CS 6190: Probabilistic Machine Learning Spring 2022

Homework 0

Handed out: 10 Jan, 2022 Due: 11:59pm, 21 Jan, 2022

- You are welcome to talk to other members of the class about the homework. I am more concerned that you understand the underlying concepts. However, you should write down your own solution. Please keep the class collaboration policy in mind.
- Feel free discuss the homework with the instructor or the TAs.
- Your written solutions should be brief and clear. You need to show your work, not just the final answer, but you do *not* need to write it in gory detail. Your assignment should be **no more than 10 pages**. Every extra page will cost a point.
- Handwritten solutions will not be accepted.
- The homework is due by midnight of the due date. Please submit the homework on Canvas.

Warm up[100 points + 5 bonus]

1. [2 points] Given two events A and B, prove that

$$p(A \cup B) \le p(A) + p(B)$$

$$p(A \cap B) \le p(A), p(A \cap B) \le p(B)$$

When does the equality hold?

2. [2 points] Let $\{A_1, \ldots, A_n\}$ be a collection of events. Show that

$$p(\bigcup_{i=1}^{n} A_i) \le \sum_{i=1}^{n} p(A_i).$$

When does the equality hold? (Hint: induction)

3. [14 points] We use $\mathbb{E}(\cdot)$ and $\mathbb{V}(\cdot)$ to denote a random variable's mean (or expectation) and variance, respectively. Given two discrete random variables X and Y, where $X \in \{0,1\}$ and $Y \in \{0,1\}$. The joint probability p(X,Y) is given in as follows:

	Y = 0	Y = 1
X = 0	3/10	1/10
X = 1	2/10	4/10

- (a) [10 points] Calculate the following distributions and statistics.
 - i. the the marginal distributions p(X) and p(Y)

- ii. the conditional distributions p(X|Y) and p(Y|X)
- iii. $\mathbb{E}(X)$, $\mathbb{E}(Y)$, $\mathbb{V}(X)$, $\mathbb{V}(Y)$
- iv. $\mathbb{E}(Y|X=0)$, $\mathbb{E}(Y|X=1)$, $\mathbb{V}(Y|X=0)$, $\mathbb{V}(Y|X=1)$
- v. the covariance between X and Y
- (b) [2 points] Are X and Y independent? Why?
- (c) [2 points] When X is not assigned a specific value, are $\mathbb{E}(Y|X)$ and $\mathbb{V}(Y|X)$ still constant? Why?
- 4. [9 points] Assume a random variable X follows a standard normal distribution, i.e., $X \sim \mathcal{N}(X|0,1)$. Let $Y = e^{-X^2}$. Calculate the mean and variance of Y.
 - (a) $\mathbb{E}(Y)$
 - (b) $\mathbb{V}(Y)$
 - (c) cov(X, Y)
- 5. [8 points] Derive the probability density functions of the following transformed random variables.
 - (a) $X \sim \mathcal{N}(X|0,1)$ and $Y = X^3$.

(b)
$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} | \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & -1/2 \\ -1/2 & 1 \end{bmatrix})$$
 and $\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} 1 & 1/2 \\ -1/3 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$.

- 6. [10 points] Given two random variables X and Y, show that
 - (a) $\mathbb{E}(\mathbb{E}(Y|X)) = \mathbb{E}(Y)$
 - (b) $\mathbb{V}(Y) = \mathbb{E}(\mathbb{V}(Y|X)) + \mathbb{V}(\mathbb{E}(Y|X))$

(Hints: using definition.)

- 7. [9 points] Given a logistic function, $f(\mathbf{x}) = 1/(1 + \exp(-\mathbf{a}^{\mathsf{T}}\mathbf{x}))$ (\mathbf{x} is a vector),
 - (a) derive $\frac{df(\mathbf{x})}{d\mathbf{x}}$
 - (b) derive $\frac{d^2 f(\mathbf{x})}{d\mathbf{x}^2}$, i.e., the Hessian matrix
 - (c) show that $-f(\mathbf{x})$ is convex

Note that $0 \le f(\mathbf{x}) \le 1$.

- 8. [10 points] Derive the convex conjugate for the following functions
 - (a) $f(x) = -\log(x)$
 - (b) $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x}$ where $\mathbf{A} \succ 0$
- 9. [20 points] Derive the (partial) gradient of the following functions. Note that bold small letters represent vectors, bold capital letters matrices, and non-bold letters just scalars.
 - (a) $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x}$, derive $\frac{\partial f}{\partial \mathbf{x}}$
 - (b) $f(\mathbf{x}) = (\mathbf{I} + \mathbf{x}\mathbf{x}^{\top})^{-1}\mathbf{x}$, derive $\frac{\partial f}{\partial \alpha}$
 - (c) $f(\mathbf{x}) = \log |\mathbf{K} + \alpha \mathbf{I}|$, where $|\cdot|$ means the determinant. Derive $\frac{\partial f}{\partial \sigma}$
 - (d) $f(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \log \left(\mathcal{N}(\mathbf{a} | \mathbf{A} \boldsymbol{\mu}, \mathbf{S} \boldsymbol{\Sigma} \mathbf{S}^{\top}) \right)$, derive $\frac{\partial f}{\partial \boldsymbol{\mu}}$ and $\frac{\partial f}{\partial \boldsymbol{\Sigma}}$,
 - (e) $f(\Sigma) = \log (\mathcal{N}(\mathbf{a}|\mathbf{b}, \mathbf{K} \otimes \Sigma))$ where \otimes is the Kronecker product (Hint: check Minka's notes).

10. [2 points] Given the multivariate Gaussian probability density,

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = |2\pi\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp\left(-(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right).$$

Show that the density function achieves the maximum when $\mathbf{x} = \boldsymbol{\mu}$.

11. [5 points] Show that

$$\int \exp(-\frac{1}{2\sigma^2}x^2) \mathrm{d}x = \sqrt{2\pi\sigma^2}.$$

Note that this is about how the normalization constant of the Gaussian density is obtained. Hint: consider its square and use double integral.

12. [5 points] The gamma function is defined as

$$\Gamma(x) = \int_0^\infty u^{x-1} e^{-u} du.$$

Show that $\Gamma(1) = 1$ and $\Gamma(x+1) = x\Gamma(x)$. Hint: using integral by parts.

13. [2 points] By using Jensen's inequality with $f(x) = \log(x)$, show that for any collection of positive numbers $\{x_1, \ldots, x_N\}$,

$$\frac{1}{N} \sum_{n=1}^{N} x_n \ge \left(\prod_{n=1}^{N} x_n \right)^{\frac{1}{N}}.$$

14. [2 points] Given two probability density functions $p(\mathbf{x})$ and $q(\mathbf{x})$, show that

$$\int p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})} d\mathbf{x} \ge 0.$$

15. [Bonus][5 points] Show that for any square matrix $\mathbf{X} \succ 0$, $\log |\mathbf{X}|$ is concave to \mathbf{X} .