Objetivo

O objetivo desta atividade é que o aluno implemente o Algoritmo de Potenciação Modular visto em sala de aula. Podemos executar este algoritmo manualmente construindo uma tabela com quatro colunas. Na primeira coluna, aparecem os valores sucessivos calculados para R, a variável que acumula o resultado dos cálculos. Na segunda coluna, aparecem os valores sucessivos calculados para A, a variável que contém as sucessivas bases das potências. Na terceira coluna, aparecem os valores sucessivos calculados para E, a variável utilizada para obter os sucessivos expoentes das potências. Já na quarta coluna, aparece a letra $\mathbb N$ (de "não") ou a letra $\mathbb S$ (de "sim"), indicando se o valor de E na terceira coluna é ou não ímpar. Por exemplo, o Algoritmo de Potenciação Modular irá gerar a seguinte tabela para 3^{1057} módulo 31:

R	$\mid A \mid$	$\mid E \mid$	E é ímpar?
1	3	1057	S
3	9	528	N
3	19	264	N
3	20	132	N
3	28	66	N
3	9	33	S
27	19	16	N
27	20	8	N
27	28	4	N
27	9	2	N
27	19	1	S
17	20	0	N

A partir da última linha da tabela, se obtém o resultado: $3^{1057} \equiv 17 \pmod{31}$.

O objetivo do programa que será realizado é ler triplas de números inteiros positivos, executar o Algoritmo de Potenciação Modular, considerando o primeiro valor da tripla como a base, o segundo como o expoente e o terceiro como o módulo, e imprimir na tela para o usuário a réplica das tabelas geradas, como a tabela acima.

Entrada

Inicialmente, o programa deverá ler um número inteiro n. Este número irá indicar quantas **triplas** de números inteiros positivos o programa deverá ler na sequência. Isto é, se n = 6, o programa deverá ler, em seguida, seis **triplas** de números inteiros positivos.

Abaixo, são apresentados dois exemplos de possíveis entradas para o programa.

Saída

Para cada tripla lida, o programa deverá imprimir uma réplica da tabela gerada pelo Algoritmo de Potenciação Modular, considerando o primeiro valor da tripla como a base, o segundo como o expoente e o terceiro como o módulo. A tabela deve ser construída de acordo com as instruções dadas no início do enunciado (seção "Objetivo"). Após a impressão de uma tabela, o programa deverá imprimir uma linha com apenas três traços:

Abaixo, são apresentados dois exemplos de saídas para o programa. Estas são justamente as saídas que devem ser produzidas caso o programa receba as entradas fornecidas no exemplo.

Exemplo 1

Este exemplo é o mesmo descrito no início do enunciado.

Entrada	Saída
	1 3 1057 S
	3 9 528 N
	3 19 264 N
1	3 20 132 N
3,1057,31	3 28 66 N
0,2001,02	3 9 33 S
	27 19 16 N
	27 20 8 N
	27 28 4 N
	27 9 2 N
	27 19 1 S
	17 20 0 N

Exemplo 2

Exemplo 2	
Entrada	Saída
	1 2 125 S 2 4 62 N 2 2 31 S 4 4 15 S 2 2 7 S 4 4 3 S 2 2 1 S 4 4 0 N
3 2,125,7 6,29,100 3,11413,103	1 6 29 S 6 36 14 N 6 96 7 S 76 16 3 S 16 56 1 S 96 36 0 N
	1 3 11413 S 3 9 5706 N 3 81 2853 S 37 72 1426 N 37 34 713 S 22 23 356 N 22 14 178 N 22 93 89 S 89 100 44 N 89 9 22 N 89 81 11 S 102 72 5 S 31 34 2 N 31 23 1 S 95 14 0 N