

Verbale Esterno del 2013-12-03

Informazioni sul documento

Nome documento | Verbale Esterno del 2013-12-03 Versione | v1.0.0 Data redazione | 2013-12-03

Redattori • Magnabosco Nicola

Verificatori • Luisetto Luca

Approvazione • Bissacco Nicolò

• 7Monkeys

• Prof. Tullio Vardanega Lista distribuzione

• Prof. Riccardo Cardin

• Departement of Information Engineering (DEI)

Uso Esterno

Sommario

Questo documento contiene il resoconto del primo incontro tra i proponenti e il gruppo 7Monkeys.

Diario delle Modifiche

Modifica	Autore & Ruolo	Data	Versione
Approvazione del documento	Bissacco Nicolò Responsabile di Progetto	2013-12-05	v1.0.0
Eseguita verifica del documento	Luisetto Luca Verificatore	2013-12-05	v0.2.0
Apportate modifiche a seguito verifica	Magnabosco Nicola Responsabile di Progetto	2013-12-05	v0.1.1
Eseguita verifica del documento	Luisetto Luca Verificatore	2013-12-04	v0.1.0
Stesura del documento	Magnabosco Nicola Responsabile di Progetto	2013-12-03	v0.0.1

Indice

1	Info	ormazioni sulla riunione	1
	1.1	Informazioni generali	1
	1.2	Ordine del giorno	1
2	Rise	ssunto della riunione	5

1 Informazioni sulla riunione

1.1 Informazioni generali

• Data: 2013-12-03;

• Ora inizio-fine: 14:30-17:00;

• Luogo: Departement of Information Engineering (DEI);

• Membri assenti: nessuno.

1.2 Ordine del giorno

Presentazione del dominio applicativo, definizione dei termini specifici. Introduzione alla $Cluster\ Analysis_{\mathbf{G}}$ e all'estrazione delle $Features_{\mathbf{G}}$ da un immagine.

2 Riassunto della riunione

Questo primo incontro con i proponenti, aveva lo scopo di approfondire gli argomenti trattati nel capitolato, in particolare il funzionamento della cluster analysis $_{\mathbf{G}}$ e delle feature extractors $_{\mathbf{G}}$. Il primo punto all'ordine del giorno, è stato l'approfondimento del dominio applicativo. Dato che nel capitolato questo aspetto è espresso in maniera sommaria, è stato chiesto ai proponenti di chiarire chi utilizzerà il prodotto e in che contesto. Ne è emerso che i principali utilizzatori del software saranno, in primo luogo, gli stessi proponenti e successivamente, anche ricercatori, medici e chiunque nell'ambito medico abbia la necessità di eseguire cluster analysis $_{\mathbf{G}}$ su immagini biomediche. L'unica informazione realmente significativa per il gruppo, è che la maggior parte degli utilizzatori finali, non hanno un'adeguata conoscenza informatica. Pertanto è stata sottolineata ancora una volta, l'importanza della facilità di utilizzo del prodotto.

Successivamente, i proponenti sono entrati nel dettaglio del funzionamento del software, specificando i passi che l'utente dovrà essere in grado di poter fare, per raggiungere i risultati attesi. Contemporaneamente, sono stati definiti i significati dei principali termini specifici, quali Dataset_G, Protocol_G, Feature_G, ecc.... Riassumendo, il prodotto dovrà essere in grado di generare e salvare i Dataset_G e i Protocol_G necessari all'utente. Deve inoltre essere possibile il riutilizzo dei Protocol_G, applicandoli a diversi Dataset_G, purchè il formato sia compatibile. I dati infatti, dovranno essere raggruppati in: 2D, 2D dipendenti dal tempo, 3D e 3D dipendenti dal tempo, dato che i protocolli non sono applicabili a qualsiasi tipo di dato.

Infine, sono state spiegate macroscopicamente come operano al loro interno, le feature extractors e gli algoritmi di clustering . Tali aspetti non sono prettamente fondamentali per lo sviluppo del software, ma aiutano ad avere una visione d'insieme del dominio tecnologico in esso implicato. L'aspetto importante di questi algoritmi, è composto dalle tipologie di dati su cui essi operano e dalle modalità con cui interagiscono tra di loro. In particolare, i vari dati, immagini e video, devono essere necessariamente trasformati in un formato vettoriale, in maniera tale che le feature extractors possano eventualmente operare su di loro. Dato che tutti i formati che il software deve supportare, si riferiscono ad immagini bitmap , esistono delle librerie che trasformano i dati grezzi, in dati matriciali. Gli algoritmi di clustering invece operano su matrici, per cui sarà necessario fondere i vari vettori prodotti in uscita dalle Feature Extractors . In uscita, la cluster analysis produce un vettore, che potrà essere riconvertito in immagine nel proprio formato originale. I formati dipendenti dal tempo invece, perdono il loro attributo temporale; il risultato dell'analisi sarà quindi un immagine statica.