

ÉCOLE CENTRALE DES ARTS ET MÉTIERS

RAPPORT DE LABORATOIRE

Réglages échantillonnés

Thomas Anizet	14164	
Hadrien Hachez	15306	Enseignant : B. Arnould
Armen Hagopian	14040	
Amaury Lekens	14027	
Alexis Nootens	16139	
Benoît Wéry	14256	

Séance 1

Étude d'un premier ordre par les 4 méthodes de discrétisation.

1.1 Introduction

Durant la première séance de laboratoire, il nous a été demandé du calculer l'expression récurrente d'un premier ordre par les 4 méthodes de discrétisation, à savoir :

- La méthode de Euler 1;
- La méthode de Euler 2;
- La méthode bilinéaire;
- La méthode équivalent échantillonné bloqué.

Une fois les 4 expressions calculées, l'objectif était d'utiliser le logiciel MATLAB afin de représenter les réponses temporelles et fréquentielles de ces 4 expressions. Ceci, dans la but d'analyser les différents paramètres de ces 4 méthodes de discrétisation.

1.2 Rappels théoriques

Actuellement, les méthodes de traitements numériques pour l'analyse des signaux ont largement pris le dessus comparé aux méthodes analogiques ancestrales. C'est pourquoi nous abordons les notions de procédés de discrétisation. En effet, en traitement numérique, un signal analogique est tout d'abord échantillonné (= discrétisé) avant d'être quantifié et finalement codé. La discrétisation est le procédé par lequel un signal continu est transformé un signal discret. Autrement dit, la discrétisation d'un signal continu f(t) revient à garder un certain nombre de valeurs discrètes (..., f(t0), f(t1), f(t2), ...) correspondant aux valeurs (..., t0, t1, t2, ...) de la variable t: On parle également d'échantillonnage pour les signaux. les différentes valeurs discrètes (..., f(t0), f(t1), f(t2), ...) varient en fonction de la période d'échantillonnage. La figure 1.1 ci-dessous présente le principe d'échantillonnage.

FIGURE 1.1 – Échantillonnage d'un signal continu sinusoïdal.

Ayant introduit la notion de discrétisation, il est intéressant de rappeler le principe des 4 méthodes de discrétisation étudiées en laboratoire :

La méthode de Euler 1 :

La méthode de Euler 2 :

La méthode bilinéaire :

La méthode équivalent échantillonné bloqué :

1.3 Analyse

1.4 Conclusion

Séance 2

Synthèse d'un régulateur continu

2.1 Introduction

Durant cette seconde séance de laboratoire, il a été demandé aux étudiants de synthétiser sur le logiciel MATLAB un régulateur continu en boucle fermée. Une fois cette étape réalisée, la discrétisation de ce régulateur selon 3 périodes d'échantillonnage a été effectuée afin d'obtenir 3 régulateurs discrets. Le but final était alors de comparer, grâce à Simulink, les performances du régulateur continu avec les 3 régulateurs discrets obtenus.

- 2.2 Notions théoriques
- 2.3 Analyse
- 2.4 Conclusion

Séance 3

Synthèse d'un régulateur discret

3.1 Introduction

Durant la troisième et dernière séance de laboratoire, il a été demandé aux élèves de synthétiser sur le logiciel Matlab® un régulateur discret de compensation en boucle fermée et d'en analyser la réponse. Pour ce faire, il a tout d'abord fallu calculer l'équivalent échantillonné bloqué de ce régulateur (discrétisation). Et ensuite, imposer un intégrateur dans le régulateur discret de compensation.

3.2 Hypothèses

Soit le système défini par l'équation :

$$H_c(s) = \frac{1}{s(s+0.5)} = \frac{2}{s(2s+1)}$$
 (3.1)

Nous cherchons à effectuer la synthèse d'un régulateur discret compensant le système (3.1) en boucle fermée, et respectant les spécifications suivantes :

- 1. Dépassement de 5% ($\xi = 0.69$)
- 2. Temps de réponse à 95% (3T) de 1
- 3. Erreur de vitesse nulle
- 4. h = 0.1

Notons avant tout que la spécification sur l'erreur de vitesse nulle implique un double intégrateur dans la chaîne directe. Ceci nous indique d'avance que le régulateur suivra la forme :

$$R(Z) = \frac{\dots}{(Z - \alpha)(Z - \beta)}$$
(3.2)

3.3 Analyse

La première étape est toujours la même, nous devons traduire la fonction de transfert dans le domaine discret. Pour cela nous utilisons la commande c2d() de Matlab® qui équivaut

à convoluer la fonction par un bloqueur d'ordre 1. C.-à-d. effectuer l'opération :

$$H_d(Z) = \underset{s \to Z}{\mathcal{L}} H_c(s) \tag{3.3}$$

$$=\frac{k}{(Z-1)(Z-p)}\tag{3.4}$$

Dans cette forme, les points sont distants de la période d'échantillonnage. Cela entraine que l'influence de l'entrée sur la sortie est perçue après cette même période. Ceci implique également que la différence entre l'ordre du dénominateur et du numérateur doit être égale à 1. Pour imposer cet ordre, nous rajoutons un zéro au numérateur de (3.4). Ce qui donne :

$$H_d(Z) = \frac{k(Z-z)}{(Z-1)(Z-p)}$$
(3.5)

De cette forme discrétisée, nous désirons extraire les pôles et les zéros. Matlab® propose une fonction permettant de les extraire en un appel, zpkdata(). Nous employons par la suite ces coefficients obtenus dans le régulateur R(Z) pour compenser $H_d(Z)$. R(Z) est donc une régulateur de compensation.

$$R(Z) = k \frac{(Z - p)}{(Z - z)(Z - 1)}$$
(3.6)

On a un décalage car l'ordre du dénominateur est plus grand que l'ordre du numérateur. Quand le régulateur aperçoit un écart de réglage à sa consigne, il doit réagir immédiatement. Il « mouline » dans un temps qui est supposé très petit et négligeable sur la période puis il envoie. On rajoute un zéro au numérateur pour faire en sorte qu'il n'y ait pas de retard dans le régulateur.

$$R(Z) = k \frac{(Z-p)(Z-n)}{(Z-z)(Z-1)}$$
(3.7)

Ensuite nous faisons le produit en boucle ouverte du régulateur avec le système.

$$R(Z)H_d(Z) = B_0(Z) = \frac{k(Z-n)}{(Z-1)^2}$$
(3.8)

On constate que dans le chaîne directe, il y a bien un retard d'une période.

3.4 Synthèse

Maintenant que nous savons comment procéder, tentons de faire la synthèse du régulateur. Nous savons que $H_s(Z)$ est sous la forme :

$$H_s(Z) = \frac{\dots}{(Z - P_{d1})(Z - P_{d2})}$$
(3.9)

Nous cherchons à trouver les valeurs de P_{d1} et P_{d2} . Nous allons les trouver par équivalences

$$F(Z) = \frac{k(Z-n)}{(Z-1)^2 + k(Z-n)}$$
(3.10)

$$\begin{cases} k = 2 - P_{d1} - P_{d2} \\ n = \frac{(1 - P_{d1} P_{d2})}{k} \end{cases}$$
 (3.11)

 ${\tt dtr2ord2o.m}$ retourne la fonction de transfert d'un système du second ordre aux spécifications fournies.

3.5 Conclusion