IFMT - Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso

Álgebra Linear - 2º Semestre 2015

Prof^a Aline Brum Seibel

Espaços e Subespaços Vetoriais, Combinação Linear

- 1) Considerando $V = R^2$ com a multiplicação usual por escalar e a adição sendo definida em cada item abaixo, verifique quais as propriedades de espaço vetorial continuam válidas e quais falham, onde u = (x, y), v = (x', y').
 - (a) u + v = (x + y', x' + y).
 - **(b)** u + v = (xx', yy').
- 2) Verifique quais dos seguintes subconjuntos são subespaçoes vetoriais:
 - (a) O conjunto $Y \subset \mathbb{R}^3$ formado pelos vetores v = (x, y, z) tais que xy = 0;
- (b) O conjunto dos vetores de $V=R^3$ que tem pelo menos uma coordenada maior ou igual a zero;
 - (c) O conjunto dos vetores de \mathbb{R}^n cujas coordenadas formam uma progressão aritmética;
 - (d) Os vetores de \mathbb{R}^n cujas coordenadas formam uma progressão geométrica;
 - (e) Os vetores de \mathbb{R}^n cujas coordenadas formam uma progressão aritmética de razão fixada;
 - (f) Os vetores de \mathbb{R}^n cujas coordenadas formam uma progressão geométrica de razão fixada;
 - (h) Os vetores de \mathbb{R}^n cujas primeiras k coordenadas são iguais;
 - (i) Os vetores de \mathbb{R}^n que têm k coordenadas iguais;
- 3) Mostre que os seguintes subconjuntos abaixo são subespaços de \mathbb{R}^4
 - (a) $W = \{(x, y, z, t) \in R^4 | x + y = 0, z t = 0\}$
 - **(b)** $U = \{(x, y, z, t) \in R^4 | 2x + y t = 0, z = 0 \}$
 - 4) Descreva $W_1 \cap W_2$ e $W_1 + W_2$, nos seguintes casos:
 - (a) $W_1 = [(1,0,0)] \in W_2 = [(0,1,0)]$
 - **(b)** $W_1 = [(1,1,0)] \in W_2 = [(1,1,1)]$
 - (c) $W_1 = [(1, 2, -2)] \in W_2 = [(2, 3, 0), (1, 1, 2)]$
- 5) Mostre que o conjunto W_1 das matrizes triangulares inferiores e o conjunto W_2 das matrizes triangulares superiores são subespaços vetoriais de $M(n \times n)$, e que $M(n \times n) = W_1 + W_2$ e que não vale $M(n \times n) = W_1 \oplus W_2$
- **6)** Mostre que o vetor b=(1,2,2) não é combinação linear dos vetores $v_1=(1,1,2)$ e $v_2=(1,2,1)$. A partir daí, formule um sistema linear de 3 equações e 3 variáveis, que não possui solução e que tem o vetor b como termo independente.
- 7) Verifique se a matriz $A = \begin{bmatrix} 4 & -4 \\ -6 & 16 \end{bmatrix}$ pode ser escrita como combinação linear das matrizes

$$A_1 = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad A_2 = \begin{bmatrix} -1 & 2 \\ 3 & -4 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 1 & -2 \\ -3 & 4 \end{bmatrix}.$$