final project_EDA and Model

Alice Liao, Revo Tesha, Salvador, Cindy, Evelyn 12/1/2019

Exploratory Data Analysis for oh wv 2012 Dataset

Training data

```
oh_wv_2012 <- read.csv("data/oh_wv_2012.csv", header = TRUE)
set.seed(1000)
train = sample(max(dim(oh_wv_2012)), max(dim(oh_wv_2012))*0.75) # 75% training
train_oh_wv_2012 = oh_wv_2012[train,]
test_oh_wv_2012 = oh_wv_2012[-train,]</pre>
```

Distribution of Variables (and possible transformations):

```
summary(train_oh_wv_2012)
```

```
##
       BUYER_COUNTY all_active_wt
                                                               hyd_wt
                                           oxy_wt
##
   ADAMS
                    Min.
                           :
                               405.7
                                                    69.5
                                                                      336.3
                1
                                       Min.
                                                          Min.
   ASHLAND
                    1st Qu.: 3588.3
                                                 2072.7
##
           :
                1
                                       1st Qu.:
                                                           1st Qu.:
                                                                     1811.0
##
   ASHTABULA:
                1
                    Median : 12041.3
                                       Median: 6639.3
                                                          Median :
                                                                     4564.3
##
  ATHENS
                    Mean
                         : 30337.6
                                       Mean
                                              : 20650.0
                                                           Mean
                                                                     9687.6
##
  BARBOUR : 1
                    3rd Qu.: 24952.4
                                       3rd Qu.: 17560.8
                                                           3rd Qu.:
                                                                     8765.9
##
   BELMONT
                    Max.
                           :448119.7
                                       Max.
                                              :327601.2
                                                           Max.
                                                                  :120518.5
##
            :101
   (Other)
                       perc_hyd
##
                                     perc_retail
                                                        perc_chain
       perc_oxy
##
   Min.
           :17.10
                    Min. :17.90
                                          :0.0000
                                                             :0.0000
                                    Min.
                                                     Min.
##
   1st Qu.:50.85
                    1st Qu.:30.05
                                    1st Qu.:0.2483
                                                     1st Qu.:0.4471
##
  Median :61.70
                    Median :38.30
                                    Median :0.4007
                                                     Median :0.5985
  Mean
           :59.06
                    Mean
                           :40.94
                                    Mean
                                           :0.4221
                                                             :0.5757
                                                     Mean
   3rd Qu.:69.95
                    3rd Qu.:49.15
                                    3rd Qu.:0.5514
                                                     3rd Qu.:0.7512
##
           :82.10
                    Max.
                           :82.90
                                           :1.0000
                                                             :1.0000
##
                                    Max.
                                                     Max.
##
  perc_practitioner
                             most_dist_channel pharmacy_num
                       CHAIN PHARMACY:74
## Min.
           :0.000000
                                               Min.
                                                       : 1.00
##
   1st Qu.:0.000000
                       RETAIL PHARMACY:33
                                               1st Qu.: 5.00
##
  Median :0.001068
                                               Median : 11.00
  Mean
           :0.002139
                                               Mean
                                                     : 27.29
##
   3rd Qu.:0.003272
                                               3rd Qu.: 25.50
##
   Max.
           :0.011186
                                               Max.
                                                       :323.00
##
##
                    dominance
      distr_num
                                        State
                                                       Year
##
          : 2.00
                    No :66
                              Ohio
                                            :66
                                                         :2012
   Min.
                                                 Min.
##
   1st Qu.: 9.00
                    Yes:41
                              West Virginia:41
                                                  1st Qu.:2012
##
  Median :14.00
                                                 Median:2012
##
  Mean
           :15.28
                                                 Mean
                                                         :2012
##
   3rd Qu.:20.00
                                                  3rd Qu.:2012
##
           :49.00
                                                         :2012
  {\tt Max.}
                                                 Max.
##
  imput_est_death_rate_num est_death_rate_cat
                                                  Population
```

```
## Min. : 4.95
                          cat_1: 7
                                             Min. : 5816
## 1st Qu.: 11.95
                           cat_2:43
                                             1st Qu.: 23640
## Median : 14.95
                           cat_3:30
                                             Median: 41856
## Mean : 22.67
                                             Mean : 99386
                           cat_4:18
## 3rd Qu.: 19.95
                           cat_5: 5
                                             3rd Qu.: 78256
## Max. :262.00
                           cat 6: 4
                                             Max.
                                                   :1265798
##
## median_income
                  act_wt_person_county
                                         political_aff pharmacy_num_ptt
## Min.
         :25634 Min. :0.06512
                                      Democrat :33
                                                       Min. :0.756
## 1st Qu.:37671 1st Qu.:0.18008
                                      Republican:74
                                                       1st Qu.:2.043
## Median :41877 Median :0.23736
                                                       Median :2.593
## Mean :43651 Mean :0.26721
                                                       Mean :2.749
## 3rd Qu.:47126 3rd Qu.:0.33498
                                                       3rd Qu.:3.094
## Max. :90499 Max. :0.72302
                                                       Max. :6.135
##
## distr_num_ptt
## Min. : 0.379
## 1st Qu.: 1.929
## Median : 2.961
## Mean : 3.196
## 3rd Qu.: 4.130
## Max. :10.797
##
# death rate - numerical
death_rate_p = ggplot(train_oh_wv_2012, aes(x = imput_est_death_rate_num)) +
 geom_histogram() +
 labs(x = "Estimated death rate")
tdeath_rate_p = ggplot(train_oh_wv_2012, aes(x = log(imput_est_death_rate_num))) +
 geom_histogram() +
 labs(x = "log of Estimated death rate")
plot_grid(death_rate_p,tdeath_rate_p)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
ggplot(train_oh_wv_2012)+
```

Distribution of Death Rate


```
# hydrocodone -- log transformation
hyd_wt_p = ggplot(train_oh_wv_2012, aes(x = hyd_wt)) +
    geom_histogram() +
    labs(x = "Total Active Weight for Hydrocodone")
thyd_wt_p = ggplot(train_oh_wv_2012, aes(x = log(hyd_wt))) +
    geom_histogram() +
    labs(x = "Log Total Active Weight for Hydrocodone")
plot_grid(hyd_wt_p, thyd_wt_p)
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
# % hydrocodone
hyd_perc_p = ggplot(train_oh_wv_2012, aes(perc_hyd))+
    geom_histogram()
thyd_perc_p = ggplot(train_oh_wv_2012, aes(log(perc_hyd)))+
    geom_histogram()
plot_grid(hyd_perc_p, thyd_perc_p)
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
# oxycodone -- log transformation
oxy_wt_p = ggplot(train_oh_wv_2012, aes(x = oxy_wt)) +
geom_histogram() +
labs(x = "Total Active Weight for Oxycodone")
toxy_wt_p = ggplot(train_oh_wv_2012, aes(x = log(oxy_wt))) +
geom_histogram() +
labs(x = "Log Total Active Weight for Oxycodone")
plot_grid(oxy_wt_p, toxy_wt_p)
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Number of Pharmacies per 10,000 in a County


```
# distribution of median income - need log transformation
med_income = ggplot(train_oh_wv_2012, aes(x = median_income)) +
    geom_histogram() +
    labs(x = "Median income")
log_med_income = ggplot(train_oh_wv_2012, aes(x = log(median_income))) +
    geom_histogram() +
    labs(x = "Log median income")
plot_grid(med_income, log_med_income)
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Predictors vs. Response:

Responses: Death Rate Category

```
ggplot(data = train_oh_wv_2012, aes(x = est_death_rate_cat, y = Population)) +
    geom_boxplot()+
    labs(x = "Estimated Death Rate Category", ylab = "County Population",
        main = "Death Rate Category vs County Population")
```



```
ggplot(data = train_oh_wv_2012, aes(x = est_death_rate_cat, y = pharmacy_num_ptt)) +
    geom_boxplot() +
    labs(x = "Estimated Death Rate Category",
        y = "Number of Pharmacies",
        main = "Death Rate Category vs Number of Pharmacies per 10,000 Population")
```



```
labs(x = "Death Rate Category", y = "Number of manufacturers involved",
     title = "County death rate vs Number of Manufacturers")
```

County death rate vs Number of Manufacturers

train_oh_wv_2012 %>%
ggplot(aes(x = most_dist_channel, y = est_death_rate_cat)) + geom_boxplot() + xlab("Most Distributed")

Plot predictors against each other (Interactions)

Number of Distributors per 10,000 People vs Estimated Death Rate by Number of Pharmacies per 10,000 People


```
ggplot(train_oh_wv_2012,
    aes(x = distr_num_ptt, y = pharmacy_num_ptt))+
geom_point()
```


Percentage Oxycodone vs Estimated Death Rate by Number of Pharmacies per 10,000 People


```
ggplot(train_oh_wv_2012,
    aes(x = perc_oxy, y = pharmacy_num_ptt))+
geom_point()
```


Percentage Oxycodone vs Estimated Death Rate by Number of Pharmacies per 10,000 People


```
ggplot(train_oh_wv_2012,
    aes(x = perc_oxy, y = distr_num_ptt))+
geom_point()
```


Active Weight vs Estimated Death Rate by Number of Pharmacies per 10,000 People

Active Weight vs Estimated Death Rate by Number of Pharmacies per 10,000 People

Median Income vs Estimated Death Rate by Number of Pharmacies per 10,000 People

Median Income vs Death Rate

Number of Pharmacies per 10,000 People vs Death Rate

Number of Pharmacies per 10,000 People

Active Drug Weight Available Per Person vs Death Rate

Median Income vs Death Rate

Number of Pharmacies per 10,000 People vs Death Rate

Active Drug Weight Available Per Person vs Death Rate

Median Income vs Death Rate

Number of Pharmacies per 10,000 People vs Death Rate

Percentage Oxycodone vs Death Rate

Active Drug Weight Available Per Person vs Death Rate

Modeling

Logistic Regression (multinomial and cumulative logit)

Regular Multinomial Logistic Regression

```
# without interactions
fit0 <- nnet::multinom(est_death_rate_cat ~ pharmacy_num_ptt + most_dist_channel + dominance + log(medi
## # weights: 60 (45 variable)
## initial value 191.718263
## iter 10 value 140.792988
## iter 20 value 119.719917
## iter 30 value 106.658718
## iter 40 value 101.467484
## iter 50 value 99.557245
        60 value 99.193133
## iter 70 value 98.575161
## iter 80 value 97.815051
## iter 90 value 96.814965
## iter 100 value 96.633144
## final value 96.633144
## stopped after 100 iterations
summary(fit0)
## Call:
## nnet::multinom(formula = est_death_rate_cat ~ pharmacy_num_ptt +
```

```
##
      most_dist_channel + dominance + log(median_income) + political_aff +
##
      act_wt_person_county + perc_oxy + distr_num_ptt, data = train_oh_wv_2012)
##
## Coefficients:
        (Intercept) pharmacy_num_ptt most_dist_channelRETAIL PHARMACY
## cat_2 -12.934470
                         -0.8408980
                                                         -0.8797333
## cat 3
         22.677008
                         -0.3687500
                                                         -1.2249931
## cat 4
         84.838577
                         -0.4318392
                                                         -0.9072072
## cat 5
         -7.154282
                         32.1402641
                                                          5.0980038
                         -0.8805394
## cat_6 100.321832
                                                         -2.4296485
        dominanceYes log(median_income) political_affRepublican
           43.96234
                             1.612957
                                                    -3.347039
## cat 2
                                                    -4.671279
## cat_3
            44.70750
                             -1.807718
## cat_4
                            -8.205316
           44.19591
                                                    -4.399158
## cat_5 102.47233
                            -10.067789
                                                    -4.619204
## cat_6
           46.28237
                             -9.750815
                                                   -44.325028
      act_wt_person_county
                               perc_oxy distr_num_ptt
           16.95034 -0.03658190
## cat_2
                                        0.3740006
                   22.63212 -0.04537674
                                          0.1262562
## cat 3
                  25.61877 0.02035476
## cat 4
                                           0.1929911
## cat 5
                 -187.21566 1.07498631
                                        -15.6417048
## cat 6
                  41.68111 -0.07359185
                                        0.5082274
##
## Std. Errors:
        (Intercept) pharmacy_num_ptt most_dist_channelRETAIL PHARMACY
## cat 2 11.7985435 0.8665793
                                                           1.590525
## cat_3 11.2455801
                          0.9036513
                                                           1.723796
## cat_4
         2.3420484
                          0.9919433
                                                           1.817140
                          7.2860578
                                                          16.608206
## cat_5
        0.4580507
## cat 6 0.9348917
                       1.3020295
                                                           2.547685
##
       dominanceYes log(median_income) political_affRepublican
## cat_2
          1.074216
                       1.2857957
                                                 5.767891e+00
## cat_3
           1.002989
                            1.2635570
                                                 5.756633e+00
                            0.7851238
                                                 5.787253e+00
## cat_4
            1.136481
## cat 5
           2.803456
                             4.0874632
                                                 7.504504e+00
## cat 6
          1.854378
                             0.8727372
                                                 5.300930e-13
## act_wt_person_county perc_oxy distr_num_ptt
## cat_2
                 10.163223 0.06695960
                                         0.6359846
## cat 3
                   10.434254 0.06996255
                                           0.6581683
## cat_4
                 10.643502 0.07591752
                                         0.6978330
                   3.237991 0.39918895
## cat 5
                                         4.4661326
## cat_6
                 12.827994 0.09859824
                                         0.8677107
## Residual Deviance: 193.2663
## AIC: 283.2663
# with interactions
fit0.interact <- nnet::multinom(est_death_rate_cat ~ pharmacy_num_ptt + most_dist_channel + dominance +
## # weights: 108 (85 variable)
## initial value 191.718263
## iter 10 value 131.073412
## iter 20 value 118.096117
## iter 30 value 110.830122
## iter 40 value 98.770676
```

```
## iter 50 value 90.942099
## iter 60 value 83.536417
## iter 70 value 79.852409
## iter 80 value 76.558644
## iter 90 value 75.388227
## iter 100 value 73.332613
## final value 73.332613
## stopped after 100 iterations
summary(fit0.interact)
## Call:
## nnet::multinom(formula = est_death_rate_cat ~ pharmacy_num_ptt +
      most_dist_channel + dominance + log(median_income) + political_aff +
##
       act_wt_person_county + perc_oxy + distr_num_ptt + log(median_income) *
##
       political_aff + act_wt_person_county * distr_num_ptt + act_wt_person_county *
##
      pharmacy_num_ptt + pharmacy_num_ptt * political_aff + log(median_income) *
##
      most_dist_channel + log(median_income) * pharmacy_num_ptt +
##
      perc_oxy * dominance + act_wt_person_county * perc_oxy, data = train_oh_wv_2012)
##
## Coefficients:
         (Intercept) pharmacy_num_ptt most_dist_channelRETAIL PHARMACY
##
## cat 2 -70.039122
                           19.30373
                                                           -89.134340
## cat 3
         57.272614
                           -55.95872
                                                            78.408428
## cat 4
         13.254524
                           -19.41151
                                                            18.793324
                            33.15582
## cat 5
          2.310263
                                                             4.226015
## cat 6 36.248195
                          112.81148
                                                            11.483641
       dominanceYes log(median income) political affRepublican
           7.902782
                             19.782504
## cat 2
                                                     -23.925745
## cat_3
         11.601608
                              6.686706
                                                      61.141209
## cat_4
         15.459828
                              8.850545
                                                       4.377992
## cat_5
         70.423648
                             -12.318535
                                                      -7.510619
## cat 6 -85.515095
                                                      -4.394870
                             17.166640
       act_wt_person_county    perc_oxy distr_num_ptt
## cat_2
                 -46.379122 -0.1179295
                                          2.861000
                  -6.067798 -0.1091219
                                             2.654085
## cat_3
                  43.555643 0.3700651
## cat_4
                                             3.690482
                  -22.441417 2.3399420
## cat_5
                                           -25.874907
## cat 6
                    8.747659 -2.0718575
                                             7.930411
        log(median_income):political_affRepublican
## cat 2
                                         -9.722467
## cat 3
                                        -17.581315
                                        -12.334707
## cat_4
## cat 5
                                         -8.003669
## cat 6
                                        -15.001181
##
        act_wt_person_county:distr_num_ptt
## cat_2
                                 -12.40656
                                 -11.63255
## cat_3
## cat_4
                                 -13.87518
## cat_5
                                 -23.17532
## cat 6
                                 -23.99092
         pharmacy_num_ptt:act_wt_person_county
##
## cat_2
                                     27.45755
## cat_3
                                     15.18193
## cat 4
                                     34.42985
```

```
## cat 5
                                     -54.60156
## cat_6
                                      59.77132
##
         pharmacy_num_ptt:political_affRepublican
## cat 2
                                        18.065213
## cat 3
                                        16.777019
## cat 4
                                        17.387340
## cat 5
                                         2.975752
## cat 6
                                        13.994979
         most_dist_channelRETAIL PHARMACY:log(median_income)
## cat_2
                                                    8.118516
## cat_3
                                                    -7.882542
                                                   -2.252188
## cat_4
## cat 5
                                                    1.155831
## cat_6
                                                   -1.501222
         pharmacy_num_ptt:log(median_income) dominanceYes:perc_oxy
## cat_2
                                  -4.1193382
                                                         0.8982226
## cat_3
                                   3.3691941
                                                         0.8442034
## cat 4
                                  -0.6501612
                                                         0.7953694
## cat 5
                                   3.1198174
                                                         1.0870959
## cat 6
                                 -14.3072082
                                                         2.8972880
##
         act_wt_person_county:perc_oxy
## cat_2
                            0.4628329
## cat_3
                             0.3988681
## cat 4
                            -0.9349026
                            -5.6523966
## cat 5
## cat 6
                            0.6433017
##
## Std. Errors:
         (Intercept) pharmacy_num_ptt most_dist_channelRETAIL PHARMACY
## cat 2
          2.6650838
                           6.5507795
                                                              0.3214459
## cat_3
           3.0114917
                            7.9791174
                                                             0.3058579
## cat_4
           4.8929145
                           11.7736173
                                                             0.5091622
## cat_5
           0.6960112
                           0.3705614
                                                             0.6826628
           0.2809398
                            0.3182387
                                                              0.1076812
## cat_6
       dominanceYes log(median_income) political_affRepublican
## cat_2
           2.9929066
                               1.833568
                                                    2.801574e+00
## cat 3
          2.8652957
                               1.849142
                                                    2.923999e+00
## cat_4
          4.0429297
                               1.868611
                                                    4.186294e+00
## cat 5
           0.6825959
                               7.489523
                                                    5.637889e-01
## cat_6
           0.7120080
                               2.927212
                                                    7.424363e-06
      act_wt_person_county perc_oxy distr_num_ptt
## cat_2
                  13.0786531 0.1122101
                                           0.9950559
                  13.7169841 0.1266594
## cat 3
                                            0.9734352
                   1.7099773 0.1390232
## cat_4
                                            1.1445612
                   0.3470802 2.6505067
                                            5.8107922
## cat_5
                    0.5262090 0.4412734
                                            3.1089603
## cat_6
         log(median_income):political_affRepublican
                                       1.904094e+00
## cat_2
## cat_3
                                       1.905924e+00
## cat_4
                                       1.951306e+00
## cat_5
                                       5.315860e+00
                                       7.856089e-05
## cat 6
##
         act_wt_person_county:distr_num_ptt
                                   3.010011
## cat 2
```

```
## cat 4
                                 2.612740
## cat 5
                                 1.218282
## cat_6
                                 4.762232
        pharmacy_num_ptt:act_wt_person_county
## cat_2
                                   3.8568923
## cat 3
                                   4.2597064
## cat 4
                                   4.3447002
## cat 5
                                   1.0087462
## cat_6
                                   0.9246094
        pharmacy_num_ptt:political_affRepublican
## cat_2
                                   5.824328e+00
## cat_3
                                   5.853657e+00
                                   5.925844e+00
## cat_4
## cat_5
                                   4.425654e+00
## cat_6
                                   1.445569e-05
##
        most_dist_channelRETAIL PHARMACY:log(median_income)
## cat_2
                                                 0.1755340
                                                 0.1952513
## cat 3
## cat 4
                                                 0.2154127
## cat 5
                                                 7.3046555
## cat 6
                                                 0.7158730
##
        pharmacy_num_ptt:log(median_income) dominanceYes:perc_oxy
                                 1.0349992
## cat 2
                                                       0.4540956
## cat 3
                                 1.1998689
                                                       0.4539692
## cat 4
                                 1.5674393
                                                       0.4567686
## cat_5
                                 4.5805695
                                                       1.8063398
## cat 6
                                 0.5875612
                                                       0.4623058
        act_wt_person_county:perc_oxy
## cat 2
                           0.2798651
## cat_3
                           0.3298717
## cat_4
                           0.3010169
## cat_5
                           13.6831843
                           0.5922605
## cat_6
## Residual Deviance: 146.6652
## AIC: 316.6652
# fit0 and cumu.logistic are the SAME
cumu.logistic = nnet::multinom(est_death_rate_cat ~ pharmacy_num_ptt + most_dist_channel + dominance +
## # weights: 60 (45 variable)
## initial value 191.718263
## iter 10 value 140.792988
## iter 20 value 119.719917
## iter 30 value 106.658718
## iter 40 value 101.467484
## iter 50 value 99.557245
```

cat 3

iter 60 value 99.193133 ## iter 70 value 98.575161 ## iter 80 value 97.815051 ## iter 90 value 96.814965 ## iter 100 value 96.633144

```
## stopped after 100 iterations
summary(cumu.logistic)
## Call:
## nnet::multinom(formula = est_death_rate_cat ~ pharmacy_num_ptt +
      most_dist_channel + dominance + log(median_income) + political_aff +
      act_wt_person_county + perc_oxy + distr_num_ptt, data = train_oh_wv_2012)
##
##
## Coefficients:
       (Intercept) pharmacy_num_ptt most_dist_channelRETAIL PHARMACY
## cat 2 -12.934470
                         -0.8408980
                                                        -0.8797333
## cat_3 22.677008
                         -0.3687500
                                                        -1.2249931
## cat_4
         84.838577
                         -0.4318392
                                                        -0.9072072
## cat_5
                         32.1402641
                                                         5.0980038
        -7.154282
## cat 6 100.321832
                         -0.8805394
                                                        -2.4296485
##
        dominanceYes log(median_income) political_affRepublican
                            1.612957
                                                   -3.347039
## cat_2
          43.96234
## cat_3
          44.70750
                            -1.807718
                                                   -4.671279
## cat_4
          44.19591
                           -8.205316
                                                   -4.399158
## cat_5
         102.47233
                           -10.067789
                                                   -4.619204
## cat 6
           46.28237
                            -9.750815
                                                  -44.325028
##
      ## cat_2
             16.95034 -0.03658190
                                       0.3740006
## cat 3
                   22.63212 -0.04537674
                                           0.1262562
## cat_4
                  25.61877 0.02035476
                                         0.1929911
## cat 5
                -187.21566 1.07498631 -15.6417048
                 41.68111 -0.07359185 0.5082274
## cat 6
##
## Std. Errors:
        (Intercept) pharmacy_num_ptt most_dist_channelRETAIL PHARMACY
## cat 2 11.7985435
                         0.8665793
                                                          1.590525
## cat_3 11.2455801
                         0.9036513
                                                          1.723796
## cat_4 2.3420484
                         0.9919433
                                                          1.817140
                         7.2860578
## cat_5 0.4580507
                                                         16.608206
                        1.3020295
## cat_6 0.9348917
                                                          2.547685
      dominanceYes log(median_income) political_affRepublican
##
## cat_2 1.074216 1.2857957
                                                5.767891e+00
                                                5.756633e+00
## cat 3
          1.002989
                           1.2635570
## cat 4
           1.136481
                           0.7851238
                                                5.787253e+00
## cat_5
          2.803456
                            4.0874632
                                                7.504504e+00
## cat_6 1.854378
                           0.8727372
                                                5.300930e-13
      act_wt_person_county perc_oxy distr_num_ptt
## cat 2
                 10.163223 0.06695960
                                       0.6359846
## cat 3
                  10.434254 0.06996255
                                          0.6581683
## cat 4
                 10.643502 0.07591752
                                         0.6978330
## cat_5
                   3.237991 0.39918895
                                          4.4661326
## cat_6
                  12.827994 0.09859824
                                          0.8677107
##
## Residual Deviance: 193.2663
## AIC: 283.2663
mostImportantVariables <- varImp(cumu.logistic)</pre>
mostImportantVariables$Variables <- row.names(mostImportantVariables)</pre>
```

final value 96.633144

```
mostImportantVariables <- mostImportantVariables[order(-mostImportantVariables$Overall),]
print(mostImportantVariables)</pre>
```

```
##
                                         Overall
## act_wt_person_county
                                      294.098005
## dominanceYes
                                      281.620449
## political_affRepublican
                                       61.361708
## pharmacy_num_ptt
                                       34.662291
## log(median_income)
                                       31.444596
## distr num ptt
                                       16.843180
## most_dist_channelRETAIL PHARMACY 10.539586
## perc_oxy
                                        1.250892
##
                                                               Variables
## act_wt_person_county
                                                   act_wt_person_county
## dominanceYes
                                                            dominanceYes
## political_affRepublican
                                                political_affRepublican
## pharmacy_num_ptt
                                                       pharmacy_num_ptt
## log(median_income)
                                                     log(median_income)
## distr_num_ptt
                                                           distr_num_ptt
## most_dist_channelRETAIL PHARMACY most_dist_channelRETAIL PHARMACY
## perc_oxy
                                                                perc_oxy
knitr::kable(cumu.logistic %>% tidy(conf.int=TRUE),format="html",digits=3)
y.level
_{\text{term}}
estimate
std.error
statistic
p.value
conf.low
conf.high
cat 2
(Intercept)
0.000000e+00
11.799
-1.096000e+00
0.273
0.000000e+00
2.664217e + 04
cat 2
pharmacy_num_ptt
4.310000e-01
0.867
```

-9.700000e-01 0.3327.900000e-022.357000e+00 cat_2 $most_dist_channelRETAIL\ PHARMACY$ $4.150000 \mathrm{e}\text{-}01$ 1.591 $-5.530000\mathrm{e}\text{-}01$ 0.5801.800000e-029.371000e+00 cat_2 ${\bf dominance Yes}$ 1.237658e + 191.074 4.092500e+010.000 $1.507392e{+}18$ 1.016190e + 20 cat_2 $\log(\text{median}_\text{income})$ 5.018000e+001.286 1.254000e+000.2104.040000e-01 $6.236900e{+01}$ cat_2 $political_affRepublican$ 3.500000e-02

5.768

0.562

 $-5.800000\mathrm{e}\text{-}01$

0.000000e+002.857833e+03

46

 ${\rm cat}_2$

 $act_wt_person_county$

 $2.298478\mathrm{e}{+07}$

10.163

1.668000e+00

0.095

 $5.100000 \mathrm{e}\text{-}02$

1.028944e + 16

 cat_2

 $perc_oxy$

9.640000e-01

0.067

-5.460000e-01

0.585

8.460000e-01

1.099000e+00

 cat_2

 $distr_num_ptt$

1.454000e+00

0.636

5.880000e-01

0.556

4.180000e-01

5.056000e+00

 cat_3

(Intercept)

7.055038e+09

11.246

2.017000e+00

0.044

1.889000e+00

2.634842e+19

 cat_3

 $pharmacy_num_ptt$

6.920000e-01

-4.080000e-010.6831.180000e-014.065000e+00 cat_3 $most_dist_channelRETAIL\ PHARMACY$ $2.940000 \mathrm{e}\text{-}01$ 1.724 -7.110000e-010.4771.000000e-028.616000e+00 cat_3 ${\bf dominance Yes}$ 2.607483e + 191.003 4.457400e+010.000 $3.651535\mathrm{e}{+18}$ 1.861948e + 20 cat_3 $\log(\text{median}_\text{income})$ 1.640000e-011.264 -1.431000e+000.1531.400000e-021.952000e+00 cat_3 $political_affRepublican$ 9.000000e-035.757

-8.110000e-01

0.000000e+007.436080e+02

- cat_3
- $act_wt_person_county$
- $6.745323\mathrm{e}{+09}$
- 10.434
- 2.169000e+00
- 0.030
- $8.858000\mathrm{e}{+00}$
- 5.136362e + 18
- cat_3
- $perc_oxy$
- $9.560000 \mathrm{e}\text{-}01$
- 0.070
- -6.490000e-01
- 0.517
- 8.330000e-01
- 1.096000e+00
- cat_3
- $distr_num_ptt$
- 1.135000e+00
- 0.658
- 1.920000e-01
- 0.848
- 3.120000e-01
- 4.122000e+00
- cat_4
- (Intercept)
- 6.997226e + 36
- 2.342
- $3.622400\mathrm{e}{+01}$
- 0.000
- 7.101836e + 34
- 6.894157e + 38
- cat_{-4}
- $pharmacy_num_ptt$
- 6.490000e-01
- 0.992

-4.350000e-010.6639.300000e-024.537000e+00 cat_4 $most_dist_channelRETAIL\ PHARMACY$ $4.040000 \mathrm{e}\text{-}01$ 1.817 -4.990000e-01 0.6181.100000e-021.421500e+01 cat_4 ${\bf dominance Yes}$ $1.563295e{+}19$ 1.136 3.888800e+010.000 $1.685258\mathrm{e}{+18}$ 1.450159e + 20 cat_{-4} $\log(\text{median}_\text{income})$ 0.000000e+000.785-1.045100e+010.0000.000000e+001.000000e-03 cat_4 $political_affRepublican$ 1.200000e-025.787-7.600000e-010.447

0.000000e+001.036546e+03 cat_4

 $act_wt_person_county$

 $1.336881e{+11}$

10.644

2.407000e+00

0.016

 $1.165000\mathrm{e}{+02}$

1.534115e + 20

 cat_{-4}

 $perc_oxy$

 $1.021000\mathrm{e}{+00}$

0.076

2.680000e-01

0.789

8.790000e-01

1.184000e+00

 cat_4

 $distr_num_ptt$

1.213000e+00

0.698

2.770000e-01

0.782

3.090000e-01

4.762000e+00

 cat_5

(Intercept)

1.000000e-03

0.458

 $\text{-}1.561900\mathrm{e}{+01}$

0.000

0.000000e+00

2.000000e-03

 cat_5

 $pharmacy_num_ptt$

 $9.085302e{+13}$

4.411000e+000.000 5.707366e+071.446249e + 20 cat_5 $most_dist_channelRETAIL\ PHARMACY$ $1.636950\mathrm{e}{+02}$ 16.608 3.070000e-010.759 $0.000000\mathrm{e}{+00}$ 2.243702e+16 cat_5 ${\bf dominance Yes}$ 3.185422e+442.803 3.655200e+010.0001.308763e+427.753057e+46 cat_5 $\log(\text{median}_\text{income})$ 0.000000e+004.087

4.087

-2.463000e+00

0.014

0.000000e+00

1.280000e-01

 cat_5

 $political_affRepublican$

1.000000e-02

7.505

-6.160000e-01

0.538

0.000000e+00

 $2.408523e{+04}$

 ${\rm cat}_5$

 $act_wt_person_county$

 $0.000000\mathrm{e}{+00}$

3.238

-5.781800e+01

0.000

 $0.000000\mathrm{e}{+00}$

0.000000e+00

 cat_5

 $perc_oxy$

 $2.930000\mathrm{e}{+00}$

0.399

2.693000e+00

0.007

1.340000e+00

6.407000e+00

 cat_5

 $distr_num_ptt$

0.000000e+00

4.466

-3.502000e+00

0.000

0.000000e+00

1.000000e-03

 cat_6

(Intercept)

3.708671e+43

0.935

 $1.073090\mathrm{e}{+02}$

0.000

5.935223e+42

 $2.317392e{+44}$

 cat_6

 $pharmacy_num_ptt$

4.150000e-01

-6.760000e-010.4993.200000e-025.320000e+00 cat_6 $most_dist_channelRETAIL\ PHARMACY$ 8.800000e-022.548 -9.540000e-01 0.3401.000000e-031.298400e+01 cat_6 ${\bf dominance Yes}$ 1.259438e+201.854 2.495800e+010.000 $3.324512\mathrm{e}{+18}$ 4.771182e + 21 cat_6 $\log(\text{median}_\text{income})$ 0.000000e+000.873 -1.117300e+010.0000.000000e+000.000000e+00 cat_6 $political_affRepublican$ 0.000000e+000.000

-8.361746e + 13

0.000000e+00 0.000000e+00

```
cat 6
act_wt_person_county
1.264373e + 18
12.828
3.249000e+00
0.001
1.522884e+07
1.049744e + 29
cat 6
perc\_oxy
9.290000e-01
0.099
-7.460000e-01
0.455
7.660000e-01
1.127000e+00
cat 6
distr\_num\_ptt
1.662000e+00
0.868
5.860000e-01
0.558
3.030000e-01
9.106000e+00
# fit0.interact and fit1_interact_ord are the SAME
##ordinal with interactions
fit1_interact_ord<-nnet::multinom(est_death_rate_cat ~ pharmacy_num_ptt + most_dist_channel + dominance
## # weights: 108 (85 variable)
## initial value 191.718263
## iter 10 value 131.073412
## iter 20 value 118.096117
## iter 30 value 110.830122
## iter 40 value 98.770676
## iter 50 value 90.942099
## iter 60 value 83.536417
## iter 70 value 79.852409
## iter 80 value 76.558644
## iter 90 value 75.388227
## iter 100 value 73.332613
```

```
## final value 73.332613
## stopped after 100 iterations
summary(fit1_interact_ord)
## Call:
## nnet::multinom(formula = est_death_rate_cat ~ pharmacy_num_ptt +
##
       most_dist_channel + dominance + log(median_income) + political_aff +
##
       act_wt_person_county + perc_oxy + distr_num_ptt + log(median_income) *
##
      political_aff + act_wt_person_county * distr_num_ptt + act_wt_person_county *
##
       pharmacy_num_ptt + pharmacy_num_ptt * political_aff + log(median_income) *
##
      most_dist_channel + log(median_income) * pharmacy_num_ptt +
##
      perc_oxy * dominance + act_wt_person_county * perc_oxy, data = train_oh_wv_2012)
##
## Coefficients:
         (Intercept) pharmacy_num_ptt most_dist_channelRETAIL PHARMACY
##
         -70.039122
                                                            -89.134340
## cat_3
          57.272614
                            -55.95872
                                                             78.408428
                           -19.41151
                                                              18.793324
## cat_4
          13.254524
## cat_5
           2.310263
                             33.15582
                                                              4.226015
## cat_6 36.248195
                           112.81148
                                                              11.483641
##
         dominanceYes log(median_income) political_affRepublican
## cat 2
           7.902782
                           19.782504
                                                      -23.925745
## cat 3
         11.601608
                              6.686706
                                                       61.141209
## cat 4
         15.459828
                               8.850545
                                                        4.377992
## cat 5
           70.423648
                             -12.318535
                                                       -7.510619
## cat 6
         -85.515095
                              17.166640
                                                       -4.394870
       act_wt_person_county    perc_oxy distr_num_ptt
                  -46.379122 -0.1179295
## cat 2
                                              2.861000
## cat_3
                   -6.067798 -0.1091219
                                              2.654085
                   43.555643 0.3700651
## cat_4
                                              3.690482
## cat_5
                  -22.441417 2.3399420
                                            -25.874907
                    8.747659 -2.0718575
## cat 6
                                              7.930411
         log(median_income):political_affRepublican
## cat_2
                                          -9.722467
                                         -17.581315
## cat_3
                                         -12.334707
## cat_4
                                          -8.003669
## cat_5
## cat 6
                                         -15.001181
         act_wt_person_county:distr_num_ptt
## cat 2
                                  -12.40656
## cat 3
                                  -11.63255
## cat_4
                                  -13.87518
## cat 5
                                  -23.17532
## cat 6
                                  -23.99092
##
         pharmacy_num_ptt:act_wt_person_county
## cat_2
                                      27.45755
                                      15.18193
## cat_3
## cat_4
                                      34.42985
## cat_5
                                     -54.60156
## cat 6
                                      59.77132
##
         pharmacy_num_ptt:political_affRepublican
## cat_2
                                        18.065213
## cat_3
                                        16.777019
```

cat 4

```
## cat 5
                                          2.975752
## cat_6
                                         13.994979
##
         most_dist_channelRETAIL PHARMACY:log(median_income)
## cat_2
                                                     8.118516
## cat 3
                                                    -7.882542
## cat 4
                                                    -2.252188
## cat 5
                                                     1.155831
                                                    -1.501222
## cat 6
         pharmacy_num_ptt:log(median_income) dominanceYes:perc_oxy
## cat_2
                                  -4.1193382
                                                          0.8982226
## cat_3
                                   3.3691941
                                                          0.8442034
                                  -0.6501612
                                                          0.7953694
## cat_4
## cat 5
                                   3.1198174
                                                          1.0870959
## cat_6
                                 -14.3072082
                                                          2.8972880
         act_wt_person_county:perc_oxy
## cat_2
                             0.4628329
## cat_3
                             0.3988681
## cat 4
                            -0.9349026
                            -5.6523966
## cat 5
## cat 6
                             0.6433017
##
## Std. Errors:
##
         (Intercept) pharmacy_num_ptt most_dist_channelRETAIL PHARMACY
## cat 2
           2.6650838
                       6.5507795
                                                              0.3214459
           3.0114917
                            7.9791174
                                                              0.3058579
## cat 3
## cat 4
           4.8929145
                           11.7736173
                                                              0.5091622
## cat_5
           0.6960112
                            0.3705614
                                                              0.6826628
           0.2809398
                            0.3182387
                                                              0.1076812
## cat 6
         dominanceYes log(median_income) political_affRepublican
## cat 2
           2.9929066
                                1.833568
                                                     2.801574e+00
## cat_3
            2.8652957
                                1.849142
                                                     2.923999e+00
## cat_4
            4.0429297
                                1.868611
                                                     4.186294e+00
                                7.489523
                                                     5.637889e-01
## cat_5
            0.6825959
            0.7120080
                               2.927212
                                                     7.424363e-06
## cat_6
         act_wt_person_county perc_oxy distr_num_ptt
                  13.0786531 0.1122101
## cat 2
                                           0.9950559
## cat 3
                   13.7169841 0.1266594
                                            0.9734352
## cat_4
                   1.7099773 0.1390232
                                            1.1445612
## cat 5
                    0.3470802 2.6505067
                                            5.8107922
                    0.5262090 0.4412734
## cat 6
                                            3.1089603
         log(median_income):political_affRepublican
## cat 2
                                        1.904094e+00
## cat 3
                                        1.905924e+00
## cat_4
                                        1.951306e+00
                                        5.315860e+00
## cat_5
                                        7.856089e-05
## cat_6
         act_wt_person_county:distr_num_ptt
                                   3.010011
## cat 2
## cat_3
                                   2.254038
## cat_4
                                   2.612740
## cat_5
                                   1.218282
## cat 6
                                   4.762232
##
         pharmacy_num_ptt:act_wt_person_county
## cat 2
                                      3.8568923
```

```
## cat 3
                                      4.2597064
                                      4.3447002
## cat 4
## cat 5
                                      1.0087462
                                      0.9246094
## cat 6
##
         pharmacy_num_ptt:political_affRepublican
## cat_2
                                      5.824328e+00
                                      5.853657e+00
## cat 3
                                      5.925844e+00
## cat 4
## cat 5
                                      4.425654e+00
## cat_6
                                      1.445569e-05
         most_dist_channelRETAIL PHARMACY:log(median_income)
## cat 2
                                                    0.1755340
## cat_3
                                                    0.1952513
## cat_4
                                                    0.2154127
                                                    7.3046555
## cat_5
## cat_6
                                                    0.7158730
         pharmacy_num_ptt:log(median_income) dominanceYes:perc_oxy
##
## cat_2
                                    1.0349992
                                    1.1998689
                                                          0.4539692
## cat 3
## cat 4
                                    1.5674393
                                                           0.4567686
## cat_5
                                    4.5805695
                                                          1.8063398
## cat 6
                                    0.5875612
                                                           0.4623058
##
         act_wt_person_county:perc_oxy
## cat 2
                             0.2798651
## cat 3
                             0.3298717
## cat 4
                             0.3010169
                            13.6831843
## cat_5
## cat_6
                              0.5922605
##
## Residual Deviance: 146.6652
## AIC: 316.6652
mostImportantVariables.ord.interact <- varImp(fit1_interact_ord)</pre>
mostImportantVariables.ord.interact$Variables <- row.names(mostImportantVariables.ord.interact)
mostImportantVariables.ord.interact <- mostImportantVariables.ord.interact[order(-mostImportantVariable
print(head(mostImportantVariables.ord.interact))
##
                                           Overall
                                          240.6413
## pharmacy_num_ptt
## most_dist_channelRETAIL PHARMACY
                                          202.0458
## pharmacy_num_ptt:act_wt_person_county 191.4422
## dominanceYes
                                          190.9030
## act_wt_person_county
                                          127.1916
## political_affRepublican
                                          101.3504
##
                                                                       Variables
## pharmacy_num_ptt
                                                                pharmacy_num_ptt
## most dist channelRETAIL PHARMACY
                                               most dist channelRETAIL PHARMACY
## pharmacy_num_ptt:act_wt_person_county pharmacy_num_ptt:act_wt_person_county
## dominanceYes
                                                                    dominanceYes
## act_wt_person_county
                                                            act_wt_person_county
## political_affRepublican
                                                        political_affRepublican
knitr::kable(fit1_interact_ord %>% tidy(conf.int=TRUE),format="html",digits=3)
```

y.level

 $_{\rm term}$ estimate $\operatorname{std.error}$ statistic p.value conf.low ${\rm conf.high}$ cat_2 (Intercept) $0.000000\mathrm{e}{+00}$ 2.665-26.280 0.0000.000000e+000.000000e+00 cat_2 pharmacy_num_ptt $2.418252\mathrm{e}{+08}$ 6.5512.9470.003 $6.419010\mathrm{e}{+02}$ 9.110353e+13 cat_2 $most_dist_channelRETAIL\ PHARMACY$ 0.000000e+000.321-277.292 0.000 $0.000000\mathrm{e}{+00}$ 0.000000e+00 cat_2 ${\bf dominance Yes}$

2.704797e + 03

2.9932.641

7.666000e+00

 $9.543362\mathrm{e}{+05}$

 cat_2

 $\log(\text{median}_{\text{income}})$

3.903302e+08

1.834

10.789

0.000

 $1.073239\mathrm{e}{+07}$

 $1.419607\mathrm{e}{+10}$

 cat_2

 $political_aff Republican$

0.000000e+00

2.802

-8.540

0.000

 $0.000000\mathrm{e}{+00}$

0.000000e+00

 cat_2

 $act_wt_person_county$

 $0.000000\mathrm{e}{+00}$

13.079

-3.546

0.000

0.000000e+00

0.000000e+00

 cat_2

 $perc_oxy$

8.890000e-01

0.112

-1.051

0.293

7.130000e-01

1.107000e+00

 cat_2

```
distr\_num\_ptt
1.747900e+01
0.995
2.875
0.004
2.486000e+00
1.228880\mathrm{e}{+02}
cat 2
\log(\mathrm{median\_income}) : \mathrm{political\_affRepublican}
0.000000e+00
1.904
-5.106
0.000
0.000000e+00
3.000000e-03
cat 2
act\_wt\_person\_county: distr\_num\_ptt
0.000000e+00
3.010
-4.122
0.000
0.000000e+00
1.000000e-03
cat_2
pharmacy\_num\_ptt:act\_wt\_person\_county
8.407374e{+11}
3.857
7.119
0.000
4.381952e + 08
1.613069e + 15
cat\_2
pharmacy\_num\_ptt:political\_affRepublican
7.008456e+07
5.824
```

```
0.002
7.725830e+02
6.357689e{+12}
cat_2
most\_dist\_channelRETAIL\ PHARMACY:log(median\_income)
3.356037e+03
0.176
46.250
0.000
2.379096e+03
4.734145\mathrm{e}{+03}
cat 2
pharmacy_num_ptt:log(median_income)
1.600000e-02
1.035
-3.980
0.000
2.000000e-03
1.240000e-01
cat\_2
dominance Yes:perc\_oxy
2.455000\mathrm{e}{+00}
0.454
1.978
0.048
1.008000e+00
5.979000e+00
cat_2
act\_wt\_person\_county:perc\_oxy
1.589000e+00
0.280
1.654
0.098
9.180000 \mathrm{e}\text{-}01
2.749000e+00
```

 cat_3

(Intercept) 7.467588e + 243.011 19.018 0.000 2.040770e + 22 $2.732541\mathrm{e}{+27}$ cat_3 $pharmacy_num_ptt$ $0.000000\mathrm{e}{+00}$ 7.979-7.013 0.0000.000000e+000.000000e+00 cat_3 $most_dist_channelRETAIL\ PHARMACY$ $1.128100\mathrm{e}{+34}$ 0.306256.356 0.000 $6.194425\mathrm{e}{+33}$ $2.054445\mathrm{e}{+34}$ cat_3 ${\bf dominance Yes}$ 1.092734e+052.8654.0490.000 $3.977140\mathrm{e}{+02}$ 3.002332e+07 cat_3 $\log(\text{median}_\text{income})$ 8.016770e + 02

1.8493.616

2.138000e+01

3.006019e+04

 cat_3

 $political_aff Republican$

3.575113e + 26

2.924

20.910

0.000

 $1.159785\mathrm{e}{+24}$

1.102053e+29

 cat_3

 $act_wt_person_county$

2.000000e-03

13.717

-0.442

0.658

 $0.000000\mathrm{e}{+00}$

1.098264e + 09

 cat_3

perc_oxy

 $8.970000 \mathrm{e}\text{-}01$

0.127

-0.862

0.389

7.000000e-01

1.149000e+00

 cat_3

 $distr_num_ptt$

 $1.421200\mathrm{e}{+01}$

0.973

2.727

0.006

2.109000e+00

9.577300e+01

 cat_3

```
\log(\mathrm{median\_income}) : \mathrm{political\_affRepublican}
0.000000e+00
1.906
-9.225
0.000
0.000000e+00
0.000000e+00
cat\_3
act\_wt\_person\_county: distr\_num\_ptt
0.000000e+00
2.254
-5.161
0.000
0.000000e+00
1.000000e-03
cat 3
pharmacy\_num\_ptt:act\_wt\_person\_county
3.921274\mathrm{e}{+06}
4.260
3.564
0.000
9.280230\mathrm{e}{+02}
1.656898\mathrm{e}{+10}
cat\_3
pharmacy\_num\_ptt:political\_affRepublican
1.932711e+07
5.854
2.866
0.004
2.011520\mathrm{e}{+02}
1.856988e{+12}
cat\_3
most\_dist\_channelRETAIL\ PHARMACY:log(median\_income)
0.000000e+00
0.195
-40.371
```

```
0.000
0.000000e+00
1.000000e-03
cat\_3
pharmacy_num_ptt:log(median_income)
2.905500e+01
1.200
2.808
0.005
2.766000e+00
3.051780e{+02}
cat\_3
{\bf dominance Yes:perc\_oxy}
2.326000e+00
0.454
1.860
0.063
9.550000e-01
5.663000e+00
cat\_3
act\_wt\_person\_county:perc\_oxy
1.490000e+00
0.330
1.209
0.227
7.810000e-01
2.845000e+00
cat\_4
(Intercept)
5.706457\mathrm{e}{+05}
4.893
2.709
0.007
3.904000e+01
8.341092e+09
```

 cat_4

 $pharmacy_num_ptt$ 0.000000e+0011.774-1.649 0.099 0.000000e+00 $3.903100e{+01}$ cat_{-4} $most_dist_channelRETAIL\ PHARMACY$ 1.451567e + 080.50936.910 0.000 $5.351031e{+07}$ 3.937647e + 08cat 4 ${\bf dominance Yes}$ 5.177477e + 064.0433.824 0.000 $1.874002\mathrm{e}{+03}$ $1.430429e{+10}$ cat_4 $\log(\text{median}_{\text{income}})$ 6.978192e+031.869 4.7360.000 $1.791340\mathrm{e}{+02}$ 2.718361e+05 cat_{-4} $political_aff Republican$ 7.967800e+014.186

2.200000e-02

 $2.915530e{+05}$

 cat_4

 $act_wt_person_county$

 $8.240913e{+}18$

1.710

25.471

0.000

 $2.886955\mathrm{e}{+17}$

 $2.352397\mathrm{e}{+20}$

 cat_{-4}

perc_oxy

1.448000e+00

0.139

2.662

0.008

 $1.103000\mathrm{e}{+00}$

1.901000e+00

 cat_{-4}

 $distr_num_ptt$

 $4.006400\mathrm{e}{+01}$

1.145

3.224

0.001

4.251000e+00

3.775790e+02

 cat_4

 $\log(\mathrm{median_income}) : \mathrm{political_affRepublican}$

0.000000e+00

1.951

-6.321

0.000

0.000000e+00

0.000000e+00

 cat_4

```
act\_wt\_person\_county:distr\_num\_ptt
0.000000e+00
2.613
-5.311
0.000
0.000000e+00
0.000000\mathrm{e}{+00}
cat\_4
pharmacy\_num\_ptt:act\_wt\_person\_county
8.967960e{+14}
4.345
7.925
0.000
1.796711e{+11}
4.476197e + 18
cat 4
pharmacy\_num\_ptt:political\_affRepublican
3.558162\mathrm{e}{+07}
5.926
2.934
0.003
3.214680\mathrm{e}{+02}
3.938343\mathrm{e}{+12}
cat 4
most_dist_channelRETAIL PHARMACY:log(median_income)
1.050000e-01
0.215
-10.455
0.000
6.900000e-02
1.600000e-01
\operatorname{cat}_{-4}
pharmacy_num_ptt:log(median_income)
5.220000e-01
1.567
-0.415
```

0.6782.400000e-021.126800e+01 cat_4 ${\bf dominance Yes:perc_oxy}$ 2.215000e+000.4571.741 0.082 9.050000e-01 $5.423000\mathrm{e}{+00}$ cat_{-4} $act_wt_person_county:perc_oxy$ 3.930000e-010.301-3.106 0.0022.180000e-017.080000e-01 cat_5 (Intercept) $1.007700\mathrm{e}{+01}$ 0.6963.319 0.001 2.576000e+003.942600e+01 cat_5 $pharmacy_num_ptt$

 $2.508359\mathrm{e}{+14}$

1.213298e+145.185757e+14

0.371 89.475 0.000

 cat_5

70

 $most_dist_channelRETAIL\ PHARMACY$

6.844400e+01

0.683

6.190

0.000

1.795800e+01

 $2.608670\mathrm{e}{+02}$

 cat_5

 ${\bf dominance Yes}$

3.842392e + 30

0.683

103.170

0.000

1.008266e + 30

1.464294e + 31

 cat_5

 $\log(\text{median}_{\text{income}})$

 $0.000000\mathrm{e}{+00}$

7.490

-1.645

0.100

 $0.000000\mathrm{e}{+00}$

 $1.059800e{+01}$

 cat_{-5}

 $political_aff Republican$

1.000000e-03

0.564

-13.322

0.000

 $0.000000\mathrm{e}{+00}$

2.000000e-03

 cat_5

 $act_wt_person_county$

 $0.000000\mathrm{e}{+00}$

0.347

-64.658

```
0.000
0.000000e+00
0.000000e+00
cat_5
perc_oxy
1.038100e+01
2.651
0.883
0.377
5.800000e-02
1.872144\mathrm{e}{+03}
cat\_5
distr\_num\_ptt
0.000000e+00
5.811
-4.453
0.000
0.000000\mathrm{e}{+00}
0.000000e+00
cat\_5
\log(\mathrm{median\_income}) : political\_aff Republican
0.000000e+00
5.316
-1.506
0.132
0.000000e+00
1.119200e+01
cat_5
act\_wt\_person\_county: distr\_num\_ptt
0.000000\mathrm{e}{+00}
1.218
-19.023
0.000
0.000000\mathrm{e}{+00}
```

0.000000e+00

 cat_5

```
pharmacy\_num\_ptt:act\_wt\_person\_county
0.000000e+00
1.009
-54.128
0.000
0.000000e+00
0.000000\mathrm{e}{+00}
cat\_5
pharmacy\_num\_ptt:political\_affRepublican
1.960400e+01
4.426
0.672
0.501
3.000000e-03
1.146770e + 05
cat 5
most\_dist\_channelRETAIL\ PHARMACY:log(median\_income)
3.177000\mathrm{e}{+00}
7.305
0.158
0.874
0.000000e+00
5.244509\mathrm{e}{+06}
cat\_5
pharmacy_num_ptt:log(median_income)
2.264200e{+01}
4.581
0.681
0.496
3.000000e-03
1.794351e + 05
cat\_5
{\bf dominance Yes:} {\bf perc\_oxy}
2.966000e+00
1.806
0.602
```

```
0.547
8.600000e-02
1.022540e+02
cat_5
act\_wt\_person\_county:perc\_oxy
4.000000e-03
13.683
-0.413
0.680
0.000000e+00
1.557195e+09
cat\_6
(Intercept)
5.525749e{+15}
0.281
129.025
0.000
3.186066e{+15}
9.583574e{+15}
cat\_6
pharmacy\_num\_ptt
9.849221\mathrm{e}{+48}
0.318
354.487
0.000
5.278574e{+48}
1.837753e+49
cat_6
most\_dist\_channelRETAIL\ PHARMACY
9.711406\mathrm{e}{+04}
0.108
106.645
0.000
7.863641e+04
1.199335e+05
```

 cat_6

 ${\bf dominance Yes}$

0.000000e+00

0.712

-120.104

0.000

0.000000e+00

 $0.000000\mathrm{e}{+00}$

 cat_6

 $\log(\text{median}_\text{income})$

 $2.853495\mathrm{e}{+07}$

2.927

5.865

0.000

 $9.198771e{+04}$

8.851655e + 09

 cat_6

 $political_aff Republican$

1.200000e-02

0.000

-591952.396

0.000

1.200000e-02

1.200000e-02

 cat_6

 $act_wt_person_county$

6.295935e+03

0.526

16.624

0.000

 $2.244659\mathrm{e}{+03}$

1.765916e + 04

 cat_6

perc_oxy

1.260000e-01

0.441

-4.695

```
0.000
5.300000 \mathrm{e}\text{-}02
2.990000e-01
cat\_6
distr\_num\_ptt
2.780570e + 03
3.109
2.551
0.011
6.277000e+00
1.231646e + 06
cat 6
\log(\mathrm{median\_income}) : \mathrm{political\_affRepublican}
0.000000e+00
0.000
-190949.727
0.000
0.000000e+00
0.000000e+00
cat\_6
act\_wt\_person\_county: distr\_num\_ptt
0.000000\mathrm{e}{+00}
4.762
-5.038
0.000
0.000000e+00
0.000000e+00
cat\_6
pharmacy\_num\_ptt:act\_wt\_person\_county
9.085618\mathrm{e}{+25}
0.925
64.645
0.000
1.483630\mathrm{e}{+25}
5.563953e + 26
```

 cat_6

```
pharmacy\_num\_ptt:political\_affRepublican
1.196581e+06
0.000
968129.680
0.000
1.196547e + 06
1.196615\mathrm{e}{+06}
cat 6
most\_dist\_channelRETAIL\ PHARMACY:log(median\_income)
2.230000e-01
0.716
-2.097
0.036
5.500000e-02
9.070000e-01
cat 6
pharmacy_num_ptt:log(median_income)
0.000000\mathrm{e}{+00}
0.588
-24.350
0.000
0.000000e+00
0.000000e+00
cat\_6
{\bf dominance Yes:perc\_oxy}
1.812500e{+01}
0.462
6.267
0.000
7.324000e+00
4.485300e+01
cat\_6
act\_wt\_person\_county:perc\_oxy
1.903000\mathrm{e}{+00}
0.592
1.086
```

```
0.277
```

5.960000e-01

6.075000e+00

Cumulative logistic regression

```
### polyr
library (MASS)
fit1<-polr(est_death_rate_cat ~ pharmacy_num_ptt + most_dist_channel + dominance + log(median_income) +
summary(fit1)
## Call:
## polr(formula = est_death_rate_cat ~ pharmacy_num_ptt + most_dist_channel +
      dominance + log(median_income) + political_aff + act_wt_person_county +
##
      perc_oxy + distr_num_ptt, data = train_oh_wv_2012, Hess = TRUE,
      method = "logistic")
##
##
## Coefficients:
##
                                      Value Std. Error t value
## pharmacy_num_ptt
                                   0.564486 0.2747 2.0549
## most_dist_channelRETAIL PHARMACY -0.254243
                                                0.4870 -0.5220
## dominanceYes
                                  1.547301 0.6263 2.4706
## log(median_income)
                                  -4.415956
                                              1.3485 -3.2747
                                -1.304081
## political_affRepublican
                                               0.4717 - 2.7644
## act_wt_person_county
                                  6.993948
                                              1.9732 3.5445
## perc_oxy
                                  0.003462 0.0203 0.1706
                                  -0.275981 0.1647 -1.6759
## distr_num_ptt
##
## Intercepts:
##
              Value
                      Std. Error t value
## cat_1|cat_2 -48.5503 14.6190 -3.3210
                                  -3.1053
## cat_2|cat_3 -44.9383 14.4714
## cat_3|cat_4 -43.0232 14.4176
                                  -2.9841
## cat_4|cat_5 -41.2075 14.3968
                                  -2.8623
## cat_5|cat_6 -40.1057 14.4018
                                  -2.7848
##
## Residual Deviance: 244.838
## AIC: 270.838
ctable <- coef(summary(fit1))</pre>
## calculate and store p values
p <- pnorm(abs(ctable[, "t value"]), lower.tail = FALSE) * 2</pre>
## combined table
(ctable <- cbind(ctable, "p value" = p))</pre>
##
                                          Value Std. Error
                                                              t value
## pharmacy_num_ptt
                                    0.564486010 0.27470434 2.0548856
## most_dist_channelRETAIL PHARMACY -0.254243035 0.48703105 -0.5220263
## dominanceYes
                                   1.547301283 0.62629680 2.4705559
## log(median_income)
                                  -4.415955555 1.34850170 -3.2747126
                               -1.304081141 0.47173549 -2.7644329
## political_affRepublican
                                   6.993947655 1.97317983 3.5445060
## act_wt_person_county
## perc_oxy
                                    0.003462341 0.02029621 0.1705905
                                   ## distr_num_ptt
```

```
-48.550313642 14.61901106 -3.3210395
## cat 1 cat 2
## cat_2|cat_3
                                   -44.938314787 14.47136335 -3.1053270
## cat 3|cat 4
                                   -43.023163517 14.41762188 -2.9840680
## cat_4|cat_5
                                   -41.207454790 14.39684221 -2.8622565
## cat 5|cat 6
                                   -40.105733160 14.40175107 -2.7847817
##
                                        p value
## pharmacy num ptt
                                   0.0398900519
## most dist channelRETAIL PHARMACY 0.6016519908
## dominanceYes
                                   0.0134903220
## log(median_income)
                                   0.0010576950
## political_affRepublican
                                   0.0057021825
## act_wt_person_county
                                   0.0003933496
## perc_oxy
                                   0.8645457567
## distr_num_ptt
                                   0.0937601746
## cat_1|cat_2
                                   0.0008968283
## cat_2|cat_3
                                   0.0019006879
## cat_3|cat_4
                                   0.0028444359
## cat 4|cat 5
                                   0.0042063637
## cat_5|cat_6
                                   0.0053563767
#not significant at p=0.05: most dist channel retail, perc_oxy
### polyr with interactions
fit1_interact<-polr(est_death_rate_cat ~ pharmacy_num_ptt + most_dist_channel + dominance + log(median_</pre>
summary(fit1 interact)
## Call:
## polr(formula = est_death_rate_cat ~ pharmacy_num_ptt + most_dist_channel +
       dominance + log(median_income) + political_aff + act_wt_person_county +
##
       perc_oxy + distr_num_ptt + log(median_income) * political_aff +
##
       act_wt_person_county * distr_num_ptt + act_wt_person_county *
       pharmacy_num_ptt + pharmacy_num_ptt * political_aff + log(median_income) *
      most_dist_channel + log(median_income) * pharmacy_num_ptt +
##
       perc_oxy * dominance + act_wt_person_county * perc_oxy, data = train_oh_wv_2012,
##
      Hess = TRUE, method = "logistic")
## Coefficients:
                                                          Value Std. Error
## pharmacy num ptt
                                                      -28.11061 7.60427
## most_dist_channelRETAIL PHARMACY
                                                       55.47383 5.93747
## dominanceYes
                                                        0.35146
                                                                   2.46953
## log(median_income)
                                                       -13.17296
                                                                   0.70656
## political_affRepublican
                                                      -34.69906 17.45942
## act_wt_person_county
                                                       15.68627 12.15334
## perc_oxy
                                                        0.02317
                                                                   0.05583
## distr_num_ptt
                                                       -0.20047
                                                                  0.38816
## log(median_income):political_affRepublican
                                                        3.32787 1.60366
                                                                  1.25706
                                                        0.11971
## act_wt_person_county:distr_num_ptt
## pharmacy_num_ptt:act_wt_person_county
                                                        0.30237
                                                                   1.69157
                                                       -0.76800 0.49133
## pharmacy_num_ptt:political_affRepublican
## most_dist_channelRETAIL PHARMACY:log(median_income) -5.28874 0.56043
## pharmacy_num_ptt:log(median_income)
                                                        2.72185
                                                                  0.74533
## dominanceYes:perc_oxy
                                                        0.01549
                                                                 0.03995
## act_wt_person_county:perc_oxy
                                                       -0.14413
                                                                   0.17242
##
                                                        t value
```

```
## pharmacy_num_ptt
                                                         -3.69669
## most_dist_channelRETAIL PHARMACY
                                                         9.34300
## dominanceYes
                                                         0.14232
## log(median_income)
                                                        -18.64386
## political_affRepublican
                                                        -1.98741
## act wt person county
                                                         1.29070
## perc oxy
                                                         0.41503
## distr_num_ptt
                                                        -0.51647
## log(median_income):political_affRepublican
                                                         2.07518
## act_wt_person_county:distr_num_ptt
                                                         0.09523
## pharmacy_num_ptt:act_wt_person_county
                                                         0.17875
## pharmacy_num_ptt:political_affRepublican
                                                        -1.56311
## most_dist_channelRETAIL PHARMACY:log(median_income) -9.43697
## pharmacy_num_ptt:log(median_income)
                                                         3.65189
## dominanceYes:perc_oxy
                                                         0.38784
## act_wt_person_county:perc_oxy
                                                        -0.83593
##
## Intercepts:
               Value
##
                         Std. Error t value
## cat_1|cat_2 -139.4913 6.3045
                                    -22.1256
## cat_2|cat_3 -135.7621 6.2292
                                    -21.7943
## cat_3|cat_4 -133.6689 6.2160
                                    -21.5038
## cat_4|cat_5 -131.6033
                           6.2678
                                     -20.9968
## cat_5|cat_6 -130.4057
                            6.3071
                                     -20.6760
##
## Residual Deviance: 232.0324
## AIC: 274.0324
ctable.interact.1 <- coef(summary(fit1_interact))</pre>
## calculate and store p values
p1.interact <- pnorm(abs(ctable.interact.1[, "t value"]), lower.tail = FALSE) * 2
## combined table
(ctable.interact.1 <- cbind(ctable.interact.1, "p value" = p1.interact))</pre>
##
                                                                Value
## pharmacy_num_ptt
                                                        -28.11061084
## most_dist_channelRETAIL PHARMACY
                                                         55.47383338
## dominanceYes
                                                          0.35146064
## log(median_income)
                                                        -13.17296462
## political_affRepublican
                                                        -34.69906090
## act_wt_person_county
                                                         15.68626835
## perc_oxy
                                                          0.02317058
## distr_num_ptt
                                                         -0.20047156
## log(median_income):political_affRepublican
                                                          3.32786901
## act wt person county:distr num ptt
                                                          0.11970531
## pharmacy_num_ptt:act_wt_person_county
                                                          0.30237478
## pharmacy num ptt:political affRepublican
                                                         -0.76799748
## most_dist_channelRETAIL PHARMACY:log(median_income)
                                                         -5.28874487
## pharmacy_num_ptt:log(median_income)
                                                          2.72185016
## dominanceYes:perc_oxy
                                                          0.01549378
## act_wt_person_county:perc_oxy
                                                         -0.14412717
## cat_1|cat_2
                                                        -139.49126592
## cat_2|cat_3
                                                        -135.76205566
## cat_3|cat_4
                                                        -133.66889301
## cat_4|cat_5
                                                       -131.60331423
```

```
## cat_5|cat_6
                                                        -130.40574916
##
                                                         Std. Error
## pharmacy num ptt
                                                         7.60427366
## most_dist_channelRETAIL PHARMACY
                                                         5.93747255
## dominanceYes
                                                         2.46953118
## log(median income)
                                                         0.70655771
## political affRepublican
                                                        17.45942266
## act_wt_person_county
                                                        12.15333911
## perc oxy
                                                         0.05582871
## distr_num_ptt
                                                         0.38815727
## log(median_income):political_affRepublican
                                                         1.60365661
## act_wt_person_county:distr_num_ptt
                                                         1.25706330
## pharmacy_num_ptt:act_wt_person_county
                                                         1.69157374
## pharmacy_num_ptt:political_affRepublican
                                                         0.49132750
## most_dist_channelRETAIL PHARMACY:log(median_income)
                                                         0.56042836
## pharmacy_num_ptt:log(median_income)
                                                         0.74532583
## dominanceYes:perc_oxy
                                                         0.03994851
## act_wt_person_county:perc_oxy
                                                         0.17241553
## cat 1|cat 2
                                                         6.30450681
## cat 2|cat 3
                                                         6.22924177
## cat_3|cat_4
                                                         6.21604690
## cat 4|cat 5
                                                         6.26777883
## cat_5|cat_6
                                                         6.30710783
                                                              t value
## pharmacy num ptt
                                                         -3.69668585
## most dist channelRETAIL PHARMACY
                                                          9.34300461
## dominanceYes
                                                          0.14231877
## log(median_income)
                                                        -18.64386224
## political_affRepublican
                                                         -1.98741170
## act_wt_person_county
                                                          1.29069618
                                                          0.41502988
## perc_oxy
## distr_num_ptt
                                                         -0.51646994
## log(median_income):political_affRepublican
                                                          2.07517557
## act_wt_person_county:distr_num_ptt
                                                          0.09522616
## pharmacy num ptt:act wt person county
                                                          0.17875353
## pharmacy_num_ptt:political_affRepublican
                                                         -1.56310705
## most_dist_channelRETAIL PHARMACY:log(median_income) -9.43696874
## pharmacy_num_ptt:log(median_income)
                                                          3.65189296
## dominanceYes:perc_oxy
                                                          0.38784389
## act_wt_person_county:perc_oxy
                                                         -0.83592916
## cat 1|cat 2
                                                        -22.12564282
## cat 2|cat 3
                                                        -21.79431474
## cat 3|cat 4
                                                        -21.50384243
## cat_4|cat_5
                                                        -20.99680251
## cat_5|cat_6
                                                        -20.67599805
##
                                                              p value
                                                         2.184324e-04
## pharmacy_num_ptt
## most_dist_channelRETAIL PHARMACY
                                                         9.363838e-21
## dominanceYes
                                                         8.868282e-01
## log(median_income)
                                                         1.416357e-77
## political_affRepublican
                                                         4.687679e-02
## act_wt_person_county
                                                         1.968091e-01
## perc oxy
                                                         6.781200e-01
## distr num ptt
                                                         6.055262e-01
```

```
## log(median income):political affRepublican
                                                         3.797027e-02
## act_wt_person_county:distr_num_ptt
                                                         9.241352e-01
## pharmacy num ptt:act wt person county
                                                         8.581312e-01
## pharmacy_num_ptt:political_affRepublican
                                                         1.180274e-01
## most_dist_channelRETAIL PHARMACY:log(median_income) 3.837194e-21
## pharmacy num ptt:log(median income)
                                                         2.603144e-04
## dominanceYes:perc oxy
                                                         6.981316e-01
## act_wt_person_county:perc_oxy
                                                         4.031948e-01
## cat 1|cat 2
                                                        1.790677e-108
## cat_2|cat_3
                                                        2.626947e-105
## cat_3|cat_4
                                                        1.433166e-102
## cat_4|cat_5
                                                         7.015095e-98
                                                         5.697604e-95
## cat_5|cat_6
```

Backward selection to get lowest AIC (cumulative logit with interactions) - FINAL MODEL

```
## fit significant predictors and interations with cumulative logit
fit.select <- stepAIC(fit1_interact, trace = FALSE)</pre>
summary(fit.select)
## Call:
## polr(formula = est_death_rate_cat ~ pharmacy_num_ptt + most_dist_channel +
       dominance + log(median_income) + political_aff + act_wt_person_county +
##
       pharmacy_num_ptt:political_aff + most_dist_channel:log(median_income) +
       pharmacy num ptt:log(median income), data = train oh wv 2012,
##
       Hess = TRUE, method = "logistic")
## Coefficients:
                                                           Value Std. Error
## pharmacy_num_ptt
                                                        -29.8071
                                                                   13.1492
## most dist channelRETAIL PHARMACY
                                                                    27.7312
                                                         66.0704
## dominanceYes
                                                          0.9971
                                                                     0.5648
## log(median_income)
                                                         -9.9542
                                                                     3,4002
## political_affRepublican
                                                          1.0636
                                                                     1.3325
## act_wt_person_county
                                                                     1.7395
                                                          7.5644
## pharmacy_num_ptt:political_affRepublican
                                                         -0.9046
                                                                     0.4408
## most_dist_channelRETAIL PHARMACY:log(median_income)
                                                                     2.6236
                                                         -6.2989
## pharmacy_num_ptt:log(median_income)
                                                          2.8877
                                                                     1.2485
##
                                                        t value
## pharmacy num ptt
                                                        -2.2668
## most_dist_channelRETAIL PHARMACY
                                                         2.3825
## dominanceYes
                                                         1.7653
## log(median income)
                                                        -2.9275
## political affRepublican
                                                         0.7982
## act_wt_person_county
                                                         4.3485
## pharmacy_num_ptt:political_affRepublican
                                                        -2.0523
## most_dist_channelRETAIL PHARMACY:log(median_income) -2.4009
## pharmacy_num_ptt:log(median_income)
                                                         2.3129
##
## Intercepts:
##
               Value
                         Std. Error t value
## cat_1|cat_2 -105.9514
                           36.0762
                                      -2.9369
## cat_2|cat_3 -102.2201
                           35.9160
                                      -2.8461
## cat_3|cat_4 -100.1991
                                      -2.7942
                           35.8594
```

```
## cat_4|cat_5 -98.2888
                           35.8476
                                      -2.7419
                                      -2.7104
## cat_5|cat_6 -97.1360
                           35.8385
## Residual Deviance: 236.3985
## AIC: 264.3985
ctable.interact.2 <- coef(summary(fit.select))</pre>
## calculate and store p values
p2.interact <- pnorm(abs(ctable.interact.2[, "t value"]), lower.tail = FALSE) * 2
(ctable.interact.2 <- cbind(ctable.interact.2, "p value" = p2.interact))</pre>
##
                                                               Value
## pharmacy num ptt
                                                         -29.8070923
## most_dist_channelRETAIL PHARMACY
                                                          66.0703922
## dominanceYes
                                                           0.9971020
## log(median_income)
                                                          -9.9541669
## political_affRepublican
                                                           1.0636176
## act_wt_person_county
                                                           7.5643963
## pharmacy_num_ptt:political_affRepublican
                                                          -0.9046001
## most_dist_channelRETAIL PHARMACY:log(median_income)
                                                          -6.2989195
## pharmacy_num_ptt:log(median_income)
                                                           2.8876761
                                                        -105.9514019
## cat_1|cat_2
## cat_2|cat_3
                                                        -102.2200916
## cat_3|cat_4
                                                        -100.1991438
## cat_4|cat_5
                                                         -98.2887600
## cat_5|cat_6
                                                         -97.1360291
##
                                                        Std. Error
                                                                      t value
## pharmacy num ptt
                                                        13.1491667 -2.2668427
## most_dist_channelRETAIL PHARMACY
                                                        27.7311977 2.3825293
                                                         0.5648187 1.7653489
## dominanceYes
## log(median_income)
                                                         3.4002086 -2.9275166
## political_affRepublican
                                                         1.3325295 0.7981944
## act_wt_person_county
                                                         1.7395230 4.3485462
## pharmacy_num_ptt:political_affRepublican
                                                         0.4407761 -2.0522894
## most_dist_channelRETAIL PHARMACY:log(median_income) 2.6235931 -2.4008752
## pharmacy_num_ptt:log(median_income)
                                                         1.2484834 2.3129472
                                                        36.0761506 -2.9368821
## cat_1|cat_2
## cat_2|cat_3
                                                        35.9160204 -2.8460862
## cat_3|cat_4
                                                        35.8594230 -2.7942207
## cat_4|cat_5
                                                        35.8475514 -2.7418542
## cat_5|cat_6
                                                        35.8385116 -2.7103812
                                                             p value
## pharmacy_num_ptt
                                                        2.339984e-02
## most dist channelRETAIL PHARMACY
                                                        1.719416e-02
## dominanceYes
                                                        7.750515e-02
## log(median_income)
                                                        3.416808e-03
## political affRepublican
                                                        4.247577e-01
## act_wt_person_county
                                                        1.370429e-05
## pharmacy_num_ptt:political_affRepublican
                                                        4.014154e-02
## most_dist_channelRETAIL PHARMACY:log(median_income) 1.635591e-02
## pharmacy_num_ptt:log(median_income)
                                                        2.072554e-02
## cat_1|cat_2
                                                        3.315301e-03
## cat_2|cat_3
                                                        4.426021e-03
## cat_3|cat_4
                                                        5.202495e-03
## cat_4|cat_5
                                                        6.109345e-03
```

```
## cat_5|cat_6
                                                       6.720591e-03
Tree Models
pred_matrix <- train_oh_wv_2012 %>% # a matrix of predictors
  mutate(log_income = log(median_income)) %>%
  dplyr::select(est_death_rate_cat, pharmacy_num_ptt, most_dist_channel, dominance, log_income, politi
## Classification tree model
set.seed(1)
classtree <- tree(est_death_rate_cat ~ pharmacy_num_ptt + most_dist_channel + dominance + log(median_in</pre>
summary(classtree)
##
## Classification tree:
## tree(formula = est_death_rate_cat ~ pharmacy_num_ptt + most_dist_channel +
       dominance + log(median_income) + political_aff + act_wt_person_county +
##
       perc_oxy + distr_num_ptt, data = train_oh_wv_2012)
##
## Variables actually used in tree construction:
                              "act_wt_person_county" "log(median_income)"
## [1] "political_aff"
## [4] "distr_num_ptt"
                              "pharmacy_num_ptt"
                                                     "perc_oxy"
## [7] "dominance"
## Number of terminal nodes: 17
## Residual mean deviance: 1.427 = 128.4 / 90
## Misclassification error rate: 0.3084 = 33 / 107
plot(classtree)
text(classtree, pretty = 0) # The most important predictor is pharmacy-num-ptt
                      political_aff: Democrat
  act_wt_person_cbunty < 0.242829 perc_oxly < 54.8
log(median_idistome)irad/01442365505_cbloogt(medial66in78me) < 10.5185
                           berc oxy < 47.25
                                                act wt person county < 0.272523
                          dat gat_@at_3
                                            cat 4
                                        pharmacy_numptt < 1.9365dominahce: No
deathrate.test <- test_oh_wv_2012$est_death_rate_cat</pre>
classtree.pred <- predict(classtree, test_oh_wv_2012, type = "class")</pre>
table(classtree.pred, deathrate.test)
##
                 deathrate.test
## classtree.pred cat_1 cat_2 cat_3 cat_4 cat_5 cat_6
##
            cat 1
                      0
                           1
                                  0
                                        0
```

0

1

0

##

##

cat 2

cat_3

3

0

13

1

2

3

0

1

```
##
            cat 4
                      0
                            1
                                   3
                                         0
                                               2
##
                             0
                                   0
                                                     0
            cat_5
                      0
                                         0
                                               0
##
            cat 6
                             0
                                   0
                                         0
                                               0
                                                     2
sum(diag(table(classtree.pred, deathrate.test)))/36 # correctly classified ~36%.
## [1] 0.5
library(e1071)
##
## Attaching package: 'e1071'
## The following object is masked from 'package:brms':
##
##
       rwiener
caret::confusionMatrix(classtree.pred, deathrate.test)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction cat_1 cat_2 cat_3 cat_4 cat_5 cat_6
##
        cat_1
                  0
                        1
                               0
                                     0
                                           0
                                                 0
##
        cat_2
                  3
                       13
                               2
                                     0
                                           0
                                                 0
                               3
                                                 1
##
        cat_3
                  0
                        1
                                     1
                                           1
##
                  0
                               3
                                     0
                                           2
                                                 2
        cat_4
                        1
        cat_5
##
                  0
                        0
                               0
                                     0
                                           0
                                                 0
##
                               0
                                     0
                                           0
                                                 2
        cat_6
                  0
                        0
##
## Overall Statistics
##
##
                  Accuracy: 0.5
##
                    95% CI: (0.3292, 0.6708)
##
       No Information Rate: 0.4444
##
       P-Value [Acc > NIR] : 0.3061
##
##
                     Kappa: 0.304
##
  Mcnemar's Test P-Value : NA
##
##
## Statistics by Class:
##
##
                        Class: cat_1 Class: cat_2 Class: cat_3 Class: cat_4
## Sensitivity
                             0.00000
                                            0.8125
                                                         0.37500
                                                                      0.00000
## Specificity
                             0.96970
                                            0.7500
                                                         0.85714
                                                                      0.77143
## Pos Pred Value
                             0.00000
                                            0.7222
                                                         0.42857
                                                                      0.00000
## Neg Pred Value
                             0.91429
                                            0.8333
                                                         0.82759
                                                                      0.96429
## Prevalence
                             0.08333
                                            0.4444
                                                         0.22222
                                                                      0.02778
## Detection Rate
                             0.00000
                                            0.3611
                                                         0.08333
                                                                      0.00000
## Detection Prevalence
                             0.02778
                                            0.5000
                                                         0.19444
                                                                      0.22222
                                            0.7812
                                                         0.61607
                                                                      0.38571
## Balanced Accuracy
                             0.48485
                        Class: cat_5 Class: cat_6
                             0.00000
## Sensitivity
                                           0.40000
                             1.00000
## Specificity
                                           1.00000
## Pos Pred Value
                                  NaN
                                           1.00000
## Neg Pred Value
                            0.91667
                                           0.91176
```

```
## Prevalence
## Detection Rate
                                    0.13889
                          0.08333
                          0.00000
                                      0.05556
## Detection Prevalence
                          0.00000
                                      0.05556
                                      0.70000
## Balanced Accuracy
                          0.50000
library(mltest)
ml_test(classtree.pred, deathrate.test, output.as.table = FALSE)
## $accuracy
## [1] 0.5
##
## $balanced.accuracy
## cat 1
            cat_2 cat_3 cat_4 cat_5 cat_6
## 0.4736842 0.6562500 0.5822368 0.3461538 0.5000000 0.7000000
##
## $DOR
   cat_1 cat_2 cat_3 cat_4 cat_5 cat_6
## 0.000000 4.333333 2.250000 0.000000
                                       {\tt NaN}
                                                Inf
## $error.rate
## [1] 0.5
##
## $F0.5
   cat_1 cat_2 cat_3 cat_4 cat_5 cat_6
      NaN 0.7386364 0.4166667
                                           NaN 0.7692308
##
                                  NaN
##
## $F1
##
  cat 1 cat 2 cat 3 cat 4
                                          cat 5 cat 6
       NaN 0.7647059 0.4000000
                                  NaN
                                           NaN 0.5714286
##
##
## $F2
##
      \mathtt{cat}_{\mathtt{1}}
             \mathtt{cat}\_2
                       cat_3
                                \mathtt{cat}\_4
                                          \mathtt{cat}_{\mathtt{5}}
                                                   cat_6
       NaN 0.7926829 0.3846154
                                           NaN 0.4545455
##
                                  {\tt NaN}
##
## $FDR
## cat_1 cat_2 cat_3 cat_4 cat_5
                                                  cat 6
## 1.0000000 0.2777778 0.5714286 1.0000000
                                          NaN 0.0000000
##
## $FNR
## cat_1 cat_2 cat_3 cat_4 cat_5 cat_6
## 1.0000 0.1875 0.6250 1.0000 1.0000 0.6000
## $FOR
      cat 1 cat 2 cat 3 cat 4 cat 5 cat 6
## 0.14285714 0.37500000 0.25000000 0.05263158 0.14285714 0.15789474
##
## $FPR
                          cat_3
               cat_2
                                   cat_4
                                              cat_5
## 0.05263158 0.50000000 0.21052632 0.30769231 0.00000000 0.000000000
##
## $geometric.mean
             cat_2 cat_3 cat_4 cat_5 cat_6
## cat_1
## 0.0000000 0.6373774 0.5441072 0.0000000 0.0000000 0.6324555
##
## $Jaccard
```

```
## cat_1 cat_2 cat_3 cat_4 cat_5 cat_6
## 0.0000000 0.6190476 0.2500000 0.0000000 0.0000000 0.4000000
##
## $L
## cat_1 cat_2 cat_3 cat_4 cat_5 cat_6
## 0.00000 1.62500 1.78125 0.00000 NaN Inf
## $lambda
## cat_1 cat_2 cat_3 cat_4 cat_5 cat_6
## 1.0555556 0.3750000 0.7916667 1.4444444 1.0000000 0.6000000
## $MCC
## cat_1 cat_2 cat_3 cat_4 cat_5 cat_6 ## -0.0867110 0.3294039 0.1713777 -0.1272570 NaN 0.5803810
## $MK
## cat_1 cat_2 cat_3 cat_4 cat_5 cat_6
## -0.14285714  0.34722222  0.17857143  -0.05263158
                                             NaN 0.84210526
##
## $NPV
## cat_1 cat_2 cat_3 cat_4 cat_5 cat_6
## 0.8571429 0.6250000 0.7500000 0.9473684 0.8571429 0.8421053
##
## $OP
## cat_1 cat_2 cat_3 cat_4 cat_5 cat_6
## -0.50000000 0.26190476 0.14406780 -0.50000000 -0.50000000 0.07142857
## $precision
## cat_1 cat_2 cat_3 cat_4 cat_5 cat_6
## 0.0000000 0.7222222 0.4285714 0.0000000 NaN 1.0000000
##
## $recall
## cat_1 cat_2 cat_3 cat_4 cat_5 cat_6
## 0.0000 0.8125 0.3750 0.0000 0.0000 0.4000
## $specificity
## cat 1 cat 2 cat 3 cat 4 cat 5 cat 6
## 0.9473684 0.5000000 0.7894737 0.6923077 1.0000000 1.0000000
##
## $Youden
## cat 1 cat 2 cat 3 cat 4 cat 5 cat 6
## Pruned classfiction tree model
set.seed(3)
cv.classtree <- cv.tree(classtree, FUN = prune.misclass)</pre>
## $size
## [1] 17 14 11 8 7 5 2 1
## $dev
## [1] 79 76 76 69 69 62 59 66
##
## $k
```

```
-Inf 0.0000000 0.3333333 1.3333333 2.0000000 2.5000000 3.6666667
   [8] 8.0000000
##
##
## $method
## [1] "misclass"
##
## attr(,"class")
## [1] "prune"
                         "tree.sequence"
par(mfrow = c(1,2))
plot(cv.classtree$size, cv.classtree$dev, type = "b") # lowest cv-error is when #nodes = 6
plot(cv.classtree$k, cv.classtree$dev, type = "b")
                                                             \infty
      75
                                                       75
cv.classtree$dev
                                                 cv.classtree$dev
      70
                                                       20
                      00
                                                                  0
                                                                    0
      65
                                                       65
                                                       9
      9
              0
                   5
                           10
                                    15
                                                             0
                                                                    2
                                                                           4
                                                                                  6
                                                                                         8
                 cv.classtree$size
                                                                    cv.classtree$k
prune.classtree <- prune.misclass(classtree, best = 3)</pre>
plot(prune.classtree)
text(prune.classtree, pretty = 0)
prunetree.pred <- predict(prune.classtree, newdata = test_oh_wv_2012, type = "class")</pre>
table(prunetree.pred, deathrate.test)
                  deathrate.test
##
##
   prunetree.pred cat_1 cat_2 cat_3 cat_4 cat_5 cat_6
                                     0
                                            0
             cat_1
                        0
                              0
                                                  0
                                                         0
##
             cat_2
                        3
                             11
                                     4
                                            1
                                                  0
                                                         0
##
                        0
                              5
                                     3
                                            0
                                                  2
                                                         5
##
             cat_3
##
                        0
                              0
                                     1
                                            0
                                                  1
                                                         0
             cat_4
##
             cat_5
                        0
                              0
                                     0
                                            0
                                                  0
                                                         0
                                                  0
             cat_6
sum(diag(table(prunetree.pred, deathrate.test)))/36 # correctly classified ~38.8%
```

[1] 0.3888889

```
political_aff: Democrat
                perc_oxy < 54.8
     cat 3
act_wt_personlog/numeta/ian0_inla6/nna3 < 10
           cat 2 cat 3
                        cat 4 cat 2
## Bagging
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## Attaching package: 'randomForest'
## The following object is masked from 'package:dplyr':
##
##
       combine
## The following object is masked from 'package:ggplot2':
##
##
       margin
set.seed(4)
bagtree <- randomForest(est_death_rate_cat ~., data = pred_matrix, mtry = 8, importance = TRUE, ntree =
bagtree
##
## Call:
## randomForest(formula = est_death_rate_cat ~ ., data = pred_matrix, mtry = 8, importance = TRUE
                  Type of random forest: classification
##
##
                        Number of trees: 25
## No. of variables tried at each split: 8
##
           OOB estimate of error rate: 61.68%
##
## Confusion matrix:
         cat_1 cat_2 cat_3 cat_4 cat_5 cat_6 class.error
## cat_1
             0
                   6
                         1
                               0
                                     0
                                           0
                                               1.0000000
                  26
                         8
                                     2
                                               0.3953488
## cat_2
             3
                               4
                                           0
## cat_3
             0
                  14
                        11
                               3
                                     1
                                           1 0.6333333
```

1 0.7777778

0 1.0000000

0 1.0000000

1

0

1

4

2

3

8

2

0

cat 4

cat 5

cat 6

0

0

0

1

0

```
bag.test <- test_oh_wv_2012 %>%
mutate(log_income = log(median_income)) %>%
dplyr::select(est_death_rate_cat, pharmacy_num_ptt, most_dist_channel, dominance, log_income, political
bagtree.pred <- predict(bagtree, newdata = bag.test)</pre>
table(bagtree.pred, deathrate.test)
##
               deathrate.test
## bagtree.pred cat_1 cat_2 cat_3 cat_4 cat_5 cat_6
##
                    0
                           0
                                 0
          cat 1
                                       0
                                              0
##
          cat 2
                    3
                           9
                                 4
                                       1
                                              0
                                                    0
##
          cat_3
                    0
                           6
                                 3
                                       Ω
                                              1
                                                    1
##
          \mathtt{cat}_4
                    0
                           0
                                 1
                                       0
                                                    3
##
                    0
                                 0
                                                    0
          cat_5
                           1
                                       0
                                              0
##
          cat_6
                    0
                           0
                                 0
                                       0
                                              1
                                                    1
sum(diag(table(bagtree.pred, deathrate.test)))/36 # correctly classified ~36%
## [1] 0.3611111
## RF
set.seed(5)
rf.tree <- randomForest(est_death_rate_cat ~., data = pred_matrix, mtry = 3, importance = TRUE)
rf.tree
##
## Call:
## randomForest(formula = est_death_rate_cat ~ ., data = pred_matrix,
                                                                             mtry = 3, importance = TRUE
##
                  Type of random forest: classification
                         Number of trees: 500
##
## No. of variables tried at each split: 3
##
           OOB estimate of error rate: 51.4%
##
## Confusion matrix:
##
         cat_1 cat_2 cat_3 cat_4 cat_5 cat_6 class.error
                   7
                          0
## cat_1
             0
                                0
                                      0
                                             0
                                                 1.0000000
                  33
                          6
                                3
                                      0
                                             0
                                                 0.2325581
## cat_2
             1
## cat_3
             0
                  12
                         13
                                3
                                      2
                                             0
                                                0.5666667
                   7
                          5
                                      0
                                             0
## cat_4
             0
                                6
                                                0.6666667
## cat_5
             0
                    1
                          4
                                0
                                      0
                                             0
                                                 1.0000000
                          2
## cat_6
             0
                   0
                                2
                                      0
                                             0
                                                 1.0000000
rf.pred <- predict(rf.tree, newdata = bag.test)</pre>
table(rf.pred, deathrate.test)
##
          deathrate.test
## rf.pred cat_1 cat_2 cat_3 cat_4 cat_5 cat_6
##
     cat 1
               0
                     0
                            0
                                  0
##
     cat 2
               3
                    12
                            4
                                  1
                                        0
                                               Ω
##
     cat_3
               0
                     3
                            2
                                  0
                                        1
                                               1
                                        2
                                               3
##
     cat_4
               0
                     0
                            2
                                  0
##
     cat 5
               0
                            0
                                  0
                                        0
                                               0
                     1
                                  0
##
     cat 6
               0
                     0
                            0
                                        0
                                               1
sum(diag(table(rf.pred, deathrate.test)))/36 # correctly classified ~41.6%
```

[1] 0.4166667

importance(rf.tree) # log_income and act_wt_person are most important predictors

```
##
                                       cat_2
                             cat_1
                                                  cat_3
                                                             cat 4
## pharmacy_num_ptt
                        0.15538995 4.469156 -0.1031034 0.7077742
## most_dist_channel -0.12840129 -4.374066 2.1196737 -1.0670856
                        3.22947715 0.201426 1.5278826 4.0070936
## dominance
## log_income
                       0.74744283 11.531918 -0.6112006 4.1277354
                     3.86518860 2.631297 4.8664872 0.1390327
## political_aff
## act_wt_person_county -0.22423245 10.881121 6.2096595 7.7694189
## perc oxy -0.03936824 6.192752 6.0994209 -2.2375869
## distr_num_ptt
                       -1.22333357 4.713947 6.1053007 3.1087917
##
                               cat 5
                                          cat 6 MeanDecreaseAccuracy
## pharmacy_num_ptt 4.680364e+00 -0.4487080
## most_dist_channel 1.389425e+00 -1.3440623
                                                           4.231039
                                                          -2.867095
## dominance
                       8.170415e-01 -0.3780185
                                                            3.084762
## log income
                       -1.284557e+00 -2.9026957
                                                            8.951898
## political_aff
                      4.569845e+00 2.7593864
                                                            6.115234
## act_wt_person_county 2.162240e+00 1.9658005
                                                         13.878486
## perc_oxy
                       -3.348708e+00 -3.1288829
                                                           5.757402
## distr_num_ptt
                       5.496517e-17 -0.6030798
                                                           7.874999
##
                       MeanDecreaseGini
## pharmacy_num_ptt
                              12.928056
## most_dist_channel
                              1.174849
## dominance
                              1.583025
## log_income
                             15.792193
## political aff
                              3.168950
## act_wt_person_county
                            16.641734
## perc_oxy
                              12.040750
## distr_num_ptt
                              13.173525
varImpPlot(rf.tree)
```

rf.tree

Ordinal package

```
##
      lambdaVals nNonzero
                             loglik
                                         devPct
                                                      aic
                                                               bic
## 1
     1.55122718
                        5 -156.9847 0.000000000 323.9695 337.3336
     1.21734100
## 2
                        7 -155.9926 0.006319662 325.9853 344.6951
## 3
     0.95532048
                        7 -154.4556 0.016110402 322.9113 341.6211
     0.74969728
                        7 -153.6019 0.021548960 321.2037 339.9135
## 5
      0.58833241
                        7 -153.5762 0.021712192 321.1525 339.8623
## 6
      0.46169973
                        7 -153.5762 0.021712247 321.1525 339.8623
                        7 -153.5762 0.021712253 321.1525 339.8623
## 7
      0.36232346
      0.28433695
                        7 -153.5762 0.021712253 321.1525 339.8623
                        7 -153.5762 0.021712253 321.1525 339.8623
## 9
     0.22313626
## 10 0.17510840
                        7 -153.5762 0.021712253 321.1525 339.8623
## 11 0.13741806
                        7 -153.5762 0.021712253 321.1525 339.8623
```

```
## 12 0.10784020
                        7 -153.5762 0.021712253 321.1525 339.8623
## 13 0.08462867
                        7 -153.5762 0.021712253 321.1525 339.8623
## 14 0.06641319
                        7 -153.5762 0.021712253 321.1525 339.8623
                        7 -153.5762 0.021712253 321.1525 339.8623
## 15 0.05211841
## 16 0.04090045
                        7 -153.5762 0.021712253 321.1525 339.8623
## 17 0.03209703
                        7 -153.5762 0.021712253 321.1525 339.8623
## 18 0.02518847
                        7 -153.5762 0.021712253 321.1525 339.8623
## 19 0.01976690
                        7 -153.5762 0.021712253 321.1525 339.8623
## 20 0.01551227
                        7 -153.5762 0.021712253 321.1525 339.8623
coef(ordnet1, matrix=TRUE, criteria="aic") #by default, best AIC model is returned
##
                                    logit(P[Y<=1]) logit(P[Y<=2])</pre>
## (Intercept)
                                          -2.656564
                                                        -0.1262947
## (Intercept)
                                           0.000000
                                                         0.0000000
## pharmacy_num_ptt
                                           0.000000
                                                         0.0000000
## most_dist_channelRETAIL PHARMACY
                                           0.000000
                                                         0.0000000
## dominanceYes
                                           0.000000
                                                         0.0000000
## log_income
                                           0.000000
                                                         0.0000000
## political_affRepublican
                                                         0.0000000
                                           0.000000
## act_wt_person_county
                                           0.000000
                                                         0.0000000
## perc_oxy
                                           0.000000
                                                         0.0000000
## distr num ptt
                                           0.000000
                                                         0.0000000
##
                                    logit(P[Y<=3]) logit(P[Y<=4])</pre>
## (Intercept)
                                        1.625674484
                                                        1.11795827
## (Intercept)
                                        0.000000000
                                                        0.0000000
## pharmacy_num_ptt
                                        0.000000000
                                                        0.00000000
## most dist channelRETAIL PHARMACY
                                        0.000000000
                                                        0.00000000
## dominanceYes
                                        0.000000000
                                                        0.00000000
## log income
                                        0.000000000
                                                        0.00000000
## political_affRepublican
                                                        0.00000000
                                        0.000000000
## act_wt_person_county
                                        0.000000000
                                                        0.00000000
## perc_oxy
                                       -0.008977092
                                                        0.02071391
## distr_num_ptt
                                        0.000000000
                                                        0.00000000
##
                                    logit(P[Y<=5])
## (Intercept)
                                           3.050339
## (Intercept)
                                           0.000000
## pharmacy_num_ptt
                                           0.000000
## most_dist_channelRETAIL PHARMACY
                                           0.000000
## dominanceYes
                                           0.000000
## log_income
                                           0.000000
## political_affRepublican
                                           0.000000
## act_wt_person_county
                                           0.000000
## perc oxy
                                           0.000000
## distr num ptt
                                           0.000000
# CV by misclassification error
# ordinalNetCV(x, y, tuneMethod = "cvMisclass")
```

Calculate accuracy for all logistic regression models

fit1_interact_ord

```
deathrate.test <- test_oh_wv_2012$est_death_rate_cat
classtree.pred.fit1_interact_ord <- predict(fit1_interact_ord, test_oh_wv_2012, type = "class")
table(classtree.pred.fit1_interact_ord, deathrate.test)</pre>
```

```
##
                                     deathrate.test
## classtree.pred.fit1_interact_ord cat_1 cat_2 cat_3 cat_4 cat_5 cat_6
##
                                cat 1
                                          0
                                                3
                                                       0
                                                              0
                                                                    0
                                                                           0
##
                                          3
                                                10
                                                       3
                                                              0
                                cat_2
##
                                cat_3
                                          0
                                                 0
                                                       2
                                                              1
                                                                    1
                                                                           0
                                          0
                                                 0
                                                       2
                                                              0
                                                                    1
                                                                           1
##
                                cat 4
##
                                                 2
                                                              0
                                                                    0
                                                                           0
                                cat 5
                                          0
                                                       1
##
                                cat 6
                                          0
                                                 1
                                                       0
                                                              0
                                                                    1
                                                                           4
sum(diag(table(classtree.pred.fit1_interact_ord, deathrate.test)))/36
## [1] 0.444444
fit.select
deathrate.test <- test_oh_wv_2012$est_death_rate_cat</pre>
fit.select.preds <- predict(fit.select, test_oh_wv_2012, type = "class")</pre>
table(fit.select.preds, deathrate.test)
##
                    deathrate.test
## fit.select.preds cat_1 cat_2 cat_3 cat_4 cat_5 cat_6
##
              cat_1
                         1
                                0
                                      0
                                             0
                                                   0
                                                          0
##
              cat_2
                         2
                              13
                                      3
                                            0
                                                   0
                                                         0
                                2
                                                   2
                                                         0
##
               cat 3
                         0
                                      5
                                             1
                                      0
                                             0
                                                   1
                                                         2
##
              cat 4
                         0
                                1
##
              cat 5
                         0
                                      0
                                             0
                                                   0
                                                          0
                                      0
                                                         3
##
              cat_6
                         0
                                0
                                            0
                                                   0
sum(diag(table(fit.select.preds, deathrate.test)))/36
## [1] 0.6111111
fit0_interact
deathrate.test <- test_oh_wv_2012$est_death_rate_cat</pre>
classtree.pred.fit0.interact <- predict(fit0.interact, test_oh_wv_2012, type = "class")</pre>
table(classtree.pred.fit0.interact, deathrate.test)
##
                                 deathrate.test
## classtree.pred.fit0.interact cat_1 cat_2 cat_3 cat_4 cat_5 cat_6
##
                            cat 1
                                      0
                                            3
                                                   0
                                                         0
                                                                      0
                                                                0
##
                                                   3
                                                                0
                            cat 2
                                      3
                                            10
                                                         0
                                                   2
##
                            cat_3
                                      0
                                            0
                                                          1
                                                                1
                                                                      0
                                                   2
##
                                      0
                                            0
                                                          0
                                                                1
                                                                      1
                            cat_4
                                      0
                                            2
                                                          0
                                                                0
##
                            cat_5
                                                   1
                                                                      0
##
                            cat 6
                                      0
                                            1
                                                   0
                                                         0
                                                                1
sum(diag(table(classtree.pred.fit0.interact, deathrate.test)))/36
## [1] 0.444444
ordnet
pred_matrix.ordnet1 <- test_oh_wv_2012 %>% #x is a matrix of predictors
  dplyr::select(est_death_rate_cat, pharmacy_num_ptt, most_dist_channel, dominance, median_income,
                 political_aff, act_wt_person_county, perc_oxy, distr_num_ptt)
x.test.ordnet1<-model.matrix(est_death_rate_cat~., pred_matrix.ordnet1)</pre>
```

ordnet.pred<-predict(ordnet1, newx = x.test.ordnet1, whichLambda = NULL,

prediction plots for fit.select using TRAINING

```
#pharmacy no
pharm_num.test.ordnet1 = as.data.frame(pred_matrix.ordnet1) %>%
  mutate(most_dist_channel = "RETAIL PHARMACY", dominance = "Yes",
         median income = 43194.13,
         political_aff="Republican",
         perc_oxy = 54.2, act_wt_person_county = 0.19294084, distr_num_ptt = 1.709)
classprob pharm num <- predict(fit.select, newdata = pharm num.test.ordnet1, type = "probs")</pre>
# plotting
classprob_pharm_num_df = t(classprob_pharm_num) %>%
  as.data.frame() %>%
  cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat_6`)
rownames(classprob_pharm_num_df) = NULL
colnames(classprob_pharm_num_df) = c("P[Y<=1]", "P[Y<=2]", "P[Y<=3]", "P[Y<=4]", "P[Y<=5]")
# plotting
classcumprob_pharm_num_df = as.data.frame(classprob_pharm_num_df) %>%
  cbind(pharm_num.test.ordnet1) %>%
  dplyr::select(pharmacy_num_ptt, `P[Y<=1]`:`P[Y<=5]`) %>%
  gather(key = "class", value = "probability", `P[Y<=1]`: `P[Y<=5]`) %>%
  mutate(class = as.factor(class))
ggplot(classcumprob_pharm_num_df, aes(x = pharmacy_num_ptt, y = probability)) +
    geom_line(aes(color = class, group = class)) +
   labs(title = "Cumulative Probabilities for Pharmacy No. per ten thousand people",
         y = "P(Y \le j)",
         x= "Pharmacy Number PTT") +
    theme(plot.title = element_text(hjust = 0.5),
          axis.text.x = element_text(face = "bold"),
          panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          legend.title = element_blank())
```

Cumulative Probabilities for Pharmacy No. per ten thousand people


```
#summary(fit.select)
# most_dist_channel
dom_channel.test.ordnet1 = as.data.frame(pred_matrix.ordnet1) %>%
 mutate(pharmacy num ptt = 3.038, dominance="Yes", median income=43194.13,
        political aff = "Republican",
        act_wt_person_county = 0.19294084,
        perc_oxy = 54.2, distr_num_ptt = 1.709)
classprob_most_dist_channel <- predict(fit.select, newdata = dom_channel.test.ordnet1, type = "probs")</pre>
# plotting
classprob_most_dist_channel_df = t(classprob_most_dist_channel) %>%
 as.data.frame() %>%
 cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat_6`)
rownames(classprob_most_dist_channel_df) = NULL
# plotting
classcumprob_most_dist_channel_df = as.data.frame(classprob_most_dist_channel_df) %>%
 cbind(dom_channel.test.ordnet1) %>%
 dplyr::select(most dist channel, `P[Y<=1]`:`P[Y<=5]`) %>%
 gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
 mutate(class = as.factor(class),
        most_dist_channel = as.factor(most_dist_channel))
ggplot(classcumprob_most_dist_channel_df, aes(x = most_dist_channel, y = probability)) +
   geom_line(aes(color = class, group = class)) +
   labs(title = "Cumulative Probabilities for most common distributionn channel",
        y = "P(Y \le j)",
```

```
x= "most common distribution channel") +
theme(plot.title = element_text(hjust = 0.5),
    axis.text.x = element_text(face = "bold"),
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(),
    legend.title = element_blank())
```

Cumulative Probabilities for most common distributionn channel

dominance dom_channel.test.ordnet1 = as.data.frame(pred_matrix.ordnet1) %>% mutate(pharmacy_num_ptt = 3.038, most_dist_channel = "RETAIL PHARMACY", median_income=43194.13, political_aff = "Republican", act_wt_person_county = 0.19294084, perc_oxy = 54.2, distr_num_ptt = 1.709) classprob_dom <- predict(fit.select, newdata = dom_channel.test.ordnet1, type = "probs")</pre> # plotting classprob dom df = t(classprob dom) %>% as.data.frame() %>% cumsum() %>% t() %>% as.data.frame() %>% dplyr::select(-`cat_6`) rownames(classprob_dom_df) = NULL $colnames(classprob_dom_df) = c("P[Y<=1]", "P[Y<=2]", "P[Y<=3]", "P[Y<=4]", "P[Y<=5]")$ # plotting classcumprob_dom_df = as.data.frame(classprob_dom_df) %>% cbind(dom_channel.test.ordnet1) %>% dplyr::select(dominance, `P[Y<=1]`:`P[Y<=5]`) %>% gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>% mutate(class = as.factor(class),

Cumulative Probabilities for Market Dominance


```
# plotting
classcumprob_log_income_df = as.data.frame(classprob_log_income_df) %>%
  cbind(log income.test.ordnet1) %>%
  dplyr::select(median_income, `P[Y<=1]`:`P[Y<=5]`) %>%
  gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
  mutate(class = as.factor(class))
ggplot(classcumprob_log_income_df, aes(x = median_income, y = probability)) +
    geom line(aes(color = class, group = class)) +
    labs(title = "Cumulative Probabilities for median income",
         y = "P(Y \le j)",
         x= "Median Income") +
    theme(plot.title = element_text(hjust = 0.5),
          axis.text.x = element_text(face = "bold"),
          panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          legend.title = element_blank())
```

Cumulative Probabilities for median income


```
as.data.frame() %>%
 cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat_6`)
rownames(classprob_polaff_df) = NULL
# plotting
classcumprob_polaff_df = as.data.frame(classprob_polaff_df) %>%
 cbind(polaff.test.ordnet1) %>%
 dplyr::select(political_aff, `P[Y<=1]`:`P[Y<=5]`) %>%
 gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
 mutate(class = as.factor(class),
        political_aff = as.factor(political_aff))
ggplot(classcumprob_polaff_df, aes(x = political_aff, y = probability)) +
   geom_line(aes(color = class, group = class)) +
   labs(title = "Cumulative Probabilities for Political Affiliation",
        y = "P(Y \le j)",
        x= "Political Affiliation") +
   theme(plot.title = element_text(hjust = 0.5),
         axis.text.x = element_text(face = "bold"),
         panel.grid.major = element_blank(),
         panel.grid.minor = element_blank(),
         legend.title = element_blank())
```

Cumulative Probabilities for Political Affiliation


```
# act_wt_person_county
act_wt.test.ordnet1 = as.data.frame(pred_matrix.ordnet1) %>%
    mutate(pharmacy_num_ptt = 3.038, most_dist_channel = "RETAIL PHARMACY", dominance = "Yes",
```

```
median_income = 43194.13,
        political_aff="Republican",
        perc oxy = 54.2, distr num ptt = 1.709)
classprob_act_wt <- predict(fit.select, newdata = act_wt.test.ordnet1, type = "probs")</pre>
# plotting
classprob_act_wt_df = t(classprob_act_wt) %>%
 as.data.frame() %>%
 cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat 6`)
rownames(classprob_act_wt_df) = NULL
# plotting
classcumprob_act_wt_df = as.data.frame(classprob_act_wt_df) %>%
 cbind(act_wt.test.ordnet1) %>%
 dplyr::select(act_wt_person_county, `P[Y<=1]`:`P[Y<=5]`) %>%
 gather(key = "class", value = "probability", `P[Y<=1]`: `P[Y<=5]`) %>%
 mutate(class = as.factor(class))
ggplot(classcumprob_act_wt_df, aes(x = act_wt_person_county, y = probability)) +
   geom_line(aes(color = class, group = class)) +
   labs(title = "Cumulative Probabilities for Active Weight Per Person",
        y = "P(Y \le j)",
        x= "Active Drug Weight Per Person") +
   theme(plot.title = element_text(hjust = 0.5),
         axis.text.x = element_text(face = "bold"),
         panel.grid.major = element_blank(),
         panel.grid.minor = element_blank(),
         legend.title = element_blank())
```

Cumulative Probabilities for Active Weight Per Person


```
# perc_oxy --> NOT SIGNIFICANT IN CURRENT MODEL
perc_oxy.test.ordnet1 = as.data.frame(pred_matrix.ordnet1) %>%
  mutate(pharmacy_num_ptt = 3.038, most_dist_channel = "RETAIL PHARMACY", dominance = "Yes",
         median_income = 43194.13,
         political_aff="Republican",
         act_wt_person_county = 0.19294084, distr_num_ptt = 1.709)
classprob_perc_oxy <- predict(fit.select, newdata = perc_oxy.test.ordnet1, type = "probs")</pre>
# plotting
classprob_perc_oxy_df = t(classprob_perc_oxy) %>%
  as.data.frame() %>%
  cumsum() %>% t() %>% as.data.frame() %>%
  dplyr::select(-`cat 6`)
rownames(classprob_perc_oxy_df) = NULL
colnames(classprob_perc_oxy_df) = c("P[Y<=1]", "P[Y<=2]", "P[Y<=3]", "P[Y<=4]", "P[Y<=5]")
# plotting
classcumprob_perc_oxy_df = as.data.frame(classprob_perc_oxy_df) %>%
  cbind(perc oxy.test.ordnet1) %>%
  dplyr::select(perc_oxy, `P[Y<=1]`:`P[Y<=5]`) %>%
  gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
  mutate(class = as.factor(class))
ggplot(classcumprob_perc_oxy_df, aes(x = perc_oxy, y = probability)) +
    geom_line(aes(color = class, group = class)) +
   labs(title = "Cumulative Probabilities for Percentage of Oxycodone",
         y = "P(Y \le j)",
         x= "Percentage of Oxycodone") +
    theme(plot.title = element_text(hjust = 0.5),
```

```
axis.text.x = element_text(face = "bold"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.title = element_blank())
```

Cumulative Probabilities for Percentage of Oxycodone


```
# distr_num_ptt
distr_num.test.ordnet1 = as.data.frame(pred_matrix.ordnet1) %>%
 mutate(pharmacy_num_ptt = 3.038, most_dist_channel = "RETAIL PHARMACY", dominance = "Yes",
        median_income = 43194.13,
        political_aff="Republican",
        act_wt_person_county = 0.19294084)
classprob_distr_num <- predict(fit.select, newdata = distr_num.test.ordnet1, type = "probs")</pre>
# plotting
classprob_distr_num_df = t(classprob_distr_num) %>%
 as.data.frame() %>%
 cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat_6`)
rownames(classprob_distr_num_df) = NULL
# plotting
classcumprob_distr_num_df = as.data.frame(classprob_distr_num_df) %>%
 cbind(distr_num.test.ordnet1) %>%
 dplyr::select(distr_num_ptt, `P[Y<=1]`:`P[Y<=5]`) %>%
 gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
 mutate(class = as.factor(class))
ggplot(classcumprob_distr_num_df, aes(x = distr_num_ptt, y = probability)) +
```

```
geom_line(aes(color = class, group = class)) +
labs(title = "Cumulative Probabilities for Distributor Number PTT",
    y = "P(Y<=j)",
    x= "Distributor Number PTT") +
theme(plot.title = element_text(hjust = 0.5),
    axis.text.x = element_text(face = "bold"),
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(),
    legend.title = element_blank())</pre>
```

Cumulative Probabilities for Distributor Number PTT

interaction plots for fit.select ON TESTING

```
# plotting
classcumprob_pharm_num_rep_df = as.data.frame(classprob_pharm_num_rep_df) %>%
 cbind(pharm_num.test.ordnet1_rep) %>%
 dplyr::select(pharmacy_num_ptt, `P[Y<=1]`:`P[Y<=5]`) %>%
 gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
 mutate(class = as.factor(class))
num_pharm_rep_p = ggplot(classcumprob_pharm_num_rep_df, aes(x = pharmacy_num_ptt, y = probability)) +
   geom_line(aes(color = class, group = class)) +
   labs(title = "Republican",
        y = "P(Y \le j)",
        x= "Pharmacy Number PTT") +
   theme(plot.title = element_text(hjust = 0.5),
         axis.text.x = element_text(face = "bold"),
         panel.grid.major = element_blank(),
         panel.grid.minor = element_blank(),
         legend.title = element_blank())
# Democrat
pharm_num.test.ordnet1_dem = as.data.frame(pred_matrix.ordnet1) %>%
 mutate(most_dist_channel = "RETAIL PHARMACY", dominance = "Yes",
        median income = 43194.13,
        political_aff="Democrat",
        perc oxy = 54.2, act wt person county = 0.19294084, distr num ptt = 1.709)
classprob_pharm_num_dem <- predict(fit.select, newdata = pharm_num.test.ordnet1_dem, type = "probs", s</pre>
# plotting
classprob_pharm_num_dem_df = t(classprob_pharm_num_dem) %>%
 as.data.frame() %>%
 cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat_6`)
rownames(classprob_pharm_num_dem_df) = NULL
colnames(classprob_pharm_num_dem_df) = c("P[Y<=1]", "P[Y<=2]", "P[Y<=3]", "P[Y<=4]", "P[Y<=5]")
# plotting
classcumprob_pharm_num_dem_df = as.data.frame(classprob_pharm_num_dem_df) %>%
 cbind(pharm_num.test.ordnet1_dem) %>%
 dplyr::select(pharmacy_num_ptt, `P[Y<=1]`:`P[Y<=5]`) %>%
 gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
 mutate(class = as.factor(class))
num_pharm_dem_p = ggplot(classcumprob_pharm_num_dem_df, aes(x = pharmacy_num_ptt, y = probability)) +
   geom_line(aes(color = class, group = class)) +
   labs(title = "Democrat",
        y = "P(Y \le j)",
        x= "Pharmacy Number PTT") +
   theme(plot.title = element_text(hjust = 0.5),
         axis.text.x = element_text(face = "bold"),
         panel.grid.major = element_blank(),
         panel.grid.minor = element_blank(),
         legend.title = element_blank(),
         legend.position = "none")
```

```
# num_pharm_rep_p + num_pharm_dem_p
plot_grid(num_pharm_rep_p, num_pharm_dem_p, axis = "r", align = "v")
```



```
# probability of falling below a category decreases faster for democrats. is # significant? because our dataset is small.
```

```
## distribution channel and income
# RETAIL PHARMACRY
income.test.ordnet1_rp = as.data.frame(pred_matrix.ordnet1) %>%
 mutate(most_dist_channel = "RETAIL PHARMACY", dominance = "Yes",
        pharmacy_num_ptt = 3.038,
        political_aff="Republican",
        perc_oxy = 54.2, act_wt_person_county = 0.19294084, distr_num_ptt = 1.709)
classprob_income_rp <- predict(fit.select, newdata = income.test.ordnet1_rp, type = "probs", se.fit = "</pre>
# plotting
classprob_income_rp_df = t(classprob_income_rp) %>%
 as.data.frame() %>%
 cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat_6`)
rownames(classprob_income_rp_df) = NULL
# plotting
classcumprob_income_rp_df = as.data.frame(classprob_income_rp_df) %>%
 cbind(income.test.ordnet1_rp) %>%
```

dplyr::select(median_income, `P[Y<=1]`:`P[Y<=5]`) %>%

```
gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
  mutate(class = as.factor(class))
income_rp_p = ggplot(classcumprob_income_rp_df, aes(x = median_income, y = probability)) +
    geom_line(aes(color = class, group = class)) +
    labs(title = "Retail Pharmacy",
         y = "P(Y \le j)",
         x= "Median Income") +
    theme(plot.title = element_text(hjust = 0.5),
          axis.text.x = element_text(face = "bold"),
          panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          legend.title = element blank())
# RETAIL PHARMACRY
income.test.ordnet1_cp = as.data.frame(pred_matrix.ordnet1) %>%
  mutate(most_dist_channel = "CHAIN PHARMACY", dominance = "Yes",
         pharmacy_num_ptt = 3.038,
         political_aff="Republican",
         perc_oxy = 54.2, act_wt_person_county = 0.19294084, distr_num_ptt = 1.709)
classprob_income_cp <- predict(fit.select, newdata = income.test.ordnet1_cp, type = "probs", se.fit = "</pre>
# plotting
classprob_income_cp_df = t(classprob_income_cp) %>%
  as.data.frame() %>%
  cumsum() %>% t() %>% as.data.frame() %>%
  dplyr::select(-`cat 6`)
rownames(classprob_income_cp_df) = NULL
colnames(classprob_income_cp_df) = c("P[Y<=1]", "P[Y<=2]", "P[Y<=3]", "P[Y<=4]", "P[Y<=5]")
# plotting
classcumprob_income_cp_df = as.data.frame(classprob_income_cp_df) %>%
  cbind(income.test.ordnet1_cp) %>%
  dplyr::select(median_income, `P[Y<=1]`:`P[Y<=5]`) %>%
  gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
  mutate(class = as.factor(class))
income_cp_p = ggplot(classcumprob_income_cp_df, aes(x = median_income, y = probability)) +
    geom_line(aes(color = class, group = class)) +
   labs(title = "Chain Pharmacy",
         y = "P(Y \le j)",
         x= "Median Income") +
    theme(plot.title = element_text(hjust = 0.5),
          axis.text.x = element text(face = "bold"),
          panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          legend.title = element_blank(),
          legend.position = "none")
income_rp_p + income_cp_p
```



```
geom_line(aes(color = class, group = class)) +
   labs(title = "Pharmacy Number PTT = 1",
        y = "P(Y \le j)",
        x= "Median Income") +
   theme(plot.title = element_text(hjust = 0.5),
         axis.text.x = element_text(face = "bold"),
         panel.grid.major = element_blank(),
         panel.grid.minor = element blank(),
         legend.title = element_blank())
# fixing pharmacy number at = 4
income.test.ordnet1_4 = as.data.frame(pred_matrix.ordnet1) %>%
 mutate(most_dist_channel = "CHAIN PHARMACY", dominance = "Yes",
        pharmacy_num_ptt = 4,
        political_aff="Republican",
        perc_oxy = 54.2, act_wt_person_county = 0.19294084, distr_num_ptt = 1.709)
classprob_income_4 <- predict(fit.select, newdata = income.test.ordnet1_4, type = "probs", se.fit = TR</pre>
# plotting
classprob_income_4_df = t(classprob_income_4) %>%
 as.data.frame() %>%
 cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat_6`)
rownames(classprob_income_4_df) = NULL
# plotting
classcumprob_income_4_df = as.data.frame(classprob_income_4_df) %>%
 cbind(income.test.ordnet1_4) %>%
 dplyr::select(median_income, `P[Y<=1]`:`P[Y<=5]`) %>%
 gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
 mutate(class = as.factor(class))
income_4_p = ggplot(classcumprob_income_4_df, aes(x = median_income, y = probability)) +
   geom_line(aes(color = class, group = class)) +
   labs(title = "Pharmacy Number PTT = 4",
        y = "P(Y \le j)",
        x= "Median Income") +
   theme(plot.title = element_text(hjust = 0.5),
         axis.text.x = element_text(face = "bold"),
         panel.grid.major = element_blank(),
         panel.grid.minor = element_blank(),
         legend.title = element_blank(),
         legend.position = "none")
income_1_p + income_4_p
```


prediction plots for fit.select ON TESTING

```
#pharmacy no
pharm_num.test.ordnet1 = as.data.frame(pred_matrix.ordnet1) %>%
 mutate(most dist channel = "RETAIL PHARMACY", dominance = "Yes",
        median_income = 43194.13,
        political_aff="Republican",
        perc_oxy = 54.2, act_wt_person_county = 0.19294084, distr_num_ptt = 1.709)
classprob_pharm_num <- predict(fit.select, newdata = pharm_num.test.ordnet1, type = "probs")</pre>
# plotting
classprob_pharm_num_df = t(classprob_pharm_num) %>%
 as.data.frame() %>%
 cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat_6`)
rownames(classprob_pharm_num_df) = NULL
# plotting
classcumprob_pharm_num_df = as.data.frame(classprob_pharm_num_df) %>%
 cbind(pharm num.test.ordnet1) %>%
 dplyr::select(pharmacy_num_ptt, `P[Y<=1]`:`P[Y<=5]`) %>%
 gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
 mutate(class = as.factor(class))
ggplot(classcumprob_pharm_num_df, aes(x = pharmacy_num_ptt, y = probability)) +
   geom_line(aes(color = class, group = class)) +
   labs(title = "Cumulative Probabilities for Pharmacy No. per ten thousand people",
```

```
y = "P(Y<=j)",
x= "Pharmacy Number PTT") +
theme(plot.title = element_text(hjust = 0.5),
    axis.text.x = element_text(face = "bold"),
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(),
    legend.title = element_blank())</pre>
```

Cumulative Probabilities for Pharmacy No. per ten thousand people

summary(fit.select)

```
## Call:
## polr(formula = est_death_rate_cat ~ pharmacy_num_ptt + most_dist_channel +
       dominance + log(median_income) + political_aff + act_wt_person_county +
##
##
       pharmacy_num_ptt:political_aff + most_dist_channel:log(median_income) +
##
       pharmacy_num_ptt:log(median_income), data = train_oh_wv_2012,
##
       Hess = TRUE, method = "logistic")
##
## Coefficients:
                                                           Value Std. Error
##
## pharmacy_num_ptt
                                                        -29.8071
                                                                    13.1492
## most_dist_channelRETAIL PHARMACY
                                                         66.0704
                                                                    27.7312
## dominanceYes
                                                          0.9971
                                                                     0.5648
## log(median_income)
                                                                     3.4002
                                                         -9.9542
## political_affRepublican
                                                          1.0636
                                                                     1.3325
## act_wt_person_county
                                                                     1.7395
                                                          7.5644
## pharmacy_num_ptt:political_affRepublican
                                                                     0.4408
                                                         -0.9046
## most_dist_channelRETAIL PHARMACY:log(median_income) -6.2989
                                                                     2.6236
```

```
## pharmacy_num_ptt:log(median_income)
                                                         2.8877
                                                                     1.2485
##
                                                        t value
## pharmacy num ptt
                                                        -2.2668
## most_dist_channelRETAIL PHARMACY
                                                        2.3825
## dominanceYes
                                                        1.7653
## log(median income)
                                                        -2.9275
## political_affRepublican
                                                         0.7982
## act_wt_person_county
                                                        4.3485
## pharmacy_num_ptt:political_affRepublican
                                                        -2.0523
## most_dist_channelRETAIL PHARMACY:log(median_income) -2.4009
## pharmacy_num_ptt:log(median_income)
                                                         2.3129
## Intercepts:
##
               Value
                         Std. Error t value
## cat_1|cat_2 -105.9514
                           36.0762
                                      -2.9369
## cat_2|cat_3 -102.2201
                           35.9160
                                      -2.8461
## cat_3|cat_4 -100.1991
                           35.8594
                                      -2.7942
## cat 4 cat 5 -98.2888
                           35.8476
                                      -2.7419
## cat_5|cat_6 -97.1360
                           35.8385
                                      -2.7104
## Residual Deviance: 236.3985
## AIC: 264.3985
\# most\_dist\_channel
dom_channel.test.ordnet1 = as.data.frame(pred_matrix.ordnet1) %>%
  mutate(pharmacy_num_ptt = 3.038, dominance="Yes", median_income=43194.13,
         political_aff = "Republican",
         act_wt_person_county = 0.19294084,
         perc_oxy = 54.2, distr_num_ptt = 1.709)
classprob_most_dist_channel <- predict(fit.select, newdata = dom_channel.test.ordnet1, type = "probs")</pre>
# plotting
classprob_most_dist_channel_df = t(classprob_most_dist_channel) %>%
  as.data.frame() %>%
  cumsum() %>% t() %>% as.data.frame() %>%
  dplyr::select(-`cat_6`)
rownames(classprob_most_dist_channel_df) = NULL
colnames(classprob_most_dist_channel_df) = c("P[Y<=1]", "P[Y<=2]", "P[Y<=3]", "P[Y<=4]", "P[Y<=5]")
# plotting
classcumprob_most_dist_channel_df = as.data.frame(classprob_most_dist_channel_df) %>%
  cbind(dom channel.test.ordnet1) %>%
  dplyr::select(most_dist_channel, `P[Y<=1]`:`P[Y<=5]`) %>%
  gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
  mutate(class = as.factor(class),
         most_dist_channel = as.factor(most_dist_channel))
ggplot(classcumprob_most_dist_channel_df, aes(x = most_dist_channel, y = probability)) +
    geom_line(aes(color = class, group = class)) +
   labs(title = "Cumulative Probabilities for most common distributionn channel",
         y = "P(Y \le j)",
         x= "most common distribution channel") +
    theme(plot.title = element_text(hjust = 0.5),
          axis.text.x = element_text(face = "bold"),
          panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
```

legend.title = element_blank())

Cumulative Probabilities for most common distributionn channel


```
# dominance
dom_channel.test.ordnet1 = as.data.frame(pred_matrix.ordnet1) %>%
  mutate(pharmacy_num_ptt = 3.038, most_dist_channel = "RETAIL PHARMACY", median_income=43194.13,
         political_aff = "Republican",
         act_wt_person_county = 0.19294084,
         perc_oxy = 54.2, distr_num_ptt = 1.709)
classprob_dom <- predict(fit.select, newdata = dom_channel.test.ordnet1, type = "probs")</pre>
# plotting
classprob_dom_df = t(classprob_dom) %>%
  as.data.frame() %>%
  cumsum() %>% t() %>% as.data.frame() %>%
  dplyr::select(-`cat_6`)
rownames(classprob_dom_df) = NULL
colnames(classprob\ dom\ df) = c("P[Y<=1]", "P[Y<=2]", "P[Y<=3]", "P[Y<=4]", "P[Y<=5]")
# plotting
classcumprob_dom_df = as.data.frame(classprob_dom_df) %>%
  cbind(dom_channel.test.ordnet1) %>%
  dplyr::select(dominance, `P[Y<=1]`:`P[Y<=5]`) %>%
  gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
  mutate(class = as.factor(class),
         dominance = as.factor(dominance))
ggplot(classcumprob_dom_df, aes(x = dominance, y = probability)) +
    geom_line(aes(color = class, group = class)) +
   labs(title = "Cumulative Probabilities for Market Dominance",
```

```
y = "P(Y<=j)",
x= "Market Dominance") +
theme(plot.title = element_text(hjust = 0.5),
    axis.text.x = element_text(face = "bold"),
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(),
    legend.title = element_blank())</pre>
```

Cumulative Probabilities for Market Dominance


```
# income
log_income.test.ordnet1 = as.data.frame(pred_matrix.ordnet1) %>%
  mutate(pharmacy_num_ptt = 3.038, most_dist_channel = "RETAIL PHARMACY", dominance = "Yes",
         political_aff = "Republican",
         act_wt_person_county = 0.19294084,
         perc_oxy = 54.2, distr_num_ptt = 1.709)
classprob_log_income <- predict(fit.select, newdata = log_income.test.ordnet1, type = "probs")</pre>
# plotting
classprob_log_income_df = t(classprob_log_income) %>%
  as.data.frame() %>%
  cumsum() %>% t() %>% as.data.frame() %>%
  dplyr::select(-`cat_6`)
rownames(classprob_log_income_df) = NULL
colnames(classprob_log_income_df) = c("P[Y<=1]", "P[Y<=2]", "P[Y<=3]", "P[Y<=4]", "P[Y<=5]")
# plotting
classcumprob_log_income_df = as.data.frame(classprob_log_income_df) %>%
  cbind(log_income.test.ordnet1) %>%
  dplyr::select(median_income, `P[Y<=1]`:`P[Y<=5]`) %>%
  gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
```

Cumulative Probabilities for median income


```
# plotting
classcumprob_polaff_df = as.data.frame(classprob_polaff_df) %>%
  cbind(polaff.test.ordnet1) %>%
  dplyr::select(political_aff, `P[Y<=1]`:`P[Y<=5]`) %>%
  gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
  mutate(class = as.factor(class),
         political_aff = as.factor(political_aff))
ggplot(classcumprob_polaff_df, aes(x = political_aff, y = probability)) +
    geom_line(aes(color = class, group = class)) +
    labs(title = "Cumulative Probabilities for Political Affiliation",
         y = "P(Y \le j)",
         x= "Political Affiliation") +
    theme(plot.title = element_text(hjust = 0.5),
          axis.text.x = element_text(face = "bold"),
          panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          legend.title = element blank())
```

Cumulative Probabilities for Political Affiliation


```
classprob_act_wt_df = t(classprob_act_wt) %>%
  as.data.frame() %>%
  cumsum() %>% t() %>% as.data.frame() %>%
  dplyr::select(-`cat_6`)
rownames(classprob_act_wt_df) = NULL
colnames(classprob_act_wt_df) = c("P[Y<=1]", "P[Y<=2]", "P[Y<=3]", "P[Y<=4]", "P[Y<=5]")</pre>
# plotting
classcumprob_act_wt_df = as.data.frame(classprob_act_wt_df) %>%
  cbind(act wt.test.ordnet1) %>%
  dplyr::select(act_wt_person_county, `P[Y<=1]`:`P[Y<=5]`) %>%
  gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
  mutate(class = as.factor(class))
ggplot(classcumprob_act_wt_df, aes(x = act_wt_person_county, y = probability)) +
    geom_line(aes(color = class, group = class)) +
   labs(title = "Cumulative Probabilities for Active Weight Per Person",
         y = "P(Y \le j)",
         x= "Active Drug Weight Per Person") +
    theme(plot.title = element_text(hjust = 0.5),
          axis.text.x = element_text(face = "bold"),
          panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          legend.title = element_blank())
```

Cumulative Probabilities for Active Weight Per Person


```
# perc_oxy --> NOT SIGNIFICANT IN CURRENT MODEL
perc_oxy.test.ordnet1 = as.data.frame(pred_matrix.ordnet1) %>%
  mutate(pharmacy_num_ptt = 3.038, most_dist_channel = "RETAIL PHARMACY", dominance = "Yes",
```

```
median_income = 43194.13,
        political_aff="Republican",
        act wt person county = 0.19294084, distr num ptt = 1.709)
classprob_perc_oxy <- predict(fit.select, newdata = perc_oxy.test.ordnet1, type = "probs")</pre>
# plotting
classprob_perc_oxy_df = t(classprob_perc_oxy) %>%
 as.data.frame() %>%
 cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat 6`)
rownames(classprob_perc_oxy_df) = NULL
# plotting
classcumprob_perc_oxy_df = as.data.frame(classprob_perc_oxy_df) %>%
 cbind(perc_oxy.test.ordnet1) %>%
 dplyr::select(perc_oxy, `P[Y<=1]`:`P[Y<=5]`) %>%
 gather(key = "class", value = "probability", `P[Y<=1]`: `P[Y<=5]`) %>%
 mutate(class = as.factor(class))
ggplot(classcumprob_perc_oxy_df, aes(x = perc_oxy, y = probability)) +
   geom_line(aes(color = class, group = class)) +
   labs(title = "Cumulative Probabilities for Percentage of Oxycodone",
        y = "P(Y \le j)",
        x= "Percentage of Oxycodone") +
   theme(plot.title = element_text(hjust = 0.5),
         axis.text.x = element_text(face = "bold"),
         panel.grid.major = element_blank(),
         panel.grid.minor = element_blank(),
         legend.title = element_blank())
```

Cumulative Probabilities for Percentage of Oxycodone


```
# distr_num_ptt
distr_num.test.ordnet1 = as.data.frame(pred_matrix.ordnet1) %>%
  mutate(pharmacy_num_ptt = 3.038, most_dist_channel = "RETAIL PHARMACY", dominance = "Yes",
         median_income = 43194.13,
         political_aff="Republican",
         act_wt_person_county = 0.19294084)
classprob_distr_num <- predict(fit.select, newdata = distr_num.test.ordnet1, type = "probs")</pre>
# plotting
classprob_distr_num_df = t(classprob_distr_num) %>%
  as.data.frame() %>%
  cumsum() %>% t() %>% as.data.frame() %>%
  dplyr::select(-`cat 6`)
rownames(classprob_distr_num_df) = NULL
colnames(classprob_distr_num_df) = c("P[Y<=1]", "P[Y<=2]", "P[Y<=3]", "P[Y<=4]", "P[Y<=5]")
# plotting
classcumprob_distr_num_df = as.data.frame(classprob_distr_num_df) %>%
  cbind(distr num.test.ordnet1) %>%
  dplyr::select(distr_num_ptt, `P[Y<=1]`:`P[Y<=5]`) %>%
  gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
  mutate(class = as.factor(class))
ggplot(classcumprob_distr_num_df, aes(x = distr_num_ptt, y = probability)) +
    geom_line(aes(color = class, group = class)) +
   labs(title = "Cumulative Probabilities for Distributor Number PTT",
         y = "P(Y \le j)",
         x= "Distributor Number PTT") +
    theme(plot.title = element_text(hjust = 0.5),
```

```
axis.text.x = element_text(face = "bold"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.title = element_blank())
```

Cumulative Probabilities for Distributor Number PTT

prediction plots for fit.select ON TRAINING DATA

```
pred_matrix.train <- train_oh_wv_2012 %>% #x is a matrix of predictors
  dplyr::select(est_death_rate_cat, pharmacy_num_ptt, most_dist_channel, dominance, median_income,
                political_aff, act_wt_person_county, distr_num_ptt)
#pharmacy no
pharm_num.test.ordnet1 = as.data.frame(pred_matrix.train) %>%
 mutate(most_dist_channel = "RETAIL PHARMACY", dominance = "Yes",
        median_income = 60000,
        political_aff="Republican",
         perc_oxy = 54.2, act_wt_person_county = 0.19294084, distr_num_ptt = 1.709)
classprob_pharm_num <- predict(fit.select, newdata = pharm_num.test.ordnet1, type = "probs") #class pr
# plotting
classprob_pharm_num_df = t(classprob_pharm_num) %>%
  as.data.frame() %>%
  cumsum() %>% t() %>% as.data.frame() %>%
  dplyr::select(-`cat_6`)
rownames(classprob_pharm_num_df) = NULL
colnames(classprob_pharm_num_df) = c("P[Y<=1]", "P[Y<=2]", "P[Y<=3]", "P[Y<=4]", "P[Y<=5]")
# plotting
```

```
classcumprob_pharm_num_df = as.data.frame(classprob_pharm_num_df) %>%
    cbind(pharm_num.test.ordnet1) %>%
    dplyr::select(pharmacy_num_ptt, `P[Y<=1]`:`P[Y<=5]`) %>%
    gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
    mutate(class = as.factor(class))

ggplot(classcumprob_pharm_num_df, aes(x = pharmacy_num_ptt, y = probability)) +
    geom_line(aes(color = class, group = class)) +
    labs(title = "Cumulative Probabilities for Pharmacy No. \nper ten thousand people, income level = $
        y = "P(Y<=j)",
        x= "Pharmacy Number PTT") +
    theme(plot.title = element_text(hjust = 0.5),
        axis.text.x = element_text(face = "bold"),
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        legend.title = element_blank())</pre>
```

Cumulative Probabilities for Pharmacy No. per ten thousand people, income level = \$60000


```
classprob_most_dist_channel <- predict(fit.select, newdata = dom_channel.test.ordnet1, type = "probs")</pre>
# plotting
classprob_most_dist_channel_df = t(classprob_most_dist_channel) %>%
 as.data.frame() %>%
 cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat_6`)
rownames(classprob_most_dist_channel_df) = NULL
# plotting
classcumprob_most_dist_channel_df = as.data.frame(classprob_most_dist_channel_df) %>%
 cbind(dom_channel.test.ordnet1) %>%
 dplyr::select(most_dist_channel, `P[Y<=1]`:`P[Y<=5]`) %>%
 gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
 mutate(class = as.factor(class),
        most_dist_channel = as.factor(most_dist_channel))
ggplot(classcumprob_most_dist_channel_df, aes(x = most_dist_channel, y = probability)) +
   geom_line(aes(color = class, group = class)) +
   labs(title = "Cumulative Probabilities for most common distribution channel, \nincome = 20000",
        y = "P(Y \le j)",
        x= "most common distribution channel") +
   theme(plot.title = element_text(hjust = 0.5),
         axis.text.x = element_text(face = "bold"),
         panel.grid.major = element_blank(),
         panel.grid.minor = element_blank(),
         legend.title = element_blank())
```

Cumulative Probabilities for most common distribution channel, income = 20000


```
#AT HIGHER INCOME LEVEL:
pred_matrix.train <- train_oh_wv_2012 %>% #x is a matrix of predictors
 dplyr::select(est death rate cat, pharmacy num ptt, most dist channel, dominance, median income,
               political_aff, act_wt_person_county, distr_num_ptt)
dom_channel.test.ordnet1 = as.data.frame(pred_matrix.train) %>%
 mutate(pharmacy_num_ptt = 3.038, dominance="Yes", median_income=60000,
        political_aff = "Republican",
        act_wt_person_county = 0.19294084,
        perc_oxy = 54.2, distr_num_ptt = 1.709)
classprob_most_dist_channel <- predict(fit.select, newdata = dom_channel.test.ordnet1, type = "probs")</pre>
# plotting
classprob_most_dist_channel_df = t(classprob_most_dist_channel) %>%
 as.data.frame() %>%
 cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat 6`)
rownames(classprob_most_dist_channel_df) = NULL
# plotting
classcumprob_most_dist_channel_df = as.data.frame(classprob_most_dist_channel_df) %>%
 cbind(dom channel.test.ordnet1) %>%
 dplyr::select(most_dist_channel, `P[Y<=1]`:`P[Y<=5]`) %>%
 gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
 mutate(class = as.factor(class),
        most_dist_channel = as.factor(most_dist_channel))
ggplot(classcumprob_most_dist_channel_df, aes(x = most_dist_channel, y = probability)) +
   geom_line(aes(color = class, group = class)) +
   labs(title = "Cumulative Probabilities for most common distribution channel, \nincome = 60000",
        y = "P(Y \le j)",
        x= "most common distribution channel") +
   theme(plot.title = element_text(hjust = 0.5),
         axis.text.x = element_text(face = "bold"),
         panel.grid.major = element_blank(),
         panel.grid.minor = element blank(),
         legend.title = element_blank())
```

Cumulative Probabilities for most common distribution channel, income = 60000

dominance summary(fit.select)

```
## Call:
## polr(formula = est_death_rate_cat ~ pharmacy_num_ptt + most_dist_channel +
##
       dominance + log(median_income) + political_aff + act_wt_person_county +
       pharmacy_num_ptt:political_aff + most_dist_channel:log(median_income) +
##
       pharmacy_num_ptt:log(median_income), data = train_oh_wv_2012,
##
##
       Hess = TRUE, method = "logistic")
##
## Coefficients:
##
                                                           Value Std. Error
## pharmacy_num_ptt
                                                        -29.8071
                                                                    13.1492
## most_dist_channelRETAIL PHARMACY
                                                                     27.7312
                                                         66.0704
## dominanceYes
                                                          0.9971
                                                                     0.5648
## log(median_income)
                                                         -9.9542
                                                                     3.4002
## political_affRepublican
                                                          1.0636
                                                                     1.3325
## act wt person county
                                                                      1.7395
                                                          7.5644
## pharmacy_num_ptt:political_affRepublican
                                                         -0.9046
                                                                     0.4408
## most_dist_channelRETAIL PHARMACY:log(median_income)
                                                         -6.2989
                                                                     2.6236
## pharmacy_num_ptt:log(median_income)
                                                          2.8877
                                                                      1.2485
##
                                                        t value
## pharmacy_num_ptt
                                                        -2.2668
## most_dist_channelRETAIL PHARMACY
                                                         2.3825
## dominanceYes
                                                         1.7653
## log(median_income)
                                                        -2.9275
## political_affRepublican
                                                         0.7982
```

```
## act_wt_person_county
                                                      4.3485
## pharmacy_num_ptt:political_affRepublican
                                                     -2.0523
## most dist channelRETAIL PHARMACY:log(median income) -2.4009
## pharmacy_num_ptt:log(median_income)
                                                      2.3129
## Intercepts:
                       Std. Error t value
              Value
## cat 1|cat 2 -105.9514 36.0762
                                   -2.9369
## cat_2|cat_3 -102.2201
                         35.9160
                                    -2.8461
## cat_3|cat_4 -100.1991
                         35.8594
                                    -2.7942
## cat_4|cat_5 -98.2888 35.8476
                                    -2.7419
## cat_5|cat_6 -97.1360
                         35.8385
                                    -2.7104
## Residual Deviance: 236.3985
## AIC: 264.3985
dom_channel.test.ordnet1 = as.data.frame(pred_matrix.train) %>%
 mutate(pharmacy_num_ptt = 3.038, most_dist_channel = "RETAIL PHARMACY", median_income=43194.13,
        political_aff = "Republican",
        act_wt_person_county = 0.19294084,
        perc_oxy = 54.2, distr_num_ptt = 1.709)
classprob_dom <- predict(fit.select, newdata = dom_channel.test.ordnet1, type = "probs")</pre>
# plotting
classprob dom df = t(classprob dom) %>%
 as.data.frame() %>%
 cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat 6`)
rownames(classprob_dom_df) = NULL
# plotting
classcumprob_dom_df = as.data.frame(classprob_dom_df) %>%
 cbind(dom_channel.test.ordnet1) %>%
 dplyr::select(dominance, `P[Y<=1]`:`P[Y<=5]`) %>%
 gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
 mutate(class = as.factor(class),
        dominance = as.factor(dominance))
ggplot(classcumprob_dom_df, aes(x = dominance, y = probability)) +
   geom line(aes(color = class, group = class)) +
   labs(title = "Cumulative Probabilities for Market Dominance",
        y = "P(Y \le j)",
        x= "Market Dominance") +
   theme(plot.title = element_text(hjust = 0.5),
         axis.text.x = element text(face = "bold"),
         panel.grid.major = element_blank(),
         panel.grid.minor = element_blank(),
         legend.title = element_blank())
```

Cumulative Probabilities for Market Dominance


```
# income
summary(fit.select)
```

```
## Call:
## polr(formula = est_death_rate_cat ~ pharmacy_num_ptt + most_dist_channel +
##
       dominance + log(median_income) + political_aff + act_wt_person_county +
##
       pharmacy_num_ptt:political_aff + most_dist_channel:log(median_income) +
       pharmacy_num_ptt:log(median_income), data = train_oh_wv_2012,
##
##
       Hess = TRUE, method = "logistic")
##
## Coefficients:
##
                                                           Value Std. Error
## pharmacy_num_ptt
                                                        -29.8071
                                                                    13.1492
## most_dist_channelRETAIL PHARMACY
                                                                    27.7312
                                                         66.0704
## dominanceYes
                                                          0.9971
                                                                     0.5648
## log(median_income)
                                                         -9.9542
                                                                     3.4002
## political_affRepublican
                                                          1.0636
                                                                     1.3325
## act wt person county
                                                                      1.7395
                                                          7.5644
## pharmacy_num_ptt:political_affRepublican
                                                         -0.9046
                                                                     0.4408
## most_dist_channelRETAIL PHARMACY:log(median_income)
                                                         -6.2989
                                                                     2.6236
## pharmacy_num_ptt:log(median_income)
                                                          2.8877
                                                                      1.2485
##
                                                        t value
## pharmacy_num_ptt
                                                        -2.2668
## most_dist_channelRETAIL PHARMACY
                                                         2.3825
## dominanceYes
                                                         1.7653
## log(median_income)
                                                        -2.9275
## political_affRepublican
                                                         0.7982
```

```
## act_wt_person_county
                                                     4.3485
## pharmacy_num_ptt:political_affRepublican
                                                    -2.0523
## most dist channelRETAIL PHARMACY:log(median income) -2.4009
## pharmacy_num_ptt:log(median_income)
                                                     2.3129
## Intercepts:
                       Std. Error t value
              Value
## cat 1|cat 2 -105.9514 36.0762
                                   -2.9369
## cat_2|cat_3 -102.2201
                         35.9160
                                    -2.8461
                                   -2.7942
## cat_3|cat_4 -100.1991
                         35.8594
## cat_4|cat_5 -98.2888 35.8476
                                   -2.7419
## cat_5|cat_6 -97.1360
                         35.8385
                                   -2.7104
## Residual Deviance: 236.3985
## AIC: 264.3985
log_income.test.ordnet1 = as.data.frame(pred_matrix.train) %>%
 mutate(pharmacy_num_ptt = 3.038, most_dist_channel = "RETAIL PHARMACY", dominance = "Yes",
        political_aff = "Republican",
        act_wt_person_county = 0.19294084,
        perc_oxy = 54.2, distr_num_ptt = 1.709)
classprob_log_income <- predict(fit.select, newdata = log_income.test.ordnet1, type = "probs")</pre>
# plotting
classprob_log_income_df = t(classprob_log_income) %>%
 as.data.frame() %>%
 cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat 6`)
rownames(classprob_log_income_df) = NULL
# plotting
classcumprob_log_income_df = as.data.frame(classprob_log_income_df) %>%
 cbind(log_income.test.ordnet1) %>%
 dplyr::select(median_income, `P[Y<=1]`:`P[Y<=5]`) %>%
 gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
 mutate(class = as.factor(class))
ggplot(classcumprob_log_income_df, aes(x = median_income, y = probability)) +
   geom_line(aes(color = class, group = class)) +
   labs(title = "Cumulative Probabilities for median income",
        y = "P(Y \le j)",
        x= "Median Income") +
   theme(plot.title = element_text(hjust = 0.5),
         axis.text.x = element_text(face = "bold"),
         panel.grid.major = element_blank(),
         panel.grid.minor = element_blank(),
         legend.title = element_blank())
```

Cumulative Probabilities for median income


```
# political aff
polaff.test.ordnet1 = as.data.frame(pred_matrix.train) %>%
   mutate(pharmacy_num_ptt = 3.038, most_dist_channel = "RETAIL PHARMACY", dominance = "Yes",
        median_income = 43194.13,
        act_wt_person_county = 0.19294084,
        perc_oxy = 54.2, distr_num_ptt = 1.709)
classprob_polaff <- predict(fit.select, newdata = polaff.test.ordnet1, type = "probs")</pre>
# plotting
classprob_polaff_df = t(classprob_polaff) %>%
 as.data.frame() %>%
 cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat 6`)
rownames(classprob_polaff_df) = NULL
# plotting
classcumprob_polaff_df = as.data.frame(classprob_polaff_df) %>%
 cbind(polaff.test.ordnet1) %>%
 dplyr::select(political_aff, `P[Y<=1]`:`P[Y<=5]`) %>%
 gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
 mutate(class = as.factor(class),
        political_aff = as.factor(political_aff))
ggplot(classcumprob_polaff_df, aes(x = political_aff, y = probability)) +
   geom_line(aes(color = class, group = class)) +
   labs(title = "Cumulative Probabilities for Political Affiliation",
        y = "P(Y \le j)",
        x= "Political Affiliation") +
```

```
theme(plot.title = element_text(hjust = 0.5),
    axis.text.x = element_text(face = "bold"),
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(),
    legend.title = element_blank())
```

Cumulative Probabilities for Political Affiliation

political_aff polaff.test.ordnet1 = as.data.frame(pred_matrix.train) %>% mutate(pharmacy_num_ptt = 2, most_dist_channel = "RETAIL PHARMACY", dominance = "Yes", median_income = 43194.13, act_wt_person_county = 0.19294084, perc_oxy = 54.2, distr_num_ptt = 1.709) classprob_polaff <- predict(fit.select, newdata = polaff.test.ordnet1, type = "probs")</pre> # plotting classprob_polaff_df = t(classprob_polaff) %>% as.data.frame() %>% cumsum() %>% t() %>% as.data.frame() %>% dplyr::select(-`cat 6`) rownames(classprob_polaff_df) = NULL colnames(classprob_polaff_df) = c("P[Y<=1]", "P[Y<=2]", "P[Y<=3]", "P[Y<=4]", "P[Y<=5]") # plotting classcumprob_polaff_df = as.data.frame(classprob_polaff_df) %>% cbind(polaff.test.ordnet1) %>% dplyr::select(political_aff, `P[Y<=1]`:`P[Y<=5]`) %>% gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>% mutate(class = as.factor(class), political_aff = as.factor(political_aff))

```
ggplot(classcumprob_polaff_df, aes(x = political_aff, y = probability)) +
    geom_line(aes(color = class, group = class)) +
    labs(title = "Cumulative Probabilities for Political Affiliation, \n pharmacy no./ten thousand =2",
        y = "P(Y<=j)",
        x= "Political Affiliation") +
    theme(plot.title = element_text(hjust = 0.5),
        axis.text.x = element_text(face = "bold"),
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        legend.title = element_blank())</pre>
```

Cumulative Probabilities for Political Affiliation, pharmacy no./ten thousand =2


```
classcumprob_polaff_df = as.data.frame(classprob_polaff_df) %>%
  cbind(polaff.test.ordnet1) %>%
  dplyr::select(political_aff, `P[Y<=1]`:`P[Y<=5]`) %>%
  gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
  mutate(class = as.factor(class),
         political_aff = as.factor(political_aff))
ggplot(classcumprob_polaff_df, aes(x = political_aff, y = probability)) +
    geom_line(aes(color = class, group = class)) +
    labs(title = "Cumulative Probabilities for Political Affiliation, \n pharmacy no./ten thousand =4",
         y = "P(Y \le j)",
         x= "Political Affiliation") +
    theme(plot.title = element_text(hjust = 0.5),
          axis.text.x = element_text(face = "bold"),
          panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          legend.title = element_blank())
```

Cumulative Probabilities for Political Affiliation, pharmacy no./ten thousand =4


```
as.data.frame() %>%
  cumsum() %>% t() %>% as.data.frame() %>%
  dplyr::select(-`cat_6`)
rownames(classprob_act_wt_df) = NULL
colnames(classprob_act_wt_df) = c("P[Y<=1]", "P[Y<=2]", "P[Y<=3]", "P[Y<=4]", "P[Y<=5]")
# plotting
classcumprob_act_wt_df = as.data.frame(classprob_act_wt_df) %>%
  cbind(act wt.test.ordnet1) %>%
  dplyr::select(act_wt_person_county, `P[Y<=1]`:`P[Y<=5]`) %>%
  gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
  mutate(class = as.factor(class))
ggplot(classcumprob act wt df, aes(x = act wt person county, y = probability)) +
    geom_line(aes(color = class, group = class)) +
   labs(title = "Cumulative Probabilities for Active Weight Per Person",
         y = "P(Y \le j)",
         x= "Active Drug Weight Per Person") +
   theme(plot.title = element_text(hjust = 0.5),
          axis.text.x = element_text(face = "bold"),
          panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          legend.title = element_blank())
```

Cumulative Probabilities for Active Weight Per Person


```
political_aff="Republican",
         act_wt_person_county = 0.19294084)
classprob_distr_num <- predict(fit.select, newdata = distr_num.test.ordnet1, type = "probs")</pre>
# plotting
classprob_distr_num_df = t(classprob_distr_num) %>%
  as.data.frame() %>%
  cumsum() %>% t() %>% as.data.frame() %>%
  dplyr::select(-`cat_6`)
rownames(classprob_distr_num_df) = NULL
colnames(classprob_distr_num_df) = c("P[Y<=1]", "P[Y<=2]", "P[Y<=3]", "P[Y<=4]", "P[Y<=5]")
# plotting
classcumprob_distr_num_df = as.data.frame(classprob_distr_num_df) %>%
  cbind(distr_num.test.ordnet1) %>%
  dplyr::select(distr_num_ptt, `P[Y<=1]`:`P[Y<=5]`) %>%
  gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
  mutate(class = as.factor(class))
ggplot(classcumprob_distr_num_df, aes(x = distr_num_ptt, y = probability)) +
    geom_line(aes(color = class, group = class)) +
    labs(title = "Cumulative Probabilities for Distributor Number PTT \n at median income $20000",
         y = "P(Y \le j)",
         x= "Distributor Number PTT") +
    theme(plot.title = element_text(hjust = 0.5),
          axis.text.x = element_text(face = "bold"),
          panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          legend.title = element_blank())
```

Cumulative Probabilities for Distributor Number PTT at median income \$20000

interaction plots for fit.select ON TRAINING DATA

```
## number of pharmacies and political affilition
# Republican
pharm_num.test.ordnet1_rep = as.data.frame(pred_matrix.train) %>%
 mutate(most_dist_channel = "RETAIL PHARMACY", dominance = "Yes",
        median_income = 43194.13,
        political aff="Republican",
        perc_oxy = 54.2, act_wt_person_county = 0.19294084, distr_num_ptt = 1.709)
classprob_pharm_num_rep <- predict(fit.select, newdata = pharm_num.test.ordnet1_rep, type = "probs", s</pre>
# plotting
classprob_pharm_num_rep_df = t(classprob_pharm_num_rep) %>%
 as.data.frame() %>%
 cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat_6`)
rownames(classprob_pharm_num_rep_df) = NULL
# plotting
classcumprob_pharm_num_rep_df = as.data.frame(classprob_pharm_num_rep_df) %>%
 cbind(pharm_num.test.ordnet1_rep) %>%
 dplyr::select(pharmacy_num_ptt, `P[Y<=1]`:`P[Y<=5]`) %>%
 gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
 mutate(class = as.factor(class))
num_pharm_rep_p = ggplot(classcumprob_pharm_num_rep_df, aes(x = pharmacy_num_ptt, y = probability)) +
```

```
geom_line(aes(color = class, group = class)) +
    labs(title = "Republican",
         y = "P(Y \le j)",
         x= "Pharmacy Number PTT") +
    theme(plot.title = element_text(hjust = 0.5),
          axis.text.x = element_text(face = "bold"),
          panel.grid.major = element_blank(),
          panel.grid.minor = element blank(),
          legend.title = element_blank())
# Democrat
pharm_num.test.ordnet1_dem = as.data.frame(pred_matrix.train) %>%
  mutate(most_dist_channel = "RETAIL PHARMACY", dominance = "Yes",
         median_income = 43194.13,
         political_aff="Democrat",
         perc_oxy = 54.2, act_wt_person_county = 0.19294084, distr_num_ptt = 1.709)
classprob_pharm_num_dem <- predict(fit.select, newdata = pharm_num.test.ordnet1_dem, type = "probs", s</pre>
# plotting
classprob_pharm_num_dem_df = t(classprob_pharm_num_dem) %>%
  as.data.frame() %>%
  cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat_6`)
rownames(classprob_pharm_num_dem_df) = NULL
colnames(classprob pharm num dem df) = c("P[Y<=1]", "P[Y<=2]", "P[Y<=3]", "P[Y<=4]", "P[Y<=5]")
# plotting
classcumprob_pharm_num_dem_df = as.data.frame(classprob_pharm_num_dem_df) %>%
  cbind(pharm_num.test.ordnet1_dem) %>%
  dplyr::select(pharmacy_num_ptt, `P[Y<=1]`:`P[Y<=5]`) %>%
  gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
  mutate(class = as.factor(class))
num_pharm_dem_p = ggplot(classcumprob_pharm_num_dem_df, aes(x = pharmacy_num_ptt, y = probability)) +
    geom_line(aes(color = class, group = class)) +
   labs(title = "Democrat",
         y = "P(Y \le j)",
         x= "Pharmacy Number PTT") +
    theme(plot.title = element_text(hjust = 0.5),
          axis.text.x = element_text(face = "bold"),
          panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          legend.title = element_blank(),
          legend.position = "none")
#num_pharm_rep_p + num_pharm_dem_p
plot_grid(num_pharm_rep_p, num_pharm_dem_p, axis = "r", align = "v")
```


classcumprob_income_rp_df = as.data.frame(classprob_income_rp_df) %>%

gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%

dplyr::select(median_income, `P[Y<=1]`:`P[Y<=5]`) %>%

rownames(classprob_income_rp_df) = NULL

cbind(income.test.ordnet1_rp) %>%

mutate(class = as.factor(class))

plotting

```
income_rp_p = ggplot(classcumprob_income_rp_df, aes(x = median_income, y = probability)) +
    geom_line(aes(color = class, group = class)) +
   labs(title = "Retail Pharmacy",
         y = "P(Y \le j)",
         x= "Median Income") +
    theme(plot.title = element_text(hjust = 0.5),
          axis.text.x = element_text(face = "bold"),
          panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          legend.title = element_blank())
# CHAIN PHARMACRY
income.test.ordnet1_cp = as.data.frame(pred_matrix.ordnet1) %>%
  mutate(most_dist_channel = "CHAIN PHARMACY", dominance = "Yes",
         pharmacy_num_ptt = 3.038,
         political_aff="Republican",
         perc_oxy = 54.2, act_wt_person_county = 0.19294084, distr_num_ptt = 1.709)
classprob_income_cp <- predict(fit.select, newdata = income.test.ordnet1_cp, type = "probs", se.fit = "</pre>
# plotting
classprob_income_cp_df = t(classprob_income_cp) %>%
  as.data.frame() %>%
  cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat_6`)
rownames(classprob income cp df) = NULL
colnames(classprob income cp df) = c("P[Y<=1]", "P[Y<=2]", "P[Y<=3]", "P[Y<=4]", "P[Y<=5]")
classcumprob_income_cp_df = as.data.frame(classprob_income_cp_df) %>%
  cbind(income.test.ordnet1_cp) %>%
  dplyr::select(median_income, `P[Y<=1]`:`P[Y<=5]`) %>%
  gather(key = "class", value = "probability", `P[Y<=1]`: `P[Y<=5]`) %>%
  mutate(class = as.factor(class))
income_cp_p = ggplot(classcumprob_income_cp_df, aes(x = median_income, y = probability)) +
    geom_line(aes(color = class, group = class)) +
    labs(title = "Chain Pharmacy",
         y = "P(Y \le j)",
         x= "Median Income") +
    theme(plot.title = element_text(hjust = 0.5),
          axis.text.x = element_text(face = "bold"),
          panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          legend.title = element blank(),
          legend.position = "none")
plot_grid(income_rp_p, income_cp_p, axis = "r", align = "v")
```



```
#pharm num at 2 and 4 for chain
income.test.ordnet1_cp = as.data.frame(pred_matrix.train) %>%
  mutate(most_dist_channel = "CHAIN PHARMACY", dominance = "Yes",
         pharmacy_num_ptt = 2,
         political_aff="Republican",
         perc_oxy = 54.2, act_wt_person_county = 0.19294084, distr_num_ptt = 1.709)
classprob_income_cp <- predict(fit.select, newdata = income.test.ordnet1_cp, type = "probs", se.fit = "</pre>
# plotting
classprob_income_cp_df = t(classprob_income_cp) %>%
  as.data.frame() %>%
  cumsum() %>% t() %>% as.data.frame() %>%
  dplyr::select(-`cat_6`)
rownames(classprob_income_cp_df) = NULL
colnames(classprob_income_cp_df) = c("P[Y<=1]", "P[Y<=2]", "P[Y<=3]", "P[Y<=4]", "P[Y<=5]")
# plotting
classcumprob_income_cp_df = as.data.frame(classprob_income_cp_df) %>%
  cbind(income.test.ordnet1_cp) %>%
  dplyr::select(median_income, `P[Y<=1]`:`P[Y<=5]`) %>%
  gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
  mutate(class = as.factor(class))
income_cp_p.pharm2 = ggplot(classcumprob_income_cp_df, aes(x = median_income, y = probability)) +
    geom_line(aes(color = class, group = class)) +
   labs(title = "Median Income, \n Chain Pharmacy, 2 Pharmacies PTT",
         y = "P(Y \le j)",
         x= "Median Income") +
```

```
theme(plot.title = element_text(hjust = 0.5),
         axis.text.x = element_text(face = "bold"),
         panel.grid.major = element_blank(),
         panel.grid.minor = element_blank(),
         legend.title = element_blank())
income.test.ordnet1 cp = as.data.frame(pred matrix.train) %>%
 mutate(most_dist_channel = "CHAIN PHARMACY", dominance = "Yes",
        pharmacy_num_ptt = 4,
        political_aff="Republican",
        perc_oxy = 54.2, act_wt_person_county = 0.19294084, distr_num_ptt = 1.709)
classprob_income_cp <- predict(fit.select, newdata = income.test.ordnet1_cp, type = "probs", se.fit = "</pre>
# plotting
classprob_income_cp_df = t(classprob_income_cp) %>%
 as.data.frame() %>%
 cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat_6`)
rownames(classprob_income_cp_df) = NULL
# plotting
classcumprob_income_cp_df = as.data.frame(classprob_income_cp_df) %>%
 cbind(income.test.ordnet1_cp) %>%
 dplyr::select(median_income, `P[Y<=1]`:`P[Y<=5]`) %>%
 gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
 mutate(class = as.factor(class))
income_cp_p.pharm4 = ggplot(classcumprob_income_cp_df, aes(x = median_income, y = probability)) +
   geom_line(aes(color = class, group = class)) +
   labs(title = "Median Income, \n Chain Pharmacy, 4 Pharmacies PTT",
        y = "P(Y \le j)",
        x= "Median Income") +
   theme(plot.title = element_text(hjust = 0.5),
         axis.text.x = element_text(face = "bold"),
         panel.grid.major = element_blank(),
         panel.grid.minor = element_blank(),
         legend.title = element_blank())
plot_grid(income_cp_p.pharm2, income_cp_p.pharm4)
```


Median Income, Chain Pharmacy, 2 Pharmacies PTT

Median Income, Chain Pharmacy, 4 Pharmacies PTT


```
income.test.ordnet1_cp = as.data.frame(pred_matrix.train) %>%
 mutate(most_dist_channel = "RETAIL PHARMACY", dominance = "Yes",
        pharmacy_num_ptt = 3.5,
        political aff="Republican",
        perc_oxy = 54.2, act_wt_person_county = 0.19294084, distr_num_ptt = 1.709)
classprob_income_cp <- predict(fit.select, newdata = income.test.ordnet1_cp, type = "probs", se.fit = "</pre>
# plotting
classprob_income_cp_df = t(classprob_income_cp) %>%
 as.data.frame() %>%
 cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat_6`)
rownames(classprob_income_cp_df) = NULL
# plotting
classcumprob_income_cp_df = as.data.frame(classprob_income_cp_df) %>%
 cbind(income.test.ordnet1_cp) %>%
 dplyr::select(median_income, `P[Y<=1]`:`P[Y<=5]`) %>%
 gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
 mutate(class = as.factor(class))
income_cp_p.retail.3.5 = ggplot(classcumprob_income_cp_df, aes(x = median_income, y = probability)) +
   geom_line(aes(color = class, group = class)) +
   labs(title = "Median Income, \n Retail Pharmacy, 3.5 Pharmacies PTT",
        y = "P(Y \le j)",
        x= "Median Income") +
   theme(plot.title = element_text(hjust = 0.5),
```

```
axis.text.x = element_text(face = "bold"),
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(),
    legend.title = element_blank())
income_cp_p.retail.3.5
```

Median Income, Retail Pharmacy, 3.5 Pharmacies PTT


```
## pharmacy number and log median income
# range of pharmacy number ptt: 0.928 4.850
# fixing pharmacy number at = 1
income.test.ordnet1_1 = as.data.frame(pred_matrix.train) %>%
 mutate(most_dist_channel = "RETAIL PHARMACY", dominance = "Yes",
        pharmacy_num_ptt = 1,
        political_aff="Republican",
        perc_oxy = 54.2, act_wt_person_county = 0.19294084, distr_num_ptt = 1.709)
classprob_income_1 <- predict(fit.select, newdata = income.test.ordnet1_1, type = "probs", se.fit = TR</pre>
classprob_income_1_df = t(classprob_income_1) %>%
 as.data.frame() %>%
 cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat_6`)
rownames(classprob_income_1_df) = NULL
classcumprob_income_1_df = as.data.frame(classprob_income_1_df) %>%
```

cbind(income.test.ordnet1_1) %>%

```
dplyr::select(median_income, `P[Y<=1]`:`P[Y<=5]`) %>%
 gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
 mutate(class = as.factor(class))
income_1_p = ggplot(classcumprob_income_1_df, aes(x = median_income, y = probability)) +
   geom_line(aes(color = class, group = class)) +
   labs(title = "Pharmacy Number PTT = 1",
        y = "P(Y \le j)",
        x= "Median Income") +
   theme(plot.title = element_text(hjust = 0.5),
         axis.text.x = element_text(face = "bold"),
         panel.grid.major = element_blank(),
         panel.grid.minor = element_blank(),
         legend.title = element_blank())
# fixing pharmacy number at = 4
income.test.ordnet1_4 = as.data.frame(pred_matrix.ordnet1) %>%
 mutate(most_dist_channel = "CHAIN PHARMACY", dominance = "Yes",
        pharmacy_num_ptt = 4,
        political_aff="Republican",
        perc_oxy = 54.2, act_wt_person_county = 0.19294084, distr_num_ptt = 1.709)
classprob_income_4 <- predict(fit.select, newdata = income.test.ordnet1_4, type = "probs", se.fit = TR</pre>
# plotting
classprob income 4 df = t(classprob income 4) %>%
 as.data.frame() %>%
 cumsum() %>% t() %>% as.data.frame() %>%
 dplyr::select(-`cat_6`)
rownames(classprob_income_4_df) = NULL
# plotting
classcumprob_income_4_df = as.data.frame(classprob_income_4_df) %>%
 cbind(income.test.ordnet1_4) %>%
 dplyr::select(median_income, `P[Y<=1]`:`P[Y<=5]`) %>%
 gather(key = "class", value = "probability", `P[Y<=1]`:`P[Y<=5]`) %>%
 mutate(class = as.factor(class))
income_4_p = ggplot(classcumprob_income_4_df, aes(x = median_income, y = probability)) +
   geom_line(aes(color = class, group = class)) +
   labs(title = "Pharmacy Number PTT = 4",
        y = "P(Y \le j)",
        x= "Median Income") +
   theme(plot.title = element_text(hjust = 0.5),
         axis.text.x = element_text(face = "bold"),
         panel.grid.major = element_blank(),
         panel.grid.minor = element_blank(),
         legend.title = element_blank(),
         legend.position = "none")
\#income\_1\_p + income\_4\_p
plot_grid(income_1_p, income_4_p, axis = "r", align = "v")
```

Pharmacy Number PTT = 1

Pharmacy Number PTT = 4

##Check proportional odds assumption

summary(fit.select)

```
## polr(formula = est_death_rate_cat ~ pharmacy_num_ptt + most_dist_channel +
       dominance + log(median_income) + political_aff + act_wt_person_county +
##
##
       pharmacy_num_ptt:political_aff + most_dist_channel:log(median_income) +
##
       pharmacy_num_ptt:log(median_income), data = train_oh_wv_2012,
       Hess = TRUE, method = "logistic")
##
##
## Coefficients:
##
                                                            Value Std. Error
## pharmacy_num_ptt
                                                        -29.8071
                                                                     13.1492
## most_dist_channelRETAIL PHARMACY
                                                          66.0704
                                                                     27.7312
## dominanceYes
                                                                      0.5648
                                                          0.9971
## log(median_income)
                                                          -9.9542
                                                                      3.4002
## political affRepublican
                                                           1.0636
                                                                      1.3325
                                                          7.5644
## act_wt_person_county
                                                                      1.7395
## pharmacy_num_ptt:political_affRepublican
                                                          -0.9046
                                                                      0.4408
## most_dist_channelRETAIL PHARMACY:log(median_income)
                                                         -6.2989
                                                                      2.6236
## pharmacy_num_ptt:log(median_income)
                                                          2.8877
                                                                      1.2485
##
                                                        t value
## pharmacy_num_ptt
                                                        -2.2668
## most_dist_channelRETAIL PHARMACY
                                                          2.3825
## dominanceYes
                                                         1.7653
## log(median_income)
                                                        -2.9275
## political_affRepublican
                                                          0.7982
```

```
## act_wt_person_county
                                                        4.3485
## pharmacy_num_ptt:political_affRepublican
                                                       -2.0523
## most dist channelRETAIL PHARMACY:log(median income) -2.4009
## pharmacy_num_ptt:log(median_income)
                                                        2.3129
## Intercepts:
                         Std. Error t value
              Value
## cat 1|cat 2 -105.9514 36.0762
                                     -2.9369
## cat_2|cat_3 -102.2201
                           35.9160
                                      -2.8461
## cat_3|cat_4 -100.1991
                           35.8594
                                     -2.7942
## cat_4|cat_5 -98.2888
                           35.8476
                                      -2.7419
## cat_5|cat_6 -97.1360
                           35.8385
                                      -2.7104
## Residual Deviance: 236.3985
## AIC: 264.3985
library(ordinal)
## Attaching package: 'ordinal'
## The following objects are masked from 'package:brms':
##
##
      ranef, VarCorr
## The following object is masked from 'package:dplyr':
##
##
       slice
clm<-clm(formula = est_death_rate_cat ~ pharmacy_num_ptt + most_dist_channel +</pre>
   dominance + log(median income) + political aff + act wt person county +
   pharmacy_num_ptt:political_aff + most_dist_channel:log(median_income) +
   pharmacy_num_ptt:log(median_income), data=train_oh_wv_2012,
     link = c("logit"))
## Warning: (3) Model is nearly unidentifiable: large eigenvalue ratio
## - Rescale variables?
## In addition: Absolute and relative convergence criteria were met
nominal_test(clm) #no evidence of non-proportional odds
## Tests of nominal effects
##
## formula: est_death_rate_cat ~ pharmacy_num_ptt + most_dist_channel + dominance + log(median_income)
                                                             LRT Pr(>Chi)
##
                                        Df logLik
                                                      AIC
                                           -118.19 264.37
## <none>
                                         4 -115.78 267.57 4.8010
                                                                   0.3083
## pharmacy_num_ptt
                                         4 -117.14 270.28 2.0881
## most_dist_channel
                                                                   0.7196
## dominance
                                         4 -115.15 266.30 6.0672
                                                                   0.1942
## log(median_income)
                                         4 -115.60 267.19 5.1759
## political_aff
                                                                   0.2697
## act_wt_person_county
## pharmacy num ptt:political aff
## most_dist_channel:log(median_income)
## pharmacy_num_ptt:log(median_income)
                                         4 -115.74 267.48 4.8930
                                                                   0.2984
```