

中国人民解放军战略支援部队信息工程大学一李响副教授

PLA Strategic Support Force Information Engineering University——A/Prof. Xiang Li

德国奥格斯堡大学访问学者和青年科学家,地理信息 世界特聘审稿专家,测绘学报等核心期刊审稿人,高校 GIS论坛十大新锐人物。

主要研究方向地理信息系统平台及其应用,主持国家自然科学基金,国家重点研发(子课题)等课题多项,获省部级科技进步二等奖2项,三等奖1项,部门理论成果一等奖1项,高校GIS论坛"优秀教学成果"奖1项。

● 出版和翻译著作6部,近5年,以第一作者或通讯作者 发表论文16篇,发明专利2项,软件著作权3项。

Positive calculation of Gauss-Kluge projection

中央子午线

T

Positive calculation of Gauss-Kluge projection

椭球长半轴 a

椭球短半轴

椭球扁率

$$\alpha = (a-b)/a$$

已知长半轴a和扁率a, 计算出短半轴b:

$$b=a(1-\alpha)$$

椭球第一偏心率
$$e = \sqrt{\frac{a^2 - b^2}{a^2}}$$

椭球第二偏心率
$$e' = \sqrt{\frac{a^2 - b^2}{b^2}}$$

$$e'^2 = e^2/(1 - e^2)$$

Positive calculation of Gauss-Kluge projection

高斯-克吕格投影的正算公式根据投影条件推导而来:

- (1) 中央经线和地球赤道投影成为直线且为投影的对称轴;
- (2) 等角投影;
- (3) 中央经线上没有长度变形。

Positive calculation of Gauss-Kluge projection

已知点的地理坐标经度为L, 纬度为B, 求高斯平面直角坐标, 注意横坐标y, 纵坐标x的计算公式为:

$$x = a_0 + a_2 l^2 + a_4 l^4 + a_6 l^6$$
$$y = a_1 l + a_3 l^3 + a_5 l^5$$

 $l=L-L_0$ 1为所求点的经度L相对中央子午线 L_0 的经差

a₀=X X表示中央子午线上地理坐标纬度等于B的点到赤道的子午线弧长

Positive calculation of Gauss-Kluge projection

$$a_1 = N \cos B$$

• N为卯酉圈的曲率半径 N = a/W, $W = \sqrt{1 - e^2 * \sin^2 B}$

$$a_{2} = \frac{1}{2}N\cos^{2}Bt, \quad t = \tan B$$

$$a^{3} = \frac{1}{6}N\cos^{3}B(1 - t^{2} + n^{2}), \quad n^{2} = e'^{2} * \cos^{2}B$$

$$a_{4} = \frac{1}{24}N\cos^{4}B(5 - t^{2} + 9n^{2} + 4n^{4})$$

$$a_{5} = \frac{1}{120}N\cos^{5}B(5 - 18t^{2} + t^{4} + 14n^{2} - 58n^{2}t^{2})$$

$$a_{6} = \frac{1}{720}N\cos^{6}B(61 - 58t^{2} + t^{4} + 270n^{2} - 330n^{2}t^{2})$$

行

Positive calculation of Gauss-Kluge projection

X——中央子午线上地理坐标纬度等于B的点到赤道的子午线弧长

$$X = a(1 - e^2)(A_0B + A_2\sin 2B + A_4\sin 4B + A_6\sin 6B + A_8\sin 8B + A_{10}\sin 10B)$$

$$A_{0} = 1 + \frac{3}{4}e^{2} + \frac{45}{64}e^{4} + \frac{175}{256}e^{6} + \frac{11025}{16384}e^{8} + \frac{43659}{65536}e^{10} \Leftrightarrow$$

$$A_{2} = -\frac{1}{2}(\frac{3}{4}e^{2} + \frac{15}{16}e^{4} + \frac{525}{512}e^{6} + \frac{2205}{2048}e^{8} + \frac{72765}{65536}e^{10}) \Leftrightarrow$$

$$A_{4} = \frac{1}{4}(\qquad \frac{15}{64}e^{4} + \frac{105}{256}e^{6} + \frac{2205}{4096}e^{8} + \frac{10395}{16384}e^{10}) \Leftrightarrow$$

$$A_{6} = -\frac{1}{6}(\qquad \frac{35}{512}e^{6} + \frac{315}{2048}e^{8} + \frac{31185}{131072}e^{10}) \Leftrightarrow$$

$$A_{8} = \frac{1}{8}(\qquad \frac{315}{16384}e^{8} + \frac{3465}{65536}e^{10}) \Leftrightarrow$$

$$A_{10} = -\frac{1}{10}(\qquad \frac{693}{131072}e^{10}) \Leftrightarrow$$

行

Positive calculation of Gauss-Kluge projection

高斯-克吕格投影前后角度无变形,但长度存在变形,而距中央子午线越远,长度变形越大。

◆ 有效办法 ——分带投影

6度分带

- 比例尺1:2.5万到1:50万的地形图采用的是6度带
- 中央子午线 L_0 和带号n的关系为: L_0 =6n-3

Positive calculation of Gauss-Kluge projection

高斯-克吕格投影前后角度无变形,但长度存在变形,而距中央子午线越远,长度变形越大。

◆ 有效办法 ——分带投影

3度分带

- 1:1万及更大比例尺的地图采用3度分带
- 3度的带号n'与中央子午线 L_0 的关系为: L_0 =3n'

行

Positive calculation of Gauss-Kluge projection

高斯平面直角坐标系纵轴为X,横轴为Y。

● 举例: 20带的点P 横坐标P_v=-105734.8m

高斯投影的自然坐标

 $P_y = 20394265.2m$

高斯投影的通用坐标

Positive calculation of Gauss-Kluge projection

在Visual Studio 2017平台中,新建一个Windows控制台程序,将该项目命名为GaussKrugerTransform。

Positive calculation of Gauss-Kluge projection

新建一个椭球类,用于存储椭球参数,选择该工程,右键,选择"添加"-"类…",将该椭球类命名为Ellipsoid。

添加类				
类名(L):	.h 文件(<u>F</u>):		.cpp 文件(<u>P</u>):	
Ellipsoid	Ellipsoid.h		Ellipsoid.cpp	
基类(<u>B</u>):	访问(<u>A</u>):			
	public	~		
其他选项:				
■ 虚拟析构函数(V)				
内联(1)				
托管(<u>M</u>)				

Positive calculation of Gauss-Kluge projection

在Ellipsoid类里添加相应的变量来存储椭球参数

存储椭球的第一、第二偏 心率的平方

```
private:
//长半轴
double m_a;
//短半轴
double m_b;
//扁座
double m_alpha;
//第一偏心率平方
double m_ec;
//第二偏心率平方
double m_ec;
```

Positive calculation of Gauss-Kluge projection

默认设置椭球的构造函数:

采用GCS2000坐标系,只需要设置好长轴a以及扁率alpha。

Evaluate的函数具体的实现

Positive calculation of Gauss-Kluge projection

增加一个有参的构造函数:

```
Ellipsoid::Ellipsoid(double a, double invAlpha)
{
    this->a = a;
    this->alpha = 1 / invAlpha;
    Evaluate();
}
```

为了用户传参方便,传入长半轴a和 扁率的倒数。

```
Ellipsoid& operator=(const Ellipsoid& obj)
{
    m_a = obj.m_a;
    m_b = obj.m_b;
    m_alpha = obj.m_alpha;
    m_ec = obj.m_ec;
    m_ecc = obj.m_ecc;
    return *this;
}
```

为了便于椭球的拷贝, 重载 一个=号操作。

NO.	32/10		-2/2/20	×	
	添加类				
	类名(L):	.h 文件(<u>F</u>):	.cpp 文件(<u>P</u>):	
	Gauss Kruger Proj	Gauss Kruger Proj.h	GaussKru	ıgerProj.cpp	
	基类(B):	访问(<u>A</u>):			
		public	-		
	+ 44.24-4				
	其他选项:				
	虚拟析构函数(V)内联(I)				
	托管(<u>M</u>)			.07	
	-///				
	ř ×		~		
			在	锭 取消	

Positive calculation of Gauss-Kluge projection

四个主要的参数:

- 椭球参数
- 中央经线
- 投影带号
- 投影带

Positive calculation of Gauss-Kluge projection

默认选择北京所在的投影带,20带,采用6度带,这里也隐藏了一个细节,由于椭球默认是GCS2000的,所以该投影默认的地理坐标系是基于GCS2000。因此定义了一个私有函数ComputeL0来计算投影的中央经线L0。

Positive calculation of Gauss-Kluge projection

L0通过带号和6度带或者3度带,来计算出来的,如果既不是6度带,也不是3度带,则会出现问题,使用断言来提醒。

```
lvoid GaussKrugerProj::ComputeL0()
{
    if (m_zoneInterval == 6)
    {
        m_L0 = m_zoneInterval * m_zoneNo - 3;
    }
    else if (m_zoneInterval == 3)
    {
        m_L0 = 3 * m_zoneNo;
    }
    else
        assert(false);
}
```

Positive calculation of Gauss-Kluge projection

还有一个构造函数需要传椭球参数:

```
GaussKrugerProj::GaussKrugerProj(Ellipsoid ellipsoid, int zoneNo, int zoneInterval /* = 6 */)
{
    this->m_ellipsoid = ellipsoid;
    this->m_zoneInterval = zoneInterval;
    this->m_zoneNo = zoneNo;
    ComputeLO();
```

Positive calculation of Gauss-Kluge projection

GaussKrugerProj类投影正算返回两种坐标

Positive calculation of Gauss-Kluge projection

角度计算以弧度为单位

GetXY的实现

```
// step1 参数变量准备
//经纬度,度转弧度
double rB = DTOR(B);
double rL = DTOR(L);
double rL0 = DTOR(m_L0);
//经差
double rl = rL-rL0;
// 椭球参数
double a = m_ellipsoid.GetA();
double ecc = m_ellipsoid.GetEC();
double ecc = m_ellipsoid.GetECC();
```

行

```
// step 2 计算子午线弧长X
double Ac = 1 + 3 / 4.0 * ec + 45 / 64.0 * pow(ec, 2) + 175 / 256.0 * pow(ec, 3) + 11025 / 16384.0 * pow(ec, 4) + 43659 / 65536.0 * pow(ec, 5);
double Bc = 3 / 4.0 * ec + 15 / 16.0 * pow(ec, 2) + 525 / 512.0 * pow(ec, 3) + 2205 / 2048.0 * pow(ec, 4) + 72765 / 65536.0 * pow(ec, 5);
double Cc = 15 / 64.0 * pow(ec, 2) + 105 / 256.0 * pow(ec, 3) + 2205 / 4096.0 * pow(ec, 4) + 10395 / 16384.0 * pow(ec, 5);
double Dc = 35 / 512.0 * pow(ec, 3) + 315 / 2048.0 * pow(ec, 4) + 31185 / 131072.0 * pow(ec, 5);
double Ec = 315 / 16384.0 * pow(ec, 4) + 3465 / 65536.0 * pow(ec, 5);
double MO = a * (1 - ec);
double MO = a * (1 - ec);
double AO = Ac * MO;
double AO = Ac * MO;
double AO = Ac * MO;
double AO = -1 / 2.0 * Bc * MO;
double AO = -1 / 6.0 * Dc * MO;
double AO = -1 / 10.0 * Fc * MO;
double AI = -1 / 10.0 * Fc * MO;
double AI = -1 / 10.0 * Fc * MO;
double AI = -1 / 10.0 * Fc * MO;
```



```
// step 3 计算卯酉圈的曲率半径N
double W = sqrt(1 - ec * sin(rB) * sin(rB));
double N = a / W:
// step 4 计算其他参与计算的参数
double n2 = ecc * cos(rB) * cos(rB):
double t = tan(rB):
// step 5 高斯平面直角坐标系的自然坐标
// step 5.1 计算系数
double a0 = X:
double a1 = N * cos(rB):
double a2 = 1 / 2.0 * N * pow(cos(rB), 2) * t;
double a3 = 1 / 6.0 * N * pow(cos(rB), 3) * (1 - pow(t, 2) + n2);
double a4 = 1 / 24.0 * N * pow(cos(rB), 4) * (5 - pow(t, 2) + 9 * n2 + 4 * pow(n2, 2)).
double a5 = 1 / 120.0 * N * pow(cos(rB), 5) * (5 - 18 * pow(t, 2) + pow(t, 4) + 14 * n2 - 58 * n2 * pow(t, 2));
double a6 = 1 / 720.0 * N * pow(cos(rB), 6) * (61 - 58 * pow(t, 2) + pow(t, 4) + 270 * n2 - 330 * n2 * pow(t, 2)) * t;
// step 5.2 计算x, y
x = a0 + a2 * pow(r1, 2) + a4 * pow(r1, 4) + a6 * pow(r1, 6);
v = a1 * r1 + a3 * pow(r1, 3) + a5 * pow(r1, 5):
return true:
```

Positive calculation of Gauss-Kluge projection

进一步将y坐标按照带号以及规定的500公里进行偏移

```
bool GaussKrugerProj::GetCommonXY(double B, double L, double&x, double &y)
{
    bool res;
    res = GetXY(B, L, x, y);
    if (res)
    {
        x = x;
        y = y + m_zoneNo * 10000000;
        return res;
    }
    else return false;
}
```

Positive calculation of Gauss-Kluge projection

以北京的2000坐标下的坐标来进行验证

```
| double x, y; | GaussKrugerProj proj; | std::cout << "以北京为例 (39.892, 116.068) | 高斯平面直角坐标系的自然坐标为" << std::endl; | proj. GetXY (39.892, 116.068, x, y); | std::cout << std::fixed << std::setprecision(3) << x << "," << y << std::endl; | std::cout << "以北京为例 (39.892, 116.068) | 高斯平面直角坐标系的通用坐标为" << std::endl; | proj. GetCommonXY (39.892, 116.068, x, y); | std::cout << std::fixed << std::setprecision(3) << x << "," << y << std::endl; | std::cout << std::fixed << std::setprecision(3) << x << "," << y << std::endl; | std::cout << std::fixed << std::setprecision(3) << x << "," << y << std::endl; | std::cout << std::endl; | std::cout << std::fixed << std::setprecision(3) << x << "," << y << std::endl; | std::cout << std:
```

🖭 Microsoft Visual Studio 调试控制台

```
以北京为例(39.892, 116.068),高斯平面直角坐标系的自然坐标为
4417953.224,-79712.948
以北京为例(39.892, 116.068),高斯平面直角坐标系的通用坐标为
4417953.224,20420287.052
```

Positive calculation of Gauss-Kluge projection

在QGIS当中作进一步验证

Positive calculation of Gauss-Kluge projection

打开字段编辑器新建字段GKProjX

	更新现有的字段		
新建雄拟 → ス 輸出字段名和	•		*
\$x	### ### ### ### #####################	群组 操作符 该组包含操作符, 如+ - *	
输出预览: 18131098.096889947 ② 您正在编辑该图层中的信息, 自动打开编辑模式。	▶ 数学 ▼ 但该图层目前处于非编辑相	其式。若单击确定,将	f

Positive calculation of Gauss-Kluge projection

添加字段GKProjY

Positive calculation of Gauss-Kluge projection

以同样的方式再将该重新投影文件的投影变换为EPSG:4490 - China Geodetic Coordinate System 2000 , 并生成坐标属性:

Q 重投影文件:: 要素总计: 34, 过滤了: 34, 选中: 0						_		×	
1									
	ıam€≜	X	Υ	GKProjX	GKProjY	CGCS2000Y	CGCS2000X		_
1	澳门	919574	2873685	20144262.895	2458293.411	22.185	113.552		
2	北京	913088	4849294	20420256.949	4417945.630	39.892	116.068		
3	成都	-92111	3787126	19253047.446	3472112.326	30.714	104.035		
4	福州	1446357	3399343	20724780.104	2886620.732	26.071	119.246		
5	广州	872638	2984462	20113433.464	2569843.755	23.183	113.226		
6	贵阳	169316	3313278	19466204.867	2969332.662	26.457	106.668		
7	哈尔滨	1594408	5626207	21245011.622	5106725.708	45.693	126.566		
8	海口	593061	2585683	19802316.264	2222941.028	19.970	110.346		3
9	杭州	1448781	3884575	20806111.019	3361053.418	30.331	120.182		
10	合肥	1146755	4000180	20524772.500	3523949.318	31.838	117.262		
11	呼和		4916846	20065286.058	4541786.273	40.895	111.842		_
T	▼显示所有要素 ▼								

