Geometria Analítica e Vetores

Geometria Analítica - Um tratamento vetorial

Posições relativas entre dois planos no espaço

Docente: Prof^{a} . Dr^{a} . Thuy Nguyen IBILCE/ UNESP São Paulo - Brasil

Referência: BOULOS, P. e CAMARGO, I. Geometria Analítica: Um Tratamento Vetorial, 3ª edição, São Paulo: Editora Pearson.

No espaço Oxyz, dados dois planos (π_1) e (π_2) . Dadas equações dos planos (π_1) e (π_2) , podemos sempre determinar:

- **1** Um ponto $A \in (\pi_1)$; um vetor normal $\vec{n_1}$ do plano (π_1) ;
- ② Um ponto $B \in (\pi_2)$; um vetor normal \vec{n}_2 do plano (π_2) .

No espaço Oxyz, dados dois planos (π_1) e (π_2) . Dadas equações dos planos (π_1) e (π_2) , podemos sempre determinar:

- **1** Um ponto $A \in (\pi_1)$; um vetor normal $\vec{n_1}$ do plano (π_1) ;
- ② Um ponto $B \in (\pi_2)$; um vetor normal \vec{n}_2 do plano (π_2) .

Problema: Baseando em pontos A, B e os vetores normais $\vec{n_1}$ e $\vec{n_2}$, estudar as posições relativas entre dois planos (π_1) e (π_2) .

No espaço Oxyz, dados dois planos (π_1) e (π_2) . Dadas equações dos planos (π_1) e (π_2) , podemos sempre determinar:

- **1** Um ponto $A \in (\pi_1)$; um vetor normal $\vec{n_1}$ do plano (π_1) ;
- ② Um ponto $B \in (\pi_2)$; um vetor normal \vec{n}_2 do plano (π_2) .

Problema: Baseando em pontos A, B e os vetores normais $\vec{n_1}$ e $\vec{n_2}$, estudar as posições relativas entre dois planos (π_1) e (π_2) .

Temos três casos:

- **1** (π_1) e (π_2) são paralelas;
- (π_1) e (π_2) são coincidentes;
- \bullet (π_1) e (π_2) se interceptam.

Caso 1: (π_1) e (π_2) são paralelas

Caso 1: (π_1) e (π_2) são paralelas.

Caso 1: (π_1) e (π_2) são paralelas

Caso 1: (π_1) e (π_2) são paralelas.

Neste caso:

1 \vec{n}_1 e \vec{n}_2 são paralelos;

Caso 1: (π_1) e (π_2) são paralelas

Caso 1: (π_1) e (π_2) são paralelas.

Neste caso:

- \vec{n}_1 e \vec{n}_2 são paralelos;
- ② O ponto A não pertence ao plano (π_2) (ou o ponto B não pertence ao plano (π_1)).

Caso 2: (π_1) e (π_2) são coincidentes;

Caso 2: (π_1) e (π_2) são coincidentes.

Caso 2: (π_1) e (π_2) são coincidentes;

Caso 2: (π_1) e (π_2) são coincidentes.

Neste caso:

1 \vec{n}_1 e \vec{n}_2 são paralelos;

Caso 2: (π_1) e (π_2) são coincidentes;

Caso 2: (π_1) e (π_2) são coincidentes.

Neste caso:

- **1** \vec{n}_1 e \vec{n}_2 são paralelos;
- ② O ponto A pertence ao plano (π_2) (ou o ponto B pertence ao plano (π_1)).

Caso 3: (π_1) e (π_2) se interceptam.

Caso 3: (π_1) e (π_2) se interceptam.

Caso 3: (π_1) e (π_2) se interceptam.

Caso 3: (π_1) e (π_2) se interceptam.

Caso 3: (π_1) e (π_2) se interceptam.

Caso 3: (π_1) e (π_2) se interceptam.

Neste caso:

 \vec{n}_1 e \vec{n}_2 não são paralelos.

Resumo: relações relativas entre dois planos no espaço

```
No espaço O\!xyz, dados dois planos (\pi_1) e (\pi_2): A \in (\pi_1), \vec{n}_1: vetor normal de (\pi_1); B \in (\pi_2), \vec{n}_2: vetor normal de (\pi_2).
```

- **1** (π_1) **e** (π_2) **são paralelos:** quando
 - i) \vec{n}_1 e \vec{n}_2 são paralelos;
 - ii) O ponto A não pertence ao plano (π_2) (ou o ponto B não pertence ao plano (π_1)).
- ② \vec{n}_1 e \vec{n}_2 são coincidentes: quando
 - i) \vec{n}_1 e \vec{n}_2 são paralelos;
 - ii) O ponto A pertence ao plano (π_2) (ou o ponto B pertence ao plano (π_1)).
- **3** (π_1) e (π_2) se interceptam: quando $\vec{n_1}$ e $\vec{n_2}$ não são paralelos.

Resumo: relações relativas entre dois planos no espaço

No espaço Oxyz, dados dois planos (π_1) e (π_2) : $A \in (\pi_1)$, \vec{n}_1 : vetor normal de (π_1) ; $B \in (\pi_2)$, \vec{n}_2 : vetor normal de (π_2) .

- **1** (π_1) e (π_2) são paralelos: quando
 - i) \vec{n}_1 e \vec{n}_2 são paralelos;
 - ii) O ponto A não pertence ao plano (π_2) (ou o ponto B não pertence ao plano (π_1)).
- 2 \vec{n}_1 e \vec{n}_2 são coincidentes: quando
 - i) \vec{n}_1 e \vec{n}_2 são paralelos;
 - ii) O ponto A pertence ao plano (π_2) (ou o ponto B pertence ao plano (π_1)).
- **3** (π_1) **e** (π_2) **se interceptam:** quando $\vec{n_1}$ e $\vec{n_2}$ não são paralelos.

Exemplo: Estude a posição relativa dos dois planos 2x - y + z = 1 e $x - \frac{1}{2}y + \frac{1}{2}z - 9 = 0$.

Exercícios

Exercício 1

Verifique a posição relativa do plano $\pi_1: x-y+2z-2=0$ com o plano $\pi_2: X=(0,1/2,0)+\lambda(1,-1/2,0)+\mu(0,1,1)$ ($\lambda,\mu\in\mathbb{R}$). Caso dois planos se interceptam, encontre a equação da reta de interseção.

Exercício 2

Verifique a posição relativa do plano $\pi_1: 2x-y+2z-1=0$ com o plano $\pi_2: 4x-2y+4z-2=0$.

Bom estudo!