体論 (第10回)の解答

問題 10-1 の解答

 $\sqrt[3]{2}$ の \mathbb{Q} 上共役は $\sqrt[3]{2}$, $\sqrt[3]{2}\omega$, $\sqrt[3]{2}\omega^2 \in \mathbb{Q}(\sqrt[3]{2},\omega)$ であり, ω の \mathbb{Q} 上共役は ω , $\omega^2 \in \mathbb{Q}(\sqrt[3]{2},\omega)$ である. 従って $\mathbb{Q}(\sqrt[3]{2},\omega)/\mathbb{Q}$ はガロア拡大である.

問題 10-2 の解答

(1) $\sigma_2 \circ \sigma_3$ について.

$$(\sigma_2 \circ \sigma_3)(\sqrt{m}) = \sigma_2(-\sqrt{m}) = -\sigma_2(\sqrt{m}) = -\sqrt{m},$$

$$(\sigma_2 \circ \sigma_3)(\sqrt{n}) = \sigma_2(\sqrt{n}) = -\sqrt{n}.$$

よって $\sigma_2 \circ \sigma_3 = \sigma_4$.

 σ_3^2 について.

$$(\sigma_3^2)(\sqrt{m}) = \sigma_3(-\sqrt{m}) = -\sigma_3(\sqrt{m}) = \sqrt{m},$$

$$(\sigma_3^2)(\sqrt{n}) = \sigma_3(\sqrt{n}) = \sqrt{n}.$$

よって $\sigma_3^2 = \sigma_1$.

$$\sigma_4^{-1}$$
 について. $\sigma_4(\sqrt{m}) = -\sqrt{m}$, $\sigma_4(\sqrt{n}) = -\sqrt{n}$ より,

$$\sqrt{m} = \sigma_4^{-1}(-\sqrt{m}), \ \sqrt{n} = \sigma_4^{-1}(-\sqrt{n}).$$

従って
$$\sigma_4^{-1}(\sqrt{m}\;) = -\sqrt{m},\; \sigma_4^{-1}(\sqrt{n}\;) = -\sqrt{n}\;$$
 より $\sigma_4^{-1} = \sigma_4.$

(2) 定理 9-2 より β の $\mathbb Q$ 上共役全体は $\{\sigma_1(\beta), \ \sigma_2(\beta), \ \sigma_3(\beta), \ \sigma_4(\beta)\}$ である. $\sqrt{mn} = \sqrt{m}\sqrt{n}$ より, β の $\mathbb Q$ 上共役全体は

$$\{\sqrt{m}+\sqrt{n}+\sqrt{mn}, \sqrt{m}-\sqrt{n}-\sqrt{mn}, -\sqrt{m}+\sqrt{n}-\sqrt{mn}, -\sqrt{m}-\sqrt{n}+\sqrt{mn}\}.$$

問題 10-3 の解答

(1) $\alpha=\sqrt{2+\sqrt{2}}$ より $\alpha^4-4\alpha^2+2=0$ である. $f(x)=x^4-4x^2+2$ と置けば, $f(\alpha)=0$ であり、また p=2 でアイゼンシュタインの定理の条件を満たすので $\mathbb Q$ 上既約. よって f(x) は α の $\mathbb Q$ 上の最小多項式である.

copyright © 大学数学の授業ノート

(2) について.

$$f(x) = (x^2 - 2)^2 - 2$$

$$= (x^2 - (2 + \sqrt{2}))(x^2 - (2 - \sqrt{2}))$$

$$= (x - \sqrt{2 + \sqrt{2}})(x + \sqrt{2 + \sqrt{2}})(x - \sqrt{2 - \sqrt{2}})(x + \sqrt{2 - \sqrt{2}})$$

従って $\alpha = \sqrt{2 + \sqrt{2}}$ の \mathbb{Q} 上共役全体は次の 4 つである.

$$\alpha = \alpha_1 = \sqrt{2 + \sqrt{2}}, \quad \alpha_2 = \sqrt{2 - \sqrt{2}}, \quad \alpha_3 = -\sqrt{2 + \sqrt{2}}, \quad \alpha_4 = -\sqrt{2 - \sqrt{2}}.$$

(3)
$$\alpha_1 = \alpha \in \mathbb{Q}(\alpha)$$
, $\alpha_3 = -\alpha \in \mathbb{Q}(\alpha)$. $\sharp \not \sim \alpha \alpha_2 = \sqrt{2} = -2 + \alpha^2 \ \sharp \ \flat$

$$\alpha_2 = \frac{-2}{\alpha} + \alpha \in \mathbb{Q}(\alpha), \quad \alpha_4 = -\alpha_2 = \frac{2}{\alpha} - \alpha \in \mathbb{Q}(\alpha).$$

定理 10-1 より, $\mathbb{Q}(\alpha)/\mathbb{Q}$ はガロア拡大である.

$$(4)$$
 $\sigma(\alpha)=\alpha_2$ を満たす $\sigma\in G(L/\mathbb{Q})$ を取る. $\sigma(2+\sqrt{2})=2-\sqrt{2}$ より $\sigma(\sqrt{2})=-\sqrt{2}$. よって
$$\alpha_2\sigma(\alpha_2)=\sigma(\alpha\alpha_2)=\sigma(\sqrt{2})=-\sqrt{2}=-\alpha\alpha_2.$$

 $\sharp \sigma(\alpha_2) = -\alpha$. $\exists h \sharp h$,

$$\sigma(\alpha) = \alpha_2, \quad \sigma^2(\alpha) = -\alpha = \alpha_3, \quad \sigma^3(\alpha) = \sigma(-\alpha) = \alpha_4, \quad \sigma^4(\alpha) = \sigma^2(-\alpha) = \alpha.$$

よって σ は $G(L/\mathbb{Q})$ の位数4の元である. 従って $G(L/\mathbb{Q})$ は位数4の巡回群.