

现代密码学

第二十八讲AES的轮函数

信息与软件工程学院

第二十八讲 AES的轮函数

字节代换

- 非线性代换,独立地对状态的每个字节进行,并且代换表(S盒)可逆,记为ByteSub(State),分两步
 - (1) 将字节作为GF(28)上的元素映射到自己的逆元
 - (2) 将字节做GF(2)上的仿射变换

即

$$y = Ax^{-1} + B$$

其中A是一个GF(2) 上 8×8 的可逆矩阵,B是GF(2) 上一个8位列向量

字节代换

y_0		0	0	0	1	1	1	1	X_0		$\lceil 1 \rceil$
y_1	1	1	0	0	0	1	1	1	x_1		1
y_2	1	1	1	0	0	0	1	1	X_2		0
y_3	 1	1	1	1	0	0	0	1	x_3	1	0
y_4	 1	1	1	1	1	0	0	0	X_4	+	0
y_5	0	1	1	1	1	1	0	0	x_5		1
y_6	0	0	1	1	1	1	1	0	X_6		1
$\lfloor y_7 \rfloor$	$\lfloor 0$	0	0	1	1	1	1	1	$\lfloor x_7 \rfloor$		$\begin{bmatrix} 0 \end{bmatrix}$

AES的S盒

									,	y							
		0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
	0	63	7c	77	7 b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
	2	b 7	fd	93	26	36	3f	f7	cc	34	a5	e5	f1	71	d8	31	15
	3	04	c7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b 2	75
	4	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e3	2f	84
	5	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
	6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7 f	50	3c	9f	a8
	7	51	a3	40	8f	92	9d	38	f5	bc	b 6	da	21	10	ff	f3	d2
X	8	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
	b	e7	c8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	c	ba	78	25	2e	1c	a 6	b4	с6	e8	dd	74	1f	4b	bd	8b	8a
	d	70	3e	В5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
	e	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
	f	8c	a1	89	0d	bf	e6	42	68	41	99	2d	0f	В0	54	bb	16

AES的S盒的使用: 输入8a, 输出7e, 即7e=S(8a)

										y							
		0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
	0	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
	2	b 7	fd	93	26	36	3f	f 7	cc	34	a5	e5	f1	71	d8	31	15
	3	04	c7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b 2	75
	4	09	83	2c	1a	1b	6e	5a	a 0	52	3b	d6	b 3	29	e3	2f	84
	5	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
	6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7 f	50	3c	9f	a8
	7	51	a3	40	8f	92	9d	38	f5	bc	b 6	da	21	10	ff	f3	d2
X	8	cd	0c	13	ec	5f	97	44	17	c4	a7	7 e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
	b	e7	c8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	c	ba	78	25	2e	1c	a6	b4	с6	e8	dd	74	1f	4b	bd	8b	8a
	d	70	3e	В5	66	48	03	f6	0e	61	35	57	b 9	86	c1	1d	9e
	e	e1	f8	98	11	69	d9	8e	94	9b	1e	87	е9	ce	55	28	df
	f	8c	a1	89	0d	bf	e6	42	68	41	99	2d	0f	В0	54	bb	16

逆字节代换InvSubBytes()

- 逆字节替代变换是字节替代变换的逆变换, 在状态的每个字节上 应用逆S盒
 - 这是通过应用字节替代变换中的仿射变换的逆变换,再对所得结果应用有限域的乘法逆运算得到的

即

$$y = A^{-1}(x - B)$$

AES的逆S盒

									,	y							
		0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
	0	52	09	6a	d5	30	36	a5	38	bf	40	a3	9e	81	f3	d7	fb
	1	7c	e3	39	82	9b	2f	ff	87	34	8e	43	44	c4	de	e 9	cb
	2	54	7b	94	32	a6	c2	23	3d	ee	4c	95	0b	42	fa	c3	4e
	3	08	2e	A1	66	28	d9	24	b 2	76	5b	a2	49	6d	8b	d1	25
	4	72	f8	f6	64	86	68	98	16	d4	a4	5c	cc	5d	65	B6	92
	5	6с	70	48	50	fd	ed	b9	da	5e	15	46	57	a7	8d	9d	84
	6	90	d8	ab	00	8c	bc	d3	0a	f7	e4	58	05	b8	b3	45	06
v	7	d0	2c	1e	8 f	ca	3f	0f	02	c1	af	bd	03	01	13	8a	6b
X	8	3a	91	11	41	4f	67	dc	ea	97	f2	cf	ce	f0	b4	e6	73
	9	96	ac	74	22	e7	ad	35	85	e2	f9	37	e8	1c	75	df	6e
	a	47	f1	1a	71	1d	29	c5	89	6f	b7	62	0e	aa	18	be	1b
	b	fc	56	3e	4b	с6	d2	79	20	9a	db	c0	fe	78	cd	5a	f4
	c	1f	dd	a8	33	88	07	c7	31	b1	12	10	59	27	80	ec	5f
	d	60	51	7f	a9	19	b5	4a	0d	2d	e5	7a	9f	93	с9	9c	ef
	e	a0	e0	3b	4d	ae	2a	f5	b0	c8	eb	bb	3c	83	53	99	61
	f	17	2b	04	7e	ba	77	d6	26	e1	69	14	63	55	21	0c	7d

字节代换示意图

•上述S-盒对状态的所有字节所做的变换记为ByteSub (State)

第二十八讲 AES的轮函数

• 将状态阵列的各行进行循环移位,不同行的移位量不同

• 0行: 不动

• 1行: 循环左移C1字节

• 2行: 循环左移C2字节

• 3行: 循环左移C3字节

• 记为: ShiftRow(State)

N _b	C1	C2	C3
4	1	2	3
6	1	2	3
8	1	3	4

行移位示意图

						左移0位						
a_{00}	a_{01}	a_{02}	a_{03}	a_{04}	a_{05}	左移1位	a_{00}	a_{01}	a_{02}	a_{03}	a_{04}	$\rangle_{a_{05}}$
a_{10}	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	左移2位	a_{11}	a_{12}	a_{13}	a_{14}	$\rangle_{a_{15}}$	a_{10}
a_{20}	a_{21}	a_{22}	a_{23}	a ₂₄	a_{25}^{-1}	左移3位	a_{22}	a_{23}	a_{24}	$\rangle_{a_{25}}$	a_{20}	a_{21}
a_{30}	a_{31}	a_{32}	a_{33}	a_{34}	a_{35}^{-1}		a_{33}	a_{34}	$\rangle_{a_{35}}$	a_{30}	a_{31}	a_{32}

逆行移位InvShiftRows()

- 逆行移位变换是行移位变换的逆变换
 - 它对状态的每一行进行循环右移,
 - 第0行保持不变
 - 第1行循环右移C1个字节
 - 第2行循环右移C2个字节
 - 第3行循环右移C3个字节

第二十八讲 AES的轮函数

列混淆

- 将每列视为 $GF(2^8)$ 上多项式,与固定的多项式c(x)进行模 x^4+1 乘法,记为 \otimes ,要求c(x)模 x^4+1 可逆。
- ·表示为MixColumn(State)

$$c(x) = '03' x^3 + '01' x^2 + '01' x + '02'$$

列混淆的矩阵表示

列混淆运算也可写为矩阵乘法。设 $b(x) = c(x) \otimes a(x)$,则

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

列混淆运算示意图

	a_{00}	a_{01}	a_0	a_{0j}	a_{04}	905	$ \otimes c(x) $	boo	b_{01}	b_{0j}	b_{03}	b_{04}	b_{05}
	a_{10}	a_{11}	a_1	a_{1j}	a_{14}	a_{15}		b_{10}	b_{11}	b_{1j}	b_{13}	b_{14}	b ₁₅
•	a_{20}	a_{21}	a_2	a_{2j}	a_{24}	a ₂₅		b_{20}	b_{21}	b_{2j}	b ₂₃	b_{24}	b_{25}
	<i>a</i> ₃₀	a_{31}	a_3	a_{3j}	a_{34}	a ₃₅		b_{30}	b_{31}	b_{3j}	b ₃₃	b ₃₄	b_{35}
٠													

逆列混淆InvMixColumns()

- 逆列混淆变换是列混淆变换的逆
- 它将状态矩阵中的每一列视为系数在 $GF(2^8)$ 上的次数小于4的多项式与同一个固定的多项式 d(x)相乘。 d(x)满足

$$('03'x^3+'01'x^2+'01'x+'02')\otimes d(x)='01'$$

由此可得

$$d(x) = {}^{\circ}0B'x^3 + {}^{\circ}0D'x^2 + {}^{\circ}09'x + {}^{\circ}0E'$$

逆列混淆的矩阵形式

• 同样, 逆列混淆可以写成矩阵乘法形式

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_2 \end{pmatrix} = \begin{pmatrix} 0e & 0b & 0d & 09 \\ 09 & 0e & 0b & 0d \\ 0d & 09 & 0e & 0b \\ 0b & 0d & 09 & 0e \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

第二十八讲 AES的轮函数

轮密钥加

- 轮密钥与状态进行逐比特异或。
- 轮密钥由种子密钥通过密钥编排算法得到
- 轮密钥长度与分组长度相同
- 表示为AddRoundKey(State, RoundKey)

感谢聆听! xynie@uestc.edu.cn