

QUESTION BANK

WITH ANSWER KEY

& STRUCTURED EXPLANATION

CLASS 11
MATHEMATICS

Comprehensive Coverage Includes detailed question banks for Class 11 & 12 subjects PCMB

Skill-based Learning

Develops critical thinking
and problem-solving skills
essential for cracking tough

FEATURES

exams.

Score Boosting
Helps to score maximum
marks in CBSE exams and
increases competitive exam

success potential..

Answer Key & Structured Explanations

Clear, well-structured explanations and step-by-step solutions to enhance understanding.

Exam Pattern Aligned

Questions modeled after the latest exam patterns to ensure students are well-prepared.

Competitive Exam Focus

Specially designed to help students excel in IIT, NEET, JEE, CUET, and other competitive exams.

NCERT Integration

Questions and answers are based on the NCERT syllabus, ensuring relevance for both CBSE board exams and entrance tests.

Let R_1 be a relation defined by

ARTHAM RESOURCES

Class: 11 Mathematics
Competency-based Question Bank with Answer Key
& Structured Explanation

SETS

	$R_1 = \{(a, b) a \ge b, a, b \in R\}.$ Then, R_1 is										
	a) An equivalence relation on R										
	b) Reflexive, transitive but not symmetric										
	c) Symmetric, transitive but not reflexive										
	d) Neither transitive not reflexive but symmetric										
2.	On the set of human beings a relation <i>R</i> is defined as follows:										
	" aRb iff a and b have the same brother". Then R is										
	a) Only reflexive		c) Only transitive	d) Equivalence							
3.	•										
	In a class of 35 students, 17 have taken Mathematics, 10 have taken Mathematics but not Economics. If each student has taken either Mathematics or Economics or both, then the number of students who have										
	taken Economics but not Mathematics is										
	a) 7	b) 25	c) 18	d) 32							
4.	${n(n+1)(2n+1): n \in$	•	0) 10	., s_							
			c) $\{18k : k \in Z\}$	d) $\{24k : k \in 7\}$							
5.		$= \{2, 4, 6\}, C = \{3, 4, 6\}, t$		$u_j(21k \cdot k \in Z)$							
J.			c) {1, 4, 3}	d) None of these							
6.			lation R is defined on A as								
0.	" aRb iff a and b have the		iation is defined on as	Tollows.							
			a) Tuon sitivo	d) Equivalence							
7	a) Reflexive	•	c) Transitive	d) Equivalence							
7.			e set of all trapeziums, the								
0	a) <i>P</i>	b) <i>T</i>	c) φ	d) None of these							
8.			proper subset of B . If $n(A)$	= 5, then find the minimum							
	possible value of $n(A\Delta \Delta A)$	В)									
	a) Is 1										
	b) Is 5										
	c) Cannot be determin	ed									
	d) None of these										
9.		$n(A \times B \times C) = 240$, the									
	a) 288	b) 1	c) 12	d) 2							
10.	In a class, 70 students wrote two tests viz;test-I and test-II. 50% of the students failed in test-I and 40% of the students in test-II. How many students passed in both tests?										
	the students in test-II.										
	a) 21	b) 7	c) 28	d) 14							
11.				$a, b \in \mathbb{Z}$ and $B = \{(a, b): a >$							
	$b, a, b \in \mathbb{Z}$. Then, the n	number of elements in A	$\cap B$ is								
	a) 2	b) 3	c) 4	d) 6							
12.	Let L be the set of all straight lines in the Euclidean plane. Two lines l_1 and l_2 are said to be related by the										
	relation R iff l_1 is paral	lel to l_2 . Then, the relati	on R is not								
	a) Reflexive	b) Symmetric	c) Transitive	d) None of these							
13.	Let <i>R</i> be a relation on t	he set N be defined by {	$((x,y) x,y\in N,2\;x+y=$	41}. Then, <i>R</i> is							
	a) Reflexive	b) Symmetric	c) Transitive	d) None of these							
14.	In an office, every emp	loyee likes at least one o	of tea, coffee and milk. The	number of employees who like							
	only tea, only coffee, or	nly milk and all the three	e are all equal. The numbe	er of employees who like only tea							
	and coffee, only coffee	and milk and only tea a	nd milk are equal and each	n is equal to the number of							
	-	-	=	employees in the office is							
	a) 65	b) 90	c) 77	d) 85							
15.		•	of elements in the power s	•							
	a) 26	b) 32	c) 8	d) 16							
	,	,	<i>)</i> -	•							

16.	The relation 'is subset of'	on the power set $P(A)$ of a	set A is								
	a) Symmetric	b) Anti-symmetric	c) Equivalence relation	d) None of these							
17.	Let <i>A</i> and <i>B</i> be two non-e	mpty subsets of a set <i>X</i> suc	h that A is not a subset of B	. Then,							
a) A is a subset of complement of B											
	b) <i>B</i> is a subset of <i>A</i>										
	c) Aand B are disjoint										
	d) A and the complement	of B are non-disjoint									
18.	If A, B and C are three set		$(A \cup B \cup C) - (A \cap B \cap C)$								
	a) $A - B$	b) $B-C$		d) None of these							
19.	A survey shows that 63% of the Americans like cheese whereas 76% like apples. If x % of the Americans like both cheese and apples, then										
			a) 20 < 4 < C2	d) Nama of these							
20	=	N) and $Y = \{9(n-1): n \in$	c) $39 \le x \le 63$	d) None of these							
20.	a) X	b) Y	c) N	d) None of these							
21	,	,	Itiple of 5}. Then, $A \cap B$ is gi								
21.		b) $\{5, 10, 15, 20, \dots \}$		d) None of these							
22	If $n(A \times B) = 45$, then $n($		() {13, 30, 43,}	u) None of these							
22.	a) 15	b) 17	c) 5	d) 9							
23	•	•	t A is an equivalence relation								
25.	a) Is reflective	defined on a non-empty se	e 11 13 an equivalence relatio	ii, it is sufficient, if it							
	b) Is symmetric										
	c) Is transitive										
	d) Possesses all the above	three properties									
24.	=		$\sqrt{2}$ is an irrational number.	Then, the relation R is							
	a) Reflexive	b) Symmetric		d) None of these							
25.		, ,	can speak English only. The	•							
	can speak both Hindi and	-	1 0 7	,							
	a) 9	b) 11	c) 23	d) 17							
26.	A, B and C are three non-	empty sets. If $A \subset B$ and B	$\subset C$, then which of the follo	wing is true?							
		b) $A \cap B \cap C = B$	c) $A \cup B = B \cap C$	$d) A \cup B \cup C = A$							
27.	$\left\{ x \in R : \frac{2x-1}{x^3+4x^2+3x} \in R \right\} eq^{-1}$	ıals									
	(x 11x 15x)) D (O 1 2)	n (1 1)							
			c) $R - \{0, -1, -3\}$								
28.		-	ts to a finite set B having n	elements, then the number							
	of relations from A to B is			15 10							
00	a) 2^{mn}	b) $2^{mn} - 1$	c) 2 <i>mn</i>	d) <i>m</i> ⁿ							
29.	If $A = \{(x, y): y^2 = x; x, y\}$										
	$B = \{(x, y): y = x ; x, y \in \mathbb{R} \}$	$\{R\}$, then									
	a) $A \cap B = \emptyset$										
	b) $A \cap B$ is a singleton set c) $A \cap B$ contains two ele										
	d) $A \cap B$ contains two ele	<u>-</u>									
30	Which of the following is	•									
50.	a) Is father of	b) Is less than	c) Is congruent to	d) Is an uncle of							
31.	•	=	cs, Physics and Chemistry,								
	-		matics and Physics, at most	=							
		-	nemistry. The largest possib	-							
	passed all three examinat	= -	, 51								
	a) 11	b) 12	c) 13	d) 14							
32.	Let <i>A</i> be the non-void set	of the children in a family.	The relation $'x$ is a brother	of y' on A is							

) D G :	13.0) m	12.34 ()								
	a) Reflexive	b) Symmetric	•	d) None of these								
33.	. In a class of 30 pupils 12 take needls work, 16 take physics and 18 take history. If all the 30 students take											
		o one takes all three, then t										
	a) 16	b) 6	c) 8	d) 20								
34.	34. If R is a relation on a finite set having n elements, then the number of relations on A is											
	a) 2 ⁿ	b) 2 ^{n²}	c) n^2	d) n^n								
35.	The void relation on a set	Ais										
	a) Reflexive											
b) Symmetric and transitive												
	c) Reflexive and symmetric											
	d) Reflexive and transitive											
36.	Suppose $A_1, A_2,, A_{30}$ are	thirty sets, each having 5 e	elements and B_1, B_2, \dots, B_n a	are n sets each with 3								
	elements, let											
	$\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^n B_j = S$ and	d each element of S belongs	to exactly 10 of the A_i 's an	d exactly 9 of the B_i 's.								
	Then, <i>n</i> is equal to			•								
	a) 115	b) 83	c) 45	d) None of these								
37.	If <i>A</i> is a finite set having <i>n</i>	•	,	,								
	a) 2 <i>n</i> elements	` ,	c) <i>n</i> elements	d) None of these								
38.	•	elements respectively. Wha		•								
	a) 3	b) 6	c) 9	d) 18								
39.		on on a set A and I be the identity		-, -								
	a) $R \subset I$	b) $I \subset R$	c) $R = I$	d) None of these								
40.		such that $n(A_i) = i + 2, A_1$		•								
	a) 3	b) 4	c) 5	d) 6								
41	•	sets, then $A \cap (A \cap B)^c$ is eq	•	a) o								
11.	a) A	b) <i>B</i>	с) Ф	d) $A \cap B^c$								
42.	•	R is a reflexive relation R	•	u)11112								
12.	a) $13 \le n \le 26$		c) $13 \le n \le 169$	d) $0 \le n \le 169$								
43.	•	ineering colleges in a state (=	•								
10.												
two colleges are related iff they are affiliated to the same university, then <i>R</i> is a) Only reflexive b) Only symmetric c) Only transitive d) Equivalent												
44	, ,	e number of families which	•	a) Equivalence								
	a) 4000	b) 3300	c) 4200	d) 5000								
45.	If <i>A</i> and <i>B</i> are two sets, th	,	c) 1200	u) 5000								
10.	a) A	b) <i>B</i>	c) ф	d) None of these								
46.		$A = \{2,4,18\}$ and $N = \{2,4,18\}$	•	•								
10.	a) A	b) <i>N</i>	c) B	d) none of these								
47.	If $A = \{\phi, \{\phi\}\}\$, then the p	•	c, <i>b</i>	a) hone of these								
17.			2) (4 (4) ((4)) 4)	d) None of these								
40	a) A	b) $\{\phi, \{\phi\}, A\}$	c) $\{\phi, \{\phi\}, \{\{\phi\}\}, A\}$	u) None of these								
48.	Let $A = \{(x, y) : y = e^x, x = e^x \}$	-										
	$B = \{(x, y) : y = e^{-x}, x \in \mathbb{R} \}$		3.4BB2	D.M. Col								
40	a) $A \cap B = \emptyset$		c) $A \cup B = R^2$	d) None of these								
49.		straight lines in a plane. Le	t a relation R be defined by	$\alpha R \beta \Leftrightarrow \alpha \perp \beta, \alpha, \beta \in L.$								
	Then R is	12.0										
	a) Reflexive	b) Symmetric	c) Transitive	d) None of these								
50.		s such that $A \cap B = A \cap Ca$		D 4 D								
	a) $A = C$	b) $B = C$	c) $A \cap B = \emptyset$	d) A = B								
51.		tal number of unordered pa										
	a) 25	b) 34	c) 42	d) 41								
52.	If $A = \{(x, y): x^2 + y^2 = 4\}$	$\{x, y \in R\}$ and										

	a) Reflexive	b) Symmetric	c) Antisymmetric	d) Transitive							
84.	The shaded region in the	e figure represents									
	a) $A \cap B$	b) <i>A</i> ∪ <i>B</i>	c) $B-A$	$d) (A - B) \cup (B - A)$							
85.	Let $X = \{1, 2, 3, 4, 5\}$ and $Y = \{1, 3, 5, 7, 9\}$. Which of the following is/are not relations from X to Y ?										
	a) $R_1 = \{(x, y) y = 2 + x, x \in X, y \in Y\}$										
	b) $R_2 = \{(1,1), (2,1), (3,3), (4,3), (5,5)\}$										
c) $R_3 = \{(1,1), (1,3), (3,5), (3,7), (5,7)\}$											
	d) $R_4 = \{(1,3), (2,5$, , , ,									
86.	6. Given the relation $R = \{(1,2), (2,3)\}$ on the set $A = \{1,2,3\}$, the minimum number of ordered pairs which										
		t an equivalence relation is	\ -	1) 0							
07	a) 5	b) 6	c) 7	d) 8							
87.	If sets A and B are define										
	$A = \left\{ (x, y) \colon y = \frac{1}{x}, 0 \neq x \in R \right\},$										
	$B=\{(x,y)\colon y=-x,x\in$										
	•	b) $A \cap B = B$	•	d) None of these							
88.		relation on a finite set A hav	ring n elements. Then, the n	number of ordered pairs in							
	R is										
	a) Less than n	t o m									
	b) Greater than or equal to										
	c) Less than or equal tod) None of these	п									
89.	•	A_{50} and $n(A_i) = i - 1$, then	$n(\cap^{50}, A_i) =$								
03.	a) 49	b) 50	c) 11	d) 10							
90.	•	$\operatorname{id} b N \cap c N = d N, \text{ where } b$	•	u) 10							
		b) $c = bd$	c) $b = cd$	d) None of these							
91.	X is the set of all residents in a colony and R is a relation defined on X as follows:										
	"Two persons are relate	d iff they speak the same lan	guage"								
	The relation R is										
	a) Only symmetric										
	b) Only reflexive										
		reflexive but not transitive									
02	d) Equivalence	onto and $A = \{(a, a), a, a, c\}$	C as -t as) there the recomber	of alamanta in Aia							
92.	a) 100	ents and $A = \{(x, y) : x, y \in S \}$ b) 90	$(x \neq y)$, then the number $(x \neq y)$	d) 45							
03		AIL, GAIL, IOCL} and R be a r	•	•							
75.	they share exactly one le	•	ciation acmica as two cic.	ments of 11 are related if							
	a) Anti-symmetric	b) Only transitive	c) Only symmetric	d) Equivalence							
94.	•	have m and n elements respe									
		f subsets of B , then the volur									
	a) 7	b) 9	c) 10	d) 12							
95.	Let $R = \{(a, a)\}$ be a relative	ation on a set A . Then, R is									
	a) Symmetric										
	b) Antisymmetric										
	c) Symmetric and antisy										
	d) Neither symmetric nor antisymmetric										

159.	Which one of the followin	g relations on R is an equiv	alence relation?							
	a) $a R_1 b \Leftrightarrow a = b $	b) $a R_2 b \Leftrightarrow a \ge b$	c) $a R_3 b \Leftrightarrow a \text{ divides } b$	d) $a R_4 b \Leftrightarrow a < b$						
160.	Let <i>R</i> be a relation defined	d on <i>S</i> , the set of squares or	a chess board such that <i>xl</i>	Ry iff x and y share a						
	common side. Then, which of the following is false for <i>R</i> ?									
	a) Reflexive	b) Symmetric	c) Transitive	d) All the above						
161.	If $A = \{x, y, z\}$, then the re	elation								
	$R = \{(x, x), (y, y), (z, z), (z, z),$	(z,x),(z,y) is								
	a) Symmetric	b) Antisymmetric	c) Transitive	d) Both (a) and (b)						
162.	If $A = \{x : x \text{ is a multiple } c$	of 4} and,								
	$B = \{x : x \text{ is a multiple of } \}$	6}, then $A \cap B$ consists of r	nultiples of							
	a) 16	b) 12	c) 8	d) 4						
163.	If $A = \{a, b, c, l, m, n\}$, then	n the maximum number of	elements in any relation on	A is						
	a) 12	b) 16	c) 32	d) 36						
164.	Consider the following sta	atements:								
	<i>p</i> : Every reflexive relatio	n is symmetric relation								
	<i>q</i> : Every anti-symmetric	relation is reflexive								
	Which of the following is,	are true?								
	a) p alone	b) q alone	c) Both p and q	d) Neither <i>p</i> nor <i>q</i>						
165.	For any two sets <i>A</i> and <i>B</i> ,	A - (A - B) equals								
	a) <i>A</i>		c) <i>A</i> ∩ <i>B</i>	d) $A^C \cap B^C$						
166.	If A, B and C are three nor	n-empty sets such that A an	dB are disjoint and the nu	mber of elements						
	contained in <i>A</i> is equal to	those contained in the set of	of elements common to the	sets A and C, then $n(A \cup$						
	$B \cup C$) is necessarily equa	al to								
	a) $n(B \cup C)$	b) $n(A \cup C)$	c) Both (a) and (b)	d) None of these						
167.	The relation R defined in	N as $a R b \Leftrightarrow b$ is divisible	by a is							
	a) Reflexive but not symn	netric								
	b) Symmetric but not tran	ısitive								
	c) Symmetric and transiti	ve								
	d) None of these									
168.	If $A = \{n : \frac{n^3 + 5n^2 + 2}{n} \text{ is an in} \}$	nteger and itself is an intege	er) then the number of eler	nents in the set A is						
		L) 2) 2	1) 4						
1.00	a) 1	b) 2	c) 3	d) 4						
169.		the following data shows the	-	,						
	-	<u>=</u>		ematics and Chemistry 28;						
		; Mathematics, Physics and	Chemistry 18. How many	students have offered						
	Mathematics alone?	1.) 40	-) (0	1) 22						
150	a) 35	b) 48	c) 60	d) 22						
1/0.				be the subset of A consisting						
		ralue 1. Let C be the subset	of the set of all determinan	ts with value -1 . Then						
	a) <i>C</i> is empty	C								
	b) <i>B</i> has as many element	s as c								
	c) $A = B \cup C$									
171	d) B has twice as many electrical $B = B = C(x, y) \ln^2 x + y^2$									
1/1.	Let $P = \{(x, y) x^2 + y^2 = x\}$		a) Turan all l	J) A., 41						
	a) Reflexive	b) Symmetric	c) Transitive	d) Antisymmetric						

1 **(b)**

For any $a \in R$, we have $a \ge a$ Therefore, the relation R is reflexive.

R is not symmetric as $(2,1) \in R$ but $(1,2) \notin R$. The relation R is transitive also, because $(a,b) \in R$, $(b,c) \in R$ imply that $a \ge b$ and $b \ge c$ which in turn imply that $a \ge c$

2 **(d**)

Clearly, R is an equivalence relation

3 **(c)**

Let M and E denote the sets of students who have taken Mathematics and Economics respectively.

Then, we have

$$n(M \cup E) = 35, n(M) = 17 \text{ and } n(M \cap E') = 10$$

Now,

$$n(M \cap E') = n(M) - n(M \cap E)$$

$$\Rightarrow 10 = 17 - n(M \cap E) \Rightarrow n(M \cap E) = 7$$

Now,

$$n(M \cup E) = n(M) + n(E) - n(M \cap E)$$

$$\Rightarrow 35 = 17 + n(E) - 7 \Rightarrow n(E) = 25$$

$$n(E \cap M') = n(E) - n(E \cap M) = 25 - 7 = 18$$

4 (a)

Let
$$A = \{n(n+1)(2n+1): n \in Z\}$$

Putting
$$n = \pm 1, \pm 2, \dots$$
, we get $A = \{\dots - 1\}$

$$30, -6, 0, 6, 30, \dots$$

$$\Rightarrow \qquad \{n(n+1)(2n+1): n \in Z\} \subset \{6k: k \in Z\}$$

5 **(a)**

$$A \cup B = \{1, 2, 3, 4, 5, 6\}$$

$$\therefore (A \cup B) \cap C = \{1, 2, 3, 4, 5, 6\} \cap \{3, 4, 6\}$$

 $= \{3, 4, 6\}$

6 **(d)**

We have,

$$n(A \cap \overline{B}) = 9, n(\overline{A} \cap B) = 10$$
 and $n(A \cup B) = 24$

$$\Rightarrow n(A) - n(A \cap B) = 9, n(B) - n(A \cap B) = 10$$

and,
$$n(A) + n(B) - n(A \cap B) = 24$$

$$\Rightarrow n(A) + n(B) - 2n(A \cap B) = 19$$
 and $n(A) +$

$$n(B) - n(A \cap B) = 24$$

$$\Rightarrow n(A \cap B) = 5$$

$$\therefore n(A) = 14 \text{ and } n(B) = 15$$

Hence, $n(A \times B) = 14 \times 15 = 210$

7 **(a)**

Clearly, $P \subset T$

$$\therefore P \cap T = P$$

8 **(a)**

It is given that *A* is a proper subset of *B*

$$\therefore A - B = \phi \Rightarrow n(A - B) = 0$$

We have, n(A) = 5. So, minimum number of elements in B is 6

Hence, the minimum possible value of $n(A \Delta B)$ is n(B) - n(A) = 6 - 5 = 1

:

$$n(A \times B \times C) = n(A) \times n(B) \times n(C)$$

$$n(C) = \frac{24}{4 \times 3} = 2$$

10 **(b)**

Use $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

11 **(d)**

$$A = \{(a,b): a^2 + 3b^2 = 28, a, b \in Z\}$$

$$=$$
{ $(5, 1), (-5, -1), (5, -1), (-5, 1), (1, 3), (-1, -3), (-1, 3),$

$$(1, -3), (4, 2), (-4, -2), (4, -2), (-4, 2)$$

And
$$B = \{(a, b): a > b, a, b \in Z\}$$

$$\therefore A \cap B$$

$$= \{(-1, -5), (1, -5), (-1, -3), (1, -3), (4, 2), (4, -1)\}$$

 \therefore Number of elements in $A \cap B$ is 6.

13 **(d)**

We have

$$R = \{(1,39), (2,37), (3,35), (4,33), (5,31), (6,29), \}$$

$$(7,27), (8,25), (9,23), (10,21), (11,19), (12,17),$$

(19,3),(20,1)

Since $(1,39) \in R$, but $(39,1) \notin R$

Therefore, *R* is not symmetric

Clearly, R is not reflexive. Now, $(15,11) \in R$ and

 $(11,19) \in R$ but $(15,19) \notin R$

So, *R* is not transitive

14 **(c)**

Total number of employees = 7x i.e. a multiple of 7. Hence, option (c) is correct

15 **(a)**

The power set of a set containing n elements has 2^n elements.

Clearly, 2^n cannot be equal to 26

16 **(b)**

The relation is not symmetric, because $A \subset B$ does not imply that $B \subset A$. But, it is antisymmetric because

$$A \subset B$$
 and $B \subset A \Rightarrow A = B$

18 **(c)**

We have, $A \supset B \supset C$

$$\therefore A \cup B \cup C = A \text{ and } A \cap B \cap C = C$$

$$\Rightarrow (A \cup B \cup C) - (A \cap B \cap C) = A - C$$

19 **(c)**

Given, n(C) = 63, n(A) = 76 and $n(C \cap A) = x$ We know that,

$$n(C \cup A) = n(C) + n(A) - n(C \cap A)$$

⇒
$$100 = 63 + 76 - x$$
 ⇒ $x = 139 - 100 = 39$
And $n(C \cap A) \le n(C)$

Allu $n(C \cap A) \leq n(C)$

$$\Rightarrow x \leq 63$$

$$\therefore 39 \le x \le 63$$

20 **(b)**

We have,

X =Set of some multiple of 9

and, Y = Set of all multiple of 9

$$\therefore X \subset Y \Rightarrow X \cup Y = Y$$

21 **(c)**

 $A \cap B$

= $\{x: x \text{ a multiple of 3}\}$ and $\{x: x \text{ is a multiple of 5}\}$

= $\{x: x \text{ is a multiple of } 15\}$

$$= \{15, 30, 45, \dots \}$$

22 **(b)**

We have,

$$n(A \times B) = 45$$

$$\Rightarrow n(A) \times n(B) = 45$$

 \Rightarrow n(A) and n(B) are factors of 45 such that their product is 45

Hence, n(A) cannot be 17

24 **(a)**

For any $x \in R$, we have

$$x - x + \sqrt{2} = \sqrt{2}$$
 an irrational number

 $\Rightarrow x R x \text{ for all } x$

So, R is reflexive

R is not symmetric, because $\sqrt{2}$ *R* 1 but 1 $R / \sqrt{2}$ *R* is not transitive also because $\sqrt{2}$ *R* 1 and

$$1 R 2 \sqrt{2}$$
 but $\sqrt{2} R 2 \sqrt{2}$

25 **(b)**

We have,

$$n(H) - n(H \cap E) = 22, n(E) - n(H \cap E)$$

= 12, $n(H \cup E) = 45$

$$\therefore n(H \cup E) = n(H) + n(E) - n(H \cap E)$$

$$\Rightarrow 45 = 22 + 12 + n(H \cup E)$$

 $\Rightarrow n(H \cap E) = 11$

26 **(c)**

We have, $A \subset B$ and $B \subset C$

$$\therefore A \cup B = B \text{ and } B \cap C = B$$

$$\Rightarrow A \cup B = B \cap C$$

27 **(c)**

Let
$$A = \left\{ x \in R : \frac{2x-1}{x^3+4x^2+3x} \right\}$$

Now, $x^3 + 4x^2 + 3x = x(x^2 + 4x + 3)$
 $= x(x+3)(x+1)$

$$A = R - \{0, -1, -3\}$$

29 **(d)**

Clearly, $y^2 = x$ and y = |x| intersect at (0,0), (1,1) and (-1,-1). Hence, option (d) is correct

31 **(d)**

Let *M*, *P* and *C* be the sets of students taking examinations in Mathematics, Physics and Chemistry respectively.

We have.

$$n(M \cup P \cup C) = 50, n(M) = 37, n(P) = 24, n(C)$$

- 43

 $n(M \cap P) < 19, n(M \cap C) \le 29, n(P \cap C) \le 20$ Now,

$$n(M \cup P \cup C) = n(M) + n(P) + n(C) - n(M \cap P)$$

$$-n(M\cap C)-n(P\cap C)+n\ (M\cap P\cap C)$$

$$\Rightarrow 50 = 37 + 24 + 43 - \{n(M \cap P) + n(M \cap C) + n(P \cap C)\}\$$

 $+n(M \cap P \cap C)$

 $\Rightarrow n(M \cap P \cap C)$

$$= n(M \cap P) + n(M \cap C) + n(P \cap C) - 54$$

$$\Rightarrow n(M \cap P) + n(M \cap C) + n(P \cap C)$$

$$= n(M \cap P \cap C) + 54 \qquad \dots (i)$$

Now.

$$n(M \cap P) \le 19, n(M \cap C) \le 29, n(P \cap C) \le 20$$

$$\Rightarrow n(M \cap P) + n(M \cap C) + n(P \cap C) \le 19 + 29 + 10$$

$$\Rightarrow n(M \cap P \cap C) + 54 \le 68$$

$$\Rightarrow n(M \cap P \cap C) + 34 \le$$
$$\Rightarrow n(M \cap P \cap C) \le 14$$

33 **(a)**

Given,
$$n(N) = 12$$
, $n(P) = 16$, $n(H) = 18$,

$$n(N \cup P \cup H) = 30$$

And $n(N \cap P \cap H) = 0$

Now,
$$n(N \cup P \cup H) = n(N) + n(P) + n(H)$$

$$-n(N \cap P) - n(P \cap H) - n(H \cap N)$$

 $+n(N \cap P \cap H)$

$$\Rightarrow n(N \cap P) + n(P \cap H) + n(H \cap N)$$

$$=(12+16+18)-30$$

$$= 46 - 30 = 16$$

35 **(b)**

The void relation R on A is not reflexive as $(a, a) \notin R$ for any $a \in A$. The void relation is symmetric and transitive

36 **(c)**

Given,
$$A$$
's are 30 sets with five elements each, so $\sum_{i=1}^{30} n(A_i) = 5 \times 30 = 150$...(i)

If the
$$m$$
 distinct elements in S and each elements

of *S* belongs to exactly 10 of the
$$A_i$$
's, then
$$\sum_{i=1}^{30} n(A_i) = 10m \qquad ...(ii)$$

From Eqs. (i) and (ii),
$$m = 15$$

Similarly, $\sum_{j=1}^{n} n(B_j) = 3n \text{ and } \sum_{j=1}^{n} n(B_j) = 9m$ $\therefore \qquad 3n = 9m$ $\Rightarrow \qquad n = \frac{9m}{2} = 3 \times 15 = 45$

38 **(b)**

 $A \cup B$ will contain minimum number of elements if $A \subset B$ and in that case, we have $n(A \cup B) = n(B) = 6$

40 **(c)**

It is given that $A_1 \subset A_2 \subset A_3 \subset \cdots \subset A_{100}$ $\therefore \bigcup_{i=3}^{100} A_i = A \Rightarrow A_3 = A \Rightarrow n(A) = n(A_3) = 3 + 2$ = 5

41 (d)

We have, $A \cap (A \cap B)^c = A \cap (A^c \cup B^c)$ $\Rightarrow A \cap (A \cap B)^c = (A \cap A^c) \cup (A \cap B^c)$ $\Rightarrow A \cap (A \cap B)^c = \phi \cup (A \cap B^c) = A \cap B^c$

42 **(c)**

Since *R* is a reflexive relation on *A*. $\therefore (a, a) \in R \text{ for all } a \in A$ $\Rightarrow n(A) \le n(R) \le n(A \times A) \Rightarrow 13 \le n(R) \le 169$

43 **(d)**

Clearly, R is reflexive symmetric and transitive. So, it is an equivalence relation

44 (a)

We have,

Required number of families

 $= n(A' \cap B' \cap C')$ $= n(A \cup B \cup C)'$ $= N - n(A \cup B \cup C)$ $= 10000 - \{n(A) + n(B) + n(C) - n(A \cap B)\}$ $-n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)\}$ = 10000 - 4000 - 2000 - 1000 + 500 + 300 + 400 - 200 = 4000

45 (a)

We have, $A \subset A \cup B$ $\Rightarrow A \cap (A \cup B) = A$

46 **(b)**

We have, $(A \cup B) \cap B' = A$ $\therefore ((A \cup B) \cap B') \cup A' = A \cup A' = N$

48 **(b)**

The set A consists of all points on $y = e^x$ and the set B consists of points on $y = e^{-x}$, these two curves intersect at (0, 1). Hence, $A \cap B$ consists of a single point

50 **(b)**

Given, $A \cap B = A \cap C$ and $A \cup B = A \cup C$ $\Rightarrow B = C$

51 **(d)**

Required number

$$=\frac{3^4+1}{2}=41$$

52 **(b)**

Clearly, *A* is the set of all points on a circle with centre at the origin and radius 2 and *B* is the set of all points on a circle with centre at the origin and radius 3. The two circles do not intersect.

Therefore,

$$A \cap B = \phi \Rightarrow B - A = B$$

53 **(c)**

We have, $n(A^c \cap B^c)$ $= n\{(A \cup B)^c\}$ $= n(U) - n(A \cup B)$ $= n(U) - \{n(A) + n(B) - n(A \cap B)\}$ = 700 - (200 + 300 - 100) = 300

54 **(a)**

We have,

$$\cos \theta > -\frac{1}{2} \text{ and } 0 \le \theta \le \pi$$

$$\Rightarrow 0 \le \theta \le 2\pi/3 \text{ and } 0 \le \theta \le \pi$$

$$\Rightarrow 0 \le \theta \le \frac{2\pi}{3} \Rightarrow A = \{\theta : 0 \le \theta \le 2\pi/3\}$$

Also

$$\sin \theta > \frac{1}{2} \text{ and } \pi/3 \le \theta \le \pi$$

$$\Rightarrow \frac{\pi}{3} \le \theta \le \frac{5\pi}{6} \Rightarrow B = \left\{\theta : \frac{\pi}{3} \le \theta \le \frac{5\pi}{6}\right\}$$

$$\therefore A \cap B = \left\{\theta : \frac{\pi}{3} \le \theta \le \frac{2\pi}{3}\right\} \text{ and } A \cup B$$

$$= \left\{\theta : 0 \le \theta \le \frac{5\pi}{6}\right\}$$

55 **(d)**

Clearly, R is an equivalence relation

56 **(c)**Given, $A = \{1, 2, 3\}, B = \{a, b\}$ $A \times B$ $= \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$

57 **(b)**Clearly,

$$A_2 \subset A_3 \subset A_4 \subset \cdots \subset A_{10}$$

$$\therefore \bigcup_{n=2}^{10} A_n = A_{10} = \{2,3,5,7,11,13,17,19,23,29\}$$

58 **(c)**Clearly,

 $= \{(4,6), (4,10), (6,4), (10,4)(6,10), (10,6), (10,12)\}$

Clearly, R is symmetric $(6,10) \in R$ and $(10,12) \in R$ but $(6,12) \notin R$ So, R is not transitive Also, R is not reflexive

61 **(c)**

It is given that

$$A_1 \subset A_2 \subset A_3 \dots \subset A_{99}$$

$$\bigcup_{i=1}^{999} A_i = A_{99}$$

$$\Rightarrow n\left(\bigcup_{i=1}^{99} A_i\right) = n(A_{99}) = 99 + 1 = 100$$

62 **(b)**

It is given that $2^m - 2^n = 56$

Obviously, m = 6, n = 3 satisfy the equation

63 **(b**)

Clearly, $(a, a) \in R$ for any $a \in A$ Also,

 $(a,b) \in R$

 \Rightarrow a and b are in different zoological parks

 \Rightarrow *b* and *a* are in different zoological parks

 \Rightarrow $(b,a) \in R$

Now, $(a, b) \in R$ and $(b, a) \in R$ but $(a, a) \notin R$ So, R is not transitive

64 **(d)**

$$X \cap Y = \{1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 200\}$$

$$\therefore \qquad n(X \cap Y) = 12$$

66 **(c)**

We have,

$$X \cap (Y \cup X)' = X \cap (Y' \cap X') = (X \cap X') \cap Y'$$
$$= \phi \cap Y' = \phi$$

67 **(b)**

The number of subsets of *A* containing 2, 3 and 5 is same as the number of subsets of set $\{1, 4, 6\}$ which is equal to $2^3 = 8$

68 **(a)**

We have,

$$B_1 = A_1 \Rightarrow B_1 \subset A_1$$

$$B_2 = A_2 - A_1 \Rightarrow B_2 \subset A_2$$

$$B_3 = A_3 - (A_1 \cup A_2) \Rightarrow B_3 \subset A_3$$

 $\therefore B_1 \cup B_2 \cup B_3 \subset A_1 \cup A_2 \cup A_3$

69 **(d)**

The identity relation on a set *A* is reflexive and symmetric both. So, there is always a reflexive and symmetric relation on a set

70 (a)

Let the total number of voters be n. Then, Number of voters voted for $A = \frac{nx}{100}$ Number of voters voted for $B = \frac{n(x+20)}{100}$: Number of voters who voted for both

$$= \frac{nx}{100} + \frac{n(x+20)}{100}$$

$$= \frac{n(2x+20)}{100}$$
Hence, $n - \frac{n(2x+20)}{100} = \frac{20n}{100} \Rightarrow x = 30$

71 **(c)**

Since $(1,1) \notin R$. So, R is not reflexive Now, $(1,2) \in R$ but, $(2,1) \notin R$. Therefore, R is not symmetric.

Clearly, R is transitive

72 **(b)**

Let *A* and *B* denote respectively the sets of families who got new houses and compensation It is given that

$$n(A \cap B) = n(\overline{A \cup B})$$

$$\Rightarrow n(A \cap B) = 50 - n(A \cup B)$$

$$\Rightarrow n(A) + n(B) = 50$$

$$\Rightarrow n(B) + 6 + n(B) = 50 \quad [\because n(A)$$

$$= n(B) + 6 \text{ (given)}]$$

$$\Rightarrow n(B) = 22 \Rightarrow n(A) = 28$$

73 **(b)**

We have,

$$n(A' \cap B') = n((A \cup B)')$$

$$\Rightarrow n(A' \cap B') = n(U) - n(A \cup B)$$

$$\Rightarrow n(A' \cap B') = n(U)$$

$$-\{n(A) + n(B) - n(A \cap B)\}\$$

$$\Rightarrow 300 = n(\mathcal{U}) - \{200 + 300 - 100\}$$
$$\Rightarrow n(\mathcal{U}) = 700$$

74 **(b)**

For any integer n, we have

 $n|n \Rightarrow n R n$

So, n R n for all $n \in Z$

 \Rightarrow *R* is reflexive

Now, 2|6 but 6 does not divide 2

 \Rightarrow (2, 6) \in R but (6,2) \notin R

So, *R* is not symmetric

Let $(m, n) \in R$ and $(n, p) \in R$. Then,

$$(m,n) \in R \Rightarrow m|n$$

 $(n,p) \in R \Rightarrow n|p$ $\Rightarrow m|p \Rightarrow (m,p) \in R$

So, *R* is transitive

Hence, *R* is reflexive and transitive but it is not symmetric

75 **(c)**

Since,
$$A = B \cap C$$
 and $B = C \cap A$,
Then $A \equiv B$

76 **(d)**

Since n|n for all $n \in N$. Therefore, R is reflexive. Since 2|6 but $6 \nmid 2$, therefore R is not symmetric Let $n \mid R \mid m$ and $m \mid R \mid p$ ⇒ n R m and m R p⇒ n|m and m|p ⇒ n|p ⇒ n R pSo, R is transitive

77 **(a)**

We have,

 $b \ N = \{b \ x | x \in \mathbb{N}\} = \text{Set of positive integral}$ multiples of b

 $c \ N = \{c \ x | x \in N\} = \text{Set positive integral}$ multiples of c

 $bN \cap cN = \text{Set of positive integral multiples of } bc$

 $\Rightarrow bN \cap cN = bc \ N \ [\because b \text{ and } c \text{ are prime}]$ Hence, d = bc

79 **(b)**

Let $x, y \in A$. Then, $x = m^2, y = n^2$ for some $m, n \in N$ $\Rightarrow xy = (mn)^2 \in A$

80 **(c)**

We have,

$$A_{1} \subset A_{2} \subset A_{3} \subset \dots \subset A_{100}$$

$$\therefore \bigcup_{i=1}^{100} A_{i} = A_{100} \Rightarrow n \left(\bigcup_{i=1}^{100} A_{i} \right) = n(A_{100}) = 101$$

81 **(c)**

Let the total population of town be x.

$$\therefore \frac{25x}{100} + \frac{15x}{100} - 1500 + \frac{65x}{100} = x$$

$$\Rightarrow \frac{105x}{100} - x = 1500$$

$$\Rightarrow \frac{5x}{100} = 1500$$

$$\Rightarrow x = 30000$$

82 **(d)**

As A, B, C are pair wise disjoints. Therefore, $A \cap B = \emptyset$, $B \cap C = \emptyset$ and $A \cap C = \emptyset$ $A \cap B \cap C = \emptyset$ $A \cap B \cap C \cap A \cap B \cap C$ $A \cap B \cap C \cap A \cap B \cap C$

83 **(b)**

Clearly, $R = \{(1,3), (3,1), (2,2)\}$ We observe that R is symmetric only

- 64 **(d)**Given figure clearly represents $(A B) \cup (B A)$
- 85 **(d)** R_4 is not a relation from A to B, because $(7,9) \in R_4$ but $(7,9) \notin A \times B$

86 **(c)**

R is reflexive if it contains (1,1), (2,2), (3,3) ∴ (1,2) ∈ R, (2,3) ∈ R ∴ R is symmetric, if (2,1), (3,2) ∈ R Now, $R = \{(1,1), (2,2), (3,3), (2,1), (3,2), (2,3), (1,2)\}$ R will be transitive, if (3,1), (1,3) ∈ R Thus, R becomes an equivalence relation by adding (1,1)(2,2)(3,3), (2,1)(3,2), (1,3), (3,1). Hence, the total number of ordered pairs is 7

87 **(c)**

The set A is the set of all points on the hyperbola xy=1 having its two branches in the first and third quadrants, while the set B is the set of all points on y=-x which lies in second and four quadrants. These two curves do not intersect. Hence, $A \cap B = \emptyset$.

88 **(b)**

Since R is an equivalence relation on set A. Therefore $(a, a) \in R$ for all $a \in A$. Hence, R has at least n ordered pairs

89 **(d**

It is given $A_1 \subset A_2 \subset A_3 \subset A_4 \dots \subset A_{50}$ $\therefore \bigcup_{i=11}^{50} A_i = A_{11}$ $\Rightarrow n \left(\bigcup_{i=11}^{50} A_i \right) = n(A_{11}) = 11 - 1 = 10$

90 **(d)**

We have,

 $b \ N = \{b \ x | x \in \mathbb{N}\} = \text{Set of positive integral}$ multiples of b

 $c \ N = \{c \ x | x \in N\} = \text{Set of positive integral}$ multiples of c

 $\therefore c \ N = \{c \ x \mid x \in N\} = \text{Set of positive integral}$ multiples of b and c both $\Rightarrow d = 1, c, m, of b \text{ and } c$

91 **(d)**

Clearly, R is an equivalence relation

92 **(b)**

Number of element is S = 10And $A = \{(x, y); x, y \in S, x \neq y\}$ \therefore Number of element in $A = 10 \times 9 = 90$

93 (c)

Clearly,

R = {(BHEL, SAIL), (SAIL, BHEL), (BHEL, GAIL), (GAIL, BHEL), (BHEL, IOCL), (IOCL, BHEL)}
We observe that R is symmetric only

94 **(a)**

According to the given condition,

$$2^{m} = 112 + 2^{n}$$

$$\Rightarrow 2^{m} - 2^{n} = 112$$

$$\Rightarrow m = 7, n = 4$$

96 **(c)**

We have,

$$p = \frac{(n+2)(2n^5 + 3n^4 + 4n^3 + 5n^2 + 6)}{n^2 + 2n}$$

$$\Rightarrow p = 2n^4 + 3n^3 + 4n^2 + 5n + \frac{6}{n}$$

Clearly, $p \in Z^+$ iff n = 1, 2, 3, 6. So, A has 4 elements

97 **(b)**

Clearly,

 $x \in A - B \Rightarrow x \in A \text{ but } x \notin B$

 \Rightarrow x is a multiple of 3 but it is not a multiple of 5 $\Rightarrow x \in A \cap \bar{B}$

98 **(b)**

Total drinks=3(ie, milk, coffee, tea).

Total number of students who take any of the drink is 80.

:The number of students who did not take any of three drinks = 100 - 80 = 20

100 (d)

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

= 12 + 9 - 4 = 17
Hence, $n[(AUB)^c] = n(U) - n(A \cup B)$

$$= 20 - 17 = 3$$

101 (c)

We have.

$$\{x \in Z: |x - 3| < 4\} = \{x \in Z: -1 < x < 7\}$$
$$= \{0.1, 2, 3, 4, 5, 6\}$$

$$\{x \in Z: |x - 4| < 5\} = \{x \in Z: -1 < x < 9\}$$

= \{0,1,2,3,4,5,6,7,8\}

$$\therefore \{x \in Z: |x - 3| < 4\} \cap \{x \in Z: |x - 4| < 5\}$$

$$= \{0,1,2,3,4,5,6\}$$

102 (a)

Since *R* is reflexive relation on *A*

 $(a, a) \in R$ for all $a \in A$

 \Rightarrow The minimum number of ordered pairs in R is n

Hence, $m \ge n$

104 (c)

We have, $y = \frac{4}{x}$ and $x^2 + y^2 = 8$

Solving these two equations, we have

$$x^2 + \frac{16}{x^2} = 8 \Rightarrow (x^2 - 4) = 0 \Rightarrow x = \pm 2$$

Substituting $x = \pm 2$ in $y = \frac{4}{r}$, we get $y = \pm 2$

Thus, the two curves intersect at two points only (2, 2) and (-2, 2). Hence, $A \cap B$ contains just two points

105 **(b)**

Let $(a, b) \in R$. Then,

$$|a+b| = a+b \Rightarrow |b+a| = b+a \Rightarrow (b,a) \in R$$

 $\Rightarrow R$ is symmetric

106 (c)

Minimum possible value of $n(B \cap C)$ is $n(A \cap B \cap C) = 3$

107 (a)

To make *R* a reflexive relation, we must have (1,1), (3,3) and (5,5) in it. In order to make R a symmetric relation, we must inside (3,1) and (5,3) in it.

Now, $(1,3) \in R$ and $(3,5) \in R$. So, to make R a transitive relation, we must have, $(1,5) \in R$. But, Rmust be symmetric also. So, it should also contain (5,1). Thus, we have

R

=
$$\{(1,1), (3,3), (5,5), (1,3), (3,5), (3,1), (5,3), (1,5),$$

Clearly, it is an equivalence relation on $A\{1,3,5\}$

108 **(b)**

Clearly, $(3,3) \notin R$. So, R is not reflexive. Also, (3,1)and (1,3) are in R but $(3,3) \notin R$. So, R is not transitive

But, *R* is symmetric as $R = R^{-1}$

109 **(b)**

Let $(a, b) \in R$. Then, $(a,b) \in R \Rightarrow (b,a) \in R^{-1}$ [By def. of R^{-1}] \Rightarrow $(b,a) \in R[\because R = R^{-1}]$ So, *R* is symmetric

110 **(b)**

We have,

$$A_2 \subset A_3 \subset A_4 \subset \cdots \subset A_{10}$$
$$\therefore \bigcap_{n=3}^{10} A_n = A_3 = \{2,3,5\}$$

111 (c)

The possible sets are
$$\{\pm 2, \pm 3\}$$
 and $\{\pm 4, \pm 1\}$; therefore, number of elements in required set is 8.

Given,
$$A = \{a, b, c\}$$
, $B = \{b, c, d\}$ and $C = \{a, d, c\}$
Now, $A - B = \{a, b, c\} - \{b, c, d\} = \{a\}$

Now,
$$A - B = \{a, b, c\} - \{b, c, d\} = \{a\}$$

And
$$B \cap C = \{b, c, d\} \cap \{a, d, c\} = \{c, d\}$$

$$\therefore (A - B) \times (B \cap C) = \{a\} \times \{c, d\}$$
$$= \{(a, c), (a, d)\}$$

Given,
$$n(M) = 100$$
, $n(P) = 70$, $n(C) = 40$
 $n(M \cap P) = 30$, $n(M \cap C) = 28$,
 $n(P \cap C) = 23$ and $n(M \cap P \cap C) = 18$
 $\therefore n(M \cap P' \cap C') = n[M \cap (P \cap C')]$
 $= n(M) - n[M \cap (P \cap C)]$
 $= n(M) - [n(M \cap P) + n(M \cap C) - n(M \cap P \cap C)]$
 $= 100 - [30 + 28 - 18 = 60]$

114 (d)

$$B \cap C = \{4\}.$$

$$A \cup (B \cap C) = \{1, 2, 3, 4\}$$

115 (c)

$$A \subseteq B$$

$$\therefore \qquad B \cup A = B$$

116 (c)

$$n((A \cup B)^c) = n(U) - n(A \cup B)$$

= $n(U) - \{n(A) + n(B) - n(A \cap B)\}$
= $100 - (50 + 20 - 10) = 40$

117 **(d)**

If
$$A = \{1,2,3\}$$
, then $R = \{(1,1), (2,2), (3,3), (1,2)\}$ is reflexive on A but it is not symmetric So, a reflexive relation need not be symmetric The relation 'is less than' on the set Z of integers

119 **(c)**

Clearly,

Required percent =
$$20 + 50 - 10 = 60\%$$

[: $n(A \cup B) = n(A) + n(B) - n(A \cap B)$]

is antisymmetric but it is not reflexive

120 **(c)**

The greatest possible value of $n(A \cap B \cap C)$ is the least amongst the values $n(A \cap B)$, $n(B \cap C)$ and $n(A \cap C)$ i.e. 10

121 **(d)**

Clearly, $S \subset R$

$$\therefore S \cup R = R \text{ and } S \cap R = S$$

 \Rightarrow $(S \cap R) - (S \cap R) = Set$ of rectangles which are not squares

122 **(b)**

Clearly, the relation is symmetric but it is neither reflexive nor transitive

123 **(d)**

Since, power set is a set of all possible subsets of a $\begin{vmatrix} 134 \end{vmatrix}$ (b)

$$P(A) = \{\phi, \{x\}, \{y\}, \{x, y\}\}$$

124 **(b)**

We have.

$$N = 10,000, n(A) = 40\% \text{ of } 10,000 = 4000,$$

 $n(B) = 2000, n(C) = 1000, n(A \cap B) = 500,$
 $n(B \cap C) = 300, n(C \cap A) = 400, n(A \cap B \cap C)$
 $= 200$

Now,

Required number of families =
$$n(A \cap \overline{B} \cap \overline{C}) = n(A \cap (B \cup C)')$$

= $n(A) - n(A \cap (B \cup C))$
= $n(A) - n((A \cap B) \cup (A \cap C))$
= $n(A) - \{n(A \cap B) + n(A \cap C) - n(A \cap B \cap C)\}$
= $4000 - (500 + 400 - 200) = 3300$

126 **(b)**

 $A \cap \phi = \phi$ is true.

128 (c)

$$A \cap B = \{2, 4\}$$

 $\{A \cap B\} \subseteq \{1, 2, 4\}, \{3, 2, 4\}, \{6, 2, 4\}, \{1, 3, 2, 4\}, \{1, 6, 2, 4\}, \{6, 3, 2, 4\}, \{2, 4\}, \{1, 3, 6, 2, 4\} \subseteq A \cup B$
 $\Rightarrow n(C) = 8$

129 **(a)**

We have,

$$p = \frac{7n^2 + 3n + 3}{n} \Rightarrow p = 7n + 3 + \frac{3}{n}$$

It is given that $n \in N$ and p is prime. Therefore,

$$n = 1$$

$$\therefore n(A) = 1$$

130 **(d)**

$$(Y \times A) = \{(1,1), (1,2), (2,1), (2,2), (3,1), (3,2), (4,1), (4,2), (5,1), (5,2)\}$$

And $(Y \times B) = \{(1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,3), (3,4), (3,5), (4,3), (4,4), (4,5), (5,3), (5,4), (5,5)\}$
 $\therefore (Y \times A) \cap (Y \times B) = \emptyset$

131 **(b)**

Given,
$$n(A) = 4$$
, $n(B) = 5$ and $n(A \cap B) = 3$
 $\therefore n[(A \times B) \cap (B \times A)] = 3^2 = 9$

132 (c)

$$U = \{x: x^5 + 6x^4 + 11x^3 - 6x^2 = 0\} = \{0, 1, 2, 3\}$$

$$A = \{x: x^2 - 5x + 6 = 0\} = \{2, 3\}$$
And
$$B = \{x: x^2 - 3x + 2 = 0\} = \{2, 1\}$$

$$\therefore (A \cap B)' = U - (A \cap B)$$

$$= \{0, 1, 2, 3\} - \{2\} = \{0, 1, 3\}$$

133 **(c)**

We have,

$$R = \{(1,3), (1,5), (2,3), (2,5), (3,5), (4,5)\}$$

 $\Rightarrow R^{-1} = \{(3,1), (5,1), (3,2), (5,2), (5,3), (5,4)\}$
Hence, $R \circ R^{-1} = \{(3,3), (3,5), (5,3), (5,5)\}$

Let $(a, b) \in R$. Then,

a and b are born in different months \Rightarrow $(b, a) \in R$ So, *R* is symmetric

Clearly, *R* is neither reflexive nor transitive

136 (c)

From the venn diagram

$$A - (A - B) = A \cap B$$

137 **(b)**

Required number of subsets is equal to the number of subsets containing 2 and any number of elements from the remaining elements 1 and 4 So, required number of elements $= 2^2 = 4$

140 **(b)**

Clearly, 2 is a factor of 6 but 6 is not a factor of 2. So, the relation 'is factor of' is not symmetric. However, it is reflexive and transitive

142 (d)

Clearly, R is neither reflexive, nor symmetric and not transitive

143 (d)

Clearly, given relation is an equivalence relation

145 **(c)**

Each subset will contain 3 and any number of elements from the remaining 3 elements 1,2 and 4 So, required number of elements $= 2^2 = 8$

146 (a)

Since (1,1), (2,2), $(3,3) \in R$. Therefore, R is reflexive. We observe that $(1,2) \in R$ but $(2,1) \notin R$, therefore R is not symmetric.

It can be easily seen that *R* is transitive

147 **(b)**

GIII) C°

From figures (i), (ii) and (iii), we get $(A \cup B \cup C) \cap (A \cap B^C \cap C^C) \cap C^C = (B^C \cap C^C)$

148 (d)

A relation on set A is a subset of $A \times A$ Let $A = \{a_1, a_2, \dots, a_n\}$. Then, a reflexive relation on A must contain at least n elements $(a_1, a_1), (a_2, a_2), \dots, (a_n, a_n)$

∴ Number of reflexive relations on A is 2^{n^2-n} Clearly, $n^2 - n = n, n^2 - n = n - 1, n^2 - n = n^2 - 1$ have solutions in N but $n^2 - n = n + 1$ is not solvable in N.

So, 2^{n+1} cannot be the number of reflexive relations on A

149 **(a)**

We have,

$$A \Delta B = (A \cup B) - (A \cup B)$$

$$\Rightarrow n(A \Delta B) = n(A) + n(B) - 2 n(A \cap B)$$

So, $n(A \triangle B)$ is greatest when $n(A \cap B)$ is least It is given that $A \cap B \neq \phi$. So, least number of elements in $A \cap B$ can be one

∴ Greatest possible value of $n(A \triangle B)$ is 7 + 6 - 6

$$2 \times 1 = 11$$

150 **(d)**

Let
$$R = \{(x, y): y = ax + b\}$$
. Then,
 $(-2, -7), (-1, -4) \in R$
 $\Rightarrow -7 = -2a + b$ and $-4 = -a + b$
 $\Rightarrow a = 3, b = -1$
 $\therefore y = 3x - 1$
Hence, $R = \{(x, y): y = 3x - 1, -2 \le x < 3, x \in Z\}$

151 (a)

Let \mathcal{U} be the set of all students in the school. Let C, H and B denote the sets of students who played cricket, hockey and basketball respectively. Then, $n(\mathcal{U}) = 800, n(C) = 224, n(H) = 240, n(B)$

$$= 336$$
 $n(H \cap B) = 64, n(B \cap C) = 80, n(H \cap C) = 40$
and, $n(H \cap B \cap C) = 24$

∴Required number

$$= n(C' \cap H' \cap B')$$

$$= n(C \cup H \cup B)'$$

$$= n(\mathcal{U}) - n(\mathcal{C} \cup \mathcal{H} \cup \mathcal{B})$$

$$= n(\mathcal{U}) - \{n(C) + n(H) + n(B) - n(C \cap H) - n(H \cap B) - n(B \cap C) + n(C \cap H \cap B)\}$$

$$= 800 - \{224 + 240 + 336 + 336 - 64 - 80 - 40 + 24\}$$

$$= 800 - 640 = 160$$

152 (c)

According to question,

$$2^m - 2^n = 48$$

This is possible only if m = 6 and n = 4.

153 (a)

From Venn-Euler's Diagram it is clear that

$$(A \cup B)' \cup (A' \cap B) = A'$$

154 **(b)**

For any $a, b \in R$

 $a \neq b \Rightarrow b \neq a \Rightarrow R$ is symmetric

Clearly, $2 \neq -3$ and $-3 \neq 2$, but 2 = 2. So, R is not transitive.

Clearly, R is not reflexive

155 (a)

We have,

$$A \Delta B = (A \cup B) - (A \cup B)$$

$$\Rightarrow n(A \Delta B) = n(A) + n(B) - 2 n(A \cap B)$$

So, $n(A \triangle B)$ is greatest when $n(A \cap B)$ is least It is given that $A \cap B \neq \phi$. So, least number of elements in $A \cap B$ can be one

 \therefore Greatest possible value of $n(A \triangle B)$ is 7 + 6 - $2 \times 1 = 11$

156 **(c)**

Since x < x, therefore R is not reflexive

Also, x < y does not imply that y < x

So *R* is not symmetric

Let x R y and y R z. Then, x < y and $y < z \Rightarrow x < y$

z i. e. x R z

Hence, R is transitive

157 **(b)**

Number of elements common to each set is 99 × $99 = 99^2$.

158 **(b)**

Given, $A \cap X = B \cap X = \phi$

 \Rightarrow AandX, B and X are disjoint sets.

 $A \cup X = B \cup X \Rightarrow A = B$

160 **(c)**

Clearly, *R* is reflexive and symmetric but it is not transitive

161 **(d)**

Clearly, R is an equivalence relation on A

162 **(b)**

Let $x \in A \cap B$. Then,

 $x \in A$ and $x \in B$

 \Rightarrow x is a multiple of 4 and x is a multiple of 6

 \Rightarrow x is a multiple of 4 and 6 both

 \Rightarrow x is a multiple of 12

163 **(d)**

Any relation on A is a subset of $A \times A$ which contains 36 elements. Hence, maximum number of elements in a relation on A can be 36

164 (d)

Clearly, none of the statements is true

165 (c)

Now,
$$A - (A - B) = A - (A - B^{C})$$

 $=A\cap (A\cap B^{\mathcal{C}})^{\mathcal{C}}$

 $=A\cap (A^C\cup B)$

 $= (A \cap A^C) \cup (A \cap B)$

 $= A \cap B$

166 (a)

We have,

$$A \cap B = \phi$$
 and $A \subset C$

$$\Rightarrow A \cap B = \phi$$
 and $A \cup C = C$

$$\therefore n(A \cup B \cup C) = n(A \cup C \cup B) = n(C \cup B)$$

$$= n(B \cup C)$$

167 (a)

For any $a \in N$, we have $a \mid a$

Therefore *R* is reflexive

R is not symmetric, because a R b does not imply

that b R a

168 **(d)**

$$\frac{n^3 + 5n^2 + 2}{n} = n^2 + 5n + \frac{2}{n}$$

 $\therefore \frac{n^3 + 5n^2 + 2}{n}$ is an integer, if $\frac{2}{n}$ is an integer

$$\Rightarrow n = \pm 1, \pm 2$$

 \Rightarrow A consists of four elements viz. -1, 1, -2, 2

169 (c)

We have,

$$c + e + f + g = 100$$

$$a + d + e + g = 70$$

$$b + d + f + g = 40$$

$$e + g = 30$$

$$g + f = 28$$

$$d + g = 23$$

$$g = 18$$

$$\therefore g = 18, f = 10, e = 12, d = 15, a = 35, b = 7, c$$
$$= 60$$

170 **(b)**

Since the value of a determinant charges by minus sign by interchanging any two rows or columns.

Therefore, corresponding to every element Δ of Bthere is an element Δ' in C obtained by

interchanging two adjacent rows (or columns) in Δ. It follows from this that $n(B) \le n(C)$

Similarly, we have $n(C) \leq n(B)$

Hence, n(B) = n(C)

171 **(b)**

Obviously the relation is not reflexive and transitive but it is symmetric, because

$$x^2 + y^2 = 1 \Rightarrow y^2 + x^2 = 1$$

1)	b	2)	d	3)	c	4)	a	89)	d	90)	d	91)	d	92)	b
5)	a	6)	d	7)	a	8)	a	93)	c	94)	a	95)	c	96)	c
9)	d	10)	b	11)	d	12)	d	97)	b	98)	b	99)	d	100)	d
13)	d	14)	C	15)	a	16)	b	101)	c	102)	a	103)	b	104)	c
17)	d	18)	C	19)	c	20)	b	105)	b	106)	c	107)	a	108)	b
21)	c	22)	b	23)	d	24)	a	109)	b	110)	b	111)	c	112)	a
25)	b	26)	C	27)	c	28)	a	113)	c	114)	d	115)	c	116)	c
29)	d	30)	C	31)	d	32)	c	117)	d	118)	b	119)	c	120)	c
33)	a	34)	b	35)	b	36)	c	121)	d	122)	b	123)	d	124)	b
37)	b	38)	b	39)	b	40)	c	125)	b	126)	b	127)	d	128)	c
41)	d	42)	C	43)	d	44)	a	129)	a	130)	d	131)	b	132)	c
45)	a	46)	b	47)	c	48)	b	133)	C	134)	b	135)	b	136)	c
49)	b	50)	b	51)	d	52)	b	137)	b	138)	b	139)	a	140)	b
53)	C	54)	a	55)	d	56)	c	141)	b	142)	d	143)	d	144)	a
57)	b	58)	C	59)	a	60)	d	145)	c	146)	a	147)	b	148)	d
61)	C	62)	b	63)	b	64)	d	149)	a	150)	d	151)	a	152)	c
65)	C	66)	C	67)	b	68)	a	153)	a	154)	b	155)	a	156)	c
69)	d	70)	a	71)	c	72)	b	157)	b	158)	b	159)	a	160)	c
73)	b	74)	b	75)	c	76)	d	161)	d	162)	b	163)	d	164)	d
77)	a	78)	c	79)	b	80)	c	165)	c	166)	a	167)	a	168)	d
81)	c	82)	d	83)	b	84)	d	169)	c	170)	b	171)	b		
85)	d	86)	c	87)	c	88)	b								

Click here to Download more Question Bank for Additional Chapters.

Dear Teachers and Students,

Join School of Educators' exclusive WhatsApp, Telegram, and Signal groups for FREE access to a vast range of educational resources designed to help you achieve 100/100 in exams! Separate groups for teachers and students are available, packed with valuable content to boost your performance.

Additionally, benefit from expert tips, practical advice, and study hacks designed to enhance performance in both CBSE exams and competitive entrance tests.

Don't miss out—join today and take the first step toward academic excellence!

Join the Teachers and Students Group by Clicking the Link Below

Learn more about groups www.schoolofeducators.com

JOIN OUR WHATSAPP GROUPS

FOR FREE EDUCATIONAL RESOURCES

JOIN SCHOOL OF EDUCATORS WHATSAPP GROUPS FOR FREE EDUCATIONAL RESOURCES

We are thrilled to introduce the School of Educators WhatsApp Group, a platform designed exclusively for educators to enhance your teaching & Learning experience and learning outcomes. Here are some of the key benefits you can expect from joining our group:

BENEFITS OF SOE WHATSAPP GROUPS

- **Abundance of Content:** Members gain access to an extensive repository of educational materials tailored to their class level. This includes various formats such as PDFs, Word files, PowerPoint presentations, lesson plans, worksheets, practical tips, viva questions, reference books, smart content, curriculum details, syllabus, marking schemes, exam patterns, and blueprints. This rich assortment of resources enhances teaching and learning experiences.
- Immediate Doubt Resolution: The group facilitates quick clarification of doubts.
 Members can seek assistance by sending messages, and experts promptly respond
 to queries. This real-time interaction fosters a supportive learning environment
 where educators and students can exchange knowledge and address concerns
 effectively.
- Access to Previous Years' Question Papers and Topper Answers: The group provides access to previous years' question papers (PYQ) and exemplary answer scripts of toppers. This resource is invaluable for exam preparation, allowing individuals to familiarize themselves with the exam format, gain insights into scoring techniques, and enhance their performance in assessments.

- Free and Unlimited Resources: Members enjoy the benefit of accessing an array of educational resources without any cost restrictions. Whether its study materials, teaching aids, or assessment tools, the group offers an abundance of resources tailored to individual needs. This accessibility ensures that educators and students have ample support in their academic endeavors without financial constraints.
- **Instant Access to Educational Content:** SOE WhatsApp groups are a platform where teachers can access a wide range of educational content instantly. This includes study materials, notes, sample papers, reference materials, and relevant links shared by group members and moderators.
- **Timely Updates and Reminders:** SOE WhatsApp groups serve as a source of timely updates and reminders about important dates, exam schedules, syllabus changes, and academic events. Teachers can stay informed and well-prepared for upcoming assessments and activities.
- Interactive Learning Environment: Teachers can engage in discussions, ask questions, and seek clarifications within the group, creating an interactive learning environment. This fosters collaboration, peer learning, and knowledge sharing among group members, enhancing understanding and retention of concepts.
- Access to Expert Guidance: SOE WhatsApp groups are moderated by subject matter experts, teachers, or experienced educators can benefit from their guidance, expertise, and insights on various academic topics, exam strategies, and study techniques.

Join the School of Educators WhatsApp Group today and unlock a world of resources, support, and collaboration to take your teaching to new heights. To join, simply click on the group links provided below or send a message to +91-95208-77777 expressing your interest.

Together, let's empower ourselves & Our Students and inspire the next generation of learners.

Best Regards,
Team
School of Educators

Join School of Educators WhatsApp Groups

You will get Pre-Board Papers PDF, Word file, PPT, Lesson Plan, Worksheet, practical tips and Viva questions, reference books, smart content, curriculum, syllabus, marking scheme, toppers answer scripts, revised exam pattern, revised syllabus, Blue Print etc. here. Join Your Subject / Class WhatsApp Group.

Kindergarten to Class XII (For Teachers Only)

Kindergarten

Class 12 (Commerce)

Subject Wise Secondary and Senior Secondary Groups (IX & X For Teachers Only) Secondary Groups (IX & X)

Senior Secondary Groups (XI & XII For Teachers Only)

Other Important Groups (For Teachers & Principal's)

Principal's Group

<u>Teachers Jobs</u>

IIT/NEET

Join School of Educators WhatsApp Groups

You will get Pre-Board Papers PDF, Word file, PPT, Lesson Plan, Worksheet, practical tips and Viva questions, reference books, smart content, curriculum, syllabus, marking scheme, toppers answer scripts, revised exam pattern, revised syllabus, Blue Print etc. here. Join Your Subject / Class WhatsApp Group.

Kindergarten to Class XII (For Students Only)

Subject Wise Secondary and Senior Secondary Groups (IX & X For Students Only) Secondary Groups (IX & X)

Senior Secondary Groups (XI & XII For Students Only)

Groups Rules & Regulations:

To maximize the benefits of these WhatsApp groups, follow these guidelines:

- 1. Share your valuable resources with the group.
- 2. Help your fellow educators by answering their queries.
- 3. Watch and engage with shared videos in the group.
- 4. Distribute WhatsApp group resources among your students.
- 5. Encourage your colleagues to join these groups.

Additional notes:

- 1. Avoid posting messages between 9 PM and 7 AM.
- 2. After sharing resources with students, consider deleting outdated data if necessary.
- 3. It's a NO Nuisance groups, single nuisance and you will be removed.
 - No introductions.
 - No greetings or wish messages.
 - No personal chats or messages.
 - No spam. Or voice calls
 - Share and seek learning resources only.

Please only share and request learning resources. For assistance, contact the helpline via WhatsApp: +91-95208-77777.

Join Premium WhatsApp Groups Ultimate Educational Resources!!

Join our premium groups and just Rs. 1000 and gain access to all our exclusive materials for the entire academic year. Whether you're a student in Class IX, X, XI, or XII, or a teacher for these grades, Artham Resources provides the ultimate tools to enhance learning. Pay now to delve into a world of premium educational content!

Click here for more details

■ Don't Miss Out! Elevate your academic journey with top-notch study materials and secure your path to top scores! Revolutionize your study routine and reach your academic goals with our comprehensive resources. Join now and set yourself up for success!

Best Wishes,

Team
School of Educators & Artham Resources

SKILL MODULES BEING OFFERED IN MIDDLE SCHOOL

<u>Artificial Intelligence</u>

Beauty & Wellness

<u>Design Thinking &</u> Innovation

Financial Literacy

Handicrafts

Information Technology

Marketing/Commercial Application

<u>Mass Media - Being Media</u> <u>Literate</u>

Travel & Tourism

Coding

<u>Data Science (Class VIII</u> <u>only)</u>

<u>Augmented Reality /</u>
<u>Virtual Reality</u>

Digital Citizenship

<u>Life Cycle of Medicine & Vaccine</u>

Things you should know about keeping Medicines at home

What to do when Doctor is not around

Humanity & Covid-19

MAL More and Market Mar

Food Preservation

<u>Baking</u>

<u>Herbal Heritage</u>

<u>Khadi</u>

Mask Making

Mass Media

Making of a Graphic Novel

<u>Embroidery</u>

<u>Embroidery</u>

Rockets

Satellites

<u>Application of</u> <u>Satellites</u>

<u>Photography</u>

SKILL SUBJECTS AT SECONDARY LEVEL (CLASSES IX - X)

Retail

Information Technology

Security

<u>Automotive</u>

Introduction To Financial Markets

Introduction To Tourism

Beauty & Wellness

<u>Agriculture</u>

Food Production

Front Office Operations

Banking & Insurance

Marketing & Sales

Health Care

<u>Apparel</u>

Multi Media

Multi Skill Foundation **Course**

Artificial Intelligence

Physical Activity Trainer

Data Science

Electronics & Hardware (NEW)

Foundation Skills For Sciences (Pharmaceutical & Biotechnology)(NEW)

Design Thinking & Innovation (NEW)

SKILL SUBJECTS AT SR. SEC. LEVEL (CLASSES XI - XII)

Retail

<u>InformationTechnology</u>

Web Application

Automotive

Financial Markets Management

Tourism

Beauty & Wellness

Agriculture

Food Production

Front Office Operations

Banking

Marketing

Insurance

Horticulture

Typography & Comp. **Application**

Geospatial Technology

Electronic Technology

Multi-Media

Taxation

Cost Accounting

Office Procedures & Practices

Shorthand (English)

Shorthand (Hindi)

<u>Air-Conditioning &</u> <u>Refrigeration</u>

Medical Diagnostics

Textile Design

<u>Design</u>

<u>Salesmanship</u>

<u>Business</u> Administration

Food Nutrition & Dietetics

Mass Media Studies

<u>Library & Information</u> Science

Fashion Studies

Applied Mathematics

<u>Yoga</u>

<u>Early Childhood Care &</u> <u>Education</u>

<u>Artificial Intelligence</u>

Data Science

Physical Activity
Trainer(new)

<u>Land Transportation</u>
<u>Associate (NEW)</u>

Electronics & Hardware (NEW)

<u>Design Thinking &</u> <u>Innovation (NEW)</u>

Join School of Educators Signal Groups

You will get Pre-Board Papers PDF, Word file, PPT, Lesson Plan, Worksheet, practical tips and Viva questions, reference books, smart content, curriculum, syllabus, marking scheme, toppers answer scripts, revised exam pattern, revised syllabus, Blue Print etc. here. Join Your Subject / Class signal Group.

Kindergarten to Class XII

Class 1

Class 11 (Science)

Class 12 (Science)

Click Here to Join

Class 8

Class 10

Class 12 (Humanities)

Artifical intelligence

Subject Wise Secondary and Senior Secondary Groups IX & X

Secondary Groups (IX & X)

Hindi-A

Click Here to Join

Science

IT Code-402

English

Senior Secondary Groups XI & XII

Geography

Sociology

Hindi Elective

Hindi Core

Psychology

Click Here to Join

Home Science

Political Science

Painting

Vocal Music

Click Here to Join

Physical Education

Comp. Science

APP. Mathematics

Legal Studies

French

IIT/NEET

Artifical intelligence

CUET

Join School of Educators CBSE Telegram Groups

Join School of Educators ICSE Telegram Groups

www.educatorsresource.in