

EEG/MEG 1:

History, Measurement, Signal Generation
Olaf Hauk

olaf.hauk@mrc-cbu.cam.ac.uk

Neuroimaging Methods Vary With Respect To Spatial and Temporal Resolution

(and their invasiveness, physiology, etc.)

Seijnowki, Churchland, Movshon, Nat Nsc 2014

Which "Neural Activity" Do You Mean?

EEG/MEG "Activity" Can Be Analysed In A Number Of Ways, e.g.

Event-Related Potentials

deLong, Urbach, Kutas, Nat Nsc 2005

Kutasærninyaru, Science 1900

Brain "Rhythms"/"Oscillations"

What We Really Want: Spatio-Temporal Brain Activity

(Movies rather than pictures)

The Fast Evolution of MEG

1983 by HUT 4 channels 30 mm in diameter (coverage: diameter 7 cm²) Axial

1986 by HUT channels 93 mm in (coverag e: 68 cm²) Axial

1989 by HUT 24 channels 125 mm in diameter (coverage: 123 cm²) Planar

1991 by Neuromag 122 channels whole head (coverage: 1100 cm²) Planar 12 Deliveries

1997 by Neuromag 306 channels whole head (coverage: 1220 cm²) Planar & Magnetometers

MEG – The Present

e.g. MEGIN Triux System 306 MEG sensors (102 magnetometers, 204 gradiometers) 64 EEG electrodes

MEG – The (Near) Future

On-Scalp Optically Pumped Magnetometers

https://twitter.com/wellcometrust/status/976534659436703744 Boto et al., Nature 2018

Knappe, Sander, Trahms, chapter in "Magnetoencephalography" by Supek & Aine (edts)

The Measurement Of EEG/MEG Signals

Main Generators of EEG/MEG Signals

- Apical dendrites of pyramidal cells
- NOT action potentials (too short-lived and quadrupolar)
- EEG/MEG: same generators, different sensitivity

- ~ 1 Million synapses needed to activate simultaneously
- Luckily: ~10000 cells per mm², ~ 1000 synapses per cell
- => several mm² can produce measurable signal

Primary and Volume Currents

http://www.nmr.mgh.harvard.edu/meg/pdfs/talks/

All effects are instantaneous.

Volume currents affect both EEG and MEG –

but EEG more than MEG

Scales of Electric and Magnetic Signals

Magnetoencephalography (MEG)

Electroencephalography (EEG)

Action Patra &s

and the state of t

and and and and and

Household Batteries ~ 1-12 V

Cell Membrane Potentials ~ 70 mV

ECG: ~ 1mV

Raw EEG: $\sim 30 \,\mu\text{V}$ Eye blinks: $> 100 \,\mu\text{V}$

ERPs: $\sim 0-10 \, \mu V$

EEG/MEG Are Mostly Insensitive To Action Potentials

Action potentials are caused by active cellular mechanisms, not passive "Ohmic" currents.

(Very different speeds)

http://www.arts.uwaterloo.ca/~bfleming/psych261/lec4se21.htm

Action potentials are quadupolar

Figure 1.1: Schematic representation of an action potential Wieringa thesis, http://www.medcat.nl/megeeg/chap1.htm

Currents due to action potentials are very short-lived and asynchronous as well as "quadrupolar" (i.e. two opposing dipoles).

The Physics of EEG/MEG: Quasi-Static Approximations of Maxwell's Equations

 The summed electric flux around a close surface is proportional to the total electric charge enclosed within this surface (Gauss's Law)

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} = 0 \ (for \ dipoles)$$

Magnetic field lines are closed (Gauss's Law for magnetism)

$$\nabla \cdot \boldsymbol{B} = 0$$

$$\nabla \times \mathbf{E} = 0$$

Magnetic fields are only caused by static currents (Ampere's Law):

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$

The relationship between EEG/MEG measurements and their brain sources is instantaneous (no "waves").

Different Sensors and their Sensitivities (Leadfields)

Leadfields are "sensitivity profiles" of individual sensors.

Each sensor is maximally sensitive to sources oriented along the arrows, and insensitive to sources perpendicular to the arrows.

EEG and MEG Are Differentially Sensitive To Radial and Tangential Sources

Thank you

