Answer Key

1.	a.	How	mar	ny ver	tices	does	eacl	h gra	ph h	ave?						
		G_1	6			G_2	6			G_3	6			G	4	6
	b.	How	mar	ny edg	ges do	es e	ach g	grapl	n hav	e?						
		G_1	5			G_2	5			G_3	6			G	4	4
	c.	Whi	ch gi	aph i	s NO	Τа	conn	ecte	d gra	ph?	G_4					
	d.	. Which of the graphs has at least one cycle? G_3														
	e.	Whi	ch of	the g	graphs	s is a	a tree	e? (G_1 ar	$\operatorname{ad} G$	2.					
2.	a.	deg	at is $r(a)$		egree	of ea	deg	of the $g(b)$ $g(e)$	2	ices	in G		deg(c) $deg(f)$			
	b.	List	the l	eaves.	for C	\vec{r}_1 .	a, d,	e, f								
3.	a.	How many edges are in your new tree? 5														
	b.	How	mar	ny lear	ves or	ı yoı	ır ne	ew tr	ee?	3						
	c.	If yo	u rei	noved	one	edge	, wo	uld t	he gr	aph	still	be (connec	ted	?	no
4.	a.		all tl	subg ne ver ne edg	tices	of G	t_1 als					es				
	b.		all tl	subg ne ver ne edg	tices	of G	t_2 als					es				
5. I	Mul	tiple s	solut	ions												

6. Multiple solutions depending on which node you start at, but for example...

b

1.

2.

3.

4.

a

5.

6.

