Association Rules Mining: Reducing Running Time

Mining Massive Datasets

Prof. Carlos Castillo — https://chato.cl/teach

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Chapters 4, 5) slides by Lijun Zhang
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (Chapter 6) slides
- Data Mining Concepts and Techniques, 3rd edition (2011) by Han et al. (Chapter 6)
- Introduction to Data Mining 2nd edition (2019) by Tan et al. (Chapters 5, 6) slides ch5, slides ch6

Speeding up candidate generation

Speeding-up candidate generation: level-wise pruning trick

- Let F_k be the set of frequent k-itemsets [we know they are frequent]
- Let C_{k+1} be the set of (k+1)-candidates [we do not know their frequency]
- $I \in C_{k+1}$ is frequent only if all the k-subsets of I are frequent
- Pruning
 - Generate all the k-subsets of I
 - If any one of them does not belong to F_k , then remove I

Candidates generation

- A Naïve Approach
 - Check all the possible combinations of frequent itemsets
- An Example of the Naïve Approach

```
- itemsets: {abc} {bcd} {abd} {cde}
```

```
- \{abc\} + \{bcd\} = \{abcd\}
```

$$- \{bcd\} + \{abd\} = \{abcd\}$$

$$- \{abd\} + \{cde\} = \{abcde\}$$

–

Candidates generation (cont.)

- Introduction of ordering
 - Items in U can be sorted in lexicographic ordering
 - Items in each itemset can be sorted in lexicographic ordering
 - Itemsets can be ordered as strings
- The improved approach:
 - Order the frequent k-itemsets
 - Merge two itemsets if and only if the first k-1 items of them are equal

Candidates generation (cont.)

• Example 1:

- k-itemsets: {abc} {abd} {acd} {bcd}
- -(k+1)-itemsets: $\{abc\} + \{abd\} = \{abcd\}$
- No other pair shares a prefix of size k-1, no need to check other combinations

Example 2:

- k-itemsets: {abc} {acd} {bcd}
- No (k+1) -candidates
- Did we miss {abcd}?
 - No, due to the Downward Closure Property: every subset of a frequent itemset is also frequent, and {abd} is not frequent

Note: We are writing {xyz}

to mean the set $\{x, y, z\}$

Improving computation of support

Naïve support counting

Naïve counting:

```
For each candidate I_i \in C_{k+1}

For each transaction T_j in T

Check whether I_i appears in T_i
```

• This is very slow if both $|C_{k+1}|$ and |T| are large

Support counting with a data structure

- A Better Approach
 - Organize the candidate patterns in C_{k+1} in a data structure
- Use the data structure to accelerate counting
 - Each transaction in T_i examined against the subset of candidates in C_{k+1} that *might* contain T_i

Support counting based on hashing

Naïve counting:

For each
$$I_i \in C_{k+1}$$

For all
$$T_i \in T$$

If
$$I_i \subseteq T_i$$

Add to $sup(I_i)$

Hashed counting:

For each
$$T_j \in T$$

For
$$I_i \in hashbucket(T_j, C_{k+1})$$

If
$$I_i \subseteq T_j$$

Add to $sup(I_i)$

Which candidates are relevant?

Imagine 15 candidates itemsets of length 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

Now, suppose we look for this transaction:
{1 2 3 5 6}

Here we depict only the candidates that appear in the transaction (10 out of 15)

Hash tree for itemsets in C_{k+1}

- A tree with fixed degree r
- Each itemset in C_{k+1} is stored in a leaf node
- All internal nodes use a hash function to map items to one of the r branches (can be the same for all internal nodes)
- All leaf nodes contain a lexicographically sorted list of up to max leaf size itemsets

Example hash tree

r=3 max_leaf_size=3

Candidate itemsets

```
{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}
```


important:
itemsets are sorted!

Example hash tree (cont.)

Example hash tree (cont.)

Example hash tree (cont.)

21/33

Compare transaction against 11 out of 15 candidates

Exercise: Use the hash tree to determine which candidates might be in this transaction **Hash Function** transaction 3689 3,6,9 1,4,7 2,5,8 2 3 4 5 6 7 1 4 5 1 3 6 3 4 5 3 5 6 3 6 7 3 5 7 3 6 8 159 1 2 5 689 4 5 7

Improved algorithm for frequent itemsets

- C₁ ← singletons, lexicographically sorted
- $F_1 \leftarrow$ elements in C_1 with support \geq minsup, obtained by direct counting
- $k \leftarrow 1$
- While F_L is not empty
 - Generate C_{k+1} by merging elements in F_k sharing a prefix of size k-1
 - Remove from C_{k+1} elements that do not have all of their subsets in F_k
 - Create hash tree for C_{k+1}
 - Pass all transactions in T by the hash tree to compute support for elements of $C_{{\mbox{\tiny k+1}}}$
 - F_{k+1} \leftarrow elements in C_{k+1} with support \geq minsup, lexicographically sorted
- Return the union of F_1 , F_2 , ..., F_k

Summary

Things to remember

- Lexicographic candidate generation
- Level pruning
- Hash-tree method

Exercises for this topic

- Data Mining, The Textbook (2015) by Charu Aggarwal
 - Exercises $4.9 \rightarrow 9-10$
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al.
 - Exercises $6.2.7 \rightarrow 6.2.5$ and 6.2.6
- Introduction to Data Mining 2nd edition (2019) by Tan et al.
 - $^-$ Exercises 5.10 ightarrow 9-12

Additional contents (not included in exams)

Enumeration-tree algorithms: Lexicographic tree

- There is a node in the tree for each frequent itemset
- The root of the tree contains the null itemset
- If $I = \{i_1, i_2, ..., i_k\}$ then the parent of I in the tree is $\{i_1, i_2, ..., i_{k-1}\}$

Example

Note that, unlike the lattice, a parent can only be extended with an item that is lexicographically larger

Enumeration tree algorithm

```
Algorithm Generic Enumeration Tree (Transactions: \mathcal{T},
             Minimum Support: minsup)
begin
  Initialize enumeration tree \mathcal{ET} to single Null node;
  while any node in \mathcal{ET} has not been examined do begin
     Select one of more unexamined nodes \mathcal{P} from \mathcal{ET} for examination;
     Generate candidates extensions C(P) of each node P \in \mathcal{P};
     Determine frequent extensions F(P) \subseteq C(P) for each P \in \mathcal{P} with support counting;
     Extend each node P \in \mathcal{P} in \mathcal{ET} with its frequent extensions in F(P);
  end
  return enumeration tree \mathcal{ET};
end
```

Enumeration-tree-based implementation of Apriori

- Apriori constructs the enumeration tree in a breadthfirst manner
- Apriori generates candidate (k+1)-itemsets by merging two frequent k-itemsets of which the first k-1 items are the same \Rightarrow extension in the enumeration-tree