FEniCS Course

Lecture 12: Computing sensitivities

Contributors
Simon Funke

Computing sensitivities

So far we focused on solving PDEs. But often we are also interested the sensitivity with respect to certain parameters, for example

- initial conditions,
- forcing terms,
- unkown coefficients.

Computing sensitivities

So far we focused on solving PDEs.

But often we are also interested the sensitivity with respect to certain parameters, for example

- initial conditions,
- forcing terms,
- unkown coefficients.

Computing sensitivities

So far we focused on solving PDEs.

But often we are also interested the sensitivity with respect to certain parameters, for example

- initial conditions,
- forcing terms,
- unkown coefficients.

Example

Consider the Poisson's equation

$$-\nu \Delta u = m \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega,$$

together with the objective functional

$$J(u) = \frac{1}{2} \int_{\Omega} ||u - u_d||^2 dx,$$

where u_d is a known function.

Goal

Compute the sensitivity of J with respect to the parameter m: $\mathrm{d}J/\mathrm{d}m$.

Comput. deriv. (i) General formulation

Given

- Parameter m,
- PDE F(u, m) = 0 with solution u.
- Objective functional $J(u, m) \to \mathbb{R}$,

Goal

Compute dJ/dm.

Reduced functional

Consider u as an implicit function of m by solving the PDE. With that we define the reduced functional R:

$$R(m) = J(u(m), m)$$

Comput. deriv. (i) General formulation

Given

- Parameter m,
- PDE F(u, m) = 0 with solution u.
- Objective functional $J(u, m) \to \mathbb{R}$,

Goal

Compute dJ/dm.

Reduced functional

Consider u as an implicit function of m by solving the PDE. With that we define the reduced functional R:

$$R(m) = J(u(m), m)$$

Comput. deriv. (i) General formulation

Given

- Parameter m,
- PDE F(u, m) = 0 with solution u.
- Objective functional $J(u, m) \to \mathbb{R}$,

Goal

Compute dJ/dm.

Reduced functional

Consider u as an implicit function of m by solving the PDE. With that we define the reduced functional R:

$$R(m) = J(u(m), m)$$

Comput. deriv. (ii) Reduced functional

Reduced functional:

$$R(m) \equiv J(u(m), m).$$

Taking the derivative of with respect to m yields:

$$\frac{\mathrm{d}R}{\mathrm{d}m} = \frac{\mathrm{d}J}{\mathrm{d}m} = \frac{\partial J}{\partial u}\frac{\mathrm{d}u}{\mathrm{d}m} + \frac{\partial J}{\partial m}.$$

Computing $\frac{\partial J}{\partial u}$ and $\frac{\partial J}{\partial m}$ is straight-forward, but how handle $\frac{\mathrm{d}u}{\mathrm{d}m}$?

Comput. deriv. (ii) Reduced functional

Reduced functional:

$$R(m) \equiv J(u(m), m).$$

Taking the derivative of with respect to m yields:

$$\frac{\mathrm{d}R}{\mathrm{d}m} = \frac{\mathrm{d}J}{\mathrm{d}m} = \frac{\partial J}{\partial u}\frac{\mathrm{d}u}{\mathrm{d}m} + \frac{\partial J}{\partial m}.$$

Computing $\frac{\partial J}{\partial u}$ and $\frac{\partial J}{\partial m}$ is straight-forward, but how handle $\frac{\mathrm{d}u}{\mathrm{d}m}$?

Comput. deriv. (ii) Reduced functional

Reduced functional:

$$R(m) \equiv J(u(m), m).$$

Taking the derivative of with respect to m yields:

$$\frac{\mathrm{d}R}{\mathrm{d}m} = \frac{\mathrm{d}J}{\mathrm{d}m} = \frac{\partial J}{\partial u}\frac{\mathrm{d}u}{\mathrm{d}m} + \frac{\partial J}{\partial m}.$$

Computing $\frac{\partial J}{\partial u}$ and $\frac{\partial J}{\partial m}$ is straight-forward, but how handle $\frac{du}{dm}$?

Comput. deriv. (iii) Computing $\frac{du}{dm}$

Taking the derivative of F(u, m) = 0 with respect to m yields:

$$\frac{\mathrm{d}F}{\mathrm{d}m} = \frac{\partial F}{\partial u}\frac{\mathrm{d}u}{\mathrm{d}m} + \frac{\partial F}{\partial m} = 0$$

Hence:

$$\frac{\mathrm{d}u}{\mathrm{d}m} = -\left(\frac{\partial F}{\partial u}\right)^{-1} \frac{\partial F}{\partial m}$$

Final formula for functional derivative

$$\frac{\mathrm{d}J}{\mathrm{d}m} = -\overbrace{\frac{\partial J}{\partial u}\underbrace{\left(\frac{\partial F}{\partial u}\right)^{-1}}_{\text{tangent linear PDE}}\frac{\partial F}{\partial m} + \frac{\partial J}{\partial m}$$

Comput. deriv. (iii) Computing $\frac{du}{dm}$

Taking the derivative of F(u, m) = 0 with respect to m yields:

$$\frac{\mathrm{d}F}{\mathrm{d}m} = \frac{\partial F}{\partial u}\frac{\mathrm{d}u}{\mathrm{d}m} + \frac{\partial F}{\partial m} = 0$$

Hence:

$$\frac{\mathrm{d}u}{\mathrm{d}m} = -\left(\frac{\partial F}{\partial u}\right)^{-1} \frac{\partial F}{\partial m}$$

Final formula for functional derivative

$$\frac{\mathrm{d}J}{\mathrm{d}m} = -\overbrace{\frac{\partial J}{\partial u}\underbrace{\left(\frac{\partial F}{\partial u}\right)^{-1}}_{\text{tangent linear PDE}} \frac{\partial F}{\partial m} + \frac{\partial J}{\partial m}$$

Comput. deriv. (iii) Computing $\frac{du}{dm}$

Taking the derivative of F(u, m) = 0 with respect to m yields:

$$\frac{\mathrm{d}F}{\mathrm{d}m} = \frac{\partial F}{\partial u}\frac{\mathrm{d}u}{\mathrm{d}m} + \frac{\partial F}{\partial m} = 0$$

Hence:

$$\frac{\mathrm{d}u}{\mathrm{d}m} = -\left(\frac{\partial F}{\partial u}\right)^{-1} \frac{\partial F}{\partial m}$$

Final formula for functional derivative

$$\frac{\mathrm{d}J}{\mathrm{d}m} = -\underbrace{\frac{\partial J}{\partial u} \underbrace{\left(\frac{\partial F}{\partial u}\right)^{-1}}_{\text{tangent linear PDE}} \frac{\partial F}{\partial m}}_{\text{tangent linear PDE}} + \frac{\partial J}{\partial m},$$

Dimensions of a finite dimensional example

The tangent linear solution is a matrix of dimension $|u| \times |m|$ and requires the solution of m linear systems. The adjoint solution is a vector of dimension |u| and requires the solution of one linear systems.

Adjoint approach

1 Solve the adjoint equation for λ

$$\frac{\partial F}{\partial u}^* \lambda = -\frac{\partial J^*}{\partial u}.$$

2 Compute

$$\frac{\mathrm{d}J}{\mathrm{d}m} = \lambda^* \frac{\partial F}{\partial m} + \frac{\partial J}{\partial m}.$$

The computational expensive part is (1). It requires solving the (linear) adjoint PDE, and its cost is independent of the choice of parameter m.