21/05/2025 - Matematicas Discretas 1 (Ude@ | WV 14-16)

1. Repaso rapido de la clase anterior:

- a. Equivalencia:
 - \bigcirc $\forall_{\times} \ \neg \neg P(\times) = \forall_{\times} P_{(\times)}$
 - ② ヨンコントンテョントにXE
- b. Leyes de Margan cuanticas
 - $(E \Rightarrow V \cap V)$ $(x) q \cap x E = (x) q \times V \cap A$
- c. Alcance: El uso de () Asociatividad

Prioridad Operador

- (A) =
 - 2
 - 3
- <u>•</u> لا
 - 5
 - 6

tyemplo:

 $\frac{\forall x P(x)}{\Diamond} \vee \underbrace{\partial} (x) = (\forall x P(x)) \vee \partial (x)$

Ojo: Yx P(x) V O(x) = Yx (P(x) v O(x))

2. Cuantificadores anidados:

indores anidados:

Externo

Internoli for i in Eo, i)

Vi Vj P(i,j)

Leo, j = 1,2,3Vi ($\forall j$ P(a,j) $\lambda = 0$, j = 1,2,3 $\lambda = 0$, $\lambda = 0$,

a. Orden de los cuantificadores

(1) (nantificadores ignals: El orden no importa $\forall x \forall y P(x,y) = \forall y \forall x P(x,y)$ $\exists x \exists y P(x,y) = \exists y \exists x P(x,y)$

(2) Cuantificadores son differentes - E) orden importation $\forall x \exists y P(x,y) \neq \exists y \forall x P(x,y)$ No se dice lo mismos.

b. Alcance of el contexto

- Evitar la ambigüedad - Los parentesis bien usados
dan claridad

 $\forall x \exists y \text{ ama}(x,y) \equiv \forall x (\exists y (\text{ama}(x,y)))$

 $\exists x \forall y \text{ ama}(x,y) = \forall x (\exists y (\text{ama}(x,y)))$

tjemp >>

Vx (estudiante(x) → ∃y(libroly) ~ lee(x,y))

Alcance y

Alcance x

Todos los estudiantes leen algun libro

3. Traducción de expresiones de lenguaje Formal Natural

Formas Avistotelicas:

Las cuatro formas aristotélicas son proposiciones categóricas básicas que forman la base del silogismo clásico en la lógica aristotélica:

Forma	Enunciado	Forma Aristotélica	Lógica de predicados	Ejemplo
Forma A: Universal afirmativa	Todos los S son P	A(S,P)	$\forall x \left(S(x) \rightarrow P(x)\right)$ Interpretación: Para todo x, si x es un S, entonces x es un P.	Ejemplo: Todos los hombres son mortales. Expresión: $\forall x \big(hombre(x) \rightarrow mortal(x) \big)$
Forma E: Universal afirmativa	Ningún S es P	E(S,P)	$\forall x \left(S(x) \rightarrow \neg P(x)\right)$ Interpretación: Para todo x, si x es un S, entonces x no es un P.	Ejemplo: Ningún cuadrado es circulo. Expresión: $\forall x (cuadrado(x) \rightarrow \neg circulo(x))$
Forma : Particular afirmativa	Álgún S es P	I(S,P)	$\exists x \big(S(x) \land P(x) \big)$ Interpretación: Existe al menos un x tal que x es S y también es P.	Ejemplo: Alguno estudiante es ingeniero. Expresión: $\exists x (estudiante(x) \land ingeniero(x))$
Forma (): Particular negativa	Algún S no es P	O(S,P)	$\exists x (S(x) \land P(x))$ Interpretación: Existe al menos un x tal que x es S y no es P.	Ejemplo: Algún pájaro no vuela. Expresión: $\exists x \big(pajaro(x) \land \neg vuela(x) \big)$

Ezemplos

Ejemplo 1:

Usando los predicados

- Persona(p): p es una persona
- Ama(x, y): que indica que x ama a y,

A, B, B

Escriba una oración en lógica de primer orden que signifique:

"Cada persona ama a alguien".

Solución: Vx (persona(x) -> = = y (persona(y) 1(x = y) 1 ama (x,y))

Ejemplo 2: Usando los predicados

- Persona(p): p es una persona
- Ama(x, y): que indica que x ama a y,

Escriba una oración en lógica de primer orden que signifique:

