Classifying expansions of the real field by complex subgroups

Erin Caulfield

McMaster University

October 2, 2018

Introduction

Previous work

- \blacksquare ($\overline{\mathbb{R}}$, $2^{\mathbb{Z}}$): van den Dries, *The field of reals with a predicate for the powers of two* (1985)
- $(\overline{\mathbb{R}}, \Gamma)$, Γ an infinite finite rank subgroup of \mathbb{S}^1 :

Theorem (Belegradek/Zilber, 2008)

Every subset of \mathbb{R}^m definable in $(\overline{\mathbb{R}}, \Gamma)$ is a Boolean combination of subsets of \mathbb{R}^m defined in $(\overline{\mathbb{R}}, \Gamma)$ by formulas of the form

$$\exists x_1 \exists y_1 \dots \exists x_n \exists y_n \left(\bigwedge_{i=1}^n (x_i, y_i) \in \Gamma \land \phi(x_1, y_1, \dots, x_n, y_n, v_1, \dots, v_m) \right)$$

where $\phi(x, y, v)$ is a quantifier free $\mathcal{L}_{or}(\mathbb{R})$ -formula.

■ $(\overline{\mathbb{R}}, 2^{\mathbb{Z}}, 2^{\mathbb{Z}}3^{\mathbb{Z}})$: Günaydın, Model theory of fields with multiplicative groups (2008)

Motivation

Theorem (Hieronymi, 2010)

Let S be an infinite cyclic subgroup of $(\mathbb{C}^{\times}, \cdot)$. Then exactly one of the following holds:

- \blacksquare ($\overline{\mathbb{R}}$, S) defines \mathbb{Z}
- $(\overline{\mathbb{R}}, S)$ is d-minimal
- \blacksquare every open definable set in $(\overline{\mathbb{R}}, S)$ is semialgebraic

Motivation

Theorem (Hieronymi, 2010)

Let S be an infinite cyclic subgroup of $(\mathbb{C}^{\times}, \cdot)$. Then exactly one of the following holds:

- \blacksquare ($\overline{\mathbb{R}}$, S) defines \mathbb{Z}
- $(\overline{\mathbb{R}}, S)$ is d-minimal
- \blacksquare every open definable set in $(\overline{\mathbb{R}}, S)$ is semialgebraic
- Let $S=(ae^{i\varphi})^{\mathbb{Z}}$. If a=1, we are in case (3). If $\varphi\in\pi\mathbb{Q}$, we are in case (2). If $a\neq 1$ and $\varphi\in\mathbb{R}\setminus\pi\mathbb{Q}$, we are in case (1).

Motivation

Theorem (Hieronymi, 2010)

Let S be an infinite cyclic subgroup of $(\mathbb{C}^{\times}, \cdot)$. Then exactly one of the following holds:

- \blacksquare ($\overline{\mathbb{R}}$, S) defines \mathbb{Z}
- $(\overline{\mathbb{R}}, S)$ is d-minimal
- \blacksquare every open definable set in $(\overline{\mathbb{R}}, S)$ is semialgebraic
- Let $S = (ae^{i\varphi})^{\mathbb{Z}}$. If a = 1, we are in case (3). If $\varphi \in \pi\mathbb{Q}$, we are in case (2). If $a \neq 1$ and $\varphi \in \mathbb{R} \setminus \pi\mathbb{Q}$, we are in case (1).
- If S is an arbitrary infinite finite rank subgroup of \mathbb{C} , must (\mathbb{R}, S) satisfy one of (1)-(3)?

Let a>1 and $\varphi\in\mathbb{R}\setminus\pi\mathbb{Q}$. The structure $(\overline{\mathbb{R}},a^{\mathbb{Z}}(e^{i\varphi})^{\mathbb{Z}})$ does not satisfy any of (1)-(3).

Let $\Delta=arepsilon^{\mathbb{Z}}$ (arepsilon>1) and let Γ be an infinite finite rank subgroup of $\mathbb{S}^1.$

Theorem A (C.)

Every subset of \mathbb{R}^m definable in $(\overline{\mathbb{R}}, \Gamma\Delta)$ is a Boolean combination of sets of the form

$$\{x \in \mathbb{R}^m : \exists y \in (\Gamma \Delta)^n \text{ s.t. } (x, y) \in W\}$$

for some semialgebraic set $W \subseteq \mathbb{R}^{m+2n}$.

Let $H = a^{\mathbb{Z}}(e^{i\varphi})^{\mathbb{Z}}$. From Theorem A, it follows that $(\overline{\mathbb{R}}, H)$ does not satisfy any of (1)-(3).

- \blacksquare ($\overline{\mathbb{R}}$, H) does not define \mathbb{Z}
 - By Theorem A, if $X \subseteq \mathbb{R}$ is definable in $(\overline{\mathbb{R}}, H)$, then X is a Boolean combinations of sets X_1, \ldots, X_k , where for $1 \le i \le k$

$$X_i = \bigcup_{y \in H^{n_i}} \{x \in \mathbb{R} : (x, y) \in W_i\}$$

for some $n_i \ge 1$ and semialgebraic set W_i .

- \blacksquare ($\overline{\mathbb{R}}$, H) does not define \mathbb{Z}
 - By Theorem A, if $X \subseteq \mathbb{R}$ is definable in $(\overline{\mathbb{R}}, H)$, then X is a Boolean combinations of sets X_1, \ldots, X_k , where for $1 \le i \le k$

$$X_i = \bigcup_{y \in H^{n_i}} \{x \in \mathbb{R} : (x, y) \in W_i\}$$

for some $n_i \ge 1$ and semialgebraic set W_i .

- \blacksquare ($\overline{\mathbb{R}}$, H) is not d-minimal
 - $\operatorname{proj}_{\mathbb{R}}(H)$ is dense and codense in \mathbb{R}

- \blacksquare ($\overline{\mathbb{R}}$, H) does not define \mathbb{Z}
 - By Theorem A, if $X \subseteq \mathbb{R}$ is definable in $(\overline{\mathbb{R}}, H)$, then X is a Boolean combinations of sets X_1, \ldots, X_k , where for $1 \le i \le k$

$$X_i = \bigcup_{y \in H^{n_i}} \{x \in \mathbb{R} : (x, y) \in W_i\}$$

for some $n_i \geq 1$ and semialgebraic set W_i .

- \blacksquare ($\overline{\mathbb{R}}$, H) is not d-minimal
 - lacksquare proj $_{\mathbb{R}}(H)$ is dense and codense in \mathbb{R}
- Not every open set definable in $(\overline{\mathbb{R}}, H)$ is semialgebraic
 - lacksquare $\mathbb{R}^{>0}\setminus a^{\mathbb{Z}}$ is open and definable in $(\overline{\mathbb{R}},H)$

A natural next step is to consider $(\overline{\mathbb{R}},(ae^{i\varphi})^{\mathbb{Z}}b^{\mathbb{Z}})$, where a,b>1 and $\varphi\in\mathbb{R}\setminus\pi\mathbb{Q}$. We assume for now that $(ae^{i\varphi})^{\mathbb{Z}}b^{\mathbb{Z}}$ is dense in \mathbb{C} .

A natural next step is to consider $(\overline{\mathbb{R}}, (ae^{i\varphi})^{\mathbb{Z}}b^{\mathbb{Z}})$, where a, b > 1 and $\varphi \in \mathbb{R} \setminus \pi\mathbb{Q}$. We assume for now that $(ae^{i\varphi})^{\mathbb{Z}}b^{\mathbb{Z}}$ is dense in \mathbb{C} . In order to study $(\overline{\mathbb{R}}, (ae^{i\varphi})^{\mathbb{Z}}b^{\mathbb{Z}})$, we instead study

$$(\overline{\mathbb{R}},(e^{iarphi})^{\mathbb{Z}},a^{\mathbb{Z}}b^{\mathbb{Z}},b^{\mathbb{Z}},
ho)$$

where $\rho: a^{\mathbb{Z}}b^{\mathbb{Z}} \to (e^{i\varphi})^{\mathbb{Z}}$ is defined by $\rho(a^nb^m) = e^{i\varphi n}$.

Theorem B (C.)

Let a, b > 1 and let $\varphi \in \mathbb{R}$. Let $H := (ae^{i\varphi})^{\mathbb{Z}}b^{\mathbb{Z}}$ and suppose that H is dense in \mathbb{C} . Then every subset of \mathbb{R}^m definable in $(\overline{\mathbb{R}}, H)$ is a Boolean combination of sets of the form

$$\{x \in \mathbb{R}^m : \exists z \in H^n \text{ such that } (x, z, \rho(|z|)) \in W\}$$

for some set $W \subseteq \mathbb{R}^{m+4n}$ definable in $\overline{\mathbb{R}}$.

We also study expansions of the form $(\overline{\mathbb{R}},(ae^{i\varphi})^{\mathbb{Z}}b^{\mathbb{Z}})$ when $(ae^{i\varphi})^{\mathbb{Z}}b^{\mathbb{Z}}$ is not dense in \mathbb{C} .

We also study expansions of the form $(\overline{\mathbb{R}}, (ae^{i\varphi})^{\mathbb{Z}}b^{\mathbb{Z}})$ when $(ae^{i\varphi})^{\mathbb{Z}}b^{\mathbb{Z}}$ is not dense in \mathbb{C} .

We also study expansions of the form $(\overline{\mathbb{R}},(ae^{i\varphi})^{\mathbb{Z}}b^{\mathbb{Z}})$ when $(ae^{i\varphi})^{\mathbb{Z}}b^{\mathbb{Z}}$ is not dense in \mathbb{C} .

$$a=e^{\varphi},$$
 $b=e^{(1+i)2\pi}$

Definition (Logarithmic spiral)

Let $\omega \in \mathbb{R}^{\times}$. The logarithmic spiral S_{ω} is defined as

$$S_{\omega}:=e^{(i+\omega)\mathbb{R}}.$$

The spiral S_{ω} is parameterized by the equations $(x(t), y(t)) = (e^{\omega t} \cos(t), e^{\omega t} \sin(t))$.

Theorem C (C.)

Let $H=(ae^{i\varphi})^{\mathbb{Z}}b^{\mathbb{Z}}$, where $a,b\neq 1$. Suppose that for all $\omega\in\mathbb{R}^{\times}$, $(\overline{\mathbb{R}},H)$ does not define S_{ω} . Then exactly one of the following holds:

- $(\overline{\mathbb{R}}, H)^{o} =_{df} (\overline{\mathbb{R}}, b^{\mathbb{Z}}).$

Open cores

Theorem D (C.)

The open core of $(\overline{\mathbb{R}}, a^{\mathbb{Z}}(e^{i\varphi})^{\mathbb{Z}})$ is interdefinable with $(\overline{\mathbb{R}}, a^{\mathbb{Z}})$.

Open cores

Theorem F (C.)

The open core of $(\overline{\mathbb{R}}, a^{\mathbb{Z}}(e^{i\varphi})^{\mathbb{Z}})$ is interdefinable with $(\overline{\mathbb{R}}, a^{\mathbb{Z}})$.

Theorem G (C.)

Suppose $(ae^{i\varphi})^{\mathbb{Z}}b^{\mathbb{Z}}$ is dense in \mathbb{C} . The open core of $(\overline{\mathbb{R}},(ae^{i\varphi})^{\mathbb{Z}}b^{\mathbb{Z}})$ is interdefinable with $(\overline{\mathbb{R}},b^{\mathbb{Z}})$.

Expansions of $\overline{\mathbb{R}}$ by complex subgroups with two generators

The following table summarizes what we know about definable sets in expansions of $\overline{\mathbb{R}}$ by two complex generators. Let $\Gamma:=(ae^{i\varphi})^{\mathbb{Z}}(be^{i\psi})^{\mathbb{Z}}$ and let $\mathcal{R}:=(\overline{\mathbb{R}},\Gamma)$.

	$\varphi, \psi \in \pi \mathbb{Q}$	$\varphi \in \pi \mathbb{Q}, \psi \notin \pi \mathbb{Q}$	$\varphi \notin \pi \mathbb{Q}, \psi \in \pi \mathbb{Q}$	$\varphi \notin \pi \mathbb{Q}, \psi \notin \pi \mathbb{Q}$
a = 1, b = 1	$\mathcal{R} =_{df} \overline{\mathbb{R}}$	Γ is dense in \mathbb{S}^1 ; $(\overline{\mathbb{R}},\Gamma)$ has PNMC	$(\overline{\mathbb{R}},\Gamma)$ has PNMC	$(\overline{\mathbb{R}},\Gamma)$ has PNMC
a=1, b eq 1	$\mathcal{R} =_{\sf df} (\overline{\mathbb{R}}, b^{\mathbb{Z}})$	$\mathcal{R} =_{df} (\overline{\mathbb{R}}, (be^{i\psi})^{\mathbb{Z}}); \ \mathcal{R} \ defines \ \mathbb{Z}$	$\psi=$ 0: ${\cal R}$ has PNMC	Unknown
$a \neq 1, b \neq 1 \text{ and } \frac{\ln(a)}{\ln(b)} \in \mathbb{Q}$	$\mathcal{R} =_{df} (\overline{\mathbb{R}}, a^{\mathbb{Z}})$	$arphi = 0: \mathcal{R} =_{df} (\overline{\mathbb{R}}, b^{\mathbb{Z}} (e^{i\psi})^{\mathbb{Z}})$	$\psi = 0: \mathcal{R} =_{df}$ $(\overline{\mathbb{R}}, a^{\mathbb{Z}}(e^{i\varphi})^{\mathbb{Z}})$	Unknown
$a eq 1, b eq 1$ and $rac{\ln(a)}{\ln(b)} eq \mathbb{Q}$	$\mathcal{R} =_{df} (\overline{\mathbb{R}}, a^{\mathbb{Z}} b^{\mathbb{Z}})$	$\begin{split} \varphi &= 0 \colon \\ & \blacksquare \ \Gamma \ \text{dense in } \mathbb{C} \colon \mathcal{R} \ \text{has} \\ & \rho\text{-PNMC} \\ & \blacksquare \ \Gamma \ \text{not dense in } \mathbb{C} \colon \mathcal{R} \\ & \text{defines } S_{\omega} \end{split}$	$\begin{split} \psi &= 0 : \\ & \blacksquare \ \Gamma \ \text{dense in } \mathbb{C} \colon \mathcal{R} \ \text{has} \\ & \rho\text{-PNMC} \\ & \blacksquare \ \Gamma \ \text{not dense in } \mathbb{C} \colon \mathcal{R} \\ & \text{defines } \mathcal{S}_{\omega} \end{split}$	Unknown

Expansions of $\overline{\mathbb{R}}$ by complex subgroups with two generators

The following table summarizes what we know about the open cores of expansions of $\overline{\mathbb{R}}$ by two complex generators. Again, let $\Gamma:=(ae^{i\varphi})^{\mathbb{Z}}(be^{i\psi})^{\mathbb{Z}}$ and let $\mathcal{R}:=(\overline{\mathbb{R}},\Gamma)$.

	$\varphi, \psi \in \pi \mathbb{Q}$	$\varphi \in \pi \mathbb{Q}, \psi \notin \pi \mathbb{Q}$	$\varphi \notin \pi \mathbb{Q}, \psi \in \pi \mathbb{Q}$	$\varphi \not \in \pi \mathbb{Q}, \psi \not \in \pi \mathbb{Q}$
a = 1, b = 1	$\mathcal{R}^o =_{df} \overline{\mathbb{R}}$	$\mathcal{R}^o =_{df} \overline{\mathbb{R}}$	$\mathcal{R}^o =_{df} \overline{\mathbb{R}}$	$\mathcal{R}^o =_{df} \overline{\mathbb{R}}$
$a=1, b \neq 1$	$\mathcal{R}^o =_{\sf df} (\overline{\mathbb{R}}, b^{\mathbb{Z}})$	all open sets of all arities are definable in $\ensuremath{\mathcal{R}}$	$\psi = 0$: $\mathcal{R}^o =_{df} (\overline{\mathbb{R}}, b^{\mathbb{Z}})$	Unknown
$a \neq 1, b \neq 1 \text{ and } \frac{\ln(a)}{\ln(b)} \in \mathbb{Q}$	$\mathcal{R}^o =_{df} (\overline{\mathbb{R}}, a^{\mathbb{Z}})$	$\varphi = 0$: $\mathcal{R}^o =_{df} (\overline{\mathbb{R}}, b^{\mathbb{Z}})$	$\psi = 0$: $\mathcal{R}^o =_{df} (\overline{\mathbb{R}}, a^{\mathbb{Z}})$	Unknown
$a \neq 1, b \neq 1 \text{ and } \frac{\ln(a)}{\ln(b)} \notin \mathbb{Q}$	$\mathcal{R}^o =_{df} \overline{\mathbb{R}}$	$arphi = 0$, Γ dense in \mathbb{C} : $\mathcal{R}^o =_{df} (\overline{\mathbb{R}}, a^{\mathbb{Z}})$	$\psi = 0$, Γ dense in \mathbb{C} : $\mathcal{R}^o =_{df} (\overline{\mathbb{R}}, b^{\mathbb{Z}})$	Unknown

Conjecture

If H is an infinite finitely generated subgroup of \mathbb{C}^{\times} , then exactly one of the following holds:

 \blacksquare ($\overline{\mathbb{R}}$, H) defines \mathbb{Z} (ex. $H = (ae^{i\varphi})^{\mathbb{Z}}$, $a \neq 1$, $\varphi \in \mathbb{R} \setminus \pi\mathbb{Q}$);

Conjecture

- \blacksquare ($\overline{\mathbb{R}}$, H) defines \mathbb{Z} (ex. $H = (ae^{i\varphi})^{\mathbb{Z}}$, $a \neq 1$, $\varphi \in \mathbb{R} \setminus \pi\mathbb{Q}$);
- $(\overline{\mathbb{R}}, H)$ is d-minimal (ex. $H = a^{\mathbb{Z}}$);

Conjecture

- \blacksquare ($\overline{\mathbb{R}}$, H) defines \mathbb{Z} (ex. $H = (ae^{i\varphi})^{\mathbb{Z}}$, $a \neq 1$, $\varphi \in \mathbb{R} \setminus \pi\mathbb{Q}$);
- $(\overline{\mathbb{R}}, H)$ is d-minimal (ex. $H = a^{\mathbb{Z}}$);
- $(\overline{\mathbb{R}}, H)^o =_{\mathsf{df}} \overline{\mathbb{R}} \text{ (ex. } H = (e^{i\varphi})^{\mathbb{Z}});$

Conjecture

- \blacksquare ($\overline{\mathbb{R}}$, H) defines \mathbb{Z} (ex. $H = (ae^{i\varphi})^{\mathbb{Z}}$, $a \neq 1$, $\varphi \in \mathbb{R} \setminus \pi\mathbb{Q}$);
- $(\overline{\mathbb{R}}, H)$ is d-minimal (ex. $H = a^{\mathbb{Z}}$);
- $(\overline{\mathbb{R}}, H)^{\circ} =_{\mathsf{df}} \overline{\mathbb{R}} \text{ (ex. } H = (e^{i\varphi})^{\mathbb{Z}});$
- $\begin{array}{l} \P (\overline{\mathbb{R}},H) \text{ is not d-minimal and there is } a>1 \text{ such that} \\ (\overline{\mathbb{R}},H)^o =_{\sf df} (\overline{\mathbb{R}},a^{\mathbb{Z}}) \text{ (ex. } H=a^{\mathbb{Z}}(e^{i\varphi})^{\mathbb{Z}}, \ a>1, \ \varphi\notin\pi\mathbb{Q}); \end{array}$

Conjecture

- \blacksquare ($\overline{\mathbb{R}}$, H) defines \mathbb{Z} (ex. $H = (ae^{i\varphi})^{\mathbb{Z}}$, $a \neq 1$, $\varphi \in \mathbb{R} \setminus \pi\mathbb{Q}$);
- $(\overline{\mathbb{R}}, H)$ is d-minimal (ex. $H = a^{\mathbb{Z}}$);
- $(\overline{\mathbb{R}}, H)^{o} =_{\mathsf{df}} \overline{\mathbb{R}} \text{ (ex. } H = (e^{i\varphi})^{\mathbb{Z}});$
- $\begin{array}{l} \P (\overline{\mathbb{R}},H) \text{ is not d-minimal and there is } a>1 \text{ such that} \\ (\overline{\mathbb{R}},H)^o =_{\sf df} (\overline{\mathbb{R}},a^{\mathbb{Z}}) \text{ (ex. } H=a^{\mathbb{Z}}(e^{i\varphi})^{\mathbb{Z}}, \ a>1, \ \varphi\notin\pi\mathbb{Q}); \end{array}$
- **5** the open core of $(\overline{\mathbb{R}}, H)$ has the form $(\overline{\mathbb{R}}, S_{\omega})$ $(\omega \in \mathbb{R}^{\times})$.