Laboratorium p	odstaw e		w. 13 Przesuwniki (i CR	fazowe – tłumiące	układy
Rodzaj studiów:	OKNO	PW	Termin Zjazdu	19-23.06.2023	
Zjazd	3	Data i godzina:	23.06.2013	Nr zespołu:	B7
Skład zespołu:	1 Pul 2 Pro	Morch Add	nen		

1a.	Dobór pojemności i rezystancji przesuwnika dla :	zakładanej	częstotliwości
-----	--	------------	----------------

Wybrana pojemność przesuwnika fazowego: C = 97 22nF	3 talong
Wybrana częstotliwość drgań: f = KHz	9

Wyznaczona teoretyczna częstotliwość drgań zaprojektowanego przesuwnika 3-sopniowego:
$$f = \underbrace{-5.910}_{6.0} \text{ Mz}$$

Maria con a marta // remeterall amount illa forma de la constant d	(
Wyznaczona wartość rezystancji przesuwnika fazowego 4-stopniowego: R =	

wego
we

1b. Analiza charakterystyk częstotliwościowych przesuwnika 3- i 4-stopniowego

Charakteryst	yka amplitudowo-cz	estotliwościowa n	rzesuwnika	3-stanniowega.

Pomiary	i	obliczen	iia:

ch przesuwnika 3- i 4- stopniowego:

ciowa przesuwnika 3-stopniowego:

$$\frac{0.35}{10.5} = \frac{0.033}{10.5} \frac{1}{60.033} \approx 30 \frac{1}{10.000}$$

$$K_0 = \frac{U_2}{U_4}$$

W25 "
$$k_0 = \frac{U_2}{U_1}$$
 np. dh pk+ drgon $l = 5.9 \text{ kHz}$ $U_2 = 0.35 \text{ V}$, $U_1 = 10.5 \text{ V}$

Amplituda V _{INp-p}	V								2	7	
Częstotliwość f _{IN}	Hz		*	-				-			
Amplituda V _{OUTp-p}	V	· ·	1								
Opóźnienie napięcia	s			1	.—)					
Przesunięcie fazowe	rad			-	~	-					
Amplituda V _{INp-p}	٧						_				7
Częstotliwość f _{IN}	Hz						5				
Amplituda V _{OUTp-p}	V						<	- 5	_		
Opóźnienie napięcia	s										
Opoznienie napięcia	_										

Obligania:
$$W^{2} = \frac{1}{6R^{2}C^{2}} = 7 R^{2} = \frac{1}{6W^{2}C^{2}} - 5 R^{2} = \frac{1}{6 \cdot (2\cdot 3n \cdot 5 \ln)^{2} \cdot (22 \cdot 40\cdot 3)^{2}}$$

$$W^{2} = \frac{1}{6R^{2}C^{2}} = 7 R^{2} = \frac{1}{6W^{2}C^{2}} - 5 R^{2} = \frac{1}{6 \cdot (2\cdot 3n \cdot 5 \ln)^{2} \cdot (22 \cdot 40\cdot 3)^{2}}$$

$$W^{2} = \frac{1}{2863 \cdot 227 \cdot 84 \cdot 10^{-10}}$$

$$R = \sqrt{2863 \cdot 227 \cdot 84 \cdot 10^{-10}} = 7 \sqrt{2866 \cdot 3227 \cdot 84 \cdot 10^{-10}} = \frac{1}{492 \cdot 10^{-10}}$$

$$R = 0.0005 \cdot 90 \cdot 10^{1} \cdot 10^{1} = 7 \cdot 10^{1} \cdot$$

(Rysunek - Charakterystyka)

Laboratorium podstaw elektroniki SKA – Ćw. 14 Generatory przebiegów sinusoidalnych							
Rodzaj studiów:	OKNO P	W	Termin Zjazdu	19-23.06.2023			
Zjazd	3	Data i godzina:	Nr zespołu:				
Skład zespołu:		1. Pitoral Adom 2 Pietr Heinselman					

1. Analiza pracy generatora drgań sinusoidalnych z wybranym przesuwnikiem CR i wzmacniaczem operacyjnym

Wartość rezystancji R₄ przy której układ generuje drgania: R₄=15,799 k 𝒦 🕏

Wartość wzmocnienia układu odwracającego: k_u =36...34,59

Wartość minimalna rezystancji R_4 przy której układ generuje drgania sinusoidalne nieodkształcone: $R_4 = \frac{14.9.5}{10.00}$ $R_4 = \frac{14.9.5}{10.00}$

Wartość wzmocnienia układu odwracającego: $k_{\text{u}} = 29$, 3.

Amplituda generowanego przebiegu: $V_{\text{outp-p}} = 11$

(przebiegi)

Re = 14,965 KJC 500 KJC 149652600 - min (19,965 (10)) 29,93 15799900 - max (15,799 (10)) 31,598

dly (731,598 Sinuspiole jest vainana na 12V