Bài tập 1:

Tình huống: Một nghiên cứu về mối quan hệ học tập giữa 5 sinh viên trong một nhóm thực hành. Mỗi cạnh thể hiện việc "thường xuyên trao đổi bài tập".

Mật độ mạng:

Ma trận kề A:

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

n = 5 dinh

k = 8 cạnh

Số cạnh tối đa: $\frac{n(n-1)}{2} = \frac{5(4)}{2} = 10$

Mật độ: $\frac{k}{\frac{n(n-1)}{2}} = \frac{8}{10} = 0.8$

Yêu cầu:

- Tính mật độ mạng
- Xác định:
 - Số đo bậc trung tâm
 - Số đo trung tâm gần gũi
 - Số đo trung tâm trung gian
- Tính số đo gom cụm cho mỗi sinh viên
- Nhận xét vai trò của Em trong nhóm

Bậc của các đỉnh:

$$Deg(An) = 3$$

$$Deg(B)nh) = 3$$

$$Deg(Dung) = 3$$

$$Deg(Em) = 4$$

Số đo bậc trung tâm:

$$CD(An) = 3/4 = 0.75$$

$$CD(B)nh) = 3/4 = 0.75$$

$$CD(Curdent order order$$

$$CD(Dung) = 3/4 = 0.75$$

$$CD(Em) = 1$$

Số đo trung tâm gần gũi:

Công thức tính:

$$C_C(v) = \frac{1}{\sum_{t \in V/v} d_G(v, t)}$$

Trong đó: $d_G(v,t)$ là chiều dài đường đi ngắn nhất từ đỉnh v tới đỉnh t Công thức chuẩn hóa:

$$CC(v) = (n-1)C_C(v)$$

Cc(An):

$$CC(An) = \frac{5-1}{1+1+2+1} = 0.8$$

Cc(Bình):

$$CC(Binh) = \frac{5-1}{1+1+1+2} = 0.8$$

Cc(Em):

$$CC(Em) = \frac{5-1}{1+1+1+1} = 1.0$$

Cc(Dung):

$$CC(Dung) = \frac{5-1}{1+2+1+1} = 0.8$$

Cc(Cường):

$$CC(Current order) = \frac{5-1}{2+1+1+1} = 0.8$$

Số đo trung tâm trung gian:

Công thức:

$$C_B(v) = \sum_{s \neq t \neq v \in V} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

Trong đó:

 σ_{st} : Số đường đi ngắn nhất từ s đến t.

 $\sigma_{st}(v)$: Số đường đi ngắn nhất từ s đến t qua v.

Công thức chuẩn hóa:

Đối với đồ thị vô hướng:

$$C_B'(v) = \frac{C_B(v)}{\frac{(n-1)(n-2)}{2}}$$

- Đối với đồ thị có hướng:

$$C_B'(v) = \frac{C_B(v)}{(n-1)(n-2)}$$

Thông tin đồ thị:

Tổng số đỉnh: n = 5

Đồ thị vô hướng

Liệt kê các cặp qua Em:

An – Bình: 1 đường đi *Không qua* Em = 0

An – Cường: 2 đường đi Không qua Em, 1 đường đi qua em = 0.3

An – Dung: 1 đường đi *Không qua* Em = 0

Bình – Cường: 1 đường đi *Không qua* Em = 0

Bình – Dung: 2 đường đi *Không qua* Em, 1 đường đi qua em = 0.3

Cường – Dung: 1 đường đi *Không qua* Em = 0

Chuẩn hóa:

$$C_B'(\text{Em}) = \frac{1.2}{20} = 0.06$$

Nhận xét:

Em có hệ số trung tâm trung gian thấp (0.06) do các actor đa số có mối quan hệ trực tiếp. Do đó vai trò cầu nối của Em không quan trọng.

Số đo gom cụm:

Công thức đồ thị vô hướng:

$$C_i = \frac{2|e_{jk}|}{k_i(k_i - 1)}$$

 $\left|e_{jk}
ight|$: Số cạnh giữa các đỉnh kề của i

ki: bậc của đỉnh i

$$C(An) = 2/3$$

$$C(B)nh) = 2/3$$

$$C(Dung) = 2/3$$

$$C(Em) = 1$$

Nhận xét Em:

- Actor(Em) có số đo bậc trung tâm cao nhất (1), các actor còn lại có số đo bằng nhau (0.75).
- ⇒ Actor(Em) đóng vai trò quan trọng nhất.
 - Hệ số gom cụm của Em đạt mức tối đa (1)

Bài tập 2:

Tình huống: Sơ đồ luồng thông tin giữa các phòng ban trong một công ty. Mũi tên chỉ hướng báo cáo/trao đổi thông tin.

Yêu cầu:

- 1 Tính mật độ mạng
- Xác định:
 - Bậc vào và bậc ra của mỗi phòng ban
 - Số đo trung tâm gần gũi (cung vào/ra)
- Tính hiệu quả truyền thông tin trong tổ chức
- Đề xuất cải thiện luồng thông tin

1. Tính mật độ mạng:

Ma trận kề A:

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

n = 5 dinh

k = 8 cạnh

Số cạnh tối đa: $\frac{n(n-1)}{2} = \frac{5(4)}{2} = 10$

Mật độ: $\frac{k}{\frac{n(n-1)}{2}} = \frac{8}{10} = 0.8$

2. Bậc vào/ra

GĐ: bậc 4 -> vào 4, ra 0

P1: bậc 3 -> vào 1, ra 2

P2: bậc 3 -> vào 1, ra 2

P3: bậc 3 -> vào 1, ra 2

P4: bậc 3 -> vào 1, ra 2

Bài tập 3:

Tình huống: Một nhóm 6 người tham gia diễn đàn trực tuyến. Mũi tên thể hiện người A theo dõi/tương tác với người B.

1. Tính mật độ mạng:

Ma trận kề A:

$$\mathsf{A} = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

n = 6 dinh

k = 10 cạnh

Yêu cầu:

- 1 Tính mật độ mạng
- Xác định:
 - Người có ảnh hưởng nhất (bậc ra cao nhất)
 - Người được quan tâm nhất (bậc vào cao nhất)
- Tính các số đo trung tâm
- Phân tích vai trò "người kết nối"
- Đề xuất cách tăng tương tác trong nhóm

Số cạnh tối đa:
$$\frac{n(n-1)}{2} = \frac{6(5)}{2} = 15$$

Mật độ:
$$\frac{k}{\frac{n(n-1)}{2}} = \frac{10}{15} = 0.67$$

2.

3. Số đo trung tâm

Bậc của các đỉnh:

$$Deg(U1) = 4$$

$$Deg(U2) = 4$$

$$Deg(U3) = 5$$

$$Deg(U4) = 4$$

$$Deg(U5) = 4$$

$$Deg(U6) = 3$$

Số đo bậc trung tâm:

$$CD(U1) = 2/3 = 0.6$$

$$CD(U2) = 2/3 = 0.6$$

$$CD(U3) = 5/6 = 0.8$$

$$CD(U4) = 2/3 = 0.6$$

$$CD(U5) = 2/3 = 0.6$$

$$CD(U6) = 0.5$$

Số đo trung tâm gần gũi:

Công thức tính:

$$C_C(v) = \frac{1}{\sum_{t \in V/v} d_G(v, t)}$$

Trong đó: $d_G(v,t)$ là chiều dài đường đi ngắn nhất từ đỉnh v tới đỉnh t Công thức chuẩn hóa:

$$CC(v) = (n-1)C_C(v)$$

CC(U1):

Cung ra:
$$CC(U1) = \frac{3}{1+1+1} = 1$$

Cung vào:
$$CC(U1) = \frac{2}{2+1} = 0.67$$

CC(U2):

Cung ra:
$$CC(U2) = \frac{3}{1+1+1} = 1$$

Cung vào:
$$CC(U2) = \frac{2}{2+1} = 0.67$$

CC(U3):

Cung ra:
$$CC(U3) = \frac{3}{1+1+1} = 1$$

Cung vào:
$$CC(U3) = \frac{2}{1+1} = 1$$

CC(U4):

Cung ra:
$$CC(U4) = \frac{1}{1} = 1$$

Cung vào:
$$CC(U4) = \frac{4}{2+1+1+1} = 0.8$$

CC(U5):

Cung ra:
$$CC(U5) = \frac{1}{1} = 1$$

Cung vào:
$$CC(U5) = \frac{4}{2+1+1+1} = 0.8$$

CC(U6):

Cung ra:
$$CC(U6) = \frac{1}{1} = 1$$

Cung vào:
$$CC(U6) = \frac{4}{2+1+2+1} = 0.67$$

Số đo gom cụm:

Công thức đồ thị có hướng:

$$C_i = \frac{|e_{jk}|}{k_i(k_i - 1)}$$

 $\left|e_{jk}
ight|$: Số cạnh giữa các đỉnh kề của i

ki: bậc của đỉnh i

$$C(U1) = 1/4$$

$$C(U2) = 1/3$$

$$C(U3) = 7/12$$

$$C(U4) = 5/12$$

$$C(U5) = 1/3$$

$$C(U6) = 1/6$$