MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science 6.301 Solid State Circuits

Problem 1: Building Blocks

The AC schematics for four amplifiers are shown below. For each of the amplifiers, find the midband voltage gain and the -3dB frequency using the open-circuit time-constant method. Assume $/beta=200,~I_C=2.5mA,~c_\pi=50pF,~and~c_\mu=2pf.$ Neglect r_b and r_o .

(a) Common Emitter:

(b) Emitter Follower:

(c) Common Base:

(d) Common Emitter with Emitter Degeneration:

Problem 2: Two-transistor OCTs

For the following CB-CE amplifier, assume $V_{BE}=0.6v,\,\beta=200,\,c_{\pi}=20pF,$ and $c_{\mu}=2pF.$ Neglect r_b and $r_o.$

- (a) Calculate the midband voltage gain.
- (b) Find the -3dB frequency of the amplifier using the OCT method.

Problem 3: Emitter Coupled Pairs

For the two amplifiers shown below, find the midband voltage gain and the -3dB frequency. Why does one have more bandwidth than the other?

You may assume $V_{BE}=0.6v,\,\beta=400,\,c_{\pi}=40pF,\,c_{\mu}=4pF,\,\mathrm{and}$ neglect r_{b} and r_{o} .

- (a) Single-ended Differential Pair
- **(b)** EF-CB