Équation

d'advection-diffusion-dissipation-production

Notes de cours

1. Modèle d'advection-diffusion-dissipation-production

On considère l'équation suivante pour l'évolution d'une quantité $u(t,s)\geq 0$ dans un domaine $\Omega\subset\mathbb{R}^2$:

$$\begin{split} \partial_t u(t,s) + V(t,s) \cdot \nabla u(t,s) - \nabla \cdot \left(\nu \nabla u(t,s)\right) &= -\lambda u(t,s) + f(t,s), \qquad s = (s_1,s_2) \in \Omega, \ t \geq 0, \\ \text{où } \nu > 0, \ \lambda > 0, \ V(t,s) \in \mathbb{R}^2, \ f(t,s) \in \mathbb{R}. \end{split}$$

Rôle des termes

- $\partial_t u$: variation temporelle de u.
- $V \cdot \nabla u$: advection, transport par le champ de vitesse V.
- $-\nabla \cdot (\nu \nabla u)$: diffusion, effet de lissage (si ν constant : $-\nu \Delta u$).
- $-\lambda u$: dissipation linéaire (perte proportionnelle à u).
- f(t,s): source ou forçage externe.

Forme explicite (dérivées partielles)

Si ν est constant et $V = (V_1, V_2)$, on obtient :

$$\partial_t u + V_1(t,s) \,\partial_{s_1} u + V_2(t,s) \,\partial_{s_2} u - \nu \left(\partial_{s_1}^2 u + \partial_{s_2}^2 u\right) = -\lambda u + f(t,s).$$
 (2)

Si $\nu = \nu(t, s)$ est variable :

$$\partial_t u + V \cdot \nabla u - \partial_{s_1} (\nu \, \partial_{s_1} u) - \partial_{s_2} (\nu \, \partial_{s_2} u) = -\lambda u + f(t, s). \tag{3}$$

Conditions initiales

Une condition initiale typique est :

$$u(0,s) = u_0(s), s \in \Omega, u_0(s) \ge 0.$$
 (4)

Exemple : un profil gaussien ou une concentration localisée.

Conditions aux limites

Soit $\mathbf{n}(s)$ la normale sortante sur $\partial\Omega$. Exemples :

- **Dirichlet** : $u(t,s) = g_D(t,s)$ sur Γ_D (valeur imposée, par ex. température fixée sur un mur).
- Neumann : $\nu \nabla u \cdot \mathbf{n} = g_N(t, s)$ sur Γ_N (flux imposé, souvent $g_N = 0$ pour une paroi isolante).
- Robin : $\nu \nabla u \cdot \mathbf{n} + \alpha u = g_R(t, s)$ sur Γ_R (échange avec l'extérieur).
- Inflow/Outflow: sur $\{s \in \partial\Omega : V \cdot \mathbf{n} < 0\}$, imposer $u = g_{\text{in}}$; sur $\{s \in \partial\Omega : V \cdot \mathbf{n} > 0\}$, condition libre.
- **Périodiques** : u périodique en s_1, s_2 .

2. Réduction de dimension spatiale

On considère maintenant le domaine unidimensionnel $\Omega=]0,L[$ (dérivé du modèle (1)) et l'équation suivante :

$$\partial_t u(t,s) + V(t,s) \,\partial_s u(t,s) - \nu \,\partial_s^2 u(t,s) = -\lambda \,u(t,s) + f(t,s), \qquad s \in \Omega, \ t \ge 0,$$
(5)

avec les conditions aux limites et initiale

$$u(t,0) = u_{\ell}(t), \tag{6}$$

$$\partial_s u(t, L) = 0, (7)$$

$$u(0,s) = u_0(s).$$
 (8)

Interprétation des conditions aux bords

- (6) (à s = 0): condition de *Dirichlet* imposant la valeur de la variable à l'entrée s = 0. Physiquement, par exemple, $u_{\ell}(t)$ peut représenter une température ou une concentration imposée à l'entrée du domaine (flux entrant contrôlé).
- (7) (à s = L): condition de *Neumann* homogène (dérivée spatiale nulle) signifiant pas de flux sortant à s = L. C'est typiquement une paroi isolante ou une borne où le gradient (donc le flux diffusif) est nul.

Compatibilité de la condition initiale avec les conditions aux bords

La condition initiale $u_0(s)$ doit être compatible avec la condition de Dirichlet en s=0 et avec la condition Neumann en s=L au temps t=0. Cela signifie notamment

$$u_0(0) = u_\ell(0), \qquad \partial_s u_0(L) = 0.$$

Exemples compatibles :

- Solution stationnaire constante : $u_0(s) = u_{\ell}(0)$.
- Mode singulier compatible :

$$u_0(s) = u_\ell(0) + A \sin\left(\frac{(2k+1)\pi}{2L}s\right),$$

pour un entier $k \geq 0$ et $A \in \mathbb{R}$. En effet $\sin(0) = 0$ (donc $u_0(0) = u_\ell(0)$) et $\partial_s \sin\left(\frac{(2k+1)\pi}{2L}s\right)\big|_{s=L} = 0$ car $\cos\left(\frac{(2k+1)\pi}{2}\right) = 0$.

• Toute combinaison lisse de fonctions satisfaisant ces deux contraintes aux bords.

Trouver f(t,s) à partir d'une solution a priori u(t,s)

Si l'on suppose connaître (a priori) une fonction u(t,s), alors le terme source f(t,s) est déterminé par la réécriture de (5):

$$f(t,s) = \partial_t u + V(t,s) \partial_s u - \nu \partial_s^2 u + \lambda u.$$
 (9)

Cette formule servira à construire des solutions exactes (utiles pour tester des schémas numériques) : on pose une u choisie et l'on déduit f par (9).

Exemples de constructions (pour tests numériques)

(A) Solution stationnaire simple Choisissons une solution stationnaire constante $u_{\rm st}(s) \equiv U_0$ (indépendante de t et s). Alors $\partial_t u_{\rm st} = \partial_s u_{\rm st} = \partial_s^2 u_{\rm st} = 0$ et d'après (9) on obtient

$$f_{\rm st}(t,s) = \lambda U_0.$$

Pour respecter la condition de Dirichlet $u(t,0) = u_{\ell}(t)$ on prend $U_0 = u_{\ell}(t)$ constant (donc u_{ℓ} indépendant de t): avec $U_0 = u_{\ell}$ on a une solution exacte et compatible avec la Neumann en s = L. Ce cas est un bon test de base (équilibre constant).

(B) Solution instationnaire (mode temporel amorti) Construisons une solution non stationnaire satisfaisant les conditions aux bords : posons, pour des constantes $A, \beta > 0$ et $k \in \mathbb{N}$,

$$u(t,s) = u_{\ell} + A e^{-\beta t} \sin\left(\frac{(2k+1)\pi}{2L}s\right).$$
 (10)

Vérifications:

- $u(t,0) = u_{\ell} \operatorname{car} \sin(0) = 0$ (Dirichlet en s = 0).
- $\partial_s u(t,L) = Ae^{-\beta t} \frac{(2k+1)\pi}{2L} \cos\left(\frac{(2k+1)\pi}{2}\right) = 0$ (Neumann en s = L).

En substituant (10) dans (9) on obtient explicitement le forçage nécessaire (écriture compacte) :

$$f(t,s) = \partial_t u + V(t,s)\partial_s u - \nu \partial_s^2 u + \lambda u$$

$$= -\beta A e^{-\beta t} \sin\left(\frac{(2k+1)\pi}{2L}s\right) + V(t,s) A e^{-\beta t} \frac{(2k+1)\pi}{2L} \cos\left(\frac{(2k+1)\pi}{2L}s\right) \quad (11)$$

$$-\nu A e^{-\beta t} \left(-\left(\frac{(2k+1)\pi}{2L}\right)^2\right) \sin\left(\frac{(2k+1)\pi}{2L}s\right) + \lambda u(t,s).$$

On peut simplifier (11) en regroupant les termes en sin et en cos si besoin. Dans le cas particulier $V \equiv 0$ on obtient la forme plus simple

$$f(t,s) = \left(-\beta + \nu \left(\frac{(2k+1)\pi}{2L}\right)^2\right) A e^{-\beta t} \sin\left(\frac{(2k+1)\pi}{2L}s\right) + \lambda u(t,s).$$

3. Discrétisation et analyse de stabilité

On considère l'équation aux dérivées partielles (EDP) :

$$u_t + Vu_x - Ku_{xx} = -\lambda u + f, \quad x \in (0, L), \ t > 0.$$

Schéma numérique utilisé

• Discrétisation spatiale :

$$u_x(x_j) \approx \frac{u_{j+1} - u_{j-1}}{2\Delta x}$$
 (différence centrée d'ordre 2),
 $u_{xx}(x_j) \approx \frac{u_{j-1} - 2u_j + u_{j+1}}{\Delta x^2}$ (différence centrée d'ordre 2).

• Discrétisation temporelle :

$$u_j^{n+1} = u_j^n + \Delta t \left(-V D_0 u_j^n + \widetilde{\nu} D_2 u_j^n - \lambda u_j^n + F_j \right),$$

où D_0 et D_2 désignent respectivement les opérateurs centrés en espace et $\tilde{\nu}$ une viscosité effective (voir ci-dessous). Il s'agit d'un schéma **d'Euler** explicite (ordre 1 en temps).

Critère de stabilité en temps

Dans le cas explicite, la stabilité impose que le rayon spectral de la matrice d'itération satisfasse $\rho(\Delta t\,A)<1$. Deux analyses sont possibles :

• Analyse de Gershgorin / diagonale dominante : conduit à une borne du type

$$\Delta t \lesssim \mathcal{O}\!\left(\min\left(\frac{\Delta x}{|V|},\;\frac{\Delta x^2}{K}\right)\right).$$

$$\Delta t \le \min\left(\frac{\Delta x}{|V|}, \frac{\Delta x^2}{2K}\right).$$

Viscosité numérique

Dans le code, on définit :

$$\nu_{\text{eff}} = K + \frac{|V| \, \Delta x}{2}.$$

La partie

$$\nu_{\rm num} = \frac{|V| \, \Delta x}{2}$$

correspond à une **viscosité numérique artificielle**, analogue à celle du schéma de Lax-Friedrichs. Elle stabilise le schéma centré en advection.

Modification: schéma upwind (ordre 1)

Pour privilégier l'information de l'amont, on remplace la dérivée centrée par une différence amont (upwind) :

$$u_x(x_j) \approx \begin{cases} \frac{u_j - u_{j-1}}{\Delta x}, & V > 0, \\ \frac{u_{j+1} - u_j}{\Delta x}, & V < 0. \end{cases}$$

Viscosité numérique en upwind

Développement de Taylor (cas V > 0):

$$\frac{u_j - u_{j-1}}{\Delta x} = u_x - \frac{\Delta x}{2} u_{xx} + \mathcal{O}(\Delta x^2).$$

Ainsi, l'approximation upwind introduit un terme diffusif équivalent à

$$\nu_{\text{num}}^{\text{upwind}} = \frac{|V| \Delta x}{2}.$$

Donc la viscosité totale devient

$$\nu_{\text{eff}} = K + \frac{|V| \, \Delta x}{2}.$$

4. Estimation d'erreur a posteriori en stationnaire

Nous considérons maintenant les solutions stationnaires du problème :

$$V \cdot \nabla u - \nabla \cdot (\nu \nabla u) + \lambda u - f = 0, \quad s \in \Omega,$$

qui correspondent au cas $t\to\infty$ d'une marche en temps artificielle pour l'itération vers la solution stationnaire.

Tracer erreur L2 et H1

Identification des constantes par moindres carrés pour les normes L2 et H1

```
L2: ordre observé k+1 = 0.972, C = 7.868e-01
H1: ordre observé k = 0.916, C = 4.144e+00
```

L'ordre observé pour la norme L^2 est d'environ 1, alors qu'un ordre théorique de 2 était attendu. Cette réduction s'explique par l'utilisation d'un schéma central pour l'advection L'ordre observé pour la norme H^1 est également proche de 1, conforme au schéma P1.

L'analyse de l'interpolation linéaire P1 montre que l'erreur numérique se rapproche de l'erreur minimale due à l'interpolation, avec une constante M légèrement supérieure à 1 et décroissante avec le raffinement.

Conclusion : Le schéma P1 explicite capture correctement la solution stationnaire, mais l'ordre ${\bf L^2}$ est limité par la discrétisation centrale de l'advection. Pour atteindre l'ordre théorique, il faudrait utiliser un schéma upwind ou un schéma implicite et raffiner le maillage.