Forecasting Inflation in Indonesia Using Hybrid ARIMA and Artificial Neural Networks Ensemble

by

Mega Silfiani

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science
Industrial and Manufacturing Engineering

Examination Committee: Dr. Huynh Trung Luong (Chairperson)

Assoc. Prof. Erik L.J. Bohez Dr. Manukid Parnichkun

Nationality: Indonesia

Previous Degree: Bachelor of Science in Statistics

Institute of Technology Sepuluh Nopember

Sukolilo, Indonesia

Scholarship Donor: Directorate General of Higher Education

(DIKTI), Indonesia

Asian Institute of Technology School of Engineering and Technology Thailand July 2014

ACKNOWLEDGEMENTS

Alhamdulillahi rabbil 'alamin, the author expresses her highest gratitude to Allah subhanahu wa ta'ala for blessing, love, opportunity, health, and mercy to complete this thesis.

During the process of arranging this thesis, the author has received a lot of support, motivation, and advice that had helped the author. In this precious chance, the author aims to express her gratitude and appreciation to all of them. First, the author's deepest appreciation goes to her beloved parents, H. Alimun Atlas Wajir and Hj. Mufarokhah for the endless love, pray, and support. Her siblings Falasi Rofi, Maskhur Hidayat, M. Sihabudin M. Nur Komarudin and Aldilasari Oktavia Putri to encourage her to be better person

The author presents her sincere appreciation to her advisor, Dr. Huynh Trung Luong, who has given advise and motivation and taught her about discipline. Dr. Suhartono as her advisor and also coordinator of graduate statistic study program department in ITS who has helped her by giving suggestion and guidance of this thesis. The author's greatest thanks go to Prof. Adi Soeprijanto as director of graduate program of ITS, Dr. Ria Asih A. S as assistant director of graduate program of ITS, Dr. Mat Say'in as coordinator of joint degree program of graduate program of ITS, and Ardy Priyonggoas staff of graduate program of ITS for advice, motivation, and useful knowledge so that the author has a chance to follow the joint degree program ITS-AIT. Her deepest thanks also go to her examination comittee Assoc. Prof. Erik L.J. Bohez and Dr. Manukid Parnichkun for their precious corrections and suggestions, also for all staffs either in department or in faculty who have helped the author in managing all formal needs during this thesis arrangement. And also, the author greatest thanks go to freshgraduate scholarship, DIKTI scholarship, and AIT scholarship for support funding during the master degree program both at ITS and AIT.

Her thankfulness also goes to all her friends in Statictics Department and Industrial Manufacturing Engineering Department who cannot be mentioned here one by one, particularly to her Rinda, Yeerizkhe, Anna, Masyudi, Khalilah, Yuana, Takron, Min, Faisal, Sigit and Shiela for cheerful days and togetherness, also to her comrades in joint degree program ITS-AIT Ardiansyah, Happy, Nasa Zata, Weny, Wiwit, Yusuf, Ayu, Aya and Lina for their pray, motivation, and for being places to share.

Finally, the author hope that this thesis can provide benefits to science.

Pathumthani, July 2014 The Author

ABSTRACT

Hybrid autoregressive integrated moving average (ARIMA) and artificial neural networks (ANNs) ensemble is methodology which generating multi-model of hybrid ARIMA and ANNs then combining the output of each hybrid into single output. Meanwhile hybrid ARIMA and ANNs model is combination of ARIMA and ANNs which residual of ARIMA is used to input of ANNs. Hybrid ARIMA and ANNs ensemble are constructed to improve the performance of ARIMA for forecasting inflation in Indonesia. The architechture of ANNs in this research are feedforward neural network (FFNNs), recurrent neural network (RNNs), radial basis function neural network (RBFNNs) and generalized regression neural network (GRNNs) This research evaluates performance of hybrid ARIMA and ANNs ensemble based on root mean square error (RMSE), relative root mean square error (RelRMSE) and log mean square error ratio (LMR). This reserach use national inflation and seven cities in East Java as case study. The result show that, in the context of forecasting inflation, hybrid ARIMA and ANNs ensemble is better than ARIMA, particularly when the stacking hybrid ARIMA and GRNNs is used. Overall, stacking technique is better than averaging to combine ensemble member of hybrid ARIMA and ANNs.

Keyword: ANNs, ARIMA, FFNNs, GRNNs, Hybrid, Inflation, LMR, RBFNNs, RelRMSE, RMSE, RNNs

TABLE OF CONTENTS

CHAPTER	TITI	LE	PAGE
	ACK ABS' TAB LIST	LE PAGE KNOWLEDGEMENTS TRACT LE OF CONTENTS TOF FIGURES TOF TABLES	i ii iii iv vi vii
1	INTI	RODUCTION	1
	1.1	Background	1
	1.2	Statement of The Problems	2
	1.3	Objectives	2
		3.1 Overall Objective	2
	1.3	3.2 Specific Objectives	2 2 2 3 3
	1.4	Scope	3
2	LIT	ERATURE REVIEW	4
	2.1	Inflation	4
	2.2	Summary of Methods	5
3	ME	THODOLOGY	10
	3.1	Dataset	10
	3.2	Hybrid ARIMA and ANN Ensemble Methodology	10
4	RES	ULTS AND DISCUSSIONS	
	4.1	Inflation Characteristics	19
	4.2	Autoregressive Integrated Moving Average (ARIMA) Model for Inflation	20
	4.3	Hybrid Autoregressive Integrated Moving Average (ARIMA) and Feedforward Neural Networks (FFNNs) Ensemble Model for Inflation	28
	4.4	Hybrid Autoregressive Integrated Moving Average (ARIMA) and Recurrent Neural Networks (RNNs) Ensemble Model for Inflation	30
	4.5	Hybrid Autoregressive Integrated Moving Average (ARIMA) and Radial Basis Function Neural Networks (RBFNNs) Ensemble Model for Inflation	32
	4.6	Hybrid Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Networks (GRNNs) Ensemble Model for Inflation	34
	4.7	Comparison between Hybrid Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANNs) Ensemble Model and Autoregressive Integrated Moving Average (ARIMA) Model	36

5 CONCLUSION AND RECOMMENDATIONS

7	APP	PENDICES	45
6	REF	TERENCES	40
		Recommendations	39
	5.1	Conclusion	39

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	Feedforward Neural Networks Architecture	6
Figure 2.2	Recurrent Neural Networks Architecture	7
Figure 2.3	Radial Basis Function Neural Networks Architecture	7
Figure 2.4	Generalized Regression Neural Networks Architecture	8
Figure 3.1	Flow Chart of Hybrid ARIMA and ANNs Ensemble Model	18
Figure 4.1	Time Series Plot of (a) National Inflation, (b) Surabaya Inflation, (c) Malang Inflation, (d) Jember Inflation, (e) Kediri Inflation, (f) Probolinggo Inflation, (g) Madiun Inflation, and (h) Sumenep Inflation from January 1980 until December 2013	19
Figure 4.2	The Rate of Mean (a) and Standard Deviation (b) of Inflation	20
Figure 4.3	Time Series Plot of (a) National Inflation, (b) Surabaya Inflation, (c) Malang Inflation, (d) Jember Inflation, (e) Kediri Inflation, (f) Probolinggo Inflation, (g) Madiun Inflation, and (h) Sumenep Inflation from January 1980 until December 2012	21
Figure 4.4	Box Plot of National Inflation $(Z_{1,t})$	22
Figure 4.5	Identification Plot : (a) Box-Cox Transformation $Z_{1,t}$, (b) ACF plot of Transformation $Z_{1,t}$, (c) ACF plot of Transformation $Z_{1,t}$ with d=1, and (d) PACF plot of Transformation $Z_{1,t}$ with d=1	22
Figure 4.6	RMSE Hybrid ARIMA and FFNNs Ensemble	28
Figure 4.7	RMSE Hybrid ARIMA and RNNs Ensemble	30
Figure 4.8	RMSE Hybrid ARIMA and RBFNNs Ensemble	32
Figure 4.9	RMSE Hybrid ARIMA and GRNNs Ensemble	34

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	A List of Example Forecasting Inflation	4
Table 3.1	Guideline to Determine Nonseasonal ARIMA Model	9
Table 4.1	Descriptive Statistics of National Inflation and Seven Cities Inflation in East Java	n 19
Table 4.2	Autoregressive Integrated Moving Average (ARIMA) Model for National Inflation	23
Table 4.3	Autoregressive Integrated Moving Average (ARIMA) with Outlier Analysis Model for National Inflation	24
Table 4.4	Summary Autoregressive Integrated Moving Average (ARIMA) for National Inflation and Seven Cities Inflation in East Java	26
Table 4.5	Member of Hybrid Autoregressive Integrated Moving Average (ARIMA) and Feedforward Neural Networks (FFNNs) Ensemble	27
Table 4.6	Member of Hybrid Autoregressive Integrated Moving Average (ARIMA) and Recurrent Neural Networks (RNNs) Ensemble	29
Table 4.7	Member of Hybrid Autoregressive Integrated Moving Average (ARIMA) and Radial Basis Function Neural Networks (RBFNNs) Ensemble	31
Table 4.8	Member of Hybrid Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Networks (GRNNs) Ensemble	33
Table 4.9	RMSE of Autoregressive Integrated Moving Average (ARIMA) for National Inflation and Seven Cities in East Java	35
Table 4.10	RelRMSE and LMR Hybrid Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANNs) Ensemble for National Inflation and Seven Cities in East Java	36
Table 4.11	The Best Model for National Inflation and Seven Cities in East Java	38

CHAPTER 1 INTRODUCTION

1.1 Background

Inflation is an important element for the economy of country because inflation is a reflection of stability of the currency for goods and services. The importance of controlling inflation is based on the consideration that high and unstable inflation has negative impacts on socio-economic conditions such as high inflation will decrease purchasing power of people. Unstable inflation creates uncertainty for economist to make decisions. Communities will be inconvenient for consumption, investment, and production, so that will reduce economic growth, and when domestic inflation rate is higher than the rate of inflation in other countries, it can put pressure on its currency.

Bank Indonesia as a central bank in Indonesia has a single purpose to keep the stability of the rupiah which is reflected in inflation. Therefore, since 2005 Bank Indonesia applied the monetary policy as the main target by using Inflation Targeting Framework (ITF) (Bank Indonesia, 2013). ITF is adopted by Bank Indonesia to announce inflation target at a certain period. Bank Indonesia evaluates the estimation of future inflation is still in appropriate with the target set every period. This estimation is applied with several models and information which can reflect the conditions ahead.

Estimation of future inflation can use time series forecasting model, because time series forecasting is a method to forecast in which historical observations of the same variable are gathered and analyzed to construct model that seizes the underlying data generating process. Then the model is applied to estimate the future value (Khasei et al., 2009). ARIMA is the most widely used method for time series forecasting, especially since Box and Jenkins (1970) proposed a methodology for ARIMA modeling through three stages: identification, estimation and verification. ARIMA model is applied in various areas such as hydrodology, energy, economics, industrial and manufacturing (Vanipour et al., 2013; Lee and Ko, 2011; Wijaya and Napitupulu, 2010; Chen, 2011; Liu et al., 2008). However, it has some limitations such as to construct the ARIMA model required a large number of past observations to generate forecasts with good accuracy and ARIMA is assumed as a linear function of several past observations with random errors (Khasei et al., 2009). Therefore, ARIMA can not seize nonlinear pattern in the real world problems (Zhang, 2003).

Several nonlinear models have been proposed to overcome the limitations of linear modeling in time series such as threshold autoregressive (TAR) (Tong and Lim, 1980; Davis et al., 2000), autoregressive conditional heteroscedastic (ARCH) (Engle, 1982; Gao et al., 2009), general autoregressive conditional heteroscedastic (GARCH) (Bollerslev, 1986; Kontonikas, 2004; Broto, 2011). However, these models only good in particular circumstances because they are constructed for a specific nonlinear model so that they are not able to model other types of nonlinear time series. One of the nonlinear model which is flexible and does not require certain information to construct the model is artificial neural networks (ANNs) (Donate et al., 2013). ANNs are often referred to as black box models which can seize the primary relationship between inputs and outputs (Zaier et al., 2010).

Recently, several studies about improvement forecasting performance has been developed. One of them is hybrid approach using ARIMA and ANN models. Hybrid ARIMA-ANN is

obtained by modeling linear component using ARIMA, then modeling residuals from ARIMA using ANN. The main ideas by using hybrid approach are difficulty of determining the time series derived from the linear or nonlinear process, real world problems are seldom perfect linear or nonlinear and there is no single best method in every situation (Zhang, 2003). Combining several models which is often referred to ensemble approachis also quite popular for the past three decades (Gooijer and Hyndman, 2006). It became popular because ensemble approaches show great improvement to generalization prediction(Bates and Granger, 1969; Shu and Burn, 2004; Zaier et al., 2010; Zheng and Zhong, 2011).

Therefore this study proposes a hybrid ARIMA-ANN ensemble to forecast future inflation in Indonesia. There are two steps to construct hybrid ARIMA-ANN ensemble. First, constructing several ensemble members by altering input and training algorithm in hybrid ARIMA-ANN while preserve the training data unchanged. Second, combining ensemble members by stacking and averaging to produce unique ensemble solution.

1.2 Statement of The Problems

The research questions in this research are

- How to construct model for forecasting inflation in Indonesia?
- How to construct a hybrid ARIMA-ANN model for forecasting inflation in Indonesia?
- What are the techniques used to create ensemble member from hybrid ARIMA-ANN model for forecasting inflation in Indonesia?
- How to create ensemble members from a hybrid ARIMA-ANN ensemble for forecasting inflation in Indonesia?
- What are the techniques used to combine ensemble members from a hybrid ARIMA-ANN model for forecasting inflation in Indonesia?
- How to combine ensemble members from a hybrid ARIMA-ANN for forecasting inflation in Indonesia?
- What are model selection criteria to determine the best model for forecasting inflation in Indonesia?
- How to calculate the model selection criteria for each method?
- How to calculate prediction of future inflation in Indonesia using a hybrid ARIMA-ANN ensemble?

1.3 Objectives

1.3.1 Overall Objective

• To obtain the best model, i.e.,a hybrid ARIMA-ANN ensemble, for forecasting inflation in Indonesia based on model selection criteria

1.3.2 Specific Objectives

- Presents methodology to construct a hybrid ARIMA-ANN
- Knowing the techniques to create ensemble member in hybrid ARIMA-ANN ensemble
- Knowing the techniques to combine ensemble member in hybrid ARIMA-ANN ensemble
- Presents methodology to construct hybrid ARIMA-ANN ensemble
- Presents model selection criteria to determine the best model for forecasting inflation in Indonesia

1.4 Scope

- ANN architecture will use FFNN, RBFNN, RNN and GRNN
- Applying monthly national inflation and seven cities in East Java in Indonesia from 1980 until 2013

CHAPTER 2 LITERATURE REVIEW

2.1 Inflation

Inflation is the increasing of price of goods and services in general where goods and services are basic needs of society or the declining purchasing power of currency of the country (BPS, 2013). Consumer Price Index (CPI) is an indicatoris often used to measure the rate of inflation. CPI changes from time to time shows the price movement of a package of goods and services consumed by the public (Bank Indonesia, 2013b).

Research about inflation particularly forecasting inflation has been studied for decades. A list of example of forecasting inflation is shown in Table 2.1

Table 2.1 A List of Example Forecasting Inflation

Case of Study	Benchmark	Reference
Quarterly consumer price index in	ARCH	Engle (1982)
United Kingdom	ARCH	Eligic (1902)
Monthly inflation in US	Dhillin aurwa Madal	Stock and Watson (1999)
	Phillip-curve Model	` /
Monthly inflation in US	Long memory regression (ARFIMAX)	Bos, Frances, and Ooms (2002)
Quarterly ECB case study	Fuzzy Approach	Kooths, Mitze, Ringhut (2003)
Monthly and quarterly inflation in	GARCH	Kartonikas (2004)
United Kingdom		
Monthly inflation in US, Europe area	ANN	McAdam and McNelis (2005)
and Japan	ANTNI	N-1 (2005)
Quarter GDP deflator in US	ANN	Nakamura (2005)
Monthly inflation in Brazil	Wavelet Approach	Tabak and Feitosa (2009)
Monthly inflation in Eight Latin	GARCH	Broto (2011)
American countries		
Monthly consumer price index in	VAR	Ni (2011)
China		
Monthly Inflation in Indonesia	Univariate ARIMA	Tarno, Suhartono, Subanar,
-		Rosadi (2012)
Annual Inflation in Mexico	ANN	Hurtado, Luis, Fregoso, and
		Hector (2013)

Several research about comparison two or more methods for forecasting inflation also has been studied about such as comparison of principal component regression and principal covariate regression (Heij et al., 2007), comparison of time series modeling, Phillip-curve, linier regression and nonlinier regime switching regression (Ang et al., 2007) and comparison of aggregate supply-demand supply and ANN (Wang and Wu, 2010). In addition, combination method for forecasting inflation also has been arisen such as combination random walk, SARIMA, VAR, m-VAR, BVAR by simple average, median, trimmed average, RMSE weight (Öğünç et al., 2013)

In Indonesia, research about forecasting inflation also has developed such as transfer function (Septiorini, 2009), ARIMAX and GARCH model (Rukini and Suhartono, 2013), and BPNN (Muqtasidah, 2009; Purnama, 2010), ensemble method by using ARIMA and ANN (Silfiani and Suhartono, 2012).

2.2 Summary of Methods

2.2.1 Autoregressive Integrated Moving Average

Autoregressive integrated moving average (ARIMA) is the most widely used method in time series forecasting for several decades. In ARIMA, future prediction is assumed to be linier function of several past observations. Formulation for general ARIMA (p,d,q) model as follows (Wei, 2006):

$$\phi_p(B)(1-B)^d Z_t = \theta_0 + \theta_q(B)a_t \qquad \text{(equation 2.1)}$$
where $\phi_p(B) = (1 - \phi_1 B - \dots - \phi_p B^p)$ and $\theta_q(B) = (1 - \theta_1 B - \dots - \theta_q B^q)$.

Box and Jenkins (1970) proposed methodology to create ARIMA (p,d,q) model. There are three phases i.e. identification model, parameter estimation and diagnostic checking. Identification model is a phase to identify the necessary of transformation such as transformation for stationary variance and transformation for stationary means(Wei, 2006). In addition, this phase is also used to determine ARIMA order based on pattern in autocorrelation function and partial autocorrelation. The next phase is parameter estimation. Parameter estimation is procedure to evaluate an appropriate parameter of model. There are several methods to estimate parameter of ARIMA such as moment, conditional least square, unconditional least square and full maximum likelihood (Cryer and Chan, 2008). The final phase is diagnostic checking. Diagnostic checking is a procedure to evaluate the fitted model by using residual analysis which includes two assumptions i.e. independent and normal distribution (Cryer and Chan, 2008).

2.2.2 Artificial Neural Networks

Artificial neural networks are a flexible nonlinier data-driven, self adaptive method and they do not the use of a priori knowledge (Khasei et al., 2009; Donate et al., 2013). ANNs are also part of machines learning algorithm. The fundamental in ANNs is that input or independent variables filtered through one or more hidden layers, which compose of node, before they reach the target or dependent variable (Gooijer and Hyndman, 2006). ANNs have been successfully applied to various area such as economics (McAdam and McNelis, 2005; Nakamura, 2005; Hurtado et al., 2013), hydrology (Shu and Burn, 2004; Zaier et al., 2010), short load forecasting demand (Sharaf et al., 1993; Methaprayoon et al., 2003). ANNs have several architectures such as feed forward neural networks, radial basis function neural networks, generalized regression neural networks and recurrent neural networks. Brief summary about each architecture as the following:

2.2.2.1 Feedforward Neural Networks

The most widely used ANN architecture in the field of time series forecasting is feedfordward neural networks (FFNN)as well as known multilayer perceptrons (MLPs). FFNN architecture is shown in Figure 2.1.In feedforward neural networks, the relationship between output Z_t and input X_i (i = 1, 2, ..., p) where $X_i = Z_{t-i}$ has the following mathematical representation

$$\hat{Z}_{t} = w_{0} + \sum_{j=1}^{q} w_{j} h_{j} \text{ and } h_{j} = \frac{1}{1 + \exp\left(-\left(w_{0j} + \sum_{i=1}^{p} w_{ij} X_{i}\right)\right)} \text{ (equation 2.2)}$$

where w_{ij} (i = 1, 2, ..., p; j = 1, 2, ..., q) and w_j (j = 1, 2, ..., q) are parameters model as referred to as weight, p is number of input neuron and q is number of hidden neuron. This study uses FFNN with one hidden layer, sigmoid logistic transfer function neuron in hidden layer and linier neuron in output layer. In addition, backpropagation algorithm is used to estimate weight and bias.

Figure 2.1 Feedforward Neural Networks Architecture

2.2.2.2Recurrent Neural Networks (RNN)

Recurrent neural networks are neural networks that have feedback. They have benefit over feedforward neural networks like that autoregressive moving average model has benefit over autoregressive model for certain types of time series because (Connor et al., 1994). The architecture of recurrent neural networks is similar feedforward neural networks because it has input layer, hidden layer and output layer however they have different input i.e. the error of the model.

Suppose ARMA(2,1) is represented in RNN with three unit neurons in hidden layer is shown in Figure 2.2 and the formulation of recurrent neural networks as follows

$$\hat{Z}_t = w_0 + \sum_{j=1}^3 w_j h_j \text{ and } h_j = \frac{1}{1 + \exp\left(-\left(w_{0j} + \sum_{i=1}^3 w_{ij} X_i\right)\right)}$$
 (equation 2.3)

where $X_3=e_{t-1}$

Figure 2.2 Recurrent Neural Networks Architecture

2.2.2.3 Radial Basis Function Neural Networks

Radial basis function neural networks (RBFNN) is neural networks which has similar architecture as feedforward neural networks consist of three layers i.e. input layer, hidden layer and output layer. The architecture of RBFNN is shown in Figure 2.3.

Figure 2.3 Radial Basis Function Neural Networks Architecture

RBFNN has more advantages than FFNN i.e. RBFNN is a forward networks model with good performance, global approximation, and is free from the local minima problems (Zheng and Zhong, 2011). RBFNN has the following mathematical representation

$$\hat{Z}_t = w_0 + \sum_{j=1}^q w_j h_j \text{ and } h_j = \exp \left(-\sum_{i=1}^p \left(X_i - c_{ij} \right) \right)$$
 (equation 2.4)

where $X_i(X_i = Z_{t-i}; i = 1, 2, ..., p)$ is the *i*th variable of input pattern, $c_{ij}(i = 1, 2, ..., p; j = 1, 2, ..., q)$ is the centre of *j*th RBF unit for variable *i*, δ_j is the width of *j*th RBF unit, w_j is the weight between *j*th RBF unit and output, w_0 is the biasing term at output node, *p* is the number of input nodes and *q* is the number of hidden layer nodes.

2.2.2.4 Generalized Regression Neural Networks

Generalized regression neural networks (GRNN) is used for estimation of continuous variables, as the standard regression techniques. It related to the RBFNN and based on standard statistical technique called kernel regression (Celikoglu, 2006). Its advantages are fast learning, consistency and optimal regression with large number of samples (Ren et al., 2010). GRNN has four layers i.e input layer, pattern layer, summation layer and output layer. The architecture of GRNN is as follows

Figure 2.4 Generalized Regression Neural Networks Architecture

The following mathematical representation of GRNN is

$$\hat{Z}_{i}(x) = \frac{\sum_{i=1}^{n} Z_{t} \exp\left(-\frac{D_{i}}{2\sigma^{2}}\right)}{\sum_{i=1}^{n} \exp\left(-\frac{D_{i}}{2\sigma^{2}}\right)} \text{ and } D_{i} = \sum_{j=1}^{p} (X_{j} - X_{ij})^{2} \text{ (equation 2.5)}$$

where n indicates the number of training pattern, p indicates the number of elements of an input vector. The X_j and X_{ij} represent the jth element of X and X_i , respectively.

2.2.3 Hybrid Methodology

The fundamentals creating hybrid method are difficulty of determining the time series derived from the linear or nonlinear process, real world problems are seldom perfect linier or nonlinier and there is no single method is best in every situation (Zhang, 2003). Since it is difficult to completely know the characteristics of the data hybrid method that has both linier and nonlinier modeling has good performance for forecasting. When time series data considered have both linier and nonlinier, it can represent as

$$\hat{Z}_t = L_t + N_t \qquad \text{(equation 2.6)}$$

where L_t indicates linier component and N_t indicates nonlinier component. These two components have to be predicted from the data. In this research, ARIMA is used to predict

linier component and ANN is used to predict nonlinier component from residual of ARIMA.

2.2.4 Ensemble Approach

Combining several models is well-known as ensemble approach. There are two steps to create ensemble. First, creating several ensemble members by varying number of input and architecture of ANN while keeping the data training unchanged (Sharkey, 1999). Second, combining several predictions of ensemble members. Averaging and stacking are the most popular techniques to combine. Mathematical representation of averaging and stacking are as follow:

If k is number of ensemble members, then the solution of ensemble from averaging has the following mathematical representation:

$$\hat{Z}_t = \frac{1}{k} \sum_{i=1}^k \hat{Z}_t^{(i)}, i = 1, \dots, k$$
 (equation 2.7)

where $\hat{Z}_{t}^{(i)}$ is prediction value in *t*th period and *k*th ensemble member.

Stacking is an approach to make linier combination of predictor to improve prediction accuracy. Stacking is produced by minimizing the least square from G function and it has constraint non-negative coefficient. Stacking has the following mathematical representation (Breimen, 1996)

$$G = \sum_{t=1}^{n} \left[Z_t - \sum_{i=1}^{k} c_i \hat{Z}_t^i \right], c_i > 0, \sum_{i=1}^{n} c_i = 1$$
 (equation 2.8)

Coefficient $\hat{c}_1, \hat{c}_2, \dots, \hat{c}_k$ is estimated to obtain the final output from ensemble

$$\hat{Z}_t = \sum_{i=1}^k \hat{c}_i \hat{Z}_t^{(i)}$$
 (equation 2.9)

CHAPTER 3 METHODOLOGY

3.1 Dataset

Dataset in this study use monthly inflation data since January 1980 until December 2013 periods. Dataset is available on Indonesia Central Bureau of Statistics (see www.bps.go.id) There are eight variables that represent about inflation in Indonesia, i.e., national inflation $(Z_{1,t})$, and seven cities in East Java: Surabaya inflation $(Z_{2,t})$, Malang inflation $(Z_{3,t})$, Jember inflation $(Z_{4,t})$, Kediriinflation $(Z_{5,t})$, Probolinggo inflation $(Z_{6,t})$, Madiun inflation $(Z_{7,t})$ and Sumenep inflation $(Z_{8,t})$. Before fitting the model, data are divided into two parts, i.e., in-sample and out-of-sample data. In-sample data is used to create the model and out-of-sample data is used to evaluate performance of model. Dataset for in-sample is January 1980 until December 2012 and the rest is for out-sample.

3.2 Hybrid ARIMA and ANN Ensemble Methodology

There are three steps to create hybrid ARIMA-ANN ensemble. First step is creating several ensemble members, second step is combining ensemble members and last step is selecting the best model. Further explanations about creating and combining ensemble member in hybrid ARIMA-ANN ensemble methodology are as follows:

3.2.1 Creating Ensemble Member

This study uses varying input to create several ensemble members. Ensemble members in this study are several hybrid ARIMA-ANNs. Generally, there are three steps to create hybrid ARIMA-ANN ensemble. First, modeling series data to ARIMA to obtain linear component. Second, estimating the residuals from series data and prediction value of ARIMA. Third, modeling the residuals to ANN to obtain nonlinear component. The detailed explanations of creating ensemble member are presented as follows

- 1. Constructing ARIMA based on Box and Jenkins (1970) methodology. SAS and Minitab software packages are applied to construct ARIMA Model. Three steps of Box and Jenkins (1970) methodology are as follows:
 - a. Identification which is a phase to identify the necessary of transformation such as transformation for mean stationary and variance stationary (Wei, 2006). Non stationary process can be transformed to stationary process by using appropriate differencing. In other words, the series Z_t is not stationary but the dth differencing of series $Z_t \{(1-B)^d Z_t\}$ will be a stationary process. Differencing can only be used in homogenous time series. In the real world problems, many series are not homogenous. It is caused by time dependence in variance and autocovariance. This problem can be solved by Box-Cox transformation (Wei, 2006). Mathematical representation of Box-Cox transformation is as follows

$$T(Z_t) = \frac{Z_t^{\lambda} - 1}{\lambda}$$
 (equation 3.1)

where λ indicates transformation parameter.

When a series has followed stationary process, the next step is determining the orders p and q in ARIMA (p,d,q) based on autocorrelation (ACF) and partial

autocorrelation (PACF). Bowerman et al. (2005) presented guidline to determine ARIMA order based on ACF and PACF pattern as follows

Table 3.1 Guideline to Determine Nonseasonal ARIMA Model

Sample ACF and Sample PACF Pattern	Nonseasonal Operator
Sample ACF has in lag 1, 2,q and cut off after lag q and sample PACF has dies down pattern	Nonseasonal operator for model is moving average with q order $\theta_q(B) = \left(1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q\right)$
Sample ACF has dies down pattern and sample PACF has spikes in lag 1, 2,p and cut off after lag p	Nonseasonal operator for model is <i>autoregressive</i> with p order $\phi_p(B) = (1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p)$
Sample ACF has spikes in lag 1, 2,q and cut off after lag q, sample PACF has spikes in lag 1, 2,p and cut off after lag p	$\theta_q(B)$ or $\phi_p(B)$
Sample ACF dan sample PACF do not have lag spikes	Model does not have nonseasonal operator
Sample ACF and PACF are dies down	Nonseasonal model $\theta_q(B)$ and $\phi_p(B)$

b. The next phase is parameter estimation. There are several methods to estimate parameter of ARIMA such as moment, conditional least square, unconditional least square and full maximum likelihood (Cryer and Chan, 2008). This study uses maximum likelihood to estimate parameter of ARIMA. The procedure to estimate parameter of ARIMA by using maximum likelihood is as follow:

Suppose the general ARMA(p,q) model has the following mathematical representation

$$\dot{Z}_t = \phi_1 \dot{Z}_{t-1} + \dots + \phi_p \dot{Z}_{t-p} + a_t - \theta_1 a_{t-1} - \dots - \theta_q a_{t-q}$$
 (equation 3.2)

where $\dot{Z}_t = Z_t - \mu$, a_t is i.i.d. $N(0, \sigma_{a_t}^2)$ and joint probability density function of $\mathbf{a} = (a_1, a_2, \dots, a_n)'$ is as follows

$$P\left(\mathbf{a} \mid \mathbf{\phi}, \mu, \mathbf{\theta}, \sigma_{a_t}^2\right) = \left(2\pi\sigma_{a_t}^2\right)^{-n/2} \exp\left[-\frac{1}{2\sigma_{a_t}^2} \sum_{t=1}^n a_t^2\right] \text{ (equation 3.3)}$$

Rewriting (equation 3.2)

$$a_t = \dot{Z}_t - \phi_1 \dot{Z}_{t-1} - \dots - \phi_p \dot{Z}_{t-p} + \theta_1 a_{t-1} + \dots + \theta_q a_{t-q}$$
 (equation 3.4)

Therefore

$$P\left(\mathbf{a}\mid\mathbf{\phi},\mu,\mathbf{\theta},\sigma_{a_t}^2\right) = \left(2\pi\sigma_{a_t}^2\right)^{-n/2} \times$$

$$\exp \left[-\frac{1}{2\sigma_{a_{t}}^{2}} \sum_{t=1}^{n} (\dot{Z}_{t} - \phi_{1} \dot{Z}_{t-1} - \dots - \phi_{p} \dot{Z}_{t-p} + \theta_{1} a_{t-1} + \dots + \theta_{q} a_{t-q})^{2} \right]$$
(equation 3.5)

Let $\mathbf{Z} = (Z_1, Z_2, \dots, Z_n)'$ and the log likelihood function

$$\ln L\left(\mathbf{\phi}, \mu, \mathbf{\theta}, \sigma_{a_t}^2 \mid \mathbf{Z}\right) = -\frac{n}{2} \ln\left(2\pi\sigma_{a_t}^2\right) - \frac{1}{2\sigma_{a_t}^2} S\left(\mathbf{\phi}, \mu, \mathbf{\theta}, \mathbf{0}\right) \qquad \text{(equation 3.6)}$$

where
$$S(\mathbf{\phi}, \mu, \mathbf{\theta}) = \sum_{t=1}^{n} (\dot{Z}_{t} - \phi_{1} \dot{Z}_{t-1} - \dots - \phi_{p} \dot{Z}_{t-p} + \theta_{1} a_{t-1} + \dots + \theta_{q} a_{t-q})^{2}$$

To maximaze log likelihood function, taking the first derivatives of equation 3.6 over their parameters and then equating to zero.

$$\frac{\partial \ln L\left(\mathbf{\varphi}, \mu, \mathbf{\theta}, \sigma_{a_t}^2 \mid \mathbf{Z}\right)}{\partial \boldsymbol{\varphi}} = 0, \frac{\partial \ln L\left(\mathbf{\varphi}, \mu, \mathbf{\theta}, \sigma_{a_t}^2 \mid \mathbf{Z}\right)}{\partial \boldsymbol{\theta}} = 0, \frac{\partial \ln L\left(\mathbf{\varphi}, \mu, \mathbf{\theta}, \sigma_{a_t}^2 \mid \mathbf{Z}\right)}{\partial \sigma_{a_t}^2} = 0,$$

To obtain parameter standard error by using maximum likelihood estimation, the information matrix $I(\phi, \theta)$ is used. Information matrix is obtained by second derivatives over parameters and it is denoted by l_{ij}

$$l_{ij} = \frac{\partial^2 \ln L(\boldsymbol{\beta}, \sigma_{a_t}^2 \mid \mathbf{Z})}{\partial \beta_i \partial \beta_j} \text{ and } I(\phi, \theta) = -E(l_{ij})$$

Variance and standard error of parameter are denoted by $V(\hat{\beta}) = [I(\phi, \theta)]^{-1}$ and $SE(\hat{\beta}) = [V(\hat{\beta})]^{1/2}$

The next step after estimating parameter of ARIMA is evaluating the significance of parameter. Parameter evaluating procedure is as follows

$$H_0: \theta=0$$

$$H_1:\theta\neq 0$$

Statistics test
$$t = \frac{\hat{\theta}}{s_{\hat{\theta}}}$$
 (equation 3.10)

Critical area, reject H_0 if $|t| > t_{(\alpha/2, n-n_p)}$ where n indicates number of observations, n_p indicates number of estimation parameters

c. The final phase is diagnostic checking. Diagnostic checking is a procedure to evaluate the fitted model by using residual analysis which includes two assumptions, i.e., independent and normal distribution (Cryer and Chan, 2008). Residual independent evaluating is as follows

$$H_0: \rho_1 = \rho_2 = \cdots = \rho_K = 0$$

 H_1 : at least there is one $\rho_k \neq 0$ where k=1, 2, ..., K

Statistics test:
$$Q = n(n+2)\sum_{k=1}^{K} (n-k)^{-1} \hat{\rho}_k^2$$
 (equation 3.11)

where

n : number of residuals

 $\hat{\rho}$: ACF residual kth estimation

Q can be approached by $\chi^2_{(K-m)}$ where $_{m=p+q}$, p and q indicates order of ARIMA (p,d,q) and critical area is reject H_0 if $Q > \chi^2_{(K-p-q)}$. And normality distribution test for residual use Kolmogorov-Smirnov normality test as follows

H₀: residual follows normal distribution

H₁: residual does not follow normal distribution

Statistics test:
$$D = \sup |S(x) - F_0(x)|$$
 (equation 3.12)

where S(x) indicates cumulative probability function which is calculated in sample and $F_0(x)$ is cumulative probability function of normal distribution. Critical area, reject H_0 if D >Quantile $1-\alpha$ on Table A.17 (Daniel, 1989) or p-value < α .

The presence of outliers frequently causes the residuals of ARIMA model do not fulfill both assumptions, particularly normality distribution. Outlier detection is used to handle the ARIMA modeling with outlier data. There are many types of outlier, such as additive outlier (AO), innovational outlier (IO), temporary outlier (TO), and level shift outlier (LS). In this research, we consider only two kinds of outlier that already implemented in SAS package, i.e. AO and LS outliers. In general, ARIMA model with outlier can be formulated as

$$Z_{t} = \sum_{j=1}^{k} \boldsymbol{\omega}_{j} v_{j} (B) \boldsymbol{I}_{j}^{(T_{j})} + \frac{\theta(B)}{\phi(B)} a_{t}$$
 (equation 3.13)

where $I_j^{(T_j)}$ is variable that indicate the presence of outlier at T_j , period and $v_j(B)=1$ for AO, and $v_j(B)=\frac{1}{(1-B)}$ for LS.

- 2. Estimating residual from series dataset and prediction value of ARIMA Residual for ARIMA model is obtained by the following mathematical representation: $e_t = Z_t \hat{L}_t$
 - where Z_t is dataset, \hat{L}_t is forecast value for time t from estimated ARIMA model.
- 3. The last step in creating ensemble member is modeling residual of ARIMA to ANN. R and Matlab are applied to build ANN model. This study uses four architecture of ANN. They are FFNN, RBFNN, GRNN, and RNN. The general methodology to build ANN which has the best predictive accuracy is as follows
 - a. Determine the input of ANNs and their architectures. Selecting the number of input in ANN provide a greater effect than selecting the number of neurons in the hidden layer so many researchers pay more attention to the selection of input (Zhang et al., 2001). It is caused parameters are estimated on the ANN model provide nonlinear structure of autocorrelation in time series. Several studies regarding the selection of ANN input on modeling of time series (Crone and Kourentzes, 2009; Faraway and Chatfield, 1998) often follow Box-Jenkins methodology through the pattern of ACF and PACF. The methodology to select input of ANN is follow
 - ARIMA (p, 0,0). This model uses PACF pattern to determine the input of ANN model. The input of this model is AR order, $Z_{t-1}, Z_{t-2}, ..., Z_{t-p}$
 - ARIMA (p, d, 0) and ARIMA (p, d, q). For nonstationary time series, there are many significant lag in ACF and PACF so it sould be differencing until it become stationary time series thereafter it can be determined its model. This model uses ACF and PACF pattern to determine the input. The inputs of this model are both AR order and its differencing order, $Z_{t-1}, Z_{t-2}, ..., Z_{t-p}, Z_{t-1-d}, Z_{t-2-d}, ..., Z_{t-p-d}$
 - ARIMA (0, d, 0). Input to the NN based model that is Z_{t-d}
 - ARIMA (0,0, q). When the time series have stucture of MA, RNN is the only one that can model use direct input from ACF pattern, whereas for the other ANN architecture keep use significant PACF patterns.
 - b. Perform preprocessing of data

Several activation functions of neuron have a certainty range, for example. logistic sigmoid has range between 0 and 1, therefore, the data should be transformed as follows

$$Z_t^* = \frac{\left(Z_t - \min(Z_t)\right)}{\left(\min(Z_t) - \min(Z_t)\right)}$$
 (equation 3.14)

c. Training process

Training process is used to estimate the weights. The training process in this research use backpropagation algorithm. The following explanation is about example to estimate the weights of feedforward neural network by using backpropagation algorithm:

To update weights of neural networks we can use gradient descent optimization. Gradient descent use linear approach from error function to update weights. Error function formulation is as follows:

$$Q(\mathbf{w} + \Delta \mathbf{w}) \approx Q(\mathbf{w}) + \Delta \mathbf{w}^T Q'(\mathbf{w})$$
 (equation 3.15)

Weights are updated by the following equation

$$\Delta \mathbf{w} = \eta Q'(\mathbf{w}), \eta > 0 \qquad \text{(equation 3.16)}$$

Q refer to sum square of error from training data and the formulation as follows

$$Q = \frac{1}{2} \sum_{t=1}^{n} (Z_t - \hat{Z}_t)^2$$
 (equation 3.17)

where

 $Z_t = \text{target}$

 \hat{Z}_t = expected value of the target

$$Q(\mathbf{w}) = \frac{1}{2} \sum_{t=1}^{n} \left(Z_t - g^o \left[w_0 + \sum_{j=1}^{q} w_j g_j^h \left(w_{0j} + \sum_{i=1}^{p} w_{ij} X_i \right) \right] \right)^2 \text{ (equation 3.18)}$$

Completion of the above optimization problem will be done using a gradient algorithm, i.e.,

$$\Delta \mathbf{w} = \eta Q'(\mathbf{w}) \text{ or } \mathbf{w}^{(m+1)} = \mathbf{w}^{(m)} - \eta \frac{\partial Q(\mathbf{w})^{(m)}}{d\mathbf{w}}$$
 (equation 3.19)

where η islearning rate, $0 < \eta < 1$.

To update weights we can use offline and online adaptation. Weights in offline adaptation are updated every input-output pair and weights in online adaptation are updated after all expected values from input and output are done. Online adaptation is well-known as batch mode. To simplify formulation 3.18, we define

$$v_j^h = w_{0j} + \sum_{i=1}^p w_{ij} X_i$$
 (equation 3.20)

$$a_{j}^{h} = f_{j}^{h} \left(v_{j}^{h} \right) = f_{j}^{h} \left(\beta_{0j} + \sum_{i=1}^{p} w_{ij} X_{i} \right)$$
 (equation 3.21)

$$v^o = w_0 + \sum_{j=1}^q w_j a_j^h$$
 (equation 3.22)

$$\hat{Z}_t = a^o = f^o(v^o) = f^o(w_0 + \sum_{j=1}^q w_j a_j^h)$$
 (equation 3.23)

To update weights, i.e., equation 3.19, we need partial derivative of Q on \mathbf{w} . First, we have to do partial derivative Q on w_j as follows:

$$\frac{\partial Q(\mathbf{w})}{\partial w_j} = \frac{\partial \left[\frac{1}{2} \sum_{t=1}^{n} \left(Z_t - f_t^o \left[w_0 + \sum_{j=1}^{q} w_j f_j^h \left(w_{0j} + \sum_{i=1}^{p} w_{ij} X_i \right) \right] \right)^2 \right]}{\partial w_j}$$
 (equation 3.24)

$$\frac{\partial Q(\mathbf{w})}{\partial w_j} = \frac{\partial Q(\mathbf{w})}{\partial a^o} \frac{\partial a^o}{\partial v^o} \frac{\partial v^o}{\partial w_j}$$
 (equation 3.25)

$$\frac{\partial Q(\mathbf{w})}{\partial a^o} = \frac{\partial \frac{1}{2} \sum_{t=1}^{n} (Z_t - a^o)^2}{\partial a^o} = -\sum_{t=1}^{n} (Z_t - a^o) = -\sum_{t=1}^{n} (Z_t - \hat{Z}_t)$$
 (equation 3.26)

Because output layer use linier transfer function, therefore $f^{o}(v^{o}) = v^{o}$

$$\frac{\partial a^{o}}{\partial v^{o}} = \frac{\partial f^{o}(v^{o})}{\partial v^{o}} = f^{o'}(v^{o}) = 1$$
 (equation 3.27)

$$\frac{\partial v^o}{\partial w_j} = \frac{\partial \left(w_0 + \sum_{j=1}^q w_j a_j^h\right)}{\partial w_j} = a_j^h$$
 (equation 3.28)

$$\frac{\partial Q(\mathbf{w})}{\partial w_j} = \frac{\partial Q(\mathbf{w})}{\partial a^o} \frac{\partial a^o}{\partial v^o} \frac{\partial v^o}{\partial w_j} = -\sum_{t=1}^n (Z_t - \hat{Z}_t) a_j^h = -\sum_{t=1}^n \delta_t^o a_j^h$$
 (equation 3.29)

where,
$$\delta_t^o = (Z_t - \hat{Z}_t)$$
 (equation 3.30)

Second, perform partial derivative Qover w_0 , as follows:

$$\frac{\partial Q(\mathbf{w})}{\partial w_0} = \frac{\partial Q(\mathbf{w})}{\partial a^o} \frac{\partial a^o}{\partial v^o} \frac{\partial v^o}{\partial w_0}$$
 (equation 3.31)

$$\frac{\partial v^o}{\partial w_0} = \frac{\partial \left(w_0 + \sum_{j=1}^q w_j a_j^h\right)}{\partial w_0} = 1$$
 (equation 3.32)

$$\frac{\partial Q(\mathbf{w})}{\partial w_0} = \frac{\partial Q(\mathbf{w})}{\partial a^o} \frac{\partial a^o}{\partial v^o} \frac{\partial v^o}{\partial w_0} = -\sum_{t=1}^n (Z_t - \hat{Z}_t) = -\sum_{t=1}^n \delta_t^o \qquad \text{(equation 3.33)}$$

where δ_{i}^{o} refer to equation 3.30.

Third, perform partial derivative Q over w_{ii}

$$\frac{\partial Q(\mathbf{w})}{\partial w_{ij}} = \frac{\partial Q(\mathbf{w})}{\partial a^o} \frac{\partial a^o}{\partial v^o} \frac{\partial v^o}{\partial a_j^h} \frac{\partial a_j^h}{\partial v_j^h} \frac{\partial v_j^h}{\partial w_{ij}}$$
 (equation 3.34)

and the solution is

$$\frac{\partial Q(\mathbf{w})}{\partial w_{ij}} = \frac{\partial Q(\mathbf{w})}{\partial a^o} \frac{\partial a^o}{\partial v^o} \frac{\partial v^o}{\partial a_j^h} \frac{\partial a_j^h}{\partial v_j^h} \frac{\partial v_j^h}{\partial w_{ij}} = -\sum_{t=1}^n (Z_t - \hat{Z}_t) a_j^h f_j^{h'} (v_j^h) X_i$$

because hidden layer use logistic sigmoid activation function, therefore $f_j^h(v_j^h) = \frac{1}{1 + \exp(-v_j^h)}$

where,
$$\frac{\partial a_j^h}{\partial v_j^h} = \frac{\partial f_j^h(v_j^h)}{\partial v_j^h} = f_j^{h'}(v_j^h) = f_j^h(v_j^h)(1 - f_j^h(v_j^h))$$
 (equation 3.35)

$$\frac{\partial v_j^h}{\partial w_{ij}} = \frac{\partial \left(w_{0j} + \sum_{i=1}^p w_{ij} X_i\right)}{\partial w_{ij}} = X_i$$
 (equation 3.36)

(equation 3.37)

To simplify equation equation 3.37, we can use δ_t^o as in equation 3.30,

$$\frac{\partial Q(\mathbf{w})}{\partial w_{ij}} = -\sum_{t=1}^{n} \delta_t^o a_j^h f_j^{h'} \left(v_j^h \right) X_i = -\sum_{t=1}^{n} \delta_{jt}^h X_i$$
 (equation 3.38)

where
$$\delta_{jt}^{h} = \delta_{t}^{o} a_{j}^{h} g_{j}^{h'} (v_{j}^{h})$$
 (equation 3.39)

The last, perform derivative Q over $w_{0,i}$

$$\frac{\partial Q(\mathbf{w})}{\partial w_{0j}} = \frac{\partial Q(\mathbf{w})}{\partial a^o} \frac{\partial a^o}{\partial v^o} \frac{\partial v^o}{\partial a^h_j} \frac{\partial a^h_j}{\partial v^h_j} \frac{\partial v^h_j}{\partial \beta_{0j}}$$
 (equation 3.40)

$$\frac{\partial Q(\mathbf{w})}{\partial \beta_{0j}} = \frac{\partial Q(\mathbf{w})}{\partial a^o} \frac{\partial a^o}{\partial v^o} \frac{\partial v^o}{\partial a_j^h} \frac{\partial a_j^h}{\partial v_j^h} \frac{\partial v_j^h}{\partial \beta_{0j}} = -\sum_{t=1}^n \left(Z_t - \hat{Z}_t \right) a_j^h g_j^{h'} \left(v_j^h \right) = -\sum_{t=1}^n \delta_{jt}^h \text{ (equation 3.41)}$$

where
$$\frac{\partial v_j^h}{\partial \beta_{0j}} = \frac{\partial \left(\beta_{0j} + \sum_{i=1}^p \beta_{ij} Z_{t-i}\right)}{\partial \beta_{0j}} = 1$$
 (equation 3.42)

Updating weights in output layer,

$$\alpha_{j}^{(m+1)} = \alpha_{j}^{(m)} + \eta \sum_{t=1}^{n} \delta_{t}^{o(m)} a_{j}^{h(m)}$$
(equation 3.43)

$$\alpha_0^{(m+1)} = \alpha_0^{(m)} + \eta \sum_{t=1}^n \delta_t^{o(m)}$$
 (equation 3.44)

and updating weights in hidden layer

$$\beta_{ij}^{(m+1)} = \beta_{ij}^{(m)} + \eta \sum_{t=1}^{n} \delta_{jt}^{h} Z_{t-i}$$
 (equation 3.45)

$$\beta_{0j}^{(m+1)} = \beta_{0j}^{(m)} + \eta \sum_{t=1}^{n} \delta_{jt}^{h(m)}$$
 (equation 3.46)

- d. Predicting the testing data. Value prediction is done iteratively testing data.
- e. Perform postprocessing of data

$$Z_{t} = \min \left(Z_{t} \right) + \left(Z_{t}^{*} \times \left(\min \left(Z_{t} \right) - \min \left(Z_{t} \right) \right) \right)$$
 (equation 3.47)

3.2.2 Combining Ensemble Member

When several ensemble members are available, the next step is combining several ensemble members to obtain unique solution of hybrid ARIMA-ANN ensemble. This study use averaging and stacking to combine several members. The unique solution of averaging hybrid ARIMA and ANN ensemble is presented in equation (2.7) and unique solution of stacking is presented in equation (2.9). To estimate parameter weight of stacking, SPSS is applied.

3.2.3 Model Selection Criteria

Model selection criteria in this research use several forecast accuracy measurements such as root mean square error (RMSE), relative root mean square error (RelRMSE) and log mean squared error ratio (LMR). Mathematical representations of all model selection criteria are as follows (Gooijer and Hyndman, 2006)

$$RMSE = \sqrt{\frac{\sum_{t=1}^{n} (Z_t - \hat{Z}_t)^2}{n}}$$
 (equation 3.48)

$$RelRMSE = \frac{RMSE_a}{RMSE_b}$$
 (equation 3.49)

$$LMR = \log(\frac{MSE_a}{MSE_b})$$
 (equation 3.50)

The flow chart of hybrid ARIMA and ANNs ensemble is shown in Figure 3.1.

Figure 3.1 Flow Chart of Hybrid ARIMA and ANNs Ensemble Model

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1 Inflation Characteristics

Time series patterns of national and seven cities inflation in East Java from January 1980 to December 2013 are showed in Figure 4.1. They have a pattern that tends to be relatively stable between 1 to 3, though there are some extreme points that reached more than 12, which was in 1998.

Figure 4.1 Time Series Plot of (a) National Inflation, (b) Surabaya Inflation, (c) Malang Inflation, (d) Jember Inflation, (e) Kediri Inflation, (f) Probolinggo Inflation, (g) Madiun Inflation, and (h) Sumenep Inflation from January 1980 until December 2013

Table 4.1 Descriptive Statistics of National Inflation and Seven Cities Inflation in East Java

Variable	N	Mean	StDev	Minimum	Maximum
$Z_{1,t}$	408	0.792	1.236	-1.050	12.760
$Z_{2,t}$	408	0.819	1.348	-1.590	12.280
$Z_{3,t}$	192	0.915	1.805	-1.570	15.080
$Z_{4,t}$	192	0.915	1.907	-2.040	16.200
$Z_{5,t}$	192	0.859	1.837	-2.150	11.350
$Z_{6,t}$	72	0.523	0.758	-0.820	3.130
$Z_{7,t}$	72	0.509	0.805	-0.750	4.050
$Z_{8,t}$	72	0.482	0.804	-1.440	3.840

Descriptive statistics of each variable can be seen in Table 4.1. It shows that data on each of variable is different, it happens due to policy changes for customer price index calculation. The average inflation in each variable are relatively stable because the inflation is less than 1 while distribution of data indicated from standard deviation, the minimum and maximum shows that the variable $Z_{6,\ t}$ (Probolinggo) is the most homogeneous variableand has the smallest range while variables $Z_{4,\ t}$ (Kediri) is the most heterogeneous variableand has the largest range . In addition, the rate of mean and standard deviation annually for each variable can be shown in Figure 4.2.

Figure 4.2 The Rate of Mean (a) and Standard Deviation (b) of Inflation

The annual mean rate of inflation for each of the variables has a similar pattern that fluctuates each year. The highest mean for each variable occurred in 1998 which reached over5, and for other mean is below 2. Meanwhile, the annual standard deviation rate of inflation for each of the variables has a variety of patterns and fluctuated. The highest standard deviation occurred in 1998 and the second highest in 2005. Mean and standard deviation were the highest in 1998 due to a weak banking system, the collapse of the rupiah over foreign currencies, and the main factor is political instability. In addition, the second highest standard deviation in 2005 is due to increase of fuel oil price.

4.2 Autoregressive Integrated Moving Average (ARIMA) Model for Inflation

ARIMA models are constructed from training data which consist inflation from January 1980 to December 2012, meanwhile testing data which consist January 2013 to December 2013 is used to evaluate the model. Time series plot of training data for each variable is shown in Figure 4.3. Figure 4.3 showed that National Inflation ($Z_{1,t}$) and inflation of Surabaya ($Z_{2,t}$)have 396 observations, inflation of Malang ($Z_{3,t}$), inflation of Jember ($Z_{4,t}$) and inflation of Kediri ($Z_{5,t}$)have 180 observations and inflation of Probolinggo ($Z_{6,t}$), inflation of Madiun ($Z_{7,t}$) and inflation of Sumenep ($Z_{8,t}$) have 60 observations.

Box Jenkins procedures to construct ARIMA models for each variable are relatively similar. Therefore, this discussion will only explain the Box Jenkins procedure on National inflation ($Z_{1,t}$). ARIMA models of the other variables are shown in the appendix.

(g) (h)
Figure 4.3 Time Series Plot of (a) National Inflation, (b) Surabaya Inflation, (c) Malang Inflation, (d) Jember Inflation, (e) Kediri Inflation, (f) Probolinggo Inflation, (g) Madiun Inflation, and (h) Sumenep Inflation from January 1980 until December 2012

The next step after creating time series plot is creating boxplot (Figure 4.4). Figure 4.4 shows that the boxplot of national inflation does not have seasonal pattern because the distribution of monthly inflation is relatively the same. In addition there are some extreme points which may eventually lead to the fact that the data do not follow normal distribution.

Figure 4.4 Box Plot of National Inflation $(Z_{1,t})$

Figure 4.5 Identification Plot : (a) Box-Cox Transformation $Z_{1,t}$, (b) ACF plot of Transformation $Z_{1,t}$, (c) ACF plot of Transformation $Z_{1,t}$ with d=1, and (d) PACF plot of Transformation $Z_{1,t}$ with d=1

The next step is the evaluation data stationary (Figure 4.5). There are two kinds of stationary that should be evaluated are variance stationary and mean stationary. Evaluation of variance stationary can be evaluated by Box - Cox transformation plots in Figure 4.5a. Figure 4.5a shows that the data are not variance stationary due to lamnda=1 does not exist in range between lower CL and upper CL, so the data needs to be transformed. In this case, power -0.5 transformation is used because rounded lambda value equal to -0.5. The next step is the evaluation of mean stationary by evaluating the ACF pattern (Figure 4.5b) .

Figure 4.5b shows that the data are not mean stationary because there are many spikes outside the lower and upper CL so that the data need to be differencing with d=1. After differencing with d=1, spikes that are outside the lower and upper CL is reduced and ACF look dies down for a large lag so all stationary assumptions is satisfied. Therefore, it can be used to estimate ARMA(p,q) order. The ARMA (p,q) model of national inflation is constructed based on pattern of ACF and PACF (Figure 4.5c and Figure 4.5d) and order of ARMA (p,q) is presumed by using guideline in Table 3.1.

Table 4.2 Autoregressive Integrated Moving Average (ARIMA) Model for National Inflation

	Para	meter Estimat	ion	Diagnostic Checking of Residual		
Model	Parameter	Estimate	P-value	white noise*)	normality distribution*)	
	θ_2	0.61056	< 0.0001			
	θ_8	0.13647	0.0104			
ARIMA	θ_{14}	0.15583	0.0014	satisfied	unsatisfied	
([1,12],1,[2,8,14,20])	θ_{20}	0.08800	0.0479	satisfica	unsatisfied	
	ϕ_1	-0.57396	< 0.0001			
	ф ₁₂	0.26830	< 0.0001			
	θ_2	0.51296	< 0.0001			
100.61	θ_{20}	0.11572	0.0085			
ARIMA ([1,8,12],1,[2,20])	φ1	-0.46265	< 0.0001	satisfied	unsatisfied	
([1,0,12],1,[2,20])	ф8	-0.13125	0.0028			
	ф ₁₂	0.19808	< 0.0001			
	θ_2	0.58754	< 0.0001			
	θ_8	0.12013	0.0067			
ARIMA	ϕ_1	0.12810	0.0033	satisfied	unsatisfied	
([1,12,20],1,[2,8,14])	ф ₁₂	-0.54423	< 0.0001			
	ф 20	0.23315	< 0.0001			
	θ_2	-0.09523	0.0285			
	θ_2	0.56306	< 0.0001			
	θ_8	0.15108	0.0005			
ARIMA	θ_{14}	0.11161	0.0058	satisfied	unsatisfied	
([1,12,14],1,[2,8,20])	ϕ_1	-0.52071	< 0.0001	satisfied	unsausned	
	ф 12	0.25455	< 0.0001			
	ф 20	-0.11246	0.0131			
	θ_2	0.53775	< 0.0001			
	θ_{20}	0.11174	0.0094			
ARIMA	φ1	-0.49862	< 0.0001	satisfied	unsatisfied	
([1,8,12,14],1,[2,20])	φ ₈	-0.12515	0.0039	satisfied	unsatisfied	
	ф ₁₂	0.22038	< 0.0001			
	ф ₁₄	-0.12694	0.0045			

^{*)}using $\alpha = 5\%$

Table 4.3 Autoregressive Integrated Moving Average (ARIMA) with Outlier Analysis Model for National Inflation

Model Parameter Estimate P-value Type of outlier moise lang to 30 (*)		Parar	meter Estima	ation		Diagnostic Checking Residual	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Model	Parameter		P-value	Type of outlier	noise lag	distribution
ARIMAX ([1,12],1,[2,8,20]) ARIMAX ([1,12],1,[2,8,20]) ARIMAX ([1,12],1,[2,8,20]) ARIMAX ([1,12],1,[2,8,20]) ARIMAX ([1,12],1,[2,2,1]) ARIMAX ([1,8,12],1,[2,20]) ARIMAX ([1,8,12],1,[2,20]) ARIMAX ([1,12,14],1,[2,8,20]) ARIMAX ([1,12,2],1,[2,20]) ARIMAX ([1,12,14],1,[2]) ARIMAX ([1,12,14],1,[2]) ARIMAX ([1,12,14],1,[2]) ARIMAX ([1,3,12,14],1,[2]) ARIMAX ([1,2,14],1,[2]) ARIMAX ([1,2,14],1,[2]) ARIMAX ([1,2,14],1,[2]) ARIMAX ([1,2,14],1,[2]) ARIMAX ([1,2,14],1		θ_2	0.59110	< 0.0001	-		
ARIMAX ([1,1,2],1,[2,8,20]) ARIMAX ([1,1,2],1,[2,8,20]) ARIMAX ([1,1,2],1,[2,8,20]) ARIMAX ([1,1,2],1,[2,8,20]) ARIMAX ([1,1,2],1,[2,8,20]) ARIMAX ([1,1,2],1,[2,8,20]) ARIMAX ([1,1,2,20],1,[2,8,20]) ARIMAX ([1,1,2,20],1,[2,8,20]) ARIMAX ([1,1,2,20],1,[2,8,20]) ARIMAX ([1,1,2,1,1],1,[2,8,20]) ARIMAX ([1,1,2,1,1,1,[2,8,20]) ARIMAX ([1,1,2,1,1,1,[2,8,2,2]] ARIMAX ([1,1,2,1,1,1,[2,8,2,2]] ARIMAX ([1,1,2,1,1,1,2,2,2]) ARIMAX ([1,1,2,1,1,1,2,2,2,2]) ARIMAX ([1,1,2,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2		θ_8	0.20921	< 0.0001	-		
ARIMAX ([1,12],1,[2,8,20]) ARIMAX ([1,12],1,[2,8,20]) ARIMAX ([1,12],1,[2,8,20]) ARIMAX ([1,12],1,[2,20]) ARIMAX ([1,12],1,[2,14],1,[2]) ARIMAX ([1,12,14],1,[2]) ARIMAX ([1,12,14],1,[2]) ARIMAX ([1,12,14],1,[2]) ARIMAX ([1,3,12,14],1,[2]) ARIMA		θ_{20}	0.11726	0.0023	-		
ARIMAX ([1,12],1,[2,8,20])		ϕ_1	-0.50636	< 0.0001	-		
([1,12],1,[2,8,20])		ф 12	0.31332	< 0.0001	-		
1,12],1,[2,8,20]		ω_1	0.42226	< 0.0001		Satisfied	Satisfied
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	([1,12],1,[2,8,20])	ω_2	0.25775	< 0.0001	additional outlier	Satisfied	Satisfied
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ω_3	0.24837	< 0.0001	additional outlier		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ω_4	0.16792	0.0038	additional outlier		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ω_5	-0.15264	0.0067	additional outlier		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ω_6	-0.18539	0.0010	additional outlier		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ω_7	0.20832	0.0002	additional outlier		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		θ_2	0.48716	< 0.0001	-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		θ_{20}	0.13297	0.0035	-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-0.47243	< 0.0001	-		Satisfied
$([1,8,12],1,[2,20]) \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		φ ₈	-0.09182	0.0378	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ARIMAX	φ ₁₂	0.27058	< 0.0001	-	Sotiafied	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	([1,8,12],1,[2,20])		0.36159	< 0.0001	additional outlier	Satisfied	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ω_2	0.26380	< 0.0001	additional outlier		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ω_3	0.24708	0.0002	additional outlier		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ω_4	-0.20531	0.0005	additional outlier		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ω_5	0.21731	0.0003	additional outlier		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		θ_2	0.59888	< 0.0001	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		θ_8	0.18795	< 0.0001	-		
$([1,12,20],1,[2,8]) \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			-0.49600	< 0.0001	-		Satisfied
$([1,12,20],1,[2,8]) \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ARIMAX	- :	0.26158	< 0.0001	-	C-4:-C-1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	([1,12,20],1,[2,8])		-0.10415	0.0145	-	Satisfied	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.26139	< 0.0001	additional outlier		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ω_2	0.28269	< 0.0001	additional outlier		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ω_3	0.20933	0.0004	additional outlier		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		θ_2	0.56355	< 0.0001	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		θ_8	0.16263	0.0002	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		θ_{20}	0.10269	0.0117	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ARIMAX		-0.52364	< 0.0001	-	C-4:-C-1	C.C.C.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	([1,12,14],1,[2,8,20])	φ ₁₂	0.29485	< 0.0001	-	Satisfied	Satisfied
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	-0.11751	0.0086	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	0.28129	< 0.0001	additional outlier		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ω_2	0.26309	< 0.0001	additional outlier		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		θ_2	0.94807	< 0.0001	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ϕ_1	-0.72058	< 0.0001	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ф3	-0.13630	0.0006	-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ф 12	0.28597	< 0.0001	-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A DIN # A 37		-0.19571	< 0.0001	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.18995	0.0029	additional outlier	Satisfied	Satisfied
$\begin{array}{c cccc} \delta_2 & -0.22046 & <0.0001 & level shift outlier \\ \delta_3 & -0.23161 & <0.0001 & level shift outlier \\ \omega_2 & 0.18204 & 0.0024 & additional outlier \\ \end{array}$	([1,3,12,14],1,[2])						
ω_2 0.18204 0.0024 additional outlier		δ_2	-0.22046	< 0.0001	level shift outlier		
ω_2 0.18204 0.0024 additional outlier		δ_3	-0.23161	< 0.0001	level shift outlier		
		δ_4	0.21369	< 0.0001	level shift outlier		

^{*)}Using α=5%

Table 4.2 shows that ARIMA (p,d,q) model for national inflation have five models. The next step after preassumed order of ARIMA (p,d,q) is parameter estimation and diagnostic checking. Parameter estimation is used to evaluate significance of parameter and diagnostic checking is used to evaluate independent and normal distribution of residuals. Table 4.2 shows that parameter of all models are significant because p-value < 0.05, and the residual of all models is independent but does not follow normal distribution. The cause of the fact that residuals does not follow normal distribution is the existence of outliers. Outliers are time series observations that are often influenced by interruptive events such as sudden political, economic crisis, and increased fuel price. These interruptive events create spurious observations that are inconsistent with the rest of data. In addition, the timing of interruptive event is sometimes unknown (Wei, 2006). To overcome this problem we can be used ARIMA model with outlier analysis (ARIMAX). ARIMA (p,d,q) model with outlier analysis is procedure that detects and removes the outlier effect in ARIMA (p,d,q) model (Wei, 2006).

The ARIMA (p,d,q) with outlier analysis for national inflation is shown in Table 4.3. Table 4.3 shows that some models have different order ARIMA (p,d,q) from the previous model (Table 4.2), for example ARIMA ([1,12],1,[2,8,14,20]) change into ARIMAX ([1,12],1,[2,8,20]) after using outlier analysis. All models have additional outliers meanwhile there is one model which exists level shift outlier. In addition, all models are satisfied both parameter significance test and diagnostic checking. Therefore, all models are satisfied all the assumptions and they can be used to predict the inflation.

Using the same Box-Jenkins procedure as it has been applied to the national inflation, the summary ARIMA (p,d,q) for national inflation and inflation of seven cities in East Java can be shown in Table 4.4.

Table 4.4 shows that all variables have five ARIMA (p,d,q) models except Malang inflation $(Z_{3,t})$ which has only four ARIMA (p,d,q) models. There are six variables which use ARIMA (p,d,q) with outlier analysis and another two variables use ARIMA (p,d,q) without outlier analysis. The two variables are Madiun inflation $(Z_{6,t})$ and Sumenep $(Z_{8,t})$. In addition, there are three variables (Probolinggo Inflation $(Z_{5,t})$, Madiun inflation $(Z_{6,t})$ and Sumenep $(Z_{8,t})$) are already mean stationary because d=0 in the order of ARIMA(p,d,q) model. Moreover, every models in each variable has different number of parameters and number of outliers.

The next step after constructing the ARIMA (p,d,q) model is predicting the inflation then calculate the residual of ARIMA (p,d,q). The residual of ARIMA (p,d,q) is used to determine input of artificial neural networks (ANNs).

Table 4.4 Summary Autoregressive Integrated Moving Average (ARIMA) for National Inflation and Seven Cities Inflation in East Java

Variable	No. Ensemble Member	Model	No. of Parameters	No. of Outliers
		ARIMAX ([1,12],1,[2,8,20])	12	7
		ARIMAX ([1,8,12],1,[2,20])	10	5
$Z_{1,t}$	5	ARIMAX ([1,12,20],1,[2,8])	8	3
,		ARIMAX ([1,12,14],1,[2,8,20])	8	2
		ARIMAX ([1,3,12,14],1,[2])	11	6
		ARIMAX([1,5,12,19],1,[2,14])	14	8
		ARIMAX([1,5,12],1,[2,20])	13	8
$Z_{2,t}$	5	ARIMAX([1,6,12,20],1,[2])	11	6
ŕ		ARIMAX([1,12,20],1,[2,6])	11	6
		ARIMAX([2,12],1,1)	11	8
		ARIMAX(1,1,[2])	8	6
-	,	ARIMAX([1,2],1,[3])	7	4
$Z_{3,t}$	4	ARIMAX(0,1,1)	7	6
		ARIMAX([1,2,3],1,[4])	8	4
		ARIMA([1,7],1,2)	3	0
	5	ARIMAX([3,4],1,[1,11])	9	5
$Z_{4,t}$		ARIMAX([2,3],1,[1,4])	8	4
ŕ		ARIMAX([1,2,4],1,[3,12])	11	5
		ARIMAX(1,1,[2,3])	7	4
		ARIMAX([1,3],1,[2])	15	12
	5	ARIMAX(1,1,[2,3])	15	12
$Z_{5,t}$		ARIMAX(1,1,[2,7])	13	10
·		ARIMAX([1,7],1,[2])	16	13
		ARIMAX([1,2],1,[3])	15	12
		ARIMAX(1,0,[9])	7	4
		ARIMAX([9],0,1)	7	4
$Z_{6,t}$	5	ARIMAX([9],0,0)	6	4
		ARIMAX(0,0,[9])	6	4
		ARIMAX([1,9],0,0)	7	4
		ARIMA(1,0,0)	2	0
		ARIMA(0,0,1)	2	0
$Z_{7,t}$	5	ARIMA([9],0,0)	2	0
		ARIMA(0,0,[9])	2	0
		ARIMA([1,9],0,0)	3	0
		ARIMA([3],0,0)	2	0
		ARIMA(0,0[3])	2	0
$Z_{8,t}$	5	ARIMA([9],0,0)	2	0
		ARIMA(0,0,[9])	2	0
		ARIMA([3,9],0,0)	3	0

Table 4.5 Member of Hybrid Autoregressive Integrated Moving Average (ARIMA) and Feedforward Neural Networks (FFNNs) Ensemble

Variable	Model	Input	FFNN Model
	ARIMAX ([1,12],1,[2,8,20])	Lag 14, Lag 19	NN(2,1,1)
	ARIMAX ([1,8,12],1,[2,20])	Lag 14, Lag 16	NN(2,2,1)
$Z_{1,t}$	ARIMAX ([1,12,20],1,[2,8])	Lag 14, Lag 19	NN(2,3,1)
	ARIMAX ([1,12,14],1,[2,8,20])	Lag 19	NN(1,1,1)
	ARIMAX ([1,3,12,14],1,[2])	Lag 20, Lag 22	NN(2,1,1)
	ARIMAX([1,5,12,19],1,[2,14])	Lag 19, Lag 20	NN(2,6,1)
	ARIMAX([1,5,12],1,[2,20])	Lag 16	NN(2,1,1)
$Z_{2,t}$	ARIMAX([1,6,12,20],1,[2])	Lag 16, Lag 22	NN(2,4,1)
	ARIMAX([1,12,20],1,[2,6])	Lag 16, Lag 22	NN(1,1,1)
	ARIMAX([2,12],1,1)	Lag 20, Lag 22	NN(2,6,1)
	ARIMAX(1,1,[2])	Lag 14, Lag 16	NN(2,1,1)
7	ARIMAX([1,2],1,[3])	Lag 16, Lag 20	NN(2,8,1)
$Z_{3,t}$	ARIMAX(0,1,1)	Lag 16	NN(1,15,1)
	ARIMAX([1,2,3],1,[4])	Lag 16	NN(1,2,1)
	ARIMA([1,7],1,2)	Lag 3, Lag 20	NN(2,15,1)
	ARIMAX([3,4],1,[1,11])	Lag 2, Lag 13	NN(2,5,1)
$Z_{4,t}$	ARIMAX([2,3],1,[1,4])	Lag 6, Lag 15	NN(2,7,1)
$\mathcal{L}_{4,t}$	ARIMAX([1,2,4],1,[3,12])	Lag 13, Lag 20	NN(2,11,1)
	ARIMAX(1,1,[2,3])	Lag 20	NN(1,10,1)
	ARIMAX([1,3],1,[2])	Lag 9, Lag 11	NN(2,3,1)
	ARIMAX(1,1,[2,3])	Lag 22	NN(1,1,1)
$Z_{5,t}$	ARIMAX(1,1,[2,7])	Lag 8, Lag 22	NN(2,1,1)
	ARIMAX([1,7],1,[2])	Lag 15, Lag 22	NN(2,2,1)
	ARIMAX([1,2],1,[3])	Lag 9, Lag 15, Lag 22	NN(3,3,1)
	ARIMAX(1,0,[9])	Lag 11	NN(2,9,1)
	ARIMAX([9],0,1)	Lag 6, Lag 11	NN(2,1,1)
$Z_{6,t}$	ARIMAX([9],0,0)	Lag 1, Lag 11	NN(2,18,1)
	ARIMAX(0,0,[9])	Lag 1, Lag 11, Lag 12	NN(3,16,1)
	ARIMAX([1,9],0,0)	Lag 11	NN(1,13,1)
	ARIMA(1,0,0)	Lag 9, Lag 18	NN(2,14,1)
	ARIMA(0,0,1)	Lag 9	NN(1,5,1)
$Z_{7,t}$	ARIMA([9],0,0)	Lag 1, Lag 4	NN(2,1,1)
	ARIMA(0,0,[9])	Lag 1, Lag 2, Lag 4	NN(3,6,1)
	ARIMA([1,9],0,0)	Lag 4, Lag 8	NN(2,2,1)
	ARIMA([3],0,0)	Lag 9, Lag 11, Lag 17	NN(3,19,1)
	ARIMA(0,0[3])	Lag 9, Lag 17	NN(2,18,1)
$Z_{8,t}$	ARIMA([9],0,0)	Lag 11, Lag 17	NN(2,12,1)
	ARIMA(0,0,[9])	Lag 10, Lag 17	NN(2,3,1)
	ARIMA([3,9],0,0)	Lag 7, Lag 17	NN(2,7,1)

4.3 Hybrid Autoregressive Integrated Moving Average (ARIMA) and Feedforward Neural Networks (FFNNs) Ensemble Model for Inflation

Hybrid autoregressive integrated moving average (ARIMA) and feedforward neural networks (FFNNs) ensemble is a combination model from ARIMA and FFNNs, where the input of FFNNs is residual of ARIMA (p,d,q) model. Input of FFNNs is determined by PACF of Residual ARIMA and number of neuron in hidden layer of FFNNs is determined by the smallest mean square root error of in sample data. Number of neuron in hidden layer in this research is simulated from 1 to 20 (see appendix 5). The inputs and number of neuron in hidden layer of each model is shown in Table 4.5.

Table 4.5 showed that number of input for each model has variation from one input until three inputs and the majority number of input for each model is two inputs. Meanwhile, number of hidden layer has high variation and the majority number of neuron in hidden layer is 1 neuron. The next step after constructing hybrid ARIMA and FFNNs is combining each member by averaging and stacking techniques. Root mean square error of each member is shown in Figure 4.6

Figure 4.6 RMSE Hybrid ARIMA and FFNNs Ensemble

Figure 4.6 showed that in sample RMSE has smaller value than out sample RMSE. It happens because some data in out sample is expected to be positive but in reality the inflation is negative. Stacking has better performance than averaging in training data because all the in sample RMSE has less value than out sample RMSE. Meanwhile, in testing data stacking also take over averaging but in the last three models stacking have bigger RMSE than averaging.

Table 4.6 Member of Hybrid Autoregressive Integrated Moving Average (ARIMA) and Recurrent Neural Networks (RNNs) Ensemble

Neural Networks (RNNs) Ensemble					
Variable	Model	Input	RNN Model		
	ARIMAX ([1,12],1,[2,8,20])	Lag 14, Lag 19	NN(2,16,1)		
	ARIMAX ([1,8,12],1,[2,20])	Lag 14, Lag 16	NN(2,20,1)		
$Z_{1,t}$	ARIMAX ([1,12,20],1,[2,8])	Lag 14, Lag 19	NN(2,1,1)		
	ARIMAX ([1,12,14],1,[2,8,20])	Lag 19	NN(1,7,1)		
	ARIMAX ([1,3,12,14],1,[2])	Lag 20, Lag 22	NN(2,19,1)		
	ARIMAX([1,5,12,19],1,[2,14])	Lag 19, Lag 20	NN(2,17,1)		
	ARIMAX([1,5,12],1,[2,20])	Lag 16	NN(1,9,1)		
$Z_{2,t}$	ARIMAX([1,6,12,20],1,[2])	Lag 16, Lag 22	NN(2,10,1)		
	ARIMAX([1,12,20],1,[2,6])	Lag 16, Lag 22	NN(2,15,1)		
	ARIMAX([2,12],1,1)	Lag 20, Lag 22	NN(2,2,1)		
	ARIMAX(1,1,[2])	Lag 14, Lag 16	NN(2,7,1)		
7	ARIMAX([1,2],1,[3])	Lag 16, Lag 20	NN(2,1,1)		
$Z_{3,t}$	ARIMAX(0,1,1)	Lag 16	NN(1,10,1)		
	ARIMAX([1,2,3],1,[4])	Lag 16	NN(1,12,1)		
	ARIMA([1,7],1,2)	Lag 3, Lag 20	NN(2,5,1)		
	ARIMAX([3,4],1,[1,11])	Lag 2, Lag 13	NN(2,20,1)		
$Z_{4,t}$	ARIMAX([2,3],1,[1,4])	Lag 6, Lag 15	NN(2,14,1)		
	ARIMAX([1,2,4],1,[3,12])	Lag 13, Lag 20	NN(2,6,1)		
	ARIMAX(1,1,[2,3])	Lag 20	NN(1,14,1)		
	ARIMAX([1,3],1,[2])	Lag 9, Lag 11	NN(2,10,1)		
	ARIMAX(1,1,[2,3])	Lag 22	NN(1,2,1)		
$Z_{5,t}$	ARIMAX(1,1,[2,7])	Lag 8, Lag 22	NN(2,20,1)		
5,6	ARIMAX([1,7],1,[2])	Lag 15, Lag 22	NN(2,6,1)		
	ARIMAX([1,2],1,[3])	Lag 9, Lag 15, Lag 22	NN(3,19,1)		
	ARIMAX(1,0,[9])	Lag 11	NN(1,12,1)		
	ARIMAX([9],0,1)	Lag 6, Lag 11	NN(2,6,1)		
$Z_{6,t}$	ARIMAX([9],0,0)	Lag 1, Lag 11	NN(2,17,1)		
	ARIMAX(0,0,[9])	Lag 1, Lag 11, Lag 12	NN(3,19,1)		
	ARIMAX([1,9],0,0)	Lag 11	NN(1,2,1)		
	ARIMA(1,0,0)	Lag 9, Lag 18	NN(2,19,1)		
	ARIMA(0,0,1)	Lag 9	NN(1,16,1)		
$Z_{7,t}$	ARIMA([9],0,0)	Lag 1, Lag 4	NN(2,15,1)		
	ARIMA(0,0,[9])	Lag 1, Lag 2, Lag 4	NN(3,13,1)		
	ARIMA([1,9],0,0)	Lag 4, Lag 8	NN(2,19,1)		
	ARIMA([3],0,0)	Lag 9, Lag 11, Lag 17	NN(3,6,1)		
	ARIMA(0,0[3])	Lag 9, Lag 17	NN(2,2,1)		
$Z_{8,t}$	ARIMA([9],0,0)	Lag 11, Lag 17	NN(2,8,1)		
	ARIMA(0,0,[9])	Lag 10, Lag 17	NN(2,3,1)		
	ARIMA([3,9],0,0)	Lag 7, Lag 17	NN(2,20,1)		

4.4 Hybrid Autoregressive Integrated Moving Average (ARIMA) and Recurrent Neural Networks (RNNs) Ensemble Model for Inflation

Hybrid autoregressive integrated moving average (ARIMA) and recurrent neural networks (RNNs) ensemble is a combination model from ARIMA and RNNs, where the input of RNNs is residual of ARIMA (p,d,q) model. Input of RNNs is determined by PACF of residual ARIMA and number of neuron in hidden layer of RNNs is determined by the smallest mean square root error (MSE) of in sample data. Number of neuron in hidden layer in this research is simulated from 1 to 20 (see appendix 7). The inputs and number of neuron in hidden layer of each model is shown in Table 4.6. This study use Matlab with newelm as function.

Table 4.6 showed that number of input for each model has variation from one input until three inputs and the majority number of input for each model is two inputs. Meanwhile, number of hidden layer has high variation and the majority number of neuron in hidden layer is less than ten neuron. The next step after constructing hybrid ARIMA and RNNs is combining each member by averaging and stacking techniques. Root mean square error of each member is shown in Figure 4.6.

Figure 4.7 RMSE Hybrid ARIMA and RNNs Ensemble

Figure 4.7 showed that RMSE in sample is smaller than RMSE out sample and almost all stacking hybrid ARIMA and RNNs ensemble have smaller RMSE than averaging hybrid ARIMA and RNNs ensemble except sumenep inflation ($Z_{8,t}$) which has smaller RMSE in averaging hybrid ARIMA and RNNs ensemble. Therefore, hybrid ARIMA and RNNs stacking has higher performance to combining ensemble member than averaging.

Table 4.7 Member of Hybrid Autoregressive Integrated Moving Average (ARIMA) and Radial Basis Function Neural Networks (RBFNNs) Ensemble

Variable	Model	Input	SPREAD
	ARIMAX ([1,12],1,[2,8,20])	Lag 14, Lag 19	0.1
	ARIMAX ([1,8,12],1,[2,20])	Lag 14, Lag 16	0.1
$Z_{1,t}$	ARIMAX ([1,12,20],1,[2,8])	Lag 14, Lag 19	0.1
	ARIMAX ([1,12,14],1,[2,8,20])	Lag 19	0.1
	ARIMAX ([1,3,12,14],1,[2])	Lag 20, Lag 22	0.1
	ARIMAX([1,5,12,19],1,[2,14])	Lag 19, Lag 20	0.1
	ARIMAX([1,5,12],1,[2,20])	Lag 16	0.3
$Z_{2,t}$	ARIMAX([1,6,12,20],1,[2])	Lag 16, Lag 22	2.6
	ARIMAX([1,12,20],1,[2,6])	Lag 16, Lag 22	2.2
	ARIMAX([2,12],1,1)	Lag 20, Lag 22	1.2
	ARIMAX(1,1,[2])	Lag 14, Lag 16	1.7
	ARIMAX([1,2],1,[3])	Lag 16, Lag 20	0.4
$Z_{3,t}$	ARIMAX(0,1,1)	Lag 16	0.1
	ARIMAX([1,2,3],1,[4])	Lag 16	0.1
	ARIMA([1,7],1,2)	Lag 3, Lag 20	0.9
	ARIMAX([3,4],1,[1,11])	Lag 2, Lag 13	0.6
$Z_{4,t}$	ARIMAX([2,3],1,[1,4])	Lag 6, Lag 15	0.4
	ARIMAX([1,2,4],1,[3,12])	Lag 13, Lag 20	0.7
	ARIMAX(1,1,[2,3])	Lag 20	0.3
	ARIMAX([1,3],1,[2])	Lag 9, Lag 11	0.5
	ARIMAX(1,1,[2,3])	Lag 22	0.7
$Z_{5,t}$	ARIMAX(1,1,[2,7])	Lag 8, Lag 22	0.4
	ARIMAX([1,7],1,[2])	Lag 15, Lag 22	0.6
	ARIMAX([1,2],1,[3])	Lag 9, Lag 15, Lag 22	1.5
	ARIMAX(1,0,[9])	Lag 11	0.8
	ARIMAX([9],0,1)	Lag 6, Lag 11	5.1
$Z_{6,t}$	ARIMAX([9],0,0)	Lag 1, Lag 11	0.005
	ARIMAX(0,0,[9])	Lag 1, Lag 11, Lag 12	10.6
	ARIMAX([1,9],0,0)	Lag 11	1.4
	ARIMA(1,0,0)	Lag 9, Lag 18	0.1
	ARIMA(0,0,1)	Lag 9	1.2
$Z_{7,t}$	ARIMA([9],0,0)	Lag 1, Lag 4	3.3
	ARIMA(0,0,[9])	Lag 1, Lag 2, Lag 4	0.2
	ARIMA([1,9],0,0)	Lag 4, Lag 8	9.8
	ARIMA([3],0,0)	Lag 9, Lag 11, Lag 17	0.1
	ARIMA(0,0[3])	Lag 9, Lag 17	16.6
$Z_{8,t}$	ARIMA([9],0,0)	Lag 11, Lag 17	10.1
- /-	ARIMA(0,0,[9])	Lag 10, Lag 17	8.2
	ARIMA([3,9],0,0)	Lag 7, Lag 17	0.053

4.5 Hybrid Autoregressive Integrated Moving Average (ARIMA) and Radial Basis Function Neural Networks (RBFNNs) Ensemble Model for Inflation

Hybrid autoregressive integrated moving average (ARIMA) and radial basis function neural networks (RBFNNs) ensemble is a combination model from ARIMA and RBFNNs, where the input of RBFNNs is residual of ARIMA (p,d,q) model. Input of RBFNNs is the same with input of FFNNs which determined by PACF of residual ARIMA. This study use Matlab with newrbe as function because it has advantages that can produce a network with zero error on training vector. Number of neuron in hidden layer is the same length asoutput of training data. Constant spread is simulated from 0.1 until 5 with increment 0.1 and some models have larger and smaller spread (see Appendix 9). The hybrid ARIMA and RBFNNs model is shown in Table 4.7.

Table 4.7 showed that the majority of RBFNNs have spread between 0.1 and 0.5. There are only two models that have constant spread less than 0.1 and twelve models that have constant spread larger than 0.5. The next step after constructing hybrid ARIMA and RBFNNs is combining each member by averaging and stacking techniques. Root mean square error of each member is shown in Figure 4.8.

Figure 4.8 RMSE Hybrid ARIMA and RBFNNs Ensemble

Figure 4.8 showed that RMSE in sample is smaller than RMSE out sample and almost all stacking hybrid ARIMA and RBFNNs ensemble have smaller RMSE than averaging hybrid ARIMA and RBFNNs ensemble except sumenep inflation ($Z_{8,t}$) which has smaller RMSE in averaging hybrid ARIMA and RBFNNs ensemble in out sample. Therefore, stacking in hybrid ARIMA and RBFNNs ensemble has high performance to combining ensemble member.

Table 4.8 Member of Hybrid Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Networks (GRNNs) Ensemble

Variable	Model	Input	SPREAD
	ARIMAX ([1,12],1,[2,8,20])	Lag 14, Lag 19	0.02
	ARIMAX ([1,8,12],1,[2,20])	Lag 14, Lag 16	0.01
$Z_{1,t}$	ARIMAX ([1,12,20],1,[2,8])	Lag 14, Lag 19	0.02
	ARIMAX ([1,12,14],1,[2,8,20])	Lag 19	0.02
	ARIMAX ([1,3,12,14],1,[2])	Lag 20, Lag 22	0.04
	ARIMAX([1,5,12,19],1,[2,14])	Lag 19, Lag 20	0.08
	ARIMAX([1,5,12],1,[2,20])	Lag 16	0.01
$Z_{2.t}$	ARIMAX([1,6,12,20],1,[2])	Lag 16, Lag 22	0.09
	ARIMAX([1,12,20],1,[2,6])	Lag 16, Lag 22	0.06
	ARIMAX([2,12],1,1)	Lag 20, Lag 22	0.06
	ARIMAX(1,1,[2])	Lag 14, Lag 16	0.1
7	ARIMAX([1,2],1,[3])	Lag 16, Lag 20	0.07
$Z_{3.t}$	ARIMAX(0,1,1)	Lag 16	0.01
	ARIMAX([1,2,3],1,[4])	Lag 16	0.06
	ARIMA([1,7],1,2)	Lag 3, Lag 20	0.03
	ARIMAX([3,4],1,[1,11])	Lag 2, Lag 13	0.02
$Z_{4.t}$	ARIMAX([2,3],1,[1,4])	Lag 6, Lag 15	0.05
	ARIMAX([1,2,4],1,[3,12])	Lag 13, Lag 20	0.04
	ARIMAX(1,1,[2,3])	Lag 20	0.04
	ARIMAX([1,3],1,[2])	Lag 9, Lag 11	0.07
	ARIMAX(1,1,[2,3])	Lag 22	0.09
$Z_{5.t}$	ARIMAX(1,1,[2,7])	Lag 8, Lag 22	0.05
	ARIMAX([1,7],1,[2])	Lag 15, Lag 22	0.03
	ARIMAX([1,2],1,[3])	Lag 9, Lag 15, Lag 22	0.09
	ARIMAX(1,0,[9])	Lag 11	0.2
	ARIMAX([9],0,1)	Lag 6, Lag 11	0.15
$Z_{6.t}$	ARIMAX([9],0,0)	Lag 1, Lag 11	0.2
	ARIMAX(0,0,[9])	Lag 1, Lag 11, Lag 12	0.01
	ARIMAX([1,9],0,0)	Lag 11	0.3
	ARIMA(1,0,0)	Lag 9, Lag 18	0.18
	ARIMA(0,0,1)	Lag 9	0.09
$Z_{7.t}$	ARIMA([9],0,0)	Lag 1, Lag 4	0.04
	ARIMA(0,0,[9])	Lag 1, Lag 2, Lag 4	0.06
	ARIMA([1,9],0,0)	Lag 4, Lag 8	0.05
	ARIMA([3],0,0)	Lag 9, Lag 11, Lag 17	0.35
	ARIMA(0,0[3])	Lag 9, Lag 17	0.02
$Z_{8.t}$	ARIMA([9],0,0)	Lag 11, Lag 17	0.3
	ARIMA(0,0,[9])	Lag 10, Lag 17	0.15
	ARIMA([3,9],0,0)	Lag 7, Lag 17	0.1

4.6 Hybrid Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Networks (GRNNs) Ensemble Model for Inflation

Hybrid autoregressive integrated moving average (ARIMA) and generalized regression neural networks (GRNNs) ensemble is a combination model from ARIMA and GRNNs. where the input of GRNNs is residual of ARIMA (p.d.q) model. Input of GRNNs is the same with input of FFNNs which determined by PACF of residual ARIMA. This study use Matlab with newgrnn as function. Number of neuron in hidden layer is the same length as output of training data. Constant spread is simulated from 0.01 until 0.5 with increment 0.01 (see Appendix 11). The hybrid ARIMA and GRNNs model is shown in Table 4.8.

Table 4.8 showed that the majority of GRNNs have spread less than 0.1. There are only nine models that have constant spread more than 0.1. The next step after constructing hybrid ARIMA and GRNNs is combining each member by averaging and stacking techniques. Root mean square error of each member is shown in Figure 4.9.

Figure 4.9 RMSE Hybrid ARIMA and GRNNs Ensemble

Figure 4.9 showed that RMSE in sample is less than RMSE out sample and almost all stacking hybrid ARIMA and GRNNs ensemble have smaller RMSE than averaging hybrid ARIMA and RBFNNs ensemble except sumenep inflation ($Z_{8.t}$) which has smaller RMSE in averaging hybrid ARIMA and GRNNs ensemble in out sample. Therefore, stacking hybrid ARIMA and GRNNs ensemble has higher performance to combining ensemble member than averaging hybrid ARIMA and GRNNs ensemble.

Table 4.9 RMSE of Autoregressive Integrated Moving Average (ARIMA) for National Inflation and Seven Cities in East Java

Variable	Model	RMSE Training	RMSE Testing
	ARIMAX ([1,12],1,[2,8,20])*	0.071	0.078
	ARIMAX ([1,8,12],1,[2,20])	0.073	0.082
$Z_{1.t}$	ARIMAX ([1,12,20],1,[2,8])	0.075	0.083
1.0	ARIMAX ([1,12,14],1,[2,8,20])	0.075	0.081
	ARIMAX ([1,3,12,14],1,[2])	0.068	0.083
	ARIMAX([1,5,12,19],1,[2,14])*	0.257	0.263
	ARIMAX([1,5,12],1,[2,20])	0.258	0.264
$Z_{2.t}$	ARIMAX([1,6,12,20],1,[2])	0.273	0.283
2.1	ARIMAX([1,12,20],1,[2,6])	0.275	0.280
	ARIMAX([2,12],1,1)	0.263	0.267
	ARIMAX(1,1,[2])	0.224	0.336
7	ARIMAX([1,2],1,[3])	0.255	0.336
$Z_{3.t}$	ARIMAX(0,1,1)	0.225	0.338
	ARIMAX([1,2,3],1,[4])*	0.268	0.334
	ARIMA([1,7],1,2)	0.318	0.289
	ARIMAX([3,4],1,[1,11])	0.240	0.300
$Z_{4.t}$	ARIMAX([2,3],1,[1,4])*	0.258	0.283
	ARIMAX([1,2,4],1,[3,12])	0.225	0.286
	ARIMAX(1,1,[2,3])	0.243	0.297
	ARIMAX([1,3],1,[2])	0.212	0.229
	ARIMAX(1,1,[2,3])	0.201	0.225
$Z_{5.t}$	ARIMAX(1,1,[2,7])*	0.233	0.223
	ARIMAX([1,7],1,[2])	0.225	0.234
	ARIMAX([1,2],1,[3])	0.209	0.231
	ARIMAX(1,0,[9])	0.167	0.407
	ARIMAX([9],0,1)	0.161	0.396
$Z_{6.t}$	ARIMAX([9],0,0)	0.180	0.388
	ARIMAX(0,0,[9])	0.182	0.403
	ARIMAX([1,9],0,0)*	0.164	0.372
	ARIMA(1,0,0)	0.410	0.830
	ARIMA(0,0,1)	0.410	0.829
$Z_{7.t}$	ARIMA([9],0,0)	0.419	0.764
	ARIMA(0,0,[9])*	0.417	0.756
	ARIMA([1,9],0,0)	0.393	0.769
	ARIMA([3],0,0)	0.632	1.290
	ARIMA(0,0[3])	0.633	1.300
$Z_{8.t}$	ARIMA([9],0,0)	0.632	1.224
	ARIMA(0,0,[9])	0.629	1.216
	ARIMA([3,9],0,0)*	0.618	1.191

^{*)} ARIMA model which has the smallest RMSE

4.7 Comparison between Hybrid Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANNs) Ensemble Model and Autoregressive Integrated Moving Average (ARIMA) Model

Comparison between hybrid autoregressive integrated moving average (ARIMA) and artificial neural networks ensemble and autoregressive integrated moving average (ARIMA) is used to know does complicated model (in this case is hybrid ARIMA and ANN ensemble) have higher performance than simple method (in this case is ARIMA). To know that, this study using relative root mean square error (RelRMSE) and log mean square error ratio (LMR). All hybrid ARIMA and ANNsensemblemodels for each variable are compared by ARIMA which have the smallest RMSE in testing data. The RMSE of ARIMA is shown in Table 4.9. meanwhile RelRMSE and LMR of hybrid ARIMA and ANNs ensemble is shown in Table 4.10.

Table 4.10 RelRMSE and LMR Hybrid Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANNs) Ensemble for National Inflation and Seven Cities in East Java

Variable	Method	RelRl	MSE	LM	IR
variable	Method	Training	Testing	Training	Testing
	Hybrid ARIMA-FFNN Averaging	0.971	1.108	-0.058	0.204
	Hybrid ARIMA-FFNN Stacking	0.917	0.984	-0.173	-0.033
	Hybrid ARIMA-RNN Averaging	0.971	1.029	-0.058	0.058
Z1	Hybrid ARIMA-RNN Stacking	0.923	1.029	-0.161	0.057
2.1	Hybrid ARIMA-RBFNN Averaging	0.717	1.029	-0.665	0.057
	Hybrid ARIMA-RBFNN Stacking	0.663	1.020	-0.822	0.040
	Hybrid ARIMA-GRNN Averaging	0.815	1.029	-0.409	0.057
	Hybrid ARIMA-GRNN Stacking	0.708	0.913	-0.690	-0.183
	Hybrid ARIMA-FFNN Averaging	0.970	0.998	-0.062	-0.004
	Hybrid ARIMA-FFNN Stacking	0.959	0.981	-0.085	-0.038
	Hybrid ARIMA-RNN Averaging	0.977	1.033	-0.046	0.064
Z2	Hybrid ARIMA-RNN Stacking	0.964	1.010	-0.072	0.020
	Hybrid ARIMA-RBFNN Averaging	0.846	0.959	-0.335	-0.084
	Hybrid ARIMA-RBFNN Stacking	0.768	0.928	-0.528	-0.149
	Hybrid ARIMA-GRNN Averaging	0.853	0.976	-0.319	-0.049
	Hybrid ARIMA-GRNN Stacking	0.835	0.959	-0.361	-0.083
	Hybrid ARIMA-FFNN Averaging	0.801	1.058	-0.445	0.113
	Hybrid ARIMA-FFNN Stacking	0.764	0.994	-0.538	-0.013
	Hybrid ARIMA-RNN Averaging	0.836	1.000	-0.359	0.001
Z3	Hybrid ARIMA-RNN Stacking	0.807	1.000	-0.428	-0.001
2.5	Hybrid ARIMA-RBFNN Averaging	0.622	0.938	-0.950	-0.128
	Hybrid ARIMA-RBFNN Stacking	0.584	0.916	-1.076	-0.175
	Hybrid ARIMA-GRNN Averaging	0.706	0.970	-0.696	-0.061
	Hybrid ARIMA-GRNN Stacking	0.664	0.951	-0.820	-0.100

Table 4.10 RelRMSE and LMR of Hybrid Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANNs) (continue)

Variable	Madhad	RelR	MSE	LM	IR
variable	Method	Training	Testing	Training	Testing
	Hybrid ARIMA-FFNN Averaging	0.826	0.983	-0.382	-0.034
	Hybrid ARIMA-FFNN Stacking	0.805	0.968	-0.435	-0.065
	Hybrid ARIMA-RNN Averaging	0.875	1.009	-0.266	0.018
71	Hybrid ARIMA-RNN Stacking	0.835	1.008	-0.360	0.016
Z 4	Hybrid ARIMA-RBFNN Averaging	0.625	0.889	-0.939	-0.235
	Hybrid ARIMA-RBFNN Stacking	0.555	0.874	-1.177	-0.268
	Hybrid ARIMA-GRNN Averaging	0.557	0.892	-1.169	-0.228
	Hybrid ARIMA-GRNN Stacking	0.491	0.854	-1.423	-0.315
	Hybrid ARIMA-FFNN Averaging	0.824	0.833	-0.387	-0.365
	Hybrid ARIMA-FFNN Stacking	0.812	0.820	-0.416	-0.397
	Hybrid ARIMA-RNN Averaging	0.852	1.065	-0.321	0.126
75	Hybrid ARIMA-RNN Stacking	0.819	1.044	-0.400	0.086
Z 5	Hybrid ARIMA-RBFNN Averaging	0.594	0.890	-1.041	-0.234
	Hybrid ARIMA-RBFNN Stacking	0.552	0.869	-1.187	-0.281
	Hybrid ARIMA-GRNN Averaging	0.651	0.923	-0.858	-0.161
	Hybrid ARIMA-GRNN Stacking	0.621	0.862	-0.952	-0.296
	Hybrid ARIMA-FFNN Averaging	0.846	1.123	-0.168	0.116
	Hybrid ARIMA-FFNN Stacking	0.841	1.126	-0.173	0.118
	Hybrid ARIMA-RNN Averaging	0.994	1.072	-0.006	0.070
777	Hybrid ARIMA-RNN Stacking	0.968	1.052	-0.033	0.051
Z6	Hybrid ARIMA-RBFNN Averaging	0.742	1.117	-0.298	0.110
	Hybrid ARIMA-RBFNN Stacking	0.650	1.086	-0.431	0.082
	Hybrid ARIMA-GRNN Averaging	0.839	1.077	-0.176	0.074
	Hybrid ARIMA-GRNN Stacking	0.643	1.023	-0.441	0.023
	Hybrid ARIMA-FFNN Averaging	0.876	1.064	-0.132	0.062
	Hybrid ARIMA-FFNN Stacking	0.857	1.117	-0.155	0.110
	Hybrid ARIMA-RNN Averaging	0.938	1.047	-0.064	0.046
77	Hybrid ARIMA-RNN Stacking	0.925	1.023	-0.078	0.022
Z 7	Hybrid ARIMA-RBFNN Averaging	0.568	1.029	-0.566	0.028
	Hybrid ARIMA-RBFNN Stacking	0.361	0.974	-1.019	-0.026
	Hybrid ARIMA-GRNN Averaging	0.510	0.904	-0.672	-0.101
	Hybrid ARIMA-GRNN Stacking	0.365	0.781	-1.009	-0.247
	Hybrid ARIMA-FFNN Averaging	0.905	1.104	-0.099	0.099
	Hybrid ARIMA-FFNN Stacking	0.893	1.182	-0.114	0.167
	Hybrid ARIMA-RNN Averaging	0.998	1.066	-0.002	0.064
70	Hybrid ARIMA-RNN Stacking	1.024	1.100	0.024	0.095
Z 8	Hybrid ARIMA-RBFNN Averaging	0.765	1.020	-0.267	0.020
	Hybrid ARIMA-RBFNN Stacking	0.723	1.085	-0.325	0.081
	Hybrid ARIMA-GRNN Averaging	0.754	0.938	-0.283	-0.064
	Hybrid ARIMA-GRNN Stacking	0.690	0.976	-0.371	-0.024

Performance of forecasting model is evaluation in testing data. because it shows how model generate forecasting value for future. Eventhough, overall hybrid ARIMA and ANNs ensemble has much higher performance than ARIMA model in training but in testing only some hybrid ARIMA and ANNs have higher performance than ARIMA for each variable because RelRMSE has less than 1 and LMR has less than 0 (Table 4.10). However, hybrid ARIMA and ANNs ensemble in Probolinggo inflation (Z_{6.t}) has lower performance than ARIMA because RelRMSE has more than 1 and LMR has more than 0. Overall, stacking technique has higher performance than averaging to combine the hybrid ARIMA and ANNs ensemble. In addition, hybrid ARIMA and GRNNs ensemble has higher performance than the rest of other hybrid ARIMA and ANNs.

Summary of the best models which have the smallest RMSE, RelRMSE which less than 1 and LMR which less than 0 is shown in Table 4.11

Table 4.11 The Best Model for National Inflation and Seven Cities in East Java

Variable	Method	RMSE	RelRMSE	LMR
Z 1	Hybrid ARIMA-GRNN Stacking	0.072	0.913	-0.183
Z2	Hybrid ARIMA-RBFNN Stacking	0.244	0.928	-0.149
Z3	Hybrid ARIMA-RBFNN Stacking	0.306	0.916	-0.175
Z4	Hybrid ARIMA-GRNN Stacking	0.242	0.854	-0.315
Z5	Hybrid ARIMA-GRNN Stacking	0.192	0.862	-0.296
Z6	ARIMAX([1,9],0,0)	0.372	1.000	0.000
Z 7	Hybrid ARIMA-GRNN Stacking	0.590	0.781	-0.247
Z8	Hybrid ARIMA-GRNN Averaging	1.116	0.938	-0.064

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In this research hybrid autoregressive integrated moving average (ARIMA) and artificial neural networks (ANNs) are used with varying input while the training data unchanged to create ensemble members for forecasting purpose. Meanwhile, averaging and stacking techniques are used to combine the ensemble members. The networks of ANNs in this study are feedforward neural networks (FFNNs), recurrent neural networks (RNNs), radial basis function neural networks (RBFNNs) and generalized regression neural networks (GRNNs). There are five ensemble members for each variable except Malang inflation (Z_{3,t})which has only four ensemble members. The input of ANNs is PACF of residual ARIMA. The best network in hybrid ARIMA and ANNs is determined by the best root mean square error of training data. Meanwhile, the best model is determined by the smallest RMSE, RelRMSE less than 1 and LMR more than 0 in testing data. In general, hybrid ARIMA and ANNs gives better performance than ARIMA for each variable. Also, stacking technique give better performance than averaging to combine the hybrid ARIMA and ANNs ensembles. In addition, hybrid ARIMA and GRNNs ensemble gives higher performance than the other hybrid ARIMA and ANNs.

5.2 Recommendations

To improve forecasting accuracy in this research, future research can be done in the following directions:

- 1. Create ensemble members of hybrid ARIMA and ANNsensemble using other data training methodologies such as bootstrap and boosting.
- 2. Stepwise regression can be used to determine inputs of ANNs in hybrid ARIMA and ANNs ensemble

REFERENCES

- Ang.A.. Bekaertb.G.. Weic. M. (2007).Do Macro Variables.Asset Markets. or Surveys Forecast Inflation Better?. *Journal of Monetary Economics*. 54. 1163–1212
- Bank Indonesia. (2013. Dec 18). Kerangka Kebijakan Moneter. Retrieved from http://www.bi.go.id/web/id/Moneter/Kerangka+Kebijakan+Moneter/
- Bank Indonesia (2013b. Dec 19). Pengenalan Inflasi. Retrieved from http://www.bi.go.id/web/id/Moneter/Inflasi/Pengenalan+Inflasi/
- BPS (Badan Pusat Statistik). (2013. Dec 19). Konsep Inflasi. Retrieved from http://www.bps.go.id/menutab.php?tabel=1&kat=2&id_subyek=03
- Bollerslev. T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. *Journal of Econometrics*. 31.107-127
- Bos. C.S.. Franses. P.H.. Ooms. M. (2002). Inflation. Forecast Intervals and Long Memory Regression Models. *International Journal of Forecasting*. 18. 243–264
- Box. G.E.P.. Jenkins. G.M. 1976. *Time series Analysis Forecasting and Control Revised Edition*. Oakland: Holden-Day. Inc
- Bowerman. B.L.. O'Connel. R.T.. Koehler. A.B. (2005). Forecasting. Time Series and Regression an Applied Approach Fourth Edition. USA: Brook/Cole. Thomson Learning. Inc
- Breimen. L. (1996). Stacked Regression. Machine Learning. 24. 49-64
- Broto. C. (2011). Inflation targeting in Latin America: Empirical analysis using GARCH models. *Economic Modelling*. 28.1424-1434
- Celikoglu. H.B. (2006). Application of Radial Basis Function and Generalized Regression Neural Networks in Nonlinier Utility Function Spesification for Travel Mode Choice Modelling. *Mathematical and Computer Modelling*. 44.640-658
- Chen. D. (2011). Chinese Automobile Demand Prediction Based on ARIMA Model. 2011
 14th International Conference on Biomedical Engineering and Informatics
 (BMEI).2197-2201
- Connor. J.T.. Martin. R.D.. Atlas. L.E. (1994). Recurrent Neural Networks and Robust Time Series Prediction. *IEEE Transactions on Neural Networks. Vol 5. 2*
- Crone. S.F.. Kourentzes. N. (2009). Input-variable Specification for Neural Networks an Analysis ofForecasting low and high Time Series Frequency. *Proceedings of International Joint Conference on Neural Networks (IJCNN)*. 619-626
- Cryer. J. D.. Chan. Kung-Sik. (2008). *Time series Analysis With Applications in R Second Edition*. New York: Springer.

- Daniel. W.W. (1989). Statistika Nonparametrik Terapan. Jakarta: PT Gramedia
- Davis. J.L.. Chandra. K.. Thompson. C. (2000). Nonlinier Time Series Model for VBR Radio Traffic. 25th Annual IEEE Conference on Local Computer Networks 2000.678-683
- Donate. J.P.. Cortez. P.. Sanchez. G.G.. de Miguel. A.S. (2013). Time Series Forecasting Using a Weighted Cross-Validation Evolutionary Artificial Neural Networks Ensemble. *Neurocomputing*. 109. 27-32
- Engle. R.F. (1982). Autoregressive Conditional Heteroskedasticity with Estimates of The Variance of United Kingdom Inflation. *Econometrica*. 50. 987-1007
- Faraway. J.. Chatfield. C. (1998). Time Series Forecasting with Neural Networks: a Comparative study using Airlines Data. Applied Statistics. 47. 231-250
- Gao. S.. He. Y.. Chen. H. (2009). Wind Speed Forecast for Wind Farms Based on ARMA-ARCH Model. *International Conference on Sustainable Power Generation and Supply (SUPERGEN '09)*.1-4
- Gooijer. J.G. D.. Hyndman. R.J. (2006). 25 Years of Time Series Forecasting. *International Journal of Forecasting*. 22.443-473
- Heij. C., Groenen. P.J.F., Dijk. D.v., (2007). Forecasting Comparison of Principal Component Regression and Principal Covariate Regression. *Computational Statistics and Data Analysis*.51.3612-3625
- Hurtado. C., Luis. J., Fregoso. C., Hector. J. (2013). Forecasting Mexican Inflation using Neural Networks. *International Conference on Electronics. Communications and Computing (CONIELECOMP)*.32 35
- Khashei. M., Bijari. B., Ardali. G.A.R. (2009). Improvement of Auto-Regressive Integrated Moving Average Models Using Fuzzy Logic and Artificial Neural Networks (ANNs). *Neurocomputing*. 72.956-967
- Kontonikas. A. (2004). Inflation and Inflation Uncertainty in The United Kingdom. Evidence from GARCH Modelling. *Economic Modelling*. 21.525-543
- Kooths. S.. Mitze. T.. Ringhut. E. (2003). Inflation Forecasting A Comparison Between Econometric Methods and A Computational Approach Based On Genetic-Neural Fuzzy Rule-Bases. 2003 IEEE International Conference on Computational Intelligence for Financial Engineering. 183 190
- Lee. C-M.. Ko. C-N. (2011). Short Term Load Forecasting Using Lifting Scheme and ARIMA Models. *Expert System with Applications*. 38. 5902-5911
- Liu. P.. Chen. S-H.. Yang. H-H.. Hung. C-T..Tsai. M-R. (2008). Application of Artificial Neural Networks and SARIMA in Portland Cement Supply Chain to Forecast Demand. *Fourth International Conference on Natural Computation*. 97-101

- McAdams. P.. McNelis. P. (2005). Forecasting Inflation with Thick Model and Neural Networks .*Economic Modelling*. 45.848-867
- Methaprayoon. K.. Lee. W.J.. Didsayabutra. P.. Liao. J.. Ross. R. (2003). Neural Networks-Based Short Term Load Forecasting for Unit Commitment Scheduling. *IEEE Technical Conference Industrial and Commercial Power Systems.* 138 143
- Muqtashidah. I. (2009). Jaringan Syaraf Tiruan Backpropagation dan Analisis Runtun Waktu Sebagai Metode Forecast Pada Penghitungan Laju Inflasi. Final Project of Mathematics Department. Universitas Negeri Semarang (not published)
- Nakamura. E. (2005). Inflation Forecasting Using a Neural Networks. *Economics Letters*. 86. 373-378.
- Ni. S. (2011). Inflation Rate Generator Based on VAR Model. 2011 Fourth International Conference on Business Intelligence and Financial Engineering (BIFE). 325-327
- Öğünç. F.. Akdoğan. K.. Başer. S.. Chadwick. M.G.. Ertuğ. D.. Hülagü.T.. Kösem.S.. Özmen.M.U.. Tekatlı. N. (2013). Short-term inflation forecasting models for Turkey and a forecast combination analysis. *Economic Modelling*. 33. 312–325
- Purnama. A. (2010). Backpropagation Neural Networks As Method For Forecasting on Calculation Inflation Rate In Jakarta and Surabaya. Final Project of Computer Science Department. Universitas Gunadarma (not published)
- Ren. S.. Yang. D.. Ji. F.. Tian. X. (2010) Application of Generalized Regression Neural Networks in Prediction of Cement Properties. 2010 International Conference on Computer Design and Applications
- Rukini and Suhartono. (2013).) Model ARIMAX dan Deteksi Garch untuk Peramalan Inflasi Kota Denpasar. Prosiding Seminar Nasional Universitas Negeri Yogyakarta Matematika dan Pendidikan Matematika
- Septiorini. A. (2009). Peramalan Inflasi Nasional Yang Dipengaruhi Faktor Ekonomi Makro dengan Metode Fungsi Transfer. Final Project of Mathematics Department. Institut Teknologi Sepuluh Nopember Surabaya (not published)
- Silfiani. M.. Suhartono. (2012). Forecasting Inflation in Indonesia Using Ensemble Methods. *International Conference Mathematics. Statistics and its Applications* 2012.
- Sharaf. A.M.. Lie. T.T.. Gooi. H.B. (1993). A neural networks based short term load forecasting model. *Canadian Conference on Electrical and Computer Engineering*. vol 1. 325 328
- Sharkey. A.J.C. (1999).On Combining Artificial Neural Net: Ensemble and Modular Multi-Networks System. Springer Verlag

- Shu. C.. Burn. D.H. (2004). Artificial Neural Networks Ensemble and their Application in Pooled Flood Frequency Analysis. *Water Resources Research.* 40
- Stock.J.H.. Watson. M.W. (1999). Forecasting inflation. *Journal of Monetary Economics*. 44. 93-335
- Tarno.. Suhartono.. Subanar.. Rosadi. D. (2012). New Procedure for Determining Order of SubsetAutoregressiveIntegrated Moving Average (ARIMA)Based on Overfitting Concept. *International Conference on Statistics in Science. Business. and Engineering (ICSSBE)* 2012.1-5
- Tebak. B.M.. Feitosa. M.A. (2009). An analysis of the Yield Spread as Predictor of Inflation in Brazil: Evidence from Wavelets Approach. *Expert System and Applications*. 36.7129-7134
- Tong. H., Lim. K.S. (1980). Threshold Autoregression Limit Cycles and Cyclical Data. Journal of the Royal Statistical Society. Series B (Methodology). Vol 42. 3.245-292
- Vanipour. M., Banihabib. M.E., Behbahani. S.M.R. (2013). Comparison of the ARMA. ARIMA. and the Autoregressive Artificial Neural Networks Models in Forecasting The Monthly Inflow of Dez Dam Reservoir. *Journal of Hydrology*. 476, 433-441
- Wang. C., Wu. D. (2010). Modeling China's Inflation: Linear versus Nonlinear Method. International Conference on Computational Intelligence and Software Engineering (CiSE). 1 4
- Wei. W.W.S. (2006). Time series Analysis: Univariate and Multivariate MethodsSecond Edition. USA: Pearson Education. Inc
- Wijaya. Y.B.. Napitupulu. T.A. (2010). Stock Price Prediction: Comparison of ARIMA and Artificial Neural Networks Methods. 2010 Second International Conference on Advances in Computing. Control and Telecommunication Technologies (ACT). 176-179
- Zaier. I.. Shu. C.. Ourda. T.B.M.J.. Seidou. O.. Chebana. F. (2010). Estimation of Ice Thickness on Lakes Using Artificial Neural Networks Ensembles. *Journal of Hydrology*. 383.330-340
- Zhang. L., Li. J. (2012). Inflation Forecasting Using Support Vector Regression. 2012 International Symposium on Information Science and Engineering (ISISE). 136-140
- Zhang. G.P. (2003). Time Series Forecasting Using A Hybrid ARIMA and Neural Networks Model. *Neurocomputing*. 50.159-175

Zheng. F.. Zhong. S. (2011). Time Series Forecasting Using an Ensemble Model Incorporating ARIMA and ANN Based on Combined Objectives. 2nd International Conference on Artificial Intelligence. Management Science. and Electronic Commerce (AIMSEC). 2671-2674

APPENDICES

Appendix 1: Box Plot for Inflation of Seven Cities in East Java

Appendix 2: Box-Cox Transformation. ACF and PACF Graph for Inflation of Seven Cities in East Java

■ National Infation (Z_{1.t})

■ Kediri Inflation (Z_{5.t})

■ Probolinggo Inflation (Z_{6.t})

(a) Box-Cox Transformation of $Z_{6.t}$

■ Madiun Inflation (Z_{7.t})

(a) Box-Cox Transformation of $Z_{6.t}$

• Sumenep Inflation $(Z_{8.t})$

(a) Box-Cox Transformation of $Z_{8.t}$

(b) ACF of transformation $Z_{8.t}$

(c) PACF of transformation $Z_{8.t}$

Appendix 3: SAS Output ARIMA Model for Inflation

■ National Inflation (Z_{1,t})

			Max		RIMA Proce celihood E				
			Stand	dard		Approx	:		
Paramet	er	Estimate	E	ror	t Value	Pr > t	Lag	Variable	Shift
MA1.1 MA1.2		0.59110 0.20921		1610 1242	12.82 4.93	<.0001 <.0001		z1 z1	0
MA1.3		0.20921		3847	3.05	0.0023		z1	0
AR1.1		-0.50636		1635	-10.93	<.0001		z1	0
AR1.2		0.31332		1456	7.03	<.0001		z1	0
NUM1		0.42226	0.0	5547	6.45	<.0001	. 0	aonum235	0
NUM2		0.25775		5727	4.50	<.0001		aonum226	0
NUM3		0.24837		5356	3.91	<.0001		aonum236	0
NUM4		0.16792		5802	2.89	0.0038			0
NUM5 NUM6		-0.15264 -0.18539		5630 5630	-2.71 -3.29	0.0067 0.0010		aonum081 aonum303	0
NUM7		0.20832		5645	3.69	0.0002		aonum195	0
Го	Chi-		Autoco Pr >	orrelat	ion Check	of Residua	ls		
ag	Square	DF	ChiSq			Autoc	orrelations	3	
6	3.78	1	0.0519	0.00	7 -0.00	2 -0.05	3 0.000	0 -0.076	0.027
12	6.50		0.4825	-0.04					-0.049
18	19.42		0.1108	-0.060					0.047
24	29.00		0.0659	-0.079					0.080
30	36.37	25	0.0662	-0.034	1 0.05	0 0.01	4 -0.079	0.066	0.053
		Test			for Norma Statistic-		-p Value		
		Shapiro-		W	0.9934			0865	
			ov-Smirnov		0.0384				
			on Mises -Darling		Sq 0.1439 Sq 0.8218		_)294)352	
			Max:		RIMA Proce celihood E				
Paramet	er	Estimate	Stand E:	dard rror	t Value	Approx Pr > t		Variable	Shift
MA1.1 MA1.2		0.48716 0.13297	0.09	5002 1547	9.74 2.92	<.0001 0.0035		z1 z1	0
AR1.1		-0.47243		1695	-10.06	<.0001		z1	0
AR1.2		-0.09182		1421	-2.08	0.0378		z1	0
AR1.3		0.27058		1242	6.38	<.0001		z1	0
NUM1		0.36159		5550	5.52	<.0001		aonum235	0
NUM2 NUM3		0.26380		5922	4.45 3.75	<.0001 0.0002		aonum226 aonum236	0
JUM4		0.24708		5588 5925	-3.46	0.0002		aonum310	0
NUM5		0.21731		5073	3.58	0.0003		aonum039	0
			Autoco	orrelat:	ion Check	of Residua	ls		
Го	Chi-		Pr >		2 C11CC11		-		
ag	Square	DF	ChiSq			Autoc	orrelations	3	
	1.85		0.1743	-0.019					0.053
6		7	0.3251	-0.076					-0.040
12	8.09		0 0712	-0.078	3 -0.12	2 -0.01			0.018
12 18	21.09		0.0712		0 00	7 0 0 1	4 0 000	0 070	0 004
6 12 18 24 30			0.0776	-0.05					0.084

		Test			or Normalit atistic	-	Value		
			Wilk	W	0.989125				
			ov-Smirnov on Mises		0.0462				
			-Darling		1.14207				
					MA Procedui				
			Standa		rinood ibe:	Approx			
Paramete	er	Estimate			Value I	r > t	Lag	Variable	Shift
MA1.1		0.59888	0.045		13.16	<.0001		z1	0
MA1.2 AR1.1		0.18795 -0.49600	0.042	168 161 -	4.40	<.0001 <.0001	8 1		0
AR1.2		0.26158	0.044			<.0001	12		0
AR1.3		-0.10415	0.042			0.0145			0
NUM1 NUM2		0.26139 0.28269	0.059 0.059			<.0001 <.0001		aonum235 aonum226	0
NUM3		0.20933		42		0.0004			0
				relation	n Check of	Residuals			
To ag	Chi- Square		Pr > ChiSq			Autocorr	relations		
6	2 25	1	0.0000	0.015	0 007	0.045	0 010	0.000	0.000
6 12	2.87 4.73		0.0902 0.6934		0.027			-0.062 -0.027	
18	20.34	13	0.0870	-0.083	-0.146	-0.050	-0.074	-0.028	0.031
24	29.58	19	0.0575 0.1030	-0.087	-0.046	-0.057	-0.052	0.040	0.070
30	34.23	25	0.1030	-0.038	0.050	-0.016	-0.051	0.059	0.026
		Wast.			for Normal		77-1		
		Test		51	atistic	p	value		
		Shapiro-		W		Pr < W			
		Kolmogor	Wilk ov-Smirnov on Mises	D		Pr > D	0.0	902	
		Kolmogor Cramer-v	ov-Smirnov	D W-Sq	0.041889	Pr > D Pr > W-	0.0 -Sq 0.0	902 145	
		Kolmogor Cramer-v	ov-Smirnov on Mises -Darling	D W-Sq A-Sq The ARII	0.041889 0.168752	Pr > D Pr > W- Pr > A-	0.0 -Sq 0.0	902 145	
		Kolmogor Cramer-v Anderson	ov-Smirnov on Mises -Darling Maxim Standa	D W-Sq A-Sq The ARII	0.041889 0.168752 1.033132 MA Procedur Lihood Est	Pr > D Pr > W- Pr > A-	0.0 -Sq 0.0 -Sq 0.0	902 145 100	
Paramete	er	Kolmogor Cramer-v	ov-Smirnov on Mises -Darling Maxim Standa	D W-Sq A-Sq The ARII	0.041889 0.168752 1.033132	Pr > D Pr > W- Pr > A-	0.0 -Sq 0.0	902 145	Shift
Paramete MAl.1	er	Kolmogor Cramer-v Anderson Estimate	ov-Smirnov on Mises -Darling Maxim Standa Err 0.047	D W-Sq A-Sq The ARII num Like: ard or t	0.041889 0.168752 1.033132 MA Procedualihood Esti	Pr > D Pr > W- Pr > A- Te mation Approx Pr > t	0.00 -Sq 0.00 -Sq 0.00 -Sq 0.00	902 145 100 Variable	0
MA1.1 MA1.2	er	Kolmogor Cramer-v Anderson Estimate 0.56355 0.16263	ov-Smirnov on Mises -Darling Maxim Standa Err 0.047 0.043	D W-Sq A-Sq The ARII num Like and for t	0.041889 0.168752 1.033132 MA Procedum lihood Esti Value I 11.95 3.71	Pr > D Pr > W- Pr > A- Te Imation Approx Pr > t <.0001 0.0002	0.00 Sq 0.00 Sq 0.00 Lag	902 145 100 Variable z1 z1	0
MA1.1 MA1.2 MA1.3	er	Kolmogor Cramer-v Anderson Estimate 0.56355 0.16263 0.10269	ov-Smirnov on Mises -Darling Maxim Standa Err 0.047 0.043 0.040	D W-Sq A-Sq The ARII num Like: urd or t	0.041889 0.168752 1.033132 MA Procedur lihood Esti Value I 11.95 3.71 2.52	Pr > D Pr > W- Pr > A- Te Imation Approx Pr > t <.0001 0.0002 0.0117	0.0 Sq 0.0 Sq 0.0 Lag	902 145 100 Variable z1 z1 z1	0 0 0
MA1.1 MA1.2 MA1.3 AR1.1	er	Kolmogor Cramer-v Anderson Estimate 0.56355 0.16263	ov-Smirnov on Mises -Darling Maxim Standa Err 0.047 0.043	D W-Sq A-Sq The ARII num Like ard or t	0.041889 0.168752 1.033132 MA Procedum lihood Esti Value I 11.95 3.71	Pr > D Pr > W- Pr > A- Te Imation Approx Pr > t <.0001 0.0002	0.00 Sq 0.00 Sq 0.00 Lag	902 145 100 Variable z1 z1	0
MA1.1 MA1.2 MA1.3 AR1.1 AR1.2 AR1.3	er	Kolmogor Cramer-v Anderson Estimate 0.56355 0.16263 0.10269 -0.52364 0.29485 -0.11751	ov-Smirnov on Mises -Darling Maxim Standa Err 0.047 0.043 0.040 0.048 0.044	D W-Sq A-Sq The ARII num Like and for t	0.041889 0.168752 1.033132 MA Procedum lihood Esti Value I 11.95 3.71 2.52 -10.81 6.63 -2.63	Pr > D Pr > W- Pr > A- Te mation Approx Pr > t <.0001 0.0002 0.0117 <.0001 <.0001 0.0086	0.00 Sq 0.00 Sq 0.00 Lag 2 8 20 1 12 14	902 145 100 Variable z1 z1 z1 z1 z1 z1	0 0 0 0
	er	Kolmogor Cramer-v Anderson Estimate 0.56355 0.16263 0.10269 -0.52364 0.29485	ov-Smirnov on Mises -Darling Maxim Standa Err 0.047 0.043 0.040 0.048	D W-Sq A-Sq The ARII num Like and or t	0.041889 0.168752 1.033132 MA Procedur lihood Esti Value I 11.95 3.71 2.52 -10.81 6.63	Pr > D Pr > W- Pr > A- Te Amation Approx Pr > t <.0001 0.0002 0.0117 <.0001 <.0001	0.00 -Sq 0.00 -Sq 0.00 -Sq 0.00 Lag 2 8 20 1 12	902 145 100 Variable zl zl zl zl zl zl	0 0 0 0
MA1.1 MA1.2 MA1.3 AR1.1 AR1.2 AR1.3 NUM1	er	Kolmogor Cramer-v Anderson Estimate 0.56355 0.16263 0.10269 -0.52364 0.29485 -0.11751 0.28129	ov-Smirnov on Mises -Darling Maxim Standa Err 0.047 0.043 0.040 0.044 0.044 0.061	D W-Sq A-Sq The ARII und Like and or t	0.041889 0.168752 1.033132 MA Procedur lihood Esti Value I 11.95 3.71 2.52 -10.81 6.63 -2.63 4.56 4.24	Pr > D Pr > W- Pr > A- Te Imation Approx Pr > t <.0001 0.0002 0.0117 <.0001 <.0001 0.0086 <.0001 <.0001	0.00 Sq 0.00 Sq 0.00 Lag 2 8 20 1 12 14 0	902 145 100 Variable zl zl zl zl zl zl zl aonum235	0 0 0 0 0
MA1.1 MA1.2 MA1.3 AR1.1 AR1.2 AR1.3 NUM1 NUM2	er Chi-	Kolmogor Cramer-v Anderson Estimate 0.56355 0.16263 0.10269 -0.52364 0.29485 -0.11751 0.28129	ov-Smirnov on Mises -Darling Maxim Standa Err 0.047 0.043 0.040 0.044 0.044 0.061	D W-Sq A-Sq The ARII und Like and or t	0.041889 0.168752 1.033132 MA Procedum lihood Esti Value I 11.95 3.71 2.52 -10.81 6.63 -2.63 4.56	Pr > D Pr > W- Pr > A- Te Imation Approx Pr > t <.0001 0.0002 0.0117 <.0001 <.0001 0.0086 <.0001 <.0001	0.00 Sq 0.00 Sq 0.00 Lag 2 8 20 1 12 14 0	902 145 100 Variable zl zl zl zl zl zl zl aonum235	0 0 0 0 0
MA1.1 MA1.2 MA1.3 AR1.1 AR1.2 AR1.3 NUM1 NUM2		Kolmogor Cramer-v Anderson Estimate 0.56355 0.16263 0.10269 -0.52364 0.29485 -0.11751 0.28129	ov-Smirnov on Mises -Darling Maxim Standa Err 0.047 0.043 0.040 0.048 0.044 0.061 0.062 Autocorre	D W-Sq A-Sq The ARII num Like and for t 18 178 173 43 45 69 65 108	0.041889 0.168752 1.033132 MA Procedum lihood Esti Value II 11.95 3.71 2.52 -10.81 6.63 -2.63 4.56 4.24 Check of Re	Pr > D Pr > W- Pr > A- Te Imation Approx Pr > t <.0001 0.0002 0.0117 <.0001 <.0001 0.0086 <.0001 <.0001	0.00 Sq 0.00 Sq 0.00 Lag 2 8 20 1 12 14 0	902 145 100 Variable zl zl zl zl zl zl zl aonum235	0 0 0 0 0 0
MA1.1 MA1.2 MA1.3 AR1.1 AR1.2 AR1.3 NUM1 NUM2	Chi- Square	Kolmogor Cramer-v Anderson Estimate 0.56355 0.16263 0.10269 -0.52364 0.29485 -0.11751 0.28129 0.26309	ov-Smirnov on Mises -Darling Maxim Standa Err 0.047 0.043 0.040 0.048 0.044 0.061 0.062 Autocorre Pr > ChiSq	D W-Sq A-Sq The ARII num Like or t 18 178 173 443 445 669 65 008	0.041889 0.168752 1.033132 MA Procedum lihood Esti Value I 11.95 3.71 2.52 -10.81 6.63 -2.63 4.56 4.24 Check of Re-	Pr > D Pr > W- Pr > A- Te Imation Approx Pr > t <.0001 0.0002 0.0117 <.0001 0.0086 <.0001 <.0001 esiduals	2 8 20 1 12 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	902 145 100 Variable z1 z1 z1 z1 z1 z1 aonum235 aonum226	0 0 0 0 0 0 0
MA1.1 MA1.2 MA1.3 AR1.1 AR1.2 AR1.3 NUM1 NUM2	Chi- Square 6.28	Estimate 0.56355 0.16263 0.10269 -0.52364 0.29485 -0.11751 0.28129 0.26309 DF	OV-Smirnov on Mises -Darling Maxim Standa Err 0.047 0.043 0.040 0.048 0.044 0.061 0.062 Autocorre Pr > ChiSq 0.3921	D W-Sq A-Sq The ARII num Like and for t 18 178 173 43 445 669 665 108	0.041889 0.168752 1.033132 MA Procedural lihood Estive Value II 11.95 3.71 2.52 -10.81 6.63 -2.63 4.56 4.24 Check of Recodural	Pr > D Pr > W- Pr > A- Te Imation Approx Pr > t <.0001 0.0002 0.0117 <.0001 <.0001 0.0086 <.0001 <.0001 <.0001	2 8 20 1 12 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	902 145 100 Variable z1 z1 z1 z1 z1 aonum235 aonum226	0 0 0 0 0 0 0 0 0
MA1.1 MA1.2 MA1.3 AR1.1 AR1.2 AR1.3 NUM1 NUM2	Chi- Square 6.28 13.83	Estimate 0.56355 0.16263 0.10269 -0.52364 0.29485 -0.11751 0.28129 0.26309 DF	OV-Smirnov on Mises -Darling Maxim Standa Err 0.047 0.043 0.040 0.048 0.044 0.061 0.062 Autocorre Pr > ChiSq 0.3921 0.3116	D W-Sq A-Sq The ARII num Like and for t 18 178 173 143 145 169 165 108 Plation (0.041889 0.168752 1.033132 MA Procedum lihood Esti Value II 11.95 3.71 2.52 -10.81 6.63 -2.63 4.56 4.24 Check of Recodum -0.016 0.015 -0.063	Pr > D Pr > W- Pr > A- Te Imation Approx Pr > t <.0001 0.0002 0.0117 <.0001 <.0001 0.0086 <.0001 <.0001 <.0001	2 8 20 1 12 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	902 145 100 Variable z1 z1 z1 z1 z1 aonum235 aonum226	0 0 0 0 0 0 0 0 0
MA1.1 MA1.2 MA1.3 AR1.1 AR1.2 AR1.3 NUM1 NUM2	Chi- Square 6.28	Estimate 0.56355 0.16263 0.10269 -0.52364 0.29485 -0.11751 0.28129 0.26309 DF	OV-Smirnov on Mises -Darling Maxim Standa Err 0.047 0.043 0.044 0.044 0.061 0.062 Autocorre Pr > ChiSq 0.3921 0.3116 0.1409	D W-Sq A-Sq The ARII num Like and for t 18 178 173 43 445 669 665 108	0.041889 0.168752 1.033132 MA Procedural lihood Estive Value II 11.95 3.71 2.52 -10.81 6.63 -2.63 4.56 4.24 Check of Recodural	Pr > D Pr > W- Pr > A- Te Imation Approx Pr > t <.0001 0.0002 0.0117 <.0001 <.0001 0.0086 <.0001 <.0001 <.0001	2 8 20 1 12 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	902 145 100 Variable z1 z1 z1 z1 z1 aonum235 aonum226	0 0 0 0 0 0 0 0 0
MA1.1 MA1.2 MA1.3 AR1.1 AR1.2 AR1.3 NUM1 NUM2 To ag	Chi- Square 6.28 13.83 24.45	Kolmogor Cramer-v Anderson Estimate 0.56355 0.16263 0.10269 -0.52364 0.29485 -0.11751 0.28129 0.26309 DF 0 6 12 18 24	OV-Smirnov on Mises -Darling Maxim Standa Err 0.047 0.043 0.040 0.048 0.044 0.061 0.062 Autocorre Pr > ChiSq . 0.3921 0.3116 0.1409 0.1762	D W-Sq A-Sq The ARII num Like or t 18 178 173 43 45 669 665 108 101 101 101 101 101 101 101 101 101	0.041889 0.168752 1.033132 MA Procedum lihood Esti Value II 11.95 3.71 2.52 -10.81 6.63 -2.63 4.56 4.24 Check of Re -0.016 0.015 -0.063 -0.060 0.073 r Normality	Pr > D Pr > W-Pr > A-Pr	2 8 20 1 12 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	902 145 100 Variable z1 z1 z1 z1 z1 aonum235 aonum226	-0.008 -0.070 0.034
MA1.1 MA1.2 MA1.3 AR1.1 AR1.2 AR1.3 NUM1 NUM2 To ag	Chi- Square 6.28 13.83 24.45	Kolmogor Cramer-v Anderson Estimate 0.56355 0.16263 0.10269 -0.52364 0.29485 -0.11751 0.28129 0.26309 DF	OV-Smirnov on Mises -Darling Maxim Standa Err 0.047 0.043 0.040 0.048 0.044 0.061 0.062 Autocorre Pr > ChiSq 0.3921 0.3116 0.1409 0.1762	D W-Sq A-Sq The ARII num Like or t 18 178 173 43 45 669 665 108 101 101 101 101 101 101 101 101 101	0.041889 0.168752 1.033132 MA Procedum lihood Esti Value II 11.95 3.71 2.52 -10.81 6.63 -2.63 4.56 4.24 Check of Re -0.016 0.015 -0.063 -0.063 0.073	Pr > D Pr > W-Pr > A-Pr	2 8 20 1 12 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	902 145 100 Variable z1 z1 z1 z1 aonum235 aonum226	-0.008 -0.070 0.034
MA1.1 MA1.2 MA1.3 AR1.1 AR1.2 AR1.3 NUM1 NUM2 To ag	Chi- Square 6.28 13.83 24.45	Kolmogor Cramer-v Anderson Estimate 0.56355 0.16263 0.10269 -0.52364 0.29485 -0.11751 0.28129 0.26309 DF 0 6 12 18 24 Test Shapiro-Kolmogor	OV-Smirnov on Mises -Darling Maxim Standa Err 0.047 0.043 0.040 0.048 0.044 0.061 0.062 Autocorre Pr > ChiSq 0.3921 0.3116 0.1409 0.1762	D W-Sq A-Sq The ARII The Like and Like	0.041889 0.168752 1.033132 MA Procedur lihood Esti Value II 11.95 3.71 2.52 -10.81 6.63 -2.63 4.56 4.24 Check of Re -0.016 0.015 -0.063 -0.060 0.073 r Normality atistic	Pr > D Pr > W-Pr > A-Pr	Lag Lag 2 8 20 1 12 14 0 0 relations 0.012 -0.002 -0.050 -0.015 -0.046 Value 0.0 0.0	902 145 100 Variable z1 z1 z1 z1 z1 z1 aonum235 aonum226	-0.008 -0.070 0.034

			Maxi		RIMA Proce Lihood Est				
			Standa	ard		Approx			
Parame	ter	Estimate	Er	ror t	Value	Pr > t	Lag	Variable	Shift
MA1.1		0.94807	0.02	756	34.40	<.0001	2	z1	0
AR1.1		-0.72058	0.04		-17.35	<.0001	1	z1	0
AR1.2		-0.13630	0.03		-3.44	0.0006	3	z1	0
AR1.3		0.28597	0.03		7.28	<.0001	12	z1	0
AR1.4		-0.19571	0.03		-4.99	<.0001	14	z1	0
NUM1		0.18995	0.06		2.98	0.0029	0	aonum235	0
NUM2		0.23259	0.04		5.39	<.0001	0	1snum232	0
NUM3		-0.22046	0.03	367	-6.55	<.0001	0	lsnum238	0
NUM4		-0.23161	0.02	133	-9.52	<.0001	0	lsnum214	0
NUM5		0.18204	0.05	997	3 04	0.0024	0	aonum032	0
NUM6		0.21369	0.03	532	6.05	< .0001	0	lsnum226	0
			Autoco	rrelation	n Check of	f Residuals			
To	Chi-		Pr >						
Lag	Square	DF	ChiSq			Autocorre	elations		
			0 0051	0 030	0 024	0.004	_0 012	-0.032	0.036
6		1							
12	2.71	7	0.9104	-0.009	-0.013	-0.026	0.033	0.000	0.027
12 18	2.71 7.17	7 13	0.9104 0.8933	-0.009 0.055	-0.013 0.016	-0.026 -0.005	0.033	0.000	0.027 0.074
12 18 24	2.71 7.17 25.47	7 13 19	0.9104 0.8933 0.1458	-0.009 0.055 -0.067	-0.013 0.016 -0.156	-0.026 -0.005 0.018	0.033 -0.041 -0.098	0.000 0.015 0.070	0.027 0.074 0.006
12 18	2.71 7.17	7 13	0.9104 0.8933	-0.009 0.055 -0.067	-0.013 0.016	-0.026 -0.005 0.018	0.033 -0.041 -0.098	0.000 0.015 0.070	0.027 0.074
12 18 24	2.71 7.17 25.47	7 13 19	0.9104 0.8933 0.1458	-0.009 0.055 -0.067 -0.051	-0.013 0.016 -0.156 0.006	-0.026 -0.005 0.018 -0.018	0.033 -0.041 -0.098	0.000 0.015 0.070	0.027 0.074 0.006
12 18 24	2.71 7.17 25.47	7 13 19	0.9104 0.8933 0.1458	-0.009 0.055 -0.067 -0.051	-0.013 0.016 -0.156 0.006	-0.026 -0.005 0.018 -0.018	0.033 -0.041 -0.098 -0.051	0.000 0.015 0.070 0.090	0.027 0.074 0.006
12 18 24	2.71 7.17 25.47	7 13 19 25	0.9104 0.8933 0.1458	-0.009 0.055 -0.067 -0.051	-0.013 0.016 -0.156 0.006	-0.026 -0.005 0.018 -0.018	0.033 -0.041 -0.098 -0.051	0.000 0.015 0.070 0.090	0.027 0.074 0.006
12 18 24	2.71 7.17 25.47	7 13 19 25	0.9104 0.8933 0.1458 0.1431	-0.009 0.055 -0.067 -0.051 Tests fc Sta	-0.013 0.016 -0.156 0.006 or Normali	-0.026 -0.005 0.018 -0.018	0.033 -0.041 -0.098 -0.051	0.000 0.015 0.070 0.090	0.027 0.074 0.006
12 18 24	2.71 7.17 25.47	7 13 19 25 Test	0.9104 0.8933 0.1458 0.1431	-0.009 0.055 -0.067 -0.051 Tests fo	-0.013 0.016 -0.156 0.006 or Normali	-0.026 -0.005 0.018 -0.018 ity p V	0.033 -0.041 -0.098 -0.051 Value	0.000 0.015 0.070 0.090	0.027 0.074 0.006

				The	ARIMA Proc	edure			
			Max	imum Lik	elihood Es	stimation			
Parameter	Es	stimate	Stan E		t Value	Approx Pr > t	Lag	Variable	Shift
MA1.1	(.84943	0.0	9092	9.34	<.0001	2	z2	0
MA1.2	(14636	0.0	5171	2.83	0.0046	14	z2	0
AR1.1		76046		6739	-11.28	<.0001	1	z2	0
AR1.2		14142		4179	-3.38	0.0007	5	z2	0
AR1.3	(18808	0.0	3157	5.96	<.0001	12	z2	0
AR1.4	(0.09194	0.0	2930	3.14	0.0017	19	z2	0
NUM1	-1	L.79872	0.2	3344	-7.71	<.0001	0	aonum123	0
NUM2	-1	1.53414	0.2	3490	-6.53	<.0001	0	aonum39	0
NUM3	-1	1.15142	0.1	1231	-10.25	<.0001	0	lsnum226	0
NUM4	1	1.07392	0.1	1216	9.57	<.0001	0	lsnum217	0
NUM5	1	1.06851	0.2	3268	4.59	<.0001	0	aonum310	0
NUM6	-(.89737	0.2	3447	-3.83	0.0001	0	aonum267	0
NUM7		.88792		4098	3.68	0.0002	0	aonum25	0
NUM8	(.87527	0.2	4338	3.60	0.0003	0	aonum37	0
			Autoc	orrelati	on Check o	of Residuals	5		
То	Chi-		Pr >						
	guare	DF	ChiSq			Autocoi	rrelations	;	
		0		0.047	0.010	0 -0.023	0.028	0.016	0.017
6	7.09	6	0.3125	-0.047					-0.004
6 12			0.6954	-0.001					0.034
12		12				, -0.008	-0.031	. 0.035	0.034
12 18	9.09	12 18				0 044	_0 064	0 061	0 034
12 18 24 2		12 18 24	0.1518 0.2743	-0.022 -0.110 -0.034	-0.113				0.034

Tests for Normality Test --Statistic-------p Value----Shapiro-Wilk 0.99451 Pr < W 0.037076 Kolmogorov-Smirnov D Pr > D >0.1500 Pr > w-5-1 Pr > A-Sq Cramer-von Mises W-Sq 0.073756 Pr > W-Sq >0.2500 A-Sq 0.549801 Anderson-Darling 0.1612 The ARIMA Procedure Maximum Likelihood Estimation Standard Approx Estimate Error t Value Pr > |t| Variable Shift Parameter Lag 0.04673 0.74269 15.89 <.0001 MA1.1 7.2 MA1.2 0.19737 0.03978 4.96 <.0001 20 z2 -0.66553 0.04320 <.0001 z2 AR1.1 -15.41 AR1.2 -3.55 5.07 -0.13045 0.03674 0.0004 5 z2 0 AR1.3 0.18460 0.03638 < .0001 12 z2 0 0.21650 -1.86761 aonum123 -8.63 < .0001 NUM1 0 0 NUM2 -1.48054 0.22844 <.0001 aonum39 -6.48 0 -10.40 NUM3 -1.29518 0.12448 <.0001 0 lsnum226 NUM4 1.22664 0.12379 9.91 <.0001 0 lsnum217 NUM5 1.00507 0.21740 4.62 <.0001 0 aonum310 0 0 21768 NIIM6 -0 81355 -3.74 0.0002 Ω aonum267 Ω 0.23285 0.85738 0.0002 aonum25 NUM7 3.68 0 0 NUM8 0.89985 0.23169 3.88 0.0001 aonum37 Autocorrelation Check of Residuals To Chi-Pr > DF ChiSq Square -----Autocorrelations-----Lag 1 6 1.52 0.2171 -0.026 -0.002 -0.055 -0.010 -0.001 -0.001 9.19 7 0.2390 -0.080 -0.074 -0.063 0.040 -0.005 12 0.037 18 0.2883 -0.034 -0.044 -0.009 -0.102 0.012 -0.034 15.31 13 24 24.38 19 0.1819 -0.053 -0.045 0.062 -0.004 0.068 0.090 3.0 27.54 25 0.3296 -0.010 -0.002 -0.043 -0.031 -0.052 0.041 Tests for Normality ----p Value-----Test. --Statistic---Shapiro-Wilk W 0.991341 Pr < W 0.0207 >0.1500 Kolmogorov-Smirnov 0.035992 D Pr > D W-Sq 0.074192 Pr > W-Sq 0.2483 Cramer-von Mises Pr > A-Sq A-Sq 0.620486 Anderson-Darling 0.1067 The ARIMA Procedure Maximum Likelihood Estimation Standard Approx Parameter Estimate Error t Value Pr > |t| Variable Shift MA1.1 0.56461 0.05079 11.12 <.0001 z2 0 AR1.1 -0.58169 0.04356 -13.35 <.0001 z2 0 AR1 2 0.13010 0.04082 3.19 4.03 0.0014 6 z2 Ω AR1.3 0.16185 0.04017 < .0001 12 7.2 0 0.03782 AR1.4 -0.18495 -4.89 < .0001 z2 20 0 -7.61 NUM1 -1.73970 0.22867 < .0001 0 aonum123 -1.04859 0.19832 <.0001 lsnum225 NUM2 -5.29 MIIM 3 1.12521 0.22986 4.90 <.0001 Ω aonum310 Ω NUM4 -1.50465 0.23304 -6.46 < .0001 0 aonum039 0 -0.92865 0.22926 NUM5 -4.05 < .0001 aonum267 0 0 NUM6 0.80190 0.19970 4.02 <.0001 1snum238 Autocorrelation Check of Residuals Chi-To Pr > DF ChiSq -----Autocorrelations-----Laq Square 0.014 -0.014 1.57 0.2100 -0.034 -0.015 0.044 0.015 1 12 3.38 7 0.8480 -0.013 -0.050 -0.034 -0.016 0.018 0.008 18 13.71 13 0.3947 -0.046 -0.076 -0.038 -0.117 -0.025 -0.037 24 20.49 19 0.3655 -0.065 -0.019 -0.002 -0.091 0.044 0.036 3.0 22 15 25 0.6272 -0.013 -0.006 -0.007 0.018 -0.036 0.044

Tests for Normality Test W 0.988492 Pr < W 0.0033 D 0.038916 Pr > D >0.1500 W-Sq 0.072913 Pr > W-Sq >0.2500 A-Sq 0.57654 Pr > A-Sq 0.1381 Shapiro-Wilk Kolmogorov-Smirnov Cramer-von Mises Anderson-Darling The ARIMA Procedure Maximum Likelihood Estimation Standard Xoprox 0.05080 0.04723 0.04427 0.040° Estimate Error t Value Pr > |t| Lag Variable Shift Parameter <.0001 0.0168 <.0001 <.0001 0.54957 2 6 1 MA1.1 10.82 z2 MA1.2 -0.11297 -2.39 z2 -0.58302 AR1.1 -13.17 z2 4.34 AR1.2 0.17386 12 z2 <.0001 <.0001 0.03949 0.23124 AR1.3 -0.16684 20 z2 -7.50 aonum123 -1.73451 NUM1 0 <.0001 <.0001 <.0001 <.0001 <.0001 NUM2 -1.10631 0.20204 -5.48 lsnum225 0.20204 0.23150 0.23661 0.23172 -5.48 4.78 -6.20 0 NUM3 1.10611 aonum310 NUM4 -1.46673 aonum039 -4.15 4.13 NUM5 -0.96247 aonum267 0.20450 NIIM6 0.84388 Ω 1snum238 Autocorrelation Check of Residuals To Chi-Pr > DF ChiSq Square Lag -----Autocorrelations-----1.83 1 0.1755 6.48 7 0.4850 15.55 13 0.2741 23.62 19 0.2113 24.79 25 0.4741 -0.025 -0.031 0.026 -0.068 -0.064 -0.035 -0.056 -0.066 -0.037 -0.088 -0.015 -0.003 -0.017 -0.015 0.014 0.031 -0.004 -0.032 0.009 -0.112 -0.022 -0.083 0.048 -0.002 -0.019 0.036 12 -0.001 0.044 0.041 18 24 3.0 Tests for Normality Test Shapiro-Wilk W 0.988016 Pr < W</th> 0.0025 Kolmogorov-Smirnov D 0.037247 Pr > D >0.1500 Cramer-von Mises W-Sq 0.074457 Pr > W-Sq 0.2468 Anderson-Darling A-Sq 0.590197 Pr > A-Sq 0.1283 The ARIMA Procedure Maximum Likelihood Estimation Standard Approx Parameter Estimate Error t Value Pr > |t| Lag Variable Shift 0.03383 0.05498 0.04950 24.06 <.0001 -2.20 0.0276 5.20 <.0001 -7.19 <.0001 1 z2 MA1.1 0.81371 AR1.1 -0.12113 2. z2 0.25736 12 z2 AR1.2 NUM1 -1.75221 0.24386 0 aonum123 <.0001 <.0001 <.0001 -8.34 -1.22899 0.14736 lsnum225 NUM3 1.24606 0.24405 5.11 0 aonum310 <.0001 <.0001 <.0001 <.0001 0.0001 NUM4 -0.66788 0.14719 0.14535 -4.54 0 lsnum231 7 64 1snum217 NIIM 5 1 11109 Ω 0.24712 -5.82 -3.82 3.13 NUM6 -1.43886 aonum039 0 -0.93270 aonum267 0.76741 0.24524 aonum184 NUM8 0 Autocorrelation Check of Residuals Chi-Pr > Tο Square DF ChiSq Lag -----Autocorrelations------0.041 -0.045 -0.029 0.014 -0.061 0.032 -0.111 0.066 0.039 0.055 4.35 0.2262 0.046 -0.023 6 -0.001 0.036 0.070 -0.059 12 6.94 0.6429 -0.042 -0.009 15.30 15 0.065 18 0.4302 -0.086 0.052 24 31.53 21 0.0652 -0.092 -0.093 0.010 -0.019 -0.026 33.51 42.70 -0.003 0.034 -0.005 -0.013 3.0 2.7 0.1808 -0.051 -0.034 0.020

0.044

0.075

0.108

33

36

0.1202

Te Test		Normality	p Value		
Shapiro-Wilk	W	0.989746	Pr < W	0.0073	
Kolmogorov-Smirnov	D	0.04337	Pr > D	0.0708	
Cramer-von Mises	W-Sq	0.104388	Pr > W-Sq	0.0988	
Anderson-Darling	A-Sq	0.720236	Pr > A-Sq	0.0626	

			Max		RIMA Proce				
			Stan	dard		Approx			
Paramet	er	Estimate		rror	t Value	Pr > t	Lag	Variable	Shift
/A1.1		0.88557		4469	19.81	<.0001	2	z3	0
AR1.1		-0.79299		5786	-13.70	<.0001	1	z3	0
JUM1		-1.37040		3622 0774	-10.06 9.36	<.0001 <.0001	0	lsnum15 lsnum22	0
NUM2 NUM3		1.00857 1.13393		1144	5.36	<.0001	0	aonum94	0
JUM4		-0.64820		3674	-4.74	<.0001	0	lsnum10	0
NUM5		-0.98854		0819	-4.75	<.0001	0	aonum44	0
NUM6		-0.64999		8993	-3.42	0.0006	0	lsnum03	0
			Autoc	orrelati	on Check	of Residuals			
Го	Chi-		Pr >						
ag	Square	DF	ChiSq			Autocor	relations		
_			0.6610	0.00			A A4-		0 0 -
6	2.61		0.6248	0.040					0.078
12	9.75		0.4626	-0.044			0.027		0.115
L8 24	19.62 27.68		0.2381 0.1866	-0.073 -0.059					-0.072 0.032
30	31.99		0.1866	0.030					0.032
				Tests	for Norma	lity			
		Test		5	Statistic-	p	Value		
		Shapiro-	Wilk ov-Smirno	W V D	0.9756				
			on Mises		3q 0.095		-Sq 0.1		
			-Darling		Sq 0.7965				
								101	
					RIMA Proce				
				imum Lik	RIMA Proces	stimation		101	
Paramet	er	Estimate	Stan	imum Lik			Lag	Variable	Shift
?aramet	er	Estimate	Stan	imum Lik dard	celihood E	stimation Approx	Lag		Shift
1A1.1	er	0.39925	Stan E 0.0	imum Lik dard rror 9975	t Value	Approx Pr > t	3	Variable	0
MA1.1	er	0.39925 -0.69370	Stan E 0.0 0.0	imum Lik dard rror 9975 7051	t Value 4.00 -9.84	Approx Pr > t <.0001 <.0001	3	Variable z3 z3	0
MA1.1 AR1.1 AR1.2	er	0.39925 -0.69370 -0.60365	Stan. E 0.0 0.0 0.0	imum Lik dard rror 9975 7051 8476	t Value 4.00 -9.84 -7.12	Approx Pr > t <.0001 <.0001 <.0001	3 1 2	Variable z3 z3 z3	0 0 0
IA1.1 IR1.1 IR1.2 IUM1	er	0.39925 -0.69370 -0.60365 -1.38483	Stan. E 0.0 0.0 0.0 0.0	imum Lik dard rror 9975 7051 8476 4470	t Value 4.00 -9.84 -7.12 -5.66	Approx Pr > t <.0001 <.0001 <.0001 <.0001	3 1 2 0	Variable z3 z3 z3 aonum21	0 0 0 0
IA1.1 IR1.1 IR1.2 IUM1 IUM2	er	0.39925 -0.69370 -0.60365 -1.38483 -1.16576	Stan E 0.0 0.0 0.0 0.2 0.1	imum Lik dard rror 9975 7051 8476 4470 8039	t Value 4.00 -9.84 -7.12 -5.66 -6.46	Approx Pr > t <.0001 <.0001 <.0001 <.0001 <.0001	3 1 2 0	Variable z3 z3 z3 aonum21 lsnum15	0 0 0 0
IA1.1 AR1.1 AR1.2 IUM1 IUM2 IUM3	er	0.39925 -0.69370 -0.60365 -1.38483	Stan E 0.0 0.0 0.0 0.0 0.2 0.1	imum Lik dard rror 9975 7051 8476 4470	t Value 4.00 -9.84 -7.12 -5.66	Approx Pr > t <.0001 <.0001 <.0001 <.0001	3 1 2 0	Variable z3 z3 z3 aonum21	0 0 0 0
MA1.1 AR1.1 AR1.2 JUM1 JUM2 JUM3	er	0.39925 -0.69370 -0.60365 -1.38483 -1.16576 1.19334	Stan E 0.0 0.0 0.0 0.0 0.2 0.1	imum Lik dard rror 9975 7051 8476 4470 8039 3990	4.00 -9.84 -7.12 -5.66 -6.46 4.97	Approx Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	3 1 2 0	Variable z3 z3 z3 aonum21 lsnum15 aonum94	0 0 0 0
MA1.1 AR1.1 AR1.2 NUM1 NUM2 NUM3		0.39925 -0.69370 -0.60365 -1.38483 -1.16576 1.19334	Stan E 0.0 0.0 0.0 0.0 0.2 0.1 0.2 0.1	imum Lik dard rror 9975 7051 8476 4470 8890 3990 7987	4.00 -9.84 -7.12 -5.66 -6.46 4.97 -4.23	Approx Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	3 1 2 0 0 0	Variable z3 z3 z3 aonum21 lsnum15 aonum94	0 0 0 0
IA1.1 AR1.1 AR1.2 IUM1 IUM2 IUM3 IUM4	.er Chi- Square	0.39925 -0.69370 -0.60365 -1.38483 -1.16576 1.19334 -0.76114	Stan E 0.0 0.0 0.0 0.2 0.1	imum Lik dard rror 9975 7051 8476 4470 8890 3990 7987	4.00 -9.84 -7.12 -5.66 -6.46 4.97 -4.23	Approx Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	3 1 2 0 0 0	Variable z3 z3 z3 aonum21 lsnum15 aonum94 lsnum10	0 0 0 0 0
IA1.1 AR1.1 AR1.2 IUM1 IUM2 IUM3 IUM4	Chi-	0.39925 -0.69370 -0.60365 -1.38483 -1.16576 1.19334 -0.76114	Stan E 0.0 0.0 0.0 0.2 0.1 0.2 0.1	imum Lik dard rror 9975 7051 8476 4470 8890 3990 7987	4.00 -9.84 -7.12 -5.66 -6.46 4.97 -4.23	Approx Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	3 1 2 0 0 0	Variable z3 z3 z3 aonum21 lsnum15 aonum94 lsnum10	0 0 0 0 0
MA1.1 AR1.1 AR1.2 JUM1 JUM1 JUM2 JUM3 JUM4 Co	Chi- Square 1.57	0.39925 -0.69370 -0.60365 -1.38483 -1.16576 1.19334 -0.76114	Stan E 0.0 0.0 0.0 0.2 0.1 0.2 0.1 Autoc Pr > ChiSq	imum Lik dard rror 9975 7051 8476 4470 8039 3990 77987 orrelati	4.00 -9.84 -7.12 -5.66 -6.46 4.97 -4.23	Approx Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	3 1 2 0 0 0 0 0	Variable z3 z3 z3 aonum21 lsnum15 aonum94 lsnum10	0 0 0 0 0 0
IA1.1 AR1.1 AR1.2 IUM1 IUM2 IUM3 IUM4	Chi- Square 1.57 7.65	0.39925 -0.69370 -0.60365 -1.38483 -1.16576 1.19334 -0.76114	Stan E 0.0 0.0 0.0 0.2 0.1 0.2 0.1 Autoc Pr > ChiSq	imum Lik dard rror 9975 7051 8476 4470 8039 3990 77987 orrelati	4.00 -9.84 -7.12 -5.66 -6.46 4.97 -4.23	Approx Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	3 1 2 0 0 0 0 0 0	Variable z3 z3 z3 aonum21 lsnum15 aonum94 lsnum10	0 0 0 0 0 0 0
IA1.1 IR1.1 IR1.2 IUM1 IUM2 IUM3 IUM4 Co	Chi- Square 1.57 7.65 13.72	0.39925 -0.69370 -0.60365 -1.38483 -1.16576 1.19334 -0.76114 DF	Stan E 0.0 0.0 0.0 0.2 0.1 0.2 0.1 Autoc Pr > ChiSq	imum Lik dard rror 9975 7051 8477 88039 3990 7987 orrelati 0.001 0.066 -0.024	4.00 -9.84 -7.12 -5.66 -6.46 4.97 -4.23	Approx Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	3 1 2 0 0 0 0 0 0 0 relations -0.022 0.026 -0.149	Variable z3 z3 z3 aonum21 lsnum15 aonum94 lsnum10	0 0 0 0 0 0 0
MAI.1 ARI.1 ARI.2 JUM1 JUM2 JUM3 JUM4 Co	Chi- Square 1.57 7.65 13.72 22.57	0.39925 -0.69370 -0.60365 -1.38483 -1.16576 1.19334 -0.76114 DF	Stan. E 0.0 0.0 0.0 0.2 0.1 0.2 0.1 Autoc Pr > ChiSq 0.6670 0.5697 0.5470 0.3671	imum Lik dard rror 9975 7051 8476 4470 8039 33990 7987 orrelati0.006 -0.026 -0.100	4.00 -9.84 -7.12 -5.66 -6.46 4.97 -4.23	Approx Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.000	3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Variable z3 z3 z3 aonum21 lsnum15 aonum94 lsnum10 0.069 0.091 -0.001 0.030	0 0 0 0 0 0 0 0
MA1.1 RR1.1 RR1.1 IUM1 IUM2 IUM3 IUM4 Co	Chi- Square 1.57 7.65 13.72	0.39925 -0.69370 -0.60365 -1.38483 -1.16576 1.19334 -0.76114 DF	Stan E 0.0 0.0 0.0 0.2 0.1 0.2 0.1 Autoc Pr > ChiSq	imum Lik dard rror 9975 7051 8477 88039 3990 7987 orrelati 0.001 0.066 -0.024	4.00 -9.84 -7.12 -5.66 -6.46 4.97 -4.23	Approx Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.000	3 1 2 0 0 0 0 0 0 0 relations -0.022 0.026 -0.149	Variable z3 z3 z3 aonum21 lsnum15 aonum94 lsnum10 0.069 0.091 -0.001 0.030	0 0 0 0 0 0 0

		Test			ts for Nor Statistic	_		p Value-		
		Cramer	o-Wilk brov-Smirno -von Mises bn-Darling	W -	0.9694 0.0629 Sq 0.1444 Sq 1.0252	983 P: 151 P:		D 0 W-Sq 0	.0006 .0822 .0286 .0105	
			Maxi		ARIMA Pro elihood Es		ı			
Param	eter	Estimate	Stand Er		t Value	Appro		Lag	Variable	Shift
MA1.1 NUM1 NUM2 NUM3 NUM4 NUM5 NUM6		0.96397 -1.24550 0.83635 1.35647 -0.63637 -0.98331 -0.64610	0.02 0.13 0.10 0.22 0.13 0.24	533 1112 2403 3098	41.79 -9.20 8.27 6.05 -4.86 -4.10	<.000 <.000 <.000 <.000 <.000	01 01 01 01 01	1 0 0 0 0 0	z3 lsnum15 lsnum22 aonum94 lsnum10 aonum21 lsnum03	0 0 0 0 0
				relatio	n Check of	Residua	als			
To ag	Chi- Square	DF	Pr > ChiSq			Auto	corr	elations		
6 12 18 24 30	3.03 10.49 20.89 27.45 32.20	5 11 17 23 29	0.6956 0.4868 0.2312 0.2374 0.3110	0.069 0.073 -0.049 -0.060 0.039	-0.047 -0.035 -0.103 -0.163 -0.014	-0.1	33 18 31	0.050 0.018 -0.184 0.000 -0.001	0.099 -0.041 0.024	0.042 0.069 0.061 0.023 0.045
		Test			ts for Nor	_	' q	Value		
		Shapiro- Kolmogor Cramer-v Anderson	ov-Smirnov on Mises	_	0.983485 0.045893 0.061653 0.512888	Pr:	> D	>0.1 Sq >0.2		
			M		ARIMA Pro Likelihood		ion			
Param	eter	Estimate	Stand Er		t Value	Appro		Lag	Variable	Shift
MA1.1 AR1.1 AR1.2 AR1.3 NUM1 NUM2 NUM3 NUM4		0.36394 -0.68134 -0.56867 -0.37789 -1.21046 1.23418 -0.67991 -0.70500	0.07 0.08 0.09 0.19 0.25	9905 403 8801 8807 159 6676 9260	3.67 -9.20 -6.46 -3.85 -6.32 4.81 -3.53 -3.10	0.000 <.000 <.000 <.000 <.000 0.000	01 01 01 01 01 01	4 1 2 3 0 0 0	z3 z3 z3 z3 lsnum15 aonum94 lsnum10 lsnum03	0 0 0 0 0 0
То	Chi-		Autocor Pr >	relatio	n Check of	Residua	als			
ag	Square	DF	ChiSq			Auto	corr	elations		
6 12 18 24 30	2.51 7.61 11.61 19.27 23.75	2 8 14 20 26	0.2850 0.4720 0.6378 0.5044 0.5902	-0.016 -0.016 -0.042 0.004 0.071	-0.034 -0.067 -0.061 -0.105 -0.023		11 05 27	0.019 0.048 -0.107 -0.049 -0.058	0.096 0.027 0.151	0.089 0.100 0.049 0.014 0.009
		Test			ts for Nor atistic		p	Value		
		Shapiro-	Wilk ov-Smirnov	W	0.966575 0.058696		< W > D		003 347	

■ Jember Inflation $(Z_{4,t})$

- Jen	idei iiii	lation (<u> 4.t</u>)							
					ARIMA Pro					
			Maxi	mum Like	lihood Est	imation				
				St	andard		Approx			
	Para	meter	Estimate			t Value	Pr > t	Lag		
	MA1.	1	0.45293	0	.07326	6.18	<.0001	2		
	AR1.		-0.36435	0	.07356	-4.95	<.0001	1		
	AR1.	2	0.18121	0	.07035	2.58	0.0100	7		
To	Chi-		Autoco Pr >	rrelatio	n Check of	Residuals	5			
Lag	Square		ChiSq			Autocor	relations-			
6	6.72	3	0.0815	0 026	0.032	-0 151	-0.077	-0.066	0.041	
12	8.79	•	0 4550	0 010	0 0 4 5	0 000	0 011	0 0 6 5	0 0 6 0	
18	15.05	15	0.4480	-0.058	-0.026	-0.119	0.089	-0.072	0.019	
24 30	22.46 26.24	21	0.3735	0.065	0.012	-0.016	-0.007	-0.072 0.091 -0.050	0.037 0.073	
		Test			or Normali atistic		Value			
		Shaniro	-Wilk	W	0.957552	Dr - 1	V <0.00	0.1		
		Kolmogo	-wiik :ov-Smirnov	D W	0.957552	Pr > I	0.05			
		Cramer-v	on Mises	W-Sq	0.224256	Pr > V	V-Sq <0.00	50		
		Andersor	n-Darling	A-Sq	1.388472	Pr > A	N-Sq <0.00	50		
				The AR	IMA Proced	ure				
			Max		elihood Es					
			Stan	dard		Approx				
Parame	eter	Estimate	e E	rror	t Value	Pr > t	Lag	Variable	Shift	
MA1.1		0.60203	0.0	5975	10.08	<.0001	1	z4	0	
MA1.2		-0.26932		6305	-4.27	<.0001		z4	0	
AR1.1 AR1.2		-0.29603 -0.29201		6864 7185	-4.31 -4.06	<.0001 <.0001		z4 z4	0 0	
NUM1		-1.61341		0283	-7.95	<.0001	0	aonum19	0	
NUM2		1.37258		9666 5764	6.98 -6.60	<.0001 <.0001		aonum94 lsnum10	0 0	
NUM3 NUM4		-0.54942		4801	-3.71	0.0001		lsnum16	0	
NUM5		-0.79499	0.1	9881	-4.00	<.0001	0	aonum136	0	
			Autoco	rrelatio	n Check of	Residuals	3			
То	Chi-		Pr >			7				
Lag	Square	DF	ChiSq			Autocor	rrelations-			
-	4 7.0	•	0 1075	0 000	0.146	0 00-	0 000	0 005	0.043	
6 12	4.12 8.44	2 8	0.1275 0.3916	-0.003 -0.067	-0.140 -0.041	0.006	-0.029 -0.086	0.007 0.035	0.043 0.087	
18	15.20	14	0.3645	-0.157	-0.074	0.021	-0.041	0.045	0.009	
24	21.17	20	0.3870	-0.100	-0.064	0.017	-0.090	0.080	0.013	
30	34.02	26	0.1346	0.020	0.114	-0.158	-0.000	0.072	0.128	
		Test			or Normali atistic		Value			
		Shapiro-	.wilk	W	0.9815	-				
			-wiik :ov-Smirnov		0.9815					
		Cramer-v	on Mises	W-Sq	0.137281	Pr > V	V-Sq 0.03	67		
		Andersor	n-Darling	A-Sq	0.804066	Pr > A	N-Sq 0.03	85		
				The A	RIMA Proce	dure	<u> </u>			
			Ma		kelihood E					
Param	neter	Estimat		ndard Error	t Value	Approx Pr > t		Variable	Shift	
MA1.1 MA1.2		0.5727		06776 06875	8.45 5.69	<.0001 <.0001		z4 z4	0	
AR1.1		-0.2646		08551	-3.09	0.0020		z4	0	
AR1.2		-0.2673	33 0.	07177	-3.72	0.0002	2 3	z4	0	
NUM1 NUM2		1.1976		23664 23987	5.06 3.69	<.0001 0.0002		aonum94 aonum02	0	
NUM3		0.3540	0.	11008	3.22	0.0013	3 0	lsnum24	0	
		-1.2469		15161	-8.22	<.0001	L 0	lsnum10	0	

	ah:			orrelation	on Check o	of Residua	ls		
To Lag	Chi Square		Pr > ChiSq			Autocoi	rrelation	s	
6	4.66		0.0974		-0.020				
12 18	8.3! 13.5		0.3999 0.4825	0.078 -0.015				0.018 1 -0.004	
24	20.7		0.4121		-0.116				0.032
30	31.82	2 26	0.1991	0.125				3 0.008	0.129
		Test			or Normali atistic		o Value		
		_	o-Wilk	W		Pr < V		0001	
		_	orov-Smirnov -von Mises			Pr > I Pr > V	0. Wi=Sa 0		
			on-Darling			Pr > 1			
					A Procedur				
					ihood Esti	mation			
Parame	ter	Estimate	Standa Err	rd or t V	/alue F	Approx or > t	Lag	Variable	Shift
MA1.1		0.65516	0.076	74	8.54	<.0001	3	z4	0
MAI.I		-0.17035			-2.63	0.0085	12	z4 z4	0
AR1.1		-0.54458	0.073	05 -	-7.45	<.0001	1	z4	0
AR1.2		-0.53930			-6.88	<.0001	2	z4	0
AR1.3 NUM1		-0.31233 -1.95629			-4.95 -9.36	<.0001 <.0001	4 0	z4 aonum19	0
NUM2		1.49100			7.61	<.0001	0	aonum94	0
NUM3		0.76246			3.59	0.0003	0	aonum02	0
NUM4 NUM5		-0.97752 -0.67490			-7.11 -3.54	<.0001 0.0004	0	lsnum10 aonum136	0 0
NUM5 NUM6		-0.67490			-3.54 -4.42	<.0001	0	aonum20	0
0	Chi-		Autocorr Pr >	eiation (Check of R	esiduals			
3	Square	DF	ChiSq -			-Autocorre	elations-		
6	2.62	1			0.050			-0.037	0.028
2	10.12	7			-0.096	0.009			0.073
8 4	14.86 28.36	13 19			-0.018 -0.163	-0.089 0.035	-0.057 -0.142	-0.014 0.122	-0.011 0.010
)	41.30	25		0.044	0.055	-0.130	0.074	-0.010	0.181
			Т	ests for	Normality	7			
		Test				p 7			
			Wilk ov-Smirnov			Pr < W Pr > D			
			ov-Smirnov on Mises						
			-Darling			Pr > A-S			
		_							
					A Procedur				
			Maxim	um Likeli	A Procedur ihood Esti	mation			
?arame	ter	Estimate	Maxim Standa	um Likeli rd	ihood Esti		Lag	Variable	Shift
Parame	ter	Estimate	Maxim Standa	um Likeli rd	ihood Esti	mation Approx	Lag	Variable	Shift
MA1.1	ter	0.66919	Maxim Standa Err 0.160	um Likeli rd or t V 35	ihood Esti Value F 4.17	mation Approx Pr > t <.0001	Lag 2	Variable z4	0
MA1.1 MA1.2	ter	0.66919 0.32306	Maxim Standa Err 0.160 0.088	um Likeli rd or t N 35 07	ihood Esti Value F 4.17 3.67	Approx Pr > t <.0001 0.0002	2 3	z4 z4	0
MA1.1 MA1.2 AR1.1	ter	0.66919 0.32306 -0.56640	Maxim Standa Err 0.160 0.088 0.115	um Likeli rd or t N 35 07 38	A.17 3.67 4.91	**Mation Approx Pr > t *** <.0001	2 3 1	z4 z4 z4	0 0 0
MA1.1 MA1.2	ter	0.66919 0.32306	Maxim Standa Err 0.160 0.088 0.115 0.223	um Likeli rd or t V 35 07 38 - 36 -	ihood Esti Value F 4.17 3.67	Approx Pr > t <.0001 0.0002	2 3	z4 z4	0
MA1.1 MA1.2 AR1.1 NUM1 NUM2 NUM3	ter	0.66919 0.32306 -0.56640 -1.33709 1.20336 -1.00073	Maxim Standa Err 0.160 0.088 0.115 0.223 0.220 0.123	um Likeli rd or t V 35 07 38 - 36 - 62 98 -	A.17 3.67 -4.91 -5.99 5.45 -8.07	**Mation Approx Pr > t *** <.0001	2 3 1 0 0	z4 z4 z4 aonum19 aonum94 lsnum09	0 0 0 0
MA1.1 MA1.2 AR1.1 NUM1 NUM2	ter	0.66919 0.32306 -0.56640 -1.33709 1.20336	Maxim Standa Err 0.160 0.088 0.115 0.223 0.220 0.123	um Likeli rd or t V 35 07 38 - 36 - 62 98 -	4.17 3.67 -4.91 -5.99 5.45	**mation Approx	2 3 1 0	z4 z4 z4 aonum19 aonum94	0 0 0 0
MA1.1 MA1.2 AR1.1 NUM1 NUM2 NUM3		0.66919 0.32306 -0.56640 -1.33709 1.20336 -1.00073	Maxim Standa Err 0.160 0.088 0.115 0.223 0.223 0.123 0.224	um Likeli rd or t V 35 07 38 -36 -62 98 -72	A.17 3.67 4.91 -5.99 5.45 -8.07 3.91	<pre>Amation Approx or > t <.0001 0.0002 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001</pre>	2 3 1 0 0	z4 z4 z4 aonum19 aonum94 lsnum09	0 0 0 0
MA1.1 MA1.2 AR1.1 NUM1 NUM2 NUM3	ter Chi- Square	0.66919 0.32306 -0.56640 -1.33709 1.20336 -1.00073	Maxim Standa Err 0.160 0.088 0.115 0.223 0.224 Autocorr Pr >	um Likeli rd or t V 35 07 38 - 36 - 62 98 - 72 elation C	A.17 3.67 -4.91 -5.99 5.45 -8.07 3.91 Check of F	<pre>Amation Approx Pr > t <.0001 0.0002 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001</pre>	2 3 1 0 0 0	z4 z4 z4 aonum19 aonum94 lsnum09	0 0 0 0 0
MA1.1 MA1.2 AR1.1 NUM1 NUM2 NUM3 NUM4	Chi- Square	0.66919 0.32306 -0.56640 -1.33709 1.20336 -1.00073 0.87900	Maxim Standa Err 0.160 0.088 0.115 0.223 0.220 0.123 0.224 Autocorr Pr > ChiSq -	um Likeli rd or t V 35 07 38 - 36 - 62 98 - 72 elation 0	A.17 3.67 4.17 3.67 -4.91 -5.99 5.45 -8.07 3.91 Check of F	<pre>Amation Approx or > t <.0001 0.0002 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001</pre>	2 3 1 0 0 0 0	z4 z4 aonum19 aonum94 lsnum09 aonum02	0 0 0 0 0 0
MA1.1 MA1.2 AR1.1 NUM1 NUM2 NUM3	Chi- Square 4.80	0.66919 0.32306 -0.56640 -1.33709 1.20336 -1.00073 0.87900	Maxim Standa Err 0.160 0.088 0.115 0.223 0.220 0.123 0.224 Autocorr Pr > ChiSq -	um Likeli rd or t V 35 07 38 62 98 72 elation 0 0.017	A.17 3.67 4.17 3.67 4.91 -5.99 5.45 -8.07 3.91 Check of F	<pre>Amation Approx by > t <.0001 0.0002 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001</pre>	2 3 1 0 0 0 0 0	z4 z4 aonum19 aonum94 lsnum09 aonum02	0 0 0 0 0 0
MA1.1 MA1.2 AR1.1 NUM1 NUM2 NUM3 NUM4	Chi- Square	0.66919 0.32306 -0.56640 -1.33709 1.20336 -1.00073 0.87900 DF	Maxim Standa Err 0.160 0.088 0.115 0.223 0.224 Autocorr Pr > ChiSq - 0.1873 0.1655 0.3140 -	um Likeli rd or t V 35 07 38 - 36 - 62 98 - 72 elation C 0.017 0.051 0.048	A.17 3.67 3.67 4.91 5.99 5.45 8.07 3.91 Check of F	<pre>mation Approx Pr > t <.0001 0.0002 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0114</pre>	2 3 1 0 0 0 0 0	z4 z4 z4 aonum19 aonum94 lsnum09 aonum02	0 0 0 0 0 0 0

Test	Sta	tistic	p Val	ue
Shapiro-Wilk	W	0.994968	Pr < W	0.8096
Kolmogorov-Sm	nirnov D	0.059642	Pr > D	0.1203
Cramer-von Mi	ses W-Sq	0.065832	Pr > W-Sq	>0.2500
Anderson-Darl	ing A-Sq	0.33753	Pr > A-Sq	>0.2500

■ Kediri Inflation (Z_{5 t})

			The ARIMA Pro	cedure			
		Maximum :	Likelihood Es	stimation			
		Standard		Approx			
Parameter	Estimate	Error	t Value	Pr > t	Lag	Variable	Shift
A1.1	0.58470	0.08102	7.22	<.0001	2	z5	0
R1.1	-0.50528	0.08377	-6.03	<.0001	1	z5	0
AR1.2	-0.21979	0.06962	-3.16	0.0016	3	z5	0
NUM1	1.39700	0.19306	7.24	<.0001	0	aonum94	0
NUM2	-1.18474	0.19419	-6.10	<.0001	0	aonum27	0
NUM3	-0.75565	0.15450	-4.89	<.0001	0	lsnum09	0
NUM4	-1.04269		-5.36	<.0001	0	aonum51	0
NUM5	-1.00796		-4.94	<.0001	0	aonum21	0
NUM6	0.61006		3.15	0.0016	0	aonum59	0
NUM7	-0.60325		-3.13	0.0018	0	aonum32	0
NUM8	-0.68370		-3.55	0.0004	0	aonum86	0
NUM9	-0.66632		-3.43	0.0006	0	aonum67	0
IUM10	0.50709		2.60	0.0092	0	aonum97	0
IUM11	-0.43700		-2.25	0.0243	0	aonum61	0
UM12	-0.58018	0.15394	-3.77	0.0002	U	lsnum15	U
		Nutocorrela	tion Check of	F Paciduale			
Chi-		Pr >	Jan Check Of	L MCDIGUALS			
Square		ChiSq		Autocorr	elations-		
,							
3.60	3	0.3085 0.0	00 0.076	-0.081	-0 055	-0.032	-0.056
2 13.19		0.1542 0.0			-0.062		-0.003
16.99							
22.60		0.3657 0.0			-0.049		
31.10		0.2669 -0.0			-0.112		0.023
		Togt	a for Normali				
			s for Normali	_			
	Test		-Statistic	р	Value		
	Shapiro-W	vilk W	0.975138	B Pr < W	0.00	27	
				2 Pr > D	0.12		
	Cramer-vo	on Mises W	-Sq 0.170282				
	Anderson-	-Darling A	-Sq 1.097578	B Pr > A-	Sq 0.00	73	
	Anderson-	The	-Sq 1.097578 ARIMA Proced Likelihood Es	lure	Sq 0.00	73	
	Anderson	The Maximum	ARIMA Proced	lure	Sq 0.00	73	
arameter		The Maximum : Standard	ARIMA Proced Likelihood Es	dure stimation Approx			Shift
Parameter	Anderson-	The Maximum : Standard	ARIMA Proced Likelihood Es	dure stimation Approx	Sq 0.00	Variable	Shift
	Estimate	The Maximum : Standard Error	ARIMA Proced Likelihood Es t Value	dure stimation Approx Pr > t	Lag	Variable	
MA1.1	Estimate	The Maximum : Standard Error	ARIMA Proced Likelihood Es t Value 9.26	Approx Pr > t <.0001	Lag 2	Variable z5	0
MA1.1 MA1.2	Estimate 0.64426 0.30915	The Maximum : Standard Error 0.06959	ARIMA Proced Likelihood Es t Value 9.26 4.75	Approx Pr > t <.0001	Lag 2 3	Variable z5 z5	0
MA1.1 MA1.2 AR1.1	Estimate 0.64426 0.30915 -0.61142	The Maximum : Standard Error 0.06959 0.06510 0.08027	ARIMA Proced Likelihood Es t Value 9.26 4.75 -7.62	Approx Pr > t <.0001 <.0001	Lag 2 3 1	Variable z5 z5 z5	0 0 0
MA1.1 MA1.2 R1.1 UM1	Estimate 0.64426 0.30915 -0.61142 1.45706	The Maximum : Standard Error 0.06959 0.06510 0.08027 0.18962	ARIMA Proced Likelihood Es t Value 9.26 4.75 -7.62 7.68	Approx Pr > t <.0001 <.0001 <.0001 <.0001	Lag 2 3 1 0	Variable z5 z5 z5 aonum94	0 0 0
MA1.1 MA1.2 MR1.1 UUM1 UUM2	Estimate 0.64426 0.30915 -0.61142 1.45706 -1.25481	The Maximum : Standard Error 0.06959 0.06510 0.08027 0.18962 0.19263	ARIMA Proced Likelihood Es t Value 9.26 4.75 -7.62 7.68 -6.51	Approx Pr > t <.0001 <.0001 <.0001 <.0001 <.0001	Lag 2 3 1 0 0	Variable z5 z5 z5 aonum94 aonum27	0 0 0 0
MA1.1 MA1.2 AR1.1 JUM1 JUM2 JUM3	0.64426 0.30915 -0.61142 1.45706 -1.25481 -0.77379	The Maximum: Standard Error 0.06959 0.06510 0.08027 0.188022 0.19263 0.14242	ARIMA Proced Likelihood Es t Value 9.26 4.75 -7.62 7.68 -6.51 -5.43	Approx Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Lag 2 3 1 0 0 0	Variable z5 z5 z5 aonum94 aonum27 lsnum09	0 0 0 0
MA1.1 MA1.2 ARI.1 NUM1 NUM2 NUM3 NUM4	0.64426 0.30915 -0.61142 1.45706 -1.25481 -0.77379 -1.03801	The Maximum : Standard Error 0.06959 0.06510 0.08027 0.18962 0.19263 0.14242 0.19079	ARIMA Proced Likelihood Es t Value 9.26 4.75 -7.62 7.68 -6.51 -5.43 -5.44	Approx Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Lag 2 3 1 0 0 0	Variable z5 z5 z5 aonum94 aonum27 lsnum09 aonum51	0 0 0 0 0
MA1.1 MA1.2 AR1.1 NUM1 NUM2 NUM3 NUM4	Estimate 0.64426 0.30915 -0.61142 1.45706 -1.25481 -0.77379 -1.03801 -0.87491	The Maximum : Standard Error 0.06959 0.06510 0.08027 0.18962 0.19263 0.14242 0.19079 0.19726	ARIMA Proced Likelihood Es t Value 9.26 4.75 -7.62 7.68 -6.51 -5.43 -5.44 -4.44	Approx Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Lag 2 3 1 0 0 0 0	Variable z5 z5 z5 aonum94 aonum27 lsnum09 aonum51 aonum21	0 0 0 0 0 0
MA1.1 MA1.2 AR1.1 NUM1 NUM2 NUM3 NUM4 NUM5	Estimate 0.64426 0.30915 -0.61142 1.45706 -1.25481 -0.77379 -1.03801 -0.87491 0.58201	The Maximum : Standard Error 0.06959 0.06510 0.08027 0.18962 0.19263 0.14242 0.19079 0.19726 0.19041	ARIMA Proced Likelihood Es t Value 9.26 4.75 -7.62 7.68 -6.51 -5.43 -5.44 -4.44 3.06	Approx Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.0002	Lag 2 3 1 0 0 0 0 0	Variable z5 z5 z5 aonum94 aonum27 lsnum09 aonum51 aonum21 aonum59	0 0 0 0 0 0
MA1.1 MA1.2 AR1.1 NUM1 NUM2 NUM3 NUM4 NUM5 NUM6	0.64426 0.30915 -0.61142 1.45706 -1.25481 -0.77379 -1.03801 -0.87491 0.58201 -0.59806	The Maximum : Standard Error 0.06959 0.06510 0.08027 0.18962 0.19263 0.14242 0.19079 0.19726 0.19041 0.19080	ARIMA Proced Likelihood Es t Value 9.26 4.75 -7.62 7.68 -6.51 -5.43 -5.44 -4.44 3.06 -3.13	Approx Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.0022 0.0017	Lag 2 3 1 0 0 0 0	Variable z5 z5 z5 aonum94 aonum27 lsnum09 aonum51 aonum21 aonum59 aonum32	0 0 0 0 0 0
MA1.1 MA1.2 AR1.1 NUM1 NUM2 NUM3 NUM4 NUM5 NUM6 NUM7	Estimate 0.64426 0.30915 -0.61142 1.45706 -1.25481 -0.77379 -1.03801 -0.87491 0.58201	The Maximum : Standard Error 0.06959 0.06510 0.08027 0.18962 0.19263 0.14242 0.19079 0.19726 0.19041	ARIMA Proced Likelihood Es t Value 9.26 4.75 -7.62 7.68 -6.51 -5.43 -5.44 -4.44 3.06 -3.13 -3.57	Approx Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.0002	Lag 2 3 1 0 0 0 0 0 0	Variable z5 z5 z5 aonum94 aonum27 lsnum09 aonum51 aonum21 aonum59	0 0 0 0 0 0
Parameter MA1.1 MA1.2 AR1.1 NUM1 NUM2 NUM3 NUM4 NUM5 NUM6 NUM7 NUM8 NUM0	0.64426 0.30915 -0.61142 1.45706 -1.25481 -0.77379 -1.03801 -0.87491 0.58201 -0.59806 -0.67906	The Maximum: Standard Error 0.06959 0.06510 0.08027 0.18963 0.14242 0.19079 0.19726 0.19041 0.19080 0.19001	ARIMA Proced Likelihood Es t Value 9.26 4.75 -7.62 7.68 -6.51 -5.43 -5.44 -4.44 3.06 -3.13	Approx Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.0022 0.0017 0.0004	Lag 2 3 1 0 0 0 0 0 0 0	Variable z5 z5 z5 aonum94 aonum27 lsnum09 aonum51 aonum21 aonum59 aonum32 aonum32	0 0 0 0 0 0 0
MA1.1 MA1.2 AR1.1 NUM1 NUM2 NUM3 NUM4 NUM5 NUM6 NUM7	Estimate 0.64426 0.30915 -0.61142 1.45706 -1.25481 -0.77379 -1.03801 -0.87491 0.58201 -0.59806 -0.67906 -0.69827	The Maximum 1 Standard Error 0.06959 0.06510 0.08027 0.18962 0.19263 0.14242 0.19079 0.19726 0.19041 0.19080 0.19001 0.19009	ARIMA Proced Likelihood Es t Value 9.26 4.75 -7.62 7.68 -6.51 -5.43 -5.44 -4.44 3.06 -3.13 -3.57 -3.67	Approx Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.0022 0.0017 0.0004 0.0002	Lag 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Variable z5 z5 z5 aonum94 aonum27 lsnum09 aonum51 aonum51 aonum52 aonum32 aonum36 aonum67	0 0 0 0 0 0 0 0

			Au	tocorrela	ation Check	of Residua	ıls		
То	Chi-		Pr >						
Lag	Square	DF	ChiSq			Autocorr	elations-		
6	3.22	3	0.3592	-0.021		-0.102	-0.036		0.011
12 18	12.48 15.18	9 15	0.1876 0.4385	0.112		-0.126 0.082			0.019 0.036
24	19.79	21	0.5346	0.027			-0.081		0.042
30	25.83	27	0.5278	-0.026	0.050	-0.123	-0.057	0.028	0.077
		Test			ts for Norm	nality	Value		
		Shapiro-	Wilk	W		Pr < W			
		_	ov-Smirno			Pr > D			
			on Mises -Darling			Pr > W- Pr > A-			
					ARIMA Prod				
					elihood Est				
Parame	ter	Estimate		ndard Error	t Value	Approx Pr > t	Lag	Variable	Shift
MA1.1		0.80619		06432	12.53	<.0001	2	z5	0
MA1.2 AR1.1		-0.18078 -0.49943		06201 07427	-2.92 -6.72	0.0036 <.0001	7 1	z5 z5	0
NUM1		-1.07588		20254	-5.31	<.0001	0	aonum27	0
NUM2		-0.87487		15255	-5.74	<.0001	0	lsnum09	0
NUM3 NUM4		-0.99190 -1.02756		18912 20835	-5.24 -4.93	<.0001 <.0001	0	aonum51 aonum21	0
NUM4 NUM5		-0.57490		20835 19342	-4.93 -2.97	0.0030	0	aonum21 aonum32	0
NUM6		-0.81397	0.3	19270	-4.22	<.0001	0	aonum44	0
NUM7		-0.81050		15271	-5.31	<.0001	0	aonum67	0
NUM8 NUM9		0.83108 0.38193		19620 11758	4.24 3.25	<.0001 0.0012	0	aonum13 aonum106	0
NUM10		-0.54507		15011	-3.63	0.00012	0	lsnum15	0
			Autoc	orrelatio	n Check of	Residuals			
To ag	Chi- Square	DF	Pr > ChiSq			Autocorr	elations-		
6	1.51	3	0.6793	0.025	0.068	0.028	-0.026	-0.036	0.018
12	7.98	9	0.5358	0.063			-0.007		0.022
18 24	10.06 14.29	15 21	0.8159 0.8568	-0.043 -0.015		0.059 -0.014		0.040	-0.025 0.006
30	15.15	27	0.9673	0.017	-0.007	-0.042	-0.042	-0.010	-0.006
				Tes	ts for Norm	nality			
		Test		St	atistic	p	Value		
		Shapiro-		W	0.971011		0.00		
		Kolmogor Cramer-v	ov-Smirno		0.052507 0.079478	Pr > D Pr > W-	>0.15 Sq 0.21		
		Anderson			0.661776	Pr > W- Pr > A-	_		
			3.4		IMA Procedu				
				kimum Lik ndard	.ciiiiOOQ ES1	Approx			
Parame	ter	Estimate	1		t Value	Pr > t	Lag	Variable	Shift
MA1.1		0.72811		06322	11.52	<.0001	2	z5 z5	0
AR1.1 AR1.2		-0.48881 0.16577		07337 07190	-6.66 2.31	<.0001 0.0211	1 7	z5 z5	0
NUM1		-1.16973		19695	-5.94	<.0001	0	aonum27	0
NUM2		-0.81580		16340	-4.99	<.0001	0	lsnum09	0
NUM3 NUM4		-1.05355 -1.04966		19672 19641	-5.36 -5.34	<.0001 <.0001	0	aonum51 aonum21	0
NUM4 NUM5		0.35020		18818	1.86	0.0627	0	aonum59	0
NUM6		-0.50349	0.3	18594	-2.71	0.0068	0	aonum32	0
		-0.39255		16580	-2.37	0.0179	0	aonum86	0
NUM7		-0.86882		18835	-4.61	<.0001	0	aonum44 aonum67	0
NUM7 NUM8		-0.98536	0 .	18453	-5.34	<			
NUM7		-0.98536 0.86167		18453 18527	-5.34 4.65	<.0001 <.0001	0	aonum13	0
NUM7 NUM8 NUM9			0.1						

То	Chi-		Pr >						
Lag	Square	DF	ChiSq			Autocorr	elations-		
6	2.42	3	0 4006	0.003	0 027	0 000	0 047	-0.096	0 012
12	4.18	9	0.4906 0.8989	0.003		0.002 -0.078	-0.047 0.017	0.022	0.013 0.023
18	7.16	15	0.9531	-0.054		0.086	0.003	0.032	-0.023
24	11.23	21	0.9580	-0.019		-0.070	-0.076	0.044	0.025
30	13.71	27	0.9840	-0.010		0.017	-0.097		-0.035
				Tes	sts for Norm	ality			
		Test			tatistic		Value		
		Shapiro-	wille	W	0.951014	_	<0.00		
		_	ov-Smirnov			Pr > D	0.13		
		_	on Mises		q 0.130792				
			-Darling		1.090972				
			Max		RIMA Procedu kelihood Est				
			Stano	dard		Approx			
Parar	meter	Estimate	: E1	rror	t Value	Pr > t	Lag	Variable	Shift
MA1.1	1	0.60792	0.01	7948	7.65	<.0001	3	z5	0
AR1.1		-0.50568		7982	-6.34	<.0001	1	z5	0
AR1.2	2	-0.49304		3015	-6.15	<.0001	2	z5	0
NUM1		1.44316		3838	7.66	<.0001	0	aonum94	0
NUM2		-1.08159	0.18	8795	-5.75	<.0001	0	aonum27	0
NUM3		-0.78383		5549	-5.04	<.0001	0	lsnum09	0
NUM4		-0.90692		3697	-4.85	<.0001	0	aonum51	0
NUM5		-0.90800		9228	-4.72	<.0001	0	aonum21	0
NUM6		0.69604		3321	3.80	0.0001	0	aonum59	0 0
NUM7 NUM8		-0.64410 -0.64003		3295 3321	-3.52 -3.49	0.0004 0.0005	0	aonum32 aonum86	0
NUM9		-0.71721		3483	-3.49	0.0001	0	aonum67	0
NUM1	n	0.59673		9042	3.13	0.0017	0	aonum97	0
NUM1		-0.47926		3647	-2.57	0.0102	0	aonum61	0
NUM12		-0.52027		5203	-3.42	0.0006	0	lsnum15	0
			Autoco	rrelatio	on Check of	Residuals			
То	Chi-		Pr >						
ag	Square	DF	ChiSq			Autocorr	elations-		
6	2.88	3	0.4113	0.021	-0.009	-0.000	-0.108	-0.000	0.058
12	11.63	9	0.2350	0.048				0.120	0.021
18	16.68	15	0.3381	-0.033	-0.056	0.097	-0.053	0.071	0.064
24	22.18	21	0.3894	0.019	-0.107	-0.029	-0.080	0.074	0.046
30	33.95	27	0.1676	-0.072	0.015	-0.164	-0.147	0.031	0.012
		Test			for Normalit tatistic		Value		
		Shapiro-		W	0.980125	Pr < W	0.01		
			ov-Smirnov	D	0.051998	Pr > D	>0.15		
			on Mises		q 0.120842	Pr > W-	Sq 0.06		

■ Probolinggo Inflation (Z_{6.t})

The ARIMA Procedure Maximum Likelihood Estimation										
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag	Variable	Shift			
MU	1.16491	0.02587	45.02	<.0001	0	z6	0			
MA1.1	0.39098	0.14816	2.64	0.0083	9	z6	0			
AR1.1	0.41708	0.13058	3.19	0.0014	1	z6	0			
NUM1	0.60550	0.14902	4.06	<.0001	0	aonum31	0			
NUM2	0.54737	0.16414	3.33	0.0009	0	aonum07	0			
NUM3	0.68715	0.16191	4.24	<.0001	0	aonum56	0			
NUM4	-0.46982	0.14888	-3.16	0.0016	0	aonum11	0			

			Autoc	orrelation	n Check of	Residuals			
To Lag	Chi- Square	DF	Pr > ChiSq			Autocorr	elations-		
6 12 18 24	5.88 13.79 20.76 30.64	16	0.1879	-0.012 -0.141	-0.186 0.019 -0.107 -0.095	-0.015 -0.002	-0.093 -0.187 -0.054 -0.030	0.248 0.163	
		Test			or Normalit atistic		Value		
		Cramer-v	cov-Smirno	W-Sq	0.973344 0.103017 0.088428 0.599536	Pr > W-	0.11 Sq 0.16	.22 i08	
			Ma		MA Procedur elihood Est				
Parame	eter	Estimate		ndard Error t	. Value	Approx Pr > t	Lag	Variable	Shift
MU MA1.1 AR1.1 NUM1 NUM2 NUM3 NUM4		1.16631 -0.56078 -0.41226 0.57973 0.44820 0.76965 -0.51103	3 0. 5 0. 8 0. 0 0.	12249 12982 12718 14243 13807	47.56 -4.58 -3.18 4.56 3.15 5.57 -4.03	<.0001 <.0001 0.0015 <.0001 0.0017 <.0001 <.0001	0 0 0	z6 z6 z6 aonum31 aonum07 aonum56 aonum11	0 0 0 0 0
			Autoc	orrelation	n Check of	Residuals			
To Lag	Chi- Square	DF	Pr > ChiSq			Autocorr	elations-		
6 12 18 24	2.57 10.23 13.71 20.65	4 10	0.6316 0.4207	-0.040	0.066	0.073	-0.172	0.001 0.246 0.149 0.136	-0.025
				Tests fo	or Normalit	У			
		Test		Sta	atistic	р	Value		
		Cramer-v	rov-Smirno	W-Sq	0.969223 0.101176 0.109916 0.662516	Pr > W-	Sq 0.08	186 145	
			Ma		ARIMA Proce elihood Est				
Parame	eter	Estimate		ndard Error t	. Value	Approx Pr > t	Lag	Variable	Shift
MU AR1.1 NUM1 NUM2 NUM3 NUM4		1.16021 -0.48294 0.69167 0.64102 0.59193 -0.41965	1 0. 7 0. 2 0. 3 0.	01724 11950 16347 17993 17999 16339	67.30 -4.04 4.23 3.56 3.29 -2.57	<.0001 <.0001 <.0001 0.0004 0.0010 0.0102	0 9 0 0 0	z6 z6 aonum31 aonum07 aonum56 aonum11	0 0 0 0 0
				orrelation	n Check of	Residuals			
To Lag	Chi- Square	DF	Pr > ChiSq			Autocorr	elations-		
6 12 18 24	8.84 13.86 18.98 31.03	5 11 17 23	0.1156 0.2409 0.3297 0.1220		0.024 0.116 -0.140 -0.090	0.126 -0.009			0.136 0.054 0.066 0.202

	Tests for Normality							
	Test		St	tatistic	p	Value		
	Shapiro-W	ilk v-Smirnov	W D		Pr < W Pr > D	0.14		
	Cramer-vo				Pr > W-			
	Anderson-				Pr > A-			
				RIMA Proced				
				kelihood Es				
Parameter	Estimate	Stand Er	ror	t Value	Approx Pr > t	Lag	Variable	Shift
MU	1.16017		731	67.00	<.0001	0	z6	0
MA1.1	0.38923		1316	2.72	0.0066	9	z6	0
NUM1	0.70799		7548	4.03	<.0001	0	aonum31	0
NUM2 NUM3	0.70184 0.60048		3786 3866	3.74	0.0002 0.0015	0	aonum07 aonum56	0
NUM3 NUM4	-0.39671		7645	-2.25	0.0015	0	aonum11	0
1401/17	0.350/1						aonami	U
			ocorrel	ation Check	of Residua	als		
o Chi- g Square	DF	Pr > ChiSq			Autocorr	elations-		
6 10.13	5	0.0717	0.354	-0.000	-0.053	-0.075	0.016	0.156
2 14.39			0.048	0.028	0.004			0.074
8 24.17		0.1149	-0.146	-0.164	-0.035	0.007	0.185	0.179
4 34.93	23	0.0529	0.000			-0.053	0.154	0.184
			Tests i	for Normali	ty			
	Test		St	tatistic	р	Value		
	Shapiro-W		W		Pr < W	0.09	18	
	_	v-Smirnov			Pr > D	0.14		
	Cramer-vo	n Mises	W-Sc	0.111064	Pr > W-	Sq 0.08	18	
	_	n Mises	W-Sc	0.111064		Sq 0.08	18	
	Cramer-vo	n Mises Darling	W-So A-So The	0.111064	Pr > W- Pr > A-	Sq 0.08	18	
	Cramer-vo	n Mises Darling	W-So A-So The	q 0.111064 q 0.742352 e ARIMA Pro-	Pr > W- Pr > A-	Sq 0.08	18	
Parameter	Cramer-vo	n Mises Darling Maxi	W-So A-So The	q 0.111064 q 0.742352 e ARIMA Pro-	Pr > W- Pr > A- cedure timation	Sq 0.08	18	Shift
MU	Cramer-vo Anderson- Estimate 1.16043	n Mises Darling Maxi Stanc En	W-Sc A-Sc The mum Lil	a 0.111064 d 0.742352 e ARIMA Pro- celihood Es t Value 54.41	Pr > W- Pr > A- cedure timation Approx Pr > t <.0001	Sq 0.08 Sq 0.05 Lag	Variable	0
MU AR1.1	Cramer-vo Anderson- Estimate 1.16043 0.35021	Maxima Stand	W-Sc A-Sc The mum Lil	a 0.111064 d 0.742352 e ARIMA Pro- selihood Es t Value 54.41 3.14	Pr > W- Pr > A- cedure timation Approx Pr > t <.0001 0.0017	Sq 0.08 Sq 0.05	Variable	0
MU AR1.1 AR1.2	Cramer-vo Anderson- Estimate 1.16043 0.35021 -0.43629	Maxi Stanc En 0.02 0.11	W-Sc A-Sc The mum Lil	a 0.111064 d 0.742352 e ARIMA Procelihood Es t Value 54.41 3.14 -3.91	Pr > W- Pr > A- cedure timation Approx Pr > t <.0001 0.0017 <.0001	Sq 0.08 Sq 0.05	Variable 26 26 26	0 0 0
MU AR1.1 AR1.2 NUM1	Estimate 1.16043 0.35021 -0.43629 0.66708	Maximaximaximaximaximaximaximaximaximaxim	W-Sc A-Sc The mum Lil dard eror 2133 151 146	a 0.111064 d 0.742352 e ARIMA Pro- celihood Es t Value 54.41 3.14 -3.91 4.57	Pr > W- Pr > A- cedure timation Approx Pr > t <.0001 0.0017 <.0001 <.0001	Sq 0.08 Sq 0.05	Variable z6 z6 aonum31	0 0 0
MU AR1.1 AR1.2 NUM1 NUM2	Estimate 1.16043 0.35021 -0.43629 0.66708 0.54017	Maximaximaximaximaximaximaximaximaximaxim	W-Sc A-Sc The mum Lil dard cror 2133 151 146 1599	a 0.111064 d 0.742352 e ARIMA Pro- celihood Es t Value 54.41 3.14 -3.91 4.57 3.39	Pr > W- Pr > A- cedure timation Approx Pr > t <.0001 0.0017 <.0001 <.0001 0.0007	Lag 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Variable z6 z6 aonum31 aonum07	0 0 0 0
MU AR1.1 AR1.2 NUM1 NUM2 NUM3	Estimate 1.16043 0.35021 -0.43629 0.66708 0.54017 0.63677	Maxi Stanc 0.02 0.11 0.12 0.12 0.15 0.15	W-Sc A-Sc The mum Lil dard cror 2133 151 146 1599 1921	2 ARIMA Procelihood Es t Value 54.41 3.14 -3.91 4.57 3.39 4.03	Pr > W- Pr > A- cedure timation Approx Pr > t <.0001 0.0017 <.0001 0.0007 <.0001	Lag 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Variable z6 z6 aonum31 aonum07 aonum56	0 0 0 0 0
MU AR1.1 AR1.2 NUM1	Estimate 1.16043 0.35021 -0.43629 0.66708 0.54017	Maxi Stance 0.00 0.11 0.12 0.15 0.15	W-Sc A-Sc The mum Lil lard cror 2133 151 146 1599 1921 1790 1540	A 0.111064 0.742352 2 ARIMA Procelihood Es t Value 54.41 3.14 -3.91 4.57 3.39 4.03 -3.10	Pr > W- Pr > A- cedure timation Approx Pr > t <.0001 0.0017 <.0001 <.0001 0.0007 <.0001 0.0001	Lag 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Variable z6 z6 aonum31 aonum07	0 0 0 0
MU AR1.1 AR1.2 NUM1 NUM2 NUM3 NUM4	Estimate 1.16043 0.35021 -0.43629 0.66708 0.54017 0.63677	Maxi Stanc En 0.02 0.11 0.12 0.14 Autocon	W-Sc A-Sc The mum Lil lard cror 2133 151 146 1599 1921 1790 1540	2 ARIMA Procelihood Es t Value 54.41 3.14 -3.91 4.57 3.39 4.03	Pr > W- Pr > A- cedure timation Approx Pr > t <.0001 0.0017 <.0001 <.0001 0.0007 <.0001 0.0001	Lag 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Variable z6 z6 aonum31 aonum07 aonum56	0 0 0 0 0
MU AR1.1 AR1.2 NUM1 NUM2 NUM3	Estimate 1.16043 0.35021 -0.43629 0.66708 0.54017 -0.63677 -0.45107	Maxi Stance 0.00 0.11 0.12 0.15 0.15	W-Sc A-Sc The mum Lil lard cror 2133 151 146 1599 1921 1790 1540	# 0.111064 # 0.742352 # ARIMA Procelihood Es t Value 54.41 3.14 -3.91 4.57 3.39 4.03 -3.10 on Check of	Pr > W- Pr > A- cedure timation Approx Pr > t <.0001 0.0017 <.0001 <.0001 0.0007 <.0001 0.0001	Lag 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Variable z6 z6 z6 aonum31 aonum07 aonum56 aonum11	0 0 0 0 0 0
MU AR1.1 AR1.2 NUM1 NUM2 NUM3 NUM4 C Chi- g Square 6 5.14	Estimate 1.16043 0.35021 -0.43629 0.66708 0.54017 0.63677 -0.45107	Maxi Stance En 0.02 0.11 0.14 0.15 0.14 Autocon Pr > ChiSq 0.2736	W-Sc A-Sc The mum Lik dard cror 2133 151 146 1599 1540 crelatio 0.106	## 0.111064 ## 0.742352 ## ARIMA Procelihood Es ## Value ## 54.41 ## 3.14 ## -3.91 ## 4.57 ## 3.39 ## 4.03 ## -3.10 ## -3.10 ## -3.10 ## -5.150	Pr > W- Pr > A- cedure timation Approx Pr > t <.0001 0.0017 <.0001 0.0007 <.0001 0.0009 Residuals	Lag 0 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Variable z6 z6 aonum31 aonum56 aonum11	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MU AR1.1 AR1.2 NUM1 NUM2 NUM3 NUM4 C Chi- g Square 6 5.14 2 12.21	Estimate 1.16043 0.35021 -0.43629 0.66708 0.54017 -0.45107 DF 4 10	Maxi Stanc En 0.02 0.11 0.12 0.14 0.15 0.14 Autocon Pr > ChiSq 0.2736 0.2715	W-Sc A-Sc The mum Lil lard cror 2133 151 146 1599 16921 17790 1540 1540 1540 1540 1540 1540 1540 154	# 0.111064 # 0.742352 # ARIMA Pro- kelihood Es t Value 54.41 3.14 -3.91 4.57 3.39 4.03 -3.10 on Check of	Pr > W-Pr > A- cedure timation Approx Pr > t <.0001 0.0017 <.0001 0.0007 <.0001 0.0009 Residuals Autocorr -0.013 0.081	Lag 0 1 9 0 0 0 0 relations-	Variable z6 z6 z6 aonum31 aonum07 aonum56 aonum11	0 0 0 0 0 0 0 0
MU AR1.1 AR1.2 MUM1 MW2 MW3 MW4 Chi- Square 5 5.14 2 12.21 3 16.66	Estimate 1.16043 0.35021 -0.43629 0.66708 0.54017 0.63677 -0.45107	Maxi Stanc En 0.02 0.11 0.12 0.14 Autocon Pr > ChiSq 0.2736 0.2715 0.4080	W-Sc A-Sc The mum Lil dard eror 2133 151 146 1599 9921 5790 5540 0.106 -0.008 -0.109	## 0.111064 ## 0.742352 ## ARIMA Proceelihood Es ## Value ## 54.41 ## 3.14 ## -3.91 ## .57 ## 3.39 ## .03 ## -3.10 ## con Check of	Pr > W- Pr > A- cedure timation Approx Pr > t <.0001 0.0017 <.0001 <.0001 0.0007 <.0001 0.0019 Residuals Autocorr -0.013 0.081 0.007	Lag 0 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Variable z6 z6 z6 aonum31 aonum07 aonum56 aonum11	0 0 0 0 0 0 0 0
MU AR1.1 AR1.2 NUM1 NUM2 NUM3 NUM4 O Chi- g Square 6 5.14 2 12.21 8 16.66	Estimate 1.16043 0.35021 -0.43629 0.66708 0.54017 0.63677 -0.45107	Maxi Stanc En 0.02 0.11 0.12 0.14 0.15 0.14 Autocon Pr > ChiSq 0.2736 0.2715	W-Sc A-Sc The mum Lil lard cror 2133 151 146 1599 16921 17790 1540 1540 1540 1540 1540 1540 1540 154	## 0.111064 ## 0.742352 ## ARIMA Proceelihood Es ## Value ## 54.41 ## 3.14 ## -3.91 ## .57 ## 3.39 ## .03 ## -3.10 ## con Check of	Pr > W-Pr > A- cedure timation Approx Pr > t <.0001 0.0017 <.0001 0.0007 <.0001 0.0009 Residuals Autocorr -0.013 0.081	Lag 0 1 9 0 0 0 0 relations-	Variable z6 z6 z6 aonum31 aonum07 aonum56 aonum11	0 0 0 0 0 0 0 0
MU AR1.1 AR1.2 NUM1 NUM2 NUM3 NUM4 O Chi- g Square 6 5.14 2 12.21 8 16.66	Cramer-vo Anderson- Estimate 1.16043 0.35021 -0.43629 0.66708 0.54017 -0.45107 DF 4 10 16 22	Maxi Stanc En 0.02 0.11 0.12 0.14 Autocon Pr > ChiSq 0.2736 0.2715 0.4080	W-Sc A-Sc The mum Lil lard cror 2133 151 146 1599 16921 1790 1540 1790 1790 1790 1790 1790 1790 1790 179	## 0.111064 ## 0.742352 ## ARIMA Pro- kelihood Es ## Value ## 54.41 ## 3.14 ## -3.91 ## .57 ## 3.39 ## .03 ## -3.10 On Check of ## -0.150 ## 0.052 ## -0.092 ## -0.092	Pr > W-Pr > A- cedure timation Approx Pr > t <.0001 0.0017 <.0001 <.0001 0.0007 <.0001 0.0019 Residuals Autocorr -0.013 0.081 0.007 -0.193	Lag 0 1 9 0 0 0 0 relations0.089 -0.107 -0.046 -0.045	Variable z6 z6 z6 aonum31 aonum07 aonum56 aonum11	0 0 0 0 0 0 0 0
MU AR1.1 AR1.2 NUM1 NUM2 NUM3 NUM4 O Chi- g Square 6 5.14 2 12.21 8 16.66	Estimate 1.16043 0.35021 -0.43629 0.66708 0.54017 0.63677 -0.45107	Maxi Stanc En 0.02 0.11 0.12 0.14 Autocon Pr > ChiSq 0.2736 0.2715 0.4080	W-Sc A-Sc The mum Lil lard cror 2133 151 146 1599 16921 1790 1540 1790 1790 1790 1790 1790 1790 1790 179	## 0.111064 ## 0.742352 ## ARIMA Pro- kelihood Es ## Value ## 54.41 ## 3.14 ## -3.91 ## 4.57 ## 3.39 ## 4.03 ## -3.10 ## -3.10 ## On Check of ## -0.150 ## 0.052 ## -0.092 ## -0.092	Pr > W-Pr > A- cedure timation Approx Pr > t <.0001 0.0017 <.0001 <.0001 0.0007 <.0001 0.0019 Residuals Autocorr -0.013 0.081 0.007 -0.193	Lag 0 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Variable z6 z6 z6 aonum31 aonum07 aonum56 aonum11	0 0 0 0 0 0 0 0
MU AR1.1 AR1.2 NUM1 NUM2 NUM3 NUM4 O Chi- g Square 6 5.14 2 12.21 8 16.66	Cramer-vo Anderson- Estimate 1.16043 0.35021 -0.43629 0.66708 0.54017 -0.45107 DF 4 10 16 22	Maxi Stance 0.02 0.11 0.12 0.14 0.15 0.14 Autocon Pr > ChiSq 0.2736 0.2715 0.4080 0.1783	W-Sc A-Sc The mum Lil lard cror 2133 151 146 1599 1540 1540 1540 1540 1540 1540 1540 1540	## 0.111064 ## 0.742352 ## ARIMA Pro- celihood Es ## Value 54.41 3.14 -3.91 4.57 3.39 4.03 -3.10 On Check of -0.150 0.052 -0.092 -0.092 for Normali	Pr > W-Pr > A- cedure timation Approx Pr > t <.0001 0.0017 <.0001 0.0007 <.0001 0.0019 Residuals Autocorr -0.013 0.081 0.007 -0.193 ty Pr < W	Lag Lag 0 1 9 0 0 0 0 velations0.089 -0.107 -0.046 -0.045	Variable z6 z6 z6 aonum31 aonum07 aonum56 aonum11	0 0 0 0 0 0 0 0
MU AR1.1 AR1.2 NUM1 NUM2 NUM3 NUM4 O Chi- g Square 6 5.14 2 12.21 8 16.66	Cramer-vo Anderson- Estimate 1.16043 0.35021 -0.43629 0.66708 0.54017 -0.45107 DF 4 10 16 22	Maxi Stand En 0.02 0.11 0.14 0.15 0.14 Autocon Pr > ChiSq 0.2736 0.2715 0.4080 0.1783	W-Sc A-Sc The mum Lil lard ror 2133 151 146 1599 1540 16790 1540 16790 167	## 0.111064 ## 0.742352 ## ARIMA Pro- kelihood Es ## Value ## 54.41 ## 3.14 ## -3.91 ## .57 ## 3.39 ## .03 ## -3.10 ## On Check of ## 0.052 ## -0.092 ## -0.092 ## 0.092 ## 0.093 ## 0.	Pr > W-Pr > A- cedure timation Approx Pr > t	Lag Lag 0 1 9 0 0 0 0 elations0.089 -0.107 -0.046 -0.045 Value 0.21 0.07	Variable z6 z6 z6 aonum31 aonum07 aonum56 aonum11	0 0 0 0 0 0 0 0

• Madiun Inflation (Z_{7t})

- IVI	adiun Infl	ation	$(\mathbf{Z}_{7.t})$						
			Maxim		ARIMA Pro ihood Es				
	Param	eter	Estimate		ndard Error	t Value	Approx Pr > t	Lag	
	MU AR1.1		0.30993 0.36802		08391 12163	3.69 3.03	0.0002 0.0025	0 1	
			Autocor	rrelation	Check o	f Residual	S		
To	Chi-		Pr >						
Lag	Square	DF	ChiSq			Autoco	rrelations		
6 12 18 24	2.85 12.84 16.33 18.95	11 17	0.3041	-0.105 0.017		-0.277 -0.182	0.145 -0.132 -0.035 0.024	-0.006 0.079	0.110
		Test			s for No:		p Value	_	
		Cramer-	-Wilk rov-Smirnov von Mises n-Darling	W-Sq	0.07811	2 Pr >	W 0.222 D >0.150 W-Sq 0.222 A-Sq 0.171	0	
			Maxim		MA Proce	dure timation			
	Param	eter	Estimate	Sta	ındard		Approx Pr > t	Lag	
	MU MA1.1		0.30644 -0.35615	0.	07230	4.24 -2.88	<.0001 0.0040	0 1	
To Lag	Chi- Square	DF	Autocorre Pr > ChiSq			Residuals	rrelations		
6 12 18 24	2.47 13.10 16.12 18.79	5 11 17 23	0.7810 0.2870 0.5153		0.056 0.119 0.037 -0.042	-0.096 -0.298 -0.175	0.155 -0.110 -0.032	0.017	0.018
				Tests fo	r Normal	ity			
		Test		Sta	tistic		p Value	-	
]	Cramer-	-Wilk rov-Smirnov von Mises n-Darling	_	0.97070 0.06920 0.08771 0.57771	9 Pr > 5 Pr >		0	
			Maxim		MA Proce ihood Es				
	Param	eter	Estimate		indard Error	t Value	Approx Pr > t	Lag	
	MU AR1.1		0.28157 -0.39863		03936 12075	7.15 -3.30	<.0001 0.0010	0 9	
			Autocor	relation	Check o	f Residual	s		
To Lag	Chi- Square	DF	Pr > ChiSq			Autoco	rrelations		
6 12 18 24	10.71 15.27 20.04 21.37	5 11 17 23	0.0575 0.1703 0.2722 0.5587	0.321 -0.138 0.081 -0.062	-0.047 0.134 0.005 -0.066	0.038 -0.177	-0.127 -0.086	0.119 -0.077 0.030 -0.033	-0.109 0.052 -0.103 0.060

				Tests fo	or Normali	.ty			
		Test		Sta	tistic	p	Value		
	I	Cramer-	-Wilk crov-Smirnov von Mises on-Darling	D W-Sq	0.081281 0.055353))	
			Maxin		ARIMA Pro				
				Sta	ındard		Approx		
	Parame	eter	Estimate			t Value	Pr > t	Lag	
	MU MA1.1		0.27956 0.44515		03306 14210	8.46 3.13	<.0001 0.0017	0 9	
			Autocor	relation	Check of	Residuals	5		
To	Chi-		Pr >						
Lag	Square	DF	ChiSq			Autocor	relations		
6 12 18 24	16.15 22.25	11 17	0.1355 0.1753	-0.159 0.110	-0.070 0.106 0.028 -0.083	0.065 -0.196	0.189 -0.095 -0.127 0.041	-0.090 0.063	0.045 0.048
				Tests fo	or Normali	tv			
	,	Test					Value		
			m/ 11-			_			
	I	Cramer-	o-Wilk prov-Smirnov von Mises on-Darling	W-Sq	0.067317 0.039304	Pr > W	0.4961 0 >0.1500 1-Sq >0.2500 1-Sq >0.2500))	
			Maxim		ARIMA Pro				
				Sta	ındard		Approx		
		- 1 -					D > +	T 0.00	
	Paramo	eter	Estimate		Error	t Value	PI > C	Lag	
	MU MA1.1 AR1.1		0.28654 -0.36090 -0.37115	0.	05148 12355 12554	5.57 -2.92 -2.96	<.0001 0.0035	0 1 9	
	MU MA1.1		0.28654 -0.36090 -0.37115	0. 0. 0.	05148 12355 12554	5.57 -2.92	<.0001 0.0035 0.0031	0 1	
То	MU MA1.1 AR1.1		0.28654 -0.36090 -0.37115	0. 0. 0.	05148 12355 12554	5.57 -2.92 -2.96	<.0001 0.0035 0.0031	0 1	
To Lag	MU MA1.1		0.28654 -0.36090 -0.37115	0. 0. 0. ocorrelat	05148 12355 12554 tion Check	5.57 -2.92 -2.96	<.0001 0.0035 0.0031	0 1 9	
Lag 6	MU MA1.1 AR1.1 Chi- Square 3.61	DF 4	0.28654 -0.36090 -0.37115 Auto Pr > ChiSq	0.014	05148 12355 12554 tion Check	5.57 -2.92 -2.96 c of Residu	<.0001 0.0035 0.0031 uals	0 1 9 9	-0.068
Lag	MU MA1.1 AR1.1 Chi- Square	DF	0.28654 -0.36090 -0.37115 Auto Pr > ChiSq	0. 0. 0.	05148 12355 12554 tion Check	5.57 -2.92 -2.96 c of Residu	<.0001 0.0035 0.0031 uals rrelations 0.186 -0.116	0 1 9	
Lag 6 12	MU MA1.1 AR1.1 Chi- Square 3.61 9.69	DF 4 10	0.28654 -0.36090 -0.37115 Auto Pr > ChiSq 0.4610 0.4684	0.00 0.00 0.00 0.014 -0.174	05148 12355 12554 tion Check	5.57 -2.92 -2.96 c of Residu Autocor -0.087 -0.004	<.0001 0.0035 0.0031 uals rrelations 0.186 -0.116	0.084	-0.068 0.060
6 12 18	MU MA1.1 AR1.1 Chi- Square 3.61 9.69 14.82	DF 4 10 16	0.28654 -0.36090 -0.37115 Auto Pr > ChiSq 0.4610 0.4684 0.5378 0.8081	0. 0. 0. 0. 0.014 0.014 0.037 0.002	05148 12355 12554 tion Check 0.017 0.186 0.047	5.57 -2.92 -2.96 c of Residu Autocor -0.087 -0.004 -0.174 -0.018	<.0001 0.0035 0.0031 uals relations 0.186 -0.116 -0.056	0 1 9 0.084 -0.054 0.084	-0.068 0.060 -0.128
6 12 18	MU MA1.1 AR1.1 Chi- Square 3.61 9.69 14.82 16.16	DF 4 10 16	0.28654 -0.36090 -0.37115 Auto Pr > ChiSq 0.4610 0.4684 0.5378 0.8081	0. 0. 0. 0. 0. 0.014 -0.174 0.037 0.002	05148 12355 12554 tion Check -0.017 0.186 0.047 -0.062	5.57 -2.92 -2.96 c of Residu Autocor -0.087 -0.004 -0.174 -0.018	<.0001 0.0035 0.0031 uals relations 0.186 -0.116 -0.056	0.084 -0.054 0.084 -0.063	-0.068 0.060 -0.128
6 12 18	MU MA1.1 AR1.1 Chi- Square 3.61 9.69 14.82 16.16	DF 4 10 16 22 Test Shapiro	0.28654 -0.36090 -0.37115 Auto Pr > ChiSq 0.4610 0.4684 0.5378 0.8081	0. 0. 0. 0. 0.014 -0.174 0.037 0.002 Tests for	05148 12355 12554 tion Check 0.017 0.186 0.047 -0.062 or Normali	5.57 -2.92 -2.96 c of Residu Autocor -0.087 -0.004 -0.174 -0.018	<pre></pre>	0 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	-0.068 0.060 -0.128

■ Sumenep Inflation (Z_{8.t})

	Maximum	Likelihood E	Stimation			
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag	
MU	1.46983 -0.26986	0.06562 0.12658	22.40 -2.13	<.0001 0.0330	0	

То	Chi-		Auto	ocorrelat	tion Check	of Residu	als		
Lag	Square	DF	ChiSq			Autocor	relations		
6 12 18 24	19.68	11	0.3180	-0.147	-0.039 0.052 -0.074 -0.056	-0.181	0.062 -0.223 -0.058 0.043	0.114	-0.029 0.116 -0.124 0.158
		Test			s for Norm tistic	-	Value		
		Kolmogo Cramer-	-Wilk rov-Smirnov von Mises n-Darling	D W-Sq	0.965397 0.101159 0.096809 0.64636	Pr > D Pr > W	0.0866 0.1288 -Sq 0.1246 -Sq 0.0901		
			Maxim		ARIMA Proc				
	Para	meter	Estimate		indard Error t	Value	Approx Pr > t	Lag	
	MU MA1.		1.46539 0.27742			24.10 2.15	<.0001 0.0316	0 3	
				relation	Check of	Residuals			
To Lag	Chi- Square	DF	Pr > ChiSq			Autocor	relations		
6 12 18 24	19.77	17		-0.005	-0.079	-0.226	0.045 -0.222 -0.069 0.037	-0.114	0.108 -0.108
					s for Norm				
		Test		Sta	tistic	p	Value		
		Kolmogo Cramer-	-Wilk rov-Smirnov von Mises n-Darling	D W-Sq	0.085013	Pr > D Pr > W	0.1119 >0.1500 -Sq 0.1811 -Sq 0.1257		
			Maxim		ARIMA Proc ihood Esti				
	Para	meter	Estimate		ndard Error t	Value	Approx Pr > t	Lag	
	MU AR1.	1	1.44988 -0.33702		06274 13062	23.11 -2.58	<.0001 0.0099	0 9	
To Lag	Chi- Square	DF	Autocorre Pr > ChiSq		theck of Re		relations		
6 12 18 24	5.49 10.75 16.88		0.4642 0.4625	0.113 -0.184 0.108	-0.111 0.005 0.007			0.116 0.092 -0.117 0.178	-0.052 0.122 -0.075
24	22.53	23	0.4884	0.046 Test	-0.095 s for Norm	-0.091 ality	0.005	0.1/8	0.078
n nd o v g o v	n-Darling	Cramer-	-Wilk rov-Smirnov von Mises q 0.582536	Sta W D W-Sq	tistic	Pr < W Pr > D Pr > W			

			M		ARIMA Pr	ocedure d Estimati	on		
	Param	eter	Estimate		andard Error	t Value	Approx Pr > t	Lag	
	MU MA1.1		1.44782 0.38198		.05460	26.52 2.74	<.0001 0.0061	0 9	
То	Chi-		Autocor Pr >	relation	n Check o	f Residual	s		
Lag	Square	DF	ChiSq			Autoco	rrelations		
6 12 18 24	20.17	11 17	0.3444 0.2657	-0.159 0.129	-0.018 0.037	0.067 -0.230	0.111 -0.140 -0.115 0.017	0.048 -0.097	0.124
		Test			s for No	_	p Value	-	
]	Kolmogo Cramer-	o-Wilk prov-Smirnov von Mises pn-Darling	D W-Sq	0.07967 0.05851	8 Pr > 4 Pr >	W 0.365 D >0.150 W-Sq >0.250 A-Sq >0.250))	
			M		ARIMA Pr	ocedure d Estimati	on		
	Param	eter	Estimate		andard Error	t Value	Approx Pr > t	Lag	
	MU AR1.1 AR1.2		1.45450 -0.22963 -0.30219	0.	.05369 .11493 .12856	27.09 -2.00 -2.35	0.0457	0 3 9	
				ocorrela	tion Chec	ck of Resid	duals		
To Lag	Chi- Square	DF	Pr > ChiSq			Autoco	rrelations		
6 12 18 24	3.29 9.06 16.14 20.66	10 16	0.5267 0.4434	-0.215 0.033		0.037 -0.181	0.104 -0.148 -0.069 0.067	0.084	
		Test			or Normal atistic		p Value	-	
]	Cramer-	o-Wilk prov-Smirnov von Mises on-Darling	W D W-Sq A-Sq	0.95560 0.13217 0.15757 0.97054	6 Pr > 4 Pr >	D <0.0100 W-Sq 0.0190) 5	

Appendix 4: Partial Autocorrelation (PACF) residual of ARIMA

• National Inflation $(Z_{1,t})$

(e) PACF of ResidualARIMAX ([1,3,12,14],1,[2])

■ Surabaya Inflation (Z_{2,t})

(a) PACF of ResidualARIMAX([1,5,12,19],1,[2,14]) (b) PACF of ResidualARIMAX([1,5,12],1,[2,20])

 $(c)\ PACF\ of\ Residual ARIMAX([1,6,12,20],1,[2]) (d)\ PACF\ of\ Residual ARIMAX([1,12,20],1,[2,6])$

(e) PACF of ResidualARIMAX([2,12],1,1)

■ Malang Inflation (Z_{3,t})

■ Jember Inflation $(Z_{4,t})$

(e) PACF of Residual ARIMAX(1,1,[2,3])

■ Kediri Inflation (Z_{5,t})

(e) PACF of Residual ARIMA([1,9],0,0)

■ Madiun Inflation (Z_{7,t})

(e) PACF of Residual ARIMA([1,9],0,0)

Appendix 5: Root Mean Square Error of Hybrid Autoregressive Integrated Moving Average (ARIMA) and Feedforward Neural Networks (FFNNs)

■ National Inflation (Z_{1,t})

(e) RMSE of Hybrid $\,$ ARIMAX ([1,3,12,14],1,[2]) and FFNNs

■ Surabaya Inflation (Z_{2,t})

■ Malang Inflation $(Z_{3,t})$

(a) RMSE of Hybrid ARIMAX(1,1,[2]) and FFNNs

(c) RMSE of Hybrid ARIMAX(0,1,1)and FFNNs

(d) RMSE of Hybrid ARIMAX([1,2,3],1,[4]) and FFNNs

• Jember Inflation $(Z_{4,t})$

(a) RMSE of Hybrid ARIMA([1,7],1,2) and FFNNs

(b) RMSE of Hybrid $\ ARIMAX([3,4],1,[1,11])$ and FFNNs

(c) RMSE of Hybrid ARIMAX([2,3],1,[1,4]) and FFNNs

(e) RMSE of Hybrid ARIMAX(1,1,[2,3]) and FFNNs

■ Kediri Inflation (Z_{5,t})

(a) RMSE of Hybrid ARIMAX([1,3],1,[2]) and FFNNs

(b) RMSE of Hybrid $\ ARIMA(1,1,[2,3])$ and FFNNs

• Probolinggo Inflation $(Z_{6,t})$

■ MadiunInflation (Z_{7,t})

(d) RMSE of Hybrid $\ ARIMA(0,0,[9])$ and FFNNs

(e) RMSE of Hybrid ARIMA([1,9],0,0) and FFNNs

• SumenepInflation $(Z_{8,t})$

(a) RMSE of Hybrid ARIMA([3],0,0) and FFNNs

(b) RMSE of Hybrid ARIMA(0,0[3]) and FFNNs

Appendix 6: Output SPSS for Coefficient of Stacking of Hybrid Autoregressive Integrated Moving Average (ARIMA) and Feedforward Neural Networks (FFNNs)

■ National Inflation (Z_{1.t})

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.347	.156	.041	.654
c2	.049	.112	171	.269
c3	.000	.225	442	.442
c4	.000	.227	447	.447
c5	.604	.086	.434	.773

\blacksquare Surabaya ($Z_{2.t}$)

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.360	.202	037	.757
c2	.123	.196	262	.507
c3	.146	.229	304	.597
c4	.000	.236	464	.464
c5	.371	.109	.156	.586

■ Malang $(Z_{3.t})$

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.407	.128	.155	.660
c2	.128	.116	101	.356
c3	.465	.118	.232	.697
c4	.000	.113	223	.223

• Kediri $(Z_{5.t})$

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.176	.196	211	.563
c2	.503	.170	.167	.838
c3	.000	.184	363	.363
c4	.305	.185	059	.670
c5	.015	.225	428	.459

■ Jember (Z_{4.t})

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.026	.069	111	.162
c2	.226	.111	.007	.446
c3	.184	.106	024	.393
c4	.374	.131	.115	.632
c5	.190	.108	022	.403

lacktriangle Probolinggo ($Z_{6.t}$)

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.247	.419	593	1.087
c2	.327	.268	211	.865
c3	.301	.191	081	.684
c4	.081	.242	403	.566
c5	.044	.424	807	.894

■ Madiun (Z_{7.t})

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.360	.251	143	.863
c2	.278	.295	314	.869
c3	.000	.512	-1.027	1.027
c4	.363	.401	442	1.167
c5	.000	.448	897	.897

• Sumenep $(Z_{8.t})$

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.297	.274	253	.847
c2	.321	.210	100	.742
c3	.136	.293	452	.724
c4	.000	.318	637	.637
c5	.246	.276	307	.799

Appendix 7: Root Means Square Error of Hybrid Autoregressive Integrated Moving Average (ARIMA) and Recurrent Neural Network (RNNs)

■ National Inflation (Z_{1.t})

■ Surabaya Inflation (Z_{2,t})

(a) RMSE of Hybrid $\ ARIMAX([1,5,12,19],1,[2,14])$ and RNNs

 $(c) \ RMSE \ of \ Hybrid \ ARIMAX([1,6,12,20],1,[2]) \ and \ RNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RNNs(d) \ ARIMAX([1,12,20],1,[2,6]) \ and \ RNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RNNs(d) \ ARIMAX([1,12,20],1,[2,2]) \ and \ RNNs(d) \ ARIMAX([1,12,$

(e) RMSE of Hybrid ARIMAX([2,12],1,1) and RNNs

• Malang Inflation $(Z_{3,t})$

(a) RMSE of Hybrid ARIMAX(1,1,[2]) and RNNs

(b) RMSE of Hybrid ARIMAX([1,2],1,[3]) and RNNs

(c) RMSE of Hybrid ARIMAX(0,1,1)and RNNs

(d) RMSE of Hybrid ARIMAX([1,2,3],1,[4]) and RNNs

■ Jember Inflation $(Z_{4,t})$

(a) RMSE of Hybrid $\ ARIMA([1,7],1,2)$ and RNNs

(b) RMSE of Hybrid $\ ARIMAX([3,\!4],\!1,\![1,\!11])$ and RNNs

(e) RMSE of Hybrid ARIMAX(1,1,[2,3]) and RNNs

■ Kediri Inflation (Z_{5,t})

(a) RMSE of Hybrid ARIMAX([1,3],1,[2]) and RNNs

(b) RMSE of Hybrid ARIMA(1,1,[2,3]) and RNNs

(c) RMSE of Hybrid ARIMA(1,1,[2,7]) and RNNs

(d) RMSE of Hybrid ARIMA([1,7],1,[2]) and RNNs

(e) RMSE of Hybrid ARIMA([1,2],1,[3]) and RNNs

■ Probolinggo Inflation (Z_{6,t})

(a) RMSE of Hybrid ARIMA(1,0,[9]) and RNNs

(b) RMSE of Hybrid ARIMA([9],0,1) and RNNs

(e) RMSE of Hybrid ARIMA([1,9],0,0) and RNNs

■ Madiun Inflation (Z_{7,t})

(e) RMSE of Hybrid ARIMA([1,9],0,0) and RNNs

■ Sumenep Inflation (Z_{8,t})

(e) RMSE of Hybrid ARIMA([3,9],0,0) and RNNs

Appendix 8: Coeffient of Stacking of Hybrid Autoregressive Integrated Moving Average (ARIMA) and Recurrent Neural Networks (RNNs)

■ National Inflation (Z_{1.t})

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.354	.146	.066	.642
c2	.098	.128	154	.350
с3	.000	.172	338	.338
c4	.000	.180	355	.355
c5	.547	.079	.392	.703

■ Surabaya Inflation (Z_{2.t})

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.347	.212	070	.764
c2	.187	.200	205	.580
с3	.000	.157	309	.309
c4	.134	.141	143	.411
c5	.332	.104	.127	.537

• Malang Inflation $(Z_{3.t})$

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.394	.143	.113	.676
c2	.049	.178	302	.401
с3	.530	.203	.130	.930
c4	.027	.143	255	.308

• Jember Inflation $(Z_{4.t})$

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.000	.080	159	.159
c2	.322	.120	.086	.558
с3	.110	.123	132	.353
c4	.375	.144	.092	.659
c5	.192	.122	048	.432

■ Kediri Inflation (Z_{5.t})

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.000	.281	555	.555
c2	.533	.190	.157	.908
с3	.000	.183	361	.361
c4	.328	.184	036	.691
c5	.140	.262	377	.657

lacktriangle Probolinggo Inflation ($Z_{6.t}$)

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.000	.851	-1.706	1.706
c2	.475	.437	402	1.351
с3	.000	.665	-1.332	1.332
c4	.134	.560	989	1.257
c5	.392	.875	-1.362	2.146

■ Madiun Inflation (Z_{7.t})

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.072	.889	-1.709	1.853
c2	.000	.764	-1.532	1.532
с3	.000	1.098	-2.201	2.201
c4	.208	.601	996	1.411
c5	.720	.856	996	2.437

• Sumenep Inflation $(Z_{8.t})$

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.911	.265	.380	1.442
c2	.000	.231	462	.462
с3	.012	.190	370	.393
c4	.000	.175	351	.351
c5	.077	.113	149	.303

Appendix 9: Root Means Square Error of Hybrid Autoregressive Integrated Moving Average (ARIMA) and Radial Basis Function Neural Networks (RBFNNs)

■ National Inflation (Z_{1.t})

 $(a) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,12],1,[2,8,20]) \ and \ RBFNNs \\ (b) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX \ ([1,8,12],1,[2,20]) \ and \ RBFNNS \\$

(c) RMSE of Hybrid ARIMAX ([1,12,20],1,[2,8]) and RBFNNs (d) RMSE of Hybrid ARIMAX([1,12,14],1,[2,8,20]) and RBFNNs

e) RMSE of Hybrid ARIMAX ([1,3,12,14],1,[2]) and RBFNNs

■ Surabaya Inflation (Z_{2,t})

 $(c) \ RMSE \ of \ Hybrid \ ARIMAX([1,6,12,20],1,[2]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ RBFNNs(d) \ and \ RBFNNs(d) \ ARIMAX([1,12,20],1,[2,6]) \ and \ ARIMAX([1,12,20],1,[2,6]) \ and \ ARIMAX([1,12,20],1,[2,6]) \ and \ ARIMAX([1$

(e) RMSE of Hybrid ARIMAX([2,12],1,1) and RBFNNs

■ Malang Inflation (Z_{3,t})

(c) RMSE of Hybrid ARIMAX(0,1,1) and RBFNNs

(d) RMSE of Hybrid ARIMAX([1,2,3],1,[4]) and RBFNNs

■ Jember Inflation $(Z_{4,t})$

 $(a) \ RMSE \ of \ Hybrid \ ARIMA([1,7],1,2) \ and \ RBFNNs \\ (b) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,11]) \ and \ RBFNNs \\ (a) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,11]) \ and \ RBFNNs \\ (b) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,11]) \ and \ RBFNNs \\ (b) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,11]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,11]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,11]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,11]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,11]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,11]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,11]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,11]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,11]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,11]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,11]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,11]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,11]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,11]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,11]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,11]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,1]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,1]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,1]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,1]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,1]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,1]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,1]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,1]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,1]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,1]) \ and \ RBFNNs \\ (c) \ RMSE \ of \ Hybrid \ ARIMAX([3,4],1,[1,1]) \$

■ Kediri Inflation (Z_{5,t})

(c) RMSE of Hybrid ARIMA(1,1,[2,7]) and RBFNNs

(e) RMSE of Hybrid ARIMA([1,2],1,[3]) and RBFNNs

lacktriangle Probolinggo Inflation $(Z_{6,t})$

(a) RMSE of Hybrid ARIMA(1,0,[9]) and RBFNNs

(b) RMSE of Hybrid ARIMA([9],0,1) and RBFNNs

(e) RMSE of Hybrid ARIMA([1,9],0,0) and RBFNNs

■ Madiun Inflation (Z_{7,t})

■ Sumenep Inflation (Z_{8,t})

(e) RMSE of Hybrid ARIMA([3,9],0,0) and RBFNNs

Appendix 10: Output SPSS Stacking Coefficient of Hybrid Autoregressive Integrated Moving Average (ARIMA) and Radial Basis Function Neural Networks (RBFNNs)

■ National Inflation (Z_{1.t})

Parameter	Estimate	Std. Error	95% Confide	ence Interval
			Lower Bound	Upper Bound
c1	.216	.088	.043	.388
c2	.304	.065	.176	.431
c3	.133	.089	042	.308
c4	.000	.055	108	.108
c5	.348	.055	.239	.456

■ Surabaya Inflation (Z_{2.t})

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.539	.196	.154	.923
c2	.034	.381	715	.783
c3	.348	1.014	-1.645	2.342
c4	.000	1.009	-1.983	1.983
c5	.079	.377	662	.820

■ Malang Inflation $(Z_{3.t})$

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.074	.107	137	.286
c2	.584	.074	.437	.731
c3	.196	.104	008	.401
c4	.145	.075	003	.293

■ Jember Inflation $(Z_{4,t})$

Parameter	Estimate	Std. Error	95% Confide	ence Interval
			Lower Bound	Upper Bound
c1	.030	.051	071	.130
c2	.243	.073	.099	.386
c3	.564	.075	.417	.711
c4	.159	.088	016	.333
c5	.005	.069	132	.142

■ Kediri Inflation (Z_{5.t})

Parameter	Estimate	Std. Error	95% Confide	ence Interval
			Lower Bound	Upper Bound
c1	.321	.086	.151	.491
c2	.000	.082	163	.163
c3	.401	.081	.241	.560
c4	.053	.066	077	.182
c5	.225	.089	.050	.400

lacktriangle Probolinggo Inflation ($Z_{6.t}$)

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.072	.346	622	.766
c2	.082	.216	352	.515
c3	.774	.172	.430	1.118
c4	.000	.232	465	.465
c5	.072	.343	614	.759

■ Madiun Inflation (Z_{7.t})

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.072	.116	161	.305
c2	.000	.135	270	.270
c3	.000	.108	217	.217
c4	.928	.104	.720	1.135
c5	.000	.112	224	.224

■ Sumenep Inflation (Z_{8.t})

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.916	.581	248	2.080
c2	.000	.221	443	.443
c3	.050	.307	566	.666
c4	.034	.302	571	.639
c5	.000	.588	-1.178	1.178

Appendix 11: Root Means Square Error of Hybrid Autoregressive Integrated Moving Average (ARIMA and) Generalized Regression Neural Networks (GRNNs)

■ National Inflation (Z_{1.t})

■ Surabaya Inflation (Z_{2,t})

 $(c) \ RMSE \ of \ Hybrid \ ARIMAX([1,6,12,20],1,[2]) \ and \ GRNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ GRNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ GRNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ GRNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ GRNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ GRNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ GRNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ GRNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ GRNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ GRNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ GRNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ GRNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ GRNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ GRNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ GRNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ GRNNs(d) \ RMSE \ of \ Hybrid \ ARIMAX([1,12,20],1,[2,6]) \ and \ GRNNs(d) \ ARIMAX([1,12,20],1,[2,6]) \ and \ ARIMAX([1,12,20],1,[2,6]) \ and \ ARIMAX([1,12,20],1,[2,20],1,[2,20]) \ and \ ARIMAX([1,12,20],1,[2,20],1,[2,20]) \ and \ ARIMAX([1,12,20],1,[2,20],1,[2,20],1,[2,20]) \ and \ ARIMAX([1,12,20],1,[2,20],1,[2,20],1,[2,20],1,[2,20]) \ and \ ARIMAX([1,12,20],1,[2,20$

(e) RMSE of Hybrid ARIMAX([2,12],1,1) and GRNNs

■ Malang Inflation (Z_{3,t})

(c) RMSE of Hybrid $\ ARIMAX([2,3],1,[1,4])$ and GRNNs

(d) RMSE of Hybrid $\ ARIMAX([1,2,4],1,[3,12])$ and GRNNs

(e) RMSE of Hybrid $\mbox{ARIMAX}(1,1,[2,3])$ and \mbox{GRNNs}

■ Kediri Inflation (Z_{5,t})

(a) RMSE of Hybrid ARIMAX([1,3],1,[2]) and GRNNs

(b) RMSE of Hybrid ARIMA(1,1,[2,3]) and GRNNs

0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.05 0.01 0.05 0.05 0.01 0.05

(e) RMSE of Hybrid ARIMA([1,2],1,[3]) and GRNNs

■ Probolinggo Inflation (Z_{6,t})

(e) RMSE of Hybrid ARIMA([1,9],0,0) and GRNNs

■ Madiun Inflation (Z_{7,t})

(c) RMSE of Hybrid ARIMA([9],0,0) and GRNNs

(d) RMSE of Hybrid ARIMA(0,0,[9]) and GRNNs

(e) RMSE of Hybrid ARIMA([1,9],0,0) and GRNNs

■ Madiun Inflation (Z_{7,t})

(a) RMSE of Hybrid ARIMA([3],0,0) and GRNNs

(b) RMSE of Hybrid ARIMA(0,0[3]) and GRNNs

(e) RMSE of Hybrid ARIMA([3,9],0,0) and GRNNs

Appendix 12: Coefficient of Stacking of Hybrid Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Networks (GRNNs)

■ National Inflation $(Z_{1.t})$

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.027	.136	240	.293
c2	.838	.072	.696	.979
c3	.000	.148	291	.291
c4	.000	.087	171	.171
c5	.135	.068	.002	.269

■ Surabaya Inflation (Z_{2.t})

Parameter	Estimate	Std. Error	95% Confide	ence Interval
			Lower Bound	Upper Bound
c1	.145	.131	112	.402
c2	.172	.115	054	.398
c3	.000	.210	413	.413
c4	.238	.206	166	.642
c5	.445	.096	.255	.634

■ Malang Inflation $(Z_{3.t})$

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.170	.124	076	.416
c2	.353	.106	.143	.563
c3	.477	.126	.228	.726
c4	.000	.089	176	.176

■ Jember Inflation (Z_{4.t})

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.040	.053	064	.144
c2	.590	.076	.440	.740
c3	.161	.085	007	.329
c4	.209	.086	.039	.379
c5	.000	.064	126	.126

■ Kediri Inflation (Z_{5.t})

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.172	.124	072	.416
c2	.000	.127	250	.250
c3	.123	.110	093	.339
c4	.454	.109	.239	.669
c5	.250	.132	009	.510

lacktriangle Probolinggo Inflation ($Z_{6.t}$)

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.008	.404	802	.818
c2	.051	.280	510	.611
c3	.000	.252	505	.505
c4	.855	.124	.606	1.103
c5	.087	.387	689	.862

■ Madiun Inflation (Z_{7.t})

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.035	.186	339	.408
c2	.000	.220	442	.442
c3	.066	.467	870	1.002
c4	.866	.456	049	1.781
c5	.034	.123	212	.279

■ Sumenep Inflation (Z_{8.t})

Parameter	Estimate	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
c1	.000	.377	756	.756
c2	.866	.402	.060	1.672
c3	.000	.409	820	.820
c4	.134	.462	793	1.061
c5	.000	.386	773	.773