11/10/2022, 15:29 Exercise

Given

Input

1	2	0	2	1
0	1	1	2	1
1	2	0	1	0
1	2	1	2	1
0	0	3	2	3
0	0	3	2	3

Kernel

Convolution

Initial weights fcnn

Initial bias for convolution = 1 Initial bias for fcnn = 0 Learning Rate = 0.1

dL/d(z_conv)

0	-0.358	0	-0.119
0	0	0	0
0	0	0	0
0	-0.596	0	-0.358

11/10/2022, 15:29 Exercise

Find

Find the last number X in the convolution, the flatten layer, the loss, and the updated kernel

Solution

Start by convolution

$$((11)-(12)-(31)+(21))+1=-1$$

Last number is found

ReLU

Max Pool

Flatten

$$z = (1 * 3 + 1 * 1 - 1 * 5 + 1 * 3) + 0 = 2$$

$$a = 1/(1 + np.exp(-2)) = 0.88$$

Loss =
$$-1 * (1 * log(0.88) + (1-1) * log(1-0.88)) = 0.055$$

Finding gradient kernel

using delta

11/10/2022, 15:29 Exercise

0	-0.358	0	-0.119
0	0	0	0
0	0	0	0
0	-0.596	0	-0.358

using input

$$(0,0) = 2-0.358+2-0.119+2-0.596+2-0.358 = -2.862$$

$$(0,1) = 0-0.358+1-0.119+1-0.596+1-0.358 = -1.073$$

$$(1,0) = 1-0.358+2-0.119+0-0.596+2-0.358 = -1.312$$

$$(1,1) = 1-0.358+1-0.119+3-0.596+3-0.358 = -3.338$$

Gradient kerlen

Updating kernel with learning rate

kernel

learning rate = 0.1

new kernel

(-)

=