Random and Cohen Reals ゼミ 第1回

でいぐ

2020/3/4

目的

Cohen forcing と Random forcing の基本的性質を二つが共通に持つ性質から導く.

Cohen forcing $\operatorname{Fn}(I,2)$ は $\operatorname{Borel}(2^I)/\operatorname{meager}$ と強制同値である. Random forcing は meager イデアルを null イデアルに取り換えた $\operatorname{Baire}(2^I)/\operatorname{null}$ である.

どちらも CH を破ることができるが、分離できる Cardinal Invariant が異なる.

	Cohen	Random
add(null)	\aleph_1	\aleph_1
cov(null)	\aleph_1	c
non(null)	c	\aleph_1
cof(null)	c	c
add(meager)	\aleph_1	\aleph_1
cov(meager)	c	\aleph_1
non(meager)	\aleph_1	c
cof(meager)	c	c

(Handbook of Set Theory の Blass の章 [1] より引用)

Lemma 1.10.

$$\begin{array}{ccc} i: \operatorname{Fn}(I,2) & \longrightarrow & \operatorname{Borel}(2^I)/\operatorname{meager} \\ & & & & & & & & \\ p & & \longmapsto & \left[\{f \in 2^I: p \subseteq f\}\right] \end{array}$$

は稠密埋め込み.

証明. $\mathbbm{1}(\varnothing)$ を $\mathbbm{1}([2^I])$ に写すこと,順序保存は明らか. $p,q\in \operatorname{Fn}(I,2), p\perp q \to i(p)\perp i(q) \ \text{について.}\ i(p)\perp i(q)$ は書き直すと

$$\{f\in 2^I: p\subseteq f\} \cap \{f\in 2^I: q\subseteq f\} \in \mathsf{meager}$$

ということである. ところが

(左辺) =
$$\{f \in 2^I : p \cup q \subseteq f\} = \emptyset$$

なので成り立つ.

 $\operatorname{ran} i$ が $\operatorname{Borel}(2^{I})/\operatorname{meager}$ で稠密なこと. 次の事実を使う.

事実、X を位相空間とする.ある開集合 U と mod meager で 等しくなる集合は Baire の性質を持つという.Borel 集合はすべて Baire の性質を持つ.

略証. Baire の性質を持つ集合全体が開集合全体を含み, σ 代数をなすことを言えばよい. //

 $A \in \operatorname{Borel}(2^I)$ で A は nonmeager とする. 示すべきは、 $\exists p \in \operatorname{Fn}(I,2), i(p) \leqslant [A]$. A は Baire の性質を持つのである開集合 U があり、[A] = [U]. U は非空開集合だから $p \in \operatorname{Fn}(I,2)$ がとれて、 $\{f \in 2^I : p \subseteq f\} \subseteq U$. よって、 $i(p) \leqslant [U] = [A]$. \square

補 題 の 証 明 は $\operatorname{Borel}(2^I)$ で は な く $\operatorname{Baire}(2^I)=(\operatorname{clopen}$ 集合で生成される σ 代数) で行っても通る. よって以下の 3 つは強制同値.

- $\operatorname{Fn}(I,2)$
- Borel (2^I) /meager
- Baire (2^I) /meager

2^I の位相

I を集合とし、 $2^{I}=\{f:f:I\to 2\}$ とおく、 2^{I} に直積位相を入れる。これは次を開基とする位相である:

$$N_s = \{ f \in 2^I : s \subseteq f \}$$

ただし $s: I \rightarrow 2$ は有限部分関数.

 N_s は clopen なことに注意. 2^I の Baire 集合とは clopen 集合全体で生成される σ 代数の元のこと. 上の N_s たちで生成される σ 代数でもある (コンパクト性よりわかる).

I が可算なら

$$Baire(2^I) = Borel(2^I).$$

I が非可算なら

$$Baire(2^I) \subseteq Borel(2^I)$$
.

これを確かめよう. $A\subseteq 2^I$ と $J\subseteq I$ について A が J シリンダーであるとは、

$$\forall x, y \in 2^I, [x \upharpoonright J = y \upharpoonright J \to [x \in A \iff y \in A]]$$

を満たすこととする.

 $\mathcal{A} = \{A \subseteq 2^I : \exists J \subseteq I \ \text{可算}, \quad A \ \text{は} \ J \ \text{シリンダー} \} \ \text{とおく}$ と $A \ \text{は Baire}(2^I)$ を含む σ 代数. 2^I の一点集合は Borel だが \mathcal{A} に属さない. 特に Baire でない.

2^I の測度

まず $2=\{0,1\}$ には $\mu(\{0\})=\mu(\{1\})=1/2$ の測度を入れる. 2 を有限個直積した空間には 2 の測度を直積した測度を入れる.

I が無限集合のときの 2^I の測度の入れ方を述べよう.まず 2^I の clopen 集合全体に測度を入れる.それを Baire 集合族上 の測度に拡張し完備化する.

つまり,A が clopen 集合なら有限な $J\subseteq I$ があって,A は J シリンダー.そこで 2^J の測度を使って

$$\mu(A) = \mu_{2^J}(A \upharpoonright J)$$

と定める.

Definition 1.1. 2^I 上のイデアル \mathcal{I} が Baire supported とは 次を満たすこととする:

$$\forall X \in \mathscr{I}, \exists Y \in \mathscr{I}, X \subseteq Y \land Y \in Baire(2^I).$$

命題. meager イデアル, null イデアルは Baire supported である.

証明. $A\subseteq 2^I$ が零集合だったら、完備化の定義より $B\in \mathrm{Baire}(2^I)$ がとれて、 $A\subseteq B$ かつ B は零集合となる. よって、null イデアルは Baire supported である.

meager イデアルが Baire supported なことは 2^I が ccc なことを使う.

補題 1. X を位相空間とするとき次は同値.

- 1. X 1 ccc.
- 2. X の任意の非空開集合の族 U に対し、可算な $V \subseteq U$ が存在し、 $\bigcup U \subseteq \overline{\bigcup V}$.

証明. この補題は Dan Ma [2] による.

(2) の否定を仮定する. すなわち, ある非空開集合の族 U があって, どんな可算な $V\subseteq U$ についても $\bigcup U\backslash \overline{\bigcup V}\neq\emptyset$ とする

超限再帰で \mathcal{U} の点列 $(x_{\alpha}: \alpha < \omega_1)$ と \mathcal{U} の元の列 $(U_{\alpha}: \alpha < \omega_1)$ を構成し、任意の $\alpha < \omega_1$ について $x_{\alpha} \in U_{\alpha} \setminus \overline{\bigcup_{\beta < \alpha} U_{\beta}}$ となるようにする。 α 未満のすべての番号 β について x_{β}, U_{β} が構成できて、任意の $\beta < \alpha$ について $x_{\beta} \notin \overline{\bigcup_{\gamma < \beta} U_{\gamma}}$ かつ $x_{\beta} \in U_{\beta}$ とする。このとき $x_{\alpha} \in U \setminus \overline{\bigcup_{\beta < \alpha} U_{\beta}}$ をとる。そして、 $x_{\alpha} \in U_{\alpha}$ となる $U_{\alpha} \in \mathcal{U}$ をとる。これで構成できた。

各 $\alpha < \omega_1$ に対して $W_\alpha = U_\alpha \setminus \overline{\bigcup_{\beta < \alpha} U_\beta}$ とおくと, W_α たちは disjoint な ω_1 個の非空開集合である.よって X が ccc でない.つまり (1) の否定が言えた.

逆に X が ccc でないとして、 $\mathcal{W} = \{W_{\alpha}: \alpha < \omega_1\}$ が 互いに素な非空開集合の族とする。可算な $\mathcal{V} \subseteq \mathcal{W}$ を考える。 $W_{\alpha} \in \mathcal{W} \setminus \mathcal{V}$ をとると、 $W_{\alpha} \cap \bigcup \mathcal{V} = \varnothing$. よって、 $W_{\alpha} \cap \overline{\bigcup \mathcal{V}} = \varnothing$. これは $\bigcup \mathcal{W} \nsubseteq \overline{\bigcup \mathcal{V}}$ を含意する。 //

補題 2. 2^I において,任意の稠密開集合 D に対して,clopen 集合の可算和で書ける稠密集合 H で $H\subseteq D$ なるものがある.

証明. D を稠密開集合とする. $\mathcal{U} = \{H \subseteq D : H \text{ is clopen}\}$ とおく. すると補題 1 より $\{H_i : i \in \omega\} \subseteq \mathcal{U}$ が存在して, $\bigcup \mathcal{U} \subseteq \overline{\bigcup_{i \in \omega} H_i}$. ここで $H_i \subseteq D$ (for all i) より $\bigcup_{i \in \omega} H_i \subseteq D$. D が開集合なことから $\bigcup \mathcal{U} = D$ なので, $D \subseteq \overline{\bigcup_{i \in \omega} H_i}$. D

が稠密なので、これは $\bigcup_{i\in\omega}H_i$ の稠密性を含意する.以上より $\bigcup_{i\in\omega}H_i$ が求めるべき集合である. //

M を meager 集合とし, $M = \bigcup_{i \in \omega} M_i$,各 M_i は nowhere dense とする. $D_i = \overline{M_i}^c$ とおくと D_i は稠密開集合.よって補題 2 より clopen 集合の列 H_{ij} があって, $\bigcup_{j \in \omega} H_{ij} \subseteq D_i$ かつ $\bigcup_{j \in \omega} H_{ij}$ は稠密.そこで補集合をとり, $M_i \subseteq \overline{M_i} \subseteq \bigcap_{j \in \omega} H_{ij}^c$ ここで $\bigcap_{j \in \omega} H_{ij}^c$ は nowhere dense である.今和集合をとると, $M = \bigcup_{i \in \omega} M_i \subseteq \bigcup_{i \in \omega} \bigcap_{j \in \omega} H_{ij}^c$. 右辺は meager な Baire 集合である.

Definition 1.2. $\Delta:I\to J$ のとき $\Delta^*:2^J\to 2^I,\Delta_*:\mathcal{P}(2^I)\to\mathcal{P}(2^J)$ を次で定める.

$$\Delta^*(f) = f \circ \Delta,$$

$$\Delta_*(X) = (\Delta^*)^{-1}(X).$$

我々のすべての応用において Δ は単射であり、したがって Δ^* は全射、 Δ_* は単射である。 Δ^* は連続なので $X \in \mathrm{Baire}(2^I)$ ならば $\Delta_*(X) \in \mathrm{Baire}(2^J)$ である。

 $\Delta:I \to J$ 全単射なら Δ を I と J の同一視と考えられる. Δ^* と Δ_* はそこから誘導される同一視である.

 $I\subseteq J$ で $\Delta:I\to J$ が包含写像なら、 $\Delta^*(f)=f\upharpoonright I$ である。 $K=J\backslash I$ とおき、 2^J を $2^I\times 2^K$ と同一視すれば Δ^* は 2^I への射影である.

null イデアルのようなイデアルの添え字不変性を表現するアプローチは関手の言葉を使うことである。すなわち各 I についてイデアル $\mathscr{I}(I)$ on 2^I が定められていて, $\Delta:I\to J$ 単射かつ $X\subseteq 2^I$ なら $X\in\mathscr{I}(I)\iff \Delta_*(X)\in\mathscr{I}(J)$ をみたすものと定めたい。しかし,Baire supported ならそれは $\mathscr{I}(\omega)$ で完全に決まるし,また真クラスとなる関手より集合 $\mathscr{I}(\omega)$ で表現する方が集合論的にシンプルなのでこれを採用する.

Definition 1.3. \mathscr{J} を 2^{ω} 上のイデアルとする. \mathscr{J} が添え字 不変であるとは

を満たすことと定める.

Definition 1.4. $\mathscr{I} \subseteq \mathcal{P}(2^{\omega})$ に対して,

 $\mathscr{I}(I)=\{X\in\mathcal{P}(2^I):\exists\Delta:\omega\to I$ 単射、 $\exists Y\in\mathscr{I},X\subseteq\Delta_*(Y)\}$ とおく、

Lemma 1.5. \mathscr{J} を 2^{ω} 上の添え字不変イデアルとし, I を無限集合とする. このとき,

- (a) $\mathscr{I}(\omega) = \mathscr{I}$.
- (b) $\mathscr{I}(I)$ は 2^I 上のイデアル.
- (c) I が σ イデアルなら $\mathcal{I}(I)$ もそう.

(d) $\Gamma: I \to J$ 単射と $X \subseteq 2^I$ について、 $X \in \mathscr{I}(I) \iff \Gamma_*(X) \in \mathscr{I}(J)$.

証明. (a) は容易.

(b) について. $\mathcal{I}(I)$ が下に閉じていて, \varnothing を含んでいるのは明らか.

 $2^I \in \mathscr{I}(I)$ とすれば $\Delta: \omega \to I$ 単射と $Y \in \mathscr{I}$ があって $2^I = \Delta_*(Y)$. ところが, $2^I = \Delta_*(2^\omega)$ なので, Δ_* の単射性より $Y = 2^\omega$. よって $Y \in \mathscr{I}$ となって矛盾.ゆえに $2^I \notin \mathscr{I}(I)$.

二個の和集合で閉じることの証明は次の可算和で閉じること の証明と同様なので省略する.

(c) について. $X_n \in \mathcal{I}(I)$ (for $n \in \omega$) とする. $Y_n \in \mathcal{I}, \Delta_n$: $\omega \to I$ 単射で $X_n \subseteq (\Delta_n)_*(Y_n)$ なるものをとる.

 $\Gamma:\omega\to I$ 単射ですべての $n\in\omega$ で $\mathrm{ran}(\Delta_n)\subseteq\mathrm{ran}(\Gamma)$ となるものをとる。今, $\Sigma_n:\omega\to\omega$ 単射を $\Gamma\circ\Sigma_n=\Delta_n$ をみたすものでとる.

すると各 $n \in \omega$ について, $Z_n = (\Sigma_n)_*(Y_n)$ とおくと,

$$X_n \subseteq (\Delta_n)_*(Y_n) = \Gamma_*(\Sigma_n)_*(Y_n) = \Gamma_*(Z_n).$$

 $\mathscr I$ は添え字不変なので各 Z_n は $\mathscr I$ に属する. よって $\mathscr I$ の σ 加法性より $\bigcup_{n\in\omega}Z_n\in\mathscr I$. すると,

$$\bigcup_{n\in\omega}X_n\subseteq\bigcup_{n\in\omega}\Gamma_*(Z_n)=\Gamma_*(\bigcup_{n\in\omega}Z_n)\in\mathscr{I}(I).$$

 $(\mathrm{d}) \ \texttt{について.} \ \Gamma: I \to J \ \text{単射}, \ X \subseteq 2^I \ \texttt{とする.} \ \texttt{もし} \ X \in \mathscr{I}(I) \ \texttt{なら} \ Y \in \mathscr{I} \ \texttt{と} \ \Delta: \omega \to I \ \text{単射} \ \texttt{v} \ X \subseteq \Delta_*(Y) \ \texttt{xものを}$ とる. すると, $\Gamma_*(X) \subseteq (\Gamma \circ \Delta)_*(Y) \ \texttt{xoro}, \ \Gamma_*(X) \in \mathscr{I}(J).$ 逆に $\Gamma_*(X) \in \mathscr{I}(J) \ \texttt{とすると} \ \Delta: \omega \to J \ \text{単射} \ \texttt{e} \ Y \in \mathscr{I}$ がとれて, $\Gamma_*(X) \subseteq \Delta_*(Y). \ \Sigma: \omega \to I \ \text{単射} \ \texttt{e}, \ k \in \omega \ \text{が}$ $\Delta(k) \in \text{ran}(\Gamma) \ \texttt{e}$ みたすとき, $\Gamma(\Sigma(k)) = \Delta(k) \ \texttt{e}$ 満たすよう にとる (これはとれる).

このとき $X\subseteq \Sigma_*(Y)$ である.実際, $f\in X$ とする. $f'\in 2^J$ を次で定める.

$$f'(j) = \begin{cases} f(i) & \text{(if } j = \Gamma(i)) \\ f(\Sigma(k)) & \text{(if } j = \Delta(k)) \\ 0 & \text{(if } j \notin \text{ran}(\Gamma) \cup \text{ran}(\Delta)) \end{cases}$$

 Σ の定め方よりこれは well-defined な写像になっていて、 しかも $f' \in \Gamma_*(X)$ である. よって、 $f' \in \Delta_*(Y)$. つまり、 $f' \circ \Delta \in Y$. ところが、 $f' \circ \Delta = f \circ \Sigma$. よって $f \circ \Sigma \in Y$ な ので $f \in \Sigma_*(Y)$. よって $X \subseteq \Sigma_*(Y)$ が示せた. したがって $X \in \mathcal{J}(I)$.

命題 3. 2^{ω} 上の null, meager イデアルを null, meager と書き, 2^{I} 上の null, meager イデアルを $\mathrm{null}_{2^{I}}$, meager $_{2^{I}}$ と書く.

- 1. null, meager は添え字不変イデアル.
- 2. $\operatorname{null}_{2^I} = \operatorname{null}(I), \operatorname{meager}_{2^I} = \operatorname{meager}(I).$

証明. null イデアルについて考える. まず、次が成り立つことに注意する. 可算集合 I と集合 J で I \cap J = \varnothing なものと可測集合 $A \subseteq 2^I$ について

$$A \in \text{null}_{2^I} \iff A \times 2^J \in \text{null}_{2^{I \cup J}}.$$
 (*)

これは $2^{I\cup J}$ の測度が 2^I の測度と 2^J の測度の直積測度と一致 することからわかる.

(*) より null が添え字不変であることと任意の無限集合 I について $\operatorname{null}(I) \subseteq \operatorname{null}_{2^I}$ が分かる. $\operatorname{null}_{2^I}$ が Baire supported なことを合わせて考えれば、 $\operatorname{null}_{2^I} \subseteq \operatorname{null}(I)$ もわかる.

meager イデアルについても (*) と同様のことが言えればよい.このうち, $A \in \text{meager}_{2^I} \Longrightarrow A \times 2^J \in \text{meager}_{2^{I \cup J}}$ は明らかである.逆を示すのは次以降の命題に任せる.

命題 (Kuratowski–Ulam). X,Y を位相空間で Y は第二可算とする. $E \subseteq X \times Y$ が nowhere dense な部分集合なら, meager の意味でほとんどすべての $x \in X$ で E_x が nowhere dense 集合である. ただし $E_x = \{y \in Y : (x,y) \in E\}$.

また, $E\subseteq X\times Y$ が meager な部分集合なら, meager の意味でほとんどすべての $x\in X$ で E_x が meager 集合である.

証明. 前半の主張を示せば後半が従うのは明らか. よって前半の主張を示す. E は閉集合と仮定してもよい.

 $\{V_n\}_{n\in\omega}$ を Y の開基とする. $G=(X\times Y)-E$ とおくと, G は稠密開集合である. 各自然数 n について

$$G_n = \{x \in X : \exists y \in V_n, (x, y) \in G\}$$

とおく.

 G_n が開集合であることを示す. $x \in G_n$ とし, $y \in V_n$ で $(x,y) \in G$ なるものをとる. G が開集合なので開集合 $U \subseteq X, V \subseteq Y$ があり, $x \in U, y \in V \subseteq V_n, U \times V \subseteq G$. すると $U \subseteq G_n$. したがって G_n は開集合である.

 G_n が稠密であることを示す. $U\subseteq X$ を非空開集合とする. G が稠密なので $G\cap (U\times V_n)$ は非空である. よって G_n は U と交わる. よって G_n は稠密.

以上より, $\bigcap_n G_n$ は X の comeager 集合である.

任意の $x\in\bigcap_n G_n$ について、セクション G_x は任意の n について V_n の点を持つ。 $\{V_n\}_{n\in\omega}$ が Y の開基だったので、これは G_x が Y の稠密開集合であることを意味する.よって $E_x=Y\backslash G_x$ は nowhere dense.

以上より comeager 集合 $\bigcap_n G_n$ の任意の点 x について E_x は nowhere dense である.

系. X,Y を位相空間で,Y は第二可算であるとする. $X\times Y$ の部分集合 $A\times B$ が meager ならば $A\subseteq X$ または $B\subseteq Y$ が meager.

証明. $A \times B$ が meager かつ A が nonmeager だとする. する

とほとんどすべての $x \in X$ で $(A \times B)_x$ が meager. すると, A が nonmeager なので、ある $x \in A$ があって、 $(A \times B)_x$ が meager. $x \in A$ より $(A \times B)_x = B$ なので B が meager である.

空間 2^J において全体集合は meager でない (コンパクトハウスドルフ空間に対する Baire の範疇定理より). そこで系より次が従う.

可算集合 I と集合 J で $I \cap J = \emptyset$ なものと部分集合 $A \subseteq 2^I$ について

$$A \in \text{meager}_{2^I} \iff A \times 2^J \in \text{meager}_{2^I \cup J}.$$
 (1)

これで命題3が示された.

Definition 1.6. $2 = \{0,1\}$ に $\mathbb{Z}/2\mathbb{Z}$ の加法を入れ、 2^I に座標ごとの加法を入れる.そして $f \in 2^I$ と $X \subseteq 2^I$ に対して

$$f+X=\{f+g:g\in X\}$$

とおく. 2^I 上のイデアル $\mathscr I$ が 0-1 不変であるとはどんな $f \in 2^I$ と $X \in \mathscr I$ についても $f + X \in \mathscr I$ となることを言う.

null イデアルと meager イデアルは明らかに 0-1 不変である.

Lemma 1.7. \mathscr{I} が添え字不変かつ 0-1 不変な 2^{ω} 上のイデアルならば, どんな無限集合 I についても $\mathscr{I}(I)$ は 0-1 不変.

証明. $f \in 2^I$, $X \in \mathscr{I}(I)$ とする. すると $\Delta : \omega \to I$ 単射と $Y \in \mathscr{I}$ があって $X \subseteq \Delta_*(Y)$. このとき $f' = \Delta^*(f)$ とおくと $f + X \subseteq \Delta_*(f' + Y)$. \mathscr{I} が 0-1 不変なので $f' + Y \in \mathscr{I}$. よって $f + X \in \mathscr{I}(I)$.

Definition 1.8. \mathscr{I} を 2^{ω} 上の添え字不変イデアルとする. 無限集合 I について次の poset を定義する.

- $\mathbb{P}(\mathscr{I}, I) = \{ B \in \text{Baire}(2^I) : B \notin \mathscr{I}(I) \}.$
- $\mathbb{B}(\mathscr{I}, I) = \text{Baire}(2^I)/\mathscr{I}(I)$.

Lemma 1.9. $i: \mathbb{P}(\mathscr{I},I) \to \mathbb{B}(\mathscr{I},I) \setminus \{0\}$ を同値類への射影とすると、これは稠密埋め込み.

Definition 1.11. ccc イデアルとは添え字不変イデアル $\mathscr I$ on 2^ω であって,任意の無限集合 I に対して $\mathbb P(\mathscr I,I)$ が ccc であるもののこと.

命題. null イデアル, meager イデアルは ccc イデアルである.

証明. Δ システム補題を使った証明より $\operatorname{Fn}(I,2)$ が ccc であることは既知とする. よって meager イデアルは ccc イデアルである.

null イデアルが ccc なことは次の補題より従う.

補題. (X, \mathcal{S}, μ) を確率空間とする. $T \subseteq \mathcal{S}$ が非可算で T の

元はすべて測度正とする.このとき異なる $A,B \in T$ があって $\mu(A \cap B) > 0$.

証明. $T_n=\{A\in T:\mu(A)>1/n\}$ とおくと $T=\bigcup_n T_n$. よってある n が存在して T_n は非可算である. すべての相異なる $A,B\in T$ に対して $\mu(A\cap B)=0$ と仮定する. T_n から相異なる n 個の元 A_1,\ldots,A_n をとる. このとき

$$\mu(A_1 \cup \dots \cup A_n) = \mu(A_1) + \dots + \mu(A_n) - \sum_{i < j} \mu(A_i \cap A_j)$$

$$+ \sum_{i < j < k} \mu(A_i \cap A_j \cap A_k) - \dots$$

$$= \mu(A_1) + \dots + \mu(A_n)$$

$$> (1/n) \cdot n = 1 = \mu(X)$$

矛盾. //

補題. 添え字不変イデアル $\mathscr I$ on 2^ω が \csc イデアルであるためには, $\mathbb P(\mathscr I,\omega_1)$ が \csc であることが必要十分.

証明. $\operatorname{Baire}(2^I)$ の ω_1 個の元 $(X_\alpha:\alpha<\omega_1)$ を考える. 各 X_α は Baire 集合なのでサイズ ω_1 以下の添え字の集合 $J\subseteq I$ があって X_α たちはすべて J シリンダーである. $i:J\to I$ を包含写像とする. $X_\alpha=i_*(Y_\alpha)$ となる Baire 集合 $Y_\alpha\subseteq 2^J$ がとれる. また単射 $\Gamma:J\to\omega_1$ をとる. このとき添え字不変性より

$$\begin{split} X_{\alpha} \in \mathscr{I}(I) &\iff \Gamma_{*}(Y_{\alpha}) \in \mathscr{I}(\omega_{1}) \\ X_{\alpha} \cap X_{\beta} \in \mathscr{I}(I) &\iff \Gamma_{*}(Y_{\alpha}) \cap \Gamma_{*}(Y_{\beta}) \in \mathscr{I}(\omega_{1}) \end{split}$$

が成り立つ. よって、 $\mathbb{P}(\mathscr{I},\omega_1)$ が \csc なら $\mathbb{P}(\mathscr{I},I)$ も \csc である.

参考文献

- Andreas Blass. "Chapter 6 Combinatorial Cardinal Characteristics of the Continuum". In: *Handbook of Set Theory*. Springer Netherlands, 2009, pp. 395–489.
- [2] Dan Ma. Another characterization about CCC spaces — Dan Ma's Topology Blog. https://dantopology. wordpress . com / 2014 / 02 / 28 / another characterization-about-ccc-spaces/.
- [3] A. Kechris. Classical Descriptive Set Theory. Graduate Texts in Mathematics. Springer New York, 2012.
- [4] Kenneth Kunen. "Chapter 20 Random and Cohen Reals". In: Handbook of Set-Theoretic Topology. Ed. by Kenneth Kunen and Jerry E. Vaughan. Amsterdam: North-Holland, 1984, pp. 887–911.

[5] J.C. Oxtoby. Measure and Category: A Survey of the Analogies between Topological and Measure Spaces. Graduate Texts in Mathematics. Springer New York, 2013.