Who's Who in the Network. Wanted: Key Player

郭宇杰[†], Yu-Chieh Kuo²

 1 Department of Information Management, National Taiwan University 2 Department of Electronic Engineering, National Taiwan University

December 15, 2022

Motivation

- As a decision-maker or policymaker, we may want to find the most influential player in the network to break or strengthen such effect.
- ▶ As a decision-maker or policymaker, we may want to find the most influential player in the network to break or strengthen such effect.
- As a decision-maker or policymaker, we may want to find the most influential player in the network to break or strengthen such effect.
- As a decision-maker or policymaker, we may want to find the most influential player in the network to break or strengthen such effect.

Literature Review

Outline

- 1. Model Settings
 - ▶ Second line of dots

2. Section no. 2

1. Model Settings

2. Section no. 2

Nash-Bonacich Equilibrium

Theorem 1

Let $\mu_1(G)$ be the largest eigenvalue of G, the matrix $\beta[I - \lambda^* G]$ is well-defined and nonnegative if and only if $\beta > \lambda \mu_1(G)$, thus the unique interior Nash equilibrium is given by $\mathbf{x}^*(\mathbf{\Sigma}) = \frac{\alpha}{\beta + \gamma b(\beta, \lambda^*)} b(\beta, \lambda^*)$.

- ▶ Given the unique Nash equilibrium $x^*(\Sigma) = \frac{\alpha}{\beta + \gamma b(\mathcal{G}, \lambda^*)} b(\mathcal{G}, \lambda^*)$, we want to analyze how three different effects influence the equilibrium.
 - ▶ There exists no equilibrium if the matrix of cross-effects Σ reduces to λG .
 - ▶ There is a unique equilirium if Σ reduces to $-\beta I \gamma U$.

Model

Proposition 1

Let $\mu_1(G)$ be the largest eigenvalue of G, ¹ the matrix $\beta[I - \lambda^* G]$ is well-defined and nonnegative if and only if $\beta > \lambda \mu_1(G)$, thus the unique interior Nash equilibrium is given by $x^*(\Sigma) = \frac{\alpha}{\beta + \gamma b(G, \lambda^*)} b(\mathcal{G}, \lambda^*)$.

- As a decision-maker or policymaker, we may want to find the most influential player in the network to break or strengthen such effect.
- As a decision-maker or policymaker, we may want to find the most influential player in the network to break or strengthen such effect.

 $^{^{1}\}mu_{1}(G)$ is well-define and larger than 0 since all eigenvalues of a symmetric matrix G are real, and the diagnal of G is zero.

1. Model Setting

2. Section no. 2

Symbol test

▶ Let ∂ , Γ , we have

$$1 + \alpha + q + g(x) = 0.$$

Model Settings

Section no. 2