§ 2.1 连续性的证明与应用	. 96
一、连续性的证明	. 96
二、连续性的应用	. 101
三、单元练习 2.1	. 107
a. (浙 区 大学)(113)	
§ 2.2 一致连续性	. 114
一、利用一致连续的定义及其否定形式证题	. 114
二、一致连续与连续的关系	. 116
三、用连续模数描述一致连续性	. 119
a. 集上的连续函数及一致连续函数的延拓问题(120)	
四、单元练习 2.2	. 122
§ 2.3 上、下半连续	. 126
一、上、下半连续的定义及等价条件	. 126
二、上、下半连续的性质	. 126
三、单元练习 2.3	. 127
四、问题的提出	. 127
五、求解函数方程	. 128
六、单元练习 2.4	. 133
§ 2.4 函数方程	. 138
三章 一元微分学	. 139
§ 3.1 导数	. 139
一、关于导数的定义与可微性	. 139
a. 高阶导数与 Leibniz 公式(143) b. 先拆项再求导(143) c. 直接使用 Leibni 公式(144) d. 用数学归纳法求高阶导数(145) e. 提示易证(146) f. 用递析 公式求导(146)	
二、单元练习 3.1	. 149
§ 3.2 微分中值定理	. 155
一、Rolle 定理	. 156
a. 函数零 (值) 点问题(156) b. 要点零点存在性问题.(156) c. 证明中值公式(1	.58)
二、Lagrange 定理	. 159
a. 利用几何意义 (弦线法)(159) b. 利用有限增量公式导出新的中值公式(163)	c. 作