

Università degli Studi di Milano - Bicocca

Scuola di Scienze

Dipartimento di Informatica, Sistemistica e Comunicazione

Corso di Laurea Magistrale in Informatica

Algoritmi per la trasformata di Burrows-Wheeler Posizionale con compressione run-length, RLPBWT

Relatore: Prof.ssa Raffaella Rizzi

Correlatore:

Tesi di Laurea Magistrale di: Davide Cozzi

Matricola 829827

Abstract

Indice

1	Intr	roduzione	4
2	Pre	liminari	5
	2.1	Motivazioni Biologiche	6
	2.2	Bitvector sparsi	6
	2.3	Straight-Line Program	6
		2.3.1 Random access	6
		2.3.2 Longest Common Extension	6
	2.4	Trasformata di Burrows-Wheeler	6
		2.4.1 Trasformata di Burrows-Wheeler run-length	6
		2.4.2 Matching Statistics	6
		2.4.3 R-index	6
		2.4.4 MONI	6
		2.4.5 PHONI	6
	2.5	Trasformata di Burrows-Wheeler posizionale	6
	_	2.5.1 Implementazione originale	6
		2.5.2 Varianti della PBWT	6
3	Met	todo	7
_	3.1	Introduzione agli strumenti usati	8
	· -	3.1.1 SDSL	8
		3.1.2 BigRepair	8
		3.1.3 ShapedSlp	8
	3.2	Introduzione alle varianti della RLPBWT	8
	J	3.2.1 Perché un'implementazione run-length	8
	3.3	Mapping nella RLPBWT	8
	3.4	RLPBWT naive	8
	0.1	3.4.1 Algoritmo per match massimali	8
	3.5	RLPBWT con bitvectors	8
	0.0	3.5.1 Algoritmo per match massimali	8
	3.6	RLPBWT con pannello	8
	5.0	Ten Divit con parmeno	O

		3.6.1	Algoritmo con matching statistics						8
	3.7	RLPB	WT con SLP						8
		3.7.1	Algoritmo con matching statistics						8
	3.8	Funzio	ne Phi						8
		3.8.1	Costruzione della struttura di supporto						8
		3.8.2	Estensione dei match						8
4	Rist	ıltati							9
	4.1	Ambier	nte di benchmark						9
		4.1.1	Descrizione input						9
	4.2	Analisi	temporale						9
	4.3	Analisi	spaziale						9
5	Con	clusion	i						10
	5.1	Svilupp	oi futuri					•	10
Bi	bliog	rafia e	sitografia						10

Introduzione

1.1	Motiva	ozioni	Rio l	logicho
т.т	INTOUTAG	1ZIOIII	$\mathbf{D}_{\mathbf{IO}}$	logiche

- 1.2 Bitvector sparsi
- 1.3 Straight-Line Program
- 1.3.1 Random access
- 1.3.2 Longest Common Extension
- 1.4 Trasformata di Burrows-Wheeler
- 1.4.1 Trasformata di Burrows-Wheeler run-length
- 1.4.2 Matching Statistics
- 1.4.3 R-index
- 1.4.4 MONI
- 1.4.5 PHONI

1.5 Trasformata di Burrows-Wheeler posizionale

1.5.1 Implementazione originale

Gli algoritmi di Durbin

Limiti spaziali

1.5.2 Varianti della PBWT 5

PBWT multi-allelica

PBWT con struttura LEAP

PBWT dinamica

PBWT bidirezionale

Recenti sviluppi

Metodo

2.1 Intro	oduzione	aglı	strumenti	usatı
-----------	----------	------	-----------	-------

- 2.1.1 SDSL
- 2.1.2 BigRepair
- 2.1.3 ShapedSlp

Ricostruzione del panel

2.2 Introduzione alle varianti della RLPBWT

- 2.2.1 Perché un'implementazione run-length
- 2.3 Mapping nella RLPBWT
- 2.4 RLPBWT naive
- 2.4.1 Algoritmo per match massimali
- 2.5 RLPBWT con bitvectors
- 2.5.1 Algoritmo per match massimali
- 2.6 RLPBWT con pannello
- 2.6.1 Algoritmo con matching statistics
- 2.7 RLPBWT con SLP $_{_{7}}$
- 2.7.1 Algoritmo con matching statistics
- 2.8 Funzione Phi
- 2.8.1 Costruzione della struttura di supporto
- 2.8.2 Estensione dei match

Risultati

- 3.1 Ambiente di benchmark
- 3.1.1 Descrizione input
- 3.2 Analisi temporale
- 3.3 Analisi spaziale

Conclusioni

4.1 Sviluppi futuri