1	1.	A method comprising:
2		forming an integrated inductor over a substrate;
3		forming an aperture underneath said inductor
4	through s	aid substrate from the back side of said
5	substrate	; and

- filling said aperture with a dielectric material.
- 1 2. The method of claim 1 including covering the 2 backside of said substrate with a dielectric material.
- 3. The method of claim 2 including filling said aperture and covering said substrate back side with the same dielectric material.
- 1 4. The method of claim 1 including forming a field 2 oxide formed over said substrate and forming said inductor 3 over said field oxide region.
- 5. The method of claim 1 including forming said aperture completely through said substrate.
- 1 6. The method of claim 5 including supporting said 2 inductor over said aperture in said substrate on an 3 intervening layer between said substrate and said inductor.

1	7.	A method comprising:
2		forming a layer over a substrate;
3		forming an integrated inductor over said layer
4	and said	substrate;
5		forming an aperture underneath said inductor
6	completel	through said substrate from the back side of
7	said subs	trate; and

- filling said aperture with a dielectric material.
- 1 8. The method of claim 7 including covering the back 2 side of said substrate with a dielectric material.
- 9. The method of claim 8 including filling said aperture and covering said substrate back side with the same dielectric material.
- 1 10. The method of claim 7 wherein forming said layer 2 over said substrate includes forming a field oxide over 3 said substrate and forming said inductor over said field 4 oxide.
- 1 11. The method of claim 7 including forming said 2 aperture completely through said substrate to said layer.

- 1 12. The method of claim 11 including supporting said
- 2 inductor over said aperture and said substrate on said
- 3 layer.
- 1 13. An integrated circuit comprising:
- 2 a substrate;
- an integrated inductor formed over a first side
- 4 of said substrate;
- an aperture formed in said substrate from a
- 6 second side of said substrate underneath said inductor; and
- 7 a dielectric material formed in said aperture.
- 1 14. The circuit of claim 13 including an intervening
- 2 layer between said inductor and said substrate.
- 1 15. The circuit of claim 14 wherein said intervening
- 2 layer is a field oxide region.
- 1 16. The circuit of claim 14 wherein said aperture is
- 2 formed completely through said substrate to said
- 3 intervening layer.
- 1 17. The circuit of claim 16 wherein said aperture
- 2 encompasses the entire region beneath said integrated
- 3 inductor.

3

inductor.

1	18. An integrated circuit comprising:		
2	a substrate;		
3	an inductor formed over a first side of said		
4	substrate;		
5	an aperture formed in said substrate from a		
6	second side of said substrate underneath said inductor and		
7	extending completely through said substrate from said		
8	second side of said substrate to said first side of said		
9	substrate;		
10	a dielectric material filling said aperture;		
11	a dielectric material also coating the back side		
12	of said substrate; and		
13	an intervening layer between said inductor and		
14	said substrate.		
1	19. The circuit of claim 18 wherein said intervening		
2	layer is a field oxide region.		
1	20. The circuit of claim 19 wherein said aperture		
2	encompasses the entire region beneath said integrated		