প্রথম অধ্যায়

ম্যাট্রিক্স ও নির্ণায়ক (Matrics and Determinants)

1.1.1. মাটিক্সের ধারণা

মনে করি, $x' = a_1x + b_1y$ এবং $y' = a_2x + b_2y$ দুইটি প্রদন্ত সমীকরণ, যেখানে a_1 , b_1 , a_2 , b_2 ধ্বক (Constant). এই দুইটি প্রদন্ত সমীকরণকে বিভিন্ন ক্ষেত্রে প্রয়োগ করা হয়।

ধরি, \hat{A} তার দৈনিক কাজে 12 টাকার মালামাল ব্যবহার করলে তাকে দৈনিক 15 টাকা মজুরি দেয়া হয়। আবার B তার দৈনিক কাজে 10 টাকার মালামাল ব্যবহার করলে তাকে দৈনিক 14 টাকা মজুরি দেয়া হয়। এতাবে A ও B যথাক্রমে x সংখ্যক ও y সংখ্যক দিন কাজ করল। যদি তারা দুইজনে একত্রে x টাকা মজুরি পায় এবং সর্বমোট y টাকার মালামাল ব্যবহার করা হয়, তবে আমরা পাই

$$x' = 15x + 14y$$

 $y' = 12x + 10y$ (i)

উপরের দুইটি সমীকরণ থেকে আমরা বলতে পারি: যদি A B যথাক্রমে 7 দিন ও 5 দিন কান্ধ করে, তাহলে দুই জনের মোট মন্ধুরি অর্থাৎ x'=175 এবং মালামালের জন্য মোট ব্যয়, অর্থাৎ y'=134. প্রদন্ত সমীকরণের প্র্বকগুলিকে, অর্থাৎ সংখ্যাগুলিকে সারি (Row) এবং স্তম্ভ (Column) এ সাজালে একটি আরতাকার বিন্যাস (Rectangular array) পাওয়া যায়। এ আয়তাকার বিন্যাসকে বলা হয় ম্যাট্রিক্স (Matrix). ম্যাট্রিক্স বোঝাতে দুইটি তৃতীয় কম্পনী [] বা দুইটি প্রথম কম্পনী () ব্যবহার করা হয়। কখনও ক্ষমণ্ড '|| || প্রতীকের সাহায্যেও ম্যাট্রিক্স বোঝানো হয়।

প্রদন্ত সমীকরণদ্বয় থেকে ম্যাট্রিক্স হলো: $egin{bmatrix} a_1 & b_1 \ a_2 & b_2 \end{bmatrix}$

(i) থেকে ম্যাট্রন্স হলো: \begin{pmatrix} 15 & 14 \\ 12 & 10 \end{pmatrix}.

ম্যাট্রিন্স গঠনকারী সংখ্যা a_1 , b_1 , a_2 , b_2 ইত্যাদিকে এর ভুক্তি (Entry) বলা হয়। ভুক্তিগুলির আনুভূমিক (horizontal) এবং উল্লন্ম (Vertical) বিন্যাসকে যথাক্রমে সারি (Row) এবং স্তম্ভ (column) বলা হয়। যেমন :

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$
 ्वकि भाषिश।

উপরের ম্যাট্রিক্সের সারির সংখ্যা 3 এবং কলামের সংখ্যা 4. এ ম্যাট্রিক্সকে 3 × 4 জাকারের ম্যাট্রিক্স বা সংক্ষেপে 3 × 4 ম্যাট্রিক্স বলা হয়। সাধারণভাবে ম্যাট্রিক্স লেখার সময় প্রত্যেক ভুক্তিতে 'Double subscript' ব্যবহার করা হয়। প্রথমটি সারি এবং বিভীয়টি কলাম নির্দেশ করে।

নিচে কয়েকটি ম্যাট্রিক্স শেখা হলো:

(i)
$$\begin{vmatrix} 2 & 3 & 5 \\ 5 & 2 & 7 \end{vmatrix}$$
 या 2×3 माधिक।
(ii) $\begin{pmatrix} 5 & 6 & 7 \\ 1 & 3 & 4 \\ 2 & 9 & 10 \end{pmatrix}$, या 3×3 माधिक। (iii) $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$, या 3×2 माधिक।

সাধারণভাবে, একটি ম্যাট্রিক্সের সারি ও কলামের সংখ্যা যথাক্রমে m ও n হলে, ঐ ম্যাট্রিক্সকে $m \times n$ আকারের ম্যাট্রিক্স বলা হয়। অর্থাৎ ম্যাট্রিক্সের আকার বোঝাতে প্রথমে সারি এবং পরে কলাম উল্লেখ করা হয়।

সংক্রেপে, $A=[a_{ij}]\ m imes n$, যেখানে $i=1,\,2,\,...$ m এবং $j=1,\,2,\,...$ n; দারা m imes n আকারের ম্যাট্রিন্ন বোঝানো হয়।

২

1.1.2. ম্যাট্রিক্সের প্রকারভেদ

(i) আয়তাকার ম্যাট্রিল (Rectangular Matrix) : যদি কোনো $m \times n$ আকারের ম্যাট্রিজে $m \neq n$ হয়,

তবে তাকে **আয়তাকার ম্যাট্রিন্স** বলা হয়। যেমন : $\begin{bmatrix} a_{11} & a_{12} & & a_{1n} \\ a_{21} & a_{22} & & a_{2n} \\ a_{31} & a_{32} & & a_{3n} \\ ... & ... & ... & ... \\ a_{m1} & a_{m2} & & a_{mn} \end{bmatrix}$ একটি আয়তাকার ম্যাট্রিন্স।

(ii) সারি ম্যাট্রক্স ($Row\ Matrix$) এবং কলাম ম্যাট্রক্স ($Column\ Matrix$) : কেবল একটি সারি সন্দলিত ম্যাট্রক্স কলার ম্যাট্রক্স বলা হয়। যেমন : [$a_{11}\ a_{12}\ a_{13}\\ a_{1n}$] $_{1\times n}$ একটি সারি ম্যাট্রক্স । কেবল একটি কলাম সন্দলিত ম্যাট্রক্সকে কলাম ম্যাট্রক্স বলা হয়। যেমন,

 $\begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ \dots \\ a_{m1} \end{bmatrix} m imes 1 একটি কলাম ম্যা$ **ট্রিস**।

- (iii) বর্গ ম্যাট্রিক্স : কোন ম্যাট্রিক্সের কলাম ও সারি সংখ্যা পরস্পর সমান হলে, তাকে বর্গ ম্যাট্রিক্স বলা হয়। যেমন : $\begin{bmatrix} 2 & 4 & 5 \\ 5 & 6 & 8 \\ 4 & 5 & 6 \end{bmatrix}$ ওকটি বর্গ ম্যাট্রিক্স।
- (iv) মৃখ্য কর্ণ : কোনো বর্গ ম্যাট্রিক্সের ১ম সারি ও ১ম কলামে অবস্থিত সাধারণ ভৃত্তিগামী কর্ণকে মৃখ্য কর্প বলা হয়।
- (v) কর্ণ ম্যাট্রির ($Diagonal\ Matrix$) : কোনো বর্গ ম্যাট্রিরের মৃখ্য কর্ণের ভুক্তিগুলি ব্যতীত অবশিষ্ট সব ভুক্তিগুলি শূন্য হলে, তাকে কর্ণ ম্যাট্রির বলে। যেমন : $\begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix} 2 \times 2$ একটি কর্ণ ম্যাট্রির ।
- (vi) স্কেলার ম্যাট্রিক্স ($Scalar\ Matrix$) : যে কর্ণ ম্যাট্রিক্সের জশূন্য ভুক্তিগুলি সমান, তাকে স্কেলার ম্যাট্রিক্স বলা হয়। যেমন : $\begin{bmatrix} a & 0 & \dots & 0 \\ 0 & a & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a \end{bmatrix}_{n \ \times n}$ একটি $n \times n$ স্কেলার ম্যাট্রিক্স।
- (vii) অভেদক ম্যাট্রিক্স বা ইউনিট ম্যাট্রিক্স (Identity Matrix or Unit Matrix): স্কেলার ম্যাট্রিক্সের অশূন্য ভুক্তিগুলির প্রত্যেকটি একক (1) হলে, ম্যাট্রিক্সটিকে অভেদক ম্যাট্রিক্স বা ইউনিট ম্যাট্রিক্স বলা হয়। n-পর্যায়ের ইউনিট ম্যাট্রিক্সকে I_n দারা সূচিত করা হয়। যেমন :

$$I_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{bmatrix} n \times n$$

(viii) শূন্য ম্যাট্রক্স (Null Matrix) : শূন্য ম্যাট্রিক্সের প্রত্যেকটি সারি এবং প্রত্যেকটি কলামের প্রতিটি ভূক্তি শূন্য । যেমন : $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{bmatrix}_{n \times n}$ একটি $n \times n$ আকারের শূন্য ম্যাট্রক্স ।

- (ix) প্রতিসম ম্যাট্রিক্স (Symmetric Matrix) : যে বর্গ ম্যাট্রিক্স $A = [a_{ij}]_{m imes m}$ এর ক্ষেত্রে $a_{ij}=a_{ji}$, সব i এবং j এর জন্য, তাকে প্রভিসম ম্যাট্রিক্স বলা হয়। যেমন : $\begin{bmatrix} 5 & 2 & 1 \\ 2 & 6 & -1 \\ 1 & 1 & A \end{bmatrix}$ 3×3 একটি প্রতিসম বর্গ ম্যাট্রিক্স।
- (x) রূপান্তরিভ ম্যাট্রিক্স (Transpose of a matrix): কোনো ম্যাট্রিক্সের সারিগুলিকে কলামে এবং কলামগুলিকে সারিতে পরিবর্তন করলে যে ম্যাট্রিন্স পাওয়া যায় তাকে প্রদন্ত ম্যা**ট্রিন্সের রূপান্ডরিত ম্যাট্রিন্স** বলা হয়। যেমন : $\begin{bmatrix} 5 & 6 \\ 2 & 3 \end{bmatrix} 2 \times 2$ এর রূপান্তরিত ম্যাট্রিঙ্গ $\begin{bmatrix} 5 & 2 \\ 6 & 3 \end{bmatrix} 2 \times 2$.
- (xi) বক্ন প্রতিসম বর্গ ম্যাট্রিক্স (Skew symmetric square matrix) : যদি A এর রূপান্তরিত ম্যাট্রিক্স = - A হয়, তবে A কে বক্র প্রতিসম বর্গ ম্যাট্রিন্স বলা হয় । যেমন: $egin{bmatrix} 0 & -6 \ 6 & 0 \end{bmatrix}$ একটি বক্র প্রতিসম ম্যাট্রিন্স।

1.2.1. ম্যাট্রিক্সের সমতা (Equality of matrices)

যদি এবং কেবল যদি দুইটি ম্যাট্রিজের আঁকার সমান হয় এবং একটির ভুক্তি অপরটির অনুরূপ ভুক্তির সমান হয়, তবে ম্যাট্রিক্স দুইটি সমান হবে। যেমন, দুইটি সমান মাত্রার ম্যাট্রিক্স

$$\begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \\ \phi & \psi \end{bmatrix}, \text{ যখন } a = \alpha, b = \beta, c = \gamma, d = \delta, e = \phi \text{ এবং } f = \psi.$$

$$\begin{bmatrix} 2 & 4 \\ 6 & 9 \\ 0 & 6 \end{bmatrix} \neq \begin{bmatrix} 2 & 4 & 0 \\ 6 & 9 & 8 \\ 0 & 6 & 6 \end{bmatrix}, \text{ কারণ এদের আকার সমান নয় }$$

যদি 4x - 6y = 5 এবং 7x + 9y = 13 হয়, তবে ম্যাট্রিক্স জাকারে জামরা শেখতে পারি $\begin{bmatrix} 4x - 6y \\ 7x + 9y \end{bmatrix} = \begin{bmatrix} 5 \\ 13 \end{bmatrix}$

1.2.2. ম্যাট্রিক্স এর যোগ

দুইটি ম্যা**ট্রেন্স** যদি একই আকারের হয়, তবে তাদের যোগ করা যায়। A এবং B এর উভয়ে m imes n আকারের ম্যাট্রিক্স হলে,

(A+B) ও হবে m imes n ম্যাট্রন্স যার ভুক্তি হবে m imes n সংখ্যক।

নিয়ম :
$$A$$
 এবং B যোগ করতে হলে, A এর প্রত্যেক ভুক্তির সাথে B এর অনুরূপ ভুক্তি যোগ করতে হবে। উদাহরণ। $A=\begin{bmatrix} 2 & -1 & 3 \\ 3 & 6 & -4 \end{bmatrix}$ এবং $B=\begin{bmatrix} 6 & 0 & -4 \\ 5 & 3 & -1 \end{bmatrix}$ হলে , $A+B$ নির্ণয় কর।

সমাধান
$$A + B = \begin{bmatrix} 2 & -1 & 3 \\ 3 & 6 & -4 \end{bmatrix} + \begin{bmatrix} 6 & 0 & -4 \\ 5 & 3 & -1 \end{bmatrix} = \begin{bmatrix} 2+6 & -1+0 & 3+(-4) \\ 3+5 & 6+3 & -4+(-1) \end{bmatrix} = \begin{bmatrix} 8 & -1 & -1 \\ 8 & 9 & -5 \end{bmatrix}$$

মন্তব্য: A ও B এর উভয়ে 2 imes 3 আকারের ম্যাট্রিন্স। সূতরাং A+B হলো 2 imes 3 ম্যাট্রিন্স এবং এর ভুক্তির সংখ্যা 2×3.

1.2.3. ম্যাট্রিক্স এর বিয়োগ

ম্যাট্রিন্স হয়, তবে A-B নির্ণয় করতে হলে, A এর প্রত্যেকটি ভুক্তি থেকে B এর প্রত্যেকটি অনুরূপ ভুক্তি বিয়োগ করতে হবে।

1.2.4. ধ্র সংখ্যা দারা ম্যাট্রিক্সের গুণন

একটি ধ্রব সংখ্যা 🔏 ঘারা \Lambda ম্যা**ট্রিশ্বকে গুণ করতে হলে**, \Lambda এর প্রত্যেকটি ভৃত্তিকে 🔏 খারা গুণ করতে ২৬.

1.2.5. ম্যাট্রিক্সের গুণন (Multiplication of matrices)

দুইটি ম্যাট্রিঙ্গ $A \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \,$ থেকে AB কেবল তখনই নির্ণয় করা যায়, যখন A এর কলামের সংখ্যা B এর সারি সংখ্যার সমান হয়। অর্থাৎ, m imes p ম্যাট্রিকস ও p imes n ম্যাট্রিঞ্জের গুণফশ নির্ণয় করা সম্ভব।

নিয়ম : (i) A ম্যাট্রিঙ্গের প্রথম সারির প্রত্যেকটি ভুক্তিকে B ম্যাট্রিঙ্গের প্রথম কলামের অনুরূপ প্রত্যেকটি ভুক্তি দিয়ে গুণ করতে হবে। এ গুণফলগুলির বীজগণিতীয় সমষ্টি AB ম্যাট্রিন্সের প্রথম সারির প্রথম ভুক্তি। অনুরূপভাবে প্রথম ম্যাট্রিক্সের প্রথম সারির ভুক্তিগুলিকে যথাক্রমে দিতীয় ম্যাট্রিক্সের দিতীয় কলামের অনুরূপ ভুক্তিগুলি দারা গুণ করে AB এর প্রথম সারির দিতীয় ভুক্তি বের করতে হবে। এভাবে অগ্রসর হয়ে AB এর প্রথম সারির সব ভুক্তি নির্ণয় করা याग्न ।

(ii) নিয়ম (i) এর প্রক্রিয়ায় AB এর সব সারি নির্ণয় করা যায়।

উদাহরণ।
$$A = \begin{bmatrix} 1 & 0 & -2 \\ 3 & -2 & -1 \end{bmatrix}$$
 এবং $B = \begin{bmatrix} -1 & 3 \\ 4 & 0 \\ 2 & 6 \end{bmatrix}$ হলে, $AB \circ BA$ নির্ণয় কর।

প্রমাণ কর যে, $AB \neq BA$.

সমাধান:
$$AB = \begin{bmatrix} 1 & 0 & -2 \\ 3 & -2 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 3 \\ 4 & 0 \\ 2 & 6 \end{bmatrix} = \begin{bmatrix} -1+0-4 & 3+0-12 \\ -3-8-2 & 9+0-6 \end{bmatrix} = \begin{bmatrix} -5 & -9 \\ -13 & 3 \end{bmatrix}$$

আবার
$$BA = \begin{bmatrix} -1 & 3 \\ 4 & 0 \\ 2 & 6 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -2 \\ 3 & -2 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} -1+9 & 0-6 & 2-3 \\ 4+0 & 0+0 & -8+0 \\ 2+18 & 0-12 & -4-6 \end{bmatrix} = \begin{bmatrix} 8 & -6 & -1 \\ 4 & 0 & -8 \\ 20 & -12 & -10 \end{bmatrix}. \therefore AB \neq BA.$$

মন্তব্য : ম্যাট্রিক্সের ক্ষেত্রে পুণনের বিনিময় বিধি প্রযোজ্য নয়।

প্রশালা 1.1

1.
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 5 & 1 & -4 \end{bmatrix}$$
 এবং $B = \begin{bmatrix} 2 & 3 & 5 \\ 1 & 4 & -2 \end{bmatrix}$ হলে , $2A$ ও $A + B$ এর মান নির্ণয় কর।

2. যদি
$$A = \begin{bmatrix} 2 & -5 & 1 \\ 3 & 0 & -4 \end{bmatrix}$$
 এবং $B = \begin{bmatrix} 1 & -2 & -3 \\ 0 & -1 & 5 \end{bmatrix}$ হয়, তবে, $3A + 4B$ নির্ণয় কর। [ব. 'o8]

3.
$$A = [20 \ 17 \ 11]$$
 এবং $B = [32 \ 57 \ 23]$ হলে, $A + B$ এর মান নির্ণয় কর।

3.
$$A = \begin{bmatrix} 20 & 17 & 11 \end{bmatrix}$$
 এবং $B = \begin{bmatrix} 32 & 57 & 23 \end{bmatrix}$ হলে, $A + B$ এর মান নির্ণয় কর।
4. $A = \begin{bmatrix} 8 & 4 & -1 \\ 0 & 1 & 3 \\ 5 & 4 & 8 \end{bmatrix}$ এবং $B = \begin{bmatrix} -4 & 6 & 2 \\ 1 & 3 & 7 \\ 5 & 4 & 1 \end{bmatrix}$ হলে, $3A - 5B$ নির্ণয় কর।

5.
$$A = \begin{bmatrix} 3 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 5 & 6 \end{bmatrix}$$
 এবং $B = \begin{bmatrix} 1 & 3 & 1 \\ 1 & 4 & 2 \\ 1 & 6 & 9 \end{bmatrix}$ হলে, $A + B$ এর মান নির্ণয় কর।

6.
$$A = \begin{bmatrix} 8 & 4 & -1 \\ 0 & 1 & 3 \\ 5 & 4 & 8 \end{bmatrix}$$
 এবং $B = \begin{bmatrix} -4 & 6 & 2 \\ 1 & 3 & 7 \\ 5 & 4 & 1 \end{bmatrix}$ হলে, $A + B$, $A - B$ এবং AB .

7.
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$$
 এবং $B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ হলে, AB নির্ণয় কর।

8.
$$A = \begin{bmatrix} 2 - 1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix}$$
 এবং $B = \begin{bmatrix} 1 & -2 & -5 \\ 3 & 4 & 0 \end{bmatrix}$ হলে দেখাও যে, $AB \neq BA$. [দি. '১০]

9.
$$A = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$$
 এবং $B = \begin{bmatrix} 4 & 0 \\ 2 & -1 \end{bmatrix}$ হলে, $AB \otimes BA$ নির্ণয় কর।

10.
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ এবং $C = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ হলে, (i) AB এবং BC নির্ণয় কর। [য. '১৩]

11.
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 3 & -1 \\ 5 & 2 & 1 \end{bmatrix}$$
 এবং $B = \begin{bmatrix} -1 & 3 & 2 \\ 4 & -2 & 5 \\ 6 & 1 & -3 \end{bmatrix}$ হলে, BA এর মান নির্ণয় কর।

12.
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ ও $C = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ হলে, AB এবং BC নির্ণয় করে।

13.
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 এবং $B = \begin{bmatrix} 0 & 2 \\ 1 & 2 \\ 0 & -1 \end{bmatrix}$ হয়, তবে দেখাও যে, $AB \neq BA$. [ঢা'০৮; দি. ব. '১২; দি. '১৩)

14.
$$A = \begin{bmatrix} 5 & 2 & 9 \\ -2 & 5 & 3 \end{bmatrix}$$
 এবং $B = \begin{bmatrix} 0 & 7 \\ 1 & 2 \\ 0 & -5 \end{bmatrix}$ হলে, প্রমাণ কর যে, $AB \neq BA$.

15.
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & -2 & -1 \\ 6 & 1 & 6 \\ 5 & 10 & 5 \end{bmatrix}$ and $C = \begin{bmatrix} -1 & -1 & 1 \\ 2 & 2 & -2 \\ -3 & -3 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} -1 & -1 & 1 \\ 2 & 2 & -2 \\ -3 & -3 & 3 \end{bmatrix}$

16. যদি
$$A = \begin{bmatrix} 5 & -7 & 1 \\ -1 & 2 & -3 \\ 4 & -2 & -16 \end{bmatrix}$$
 এবং $B = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 5 & 1 \end{bmatrix}$ হয়, তবে AB এর মান বের কর।

17.
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$
 এবং $B = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$ হলে, দেখাও যে, $AB = BA$. [ঢা. '০৫; চ. '০৮]

18.
$$A = \begin{bmatrix} -1 & 3 & 2 \\ 4 & -2 & 5 \\ 6 & 1 & -3 \end{bmatrix}$$
 এবং $B = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 3 & -1 \\ 5 & 2 & 1 \end{bmatrix}$ হলে, প্রমাণ কর যে, $AB \neq BA$.

19. (a)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 \\ 6 \\ -1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 & -5 & 6 \end{bmatrix}$ হলে, $(AB)C$ নির্ণয় কর।

[দি. ক্. '১২; য. ব. '১০; রা. '১১; রা. ঢা. '১৩]
(b)
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 0 & 1 \end{bmatrix}$ এবং $C = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$ হলে, প্রমাণ কর যে, $(A \ B)C = A(BC)$.

[য. চ. '১১; কু '১০; ব. লি. '১৩]

20.
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 2 \\ 2 & 4 & 3 \end{bmatrix}$$
 এবং $B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 1 \end{bmatrix}$ হলে, প্রমাণ কর যে, $(A+B)^2 \neq A^2 + 2AB + B^2$.

21.
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & 0 \\ -1 & 4 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 2 & 2 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$
 হলে, প্রমাণ কর যে,

(i)
$$AB = AC$$
,

(ii)
$$A(BC) = (AB)C$$
,

(iii)
$$A(B+C)=AB+AC$$
,

(iv)
$$(A + B)C = AC + BC$$
.

22. যদি
$$A = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}$$
 হয়, তবে A^2 এবং A^3 নির্ণয় কর।

23.
$$A = \begin{bmatrix} 3 & 2 \\ 5 & -1 \end{bmatrix}$$
 হলে, $A^2 - 5A + 6.I$ এর মান নির্ণয় কর, যেখানে $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ [চা. '০৭; ব. '১২; কু. '১৩]

24. ম্যাট্রিন্স
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 3 \\ 1 & -1 & 1 \end{bmatrix}$$
 হলে, $A^3 - 2A^2 - I$ এর মান নির্ণয় কর, যেখানে $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. [সি. '০৬]

25.
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 3 \\ 1 & -1 & 1 \end{bmatrix}$$
 হলে, $A^3 - 2A^2 + A - 2.1$ এর মান নির্ণয় কর। [গ. '১২]

26.
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 4 \end{bmatrix}$$
 হলে, $A^2 - 4A - 5.1$ নির্ণয় কর, যেখানে $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. [5. '১৩]

27.
$$A = \begin{bmatrix} 3 & -4 & 2 \\ -2 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}$$
 এবং $B = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \end{bmatrix}$ হলে, দেখাও যে, $AB = BA = I_3$.

নিৰ্ণায়ক:

1.3.1. নির্পায়কের ধারণা

মলে করি, $a_1x+b_1=0$ (i) এবং $a_2x+b_2=0$ (ii), ষেখানে a_1,b_1,a_2,b_2 ধ্বক। (i) সমীকরণ থেকে আমরা পাই $x=-\frac{b_1}{a_1}$.

এখন x এর মান (ii) সমীকরণকে সিম্প করলে আমরা পাই $a_2 \left(-\frac{b_1}{a_1}\right) + b_2 = 0$ অর্থাৎ, $a_1b_2 - a_2b_1 = 0$ (iii)

তাহলে, (iii) হলো ঐ শর্ত যার সাপেন্দে x এর একই মান দারা (i) এবং (ii) সমীকরণ দুইটির উভয়ে সিন্ধ হয়।

$$(iii)$$
 এর বামপক্ষের রাশিকে বলা হয় নির্ণায়ক এবং সাধারণত $egin{bmatrix} a_1 & b_1 \ a_2 & b_2 \end{bmatrix}$ স্থাকারে লেখা হয় !

 $a_1,\,a_2,\,b_1,\,b_2$ কে উপরের নির্ণায়কের ভুক্তি বলা হয়।

ভূক্তিগুলির আনুভূমিক (horizontal) বিন্যাসকে সারি ও উলম্ব বিন্যাসকে সভম্ভ বা, কলাম (column) বলে।

আমরা জানি, একটি ম্যাট্রিকোর সারি ও কলামের সংখ্যা সমান হলে, ঐ ম্যাট্রিকাকে বর্গ ম্যাট্রিকা বলা হয়।

মনে করি, $A = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}$ একটি বর্গ ম্যাট্রস্থ। ভুক্তিগুলি একই রেখে এবং তাদের অবস্থান পরিবর্ডন না করে

একটি নির্ণায়কের সারি (Row) সংখ্যা এবং স্তম্ভ বা কসাম (Column) সংখ্যার উভয়ে 2 হলে, ঐ নির্ণায়ককে বিতীয় জাকারের (Second order) নির্ণায়ক বলে।

নির্ণায়ক হচ্ছে একটি বিশেষ আকারে নিখিত বর্ণ ম্যাট্রিক্সের সংখ্যা রাশি।

আবার নিচের ভিনটি সমীকরণ (x ও y সন্দলিত) বিবেচনা করি ঃ

$$a_1x + b_1y + c_1 = 0$$
 (iii)

$$a_2x + b_2y + c_2 = 0$$
 (iv)

$$a_3x + b_3y + c_3 = 0$$
(v)

(iv) এবং (v) সমীকরণহয় সমাধান করে আমরা পাই

$$\frac{x}{b_2c_3 - b_3c_2} = \frac{-y}{a_2c_3 - a_3c_2} = \frac{1}{a_2b_3 - a_3b_2}$$

$$\therefore x = \frac{b_2c_3 - b_3c_2}{a_2b_3 - a_3b_2}, \quad y = \frac{-(a_2c_3 - a_3c_2)}{a_2b_3 - a_3b_2}$$

তাহলে, x ও y এর জন্য প্রান্ত মান ছারা যদি (iii) সমীকরণটি সিন্ধ হয়, তবে আমরা পাই $a_1(b_2c_3-b_3c_2)-b_1(a_2c_3-a_3c_2)+c_1(a_2b_3-a_3b_2)=0$

বা,
$$a_1\begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1\begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1\begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix} = 0 \dots$$
 (vi)

(vi) এর বামপক্ষকে $egin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$ বা , $(a_1b_2c_3)$ প্রতীক দারা প্রকাশ করা হয় । এটি ভৃতীয় ভাকারের

(Third order) নিৰ্ণায়ক।

মন্তব্য : তৃতীয় আকারের নির্ণায়ককে 3 × 3 বর্গ ম্যাট্রিন্সের নির্ণায়ক বলা হয়।

1.3.2. নির্ণায়কের পদ (terms), মুখ্য কর্ণ (Principal or leading diagonal) এবং মাধ্যমিক কর্ণ (Secondary diagonal)

ভূতীয় মাত্রার নির্ণায়কের ভূক্তি a_1 , b_1 , c_1 ইত্যাদি থেকে প্রাণ্ড a_1 b_2 c_3 , a_1 b_3 c_2 ইত্যাদি গুণফলকে নির্ণায়কের পদ (terms) বলা হয়।

ভূতীয় মাত্রার নির্ণায়ক লক্ষ করলে দেখা যাবে a_1,b_2,c_3 ভূত্তিগুলি একটি কর্ণ এবং a_3,b_2,c_1 ভূত্তিগুলি অপর একটি কর্ণ গঠন করে। প্রথম কর্ণকে মুখ্য কর্ণ এবং এর ভূত্তিগুলির গুণফল, অর্থাৎ $a_1b_2c_3$ কে মুখ্য পদ বলা হয়। বিতীয় কর্ণকে মাধ্যমিক কর্ণ এবং এর ভূত্তিগুলির গুণফল, অর্থাৎ $a_3b_2c_1$ কে মাধ্যমিক পদ বলে।

1.4. নির্ণায়কের বিস্ভৃতি (Expansion of determinant)

তৃতীয় মাত্রার নির্ণায়কের সংজ্ঞা থেকে আমরা পাই

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$$

$$= a_1(b_2c_3 - b_3c_2) - b_1(a_2c_3 - a_3c_2) + c_1(a_2b_3 - a_3b_2)$$

$$= (a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2) - (a_1b_3c_2 + a_2b_1c_3 + a_3b_2c_1).$$

ভৃতীয় মাত্রার নির্ণায়কের বিস্ভৃতিতে আমরা লক্ষ করেছি :

(i) প্রথম সারির ভুক্তি 3টি দ্বারা যথাক্রমে তিনটি দ্বিতীয় মাত্রার নির্ণায়ককে গুণ করা হয়েছে। এ গুণফলগুলির আগে পর্যায়ক্রমে যোগ ও বিয়োগ চিহ্ন বসিয়ে [প্রথম গুণফল থেকে শুরু করে] বীচ্ছগণিতীয় সমষ্টি নেয়া হয়েছে। এ বীচ্ছগণিতীয় সম্ফিই প্রদন্ত নির্ণায়কের মান। (ii) প্রথম সারির ভুক্তি দ্বারা ঐ দ্বিতীয় মাত্রার নির্ণায়ককে গুণ করা হয়েছে যার মধ্যে প্রথম সারির সংশ্লিষ্ট ভুক্তিটি নেই, অর্থাৎ সংশ্লিষ্ট ভুক্তিটি যে সারি ও কলামে অবস্থিত ঐ সারি ও কলাম বাদ দিয়ে যে দ্বিতীয় মাত্রার নির্ণায়ক গঠিত হয়েছে।

উপরের নিয়ম বার বার প্রয়োগ করে যে কোনো পর্যায়ের নির্ণায়কের মান পাওয়া যায়।

মস্ভব্য : কলামের ভৃত্তিগুলি হারা গুণ করেও একই প্রক্রিয়ায় নির্ণায়কের মান বের করা যায়।

ভৃতীয় মাত্রার নির্ণায়কের বিস্তৃতি (সহজ্ঞ পন্ধতি) 🕏

নিয়ম: নির্ণায়কের তিনটি সারি পর পর দিখে এরপর আবার প্রথম ও দিতীয় সারি দেখা হয়েছে। তিনটি ভৃত্তির ভিতর দিয়ে যায় এর্প রেখাগুলি নিচ থেকে উপরে এবং উপর থেকে নিচে টানা হলা (চিত্র অন্যায়ী)। প্রত্যেকটি রেখায় যে ভৃত্তিগুলি আছে তার গুণফল নির্ণয় করা হয়েছে। উপর থেকে নিচে টানা রেখার ক্ষেত্রে গুণফলগুলি (+) চিহ্নযুক্ত এবং নিচ থেকে উপরে টানা রেখার ক্ষেত্রে গুণফলগুলি (-) চিহ্নযুক্ত করতে হবে। যেমন, কোনো গুণফল খণাতাক হলে, তা (-) চিহ্নযুক্ত করলে ধনাতাক হবে। এরপর গুণফলগুলির বীজগণিতীয় সমষ্টি হলো প্রদন্ত নির্ণায়কের মান। যেমনঃ

$$egin{array}{c|cccc} a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 \ \end{array}$$
 এর মান D দারা সূচিত করা হলে,

 $D=(a_1b_2c_3+a_2b_3c_1+a_3b_1c_2)-(a_3b_2c_1+a_1b_3c_2+a_2b_1c_3)$, যখন a_1 , b_1 , c_1 ইত্যাদির প্রত্যেকে ধনাত্মক।

1.5.1. নির্ণায়কের অনুরাশি (Minor) ও সহগুণক(Cofactor)

নির্ণায়কের অনুরাশি (Minor):

মনে করি,
$$D\equiv egin{array}{c|c} a_1 & b_1 \\ a_2 & b_2 \end{array}$$
 , যা একটি **দিতীয় আকারের অর্থাৎ 2 $imes$ 2 আকারের নির্ণায়ক**।

এখন a_1 ভূক্তিটি যে সারি ও কলামে অবস্থিত তা বাদ দিয়ে নির্ণায়কে একটিমাত্র ভুক্তি b_2 থাকে যাকে বলা হয় a_1 এর **অনুরাশি** (Minor)। তদুপ b_1 , a_2 , b_2 এর অনুরাশি যথাক্রমে a_2 , b_1 , a_1 . অর্থাৎ, 2×2 আকারের নির্ণায়কের 2×2 বা, 4টি ভুক্তির জন্য 4টি অনুরাশি পাওয়া যায়।

জাবার যদি
$$D \equiv \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$
 হয়, তাহলে, ভুক্তি a_1 যে রাশি ও কলামে অবস্থিত ঐ রাশি ও কলামের

ভূক্তিগুলি বাদ দিয়ে বাকি ভূক্তিগুলি (ভূক্তির অবস্থান পরিবর্তন না করে) নিয়ে গঠিত নির্ণায়ককে a_1 এর অনুরাশি বলে।

$$egin{array}{c|c} \therefore a_1$$
 এর অনুরাশি $b_2 & c_2 \ b_3 & c_3 \end{array}$

তদুপ,
$$c_1,b_2,a_3$$
 ইত্যাদির অনুরাশি যথাক্রমে $egin{array}{c|c} a_2&b_2\\a_3&b_3 \end{array}$, $egin{array}{c|c} a_1&c_1\\a_3&c_3 \end{array}$, $b_1&c_1\\b_2&c_2 \end{array}$ ইত্যাদি।

এক্ষেত্রেও 3×3 আকারের নির্ণায়ক থেকে 9টি ভুক্তির জন্য 9টি অনুরাশি পাওয়া যায়। তবে, এক্ষেত্রে জনুরাশিপুলি (3-1) imes (3-1) বা, 2 imes 2 আকারের নির্ণায়ক হবে। অর্থাৎ 3 imes 3 আকারের (তৃতীয় মাত্রার) নির্ণায়ক থেকে প্রত্যেক ভূক্তির জন্য কেবল একটি অনুরাশি [দিতীয় মাত্রার নির্ণায়ক] পাই।

একটি $m \times m$ আকারের নির্ণায়কের একটি ভুক্তি a_{ij} যদি i তম সারি ও j তম কলামে অবস্থান করে, তবে i তম সারি ও j তম কলামের সব ভুক্তি বাদ দিয়ে নির্ণায়কের বাকি ভুক্তিগুলি (অবস্থান পরিবর্তন না করে) হারা গঠিত (m-1) imes(m-1) আকারের নির্ণায়ককে (i,j)- তম অনুরাশি (Minor) বলা হয়।

প্রদন্ত নির্ণায়ক,
$$D$$
 এর ভুক্তি a_1, b_1, c_1 এর অনুরাশি যথাক্রমে

1.5.2. নির্ণায়কের সহগুণক (Co-factor) :

নির্ণায়কের কোনো ভুক্তির অনুরাশির আগে যথাযথ চিহ্ন (ধনাজ্মক বা ঋণাজ্মক) বসালে তাকে ঐ ভুক্তির সহপুণক (Co-factor) वना হয়।

যথাযথ চিহ্ন নির্ণয়ের উপায়: মনে করি, যে ভুক্তির সহগুণক নির্ণয় করতে হবে তা প্রদন্ত নির্ণায়কের 2 তম সারি ও 3 তম কলামে অবস্থান করে। এদের যোগফল = 2+3=5 বিধায় সহগুণকের যথায় চিহ্ন হবে $(-1)^5$ চিহ্নযুক্ত।

আবার ভুক্তিটি নির্ণায়কের 2 তম সারি ও 2 তম কলামে অবস্থান করলে এর সহগুণকের চিহ্ন হবে

 $(-1)^2 + 2$ অর্থাৎ, $(-1)^4$ এর চিহ্ন, বা (+) চিহ্নযুক্ত।

কোনো ভুক্তি নির্ণায়কের i-ভম সারি ও j-ভম কলামে থাকলে ঐ ভুক্তির সহগুণকের চিহ্ন (

মস্তব্য : n তম আকারের নির্ণায়কের যে কোনো তুক্তির অনুরাশি ও সহগুণকের উভয়ে (n-1) তম মাত্রার নির্ণায়ক।

সমাধান 🕏 b_3 ভুক্তিটি নির্ণায়কের 3 তম সারি ও 2 তম কলামে আছে। 3 তম সারি ও 2 তম কলামের ভুক্তিগুলি বাদ দিয়ে জামরা পাই

$$\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}$$
. खातात $3 + 2 = 5$, या तिस्काफ़ সংখ্যा।

 $\therefore b_3$ এর অনুরাশি ও সহগুণক যথাক্রমে

$$\left|\begin{array}{ccc} a_1 & c_1 \\ a_2 & c_2 \end{array}\right|; \quad \left|\begin{array}{ccc} a_1 & c_1 \\ a_2 & c_2 \end{array}\right|.$$

1.5.3. তৃতীয় মাত্রার নির্ণায়কের বিস্তৃতিকে সহগুপক দারা প্রকাশ করা :

মনে করি,
$$D\equiv \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 এখানে a_1,b_1,c_1 এর সহগুণক যথাক্রমে $\begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix}$, $-\begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix}$, $\begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$

সাধারণত $a_1,\,b_1,\,c_1$ এর সহগুণককে যথাক্রমে $A_1,\,B_1,\,C_1$ দারা সূচিত করা হয়।

$$\therefore D = a_1 \, A_1 + b_1 \, B_1 + c_1 \, C_1 \ldots$$
 (i) [অনুচ্ছেদ 1.4 থেকে] অনুরূপভাবে , দেখানো যায়

1.6. নির্ণায়কের ধর্মাবলি

(i) যদি একটি তৃতীয় মাত্রার নির্ণায়ককে পুনরায় এমনভাবে দেখা হয় যে এর প্রথম, বিতীয় ও তৃতীয় সারি যথাক্রমে নির্ণাত্ত নির্ণায়কের প্রথম, বিতীয় ও তৃতীয় কলাম হয়, তবে প্রদন্ত নির্ণায়কের মান অপরিবর্তিত থাকে। অর্থাৎ

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

প্রমাণ: মনে করি,
$$D=\left[\begin{array}{c|cccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{array}\right]$$
 এবং $D'=\left[\begin{array}{c|cccc} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{array}\right]$

এখন অনুচ্ছেদ 1.4 অনুযায়ী বিস্তৃত করে,

$$D=a_1(b_2\,c_3-b_3c_2)-b_1(a_2\,c_3-a_3c_2)+c_1(a_2\,b_3-a_3b_2)$$
 $=a_1(b_2\,c_3-b_3c_2)-a_2(b_1c_3-b_3c_1)+a_3(b_1c_2-b_2c_1)=D^{'}$ [পদগুলি পুনর্বিন্যাস করে]
 $\therefore D=D^{'}$ [প্রমাণিত]

মস্তব্য : একটি প্রদন্ত নির্ণায়কের কলামকে নির্ণাত নির্ণায়কের সারিতে পরিণত করলেও উপপাদ্যটি সত্য হবে।

(ii) একটি নির্ণায়কের পাশাপাশি দুইটি সারি বা দুইটি কলাম পরস্পর স্থান বিনিময় করলে যে নতুন নির্ণায়ক পাওয়া যায় ভার মান প্রদন্ত নির্ণায়কের সংখ্যা—সূচক মানের সমান কিছু বিপরীত চিহ্নযুক্ত হবে। অর্থাৎ প্রদন্ত নির্ণায়কের মান D হলে, নতুন নির্ণায়কের মান D হবে।

$$D' = egin{bmatrix} b_1 & a_1 & c_1 \\ b_2 & a_2 & c_2 \\ b_3 & a_3 & c_3 \end{bmatrix}$$
 [পাশাপাশি ১ম ও ২য় কলামের স্থান বিনিময় করে]

এখন
$$D=a_1(b_2c_3-b_3c_2)-b_1$$
 $(a_2c_3-a_3c_2)+c_1(a_2b_3-a_3b_2)$

$$=-\{b_1(a_2c_3-a_3c_2)-a_1(b_2c_3-b_3c_2)+c_1(a_3b_2-a_2b_3)\}$$
 [পদগুলিকে পুনর্বিন্যাস করে]
$$=-D' \quad \therefore D' =-D.$$
 [প্রমাণিড]

মন্তব্য : এ ধর্মের পর্যায়ক্রমিক প্রয়োগের দারা একটি কলাম বা সারিকে এক অবস্থান থেকে অন্য যে কোনো অবস্থানে নেয়া যায়। একবারে এ প্রক্রিয়া কেবল দুইটি সারি বা কলামে প্রয়োগ করতে হবে।

(iii) কোনো নির্ণায়কের দুইটি সারি বা কলাম সদৃশ হলে ঐ নির্ণায়কের মান 0 (পুন্য) হবে। অর্থাৎ,

$$D = \begin{vmatrix} a_1 & a_1 & b_1 \\ a_2 & a_2 & b_2 \\ a_3 & a_3 & b_3 \end{vmatrix} = 0$$
. [এখানে দুইটি কলাম সদৃশ]

প্রমাণ: মনে করি, প্রদত্ত নির্ণায়কের পাশাপাশি ১ম ও ২য় কলামের স্থান বিনিময় করা হলো। তাহলে,

$$\left| \begin{array}{cccc} a_1 & a_1 & b_1 \\ a_2 & a_2 & b_2 \\ a_3 & a_3 & b_3 \end{array} \right| = -D \ [(ii) এ বর্ণিত গুণাবলী অনুসারে]$$

দেখা যাচেছ নির্ণায়ক দুইটি একই।

$$\therefore D = -D$$
, বা $2D = 0$, অর্থাৎ $D = 0$. [প্রমাণিত]

(iv) কোনো নির্ণায়কের যে কোনো সারি বা কলামের প্রত্যেকটি ভুক্তিকে একই সংখ্যা দারা গুণ করলে ঐ নির্ণায়কের মানকেও একই সংখ্যা দারা গুণ করতে হবে। অর্থাৎ,

$$\begin{vmatrix} ma_1 & mb_1 & mc_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = m \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}.$$

প্রমাণ : মনে করি, D ও $D^{'}$ যথাক্রমে ডানপক্ষ ও বামপক্ষের নির্ণায়কের মান। সহগুণকের সংজ্ঞা থেকে দেখানো যায় বামদিকের নির্ণায়কের ভুক্তি ma_1, mb_1, mc_1 এর সহগুণক যথাক্রমে ডানপক্ষের নির্ণায়কের ভুক্তি a_1 . b_1, c_1 এর সহগুণক।

এখন $D'=ma_1A_1+mb_1B_1+mc_1C_1$ এবং $D=a_1A_1+b_1B_1+c_1C_1$ [অনুচ্ছেদ 1.5.3 থেকে] $\therefore D'=m(a_1A_1+b_1B_1+c_1C_1)=mD.$ (প্রমাণিত)

(v) কোনো নির্ণায়কের যে কোনো দুইটি সারি বা কলামের অনুরূপ ভূক্তিগুলি পরস্পরের সমানুপাতিক হলে, ঐ নির্ণায়কের মান 0 (শূন্য) হবে।

জ্পাৎ,
$$\begin{vmatrix} ma_2 & mb_2 & mc_2 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$
; যেখানে m ধ্রক।

শ্রমাণ: মনে করি, $\begin{vmatrix} ma_2 & mb_2 & mc_2 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = D$.

$$\therefore D = m \begin{vmatrix} a_2 & b_2 & c_2 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = M \times 0 \quad \{ ধর্ম (iii) থেকে \}$$

= (), (প্রমাণিত)

(vi) কোনো নির্ণায়কের একটি সারি বা কলামের ভুক্তিগুলির প্রত্যেকটি দুইটি ভুক্তির সমর্ফির্পে গঠিত হলে ঐ নির্ণায়ককে দুইটি নির্ণায়কের সমন্টিরূপে প্রকাশ করা যায়। অর্থাৎ,

যথাক্রমে D_1,D_2,D_3 দারা সূচিত করা হলো।

তাহলে, প্রত্যেকটি নির্ণায়কের প্রথম কলামের ভুক্তিগুলির সহগুণকগুলি একই হবে। এখন প্রথম কলামের সহগুণকগুলিকে যথাক্রমে A_1, A_2, A_3 দারা সৃচিত করলে

$$\begin{split} D_1 &= (a_1 + \alpha_1)A_1 + (a_2 + \alpha_2)A_2 + (a_3 + \alpha_3)A_3 \\ D_2 &= a_1A_1 + a_2A_2 + a_3A_3, \quad D_3 = \alpha_1A_1 + \alpha_2A_2 + \alpha_3A_3 \\ \therefore D_1 &= (a_1A_1 + a_2A_2 + a_3A_3) + (\alpha_1A_1 + \alpha_2A_2 + \alpha_3A_3) \\ &= D_2 + D_3. \quad \text{(প্রমাণিড)} \end{split}$$

(vii) কোনো নির্ণায়কের একটি সারি বা কলামের ভুক্তিগুলিকে একই সংখ্যা দারা গুণ করে ঐ নির্ণায়কের অপর একটি সারি বা কলামের অনুরূপ ভুক্তিগুলির সাথে যোগ বা বিয়োগ করলে প্রদন্ত নির্ণায়কের মানের পরিবর্তন হয় না। অর্থাৎ

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 \pm mb_1 & b_1 & c_1 \\ a_2 \pm mb_2 & b_2 & c_2 \\ a_3 \pm mb_3 & b_3 & c_3 \end{vmatrix}$$

$$= \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 \pm mb_2 & b_2 & c_2 \\ a_3 \pm mb_3 & b_3 & c_3 \end{vmatrix} + \begin{vmatrix} \pm mb_1 & b_1 & c_1 \\ \pm mb_2 & b_2 & c_2 \\ \pm mb_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} + \begin{vmatrix} \pm mb_1 & b_1 & c_1 \\ \pm mb_2 & b_2 & c_2 \\ \pm mb_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ b_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ b_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

মন্তব্য : প্রসন্ত নির্ণায়কের সারিগুলিকে $r_1,\,r_2,\,r_3$ দারা স্চিত করে উপরের ধর্ম প্রয়োগ করলে তাদেরকে যথাক্রমে $r_1',\,r_2',\,r_3'$ লেখা হয়। কলামের ক্ষেত্রে $c_1',\,c_2',\,c_3'$ ইত্যাদি ব্যবহার করা হয়।

1.7. ব্যতিক্রমী (Singular) ও অব্যতিক্রমী ম্যাট্রিক্স

মনে করি, $A=[a_{ij}]_{m\times m}$ একটি বর্গ ম্যাট্রিক্স। এখন বর্গ ম্যাট্রিক্সের ভুক্তিগুলির ক্রম ও অবস্থান পরিবর্তন না করে যে নির্ণায়ক গঠন করা যায়, তা $|a_{ij}|_{m\times m}$

चर्बा९,
$$A = |a_{ij}|_{m \times m}$$

এখন $\mid A\mid =0$ হলে, $\mid a_{ij}\mid _{m imes m}$ ম্যাট্রিন্সকে বলা হয় ব্যতিক্রমী।

আবার, $\mid A\mid \neq 0$ হলে, $\mid a_{ij}\mid_{m\times m}$ ম্যাট্রন্সকে বলা হয় অব্যতিক্রমী।

যেমন :
$$A = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix} 2 \times 2$$
 একটি ব্যতিক্রমী বর্গ ম্যাট্রিন্স, কারণ $A = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix} = 12 - 12 = 0$

আবার, $A=\begin{bmatrix} 5 & 4 \\ 2 & 3 \end{bmatrix}$ 2×2 একটি অব্যতিক্রমী বর্গ ম্যাট্রিক্স, কারণ A=15-8=7; অর্থাৎ, $A\neq 0$.

1.8.1. বর্গ ম্যাট্রিক্সের বিপরীত ম্যাট্রিক্স

মনে করি, $A=[a_{ij}]_{m\times m}$ একটি বর্গ ম্যাট্রিঙ্গ, যেখানে $\mid A\mid \neq 0$.

এখন B যদি এমন একটি বর্গ ম্যাট্রিক্স হয় যেন AB = BA = I, যেখানে I একটি ইউনিট ম্যাট্রিক্স, তাহলে B কে বলা হয় A ম্যাট্রিক্সের বিপরীত ম্যাট্রিক্স। এটিকে A^{-1} দারা সূচিত করা হয়।

∴ $AA^{-1} = I$, যেখানে I একটি ইউনিট ম্যাট্রিক্স।

1.8.2. বর্গ ম্যাট্রিক্সের বিপরীত ম্যাট্রিক্স নির্ণয় করা

সহগুণক প্রক্রিয়ায় বিপরীত ম্যাট্রিক্স নির্ণয় করতে হলে "Transpose ম্যাট্রিক্স এবং Adjoint ম্যাট্রিক্স সম্পর্কে ধারনা থাকতে হবে।

Transpose ম্যাট্রিক্স : কোনো ম্যাট্রিক্স A এর সারিগুলিকে কলামে এবং কলামগুলিকে সারিতে পরিবর্তন করলে যে ম্যাট্রিক্স পাওয়া যায় তাকে A ম্যাট্রিক্সের Transpose ম্যাট্রিক্স বলা হয়। A ম্যাট্রিক্সের Transpose

ম্যাট্রিঙ্গকে
$$A^T$$
 ছারা সৃচিত করা হয়। যেমন : $A=\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ এর $A^T=\begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix}$

Adjoint ম্যাট্রিক্স : কোনো বর্গ ম্যাট্রিক্স A এর নির্ণায়ক | A | এর সহগুণকগুলি দ্বারা গঠিত ম্যাট্রিক্সের (ভূক্তিগুলির ক্রম অনুসারে) Transpose ম্যাট্রিক্সকে প্রদন্ত ম্যাট্রিক্স A এর Adjoint Matrix বলা হয় এবং এটিকে Adj A দ্বারা সূচিত করা হয়।

বিপরীত ম্যাট্রিক্স: যেকোনো অব্যতিক্রমী ম্যাট্রিক্স A এর ক্ষেত্রে প্রমাণ করা যায় যে,

$$\Rightarrow$$
 $A.(Adj A) = |A|.AA^{-1}$ [বিপরীত ম্যাট্রিন্সের সংজ্ঞা থেকে]

$$\therefore A^{-1} = \frac{\text{Adj } A}{|A|} [|A| \neq 0]$$

উদাহরণ 1. একটি অব্যতিক্রমী ম্যাট্রন্স $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}_{2 \times 2}$ এর বিপরীত ম্যাট্রন্স নির্ণয় কর।

সমাধান : প্রদন্ত ম্যাট্রিন্স থেকে
$$|A|=ad-bc$$
, $A_{11}=d$, $A_{12}=-c$, $A_{21}=-b$, $A_{22}=a$

षामता षानि,
$$A^{-1} = \frac{\operatorname{Adj} A}{|A|}$$

$$\therefore A^{-1} = \frac{\begin{bmatrix} d & -c \\ -b & a \end{bmatrix}^{\mathsf{T}}}{|A|} = \frac{\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}}{ad - bc}$$

লক্ষ করি : A ম্যাটিজের A^{-1} নির্ণয় করতে b ও c এর অবস্থান ঠিক রেখে কেবল চিহ্ন বিপরীত করে এবং a ও d এর অবস্থান বিনিমর করে প্রাশ্ত ম্যাট্রিস্ককে (ad – bc) দারা ভাগ করা হয়। এটি পুধুমাত্র 2×2 আকারের ম্যাট্রিজের কেত্রে প্রযোজ্য।

উদাহরণ 2. যদি
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$
 হয়, তবে A^{-1} নির্ণয় কর। সমাধান : $|A| = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix} = -1(1-9) + 2(1-6) = 8 - 10 = -2$

 $\parallel A \parallel$ এর সহগুণকগুলি নিমুরূপ $_{\odot}$

$$|A|$$
 এর সহগুণকগুলি নিমর্প : $A_{11} = 2 - 3 = -1$, $A_{12} = -(1 - 9) = 8$, $A_{13} = 1 - 6 = -5$ $A_{21} = -(1 - 2) = 1$, $A_{22} = 0 - 6 = -6$, $A_{23} = -(0 - 3) = 3$ $A_{31} = 3 - 4 = -1$, $A_{32} = -(0 - 2) = 2$, $A_{33} = 0 - 1 = -1$ $|A|$ এর সহগুণক ম্যাট্রিস্প $= \begin{bmatrix} -1 & 8 - 5 \\ 1 - 6 & 3 \\ -1 & 2 - 1 \end{bmatrix}$ $\therefore A^{-1} = \frac{Adj}{|A|} = -\frac{1}{2} \begin{bmatrix} -1 & 8 - 5 \\ 1 - 6 & 3 \\ -1 & 2 - 1 \end{bmatrix}^{T} = -\frac{1}{2} \begin{bmatrix} -1 & 1 - 1 \\ 8 - 6 & 2 \\ -5 & 3 & -1 \end{bmatrix}$.

1.8.3. নির্ণায়কের সাহায্যে একঘাত সমীকরণ জ্বোটের সমাধান

নির্ণায়কের সাহায্যে যে কোনো সংখ্যক চলকবিশিক্ট একঘাত সমীকরণ জোটের সমাধান করা যায়। আমরা এখানে ঘিচলকবিশিষ্ট একঘাত সমীকরণ জোটের সমাধান করার প্রক্রিয়া বিশ্লেষণ করব।

মনে করি, প্রদন্ত সমীকরণ জোটঃ

মনে করি, প্রদন্ত সমীকরণ জোটঃ
$$a_1x + b_1y = c_1 \dots...(i)$$

$$a_2x + b_2y = c_2 \dots...(ii)$$
 $x \in y$ এর সহগগৃলি দ্বারা গঠিত নির্ণায়ককে Δ দ্বারা সূচিত করা হলো। অর্থাৎ, $\Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$. জাবার $\Delta x \in \Delta y$ দ্বারা যথাক্রমে $\begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}$ এবং $\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}$ নির্ণায়কদ্বয়কে সূচিত করি। . . . $\Delta x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} = \begin{vmatrix} a_1x + b_1y & b_1 \\ a_2x + b_2y & b_2 \end{vmatrix}$ $= \begin{vmatrix} a_1x & b_1 \\ a_2x & b_2 \end{vmatrix} + \begin{vmatrix} b_1y & b_1 \\ b_2y & b_2 \end{vmatrix}$

 $= x \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} + y \begin{vmatrix} b_1 & b_1 \\ b_2 & b_2 \end{vmatrix} = x. \Delta [\because ছিতীয় নিশায়কের মান 0]$

$$\therefore x = \frac{\Delta x}{\Delta}$$
 বা, $\frac{x}{\Delta x} = \frac{1}{\Delta}$ অনুরূপভাবে, $y = \frac{\Delta y}{\Delta}$ বা , $\frac{y}{\Delta y} = \frac{1}{\Delta}$ সূতরাং $\frac{x}{\Delta x} = \frac{y}{\Delta y} = \frac{1}{\Delta}$... (iii)

 $\therefore x = \frac{\Delta x}{\Delta}$ এবং $y = \frac{\Delta y}{\Delta}$ অর্থাৎ, (iii) থেকে x ও y এর মান নির্ণয় করা যায়।

মন্তব্য : Δx নির্ণায়কটি গঠন করতে Δ নির্ণায়কের ভুক্তিগুলি (x এর সহগ) এর পরিবর্তে ক্রম অনুসারে ধ্বকগুলি বসাতে হবে। আবার Δy গঠন করার সময় Δ নির্ণায়কের ভুক্তিগুলি (y এর সহগ) এর পরিবর্তে ক্রম অনুসারে ধ্বকগুলি বসাতে হয়। $\Delta \neq 0$ হলেই সমীকরণ জোটের সমাধান নির্ণয় করা যায়। $\Delta = 0$ হলে, সমীকরণ জোটের কোনো অনন্য সমাধান পাওয়া যায় না।

1.8.4. তিনটি চলকবিশিক্ট সমীকরণ জ্যোটের সমাধান

প্রদন্ত সমীকরণ হলো ঃ

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$
 $a_3x + b_3y + c_3z = d_3$

অনুচ্ছেদ 5.13 এ উল্লেখিত প্রক্রিয়ায় Δ , Δx , Δy , Δz হবে যথাক্রমে

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}, \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}, \begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix}, \begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix}$$

এবং $\frac{x}{\Delta x} = \frac{y}{\Delta y} = \frac{z}{\Delta z} = \frac{1}{\Delta}$, যা থেকে x, y, z এর মান নির্ণয় করা যায়।

মন্তব্য : সমীকরণ জোটের সমাধানের জন্য উপরে বর্ণিত প্রক্রিয়াকে "ক্রেমারের প্রক্রিয়া" (Cramer's Rule) বলা হয়।

সমস্যা ও সমাধান :

উদাহরণ 1. মান নির্ণয় কর :

$$\begin{array}{c|cccc}
a+b & a & b \\
a & a+c & c \\
b & c & b+c
\end{array}$$

সমাধান : প্রদন্ত নির্ণায়ক =
$$\begin{vmatrix} a+b-a-b & a & b \\ a-a-c-c & a+c & c \\ b-c-b-c & c & b+c \end{vmatrix} = \begin{vmatrix} 0 & a & b \\ -2c & a+c & c \\ -2c & c & b+c \end{vmatrix} = (-2c) \begin{vmatrix} 0 & a & b \\ 1 & a+c & c \\ 1 & c & b+c \end{vmatrix}$$

$$= (-2c) \begin{vmatrix} 0 & a & b \\ 1 & a+c & c \\ 1 & c & b+c \end{vmatrix}$$

$$= (-2c) \begin{vmatrix} 0 & a & b \\ 0 & a & -b \\ 1 & c & b+c \end{vmatrix}$$

$$= -2c \begin{vmatrix} a & b \\ a & -b \end{vmatrix} = -2c (-ab-ab) = 4abc.$$

উদাহরণ 2. প্রমাণ কর যে

$$\begin{vmatrix} bc & ca & ab \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} = (a-b)(b-c)(c-a)(ab+bc+ca).$$

সমাধান:
$$\begin{vmatrix} bc & ca & ab \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = \frac{1}{abc} \begin{vmatrix} abc & abc & abc \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix}$$

[১ম, ২য়, ৩য় কলামকে যথাক্রমে a, b, c দারা গুণ করা হয়েছে। এতে অনুচ্ছেদ 1.6 (iv) অনুযায়ী নির্ণায়কটি abc দারা গুণ করা হলো। ফলে মান একই রাখতে নির্ণায়ককে abc দারা ভাগ করতে হয়েছে]

মন্তব্য: 1.6 অনুদ্দেদের (vii) এর ধর্ম একই সঞ্চো একাধিক সারি বা কলামে ব্যবহার করা যায়। তবে কমপক্ষে একটি কলাম বা সারি অপরিবর্তিত রাখতে হবে।

উদাহরণ 3. $D=\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$ এবং A_1 , B_1 , C_1 যথাক্রমে a_1 , b_1 , c_1 এর সহগুণক হলে, প্রমাণ

 $a_2A_1 + b_2B_1 + c_2C_1 = 0.$ সমাধান: সহগুণকের সংজ্ঞানুসারে,

$$A_1 = \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} = b_2 c_3 - b_3 c_2, \quad B_1 = -(a_2 c_3 - a_3 c_2), \quad C_1 = a_2 b_3 - a_3 b_2$$

$$\begin{array}{lll} \therefore \ a_2A_1 \ + \ b_2B_1 \ + \ c_2C_1 = a_2(b_2c_3-b_3c_2) - b_2(a_2c_3-a_3c_2) + c_2(a_2b_3-a_3b_2) \\ = a_2b_2c_3 - a_2b_3c_2 - a_2b_2c_3 + a_3b_2c_2 + a_2b_3c_2 - a_3b_2c_2 \\ = \ 0. \end{array}$$

উদাহরণ 4. নির্ণায়কের সাহায্যে সমাধান কর
$$3x + 2y - 11 = 0$$
 $3x + 4y - 1 = 0$.

সমাধান: প্রদন্ত সমীকরণ হলো 8.5x + 2y = 11

$$\Delta = \begin{vmatrix} 5 & 2 \\ 3 & 4 \end{vmatrix} = 20 - 6 = 14$$

$$\Delta x = \begin{vmatrix} 11 & 2 \\ 1 & 4 \end{vmatrix} = 42, \ \Delta y = \begin{vmatrix} 5 & 11 \\ 3 & 1 \end{vmatrix} = -28$$

$$\therefore x = \frac{\Delta x}{\Lambda} = \frac{42}{14} = 3, \ y = \frac{\Delta y}{\Lambda} = \frac{-28}{14} = -2. \qquad \therefore (x, y) = (3, -2)$$

প্রশুমালা 1.2

2. (i)
$$\begin{vmatrix} a+12b & a+13b & a+14b \\ a+14b & a+15b & a+16b \\ a+16b & a+17b & a+18b \end{vmatrix}$$
 (ii) $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 5+p & 1 \\ 1 & 1 & 5+q \end{vmatrix}$

(iii)
$$egin{array}{c|cccc} 1 & -\omega & \omega^2 & 1 \ -\omega & \omega^2 & 1 & ; & $\omega^2 & 1 & -\omega & \end{array}$; যেখানে ω এককের যে–কোন একটি জটিল ঘনমূল।$$

প্রমাণ কর : (প্রশ্ন 3 – 21)

4.
$$\begin{vmatrix} 1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b \end{vmatrix} = 0$$

6. (a)
$$\begin{vmatrix} 1+x_1 & x_2 & x_3 \\ x_1 & 1+x_2 & x_3 \\ x_1 & x_2 & 1+x_3 \end{vmatrix} = 1+x_1+x_2+x_3.$$
(b) $\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$

(b)
$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$$
 [5. '\o]

7. (a)
$$\begin{vmatrix} x^2 & a & a \\ 1 & a & a^2 \\ 1 & a^2 & a^4 \end{vmatrix} = a^2(a-1)^2(a^2-1).$$
 (b) $\begin{vmatrix} x^2 & xy & y^2 \\ 2x & x+y & 2y \\ 1 & 1 & 1 \end{vmatrix} = (x-y)^3.$

8.
$$\begin{vmatrix} a+x & b+x & c+x \\ a+y & b+y & c+y \\ a^2 & b^2 & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)(x-y)$$

8.
$$\begin{vmatrix} a+x & b+x & c+x \\ a+y & b+y & c+y \\ a^2 & b^2 & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)(x-y).$$
9. $\begin{vmatrix} a & b & ax+by \\ b & c & bx+cy \\ ax+by & bx+cy & 0 \end{vmatrix} = (ax^2 + 2bxy + cy^2)(b^2 - ac).$ [5. '90; 4. 51. '90; 4. 61. '91. 191. '92]

10.
$$\begin{vmatrix} b^2 + c^2 & ab & ca \\ ab & c^2 + a^2 & bc \\ ca & bc & a^2 + b^2 \end{vmatrix} = 4a^2b^2c^2.$$
 [7. '>\?

11.
$$\begin{vmatrix} b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$$

$$\begin{vmatrix} x^2 & yz & zx+x^3 \\ x^2+xy & y^2 & zx \\ xy & y^2+yz & z^2 \end{vmatrix} = 4x^2y^2z^2.$$
[11. '\omega; \text{7. '\omega}; \text{

13.
$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3.$$
 [য. '১২; ঢা. কু. '১৩]

14.
$$\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} = abc(a-b)(b-c)(c-a).$$
 [73. '04; 7. '32]

15.
$$\begin{vmatrix} -2a & a+b & a+c \\ b+a & -2b & b+c \\ c+a & c+b & -2c \end{vmatrix} = 4(a+b)(b+c)(c+a).$$
 [4. '>>]

16.
$$\begin{vmatrix} (b+c)^2 & a^2 & 1 \\ (c+a)^2 & b^2 & 1 \\ (a+b)^2 & c^2 & 1 \end{vmatrix} = -2(a+b+c)(b-c)(c-a)(a-b).$$
 [5. '0\begin{array}{c} [5. '0\begin{arra

17.
$$\begin{vmatrix} -a^2 & ab & ac \\ ab & -b^2 & bc \\ ac & bc & -c^2 \end{vmatrix} = 4a^2b^2c^2.$$
 [সি. '০১; রা. '০৮]

18.
$$\begin{vmatrix} 1 & x-a & y-b \\ 1 & x_1-a & y_1-b \\ 1 & x_2-a & y_2-b \end{vmatrix} = \begin{vmatrix} 1 & x & y \\ 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \end{vmatrix}$$

19.
$$\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x^{3-1} & y^{3-1} & z^{3-1} \end{vmatrix} = (xyz - 1)(x - y)(y - z)(z - x). \quad [vi. v. 2]$$

20.
$$\begin{vmatrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \end{vmatrix} = 2(a+b+c)^3.$$
 [Fig. '03, '33]

21.
$$\begin{vmatrix} (b+c)^2 & a^2 & a^2 \\ b^2 & (c+a)^2 & b^2 \\ c^2 & c^2 & (a+b)^2 \end{vmatrix} = 2abc(a+b+c)^3.$$

22.
$$\begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix} = (1+a^2+b^2)^3$$
. [রা. '০১; সি. '১০, '১৩]

23.
$$\begin{vmatrix} q+r & p-q & p \\ r+p & q-r & q \\ p+q & r-p & r \end{vmatrix} = 3 pqr-p^3-q^3-r^3$$
.

উৎপাদকে বিশ্লেষণ কর ঃ

24. (a)
$$\begin{vmatrix} 2a & 2b & a+b & (b) & a & a & a \\ b+c & a-c & a & b+c & c+a & a+b \\ b-c & a+c & b & b^2+c^2 & c^2+a^2 & a^2+b^2 \end{vmatrix}$$
.

25. x, y, z এর যে কোনো দুইটি সমান না হলে এবং

$$\begin{vmatrix} x & x^2 & 1+x^3 \\ y & y^2 & 1+y^3 \\ z & z^2 & 1+z^3 \end{vmatrix} = 0$$
 হলে, প্রমাণ কর যে, $1+xyz=0$.

26. k এর মান কত হলে, $\begin{bmatrix} 5+k & -2 \\ -4 & -8 \end{bmatrix}$ একটি ব্যতিক্রমী বর্গ ম্যাট্রিন্স হবে?

27. প্রমাণ কর যে,
$$\begin{bmatrix} 0 & b-a & c-a \\ a-b & 0 & c-b \\ a-c & b-c & 0 \end{bmatrix}$$
 একটি ব্যতিক্রমী বর্গ ম্যাট্রিঙ্গ।

28. যদি
$$A = \begin{bmatrix} -1 & -5 \\ -2 & 3 \end{bmatrix}$$
 হয়, তবে প্রমাণ কর যে, $A^{-1} = \begin{bmatrix} \frac{-3}{13} & \frac{-5}{13} \\ \frac{-2}{13} & \frac{1}{13} \end{bmatrix}$.

29.
$$A = \begin{bmatrix} 2 & 5 \\ 3 & 10 \end{bmatrix}$$
 হলৈ, প্রমাণ কর যে, $AA^{-1} = I_2$

30. নিচের বর্গ ম্যাট্রিঙ্গগুলির বিপরীত ম্যাট্রঙ্গ নির্ণয় কর:

(i)
$$\begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 1 & 4 & 0 \\ -1 & 2 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

(iii)
$$\begin{vmatrix} 3+x & 4 & 2 \\ 4 & 2+x & 3 \\ 2 & 3 & 4+x \end{vmatrix} = 0$$

32. A_1 , B_1 , C_1 যথাক্রমে a_1 , b_1 , c_1 এর সহগুণক হলে,

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 থেকে প্রমাণ কর যে, $a_3A_1 + b_3B_1 + c_3C_1 = 0$.

33. সম্প্রসারণ না করে প্রমাণ কর যে,

34. নির্ণায়কের সাহায্যে সমাধান কর:

(i)
$$4x + 3y - 2 = 0$$

 $x + 2y - 3 = 0$; (ii) $2x + 3y = 4$
 $x - y = 7$.

(ii)
$$2x + 3y = 4$$

 $x - y = 7$

(iii)
$$2x + y - z = -4$$

 $x - y + 3z = 3$
 $x + 2y - 4z = 1$;

(iv)
$$2x + y + z = 0$$

 $x + y - 3z = 0$
 $3x + 2y - 3z = 1$:

(iv)
$$2x + y + z = 0$$
 (v) $2x - 3y + 4z = 3$ (vi) $2x + y - 2z = 10$ $x + y - 3z = 0$ $x + 4y - 5z = 0$ $3x + 2y + 2z = 1$ $5x - y + z = 5$. $5x + 4y + 3z = 4$

(vi)
$$2x + y - 2z = 10$$

 $3x + 2y + 2z = 1$
 $5x + 4y + 3z = 4$

প্রশুমালা 1.3

সৃজনশীল প্রশ্ন

- 1. দেওয়া আছে, $A = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}$
 - (a) A² এর মান নির্ণয় কর।
 - (b) $A^2 + 2A 11I$ এর মান নির্ণয় কর, যেখানে $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

[新. '2く]

- (c) A^2 . A এবং A. A^2 এর সাহায্যে A^3 এর মান নির্ণয় কর। মান দুইটি কী পরস্পর সমান ? যদি না হয়, তবে কেন?
- (a) ম্যাট্রিন্সের Adjoint বলতে কি বোঝায় ? 2.
 - (b) A এর (1,1) তম, (1,2) তম এবং (1,3) তম সহগুণক যথাক্রমে A_1,A_2,A_3 হলে, সহগুণকগুলির মান নির্ণয় কর।
 - (c) দেওয়া আছে, $A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 5 \\ 6 & 8 & 0 \end{bmatrix}$. |A| এর মান নির্ণয় কর।
- (a) বর্গ ম্যাট্রিন্সের বিপরীত ম্যাট্রিন্স বলতে কি বোঝায় ? 3.
 - (b) দেওয়া আছে, $A = \begin{bmatrix} 1 & 5 & 0 \\ 3 & 0 & 4 \\ 2 & 1 & 0 \end{bmatrix}$, |A| এর মান নির্ণয় কর।
 - (c) A^{-1} নির্ণয় করে দেখাও যে, $AA^{-1} = I_3$.

বহুনির্বাচনী প্রশ্ন :

4. যদি
$$A = \begin{bmatrix} 2 & 3 & 4 \\ -2 & 5 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 5 & 0 & 1 \\ 3 & 2 & -5 \end{bmatrix}$ হলে, $A + B$ এর সমান —

(a)
$$\begin{bmatrix} 7 & 3 & 8 \\ -2 & 0 & 3 \end{bmatrix}$$

$$(b) \begin{bmatrix} 7 & 3 & 4 \\ -2 & 3 & 2 \end{bmatrix}$$

$$(c) \begin{bmatrix} 7 & 3 & 5 \\ 1 & 7 & -2 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 7 & 3 & 8 \\ -2 & 0 & 3 \end{bmatrix}$$
 (b) $\begin{bmatrix} 7 & 3 & 4 \\ -2 & 3 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} 7 & 3 & 5 \\ 1 & 7 & -2 \end{bmatrix}$ (d) $\begin{bmatrix} 7 & 0 & -2 \\ 1 & 4 & 2 \end{bmatrix}$

5. যদি
$$A=\begin{bmatrix}1&0\\0&5\end{bmatrix}$$
 , $B=\begin{bmatrix}5&0\\0&1\end{bmatrix}$ হয় , তবে AB হলো :

$$(a) \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$
 (b) $\begin{bmatrix} 5 & 0 \\ 10 & 5 \end{bmatrix}$ (c) $\begin{bmatrix} 10 & 0 \\ 0 & 5 \end{bmatrix}$

$$(c) \begin{bmatrix} 10 & 0 \\ 0 & 5 \end{bmatrix}$$

$$(d) \begin{bmatrix} 0 & 5 \\ 5 & 10 \end{bmatrix}$$

6. যদি
$$A = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 0 \\ 5 & 1 \end{bmatrix}$ হয়, তবে AB এর সমান —

(a)
$$\begin{bmatrix} 6 & 0 \\ -15 & -3 \end{bmatrix}$$
 (b) $\begin{bmatrix} 3 & -1 \\ 2 & -5 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 2 \\ 0 & -15 \end{bmatrix}$

$$(b) \begin{bmatrix} 3 & -1 \\ 2 & -5 \end{bmatrix}$$

$$(c) \begin{bmatrix} 1 & 2 \\ 0 & -15 \end{bmatrix}$$

$$(d) \begin{bmatrix} 1 & -2 \\ 0 & 15 \end{bmatrix}$$

7.
$$\begin{vmatrix} a-5 & 3 \\ -3 & a+5 \end{vmatrix}$$
 as $\frac{3}{a+5}$ as $\frac{3}{a+5}$ as $\frac{3}{a+5}$ as $\frac{3}{a+5}$

(a)
$$4, -4$$

(b)
$$\sqrt{37}$$
, $-\sqrt{37}$

$$(c)$$
 5, 3

(a) 4, -4 (b)
$$\sqrt{37}$$
, $-\sqrt{37}$
(c) 5, 3 (d) 0, 4.

8. $\begin{vmatrix} 1 & 2 & 3 \\ -4 & 5 & 8 \\ 2 & 4 & 6 \end{vmatrix}$ এর মান —

9. $\begin{vmatrix} (a) & -5 & (b) & 10 \\ 1 & 1 & x \\ 2 & 2 & 2 \\ 3 & 4 & 5 \end{vmatrix} = 0$, যখন x এর সমান —

(a) 2 (b) 5

$$(c)$$
 1

(c) 0

(d) 8.

(a)
$$abc(a + b)(b + c)(c + a)$$

(b)
$$(a + b)(b + c)(c + a)$$

(d) abc .

11.
$$A=\begin{bmatrix} -3 & 2 \\ 5 & 1 \end{bmatrix}$$
, $B=\begin{bmatrix} -5 & 0 \\ 2 & 3 \end{bmatrix}$, নিচে A ও B এর গুণফল দেওয়া আছে। কোনটি সঠিক ——

(a)
$$\begin{bmatrix} -19 & -6 \\ 23 & -3 \end{bmatrix}$$
 (b) $\begin{bmatrix} 19 & 6 \\ -23 & 3 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

$$(b) \begin{bmatrix} 19 & 6 \\ -23 & 3 \end{bmatrix}$$

$$(c) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$(d) \begin{bmatrix} 15 & -10 \\ 9 & 7 \end{bmatrix}$$

12.
$$\begin{bmatrix} x+4&6\\4&3 \end{bmatrix}$$
 একটি ব্যতিক্রমী ম্যাট্রিন্স হবে, যদি x এর মান —

$$(b)$$
 0

$$(d) - 4$$

13.
$$A = \begin{bmatrix} 8 & 4 \\ 3 & 2 \end{bmatrix}$$
 হলে, Adj. A হবে —

(a)
$$\begin{bmatrix} 2 & -3 \\ -4 & 8 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2 & -4 \\ -3 & 8 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 3 \\ 4 & 8 \end{bmatrix}$

(b)
$$\begin{bmatrix} 2 & -4 \\ -3 & 8 \end{bmatrix}$$

$$(c) \begin{bmatrix} 2 & 3 \\ 4 & 8 \end{bmatrix}$$

$$(d) \begin{bmatrix} 2 & 4 \\ 3 & 8 \end{bmatrix}$$

14.
$$A = \begin{bmatrix} 4 & 5 \\ 7 & 9 \end{bmatrix}$$
 হলে, A^{-1} হবে —

(a)
$$\begin{bmatrix} -4 & 7 \\ 5 & -9 \end{bmatrix}$$

(a)
$$\begin{bmatrix} -4 & 7 \\ 5 & -9 \end{bmatrix}$$
 (b) $\begin{bmatrix} 9 & -5 \\ -7 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} 9 & 7 \\ 5 & -4 \end{bmatrix}$ (d) $\begin{bmatrix} 4 & -7 \\ -5 & 9 \end{bmatrix}$

(c)
$$\begin{bmatrix} 9 & 7 \\ 5 & -4 \end{bmatrix}$$

$$(d) \begin{bmatrix} 4 & -7 \\ -5 & 9 \end{bmatrix}$$

উত্তরমালা

প্রশুমালা 1.1

1.
$$\begin{bmatrix} 2 & -4 & 6 \\ 10 & 2 & -8 \end{bmatrix}$$
, $\begin{bmatrix} 3 & 1 & 8 \\ 6 & 5 & -6 \end{bmatrix}$, 2. $\begin{bmatrix} 10 - 23 - 9 \\ 9 & -4 & 8 \end{bmatrix}$, 3. $[52 \ 74 \ 34]$, 4. $\begin{bmatrix} 44 & -18 & -13 \\ -5 & -12 & -26 \\ -10 & -8 & 19 \end{bmatrix}$.

2.
$$\begin{bmatrix} 10 - 23 - 9 \\ 9 - 4 & 8 \end{bmatrix}$$

4.
$$\begin{bmatrix} 44 & -18 & -13 \\ -5 & -12 & -26 \\ -10 & -8 & 19 \end{bmatrix}$$

5.
$$\begin{bmatrix} 4 & 4 & 2 \\ 3 & 7 & 6 \\ 5 & 11 & 15 \end{bmatrix}$$

5.
$$\begin{bmatrix} 4 & 4 & 2 \\ 3 & 7 & 6 \\ 5 & 11 & 15 \end{bmatrix}$$
 6.
$$\begin{bmatrix} 4 & 10 & 1 \\ 1 & 4 & 10 \\ 10 & 8 & 9 \end{bmatrix}$$
;
$$\begin{bmatrix} 12 & -2 & -3 \\ -1 & -2 & -4 \\ 0 & 0 & 7 \end{bmatrix}$$
;
$$\begin{bmatrix} -33 & 56 & 43 \\ 16 & 15 & 10 \\ 24 & 74 & 46 \end{bmatrix}$$

7.
$$\begin{bmatrix} 2 \\ 5 \end{bmatrix}$$
 9. $\begin{bmatrix} 16 & -6 \\ -2 & -5 \end{bmatrix}$ and $\begin{bmatrix} 4 & 24 \\ 5 & 7 \end{bmatrix}$ 10. $\begin{bmatrix} 8 & 5 \\ 20 & 13 \\ 2 & 1 \end{bmatrix}$, $\begin{bmatrix} 10 & 17 \\ 4 & 7 \end{bmatrix}$ 11. $\begin{bmatrix} 15 & 15 & -2 \\ 25 & -4 & 11 \\ -7 & -15 & 2 \end{bmatrix}$

10.
$$\begin{bmatrix} 8 & 5 \\ 20 & 13 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 10 & 17 \\ 4 & 7 \end{bmatrix}.$$

11.
$$\begin{bmatrix} 15 & 15 & -2 \\ 25 & -4 & 11 \\ -7 & -15 & 2 \end{bmatrix}$$

12.
$$\begin{bmatrix} 8 & 5 \\ 20 & 13 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 10 & 17 \\ 4 & 7 \end{bmatrix}.$$

12.
$$\begin{bmatrix} 8 & 5 \\ 20 & 13 \\ 2 & 1 \end{bmatrix}$$
, $\begin{bmatrix} 10 & 17 \\ 4 & 7 \end{bmatrix}$. 15. $\begin{bmatrix} 0 & -11 & 0 \\ 0 & 33 & 0 \\ 0 & 22 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. 16. $\begin{bmatrix} 2 & -6 & -8 \\ -2 & -11 & 0 \\ -8 & -78 & -16 \end{bmatrix}$.

$$\begin{array}{c|cccc}
2 & -6 & -8 \\
-2 & -11 & 0 \\
-8 & -78 & -16
\end{array}$$

19.(b)
$$\begin{bmatrix} 13 & 26 & -65 & 78 \\ 40 & 80 & -200 & 240 \end{bmatrix}$$
, **22.** $\begin{bmatrix} 9 & -4 \\ -8 & 17 \end{bmatrix}$, $\begin{bmatrix} 7 & 30 \\ 60 & -67 \end{bmatrix}$ **23.** $\begin{bmatrix} 10 & -6 \\ -15 & 22 \end{bmatrix}$.

22.
$$\begin{bmatrix} 9 & -4 \\ -8 & 17 \end{bmatrix}$$
, $\begin{bmatrix} 7 & 30 \\ 60 & -67 \end{bmatrix}$

23.
$$\begin{bmatrix} 10 & -6 \\ -15 & 22 \end{bmatrix}$$
.

$$\mathbf{24.} \begin{bmatrix} 5 & 12 & 8 \\ 8 & 1 & 12 \\ 4 & -4 & 5 \end{bmatrix}$$

24.
$$\begin{bmatrix} 5 & 12 & 8 \\ 8 & 1 & 12 \\ 4 & -4 & 5 \end{bmatrix}$$
 25. $\begin{bmatrix} 5 & 15 & 10 \\ 10 & 0 & 15 \\ 5 & -5 & 5 \end{bmatrix}$ **26.** $\begin{bmatrix} 0 \end{bmatrix}$

প্রশালা 1.2

1. (i) -1, (ii) 1, (iii)
$$4xyz$$
. **2** (i) 0, (ii) $16 + 4(p+q) + pq$, (iii) -4. **24.** (a) $-2(a+b)(a-b)^2$; (b) $a(a-b)(b-c)(c-a)$. **26.** -6; **30.** (i) $\frac{1}{21}\begin{bmatrix} 2 & 3 & -13 \\ -3 & 6 & 9 \\ 5 & -3 & -1 \end{bmatrix}$

(ii)
$$\frac{1}{6}\begin{bmatrix} 2 & -4 & 4 \\ 1 & 1 & -1 \\ 0 & 0 & -3 \end{bmatrix}$$
 31. (i) 1,-1, -12; (ii) 4.

$$(ii) = 0 + \sqrt{3}$$

(iii)
$$x = -9, \pm \sqrt{3}$$
. 34. (i) $x = -1, y = 2$; (ii) $x = 5, y = -2$;

(ii)
$$x = 5$$
, $y = -2$;

(iii) সমাধান

নেই।

(iv)
$$x = 4$$
, $y = -7$, $z = -1$; (v) $x = y = z = 1$. (vi) $x = 1$, $y = 2$, $z = -3$.

(v)
$$x = y = z = 1$$
.

(vi)
$$x = 1$$
, $y = 2$, $z = -3$.

প্রশুমালা 1.3

1. (a)
$$\begin{bmatrix} 9 & -8 \\ -4 & 17 \end{bmatrix}$$
 (b) 0. 2. (a) -48 (b) -40, 30, -4. 3. (a) 36 (b) $\begin{bmatrix} -4 & 0 & 20 \\ 8 & 0 & -4 \\ 1 & 9 & -15 \end{bmatrix}$

4. c. 5. b. 6. a. 7. a. . 8. c. 9. c. 10. c. 11. b & d. 12. a.