Seminario Compiladores

Repaso del análisis sintáctico ascendente

Derivaciones y ambigüedad

Dada la gramática G con las producciones:

$$S \to S (S) S | \lambda$$

que genera el conjunto de paréntesis balanceados,

- a) Existen dos derivaciones por la derecha y dos por la izquierda para generar la sentencia ()().
- b) Existe una derivación por la derecha y una por la izquierda para generar la sentencia ()().
- c) La sentencia ()() no puede ser generada por la gramática G.

Forma sentencial derecha y pivote

Dada la siguiente gramática:

$$S \rightarrow L = R \mid R$$

$$L \rightarrow *R \mid id$$

$$R \rightarrow L$$

el pivote de la forma sentencial derecha *L = *id es:

- a) $*L = *\underline{id}$
- b) $*\underline{L} = *id$
- c) *L = *id

Desplazamientos y reducciones

Considerar la siguiente gramática:

$$\begin{array}{cccc} P & \rightarrow & [L] (num) \\ L & \rightarrow & E \\ & | & E, L \\ E & \rightarrow & num \\ & | & P \end{array}$$

que genera un lenguaje para evaluación de polinomios. Por ejemplo, la gramática podría generar la siguiente cadena:

- Obtén el árbol de derivación de la cadena
- 2. Indica el número de desplazamientos y reducciones necesarios para derivar la cadena indicada en un análisis LR.
- 3. Si en lugar de L -> E | E , L las producciones de L fuesen L -> E | L , L ¿sería ambigua la gramática?

PRIMERO y SIGUIENTE

Sea la siguiente gramática:

Se pide:

- 1. Calcular el conjunto PRIMERO para cada símbolo.
- 2. Calcular el conjunto SIGUIENTE para cada símbolo.

Completa la colección LR(0)

$$\begin{array}{ccc} (1) \ D & \to \mathtt{concept\ if}\ C \\ (2) \ C & \to \forall \ \mathtt{concept}\ C \ ; \\ (3) & | \ C \ \Rightarrow \ C \\ (4) & | \ \mathtt{concept} \end{array}$$

$$I_{0} = \{ \}$$

$$I_{7} = \operatorname{GOTO}(I_{3}, \Rightarrow) = \{ [C \rightarrow C \Rightarrow \cdot C] \\ [C \rightarrow \cdot \forall \text{ concept } C;] \\ [C \rightarrow \cdot C \Rightarrow C] \\ [C \rightarrow \cdot \text{ concept } C;] \\ [C \rightarrow \cdot \text{ conce$$

Rellena el estado 9 de la tabla SLR

```
\begin{array}{ccc} (1) \ D & \to \mathtt{concept\ if}\ C \\ (2) \ C & \to \forall \ \mathtt{concept}\ C \ ; \\ (3) & | \ C \ \Rightarrow \ C \\ (4) & | \ \mathtt{concept} \end{array}
```

ESTADO	Acción							IR-A	
	concept	if	\forall	\Rightarrow	;	\$	D	C	
9									

La gramática:

- ¿Es SLR?
- ¿Es LALR?
- ¿Es LR-canónica?

Completa la colección LR(1)

$$egin{array}{lll} (1) \ F &
ightarrow ext{id} \ (FS) \ (2) & | ext{id} \ (3) \ FS &
ightarrow FS \ ; \ F \ (4) & | \ F \ \end{array}$$

Rellena los estados de la tabla LR-canónica

$$egin{array}{lll} (1) \ F &
ightarrow ext{id} \ (FS) \ (2) & | ext{id} \ (3) \ FS &
ightarrow FS \ ; \ F \ (4) & | \ F \ \end{array}$$

ESTADO			Acción		IF	R-A
	id	;	()	\$ F	FS
1						
7						
11						

La gramática:

• ¿Es LR-canónica?

Colección LALR(1)

```
egin{array}{lll} (1) \ F & 
ightarrow 	ext{id} \ (FS) \ (2) & | 	ext{id} \ (3) \ FS & 
ightarrow FS \ ; \ F \ (4) & | \ F \ \end{array}
```

- A partir de la colección LR(1) de la gramática, ¿qué estados se unirían en la colección LALR(1)?
- ¿Es LALR la gramática?
- ¿Cómo comprobarías si es SLR?

Conflictos

Supongamos que hemos calculado la colección LR(0) y la tabla SLR para la siguiente gramática:

$$E \rightarrow E \wedge E \mid E \vee E \mid id$$

de modo que los conjuntos I_5 e I_6 contienen los siguientes items:

$$I_5 = \{E \to E \land E \bullet, E \to E \bullet \land E, E \to E \bullet \lor E\}$$
$$I_6 = \{E \to E \bullet \land E, E \to E \lor E \bullet, E \to E \bullet \lor E\}$$

produciéndose en la tabla SLR los siguientes conflictos:

ESTADO	acc	•••	
	\wedge	V	•••
		•••	
5	r1/d3	r1/d4	•••
6	r2/d3	r2/d4	•••

Resolverlos dando mayor prioridad al operador \land que al \lor y considerando que ambos son asociativos por la izquierda.

Análisis LR

(1) M	\rightarrow	(FFS)
(2) F	\rightarrow	$num\ NS$;
(3) FS	\rightarrow	F FS
(4)		λ
(5) NS	\rightarrow	$num\ NS$

(6)	λ
(0)	/ \

ESTADO	accion					ir₋a			
	()	num	;	\$	\mathbf{M}	\mathbf{F}	FS	NS
0	d2					1			
1					aceptar				
2			d4				3		
3		r4	d4				6	5	
4			d8	r6					7
5		d9							
6		r4	d4				6	10	
7				d11					
8			d8	r6					12
9					r1				
10		r3						·	·
11		r2	r2						
12				r5					

```
PRIMERO(M) = \{(\} \\ PRIMERO(F) = \{num\} \\ PRIMERO(FS) = \{num, \lambda\} \\ PRIMERO(NS) = \{num, \lambda\} \\ SIGUIENTE(F) = \{num, \lambda\} \\ SIGUIENTE(FS) = \{\}\}
```

Analiza la cadena (num ; (num ;)\$

PILA	Entrada	ACCIÓN		

Más sobre relación SLR-LALR-LR-canónica

Supongamos que construimos un analizador LALR de la siguiente gramática:

 $S \to BB$

 $B \rightarrow 1B$

 $B \to 0$

y obtenemos los siguientes conjuntos de ítems:

Indicar la respuesta correcta:

- a) Sólo se puede afirmar que la gramática es LALR.
- b) Sólo se puede afirmar que la gramática es LR(1).
- c) Se puede afirmar que la gramática es SLR y LR(1).

Autómata de prefijos viables

Continuando con el analizador LALR del ejemplo anterior, ¿en qué estado se encontraría el analizador al terminar de procesar la subcadena de entrada 011?

- $a) I_3$
- $b) I_5$
- c) I_6

Comprobar tipo de gramática

• Comprobar si la siguiente gramática es LR-canónica, LALR o SLR: