Grado en Informática y Mátematicas Métodos Numéricos I. Curso 2011/12.

Prueba Final (09-07-2012):

ALUMNO: D.N.I.:

Cuestiones (2.5 puntos)

1. Calcula una base ortogonal de los polinomios de grado ≤ 1 respecto del producto escalar

$$\langle f, g \rangle = \int_0^2 f(x)g(x)dx$$

donde f, g representan funciones continuas en [0, 2].

2. Dada función a trozos, $s(x) = \begin{cases} 1+x & -1 \le x < 0 \\ x^2 + \alpha x + 1 & 0 \le x < 1 \\ 3x & 1 \le x \le 2 \end{cases}$, ¿es spline cuadrático para algún valor de α ?

3. Cierto alumno de métodos ha calculado la matriz de Gram, G, asociada a un producto escalar sobre V obteniendo el resultado, $G = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 3 & 2 \\ 2 & 2 & 5 \end{pmatrix}$. ¿Puede ser correcta?

4. Cierto sistema lineal, Ax = b, de orden 3×3 cumple la siguiente propiedad: $det(A_1) = 2$, $det(A_2) = -3$, $det(A_3 = A) = 10$. Si aplicamos el método de Gauss básico se obtiene el sistema triangular superior, $Ux = b^*$ donde:

$$U = \left(\begin{array}{ccc} 2 & -1 & 1\\ 0 & u_{22} & 2\\ 0 & 0 & u_{33} \end{array}\right)$$

¿Cuáles son los valores de u_{22} , $y u_{33}$?

5. ¿Es cierto que toda matriz real, A, de orden 3×3 , con traza y determinante positivos, tiene sus valores propios positivos? Justifica tu respuesta.

6. Observando los datos de la figura,

Figura 1: datos para el ajuste.

y sin hacer cálculos, ¿cuál de los siguientes modelos de ajuste m.c. usaría?

Modelo 1: $y = a + bx + cx^2$; **Modelo 3:** $y = a + bx + c(x - 0.5)_+$;

Ejercicios (7 puntos)

1. Se considera el problema de interpolación siguiente:

Hallar el polinomio, p(x), de grado ≤ 2 que satisface:

$$p'(0) = z_1, p'(1) = z_2, p(-1) = z_3$$

- (a) ¿Es unisolvente el problema?
- (b) Calcula, si es factible, la base de Lagrange asociada al problema anterior y escribe el interpolante para los valores $z_1 = -1$, $z_2 = 0$, $z_3 = 2$
- 2. De cierto spline polinomial, s(x), con nodos -1, 1, 2 se conoce uno de sus trozos; a saber,

$$s(x) = \begin{cases} s_1(x) & -1 \le x < 1\\ s_2(x) = x^3 - 5x + 3 & 1 \le x < 2 \end{cases}$$

- (a) suponiendo que se trata de un spline cúbico y pasa por el punto (-1,0), calcula $s_1(x)$;
- (b) si, ahora, suponemos que es spline cúbico de clase 1 y pasa por el punto (-1,0) con pendiente -1, calcula de nuevo $s_1(x)$;
- (c) ¿se obtiene el mismo resultado?
- 3. Dado el sistema de ecuaciones lineales: $\begin{pmatrix} 2 & 2 & -1 \\ 2 & 3 & 0 \\ -2 & 0 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 5 \end{pmatrix}$
 - (a) Resuelva el sistema mediante descomposición A=LU.
 - (b) Escribe las ecuaciones del método iterativo de Gauss–Seidel para aproximar la solución del sistema y calcula 2 aproximaciones desde la aproximación inicial x = y = z = 0.
- 4. Considera el sistema lineal, Ax = b del ejercicio anterior.
 - (a) calcula la matriz del método de Jacobi y su radio espectral;
 - (b) calcula la matriz del método de Gaus-Seidel y su radio espectral;
 - (c) ¿qué se puede asegurar sobre la convergencia de ambos métodos? ¿y sobre la rapidez?

 $^{^1\}mathbf{Nota}:$ recuerda la relación entre derivada y pendiente a una curva en un punto