

# **Project Summary**

- Intent detection:
  - Given a query, what does the user want?
- Dataset CLINC150 150 intents (with 150 queries each) + OOS

| Query                                           | Intent       |
|-------------------------------------------------|--------------|
| Move 100 dollars from my savings to my checking | Transfer     |
| Tell me a joke please                           | Tell joke    |
| How are my sports teams doing                   | Out-of-scope |
| Why can't you divide by zero                    | Out-of-scope |

#### Focus:

- How do we improve detection of in-scope intents?
- How do we improve detection of OOS intents?



### 1. Data Augmentation:

Generate 100 additional queries per intent, using ChatGPT



I want to extend my dataset of Virtual Assistant queries for particular intents. I have given an intent and some sample queries for that intent. Give me 100 additional queries that are phrased similar the sample queries. All the queries should be unique and use a wide range of vocabulary.

intent: "who\_do\_you\_work\_for" sample queries:

- 1. do you know who you report to
- 2. what is your boss's name
- 3. are you influenced by someone else
- 4. is there another company you work for
- 5. would you say you are working for me



#### 2. Data Validation:

- Random sample (~20 per intent) from generated queries
- Manually verify correctness
- Re-generate problematic intent queries

Intent: "current\_location"

Original query: "check maps for my location"

ChatGPT generated query: "Which casino is closest to my current location?"

ChatGPT re-generated query: "What's my current geographic location?"

\_\_\_\_\_

Intent: "credit\_score"

Original query: "how good is my credit score"

ChatGPT generated query: "How does my credit score impact my loan application?"

ChatGPT re-generated query: "Can you help me find my credit score online?"



### 3. Baseline Reimplementation

Using the BERT-based approach by Larson et al. [1]

### 4. RoBERTa [2]

- Pre-trained on a much larger corpus of text than BERT.
- Uses dynamic masking and different pre-training tasks.
- Hypothesis:
  - RoBERTa's better generalization should improve in-scope accuracy as well as out-of-scope recall



### 5. Clustering:

- Using K-Means with MPNET [3] Sentence Embeddings
- Hypothesis:
  - In-scope intents should form defined clusters
  - Out-of-scope intents are far from clusters

If distance to closest cluster (in higher dimensions) > threshold, then out-of-scope





### 6. Combined Approach:





# **Activity Table**

| Activity                          | Why?                                     | Deliverable                                                | Responsible<br>Member | Planned<br>Time | Actual<br>Time |
|-----------------------------------|------------------------------------------|------------------------------------------------------------|-----------------------|-----------------|----------------|
| Read Paper for the Dataset        | Gather knowledge about the dataset       | Summary of the article with important ideas highlighted    | Both                  | 1h              | 2h             |
| Literature<br>Review              | Gather information about existing work   | Review of literature on the dataset and related approaches | Both                  | 5h              | 4h             |
| Explore Dataset                   | Understand the structure of the data     | Documentation of dataset characteristics and properties    | Romario               | 2h              | 2h             |
| Preprocessing data                | Prepare data for training and evaluation | Cleaned and transformed dataset ready for training         | Romario               | 3h              | 2h             |
| Develop<br>Baseline from<br>paper | Establish a benchmark for comparison     | Implementation of paper's approach on the dataset          | Daniel                | 4h              | 3h             |
| Generate Data for Augmentation    | Increase dataset size                    | Augmented dataset for better performance                   | Daniel                | 3h              | 8h             |



# **Activity Table**

| Activity                                                 | Why?                                     | Deliverable                                             | Responsible<br>Member | Planned<br>Time | Actual<br>Time |
|----------------------------------------------------------|------------------------------------------|---------------------------------------------------------|-----------------------|-----------------|----------------|
| Validate data and check for errors                       | Ensure data quality                      | Cleaned and validated dataset free of errors            | Both                  | 4h              | 4h             |
| Build updated dataset and data splits                    | Prepare data for training and evaluation | Updated dataset ready for model training and evaluation | Romario               | 2h              | 1h             |
| Re-implement baseline on new data                        | Evaluate baseline on new dataset         | Performance of baseline approach on updated dataset     | Daniel                | 1h              | 1h             |
| Develop a new<br>approach - A<br>(clustering) + Analysis | Propose and evaluate a new approach      | Implementation of clustering approach and analysis      | Romario               | 6h              | 8h             |
| Develop a new<br>approach - B<br>(RoBERTa) + Analysis    | Propose and evaluate a new approach      | Implementation of RoBERTa-based approach and analysis   | Daniel                | 3h              | 3h             |
| Comparative analysis                                     | Compare performance of approaches        | Comparison of performance of different approaches       | Both                  | 3h              | 3h             |



# **Activity Table**

| Activity             | Why?                                | Deliverable                                                      | Responsible<br>Member | Planned<br>Time | Actual<br>Time |
|----------------------|-------------------------------------|------------------------------------------------------------------|-----------------------|-----------------|----------------|
| Combined Approach    | Propose and evaluate a new approach | Implementation of Clustering + BERT                              | Both                  | 3h              | 3h             |
| Prepare Presentation | Document the project                | Comprehensive presentation detailing the project and its results | Both                  | 10h             | 6h             |
|                      |                                     |                                                                  |                       | Total =<br>50h  | Total =<br>50h |



## Results

Out-of-scope intents are far from clusters compared to in-scope intents -> Threshold of 0.95 selected based on graphs.







## **Results**

|                      | Original Data        |            | Augmented Data       |            |  |
|----------------------|----------------------|------------|----------------------|------------|--|
|                      | In-Scope<br>Accuracy | OOS Recall | In-Scope<br>Accuracy | OOS Recall |  |
| Baseline BERT        | 0.97                 | 0.46       | 0.97                 | 0.48       |  |
| RoBERTa              | 0.97                 | 0.53       | 0.97                 | 0.57       |  |
| Clustering           | N/A                  | 0.77       | N/A                  | 0.74       |  |
| Clustering +<br>BERT | 0.97                 | 0.77       | 0.97                 | 0.74       |  |



## Results

Test Cases using the combined approach (Clustering + BERT)

| Input Query                                                                        | Predicted Intent | Actual Intent  |
|------------------------------------------------------------------------------------|------------------|----------------|
| i get the oil in my car changed quite frequently<br>but i do not know how to do it | oil_change_how   | oil_change_how |
| i get the oil in my car changed quite frequently but i want to do it myself        | oil_change_when  | oil_change_how |
| give me instructions to build a table                                              | recipe           | oos            |
| can you guide me on how to build a table                                           | oos              | oos            |



### **Results Discussion**

- Data Augmentation was not very effective.
- More advanced models like RoBERTa did not help with in-scope accuracy, but were slightly more effective with OOS detection.
- OOS instances were farther away from cluster centres than in-scope instances.
- Unsupervised clustering was much more effective for OOS detection than supervised methods.
- A combination of clustering and BERT improves upon the baseline for OOS recall which results in better overall accuracy.



# **Challenges**

- Generating additional queries for augmenting the dataset was challenging.
- For some intent classes, ChatGPT did not understand the type of queries that should be generated, resulting in irrelevant or nonsensical queries.
- ChatGPT generated many queries with very different sentence structures than the original dataset query samples.
- Despite these challenges, generating additional data using ChatGPT was considerably faster than attempting to do it ourselves.



### What have we learned?

- Inherent subjectivity and ambiguity with manual verification.
- Large language models like ChatGPT are helpful for generating synthetic data, but are error-prone.
- Diminishing returns from dataset size increase
- Unsupervised approaches (like K-means) can help where supervised learning fails



## **Conclusion**

- Tackled a popular intent detection benchmark task
- Used novel (to the best of our knowledge) methods for:
  - ChatGPT-prompt engineering for data augmentation
  - Unsupervised clustering for OOS-detection
- Improved upon baseline metrics



### **Resources and Links**

[1] S. Larson et al., 'An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction', in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019.

[2] Y. Liu et al., 'RoBERTa: A Robustly Optimized BERT Pretraining Approach', CoRR, vol. abs/1907.11692, 2019.

[3] K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu, 'MPNet: Masked and Permuted Pre-training for Language Understanding', arXiv [cs.CL]. 2020.

### Code Repository:

https://github.com/danlobo1999/csi5180-intent-classification/

