Giảng viên ra đề: $\mid (Ngày \ ra \ d\hat{e})$ 13/07/2020

Người phê duyệt:

(Ngày duyệt đề) 21/07/2020

Chủ nhiệm bộ môn TS. Nguyễn Tiến Dũng

Hoàng Hải Hà

BK	THI CUỐI KỲ	Học kỳ/ Năm học		2	2019 - 2020	
тунса		Ngày thi/Giờ thi	22/7/20)2 0	13h	
TRƯỜNG ĐH BÁCH KHOA	Lớp	Chính Quy				
- ĐHQG-HCM	Môn học Phương pháp tính					
KHOA KHUD	Mã môn học	MT1009				
	Thời lượng	100 phút	Mã đề	201	10	
Chi sha. Daga sa daga tai lisa sa sa sa kala la sa labaga daga sa daga daga tai sa sa sa sa kala sa hara sa daga tai ba						

Ghi chú: - Được sử dụng tài liệu, máy tính bỏ túi, **không được** sử dụng điện thoại và máy tính có chức năng lập trình.

SINH VIÊN ĐỌC KỸ CÁC YÊU CẦU DƯỚI ĐÂY:

- Sinh viên ghi đầy đủ Ho, Tên, MSSV và làm bài trưc tiếp lên đề thi.
- Đề thi gồm 10 câu (2 mặt trên 1 tờ giấy A4). Mọi thắc mắc, sinh viên ghi trực tiếp lên đề thi.
- Gọi m và n là hai chữ số cuối cùng của mã số sinh viên (m là chữ số hàng chục, n là chữ số hàng đơn vị, $0 \le m, n \le 9$). $\text{Dặt } \mathcal{M} = \frac{2m+n+14}{2}$
- Không ghi đáp án ở dạng phân số.
- Đáp số ghi vào bài thi **phải được** làm tròn đến 4 chữ số sau dấu phẩy thập phân.
- Sinh viên tự điền vào bảng sau. Nếu không điền, bài thi bị xem là không hợp lệ.

Họ và tên		CP	
MSSV		Chữ ký giám thị 1	
M	TÁI	Chữ ký giám thị 2	UTAP

Điểm toàn bài

Câu hỏi 1. Để dự trữ $5\mathcal{M}(m^3)$ nước cho một ngôi làng nhỏ, người ta dùng một bể chứa hình cầu như hình bên. Lượng nước V chứa trong bể được cho bởi công thức: $\pi h^2(3R-h)-3V=0$. Trong đó, $V: \text{thể tích}(m^3), h: \text{mưc}$ nước trong bể (m), R: bán kính bể (m). Sử dụng phương pháp Newton với 3 lần lặp và nghiệm ban đầu $x_0 = \mathcal{M}$, xác định mực nước h_3 trong bể khi $R = \mathcal{M}(\mathrm{m})$ và $\pi = 3.14$. Hãy ước lượng sai số tuyệt đối của h_3 trên đoạn $[h_3 - 0.5, h_3 + 0.5]$ theo công thức sai số tổng quát.

Muc nuớc=_

Câu hỏi 2. Cho hệ $\begin{cases} 15x_1 - x_2 = 1 \\ -\mathcal{M}x_1 + 20x_2 = 2\mathcal{M} \end{cases}$ với $X^{(0)} = \begin{pmatrix} 1 \\ \mathcal{M} \end{pmatrix}$. Sử dụng chuẩn vô cùng và sai số tiên nghiệm, so sánh tốc độ hội tụ của hai phương pháp Jacobi và Gauss-Seidel bằng cách tính số lần lặp tối thiểu để nghiệm có sai số nhỏ hơn 10^{-5} .

Kết quả: Số lần lặp tối thiểu pp Jacobi = _____; Số lần lặp tối thiểu pp GS =____

Câu hỏi 3. Trên mặt phẳng Oxy cho các điểm $\mathcal{M}_k(x_k, y_k)$ có tọa độ như sau

x_k	1.0	1.5 5.7	2.0	2.5	3	3.2	3.5	4.3	5
y_k	\mathcal{M}	5.7	4	3.5	4	4	5	4.5	4

Tìm đường cong $f(x) = Ax + Bx^2$ sao cho tổng bình phương khoảng cách từ y_k đến $f(x_k)$ là nhỏ nhất.

; B =_____

Câu hỏi 4. Cho tích phân $I = \int_1^4 \left(\frac{\ln(1+x^2)}{x} + ax\right) dx$. Sử dụng công thức hình thang mở rộng 10 đoạn chia, tính tích phân khi a=2. Với giá trị nào của a thì I=20.5?

Kết quả: I =

Câu hỏi 5. Trên mặt phẳng Oxy cho miền D giới han bởi các đường y = f(x), x = 1, x = 2.2 và truc Ox, trong đó 1.6 1.8 dữ liệu hàm f(x) được cho như sau: Dùng công -2M -1.4 -1.5-1.4 -2.1 -2.4 thức Simson mở rộng, tính diện tích miền D.

Kết quả: Diện tích =___

Câu hỏi 6. Cho bài toán Cauchy $y'(x) = (x+y)^2 - \cos x$ với điều kiện đầu y(0) = 0.5. Sử dụng phương pháp Runge-Kutta 4 xấp xỉ nghiệm tại x=0.2 và x=0.4 với bước chia h=0.2.

Câu hỏi 7. Cho spline bậc ba nội suy hàm f(x) như sau

$$S(x) = \begin{cases} 2\mathcal{M} + b_0(x-1) + 4(x-1)^2 + d_0(x-1)^3 & \text{n\'eu } x \in [1, \mathcal{M}] \\ 3\mathcal{M} + 3(x-\mathcal{M}) + c_1(x-\mathcal{M})^2 + d_1(x-\mathcal{M})^3 & \text{n\'eu } x \in [\mathcal{M}, \mathcal{M}+3] \end{cases}.$$

Biết $f'(1) = f'(\mathcal{M} + 3)$. Tìm b_0, d_0, c_1, d_1 .

 $b_0 = \underline{\hspace{1cm}}; d_0 = \underline{\hspace{1cm}}; c_1 = \underline{\hspace{1cm}}; d_1 = \underline{\hspace{1cm}}; d_1$ chia h=0.25. Sử dụng phương pháp Euler, tính giá trị xấp xỉ của nghiệm tại t=0.5 và t=1.

> **Kết quả:** Nghiệm xấp xỉ tại t = 0.5

Câu hỏi 9. Cho bài toán biên $\begin{cases} e^x y'' + (\ln x) y' - (\sin x) y = \cos x \\ y(0.5) = 2.5, \quad y(1.25) = \mathcal{M} \end{cases}$, dùng phương pháp sai phân hữu hạn tính gần đúng y(0.75), y(1.0) với bước chia h=0.2

> y(1.0) =**K**ết quả: y(0.75) =____

Câu hỏi 10. (Kirchoff's law) Mối liên hê giữa các đai lương trong một mạch điện được biểu diễn như sau:

$$V(t) = L\frac{dI}{dt} + RI,$$

trong đó V là điện áp (Volt), L là độ tự cảm(Henries), R là điện trở (Ohm), I là cường độ dòng điện(Ampere), t là thời gian đo bằng giây. Máy đo cường độ dòng điện tại một số thời điểm t như sau:

t	1	1.03	1.05	1.08
I	\mathcal{M}	4.5	4.57	5.32

Sử dung nôi suy đa thức, tính cường đô dòng điện và điện áp tại thời điểm t = 1.06 giây, biết L = 0.94(H)và $R = 0.15(\Omega)$.

V(1.06) =Kết quả: I(1.06)=___