Matrix

As we all know, we live inside the matrix that is divided into N rows and N columns. An integer is written into each one of the NxN cells of the matrix. In order to leave the matrix, we must find the most beautiful square (square-shaped sub-matrix) contained in the matrix.

If we denote by A the sum of all integers on the main diagonal of some square, and by B the sum of the other diagonal, then the beauty of that square is A - B.

Note: The main diagonal of a square is the diagonal that runs from the top left corner to the bottom right corner.

Input

The first line of input contains the positive integer N ($2 \le N \le 400$), the size of the matrix.

The following N lines each contain N integers in the range [-1000, 1000], the elements of the matrix.

Output

The only line of output must contain the maximum beauty of a square found in the matrix.

Sample input

Sample output

2	4
1 -2	
4 5	
3	0
123	
456	
789	
3	5
-3 4 5	
7 9 -2	
1 0 -6	