Intro to Computer Vision

Images and image filtering

Source: A. Efros

A grid (matrix) of intensity values

255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	20	0	255	255	255	255	255	255	255
255	255	255	75	75	75	255	255	255	255	255	255
255	255	75	95	95	75	255	255	255	255	255	255
255	255	96	127	145	175	255	255	255	255	255	255
255	255	127	145	175	175	175	255	255	255	255	255
255	255	127	145	200	200	175	175	95	255	255	255
255	255	127	145	200	200	175	175	95	47	255	255
255	255	127	145	145	175	127	127	95	47	255	255
255	255	74	127	127	127	95	95	95	47	255	255
255	255	255	74	74	74	74	74	74	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255

(common to use one byte per value: 0 = black, 255 = white)

- Can think of a (grayscale) image as a **function** f from R^2 to R:
 - -f(x,y) gives the **intensity** at position (x,y)

<u>snoo</u> <u>p</u>

A digital image is a discrete (sampled, quantized) version of this function

Image transformations

As with any function, we can apply operators to an image

 Today we'll talk about a special kind of operator, convolution (linear filtering)

Filters

- Filtering
 - Form a new image whose pixel values are a combination of the original pixel values
- Why?
 - To get useful information from images
 - E.g., extract edges or contours (to understand shape)
 - To enhance the image
 - E.g., to remove noise
 - E.g., to sharpen and "enhance image" a la CSI
 - A key operator in Convolutional Neural Networks

Canonical Image Processing problems

- Image Restoration
 - denoising
 - deblurring
- Image Compression
 - JPEG, HEIF, MPEG, ...
- Locating Structural Features
 - corners
 - edges

Question: Noise reduction

• Given a camera and a still scene, how can you reduce

noise?

Take lots of images and average

them! What's the next best

thing?

Source: S.

Image filtering

 Modify the pixels in an image based on some function of a local neighborhood of each pixel

1	5	3		
2	5	1		
1	1	7		

Local image data

Modified image data

Linear filtering

- One simple version of filtering: linear filtering (cross-correlation, convolution)
 - Replace each pixel by a linear combination (a weighted sum) of its neighbors
- The prescription for the linear combination is called the "kernel" (or "mask", "filter")

Cross-correlation

Let F be the imagH be the kernel (of size $2k+1 \times 2k+1$), and G be the output image

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called a cross-correlation

$${}^{\text{operatin}}\hat{G} = H \otimes F$$

• Can think of as a "dot product" between local neighborhood and kernel for each pixel

Convolution

 Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

This is called a **convolution** operation:

$$G = H * F$$

Convolution is commutative and associative

Convolution

Mean filtering

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Sharpening

before

after

Smoothing with box filter revisited

Gaussian kernel

Gaussian filters

Mean vs. Gaussian filtering

Gaussian filter

- Removes "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian

- Convolving twice with Gaussian kernel of wi ∂ th
 - = convolving once with kernel of ${\rm wic}_{\sigma}\sqrt{2}$

Sharpening revisited

What does blurring take away?

(This "detail extraction" operation is also called a *high-pass filter*)

+ α

Photo credit: https://www.flickr.com/photos/geezaweezer/16089096376/

Sharpen filter

Sharpen filter

"Optical" convolution

Camera shake

Source: Fergus, et al. "Removing Camera Shake from a Single Photograph", SIGGRAPH 2006

Bokeh: Blur in out-of-focus regions of an image.

Source: https://www.diyphotography.net/diy create your own bokeh/

Filters: Thresholding

$$g(m,n) = \begin{cases} 255, & f(m,n) > A \\ 0 & otherwise \end{cases}$$

Linear filters

Can thresholding be implemented with a linear filter?