Classifier Evaluation

28 May 2019

Vineeth N Balasubramanian

ML Problems: Recall

Unsupervised Learning Supervised Learning Discrete classification or clustering categorization Continuous dimensionality regression reduction

Classification Methods

- k-Nearest Neighbors
- Decision Trees
- Naïve Bayes
- Support Vector Machines
- Logistic Regression
- Neural Networks
- Ensemble Methods (Boosting, Random Forests)

How to evaluate?

Training vs Generalization Error

- Training Error
 - Not very useful
 - Relatively easy to obtain low error
- Generalization Error
 - How well we do on future data

How to compute generalization error?

$$E_{train} = \frac{1}{n} \sum_{\substack{i=1 \text{training} \\ \text{examples}}}^{n} \underbrace{error(f_D(\mathbf{x}_i), y_i)}_{\text{value we true}}$$

Estimating Generalization Error

Testing Error

- Set aside part of training data (testing set)
- Learn a predictor without using any of this test data
- Predict values for testing set, compute error
- This is an estimate of generalization error

$$E_{test} = \frac{1}{n} \sum_{i=1}^{n} error(f_D(\mathbf{x}_i), y_i)$$

Underfitting and Overfitting

Regression

predictor too inflexible: cannot capture pattern

predictor too flexible: fits noise in the data

Classification

Estimating Generalization Error

Getting an unbiased estimate of the accuracy of a learned model

Example: Image Classification

Source: Derek Hoiem

Training, Validation, Test Sets

Training set

• NB: Count frequencies, DT: Pick attributes to split on

Validation set

- Pick best-performing algorithm (NB vs DT vs..)
- Fine-tune parameters (Tree depth, k in kNN, c in SVM)

Testing set

Run multiple trials and average

Use of Validation Sets

• If we want unbiased estimates of accuracy during the learning process:

Choosing Training, Validation, Test Sets

- Split randomly to avoid bias
- Large test set -> estimate future error as accurately as possible (vs)
 Large training set => better estimates
- How large should a training set be?
 - Study accuracy/error (vs) training set size

Courtesy: Perlich et al. Journal of Machine Learning Research, 2003

Random Resampling

• We can artificially increase training set size using random resampling:

Stratified Sampling

- When randomly selecting training or validation sets, we may want to ensure that class proportions are maintained in each selected set
- This can be done via stratified sampling: first stratify instances by class, then randomly select instances from each class proportionally.

Model Selection

- Resubstitution
- K-fold cross-validation

- Leave-one-out
 - N-fold cross-validation

Cross-Validation: Example

• Suppose we have 100 instances, and we want to estimate accuracy with cross

validation

iteration	train on	test on	correct
1	$\mathbf{S}_2 \ \mathbf{S}_3 \ \mathbf{S}_4 \ \mathbf{S}_5$	S ₁	11 / 20
2	S ₁ S ₃ S ₄ S ₅	S ₂	17 / 20
3	S ₁ S ₂ S ₄ S ₅	s ₃	16 / 20
4	s ₁ s ₂ s ₃ s ₅	S ₄	13 / 20
5	S ₁ S ₂ S ₃ S ₄	S ₅	16 / 20

Classification Accuracy = 73/100 = 73%

Note: Whenever we use multiple training sets, as in CV and random resampling, we are evaluating a learning method as opposed to an individual learned model

Cross-Validation: Example

• Instead of a single validation set, we can use cross-validation within a training set to select a model (e.g. to choose the best k in k-NN)

Classifier Evaluation

Evaluation Measures

- Classification
 - How often we classify something right/wrong
- Regression
 - How close are we to what we're trying to predict
- Ranking/Search
 - How correct are the top-k results?
- Clustering
 - How well we describe our data (Not straightforward)

Is accuracy adequate?

- Accuracy may not be useful in cases where
 - There is a large class skew
 - Is 98% accuracy good if 97% of the instances are negative?
 - There are differential misclassification costs say, getting a positive wrong costs more than getting a negative wrong
 - Consider a medical domain in which a false positive results in an extraneous test but a false negative results in a failure to treat a disease
 - We are most interested in a subset of high-confidence predictions

Classification Error: Beyond Accuracy

Evaluating Learning Algorithms: A Classification Perspective

Nathalie Japkowicz & Mohak Shah Cambridge University Press, 2011

Classification Error: Beyond Accuracy

In 2-class problems:

actual class

accuracy =
$$\frac{TP + TN}{TP + FP + FN + TN}$$

Classification Performance Measures

- True Positive Rate also called "Sensitivity"
- "Specificity" = I False Alarm

- Classification Error: $\frac{errors}{total} = \frac{FP + FN}{TP + TN + FP + FN}$
- Accuracy = 1-Error: $\frac{correct}{total} = \frac{TP + TN}{TP + TN + FP + FN}$

 if classes imbalanced

meaningless

- False Alarm = False Positive rate = FP / (FP+TN)
- Miss = False Negative rate = FN / (TP+FN)
- Recall = True Positive rate = TP / (TP+FN)
- Precision = TP / (TP+FP)

28-May-19

- "Sensitivity" = Probability of a positive test given a patient has the disease
- "Specificity" = Probability of a negative test given a patient is well

in pairs, e.g.: Miss / FA or Recall / Prec.

Classification Error: Beyond Accuracy

For multi-class problems?

Confusion Matrix

actual class

predicted class

Courtesy: vision.jhu.edu

28-May-19

Classifier Evaluation

Utility and Cost

- Sometimes, there is a cost for each error
 - E.g. Earthquake prediction
 - False positive: Cost of preventive measures
 - False negative: Cost of recovery
- Detection Cost (Event detection)
 - Cost = C_{FP} * FP + C_{FN} * FN
- F-measure (Information Retrieval)
 - FI = 2/(I/Recall + I/Precision)

ROC Curves

- Many algorithms compute "confidence" f(x)
 - Threshold to get decision: spam if f(x) > t, non-spam if f(x) <= t
 - Threshold to determine error rates
- Receiver Operating Characteristic (ROC)

28-May-19

Classifier Evaluation

24

ROC Curve: Algorithm

- Sort test-set predictions according to confidence that each instance is positive
- Step through sorted list from high to low confidence
 - Locate a threshold between instances with opposite classes (keeping instances with the same confidence value on the same side of threshold)
 - Compute TPR, FPR for instances above threshold
 - Output (FPR, TPR) coordinate

ROC Curves

 A Receiver Operating Characteristic (ROC) curve plots the TP-rate vs. the FP-rate as a threshold on the confidence of an instance being positive is varied

ROC Curve: Example

Courtesy: Bockhorst et al., Bioinformatics 2003

Classifier Evaluation

Plotting an ROC Curve

instance	confider positive	nce	correct class
Ex 9	.99		+
Ex 7	.98	TPR= 2/5, FPR= 0/5	+
Ex 1	.72	TPR= 2/5, FPR= 1/5	-
Ex 2	.70		+
Ex 6	.65	TPR= 4/5, FPR= 1/5	+
Ex 10	.51		-
Ex 3	.39	TPR= 4/5, FPR= 3/5	_
Ex 5	.24	TPR= 5/5, FPR= 3/5	+
Ex 4	.11		-
Ex 8	.01	TPR= 5/5, FPR= 5/5	_

Plotting an ROC Curve

Can interpolate between points to get convex hull

Classifier Evaluation

ROC Curves and Misclassification Costs

Classifier Evaluation

Recall: Precision-Recall

actual class

recall (TP rate) =
$$\frac{TP}{\text{actual pos}}$$
 = $\frac{TP}{TP + FN}$

precision =
$$\frac{TP}{\text{predicted pos}} = \frac{TP}{TP + FP}$$

Precision/Recall Curves

• A precision/recall curve plots the precision vs. recall (TP-rate) as a threshold on the confidence of an instance being positive is varied

ROC + PR Curves: Example

Courtesy: Page, Univ of Wisconsion-Madison

Classifier Evaluation

Other Performance Measures

- Kullback-Leibler Divergence: $D_{\text{KL}}(P||Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$
- Gini Statistic:
 - 2 * AUC I
- F-score: Harmonic mean of precision and recall
 - (2 * precision * recall)/(precision+recall)
- Akaike Information Criterion:
 - AIC = 2k 2 ln (L), where L is the max value of the likelihood function for the model, and k is the number of model parameters
 - Used for relative comparison between models

Confidence Intervals on Error

- Given the observed error (accuracy) of a model over a limited sample of data, how well does this error characterize its accuracy over additional instances?
- Suppose we have
 - a learned model h
 - a test set S containing n instances drawn independently of one another and independent of h
 - h makes r errors over the n instances
- Our best estimate of the error of h is: $error_s(h) = \frac{r}{n}$

Confidence Intervals on Error

• With approximately N% probability, the true error lies in the interval

$$error_{S}(h) \pm z_{N} \sqrt{\frac{error_{S}(h)(1 - error_{S}(h))}{n}}$$

- where z_N is a constant that depends on N (e.g. for 95% confidence, $z_N = 1.96$)
- For more information, please see
 - https://machinelearningmastery.com/confidence-intervals-for-machine-learning/

Classifier Evaluation

The Classifier Evaluation Framework

1 ---- 2 ; feedback from 1 should be used to adjust 2

28-May-19

Classifier Evaluation

Summarizing: Pitfalls

- Is my held-aside test data really representative of new data?
 - Even if your methodology is fine, someone may have collected features for positive examples differently than for negatives
 - Example: samples from cancer processed by different people or on different days than samples for normal controls
 - Randomization is essential

Pitfalls

- Did I repeat my entire data processing procedure on every fold of cross-validation, using only the training data for that fold?
 - On each fold of cross-validation, did I ever access in any way the label of a test case?
 - Any preprocessing done over entire data set (feature selection, parameter tuning, threshold selection) must not use labels from test set

Pitfalls

- Have I modified my algorithm so many times, or tried so many approaches, on this same data set that I (the human) am overfitting it?
 - Have I continually modified my preprocessing or learning algorithm until I got some improvement on this data set?
 - If so, I really need to get some additional data now to at least test on

Summary

- Rigorous statistical evaluation is extremely important in experimental computer science in general and machine learning in particular
- How good is a learned hypothesis?
- How close is the estimated performance to the true performance?
- Is one hypothesis better than another?
- Is one learning algorithm better than another on a particular learning task?

References

Key References

- Introduction to Machine Learning, Ethem Alpaydin, 2nd Edn, Chapter 19
- Pattern Recognition and Machine Learning, Christopher Bishop, Chapter I (Sec 1.1-1.5)

Other Recommended References

- http://www.icmla-conference.org/icmla11/PE_Tutorial.pdf (Tutorial on Performance Evaluation of Classifiers)
- Chapter 5 ('Evaluating Hypotheses'), Machine Learning by Tom Mitchell
 - http://www.cs.cmu.edu/~tom/mlbook.html