Taller de Qiskit Manejo de errores con Qiskit Ignis

Bruno Eduardo Ramírez Galindo

Facultad de Ciencias UNAM, QMexico

Qiskit Summer Jam México, Agosto 2021

1 ¿Qué es Qiskit Ignis?

Errores en cómputo cuántico Qiskit Ignis para caracterización y mitigación

2 Caracterización de errores

Errores al aplicar compuertas Relajación y decoherencia Error ZZ ¿Para qué caracterizar?

- Mitigando errores de medición Errores de medición Mitigación
- Conclusiones e ideas

Tabla de Contenido

- 1 ¿Qué es Qiskit Ignis? Errores en cómputo cuántico Qiskit Ignis para caracterización y mitigación
- Caracterización de errores
- Mitigando errores de medición
- 4 Conclusiones e ideas

¿Qué es Qiskit Ignis?

«Nobody's perfect.»

- Hannah Montana

... y mucho menos las computadoras cuánticas.

Errores al aplicar compuertas

Fig: 1. Una compuerta mal aplicada. Wikimedia commons.

Cuando la aplicación de un pulso mal calibrado hace que nuestro qubit acabe en un lugar distinto del deseado.

- Compuertas de un qubit $X, Y, Z, U_1(\theta, \phi, \lambda)$.
- Compuertas de múltiples qubits: CX, CZ, CCX, etc.

Errores inherentes al qubit

Fig: 2. Qubits superconductores. Gambetta, J.

Fig: 3. Qubits de iones atrapados. Munroe, C.

Dependen de la «arquitectura» de nuestro qubit y qué tan aislado esté del ambiente. Todos los sistemas físicos tienen interacciones y comportamientos no deseados.

- Error ZZ en qubits superconductores
- Relajación
- Decoherencia

¿Qué es Qiskit Ignis? 0000000

Fig: 4. Error de flip aleatorio. Electronics Hub

Perturbación que afecta un estado medido de forma aleatoria antes de que se den los resultados de medición al usuario. Pueden ocurrir debido a fallos en los canales de comunicación clásica.

¿Qué es Qiskit Ignis?

¿Que se hace con cada error?

Dependiendo del tipo de error, Qiskit Ignis nos permite hacer una de dos acciones:

- Caracterizar
 - Errores al aplicar compuertas
 - Errores inherentes al qubit
- Mitigar
 - Errores de medición

Además de lo anterior, se dedica mucho tiempo al diseño de códigos para la corrección de errores cuánticos. Ej.: Código de Shor, código de repetición, etc.

Entre sus herramientas, **Qiskit Ignis** nos brinda herramientas muy buenas para la caracterización y mitigación de errores.

Ignis trabaja muy de cerca con Terra y Aer para permitir la caracterización y mitigación de errores:

- Terra: Para el diseño cuánticos específicos que ayudan a caracterizar y mitigar errores.
- Aer: Para simular los modelos de ruido correspondientes a cada tipo de error, para ejecutar los circuitos.

Tabla de Contenido

- 1 ; Qué es Qiskit Ignis?
- Caracterización de errores Errores al aplicar compuertas Relajación y decoherencia Error ZZ ¿Para qué caracterizar?
- Mitigando errores de medición
- 4 Conclusiones e ideas

¿A qué nos referimos con «caracterización»?

Algunos errores no son tan fáciles de corregir programando, pero podemos aspirar a conocerlos bien. Podemos darnos una idea de la magnitud de su efecto midendo algunos números (parámetros característicos), cuyo significado varía según el tipo de error: ángulos, tiempos, frecuencias.

$$d\theta$$
, $d\phi$, ξ , T_1 , T_2

La caracterización consta de en la determinación experimental de los parámetros característicos. Esto nos es posible gracias a:

from qiskit.ignis.characterization import *

Notaremos que todos los procedimientos de

from giskit.ignis.characterization import *

permiten la obtención de un parámetro característico mediante un proceso similar:

- Generar una serie de circuitos cuánticos que hacen evidente el error.
- 1 error_circuits(*args)
- Ejecutar los circuitos generados (con ruido) y acceder a los conteos de medición de los distintos circuitos.
- Procesar y ajustar los datos de conteos a alguna función $P(\hat{\epsilon}, \hat{n})$ según el tipo de error, ajustamos ε al controlar n en el circuito y observar $P(\epsilon, n)$.
- 1 ErrorFitter(*args)

Al aplicar compuertas de uno y dos qubits, por ejemplo *X* y *CX*. Puede suceder cuando un pulso está mal calibrado en duración, amplitud o frecuencia.

Idealmente un pulso induce una rotación de θ en el eje X:

$$U(\theta,\sigma_x)=e^{-i\theta\sigma_x/2}$$

Pero lo que sucede *en realidad* es algo del estilo:

$$U(\theta + d\theta, \sigma_x) = e^{-i(\theta + d\theta)\sigma_x/2} \rightarrow \text{Err. amplitud}$$

$$U(\theta, d\phi\sigma_x + d\phi\sigma_y) = e^{-i(\theta)(d\phi\sigma_x + d\phi\sigma_y)/2} \rightarrow \text{Err. ángulo}$$

Errores en compuertas con Qiskit

Caracterizando error de ángulo

Parámetro $\Rightarrow d\theta$, un ángulo

$$P_1(d\theta,n) \approx \frac{1}{2} + \frac{(-1)^n d\theta}{2} (2n+1)$$

Controlamos, n las repeticiones de una secuencia de compuertas, en un circuito

- ampcal_1Q_circuits(max_reps, qubits)
 - Una vez ejecutados los circuitos, queremos ajustar $P_1(d\theta, n)$ para $d\theta$ con
- AmpCalFitter(backend_result , xdata, ...)

Similar para los errores de amplitud y en compuertas CX

Relajación: Proceso mediante el cual el estado $|1\rangle$ tiende a regresar al estado $|0\rangle$, debido a la tendencia de ocupar el estado de menor energía. **Fenómeno inherente al qubit**.

Gracias, a esto la probabilidad de observar $|1\rangle$ decae con el paso del tiempo, dependiendo del «ritmo de relalajación».

$$P_1(T_1,t)=e^{-\frac{t}{T_1}}$$

Existe un tiempo de espera \mathcal{T}_1 para el cual encontrar el estado excitado ya es poco probable

$$P_1(T_1, T_1) = e^{-\Gamma_1 t} = e^{-T_1/T_1} = e^{-1} = 1/e \approx 0.368$$

 T_1 , tiempo de rejalación

Relajación y decoherencia

Caracterizando relajación

Parámetro $\Rightarrow T_1$, un tiempo

$$P_1(T_1,t)=e^{-\frac{t}{T_1}}$$

Controlamos t, el tiempo que transcurre entre la preparación de $|1\rangle$ y la medición, con circuitos

t1_circuits(num_gates, gate_time, ...)

Tras ejecutar los circuitos se ajusta $P_1(T_1, t)$ obtenemos T_1 con

T1Fitter(backend_result , xdata, ...)

Decoherencia

Decoherencia: Pérdida de información certera acerca del sistema cuántico debido a interacciones con el ambiente. Fenómeno inherente al qubit.

$$ho_+
ightarrow
ho_{50/50}$$

Preparar el estado |+> permite ver decoherencia, pues la probabilidad de observarlo al transcurrir el tiempo depende del «ritmo de decoherencia»:

$$P_{+}(T_{2},t) = \frac{1}{2}(1 + e^{-\Gamma_{2}t}) = \frac{1}{2}(1 + e^{-\frac{t}{T_{2}}})$$

Al transcurrir un tiempo T_2 la probabilidad de observar un estado mixto incrementa y

$$P_+(T_2, T_2) = \frac{1}{2}(1 + \frac{1}{e}) \approx 0.684$$

 T_2 , tiempo de decoherencia

Decoherencia con Qiskit

Caracterizando decoherencia

Parámetro
$$\Rightarrow T_2$$
, un tiempo

$$P_0(T_2,t) = \frac{1}{2}(1+e^{-\frac{t}{T_2}})$$

*Notemos que ahora es P_0 y no P_+ , podemos pasar de una a otra con una compuerta H

Nuevamente controlamos t, el tiempo que transcurre entre la preparación de |+⟩ y la medición, con circuitos*

```
t2star_circuits(num_gates, gate_time, ...)
t2_circuits(num_gates, gate_time, ...)
```

Tras ejecutar los circuitos se ajusta $P_0(T_2,t)$ obtenemos T_2 con*

```
T2StarFitter(backend_result , xdata, ...)
T2Fitter(backend_result , xdata, ...)
```


Presente cuando hay dos **qubits superconductores acoplados**, desplazamiento de la energía correspondiente al estado $|11\rangle$. Provoca entrelazamiento no deseado. **Fenómeno inherente al qubit.**

Fig: 5. Desplazamiento de la energía del estado |11>

$$H = \hbar\omega_0(1 - \sigma_{Z,0})/2 + \hbar\omega_1(1 - \sigma_{Z,1})/2 + \hbar\xi|11\rangle\langle11|$$

Error ZZ

El desplazamiento de energía podemos calcularlo:

$$\xi = \omega_{11} - \omega_{10} - \omega_{01}$$

Las frecuencias involucradas podemos calcularlas haciendo Experimentos de Ramsey. Observamos oscilaciones de la probabilidad de observar el estado excitado:

$$P_{1,Q_1=|0\rangle}(\omega_{10},t)=A\cos(\omega_{10}t+\phi)$$

$$P_{1,Q_1=|1\rangle}(\omega_{01},t)=A\cos(\omega_{01}t+\phi)$$

Frror 77

Caracterizando error ZZ

Parámetro $\Rightarrow \xi \Rightarrow \omega_{10}$ y ω_{01} , frecuencias*

$$P_{1,Q_1=|0\rangle} = A\cos(\omega_{10}t + \phi), \quad P_{1,Q_1=|1\rangle} = A\cos(\omega_{01}t + \phi)$$

*Recordemos que por $E=\hbar\omega$, también podemos interpretar ξ como una energía

Controlamos t, el tiempo transcurrido en los experimentos de Ramsey, para observar las oscilaciones. Usamos:

zz_circuits(num_gates, gate_time, ...)

Tras ejecutar los circuitos se ajusta $P_{1,\omega_{ii}}(\omega_{ij},t)$ obtenemos ω_{ij} con

ZZFitter(backend_result , xdata, ...)

¿Para qué caracterizar?

Siempre es bueno saber que ocurre un error y qué tanto está afectando, esto nos permitirá hacer algo para arreglarlo:

- Errores en compuertas: calibrar parámetros de pulso.
- Error ZZ: cambiar la arquitectura del qubit, calibrar acoplamientos.
- Relajación y decoherencia: Mejorar sistemas de aislamiento.

Caracterizar siempre sirve para saber que qubits o dispositivos evitar.

Tabla de Contenido

- 1 ; Qué es Qiskit Ignis?
- Caracterización de errores
- 3 Mitigando errores de medición Errores de medición Mitigación
- 4 Conclusiones e ideas

Acerca de los errores de medición

Tras hacer una medición aún queda algo más por hacer, mostrar los resultados a quien los analizará. En este proceso de «presentar» los resultados se pueden generar errores. Puede que al medir el bit 0 se muestre al usuario 1 y viceversa.

Fig: 5. Un error común.

- Suelen suceder debido a ruido en canales clásicos
- ¡Se puede corregir si los conocemos bien!

from qiskit.ignis.mitigation.measurement import

La idea detrás de la mitigación

Si sospechamos que nuestras mediciones son erróneas, podemos hacer algo para detectarlas...atrapar a nuestro sistema diciendo mentiras.

• Generar circuitos con resultados predecibles.

```
complete_meas_cal(qubit_list, qr, cr, ...)
```

 Ejecutarlos y comparamos con nuestras predicciones, recabar información detallada de cada qubit.

```
CompleteMeasFitter(results, state_labels, ...)
```

• Utilizar la información recabada para anular los errores.

Primeros dos pasos visualizados

Fig: 6. Un circuito simple.

Fig: 7. Conteos del circuito con y sin ruido.

Fig: 8. Datos detallados de qué qubit falla y cuánto.

El último paso

Si conocemos los resultados esperados y los obtenidos, podemos modelar, considerando los diccionarios de conteos como «vectores de conteos». El vector conteos erróneo \vec{c}_e está relacionado con el vector ideal \vec{c}_i mediante:

Mitigando errores de medición

000000

$$\vec{c}_e = M \vec{c}_i$$

Donde M es la matriz que codifica las probabilidades de fallos, jalgo que ya tenemos! Podemos aplicar la inversa.

$$\vec{c}_i = M^{-1} \vec{c}_e$$

= CompleteMeasFitter(results, ...).filter.apply(r_e)

A veces el ruido solo afecta a un conjunto específico de qubits, en este caso el proceso de mitigación cambia y de hecho es más fácil.

```
from qiskit.ignis.mitigation.measurement import (tensored_meas_cal
,TensoredMeasFitter)
```

- Generamos menos circuitos.
- Generamos una matriz de calibración más pequeña.

$$M = M_{Loc} \otimes M_{Ideal}$$

El cómputo de los conteos corregidos es más rápido.

Tabla de Contenido

- 1 ¿Qué es Qiskit Ignis?
 - Errores en cómputo cuántico Qiskit Ignis para caracterización y mitigación
- Caracterización de errores

Errores al aplicar compuertas Relajación y decoherencia Error ZZ ¿Para qué caracterizar?

- 3 Mitigando errores de medición
 - Errores de medición Mitigación
- 4 Conclusiones e ideas

Conclusiones e ideas

En conclusión, hemos aprendido:

- Hay al menos tres tipos de errores en cómputo cuántico.
- Algunos errores se caracterizan y otros se mitigan.
- Ignis (en conjunto con otras componentes de Qiskit) proporciona las herramientas para hacer lo correspondiente con cada error.

Algunas ideas de proyectos para el QSJM:

- Hacer la caracterización y mitigación completa para un dispositivo en específico.
- Caracterizar algunos errores y pensar en qué aspectos del dispositivo físico podemos cambiar para eliminarlos.

Referencias

- Gambetta, J. M., Chow, J. M., & Steffen, M. (2017). Building logical qubits in a superconducting quantum computing system. npj Quantum Information, 3(1), 1-7.
- Ball, P. (2018). Ion-based commercial quantum computer is a first. Physics World, December, 17.
- Glosser.ca, (Diciembre 19 de 2012), Bloch sphere; a geometrical representation of a two-level quantum system. Consultado en https://en.wikipedia.org/wiki/File:Bloch_Sphere.svg#filelinks
- Error Correction and Detection Codes: CRC, Hamming, Parity. (Julio 31 de 2019). Consultado en https://www.electronicshub.org/error-correction-and-detection-codes/

Conclusiones e ideas

