Ring Isomorphisms

Definition

Let R and R' be rings. To say that $\phi: R \to R'$ is a *ring isomorphism* means:

- 1). ϕ is a bijection
- 2). ϕ is a ring homomorphism

If so, then R and R' are said to be isomorphic, denoted $R \simeq R'$.

Lemma

Let $\phi: R \to R'$ be an isomorphism of rings. $\phi^{-1}: R' \to R$ exists and is also an isomorphism of rings.

Proof

 ϕ is bijective, so ϕ^{-1} exists and is bijective

```
Assume x, y \in R'

\exists a \in R, \phi(a) = x

\exists b \in R, \phi(b) = y

\phi^{-1}(x) = a

\phi^{-1}(y) = b

\phi^{-1}(x + y) = \phi^{-1}(\phi(a) + \phi(b)) = \phi^{-1}(\phi(a + b)) = (\phi^{-1}\phi)(a + b) = a + b = \phi^{-1}(x) + \phi^{-1}(y)

\phi^{-1}(xy) = \phi^{-1}(\phi(a)\phi(b)) = \phi^{-1}(\phi(ab)) = (\phi^{-1}\phi)(ab) = ab = \phi^{-1}(x)\phi^{-1}(y)
```

Lemma

Let $\phi:R\to R'$ and $\mu:R'\to R''$ be isomorphisms of rings. $\mu\phi:R\to R''$ is also an isomorphism of rings.

Proof

Assume
$$(\mu\phi)(a)=(\mu\phi)(b)$$

 $\mu(\phi(a))=\mu(\phi(b))$
 μ is a bijection, so μ^{-1} exists
 $\phi(a)=\phi(b)$
 ϕ is a bijection, so ϕ^{-1} exists
 $a=b$
 $\therefore \mu\phi$ is one-to-one.
Assume $z\in R''$
 $\exists\,y\in R', \mu(y)=z$
 $\exists\,x\in R, \phi(x)=y$
 $(\mu\phi)(x)=\mu(\phi(x))=\mu(y)=z$

 $\therefore \mu \phi$ is onto, and thus a bijection.

Assume $a, b \in R$

$$(\mu\phi)(a+b) = \mu(\phi(a+b)) = \mu(\phi(a) + \phi(b)) = \mu(\phi(a)) + \mu(\phi(b)) = (\mu\phi)(a) + (\mu\phi)(b)$$
$$(\mu\phi)(ab) = \mu(\phi(ab)) = \mu(\phi(a)\phi(b)) = \mu(\phi(a))\mu(\phi(b)) = (\mu\phi)(a)(\mu\phi)(b)$$

 $\therefore \mu \phi$ is a homomorphism, and thus an isomorphism.

Theorem

Isomorphism is an equivalence relation.

Proof

Reflexive: Assume R is a ring

Let
$$\phi = \iota_R$$

 ι_R is a ring isomorphism on R
 $\therefore R \simeq R$

Symmetric: Assume $R \simeq R'$

```
There exists ring isomorphism \phi:R\to R'
So there exists ring isomorphism \phi^{-1}:R'\to R (lemma) \therefore R'\simeq R
```

Transitive: Assume $R \simeq R'$ and $R' \simeq R''$

There exists ring isomorphism $\phi:R\to R'$ There exists ring isomorphism $\mu:R'\to R''$

So there exists ring isomorphism $\mu\phi:R\to R''$ (lemma)

 $\therefore R \simeq R''$