Exercises

- 1. Give a recursive definition of the length of a string over Σ . Use the primitive operation from the definition of string.
- 2. Using induction on i, prove that $(w^R)^i = (w^i)^R$ for any string w and all $i \ge 0$.
- 3. Prove, using induction on the length of the string, that $(w^R)^R = w$ for all strings $w \in \Sigma^*$.
- 4. Give a recursive definition of the set of strings over $\{a, b\}$ that contains all and only those strings with an equal number of a's and b's. Use concatenation as the operator.
- 5. Give a recursive definition of the set $\{a^i b^j \mid 0 < i < j\}$.
- 6. Prove that every string in the language defined in Example 2.2.1 has even length. The proof is by induction on the recursive generation of the strings.
- 7. Prove that every string in the language defined in Example 2.2.2 has at least as many a's as b's. Let $n_a(u)$ and $n_b(u)$ be the number of a's and b's in a string u. The inductive proof should establish the inequality $n_a(u) \ge n_b(u)$.
- 8. Let L be the language over $\{a, b\}$ generated by the recursive definition
 - i) Basis: $\lambda \in L$.
 - ii) Recursive step: If $u \in L$ then $aaub \in L$.
 - iii) Closure: A string w is in L only if it can be obtained from the basis by a finite number of applications of the recursive step.
 - a) Give the sets L_0 , L_1 , and L_2 generated by the recursive definition.
 - b) Give an implicit definition of the set of strings defined by the recursive definition.
 - c) Prove, by mathematical induction, that for every string u in L the number of a's in u is twice the number b's in u. Let $n_a(u)$ denote the number of a's in a string u and $n_b(u)$ denote the number of b's in u.
- 9. A **palindrome** over an alphabet Σ is a string in Σ^* that is spelled the same forward and backward. The set of palindromes over Σ can be defined recursively as follows:
 - i) Basis: λ and a, for all $a \in \Sigma$, are palindromes.
 - ii) Recursive step: If w is a palindrome and $a \in \Sigma$, then awa is a palindrome.
 - iii) Closure: w is a palindrome only if it can be obtained from the basis elements by a finite number of applications of the recursive step.

The set of palindromes can also be defined by $\{w \mid w = w^R\}$. Prove that these two definitions generate the same set.

- 10. Let $X = \{aa, bb\}$ and $Y = \{\lambda, b, ab\}$.
 - a) List the strings in the set XY.
 - b) List the strings of the set Y* of length three or less.
 - c) How many strings of length 6 are there in X*?