

MINISTÉRIO DA EDUCAÇÃO UTFPR — UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPO MOURÃO

Lab. 04 - Verilog

Contadores

Projetos de Sistemas Integrados Prof. Roberto Ribeiro Neli

Parte I

A figura 1 ilustra um Contador síncrono de 4 bits, utilizando flip-flops do tipo T. A contagem é incrementada a cada subida de *Clock*, caso o sinal *Enable* estiver ativado. O contador é zerado caso o sinal de *Clear* seja "0".

Implemente em Verilog um **Contador de 16 bits**, baseando-se no contador de 4 bits ilustrado na figura 1.

Figure 1. Contador de 4 bits.

- Crie um flip-flop do tipo T e replique 16 vezes para obter o Contador de 16 bits. Compile o circuito e responda: Quantos elementos lógicos foram utilizados? ______. Qual é a frequência máxima, Fmax, em que o circuito pode funcionar? ______.
 Itiliza o KEYo como Clock as chaves SWA e SWA como Fnable e Clear, e os displays HEYo para a chaves SWA e SWA como Fnable e Clear.
- Utilize o KEY₀ como Clock, as chaves SW₁ e SW₀ como Enable e Clear, e os displays HEX₃₋₀ para mostrar a contagem em hexadecimal.

a

Part II

Simplifique seu código Verilog, utilizando a linha abaixo para representar o contador:

 $Q \le Q + 1;$

Compile seu projeto e compare a quantidades de elementos lógicos e a <i>Fmax</i> com relação ao item anterior.							
Utilize o RTL Viewer e comente as diferenças com relação ao item anterior.							

Parte III

Crie um novo circuito, baseado no exercício anterior, utilizando os diagramas de blocos e utilizando o Flip-Flop tipo T parametrizado nesta ferramenta (Symbol tool \rightarrow c:/.../librares/ \rightarrow primitives \rightarrow storage \rightarrow tffe).

1

Compile seu projeto e compare a quantidades de elementos lógicos e a *Fmax* com relação ao item anterior.

Utilize o RTL Viewer e comente as diferenças com relação ao item anterior.

Parte IV

Projete e implemente um circuito que pisca sucessivamente os dígitos de 0 a 9 no display HEX 0. Cada digito deve ser mostrado por 1 segundo. Utilize um contador para determinar os intervalos de 1s. O Contador deve ser alimentado pelo clock de 50MHz fornecido pelo kit DE2-115. Não derive nenhum outro sinal de clock e certifique-se de utilizar o sinal de 50MHz em todos os flip-flops do seu circuito.

Parte V

Projete e implemente um circuito em Verilog que mostre a palavra HELLO nos displays HEX₇₋₀. Faça as letras se moverem da direita para a esquerda em intervalos de 1s. A palavra deve ser exibida de acordo com o mostrado na tabela 1.

Clock cycle	Displayed pattern							
0				Н	Е	L	L	O
1			Η	E	L	L	O	
2		Η	Е	L	L	O		
3	H	Е	L	L	O			
4	Е	L	L	O				Η
5	L	L	O				H	Ε
6	L	O				H	E	L
7	0				H	E	L	L
8				H	E	L	L	O

Tabela 1. Palavra HELLO girando da direita para a esquerda.

Adaptado dos exemplos que acompanham o KIT DE2-115.