sta210 project

Cole Walker, Madison Griffin

loading packages & dataset

```
library(tidywerse)
library(tidymodels)
library(readxl)
library(MASS)
library(leaps)
library(glmnet)
library(stat2Data)
#library(statnnet)
library(lme4)
library(UpSetR)
library(nlme)
library(sjstats)
set.seed(8)
soccer <- read_excel("AllTimeRankingByClub.xlsx")</pre>
```

Introduction and data

Data Cleaning

```
pointspermatch = Pts/Played,
    goalspermatch = goals_for/Played,
    goalsagainstpermatch = goals_against/Played,
    goalmarginpermatch = goal_diff/Played)

soccer = soccer %>%
    mutate(topfiveleague = ifelse(Country == 'ESP' | Country == 'ENG' | Country == 'GER' | Cou
```

EDA

Plot 1:

Number of Titles for each Club Excluding Clubs That Have Never Won a Title

Plot 2:

Number of Titles per Country

Excluding Clubs That Have Never Won a Title

Plot 3:

[`]geom_smooth()` using formula = 'y ~ x'

Methods

we can only do linear or linear mixed effects...expand later

Checking Assumptions

Model 1: Linear Regression

Outcome:

• points per match

Predictors:

- wins per match
- goal margin per match
- top five league

Call:

```
lm(formula = pointspermatch ~ winspermatch + goalmarginpermatch +
topfiveleague, data = soccer)
```

Residuals:

```
Min 1Q Median 3Q Max -0.33632 -0.06813 0.00603 0.06892 0.56598
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.434020 0.016755 25.904 <2e-16 ***
winspermatch 1.379068 0.043462 31.731 <2e-16 ***
goalmarginpermatch 0.097704 0.006335 15.423 <2e-16 ***
topfiveleaguetop five 0.025563 0.016412 1.558 0.12
---
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1354 on 526 degrees of freedom Multiple R-squared: 0.8845, Adjusted R-squared: 0.8838 F-statistic: 1343 on 3 and 526 DF, p-value: < 2.2e-16

Conditions for Model 1: Violated linearity, constant variance, and normality

```
linearaug = augment(linear)

ggplot(linearaug, aes(x = .fitted, y = .resid)) +
    geom_point() +
    geom_hline(yintercept = 0, color = 'maroon') +
    labs(x = "Fitted (predicted) values", y = 'Residual') +
    ggtitle('Residual Plot Violates Linearity & Constant Variance Assumptions') +
    theme_bw()
```

Residual Plot Violates Linearity & Constant Variance Assumpt


```
ggplot(linearaug, aes(sample = .resid)) +
  stat_qq() +
  stat_qq_line() +
  theme_bw() +
  labs(x = 'Theoretical quantiles',
      y = 'Sample quantiles',
      title = 'QQ Plot Violates Normality Assumption')
```


Model 2: Linear Mixed Effects Model

Outcome:

• points per match

Predictors:

- wins per match
- goal margin per match
- random intercept for top five league

```
Linear mixed model fit by REML ['lmerMod']
Formula: pointspermatch ~ 1 + winspermatch + goalmarginpermatch + (1 |
    topfiveleague)
    Data: soccer
```

REML criterion at convergence: -595.8

Scaled residuals:

Min 1Q Median 3Q Max -2.4907 -0.5174 0.0556 0.5114 4.1696

Random effects:

Groups Name Variance Std.Dev. topfiveleague (Intercept) 0.0001921 0.01386 Residual 0.0183274 0.13538 Number of obs: 530, groups: topfiveleague, 2

Fixed effects:

Estimate Std. Error t value (Intercept) 0.443040 0.019785 22.39 winspermatch 1.382252 0.043345 31.89 goalmarginpermatch 0.098334 0.006304 15.60

Correlation of Fixed Effects:

(Intr) wnsprm

winspermtch -0.780

glmrgnprmtc 0.636 -0.690

plot(linearmixed)

hist((resid(linearmixed) - mean(resid(linearmixed))) / sd(resid(linearmixed)), freq = FALS

n of (resid(linearmixed) – mean(resid(linearmixed)))/sd(resid

(resid(linearmixed) - mean(resid(linearmixed)))/sd(resid(linearmixed))

Assumptions are worse for mixed effects...moving forward with linear regression

Variable Selection - LASSO

```
y = soccer$pointspermatch
  x = model.matrix(pointspermatch ~ winspermatch + goalspermatch + goalsagainstpermatch +
                   goalmarginpermatch + topfiveleague, data = soccer)
  m_lasso_cv = cv.glmnet(x, y, alpha = 1)
  best_lambda = m_lasso_cv$lambda.min
  best_lambda
[1] 0.003448411
  m_best = glmnet(x, y, alpha = 1, lambda = best_lambda)
  m_best$beta
6 x 1 sparse Matrix of class "dgCMatrix"
                              s0
(Intercept)
winspermatch
                    1.37038572
goalspermatch
goalsagainstpermatch .
goalmarginpermatch
                   0.09659559
topfiveleaguetop five 0.01905888
  bestlasso = lm(pointspermatch ~ winspermatch + goalmarginpermatch + topfiveleague,
                 data = soccer)
```

Variable Selection - Stepwise Selection

Forward Selection

```
stepAIC(m_none,
          scope = list(lower = m_none, upper = m_all),
          data = soccer, direction = 'forward')
Start: AIC=-977.7
pointspermatch ~ 1
                      Df Sum of Sq
                                      RSS
                                              AIC
+ winspermatch
                        1
                            69.170 14.292 -1911.0
+ goalmarginpermatch
                          54.871 28.590 -1543.5
                       1
                          41.898 41.564 -1345.2
+ goalspermatch
                       1
+ goalsagainstpermatch 1 33.999 49.463 -1253.0
                            9.140 74.322 -1037.2
+ topfiveleague
                                   83.462 -977.7
<none>
Step: AIC=-1910.99
pointspermatch ~ winspermatch
                      Df Sum of Sq
                                       RSS
                                               AIC
                            4.6072 9.6847 -2115.2
+ goalmarginpermatch
                       1
+ goalsagainstpermatch 1
                          3.7403 10.5516 -2069.8
+ goalspermatch
                       1
                          0.4669 13.8250 -1926.6
                       1 0.2923 13.9996 -1919.9
+ topfiveleague
                                   14.2919 -1911.0
<none>
Step: AIC=-2115.24
pointspermatch ~ winspermatch + goalmarginpermatch
                      Df Sum of Sq
                                      RSS
                                              AIC
+ topfiveleague
                       1 0.044462 9.6402 -2115.7
<none>
                                   9.6847 -2115.2
+ goalspermatch
                       1 0.000047 9.6846 -2113.2
+ goalsagainstpermatch 1 0.000047 9.6846 -2113.2
Step: AIC=-2115.68
pointspermatch ~ winspermatch + goalmarginpermatch + topfiveleague
                      Df Sum of Sq
                                       RSS
                                               AIC
<none>
                                    9.6402 -2115.7
```

1 0.00015982 9.6400 -2113.7

+ goalsagainstpermatch 1 0.00015982 9.6400 -2113.7

+ goalspermatch

```
Call:
```

```
lm(formula = pointspermatch ~ winspermatch + goalmarginpermatch +
topfiveleague, data = soccer)
```

Coefficients:

```
\begin{array}{cccc} \text{(Intercept)} & \text{winspermatch} & \text{goalmarginpermatch} \\ & 0.43402 & 1.37907 & 0.09770 \\ \\ \text{topfiveleaguetop five} \\ & 0.02556 \end{array}
```

```
bestforward = lm(pointspermatch ~ winspermatch + goalmarginpermatch +
topfiveleague, data = soccer)
```

Backward Selection

```
Start: AIC=-2113.69
```

pointspermatch ~ winspermatch + goalspermatch + goalsagainstpermatch +
 goalmarginpermatch + topfiveleague

```
Step: AIC=-2113.69
```

pointspermatch ~ winspermatch + goalspermatch + goalsagainstpermatch +
 topfiveleague

	Df	Sum of Sq	RSS	AIC
<none></none>			9.6400	-2113.7
- topfiveleague	1	0.0446	9.6846	-2113.2
- goalspermatch	1	0.7904	10.4305	-2073.9
- goalsagainstpermatch	1	3.9802	13.6203	-1932.5
- winspermatch	1	14.4821	24.1221	-1629.6

Call:

```
lm(formula = pointspermatch ~ winspermatch + goalspermatch +
goalsagainstpermatch + topfiveleague, data = soccer)
```

```
Coefficients:
```

```
(Intercept) winspermatch goalspermatch 0.43510 1.38121 0.09647 goalsagainstpermatch topfiveleaguetop five -0.09789 0.02570
```

Both Selection

Start: AIC=-977.7 pointspermatch ~ 1

	Df	Sum of Sq	RSS	AIC
+ winspermatch	1	69.170	14.292	-1911.0
+ goalmarginpermatch	1	54.871	28.590	-1543.5
+ goalspermatch	1	41.898	41.564	-1345.2
+ goalsagainstpermatch	1	33.999	49.463	-1253.0
+ topfiveleague	1	9.140	74.322	-1037.2
<none></none>			83.462	-977.7

Step: AIC=-1910.99 pointspermatch ~ winspermatch

		Df	Sum	of Sq	RSS	AIC
+	goalmarginpermatch	1		4.607	9.685	-2115.2
+	${\tt goalsagainstpermatch}$	1		3.740	10.552	-2069.8
+	goalspermatch	1		0.467	13.825	-1926.6
+	topfiveleague	1		0.292	14.000	-1919.9
<1	none>				14.292	-1911.0
_	winspermatch	1		69.170	83.462	-977.7

Step: AIC=-2115.24 pointspermatch ~ winspermatch + goalmarginpermatch

Df Sum of Sq RSS AIC

```
+ topfiveleague 1 0.0445 9.6402 -2115.7 

<none> 9.6847 -2115.2 

+ goalspermatch 1 0.0000 9.6846 -2113.2 

+ goalsagainstpermatch 1 0.0000 9.6846 -2113.2 

- goalmarginpermatch 1 4.6072 14.2919 -1911.0 

- winspermatch 1 18.9058 28.5905 -1543.5
```

Step: AIC=-2115.68

pointspermatch ~ winspermatch + goalmarginpermatch + topfiveleague

	Df	Sum of Sq	RSS	AIC
<none></none>			9.6402	-2115.7
- topfiveleague	1	0.0445	9.6847	-2115.2
+ goalspermatch	1	0.0002	9.6400	-2113.7
+ goalsagainstpermatch	1	0.0002	9.6400	-2113.7
- goalmarginpermatch	1	4.3594	13.9996	-1919.9
- winspermatch	1	18.4525	28.0927	-1550.8

Call:

lm(formula = pointspermatch ~ winspermatch + goalmarginpermatch +
topfiveleague, data = soccer)

Coefficients:

 $\begin{array}{cccc} \text{(Intercept)} & \text{winspermatch} & \text{goalmarginpermatch} \\ & 0.43402 & 1.37907 & 0.09770 \\ \\ \text{topfiveleaguetop five} \\ & 0.02556 \end{array}$

bestboth = lm(pointspermatch ~ winspermatch + goalmarginpermatch + topfiveleague, data = s

Variable Selection - All Subset

Warning in leaps.setup(x, y, wt = wt, nbest = nbest, nvmax = nvmax, force.in = force.in, : 1 linear dependencies found

Reordering variables and trying again:

soccer_allsub

```
Subset selection object
Call: regsubsets.formula(pointspermatch ~ winspermatch + goalspermatch +
    goalsagainstpermatch + goalmarginpermatch + topfiveleague,
    data = soccer, nbest = 1, nvmax = 5)
5 Variables (and intercept)
                      Forced in Forced out
winspermatch
                          FALSE
                                     FALSE
goalspermatch
                          FALSE
                                     FALSE
goalsagainstpermatch
                          FALSE
                                     FALSE
topfiveleaguetop five
                          FALSE
                                     FALSE
goalmarginpermatch
                          FALSE
                                     FALSE
1 subsets of each size up to 4
Selection Algorithm: exhaustive
```

summary(soccer_allsub)\$rsq

[1] 0.8287614 0.8839632 0.8844959 0.8844979

```
summary(soccer_allsub)$which
```

```
(Intercept) winspermatch goalspermatch goalsagainstpermatch
         TRUE
                       TRUE
                                     FALSE
                                                           FALSE
1
2
         TRUE
                       TRUE
                                     FALSE
                                                           FALSE
3
         TRUE
                       TRUE
                                     FALSE
                                                           FALSE
         TRUE
                       TRUE
                                      TRUE
                                                            TRUE
 goalmarginpermatch topfiveleaguetop five
                                       FALSE
1
               FALSE
2
                TRUE
                                       FALSE
3
                TRUE
                                        TRUE
4
               FALSE
                                        TRUE
```

bestallsubset = lm(pointspermatch ~ winspermatch, data = soccer)

Comparing RMSE after variable selection

RMSE All Subset: 0.1642128

RMSE Best Backward: 0.1348656 - LOWEST

RMSE Best Both, Forward, Lasso: 0.1348667

(they had the same predictors in it)

CONCLUSION:

- best backward has lowest rmse so better
- predictors: wins per match, top five league, goals per match, goals against per match

```
rmse(bestallsubset)
```

[1] 0.1642128

rmse(bestbackward)

[1] 0.1348656

rmse(bestboth)

[1] 0.1348667

rmse(bestforward)

[1] 0.1348667

rmse(bestlasso)

[1] 0.1348667

##possibly delete - Comparing Models: RMSE

RMSE Model 1: 0.1348656 RMSE Model 2: 0.1348656 RMSE Model 3: 0.1348667 RMSE Model 4: 0.1349185

```
rmse(model1)
object 'model1' not found
[1] NA
  rmse(model2)
object 'model2' not found
[1] NA
  rmse(model3)
object 'model3' not found
[1] NA
  rmse(model4)
object 'model4' not found
[1] NA
Results
```

Conclusion