# Aprendizaje no supervisado

# Coagrupamiento o biclustering

Javier Sevilla













https://www.youtube.com/watch?v=OATUjAxNf6U



# Agrupamiento vs. coagrupamiento

| X <sub>11</sub> | X <sub>12</sub> | X <sub>13</sub> | X <sub>14</sub> | X <sub>15</sub> | X <sub>16</sub> |         | X <sub>1v</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------|-----------------|
| X <sub>21</sub> | X <sub>22</sub> | X <sub>23</sub> | X <sub>24</sub> | X <sub>25</sub> | X <sub>26</sub> |         | X <sub>2v</sub> |
| X <sub>31</sub> | X <sub>32</sub> | X <sub>33</sub> | X <sub>34</sub> | X <sub>35</sub> | X <sub>36</sub> | • • • • | X <sub>3v</sub> |
| X <sub>41</sub> | X <sub>42</sub> | X <sub>43</sub> | X <sub>44</sub> | X <sub>45</sub> | X <sub>46</sub> |         | X <sub>4v</sub> |
| X <sub>51</sub> | X <sub>52</sub> | X <sub>53</sub> | X <sub>54</sub> | X <sub>55</sub> | X <sub>56</sub> | • • •   | X <sub>5v</sub> |
| X <sub>61</sub> | X <sub>62</sub> | X <sub>63</sub> | X <sub>64</sub> | X <sub>65</sub> | X <sub>66</sub> |         | X <sub>6v</sub> |
| X <sub>71</sub> | X <sub>72</sub> | X <sub>73</sub> | X <sub>74</sub> | X <sub>75</sub> | X <sub>76</sub> |         | X <sub>7v</sub> |
| X <sub>81</sub> | X <sub>82</sub> | X <sub>83</sub> | X <sub>84</sub> | X <sub>85</sub> | X <sub>86</sub> | • • •   | X <sub>8v</sub> |
| X <sub>91</sub> | X <sub>92</sub> | X <sub>93</sub> | X <sub>94</sub> | X <sub>95</sub> | X <sub>96</sub> | • • •   | X <sub>9v</sub> |
| ÷               | :               | :               | :               | 1               | 1               | ٠.      | 1               |
| X <sub>n1</sub> | X <sub>n2</sub> | X <sub>n3</sub> | X <sub>n4</sub> | X <sub>n5</sub> | X <sub>n6</sub> |         | X <sub>nv</sub> |

| X <sub>11</sub> | ^12             | ^13             | ^14             | ^15             | X <sub>16</sub> |    | X <sub>1v</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----|-----------------|
| X <sub>21</sub> | X <sub>22</sub> | X <sub>23</sub> | X <sub>24</sub> | X <sub>25</sub> | X <sub>26</sub> |    | X <sub>2v</sub> |
| X <sub>31</sub> | X <sub>32</sub> | X <sub>33</sub> | X <sub>34</sub> | X <sub>35</sub> | X <sub>36</sub> |    | X <sub>3v</sub> |
| X <sub>41</sub> | X <sub>42</sub> | X <sub>43</sub> | X <sub>44</sub> | X <sub>45</sub> | X <sub>46</sub> |    | X <sub>4v</sub> |
| X <sub>51</sub> | X <sub>52</sub> | X <sub>53</sub> | X <sub>54</sub> | X <sub>55</sub> | X <sub>56</sub> |    | X <sub>5v</sub> |
| X <sub>61</sub> | X <sub>62</sub> | X <sub>63</sub> | X <sub>64</sub> | X <sub>65</sub> | X <sub>66</sub> |    | Χ <sub>6ν</sub> |
| X <sub>71</sub> | X <sub>72</sub> | X <sub>73</sub> | X <sub>74</sub> | X <sub>75</sub> | X <sub>76</sub> |    | X <sub>7v</sub> |
| X <sub>81</sub> | X <sub>82</sub> | X <sub>83</sub> | X <sub>84</sub> | X <sub>85</sub> | X <sub>86</sub> |    | X <sub>8v</sub> |
| X <sub>91</sub> | X <sub>92</sub> | X <sub>93</sub> | X <sub>94</sub> | X <sub>95</sub> | X <sub>96</sub> |    | X <sub>9v</sub> |
| ÷               | :               | 1               | 1               | 1               | 1               | ٠, | :               |
| X <sub>n1</sub> | X <sub>n2</sub> | X <sub>n3</sub> | X <sub>n4</sub> | X <sub>n5</sub> | X <sub>n6</sub> |    | Xnv             |

| X <sub>11</sub> | X <sub>12</sub> | X <sub>13</sub> | X <sub>14</sub> | X <sub>15</sub> | X <sub>16</sub> | ••• | X <sub>1v</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----|-----------------|
| X <sub>21</sub> | X <sub>22</sub> | X <sub>23</sub> | X <sub>24</sub> | X <sub>25</sub> | X <sub>26</sub> |     | X <sub>2v</sub> |
| X <sub>31</sub> | X <sub>32</sub> | X <sub>33</sub> | X <sub>34</sub> | X <sub>35</sub> | X <sub>36</sub> | ••• | X <sub>3v</sub> |
| X <sub>41</sub> | X <sub>42</sub> | X <sub>43</sub> | X <sub>44</sub> | X <sub>45</sub> | X <sub>46</sub> |     | X <sub>4v</sub> |
| X <sub>51</sub> | X <sub>52</sub> | X <sub>53</sub> | X <sub>54</sub> | X <sub>55</sub> | X <sub>56</sub> |     | X <sub>5v</sub> |
| X <sub>61</sub> | X <sub>62</sub> | X <sub>63</sub> | X <sub>64</sub> | X <sub>65</sub> | X <sub>66</sub> |     | Χ <sub>6ν</sub> |
| X <sub>71</sub> | X <sub>72</sub> | X <sub>73</sub> | X <sub>74</sub> | X <sub>75</sub> | X <sub>76</sub> |     | X <sub>7v</sub> |
| X <sub>81</sub> | X <sub>82</sub> | X <sub>83</sub> | X <sub>84</sub> | X <sub>85</sub> | X <sub>86</sub> |     | X <sub>8v</sub> |
| X <sub>91</sub> | X <sub>92</sub> | X <sub>93</sub> | X <sub>94</sub> | X <sub>95</sub> | X <sub>96</sub> |     | X <sub>9v</sub> |
| 1               | 1               | :               | :               | 1               | :               | ٠.  | :               |
| X <sub>n1</sub> | X <sub>n2</sub> | X <sub>n3</sub> | X <sub>n4</sub> | X <sub>n5</sub> | X <sub>n6</sub> |     | Xnv             |

# Agrupamiento vs. coagrupamiento





# Coagrupamiento o biclustering

#### Coagrupamiento o biclustering

Técnicas que buscan clústeres tal que:

 Un clúster de ejemplos se define sólo mediante un subconjunto de variables

| X <sub>11</sub> | X <sub>12</sub> | X <sub>13</sub> | X <sub>14</sub> | X <sub>15</sub> | X <sub>16</sub> |    | Χ <sub>1ν</sub>             |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----|-----------------------------|
| X <sub>21</sub> | X <sub>22</sub> | X <sub>23</sub> | X <sub>24</sub> | X <sub>25</sub> | X <sub>26</sub> |    | X <sub>2v</sub>             |
| X <sub>31</sub> | X <sub>32</sub> | X <sub>33</sub> | X <sub>34</sub> | X <sub>35</sub> | X <sub>36</sub> |    | Χ <sub>3ν</sub>             |
| X <sub>41</sub> | X <sub>42</sub> | X <sub>43</sub> | X <sub>44</sub> | X <sub>45</sub> | X <sub>46</sub> |    | X <sub>4</sub> <sub>V</sub> |
| X <sub>51</sub> | X <sub>52</sub> | X <sub>53</sub> | X <sub>54</sub> | X <sub>55</sub> | X <sub>56</sub> |    | Χ <sub>5</sub> ,            |
| X <sub>61</sub> | X <sub>62</sub> | X <sub>63</sub> | X <sub>64</sub> | X <sub>65</sub> | X <sub>66</sub> |    | Х <sub>6</sub> ,            |
| X <sub>71</sub> | X <sub>72</sub> | X <sub>73</sub> | X <sub>74</sub> | X <sub>75</sub> | X <sub>76</sub> |    | X <sub>7</sub> ,            |
| X <sub>81</sub> | X <sub>82</sub> | X <sub>83</sub> | X <sub>84</sub> | X <sub>85</sub> | X <sub>86</sub> |    | X <sub>8</sub> ,            |
| X <sub>91</sub> | X <sub>92</sub> | X <sub>93</sub> | X <sub>94</sub> | X <sub>95</sub> | X <sub>96</sub> |    | X <sub>9</sub> <sub>\</sub> |
| 1               | :               | :               | :               | ÷               | ÷               | ٠. | :                           |
| X <sub>n1</sub> | X <sub>n2</sub> | X <sub>n3</sub> | X <sub>n4</sub> | X <sub>n5</sub> | X <sub>n6</sub> |    | Xnv                         |

# Coagrupamiento o biclustering

#### Coagrupamiento o biclustering

Técnicas que buscan clústeres tal que:

- Un clúster de ejemplos se define sólo mediante un subconjunto de variables
- Un clúster de variables se define sólo mediante un subconjunto de ejemplos

| X <sub>n1</sub> | X <sub>n2</sub> | X <sub>n3</sub> | X <sub>n4</sub> | X <sub>n5</sub> | X <sub>n6</sub> |     | Χnν              |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----|------------------|
| ÷               | 1               | :               | :               | :               | :               | ٠.  | :                |
| X <sub>91</sub> | X <sub>92</sub> | X <sub>93</sub> | X <sub>94</sub> | X <sub>95</sub> | X <sub>96</sub> |     | X <sub>9\</sub>  |
| X <sub>81</sub> | X <sub>82</sub> | X <sub>83</sub> | X <sub>84</sub> | X <sub>85</sub> | X <sub>86</sub> |     | X <sub>8\</sub>  |
| X <sub>71</sub> | X <sub>72</sub> | X <sub>73</sub> | X <sub>74</sub> | X <sub>75</sub> | X <sub>76</sub> |     | Χ <sub>7\</sub>  |
| X <sub>61</sub> | X <sub>62</sub> | X <sub>63</sub> | X <sub>64</sub> | X <sub>65</sub> | X <sub>66</sub> | ••• | Х <sub>6</sub> , |
| X <sub>51</sub> | X <sub>52</sub> | X <sub>53</sub> | X <sub>54</sub> | X <sub>55</sub> | X <sub>56</sub> |     | X <sub>5</sub> , |
| X <sub>41</sub> | X <sub>42</sub> | X <sub>43</sub> | X <sub>44</sub> | X <sub>45</sub> | X <sub>46</sub> |     | X <sub>4</sub> , |
| X <sub>31</sub> | X <sub>32</sub> | X <sub>33</sub> | X <sub>34</sub> | X <sub>35</sub> | X <sub>36</sub> | ••• | X <sub>3</sub> , |
| X <sub>21</sub> | X <sub>22</sub> | X <sub>23</sub> | X <sub>24</sub> | X <sub>25</sub> | X <sub>26</sub> |     | X <sub>2</sub> , |
| X <sub>11</sub> | X <sub>12</sub> | X <sub>13</sub> | X <sub>14</sub> | X <sub>15</sub> | X <sub>16</sub> | ••• | X <sub>1</sub> , |

# Coagrupamiento o biclustering

#### Coagrupamiento o biclustering

Técnicas que buscan clústeres tal que:

- Un clúster de ejemplos se define sólo mediante un subconjunto de variables
- Un clúster de variables se define sólo mediante un subconjunto de ejemplos
- Los clústeres no son, respecto a ejemplos y variables, ni exclusivos ni exhaustivos Un ejemplo puede pertenecer a uno, varios o ningún clúster

Una variable puede relacionarse con uno, varios o ningún clúster

| X <sub>91</sub> | X <sub>92</sub> | X <sub>93</sub> | X <sub>94</sub> | X <sub>95</sub> | X <sub>96</sub> | **. | X <sub>9</sub> √ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----|------------------|
|                 |                 |                 | X <sub>84</sub> |                 |                 |     | X <sub>8</sub> , |
| X <sub>71</sub> | X <sub>72</sub> | X <sub>73</sub> | X <sub>74</sub> | X <sub>75</sub> | X <sub>76</sub> |     | X <sub>7</sub> , |
| X <sub>61</sub> | X <sub>62</sub> | X <sub>63</sub> | X <sub>64</sub> | X <sub>65</sub> | X <sub>66</sub> |     | X <sub>6</sub>   |
| X <sub>51</sub> | X <sub>52</sub> | X <sub>53</sub> | X <sub>54</sub> | X <sub>55</sub> | X <sub>56</sub> |     | X <sub>5</sub> , |
| X <sub>41</sub> | X <sub>42</sub> | X <sub>43</sub> | X <sub>44</sub> | X <sub>45</sub> | X <sub>46</sub> | ••• | X <sub>4</sub> , |
| X <sub>31</sub> | X <sub>32</sub> | X <sub>33</sub> | X <sub>34</sub> | X <sub>35</sub> | X <sub>36</sub> | ••• | Х3               |
| X <sub>21</sub> | X <sub>22</sub> | X <sub>23</sub> | X <sub>24</sub> | X <sub>25</sub> | X <sub>26</sub> | ••• | X <sub>2</sub>   |
| X <sub>11</sub> | X <sub>12</sub> | X <sub>13</sub> | X <sub>14</sub> | X <sub>15</sub> | X <sub>16</sub> | ••• | X <sub>1</sub>   |



| 1 | 1 | 1 | 5 | 7 | 9 | 2  | 2  | 2  | 2 | 5  | 4 | 2 | 6  | 4  | 2.5 | 7  | 5   |
|---|---|---|---|---|---|----|----|----|---|----|---|---|----|----|-----|----|-----|
| 1 | 1 | 1 | 5 | 7 | 9 | 4  | 4  | 4  | 5 | 8  | 7 | 4 | 12 | 8  | 4   | 10 | 8.5 |
| 1 | 1 | 1 | 5 | 7 | 9 | 6  | 6  | 6  | 3 | 6  | 5 | 5 | 15 | 10 | 5   | 13 | 9   |
| 1 | 1 | 1 | 5 | 7 | 9 | 8  | 8  | 8  | 6 | 9  | 8 | 8 | 24 | 16 | 8   | 19 | 13  |
| 1 | 1 | 1 | 5 | 7 | 9 | 10 | 10 | 10 | 4 | 7  | 6 | 3 | 9  | 6  | 3   | 8  | 6.5 |
| 1 | 1 | 1 | 5 | 7 | 9 | 12 | 12 | 12 | 7 | 10 | 9 | 6 | 18 | 12 | 5.5 | 14 | 9   |

- X Conjunto de datos de entrenamiento (matriz)
- n Número de ejemplos
- v Número de variables
- $I_{n'}$  Vector de índices de longitud n'

Así, definimos una **sub-matriz** X' dados  $I'_n \subset I_n$  e  $I'_v \subset I_v$  donde  $X'_{ij} = X_{I_{n'}[i],I_{v'}[j]}$ 

| 1 | 1 | 1 | 5 | 7 | 9 | 2  | 2  | 2  | 2 | 5  | 4 | 2 | 6  | 4  | 2.5 | 7  | 5   |
|---|---|---|---|---|---|----|----|----|---|----|---|---|----|----|-----|----|-----|
| 1 | 1 | 1 | 5 | 7 | 9 | 4  | 4  | 4  | 5 | 8  | 7 | 4 | 12 | 8  | 4   | 10 | 8.5 |
| 1 | 1 | 1 | 5 | 7 | 9 | 6  | 6  | 6  | 3 | 6  | 5 | 5 | 15 | 10 | 5   | 13 | 9   |
| 1 | 1 | 1 | 5 | 7 | 9 | 8  | 8  | 8  | 6 | 9  | 8 | 8 | 24 | 16 | 8   | 19 | 13  |
| 1 | 1 | 1 | 5 | 7 | 9 | 10 | 10 | 10 | 4 | 7  | 6 | 3 | 9  | 6  | 3   | 8  | 6.5 |
| 1 | 1 | 1 | 5 | 7 | 9 | 12 | 12 | 12 | 7 | 10 | 9 | 6 | 18 | 12 | 5.5 | 14 | 9   |

- X Conjunto de datos de entrenamiento (matriz)
- n Número de ejemplos
- v Número de variables
- $I_{n'}$  Vector de índices de longitud n'

Así, definimos una **sub-matriz** X' dados  $I'_n \subset I_n$  e  $I'_v \subset I_v$  donde  $X'_{ij} = X_{I_{n'}[i],I_{v'}[j]}$  Una **sub-matriz** es un **clúster** si los valores que agrupa siguen un cierto patrón



| 1 | 1 | 1 | 5 | 7 | 9 | 2  | 2  | 2  | 2 | 5  | 4 | 2 | 6  | 4  | 2.5 | 7  | 5   |
|---|---|---|---|---|---|----|----|----|---|----|---|---|----|----|-----|----|-----|
| 1 | 1 | 1 | 5 | 7 | 9 | 4  | 4  | 4  | 5 | 8  | 7 | 4 | 12 | 8  | 4   | 10 | 8.5 |
| 1 | 1 | 1 | 5 | 7 | 9 | 6  | 6  | 6  | 3 | 6  | 5 | 5 | 15 | 10 | 5   | 13 | 9   |
| 1 | 1 | 1 | 5 | 7 | 9 | 8  | 8  | 8  | 6 | 9  | 8 | 8 | 24 | 16 | 8   | 19 | 13  |
| 1 | 1 | 1 | 5 | 7 | 9 | 10 | 10 | 10 | 4 | 7  | 6 | 3 | 9  | 6  | 3   | 8  | 6.5 |
| 1 | 1 | 1 | 5 | 7 | 9 | 12 | 12 | 12 | 7 | 10 | 9 | 6 | 18 | 12 | 5.5 | 14 | 9   |

Clúster 
$$X'$$
 dados  $I'_n\subset I_n$  e  $I'_v\subset I_v$  donde  $X'_{ij}=X_{I_{n'}[i],I_{v'}[j]}$ 

▶ Biclústeres constantes: todos los valores de la sub-matriz son iguales

| 1 | 1 | 1 | 5 | 7 | 9 | 2  | 2  | 2  | 2 | 5  | 4 | 2 | 6  | 4  | 2.5 | 7  | 5   |
|---|---|---|---|---|---|----|----|----|---|----|---|---|----|----|-----|----|-----|
| 1 | 1 | 1 | 5 | 7 | 9 | 4  | 4  | 4  | 5 | 8  | 7 | 4 | 12 | 8  | 4   | 10 | 8.5 |
| 1 | 1 | 1 | 5 | 7 | 9 | 6  | 6  | 6  | 3 | 6  | 5 | 5 | 15 | 10 | 5   | 13 | 9   |
| 1 | 1 | 1 | 5 | 7 | 9 | 8  | 8  | 8  | 6 | 9  | 8 | 8 | 24 | 16 | 8   | 19 | 13  |
| 1 | 1 | 1 | 5 | 7 | 9 | 10 | 10 | 10 | 4 | 7  | 6 | 3 | 9  | 6  | 3   | 8  | 6.5 |
| 1 | 1 | 1 | 5 | 7 | 9 | 12 | 12 | 12 | 7 | 10 | 9 | 6 | 18 | 12 | 5.5 | 14 | 9   |

Clúster 
$$X'$$
 dados  $I'_n \subset I_n$  e  $I'_v \subset I_v$  donde  $X'_{ij} = X_{I_{n'}[i],I_{v'}[j]}$ 

- ▶ Biclústeres constantes: todos los valores de la sub-matriz son iguales
- Biclústeres con filas/columnas constantes: todos los valores de una fila/columnas son iguales pero los de diferentes filas/columnas son diferentes

| 1 | 1 | 1 | 5 | 7 | 9 | 2  | 2  | 2  | 2 | 5  | 4 | 2 | 6  | 4  | 2.5 | 7  | 5   |
|---|---|---|---|---|---|----|----|----|---|----|---|---|----|----|-----|----|-----|
| 1 | 1 | 1 | 5 | 7 | 9 | 4  | 4  | 4  | 5 | 8  | 7 | 4 | 12 | 8  | 4   | 10 | 8.5 |
| 1 | 1 | 1 | 5 | 7 | 9 | 6  | 6  | 6  | 3 | 6  | 5 | 5 | 15 | 10 | 5   | 13 | 9   |
| 1 | 1 | 1 | 5 | 7 | 9 | 8  | 8  | 8  | 6 | 9  | 8 | 8 | 24 | 16 | 8   | 19 | 13  |
| 1 | 1 | 1 | 5 | 7 | 9 | 10 | 10 | 10 | 4 | 7  | 6 | 3 | 9  | 6  | 3   | 8  | 6.5 |
| 1 | 1 | 1 | 5 | 7 | 9 | 12 | 12 | 12 | 7 | 10 | 9 | 6 | 18 | 12 | 5.5 | 14 | 9   |

Clúster X' dados  $I'_n \subset I_n$  e  $I'_v \subset I_v$  donde  $X'_{ij} = X_{I_{n'}[i],I_{v'}[j]}$ 

- ▶ Biclústeres constantes: todos los valores de la sub-matriz son iguales
- Biclústeres con filas/columnas constantes: todos los valores de una fila/columnas son iguales pero los de diferentes filas/columnas son diferentes
- Biclústeres basados en patrones (aditivos o multiplicativos): las diferencias o el ratio entre los elementos de dos filas o columnas cualquiera son constantes

| 1 | 1 | 1 | 5 | 7 | 9 | 2  | 2  | 2  | 2 | 5  | 4 | 2 | 6  | 4  | 2.5 | 7  | 5   |
|---|---|---|---|---|---|----|----|----|---|----|---|---|----|----|-----|----|-----|
| 1 | 1 | 1 | 5 | 7 | 9 | 4  | 4  | 4  | 5 | 8  | 7 | 4 | 12 | 8  | 4   | 10 | 8.5 |
| 1 | 1 | 1 | 5 | 7 | 9 | 6  | 6  | 6  | 3 | 6  | 5 | 5 | 15 | 10 | 5   | 13 | 9   |
| 1 | 1 | 1 | 5 | 7 | 9 | 8  | 8  | 8  | 6 | 9  | 8 | 8 | 24 | 16 | 8   | 19 | 13  |
| 1 | 1 | 1 | 5 | 7 | 9 | 10 | 10 | 10 | 4 | 7  | 6 | 3 | 9  | 6  | 3   | 8  | 6.5 |
| 1 | 1 | 1 | 5 | 7 | 9 | 12 | 12 | 12 | 7 | 10 | 9 | 6 | 18 | 12 | 5.5 | 14 | 9   |

Clúster 
$$X'$$
 dados  $I'_n \subset I_n$  e  $I'_v \subset I_v$  donde  $X'_{ij} = X_{I_{n'}[i],I_{v'}[j]}$ 

- ▶ Biclústeres constantes: todos los valores de la sub-matriz son iguales
- Biclústeres con filas/columnas constantes: todos los valores de una fila/columnas son iguales pero los de diferentes filas/columnas son diferentes
- Biclústeres basados en patrones (aditivos o multiplicativos): las diferencias o el ratio entre los elementos de dos filas o columnas cualquiera son constantes
- Biclústeres con evoluciones coherentes: más allá del valor exacto, busca biclústeres con comportamientos coherentes (aumentan o disminuyen a la vez) por filas, columnas o ambas.



Cheng y Church (2000)

#### Biclustering como problema de optimización

- Algoritmo voraz
- Cada posible biclúster, un valor de credibilidad (¿es realmente un biclúster?)
- Busca submatrices grandes y uniformes
- Se asume (implícito) biclúster constantes, con la posibilidad de cierto comportamiento aditivo por filas y/o columnas

Cheng y Church (2000)

Valor medio sobre una fila de un posible biclúster (sub-matriz):

$$\bar{x}_{il_{v'}} = \frac{1}{|I_{v'}|} \sum_{j \in I_{v'}} x_{ij}$$

Cheng y Church (2000)

Valor medio sobre una fila de un posible biclúster (sub-matriz):

$$\bar{x}_{il_{v'}} = \frac{1}{|I_{v'}|} \sum_{j \in I_{v'}} x_{ij}$$

Valor medio de una columna:

$$\bar{x}_{I_{n'}j} = \frac{1}{|I_{n'}|} \sum_{i \in I_{n'}} x_{ij}$$

Cheng y Church (2000)

Valor medio sobre una fila de un posible biclúster (sub-matriz):

$$\bar{x}_{il_{v'}} = \frac{1}{|I_{v'}|} \sum_{j \in I_{v'}} x_{ij}$$

Valor medio de una columna:

$$\bar{x}_{I_{n'}j} = \frac{1}{|I_{n'}|} \sum_{i \in I_{n'}} x_{ij}$$

Valor medio de la sub-matriz:

$$\bar{x}_{I_{n'},I_{v'}} = \frac{1}{|I_{n'}| \cdot |I_{v'}|} \sum_{i \in I_{n'}} \sum_{i \in I_{n'}} x_{ij}$$

Cheng y Church (2000)

#### Idea

Si se substrae el valor medio del biclúster,  $\bar{x}_{l_{n'},l_{v'}}$ , de la fila,  $\bar{x}_{il_{v'}}$ , y de la columna,  $\bar{x}_{l_{n'}j}$ , el **valor residual** restante tendería a cero.

Valor residual de un punto  $(i,j) \in (I_{n'},I_{v'})$ :

$$R_{I_{n'},I_{v'}}(i,j) = x_{ij} - \bar{x}_{I_{n'},I_{v'}} - \bar{x}_{iI_{v'}} - \bar{x}_{I_{n'}j}$$

Valor residual cuadrático medio de una sub-matriz:

$$\bar{R}_{I_{n'},I_{v'}} = \frac{1}{|I_{n'}| \cdot |I_{v'}|} \sum_{(i,j) \in (I_{n'},I_{v'})} R_{I_{n'},I_{v'}}(i,j)^2$$

Cheng y Church (2000)

de la columna,  $\bar{x}_{l,i}$ , el **valor residual** restante tendería a cero.

Valor residual de un punto  $(i, j) \in (I_{n'}, I_{v'})$ :

$$R_{I_{n'},I_{v'}}(i,j) = x_{ij} - \bar{x}_{I_{n'},I_{v'}} - \bar{x}_{iI_{v'}} - \bar{x}_{I_{n'}j}$$

Valor residual cuadrático medio de una sub-matriz:

$$\bar{R}_{I_{n'},I_{v'}} = \frac{1}{|I_{n'}| \cdot |I_{v'}|} \sum_{(i,j) \in (I_{n'},I_{v'})} R_{I_{n'},I_{v'}}(i,j)^2$$

**Reformulación:** Buscar sub-matrices X' cuyo valor residual medio no supere cierto umbral  $\delta$  y que sean máximas





Cheng y Church (2000)

#### Algoritmo

#### Dadas X y $\delta$ :

- Se elimina **iterativamente** la fila/columna que reduce el valor residual medio en mayor medida hasta que  $\bar{R}_{l_{n'},l_{n'}} < \delta$
- ▶ Se incluye **iterativamente** una fila/columna previamente eliminada (la que menos incremente el valor residual medio) siempre que  $\bar{R}_{l_{n'},l_{v'}} < \delta$

Converge a una submatriz X' localmente máxima con  $\bar{R}_{l_{n'},l_{v'}} < \delta$ 

Cheng y Church (2000)

#### Algoritmo

#### Dadas X y $\delta$ :

- Se elimina **iterativamente** la fila/columna que reduce el valor residual medio en mayor medida hasta que  $\bar{R}_{l,\prime},l_{,\prime}<\delta$
- ▶ Se incluye **iterativamente** una fila/columna previamente eliminada (la que menos incremente el valor residual medio) siempre que  $\bar{R}_{l_{n'},l_{v'}} < \delta$

Converge a una submatriz X' localmente máxima con  $\bar{R}_{I_{n'},I_{n'}}<\delta$ 

#### Procedimiento para encontrar un único biclúster

Para encontrar uno nuevo, sustituir los valores de X' por valor aleatorios y relanzar el algoritmo.

Algoritmo de firma iterativa

#### Idea

El valor medio de una fila/columna de un biclúster debería ser inusualmente alto o bajo en comparación con el valor medio del resto de la fila/columna

| X <sub>11</sub> | X <sub>12</sub> | X <sub>13</sub> | X <sub>14</sub> | X <sub>15</sub> | X <sub>16</sub> |     | X <sub>1v</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----|-----------------|
| X <sub>21</sub> | X <sub>22</sub> | X <sub>23</sub> | X <sub>24</sub> | X <sub>25</sub> | X <sub>26</sub> | ••• | X <sub>2v</sub> |
| X <sub>31</sub> | X <sub>32</sub> | X <sub>33</sub> | X <sub>34</sub> | X <sub>35</sub> | X <sub>36</sub> | ••• | X <sub>3v</sub> |
| X <sub>41</sub> | X <sub>42</sub> | X <sub>43</sub> | X <sub>44</sub> | X <sub>45</sub> | X <sub>46</sub> | ••• | X <sub>4v</sub> |
| X <sub>51</sub> | X <sub>52</sub> | X <sub>53</sub> | X <sub>54</sub> | X <sub>55</sub> | X <sub>56</sub> |     | X <sub>5v</sub> |
| X <sub>61</sub> | X <sub>62</sub> | X <sub>63</sub> | X <sub>64</sub> | X <sub>65</sub> | X <sub>66</sub> |     | X <sub>6v</sub> |
| X <sub>71</sub> | X <sub>72</sub> | X <sub>73</sub> | X <sub>74</sub> | X <sub>75</sub> | X <sub>76</sub> |     | X <sub>7v</sub> |
| X <sub>81</sub> | X <sub>82</sub> | X <sub>83</sub> | X <sub>84</sub> | X <sub>85</sub> | X <sub>86</sub> |     | X <sub>8v</sub> |
| X <sub>91</sub> | X <sub>92</sub> | X <sub>93</sub> | X <sub>94</sub> | X <sub>95</sub> | X <sub>96</sub> |     | X <sub>9v</sub> |
| :               | ÷               | :               | ÷               | :               | :               | ٠.  | :               |
| X <sub>n1</sub> | X <sub>n2</sub> | X <sub>n3</sub> | X <sub>n4</sub> | X <sub>n5</sub> | X <sub>n6</sub> |     | X <sub>nv</sub> |

#### Algoritmo

#### Dadas X y $\epsilon$ :

- ► Hace dos copias de  $X: X^F y X^C$
- ► Selección inicial de filas,  $I_{n'}^{(0)}$
- ▶ Iterativamente, elegir unas columnas,  $I_{v'}^{(t)}$ , con respecto a las filas  $I_{n'}^{(t-1)}$  y una nueva selección de filas  $I_{n'}^{(t)}$  a partir de las columnas  $I_{v'}^{(t)}$

El algoritmo para en la T<sup>th</sup> iteración que satisfaga:

$$\frac{|I_{n'}^{(T)} \setminus I_{n'}^{(T-1)}|}{|I_{n'}^{(T)} \cup I_{n'}^{(T-1)}|} < \epsilon$$

Algoritmo de firma iterativa

# Paso clave: actualización de $I_{n'}^{(t)}$ y $I_{v'}^{(t)}$

- ▶ Se escogen las columnas cuyo valor absoluto medio sobre todas las filas de  $I_{n'}^{(t-1)}$  es mayor que un umbral  $t_C$  por la desviación estándar  $\sigma_C$  de los valores medios de todas las columnas de la matriz original
- ▶ Se escogen las filas cuyo valor absoluto medio sobre todas las columnas de  $I_{v'}^{(t)}$  es mayor que un umbral  $t_F$  por la desviación estándar  $\sigma_F$  de los valores medios de todas las columnas de la matriz original

>> Subconjuntos de filas/cols. con valores medios destacados con respecto al resto de filas/cols. (sólo para un subconjunto de cols./filas) <<

# Paso clave: actualización de $I_{n'}^{(t)}$ y $I_{v'}^{(t)}$

- ▶ Se escogen las columnas cuyo valor absoluto medio sobre todas las filas de  $I_{n'}^{(t-1)}$  es mayor que un umbral  $t_C$  por la desviación estándar  $\sigma_C$  de los valores medios de todas las columnas de la matriz original
- Se escogen las filas cuyo valor absoluto medio sobre todas las columnas de  $I_{v'}^{(t)}$  es mayor que un umbral  $t_F$  por la desviación estándar  $\sigma_F$  de los valores medios de todas las columnas de la matriz original
- >> Subconjuntos de filas/cols. con valores medios destacados con respecto al resto de filas/cols. (sólo para un subconjunto de cols./filas) <<

#### Procedimiento para encontrar un único biclúster

Para encontrar uno nuevo, sustituir los valores de X' por valor aleatorios y relanzar el algoritmo.

#### Consideraciones

- Dependencia de la inicialización
   Ejecutar el algoritmo con diferentes conjuntos iniciales de filas, I<sub>n'</sub><sup>(0)</sup>, puede ser una manera de obtener diferentes biclústeres
- Al menos 3 parámetros (umbrales) a fijar:
  - $\epsilon$  Parámetro de parada-convergencia
  - t<sub>F</sub> Selección de filas
  - f<sub>C</sub> Selección de columnas

Algoritmo de co-agrupamiento espectral

#### Idea

Álgebra lineal para encontrar biclústeres en una matriz X que tiene una estructura de bloques:

- Biclústeres de patrón multiplicativo por fila (realista)
- Detecta estructuras incluso con filas/columnas desordenadas

| 1 | 1 | 11 | 11 | 3  | 3  |
|---|---|----|----|----|----|
| 1 | 1 | 11 | 11 | 3  | 3  |
| 4 | 4 | 7  | 7  | 12 | 12 |
| 4 | 4 | 7  | 7  | 12 | 12 |

#### Algoritmo de co-agrupamiento espectral

- ► La estructura de bloques de X se refleja en los vectores propios de XX<sup>T</sup> y X<sup>T</sup>X
- ▶ Los valores propios de XX<sup>T</sup> y de X<sup>T</sup>X son los mismos:
  f = Xe, donde e es un vector propio de X<sup>T</sup>X, f lo es de XX<sup>T</sup> y ambos tienen el mismo valor propio

| 1 | 1 | 11 | 11 | 3  | 3  |
|---|---|----|----|----|----|
| 1 | 1 | 11 | 11 | 3  | 3  |
| 4 | 4 | 7  | 7  | 12 | 12 |
| 4 | 4 | 7  | 7  | 12 | 12 |

$$e = (p, p, q, q, o, o)^T y f = (r, r, s, s)^T$$

Algoritmo de co-agrupamiento espectral

#### Algoritmo

- Normalizar X:  $\check{X} = F^{-1/2}XC^{-1/2}$ Con F:  $(n \times n)$ -matriz diagonal con  $F_{ii} = \sum_{j \in \{1,...,v\}} x_{ij}$  $Y : (v \times v)$ -matriz diagonal con  $C_{jj} = \sum_{i \in \{1,...,n\}} x_{ij}$
- ▶ Obtener la descomposición en valores singulares:  $\breve{X} = A\Sigma B^T$
- ► Clustering por filas:
  - Selectionar los p mejores vectores propios de B para construir la  $(v \times p)$ -matriz B'
  - ▶ Proyectar X en ese espacio p-dimensional:  $\check{X}B'$
  - ► Aplicar K-means a esa matriz resultante
  - ► Las filas asignadas por K-means al mismo clúster pertenecen al mismo bloque de X
- ► Clustering por columnas:
  - ▶ Mismo procedimiento usando A y  $\check{X}^T A'$

Algoritmo de co-agrupamiento espectral

#### Consideraciones

- ► Gran número de parámetros: *p*
- ► Se basa en *K*-means
- ► El número de K en filas y columnas puede ser diferente

Agrupamiento acoplado de doble sentido (CTWC)

#### Idea

Aplicar clustering sobre las filas (matriz X) y las columnas (matriz  $X^T$ ) de manera iterativa y jerárquica

Cada clúster de filas se obtendría a partir de un clúster previo de columnas y viceversa.

Estrategia general: permite usar cualquier algoritmo de clustering estándar

Agrupamiento acoplado de doble sentido (CTWC)

#### Algoritmo

Dada la matriz X y un algoritmo de clustering estándar

- ► Se guarda un registro de particiones de filas F y columnas C Se parte de una partición única de filas en F y de columnas en C
- ► Iterativamente:
  - ▶ Definir una sub-matriz X' con una partición de F y otra de C
  - ▶ Aplicar el algoritmo de clustering estándar a X' y a  $(X')^T$
  - ▶ Añadir a F y C los clústeres estables encontrados Se mantiene la traza de la jerarquía a través de la cual han surgido los respectivos (sub)clústeres
- ▶ Parar cuando no se detectan más clústeres estables
- \*\* Una correcta implementación implica asegurarse de que un par de particiones de F y C se considera sólo una vez.



Agrupamiento acoplado de doble sentido (CTWC)

#### Consideraciones

- Rendimiento fuertemente dependiente del rendimiento del algoritmo estándar
- ► Importancia de la medida de estabilidad considerada para detectar clústeres relevantes
- ► La parametrización de los algoritmos básicos puede dificultar su integración con esta estrategia
- ► La naturaleza jerárquica de los resultados de esta estrategia suele aportar **información relevante**



# Gracias