# Math 300 - Final Exam Study Guide

### Reece McMillin

 $May\ 12,\ 2021$ 

## Contents

- 1. Cramer's Rule
- 2. Determinants as Area
- 3. Eigenvalues & Eigenvectors
- 4. The Diagonalization Theorem5. Invertible Matrix Theorem

#### Cramer's Rule

$$\mathbf{A}_i(b) = [a_1, \dots, b, \dots, a_2]$$

Let **A** be an invertible  $n \times n$  matrix. For any  $b \in \mathbb{R}^n$ , the unique solution  $\vec{x}$  of  $\mathbf{A}\vec{x} = b$  has entries given by

$$\vec{x}_i = \frac{\det \mathbf{A}_i(b)}{\det \mathbf{A}}$$

An inverse formula extending from Cramer's Rule is

$$\mathbf{A}^{-1} = \frac{1}{\det A} \cdot \operatorname{adj}(\mathbf{A})$$

#### Determinants as Area

If **A** is a  $2 \times 2$  matrix, the area of the parallelogram determined by the columns of **A** is  $|\det A|$ . If **A** is a  $3 \times 3$  matrix, the volume of the parallelopiped determined by the columns of **A** is  $|\det A|$ .

#### Eigenvalues & Eigenvectors

An eigenvector of A (corresponding to  $\lambda$ ) is a nonzero vector x such that

$$\mathbf{A}x = \lambda x$$

A scalar  $\lambda$  is an **eigenvalue** of **A** if there exists a nonzero vector x such that

$$\mathbf{A}x = \lambda x$$

More formally, let **V** be a vector space. An **eigenvector** of a linear transformation  $\mathbf{T}: \mathbf{V} \to \mathbf{V}$  is a nonzero vector  $x \in \mathbf{V}$  such that  $\mathbf{T}(x) = \lambda x$  for some scalar  $\lambda$ . This scalar  $\lambda$  is called an **eigenvalue** of **T** if there is a nontrivial solution x of  $\mathbf{T}(x) = \lambda x$ ; ssuch an x is called an **eigenvector** corresponding to  $\lambda$ .

#### The Diagonalization Theorem

An  $n \times n$  matrix **A** is diagonalizable if and only if **A** has n linearly independent eigenvectors.

In fact,  $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ , with diagonal matrix  $\mathbf{D}$ , if and only if the columns of  $\mathbf{P}$  are n linearly independent eigenvectors of A. In this case, the diagonal entries of  $\mathbf{D}$  are eigenvalues of  $\mathbf{A}$  that correspond respectively to the eigenvectors in  $\mathbf{P}$ .

**Theorem:** An  $n \times n$  matrix with n distinct eigenvalues is diagonalizable.

#### Invertible Matrix Theorem

- 1. **A** is row-equivalent to the  $n \times n$  identity matrix  $\mathbf{I}_n$ .
- 2. **A** has n pivot positions.
- 3. The equation  $\mathbf{A}x = 0$  has only the trivial solution x = 0.
- 4. The columns of **A** form a linearly independent set.
- 5. The linear transformation  $x \mapsto \mathbf{A}x$  is one-to-one.
- 6. For each column vector  $b \in \mathbb{R}^n$ , the equation  $\mathbf{A}x = b$  has a unique solution.
- 7. The columns of **A** span  $\mathbb{R}^n$ .
- 8. The linear transformation  $x \mapsto \mathbf{A}x$  is a surjection (onto).
- 9. There is an  $n \times n$  matrix  $\mathbf{C}$  such that  $\mathbf{C}\mathbf{A} = \mathbf{I}_n$ .
- 10. There is an  $n \times n$  matrix **D** such that  $AD = I_n$ .
- 11. The transpose matrix  $\mathbf{A}^{\mathrm{T}}$  is invertible.
- 12. The columns of **A** form a basis for  $\mathbb{R}^n$ .
- 13. The column space of **A** is equal to  $\mathbb{R}^n$ .
- 14. The dimension of the column space of  $\mathbf{A}$  is n.
- 15. The rank of  $\mathbf{A}$  is n.
- 16. The null space of  $\mathbf{A}$  is 0.
- 17. The dimension of the null space of  $\mathbf{A}$  is 0.
- 18. 0 fails to be an eigenvalue of  $\mathbf{A}$ .
- 19. The determinant of  $\mathbf{A}$  is not 0.
- 20. The orthogonal complement of the column space of  $\mathbf{A} = \mathbf{A}^{\perp}$  is 0.
- 21. The orthogonal complement of the null space of **A** is  $\mathbb{R}^n$ .
- 22. The row space of **A** is  $\mathbb{R}^n$ .
- 23. The matrix **A** has n non-zero singular values (not studied in MATH-300).