WEEKLY EXAM 2080/09/08		
Subject: Mathematics Time: 1:30 hrs.	GRADE XII SET A	F.M.: 40 P.M.: 20
	Group 'A'	[1×5=5
1. The sum of all od	ld numbers between 100 and	200 is
a) 7500	b) 7450 c) 7560	d) 7600
2. Cramer's rule is a	applicable only to get an uniq	ue solution when
a) $\Delta_Z \neq 0$	b) $\Delta_{\mathbf{X}} \neq 0$ c) $\Delta \neq 0$	d) $\Delta_y \neq 0$
3. In any triangle A	BC, the sum of the sine of an	igles is equal to
$\frac{R}{R}$	b) $\frac{R}{2S}$ c) $\frac{S}{R}$	d) $\frac{S}{S}$
	equation of $y = mx + ci$	is (m and c are arbitrary
constants)	dv	
a) $\frac{d^2y}{dx^2} = 0$		c
Cirk	= 0 d) ydx - xdy	= 0
	or perpendicular to both the v	
	b) $-\hat{j}$ c) \hat{j}	d) k
a) 1	0) -]	u, x
	Group 'B'	[7×5=35
	y diagonals are there in a poly	
	consistency of the system	
7 -) Stata than	3, -4y + 6x = 9 principle of mathematical indu	uction [3]
by Using prin	nciple of Induction Prove that.	
	triangle if $a = 2$, $b = \sqrt{6}$ and c	$=\sqrt{3}-1.$ [3]
2 /	1 (C A)	c-a B
b) Using sine	e law, prove that: $\tan \frac{1}{2}$ (C-A)	$= \frac{1}{c + a} \cdot \cot \frac{\pi}{2}.$ [2]
9. a) Prove that		
$i)$ $1+\omega^n$	$^{1}+\omega^{2n}=3$, if n is multiple of 3 $^{1}+\omega^{2n}=0$, if n is not multiple	[2]
11) 1+ω"	$+\omega^{-1}=0$, if n is not multiple	of 3, n∈N [2]
what do y	you mean by argument of com	iplex number?

- 10. a) Find the parametric equations of the circle $x^2 + y^2 = 25$.
 - b) If $|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a} \overrightarrow{b}|$, prove that \overrightarrow{a} is perpendicular to \overrightarrow{b} .
- Prove that the points A, B, C with position vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are collinear if and only if $(\overrightarrow{b} \times \overrightarrow{c}) + (\overrightarrow{c} \times \overrightarrow{a}) + (\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{0}$.
- Differentiate between general and particular solution differential equation.
- Evaluate $\int \frac{x^2}{(x+2)(x+3)^2} dx$ |47| |27| |39|Solve: $\frac{dy}{dx} = \frac{1+y^2}{1+y^2}$
- Find the differential equation of the curve $y = ae^x + be^{-x}$. [3]

so Best of Luck or

4900