第七次作业

洪艺中 12335025

2024年4月19日

0.1 149 页问题 15

题目 1. 设 $\mathbb{S}^m = \{x \in \mathbb{R}^{m+1} : \sum_i (x^i)^2 = r^2, r > 0\}$. 作球极投影

$$\phi \colon \mathbb{S}^m(r) \setminus \{(0, \cdots, 0, r)\} \to \mathbb{R}^m.$$

证明: ϕ 为共形映射, 即对于 Riemann 流形 ($\mathbb{S}^m(r)$, \tilde{g} 和 (\mathbb{R}^m , g), 有 $\tilde{g} = \phi^* g$, 这里 \tilde{g} 是 $\mathbb{S}^m(r) \subset \mathbb{R}^{m+1}$ 的诱导度量, g 为 \mathbb{R}^m 上的欧氏度量.

解答. 设 ϕ 将 \mathbb{S}^m 投影到 \mathbb{R}^{m+1} 的 $x^{n+1}=0$ 平面, 也就是 \mathbb{R}^m . 设 \mathbb{R}^m 的坐标是 (y_1,\cdots,y_m) , 那么 ϕ 可以表达为

$$\phi(y_1, \dots, y_n) = \left(\frac{2r^2y_1}{|y|^2 + r^2}, \dots, \frac{2r^2y_m}{|y|^2 + r^2}, r\frac{|y|^2 - r^2}{|y|^2 + r^2}\right),$$

计算切映射,

$$\phi^* = \frac{2r^2}{|y|^2 + r^2} \begin{bmatrix} \mathbf{I}_m & 0 \end{bmatrix} - \frac{4r^2}{(|y|^2 + r^2)^2} \begin{bmatrix} y_1^2 & y_1 y_2 & \cdots & y_1 y_m & -r y_1 \\ y_2 y_1 & y_2^2 & \cdots & y_2 y_m & -r y_2 \\ \vdots & \vdots & \ddots & \vdots \\ y_m y_1 & y_m y_2 & \cdots & y_m^2 & -r y_m \end{bmatrix}.$$

容易发现, 若 $i \neq j$, 那么 $\langle \partial_{y_i}, \partial_{y_j} \rangle_{\tilde{g}} = 0$, 这是因为内积为

$$\begin{split} &\langle \partial_{y_i}, \partial_{y_j} \rangle_{\bar{g}} \\ &= -\frac{2r^2}{|y|^2 + r^2} \cdot \frac{4r^2}{(|y|^2 + r^2)^2} (y_i y_j + y_j y_i) + \left(\frac{4r^2}{(|y|^2 + r^2)^2} \right)^2 \sum_{k=1}^m (y_k y_i \cdot y_k y_j) + r^2 y_i y_j \\ &= \frac{2r^2}{|y|^2 + r^2} \cdot \frac{4r^2}{(|y|^2 + r^2)^2} (-2y_i y_j + 2y_i y_j) \\ &= 0. \end{split}$$

因此 \tilde{g} 是对角的.

$$\begin{split} &\langle \partial_{y_i}, \partial_{y_i} \rangle_{\tilde{g}} \\ &= \left(\frac{2r^2}{|y|^2 + r^2} \right)^2 - \frac{2r^2}{|y|^2 + r^2} \cdot \frac{4r^2}{(|y|^2 + r^2)^2} 2y_i^2 + \left(\frac{4r^2}{(|y|^2 + r^2)^2} \right)^2 (\sum_{k=1}^m \left((y_k)^2 (y_i)^2 \right) - r^2 (y_i)^2) \\ &= \frac{2r^2}{|y|^2 + r^2} \cdot \frac{4r^2}{(|y|^2 + r^2)^2} \left(\frac{1}{2} (|y|^2 + r^2) - 2(y^i)^2 + 2(y^i)^2 \right) \\ &= \frac{4r^4}{(|y|^2 + r^2)^2}. \end{split}$$

即
$$\tilde{g} = \frac{4r^4}{(|y|^2 + r^2)^2}g$$
, 所以 \tilde{g} 是共形变换.