

LogicLink: A GUI-Driven Approach to Intelligent Reasoning Model

This presentation introduces LogicLink. It is a novel approach to intelligent reasoning model. LogicLink uses a user-friendly GUI. We aim to improve decision-making processes.

Kratu Gautam (A-27) & Geetank Sahare (A-28)

Introduction

Overview

- 1. Introduction
- 2. Justifications for Selecting the Title
- 3. Problem Statement
- 4. Literature Survey
- 5. Block Diagram
- 6. Expected Result
- 7. Work plan
- 8. References

Benefits

- 1. Functional Integrated System
- 2. Enhanced User Experience
- 3. Technical Achievements
- 4. Validation and Testing Results
- 5. Documentation and Deployment
- 6. Presentation and Demonstration

Justifications for Selecting the Title

1 Clarity

The title clearly communicates the system's core function.

Relevance

It emphasizes the link between GUI and reasoning models.

3 Impact

It suggests a user-friendly, powerful decision tool.

Problem Statement

Complexity

Current reasoning models are too complex for many users.

Accessibility

They lack intuitive interfaces, limiting accessibility.

Efficiency

Decision-making processes are inefficient and time-consuming.

Technical Stack

- **Programming Language:** Python 3.x Version
- Machine Learning: Scikit-learn, PyTorch
- Model Explainability: ELI5
- **Architecture Pattern:** MVC(Model View Controller)
- **GUI:** Desktop: PyQt or Web: React.js (with Flask backend)
- APIs: REST, WebSocket (Flask-SocketIO)
- **UI/UX Design:** Adobe XD
- **Deployment:** Desktop: Pylnstaller or Web: Docker & Heroku

Block Diagram

Expected Result

Versatile Boilerplate

Our skeletal model can be trained using specific data to develop it into expert system.

Increased Accessibility

Wider user adoption through intuitive interface.

Enhanced Efficiency

Faster decision-making processes. Smooth Graphical User Interface.

Specialized Model

Tailored solutions for specific decision scenarios.

Work Plan

References

- **Bishop, C. M. (2006).** *Pattern Recognition and Machine Learning.* Springer.
- **Géron, A. (2022).** Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (3rd ed.). O'Reilly Media.
- Lee, J., & Kim, S. (2021). Visualizing Machine Learning Decisions: A Toolkit for Explainable Al. Journal of Artificial Intelligence Research, 45(3), 123–145.
- Patel, R., Smith, T., & Wong, L. (2019). Bayesian Networks in Healthcare: A GUI-Driven Diagnostic Tool. IEEE Transactions on Biomedical Engineering, 66(5), 789–801.
- Raschka, S., & Mirjalili, V. (2023). Python Machine Learning (4th ed.). Packt Publishing.
- **Summerfield, M. (2020).** *Rapid GUI Programming with Python and Qt.* Addison-Wesley Professional.
- VanderPlas, J. (2016). Python Data Science Handbook. O'Reilly Media.
- **Zhang, Y. (2022).** MVC Frameworks for Al: A Case Study on Flask and React Integration.

 Proceedings of the ACM Symposium on User Interface Software and Technology (UIST), 45–58.
- **Shapley, L. S. (1953).** A Value for n-Person Games. Annals of Mathematical Studies, 28(2), 307–317.
- **Wong, A., & Rao, P. (2023).** Bridging the Gap: Explainable AI for Non-Technical Users. AI & Society, 38(1), 1–15.
- **Python Software Foundation. (2023).** *Python Documentation: Graphical User Interfaces.* https://docs.python.org/3/library/tkinter.html
- Flask Documentation. (2023). Flask: Web Development with Python. https://flask.palletsprojects.com/

Thank You

Thank you for your attention! LogicLink promises to reshape decision-making. With your support, we will achieve this goal.