Estratégia empresarial de TI

Aula 3 – Teoria dos jogos (1)

Prof. E. A. Schmitz

Teoria dos jogos

Teoria dos jogos:

ramo da teoria da decisão

estuda situações onde as ações dos jogadores influenciam o comportamento dos outros jogadores.

situações de competição e conflito de interesses.

nomes importantes:
von Neuman
Nash

Exemplos de jogos

Exemplo 1:

editores (Veja, Isto é, Época) estão conscientes que o preço de capa de suas respectivas revistas afetam as vendas. Qual o preço de capa a ser usado?

Exemplo 2:

dois políticos disputando uma eleição – um de direita e outro de esquerda. Quanto a "esquerda" ou a "direita" cada um deve se posicionar?

Exemplo3:

negociação salarial entre um sindicato e o empregador. Qual o nível de demandas e ofertas a serem lançadas na mesa de negociação?

Premissa fundamental

Premisssa da racionalidade:

jogador age racionalmente de forma a maximizar **o seu próprio** benefício sem se importar com os benefícios dos outros.

Solução para um jogo:

previsão das decisões (racionais) para cada um dos jogadores.

Racionalidade?

Valendo R\$ 2,00!!!

Escreva um número entre 0 e 100 que representa a sua estimativa do número igual a (2/3) da média das opiniões da turma (incluindo a sua).

O vencedor é aquele cuja estimativa seja mais próxima do número requerido. Em caso de empate, o premio será dividido.

Elementos de um jogo

Um modelo estratégico de um jogo contém os seguintes elementos básicos:

```
N = \{P_1, P_s, ... P_n\} (conjunto de n jogadores) (1)

S_i = \{s_1; s_2; ... s_m\} (conjunto de estratégias para cada jogador P_i) (2)

S_p = \{S_1 \times S_2 \times ... S_n\} (conjunto de perfís estratégicos) (3)

U_i : Sp \rightarrow R (função utilidade para o jogador P_i) (4)
```

Solução do jogo:

é a previsão da ocorrência de um (ou mais) elemento(s) do conjunto de perfís estratégicos.

4

Quais são os elementos deste jogo?

		Player 2		
		High	Medium	Low
ж1	High	50, 7	30, 5	0, 0
Player 1	Low	40, 1	25, 60	10, 0

Tipos de Jogos

```
Quanto ao número de lances:
```

1-Estratégico (estático):

jogadores fazem um lance sem saber as jogadas dos outros

2-Sequencial

-uma vez

-repetidos

infinitos

finitos

Quanto a informação disponível

1-complete information

pay-offs são conhecidos

2-perfect information

memória do jogo é conhecida

Dominância

 $U_i: Sp \rightarrow R$ (função utilidade para o jogador P_i) (4) Notação prática $S_{-i} =$ (conjunto de todas estratégias dos outros jogadores exceto P_i Dadas duas estratégias para $P_i: s_j, s_k$, dizemos que s_i domina estritamente s_k se

$$u_i(s_j, S_{-i}) > u_i(s_k, S_{-i})$$
 para todo S_{-i}

Ou seja: para o jogador P_i a utilidade da estratégia s_j é maior que o da estratégia s_k para todos lances dos outros jogadores.

Dominância (2)

Estratégias dominadas?

	S21	S22	S23
S11	5,-1	11,3	0,0
S12	6,4	0,2	2,0

Supondo que os jogadores são racionais: podemos deduzir algum comportamento dos jogadores?

Dominância (3)

Um jogador racional nunca vai jogar uma estratégia estritamente dominada.

A solução de alguns jogos pode ser obtida aplicando-se o princípio da racionalidade. Exemplo:

	S21	S22
S11	0,0	3,-1
S12	-1,3	1,1

Dominância (4)

Em alguns casos, a dominância pode ser fraca.

Exemplo: S21 domina fracamente S22.

Podemos achar uma solução para este jogo?

	S21	S22
S11	1,1	1,1
S12	0,2	2,0

Dominância (5)

Ao eliminarmos uma estratégia dominado, geramos um novo jogo, onde as dominadas foram eliminidas.

O mesmo princípio pode ser aplicado, e assim por diante Iterativamente até uma eventual solução. Solução por dominância para o jogo abaixo?

	S21	S22
S11	5,-1	11,3
S12	6,4	0,2

Competição por preço (Modelo de Bertrand)

- 1-Dois concorrentes competem por preço.
- 2-Quem tem o menor preço leva todo o mercado.
- 3-Preços iguais o mercado é dividido.

	Н	M	L
Н	6,6	0,10	0,8
M	10,0	5,5	0,8
L	8,0	8,0	4,4

O que acontece na competição por preço?

Exercício 3

Considere o seguinte modelo de competição entre duas empresas, que produzem produtos semelhantes, em um mercado onde a demanda total Q é dada pela seguinte equação:

Q=6-P

onde P é o menor dentre os preços p1 e p2 oferecidos pelas empresas E1 e E2 e Q=q1+q2 onde q1 e q2 são as quantidades produzidas pelas mesmas.

Além disso:

- Se p1 < p2 então a empresa 1 fica com todo o mercado
- se p1=p2 as empresas dividem o mercado
- se e p2<p1 então a empresa 2 fica com todo o mercado.
- Assuma que os preços são cotados em um número inteiro de reais, i.e. p1,p2 in {0..6}

Mostre que:

- a estratégia de preço =0 é dominada pelas outras estratégias
- Idem para preço = 6
- A aplicação continuada de remoção das estratégias dominadas leva a uma única solução; qual é?