Name - DHANA KORANGA

Roll no. -2001096

Splitting the dataset into the Training set and Test set

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 0)

Feature Scaling

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

X_train = sc.fit_transform(X_train)

X_test = sc.transform(X_test)

Fitting Decision Tree Classification to the Training set

from sklearn.tree import DecisionTreeClassifier

classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)

classifier.fit(X_train, y_train)

Predicting the Test set results

y_pred = classifier.predict(X_test)

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

#printing the accuracy of Decision tree

accuracy_score(y_test, y_pred)

0.9895833333333334

Fitting SVM to the Training set

```
from sklearn.svm import SVC

classifier = SVC(kernel = 'linear', random_state = 0)

classifier.fit(X_train, y_train)
```

Predicting the Test set results

```
y_pred = classifier.predict(X_test)
```

#Accuracy of SVM

```
accuracy_score(y_test, y_pred)
```

OUTPUT - 0.9739583333333334

#fitting knn model

```
from sklearn.neighbors import KNeighborsClassifier classifier=KNeighborsClassifier(n_neighbors=5,metric='minkowski',p=2) classifier.fit(X_{train},y_{train})
```

Predicting the Test set results

```
y_pred = classifier.predict(X_test)
```

Predicting the Test set results

```
y_pred = classifier.predict(X_test)
```

Making the Confusion Matrix

from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_test, y_pred)

#Accuracy of knn

accuracy_score(y_test, y_pred)

OUTPUT -

