sales Analysis

```
import Necessary Libraries
import pandas as pd
import matplotlib.pyplot as plt
```

from google.colab import files

12 month sales dataset

```
uploaded = files.upload()
for fn in uploaded.keys():
  print('User uploaded file "{name}" with length {length} bytes'.format(
      name=fn, length=len(uploaded[fn])))
# Get the list of uploaded files from the 'uploaded' variable
uploaded_files = uploaded.keys()
# Create an empty list to store dataframes
all_months_data = []
# Read each uploaded file and append to the list
for file in uploaded_files:
  if file.endswith('.xlsx'):
    df_temp = pd.read_excel(file)
    all_months_data.append(df_temp)
# Concatenate all dataframes into a single dataframe
all data = pd.concat(all months data)
# Assign the combined dataframe to df
df = all_data
     Choose Files 12 files
      sales_April_2024.xlsx(application/vnd.openxmlformats-officedocument.spreadsheetml.sheet) - 34185 bytes, last modified: 8/13/2025 - 100% done
        sales_August_2024.xlsx(application/vnd.openxmlformats-officedocument.spreadsheetml.sheet) - 34250 bytes, last modified: 8/13/2025 - 100% done
        sales_December_2024.xlsx(application/vnd.openxmlformats-officedocument.spreadsheetml.sheet) - 34214 bytes, last modified: 8/13/2025 - 100% done
        sales_February_2024.xlsx(application/vnd.openxmlformats-officedocument.spreadsheetml.sheet) - 34047 bytes, last modified: 8/13/2025 - 100% done
        sales_January_2024.xlsx(application/vnd.openxmlformats-officedocument.spreadsheetml.sheet) - 34208 bytes, last modified: 8/13/2025 - 100% done
        sales_July_2024.xlsx(application/vnd.openxmlformats-officedocument.spreadsheetml.sheet) - 34299 bytes, last modified: 8/13/2025 - 100% done
        sales June 2024.xlsx(application/vnd.openxmlformats-officedocument.spreadsheetml.sheet) - 34165 bytes, last modified: 8/13/2025 - 100% done
        sales_March_2024.xlsx(application/vnd.openxmlformats-officedocument.spreadsheetml.sheet) - 34340 bytes, last modified: 8/13/2025 - 100% done
        \textbf{sales\_May\_2024.xlsx} (application/vnd.openxml formats-office document.spread sheetml.sheet) - 34435\ bytes,\ last\ modified:\ 8/13/2025\ -\ 100\%\ done
        sales_November_2024.xlsx(application/vnd.openxmlformats-officedocument.spreadsheetml.sheet) - 34309 bytes, last modified: 8/13/2025 - 100% done
        sales_October_2024.xlsx(application/vnd.openxmlformats-officedocument.spreadsheetml.sheet) - 34231 bytes, last modified: 8/13/2025 - 100% done
        sales_September_2024.xlsx(application/vnd.openxmlformats-officedocument.spreadsheetml.sheet) - 34170 bytes, last modified: 8/13/2025 - 100% done
     Saving sales_April_2024.xlsx to sales_April_2024 (1).xlsx
     Saving sales_August_2024.xlsx to sales_August_2024 (1).xlsx
     Saving sales_December_2024.xlsx to sales_December_2024 (1).xlsx
     Saving sales_February_2024.xlsx to sales_February_2024 (1).xlsx
     Saving sales_January_2024.xlsx to sales_January_2024 (1).xlsx
     Saving sales_July_2024.xlsx to sales_July_2024 (1).xlsx
     Saving sales_June_2024.xlsx to sales_June_2024 (1).xlsx
     Saving sales_March_2024.xlsx to sales_March_2024 (1).xlsx
     Saving sales_May_2024.xlsx to sales_May_2024 (1).xlsx
     Saving sales_November_2024.xlsx to sales_November_2024 (1).xlsx
     Saving sales_October_2024.xlsx to sales_October_2024 (1).xlsx
     Saving sales_September_2024.xlsx to sales_September_2024 (1).xlsx
     User uploaded file "sales_April_2024 (1).xlsx" with length 34185 bytes
     User uploaded file "sales_August_2024 (1).xlsx" with length 34250 bytes
     User uploaded file "sales_December_2024 (1).xlsx" with length 34214 bytes
     User uploaded file "sales_February_2024 (1).xlsx" with length 34047 bytes
     User uploaded file "sales_January_2024 (1).xlsx" with length 34208 bytes User uploaded file "sales_July_2024 (1).xlsx" with length 34299 bytes
     User uploaded file "sales_June_2024 (1).xlsx" with length 34165 bytes
User uploaded file "sales_March_2024 (1).xlsx" with length 34340 bytes
     User uploaded file "sales_May_2024 (1).xlsx" with length 34435 bytes
     User uploaded file "sales_November_2024 (1).xlsx" with length 34309 bytes
     User uploaded file "sales_October_2024 (1).xlsx" with length 34231 bytes
     User uploaded file "sales_September_2024 (1).xlsx" with length 34170 bytes
```

Read updated Dataframe

```
# Display the first few rows of the combined dataframe
display(df.head())
```

→	(Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address
	0	101500	Wired Headphones	3	11.99	04/07/24 17:03	9508 Jason Radial Apt. 611, Port Yolandashire,
	1	101501	Lightning Charging Cable	3	14.95	04/13/24 15:28	58919 Mallory Island, Lake Brian, RI 19544
	2	101502	Lightning Charging Cable	1	14.95	04/10/24 19:55	8641 Roberts Inlet, North Paul, CA 04296
	3	101503	Vareebadd Phone	3	400.00	04/18/24 04:07	57769 Powell Springs, Thompsonmouth, VA 63086
	4	101504	AA Batteries (4-pack)	1	3.84	04/20/24 00:39	707 Brooke Estates Apt. 885, South Brianland,

clean the data

- # Remove rows with NaN values df.dropna(inplace=True)
- # Display the first few rows of the dataframe after removing NaN values display(df.head())

₹		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	
	0	101500	Wired Headphones	3	11.99	04/07/24 17:03	9508 Jason Radial Apt. 611, Port Yolandashire,	th
	1	101501	Lightning Charging Cable	3	14.95	04/13/24 15:28	58919 Mallory Island, Lake Brian, RI 19544	
	2	101502	Lightning Charging Cable	1	14.95	04/10/24 19:55	8641 Roberts Inlet, North Paul, CA 04296	
	3	101503	Vareebadd Phone	3	400.00	04/18/24 04:07	57769 Powell Springs, Thompsonmouth, VA 63086	
	4	101504	AA Batteries (4-pack)	1	3.84	04/20/24 00:39	707 Brooke Estates Apt. 885, South Brianland,	

add the Month Columns

```
all_data["Month"] = all_data["Order Date"].str[0:2]
all_data["Month"] = all_data["Month"].astype('int64')
all_data.head()
```

₹		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	
	0	101500	Wired Headphones	3	11.99	04/07/24 17:03	9508 Jason Radial Apt. 611, Port Yolandashire,	4	11.
	1	101501	Lightning Charging Cable	3	14.95	04/13/24 15:28	58919 Mallory Island, Lake Brian, RI 19544	4	
	2	101502	Lightning Charging Cable	1	14.95	04/10/24 19:55	8641 Roberts Inlet, North Paul, CA 04296	4	

Next steps: Generate code with all_data View recommended plots New interactive sheet

Add the sales column

Create a Sales column all_data['Sales'] = all_data['Quantity Ordered'] * all_data['Price Each'] all_data.head()

₹		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sales	
	0	101500	Wired Headphones	3	11.99	04/07/24 17:03	9508 Jason Radial Apt. 611, Port Yolandashire,	4	35.97	115
	1	101501	Lightning Charging Cable	3	14.95	04/13/24 15:28	58919 Mallory Island, Lake Brian, RI 19544	4	44.85	
	2	101502	Lightning Charging Cable	1	14.95	04/10/24 19:55	8641 Roberts Inlet, North Paul, CA 04296	4	14.95	

Next steps: Generate code with all_data

View recommended plots

New interactive sheet

add the city column

```
# Function to extract city from the Purchase Address
def get_city(address):
    return address.split(',')[1].strip()

# Apply the function to create the 'City' column
df['City'] = df['Purchase Address'].apply(get_city)
```

display(df.head())

_		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sales	City
	0	101500	Wired Headphones	3	11.99	04/07/24 17:03	9508 Jason Radial Apt. 611, Port Yolandashire,	4	35.97	Port Yolandashire
	1	101501	Lightning Charging Cable	3	14.95	04/13/24 15:28	58919 Mallory Island, Lake Brian, RI 19544	4	44.85	Lake Brian
	2	101502	Lightning Charging Cable	1	14.95	04/10/24 19:55	8641 Roberts Inlet, North Paul, CA 04296	4	14.95	North Paul
	3	101503	Vareebadd Phone	3	400.00	04/18/24 04:07	57769 Powell Springs, Thompsonmouth, VA 63086	4	1200.00	Thompsonmouth
	4	101504	AA Batteries (4- pack)	1	3.84	04/20/24 00:39	707 Brooke Estates Apt. 885, South Brianland,	4	3.84	South Brianland

Group by 'Month' and 'City' and sum the 'Sales'
monthly_city_sales = df.groupby(['Month',])['Sales'].sum()

display(monthly_city_sales)

→ *		Sales
	Month	
	1	243052.10
	2	234319.99
	3	216919.00
	4	243819.19
	5	240123.43
	6	226157.88
	7	221537.41
	8	233150.40
	9	237773.07
	10	216851.36
	11	253413.62
	12	255545.98
	dtype: fl	oat64

Question 1: what was the best month for Sales? How much was earned that month

```
# Group by 'Month' and 'City' and sum the 'Sales'
monthly_sales = df.groupby(['Month'])['Sales'].sum()

months = monthly_sales.index

sales_values = monthly_sales.values
# Set the figure size
plt.figure(figsize=(8, 4))
plt.bar(months, sales_values)
plt.xticks(months)
plt.xlabel("Month Number")
plt.ylabel("sales in USD")
plt.title("Monthly Sales")
plt.show()
```

Ⅲ 11.

Question 2: what city had the highest number of sales?

```
city_sales = df.groupby('City')['Sales'].sum()
city_sales
```

_		Sales
	City	
	Aaronberg	11.95
	Aaronborough	700.00
	Aaronchester	199.98
	Aaronfort	2100.00
	Aaronmouth	800.00
	Zhangton	149.99
	Zimmermanton	11.52
	Zimmermanview	400.00
	Zunigaberg	3.84
	Zunigafurt	600.00
	5180 rows × 1 colum	nns

dtype: float64

top_cities = city_sales.sort_values(ascending=False).head(10)

```
# Create a bar plot of the top 10 cities by sales
plt.figure(figsize=(10, 5))
top_cities.plot(kind='bar')
plt.xlabel("City Names")
plt.ylabel("Sales in USD ($)")
plt.title("Top 10 Cities by Sales")
plt.xticks(rotation=45, ha='right') # Rotate x-axis labels for readability
plt.tight_layout() # Adjust layout to prevent labels from overlapping
plt.show()
```


Question 3: what time should we display advertisements to maximiza likelihood of customers buying product?

```
all_data['Order Date']=pd.to_datetime(all_data['Order Date'])

# Extract the hour and minute from the 'Order Date'
all_data['Hour'] = all_data['Order Date'].dt.hour
all_data['Minute'] = all_data['Order Date'].dt.minute

# Group by 'Hour' and 'Minute' and sum the 'Sales'
hourly_minute_sales = all_data.groupby(['Hour', 'Minute'])['Sales'].sum()

# Display the hourly and minute sales
display(hourly_minute_sales)
```

/tmp/ipython-input-3956599124.py:1: UserWarning: Could not infer format, so each element will be parsed individually, falling back t all_data['Order Date']=pd.to_datetime(all_data['Order Date'])

Sales

Hour	Minute	
0	0	630.31
	1	2049.99
	2	2847.96
	3	2447.34
	4	7.68
23	55	2557.88
	56	15.83
	57	1038.90
	58	2267.47
	59	2689.79

1420 rows × 1 columns

dtype: float64

all_data.head()

₹		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sales	City	Hour	Minute	
	0	101500	Wired Headphones	3	11.99	2024-04-07 17:03:00	9508 Jason Radial Apt. 611, Port Yolandashire,	4	35.97	Port Yolandashire	17	3	11
	1	101501	Lightning Charging Cable	3	14.95	2024-04-13 15:28:00	58919 Mallory Island, Lake Brian, RI 19544	4	44.85	Lake Brian	15	28	
	2	101502	Lightning Charging Cable	1	14.95	2024-04-10 19:55:00	8641 Roberts Inlet, North Paul, CA 04296	4	14.95	North Paul	19	55	
	3	101503	Vareebadd Phone	3	400.00	2024-04-18 04:07:00	57769 Powell Springs, Thompsonmouth, VA 63086	4	1200.00	Thompsonmouth	4	7	
	4	101504	AA Batteries (4-	1	3.84	2024-04-20	707 Brooke Estates Apt.	4	3.84	South Brianland	0	39	

Next steps: Generate code with all_data View recommended plots New interactive sheet

hour = [hour for hour,df in all_data.groupby('Hour')]
plt.plot(hour,all_data.groupby(["Hour"]).count())
plt.xticks(hour)
plt.xlabel('Hour')
plt.ylabel('Number of Orders')
plt.grid()
plt.show()

Question 4: What product sold the most? Why do you thinks if sold the most?

all_data.head()

₹		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sales	City	Hour	Minute	=
	0	101500	Wired Headphones	3	11.99	2024-04-07 17:03:00	9508 Jason Radial Apt. 611, Port Yolandashire,	4	35.97	Port Yolandashire	17	3	ш
	1	101501	Lightning Charging Cable	3	14.95	2024-04-13 15:28:00	58919 Mallory Island, Lake Brian, RI 19544	4	44.85	Lake Brian	15	28	
	2	101502	Lightning Charging Cable	1	14.95	2024-04-10 19:55:00	8641 Roberts Inlet, North Paul, CA 04296	4	14.95	North Paul	19	55	
	3	101503	Vareebadd Phone	3	400.00	2024-04-18 04:07:00	57769 Powell Springs, Thompsonmouth, VA 63086	4	1200.00	Thompsonmouth	4	7	
	4	101504	AA Batteries (4-	1	3.84	2024-04-20	707 Brooke Estates Apt.	4	3.84	South Brianland	0	39	

Next steps: Generate code with all_data View recommended plots New interactive sheet

product_group = all_data.groupby('Product')
Quantity_ordered = product_group['Quantity Ordered'].sum()
Quantity_ordered

Quantity Ordered

Product	
27in FHD Monitor	1118
AA Batteries (4-pack)	1168
Bose SoundSport Headphones	1182
Flatscreen TV	1269
Google Phone	1183
Lightning Charging Cable	1162
USB-C Charging Cable	1171
Vareebadd Phone	1257
Wired Headphones	1204
iPhone	1276

dtype: int64

```
# Get the product names and the ordered quantities
products = Quantity_ordered.index
quantities = Quantity_ordered.values
```

```
# Create the bar plot
plt.figure(figsize=(10, 6))
plt.bar(products, quantities)
plt.xlabel("Product")
plt.ylabel("Quantity Ordered")
plt.title("Total Quantity Ordered per Product")
plt.xticks(rotation=90, ha='right')
plt.tight_layout()
plt.show()
```


Prices = all_data.groupby('Product')['Price Each'].mean()
print(Prices)

→	Product	
_	27in FHD Monitor	149.99
	AA Batteries (4-pack)	3.84
	Bose SoundSport Headphones	99.99
	Flatscreen TV	300.00
	Google Phone	600.00
	Lightning Charging Cable	14.95
	USB-C Charging Cable	11.95
	Vareebadd Phone	400.00
	Wired Headphones	11.99

iPhone 700.00 Name: Price Each, dtype: float64

```
product_quantity = all_data.groupby('Product')['Quantity Ordered'].sum()
product_prices = all_data.groupby('Product')['Price Each'].mean()
products = product_quantity.index
fig, ax1 = plt.subplots(figsize=(10, 6))
ax1.bar(products, product_quantity.values, color='skyblue')
ax1.set_xlabel("Product")
ax1.set_ylabel("Quantity Ordered", color='skyblue')
ax1.tick_params(axis='y', labelcolor='skyblue')
ax2 = ax1.twinx()
ax2.plot(products, product_prices.values, color='red', marker='o')
ax2.set_ylabel("Average Price (USD)", color='red')
ax2.tick_params(axis='y', labelcolor='red')
ax1.set_xticklabels(products, rotation=90, ha='right')
plt.title("Quantity Ordered and Average Price per Product")
plt.tight_layout()
plt.show()
```

/tmp/ipython-input-2294541481.py:19: UserWarning: set_ticklabels() should only be used with a fixed number of ticks, i.e. after set_ax1.set_xticklabels(products, rotation=90, ha='right')

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.