

Mark Scheme (Results)

October 2022

Pearson Edexcel International Advanced Level In Statistics S1 (WST01) Paper 01

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                |                   |  |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|--|
| 1. (a)             | [Area = $k \times$ frequency $\rightarrow 16.5 = k \times 12 \rightarrow$ ] Area = $\frac{16.5}{12} \times 18$ oe = $\frac{24.75}{12}$ (cm <sup>2</sup> )                                                                                                                                                                             |                   |  |  |  |  |
| (b)                | fd method $\frac{24}{58-55}[=8]$ and $\frac{35}{55-50}[=7]$ or  Area method $\frac{16.5}{12} \times 24[=33]$ and $\frac{16.5}{12} \times 35[=48.125]$ or $\frac{16.5}{12} \times \frac{24}{3}[=11]$ and $\frac{16.5}{12} \times \frac{35}{5}[=9.625]$                                                                                 | (2)<br>M1         |  |  |  |  |
|                    | Let $h = \text{height of the } 2^{\text{nd}} \text{ tallest bar}$ $[h =] \frac{10}{8!} \times 7' \text{ or } [h =] \frac{"48.125" \times 10 \times 3}{5 \times "33"} \text{ or } [h =] "9.625" \times \frac{10}{"11"} = \underline{8.75} \text{ (cm)}$                                                                                | dM1<br>A1 (3)     |  |  |  |  |
| (c)(i)             | $[Q_2 = ]50 + \frac{7}{35} \times 5$ or $[Q_2 = ]55 - \frac{28}{35} \times 5$ $= 51 \text{ (cm)}$                                                                                                                                                                                                                                     | M1<br>A1          |  |  |  |  |
| (ii)               | $[Q_3 = ]55 + \frac{2}{24} \times 3$ or $[Q_3 = ]58 - \frac{22}{24} \times 3$ and "55.25"-45 $= \underline{10.25}$ (cm)                                                                                                                                                                                                               | M1<br>A1          |  |  |  |  |
| (d)                | $\frac{"55.25"-2("51")+45}{"55.25"-45}$ [= -0.17073 < 0] negative [skew].                                                                                                                                                                                                                                                             | (4)<br>M1<br>A1ft |  |  |  |  |
|                    | Notes                                                                                                                                                                                                                                                                                                                                 | (2)<br>[11]       |  |  |  |  |
| (a)                | M1 allow equivalent eg $16.5 \times \frac{3}{2}$ A1 for 24.75 allow 24.8                                                                                                                                                                                                                                                              | [11]              |  |  |  |  |
| <b>(b)</b>         |                                                                                                                                                                                                                                                                                                                                       |                   |  |  |  |  |
|                    | to enable h to be found eg $\frac{"33"}{10\times3} = \frac{"48.125"}{5h}$ A1 8.75 oe <b>NB</b> answer of 8.75 seen as final answer 3/3                                                                                                                                                                                                | •                 |  |  |  |  |
| (c)(i)             | M1 for $50 + \frac{7}{35} \times k$ or $55 - \frac{28}{35} \times k$ or $\frac{Q_2 - 50}{k} = \frac{60 - 53}{88 - 53}$ or $\frac{55 - Q_2}{k} = \frac{88 - 60}{88 - 53}$ where 4,, $k$ ,, 6 oe (condone use of $n + 1$ ie 7.5 rather than 7, 27.5 rather than 28 or 60.5 rather than 60) A1 51 (condone for use of $n + 1$ awrt 51.1) |                   |  |  |  |  |
| (ii)               | M1 $55 + \frac{2}{24} \times t$ or $58 - \frac{22}{24} \times t$ or $\frac{Q_3 - 55}{t} = \frac{90 - 88}{112 - 88}$ or $\frac{58 - Q_3}{t} = \frac{112 - 90}{112 - 88}$ oe whe 2,, $t$ ,, 4 and using "their $Q_3$ "-45                                                                                                               |                   |  |  |  |  |
|                    | <ul> <li>(condone use of n + 1 ie 2.5 or 2.75 rather than 2, 21.5 or 21.25 rather than 22 or 9 90.75 rather than 90)</li> <li>A1 10.25 oe eg 41/4 allow 10.3 from correct working</li> </ul>                                                                                                                                          | 0.5 or            |  |  |  |  |

(d) M1 substitution of their values from (c) seen or awrt -0.17 or -7/41
A1ft dependent on M1 being scored. Correct description of skewness consistent with their values from part (c) ignore the final answer if working shown. Only allow no skew or symmetrical if their value should be 0 Ignore correlation.

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                          | Marks           |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|
| 2. (a)             | $[S_{tt} = ]82873 - \frac{1361^{2}}{40} \qquad [S_{ct} = ]83634 - \frac{1634 \times 1361}{40}$ $[S_{tt} = ]36564.975 \qquad [S_{ct} = ]28037.15$                                                                                                                                                                                                                                                                                                | M1              |  |  |  |
|                    | $[S_{tt} = ]36564.975$ $[S_{ct} = ]28037.15$                                                                                                                                                                                                                                                                                                                                                                                                    | A1 A1           |  |  |  |
| (b)                | $[r=]\frac{'28037.15'}{\sqrt{28732.1\times'36564.975'}} = 0.865$ awrt <b>0.865</b>                                                                                                                                                                                                                                                                                                                                                              | (3)<br>M1 A1    |  |  |  |
| (c)                | In general, films with higher <b>cost</b> have higher ticket <b>sales</b> .                                                                                                                                                                                                                                                                                                                                                                     | B1ft (1)        |  |  |  |
| (d)                | $[b=]\frac{'28037.15'}{28732.1}[=0.9758]$                                                                                                                                                                                                                                                                                                                                                                                                       | M1              |  |  |  |
|                    | $[a=]\frac{1361}{40}$ -'b'× $\frac{1634}{40}$ or 34.025 -"b"× 40.85                                                                                                                                                                                                                                                                                                                                                                             | M1              |  |  |  |
|                    | t = -5.8369 + 0.9758c* $t = awrt -5.84 + awrt 0.976c*$                                                                                                                                                                                                                                                                                                                                                                                          | A1cso* (3)      |  |  |  |
| (e)                | $t = -5.84 + 0.976 \times 90$ $t = £82 \text{ million}$ awrt £82 million                                                                                                                                                                                                                                                                                                                                                                        | M1<br>A1<br>(2) |  |  |  |
| <b>(f)</b>         | $-5.84 + 0.976c < 0.8c \rightarrow 0.176c < 5.84$<br>c < 33.1818 $c < awrt (£) 33.2$                                                                                                                                                                                                                                                                                                                                                            | M1<br>A1<br>(2) |  |  |  |
|                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total 13        |  |  |  |
| (a)                | Mark part (a) and (b) together M1 either correct expression A1 36 564.975 or exact equivalent A1 28037.15 or exact equivalent SC M1A1 A0 for awrt 36565 and awrt 28037                                                                                                                                                                                                                                                                          |                 |  |  |  |
| (b)                | M1 valid attempt at $r$ with their $S_{cc} \neq 28732.1$ and their $S_{ct} \neq 83634$<br>A1 awrt 0.865                                                                                                                                                                                                                                                                                                                                         |                 |  |  |  |
| (c)                | B1ft only ft if $ r $ <1 For a correct comment in context. Must include words underlined (Allow use of $c$ for cost and $t$ for sales) and be compatible with their value in (b). Must have that as one increases/decreases the other increases/decreases. Allow other words eg goes up Do not accept $t$ and $c$ are similar.                                                                                                                  |                 |  |  |  |
| (d)                | M1 correct numerical expression for $b$ ft their $S_{ct} \neq 83634$ Implied by awrt 0.9758 or better M1 attempt at $a$ with their value of $b$ substituted. Implied by awrt 5.837 or better A1*cso answer given so both method marks must be awarded and no incorrect working seen. Either $b = 0.9758$ (or better) or $a = 5.837$ (or better) must be seen somewhere along with the correct equation in $t$ and $t$ (do not allow fractions). |                 |  |  |  |
| (e)                | M1 for substituting $c = 90$ into $t = \text{awrt} -5.84 + \text{awrt} \ 0.976c$ Implied by awrt 82 A1 £82 million (must include units. Allow 82 million pounds). Allow awrt £82                                                                                                                                                                                                                                                                |                 |  |  |  |
| <b>(f)</b>         | M1 forming inequality (allow $>$ or $<$ or $=$ or $,,$ or $$ ) with $0.8c$<br>A1 correct inequality in $c$ (allow any letter) with awrt 33.2 (units not required). allow as a fraction. Ignore any lower limit. Condone awrt 33200000 or awrt 33.2                                                                                                                                                                                              |                 |  |  |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |  |  |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|
| 3. (a)             | $ [\bar{x} = ] \frac{-1.2}{8} [= -0.15] $ $ \sum b = 21 \times 8 + 2 \times (-1.2) [= 165.6] $ $ [\bar{b} = ] \frac{165.6}{8} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1        |  |  |  |  |  |
|                    | "-0.15" = $\frac{\bar{b} - 21}{2}$ oe $\left[\bar{b} = \right] \frac{165.6}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1        |  |  |  |  |  |
|                    | = <b>20.7</b> (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |  |  |  |  |
| (b)                | $\sigma_x = \sqrt{\frac{5.1}{8} - \left(\frac{-1.2}{8}\right)^2} \left[ = \sqrt{0.615} = 0.784 \right]$ $\sigma_b = 2 \times 0.784$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (3)<br>M1 |  |  |  |  |  |
|                    | $\sigma_b = 2 \times '0.784'$ $= \text{awrt } \underline{\textbf{1.57}} \text{ (cm)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1<br>A1  |  |  |  |  |  |
| (c)(i)             | $x_9 = 1.2 \rightarrow b_9 = 1.2 \times 2 + 21$ oe or $9 \times 21 - 8 \times 20.7$ [= 354.6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3)<br>M1 |  |  |  |  |  |
|                    | = 23.4 (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1 (2)    |  |  |  |  |  |
| (ii)               | $\sum x^2 = 5.1 + 1.2^2 \left[ = 6.54 \right] \qquad \Rightarrow \sigma_x = \sqrt{\frac{5.1 + 1.2^2}{9} - 0^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1        |  |  |  |  |  |
|                    | $= \operatorname{awrt} 0.852 \text{ (cm)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1 (2)    |  |  |  |  |  |
|                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total 10  |  |  |  |  |  |
| (a)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |  |  |  |  |  |
|                    | $2^{\text{nd}}$ M1 Using equation. " $\overline{x}$ " = $\frac{\overline{b} - 21}{2}$ where $2^{\text{nd}}$ M1 use of " $\sum b$ " $\div n$ where ' $\sum b$ ' >18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |  |  |  |  |
|                    | $-1.2 < \overline{x} < 1.2$ Condone $b$ rather than $\overline{b}$ A1 20.7 oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |  |  |  |  |  |
| (b)                | 1 <sup>st</sup> M1 correct method for $\sigma_x$ or $\sigma_x^2$ |           |  |  |  |  |  |
|                    | $2^{\text{nd}}$ M1 for use of $2 \times$ their $\sigma_x$ (or $4 \times$ their $\sigma_x^2$ ) (adding 21 is M0) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |  |  |  |  |
|                    | $\frac{"3447.6"}{8} - \left(\frac{"165.6"}{8}\right)^{2} \text{ or } \sqrt{\frac{"3447.6"}{8} - \left(\frac{"165.6"}{8}\right)^{2}}$ A1 awrt 1.57 Allow $\frac{\sqrt{246}}{10}$ (allow $s_{b} = \text{awrt } 1.68 \text{ or } \frac{4\sqrt{246}}{35} \text{ from an } n - 1 \text{ method})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |  |  |  |  |  |
| (c)(i)             | M1 for a correct equation using $x_9 = 1.2$ to enable $b_9$ to be found eg $1.2 = \frac{b-21}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |  |  |  |  |  |
|                    | or a correct method to find $\sum x$ for the 9 squirrels. ft their 20.7 A1 23.4 oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |  |  |  |  |
| ( <b>ii</b> )      | M1 for $5.1 + "(\pm 1.2)"^2 [= 6.54]$ seen ft their $x_9$ Condone $5.1 + (\pm 9.6)^2 [= 97.2]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26]       |  |  |  |  |  |
|                    | A1 awrt 0.852 Allow $\frac{\sqrt{654}}{30}$ (allow $s_x = \text{awrt 0.904 from an } n - 1 \text{ method}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |  |  |  |  |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks |  |  |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|
| 4.                 | $[F(6) =] \frac{45}{77}$ and $[F(7) =] \frac{60}{77}$                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1    |  |  |  |  |  |
|                    | $[P(W=7) = F(7) - F(6) =] \frac{60}{77} - \frac{45}{77} \left[ = \frac{15}{77} \right] $ and $[P(W=8) = F(8) - F(7) =] 1 - \frac{60}{77} \left[ = \frac{17}{77} \right]$                                                                                                                                                                                                                                                                                                               | M1    |  |  |  |  |  |
|                    | $E(W) = 6 \times \frac{45}{77} + 7 \times \frac{15}{77} + 8 \times \frac{17}{77}$ $[= 6 \times 0.5844 + 7 \times 0.1948 + 8 \times 0.22077]$                                                                                                                                                                                                                                                                                                                                           |       |  |  |  |  |  |
|                    | $= \frac{73}{11} \text{ or awrt } \underline{6.64}$                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1    |  |  |  |  |  |
|                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |  |  |  |  |  |
|                    | 1st M1 for $\frac{45}{77}$ and $\frac{60}{77}$ seen Allow awrt 0.58 and awrt 0.78. may be seen unsimplified Implied by $2^{nd}$ M1 or by seeing $\frac{15}{77}$ 2nd M1 for " $\frac{60}{77}$ " "and $1$ -" $\frac{60}{77}$ " allow awrt 0.195 or 0.20 and awrt 0.22 ft their F(6) and F(7) if working shown 3rd M1 for an attempt to calculate E(W) with P(W = 6) correct and the correct method or value for at least one of P(W = 7) or P(W = 8)  A1 $\frac{73}{11}$ oe or awrt 6.64 |       |  |  |  |  |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|
| 5. (a)             | $P(W > 70) = P\left(Z > \frac{70 - 80}{8} [= -1.25]\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1           |  |  |  |  |
|                    | = $P(Z > -1.25)$ or $P(Z < 1.25)$<br>= $0.8944$ awrt <b>0.894</b>                                                                                                                                                                                                                                                                                                                                                                                                                               | A1<br>A1 (3) |  |  |  |  |
| (b)                | P(W < k) = 0.85 or $P(W > k) = 0.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1           |  |  |  |  |
|                    | $\pm \left(\frac{k-80}{8}\right) = \underline{1.0364}$                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1 B1        |  |  |  |  |
|                    | k = 88.29 awrt <b>88.3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1 (4)       |  |  |  |  |
| (c)                | $P(W < 66) = P\left(Z < \frac{66 - 80}{8} [= -1.75]\right) [= 0.0401 \text{ (calc } 0.040059)]$                                                                                                                                                                                                                                                                                                                                                                                                 | M1           |  |  |  |  |
|                    | $0.25 \times P(Z < -1.75) \Big[ = 0.010025  \Big( \text{calc } 0.0100147 \Big) \Big] \text{ or } 0.25 \times (1 - P(Z < 1.75))$                                                                                                                                                                                                                                                                                                                                                                 | dM1          |  |  |  |  |
|                    | $\frac{y-80}{8} = \underline{-2.32}(63)$                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1 A1        |  |  |  |  |
|                    | y = 61.389 awrt <u>61.4</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1 (5)       |  |  |  |  |
|                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |  |  |  |  |
| (a)                | Notes Total 12  M1 for standardising with 70, 80 and 8 (allow $\pm$ )  1 <sup>st</sup> A1 $z = \pm 1.25$ 2 <sup>nd</sup> A1 awrt 0.894 (calc 0.894350) <b>NB</b> do not ISW so an answer of 0.1056 is A0                                                                                                                                                                                                                                                                                        |              |  |  |  |  |
| (b)                | 1st B1 for either correct probability statement. Allow "for < and …for > (may be implied by $z = \text{awrt } 1.04$ )  M1 standardising with 80, 8 and equating to $z$ , where $1 <  z  < 2$ 2nd B1 $z = \pm 1.0364$ or better (calc 1.036432…)  A1 awrt 88.3 (calc 88.291459…)  NB awrt 88.3 implies 1st B1 and M1 but not the 2nd B1 they could get B1M1B0A1 (Answer only 88.291 to 88.292 scored 4 out of 4)                                                                                 |              |  |  |  |  |
| (c)                | $1^{\text{st}}$ M1 standardising with 66, 80 and 8 (allow $\pm$ ) or seeing awrt 0.0401 in wor $2^{\text{nd}}$ dM1 (dep on $1^{\text{st}}$ M1) $0.25 \times$ " their $P(Z < -1.75)$ " or $0.0401 - 0.030075$ or see $\left[0.75 \times 0.0401 + 0.9599 = \right]$ 0.9899 $3^{\text{rd}}$ M1 for standardising and equating to $z$ , where $ z  > 2$ $1^{\text{st}}$ A1 correct standardisation equation with compatible signs and 2.32 " $ z $ " $2^{\text{nd}}$ A1 awrt 61.4 (allow awrt 61.3) | eing         |  |  |  |  |
|                    | 2 III ante of a (anon ante of o)                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |  |  |  |

| Question<br>Number      | Scheme                                                                                                                                                                                                                                                                                                                                                                  |                        |  |  |  |  |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|--|
| 6. (a)(i)               | $[P(A) =] \qquad \underline{0.25}$                                                                                                                                                                                                                                                                                                                                      |                        |  |  |  |  |  |
| (ii)                    | $[P(A \mid B) =] \frac{1}{1}$                                                                                                                                                                                                                                                                                                                                           |                        |  |  |  |  |  |
| (iii)                   | $ \begin{bmatrix} P(A \mid C) = \end{bmatrix}  \underline{0} $                                                                                                                                                                                                                                                                                                          |                        |  |  |  |  |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                         | B1 (3)                 |  |  |  |  |  |
| (b)                     | $\frac{q}{q+r} = \frac{3}{5}$ $0.13 + p + s = \frac{7}{10}$                                                                                                                                                                                                                                                                                                             | M1                     |  |  |  |  |  |
|                         | $0.13 + p + s = \frac{7}{10}$                                                                                                                                                                                                                                                                                                                                           | M1                     |  |  |  |  |  |
|                         | p+q+r+s+0.12+0.13=1                                                                                                                                                                                                                                                                                                                                                     | M1                     |  |  |  |  |  |
|                         | Solving simultaneously to get                                                                                                                                                                                                                                                                                                                                           |                        |  |  |  |  |  |
|                         | $\frac{q}{0.3 - 0.12} = \frac{3}{5} \text{ or } 0.3 = 0.12 + 1.5r + r \text{ or } 0.3 = 0.12 + q + \frac{2}{3}q \text{ oe}$                                                                                                                                                                                                                                             | dM1                    |  |  |  |  |  |
|                         | q = <b>0.108</b> $r = 0.072$                                                                                                                                                                                                                                                                                                                                            | A1<br>A1<br>(6)        |  |  |  |  |  |
| (c)                     | $\frac{5}{8}$ = 0.13+0.12+'0.072'+s oe                                                                                                                                                                                                                                                                                                                                  | M1                     |  |  |  |  |  |
|                         | $s = \underline{0.303}$                                                                                                                                                                                                                                                                                                                                                 |                        |  |  |  |  |  |
|                         | Notes                                                                                                                                                                                                                                                                                                                                                                   | (2)<br><b>Total 11</b> |  |  |  |  |  |
| (a)(i)<br>(ii)<br>(iii) | B1 0.25 oe<br>B1 1 cao<br>B1 0 cao                                                                                                                                                                                                                                                                                                                                      |                        |  |  |  |  |  |
| <b>(b)</b>              | 1 <sup>st</sup> M1 correct expression for $P(C \mid D) = \frac{3}{5}$ . Allow $P(D)$ for $q + r$                                                                                                                                                                                                                                                                        |                        |  |  |  |  |  |
|                         | $2^{\text{nd}} \text{ M1 correct expression for } P(B' \cap D') = \frac{7}{10}$                                                                                                                                                                                                                                                                                         |                        |  |  |  |  |  |
|                         | $3^{\text{rd}}$ M1 A correct equation or use of sum of probabilities = 1 must imply correct equation eg may ft their $P(B' \cap D') = \frac{7}{10} \text{ Implied by } q + r = 0.18$ or $P(D) = 0.18$ $4^{\text{th}}$ dM1 (dep on all 3 previous M1 being awarded) solving to obtain a correct equation in a single variable. Implied by a correct value for $q$ or $r$ |                        |  |  |  |  |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                         |                        |  |  |  |  |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                         |                        |  |  |  |  |  |
|                         | 1 <sup>st</sup> A1 $q = 0.108$ or $\frac{27}{250}$ oe                                                                                                                                                                                                                                                                                                                   |                        |  |  |  |  |  |
|                         | $2^{\text{nd}} \text{ A1 } r = 0.072 \text{ or } \frac{9}{125} \text{ oe}$                                                                                                                                                                                                                                                                                              |                        |  |  |  |  |  |
| (c)                     | M1 correct expression for $P(B \cup C') = \frac{5}{8}$ ft their value for r. Allow use of the letter r                                                                                                                                                                                                                                                                  |                        |  |  |  |  |  |
|                         | eg $\frac{5}{8} = 0.13 + 0.12 + r + s$ oe We will condone values of r outside the range $0 < r < 1$                                                                                                                                                                                                                                                                     |                        |  |  |  |  |  |
|                         | A1 $s = 0.303$ oe                                                                                                                                                                                                                                                                                                                                                       |                        |  |  |  |  |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                        |                            |                   |         |                               | Marks          |            |     |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|---------|-------------------------------|----------------|------------|-----|
| 7. (a)             | $\left[\frac{0.1}{0.8}\right] = \frac{1}{8}$                                                                                                                                                                                                                                                  |                            |                   |         |                               | B1             | (1)        |     |
| (b)                | $[0^2 \times 0.1 + ]5^2 \times 0$                                                                                                                                                                                                                                                             | $0.2 + 10^2 \times 0.7 =$  | 75*               |         |                               |                | B1*cso     |     |
| (c)                | $E(X) = [0 \times 0.1 + ]5 \times 0.2 + 10 \times 0.7 [= 8]$ $Var(X) = 75 - ('8')^{2}$ $Var(X) = \underline{11}$                                                                                                                                                                              |                            |                   |         |                               | M1<br>M1<br>A1 | (1)        |     |
| (d)                | Var(4-3X) = 3 $= 9$                                                                                                                                                                                                                                                                           | ` /2                       | ×"11"]            |         |                               |                | M1<br>A1ft | (3) |
| (e)                | $P((0, 5), (0, 10), (5, 10)) = 0.1 \times 0.2 + 0.1 \times 0.7 + 0.2 \times 0.7$ $[= 0.02 + 0.07 + 0.14]$ $= 0.23$ $P((0, 0), (5, 5), (10, 10)$ $= 1 - (0.1^{2} + 0.2^{2} + 0.7^{2})$ $[= 0.5(1 - (0.01 + 0.04 + 0.49))]$ $= 0.23$                                                            |                            |                   |         |                               | M1M1<br>A1     | (3)        |     |
| ( <b>f</b> )       | Products: 0, 25, 50, 100<br>$P(D=0) = 0.1 + 0.1 - 0.1 \times 0.1 [= 0.19] \qquad P(D=25) = 0.2^{2}$ $P(D=50) = 2 \times 0.2 \times 0.7 \qquad P(D=100) = 0.7^{2}$                                                                                                                             |                            |                   |         |                               | B1<br>M1 M1    |            |     |
|                    | D                                                                                                                                                                                                                                                                                             | 0                          | 2                 | 25      | 50                            | 100            | A1         |     |
|                    | P(D=d)                                                                                                                                                                                                                                                                                        | 0.19                       | 0.                | 04      | 0.28                          | 0.49           |            |     |
|                    |                                                                                                                                                                                                                                                                                               |                            | NIo               | 400     |                               |                | <u> </u>   | (4) |
|                    | 1                                                                                                                                                                                                                                                                                             | 0.107.5                    |                   | otes    |                               |                | Total 14   |     |
| (a)                | B1 $\frac{1}{8}$ oe Allov                                                                                                                                                                                                                                                                     | v 0.125 Do not             | ISW               |         |                               |                |            |     |
| (b)                | B1*cso correct                                                                                                                                                                                                                                                                                | •                          |                   |         |                               |                | 0.7 = 75   |     |
| (c)                | M1 correct method to find mean. If no method seen award if 8 is seen M1 attempt at expression for variance ie 75 –( their $E(X)$ ) <sup>2</sup> A1 11 cao                                                                                                                                     |                            |                   |         |                               |                |            |     |
| (d)                | M1 Use of $(-3)^2 \times \text{Var}(X)$ (condone 3 rather than -3 and missing bracket if final answer is                                                                                                                                                                                      |                            |                   |         |                               | is             |            |     |
|                    | correct) o                                                                                                                                                                                                                                                                                    | or $4^2 \times 0.1 + (-1)$ | $1)^2 \times 0.2$ | 2+(-26) | $^{2} \times 0.7 - (-20)^{2}$ | condone 11, 26 | and 20     |     |
| (e)                | A1ft 99 or ft 9 × 'their (c)'  1 <sup>st</sup> M1 for at least one correct product. <b>NB</b> may be combined eg 0.3×0.7 but not in the numerator or denominator of a fraction  2 <sup>nd</sup> M1 a fully correct expression oe e.g. 0.1×0.2+0.3×0.7                                         |                            |                   |         |                               |                |            |     |
| ( <b>f</b> )       | A1 0.23 oe B1 all 4 correct products with no incorrect extras unless they have a probability of 0                                                                                                                                                                                             |                            |                   |         |                               |                |            |     |
|                    | associated with them  1 <sup>st</sup> M1 A correct method to find 1 of the 4 probabilities. Does not need to be associated with the correct product  ALT $P(D=0) = 0.1 \times 0.1 + 2 \times 0.1 \times 0.2 + 2 \times 0.1 \times 0.7 [= 0.19]$                                               |                            |                   |         |                               | ith            |            |     |
|                    | <ul> <li>2<sup>nd</sup> M1 A correct method to find 3 of the 4 probabilities or 2 of the 4 probabilities if the total of the 4 probabilities is 1 Must be associated with the correct product</li> <li>A1 all four correct probabilities (oe) associated with the correct products</li> </ul> |                            |                   |         |                               |                |            |     |