MOVIE RECOMMENDATION SYSTEM

Alok Sinha,asinha_be22@thapar.edu

Jyotish Yadav, jyadav_be22@thapar.edu

1. Introduction:

A. Technical Background of the Project:

Recommendation systems are widely used to predict user preferences and suggest items such as movies, music, or products. The project leverages cosine similarity, a mathematical approach for determining the similarity between two vectors, to create personalized movie recommendations.

B. Technical Concepts Used:

- Cosine similarity for vector similarity measurement
- Vector representations of movie features
- Dataset handling and preprocessing
- Python for implementation
- Libraries: NumPy, pandas

C. Motivation:

With the abundance of movie content available today, users often struggle to decide what to watch. A recommendation system simplifies this process by filtering options based on user preferences.

D. Problem Statement:

To develop an efficient and scalable movie recommendation system that provides users with personalized suggestions based on similarity metrics.

E. Area of Application:

This system can be applied to online streaming platforms, e-commerce websites, and personal movie libraries.

F. Dataset and Input Format:

The system uses a publicly available movie dataset containing features like movie titles, genres, ratings, and user reviews. Input is structured in tabular format, suitable for processing with Python data libraries.

2. Objective

A. Main Objective:

To build a movie recommendation system using cosine similarity to calculate similarity scores between movies.

B. Sub-Objective:

- To preprocess and transform movie data into vector form.
- To optimize the similarity algorithm for faster and accurate recommendations

3. Methodology

A. Steps:

- 1. Dataset Preparation: Import and clean movie data.
- **2. Feature Engineering:** Convert movie features like genres and ratings into numerical vectors.
- 3. Cosine Similarity Calculation: Compute pairwise similarity scores.
- 4. Recommendation Generation: Recommend movies based on similarity rankings.

B. Deliverables of Each Step or Phase:

- **Phase 1:** A cleaned and structured dataset.
- **Phase 2:** Feature vectors representing movies.
- **Phase 3:** A similarity matrix.
- **Phase 4:** A working recommendation system.

4. Working Model

A. Technical Diagram:

Includes a flowchart showing:

• Input data -> Feature vectorization -> Similarity calculation -> Recommendations.

B. Working Module:

Data Preprocessing Module:

- Cleans the dataset by handling missing values and duplicates.
- Encodes features (e.g., genres) and normalizes data.

Feature Vectorization Module:

• Converts movie features (e.g., genres, descriptions, ratings) into numerical vectors.

Similarity Computation Module:

• Uses cosine similarity to calculate the closeness between movie vectors.

Recommendation Module:

• Ranks movies based on similarity scores and generates top-N recommendations for users.

C. Attained Deliverable:

Preprocessed dataset ready for analysis.

Feature vectors representing movie metadata and user preferences.

Similarity matrix containing pairwise cosine similarity scores for movies.

A functional system providing personalized movie recommendations.

Results

A. Outcome Graphs:

Graphs illustrating similarity scores of movies compared to others.

5. Conclusion

A. Justification of Objectives:

The developed system meets the objective of generating accurate movie recommendations using cosine similarity.

B. Future Scope:

- Integration with user feedback for improved recommendations.
- Expansion to handle real-time queries.
- Incorporation of collaborative filtering for hybrid recommendations.

Project link- https://github.com/MRwrong7/Movie-Recommendation-using-ML-

7. References

8. https://www.kaggle.com/datasets/parasharmanas/movie-recommendation-system

Submitted by: Submitted to:

Alok Sinha 102203580 Jyotish Yadav 102203632 Anjula Mehto TIET, Patiala