PERANCANGAN SISTEM MONITORING STUNTING PADA ANAK BERBASIS IOT

PRA PROPOSAL PROYEK AKHIR

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek Akhir

oleh:

CANDRA EKA DWI WARSA 6705184027

D3 TEKNIK TELEKOMUNIKASI FAKULTAS ILMU TERAPAN UNIVERSITAS TELKOM 2020

A. Latar Belakang

Pentingnya masa tumbuh kembang anak balita khususnya pada usia 2 tahun pertama, maka pemerintah membuat gerakan nasional bahkan menjadi gerakan internasional yang dikenal sebagai gerakan Scaling Up Nutrition (SUN). Gerakan ini disebut sebagai gerakan nasional sadar gizi dalam rangka percepatan perbaikan gizi pada 1000 hari pertama kehidupan (Gerakan 1000 HPK) yang merupakan periode sensitif karena dampak yang ditimbulkan terhadap bayi pada masa ini bersifat permanen dan tidak dapat dikoreksi. Jika terjadi kegagalan pertumbuhan atau growth faltering pada periode ini, tidak hanya berdampak terhadap pertumbuhan fisik anak, melainkan juga perkembangan kognitif dan kecerdasan lainnya. Meski gangguan pertumbuhan fisik anak masih dapat diperbaiki dengan peningkatan asupan gizi yang baik, namun tidak dengan perkembangan kecerdasannya Mengetahui

Stunting pada anak balita merupakan akibat dari beberapa faktor seperti termasuk gizi, kesehatan, sanitasi dan lingkungan (Depkes RI, 2013). Balita stunting sulit mencapai potensi pertumbuhan dan perkembangan yang optimal baik secara fisik maupun motorik yang erat kaitanya dengan kemunduran kecerdasan dan produktivitas. Stunting pada awal masa kanak-kanak dapat menyebabkan gangguan Intelligence Quotient (IQ), perkembangan psikomotorik, dan integrasi neurosensori (Dewey dan Begum, 2011).

Di Indonesia masalah stunting masih membutuhkan perhatian, berdasarkan Riset Kesehatan dasar tahun 2018 prevalensi stunting pada anak balita sebesar 30,8 % yang berarti terjadi penurunan angka stunting dibandingkan dengan tahun 2013 sebesar 37,2 %. Walaupun angka stunting mengalami penurunan tetapi masih di bawah rekomendasi Organisasi Kesehatan Dunia (WHO) yaitu di bawah 20% dan presentase stunting di Indonesia secara keseluruhan masih tergolong tinggi dan harus mendapat perhatian khusus (Kemenkes RI, 2018)

Stunting merupakan masalah kurang gizi kronis yang disebabkan oleh asupan gizi yang kurang dalam waktu cukup lama akibat pemberian makanan yang tidak sesuai dengan kebutuhan gizi.Kondisi gagal tumbuh pada anak balita (bayi di bawah lima tahun) akibat dari kekurangan gizi kronis sehingga anak terlalu pendek untuk usianya. Kekurangan gizi terjadi begitu saja sejak bayi dalamkandungan dan pada masa awal setelah bayi lahir akan tetapi, kondisi stunting baru nampak setelah bayi

berusia 2 tahun. Balita pendek (stunted) adalah balita dengan panjang badan (PB/U) atau tinggi badan (TB/U) menurut umurnya dibandingkan dengan standar baku whomgrs (multicentre growth reference study).

Untuk mengatasi permasalahan tersebut dibuatlah sistem monitoring stunting dimana *hardware* (alat ukur) berat badan menggunakan sensor *load cell* dan tinggi badan menggunakan sensor *ultrasonic* terintegrasi *database*. *Database* terhubung langsung dengan aplikasi antarmuka, sehingga aplikasi dapat menganalisa hasil pengukuran tinggi badan serta berat badan apakah termasuk kedalam kategori stunted atau tidak, balita yang termasuk kedalam kategori stunted aplikasi akan mengirimkan informasi kebutuhan gizi dan makan yang dibutukan bagi balita.

B. Studi Literatur Penelitian Terkait

Tabel 1 Hasil Studi Literatur

No	Judul Penelitian /Karya Ilmiah	Tahun	Keterangan
1.	Stunting, Faktor Resiko dan Pencegahannya [1]	2018	Dalam jurnal ini penulis menjelaskan tentang apa itu stunting, factor
			resiko stunting, rumus penentuan terindikasi stanting, cara
			pencegahanya
2.	Perancangan Siste, Monitoring Perkembangan Balita	2018	Dalam jurnal ini penulis membuat alat untuk memonotoring
	menggunakan Mikrokontroler ATMEGA328P		perkembangan balita menggunakan sensor <i>load cell</i> , sensor <i>heartbert</i> ,
	Terintegrasi Dengan Database MYSQL di		dan sesor suhu yang terintegrasi dengan database MYSQL.
	POSYANDU Pian Raya Kabupaten Musirawas [2]		
3.	Rancang Bangun Sistem Monitoring Pertumbuhan	2019	Dalam jurnal ini penulis membuat alat untuk memonotoring
	Berat dan Tinggi Balita Berbasis Data pada		pertumbuhan berat badan dan tinggi badan pada balita
	Posyandu [3]		
4.	Situasi Balita Pendek (STUNTING) di Indonesia[4]	2018	Dalam artikel ini penulis menjelaskan proposri jumlah balita
7.			pendek di Asia Tenggara pada tahun 2005 – 2017, masalah gizi
			di Indonesia serta asupan gizi yang optimal untuk mencegah
			stunting

A. Rancangan Sistem

Pada bab ini akan dijelaskan mengenai Perancangan Sistem Monitoring Stunting pada Balita Berbasis IOT. Sistem yang dimiliki terdiri 2 bagian yaitu hardware dan software yaitu website yang digunakan untuk melakukan monitoring. Adapun rancangan yang telah dibuat adalah seabagai berikut.

Gambar 1. Model Perancangan Sistem Monitoring Stunting pada Anak Berbasis IOT

Pada bagain *hardware* terdapat sensor *ultrasonic* untuk merekam tinggi badan dan sensor *load cell* untuk merekam berat badan sebagai inputan yang akan di kirimkan ke nodemcu, lalu nodemcu mengirimkan data ke *MySQL* yang terintegrasi dengan web aplikasi, data akan diolah dan menentukan balita termasuk kedalam kategori stunting atau tidak, dan data infromasi akan diteruskan ke web aplikasi yang akan digunakan ibu dari anak dan admin/bidan. Monitoring penggukuran dan testing alatakan dilakukan dalam jangka waktu 1-2 bulan testing .

Pada web aplikasi akan terbagi menjadi 2 yaitu untuk ibu dari anak dan untuk admin/bidan. Pada web untuk ibu terdapat fitur grafik pertumbuhan berat dan tinggi anak, kondisi anak tergolong stunting atau tidak, waktu dan tempat cek-up selanjutnya, asupan makan dan gizi yang harus dipenuhi pada kondisi stunting, serta fitur tips tips hidup sehat agar terhindar dari kondisi stunting. Tujuan web aplikasi ini mempermudah ibu dari anak untuk melihat perkembangan balita serta sebagai platform edukasi mengenai stunting. Pada web aplikasi untuk admin/bidan terdapat fitur untuk monitoring semua data balita dari tinggi, berat kondisi stunting, registrasi sehingga dapat menambahkan, menghapus dan edit data anak, serta grafik jumlah anak normal dan termasuk kondisi stunting. Tujuan web aplikasi ini mempermudah admin/bidan memonitoring kondisi semua balita.

Referensi

- [1] Sutarto dkk, "Stunting, Faktor Resiko dan Pencegahannya", *J Agromediacine*, Vol.5, no.1, 2020.
- [2] Kurniawan Rudi, Lukman Sunardi, "Perancangan Siste, Monitoring Perkembangan Balita menggunakan Mikrokontroler ATMEGA328P Terintegrasi Dengan Database MYSQL di POSYANDU Pian Raya Kabupaten Musirawas, *Jurnal Sistem Komputer*,vol.3, no.2, 2028.
- [3] Sardi Juli, Risfendra, "Rancang Bangun Sistem Monitoring Pertumbuhan Berat dan Tinggi Balita Berbasis Data pada Posyandu", *Elkha*, vol. 11, no. 2, 2019.
- [4] Sutarjo Untung Susesno, dkk, "Situasi Balita Pendek (STUNTING) di Indonesia", Pusat Data dan Informasi, no. 1, 2018.

Form Kesediaan Membimbing Proyek Akhir

PROYEK AKHIR SEMESTER GANJIL | GENAP* TA 2020/2021

Tanggal: 5 Desember 2020

Kami yang bertanda tangan dibawah ini:

CALON PEMBIMBING 1

Kode : DYD

Nama : Denny Darlis, S.Si., M.T.

CALON PEMBIMBING 2

Kode : AIM

Nama: Aris Hartaman, S.T., M.T.

Menyatakan bersedia menjadi dosen pembimbing Proyek Akhir bagi mahasiswa berikut,

NIM 6705184027

Nama : Candra Eka Dwi Warsa

Prodi / Peminatan : TT / (contoh: MI / SDV)

Calon Judul PA : Perancangan Sistem Monitoring Stunting pada Anak Berbasis IOT

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Akhir yang berlaku.

Calon Pembimbing 1

Calon Pembimbing 2

(Denny Darlis S.Si., M.T.)

NIP:13770026

(Aris Hartaman, S.T., M.T.)

NIP:02770045

CATATAN:

- Aturan Proyek Akhir versi terbaru dapat diunduh dari Portal Dosen » menu "File Repositori" » file "PA TEL-U FIT Pedoman & Template Desember 2013.rar"
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom University Jl. Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

DAFTAR NILAI HASIL STUDI MAHASISWA

NIM (Nomor Induk Mahasiswa)

: 6705184027

Dosen Wali

: TAR / TENGKU AHMAD RIZA

3.56

81

Nama

: CANDRA EKA DWI WARSA

Program Studi : D3 Teknologi Telekomunikasi

Mata Kuliah yang Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
1	DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	АВ
1	DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	АВ
1	DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	АВ
1	DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	А
1	DUH1A2	LITERASI TIK	ICT LITERACY	2	AB
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS	3	А
1	HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	А
1	DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	AB
2	DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	АВ
2	DMH1A2	OLAH RAGA	SPORT	2	А
2	DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	А
2	DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	AB
2	DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	А
2	DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	ВС
2	HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	AB
2	LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	AB
3	DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	ВС
3	DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	ВС

Jumlah SKS

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
3	DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	А
3	DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	А
3	DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	АВ
3	DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	A
3	DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	BC
4	DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	А
4	DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	АВ
4	DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	АВ
4	DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	АВ
4	DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	А
4	DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	А
4	DMH2A2	KERJA PRAKTEK	INTERSHIP	2	А
4	DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	А
Jumlah SKS				81	3.56

Mata Kuliah yang Belum Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
3	VTI2C3	PERANGKAT TELEKOMUNIKASI BROADBAND	BROADBAND TELECOMMUNICATION DEVICES	3	
4	UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2	
4	VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES	2	
4	VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3	
5	VTI3E2	CLOUD COMPUTING	CLOUD COMPUTING	2	
5	UWI3E1	HEI	HEI	1	
5	UWI3A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	
5	VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3	
Jumlah SKS				18	

Tingkat I : 41 SKS Belum Lulus IPK : 3.6

 Tingkat II
 : 81 SKS
 Belum Lulus
 IPK : 3.56

 Tingkat III
 : 81 SKS
 Belum Lulus
 IPK : 3.56

 Jumlah SKS
 : 81 SKS
 IPK : 3.56

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 02 Desember 2020 14:04:42 oleh CANDRA EKA DWI WARSA