

Departamento de Matemática da Universidade de Aveiro

Matemática Discreta 2020/2021 - UC 47166 (1ºAno/2ºSem)

Teste T1 - QUESTÃO1 Exemplo de Resolução - 28/04/2021

TURNO 1/QUESTÃO 1. Seja $A = \{1, 2, 3, 4, 5, 6\}$ e $\mathcal{P} = \{\{1\}, \{2, 3, 4\}, \{5, 6\}\}$ uma partição de A. Considere a relação binária definida em A do seguinte modo:

$$x\mathcal{R}y$$
 se e só se $x \in S \land y \in S$, com $S \in \mathcal{P}$.

1.(a) Explicite \mathcal{R} , indicando os seus elementos.

$$\mathcal{R} = \{(x,y) \in A^2 : (x \in S) \land (y \in S), \text{ com } S \in \mathcal{P}\}$$

$$= \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (2,3), (2,4), (3,2), (3,4), (4,2), (4,3), (5,6), (6,5)\}.$$

- 1.(b) Mostre que \mathcal{R} é uma relação de equivalência em A.
 - (i) \mathcal{R} é reflexiva se para todo o $x \in A$, $(x, x) \in \mathcal{R}$. Se $x \in A$, como \mathcal{P} é uma partição de A, existe um único $S \in \mathcal{P}$ tal que $x \in S$. Tem-se então que

$$x \in S$$
 \Leftrightarrow $(x \in S) \land (x \in S)$, pela idempotência da conjunção, \Leftrightarrow $(x, x) \in \mathcal{R}$, pela definição da relação binária \mathcal{R} .

Logo, \mathcal{R} é reflexiva.

- (ii) \mathcal{R} é simétrica se para quaisquer $x,y\in A$, $(x,y)\in \mathcal{R} \Rightarrow (y,x)\in \mathcal{R}$. Se $x,y\in A$ são tais que $(x,y)\in \mathcal{R}$, então existe um único $S\in \mathcal{P}$ tal que $(x\in S)\land (y\in S)$. Pela comutatividade da conjunção tem-se que $(x\in S)\land (y\in S)\Leftrightarrow (y\in S)\land (x\in S)$ que, pela definição da relação binária \mathcal{R} , é equivalente a $(y,x)\in \mathcal{R}$. Conclui-se, assim, que \mathcal{R} é simétrica.
- (iii) \mathcal{R} é transitiva se para quaisquer $x, y, z \in A$,

$$((x,y) \in \mathcal{R}) \wedge ((y,z) \in \mathcal{R}) \Rightarrow (x,z) \in \mathcal{R}.$$

Se $x, y, z \in A$ são tais que $(x, y) \in \mathcal{R}$ e $(y, z) \in \mathcal{R}$, então existe um único $S \in \mathcal{P}$ tal que $x, y \in S$ e, como y e z também pertencem a um mesmo bloco da partição \mathcal{P} , então $x, y, z \in S$, com $S \in \mathcal{P}$. Logo, $(x, z) \in S$, com $S \in \mathcal{P}$, concluindo-se que $(x, z) \in \mathcal{R}$. Consequentemente, \mathcal{R} é transitiva.

- De (i), (ii) e (iii) conclui-se que \mathcal{R} é uma relação de equivalência.
- 1.(c) Seja $B = A \cup \{7, 8, 9, 10\}$. Determine uma partição de B tal que $|B/\mathcal{T}| = 6$, onde \mathcal{T} é a relação de equivalência em B induzida por essa partição.

Seja $B = \{1, 2, 3, \dots, 10\}$ e $\mathcal Q$ uma partição de B tal que a relação de equivalência $\mathcal T$ induzida por $\mathcal Q$ verifica a condição $|B/\mathcal T| = 6$. Então $\mathcal Q = B/\mathcal T$ tem 6 elementos que são as classes de equivalência de $\mathcal T$. Portanto, $\mathcal Q$ é uma partição de B com 6 blocos. Por exemplo, $\mathcal Q = \Big\{\{1,2\},\{3,4\},\{5,6\},\{7\},\{8\},\{9,10\}\Big\}$.

TURNO 2/QUESTÃO 1. Seja $A = \{a, b, c, d, e, f\}$ e $\mathcal{P} = \{\{a, b\}, \{c, d, e\}, \{f\}\}$ uma partição de A. Considere a relação binária definida em A do seguinte modo:

$$x\mathcal{R}y$$
 se e só se $x \in S \land y \in S$, com $S \in \mathcal{P}$.

1.(a) Explicite \mathcal{R} , indicando os seus elementos.

$$\mathcal{R} = \{(x,y) \in A^2 : (x \in S) \land (y \in S), \text{ com } S \in \mathcal{P}\}$$

$$= \{(a,a), (a,b), (b,a), (b,b), (c,c), (c,d), (c,e), (d,d), (d,c), (d,e), (e,e), (e,c), (e,d), (f,f)\}.$$

- 1.(b) Mostre que \mathcal{R} é uma relação de equivalência em A.
 - (i) \mathcal{R} é reflexiva se para todo o $x \in A$, $(x, x) \in \mathcal{R}$. Se $x \in A$, como \mathcal{P} é uma partição de A, existe um único $S \in \mathcal{P}$ tal que $x \in S$. Tem-se então que

$$x \in S$$
 \Leftrightarrow $(x \in S) \land (x \in S)$, pela idempotência da conjunção,
 \Leftrightarrow $(x, x) \in \mathcal{R}$, pela definição da relação binária \mathcal{R} .

Logo, \mathcal{R} é reflexiva.

- (ii) \mathcal{R} é simétrica se para quaisquer $x, y \in A$, $(x, y) \in \mathcal{R} \Rightarrow (y, x) \in \mathcal{R}$. Se $x, y \in A$ são tais que $(x, y) \in \mathcal{R}$, então existe um único $S \in \mathcal{P}$ tal que $(x \in S) \land (y \in S)$. Pela comutatividade da conjunção tem-se que $(x \in S) \land (y \in S) \Leftrightarrow (y \in S) \land (x \in S)$ que, pela definição da relação binária \mathcal{R} , é equivalente a $(y, x) \in \mathcal{R}$. Conclui-se, assim, que \mathcal{R} é simétrica.
- (iii) \mathcal{R} é transitiva se para quaisquer $x, y, z \in A$,

$$((x,y) \in \mathcal{R}) \land ((y,z) \in \mathcal{R}) \Rightarrow (x,z) \in \mathcal{R}.$$

Se $x, y, z \in A$ são tais que $(x, y) \in \mathcal{R}$ e $(y, z) \in \mathcal{R}$, então existe um único $S \in \mathcal{P}$ tal que $x, y \in S$ e, como y e z também pertencem a um mesmo bloco da partição \mathcal{P} , então $x, y, z \in S$, com $S \in \mathcal{P}$. Logo, $(x, z) \in S$, com $S \in \mathcal{P}$, concluindo-se que $(x, z) \in \mathcal{R}$. Consequentemente, \mathcal{R} é transitiva.

- De (i), (ii) e (iii) conclui-se que \mathcal{R} é uma relação de equivalência.
- 1.(c) Seja $B = A \cup \{g, h, i, j\}$. Determine uma partição de B tal que $|B/\mathcal{T}| = 5$, onde \mathcal{T} é a relação de equivalência em B induzida por essa partição.

Seja $B = \{a, b, c, d, e, f, g, h, i, j\}$ e $\mathcal Q$ uma partição de B tal que a relação de equivalência $\mathcal T$ induzida por $\mathcal Q$ verifica a condição $|B/\mathcal T| = 5$. Então $\mathcal Q = B/\mathcal T$ tem 5 elementos que são as classes de equivalência de $\mathcal T$. Portanto, $\mathcal Q$ é uma partição de B com 5 blocos. Por exemplo, $\mathcal Q = \Big\{\{a,b\},\{c,d,e\},\{f\},\{g,h\},\{i,j\}\Big\}$.