Deep Network for Speech Emotion Recognition —A Study of Deep Learning—

Zhuowei Han

Institut für Signalverarbeitung und Systemtheorie

Universität Stuttgart

16/04/2015

Motivation

Speech Emotion Recognition

- More natural human-machine interaction requires paralinguistic information such as age, gender, emotion.
- Emotion data are high-dimensional complex data with non-linear temporal hidden features
- GMM is not sufficient enoug to modelling speech emotion

Motivation

Deep Learning

- New research area of machine learning (from shallow to deep structure)
- Deep architecture for extracting complex structure and building internal representations via unsupervised learning
- Widely applied in vision/audition processing, e.g. handwriting recognition (Graves, Alex, et al. 2009), traffic sign classification (Schmidhuber, et al. 2011), text translation (Google, 2014)

Table of Contents

Foundations

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine

Table of Contents

Foundations

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine

Foundations

Mel Frequency Cepstral Coefficients

- most commonly used features in speech emotion analysis
- short-term power spectrum based on frame
- mel-scale approximate human perception

$$f_{mel} = 1125 \ln (1 + f_{Hz}/700)$$

Pre-processing for MFCCs

Steps to MFCCs

- 1. Convert speech signal with overlapped window to frames (20ms frame length, 10ms shifting).
- 2. Calculate power spectrum for each frame with DFT and take the logarithm value.
- 3. Apply Mel filterbank to the power spectrum, sum the power in each filter.
- 4. Decorrelation by applying Discrete Cosine Transform (DCT) to the logarithm of the filter powers.
- 5. Keep coefficients 1-20 of DCT and discard the rest.

Foundations

Framework of Emotion Recognition

- Pre-processing of emotion data to extract MFCC features
- Model data distribution based on MFCCs via unsupervised learning
- Classification with supervised learning

Table of Contents

Foundations

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine

Restricted Boltzmann Machine

- Generative energy-based graphical model, capture data distribution $P(\mathbf{x}|\boldsymbol{\theta})$
- Trained in unsupervised way, only use unlabeled input sequence x for learning.
 - □ automatically extract useful features from data
 - □ find hidden structure (distribution).
 - □ learned features used for prediction or classification
- Successfully applied in motion capture (Graham W. Taylor, Geoffrey E. Hinton, 2006)
- non-temporal, but is potential to be extended to capture temporal information

Restricted Boltzmann Machine

Structure

 $\begin{aligned} & \text{visible/input layer} & & \mathbf{x} \in \{0,1\} \\ & \text{hidden layer} & & \mathbf{h} \in \{0,1\} \\ & \text{parameter set} & & \boldsymbol{\theta} = \{\mathbf{W}, \mathbf{b}, \mathbf{c}\} \end{aligned}$

Restricted Boltzmann Machine

Structure

Energy Function:
$$E_{\theta}(\mathbf{x}, \mathbf{h}) = -\mathbf{x}^{T}\mathbf{W}\mathbf{h} - \mathbf{b}^{T}\mathbf{x} - \mathbf{c}^{T}\mathbf{h}$$

Joint Distribution:
$$P^{RBM}(\mathbf{x}, \mathbf{h}) = \frac{1}{Z}e^{-E_{\theta}(\mathbf{x}, \mathbf{h})}$$

Partition Function:
$$Z = \sum e^{-E_{\theta}(\mathbf{x}, \mathbf{h})}$$

Free Energy:
$$\mathcal{F}(\mathbf{x}) = -\log \sum_{\mathbf{h}} e^{-E(\mathbf{x},\mathbf{h})}$$

Inference

Inference

$$\begin{split} P(\mathbf{x}) &= \sum_{\mathbf{h}} P(\mathbf{x}, \mathbf{h}) \\ P(\mathbf{h}) &= \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{h}) \\ P(\mathbf{h} | \mathbf{x}) &= \frac{P(\mathbf{x}, \mathbf{h})}{P(\mathbf{x})} \\ P(\mathbf{x} | \mathbf{h}) &= \frac{P(\mathbf{x}, \mathbf{h})}{P(\mathbf{h})} \\ P(h_j &= 1 \mid \mathbf{x}) &= sigmoid(\sum_i x_i W_{ij} + c_j) \\ P(x_i &= 1 \mid \mathbf{h}) &= sigmoid(\sum_i W_{ij} h_j + b_i) \end{split}$$

- Consider visible units from previous time step as additional bias for current visible and hidden layer
- A and B are weight parameter of visible (history) visible and visible (history) - hidden connections
- Visible layer is linear units with independent Gaussian noise to model real-valued data, e.g. spectral features

- Consider visible units from previous time step as additional bias for current visible and hidden layer
- A and B are weight parameter of visible (history) visible and visible (history) hidden connections
- Visible layer is linear units with independent Gaussian noise to model real-valued data, e.g. spectral features

Energy Function:
$$E_{\boldsymbol{\theta}}^{CRBM}(\mathbf{x}, \mathbf{h}) = \left\| \frac{\mathbf{x} - \tilde{\mathbf{b}}}{2} \right\|^2 - \tilde{\mathbf{c}}^T \mathbf{h} - \mathbf{x}^T \mathbf{W} \mathbf{h}$$

$$\tilde{\mathbf{b}} = \mathbf{b} + \mathbf{A} \cdot \mathbf{x}_{< t}$$

$$\tilde{\mathbf{c}} = \mathbf{c} + \mathbf{B} \cdot \mathbf{x}_{< t}$$

$$\boldsymbol{\theta} = \{ \mathbf{W}, \mathbf{A}, \mathbf{B}, \mathbf{b}, \mathbf{c} \}$$
Free Energy: $\mathcal{F}(\mathbf{x}) = \left\| \mathbf{x} - \tilde{\mathbf{b}} \right\|^2 - \log(1 + e^{\tilde{\mathbf{c}} + \mathbf{x} \cdot \mathbf{W}})$

Energy Function:
$$E_{\boldsymbol{\theta}}^{CRBM}(\mathbf{x}, \mathbf{h}) = \left\| \frac{\mathbf{x} - \tilde{\mathbf{b}}}{2} \right\|^2 - \tilde{\mathbf{c}}^T \mathbf{h} - \mathbf{x}^T \mathbf{W} \mathbf{h}$$

Free Energy: $\mathcal{F}(\mathbf{x}) = \left\| \mathbf{x} - \tilde{\mathbf{b}} \right\|^2 - \log(1 + e^{\tilde{\mathbf{c}} + \mathbf{x} \cdot \mathbf{W}})$

$$\tilde{\mathbf{b}} = \mathbf{b} + \mathbf{A} \cdot \mathbf{x}_{< t}$$

$$\tilde{\mathbf{c}} = \mathbf{c} + \mathbf{B} \cdot \mathbf{x}_{< t}$$

$$\boldsymbol{\theta} = \{ \mathbf{W}, \mathbf{A}, \mathbf{B}, \mathbf{b}, \mathbf{c} \}$$

Maximum Likelihood Estimation $P(\mathbf{x}|\boldsymbol{\theta})$

Maximum Likelihood Estimation $P(\mathbf{x}|\boldsymbol{\theta})$

Kullback-Leibler Divergence:

$$Q(\mathbf{x}) \| P(\mathbf{x}|\boldsymbol{\theta}) = \int_{-\infty}^{\infty} Q(\mathbf{x}) \cdot \log \frac{Q(\mathbf{x})}{P(\mathbf{x}|\boldsymbol{\theta})} d\mathbf{x}$$

$$= \int_{-\infty}^{\infty} Q(\mathbf{x}) \cdot \log Q(\mathbf{x}) d\mathbf{x} - \int_{-\infty}^{\infty} Q(\mathbf{x}) \cdot \log P(\mathbf{x}|\boldsymbol{\theta}) d\mathbf{x}$$

$$= \langle \log Q(\mathbf{x}) \rangle_{Q(\mathbf{x})} - \langle \log P(\mathbf{x}|\boldsymbol{\theta}) \rangle_{Q(\mathbf{x})}$$

 $Q(\mathbf{x})$, true data distribution

 $P(\mathbf{x}|\boldsymbol{\theta})$, model distribution

 $\langle \cdot
angle_{Q(\mathbf{x})}$, expectation w.r.t. $Q(\mathbf{x})$

Note that KL is non-negative

Maximum Likelihood Estimation $P(\mathbf{x}|\boldsymbol{\theta})$

Kullback-Leibler Divergence:

$$Q(\mathbf{x}) \| P(\mathbf{x}|\boldsymbol{\theta}) = \int_{-\infty}^{\infty} Q(\mathbf{x}) \cdot \log \frac{Q(\mathbf{x})}{P(\mathbf{x}|\boldsymbol{\theta})} d\mathbf{x}$$

$$= \int_{-\infty}^{\infty} Q(\mathbf{x}) \cdot \log Q(\mathbf{x}) d\mathbf{x} - \int_{-\infty}^{\infty} Q(\mathbf{x}) \cdot \log P(\mathbf{x}|\boldsymbol{\theta}) d\mathbf{x}$$

$$= \langle \log Q(\mathbf{x}) \rangle_{Q(\mathbf{x})} - \langle \log P(\mathbf{x}|\boldsymbol{\theta}) \rangle_{Q(\mathbf{x})}$$

 $Q(\mathbf{x})$, true data distribution

 $P(\mathbf{x}|\boldsymbol{\theta})$, model distribution

$$\langle \cdot
angle_{Q(\mathbf{x})}$$
, expectation w.r.t. $Q(\mathbf{x})$

Note that KL is non-negative

$$-\log P(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{F}(\mathbf{x}) + \log \sum_{\mathbf{x}} \sum_{\mathbf{h}} e^{-E_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{h})}$$

$$-\log P(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{F}(\mathbf{x}) + \log \sum_{\mathbf{x}} \sum_{\mathbf{h}} e^{-E_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{h})}$$

$$-\frac{\partial \log P(\mathbf{x}|\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} - \sum_{\tilde{\mathbf{x}}} P(\tilde{\mathbf{x}}) \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \boldsymbol{\theta}}$$

x, input (visible) data space

 $\tilde{\mathbf{x}},$ all possible vectors in the data space, generated by model.

$$-\log P(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{F}(\mathbf{x}) + \log \sum_{\mathbf{x}} \sum_{\mathbf{h}} e^{-E_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{h})}$$
$$-\frac{\partial \log P(\mathbf{x}|\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} - \sum_{\mathbf{x}} P(\tilde{\mathbf{x}}) \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \boldsymbol{\theta}}$$

x, input (visible) data space

 $\tilde{\mathbf{x}},$ all possible vectors in the data space, generated by model.

objective function by averaging log-likelihood over data:

$$-\left\langle \frac{\partial \log P(\mathbf{x}|\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right\rangle_{\mathbf{x}} = \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{\mathbf{x}} - \left\langle \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \boldsymbol{\theta}} \right\rangle_{\tilde{\mathbf{x}}}$$

Gibbs sampling

$$\mathbf{x}^{(1)} \sim P(\mathbf{x})$$

$$\mathbf{h}^{(1)} \sim P(\mathbf{h}|\mathbf{x}^{(1)})$$

$$\mathbf{x}^{(2)} \sim P(\mathbf{x}|\mathbf{h}^{(1)})$$
$$\mathbf{h}^{(2)} \sim P(\mathbf{h}|\mathbf{x}^{(2)})$$

$$\mathbf{x}^{(k)} \sim P(\mathbf{x}|\mathbf{h}^{(k-1)})$$

Gibbs sampling

$$\mathbf{x}^{(1)} \sim P(\mathbf{x})$$

 $\mathbf{h}^{(1)} \sim P(\mathbf{h}|\mathbf{x}^{(1)})$

$$\mathbf{x}^{(2)} \sim P(\mathbf{x}|\mathbf{h}^{(1)})$$

 $\mathbf{h}^{(2)} \sim P(\mathbf{h}|\mathbf{x}^{(2)})$

$$\mathbf{x}^{(k)} \sim P(\mathbf{x}|\mathbf{h}^{(k-1)})$$

Gibbs sampling

$$\mathbf{x}^{(1)} \sim P(\mathbf{x})$$

 $\mathbf{h}^{(1)} \sim P(\mathbf{h}|\mathbf{x}^{(1)})$

$$\mathbf{x}^{(2)} \sim P(\mathbf{x}|\mathbf{h}^{(1)})$$
$$\mathbf{h}^{(2)} \sim P(\mathbf{h}|\mathbf{x}^{(2)})$$

:

$$\mathbf{x}^{(k)} \sim P(\mathbf{x}|\mathbf{h}^{(k-1)})$$

4 B > 4 D > 4 A >

- lack k=0, $P_0({f x})$ is true data distribution, independent of parameter $m{ heta}$
- Performing k-Gibbs steps to generate $P_k(\mathbf{x}|\boldsymbol{\theta})$, with $k \to \infty$ the Markov chain converges to stationary distribution:

$$P_{\infty}(\mathbf{x}|\boldsymbol{\theta}) \to P(\tilde{\mathbf{x}}|\boldsymbol{\theta})$$

- k=0, $P_0(\mathbf{x})$ is true data distribution, independent of parameter $\boldsymbol{\theta}$
- Performing k-Gibbs steps to generate $P_k(\mathbf{x}|\boldsymbol{\theta})$, with $k \to \infty$ the Markov chain converges to stationary distribution:

$$P_{\infty}(\mathbf{x}|\boldsymbol{\theta}) \to P(\tilde{\mathbf{x}}|\boldsymbol{\theta})$$

Rewrite objective function:

$$-\left\langle \frac{\partial \log P(\mathbf{x}|\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right\rangle_{P_0(\mathbf{x})} = \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_0(\mathbf{x})} - \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_\infty(\mathbf{x}|\boldsymbol{\theta})}$$

- k=0, $P_0(\mathbf{x})$ is true data distribution, independent of parameter $\boldsymbol{\theta}$
- Performing k-Gibbs steps to generate $P_k(\mathbf{x}|\boldsymbol{\theta})$, with $k \to \infty$ the Markov chain converges to stationary distribution:

$$P_{\infty}(\mathbf{x}|\boldsymbol{\theta}) \to P(\tilde{\mathbf{x}}|\boldsymbol{\theta})$$

Rewrite objective function:

$$-\left\langle \frac{\partial \log P(\mathbf{x}|\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right\rangle_{P_0(\mathbf{x})} = \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_0(\mathbf{x})} - \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_\infty(\mathbf{x}|\boldsymbol{\theta})}$$

Contrastive Divergence: Perform CD-1

$$-\frac{\partial}{\partial \boldsymbol{\theta}} (P_0 \| P_{\infty}^{\boldsymbol{\theta}} - P_1^{\boldsymbol{\theta}} \| P_{\infty}^{\boldsymbol{\theta}})$$

$$= \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_0} - \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_1^{\boldsymbol{\theta}}} + \frac{\partial P_1^{\boldsymbol{\theta}}}{\partial \boldsymbol{\theta}} \frac{\partial (P_1^{\boldsymbol{\theta}} | P_{\infty}^{\boldsymbol{\theta}})}{\partial P_1^{\boldsymbol{\theta}}}$$

Contrastive Divergence: Perform CD-1

$$-\frac{\partial}{\partial \boldsymbol{\theta}} (P_0 \| P_{\infty}^{\boldsymbol{\theta}} - P_1^{\boldsymbol{\theta}} \| P_{\infty}^{\boldsymbol{\theta}})$$

$$= \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_0} - \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_1^{\boldsymbol{\theta}}} + \frac{\partial P_1^{\boldsymbol{\theta}}}{\partial \boldsymbol{\theta}} \frac{\partial (P_1^{\boldsymbol{\theta}} | P_{\infty}^{\boldsymbol{\theta}})}{\partial P_1^{\boldsymbol{\theta}}}$$

Contrastive Divergence: Perform CD-1

$$\begin{split} &-\frac{\partial}{\partial \boldsymbol{\theta}} (P_0 \| P_{\infty}^{\boldsymbol{\theta}} - P_1^{\boldsymbol{\theta}} \| P_{\infty}^{\boldsymbol{\theta}}) \\ &= \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_0} - \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_0^{\boldsymbol{\theta}}} + \frac{\partial P_1^{\boldsymbol{\theta}}}{\partial \boldsymbol{\theta}} \frac{\partial (P_1^{\boldsymbol{\theta}} | P_{\infty}^{\boldsymbol{\theta}})}{\partial P_1^{\boldsymbol{\theta}}} + \frac{\partial P_1^{\boldsymbol{\theta}}}{\partial \boldsymbol{\theta}} \frac{\partial (P_1^{\boldsymbol{\theta}} | P_{\infty}^{\boldsymbol{\theta}})}{\partial P_1^{\boldsymbol{\theta}}} \end{split}$$

Contrastive Divergence: Perform CD-1

$$\begin{split} &-\frac{\partial}{\partial \boldsymbol{\theta}}(P_0 \| P_{\infty}^{\boldsymbol{\theta}} - P_1^{\boldsymbol{\theta}} \| P_{\infty}^{\boldsymbol{\theta}}) \\ &= \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_0} - \left\langle \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} \right\rangle_{P_1^{\boldsymbol{\theta}}} + \frac{\partial P_1^{\boldsymbol{\theta}}}{\partial \boldsymbol{\theta}} \frac{\partial (P_1^{\boldsymbol{\theta}} | P_{\infty}^{\boldsymbol{\theta}})}{\partial P_1^{\boldsymbol{\theta}}} + \frac{\partial P_1^{\boldsymbol{\theta}}}{\partial \boldsymbol{\theta}} \frac{\partial (P_1^{\boldsymbol{\theta}} | P_{\infty}^{\boldsymbol{\theta}})}{\partial P_1^{\boldsymbol{\theta}}} \end{split}$$

Parameter Update

$$\Delta oldsymbol{ heta} \sim \left\langle rac{\partial \mathcal{F}(\mathbf{x})}{\partial oldsymbol{ heta}}
ight
angle_{P_0} - \left\langle rac{\partial \mathcal{F}(\mathbf{x})}{\partial oldsymbol{ heta}}
ight
angle_{P_1^{oldsymbol{ heta}}}$$

Table of Contents

Foundations

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine

Structure and Function

Hidden layer pre-activation:

$$\mathbf{a}(\mathbf{x}) = \mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}$$
$$a_j(\mathbf{x}) = \sum_i w_{ji}^{(1)} x_i + b_j^{(1)}$$

Hidden layer activation:

$$\mathbf{h} = f(\mathbf{a})$$

Output layer activation of single hidden layer:

$$\hat{y}(\mathbf{x}) = o(\mathbf{W}^{(2)}\mathbf{h}^{(1)} + \mathbf{b}^{(2)})$$

Output layer activation of N hidden layers:

$$\hat{y}(\mathbf{x}) = o(\mathbf{W}^{(N+1)}\mathbf{h}^{(N)} + \mathbf{b}^{(N+1)})$$

Training

Empirical Risk Minimization

learning algorithms

$$\arg \min_{\boldsymbol{\theta}} \frac{1}{M} \sum_{m} l(\hat{y}(\mathbf{x}^{(m)}; \boldsymbol{\theta}), y^{(m)}) + \lambda \Omega(\boldsymbol{\theta})$$

- loss function $l(\hat{y}(\mathbf{x}^{(m)}; \boldsymbol{\theta}), y^{(m)})$ for sigmoid activation $l(\boldsymbol{\theta}) = \sum_{m} \frac{1}{2} \left\| y^{(m)} \hat{y}^{(m)} \right\|^2$
- regularizer $\lambda\Omega(\boldsymbol{\theta})$

Optimization

- Gradient calculation with Backpropagation
- Stochastic/Mini-batch gradient descent

Unsupervised Layerwise Pre-training

Vanishing Gradient

- Training time increases as network gets deeper
- Gradient shrink exponentially and training end up local minima
- Caused by random initialization of network parameters

Unsupervised Layerwise Pre-training

Vanishing Gradient

- Training time increases as network gets deeper
- Gradient shrink exponentially and training end up local minima
- Caused by random initialization of network parameters

Unsupervised layerwise pre-training

- Pretrain the deep network layer by layer to build a stacked auto-encoder
- Each layer is trained as a single hidden layer auto-encoder by minimizing average reconstruction error:

$$\min l_{AE} = \sum_{m} \frac{1}{2} \left\| \mathbf{x}^{(m)} - \hat{\mathbf{x}}^{(m)} \right\|^2$$

• Fine-tuning the entire deep network with supervised training

Pre-training

3

Overfitting

- Huge amount of parameters in deep network
- Not enough data for training
- Poor generalization

Overfitting

- Huge amount of parameters in deep network
- Not enough data for training
- Poor generalization

Regularization

■ Add weight penalization $\lambda \|\mathbf{w}\|_p$ to loss function

$$\arg \min_{\boldsymbol{\theta}} \frac{1}{M} \sum_{m} l(\hat{y}(\mathbf{x}^{(m)}; \boldsymbol{\theta}), y^{(m)}) + \lambda \|\mathbf{w}\|_{p}$$

In convex optimization:

$$\arg \ \min_{\boldsymbol{\theta}} \frac{1}{M} \sum_{m} l(\hat{y}(\mathbf{x}^{(m)}; \boldsymbol{\theta}), y^{(m)}), s.t. \left\| \mathbf{w} \right\|_{p} \leq C$$

P-Norm

$$\|\mathbf{w}\|_p := \left(\sum_{n=1}^n |w_i|^p\right)^{1/p} = \sqrt[p]{|w_1|^p + \dots + |w_n|^p}$$

Widely used: L1- and L2-regularization (p=1 and p=2)

P-Norm

$$\|\mathbf{w}\|_p := \left(\sum_{n=1}^n |w_i|^p\right)^{1/p} = \sqrt[p]{|w_1|^p + \dots + |w_n|^p}$$

Widely used: L1- and L2-regularization (p=1 and p=2)

Table of Contents

Foundations

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine

Problems with RNN

- gradient vanishing during backpropagation as time steps increases (>100)
- difficult to capture long-time dependency (which is required in emotion recognition)

Problems with RNN

- gradient vanishing during backpropagation as time steps increases (>100)
- difficult to capture long-time dependency (which is required in emotion recognition)

S. Hochreiter and J. Schmidhuber, Lovol. 9, pp. 1735-1780, 1997.

$$i_{t} = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_{i})$$

$$f_{t} = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_{f})$$

$$c_{t} = f_{t}c_{t-1} + i_{t}\tanh(W_{xc}x_{t} + W_{hc}h_{t-1} + b_{c})$$

$$o_{t} = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_{t} + b_{o})$$

$$h_{t} = o_{t}\tanh(c_{t})$$

Features in LSTM

- gates are trained to learn when it should be open/closed.
- Constant Error Carousel
- preserve long-time dependency by maintaining gradient over time.

Table of Contents

Foundations

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine

EmoDB Database

	Joy	Neutral	Sadness	Anger	Total
No. of sentences	71	79	62	127	339
Percent (%)	21	23.2	18.3	37.5	100

Data Structure

CRBM-DNN

CRBM-LSTM

LSTM

LSTM with rectifier units

Confusion matrix of CRBM-DNN result.

			Classfied		
		Joy	Neutral	Sadness	Anger
	Joy	57.7%	1.4%	0.0%	40.8%
True	Neutral	17.7%	54.4%	25.3%	2.5%
	Sadness	1.6%	27.9%	70.5%	0.0%
	Anger	39.4%	1.6%	0.0%	59.1%
	recognition rate:59.76%				

Confusion matrix of CRBM-LSTM result.

			Classfied		
		Joy	Neutral	Sadness	Anger
	Joy	11.3%	9.9%	2.8%	76.1%
True	Neutral	0.0%	72.2%	17.7%	10.1%
	Sadness	0.0%	4.8%	88.7%	6.5%
	Anger	0.8%	1.6%	0.0%	97.6%
		recogr	nition rate: 71	.98%	

Confusion matrix of pure LSTM result.

			Classfied		
		Joy	Neutral	Sadness	Anger
	Joy	66.2%	4.2%	0.0%	29.6%
True	Neutral	6.3%	79.7%	10.2%	3.8%
	Sadness	0.0%	19.7%	80.3%	0.0%
	Anger	12.6%	0.8%	0.0%	86.6%
		recogr	nition rate: 81	.59%	

Confusion matrix of LSTM-Rectifier result.

			Classfied		
		Joy	Neutral	Sadness	Anger
	Joy	57.7%	7.0%	0.0%	35.2%
True	Neutral	6.3%	86.1%	6.3%	1.3%
	Sadness	0.0%	6.6%	93.4%	0.0%
	Anger	8.7%	0.0%	0.0%	91.3%
		recogr	nition rate: 83	.43%	

Table of Contents

Foundations

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine

Conclusion

- Capturing long-term dependencies is necessary for extracting speech emotion
- CRBM-DNN is inappropriate for modelling long-term dependencies (ER: 40.24%)
- LSTM is good at modelling long time dependencies
- Frame-based classification can also reach good result

Conclusion

- Capturing long-term dependencies is necessary for extracting speech emotion
- CRBM-DNN is inappropriate for modelling long-term dependencies (ER: 40.24%)
- LSTM is good at modelling long time dependencies
- Frame-based classification can also reach good result

Model	Temporal Dependency	Memory	Generaltive
DNN	-	-	-
RBM	-	-	✓
CRBM	✓	2-5	✓
ΑE	-	-	-
RNN	✓	1-100	-
LSTM	✓	1-1000	<u>-</u> ∢≅≯∢□⊁∢∂

Conclusion

- Capturing long-term dependencies is necessary for extracting speech emotion
- CRBM-DNN is inappropriate for modelling long-term dependencies (ER: 40.24%)
- LSTM is good at modelling long time dependencies
- Frame-based classification can also reach good result
 - □ CRBM-LSTM 71.98%
 - □ LSTM 81.59%
 - \Box LSTM with rectifier layers 83.43%

Outlook

- Stacking CRBM to form deeper structure
- Train CRBM with more/larger database
- Second order optimization to speed up learning process
- Bi-directional LSTM, capturing future dependencies

Thank You!