- 1 Droites et plans.
- 2 L'algorithme du pivot, par l'exemple. 3

Exercices 4

1 Droites et plans.

Droites

Définition 1.

Soit $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$ et $c \in \mathbb{R}$.

L'ensemble des couples (x, y) de \mathbb{R}^2 qui sont solutions de l'équation linéaire

$$ax + by = c$$

est une **droite affine** de \mathbb{R}^2 .

La droite d'équation ax + by = 0 est dite **vectorielle**. Parallèle à la première, elle contient (0,0).

Proposition 2.

Soit $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$ et $c \in \mathbb{R}$. On considère les droites

$$D = \{(x, y) \in \mathbb{R}^2 \mid ax + by = c\}$$
 et $D_0 = \{(x, y) \in \mathbb{R}^2 \mid ax + by = 0\}$.

Considérons

- \overrightarrow{u} un vecteur (couple) (α, β) non nul de D_0 (une solution non nulle de ax + by = 0);
- M_p un couple (x_p, y_p) de D (une solution particulière de ax + by = c).

On a

$$D_0 = \{ (\lambda \alpha, \lambda \beta) \mid \lambda \in \mathbb{R} \} = \{ \lambda \overrightarrow{u} \mid \lambda \in \mathbb{R} \}.$$

$$D = \{ (x_p + \lambda \alpha, y_p + \lambda \beta) \mid \lambda \in \mathbb{R} \} = \{ M_p \oplus \lambda \overrightarrow{u} \mid \lambda \in \mathbb{R} \}.$$

On appelle ces écritures des **représentations paramétriques** de D_0 et D, le réel λ étant un paramètre. L'addition \oplus est ici celle des couples, coordonnée par coordonnée.

Exemple 3.

Droite d'équation x - y = 2. Représentation(s) paramétrique(s). Droite vectorielle associée.

Exemple 4 (Système linéaire 2×2 : l'intersection de droites sous-jacente).

Soient (a, b, c) et (a', b', c') trois triplets de réels, tels que $(a, b) \neq (0, 0)$ et $(a', b') \neq (0, 0)$. On considère le système linéaire ci-dessous :

$$\begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$$

En raisonnant en termes d'intersection de droites, discuter la forme que peut avoir l'ensemble des solutions dans \mathbb{R}^2 .

Exemple 5 (Notre système linéaire 2×2 préféré : somme et différence).

Soient $(x,y) \in \mathbb{R}^2$ et $(a,b) \in \mathbb{R}^2$. On a

$$\left\{ \begin{array}{lcl} x+y&=&a\\ x-y&=&b \end{array} \right. \iff \left\{ \begin{array}{lcl} x&=&\frac{a+b}{2}\\ y&=&\frac{a-b}{2} \end{array} \right.$$

Plans

Définition 6.

Soit $(a, b, c) \in \mathbb{R}^3 \setminus \{(0, 0, 0)\}$ et $d \in \mathbb{R}$.

L'ensemble des triplets (x,y,z) de \mathbb{R}^3 qui sont solutions de l'équation linéaire

$$ax + by + cz = d$$

est un plan affine de \mathbb{R}^3 .

Le plan d'équation ax + by + cz = 0 est dit **vectoriel**, il contient le triplet (0,0,0).

Proposition 7.

Soit $(a, b, c) \in \mathbb{R}^3 \setminus \{(0, 0, 0)\}$ et $d \in \mathbb{R}$. On considère les plans

$$P = \{(x, y, z) \in \mathbb{R}^3 \mid ax + by + cz = d\} \quad \text{et} \quad P_0 = \{(x, y, z) \in \mathbb{R}^3 \mid ax + by + cz = 0\}.$$

Considérons

- \overrightarrow{u} et \overrightarrow{v} deux *vecteurs* (triplets) non colinéaires de P_0 ;
- M_p un triplet de P.

On a

$$P_0 = \left\{ \lambda \overrightarrow{u} + \mu \overrightarrow{v} \mid (\lambda, \mu) \in \mathbb{R}^2 \right\} \quad \text{et} \quad P = \left\{ M_p + \lambda \overrightarrow{u} + \mu \overrightarrow{v} \mid (\lambda, \mu) \in \mathbb{R}^2 \right\}.$$

On appelle ces écritures des **représentations paramétriques** de P_0 et P, les réels λ et μ étant des paramètres. L'addition + est ici celle des triplets, coordonnée par coordonnée.

Exemple 8.

Plan d'équation x - y - z = 3. Représentation(s) paramétrique(s). Plan vectoriel associé.

Exemple 9 (Système linéaire 2×3 : l'intersection de plans sous-jacente).

Soient (a, b, c, d) et (a', b', c', d') trois 4-uplets de réels, tels que (a, b, c) et (a', b', c') sont différents de (0, 0, 0). On considère le système linéaire ci-dessous :

$$\begin{cases} ax + by + cz = d \\ a'x + b'y + c'z = d' \end{cases}$$

En réfléchissant en termes d'intersection de plans, discuter la forme que peut avoir l'ensemble de solutions dans \mathbb{R}^3 .

2 L'algorithme du pivot, par l'exemple.

Exemple 10.

Donner l'ensemble des triplets $(x, y, z) \in \mathbb{R}^3$ solutions de

$$\begin{cases} x + y + z = 1 \\ 2x - y + 11z = -1 \\ 3x + 4y + z = 1 \end{cases}$$

Exemple 11.

Donner l'ensemble des triplets $(x, y, z) \in \mathbb{R}^3$ solutions de

$$\begin{cases} 2x + 3y + 7z = 6 \\ x + y + 2z = 2 \\ 3x + 4y + 9z = 8 \end{cases}$$

Exemple 12.

Discuter selon les valeurs de $m \in \mathbb{R}$ l'ensemble des solutions du système suivant.

$$\left\{ \begin{array}{lcl} x & + & (m+1)y & = (m+2) \\ mx & + & (m+4)y & = 8 \end{array} \right.$$

Interpréter en termes d'intersection de droites.

Définition 13.

On appelle **opération élémentaire** sur les lignes d'un système l'une des opérations suivantes :

- 1. Échange des ièmes et jèmes lignes. On note $L_i \leftrightarrow L_j$.
- 2. Multiplication d'une ligne par un scalaire λ non nul. On note $L_i \leftarrow \lambda L_i$.
- 3. Ajout à la ligne L_i d'une ligne L_j $(i \neq j)$ multipliée par un scalaire μ . On note $L_i \leftarrow L_i + \mu L_j$.

Proposition 14 (admise).

Si on passe d'un système linéaire à un autre par un nombre fini d'opérations élémentaires, les deux systèmes ont le même ensemble de solutions.

Définition 15.

Un système linéaire ayant des solutions est dit compatible.

Un système linéaire ayant une unique solution est dit de Cramer.

Exercices

10.1 $[\diamondsuit\diamondsuit]$ [Un système de Cramer bête et méchant]

Résoudre le système suivant dans \mathbb{R}^3 (si vous ne trouvez pas une unique solution (3,5,2), recommencez).

$$\begin{cases} 3x + y - 2z = 10 \\ 2x - y + z = 3 \\ x - y + 2z = 2 \end{cases}$$

10.2 $[\phi \diamondsuit \diamondsuit]$ Résoudre le système suivant dans \mathbb{R}^3 .

$$\begin{cases} x + 2y - z = 2 \\ x - 2y + 3z = -2 \\ 3x - 2y + 5z = -2 \end{cases}$$

$$\begin{cases} x + ay + a^2z = a^3 \\ x + by + b^2z = b^3 \\ x + cy + c^2z = c^3 \end{cases}$$

 $\fbox{10.4}$ $[\spadesuit \spadesuit \spadesuit]$ Soit λ un paramètre réel et le système :

$$\begin{cases} (2-\lambda)x + y + z = 0 \\ x + (2-\lambda)y + z = 0 \\ x + y + (2-\lambda)z = 0 \end{cases}$$

4

Le résoudre, en discutant selon les valeurs de λ .