Exámen Final PCA y AdaBoost

Grupo 3: Guadalupe Sosa Ferro y Florencia Denisse Costa

Dataset

Breast Cancer Coimbra

Dataset obtenido de UC Irvine Machine Learning Repository.

- 116 muestras
- 10 atributos
- Características clínicas de 64 pacientes con cáncer de mama y 52 controles sanos.
- Clase: control sano o paciente.

Atributos

Variables cuantitativas discretas:

Edad (años)

Glucosa (mg/dL) → azúcar en sangre

 $HOMA = \frac{glucosa \times insulina}{}$

Variables cuantitativas continuas:

- **BMI** (kg/m2) → índice de masa corporal
- **Insulina** (μU/mL) → liberada en respuesta a la glucosa para su absorción
- **HOMA** → Homeostatic model assessment of insulin resistance

- **Resistina** (ng/mL) → asociada a la insulinorresistencia
- MCP.1 (pg/dL) → disminuye la captación de glucosa

Clasificación → 1: control sano 2: paciente con cáncer de mama

Procedimiento

01 ---- 02 ---- 03 ---- 04---- 05

Preprocesamiento Análisis univariado

Reducción de dimensionalidad

- PCA
- Elección propia

Modelos

Evaluación

- AdaBoost
- Random Forest

Preprocesamiento

Duplicados

Datos duplicados: False

Datos faltantes

```
Datos faltantes:
                    False
 Age
BMT
                   False
Glucose
                   False
Insulin
                   False
HOMA
                   False
Leptin
                   False
Adiponectin
                   False
Resistin
                   False
MCP.1
                   False
Classification
                   False
```

Reemplazo de valores

 $1 \rightarrow 0$ (control sano) 2 $\rightarrow 1$ (paciente enfermo)

Procedimiento

01 ---- 02 ---- 03 ---- 04---- 05

Preprocesamiento Análisis univariado Reducción de dimensionalidad

- PCA
- Elección propia

Modelos

Evaluación

- AdaBoost
- Random Forest

Promedio edad sanos: 58.08 años

Promedio edad enfermos: 56.67 años

Asimetria negativa

Asimetria positiva

r = 0,7

r = 0.5

r = 0.57

Procedimiento

O1 — O2 — O3 — O — O4 — O — O5

PrePreProcesamiento Análisis Reducción de dimensionalidad Modelos Evaluación

• PCA • AdaBoost

Elección propia

Random Forest

Reducción de dimensionalidad

PRINCIPAL COMPONENT ANALYSIS (PCA)

- División del dataset
- Estandarización
- 3. Aplicación de PCA

SELECCIÓN DE VARIABLES

- 1. Selección de variables
- 2. División del dataset
- 3. Estandarización

PCA

División del dataset

- Método train_test_split de Sklearn.
- 80% entrenamiento, 20% prueba.
- Random state = 0

Estandarización

- Función StandardScaler() de Sklearn.
- Transformación solamente de X_train y X_test.
- Se utiliza la media y desvío
 estándar de X_train → evitar fuga
 de datos

PCA - Teoría

- Inventado en 1901 por Karl Pearson.
- <u>Idea principal:</u> poder proyectar datos de alta dimensionalidad en un espacio de menor dimensión, preservando la mayor cantidad de información posible.
- Transforma las variables originales en un nuevo conjunto de variables llamadas componentes principales, que son combinaciones lineales de las variables originales.

Ejemplo
$$Var_1$$
, Var_2 , Var_3 , ... Var_n
 $PC_1 = a_1 * Var_1 + a_2 * Var_2 + a_3 * Var_3 + ... + a_n * Var_n$
 $PC_2 = b_1 * Var_1 + b_2 * Var_2 + b_3 * Var_3 + ... + b_n * Var_n$
 $PC_n = c_1 * Var_1 + c_2 * Var_2 + c_3 * Var_3 + ... + c_n * Var_n$

PCA - Explicación geométrica

PCA - Explicación geométrica

$$cos(\theta) = \frac{z_{i,m}}{\|x_i\|} = \frac{x'_i p_m}{\|x_i\| \|p_m\|}$$
$$z_{im} = x'_i p_m$$

z_i=*score*

x_i= observación

 p_m = peso (loadings)

PCA - Algoritmo

- 1. Estandarización de datos $z = \frac{value mean}{standarization}$
- 2. Cálculo de la matriz de covarianza $\Sigma = \begin{bmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Cov}(X_1, X_n) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) & \cdots & \operatorname{Cov}(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_1, X_2) & \operatorname{Cov}(X_2, X_2) & \cdots & \operatorname{Var}(X_n) \end{bmatrix} \quad \operatorname{Cov}(X, Y) = \frac{\sum_{1}^{n} (x_i \bar{x})(y_i \bar{y})}{n}$
- 3. Descomposición SVD de matriz de covarianza
 - a. Autovectores: direcciones de variables originales que definen PC (loadings)
 - b. Autovalores: varianza explicada en cada PC
- 4. Selection de componentes principales. $\frac{SS(distances \text{ for PC1})}{n-1} = Eigenvalue \text{ for PC1}}{\sqrt{SS(distances \text{ for PC1}})} = Eigenvalue \text{ for PC1}}$ Autovectores de A = V * Autovectores de S * V^T
- **5. Proyección de datos.** Transformamos los resultados a un nuevo espacio dimensional (n, d) donde "n" son el número de componentes y "d" el número de datos.

PCA - Sklearn

sklearn.decomposition.PCA

Centra los datos pero no los escala → StandardScaler()

Hiperparámetros:

- **n_components:** probamos con 2 y 7 (0.95)
- svd_solver: 'auto'
- Resto default

PCA - Resultados

49.5% de la información

PCA - Resultados

PCA - Resultados

Variables que más contribuyen

PC1: HOMA, Insulina, Glucosa, Leptina, Resistina, BM1, MCP.1, Adiponectina, Age.

PC2: Adiponectin, BMI, Insulin, HOMA, Resistin, MCP.1, Age, Leptin, Glucose

pca.components_

Selección de variables

Variables con |r| más grande con respecto a la Clase:

• HOMA
$$\rightarrow$$
 r = 0,28

• Insulina
$$\rightarrow$$
 r = 0,28

• Resistina
$$\rightarrow$$
 r = 0,23

• BMI
$$\rightarrow$$
 r = -0,13

HOMA vs Insulina \rightarrow r = 0,93

Glucosa vs HOMA \rightarrow **r = 0,7**

Glucosa vs Insulina \rightarrow **r = 0,5**

HOMA depende directamente de Glucosa e Insulina, es redundante.

Selección final: glucosa, insulina, resistina y BMI.

Selección de variables (cont.)

División del dataset

- Método train_test_split de Sklearn.
- 80% entrenamiento, 20% prueba.
- Random state = 0

Estandarización

- Función StandardScaler() de Sklearn.
- Transformación solamente de X_train y X_test.
- Se utiliza la media y desvío
 estándar de X_train → evitar fuga
 de datos

Procedimiento

Pre-procesamiento

Análisis Reducción de dimensionalidad

PCA
Elección propia

AdaBoost
Random Forest

AdaBoost

- Desarrollado por Yoav Freund y Robert Schapire en 1995.
- Aprendizaje supervisado, método de ensamble.
- Adaptive boosting
- Clasificación binaria (también multiclase) y regresión.
- Sensible al ruido y outliers.
- ★ Clasificadores débiles → múltiples árboles de un nodo y dos hojas
- **★** Distinta influencia en la clasificación final → Cada árbol tiene asociado un peso
- ★ Los errores de un árbol influyen en la generación del siguiente

AdaBoost vs Random Forest

SIMILITUDES

- Ambos son métodos de ensamble
- Ambos utilizan árboles de decisión

DIFERENCIAS

- Tamaño de los árboles
- Peso de cada árbol en la clasificación final
- Orden de construcción de los árboles
- Tipo de muestreo (bagging vs boosting)
- Adaboost es más sensible al ruido
- Adaboost generalmente es más preciso

AdaBoost - Algoritmo

- 1. Se le asigna un **peso** a las n instancias de entrenamiento $\rightarrow W_i = \frac{1}{n}$
- 2. Se selecciona la **variable** que mejor clasifique a las instancias y se genera el **árbol** (1 nodo y 2 hojas). $h_{t}: X \to \{-1, 1\}$
- Se calcula el **error** asociado al árbol → suma de los pesos de las instancias clasificadas incorrectamente.
- 4. Se calcula el **peso del árbol** $\rightarrow \alpha_t = \frac{1}{2} log(\frac{1 error}{error})$
- 5. Se calculan los **nuevos pesos** de las instancias y se normalizan
 - a. Muestra clasificada incorrectamente $\rightarrow w_{i+1} = w_i \times e^{-t}$
 - b. Muestra clasificada correctamente $\rightarrow w_{i+1} = w_i \times e^{-\alpha_t}$
- 6. Repetir los pasos 2 a 5 para generar **más árboles**.
- 7. Clasificación final: combinación ponderada de los clasificadores H_f

$$I_{final} = sign(\sum_{t} \alpha_{t} h_{t}(x))$$

AdaBoost - Sklearn

sklearn.ensemble.AdaBoostClassifier

Hiperparámetros:

- estimator: DecisionTreeClasifier con max_depth = 1
- **n_estimators**: entre 50 y 500, paso de 50
- learning_rate: entre 0,01 y 1, paso de 0,11
- random_state: None
- algorithm: SAMME.R

GridSearchCV
validación cruzada de
5 pliegues para
encontrar los mejores
hiperparámetros

AdaBoost - Resultados

PCA

Mejores hiperparámetros:

 $n_estimators = 400$

learning_rate = 0,01

Métricas:

Accuracy = 0,75

Recall = 0,75

Precisión = 0,75

f1-score = 0,75

AdaBoost - Resultados

Selección de variables

Mejores hiperparámetros:

n_estimators = 100

learning_rate = 0,78

Métricas:

Accuracy = 0.71 Recall = 0.71

Precisión = 0,71 **f1-score** = 0,71

Random Forest - Algoritmo

Recordamos los pasos:

- Se divide aleatoriamente el dataset en k subconjuntos de N muestras con reemplazo.
- 2. Se crea un **árbol** con cada subconjunto.
- 3. Cada árbol realiza una clasificación.
- 4. La clasificación final es la opción más votada por todos los árboles.

Random Forest - Sklearn

sklearn.ensemble.RandomForestClassifier

Hiperparámetros:

- n_estimators: entre 3 y 20, paso de 1
- max_depth: entre 2 y 7, paso de 1
- random_state: entre 0 y 10, paso de 1
- Resto default

GridSearchCV
validación cruzada de
5 pliegues para
encontrar los mejores
hiperparámetros

Random Forest - Resultados

PCA

Mejores hiperparámetros:

n_estimators = 9

max_depth = 3 random_state = 2

Métricas:

Accuracy = 0,58

Recall = 0,58

Precisión = 0,58

f1-score = 0,56

Random Forest - Resultados Selección de variables

Mejores hiperparámetros:

n_estimators = 6

max_depth = 3 random_state =4

Métricas:

Accuracy = 0,54 **Recall** = 0,54

Precisión = 0,57 **f1-score** = 0,53

Conclusiones

- Se generaron 4 modelos de clasificación para el dataset Breast Cancer Coimbra
 - 2 de AdaBoost y 2 de Random Forest
 - En cada caso, 1 con PCA y 1 con selección de variables
- Los modelos de AdaBoost son mejores que los de Random Forest
- El uso de PCA para disminuir la dimensionalidad no necesariamente es mejor que la selección de variables
 - Variables y PC sin relación lineal
 - Importancia de entender las variables
 - Pérdida de información
 - Dataset "pequeño"

Muchas gracias

¿Preguntas?

Grupo 3: Guadalupe Sosa Ferro y Florencia Denisse Costa

72.75 - Aprendizaje Automático - 2023

CREDITS: This presentation template was created by <u>Slidesgo</u>, including icons by <u>Flaticon</u> and infographics & images by <u>Freepik</u>

Please keep this slide for attribution