Compiladores Análise Léxica De AFND para AFD

Prof. Dr. Luiz Eduardo G. Martins (adaptado por Profa Dra Ana Carolina Lorena)
UNIFESP

- Um programa que implementa um AFD é mais eficiente no reconhecimento de cadeias do que um programa que implementa um AFND
- Por esse motivo, é vantajoso encontrar o AFD equivalente ao AFND
 - Para tal, é preciso eliminar ɛ-transições e transições múltiplas de um mesmo caractere a partir de um estado

- Algoritmo de Construção de Subconjuntos
 - Algoritmo para a construção de um AFD a partir de um AFND
 - —Ideia geral: cada estado do AFD construído corresponde a um conjunto de estados do AFND

- O algoritmo de construção de subconjuntos requer a eliminação das ε-transições do AFND
- A eliminação das ε-transições requer a construção de ε-fechos

- ε-fecho de um estado s é o conjunto de estados atingíveis a partir de s por uma série de zero ou mais ε-transições
 - −Denotamos esse conjunto como s̄
 - –O ε-fecho de um estado sempre contém o próprio estado

- ε-fecho Exemplo
 - –Considere o AFND correspondente à expressão regular a*

Temos

$$\overline{1} = \{1, 2, 4\}$$
 $\overline{2} = \{2\}$
 $\overline{3} = \{2, 3, 4\}$
 $\overline{4} = \{4\}$

• Definimos ο ε-fecho de um conjunto de estados como a união dos ε-fechos de cada estado individual

$$\overline{S} = \bigcup_{s \in mS} \overline{s}$$

- Exemplo
 - Considere o AFND da expressão regular a*
 - $\{1, 3\} = \{1, 2, 3, 4\}$

Construção de Subconjuntos

M será o AFD construído a partir do AFND M

- 1) O ϵ -fecho do estado inicial de M passa a ser o estado inicial de \overline{M} , resultando no conjunto S
- 2) Para o conjunto S do AFD, e para cada conjunto subsequente, computamos transições de caracteres *a*, que denotamos da seguinte forma:

Sa = {t | para algum s em S existe uma transição de s para t a partir de a}

Construção de Subconjuntos

3) Computamos $\overline{S_a}$ (ε -fecho de S_a)

Isso define um novo estado na construção de subconjuntos, juntamente com uma nova transição S para \overline{Sa} usando o caractere a

Aplica-se os passos 2 e 3 no conjunto resultante de $\overline{S_a}$ e assim sucessivamente até que novos estados e transições não sejam mais criados

- Construção de Subconjuntos
- 4) Marcamos como estados de aceitação de M os subconjuntos que contenham estados de aceitação de M —Exemplo

$$\{1\} = \{1, 2, 4\}$$

 $\{1, 2, 4\}$ a = $\{3\}$ = $\{2, 3, 4\}$
 $\{2, 3, 4\}$ a = $\{3\}$ = $\{2, 3, 4\}$

Converter o AFND a seguir: (ab|a)

Converter o AFND a seguir: (ab|a)

Estado inicial $\{1\} = \{1, 2, 6\}$

Converter o AFND a seguir: (ab|a)

Há duas transições entre os estados 1, 2 e 6: de 2 para 3 a partir de a e de 6 para 7 a partir de a

$$\{\overline{1,2,6}\}_a = \{\overline{3,7}\} = \{3,4,7,8\} \text{ (novo estado)} \qquad \qquad \{1,2,6\} \qquad \qquad \{3,4,7,8\}$$

E adiciona-se a transição $\{1,2,6\} \xrightarrow{a} \{3, 4, 7, 8\}$

Converter o AFND a seguir:

Analisando agora o estado {3, 4, 7, 8}, há a transição de 4 para 5 a partir de b

Tem-se então: $\{3,4,7,8\}_b = \{5\} = \{5,8\}$ (novo estado)

E adiciona-se a transição $\{3, 4, 7, 8\} \xrightarrow{b} \{5, 8\}$

E todos estados que contenham algum final são finais no AFD

$$\longrightarrow \{1, 2, 6\} \xrightarrow{a} \{3, 4, 7, 8\} \xrightarrow{b} \{5, 8\}$$

► Conversão do autômato para (0|1) *0

- Estado inicial ε*{e1}
 - ► {e1, e2, e3, e4, e8, e9} : s0
- Transições a partir do estado s0

ε e3 0 e5 ε
e1 $e2$ $e3$ $e4$ $e4$ $e5$ $e6$ $e7$ $e7$ $e8$ $e9$ $e9$ $e10$
e4 1 e6
ε

	<i>s</i> 0	<i>e</i> 1	<i>e</i> 2	<i>e</i> 3	<i>e</i> 4	<i>e</i> 8	<i>e</i> 9
ſ	0	_	_	<i>e</i> 5	_	_	<i>e</i> 10
	1	_	_	_	<i>e</i> 6	_	_

$$s0/0$$
: $\varepsilon^* \{e5, e10\} =$ { $e2, e3, e4, e5, e7, e8, e9, e10$ } ($s1$) (final) $s0/1$: $\varepsilon^* \{e6\} =$ { $e2, e3, e4, e6, e7, e8, e9$ } ($s2$)

Estados s1, s2 devem ser analisados da mesma forma, assim como novos estados que surjam desta análise

OAnálise do estado S1

 $S1/0 = \epsilon^* \{e5, e10\} = S1$ $S1/1 = \epsilon^* \{e6\} = S2$

OAnálise do estado S2

• Resultado

	S0	S1	S2
0	S1	S1	S1
1	S2	S2	S2

De AFND para AFD: exercício

• ER: letra(letra | dígito)*

1 letra 2 ε 3 ε 4 ε 7 dígito 8 ε 10 ε

• Bibliografia consultada
Capítulo 2 de LOUDEN, K. C. Compiladores: princípios e
práticas. São Paulo: Pioneira Thompson Learning, 2004
RICARTE, I. Introdução à Compilação. Rio de Janeiro:
Editora Campus/Elsevier, 2008
AHO, A. V.; LAM, M. S.; SETHI, R. e ULLMAN, J. D.
Compiladores: princípios, técnicas e ferramentas. 2ª
edição — São Paulo: Pearson Addison-Wesley, 2008