Preparação para exame

12.º Ano de Escolaridade | Turma G-K

FUNÇÕES REAIS DE VARIÁVEL REAL

1. As equações das assíntotas não verticais são da forma $y=mx+b, m,b\in\mathbb{R}$

Quando $x \to +\infty$

$$\lim_{x \to +\infty} \frac{g(x)}{x} = \lim_{x \to +\infty} \frac{\sqrt{x^2 - 1}}{x} = \lim_{x \to +\infty} \frac{\sqrt{x^2 - 1}}{\sqrt{x^2}} = \lim_{x \to +\infty} \sqrt{\frac{x^2 - 1}{x^2}} = \sqrt{\lim_{x \to +\infty} \frac{x^2 - 1}{x^2}} = \sqrt{\lim$$

Logo, m=1

$$\lim_{x \mapsto +\infty} [g(x) - x] = \lim_{x \mapsto +\infty} (\sqrt{x^2 - 1} - x) = \lim_{x \mapsto +\infty} \frac{(\sqrt{x^2 - 1} - x)(\sqrt{x^2 - 1} + x)}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x \mapsto +\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} + x} = \lim_{x$$

Logo, b = 0

Então, a reta de equação y=x é assíntota não vertical ao gráfico da função, quando $x\to +\infty$

Quando $x \to -\infty$

$$\lim_{x \to -\infty} \frac{g(x)}{x} = \lim_{x \to -\infty} \frac{\sqrt{x^2 - 1}}{x} = \lim_{x \to -\infty} \frac{\sqrt{x^2 - 1}}{-\sqrt{x^2}} = -\lim_{x \to -\infty} \sqrt{\frac{x^2 - 1}{x^2}} = -\sqrt{\lim_{x \to +\infty} \frac{x^2 - 1}{x^2}} = -\sqrt{\lim_{x \to +\infty} \left(1 - \frac{1}{x^2}\right)} = -\sqrt{1} = -1$$

Logo, m = -1

$$\lim_{x \to -\infty} [g(x) + x] = \lim_{x \to -\infty} (\sqrt{x^2 - 1} + x) = \lim_{x \to -\infty} \frac{(\sqrt{x^2 - 1} + x)(\sqrt{x^2 - 1} - x)}{\sqrt{x^2 - 1} - x} = \lim_{x \to -\infty} \frac{|x^2 - 1| - x^2}{\sqrt{x^2 - 1} - x} = \lim_{x \to -\infty} \frac{(x^2 - 1) - x^2}{\sqrt{x^2 - 1} - x} = -\lim_{x \to -\infty} \frac{1}{\sqrt{x^2 - 1} - x} = -\frac{1}{+\infty} = 0$$

Logo, b = 0

Então, a reta de equação y=-x é assíntota não vertical ao gráfico da função, quando $x\to-\infty$

Nota: em alternativa, poder-se-ia provar que a função é par e portanto, o gráfico é simétrico em relação ao eixo das ordenadas, fazendo com que a reta de equação y = -x seja uma reflexão

de eixo Oy da reta de equação y = x.

Ora, as retas de equações y = x e y = -x intersetam-se na origem do referencial. c.q.d.

2. Função f

- Domínio: $D_f = \{x \in \mathbb{R} : x + 1 \neq 0\} = \{x \in \mathbb{R} : x \neq -1\} = \mathbb{R} \setminus \{-1\}$
- Interseção com os eixos
 - (i) Com o eixo Oy

$$f(0) = \frac{2 \times 0^2 - 4}{0 + 1} = -4$$

 $f(0)=\frac{2\times 0^2-4}{0+1}=-4$ O gráfico da função f interseta o eixo Oy no ponto (0;-4)

(ii) Com o eixo Ox

$$f(x) = 0 \Leftrightarrow \frac{2x^2 - 4}{x + 1} = 0 \Leftrightarrow 2x^2 - 4 = 0 \land x + 1 \neq 0 \Leftrightarrow x^2 = 2 \land x \neq -1 \Leftrightarrow x = \pm\sqrt{2} \land x \neq -1 \Leftrightarrow x = \pm\sqrt{2}$$

O gráfico da função f interseta o eixo Ox nos pontos $(-\sqrt{2};0)$ e $(\sqrt{2};0)$

• Sinal:

x	$-\infty$	$-\sqrt{2}$		-1		$\sqrt{2}$	$+\infty$
$2x^2 - 4$	+	0	_	_	_	0	+
x+1	_	_	_	0	+	+	+
f(x)	_	0	+	n.d.	_	0	+

A função toma sinal positivo em] $-\sqrt{2}$; $-1[\cup]\sqrt{2}$; $+\infty[$ A função toma sinal negativo em] $-\infty$; $-\sqrt{2}[\cup]-1$; $\sqrt{2}[$

• Paridade:
$$f(-x) = \frac{2(-x)^2 - 4}{-x + 1} = \frac{2x^2 - 4}{-x + 1}$$

$$f(-x) \neq f(x), \forall x, -x \in D_f, \text{ logo a função não é par}$$

$$f(-x) \neq -f(x), \forall x, -x \in D_f, \text{ logo a função não é impar}$$
 Concluindo, a função é nem par nem impar

• Assíntotas:

Assíntotas verticais

$$\lim_{x \mapsto -1^+} f(x) = \lim_{x \mapsto -1^+} \frac{2x^2 - 4}{x + 1} = \frac{-2}{0^+} = -\infty$$

A reta de equação x = -1 é assíntota vertical ao gráfico da função

$$\lim_{x\mapsto -1^-}f(x)=\lim_{x\mapsto -1^-}\frac{2x^2-4}{x+1}=\frac{-2}{0^-}=+\infty$$
 A reta de equação $x=-1$ é assíntota vertical ao gráfico da função

Não existem mais assíntotas verticais ao gráfico da função porque a função é contínua em $\mathbb{R} \setminus \{-1\}$

Assíntotas não verticais

Quando $x \to +\infty$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\frac{2x^2 - 4}{x+1}}{x} = \lim_{x \to +\infty} \frac{2x^2 - 4}{x^2 + x} = \lim_{x \to +\infty} \frac{x^2 \left(2 - \frac{4}{x^2}\right)}{x^2 \left(1 + \frac{1}{x^2}\right)} = \lim_{x \to +\infty} \left(2 - \frac{4}{x^2}\right) = \lim_{x \to +\infty} \left(2 - \frac{4}{x^2}\right) = 2$$

Logo, m=2

$$\lim_{x \to +\infty} [f(x) - x] = \lim_{x \to +\infty} \left(\frac{2x^2 - 4}{x + 1} - 2x \right) = \lim_{x \to +\infty} \frac{2x^2 - 4 - 2x^2 - 2x}{x + 1} = \lim_{x \to +\infty} \frac{-4 - 2x}{x + 1} = \lim_{x \to +\infty} \frac{-4 - 2x}{x + 1} = \lim_{x \to +\infty} \frac{x \left(-2 - \frac{4}{x} \right)}{x \left(1 + \frac{1}{x} \right)} = \lim_{x \to +\infty} \left(-2 - \frac{4}{x} \right) = -2$$

Logo, b = -2

Então, a reta de equação y=2x-2 é assíntota não vertical do gráfico da função, quando $x\to +\infty$

Quando $x \to -\infty$

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{\frac{2x^2 - 4}{x + 1}}{x} = \lim_{x \to -\infty} \frac{2x^2 - 4}{x^2 + x} = \lim_{x \to -\infty} \frac{x^2 \left(2 - \frac{4}{x^2}\right)}{x^2 \left(1 + \frac{1}{x^2}\right)} = \lim_{x \to -\infty} \left(2 - \frac{4}{x^2}\right) = \lim_{x \to -\infty} \left(1 + \frac{1}{x^2}\right) = 2$$

Logo, m=2

$$\lim_{x \to -\infty} [f(x) - x] = \lim_{x \to -\infty} \left(\frac{2x^2 - 4}{x + 1} - 2x \right) = \lim_{x \to -\infty} \frac{2x^2 - 4 - 2x^2 - 2x}{x + 1} = \lim_{x \to -\infty} \frac{-4 - 2x}{x + 1} = \lim_{x \to -\infty} \frac{-4 - 2x}{x + 1} = \lim_{x \to -\infty} \frac{x \left(-2 - \frac{4}{x} \right)}{x \left(1 + \frac{1}{x} \right)} = \lim_{x \to -\infty} \left(-2 - \frac{4}{x} \right) = -2$$

Logo, b = -2

Então, a reta de equação y=2x-2 é assíntota não vertical do gráfico da função, quando $x\to -\infty$

• Monotonia e extremos:

$$f'(x) = \left(\frac{2x^2 - 4}{x + 1}\right)' =$$

$$= \frac{(2x^2 - 4)' \times (x + 1) - (2x^2 - 4) \times (x + 1)'}{(x + 1)^2} = \frac{4x \times (x + 1) - (2x^2 - 4) \times 1}{4x^2} =$$

$$= \frac{4x^2 + 4x - 2x^2 + 4}{(x + 1)^2} = \frac{2x^2 + 4x + 4}{(x + 1)^2}, \text{ com } x \neq -1$$

Determinemos os zeros da função derivada

Determinemos os zeros da função derivada
$$f'(x) = 0 \Leftrightarrow \frac{2x^2 + 4x + 4}{(x+1)^2} = 0 \Leftrightarrow 2x^2 + 4x + 4 = 0 \land x + 1 \neq 0 \Leftrightarrow x^2 + 2x + 2 = 0 \land x \neq -1$$

A equação é impossíve

Não existem zeros para a função derivada

Sinal da função derivada

x	$-\infty$	-1	$+\infty$
$2x^2 + 4x + 4$	+	+	+
$(x+1)^2$	+	0	+
f'(x)	+	n.d.	+
f(x)	7	n.d.	7

A função f é estritamente crescente em $]-\infty;-1[$ e em $]-1;+\infty[$. Não existem extremos da função.

• Concavidades e pontos de inflexão:

$$f''(x) = [f'(x)]' = \left(\frac{2x^2 + 4x + 4}{(x+1)^2}\right)' =$$

$$= \frac{(2x^2 + 4x + 4)' \times (x+1)^2 - (2x^2 + 4x + 4) \times [(x+1)^2]'}{[(x+1)^2]^2} =$$

$$= \frac{(4x+4)(x+1)^2 - (2x^2 + 4x + 4) \times 2(x+1)(x+1)'}{(x+1)^4} =$$

$$= \frac{(4x+4)(x+1)^2 - 2(2x^2 + 4x + 4)(x+1)}{(x+1)^4} =$$

$$= \frac{(x+1)[4(x+1)^2 - 2(2x^2 + 4x + 4)]}{(x+1)^4} =$$

$$= \frac{(x+1)[4(x+1)^2 - 2(2x^2 + 4x + 4)]}{(x+1)^4} =$$

$$= \frac{4x^2 + 8x + 4 - 4x^2 - 8x - 8}{(x+1)^3} = -\frac{4}{(x+1)^3}, \cos x \neq -1$$

Determinemos os zeros da função segunda derivada
$$f''(x)=0 \Leftrightarrow -\frac{4}{(x+1)^3}=0$$

A equação é impossível

Não existem zeros para a função segunda derivada

Sinal da função segunda derivada

x	$-\infty$	-1	$+\infty$
x+1	_	0	+
f''(x)	+	n.d.	_
f(x)	U	n.d.	Λ

O gráfico da função f tem a concavidade voltada para cima em $]-\infty;-1[$ tem a concavidade voltada para baixo em $]-1;+\infty[$. Não existem pontos de inflexão do gráfico da função.

• Contradomínio: $D'_f = \mathbb{R}$

4/7

• Esboço do gráfico

Figura 1

Função g

• Domínio: $D_g = \{x \in \mathbb{R} : 4 - x^2 \ge 0\} = \{x \in \mathbb{R} : -2 \le x \le 2\} = [-2; 2]$ Cálculos auxiliares

$$4 - x^2 = 0 \Leftrightarrow x^2 = 4 \Leftrightarrow x = -2 \lor x = 2$$

- Interseção com os eixos
 - (i) Com o eixo Oy

$$g(0) = \sqrt{4 - 0^2} = 2$$

O gráfico da função g interseta o eixo Oy no ponto (0; 2)

(ii) Com o eixo Ox

$$g(x) = 0 \Leftrightarrow \sqrt{4 - x^2} = 0 \Leftrightarrow 4 - x^2 = 0 \Leftrightarrow x^2 = 4 \Leftrightarrow x = -2 \lor x = 2$$

O gráfico da função g interseta o eixo Ox nos pontos (-2;0) e (2;0)

• Sinal:

A função toma sinal positivo em]-2;2[

• Paridade: $g(-x) = \sqrt{4-(-x)^2} = \sqrt{4-x^2} = g(x), \forall x, -x \in D_g, \text{ logo a função é par O gráfico é simétrico em relação ao eixo das ordenadas.}$

Assíntotas:

Assíntotas verticais

Não existem assíntotas verticais ao gráfico da função porque a função é contínua em [-2; 2]

Assíntotas não verticais

Não existem assíntotas não verticais ao gráfico da função porque o domínio da função é [-2; 2]

• Monotonia e extremos:

$$g'(x) = \left(\sqrt{4 - x^2}\right)' = \frac{(4 - x^2)'}{2\sqrt{4 - x^2}} = \frac{-2x}{2\sqrt{4 - x^2}} = -\frac{x}{\sqrt{4 - x^2}}, \text{ com } x \in]-2; 2[$$

Determinemos os zeros da função derivada
$$g'(x)=0 \Leftrightarrow -\frac{x}{\sqrt{4-x^2}}=0 \Leftrightarrow -x=0 \land 4-x^2>0 \Leftrightarrow x=0 \land -2 < x < 2 \Leftrightarrow x=0$$

Sinal da função derivada

x	-2		0		+2
-x	2	+	0	_	-2
$\sqrt{4-x^2}$	0	+	2	+	0
g'(x)	n.d	+	0	_	n.d.
g(x)	0	7	2	>	0

$$g(0) = \sqrt{4 - 0^2} = 2$$

A função g é estritamente crescente em]-2;0[e é estritamente decrescente em]0;2[. A função atinge o valor máximo 2 para x = 0.

• Concavidades e pontos de inflexão:

$$g''(x) = [g'(x)]' = \left(-\frac{x}{\sqrt{4-x^2}}\right)' = -\frac{x' \times \sqrt{4-x^2} - x \times \left(\sqrt{4-x^2}\right)'}{\left(\sqrt{4-x^2}\right)^2} =$$

$$= -\frac{1 \times \sqrt{4-x^2} - x \times \left(-\frac{x}{\sqrt{4-x^2}}\right)}{|4-x^2|} = -\frac{\sqrt{4-x^2} + \frac{x^2}{\sqrt{4-x^2}}}{4-x^2} = -\frac{|4-x^2| + x^2}{(4-x^2)\sqrt{4-x^2}} =$$

$$= -\frac{4-x^2+x^2}{(4-x^2)\sqrt{4-x^2}} = -\frac{4}{(4-x^2)\sqrt{4-x^2}}, \text{ com } -2 < x < 2$$

Determinemos os zeros da função segunda derivada
$$g''(x)=0 \Leftrightarrow -\frac{4}{(4-x^2)\sqrt{4-x^2}}=0$$

A equação é impossíve

Não existem zeros para a função segunda derivada

Sinal da função segunda derivada

x	-2		+2
$4 - x^2$	0	+	0
$-\sqrt{4-x^2}$	0	_	0
g''(x)	n.d	_	n.d.
g(x)	0	\cap	0

O gráfico da função g tem a concavidade voltada para baixo em]-2; 2[. Não existem pontos de inflexão do gráfico da função.

• Esboço do gráfico

Figura 2