AIF 313 - Computer Graphics

Raster Graphics

Luciana Abednego

Department of Informatics
Faculty of Information Technology and Sciences
Parahyangan Catholic University

Contents

- Output Primitives
 - How can we describe shapes with primitives?
- Color Models
 - How can we describe and represent colors?

Output Primitives

- Points
- Lines
 - DDA Algorithm
 - Bresenham's Algorithm
- Polygons
 - Scan-Line Polygon Fill
 - Inside-Outside Tests
 - Boundary-Fill Algorithm
 - Antialiasing

Points

- Single Coordinate Position
 - Set the bit value(color code) corresponding to a specified screen position within the frame buffer

setPixel(x, y)

Lines

- Intermediate Positions between Two Endpoints
- Line Equations: $y = m \cdot x + c$
- Given 2 endpoints (x_0, y_0) and (x_{end}, y_{end}) :

$$m = \frac{y_{end} - y_0}{x_{end} - x_0}$$

$$c = y_0 - m.x_0$$

- Digital Differential Analyzer
 - 0 < Slope <= 1</p>
 - Unit x interval = 1

$$y_{k+1} = y_k + m$$

- Digital Differential Analyzer
 - 0 < Slope <= 1</p>
 - Unit x interval = 1
 - Slope > 1
 - Unit y interval = 1

Digital Differential Analyzer

- 0 < Slope <= 1</p>
 - Unit x interval = 1
- Slope > 1
 - Unit y interval = 1
- -1 <= Slope < 0
 - ◆ Unit x interval = -1

$$y_{k+1} = y_k - m$$

Digital Differential Analyzer

- Slope >= 1
 - Unit x interval = 1
- 0 < Slope < 1
 - Unit y interval = 1
- -1 <= Slope < 0</p>
 - Unit x interval = -1
- Slope < -1
 - Unit y interval = -1

$$x_{k+1} = x_k - \frac{1}{m}$$

Line Equations:

$$y = m.x + c$$

• Given 2 endpoints (x_0, y_0) and (x_{end}, y_{end}) :

$$m = \frac{y_{end} - y_0}{x_{end} - x_0}$$

$$c = y_0 - m.x_0$$

$$|m| < 1 \rightarrow x_{k+1} = x_k + 1$$

 $y_{k+1} = y_k + m$

$$|m| > 1 \rightarrow y_{k+1} = y_k + 1$$

 $x_{k+1} = x_k + \frac{1}{m}$

```
void lineDDA (int x_0, int y_0, int x_{end}, int y_{end})
   dx = x_{end} - x_0
   dy = y_{end} - y_0
   x = x_0, y = y_0
   if(abs(dx) > abs(dy))
      steps = abs(dx)
   else steps = abs(dy)
   xIncrement = dx/steps
   yIncrement = dy/steps
   setPixel(round(x), round(y))
   for k = 0 to steps-1
      x = x + xIncrement
      y = y + yIncrement
       setPixel(round(x), round(y))
```

- (+) A faster method for calculating pixel positions than directly implements line equation. It eliminates the multiplication by making use of raster characteristics.
- (-) The accumulation of round-off error in successive additions of the floating-point increment can cause the calculated **pixel positions** to **drift away** from the true line path for long line segments.
- (-) Rounding operations are still time consuming.

Bresenham's Line Algorithm

Midpoint Line Algorithm

Decision variable d = F(M)

$$= F\left(x_p + 1, y_p + \frac{1}{2}\right)$$

$$= a(x_p + 1) + b(y_p + \frac{1}{2}) + c$$

•
$$d \le 0$$
: choose E
• $d_{new} = F\left(x_p + 2, y_p + \frac{1}{2}\right)$: $d_{new} = d_{old} + a$

Initial Value of d
$$F\left(x_{0}+1, y_{0}+\frac{1}{2}\right) = a(x_{0}+1) + b\left(y_{0}+\frac{1}{2}\right) + c$$

$$= F(x_0, y_0) + a + \frac{1}{2}b$$

$$\to F(x, y) = 2(ax + by + c)$$

$$\rightarrow F(x, y) = 2(ax + by + c)$$

$$\rightarrow d = 2a + b$$

if
$$d > 0$$
, then $\begin{cases} 1 \\ 2 \end{cases}$

• Update d

if
$$d > 0$$
, then
$$\begin{cases} x + +, \\ y + +, \\ d + = 2(a+b) \end{cases}$$

if
$$d \le 0$$
, then
$$\begin{cases} x + +, \\ d + = 2a \end{cases}$$

Bresenham's Line Algorithm

- Accurate and Efficient
 - Use only incremental integer calculations
 - Test the sign of an integer parameter
- Case) Positive Slope Less Than 1
 - After the pixel (x_k, y_k) is displayed, next which pixel is decided to plot in column x_{k+1} ?
 - \rightarrow (x_k+1, y_k) or (x_k+1, y_k+1)

- Case) Positive Slope Less Than 1
 - y at sampling position x_k $y = m(x_k + 1) + b$
 - Difference $d_1 = y - y_k = m(x_k + 1) + b - y_k$ $d_2 = y_k + 1 - y = y_k + 1 - m(x_k + 1) - b$

$$d_1 - d_2 < 0 \implies (x_k + 1, y_k)$$

 $d_1 - d_2 > 0 \implies (x_k + 1, y_k + 1)$

- Case) Positive Slope Less Than 1
 - Decision parameter

$$p_{k+1} - p_k = (2\Delta y \cdot x_{k+1} - 2\Delta x \cdot y_{k+1} + c) - (2\Delta y \cdot x_k - 2\Delta x \cdot y_k + c)$$
$$= 2\Delta y (x_{k+1} - x_k) - 2\Delta x (y_{k+1} - y_k)$$

$$\therefore p_{k+1} = p_k + 2\Delta y - 2\Delta x (y_{k+1} - y_k)$$

• Decision parameter of a starting pixel (x_0, y_0)

$$p_0 = 2\Delta y \cdot x_0 - 2\Delta x \cdot y_0 + 2\Delta y + \Delta x (2b - 1)$$

$$= 2\Delta y \cdot x_0 - 2\Delta x \cdot (mx_0 + b) + 2\Delta y + \Delta x (2b - 1)$$

$$= 2\Delta y \cdot x_0 - 2\Delta y \cdot x_0 - 2b\Delta x + 2\Delta y + 2b\Delta x - \Delta x$$

$$\therefore p_0 = 2\Delta y - \Delta x$$

- Algorithm for 0<m<1</p>
 - Input the two line endpoints and store the left end point in (x_0, y_0)
 - Load (x_0, y_0) into the frame buffer; that is, plot the first point
 - Calculate constants Δx , Δy , $2\Delta y$, and $2\Delta y$ $2\Delta x$, and obtain the starting value for the decision parameter as

$$p_0 = 2\Delta y - \Delta x$$

- At each x_k along the line, start at k = 0, perform the following test:
 - If $p_k < 0$, the next point to plot is (x_k+1, y_k) and

$$p_{k+1} = p_k + 2\Delta y$$

• Otherwise, the next point to plot is (x_k+1, y_k+1) and

$$p_{k+1} = p_k + 2\Delta y - 2\Delta x$$

• Repeat step 4 Δx times

Bresenham Line Drawing

- Two endpoints: (20,10) and (30,18)
- Slope = 0.8

$$\Delta x = 10 \qquad \Delta y = 8$$

$$p_0 = 2\Delta y - \Delta x = 6$$

$$2\Delta y = 16 \quad 2\Delta y - 2\Delta x = -4$$

k	pk	(xk+1,yk+1)
0	6	(21,11)
1	2	(22,12)
2	-2	(23,12)
3	14	(24,13)
4	10	(25,14)

k	pk	(xk+1,yk+1)
5	6	(26,15)
6	2	(27,16)
7	-2	(28,16)
8	14	(29,17)
9	10	(30,18)