EMPLOYEE PERFORMANCE MAPPING

Ali Hamza Shaikh

Question	Page Num
QUESTION 1	1
QUESTION 2	2
QUESTION 3	3
QUESTION 4	4
QUESTION 5	5
QUESTION 6	6
QUESTION 7	7
QUESTION 8	8
QUESTION 9	9
QUESTION 10	10
QUESTION 11	11
QUESTION 12	12
QUESTION 13	15
QUESTION 14	16
QUESTION 15	17

1. CREATE AN ER DIAGRAM FOR THE GIVEN EMPLOYEE DATABASE. Proj_table PK EMP ID PK PROJECT ID PROJ_Name FIRST_NAME DOMAIN LAST_NAME GENDER START_DATE CLOSURE_DATE ROLE DEV_QTR DEPT STATUS EXP COUNTRY CONTINENT PK EMP ID FIRST_NAME LAST_NAME GENDER DEPT EXP COUNTRY CONTINENT SALARY EMP_RATING MANAGER_ID FK

Query End

PROJ_ID

2. WRITE A QUERY TO FETCH EMP_ID, FIRST_NAME, LAST_NAME, GENDER, AND DEPARTMENT FROM THE EMPLOYEE RECORD TABLE, AND MAKE A LIST OF EMPLOYEES AND DETAILS OF THEIR DEPARTMENT.

→ QUERY:

Select emp_id, first_name, last_name, gender, dept

from emp_record_table;

	emp_id	first_name	last_name	gender	dept
	E001	Arthur	Black	M	ALL
	E005	Eric	Hoffman	M	FINANCE
	E010	William	Butler	M	AUTOMOTIVE
1	E052	Dianna	Wilson	F	HEALTHCARE
	E057	Dorothy	Wilson	F	HEALTHCARE
▶ [E083	Patrick	Voltz	M	HEALTHCARE
1	E103	Emily	Grove	F	FINANCE
1	E204	Karene	Nowak	F	AUTOMOTIVE
	E245	Nian	Zhen	M	RETAIL
1	E260	Roy	Collins	M	RETAIL
	E403	Steve	Hoffman	M	FINANCE
1	E428	Pete	Allen	M	AUTOMOTIVE
	E478	David	Smith	M	RETAIL
	E505	Chad	Wilson	M	HEALTHCARE
	E532	Claire	Brennan	F	AUTOMOTIVE
	E583	Janet	Hale	F	RETAIL
	E612	Tracy	Norris	F	RETAIL
	E620	Katrina	Allen	F	RETAIL
	E640	Jenifer	Jhones	F	RETAIL

3. WRITE A QUERY TO FETCH EMP_ID, FIRST_NAME, LAST_NAME, GENDER,
DEPARTMENT, AND EMP_RATING IF THE EMP_RATING IS: ● LESS THAN TWO ●
GREATER THAN FOUR ● BETWEEN TWO AND FOUR

→ QUERY:

Select

emp_id,first_name,last_name,gender,dept,emp_r
ating,

CASE

WHEN EMP_RATING < 2 Then 'less than 2'
WHEN EMP_RATING > 4 Then 'Greater than 4'

WHEN EMP_RATING BETWEEN 2 AND 4 Then 'Between 2 and 4'

END AS rating_category from emp_record_table;

4. WRITE A QUERY TO CONCATENATE THE FIRST_NAME AND THE LAST_NAME OF EMPLOYEES IN THE FINANCE DEPARTMENT FROM THE EMPLOYEE TABLE AND THEN GIVE THE RESULTANT COLUMN ALIAS AS NAME.

→ QUERY:

Select Concat(First_Name,' ', Last_Name) AS Name

from emp_record_table where dept = 'Finance';

5. WRITE A QUERY QUERY TO RETRIEVE THE EMPLOYEE ID, FIRST NAME, ROLE, AND DEPARTMENT OF EMPLOYEES WHO HOLD LEADERSHIP POSITIONS (MANAGER, PRESIDENT, OR CEO).

→ QUERY:

SELECT EMP_ID, FIRST_NAME, ROLE, DEPT FROM emp_record_table WHERE ROLE IN ('Manager', 'President', 'CEO');

	EMP_ID	FIRST_NAME	ROLE	DEPT
١	E001	Arthur	PRESIDENT	ALL
	E083	Patrick	MANAGER	HEALTHCARE
	E103	Emily	MANAGER	FINANCE
	E428	Pete	MANAGER	AUTOMOTIVE
	E583	Janet	MANAGER	RETAIL
	E612	Tracy	MANAGER	RETAIL
	NULL	NULL	NULL	NULL

6. WRITE A QUERY TO LIST ALL THE EMPLOYEES FROM THE HEALTHCARE AND FINANCE DEPARTMENTS USING THE UNION. TAKE DATA FROM THE EMPLOYEE RECORD TABLE.

→ QUERY:

Select * from emp_record_table where dept = 'HEALTHCARE'

UNION

Select * from emp_record_table where dept = 'FINANCE';

7. WRITE A QUERY TO LIST EMPLOYEE DETAILS SUCH AS EMP_ID, FIRST_NAME, LAST_NAME, ROLE, DEPARTMENT, AND EMP_RATING GROUPED BY DEPT. ALSO INCLUDE THE RESPECTIVE EMPLOYEE RATING ALONG WITH THE MAX EMP RATING FOR THE DEPARTMENT.

→ QUERY:

Select e.emp_id, e.first_name, e.last_name, e.role,
e.dept, e.emp_rating, m.max_rating
 From emp_record_table as e
 JOIN (
 Select dept, MAX(emp_rating) as max_rating
 from emp_record_table
 group by dept
) m ON e.dept = m.dept;

- 8. WRITE A QUERY TO CALCULATE THE MINIMUM AND THE MAXIMUM SALARY OF THE EMPLOYEES IN EACH ROLE. TAKE DATA FROM THE EMPLOYEE RECORD TABLE.
- QUERY: Select role, MIN(Salary) as min_salary, MAX(Salary) as max_salary from emp_record_table group by role;

	role	min_salary	max_salary
Þ	PRESIDENT	16500	16500
	LEAD DATA SCIENTIST	8500	9000
	SENIOR DATA SCIENTIST	5500	7700
	MANAGER	8500	11000
	ASSOCIATE DATA SCIENTIST	4000	5000
	JUNIOR DATA SCIENTIST	2800	3000

9. WRITE A QUERY TO ASSIGN RANKS TO EACH EMPLOYEE BASED ON THEIR EXPERIENCE. TAKE DATA FROM THE EMPLOYEE RECORD TABLE.

→ QUERY: Select *, Rank() over (order by EXP DESC) as experience_rank from emp_record_table;

EMP_ID	FIRST_NAME	LAST_NAME	GENDER	ROLE	DEPT	EXP	COUNTRY	CONTINENT	SALARY	EMP_RATING	MANAGER_ID	PROJ_ID	experience_rank
E001	Arthur	Black	М	PRESIDENT	ALL	20	USA	NORTH AMERICA	16500	5	NULL	NULL	1
E083	Patrick	Voltz	M	MANAGER	HEALTHCARE	15	USA	NORTH AMERICA	9500	5	E001	HULL	2
E103	Emily	Grove	F	MANAGER	FINANCE	14	CANADA	NORTH AMERICA	10500	4	E001	HULL	3
E428	Pete	Allen	M	MANAGER	AUTOMOTIVE	14	GERMANY	EUROPE	11000	4	E001	NULL	3
E583	Janet	Hale	F	MANAGER	RETAIL	14	COLOMBIA	SOUTH AMERICA	10000	2	E001	MULL	3
E612	Tracy	Norris	F	MANAGER	RETAIL	13	INDIA	ASIA	8500	4	E001	NULL	6
E010	William	Butler	M	LEAD DATA SCIENTIST	AUTOMOTIVE	12	FRANCE	EUROPE	9000	2	E428	P204	7
E005	Eric	Hoffman	M	LEAD DATA SCIENTIST	FINANCE	11	USA	NORTH AMERICA	8500	3	E103	P105	8
E057	Dorothy	Wilson	F	SENIOR DATA SCIENTIST	HEALTHCARE	9	USA	NORTH AMERICA	7700	1	E083	P302	9
E204	Karene	Nowak	F	SENIOR DATA SCIENTIST	AUTOMOTIVE	8	GERMANY	EUROPE	7500	5	E428	P204	10
E260	Roy	Collins	M	SENIOR DATA SCIENTIST	RETAIL	7	INDIA	Asia	7000	3	E583	NULL	11
E052	Dianna	Wilson	F	SENIOR DATA SCIENTIST	HEALTHCARE	6	CANADA	NORTH AMERICA	5500	5	E083	P103	12
E245	Nian	Zhen	M	SENIOR DATA SCIENTIST	RETAIL	6	CHINA	ASIA	6500	2	E583	P109	12
E505	Chad	Wilson	M	ASSOCIATE DATA SCIEN	HEALTHCARE	5	CANADA	NORTH AMERICA	5000	2	E083	P103	14
E403	Steve	Hoffman	M	ASSOCIATE DATA SCIEN	FINANCE	4	USA	NORTH AMERICA	5000	3	E103	P105	15
E478	David	Smith	M	ASSOCIATE DATA SCIEN	RETAIL	3	COLOMBIA	SOUTH AMERICA	4000	4	E583	P109	16
E532	Claire	Brennan	F	ASSOCIATE DATA SCIEN	AUTOMOTIVE	3	GERMANY	EUROPE	4300	1	E428	P204	16
E620	Katrina	Allen	F	JUNIOR DATA SCIENTIST	RETAIL	2	INDIA	ASIA	3000	1	E612	P406	18
E640	Jenifer	Jhones	F	JUNIOR DATA SCIENTIST	RETAIL	1	COLOMBIA	SOUTH AMERICA	2800	4	E612	P406	19

10. WRITE A QUERY TO CREATE A VIEW THAT DISPLAYS EMPLOYEES IN VARIOUS COUNTRIES WHOSE SALARY IS MORE THAN SIX THOUSAND. TAKE DATA FROM THE EMPLOYEE RECORD TABLE.

- → QUERY: CREATE VIEW emp_sal_country AS Select * from emp_record_table where salary > 6000;
 - To check view output

Select * from emp_sal_country;

11. WRITE A NESTED QUERY TO FIND EMPLOYEES WITH EXPERIENCE OF MORE THAN TEN YEARS. TAKE DATA FROM THE EMPLOYEE RECORD TABLE.

P QUERY: Select *
 from emp_record_table
 where emp_id IN
 (
 Select emp_id
 from emp_record_table
 where EXP > 10
);

12. WRITE A QUERY USING STORED FUNCTIONS IN THE PROJECT TABLE TO CHECK WHETHER THE JOB PROFILE ASSIGNED TO EACH EMPLOYEE IN THE DATA SCIENCE TEAM MATCHES THE ORGANIZATION'S SET STANDARD. THE STANDARD BEING: FOR AN EMPLOYEE WITH EXPERIENCE LESS THAN OR EQUAL TO 2 YEARS ASSIGN 'JUNIOR DATA SCIENTIST', FOR AN EMPLOYEE WITH THE EXPERIENCE OF 2 TO 5 YEARS ASSIGN 'ASSOCIATE DATA SCIENTIST', FOR AN EMPLOYEE WITH THE EXPERIENCE OF 5 TO 10 YEARS ASSIGN 'SENIOR DATA SCIENTIST', FOR AN EMPLOYEE WITH THE EXPERIENCE OF 10 TO 12 YEARS ASSIGN 'LEAD DATA SCIENTIST', FOR AN EMPLOYEE WITH THE EXPERIENCE OF 12 TO 16 YEARS ASSIGN 'MANAGER'.

Creating Function :

DELIMITER \$\$

```
CREATE FUNCTION get_standard_role (EXP INT)
RETURNS VARCHAR(50)
DETERMINISTIC
BEGIN
DECLARE expected_role VARCHAR(50);

IF exp <= 2 THEN
SET expected_role = 'JUNIOR DATA SCIENTIST';
ELSEIF exp > 2 AND exp <= 5 THEN
SET expected_role = 'ASSOCIATE DATA
SCIENTIST';
ELSEIF exp > 5 AND exp <= 10 THEN
SET expected_role = 'SENIOR DATA SCIENTIST';
```

ELSEIF exp > 10 AND exp <= 12 THEN

```
SET expected_role = 'LEAD DATA SCIENTIST';
   ELSEIF exp > 12 AND exp <= 16 THEN
    SET expected role = 'MANAGER';
   ELSE
   SET expected_role = 'UNKNOWN';
   END IF;
  RETURN expected role;
 END $$
 DELIMITER;
→
      QUERY:
 SELECT EMP ID, FIRST NAME, ROLE AS
 actual_role, EXP,
  get_standard_role(EXP) AS expected_role,
  CASE
   WHEN ROLE = get standard role(EXP) THEN
 'Matching'
    ELSE 'Not Matching'
   END AS match status
 FROM data science team;
```

	EMP_ID	FIRST_NAME	actual_role	EXP	expected_role	match_status
•	E005	Eric	LEAD DATA SCIENTIST	11	LEAD DATA SCIENTIST	Matching
	E010	William	LEAD DATA SCIENTIST	12	LEAD DATA SCIENTIST	Matching
	E052	Dianna	SENIOR DATA SCIENTIST	6	SENIOR DATA SCIENTIST	Matching
	E057	Dorothy	SENIOR DATA SCIENTIST	9	SENIOR DATA SCIENTIST	Matching
	E204	Karene	SENIOR DATA SCIENTIST	8	SENIOR DATA SCIENTIST	Matching
	E245	Nian	SENIOR DATA SCIENTIST	6	SENIOR DATA SCIENTIST	Matching
	E260	Roy	SENIOR DATA SCIENTIST	7	SENIOR DATA SCIENTIST	Matching
	E403	Steve	ASSOCIATE DATA SCIENTIST	4	ASSOCIATE DATA SCIENTIST	Matching
	E478	David	ASSOCIATE DATA SCIENTIST	3	ASSOCIATE DATA SCIENTIST	Matching
	E505	Chad	ASSOCIATE DATA SCIENTIST	5	ASSOCIATE DATA SCIENTIST	Matching
	E532	Claire	ASSOCIATE DATA SCIENTIST	3	ASSOCIATE DATA SCIENTIST	Matching
	E620	Katrina	JUNIOR DATA SCIENTIST	2	JUNIOR DATA SCIENTIST	Matching
	E640	Jenifer	JUNIOR DATA SCIENTIST	1	JUNIOR DATA SCIENTIST	Matching

● 144 22:27:30 SELECT EMP_ID, FIRST_NAME, ROLE AS actual_role, EXP, _get_standard_role(EXP) AS expected_role, C... 13 row(s) returned

0.016 sec / 0.000 sec

13. CREATE AN INDEX TO IMPROVE THE COST AND PERFORMANCE OF THE QUERY TO FIND THE EMPLOYEE WHOSE FIRST_NAME IS 'ERIC' IN THE EMPLOYEE TABLE AFTER CHECKING THE EXECUTION PLAN.

→ QUERY:

EXPLAIN SELECT * FROM emp_record_table WHERE FIRST NAME = 'Eric';

QUERY:

CREATE INDEX idx_first_name ON
emp_record_table (FIRST_NAME);

→ QUERY:

EXPLAIN SELECT * FROM emp_record_table WHERE FIRST_NAME = 'Eric';

14. WRITE A QUERY TO CALCULATE THE BONUS FOR ALL THE EMPLOYEES, BASED ON THEIR RATINGS AND SALARIES (USE THE FORMULA: 5% OF SALARY * EMPLOYEE RATING).

→ QUERY:

Select emp_id, first_name, last_name, salary, emp_rating, round(0.05 * salary * emp_rating,2) as BONUS from emp_record_table;

	emp_id	first_name	last_name	salary	emp_rating	BONUS
١	E001	Arthur	Black	16500	5	4125.00
	E005	Eric	Hoffman	8500	3	1275.00
	E010	William	Butler	9000	2	900.00
	E052	Dianna	Wilson	5500	5	1375.00
	E057	Dorothy	Wilson	7700	1	385.00
	E083	Patrick	Voltz	9500	5	2375.00
	E103	Emily	Grove	10500	4	2100.00
	E204	Karene	Nowak	7500	5	1875.00
	E245	Nian	Zhen	6500	2	650.00
	E260	Roy	Collins	7000	3	1050.00
	E403	Steve	Hoffman	5000	3	750.00
	E428	Pete	Allen	11000	4	2200.00
	E478	David	Smith	4000	4	800.00
	E505	Chad	Wilson	5000	2	500.00
	E532	Claire	Brennan	4300	1	215.00
	E583	Janet	Hale	10000	2	1000.00
	E612	Tracy	Norris	8500	4	1700.00
	E620	Katrina	Allen	3000	1	150.00
	E640	Jenifer	Jhones	2800	4	560.00

15. WRITE A QUERY TO CALCULATE THE AVERAGE SALARY DISTRIBUTION BASED ON THE CONTINENT AND COUNTRY. TAKE DATA FROM THE EMPLOYEE RECORD TABLE.

→ QUERY:

Select Continent, Country,
ROUND(AVG(Salary),2) AS AVGERAGE_SALARY
from emp_record_table
group by CONTINENT,COUNTRY
order by CONTINENT,COUNTRY;

154 23:21:04 Select Continent, Country, ROUND(AVG(Salary),2) AS AVGERAGE_SALARY from emp_record_table group by... 7 row(s) returned

0.000 sec / 0.000 sec