Appliance Energy Consumption in Australia Equations for Appliance Star Ratings

Prepared by Energy Efficient Strategies (EES) for the Equipment Energy Efficiency Committee (E3)

April 2005, updated September 2010.

This document has been prepared for E3 to assist with customer advisory information and energy policy work. The data has been prepared by Lloyd Harrington of EES and supported by E3.

It sets out the equations necessary to calculate the star rating index for appliances that carry an energy label in Australia. Equations for new air conditioner and refrigerator algorithms from April 2010 are included . Televisions, which have carried a mandatory energy label from October 2009, are also included.

Water rating equations for dishwashers and clothes washers are included for information. Gas appliance star ratings are also set out at the end of this document. These have not changed in recent years although government is in the process of regulating the efficiency of these products.

Table of Contents

Star Rating Equations from 2000 for Electrical Products - Overview	2
Televisions – AS/NZS 62087.2.2(Int)-2009 from October 2009	
Post April 2010 Star Rating System – Refrigerator, Freezers and Air Conditioners	
Refrigerators and Freezers – AS/NZS 4474.2 from April 2010	3
Air Conditioners – AS/NZS 3823.2 from April 2010	5
Clothes Dryers – AS/NZS 2442.2 from 2000	
Dishwashers – AS/NZS 2007.2 from 2000	6
Clothes washers – AS/NZS 2040.2 from 2000	6
Refrigerators and Freezers – AS/NZS 4474.2 between 2000 to 2010	7
Air Conditioners – AS/NZS 3823.2 between 2000 to 2010	9
Pre 2000 Star Rating System – Electrical Products - Overview	.11
Clothes Dryers – AS/NZS 2442.2 up to 2000	.11
Dishwashers – AS/NZS 2007.2 up to 2000	.11
Clothes washers – AS/NZS 2040.2 up to 2000	. 12
Refrigerators and Freezers – AS/NZS 4474.2 up to 2000	. 12
Air Conditioners – AS/NZS 3823.2 up to 2000	.13
Water Star Ratings for Dishwashers – AS/NZS 6400 from 2006	
Water Star Ratings for Clothes Washers – AS/NZS 6400 from 2006	. 15
Gas Water Heaters – AS 4552	. 15
Gas Space Heaters – AS 4553	.16
Indirect gas-fired ducted air heaters - AS 4556	. 16

Information in this document is provided for guidance only. The full technical details are set out in the relevant standards and these should be consulted to ensure that all relevant components are included.

Star Rating Equations from 2000 for Electrical Products - Overview

Revised energy algorithms for all star ratings for electrical appliances were introduced on 1 October 2000. Details on the transition from the old to the new label can be found in Report 2004/05 – see http://www.energyrating.gov.au/library/details200405-labeltransition.html

The clothes washers, clothes dryers, dishwashers, refrigerators and freezers all use the same general form of the star rating algorithm as follows:

$$SRI = 1 + \left[\frac{\log_{e} \left(\frac{CEC}{BEC} \right)}{\log_{e} (1 - ERF)} \right]$$

Where:

SRI is the star rating index (fractional star rating)

CEC is the comparative energy consumption (energy that appears on the energy label) BEC is the base energy consumption – the equation for a product with an SRI of 1.0 ERF is the energy reduction factor – reduction in CEC for each additional star

Note that air conditioner SRI values are calculated using a different approach which is outlined in the relevant sections below.

Valid star rating values range from 1 to 6 for clothes washers, dishwashers and clothes dryers. Star rating are based on the SRI rounded down to the next half star.

For products that provide for a star rating of up to 10 stars to be calculated (televisions, air conditioners and refrigerators), half stars are assigned up to 6 stars (SRI rounded down to the next half star) and only whole stars are assigned from 7 stars to a maximum of 10 stars. Very efficient products that earn more than 6 stars are eligible to carry a special super efficiency label as defined in the relevant standard.

Televisions – AS/NZS 62087.2.2(Int)-2009 from October 2009

Star ratings 1 to 6 (in half star steps) and from 7 to 10 (whole stars) for super efficient products.

Mandatory star rating for televisions were introduced for the first time in 2009. The technical details are set out in AS/NZ62087.2.2(Int)-2009.

The standard assumes a usage of 10 hours per day in on mode while the remainder of the time is in passive standby mode, less any time in active standby mode, which is usually used to download electronic program guides and for firmware updates. Not all products have an active standby mode. The modes and the measurement of average

power in these modes is set out in AS/NZS62087.1(Int)-2009. Annual energy consumption (CEC) is determined for the assumed usage profile.

The key parameter for determining efficiency of televisions is screen area. No allowances are made for screen technology or features – all products are treated on the same basis.

For televisions the Base Energy Consumption (BEC or 1 star line) is also the Tier 1 MEPS line which comes into force on 1 October 2009.

```
BEC = 127.75 + (0.1825 \times \text{screen area})
where screen area is in cm<sup>2</sup>.
```

For televisions, an Energy Reduction Factor (ERF) is set to 0.20, which represents a 20% reduction in annual energy consumption per additional star.

Equations for televisions provide for a star rating of up to 10 stars to be calculated – only whole stars are assigned above a rating of 6 stars.

Tier 2 MEPS for televisions scheduled for October 2012 are set out in the following equation:

```
Tier 2 MEPS = 90.1 + (0.1168 \times \text{screen area})
where screen area is in cm<sup>2</sup>.
```

Post April 2010 Star Rating System – Refrigerator, Freezers and Air Conditioners

From 1 April 2010, the star rating equations for refrigerators, freezers and air conditioners will be changed to take account of the stringent minimum energy performance standards introduced for these products in the period 2004 to 2007 which has left many of the lower star rating bins empty.

Refrigerators and Freezers – AS/NZS 4474.2 from April 2010

Star ratings 1 to 6 (in half star steps) and from 7 to 10 (whole stars) for super efficient products.

The details are set out in AS/NZS4474.2-2009.

The standard assumes continuous use at test conditions (32°C, no door openings). Actual in-use energy will vary somewhat by type and model but an assumed energy of about 0.9 of the energy label CEC would be a reasonable average estimate.

Key parameter is the adjusted volume, which is the equivalent volume of fresh food space when adjusted for the temperature of operation (colder compartments are assumed to be larger than measured).

Adjusted volume $= \Sigma \text{ Ks} \times \text{compartment volume}$

For each compartment in the refrigerator or freezer as set out in the table below.

Compartment type	Volume adjustment factor
	$(K_{\rm s})$
Cellar	0.7
Fresh food	1.0
Chill	1.1
Ice-making	1.2
Short term frozen food storage	1.4
Freezer	1.6

A formula is used to calculate K_s for compartments warmer than a cellar.

The main change in 2010 is that the Base Energy Consumption (1 star line) now uses a function of adjusted volume to the power of 0.67. This is to better reflect the changes in surface area of the refrigerator with size (rather than a linear function of volume which has been used previously, which favours larger products).

$$BEC = C_f + (C_v \times (V_{adj tot})^{0.67})$$

Other factors by groups are set out below. For star rating purposes there are essentially 3 categories of products – single door, 2+ door refrigerator-freezers, and separate freezers.

Appliance group	Group description	Fixed allowance factor (C _f) kWh/year	Variable allowance factor (C _v) kWh/year/L	Energy Reduction Factor (ERF)
1	All refrigerator	200	4.0	0.23
2	Refrigerator with ice maker	200	4.0	0.23
3	Refrigerator with short term freezer	200	4.0	0.23
4	Refrigerator with long term freezer	150	8.8	0.23
5T	Top mounted frost free refrigerator-freezer	150	8.8	0.23
5B	Bottom mounted frost free refrigerator-freezer	150	8.8	0.23
58	Side×side frost free refrigerator-freezer	150	8.8	0.23
6C	Chest freezer	150	7.5	0.23
6U	Manual defrost vertical freezer	150	7.5	0.23
7	Frost free vertical freezer	150	7.5	0.23

Note: Groups $1,\,5$ and 7 are fully automatic defrost. Groups $2,\,3,\,4$ and 6 have manual defrost freezer.

An ERF of 0.23 represents a 23% reduction in energy consumption per additional star.

More information can be obtained from the algorithm discussion paper (see http://www.energyrating.gov.au/library/details200709-rf-algorithm-revised.html) and the regulatory impact statement (see http://www.energyrating.gov.au/library/details200804-ris-rf-fz.html)

Air Conditioners – AS/NZS 3823.2 from April 2010

Star ratings 1 to 6 (in half star steps) and from 7 to 10 (whole stars) for super efficient products.

The details are set out in AS/NZS3823.2-2009.

Air conditioner energy shown on the label is kWh/hour or kW (continuous) at rated output.

The key parameter used is the coefficient of performance (COP) for heating and energy efficiency ratio (EER) for cooling, which itself is a measure of the efficiency of the product. This is the ratio of output (heating or cooling) to electrical power input. Importantly, from 2010 the star rating will be based on an annual efficiency calculation which includes any non-operational energy consumption. See the standard for details.

SRI cooling =
$$\frac{[Tested _annual _EER \times 8] - 18}{4}$$

SRI heating =
$$\frac{[Tested _annual _COP \times 8] - 18}{4}$$

SRI cooling is 1 star for an EER of 2.75 with 1 star for each increase in EER of 0.5.

SRI heating is 1 star for a COP of 2.75 with 1 star for each increase in COP of 0.5.

This algorithm is published as Appendix F of AS/NZS3823.2-2005 and will be in AS/NZS3823.2-2009 (currently DR09029)

•

Star Rating	Min EER	Min COP
	(cooling)	(heating)
1	2.75	2.75
1.5	3.00	3.00
2	3.25	3.25
2.5	3.50	3.50
3	3.75	3.75
3.5	4.00	4.00
4	4.25	4.25

Star Rating	Min EER (cooling)	Min COP (heating)
4.5	4.50	4.50
5	4.75	4.75
5.5	5.00	5.00
6	5.25	5.25

Note that the value used in the algorithm is the tested annual EER and COP (ie the value measured in the lab), not the rated value (which is rated output divided by rated input, both of which appear on the energy label). Non operational energy is also included in the calculation.

More information can be obtained from the regulatory impact statement (see http://www.energyrating.gov.au/library/details200809-ris-ac.html)

Clothes Dryers – AS/NZS 2442.2 from 2000

Star ratings 1 to 6 (in half star steps).

Note that for clothes dryers the CEC is calculated from the tested energy consumption per load times 52 cycles per year times field use factor. Field use factor is 1.0 for autosensing dryers and 1.1 for timer dryers.

 $BEC = K \times capacity$

K = 53 where the test result starts at 90% moisture content (AS/NZS2442.1-1996)

K = 59 where the test result starts at 100% moisture content (AS2442-1989)

ERF = 0.15

Dishwashers – AS/NZS 2007.2 from 2000

Star ratings 1 to 6 (in half star steps).

Assumes use 365 cycles per year.

 $BEC = 48 \times place settings$

ERF = 0.30

Clothes washers – AS/NZS 2040.2 from 2000

Star ratings 1 to 6 (in half star steps).

Assumed use 365 cycles per year. In-use energy is highly dependent on the wash temperature as about 70% to 85% of the total energy is used to heat the water for a warm wash.

 $BEC = 115 \times rated capacity$

ERF = 0.27

For clothes washers, the star rating index is also influenced by the spin performance of the machine, as it is assumed that some of the load will be put into a dryer. So the normal ratio of CEC/BEC in the SRI equation is replaced as follows:

$$SRI = 1 + \left[\frac{\log_{e} \left(\frac{CEC + Em}{BEC + Eref} \right)}{\log_{e} (1 - 0.27)} \right]$$

where:

$$Em = \frac{F \times WEI \times RC \times 365}{1.08}$$

F = 0.1

WEI = water extraction index for the model (also called spin index)

$$Eref = \frac{F \times WEI_{ref} \times RC \times 365}{1.08}$$

Where:

 $WEI_{ref} = 1.03$

WEI is usually in the range of 1.1 (maximum allowable) to about 0.55 (best on the market) and is the ratio of moisture remaining in the load compared to the bone dry mass of the test load (which is nominally the rated capacity / 1.08).

Refrigerators and Freezers – AS/NZS 4474.2 between 2000 to 2010

Star ratings 1 to 6 (in half star steps).

The standard assumes continuous use at test conditions (32°C, no door openings). Actual in-use energy will vary somewhat by type and model but an assumed energy of about 0.9 of the energy label CEC would be a reasonable average estimate.

Key parameter is the adjusted volume, which is the equivalent volume of fresh food space when adjusted for the temperature of operation (colder compartments are assumed to be larger than measured).

Adjusted volume = Σ Ks \times compartment volume

For each compartment in the refrigerator or freezer as set out in the table below.

Compartment type	Volume adjustment factor
	$(K_{\rm s})$
Cellar	0.7
Fresh food	1.0
Chill	1.1
Ice-making	1.2
Short term frozen food storage	1.4
Freezer	1.6

Other factors by groups are set out below:

Appliance group	Group description	Fixed allowance factor (C _f) kWh/year	Variable allowance factor $(C_{ m v})$ kWh/year/L	Energy Reduction Factor (ERF)
1	All refrigerator	368	0.892	0.14
2	Refrigerator with ice maker	330	0.800	0.20
3	Refrigerator with short term freezer	330	0.800	0.20
4	Refrigerator with long term freezer	465	1.378	0.23
5T	Top mounted frost free refrigerator-freezer	465	1.378	0.23
5B	Bottom mounted frost free refrigerator-freezer	465	1.378	0.23
5S	Side×side frost free refrigerator-freezer	465	1.378	0.23
6C	Chest freezer	248	0.670	0.17
6U	Manual defrost vertical freezer	439	1.020	0.20
7	Frost free vertical freezer	439	1.020	0.20

Note: Groups 1, 5 and 7 are fully automatic defrost. Groups 2, 3, 4 and 6 have manual defrost freezer.

$$BEC = C_f + (C_v \times V_{adj tot})$$

Note that MEPS factors are separate to energy labelling factors and are set out in http://www.energyrating.gov.au/rf2.html MEPS for refrigerators also includes factors for additional doors and adaptive defrost.

Air Conditioners – AS/NZS 3823.2 between 2000 to 2010

Star ratings 1 to 6 (in half star steps).

Air conditioner energy shown on the label is kWh/hour or kW (continuous) at rated output.

Air conditioner star ratings are calculated on a different basis to other appliances. The key parameter used is the coefficient of performance (COP) for heating and energy efficiency ratio (EER) for cooling, which itself is a measure of the efficiency of the product. This is the ratio of output (heating or cooling) to electrical power input.

SRI cooling =
$$\frac{[Tested _EER \times 10] - 17}{3}$$

SRI heating =
$$\frac{[Tested _COP \times 10] - 20}{3}$$

SRI cooling is 1 star for an EER of 2.0 with 1 star for each increase in EER of 0.3.

SRI heating is 1 star for a COP of 2.3 with 1 star for each increase in COP of 0.3.

Star Rating	Min EER	Min COP
	(cooling)	(heating)
1	2.00	2.30
1.5	2.15	2.45
2	2.30	2.60
2.5	2.45	2.75
3	2.60	2.90
3.5	2.75	3.05
4	2.90	3.20
4.5	3.05	3.35
5	3.20	3.50
5.5	3.35	3.65
6	3.50	3.80

Note that the value used in the algorithm is the tested EER and COP (ie the value measured in the lab), not the rated value (which is rated output divided by rated input, both of which appear on the energy label). So it is not always possible to calculate the exact SRI from label values.

Note that three phase air conditioners have had MEPS in place since October 2001, Single phase models will have MEPS introduced in October 2004. MEPS for single and three phase models will be upgraded in October 2007. Details of MEPS levels can be found at http://www.energyrating.gov.au/pac1.html

Pre 2000 Star Rating System – Electrical Products - Overview

The original algorithms for all star rated electrical appliances operated from their introduction until 1 October 2000. The scheme differed to the new star rating system in that the star rating scale was generally a fixed kWh reduction per additional star (compared to the new system that has a fixed percentage reduction per additional star).

All star rating systems from 1986 to 2000 showed whole stars only.

Clothes Dryers – AS/NZS 2442.2 up to 2000

Dryer star ratings started in 1989.

Note that for clothes dryers the CEC is calculated from the tested energy consumption per load times 150 cycles per year times field use factor. Field use factor is 1.0 for autosensing dryers and 1.1 for timer dryers.

EER (star rating) =
$$12 - \left[\frac{8 \times CEC}{150 \times m_r} \right]$$

Where:

EER is the star rating index of the appliance (energy efficiency rating) CEC is the comparative energy consumption (based on 150 uses per year) Mr is the moisture removed, which is approximately 0.94 of the bone dry mass, which is about 0.89 of the rated capacity.

Most tests start with an initial moisture content of 100%.

Dishwashers – AS/NZS 2007.2 up to 2000

Dishwasher star ratings started in 1987.

Assumed use 365 cycles per year.

$$EER = 8 - \left[\frac{CEC}{10 \times PS} \right]$$

Where

EER is the star rating index of the appliance (energy efficiency rating) CEC is the comparative energy consumption (based on 365 uses per year) PS is the dishwasher place settings.

Clothes washers – AS/NZS 2040.2 up to 2000

Clothes washer star ratings started in 1990.

Assumed use 365 cycles per year. In-use energy is highly dependent on the wash temperature as about 70% to 85% of the total energy is used to heat the water for a warm wash.

$$EER = 6.9 - \left[6.9 \times \frac{1.08}{RC} \times \left(\frac{CEC}{365} + E_m \right) \right]$$

Where:

EER is the star rating index of the appliance (energy efficiency rating) CEC is the comparative energy consumption (based on 365 uses per year)

RC is the rated capacity in kg

Em is the equivalent energy of residual moisture retained after spinning

$$Em = \frac{0.21 \times WEI \times RC}{1.08}$$

Where WEI is the Water Extraction Index

For clothes washers, the star rating index is influenced by the spin performance (WEI) of the machine by the factor Em, as it is assumed that some of the load will be put into a dryer. WEI is usually in the range of 1.1 (maximum allowable) to about 0.55 (best on the market) and is the ratio of moisture remaining in the load compared to the bone dry mass of the test load (which is nominally the rated capacity / 1.08).

Refrigerators and Freezers – AS/NZS 4474.2 up to 2000

Refrigerator and freezer star ratings started in 1986.

The standard assumes continuous use at test conditions (32°C, no door openings). Actual in-use energy will vary somewhat by type and model but an assumed energy of about 0.9 of the energy label CEC would be a reasonable average estimate.

Key parameter is the adjusted volume, which is the equivalent volume of fresh food space when adjusted for the temperature of operation (colder compartments are assumed to be larger than measured).

Adjusted volume $V_{adj} = \Sigma Ks \times compartment volume$

For each compartment in the refrigerator or freezer as set out in the table below.

Compartment type	Volume adjustment factor (K _s)
Cellar	0.7
Fresh food	1.0
Chill	1.1
Ice-making	1.2
Short term frozen food storage	1.4
Freezer	1.6

Star rating for all types of refrigerators and freezers is done of the same basis as follows:

$$EER = \frac{23}{3} - \left(\frac{2}{3} \times \frac{1000}{365} \times \frac{CEC}{V_{adj}}\right)$$

Where

EER is the star rating index of the appliance (energy efficiency rating) CEC is the comparative energy consumption (based on continuous use)

Air Conditioners – AS/NZS 3823.2 up to 2000

Air conditioner star ratings started in 1987.

Air conditioner energy shown on the label is kWh per 500 hours of use for heating and cooling.

Air conditioner algorithms pre-2000 are of a very similar form to the equations used after 2000. However the original 1 star line was lower and the gap between stars was smaller.

The key parameter used is the coefficient of performance (COP) for heating and energy efficiency ratio (EER) for cooling, which itself is a measure of the efficiency of the product. This is the ratio of output (heating or cooling) to electrical power input.

SRI cooling = [Tested EER \times 5] – 8.5

SRI heating = [Tested COP \times 5] – 9.5

SRI cooling is 1 star for an EER of 1.9 with 1 star for each increase in EER of 0.2.

SRI heating is 1 star for a COP of 2.1 with 1 star for each increase in COP of 0.2.

Note that the value used in the algorithm is the tested EER and COP (ie the value measured in the lab), not the rated value (which is rated output divided by rated input, both of which appear on the energy label). So it is not always possible to calculate the exact SRI from label values.

Star Rating	Min EER	Min COP
	(cooling)	(heating)
1	1.90	2.10
1.5	2.00	2.20
2	2.10	2.30
2.5	2.20	2.40
3	2.30	2.50
3.5	2.40	2.60
4	2.50	2.70
4.5	2.60	2.80
5	2.70	2.90
5.5	2.80	3.00
6	2.90	3.10

Water Star Ratings for Dishwashers – AS/NZS 6400 from 2006

Water star ratings became mandatory for dishwashers in 2006.

The details of the water star rating requirements are set out in AS/NZS6400.

The water rating system uses the same conceptual approach as star ratings for energy consumption.

$$WRI = 1 + \left[\frac{\log_{e} \left(\frac{WC}{BWC} \right)}{\log_{e} \left(1 - WRF \right)} \right]$$

Where:

WRI is the Water Star Rating Index = fractional water star rating which is then used to determine the number of stars to appear on the label

WC = water consumption of the model in litres (refer to the standard for details)

BWC = base water consumption = $2.5 + P \times 1.6$

P = number of place settings of the dishwasher

WRF = water reduction factor per additional star (17.5%) = 0.175

Water Star Ratings for Clothes Washers – AS/NZS 6400 from 2006

Water star ratings became mandatory for clothes washers in 2006.

The details of the water star rating requirements are set out in AS/NZS6400.

The water rating system uses the same conceptual approach as star ratings for energy consumption.

$$WRI = 1 + \left[\frac{\log_{e} \left(\frac{WC}{BWC} \right)}{\log_{e} (1 - WRF)} \right]$$

Where:

WRI is the Water Star Rating Index = fractional water star rating which is then used to determine the number of stars to appear on the label

WC = water consumption of the model in litres (refer to the standard for details)

BWC = base water consumption = $30 \times C$

C = rated load capacity of clothes washer (kg) as determined under AS/NZS 2040.1 WRF = water reduction factor per additional star (30%) = 0.30

Gas Appliances

The gas appliance star rating system has remained unchanged since its general introduction in the early 1990's.

Gas Water Heaters – AS 4552

Base energy consumption for a 1 star water is 28900 MJ/year. An additional star is achieved for each 7% reduction in base energy consumption (ie for each 2023 MJ/year reduction in energy) (note that unlike electrical appliance star ratings, the step sizes for gas water heaters remain equal through the progression). The energy delivered under the test method is 200 litres of water at 60°C (temperature rise of 45K from 15°C), which is 37.7MJ per day or 13761 MJ per annum.

	Energy
Stars	MJ/year
1	<28900
2	<26877
3	<24854
4	<22831
5	<20808
6	<18785

Gas Space Heaters – AS 4553

This standard includes non-ducted space heaters which may or may not have a flue. The types may be radiant or convective.

For gas space heating appliances under AS 4553, the star rating is calculated on the basis of net heater efficiency. Net heater efficiency is calculated on the basis of a combination of full load efficiency and part load efficiency (where applicable) and takes into account all gas and electrical inputs for an assumed use of 5 hours per day. The net efficiency also takes into account standby components (standby electricity and gas pilot lights) for non use periods.

The net efficiency of a space heater of 61% defines the 1 star level. An increase in 6% efficiency is required for each additional star, with 91% efficiency achieving 6 stars.

The annual energy consumption depends on the output capacity of the space heater. The assumed use is 5 hours per day. The thermal efficiency of a flueless heater is assumed to be 90.4%.

Indirect gas-fired ducted air heaters - AS 4556

This standard includes ducted space heaters. It is based on a seasonal efficiency performance (light duty and heavy duty cycles). The energy delivered is based on air temperatures delivered above 40°C. Assumed use is 600 hours per year.

A 1 star performance is a seasonal energy efficiency of 50% while 5 stars has been set at 90% (10% efficiency increase per additional star). Annual energy consumption has been based on a nominal 600 hours of heating at a typical heat load value of 0.2 MJ/h/m³.