Вероятность — задачи

1 Kallenberg 2002 — Глава 4

- 1.
- 2.
- 3.

2 Kallenberg $2002 - \Gamma$ лава 5

- 1.
- 2.
- 3.

3 Kallenberg $2002 - \Gamma$ лава 6. Условное матожидание

Как доказать предложение 6.6 из Калленберга? В первую сторону: дано, что

$$P(H \mid \mathcal{F}, \mathcal{G}) = P(H \mid \mathcal{G}), H \in \mathcal{H}$$

Покажем, что

$$\mathcal{F} \coprod_{\mathcal{G}} \mathcal{H}$$
.

Для этого надо показать, что при $F \in \mathcal{F}, H \in \mathcal{H}$

$$P^{\mathcal{G}}(F \cap H) = P^{\mathcal{G}}F \times P^{\mathcal{G}}H.$$

Иными словами,

$$\mathbb{E}(1_{F\cap H}\mid \mathcal{G}) = \mathbb{E}(1_F\mid \mathcal{G}) \times \mathbb{E}(1_H\mid \mathcal{G}).$$

Имеем

$$\mathbb{E}(1_{F \cap H} \mid \mathcal{G}) = \mathbb{E}(1_{F}1_{H} \mid \mathcal{G}) = \mathbb{E}(\mathbb{E}(1_{F}1_{H} \mid \mathcal{F}, \mathcal{G}) \mid \mathcal{G}) =$$

$$= \mathbb{E}(1_{F}\mathbb{E}(1_{H} \mid \mathcal{F}, \mathcal{G}) \mid \mathcal{G}) = \mathbb{E}(1_{F}\mathbb{E}(1_{H} \mid \mathcal{G}) \mid \mathcal{G}) = \mathbb{E}(1_{H} \mid \mathcal{G}) \times \mathbb{E}(1_{F} \mid \mathcal{G}).$$

А в другую сторону?

1. Пусть дано $(\xi, \eta) = {}^{d}(\xi', \eta)$. Покажем, что

$$P(\xi \in B \mid \eta) = P(\xi' \in B \mid \eta).$$

Из равенства по распределению следует, что для любых измеримых A,B

$$P(\xi \in B, \eta \in A) = P(\xi' \in B, \eta \in A).$$

Пусть

$$\eta_1 = \mathbb{E}(\mathbb{1}_{\varepsilon \in B} \mid \eta), \eta_2 = \mathbb{E}(\mathbb{1}_{\varepsilon' \in B} \mid \eta).$$

Тогда имеем

$$\mathbb{E}(\eta_1 \mathbb{1}_{\eta \in A}) = \mathbb{E}(\mathbb{1}_{\xi \in B} \mathbb{1}_{\eta \in A}) = P(\xi \in B, \eta \in A) =$$
$$= P(\xi' \in B, \eta \in A) = \mathbb{E}(\mathbb{1}_{\xi' \in B} \mathbb{1}_{\eta \in A}) = \mathbb{E}(\eta_2 \mathbb{1}_{\eta \in A}).$$

Итак, η_1 и η_2-F_η -измеримые, причём интегралы от них по любому множеству из F_η совпадают. Значит, они совпадают почти наверное. Получаем

$$P(\xi \in B \mid \eta) = \eta_1 = \eta_2 = P(\xi' \in B \mid \eta) \ a.s.$$

В другую сторону — примерно так же. Сначала переписываем

$$P(\xi \in B \mid \eta) = P(\xi' \in B \mid \eta)$$

как $\eta_1=\eta_2$ a.s. Интегрируя по множеству $\mathbb{1}_{\eta\in A}$ из F_η , получаем

$$P(\xi \in B, \eta \in A) = P(\xi' \in B, \eta \in A).$$

А из этого равенства уже монотонным классом получаем равенство по распределению $(\xi, \eta) = d(\xi', \eta)$.

2.

3.

4 Kallenberg 2002 — Глава 7. Мартингалы

1. $\{\sigma = \tau\} \in F_{\sigma} \cap F_{\tau}$. Достаточно показать, что

$$\{\sigma < \tau\} \in F_{\sigma} \cap F_{\tau}.$$

Отсюда с учётом аналогичного влючения для $\{ au < \sigma\}$ будет следовать, что

$$\{\sigma \neq \tau\} \in F_{\sigma} \cap F_{\tau}.$$

Итак, имеем

$$\{\sigma < \tau\} \cap \{\tau \le t\} = \bigcup_{0 < q < t, q \in \mathbb{Q}} (\{\sigma < q\} \cap \{q < \tau \le t\}) \in F_t.$$

Это верно для любого t, и по определению F_{τ} получаем

$$\{\sigma < \tau\} \in F_{\tau}$$
.

Далее,

$$\{\sigma < \tau\} \cap \{\sigma \leq t\} = \{\sigma < \tau, \tau \leq t\} \cup \{\sigma \leq t, \tau > t\}.$$

Но оба последних события лежат в F_t . Дейтвительно,

$$\{\sigma < \tau, \tau \le t\} \in F_t$$

мы доказали выше, а

$$\{\sigma \le t, \tau > t\} = \{\sigma \le t\} \cap \{\tau > t\} \in F_t.$$

Итак,

$$\{\sigma < \tau\} \cap \{\sigma \le t\} \in F_t$$

для любого t, и по определению F_{σ} получаем $\{\sigma < \tau\} \in F_{\sigma}$.

Далее, почему $F_{\sigma} = F_{\tau}$ на $\{\sigma = \tau\}$? Пусть $A \subseteq \{\sigma = \tau\}, A \in F_{\sigma}$. Покажем, что $A \in F_{\tau}$. Из $A \in F_{\sigma}$ следует, что для любого t

$$A \cap \{\sigma \le t\} \in F_t$$
.

Поскольку на множестве $A \sigma = \tau$, то для любого t

$$A \cap \{\tau \le t\} = A \cap \{\sigma \le t\} \in F_t.$$

По определению F_{τ} , $A \in F_{\tau}$. Вот и доказали всё.

Осталось объяснить, почему F_{τ} может отличаться от F_{∞} на $\{\tau = \infty\}$. Это ясно. Если $\tau = \infty$ всегда, то по определению F_{τ} , в F_{τ} входят все множества из сигма-алгебры A, а не только из F_{∞} .

- 2. Стандартная задача.
- 3. Пример слабо опционального, но не опционального момента. Возьмём, как предлагает Калленберг. Берём бернуллиевскую случайную величину $\xi, P(\xi=1) = P(\xi=-1) = \frac{1}{2}$, и положим

$$F_0 = {\emptyset, \Omega}, F_t = \sigma(\xi), t > 0.$$

Пусть

$$\tau = \begin{cases} 0, \xi = -1, \\ 1, \xi = 1. \end{cases}$$

Тогда для t > 0 имеем

$$\{\tau < t\} = \begin{cases} \{\xi = -1\}, t \le 1, \\ \Omega, t > 1. \end{cases}$$

В любом случае, $\{\tau < t\} \in F_t = \sigma(\xi), t > 0$. Поэтому τ слабо опциональный. Но $\{\tau \le 0\} = \{\tau = 0\} = \{\xi = -1\} \notin F_0$. Поэтому τ не опциональный.

- 4. Скучно решать это.
- 5. Задача про прогрессивные процессы. Прогрессивность это измеримость относительно соответствующей сигма-алгебры. Итак, сначала покажем, что класс множеств $A \in \Omega \times \mathbb{R}_+$, таких, что процесс 1_A прогрессивен, образует сигма-алгебру. Да это вроде очевидно! Прогрессивность 1_A означает, что для любого t

$$A \cap (\Omega \times [0, t]) \in F_t \otimes \mathcal{B}[0, t].$$

Ясно, что это свойство сохраняется счётным объединением. И для перехода к дополнению всё тоже очевидно. Итак, да, сигма-алгебра.

Почему прогрессивность процесса равносильна его измеримости относительно этой сигма-алгебры? Допустим, процесс X прогрессивен. Покажем, что он измерим относительно этой сигма-алгебры. Нужно проверить, что для любого a множество $\{X>a\}$ лежит в прогрессивной сигма-алгебре. А оно там лежит, если для любого t

$${X > a} \cap (\Omega \times [0, t]) \in F_t \otimes \mathcal{B}[0, t].$$

А это так, если X прогрессивен. И в другую сторону аналогично. Короче, пусть Калленберг сам решает такие задачи! Одни проверки.

9. X^1, X^2, \ldots — субмартингалы, причём $X = \sup_n X^n$ интегрируем. Покажем, что X — тоже субмартингал. Фиксируем t > s. Имеем

$$\forall n \ X(t) > X_n(t),$$

$$\forall n \ \mathbb{E}(X(t) \mid F_s) \ge \mathbb{E}(X_n(t) \mid F_s) \ge X_n(s),$$

а поскольку это для любого n, то

$$\mathbb{E}(X(t) \mid F_s) \ge \sup_n X_n(s) = X(s).$$

Вот и доказали. Дальше сложнее. Покажем, что если $\sup_n |X_n|$ интегрируем, то и $\limsup_n X_n$ — субмартингал. Фиксируем s < t. Пусть

$$\xi_n = \sup(X_n(t), X_{n+1}(t), X_{n+2}(t), \ldots),$$

$$\eta_n = \sup(X_n(s), X_{n+1}(s), X_{n+2}(s), \ldots).$$

Пусть также $\xi = \sup_n |X_n(t)|, \eta = \limsup_n X_n(s)$. Имеем

$$\lim_{n \to \infty} \xi_n = \lim \sup_n X_n(t) \ a.s., |\xi_n| \le \xi \ a.s..$$

По условию, ξ интегрируема. Значит, по теореме Лебега об ограниченной сходимости,

$$\xi_n \xrightarrow[n \to \infty]{L_1} \limsup_n X_n(t).$$

Условное матожидание при условии F_s — ограниченный оператор на $L_1(F_t)$, см. начало предыдущей главы. Поэтому

$$\zeta_n = \mathbb{E}(\xi_n \mid F_s) \xrightarrow[n \to \infty]{L_1} \mathbb{E}(\limsup_n X_n(t) \mid F_s) = \zeta.$$

Из условия субмаритингальности,

$$\eta_n \leq \mathbb{E}(\xi_n \mid F_s) = \zeta_n.$$

Но аналогичные рассуждения для момента s

$$\eta_n \xrightarrow[n \to \infty]{L_1} \limsup_n X_n(s) = \eta.$$

Итак, имеем две последовательности случайных величин $\zeta_n \geq \eta_n$, и обе сходятся в L_1 :

$$\zeta_n \xrightarrow[n \to \infty]{L_1} \zeta, \eta_n \xrightarrow[n \to \infty]{L_1} \eta.$$

Покажем, что

$$\zeta \geq \eta \ a.s.$$

Действительно,

$$\zeta_n - \eta_n \ge 0, \zeta_n - \eta_n \xrightarrow[n \to \infty]{L_1} \zeta - \eta.$$

Но L_1 -предел неотрицательных случайных величин неотрицателен почти наверное. Действительно, если λ_n — неотрицательные случайные величины и

$$\lambda_n \xrightarrow[n \to \infty]{L_1} \lambda,$$

$$A = \{ \omega \in \Omega \mid \lambda(\omega) < 0 \},\$$

то при P(A)>0 имеем $\mathbb{E}\lambda_n\mathbb{1}_A\to\mathbb{E}\lambda\mathbb{1}_A<0$, противоречие. Кстати, откуда следует сходимость $\mathbb{E}\lambda_n\mathbb{1}_A\to\mathbb{E}\lambda\mathbb{1}_A, n\to\infty$? Эта сходимость следует из

$$|\mathbb{E}\lambda_n\mathbb{1}_A - \mathbb{E}\lambda\mathbb{1}_A| \leq \mathbb{E}|(\lambda_n - \lambda)\mathbb{1}_A| \leq \mathbb{E}|\lambda_n - \lambda| \to 0, n \to \infty.$$

Вот всё и доказали. Неравенство $\zeta \geq \eta$ a.s. и есть нужное нам неравенство

$$\mathbb{E}(\limsup_{n} X_n(t) \mid F_s) \ge \lim \sup_{n} X_n(s),$$

показывающее субмартингальность процесса $\limsup_n X_n$.

10. Разложение Дуба интегрируемой случайной последовательности $X = (X_n)$ зависит от фильтрации. Возьмём

$$F_n = \sigma(X_0, X_1, \dots, X_n), G_n = \sigma(X_0, X_1, \dots, X_n, X_{n+1}) = F_{n+1}.$$

Тогда X согласован и с фильтрацией F_n , и с фильтрацией G_n . Относительно фильтрации G_n X является предсказуемой последовательностью, и разложение Дуба имеет вид

$$X_n = X_0 + (X_n - X_0).$$

Когда у X относительно фильтрации F_n такое же разложение Дуба? Если оно то же, то X_n-X_0 должно быть при каждом $n\geq 1$ F_{n-1} -измеримым. Тогда и X_n при каждом $n\geq 1$ F_{n-1} -измеримо. Но тогда при каждом $n\geq 1$

$$\sigma(X_0, X_1, \dots, X_{n-1}) = \sigma(X_0, X_1, \dots, X_n),$$

$$F_{n-1} = F_n.$$

Тогда все сигма-алгебры F_n совпадают, и при каждом $n \ X_n$ является X_0 -измеримой величиной.

11.

12.

13.

14. Доказательство леммы 4.15 дословно переносится на случай, когда ξ_n — мартингал-разность для L_2 -интегрируемого мартингала M. Итак, для L_2 -ограниченного мартингала имеет место неравенство Колмогорова

$$P(\sup_{n} |M_n| > r) \le r^{-2} \sup_{n} \mathbb{E}M_n^2.$$

Но можно такое вывести и из леммы 7.15. Эта лемма даёт для субмартингала X

$$rP(\sup_{t} |X_t| \ge r) \le 3 \sup_{t} \mathbb{E}|X_t|.$$

Мы можем взять в качестве X субмартингал M^2 (квадрат мартингала — субмартингал). Имеем тогда из этого неравенства

$$r^{2}P(\sup_{n}|M_{n}| \ge r) = r^{2}P(\sup_{n}X_{n} \ge r^{2}) \le 3\sup_{n}\mathbb{E}|X_{n}| = 3\sup_{n}\mathbb{E}M_{n}^{2}.$$

А теперь мы можем имитировать доказательство леммы 4.16. Пусть n фиксировано, построим случайный процесс $X^{(n)}$ на \mathbb{Z}_+ ,

$$X_k^{(n)} = (M_{n+k} - M_n)^2, k \ge 0.$$

Тогда $X^{(n)}$ — субмартингал. Имеем для него из 7.15

$$P(\sup_{k\geq 0} X_k^{(n)} \geq \epsilon^2) \leq 3\epsilon^{-2} \sup_{k\geq 0} \mathbb{E}|X_k^{(n)}| = 3\epsilon^{-2} \mathbb{E}(M_{n+k} - M_n)^2 \leq$$

$$\leq 3\epsilon^{-2} \sum_{k\geq 0} \mathbb{E}(M_{n+k+1} - M_{n+k})^2 \to 0, n \to \infty.$$

Отсюда

$$P(\sup_{k\geq 0}(M_{n+k}-M_n)^2 > \epsilon^2) \to 0, n \to \infty$$

для любого $\epsilon > 0$. Итак,

$$\sup_{k \ge n} |M_k - M_n| \xrightarrow[n \to \infty]{P} 0.$$

Значит, для некоторой подпоследовательности n_s

$$\sup_{k \ge n_s} |M_k - M_{n_s}| \xrightarrow[s \to \infty]{a.s.} 0.$$

Ho если $\sup_{k \geq n_s} |M_k - M_{n_s}| \leq \epsilon$, то

$$\sup_{k_1, k_2 \ge n_s} |M_{k_1} - M_{k_2}| \le 2\epsilon.$$

Отсюда следует, что последовательность $\{M_n\}$ фундаментальна почти наверное. Значит, сходится почти наверное. Ну а сходимость в L_2 по сравнению с этим тривиальна и следует из фундаментальности в L_2 последовательности M_n :

$$\sup_{k\geq 0} \mathbb{E}(M_{n+k} - M_n)^2 \leq \sum_{k\geq 0} \mathbb{E}(M_{n+k+1} - M_{n+k})^2 \to 0, n \to \infty.$$

15. Мартингал, который L^1 -ограничен, но не равномерно интегрируем. Это известный пример. Берём последовательность независимых случайных величин ξ_n , каждая из которых принимает значения 0 и 2 с равными вероятностями $\frac{1}{2}$. Пусть

$$X_n = \xi_1 \xi_2 \dots \xi_n.$$

Тогда $\mathbb{E}|X_n|=\mathbb{E}X_n=1$, но X_n не равномерно интегрируем. А в непрерывном времени пример? Это экспоненциальные мартингалы.

$$X_t = e^{w_t - t/2}.$$

Ясно, что $\mathbb{E}X_t = \mathbb{E}X_0 = 1$. Почему X_t не равномерно интегрируем? Потому что

$$X_t \xrightarrow[t\to\infty]{a.s.} 0.$$

Если бы X_t был равномерно интегрируем, то сходимость к 0 была бы и в L^1 , а её нет, потому что

$$\mathbb{E}X_t = 1 \neq 0.$$

5 Kallenberg $2002 - \Gamma$ лава 12

- 1.
- 2.
- 3.

6 Protter — Глава 2

1. $f: \mathbb{R} \to \mathbb{R}$ непрерывна за исключением одной точки, в которой у неё скачок. Показать, что $X_t = f(B_t)$ не семимартингал.

Решение задачи опирается на то, что в окрестности момента достижения любого уровня броуновское движение бесконечно много раз проходит через этот уровень.

Фиксируем t>0 и покажем, что X^t — не тотальный семимартингал. Пусть a — точка скачка f. Пусть

$$\tau_a = \inf\{t > 0 \colon B_t = a\}.$$

Для $\epsilon>0$ определим последовательность моментов остановки τ_n^ϵ следующим образом:

$$\tau_0^{\epsilon} = \inf\{t > 0 \colon B_t = a - \epsilon\},$$

$$\tau_{2n+1}^{\epsilon} = \inf\{t > \tau_{2n}^{\epsilon} \colon B_t = a + \epsilon\},$$

$$\tau_{2n}^{\epsilon} = \inf\{t > \tau_{2n-1}^{\epsilon} \colon B_t = a - \epsilon\}.$$

Из свойств броуновского движения

$$\max\{n > 0: \tau_n^{1/m} < t\} \xrightarrow[m \to \infty]{a.s.} \infty$$

на множестве $\{\tau_a < t\}$. Пусть $h_m \to \infty$ такая детерминированная последовательность, что

$$0 < h_m < \sqrt{m}$$

И

$$P(\max\{n > 0: \tau_n^{1/m} < t\} > h_m) \ge \frac{1}{2} P\{\tau_a < t\}.$$

Определим случайные процессы H_m таким образом:

$$H_m(t) = \begin{cases} 0, t \le \tau_0^{1/\sqrt[3]{h_m}}, \\ \frac{(-1)^n}{\sqrt{h_m}}, t \in (\tau_n^{1/\sqrt[3]{h_m}}, \tau_{n+1}^{1/\sqrt[3]{h_m}}], n < m, \\ 0, t > \tau_m^{1/\sqrt[3]{h_m}} \end{cases}$$

Тогда

$$|I_{X^t}(H_m)| \ge \frac{1}{h_m^{5/6}} \left(m \wedge \max\{n > 0 : \tau_n^{1/m} < t\} \right) - \frac{1}{\sqrt{h_m}} |\sup_{s \in [0,t]} f(B_s) - \inf_{s \in [0,t]} f(B_s)|.$$

C вероятностью не меньше, чем $\frac{1}{2}P\{ au_a < t\} = const > 0$ имеем

$$\max\{n > 0 \colon \tau_n^{1/m} < t\} > h_m,$$

$$|I_{X^t}(H_m)| > h_m^{1/6} - \frac{1}{\sqrt{h_m}} |\sup_{s \in [0,t]} f(B_s) - \inf_{s \in [0,t]} f(B_s)| \xrightarrow[m \to \infty]{a.s.} \infty.$$

Это противоречит сходимости по вероятности

$$I_{X^t}(H_m) \xrightarrow[m \to \infty]{P} 0.$$

Значит, X^t — не тотальный семимартингал, а X — не семимартингал.

- 2.
- 3.