QUÍMICA GENERAL E INORGÁNICA

MASA ATÓMICA Y MASA MOLECULAR

Masa atómica relativa Mol Volumen molar Masa molecular

Masa Atómica Relativa

Isótopo 1	Número másico 1: N1	%abundancia: A1
Isótopo 2	Número másico 2 : N2	%abundancia: A2
Isótopo 3	Número másico 3 : N3	%abundancia: A3

Ejemplo

35*Cl* 75,76%

³⁷₁₇Cl _{24,24%}

$$A_r = \frac{N_1 \cdot A_1 + N_2 \cdot A_2 + N_3 \cdot A_3}{100}$$

$$A_r = \frac{35.75,76 + 37.24,24}{100} = 35.48$$

MOL

Unidad Fundamental que indica cantidad de sustancia. Esta puede estar formada por: átomos, moléculas, electrones, iones, etc.

1 mol = 6,022 . 10²³ unidades elementales

La masa de 1 mol de átomos es igual a la Masa Atómica expresada en gramos, y contiene 6,022 . 10 ²³ átomos.

Ejemplo

La masa de 1 mol de sodio es de 23 g, contiene 6,022 . 10 ²³ átomos.

La masa de un mol de plata es 108 g, contiene 6,022 . 10 ²³ átomos

La masa de un mol de Litio es 7 g, contiene 6,022 . 10 ²³ átomos

VOLUMEN MOLAR

El volumen que ocupa 1 mol de un gas en CNPT, es de 22,4 litros.

1 mol de NH₃

1mol de H₂

1 mol de O₂

1mol de CO₂

22,4 litros 6,022.10²³ moléculas

Condiciones Normales de Presión y Temperatura (CNPT): 1 atmosfera, 0°C

MASA MOLÉCULAR

Moléculas: porción mas pequeña de una sustancia que conserva sus propiedades.

Clasificación: según el número de átomos que la forman, pueden ser monoatómicas, diatómicas, poliatómica, etc. La cantidad de cada átomo se indica como subíndice del lado derecho del símbolo químico.

La masa molecular es igual a la suma de todas las masas atómicas de los elementos que la forman.

$$O_2 = 2 . A_{\text{OXÍGENO}}$$

 $O_2 = 2 . 16$
 $O_2 = 32$

EJEMPLOS

Ca Cl,

$$A_{Ca} = 40$$

$$A_{CI} = 35,5$$

$Mg (CI O_3)_2$

$$Mg = \frac{CIO_3}{CIO_3}$$

$$A_{Mg} = 1.24,3 = 24,3$$

 $A_{Cl} = 2.35,5 = 71$
 $A_{O} = 6.16 = 96$
 $191,3$

Ejercicios de aplicación

1. ¿Cuántos moles de moléculas hay en 100 g de agua?

Resolución

a) Calculamos la masa molecular del agua; H₂O.

$$A_{H} = 2.1 = 2 \text{ g/mol}$$

$$A_0 = 1.16 = 16 \text{ g/mol}$$

18 g/mol

b. Sabemos que la masa molecular es igual a 1 mol

18 g 1 mol

100 g - x = 100 g . 1 mol

18 g

X= 5,56 moles de moléculas

Respuesta: En 100 g de agua hay 5,56 moles de moléculas.

2. Calcular la masa correspondiente a 2,5 moles de aspirina ($C_9H_8O_4$).

Resolución

a. Calculamos la masa molecular de la aspirina.

$$M_C.9 = 12.9 = 108 \text{ g/mol}$$

$$M_H.8 = 1.8 = 8 \text{ g/mol}$$

180 g/mol

$$X = 450 g$$

Respuesta: La masa de 2,5 moles de aspirina es de 450 g..

- 3. La anilina se emplea en la preparación de medicamentos, barnices y perfumes. Se dispone de una muestra de 250 g de anilina (C₆H₇N).Calcular:
- a. La cantidad e moles de anilina.
- b. El número de moléculas de anilina.
- c. El número total de átomos.
- d. La masa en gramos de una molécula de anilina.

Resolución

Calculamos la masa molecular de la anilina

 $C_6H_7N = 6.12+7.1+14= 93 \text{ g/mol}$

a. 93 g anilina

1 mol

250 g anilina

x=2,69 moles

b. Como 1 mol, en este caso 93 g de anilina, contiene 6,022.10²³ moléculas.

93 g anilina

6,022.10²³moléculas

250g anilina $x = 250g \cdot 6,022.10^{23}$

93 g

X= 1,62 . 10²⁴ moléculas

c. Cada molécula de anilina esta formada por 6 átomos de carbono, 7 átomos de hidrógeno y 1 átomo de nitrógeno, en total 14 átomos.

1 molécula

14 átomos

1,62 . 10²⁴ moléculas

 $X = 1,62.10^{24}$ moléculas .14 átomos

1molécula

 $X = 2,27.10^{25}$ átomos

d. 1 mol de anilina tiene una masa de 93 g y contiene 6,022.10²³ moléculas

6,022.10²³moléculas

93 g

1 molécula

x= 1 molécula. 93 g

6,022.10²³moléculas

 $X = 1.544 \cdot 10^{-22} g$

4. Calcular el volumen que ocuparan en CNPT 100 q de cada una de las siquientes sustancias:

a. CO_2 b. O_2 c. CH_A

Resolución

Primero calculamos las masas moleculares de cada sustancia.

a.
$$CO_2 = 12+16.2=44$$
 g/mol

b.
$$O_2 = 16$$
. 2=32 g/mol

El volumen que ocupa un mol un gas en CNPT es de 22,4

c.
$$16 \text{ g CH}_4$$
 22,4 l $x=100 \text{ g.}22,4 \text{ l}/16 \text{ g} = 140 \text{ L CH}_4$