Graphentheorie: Matrizenbasierte Algorithmen

Programmieren und Software-Engineering Theorie

2. September 2025

POS (Theorie) Matrizen 1/38

2/38

Matrizen

- Eine Matrix ist eine rechteckige, tabellarische Anordnung von Elementen.
- Matrizen sind zentrale Elemente der linearen Algebra.
- Vielfältige Anwendungen, unter Anderem: lineare Abbildungen, Lösung von Gleichungssystemen, Physik, Computergraphik, Graphentheorie (!)

POS (Theorie) Matrizen

Matrixmultiplikation

Matrizen 0000

Ist A eine $n \times m$ -Matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1m} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nm} \end{pmatrix}$$

und B eine $m \times p$ -Matrix

$$B = \begin{pmatrix} b_{11} & b_{12} & b_{13} & \dots & b_{1p} \\ b_{21} & b_{22} & b_{23} & \dots & b_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & b_{m3} & \dots & b_{mp} \end{pmatrix} \quad \text{mit} \quad c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}$$

dann ist das Matrizenprodukt

$$A \cdot B = C$$

gegeben durch die $n \times p$ -Matrix

$$C = \begin{pmatrix} c_{11} & c_{12} & c_{13} & \dots & c_{1p} \\ c_{21} & c_{22} & c_{23} & \dots & c_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & c_{n3} & \dots & c_{np} \end{pmatrix}$$

$$c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}$$

POS (Theorie) Matrizen 3/38

Matrixmultiplikation

Matrizen

Quelle: Wikipedia

 Man stelle sich die Matrizen A und B bei der Multiplikation so angeordnet vor, wie in der Grafik links dargestellt (oder schreibe sie tatsächlich so auf!)

In

$$c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}$$

läuft der Index über die Elemente einer Zeile der Matrix A und über die Elemente einer Spalte in der Matrix B

 Es wird das jeweils k-te Element der Zeile, bzw. Spalte multipliziert und zur bisherigen Summe addiert

POS (Theorie) Matrizen 4/38

Beispiel: Matrizenmultiplikation

Matrizenmultiplikation

Matrizen 0000

> Wir betrachten die Multiplikation von $A \cdot B = C$ (in diesem Fall A = B) und somit $C = A^2$:

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 1 & 1 & 2 \\ 1 & 3 & 2 & 1 & 0 \\ 0 & 2 & 1 & 1 & 0 \\ 2 & 1 & 1 & 2 & 2 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Der Wert $c_{2,3} = a_{2,1} \cdot b_{1,3} + a_{2,2} \cdot b_{2,3} + a_{2,3} \cdot b_{3,3} + a_{2,4} \cdot b_{4,3} + a_{2,5} \cdot b_{5,3} =$ $1 \cdot 1 + 0 \cdot 0 + 0 \cdot 0 + 1 \cdot 1 + 1 \cdot 0 = 2$

POS (Theorie) Matrizen 5/38

Adjazenzmatrix

Eine Adjazenzmatrix bietet eine Möglichkeit, einen Graphen als Datenstruktur im Computer darzustellen. In dieser Matrix werden die Knoten von 1 bis *n* durchnummeriert und jedem Knoten wird genau eine Spalte und eine Zeile zugeordnet. Die Größe der Matrix wird somit durch die Anzahl der Knoten bestimmt.

	zum Knoten				
ten		1	2	3	
\no	1	0	0	0	
om y	2	0	0	0	
0	3	0	0	0	

Adjazenzmatrix

Definition (Adjazenzmatrix)

Sei G = (V, E) ein Graph und n = |V|. Eine Matrix $A \in \{0, 1\}^{n \times n}$ heißt Adjazenzmatrix A(G) von G, wenn gilt $A(G) = (a_{ii})$ mit

$$\forall i, j \in V : a_{ij} = \begin{cases} 1, \text{wenn } [i, j] \in E(G), \\ 0, \text{sonst.} \end{cases}$$

Beispiel: Sei $G = (\{1,2,3\}, \{[1,2], [1,3], [2,3]\})$. Die Adjazenzmatrix A(G) lautet:

$$A(G) = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

POS (Theorie) Matrizen 7/38

Werte in der Adjazenzmatrix

Die Adjazenzmatrix ist in *ungerichteten* Graphen **symmetrisch**, da eine Kante [i, j] der Kante [j, i] entspricht.

	zum Knoten				
ten		1	2	3	
(no	1	0	0	0	
Ш	2	0	0	1	
0	3	0	1	0	

POS (Theorie) Matrizen 8 / 38

Werte in der Adjazenzmatrix

In einem *ungerichteten* Graphen erhält man eine obere Dreiecksmatrix. Die Einträge in grau sind bei derartigen Graphen nicht notwendig.

	zum Knoten			
ten		1	2	3
(no	1	0	0	0
Ε	2	0	0	1
0	3	0	1	0

POS (Theorie) Matrizen 9/38

Werte in der Adjazenzmatrix

In einem *ungerichteten* Graphen erhält man eine obere Dreiecksmatrix. Die Einträge in grau sind bei derartigen Graphen nicht notwendig.

	zum Knoten			
ten		1	2	3
(no	1		0	0
Ε	2			1
VOI	3			

POS (Theorie) Matrizen 9/38

Adjazenzmatrix

Werte in der Hauptdiagonale entsprechen Schlingen

Knotengrade in der Adjazenzmatrix

Die Zeilen- bzw. Spaltensummen ergeben den Knotengrad.

		zum Knoten			
L		1	2	3	
noten	1	0	1	0	1
\leq	2	1	0	1	2
vom	3	0	1	0	1
>		1	2	1	

Anmerkung: Einträge "1" in der Hauptdiagonale müssen für die Berechnung der Knotengrade doppelt gezählt werden. Oftmals wird für Schlingen auch einfach der Wert 2 verwendet.

POS (Theorie) Matrizen 11/38

Potenzmatrix

Definition (Potenzmatrix)

Unter einer *Potenzmatrix* versteht man das mehrfache Produkt einer (Adjazenz-)Matrix mit sich selbst.

Beispiel: $A^2 = A \cdot A$, bzw. $A^3 = A^2 \cdot A = A \cdot A \cdot A$.

Anmerkung: Im Allgemeinen können $n \times m$ Matrizen nicht mit sich selbst multipliziert werden. Da jedoch Adjazenzmatrizen immer *quadratische* Matrizen sind, ist dies immer möglich!

POS (Theorie) Matrizen 12/38

Zweck und Verwendung der Potenzmatrix

Die Einträge $a_{i,j}$ der Potenzmatrix $A^k(G)$ geben die Anzahl der Kantenfolgen der Länge k zwischen dem Knoten i und Knoten j an $(i, j \in V)$.

- Die Potenzmatrix soll in weiterer Folge verwendet werden um die *Distanzen* im Graphen zu berechnen.
- Grundidee:
 - Es werden nach und nach höhere Potenzmatrizen berechnet.
 - Wenn zwei Knoten i und j die Distanz k haben, dann tritt in $a_{i,j}$ aus $A^k(G)$ erstmals ein von 0 verschiedener Wert auf.
 - In allen Potenzmatrizen mit Potenzen kleiner als k war dieser Eintrag 0 (d.h. es gibt keine Kantenfolgen kürzerer Länge).
 - Das erstmalige Auftreten von $a_{i,j} \neq 0$ in einer Potenzmatrix wird im nächsten Abschnitt für die Berechnung der Distanzen verwendet.

POS (Theorie) Matrizen 13/38

Beispiel: Potenzmatrix (1)

$$A(G) = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

POS (Theorie) Matrizen 14 / 38

Beispiel: Potenzmatrix (2)

$$A(G) = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

Von v_4 zu v_5 existiert eine Kantenfolge der Länge 2 (über Knoten v_2). In der Matrix ist $a_{4,5}=0$, da keine Kante $\begin{bmatrix} 4,5 \end{bmatrix}$ existiert. In der Matrix sind markiert: die Kante $\begin{bmatrix} 4,2 \end{bmatrix}$ die von v_2 weg führt, und die Kante $\begin{bmatrix} 2,5 \end{bmatrix}$ die zu v_5 hin führt.

POS (Theorie) Matrizen 15/38

Beispiel: Potenzmatrix (3)

$$A(G) = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

$$A^{2}(G) = \begin{pmatrix} 3 & 1 & 1 & 2 & 1 \\ 1 & 3 & 2 & 1 & 0 \\ 1 & 2 & 2 & 1 & 0 \\ 2 & 1 & 1 & 3 & 1 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Wir bezeichnen mit $a_{i,j}^2$ einen Wert in der Matrix $A^2(G)$. Bei der Berechnung von $a_{4,5}^2 = a_{4,1} \cdot a_{1,5} + \underbrace{a_{4,2} \cdot a_{2,5}}_{2,5} + a_{4,3} \cdot a_{3,5} + a_{4,4} \cdot a_{4,5} + a_{4,5} \cdot a_{5,5} = 1 \cdot 0 + 1 \cdot 1 + 1 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 = 1$ wurde der Eintrag der Kantenfolge von v_4 nach v_2 mit jener von v_2 nach v_5 multipliziert, und ergab einen Wert $a_{4,5}^2 = 1 > 0$.

POS (Theorie) Matrizen 16/38

Beispiel: Potenzmatrix (4)

$$A^{2}(G) = \begin{pmatrix} 3 & 1 & 1 & 2 & 1 \\ 1 & 3 & 2 & 1 & 0 \\ 1 & 2 & 2 & 1 & 0 \\ 2 & 1 & 1 & 3 & 1 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix}$$

- Die Einträge in $A^2(G)$ enthalten in a_{ii}^2 die Anzahl der Kantenfolgen vom Knoten i zum Knoten j.
- Die Matrix ist ebenso wie A(G) symmetrisch (im ungerichteten Fall).
- $a_{3.5}^2 = a_{5.3}^2 = 0$, weil keine Kantenfolge der Länge 2 von v_3 nach v_5 (und umgekehrt) existiert.

POS (Theorie) Matrizen 17 / 38

Beispiel: Potenzmatrix (5)

$$A^{2}(G) = \begin{pmatrix} 3 & 1 & 1 & 2 & 1 \\ 1 & 3 & 2 & 1 & 0 \\ 1 & 2 & 2 & 1 & 0 \\ 2 & 1 & 1 & 3 & 1 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix}$$

- Wir betrachten nun einen weiteren Schritt, und dabei die Kantenfolgen von v_3 nach v_5 der Länge 3, die im dritten Schritt (Matrix $A^3(G)$) gefunden werden.
- Die Kantenfolgen der Länge 3 sind im Graphen grün markiert.

POS (Theorie) Matrizen 18/38

Beispiel: Potenzmatrix (6)

$$A^{2}(G) = \begin{pmatrix} 3 & 1 & 1 & 2 & 1 \\ 1 & 3 & 2 & 1 & 0 \\ 1 & 2 & 2 & 1 & 0 \\ 2 & 1 & 1 & 3 & 1 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix}$$

- In $A^2(G)$ finden wir zwei Kantenfolgen von v_3 nach v_2
- Somit ist $a_{3,2}^2 = 2$

POS (Theorie) Matrizen 19 / 38

Beispiel: Potenzmatrix (7)

$$A(G) = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

- In $A^1(G)$ finden wir eine Kantenfolge von v_2 nach v_5
- Somit ist $a_{2,5} = 1$

POS (Theorie) Matrizen 20 / 38

$$A^{2}(G) = \begin{pmatrix} 3 & 1 & 1 & 2 & 1 \\ 1 & 3 & 2 & 1 & 0 \\ 1 & 2 & 2 & 1 & 0 \\ 2 & 1 & 1 & 3 & 1 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix}, A(G) = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

$$A^{2}(G) \cdot A(G) = A^{3}(G) = \begin{pmatrix} 4 & 6 & 5 & 5 & 1 \\ 6 & 2 & 2 & 6 & 3 \\ 5 & 2 & 2 & 5 & 2 \\ 5 & 6 & 5 & 4 & 1 \\ 1 & 3 & 2 & 1 & 0 \end{pmatrix}$$

- In $a_{3,5}^3 = 2$ erhalten wir nun die Information, daß es zwei Kantenfolgen der Länge 3 von v_3 nach v_5 gibt.
- Rechnung: $a_{3,5}^3 = a_{3,1}^2 \cdot a_{1,5}^1 + a_{3,2}^2 \cdot a_{2,5}^1 + a_{3,3}^2 \cdot a_{3,5}^1 + a_{3,4}^2 \cdot a_{4,5}^1 + a_{3,5}^2 \cdot a_{5,5}^1 = 1 \cdot 0 + 2 \cdot 1 + 2 \cdot 0 + 1 \cdot 0 + 0 \cdot 0 = 2$

POS (Theorie) Matrizen 21/38

Ergänzende Erklärung zur Berechnung der Anzahl der Kantenfolgen der Länge k:

Bei der Operation der Multiplikation der Matrizen A^{k-1} mit A werden die Informationen über (die Anzahl der) Kantenfolgen der Länge k-1 und der Länge 1 zusammengefügt (nämlich zu jenen der Länge k). Dabei werden alle Knoten als Zwischenknoten berücksichtigt; konkret als vorletzten Knoten der Kantenfolge.

Distanzmatrix

Definition (Distanzmatrix)

Sei G=(V,E) ein Graph, und n=|V|. Eine Matrix $D\in\mathbb{R}^{n\times n}$ heißt *Distanzmatrix* von G, wenn alle Einträge d_{ij} der Distanz zwischen den Knoten i und j entsprechen $(i,j\in V)$.

POS (Theorie) Matrizen 23 / 38

Distanzmatrix: Berechnung

Die Berechnung der Distanzmatrix D(G) basiert wiederum auf der Adjazenzmatrix:

- Initialisierung:
 - Einträge "1" aus A(G) werden in $D^{(1)}(G)$ übernommen
 - Bei Einträgen "0" in A(G) erhält $D^{(1)}(G)$ Einträge ∞
 - Nullen in Hauptdiagonale
- **2** k = 2
- **③** Für alle Einträge aus der $A^k(G)$ mit $a_{ij}^k \neq 0$ und $d_{ij} = \infty$ setzen wir in $D^{(k)}(G)$ die Werte $d_{ij} = k$
- **5** Gehe zu Schritt 3, außer wenn $\forall i, j, i \neq j : d_{ij} \neq \infty$ oder k = n oder $D^{(k-2)} = D^{(k-1)}$

Anmerkung: $D^{(k)}$ steht hier für die Distanzmatrix im Schritt k.

POS (Theorie) Matrizen 24/38

Beispiel: Distanzmatrix (1)

Die Hauptdiagonale in $D^{(1)}(G)$ enhält lauter 0en, alle 1en werden aus A(G) übernommen, für alle 0en in A(G) die nicht in der Hauptdiagonale liegen, wird in $D^{(1)}(G)$ der Wert ∞ übernommen.

POS (Theorie) Matrizen 25 / 38

Beispiel: Distanzmatrix (2)

$$A^{2}(G) = \begin{pmatrix} 3 & 1 & 1 & 2 & 1 \\ 1 & 3 & 2 & 1 & 0 \\ 1 & 2 & 2 & 1 & 0 \\ 2 & 1 & 1 & 3 & 1 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix}$$

$$D^{(2)}(G) = \begin{pmatrix} 0 & 1 & 1 & 1 & 2 \\ 1 & 0 & 2 & 1 & 1 \\ 1 & 2 & 0 & 1 & \infty \\ 1 & 1 & 1 & 0 & 2 \\ 2 & 1 & \infty & 2 & 0 \end{pmatrix}$$

Im Schritt k=2 wird für alle neu entstandenen Werte $a_{ij}^2 \neq 0$ der Wert $d_{ii}=k$ gesetzt.

POS (Theorie) Matrizen 26 / 38

Beispiel: Distanzmatrix (3)

$$A^{3}(G) = \begin{pmatrix} 4 & 6 & 5 & 5 & 1 \\ 6 & 2 & 2 & 6 & 3 \\ 5 & 2 & 2 & 5 & 2 \\ 5 & 6 & 5 & 4 & 1 \\ 1 & 3 & 2 & 1 & 0 \end{pmatrix}$$

$$D^{(3)}(G) = \begin{pmatrix} 0 & 1 & 1 & 1 & 2 \\ 1 & 0 & 2 & 1 & 1 \\ 1 & 2 & 0 & 1 & 3 \\ 1 & 1 & 1 & 0 & 2 \\ 2 & 1 & 3 & 2 & 0 \end{pmatrix}$$

Im Schritt k = 3 wird für alle neu entstandenen Werte $a_{ij}^3 \neq 0$ der Wert $d_{ii} = k$ gesetzt.

POS (Theorie) Matrizen 27 / 38

Distanzmatrix: Anwendungen

 Mit der Distanzmatrix können die Exzentrizitäten berechnet werden: Maximum einer Zeile, bzw.

$$ex(i) = \max_{k} d_{ik}, 1 \le k \le n$$

• Durchmesser:

$$dm(G) = \max_{k} ex(v_k), 1 \le k \le n$$

Radius:

$$rad(G) = \min_{k} ex(v_k), 1 \le k \le n$$

POS (Theorie) Matrizen 28 / 38

D(G):

Die Exzentrizitäten können aus den Zeilen der Matrix ermittelt werden.

POS (Theorie) Matrizen 29 / 38

Wegmatrix

Definition (Wegmatrix)

Sei G = (V, E) ein Graph, und n = |V|. Eine Matrix $W \in \{0, 1\}^{n \times n}$ heißt Wegmatrix oder Erreichbarkeitsmatrix von G, wenn für alle Elemente w_{ii} gilt:

$$w_{ij} = \begin{cases} 1 & \text{wenn } i \leadsto j, \\ 0 & \text{sonst.} \end{cases}$$

Anmerkung: $i \rightsquigarrow j$ bedeutet hierbei, dass der Knoten j von Knoten i aus erreichbar ist, also dass ein Weg zwischen diesen Knoten exisiert. In anderen Worten: die beiden Knoten liegen in der selben (Zusammenhangs-)Komponente.

POS (Theorie) Matrizen 30 / 38

Wegmatrix: Berechnung

Die Berechnung der Wegmatrix basiert auf der Adjazenzmatrix:

Initialisierung:

$$W^{(1)}(G) = A(G) + 1$$

Dabei bezeichnet 1 die Einheitsmatrix, die in der Hauptdiagonale die Werte 1, und sonst nur die Werte 0 enthält.

- **2** k = 2
- **3** Für alle Einträge aus der $A^k(G)$ mit $a_{ii}^k \neq 0$ setzen wir in $W^{(k)}(G)$ die Werte $w_{ii} = 1$
- **4** k = k + 1
- **o** Gehe zu Schritt 3, außer wenn $\forall i, j : w_{ij} \neq 0$ oder k = n oder $W^{(k-2)} - W^{(k-1)}$

Anmerkung: $W^{(k)}$ steht hier für die Wegmatrix im Schritt k.

POS (Theorie) Matrizen 31/38

Beispiel: Wegmatrix (1)

$$A(G) = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

$$W^{(1)}(G) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Die Hauptdiagonale von $W^{(1)}(G)$ wird mit 1en initalisiert, der Rest wird von A(G) übernommen.

POS (Theorie) Matrizen 32 / 38

Beispiel: Wegmatrix (2)

$$A^{2}(G) = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$W^{(2)}(G) = egin{pmatrix} 1 & 0 & 1 & 1 & 0 \ 0 & 1 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 1 & 0 \ 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Für die neuen Einträge $a_{ij}^2 \neq 0$ aus $A^2(G)$ wird $w_{ij} = 1$ in $W^{(2)}(G)$ übernommen.

POS (Theorie) Matrizen 33/38

Beispiel: Wegmatrix (3)

$$W(G) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Wir können aus W(G) die Komponenten $K_1 = (\{1, 3, 4\}, \{[1, 3], [1, 4]\})$ und $K_2 = (\{2,5\}, \{[2,5]\})$ ablesen.

POS (Theorie) Matrizen 34 / 38

Wegmatrix: Anwendungen

- ullet Die Anzahl der unterschiedlichen Zeilen von W(G) ergibt die Anzahl der Komponenten von G
- Artikulationen können durch Entfernung eines Knoten und Neuberechnung der Matrix ermittelt werden (Anzahl der Komponenten wird größer)
- Brücken können durch Entfernung von Kanten und Neuberechnung der Matrix ermittelt werden (Anzahl der Komponenten wird ebenso wieder größer)

POS (Theorie) Matrizen 35/38

Beispiel 7.1.1

Gegeben sei der Graph G_1 :

Berechnen Sie die

- Distanzmatrix, und die
- Wegmatrix

anhand der Potenz-Matrizen.

POS (Theorie) Matrizen 36 / 38

Beispiel 7.1.3

Gegeben sei der Graph G₂:

Berechnen Sie die Distanzmatrix des Graphen G_2 .

POS (Theorie) Matrizen 37/38

Adjazenzmatrix Potenzmatrix Distanzmatrix Wegmatrix Aufgaben

Beispiel 7.2.1

Gegeben sei der Graph G₃:

Berechnen Sie die Anzahl der Kantenfolgen der Länge 5 vom Knoten D zu B in möglichst wenigen Schritten.

POS (Theorie) Matrizen 38 / 38