МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ВятГУ)

Факультет компьютерных и физико-математических наук Кафедра фундаментальной математики

Выпускная квалификационная работа

по направлению подготовки 02.03.01 Математика и компьютерные науки Профиль: «Математические основы компьютерных наук»

на тему «Разработка модуля интеграции онлайн-сервиса построения графиков и геометрических чертежей в визуальный онлайн HTML-редактор»

	Выполнил: студент М Мельков Алексей Ко	
	Научный руководитель:	
	канд. физматем. на Марков Роман Влада	
Допущено к защите в ГЭК: «»		
	ои математики	Е. М. Вечтомов
Декан факультета компьютерных и фи	зико-математических наук	
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		Н.А. Бояринцева

Реферат

Мельков Алексей Константинович Разработка модуля интеграции онлайн-сервиса построения графиков и геометрических чертежей в визуальный онлайн HTML-редактор

ПЗ: Выпускная квалификационная работа, каф. фундаментальной математики; рук. Марков Роман Владимирович. Киров, 2022.

 $\Pi 3$ 27 с., 5 рис., 0 табл., 10 источников, 0 прил.

HTML, JAVASCRIPT, TINYMCE, GEOGEBRA, MOODLE, PHP, API, модуль интеграции

Объект разработки: модуль интеграции онлайн-сервиса построения графиков и геометрических чертежей в визуальный онлайн HTML-редактор Цель: определение способностей и готовности самостоятельно решать на современном уровне задачи своей профессиональной деятельности, профессионально излагать специальную информацию, научно аргументировать и защищать свою точку зрения.

Рассматриваются вопросы: связи онлайн-сервиса построения графиков и геометрических чертежей GeoGebra и визуальный онлайн HTML-редактор TinyMCE

Оглавление

Введение
ГЛАВА 1. Теоретическая часть
1.1. Анализ готовых решений
1.2. Описание своего решения
1.3. Необходимые знания
1.3.1 основы JavaScript
1.3.2 API MOODLE для плагинов TinyMCE
1.3.3 API Tinymce
1.3.4 API Geogebra
ГЛАВА 2. Практическая часть
2.1. editor_plugin.js
2.1.1 tinymce.create()
2.1.2 tinymce.PluginManager.add()
2.2. geogebra.php
2.3. dialog.js
Заключение
Библиографический список

Введение

Выпускная квалификационная работа посвящена разработке модуля интеграции онлайн-сервиса построения графиков и геометрических чертежей в визуальный онлайн HTML-редактор

Актуальность работы обусловлена оптимизацией времени и удобности написания статей, вопросов, заданий. Данный модуль позволит интегрировать распространенный онлайн-сервис построения графиков и геометрических чертежей GeoGebra в онлайн HTML-редактор TinyMCE, который присутствует на платформе Moodle. Что добавит возможность составления новых тестов, лекций, практических заданий для обучения студентов.

Объектом исследования является изучение API сервисов TinyMCE, GeoGebra, платформы Moodle.

Цель работы: разработать модуль интеграции онлайн-сервиса GeoGebra в визуальный онлайн HTML-редактор TinyMCE для платформы Moodle. Модуль интеграции должен соединять онлайн HTML-редактор и сервис построения графиков и геометрических чертежей. Таким образом, весь инструментал GeoGebra можно будет применить и перенести в текстовый редактор.

Для достижения поставленной цели сформулированы следующие задачи:

- 1. Изучение основ программирования на языке JavaScript
- 2. Изучение API GeoGebra, TinyMCE, Moodle
- 3. Создание плагина

Теоретическая значимость работы состоит в изучении связи TinyMCE, GeoGebra, Moodle.

Практическая значимость работы состоит в возможности составления новых материалов с использованием GeoGebra.

В целом работа носит практический характер.

Структура работы. Выпускная квалификационная работа, общим объемом 27 стр., состоит из введения, двух глав, заключения, библиографического списка.

Первая глава посвящена теоритической части

Вторая глава посвящена практической части

В заключении представлены основные результаты дипломной работы.

В библиографический список включено 10 источников.

ГЛАВА 1

Теоретическая часть

1.1 Анализ готовых решений

Существует несколько способов вставки графиков в текстовый редактор в Moodle. Первый способ представлен самой GeoGebra. Они предлагают с сайта построить необходимые графики, затем нажать комбинацию клавиш, что позволит скопировать HTML код. После этого в редакторе TinyMCE есть кнопка редактирования HTML кода, при ее нажатии откроется окно, куда надо вставить скопированные данные.

Второй способ – установить плагин Geograph. Он позволяет редактировать апплеты геогебры непосредственно на сайте и сохраняет результат в виде строки base64. Base64 – код, который можно вставить в приложение геогебры, а он раскодируется в нужные параметры. Но существенный минус такого способа заключаются в том, что этот код не вставить в текст, чтобы он преобразовался в график. Еще один минус, что плагин требует установленный на компьютере Java.

1.2 Описание своего решения

В Мооdle представлены три онлайн-редактора. Atto, TinyMCE, простой текст. Простой текст - текстовое пространтсво без кнопок, его нельзя изменять. У TinyMCE больше возможностей, при работе с текстом чем у Atto, к примеру, выбор шрифта и размер текста. Поэтому для написания плагина выбран TinyMCE. Среди онлайн сервисов построения графиков и геометрических чертежей была выбрана GeoGebra, так как она популярна и проста для использования. В итоге, предлагается расширить возможности редактора TinyMCE с помощью разработки собственной кнопки, которая при нажатии открывает окно GeoGebra. В этом окне можно построить графики, после чего нажать на внутреннюю кнопку вставки. В результате, все данные перенесутся в текстовую область. Полученный график будет виден при просмотре страницы:

Рисунок 1.1 – нажатие на кнопку

Рисунок 1.2 – построение графика

Рисунок 1.3 – кнопка вставки

Рисунок 1.4 – результат

1.3 Необходимые знания

Далее будут рассмотрены основы JavaScript, API Moodle, GeoGebra, TinyMCE.

1.3.1 основы JavaScript

JavaScript - это язык программирования. Поддерживает объектноориентированныйи стили. То есть, программа состоит из компонентов, соответствующих объектам реального мира. Любой реальный объект имеет какие-то свойства (которые могут изменяться или нет с течением времени) и поведение (которое может меняться или нет в зависимости от других условий).

JavaScript обычно используется как встраиваемый язык для программного доступа к объектам приложений. Наиболее широкое применение находит в браузерах как язык сценариев для придания интерактивности веб-страницам.

Переменные. Представляет собой именованную область памяти, к которой можно обращаться через идентификатор для считывания значения и записи значения. Также у переменной есть тип:

- Number: любое число, включая десятичные дроби
- String: любая группа символов, заключенная в одинарные кавычки: '...' или двойные кавычки "..."
- Boolean: этот тип данных имеет только два возможных значения: либо true, либо false. Полезно думать о логических значениях как о переключателях включения и выключения или как об ответах на вопрос "да" или "нет"
- Null: этот тип данных представляет намеренное отсутствие значения и представлен ключевым словом null
- Undefined: этот тип данных обозначается ключевым словом undefined. Он также представляет отсутствие значения, хотя его использование отличается от null. Отличие в том, что Undefined означает, что данное значение не существует.
- Object: коллекция связанных данных

Свойства объектов. Когда вводится новый фрагмент данных в программу JavaScript, браузер сохраняет его как экземпляр типа данных. Все типы данных имеют доступ к определенным свойствам, которые передаются каждому экземпляру. Например, каждый экземпляр string имеет свойство length, в котором хранится количество символов в этой строке. Можно получить информацию о свойстве, добавив строку с точкой и именем свойства, к примеру:

```
Console.log('Привет'.length); выведет в консоль 6
```

Методы объектов - это действия, которые можно выполнить. Типы данных имеют доступ к определенным методам, которые позволяют обрабатывать экземпляры этого типа данных. Чтобы вызвать метод, необходимо после переменной написать точку, его название, парные скобочки (). К примеру,

```
Console.log('привет'.toUpperCase()); выведет в консоль ПРИВЕТ
```

Функции. В программировании часто используется код для многократного выполнения определенной задачи. Вместо того, чтобы переписывать один и тот же код, можно сгруппировать блок кода вместе и связать его с одной задачей, затем повторно использовать этот блок кода всякий раз, когда нужно выполнить задачу снова. Достигается это с помощью создания функций. Функция - это повторно используемый блок кода, который группирует последовательность инструкций для выполнения определенной задачи.

Как объявляется функция:

```
function Идентификатор(параметры){
    тело функции;
}
```

Альтернативным способом можно внести функцию в переменную. Тогда синтаксис объявления поменяется следующим образом:

```
var Переменная = (параметры) => { тело функции;
```

}

Объекты. Объекты JavaScript нужны для создания более сложных структур данных. По своей сути, объекты JavaScript представляют собой контейнеры, хранящие связанные данные и функциональные возможности. (набор или объединение некоторых переменных и функций)

Создание объектов, могут быть назначены переменным точно так же, как и любому типу JavaScript. Для обозначения объекта используются фигурные скобки {}. Объект можно заполнять неупорядоченными данными. Эти данные организованы в пары ключ-значение. Ключ подобен имени переменной, которое указывает на место в памяти, содержащее значение. Значение ключа может иметь любой тип данных в языке, включая функции или другие объекты.

Чтобы создать пару ключ-значение, записываяется имя ключа или идентификатор, за которым следует двоеточие, а затем значение. Каждая пара ключ-значение в объектном литерале разделяется запятой ,:

```
var Переменная_объекта = {
ключ: 'что-то',
'ключ': 123,
};
```

Есть два способа получить доступ к свойству объекта. Первый, как и любое свойство - через точку . и название самого свойства. Второй способ получить доступ к значению ключа - использовать обозначение в квадратных скобках, [].

Для того, чтобы интегрировать JavaScript код в HTML страницу необходимо вставить парный тег <script>. Но также можно подключить JS файл с помощью ссылки на него тем же тегом, с использованием атрибута src, то есть надо указать, где находится этот файл.

1.3.2 API MOODLE для плагинов TinyMCE.

API (Application programming interface) - это инструмент для взаимодействия нескольких программ. API содержит в себе некие «мостики», позволяющие программе А получить доступ к данным из программы Б или к некоторым ее возможностям. Таким образом, программисты могут расширять функциональность своего продукта и связывать его с чужими разработками. Для создания своего плагина TinyMCE необходимо сформировать каталог с его названием. Минимальные файлы для запуска плагина:

- Языковая папка lang с файлом tinyMCE ИмяПлагина.php
- Папка ріх, содержащая значок плагина. Иконка должна называться ісоп, с расширением .png и размером 20х20 пикселей.
- lib.php
- version.php
- Папка tinymce, в которой хранится иконка кнопки и editor_plugin.js добавить три php файла, которые обращаются к Moodle.

version.php содержит информацию о версии плагина Moodle

```
<?php

defined('MOODLE_INTERNAL') || die();

$plugin->version = 2022030209;
    текущая версия плагина (Дата: ГГГГММДДЧЧ)

$plugin->requires = 2012112900;
    требующиеся версия Moodle (Дата: ГГГГММДДЧЧ)

$plugin->component = 'tinymce_geogebra';
    полное имя плагина
```

lib.php содержит код плагина Moodle, здесь должен находиться по крайней мере класс tinymce ИмяПлагина с методом update init params()

```
<?php
```

```
defined('MOODLE_INTERNAL') || die();
class tinymce_ИмяПлагина extends editor_tinymce_plugin
{
 protected $buttons = array('ИмяПлагина');
 protected function update_init_params(
    array &$params, context $context, array $options = null
  )
  {
   $this->add_button_after(
      $params, $this->count_button_rows($params), 'ИмяПлагина'
   $this->add_js_plugin($params);
  }
}
  tinymce ИмяПлагина.php. Файл обязан содержать запись
<?php
$string['pluginname'] = 'ИмяПлагина';
где 'pluginname' нельзя изменять.
```

В результате должен получиться такой каталог:

```
    ✓ GEOGEBRA
    ✓ Imag\en
    ✓ tinymce_geogebra.php
    ✓ pix
    geoGebra.png
    ✓ tinymce
    > img
    Js editor_plugin.js
    Iib.php
    version.php
```

Рисунок 1.5 – каталог плагина

1.3.3 API Tinymce

</script>

Чтобы вставить TinyMCE редактор в HTML страницу надо добавить следующие скрипты:

```
<script
   src="https://cdn.tiny.cloud/1/no-api-key/tinymce/5/tinymce.min.js"
   referrerpolicy="origin">
   </script>

Эта строка ссылает страницу на сайт редактора.

<script>
   tinymce.init({
   });
```

Этот скрипт запускает TinyMCE. Так как в Moodle уже загружен редактор, и расширяются его возможности, то эти скрипты не нужны. В итоге изменяются параметры init.

1.3.4 API Geogebra

Чтобы на своей странице загрузить GeoGebra, необходимо добавить несколько скриптов и место, куда будет добавляться приложение. Сначала нужно, сделать ссылку на источник GeoGebra:

```
<script src="https://www.geogebra.org/apps/deployggb.js"></script>
```

Затем создадим контейнер, куда вставится приложение:

```
<div id="ggb-element"></div>
```

Теперь требуется задать параметры и открыть окно GeoGebra:

```
var params =
    {
        "appName": "graphing",
        "width": 800,
        "height": 600,
        "showToolBar": true,
        "showAlgebraInput": true,
        "showMenuBar": true
    };
var applet = new GGBApplet(params, true);
window.addEventListener("load", function() {
    applet.inject('ggb-element');
});
</script>
```

Разберем параметры:

- appName тип вычислений. Можно выбрать graphing (построение графиков), geometry (геометрия), 3d.
- width, height высота и ширина окна в пикселях.
- showToolBar, showAlgebraInput, showMenuBar отображение инструментов и панелей. Если true отображаются, если false скрыты

После создается GGBApplet с указанными параметрами. Также при загрузке страницы, срабатывает событие добавления GGBApplet в div контейнер с id 'ggb-element'.

ГЛАВА 2

Практическая часть

В этой главе будут рассмотрены файлы плагина с кодом и пояснения к ним.

2.1 editor_plugin.js

Главный файл модуля интеграции, так как именно в нем описывается добавление нестандартной кнопки, а также здесь задается её функция. Этот файл написан на языке JavaScript. Он из себя представляет большую функцию, в которой содержатся два метода: tinymce.create() и tinymce.PluginManager.add().

2.1.1 tinymce.create()

Этим методом создается объект. Сначала объявляется его идентификатор, затем описывается тело класса.

```
tinymce.create("tinymce.plugins.geogebra", {
    /**
    * @param {tinymce.Editor} ed
    * @param {string} url
    */
    ...
}
```

- @param {tinymce.Editor} ed тег @param позволяет указать тип, имя и описание параметра функции. В данном случае, параметр ed объявлен типом tinymce.Editor. Это экземпляр переменных редактора, в котором инициализируется плагин.
- @param string url параметр, который представлен строкой. Абсолютный URL-адрес, по которому находится плагин.

init ключ-функция объекта, которая срабатывает при загрузке вебстраницы.

```
init: function (ed, url) {
  ed.addCommand("mceGeogebra", function () {
    ed.windowManager.open(
      {
        file: ed.getParam("moodle_plugin_base") +
          "geogebra/geogebra.php",
        width:
          window.outerWidth - 100 +
          parseInt(ed.getLang("geogebra.delta_width", 0)),
        height:
          window.outerHeight - 250 +
          parseInt(ed.getLang("geogebra.delta_height", 0)),
        inline: 1,
      },
      {
        plugin_url: url,
      }
    );
  });
  ed.addButton("geogebra", {
    title: "GeoGebra Plugin",
    cmd: "mceGeogebra",
    image: url + "/img/geoGebra.gif",
  });
}
```

init содержит два входных параметра ed, url. В ней вызывается метод addCommand, который аналогичен init, имеет название команды и обработчик события. Но ed.addCommand это функция, а не объект. Именно здесь задается логика плагина.

- ed.windowManager.open(). Открывает диалоговое окно с конфигом, прописанным в параметре функции. Рассмотрим его подробнее. File абсолютный путь, того что откроет кнопка, при нажатии. В этом случае, открывается php-страница, которая будет рассмотрена ниже. Width, Height высота, ширина открывающегося окна. Plugin url ссылка на плагин.
- ed.addButton(). Добавляет кнопку. Title текст, который будет отображаться, при наведении на кнопку. Cmd то, что выполнит кнопка. Image ссылка на картинку, которая будет отображаться на кнопке.

getInfo. Второй ключ - функция. При вызове возвращает информацию о плагине.

```
getInfo: function () {
   return {
     longname: "GeoGebra plugin",
     author: "Alexei Melkov",
     authorurl: "alekseymelkov@gmail.com",
     infourl: "alekseymelkov@gmail.com",
     version: "1.061",
   };
},
```

2.1.2 tinymce.PluginManager.add()

Perистрирует собственный плагин в TinyMCE, используя PluginManager. PluginManager.add() принимает строку для идентификатора плагина и объект, содержащую код для инициализации плагина.

```
\verb|tinymce.PluginManager.add("geogebra", tinymce.plugins.geogebra"; \\
```

Идентификатор "geogebra" и переданный объект tinymce.plugins.geogebra, который был создан выше с помощью метода tinymce.create().

2.2 geogebra.php

Страница, которая открывается при нажатии на кнопку. Она написана на языке PHP. Вначале записан PHP код, который при обработке нажатия, вставится в заголовок диалогового окна.

```
<?php
define('NO_MOODLE_COOKIES', true);
require('../../../config.php');
$PAGE->set_context(context_system::instance());
$PAGE->set_url('/lib/editor/tinymce/plugins/geogebra/geogebra.php');
$PAGE->set_title(get_string('title', 'tinymce_geogebra'));
$PAGE->set_pagelayout('embedded');
$editor = get_texteditor('tinymce');
$plugin = $editor->get_plugin('geogebra');
$PAGE->requires->js(new moodle_url
  ($editor->get_tinymce_base_url() . '/tiny_mce_popup.js'));
$PAGE->requires->js(new moodle_url
  ($plugin->get_tinymce_file_url('js/dialog.js')));
echo $OUTPUT->header();
?>
define - определение константы.
require - включает и выполняет указанный файл.
$PAGE - экземпляр moodle page, который хранит всю информацию и ис-
пользуется библиотекой вывода $OUTPUT при отображении страницы.
set context, set url, set title, set pagelayout - по API Moodle выставляются
```

параметры диалогового окна.

После получаем доступ к плагину, чтобы экспортировать нужны файлы.

Потом инициализируется контейнер с GeoGebra и пятью кнопками. Параметры GeoGebra такие же как при описании API. Кнопки делятся на меняющие режим GeoGebra и обновляющие диалоговое окно. Обработчики событий этих кнопок, добавлены в отдельный файл dialog.js, кроме нажатия на кнопку отмены. Она использует стандартный метод closе класса tinyMCEPopup.

```
<script src="https://www.geogebra.org/apps/deployggb.js"></script>
<script>
  var params = {
    appName: 'graphig',
    width: window.outerWidth,
    height: window.outerHeight - 250,
    showToolBar: true,
    showAlgebraInput: true,
    showMenuBar: true,
  };
  var applet = new GGBApplet(params, true);
  window.onload = function () {applet.inject('ggb-element');};
</script>
<div id="ggb-element">
</div>
>
  <div>
    <input
      type="button" id="graphig" name="graphig"
      value="graphig" onclick="GeoDialog.reloadGraphig();"
    />
    <input
      type="button" id="geometry" name="geometry"
      value="geometry" onclick="GeoDialog.reloadGeometry();"
```

```
/>
      <input type="button" id="3d" name="3d"</pre>
       value="3d" onclick="GeoDialog.reload3d();"
      />
      <input type="button" id="editing" name="editing"</pre>
       value="Редактировать" onclick="GeoDialog.loadLastGGB();"
      />
      <input type="button" id="insert" name="insert"</pre>
       value="Вставить" onclick="GeoDialog.insert();"
      <input type="button" id="cancel" name="cancel"</pre>
       value="Отмена" onclick="tinyMCEPopup.close();"
      />
    </div>
 Затем добавляется подвал (футер) страницы.
<?php
echo $OUTPUT->footer();
```

2.3 dialog.js

В этом файле создаются обработчики событий кнопок. Все они хранятся в объекте GeoDialog.

```
"<div id='applet_container'></div>"
    );
 }
var divGgb = document.getElementsByClassName(
  "appletParameters notranslate"
)[0];
var appName = divGgb.getAttribute("data-param-appname");
var code = ggbApplet.getBase64();
var width = 1920;
var inserted =
  "<!-- begin -->" +
  "<script type='text/javascript'
    src='https://www.geogebra.org/apps/deployggb.js'>
  </script>" +
  "<script type='text/javascript'>var params={ appName:" +
  "\"\{appName}" +
  ", width:" +
  ", showToolBar: false, scaleContainerClass: 'qtext',
 showAlgebraInput: false, showZoomButtons: false,
 autoHeight: true, showMenuBar: false, ggbBase64:" +
  "\"\{code}" +
  "}; var applet = new GGBApplet(params, true); " +
  "window.onload = function () {applet.inject('applet_container');};
  "</script>" +
  "<!-- end -->";
var begin = content.indexOf("<!-- begin -->");
if (begin != -1) {
 var end = content.indexOf("<!-- end -->");
 content =
 content.substring(0, begin)
   + inserted
   + content.substring(end + 12);
```

```
tinyMCE.activeEditor.setContent(content);
}
else tinyMCEPopup.editor.execCommand(
   "mceInsertContent", false, inserted
);
tinyMCEPopup.close();
},
```

insert - функция, которая вставляет все изменения из приложения GeoGebra в текстовую область редактора с помощью HTML кода. При нажатии на кнопку, сначала вся текстовая область редактора записывается в переменную content. Идет проверка на наличие контейнера с айди "applet_container". Если его нет в content, то он создается. После с помощью библиотеки jQuery достаются параметры GeoGebra, Base64 код, размер ширины окна. Все эти данные понадобятся при вставке HTML кода. Формируется строковая переменная inserted. В ней записываются скрипты вставки аплета GeoGebra. Для того чтобы заменить нужную часть кода, а не переписывать весь content, он ограничен комментариями <!- begin -> и <!- end ->. Если HTML код вставляется не первый раз, а уже существует, тогда по этим меткам он заменится настоящим, иначе внесется первая запись.

```
loadLastGGB: function () {
  var content = tinyMCE.activeEditor.getContent();
  var begin = content.indexOf("ggbBase64");
  if (begin != -1) {
    begin = content.indexOf("ggbBase64") + 11;
    var end = content.indexOf("var applet") - 3;
    appName = content.slice(
        content.indexOf("appName") + 9,
        content.indexOf("width") - 3
    );
    var code64 = content.slice(begin, end);
    var params = {
        appName: ''${appName}'',
```

```
showToolBar: true,
showAlgebraInput: true,
showMenuBar: true,
};
} else {
window.alert("В текстовой области нет аплета GeoGebra!");
}
var applet = new GGBApplet(params, true);
window.onload = function () {
applet.inject("ggb-element");
};
ggbApplet.setBase64(code64);
},
```

loadLastGGB - функция, которая срабатывает при нажатии на кнопку "редактировать". Ее смысл - обновить окно вставки предыдущими параметрами GeoGebra. Сначала все содержимое текстовой области записывается в переменную content. Затем в коде ищутся ключевые метки ggbBase64 и var applet. Это начало и конец Base64 кода, который преобразовывает строку символов в график. Если метки находятся, тогда из контента достаются тип аплета и Base64, а потом обновляется окно. Если нет меток, то выводится предупреждение на экран, что в текстовой области нет аплета GeoGebra.

```
reloadGraphig: function () {
  var params = {
    appName: "graphig",
    showToolBar: true,
    showAlgebraInput: true,
    showMenuBar: true,
  };
  var applet = new GGBApplet(params, true);
  applet.inject("ggb-element");
},
```

reloadGraphig, reloadGeometry, reload3d - похожие функции, которые вызывают прогрузку приложения GeoGebra в id "ggb-element". Вся их разница в параметре appName. То есть, загрузка разных режимов GeoGebra. Graphig - график, Geometry - геометрия, 3d - 3д режимы. У всех режимов есть ввод функций с помощью калькулятора, но есть различия в инструментариях:

— Graphig, так как это режим для построения графиков, то инструменты помогают расставлять точки, искать корни, находить пересечение, исследовать функции.

Рисунок 2.1 – графический режим GeoGebra

— Geometry - режим для построения геометрических фигур. В нем есть инструменты как для их построения, так и для работы с объектами, к примеру, скрыть или удалить.

Рисунок 2.2 – геометрический режим GeoGebra

— 3d - режим для работы в трехмерном пространстве. Поэтому инструменты направлены на помощь построения объектов в трех измерениях.

Рисунок 2.3-3д режим GeoGebra

Заключение

При написании выпускной квалификационной работы по теме "Разработка модуля интеграции онлайн-сервиса построения графиков и геометрических чертежей в визуальный онлайн HTML-редактор"были изучены:

- основы программирования на языке JavaScript;
- API сервиса построения графиков и чертежей GeoGebra;
- API онлайн HTML-редактора TinyMCE;
- создание собственного плагина на платформе Moodle для TinyMCE;

В ходе работы были достигнуты поставленные задачи, разработан модуль интеграции GeoGebra в TinyMCE.

Результатом проделанной работы является плагин GeoGebra для платформы Moodle, который можно загрузить по ссылке: https://github.com/markovrv/moodlegeo

Библиографический список

- 1. Заяц, А. М. Проектирование и разработка WEB-приложений. Введение в frontend и backend разработку на JavaScript и node.js: учебное пособие для спо / А. М. Заяц, Н. П. Васильев. 2-е изд., стер. Санкт-Петербург: Лань, 2022. 120 с.
- 2. Васильев, А. Н. JavaScript в примерах и задачах / А. Н. Васильев.— Москва : Издательство «Э», 2017. — 720 с.
- 3. Документация HTML онлайн-редактора TinyMCE [Электронный ресурс] Режим доступа: URL: https://www.tiny.cloud/docs/api/, свободный
- 4. Page API Moodle [Электронный ресурс] Режим доступа: URL: https://docs.moodle.org/dev/Page API, свободный
- 5. Создание своего плагина TinyMCE для Moodle [Электронный ресурс] Режим доступа: URL: https://docs.moodle.org/dev/Creating a Moodle specific TinyMCE plugin

, свободный

- 6. API сервиса построения графиков и чертежей GeoGebra [Электронный ресурс] Режим доступа: URL: https://wiki.geogebra.org/en/Reference:GeoGebra_Apps_API, свободный
- 7. Руководство с работой фреймворка JavaScript jQuery [Электронный ресурс] Режим доступа: URL: https://habr.com/ru/post/38208/, свободный
- 8. Словарь тегов языка HTML и его атрибутов [Электронный ресурс] Режим доступа: URL: http://htmlbook.ru/, свободный
- 9. Справочник языка РНР [Электронный ресурс] Режим доступа: URL: https://www.php.net/manual/ru/langref.php , свободный
- 10. Электронный курс для знакомства с JavaScript [Электронный ресурс] Режим доступа: URL:

https://www.codecademy.com/learn/introduction-to-javascript , свободный