A rootkit can make many changes to a system to hide its existence, making it difficult for the user to determine that the rootkit is present and to identify what changes have been made. In essence, a rootkit hides by subverting the mechanisms that monitor and report on the processes, files, and registries on a computer.

A rootkit can be classified using the following characteristics:

- **Persistent:** Activates each time the system boots. The rootkit must store code in a persistent store, such as the registry or file system, and configure a method by which the code executes without user intervention. This means it is easier to detect, as the copy in persistent storage can potentially be scanned.
- **Memory based:** Has no persistent code and therefore cannot survive a reboot. However, because it is only in memory, it can be harder to detect.
- User mode: Intercepts calls to APIs (application program interfaces) and modifies returned results. For example, when an application performs a directory listing, the return results don't include entries identifying the files associated with the rootkit.
- **Kernel mode:** Can intercept calls to native APIs in kernel mode. ⁴ The rootkit can also hide the presence of a malware process by removing it from the kernel's list of active processes.
- Virtual machine based: This type of rootkit installs a lightweight virtual machine monitor and then runs the operating system in a virtual machine above it. The rootkit can then transparently intercept and modify states and events occurring in the virtualized system.
- **External mode:** The malware is located outside the normal operation mode of the targeted system, in BIOS or system management mode, where it can directly access hardware.

This classification shows a continuing arms race between rootkit authors, who exploit ever more stealthy mechanisms to hide their code, and those who develop mechanisms to harden systems against such subversion or to detect when it has occurred.

10.10 COUNTERMEASURES

Malware Countermeasure Approaches

SP 800-83 lists four main elements of prevention: policy, awareness, vulnerability mitigation, and threat mitigation. Having a suitable policy to address malware prevention provides a basis for implementing appropriate preventative countermeasures.

⁴The kernel is the portion of the OS that includes the most heavily used and most critical portions of software. Kernel mode is a privileged mode of execution reserved for the kernel. Typically, kernel mode allows access to regions of main memory that are unavailable to processes executing in a less privileged mode and also enables execution of certain machine instructions that are restricted to the kernel mode.

One of the first countermeasures that should be employed is to ensure all systems are as current as possible, with all patches applied, in order to reduce the number of vulnerabilities that might be exploited on the system. The next is to set appropriate access controls on the applications and data stored on the system, to reduce the number of files that any user can access, and hence potentially infect or corrupt, as a result of them executing some malware code. These measures directly target the key propagation mechanisms used by worms, viruses, and some trojans.

The third common propagation mechanism, which targets users in a social engineering attack, can be countered using appropriate user awareness and training. This aims to equip users to be more aware of these attacks, and less likely to take actions that result in their compromise. SP 800-83 provides examples of suitable awareness issues.

If prevention fails, then technical mechanisms can be used to support the following threat mitigation options:

- **Detection:** Once the infection has occurred, determine that it has occurred and locate the malware.
- Identification: Once detection has been achieved, identify the specific malware that has infected the system.
- **Removal:** Once the specific malware has been identified, remove all traces of malware virus from all infected systems so that it cannot spread further.

If detection succeeds but either identification or removal is not possible, then the alternative is to discard any infected or malicious files and reload a clean backup version. In the case of some particularly nasty infections, this may require a complete wipe of all storage, and rebuild of the infected system from known clean media.

To begin, let us consider some requirements for effective malware countermeasures:

- Generality: The approach taken should be able to handle a wide variety of
- **Timeliness:** The approach should respond quickly so as to limit the number of infected programs or systems and the consequent activity.
- **Resiliency:** The approach should be resistant to evasion techniques employed by attackers to hide the presence of their malware.
- Minimal denial-of-service costs: The approach should result in minimal reduction in capacity or service due to the actions of the countermeasure software, and should not significantly disrupt normal operation.
- **Transparency:** The countermeasure software and devices should not require modification to existing (legacy) OSs, application software, and hardware.
- Global and local coverage: The approach should be able to deal with attack sources both from outside and inside the enterprise network.

Achieving all these requirements often requires the use of multiple approaches. Detection of the presence of malware can occur in a number of locations. It may occur on the infected system, where some host-based "antivirus" program is running, monitoring data imported into the system, and the execution and behavior of programs running on the system. Or, it may take place as part of the perimeter security mechanisms used in an organization's firewall and intrusion detection systems (IDSs). Lastly, detection may use distributed mechanisms that gather data from both host-based and perimeter sensors, potentially over a large number of networks and organizations, in order to obtain the largest scale view of the movement of malware.

Host-Based Scanners

The first location where antivirus software is used is on each end system. This gives the software the maximum access to information not only on the behavior of the malware as it interacts with the targeted system but also on the smallest overall view of malware activity. The use of antivirus software on personal computers is now widespread, in part caused by the explosive growth in malware volume and activity. Advances in virus and other malware technology, and in antivirus technology and other countermeasures, go hand in hand. Early malware used relatively simple and easily detected code, and hence could be identified and purged with relatively simple antivirus software packages. As the malware arms race has evolved, both the malware code and necessarily antivirus software have grown evolved, both the malware code and, necessarily, antivirus software have grown more complex and sophisticated.

[STEP93] identifies four generations of antivirus software:

■ First generation: Simple scanners

Second generation: Heuristic scanners

Third generation: Activity traps

Fourth generation: Full-featured protection

A **first-generation** scanner requires a malware signature to identify the malware. The signature may contain "wildcards" but matches essentially the same structure and bit pattern in all copies of the malware. Such signature-specific scanners are limited to the detection of known malware. Another type of first-generative contains the contain tion scanner maintains a record of the length of programs and looks for changes in length as a result of virus infection.

A **second-generation** scanner does not rely on a specific signature. Rather, the scanner uses heuristic rules to search for probable malware instances. One class of such scanners looks for fragments of code that are often associated with malware. For example, a scanner may look for the beginning of an encryption loop used in a polymorphic virus and discover the encryption key. Once the key is discovered, the scanner can decrypt the malware to identify it, and then remove the infection and return the program to service.

Another second-generation approach is integrity checking. A checksum can be appended to each program. If malware alters or replaces some program without changing the checksum, then an integrity check will catch this change. To counter malware that is sophisticated enough to change the checksum when it alters a program, an encrypted hash function can be used. The encryption key is stored separately from the program so that the malware cannot generate a new hash code and encrypt that. By using a hash function rather than a simpler checksum, the malware is prevented from adjusting the program to produce the same hash code as before. If a protected list of programs in trusted locations is kept, this

approach can also detect attempts to replace or install rogue code or programs in these locations.

Third-generation programs are memory-resident programs that identify malware by its actions rather than its structure in an infected program. Such programs the advantage that it is not necessary to develop signatures and heuristics for a wide array of malware. Rather, it is necessary only to identify the small set of actions that indicate that malicious activity is being attempted and then to intervene.

Fourth-generation products are packages consisting of a variety of antivirus techniques used in conjunction. These include scanning and activity trap compo-

nents. In addition, such a package includes access control capability, which limits the ability of malware to penetrate a system and then limits the ability of a malware to update files in order to propagate.

The arms race continues. With fourth-generation packages, a more comprehensive defense strategy is employed, broadening the scope of defense to more general-purpose computer security measures. These include more sophisticated antivirus approaches. We now highlight two of the most important.

HOST-BASED BEHAVIOR-BLOCKING SOFTWARE Unlike heuristics or fingerprint-based scanners, behavior-blocking software integrates with the operating system of a host computer and monitors program behavior in real time for malicious actions [CONR02, NACH02]. The behavior blocking software then blocks potentially malicious actions before they have a chance to affect the system. Monitored behaviors can include the following:

- Attempts to open, view, delete, and/or modify files
- Attempts to format disk drives and other unrecoverable disk operations
- Modifications to the logic of executable files or macros
- Modification of critical system settings, such as start-up settings
- Scripting of e-mail and instant messaging clients to send executable content
- Initiation of network communications

Because a behavior blocker can block suspicious software in real time, it has an advantage over such established antivirus detection techniques as fingerprinting or heuristics. There are literally trillions of different ways to obfuscate and rearrange the instructions of a virus or worm, many of which will evade detection by a fingerprint scanner or heuristic. But eventually, malicious code must make a welldefined request to the operating system. Given that the behavior blocker can intercept all such requests, it can identify and block malicious actions regardless of how obfuscated the program logic appears to be.

Behavior blocking alone has limitations. Because the malicious code must run on the target machine before all its behaviors can be identified, it can cause harm before it has been detected and blocked. For example, a new item of malware might shuffle a number of seemingly unimportant files around the hard drive before modifying a single file and being blocked. Even though the actual modification was blocked, the user may be unable to locate his or her files, causing a loss to productivity or possibly having worse consequences.

SPYWARE DETECTION AND REMOVAL Although general antivirus products include signatures to detect spyware, the threat this type of malware poses, and its use of stealthing techniques, means that a range of spyware specific detection and removal utilities exist. These specialize in the detection and removal of spyware, and provide more robust capabilities. Thus they complement, and should be used along with, more general antivirus products.

ROOTKIT COUNTERMEASURES Rootkits can be extraordinarily difficult to detect and neutralize, particularly so for kernel-level rootkits. Many of the administrative tools that could be used to detect a rootkit or its traces can be compromised by the rootkit precisely so that it is undetectable.

Countering rootkits requires a variety of network- and computer-level security tools. Both network- and host-based IDSs can look for the code signatures of known rootkit attacks in incoming traffic. Host-based antivirus software can also be used to recognize the known signatures.

Of course, there are always new rootkits and modified versions of existing rootkits that display novel signatures. For these cases, a system needs to look for behaviors that could indicate the presence of a rootkit, such as the interception of system calls or a keylogger interacting with a keyboard driver. Such behavior detection is far from straightforward. For example, antivirus software typically intercepts system calls.

Another approach is to do some sort of file integrity check. An example of this is RootkitRevealer, a freeware package from SysInternals. The package compares the results of a system scan using APIs with the actual view of storage using instructions that do not go through an API. Because a rootkit conceals itself by modifying the view of storage seen by administrator calls, RootkitRevealer catches the discrepancy.

If a kernel-level rootkit is detected, the only secure and reliable way to recover is to do an entire new OS install on the infected machine.

Perimeter Scanning Approaches

The next location where antivirus software is used is on an organization's firewall and IDS. It is typically included in e-mail and Web proxy services running on these systems. It may also be included in the traffic analysis component of an IDS. This gives the antivirus software access to malware in transit over a network connection to any of the organization's systems, providing a larger-scale view of malware activity. This software may also include intrusion prevention measures, blocking the flow of any suspicious traffic, thus preventing it reaching and compromising some target system, either inside or outside the organization.

However, this approach is limited to scanning the malware content, as it does not have access to any behavior observed when it runs on an infected system. Two types of monitoring software may be used:

■ Ingress monitors: These are located at the border between the enterprise network and the Internet. They can be part of the ingress-filtering software of a border router or external firewall or a separate passive monitor. A honeypot can also capture incoming malware traffic. An example of a detection technique for an ingress monitor is to look for incoming traffic to unused local IP addresses.

Egress monitors: These can be located at the egress point of individual LANs on the enterprise network as well as at the border between the enterprise network and the Internet. In the former case, the egress monitor can be part of the egress-filtering software of a LAN router or switch. As with ingress monitors, the external firewall or a honeypot can house the monitoring software. Indeed, the two types of monitors can be collocated. The egress monitor is designed to catch the source of a malware attack by monitoring outgoing traffic for signs of scanning or other suspicious behavior.

Perimeter monitoring can also assist in detecting and responding to botnet activity by detecting abnormal traffic patterns associated with this activity. Once bots are activated and an attack is underway, such monitoring can be used to detect the attack. However, the primary objective is to try to detect and disable the botnet during its construction phase, using the various scanning techniques we have just discussed, identifying and blocking the malware that is used to propagate this type of payload.

PERIMETER WORM COUNTERMEASURES There is considerable overlap in techniques for dealing with viruses and worms. Once a worm is resident on a machine, antivirus software can be used to detect it, and possibly remove it. In addition, because worm propagation generates considerable network activity, perimeter network activity and usage monitoring can form the basis of a worm defense. Following [JHI07], we list six classes of worm defense that address the network activity it may generate:

- A. Signature-based worm scan filtering: This type of approach generates a worm signature, which is then used to prevent worm scans from entering/leaving a network/host. Typically, this approach involves identifying suspicious flows and generating a worm signature. This approach is vulnerable to the use of polymorphic worms: Either the detection software misses the worm or, if it is sufficiently sophisticated to deal with polymorphic worms, the scheme may take a long time to react. [NEWS05] is an example of this approach.
- **B. Filter-based worm containment:** This approach is similar to class A but focuses on worm content rather than a scan signature. The filter checks a message to determine if it contains worm code. An example is Vigilante [COST05], which relies on collaborative worm detection at end hosts. This approach can be quite effective but requires efficient detection algorithms and rapid alert dissemination.
- C. Payload-classification-based worm containment: These network-based techniques examine packets to see if they contain a worm. Various anomaly detection techniques can be used, but care is needed to avoid high levels of false positives or negatives. An example of this approach, which looks for exploit code in network flows, is reported in [CHIN05]. This approach does not generate signatures based on byte patterns but rather looks for control and data flow structures that suggest an exploit.

- D. Threshold random walk (TRW) scan detection: TRW exploits randomness in picking destinations to connect to as a way of detecting if a scanner is in operation [JUNG04]. TRW is suitable for deployment in high-speed, lowcost network devices. It is effective against the common behavior seen in worm scans.
- E. Rate limiting: This class limits the rate of scanlike traffic from an infected host. Various strategies can be used, including limiting the number of new machines a host can connect to in a window of time, detecting a high connection failure rate, and limiting the number of unique IP addresses a host can scan in a window of time. [CHEN04] is an example. This class of countermeasures may introduce longer delays for normal traffic. This class is also not suited for slow, stealthy worms that spread slowly to avoid detection based on activity level.
- Rate halting: This approach immediately blocks outgoing traffic when a threshold is exceeded either in outgoing connection rate or in diversity of connection attempts [JHI07]. The approach must include measures to quickly unblock mistakenly blocked hosts in a transparent way. Rate halting can integrate with a signature- or filter-based approach so that once a signature or filter is generated, every blocked host can be unblocked. Rate halting appears to offer a very effective countermeasure. As with rate limiting, rate-halting techniques are not suitable for slow, stealthy worms.

Distributed Intelligence Gathering Approaches

The final location where antivirus software is used is in a distributed configuration. It gathers data from a large number of both host-based and perimeter sensors, relays this intelligence to a central analysis system able to correlate and analyze the data, which can then return updated signatures and behavior patterns to enable all of the coordinated systems to respond and defend against malware attacks. A number of such systems have been proposed. We discuss one such approach in the remainder of this section.

Figure 10.4 shows an example of a distributed worm countermeasure architecture (based on [SIDI05]). The system works as follows (numbers in figure refer to numbers in the following list):

- 1. Sensors deployed at various network locations detect a potential worm. The sensor logic can also be incorporated in IDS sensors.
- 2. The sensors send alerts to a central server, which correlates and analyzes the incoming alerts. The correlation server determines the likelihood that a worm attack is being observed and the key characteristics of the attack.
- 3. The server forwards its information to a protected environment, where the potential worm may be sandboxed for analysis and testing.
- 4. The protected system tests the suspicious software against an appropriately instrumented version of the targeted application to identify the vulnerability.

Figure 10.4 Placement of Worm Monitors

- 5. The protected system generates one or more software patches and tests these.
- 6. If the patch is not susceptible to the infection and does not compromise the application's functionality, the system sends the patch to the application host to update the targeted application.

10.11 DISTRIBUTED DENIAL OF SERVICE ATTACKS

A denial-of-service (DoS) attack is an attempt to prevent legitimate users of a service from using that service. When this attack comes from a single host or network node, then it is simply referred to as a DoS attack. A more serious threat is posed by a DDoS attack. DDoS attacks make computer systems inaccessible by flooding servers, networks, or even end-user systems with useless traffic so that legitimate users can no longer gain access to those resources. In a typical DDoS attack, a large number of compromised hosts are amassed to send useless packets.

This section is concerned with DDoS attacks. First, we look at the nature and types of attacks. Next, we examine methods by which an attacker is able to recruit a network of hosts for attack launch. Finally, this section looks at countermeasures.

DDoS Attack Description

A DDoS attack attempts to consume the target's resources so that it cannot provide service. One way to classify DDoS attacks is in terms of the type of resource that is consumed. Broadly speaking, the resource consumed is either an internal host resource on the target system or data transmission capacity in the local network to which the target is attacked.

A simple example of an internal resource attack is the SYN flood attack. Figure 10.5a shows the steps involved:

- 1. The attacker takes control of multiple hosts over the Internet, instructing them to contact the target Web server.
- 2. The slave hosts begin sending TCP/IP SYN (synchronize/initialization) packets, with erroneous return IP address information, to the target.
- 3. Each SYN packet is a request to open a TCP connection. For each such packet, the Web server responds with a SYN/ACK (synchronize/acknowledge) packet, trying to establish a TCP connection with a TCP entity at a spurious IP address. The Web server maintains a data structure for each SYN request waiting for a response back and becomes bogged down as more traffic floods in. The result is that legitimate connections are denied while the victim machine is waiting to complete bogus "half-open" connections.

The TCP state data structure is a popular internal resource target but by no means the only one. [CERT01] gives the following examples:

- 1. An intruder may attempt to use up available data structures that are used by the OS to manage processes, such as process table entries and process control information entries. The attack can be quite simple, such as a program that forks new processes repeatedly.
- 2. An intruder may attempt to allocate to itself large amounts of disk space by a variety of straightforward means. These include generating numerous e-mails, forcing errors that trigger audit trails, and placing files in shareable areas.

Figure 10.5b illustrates an example of an attack that consumes data transmis**sion resources**. The following steps are involved:

- 1. The attacker takes control of multiple hosts over the Internet, instructing them to send ICMP ECHO packets⁵ with the target's spoofed IP address to a group of hosts that act as reflectors, as described subsequently.
- 2. Nodes at the bounce site receive multiple spoofed requests and respond by sending echo reply packets to the target site.
- 3. The target's router is flooded with packets from the bounce site, leaving no data transmission capacity for legitimate traffic.

⁵The Internet Control Message Protocol (ICMP) is an IP-level protocol for the exchange of control packets between a router and a host or between hosts. The ECHO packet requires the recipient to respond with an echo reply to check that communication is possible between entities.

Figure 10.5 Examples of Simple DDoS Attacks

Another way to classify DDoS attacks is as either direct or reflector DDoS attacks. In a direct DDoS attack (Figure 10.6a), the attacker is able to implant zombie software on a number of sites distributed throughout the Internet. Often, the DDoS attack involves two levels of zombie machines: master zombies and slave zombies. The hosts of both machines have been infected with malicious code. The attacker coordinates and triggers the master zombies, which in turn coordinate and trigger the slave zombies. The use of two levels of zombies makes it more difficult to trace the attack back to its source and provides for a more resilient network of attackers.

A reflector DDoS attack adds another layer of machines (Figure 10.6b). In this type of attack, the slave zombies construct packets requiring a response that contain the target's IP address as the source IP address in the packet's IP header. These packets are sent to uninfected machines known as reflectors. The uninfected machines respond with packets directed at the target machine. A reflector DDoS attack can easily involve more machines and more traffic than a direct DDoS attack and hence be more damaging. Further, tracing back the attack or filtering out the attack packets is more difficult because the attack comes from widely dispersed uninfected machines.