

IN THE CLAIMS:

1. {1} (Currently amended) A substituted Sym-triindole derivative represented by the following general formula (1):

{formula 1}

5 +wherein R₁, R₂, R₃ and R₄ are each independently hydrogen, halogen, C1-C6 alkyl group, C1-C6 haloalkyl group, substituted C1-C6 alkyl group, C2-C6 alkenyl group, substituted C2-C6 alkenyl group, C2-C6 alkynyl group, substituted C2-C6 alkynyl group, hydroxyl group, C1-C6 alkoxy group, aryloxy group, amino group, mono-substituted amino group, di-
10 substituted amino group, acylamino group, mercapto group, C1-C6 alkylsulfenyl group, C1-C6 haloalkylsulfenyl group, arylsulfenyl group, substituted arylsulfenyl group, C1-C6 alkylsulfinyl group, C1-C6 haloalkylsulfinyl group, aralkylsulf-
15 enyl group, arylsulfinyl group, substituted arylsulfinyl

group, C1-C6 alkylsulfonyl group, C1-C6 haloalkylsulfonyl group, arylsulfonyl group, substituted arylsulfonyl group, sulfonic acid group (hydroxysulfonyl group), aryl group, substituted aryl group, cyano group, nitro group, formyl group,
5 acyl group, carboxyl group, C1-C6 alkoxy carbonyl group, carbamoyl group, N-mono-substituted carbamoyl group, N,N-di-substituted carbamoyl group, hydrazonomethyl group (-CH=N-NH₂ group), N-mono-substituted hydrazonomethyl group, N,N-di-substituted hydrazonomethyl group, oximemethyl group (hy-
10 droxyiminomethyl group), C1-C6 alkoxyiminomethyl group, or aryloxyiminomethyl group; R₅ is C2-C12 alkyl group, substituted C2-C12 alkyl group, C2-C12 haloalkyl group, or aryl C1-C6 alkyl group; wherein, in no event, all of R₁, R₂, R₃ and R₄ are hydrogen simultaneously}.
15 2. {+2} (Currently amended) A process for producing a substituted Sym-triindole derivative represented by the following general formula (1):

{formula 3}

wherein R₁, R₂, R₃ and R₄ are each independently hydrogen, halogen, C1-C6 alkyl group, C1-C6 haloalkyl group, substituted C1-C6 alkyl group, C2-C6 alkenyl group, substituted C2-C6 alkenyl group, C2-C6 alkynyl group, substituted C2-C6 alkynyl group, hydroxyl group, C1-C6 alkoxy group, aryloxy group, amino group, mono-substituted amino group, di-substituted amino group, acylamino group, mercapto group, C1-C6 alkylsulfenyl group, C1-C6 haloalkylsulfenyl group, aralkylsulfenyl group, arylsulfenyl group, substituted arylsulfenyl group, C1-C6 alkylsulfinyl group, C1-C6 haloalkylsulfinyl group, arylsulfinyl group, substituted arylsulfinyl group, C1-C6 alkylsulfonyl group, C1-C6 haloalkylsulfonyl group, arylsulfonyl group, substituted arylsulfonyl group, sulfonic acid group (hydroxysulfonyl group), aryl group, substituted aryl group, cyano group, nitro group, formyl group,

acyl group, carboxyl group, C1-C6 alkoxy carbonyl group, carbamoyl group, N-mono-substituted carbamoyl group, N,N-di-substituted carbamoyl group, hydrazonomethyl group (-CH=N-NH₂ group), N-mono-substituted hydrazonomethyl group, N,N-di-5 substituted hydrazonomethyl group, oxime methyl group (hydroxyiminomethyl group), C1-C6 alkoxyiminomethyl group, or aryloxyiminomethyl group; R₅ is C2-C12 alkyl group, substituted C2-C12 alkyl group, C2-C12 haloalkyl group, or aryl C1-C6 alkyl group; wherein, in no event, all of R₁, R₂, R₃ and R₄ 10 are hydrogen simultaneously), which process comprises reacting a substituted oxyindole represented by the following general formula (2):

{formula-2}

{wherein R₁, R₂, R₃, R₄ and R₅ have the same definitions as 15 given above}, with a phosphorus oxyhalide.

3.{3} (Currently amended) A Sym-triindole derivative represented by the following general formula (3):

{formula 4}

+wherein R₅ is C2-C12 alkyl group, substituted C2-C12 alkyl group, C2-C12 haloalkyl group, or aryl C1-C6 alkyl group; and R₆ is hydrogen, formyl group, cyano group, C1-C6 alkoxy carbonyl group, dicyanovinyl group, aryl group or substituted aryl group{.

4.{4} (Currently amended) A process for producing a Sym-triindole derivative represented by the following general formula (7):

{wherein R₅ is C₂-C₁₂ alkyl group, substituted C₂-C₁₂ alkyl group, C₂-C₁₂ haloalkyl group or aryl C₁-C₆ alkyl group; and R₇ is hydrogen, formyl group, cyano group, C₁-C₆ alkoxy carbonyl group, aryl group or substituted aryl group}, which 5 process comprises reacting an N-substituted-5-halo-oxyindole represented by the following general formula (4):

{formula 5}

{wherein R₅ has the same definition as given above; and X is halogen}, with a phosphorus oxyhalide to obtain an N-10 substituted-5-halo-triindole derivative represented by the following general formula (5):

{formula 6}

{wherein R₅ and X have the same definitions as given above},
 and further reacting the derivative of general formula (5) it
 with a boric acid compound represented by the following gen-
 eral formula (6):

5 {formula 7}

{wherein R₇ has the same definition as give above; and R_a and
 R_b are each independently hydrogen atom, C1-C6 alkyl group or
 optionally substituted phenyl group and may be combined to
 each other to form a ring}.

10 5. {5} (Currently amended) A process for producing a Sym-
 triindole derivative represented by the following general
 formula (7):

{formula 11}

(7)

{wherein R₅ is C₂-C₁₂ alkyl group, substituted C₂-C₁₂ alkyl group, C₂-C₁₂ haloalkyl group or aryl C₁-C₆ alkyl group; and R₇ is hydrogen, formyl group, cyano group, C₁-C₆ alkoxy carbonyl group, aryl group or substituted aryl group}, which

5 process comprises reacting an N-substituted-5-halo-triindole derivative represented by the following general formula (5):

{formula 9}

(5)

{wherein R₅ has the same definition as given above; and X is halogen}, with a boric acid compound represented by the fol-

lowing general formula (6):

{formula 10}

wherein R₇ has the same definition as given above; and R_a and R_b are each independently hydrogen atom, C1-C6 alkyl group or optionally substituted phenyl group and may be combined to each other to form a ring).

6. {6} (Currently amended) A process for producing an N-substituted-5-halo-triindole derivative represented by the following general formula (5):

10

{formula 13}

wherein R₅ is C2-C12 alkyl group, substituted C2-C12 alkyl group, C2-C12 haloalkyl group or aryl C1-C6 alkyl group; and X is halogen), which process comprises reacting an N-

substituted-5-halo-oxyindole represented by the following general formula (4):

{formula 12}

{wherein R₅ and X have the same definitions as given above},

5 with a phosphorus oxyhalide.

7. {7} (Currently amended) A process for producing a Sym-triindole derivative represented by the following general formula (10):

{formula 16}

10 {wherein R₅ is C2-C12 alkyl group, substituted C2-C12 alkyl

group, C2-C12 haloalkyl group or aryl C1-C6 alkyl group; R₈ is hydrogen or cyano group; and R₉ is cyano group, carboxylic acid group, C1-C6 alkoxy carbonyl group, aryloxycarbonyl group, aryl group or substituted aryl group, which process comprises reacting a triindole derivative represented by the following general formula (8):

{formula 14}

+wherein R₅ has the same definition as given above}, with a methylene compound represented by the general formula (9):

10 {formula 15}

+wherein R₈ and R₉ have the same definitions as give above}.

8.+8} (Currently amended) A Sym-triindole vinyl derivative represented by the following general formula (11):

{formula-17}

wherein R₈ is hydrogen or cyano group; R₉ is cyano group, carboxylic acid group, C1-C6 alkoxy carbonyl group, aryloxy carbonyl group, aryl group or substituted aryl group; and R₁₀ is C2-C12 alkyl group, substituted C2-C12 alkyl group, C2-C12 haloalkyl group or aryl C1-C6 alkyl group.}

9-{9} (Currently amended) A process for producing a Sym-triindole derivative represented by the following general formula (11):

10

{formula-22}

{wherein R₈ is hydrogen or cyano group; R₉ is cyano group, carboxylic acid group, C1-C6 alkoxy carbonyl group, aryloxy-carbonyl group, aryl group or substituted aryl group; and R₁₀ is C2-C12 alkyl group, substituted C2-C12 alkyl group, C2-C12 5 haloalkyl group or aryl C1-C6 alkyl group}, which process comprises reacting an oxyindole compound represented by the following general formula (12):

{wherein R₁₀ has the same definition as given above and X is 10 halogen}, with a phosphorus oxyhalide to obtain a sym-halo-triindole derivative represented by the following general formula (13):

{formula 19}

{wherein R₁₀ and X have the same definitions as given above},
subjecting the derivative of general formula (13) ~~it~~ to formylation with a formylating agent in the presence of butyllithium
5 to obtain a Sym-formyltriindole derivative represented by
the following general formula (14):

{formula 20}

{wherein R₁₀ has the same definition as given above}, and reacting the derivative of general formula (14) ~~it~~ with a methylene compound represented by the following general formula
10 (9):

{formula 21}

(wherein R_8 and R_9 have the same definitions as given above).

{10}10. (Currently amended) A process for producing a Sym-triindole derivative represented by the following general
5 formula (11):

{formula 25}

{wherein R_8 is hydrogen or cyano group; R_9 is cyano group, carboxylic acid group, C1-C6 alkoxy carbonyl group, aryloxy-carbonyl group, aryl group or substituted aryl group; and R_{10} is C2-C12 alkyl group, substituted C2-C12 alkyl group, C2-C12 haloalkyl group or aryl C1-C6 alkyl group}, which process
10 comprises reacting a Sym-formyltriindole derivative represented by the following general formula (14):

{formula-23}

{wherein R₁₀ has the same definition as given above}, with a methylene compound represented by the following general formula (9):

5 {formula-24}

{wherein R₈ and R₉ have the same definitions as given above}.

11. {11} (Currently amended) A process for producing a Sym-formyltriindole derivative represented by the following general formula (14):

10 {formula-27}

5 wherein R₁₀ is C₂-C₁₂ alkyl group, substituted C₂-C₁₂ sub-
 10 ~~stituted~~-alkyl group, C₂-C₁₂ haloalkyl group or aryl C₁-C₆
 alkyl group), which process comprises subjecting a Sym-halo-
 15 triindole derivative represented by the following general

5 formula (13):

{formula-26}

10 wherein R₁₀ has the same definition as given above and X is
 15 halogen}, to formylation with a formylating agent in the
 presence of butyllithium.

10 12-{12} (Currently amended) A Sym-triindole derivative
 represented by the following

general formula (15):

{formula 28}

{wherein R₁₀ is C₂-C₁₂ alkyl group, substituted C₂-C₁₂ sub-
stituted-alkyl group, C₂-C₁₂ haloalkyl group or aryl C₁-C₆
5 alkyl group; and R₁₁ is aryl group or substituted aryl group}.

13. {13} (Currently amended) A process for producing a
Sym-triindole derivative represented by the following general
formula (15):

{formula 31}

{wherein R₁₀ is C₂-C₁₂ alkyl group, substituted C₂-C₁₂ alkyl group, C₂-C₁₂ haloalkyl group or aryl C₁-C₆ alkyl group; and R₁₁ is aryl group or substituted aryl group}, which process comprises reacting a Sym-halo-triindole derivative represented by the following general formula (13):

{formula 29}

{wherein R₁₀ has the same definition as given above and X is halogen} with an acetylene derivative represented by the following general formula (16):

{formula 30}

+wherein \mathbf{R}_{11} has the same definition as given above and \mathbf{R}_{12} is hydrogen or trimethylsilyl group).

14.{14} (Currently amended) A Sym-halo-triindole derivative represented by the following general formula (13):

{formula 32}

+wherein \mathbf{R}_{10} is C2-C12 alkyl group, substituted C2-C12 alkyl group, C2-C12 haloalkyl group or aryl C1-C6 alkyl group; and X is halogen).