DATA SCIENCE

- Aprendizagem de Máquina Supervisionada
- Aprendizagem de Máquina
 Não Supervisionada

Machine Learning Computer Math and Science/IT Statistics Data Science **Traditional** Software Research Development Domains/Business Knowledge

PROFESSORA:

CARLA OLIVEIRA SANTOS

AGENDA

Overfitting e Underfitting;
□Aprendizado Supervisionado;
□Previsão – Linear Regression;
□Classificação – Logistic Regression;
□Aprendizado Não Supervisionado;
□Agrupamento – k-Means.

CRISP-DM: A METODOLOGIA IDEAL PARA CIÊNCIA DE DADOS

• Entendimento do negócio

Entendimento dos dados

Preparação dos dados

Modelagem dos dados

Avaliação do Modelo

Implantação

Fonte: The Data Science Process (CRISP-DM). 2021

CICLO DE VIDA DO DATA SCIENCE

Fonte: https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/lifecycle-deployment

DATA MINING (MINERAÇÃO DE DADOS)

ETAPAS DO PROCESSO DE MINERAÇÃO DE DADOS

OVERFITTING E UNDERFITTING

Overfitting

O modelo tem um desempenho excelente, porém quando utilizado com os dados de teste o resultado é ruim.

Underfitting

O desempenho do modelo já é ruim no próprio treinamento. O modelo não consegue encontrar relações entre as variáveis e o teste nem precisa acontecer.

OVERFITTING

- Um cenário de overfitting ocorre quando, nos dados de treinamento, o modelo tem um desempenho excelente, porém quando utilizado com os dados de teste o resultado é ruim.
- ❖ Neste cenário, o modelo aprendeu tão bem as relações existentes no treino, que acabou "apenas decorando o que deveria ser feito, e ao receber as informações das variáveis preditoras nos dados de teste, o modelo tenta aplicar as mesmas regras decoradas, porém com dados diferentes e esta regra não tem validade, e o desempenho é afetado.
- * É comum ouvirmos que neste cenário o modelo treinado não tem capacidade de generalização" (Didática Tech Inteligência Artificial & Data Science, 2020, Online).

UNDERFITTING

- * "Neste cenário o desempenho do modelo já é ruim no próprio treinamento.
- ❖ <u>O modelo não consegue encontrar relações entre as variáveis e o teste nem precisa acontecer.</u>
- ❖ Este modelo já pode ser descartado, pois não terá utilidade" (Didática Tech Inteligência Artificial & Data Science, 2020, Online).

MACHINE LEARNING (APRENDIZADO DE MÁQUINA)

MACHINE LEARNING (APRENDIZADO DE MÁQUINA)

APRENDIZADO SUPERVISIONADO

UTILIZANDO O APRENDIZADO SUPERVISIONADO

UTILIZANDO O APRENDIZADO SUPERVISIONADO

ESCOLHA DOS ATRIBUTOS E PRÉ-PROCESSAMENTO DOS DADOS

Feature Selection (seleção dos recursos ou atributos)

Feature Engineering (engenharia de recursos) ou atributos

- ❖ Consiste em analisar e executar as operações de pré-processamento que podem ser realizadas nos conjuntos de dados antes da utilização do algoritmos de Aprendizado de Máquina. Essas operações consideram:
 - ✓ Eliminação manual de atributos;
 - ✓ Integração de dados;
 - ✓ Amostragem de dados;
 - ✓ Dados desbalanceados;
 - ✓ Limpeza de dados;
 - ✓ Transformação de dados;
 - ✓ Redução de dimensionalidade.

Fonte: (FACELI et al, 2011)

UTILZIANDO O APRENDIZADO SUPERVISIONADO

SEPARAÇÃO DOS DADOS EM BASE DE TREINAMENTO E BASE TESTE

No aprendizado supervisionado a base de dados deve ser separada em base de treinamento e base de teste. Há formas de separação da base de dados em bases de treinamento e de testes conforme descrito abaixo:

Percentage Split / Hold out

Particiona a base por amostragem. Tipos de amostragem interferem no resultado. Costuma ser utilizado quando a base de dados é grande. Geralmente a divisão considera 80% dos dados para treinamento e 20% para teste.

Cross Validation

Particiona em K-partes. Por exemplo: separa a base em 10 partes. Em cada rodada usa 9 blocos para treinamento e 1 bloco para teste. Costuma ser utilizado quando a base de dados é pequena.

Fonte: (FACELI et al, 2011)

UTILIZANDO APRENDIZADO SUPERVISIONADO

ESCOLHA DO ALGORITMO

- Critérios que deve ser considerados para efetuar a escolha:
 - ✓ Tarefa: classificação ou previsão?
 - ✓ Tipos de dados.
 - ✓ Distribuição das classes: verificar se elas estão balanceadas.
 - ✓ Interpretabilidade dos resultados.

Fonte: (FACELI et al, 2011)

MACHINE LEARNING (APRENDIZADO DE MÁQUINA)

PREVISÃO - REGRESSÃO

Logistic Regression

PREVISÃO - REGRESSÃO LINEAR

- ❖ Modelo que descreve a relação linear (reta) entre duas ou mais variáveis.
- Utiliza valores contínuos para efetuar a previsão.
- Considera dois tipos de variáveis:
 - ✓ dependente (y) => "alvo" ou "rótulo" da previsão;
 - ✓ uma ou mais variáveis independentes (x) => variáveis preditoras.

Fonte: Google

PREVISÃO - REGRESSÃO LINEAR

Para estabelecer a relação entre as variáveis é utilizada a equação da reta: y^= a + bx.

Onde:

- y^é a variável dependente ou o valor a ser previsto;
- a e b são os parâmetros da reta;
- a é conhecido como "interceptação" (*intercept*);
- b é conhecido como "declive ou inclinação" (slope);
- x é a variável independente ou preditora.

Fonte: Google

PREVISÃO - REGRESSÃO LINEAR SIMPLES

- ❖ Prever o valor de y com base em x, na regressão linear, implica encontrar uma reta que seja a mais adequada e melhor descreva os dados.
- O resultado do modelo vai ser uma reta, com equação:
 - ✓ $f(x) = y^{=a} + bx$ que vai passar por esses pontos.

PREVISÃO - REGRESSÃO LINEAR SIMPLES

- O objetivo é encontrar os coeficientes angular e linear que tornam essa reta ideal.
- ❖ ŷ é a predição do modelo, e Erro o quão longe está da previsão correta.
- ❖ Para cada combinação dos coeficientes (a, b1, b2, ..., bn), com os dados de treino, temos um Erro, ou seja, uma função que determina o quão erradas as previsões do modelo estão.
- A modelagem da regressão linear consiste em encontrar os valores dos coeficientes da função que minimizam o erro.

Fonte: https://medium.com/turing-talks/turing-talks-11-modelo-de-predi%C3%A7%C3%A3o-regress%C3%A3o-linear-7842709a593b

PREVISÃO REGRESSÃO LINEAR SIMPLES - EXEMPLO

- ❖ X = dados do tempo de serviço em anos, dos funcionários de uma seguradora (variável independente ou preditora).
- ❖ Y = clientes que cada funcionário possui (variável dependente ou rótulo).

ID	Α	В	С	D	Е	F	G	Н	I	J
Χ	2	3	4	5	4	6	7	8	8	10
Υ	48	50	56	52	43	60	62	58	64	72

Fonte: PUC-Minas

Gráfico de Dispersão

Equação da Reta de Dispersão

PREVISÃO - REGRESSÃO LINEAR SIMPLES - EXEMPLO

MODELO DE REGRESSÃO

- ❖ X = dados do tempo de serviço em anos, dos funcionários de uma seguradora (variável independente ou preditora).
- ❖ Y = clientes que cada funcionário possui (variável dependente ou rótulo).

ID	Α	В	С	D	Е	F	G	Н	I	J
Χ	2	3	4	5	4	6	7	8	8	10
Υ	48	50	56	52	43	60	62	58	64	72

Ajuste

$$\hat{y} = 39,67 + 2,95x + \varepsilon$$
Intercept Slope

Modelo de Previsão

$$\hat{y} = 39,67 + 2,95 * 8 = 63,286 \cong 63$$
 clientes

PREVISÃO - REGRESSÃO LINEAR MÚLTIPLA

❖ A Regressão Linear Múltipla é muito semelhante à Regressão Linear Simples, mas este método é utilizado para explicar a relação entre uma variável de resposta (dependente) e duas ou mais variáveis preditoras (independentes).

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$$

$$\beta_0 = \text{Intercepto} = \text{(a)}$$

$$\beta_1 = \text{Inclinação} = \text{(b)}$$

$$\varepsilon = \text{Erro Aleatório}$$

Matriz de Regressão

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ x_n \end{bmatrix} X = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1k} \\ 1 & x_{21} & x_{22} & \dots & x_{2k} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nk} \end{bmatrix} \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix} \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

PREVISÃO - REGRESSÃO LINEAR MÚLTIPLA - EXEMPLO

❖ Esses dados representam a resistência à tração (y) de uma ligação de fio em um processo de fabricação de semicondutores, comprimento de fio (x1) e altura da matriz (x2) para ilustrar a construção de um modelo empírico. p

Modelo de Previsão

$$\hat{y} = 2,26 + 2,744x_1 + 0,013x_2 + \varepsilon$$
Intercept Slope Slope

ID	у	x1	x2
1	9,95	2	50
2	24,45	8	110
3	31,75	11	120
24	22,13	6	100
25	21,15	5	400

PREVISÃO - REGRESSÃO LINEAR SIMPLES E MÚLTIPLA

MÉTRICAS PARA AVALIÇÃO DO MODELO

- ❖ Mean Error (ME): média da diferença entre o realizado e o previsto. Esta sujeita a valores positivos e negativos.
- ❖ Mean Absolute Error (MAE): media da diferença absoluta entre o realizado e o previsto.
- ❖ Root Mean Squared Error (RMSE): desvio padrão da amostra da diferença entre o previsto e o realizado.
- ❖ Mean Percentage Error (MPE): diferença percentual de erro.
- ❖ Mean Absolute Percentage Error (MAPE): diferença absoluta percentual de erro;
- ❖ Mean Squared Error (MSE): erro quadrádico médio;
- Mean Absolute Distance (MAD): distância absoluta média.
 - ✓ Analisando o resultado: quanto menor o valor melhor.
- ❖ R2: coeficiente de determinação é uma medida de ajuste de um modelo linear que mede a quantidade da variância dos dados. Varia de 0 a 1.
 - ✓ Analisando o resultado: quanto maior o valor e próximo de 1 melhor.

PREVISÃO - REGRESSÃO LINEAR

❖ Aplicações:

- ✓ previsão de vendas anuais a partir de variáveis independentes, como idade, educação e anos de experiência;
- ✓ na psicologia, para determinar a satisfação individual com base em fatores demográficos e psicológicos;
- ✓ prever o preço de uma casa, com base em seu tamanho, número de quartos, etc.

Fonte: Google

MACHINE LEARNING (APRENDIZADO DE MÁQUINA)

APRENDIZADO SUPERVISIONADO

Logistic Regression

- ❖ Regressão logística é uma variação da regressão linear, útil quando a variável dependente observada, y, <u>é qualitativa</u> (categórica).
- ❖ Produz uma fórmula que prediz a probabilidade do rótulo da classe em função das variáveis independentes.
- ❖ REFORÇANDO: a regressão logística é análoga à regressão linear, basicamente a diferença está no campo utilizado como rótulo que na regressão logística é qualitativo (categórico) e na regressão linear é quantitativo (numérico).

Fonte: IBM

- ❖ A regressão logística se ajusta a uma curva especial em forma de s.
- ❖ Toma a regressão linear como base e transforma a estimativa numérica em uma probabilidade.
- ❖ Esta função **s** é chamada **sigmóide**.
- ❖ REFORÇANDO: a regressão logística é uma junção de regressão linear + sigmóide + probabilidade.

- ❖ Na regressão logística a variável dependente ou alvo/rótulo (Y) é qualitativa. Exemplo:
 - √ (sim/não);
 - √ (sucesso / fracasso);
 - ✓ doente / saudável;
 - ✓ (0 ou 1);
 - ✓ Nestes exemplos temos a quantidade de duas classes.
- Já, as <u>variáveis independentes ou preditoras (X)</u> podem ser quantitativas ou qualitativas.

Fonte: Puc-Minas

MÉTRICAS PARA AVALIÇÃO DO MODELO

- Mostra o número de classificações corretas versus as classificações preditas para cada classe, sobre um conjunto de exemplos.
- Analisando o resultado: a matriz de confusão de um classificador ideal possui valores não nulos apenas na diagonal.

	CLASSE A	CLASS	E B	PRECISÃO
PRED. CLASSE A	T_{p}	F_{P}		$T_P/(T_P+F_P)$
PRED. CLASSE B	F_N	T_N		
REVOCAÇÃO	$T_P/(T_P+F_N)$	₁)		
	T_P – True pos	itive	$F_P - 1$	False Positive
	F_N – False Ne	gative	T_N —	True Negative

Fonte: (Puc-Minas)

MÉTRICAS PARA AVALIÇÃO DO MODELO

❖ Algumas métricas decorrentes da matriz de confusão:

Accuracy (Acurácia): diz quanto o modelo acertou das previsões possíveis. Ou seja, Porcentagem de elementos classificados corretamente (positivos ou negativos):

$$accurary = \frac{TP + TN}{TP + FP + TN + FN} = \frac{predições\ corretas}{todas\ as\ predições}$$

Exemplo: Detecção de SPAM

	PREV. SPAM	PREV. NÃO SPAM
SPAM	80	20
NÃO SPAM	5	195

Acurária

$$A = \frac{80 + 195}{100 + 200} = 91,7\%$$

Fonte: (Puc-Minas)

MÉTRICAS PARA AVALIÇÃO DO MODELO

❖ Algumas métricas decorrentes da matriz de confusão:

Precision (Precisão): é uma métrica que indica, das classificações positivas do modelo, quantas foram acertadas. Dentre os exemplos classificados como verdadeiros, quantos eram realmente verdadeiros:

$$precision = \frac{TP}{TP + FP}$$

Recall (Revoção/Sensitividade): é uma métrica que indica, das amostras positivas existentes, quantas o modelo conseguiu classificar corretamente. Dentre o total de exemplos verdadeiros, quantos foram classificados como verdadeiros:

$$recall = \frac{TP}{TP + FN}$$

Especificidade: porcentagem de amostras com negativos verdadeiros identificadas corretamente sobre o total de amostras negativas: $S = T_N/(T_N + F_P)$

MÉTRICAS PARA AVALIÇÃO DO MODELO

❖ Algumas métricas decorrentes da matriz de confusão:

F-measure ou F-score: mostra o balanço entre *precision* e *recall*. Ou seja, é Média ponderada de precisão e revocação:

$$2*\frac{precision*recall}{precision+recall}$$

Log-loss: usado quando um classificado retorna uma probabilidade de classificação ("confiança"):

$$\log -loss = -\frac{1}{N} \sum_{i=1}^{N} y_{i} \log p_{i} + (1 - y_{i}) \log(1 - p_{i})$$

❖ Aplicações:

- ✓ prever se um paciente tem uma determinada doença, como diabetes, com base nas características observadas desse paciente, como peso, altura, pressão sanguínea e resultados de vários tipos de sangue e assim por diante.
- ✓ no marketing, prever a probabilidade de um cliente comprar um produto ou interromper uma assinatura (churn).
- ✓ prever a probabilidade de um proprietário deixar de pagar uma hipoteca.

DIFERENÇA ENTRE REGRESSÃO LINEAR E REGRESSÃO LOGÍSTICA

- ❖ Embora a **regressão linear** seja adequada para estimar valores contínuos (por exemplo, estimar o preço da casa), não é a melhor ferramenta para prever a classe de um ponto de dados observado.
- ❖ Para estimar a classe de um ponto de dados, precisamos de algum tipo de orientação sobre qual seria a classe mais provável para aquele ponto de dados. Para isso, utilizamos regressão logística.
- ❖ A Regressão linear encontra uma função que relaciona uma variável dependente quantitativa, y , a alguns preditores (variáveis independentes x1 , x2 , etc.). Por exemplo, a regressão linear assume uma função da forma:

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots$$

❖ A Regressão linear encontra os valores dos parâmetros theta0, theta1, theta2, etc, onde o termo theta0 é a "interceptação" e os demais termos a "inclinação" da reta.

Fonte: IBM

DIFERENÇA ENTRE REGRESSÃO LINEAR E REGRESSÃO LOGÍSTICA

- ❖ A Regressão Logística é uma variação da Regressão Linear, utilizada quando a variável dependente y é categórica. A Regressão Logística produz uma fórmula que prevê a probabilidade do rótulo da classe em função das variáveis independentes x.
- \clubsuit A **Regressão Logística** se ajusta a uma curva em forma de s, tomando como base a regressão linear e transformando a estimativa numérica em uma probabilidade, utilizando uma função, chamada de função sigmóide σ :

$$h_{ heta}(x) = \sigma(heta^T X) = rac{e^{(heta_0 + heta_1 x_1 + heta_2 x_2 + ...)}}{1 + e^{(heta_0 + heta_1 x_1 + heta_2 x_2 + \cdots)}}$$

OU

$$ProbabilidadedaClasse_1 = P(Y=1|X) = \sigma(heta^TX) = rac{e^{ heta^TX}}{1+e^{ heta^TX}}$$

Fonte: IBM

MACHINE LEARNING (APRENDIZADO DE MÁQUINA)

APRENDIZADO NÃO SUPERVISIONADO

Logistic Regression

PRÉ-PROCESSAMENTO DOS DADOS

- O pré-processamento no aprendizado não supervisionado pode incluir:
 - ✓ Normalização;
 - ✓ Conversão de tipos;
 - ✓ Redução dos atributos.
- ❖ É importante ressaltar que no aprendizado não supervisionado técnicas de seleção, extração de características descritas para o tipo de aprendizado supervisionado não se aplicam, ou precisam ser adaptadas.

Fonte: (FACELI et al, 2011)

AGRUPAMENTO

- ❖ O agrupamento é a etapa central do processo de aprendizado de não supervisionado. Nela, um ou mais algoritmos de agrupamento são aplicados aos dados para a identificação dos clusters existentes nos dados.
- ❖ Os diferentes tipos de estruturas que podem ser encontradas por um algoritmo não supervisionado são, por exemplo, partições e hierarquias de participações.

Fonte: (FACELI et al, 2011)

VALIDAÇÃO

- ❖ A análise e comparação de algoritmos não supervisionados são tarefas complexas e que dependem muito do domínio da aplicação e do conhecimento das técnicas de agrupamento empregadas.
- Uma característica importante, inerente ao aprendizado não supervisionado e que torna difícil a análise do desempenho e a comparação de algoritmos, é a ausência de uma estrutura ideal, que seja a resposta esperada para o agrupamento.
- Como o agrupamento é uma tarefa não supervisionada, não há uma classificação conhecida dos objetos.
- ❖ A análise de desempenho de algoritmos não supervisionados ainda é uma área aberta. Por isso, é essencial ter um bom entendimento da técnica que está sendo utilizada, conhecer detalhes sobre a obtenção dos dados e ter claramente definido o propósito do agrupamento que se deseja obter.

Fonte: (FACELI et al, 2011)

AGRUPAMENTO – K-MEANS

Fonte: IBM

- ❖ k-Means funciona colocando aleatoriamente k centróides, um para cada cluster. Quanto mais afastados os clusters, melhor.
- O próximo passo é calcular a distância de cada ponto de dados (ou objeto) dos centróides.
- Em seguida, atribuir cada ponto de dados (ou objeto) ao centróide mais próximo, criando um grupo.
- Uma vez que cada ponto de dados tenha sido classificado em um grupo, recalcule a posição dos k centróides.
- ❖ A nova posição do centróide é determinada pela média de todos os pontos no grupo.
- Finalmente, isso continua até que os centróides não se movam mais.

scikit-learn

Machine Learning in Python

Getting Started

Release Highlights for 0.23

GitHub

- Simple and efficient tools for predictive data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

Classification

Identifying which category an object belongs to.

Applications: Spam detection, image recognition. **Algorithms:** SVM, nearest neighbors, random forest,

and more...

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices.

Algorithms: SVR, nearest neighbors, random forest, and more...

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping

experiment outcomes

Algorithms: k-Means, spectral clustering, meanshift, and more...

K-means clustering on the digits dataset (PCA-reduced data)
Centroids are marked with white cross

Fonte: https://scikit-learn.org/stable/

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Algorithms: k-Means, feature selection, non-negative matrix factorization, and more...

Model selection

Comparing, validating and choosing parameters and models.

Applications: Improved accuracy via parameter tuning

Algorithms: grid search, cross validation, metrics, and more...

Preprocessing

Feature extraction and normalization.

Applications: Transforming input data such as text for use with machine learning algorithms. **Algorithms:** preprocessing, feature extraction, and more...

Fonte: https://scikit-learn.org/stable/

SCIKIT-LEARN

- ❖ O scikit-learn ou apenas sklearn é uma biblioteca do Python específica para aplicações de <u>Machine Learning</u>.
- Possui pacotes e módulos para classificação, regressão e clustering.
- É código aberto e foi construída sobre os pacotes <u>NumPy, SciPy e Matplotilib</u>.

Fonte: https://scikit-learn.org/stable/

SCIKIT-LEARN - PRINCIPAIS APLICAÇÕES

- Pré-processamento: como já mencionado em várias aulas, é a etapa mais trabalhosa no processo de desenvolvimento de um modelo de Machine Learning. Nesta etapa, o NumPy e o Pandas são amplamente utilizados, porém o sklearn também possui funções para esta etapa, com foco no tratamento dos dados.
- * Regressão: consiste em modelos que visam atribuir um valor quantitativo a um elemento. Com este tipo de modelo é possível prever o preço de um automóvel, altura de uma pessoa, quantidade de vendas de um produto, entre outros.
- ❖ Classificação: consiste em modelos capazes de detectar qual categoria pré-determinada um elemento pertence. Com este tipo de modelo é possível efetuar previsões que classificam se uma pessoa possui ou não determinada doença, se um cliente deixará ou não de consumir determinado produto, entre outros.

SCIKIT-LEARN - PRINCIPAIS APLICAÇÕES

- ❖ Clusterização: consiste em modelos para detecção de grupos cujos integrantes possuem características similares. Com este tipo de modelo é possível identificar clientes com comportamentos parecidos, grupos de risco de determinada doença, verificar padrões entre moradores de uma cidade, e muitos outros agrupamentos.
- ❖ Redução de dimensionalidade: consiste em modelos que visam reduzir o número de variáveis em um problema. Com esta redução é possível diminuir consideravelmente a quantidade de cálculos necessários para geração de um modelo, aumentando a eficiência, com uma perde mínima de assertividade.
- ❖ Ajuste de parâmetros: visa comparar, validar e escolher parâmetros e modelos, de maneira automatizada. Permite facilmente comparar diferentes parâmetros no ajuste de um modelo, encontrando dessa forma a melhor configuração para uma determinada aplicação.

REFERÊNCIAS

FACELI, Katti et al. Inteligência artificial: uma abordagem de aprendizado de máquina. Rio de Janeiro, RJ: LTC, 2011.

Didática Tech Inteligência Artificial & Data Science. 2020. Disponível em: < https://didatica.tech/underfitting-e-overfitting/>. Acesso em: 21 nov 2020.

DÚVIDAS

OBRIGADA!!!!

Profa. Carla Oliveira

E-mails: carla.olivei@gmail.com e carla.olivei@gmails.com e <a href="mails:carla.olivei.oliv