Latent variable models in biology and ecology

Chapter 5: A gentle introduction to Variational Neural Networks

Sophie Donnet. INRAC

Master 2 MathSV. February 12, 2024

Context

- In statistical learning, two main tasks:
 - Regression or classification
 - Reduction of dimension

Neural networks are used to construct the regression function, classifier or encoder-decoder (autoencoder).

- Variational versions are used when we do not want to optimize a parameter but a probability distribution
 - if one wants to structure the latent space
 - if one wants to perform Bayesien inference
- Relies on
 - Neural networks : we know already
 - Variational EM algorithm: we know already, but anyway it is not complicated

Overview

Basics on regression, classification, reduction of dimension

Neural networks

- Definition of neural networks
- PCA versus autoencoder
- A few reminder on the optimization procedure
- Variational versions of neural networks
 - Motivations
 - Variational (probabilistic) autoencoder
 - Variational bayesian inference

Neural networks

Variational versions of neural networks

Regression or classification

- Let (X, Y) be our dataset:
 - $(X,Y) = (X_i, Y_i)_{i \in 1,...,N_{obs}}$
 - $\forall i = 1, ..., N_{obs}$, Variables $X_i \in \mathbb{R}^n$.
 - $Y_i \in \mathcal{Y}$ the variable to explain : classification or regression
- Looking for a function f classifier or regression
 - $f: \mathbb{R}^n \mapsto \mathcal{Y}$ and
 - such that

$$Y \approx f(X) \Leftrightarrow \mathsf{Loss}(Y - f(X)) \mathsf{small}$$

- If regression Loss $(Y f(X)) = ||Y f(X)||^2$
- If classification : Loss = cross-entropy

Regression or classification

Reduction of dimension

Autoencoders are used for the reduction of dimension of (large) datasets.

Let X be our dataset: $\mathbf{X} = (X_i)_{i \in 1,...,N_{obs}}$

- $\forall i = 1, \ldots, N_{obs}, X_i \in \mathbb{R}^n$.
- Looking for two functions
 - **Encoder** $e: \mathbb{R}^n \mapsto \mathbb{R}^m$ and
 - Decoder $d: \mathbb{R}^m \mapsto \mathbb{R}^n$
- such that

$$X \approx d(e(X)) \Leftrightarrow ||X - d(e(X))||^2 \text{ small}$$

• Z = e(X) : latent variable

7

Autoencoder

Neural networks

Definition of neural networks

PCA versus autoencoder

A few reminder on the optimization procedure

Variational versions of neural networks

Neural networks

Definition of neural networks

PCA versus autoencoder

A few reminder on the optimization procedure

Variational versions of neural networks

About *f*: neural networks

About d and e: neural networks

About neural networks

One neuron : $f_j(\mathbf{X}) = \phi(\langle w_j, \mathbf{x} \rangle + b_j)$ where

- ullet ϕ the activation function : non linear
- $w_j = (w_j^1, \dots, w_j^n)$ are the weights of the input variables (x^1, \dots, x^n)
- b_i is the bias of neuron j.

At each layer ℓ of the neural network:

- Receive $n_{\ell-1}$ input variables $\mathbf{y}^{\ell-1} = (y_1^{\ell-1}, \dots, y_{n_{\ell-1}}^{\ell-1})$
- Create n_{ℓ} new variables. For variable j of layer l:

$$y_j^\ell = \phi(\langle w_j^\ell, \mathbf{y}^{\ell-1} \rangle + b_j^\ell)$$

Unknown parameters θ

- $w_j^\ell \in \mathbb{R}^{n_\ell-1}$, for $\ell=1,\ldots L$, for $j=1,\ldots,n_\ell$,
- $b_i^\ell \in \mathbb{R}$, for $\ell = 1, \ldots L$, for $j = 1, \ldots, n_\ell$,

Model choice

To choose:

- The number of layers *L*
- The number of neurons in each layer: n_ℓ :
- possibly $n_{\ell} > n$
- For **autoencoder** the middle layer *m* < *n*
- The activation function ϕ (possibly one for the hidden layers ϕ and one ψ for the activation layer)

Learning f, d and e

Regression or classification

 $\theta = (w_j^{\ell}, b_j^{\ell})_{j=1,\dots,n_{\ell},\ell=1,\dots,L}$ are calibrated on a dataset $(X_i, Y_i)_{i=1,\dots,N_{obs}}$ by minimizing the loss function

$$\widehat{\theta} = \operatorname{argmin}_{\theta \in \Theta} \sum_{i=1}^{N_{obs}} \operatorname{Loss}(Y_i - f_{\theta}(X_i))$$

Autoencoder

 $\theta = (w_j^\ell, b_j^\ell)_{j=1...,N_{\ell},\ell=1,...,L}$ are calibrated on a dataset $(X_i)_{i=1,...,N_{obs}}$ by minimizing the loss function

$$\widehat{\theta} = \operatorname{argmin}_{\theta \in \Theta} \sum_{i=1}^{N_{obs}} ||X_i - d_{\theta} \circ e_{\theta}(X_i)||^2$$

Optimisation by Stochastic gradient descent: see later for a reminder of the principle

Neural networks

Definition of neural networks

PCA versus autoencoder

A few reminder on the optimization procedure

Variational versions of neural networks

PCA versus autoencoder

- Let $P \in M_{n,m}(\mathbb{R})$,
- Hyp.:

$$P'P = I_n$$

- Let $P'X_i$ is the projector of vector X_i on the sub-vectorial space generated by the columns of P.
- We are looking for P minimizing the inertia of the projected dataset:

$$\begin{split} \widehat{P} &= \operatorname{argmax}_{\{P \in M_{n,m}(\mathbb{R}), P'P = I_n\}} \sum_{i=1}^{N_{obs}} ||P'X_i||^2 \\ &= \operatorname{argmin}_{\{P \in M_{n,m}(\mathbb{R}), P'P = I_n\}} \sum_{i=1}^{N_{obs}} ||X_i - PP'X_i||^2 \end{split}$$

PCA versus autoencoder

- W' = e: **linear** encoder function
- W = d: **linear** decoder function
- Note that if you use neural networks with linear activation function and one layer, you will get W not necessarily orthogonal.

Link to a rigourous and clear demonstration

Neural networks

Definition of neural networks

PCA versus autoencoder

A few reminder on the optimization procedure

Variational versions of neural networks

Minimization by Stochastic gradient descent.

Algorithm (by Rumelhart et al (1988))

- Choose an initial value of parameters θ and a learning rate ρ
- Repeat until a minimum is reached:
 - Split randomy the training set into N_B batches of size b ($n = b \times N_B$)
 - for each batch B set:

$$\theta := \theta - \rho \frac{1}{b} \sum_{i \in B} \nabla_{\theta} \left\{ \mathsf{Loss}(f(\mathbf{X}_i, \theta), Y_i) \right\}$$

Remarks:

- Each iteration is called an *epoch*.
- The number of epochs and batches are parameters to tune
- Difficulty comes from the computation of the gradient

Calculus of the gradient for the regression

- $Y \in \mathbb{R}$.
- $R_i = \operatorname{Loss}(f(\mathbf{X}_i, \theta), Y_i) = (Y_i f(\mathbf{X}_i, \theta))^2$
- \bullet For any activation function ϕ (hidden layers) and ψ

Partial derivatives of R_i with respect to the weights of the last layer

- Derivatives of $R_i = (Y_i f(\mathbf{X}_i, \theta))^2 = (Y_i h^{(L+1)}(\mathbf{X}_i))^2$ with respect to $(w_i^{(L+1)})_{j=1...J_L}$
- $a^{(L+1)}(\mathbf{X}) = b^{(L+1)} + w^{(L+1)}h^{(L)}(\mathbf{X}) \in \mathbb{R}^J$

ı

$$f(\mathbf{X}, \theta) = h^{(L+1)}(\mathbf{X})$$

$$= \psi(a^{(L+1)}(\mathbf{X}))$$

$$= \psi\left(b^{(L+1)} + \sum_{j=1}^{J_L} w_j^{(L+1)} h_j^{(L)}(\mathbf{X})\right)$$

$$\frac{\partial R_i}{\partial w_i^{(L+1)}} = -2\left(Y_i - f(\mathbf{X}_i, \theta)\right) \psi'\left(a^{(L+1)}(\mathbf{X}_i)\right) h_j^{(L)}(\mathbf{X}_i)$$

Partial derivatives of R_i with respect to the weights of the layer L-1

• Derivatives of
$$R_i = (Y_i - h^{(L+1)}(\mathbf{X}_i))^2$$
 with respect to $(w_{jm}^{(L)})_{j=1...J_L,m=1...J_{L-1}}$

ì

$$\frac{\partial R_i}{\partial w_{jm}^{(L)}} = -2(Y_i - f(\mathbf{X}_i, \theta)) \psi'\left(a^{(L+1)}(\mathbf{X}_i)\right) \frac{\partial}{\partial w_{jm}^{(L)}} a^{(L+1)}(\mathbf{X}_i)$$

Partial derivatives of R_i with respect to the weights of the layer L-2

$$a^{(L+1)}(\mathbf{X}) = b^{(L+1)} + \sum_{j=1}^{J_L} w_j^{(L+1)} h_j^{(L)}(\mathbf{X})$$

$$= b^{(L+1)} + \sum_{j=1}^{J_L} w_j^{(L+1)} \phi \left(b_j^{(L)} + \sum_{m=1}^{J_{L-1}} w_{jm}^{(L)} h_m^{(L-1)}(\mathbf{X}) \right)$$

$$\frac{\partial}{\partial w_{jm}^{(L)}} a^{(L+1)}(\mathbf{X}_{i}) = w_{j}^{(L+1)} \phi' \left(b_{j}^{(L)} + \sum_{m=1}^{J_{L-1}} w_{jm}^{(L)} h_{m}^{(L-1)}(\mathbf{X}_{i}) \right) \\
\times h_{m}^{(L-1)}(\mathbf{X}_{i}) \\
= w_{j}^{(L+1)} \phi'(a_{j}^{L}(\mathbf{X}_{i})) h_{m}^{(L-1)}(\mathbf{X}_{i})$$

Forward-Backward algorithm (at each iteration)

After some light effort, recurrence formula

- Given the current parameters
 - Forward step : From layer 1 to layer L+1, compute the $a_i^{\ell}(\mathbf{X}_i), \phi(a_i^{\ell}(\mathbf{X}_i))$
 - **Backward step**: From layer L+1 to layer 1, compute the partial derivatives (recurrence formula update)

Tuning the algorithm

- ρ : learning rate of the gradient descent
 - ullet if ho too small, really slow convergence with possibly reaching of a local minimum
 - ullet if ho too large, maybe oscilliation around an optimum without stabilisation
 - Adaptive choice of ρ (decreasing ρ)
- Batch calculation reduces the number of quantities to be stored in the forward / backward

Obviously

Many improved versions of the maximisation algorithm (momentum correction, Nesterov accelerated gradient, etc. . .)

Automatic differentiation

Success of the neural network comes from automatic differentiation, i.e. automatisation of the previously described forward-backward procedure to compute the derivatives: Tensorflow

Neural networks

Variational versions of neural networks

Motivations

Variational (probabilistic) autoencoder

Variational bayesian inference

Neural networks

Variational versions of neural networks

Motivations

Variational (probabilistic) autoencoder

Variational bayesian inference

Why variational neural networks?

Regression-Classification : Bayesian inference of the parameters θ

- Prior on θ : $\pi(\theta)$
- Estimation not of θ but of the posterior distribution of θ : $p(\theta|\mathbf{Y})$

Autoencoder: give a structure on the latent space Z

- Distribution on Z: $\pi(Z)$
- Point estimation of θ and estimation of the posterior distribution of Z : p(Z|θ, X)

Variational: approximation of the distributions

- $p(\theta|\mathbf{Y}) \approx q_{\mathbf{Y}}(\theta)$
- $p(Z|\theta,\mathbf{X})\approx q_{\mathbf{X}}(Z)$

Using the autoencoder to simulate

- The optimization of the autoencoder supplies $(Z_1, ..., Z_{N_{obs}}) = (e(x_1), ..., e(X_{N_{obs}}))$
- How can we simulate the z's such that d(z) looks like my original data?
- How to construct a "machine" able to generate coherent other Z_i .
- Need to constrain/ structure the latent space.

Probabilistic version of the autoencoder

- Idea: put a probabilistic distribution on the latent space and estimate the posterior distribution.
- A statistical model with latent variables

$$X_{i} = d(Z_{i}) + \epsilon_{i}$$

$$Z_{i} \sim_{i.i.d.} N_{m}(0, I_{m})$$

$$\epsilon_{i} \sim_{i.i.d.} \mathcal{N}_{n}(0, cI_{n})$$

Likelihood

$$\ell(\mathbf{X};d) = \int_{\mathbf{Z}} p(\mathbf{X}|\mathbf{Z};d)p(\mathbf{Z})d\mathbf{Z}$$

Not explicit

• EM requires the posterior distribution of **Z**

$$p(\mathbf{Z}|\mathbf{X};d) \propto p(\mathbf{X}|\mathbf{Z};d)p(\mathbf{Z})$$

Neural networks

Variational versions of neural networks

Motivations

Variational (probabilistic) autoencoder

Variational bayesian inference

The problem

$$\mathbf{X}_{i} = d_{\theta}(Z_{i}) + \epsilon_{i}$$

$$Z_{i} \sim {}_{i.i.d.}N_{m}(0, I_{m})$$

$$\epsilon_{i} \sim {}_{i.i.d.}\mathcal{N}_{n}(0, \sigma^{2}I_{n})$$

Likelihood

$$\ell(\mathbf{X}; d_{ heta}) = \int_{\mathbf{Z}} \ell(\mathbf{X}|\mathbf{Z}; d_{ heta}) p(\mathbf{Z}) d\mathbf{Z}$$

No explicit form, linked of the fact that $p(\mathbf{Z}|\mathbf{X}; d_{\theta})$ is complex

The Evidence Lower BOund (ELBO)

• Let's simplify that distribution $p(\mathbf{Z}|\mathbf{X}; d_{\theta})$

$$\begin{aligned} & p(\mathbf{Z}|\mathbf{X}; d_{\theta}) &= q_{\mathbf{X}}(\mathbf{Z}; g, H) \\ & \prod_{i=1}^{N_{obs}} p(Z_i|X_i; d_{\theta}) &\approx \prod_{i=1}^{N_{obs}} q_{X_i}(Z_i; g, H) \\ & q_{X_i}(Z_i; g, h) &= \mathcal{N}_m(g(\mathbf{X}_i), H(g(\mathbf{X}_i))) \end{aligned}$$

where g and H are chosen such that $D_{KL}(q(\mathbf{Z}; \mathbf{X}, g, H), p(\mathbf{Z}|\mathbf{X}; d_{\theta}))$ is small

Replace the likelihood by the ELBO

$$\begin{aligned} \mathsf{ELBO}(d_{\theta}, g, H) &= & \ell(\mathbf{X}; d_{\theta}) - D_{\mathsf{KL}}(q(\mathbf{Z}; \mathbf{X}, g, H), p(\mathbf{Z} | \mathbf{X}; d)) \\ &= & \mathbb{E}_{q_{\mathbf{X}}(\mathbf{Z}; g, H)}[\log p(\mathbf{X} | \mathbf{Z}; d_{\theta})] - D_{\mathsf{KL}}(q_{\mathbf{X}}(\mathbf{Z}; g, H), p(\mathbf{Z})) \end{aligned}$$

Optimization: minimize -ELBO(d, g, H)

$$-\mathsf{ELBO}(d,g,H) = -\mathbb{E}_{q_{\mathbf{X}}(\mathbf{Z};g,H)}[\log p(\mathbf{X}|\mathbf{Z};d_{\theta})] + D_{\mathsf{KL}}(q_{\mathbf{X}}(\mathbf{Z};g,h),p(\mathbf{Z}))$$

Reconstruction term

$$-\mathbb{E}_{q_{\mathbf{X}}(\mathbf{Z};g,H)}[\log p(\mathbf{X}|\mathbf{Z};d_{\theta})] = \mathbb{E}_{q_{\mathbf{X}}(\mathbf{Z};g,H)}\left[\sum_{i=1}^{N_{obs}} \frac{||\mathbf{X}_{i} - d_{\theta}(Z_{i})||^{2}}{2\sigma^{2}}\right]$$

- Regularisation term : D_{KL}
- σ^2 : variance parameter which balances regularisation and reconstruction

About d_{θ} , g and H

 d_{θ} neural network function as before

About g and H: called the "encoder part"

- H(X) is a covariance so
 - it should be a square symmetric matrix
 - **Simplification**: diagonal matrix $H(\mathbf{X}) = diag(h^2(X))$ where $h(X) \in \mathbb{R}^m$
- $h(X) = h_2(h_1(X)), g(X) = g_2(g_1(X)), g_1 = h_1$
- g_2, g_2, h_1 neural networks

About the expectation

- $\mathbb{E}_{q_{\mathbf{X}}(\mathbf{Z};g,h)}\left[\sum_{i=1}^{N_{obs}}\frac{||\mathbf{X}_i-d_{\theta}(Z_i)||^2}{2\sigma^2}\right]$ can not be evaluated.
- Monte Carlo approximation on 1 realization
- Reparametrisation trick

$$Z_i^{sim} = g(X_i) + diag(h(X_i))\zeta_i, \quad \text{ with } \xi_i \sim \mathcal{N}_m(0, \mathbb{I}_m)$$

$$\mathbb{E}_{q_{\mathbf{X}}(\mathbf{Z};g,h)} \left[\sum_{i=1}^{N_{obs}} \frac{||\mathbf{X}_{i} - d_{\theta}(Z_{i})||^{2}}{2\sigma^{2}} \right] \approx \sum_{i=1}^{N_{obs}} \frac{||\mathbf{X}_{i} - d_{\theta}(Z_{i}^{(sim)})||^{2}}{2\sigma^{2}}$$
$$\sum_{i=1}^{N_{obs}} \frac{||\mathbf{X}_{i} - d_{\theta}(g(X_{i}) + diag(h(X_{i}))\zeta_{i})||^{2}}{2\sigma^{2}}$$

Finally...

loss =
$$C || x - x^2 ||^2 + KL[N(\mu_x, \sigma_x), N(0, I)] = C || x - f(z) ||^2 + KL[N(g(x), h(x)), N(0, I)]$$

Basics on regression, classification, reduction of dimension

Neural networks

Variational versions of neural networks

Motivations

Variational (probabilistic) autoencoder

Variational bayesian inference

Principal of variational Bayesian inference

- Approximate the posterior $p(\theta|Y)$ by $q(\theta)$ where $q \in \mathcal{R}$
- \mathcal{R} family of simpler distributions. **Example**: $q(\cdot) = \mathcal{N}(\mu, \Sigma)$
- Approximating = Minimizing

$$D_{\mathsf{KL}}(q(\theta), p(\theta|\mathbf{Y})) = \mathbf{E}_q \left[\log \frac{q(\theta)}{p(\theta|\mathbf{Y})} \right]$$

The Magik trick

$$D_{\mathsf{KL}}(q(\theta), p(\theta|\mathbf{Y})) = \log \ell(\mathbf{Y}) + \left[-\underbrace{\mathbf{E}_q[\log \ell(\mathbf{Y}|\theta)\pi(\theta)] + \mathbf{E}_q[\log q(\theta)]}_{\mathcal{F}(q)} \right]$$

- $\log \ell(\mathbf{Y})$ independent of q
- Minimizing the Kullback–Leibler divergence w.r. to q is equivalent to minimizing $\mathcal{F}(q)$ with respect to q

$$\mathcal{F}(q) = -\mathbf{E}_q[\log \ell(\mathbf{Y}|\theta)\pi(\theta)] + \mathbf{E}_q[\log q(\theta)]$$
 (1)

$$= -\mathbf{E}_q[\log \ell(\mathbf{Y}|\theta)] + \mathbf{E}_q\left[\log \frac{q(\theta)}{\pi(\theta)}\right]$$
 (2)

$$= D_{\mathsf{KL}}(q,\pi) - \mathbf{E}_q[\log \ell(\mathbf{Y}|\theta)]$$
 (3)

Parametrization of q

Choose a **parametric** form in $q = q_{\eta}$.

• For example: $q = \mathcal{N}(\mu, \Sigma)$

$$\hat{\eta} = \arg\min_{\eta} \mathcal{F}(\eta) = \arg\min_{\eta} D_{\mathsf{KL}}(q_{\eta}, \pi) - \mathbf{E}_{q_{\eta}}[\log \ell(\mathbf{Y}|\theta)]$$

- Optimisation by gradient descent
- BUT expectation not explicit

Monte Carlo approximation

- With neural networks, $\mathbf{E}_{q_{\eta}}[\log \ell(\mathbf{Y}|\theta)]$ not explicit (activation functions non linear)
- Approximation by Monte Carlo : assume that $heta^{(m)} \sim q_{\eta}$, $m=1,\ldots,M$

$$\widehat{\mathcal{F}}(\eta) = \frac{1}{M} \sum_{m=1}^{M} \log \frac{q_{\eta}(\theta^{(m)})}{\pi(\theta^{(m)})} - \log \ell(\mathbf{Y}|\theta^{(m)})$$

- **Problem**: we lost the explicit dependence in η through the simulations $\theta^{(m)}$
- Solution : reparametrisation

$$\xi^{(m)} \sim \mathcal{N}(0, \mathbf{I})$$
 and $\theta^{(m)} = \phi(\xi^{(m)}, \mathbf{\eta})$

$$\widehat{\mathcal{F}}(\eta) = \frac{1}{M} \sum_{m=1}^{M} \log q_{\eta}(\phi(\xi^{(m)}, \eta)) - \log \pi(\phi(\xi^{(m)}, \eta)) - \log \ell(\mathbf{Y} | \phi(\xi^{(m)}, \eta))$$

Remarks

$$\widehat{\mathcal{F}}(\eta) = \frac{1}{M} \sum_{m=1}^{M} \log q_{\eta}(\phi(\xi^{(m)}, \eta)) - \log \pi(\phi(\xi^{(m)}, \eta)) - \log \ell(\mathbf{Y} | \phi(\xi^{(m)}, \eta))$$

- People take M=1
- $D_{\mathsf{KL}}(q_{\eta},\pi)$ may be explicit (for Gaussian distributions for instance) but not used in practice
- $\xi^{(m)}$ are resimulated each time we compute the gradients

More details for the regression case

- θ are the parameters (weights and bias)
- Prior gaussian distribution on θ : $\theta \sim \mathcal{N}(0, \mathbb{I})$
- If regression $Y_i = f_{\theta}(X_i) + \epsilon_i$, $\epsilon \sim \mathcal{N}(0, \sigma^2)$

$$-\ell(\mathbf{Y}, \phi(\xi^{(m)}, \eta)) = \left[\sum_{i=1}^{N_{obs}} \frac{||Y_i - f_{\phi(\xi^{(m)}, \eta)}(X_i)||^2}{2\sigma^2} \right]$$

Conclusion

- Easy to understand all the tools
- Now, how easy is it to encode this?