Linear Regression

Original Slides by:

Courtney Anne Ngo Daniel Stanley Tan, PhD Arren Antioquia

Updated (AY 2023 – 2024 T3) by:

Thomas James Tiam-Lee, PhD

Linear Regression

- Supervised, regression learning algorithm
- Example:
 - predict the price of the house given its lot area

Lot area	House Price
50	1148
52	1458
54	1551
56	1513
58	1425
60	1657
62	1457
64	1504
66	1522
68	1594
70	1448
70	1556

Lot area	House Price
50	1148
52	1458
54	1551
56	1513
58	1425
60	1657
62	1457
64	1504
66	1522
68	1594
70	1448
70	1550

Lot area	House Price
50	1148
52	1458
54	1551
56	1513
58	1425
60	1657
62	1457
64	1504
66	1522
68	1594
70	1448
70	1556

Lot area	House Price
50	1148
52	1458
54	1551
56	1513
58	1425
60	1657
62	1457
64	1504
66	1522
68	1594
70	1448
70	1550

Lot area	House Price
50	1148
52	1458
54	1551
56	1513
58	1425
60	1657
62	1457
64	1504
66	1522
68	1594
70	1448
70	1556

- Recall: in ML, the model is the representation of the "patterns" that were learned in the data.
- In linear regression with 1 feature, the model can be thought of as a line.

Equation of a line:

$$\hat{y} = mx + b$$

Equation of a line:

$$\hat{y} = \theta_1 x + \theta_0$$

Equation of a line:

$$\hat{y} = \theta_1 x + \theta_0$$

parameters of the model

 θ_1 : slope of the line

 θ_0 : intercept of the line

Extension to multiple features:

- With 2 features, the line becomes a plane!
- With more than 2 features, it becomes a hyperplane!

Extension to multiple features:

$$\hat{y} = \theta_1 x_1 + \theta_2 x_2 + \theta_0$$

Extension to multiple features:

$$\hat{y} = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d + \theta_0$$

For convenience, we add a feature that is always 1.

$$\hat{y} = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d + \theta_0 x_0$$
where x_0 is always 1.

Lot area	House Price
50	1148
52	1458
54	1551
56	1513
58	1425

For convenience, we add a feature that is always 1.

$$\hat{y} = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d$$
where x_0 is always 1.

Lot area	House Price
50	1148
52	1458
54	1551
56	1513
58	1425

X0	Lot area	House Price
1	50	1148
1	52	1458
1	54	1551
1	56	1513
1	58	1425

This allows us to vectorize the operation

$$\hat{y} = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d$$

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x}$$

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \dots \\ \theta_d \end{bmatrix} \quad x = \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_d \end{bmatrix}$$

 We assume the input and output are related with the following equation:

$$y = \theta^T x + \varepsilon$$

• Where $\varepsilon \sim N(0, \sigma^2)$ represents the measurement error or some other random noise

How to Choose the Parameters?

 Our goal is the come up with a good set of parameters, such that our model "fits" the data.

 Given a set of parameters θ, how do we objectively measure how "good" the model is?

Loss Function

- Also known as objective function or cost function.
- Input: parameters of a model + a dataset
- Returns: a numerical value representing how well the model fits the dataset

• $l(\theta, X, y) = loss$ (the lower value, the better)

Linear Regression Loss Function

Linear Regression Loss Function

$$l(\theta, X, y) = \frac{1}{2n} \sum (\hat{y} - y)^2$$
number of prediction correct instances of model

We add 2 here, for convenience later (this does not affect the intended purpose of the loss function)

Loss Landscape

Optimization Problem

$$\underset{\theta}{\operatorname{argmin}} l(\theta, X, y)$$

$$\underset{\theta}{\operatorname{argmin}} \frac{1}{2n} \sum (\hat{y} - y)^2$$

Find the value of θ such that the loss function will return the smallest possible value.

$$\frac{\partial}{\partial \theta} \frac{1}{2n} \sum (\hat{y} - y)^2 \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}$$

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}$$

How does θ_0 affect the loss?

$$\frac{\partial}{\partial \theta_0} \frac{1}{2n} \sum (\hat{y} - y)^2 = \frac{1}{2n} \frac{\partial}{\partial \theta_0} \sum (\hat{y} - y)^2 = \frac{1}{2n} \sum \frac{\partial}{\partial \theta_0} (\hat{y} - y)^2$$

$$= \frac{1}{2n} \sum 2(\hat{y} - y) \frac{\partial}{\partial \theta_0} (\hat{y} - y)$$

$$= \frac{1}{2n} \sum 2(\hat{y} - y) \frac{\partial}{\partial \theta_0} (\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_d x_d - y)$$

$$= \frac{1}{2n} \sum 2(\hat{y} - y)(x_0) = \frac{1}{n} \sum (\hat{y} - y)(x_0)$$

$$\frac{\partial}{\partial \theta} \frac{1}{2n} \sum (\hat{y} - y)^2 \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}$$

How does θ_1 affect the loss?

$$\frac{\partial}{\partial \theta_1} \frac{1}{2n} \sum (\hat{y} - y)^2 = \frac{1}{2n} \frac{\partial}{\partial \theta_1} \sum (\hat{y} - y)^2 = \frac{1}{2n} \sum \frac{\partial}{\partial \theta_1} (\hat{y} - y)^2$$

$$= \frac{1}{2n} \sum 2(\hat{y} - y) \frac{\partial}{\partial \theta_1} (\hat{y} - y)$$

$$= \frac{1}{2n} \sum 2(\hat{y} - y) \frac{\partial}{\partial \theta_1} (\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_d x_d - y)$$

$$= \frac{1}{2n} \sum 2(\hat{y} - y)(x_1) = \frac{1}{n} \sum (\hat{y} - y)(x_1)$$

$$\frac{\partial}{\partial \theta} \frac{1}{2n} \sum (\hat{y} - y)^2 \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}$$

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}$$

How does θ_i affect the loss?

$$\frac{\partial}{\partial \theta_i} \frac{1}{2n} \sum (\hat{y} - y)^2 = \frac{1}{2n} \frac{\partial}{\partial \theta_i} \sum (\hat{y} - y)^2 = \frac{1}{2n} \sum \frac{\partial}{\partial \theta_i} (\hat{y} - y)^2$$

$$= \frac{1}{2n} \sum 2(\hat{y} - y) \frac{\partial}{\partial \theta_i} (\hat{y} - y)$$

$$= \frac{1}{2n} \sum 2(\hat{y} - y) \frac{\partial}{\partial \theta_i} (\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_d x_d - y)$$

$$= \frac{1}{2n} \sum 2(\hat{y} - y)(x_i) = \frac{1}{n} \sum (\hat{y} - y)(x_i)$$

$$\frac{\partial}{\partial \theta} \frac{1}{2n} \sum (\hat{y} - y)^2 \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}$$

To summarize...

$$\frac{\partial}{\partial \theta} l(\theta, X, y) = \left[\frac{1}{n} \sum (\hat{y} - y)(x_0), \frac{1}{n} \sum (\hat{y} - y)(x_1), \dots, \frac{1}{n} \sum (\hat{y} - y)(x_d) \right]$$

In vector form:

$$\frac{\partial}{\partial \theta} l(\theta, X, y) = \frac{1}{n} (X\theta - y)^T X$$

Two Solutions to Linear Regression

- Analytical Solution
- 2. Gradient Descent

Analytical Solution

• Set the derivative to 0 and solve for θ

Ignore $\frac{1}{n}$ for simplicity

$$(X\theta - y)^T X = 0$$

$$X^T X \theta - X^T y = 0$$

$$X^T X \theta = X^T y$$

 A^{-1} means the matrix inverse of A

Gradient Descent

- Try out different parameters until you reach the lowest point.
- Use the gradient (derivative evaluated at the current point) to guide the exploration.

Gradient Descent

procedure gradientdescent(θ): while not converged do:

$$\theta \coloneqq \theta - \alpha \frac{\partial}{\partial \theta} l(\theta)$$
return θ

 α is the learning rate, determines how large the update will be

$$\frac{\partial}{\partial \theta_i} l(\theta)$$
 is the gradient of the loss

The Learning Rate (α) Hyperparameter

- Controls how "fast" the learning happens.
- Common values are 0.01, 0.001, 0.0001, and so on...

- If α is too small...
 - Convergence may take too long
- If α is too large...
 - Algorithm may overshoot the minimum
- Different values of α can be tried out as part of hyperparameter tuning.

Stochastic, Mini-Batch Gradient

Gradient Descent

Stochastic GD

Mini-Batch GD

Updates θ based on gradient of the **whole dataset**

Updates θ based on gradient of **one data instance**

Updates θ based on gradient of a subset of the whole dataset

Runs slow

Runs fast, but jittery

Runs faster than GD, and path is not as jittery as stochastic GD

1 iter = N instances N = size of whole dataset

1 iter = 1 instance

1 iter = M instances, M = size of batch

Standardization of Features

 Subtract each value by the mean of that feature, then divide it by the standard deviation of that feature.

$$x_{norm} = \frac{x - \mu}{\sigma}$$

Sometimes necessary to prevent underflow or overflow

Evaluating Regression Tasks (test set)

- Mean sum of squared error (MSE)
- Mean absolute error (MAE)
 - $\frac{1}{n} \sum |\hat{y} y|$
- Root mean squared error (RMSE)

$$\sqrt{\frac{1}{n}\sum(\hat{y}-y)^2}$$

- Coefficient of Determination (R^2)

Linear Regression Advantages and Disadvantages

- Advantages
 - Relatively fast to train
 - Relatively fast to test

Disadvantages

- Can only be used for regression tasks
- Features may sometimes need to be standardized
- Features may sometimes need to be transformed