Machine learning & deep learning basics

Lecture 1

Changho Suh

January 22, 2024

- 1. Logistics
- 2. Machine learning & optimization

Logistics

Instructor

Changho Suh

N1-912, 042-350-7429

chsuh@kaist.ac.kr

http://csuh.kaist.ac.kr

2 week course

Week 1:

Lecture & Practice session

Week 2:

Mini-projects Proposal

Week 1: Lecture & practice session

- 1.1: Machine learning & deep learning basics
- 1.2: Advanced techniques
- 1.3: Convolutional Neural Network (CNN)
- 1.4: Recurrent Neural Network (RNN)
- 1.5: Small data technique: Random Forests

Week 2: Mini-projects & proposal

Group A (권~박)

수강생	부서
권태운	전동화시스템시험3팀
김동현	모빌리티컨셉개발팀
김미진	차량제어성능개발팀
김수환	제네시스외장설계팀
김외태	전산재료과학연구팀
김종훈	MSV내구시험팀
김준영	MLV전동화연비시험팀
김진현	제네시스외장설계팀
박정수	자율주행전략기술개발팀
박한결	전동화시스템시험3팀

Group B (박~최)

박형호	제네시스샤시설계1팀
신용욱	연구개발품질확보팀
이은주	인포테인먼트기획팀
이창주	전동화시스템시험1팀
임경빈	전자전력제어개발팀
임재영	버추얼이노베이션리서치랩
조대길	자율주행시스템개발팀
조재설	상용제동설계팀
주장규	인포테인먼트기획팀
최정윤	차량에너지제어개발팀

Week 2: Mini-projects & proposal

- 2.1: Overview of two mini-projects
 Mini-project #1
- 2.2: Mini-project #2
 Proposal guideline & sample proposals
- 2.3: (Group A) Rehearsal & feedback
- 2.4: (Group B) Rehearsal & feedback
- 2.5: Proposal presentation

Week 1 schedule

1.1: Machine learning and deep learning basics

Lecture 1: 9:00 am ~ 10:00 am

Lecture 2: 10:10 am ~ 11:10 am

Lecture 3: 11:20 am ~ 12:30 pm

PS 1: 1:30 pm ~ 2:30 pm

PS 2: 2:40 pm ~ 3:40 pm

PS 3: 3:50 pm ~ 5:00 pm

Same format for 1.2 ~ 1.5

15 lectures & 15 PSs

Week 2: Day 1 schedule

2.1: Mini-project overview & mini-project #1

Lecture 16: 9:00 am ~ 10:00 am

Lecture 17: 10:10 am ~ 11:10 am

PS 16: 11:20 am ~ 12:30 pm

PS 17: 1:30 pm ~ 2:30 pm

PS 18: 2:40 pm ~ 3:40 pm

PS 19: 3:50 pm ~ 5:00 pm

Week 2: Day 2 schedule

2.2: Mini-project #2 & proposal guideline

PS 20: 9:00 am ~ 10:00 am

PS 21: 10:10 am ~ 11:10 am

PS 22: 11:20 am ~ 12:30 pm

Lecture 18: 1:30 pm ~ 2:30 pm

Lecture 19: 2:40 pm ~ 3:40 pm

Lecture 20: 3:50 pm ~ 5:00 pm

Week 2: Day 3 schedule

2.3: (Group A) Rehearsal & feedback

09:00 ~ 09:20	권태운	
09:20 ~ 09:40	김동현	
09:40 ~ 10:00	김미진	
10:00 ~ 10:20	김수환	
10:20 ~ 10:40	김외태	
Break		
10:50 ~ 11:10	김종훈	
11:10 ~ 11:30	김준영	
11:30 ~ 11:50	김진현	
11:50 ~ 12:10	박정수	
12:10 ~ 12:30	박한결	
Lunch		

13:30 ~ 16:00	Proposal 수정
16:00 ~ 17:00	Q&A

Week 2: Day 4 schedule

2.4: (Group B) Rehearsal & feedback

09:00 ~ 09:20	박형호	
09:20 ~ 09:40	신용욱	
09:40 ~ 10:00	이은주	
10:00 ~ 10:20	이창주	
10:20 ~ 10:40	임경빈	
Break		
10:50 ~ 11:10	임재영	
11:10 ~ 11:30	조대길	
11:30 ~ 11:50	조재설	
11:50 ~ 12:10	주장규	
12:10 ~ 12:30	최정윤	
Lunch		

13:30 ~ 16:00	Proposal 수정
16:00 ~ 17:00	Q&A

Week 2: Day 5 schedule

2.5: Proposal presentation

09:00 ~ 09:05	opening	
09:05 ~ 09:20	권태운	
09:20 ~ 09:35	김동현	
09:35 ~ 09:50	김미진	
09:50 ~ 10:05	김수환	
10:05 ~ 10:20	김외태	
10:20 ~ 10:35	김종훈	
Break		
10:45 ~ 11:00	김준영	
11:00 ~ 11:15	김진현	
11:15 ~ 11:30	박정수	
11:30 ~ 11:45	박한결	
11:45 ~ 12:00	박형호	
Lunch		

13:30 ~ 13:45	신용욱	
13:45 ~ 14:00	이은주	
14:00 ~ 14:15	이창주	
14:15 ~ 14:30	임경빈	
14:30 ~ 14:45	임재영	
Break		
14:45 ~ 15:00	조대길	
15:10 ~ 15:25	조재설	
15:25 ~ 15:40	주장규	
15:40 ~ 15:55	최정윤	
Closing		

Reference

1. Lecture Slides (LS)

2. Practice Session (PS):

Slides & python code

Machine learning and optimization

Machine learning

Cat-vs-dog classifier

big data \rightarrow large m

Goal of machine learning

Design $f(\cdot)$ using $\{(x^{(i)},y^{(i)})\}_{i=1}^m$

Training via optimization

Objective function?

true answer

What we want: $f(x^{(i)}) \approx y^{(i)}$ for all i prediction true answer

How to quantify closeness?

One way is to employ a loss function: $\ell(y^{(i)}, f(x^{(i)}))$

Optimization variable?

$$\min_{\mathbf{f}} \sum_{i=1}^{m} \ell(y^{(i)}, \mathbf{f}(x^{(i)}))$$

Note: Function optimization!

Challenge: There are so many choices for function.

How to deal with function optimization?

$$\min_{f_{w}} \sum_{i=1}^{m} \ell(y^{(i)}, f_{w}(x^{(i)}))$$

A common way:

Specify a function class (e.g., linear, quadratic, ...)

Represent $f(\cdot)$ with parameters \boldsymbol{w}

Consider the parameters as optimization variable.

Parameterization

$$\min_{\mathbf{w}} \sum_{i=1}^{m} \ell(y^{(i)}, f_{\mathbf{w}}(x^{(i)}))$$

Depending on a choice of function class & loss function, there are **three** prominent problems:

- 1. Least Squares
- 2. Logistic regression
- 3. Deep learning

A choice for $f_w(\cdot)$

$$\min_{\boldsymbol{w}} \sum_{i=1}^{m} \ell(y^{(i)}, \boldsymbol{f}_{\boldsymbol{w}}(x^{(i)}))$$

One architecture was suggested: Perceptron

Consists of two operations:

- 1. Inner product: $w^T x$
- 2. Activation: $f_w(x) = \begin{cases} 1 & \text{if } w^T x > \text{th} \\ 0 & \text{otherwise} \end{cases}$ (inspired by neuron's behavior)

Frank Rosenblatt '57 (psychologist)

Least Squares

$$\min_{w} \sum_{i=1}^{m} \ell(y^{(i)}, w^{T} x^{(i)})$$

Employ: Perceptron w/o activation

Least Squares

$$\min_{w} \sum_{i=1}^{m} \left\| y^{(i)} - w^{T} x^{(i)} \right\|^{2} =: J(w)$$

Employ: Perceptron w/o activation

A squared error loss: $\ell(y, \hat{y}) = \|y - \hat{y}\|^2$

Convex optimization

Least Squares

$$\min_{w} \sum_{i=1}^{m} \left\| y^{(i)} - w^{T} x^{(i)} \right\|^{2} =: J(w)$$

Employ: Perceptron w/o activation

A squared error loss: $\ell(y, \hat{y}) = \|y - \hat{y}\|^2$

Convex optimization

Has the closed form solution.

But performance is not that great.

Logistic regression

$$\min_{w} \sum_{i=1}^{m} \ell\left(y^{(i)}, \frac{1}{1 + e^{-w^{T}x^{(i)}}}\right)$$

Employ: Perceptron w/ logistic function

Cross Entropy (CE) loss:

$$\ell(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

Outperforms least squares.

Logistic regression

$$\min_{w} \left(\sum_{i=1}^{m} -y^{(i)} \log \frac{1}{1 + e^{-w^{T}x^{(i)}}} - (1 - y^{(i)}) \log \left(1 - \frac{1}{1 + e^{-w^{T}x^{(i)}}} \right) \right)$$

Employ: Perceptron w/ logistic function

=: J(w)

Cross Entropy (CE) loss

Convex optimization

How to train logical regression?

No closed form solution.

Good news: There exist algorithms that allow us to find the solution numerically.

One prominent algorithm:

Gradient descent!

Look ahead

Will study: Gradient descent.

Then move onto deep learning.