Chapter 2: Atoms, Molecules, and Ions

Learning outcomes:

- > Learn the basic postulates of Dalton's atomic theory.
- > Describe the key experiments that led to the discovery of electrons and the nuclear model of the atom.
- Describe the structure of the atom in terms of protons, neutrons, and electrons and express the relative electrical charges and masses of these subatomic particles.
- Use chemical symbols together with atomic number and mass number to express the subatomic composition of isotopes.
- Calculate the atomic weight of an element from the masses of individual atoms and a knowledge of natural abundances
- Describe how elements are organized in the periodic table by atomic number and by similarities in chemical behavior, giving rise to periods and groups.
- > Identify the locations of metals and nonmetals in the periodic table.
- > Distinguish between molecular substances and ionic substances in terms of their composition.
- > Distinguish between empirical formulas and molecular formulas.
- > Describe how molecular formulas and structural formulas are used to represent the compositions of molecules.
- Explain how ions are formed by the gain or loss of electrons and use the periodic table to predict the charges of common ions.
- > Write the empirical formulas of ionic compounds, given the charges of their component ions.
- > Write the name of an ionic compound given its chemical formula or write the chemical formula given its name.
- > Name or write chemical formulas for binary inorganic compounds and for acids.

Atomic Theory of Matter

- •Democritus (Greek philosopher) believed that there was a smallest particle— "atomos" (uncuttable, indivisible)—that made up all of nature.
- •Experiments in the eighteenth and nineteenth centuries led to an organized atomic theory by John Dalton in the early 1800s, which explained several laws known at that time:
 - The law of constant composition
 - The law of conservation of mass
 - The law of multiple proportions

Joseph Proust (1754-1826)

Law of Constant Composition

- Also known as the *law of definite* proportions.
- The elemental composition of a pure substance never varies.
- In a given compound, the relative numbers and kinds of atoms are constant.
- Basis of Dalton's Postulate #4

Antoine Laurent Lavoisier (1743-1794)

Law of Conservation of Mass (Matter)

- The total mass of substances present at the end of a chemical process is the same as the mass of substances present before the process took place.
- Basis of Dalton's Postulate #3
- Can't create matter in a chemical reaction!

John Dalton (1766-1844)

Law of Multiple Proportions

· If two elements A and B combine to form more than one compound, the masses of B that can combine with a given mass of A are in the ratio of small whole numbers.

1. Each element is composed of extremely small particles called atoms.

An atom of the element nitrogen

2. All atoms of a given element are identical, but the atoms of one element are different from the atoms of all other elements.

Dalton's Atomic Theory

Atoms of one element cannot be changed into atoms of a different element by chemical reactions; atoms are neither created nor destroyed in chemical reactions.

4. Compounds are formed when atoms of more than one element combine; a given compound always has the same relative number and kind of atoms.

four postulates

Discovery of Atomic Structure

Mid 1800's – scientists studied electrical discharge through partially evacuated tubes.

Path of cathode rays deflected by presence of a magnet.

J.J. Thomson (1856-1940)

Proposed in 1897 that Cathode Rays were actually particles (negatively charged) that we now know are electrons.

Thomson measured the charge/mass ratio of the electron to be 1.76×10^8 coulombs/gram (C/g).

Millikan Oil Drop Experiment Oil drops Hole in plate Microscope view 2 The force of gravity pulls Source of X rays drops downward but is opposed by the electric field 1 X-ray irradiation that pushes the negatively causes drops to charged drops upward. pick up electrons and become Electrically negatively charged. charged plates

- •Once the charge/mass ratio of the electron was known, determination of either the charge or the mass of an electron would yield the other.
- •Robert Millikan (1909) determined the charge on the electron, equal to 1.60×10^{-19} C.
- •Mass of an e⁻ could be calculated as 9.11× 10⁻²⁸ g.

Radioactivity:

The spontaneous emission of radiation by an atom.

First observed by Henri Becquerel. (1852-1908)

Also studied by Marie (1867-1934) and Pierre Curie (1857-1906). Discovered Po and Ra. Suggested that atoms of certain substances can disintegrate.

Radioactivity

Three types of radiation were discovered by Ernest Rutherford:

 α particles positively charged (+2), large mass β particles negatively charged (-1), small mass γ rays no charge, no mass

The Atom, circa 1900

- "Plum pudding" model, put forward by Thomson.
- Positive sphere of matter with negative electrons imbedded in it.

Sir Joseph John Thomson (1856-1940)

Discovery of the Nucleus

Ernest Rutherford shot α particles at a thin sheet of gold foil and observed the pattern of scatter of the particles.

Ernest Rutherford (1871-1937)

The Nuclear Atom

- •Since some particles were deflected at large angles. Thomson's model could not be correct.
- •Rutherford's nuclear model of the atom: all of the positive charge and most of the mass is concentrated at the center – the nucleus. Electrons occupy the rest of the space (volume) of the atom.

Subatomic Particles

Neutrons were discovered by James Chadwick in 1932.

TABLE 2.1 Comparison of the Proton, Neutron, and Electron

Particle	Charge	Mass (amu)
Proton	Positive (1+)	1.0073
Neutron	None (neutral)	1.0087
Electron	Negative $(1-)$	5.486×10^{-4}

1 amu is defined as 1/12 the mass of an unbound carbon atom carbon-12 at its rest state.

Atomic and Mass Numbers

Elements are represented by a one or two letter **symbol**, for which the first letter is always capitalized. C is the **symbol** for carbon.

Atomic number: equal to the number of protons in the nucleus. All atoms of the same element have the same number of protons. Denoted by "Z".

Mass number: equal to the sum of the number of protons and neutrons for an atom.

Atomic Mass

The mass of an atom in atomic mass units (amu) is the total number of protons and neutrons in the atom.

A carbon (C) atom with 6 protons and 6 neutrons is assigned a mass of exactly 12 amu.

Atomic mass unit (amu) is one-twelfth of the mass of an atom of carbon with 6 protons and 6 neutrons.

1 amu =
$$1.66054 \times 10^{-24}$$
 g
1 q = 6.02214×10^{23} amu

Isotopes

- Isotopes are atoms of the same element with different masses.
- Isotopes have different numbers of neutrons, thus different mass numbers.

$${}^{11}_{6}$$
C ${}^{12}_{6}$ C ${}^{13}_{6}$ C ${}^{14}_{6}$ C

TABLE 2.2	Some Isotopes of Carbon	a	
Symbol	Number of Protons	Number of Electrons	Number of Neutrons
¹¹ C	6	6	.5
¹² C	6	6	6
¹³ C	6	6	7
¹⁴ C	6	6	8

^a Almost 99% of the carbon found in nature is ¹²C.

Atomic Masses of the Elements

- **Isotopic mass** is the mass in amu (u), of a particular isotope of an element.
- Different isotopes of an element all react essentially the same, so a weighted average of isotopic masses can be used in calculations.
- The atomic weight is the weighted average mass, of the naturally occurring element. It is calculated from the isotopes of an element weighted by their relative abundances.

Atomic weight = $fraction_A m_A + fraction_B m_B + \cdots$ Atomic weight = $\sum [(isotope\ mass) \times (fractional\ isotope\ abundance)]$

Average atomic mass is known as the atomic weight.

Periodic Table:

- A systematic catalog of elements.
- Elements are arranged in order of atomic number.

Per	1A 1	- horizo			arrange	d in						contai		ertical c ments v ties				8A 18
1	1 H	2A 2	or or		ncreasir		ĺ		e line d		$\overline{}$		3A 13	4A 14	5A 15	6A 16	7A 17	2 He
2	3 Li	4 Be					ļ	metals		onmeta	Is		5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg	3B 3	4B 4	5B 5	6B 6	7B 7	8	8B 9	10	1B 11	2B 12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113	114 Fl	115	116 Lv	117	118
		als alloids metals		57 La 89	58 Ce 90	59 Pr 91	60 Nd 92	61 Pm 93	62 Sm 94	63 Eu 95	64 Gd 96	65 Tb 97	66 Dy 98	67 Ho 99	68 Er 100	69 Tm 101	70 Yb 102	
				Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	

A repeating pattern of chemical and physical properties is observed.

- Law of chemical periodicity: the properties of the elements are periodic functions of atomic number.
- Elements in the same *group* have similar chemical and physical properties.

The Periodic Table

Families/Groups: vertical columns. These have similar chemical/physical properties.

A groups: the main group

elements

B groups: the transition

elements

TABLE 2.3 Names of Some Groups in the Periodic Table

Group	Name	Elements
1A	Alkali metals	Li, Na, K, Rb, Cs, Fr
2A	Alkaline earth metals	Be, Mg, Ca, Sr, Ba, Ra
6A	Chalcogens	O, S, Se, Te, Po
7A	Halogens	F, Cl, Br, I, At
8A	Noble gases	He, Ne, Ar, Kr, Xe, Rn

The Periodic Table: Metals

Less metallic

Metals are on the left side of the periodic table.

- Shiny luster, ductile, malleable
- Conduct heat and electricity
- Solids (except mercury)

Nonmetals are on the right side of the periodic table (with the exception of H).

 Have a wide variety of properties (solids, liquids and gases) and do not conduct electricity well (except C as graphite).

The Periodic Table: Metalloids

Metalloids or semimetals: some **physical** characteristics of metals and chemical characteristics of nonmetal.

Metalloids border the stair-step line (with the exception of Al and Po).

Hydrogen, H₂ Oxygen, O2

Water, H₂O

Hydrogen peroxide, H₂O₂

Carbon monoxide, CO

Carbon dioxide, CO₂

Methane, CH₄

Ethylene, C₂H₄

Chemical Formulas

- The subscript to the right of the symbol of an element tells the number of atoms of that element in one molecule of the compound.
- Molecular compounds often contain only nonmetals.
- The attraction between molecules are often relatively weak, explaining why gases and liquids are common among molecular substances.
- Carbon is typically listed first in the formula, unless C is part of a polyatomic ion.

Water

Hydrogen peroxide

Methane

Diatomic Molecules

Seven elements occur naturally as molecules containing two atoms:

- Hydrogen
- Nitrogen
- Oxygen
- Fluorine
- Chlorine
- Bromine
- Iodine

Types of Formulas

- Molecular formulas give the exact number of atoms of each element in a compound.
- Empirical formulas give the lowest whole-number ratio of atoms of each element in a compound.
- Structural formulas show the order in which atoms are bonded.
- Perspective drawings also show the three-dimensional shape of atoms in a compound.

The element's symbol is followed by a superscript number and a sign that shows the charge on the ion in electron charge units.

If the ionic charge is one unit, the number is often omitted, e.g. Na^+ is the symbol for a sodium ion.

Ionic Bonds

Ionic compounds (such as NaCl) are generally formed between metals and nonmetals.

Writing Formulas

- Because compounds are electrically neutral, one can determine the formula of a binary compound this way:
 - The charge on the cation becomes the subscript on the anion.
 - The charge on the anion becomes the subscript on the cation.
 - If these subscripts are not in the lowest whole-number ratio, divide them by the greatest common factor.

Naming Monoatomic Ions

Cations

metal + "ion" or "cation"

Al³⁺ aluminum ion or aluminum cation

• For metals that have more than one oxidation state, the charge is indicated by Roman numerals.

Fe²⁺ iron (II) ion, Fe³⁺ iron (III) ion Bi³⁺ bismuth (III) ion, Bi⁵⁺ bismuth (V) ion

Anions

• -ide ending

O²⁻ oxide ion, I⁻ iodide ion, H⁻ hydride ion

Charge	Formula	Name	Formula	Name
1+	H ⁺	hydrogen ion	NH ₄ ⁺	ammonium ion
	Li ⁺	lithium ion	Cu ⁺	copper(I) or cuprous ion
	Na ⁺	sodium ion		
	K+	potassium ion		
	Cs ⁺	cesium ion		
	\mathbf{Ag}^{+}	silver ion		
2+	Mg^{2+}	magnesium ion	Co ²⁺	cobalt(II) or cobaltous ion
	Ca^{2+}	calcium ion	Cu ²⁺	copper(II) or cupric ion
	Sr ²⁺	strontium ion	Fe ²⁺	iron(II) or ferrous ion
	Ba ²⁺	barium ion	Mn ²⁺	manganese(II) or manganous ion
	Zn ²⁺	zinc ion	Hg_2^{2+}	mercury(I) or mercurous ion
	Cd^{2+}	cadmium ion	Hg ²⁺	mercury(II) or mercuric ion
			Ni ²⁺	nickel(II) or nickelous ion
			Pb ²⁺	lead(II) or plumbous ion
			Sn ²⁺	tin(II) or stannous ion
3+	A1 ³⁺	aluminum ion	Cr ³⁺	chromium(III) or chromic ion
			Fe ³⁺	iron(III) or ferric ion

^aThe ions we use most often in this course are in boldface. Learn them first.

Fe ²⁺	iron(II) ion	Cu ⁺	copper(I) ion	Fe ²⁺	ferrous ion	Cu ⁺	cuprous ion
Fe ³⁺	iron(III) ion	Cu ²⁺	copper(II) ion	Fe ³⁺	ferric ion	Cu ²⁺	cupric ion

IADEL 2.0 GOIIIIIIOII IIIIIOIIS	TABLE 2.	5 Com	mon A	nionsa
---------------------------------	----------	-------	-------	--------

Charge	Formula	Name	Formula	Name
1-	H-	hydride ion	$CH_3COO^- (or C_2H_3O_2^-)$	acetate ion
	F -	fluoride ion	ClO ₃ -	chlorate ion
	Cl-	chloride ion	ClO ₄ -	perchlorate ion
	Br-	bromide ion	NO ₃	nitrate ion
	I-	iodide ion	MnO ₄ ⁻	permanganate ion
	CN-	cyanide ion		
	OH-	hydroxide ion		
2-	O ²⁻	oxide ion	CO ₃ ²⁻	carbonate ion
	O_2^{2-}	peroxide ion	CrO ₄ ²⁻	chromate ion
	S ²⁻	sulfide ion	Cr ₂ O ₇ ²⁻	dichromate ion
			SO ₄ ²⁻	sulfate ion
3-	N ³⁻	nitride ion	PO ₄ ³⁻	phosphate ion

 $^{^{\}rm a} \! \text{The ions}$ we use most often are in boldface. Learn them first.

H ⁻ hy	dr <mark>ide</mark> ion	O ²⁻	oxide ion	N ³⁻ nitr <mark>ide</mark> ion
OH ⁻ hy	drox <mark>ide</mark> ion	CN ⁻	cyan <mark>ide</mark> ion	O ₂ ²⁻ perox <mark>ide</mark> ion
NO ₃	nitrate ion		SO_4^2	sulf <mark>ate</mark> ion
$\mathrm{NO_2}^-$	nitr <mark>ite</mark> ion		SO_3^2	sulfite ion
CO ₃ ²⁻	carbonate ion		PO ₄ ³⁻	phosphate ion
HCO ₃	hydrogen carbo	nate ion	$H_2PO_4^-$	dihydrogen phosphate ion
ClO ₄		perchlor	r <mark>ate</mark> ion (one m	ore O atom than chlorate)
ClO_3^-		chlorate	ion	
ClO ₂		chlorite	ion (one O ato	m fewer than chlorate)
ClO ⁻		hypochl	or <mark>ite</mark> ion (one (O atom fewer than chlorite)
Simple _ anion (c	ide hloride, Cl ⁻)			
	erate_ chlorate, ClO ₄) +O atom	(chlorate, ClC Common or representati oxyanion	O ₃) (chlo	ite orite, ClO ₂) -O atom hypo_ite (hypochlorite, ClO-)

Nomenclature: Ionic Compounds

- Write the name of the cation.
- If the anion is an element, change its ending to -ide; if the anion is a polyatomic ion, simply write the name of the polyatomic ion.
- If the cation can have more than one possible charge (e.g. iron), write the charge as a Roman numeral in parentheses.

Names of ionic compounds consist of the cation name followed by the anion name:

Second, if the anion is an element, change its ending to -ide. nitrogen \rightarrow nitride

magnesium nitride

Chromium(III) oxide, used as a green paint pigment, is composed of Cr^{3+} and O^{2-} ions.

What is the formula of chromium(III) oxide?

Strontium oxide, is composed of Sr^{2+} and O^{2-} ions.

What is the formula for this compound?

Potassium chromate, is a brightly colored compound of chromium. Chromium comes from the Greek word *chroma*, meaning color. The chromate anion is ${\rm CrO_4}^{2^-}$.

What is the ionic formula for this compound?

Iron(II) phosphate is found in the hydrated form in the mineral Vivianite.

What is the formula for this compound?

Patterns in Oxyanion Nomenclature

- When there are <u>two</u> oxyanions involving the same element:
 - The one with fewer oxygens ends in -ite
 - NO₂⁻: nitrite; SO₃²⁻: sulfite
 - The one with more oxygens ends in -ate
 - NO₃⁻: nitrate; SO₄²⁻: sulfate

Most common form of the oxyanion.

Patterns in Oxyanion Nomenclature

- •When there are *more than two* oxyanions involving the same element:
- The one with the second fewest oxygens ends in -ite
 - ➤ClO₂⁻: chlorite
- The one with the second most oxygens ends in -ate

Patterns in Oxyanion Nomenclature

- The one with the fewest oxygens has the prefix hypo- and ends in -ite
 - ➤CIO⁻: hypochlorite
- The one with the most oxygens has the prefix per- and ends in -ate
 - Oxyanions Oxyanions Common or representative oxyanion

Acid Nomenclature

- If the anion in the acid ends in -ide, change the ending to -ic acid and add the prefix hydro-:
 - HCI: hydrochloric acid
 - HBr: hydrobromic acid
 - HI: hydroiodic acid

Name	H_2S
------	--------

Anion	Corresponding Acid
Cl ⁻ (chloride)	HCl (hydrochloric acid)
S ²⁻ (sulf <mark>ide</mark>)	H ₂ S (hydrosulfuric acid)

Acid Nomenclature

- If the anion in the acid ends in -ate, change the ending to -ic acid:
 - HClO₃: chloric acid
 - HClO₄: perchloric acid

Name the corresponding acid to the SO_4^{2-} anion.

Acid Nomenclature

- If the anion in the acid ends in -ite, change the ending to -ous acid:
 - HCIO: hypochlorous acid
 - HClO₂: chlorous acid

Name the corresponding acid to the SO_3^{2-} anion.

Anion		Correspo	onding Acid
ClO ₄	(perchlorate)	HClO ₄	(perchloric acid)
ClO ₃	(chlorate)	HClO ₃	(chloric acid)
ClO ₂	(chlor <mark>ite</mark>)	HClO ₂	(chlorous acid)
ClO ⁻	(hypochlorite)	HClO	(hypochlorous acid)

TABLE 2.6 Prefixes Used in Naming Binary Compounds Formed between Nonmetals

Prefix	Meaning
топо-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8
nona-	9
deca-	10

Nomenclature of Binary Compounds (molecular) Formed Between *Nonmetals*.

- The less electronegative atom (farthest to left) is usually listed first.
- A Greek prefix is used to denote the number of atoms of each element in the compound (mono- is not used on the first element listed, however.)
- The ending on the more electronegative element is changed to -ide.
 - CCl₄: carbon tetrachloride
 - CO₂: carbon dioxide
 - CO: carbon monoxide
 - N₂O₄: dinitrogen tetroxide
- In nonmetal compounds containing carbon, the C atom is listed first in the chemical formula, followed by H.

TABLE 2.6 Prefixes Used in Naming Binary Compounds Formed between Nonmetals

Prefix	Meaning
топо-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8
nona-	9
deca-	10

If the prefix ends with a or o and the name of the element begins with a vowel, the two successive vowels are often elided into one:

N₂O₅: dinitrogen pentoxide

Cl ₂ O	dichlorine monoxide	NF ₃	nitrogen trifluoride
N_2O_4	dinitrogen tetroxide	$P_{4}S_{10}$	tetraphosphorus decasulfide

Summary of Nomenclature

Cations

- 1. Cations formed from metal atoms have the same name as the metal
- 2. If a metal can form different cations, the positive charge is indicated by a Roman numeral in parenthesis following the name of the metal.
 - Sometimes the ending -ous and -ic will be used to distinguish lower and higher charged ions, respectively.
- 3. Cations formed from nonmetal atoms have names the end in -ium.

Anions

- 1. Names of monatomic anions formed by replacing the ending of the element with -ide.
- 2. Polyatomic ions (oxyanions) containing oxygen have names that end in ate or -ite.
- 3. Anions derived by adding H+ to an oxyanion are named by adding as a prefix the word hydrogen or dihydrogen, as appropriate.