Matrix handbook for Statistics and Machine Learning

Thu Nguyen University of Louisiana at Lafayette

September 25, 2019

Abstract

This handbook contains popular identities, inequalities and other matrix-related topics. Most of the proof for the statements in the book, without any further comments, can be found in [5], its solution manual or Wikipedia.

Contents

1	Notations	2
2	Trace	2
3	Determinant	3
4	Eigenvalues, eigenvectors	5
5	Vectors	6
6	Norm	6
7	Block matrices	8
8	Rank and matrix inversion	8
9	Matrix decomposition	10
10	Special kind of matrices	12
	10.1 Symmetric matrix	12

	10.2 Positive/semipositive/negative definite matrix	12
	10.3 Idempotent matrices and Hat matrices	13
11	Special matrix operation	14
	11.1 The vec operator	14
	11.2 The Hadamard product	14
12	2 Matrix derivatives	15
13	3 Convexity	17

1 Notations

- $diag(a_1,...,a_m)$: a diagonal matrix whose diagonal entries are $a_1,...,a_m,$
- $x \in \mathbb{R}^n$: a column vector x with n entries.
- $x \in \mathbb{R}^{n \times 1}$: a column vector x with n entries.

2 Trace

Let $A = (a_{ij}), B$ be $m \times m$ matrices, then trace of A is defined as $trace(A) = \sum_{i=1}^{m} a_{ii}$. We have

- 1. trace(cA) = c trace(A)
- $2. \ trace(A \pm B) = trace(A) \pm trace(B)$
- $3. \ trace(AB) = trace(BA)$
- 4. $trace(AA') = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}^{2}$

Inequality for trace from [3], chapter 10,

1. Suppose A is an $m \times m$ nonnull nonnegative definite matrix and $\frac{1}{p} + \frac{1}{q} = 1$, where p > 1. Then

$$trace(AB) \le \{trace(A^p)\}^{1/p}$$

for every $m \times m$ nonnegative definite matrix B such that $trace(B^q) = 1$. Equality if and only if $B^q = \{trace(A^p)\}^{-1}A^p$.

2. Suppose A, B are $m \times m$ nonnull nonnegative definite matrices and α is a scalar such that $0 < \alpha < 1$. Then

$$trace(A^{\alpha}B^{1-\alpha}) \le \{trace(A)\}^{\alpha}\{trace(B)\}^{1-\alpha}$$

with equality if and only if B = cA for some positive scalar c.

3. Suppose A, B are $m \times m$ nonnull nonnegative definite matrices and p > 1. Then

$$[trace\{(A+B)^p\}]^{1/p} \le \{trace(A^p)\}^{1/p} + \{trace(B^p)\}^{1/p}$$

with equality if and only if B = cA for some positive scalar c.

- 4. Suppose A is an $m \times m$ nonnegative definite matrix. Then,
 - $\frac{1}{m}trace(A) \ge |A|^{1/m}$, with equality if and only if $A = cI_m$ for some c > 0.
 - $m^{-1}trace(AB) \ge |A|^{1/m}$ for every positive definite $m \times m$ matrix B such that |B| = 1, with equality if and only if A is nonsingular and $B = |A|^{1/m}A^{-1}$.
- 5. Let A be an $m \times m$ matrix with real eigenvalues. Then
 - $\{trace(A)\}^2 \leq m \ trace(A^2)$ with equality if and only if the eigenvalues are all equal.
 - $trace(A^2) \leq trace(A'A)$ with equality if and only if A is symmetric.
- 6. If A, B are $m \times n$ matrices, then

$$trace\{(A'B)^2\} \le trace\{(A'A)(B'B)\},$$

with equality if and only if AB' is symmetric.

7. If A, B are $m \times m$ positive definite matrices, and $0 < \alpha < 1$ then

$$trace[\{\alpha A + (1-\alpha)B\}^{-1}] \le \alpha \ trace(A^{-1}) + (1-\alpha)trace(B^{-1}).$$

3 Determinant

Determinant equality:

For a $m \times m$ real matrix A,

- $|cA| = c^n |A|$
- $|A^T| = |A|$
- $\bullet ||AB| = |A| ||B||$
- $|I + uv^T| = 1 + u^Tv$ for vectors u, v of revelant sizes.
- $|I + \epsilon A| \approx 1 + |A| + \epsilon \operatorname{trace}(A) + \frac{1}{2}\epsilon^2 \operatorname{trace}(A)^2 \frac{1}{2}\epsilon^2 \operatorname{trace}(A^2)$ for small ϵ

- 1. $|I_m + AB| = |I_n + BA|$ where A, B are $m \times n, n \times m$ matrices, respectively. Therefore, the nonzero eigenvalues of AB are the same as the nonzero eigenvalues of BA.
- 2. $|A + cd'| = |A|(1 + d'A^{-1}c)$ where $A \in \mathbb{R}^{m \times m}$ is nonsinglar and $c, d \in \mathbb{R}^m$.

Inequalities for the determinant

1. $|A+B| \ge |A| + |B|$ where A, B are $m \times m$ nonnegative definite matrices. The equality happens if and only if A = 0 or B = 0 or A + B is singular.

Moreover, if B is also positive definite and A - B is nonnegative definite, then $|A| \ge |B|$ with equality if and only if A = B.

2. If A is an $m \times m$ positive definite matrix, then

$$|A| \le \prod_{i=1}^{m} A_{ii}$$

with equality if and only if A is a diagonal matrix,

3. If B is an $m \times m$ nongsingular matrix then

$$|B|^2 \le \prod_{i=1}^m \left(\sum_{j=1}^m b_{ij}^2 \right),$$

with equality if and only if the rows of B are orthogonal. This can also be expressed as

$$|A|\left(\prod_{i=1}^{m} 1\right) \le |A \odot I_m|,$$

4. Let A, B be $m \times m$ nonnegative definite matrices, then

$$|A| \prod_{i=1}^{m} b_{ii} \le |A \odot B|$$

- 5. Let A be an $m \times m$ positive definite matrix and B be an $m \times m$ nonnegative definite matrix. Then,
 - $|A + B| \ge |A|$ with equality if and only if B = 0,
 - If B is also positive definite and A B is nonnegative definite, then $|A| \ge |B|$ with equality if and only if A = B.

Results from [3], chapter 10,

1. Suppose that both A and B are $m \times n$ matrices. Then,

$$|A'B|^2 \le |A'A||B'B|,$$

with equality if and only if rank(A) < n or rank(B) < n, or B = AC for some nonsingular matrix C.

2. Suppose that both A and B are $m \times m$ nonnegative definite matrices and α is a scalar such that $0 < \alpha < 1$. Then,

$$|A|^{\alpha}|B|^{1-\alpha} \le |\alpha A + (1-\alpha)B|,$$

with equality if and only if A = B or $\alpha A + (1 - \alpha)B$ is singular.

3. Suppose that both A and B are nonnull $m \times m$ nonnegative definite matrices. Then

$$|A+B|^{1/m} \ge |A|^{1/m} + |B|^{1/m}$$

with equality if and only if A + B is singular or A = cB for c > 0.

4 Eigenvalues, eigenvectors

1. The characteristic polynomial of an n-by-n matrix A, being a polynomial of degree n, can be factored as follows

$$|A - \lambda I| = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda),$$

- 2. trace(A) = $\sum_{i=1}^{n} \lambda_i$,
- 3. $\det(A) = \prod_{i=1}^{n} \lambda_i$,
- 4. The eigenvalues of the A^k , for any positive integer k, are $\lambda_1^k, ..., \lambda_n^k$
- 5. If A is invertible, then the eigenvalues of A^{-1} are $\frac{1}{\lambda_1}, ..., \frac{1}{\lambda_n}$ and each eigenvalue's geometric multiplicity coincides. Moreover, since the characteristic polynomial of the inverse is the reciprocal polynomial of the original, the eigenvalues share the same algebraic multiplicity.
- 6. If A is not only Hermitian but also positive-definite, positive-semidefinite, negative-definite, or negative-semidefinite, then every eigenvalue is positive, non-negative, negative, or non-positive, respectively.
- 7. If A is unitary, every eigenvalue has absolute value $|\lambda_i| = 1$.
- 8. For a polynomial P, the eigenvalues of matrix P(A) are $\{P(\lambda_1), \ldots, P(\lambda_k)\}$.
- 9. The eigenvalues of A^T are the same as the eigenvalues of A,
- 10. If A is triangular then the diagonal elements of A are the eigenvalues of A,
- 11. The eigenvalues of A is the same as of BAB^{-1} if B is invertible,
- 12. $rank(A) \ge r$ where A is an $m \times m$ matrix that has r nonzero eigenvalues.
- 13. Let λ be any eigenvalue of a $m \times m$ matrix A. Then $|\lambda| \leq \min\{\rho(A), \nu(A)\}$, where

$$\rho(A) = \max \left\{ \sum_{j=1}^{n} |A|_{ij} : 1 \le i \le n \right\}, \quad v(A) = \max \left\{ \sum_{i=1}^{n} |A|_{ij} : 1 \le j \le n \right\}.$$

This result follows from Gerschgorin's Disk Theorem. (Proof: see [1], section 5.3)

5 Vectors

The followings are from [2], section 2.7,

• Cauchy-Schwaz inequality: Let $b, d \in \mathbb{R}^{p \times 1}$ then

$$(b'd)^2 \le (b'b)(d'd)$$

with equality if and only if b = cd for some constant c.

• Extended Cauchy-Schwaz inequality: Let $b, d \in \mathbb{R}^{p \times 1}$, and let B be a positive definite matrix. Then

$$(b'd)^2 \le (b'Bb)(d'B^{-1}d)$$

with equality if and only if $b = cB^{-1}d$ for some constant c.

• Let $d \in \mathbb{R}^{p \times 1}$ be a given vector, and let B be a positive definite matrix. Then for an abitrary nonzero vector $x \in \mathbb{R}^{p \times 1}$,

$$\max_{x \neq 0} \frac{(x'd)^2}{x'Bx} = d'B^{-1}d$$

with equality if and only if $b = cB^{-1}d$ for some constant $c \neq 0$.

Rayleigh quotient: For any vector $x \in \mathbb{R}^m$ Rayleigh quotient is defined by $R(x, A) = \frac{x'Ax}{x'x}$. From [1], section 6.9,

$$\min_{x \neq 0} R(x, A) = \min_{i} \lambda_{i}, \qquad \max_{x \neq 0} R(x, A) = \max_{i} \lambda_{i}$$

1. Let A, B be $m \times m$ positive definite matrices. Then, for any $y \neq 0$

$$y'(A+B)^{-1}y \le \frac{(y'A^{-1}y)(y'B^{-1}y)}{y'(A^{-1}+B^{-1})y}$$

6 Norm

For all scalars $\alpha \in K$ and for all matrices $A, B \in K^{m \times n}$,

- $\bullet \|\alpha A\| = |\alpha| \|A\|$
- $||A + B|| \le ||A|| + ||B||$
- $||A|| \ge 0$

• ||A|| = 0 iff A = 0

Important norms:

- $||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|$, which is simply the maximum absolute column sum of A,
- $||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|$, which is simply the maximum absolute row sum of A,
- $||A||_2 = \sigma_{\max}(A)$, where $\sigma_{\max}(A)$ is the largest singular value of A.
- When p = q = 2 for the $L_{p,q}$ norm also called the Frobenius norm, and we have:

$$||A||_{\mathrm{F}} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2} = \sqrt{\operatorname{trace}(A^*A)} = \sqrt{\sum_{i=1}^{\min\{m,n\}} \sigma_i^2(A)},$$

where $\sigma_i(A)$ are the singular values of A.

• $L_{p,q}$ norm, $p,q \ge 1$, defined by

$$||A||_{p,q} = \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{m} |a_{ij}|^{p}\right)^{\frac{q}{p}}\right)^{\frac{1}{q}}.$$

Properties: For $A \in \mathbb{R}^{m \times r}$, $B \in \mathbb{R}^{r \times n}$,

- $||A^*A||_F = ||AA^*||_F \le ||A||_F^2$
- $||A + B||_F^2 = ||A||_F^2 + ||B||_F^2 + 2\langle A, B\rangle_F$, where $\langle A, B\rangle_F$ is the Frobenius inner product.
- $||AB||_F \le ||A||_2 ||B||_F \le ||A||_F ||B||_F$ (proof: see [4]).
- $||A||_2 = \sigma_{\max}(A) \le ||A||_F \le \sqrt{rank(A)} ||A||_2$
- Consider a matrix norm ||.|| and an $m \times m$ matrix A such that $||I_m|| = 1, ||A|| < 1$. Then $I_m A$ is invertible and

$$||(I_m - A)^{-1}|| \le \frac{1}{1 - ||A||}$$

- $||A^{-1} (A+B)^{-1}|| \le ||A^{-1}||^2 ||B|| ||(I_m + A^{-1}B)^{-1}|| \le \frac{||A^{-1}||^2 ||B||}{1 ||A^{-1}B||}$
- For any square matrix $A, ||A|| = \sqrt{\lambda}$ where λ is the largest eigenvalue of A^*A (proof: see [1], section 6.9).
- Let A be an invertible matrix. Then $||A^{-1}|| = \frac{1}{\sqrt{\lambda}}$, where λ is the smallest eigenvalue of A^*A (proof: see [1], section 6.9)

7 Block matrices

If a matrix is partitioned as

$$S = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \tag{1}$$

where A, B, C and D have arbitrary size, A and D are square matrices. If A and $D - CA^{-1}B$ must be nonsingular then,

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{A}^{-1} + \mathbf{A}^{-1}\mathbf{B}(\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{C}\mathbf{A}^{-1} & -\mathbf{A}^{-1}\mathbf{B}(\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1} \\ -(\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{C}\mathbf{A}^{-1} & (\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1} \end{bmatrix},$$

Equivalently, if $\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C}$ is invertible,

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^{-1} = \begin{bmatrix} (\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{-1} & -(\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{-1}\mathbf{B}\mathbf{D}^{-1} \\ -\mathbf{D}^{-1}\mathbf{C}(\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{-1} & \mathbf{D}^{-1} + \mathbf{D}^{-1}\mathbf{C}(\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{-1}\mathbf{B}\mathbf{D}^{-1} \end{bmatrix}.$$

If we partition a matrix S as in 1 then

- $|S| = |D||A BD^{-1}C|$ if D is nonsingular,
- $|S| = |A||D CA^{-1}B|$ if A is nonsingular,
- $|S| \leq |A||D|$ if S is positive definite
- $rank(S) = rank(D) + rank(A BD^{-1}C)$ if D is nonsingular,
- $rank(S) = rank(A) + rank(D CA^{-1}B)$ if A is nonsingular,

8 Rank and matrix inversion

Rank properties from [3], section 2.4,

- 1. Let A be an $m \times n$ matrix. Then,
 - if B is an $n \times p$ matrix then,

$$rank(A) + rank(B) - n \le rank(AB) \le min\{rank(A), rank(B)\},\$$

- $|rank(A) rank(B)| \le rank(A + B) \le rank(A) + rank(B)$ if B is an $m \times n$ matrix,
- rank(A) = rank(A') = rank(AA') = rank(A'A).
- 2. Let A, B, C be $p \times m, m \times n, n \times q$ matrices, respectively. Then,

$$rank(ABC) > rank(AB) + rank(BC) - rank(B)$$

We also have

1. rank(A) = rank(AB) if A is an $m \times n$ matrix and B is an $n \times p$ matrix with rank(B) = n.

The Woodbury matrix identity:

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U (C^{-1} + VA^{-1}U)^{-1} VA^{-1},$$

where A, U, C and V all denote matrices of conformable sizes. This leads to the following

- 1. $(I + UV)^{-1} = I U(I + VU)^{-1}V$.
- 2. $(I+P)^{-1} = I (I+P)^{-1}P = I P(I+P)^{-1}$
- 3. Push-through identity: $(I + UV)^{-1}U = U(I + VU)^{-1}$.

4.
$$(A+B)^{-1} = A^{-1} - A^{-1}(B^{-1} + A^{-1})^{-1}A^{-1}$$

= $A^{-1} - A^{-1}(I + BA^{-1})^{-1}BA^{-1}$

- 5. Hua identity: $(A+B)^{-1} = A^{-1} (A+AB^{-1}A)^{-1} = A^{-1} + A^{-1}B(A-B)^{-1}$
- 6. Sherman Morrison formula: For an invertible square matrix $A \in \mathbb{R}^{n \times n}$ and column vectors $u, v \in \mathbb{R}^n$, $A + uv^T$ is invertible iff $1 + v^T A^{-1}u \neq 0$. In this case,

$$(A + uv^T)^{-1} = A^{-1} - \frac{A^{-1}uv^TA^{-1}}{1 + v^TA^{-1}u}.$$

7. If A, U, B, V are matrices of sizes $p \times p$, $p \times q$, $q \times q$, $q \times p$, respectively, then

$$(A + UBV)^{-1} = A^{-1} - A^{-1}UB(B + BVA^{-1}UB)^{-1}BVA^{-1}$$

provided A and $B + BVA^{1}UB$ are nonsingular. Nonsingularity of the latter requires that B^{1} exist since it equals $B(I + VA^{1}UB)$ and the rank of the latter cannot exceed the rank of B.

8. Binomial Inverse Theorem: For B not necessarily square or invertible,

$$(A + UBV)^{-1} = A^{-1} - A^{-1}\mathbf{U}(I + BVA^{-1}U)^{-1}BVA^{-1}.$$

Searle set of identities: (see [3])

1.
$$(I + A^{-1})^{-1} = A(A + I)^{-1}$$

2.
$$(A + BB^T)^{-1}B = A^{-1}B(I + B^TA^{-1}B)^{-1}$$

3.
$$(A^{-1} + B^{-1})^{-1} = A(A+B)^{-1}B = B(A+B)^{-1}A$$

4.
$$A - A(A+B)^{-1}A = B - B(A+B)^{-1}B$$

5.
$$A^{-1} + B^{-1} = A^{-1}(A+B)B^{-1}$$

6.
$$(I + AB)^{-1} = I - A(I + BA)^{-1}B$$

7.
$$(I + AB)^{-1}A = A(I + BA)^{-1}$$

Other properties:

- 1. If $(A+B)^{-1} = A^{-1} + B^{-1}$ then $AB^{-1}A = BA^{-1}B$ (see [3])
- 2. When A has all eigenvalues λ_i satisfy $|\lambda_i| < 1$ then
 - $(I A)^{-1} \approx I + A + A^2$
 - $(I+A)^{-1} \approx I A + A^2$

9 Matrix decomposition

• Cholesky decomposition: Every real nonnegative-definite symmetric matrix A can be decompose as

$$A = LL^{\mathsf{T}}$$

where L is an $m \times m$ lower triangular matrix whose diagonal elements are nonnegative. If A is positive definite then L is unique and has positive diagonal elements.

- Let A be an $m \times n$ nonnegative definite matrix with rank(A) = r then there exists an $m \times r$ matrix B of rank r such that $A = BB^T$
- Suppose that B is a $m \times h$ matrix and C is an $m \times n$ matrix, where $h \leq n$. Then, $BB^T = CC^T$ if and only if there exists an $h \times n$ matrix Q such that $QQ^T = I_h$ and C = BQ.
- LU decomposition Let A be an $m \times m$ matrix with non-zero leading principal minors, then A = LU where L is a unique lower triangular matrix and U is a unique upper triangular matrix.
- QR decomposition Let A be an $m \times n$ matrix where $m \ge n$. Then there exists an $n \times n$ upper triangular matrix R with nonnegative diagonal elements and an $m \times n$ orthogonal matrix $Q(Q^TQ = I)$ such that A = QR.
- SVD decomposition Suppose M is an $m \times n$ real or complex matrix. Then the singular value decomposition of M exists,

$$\mathbf{M} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$$

where

- U is an $m \times m$ unitary matrix,
- $-\Sigma$ is a diagonal $m \times n$ matrix with non-negative real numbers on the diagonal. The diagonal entries σ_i of Σ are known as the singular values of M. If we list the singular values in descending order then Σ , is uniquely determined by M.
- V is an $n \times n$ unitary matrix over K.

• Assume $V_*D_*U_*^T = 0$ then

$$A = \begin{bmatrix} V & V_* \end{bmatrix} \begin{pmatrix} D & 0 \\ 0 & D_* \end{pmatrix} \begin{pmatrix} U^T \\ U_*^T \end{pmatrix}$$

where $A = VDU^T$ is the SVD of A

• Spectral decomposition and square root matrix: Let A be a square $m \times m$ matrix with eigenvalue $\lambda_1, ..., \lambda_m$ and suppose that the corresponding set of orthornormal eigenvectors are $v_1, ..., v_m$. If $\Lambda = diag(\lambda_1, ..., \lambda_m)$, $Q = (v_1, ..., v_m)$ then,

$$\mathbf{A} = Q\Lambda Q^{-1} = \sum_{i=1}^{m} \lambda_i v_i v_i'.$$

Note that $QQ^T = Q^TQ = I$ and

$$A^{-1} = Q\Lambda^{-1}Q^{T} = \sum_{i=1}^{m} \frac{1}{\lambda_{i}} v_{i} v_{i}'.$$

Let $\Lambda^{1/2} = diag(\sqrt{\lambda_1}, ..., \sqrt{\lambda_m})$. Then the square root of A is defined as $A^{1/2} = Q\Lambda^{1/2}Q^T = \sum_{i=1}^m \sqrt{\lambda_i} v_i v_i'$ has the following properties

- 1. $A^{1/2}$ is symmetric and $(A^{1/2})^2 = A$,
- 2. $(A^{1/2})^{-1} = Q\Lambda^{-1/2}Q^T = \sum_{i=1}^m \frac{1}{\sqrt{\lambda_i}} v_i v_i'$. where $\Lambda^{-1/2} = diag(\frac{1}{\sqrt{\lambda_1}}, ..., \frac{1}{\sqrt{\lambda_m}})$,
- 3. $A^{1/2}A^{-1/2} = A^{-1/2}A^{1/2} = I$ and $A^{-1/2}A^{-1/2} = A^{-1}$ where $A^{-1/2} = (A^{1/2})^{-1}$.
- Schur decomposition: Let A be a $m \times m$ matrix. Then there exists an $m \times m$ unitary matrix X such that

$$X^*AX = T$$

where T is an upper triangular matrix with the eigenvalues of A as its diagonal elements.

• Let A be a $m \times m$ matrix with real eigenvalues. Then there exists an $m \times m$ orthogonal matrix X such that

$$X^T A X = T$$

where T is an upper triangular matrix.

• The **polar decomposition** of a square complex matrix A is a matrix decomposition of the form

$$A = UP$$

where U is a unitary matrix and P is a positive-semidefinite Hermitian matrix.

- If A is $m \times m$ positive semi-definite, then there exists an $m \times r$ matrix B of rank r such that $B^TAB = I$
- $A = \frac{1}{2}(A + A^T) \frac{1}{2}(A^T A)$ and we have $A + A^T$ is symmetric and $A^T A$ is anti-symmetric.

10 Special kind of matrices

10.1 Symmetric matrix

- 1. The sum and difference of two symmetric matrices is again symmetric.
- 2. Given symmetric matrices A and B, then AB is symmetric if and only if AB = BA.
- 3. For $n \in \mathbb{R}$, A^n is symmetric if A is symmetric.
- 4. If A^{-1} exists, it is symmetric if and only if A is symmetric.
- 5. Let $A \in \mathbb{R}^{m \times m}$ be a symmetric matrix. Then the eigenvalues of A are real, and corresponding to any eigenvalue, eigenvectors that are real exist.
- 6. Let $A \in \mathbb{R}^{m \times m}$ be a symmetric matrix. Suppose that A has r nonzero eigenvalues. Then, rank(A) = r.
- 7. Let $A \in \mathbb{R}^{m \times m}$ be a symmetric matrix with eigenvalue $\lambda_1, ..., \lambda_n$.
- 8. If A is symmetric then $x'Ax = 0 \ \forall x$ if and only if A = 0

10.2 Positive/semipositive/negative definite matrix

In this section, we denote λ_j as the jth largest eigenvalue of a matrix.

- 1. If A is positive definite then its diagonal entries are positive.
- 2. If A is positive definite then $rank(BAB^T) = rank(B)$
- 3. If A is $m \times m$ positive definite, B is $r \times m$ of rank r then BAB^T is positive definite.
- 4. If A is $n \times r, n \le r$ and rank(A) = n then AA^T is positive definite.
- 5. If A and B are positive definite, then so is A+B. The matrix inverse of a positive definite matrix is also positive definite.

Moreover, A - B is positive definite if and only if $B^{-1} - A^{-1}$ is positive definite.

- 6. If A is an $m \times m$ symmetric matrix, and A_k is its leading $k \times k$ principal submatrix. Then, A is positive definite if and only if all its leading principal minors, $A_1, ..., A_m$ are positive definite.
- 7. Let A be an $m \times m$ positive definite matrix, then

$$A_{\alpha} = A - \alpha e_1 e_1'$$

where $\alpha = |A|/|A_1|$ and A_1 is the $(m-1) \times (m-1)$ submatrix of A formed by deleting its first row and column. Then A_{α} is nonnegative definite.

8. Let A, B be $m \times m$ symmetric matrices. If A, B are nonnegative definite, then the *i*th largest eigenvalue of $A \odot B$ satisfies

$$\lambda_m(A) \left\{ \min_{1 \le i \le m} b_i i \right\} \le \lambda_i(A \odot B) \le \lambda_1(A) \left\{ \max_{1 \le i \le m} b_i i \right\}$$

- 9. Let A be an $m \times m$ positive definite matrix. Then $(A \odot A^{-1}) I_m$ nonnegative definite.
- 10. Let A, B be $m \times m$ nonnegative definite matrices. Then

$$\lambda_m(A \odot B) \ge \lambda_m(AB)$$
.

- 11. Let $\lambda_1, ..., \lambda_m$ be eigenvalues of an $m \times m$ symmetric matrix A. Then A is positive semidefinite if $\lambda_i \geq 0 \ \forall 1 \leq i \leq m$, and is positive definite if $\lambda_i > 0 \ \forall 1 \leq i \leq m$.
- 12. Let A be an $m \times n$ matrix with rank(A) = r. Then A'A has r positive eigenvalues. Then,
 - It is positive definite if r = n and positive semidefinite if r < n.
 - The positive eigenvalues of A'A are equal to the positive eigenvalues of AA'
- 13. Let A be an $m \times m$ symmetric matrix and B be an $m \times m$ nonnegative definite matrix. Then, for h = 1, ..., m,

$$\lambda_h(A+B) \ge \lambda_h(A),$$

where the inequality is strict if B is positive definite.

14. Let A be an $m \times m$ symmetric matrix and B be an $m \times m$ positive definite matrix. If F is any $m \times h$ matrix with full column rank, then for i = 1, ..., h,

$$\lambda_i((F'BF)^{-1}(F'AF)) \le \lambda_i(B^{-1}A),$$

and

$$\max_{F} \lambda_i((F'BF)^{-1}(F'AF)) = \lambda_i(B^{-1}A),$$

10.3 Idempotent matrices and Hat matrices

A matrix A is idempotent if $A^2 = A$. Then

- \bullet $I A, A^T, I_A^T$ are all idempotent
- AB is idempotent if AB = BA
- rank(A) = trace(A)
- A(I A) = (I A)A = 0

11 Special matrix operation

11.1 The vec operator

Vec operator is the operator that transforms a matrix into a vector: Suppose that we have a matrix $A = [a_1|a_2|...|a_n]$ where a_i is the i^{th} column of A. Then

$$vec(A) = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ v_n \end{bmatrix}$$

Properties:

1. Let a, b be any 2 vectors and A, B be two matrices of the same size then

• vec(a) = vec(a') = a

•
$$vec(ab') = vec(a') = a'$$

• $vec(ab') = vec(b_1a, b_2a, ..., b_na]) = \begin{bmatrix} b_1a \\ \vdots \\ b_na \end{bmatrix} = b \otimes a$

• $vec(\alpha A + \beta B) = \alpha vec(A) + \beta vec(B)$ where $\alpha, \beta \in \mathbb{R}$

• $trace(A'B) = \{vec(A)\}'vec(B)$

2. Let A, B, C, D be matrices of sizes $m \times n, n \times p, p \times q, q \times m$, respectively. Then

• $vec(ABC) = (C' \otimes A)vec(B)$

• $trace(ABCD) = \{vec(A')\}'(D' \otimes B)vec(C)$

3. Let A, C be matrices of sizes $m \times n, n \times m$, respectively, and B, D are marices of order $n \times n$. Then,

• $trace(ABC) = \{vec(A')\}'(I_m \otimes B)vec(C)$

• $trace(AD'BDC) = \{vec(D)\}'(A'C' \otimes B)vec(D)$

11.2 The Hadamard product

$$A \odot B = \begin{bmatrix} a_{11}b_{11} & \dots & a_{1n}b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1}b_{m1} & \dots & a_{mn}b_{mn} \end{bmatrix}$$

Properties:

1. Let $a = (a_1, ..., a_n)', b = (b_1, ..., b_n)', c = (c_1, ..., c_n)'$ be vectors in \mathbb{R}^n . Then,

$$a'(b \odot c) = (a_1, ..., a_n) \begin{pmatrix} b_1 c_1 \\ \vdots \\ b_n c_n \end{pmatrix} = a_1 b_1 c_1 + ... + a_n b_n c_n$$
$$= (a \odot b)' c = (a \odot c)' b = b'(a \odot c) = c'(a \odot b) = (c \odot a)' b$$

- 2. Let A, B, C be $m \times n$ matrices, D be an $m \times m$ diagonal matrix, and E be an $n \times n$ diagonal matrix; a, c are $m \times 1$ vectors and b, d are $n \times 1$ vectors. Then,
 - (a) $A \odot B = B \odot A$,
 - (b) $(A \odot B) \odot C = A \odot (B \odot C)$,
 - (c) $(A+B) \odot C = A \odot C + B \odot C$,
 - (d) $(A \odot B)' = A' \odot B'$,
 - (e) $A \odot (0) = (0)$,
 - (f) $A \odot 1_m 1'_n = A$,
 - (g) $A \odot I_m = D_A = diag(a_{11}, ..., a_{mm})$ if m = n,
 - (h) $D(A \odot B) = (DA) \odot B = A \odot (DB)$
 - (i) $(A \odot B)E = (AE) \odot B = A \odot (BE)$
 - (i) $ab' \odot cd = (a \odot c)(b \odot d)'$, where a, c, d
 - (k) $rank(A \odot B) \leq rank(A)rank(B)$
 - (1) $1'_m(A \odot B)1_n = trace(AB')$
 - (m) $a'(A \odot B)b = trace(D_aAD_bB')$ where $D_a = diag(a_1, ..., a_m), D_b = diag(b_1, ..., b_n)$.
- 3. Let A, B be $m \times m$ symmetric matrices. Then
 - If A, B both are nonnegative definite then $(A \odot B)$ is nonnegative definite,
 - If A, B both are positive definite then $(A \odot B)$ is positive definite,
 - If B is positive definite and A is nonnegative definite with positive diagonal elements, then $A \odot B$ is positive definite.

12 Matrix derivatives

kth-order Taylor formula

$$f(x+u) = f(x) + \sum_{i=1}^{k} \frac{u^{i} f^{(i)}(x)}{i!} + r_{k}(u, x)$$

where $\lim_{u\to} \frac{r_k(u,x)}{u^k} = 0$

If f is a real-valued function of $x = (x_1, ..., x_n)'$ then if its derivative at x exists, it is given by

$$\frac{\partial}{\partial x'} = \left[\frac{\partial}{\partial x_1} f(x), ..., \frac{\partial}{\partial x_n} f(x) \right].$$

First order Taylor formula

$$f(x+u) = f(x) + \left(\frac{\partial}{\partial x'}f(x)\right)u + r_1(u,x),$$

where $\lim_{u\to 0} \frac{r_1(u,x)}{(u'u)^{1/2}} = 0$.

kth-order Taylor formula

$$f(x+u) = f(x) + \sum_{i=1}^{k} \frac{d^{i} f}{i!} + r_{k}(u, x)$$

where $\lim_{u\to 0} \frac{r_k(u,x)}{(u'u)^{k/2}} = 0$.

We have $d^2f = u'Hu$ where H is the Hessian matrix

$$H = \begin{bmatrix} \frac{\partial^2}{\partial x_1^2} f(x) & \dots & \frac{\partial^2}{\partial x_1 \partial x_n} f(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2}{\partial x_n \partial x_1} f(x) & \dots & \frac{\partial^2}{\partial x_n^2} f(x) \end{bmatrix}$$

Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is a function each of whose first-order partial derivatives exist on \mathbb{R}^n . Then the Jacobian matrix of f is defined as

$$\mathbf{J} = \begin{bmatrix} \frac{\partial \mathbf{f}}{\partial x_1} & \cdots & \frac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix}' = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}.$$

First order Taylor formula

$$f(x+u) = f(x) + \left(\frac{\partial}{\partial x'}f(x)\right)u + r_1(u,x),$$

where $\lim_{u\to 0} \frac{r_1(u,x)}{(u'u)^{1/2}} = 0$.

Note that if we obtain the first differential of f at x in u and df = Bu then the $m \times n$ matrix B must be the derivative of f at x.

Chain rule: If y and g are real-valued functions s.t. y(x) = g(f(x)) then

$$\begin{split} \frac{\partial}{\partial x'} y(x) &= \left(\frac{\partial}{\partial f'} g(f)\right) \left(\frac{\partial}{\partial x'} f(x)\right), \\ \frac{\partial}{\partial x_i} y(x) &= \sum_{j=1}^m \left(\frac{\partial}{\partial f_j} g(f)\right) \left(\frac{\partial}{\partial x_i'} f_j(x)\right) \\ &= \left(\frac{\partial}{\partial f'} g(f)\right) \left(\frac{\partial}{\partial x_i'} f(x)\right) \end{split}$$

For useful matrix derivative identities, see the matrix cookbook [5].

13 Convexity

A set S in \mathbb{R}^m is **convex** if for any $x, y \in S$,

$$cx + (1 - c)y \in S \qquad \forall 0 < c < 1$$

The intersection and union of two convex set are convex. The closure of a convex set is also convex.

From [3], section 2.11: Let S_1, S_2 be two convex set in \mathbb{R}^m with $S_1 \cap S_2 = 0$. Then there exists $b \neq 0, b \in \mathbb{R}^{n \times 1}$ such that $b'x_1 \geq b'x_2 \ \forall x_1 \in S_1, x_2 \in S_2$.

References

- [1] Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence Linear Algebra (3rd Edition). Prentice Hall, 1996.
- [2] Johnson, Richard Arnold, and Dean W. Wichern. Applied multivariate statistical analysis. Vol. 5. No. 8. Upper Saddle River, NJ: Prentice hall, 2002.
- [3] Searle, Shayle R., and Andre I. Khuri. Matrix algebra useful for statistics. John Wiley Sons, 2017.
- [4] Henry (https://math.stackexchange.com/users/193914/henry), Frobenius norm of product of matrix, URL (version: 2019-08-27): https://math.stackexchange.com/q/1393301
- [5] Petersen, Kaare Brandt, and Michael Syskind Pedersen. "The matrix cookbook." Technical University of Denmark 7.15 (2008): 510.
- [6] Wikipedia contributors. "Eigenvalues and eigenvectors." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 19 Sep. 2019. Web. 23 Sep. 2019.
- [7] Wikipedia contributors. "Matrix norm." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 2 Sep. 2019. Web. 23 Sep. 2019.

- [8] Wikipedia contributors. "Block matrix." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 19 Sep. 2019. Web. 23 Sep. 2019.
- [9] Wikipedia contributors. "Singular value decomposition." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 18 Sep. 2019. Web. 23 Sep. 2019.
- [10] Wikipedia contributors. "ShermanMorrison formula." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 3 Jun. 2019. Web. 23 Sep. 2019.
- [11] Wikipedia contributors. "Symmetric matrix." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 18 Aug. 2019. Web. 23 Sep. 2019.
- [12] Wikipedia contributors. "Woodbury matrix identity." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 18 Sep. 2019. Web. 23 Sep. 2019.
- [13] Schott, James R. Matrix analysis for statistics. John Wiley Sons, 2016.