Inference of natural selection from NGD data

Matteo Fumagalli

September, 14th 2017

Outline

- Brief introduction to natural selection
- Inferring selection at the intra-species level using summary statistics
- PRACTICAL: detecting selection from low-depth NGS data
- The effect of demography on selection scans
- PRACTICAL: quantifying selection using ABC
- (Experimental design)

Heritable traits that increase the fitness of the become more common.

Heritable traits that increase the fitness of the become more common.

Heritable traits that increase the fitness of the become more common.

Heritable traits that increase the fitness of the become more common.

Heritable traits that increase the fitness of the become more common.

1) Mutations arise randomly and evolve according to their effect on the fitness of the carrier

2) Sites targeted by natural selection are likely to harbour functionality

Methods to infer selection

within-species:

Micro-evolutionary events between populations, local adaptation

Methods to infer recent selection

Methods to infer recent selection

Time Present time

F_{ST}

Common measure for quantifying population subdivision.

$$F_{ST} = H_B / (H_W + H_B)$$

H_B: between populations

 $\mathbf{H}_{\mathbf{w}}$: average within populations

- \rightarrow if $H_B >> H_W$ then $F_{ST} \sim 1$
- \rightarrow if H_B=0 then F_{ST}=0

Haplotype-based F_{ST}

 F_{ST} based on haplotype differentiation between populations

What is the variation within populations?

e.g. A vs B

The differ by 1 site

From standing variation

Time

With migration

Time

With recent divergence

Time

 $F_{ST}(T-C)$

$$F_{ST}(T-C)\sim T(T-A-C)$$

 $F_{ST}(T-C)\sim T(T-A-C)$

Methods to infer selection

- Reduction of polymorphisms levels (e.g. from 7 to 5 SNPs)

- Reduction of polymorphisms levels (e.g. from 7 to 5 SNPs)

Nucleotide diversity index: Watterson's Theta with K SNPs and n chromosomes

$$\theta_{W} = \frac{K}{a_{n}}$$

$$a_{n} = \sum_{i=1}^{n-1} \frac{1}{i}$$

- Reduction of polymorphisms levels (Theta)
- 2

- Reduction of polymorphisms levels (Theta)
- Excess of low-frequency variants

Nucleotide diversity index: average pairwise nucleotide differences (**Pi**) with k_{ij} equal to the number of nucleotide differences between sequences i and j

$$\pi = \frac{\sum_{i=1}^{n} \sum_{j=+1}^{n} k_{i,j}}{\binom{n}{2}}$$

Positive selection

- Reduction of polymorphisms levels (Theta)
- Excess of low-frequency variants (Pi)

Under neutrality, Theta and Pi are expected to be the same. **Tajima's D** measures their difference.

$$D = \frac{\pi - \theta_W}{\sqrt{\hat{V}(\pi - \theta_W)}}$$

D<0 is suggestive of an excess of low-frequency variants

The Site Frequency Spectrum

The Site Frequency Spectrum

5

2

Derived Allele Frequency

 $a_n = \sum_{i=1}^{n-1} \frac{1}{i}$

 $\pi = \frac{\sum_{i=1}^{n-1} \sum_{j=+1}^{n} k_{i,j}}{\binom{n}{2}}$

= 10, the number of comparisons you need to make

The Site Frequency Spectrum

n=20; L=500kbp; no selection

n=20; L=500kbp; no selection

n=20; L=500kbp; no selection

- Excess of segregating sites
- Excess of low-frequency variants
- SFS-derived summary statistics may fail to distinguish between the effects of demography and selection

n=20; L=500kbp; no selection

n=20; L=500kbp; no selection

n=20; L=500kbp; no selection

- Depletion of segregating sites
- Excess of intermediate-frequency variants
- SFS-derived summary statistics may fail to distinguish between the effects of demography and selection

Experimental design matters!

The effect of ascertainment bias

Deficiency of low-frequency variants

Under constant population size:

Genome / Chromosome

Under expanding population size:

Genome / Chromosome

Under expanding population size and positive selection:

Genome / Chromosome

Demography affects all loci equally, while selection changes local patterns

Outlier approach

Empirical distribution

Outlier approach

Empirical distribution

Under expanding population size and positive selection:

Demography affects all loci equally, while selection changes local patterns What should we do if we don't have genome-wide data? Simulations-based 2 approach 0

Genome / Chromosome

Simulations-based 2 approach 0

Assign *p*-values (based on ranked percentile of observed value)

Genome / Chromosome

