Text Classification

Haseeb Chaudhury
Animesh Deb
Sri TarunGulumuru
Al Shafian Bari

What is Text Classification

- One of the Fundamentals of Natural Language Processing.
 - Natural Language is how we speak
- There is so much data to analyze nowadays
- We need machines to analyze for us
- Machine do not know the meaning behind words

How does text classification work?

 The model must understand language and phase structure

 Methods to help machines understand human communication:

- vectorization
 - Term frequency-inverse document frequency (Tf-idf) vectorization
 - Count vectorization
- Tokenization divide text into sub texts
- Stemming break down text to its basic stem
- Lemmatization break down text to its root

change

changing

changes

changed

changer

change

It	((, 56	129)	1
was	•		447)	1
rainy			6962)	1
and			9411)	1
cloudy			2556)	1
in			2883)	1
the	(0	, 22	6884)	1
Windy	(0	, 25	2021)	1
City	((, 25	6925)	1
today	((, 25	7741)	1
amp	(0	, 25	7883)	1
WF	(0	, 43	3510)	1
customers	((, 45	5368)	1
had	(0	, 46	7486)	1
some	((, 48	6108)	1
serious	(0	, 50	1574)	1
SAD	(0	, 51	7177)	1
issues	((, 52	0059)	1
with			8806)	1
them			8368)	1
when	(0		2011)	1
is			2867)	1
summer			6030)	1
coming	(0	, 56	6811)	1

Text Classification Examples

- Sentiment Analysis
- Topic labeling
- Spam detection
- Intent detection

Dataset Used

- The Sentiment140 dataset with
 1.6 million tweets
- This is a popular dataset used for text classification
- Target and Text fields are the primary targets of observation
- Negative text is classified with a zero (0) and positive text is classified with a one (1)

	Target	ID	Date	Flag	User	Text
0	0	1467810369	Mon Apr 06 22:19:45 PDT 2009	NO_QUERY	_TheSpecialOne_	@switchfoot http://twitpic.com/2y1zl - Awww, t
1	0	1467810672	Mon Apr 06 22:19:49 PDT 2009	NO_QUERY	scotthamilton	is upset that he can't update his Facebook by \dots
2	0	1467810917	Mon Apr 06 22:19:53 PDT 2009	NO_QUERY	mattycus	@Kenichan I dived many times for the ball. Man
3	0	1467811184	Mon Apr 06 22:19:57 PDT 2009	NO_QUERY	ElleCTF	my whole body feels itchy and like its on fire
4	0	1467811193	Mon Apr 06 22:19:57 PDT 2009	NO_QUERY	Karoli	@nationwideclass no, it's not behaving at all
			***	***		
1599995	4	2193601966	Tue Jun 16 08:40:49 PDT 2009	NO_QUERY	AmandaMarie1028	Just woke up. Having no school is the best fee
1599996	4	2193601969	Tue Jun 16 08:40:49 PDT 2009	NO_QUERY	TheWDBoards	TheWDB.com - Very cool to hear old Walt interv
1599997	4	2193601991	Tue Jun 16 08:40:49 PDT 2009	NO_QUERY	bpbabe	Are you ready for your MoJo Makeover? Ask me f
1599998	4	2193602064	Tue Jun 16 08:40:49 PDT 2009	NO_QUERY	tinydiamondz	Happy 38th Birthday to my boo of allI time!!!
1599999	4	2193602129	Tue Jun 16 08:40:50 PDT 2009	NO_QUERY	RyanTrevMorris	happy #charitytuesday @theNSPCC @SparksCharity

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1600000 entries, 0 to 1599999
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Target	1600000 non-nu	11 int64
1	ID	1600000 non-nu	ll int64
2	Date	1600000 non-nu	ll object
3	Flag	1600000 non-nu	ll object
4	User	1600000 non-nu	ll object
5	Text	1600000 non-nu	ll object

dtypes: int64(2), object(4)
memory usage: 73.2+ MB

Models Used

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$

These are the models that classified text with:

- Logistic Regression
- Naive Bayes
- Tensorflow Neural Network
- Decision Trees

- Boundary
- False sample:
- True samples

Logistic Regression

- Logistic Regression is a binary classification model, originally used in statistics and chosen for testing due to its widespread use and familiarity.
- Dataset imported, specifically selecting text and sentiment value fields, with an 80-20 split for training and testing.
- Utilized Count Vectorization, resulting in an accuracy of 0.7983125, with 126,496 true positives and 129,606 true negatives, indicating strong performance in classifying sentiment.
- Tested TF-IDF vectorization, yielding a higher accuracy of 0.802515625, with 131,229 true positives and 116,348 true negatives, showcasing improved performance over Count Vectorization.
- TF-IDF effectiveness in reducing the impact of "stopping words" benefited the Logistic Regression model, contributing to its overall strong performance in sentiment classification.

Code df = pd.read_csv(DATASET) X = df['Text'].values Y = df['Target'].values training = train_test_split(X, Y, test_size = 0.20, random_state=32) # Count Vectorization NB = make_pipeline(CountVectorizer(), LogisticRegression()) NB.fit(x_train, y_train) score = NB.score(x_test, y_test) print(score) # Tf-idf Vectorization NB = make_pipeline(TfidfVectorizer(), LogisticRegression()) NB.fit(x_train, y_train) score = NB.score(x_test, y_test) print(score)

Logistic Regression Results

Count Vectorization: 0.80031875

TF-IDF Vectorization: 0.802515625

Neural Network

- TensorFlow neural network designed for unsupervised learning, requiring extensive training and data breakdown compared to other models.
- Data cleanup involved removing stopping words, punctuation, duplicates, email addresses, URL links, and numbers to enhance analysis.
- Further data breakdown through tokenization, stemming, and lemmatization aimed at facilitating the neural network classification.
- Neural network architecture includes an input layer, seven hidden layers for understanding data, and an output layer for results.
- Despite multiple iterations to improve the model over time, the final accuracy was 0.745550, the lowest among all models; potential improvements include more iterations, better training ratios, and additional feature extraction methods for enhanced text classification performance.

Neural Network Results

```
In [46]: model.compile(loss='binary crossentropy',optimizer=RMSprop(),metrics=['accuracy'])
In [47]: history=model.fit(X train,Y train,batch size=80,epochs=6, validation split=0.1)
     Epoch 1/6
     WARNING:tensorflow:From C:\Users\chaud\anaconda3\Lib\site-packages\keras\src\utils\tf utils.py:492: The name tf.ragged.RaggedTe
     nsorValue is deprecated. Please use tf.compat.v1.ragged.RaggedTensorValue instead.
     WARNING:tensorflow:From C:\Users\chaud\anaconda3\Lib\site-packages\keras\src\engine\base laver utils.pv:384: The name tf.execut
     ing eagerly outside functions is deprecated. Please use tf.compat.v1.executing eagerly outside functions instead.
     9 7234
     Epoch 2/6
     360/360 [============= ] - 113s 315ms/step - loss: 0.5106 - accuracy: 0.7547 - val loss: 0.5257 - val accuracy:
     9.7399
     Epoch 3/6
     360/360 [============= ] - 113s 314ms/step - loss: 0.4933 - accuracy: 0.7634 - val loss: 0.5248 - val accuracy:
     Epoch 4/6
     Epoch 5/6
     0.7381
     Epoch 6/6
     9 7387
In [50]: accr1 = model.evaluate(X test,Y test)
     In [51]: print(accr1[1])
     0.7455000281333923
In [ ]:
```

Naive Bayes

- Naïve Bayes model is popular for text classification, excelling with high-dimensional data and effective feature extraction.
- Characterized by higher bias and lower variance compared to Logistic Regression, making it suitable with less data.
- Based on a blend of classification algorithms following Bayes' Theorem.
- Tested using Count Vectorization and TF-IDF Vectorization, with Count Vectorization achieving an accuracy of 0.780703125, slightly lower than Logistic Regression.
- Despite a minor dip in accuracy with TF-IDF Vectorization (0.773678125), Naïve Bayes maintains reasonable accuracy, indicating its robust performance in text classification.

Code

df = pd.read_csv(DATASET) X = df[Text].valuesY = df['Taraet'].values training = train_test_split(X, Y, test_size = 0.20, random_state=32) # Count Vectorization NB = make_pipeline(CountVectorizer(), MultinomialNB()) NB.fit(x_train, y_train) score = NB.score(x test, v test)

Tf-idf Vectorization NB = make_pipeline(TfidfVectorizer(), MultinomialNB()) NB.fit(x_train, y_train) score = NB.score(x_test, y_test) print(score)

Naive Bayes Results

Count Vectorization: 0.780703125

TF-IDF Vectorization: 0.802515625

Decision Trees

- Decision tree structure: Root node, decision nodes, branches, and leaf nodes form the hierarchy.
- Decision tree building process: Involves steps like feature selection, dataset splitting, recursive processes, and optional pruning.
- Evaluation outputs: Accuracy reveals correct predictions, confusion matrix breaks down results, and a qualitative assessment inspects individual instances.
- Purpose of evaluation: Assessing generalization and identifying biases or areas for improvement in the model.
- Overall, the text emphasizes the anatomy, construction, and evaluation of decision trees in machine learning.

Decision Tree Results

Figure 12: Decision Tree

```
Confusion Matrix on subset:
[[2]]
                                                     Text Target Predicted
541200
                   @chrishasboobs AHHH I HOPE YOUR OK!!!
750
         @misstoriblack cool , i have no tweet apps fo...
766711
        @TiannaChaos i know just family drama. its la...
285055
         School email won't open and I have geography ...
705995
                                   upper airways problem
379611
               Going to miss Pastor's sermon on Faith...
1189018
                   on lunch....dj should come eat with me
667030
          @piginthepoke oh why are you feeling like that?
93541
           gahh noo!peyton needs to live!this is horrible
1097326 @mrstessyman thank you glad you like it! There...
```

Accuracy on subset: 100.00%

Figure 11: Matrix on Subset

Conclusion

- Text classification is fundamental for Natural Language Processing, allowing machines to understand human communication in text efficiently.
- Data preprocessing involves removing unnecessary words and details, and techniques like tokenization, stemming, and lemmatization break down text further.
- Vectorization methods like Count Vectorization and TF-IDF Vectorization assign weights based on word frequency.
- Tested models include Decision Tree, Logistic Regression, Naive Bayes, and a Recurrent Neural Network (RNN) using TensorFlow.
- Logistic Regression with TF-IDF Vectorization performed best with an accuracy score of 0.802515625, while the neural network had the lowest accuracy (0.7457500100135803), indicating method-model interactions.

Thank You