In House pipeline: NG-Tax

Validation based on controls

Open & reproducible microbiome data analysis spring school Wageningen, The Netherlands, May 28-30, 2018

Turun yliopisto

Gerben DA Hermes, PhD Laboratory of Microbiology, Wageningen University & Research

Tested parameters

- Primer pair
- Barcoding strategy
- Chimera filtering
- Filtering parameters
- OTU picking
- Database
- Etc...

And try to come up with an 'optimal' combination of each

In house analysis pipeline: NG-Tax

NG-Tax analysis & settings Galaxy interface

Validation:

Positive controls/Synthetic or Mock communities

Effect of quality filtering

Bokulich 2013, Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat methods, supplementals

Settings optimization

No quality filtering based on phred score

Phred 10 = 90% accuracy, 30 99.9%

- Filter by abundance -> high quality
- "QC" = demultiplexing (matching valid barcodes)
- 'Short' reads: 2x70nt (enough for identification) = less room for error.

OTU classification: Classify ratio

95% sequence similarity: genus level Based on full length 1500nt SILVA alignment

95% sequence similarity: genus level

Same sequence/different classification

'choose'?

SILVA: Blautia/Faecalibacterium

Real example: very clear

Real example: less clear

NG-Tax classification accuracy & confidence

2x70nt information

Validation

Sources of error/noise:

- 4 different synthetic community types (each in triplicate)
- 2 different variable regions V4, V5-V6
- 2 primer pairs (515F-806R, 784F-1064R)
- 25-35 PCR cycles
- 7 libraries
- 3 different sequencing runs

NG-Tax performance: alpha diversity

Rarefaction plots

NG-Tax performance: beta diversity

NG-Tax performance: beta diversity

Retain or retrieve the relevant high resolution biological information despite high noise levels

Independent of

- primer type/variable region
- Sample diversity/complexity
 - Sequencing run

Biom (OTU table)

#OTU ID		Mc.1.t.I56	Mc.1.1.I01 M	c.1.2.I01 M	lc.1.3.I01 N	/lc.2.t.I56	Mc.2.2.I01 Mc	.2.3.101	VIc.3.t.156	Ис.3.2.I01 Мс.	.3.3.101	Mc.4.t.I56 Mc.	.4.2.I01 Mc.	4.3.IO1 taxonomy
	565610	1000	3242	1578	1646	2000	461	292	2000	46	87	0	6	12 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Bifidobacteriales; f_Bifidobacteriaceae; g_Bifidobacterium
	565628	0	763	359	408	0	144	56	0	10	20	0	0	0 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Bifidobacteriales; f_Bifidobacteriaceae; g_Bifidobacterium
	565653	0	176	0	79	0	26	17	0	3	0	0	0	0 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Bifidobacteriales; f_Bifidobacteriaceae; g_Bifidobacterium
	565686	0	0	0	0	2000	423	139	2000	24	45	0	0	0 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Bifidobacteriales; f_Bifidobacteriaceae; g_Bifidobacterium
	565688	0	0	0	0	1000	272	92	1000	9	35	0	0	0 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Bifidobacteriales; f_Bifidobacteriaceae; g_Bifidobacterium
	565696	0	0	0	0	1000	153	83	1000	15	25	0	0	0 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Bifidobacteriales; f_Bifidobacteriaceae; g_Bifidobacterium
	5656106	0	0	0	0	0	64	26	0	0	9	0	0	0 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Bifidobacteriales; f_Bifidobacteriaceae; g_Bifidobacterium
	5656108	0	0	0	0	1000	83	40	1000	5	34	2500	15	42 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Bifidobacteriales; f_Bifidobacteriaceae; g_Bifidobacterium
	5656111	0	0	0	0	1000	166	104	1000	3	29	0	0	0 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Bifidobacteriales; f_Bifidobacteriaceae; g_Bifidobacterium
	5656114	0	0	0	0	0	83	35	0	6	0	0	0	0 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Bifidobacteriales; f_Bifidobacteriaceae; g_Bifidobacterium
	5656124	0	0	0	0	0	42	14	0	6	0	0	0	0 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Bifidobacteriales; f_Bifidobacteriaceae; g_Bifidobacterium
	5656128	0	0	0	0	0	34	12	0	0	0	0	0	0 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Bifidobacteriales; f_Bifidobacteriaceae; g_Bifidobacterium
	5656146	0	0	0	0	0	40	29	0	2	11	0	0	0 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Bifidobacteriales; f_Bifidobacteriaceae; g_Bifidobacterium
	5656150	0	0	0	0	0	35	6	0	2	0	0	0	0 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Bifidobacteriales; f_Bifidobacteriaceae; g_Bifidobacterium
	5656156	0	0	0	0	0	0	9	0	0	0	0	0	0 k Bacteria; p Actinobacteria; c Actinobacteria; o Bifidobacteriales; f Bifidobacteriaceae; g Bifidobacterium
	5656161	0	0	0	0	0	0	9	0	0	0	0	0	0 k Bacteria; p Actinobacteria; c Actinobacteria; o Bifidobacteriales; f Bifidobacteriaceae; g Bifidobacterium
	5656164	0	0	0	0	0	0	7	0	0	0	0	0	0 k Bacteria; p Actinobacteria; c Actinobacteria; o Bifidobacteriales; f Bifidobacteriaceae; g Bifidobacterium
	5656174	0	0	0	0	0	0	0	0	0	0	0	0	0 k Bacteria; p Actinobacteria; c Actinobacteria; o Bifidobacteriales; f Bifidobacteriaceae; g Bifidobacterium
	5656202	0	0	0	0	0	0	0	0	2	0	0	0	0 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Bifidobacteriales; f_Bifidobacteriaceae; g_Bifidobacterium
	5656207	0	0	0	0	0	0	0	0	2	0	0	0	0 k Bacteria; p Actinobacteria; c Actinobacteria; o Bifidobacteriales; f Bifidobacteriaceae; g Bifidobacterium
	5656254	0	0	0	0	0	0	0	0	0	0	0	4	0 k Bacteria; p Actinobacteria; c Actinobacteria; o Bifidobacteriales; f Bifidobacteriaceae; g Bifidobacterium

Data interpretation: NG-Tax

- Reads/OTU -> confidence
- ~3 reads not very confident. 30.000 reads very confident
- Classification ratio 0.8, maybe check
- Preferably at genus level, OTUs contain too much risk/error, unless the OTU is very 'clean'
- Preferably use phylogenetic information because OTU based methods are very sensitive to noise
- Check classification of interesting OTUs
- Classify Nas using whatever method (blast is ugly)

