L Logique et représentation des connaissances
Spécialités DAC et Androide

Enseignants:

Nicolas Maudet (resp. Androide)
Jean-Gabriel Ganascia (resp. DAC)
Gauvain Bourgne
Colette Faucher* (projet)
Marie-Jeanne Lesot

ACASA – Faculté des Sciences - Sorbonne Université

Informations Générales

- I
- P
- 6

- C
- N
- R
- S

- Cours: amphithéâtre 55B puis 34A, mercredi, 13H45-15H45
- **Premier cours:** 14 septembre 2022
- **Dernier cours**: 7 décembre 2022
- Examens répartis:
 - Examen réparti n° 1: semaine du 7 novembre 2022
 - Examen réparti n° 2: 11 janvier 2023
- Projet:
 - Sujet donné: semaine du 17 octobre
 - Rendu: 1^{er} décembre au plus tard
- Barème:
 - Note = Examen réparti 1*0,4 + Examen réparti 2*0,4 + projet*0,2
 - Note rattrapage = Examen rattrapage*0,8 + projet*0,2

Remarque: La note de projet est conservée pour le rattrapage

Ī

P

Informations Générales (suite)

- TD/TME
 - Lundi après-midi (G1 et G2),
 - jeudi matin(G4 et G5)

Moodle: https://moodle-sciences-22.sorbonne-universite.fr/course/view.php?id=2799

Agenda: https://cal.ufr-info-p6.jussieu.fr/master/

Cours LRC: logique(s) et représentation(s) des connaissances

Introduction à la logique des propositions et des prédicats du premier ordre.
 Règles de résolution.
 Méthode des tableaux.

Représentation des connaissances

- 2. Unification et Prolog
 Représentations sémantiques, graphes
 conceptuels.
- 3. Logiques de description (syntaxe et sémantique).
- 4. Logiques de description:
 raisonnement automatique (méthode
 des tableaux et subsomption
 structurelle)

Logiques modales

- 5.Introduction aux logiques modales
- 6.Logiques épistémique
- 7. Connaissances communes, connaissances partagées

Représentations du temps

- 8.Intervalles d'Allen
- 9. Réseaux de Petri
- 10. Automates temporisés

History of Logic (-500 - ...)

- 1. Describing the correct way of reasoning **Philosophy** (Aristotle, ...)
- 2. Mathematizing Logic Philosophy (Leibniz, Boole, ...)
- 3. Mechanizing Mathematics Mathematics (Hilbert, Herbrand, Tarski...)
- 4. Computerizing the Proof Mathematics, Logic, AI & Computer Science (...)

I

P

6

C

N

R

S

Représentation en logique

- Signe, sens, sémantique et vérité
- Proposition
- Le langage de la logique propositionnelle
- Limites de la logique propositionnelle
- La logique des prédicats
- Sémantique de la logique des prédicats

I

P

6

C

N

R

S

Sign

• Expression, Meaning, References

- Sign: graphic with meaning (i.e. intended to express)

Ī

P

6

N

S

Proposition

- Meaning = truth value ∈ {true, false}
 - "Earth is blue"
 - "The green square is behind the red triangle"
 - "A book was published"

I

P

6

N

S

The Propositional Language

- Atom: elementary propositions
 - "It was raining"
 - "The cube is green"
- Connectors
 - Binary: $\langle \langle \wedge \rangle \rangle$, $\langle \langle \vee \rangle \rangle$, $\langle \langle \rightarrow \rangle \rangle$
 - Unary: « ¬ »
- Composed Propositions
 - If A and B are propositions, «¬A»,
 «A∧B», «A∨B», «A→B» are propositions
- Examples:

$$- F_1 = ((p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r)))$$

$$- F_2 = ((p \land q \land \neg r) \lor ((\neg p \lor q) \rightarrow (\neg p \lor r)))$$

I

P

6

N

S

Propositional Logic: semantic

- Truth Tables
- Satisfiability, validity, unsatisfiability
- Logical Consequence
- Limitation of Truth Tables

Truth Table

- Every atom a has a *truth value*: true (v) or false (f)
- How to compute the truth value of a composed proposition?

$$\begin{array}{c|c} \text{$\langle A \lor B \rangle$} \\ \hline \text{$A \lor B$} \\ \hline \text{v} \\ \hline \text{f} \\ \hline \text{v} \\ \hline \text{v} \\ \hline \text{f} \\ \hline \end{array}$$

«A	\rightarrow	$\langle\langle \neg A \rangle\rangle$			
A\B	V	f		A	
V	V	f		V	f
f	V	V		f	V

Ī

P

C

N

R

S

Example

A	В	C	(B → C)	$(A \rightarrow (B \rightarrow C))$
V	V	V	V	V
V	V	f	f	f
V	f	\mathbf{V}	V	V
V	f	f	V	V
f	V	\mathbf{V}	V	V
f	\mathbf{V}	f	f	V
f	f	V	V	V
f	f	f	V	V

• Each line of the truth table is called an interpretation

Satisfiability – Unsatisfiability – Validity

A formula is said to be

- "satisfiable" if and only if it is true on at least one line of the truth table
- "valid" if and only if it is true on all lines of the truth table
- "unsatisfiable" if and only if it is false on all lines of the truth table, i.e. if it is never true

• Remarks:

- -F is unsatisfiable iff $\neg F$ is valid
- F is *unsatisfiable* iff F is not *satisfiable*

P

6

R

S

ACASA – Faculté des Sciences - Sorbonne Université

Propositional Logic

How to translate those sentences in propositional logic:

- 1. There is an object right to a green cube
- 2. Every successor of an even number is odd
- 3. 72 is an even number
- 4. The successor of 72 is odd

Introduction of propositional functions (<u>predicates</u>):

even(X): « X is even » is a proposition for all values of X.

ACASA – Faculté des Sciences - Sorbonne Université

Representation in Predicate Logic

- 1
- P
- 6

- C
- N
- R
- S

- Notion of propositional function:
 - 1. X is even: even (X)
 - 2. 72 is an even number even (72)
 - 3. The successor of 72 is odd odd (successor (72))
 - 4. Every successor of an even number is odd
 ∀x (even (x) → odd (successor (x)))
 - 5. There is an object to the right of a green cube
 ∃x ∃y (right_of(x, y) &cube(y) &green(y))

Ī

P

6

N

S

Predicate Logic Language

- Terms (T):
 - Being given $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1 \cup \mathcal{F}_2 \cup \ldots \cup \mathcal{F}_n \cup \ldots$ a set of function symbols $[\mathcal{F}_i \text{ corresponds to functions of arity i}]$
 - Being given V a set of variable symbols
 - 1. Each element of V is a term
 - 2. For any n-tuple of terms $(t_1, t_2, ...t_n)$, for any function f_n of \mathcal{F}_n , $f_n(t_1, t_2, ...t_n)$ is a **term**

Ī

P

6

C

N

R

S

Predicate Logic Language

- Atom (A):
 - Being given $Q = Q_0 \cup Q_1 \cup Q_2 \cup ... \cup Q_n \cup ...$ a set of *predicate symbols* $[Q_i \ corresponds \ to \ arity \ i \ predicates]$

For any n-tuplet of terms $(t_1, t_2, ...t_n)$, For any predicate q_n of Q_n ,

 $q_n(t_1, t_2, ...t_n)$ is an **atom**

Remark: a predicate is a propositional function, i.e. It is a function of which values belong to {true, false}

Ī

P

6

N

R

S

Examples

Terms:

- successor(73), plus(72, 1), multiply(72, 2),plus(X, 1).
- father(Jean), father(X)…

Atoms:

- even(72), odd(73), odd(successor(X)).
- smoke(goat, cigar)
- father(Jean, Peter)...

ACASA — Faculté des Sciences - Sorbonne Université

<u>I</u>

I

P

6

C

N

R

S

Formulae

Quantifier:

- If $x \in V(x \text{ is a variable})$ and F a formula, then ∀xF et ∃xF are also formulae
- $\diamond \forall xF$ means "for all x, F"
- $\Rightarrow \exists x F$ means "there exists x, F"

• Formulae:

- Atoms are formulae
- If F and G are formulae, $\langle F \rangle$, $\langle F \rangle$, $\langle F \rangle$ G», $\langle F \rangle$ G» are formulae
- If $x \in V$, $\forall xF$ and $\exists xF$ are also formulae

ACASA – Faculté des Sciences - Sorbonne Université

Ī

P

6

Free – bounded variable

• An occurrence of a variable is said to be free if it does not appear under the scope of a quantifier (∀ or ∃), else it is called bounded

```
Example: in the following formula \forall x \exists y \text{ (mother}(x, y) \land \text{married}(x, z))
```

x and y are bounded

z is free.

Remark: a variable may have both free and bounded occurrences in the same formula $\forall x \ (married(x, y) \land \exists y \ mother(x, y))$

Ī

I

P

6

C

N

R

Interpretation

- Propositional Logic:
 - Truth values attributed to the different atomic propositions (line of the truth table)
- First Order Logic (i.e. predicate logic):
 - A non empty domain \mathcal{D}
 - An attribution of "value" to each symbol:
 - To each n-ary function f_n of \mathcal{F}_n , a function from \mathcal{D}^n to \mathcal{D} , which is denoted $i[f_n]$
 - To each n-ary predicate symbol p_n of \mathcal{P}_n , a function from \mathcal{D}^n to $\{v, f\}$, which is denoted $i[p_n]$

L 1st order logic semantics

 \triangleright Being given a domain \mathcal{D}

6

- \triangleright We call "interpretation" a function i which attributes:
 - \triangleright A n-ary function f_n of \mathcal{F}_n , a function from \mathcal{D}^n to \mathcal{D} , which is denoted $i[f_n]$
 - To each n-ary predicate symbol p_n of \mathcal{P}_n , a function from \mathcal{D}^n to $\{v, f\}$, which is denoted $i[p_n]$
- A formula is "valid" if it is true in <u>all</u> the interpretations of <u>all</u> domains
- A formula is "satisfiable" if it is true for at least one interpretation of one domain.
 - A formula is "unsatisfiable" if it is never true in any domain, i.e. if it is false in <u>all</u> interpretations of <u>all</u> domains.
- ACASA Faculté des Sciences Sorbonne Université

P

6

C

N

R

S

Examples

- Validity of $\neg \exists x P(x) \rightarrow \forall x (\neg P(x))$
- Unsatisfiability of $\forall x P(x) \land \exists y (\neg P(y))$
- Satisfiability of $\forall x(\neg m\hat{a}le(x) \rightarrow femelle(x))$
- Invalidity of $\forall x(\neg m\hat{a}le(x) \rightarrow femelle(x))$
- Validity of $\forall x((\neg m \hat{a} le(x) \rightarrow femelle(x)) \lor (\neg m \hat{a} le(x) \land \neg femelle(x))$

Model

- - Being given a domain \mathcal{D} and an interpretation i
- We call "model" (or a structure) a couple $\mathcal{M} = \langle \mathcal{D}, i \rangle$
- We call "valuation" a function $v: \mathcal{V} \to \mathcal{D}$ $\triangleright I_{mv}(F)$, the truth value of the formula F is defined as
- follows:
- $> I_{mv}(P(t_1, t_2, ... t_n)) = t \text{ if and only if } i(P(t_1, t_2, ... t_n)) = t$
- i.e. $(I_m,(t_1), I_m,(t_2), ..., I_m,(t_n)) \in i(I_m,(P))$
- $\triangleright I_{m}(\neg F) = \neg I_{m}(F)$
- R
- $\triangleright I_{mv}(F \wedge G) = I_{mv}(F) \cdot I_{mv}(G)$
- $I_{mv}(F \vee G) = I_{mv}(F) + I_{mv}(G)$
- S
- $\rightarrow I_{mv}(F \rightarrow G) = I_{mv}(\neg F \vee G)$

ACASA – Faculté des Sciences - Sorbonne Université

L 1st order logic semantics

- ➤ Being given a domain \mathcal{D} and an interpretation I a model \mathcal{M} is a tuple $<\mathcal{D}$, i> and a valuation v if a function $v \to \mathcal{D}$
- ➤ A formula is "valid" if it is true in <u>all</u> the interpretations of <u>all</u> domains, i.e. if it is true for any models *M* and any valuation *v*
 - A formula is "satisfiable" if it is true for at least one interpretation of one domain. i.e. if there exists a model \mathcal{M} such that it is true
 - A formula is "unsatisfiable" if it is never true in any domain, i.e. if it is false in <u>all</u> interpretations i of <u>all</u> domains \mathcal{D} . i.e. if it is false in all models \mathcal{M}
- ACASA Faculté des Sciences Sorbonne Université

Logical consequence Semantic consequence Entailment

- A is a **semantic consequence** of B if A is true for all the interpretations where B is true, i.e. for all models if $I_{mv}(B)$ then $I_{mv}(A)$
 - Example: $(A \rightarrow B)$ is a semantic consequence of B.

Notation

- A means A is a valid formula
- B = A means A is a semantic consequence of B

S

ACASA — Faculté des Sciences - Sorbonne Université

Ţ

P

6

C

N

R

S

Deduction Theorem

Deduction Theorem: B is a semantic consequence of A ($A \models B$) if and only if $A \rightarrow B$ is valid ($\models A \rightarrow B$)

Equivalent definitions:

- \mathbf{A} = if and only if $\mathbf{=}(\mathbf{\neg}\mathbf{A})$
- A = B if and only if $A \rightarrow B$
- = A if and only if $(\neg A) = A$

L I

Provability Using a Formal System

- Recall: a formal system is composed of
 - A formal language
 - A set of axioms
 - A set of inference rules

- Example of formal systems:
 - Hilbert-Ackermann
 - Natural Deduction
 - Sequent Calculus

— ...

L I

A Formal System for the Propositional Logic (Hilbert-Ackermann)

- *Recall*: a formal system is composed of
 - A formal language
 - A set of axioms
 - A set of inference rules
- Formal system for the propositional logic:
 - Formal language: set A of atoms, one unary connector, « ¬ », one binary connector, « → »
 - Axioms: formulae which are obtained by replacing A, B et C by any propositional logic formula in the following axiom schemas:

```
SA1: (A \rightarrow (B \rightarrow A))
SA2: ((A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)))
SA3: ((\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A))
```

- Inference rule: $\langle Modus Ponens \rangle A$, $(A \rightarrow B) - B$

I

Ţ

P

6

N

R

S

Theorems

Definition: any formula which is derived from the axioms by iteratively applying inference rules is a *theorem*.

Notation: A means A is a theorem

Example: $-(A \rightarrow A)$

Proof:

 $1-(A \rightarrow ((A \rightarrow A) \rightarrow A)) \text{ SA}1$

 $2 - ((A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A))) \text{ SA2}$

 $3-((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A))$ Modus Ponens 2, 1

 $4-(A \rightarrow (A \rightarrow A))$ SA1

5- $(A \rightarrow A)$ Modus Ponens 4, 3

ACASA — Faculté des Sciences - Sorbonne Université

Ī

P

6

N

R

S

Demonstration

Definition: a *proof* of a theorem A is a finite sequence of formulae $F_0, F_1, ... F_n$ such that

- $F_n = A$
- $\forall i \in [0,n]$ F_i is either an axiom, or obtained by applying the *modus ponens* to the two formulae F_j and F_k where j and k < i

Deduction theorem

Theorem: $A_1, ..., A_{n-1} | (A_n \to B) \text{ ssi } A_1, ..., A_{n-1}, A_n | B$

Proof (direction1):

1. $(A_n \rightarrow B)$ Hypothesis 1

2. A_n Hypothesis 2

3. B *Modus Ponens* 1, 2

Proof (direction 2): four possibilities has to be investigated

B is an axiom

2. B is one of the hypotheses $A_1, \ldots A_{n-1}$

B is the hypothesis A_n

4. B is obtained by applying the modus ponens to $(G \rightarrow B)$ and G (proof by induction on the size of the demonstration)

P

R

Notion of symbolic system

Mathematical objects

Consistency: each description of the symbolic system corresponds to an object in the reality, i.e. \forall A if \mid A then \mid A Completeness: each object of the reality can be described in the symbolic system \forall A if \mid A then \mid A

L I P

ľ

6

N

R

S

Automatic Theorem Proving

Tableau Method
Resolution in Propositional Logic
Unification
Resolution in First Order Logic

ACASA — Faculté des Sciences - Sorbonne Université

L I P

Automatic Theorem Proving

C

N

R

S

Tableau Method

Resolution in Propositional Logic
Unification

Resolution in First Order Logic

ACASA — Faculté des Sciences - Sorbonne Université

Tableau Method in Propositional Logic

Step 1: normalization – transformation into NNF – Negative Normal Form

The negations occurs only before atomic propositions

Push negations inwards the formulas using de Morgan laws and the suppression of the double negation

$$\neg \neg \phi \equiv \phi$$

$$\neg (\phi \land \psi) \equiv \neg \phi \lor \neg \psi$$

$$\neg (\phi \lor \psi) \equiv \neg \phi \land \neg \psi$$

P

6

N

S

Tableau Method in Propositional Logic (following)

Step 2: build a tableau

Root: the formula under NNF - Negative Normal Form Build successors of T using two rules R_{\wedge} et R_{\vee} . We stop when we are unable to apply any rule

$$\begin{array}{ccc}
T & & \text{If } \phi \wedge \psi \in T \\
R_{\wedge} & & \text{and } (\phi \notin T) \\
T \cup \{\phi, \psi\} & & \text{or } \psi \notin T)
\end{array}$$

$$\begin{array}{c|c} & T & \text{If } \phi \lor \psi \in T \\ R_{\lor} & & \text{and } \phi \not \in T \\ T \cup \{\phi\} & \text{IT} \cup \{\psi\} & \text{and } \psi \not \in T \end{array}$$

Defi

Tableau Method

Definitions:

- Contradictory tableau: it contains simultaneously p and ¬p (it is said that it contains a clash)
- Complete tableau: no rule can be applied
- A tableau is said to be *closed* if it contains a clash, open else
- On applies systematically the rules on all the tableau.

 The answer is said to be "satisfiable" if one of the generated tableau is open, "unsatisfiable" else.

ACASA – Faculté des Sciences - Sorbonne Université

P

6

C

N

R

S

Properties

1. There is finite sequence of applications of rules

$$S_0 = T \rightarrow S_1 \rightarrow S_2 \rightarrow \dots$$

- 2. If S is obtained from a finite set S of tableau by applying transformation rules, then S is consistent iff S is.
- 3. All clash tableau are unconsistent
- 4. All complete and open tableau is consistent

P

6

N

S

Third step

- T being a complete tableau
- The model M[T] that satisfies ϕ is built as follows:
- If p, a proposition, belongs to T, then p is true in M[T],
- else p is false

Example

$$\varphi = \neg(\neg p \land q) \land \neg (r \land \neg q)$$

$$\varphi$$
 rewrite: $\varphi = (p \lor \neg q) \land (\neg r \lor q)$

$$\begin{array}{c|c} (p \lor \neg q) \land (\neg r \lor q) \\ (\neg r \lor q) \\ (p \lor \neg q) \end{array}$$

 $(p \lor \neg q) \land (\neg r \lor q)$

C

Clash

Complete

$$(p \lor \neg q)$$
$$(p \lor \neg q)$$

$$(p \lor \neg q) \land (\neg r \lor q)$$

$$(\neg r \lor q)$$

$$(p \lor \neg q)$$

$$\neg q$$

$$\neg r$$

ACASA — Faculté des Sciences - Sorbonne Université

6

Example - follows

$$\varphi = \neg(\neg p \land q) \land \neg (r \land \neg q)$$

• Réécriture: $\varphi = (p \vee \neg q) \wedge (\neg r \vee q)$

Complete

 $(p \vee \neg q)$

R_v Branch 2

$$\begin{array}{c|c} (p \lor \neg q) \land (\neg r \lor q) \\ (\neg r \lor q) \\ (p \lor \neg q) \\ (p \lor \neg q) \\ p \\ q \\ \end{array} \begin{array}{c|c} (p \lor \neg q) \land (\neg r \lor q) \\ (\neg r \lor q) \\ (p \lor \neg q) \\ p \\ \end{array}$$

Complete

CASA – Facune des Sciences - sorbonne Université

Conclusion

$$\varphi = \neg(\neg p \land q) \land \neg$$

$$(r \land \neg q)$$

φ owns three models:

- 1. ¬q, ¬r
- 2. p, ¬r
- 3. p, q

Another application of the tableau method

Transformation – *NNF*:

N

R

S

$$F = (\neg v \lor \neg n_v) \land (n_v \lor v) \land (n_v \lor (\neg p \land \neg a))$$

$$F = (\neg v \lor \neg n_v) \land (n_v \lor v) \land (n_v \lor \neg p) \land (n_v \lor \neg a)$$

I

P

6

C

N

R

S

Tableau Method

$$(\neg v \lor \neg n_v) \land (n_v \lor v) \land (n_v \lor \neg p) \land (n_v \lor \neg a)$$

 $(\neg v \lor \neg n_v)$
 $(n_v \lor v)$
 $(n_v \lor v)$
 $(n_v \lor \neg p)$
 $(n_v \lor \neg a)$

R_v Branch 1

R_v Branch 2

I

P

N

S

Tableau Method – left part

Complete

R_v Branch 2

Clash

Tableau Method – right part I ... (¬ v ∨ ¬n_v) Model 2 n v, ¬v, ¬a (n_v ∨ ¬a) 6 ¬a R_v Branch 1 R_v Branch 2 ... $(\neg \lor \lor \neg n_v)$... (¬ v ∨ ¬n_v) $(n_v \vee v)$ $(n_v \vee v)$ (n_v ∨ ¬p) (n_v ∨ ¬p) (n_v ∨ ¬a) (n_v ∨ ¬a) ¬a ¬a 7 V ¬n_v R_v Branch 1 R Branch 2 R Branch 2 R_v Branch 1 S **Complete** ¬a ... ¬а ¬a ... ¬а ¬ n_v 7 V חר v Sorbo clash Faci Clash

I

P

N

R

S

Following — right

Recap

We obtain three models for F:

$$F = \neg(v \land n_v) \land (n_v \lor v) \land (n_v \lor \neg(p \lor a))$$

Model 1: n v, ¬ v

Model 2: n_v, ¬v, ¬a

Model 3: ¬ n_v, v, ¬ a, ¬ p

P

Tableau method in propositional logic Generalization

- **Goal**: search a model for a set of formulas \mathcal{F}
- •Initialisation: create a non marked root node initialized with \mathcal{F}
- •Iterative decomposition: choose iteratively all the non treated nodes (set of formulae with \mathcal{F}) and mark them once treated
 - If the node contained complementary literals, mark the node as closed (clash)
 - Else, if all the formulae associated to the node are propositional variables (i.e. atom or atom negation), mark it as opened
 - Else, choose a non propositional formula F belonging to the current node
 - If F is α -type: create one new node non marked with the set \mathcal{F} - $\{F\}$ \cup $\{\alpha_1, \alpha_2\}$
 - If F is β -type: create two new non marked nodes with the sets $\mathcal{F} \{F\} \cup \{\beta_1\}$ and $\mathcal{F} \{F\} \cup \{\beta_2\}$

P

6

N

R

S

Decomposition rules

Formula α	α_1	α_2
$ eg \varphi$	φ	
$\boldsymbol{\varphi}_1 \wedge \boldsymbol{\varphi}_2$	$\boldsymbol{\varphi}_1$	ϕ_2
$\neg(\boldsymbol{\varphi}_1 \lor \boldsymbol{\varphi}_2)$	$\neg oldsymbol{arphi}_1$	$\neg oldsymbol{arphi}_2$
$\neg(\boldsymbol{\varphi}_1 \rightarrow \boldsymbol{\varphi}_2)$	$ \boldsymbol{\varphi}_1 $	$\neg oldsymbol{arphi}_2$
$\boldsymbol{\varphi}_1 \leftrightarrow \boldsymbol{\varphi}_2$	$\boldsymbol{\varphi}_1 \rightarrow \boldsymbol{\varphi}_2$	$\boldsymbol{\varphi}_2 \rightarrow \boldsymbol{\varphi}_1$

Formula β	β_1	β_2
$(\boldsymbol{\varphi}_1 \vee \boldsymbol{\varphi}_2)$	$\boldsymbol{\varphi}_1$	ϕ_2
$\neg (\boldsymbol{\varphi}_1 \wedge \boldsymbol{\varphi}_2)$	$\neg oldsymbol{arphi}_1$	$ eg oldsymbol{arphi}_2$
$(\boldsymbol{\varphi}_1 \rightarrow \boldsymbol{\varphi}_2)$	$\neg oldsymbol{arphi}_1$	ϕ_2
$\neg(\boldsymbol{\varphi}_1 \leftrightarrow \boldsymbol{\varphi}_2)$	$\neg (\boldsymbol{\varphi}_1 \rightarrow \boldsymbol{\varphi}_2)$	$\neg (\boldsymbol{\varphi}_2 \rightarrow \boldsymbol{\varphi}_1)$

_
r

6

S

1	1
Hvamh	
Exampl	
	_

$$\varphi = \neg(\neg p \land q) \land \neg (r \land \neg q)$$

Formula α	α_1	α_2
$\lnot \phi$	φ	
$\boldsymbol{\varphi}_1 \wedge \boldsymbol{\varphi}_2$	$\boldsymbol{\varphi}_1$	$\boldsymbol{\varphi}_2$
$\neg(\boldsymbol{\varphi}_1 \lor \boldsymbol{\varphi}_2)$	$\neg oldsymbol{arphi}_1$	$\neg \boldsymbol{\varphi}_2$
$\neg (\boldsymbol{\varphi}_1 \rightarrow \boldsymbol{\varphi}_2)$	$\boldsymbol{\varphi}_1$	$\neg \boldsymbol{\varphi}_2$
$\boldsymbol{\varphi}_1 \leftrightarrow \boldsymbol{\varphi}_2$	$\boldsymbol{\varphi}_1 \rightarrow \boldsymbol{\varphi}_2$	$\varphi_2 \rightarrow 0$
		1

$$\neg(\neg p \land q) \land \neg (r \land \neg q)$$
 Type α

Formula B	βι	β_2
$(\boldsymbol{\varphi}_1 \vee \boldsymbol{\varphi}_2)$	$\boldsymbol{\varphi}_1$	$\boldsymbol{\varphi}_2$
$\neg(\boldsymbol{\varphi}_1 \wedge \boldsymbol{\varphi}_2)$	$\neg oldsymbol{arphi}_1$	$\neg oldsymbol{arphi}_2$
$(\boldsymbol{\varphi}_1 \rightarrow \boldsymbol{\varphi}_2)$	$\neg oldsymbol{arphi}_1$	ϕ_2
$\neg(\boldsymbol{\varphi}_1 \leftrightarrow \boldsymbol{\varphi}_2)$	$\neg (\boldsymbol{\varphi}_1 \rightarrow \boldsymbol{\varphi}_2)$	$\neg(\boldsymbol{\varphi}_2 \rightarrow \boldsymbol{\varphi}_1)$

CASA – Faculté des Sciences - Sorbonne Université

Ī

P

6

C

N

R

S

Example

$$\varphi = \neg(\neg p \land q) \land \neg (r \land \neg q)$$

Formula α	α_1	α_2
$\neg \phi$	φ	
$\boldsymbol{\varphi}_1 \wedge \boldsymbol{\varphi}_2$	$\boldsymbol{\varphi}_1$	$\boldsymbol{\varphi}_2$
$\neg (\boldsymbol{\varphi}_1 \lor \boldsymbol{\varphi}_2)$	$\neg oldsymbol{arphi}_1$	$\neg \boldsymbol{\varphi}_2$
$\neg (\boldsymbol{\varphi}_1 \rightarrow \boldsymbol{\varphi}_2)$	$\boldsymbol{\varphi}_1$	$\neg \boldsymbol{\varphi}_2$
$\boldsymbol{\varphi}_1 \leftrightarrow \boldsymbol{\varphi}_2$	$\boldsymbol{\varphi}_1 \rightarrow \boldsymbol{\varphi}_2$	$\boldsymbol{\varphi}_2 \rightarrow \boldsymbol{\varphi}_2$
		1

Formula B	β_1	β_2
$(\boldsymbol{\varphi}_1 \vee \boldsymbol{\varphi}_2)$	$\boldsymbol{\varphi}_1$	ϕ_2
$\neg(\boldsymbol{\varphi}_1 \wedge \boldsymbol{\varphi}_2)$	$\neg oldsymbol{arphi}_1$	$\lnot oldsymbol{arphi}_2$
$(\boldsymbol{\varphi}_1 \rightarrow \boldsymbol{\varphi}_2)$	$\neg oldsymbol{arphi}_1$	ϕ_2
$\neg(\boldsymbol{\varphi}_1 \leftrightarrow \boldsymbol{\varphi}_2)$	$\neg (\boldsymbol{\varphi}_1 \rightarrow \boldsymbol{\varphi}_2)$	$\neg(\boldsymbol{\varphi}_2 \rightarrow \boldsymbol{\varphi}_1)$

ACASA – Faculté des Sciences - Sorbonne Université

P

6

Another example

$$\neg(v \land n_v) \land (n_v \lor v) \land (n_v \lor \neg(p \lor a))$$

C

N

R

S

Right node

P

¬n v

Clash

R

S

treated

¬n v

¬(p∨a)

Formula B	β_1	β_2
$(\boldsymbol{\varphi}_1 \vee \boldsymbol{\varphi}_2)$	$\boldsymbol{\varphi}_1$	ϕ_2
$\neg(\boldsymbol{\varphi}_1 \wedge \boldsymbol{\varphi}_2)$	$\neg oldsymbol{arphi}_1$	$\neg oldsymbol{arphi}_2$
$(\boldsymbol{\varphi}_1 \rightarrow \boldsymbol{\varphi}_2)$	$\neg oldsymbol{arphi}_1$	ϕ_2
$\neg (\boldsymbol{\varphi}_1 \leftrightarrow \boldsymbol{\varphi}_2)$	$\neg (\boldsymbol{\varphi}_1 \rightarrow \boldsymbol{\varphi}_2)$	$\neg(\boldsymbol{\varphi}_2 \rightarrow \boldsymbol{\varphi}_1)$

$$1.\neg n_v, v, \neg p, \neg a$$

L I P

Automatic Theorem Proving

C

N

R

S

Tableau Method

Resolution in Propositional Logic

Unification

Resolution in First Order Logic

ACASA — Faculté des Sciences - Sorbonne Université

I

P

6

N

R

S

clause

- Definition:
 - A literal is either an atom or its negation:

Example: \neg even(72), odd(72), successor(72, 73)

A clause is a disjunction of literals

 $\overline{Example:} \neg even(X) \lor odd(successor(X))$

Remark: a clause is a logical entailment (implication)

because $(\neg A \lor B)$ is equivalent to $(A \supset B)$

Example: $even(X) \supset odd(successor(X))$

I

P

6

Clausal Form

Theorem: any closed formula F can be transformed into a logically equivalent conjunction of clauses

Example:

```
\forall x \text{ square}(x) \equiv \exists y \text{ multiply}(y, y, x)
Can be transformed as a conjunction of two clauses:

\neg \text{square}(x) \lor \text{multiply}(r(x), r(x), x) \quad \text{et}
```


P

6

N

R

S

Resolution Rule in Propositional Logic

- Been given two <u>clauses</u> C₁ and C₂
- Been given an atomic proposition such that $A \in C_1$ and $\neg A \in C_2$
- The resolution of C_1 and C_2 by A and $\neg A$ is:

$$C = res(C_1, C_2; A, \neg A)$$

= $[C_1 - \{A\}] \lor [C_2 - \{\neg A\}]$

Example: if $C_1 = \neg man \lor mortal$,

$$C_2$$
= \neg socrate \vee man, C_3 = socrate and

$$C_4 = \neg mortal$$

$$C = res(C_3, C_2; socrate, \neg socrate) = man$$

$$C' = res(C_1, C_4; mortal, \neg mortal) = \neg man$$

P

6

C

N

R S

Resolution (example)

 $C_1 = \neg man \lor mortal = man \supset mortal$

 $C_2 = \neg socrate \lor man = socrate \supset man$

 C_3 = socrate, C_4 = ¬mortal,

 $C = res(C_3, C_2; socrate, \neg socrate) = man$

 $C' = res(C_1, C_4; mortal, \neg mortal) = \neg man$

- The resolution is more general than the *Modus Ponens* (A, A \supset B/B) and the *Modus Tolens* (\neg B, A \supset B/ \neg A)
- ACASA Faculté des Sciences Sorbonne Université

P

0

Generality of the Resolution

- To prove $S \models C$, it is sufficient to prove that $S \cup \{\neg C\}$ is contradictory, i.e. that $S \cup \{\neg C\} \models \Box$
- ☐ denotes the empty clause, i.e. the false
- Theorem: $S \models C$ if and only if it is possible to derive the empty clause by iterative application of the resolution rule on $S \cup \{\neg C\}$

P

6

N

R

S

Example

- Consider $S = \{C_1, C_2, C_3\}$
- $C_1 = \neg man \lor mortal = man \supset mortal$
- $C_2 = \neg socrate \lor man = socrate \supset man$
- C_3 = socrate, C_4 = ¬mortal,
- To prove $S \models mortel$, it is sufficient to derive the empty clause, i.e. \square , from $S \cup \{C_4\}$
- C_5 : \neg man res(C_1 , C_4 ; mortal, \neg mortal)
- C_6 : \neg socrate res(C_2 , C_5 ; man, \neg man)
- C_5 : \square res(C_3 , C_6 ; socrate,
 - ¬socrate)

QED

Automatic Theorem Proving

Tableau Method

Resolution in Propositional Logic

Unification

Resolution in First Order Logic

- Faculté des Sciences - Sorbonne Université

Ī

P

6

N

Substitution

Definition:

- Being V the set of variables.
- Being \mathcal{F} the set of functions.
- Being \mathcal{T} the set of terms built on \mathcal{V} and \mathcal{F} .

A substitution σ is an application from \mathcal{V} to the set of terms \mathcal{T} which is the identity almost everywhere

A *substitution* is characterized by a finite set of pairs " x_i / t_i ", x_i being a variable and t_i a term.

It is denoted $\sigma = \{v_1/t_1, ..., v_n/t_n\}$

Example: $\sigma = \{x/3, y/(u-7)\}$

I

P

6

S

Term instance

Definition:

- Being E a term of \mathcal{T} (set of terms built on \mathcal{V} and \mathcal{F})
- Being a substitution σ of variables \mathcal{V} by terms of \mathcal{T} $\sigma = \{v_1/t_1, ..., v_n/t_n\}$

Being $E\sigma$ the expression built by replacing each occurrence of free variables v_i of E by t_i .

Eσ is called an *instance* of E

P

N

R

S

Term instance (following)

Example: if $\sigma = \{x/3, y/(u-7)\}$ et E = (x*y) then $E\sigma = (3*(u-7))$ is an instance of E

Substitution composition

Ī

P

6

C

N

R

S

• Being $\theta = \{t_1/x_1, ..., t_n/x_n\}$ and $\lambda = \{u_1/y_1, ..., u_m/y_m\}$ two substitutions.

• The <u>composition</u> of θ and λ is the substitution $\lambda \bigcirc \theta$ which is obtained from the set $\{t_1\lambda/x_1,...,t_n\lambda/x_n,u_1/y_1,...,u_m/y_m\}$ by deleting all the $t_j\lambda/x_j$ such that $t_j\lambda=x_j$ and all the u_i/y_i such that $y_i \in \{x_1,...,x_n\}$

Substitution composition

- S

- The *composition* of two substitution θ and λ is the substitution $\lambda O\theta$ which is obtained from $\{t_1\lambda/x_1,\ldots,t_n\lambda/x_n,u_1/y_1,\ldots,u_m/y_m\}$ by deleting all the $t_i \lambda / x_i$ such that $t_i \lambda = x_i$ and all the u_i / y_i such that $y_i \in \{x_1, ..., x_n\}$
- C Example: $\theta = \{t_1/x_1, t_2/x_n\} = \{f(y)/x, z/y\}$ et
 - $\lambda = \{u_1/y_1, u_2/y_2, u_3/y_3\} = \{a/x, b/y, y/z\}$
 - $\{t_1\lambda/x_1,...,t_n\lambda/x_n,u_1/y_1,...,u_m/y_m\} =$ $\{f(b)/x, y/y, a/x, b/y, y/z\} = \{f(b)/x, y/z\}$
 - $\theta O \lambda = \{f(b)/x, y/z\}$

I

P

6

C

N

R

S

Pattern matching

Is a term an instance of another?

Pattern matching: the term t_1 match with the term t_2 if and only if there exists a substitution σ such that: $t_1\sigma = t_2$

