących w laboratorium bezbarwne, ciecze o charakterystycznych zapachach.

W celu ustalenia składu tych substancji poddano je analizie i uzyskano następujące rezultaty:

- W wyniku całkowitego spalania 1,15 grama substancji A otrzymano tylko1,12 dm³ tlenku węgla(IV) (odmierzonego w warunkach normalnych) i 1,35 grama wody.
- Substancja B zawiera 26,09% masowych węgla, 69,57% masowych tlenu, zaś resztę stanowi wodór.

Ustal wzory sumaryczne związków organicznych A i B, wiedząc, że ich wzory empiryczne (najprostsze) są ich wzorami rzeczywistymi. **Zaproponuj wzory strukturalne** (kreskowe) obu związków.

obu związków.	Zaproponuj	wzoi y	<u>strukturaine</u>	(KIESKOWE
Obliczenia dotyczące substancji A:				
Obliczenia dotyczące substancji B:				

W odpowiedzi uzupełnij tabelę:

	Wzór sumaryczny	Wzór strukturalny (kreskowy)
Substancja A		
Substancja B		

Zadanie 14. (0-5 pkt)

Jednym z nawozów mineralnych, stosowanych powszechnie do nawożenia roślin uprawnych jest amofoska. W skład tego nawozu wchodzą: wodorofosforan(V) amonu (NH₄)₂HPO₄ i diwodorofosforan(V) amonu NH₄H₂PO₄ – łącznie 37% masowych, chlorek potasu KCl – 47% masowych oraz siarczan(VI) amonu (NH₄)₂SO₄ – 7% masowych. Pozostałe 9% masowych stanowią różne dodatki.

- a) **Oblicz**, ile gramów wodorofosforanu(V) amonu (NH₄)₂HPO₄ i ile gramów diwodorofosforanu(V) amonu NH₄H₂PO₄ znajduje się w 100 gramach amofoski wiedząc, że obie sole występują w tym nawozie w stosunku molowym 1: 1.

b)	twierdzenie pisząc odpowiednie równanie i w formie jonowej skróconej.	
a) oblicz	iczenia:	
b)	wiedź:	
Odczyn	n roztworu:	
Równan	anie reakcji w formie cząsteczkowej:	
	anie reakcji w formie jonowej skróconej:	

Zadanie 15. (0 – 4 pkt)

Przyznana liczba punktów

Zaprojektuj doświadczenie, którego wynik pozwoli sformułować wniosek: "W środowisku o odczynie kwasowym, jony manganianowe(VII) wykazują właściwości utleniające".

W tym celu:

a) Napisz wzory odczynników potrzebnych do wykonania doświadczenia, wybranych z podanej poniżej listy:

tlenek manganu(IV) MnO₂, manganian(VI) potasu K₂MnO₄, manganian(VII) potasu KMnO₄, wodorotlenek potasu KOH, kwas siarkowy(VI) H₂SO₄, siarczan(VI) potasu K₂SO₃

- b) opisz sposób przeprowadzenia doświadczenia, uwzględniając obserwacje;
- c) napisz równanie reakcji w formie jonowej skróconej, dobierając współczynniki metodą bilansu elektronowego.

a) wzory wybranych odczynnikó	W:					
b) opis doświadczenia:						
					• • • • • • • • • • • • • • • • • • • •	
Równanie reakcji:						
Bilans elektronowy:						
Numer zadania	11	12	13	14	15	Razem
Maksymalna liczba punktów	3	7	6	5	4	25

UKŁAD OKRESOWY PIERWIASTKÓW CHEMICZNYCH

masy molowe pierwiastków podano w g/mol (dolna liczba, wydrukowana większą czcionką pod symbolem w krateczce pierwiastka)

₁ H 1																	₂ He 4
₃ Li 7	₄ Be 9											₅ B 11	6C 12	₇ N 14	₈ O 16	₉ F 19	10Ne 20
11Na 23	₁₂ Mg 24											13Al 27	14Si 28	15P 31	16S 32	17Cl 35,5	₁₈ Ar 40
₁₉ K 39	₂₀ Ca 40	21Sc 45	₂₂ Ti 48	₂₃ V 51	₂₄ Cr 52	₂₅ Mn 55	₂₆ F ₆		28Ni 59	₂₉ Cu 64	₃₀ Zn 65	31Ga 70	32Ge 73	33As 75	₃₄ Se 79	35Br 80	36Kr 84
37Rb 85	₃₈ Sr 88	₃₉ Y 89	₄₀ Zr 91	41Nb 93	₄₂ Mo 96	₄₃ Tc 97	44Ri 101			47Ag 108	48Cd 112	49In 115	₅₀ Sn 119	51Sb 122	₅₂ Te 128	₅₃ I 127	54Xe 131
₅₅ Cs 133	56Ba 137	57La 139 (*)	72Hf 178	₇₃ Ta 181	₇₄ W 184	₇₅ Re 186	₇₆ O 190			₇₉ Au 197	₈₀ Hg 201	81Tl 204	82Pb 207	83Bi 209	84Po 209	85At 210	86Rn 222
₈₇ Fr 223	₈₈ Ra 226	89Ac 227 (**)	104Rf 261	105Db 262	₁₀₆ Sg 266	107Bh 272	108H 277			111Rg 280	112Cn 285	113 284	114 289	115 288	116 292		118 294
(*) lan	ntanowo	₅₈ Ce 14					Sm 50	₆₃ Eu 152	₆₄ Gd 157	₆₅ Tb 159	66Dy 163	₆₇ Ho 165	₆₈ Er 167	₆₉ Tn 169			Lu 75
(**	^k)	Γ ₀₀		Pa 92U		Np 94	Pu	₉₅ Am	₉₆ Cm	97 B k	₉₈ Cf	99Es	₁₀₀ Fm	₁₀₁ M	d ₁₀₂ l	No 103	3Lr

ROZPUSZCZALNOŚĆ SOLI I WODOROTLENKÓW W WODZIE (TEMP. 291-298K)

251

247

251

252

257

258

259

262

243

	Na ⁺	K ⁺	NH ₄ ⁺	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺	\mathbf{Ag}^{+}	Cu ²⁺	Zn ²⁺	Al ³⁺	Mn ²⁺	Cr ³⁺	Fe ²⁺	Fe ³⁺	Pb ²⁺	Sn ²⁺	Sn ⁴⁺
OH.	r	r	r	S	S	S	r	n	n	n	n	n	n	n	n	S	n	n
F ⁻	S	r	r	S	S	S	S	r	0	S	S	S	S	S	S	S	r	r
Cl	r	r	r	r	r	r	r	n	r	r	r	r	S	r	r	S	r	r
Br ⁻	r	r	r	r	r	r	r	n	r	r	r	r	S	r	r	S	r	r
I-	r	r	r	r	r	r	r	n	0	r	0	О	0	S	0	S	S	r
S^{2-}	r	r	r	0	0	0	0	n	n	n	0	n	0	n	n	n	n	n
SO ₃ ²⁻	r	r	r	S	S	S	S	S	S	S	0	S	0	S	0	S	0	О
SO ₄ ²⁻	r	r	r	r	S	S	n	S	r	r	r	r	r	r	0	n	r	r
NO_3	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	0	r
ClO ₃	r	r	r	r	r	r	r	r	r	X	X	X	X	X	X	r	X	X
PO ₄ ³ -	r	r	r	S	n	n	n	n	S	S	S	S	S	S	S	n	0	r
CO_3^{2-}	r	r	r	S	n	n	n	n	S	S	0	S	0	S	0	n	0	О
HCO ₃	S	r	r	S	S	S	0	0	0	0	0	S	0	S	0	0	X	X
SiO ₃ ²	r	r	О	n	n	0	n	n	n	n	n	n	n	n	n	n	0	0
CrO ₄ ²	r	r	r	r	S	S	n	n	S	S	0	S	0	0	S	n	О	О

r - substancja dobrze rozpuszczalna

231

238

237

244

- s substancja słabo rozpuszczalna (osad wytrąca się ze stężonego roztworu)
- n substancja praktycznie nierozpuszczalna
- o substancja w roztworze wodnym nie istnieje
- x związek nie istnieje

aktynowce

Brudnopis