

Рис
1. Визуализация метода наискорейшего спуска на примере квадратичной функции при параметре Eps=0.01 и
æ=1

Рис 2. Визуализация метода дробления шага на примере квадратичной функции при параметре Eps=0.000001 и æ=1

Рис 3. Визуализация метода дробления шага на примере функции Розенброка при параметре Eps=0.01 и æ=1

Рис 4. Частичная визуализация метода наискорейшего спуска на примере функции Розенброка при параметре Eps=0.000001 и α =1

Таб. 1 Результаты вычислений в зависимости от Ерѕ (метод дробления шага)

	Квадратичная Функция при Eps=0.01	Квадратичная Функция при Eps=0.00001	Функция Розенброка при Ерs=0.01,	Функция Розенброка при Ерs=0.01,	Функция Розенброка при Ерs=0.000001,	Функция Розенброка при Ерs=0.000001,
			a=4	a = 80	a=4	a = 80
Кол-во итераций	18	41	74	1838	375	8415
Кол-во вычисления функции	70	162	366	17342	1966	80351
Кол-во вычисления градиентов	18	41	74	1838	375	8415
Точка минимума	(2,23; 0)	(2,236067; 0)	(0,99 ; 0,99)	(0,99; 0,99)	(0,999998; 0,999999)	(0,999998; 0.999999)
Минимальное значение	-6	-6	0	0	0	0

Таб. 2 Результаты вычислений в зависимости от метода вычисления

	Квадратична я Функция при Eps=0.01 Метод дробления шага	Квадратичная Функция при Eps=0.01 Метод наискорейшег о спуска	Функция Розенброка при Eps=0.01, а = 4 Метод дробления шага	Функция Розенброка при Eps=0.01, а = 4 Метод наискорейше го спуска	Функция Розенброк а при Ерs=0.01, а = 80 Метод дробления шага	Функция Розенброка при Eps=0.01, а = 80 Метод наискорейшег о спуска
Кол-во итераций	18	10	74	161	1838	212
Кол-во вычисления функции	70	109	366	1921	17342	
Кол-во вычисления градиентов	18	10	74	161	1838	
Точка минимума	(2,23; 0)	(2,23; 0)	(0,99 ; 0,99)	(0.99, 0.99)	(0,99; 0,99)	Nan
Минимально е значение	-6	-6	0	0	0	Inf

Таб. 3 Зависимость кол-ва вычислений от положения начальной точки

	Квадратична	Квадратичная	Квадратичн
	Я	Функция	ая
	Функция	Начальная	Функция
	Начальная	точка – (100,	Начальная
	точка $-(0,0)$	100)	точка – (2,
			0)
Кол-во	29	48	19
итераций			
Кол-во	30	49	20
вычисления			
функции			
Кол-во	29.	48	19
вычисления			
градиентов			

Таким образом в ходе лабораторной работы были рассмотрены два метода безусловной двумерной минимизации. Первый метод «метод наискорейшего спуска» эффективен за счет оптимального выбора следующей точки в релаксационной последовательности. Это позволяет провести вычисления с меньшим кол-вом итераций. Второй метод «метод дробления шага» отличается более высокой скоростью при вычислении минимума в менее «овражных функциях». Также на скорость вычислений влияют заданная точность и выбор начальной точки. Чем точка дальше, тем дольше будет «подход» к минимуму.