Milestone 4

1.1 Force-Derivation from the Lenard Jones Potential

$$\overrightarrow{f_k} = \sum_{i} \frac{\partial V}{\partial r_{ik}} r_{ik} \tag{1.1}$$

$$V(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$
 (1.2)

$$\frac{\partial V}{\partial r_{ik}} = 4\epsilon \left(\frac{6\sigma^6}{r_{ik}^6} - \frac{12\sigma^{12}}{r_{ik}^{13}} \right) \tag{1.3}$$

```
[4]: import sympy as sp import warnings warnings ('ignore') sp.init_printing() eps = sp.Symbol("e") sig = sp.Symbol("s") rad = sp.Symbol("r") energyRad = 4 * eps * ((sig/rad)**12 - (sig/rad)**6) energyRad.diff(rad)

[4]: 4e\left(\frac{6s^6}{r^7} - \frac{12s^{12}}{r^{13}}\right)
```

1.2 Different Time Steps

1.3 Simulation Snapshots

Figure 1.1: Simulation with a time step of 0.001

Figure 1.2: Simulation with a time step of 0.005

Figure 1.3: Simulation with a time step of 0.01

Figure 1.4: Simulation with a time step of 0.02

Figure 1.5: Simulation with a time step of 0.03

Figure 1.6: Simulation with a time step of 0.04

Figure 1.7: Simulation

Figure 1.8: Simulation

Figure 1.9: Simulation

Figure 1.10: Simulation

Figure 1.11: Simulation

Milestone 5

2.1 Berendsen Thermostat Teststrategy

$$\lambda = \sqrt{1 + \left(\frac{T_0}{T} - 1\right) \frac{\Delta t}{\tau}} \tag{2.1}$$

$$T(t) = T_0 + (T_1 - T_0)e^{-t/\tau}$$
(2.2)

2.2 Simulation Time

Figure 2.1: Simulation time from 8 to 192 Atoms

Milestone 6

The Images are outdated!!!!

Figure 3.1: Simulationtime without Neighborlist

New images that are correct.

Figure 3.2: Simulationtime with the old Neighborlist

Figure 3.3: Simulation time with the new Neighborlist

Figure 3.4: Simulationtime with the new Neighborlist

Contents

1	Mil	estone 4	1
	1.1	Force-Derivation from the Lenard Jones Potential	1
	1.2	Different Time Steps	1
	1.3	Simulation Snapshots	1
2	Mil	estone 5	10
	2.1	Berendsen Thermostat Teststrategy	10
	2.2	Simulation Time	10
3	Mil	estone 6	12
4	Met	thods	17
	4.1	Integration	17
	4.2	Potentials	17
		4.2.1 Lenard-Jones-Potential	17
		4.2.2 Neighborhood-Search Algorithm	17
		4.2.3 Embedded-Atom Method Potentials	17
5	Imp	plementation	18
6	Res	ults	19
	6.1	Results from the Lenard-Jones Potential with direct Summation	19
	6.2	Result from the Simulation with the Berendsen Thermostat	19
	6.3	Results from the Simulation with the Neighborhood-List	19
	6.4	Results from the Simulation with the Gupta-Potential	20

List of Figures

1.1	Simulation	2
1.2	Simulation	2
1.3	Simulation	3
1.4	Simulation	3
1.5	Simulation	4
1.6	Simulation	4
1.7	Simulation	5
1.8	Simulation	6
1.9	Simulation	7
1.10	Simulation	8
1.11	Simulation	9
2.1	Simulationtime	11
3.1	Simulationtime without Neighborlist	12
3.2	Simulationtime with the old Neighborlist	13
3.3	Simulationtime with the new Neighborlist	13
3.4	Simulationtime with the new Neighborlist	14
6.1	Simulation	19
6.2	Simulation	20
6.3	Simulation	21
6.4	Simulation-time with the Berendsen Thermostat from 8 to 192 Atoms	22
6.5	Simulation-time with the Neighbor-list	22
6.6	Gold Cluster Simulation	
6.7	Melting Point, Heat Capacity and Latent Heat vs Clustersize	24

Methods

- 4.1 Integration
- 4.2 Potentials
- 4.2.1 Lenard-Jones-Potential
- 4.2.2 Neighborhood-Search Algorithm
- 4.2.3 Embedded-Atom Method Potentials

Implementation

The simulation code was written in C++, most of it just as functions, although the positions, velocities, etc. of the individual atoms where saved in a container-class. While writing the functions, these were also tested with unit-tests. Plots generation and automation for running the project were written in python.

The C++-code was developed in CLion, an IDE which bundles many useful features together (CMake, GDB and Git). The python-code was written in jupyter-notebook. Additional libaries used where: googletest for the unit-tests and eigen for the arrays used for data storage in the container-class.

Results

6.1 Results from the Lenard-Jones Potential with direct Summation

Figure 6.1: Simulation

- 6.2 Result from the Simulation with the Berendsen Thermostat
- 6.3 Results from the Simulation with the Neighborhood-List

Figure 6.2: Simulation

6.4 Results from the Simulation with the Gupta-Potential

Random citation [1]

Figure 6.3: Simulation

Figure 6.4: Simulation-time with the Berendsen Thermostat from 8 to 192 Atoms

Figure 6.5: Simulation-time with the Neighbor list

Figure 6.6: Gold Cluster Simulation

Figure 6.7: Melting Point, Heat Capacity and Latent Heat vs Clustersize

Bibliography

[1] MultiMedia LLC. MS Windows NT Kernel Description. 1999. URL: http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm (visited on 09/30/2010).