MEMORANDUM RM-6262-NASA **MARCH 1970**

OBSERVATIONS OF THE 1969 INFERIOR CONJUNCTION AND GREATEST WESTERN ELONGATION OF VENUS: DATA CATALOG AND PRELIMINARY ANALYSIS

G. E. Kocher, G. F. Schilling, R. C. Moore and M. Turner

PREPARED FOR:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Va. 22151

MEMORANDUM RM-6262-NASA MARCH 1970

OBSERVATIONS OF THE 1969 INFERIOR CONJUNCTION AND GREATEST WESTERN ELONGATION OF VENUS: DATA CATALOG AND PRELIMINARY ANALYSIS

G. E. Kocher, G. F. Schilling, R. C. Moore and M. Turner

This research is sponsored by the National Aeronautics and Space Administration under Contract No. NASw-1762. This report does not necessarily represent the views of Rand or of the National Aeronautics and Space Administration.

1700 MAIN ST . SANTA MONICA . CALIFORNIA . 904

PRECEDING PAGE BLANK NOT FILMED.

-iii-

PREFACE

This Memorandum catalogs the reduced observational data obtained during the inferior conjunction and greatest western elongation of Venus in 1969. The research objectives and the scientific results of the program are summarized in a companion Memorandum RM-6261-NASA:

Venus Cusp Observations During 1969: Synopsis of Results. The work was performed in partial fulfillment of Contract NASw-1762, "Telescopic Observations of Venus Cusp Phenomena," for the Office of Space Science and Applications, National Aeronautics and Space Administration.

-v-

SUMMARY

This Memorandum includes a catalog of telescopic and photometric information on Venus obtained in 1969. Two specific celestial phenomena were investigated: inferior conjunction (April 3 to 22) and greatest western elongation (June 14 to 21). The latter was observed simultaneously from observatories some eleven degrees apart in longitude. Along with each photographic observation, many of which were in daylight or twilight, photometer readings of the sky, near Venus and elsewhere, were recorded. This program was the observational follow-up of a theoretical study that suggested that the Venus cusp extension angle measured was dependent on the brightness of the terrestrial sky around it. Now it is suggested that additional factors also play a role—factors associated with the earth's atmosphere and with the characteristics of the observing equipment. The interplay of two parameters, sky brightness and film exposure time, is examined.

PRECEDING PAGE BLANK NOT FILMED.

-vii-

CONTENTS

PREFAC	CE	iii
SUMMAE	RY	v
Section	on	
I.	INTRODUCTION	1
II.	OBSERVING PROGRAMS.	3
•	Schedule of Operations: Inferior Conjunction	3
	Schedule of Operations: Greatest Elongation	4
	Instrumentation	5
	Method and Technique: Inferior Conjunction	12
	Method and Technique: Greatest Elongation	13
III.	CATALOG OF TELESCOPIC DATA	14
TTT	•	14
	Plate Measurements	15
	Film Measurements	15
	Visual Estimates	13
IV.	CATALOG OF PHOTOMETRIC DATA	34
	Inferior Conjunction.	34
	Greatest Elongation	34
٧.	DATA REDUCTION AND ANALYSIS	45
. •	Photographic Material	45
	Photometric Material	48
	Sky-Brightness Effects	48
Appen	div	
Thech	COMPUTER COMPUTATIONS	61

I. INTRODUCTION

The program described in <u>Venus Cusp Observations During 1969</u>:

<u>Synopsis of Results</u> centered on telescopic observations of the angular extent of the Venus crescent near the periods of inferior conjunction (April 1969) and greatest western elongation (June 1969).

Surface brightness of the terrestrial sky was shown to have an important effect upon results. The principal scientific objectives were the acquisition and use of data for gaining additional knowledge about the atmosphere of Venus, based on a theory that explained quantitatively the Venus cusp extension phenomena and that revealed the causative roles played by the atmospheres of Earth and Venus. This theory was published in The Twilight Atmosphere of Venus.

The observational information gathered represents a heretofore non-existent data base for scientific studies of the Venus cusp phenomena. In this Memorandum, we tabulate the data reduced to date and show some of the relationships found. We have attempted to catalog the data here in such form that they may be readily usable by other investigators in conjunction with information given in the two other Memorandums referenced above.

The observational programs were conducted at the Table Mountain Observatory (TMO) of the Jet Propulsion Laboratory, California Institute of Technology, near Wrightwood, California, and at the observatory of New Mexico State University (NMSU) near Las Cruces, New Mexico.

Observations of the inferior conjunction of Venus (15:00 UT 8 April 1969) were conducted at TMO from 3 April to 22 April 1969. Useful photographic, visual, and photometric data were obtained.

Observations of the greatest western elongation of Venus (17:00 UT 17 June 1969) and of geometric dichotomy (07:00 UT 18 June 1969) were

^{*}RM-6261-NASA, The RAND Corporation, Santa Monica, California, March 1970.

^{**} RM-5386-PR, The RAND Corporation, Santa Monica, California, July 1967.

conducted at both TMO and NMSU between 14 June and 21 June 1969. Photographic, visual, and photometric data were obtained.

We have been able to complete the reduction and preliminary analysis of only part of the observational material to date. There is much additional information in the data; it is hoped that further scientific analysis will be supported.

II. OBSERVING PROGRAMS

SCHEDULE OF OPERATIONS: INFERIOR CONJUNCTION

The schedule called for morning and evening twilight observations of Venus before inferior conjunction, round-the-clock observations near inferior conjunction (8 April), and morning twilight and forenoon observations after inferior conjunction. Unfavorable weather conditions, including two brief snowstorms, required some deviations from this plan. Successful photographic data, visual data, or photometric measurements were obtained at TMO during the periods listed in Table 1.

Table 1
SUCCESSFUL OBSERVING PERIODS DURING THE INFERIOR CONJUNCTION
OF VENUS IN APRIL 1969

Date (PST)	Time Periods (PST)
3 April	10:55 - 14:58; 17:15 - 18:57
4 April	05:22 - 07:00; 10:59 - 11:01; 17:11 - 18:40
7 April	07:08 - 08:54; 10:51 - 11:29; 14:20 - 15:03
8 April	04:35 - 07:30; 10:21 - 10:58; 15:30 - 18:26
9 April	04:50 - 05:35; 07:06 - 07:14; 17:48 - 18:45
10 April	10:24 - 11:16
11 Apri1	04:27 - 05:33; 12:53 - 12:56
12 April	04:45 ~ 05:21; 20:25 - 21:07
13 Apr11	04:35 ~ 05:26
14 April	04:19 - 05:09
15 April	04:16 - 05:12; 08:59 - 09:50
16 April	04:00 - 05:12; 09:22 - 09:39
17 April	04:06 - 05:12; 09:18 - 09:39
19 April	03:54 ~ 05:21; 08:31 - 10:10
20 April	03:51 - 05:17; 09:45 - 10:16
21 April	04:01 - 05:19; 09:40 - 10:21
22 April	03:54 - 05:14; 09:40 - 10:17

A total of 26 III-F plates with an average of 16 images on each, and 12 strips of 35-mm film (II-F, III-F, and Tri-X) with an average of 25 images on each, were obtained with the 16-in. Cassegrain reflector. In addition to Venus exposures, the plates and films recorded star trails for precise angular reduction, and images of Jupiter or the Moon for photometric comparisons.

The complementary and precisely timed photometric measurements consist of values of the brightness of the terrestrial sky at the zenith, at the horizon, and around Venus.

Supplementary visual observations were conducted with a 6-in. guide refractor at various magnifications.

SCHEDULE OF OPERATIONS: GREATEST ELONGATION

In order to understand better the effect of telescope size on the measured value of the Venus cusp extension angle and the related date of apparent dichotomy, a program of observations at greatest western elongation was carried out simultaneously at the two sites. In addition, the geographic separation of Table Mountain Observatory and the New Mexico State University Observatory permitted simultaneous images of Venus to be obtained under different sky brightness conditions. The observing periods are listed below:

Table 2
SUCCESSFUL OBSERVING PERIODS DURING THE GREATEST WESTERN ELONGATION
OF VENUS, JUNE 1969 (UT)

(June)	TMO	NMSU
14		09:39-12:52
16		11:19-12:37
17	09;30-13:31	09:34-13:35
18	09;59-13:30	09:32-12:46
19	09;58-13:30; 20;12-23:00	11:03-12:29
20	10;17-13:30; 20;03-23:00	11:07-12:43
21	10;30-13;30; 19:42-20:20	05:51-06:13

At TMO 25 strips of 35-mm film (III-F with no filter) with an average of 19 images per strip were obtained with the 16-in. Cassegrain reflector. For photometric comparison, images of Saturn and Mercury also were included. Supplementary visual observations were made with the 6-in. guide refractor at various magnifications.

At NMSU 22 plates (III-F with no filter) with an average of 25 images on each plate were obtained with the 24-in. Cassegrain reflector. In addition, again for photometric comparison, images of Jupiter and Mars were included.

At both locations, the complementary and precisely timed photometric measurements consisted of values of the brightness of the terrestrial sky in the vicinity of Venus and at the zenith.

INSTRUMENTATION

Inferior Conjunction

The April 1969 data on inferior conjunction were obtained at the Table Mountain Observatory. Most of the observations were taken with the 16-in. telescope, the remainder with an auxiliary 6-in. refractor. The instrumental particulars are listed below.

Telescope Location:

Latitude 34° 22' 54"02 N Longitude 117° 41' 51"22 W Altitude 7503 ft (2287 m)

Optical parameters:

Optical type	Cassegrain reflector with quartz elements	guide refractor
Aperture, D	16 in.	6 in.
Effective focal length, F	803 in.*	90 in.
Focal ratio, F/D	50 [*]	15
Plate scale	10"2/mm* ·	•••
Magnification (power)	993× (20-mm eyepiece)	100 to 300×

Figures vary slightly with placement of camera and secondary.

While visual estimates of crescent extent were made with both telescopes (principally the refractor), all photographs were made with the reflector. The two cameras used were

- (a) Plate camera, including diagonal pivoting mirror and guiding eyepiece. Plate size, $3\ 1/4$ in. \times 4 1/4 in. It was focused by using a ground glass at the focal plane. Shutter speeds available were B, and 1 to 1/100 sec.
- (b) Film camera: Nikon 35-mm camera body using standard cartridges. Shutter speeds available were T, B, and 1 to 1/1000 sec.

Neither camera used an amplifying lens such as a Barlow.

A variety of Kodak emulsions was employed, but most were of the spectroscopic film and plate series.

	Number I	<u>leduced</u>
Emulsion type	<u>Plates</u>	Films
II-F		2
III-F	18 .	9
Tri X		1

Processing was carried out in UFG 1:1, 8 minutes @ 70°F for plates (and 14 minutes @ 70°F for films), followed by a 30-sec stop bath, a 5-min fix, a 2-min hypo clear, and a 20-min wash.

Measurements of sky brightness were made with the two photometers described below.

Manufacturer	Asahi Optical	Mekano
Model	Honeywell 1°/21°	Spotron
Sensor	CdS	CdS
Spot diameter	1°	2 °
Serial number	33137	12 514

In addition, to prevent off-scale readings, the Honeywell meter was occasionally fitted with a Kodak Wratten neutral density filter (ND 1.0, 10 times reduction) when the telescope was pointed near the sun. Meter calibration data are shown in Figs. 1 and 2.

The two photometers were compared by simultaneous measurements of a specific area of relatively clear sky; the comparison is plotted

Fig. 1 -- Comparison of photometers (sky source).

Fig. 2 -- Comparison of photometers (incandescent-light source).

in Fig. 1. The sample of data shown was taken at one sea-level and two mountain locations. They were compared also in the laboratory through sequential measurements of an artifically illuminated, translucent screen; the comparison is plotted in Fig. 2. Within the accuracy of visual readings of the photometer scales, the meters provided comparable and stable measurements between ambient light levels of 10^{-4} and 1 candle per square centimeter. Outside this range, at very low and very high light levels, it was difficult to read the scales accurately. As can be noticed in Fig. 1, occasional differences occur between the readings of the two meters. This resulted from nonuniform sky conditions; the fields of view of the two meters were different (acceptance angles of one degree versus two degrees).

The meters indicated surface brightness, or luminance, in instrumental SD units (SD \equiv scale divisions), where an increase by one scale division represents a doubling of brightness. Scale divisions and absolute units of surface brightness are related as follows:

$$[cd ft^{-2}] = 10 \times 2^{(SD-10)}$$

$$[cd cm^{-2}] = 1.05 \times 10^{-5} \times 2^{SD}$$

Table 3 is provided to facilitate conversion from scale divisions to candles per square centimeter. Under field conditions, reading accuracy was degraded by scale parallax and scale interpolation uncertainties. The combined uncertainty is estimated to be not more than 0.2 scale division.

Unfortunately, the available photometers did not have the range we would have preferred. We generally began exposures before the meters responded. Photometers sensitive to lower levels of surface brightness, i.e., below 10^{-5} cd cm $^{-2}$, however, would have required an investment very much out of proportion to the added capability. As work along these lines proceeds, one would like ultimately to extend the data base to the lowest possible levels of sky brightness. But for our purposes the meters used were at least very convenient, quite reproducible in response, and reliable.

Table 3

CONVERSION OF SCALE DIVISIONS TO CANDLES PER SQUARE CENTIMETER

		·		T		,			
SD	ed cm ⁻²	SD	cd cm ⁻²	SD	cd cm ⁻²	SD	cd cm ⁻²	SD	cd cm ⁻²
0.0	1.05-05	4.0	1.68-04	8.0	2,69-03	12.0	4.31-02	16.0	6.89-01
0.1	1.13-05	4.1	1.80-04	8.1	2.88-03	12.1	4.61-02	16.1	7.38-01
0.2	1.21-05	4.2	1.93-04	8.2	3.09-03	12.2	4.95-02	16.2	7.91-01
0.3	1.29-05	4.3	2.07-04	8.3	3.31-03	12.3	5.30-02	16.3	8.48-01
0.4	1.39-05	4.4	2.22-04	8.4	3.55-03	12.4	5.68-02	16.4	9.09-01
0.5	1.49-05	4.5	2.38-04	[[8.5	3.81-03	[[12.5	6.09-02	16.5	9.74-01
0.6	1.59-05	4.6	^2.55-04	8.6	4.08-03	12.6	6.53-02	16.6	1.04 00
0.7	1.71-05	4.7	2.73-04	8.7	4.37-03	12.7	6.99-02	16.7	1.12 00
8.0	1.83-05	4.8	2.93-04	8.8	4.69-03	12.8	7.50-02	16.8	1.20 00
0.9	1.96-05	4.9	3.14-04	8.9	5.02-03	12.9	8.03-02	16.9	1.29 00
1.0	2.10-05	5.0	3.36-04	9.0	5.38-03	13.0	8.61-02	17.0	1.38 00
1.1	2.25-05	5.1	3.61-04	9.1	5.77~03	13.1	9.23-02	17.1	1.48 00
1.2	2.41-05	5.2	3.86-04	9.2	6.18-03	13.2	9.89-02	17.2	1.58 00
1.3	2.59-05	5.3	4.14-04	9.3	6,63-03	13.3	1.06-01	17.3	1.70 00
1.4	2.77-05	5.4	4.44-04	9.4	7.10-03	13.4	1.14-01	17.4	1.82 00
1.5	2.97-05	5.5	4.76-04	9.5	7.61-03	13.5	1.22-01	17.5	1.95 00
1.6	3.19-05	5.6	5.10~04	9.6	8.16-03	13,6	1.31-01	17.6	2.09 00
1.7	3.42-05	5.7	5.46-04	9.7	8.74-03	13.7	1.40-01	17.7	2.24 00
1.8	3.66-05	5.8	5.86-04	9.8	9.37-03	13.8	1.50-01	17.8	2.40 00
1.9	3.92-05	5.9	6.28-04	9.9	1.00-02	13.9	1.61-01	17.9	2.57 00
									•
2.0	4.20-05	6.0	6.73-04	10.0	1.08-02	14.0	1.72-01	18.0	2.76 00
2.1	4.51-05	6.1	7.21-04	10.1	1.15-02	14.1	1.85-01]] 10.0	2.70 00
2.2	4.83-05	6.2	7.73-04	10.2	1.24-02	14.2	1.98-01		
2.3	5.18-05	6.3	8.28-04	10.3	1.33-02	14.3	2.12-01		
2.4	5.55-05	6.4	8.88-04	10.4	1.42-02	14.4	2.27-01		
2.5	5.95-05	6.5	9.51-04	10.5	1.52-02	14.5	2.44-01	[[
2.6	6.37-05	6.6	1.02-03	10.6	1.63-02	14.6	2,61-01		
2.7	6.83-05	6.7	1.09-03	10.7	1.75-02	14.7	2.80-01	11	
2.8	7.32-05	6.8	1.17-03	10.8	1.87-02	14.8	3.00-01		
2.9	7.85-05	6.9	1.26-03	10.9	2.01-02	14.9	3.21-01]]	
				1					
3.0	8.41-05	7.0	1.35-03	11.0	2.15-02	15.0	3.44-01		
3.1	9.01-05	7.1	1.44-03	11.1	2.31-02	15.1	3.69-01		
3.2	9.66-05	7.2	1.55-03	11.2	2.47-02	15.2	3.96-01]]	
3.3	1.04-04	7.3	1.66-03	11.3	2.65-02	15.3	4.24-01		
3.4	1.11-04	7.4	1.78-03	11.4	2.84-02	15.4	4.54-01		
3.5	1.19-04	7.5	1.90-03	11.5	3.04-02	15.5	4.87-01]	
3.6	1.27-04	7.6	2.04-03	11.6	3.26-02	15.6	5.22-01		
3.7	1.37-04	7.7	2.19-03	11.7	3.50-02	15.7	5.60-01	 	
3.8	1.46-04	7.8	2.34-03	11.8	3.75-02	15.8	6.00-01		
3.9	1.57-04	7.9	2.51-03	11.9	4.02-02	15.9	6.43-01	l	

Greatest Western Elongation

Data during June of 1969 were obtained at Table Mountain Observatory and at New Mexico State University Observatory: The instrumental particulars are compared below:

Site	TMO	nmsu
Telescope location		
Latitude	34° 22' 54"02 N	32° 17' 17"12 N
Longitude	117° 41' 51"22 W	106° 41!8 W
Altitude	7503 ft (2287 m)	4767 ft (1453 m)
Optical parameters		
Optical Type	Cassegrai	in reflector
Aperture, D	16 in.	24 in.
Effective focal length	•	1780 in.
Focal ratio	50 *	74
Plate scale	10"2/mm*	4"56/mm
Magnification (powers)	993×	
Camera parameters		
Description	Contarex 35 mm	$3 1/4 \times 4 1/4 $ plate
Amplifying lenses	None	None
Shutter speeds	T, B, 1 to 1/1000 sec	T, 6 to 1/20 sec
Filters	None	NG-4

Kodak spectroscopic emulsions type III-F were used in both cameras. At TMO 25 strips of film were used, averaging 19 planetary images each. At NMSU 22 plates were used, each having 25 planetary images. Each plate was provided with a photometric calibration strip.

Measurements of sky brightness were made with the two photometers described earlier. Sky brightness was such that neither was used with any kind of filter.

^{*} Figures vary slightly with placement of camera and secondary.

METHOD AND TECHNIQUE: INFERIOR CONJUNCTION

In order to obtain data over the widest possible range of sky brightness, it was necessary to resort to practices that are unorthodox in ordinary astronomical work. This was especially true during inferior conjunction, with Venus very close to the Sun. In particular it was also necessary to observe the planet as near the horizon as possible as the sky was darkest then.

For a typical observing run, for example on a few days after inferior conjunction, preparations were made to begin observations at Venus rise. The exact time and azimuth of the planet's rising were computed in advance to assist in anticipating the planet's appearance (see Appendix). Starting at planet rise, photographs were taken frequently with simultaneous readings of the brightness of the sky surrounding Venus. Since one of the objectives was to determine the exposures at which both Venus and the sky become visible on the photographs, a range of exposures was used, each series being started when the sky brightness had changed sufficiently. The data in Section III reveal the exact plan used. Photography was continued until the sky reached its daytime brightness. Toward the end of each day's run, Venus was not visible through the photometer eyepiece because of the high brightness of the sky. It was then necessary to establish the Venus location by sighting along the telescope tube. Between each series of exposures, visual observations of the Venus crescent arc length were made by all observers present to establish the relationship between visual and photographic observations.

The use of color filters on the camera would have permitted sharper pictures, to be sure, but our lack of knowledge of the variations of apparent brightness with wavelength, both of Venus and of the terrestrial sky, particularly at large zenith distances and at sunrise, would have complicated greatly the interpretation of results. Ultimately, of course, such work is desirable, but knowledge has not yet progressed to that point.

Some other consequences of our interest in the brightness rather than the spatial resolution of the Venus images were (a) no need for

many exposures to capture the few fleeting moments of outstanding atmospheric clarity and (b) the use of the same film or plate sometimes for hours, because of the desirability of getting as many data as possible on one plate to minimize variations due to processing and to emulsion sensitivity.

METHOD AND TECHNIQUE: GREATEST ELONGATION

For observations near dichotomy, the methods used were similar to those described above. However, since Venus was farther from the Sun, it was possible to make observations against a much darker sky.

The procedures at NMSU were somewhat different because of the different equipment. For example, the shutter on the 24-in. telescope did not operate reliably at speeds shorter than 1/20 sec. In order to obtain photographs under bright-sky conditions, it was necessary to use a neutral-density filter in the camera. The NG-4 filter used reduced the intensity of light at the plate by a factor of ten. Also, the time of each exposure was automatically recorded when the shutter was operated. Since a sensitometer was available at NMSU, each plate was given a photometric calibration strip.

III. CATALOG OF TELESCOPIC DATA

The reduced telescopic data are collected in catalog form in three functional tables.

PLATE MEASUREMENTS

Table 4 presents the data collected on spectroscopic plates type III-F, exposed in the 16-in. telescope at TMO. The purpose was to determine the apparent size of the Venus crescent under widely varying conditions of sky brightness and exposure duration.

<u>Date</u> is the Universal day on which the observation was made.

<u>Plate Number</u> is the TMO serial number, 16-in. telescope series.

<u>Image</u> designates which of the many images on each plate was used.

The images are numbered sequentially, so the first exposure is

Image 1, and so on.

 $\overline{\text{UT}}$ is the Universal Time of the start of the exposure. Hours and minutes are indicated to the left of the colon, seconds to the right.

Photometer is the surface brightness of the terrestrial sky around Venus. The tabulated values are readings of the photometer, in scale divisions, at the instant of exposure. Venus was centered in the photometer's field of view. (Even at the lowest measurable levels of sky brightness, the contribution by Venus was imperceptible with the meters.) The values can be converted from scale divisions to candles per square centimeter by reference to Table 3.

Exposure is the duration of shutter opening, in seconds.

Angular Extent is the arc length of the Venus crescent as it appears on each image. It is expressed in degrees. A description of the measuring process is given in Section V.

<u>Venus Altitude</u> is the angular height of Venus (90° -zenith distance) above the horizon. These values were computed from knowledge of the exact time and place of observation. The computer program used for these calculations is in the Appendix. The

program also gives the altitude and azimuth of the Sun. In the interests of economy, only representative values are given; more detailed data can be generated at any time from the program.

FILM MEASUREMENTS

Table 5 is a collection of photographic data obtained on films exposed through the 16-in. telescope at TMO.

Date and UT are the Universal date and time of each observation. Film Number is the TMO serial number identifying the film (16-in. telescope series).

Type specifies the emulsion type used (all Kodak).

Image designates the serial number of the exposure on a given plate.

Photometer gives the measured sky brightness around Venus at the instant of exposure in scale divisions (refer to Table 3). An entry of "L" indicates a barely noticeable meter response below 1 scale division.

Exposure is the duration of shutter opening, in seconds.

Angular Extent is the measured arc length of the Venus crescent on the photographic negative, in degrees. The technique of measurement is described in Section V.

<u>Venus Altitudes</u> are representative values determined by the computer program in the Appendix.

VISUAL ESTIMATES

Table 6 lists the visual estimates of the extent of the Venus crescent, as determined by several observers at TMO.

<u>Date</u> and <u>UT</u> are the Universal day and time of observation.

Photometer gives the surface brightness, in scale divisions, of the sky around Venus at the time of observations. The values can be converted to candles per square centimeter by means of Table 3.

Observer identifies the source of the data:

K: G. E. Kocher

M: R. C. Moore

S: G, F. Schilling

Y: J. Young

Angular Extent is the estimated arc length of the Venus crescent in degrees. All observations were made with the 6-in. refractor attached to the 16-in. telescope unless otherwise indicated. Removal of the camera was necessary to use the 16-in. telescope visually.

<u>Venus Altitude</u> tabulates a few representative values of the angular height of Venus above the horizon. Details of the computation are given in the Appendix.

-17

Table 4

ANGULAR EXTENT OF VENUS IMAGE OBTAINED FROM III-F PLATE MEASUREMENTS

Date	Plate No.	Image	UT	Photometer	Exposure (sec)	Angular Extent		nus itude
4 April	5425	4	1350:12	17.3	.1	155-160	5°	27'
4 Whiri	J-74-J	5	1429:20	17.7	.01	165	13	23
		6	:42	17.7	.02	170	13	29
		9	59:30	17.3	.01	160	19	34
		14	1900:02	16.3	.01	185	. 66	03
5 April	5426	1	0124:00	18.0	.01	175	16	38
		2	34:43	18.0	.01	165		
		3	43:29	17.9	.01	165		
		4	49:20	18.0	.01	160		
		8	0216:10	13.7	.02	175		
		9	:20	13.7	.02	170		
		10	:30	13.6	.02	170		
		11	:55	13.5	.02	185		
		12	0217:55	13.4	•04	180	5	30
7 April	5428	11	1653:31	17.9	.01	160	46	13
, F		12	:41	17.9	.01	160		
		14	54:28	17.9	.02	160	46	25
7 April	5429	1	1855:56	17.2	.01	160	66	58
<u>.</u>		3	57:11	17.2	.01	160		
		3 8	1901:35	17.0	٥01	165		
		13	05:59	17.8	.01	160	68	07
8 April	5430	7	1346:43	17.4	.01	175	8	55
F		9	1400:37	17.7	.01	170	11	46
		11	01:12	17.7	.01	175	11	54
		14	02:03	18.0	.01	175	12	04

-18

Table 4 -- continued

Date	Plate No.	Image	UT	Photometer	Exposure (sec)	Angular Extent		nus itude
8 April	5431	3	1446:18	17.6	.01	180	21 ^c	10'
		4	:33	17.6	.01	180	21	14
		5	49:54	17.6	.01	180	21	56
		9	1509:48	17.4	.01	180	26	00
		15	30:18	17.4	.01	175	30	18
		16	:34	17.4	.02	160-170	30	20
8 April	5432	2	1821:58	17.3	.01	185	63	00
		6	24:18	17.3	.01	185	63	12
		7	:37	17.3	.02	175	63	24
		8	28:12	17.0	.02	180	63	56
		10	29:31	16.9	.02	180	64	07
		12	32:48	17.1	.1	185	64	33
	•	14	57:28	16.9	.01	180	67	28
9 April	5435	6	0029:08	17.7	.01	165	22	04
10 Apri1	5440	8	1903:59	17.0	.1	160	68	10
		9	04:18	17.0	•04	160	68	11
ll April	5442	15	1300:35	8.9	•5	180	2	38
		16	:55	9.0	1.0	195	2	44
ll April	5443	5	1303:38	9.7	. 5	200	3	14
		6	04:53	10.2	•5	210	3	30
		7	05:07	10.5	.2	195	3	40
		14	07:47	11.1	.2	205	3	50
		15	08:00	11.2	•5	200	4	10
		16	:11	11.3	1.0	220	4	11

-19

Table 4 -- continued

					Exposure	4 1	Venus Altitude	
Date	Plate No.	Image	UT	Photometer	(sec)	Angular Extent	Alt	ıruae
11 April	5444	3	1309:56	11.6	.1	195	4 ⁰	32'
P	5	4	10:09	11.6	.2	195	·	•
		5	:26	11.7	• 5	195		
		6	11:38	11.9	. 5	205-215		
		7	:53	11.9	.2	200		
		8	12:10	12.1	.1	195	4	57
•		13	13:36	12.3	.1	195	5	15
		14	:52	12.3	. 2	190		
		15	14:05	12.3	.5	195		
		16 .	:16	12 ., 5	1.0	180	5	23
11 April	5445	2	1317:18	12.9	• 04	180	5	58
		3	:29	13.0	.1	200		
		4	:40	12.9	. 2	190		
		5	:56	13.1	•5	180		
		8	19:23	13.2	.1	185		
		13	20:27	13.6	.1	185		
		1 4	:40	13.6	. 2	190	6	42
11 April	5446	12	1332:44	15.5	.04	165	9	00
		14	33:17	15.7	• 2	180	9	16
13 April	5450	15	1309:24	12.7	。04	180	6	22
14 April	5452	17	1309:22	12.7	.04	180	. 7	20
15 April	5453	6	1247:09	6.2	1.0	180	3	40
•		8	50:30	6.8	1.0	185	4	23
		9	52 : 51	7.5	1.0	180	4	47
		13	1302:23	10.9	. 2	185	6	50
15 Apri1	5454	2	1724:30	15.8	.01	170	58	20
•		10	38:12	15.8	.01	165	61	40
		16	50:03	15.8	. 04	150	62	04

Date	Film No.	Туре	Image	UT	Photometer	Exposure (sec)	Angular Extent		nus itude
16 April	5459	II-F	6	1225:05	0	1	160-170	00	07'
			7	27:39	L	1/2	130-150	U	07
			8	28:30	L ·	1/8	too faint		
			9	29:00	1.0	1/30	invisible		
			10	:43	1.5	1/125	invisible		
			11	36:15	3.8	1	190		
			12	:37	3.9	_ 1/8	130-150		
			13	37:00	4.0	1/125	invisible		
			14	47:45	6.5	1	205-215		
			15	48:03	6.6	1/8 -	175		
			16	:32	6.6	1/125	invisible	4	53
l6 April	5460	Tr i- X	3	1310:47	12.8	1/8	180	9	26
			4	11:07	12.8	1/125 ?	195	-	
			5	13 : 45	13.1	· 1/8	185		
			6	14:06	13.1	1/60	180		
			7	:19	13.2	1/500	170		
			8	18:10	13.6	1/1000	invisible		
			9	:25	13.7	1/500	165		
			10	:43	13.7	1/250	invisible		
			11	:52	13.7	1/125	170		
			12	19:00	13.8	1/60	185		
			1.3	:09	13.8	1/30	185		
			14	:17	13.8	1/15	190		
			15	:27	13.8	1/8	180		
			16	:35	13.8	1/4	175		
			17	:42	13.9	1/2	155		
			18	:49	13.9	1	160		
			19	20:45	14.0	1 ?	160		
			20	21:06	14.2	1/125	170		
			21	:14	14.2	1/125	170	11	35

20

-21-

Table 5 -- continued

Date	Film No.	Туре	Image	UT	Photometer	· Exposure (sec)	Angular Extent	Venus Altitude
16 Appet 1	5466	II_F	1	1723:57	16.2	1/500	165	58 ⁰ 51'
16 April	3400	1.1 F	2	24:22	16.2	1/250	170	
			3	25:22	16.2	1/8	too dark	
			4	:43	16.2	1/30′	140	
•			5	26:17	16.2	1/125	160	
			7	:44	16.2	1/250	165	
			8	28:07	16.2	1/500	165	
			9	31:52	16.0	1/8	too dark	
			10	32:05	16.0	1/30	160	
			11	:22	16.0	1/125	170	
			12	:30	16.0	1/250	185	
			13	:40	16.0	1/500	180	
			14	33:07	16.0	1/2	too dark	
			15	:20	16.0	1/250	185	
			16	:28	16.0	1/250	185	
			18	36:28	16.2	1/8	too dark	
			19	38:32	16.2	1/30	155	
			20	:45	16.2	1/125	, 160	60 57
17 April	5467	III-F	ба	1226:09	0	1	130	1 12
	3.07		7a	:37	0	1/8	invisible	
			8a	:55	0	1/60	invisible	
			7	34:15	1.7	1	175	
			8	:31	1.7	1/8	too faint	2 54
			9	:44	1.7	1/60	invisible	
			10	38:15	3.5	1	180 .	
			11	:25	3.5	1/8	155	
		•	12	:35	3.6	1/60	invisible	•
			13	45 : 45	5.5	1	195	
			14	:52	5.6	1/8	130	

-22

Table 5 -- continued

Date	Film No.	Type	Image	UT	Photometer	Exposure (sec)	Angular Extent		nus itude
17 April	5467	III-F	15	1246:02	5.7	1/60	invisible	50	12'
	(cont'd)		1.6	51:50	7.2	1	205		
			17	52:00	7.3	1/8	165		
			18	:10	7.3	1/60	too faint	6	30
			19	57:45	9.0	1	210	J	50
			20	:55	9.0	1/8	175		
			21	58:02	9.1	1/60	too faint		
			22	1302:15	11.0	1/8	185		
			23	:25	11.0	1/60	140		
			24	:34	11.1	1/125	invisible	8	25
			25	06:40	11.9	1/8	200	J	-5
			26	:47	12.0	1/60	135		
			27	:55	12.0	1/125	. too faint		•
			28	12:25	13.0	1/8	195	10	40
17 April	5469	III-F	1	1721:30	16.2	1/2	too dark		
			2	22:10	16.2	1/8	170	58	58
			3	:32	16.2	1/30	180		
			4.	:47	16.2	1/125	180		
			5	23:15	16.2	1/250	180		
			6	:42	16.2	1/500	170		
			7	25:32	16.2	1/8	170		
			8	:45	16.2	1/30	185		
			9	:57	16.2	1/125	180		
			10	26:15	16.2	1/250	165		
			11	: 42	16.2	1/500	170		
			12	28:45	16.2	1/8	180		
			13	:58	16.2	1/30	190		
			14	29:11	16.2	1/125	190		
			15	:48	16.2	1/250	175		

-23-

180-185

190

185~190

180-185

180

1/8

1/8

1/8

1

1

9

10

10

12

12 02

35

44

47

00

Venus Exposure Altitude Angular Extent (sec) UT Photometer Film No. Туре Image Date 16.2 1/500 165 1730:09 17 April 5469 III-F 16 1/30 170 32:46 16.2 18 (cont'd) 1/125 190 16.2 :57 19 175 1/250 16.2 20 33:03 1/60 180 21 :13 16.2 165 1/8 22 34:37 16.2 175 16.2 1/30 23 :47 1/60 190 24 :54 16.2 1/125 180 25 35:02 16.2 16.2 1/250 170 26 :23 16.2 1/1000 150 faint 27 :27 too dark :59 16.2 1 28 1/60 190 16.2 29 36:54 61°06' 185 16.2 1/60 37:04 30 1 0 1 165 11 5 1217:44 III-F 19 April 5470 1 185-195 3 4 J 30:04 3.6 7 140 3 43 1/8 3.7 8 :13 45 190 5 5.8 40:08 1 9 5 47 1/8 160 5.8 10 :17 200 29 11 48:35 7.5 1 35 1/8 165 12 49:05 7.6 30 8.95 1 195 13 53:30 1/8 185 8 34 9:05 14 :52 . 205 9 31 10.5 15 58:30 1

:48

:38

:38

10:30

1304:25

16

17

18

19

20

10,6

12.4

13.1

13,2

12.45

-- continued

Table 5

-24-

170

185

Table 5 Venus Exposure Altitude Angular Extent Photometer (sec) UT Film No. Type Image Date 12° 03' 1/30 175 1310:44 13.3 5470 III-F 21 19 April 12 04 1/125 135 13.4 22 :52 (cont'd) 12 48 185-190 1/8 13,65 23 14:24 12 150 51 1/125 13.7 24 :39 13 11 1/8 185 16:15 13.9 25 140 13 13 1/125 14.0 26 :25 1/8 185 13 33 14.1 27 18:02 13 36 150 1/125 14.1 28 :15 13 48 1/8 185 14.2 29 19:12 13 49 1/125 150 14.2 30 :19 180 14 04 1/8 20:30 14.3 31 54 48 1/8 175 1648:13 15.2 4 19 April 5471 III-F 1/60 180 :34 15.2 5 175 15.2 1/125 .6 7 :55 1/8 170 15.0 1700:02 1/60 185 15.0 8 :18 1/125 185 15.0 :28 9 175 1/8 15.1 10 10:35 180 1/60 15.1 11 :45 190 1/125 1.2 :56 15,1 185 1/8 13 20:03 15.1 1/125 190 :23 15.1 15 175 1/8 16 30:12 15.0 180 1/60 :38 15.0 17 180 15.0 1/60 20 31:37 185 15.0 1/8 21 40:30 1/60 175 15.0 22 :40

15.0

14.9

:55

50:20

23

24

1/125

1/8

-- continued .

-25-

Table 5 -- continued

Date	Film No.	Туре	Image	UT	Photometer	Exposure (sec)	Angular Extent	Venus Altitude
19 April	5471	III-F	25	1750:28	14.9	1/60	180	
	(cont'd)		26	:32	14.9	1/125	185	•
	(27	1800:40	15.0	1/8	180	
	•		28	:50	15.0	1/60	185	
			29	:56	15.0	1/125	180	. 0 .
			30	04:04	14.8	1/2	160	64 ⁰ 10'
20 4	5472	III-F		1205:00	0	4.5	165	-0° 36'
20 April	3414	TIT-I	2 3	10:56	Ö	4.5	205	+0 36
			3a				160	
			4	14:38	0	4.5	200	
			5	26:20.	3.0	1	190	
			6	:31	3.0	ī/8	165	
			6 7	34 : 55	4.8	1	190	
			8	35:00	4.8	1/8	165	
			9	38:25	5.4	1	195	
			10	:31	5.4	1/8	180 .	
		•	11	44:18	6.7	1/8	175	
			12	:28	6.7	1	195	
			13	49:37	8.1	1	200	
			14	:43	8.1	1/8	175	
			15	56:15	9.7	1	200	
			16	:23	9.7	1/8	180	
		•	17	59:20	11.1	1	195	
			18	:28	11.1	1/8	185	
			21	1302:15	12.0	1	190	
			. 22	:27	12.0	1/8	190°	
			23	:32	12.0	1/8	190	
			24	:40	12.0	1/30	165	
			25	09:20	13.0	1/8	185	

-26-

Table 5 -- continued

Date	Film No.	Туре	Image	UT	Photometer	Exposure (sec)	Angular Extent	Venus Altitud
20 April	5472	III-F	26	1309:29	13.0	1/30	175	
_	(cont'd)		27	12:30	13.6	1/8	180	
			28	:38	13.6	1/30	170	
			29	15:40	14.0	1/8	185	13 ⁰ 55
21 April	5477	III-F	, 3	1208:43	0	1	175 ·	0 56
			4	11:47	0	4	195	1 33
			5	12:13	0	1	180	1 39
			6	18:19	0	1	180	2 54
			7	:31	<1	1/8	155	2 56
			8	29:02	3.0	1	195	5 06
			9	:18	3.0	1/8	165	5 09
			10	38:18	5.2	1.	200	7 00
			11	:39	5.2	1/8	. 17,5	7 04
			12	48:04	7.4	1	205	9 01
			13	:23	7.5	1/8	180	9 05
			14	59:25	11.4	1	205	11 20
			15	:38	11.45	1/8	185	11 23
			16	:50	11.5	1/60	145	11 26
			17	1307:34	12.8	1/8	190	13 02
			18	:50	12.8	1/60	175	13 06
			19	15:00	13.8	1/8	190	14 35
			20	:07	13.8	1/60	175	14 36
			21	17:27	14.0	1/2	175	15 05
			22	:38	14.0	1/500	too faint	15 07
			23	:59	14.0	1/8	185	15 12
			24	18:13	14.0	1/60	170	15 15

Table 5 -- continued

Date	Film No.	Туре	Image	UT	Photometer	Exposure (sec)	Angular Extent	Venus Altitude
22 April	5482	III~F	1	1757:38	15.2	1/30	175	63 ⁰ 39¹
22 APILL	J402	TTT	2	:57	15.2	1/60	170	
			3	58:12	15.2	1/125	175	
			4	59:55	15.2	1/30	170	
			5	1800:17	15.3	1/60	180	
			6	:36	15.3	1/125	175	
			7	01:06	15.3	1/30	180	
			8	:18	15.3	1/60	180	
			9	:27	15.3	1/125	185	
			10	02:29	15.3	1/30	180	
			11	:46	15.3	1/60	175	
			12	03:17	15.3	1/125	170	
			13	06:10	15.3	1/2	160	
			14	:29	15.3	1/500	160	
			15	:52	15.3	1/30	175	
			16	07:01	15.3	1/60	185	
			17	:40	15.3	1/125	170	
			18	08:45	15.3	1/30	180	
			19	09:13	15.3	1/60	170	64 07

Table 6

VISUAL ESTIMATES OF THE ANGULAR EXTENT OF THE VENUS CRESCENT

Date	UT	Photometer	Observer	Angular Extent		enus Litude
16 April	1234:30 43 50 1301 24	~ 3 ~ 5.5 ~ 7 ~10 ~14	K; M; S S; K M M; S K; M; S	>180 225±10 220 200-205 190	12	02'
	1738	16.2	S	160	60	50
17 April	1229 30 32 36:30 40:30 43:20 45 45 45 45 53:30 55:37 58:45 59 1301 02 03:30 04 06:15 07 08 09:10 10 11:45 13:00 13:45 14:22 21:30 25 26	~ 1.0 1.0 ~ 1.5 2.5 4.0 5.0 5.3 " 7.0 7.5 8.3 9.0 9.5 10.0 11.4 11.5 11.8 12.0 12.2 12.4 12.5 12.6 13.5 13.5 13.5	S K M Y S Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	220 210 225 200 225 240 225 240 230 230 230 225 220 215 225 215 210-215 200-205 210 200 200 190 190 190 190 190 190 185 190 195 >180 >180 >180		47
	26	13.5 13.5	Y S	190 180 - 190	13	28
19 April	1216	0	Y	200-210		51
•	24:30 26:45 30:30	2.3 3.0 3.7	Y Y Y	200 200 200 200	3	01
	31:45 33	4.0 4.3	S K	210 195	4 4	02 18

Table 6 -- continued

(cont'd)	236 37:10 38:40 39:35 41 41:45 42:50 44 46:30 49 51 53 54:15 55:10 56:00	5.0 5.2 5.5 5.7 6.0 6.1 6.3 6.5 7.0 7.6 8.1	Y S M K Y S M K Y	200 210-215 215 200 205 220 215 205	4° 5	55 ' 27 19
(cont'd)	37:10 38:40 39:35 41 41:45 42:50 44 46:30 49 51 53 54:15 55:10	5.2 5.5 5.7 6.0 6.1 6.3 6.5 7.0 7.6	S M K Y S M K Y	210-215 215 200 205 220 215 205	5	27
	38:40 39:35 41 41:45 42:50 44 46:30 49 51 53 54:15 55:10	5.5 5.7 6.0 6.1 6.3 6.5 7.0 7.6	M K Y S M K Y	215 200 205 220 215 205		
1	39:35 41 41:45 42:50 44 46:30 49 51 53 54:15 55:10	5.7 6.0 6.1 6.3 6.5 7.0 7.6	K Y S M K Y	200 205 220 215 205		
1	41 41:45 42:50 44 46:30 49 51 53 54:15 55:10	6.0 6.1 6.3 6.5 7.0 7.6	Y S M K Y	205 220 215 205	6	19
1	41:45 42:50 44 46:30 49 51 53 54:15 55:10	6.1 6.3 6.5 7.0 7.6	S M K Y	220 215 205	6	19
1	42:50 44 46:30 49 51 53 54:15 55:10	6.3 6.5 7.0 7.6	M K Y	215 205	6	19
1	44 46:30 49 51 53 54:15 55:10	6.5 7.0 7.6	K Y	205	O	13
1	46:30 49 51 53 54:15 55:10	7.0 7.6	Y			
1	49 51 53 54:15 55:10	7.6			7	04
1	51 53 54:15 55:10		Y	210	7	04
1	53 54:15 55:10	8.1		220-225	7	35
1	54:15 55:10		S	215		0.4
1	55:10		Y	280 (16")	8	24
1			Y	250 (16")	_	
1	56:00	9.5	Y	230	8	50
1		→ →	K	220 (16")		
1	56:00		K	220		
1	56:55	10.0	S	220		
1	58 : 15		Y	240-250 (16"))	
1	58:50	10.6	Y	215	9	35
	.301:40	11.7	Y	210	10	10
	02:45	12.0	S	205		
	03:30	12.2	Y	220 (16")	10	33
	04:20	12.4	Ÿ	210	10	44
	07:35		Ÿ	· 190 (16")	11	20
	07:35	12.9	Ÿ	200		
	09:15	13.0	s	200	11	44
	11:15	13.3	Y		TT	-+-+
		13.3	Y			
	11:35			190 (16")		
	12:10	13.5	· S	190-195	10	00
	12:50	13.6	M 	190	12	29
	13:20	13.6	K	170		
	13:52		K	185 (16")		
	15:05	13.8	Y	180		
	15:05	13.8	K	170		
	15:32	13.8	Y	190		
	16:09	13.9	K	180 ·	13	11
	16:53	14.0	Y	190		
	17:05		Y	180 (16")		
	17:43	14.1	K	180		
	18:30	14.1	Y	170		
	19:05	14.2	Y	185	13	47
	19:35	14.2	K	1 75		•
	20:10	14.3	Y	180		
	20:55	14.3	K	175	14	09
	21:10	4 7 • J	Y	160 (16")	17	0,7
	21:10	14.4		180		
	21:20		S	180		
	41:DU	14.4 14.4	S M	185	14	27

Table 6 -- continued

19 April 1635	46'
(cont'd) 35 " K 170 35 " M 175 1701 15.0 S 160 01 " K 170 01 " M 170 1711 15.1 S 160-165 11 " K 170 11 " M 170 1721 15.1 S 165-170 21 " K 165 21 " K 165 21 " M 180 1731 15.0 S 170 31 " K 170 31 " K 170 31 " K 170 41 " K 170 41 " K 170 41 " K 175 41 " K 175 51 " K 175 51 " K 175	40
35 " M 175 1701 15.0 S 160 01 " K 170 01 " M 170 1711 15.1 S 160-165 11 " K 170 11 " K 170 111 " K 170 112	
1701 15.0 S 160 01 " K 170 01 " M 170 1711 15.1 S 160-165 11 " K 170 11 " M 170 11 " M 170 11 " K 165-170 21 " K 165 21 " M 180 1731 15.0 S 170 31 " K 170 31 " K 170 31 " K 170 1741 15.0 S 175-180 41 " K 170 41 " K 175 1751 14.9 S 170 51 " K 175 51 " K 175 1801 15.0 S 170-175 01 " K 165	
01 " K 170 01 " M 170 1711 15.1 S 160-165 11 " K 170 11 " M 170 11 " M 170 121 " K 165 21 " M 180 1731 15.0 S 170 31 " K 170 31 " K 170 31 " K 170 1741 15.0 S 175-180 41 " K 170 41 " K 170 41 " K 175 1751 14.9 S 170 51 " K 175 51 " M 170 1801 15.0 S 170-175 01 " K 165 01 " K 165 <	
01 " M 170 1711 15.1 S 160-165 11 " K 170 11 " M 170 1721 15.1 S 165-170 21 " K 165 21 " M 180 1731 15.0 S 170 31 " K 170 31 " M 170 1741 15.0 S 175-180 41 " K 170 41 " M 175 1751 14.9 S 170 51 " K 175 51 " K 175 51 " K 165 01 " K 165 01 " K 165 01 " K 165 01 " K 170 1804 14.8 S 180	
1711 15.1 S 160-165 11 " K 170 11 " M 170 1721 15.1 S 165-170 21 " K 165 21 " M 180 1731 15.0 S 170 31 " K 170 31 " M 170 31 " K 170 31 " K 170 31 " K 170 41 " K 170 41 " K 170 41 " K 175 1751 14.9 S 170 51 " K 175 51 " K 175 51 " K 170 1801 15.0 S 170-175 01 " K 165 01 " K 165 <t< td=""><td></td></t<>	
11 " K 170 11 " M 170 1721 15.1 S 165-170 21 " K 165 21 " M 180 1731 15.0 S 170 31 " K 170 31 " M 170 31 " K 170 31 " K 170 1741 15.0 S 175-180 41 " K 170 41 " K 170 41 " M 175 1751 14.9 S 170 51 " K 175 51 " K 175 51 " K 170 1801 15.0 S 170-175 01 " K 165 01 " K 165 02 " K 170 <t< td=""><td></td></t<>	
11 " M 170 1721 15.1 S 165-170 21 " K 165 21 " M 180 1731 15.0 S 170 31 " K 170 31 " M 170 1741 15.0 S 175-180 41 " K 170 41 " M 175 1751 14.9 S 170 51 " K 175 51 " K 175 51 " K 170 1801 15.0 S 170-175 01 " K 165 01 " K 165 1804 14.8 S 180 04 " K 170 1811 14.8 S 175 64	
1721 15.1 S 165-170 21 " K 165 21 " M 180 1731 15.0 S 170 31 " K 170 31 " M 170 1741 15.0 S 175-180 41 " K 170 41 " M 175 1751 14.9 S 170 51 " K 175 51 " M 170 1801 15.0 S 170-175 01 " K 165 01 " K 165 1804 14.8 S 180 04 " K 170 1811 14.8 S 175 64	
21 " K 165 21 " M 180 1731 15.0 S 170 31 " K 170 31 " M 170 1741 15.0 S 175-180 41 " K 170 41 " M 175 1751 14.9 S 170 51 " K 175 51 " K 175 51 " K 170 1801 15.0 S 170-175 01 " K 165 01 " K 165 1804 14.8 S 180 04 " K 170 1811 14.8 S 175 64	
1731 15.0 S 170 31 " K 170 31 " M 170 1741 15.0 S 175-180 41 " K 170 41 " K 170 41 " K 170 51 " K 175 51 " K 175 51 " K 175 51 " K 165 01 " K 165 01 " M 165 1804 14.8 S 180 04 " K 170 1811 14.8 S 175 64	
31 " K 170 31 " M 170 1741 15.0 S 175-180 41 " K 170 41 " M 175 1751 14.9 S 170 51 " K 175 51 " M 170 1801 15.0 S 170-175 01 " K 165 01 " M 165 1804 14.8 S 180 04 " K 170 1811 14.8 S 175 64	
31 " M 170 1741 15.0 S 175-180 41 " K 170 41 " M 175 1751 14.9 S 170 51 " K 175 51 " M 170 1801 15.0 S 170-175 01 " K 165 01 " M 165 1804 14.8 S 180 04 " K 170 1811 14.8 S 175 64	
1741 15.0 S 175-180 41 " K 170 41 " M 175 1751 14.9 S 170 51 " K 175 51 " M 170 1801 15.0 S 170-175 01 " K 165 01 " M 165 1804 14.8 S 180 04 " K 170 1811 14.8 S 175 64	
41 " K 170 41 " M 175 1751 14.9 S 170 51 " K 175 51 " M 170 1801 15.0 S 170-175 01 " K 165 01 " M 165 1804 14.8 S 180 04 " K 170 1811 14.8 S 175 64	
41 " M 175 1751 14.9 S 170 51 " K 175 51 " M 170 1801 15.0 S 170-175 01 " K 165 01 " M 165 1804 14.8 S 180 04 " K 170 1811 14.8 S 175 64	
1751 14.9 S 170 51 " K 175 51 " M 170 1801 15.0 S 170-175 01 " K 165 01 " M 165 1804 14.8 S 180 04 " K 170 1811 14.8 S 175 64	
51 " K 175 51 " M 170 1801 15.0 S 170-175 01 " K 165 01 " M 165 1804 14.8 S 180 04 " K 170 1811 14.8 S 175 64	
51 " M 170 1801 15.0 S 170-175 01 " K 165 01 " M 165 1804 14.8 S 180 04 " K 170 1811 14.8 S 175 64	
1801 15.0 S 170-175 01 " K 165 01 " M 165 1804 14.8 S 180 04 " K 170 1811 14.8 S 175 64	
01 " K 165 01 " M 165 1804 14.8 S 180 04 " K 170 1811 14.8 S 175 64	
01 " M 165 1804 14.8 S 180 04 " K 170 1811 14.8 S 175 64	
1804 14.8 S 180 04 " K 170 1811 14.8 S 175 64	
04 " K 170 1811 14.8 S 175 64	
1811 14.8 S 175 64	
	^ -
	37
201	
11 r 1/0	
20 April ~1220 1 Y 210 2	27
22:15 1.5 S 225-230	
24:15 2.5 Y 215	
27 3.0 Y 240 27 " M 225	
27 M 225	
33 4.2 Y 225 36 5 Y 230	
36 " M 230	
41 6.0 Y 230	
42 6.0 K 225	
47 7.5 Y 220	
48 7.7 S 215	
50 8.2 Y 230	
52 8.6 K 220	
52 " M 220 53 9.1 S 215-220	
55 9.5 Y 220	
58 10.6 Y 220	

Table 6 -- continued

Date	UT	Photometer	Observer	Angular Extent	Venus Altitude
20 April	1300	11.5	Y	220	,
(cont'd)	02	12.0	Y	·230	
	05	12.4	S	210	
	07	12.6	M	220	
	10	13.0	Y	220	
	13	13.6	Y	200	
	13:30	13.6	S	195	
	14:20	13.8	M	190	
	15	14.0	Y	195-200	_
	17:30	14.2	Y	190	140 17'
	1747	14.3	K	170	62 53
	47	11	S	160	
	47	11	M	180	
	56	14.4	K	175	
	56	- 11	ŝ	170	
	56	tt.	M	180	
	1808	14.3	K	175	
	08	n	S	170	
	08	Ħ	M	180	
	16	14.3	K	175	64 41
	16	11	M	180	01 .2
21 April	1209:35	0	K	225	1 08
	09:45	0	, S	230	
	12:55	~ .3	K	220	
	17:50	.6	M	220 .	
	19:05	1.0	K	215	
	26:30	2.0	S	225	
	30	3.0	K	215	
	31	3.2	M	225	
	32	3.5	S	220	
	39	5.2	K	220	
	39	tt	S	220	
	41	6.0	M	220	
	49	8.0	K	215	9 13
	49	11	S	215-220	
	49	11	M	215	
	1301	11.6	K	210	
	01	п	S	210	
	01	ti	M	210	
	08	12.8	K	195	
	08	11	М	200	
	16	13.8	K	185	14 47
	16	TT.	S	195	
	16	П	M	195	

Table 6 -- continued

Date	UT	Photometer	Observer	Angular Extent		nus itude
21 April	. 1744	15.5	K	170	62 ^C	42'
(cont'd)	44	31	S	160-170		
	44	n	M	170		
	51	15.8	K	165		
	51	*11	S	165		
	51	11	M	165		
	56	15.8	K	165		
	56	11	S	160		
	56	11	M	160		
	1800 .	15.8	K	165		
	00	п	S	165		
	. 00	11	M	165		
	06	15.8	K	160		
	06	11	S	150		
	06	11	M	155		
	11	15:8	K	155		
	11	71	S	160		
	11	11	M	150		
	16	`15 . 8	K	155	64	30
	16	Ħ	S	140	٠.	50
	16	11	M	145		
22 April	1207	0	Y	195	1	22
	07	0	S	190-240		
	07	0	K	195-220		
	09:45	0	Y	220		
	14:50	0	Y	220		
	17	>0	S	225		
	19	1.0	Y	230		
	19	11	K	215		
	19	11	M	. 210		
	23	1.5	Y	225		
	26	2.0	S	210		
	32:30	4.0	Y	215		
	35:45	4.6	Y	225		
	39:30	5.6	S	205-210		
	39:40	11	M	200		
	41:30	6.2	Y	220		
	42:45	6.4	K	225		
	43:15	6.5	S	220		
	48:30	8.0	Y	230		
	48:40	ii.	S	215-220		
	49:30	8.5	K	215		
	49:40	11	M	215		
	52:30	9.5	Y	220		
	57:30	11.0	Y	200		
	58:05	11.2	S	205		
	59:00	11.5	K	205		
	59:10	- 11	M	200		

Table 6 -- continued

Date	UT	Photometer	Observer	Angular Extent	Venus Altitude
22 April	1301:35	12.0	Y	200	
(cont'd)	04:10	12.3	Y	200	
•	07:45	12.9	K	190	
	08:30	13.0	M	190	
	11:30	13.5	Y	180	
	13:36	13.7	M	185	_
	14:40	13.8	S	185	15° 18'
	1750	15.2	S	170	63 13
	50	11	K	165	
	50	11	M	175	
	59	15.2	S	160-170	
	59	ti .	K	170	
	59	11	M	170	
	1801	15.3	S	16 0- 170	
	07	15.3	S	160-170	
	09	15.3	M	175	
	18	15.3	S	175-180 (16")
	18	11	K	170 (16"	
	18	11	M	170 (16"	
	20	15.3	S	165-170	64 19
	20	11	K	165	
	20	11	М	175	

IV. CATALOG OF PHOTOMETRIC DATA

INFERIOR_CONJUNCTION

Table 7 presents the photometric data other than those measurements at the instant of photographic exposure or visual observation, which are given in Tables 4, 5, and 6. The objective was to determine the brightness variation of selected parts of the sky under varying conditions of solar position. The measurements were made with the meters described in Section II.

The first column, <u>UT</u>, specifies the Universal day and time of observation, to the nearest minute. The absence of an entry means that the value (hours, or minutes, or both) is the same as the preceding one.

The second column gives the measured brightness, converted to candles per square centimeter. The first entry, for example, should be read as

$$4.5 \times 10^{-1} \text{ cd cm}^{-2}$$

The third column gives the direction of the reading:

z means the meter was pointed to the zenith.

V means Venus was centered in the field of view.

WH means the western horizon.

EH means the eastern horizon.

In some cases the brightness varied only slightly over long periods; the data were then condensed from the many entries in the log as follows: "Period" means the time interval referred to, and "Range" means the limit of variation in brightness during that period.

GREATEST ELONGATION

The data in Tables 8 and 9 were obtained at TMO and NMSU Observatory, respectively. They are photometric measurements of the surface brightness of the terrestrial sky near the period of greatest western elongation of Venus. The first column, UT, gives the Universal date and time of each observation. The next two columns give the measured brightness of the sky surrounding Venus (V) and at the zenith

(z). The meter readings in scale divisions have been converted to candles per square centimeter by means of Table 3. For example, the first entry in Table 8 is a brightness of $4.2\times10^{-5}~{\rm cd~cm}^{-2}$.

Table 7
SKY BRIGHTNESS (TMO)

	oki bkionikobo (1110)								
UT	cd cm ⁻²	UT	ed cm ⁻²	UT	cd cm ⁻²				
3 April		5 April		7 April	(cont'd)				
1855	4.5 -1 [*] z	0111	2.4 V	1654	-				
1919	5.2 -1 z		6.5 -2 z	1054	2.6 V 1.4 -1 z				
38	4.9 - 1 z	24	2.8 V	1851	1.4 -1 z 1.3 V				
2002	3.2 - 1 z		7.0 - 2 z		3.2 -1 z				
27	3.7 - 1 z	34	2.8 V	54	1.5 V				
45 2100	2.6 -1 z		5.3 - 2 z		3.2 - 1 z				
2100 30	2.4 -1 z 2.0 -1 z	43	2.6 V	57	1.6 V				
46	2.0 -1 z 2.8 -1 z	49	4.0 -2 z	7.000	3.4 - 1 z				
2258	1.5 -1 z	49	2.8 V 3.5 -2 z	1900	1.3 V				
		59	3.5 -2 z 1.0 V		3.4 -1 z				
4 April]	2.5 -2 z	08	2.2 V 3.2 -1 z				
0115	1.1 V	0205	4.5 -1 V	2220					
	5.7 - 2 z		1.4 -2 z	27	3.2 -1 z 1.7 V				
0200	9.1 -1 V	10	3.2 -1 V	31	2.2 V				
4.5	2.5 -2 z		7.1 - 3 z	42	6.9 -1 z				
15	2.0 -1 V	16	1.4 -1 V	43	1.5 V				
30	4.1 -3 z 3.8 -2 V		3.8 -3 z	2303	1.6 V				
30	2.7 -4 z	17	1.1 -1 V	8 April					
36	1.5 -5 z	19	3.3 -3 z 8.6 -2 WH						
45	6.7 -4 WH	19	2.3 -3 z	1301	4.4 -4 EH				
50	3.4 -4 WH	24	8.0 -2 WH	04 05	8.4 -5 z				
55	1.3 -4 WH		1.2 -3 z	03	9.5 -4 EH 1.7 -3 EH				
57	8.4 -5 WH	26 ·	6.1 -2 WH	J	1.8 -4 z				
1348	1.7 V		7.2 -4 z	10	2.9 -3 EH				
1400	3.0 -2 z	27	5.3 -2 WH		2.6 -4 z				
1400	1.8 V 5.0 -2 z		5.9 -4 z	15	5.4 -3 EH				
	5.0 -2 z 1.5 WH	28	4.3 -2 WH		6.3 -4 z				
29	2.2 V	31	3.6 -4 z	17	8.7 -3 EH				
-2	5.7 -2 z	33	1.6 -4 z 1.3 -4 z	1.0	1.7 -3 z				
	1.7 WH	35	9.7 -5 z	19	1.6 -2 EH				
32	1.2 V	36	8.4 -5 z	22	2.2 -3 z 2.3 -2 EH				
	4.6 -2 z	! !		22	2.3 -2 EH 3.6 -3 z				
59	1.7 V	7 April		24	3.3 -2 EH				
	7.0 -2 z	1512	9.2 -2 z		5.0 -3 z				
1818	2.6 WH 2.3 -1 z	17	9.2 -2 z	30	5.7 -2 EH				
38	2.3 -1 z 6.9 -1 V	25	1.1 -1 z		1.2 -2 z				
30	2.6 -1 z	1610	1.3 -1 z	31	2.8 -1 V				
49	7.4 -1 V	50	2.6 V 1.6 -1 z	37	2.1 -1 EH				
	2.6 -1 z	52	1.6 -1 z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	4.0	2.2 -2 z				
59	8.5 -1 V) <u>, , , , , , , , , , , , , , , , , , ,</u>	1.4 -1 z	40	2.5 -2 z				
1900	2.3 -1 z	53	2.9 V	45	1.1 V 3.0 -2 z				
01	7.4 -1 V			7.7					
					1.7 V				

* Absence of an exponent means that the exponent is zero.

Table 7 -- continued

			Table /		COIIL	Liiue	.u			
UT	cd cm	-2	UT	c	l cm	-2	UT	cd	cm ⁻²	2
8 April (c	ont'd)		9 April	(cont'	i)		11 April			
1346	3.0 -2	z	0114	7.	2 -2	z	1245	8.4	-1	EH
	1.8	V		2.	L	V	47	1.3	-4	EH
48	2.2	V		1.	7	WH	49	2.4	-4	EH
53	2.2	EH	0130		7 -2	z		2.7	-4	V
	4.3 -2	z		2.		v	50	3.4	-4	V
	2.4	V		1.		WH	51	4.4		V
59	5.0 -2	z	45		5 -2	z	52	5.5		V
	2.2	V		1.		WH	53	8.3		V
1400	5.3 -2	z	51		3 -2	z	54	9.5		V
01	2.8	EH		1.4		WH	55	1.6		V
	4.6 -2	z	55	1.		WH	56	1.9		Ÿ
	2.8	v	57		9 -1	WH	57	2.3		V
03	1.7	EH	58		7 -2	z	58	3.3		V
0.5	5.3 -2	z	50	-	0 -1	WH	59	4.1		V
	2.1	v	1250		3 -4	EH	1300	4.7		V
24	1.5 -2	ž	52		8 - 4	EH	01	7.1		V
Period:	1.5 -2	4	53		4 -4	EH	02	7.6		V
	:o 1530 ·		55		7 -4	EH	03	8.7		V
Range		- 1	56		, - 4	EH	05	1.5		V
	2 to 1.1	. 1	58	_	4 - 3	EH	06	1.8		V
Range			59	_	+ - 3		07	2.2		V
1.7	to 2.2		1301		9 - 3	EH EH	07	2.5		v V
Period:	LO 2.2		02	=	9 - 3	EH	08	3.0		V
	to 1858		04	-	1 -3	EH	10	3.3		V
Range			04		6 - 3	V	11	4.0		V
	-1 to 4.5	_1	05		2 -3	V	12	4.6		V
Range			06		6 - 4	•	13	5.0		V
1.3	to 1.7		09		6 -2	z V	14	5.3		V
1.5			09		1 -4	z	17		-2 -2	V
2356	2.1 -1	z	20		1 -2	V	18	9.2		v
	2.1	V	20		6 -3	z	19	9.9		V
9 April			23		1 -1	v	20	1.1		v
			Period		L -1	٧	- 21		-1	v
0014	1.5 -1	z		5 to 15	14		29		-1 -1	V
	2.1	V		ge of z			30		-1	
29	1.1 - 1	z	1	l -1 to		_1	31		-1	
	2.2	V	i		ر ۽ د	_	32		-1	V
44	9.9 -2	z	10 Apri	<u>1</u>			33		-1 -1	V
	2.4	V	Period	1.			34		-1	V
	2.6	WH	1	4. 4.to 19	16		2053		-1 -1	v
_. 59	8.6 -2	Z		ge of z			54		-1	V
	2.1	V	1	3 - 1 to		- 1	55		-1	z
	2.8	WH	.1	ge of V		-	56		-1	z
			1.4	-	1.7			5.0	٠.	-
			<u> </u>							

Table 7 -- continued

			, –2		
UT ————	ed cm ⁻²	UT	cd cm ⁻²	UT	ed cm 2
13 April		15 April ((cont'd)	17 April	•
1248	1.1 -3 V	1250	1.2 -3 V	1229	2.1 -5 V
49	1.2 -3 V	53	1.9 -3 V	33	3.0 -5 V
51	2.7 -3 V	55	3.3 -3 V	34	4.2 -5 V
53	3.3 -3 V	58	5.4 -3 V	36	6.0 -5 V
54	4.7 -3 V	1300	9.4 -3 V	37	8.4 -5 V
55	5.4 -3 V	02	2.0 -2 V	38	1.2 -4 V
56	7.6 -3 V	05	3.3 -2 V	40	1.7 -4 V
57	8.2 -3 V	08	5.7 -2 V	43	3.4 -4 V
59	1.5 -2 V	12	9.2 -2. V	45	4.8 -4 V
1300	2.0 -2 V	Period:		46	5.5 -4 V
02	2.7 -2 V	11	:o 1750	47	6.7 -4 V
08	5.7 -2 V	Range		51	1.4 -3 V
09	7.0 -2 V	5.6 -	·1 to 6.4 -1	52	1.7 -3 V
12	9.2 -2 V	16 April		55	2.7 -3 V
26	3.4 -1 V			56	3.8 -3 V
14 April		1227	1.1 -5 V	57	5.4 -3 V
	1 F F T	29	2.1 -5 V	58	5.8 -3 V
1232	1.5 -5 V	30	3.0 -5 V	1301	1.5 -2 V
35 38	8.4 -5 V 1.4 -4 V	36	1.5 -4 V	02	2.2 -2 V
41	1.4 -4 V 2.7 -4 V	37 47	1.7 -4 V 9.5 -4 V	04	3.0 -2 V
43	3.4 -4 V	47 48	1.0 -3 V	06	4.0 -2 V 4.6 -2 V
43 48	8.3 -4 V	46 57	5.4 -3 V	07 08	4.6 -2 V 5.0 -2 V
49	1.0 -3 V	1304	3.0 -2 V	08	5.7 -2 V
51	1.4 -3 V	09	6.5 -2 V	12	7.0 -2 V
54 ·	2.5 -3 V	10	7.5 -2 V	22	1.2 -1 V
56	3.8 -3 V	11	7.5 -2 V	Period:	1.2 -1 V
58	6.6 -3 V	13	9.2 -2 V	,	:o 1739
1300	1.8 -2 V	14	9.2 -2 V	Range	
02	2.8 -2 V	18	1.3 -1 V	Kange	7.9 -1
04	3.5 -2 V	20	2.0 -1 V	Range	
06	5.0 -2 V		1.2 -2 z	l Kange	2.4 -1
07	5.3 -2 V	Period:	~		-•
08	5.7 -2 V		o 1728	19 April	
11	8.0 -2 V	Range		1220	3.0 -5 V
15 A		Ĭ	7.9 -1	24	4.2 -5 V
<u>15 April</u>	.	Range		26	8.4 -5 V
1235	4.2 -5 V	J	2.3 -1	29	1.2 -4 V
37	8.4 -5 V	Period:		30	1.4 -4 V
39	1.1 -4 V	1731 t	o 1739	31	1.7 -4 V
41	1.7 -4 V	Range	of V:	33	2.1 -4 V
42	2.4 -4 V	6.9 -	1 to 7.9 -1	34	2.7 -4 V
44	3.4 -4 V			36	3.4 -4 V
45	4.8 -4 V			38	4.8 -4 V
47	6.7 -4 V			40	5.9 -4 V
48	8.9 -4 V			41	6.7 -4 V
		<u> </u>	<u></u> U		

Table 7 -- continued

UT	ed cm ⁻²	UT	cd cm ⁻²	UT	cd cm ⁻²
19 April	(cont'd)	20 April	(cont'd)	21 April	(cont'd)
1242	8.3 -4 V	1249	2.9 -3 V	1253	4.4 -3 V
44	1.0 -3 V	li .	1.0 -4 z		2.1 -4 z
46	1.4 -3 V	53	5.8 -3 V	57	2.3 -2 V
48	1.8 -3 V		2.2 -4 z		4.8 -4 z
49	2.0 -3 V	55	7 . 6 - 3 V	1300	3.0 -2 V
50	2.7 -3 V		3.6 -4 z	_	8.3 -4 z
52 53	3.8 -3 V	56	8.7 -3 V	02	3.8 -2 V
53 54	4.4 -3 V 6.6 -3 V	57	1.6 -2 V	^	1.4 -3 z
55	6.6 -3 V 7.6 -3 V	59	5.9 -4 z	07	7.0 -2 V
56	9.4 -3 V) 29	2.3 -2 V 8.9 -4 z	08	7.5 -2 V
57	1.4 -2 V	1301	8.9 -4 z 3.5 -2 V	09 11	8.6 -2 V
58	1.6 -2 V	1501	1.3 -3 z	12	1.1 -1 V 1.2 -1 V
59	2.2 -2 V	02	4.3 -2 V	15	1.5 -1 V
1300	3.0 -2 V	05	5.7 -2 V	1	7.6 -3 z
01	3.5 -2 V		2.3 -3 z	18	1.7 -1 V
03	5.0 -2 V	07	6.5 -2 V]	1.5 -2 z
04 .	5.7 -2 V		2.7 -3 z	Period:	
05	6.1 -2 V	08	8.6 -2 V	1744	to 1821
07	7.0 -2 V	09	3.6 -3 z	Range	of V:
09	8.6 -2 V	10	3.8 -3 z	4.2	-1 to 6.4 -1
10	1.1 -1 V	11	4.4 -3 z		of z:
12	1.3 -1 V	12	1.3 -1 V	2.4	-1 to 4.0 -1
14 16	1.4 -1 V	10	5.4 -3 z	22 April	
18	1.6 -1 V 1.9 -1 V	13 14	5.8 -3 z 6.6 -3 z		0 1 5
19	2.0 -1 V	15	6.6 -3 z 7.1 -3 z	1218 27	2.1 -5 V 6.0 -5 V
20	2.1 -1 V	16	2.0 -1 V	27	6.0 -5 V 8.4 -5 V
. 22	2.3 -1 V		8.2 -3 z	31	1.3 -4 V
Period:		17	8.7 -3 z	33	1.7 -4 V
	to 1810	Period:		35	2.4 -4 V
	of V:	1745	to 1815	36	2.9 -4 V
	-1 to 4.5 -1	Range	of V:	38	4.8 -4 V
	of z:		-1 to 4.2 -1		2.1 -5 z
1.5	-1 to 2.1 -1		of z:	40	6.7 -4 V
20 April		2.1	-1 to 2.4 -1	43	9.5 -4 V
1220	2.1 -5 V	21 April	•	44	1.1 -3 V
23	4.2 -5 V	1218	1 5 5 77	45	1.4 -3 V
26	8.4 -5 V	20	1.5 -5 V 2.1 -5 V	1.6	4.2 -5 z
33	2.1 -4 V	24	2.1 -5 V 3.0 -5 V	46	1.7 -3 V 8.4 -5 z
35	2.9 -4 V	29	8.4 -5 V	47	8.4 -5 z 1.9 -3 V
38	4.4 -4 V	37	3.4 -4 V	48	2.7 -3 V
44	1.1 -3 V	38	3.9 -4 V		1.2 -4 z
	3.0 -5 z	48	1.8 -3 V	49	3.8 -3 V
48	2.2 -3 V	49	1.2 -4 z	51	5.4 -3 V
	8.4 - 5 z				2.4 -4 z
		<u> </u>		L	

Table 7 -- continued

UT	ed em	2	UT cd cm ⁻²		UT	cđ cm ⁻²	
22 April 1253	(cont'd) 1.1 -2	77	22 April 1303	(cont'd) 5.0 -2	v	22 April	
54	1.1 -2 1.4 -2 5.1 -4	V V	. 04	2.5 -3 5.3 -2	v z V	1313 14	1.3 -1 V 1.4 -1 V 1.2 -2 z
56 57	2.2 -2 2.3 -2	z V V	06 07	7.0 -2 7.5 -2	V V	Period:	1.2 -2 z to 1817
1300	7.7 - 4 3.3 -2	z V	08	4.4 -3 8.6 -2	z V	Range	
01	4.3 -2 1.9 -3	V z	11 12	1.2 -1 1.3 -1	v v	Range 2.4	of z: -1 to 2.6 -1

Table 8
SKY BRIGHTNESS (TMO)

		·						
	cd (cd	-2 cm		cd	-2
TU	Λ 26	z z	UT	V	z	UT		z
17 June			<u>18 June</u> (cont'd)	l.	19 June ((cont'd)	
1156:00	4.2 -5	-	1220:00	1.8 -3	3.0 -4	1235:40	2.0 -2	
1200:00	3.7	-	:27	1.9	_	40:00	2.6	1.1 -2
06:30	5.6	-	:40	2.0	- 1	:47	2.8	
10	1.5 -4	5.2 -5	:55	2.2	3.9	:59		1.2
13	2.6	9.7	25:00	4.1	8.3	45:00	4.0	1.4
14:30	3.4	1.1 -4	:16	4.4	- }	:30	4.3	1.5
15:00	3.9	1.4	:24		1.1 -3	50:00	5 .3	1.8
:33	4.2		30:00		1.9	:31	-	1.9
:44	4.4		:26	9.4	-)	55:50	6.5	2,2
20:00	1.4 -3	2.9	:56		2.2 -3	1300:00	7.5	2.5
:23	1.6	- 0	31:15	1.3 -2	-	. :57		2.6
24:15	2	5.9	35 :00	1.9	3.6	25:20	1.1 - 1	
25:00	3.3	-	:37		3.9	30:00		4.6
:20	3.8	7 0 2	40:00	2.6	6.2	2012	-	8.5 -1
:35	4.0 7.1	1.0 -3 1.7	:35	, ,	6.6	45	-	4.2
30:00 :08	7.1 7.6	1./ -	45:00	4.0	8.7	2100	-	3.4
:37	8.2	2.2	:20	4.3	1 5 2	15	-	3.0
35:00	1.6 -2	3.3	:44	5.7	1.5 -2 1.9	30	-	3.4
:37	1.8	3.8	50:00 :31	3. 1	2.0	45	-	3.2
37:15	2.2	5.0	55:00	۷ 1	2.3	2200	-	2.8
40:00	2.5	1.1 -2		6.1	2.5	30	-	3.0
:36	2.6				5.0	47	-	2.6
45:00	3.5	1.3	30:00	1.3	J.0	2300	-	2.4
:23	3.8	_		1,5	ĺ	20 June	-	
:36	3.9	1.4	19 June			1158	4.2 -5	
50:00	5.0	1.8	1200:00	3.7 -5	1.0 -5	1200:00	3.7	_
:23	5.3	_	:35	4.2		10	2.1 -4	6.0 -5
55:00	5.7	2.2	04:20	5.2	4.2	15	4.8	1.1 -4
:37	6.1	•	09:18	1.9 -4		:42		1.3
1300:00	7.0	2.6	15:00	5.5	1.1 -4		1.7 -3	2.7
:36	7.5	2.6	:24	5.9	-	1	1.9	
13:30	1.1 -1	3.8	:29	6.3	1.3	:36	2.0	3.4
18			20:00	1.9 -3	3.0	25:00		6.3
30:00	1.3	5.0	:34	2.0	3.6	:21	4.1	_
18 June			25:00		8.3	:34	4.4	8.9
			:19		-	28:30	6.2	1.6 -3
1154:30	4.2 -5	105	:29	4.7		30:00	1.1 -2	1.8
1200:00	1.3 -4	1.0 -5	26:00		1.3 -3	:22	1.2	-
	1.3 -4 2.6	4.2	30:00		1.9	:49		2.2
11:40 15:00	5.1	1.3 -4	:13		2.0	31:50	1.3	-
:50	5.5	T.J -4	:34	1.2	2.3	32:30	1.4	2.6
	ر, ر		35:08	1.9	3.8	34:10	1.5	3.1

Absence of an exponent means that the exponent is the same as the preceding entry.

Table 8 -- continued

			11					
	<u>cđ</u>	-2 cm		cd	<u>cm</u> -2		cd	-2 cm
UT	V	Z	UT	V	z	UT	V	z
20 June (cont'd)		20 June	(cont'd)		21 June (cont'd)	
1235:00	1.6 -2	3.3 -3	2100	-	3.2 -1	1227:00	5.4 -3	-
:26	1.8	-	16	-	2.6	:15		1.3 -3
:33		3.6	45	_	2.3	30:00	1.2 - 2	1.7
40:00	2.5	5.4	2200	-	1.8	:44		2.0
:19	2.6	-	15	-	1.7	32:45	1.4	2.5
:35	2.8	1.2 -		-	1.6	33:53		3.1
45:00	3.5	1.3	45	-	1.4	∥ 35:00	1.6	3.3
: 35	3.8	-	2300	-	1.1	:29	1.8	3.6
: 49	4.0	1.4	21 June			40:00	2.5	1.1 -2
50:00	5.0	1.5				:29	2.6	
:33		1.9	1156	4.2 -5	-	45:00	3.8	1.3
55:00	5.7	2.2	1200:00		3.0 -5	:39		1.4
1300:00	6.1	2.6	15:	4.8 -4	1.2 -4	50:00	5.1	1.6
01:08	6.5		:13	5.5	-	:31	5.3	1.8
:47	7.0		:31	5.9	1.4	56	6.5	2.3
30:00	9.9	4.3	20:00	1.7 -3	2.7 -4	1300:00	7.5	2.8
2003	**	1.3 (`:37	1.9	-	:24	7.8	2.8
06	-	9.4 -1	21:13	•	3.9 -4	30:00	1.1 -1	4.3
10		9.1	25:00	3.8	7.2	:17	1.2	-
12	-	8.5	:20	4.1	-	:27	1.3	-
15	-	6.9	:30	4.4	9.5	:49	1.4	5.0
20	-	7.4	26:00	4.7	-	1942	-	9.7 -1
30	-	6.0	:15	4.8	-	52	-	1.0 0
45	-	6.2	.:30	5.0	-	2007	-	1.2
			:45	5.2	<u>-</u>	15	-	1.1

Table 9
SKY BRIGHTNESS (NMSU)

	cđ	,		<u>cđ</u>	<u>cm</u> -2		cd	-2 cm
UT	v*	z*	UT	V	z	UT	V	z
14 June			16 June	(cont'd)		17 June	(cont'd)	
1125	1.7 -4	_	1137	6.7 - 4	1.5 -4	1136	5.5 - 4	1.0 -4
27	2.4	-	38	8.3	2.1	38	6.7	1.4
29	3.1	_	38	9.5	2.4	38	8.3	1.7
30	3.4	-	39	1.1 -3	2.9	39	9.5	1.9
34	5.5	1.8 -4	41	1.4	4.1	40	1.1 -3	2.4
35	7.2	2.1	41	1.7	4.4	41	1.4	2.9
36	9.5	2.7	42	1.9	5.1	42	1.7	3.9
38	1.4 -3	3.9	43	2.2	6.3	43	1.9	4.4
39	1.7	4.4	43	2.7	7.2	43	2.2	5.5
40	2.2	5.5	44	3.3	8.3	44	2.7	6.3
41	2.7	6.3	45	3.8	9.5	45	3.3	7.2
42	3.3	7.7	45	4.4	1.2 -3	46	3.8	8.3
43	3.8	8.3	47	5.4	1.4	46	4.4	9.5
44	4.4	1.0 -3	48	6.6	1.7	48	5.4	1.2 -3
46	5.4	1.1	49	7.6	2.0	49	6.6	1.4
47	6.6	1.4	50	1.1 -2	2.7	50	7.6	1.8
48	7.6	1.8	51	1.2	2.7	51	1.1 -2	2.0
49 51	8.7 1.1 -2	2.2 2.9	53	1.4	3.8	52	1.2	2.3
54	2.7	4.9 4.1	55	1.8	4.4	53	1.4	3.1
56	3.0	5.0	57 50	2.2 2.7	5.8	54	1.5	3.3
58	3.5	6.2	59 1202	3.0	7.1 1.2 -2	55	1.8	3.8
1201	4.3	8.7	03	3.0 3.5	1.3	57 59	2.2 2.7	4.7 5.8
05	5.7	2.3 -2	06	4.3	1.5	1201	3.0	7.1
05	6.1	2.7	10	6.1	2.3	03	3.5	1.2 -2
09	7.0	2.8	13	7.0	2.7	07	4.3	1.5
13	8.6	3.3	18	8.6	2.8	11	5.3	1.9
20	1.1 -1	4.6	27	1.2 -1	4.0	15	6.1	2.3
39	1.5	5.7	33	1.4	5.0	19	7.0	2.7
52	1.7	7.0	37	1.5	5.7	27	8.6	3.3
	•		li		- • -	42	1.1 -1	4.6
<u>16 June</u>			17 June			1320	1.2	6.1
1119	2.1 -5	-	1109	1.1 -5	-	18 June		
23	4.2	~	19	2.1	-			
25	8.4	-	23	4.2	-	1108	1.5 -5	-
28	1.2 -4	2.1 -5	26	8.4		18	2.1	-
29	1.7	2.1	28	1.2 -4		23	4.2	
31	2.1	3.0	30	1.7	2.1	26	8.4	1.3 -5
32	2.4	3.0	31	2.1	3.0	29	1.2 -4	1.5
32	2.7	4.2	33	2.7	3.0	30	2.1	2.1
33	3.4	6.0	34	3.4	4.2	31	2,4	2.1
34 25	4.8	1.0 -4	35	4.1	6.0	32	2.7	3.0
35	5.5	1.3	36	4.8	8.4	32	3.4	4.2

Absence of an exponent means that the exponent is the same as in the preceding entry.

Table 9 -- continued

			lable 9	Conc.	Litueu				. _* *
	cd			<u>cd</u>	cm ⁻²		cd	cm ⁻²	<i>.</i>
UT	V	z	UT	V	z	UT	V	z	_
18 June	(cont'd)		19 June	(cont'd)		20 June	(cont'd)		
1134	4.1 -4	6.0 -5	1131:09	2.1 -4	2.1 -5	1128:14	1.0 -4	1.3 -5	
34	4.8	8.4	:58	2.4	3.0	:50	1.2	1.3	
35	5.5	1.0 -4	32:46	2.7	3.0	29:35	1.4	2.1	
36	6.7	1.3	33:36	3.4	3.0	30:25		2.1	
37	8.3	1.6	34:38	4.1	4.2	.31:19		2.1	
38	9.5	1.8	35:26	4.8	6.0	32:10		2.1	
39	1.1 -3		36:09	5.5	9.0	:50		3.0	
39	1.4	2.6	 : 58	6.7	1.1 -4	33:45		3.0	
40	1.7	3.1	37:57	8.3	1.4	34:39		4.2	
40	1.9	3.9	38:35	9.5	1.7	35:27		6.0	
41	2.2	4.1	39:10	1.1 -3	2.1	36:04	5.5	9.0	
42	2.7	5.1	40:00	1.4	2.4	:55	6.7	1.1 -4	
43	3.6	6.7	:58	1.7	2.9	37:48	8.3	1.3	
44	3.8	7.2	41:30	1.9	3.4	38:30	9.5	1.6	
45	4.4	8.9	42:12	2.2	4.1	39:05	1.1 -3	1.9	
46	5.4	1.2 -3	II	2.7	4.8	:58	1.4	2.4	
48	6.6	1.6	44:17	3.3	6.3	40:54	1.7	2.9	
49	7.6	1.9	45:08	3.8	7.2	41:35	1.9	3.6	
51 50	1.1 - 2	2.3	46:06	4.4	8.9	42:15	2.2	4.1	
52	1.3	3.1	47:40	5.4	1.2 -3	43:15	2.7	5.1	
53		3.3	49:20	6.6	1.6	44:40	3.3	6.7	
55 53	1.8	4.1	50:27	7.6	1.9	45:20	3.8	7.2	
57 50	2.2	4.7	51:32	1.1 -2	2.2	46:21	4.4	8.9	
59 1201	2.7	6.2	:55	1.2	2.3	47:57	5.4	1.2 -3	
03	3.0	7.1	53:10	1.3	2.9	49:30	6.6	1.7	
05 06	3.5	8.2 1.3 -2	54:15	1.4	3.3	50:55 52:20	7.6	2.0	
10	4.3 5.3	1.8	1	1.8	4.1	53:39	8.7	2.3	
14	6.1	2.0	58:00 1200:00	2.2	5.0	54:10	1.4 -2 1.5	3.3	
18	7.0	2.7	02:10	2.7	6.2	56:43	1.8	3.6	
25	8.6	3.3	02:10	3.0 3.5	7.1 1.2 -2	58:40	2.2	4.1 5.0	
34	1.1 -1		08:00	4.3	1.4	1200:35	2.7	6.2	
46	1.2	5.0	12:25	5.3	1.9	02:28	3.0	7.6	
	. · .	J. 0	16:17	6.1	2.3	04:45	3.5	1.2 -2	
<u> 19 June</u>		ł	20:35	7.0	2.7	08:02	4.3	1.4	
1103:30	1.1 -5	_	27:15	8.6	3.3	12:00	5.3	1.8	
16:15		_	38:50	1.1 -1	4.0	16:10	6.1	2.3	
23:20		1.1 -5]	T • T	→• ○	19:10	7.0	2.5	
25:10		1.1	20 June			25:10	8.6	3.0	
26:25		1.1	1107:00	1.1 -5		27:35	9.2	3.1	
27:37		1.1	21:05	2.1	_	29:15	9.9	3.5	
28:10		2.1	23:10	3.0	_	33:10	1.1 -1	3.8	
29:28	1.4	2.1	25:51	4.2	_	40:00	1.1	5.0	
30:11	1.7	2.1	27:07	8.4	1.3 -5	43:00	1.2	5.0	
	·								

V. DATA REDUCTION AND ANALYSIS

In our theoretical study published in 1967, we suggested that, for Venus, the cusp extension angle measured depends on the brightness of the terrestrial sky at the moment of observation as well as on the height of the scattering atmosphere above the surface of Venus. In addition, an exploratory test program carried out about the same time indicated that varying the length of exposure time would artificially alter the brightnesses of the planet relative to the sky surrounding it. Other factors such as astronomical seeing, size of telescope, atmospheric extinction, plate sensitivity, and type of filter also affect the apparent angular extent of the crescent.

During the 1969 Venus inferior conjunction particular emphasis was given to two of the parameters, namely, sky brightness and duration of exposure.

The discussion of the observational material is presented in three parts: photographic material, photometric material, and sky brightness effects.

PHOTOGRAPHIC MATERIAL

The photographic material, obtained through the telescopes, is concerned principally with the angular extent of the Venus crescent. (Photometric information in the pictures is also available, and is discussed in the final part of this section.) The information sought is the positional relationship of terminator and cusps to the bright limb. In the inferior conjunction observations, these quantities are rather easily obtained from the Venus images, mainly because the phase is a thin crescent.

The angular extent of the Venus crescent (from which cusp extension angles can be deduced) was determined by using an optical comparator whose reticle was placed directly against the emulsion. (The

RM~5386-PR; see footnote on p. 1.

photograph was illuminated from below.) Since no commercially available reticle had the necessary graduations, we prepared our own according to the design shown in Fig. 3.

Fig. 3 -- Reticle design.

Because the size of the Venus image varied with the date of observation and telescope focal length, it was necessary to have several circular arcs (a, Fig. 3). The comparator was positioned by fitting the bright limb of the Venus image to the appropriate arc (a). This centered the reticle on the image. Then the comparator was rotated until the line (bc) just touched the lower cusp. The angular extent was then apparent from the location of the other cusp. The radial lines (dc) were 5° apart. Measurements made by two observers are compared in Fig. 4. The scatter of points arises in deciding just where the image of the cusp becomes distinct from the background. This typifies a well known problem in astronomy, encountered, for example, when deriving integrated magnitudes of galaxies or the angular diameters of planets. Images that were very lightly or very heavily exposed presented more severe problems in positioning the reticle.

The measurements of the angular extent of the Venus crescent are presented in Tables 4 and 5.

Fig. 4 -- Comparison of measurements of angular extent of the photographic image of the crescent.

In the case of the elongation data, the planet is very close to quarter phase. The precise relationships of the various parts of the image can be measured only on a measuring engine. This very time-consuming task was beyond the scope of our project, but could, of course, be performed at any later time.

PHOTOMETRIC MATERIAL

The photometric data are available in both the direct meter readings of sky brightness and in the density of the photographic images. The latter data are discussed in the last part of this section. The sky-brightness data obtained with the meters are tabulated in Sections III and IV. In Section III only those measurements of sky brightness around Venus at the time of an exposure are listed. All other measurements of sky brightness are collected in Section IV. As may be seen in the discussion of their characteristics in Section II, the photometers were stable, functional instruments.

Representative data are plotted in Figs. 5 through 9; they show the brightness of the sky at Venus and at the zenith. The lower part of each figure is a plot of the celestial altitude of the Sun and Venus to aid in interpreting the photometric data. April 8 was the date of inferior conjunction.

SKY-BRIGHTNESS EFFECTS

The brightness of the terrestrial sky affects the observed extent of the Venus crescent. This is demonstrated quite clearly in Fig. 10. Here the angular extent of the Venus crescent is plotted against shutter speed on two days. The data from 17 April, represented by circles, show that the maximum extent of the Venus crescent is observed at exposures of about 0.0125 sec. When the sky was half as bright (data of 22 April) we see that not only was the optimum exposure greater (about 0.02 sec.) but also the maximum size of the measured Venus crescent was smaller.

Figures 11 through 14 are plots of measured angular extent of the Venus crescent under various conditions of sky brightness. The data

Fig. 5 -- Sky brightness and celestial altitudes, 3 April 1969, Table Mountain Observatory.

Fig. 6 -- Sky brightness and celestial altitudes, 4 April 1969, Table Mountain Observatory.

Fig. 7 -- Sky brightness and celestial altitudes, 8 April 1969, Table Mountain Observatory.

Fig. 8 -- Sky brightness and celestial altitudes, 15 April 1969, Table Mountain Observatory.

Fig. 9 -- Sky brightness and celestial altitudes, 22 April 1969, Table Mountain Observatory.

Fig. 10 -- Effect of exposure (the product of sky brightness and exposure time) on the angular extent of the Venus crescent.

are parameterized in exposure times. The curves clearly show the effect of sky brightness on the measured size of the Venus crescent. Furthermore, the evolution of the curves due to the changing angular distance between Venus and the Sun is apparent.

Finally, Fig. 15 is an example of the effect of a specific combination of telescope and emulsion properties in determining the minimum exposure needed to obtain a detectable image. The data shown are for June conditions at TMO. Elongation photographs were examined to determine which exposures were sufficient to show the sky or Venus. The triangles and circles represent combinations of exposure times and brightness that resulted in barely detectable images of the sky and Venus respectively. The limiting relationship for the upper curve was approximately

$$B \times t = 10^{-4} \text{ sec cd cm}^{-2}$$

where B is the surface brightness and t is the duration of the shutter opening. This relationship was needed for the interpretation of data of the kind shown in Figs. 11 through 14.

Fig. 11 -- Apparent angular extent of Venus crescent as a function of sky brightness and exposure time, 17 April 1969.

Fig. 12 -- Apparent angular extent of Venus crescent as a function of sky brightness and exposure time, 19 April 1969.

Fig. 13 -- Apparent angular extent of Venus crescent as a function of sky brightness and exposure time, 20 April 1969.

Fig. 14 -- Apparent angular extent of Venus crescent as a function of sky brightness and exposure time, 21 April 1969.

Fig. 15 -- Limiting conditions relating exposure time and object brightness at Table Mountain Observatory, June 1969.

Appendix

COMPUTER COMPUTATIONS

A major factor contributing to the success of the observational program was the development of a number of on-line JOSS computer programs. These permitted the precise preplanning of observational details as a function of the expected celestial configurations and terrestrial sky conditions at the observing sites. In addition, computer programs were used for the processing, reduction, and analysis of the data. Copies of the major programs and examples of the output are reproduced in this Appendix.

Page 63: Ephemeris Program

The program input consists of the distances Earth to Venus, Earth to Sun, and Sun to Venus, as tabulated in the <u>American Ephemeris and Nautical Almanac</u>. The output consists of tables of Elongation, Phase Angle (i), and Exterior Orbit Angle (α). Time intervals of output can be called for as desired. Examples of program output are shown on the following pages.

- Page 64: Ephemeris Program Output for April 1969 (Summary)
- Page 65: Ephemeris Program Output for 8 and 9 April 1969
- Page 66: Ephemeris Program Output for June 1969 (Summary)
- Page 67: Ephemeris Program Output for 17 and 18 June 1969
- Page 68: Look-Angle Program for TMO

The program input consists of the hourly values of GHA and declination of Venus and Sun as tabulated in the <u>Nautical Almanac</u>. The output consists of tables of celestial look angles for specific location, at any desired time interval.

- Page 70: Look-Angle Program for NMSU Observatory
- Page 72: Example of look angles for TMO, 4 April 1969
- Page 73: Example of look angles for TMO, 19 June 1969

^{*}JOSS is the trademark and service mark of the Rand Corporation for its computer program and for services using that program.

Page 74: Example of look angles for NMSU Observatory, 19 June 1969 Page 75: Plate-Analysis Program

The program input consists of a series of plate-micrometer readings such as diameter and cusp positions, and ephemeris data. The output is a complete analysis in terms of the parameters described in RM-5386-PR.

Page 78: Example of plate analysis for two images, giving cusp extension angles of 10° and 15° respectively.

```
Type all.
1.05 * Ephemeris (every 1/10 of a day and SUMMARY).
1.2 Set e=[S(j)*2+v(j)*2-1(j)*2]/[2*S(j)*v(j)].
1.3 Set E=d(arg[e,sqrt(1-e*2)]).
1.4 Set i=[v(j)*2+1(j)*2-S(j)*2]/[2*v(j)*1(j)].
1.5 Set I=d(arg[i,sqrt(1-i*2)]).
1.8 Set A=d[r(180)-r(I)].
1.89 Line if fp(j/10)=0.
1.9 Type j/10,E,A,I in form 1.
2.1 Set a=a.
2.2 Do part 3 for b=0(1)9.
3.1 Set j=(10·a)+b.
3.2 Set S(j)=b \cdot ([S(a+1)-S(a)]/10)+S(a).
3.3 Set l(j)=b \cdot ([1(a+1)-1(a)]/10)+l(a).
3.4 Set v(j)=b \cdot ([v(a+1)-v(a)]/10)+v(a).
3.5 Do part 1.
5.5 Set l(m+1)=l(m)-[[l(m)-l(m+2)]/2].
9.1 Demand S(j).
9.2 Demand 1(j).
9.3 Demand v(j).
10.1 Delete S(n).
10.2 Delete l(n).
10.3 Delete v(n).
Form 1:
Apr ___ : Elongation: ___ " Alpha: __ . " i: __ . "
       D(r,c): ip(r \cdot c) + .01 \cdot ip[60 \cdot fp(r \cdot c)] + .006 \cdot fp(60 \cdot r \cdot c)
       R(d,c): [ip(d)+ip(100 \cdot fp[d])/60+fp(100 \cdot d)/36]/c
         d(x): D(x,45/arg(1,1))
         h(x): R(x,3/arg(1,1))
         r(x): R(x,45/arg(1,1))
       s(x,y): d(r(x)+r(y))
         t(x): D(x,3/arg(1,1))
```

```
Do part 1 for j=4(1)23.
            Elongation:
                          10.4407"
                                     Alpha:
                                              14.5842"
                                                         i: 165.0118"
Apr
      4.0:
                            9.3929"
                                     Alpha:
                                              13.2746"
                                                         i: 166.3214"
Apr
      5.0:
            Elongation:
                                     Alpha:
                                                         i: 167.5128"
            Elongation:
                            8.4302"
                                              12.0832"
Apr
      6.0:
      7.0:
Apr
            Elongation:
                            7.5807"
                                     Alpha:
                                              11.0539"
                                                         i: 168.5421"
Apr
                            7.2847"
                                     Alpha:
                                              10.2440"
                                                         i: 169.3520"
      8.0:
            Elongation:
                            7.1821"
Apr
      9.0:
            Elongation:
                                     Alpha:
                                              10.1008"
                                                         i: 169,4952"
     10.0:
                           7.2823"
                                     Alpha:
                                              10.2415"
                                                        i: 169.3545"
Apr
            Elongation:
Apr
     11.0:
            Elongation:
                            7.5713"
                                     Alpha:
                                              11.0442"
                                                        i: 168.5518"
                            8.4141"
                                              12.0709"
     12.0:
            Elongation:
                                     Alpha:
                                                         i: 167.5251"
Apr
Apr
     13.0:
            Elongation:
                           9.3733"
                                     Alpha:
                                              13.2547"
                                                         i: 166.3413"
Apr
                                     Alpha:
                                              14.5600"
                                                         i: 165.0360"
     14.0:
            Elongation:
                          10.4128"
     15.0:
                          11.5042"
                                     Alpha:
                                              16.3406"
                                                         i: 163.2554"
Apr
            Elongation:
Apr
     16.0:
            Elongation:
                          13.0315"
                                     Alpha:
                                              18.1723"
                                                         i: 161.4237"
     17.0:
            Elongation:
                          14.1742"
                                     Alpha:
                                              20.0354"
                                                         i: 159.5606"
Apr
     18.0:
                          15.3300"
                                     Alpha:
                                              21.5218"
                                                         i: 158.0742"
Apr
            Elongation:
                                                         i: 156.1827"
Apr
     19.0:
            Elongation:
                          16.4823"
                                     Alpha:
                                              23.4133"
Apr
     20.0:
            Elongation:
                          18.0318"
                                     Alpha:
                                              25.3056"
                                                         i: 154.2904"
     21.0:
            Elongation:
                          19.1718"
                                     Alpha:
                                              27.1953"
                                                         i: 152.4007"
Apr
     22.0:
                                              29.0757"
            Elongation:
                          20.3003"
                                     Alpha:
                                                        i: 150.5203"
Apr
            Elongation:
                          21.4118"
                                     Alpha:
                                              30.5450"
                                                        i: 149.0510"
     23.0:
```

Do part 2 for a=8,9.

```
8.0:
Apr
             Elongation:
                            7.2847"
                                      Alpha:
                                              10.2440"
                                                         i: 169.3520"
Apr
      8.1:
             Elongation:
                            7.2745"
                                      Alpha:
                                              10.2314"
                                                         i: 169.3646"
Apr
      8.2:
             Elongation:
                            7.2643"
                                              10.2147"
                                      Alpha:
                                                         i: 169.3813"
Apr
      8.3:
                                              10.2021"
            Elongation:
                            7.2541"
                                      Alpha:
                                                         i: 169.3939"
Apr
      8.4:
             Elongation:
                            7.2439"
                                      Alpha:
                                              10.1854"
                                                         i: 169.4106"
Apr
      8.5:
             Elongation:
                            7.2336"
                                      Alpha:
                                              10.1727"
                                                         i: 169.4233"
      8.6:
Apr
            Elongation:
                            7.2233"
                                      Alpha:
                                              10.1559"
                                                         i: 169.4401"
            Elongation:
Apr
      8.7:
                            7.2131"
                                      Alpha:
                                              10:1432"
                                                         i: 169,4528"
Apr
      8.8:
                            7.2028
            Elongation:
                                      Alpha:
                                              10.1304"
                                                         i: 169.4656"
      8.9:
Apr
            Elongation:
                            7.1924"
                                      Alpha:
                                              10.1137"
                                                         i: 169.4823"
Apr
      9.0:
            Elongation:
                            7.1821"
                                      Alpha:.
                                              10.1008"
                                                         i: 169,4952"
      9.1:
Apr
            Elongation:
                            7,1922"
                                      Alpha:
                                              10.1134"
                                                         i: 169,4826"
      9.2:
            Elongation:
Apr
                            7.2023"
                                      Alpha:
                                              10.1259"
                                                         i: 169.4701"
      9.3:
                            7.2123"
Apr
            Elongation:
                                      Alpha:
                                              10.1425"
                                                         i: 169.4535"
      9.4:
Apr
            Elongation:
                            7.2224"
                                      Alpha:
                                              10.1550"
                                                         i: 169.4410"
Apr
      9.5:
            Elongation:
                            7.2324"
                                      Alpha:
                                              10.1714"
                                                         i: 169.4246"
      9.6:
Apr
            Elongation:
                            7.2424"
                                      Alpha:
                                              10.1839"
                                                         i: 169.4121"
      9.7:
Apr
            Elongation:
                            7.2524"
                                      Alpha:
                                                         i: 169.3 57"
                                              10.2003"
      9.8:
            Elongation:
Apr
                            7.2624"
                                      Alpha:
                                              10.2127"
                                                         i: 169.3833"
            Elongation:
                            7.2724"
Apr
      9.9:
                                              10.2251"
                                      Alpha:
                                                         i: 169,3709"
```

```
Do part 1 for j=15(1)29.
                                      Alpha:
                                               87.5403"
                                                             92.0557"
     15.0: Elongation:
                           45.45271
                                                         i:
Jun
                                      Alpha:
                                                             91.2720"
Jun
     16.0:
                           45.4626"
                                               88.3240"
                                                         i:
             Elongation:
                           45.4657"
Jun
     17.0:
             Elongation:
                                      Alpha:
                                               89.1050"
                                                         i:
                                                             90.4910"
                                               89.4836"
Jun
     18.0:
             Elongation:
                           45.4703"
                                      Alpha:
                                                             90.1124"
                                                         i:
Jun
     19.0:
             Elongation:
                           45.4642"
                                      Alpha:
                                               90.2555"
                                                         i:
                                                             89.3405"
Jun
     20.0:
             Elongation:
                           45.4558"
                                      Alpha:
                                              91.0252"
                                                         i:
                                                             88.5708"
Jun
     21.0:
                           45.4449"
                                                             88.2035"
             Elongation:
                                      Alpha:
                                              91.3925"
                                                         i:
Jun
     22.0:
             Elongation:
                           45.4318"
                                      Alpha:
                                              92.1537"
                                                         i:
                                                             87.4423"
Jun
     23.0:
             Elongation:
                           45.4124"
                                      Alpha:
                                              92.5126"
                                                         i:
                                                             87.0834"
     24.0:
Jun
             Elongation:
                           45.3910"
                                      Alpha:
                                              93,2656"
                                                         i:
                                                             86.3304"
Jun
     25.0:
             Elongation:
                           45.3633"
                                      Alpha:
                                                             85.5756"
                                              94.0204"
                                                         i:
Jun
     26.0:
             Elongation:
                           45.3336"
                                      Alpha:
                                              94.3654"
                                                         i:
                                                             85.2306"
Jun
     27.0:
             Elongation:
                           45.3019"
                                      Alpha:
                                              95.1124"
                                                             84.4836"
                                                         i:
Jun
     28.0:
             Elongation:
                                                             84.1424"
                           45.2643"
                                      Alpha:
                                              95.4536"
                                                         i:
     29.0:
             Elongation:
Jun
                           45.2248"
                                      Alpha:
                                              96.1930"
                                                         i:
                                                             83.4030"
```

Do part 2 for a=17,18.

```
89.1050"
Jun
     17.0:
             Elongation:
                           45.4657"
                                      Alpha:
                                                         i:
                                                             90.4910"
Jun
     17.1:
             Elongation:
                                      Alpha:
                                                         i:
                           45,4659"
                                              89.1438"
                                                              90.4522"
Jun
     17.2:
             Elongation:
                           45.4700"
                                      Alpha:
                                              89.1825"
                                                             90.4135"
                                                         i:
Jun
     17.3:
             Elongation:
                                                             90.3747"
                           45.4701"
                                      Alpha:
                                              89.2213"
                                                         i:
     17.4:
                                              89.2559"
Jun
             Elongation:
                           45.4702"
                                      Alpha:
                                                             90.3401"
                                                         i:
     17.5:
Jun
            Elongation:
                           45.4703"
                                      Alpha:
                                              89.2946"
                                                             90.3014"
                                                         i:
Jun
     17.6:
            Elongation:
                           45.4703"
                                      Alpha:
                                              89.3333"
                                                         i:
                                                             90.2627"
     17.7:
Jun
             Elongation:
                           45.4704".
                                     Alpha:
                                              89,3719"
                                                         i:
                                                             90,2241"
Jun
     17.8:
            Elongation:
                           45.4704"
                                      Alpha:
                                              89.4105"
                                                         i:
                                                             90.1855"
     17.9:
Jun
                           45.4703"
             Elongation:
                                      Alpha:
                                              89.4450"
                                                         i:
                                                             90.1510"
Jun
     18.0:
            Elongation:
                           45.4703"
                                      Alpha:
                                              89,4836"
                                                         i:
                                                             90.1124"
Jun
     18.1:
            Elongation:
                           45.4702"
                                      Alpha:
                                                         i:
                                              89.5221"
                                                             90.0739"
Jun
     18.2:
            Elongation:
                           45.4701"
                                      Alpha:
                                              89.5606"
                                                         i:
                                                             90.0354"
Jun
     18.3:
                           45.4659"
                                              89.5950"
            Elongation:
                                      Alpha:
                                                         i:
                                                             90.0010"
Jun
     18.4:
             Elongation:
                                      Alpha:
                                                         i:
                                                             89,5625"
                           45.4657"
                                              90.0334"
                           45.4655"
                                              90.0719"
Jun
     18.5:
             Elongation:
                                      Alpha:
                                                         i:
                                                             89.5241"
     18.6:
Jun
            Elongation:
                           45,4653"
                                      Alpha:
                                              90.1102"
                                                             89,4858"
                                                         i:
Jun
     18.7:
            Elongation:
                           45.4651"
                                      Alpha:
                                              90.1446"
                                                         i:
                                                             89.4514"
                                      Alpha:
Jun
     18.8:
            Elongation:
                           45.4648"
                                              90.1829"
                                                         i:
                                                             89.4131"
Jun
     18.9:
            Elongation:
                           45.4645"
                                      Alpha:
                                              90.2212"
                                                         i:
                                                             89.3748"
```

```
Type all.
1.0 Set X=57.295779.
1.05 * Table Mt. Venus Angles (every 10 minutes).
1.1 Type form 15 if $≤4.
1.2 Do part 3 for b=0(1)5.
2.2 Set m=\sin(E)\cdot\sin[r(34.22)]+\cos(E)\cdot\cos(U)\cdot\cos[r(34.22)].
2.25 Set M=\sin(e) \cdot \sin(r[34.22]) + \cos(e) \cdot \cos(u) \cdot \cos(r[34.22]).
2.3 Set a=d(arg[sqrt(1-m*2),m]).
2.35 Set k=d(arg[sqrt(1-M*2),M]).
2.4 Set n=-\cos(E)\cdot\sin(U)/\cos[r(a)].
2.45 Set N=-\cos(e)\cdot\sin(u)/\cos[r(k)].
2.5 Set A=d(arg[sqrt(1-n*2),n]).
2.55 Set K=d(arg[sqrt(1-N*2),N]).
2.6 Set p=(\sin(E)\cdot\cos[r(34.22)]-\cos(E)\cdot\cos(U)\cdot\sin[r(34.22)])/\cos[r(a)].
2.65 Set P=d(arg[p,sqrt(1-p*2)]).
2.66 Set q=(\sin(e)\cdot\cos[r(34.22)]-\cos(e)\cdot\cos(u)\cdot\sin[r(34.22)])/\cos[r(k)].
2.665 Set q=-1 if q<-1.
2.67 Set Q=d(arg[q,sqrt(1-q*2)]).
2.8 Line if b=0.
2.91 Set P=d(r[360]-r[P]) if n \le 0.
2.93 Set Q=d(r[360]-r[Q]) if N \le 0.
2.95 Set Z=d(r[P]-r[Q]) if Q\geq P.
2.96 Set Z=d(r[P]-r[Q]-r[360]) if Q<P.
2.965 Set Z=d(r[360]+r[Z]) if r[Z]<r[-180].
2.97 Do part 11 if i≥7.
2.98 Do part 12 if i<7.
3.2 Set U=b \cdot ([V(i+1)-V(i)]/6)+V(i) if V(i+1) \ge V(i).
3.24 Set U=b \cdot ([V(i+1)+r[360]-V(i)]/6)+V(i) if V(i+1)<V(i).
3.3 Set E=b \cdot ([F(i+1)-F(i)]/6)+F(i).
3.41 Set u=b \cdot ([W(i+1)-W(i)]/6)+W(i) if W(i+1)\geq W(i).
3.43 Set u=b \cdot ([W(i+1)+r[360]-W(i)]/6)+W(i) if W(i+1)<W(i).
3.51 Set e=b \cdot ([f(i+1)-f(i)]/6)+f(i).
3.9 Do part 2.
9.0 Type i in form 2.
9.1 Demand v(t,i) as "GHA-Venus".
9.2 Demand G(t,i) as "DEC-Venus".
9.3 Demand w(t,i) as "GHA-SUN".
9.4 Demand g(t,i) as "DEC-SUN".
9.5 Line.
11.05 Do part 15 if $>47.
11.1 Type i,10.b,i-7,10.b,a,P,k,Q,Z in form 1.
12.1 Type i,10.b,i+17,10.b,a,P,k,Q,Z in form 1.
15.1 Page.
```

```
15.2 Type form 15.
15.3 Line.
Form 1:
__:___
Form 2:
GMT :00
Form 15:
 GMT
        PDT
               Venus alt. Az.
                                    SUN alt.
                                                             Bearing
                                                  Az.
      D(r,c):
                ip(r \cdot c) + .01 \cdot ip[60 \cdot fp(r \cdot c)] + .006 \cdot fp(60 \cdot r \cdot c)
         F(i):
                [ip[G(t,i)]+fp[G(t,i)]/.6]/X
                [ip(d)+ip(100 \cdot fp[d])/60+fp(100 \cdot d)/36]/c
      R(d,c):
        V(i):
                [ip[v(t,i)]+fp[v(t,i)]/.6]/X-r[117.41]
        W(i):
                [ip[w(t,i)]+fp[w(t,i)]/.6]/X-r[117.41]
        d(x):
                D(x,45/arg(1,1))
        f(i): [ip[g(t,i)]+fp[g(t,i)]/.6]/X
        r(x): R(x,45/arg(1,1))
Recall item 17.
Done.
Type t.
            t =
                       19
Do part 1 for i=15.
15: 0
                 58.081
        8: 0
                          126.11
                                       26.29
                                                 78.36
                                                                47.34'
15:10
        8:10
                 59.46
                          129.42
                                       28.31
                                                 79.49
                                                                49.53
15:20
        8:20
                 61.18'
                          133.321
                                       30.331
                                                 81.021
                                                                52.301
15:30
                 62.45
        8:30
                          137.44
                                       32.35
                                                 82.16
                                                                55.281
15:40
        8:40
                 64.05
                          142.18
                                       34.381
                                                 83.30'
                                                                58.481
15:50
        8:50
                 65.16'
                          147.16
                                       36.41'
                                                 84.46
                                                                62.31°
GMT
        PDT
               Venus alt. Az.
                                    SUN alt.
                                                 Az.
                                                            Bearing
```

Delete all.

```
Type all.
 1.0 Set X=57.295779.
 1.05 * New Mexico Venus Angles (every 10 minutes).
 1.1 Type form 15 if $≤4.
 1.15 Set L=32.1717.
 1.2 Do part 3 for b=0(1)5.
 2.2 Set m=sin(E) *sin[r(32.1717)]+cos(E) *cos(U) *cos[r(32.1717)].
 2.25 Set M=\sin(e) \cdot \sin(r[32.1717]) + \cos(e) \cdot \cos(u) \cdot \cos(r[32.1717]).
 2.3 Set a=d(arg[sqrt(1-m*2),m]).
 2.35 Set k=d(arg[sqrt(1-M*2),M]).
 2.4 Set n=-cos(E)\cdot sin(U)/cos[r(a)].
 2.45 Set N=-\cos(e)\cdot\sin(u)/\cos[r(k)].
 2.5 Set A=d(arg[sqrt(1-n*2),n]).
 2.55 Set K=d(arg[sqrt(1 N*2),N]).
 2.6 Set p=(\sin(E)\cdot\cos[r(L)]-\cos(E)\cdot\cos(U)\cdot\sin[r(L)])/\cos[r(a)].
 2.65 Set P=d(arg[p,sqrt(1-p*2)]).
 2.66 Set q=(\sin(e)\cdot\cos[r(L)]-\cos(e)\cdot\cos(u)\cdot\sin[r(L)])/\cos[r(k)].
 2.665 Set q=-1 if q<-1.
 2.67 Set Q=d(arg[q,sqrt(1-q*2)]).
 2.8 Line if b=0.
 2.91 Set P=d(r[360]-r[P]) if n \le 0.
 2.93 Set Q=d(r[360]-r[Q]) if N\leq 0.
 2.95 Set Z=d(r[P]-r[Q]) if Q \ge P.
 2.96 Set Z=d(r[P]-r[Q]-r[360]) if Q<P.
2.965 \text{ Set Z=d(r[360]+r[Z]) if r[Z]<r[-180]}
2.97 Do part 11 if i≥6.
2.98 Do part 12 if i<6.
3.2 Set U=b \cdot ([V(i+1)-V(i)]/6)+V(i) if V(i+1) \ge V(i).
3.24 \text{ Set U=b} \cdot ([V(i+1)+r[360]-V(i)]/6)+V(i) \text{ if } V(i+1)<V(i).
3.3 Set E=b \cdot ([F(i+1)-F(i)]/6)+F(i).
3.41 Set u=b \cdot ([W(i+1)-W(i)]/6)+W(i) if W(i+1) \ge W(i).
3.43 Set u=b \cdot ([W(i+1)+r[360]-W(i)]/6)+W(i) if W(i+1)<W(i).
3.51 Set e=b \cdot ([f(i+1)-f(i)]/6)+f(i).
3.9 Do part 2.
9.0 Type i in form 2.
9.1 Demand v(t,i) as "GHA-Venus".
9.2 Demand G(t,i) as "DEC-Venus".
9.3 Demand w(t,i) as "GHA-SUN".
9.4 Demand g(t,i) as "DEC-SUN".
9.5 Line.
11.05 Do part 15 if $>47.
11.1 Type i,10.b,i-6,10.b,a,P,k,Q,Z in form 1.
12.1 Type i,10.b,i+18,10.b,a,P,k,Q,Z in form 1.
```

```
15.1 Page.
15.2 Type form 15.
15.3 Line.
Form 1:
Form 2:
GMT :00
Form 15:
                                                           Bearing
 GMT
        MDT
               Venus alt. Az.
                                   SUN alt.
                                                Az.
      D(r,c): ip(r \cdot c) + .01 \cdot ip[60 \cdot fp(r \cdot c)] + .006 \cdot fp(60 \cdot r \cdot c)
        F(i): [ip[G(t,i)]+fp[G(t,i)]/.6]/X
      R(d,c): [ip(d)+ip(100 \cdot fp[d])/60+fp(100 \cdot d)/36]/c
      V(i): [ip[v(t,i)]+fp[v(t,i)]/.6]/X-r[106.4148]
        W(i):
                [ip[w(t,i)]+fp[w(t,i)]/.6]/X-r[106.4148]
        d(x):
                D(x,45/arg(1,1))
        f(i):
                [ip[g(t,i)]+fp[g(t,i)]/.6]/X
        r(x): R(x,45/arg(1,1))
Recall item 17.
Done.
Type t.
           t =
                      19
Type form 15.
GMT
        MDT
              Venus alt. Az.
                                                           Bearing
                                   SUN alt.
                                                Az.
Do part 1 for i=15.
                                                              58.56
15: 0
        9: 0
                 66.13
                         141.29
                                       35.12'
                                                82.321
15:10
        9:10
                 67.27
                         146.49
                                       37.18
                                                83.41
                                                              63.081
                 68.31
                         152,40
                                       39.241
                                                84.51
                                                              67.491
15:20
        9:20
                                                              72.581
15:30
        9:30
                 69.23
                         159.01
                                      41.30
                                                86.031
                                                              78.321
15:40
        9:40
                 70.02
                         165.49
                                      43.37
                                                87.16
                                                              84.24
        9:50
                                      45.44
                                                88.31'
15:50
                 70.25
                         172.56
```

Delete all.

GMT	PDT	Venus alt	. Az.	SUN alt.	Az.	Bearing
1: 0	18: 0	22.501	273.42	14.14'	266.591	6.43
1:10	18:10	20.46	275.03	12.11'	268.25	6.38
1:20	18:20	18.42	276.241	10.07	269.50	6.341
1:30	18:30	16.381	277,44 *	8.031	271.15'	6.291
1:40	18:40	14.35	279.04	5.60	272.39	6.25
1:50	18:50	12.33	280.24	3.56	274.03	6.201
2: 0	19: 0	10.31'	281.44	1.53'	275.28	6.16
2:10	19:10	8.29	283.04	10	276.52	6.12'
2:20	19:20	6.28	284.25	-2.12	278.17	6.08
2:30	19:30	4.281	285.47	-4.14	279.43	6.04 ¹
2:40	19:40	2.29'	287.10	-6.16	281.10	5.60
2:50	19:50	.31'	288.341	-8.17'	282.38	5.55'
	•					
3: 0	20: 0	-1.26	289.59	-10.18*	284.081	5.51
3:10	20:10	-3.23'	291.26	-12.17	285.391	5.47
3:20	20:20	-5.18'	292.55	-14.16'	287.12	5.42
3:30	20:30	-7.12°	294.25	-16.14	288.471	5.37
3:40	20:40	-9.04	295.57	-18.10	290.25	5.32
3:50	20:50	-10.55	297.32	-20.06	292.051	5.27°

GMT	PDT	Venus alt.	Az.	SUN alt.	Az.	Bearing
14: O	7: 0	47.11'	110.01'	14.32'	71.19'	38.421
14:10	7:10	49.06'	112,16	16.30'	72.33	39,43
14:20	7:20	51.00'	114,39	18.28	73.46	40.531
14:30	7:30	52.51'	117.13	20,27	74.59'	42.14
14:40	7:40	54.40 *	119.58'	22.271	76.12	43.47
14:50	7:50	56.26	122.57	24.281	77.24	45.33
15: 0	8: 0	58,08	126.11'	26.29'	78.36	47.34*
15:10	8:10	59.461	129.42	28.31'	79.491	49.531
15:20	8:20	61.181	133.32	30.33'	81.02'	52.301
15:30	8:30	62.45	137.44'	32.35'	82.16	55.281
15:40	8:40	64.05	142.181	34.38	83.30	58.48
15:50	8:50	65.16	147.16'	36,41	84.46 ^t	62.31
16: 0	9: 0	66.181	152.39'	38.44 1	86.02	66,37
16:10	9:10	67.10'	158.26'	40.481	87.21	71.05
16:20	9:20	67.49	164.341	42.521	88.421	75.521
16:30	9:30	68.15	170.59	44.56	90.06	80.541
16:40	9:40	68.28	177.35	46.591	91.32	86.021
16:50	9:50	68.26	184.13	49.031	93.021	91.11

TMO, 19 June 1969

14: 0 8: 0 56.24' 118.28' 22.45' 75.49' 42.11' 10 8:10 58.14' 121.27' 24.48' 76.56' 44.11' 120 8:20 60.00' 124.42' 26.52' 78.02' 46.11' 14:30 8:30 61.42' 128.18' 28.57' 79.09' 49.00'	31 ' 40 ' 08 '
14:20 8:20 60.00' 124.42' 26.52' 78.02' 46.4	40 ' 08'
	081
11:30 8:30 61 121 128 181 28 571 70 001 100	
TH-00 0-00 0104% TAOPTO 70901, 12002 4200	
14:40 8:40 63.19' 132.15' 31.01' 80.16' 51.	59'
14:50 8:50 64.50' 136.38' 33.06' 81.24' 55.3	14'
15: 0 9: 0 66.13' 141.29' 35.12' 82.32' 58.	56 '
15:10 9:10 67.27' 146.49' 37.18' 83.41' 63.0	081
15:20 9:20 68.31' 152.40' 39.24' 84.51' 67.4	491
15:30 9:30 69.23' 159.01' 41.30' 86.03' 72.5	58¹
15:40 9:40 70.02' 165.49' 43.37' 87.16' 78.3	32'
15:50 9:50 70.25' 172.56' 45.44' 88.31' 84.2	24 1
16: 0 10: 0 70.33 180.13 47.50 89.50 90.2	24 1
16:10 10:10 70.25' 187.31' 49.57' 91.11' 96.2	20 †
16:20 10:20 70.00' 194.37' 52.04' 92.36' 102.0	100
16:30 10:30 69.21' 201.23' 54.10' 94.06' 107.1	17 '
16:40 10:40 68.29' 207.43' 56.17' 95.42' 112.0	1 OC
16:50 10:50 67.24 213.32 58.23 97.25 116.0	071

NMSU, 19 June 1969

```
Type all.
1.1 Do part 10.
1.11 Line.
1.12 Type "Page".
1.13 Type i in form 1.
1.2 Do part 2 for o=1(1)f.
2.0 Line.
2.1 Set j=J(o).
2.2 Do part 3.
2.4 Do part 4.
2.5 Do part 5.
2.6 Do part 6 for a=1(1)3.
2.7 Do part 7.
3.1 Set k=z(o).
3.2 Set 0=|sum[g=1(1)k:[G(j,g)-F(j,g)]/2]/k|.
3.3 Set M = |sum[g=1(1)k:[U(j,g)-W(j,g)]]/k|.
3.4 Set N=|sum[g=1(1)k:[E(j,g)-W(j,g)]]/k|.
3.5 Set S=|sum[g=1(1)k:[C(j,g)-W(j,g)]]/k| if C(j,g)\neq 0.
3.55 Set S=0 if C(j,g)=0.
3.6 Set v=|sum[g=1(1)k:[V(j,g)-W(j,g)]]/k|.
3.8 Type j, A(o) in form 2.
3.85 Type form 5.
3.9 Type 0, M, N, v, S in form 3.
4.2 Type M/O,N/O,v/O,S/O in form 4.
4.4 Set e=1-\cos[r(A(o))+r(.22)].
4.5 Set L=[M/0]-e.
4.6 Set u=[[M/0]-e]/\sin[r(A(o))+r(.22)].
4.7 Set l=d(arg[1,u]).
4.8 Type e,L,1 in form 8.
5.1 Set X=arg[sqrt(1-[(N/0)-1]*2),(N/0)-1].
5.21 Set b=(\sin(X)\cdot\sin[r(A(o))])-\sin[r(.22)].
5.215 Set p(1)=b/(\cos[r(.22)]+\cos[r(A(o))]).
5.22 Set t(1)=sin(X)•sin[r(A(o))].
5.23 Set q(1)=b/(\cos[r(.22)]-\cos[r(A(o))]).
5.3 Set Y=arg[sqrt(1 ((v/0)-1]*2),(v/0)-1].
5.31 Set b=(sin(Y) • sin[r(A(o))]) - sin[r(.22)].
5.315 Set p(2)=b/(\cos[r(.22)]+\cos[r(A(o))]).
5.32 Set t(2)=sin(Y)•sin[r(A(o))].
5.33 Set q(2)=b/(\cos[r(.22)]-\cos[r(A(0))]).
5.5 Set Z=arg[sqrt(1-[(S/0)-1]*2),(S/0)-1].
5.51 Set b=(\sin(Z)\cdot\sin[r(A(o))])-\sin[r(.22)].
5.515 Set p(3)=b/(cos[r(.22)]+cos[r(A(o))]).
5.52 Set t(3)=sin(Z)·sin[r(A(o))].
5.53 Set q(3)=b/(cos[r(.22)]-cos[r(A(o))]).
```

```
6.2 Set P(a)=d(arg[1,p(a)]).
6.3 Set T(a)=d(arg[sqrt(1 t(a)*2),t(a)]-r(.22)).
6.4 Set Q(a)=d(arg[1,q(a)]).
7.1 Line.
7.15 Do part 8 if S=0.
7.2 Type d(X),d(Y),d(Z) in form 6.
7.3 Type sin(X), sin(Y), sin(Z) in form 7.
7.4 Type P(1),P(2),P(3) in form 9.
7.5 Type T(1),T(2),T(3) in form 10.
7.6 Type Q(1), O(2), O(3) in form 11.
8.1 Set Z=0.
8.3 Set P(3)=0.
8.4 Set T(3)=0.
8.5 \text{ Set Q(3)=0.}
9.1 Line.
9.2 Type "Page".
9.3 Type i in form 1.
9.4 Do part 2 for o=1(1)f.
10.2 Demand i as "PLATE No.".
10.3 Demand f as "Number of Images measured".
10.5 Do part 11 for o=1(1)f.
11.0 Line.
11.1 Demand J(o) as "IMAGE No.".
11.2 Demand z(o) as "Number of Measurements".
11.25 Demand A(o) as "Alpha".
11.3 Do part 13 for g=1(1)z(o).
13.0 Line.
13.05 Set j=J(o).
13.1 Type j,g in form 13.
13.2 Demand W(j,g) as "West".
13.3 Demand U(j,g) as "Terminator".
13.4 Demand V(j,g) as "Southern".
13.5 Demand C(j,g) as "Long South".
13.6 Demand E(j,g) as "Northern".
13.7 Demand F(j,g) as "SOUTH".
13.8 Demand G(j,g) as "NORTH".
Form 1:
  PLATE No.:
Form 2:
IMAGE No.:
                                                  Alpha:___.
Form 3:
Form 4:
```

Form 5: Rad	: lius	ì!	•	North	Cusp	South	Cusps			
Form 6:	PI:			11		11	•	n—		
Form 7:	(PI):		•_		• _			_		
Form 8:	m/R:_	-•						L:_•	sig:_	
Form 9: Sign	: na-P:		•_	11		. ·		;		
Form 10 Sign): na-T:	.	•	11	•_	11				
Form 11 Sign	l: na-0:		•_	11				11		
Form 13	B: MAGE No	• •	i	Measur	ement _	-				
I	?(d,c): d(x):	Ti D(R(p(d)- x,45, x,45,	tip(10) /arg(1 /arg(1	0•fp[d] ,1))]+.006•: p(100•d	En(60•r•c))/36]/c		

*** EXAMPLE ***

Do part 9.

PLATE No.: 9139

IMAGE No.:	2				,	Alpi	ha:	88.	3836"	
Radius	М	North C	usp	South C						
1.434	1.507	1.686	_	1.607	•					
	1.0508	1.17		1.1207	.0000					
•	.9827	±•±/,	<i>3 1</i>	1.1207	•0000	-			070	0 500.00
m/K:	. 9027					ь:	•06	81	SIG:	3.5343"
PI:	10	0701"	6 51	551"	0000	.,				
sin(PI):					.0000					
		1757		207	•0000					
Sigma-P:		23 10"	6.22	204 "	•0000	i T				
Sigma-T:	9.	4450 ''	6.33	344"	.0000	11				
Sigma-Q:	9.	495 7''	6,40	026"	•0000	i t				
=										
IMAGE No.:	8				1	Alph	la:	88.	3440 ''	
IMAGE No.: Radius	8 M	North Cu	ısp	South Cu		Alpl	la:	88.	3440 "	
		North Cu	-	South Cu	ısps	Alph	la:	88.	3440 "	
Radius 1.481	M 1.801	1.885	5	1.880	.000	Alph	la:	88.	3440 "	
Radius 1.481 /R:	M 1.801 1.2165		5		ısps	-				
Radius 1.481	M 1.801	1.885	5	1.880	.000	-	na:			13.1321"
Radius 1.481 /R: m/R:	M 1.801 1.2165 .9816	1.885 1.272	5 28	1.880 1.2696	.000 .000	L:				13.1321"
Radius 1.481 /R: m/R: PI:	M 1.801 1.2165 .9816	1.885 1.272 1947"	15.38	1.880 1.2696	.0000	L:				13.1321"
Radius 1.481 /R: m/R: PI: sin(PI):	M 1.801 1.2165 .9816	1.885 1.272 +947" 2728	5 28	1.880 1.2696	.000 .000	L:				13.1321"
Radius 1.481 /R: m/R: PI: sin(PI): Sigma-P:	M 1.801 1.2165 .9816	1.885 1.272 +947" 2728	15.38	1.880 1.2696 331"	.0000	L:				13 .1 321"
Radius 1.481 /R: m/R: PI: sin(PI):	M 1.801 1.2165 .9816	1.885 1.272 +947" 2728 3358"	15.38	1.880 1.2696 331" 596	.000 .0000 .0000 .0000 .0000	L:				13 . 1321"
Radius 1.481 /R: m/R: PI: sin(PI): Sigma-P:	M 1.801 1.2165 .9816 15.1	1.885 1.272 +947" 2728 3358" 2729"	15.38 .26	1.880 1.2696 331" 596 504"	.0000 .0000 .0000	L:				13 . 1321"