第4章 触发器

10

第4章 触发器(Flip Flop)

4.1 概述

触发器:能存储一个"O"或"1"的基本存储单元电路。

触发器的框图

第4章 触发器 (Flip Flop)

- 4.1 概述
- 1) 触发器: 能存储一个"0"或"1"的基本存储单元电路。
- 2) 触发器的特点:
- (1) 有两个稳定的互补输出,分别用Q和 \bar{Q} 表示。
- (2) 无外部信号时,触发器的状态能长期保存——具有记忆功能。
 - (3) 在外部信号作用下,一种稳定状态能翻转到另一种稳定状态——具有翻转功能。

第4章 触发器 (Flip Flop)

- 4.1 概述
- 3) 触发器的分类
- (1) 按是否受控于时钟脉冲(CP-Clock Pulse)

异步触发器 (基本触发器)

同步触发器

(2) 按实现的逻辑功能:

SRFF, DFF, JKFF, TFF, T'FF.....

- 4.2 基本SRFF(S_DR_DFF)
- 4.2.1 与非门构成的基本SRFF
- 1) 电路结构及逻辑符号

1状态: Q=1、 $\overline{Q}=0$ 0状态: Q=0、 $\overline{Q}=1$

表示低电 平有效

国标符号

Reset为置0端(或复位端) Set为置1端(或置位端) 非号"一":表示低电平有效

与非门构成的基本SRFF

- 4.2 基本SRFF(S_DR_DFF)
- 4.2.1 与非门构成的基本SRFF
- 2)逻辑功能(工作原理)(0触发有效)

- 4.2 基本SRFF(S_DR_DFF)
- 4.2.1 与非门构成的基本SRFF
- 2) 逻辑功能 (工作原理)(❶触发有效)

- 4.2 基本SRFF(S_DR_DFF)
- 4.2.1 与非门构成的基本SRFF
- 2)逻辑功能(工作原理)(0触发有效)

M

原因:

a、输出不符合互补特点,触发器既不是0 状态,也不是1状态;

b、若 \overline{S}_D =0, \overline{R}_D =0同时撤消(都变为1)时,输出不确定:

G1门传输速度快(tpd1<tpd2)→则Q先变为"0",反馈使 Q为1→"0"状态G2门传输速度快(tpd1>tpd2)→则Q先变为"0",反馈使Q为1→"1"状态

- 4.2 基本SRFF(SpRpFF)
- 4.2.1 与非门构成的基本SRFF(自学)
- 2)逻辑功能(工作原理)(0触发有效)

由于触发信号直接加在输出门的输入端,所以在输入信号的全部时间里,都能直接改变输出端 \mathbb{Q} 和 $\overline{\mathbb{Q}}$ 的状态。

因此: $\begin{cases} S_D(S_D) 端叫做直接置位端; \\ \hline R_D(R_D) 端叫做直接复位端. \end{cases}$

用D作脚标

- 4.2 基本SRFF(SDRDFF)
- 4.2.1 与非门构成的基本SRFF
- 3) 逻辑功能的描述方法:
- (1) 真值表

$\overline{S}_{\mathbf{D}}$	RD	Q n	Qn+1	逻辑功能
0	0	0	\times (ϕ)	不允许
0	0	1	Χ (φ)	(不定)
0	1	0	1	置"1"
0	1	1	1	
1	0	0	0	罢" 0"
1	0	1	0	置 "0"
1	1	0	0	但长
1	1	1	1	保持

表 4.2.1 与非门基本触发器的状态转移表

- 4.2 基本SRFF(SDRDFF)
- 4.2.1 与非门构成的基本SRFF
- 3) 逻辑功能的描述方法:
- (2) 功能表

SD	RD	Q^{n+1}
0	0	Χ (φ)
0	1	1
1	0	0
1	1	Q^n

表 4.2.2 与非门基本触发器的功能表

- 4.2 基本SRFF(SDRDFF)
- 4.2.1 与非门构成的基本SRFF
- 3) 逻辑功能的描述方法:

图 4.2.2 求次态方程的卡诺图

次态方程为:

$$\begin{cases} Q^{n+1} = \overline{\overline{S}}_D + \overline{R}_D Q^n \\ \overline{S}_D + \overline{R}_D = 1 \quad (约束条件) \end{cases}$$

- 4.2 基本SRFF(SDRDFF)
- 4.2.1 与非门构成的基本SRFF
- 3) 逻辑功能的描述方法:
- (4) 激励表

状态转移		输入条件	
Q n —	→ Q n+1	SD	R _D
0	0	1	ф
0	1	0	1
1	0	1	0
1	1	ф	1

表 4.2.3 与非门基本触发器的激励表

- 4.9
 - 4.2 基本SRFF(SDRDFF)
 - 4.2.1 与非门构成的基本SRFF
 - 3) 逻辑功能的描述方法:
 - (5) 状态转移图

图 4.2.3 与非门基本触发器的状态转移图

- 4.2 基本SRFF(S_DR_DFF)
- 4.2.1 与非门构成的基本SRFF
- 3) 逻辑功能的描述方法:
- (6) 波形图

图 4.2.4 与非门基本触发器的波形图

- 4.2 基本SRFF(S_DR_DFF)
- 4.2.2 或非门构成的基本SRFF
- 1)逻辑功能的表示方法
- (1) 状态转移表 (特性表)

表 4.2.4 或非门基本触发器的状态转移表

S_{D}	R_{D}	Q^n	Q^{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	×
1	1	1	×

- 4
 - 4.2 基本SRFF(SDRDFF)
 - 4.2.2 或非门构成的基本SRFF
 - 1)逻辑功能的表示方法
 - (2) 次态方程

$$\begin{cases} Q^{n+1} = S_D + \overline{R}_D Q^n \\ S_D \cdot R_D = 0 \quad (约束条件) \end{cases}$$

м

基本触发器的工作特点是信号直接加 在输出门上,因此输入信号直接改变(立即 响应一透明)触发器的状态,即所谓动作特 点或工作方式是直接触发。

优点是线路简单;

缺点是对输入信号的取值有限制,使用不方便; 主要用途是作为改进型触发器的基本 电路,以及消抖动开关等。

应用举例

利用基本RS触发器的记忆功能 消除机械开关振动引起的干扰脉冲。

机械开关

(a) 电路

(b) 输出电压波形

图 利用基本RS触发器消除机械开关振动的影响 (a) 电路 (b) 电压波形

激励输入(数据输入); 时钟脉冲(CP)输入;

- 4.3.1 钟控SRFF(SR锁存器)
- 1) 电路结构及逻辑符号

电路结构

逻辑符号

- 4.3.1 钟控SRFF(SR锁存器)
 - 2) 工作原理及动作特点(1 触发有效)

CP=0 时, G3、G4 门封锁, 触发信号不起作用。

CP=1 时,G3、G4 门打开,触发信号可加到基本触发器上。

- 4.3.1 钟控SRFF(SR锁存器)
 - 2) 工作原理及动作特点(1 触发有效)

动作特点(钟控原理):

在 CP = 1 的全部时间里, R、S 端信号的变化都将引起触发器输出状态的变化。

缺点: 抗干扰能力差。

- 4.3.1 钟控SRFF(SR锁存器)
- 3)逻辑功能及其描述
- (1) 次态方程

$$CP=0$$
时, $Q^{n+1}=Q^n$ $CP=1$ 时, $\left\{ \begin{array}{c} Q^{n+1}=S+\overline{R}Q^n \\ SR=0 \end{array} \right.$

4.3.1 钟控SRFF(SR锁存器)

- 3)逻辑功能及其描述
- (2) 功能表和激励表

СР	S	R	Q^{n+1}
0	ф	ф	Q^n
1	0	0	$egin{array}{c} \mathcal{Q}^n \ \mathcal{Q}^n \end{array}$
1	0	1	0
1	1	0	1
1	1	1	×

表 4.3.1 钟控SRFF功能表

- 4.3.1 钟控SRFF(SR锁存器)
- 3)逻辑功能及其描述
- (2) 功能表和激励表

Q^n	$\rightarrow \mathcal{Q}^{n+1}$	S	R
0	0	0	ф
0	1	1	0
1	0	0	1
1	1	ф	0

表 4.3.2 钟控SRFF激励表

- 4.3.1 钟控SRFF(SR锁存器)
- 3)逻辑功能及其描述

4.3.2 钟控DFF(D锁存器)

1) 电路结构及逻辑符号

4.3.2 钟控DFF(D锁存器)

2)逻辑功能及其描述 (1)次态方程

(2) 功能表和激励表

表 4.3.3 钟控DFF功能表

СР	D	Q^{n+1}
0	ф	Q^n
1	0	0
1	1	1

表 4.3.4 钟控DFF激励表

Q^n —	$\rightarrow \mathcal{Q}^{n+1}$	D
0	0	0
0	1	1
1	0	0
1	1	1 ³²

- 4.3.3 钟控触发器的触发方式与空翻
 - 1) 触发方式:
 - (1)电位触发: 高电平触发、低电平触发
 - (2)边沿触发: 上升沿触发、下降沿触发

2) 空翻

定义:在一个CP周期内,触发器的状态发生两次或两次以上变化的现象。

3) 钟控电位触发器如何避免空翻?

数据改变发生在CP的非有效电平(CP=0),在CP的有效电平(CP=1)期间,输入数据保持不变,则可避免空翻现象。

内容回顾

- ■触发器是怎样的一种电路?
- ■基本触发器和钟控触发器怎么工作?