

All-Pairs Shortest Path: Floyd-Warshall Algorithm

2019/6/4

Shortest-Paths Algorithms

- Several variants of shortest-path algorithms
 - Single-source all-destination
 - Dijkstra's algorithm
 - Bellman-Ford algorithm
 - All-pairs shortest paths
 - Floyd-Warshall algorithm

Floyd-Warshall Algorithm

Characteristics

- All-pairs shortest paths
- Based on DP
- Supports negative edge-weights, but not negative-weight cycles
- O(n³)

Three-step DP Formula for Floyd-Warshall Algorithm

- \circ Optimum-value function: $d_{i,j}^k$ is the shortest path from nodes i to j using nodes only from $\{1,2,\ldots,k\}$ $(k \le n)$ as intermediate points
- Recurrent equation:

$$d_{i,j}^k = min \begin{cases} d_{i,j}^{k-1} \\ d_{i,k}^{k-1} + d_{k,j}^{k-1} \end{cases} \text{ with } d_{i,j}^0 = w(i,j).$$
 Final answer: $d_{i,j}^n$

 \circ Final answer: $d_{i,i}^n$

An Illustrative Example

$$k = 4:$$

$$3 \xrightarrow{2} 4 \xrightarrow{-1} 2$$

$$3 \xrightarrow{2} 4 \xrightarrow{-1} 2 \xrightarrow{4} 1$$

$$1 \xrightarrow{-2} 3 \xrightarrow{2} 4 \xrightarrow{-1} 2$$

Example 1 (1/5)

Distance: {}						
D^0		A	В	С	D	
	Α	0	2	6	8	
	В	∞	0	-2	3	
	С	4	∞	0	1	
	D	∞	∞	∞	0	

Predecessor

π_0		A	В	С	D
	Α	-	Α	Α	Α
	В	-	-	В	В
	С	С	-	-	С
	D	-	-	-	-

Example 1 (2/5)

Distance: {A}

	A	В	С	D
A	0	2	6	8
В	∞	0	-2	3
С	4	6	0	1
D	∞	∞	∞	0

Predecessor

π_1		A	В	С	D
	Α	-	Α	Α	Α
	В	-	-	В	В
	С	С	Α	-	С
	D	-	-	-	-

Example 1 (3/5)

Distance: {A,B}

	A	В	С	D
A	0	2	0	5
В	∞	0	-2	3
С	4	6	0	1
D	∞	∞	∞	0

Predecessor

π_2		Α	В	С	D
	A	-	Α	В	В
	В	-	-	В	В
	С	С	Α	-	С
	D	-	-	-	-

Example 1 (4/5)

Distance: {A,B,C} Predecessor

	Α	В	С	D
A	0	2	0	1
В	2	0	-2	-1
С	4	6	0	1
D	∞	∞	∞	0

 π_3

	A	В	С	D
A	-	Α	В	С
В	С	-	В	С
С	С	Α	-	С
D	-	-	-	-

Example 1 (5/5)

Distance: {A,B,C,D} Predecessor

	A	В	C	D
Α	0	2	0	1
В	2	0	-2	-1
С	4	6	0	1
D	∞	∞	∞	0

	Α	В	С	D
A	-	Α	В	С
В	С	-	В	С
С	С	Α	-	С
D	-	-	-	-

Example 2

 D^0 Distance: {}

	A	В	С	D
A	0	∞	3	0
В	-2	0	∞	1
С	∞	∞	0	5
D	∞	4	∞	0

Predecessor

π_0		Α	В	С	D
	Α	-	-	Α	Α
	В	В	-	-	В
	С	-	-	-	С
	D	-	D	-	-

Solution

Example 3

 π_0 A B C D
A - A - A - C
C - - C
D - D - -

Solution

Reference

Youtube tutorials

- Abdul Bari: Basics
- Joe James: Basics plus predecessors
- Erik Demaine: Comprehensive

Web resources

Chiu CC (in Chinese): Detailed descriptions