BOUZAIEN Mokhles EL KAOUI Imad-Eddine Gr 1/3

1. Prédétermination

On s'intéresse à un filtre réalisable de second ordre dont la fonction de transfert est $\mathcal{L}[h](p) = \frac{1}{1+2\frac{\xi}{\omega_n}p+\left(\frac{p}{\omega_n}\right)^2}$ ou ω_n et ξ sont deux constantes positives telles que $\omega_n=2\pi\nu_n$ et $0<\xi<1$.

On note $\hat{h}(v) = A(v)e^{-i\phi(v)}$ la transformée de Fourier de h, avec :

$$A(\nu) = \frac{1}{\sqrt{\left(1 - \left(\frac{\nu}{\nu_n}\right)^2\right)^2 + \left(\frac{2\xi\nu}{\nu_n}\right)^2}}$$

$$\phi(\nu) = \begin{cases} \arctan\left(\frac{2\xi \frac{\nu}{\nu_n}}{1 - \left(\frac{\nu}{\nu_n}\right)^2}\right), \nu \leq \nu_n \\ \arctan\left(\frac{2\xi \frac{\nu}{\nu_n}}{1 - \left(\frac{\nu}{\nu_n}\right)^2}\right) + \pi, \nu > \nu_n \end{cases}$$

Question 1.1.

Cherchons v_c la fréquence de coupure à 3dB telle que $|\hat{h}(v_c)| = \frac{|\hat{h}(0)|}{\sqrt{2}} = \frac{|A(0)|}{\sqrt{2}} = \frac{1}{\sqrt{2}}$.

 $|\hat{h}(v_c)| = |A(v_c)| = A(v_c)$, car A est réel positif.

$$|A(\nu_c)| = \frac{1}{\sqrt{2}} \Leftrightarrow \left(1 - \frac{\nu_c^2}{\nu_n^2}\right)^2 + \frac{4\xi^2 \nu^2}{\nu_n^2} = 2 \Leftrightarrow \left(\frac{\nu_c}{\nu_n}\right)^4 + (4\xi^2 - 2)\left(\frac{\nu_c}{\nu_n}\right)^2 - 1 = 0 \ (E)$$

On pose $X = \left(\frac{v_c}{v_n}\right)^2$, alors l'équation (E) devient :

$$X^2 + (4\xi^2 - 2)X - 1 = 0$$

Donc
$$\Delta = b^2 - 4ac = (4\xi^2 - 2)^2 + 4 = 4(2\xi^2 - 1)^2 + 4 > 0$$
.

L'équation (E) possède deux racines réelles distincts :

$$N_{1,2} = \frac{1}{2} \left(-(4\xi^2 - 2) \pm \sqrt{4(2\xi^2 - 1)^2 + 4} \right) = (1 - 2\xi^2) \pm \sqrt{(2\xi^2 - 1)^2 + 1}$$

Comme il s'agit d'une fréquence, on garde la solution positive qui est :

$$N_1 = (1 - 2\xi^2) + \sqrt{(2\xi^2 - 1)^2 + 1}$$

Finalement, la fréquence de coupure est $\nu_c = \nu_n \sqrt{N_1} = \nu_n \sqrt{(1-2\xi^2) + \sqrt{(2\xi^2-1)^2+1}}$.

BOUZAIEN Mokhles EL KAOUI Imad-Eddine Gr 1/3

Question 2.2.

La fonction de transfert du système étant $\mathcal{L}[h](p) = \frac{1}{1+2\frac{\xi}{\omega_n}p+\left(\frac{p}{\omega_n}\right)^2} = \frac{\omega_n}{2i\sqrt{1-\xi^2}}\left(\frac{1}{p-x_1\omega_n}-\frac{1}{p-x_2\omega_n}\right)$, avec $\omega_n = 2\pi v_n$, $x_1 = -\xi + i\sqrt{1-\xi^2}$ et $x_2 = x_1^* = -\xi - i\sqrt{1-\xi^2}$.

On note r_1 la réponse du filtre à une excitation impulsionnelle $s_1(t) = \delta(t)$.

$$R_1(p) = \mathcal{L}[r_1](p) = \mathcal{L}[h](p). S_1(p) = \frac{\omega_n}{2i\sqrt{1-\xi^2}} \left(\frac{1}{p-x_1\omega_n} - \frac{1}{p-x_2\omega_n}\right), \text{ car } S_1(p) = \mathcal{L}[\delta](p) = 1.$$

En utilisant la table de transformées inverses, il vient :

$$\begin{split} r_{1}(t) &= \mathcal{L}^{-1}[R_{1}](t) = Y(t) \frac{\omega_{n}}{2i\sqrt{1-\xi^{2}}} (e^{x_{1}\omega_{n}t} - e^{x_{2}\omega_{n}t}) \\ &= Y(t) \frac{\omega_{n}e^{-\xi\omega_{n}t}}{2i\sqrt{1-\xi^{2}}} \Big(e^{+i\omega_{n}\sqrt{1-\xi^{2}}t} - e^{-i\omega_{n}\sqrt{1-\xi^{2}}t} \Big) \\ &= Y(t) \frac{\omega_{n}}{\sqrt{1-\xi^{2}}} e^{-\xi\omega_{n}t} \sin\Big(\omega_{n}\sqrt{1-\xi^{2}}t\Big) \end{split}$$

Figure 1 - La réponse impulsionnelle du système pour $\xi=0.3$ et $\omega_n=100$ Hz.

On observe que la réponse impulsionnelle est pseudopériodique de pseudopériode $T_0 = \frac{2\pi}{\omega_0} = \frac{2\pi}{\omega_n\sqrt{1-\xi^2}}$. En fait, c'est le produit d'une fonction sinusoïdale et d'une enveloppe exponentielle décroissante. La réponse et bornée et converge vers 0 lorsque t tend vers $+\infty$.

BOUZAIEN Mokhles EL KAOUI Imad-Eddine Gr 1/3

$$|r_1(t)| = \left| Y(t) \frac{\omega_n}{\sqrt{1 - \xi^2}} e^{-\xi \omega_n t} \sin\left(\omega_n \sqrt{1 - \xi^2} t\right) \right| \le \frac{\omega_n}{\sqrt{1 - \xi^2}}$$

$$\lim_{t \to +\infty} r_1(t) = \lim_{t \to +\infty} Y(t) \frac{\omega_n}{\sqrt{1 - \xi^2}} e^{-\xi \omega_n t} \sin\left(\omega_n \sqrt{1 - \xi^2} t\right) = 0$$

Donc à une excitation bornée correspond une réponse bornée puisque la condition nécessaire et suffisante de stabilité du filtre est vérifiée : $Re(x_1) = Re(x_2) < 0$.

Question 1.3.

Pour alléger l'écriture, on note $r = r_2$ la réponse du filtre à une excitation indicielle $s(t) = s_2(t) = Y(t)$.

$$R(p) = \mathcal{L}[h](p).S(p) = \frac{1}{p}\mathcal{L}[h](p) = \frac{1}{p}R(p), \text{ car } S(p) = \mathcal{L}[Y](p) = \frac{1}{p}.$$

Ainsi, la réponse r est une primitive sur \mathbb{R}_+ de la réponse r_1 précédemment calculée.

$$r(t) = Y(t) \int_0^t r_1(x) dx = Y(t) \int_0^t \frac{\omega_n}{\sqrt{1 - \xi^2}} e^{-\xi \omega_n x} \sin(\omega_0 x) dx$$

$$= Y(t) \frac{1}{\omega_0} e^{-\xi \omega_n t} (-\xi \omega_n \sin(\omega_0 t) - \omega_0 \cos(\omega_0 t)) + k$$

$$= Y(t) \left(-\frac{1}{\omega_0} e^{-\xi \omega_n t} \sqrt{(\xi \omega_n)^2 + \omega_0^2} \cos(\omega_0 t + \varphi) + k \right)$$

$$= Y(t) \left(-\frac{1}{\sqrt{1 - \xi^2}} e^{-\xi \omega_n t} \cos(\omega_0 t - \varphi) + k \right)$$

Avec $\varphi = \arctan\left(\frac{\xi \omega_n}{\omega_0}\right) = \arctan\left(\frac{\xi}{\sqrt{1-\xi^2}}\right)$ et $k = r(\infty) = 1$ une constante réelle d'intégration.

Le résultat est obtenu après des intégrations par parties (Annexe1).

La réponse indicielle est aussi une fonction pseudopériodique de même pseudopériode $T_0 = \frac{2\pi}{\omega_0} = \frac{2\pi}{\omega_0\sqrt{1-\xi^2}}$ oscillant autour d'une valeur finale constante $k=r(\infty)=1$.

BOUZAIEN Mokhles EL KAOUI Imad-Eddine Gr 1/3

Figure 2 - La représentation de la fonction $\varphi(\xi) = \arctan\left(\frac{\xi}{\sqrt{1-\xi^2}}\right)$

Question 1.4.

 $\text{La valeur finale de } r_1: r_1(\infty) = \lim_{t \to +\infty} r_1(t) = \lim_{t \to +\infty} Y(t) \frac{\omega_n}{\sqrt{1-\xi^2}} e^{-\xi \omega_n t} \sin \left(\omega_n \sqrt{1-\xi^2} t\right) = 0.$

La valeur finale de $r: r(\infty) = \lim_{t \to +\infty} r(t) = \lim_{t \to +\infty} Y(t) \frac{1}{\sqrt{1-\xi^2}} e^{-\xi \omega_n t} \cos(\omega_0 t - \varphi) + k = k = 1.$

La pulsation de la réponse : $\omega_0 = \omega_n \sqrt{1 - \xi^2}$.

Le dépassement : $D = |r_{max} - r_{\infty}| = e^{-\frac{\pi \xi}{\sqrt{1-\xi^2}}}$.

Le temps de dépassement : $T_D = \frac{\pi}{\omega_0}$.

Le temps de réponse : $t_{5\%} \approx \frac{1}{\xi \omega_n} \ln(20)$.

Le temps de montée t_m : $r(t) = r(\infty) \leftrightarrow Y(t) \frac{1}{\sqrt{1-\xi^2}} e^{-\xi \omega_n t} \cos(\omega_0 t - \varphi) + k = k \leftrightarrow \cos(\omega_0 t - \varphi) = 0 \leftrightarrow \omega_0 t - \varphi = \left(n + \frac{1}{2}\right)\pi \leftrightarrow t = \frac{\left(n + \frac{1}{2}\right)\pi + \varphi}{\omega_0}.$

$$\text{Pour } n=0 \text{, on obtient } t_m = \frac{\frac{\pi}{2} + \varphi}{\omega_0} = \frac{\frac{\pi}{2} + \arctan\left(\frac{\xi}{\sqrt{1-\xi^2}}\right)}{\omega_n \sqrt{1-\xi^2}} = \frac{1}{\omega_n \sqrt{1-\xi^2}} \left(\frac{\pi}{2} + \arctan\left(\frac{\xi}{\sqrt{1-\xi^2}}\right)\right).$$

BOUZAIEN Mokhles EL KAOUI Imad-Eddine Gr 1/3

Question 1.5.

$$R_\phi = \frac{\phi(\nu_0)}{2\pi\nu_0} = \frac{1}{\omega_n\sqrt{1-\xi^2}}\arctan\left(2\sqrt{\frac{1}{\xi^2}-1}\right),\, \text{car } \nu \leq \nu_n.$$

$$R_g = \frac{\phi'(\nu_0)}{2\pi} = \frac{1}{\omega_n} \frac{4-2\xi^2}{4\xi-3\xi^3}$$
 (Annexe 2).

Question 1.6.

6-a) Pour obtenir un filtre passe bande de largeur de bande à 3 $dB \frac{B}{2}$ à partir du filtre précèdent, on pose $X = \frac{v_c}{B} v$ de sorte que pour v = B on aura $X = v_c$.

Ainsi,
$$\hat{q}(v) = \hat{h}\left(\frac{2v_c}{B}v\right)$$
 et par transformée inverse $q(t) = \frac{B}{2v_c}h\left(\frac{B}{2v_c}t\right)$.

6-b) Pour centrer le filtre en ν_0 , il suffit de poser $\hat{g}(\nu) = \hat{q}(\nu - \nu_0)$, \hat{q} étant centrée en 0.

Par transformée inverse, il vient $g(t) = e^{2i\pi\nu_0 t}q(t)$.

Ainsi,
$$\forall t \in \mathbb{R}, g(t) = \frac{B}{2\nu_c} e^{2i\pi\nu_0 t} h\left(\frac{B}{2\nu_c} t\right)$$
.

Question 1.7.

7-a) Soit $\nu \in \mathbb{R}$ *et* $\alpha \in \mathbb{R}_+$.

$$\widehat{m_1}(\nu) = \frac{\sqrt{2}}{\sqrt{\pi}\beta_1} e^{-\frac{2\nu^2}{\beta_1^2}}.$$

$$\begin{split} |\widehat{m_1}(\nu)| &\leq \alpha \leftrightarrow \frac{\sqrt{2}}{\sqrt{\pi}\beta_1} e^{-\frac{2\nu^2}{\beta_1^2}} \leq \alpha \leftrightarrow e^{-\frac{2\nu^2}{\beta_1^2}} \leq \frac{\sqrt{\pi}}{\sqrt{2}}\beta_1\alpha \leftrightarrow -\frac{2\nu^2}{\beta_1^2} \leq \ln\left(\frac{\sqrt{\pi}}{\sqrt{2}}\beta_1\alpha\right) \leftrightarrow \nu^2 \\ &\geq -\frac{\beta_1^2}{2}\ln\left(\frac{\sqrt{\pi}}{\sqrt{2}}\beta_1\alpha\right) \leftrightarrow \nu^2 \geq \frac{\beta_1^2}{2}\ln\left(\frac{\sqrt{2}}{\sqrt{\pi}\beta_1\alpha}\right) \leftrightarrow \nu \geq \frac{\beta_1}{\sqrt{2}}\sqrt{\ln\left(\frac{\sqrt{2}}{\sqrt{\pi}\beta_1\alpha}\right)} \end{split}$$

D'où
$$v_M = \frac{\beta_1}{\sqrt{2}} \sqrt{\ln\left(\frac{1}{\beta_1 \alpha} \sqrt{\frac{2}{\pi}}\right)}$$
.

7-b) On vient de montrer que $\forall \alpha > 0, \exists \nu_m \in \mathbb{R}, \forall \nu \geq \nu_M, |\widehat{m_1}(\nu)| \leq \alpha$.

Donc $\lim_{\nu \to +\infty} |\widehat{m_1}(\nu)| = 0$: il s'agit bien d'un filtre passe-bas.

BOUZAIEN Mokhles EL KAOUI Imad-Eddine Gr 1/3

2. Manipulations

2.1. Caractérisation du filtre

Manipulation 2.1.

La fréquence de coupure est $\nu_c=\nu_n\sqrt{{\rm N}_1}=\nu_n\sqrt{(1-2\xi^2)+\sqrt{(2\xi^2-1)^2+1}}.$

Application numérique pour $\xi_1=0.25$ et $\xi_2=0.75$:

$$\nu_{c1} = 1000 \times \sqrt{(1-2\times0.25^2) + \sqrt{(2\times0.25^2-1)^2+1}} = 1484.50 \ Hz$$

$$v_{c2} = 1000 \times \sqrt{(1 - 2 \times 0.75^2) + \sqrt{(2 \times 0.75^2 - 1)^2 + 1}} = 939.56 \, Hz$$

Manipulation 2.2.

Figure 3 - Le gain du filtre pour différentes valeurs de ξ

BOUZAIEN Mokhles EL KAOUI Imad-Eddine Gr 1/3

Figure 4 - La phase du filtre pour différentes valeurs de ξ

Pour les deux valeurs de ξ , le gain en puissance en dB tend vers 0 pour $\nu \ll \nu_n$, puisque A(0) = 1. Pour $\nu \gg \nu_n$,

$$A(\nu) = \left(\left(1 - \left(\frac{\nu}{\nu_n} \right)^2 \right)^2 + \left(\frac{2\xi\nu}{\nu_n} \right)^2 \right)^{-\frac{1}{2}} \sim \left(\left(\frac{\nu}{\nu_n} \right)^4 + \left(\frac{2\xi\nu}{\nu_n} \right)^2 \right)^{-\frac{1}{2}} \sim \left(\frac{\nu}{\nu_n} \right)^{-1} \left(\left(\frac{\nu}{\nu_n} \right)^2 + 4\xi^2 \right)^{-\frac{1}{2}} \sim \left(\frac{\nu}{\nu_n} \right)^2$$

Donc $10 \log(A^2) \sim -40 \log\left(\frac{v}{v_n}\right)$, d'où l'asymptote en $+\infty$ de pente égale à $-40 \ dB/d$ écade.

Pour $\xi=0.25<\frac{1}{\sqrt{2}}$, il y a une résonnance du gain en puissance pour une valeur de $\nu=\nu_r=\nu_n\sqrt{1-2\xi^2}$ qui est légèrement inférieure à ν_n .

Pour $\xi = 0.75 > \frac{1}{\sqrt{2}}$, il n'y a pas de résonnance du gain en puissance.

Les variations de la phase autour de ν_n sont plus rapides lorsque le facteur d'amortissement ξ est plus petit.

Manipulation 2.3. et 2.4.

La réponse impulsionnelle calculée précédemment est $h(t) = Y(t) \frac{\omega_n}{\sqrt{1-\xi^2}} e^{-\xi \omega_n t} \sin(\omega_n \sqrt{1-\xi^2} t)$.

BOUZAIEN Mokhles EL KAOUI Imad-Eddine Gr 1/3

Figure 5 - La réponse impulsionnelle pour différentes valeurs de ξ

Plus le coefficient d'amortissement est élevé, plus la réponse converge rapidement vers sa valeur finale. Dans ce cas, on remarque mois d'oscillations et un dépassement moins important.

Manipulation 2.5., 2.6. et 2.7.

- La réponse indicielle calculée précédemment est $\sigma(t) = Y(t) \left(1 \frac{1}{\sqrt{1-\xi^2}} e^{-\xi \omega_n t} \cos(\omega_0 t \phi)\right)$.
- Le dépassement $D = e^{-\frac{\pi\xi}{\sqrt{1-\xi^2}}}$.

Application numérique pour $\xi_1=0.25$ et $\xi_2=0.75$:

$$D_1 = e^{-\frac{0.25 \times \pi}{\sqrt{1 - 0.25^2}}} = 0.444$$

$$D_2 = e^{-\frac{0.75 \times \pi}{\sqrt{1 - 0.75^2}}} = 0.028$$

• Le temps de dépassement : $T_D = \frac{\pi}{\omega_0}$

Application numérique pour $\xi_1=0.25$ et $\xi_2=0.75$:

$$T_{D1} = \frac{\pi}{2\pi \times 1000 \times \sqrt{1 - 0.25^2}} = 3.24 \, ms$$

$$T_{D2} = \frac{\pi}{2\pi \times 1000 \times \sqrt{1 - 0.75^2}} = 4.75 \, ms$$

$$\bullet \quad \text{ Le temps de montée}: t_m = \frac{\frac{\pi}{2} + \phi}{\omega_0} = \frac{1}{\omega_n \sqrt{1 - \xi^2}} \bigg(\frac{\pi}{2} + \arctan\bigg(\frac{\xi}{\sqrt{1 - \xi^2}} \bigg) \bigg)$$

BOUZAIEN Mokhles EL KAOUI Imad-Eddine Gr 1/3

• Le temps de réponse : $t_{5\%} \approx \frac{1}{\xi \omega_n} \ln(20)$

Figure 6 - La réponse impulsionnelle pour $\xi=0.25$

Figure 7 - La réponse impulsionnelle pour $\xi=0.5$

BOUZAIEN Mokhles EL KAOUI Imad-Eddine Gr 1/3

Figure 8 - La réponse impulsionnelle pour $\xi=0.75$

Le temps de déplacement est une fonction croissante de ξ : pour $\xi=0.25$, $t_D\approx0.5$ s et pour $\xi=0.75$, $t_D\approx0.75$ s. Contrairement à la valeur D du dépassement qui décroit avec ξ de 0.45 à 0.05.

De plus, plus l'amortissement est grand plus le système est plus rapide donc attend brièvement la valeur finale, ce qui est traduit par le passage de $t_{5\%}$ de 1.75 s à 0.5 s.

Manipulation 2.8. et 2.9.

BOUZAIEN Mokhles EL KAOUI Imad-Eddine Gr 1/3

Les retards de phase et de groupe admettent un maximum global au voisinage de la fréquence $\nu = \nu_n$, et lorsqu'on diminue la valeur de ξ le pic est beaucoup plus marqué.

A hautes fréquences, on constate l'atténuation des retards de phase et de groupe dans les deux cas ($\xi = 0.25$ et $\xi = 0.75$) qui tendent respectivement vers 0.5s et 0s.

BOUZAIEN Mokhles EL KAOUI Imad-Eddine Gr 1/3

2.2.Filtrage d'un mélange de formes d'ondes gaussiennes modulées

Manipulation 2.10., 2.11. et 2.12.

D'après le calcul effectué précédemment,
$$v_{M_{1,2}} = \frac{\beta_{1,2}}{\sqrt{2}} \sqrt{\ln\left(\frac{1}{\beta_{1,2}\alpha}\sqrt{\frac{2}{\pi}}\right)}$$
.

Figure 9 - Les variations de x_1 en fonction du temps

Figure 10 - Les variations de x_2 en fonction du temps

BOUZAIEN Mokhles EL KAOUI Imad-Eddine Gr 1/3

Figure 11 - Les variations de $x = x_1 + x_2$ en fonction du temps

On observe que sur l'intervalle de temps où x_2 est non nulle, cette perturbation interfère avec le signal x_1 . Le signal résultant est bruité et son enveloppe est modifiée. L'amplitude maximale de x est supérieur à celle de x_1 à cause du bruit introduit.

Donc l'objectif est de débruiter le signal pour récupérer x_1 .

Manipulation 2.13.

On cherche à récupérer le signal x_1 de fréquence v_1 en utilisant un filtre passe-bande, il faut donc centrer la fréquence v_0 en v_1 et choisir une largeur de bande de telle sorte que v_2 en soit exclue, donc $\frac{B}{2} + v_0 \le 4v_0 = v_1$.

Donc on choisit $v_1 = v_0$ et B = 250 Hz.

BOUZAIEN Mokhles EL KAOUI Imad-Eddine Gr 1/3

Manipulation 2.14., 2.15. et 2.16.

Figure 12 - Le gain en dB du filtre passe-bande généré

Figure 13 - La phase du filtre passe-bande généré

BOUZAIEN Mokhles EL KAOUI Imad-Eddine Gr 1/3

Figure 14 – La réponse impulsionnelle du filtre passe-bande généré

Il s'agit d'un filtre passe-bande sélectif centré en $v_0=10kHz$. Pour une fréquence $v=4v_0$, on observe que le gain sera inférieur à -70 dB, donc le bruit est très bien atténué, d'où l'intérêt de ce filtre pour récupérer le signal x.

De plus, la phase varie brusquement au voisinage de $\nu = \nu_0$ et passe de $+\pi$ à $-\pi$.

Figure 15 - Le signal de sortie du filtre

BOUZAIEN Mokhles EL KAOUI Imad-Eddine Gr 1/3

Figure 16 - Le signal de sortie pour $\nu_0=10^4$ Hz et $B=4\times 10^4$ Hz

Figure 17 - Le signal de sortie pour $v_0 = 4 \times 10^4$ Hz et B = 250 Hz

Pour les valeurs dans la *figure* 15, on a pu récupérer le signal x_1 à une constante multiplicative près malgré le fait qu'on a adapté le filtre au signal en question (le problème peut être résolu en utilisant un amplificateur).

Malgré des modifications de la valeur de *B*, il subsiste une atténuation du signal sortant.

BOUZAIEN Mokhles EL KAOUI Imad-Eddine Gr 1/3

Dès qu'on a changé la largeur de bande B à une valeur de 4×10^4 Hz, le signal x_2 passe et interfère avec x_1 puisque $v_2 \in [v_0 - \frac{B}{2}, v_0 + \frac{B}{2}]$.

Lorsqu'on a centré le filtre à une fréquence $\nu = \nu_2$, on récupère le signal de bruit x_2 et non pas le signal voulu puisque la largeur de bande est étroite.