Simulation

畅星兆 11.22

衡量热电调制器的几个参数

Table 1. Summary of recent thermo-optic waveguide phase shifter parameters where L is the total heater length, V_{π} and P_{π} are the applied voltage and power necessary to reach π radians of phase shift, respectively, and τ is the limiting rise or fall time constant. In results where τ is not reported, the single-pole approximation $\tau = \frac{0.35}{f_3 dB}$ is used to convert between metrics.

	Material	Cladding	L	Loss (dB)	V _π (V)	P _π (mW)	τ (μs)	$P_{\pi} \cdot \tau$ (mW· μ s)
			(µ m)					
Here	SOI	SiO ₂	61.6	0.23 dB	4.36	24.77	2.69	66.9
[10]	Si	Air	>9.42	0.5 dB	11.93	12.7	2.4	30.5
[12]	TiN in SOI	Air	1000	0.3 dB	0.86	0.49	144	70.5
[11]	NiSi in SOI	Air	200	5 dB	1	20	2.8	56
[17]	Cr-Au in SOI	SiO_2	700	32 dB	1.66	46	3.5	160
[14]	Ti in SOI	Air	100	8 dB	13.3	10.6	34.9	370
[16]	Metal in SOI	SiO ₂	2500	< 12 dB	•	235	60	14100

-- 解释几个参数的意义

Ref 1

文献1

- 描述结构

SOI, (两个变量)w = 1 um, s 0.1~4 um

- 描述材料
- 热源:

NiSi通电

Table 1. Thermal Conductivities Used in Simulations

Material	$(W m^{-1} K^{-1})$		
Si (bulk)	150 [11]		
Si (50 nm slab)	50 [11]		
NiSi	50		
SiO_2	1.27 [12]		
Si_3N_4	2 [12]		

slab: lower thermal conductivity due to phonon boundary scattering

论文中的仿真工作

Fig. 4. (Color online) (a) Simulated 2-D distribution of the expected temperature increase (in kelvin) for $0.1 \text{ mW}/\mu\text{m}$ power dissipation. The scale bar is $2 \mu\text{m}$ long. (b) Magnification of (a), showing a temperature increase in the waveguide core of 23 K. The scale bar is 500 nm long.

steady-state 2-D thermal simulation, 设定热源, 边界条件, 初始值, 求稳态解. (只有热学仿真)

热源: 面热源(2D图中为两条线) $0.1mW/\mu m \rightarrow 10^8 W/m^2$ (如何推算的) 波导上方1um空气层

变量: w = 1 um, s = 0.5 um, 空气层厚度: 1um

结果: dt(waveguide) ~ 23K

问题:

1. 功率的转换

$$0.1mW/\mu m \rightarrow 5 \times 10^7 W/m^2$$

- 2. 边界条件的确定
- 3. 结构不确定
- 4. 仿真区域大小

3类边界条件:

- 1. 第一类边界条件 规定了边界上的温度值
- 2. 第二类边界条件 规定了边界上的热流密度值
- 3. 第三类边界条件 规定了边界条件上表面传热系数以及外界温度

初始仿真

Fig. 4. (Color online) (a) Simulated 2-D distribution of the expected temperature increase (in kelvin) for 0.1 mW/ μ m power dissipation. The scale bar is 2 μ m long. (b) Magnification of (a), showing a temperature increase in the waveguide core of 23 K. The scale bar is 500 nm long.

仿真区域: [µm] 20 x 2.3 (w, h)

详述各个区域

NiSi Cladding: 0.05 µm

Si: 0.17 µm

SiO2: 2 μm (最开始用1 μm算的)

Si substrate: 0.5 µm(最开始用0.25 µm

算的)

仿真结构图

Buried Oxide Layer(SiO2) 减半时(错的)

左右下边界: T = 293.15 K

上边界: heat flux 热交换, T = 293.15 K, $h = 25 W/(m^2 \cdot K)$

温度(波导中心): 302.87 K, d = 9.72 K

所有边界: T = 293.15 K

温度(波导中心): 302.65 K, d = 9.50 K

左右下边界: T = 293.15 K

上边界: heat flux 热交换, T = 293.15 K, $h = 5 W/(m^2 \cdot K)$

温度(波导中心): 302.87 K, d = 9.72 K

对流换热系数

单位: W/(m²·K) 单位温差时的单位面积上的热通量

影响因素:

- 1.对流运动成因和流动状态
- 3.传热表面的形状, 尺寸和相对位置

- 2.流体的物理性质(随种类、温度和压力而变化)
- 4.流体有无相变(如气态与液态之间的转化)

对流换热系数的大致量级:

空气自然对流: 5 – 25 水的强制对流 1000 ~ 15000 有机蒸汽的冷凝 500 ~ 2000 气体强制对流 20 ~ 300 油类的强制对流 50 ~ 1500 水的沸腾 2500 ~ 25000 水的自然对流 200 ~ 1000 水蒸气的冷凝 5000 ~ 15000

当时排查原因,还改变空气层厚度..

之后, 将空气层厚度从1μm变为4 μ m 边界条件相比上一个不变

左右下边界: temperature = initial value

上边界: heat flux 热交换, 假定边界外 为初始温度的空气

初始仿真结果(空气层厚度1 µm)

左右下边界: T = 293.15 K

上边界: heat flux 热交换, T = 293.15 K, $h = 25 W/(m^2 \cdot K)$

温度(波导中心): 309.21 K, d = 16.06 K

所有边界: T = 293.15 K

温度(波导中心): 308.23 K, d = 15.08 K

左右下边界: T = 293.15 K

上边界: heat flux 热交换, T = 293.15 K, $h = 5 W/(m^2 \cdot K)$

温度(波导中心): 309.21 K, d = 16.06 K

改变结构

- 1. 仿真区域: [µm] 100 x 200 (w, h)
- 2. SiO2层变为正确厚度(2 μm)

整个区域温度分布

增大仿真区域

左右下边界: T = 293.15 K

上边界: heat flux 热交换, T = 293.15 K, $h = 25 \text{ W}/(m^2 \cdot K)$

 $h = 25 W/(m^2 \cdot K)$

温度(波导中心): 309.01 K, d = 15.86 K

所有边界: T = 293.15 K

温度(波导中心): 309.01 K, d = 15.86 K

此时改变上边界条件基本不影响仿真结果.

左右下边界: T = 293.15 K

上边界: heat flux 热交换, T = 293.15 K,

 $h = 5 W/(m^2 \cdot K)$

温度(波导中心): 309.01 K, d = 15.86 K

疑问

上页中等温线与论文中"大相径庭"

论文中等温线

与之相似的仿真(有超链接), 条件:

厚度: 1µm, heat flux

Ref2

单边加热

波导:[µm] 2.2 x 2 x 1100

heater: :[µm] 4 x 2 x 700

功率: 700 mW

论文中的仿真

- 1. 三维仿真
- 2. 波导中心直线上温度分布
- 3. 由2求得相位变化

Initial

Material Property

	Thermal Conductivity (W/m*K)	Density (kg/m3)	Heat capacity (J/kg*K)		
silicon	130	2330	711		
air	built-in material				
germanium	58	5323	310		

Boundary Condition

	Boundary Condition			
上 Convective heat flux, h=10 W/(m2*K)				
下	fixed temperature, T=initial value			
波导方向	Convective heat flux, h=10 W/(m2*K)			
其余两个方向	Convective heat flux, h=10 W/(m2*K)			

Results

最高温度在303K左右

结果对比

左侧两图, 等温线形状不对. 且heater内部最 高温度(350 K)要比我的 结果(319K)高的多.

问题:

我的结果

论文中结果不匹配

原因分析:

- 1. 可能论文中使用的是线状热源 两图等温线形状无法匹配(圆 椭圆)
- 2. 边界条件错误
- 3. 有无可能是线段不够密集等温线不圆为可见的折线段

变为线状热源

Tmax = 311.59 K

光程差 = 6.8427 = 2.178 pi

论文中:

光程差 = 1.98 pi

改变边界条件

上下左右边界: T = 293.15 K

波导方向边界: heat flux, T = 293.15 K, $h = 10 W/(m^2 \cdot K)$

光程差 = 2.17 pi

所有边界: T = 293.15 K

光程差 = 2.15 pi

heat transfer conefficients heat transfer per unit area and per degree temperature difference

are based on:

phase of streams velocity of stream design of heat exchanger

silico dioxide thermal conductivity = 1.4 W/(m*K)

Table 3. Thermal and Electromagnetic Properties of Materials Used in FEM Simulations

Material	Thickness	Density	Specific heat	Thermal conductivity	Electrical conductivity	$n_{\lambda = 1550 \text{ nm}}$	K λ = 1550 nm
	[µm]	$[kg/m^3]$	$[J/kg\cdot K]$	[W/m·K]	[S/m]	-	×
Si (bulk)	>>5	2330	711	148 [32]	4.3E-4 [28]	2	<u> </u>
Si (wg)	0.22	2330	711	90 [32]	4.3E-4	3.476	0
Si (slab)	0.09	2330	711	55 [32]	4.3E-4	3.476	0
N_{++} Si ^a	0.09	2330	711	25 [29,38]	1.0E + 5 [33]	3.072 [30]	0.137 [30]
TiN	(withheld)	5240 [34]	598 [36]	28 [34]	2.3E + 6 [35]	24	5.
SiO ₂	(withheld)	2203	709	1.38	1E-11	1.55	0
air	>>5	1.177	1006	0.026	1E-12	2	2

[&]quot;Highest doping dosage available.

Ref 3

Structure

Fig. 1. Cross-sectional schematics of (a) Ge and (b) Si TO phase shifters operating at a wavelength of 1.95 μm .

Simulation

Fig. 2. Simulation results of (a) waveguide temperature and (b) phase shift in Ge and Si TO phase shifters as a function of heater power.

area:

initial

initial-air-fluid

将air设置为流体

结果: 结果完全相同(exactly the same)

结论: 使用流体应设置压强 流速等

不适用与本情况

initial-pt-added

添加了薄pt层

结果: 轻微变化 (slightly different)

Observation:

- 1. steady-state 与电学联系
 - 形成平衡需要热源(source)和热井(sink), 热井可以是边界条件确定的 可以 类比为高电势和低电势
 - 2. 热的传导: 热源和各个热井之间的材料形成热阻, 类比电阻
 - 3. 稳态解温度分布由热阻分布决定 电势分布由电阻决定
- 2. 稳态解的分布只与物体的导热系数(thermal conductivity)有关, 而与物体的比热容 (specific heat)和密度(density)无关.
- -- 解释上页中添加Pt层后温度变化

仿真结果

验证: 材料的heat capacity, density不影响steady-state仿真结果

改变空气导热系数的影响

猜想: K 上升, 空气侧热阻减小, 热源产生的热更多的从空气侧流失, 下侧温度降低.

结论: 与猜想相同, 但改变幅度 < 1 K