Федеральное государственное образовательное бюджетное учреждение высшего образования «ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» (ФИНАНСОВЫЙ УНИВЕРСИТЕТ)

Департамент анализа данных, принятия решений и финансовых технологий



#### Ha 1 CD

#### Системные требования:

Celeron 1600 Mhz; 128 M6 RAM; Windows XP/7/8 и выше; 8x CDROM; разрешение экрана 1024 × 768 или выше; программа для просмотра pdf.

е и использование данного продукта запрещены

А. В. Браилов, П. Е. Рябов

#### СБОРНИК ЗАДАЧ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ

УЧЕБНОЕ ПОСОБИЕ

Для студентов, обучающихся по направлению «Экономика» для всех профилей (программа подготовки бакалавра)

Москва ◆ Ижевск

Федеральное государственное образовательное бюджетное учреждение высшего образования «ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» (ФИНАНСОВЫЙ УНИВЕРСИТЕТ) Делаотамент анализа данных, поинатия решений и финансовых технологий

# А. В. Браилов, П. Е. Рябов

# СБОРНИК ЗАДАЧ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ

УЧЕБНОЕ ПОСОБИЕ

Для студентов, обучающихся по направлению «Экономика» для всех профилей (программа подготовки бакалавра)

# Федеральное государственное образовательное бюджетное учреждение высшего образования

# «ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» (ФИНАНСОВЫЙ УНИВЕРСИТЕТ)

Департамент анализа данных, принятия решений и финансовых технологий

А. В. Браилов, П. Е. Рябов

# СБОРНИК ЗАДАЧ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ

## УЧЕБНОЕ ПОСОБИЕ

Для студентов, обучающихся по направлению «Экономика» для всех профилей (программа подготовки бакалавра)



ISBN 978-5-4344-0515-7

- © Браилов А. В., Рябов П. Е., 2018
- © Оформление электронного издания Ижевский институт компьютерных исследований, 2018

УДК 519.2(072) ББК 22.17я73 **Б87** 

**Рецензенты:** С. М. Рамоданов — д. ф.-м. н., профессор кафедры «Математический анализ и теория вероятностей» Института криптографии, связи и информатики Федерального государственного казенного образовательного учреждения высшего образования «Академия Федеральной службы безопасности Российской Федерации»

С. В. Соколов — к. ф.-м. н., ведущий научный сотрудник лаборатории компьютерного моделирования Федерального государственного бюджетного учреждения науки «Институт машиноведения им. А. А. Благонравова Российской акалемии наук»

#### ТЕКСТОВОЕ УЧЕБНОЕ ЭЛЕКТРОННОЕ ИЗДАНИЕ (учебное пособие)

#### Браилов А. В., Рябов П. Е.

Сборник задач по теории вероятностей и математической F87 статистике [Электронный ресурс] : учеб. пособие / А.В.Браилов, П. Е. Рябов. Текстовое (символьное) электронное издание (1,44 Мб). — М.-Ижевск: Институт компьютерных исследований, 2018. — 1 электрон. опт. диск (СD-R).

Учебное пособие по теории вероятностей и математической статистики предназначено для организации самостоятельной работы студентов бакалавриата экономических специальностей, изучающих дисциплину «Теория вероятностей и математическая статистика». В теоретической справке приведены решения типовых задач, которые вошли в варианты заданий учебного пособия. Учебное издание содержит 180 вариантов контрольных заданий.

Минимальные системные требования: Celeron 1600 Mhz; 128 Мб RAM; Windows XP/7/8 и выше; 8x CDROM; разрешение экрана 1024×768 или выше; программа для просмотра pdf.

ISBN 978-5-4344-0515-7

- © Браилов А.В., Рябов П.Е., 2018
- © Оформление электронного издания Ижевский институт компьютерных исследований, 2018

#### Браилов Андрей Владимирович, Рябов Павел Евгеньевич

Сборник задач по теории вероятностей И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ

Подписано к использованию 21.08.2018. Объем электронного издания 1,44 Мб на 1 CD. АНО «Ижевский институт компьютерных исследований» 426057, г. Ижевск, ул. К. Маркса, д. 250, кв. 55. http://shop.rcd.ru E-mail: mail@rcd.ru Тел./факс: +7 (3412) 50-02-95

# Содержание

| ГЕОРІ | ИЯ ВЕРОЯТНОСТЕЙ                                                                | 5               |
|-------|--------------------------------------------------------------------------------|-----------------|
| § 1.  | Комбинации событий. Классический способ подсчета ве-                           |                 |
|       | роятностей                                                                     | 5               |
| § 2.  | Геометрическое определение вероятности                                         | 8               |
| § 3.  | Правила сложения и умножения вероятностей                                      | 9               |
| § 4.  | Формула полной вероятности и формула Байеса                                    | 12              |
| § 5.  | Независимые испытания. Схема Бернулли. Приближенные формулы Лапласа и Пуассона | 14              |
| § 6.  |                                                                                | 18              |
| § 7.  |                                                                                | $\frac{10}{19}$ |
| § 8.  | Математическое ожидание дискретной случайной вели-                             | 13              |
| g 0.  |                                                                                | 22              |
| § 9.  |                                                                                | $\frac{22}{23}$ |
| 0     | Числовые характеристики основных дискретных законов                            | 20              |
| 5 10. |                                                                                | 26              |
| 8 11. | The Transfer                                                                   | $\frac{-9}{29}$ |
| 0     | Абсолютно непрерывные случайные величины и их чис-                             |                 |
| 5     |                                                                                | 31              |
| § 13. | 1 1                                                                            | $\frac{1}{38}$  |
| -     | Нормальное и логнормальное законы распределения слу-                           |                 |
| 9     |                                                                                | 41              |
| § 15. |                                                                                | 45              |
|       | Закон распределения двумерной дискретной случайной                             |                 |
| 5     |                                                                                | 47              |
| § 17. | Условные распределения и условные числовые характе-                            |                 |
| Ü     |                                                                                | 54              |
| § 18. | Абсолютно непрерывные случайные векторы                                        | 67              |
| § 19. | Двумерные нормальные векторы                                                   | 73              |

| ЭЛЕМ   | ЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ                      | 78  |
|--------|-----------------------------------------------------|-----|
| § 1.   | Эмпирические характеристики признаков               | 78  |
| § 2.   | Межгрупповая дисперсия                              | 82  |
| § 3.   | Интервальные характеристики признака                | 84  |
| § 4.   | Повторные и бесповторные выборки                    | 85  |
| § 5.   | Выборки из распределения                            | 96  |
| § 6.   | Точечные статистические оценки                      | 99  |
| § 7.   | Доверительные интервалы                             | 103 |
| § 8.   | Общая схема статистического критерия                | 106 |
| § 9.   | Сравнение генеральных средних двух нормальных рас-  |     |
|        | пределений                                          | 107 |
| § 10.  | Сравнение дисперсий двух нормальных распределений . | 111 |
| § 11.  | Критерий хи-квадрат Пирсона                         | 113 |
| § 12.  | Проверка гипотезы о совпадении нескольких генераль- |     |
|        | ных средних методом дисперсионного анализа          | 117 |
| Требов | ания к оформлению заданий                           | 121 |
| Вариан | ты заданий                                          | 122 |
| Рекоме | ендуемая литература                                 | 302 |

# ТЕОРИЯ ВЕРОЯТНОСТЕЙ

# § 1. Комбинации событий. Классический способ подсчета вероятностей

Суммой событий A и B называется событие A+B, заключающееся в наступлении xoms бы одного из событий A и B. Вообще, суммой конечного или счетного множества событий называется событие, заключающееся в наступлении хотя бы одного события из данного множества событий.

Произведением событий A и B называется событие AB, заключающееся в одновременном (совместном) наступлении обоих событий A и B. Произведением конечного или счетного множества событий называется событие, заключающееся в одновременном наступлении всех событий из данного множества.

Противоположным событием для A называется событие  $\overline{A}$ , заключающееся в том, что A не наступает. Иначе говоря,  $\overline{A}$  — это не наступление A.

Справедливы формулы:

$$\overline{A_1 + A_2 + \ldots + A_n} = \overline{A_1} \cdot \overline{A_2} \cdot \ldots \cdot \overline{A_n},$$

$$\overline{A_1 A_2 \ldots A_n} = \overline{A_1} + \overline{A_2} + \ldots + \overline{A_n}.$$

В классической вероятностной модели пространство элементарных событий  $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$  — конечное множество, при этом все элементарные события  $\omega_1, \omega_2, \dots, \omega_n$  имеют одну и ту же вероятность.

Пусть событие A состоит из k=|A| элементарных событий  $\omega_i$  (последние называются «благоприятными» для A). Тогда для определения вероятности события A применяется следующая формула (классический способ подсчета вероятностей):

$$P(A) = \frac{k}{n} = \frac{|A|}{|\Omega|},$$

где  $n = |\Omega|$  — число всех элементарных исходов.

**Пример 1.** Независимо друг от друга 5 человек садятся в поезд, содержащий 13 вагонов. Найдите вероятность того, что все они поедут в разных вагонах.

**Решение.** Всего способов рассадить 5 человек в 13 вагонов равно  $|\Omega|=13^5$ , из них событию A, что все они поедут в разных вагонах, благоприятствует  $|A|=13\cdot 12\cdot 11\cdot 10\cdot 9$  различных способов. Поэтому искомая вероятность равна

$$P(A) = \frac{|A|}{|\Omega|} = \frac{154\,440}{371\,293} \approx 0,416.$$

Ответ: 0,416.

**Пример 2.** Компания из n=16 человек рассаживается в ряд случайным образом. Найдите вероятность того, что между двумя определенными людьми окажутся ровно k=6 человек.

**Решение.** Приведем одно из решений задачи, которое связано с выбором 2 мест, а не с размещением людей. Итак, два места из 16 можно выбрать  $C_{16}^2$  способами. Событию A, выбору 2 мест, так чтобы между ними было ровно 6, благоприятствует 16-6-1=9 способов. Таким образом, искомая вероятность события A равна

$$P(A) = \frac{|A|}{|\Omega|} = \frac{9}{120} = 0.075.$$

Ответ: 0,075.

**Пример 3.** В группе учатся 13 юношей и 9 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся юношами.

Решение. Количество способов выбрать троих для дежурства совпадает с числом сочетаний из 22 по 3, т. е.  $|\Omega|=C_{22}^3$ . Из них событию A, что все дежурные окажутся юношами, благоприятствует  $|A| = C_{13}^3$ способов выбрать троих юношей. Таким образом, искомая вероятность равна

$$P(A) = \frac{|A|}{|\Omega|} = \frac{C_{13}^3}{C_{22}^3} = \frac{286}{1540} \approx 0.186.$$

Ответ: 0.186.

Пример 4. В партии из 13 деталей имеется 8 стандартных. Наудачу отобраны 7 деталей. Найдите вероятность того, что среди отобранных деталей ровно 5 стандартных.

Решение. Число способов отобрать 7 деталей совпадает с числом сочетаний из 13 по 7, т. е.  $|\Omega| = C_{13}^7$ . Событию A, что среди 7 деталей окажется ровно 5 стандартных, а, следовательно, остальные 2 — не стандартные, благоприятствует  $|A| = C_8^5 \cdot C_5^2$  исходов. Поэтому искомая вероятность равна

$$P(A) = \frac{|A|}{|\Omega|} = \frac{C_8^5 \cdot C_5^2}{C_{13}^7} = \frac{560}{1716} \approx 0.326.$$

Ответ: 0.326.

Пример 5. В киоске продается 9 лотерейных билетов, из которых число выигрышных составляет 3 штуки. Студент купил 4 билета. Какова вероятность того, что число выигрышных среди них будет не меньше 2, но не больше 3?

**Решение.** Количество способов выбрать 4 билета из 9 равно  $|\Omega| = C_9^4$ . Требуется определить вероятность события A, что среди 4 билетов окажется либо 2 (событие  $A_1$ ), либо 3 (событие  $A_2$ ) выигрышных билета. Событию  $A_1$  благоприятствует  $|A_1| = C_3^2 \cdot C_6^2$  способов, а событию  $A_2$  —  $|A_2| = C_3^3 \cdot C_6^1$  способов. Искомая вероятность равна

$$P(A) = \frac{|A_1| + |A_2|}{|\Omega|} = \frac{C_3^2 \cdot C_6^2 + C_3^3 \cdot C_6^1}{C_9^4} = \frac{51}{126} \approx 0,405.$$

Ответ: 0,405.

## § 2. Геометрическое определение вероятности

Одним из недостатков классического определения вероятности является то, что оно предполагает конечное число возможных исходов. Приводимые здесь примеры не укладываются в классическую схему, поскольку связаны с бесконечным множеством элементарных исходов опыта. Но в основе их, как и в классической схеме, лежит представление о равновозможных исходах. Говоря о том, что точка выбирается наугад в некоторой области  $\Omega \in \mathbb{R}^n$  (n=1,2,3), имеют в виду следующее: вероятность попадания точки в некоторую часть A области  $\Omega$  равна отношению

$$P(A) = \frac{\mu(A)}{\mu(\Omega)},$$

где  $\mu(A)=l_A$  — длина  $(n=1),\ \mu(A)=S_A$  — площадь (n=2) или  $\mu(A)=V_A$  объем (n=3) множества A.

**Пример 6.** На отрезок AB длины 240 наудачу поставлена точка X. Найдите вероятность того, что меньший из отрезков AX и XB имеет длину меньшую, чем 48.

**Решение.** Пусть x — координата точки X, тогда множество

$$\Omega = \{x \colon 0 \leqslant x \leqslant 240\}$$

представляет собой множество элементарных исходов, так что  $l_{\Omega}=240-0=240$ . Событие A, что меньший из отрезков AX и XB имеет длину меньшую, чем 48, представляет собой подмножество  $\Omega$ :

$$A=\{x\in\Omega\colon 0\leqslant x\leqslant 48\ \text{или}\ 192\leqslant x\leqslant 240\}.$$

Поэтому  $l_A = (48 - 0) + (240 - 192) = 96$ . Искомая вероятность равна

$$P(A) = \frac{l_A}{l_\Omega} = \frac{96}{240} = 0.4.$$

Ответ: 0,4.

**Пример 7.** Два лица X и Y договорились о встрече между 9 и 10 часами утра. Если первым приходит X, то он ждет Y в течение 5 минут. Если первым приходит Y, то он ждет X в течение 10 минут. Считая, что момент прихода на встречу выбирается каждым «наудачу» в пределах указанного часа, найти вероятность того, что встреча состоится.

**Решение.** Пусть x — момент прихода X в пределах указанного часа, y — момент прихода Y в пределах того же часа, тогда  $\omega = (x,y)$  — элементарный исход. Множество

$$\Omega = \{(x, y) : 0 \le x \le 1, 0 \le y \le 1, \}$$

представляет собой множество всех элементарных исходов, так что  $S_\Omega=1^2=1.$  Обозначим через A — событие, что встреча состоится. Тогда, согласно условию задачи, событие A представляет собой подмножество  $\Omega$ :

$$A = \left\{ (x, y) \in \Omega \colon y - x \leqslant \frac{1}{12}, \, x - y \leqslant \frac{1}{6} \right\}.$$

Искомая вероятность равна отношению площади выделенного шестиугольника к площади квадрата:

$$P(A) = \frac{S_A}{S_O} = \frac{1^2 - \frac{1}{2} \cdot \left(\frac{11}{12}\right)^2 - \frac{1}{2} \cdot \left(\frac{5}{6}\right)^2}{1^2} = \frac{67}{288} \approx 0.233.$$

Ответ: 0,233.

### § 3. Правила сложения и умножения вероятностей

Правило сложения вероятностей:

$$P(A+B) = P(A) + P(B) - P(AB).$$

Правило сложения вероятностей для несовместных событий: если события  $A_1, A_2, \ldots, A_n$  попарно несовместны (никакие два из них не могут наступить вместе в одном испытании), то

$$P(A_1 + A_2 + ... + A_n) = P(A_1) + P(A_2) + ... + P(A_n).$$

Для двух событий A и  $\overline{A}$  отсюда следует равенство  $P(A)+P(\overline{A})=1$  или  $P(\overline{A})=1-P(A).$ 

Вероятность события A при условии, что наступило событие B (условная вероятность) определяется формулой

$$P(A|B) = \frac{P(AB)}{P(B)}.$$

Правило умножения вероятностей: если для событий  $A_1, A_2, \ldots, A_n$  вероятности  $P(A_1)>0, P(A_1A_2)>0, \ldots, P(A_1\ldots A_{n-1})>0,$  то

$$P(A_1 A_2 \dots A_n) = = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_1 A_2) \dots P(A_n | A_1 A_2 \dots A_{n-1}).$$
 (1)

Если A и B- nesa Bucum be события с положительной вероятностью, то выполняются равенства:

$$P(A|B) = P(A), \quad P(B|A) = P(B).$$

Правило умножения вероятностей для независимых событий: ecnu события  $A_1, A_2, ..., A_n$  независимы, то

$$P(A_1 A_2 \dots A_n) = P(A_1) \cdot P(A_2) \dots P(A_n).$$

Вычисление вероятности суммы событий можно свести к вычислению вероятности произведения по формуле

$$P(A_1 + A_2 + \ldots + A_n) = 1 - P(\overline{A}_1 \overline{A}_2 \ldots \overline{A}_n).$$
 (2)

В частности, если события  $A_1, A_2, \ldots, A_n$  независимы, из последнего равенства вытекает: вероятность наступления хотя бы одного из независимых событий  $A_1, A_2, \ldots, A_n$  равна  $1 - P\left(\overline{A}_1\right) \cdot P\left(\overline{A}_2\right) \ldots P\left(\overline{A}_n\right)$ .

Пример 8. Имеется 25 экзаменационных билетов, на каждом из которых напечатано условие некоторой задачи. В 15 билетах задачи по статистике, а в остальных 10 билетах задачи по теории вероятностей. Трое студентов выбирают наудачу по одному билету. Найдите вероятность того, что хотя бы одному из них не достанется задача по теории вероятностей.

**Решение.** Приведем решение задачи, которое использует формулу умножения (другое решение основано на классической вероятности). Итак, обозначим через  $A_k$  событие, что k-му студенту не достанется задача по теории вероятности, следовательно,  $\overline{A_k} - k$ -му студенту достанется задача по теории вероятностей. Тогда  $A = A_1 + A_2 + A_3$  означает событие, что хотя бы одному из них не достанется задача по теории

вероятностей. Тогда, используя (1) и (2), находим

$$P(A) = P(A_1 + A_2 + A_3) = 1 - P(\overline{A_1} \cdot \overline{A_2} \cdot \overline{A_3}) =$$

$$= 1 - P(\overline{A_1}) \cdot P(\overline{A_2}|\overline{A_1}) \cdot P(\overline{A_3}|\overline{A_1} \cdot \overline{A_2}) =$$

$$= 1 - \frac{10}{25} \cdot \frac{9}{24} \cdot \frac{8}{23} \approx 0.948.$$

Ответ: 0.948

**Пример 9.** В электрическую цепь последовательно включены три элемента, работающие независимо один от другого. Вероятности отказов первого, второго и третьего элементов соответственно равны  $p_1=0.17,\ p_2=0.73\ u\ p_3=0.14.$  Найдите вероятность того, что тока в цепи не будет.

**Решение.** Пусть  $A_k$  обозначает событие, что тока не будет в k-ом элементе. Тогда  $A = A_1 + A_2 + A_3$  означает событие, что тока в цепи не будет (поскольку элементы соединены последовательно). Тогда

$$P(A) = P(A_1 + A_2 + A_3) = 1 - P(\overline{A_1}) \cdot P(\overline{A_2}) \cdot P(\overline{A_3}) =$$

$$= 1 - (1 - P(A_1)) \cdot (1 - P(A_2)) \cdot (1 - P(A_3)) =$$

$$= 1 - (1 - p_1)(1 - p_2)(1 - p_3) = 0,807.$$

Ответ: 0,807.

**Пример 10.** Вероятность того, что при одном измерении некоторой физической величины допущена ошибка, равна p=0.05. Найдите наименьшее число п измерений, которые необходимо произвести, чтобы с вероятностью больше, чем 0.83, можно было ожидать, что хотя бы один результат измерений окажется неверным.

**Решение.** Пусть  $A_k$  обозначает событие, что при k-ом измерении некоторой физической величины допущена ошибка, где  $k=1,2,\ldots,n$ . Через n обозначено количество измерений. Тогда  $A=A_1+\ldots+A_n$  означает событие, что хотя бы один результат измерений окажеется неверным n при n измерениях. Поэтому

$$P = P(A) = P(A_1 + ... + A_n) = 1 - (1 - p)^n > 0.83.$$

Откуда, решая полученное неравенство, находим:

$$n > \frac{\ln(1-a)}{\ln(1-p)} = \frac{\ln 0.17}{\ln 0.95} \approx 34.5.$$

**Ответ:**  $n_{\min} = 35$ .

Пример 11. События  $A,\,B,\,C$  независимы и  $P(A)=0.8;\,P(B)=0.7;\,P(C)=0.6.$  Найдите  $P(AB\,|\,\overline{B}+\overline{C}).$ 

**Решение.** Используя: **a**) определение условной вероятности; **б**) правило сложения вероятностей; **в**) независимость событий A, B и C, получаем

$$\begin{split} &P(AB \mid \overline{B} + \overline{C}) \stackrel{\mathbf{a}}{=} \frac{P(AB \cdot (\overline{B} + \overline{C}))}{P(\overline{B} + \overline{C})} \stackrel{\mathbf{6}}{=} \frac{P(AB \cdot \overline{C})}{P(\overline{B}) + P(\overline{C}) - P(\overline{B} \cdot \overline{C})} = \\ &\stackrel{\mathbf{B}}{=} \frac{P(A) \cdot P(B) \cdot P(\overline{C})}{P(\overline{B}) + P(\overline{C}) - P(\overline{B}) \cdot P(\overline{C})} = \frac{0.8 \cdot 0.7 \cdot 0.4}{0.3 + 0.4 - 0.3 \cdot 0.4} \approx 0.386. \end{split}$$

Ответ: 0,386.

#### § 4. Формула полной вероятности и формула Байеса

События  $H_1, H_2, \ldots, H_n$  образуют *полную группу*, если они попарно несовместны и при каждом испытании обязательно наступает хотя бы одно из этих событий.

Если события  $H_1,\ H_2,\ \dots,\ H_n$  образуют полную группу, то для любого события A справедливо равенство

$$P(A) = P(A|H_1) P(H_1) + P(A|H_2) P(H_2) + ... + P(A|H_n) P(H_n)$$

(формула полной вероятности). При этом события  $H_1, H_2, \ldots, H_n$  называют гипотезами.

В тех же предположениях справедлива формула Байеса:

$$P(H_i|A) = \frac{P(A|H_i) P(H_i)}{P(A|H_1) P(H_1) + P(A|H_2) P(H_2) + \ldots + P(A|H_n) P(H_n)},$$
  
(i = 1, 2, ..., n).

**Пример 12.** В ящике содержится  $n_1=6$  деталей, изготовленных на заводе  $1, n_2=5$  деталей— на заводе 2 и  $n_3=6$  деталей— на заводе 3. Вероятности изготовления брака на заводах с номерами 1, 2 и 3 соответственно равны:  $p_1=0.04, p_2=0.02$  и  $p_3=0.03$ . Найдите вероятность того, что извлеченная наудачу деталь окажется качественной.

**Решение.** Пусть  $H_k$  — событие, что извлеченная наудачу деталь изготовлена на k-ом заводе, где k=1,2,3. Тогда  $H_1,\ H_2,\ H_3$  образуют полную группу событий, причем

$$P(H_1) = \frac{n_1}{n_1 + n_2 + n_3} = \frac{6}{17},$$

$$P(H_2) = \frac{n_2}{n_1 + n_2 + n_3} = \frac{5}{17},$$

$$P(H_3) = \frac{6}{17}.$$

Обозначим через A событие, что извлеченная наудачу деталь окажется бракованной. Противоположное к A будет событие  $\overline{A}$ , что извлеченная наудачу деталь окажется качественной. Тогда по формуле полной вероятности имеем:

$$P(A) = P(H_1)P(A|H_1) + P(H_2)P(A|H_2) + P(H_3)P(A|H_3) =$$

$$= \frac{6}{17} \cdot 0.04 + \frac{5}{17} \cdot 0.02 + \frac{6}{17} \cdot 0.03 = \frac{13}{425} \approx 0.031.$$

Откуда искомая вероятность, что извлеченная наудачу деталь окажется качественной, равна

$$P(\overline{A}) = 1 - P(A) = 0.969.$$

Ответ: 0,969.

**Пример 13.** Имеется три одинаковых по виду ящика. В первом ящике n=23 белых шаров, во втором -m=9 белых и n-m=14 черных шаров, в третьем -n=23 черных шаров. Из выбранного наугад ящика вынули белый шар. Найдите вероятность того, что шар вынут из второго ящика.

**Решение.** Введем гипотезы,  $H_k$ , что выбран k-ый ящик, k=1,2,3. Тогда  $P(H_1)=P(H_2)=P(H_3)=\frac{1}{3}$ . Обозначим через A событие, что извлеченный наудачу шар *окажеется* белым. Поскольку у нас есть неопределенность, связанная с выбором ящика, то по формуле полной вероятности имеем

$$P(A) = P(H_1)P(A|H_1) + P(H_2)P(A|H_2) + P(H_3)P(A|H_3) =$$

$$= \frac{1}{3}\left(1 + \frac{9}{23} + 0\right) = \frac{32}{69} \approx 0,464.$$

После того, как событие A произошло (вынутый шар *оказался* белым), по формуле Байеса переоценим вероятность гипотезы  $H_2$ :

$$P(H_2|A) = \frac{P(H_2)P(A|H_2)}{P(A)} = \frac{\frac{1}{3} \cdot \frac{9}{23}}{\frac{32}{69}} = \frac{9}{32} \approx 0.281.$$

Таким образом, вероятность того, что шар вынут из второго ящика, равна 0.281.

Ответ: 0,281.

# § 5. Независимые испытания. Схема Бернулли. Приближенные формулы Лапласа и Пуассона

Несколько испытаний (с конечным числом исходов) называются независимыми, если вероятность того или иного исхода в любом из этих испытаний не зависит от исхода других испытаний.

Схема Бернулли: производится n независимых испытаний, в каждом из которых с одной и той же вероятностью p наступает некоторое событие A (называемое обычно «успехом») и, следовательно, с вероятностью q=1-p наступает событие  $\overline{A}$ , противоположное A.

Пусть  $P_n(k)$  — вероятность того, что в схеме Бернулли успех наступит k раз. Справедлива формула Бернулли:

$$P_n(k) = C_n^k p^k q^{n-k}.$$

Известно, что наиболее вероятное число успехов приближенно равно np. Точнее: если число  $\alpha=np+p$  является целым, то максимум чисел  $P_n(k)$  достигается при  $k=\alpha$  и  $k=\alpha-1$ ; если же  $\alpha$ — не целое, то максимум достигается при  $k=[\alpha]$ , где  $[\alpha]$ — целая часть  $\alpha$ .

При больших n имеет место так называемая nриближенная локальная формула Лапласа:

$$P_n(k) \approx \frac{\varphi(x_0)}{\sqrt{npq}},$$

где 
$$x_0 = \frac{k - np}{\sqrt{npq}}, \, \varphi\left(x\right) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} - \text{функция Гаусса.}$$

Также при больших n справедлива n риближенная интегральная формула Лапласа:

$$P_n(k_1 \leqslant k \leqslant k_2) \approx \Phi(x_2) - \Phi(x_1),$$

где 
$$x_1 = \frac{k_1 - np}{\sqrt{npq}}, \ x_2 = \frac{k_2 - np}{\sqrt{npq}}, \ \Phi\left(x\right) = \frac{1}{\sqrt{2\pi}} \int\limits_0^x e^{-\frac{t^2}{2}} \, dt - функция Ла-
пласа.$$

Приближенными формулами Лапласа на практике пользуются, если npq>10.

Из приближенной интегральной формулы Лапласа следует, что при заданном  $\varepsilon>0$  и большом n вероятность события  $\left|\frac{k}{n}-p\right|<\varepsilon$  близка к  $2\Phi\left(\varepsilon\cdot\sqrt{\frac{n}{pq}}\right)$ .

При больших n и малых p (точнее при  $np^2 \ll 1$ ) справедлива npu-ближенная формула Пуассона:

$$P_n(k) \approx \frac{\lambda^k}{k!} e^{-\lambda},$$

где  $\lambda = np$ .

**Пример 14.** Вероятность попадания в цель при одном выстреле равна 0,18. Сделано 7 выстрелов. Найдите вероятность того, что в цель попали менее трех раз.

**Решение.** Пусть A событие, что в цель попали менее трех раз, причем вероятность успеха («попадет в цель при одном выстреле») p=0.18, а q=1-p=0.82. Тогда по формуле Бернулли имеем:

$$P(A) = P_7(0) + P_7(1) + P_7(2) = q^7 + 7pq^6 + 21p^2q^5 \approx 0.885.$$

Ответ: 0,885.

**Пример 15.** Отрезок длины 6 поделен на две части длины 4 и 2 соответственно, 8 точек последовательно бросают случайным образом на этот отрезок. Найдите вероятность того, что количество точек, попавших на отрезок длины 4 будет больше или меньше 1.

**Решение.** Сначала найдем вероятность события A, что количество точек, попавших на отрезок длины 4, будет равно одному. Используя геометрическую вероятность, вероятность успеха для одной точки попасть в указанный отрезок равна  $p=\frac{4}{6}=\frac{2}{3}$ . Тогда по формуле Бернулли

$$P(A) = P_8(1) = 8pq^7 = \frac{16}{6561} \approx 0,00244.$$

Следовательно, вероятность того, что количество точек, попавших на отрезок длины 4 будет больше или меньше 1, равна  $1 - P(A) \approx 0,998$ . **Ответ:** 0,998.

**Пример 16.** Монета подбрасывается до тех пор, пока герб не выпадет 7 раз. Найдите вероятность того, что будет произведено 14 бросков.

**Решение.** Неверным было бы считать, что речь идет о 14 бросках, в семи из которых выпадет герб. По условию задачи при последнем, четырнадцатом бросании, должен выпасть герб (вероятность этого события равна p=0.5). Остальные появления шести раз гербов могут случиться произвольно в предыдущих тринадцати бросаниях (вероятность такого события равна  $C_{13}^6p^6q^7$ ). Таким образом, искомая вероятность равна

$$(C_{13}^6 p^6 q^7) \cdot p = C_{13}^6 p^7 q^7 = \frac{429}{4096} \approx 0.105.$$

Ответ: 0,105.

**Пример 17.** Игральная кость подбрасывается до тех пор, пока не выпадет 5 раз число очков, отличное от 6. Какова вероятность, что будет произведено 8 бросков?

**Решение.** По условию задачи при последнем восьмом подбрасывании не выпадает 6 (вероятность этого события равна  $p=\frac{5}{6}$ . Остальные четыре раза выпадения числа очков, отличного от 6, могут случиться произвольно в семи предыдущих подбрасываниях игральной кости (вероятность такого события равна  $C_7^4 p^4 q^3$ ). Искомая вероятность равна

$$p \cdot \left(C_7^4 p^4 q^3\right) = C_7^4 \left(\frac{5}{6}\right)^5 \left(\frac{1}{6}\right)^3 \approx 0,0651.$$

Ответ: 0,0651.

**Пример 18.** Вероятность попадания стрелком в цель равна  $\frac{1}{12}$ . Сделано 132 выстрелов. Определите наивероятнейшее число попаданий в цель.

**Решение.** Мы имеем дело со схемой Бернулли, для которой n=132, вероятность успеха  $p=\frac{1}{12}$ . Поскольку  $\alpha=np+p=\frac{133}{12}$  — не целое, то наиболее вероятное число попаданий в цель равно  $k=[\alpha]=11$ . **Ответ:** 11.

**Пример 19.** Вероятность выпуска бракованного изделия равна 0,4. Найдите вероятность того, что среди 104 выпущенных изделий ровно 62 изделия без брака.

**Решение.** Мы имеем дело со схемой Бернулли, для которой n=104, вероятность успеха, что изделие без брака, равна p=0.6; q=1-p=0.4. Требуется оценить  $P_{104}(62)$ . Поскольку  $npq=104\cdot 0.6\cdot 0.4=24.96>10$ , то воспользуемся приближенной локальной формулой Лапласа, согласно которой

$$\begin{split} P_{104}(62) &\approx \frac{1}{\sqrt{104 \cdot 0.6 \cdot 0.4}} \cdot \varphi\left(\frac{62 - 104 \cdot 0.6}{\sqrt{104 \cdot 0.6 \cdot 0.4}}\right) \approx \\ &\approx 0.2 \cdot \varphi(-0.08) \approx 0.2 \cdot 0.3977 \approx 0.0795. \end{split}$$

Ответ: 0,0795.

**Пример 20.** Вероятность выпуска бракованного изделия равна  $p = \frac{7}{20}$ . Найдите вероятность того, что среди n = 108 выпущенных изделий будет хотя бы одно, но не более s = 37 бракованных изделий.

**Решение.** В нашем случае, n=108, вероятность успеха, что изделие бракованное, равна p=0.35; q=0.65. Требуется найти  $P_{108}(1\leqslant k\leqslant 37)$ . Поскольку  $npq=108\cdot 0.35\cdot 0.65=24.57>10$ , воспользуемся приближенной интегральной формулой Лапласа, согласно которой

$$\begin{split} P_{108}(1\leqslant k\leqslant 37) &\approx \Phi\left(\frac{37-108\cdot 0.35}{\sqrt{108\cdot 0.35\cdot 0.65}}\right) - \Phi\left(\frac{1-108\cdot 0.35}{\sqrt{108\cdot 0.35\cdot 0.65}}\right) \approx \\ &\approx \Phi(-0.16) - \Phi(-7.42) \approx -0.0675 + 0.5 \approx 0.433. \end{split}$$

Ответ: 0,433.

**Пример 21.** Прядильщица обслуживает 1000 веретен. Вероятность обрыва нити на одном веретене в течение 1 минуты равна 0,004. Найдите вероятность того, что в течение одной минуты обрыв произойдет более чем на 2 веретенах.

**Решение.** Применяется схема Бернулли:  $n=1\,000$  — число веретен; p=0,004 — вероятность обрыва на 1-ом веретене;  $A=\{k>2\}$ . Используя: **a**) формулу для вероятности противоположного события;

б)  $\overline{A}=\{k=0\}+\{k=1\}+\{k=2\};$  в) приближенную формулу Пуассона  $(np^2=0.016\ll 1,\,\lambda=np=4),$  имеем

$$P(A) \stackrel{\mathbf{a}}{=} 1 - P(\overline{A}) \stackrel{\mathbf{6}}{=} 1 - P_{1000}(0) - P_{1000}(1) - P_{1000}(2) \approx$$

$$\stackrel{\mathbf{B}}{\approx} 1 - e^{-\lambda} - \lambda e^{-\lambda} - \frac{\lambda^2}{2} e^{-\lambda} =$$

$$= 1 - e^{-\lambda} \left( \frac{2 + 2\lambda + \lambda^2}{2} \right) \approx 1 - 0.238 = 0.762.$$

Ответ: 0,762.

## § 6. Распределение дискретной случайной величины

Случайная величина X называется  $\partial ucкретной$ , если множество всех ее возможных значений  $\{x_1, x_2, \ldots\}$  конечно или счетно. Вероятность попадания X в какое-либо множество  $B \subseteq \mathbb{R}$  находится по формуле

$$P(X \in B) = \sum_{x_i \in B} p_i,$$

где  $p_i = P(X = x_i)$  — вероятность i-го возможного значения.

3акон распределения дискретной случайной величины X может быть представлен в форме таблицы:

| X | $x_1$ | $x_2$ |       |
|---|-------|-------|-------|
| P | $p_1$ | $p_2$ | <br>ŀ |

Нетрудно убедиться в том, что сумма чисел во второй строке этой таблицы равна  $P(X \in \mathbb{R}) = 1$ . В случае дискретной случайной величины X ее функция распределения имеет вид

$$F(x) = P(X < x) = \sum_{x_i < x} p_i,$$

т. е. F(x) — ступенчатая функция со скачками в точках  $x_1, x_2, \ldots$ , причем величины скачков равны соответственно  $p_1, p_2, \ldots$ 

**Пример 22.** Случайная величина X принимает только целые значения  $1,2,\ldots,28$ . При этом вероятности возможных значений X пропорциональны значениям: P(X=k)=ck. Найдите значение константы c и вероятность P(X>2).

**Решение.** Имеем

$$1 = \sum_{k=1}^{28} P(X = k) = \sum_{k=1}^{28} c \cdot k = c \frac{28 \cdot 29}{2} = 406 \cdot c \Rightarrow c = \frac{1}{406}.$$

Далее, вероятность P(X > 2) равна

$$P(X > 2) = 1 - P(X \le 2) = 1 - (P(X = 1) + P(X = 2)) =$$

$$= 1 - (c + 2c) = 1 - 3c = 1 - 3\frac{1}{406} = \frac{403}{406} \approx 0,993.$$

**Ответ:**  $c = \frac{1}{406}$ ; P(X > 2) = 0.993.

#### § 7. Независимые дискретные случайные величины

Для независимости дискретных случайных величин  $X_1, X_2, \ldots, X_n$  необходимо и достаточно, чтобы для любого набора их возможных значений  $a_1, a_2, \ldots, a_n$  выполнялось равенство

$$P(X_1 = a_1, X_2 = a_2, \dots, X_n = a_n) =$$
  
=  $P(X_1 = a_1) \cdot P(X_2 = a_2) \dots P(X_n = a_n).$ 

**Пример 23.** Независимые дискретные случайные величины X, Y принимают только целые значения: X от -6 до 5 с вероятностью  $\frac{1}{12}$ , Y от -6 до 9 с вероятностью  $\frac{1}{16}$ . Найдите вероятность P(XY=0).

**Решение.** Используя: **a**) правило сложения вероятностей; **б**) независимость случайных величин X и Y, имеем

$$P(XY = 0) \stackrel{\mathbf{a}}{=} P(X = 0) + P(Y = 0) - P(X = 0, Y = 0) =$$

$$\stackrel{\mathbf{6}}{=} P(X = 0) + P(Y = 0) - P(X = 0) \cdot P(Y = 0) =$$

$$= \frac{1}{12} + \frac{1}{16} - \frac{1}{12} \cdot \frac{1}{16} = \frac{9}{64} \approx 0,141.$$

Ответ: 0,141.

**Пример 24.** Независимые случайные величины X, Y, Z принимают только целые значения: X- от 0 до 7, Y- от 0 до 10, Z- от 0 до 13. Найдите вероятность P(X+Y+Z=4), если известно, что возможные значения X, Y и Z равновероятны.

**Решение.** Поскольку возможные значения X, Y и Z равновероятны, имеем:

$$P(X = k) = \frac{1}{8},$$
  $k = 0, 1, ..., 7,$   
 $P(Y = l) = \frac{1}{11},$   $l = 0, ..., 10,$   
 $P(Z = m) = \frac{1}{14},$   $m = 0, ..., 13.$ 

С учетом: а) попарной несовместности событий  $\{X=k,\,Y=l,\,Z=m\}$  при различных  $k,\,l,\,m;$  б) независимости событий  $\{X=k\},\,\{Y=l\},\,\{Z=m\},\,$  находим

$$P(X+Y+Z=4) \stackrel{\mathbf{a}}{=} \sum_{k+l+m=4} P(X=k,Y=l,Z=m) =$$

$$\stackrel{\mathbf{6}}{=} \sum_{k+l+m=4} P(X=k) \cdot P(Y=l) \cdot P(Z=m) =$$

$$= C_6^2 \cdot \frac{1}{8} \cdot \frac{1}{11} \cdot \frac{1}{14} = \frac{C_6^2}{1232} = \frac{15}{1232} \approx 0.0122.$$

При подсчете количества слагаемых в последней сумме мы использовали тот факт, что число троек k+l+m=4 совпадает с числом последовательностей, состоящих из 4 единиц и 2 нулей.

Ответ: 0,0122.

Пример 25. Независимые случайные величины X,Y,Z принимают только целые значения: X- от 1 до 13 с вероятностью  $\frac{1}{13},Y-$  от 1 до 9 с вероятностью  $\frac{1}{9},Z-$  от 1 до 7 с вероятностью  $\frac{1}{7}$ . Найдите вероятность P(X<Y<Z).

**Решение.** Используя: **a**) попарную несовместность событий  $\{X = k, Y = l, Z = m\}$  при различных k, l, m; **6**) независимость событий  $\{X = k\}, \{Y = l\}, \{Z = m\},$  находим

$$\begin{split} P(X < Y < Z) & \stackrel{\mathbf{a}}{=} \sum_{1 \leqslant k < l < m \leqslant 7} P(X = k, Y = l, Z = m) = \\ & \stackrel{\mathbf{6}}{=} \sum_{1 \leqslant k < l < m \leqslant 7} P(X = k) \cdot P(Y = l) \cdot P(Z = m) = \\ & = C_7^3 \cdot \frac{1}{13} \cdot \frac{1}{9} \cdot \frac{1}{7} = \frac{C_7^3}{13 \cdot 9 \cdot 7} = \frac{35}{819} \approx 0,0427. \end{split}$$

При подсчете количества слагаемых в последней сумме мы использовали тот факт, что число троек (k,l,m), для которых  $1 \le k < l < m \le 7$ , совпадает с числом способов выбора трех различных чисел из множества  $\{1,2,\ldots,7\}$ .

Ответ: 0,0427.

**Пример 26.** Независимые случайные величины X, Y, Z могут принимать только целые значения: Y и Z — от 1 до 20 с вероятностью  $\frac{1}{20}$ , а X только значения 5 и 10, при этом  $P(X=5)=\frac{9}{10}$ . Найдите вероятность P(X < Y < Z).

**Решение.** С учетом: а) формулы полной вероятности; б) независимости Y и Z от X; в) попарной несовместности событий  $\{Y=l,\,Z=m\}$  для различных l и m; г) независимости Y и Z, находим

$$\begin{split} P(X < Y < Z) & \stackrel{\text{a}}{=} P(5 < Y < Z | X = 5) \cdot P(X = 5) + \\ &+ P(10 < Y < Z | X = 10) \cdot P(X = 10) = \\ & \stackrel{\text{b}}{=} P(5 < Y < Z) \cdot P(X = 5) + P(10 < Y < Z) \cdot P(X = 10) = \\ & \stackrel{\text{B}}{=} \left[ \sum_{6 \leqslant l < m \leqslant 20} P(Y = l, Z = m) \right] \cdot P(X = 5) + \\ &+ \left[ \sum_{11 \leqslant l < m \leqslant 20} P(Y = l, Z = m) \right] \cdot P(X = 10) = \\ & \stackrel{\text{c}}{=} \left[ \sum_{6 \leqslant l < m \leqslant 20} P(Y = l) \cdot P(Z = m) \right] \cdot P(X = 5) + \\ &+ \left[ \sum_{11 \leqslant l < m \leqslant 20} P(Y = l) \cdot P(Z = m) \right] \cdot P(X = 10) = \\ &= C_{15}^2 \cdot \frac{1}{20} \cdot \frac{1}{20} \cdot \frac{1}{9} + C_{10}^2 \cdot \frac{1}{20} \cdot \frac{1}{20} \cdot \frac{1}{10} = \frac{99}{400} = 0,2475. \end{split}$$

Ответ: 0,2475.

## § 8. Математическое ожидание дискретной случайной величины

Mатематическим ожиданием дискретной случайной величины X, множество возможных значений которой конечно, называется сумма произведений всех ее возможных значений на соответствующие вероятности:

$$E(X) = x_1p_1 + x_2p_2 + \ldots + x_np_n.$$

Если множество возможных значений счетное, то

$$E\left(X\right) = \sum_{i=1}^{\infty} x_i p_i,$$

причем математическое ожидание существует, если ряд в правой части сходится абсолютно.

Математическое ожидание обладает следующими свойствами:

1. Математическое ожидание константы равно этой константе:

$$E(C) = C.$$

**2.** Постоянный множитель можно выносить за знак математического ожидания:

$$E(CX) = CE(X).$$

3. Математическое ожидание суммы случайных величин равно сумме математических ожиданий слагаемых:

$$E(X_1 + X_2 + \ldots + X_n) = E(X_1) + E(X_2) + \ldots + E(X_n).$$

4. Математическое ожидание произведения независимых случайных величин равно произведению математических ожиданий сомножителей:

$$E(X_1 \cdot X_2 \cdot \ldots \cdot X_n) = E(X_1) \cdot E(X_2) \cdot \ldots \cdot E(X_n).$$

5. Если  $\varphi(x)$  — числовая функция и X — дискретная случайная величина, то

$$E[\varphi(X)] = \varphi(x_1)p_1 + \varphi(x_2)p_2 + \dots$$

**6.** Если  $\varphi(x)$  — выпуклая функция, то для любой случайной величины X выполняется неравенство Йенсена:

$$E[\varphi(X)] \geqslant \varphi(E[X])$$
.

**Пример 27.** Независимые случайные величины  $X_1, X_2, ..., X_8$  принимают только целые значения -9, -8, ..., 6, 7. Найдите математическое ожидание  $E(X_1 \cdot X_2 ... X_8)$ , если известно, что возможные значения равновероятны.

**Решение.** Сначала найдем математическое ожидание какой-нибудь одной случайной величины  $X_k$ :

$$E(X_k) = \frac{1}{17} \cdot (-9 - 8 - \dots - 0 + 1 + 2 + \dots - 7) = -1.$$

Используя свойства математического ожидания, находим

$$E(X_1 \cdot X_2 \dots X_8) = E(X_1) \cdot E(X_2) \dots E(X_8) =$$
  
=  $[E(X_k)]^8 = (-1)^8 = 1.$ 

Ответ: 1.

**Пример 28.** Независимые случайные величины  $X_1, \ldots, X_5$  могут принимать только значения 0 и 1. При этом  $P(X_i = 0) = 0,4,$   $i = 1, \ldots, 5$ . Найдите математическое ожидание  $E[4^{X_1 + \cdots + X_5}]$ .

**Решение.** Для одной случайной величины  $X_k$  имеем

$$E[4^{X_k}] = 4^0 \cdot 0.4 + 4^1 \cdot 0.6 = 2.8.$$

Тогда, используя, что  $4^{X_1}, \ldots, 4^{X_5}$  — независимые случайные величины, находим

$$E[4^{X_1+\ldots+X_5}] = E[4^{X_1}]\ldots E[4^{X_5}] = (E[4^{X_k}])^5 = (2.8)^5 \approx 172.1.$$

Ответ: 172,1.

## § 9. Дисперсия дискретной случайной величины

Математическое ожидание квадрата отклонения случайной величины X от E(X) называется  $\partial ucnepcue\check{u} X$ :

$$D(X) = E([X - E(X)]^2).$$

Стандартное (среднее квадратичное) отклонение случайной величины X определяется как корень из дисперсии и обозначается  $\sigma_X$  или  $\sigma(X)$ ,

$$\sigma(X) = \sqrt{D(X)}.$$

Дисперсия обладает следующими свойствами:

- 1.  $D(X) = E(X^2) [E(X)]^2$ .
- **2.** Дисперсия константы равна нулю: D(C) = 0.
- **3.** Постоянный множитель выносится из-под знака дисперсии в квадрате:  $D(CX) = C^2 D(X).$

**4.** Дисперсия суммы независимых случайных величин равна сумме дисперсий слагаемых:

$$D(X_1 + X_2 + \ldots + X_n) = D(X_1) + D(X_2) + \ldots + D(X_n).$$

В частности, прибавление константы C к случайной величине X не меняет ее дисперсии: D(X+C)=D(X).

Свойство 2 дисперсии обращается в несколько ослабленном виде:  $ecnu\ D(X)=0,\ mo\ для\ некоторой\ константы\ C\ равенство\ X=C$  выполняется с вероятностью 1.

**Пример 29.** Распределение случайной величины X задано таблицей

| Ī | X | 4   | 8    | 11  | 14   | 18  | Ī |
|---|---|-----|------|-----|------|-----|---|
|   | P | 0,1 | 0,25 | 0,3 | 0,25 | 0,1 | ľ |

Найдите математическое ожидание m=E(X), среднее квадратичное отклонение  $\sigma=\sigma_X$  и вероятность  $P(|X-m|<\sigma)$ .

**Pemeнue.** По определению математического ожидания и свойства дисперсии имеем:

$$\begin{split} m &= E(X) = 4 \cdot 0.1 + 8 \cdot 0.25 + 11 \cdot 0.3 + 14 \cdot 0.25 + 18 \cdot 0.1 = 11; \\ E(X^2) &= 4^2 \cdot 0.1 + 8^2 \cdot 0.25 + 11^2 \cdot 0.3 + 14^2 \cdot 0.25 + 18^2 \cdot 0.1 = 135.3; \\ D(X) &= E(X^2) - [E(X)]^2 = 135.3 - 11^2 = 14.3. \end{split}$$

Следовательно, стандартное отклонение равно

$$\sigma = \sigma_X = \sqrt{D(X)} = \sqrt{14.3} \approx 3.782.$$

Таким образом, искомая вероятность равна

$$P(|X - m| < \sigma) = P(|X - 11| < 3,782) = P(7,218 < X < 14,782) =$$

$$= P(X = 8) + P(X = 11) + P(X = 14) =$$

$$= 0.25 + 0.3 + 0.25 = 0.8.$$

**Ответ:** m = 11;  $\sigma = 3.782$ ;  $P(|X - m| < \sigma) = 0.8$ .

**Пример 30.** Независимые дискретные случайные величины X, Y могут принимать только значения 0 и 1. При этом P(X=0)=0.9, P(Y=0)=0.3. Найдите математическое ожидание  $E[(X-Y)^2]$ .

**Pewenue.** Сначала найдем математические ожидания и дисперсии случайных величин X и Y:

$$E(X) = 0 \cdot 0.9 + 1 \cdot 0.1 = 0.1;$$
  $E(Y) = 0 \cdot 0.3 + 1 \cdot 0.7 = 0.7;$   $E(X^2) = 0^2 \cdot 0.9 + 1^2 \cdot 0.1 = 0.1;$   $E(Y^2) = 0^2 \cdot 0.3 + 1^2 \cdot 0.7 = 0.7;$   $D(X) = 0.1 - (0.1)^2 = 0.09;$   $D(Y) = 0.7 - (0.7)^2 = 0.21.$ 

Тогда, используя свойства дисперсии, находим:

$$E[(X - Y)^{2}] = D(X - Y) + [E(X - Y)]^{2} =$$

$$= D(X) + D(Y) + [E(X) - E(Y)]^{2} =$$

$$= 0.09 + 0.21 + (0.1 - 0.7)^{2} = 0.66.$$

Ответ: 0.66.

**Пример 31.** Для независимых случайных величин  $X_1, \ldots, X_4$  известно, что их математические ожидания  $E(X_i) = -2$ , дисперсии  $D(X_i) = 1, i = 1, \ldots, 4$ . Найдите дисперсию произведения  $D(X_1 \ldots X_4)$ .

Решение. Используя свойства дисперсии, находим

$$D(X_1 ... X_4) = E[(X_1 ... X_4)^2] - [E(X_1 ... X_4)]^2 =$$

$$= E(X_1^2 ... X_4^2) - [E(X_1) ... E(X_4)]^2 =$$

$$= E(X_1^2) ... E(X_4^2) - [E(X_i)]^8 =$$

$$= [D(X_i) + [E(X_i)]^2]^4 - (-2)^8 =$$

$$= [1 + (-2)^2]^4 - 256 = 625 - 256 = 369.$$

Ответ: 369.

**Пример 32.** Вероятность выигрыша 3 рублей в одной партии равна  $\frac{2}{5}$ , вероятность проигрыша 2 рублей равна  $\frac{3}{5}$ . Найдите дисперсию капитала игрока после 5 партий.

**Решение.** Представим случайную величину K, капитал игрока, в виде суммы

$$K = K_0 + K_1 + K_2 + \ldots + K_5,$$

где  $K_0$  — начальный капитал,  $K_i$  — изменение капитала игрока в результате i-ой партии ( $i=1,2,\ldots,5$ ). Тогда

$$D(K_i) = E(K_i^2) - [E(K_i)]^2 = \left(3^2 \cdot \frac{2}{5} + (-2)^2 \cdot \frac{3}{5}\right) - \left[3 \cdot \frac{2}{5} - 2 \cdot \frac{3}{5}\right]^2 = 6.$$

Следовательно, дисперсия капитала игрока после 5 сыгранных независимых партий составит

$$D(K) = D(K_0 + K_1 + \dots + K_5) =$$
  
=  $D(K_1) + \dots + D(K_5) = 5 \cdot D(K_i) = 5 \cdot 6 = 30.$ 

Ответ: 30.

# § 10. Числовые характеристики основных дискретных законов распределения

Биномиальным распределением с параметрами n и p называется распределение числа успехов в n независимых испытаниях с вероятностью успеха в каждом испытании p. Биномиальное распределение имеет вил:

| X | 0 1             |                     | 2                   | <br>n               |   |
|---|-----------------|---------------------|---------------------|---------------------|---|
| P | $C_n^0 p^0 q^n$ | $C_n^1 p^1 q^{n-1}$ | $C_n^2 p^2 q^{n-2}$ | <br>$C_n^n p^n q^0$ | , |

где q = 1 - p. Для случайной величины X, распределенной по биномиальному закону с параметрами n и p, имеем:

$$E(X) = np$$
,  $D(X) = npq$ .

 $Pacnpedeлeние\ \Pi yaccoнa$ с параметром  $\lambda>0$  задается следующей бесконечной таблицей

| X | 0              | 1                                 | 2                                   | <br>k                                   |       |
|---|----------------|-----------------------------------|-------------------------------------|-----------------------------------------|-------|
| P | $e^{-\lambda}$ | $\frac{\lambda e^{-\lambda}}{1!}$ | $\frac{\lambda^2 e^{-\lambda}}{2!}$ | <br>$\frac{\lambda^k e^{-\lambda}}{k!}$ | <br>• |

Математическое ожидание и дисперсия дискретной случайной величины, распределенной по закону Пуассона, равны параметру  $\lambda$  данного распределения.

Геометрическим распределением с параметром p называется распределение числа испытаний до первого успеха в серии независимых испытаний с вероятностью успеха p в каждом испытании. Геометрическое распределение имеет вид бесконечной таблицы

| X | 1 | 2  | 3      | <br>k          |  |
|---|---|----|--------|----------------|--|
| P | p | qp | $q^2p$ | <br>$q^{k-1}p$ |  |

Для дискретной случайной величины X, распределенной по геометрическому закону,  $E\left(X\right)=\frac{1}{p},$   $D\left(X\right)=\frac{q}{n^{2}}.$ 

**Пример 33.** Производится 1920 независимых испытаний, состоящих в том, что одновременно подбрасываются 7 монет. Пусть X — число испытаний, в которых выпало 3 герба. Найдите математическое ожидание E(X).

**Решение.** По условию задачи случайная величина X, число испытаний, распределена по биномиальному закону, причем n=1920. Вероятность успеха в одном испытании p найдем как вероятность события, что при одновременном подбрасывании 7 монет выпадет 3 герба. Здесь можно воспользоваться формулой Бернулли, согласно которой

$$p = P_7(3) = C_7^3 \left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^4 = \frac{35}{128}.$$

Следовательно, искомое математическое ожидание равно

$$E(X) = np = 1920 \cdot \frac{35}{128} = 525.$$

Ответ: 525.

**Пример 34.** Производится 10 независимых испытаний с вероятностью успеха 0,6 в каждом испытании. Пусть X — число успехов в испытаниях с номерами  $1, 2, \ldots, 7, Y$  — число успехов в испытаниях с номерами  $5, 6, \ldots, 10$ . Найдите дисперсию D[X+2Y].

**Решение.** Представим случайные величины X и Y в виде X=U+V и Y=V+W, где U обозначает число успехов в испытаниях с номерами 1,2,3 и 4,V— число успехов в испытаниях с номерами 5,6 и 7, а W— число успехов в испытаниях с номерами 8,9 и 10. Поскольку испытания

независимы, то случайные величины U,V и W также независимы, что нельзя сказать о случайных величинах X и Y. Ясно, что U,V и W распределены по биномиальному закону, причем  $D(U)=4pq,\,D(V)=3pq,\,$   $D(W)=3pq,\,$  где p=0.6— вероятность успеха в одном испытании, а q=1-p=0.4. Следовательно,

$$D(X + 2Y) = D(U + 3V + 2W) = D(U) + 9D(V) + 4D(W) =$$
  
=  $4pq + 27pq + 12pq = 43pq = 43 \cdot 0.6 \cdot 0.4 = 10.32$ .

Ответ: 10.32.

**Пример 35.** На плоскости начерчены два квадрата, стороны которых 10 и 50 соответственно. Меньший квадрат содержится внутри большего квадрата. В большой квадрат случайным образом бросают точки до тех пор, пока не попадут в маленький квадрат. Пусть случайная величина X — число бросаний. Найдите математическое ожидание E(X) и дисперсию D(X).

**Решение.** По условию задачи случайная величина X (число бросаний) распределена по геометрическому закону. Вероятность успеха p в одном испытании определим как вероятность события A, что точка, брошенная в большой квадрат  $\Omega$ , попадет и в маленький. Используя геометрическую вероятность, найдем

$$p = P(A) = \frac{\mu(A)}{\mu(\Omega)} = \frac{10^2}{50^2} = \frac{1}{25}.$$

Таким образом, используя формулы для математического ожидания и дисперсии в случае геометрического распределения, находим

$$E(X) = \frac{1}{n} = 25, \quad D(X) = \frac{q}{n^2} = 600.$$

Ответ: 25; 600.

**Пример 36.** Для пуассоновской случайной величины X отношение  $\frac{P(X=10)}{P(X=9)}=6$ . Найдите математическое ожидание E[X].

**Решение.** Если X распределена по закону Пуассона, то

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k = 0, 1, 2, \dots$$

Поэтому

$$6 = \frac{P(X=10)}{P(X=9)} = \frac{\lambda^{10}}{10}.$$

Откуда,  $\lambda=60$ . Следовательно,  $E(X)=D(X)=\lambda=60$ . Ответ: 60.

## § 11. Ковариация и коэффициент корреляции

 $Koвариация \ \, \mathrm{Cov}(X,Y)$ случайных величин  $X,\,Y$  задается формулой

$$Cov(X, Y) = E[(X - E(X))(Y - E(Y))].$$

Ковариация обладает следующими свойствами:

- 1. Cov(X, Y) = E(XY) E(X)E(Y).
- **2.** Cov(X, X) = D(X).
- 3.  $D(X+Y) = D(X) + D(Y) + 2\operatorname{Cov}(X,Y)$ .
- **4.** Если X и Y независимы, то Cov(X,Y) = 0.
- 5. Cov(X, Y) = Cov(Y, X).
- **6.** Cov(aX, Y) = Cov(X, aY) = a Cov(X, Y), e de a = const.
- 7.  $\operatorname{Cov}(X+Y,Z) = \operatorname{Cov}(X,Z) + \operatorname{Cov}(Y,Z)$ .
- **8.** Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z).

Если Cov(X,Y)=0, то случайные величины X и Y называются некоррелированными. Таким образом, из независимости X и Y следует их некоррелированность. Обратное утверждение неверно.

Ковариация  $\mathrm{Cov}(X,Y)$  может использоваться как характеристика взаимосвязи X и Y. Например, положительный знак  $\mathrm{Cov}(X,Y)>0$  свидетельствует о том, что в колебательной динамике случайных величин X и Y преобладают отклонения от средних значений в одном направлении. Для подобного сравнения случайных величин, однако, больше подходит безразмерная характеристика —  $\kappa osphiuquenm$  корреляции, определяемый формулой

$$\rho_{XY} = \rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sigma(X)\sigma(Y)}.$$

Свойства коэффициента корреляции:

- **1.**  $\rho_{XY} = \rho_{YX}$ .
- **2.**  $|\rho_{XY}| \leq 1$ .
- **3.** Условие  $|\rho_{XY}|=1$  равнозначно существованию таких констант  $\alpha$  и  $\beta \neq 0$ , что равенство  $Y=\alpha+\beta X$  выполняется c вероятностью 1.

**Пример 37.** Случайные величины X, Y принимают только значения 0 и 1. Найдите дисперсию D(X-Y), если вероятности P(X=1)=P(Y=1)=0,5, а коэффициент корреляции X и Y равен 0,7.

**Решение.** Математические ожидания и дисперсии случайных величин X и Y равны:

$$E(X) = E(Y) = 0.5;$$
  $D(X) = D(Y) = 0.25.$ 

Используя определение коэффициента корреляции и свойства ковариации, находим

$$D(X - Y) = D(X) + D(Y) - 2\operatorname{Cov}(X, Y) =$$

$$= D(X) + D(Y) - 2\rho_{XY}\sigma(X)\sigma(Y) =$$

$$= 0.25 + 0.25 - 2 \cdot 0.7\sqrt{0.25} \cdot \sqrt{0.25} = 0.15.$$

Ответ: 0,15.

**Пример 38.** Случайные величины X, Y распределены по закону Пуассона. Найдите  $E\{(X+Y)^2\}$ , если E(X)=40 и E(Y)=70, а коэффициент корреляции X и Y равен 0.8.

**Решение.** Поскольку случайные величины X и Y распределены по закону Пуассона и известны их математические ожидания, соответствующие дисперсии равны:

$$D(X) = E(X) = 40; \quad D(Y) = E(Y) = 70.$$

Следовательно,

$$E\{(X+Y)^2\} = D(X+Y) + [E(X+Y)]^2 =$$

$$= D(X) + D(Y) + 2\rho_{XY}\sigma(X)\sigma(Y) + [E(X) + E(Y)]^2 =$$

$$= 40 + 70 + 2 \cdot 0.8\sqrt{40}\sqrt{70} + (40 + 70)^2 \approx 12294.7.$$

Ответ: 12294,7.

# § 12. Абсолютно непрерывные случайные величины и их числовые характеристики

Пусть F(x) = P(X < x) — функция распределения некоторой случайной величины X. Если F(x) непрерывна, то P(X = c) = 0 для любого  $c \in \mathbb{R}$ . Кроме того, вероятности событий

$${a \le X \le b}, {a \le X < b}, {a < X \le b}, {a < X < b}$$

одинаковы и равны F(b) - F(a), если  $a \leq b$ .

Абсолютно непрерывная случайная величина X характеризуется наличием *плотности распределения* (вероятности) — неотрицательной функции f(x), такой, что для любого отрезка [a, b] вероятность

$$P(X \in [a, b]) = \int_{a}^{b} f(x) dx.$$

Функция распределения F(x) абсолютно непрерывной случайной величины непрерывна и может быть представлена в виде

$$F(x) = \int_{-\infty}^{x} f(t) dt.$$

Отметим, что для любой функции плотности справедливы соотношения:

- $\int_{-\infty}^{\infty} f(x) dx = 1$  (свойство нормированности);
- f(x) = F'(x) в точках непрерывности f(x).

Нахождение математического ожидания абсолютно непрерывной случайной величины X в общем случае сводится к вычислению несобственного интеграла

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx,$$

а для случайной величины X, сосредоточенной на отрезке [a,b],  $P(X\in [a,b])=1,$  — к вычислению интеграла по этому отрезку

$$E(X) = \int_{a}^{b} x f(x) \, dx.$$

Пусть Y — случайная величина вида  $Y = \varphi(X)$ . Математическое ожидание Y вычисляется в общем случае по формуле

$$E(\varphi(X)) = \int_{-\infty}^{\infty} \varphi(x)f(x) dx,$$

а для случайной величины, сосредоточенной на отрезке  $[a,\,b],\,-$  по формуле

$$E(\varphi(X)) = \int_{a}^{b} \varphi(x)f(x) dx.$$

В частности, для начальных моментов  $\nu_k = E(X^k)$  и центральных моментов  $\mu_k = E\{(X - \nu_1)^k\}$  имеем

$$\nu_k = \int_{-\infty}^{\infty} x^k f(x) dx,$$

$$\mu_k = \int_{-\infty}^{\infty} (x - \nu_1)^k f(x) dx.$$

Поскольку  $D(X)=\mu_2=\nu_2-\nu_1^2,$  приведенные формулы используются и для вычисления дисперсии.

**Пример 39.** Функция плотности распределения случайной величины X имеет вид  $f(x) = \left\{ \begin{array}{l} 0, x < 5, \\ \frac{C}{x^2}, x \geqslant 5. \end{array} \right.$  Найдите константу C и вероятность P(X < 6).

Решение. Из свойства нормированности имеем

$$1 = \int_{-\infty}^{\infty} f(x) \, dx = C \int_{5}^{\infty} \frac{dx}{x^2} = \frac{C}{5}.$$

Отсюда C = 5. Далее,

$$P(X < 6) = F(6) = \int_{-\infty}^{6} f(x) dx = 5 \int_{5}^{6} \frac{dx}{x^{2}} dx = \frac{1}{6}.$$

**Ответ:** C = 5,  $P(X < 6) = \frac{1}{6}$ .

Пример 40. Плотность распределения случайной величины X имеет вид  $f(x) = \left\{ \begin{array}{l} \frac{3}{2}\,x^2, \ ecлu \ |x| \leqslant a, \\ 0, \ ecлu \ |x| > a. \end{array} \right.$  Найдите а и  $P\left(|X| > \frac{a}{2}\right)$ .

Решение. Из условия нормированности находим

$$1 = \int_{-\infty}^{\infty} f(x) dx = \frac{3}{2} \int_{-a}^{a} x^{2} dx = a^{3},$$

Поэтому a=1. Тогда искомая вероятность при a=1 равна:

$$P\left(|X| > \frac{1}{2}\right) = 1 - P\left(-\frac{1}{2} \le X \le \frac{1}{2}\right) = 1 - \frac{3}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} x^2 dx = 1 - \frac{1}{8} = \frac{7}{8}.$$

**Ответ:**  $a = 1, P\left(|X| > \frac{1}{2}\right) = \frac{7}{8}.$ 

**Пример 41.** Случайная величина X равномерно распределена на отрезке [-2,3]. Найдите вероятность  $P\left(\frac{1}{X-2}>7\right)$ .

**Решение.** Отметим, что если случайная величина X равномерно распределена на отрезке [a,b], то вероятность события  $\{a\leqslant \alpha < X < \beta \leqslant b\}$  можно найти, используя «геометрическую вероятность», т. е.

$$P(X \in (\alpha, \beta)) = \frac{\beta - \alpha}{b - a}, \quad a \leqslant \alpha < \beta \leqslant b.$$

В нашем случае событие  $\left\{\frac{1}{X-2}>7\right\}$  равносильно событию  $\left\{X\in\left(2;\frac{15}{7}\right)\right\}$ . Поэтому искомая вероятность равна

$$P\left(\frac{1}{X-2} > 7\right) = P\left(X \in \left(2; \frac{15}{7}\right)\right) = \frac{\frac{15}{7} - 2}{3 - (-2)} = \frac{1}{35}.$$

**Ответ:**  $P\left(\frac{1}{X-2} > 7\right) = \frac{1}{35}$ .

**Пример 42.** Случайная величина X равномерно распределена на отреже [0,1]. Найдите дисперсию  $D\left(7X^{\frac{5}{2}}\right)$ .

**Решение.** Поскольку случайная величина X равномерно распределена на отрезке [0,1], ее плотность вероятности f(x) имеет вид  $f(x) = \left\{ \begin{array}{ll} 1, \ x \in [0,1], \\ 0, \ x \notin [0,1]. \end{array} \right.$  Используя свойства дисперсии, находим

$$D\left(7X^{\frac{5}{2}}\right) = 7^{2}D\left(X^{\frac{5}{2}}\right) = 49\left(E\left(X^{5}\right) - \left(E\left(X^{\frac{5}{2}}\right)\right)^{2}\right) =$$

$$= 49\left(\int_{-\infty}^{\infty} x^{5}f(x) dx - \left(\int_{-\infty}^{\infty} x^{\frac{5}{2}}f(x) dx\right)^{2}\right) =$$

$$= 49\left(\int_{0}^{1} x^{5} \cdot 1 dx - \left(\int_{0}^{1} x^{\frac{5}{2}} \cdot 1 dx\right)^{2}\right) = 49\left(\frac{1}{6} - \left(\frac{2}{7}\right)^{2}\right) = \frac{25}{6}.$$

**Ответ:**  $D(7X^{\frac{5}{2}}) = \frac{25}{6}$ .

**Пример 43.** Случайная величина X равномерно распределена на отрезке [0,9]. Найдите  $E\{5-\ln(3X)\}$ .

**Решение.** Плотность вероятности для случайной величины X, равномерно распределенной на отрезке [0,9], имеет вид  $f(x) = \begin{cases} \frac{1}{9}, \ x \in [0,9], \\ 0, \ x \notin [0,9]. \end{cases}$ 

Используя свойства математического ожидания и формулу интегрирования по частям, нахолим

$$E\{5 - \ln(3X)\} = 5 - E(\ln(3X)) = 5 - \int_{-\infty}^{\infty} \ln(3x)f(x) dx =$$

$$= 5 - \frac{1}{9} \int_{0}^{9} \ln(3x) dx = 5 - \frac{1}{9} \left( x \cdot \ln(3x) \Big|_{0}^{9} - \int_{0}^{9} x \cdot \frac{1}{3x} \cdot 3 dx \right) =$$

$$= 5 - \frac{1}{9} (9 \ln(27) - 9) = 6 - 3 \ln 3 \approx 2{,}7042.$$

**Ответ:**  $E\{5 - \ln(3X)\} = 6 - 3\ln 3 \approx 2{,}7042.$ 

**Пример 44.** Случайные величины X и Y независимы и равномерно распределены на отрезках: X — на отрезке [0,1], Y — на отрезке [3,7]. Найдите  $E\{X \cdot (6X^4 + Y)\}$ .

 $\pmb{Peшeнue.}$  Плотности вероятностей f(x) и g(x) для случайных величин X и Y имеют вид

$$f(x) = \left\{ \begin{array}{ll} 1, \ x \in [0,1], \\ 0, \ x \notin [0,1], \end{array} \right. \quad g(x) = \left\{ \begin{array}{ll} \frac{1}{4}, \ x \in [3,7], \\ 0, \ x \notin [3,7]. \end{array} \right.$$

Используя свойства математического ожидания для независимых случайных величин, находим

$$E\{X \cdot (6X^4 + Y)\} = 6E(X^5) + E(X) \cdot E(Y) =$$

$$= 6 \int_{-\infty}^{\infty} x^5 f(x) dx + \frac{0+1}{2} \cdot \frac{7+3}{2} = 6 \int_{0}^{1} x^5 dx + \frac{5}{2} = 1 + \frac{5}{2} = \frac{7}{2}.$$

**Ответ:**  $E\{X \cdot (6X^4 + Y)\} = \frac{7}{2}$ .

**Пример 45.** Случайная величина X имеет равномерное распределение на отреже [-7,7]. Найдите коэффициент корреляции случайных величин X и  $Y=X^7$ .

**Решение.** Плотность вероятности для случайной величины X, равномерно распределенной на отрезке [-7,7], имеет вид f(x)=

$$= \begin{cases} \frac{1}{14}, & x \in [-7, 7], \\ 0, & x \notin [-7, 7]. \end{cases}$$

Последовательно находим:

$$E(X) = \frac{7 + (-7)}{2} = 0, \quad D(X) = \frac{(7 - (-7))^2}{12} = \frac{49}{3},$$

$$E(Y) = E(X^7) = \int_{-\infty}^{\infty} x^7 f(x) \, dx = \frac{1}{14} \int_{-7}^{7} x^7 \, dx = 0,$$

$$D(Y) = E(Y^2) - E^2(Y) = E(X^{14}) - 0 = \frac{1}{14} \int_{-7}^{7} x^{14} dx = 4,5215 \cdot 10^{10},$$

$$E(X \cdot Y) = E(X^8) = \frac{1}{14} \int_{-7}^{7} x^8 dx = 6,4053 \cdot 10^5,$$
 
$$Cov(X,Y) = E(X \cdot Y) - M(X) \cdot E(Y) = 6,4053 \cdot 10^5.$$

Таким образом, коэффициент корреляции равен

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}} = \frac{\sqrt{5}}{3} \approx 0.7454.$$

**Ответ:**  $\rho(X, Y) \approx 0.7454$ .

**Пример 46.** Найдите математическое ожидание и дисперсию произведения независимых случайных величин X и Y с равномерными законами распределения: X — на отрезке [0,1], Y — на отрезке [2,9].

**Решение.** Последовательно находим

$$E(X) = \frac{0+1}{2} = \frac{1}{2}, \ D(X) = \frac{(1-0)^2}{12} = \frac{1}{12}, \ E(Y) = \frac{11}{2}, \ D(Y) = \frac{49}{12}.$$

Используя свойства математического ожидания для независимых случайных величин X и Y, определяем

$$\begin{split} E(X \cdot Y) &= E(X) \cdot E(Y) = \frac{1}{2} \cdot \frac{11}{2} = 2,75, \\ D(X \cdot Y) &= E(X^2 \cdot Y^2) - E^2(X \cdot Y) = E(X^2) \cdot E(Y^2) - E^2(X) \cdot E^2(Y) = \\ &= (D(X) + E^2(X)) \cdot (D(Y) + E^2(Y)) - E^2(X) \cdot E^2(Y) = \\ &= D(X) \cdot D(Y) + E^2(X) \cdot D(Y) + E^2(Y) \cdot D(X) = \frac{559}{144} \approx 3,8819. \end{split}$$

**Ответ:**  $E(X \cdot Y) = 2.75$ ;  $D(X \cdot Y) \approx 3.8819$ .

**Пример 47.** Случайные величины  $X_1, \ldots, X_4$  независимы и распределены по показательному закону. Найдите  $E\{(X_1 + \ldots + X_4 - 5)^2\}$ , если  $E(X_1) = \ldots = E(X_4) = 5$ .

**Решение.** Напомним, что если случайная величина X распределена по показательному закону с параметром  $\lambda$ , то  $E(X)=\frac{1}{\lambda},\ D(X)=\frac{1}{\lambda^2}.$ 

Поэтому,  $D(X_1)=E^2(X_1)=25$ . Используя свойства дисперсии для независимых случайных величин  $X_1,\ldots,X_4$ , находим

$$E\{(X_1 + \dots + X_4 - 5)^2\} =$$

$$= D(X_1 + \dots + X_4 - 5) + E^2(X_1 + \dots + X_4 - 5) =$$

$$= 4 \cdot D(X_1) + (4 \cdot E(X_1) - 5)^2 = 4 \cdot 25 + 15^2 = 325.$$

**Ответ:**  $E\{(X_1 + \ldots + X_4 - 5)^2\} = 325.$ 

**Пример 48.** Случайная величина X распределена по показательному закону. Найдите математическое ожидание  $E\{(X-7)\cdot (6-X)\}$ , если дисперсия D(4-4X)=36.

**Решение.** Из условия, что D(4-4X)=36, находим  $D(X)=\frac{9}{4}$ . Поскольку X распределена по показательному закону,  $E(X)=\frac{3}{2}$ . Используя свойства математического ожидания, находим

$$E\{(X-7)\cdot(6-X)\} = E(13X - 42 - X^2) =$$

$$= 13\cdot E(X) - E(X^2) - 42 = 13\cdot E(X) - (D(X) + E^2(X)) - 42 =$$

$$= 13\cdot \frac{3}{2} - \left(\frac{9}{4} + \left(\frac{3}{2}\right)^2\right) - 42 = -27.$$

**Ответ:**  $E\{(X-7)\cdot(6-X)\} = -27.$ 

**Пример 49.** Случайная величина X распределена по показательному закону. Найдите вероятность P(16 < X < 32), если  $E(X) = \frac{8}{\ln 2}$ .

**Решение.** Из условия, что  $E(X) = \frac{8}{\ln 2}$ , находим  $\lambda = \frac{\ln 2}{8}$ . Если X распределена по показательному закону с параметром  $\lambda$ , то

$$P(a < X < b) = e^{-\lambda \cdot a} - e^{-\lambda \cdot b}.$$

Поэтому искомая вероятность равна

$$P(16 < X < 32) = e^{-16 \cdot \frac{\ln 2}{8}} - e^{-32 \cdot \frac{\ln 2}{8}} = \frac{1}{4} - \frac{1}{16} = \frac{3}{16}.$$

**Ответ:**  $P(16 < X < 32) = \frac{3}{16}$ .

**Пример 50.** Случайные величины X и Y независимые и распределены по показательному закону, причем  $E(X)=1,\ E(Y)=5.$  Найдите  $\mathrm{Cov}(X\cdot Y,X-Y).$ 

**Решение.** Используя свойства ковариации математического ожидания для независимых случайных величин X и Y, находим

$$\begin{aligned} &\operatorname{Cov}(X \cdot Y, X - Y) = E(XY \cdot (X - Y)) - E(X \cdot Y) \cdot E(X - Y) = \\ &= E(X^2) \cdot E(Y) - E(X) \cdot E(Y^2) - E(X) \cdot E(Y) \cdot (E(X) - E(Y)) = \\ &= E(Y) \cdot \left( E(X^2) - E^2(X) \right) - E(X) \cdot \left( E(Y^2) - E^2(Y) \right) = \\ &= E(Y) \cdot D(X) - E(X) \cdot D(Y) = 5 \cdot 1^2 - 1 \cdot 5^2 = -20. \end{aligned}$$

**Ответ:**  $Cov(X \cdot Y, X - Y) = -20.$ 

# § 13. Закон распределения функции от случайной величины

Пусть X — произвольная случайная величина, Y — случайная величина вида  $Y=\varphi(X);\, F_X(x)$  и  $F_Y(x)$  — их функции распределения. Можно доказать, что  $F_Y(x)$  однозначно определяется функциями  $\varphi(x)$  и  $F_X(x)$ . Если, например,  $\varphi(x)$  — возрастающая функция с обратной функцией  $\psi(x)$ , то

$$F_Y(x) = P(Y < x) = P(X < \psi(x)) = F_X(\psi(x)).$$

Предположим, что  $F_Y(x)$  дифференцируема всюду, за исключением, быть может, конечного числа точек. Тогда случайная величина Y является абсолютно непрерывной, а плотностью распределения Y в этом случае является любая неотрицательная функция, совпадающая с  $F_Y'(x)$  везде, где определена  $F_Y'(x)$ .

**Пример 51.** Распределение случайной величины X задано плотностью вероятности f(x). Найдите плотность вероятности g(x) случайной величины Y=5-9X.

**Решение.** Пусть F(x) — функция распределения случайной величины X, F(x) = P(X < x) и  $f(x) = \frac{d}{dx} F(x)$ . Обозначим через G(x) функцию распределения случайной величины Y, а через  $g(x) = \frac{d}{dx} G(x)$  —

ее плотность вероятности. Выразим G(x) через F(x):

$$G(x) = P(Y < x) = P(5 - 9X < x) = P\left(X > \frac{5 - x}{9}\right) = 1 - P\left(X \leqslant \frac{5 - x}{9}\right) = 1 - F\left(\frac{5 - x}{9}\right).$$

Дифференцируя полученное равенство, находим плотность вероятности g(x) случайной величины Y = 5 - 9X:

$$g(x) = \frac{d}{dx}G(x) = \frac{d}{dx}\left(1 - F\left(\frac{5 - x}{9}\right)\right) =$$
$$= -F'\left(\frac{5 - x}{9}\right) \cdot \left(\frac{5 - x}{9}\right)' = \frac{1}{9} \cdot f\left(\frac{5 - x}{9}\right).$$

**Ответ:**  $g(x) = \frac{1}{9} \cdot f(\frac{5-x}{9}).$ 

**Пример 52.** Случайная величина X имеет равномерное распределение на отрезке [0,1]. Найдите функцию распределения G(x) случайной величины  $Y=-\frac{1}{7}\ln X$ .

**Решение.** Функция распределения F(x) случайной величины X, равномерно распределенной на отрезке [0,1], имеет вид

$$F(x) = \begin{cases} 0, & \text{если} \quad x \leqslant 0, \\ x, & \text{если} \quad 0 < x \leqslant 1, \\ 1, & \text{если} \quad x > 1. \end{cases}$$

Выразим функцию распределения G(x) случайной величины  $Y = -\frac{1}{7} \ln X$  через F(x).

$$G(x) = P(Y < x) = P\left(-\frac{1}{7}\ln X < x\right) = P\left(\ln X > -7x\right) =$$

$$= P\left(X > e^{-7x}\right) = 1 - P\left(X \leqslant e^{-7x}\right) = 1 - F\left(e^{-7x}\right).$$

Используя явный вид функции распределения F(x) для различных значений x, находим из предыдущего равенства окончательное выражение для G(x)

$$G(x) = 1 - F\left(e^{-7x}\right) = \begin{cases} 0, & x \leqslant 0, \\ 1 - e^{-7x}, & x > 0. \end{cases}$$
 Other:  $G(x) = \begin{cases} 0, & x \leqslant 0, \\ 1 - e^{-7x}, & x > 0. \end{cases}$ 

**Пример 53.** Случайная величина X имеет плотность вероятности f(x). Найдите плотность вероятности g(x) случайной величины  $Y=X^3$ .

**Решение.** Используя обозначения примера 18, выразим функцию распределения G(x) случайной величины  $Y=X^3$  через F(x)

$$G(x) = P(Y < x) = P(X^3 < x) = P(X < \sqrt[3]{x}) = F(\sqrt[3]{x}).$$

Дифференцируя полученное равенство, находим для  $x \neq 0$  плотность вероятности q(x) случайной величины  $Y = X^3$ :

$$g(x) = \frac{d}{dx} G(x) = \frac{d}{dx} F\left(\sqrt[3]{x}\right) =$$
$$= F'\left(\sqrt[3]{x}\right) \cdot \left(\sqrt[3]{x}\right)' = \frac{1}{3 \cdot \sqrt[3]{x^2}} \cdot f\left(\sqrt[3]{x}\right).$$

**Ответ:**  $g(x) = \frac{1}{3 \cdot \sqrt[3]{x^2}} \cdot f(\sqrt[3]{x}).$ 

**Пример 54.** Случайная величина X имеет функцию распределения  $F(x) = \left\{ egin{align*} 1 - e^{-9x}, & ecnu \ x \geqslant 0, \\ 0, & ecnu \ x < 0. \end{array} \right.$  Найдите плотность вероятности g(x) случайной величини  $Y = X^2$ .

**Решение.** Выразим функцию распределения G(x) случайной величины  $Y=X^2$  через функцию распределения F(x) случайной величины X.

$$\begin{split} G(x) &= P(Y < x) = P\left(X^2 < x\right) = \\ &= \left\{ \begin{array}{l} 0, \text{ если } x \leqslant 0, \\ P\left(|X| < \sqrt{x}\right), \text{ если } x > 0, \end{array} \right. = \\ &= \left\{ \begin{array}{l} 0, \text{ если } x \leqslant 0, \\ P\left(-\sqrt{x} < X < \sqrt{x}\right), \text{ если } x > 0, \end{array} \right. = \\ &= \left\{ \begin{array}{l} 0, \text{ если } x \leqslant 0, \\ F\left(\sqrt{x}\right) - F\left(-\sqrt{x}\right), \text{ если } x > 0 \end{array} \right. = \\ &= \left\{ \begin{array}{l} 0, \text{ если } x \leqslant 0, \\ \left. \left(1 - e^{-9\sqrt{x}}\right) - 0, \text{ если } x > 0. \end{array} \right. \end{split}$$

Дифференцируя полученное равенство, находим плотность вероятности g(x) случайной величины  $Y=X^2$ .

$$g(x) = \frac{d}{dx} G(x) = \begin{cases} 0, & x \le 0, \\ \frac{9}{2} \cdot \frac{e^{-9\sqrt{x}}}{\sqrt{x}}, & x > 0. \end{cases}$$

**Ответ:** 
$$g(x) = \begin{cases} 0, & x \leq 0, \\ \frac{9}{2} \cdot \frac{e^{-9\sqrt{x}}}{\sqrt{x}}, & x > 0. \end{cases}$$

# § 14. Нормальное и логнормальное законы распределения случайной величины

Определение. Непрерывная случайная величина X имеет нормальный закон распределения или закон Гаусса c параметрами  $\mu$  и  $\sigma^2$ ,  $X \sim N\left(\mu, \sigma^2\right)$ , если ее плотность вероятностей имеет вид:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty.$$

Параметры  $\mu$  и  $\sigma^2$  имеют смысл математического ожидания и дисперсии случайной величины X, т. е.  $EX=\mu,\ DX=\sigma^2$ . Функция распределения F(x)=P(X< x) и вероятность P(X> x) выражаются через функцию Лапласа  $\Phi(x)$  следующим образом

$$F(x) = P(X < x) = \frac{1}{2} + \Phi\left(\frac{x - \mu}{\sigma}\right),$$
  
$$P(X > x) = \frac{1}{2} - \Phi\left(\frac{x - \mu}{\sigma}\right).$$

Отметим следующий факт, что если  $X_1, \ldots, X_n$  — независимые случайные величины и  $X_i \sim N(\mu_i, \sigma_i^2), i = 1, \ldots, n, mo \sum_{i=1}^n c_i X_i \sim N\left(\sum_{i=1}^n c_i \mu_i, \sum_{i=1}^n c_i^2 \sigma_i^2\right).$ 

Определение. Случайная величина Y распределена логарифмически нормально или логнормально c параметрами  $\mu$  и  $\sigma^2$ ,  $Y \sim LN(\mu, \sigma^2)$ , если  $\ln Y \sim N(\mu, \sigma^2)$ .

Из определения следует, что если  $Y \sim LN(\mu, \sigma^2)$ , то  $Y = e^X$ , где  $X \sim N\left(\mu, \sigma^2\right)$ .

**Пример 55.** Для нормальной случайной величины X с математическим ожиданием E(X) = 19 и дисперсией D(X) = 25 найдите вероятность P(X > 17,5).

**Решение.** По условию  $X \sim N(19; 5^2)$ . Следовательно, искомая вероятность равна

$$P(X > 17,5) = \frac{1}{2} - \Phi\left(\frac{17,5-19}{5}\right) = \frac{1}{2} - \Phi(-0,3) =$$
$$= 0.5 + \Phi(0,3) \approx 0.5 + 0.1179 = 0.6179.$$

**Ответ:**  $P(X > 17.5) \approx 0.6179$ .

**Пример 56.** Для независимых нормальных случайных величин X, Y известны их математические ожидания и дисперсии E(X) = 13, E(Y) = 15,7, D(X) = 6, D(Y) = 3. Найдите вероятность P(X < Y + 3).

**Решение.** Для независимых нормальных случайных величин разность Z = X - Y, как и сумма, также является нормальной случайной величиной, причем

$$E(Z) = E(X - Y) = E(X) - E(Y) = 13 - 15,7 = -2,7;$$
  
 $D(Z) = D(X - Y) = D(X) + D(Y) = 6 + 3 = 9.$ 

Поэтому искомая вероятность равна

$$\begin{split} P(X < Y + 3) &= P(X - Y < 3) = P(Z < 3) = F(3) = \\ &= \frac{1}{2} + \Phi\left(\frac{3 - (-2,7)}{3}\right) = \frac{1}{2} + \Phi(1,9) \approx \\ &\approx 0.5 + 0.4713 = 0.9713. \end{split}$$

**Ответ:** P(X < Y + 3) = 0.9713.

**Пример 57.** Независимые нормальные случайные величины  $X_1, \ldots, X_{16}$  имеют одинаковые параметры  $E(X_i) = 2, \ D(X_i) = \sigma^2,$   $i = 1, \ldots, 16.$  Для случайной величины  $S = X_1 + \ldots + X_{16}$  найдите вероятность  $P\left(|S-32| < \frac{6}{5} \sigma\right)$ .

**Решение.** Случайная величина  $S = X_1 + \ldots + X_{16}$ , как сумма независимых нормальных случайных величин, распределена по нормальному закону с математическим ожиданием  $E(S) = 2 \cdot 16 = 32$  и дисперсией  $D(S) = 16\sigma^2$ . Тогда искомая вероятность равна

$$\begin{split} P\left(|S-32|<\frac{6}{5}\,\sigma\right) &= P\left(32-\frac{6}{5}\,\sigma < S < 32+\frac{6}{5}\,\sigma\right) = \\ &= \Phi\left(\frac{32+\frac{6}{5}\,\sigma - 32}{4\sigma}\right) - \Phi\left(\frac{32-\frac{6}{5}\,\sigma - 32}{4\sigma}\right) = \Phi(0,3) - \Phi(-0,3) = \\ &= 2\cdot\Phi(0,3) \approx 2\cdot0.1179 = 0.2358. \end{split}$$

**Ответ:**  $P(|S - 32| < \frac{6}{5}\sigma) = 0.2358.$ 

**Пример 58.** Для нормальной случайной величины X известно, что математическое ожидание E(X)=54.9 и вероятность P(X<57)=0.7580. Найдите дисперсию D(X).

**Решение.** Из условия имеем

$$0.7580 = P(X < 57) = F(57) = \frac{1}{2} + \Phi\left(\frac{57 - 54.9}{\sigma}\right).$$

Таким образом, получаем уравнение

$$\Phi\left(\frac{2,1}{\sigma}\right) = 0,2580.$$

Откуда по таблице значений функции Лапласа определяем

$$\frac{2,1}{\sigma} = 0.7.$$

Следовательно,  $\sigma = 3$ , а дисперсия  $D(X) = \sigma^2 = 9$ .

**Ответ:** D(X) = 9.

**Пример 59.** Случайные величины X и Y независимы и распределены по нормальному закону, D(X) = 4, E(Y) = -2. Найдите  $Cov(X \cdot Y, X)$ .

**Pewenue.** Используя свойства ковариации и математического ожидания для независимых случайных величин, находим

$$Cov(X \cdot Y, X) = E(X^2 \cdot Y) - E(XY) \cdot E(X) =$$
  
=  $E(X^2) \cdot E(Y) - E^2(X) \cdot E(Y) = E(Y) \cdot D(X) = -2 \cdot 4 = -8.$ 

**Ответ:**  $Cov(X \cdot Y, X) = -8$ .

**Пример 60.** Пусть S(n) обозначает цену акции к концу n-ой недели,  $n\geqslant 1$ . Предполагая, что отношения цен  $\frac{S(n)}{S(n-1)},\ n>1$ , являются независимыми случайными величинами, распределенными логнормально с параметрами  $\mu=0{,}00331$  и  $\sigma=0{,}0513,$  найдите вероятность того, что цена акции в конце четвертой недели будет выше, чем в конце первой недели.

**Решение.** Случайные величины  $\ln\left(\frac{S(n)}{S(n-1)}\right), n=2,3,4$ , независимые и распределены по нормальному закону с параметрами  $\mu=0,00331$  и  $\sigma^2=0,0513^2=0,00263$ . Поэтому  $X=\ln\left(\frac{S(4)}{S(3)}\right)+\ln\left(\frac{S(3)}{S(2)}\right)+\ln\left(\frac{S(2)}{S(1)}\right)$ , как сумма независимых нормальных случайных величин, также является нормальной, причем  $X\sim N\left(3\cdot 0,00331;3\cdot 0,0513^2\right)$ . Следовательно

$$\begin{split} P\left(\frac{S(4)}{S(1)} > 1\right) &= P\left(\frac{S(4)}{S(3)} \cdot \frac{S(3)}{S(2)} \cdot \frac{S(2)}{S(1)} > 1\right) = \\ &= P\left(\ln\left(\frac{S(4)}{S(3)}\right) + \ln\left(\frac{S(3)}{S(2)}\right) + \ln\left(\frac{S(2)}{S(1)}\right) > 0\right) = \\ &= P\left(X > 0\right) = \frac{1}{2} - \Phi\left(\frac{0 - 3 \cdot \mu}{\sqrt{3} \cdot \sigma}\right) = \frac{1}{2} + \Phi\left(0, 11\right) = \\ &= 0.5 + 0.0438 \approx 0.544. \end{split}$$

Ответ: 0,544.

### § 15. Центральная предельная теорема (ЦПТ)

В теории вероятностей центральными предельными теоремами называют теоремы, которые формулируются приблизительно следующим образом:

Распределение суммы большого числа независимых случайных величин при весьма общих условиях близко к нормальному распределению.

Наиболее известной является так называемая ЦПТ для одинаково распределенных слагаемых:

Для бесконечной последовательности одинаково распределенных случайных величин  $X_1, X_2, \ldots$ , для которых существует математическое ожидание  $\mu = E(X_i)$  и дисперсия  $\sigma^2 = D(X_i)$ , функции распределения нормированных частичных сумм

$$S'_{n} = \frac{X_{1} + \ldots + X_{n} - n\mu}{\sqrt{n}\sigma}, \quad n = 1, 2, \ldots$$

стремятся при  $n \to \infty$  к функции распределения нормального закона с параметрами 0 и 1:

$$\lim_{n \to \infty} F_{S'_n}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt.$$

Их этой теоремы следует, что для промежутка  $\Delta$  любого вида предел вероятности попадания нормированной частичной суммы в  $\Delta$  существует и

$$\lim_{n \to \infty} P(S'_n \in \Delta) = P(Z \in \Delta),$$

где  $Z \sim N(0,1)$  — стандартная нормальная случайная величина. В частности, для промежутка  $\Delta = (a,b)$  или  $\Delta = [a,b]$  имеем

$$\lim_{n \to \infty} P(S'_n \in \Delta) = \Phi(b) - \Phi(a),$$

где  $\Phi(x)$  — функция Лапласа.

**Пример 61.** Для независимых случайных величин  $X_1, X_2, \ldots,$  принимающих с равной вероятностью значения  $1, 4 \ u \ 7$ , найдите предел  $\lim_{n \to \infty} P(X_1 + \ldots + X_n < 4n + \sqrt{n}).$ 

**Решение.** Сначала найдем математическое ожидание  $E(X_i)$  и дисперсию  $D(X_i)$ :  $E(X_i) = 4$ ,  $D(X_i) = 6$ . Тогда искомый предел равен

$$\lim_{n \to \infty} P(X_1 + \dots + X_n < 4n + \sqrt{n}) =$$

$$= \lim_{n \to \infty} P\left(\frac{X_1 + \dots + X_n - 4n}{\sqrt{n}\sqrt{6}} < \frac{1}{\sqrt{6}}\right) =$$

$$= \frac{1}{2} + \Phi\left(\frac{1}{\sqrt{6}}\right) = 0.5 + \Phi(0.40825) = 0.65845.$$

Ответ: 0.65845.

**Пример 62.** Для независимых, распределенных по геометрическому закону случайных величин  $X_1, X_2, \ldots$ , найдите предел  $\lim_{n \to \infty} P(X_1 + \ldots + X_n > 6n + \sqrt{3n})$ , если известно, что  $E(X_i) = 6$ .

**Решение.** Для случайной величины  $X_i$ , распределенной по геометрическому закону, дисперсия равна 30. Следовательно, искомый предел равен

$$\lim_{n \to \infty} P(X_1 + \dots + X_n > 6n + \sqrt{3n}) =$$

$$= \lim_{n \to \infty} P\left(\frac{X_1 + \dots + X_n - 6n}{\sqrt{n}\sqrt{30}} > \frac{1}{\sqrt{10}}\right) =$$

$$= \frac{1}{2} - \Phi\left(\frac{1}{\sqrt{10}}\right) = 0.5 - \Phi(0.31623) = 0.37591.$$

Ответ: 0,37591.

**Пример 63.** Для независимых случайных величин  $X_1, X_2, ...,$  равномерно распределенных на отрезке [3,12], найдите предел  $\lim_{n\to\infty} P\left(X_1+\ldots+X_n>\frac{15}{2}n+\sqrt{n}\right).$ 

**Решение.** Для равномерно распределенной на отрезке [3,12] случайной величины  $X_i$  математическое ожидание и дисперсия соответствен-

но равны  $\frac{15}{2}$  и  $\frac{27}{4}$ . Поэтому искомый предел равен

$$\lim_{n \to \infty} P\left(X_1 + \dots + X_n > \frac{15}{2}n + \sqrt{n}\right) =$$

$$= \lim_{n \to \infty} P\left(\frac{X_1 + \dots + X_n - \frac{15}{2}n}{\sqrt{n} \cdot \frac{3\sqrt{3}}{2}} > \frac{2}{3\sqrt{3}}\right) =$$

$$= \frac{1}{2} - \Phi\left(\frac{2}{3\sqrt{3}}\right) = 0.5 - \Phi(0.3849) = 0.35016.$$

Ответ: 0,35016.

### § 16. Закон распределения двумерной дискретной случайной величины

Закон распределения случайного вектора (X,Y) (двумерной случайной величины) называется также совместным распределением случайных величин X и Y. Закон распределения вектора (X,Y) однозначно определяет как законы распределения его компонент X и Y, так и распределение любой случайной величины  $Z=\varphi(X,Y)$ .

Для дискретных случайных величин X и Y с возможными значениями  $x_1, \ldots, x_m$  и  $y_1, \ldots, y_n$  их совместное распределение обычно записывается следующим образом:

|           | $Y = y_1$ | $Y = y_2$ | <br>$Y = y_n$ |
|-----------|-----------|-----------|---------------|
| $X = x_1$ | $p_{11}$  | $p_{12}$  | <br>$p_{1n}$  |
|           |           |           | <br>          |
| $X = x_m$ | $p_{m1}$  | $p_{m2}$  | <br>$p_{mn}$  |

Суммируя в этой таблице вероятности по строкам и столбцам, получаем распределения X и Y:

| X | $x_1$          | <br>$x_m$          | 11 | Y | $y_1$           | <br>$y_n$           |
|---|----------------|--------------------|----|---|-----------------|---------------------|
| P | $p_{1\bullet}$ | <br>$p_{m\bullet}$ | И  | P | $p_{\bullet 1}$ | <br>$p_{\bullet n}$ |

где 
$$p_{i\bullet} = \sum_{j} p_{ij}, p_{\bullet j} = \sum_{i} p_{ij}.$$

Для вероятности возможного значения z случайной величины  $Z=\varphi(X,Y)$  имеем

$$P(Z=z) = \sum_{\varphi(x_i, y_j) = z} p_{ij},$$

что позволяет достаточно эффективно находить распределение Z.

Математическое ожидание E(Z) можно найти двумя способами:

• непосредственно, по формуле

$$E(Z) = \sum_{i,j} \varphi(x_i, y_j) p_{ij},$$

• или, предварительно построив распределение

$$\begin{array}{c|cccc} Z & z_1 & \dots & z_s \\ \hline P & p_1 & \dots & p_s \end{array}$$

по формуле

$$E(Z) = \sum_{k=1}^{s} z_k p_k.$$

Для Z = aX + bY оптимальным, как правило, является способ вычисления E(Z), основанный на тождестве

$$E(Z) = aE(X) + bE(Y).$$

**Пример 64.** Найдите распределение случайной величины Z = X + Y и E(Z), если известно распределение случайного дискретного вектора (X,Y)

|        | X = 3          | X = 4          | X = 5         |
|--------|----------------|----------------|---------------|
| Y = -3 | $\frac{1}{6}$  | $\frac{1}{24}$ | $\frac{1}{6}$ |
| Y = -2 | $\frac{5}{24}$ | $\frac{1}{12}$ | $\frac{1}{3}$ |

**Решение.** Возможные значения случайной величины Z = X + Y есть 0, 1, 2, 3. Найдем соответствующие вероятности:

$$\begin{split} P(Z=0) &= P(X+Y=0) = P(X=3,Y=-3) = \frac{1}{6}, \\ P(Z=1) &= P(X+Y=1) = \\ &= P(X=3,Y=-2) + P(X=4,Y=-3) = \frac{5}{24} + \frac{1}{24} = \frac{1}{4}, \end{split}$$

$$\begin{split} P(Z=2) &= P(X+Y=2) = \\ &= P(X=4,Y=-2) + P(X=5,Y=-3) = \frac{1}{12} + \frac{1}{6} = \frac{1}{4}, \\ P(Z=3) &= P(X+Y=3) = P(X=5,Y=-2) = \frac{1}{3}. \end{split}$$

$$E(Z) = 0 \cdot \frac{1}{6} + 1 \cdot \frac{1}{4} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{3} = \frac{7}{4}.$$

Ответ:

| Z | 0             | 1             | 2             | 3   | E(Z) = 7                  |
|---|---------------|---------------|---------------|-----|---------------------------|
| P | $\frac{1}{6}$ | $\frac{1}{4}$ | $\frac{1}{4}$ | 1/2 | $,  E(Z) = \frac{1}{4} .$ |

**Пример 65.** Найдите распределение случайной величины  $Z = \max(X,Y)$  и E(Z), если известно распределение дискретного случайного вектора (X,Y)

|        | X = -2         | X = -1         | X = 0          |
|--------|----------------|----------------|----------------|
| Y = -1 | $\frac{1}{12}$ | $\frac{1}{24}$ | $\frac{5}{24}$ |
| Y = 0  | $\frac{1}{6}$  | $\frac{1}{6}$  | $\frac{1}{3}$  |

 $\boldsymbol{Peшениe}.$  Возможными значениями случайной величины  $Z = \max(X,Y)$  будут -1 и 0, при этом

$$\begin{split} P(Z=-1) &= P(\max(X,Y)=-1) = \\ &= P(X=-2,Y=-1) + P(X=-1,Y=-1) = \\ &= \frac{1}{12} + \frac{1}{24} = \frac{1}{8}, \\ P(Z=0) &= P(\max(X,Y)=0) = \\ &= P(X=-2,Y=0) + P(X=-1,Y=0) + \\ &+ P(X=0,Y=-1) + P(X=0,Y=0) = \\ &= \frac{1}{6} + \frac{1}{6} + \frac{5}{24} + \frac{1}{3} \stackrel{\text{или}}{=} 1 - P(Z=-1) = 1 - \frac{1}{8} = \frac{7}{8}. \end{split}$$

Таким образом, закон распределения случайной величины  $Z = \max(X, Y)$ 

чины Z равно

$$E(Z) = -1 \cdot \frac{1}{8} + 0 \cdot \frac{7}{8} = -\frac{1}{8}.$$

Ответ:

$$\begin{bmatrix} Z & -1 & 0 \\ P & \frac{1}{8} & \frac{7}{8} \end{bmatrix}, \quad E(Z) = -\frac{1}{8}.$$

**Пример 66.** Найдите распределение случайной величины  $Z = \min(X, Y)$  и E(Z), если известно распределение дискретного случайного вектора (X, Y)

|        | X = -2         | X = -1         | X = 0          |  |
|--------|----------------|----------------|----------------|--|
| Y = -1 | $\frac{1}{12}$ | $\frac{1}{12}$ | $\frac{5}{24}$ |  |
| Y = 0  | $\frac{1}{8}$  | $\frac{1}{4}$  | $\frac{1}{4}$  |  |

**Решение.** Возможными значениями случайной величины  $Z = \min(X, Y)$  будут -2, -1 и 0. Кроме того,

$$\begin{split} P(Z=-2) &= P(\min(X,Y) = -2) = \\ &= P(X=-2,Y=-1) + P(X=-2,Y=0) = \\ &= \frac{1}{12} + \frac{1}{8} = \frac{5}{24}, \\ P(Z=-1) &= P(\min(X,Y) = -1) = P(X=-1,Y=-1) + \\ &+ P(X=-1,Y=0) + P(Y=-1,X=0) = \\ &= \frac{1}{12} + \frac{1}{4} + \frac{5}{24} = \frac{13}{24}, \\ P(Z=0) &= P(\min(X,Y) = 0) = P(X=0,Y=0) = \frac{1}{4}. \end{split}$$

Таким образом, закон распределения случайной величины  $Z = \min(X,Y)$ 

величины Z равно

$$E(Z) = -2 \cdot \frac{5}{24} - 1 \cdot \frac{13}{24} + 0 \cdot \frac{1}{4} = -\frac{23}{24}.$$

Ответ:

| Z | -2             | -1              | 0             |   | E(Z) = - |
|---|----------------|-----------------|---------------|---|----------|
| P | $\frac{5}{24}$ | $\frac{13}{24}$ | $\frac{1}{4}$ | , | E(Z) = - |

**Пример 67.** Найдите распределение случайной величины  $Z = \min(6, X - Y)$  и E(Z), если известно распределение дискретного случайного вектора (X, Y)

|        | X = 3         | X = 4         | X = 5          |  |
|--------|---------------|---------------|----------------|--|
| Y = -2 | $\frac{1}{4}$ | $\frac{1}{6}$ | $\frac{1}{8}$  |  |
| Y = -1 | $\frac{1}{8}$ | $\frac{1}{4}$ | $\frac{1}{12}$ |  |

**Решение.** Возможными значениями случайной величины  $Z = \min(6, X - Y)$  будут 4, 5 и 6. Найдем соответствующие вероятности:

$$P(Z = 4) = P(\min(6, X - Y) = 4) = P(X = 3, Y = -1) = \frac{1}{8},$$

$$P(Z = 5) = P(\min(6, X - Y) = 5) =$$

$$= P(X = 3, Y = -2) + P(X = 4, Y = -1) =$$

$$= \frac{1}{4} + \frac{1}{4} = \frac{1}{2},$$

$$\begin{split} P(Z=6) &= P(\min(6,X-Y)=6) = \\ &= P(X=4,Y=-2) + P(X=5,Y=-2) + \\ &+ P(X=5,Y=-1) = \frac{1}{6} + \frac{1}{8} + \frac{1}{12} \stackrel{\text{или}}{=} \\ &\stackrel{\text{или}}{=} 1 - P(Z=4) - P(Z=5) = \frac{3}{8}. \end{split}$$

дание случайной величины Z равно

$$E(Z) = 4 \cdot \frac{1}{8} + 5 \cdot \frac{1}{2} + 6 \cdot \frac{3}{8} = \frac{21}{4}.$$

Ответ:

**Пример 68.** Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1         | X = 0           | X = 1          |   |
|--------|----------------|-----------------|----------------|---|
| Y = -1 | $\frac{1}{28}$ | $\frac{3}{14}$  | $\frac{1}{28}$ | ; |
| Y = 0  | $\frac{3}{14}$ | $\frac{13}{28}$ | $\frac{1}{28}$ |   |

выясните, зависимы или нет события  $A = \{X \cdot Y \neq 0\}$  и  $B = \{X + Y = 0\}$ .

**Решение.** Напомним, что события A и B называются **независимыми**, если  $P(A \cdot B) = P(A) \cdot P(B)$ . В противном случае, события A и B называются **зависимыми**. Найдем вероятности событий P(A), P(B) и  $P(A \cdot B)$ :

$$\begin{split} P(A) &= P(X \cdot Y \neq 0) = \\ &= P(X = -1, Y = -1) + P(X = 1, Y = -1) = \frac{1}{14}, \\ P(B) &= P(X + Y = 0) = \\ &= P(X = 0, Y = 0) + P(X = 1, Y = -1) = \frac{1}{2}, \\ P(A \cdot B) &= P(X \cdot Y \neq 0, X + Y = 0) = P(X = 1, Y = -1) = \frac{1}{28}. \end{split}$$

Имеем,

$$P(A \cdot B) = \frac{1}{28} = \frac{1}{14} \cdot \frac{1}{2} = P(A) \cdot P(B).$$

Следовательно, A и B — независимые события.

Ответ: независимые.

**Пример 69.** Распределение случайного вектора (X,Y) задается таблицей

|       | X = 0                              | X = 1                             |  |
|-------|------------------------------------|-----------------------------------|--|
| Y = 0 | $-\frac{1}{3} + \frac{2}{3}\alpha$ | $\frac{2}{3} - \frac{2}{3}\alpha$ |  |
| Y = 1 | $\frac{2}{3} - \frac{2}{3}\alpha$  | $\frac{2}{3}\alpha$               |  |

Найдите значение параметра  $\alpha$  при котором коэффициент коррелячии между X и Y равен  $-\frac{1}{4}$ .

**Решение.** Найдем законы распределения компонент X и Y. Возможные значения X это 0 и 1, а вероятности

$$P(X = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1) =$$

$$= -\frac{1}{3} + \frac{2}{3}\alpha + \frac{2}{3} - \frac{2}{3}\alpha = \frac{1}{3},$$

$$P(X = 1) = 1 - P(X = 0) = 1 - \frac{1}{3} = \frac{2}{3}.$$

Возможные значения Y — также 0 и 1. Соответствующие вероятности

$$\begin{split} P(Y=0) &= P(Y=0, X=0) + P(Y=0, X=1) = \\ &= -\frac{1}{3} + \frac{2}{3} \, \alpha + \frac{2}{3} - \frac{2}{3} \, \alpha = \frac{1}{3}, \\ P(Y=1) &= 1 - P(Y=0) = 1 - \frac{1}{3} = \frac{2}{3}. \end{split}$$

Наконец, возможными значениями произведения  $X \cdot Y$  будут 0 и 1, при этом

$$\begin{split} &P(X\cdot Y=1) = P(X=1,Y=1) = \frac{2}{3}\,\alpha,\\ &P(X\cdot Y=0) = 1 - P(X\cdot Y\neq 0) = 1 - P(X=1,Y=1) = 1 - \frac{2}{3}\,\alpha. \end{split}$$

В итоге, законы распределения  $X,\,Y$  и  $X\cdot Y$  имеют вид

| X, Y | 0             | 1             |   | $X \cdot Y$ | 0                     | 1                   | Ì |
|------|---------------|---------------|---|-------------|-----------------------|---------------------|---|
| P    | $\frac{1}{3}$ | $\frac{2}{3}$ | , | P           | $1-\frac{2}{3}\alpha$ | $\frac{2}{3}\alpha$ | ľ |

Найдем Cov(X,Y), вычислив предварительно E(X), E(Y) и  $E(X \cdot Y)$ ,

$$\begin{split} E(X) &= E(Y) = 0 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3} = \frac{2}{3}, \\ E(X \cdot Y) &= 0 \cdot \left(1 - \frac{2}{3}\alpha\right) + 1 \cdot \frac{2}{3}\alpha = \frac{2}{3}\alpha. \end{split}$$

Следовательно,

$$\mathbf{Cov}(X,Y) = E(X \cdot Y) - E(X) \cdot E(Y) = \frac{2}{3}\alpha - \frac{2}{3} \cdot \frac{2}{3} = \frac{2}{3}\alpha - \frac{4}{9}.$$

Далее,

$$D(X) = D(Y) = E(X^2) - E^2(X) = 0^2 \cdot \frac{1}{3} + 1^2 \cdot \frac{2}{3} - \left(\frac{2}{3}\right)^2 = \frac{2}{9}.$$

Поэтому,  $\sigma(X) \cdot \sigma(Y) = \frac{2}{9}$ . Таким образом, коэффициент корреляции X и Y равен

$$\rho(X,Y) = \frac{\mathbf{Cov}(X,Y)}{\sigma(X) \cdot \sigma(Y)} = 3\alpha - 2 \stackrel{\text{по условию}}{=} -\frac{1}{4}.$$

Отсюда,  $\alpha = \frac{7}{12}$ . Закон распределения в этом случае имеет вид

|       | X = 0          | X = 1          |
|-------|----------------|----------------|
| Y = 0 | $\frac{1}{18}$ | $\frac{5}{18}$ |
| Y = 1 | $\frac{5}{18}$ | $\frac{7}{18}$ |

**Ответ:**  $\alpha = \frac{7}{12}$ .

# § 17. Условные распределения и условные числовые характеристики

Пусть (X,Y) — дискретный случайный вектор с законом распределения  $f(x_k,y_l)=P(X=x_k,Y=y_l)$ , где  $x_k$  и  $y_l$  — возможные значения компонент X и Y, соответственно,  $f_Y(y_l)=P(Y=y_l)=\sum_k f(x_k,y_l)$  — распределение случайной величины Y,  $f_X(x_k)=P(X=x_k)=\sum_l f(x_k,y_l)$  — распределение случайной величины X.

Определение. Набор вероятностей

$$f_{X|Y}(x_k|y_l) = P(X = x_k|Y = y_l) = \frac{P(X = x_k, Y = y_l)}{P(Y = y_l)} = \frac{f(x_k, y_l)}{f_Y(y_l)}$$

для всех значений  $y_l$ , таких, что  $f_Y(y_l) > 0$ , определяет условное распределение дискретной случайной величины X при условии, что  $Y = y_l$ .

Можно показать, что для фиксированного  $y_l$  набор  $\{f_{X|Y}(x_k|y_l)\}$  действительно определяет распределение вероятностей, т. е.  $\sum\limits_k f_{X|Y}(x_k|y_l)=1.$  Точно так же определяется условное распределение дискретной случайной величины Y при условии, что  $X=x_k.$ 

Заметим, что если X и Y независимы, то  $f_{X|Y}(x_k|y_l) = f_X(x_k)$ , и условное распределение совпадает с распределением компоненты X.

Определение. Условным математическим ожиданием дискретной случайной величины X при условии, что  $Y=y_l$ , называется число

$$E(X|Y = y_l) = \sum_k x_k P(X = x_k | Y = y_l) = \sum_k x_k f_{X|Y}(x_k | y_l).$$

Меняя ролями X и Y, получим  $E(Y|X=x_k) = \sum_{l} y_l f_{Y|X}(y_l|x_k)$ .

Аналогичным образом определяется условная вероятность события  $\{Y=y_l\}$  при условии, что  $X\in B$ ,

$$P(Y = y_l | X \in B) = \frac{P(Y = y_l, X \in B)}{P(X \in B)},$$

а также условное математическое ожидание Y при условии, что  $X \in B$ ,

$$E(Y|X \in B) = \sum_{l} y_{l} \cdot \frac{P(Y = y_{l}, X \in B)}{P(X \in B)},$$

где

$$P(X \in B) = \sum_{x_k \in B} P(X = x_k),$$
  
 $P(Y = y_l, X \in B) = \sum_{x_k \in B} P(Y = y_l, X = x_k).$ 

Условные распределения удовлетворяют всем свойствам распределения вероятностей, поэтому и условные математические ожидания также удовлетворяют всем свойствам обычных математических ожиданий. Например, имеют место формулы

1. 
$$E[\varphi(X)|Y = y] = \sum_{k} \varphi(x_k) f_{X|Y}(x_k|y).$$

**2.** 
$$E\left[\sum_{k=1}^{n} X_k | Y = y\right] = \sum_{k=1}^{n} E[X_k | Y = y].$$

Определение. Условным математическим ожиданием случайной величины X относительно случайной величины Y называется случайная величина E(X|Y), которая принимает значение E(X|Y=y) при Y=y.

Условное математическое ожидание E(X|Y) обладает следующими свойствами:

- 1. E(c|Y) = c,  $r\partial e \ c = \text{const.}$
- **2.** E(aX + b|Y) = aE(X|Y) + b, где  $a \ u \ b n$ остоянные.
- **3.** E(X + Y|Z) = E(X|Z) + E(Y|Z).
- **4.** Если X и Y независимые случайные величины, то E(X|Y) = E(X).
- **5.**  $E[\varphi(Y) \cdot X|Y] = \varphi(Y) \cdot E(X|Y)$ .

Понятие условного математического ожидания можно распространить на абсолютно непрерывные случайные величины, при этом сохраняются все перечисленные выше свойства.

Теорема (формула полного математического ожидания).

$$E(X) = E[E(X|Y)].$$

Если Y — дискретная случайная величина, то указанное выше соотношение означает, что выполняется равенство

$$E(X) = \sum_{l} E(X|Y = y_l)P(Y = y_l).$$

$$E[E(X|Y)] = \sum_{l} E(X|Y = y_{l})P(Y = y_{l}) =$$

$$= \sum_{l} \sum_{k} x_{k}P(X = x_{k}|Y = y_{l})P(Y = y_{l}) =$$

$$= \sum_{l} \sum_{k} x_{k} \frac{P(X = x_{k}, Y = y_{l})}{P(Y = y_{l})} \cdot P(Y = y_{l}) =$$

$$= \sum_{l} \sum_{k} x_{k}P(X = x_{k}, Y = y_{l}) =$$

$$= \sum_{k} x_{k} \sum_{l} P(X = x_{k}, Y = y_{l}) =$$

$$= \sum_{k} x_{k} P(X = x_{k}, Y = y_{l}) =$$

$$= \sum_{k} x_{k} P(X = x_{k}, Y = y_{l}) =$$

Определение. Условной дисперсией случайной величины X относительно случайной величины Y называется случайная величина

$$D(X|Y) \equiv E[(X - E(X|Y))^{2}|Y],$$

которая принимает значение D(X|Y=y) при Y=y.

Значение D(X|Y=y) определяется формулой

$$D[X|Y = y] = E[(X - E(X|Y = y))^{2} | Y = y] =$$

$$= \sum_{k} [x_{k} - E(X|Y = y)]^{2} f_{X|Y}(x_{k}|y).$$

Свойства условной дисперсии:

- 1. D(c|Y) = 0.  $r\partial e \ c = \text{const.}$
- **2.**  $D(aX + b|Y) = a^2D(X|Y)$ , где  $a \ u \ b nocmoянные.$
- **3.**  $D(X|Y) = E(X^2|Y) (E(X|Y))^2$ .
- **4.** Если X и Y независимые случайные величины, то D(X|Y) = D(X).
- 5.  $D[\varphi(Y) \cdot X|Y] = \varphi^2(Y) \cdot D(X|Y)$ .

Понятие условной дисперсии, как и понятие условного математического ожидания, можно распространить на абсолютно непрерывные случайные величины, при этом перечисленные свойства также сохраняются.

Теорема (формула полной дисперсии).

$$D(X) = E[D(X|Y)] + D[E(X|Y)].$$

Доказательство. Поскольку  $D(X|Y) = E[X^2|Y] - (E[X|Y])^2,$  имеем

$$E[D(X|Y)] = E[E(X^2|Y)] - E\left[\left(E(X|Y)\right)^2\right] = E(X^2) - E\left[\left(E(X|Y)\right)^2\right].$$

С другой стороны, так как E[E(X|Y)] = E(X), то

$$D[E(X|Y)] = E\left[\left(E(X|Y)\right)^2\right] - \left(E(X)\right)^2.$$

Складывая полученные выше равенства, приходим к формуле полной дисперсии.  $\Box$ 

Определение. Условной ковариацией случайных величи X и Y относительно случайной величины Z называется случайная величина

$$Cov(X,Y|Z) = E[(X - E(X|Z)(Y - E(Y|Z)|Z)].$$

**Упражнение.** Покажите, что справедливы равенства:

- 1.  $Cov(X, Y|Z) = E(XY|Z) E(X|Z) \cdot E(Y|Z)$ .
- 2. Cov(X, E(Y|X)) = Cov(X, Y).
- **3.** Cov(X, Y) = E[Cov(X, Y|Z)] + Cov(E(X|Z), E(Y|Z)).

Последнее соотношение называется формулой полной ковариации.

**Пример 70.** Дискретный случайный вектор (X,Y) имеет распределение

|       | X = 0         | X = 1          |
|-------|---------------|----------------|
| Y = 0 | $\frac{2}{5}$ | $\frac{1}{10}$ |
| Y = 1 | $\frac{1}{5}$ | $\frac{3}{10}$ |

Найдите условное распределение случайной величины X при условии, что Y=1.

Решение. Используя определение, находим

$$f_{X|Y}(0|1) = P(X=0|Y=1) = \frac{\frac{1}{5}}{\frac{1}{5} + \frac{3}{10}} = \frac{2}{5},$$

$$f_{X|Y}(1|1) = P(X = 1|Y = 1) = \frac{\frac{3}{10}}{\frac{1}{5} + \frac{3}{10}} = \frac{3}{5}.$$

Запишем условный закон распределения в виде таблицы

$$X = 0 \quad 1$$
 $P(.|Y = 1) \quad \frac{2}{5} \quad \frac{3}{5}$ 

**Пример 71.** Дискретный случайный вектор (X,Y) имеет распределение

|       | X = 0         | X = 1          |
|-------|---------------|----------------|
| Y = 0 | $\frac{2}{5}$ | $\frac{1}{10}$ |
| Y = 1 | $\frac{1}{5}$ | $\frac{3}{10}$ |

 $Haй dume\ E(X|Y=1).$ 

Решение. Условный закон распределения определяется таблицей

$$\begin{array}{c|cc} X & 0 & 1 \\ \hline P(.|Y=1) & \frac{2}{5} & \frac{3}{5} \\ \end{array}$$

из которой находим, что

$$E(X|Y=1) = 0 \cdot f_{X|Y}(0|1) + 1 \cdot f_{X|Y}(1|1) = 0 \cdot \frac{2}{5} + 1 \cdot \frac{3}{5} = \frac{3}{5}.$$

**Ответ:**  $E(X|Y=1) = \frac{3}{5}$ .

**Пример 72.** Дискретный случайный вектор (X,Y) имеет распределение

|       | X = 0          | X = 1          | X = 2         |  |
|-------|----------------|----------------|---------------|--|
| Y = 1 | $\frac{1}{4}$  | $\frac{1}{12}$ | $\frac{1}{8}$ |  |
| Y = 2 | $\frac{5}{24}$ | $\frac{1}{12}$ | $\frac{1}{4}$ |  |

Найдите условное математическое ожидание  $E(Y|X\geqslant 1)$ .

**Решение.** Последовательно находим:

$$\begin{split} P(X\geqslant 1) &= P(X=1) + P(X=2) = P(X=1,Y=1) + P(X=1,Y=2) + \\ &+ P(X=2,Y=1) + P(X=2,Y=2) = \frac{1}{12} + \frac{1}{12} + \frac{1}{8} + \frac{1}{4} = \frac{13}{24}, \\ P(Y=1,X\geqslant 1) &= P(Y=1,X=1) + P(Y=1,X=2) = \frac{1}{12} + \frac{1}{8} = \frac{5}{24}, \\ P(Y=2,X\geqslant 1) &= P(Y=2,X=1) + P(Y=2,X=2) = \frac{1}{12} + \frac{1}{4} = \frac{1}{3}, \\ P(Y=1|X\geqslant 1) &= \frac{P(Y=1,X\geqslant 1)}{P(X\geqslant 1)} = \frac{\frac{5}{24}}{\frac{13}{24}} = \frac{5}{13}, \\ P(Y=2|X\geqslant 1) &= \frac{P(Y=2,X\geqslant 1)}{P(X\geqslant 1)} = \frac{\frac{1}{3}}{\frac{13}{24}} = \frac{8}{13}. \end{split}$$

Таким образом, условный закон распределения случайной величины Y при условии, что  $X \geqslant 1$ , имеет вид

| Y                    | 1              | 2              |   |
|----------------------|----------------|----------------|---|
| $P(. X \geqslant 1)$ | $\frac{5}{13}$ | $\frac{8}{13}$ | ĺ |

Условное математическое ожидание  $E(Y|X\geqslant 1)$  случайной величины Y при условии  $X\geqslant 1$  получается простым вычислением

$$E(Y|X \ge 1) = 1 \cdot P(Y = 1|X \ge 1) + 2 \cdot P(Y = 2|X \ge 1) = 1 \cdot \frac{5}{13} + 2 \cdot \frac{8}{13} = \frac{21}{13}.$$

**Ответ:**  $E(Y|X \ge 1) = \frac{21}{13}$ .

**Пример 73.** Дискретный случайный вектор (X,Y) имеет распределение

|       | X = -2        | X = -1         | X = 0         |
|-------|---------------|----------------|---------------|
| Y = 1 | $\frac{1}{6}$ | $\frac{1}{12}$ | $\frac{1}{6}$ |
| Y = 2 | $\frac{1}{6}$ | $\frac{1}{6}$  | $\frac{1}{4}$ |

Найдите условное математическое ожидание E(Y|X+Y=1).

Решение. Последовательно находим:

$$P(X+Y=1) = P(X=0,Y=1) + (X=-1,Y=2) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3},$$

$$P(Y=1,X+Y=1) = P(X=0,Y=1) = \frac{1}{6},$$

$$P(Y=2,X+Y=1) = P(X=-1,Y=2) = \frac{1}{6},$$

$$P(Y=1|X+Y=1) = \frac{P(Y=1,X+Y=1)}{P(X+Y=1)} = \frac{\frac{1}{6}}{\frac{1}{3}} = \frac{1}{2},$$

$$P(Y=2|X+Y=1) = \frac{P(Y=2,X+Y=1)}{P(X+Y=1)} = \frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1}{2}.$$

Следовательно, условный закон распределения случайной величины Y при условии, что X+Y=1, имеет вид

| Y          | 1             | 2             |   |
|------------|---------------|---------------|---|
| P(. X+Y=1) | $\frac{1}{2}$ | $\frac{1}{2}$ | ľ |

Поэтому искомое условное математическое ожидание E(Y|X+Y=1) равно

$$E(Y|X+Y=1) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{2} = 1,5.$$

**Ответ:** E(Y|X+Y=1)=1.5.

Пример 74. Дано  $P(Y=20)=0.2,\ P(Y=70)=0.8,\ E(X|Y=20)=1,\ E(X|Y=70)=4.$  Найдите E(X).

**Решение.** Используя формулу полного математического ожидания, находим

$$E(X) = E[E(X|Y)] =$$

$$= E(X|Y = 20) \cdot P(Y = 20) + E(X|Y = 70) \cdot P(Y = 70) =$$

$$= 1 \cdot 0.2 + 4 \cdot 0.8 = 3.4.$$

**Ответ:** E(X) = 3.4.

Пример 75. Дано P(X=30)=0.9, P(X=60)=0.1, E(Y|X=30)=3 и E(Y|X=60)=2. Найдите  $\mathrm{Cov}(X,Y)$  и  $D\{E(Y|X)\}.$ 

**Решение.** Последовательно находим:

$$E(X) = 30 \cdot 0.9 + 60 \cdot 0.1 = 33,$$

$$E(Y) = E[E(Y|X)] =$$

$$= E(Y|X = 30) \cdot P(X = 30) + E(Y|X = 60) \cdot P(X = 60) =$$

$$= 3 \cdot 0.9 + 2 \cdot 0.1 = 2.9,$$

$$E(XY) = E[E(XY|X)] = E[X \cdot E(Y|X)] =$$

$$= 30 \cdot E(Y|X = 30) \cdot P(X = 30) + 60 \cdot E(Y|X = 60) \cdot P(X = 60) =$$

$$= 30 \cdot 3 \cdot 0.9 + 60 \cdot 2 \cdot 0.1 = 93.$$

Следовательно,

$$Cov(X, Y) = E(XY) - E(X) \cdot E(Y) = 93 - 33 \cdot 2,9 = -2,7.$$

Наконец, найдем дисперсию D[E(Y|X)] случайной величины E(Y|X)

$$\begin{split} D[E(Y|X)] &= E[E^2(Y|X)] - (E[E(Y|X)])^2 = \\ &= E^2(Y|X = 30) \cdot P(X = 30) + \\ &+ E^2(Y|X = 60) \cdot P(X = 60) - E^2(Y) = \\ &= 3^2 \cdot 0.9 + 2^2 \cdot 0.1 - 2.9^2 = 0.09. \end{split}$$

**Ответ:** Cov(X, Y) = -2.7, D[E(Y|X)] = 0.09.

**Пример 76.** Дискретный случайный вектор (X,Y) имеет распределение

|       | X = 0          | X = 1          | X = 2          |
|-------|----------------|----------------|----------------|
| Y = 2 | $\frac{1}{12}$ | $\frac{1}{12}$ | $\frac{5}{24}$ |
| Y = 3 | $\frac{1}{8}$  | $\frac{1}{4}$  | $\frac{1}{4}$  |

Найдите распределение условного математического ожидания  $Z = E(X^2 + Y^2|Y)$  и E(Z).

**Решение.** Используя свойства условного математического ожидания, запишем случайную величину Z в виде:

$$Z = E(X^{2} + Y^{2}|Y) = E(X^{2}|Y) + E(Y^{2}|Y) = E(X^{2}|Y) + Y^{2}.$$

Найдем распределение случайной величины  $E(X^2|Y)$ . Сначала найдем ее возможные значения  $E(X^2|Y=y)$  при условии, что Y=y, где y=2 или 3:

$$\begin{split} &E(X^2|Y=2) = 0^2 \cdot f_{X|Y}(0|2) + 1^2 \cdot f_{X|Y}(1|2) + 2^2 \cdot f_{X|Y}(2|2) = \\ &= 0^2 \cdot \frac{P(X=0,Y=2)}{P(Y=2)} + 1^2 \cdot \frac{P(X=1,Y=2)}{P(Y=2)} + 2^2 \cdot \frac{P(X=2,Y=2)}{P(Y=2)} = \\ &= 0^2 \cdot \frac{\frac{1}{12}}{\frac{1}{12} + \frac{1}{12} + \frac{5}{24}} + 1^2 \cdot \frac{\frac{1}{12}}{\frac{3}{8}} + 2^2 \cdot \frac{\frac{5}{24}}{\frac{3}{8}} = \frac{22}{9}, \\ &E(X^2|Y=3) = 0^2 \cdot f_{X|Y}(0|3) + 1^2 \cdot f_{X|Y}(1|3) + 2^2 \cdot f_{X|Y}(2|3) = \\ &= 0^2 \cdot \frac{P(X=0,Y=3)}{P(Y=3)} + 1^2 \cdot \frac{P(X=1,Y=3)}{P(Y=3)} + 2^2 \cdot \frac{P(X=2,Y=3)}{P(Y=3)} = \\ &= 0^2 \cdot \frac{\frac{1}{8}}{\frac{1}{8} + \frac{1}{4} + \frac{1}{4}} + 1^2 \cdot \frac{\frac{1}{4}}{\frac{5}{8}} + 2^2 \cdot \frac{\frac{1}{4}}{\frac{5}{8}} = 2. \end{split}$$

Таким образом, закон распределения случайной величины  $Z = E(X^2|Y) + Y^2$  имеет вид

Следовательно, математическое ожидание случайной величины Z равно

$$E(Z) = \frac{58}{9} \cdot \frac{3}{8} + 11 \cdot \frac{5}{8} = \frac{223}{24} \approx 9{,}292.$$

Можно также воспользоваться формулой полного математического ожидания

$$\begin{split} E(Z) &= E[E(X^2 + Y^2|Y)] = E(X^2 + Y^2) = E(X^2) + E(Y^2) = \\ &= 0^2 \cdot P(X=0) + 1^2 \cdot P(X=1) + 2^2 \cdot P(X=2) + \\ &+ 2^2 \cdot P(Y=2) + 3^2 \cdot P(Y=3) = \\ &= 1^2 \cdot \left(\frac{1}{12} + \frac{1}{4}\right) + 2^2 \cdot \left(\frac{5}{24} + \frac{1}{4}\right) + 2^2 \cdot \frac{3}{8} + 3^2 \cdot \frac{5}{8} = \frac{223}{24}. \end{split}$$

Ответ:

| Z | $\frac{58}{9}$ | 11            | $E(Z) \approx 9,292.$ |
|---|----------------|---------------|-----------------------|
| P | $\frac{3}{8}$  | <u>5</u><br>8 | $, E(Z) \sim 9,292.$  |

Пример 77. Дано: P(X=50)=0.1, P(X=70)=0.9, E(Y|X=50)=4, E(Y|X=70)=2, D(Y|X=50)=9 и D(Y|X=70)=5. Найдите E[D(Y|X)] и D(Y).

 ${\it Pewenue}.$  Сначала найдем E[D(Y|X)]

$$E[D(Y|X)] = D(Y|X = 50) \cdot P(X = 50) + D(Y|X = 70) \cdot P(X = 70) =$$
  
= 9 \cdot 0,1 + 5 \cdot 0,9 = 5,4.

Для вычисления D(Y) найдем по формуле полного математического ожидания E(Y) = E[E(Y|X)] и D[E(Y|X)]:

$$E(Y) = E[E(Y|X)] =$$

$$= E(Y|X = 50) \cdot P(X = 50) + E(Y|X = 70) \cdot P(X = 70) =$$

$$= 4 \cdot 0.1 + 2 \cdot 0.9 = 2.2;$$

$$D[E(Y|X)] = E[E^{2}(Y|X)] - (E[E(Y|X)])^{2} =$$

$$= E^{2}(Y|X = 50) \cdot P(X = 50) +$$

$$+ E^{2}(Y|X = 70) \cdot P(X = 70) - E^{2}(Y) =$$

$$= 4^{2} \cdot 0.1 + 2^{2} \cdot 0.9 - 2.2^{2} = 0.36.$$

Следовательно, по формуле полной дисперсии

$$D(Y) = E[D(Y|X)] + D[E(Y|X)] = 5.4 + 0.36 = 5.76.$$

Приведем также другое решение, не использующее формулы полной дисперсии,

$$\begin{split} E(Y^2) &= E[E(Y^2|X)] = \\ &= E(Y^2|X = 50) \cdot P(X = 50) + E(Y^2|X = 70) \cdot P(X = 70) = \\ &= \left(D(Y|X = 50) + E^2(Y|X = 50)\right) \cdot P(X = 50) + \\ &+ \left(D(Y|X = 70) + E^2(Y|X = 70)\right) \cdot P(X = 70) = \\ &= (9 + 4^2) \cdot 0.1 + (5 + 2^2) \cdot 0.9 = 10.6; \\ D(Y) &= E(Y^2) - E^2(Y) = 10.6 - 2.2^2 = 5.76. \end{split}$$

**Ответ:** E[D(Y|X)] = 5.4, D(Y) = 5.76.

**Пример 78.** Дано совместное распределение случайных величин  $X \ u \ Y$ 

|        | Y = 2 | Y = 4 | Y = 9 |
|--------|-------|-------|-------|
| X = 60 | 0,3   | 0,1   | 0     |
| X = 90 | 0,1   | 0,2   | 0,3   |

 $Haй dume\ D[E(X|Y)]\ u\ E[D(X|Y)].$ 

**Решение.** Последовательно находим возможные значения случайной величины E(X|Y):

$$\begin{split} E(X|Y=2) &= 60 \cdot f_{X|Y}(60|2) + 90 \cdot f_{X|Y}(90|2) = \\ &= 60 \cdot \frac{P(X=60,Y=2)}{P(Y=2)} + 90 \cdot \frac{P(X=90,Y=2)}{P(Y=2)} = \\ &= 60 \cdot \frac{0,3}{0,3+0,1} + 90 \cdot \frac{0,1}{0,3+0,1} = 67,5; \\ E(X|Y=4) &= 60 \cdot f_{X|Y}(60|4) + 90 \cdot f_{X|Y}(90|4) = \\ &= 60 \cdot \frac{P(X=60,Y=4)}{P(Y=4)} + 90 \cdot \frac{P(X=90,Y=4)}{P(Y=4)} = \\ &= 60 \cdot \frac{0,1}{0,1+0,2} + 90 \cdot \frac{0,2}{0,1+0,2} = 80; \end{split}$$

$$\begin{split} E(X|Y=9) &= 60 \cdot f_{X|Y}(60|9) + 90 \cdot f_{X|Y}(90|9) = \\ &= 60 \cdot \frac{P(X=60,Y=9)}{P(Y=9)} + 90 \cdot \frac{P(X=90,Y=9)}{P(Y=9)} = \\ &= 60 \cdot \frac{0}{0+0.3} + 90 \cdot \frac{0.3}{0+0.3} = 90. \end{split}$$

Таким образом, закон распределения случайной величины E(X|Y) имеет вид

| E(X Y) | 67,5         | 80  | 90  |   |
|--------|--------------|-----|-----|---|
| P      | P(Y=2) = 0.4 | 0,3 | 0,3 | ľ |

Дисперсия D[E(X|Y)] случайной величины E(X|Y) равна

$$D[E(X|Y)] = (67.5^2 \cdot 0.4 + 80^2 \cdot 0.3 + 90^2 \cdot 0.3) - (67.5 \cdot 0.4 + 80 \cdot 0.3 + 90 \cdot 0.3)^2 = 6172.5 - 78^2 = 88.5.$$

Далее, находим возможные значения случайной величины D(X|Y):

$$\begin{split} D(X|Y=2) &= E(X^2|Y=2) - (E(X|Y=2))^2 = \\ &= 60^2 \cdot \frac{3}{4} + 90^2 \cdot \frac{1}{4} - 67, 5^2 = 168, 75; \\ D(X|Y=4) &= E(X^2|Y=4) - (E(X|Y=4))^2 = \\ &= 60^2 \cdot \frac{1}{3} + 90^2 \cdot \frac{2}{3} - 80^2 = 200; \\ D(X|Y=9) &= E(X^2|Y=9) - (E(X|Y=9))^2 = \\ &= 60^2 \cdot 0 + 90^2 \cdot 1 - 90^2 = 0. \end{split}$$

Следовательно, закон распределения случайной величины D(X|Y) имеет вид

| D(X Y) | 168,75       | 200 | 0   |   |
|--------|--------------|-----|-----|---|
| P      | P(Y=2) = 0.4 | 0,3 | 0,3 | ľ |

Математическое ожидание E[D(X|Y)] случайной величины D(X|Y) равно

$$E[D(X|Y)] = 168.75 \cdot 0.4 + 200 \cdot 0.3 + 0 \cdot 0.3 = 127.5.$$

Для проверки воспользуемся формулой полной дисперсии, предварительно вычислив дисперсию D(X),

$$D(X) = E(X^{2}) - E^{2}(X) =$$

$$= 60^{2} \cdot 0.4 + 90^{2} \cdot 0.6 - (60 \cdot 0.4 + 90 \cdot 0.6)^{2} = 6300 - 78^{2} = 216.$$

С другой стороны, по формуле полной дисперсии имеем

$$D(X) = E[D(X|Y)] + D[E(X|Y)] = 127.5 + 88.5 = 216.$$

**Ответ:** D[E(X|Y)] = 88.5; E[D(X|Y)] = 127.5.

### § 18. Абсолютно непрерывные случайные векторы

Случайный вектор (X,Y) называется абсолютно непрерывным, если найдется неотрицательная функция  $f_{X,Y}(x,y)$ , называемая плотностью распределения, такая, что для любого множества  $G \subset \mathbb{R}^2$ , которое может служить областью интегрирования, вероятность попадания точки (X,Y) в G находится по формуле

$$P\{(X,Y) \in G\} = \iint_G f_{X,Y}(x,y) \, dx \, dy.$$

Если (X,Y) — абсолютно непрерывный случайный вектор, то вероятность попадания точки (X,Y) в какую-либо линию (график непрерывной функции) равна 0.

Функция распределения  $F_{X,Y}(x,y)$  абсолютно непрерывного случайного вектора (X,Y) является непрерывной и может быть представлена в виде несобственного интеграла

$$F_{X,Y}(x,y) = \iint_{s \leqslant x, \ t \leqslant y} f_{X,Y}(s,t) \, ds \, dt.$$

Плотность распределения обладает следующими свойствами:

- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$  (свойство нормированности);
- $f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}}{\partial x \partial y}(x,y)$  в точке непрерывности  $f_{X,Y}(x,y)$ .

Компоненты X, Y абсолютно непрерывного случайного вектора (X,Y) также являются абсолютно непрерывными. Плотности распределения  $f_X(x), f_Y(y)$  случайных величин X и Y могут быть получены как интегралы от плотности их совместного распределения:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy, \quad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx.$$

Компоненты  $X,\ Y$  абсолютно непрерывного случайного вектора (X,Y) являются независимыми случайными величинами, тогда и только тогда, когда произведение их плотностей совпадает с какойлибо плотностью совместного распределения

$$f_X(x)f_Y(y) = f_{X,Y}(x,y).$$

Математическое ожидание функции  $Z = \varphi(X,Y)$  от компонент случайного вектора находится путем интегрирования произведения функции  $\varphi(x,y)$  и плотности распределения:

$$E[\varphi(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi(x,y) f_{X,Y}(x,y) \, dx \, dy.$$

В частности, математическое ожидание XY находится по формуле

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X,Y}(x,y) dx dy.$$

Случайный вектор (X,Y) называется равномерно распределенным в области  $G\subset\mathbb{R}^2,$  если для него существует плотность распределения вида

$$f_{X,Y}(x,y) = \begin{cases} 0, & (x,y) \notin G, \\ |G|^{-1}, & (x,y) \in G, \end{cases}$$

где |G| — площадь G.

Случайный вектор (X,Y) называется сосредоточенным на множестве  $G \subset \mathbb{R}^2$ , если  $P\{(X,Y) \in G\} = 1$ . Для такого вектора математическое ожидание функции от его компонент может быть представлено в виде интеграла

$$E[\varphi(X,Y)] = \iint_G \varphi(x,y) f_{X,Y}(x,y) \, dx \, dy.$$

**Пример 79.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} rac{1}{2}x + Cy, & \textit{если } 0 < x < 1, \ 0 < y < 2, \\ 0, & \textit{в остальных точках.} \end{cases}$$

Найдите константу C и P(X+Y>1).

 $\boldsymbol{Peшeнue.}$  Константу C найдем из условия нормировки плотности распределения

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = 1,$$

которое в данном случае принимает вид

$$\iint\limits_{\substack{0 < x < 1 \\ 0 < y < 2}} \left(\frac{1}{2}x + Cy\right) dx dy = 1.$$

Вычисляя выражение слева, получаем

$$1 = \int_{0}^{1} dx \left( \int_{0}^{2} \left( \frac{1}{2} x + Cy \right) dy \right) = \int_{0}^{1} \left( \frac{1}{2} xy + C \frac{y^{2}}{2} \Big|_{y=0}^{y=2} \right) dx =$$

$$= \int_{0}^{1} (x + 2C) dx = \frac{x^{2}}{2} + 2Cx \Big|_{0}^{1} = \frac{1}{2} + 2C.$$

Решая уравнение относительно C, находим  $C = \frac{1}{4}$ . Для вычисления искомой вероятности воспользуемся формулой

$$P\{(X,Y) \in G\} = \iint_C f(x,y) \, dx \, dy,$$

с помощью которой получаем

$$\begin{split} &P(X+Y>1)=1-P(X+Y\leqslant 1)=1-\int\limits_{\substack{0< x<1,\\0< y<2,\\x+y\leqslant 1}}^{} \left(\frac{1}{2}\,x+\frac{1}{4}\,y\right)dx\,dy=\\ &=1-\int\limits_{0}^{1}dx\left(\int\limits_{0}^{1-x}\left(\frac{1}{2}\,x+\frac{1}{4}\,y\right)dy\right)=1-\int\limits_{0}^{1}\left(\frac{1}{2}\,xy+\frac{y^{2}}{8}\Big|_{y=0}^{y=1-x}\right)dx=\\ &=1-\int\limits_{0}^{1}\left(\frac{1}{2}\,x(1-x)+\frac{(1-x)^{2}}{8}\right)dx=1-\int\limits_{0}^{1}\left(\frac{1}{4}\,x-\frac{3}{8}\,x^{2}+\frac{1}{8}\right)dx=\\ &=1-\left(\frac{x^{2}}{8}-\frac{x^{3}}{8}+\frac{x}{8}\Big|_{0}^{1}\right)=1-\frac{1}{8}=\frac{7}{8}. \end{split}$$

**Ответ:**  $C = \frac{1}{4}$ ,  $P(X + Y > 1) = \frac{7}{8}$ .

**Пример 80.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} 24xy, & ecnux \ge 0, \ y \ge 0, \ x+y \le 1, \\ 0, & e \ ocmaльных \ moчках. \end{cases}$$

 $Haйdume\ E(X).$ 

**Решение.** Компонента X абсолютно непрерывного случайного вектора (X,Y) также является абсолютно непрерывной случайной величиной. Найдем плотность распределения  $f_X(x)$ , используя формулу

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy.$$

Для  $0 \leqslant x \leqslant 1$  имеем

$$f_X(x) = \int_0^{1-x} 24xy \, dy = 12xy^2 \Big|_{y=0}^{y=1-x} = 12x(1-x)^2.$$

Таким образом, плотность распределения  $f_X(x)$  компоненты X записывается в виде

$$f_X(x) = \begin{cases} 12x(1-x)^2, & \text{если } 0 \leqslant x \leqslant 1, \\ 0, & \text{в остальных точках.} \end{cases}$$

Математическое ожидание E(X) определяется стандартным образом

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx = 12 \int_{0}^{1} x^2 (1 - x)^2 dx =$$

$$= 12 \int_{0}^{1} (x^2 - 2x^3 + x^4) dx = 12 \left( \frac{x^3}{3} - \frac{x^4}{2} + \frac{x^5}{5} \Big|_{0}^{1} \right) = \frac{2}{5}.$$

**Ответ:**  $E(X) = \frac{2}{5}$ .

**Пример 81.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} 2e^{-x-2y}, & ecnu \ 0 \le x < +\infty, \ 0 \le y < +\infty, \\ 0, & e \text{ остальных точках.} \end{cases}$$

Найдите вероятность P(X < 2).

 $\boldsymbol{Peшeнue}.$  Сначала найдем плотность распределения  $f_X(x)$  компоненты X

$$f_X(x) = \int\limits_{-\infty}^{\infty} f(x,y) \, dy = 2 \int\limits_{0}^{\infty} e^{-x-2y} \, dy =$$
 
$$= 2e^{-x} \left( -\frac{1}{2} e^{-2y} \Big|_{0}^{\infty} \right) = e^{-x}, \; \text{если } x \geqslant 0.$$

Следовательно, плотность распределения  $f_X(x)$  имеет вид

$$f_X(x) = \begin{cases} e^{-x}, & \text{если } 0 \leqslant x < +\infty, \\ 0, & \text{если } x < 0. \end{cases}$$

Искомая вероятность

$$P(X < 2) = F_X(2) = \int_{-\infty}^{2} f_X(x) dx =$$

$$= \int_{0}^{2} e^{-x} dx = -e^{-x} \Big|_{0}^{2} = 1 - e^{-2} \approx 0,865.$$

**Ответ:**  $P(X < 2) \approx 0.865$ .

**Пример 82.** Случайный вектор (X,Y) равномерно распределен в треугольнике  $x \ge 0$ ,  $y \ge 0$ ,  $8x + 9y \le 72$ . Найдите значение функции распределения  $F_X(6)$  и E(X).

Решение. Используя свойства равномерного распределения, находим

$$F_X(6) = P(X < 6) = \frac{S_{OADC}}{S_{OAB}} = 1 - P(X \ge 6) = 1 - \frac{S_{CDB}}{S_{OAB}} = 1 - \frac{\frac{1}{2} \cdot 3 \cdot \frac{8}{3}}{\frac{1}{2} \cdot 9 \cdot 8} = 1 - \frac{1}{9} = \frac{8}{9},$$

где  $S_{OADC},\,S_{OAB}$  и  $S_{CDB}$  обозначают площади трапеции OADC и треугольников OAB и CDB соответственно.

Плотность распределения f(x,y) случайного вектора (X,Y) задается в виде

$$f(x,y) = \begin{cases} \frac{1}{S_{OAB}} = \frac{1}{\frac{1}{2} \cdot 8 \cdot 9} = \frac{1}{36}, & \text{если } x \geqslant 0, \ y \geqslant 0, \ 8x + 9y \leqslant 72, \\ 0, & \text{в остальных точках.} \end{cases}$$

Далее, для  $0 \leqslant x \leqslant 9$  находим плотность распределения компоненты X

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy = \frac{1}{36} \int_{0}^{8 - \frac{9}{9}x} 1 \, dy = \frac{2}{9} \left( 1 - \frac{x}{9} \right).$$

Следовательно,

$$f_X(x) = \begin{cases} rac{2}{9} \left(1 - rac{x}{9}
ight), & \text{если } 0 \leqslant x \leqslant 9, \\ 0, & \text{в противном случае.} \end{cases}$$

Затем находим математическое ожидание

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx = \frac{2}{9} \int_{0}^{9} x \left( 1 - \frac{x}{9} \right) dx = \frac{2}{9} \left( \frac{x^2}{2} - \frac{x^3}{27} \Big|_{0}^{9} \right) = 3.$$

**Ответ:** 
$$F_X(6) = \frac{8}{9}, E(X) = 3.$$

**Пример 83.** Случайный вектор (X,Y) равномерно распределен в треугольнике  $x \ge 0$ ,  $y \ge 0$ ,  $33x + y \le 33$ . Найдите математическое ожидание  $E(X^{10}Y)$ .

**Решение.** Поскольку случайный вектор (X,Y) равномерно распределен в треугольнике  $G: x \ge 0, \ y \ge 0, \ 33x + y \le 33,$  плотность распределения f(x,y) случайного вектора (X,Y) задается в виде:

$$f(x,y) = \begin{cases} \frac{1}{S_G} = \frac{1}{\frac{1}{2} \cdot 1 \cdot 33} = \frac{2}{33}, & \text{если}(x,y) \in G \colon x \geqslant 0, \\ y \geqslant 0, 33x + y \leqslant 33, \\ 0, & \text{в остальных точках,} \end{cases}$$

где  $S_G$  — площадь треугольника G.

Математическое ожидание  $E(X^{10}Y)$  находится в результате вычисления интеграла

$$E(X^{10}Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{10}y \cdot f(x,y) \, dx \, dy =$$

$$= \frac{2}{33} \int_{0}^{1} dx \left( \int_{0}^{33-33x} x^{10}y \, dy \right) = \frac{2}{33} \int_{0}^{1} \left( x^{10} \frac{y^{2}}{2} \Big|_{y=0}^{y=33(1-x)} \right) \, dx =$$

$$= 33 \int_{0}^{1} x^{10} (1-x)^{2} \, dx = 33 \int_{0}^{1} \left( x^{10} - 2x^{11} + x^{12} \right) dx =$$

$$= 33 \left( \frac{x^{11}}{11} - \frac{x^{12}}{6} + \frac{x^{13}}{13} \Big|_{0}^{1} \right) = 33 \left( \frac{1}{11} - \frac{1}{6} + \frac{1}{13} \right) = \frac{1}{26}.$$

**Ответ:**  $E(X^{10}Y) = \frac{1}{26}$ .

#### § 19. Двумерные нормальные векторы

Определение. Случайный вектор (X,Y) имеет невырожденное двумерное нормальное распределение с параметрами  $m_1$ ,  $m_2$ ,  $\sigma_1^2$ ,  $\sigma_2^2$ ,  $\rho$ ,  $(X,Y) \sim N(m_1,m_2,\sigma_1^2,\sigma_2^2,\rho)$ , если его функция плотности распределения имеет вид

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{q(x,y)}{2}},$$

где.

$$q(x,y) = \frac{1}{(1-\rho^2)} \left( \frac{(x-m_1)^2}{\sigma_1^2} - \frac{2\rho(x-m_1)(y-m_2)}{\sigma_1\sigma_2} + \frac{(y-m_2)^2}{\sigma_2^2} \right)$$

 $u \sigma_1 > 0, \sigma_2 > 0, |\rho| < 1.$ 

Используя ковариационную матрицу C вектора (X,Y), функцию q(x,y) можно представить в матричном виде

$$q(x,y) = \begin{pmatrix} x - m_1 \\ y - m_2 \end{pmatrix}^T \cdot C^{-1} \cdot \begin{pmatrix} x - m_1 \\ y - m_2 \end{pmatrix},$$

где  $C^{-1}$  — обратная матрица для

$$C = \begin{pmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{pmatrix}.$$

**Теорема.** Если  $(X,Y) \sim N(m_1,m_2,\sigma_1^2,\sigma_2^2,\rho)$ , то  $X \sim N(m_1,\sigma_1^2)$ ,  $Y \sim N(m_2,\sigma_2^2)$ ,  $Cov(X,Y) = \rho \sigma_1 \sigma_2$ .

**Пример 84.** Пусть  $m_1=m_2=0,\ \sigma_1=\sigma_2=1,\ \rho=0,\ mor \partial a$  случайный вектор (X,Y) имеет функцию плотности распределения

$$f_{X,Y}(x,y) = \frac{1}{2\pi} e^{-\frac{x^2+y^2}{2}},$$

которая определяет **стандартное нормальное распределение на плоскости**, т. е.  $(X,Y) \sim N(0,0,1,1,0)$ .

**Пример 85.** Случайный вектор (X,Y) распределен по нормальному закону с плотностью

$$f_{X,Y}(x,y) = \frac{9}{2\pi} e^{-\frac{9}{2}x^2 + 3x - 5 - 12xy + 13y - \frac{25}{2}y^2}.$$

Найдите математическое ожидание E(X), дисперсию D(X) и коэффициент корреляции  $\rho(X,Y)$ .

**Решение.** Выражение для q(x, y) имеет вид

$$q(x,y) = 9x^2 + 24xy + 25y^2 - 6x - 26y + 10.$$

Найдем ковариационную матрицу C

$$C = \begin{pmatrix} 9 & 12 \\ 12 & 25 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{25}{81} & -\frac{4}{27} \\ -\frac{4}{27} & \frac{1}{9} \end{pmatrix}.$$

Следовательно,  $D(X) = \frac{25}{81}$ ,  $D(Y) = \frac{1}{9}$ ,  $\rho \sigma_1 \sigma_2 = -\frac{4}{27}$ . Поэтому  $\rho = -\frac{4}{5}$ . Наибольшее значение  $f_{X,Y}(x,y)$  достигается в точке (E(X), E(Y)).

Составим систему 
$$\left\{ \begin{array}{l} \frac{\partial}{\partial x} \, q(x,y) = 0, \\ \frac{\partial}{\partial y} \, q(x,y) = 0 \end{array} \right. \quad \text{или} \quad \left\{ \begin{array}{l} 9x + 12y = 3, \\ 12x + 25y = 13. \end{array} \right. \quad \text{Реше-} \right.$$

ние этой системы имеет вид  $x_{\rm max}=-1,\ y_{\rm max}=1.$  Следовательно,  $E(X)=-1,\ E(Y)=1.$ 

**Ответ:** 
$$E(X) = -1, D(X) = \frac{25}{81}, \rho = -\frac{4}{5}.$$

**Теорема.** Для нормального случайного вектора (X,Y) понятия независимости и некоррелированности компонент X и Y эквивалентны.

Доказательство. Если X и Y независимы, то  $\mathrm{Cov}(X,Y)=0$ , т.е. X и Y — некоррелированные случайные величины. Это общий факт. Пусть теперь X и Y — некоррелированы, т.е.  $\rho(X,Y)=0$ , тогда

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2} e^{-\frac{1}{2}\left(\frac{(x-m_1)^2}{\sigma_1^2} + \frac{(y-m_2)^2}{\sigma_2^2}\right)} =$$
$$= \frac{1}{\sigma_1\sqrt{2\pi}} e^{-\frac{(x-m_1)^2}{2\sigma_1^2}} \cdot \frac{1}{\sigma_2\sqrt{2\pi}} e^{-\frac{(x-m_2)^2}{2\sigma_2^2}} = f_X(x) \cdot f_Y(y).$$

Следовательно, X и Y — независимые случайные величины.  $\square$ 

**Пример 86.** Пусть  $X \sim N(1,4)$ ,  $Y \sim N(2,16)$  — независимые случайные величины, тогда случайный вектор (X,Y) распределен по нормальному закону с плотностью распределения

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y) =$$

$$= \frac{1}{2\sqrt{2\pi}} e^{-\frac{(x-1)^2}{8}} \cdot \frac{1}{4\sqrt{2\pi}} e^{-\frac{(y-2)^2}{32}} = \frac{1}{16\pi} e^{-\frac{4(x-1)^2 + (y-2)^2}{32}}.$$

**Теорема.** Если случайный вектор (X,Y) имеет нормальное распределение,  $(X,Y) \sim N(m_1, m_2, \sigma_1^2, \sigma_2^2, \rho)$ , то

$$(X|Y = y) \sim N\left(m_1 + \rho \frac{\sigma_1}{\sigma_2}(y - m_2); \sigma_1^2(1 - \rho^2)\right),$$
  
 $(Y|X = x) \sim N\left(m_2 + \rho \frac{\sigma_2}{\sigma_1}(x - m_1); \sigma_2^2(1 - \rho^2)\right),$ 

т.е. условная плотность одной из компонент при фиксированном значении другой является нормальной, причем справедливы формулы

$$\begin{split} f_{X|Y}(x|y) &= \frac{1}{\sigma_1 \sqrt{2\pi(1-\rho^2)}} e^{-\frac{1}{2\sigma_1^2(1-\rho^2)} \left(x-m_1-\rho\frac{\sigma_1}{\sigma_2}(y-m_2)\right)^2}, \\ f_{Y|X}(y|x) &= \frac{1}{\sigma_2 \sqrt{2\pi(1-\rho^2)}} e^{-\frac{1}{2\sigma_2^2(1-\rho^2)} \left(y-m_2-\rho\frac{\sigma_2}{\sigma_1}(x-m_1)\right)^2}, \\ E(X|Y=y) &= m_1 + \rho\frac{\sigma_1}{\sigma_2}(y-m_2), \\ D(X|Y=y) &= \sigma_1^2(1-\rho^2), \\ E(Y|X=x) &= m_2 + \rho\frac{\sigma_2}{\sigma_1}(x-m_1), \\ D(Y|X=x) &= \sigma_2^2(1-\rho^2). \end{split}$$

Доказательство. Поскольку  $(X,Y) \sim N(m_1,m_2,\sigma_1^2,\sigma_2^2,\rho),$  совместная плотность распределения имеет вид

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left(\frac{(x-m_1)^2}{\sigma_1^2} - \frac{2\rho(x-m_1)(y-m_2)}{\sigma_1\sigma_2} + \frac{(y-m_2)^2}{\sigma_2^2}\right)},$$

а плотность компоненты Y

$$f_Y(y) = \frac{1}{\sigma_2 \sqrt{2\pi}} e^{-\frac{(y-m_2)^2}{2\sigma_2^2}}.$$

Следовательно,

$$\begin{split} &f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \\ &= \frac{1}{\sigma_1 \sqrt{2\pi(1-\rho^2)}} e^{-\frac{1}{2(1-\rho^2)} \left(\frac{(x-m_1)^2}{\sigma_1^2} - \frac{2\rho(x-m_1)(y-m_2)}{\sigma_1\sigma_2} + \left(1-(1-\rho^2)\right)\frac{(y-m_2)^2}{\sigma_2^2}\right)} = \\ &= \frac{1}{\sigma_1 \sqrt{2\pi(1-\rho^2)}} e^{-\frac{1}{2(1-\rho^2)} \left(\frac{(x-m_1)^2}{\sigma_1^2} - \frac{2\rho(x-m_1)(y-m_2)}{\sigma_1\sigma_2} + \frac{\rho^2(y-m_2)^2}{\sigma_2^2}\right)} = \\ &= \frac{1}{\sigma_1 \sqrt{2\pi(1-\rho^2)}} e^{-\frac{1}{2\sigma_1^2(1-\rho^2)} \left(x-m_1-\rho\frac{\sigma_1}{\sigma_2}(y-m_2)\right)^2}. \end{split}$$

**Пример 87.** Плотность распределения случайного вектора (X,Y) имеет вид

$$f_{X,Y}(x,y) = \frac{1}{2\pi} e^{-\frac{5}{2}x^2 - 10x - 10 - 3yx - 6y - y^2}.$$

Найдите условное математическое ожидание E(X|Y=y) и D(X|Y=y).

**Решение.** Случайный вектор (X,Y) распределен по нормальному закону, причем  $(X,Y)\sim N\left(-2;0;2;5;-\frac{3}{\sqrt{10}}\right)$ . Следовательно,

$$E(X|Y=y) = m_1 + \rho \frac{\sigma_1}{\sigma_2}(y - m_2) = -2 - \frac{3}{\sqrt{10}} \cdot \frac{\sqrt{2}}{\sqrt{5}} \cdot (y - 0) = -2 - \frac{3}{5}y,$$
  

$$D(X|Y=y) = \sigma_1^2(1 - \rho^2) = 2\left(1 - \frac{9}{10}\right) = \frac{1}{5}.$$

**Ответ:** 
$$E(X|Y=y) = -2 - \frac{3}{5}y, D(X|Y=y) = \frac{1}{5}.$$

# ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

## § 1. Эмпирические характеристики признаков

Одним из первых понятий, с которых начинается изложение математической статистики, является понятие npuзнакa. В сущности, npuзнak — это то же самое, что функция, только без явной привязки к некоторой области определения. Вместо термина npuзнak иногда используется равнозначный термин nepemenhas. Признаки обозначаются так же, как и случайные величины — большими латинскими буквами: X, Y и т. д.

Рассмотрим признак X, заданный на некотором множестве (статистической совокупности)  $\Omega = \{\omega_1, \dots, \omega_n\}$ . Пусть  $x_1 = X(\omega_1), \dots, x_n = X(\omega_n)$  — его значения.

Определение. Эмпирическим средним или средним значением признака в совокупности  $\Omega$  называется среднее арифметическое всех его значений в этой совокупности

$$\overline{x} = \frac{x_1 + x_2 + \ldots + x_n}{n}.$$

Определение. Эмпирической дисперсией или дисперсией признака X в совокупности  $\Omega$  называется среднее арифметическое квадратов отклонений его значений от эмпирического среднего

$$D(X) = \frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \ldots + (x_n - \overline{x})^2}{n},$$

при этом корень  $\sigma = \sqrt{D(X)}$  называется **стандартным отклонением** признака X в совокупности  $\Omega.$ 

Эмпирические начальные и центральные моменты k-го порядка признака X определяются соотношениями:

$$\nu_k(X)=\frac{x_1^k+x_2^k+\ldots+x_n^k}{n}$$
— начальный момент и 
$$\mu_k(X)=\frac{(x_1-\overline{x})^k+(x_2-\overline{x})^k+\ldots+(x_n-\overline{x})^k}{n}$$
— центральный момент.

В этих формулах  $k = 1, 2, \ldots - nopядок$  эмпирического момента.

Наконец, эмпирическая функция распределения F(x) определяется так:

$$F(x) = rac{\{$$
число элементов  $\omega \in \Omega, \ для \ {
m kotopux} \ X(\omega) < x\}}{n}.$ 

Обозначения эмпирических моментов и функции распределения зависят от обозначения статистической совокупности. Если, например, признак X определен на совокупности  $\widehat{\Omega}$ , эмпирические моменты обозначаются  $\widehat{\nu}_k$  и  $\widehat{\mu}_k$ , а функция распределения —  $\widehat{F}(x)$ .

Введенные эмпирические понятия обладают всеми свойствами своих теоретико-вероятностных аналогов. Например, хорошо известное в теории вероятностей тождество

$$D(X) = E(X^2) - E^2(X)$$

применительно к признаку X со значениями  $x_1, \ldots, x_n$  на совокупности  $\widehat{\Omega}$ , дает следующее соотношение для эмпирической дисперсии:

$$\widehat{D}(X) = \widehat{\nu}_2 - \widehat{\nu}_1^2 = \overline{x^2} - \overline{x}^2.$$

Упорядочив значения  $x_1, \ldots, x_n$  по неубыванию, получим вариационный ряд признака

$$x_{(1)} \leqslant x_{(2)} \leqslant \ldots \leqslant x_{(n-1)} \leqslant x_{(n)}.$$

Разность между наибольшим и наименьшим значением  $x_{(n)}-x_{(1)}$  называется pазмахом признака.

Порядковый центр (середина) вариационного ряда называется *эм*пирической медианой и определяется формулой

$$Me = \left\{ egin{aligned} x_{(k+1)}, & & ext{если } n = 2k+1, \\ rac{1}{2} \left( x_{(k)} + x_{(k+1)} 
ight), & & ext{если } n = 2k. \end{aligned} 
ight.$$

Эмпирические квантили порядка p определяются как приближенные решения уравнения F(x)=p, где F(x) — эмпирическая функция распределения.

Пусть X — признак в совокупности  $\Omega$  объема n. Список всех его значений образует ряд из n чисел. Удалив из него одинаковые числа и пронумеровав заново то, что осталось, получим последовательность  $x_1, \ldots, x_s, s \leqslant n$ .

Определение. Количество  $n_i$  элементов  $\omega \in \Omega$ , для которых  $X(\omega) = x_i$  называется **частотой** значения  $x_i$ . Отношение  $\frac{n_i}{n}$  называется **относительной частотой**  $x_i$ . При этом таблица частот значений

| $x_1$ | $x_2$ | <br>$x_s$ |
|-------|-------|-----------|
| $n_1$ | $n_2$ | <br>$n_s$ |

называется **частотным** (**или статистическим**) **распределением**, а таблица относительных частот

| $x_1$           | $x_2$           | <br>$x_s$           |
|-----------------|-----------------|---------------------|
| $\frac{n_1}{n}$ | $\frac{n_2}{n}$ | <br>$\frac{n_s}{n}$ |

называется эмпирическим распределением признака.

Эмпирические характеристики признака находятся по таблицам частот следующим образом:

• эмпирическое среднее

$$\overline{x} = \frac{x_1 n_1 + \ldots + x_s n_s}{n},$$

ullet эмпирический начальный момент порядка k

$$v_k = \frac{x_1^k n_1 + \ldots + x_s^k n_s}{n},$$

• эмпирический центральный момент порядка k

$$\mu_k = \frac{(x_1 - \overline{x})^k n_1 + \ldots + (x_s - \overline{x})^k n_s}{n},$$

• эмпирическая дисперсия

$$D(X) = \frac{(x_1 - \overline{x})^2 n_1 + \ldots + (x_s - \overline{x})^2 n_s}{n},$$

• эмпирическая функция распределения

$$F(x) = \frac{1}{n} \sum_{x_i < x} n_i.$$

Пусть  $x_i = X(\omega_i)$  и  $y_i = Y(\omega_i)$ ,  $\omega_i \in \Omega$ — значения признаков X и Y на совокупности  $\Omega = \{\omega_1, \ldots, \omega_n\}$ . Эмпирическая ковариация определяется формулой

$$Cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}).$$

Tаблицей сопряженности или совместным частотным распределением признаков X и Y называется следующая таблица:

|           | $Y = y_1$ | $Y = y_2$ | <br>$Y = y_s$ |
|-----------|-----------|-----------|---------------|
| $X = x_1$ | $n_{11}$  | $n_{12}$  | <br>$n_{1s}$  |
|           |           |           | <br>          |
| $X = x_r$ | $n_{r1}$  | $n_{r2}$  | <br>$n_{rs}$  |

где  $n_{ij}$  — частота пары  $(x_i,y_j)$ , т. е. число элементов  $\omega\in\Omega$ , для которых  $X(\omega)=x_i,$  а  $Y(\omega)=y_j.$ 

На основе таблицы сопряженности эмпирическая ковариация находится по формуле:

$$Cov(X,Y) = \frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{s} (x_i - \overline{x})(y_j - \overline{y})n_{ij}.$$

Эмпирический коэффициент корреляции признаков определяется тем же соотношением, что и коэффициент корреляции случайных величин:

$$\rho(X,Y) = \frac{\mathrm{Cov}(X,Y)}{\sqrt{D(X)D(Y)}}.$$

**Пример 88.** В совокупности 16 студентов определены два признака: X — оценка по математике и Y — оценка по иностранному языку. Совместное частотное распределение оценок задано таблицей:

|       | X = 2 | X = 3 | X = 4 | X = 5 |
|-------|-------|-------|-------|-------|
| Y = 3 | 1     | 0     | 1     | 0     |
| Y = 4 | 2     | 4     | 4     | 2     |
| Y = 5 | 0     | 1     | 0     | 1     |

Tребуется найти эмпирический коэффициент корреляции  $\rho(X,Y)$ .

Решение. Сначала находим частотные распределения признаков:

| 3начение $X$ | 2 | 3 | 4 | 5 | 7.7 | 3начение $Y$ | 3 | 4  | 5 |
|--------------|---|---|---|---|-----|--------------|---|----|---|
| Yacmoma      | 3 | 5 | 5 | 3 | И   | Yacmoma      | 2 | 12 | 2 |

Затем последовательно вычисляем

$$\overline{x} = \frac{1}{16} (2 \times 3 + 3 \times 5 + 4 \times 5 + 5 \times 3) = 3.5;$$

$$D(X) = \frac{1}{16} ((2 - 3.5)^2 \times 3 + (3 - 3.5)^2 \times 5 + (4 - 3.5)^2 \times 5 + (5 - 3.5)^2 \times 3) = 1;$$

$$\overline{y} = \frac{1}{16} (3 \times 2 + 4 \times 12 + 5 \times 2) = 4;$$

$$D(Y) = \frac{1}{16} ((3 - 4)^2 \times 2 + (4 - 4)^2 \times 12 + (5 - 4)^2 \times 2) = \frac{1}{4};$$

$$Cov(X, Y) = \frac{1}{16} ((1.5) + (-0.5) + (-0.5) + (1.5)) = \frac{1}{8};$$

$$\rho(X, Y) = \frac{1/8}{\sqrt{1/4}} = 0.25.$$

Ответ: 0,25.

#### § 2. Межгрупповая дисперсия

Пусть X — признак в совокупности  $\Omega$  объема n, разбитой на s групп:

$$\Omega_i = \{\omega_{i1}, \ \omega_{i2}, \ \ldots, \ \omega_{in_i}\}, \quad i = 1, \ldots, s.$$

Введем следующие обозначения:

$$x_{ij} = X(\omega_{ij})$$

— значение признака на j-м элементе i-ой группы;

$$\overline{x}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} x_{ij} \tag{3}$$

— эмпирическое среднее в *i*-ой группе или *i*-е групповое среднее;

$$\sigma_i^2 = \frac{1}{n_i} \sum_{j=1}^{n_i} (x_{ij} - \overline{x}_i)^2 \tag{4}$$

— эмпирическая дисперсия в i-й группе или i-я  $\it zpynnoвая ducnepcus$ ;

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{k} \overline{x}_{i} n_{i} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} x_{ij}$$
(5)

— эмпирическое среднее во всей совокупности  $\Omega$  или *общее среднее*;

$$\overline{\sigma}^2 = \frac{1}{n} \sum_{i=1}^k \sigma_i^2 n_i \tag{6}$$

— средняя групповая дисперсия;

$$\delta^2 = \frac{1}{n} \sum_{i=1}^k (\overline{x}_i - \overline{x})^2 n_i \tag{7}$$

— межгрупповая дисперсия.

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^k \sum_{j=1}^{n_i} (x_{ij} - \overline{x})^2$$
 (8)

— эмпирическая дисперсия признака в  $\Omega$  или *общая дисперсия*. Общую дисперсию  $\sigma^2$  можно представить в виде суммы

$$\sigma^2 = \overline{\sigma}^2 + \delta^2,\tag{9}$$

где первое слагаемое  $\overline{\sigma}^2$  характеризует среднюю изменчивость признака в каждой группе  $\Omega_1, \ldots, \Omega_k$ , а второе слагаемое  $\delta^2$  характеризует разброс групповых средних  $\overline{x}_1, \ldots, \overline{x}_k$ . **Пример 89.** Пусть некоторая совокупность разбита на две равные по объему группы. Предположим, что в первой группе среднее значение признака  $\overline{x}_1 = 10$ , дисперсия  $\sigma_1^2 = 15$ , а во второй группе  $\overline{x}_2 = 20$ ,  $\sigma_2^2 = 25$ . Найдите среднее значение и дисперсию признака во всей совокупности.

Решение. Сначала находим среднее, затем дисперсию:

$$\overline{x} = \overline{x}_1 \frac{n_1}{n} + \overline{x}_2 \frac{n_2}{n} = 10 \cdot \frac{1}{2} + 20 \cdot \frac{1}{2} = 15,$$

$$\sigma^2 = \overline{\sigma}^2 + \delta^2 =$$

$$= \left(\sigma_1^2 \frac{n_1}{n} + \sigma_2^2 \frac{n_2}{n}\right) + \left((\overline{x}_1 - \overline{x})^2 \frac{n_1}{n} + (\overline{x}_2 - \overline{x})^2 \frac{n_2}{n}\right) = 20 + 25 = 45.$$

**Ответ:**  $\overline{x} = 15, \, \sigma^2 = 45.$ 

#### § 3. Интервальные характеристики признака

Пусть  $(a_1,b_1),\ldots,(a_s,b_s)$  — набор попарно непересекающихся интервалов, покрывающих все значения признака X в совокупности  $\Omega$  объема n.

Определение. Частотой интервала  $(a_i,b_i)$  называется число тех элементов  $\omega \in \Omega$ , для которых  $X(\omega) \in (a_i,b_i)$ ; интервал  $(a_i,b_i)$  при этом называется i-м интервалом группировки.

Таблицей интервальных частот называется таблица

| $a_1$ | $b_1$ | $n_1$ |
|-------|-------|-------|
| $a_2$ | $b_2$ | $n_2$ |
|       |       |       |
| $a_s$ | $b_s$ | $n_s$ |

в которой  $n_i$  — частота интервала  $(a_i,b_i)$ ,  $i=1,2,\ldots,s$ . Поскольку интервалы группировки не пересекаются и покрывают все значения признака, сумма интервальных частот равна объему совокупности,  $\sum\limits_{i=1}^s n_i = n$ . Обозначим середину i-го интервала группировки через  $x_i^* = \frac{a_i + b_i}{2}$ .

К эмпирическим интервальным характеристикам относятся:

- > интервальное среднее  $\overline{x}^* = \frac{1}{n} \sum_{i=1}^s x_i^* n_i$ ,
- > интервальная дисперсия  $D^*(X) = \frac{1}{n} \sum_{i=1}^{s} (x_i^* \overline{x}^*)^2 n_i$ ,
- > интервальное стандартное отклонение  $\sigma^*(X) = \sqrt{D^*(X)}$ .

Отметим, что эти и другие эмпирические интервальные характеристики вычисляются как характеристики *интервального распределения* 

| X | $x_1^*$         | $x_2^*$         | <br>$x_s^*$         |
|---|-----------------|-----------------|---------------------|
| P | $\frac{n_1}{n}$ | $\frac{n_2}{n}$ | <br>$\frac{n_s}{n}$ |

В типичном случае, когда концы интервалов группировки  $\Delta_i = (a_i, b_i)$  образуют арифметическую прогрессию с шагом h,

$$\Delta_1 = (a_1, a_1 + h), \quad \Delta_2 = (a_1 + h, a_1 + 2h), \dots$$

для приближенного вычисления эмпирической дисперсии  $\sigma^2$  по интервальному распределению применяется  $nonpaska\ Mennapda$ :

$$\sigma^2 \approx \sigma^{*2} - \frac{1}{12} h^2.$$

#### § 4. Повторные и бесповторные выборки

**Определение.** Совокупность, из которой извлекаются элементы, называется **генеральной**, тогда как совокупность, образованная отобранными элементами, называется **выборочной**.

Повторной выборкой называется совокупность, образованная по следующей схеме: сначала из генеральной совокупности случайным равновероятным образом извлекается один элемент; затем этот элемент возвращается в генеральную совокупность и все повторяется, пока не будет отобрано необходимое число элементов. Бесповторной выборкой называется совокупность, образованная по аналогичной схеме, но с одним отличием — отобранные элементы в генеральную совокупность не возвращаются.

Характерной особенностью бесповторной выборки является то, что она состоит из различных элементов. Напротив, в состав повторной выборки могут входить одинаковые элементы генеральной совокупности.

Предположим, что из генеральной совокупности  $\Omega$  объема N извлекается выборка  $\widehat{\Omega}$  объема n. Пусть X — некоторый признак на  $\Omega$ . Поскольку все элементы  $\widehat{\Omega}$ , независимо от вида выборки, являются также элементами  $\Omega$ , признак X определен и на совокупности  $\widehat{\Omega}$ .

Обозначим  $x_{01}, x_{02}, \ldots, x_{0N}$  значения признака X в генеральной совокупности и  $X_1, X_2, \ldots, X_n$  — значения X в выборке. Далее значения  $x_{01}, \ldots, x_{0N}$  рассматриваются как числа, а  $X_1, \ldots, X_n$  — как случайные величины.

Определение. Генеральными (соответственно выборочными) характеристиками признака X называют эмпирические характеристики признака X в генеральной (соответственно выборочной) совокупности.

Например:

$$\overline{x}_0 = \frac{1}{N}(x_{01} + \ldots + x_{0N}) - \text{генеральное среднее (число)};$$
 
$$\overline{X} = \frac{1}{n}(X_1 + \ldots + X_n) - \text{выборочное среднее (случайная величина)};$$
 
$$D(X) = \frac{1}{N} \sum_{i=1}^{N} (x_{0i} - \overline{x}_0)^2 - \text{генеральная дисперсия (число)};$$
 
$$\widehat{D}(X) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2 - \text{выборочная дисперсия (случайная величина)}.$$

**Теорема.** Пусть  $X_1, \ldots, X_n$  — значения признака X в выборке,  $\overline{x}_0$  — генеральное среднее, а D(X) — генеральная дисперсия. Тогда для выборочного среднего  $\overline{X}$  имеем:

• в случае повторной или бесповторной выборки

$$E(\overline{X}) = \overline{x}_0; \tag{10}$$

• в случае повторной выборки

$$D(\overline{X}) = \frac{D(X)}{n};\tag{11}$$

• в случае бесповторной выборки

$$D(\overline{X}) = \frac{D(X)}{n} \frac{N-n}{N-1},\tag{12}$$

 $rde\ N$  — объем генеральной совокупности.

Из теоремы нетрудно получить следующее следствие:

**Следствие.** Пусть  $X_1, \ldots X_n$ ;  $Y_1, \ldots, Y_n$  — значения признаков X и Y в выборочной совокупности объема n, Cov(X,Y) — ковариация признаков X и Y в генеральной совокупности объема N. Тогда для ковариации выборочных средних справедливы соотношения:

• в случае повторной выборки

$$\operatorname{Cov}(\overline{X}, \overline{Y}) = \frac{\operatorname{Cov}(X, Y)}{n};$$
 (13)

• в случае бесповторной выборки

$$Cov(\overline{X}, \overline{Y}) = \frac{Cov(X, Y)}{n} \cdot \frac{N - n}{N - 1}.$$
 (14)

 $\underline{\mathcal{A}}$ оказательство. Действительно, с учетом равенства  $\overline{X\pm Y}==\overline{X}\pm\overline{Y}$  в случае повторной выборки имеем

$$\operatorname{Cov}(\overline{X}, \overline{Y}) = \frac{1}{4} \left( D\left(\overline{X} + \overline{Y}\right) - D\left(\overline{X} - \overline{Y}\right) \right) =$$

$$= \frac{1}{4} \left( D\left(\overline{X} + \overline{Y}\right) - D\left(\overline{X} - \overline{Y}\right) \right) =$$

$$= \frac{1}{4n} \left( D\left(X + Y\right) - D\left(X - Y\right) \right) = \frac{\operatorname{Cov}(X, Y)}{n}.$$

Для бесповторной выборки доказательство аналогично.

**Пример 90.** Признак X(k) задан на множестве  $\Omega = \{1, 2, ..., 10\}$  следующей таблицей:

| k    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|------|---|---|---|---|---|---|---|---|---|----|
| X(k) | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 3 | 2 | 2  |

Из  $\Omega$  извлекается случайная бесповторная выборка объема 5. Найдите математическое ожидание и дисперсию среднего значения  $\overline{X}$  признака X в выборке.

**Решение.** Распределение частот признака X имеет следующий вид

| $x_i$ | 1 | 2 | 3 |
|-------|---|---|---|
| $n_i$ | 3 | 6 | 1 |

Объем генеральной совокупности N=10. Найдем генеральное среднее и генеральную дисперсию признака X

$$\overline{x}_0 = \frac{1 \cdot 3 + 2 \cdot 6 + 3 \cdot 1}{10} = \frac{9}{5} = 1.8;$$

$$D(X) = \frac{1^2 \cdot 3 + 2^2 \cdot 6 + 3^2 \cdot 1}{10} - (\overline{x}_0)^2 = \frac{9}{25} = 0.36.$$

Используя формулы (10) и (12) в случае бесповторной выборки объема n=5, находим математическое ожидание и дисперсию среднего значения  $\overline{X}$  признака X в выборке

$$E(\overline{X}) = \overline{x}_0 = 1.8;$$

$$D(\overline{X}) = \frac{D(X)}{n} \frac{N - n}{N - 1} = \frac{0.36}{5} \cdot \frac{10 - 5}{10 - 1} = 0.04.$$

Ответ: 1,8; 0,04.

**Пример 91.** Признак X(k) задан на множестве  $\Omega = \{1, 2, \dots, 10\}$  следующей таблицей:

| k    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|------|---|---|---|---|---|---|---|---|---|----|
| X(k) | 3 | 3 | 3 | 3 | 1 | 3 | 3 | 2 | 1 | 2  |

Из  $\Omega$  извлекается случайная повторная выборка объема 5. Найдите математическое ожидание и дисперсию среднего значения  $\overline{X}$  признака X в выборке.

**Решение.** Отличие от предыдущего примера состоит в том, что теперь извлекается *повторная выборка*. Здесь  $N=10,\,n=5$ . Генеральные характеристики признака X соответственно равны  $\overline{x}_0=2,4,\,D(X)=0,64$ . Используя формулы (10) и (11) в случае *повторной* выборки, находим

$$E(\overline{X}) = \overline{x}_0 = 2.4; \quad D(\overline{X}) = \frac{D(X)}{n} = \frac{0.64}{5} = 0.128.$$

Ответ: 2,4; 0,128.

**Пример 92.** Итоговое распределение баллов на некотором письменном экзамене задано таблицей

| Оценка работы | 2  | 3  | 4  | 5  |
|---------------|----|----|----|----|
| Число работ   | 16 | 16 | 24 | 40 |

Работы проверяли 8 преподавателей, которые разделили все работы между собой поровну случайным образом. Предполагая независимость оценки от личности проверяющего, найдите математическое ожидание и дисперсию среднего балла по результатам одного преподавателя.

**Решение.** Объем генеральной совокупности составляет N=16+16+24+40=96 работ. Найдем генеральные характеристики (генеральное среднее  $\overline{x}_0$  и генеральную дисперсию D(X)) признака X (в данном случае оценки):

$$\overline{x}_0 = \frac{2 \cdot 16 + 3 \cdot 16 + 4 \cdot 24 + 5 \cdot 40}{96} = \frac{47}{12} \approx 3,917;$$

$$D(X) = \frac{2^2 \cdot 16 + 3^2 \cdot 16 + 4^2 \cdot 24 + 5^2 \cdot 40}{96} - (\overline{x}_0)^2 = \frac{199}{12} - \left(\frac{47}{12}\right)^2 = \frac{179}{144} \approx 1,243.$$

Каждому преподавателю досталось 12 работ. Используя формулы (10) и (12) в случае бесповторной выборки объема n=12, находим математическое ожидание и дисперсию среднего бала по результатам одного преподавателя

$$E(\overline{X}) = \overline{x}_0 = \frac{47}{12} \approx 3,917;$$

$$D(\overline{X}) = \frac{D(X)}{n} \frac{N - n}{N - 1} = \frac{179}{144 \cdot 12} \cdot \frac{96 - 12}{96 - 1} = \frac{1253}{13680} \approx 0,0916.$$

Ответ: 3,917; 0,01916.

**Пример 93.** Две игральные кости, красная и синяя, подбрасываются до тех пор, пока не выпадет 19 различных с учетом цвета комбинаций очков. Пусть  $S_i$  — сумма очков на красной и синей кости

в i-той комбинации,  $\overline{S}$  — среднее арифметическое всех этих сумм,  $i=1,\ldots,19$ . Найдите математическое ожидание и дисперсию среднего значения  $\overline{S}$ .

**Решение.** Генеральную совокупность объема N=36 можно представить как пространство элементарных исходов в опыте по подбрасыванию двух игральных костей, выборочную — объема n=19 — как результат бесповторной выборки из этой генеральной совокупности. В обеих совокупностях определены признаки:  $X_1$  — число очков на красной,  $X_2$  — число очков на синей игральной кости и  $S=X_1+X_2$ . Признаки  $X_1$  и  $X_2$  в генеральной совокупности имеют одинаковое распределение

| $X_i$ | 1             | 2             | 3             | 4             | 5             | 6             |
|-------|---------------|---------------|---------------|---------------|---------------|---------------|
| P     | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ |

Находим генеральное среднее

$$E(X_1) = E(X_2) = \frac{1}{6}(1+2+\ldots+6) = \frac{6\cdot 7}{2\cdot 6} = \frac{7}{2} = 3.5.$$

и дисперсию

$$D(X_1) = D(X_2) = \frac{1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2}{6} - \left(\frac{7}{2}\right)^2 = \frac{35}{12}.$$

В опыте по подбрасыванию двух игральных костей  $X_1$  и  $X_2$  — независимые случайные величины, следовательно,  $D(X_1+X_2)=\frac{35}{6}$ . Таким образом, генеральные характеристики признака S равны: E(S)=7,  $D(S)=\frac{35}{6}$ . Используя формулы (10) и (12) в случае бесповторной выборки объема n=19, находим математическое ожидание и дисперсию среднего значения  $\overline{S}$ :

$$E(\overline{S}) = E(S) = 7;$$

$$D(\overline{S}) = \frac{D(S)}{n} \frac{N - n}{N - 1} = \frac{35}{6 \cdot 19} \cdot \frac{36 - 19}{36 - 1} = \frac{17}{114} \approx 0,1491.$$

Ответ: 7; 0,1491.

**Пример 94.** Статистические данные о результатах экзамена в трех группах приведены в таблице

| $\mathcal{N}^{\underline{o}}$ | Число     | Средний | Среднее                       |
|-------------------------------|-----------|---------|-------------------------------|
| группы                        | студентов | балл    | $\kappa вадр. \ om \kappa л.$ |
| 1                             | 20        | 79      | 6                             |
| 2                             | 18        | 64      | 14                            |
| 3                             | 19        | 79      | 19                            |

При проведении экзамена студенты случайным образом размещались (в соответствии с числом мест) в нескольких аудиториях. В одной из них находилось 20 студентов. Найдите математическое ожидание и дисперсию среднего балла по результатам, полученным в данной аудитории, предполагая, что условия для выполнения экзаменационных работ во всех аудиториях одинаковы.

**Решение.** Объем генеральной совокупности составляет N = 20 + 18 + 19 = 57 студентов. Используя формулу (5), найдем генеральное среднее  $\overline{x}_0$ 

$$\overline{x}_0 = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2 + n_3 \overline{x}_3}{n_1 + n_2 + n_3} = \frac{20 \cdot 79 + 18 \cdot 64 + 19 \cdot 79}{57} = \frac{1411}{19} \approx 74,263.$$

Затем, используя формулы (6), (7) и (9), найдем генеральную дисперсию  $\sigma^2 = D(X)$  признака X (в данном случае балла по результатам экзамена)

$$\begin{split} \delta^2 &= \frac{n_1(\overline{x}_1 - \overline{x}_0)^2 + n_2(\overline{x}_2 - \overline{x}_0)^2 + n_3(\overline{x}_3 - \overline{x}_0)^2}{n_1 + n_2 + n_3} = \\ &= \frac{20 \cdot (79 - \overline{x}_0)^2 + 18 \cdot (64 - \overline{x}_0)^2 + 19 \cdot (79 - \overline{x}_0)^2}{57} = \\ &= \frac{17\,550}{361} \approx 48,615 \text{ (межгрупповая дисперсия)}, \\ \overline{\sigma}^2 &= \frac{\sigma_1^2 n_1 + \sigma_2^2 n_2 + \sigma_3^2 n_3}{n_1 + n_2 + n_3} = \frac{20 \cdot 6^2 + 18 \cdot 14^2 + 19 \cdot 19^2}{57} = \\ &= \frac{11\,107}{57} \approx 194,86 \text{ (средняя групповая дисперсия)}, \\ \sigma^2 &= D(X) = \delta^2 + \overline{\sigma}^2 = \\ &= \frac{17\,550}{361} + \frac{11\,107}{57} = \frac{263\,683}{1\,083} \approx 243,475 \text{ (общая дисперсия)}. \end{split}$$

Используя формулы (10) и (12) в случае бесповторной выборки объема n=20, находим математическое ожидание и дисперсию среднего балла  $\overline{X}$  по результатам, полученным в данной аудитории:

$$E(\overline{X}) = \overline{x}_0 = \frac{1411}{19} \approx 74,263;$$

$$D(\overline{X}) = \frac{D(X)}{n} \frac{N-n}{N-1} = \frac{263683}{1083 \cdot 20} \cdot \frac{57-20}{57-1} = \frac{1393753}{173280} \approx 8,0434.$$

Ответ: 74,263; 8,0434.

**Пример 95.** Значения признаков X и Y заданы на множестве  $\Omega = \{1, 2, \dots, 100\}$  таблицей частот

|         | Y = 3 | Y = 5 | Y = 8 |
|---------|-------|-------|-------|
| X = 300 | 17    | 19    | 18    |
| X = 600 | 13    | 14    | 19    |

Из  $\Omega$  без возвращения извлекаются 8 элементов. Пусть  $\overline{X}$  и  $\overline{Y}$  — средние значения признаков в выборочной совокупности. Найдите  $\mathrm{Cov}(\overline{X},\overline{Y})$ .

Решение. Находим частотные распределения признаков:

| Значение Х | 300 | 600 | ** | 31 |
|------------|-----|-----|----|----|
| Частота    | 54  | 46  | и  | Ч  |

Затем последовательно вычисляем

$$\overline{x}_0 = \frac{1}{100} (300 \cdot 54 + 600 \cdot 46) = 438;$$

$$\overline{y}_0 = \frac{1}{100} (3 \cdot 30 + 5 \cdot 33 + 8 \cdot 37) = 5,51;$$

$$Cov(X, Y) = 3 (3 \cdot 17 + 5 \cdot 19 + 8 \cdot 18) + 6 (3 \cdot 13 + 5 \cdot 14 + 8 \cdot 19) - 438 \cdot 5,51 = 22,62.$$

Используя формулу (14) в случае бесповторной выборки объема n=8, находим значение  $\text{Cov}(\overline{X}, \overline{Y})$ :

$$Cov(\overline{X}, \overline{Y}) = \frac{1}{n} Cov(X, Y) \cdot \frac{N-n}{N-1} = \frac{1}{8} \cdot 22,62 \cdot \frac{100-8}{100-1} = \frac{8671}{3300} \approx 2,6276.$$

Ответ: 2,6276.

**Пример 96.** Значения признаков X и Y заданы на множестве  $\Omega = \{1,2,\ldots,2000\}$  таблицей частот

|        | Y = 2 | Y = 4 | Y = 6 |
|--------|-------|-------|-------|
| X = 7  | 100   | 400   | 200   |
| X = 10 | 300   | 100   | 900   |

Из  $\Omega$  с возвращением извлекаются 800 элементов. Пусть  $\overline{X}$  и  $\overline{Y}$  — средние значения признаков в выборочной совокупности. Найдите  $\mathrm{Cov}(\overline{X},\overline{Y})$ .

**Решение.** Отличие от предыдущего примера состоит в том, что теперь извлекается *повторная выборка*. Здесь  $N=2\,000,\,n=800$ . Генеральные средние признаков X и Y соответственно равны  $\overline{x}_0=8,95,\,\overline{y}_0=4,7,$  а генеральная ковариация:  $\mathrm{Cov}(X,Y)=0,435$ . Используя формулу (13) в случае *повторной* выборки, находим значение  $\mathrm{Cov}(\overline{X},\overline{Y})$ :

$$Cov(\overline{X}, \overline{Y}) = \frac{1}{n} Cov(X, Y) = \frac{1}{800} \cdot 0.435 = 0.00054375.$$

Ответ: 0,00054375.

**Пример 97.** В некотором городе сторонники партии A составляют 16%, партии B-23%. Известно, что объем бесповторной выборки составляет 15% от числа всех избирателей. Пусть  $\widehat{p}_A$ — выборочная доля сторонников партии A,  $n_B$ — число отобранных сторонников партии B. Найдите (приближенно)  $\mathrm{Cov}(\widehat{p}_A, n_B)$ .

**Решение.** Введем две случайные величины X и Y:

$$X = \left\{ egin{array}{ll} 1, \ {
m ec}$$
ли избиратель поддерживает партию  $A, \\ 0, \ {
m B} \ {
m противном} \ {
m c}$ лучае,

$$Y = \left\{ egin{array}{ll} 1, \ {
m ec}$$
ли избиратель поддерживает партию  $B, \\ 0, \ {
m B} \ {
m противном} \ {
m c.} \end{array} 
ight.$ 

Законы распределения X и Y имеют соответственно вид

| X | 0    | 1    | 17 | Y | 0    | 1    |
|---|------|------|----|---|------|------|
| P | 0,84 | 0,16 | И  | P | 0,77 | 0,23 |

Легко найти  $\mathrm{Cov}(X,Y)=-0.0368$ . Пусть N — количество всех жителей города. Тогда n=0.15N, где n — объем бесповторной выборки. Ясно, что  $n_B=n\cdot\overline{Y}$  и  $\widehat{p}_A=\overline{X}$ , где  $\overline{X}$  и  $\overline{Y}$  — соответственно выборочные средние сторонников партий A и B в выборке. Используя формулу (14) в случае бесповторной выборки, находим

$$\operatorname{Cov}(\widehat{p}_A, n_B) = \operatorname{Cov}(\overline{X}, n \cdot \overline{Y}) = n \cdot \operatorname{Cov}(\overline{X}, \overline{Y}) =$$

$$= n \cdot \frac{1}{n} \operatorname{Cov}(X, Y) \frac{N - n}{N - 1} \approx \operatorname{Cov}(X, Y) \left(1 - \frac{n}{N}\right) =$$

$$= \operatorname{Cov}(X, Y) \left(1 - \frac{0,15N}{N}\right) = 0,85 \operatorname{Cov}(X, Y) =$$

$$= 0.85 \cdot (-0,0368) = -0,03128.$$

**Ответ:** -0.03128.

Рассмотрим теперь задачу определения точности приближенного равенства:

$$\overline{x}_0$$
 (генеральное среднее)  $\approx \overline{X}$  (выборочное среднее). (15)

Действительно, для выборки любого вида  $\overline{x}_0 = E(\overline{X})$ , имеем

$$\sqrt{E(|\overline{X}-\overline{x}_0|^2)} = \sqrt{E\{(\overline{X}-E(\overline{X}))^2\}} = \sqrt{D(\overline{X})} = \sigma_{\overline{X}},$$

поэтому, среднеквадратичная ошибка  $\sigma_{\overline{X}}$  в соотношении (15) находится как корень из дисперсии  $D(\overline{X})$ , рассчитанной по формулам (11) или (12).

**Пример 98.** Значение признака X в генеральной совокупности задано следующей таблицей:

| Интервал | 3-23 | 23-43 | 43-63 |
|----------|------|-------|-------|
| Частота  | 20   | 60    | 20    |

Из этой совокупности извлекается бесповторная выборка объема 25. Пусть  $\overline{x}_0$  — генеральное, а  $\overline{X}$  — выборочное среднее. Найдите среднеквадратичную ошибку в приближенном равенстве  $\overline{x}_0 \approx \overline{X}$ . При вычислении генеральной дисперсии используйте поправку Шеппарда.

Решение. Составим интервальное распределение

| X | 13  | 33  | 53  |
|---|-----|-----|-----|
| P | 0,2 | 0,6 | 0,2 |

Затем найдем интервальное среднее  $\overline{x}^*$  и интервальную дисперсию  $\sigma^{*2}$ :

$$\overline{x}^* = 13 \cdot 0.2 + 33 \cdot 0.6 + 53 \cdot 0.2 = 33;$$

$$\sigma^{*2} = (13 - 33)^2 \cdot 0.2 + (33 - 33)^2 \cdot 0.6 + (53 - 33)^2 \cdot 0.2 = 400 \cdot 0.4 = 160.$$

С учетом поправки Шеппарда

$$\sigma^2 \approx \sigma^{*2} - h^2/12 = 160 - 400/12 \approx 126.7.$$

Следовательно,

$$\sigma_{\overline{X}} = \sqrt{\frac{\sigma^2}{n} \frac{N-n}{N-1}} \approx \sqrt{\frac{126,7}{25} \frac{75}{99}} = \sqrt{\frac{126,7}{33}} \approx 1,96.$$

**Ответ:**  $\sigma_{\overline{X}} \approx 1.96$ .

Пусть

$$\begin{array}{c|ccccc}
x_1 & x_2 & \dots & x_s \\
N_1 & N_2 & \dots & N_s
\end{array}$$

— распределение признака X в генеральной совокупности  $\Omega,$  а

| $x_1$ | $x_2$ | <br>$x_s$ |
|-------|-------|-----------|
| $n_1$ | $n_2$ | <br>$n_s$ |

— распределение того же признака в выборочной совокупности  $\widehat{\Omega}.$ 

Определение. Отношение  $p_i = \frac{N_i}{N}$  (соответственно  $\widehat{p_i} = \frac{n_i}{n}$ ) называется генеральной (соответственно выборочной) долей значения  $x_i$  признака X.

**Теорема.** Пусть p- генеральная, а  $\widehat{p}-$  выборочная доля какоголибо значения  $x_1$  признака  $X,\ q=1-p.$  Тогда:

• в случае повторной или бесповторной выборки

$$E(\widehat{p}) = p;$$

• в случае повторной выборки

$$D(\widehat{p}) = \frac{pq}{n};$$

• в случае бесповторной выборки

$$D(\widehat{p}) = \frac{pq}{n} \frac{N-n}{N-1}.$$

**Пример 99.** В выборах приняли участие  $1\,000\,000$  избирателей. Предполагая, что за наиболее популярного кандидата проголосует  $\approx 50\,\%$ избирателей, найдите стандартное отклонение процента бюллетеней в его пользу среди первых  $900\,000$  обработанных бюллетеней.

**Решение.** Поскольку генеральная доля кандидата  $p \approx 0.5$ , имеем

$$\sigma_{\widehat{p}} \approx \sqrt{\frac{0.5 \cdot 0.5}{900\,000} \left(1 - \frac{900\,000}{1\,000\,000}\right)} = \frac{5}{3} \cdot 10^{-4} \approx 0.017\,\%.$$

**Ответ:**  $\sigma_{\widehat{p}} \approx 0.017 \%$ .

# § 5. Выборки из распределения

Пусть  $\Omega$  — пространство элементарных событий, связанное с испытанием, в ходе которого случайная величина X получает определенное значение. Таким образом,  $X = X(\omega)$  — функция от  $\omega \in \Omega$ . Предположим, что данное испытание осуществляется n раз по схеме повторных независимых испытаний и  $\widehat{\omega}_1,\ldots,\widehat{\omega}_n$  ( $\widehat{\omega}_i\in\Omega$ ) — результаты этих испытаний. Множество  $\widehat{\Omega}=\{\widehat{\omega}_1,\ldots,\widehat{\omega}_n\}$  рассматривается как выборочная совокупность, полученная в результате выборки с возвращением из генеральной совокупности  $\Omega$ . Функция X рассматривается как признак, определенный как на  $\Omega$ , так и на  $\widehat{\Omega}$ .

Значения случайной величины X, принятые в отдельных независимых испытаниях, обозначим

$$X_1 = X(\widehat{\omega}_1), \ldots, X_n = X(\widehat{\omega}_n).$$

Значения  $X_1, \ldots, X_n$  интерпретируются как случайные величины, связанные со сложным опытом, состоящим из n простых испытаний,

при этом  $X_1, \ldots, X_n$  независимы и имеют то же распределение, что и случайная величина X. Набор случайных величин  $X_1, \ldots, X_n$  называется выборкой из распределения.

Все эмпирические характеристики X в совокупности  $\widehat{\Omega}$  называются выборочными характеристиками случайной величины X и обозначаются подобно соответствующим вероятностным характеристикам:

$$\widehat{D}(X)=\widehat{\sigma}^2$$
 — выборочная дисперсия;  $\widehat{\mu}_k,~\widehat{
u}_k$  — выборочные моменты и т. д.

Исключение составляет лишь выборочное среднее

$$\overline{X} = \widehat{E}(X) = \frac{1}{n} (X_1 + \ldots + X_n).$$

Выборочна функция распределения

$$\widehat{F}(x) = \frac{\{$$
число тех  $X_i, \,$ для которых  $X_i < x\}}{n}$ 

отличается от генеральной функции распределения F(x) = P(X < x) тем, что при фиксированном x значение  $\widehat{F}(x)$  является дискретной случайной величиной, распределенной по закону

$$P\left(\widehat{F}(x) = \frac{k}{n}\right) = C_n^k F(x)^k \left(1 - F(x)\right)^{n-k}, \quad k = 0, 1, \dots, n.$$
 (16)

Основные числовые характеристики  $\widehat{F}(x)$  легко находятся, с учетом того, что случайная величина  $n\widehat{F}(x)$  распределена по биномиальному закону с параметрами n и F(x).

**Пример 100.** Пусть  $X_1, X_2, \ldots, X_6$  — выборка из равномерного распределения на отрезке  $[5,8], \ \widehat{F}(x)$  — соответствующая выборочная функция распределения. Найдите вероятность  $P\left(\widehat{F}(7)=\frac{1}{2}\right)$ .

**Решение.** Согласно свойствам выборочной функции распределения случайная величина  $Y=6\widehat{F}(7)$  распределена по биномиальному закону с параметрами n=6 и  $p=\frac{2}{3}$ . Используя формулу (16), находим

$$P\left(\widehat{F}(7) = \frac{1}{2}\right) = P(Y = 3) = C_6^3 \cdot \left(\frac{2}{3}\right)^3 \left(\frac{1}{3}\right)^3 = \frac{160}{729} \approx 0,2195.$$

Ответ: 0,2195.

**Пример 101.** Пусть  $X_1, X_2, \ldots, X_6$  — выборка из равномерного распределения на отрезке  $[4,9], \ \widehat{F}(x)$  — соответствующая выборочная функция распределения. Найдите  $P\left(\widehat{F}(7)=\widehat{F}(8)\right)$ .

**Pemenue.** По определению выборки и свойствам выборочной функции распределения искомая вероятность равна

$$P\left(\widehat{F}(7) = \widehat{F}(8)\right) = \left(P(X_i \notin [7,8])\right)^6 = \left(1 - \frac{1}{5}\right)^6 = \left(\frac{4}{5}\right)^6 \approx 0,2621.$$

Ответ: 0,2621.

**Пример 102.** Пусть  $X_1, X_2, \dots, X_{10}$  — выборка из распределения  $P(X=l) = \frac{1}{12}, \ l = 1, 2, \dots, 12, \ \widehat{F}(x)$  — соответствующая выборочная функция распределения. Найдите вероятность  $P\left(\widehat{F}(7+0) - \widehat{F}(7) = \frac{2}{5}\right)$ .

**Решение.** Функция распределения случайной величины  $Y=10\widehat{F}(7)$  является ступенчатой, возрастает скачками величиной  $\frac{1}{12}$  в точках  $x_k=l$ . Следовательно, искомая вероятность равна

$$P\left(\widehat{F}(7+0) - \widehat{F}(7) = \frac{2}{5}\right) = P(Y=4) = C_{10}^4 \cdot \left(\frac{1}{12}\right)^4 \cdot \left(\frac{11}{12}\right)^6 \approx 0,006.$$

Ответ: 0,006.

**Пример 103.** Пусть  $X_1, X_2, \ldots, X_5$  — выборка из равномерного распределения на отрезке [4,9],  $\widehat{F}(x)$  — соответствующая выборочная функция распределения. Найдите дисперсию  $D[\widehat{F}(8)]$ .

**Решение.** Случайная величина  $Y=5\cdot \widehat{F}(8)$  распределена по биномиальному закону с параметрами n=5 и  $p=\frac{4}{5}$ . Дисперсия такой случайной величины равна np(1-p). Следовательно,

$$D[\widehat{F}(8)] = D\left[\frac{1}{5}Y\right] = \frac{1}{25} \cdot D(Y) = \frac{1}{25} \cdot 5 \cdot \frac{4}{5} \cdot \frac{1}{5} = 0,032.$$

Ответ: 0,032.

#### § 6. Точечные статистические оценки

Предположим, что генеральное распределение признака X зависит от некоторого параметра  $\theta \in \Theta$ . Точечной статистической оценкой параметра  $\theta$  называется функция  $\widehat{\theta} = \widehat{\theta}(X_1, \dots, X_n)$ , предназначенная для приближенного вычисления неизвестного параметра  $\theta$  по выборочным значениям признака. Оценка  $\widehat{\theta}$  называется несмещенной, если  $E(\widehat{\theta}) = \theta$  для всех  $\theta \in \Theta$ .

**Пример 104.** Пусть  $X_1, X_2, \dots, X_n$  — выборка из распределения c плотностью  $f(x) = \left\{ \begin{array}{ll} 7e^{7(\theta-x)} & npu \ x \geqslant \theta, \\ 0 & npu \ x < \theta. \end{array} \right.$  Проверьте, является ли

оценка  $\widehat{\theta} = \overline{X} - \frac{1}{7}$  несмещенной оценкой параметра  $\theta$ ?

 $\boldsymbol{Peшeнue.}$  Сначала найдем математическое ожидание E(X) случайной величины X с плотностью f(x)

$$E(X) = \int_{-\infty}^{+\infty} x f(x) \, dx = \int_{\theta}^{\infty} x \cdot 7e^{7(\theta - x)} \, dx = -\frac{1}{7} (1 + 7x)e^{7(\theta - x)} \Big|_{\theta}^{\infty} = \theta + \frac{1}{7}.$$

Далее, по определению выборки и выборочного среднего найдем, что  $E(\overline{X}) = E(X) = \theta + \frac{1}{7}.$ 

Наконец, по определению несмещенной оценки имеем

$$E(\widehat{\theta}) = E\left(\overline{X} - \frac{1}{7}\right) = E(\overline{X}) - \frac{1}{7} = \theta + \frac{1}{7} - \frac{1}{7} = \theta.$$

**Ответ:** оценка  $\widehat{\theta} = \overline{X} - \frac{1}{7}$  является несмещенной оценкой параметра  $\theta$ .

Если генеральное среднее  $\mu=E(X)$  известно, для приближенного вычисления неизвестной генеральной дисперсии D(X) используется ее несмещенная оценка:

$$s_0^2 = \frac{1}{n} \left( (X_1 - \mu)^2 + \ldots + (X_n - \mu)^2 \right). \tag{17}$$

Если  $\mu = E(X)$  не известно, используется другая несмещенная оценка:

$$s^{2} = \frac{1}{n-1} \left( \left( X_{1} - \overline{X} \right)^{2} + \ldots + \left( X_{n} - \overline{X} \right)^{2} \right). \tag{18}$$

Для построения точечных оценок  $\hat{\theta}_{i,MM}$  одного или нескольких параметров распределения методом моментов сначала находятся функции  $\theta_i = h_i(\nu_1, \dots, \nu_k)$ , выражающие неизвестные параметры  $\theta_i$  генерального распределения через его начальные (или центральные) моменты, после чего производится замена генеральных моментов соответствующими выборочными моментами:

$$\widehat{\theta}_{i,MM} = h_i(\widehat{\nu}_1, \dots, \widehat{\nu}_k).$$

Наиболее простой вид метод моментов приобретает, когда параметрами распределения являются его моменты. Действительно, в этом случае оценками генеральных моментов являются соответствующие выборочные моменты:

$$\widehat{\nu}_{k,MM} = \widehat{\nu}_k, \quad \widehat{\mu}_{k,MM} = \widehat{\mu}_k.$$

**Пример 105.** В 17 независимых испытаниях случайная величина X значение 3 приняла 9 раз, а значение 5–8 раз. Найдите несмещенную оценку дисперсии D(X).

Решение. Составим выборочное распределение

$$\begin{array}{c|ccc}
x_i & 3 & 5 \\
\hline
n_i & 9 & 8 \\
\end{array}$$

Найдем выборочную дисперсию

$$\widehat{\sigma}^2 = \overline{x^2} - (\overline{x})^2 = \frac{3^2 \cdot 9 + 5^2 \cdot 8}{9 + 8} - \left(\frac{3 \cdot 9 + 5 \cdot 8}{9 + 8}\right)^2 =$$
$$= \frac{281}{17} - \left(\frac{67}{17}\right)^2 = \frac{288}{289} \approx 0,9965.$$

Несмещенной оценкой генеральной дисперсии D(X) является  $s^2$ , которую можно определить по формуле (18) или воспользоваться ее связью с выборочной дисперсией

$$s^2 = \frac{n}{n-1} \hat{\sigma}^2 = \frac{17}{16} \cdot \frac{288}{289} = \frac{18}{17} \approx 1,0588.$$

Ответ: 1,0588.

**Пример 106.** Даны результаты 8 независимых измерений одной и той же величины прибором, не имеющим систематических ошибок: 361, 375, 313, 426, 389, 404, 373, 383 м. Найдите несмещенную оценку дисперсии ошибок измерений, если истинная длина известна и равна 371 м.

**Решение.** Генеральное среднее (истинная длина)  $\mu=371$  известно. Для приближенного вычисления неизвестной генеральной дисперсии D(X) (дисперсии ошибок измерений) воспользуемся ее несмещенной оценкой  $s_0^2$ , которая определяется по формуле (17)

$$\begin{split} s_0^2 &= \frac{1}{8} \left( (361 - 371)^2 + (375 - 371)^2 + (313 - 371)^2 + (426 - 371)^2 + \\ &\quad + (389 - 371)^2 + (404 - 371)^2 + (373 - 371)^2 + (383 - 371)^2 \right) = \\ &= \frac{1}{8} \left( 10^2 + 4^2 + 58^2 + 55^2 + 18^2 + 33^2 + 2^2 + 12^2 \right) = \\ &= \frac{1}{8} \cdot 8\,066 = 1\,008,\!25. \end{split}$$

Ответ: 1008,25.

**Пример 107.** Даны результаты 8 независимых измерений одной и той же величины прибором, не имеющим систематических ошибок: 365, 377, 313, 424, 385, 402, 372, 381 м. Найдите несмещенную оценку дисперсии ошибок измерений, если истинная длина неизвестна.

**Решение.** Здесь истинная длина неизвестна. Несмещенной оценкой дисперсии ошибок измерений является  $s^2$ , которая определяется по формуле (18). Сначала найдем выборочное среднее

$$\overline{x} = \frac{365 + 377 + 313 + 424 + 385 + 402 + 372 + 381}{8} = \frac{3019}{8} = 377,375.$$

Используя формулу (18), получаем

$$s^{2} = \frac{1}{7} \left( (365 - \overline{x})^{2} + (377 - \overline{x})^{2} + (313 - \overline{x})^{2} + (424 - \overline{x})^{2} + (385 - \overline{x})^{2} + (402 - \overline{x})^{2} + (372 - \overline{x})^{2} + (381 - \overline{x})^{2} \right) =$$

$$= \frac{1}{7} \cdot \frac{57423}{8} = \frac{57423}{56} \approx 1025,4.$$

Ответ: 1025,4.

**Пример 108.** Случайная величина X (время бесперебойной работы устройства) имеет показательное распределение с плотностью  $f(x) = \lambda e^{-\lambda x} (x \geqslant 0)$ . По эмпирическому распределению времени работы

| Время работы    | 0 - 30 | 30 - 60 | 60 - 90 | 90 - 120 |
|-----------------|--------|---------|---------|----------|
| Число устройств | 134    | 42      | 12      | 4        |

методом моментов найдите точечную оценку  $\widehat{\lambda}$ .

Решение. Составим интервальное распределение

| X | 15              | 45             | 75             | 105            |
|---|-----------------|----------------|----------------|----------------|
| P | $\frac{67}{96}$ | $\frac{7}{32}$ | $\frac{1}{16}$ | $\frac{1}{48}$ |

Найдем интервальное среднее  $\overline{x}^*$ 

$$\overline{x}^* = 15 \cdot \frac{67}{96} + 45 \cdot \frac{7}{32} + 75 \cdot \frac{1}{16} + 105 \cdot \frac{1}{48} = \frac{435}{16} = 27,1875.$$

Для построения точечной оценки  $\widehat{\lambda}$  методом моментов выразим неизвестный параметр  $\lambda$  показательного закона распределения через начальный момент первого порядка (математическое ожидание), после чего произведем замену начального момента первого порядка соответствующим выборочным моментом (интервальным средним), получим

$$\hat{\lambda} = \frac{1}{\overline{x}^*} = \frac{16}{435} \approx 0.0368.$$

Ответ: 0,0368.

**Пример 109.** Случайная величина X распределена по закону Пуассона  $P(X=k)=\frac{\lambda^k e^{-\lambda}}{k!}$ . Результаты 457 независимых наблюдений X отражены в таблице

| Значение Х | 0   | 1   | 2  | 3  |
|------------|-----|-----|----|----|
| Частота    | 201 | 157 | 77 | 22 |

Найдите методом моментов точечную оценку  $\widehat{\lambda}$ .

**Решение.** Напомним, что для случайной величины, распределенной по закону Пуассона с параметром  $\lambda$ , математическое ожидание совпадает с этим параметром, т.е.  $E(X) = \lambda$ . Согласно методу моментов точечной оценкой  $\hat{\lambda}$  служит выборочное среднее  $\overline{x}$ . Следовательно,

$$\widehat{\lambda} = \overline{x} = \frac{0 \cdot 201 + 1 \cdot 157 + 2 \cdot 77 + 3 \cdot 22}{201 + 157 + 77 + 22} = \frac{377}{457} \approx 0.8249.$$

Ответ: 0,8249.

#### § 7. Доверительные интервалы

Пусть  $\vec{X} = (X_1, \dots, X_n)$  — выборка объема n из распределения, зависящего от некоторого числового параметра  $\theta \in \Theta$ .

Определение. Случайный промежуток  $I(\vec{X})$  называется  $\gamma$ -доверительным интервалом для параметра  $\theta$ , если при любом допустимом значении параметра  $\theta \in \Theta$  вероятность  $P\{\theta \in I(\vec{X})\} = \gamma$ . Число  $\gamma$  при этом называется доверительной вероятностью.

Границы  $\gamma$ -доверительного интервала  $I(\vec{X}) = \left(\underline{\theta}(\vec{X}), \ \overline{\theta}(\vec{X})\right)$  называются  $\gamma$ -доверительными границами:  $\underline{\theta}(\vec{X})$  — нижняя граница,  $\overline{\theta}(\vec{X})$  — верхняя граница. Полуразность  $\frac{1}{2}\left(\overline{\theta}-\underline{\theta}\right)$  называется точностью доверительной оценки.

Пусть  $X_1, \ldots, X_n$  — выборка из нормального распределения  $N(\mu, \sigma^2)$ .

Несимметричная по вероятности  $(1-\alpha)$ -доверительная оценка генерального среднего  $\mu$  при известной дисперсии  $\sigma^2$  имеет вид:

$$\overline{X} - Z_{\varepsilon} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + Z_{\delta} \frac{\sigma}{\sqrt{n}},$$
 (19)

где  $Z_{\varepsilon}-100\varepsilon$ -процентная точка стандартного нормального распределения с параметрами 0 и 1,  $\varepsilon+\delta=\alpha$ . Процентные точки распределения N(0,1) находятся из соотношения  $\Phi(Z_{\varepsilon})=0.5-\varepsilon$ , где  $\Phi(x)$  функция Лапласа.

В задачах на построение  $(1-\alpha)$ -доверительного интервала по умолчанию предполагается построение симметричного по вероятности интервала, т. е. интервала, для которого  $\varepsilon = \delta = \frac{\alpha}{2}$ .

В случае неизвестной генеральной дисперсии  $\sigma^2$  при большом объеме выборки применяется приближенная  $(1-\alpha)$  -доверительная оценка генерального среднего  $\mu$ :

$$\overline{X} - Z_{\alpha/2} \frac{\widehat{\sigma}}{\sqrt{n}} < \mu < \overline{X} + Z_{\alpha/2} \frac{\widehat{\sigma}}{\sqrt{n}}.$$
 (20)

Формулы (19) и (20) применяются и в том случае, когда генеральное распределение не является нормальным, но к последовательности независимых случайных величин  $X_1, X_2, \ldots$  применима та или иная форма ЦПТ.

Рассмотрим теперь случай выборки из дискретного распределения. Пусть p=P(X=x) — вероятность некоторого фиксированного значения признака. В случае конечной генеральной совокупности p — генеральная доля значения x. Долю значения x в выборочной совокупности обозначим  $\hat{p}$ .

В качестве приближенной симметричной  $(1-\alpha)$ -доверительной оценки генеральной доли p используется соотношение

$$\widehat{p} - Z_{\alpha/2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}$$

**Пример 110.** Брокер на бирже желает найти 0.95-доверительный интервал для математического ожидания недельной доходности выбранной акции. Известно, что выборочная средняя недельная доходность за последний год (52 недели) составила  $\overline{r}=0.006$ . Найдите искомый доверительный интервал в предположении, что недельные доходности независимы и распределены нормально с постоянными параметрами, причем генеральное среднеквадратичное отклонение недельной доходности равно 0.03.

**Решение.** Имеем  $n=52,\,\overline{r}=0.006,\,\sigma=0.03,\,\gamma=0.95.$  Найдем процентную точку  $Z_{\varepsilon}$  из уравнения

$$\Phi(Z_{\varepsilon}) = 0.5 - \varepsilon,$$

где 
$$\varepsilon = \frac{\alpha}{2} = \frac{1-\gamma}{2} = 0,025$$
. Следовательно,

$$Z_{0.025} = \Phi^{-1}(0.475) = 1.96.$$

Используя формулу (19), находим

$$\left(\overline{r} - Z_{\varepsilon} \frac{\sigma}{\sqrt{n}}, \overline{r} + Z_{\varepsilon} \frac{\sigma}{\sqrt{n}}\right) = 
= \left(0,006 - 1,96 \frac{0,03}{\sqrt{52}}, 0,006 + 1,96 \frac{0,03}{\sqrt{52}}\right) = (-0,0022,0,0142).$$

Таким образом, интервал (-0.22%; 1.42%) является 0.95-доверительным для средней недельной доходности выбранной акции. При этом точность доверительной оценки составляет

$$\Delta=rac{1}{2}\left(\overline{ heta}-\underline{ heta}
ight)=Z_{arepsilon}rac{\sigma}{\sqrt{n}}=1,96rac{0.03}{\sqrt{52}}=0,0082$$
 или  $0.82\%.$ 

**Ответ:** (-0.0022,0.0142).

**Пример 111.** Производится выборочное обследование возраста читателей массовых библиотек. Сколько карточек необходимо взять для обследования, чтобы с вероятностью 0,95 можно было бы утверждать, что средний возраст в выборочной совокупности отклонится от генерального среднего не более, чем на 1 год? Генеральное среднее квадратичное отклонение принять равным 26 годам.

**Решение.** Исходные данные:  $\gamma=0.95,\ \sigma=26.$  По условию задачи точность доверительной оценки  $\Delta$  должна быть не более 1 года. Следовательно,

$$Z_{\varepsilon} \frac{\sigma}{\sqrt{n}} \leqslant 1.$$

Решая полученное неравенство относительно n, находим

$$n \geqslant Z_{\varepsilon}^2 \sigma^2$$
.

Процентная точка  $Z_{\varepsilon}$  соответствует  $\varepsilon=0.025,$  так что  $Z_{0.025}=1.96.$  Следовательно,

$$n \geqslant 1.96^2 \cdot 26^2 \Rightarrow n \geqslant 2596.92.$$

Таким образом, необходимо взять для обследования не менее  $2\,597$  карточек.

Ответ: 2597.

**Пример 112.** В результате проведенного социологического опроса n=1140 человек рейтинг кандитата в президенты составил 14%. Найдите доверительный интервал для рейтинга кандидата с гарантированной надежностью 95%.

Исходные данные: n=1 140, выборочная доля составляет  $\widehat{p}=0,14$ , доверительная вероятность —  $\gamma=0,95$ . Процентная точка  $Z_{0,025}=1,96$ . Используя формулу (21), приходим к доверительному интервалу для рейтинга кандидата

$$\left(0.14 - 1.96\sqrt{\frac{0.14 \cdot 0.86}{1140}}; 0.14 + 1.96\sqrt{\frac{0.14 \cdot 0.86}{1140}}\right) = 
= (0.1199; 0.1601) = (11.99\%; 16.01\%).$$

Ответ: (11,99%; 16,01%).

## § 8. Общая схема статистического критерия

Пусть  $X_1,\ldots,X_n$  — случайная выборка объема n из некоторого генерального распределения. Не ограничивая общности можно считать, что существует определенная схема испытаний, при осуществлении которой вычисляется случайная величина X, а  $X_1,\ldots,X_n$  — это те ее значения, которые X принимает в результате серии n независимых испытаний. Таким образом, случайные величины  $X_1,\ldots,X_n$  независимы и распределены по тому же закону, что и X.

Статистической гипотезой называется любое утверждение о виде или параметрах генерального распределения. Пусть  $H_0$  и  $H_1$  — две взаимоисключающие статистические гипотезы. Проверяемая гипотеза  $H_0$  называется основной, а дополнительная гипотеза  $H_1$  — альтернативной. Предполагается, что одна из этих гипотез выполняется.

Статистическим критерием с критической областью  $K \subset \mathbb{R}^n$  называется правило, в соответствии с которым  $H_0$  отвергается, если выборка попадает в критическую область,  $(X_1, \ldots, X_n) \in K$ .

Критические области задаются либо при помощи неравенств вида  $K=\{t< c_1\}$  или  $K=\{t> c_2\}$ , либо как объединение  $K=\{t< c_1\}\cup\{t> c_2\}$ , где  $t=t(x_1,\ldots,x_n)$  — подходящая функция от выборочных значений, а  $c_1$  и  $c_2$  — некоторые константы, такие что  $c_1< c_2$ . Во всех этих случаях числа  $c_1$  и  $c_2$  называются критическими значениями, а функция  $t(x_1,\ldots,x_n)$  — статистикой критерия. Статистикой критерия. Статистикой критерия. Статистикой критерия. Статистикой критерия называется также случайная величина  $T=t(X_1,\ldots,X_n)$ .

Ошибка первого рода состоит в том, что отвергается верная гипотеза  $H_0$ . Ошибка второго рода состоит в том, что отвергается верная гипотеза  $H_1$ .

Вероятность ошибки первого рода называется уровнем значимости критерия и обозначается  $\alpha$ . Вероятность ошибки второго рода обозначается  $\beta$ , а величина  $1-\beta$  называется мощностью критерия.

## § 9. Сравнение генеральных средних двух нормальных распределений

Пусть  $\vec{X}=(X_1,\ldots,X_m)$  — выборка из  $N(\mu_x,\sigma_x^2)$ , а  $\vec{Y}=(Y_1,\ldots,Y_n)$  — выборка из нормального распределения  $N(\mu_y,\sigma_y^2)$ . Выборки  $\vec{X}$  и  $\vec{Y}$  предполагаются *независимыми*, что означает независимость в совокупности m+n случайных величин  $X_1,\ldots,X_m,Y_1,\ldots,Y_n$  Способ проверки гипотез о соотношениях между генеральными средними  $\mu_x$  и  $\mu_y$  определяется тем, известны или нет дисперсии  $\sigma_x^2$  и  $\sigma_y^2$ . Предположим, что дисперсии  $\sigma_x^2$  и  $\sigma_y^2$  известны, а генеральные

Предположим, что дисперсии  $\sigma_x^2$  и  $\sigma_y^2$  известны, а генеральные средние  $\mu_x$  и  $\mu_y$  неизвестны. Основная гипотеза  $H_0$ :  $\mu_x = \mu_y$ , альтернативная гипотеза имеет вид 1)  $H_1$ :  $\mu_x > \mu_y$ ; 2)  $H_1$ :  $\mu_x < \mu_y$  или 3)  $H_1$ :  $\mu_x \neq \mu_y$ .

При проверке  $H_0$  против  $H_1$  вида 1), 2) или 3) используется одна и та же статистика  $Z=\dfrac{\overline{X}-\overline{Y}}{\sqrt{\dfrac{\sigma_x^2}{m}+\dfrac{\sigma_y^2}{n}}}.$ 

Пусть  $Z_{\alpha}$  — (верхняя) процентная точка стандартного нормального распределения N(0,1), это означает, что  $\mathsf{P}(Z>Z_{\alpha})=\alpha$ , для  $Z\sim N(0,1)$ . При проверке  $H_0$  против  $H_1$  применяется критерий с критической областью K, определяемой по таблице

| $H_1$                 | K                    |
|-----------------------|----------------------|
| 1) $\mu_x > \mu_y$    | $Z > Z_{\alpha}$     |
| $2) \mu_x < \mu_y$    | $Z < -Z_{\alpha}$    |
| 3) $\mu_x \neq \mu_y$ | $ Z  > Z_{\alpha/2}$ |

При проверке гипотез о соотношениях между генеральными средними  $\mu_x$  и  $\mu_y$  при неизвестных генеральных дисперсиях  $\sigma_x^2$  и  $\sigma_y^2$  до-

полнительно предполагается, что они равны:  $\sigma_x^2 = \sigma_y^2 = \sigma$ . В качестве несмещенной оценки  $s^2$  применяется следующая статистика:

$$s^{2} = \frac{m-1}{m+n-2} s_{x}^{2} + \frac{n-1}{m+n-2} s_{y}^{2},$$

где 
$$s_x^2 = \frac{1}{m-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
 и  $s_y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \overline{Y})^2$ .

При проверке  $H_0$  против  $H_1$  при неизвестной генеральной дисперсии критическая область выбирается по таблице

| $H_1$                 | K                           |
|-----------------------|-----------------------------|
| 1) $\mu_x > \mu_y$    | $t > t_{\alpha}(m+n-2)$     |
| $2) \mu_x < \mu_y$    | $t < -t_{\alpha}(m+n-2)$    |
| 3) $\mu_x \neq \mu_y$ | $ t  > t_{\alpha/2}(m+n-2)$ |

Здесь t (может обозначаться как T) — статистика критерия:

$$t = \frac{\overline{X} - \overline{Y}}{s\sqrt{\frac{1}{m} + \frac{1}{n}}},$$

 $t_{\alpha}(m+n-2)$  — верхняя процентная точка распределения Стьюдента с m+n-2 степенями свободы,  $\alpha$  — требуемый уровень значимости.

Пример 113. По двум независимым выборкам, объемы которых  $n_x=22$  и  $n_y=31$ , изблеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x}=488$  и  $\overline{y}=487$ . Генеральные дисперсии известны: D(X)=80 и D(Y)=94. Требуется при уровне значимости  $\alpha=0{,}004$  проверить гипотезу  $H_0\colon E(X)=E(Y)$  при альтернативной гипотезе  $H_1\colon E(X)\neq E(Y)$ .

Решение. В данной задаче известны дисперсии

$$\sigma_x^2 = D(X) = 80, \quad \sigma_y^2 = D(Y) = 94,$$

поэтому для проверки нулевой гипотезы следует использовать статистику

$$Z(\vec{X}, \vec{Y}) = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}}.$$

Так как альтернативная гипотеза имеет вид

$$H_1: E(X) \neq E(Y),$$

то следует использовать критерий

$$K = \{(\vec{x}, \vec{y}) \colon |Z(\vec{x}, \vec{y})| > Z_{\alpha/2}\}.$$

Так как  $P(Z>Z_{\alpha/2})=1/2-\Phi(Z_{\alpha/2}),$  то  $Z_{\alpha/2}$  находится из уравнения

$$\frac{1}{2} - \Phi(Z_{\alpha/2}) = \alpha/2.$$

С учетом того, что  $\alpha=0{,}004$ , из таблицы значений функции  $\Phi(x)$  находим  $Z_{\alpha/2}=Z_{0{,}002}=2{,}88$ . Поэтому критическая область имеет вид

$$K = \{(\vec{x}, \vec{y}) \colon |Z(\vec{x}, \vec{y})| > 2.88\}.$$

Осталось вычислить наблюдаемое значение статистики Z:

$$Z_{\text{набл.}} = \frac{488 - 487}{\sqrt{\frac{80}{22} + \frac{94}{31}}} \approx 0,39 < 2,88.$$

Так как неверно, что  $Z_{\text{набл.}} > 2,88$ , то нет оснований отклонить гипотезу  $H_0$  при уровне значимости 0,004.

**Ответ:** гипотеза  $H_0$  принимается.

**Пример 114.** По двум независимым выборкам, объемы которых  $n_x = 27$  и  $n_y = 29$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x} = 693$  и  $\overline{y} = 688$ . Генеральные дисперсии известны: D(X) = 96 и D(Y) = 69. Требуется при уровне значимости  $\alpha = 0.03$  проверить гипотезу  $H_0: E(X) > E(Y)$  при альтернативной гипотезе  $H_1: E(X) \neq E(Y)$ .

**Решение.** Так как в данной задаче известны дисперсии  $D(X) = \sigma_x^2 = 96, D(Y) = \sigma_y^2 = 69,$  то для проверки гипотезы  $H_0$  нам понадобится статистика

$$Z(\vec{X}, \vec{Y}) = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}}.$$

Альтернативная гипотеза имеет вид  $H_1\colon E(X)>E(Y)$ , поэтому следует использовать критическое множество  $K=\{(\vec x,\vec y)\colon Z(\vec x,\vec y)>Z_\alpha\}$ . Процентная точка  $Z_\alpha$  удовлетворяет уравнению  $1/2-\Phi(Z_\alpha)=\alpha$ . В нашем случае  $\alpha=0.03$ , поэтому  $\Phi(Z_{0.03})=0.47$ , откуда  $Z_{0.03}=1.88$ . Значит,

$$K = \{(\vec{x}, \vec{y}) \colon Z(\vec{x}, \vec{y}) > 1.88\}.$$

Вычислим наблюдаемое значение статистики Z:

$$Z_{\text{ha6л.}} = \frac{693 - 688}{\sqrt{\frac{96}{27} + \frac{69}{29}}} \approx 2,05 > 1,88.$$

Так как  $Z_{\rm набл.} > 1,88$ , то гипотезу  $H_0$  следует отвергнуть при уровне значимости 0,03.

**Ответ:** гипотеза  $H_0$  отвергается.

**Пример 115.** По двум независимым малым выборкам, объемы которых n=10 и l=8, изблеченным из нормальных генеральных совокупностей X и Y с равными дисперсиями, найдены выборочные средние  $\overline{x}=569.2; \ \overline{y}=581.2$  и исправленные дисперсии  $s_x^2=43.2; \ s_y^2=51.2$ . Требуется при уровне значимости  $\alpha=0.01$  проверить нулевую гипотезу  $H_0\colon E(X)=E(Y)$  при альтернативной гипотезе  $H_1\colon E(X)\neq E(Y)$ .

**Pemerue.** Так как генеральные дисперсии равны, но неизвестны, то для решения задачи нам необходимо использовать статистику

$$t(\vec{X}, \vec{Y}) = rac{\overline{X} - \overline{Y}}{s\sqrt{rac{1}{n} + rac{1}{l}}},$$
 где  $s^2 = rac{n-1}{n+l-2}s_x^2 + rac{l-1}{n+l-2}s_y^2.$ 

В нашем случае  $s^2 = 9 s_x^2 / 16 + 7 s_y^2 / 16$ . Критическая область будет иметь вид

$$K = \{(\vec{x}, \vec{y}) : |t(\vec{x}, \vec{y})| > t_{\alpha/2}(n + l - 2)\}.$$

Пользуясь условиями задачи и таблицей критических точек распределения Стьюдента, находим

$$t_{\alpha/2}(n+l-2) = t_{0,005}(16) \approx 2{,}921.$$

Таким образом, в данной задаче

$$K = \{(\vec{x}, \vec{y}) \colon |t(\vec{x}, \vec{y})| > 2.921\}.$$

Для завершения проверки гипотезы  $H_0$  осталось вычислить  $t_{\rm набл}$ . Имеем

$$\begin{split} s_{\text{набл}}^2 &= \frac{9\cdot 43.2}{16} + \frac{7\cdot 51.2}{16} = 46.7, \text{ поэтому} \\ t_{\text{набл}} &\approx \frac{569.2 - 581.2}{6.834 \cdot \sqrt{0.225}} \approx -3.705. \end{split}$$

Так как  $|t_{\text{набл}}| \approx 3{,}705 > 2{,}291$ , то гипотезу  $H_0$  следует отклонить на уровне значимости  $0{,}01$ .

**Ответ:** гипотеза  $H_0$  отвергается.

## § 10. Сравнение дисперсий двух нормальных распределений

Пусть по-прежнему имеется две независимые выборки:

$$X_1, \ldots, X_m \sim N(\mu_x, \sigma_x^2),$$
  
 $Y_1, \ldots, Y_n \sim N(\mu_y, \sigma_y^2).$ 

Предполагается, что все четыре параметра  $\mu_x,\,\mu_y,\,\sigma_x^2$  и  $\sigma_y^2$  неизвестны. Основная гипотеза  $H_0\colon\sigma_x^2=\sigma_y^2,$  альтернативная — имеет вид:

1) 
$$H_1$$
:  $\sigma_x^2 > \sigma_y^2$ ; 2)  $H_1$ :  $\sigma_x^2 < \sigma_y^2$  или 3)  $H_1$ :  $\sigma_x^2 \neq \sigma_y^2$ .

При построении критериев по проверке  $H_0$  против  $H_1$  с требуемым уровнем значимости  $\alpha$  применяется критическая область K, заданная следующими неравенствами:

| $H_1$                 | K                                              |
|-----------------------|------------------------------------------------|
| 1) $s_x^2 > s_y^2$    | $\frac{s_x^2}{s_y^2} > F_{\alpha}(m-1, n-1)$   |
| 2) $s_x^2 < s_y^2$    | $\frac{s_y^2}{s_x^2} > F_{\alpha}(n-1, m-1)$   |
| $3) s_x^2 \neq s_y^2$ | $\frac{s_1^2}{s_2^2} > F_{\alpha/2}(k_1, k_2)$ |

где символы  $s_1^2,\,s_2^2,\,k_1$  и  $k_2$  в зависимости от соотношения между  $s_x^2$  и  $s_y^2$  определяются таблицей

|             | $s_x^2 > s_y^2$ | $s_x^2 < s_y^2$ |
|-------------|-----------------|-----------------|
| $s_1^2$     | $s_x^2$         | $s_y^2$         |
| $s_{2}^{2}$ | $s_y^2$         | $s_x^2$         |
| $k_1$       | m-1             | n-1             |
| $k_2$       | n-1             | m-1             |

Другими словами,  $s_1^2$  — большая, а  $s_2^2$  — меньшая из двух статистик:  $s_x^2$  и  $s_y^2$ . Здесь также используется верхняя процентная точка  $F_{\alpha}(m-1,n-1)$  распределения Фишера F(m-1,n-1) с m-1 и n-1 степенями своболы.

**Пример 116.** По двум независимым выборкам, объемы которых  $n_x = 6$  и  $n_y = 15$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2 = 70$  и  $s_y^2 = 60$ . При уровне значимости  $\alpha = 0,01$  проверьте гипотезу  $H_1: D(X) = D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1: D(X) > D(Y)$ .

Решение. Так как альтернативная гипотеза имеет вид

$$H_1: D(X) > D(Y),$$

то в данной задаче следует использовать статистику

$$T = s_x^2 / s_y^2$$

и критерий

$$K = \{(\vec{x}, \vec{y}) \colon s_x^2 / s_y^2 > F_{\alpha}(n_x - 1, n_y - 1))\}.$$

Из таблицы находим процентную точку распределения Фишера

$$F_{\alpha}(n_x - 1, n_y - 1) = F_{0.01}(5,14) = 4,69.$$

Так как наблюдаемое значение статистики

$$T_{\text{набл.}} = 70/60 < 4.69,$$

то основную гипотезу  $H_0$  следует принять при уровне значимости 0,01. **Ответ:** гипотеза  $H_0$  принимается. **Пример 117.** По двум независимым выборкам, объемы которых  $n_x = 3$  и  $n_y = 5$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2 = 10$  и  $s_y^2 = 19$ . При уровне значимости  $\alpha = 0.02$  проверьте гипотезу  $H_0: D(X) = D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1: D(X) \neq D(Y)$ .

**Решение.** В данном случае  $H_1 \colon D(X) \neq D(Y)$ , поэтому будем использовать критерий

$$K = \left\{ (\vec{x}, \vec{y}) : \frac{s_1^2}{s_2^2} > F_{\alpha/2}(k_1, k_2) \right\}$$

(определения величин  $s_x^2,\,s_y^2,\,k_1,\,k_2$  см. в табл. выше.)

Так как наблюдаемые значения дисперсий относятся как

$$s_x^2/s_y^2 = 10/19 < 1,$$

то в данной задаче

$$s_1^2 = s_y^2$$
,  $s_2^2 = s_x^2$ ,  $k_1 = n_y - 1$ ,  $k_2 = n_x - 1$ .

Вычислим  $F_{\alpha/2}(n_x-1,n_y-1)$  из таблицы для процентных точек распределения Фишера:

$$F_{\alpha/2}(n_x - 1, n_y - 1) = F_{0,01}(4,2) = 99,25.$$

Наблюдаемое значение статистики  $T=s_1^2/s_2^2$  равно

$$T_{\text{набл.}} = 19/10 = 1,9 < 99,25 = F_{0,01}(4,2).$$

Поэтому основную гипотезу  $H_0$  следует принять на уровне значимости 0.02.

**Ответ:** гипотеза  $H_0$  принимается.

#### § 11. Критерий хи-квадрат Пирсона

Производится серия повторных независимых испытаний, n — число испытаний с общим вероятностным пространством  $(\Omega, \mathcal{F}, \mathsf{P})$ . Предположим, что  $A_1, \ldots, A_l \in \mathcal{F}$  — попарно несовместные события, такие что  $A_1 + \ldots + A_l = \Omega$ . В качестве  $H_0$  примем гипотезу, состоящую в том, что вероятности событий  $A_i$   $(i=1,\ldots,l)$  заданы таблицей

| Событие     | $A_1$ | <br>$A_l$ |
|-------------|-------|-----------|
| Вероятность | $p_1$ | <br>$p_l$ |

Пусть  $n_i$  — эмпирическая частота события  $A_i$ , т. е. число испытаний, в которых  $A_i$  наступило. Исходными данными для критерия  $\chi^2$  Пирсона является таблица эмпирических частот

| Событие | $A_1$ | <br>$A_l$ |
|---------|-------|-----------|
| Частота | $n_1$ | <br>$n_l$ |

Если основная гипотеза верна, согласно статистическому определению вероятности  $\widehat{p}_i \approx p_i$ , где  $\widehat{p}_i = n_i/n$  — относительная частота события  $A_i$ . В качестве меры одновременной близости l пар чисел  $(\widehat{p}_i, p_i)$  принимается статистика Пирсона:

$$\chi^2 = \sum_{i=1}^{l} \frac{n}{p_i} (\widehat{p}_i - p_i)^2 = \sum_{i=1}^{l} \frac{(n_i - np_i)^2}{np_i},$$

распределение которой при  $n\to\infty$  перестает зависеть от конкретных значений вероятностей  $p_i$  и стремится к распределению  $\chi^2(l-1)$  (хиквадрат с l-1 степенями свободы).

При верной  $H_0$  случайные величины  $n_i$  распределены по биномиальному закону с параметрами n и  $p_i$ , вследствие чего  $np_i = E(n_i)$  называется omudaemoù (meopemuueckoù) частотой события  $A_i$ .

Можно также доказать, что если гипотеза  $H_0$  не верна, то при  $n\to\infty$  вероятность  $P(\chi^2>c)\to 1$  для любого c, что в конечном счете определяет достаточно высокую мощность критерия Пирсона, по крайней мере, для выборок большого объема.

Для проверки  $H_0$  с асимптотическим уровнем значимости  $\alpha$  применяется критерий согласия, основанный на статистике  $\chi^2$  и критической области  $\chi^2 > \chi^2_\alpha(l-1)$ . Здесь  $\chi^2_\alpha(l-1)$  — верхняя процентная точка распределения  $\chi^2(l-1)$ . На практике данный критерий Пирсона применяется, если объем выборки n>50 и все ожидаемые частоты  $np_i>5$ .

**Пример 118.** В некоторой стране немцы составляют 50%, французы -30%, итальянцы -20%. В гостинице остановились: немцев -21, французов -17 и итальянцев -12. При 5%-м уровне значимости проверьте гипотезу о том, что отклонение процентного состава постояльцев по национальностям от среднего по стране объсняется исключительно случайными факторами.

**Решение.** Разделим все население страны  $\Omega$  на три группы

$$A_1 = \{\text{немцы}\}, \quad A_2 = \{\text{французы}\}, \quad A_3 = \{\text{итальянцы}\}.$$

Тогда, согласно условию задачи, теоретические вероятности  $p_i$ , i=1,2,3 этих событий имеют вид

| Событие | $A_1$ | $A_2$ | $A_3$ |
|---------|-------|-------|-------|
| $p_i$   | 0,5   | 0,3   | 0,2   |

Теперь выпишем эмирические частоты. В гостинице остановилось n=21+17+12=50 человек, поэтому частоты событий  $A_1,\,A_2,\,A_3$  имеют вид

| Событие | $A_1$ | $A_2$ | $A_3$ |
|---------|-------|-------|-------|
| $n_i$   | 27    | 17    | 12    |

Таким образом, гипотеза  $H_0$  состоит в том, что вероятности событий  $A_i$  равны  $p_i,\ i=1,2,3.$  Так как  $np_i\geqslant 5$  для всех i, то для проверки  $H_0$  можно использовать критерий  $\chi^2$  Пирсона

$$K = \{\chi^2 > \chi^2_{\alpha}(l-1)\}$$
, где статистика  $\chi^2 = \sum_{i=1}^l \frac{(n_i - np_i)^2}{np_i}$ .

В нашем случае процентная точка

$$\chi_{\alpha}^{2}(l-1) = \chi_{0.05}^{2}(2) = 5{,}991.$$

Вычислим значение статистики хи-квадрат на наблюдениях:

$$\chi^2_{\text{\tiny Ha6J.}} = \frac{(21-25)^2}{25} + \frac{(17-15)^2}{15} + \frac{(12-10)^2}{10} \approx 1.3 < 5.991.$$

Поэтому гипотезу  $H_0$  следует принять при уровне значимости 5%. Ответ: гипотеза  $H_0$  принимается.

**Пример 119.** Две монеты подброшены 400 раз. В результате две решки выпали в 105 бросках, орел и решка — в 196 бросках и два орла — в 99 бросках. При 5%-м уровне значимости проверьте гипотезу о том, что число орлов при броске двух монет распределено по биномиальному закону с параметрами 2 и 1/2.

**Решение.** Обозначим за X число орлов в двух бросках монеты. Введем события  $A_1 = \{X = 0\}$  — выпало две решки,  $A_2 = \{X = 1\}$  — выпали орел и решка,  $A_3 = \{X = 2\}$  — выпало два орла. Если гипотеза  $H_0$  верна, то случайная величина X имеет биномиальное распределение с параметрами 2 и 1/2. Поэтому теоретические вероятности равны

| Событие | $A_1$ | $A_2$ | $A_3$ |
|---------|-------|-------|-------|
| $p_i$   | 0,25  | 0,5   | 0,25  |

Всего было проведено n=400 бросаний монеты. В соответствии с условиями задачи, эмпирические частоты имеют вид

| Событие | $A_1$ | $A_2$ | $A_3$ |
|---------|-------|-------|-------|
| $n_i$   | 105   | 196   | 99    |

Так как  $np_i>5$  для всех i, то для проверки гипотезы о распределении числа орлов можно использовать критерий хи-квадрат Пирсона со статистикой  $\chi^2=\sum_{i=1}^3\frac{(n_i-np_i)^2}{np_i}$  и критическим множеством

$$K = \{\chi^2 > \chi^2_{\alpha}(l-1)\}.$$

Процентная точка  $\chi^2_{\alpha}(l-1)$  в нашем случае равна

$$\chi^2_{0.05}(2) = 5,991,$$

а наблюдаемое значение статистики  $\chi^2$  равно

$$\chi^2_{\text{\tiny Ha6л.}} = \frac{(105 - 100)^2}{100} + \frac{(196 - 200)^2}{200} + \frac{(99 - 100)^2}{100} = 0.34 < 5.991.$$

Получим, что  $\chi^2_{\text{набл.}} < \chi^2_{0,05}(2)$ . Следовательно, мы принимаем гипотезу  $H_0$  о том, что число орлов X имеет биномиальное распределение с параметрами 2 и 1/2.

**Ответ:** гипотеза  $H_0$  принимается.

# § 12. Проверка гипотезы о совпадении нескольких генеральных средних методом дисперсионного анализа

Пусть  $\vec{X}_i = (X_{i1}, \dots, X_{in_i})$  — выборка объема  $n_i$  из  $N(\mu_i, \sigma^2)$ , где  $i=1,\dots,k$ . Предположим также, что  $n=n_1+\dots+n_k$  случайных величин

$$X_{11}, \ldots, X_{1n_1}; X_{21}, \ldots, X_{2n_2}; \ldots; X_{k1}, \ldots, X_{kn_k}$$

независимы в совокупности. Таким образом, выборки  $\vec{X}_1, \dots, \vec{X}_k$  независимы и получены из нормальных распределений с одинаковой дисперсией  $\sigma^2$  и, возможно, различными средними  $\mu_1, \dots, \mu_k$ . Гипотеза о равенстве всех средних одновременно записывается как

$$H_0: \mu_1 = \ldots = \mu_k,$$

а альтернативная гипотеза — как

$$H_1: (\exists i, j) \, \mu_i \neq \mu_j.$$

Заметим, что при верной  $H_0$  генеральные распределения совпадают:

$$N(\mu_1, \sigma^2) = \ldots = N(\mu_k, \sigma^2).$$

Рассмотрим объединенную выборку объема  $n = n_1 + \ldots + n_k$ 

$$\vec{X} = (X_{11}, \dots, X_{1n_1}; X_{21}, \dots, X_{2n_2}; \dots; X_{k1}, \dots, X_{kn_k}).$$

Интерпретируя выборки  $\vec{X}_1, \dots, \vec{X}_k$  как группы, на которые разбита совокупность  $\vec{X}$ , введем обозначения, аналогичные тем, что использовались при изучении межгрупповой дисперсии:

$$\overline{X}_i = \frac{1}{n_i} \sum_{i=1}^{n_i} X_{ij}$$

— выборочное среднее в i-й совокупности;

$$\widehat{\sigma}_i^2 = \frac{1}{n_i} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2$$

— выборочная дисперсия в той же выборке;

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{k} \overline{X}_i n_i = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij}$$

— выборочное среднее в объединенной выборке  $\vec{X}$ ;

$$\overline{\sigma}^2 = \frac{1}{n} \sum_{i=1}^k \widehat{\sigma}_i^2 n_i$$

— средняя групповая дисперсия;

$$\delta^2 = \frac{1}{n} \sum_{i=1}^k (\overline{X}_i - \overline{X})^2 n_i$$

межгрупповая дисперсия;

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^k \sum_{j=1}^{n_i} (X_{ij} - \overline{X})^2$$

— выборочная дисперсия признака в объединенной выборке  $\vec{X}$ .

Известно, что выборочную дисперсию  $\widehat{\sigma}^2$  можно представить в виде суммы  $\widehat{\sigma}^2 = \overline{\sigma}^2 + \delta^2$ , где первое слагаемое  $\overline{\sigma}^2$  характеризует среднюю изменчивость признака в каждой выборке  $\overrightarrow{X}_1, \dots, \overrightarrow{X}_k$ , а второе слагаемое  $\delta^2$  характеризует разброс выборочных средних  $\overline{X}_1, \dots, \overline{X}_k$ .

Критерий проверки  $H_0$  против  $H_1$  использует так называемое отношение Фишера:

$$F = \frac{\frac{1}{k-1} \sum_{i=1}^{k} (\overline{X}_i - \overline{X})^2 n_i}{\frac{1}{n-k} \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2} = \frac{\frac{1}{k-1} n \delta^2 / s^2}{\frac{1}{n-k} n \overline{\sigma}^2 / s^2}.$$

Можно доказать, что  $F \sim F(k-1,n-k)$ , где F(n-1,n-k) — распределение Фишера с k-1 и n-k степенями свободы. Для проверки  $H_0$  с уровнем значимости  $\alpha$  применяется критерий с критической областью  $F > F_{\alpha}(k-1,n-k)$ , где  $F_{\alpha}(k-1,n-k)$  — верхняя процентная точка распределения F(k-1,n-k).

Пример 120. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 7, 8, 9; 2) 9, 10, 11; 3) 11, 12, 13. Для объединенной выборочной совокупности объема 9 вычислите межсгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha = 0.01$  гипотезу о совпадении всех трех генеральных средних.

**Решение.** В каждой из k=3 групп произведена выборка объема  $n_i=3, i=1,2,3$ . Следовательно, всего произведено n=9 наблюдений.

Для проверки основной гипотезы  $H_0$  используем статистику Фишера

$$F=\frac{\displaystyle\frac{1}{k-1}\delta^2}{\displaystyle\frac{1}{n-k}\overline{\sigma}^2}$$
и критерий

$$K = \{F > F_{\alpha}(k-1, n-k)\}.$$

В нашем случае процентная точка  $F_{\alpha}(k-1,n-k)$  распределения Фишера равна  $F_{0,01}(2,6)=10,92$ . Для проверки  $H_0$  против альтернативы  $H_1$  осталось вычислить наблюдаемое значение статистики  $F_{\text{набл.}}$ . Для этого нужно найти межгрупповую дисперсию  $\delta^2$  и среднюю групповую дисперсию  $\overline{\sigma}^2$ .

Средние значения внутри групп равны

$$\overline{x}_1 = \frac{7+8+9}{3} = 8, \quad \overline{x}_2 = \frac{9+10+11}{3} = 10,$$

$$\overline{x}_3 = \frac{11+12+13}{3} = 12.$$

Следовательно, выборочное среднее равно

$$\overline{x} = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2 + n_3 \overline{x}_2}{n} = \frac{8 + 10 + 12}{3} = 10.$$

Выборочные дисперсии внутри групп равны

$$\widehat{\sigma}_{1}^{2} = \frac{(7 - \overline{x}_{1})^{2} + (8 - \overline{x}_{1})^{2} + (9 - \overline{x}_{1})^{2}}{3} = \frac{2}{3},$$

$$\widehat{\sigma}_{2}^{2} = \frac{(9 - \overline{x}_{2})^{2} + (10 - \overline{x}_{2})^{2} + (11 - \overline{x}_{3})^{2}}{3} = \frac{2}{3},$$

$$\widehat{\sigma}_{3}^{2} = \frac{(11 - \overline{x}_{3})^{2} + (12 - \overline{x}_{2})^{2} + (13 - \overline{x}_{3})^{2}}{3} = \frac{2}{3}.$$

Тогда средняя групповая дисперсия равна

$$\overline{\sigma}^2 = \frac{n_1 \widehat{\sigma_1}^2 + n_2 \widehat{\sigma_2}^2 + n_3 \widehat{\sigma_3}^2}{n} = \frac{2}{3},$$

а межгрупповая дисперсия равна

$$\delta^2 = \frac{(\overline{x}_1 - \overline{x})^2 n_1 + (\overline{x}_2 - \overline{x})^2 n_2 + (\overline{x}_3 - \overline{x})^2 n_3}{n} = \frac{(8 - 10)^2 + (10 - 10)^2 + (12 - 10)^2}{3} = \frac{8}{3}.$$

Вычислим теперь наблюдаемое значение статистики Фишера F и завершим проверку гипотезы  $H_0.$ 

$$F_{\text{\tiny Ha6л.}} = \frac{\frac{1}{k-1}\,\delta^2}{\frac{1}{n-k}\,\overline{\sigma}^2} = \frac{\frac{1}{2}\cdot\frac{8}{3}}{\frac{1}{6}\cdot\frac{2}{3}} = 12.$$

В итоге получим  $F_{\rm набл.}=12>10,92=F_{0,01}(2,6).$  Поэтому гипотезу о совпадении всех трех средних при уровне значимости  $5\,\%$  следует отвергнуть.

**Ответ:**  $\overline{\sigma}^2 = 2/3, \, \delta^2 = 8/3, \, \text{гипотеза} \, H_0 \, \text{отвергается.}$ 

### Требования к оформлению заданий

- ✓ Порядок записи решений задач повторяет порядок условий в варианте заданий.
- ✔ Перед решением указывается порядковый номер задачи, условие не переписывается.
- ✔ Номер задачи выделяется маркером или иным образом. В конце решения приводится ответ по форме: «Ответ: . . . ».
- ✓ Как правило, ответ записывается как десятичная дробь или целое. Допускается также запись в виде несократимой дроби, если такая запись содержит не более 5 символов (например:  $\frac{11}{36}$ ). Ошибка округления в ответе не должна превосходить 0,1 %.
- ✔ Если задача не решена, после ее номера ставится прочерк.
- ightharpoonup Решения, которые содержат грубые ошибки (отрицательная дисперсия, вероятность больше  $1,\ldots)$ , считаются неправильными.
- ✔ Неправильное решение, решение задачи из другого варианта или задачи с измененным условием, отсутствие решения или ответа приводит к минимальной оценке задачи (0 баллов).
- ✔ Отсутствие обоснования при правильном решении влечет снижение оценки на 2 балла.
- ✔ Неправильный ответ (в том числе из-за ошибок округления) при правильном решении снижает оценку.
- $\checkmark$  Оценка также снижается за плохое оформление работы (зачеркнутый текст, вставки, . . . ).

- 1. В группе учатся 18 юношей и 5 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся либо юношами, либо девушками.
- 2. В круг радиуса 120 наудачу бросаются 2 точки. Найдите вероятность того, что расстояние от центра круга до ближайшей точки будет не меньше 40.
- **3.** Вероятность попадания при одном выстреле в мишень 0,81. Найдите вероятность хотя бы одного попадания при 3 выстрелах.
- 4. С первого станка-автомата на сборочный конвеер поступает  $15\,\%$  деталей, со 2-го и 3-го по  $35\,\%$  и  $50\,\%$ , соответственно. Вероятности выдачи бракованных деталей составляют для каждого из них соответственно  $0.3\,\%$ ,  $0.35\,\%$  и  $0.05\,\%$ . Найдите вероятность того, что поступившая на сборку деталь окажется бракованной, а также вероятности того, что она изготовлена на 1-м, 2-м и 3-м станкахавтоматах, при условии, что она оказалась бракованной.
- **5.** Игральная кость подбрасывается до тех пор, пока не выпадет 4 раза число очков, отличное от 6. Какова вероятность, что «шестерка» выпадет 2 раза?

- 1. В партии из 15 деталей имеется 9 стандартных. Наудачу отобраны 6 деталей. Найдите вероятность того, что среди отобранных деталей ровно 4 стандартных.
- **2.** Двое договорились о встрече между 10 и 11 часами утра, причем договорились ждать друг друга не более a=5 минут. Считая, что момент прихода на встречу выбирается каждым «наудачу» в пределах указанного часа, найти вероятность того, что встреча не состоится.
- **3.** События A, B и C независимы; P(A) = 0.2, P(B) = 0.5 и P(C) = 0.7. Найдите вероятность события A + B при условии, что наступило событие B + C.
- 4. В первой урне  $m_1 = 6$  белых и  $n_1 = 6$  черных шаров, во второй  $m_2 = 7$  белых и  $n_2 = 6$  черных. Из второй урны случайным образом перекладывают в первую два шара, после чего из первой урны берут один шар. Какова вероятность того, что этот шар белый?
- 5. Фирма участвует в четырех проектах, каждый из которых может закончиться неудачей с вероятностью 0,23. В случае неудачи одного проекта вероятность разорения фирмы равна  $17\,\%$ , двух  $-33\,\%$ , трех  $-72\,\%$ , четырех  $-82\,\%$ . Определите вероятность разорения фирмы.

- 1. В группе учатся 11 юношей и 11 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся юношами.
- 2. На плоскости начерчены две концентрические окружности, радиусы которых 15 и 30 соответственно. Найдите вероятность того, что точка, брошенная наудачу в большой круг, попадет также и в кольцо, образованное построенными окружностями.
- **3.** События A, B и C независимы. Найдите вероятность события  $(A+B)\cdot (A+C)\cdot (B+C)$ , если  $P(A)=0,1,\ P(B)=0,4$  и P(C)=0,9.
- 4. В урну, содержащую 14 шаров, опущен белый шар, после чего наудачу извлечен один шар. Найдите вероятность того, что извлеченный шар окажется белым, если равновероятны все возможные предположения о первоначальном количестве белых шаров в урне.
- 5. Отрезок длины 5 поделен на две части длины 2 и 3 соответственно, 10 точек последовательно бросают случайным образом на этот отрезок. Найдите вероятность того, что количество точек, попавших на отрезок длины 2, не будет равно 9.

- 1. Независимо друг от друга 4 человека садятся в поезд, содержащий 13 вагонов. Найдите вероятность того, что все они поедут в разных вагонах.
- **2.** На отрезок AB длины 60 наудачу поставлена точка X. Найдите вероятность того, что меньший из отрезков AX и XB имеет длину меньшую, чем 15.
- **3.** Вероятность события P(A) = 0.69, P(B) = 0.78, P(C) = 0.82. Найдите наименьшую возможную вероятность события ABC.
- 4. В первой урне  $m_1=8$  белых и  $n_1=3$  черных шаров, во второй  $m_2=7$  белых и  $n_2=8$  черных. Из второй урны случайным образом перекладывают в первую два шара, после чего из первой урны берут один шар, который оказывается белым. Какова вероятность того, что два шара, переложенные из второй урны в первую, были разных цветов?
- 5. Банк решил вложить поровну средств в три предприятия при условии возврата ему каждым предприятием через определенный срок 164% от вложенной суммы. Вероятность банкротства каждого из предприятий 0,22. Найдите вероятность того, что по истечении срока кредитования банк получит обратно по крайней мере вложенную сумму.

- 1. В группе учатся 9 юношей и 16 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что среди дежурных будет хотя бы одна девушка.
- 2. В квадрат со стороной 12 см случайным образом вбрасывается точка. Найдите вероятность того, что эта точка окажется в правой верхней четверти квадрата или не далее, чем в 1 см от центра квадрата.
- **3.** Вероятность события P(A) = 0.86, P(B) = 0.94. Найдите наименьшую возможную вероятность события AB.
- 4. В среднем из 100 клиентов банка n=37 обслуживаются первым операционистом и 63 вторым операционистом. Вероятность того, что клиент будет обслужен без помощи заведующего отделением, только самим операционистом, составляет  $p_1=0.54$  и  $p_2=0.92$  соответственно для первого и второго служащих банка. Какова вероятность, что клиент, для обслуживания которого потребовалась помощь заведующего, был направлен к первому операционисту?
- **5.** Монета подбрасывается до тех пор, пока герб не выпадет 6 раз. Найдите вероятность того, что будет произведено 12 бросков.

- 1. В киоске продается 9 лотерейных билетов, из которых число выигрышных составляет 4 штуки. Студент купил 5 билетов. Какова вероятность того, что число выигрышных среди них будет не меньше 2. но не больше 3?
- 2. В круг радиуса 60 наудачу бросаются 2 точки. Найдите вероятность того, что расстояние от центра круга до ближайшей точки будет не больше 40.
- **3.** В электрическую цепь последовательно включены три элемента, работающие независимо один от другого. Вероятности отказов первого, второго и третьего элементов соответственно равны  $p_1=0.45$ ,  $p_2=0.67$  и  $p_3=0.59$ . Найдите вероятность того, что тока в цепи не будет.
- 4. В магазине было проведено исследование продаж некоторого товара. Выяснилось, что этот товар покупают 28 % женщин, 18 % мужчин и 33 % детей. В настоящий момент среди покупателей: 160 женщин, 75 мужчин и 26 детей. Найдите вероятность того, что случайно выбранный для мониторинга покупатель приобретет этот товар.
- **5.** Завод отправил на базу 5 000 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равна 0,002. Какова вероятность того, что на базу поступят 2 некачественных изделия?

- 1. Имеется 22 экзаменационных билета, на каждом из которых напечатано условие некоторой задачи. В 12 билетах задачи по статистике, а в остальных 10 билетах задачи по теории вероятностей. Трое студентов выбирают наудачу по одному билету. Найдите вероятность того, что хотя бы одному из них не достанется задачи по теории вероятностей.
- **2.** Внутрь круга радиуса 15 наудачу брошена точка. Найдите вероятность того, что точка окажется внутри вписанного в круг квадрата.
- 3. Вероятность хотя бы одного попадания в мишень при k=13 выстрелах равна  $p=0{,}71$ . Найдите вероятность попадания при одном выстреле.
- 4. Имеется 14 монет, из которых 2 штуки бракованные: вследствие заводского брака на этих монетах с обеих сторон отчеканен герб. Наугад выбранную монету, не разглядывая, бросают 8 раз, причем при всех бросаниях она ложится гербом вверх. Найдите вероятность того, что была выбрана монета с двумя гербами.
- **5.** Вероятность попадания стрелком в цель равна  $\frac{1}{5}$ . Сделано 38 выстрелов. Определите наивероятнейшее число попаданий в цель.

- 1. Компания из n=22 человек рассаживается в ряд случайным образом. Найдите вероятность того, что между двумя определенными людьми окажутся ровно k=5 человек.
- **2.** Двое договорились о встрече между 7 и 8 часами утра, причем договорились ждать друг друга не более a=30 минут. Считая, что момент прихода на встречу выбирается каждым «наудачу» в пределах указанного часа, найти вероятность того, что встреча состоится.
- **3.** Фирма участвует в четырех независимых проектах, вероятности успеха которых составляют 0,9; 0,4; 0,8 и 0,2 соответственно. Найдите вероятность того, что хотя бы два проекта завершатся успехом.
- 4. Имеется три одинаковых по виду ящика. В первом ящике n=24 белых шара, во втором m=9 белых и n-m=15 черных шаров, в третьем n=24 черных шара. Из выбранного наугад ящика вынули белый шар. Найдите вероятность того, что шар вынут из второго ящика.
- **5.** При введении вакцины против птичьего гриппа иммунитет создается в 99,98% случаях. Определите (приближенно) вероятность того, что из  $10\,000$  вакцинированных птиц заболеют 4.

- 1. Независимо друг от друга 3 человека садятся в поезд, содержащий 10 вагонов. Найдите вероятность того, что по крайней мере двое из них окажутся в одном вагоне.
- 2. Внутрь круга радиуса 40 наудачу брошена точка. Найдите вероятность того, что точка окажется внутри вписанного в круг правильного шестиугольника.
- 3. События A, B и C независимы. Найдите вероятность того, что из событий A, B и C наступит ровно одно событие, если P(A)=0.2, P(B)=0.4 и P(C)=0.9.
- 4. Пассажир может обратиться за получением билета в одну из трех касс (A, B, C). Вероятности обращения в каждую кассу зависят от их местонахождения и равны соответственно 0,35, 0,3 и 0,35. Вероятности того, что к моменту прихода пассажира, имеющиеся в кассе билеты распроданы равны соответственно 0,25, 0,35 и 0,05. Найдите вероятность того, что билет куплен. В какой из касс это могло произойти с наибольшей вероятностью?
- 5. Прядильщица обслуживает 2 000 веретен. Вероятность обрыва нити на одном веретене в течение 1 минуты равна 0,004. Найдите (приближенно) вероятность того, что в течение одной минуты обрыв произойдет более чем на 2 веретенах.

- 1. В ящике 9 белых и 2 черных шара. Найдите вероятность того, что из двух вынутых наудачу шаров один белый, а другой черный. Вынутый шар в урну не возвращается.
- **2.** На отрезок AB длины 240 наудачу поставлена точка X. Найдите вероятность того, что меньший из отрезков AX и XB имеет длину большую, чем 60.
- **3.** Вероятность того, что при одном измерении некоторой физической величины допущена ошибка, равна p=0,21. Найдите наименьшее число n измерений, которые необходимо произвести, чтобы с вероятностью больше a=0,92 можно было ожидать, что хотя бы один результат измерений окажется неверным.
- 4. Фирма A занимает  $14\,\%$  рынка электронной техники, фирма  $B-50\,\%$ , фирма  $C-36\,\%$ . Доля мобильных телефонов в поставках фирмы A составляет  $14\,\%$ , в поставках фирмы  $B-3\,\%$ , в поставках фирмы  $C-21\,\%$ . Случайный покупатель приобрел мобильный телефон. Какова вероятность того, что этот телефон произведен фирмой B или фирмой C?
- 5. В банке, осуществляющем кредитование населения, 1000 клиентов. Каждому из клиентов выдается кредит 200 тыс. ден. ед. при условии возврата 119,31 % от этой суммы. Вероятность невозврата кредита каждым из клиентов составляет 0,09. С какой вероятностью прибыль банка будет не ниже 12,8 млн рублей?

- 1. В группе учатся 11 юношей и 11 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что среди дежурных будет хотя бы одна девушка.
- **2.** На отрезок AB длины 180 наудачу поставлена точка X. Найдите вероятность того, что меньший из отрезков AX и XB имеет длину меньшую, чем 45.
- 3. Студент, разыскивая уникальную книгу, решил подать запрос в 10 библиотек. Наличие или отсутствие в фонде каждой библиотеки нужной книги одинаково вероятны. Также одинаково вероятно выдана она или нет. Какова вероятность, что хотя бы от одной библиотеки студент получит уведомление о наличии книги в свободном доступе?
- 4. Студент пользуется тремя библиотеками, комплектование которых осуществляется независимо друг от друга. Нужная ему книга может быть в данных библиотеках с вероятностями 0,29; 0,85 и 0,42 соответственно. Какова вероятность того, что учащийся достанет нужную ему книгу, обратившись наугад в одну из этих библиотек?
- 5. Всхожесть семян данного растения равна  $60\,\%$ . Найдите (приближенно) вероятность того, что из  $1\,200$  посаженных семян число проросших семян заключено между 699 и 739.

- 1. Имеется 25 экзаменационных билетов, на каждом из которых напечатано условие некоторой задачи. В 13 билетах задачи по статистике, а в остальных 12 билетах задачи по теории вероятностей. Трое студентов выбирают наудачу по одному билету. Найдите вероятность того, что хотя бы одному из них не достанется задачи по теории вероятностей.
- 2. В квадрат со стороной 20 см случайным образом вбрасывается точка. Найдите вероятность того, что эта точка окажется в правой верхней четверти квадрата или не далее, чем в 1 см от центра квадрата.
- **3.** События A, B и C независимы; P(A) = 0.8, P(B) = 0.5 и P(C) = 0.3. Найдите вероятность события A + B при условии, что наступило событие A + B + C.
- 4. В ящике содержится  $n_1=5$  деталей, изготовленных на заводе 1,  $n_2=10$  деталей на заводе 2 и  $n_3=6$  деталей на заводе 3. Вероятности изготовления брака на заводах с номерами 1, 2 и 3 соответственно равны  $p_1=0.07,\ p_2=0.08$  и  $p_3=0.09$ . Найдите вероятность того, что извлеченная наудачу деталь окажется качественной.
- **5.** Вероятность выпуска бракованного изделия равна 0,2. Используя приближенную формулу для числа успехов в схеме Бернулли, найдите вероятность того, что среди 106 выпущенных изделий ровно 84 изделий без брака.

- 1. В партии из 17 деталей имеется 9 стандартных. Наудачу отобраны 9 деталей. Найдите вероятность того, что среди отобранных деталей ровно 4 стандартных.
- **2.** Двое договорились о встрече между 8 и 9 часами утра, причем договорились ждать друг друга не более a=10 минут. Считая, что момент прихода на встречу выбирается каждым «наудачу» в пределах указанного часа, найти вероятность того, что встреча состоится.
- **3.** События A, B и C независимы; P(A) = 0.7, P(B) = 0.6 и P(C) = 0.3. Найдите вероятность события A при условии, что наступило событие  $\overline{A} + \overline{B} + \overline{C}$ .
- 4. Детали, изготовленные в цехе, попадают к одному из 2-х контролеров. Вероятность того, что деталь попадет к 1-му контролеру, равна 0,3; ко 2-му 0,7. Вероятность того, что годная деталь будет признана стандартной 1-м контролером равна 0,95; 2-м контролером 0,98. Годная деталь при проверке оказалась стандартной. Найдите вероятность того, что эту деталь проверял 1-й контролер.
- **5.** Вероятность попадания в цель при одном выстреле равна 0,4. Сделано 6 выстрелов. Найдите вероятность того, что в цель попали менее трех раз.

- 1. Независимо друг от друга 3 человека садятся в поезд, содержащий 12 вагонов. Найдите вероятность того, что по крайней мере двое из них окажутся в одном вагоне.
- **2.** Двое договорились о встрече между 8 и 9 часами утра, причем договорились ждать друг друга не более a=5 минут. Считая, что момент прихода на встречу выбирается каждым «наудачу» в пределах указанного часа, найти вероятность того, что встреча не состоится.
- **3.** Вероятность попадания при одном выстреле в мишень 0,63. Найдите вероятность хотя бы одного попадания при 4 выстрелах.
- 4. В центральную бухгалтерию корпорации поступили пачки накладных для проверки и обработки. 54% пачек были признаны удовлетворительными: они содержали 1% неправильно оформленных накладных. Остальные пачки были признаны неудовлетворительными, т. к. они содержали 6% неправильно оформленных накладных. Какова вероятность того, что взятая наугад накладная оказалась неправильно оформленной?
- 5. При введении вакцины против птичьего гриппа иммунитет создается в 99,99% случаях. Определите (приближенно) вероятность того, что из  $10\,000$  вакцинированных птиц заболеют по меньшей мере две птицы.

- 1. Независимо друг от друга 4 человека садятся в поезд, содержащий 14 вагонов. Найдите вероятность того, что все они поедут в разных вагонах.
- 2. Внутрь круга радиуса 50 наудачу брошена точка. Найдите вероятность того, что точка окажется внутри вписанного в круг правильного шестиугольника.
- 3. Студент, разыскивая уникальную книгу, решил подать запрос в 13 библиотек. Наличие или отсутствие в фонде каждой библиотеки нужной книги одинаково вероятны. Также одинаково вероятно выдана она или нет. Какова вероятность, что хотя бы от одной библиотеки студент получит уведомление о наличии книги в свободном доступе?
- 4. В первой урне  $m_1=8$  белых и  $n_1=4$  черных шара, во второй  $m_2=6$  белых и  $n_2=7$  черных. Из второй урны случайным образом перекладывают в первую два шара, после чего из первой урны берут один шар, который оказывается белым. Какова вероятность того, что два шара, переложенные из второй урны в первую, были разного цвета?
- **5.** Завод отправил на базу 3 000 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равна 0,001. Какова вероятность того, что на базу поступят 3 некачественных изделия?

- 1. В ящике 2 белых и 6 черных шаров. Найдите вероятность того, что из двух вынутых наудачу шаров один белый, а другой черный. Вынутый шар в урну не возвращается.
- **2.** Внутрь круга радиуса 100 наудачу брошена точка. Найдите вероятность того, что точка окажется внутри вписанного в круг квадрата.
- 3. Фирма участвует в четырех независимых проектах, вероятности успеха которых составляют 0,6; 0,5; 0,9 и 0,2 соответственно. Найдите вероятность того, что хотя бы два проекта завершатся успехом.
- 4. Пассажир может обратиться за получением билета в одну из трех касс (A,B,C). Вероятности обращения в каждую кассу зависят от их местонахождения и равны соответственно 0.35, 0.6 и 0.05 Вероятности того, что к моменту прихода пассажира, имеющиеся в кассе билеты распроданы равны соответственно 0.4, 0.5 и 0.15. Найдите вероятность того, что билет куплен. В какой из касс это могло произойти с наибольшей вероятностью?
- 5. Прядильщица обслуживает 1 000 веретен. Вероятность обрыва нити на одном веретене в течение 1 минуты равна 0,001. Найдите (приближенно) вероятность того, что в течение одной минуты обрыв произойдет более чем на 2 веретенах.

- 1. В киоске продается 9 лотерейных билетов, из которых число выигрышных составляет 4 штуки. Студент купил 5 билетов. Какова вероятность того, что число выигрышных среди них будет не меньше 2, но не больше 3?
- 2. В круг радиуса 30 наудачу бросаются 3 точки. Найдите вероятность того, что расстояние от центра круга до ближайшей точки будет не больше 15.
- **3.** События A, B и C независимы; P(A) = 0.9, P(B) = 0.5 и P(C) = 0.3. Найдите вероятность события A + B при условии, что наступило событие A + B + C.
- 4. В центральную бухгалтерию корпорации поступили пачки накладных для проверки и обработки. 39% пачек были признаны удовлетворительными: они содержали 4% неправильно оформленных накладных. Остальные пачки были признаны неудовлетворительными, т. к. они содержали 9% неправильно оформленных накладных. Какова вероятность того, что взятая наугад накладная оказалась неправильно оформленной?
- **5.** Вероятность выпуска бракованного изделия равна 0,27. Используя приближенную формулу для числа успехов в схеме Бернулли, найдите вероятность того, что среди 110 выпущенных изделий ровно 80 изделий без брака.

- 1. В группе учатся 11 юношей и 9 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся юношами.
- 2. На плоскости начерчены две концентрические окружности, радиусы которых 15 и 60 соответственно. Найдите вероятность того, что точка, брошенная наудачу в большой круг, попадет также и в кольцо, образованное построенными окружностями.
- **3.** В электрическую цепь последовательно включены три элемента, работающие независимо один от другого. Вероятности отказов первого, второго и третьего элементов соответственно равны  $p_1=0.05$ ,  $p_2=0.7$  и  $p_3=0.31$ . Найдите вероятность того, что тока в цепи не будет.
- 4. Имеется 15 монет, из которых 3 штуки бракованные: вследствие заводского брака на этих монетах с обеих сторон отчеканен герб. Наугад выбранную монету, не разглядывая, бросают 6 раз, причем при всех бросаниях она ложится гербом вверх. Найдите вероятность того, что была выбрана монета с двумя гербами.
- **5.** При введении вакцины против птичьего гриппа иммунитет создается в 99,98% случаях. Определите (приближенно) вероятность того, что из  $20\,000$  вакцинированных птиц заболеют 4.

- 1. В группе учатся 11 юношей и 10 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся либо юношами, либо девушками.
- **2.** На отрезок AB длины 120 наудачу поставлена точка X. Найдите вероятность того, что меньший из отрезков AX и XB имеет длину большую, чем 20.
- **3.** Вероятность события  $P(A)=0.91,\,P(B)=0.71,\,P(C)=0.95.$  Найдите наименьшую возможную вероятность события ABC.
- 4. Фирма A занимает 17 % рынка электронной техники, фирма B-45 %, фирма C-38 %. Доля мобильных телефонов в поставках фирмы A составляет 10 %, в поставках фирмы B-3 %, в поставках фирмы C-22 %. Случайный покупатель приобрел мобильный телефон. Какова вероятность того, что этот телефон произведен фирмой B или фирмой C?
- **5.** Отрезок длины 5 поделен на две части длины 2 и 3 соответственно, 9 точек последовательно бросают случайным образом на этот отрезок. Найдите вероятность того, что количество точек, попавших на отрезок длины 2, не будет равно 4.

- 1. Компания из n=21 человек рассаживается в ряд случайным образом. Найдите вероятность того, что между двумя определенными людьми окажутся ровно k=15 человек.
- 2. В круг радиуса 90 наудачу бросаются 3 точки. Найдите вероятность того, что расстояние от центра круга до ближайшей точки будет не меньше 60.
- 3. События A, B и C независимы. Найдите вероятность того, что из событий A, B и C наступит ровно одно событие, если P(A)=0,1, P(B)=0,6 и P(C)=0,7.
- 4. В ящике содержатся  $n_1=5$  деталей, изготовленных на заводе 1,  $n_2=8$  деталей на заводе 2 и  $n_3=6$  деталей на заводе 3. Вероятности изготовления брака на заводах с номерами 1, 2 и 3 соответственно равны  $p_1=0.09,\ p_2=0.06$  и  $p_3=0.01$ . Найдите вероятность того, что извлеченная наудачу деталь окажется качественной.
- **5.** Монета подбрасывается до тех пор, пока герб не выпадет 6 раз. Найдите вероятность того, что будет произведено 12 бросков.

- 1. В группе учатся 11 юношей и 13 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что среди дежурных будет хотя бы одна девушка.
- **2.** На отрезок AB длины 240 наудачу поставлена точка X. Найдите вероятность того, что меньший из отрезков AX и XB имеет длину меньшую, чем 40.
- **3.** Вероятность того, что при одном измерении некоторой физической величины допущена ошибка, равна p=0,47. Найдите наименьшее число n измерений, которые необходимо произвести, чтобы с вероятностью больше a=0,77 можно было ожидать, что хотя бы один результат измерений окажется неверным.
- 4. Детали, изготовленные в цехе, попадают к одному из 2-х контролеров. Вероятность того, что деталь попадет к 1-му контролеру, равна 0,6; ко 2-му 0,4. Вероятность того, что годная деталь будет признана стандартной 1-м контролером равна 0,92; 2-м контролером 0,97. Годная деталь при проверке оказалась стандартной. Найдите вероятность того, что эту деталь проверял 1-й контролер.
- **5.** Вероятность попадания в цель при одном выстреле равна 0,7. Сделано 4 выстрела. Найдите вероятность того, что в цель попали менее трех раз.

- 1. В ящике 10 белых и 2 черных шаров. Найдите вероятность того, что из двух вынутых наудачу шаров один белый, а другой черный. Вынутый шар в урну не возвращается.
- **2.** Внутрь круга радиуса 10 наудачу брошена точка. Найдите вероятность того, что точка окажется внутри вписанного в круг квадрата.
- **3.** Вероятность события P(A) = 0.86, P(B) = 0.6. Найдите наименьшую возможную вероятность события AB.
- 4. В магазине было проведено исследование продаж некоторого товара. Выяснилось, что этот товар покупают 16 % женщин, 13 % мужчин и 33 % детей. В настоящий момент среди покупателей: 155 женщин, 77 мужчин и 29 детей. Найдите вероятность того, что случайно выбранный для мониторинга покупатель приобретет этот товар.
- **5.** В банке, осуществляющем кредитование населения, 1500 клиентов. Каждому из клиентов выдается кредит 600 тыс. ден. ед. при условии возврата 113,48 % от этой суммы. Вероятность невозврата кредита каждым из клиентов составляет 0,062. С какой вероятностью прибыль банка будет не ниже 45,6 млн рублей?

- 1. В группе учатся 14 юношей и 10 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся либо юношами, либо девушками.
- **2.** В круг радиуса 120 наудачу бросаются 2 точки. Найдите вероятность того, что расстояние от центра круга до ближайшей точки будет не меньше 60.
- **3.** События A, B и C независимы; P(A) = 0.9, P(B) = 0.6 и P(C) = 0.1. Найдите вероятность события A при условии, что наступило событие  $\overline{A} + \overline{B} + \overline{C}$ .
- 4. В первой урне  $m_1 = 6$  белых и  $n_1 = 7$  черных шаров, во второй  $m_2 = 3$  белых и  $n_2 = 4$  черных. Из второй урны случайным образом перекладывают в первую два шара, после чего из первой урны берут один шар. Какова вероятность того, что этот шар белый?
- **5.** Вероятность попадания стрелком в цель равна  $\frac{1}{8}$ . Сделано 150 выстрелов. Определите наивероятнейшее число попаданий в цель.

- 1. Независимо друг от друга 4 человека садятся в поезд, содержащий 11 вагонов. Найдите вероятность того, что по крайней мере двое из них окажутся в одном вагоне.
- 2. На плоскости начерчены две концентрические окружности, радиусы которых 25 и 50 соответственно. Найдите вероятность того, что точка, брошенная наудачу в большой круг, попадет также и в кольцо, образованное построенными окружностями.
- **3.** Вероятность хотя бы одного попадания в мишень при k=8 выстрелах равна p=0.67. Найдите вероятность попадания при одном выстреле.
- 4. В среднем из 100 клиентов банка n=39 обслуживаются первым операционистом и 61 вторым операционистом. Вероятность того, что клиент будет обслужен без помощи заведующего отделением, только самим операционистом, составляет  $p_1=0.59$  и  $p_2=0.53$  соответственно для первого и второго служащих банка. Какова вероятность, что клиент, для обслуживания которого потребовалась помощь заведующего, был направлен к первому операционисту?
- 5. Банк решил вложить поровну средств в три предприятия при условии возврата ему каждым предприятием через определенный срок 163% от вложенной суммы. Вероятность банкротства каждого из предприятий 0,24. Найдите вероятность того, что по истечении срока кредитования банк получит обратно по крайней мере вложенную сумму.

- 1. В киоске продается 9 лотерейных билетов, из которых число выигрышных составляет 3 штуки. Студент купил 5 билетов. Какова вероятность того, что число выигрышных среди них будет не меньше 1, но не больше 2?
- **2.** На отрезок AB длины 180 наудачу поставлена точка X. Найдите вероятность того, что меньший из отрезков AX и XB имеет длину большую, чем 30.
- **3.** События A, B и C независимы; P(A) = 0.1, P(B) = 0.5 и P(C) = 0.8. Найдите вероятность события A + B при условии, что наступило событие B + C.
- 4. В урну, содержащую 6 шаров, опущен белый шар, после чего наудачу извлечен один шар. Найдите вероятность того, что извлеченный шар окажется белым, если равновероятны все возможные предположения о первоначальном количестве белых шаров в урне.
- 5. При введении вакцины против птичьего гриппа иммунитет создается в 99,99% случаях. Определите (приближенно) вероятность того, что из  $20\,000$  вакцинированных птиц заболеют по меньшей мере две птицы.

- 1. Компания из n=15 человек рассаживается в ряд случайным образом. Найдите вероятность того, что между двумя определенными людьми окажутся ровно k=8 человек.
- **2.** Двое договорились о встрече между 7 и 8 часами утра, причем договорились ждать друг друга не более a=24 минут. Считая, что момент прихода на встречу выбирается каждым «наудачу» в пределах указанного часа, найти вероятность того, что встреча состоится.
- **3.** События A, B и C независимы. Найдите вероятность события  $(A+B)\cdot (A+C)\cdot (B+C)$ , если  $P(A)=0,2,\ P(B)=0,6$  и P(C)=0,9.
- 4. Имеется три одинаковых по виду ящика. В первом ящике n=10 белых шаров, во втором m=3 белых и n-m=7 черных шаров, в третьем n=10 черных шаров. Из выбранного наугад ящика вынули белый шар. Найдите вероятность того, что шар вынут из второго ящика.
- **5.** Всхожесть семян данного растения равна 30 %. Найдите (приближенно) вероятность того, что из 1 200 посаженных семян число проросших семян заключено между 339 и 379.

- 1. Имеется 20 экзаменационных билетов, на каждом из которых напечатано условие некоторой задачи. В 10 билетах задачи по статистике, а в остальных 10 билетах задачи по теории вероятностей. Трое студентов выбирают наудачу по одному билету. Найдите вероятность того, что хотя бы одному из них не достанется задачи по теории вероятностей.
- 2. В квадрат со стороной 20 см случайным образом вбрасывается точка. Найдите вероятность того, что эта точка окажется в правой верхней четверти квадрата или не далее, чем в 5 см от центра квадрата.
- **3.** Вероятность события  $P(A)=0.69,\,P(B)=0.73,\,P(C)=0.79.$  Найдите наименьшую возможную вероятность события ABC.
- 4. С первого станка-автомата на сборочный конвеер поступает  $15\,\%$  деталей, со 2-го и 3-го по  $35\,\%$  и  $50\,\%$ , соответственно. Вероятности выдачи бракованных деталей составляют для каждого из них соответственно  $0.25\,\%$ ,  $0.45\,\%$  и  $0.1\,\%$ . Найдите вероятность того, что поступившая на сборку деталь окажется бракованной, а также вероятности того, что она изготовлена на 1-м, 2-м и 3-м станкахавтоматах, при условии, что она оказалась бракованной.
- 5. Фирма участвует в четырех проектах, каждый из которых может закончиться неудачей с вероятностью 0,23. В случае неудачи одного проекта вероятность разорения фирмы равна  $18\,\%$ , двух  $40\,\%$ , трех  $65\,\%$ , четырех  $93\,\%$ . Определите вероятность разорения фирмы.

- 1. В партии из 14 деталей имеется 7 стандартных. Наудачу отобраны 6 деталей. Найдите вероятность того, что среди отобранных деталей ровно 4 стандартных.
- 2. В круг радиуса 30 наудачу бросаются 4 точки. Найдите вероятность того, что расстояние от центра круга до ближайшей точки будет не больше 15.
- **3.** События A, B и C независимы. Найдите вероятность того, что из событий A, B и C наступит ровно одно событие, если P(A)=0,3, P(B)=0,6 и P(C)=0,7.
- 4. Студент пользуется тремя библиотеками, комплектование которых осуществляется независимо друг от друга. Нужная ему книга может быть в данных библиотеках с вероятностями 0,1; 0,88 и 0,66 соответственно. Какова вероятность того, что учащийся достанет нужную ему книгу, обратившись наугад в одну из этих библиотек?
- **5.** Игральная кость подбрасывается до тех пор, пока не выпадет 3 раза число очков, отличное от 6. Какова вероятность, что «шестерка» выпадет 3 раза?

- 1. В группе учатся 11 юношей и 12 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся юношами.
- **2.** Двое договорились о встрече между 8 и 9 часами утра, причем договорились ждать друг друга не более a=5 минут. Считая, что момент прихода на встречу выбирается каждым «наудачу» в пределах указанного часа, найти вероятность того, что встреча не состоится.
- **3.** Вероятность того, что при одном измерении некоторой физической величины допущена ошибка, равна p=0,32. Найдите наименьшее число n измерений, которые необходимо произвести, чтобы с вероятностью больше a=0,91 можно было ожидать, что хотя бы один результат измерений окажется неверным.
- 4. Имеется три одинаковых по виду ящика. В первом ящике n=12 белых шаров, во втором m=8 белых и n-m=4 черных шаров, в третьем n=12 черных шаров. Из выбранного наугад ящика вынули белый шар. Найдите вероятность того, что шар вынут из второго ящика.
- **5.** Вероятность выпуска бракованного изделия равна 0,47. Используя приближенную формулу для числа успехов в схеме Бернулли, найдите вероятность того, что среди 110 выпущенных изделий ровно 57 изделий без брака.

- 1. Независимо друг от друга 3 человека садятся в поезд, содержащий 11 вагонов. Найдите вероятность того, что все они поедут в разных вагонах.
- 2. Внутрь круга радиуса 25 наудачу брошена точка. Найдите вероятность того, что точка окажется внутри вписанного в круг правильного шестиугольника.
- **3.** События A, B и C независимы. Найдите вероятность события  $(A+B)\cdot (A+C)\cdot (B+C),$  если P(A)=0,1, P(B)=0,5 и P(C)=0,7.
- 4. Фирма A занимает 29 % рынка электронной техники, фирма B-42 %, фирма C-29 %. Доля мобильных телефонов в поставках фирмы A составляет 13 %, в поставках фирмы B-7 %, в поставках фирмы C-25 %. Случайный покупатель приобрел мобильный телефон. Какова вероятность того, что этот телефон произведен фирмой B или фирмой C?
- **5.** Всхожесть семян данного растения равна 30 %. Найдите (приближенно) вероятность того, что из 900 посаженных семян число проросших семян заключено между 249 и 289.

- 1. Независимые случайные величины  $X,\,Y,\,Z$  принимают только целые значения: X от 1 до 13 с вероятностью  $\frac{1}{13},\,Y$  от 1 до 10 с вероятностью  $\frac{1}{10},\,Z$  от 1 до 8 с вероятностью  $\frac{1}{8}$ . Найдите вероятность P(X < Y < Z).
- **2.** Дискретные случайные величины  $X_1, X_2, \ldots, X_9$  распределены по закону, заданному таблицей

| X | -1  | 0   | 1   |
|---|-----|-----|-----|
| P | 0,4 | 0,3 | 0,3 |

Найдите математическое ожидание  $E(X_1^2 + X_2^2 + \ldots + X_9^2)$ .

- 3. Вероятность повышения цены акции за один рабочий день на 2% равна 0,3, вероятность повышения на 0,1% равна 0,5,а вероятность понижения на 3% равна 0,2. Найдите математическое ожидание изменения цены акции за 100 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- **4.** Случайные величины  $X_1, \ldots, X_{256}$  распределены по биномиальному закону с параметрами n=3 и  $p=\frac{5}{8}$ . Найдите математическое ожидание  $E(X_1^2+\ldots+X_{256}^2)$ .
- **5.** Случайные величины независимы  $X_1, \dots, X_{17}$  и распределены по геометрическому закону с одинаковым математическим ожиданием, равным 6. Найдите математическое ожидание  $E\left\{\left(X_1+\dots+X_{17}\right)^2\right\}$ .

- 1. Независимые случайные величины X,Y,Z могут принимать только целые значения: X от 0 до 12 с вероятностью  $\frac{1}{13},Y$  от 0 до 13 с вероятностью  $\frac{1}{14}$ , а Z только значения 3 и 7, при этом  $P(Z=3)=\frac{9}{10}$ . Найдите вероятность того, что сумма данных случайных величин будет равна 13.
- **2.** Независимые случайные величины  $X_1,\dots,X_4$  могут принимать только значения 0 и 1. При этом  $P(X_i=0)=0,4,\ i=1,\dots,4.$  Найдите математическое ожидание  $E\left[2^{X_1+\dots+X_4}\right].$
- 3. Вероятность выигрыша 30 рублей в одной партии равна 0,4, вероятность проигрыша 10 рублей равна 0,3, а вероятность проигрыша 40 рублей равна 0,3. Найдите дисперсию капитала игрока после 3 партий.
- 4. Производится 10 независимых испытаний, в каждом из которых подбрасываются 3 игральные кости. Пусть X число испытаний, в которых все выпавшие цифры оказались  $\geqslant 2$ . Найдите дисперсию D(X).
- **5.** Случайные величины  $X_1, \ldots, X_7$  распределены по геометрическому закону с одинаковым математическим ожиданием, равным 10. Найдите математическое ожидание  $E\left(X_1^2+\ldots+X_7^2\right)$ .

- 1. Независимые случайные величины X,Y могут принимать только целые значения: Y от 1 до 12 с вероятностью  $\frac{1}{12}$ , а X только значения 2 и 10, при этом  $P(X=2)=\frac{2}{5}$ . Найдите вероятность того, что сумма данных случайных величин не равна 12.
- **2.** Распределение случайной величины X задано таблицей

| X | 7    | 8   | 11  | 14  | 15   |
|---|------|-----|-----|-----|------|
| P | 0,25 | 0,2 | 0,1 | 0,2 | 0,25 |

Найдите математическое ожидание  $\mu = E(X)$ , среднее квадратичное отклонение  $\sigma = \sigma_X$  и вероятность  $P(|X - \mu| < \sigma)$ .

- 3. Вероятность повышения цены акции за один рабочий день на 1% равна 0,2, вероятность повышения на 0,1% равна 0,7, а вероятность понижения на 2% равна 0,1. Найдите математическое ожидание изменения цены акции за 200 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- 4. Отрезок длины 35 поделен на две части длины 25 и 10 соответственно. 8 точек последовательно бросаются наудачу на отрезок. Пусть X случайная величина, равная числу точек, попавших на отрезок длины 10. Найдите математическое ожидание и среднее квадратичное отклонение величины X.
- 5. На плоскости начерчены два квадрата, стороны которых 10 и 50 соответственно. Меньший квадрат содержится внутри большего квадрата. В большой квадрат случайным образом бросают точки до тех пор, пока не попадут в маленький квадрат. Пусть случайная величина X число бросаний. Найдите математическое ожидание E(X) и дисперсию D(X).

- 1. Независимые случайные величины X,Y,Z могут принимать только целые значения: X от 1 до 7 с вероятностью  $\frac{1}{7},Y$  от 1 до 14 с вероятностью  $\frac{1}{14}$ , а Z только значения 7 и 14, при этом  $P(Z=7)=\frac{3}{5}$ . Найдите вероятность того, что сумма данных случайных величин будет не меньше 21.
- **2.** Независимые дискретные случайные величины X,Y могут принимать только значения 0 и 1. При этом P(X=0)=0,3, P(Y=0)=0,9. Найдите математическое ожидание  $E\lceil (X-Y)^2 \rceil$ .
- 3. Вероятность выигрыша 20 рублей в одной партии равна 0,5, вероятность проигрыша 10 рублей равна 0,3, а вероятность проигрыша 50 рублей равна 0,2. Найдите дисперсию капитала игрока после 6 партий.
- 4. На плоскости начерчены две окружности, радиусы которых 10 и 50 соответственно. Меньшая окружность содержится внутри большего круга. В большой круг наудачу бросаются 7 точек. Пусть случайная величина X число точек, попавших в малый круг. Вычислите математическое ожидание E(X) и дисперсию D(X).
- 5. В спортивной лотерее каждую неделю на 100 билетов разыгрывается 18 палаток и 18 рюкзаков. Турист решил каждую неделю покупать по одному билету до тех пор, пока он не выиграет палатку и рюкзак. Найдите среднее время реализации данного намерения (время измеряется в неделях).

- 1. Независимые случайные величины  $X,\,Y,\,Z$  принимают только целые значения: X от 1 до 10 с вероятностью  $\frac{1}{10},\,Y$  от 1 до 7 с вероятностью  $\frac{1}{7},\,Z$  от 1 до 6 с вероятностью  $\frac{1}{6}$ . Найдите вероятность того, что  $X,\,Y,\,Z$  примут разные значения.
- **2.** Независимые случайные величины  $X_1, X_2, \ldots, X_{10}$  принимают только целые значения  $-6, -5, \ldots, 3, 4$ . Найдите математическое ожидание  $E(X_1 \cdot X_2 \ldots X_{10})$ , если известно, что возможные значения равновероятны.
- 3. Вероятность выигрыша 20 рублей в одной партии равна 0,6, вероятность проигрыша 10 рублей равна 0,2, а вероятность проигрыша 60 рублей равна 0,2. Найдите дисперсию капитала игрока после 5 партий.
- 4. Производится  $3\,840$  независимых испытаний, состоящих в том, что одновременно подбрасываются 7 монет. Пусть X число испытаний, в которых выпало 3 герба. Найдите математическое ожидание E(X).
- **5.** Для пуассоновской случайной величины X отношение  $\frac{P(X=6)}{P(X=5)} = 7$ . Найдите математическое ожидание E(X).

- 1. Независимые случайные величины X и Y принимают только целые значения: X от -7 до 7, Y от -5 до 5. Найдите P(XY>0), если известно, что возможные значения X и Y равновероятны.
- **2.** Независимые дискретные случайные величины X, Y могут принимать только значения 0 и 1. При этом P(X=0)=0.4, P(Y=0)=0.1. Найдите математическое ожидание  $E[(X+Y)^2]$ .
- 3. Вероятность повышения цены акции за один рабочий день на 3% равна 0,2, вероятность повышения на 0,2% равна 0,5, а вероятность понижения на 2% равна 0,3. Найдите математическое ожидание изменения цены акции за 300 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- **4.** Случайные величины X, Y принимают только значения 0 и 1. Найдите дисперсию D(X-Y), если вероятности P(X=1)=P(Y=1)=0,3, а коэффициент корреляции X и Y равен 0,1.
- **5.** Случайные величины X, Y распределены по геометрическому закону. Найдите дисперсию D(X-Y), если их математические ожидания равны 6, а коэффициент корреляции X и Y равен 0.8.

- 1. Независимые случайные величины X,Y,Z могут принимать только целые значения: Y и Z от 1 до 21 с вероятностью  $\frac{1}{21}$ , а X только значения 5 и 10, при этом  $P(X=5)=\frac{3}{10}$ . Найдите вероятность P(X< Y< Z).
- **2.** Распределение дискретной случайной величины X задано таблиней

| X | 1   | 4   | 7   |  |
|---|-----|-----|-----|--|
| P | 0,4 | 0,4 | 0,2 |  |

Найдите дисперсию D(X).

- 3. Вероятность выигрыша 20 рублей в одной партии равна 0,7, вероятность проигрыша 10 рублей равна 0,1, а вероятность проигрыша 70 рублей равна 0,2. Найдите дисперсию капитала игрока после 5 партий.
- **4.** Случайные величины  $X_1,\dots,X_{245}$  независимы и распределены по биномиальному закону с параметрами n=5 и  $p=\frac{3}{7}$ . Найдите математическое ожидание  $E\left\{(X_1+\dots+X_{245})^2\right\}$ .
- **5.** Случайные величины  $X_1, \dots, X_6$  распределены по закону Пуассона с одинаковым математическим ожиданием, равным 2. Найдите математическое ожидание  $E\left(X_1^2+\dots+X_6^2\right)$ .

- 1. Независимые случайные величины X,Y принимают только целые значения: X от -5 до 5 с вероятностью  $\frac{1}{11},Y$  от -9 до 9 с вероятностью  $\frac{1}{19}$ . Найдите P(XY<0).
- **2.** Для случайной величины X известно, что  $E(X)=4,\,E(|X|)=9,\,D(|X|)=90.$ Найдите дисперсию D(X).
- 3. Вероятность повышения цены акции за один рабочий день на 1% равна 0,4, вероятность повышения на 0,2% равна 0,5, а вероятность понижения на 4% равна 0,1. Найдите математическое ожидание изменения цены акции за 300 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- **4.** Для случайных величин X, Y даны их математические ожидания и дисперсии  $E(X) = E(Y) = 7, \ D(X) = D(Y) = 90,$  а также коэффициент корреляции 0,4. Найдите математическое ожидание  $E[(X+Y)^2].$
- **5.** Случайные величины  $X_1, \ldots, X_{16}$  независимы и распределены по закону Пуассона с одинаковым математическим ожиданием, равным 8. Найдите математическое ожидание  $E\{(X_1 + \ldots + X_{16})^2\}$ .

- 1. Независимые случайные величины X, Y могут принимать только целые значения: Y от 1 до 12 с вероятностью  $\frac{1}{12}$ , а X только значения 3 и 9, при этом  $P(X=3)=\frac{9}{10}$ . Найдите вероятность того, что сумма данных случайных величин будет меньше 12.
- **2.** Независимые случайные величины  $X_1, \ldots, X_{90}$  могут принимать только значения 0 и 1. При этом  $P(X_i=0)=0,7,\ i=1,\ldots,90.$  Найдите математическое ожидание  $E[(X_1+\ldots+X_{90})^2].$
- 3. Вероятность повышения цены акции за один рабочий день на 2% равна 0,4, вероятность повышения на 0,3% равна 0,4, а вероятность понижения на 4% равна 0,2. Найдите математическое ожидание изменения цены акции за 200 рабочих дней, считая, что начальная цена акции составляет  $1\,000$  рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- 4. Даны математические ожидания случайных величин X и Y: E(X)=40, E(Y)=30, их дисперсии D(X)=9, D(Y)=8 и ковариация  $\mathrm{Cov}(X,Y)=6.$  Найдите математическое ожидание E(X-Y) и дисперсию D(X-Y).
- 5. В серии независимых испытаний, которые проводятся с частотой одно испытание в единицу времени, вероятность наступления события A в одном испытании равна  $\frac{1}{7}$ . Пусть T время ожидания наступления события A 13 раз (за все время ожидания). Найдите математическое ожидание E(T) и дисперсию D(T).

- 1. Независимые дискретные случайные величины X, Y принимают только целые значения: X от 1 до 18 с вероятностью  $\frac{1}{18}, Y$  от 1 до 23 с вероятностью  $\frac{1}{23}$ . Найдите вероятность P(X+Y=34).
- **2.** Для независимых случайных величин  $X_1, \ldots, X_6$  известно, что их математические ожидания  $E(X_i)=1$ , дисперсии  $D(X_i)=3$ ,  $i=1,\ldots,6$ . Найдите дисперсию произведения  $D(X_1\ldots X_6)$ .
- 3. Вероятность выигрыша 50 рублей в одной партии равна 0,4, вероятность проигрыша 10 рублей равна 0,1, а вероятность проигрыша 40 рублей равна 0,5. Найдите дисперсию капитала игрока после 6 партий.
- **4.** Производится 13 независимых испытаний с вероятностью успеха 0.7 в каждом испытании. Пусть X число успехов в испытаниях с номерами  $1, 2, \ldots, 9, Y$  число успехов в испытаниях с номерами  $6, 7, \ldots, 13$ . Найдите дисперсию D(X + 2Y).
- 5. На плоскости начерчены два квадрата, стороны которых 20 и 40 соответственно. Меньший квадрат содержится внутри большего квадрата. В большой квадрат случайным образом бросают точки до тех пор, пока не попадут в маленький квадрат. Пусть случайная величина X число бросаний. Найдите математическое ожидание E(X) и дисперсию D(X).

- 1. Независимые случайные величины  $X_1, \ldots, X_7$  принимают только целые значения от 0 до 10. Найдите вероятность  $P(X_1 \cdot X_2 \ldots X_7 = 0)$ , если известно, что все возможные значения равновероятны.
- **2.** Дискретные случайные величины  $X_1, X_2, \ldots, X_5$  распределены по закону, заданному таблицей

|   | X | -1  | 0   | 1   |   |
|---|---|-----|-----|-----|---|
| ĺ | P | 0,2 | 0,1 | 0,7 | ľ |

Найдите математическое ожидание  $E[X_1^2 + X_2^2 + \ldots + X_5^2]$ .

- 3. Вероятность выигрыша 30 рублей в одной партии равна 0,6, вероятность проигрыша 10 рублей равна 0,1, а вероятность проигрыша 60 рублей равна 0,3. Найдите дисперсию капитала игрока после 3 партий.
- **4.** Случайные величины X, Y принимают только значения 0 и 1. Найдите дисперсию D(X-Y), если вероятности P(X=1)=P(Y=1)=0.9, а коэффициент корреляции X и Y равен 0.3.
- **5.** Для пуассоновской случайной величины X отношение  $\frac{P(X=10)}{P(X=9)}=$  = 13. Найдите математическое ожидание E(X).

- 1. Независимые случайные величины X,Y принимают только целые значения: X от 1 до 12 с вероятностью  $\frac{1}{12},Y$  от 1 до 16 с вероятностью  $\frac{1}{16}$ . Найдите вероятность P(X+Y<7).
- **2.** Для случайной величины X известно, что  $E(X)=1,\,E(|X|)=2,\,D(|X|)=70.$  Найдите дисперсию D(X).
- 3. Вероятность повышения цены акции за один рабочий день на 2% равна 0,4, вероятность повышения на 0,2% равна 0,4, а вероятность понижения на 4% равна 0,2. Найдите математическое ожидание изменения цены акции за 100 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- 4. Даны математические ожидания случайных величин X и Y: E(X)=40, E(Y)=20, их дисперсии D(X)=5, D(Y)=3 и ковариация  $\mathrm{Cov}(X,Y)=1.$  Найдите математическое ожидание E(X-Y) и дисперсию D(X-Y).
- **5.** Случайные величины независимы  $X_1, \ldots, X_8$  и распределены по геометрическому закону с одинаковым математическим ожиданием, равным 3. Найдите математическое ожидание  $E\Big\{(X_1+\ldots+X_8)^2\Big\}$ .

- 1. Независимые случайные величины X,Y принимают только целые значения: X от -5 до 9 с вероятностью  $\frac{1}{15},Y$  от -8 до 5 с вероятностью  $\frac{1}{14}$ . Найдите вероятность P(XY=0).
- **2.** Независимые дискретные случайные величины X, Y могут принимать только значения 0 и 1. При этом P(X=0)=0.9, P(Y=0)=0.2. Найдите математическое ожидание  $E[(X-Y)^2]$ .
- 3. Вероятность выигрыша 20 рублей в одной партии равна 0,6, вероятность проигрыша 10 рублей равна 0,2, а вероятность проигрыша 60 рублей равна 0,2. Найдите дисперсию капитала игрока после 7 партий.
- 4. Производится 13 независимых испытаний с вероятностью успеха 0.7 в каждом испытании. Пусть X число успехов в испытаниях с номерами  $1,2,\ldots,9,Y$  число успехов в испытаниях с номерами  $5,6,\ldots,13$ . Найдите дисперсию D(X+2Y).
- 5. В спортивной лотерее каждую неделю на 100 билетов разыгрывается 19 палаток и 19 рюкзаков. Турист решил каждую неделю покупать по одному билету до тех пор, пока он не выиграет палатку и рюкзак. Найдите среднее время реализации данного намерения (время измеряется в неделях).

- 1. Независимые случайные величины X,Y принимают только целые значения: X от 1 до 17 с вероятностью  $\frac{1}{17},Y$  от 1 до 5 с вероятностью  $\frac{1}{5}$ . Найдите вероятность P(X < Y).
- **2.** Распределение случайной величины X задано таблицей

|   | X | 7   | 11   | 13  | 15   | 19  |
|---|---|-----|------|-----|------|-----|
| ı | P | 0,1 | 0,05 | 0,7 | 0,05 | 0,1 |

Найдите математическое ожидание  $\mu = E(X)$ , среднее квадратичное отклонение  $\sigma = \sigma_X$  и вероятность  $P(|X - \mu| < \sigma)$ .

- 3. Вероятность повышения цены акции за один рабочий день на 3% равна 0,4, вероятность повышения на 0,2 % равна 0,3, а вероятность понижения на 4 % равна 0,3. Найдите математическое ожидание изменения цены акции за 100 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- 4. На плоскости начерчены две окружности, радиусы которых 20 и 100 соответственно. Меньшая окружность содержится внутри большего круга. В большой круг наудачу бросаются 5 точек. Пусть случайная величина X число точек, попавших в малый круг. Вычислите математическое ожидание E(X) и дисперсию D(X).
- **5.** Случайные величины  $X_1, \dots, X_{16}$  независимы и распределены по закону Пуассона с одинаковым математическим ожиданием, равным 8. Найдите математическое ожидание  $E\Big\{\big(X_1+\dots+X_{16}\big)^2\Big\}$ .

- 1. Случайная величина X принимает только целые значения  $1,2,\dots,25$ . При этом вероятности возможных значений X пропорциональны значениям: P(X=k)=ck. Найдите значение константы c и вероятность P(X>4).
- **2.** Независимые случайные величины  $X_1, X_2, \ldots, X_5$  принимают только целые значения  $-8, -7, \ldots, 3, 4$ . Найдите математическое ожидание  $E(X_1 \cdot X_2 \ldots X_5)$ , если известно, что возможные значения равновероятны.
- 3. Вероятность выигрыша 20 рублей в одной партии равна 0,5, вероятность проигрыша 10 рублей равна 0,3, а вероятность проигрыша 50 рублей равна 0,2. Найдите дисперсию капитала игрока после 5 партий.
- 4. Производится  $1\,280$  независимых испытаний, состоящих в том, что одновременно подбрасываются 8 монет. Пусть X число испытаний, в которых выпало 2 герба. Найдите математическое ожидание E(X).
- 5. На плоскости начерчены два квадрата, стороны которых 20 и 60 соответственно. Меньший квадрат содержится внутри большего квадрата. В большой квадрат случайным образом бросают точки до тех пор, пока не попадут в маленький квадрат. Пусть случайная величина X число бросаний. Найдите математическое ожидание E(X) и дисперсию D(X).

- 1. Независимые случайные величины X, Y могут принимать только целые значения: Y от 1 до 15 с вероятностью  $\frac{1}{15}$ , а X только значения 6 и 9, при этом  $P(X=6)=\frac{9}{10}$ . Найдите вероятность того, что сумма данных случайных величин будет меньше 15.
- **2.** Распределение дискретной случайной величины X задано таблицей

| X | 1   | 3   | 5   |  |
|---|-----|-----|-----|--|
| P | 0,2 | 0,2 | 0,6 |  |

Найдите дисперсию D(X).

- 3. Вероятность повышения цены акции за один рабочий день на 4% равна 0,1, вероятность повышения на 0,3 % равна 0,5, а вероятность понижения на 1 % равна 0,4. Найдите математическое ожидание изменения цены акции за 200 рабочих дней, считая, что начальная цена акции составляет 1 000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- 4. Отрезок длины 35 поделен на две части длины 15 и 20 соответственно. 8 точек последовательно бросаются наудачу на отрезок. Пусть X случайная величина, равная числу точек, попавших на отрезок длины 20. Найдите математическое ожидание и среднее квадратичное отклонение величины X.
- **5.** Случайные величины  $X_1, \ldots, X_5$  распределены по геометрическому закону с одинаковым математическим ожиданием, равным 6. Найдите математическое ожидание  $E(X_1^2 + \ldots + X_5^2)$ .

- 1. Независимые случайные величины X, Y могут принимать только целые значения: Y от 1 до 8 с вероятностью  $\frac{1}{8}$ , а X только значения 2 и 6, при этом  $P(X=2)=\frac{2}{5}$ . Найдите вероятность того, что сумма данных случайных величин не равна 8.
- **2.** Независимые случайные величины  $X_1,\dots,X_4$  могут принимать только значения 0 и 1. При этом  $P(X_i=0)=0,4,\ i=1,\dots,4.$  Найдите математическое ожидание  $E\left[3^{X_1+\dots+X_4}\right].$
- 3. Вероятность повышения цены акции за один рабочий день на 3% равна 0,2, вероятность повышения на 0,3% равна 0,5, а вероятность понижения на 2% равна 0,3. Найдите математическое ожидание изменения цены акции за 300 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- **4.** Случайные величины  $X_1,\dots,X_{243}$  независимы и распределены по биномиальному закону с параметрами n=4 и  $p=\frac{1}{9}$ . Найдите математическое ожидание  $E\Big\{(X_1+\dots+X_{243})^2\Big\}$ .
- **5.** Случайные величины X, Y распределены по геометрическому закону. Найдите дисперсию D(X-Y), если их математические ожидания равны 5, а коэффициент корреляции X и Y равен 0,3.

- 1. Случайная величина X принимает только целые значения  $1,2,\dots,27$ . При этом вероятности возможных значений X пропорциональны значениям: P(X=k)=ck. Найдите значение константы c и вероятность P(X>5).
- **2.** Независимые дискретные случайные величины X, Y могут принимать только значения 0 и 1. При этом P(X=0)=0.9, P(Y=0)=0.6. Найдите математическое ожидание  $E[(X+Y)^2]$ .
- 3. Вероятность выигрыша 60 рублей в одной партии равна 0,2, вероятность проигрыша 10 рублей равна 0,2, а вероятность проигрыша 20 рублей равна 0,6. Найдите дисперсию капитала игрока после 3 партий.
- 4. Для случайных величин X, Y даны их математические ожидания и дисперсии E(X) = E(Y) = 3, D(X) = D(Y) = 10, а также коэффициент корреляции 0,6. Найдите математическое ожидание  $E[(X+Y)^2]$ .
- **5.** Случайные величины  $X_1, \dots, X_{12}$  распределены по закону Пуассона с одинаковым математическим ожиданием, равным 6. Найдите математическое ожидание  $E(X_1^2 + \dots + X_{12}^2)$ .

- 1. Независимые случайные величины X,Y,Z могут принимать только целые значения: X от 1 до 6 с вероятностью  $\frac{1}{6},Y$  от 1 до 14 с вероятностью  $\frac{1}{14}$ , а Z только значения 6 и 14, при этом  $P(Z=6)=\frac{1}{10}$ . Найдите вероятность того, что сумма данных случайных величин будет не меньше 20.
- **2.** Независимые случайные величины  $X_1, \ldots, X_{10}$  могут принимать только значения 0 и 1. При этом  $P(X_i = 0) = 0.9, i = 1, \ldots, 10$ . Найдите математическое ожидание  $E[(X_1 + \ldots + X_{10})^2]$ .
- 3. Вероятность выигрыша 30 рублей в одной партии равна 0,5, вероятность проигрыша 10 рублей равна 0,2, а вероятность проигрыша 50 рублей равна 0,3. Найдите дисперсию капитала игрока после 7 партий.
- **4.** Случайные величины  $X_1, \ldots, X_{243}$  распределены по биномиальному закону с параметрами n=5 и  $p=\frac{2}{9}$ . Найдите математическое ожидание  $E(X_1^2+\ldots+X_{243}^2)$ .
- 5. На плоскости начерчены два квадрата, стороны которых 10 и 50 соответственно. Меньший квадрат содержится внутри большего квадрата. В большой квадрат случайным образом бросают точки до тех пор, пока не попадут в маленький квадрат. Пусть случайная величина X число бросаний. Найдите математическое ожидание E(X) и дисперсию D(X).

- 1. Независимые дискретные случайные величины X, Y принимают только целые значения: X от 1 до 12 с вероятностью  $\frac{1}{12}, Y$  от 1 до 14 с вероятностью  $\frac{1}{14}$ . Найдите вероятность P(X+Y=21).
- **2.** Для независимых случайных величин  $X_1, \ldots, X_4$  известно, что их математические ожидания  $E(X_i) = -1$ , дисперсии  $D(X_i) = 3$ ,  $i = 1, \ldots, 4$ . Найдите дисперсию произведения  $D(X_1, \ldots, X_4)$ .
- 3. Вероятность повышения цены акции за один рабочий день на 2% равна 0,1, вероятность повышения на 0,2% равна 0,7, а вероятность понижения на 1% равна 0,2. Найдите математическое ожидание изменения цены акции за 300 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- 4. Производится 10 независимых испытаний, в каждом из которых подбрасываются 2 игральные кости. Пусть X число испытаний, в которых все выпавшие цифры оказались  $\geqslant 4$ . Найдите дисперсию D(X).
- **5.** В серии независимых испытаний, которые проводятся с частотой одно испытание в единицу времени, вероятность наступления события A в одном испытании равна  $\frac{1}{7}$ . Пусть T время ожидания наступления события A 17 раз (за все время ожидания). Найдите математическое ожидание E(T) и дисперсию D(T).

- 1. Независимые случайные величины X,Y,Z принимают только целые значения: X от 1 до 13 с вероятностью  $\frac{1}{13},Y$  от 1 до 12 с вероятностью  $\frac{1}{12},Z$  от 1 до 8 с вероятностью  $\frac{1}{8}$ . Найдите вероятность того, что X,Y,Z примут разные значения.
- **2.** Для независимых случайных величин  $X_1, \ldots, X_4$  известно, что их математические ожидания  $E(X_i) = -2$ , дисперсии  $D(X_i) = 1$ ,  $i = 1, \ldots, 4$ . Найдите дисперсию произведения  $D(X_1 \ldots X_4)$ .
- 3. Вероятность повышения цены акции за один рабочий день на 3% равна 0,1, вероятность повышения на 0,1% равна 0,6, а вероятность понижения на 1% равна 0,3. Найдите математическое ожидание изменения цены акции за 100 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- **4.** Случайные величины  $X_1, \ldots, X_{180}$  распределены по биномиальному закону с параметрами n=3 и  $p=\frac{5}{6}$ . Найдите математическое ожидание  $E(X_1^2+\ldots+X_{180}^2)$ .
- **5.** Случайные величины  $X_1, \dots, X_{18}$  независимы и распределены по закону Пуассона с одинаковым математическим ожиданием, равным 7. Найдите математическое ожидание  $E\left\{\left(X_1+\ldots+X_{18}\right)^2\right\}$ .

- 1. Независимые случайные величины X,Y,Z могут принимать только целые значения: Y и Z от 1 до 20 с вероятностью  $\frac{1}{20}$ , а X только значения 5 и 9, при этом  $P(X=5)=\frac{4}{5}$ . Найдите вероятность P(X<Y<Z).
- **2.** Распределение случайной величины X задано таблицей

| X | 6   | 7    | 11  | 15   | 16  |  |
|---|-----|------|-----|------|-----|--|
| P | 0,2 | 0,15 | 0,3 | 0,15 | 0,2 |  |

Найдите математическое ожидание  $\mu = E(X)$ , среднее квадратичное отклонение  $\sigma = \sigma_X$  и вероятность  $P(|X - \mu| < \sigma)$ .

- 3. Вероятность выигрыша 20 рублей в одной партии равна 0,7, вероятность проигрыша 10 рублей равна 0,1, а вероятность проигрыша 70 рублей равна 0,2. Найдите дисперсию капитала игрока после 6 партий.
- 4. Даны математические ожидания случайных величин X и Y: E(X)=30, E(Y)=70, их дисперсии D(X)=5, D(Y)=8 и ковариация  $\mathrm{Cov}(X,Y)=3.$  Найдите математическое ожидание E(X-Y) и дисперсию D(X-Y).
- 5. В серии независимых испытаний, которые проводятся с частотой одно испытание в единицу времени, вероятность наступления события A в одном испытании равна  $\frac{1}{11}$ . Пусть T время ожидания наступления события A 15 раз (за все время ожидания). Найдите математическое ожидание E(T) и дисперсию D(T).

- 1. Независимые случайные величины X,Y,Z могут принимать только целые значения: X от 0 до 6 с вероятностью  $\frac{1}{7},Y$  от 0 до 18 с вероятностью  $\frac{1}{19}$ , а Z только значения 1 и 8, при этом  $P(Z=1)=\frac{9}{10}$ . Найдите вероятность того, что сумма данных случайных величин будет равна 11.
- **2.** Независимые дискретные случайные величины X, Y могут принимать только значения 0 и 1. При этом P(X=0)=0.7, P(Y=0)=0.1. Найдите математическое ожидание  $E[(X+Y)^2]$ .
- 3. Вероятность повышения цены акции за один рабочий день на 1% равна 0,2, вероятность повышения на 0,1% равна 0,7, а вероятность понижения на 2% равна 0,1. Найдите математическое ожидание изменения цены акции за 100 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- 4. Производится 14 независимых испытаний с вероятностью успеха 0,8 в каждом испытании. Пусть X число успехов в испытаниях с номерами  $1,2,\ldots,9,Y$  число успехов в испытаниях с номерами  $5,6,\ldots,14$ . Найдите дисперсию D(X+2Y).
- **5.** Случайные величины независимы  $X_1, \dots, X_{14}$  и распределены по геометрическому закону с одинаковым математическим ожиданием, равным 5. Найдите математическое ожидание  $E\Big\{(X_1+\ldots+X_{14})^2\Big\}.$

- 1. Независимые случайные величины X,Y принимают только целые значения: X от 1 до 12 с вероятностью  $\frac{1}{12},Y$  от 1 до 7 с вероятностью  $\frac{1}{7}$ . Найдите вероятность P(X < Y).
- **2.** Дискретные случайные величины  $X_1, X_2, \dots, X_9$  распределены по закону, заданному таблицей

| X | -1  | 0   | 1   |   |
|---|-----|-----|-----|---|
| P | 0,2 | 0,3 | 0,5 | ľ |

Найдите математическое ожидание  $E[X_1^2 + X_2^2 + \ldots + X_9^2]$ .

- 3. Вероятность выигрыша 30 рублей в одной партии равна 0,5, вероятность проигрыша 10 рублей равна 0,2, а вероятность проигрыша 50 рублей равна 0,3. Найдите дисперсию капитала игрока после 6 партий.
- 4. Производится 18 независимых испытаний, в каждом из которых подбрасываются 4 игральные кости. Пусть X число испытаний, в которых все выпавшие цифры оказались  $\geqslant$  3. Найдите дисперсию D(X).
- 5. В спортивной лотерее каждую неделю на 100 билетов разыгрывается 5 палаток и 5 рюкзаков. Турист решил каждую неделю покупать по одному билету до тех пор, пока он не выиграет палатку и рюкзак. Найдите среднее время реализации данного намерения (время измеряется в неделях).

- 1. Независимые случайные величины X и Y принимают только целые значения: X от -8 до 8, Y от -9 до 6. Найдите P(XY>0), если известно, что возможные значения X и Y равновероятны.
- **2.** Независимые случайные величины  $X_1, \ldots, X_{50}$  могут принимать только значения 0 и 1. При этом  $P(X_i = 0) = 0,6, i = 1,\ldots,50$ . Найдите математическое ожидание  $E[(X_1 + \ldots + X_{50})^2]$ .
- 3. Вероятность повышения цены акции за один рабочий день на 3% равна 0,4, вероятность повышения на 0,3% равна 0,3, а вероятность понижения на 4% равна 0,3. Найдите математическое ожидание изменения цены акции за 300 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- **4.** Случайные величины  $X_1,\dots,X_{147}$  независимы и распределены по биномиальному закону с параметрами n=4 и  $p=\frac{1}{7}$ . Найдите математическое ожидание  $E\{(X_1+\dots+X_{147})^2\}$ .
- **5.** Случайные величины  $X_1, \ldots, X_{19}$  распределены по закону Пуассона с одинаковым математическим ожиданием, равным 9. Найдите математическое ожидание  $E(X_1^2 + \ldots + X_{19}^2)$ .

- 1. Независимые случайные величины X,Y принимают только целые значения: X от -9 до 9 с вероятностью  $\frac{1}{19},Y$  от -6 до 5 с вероятностью  $\frac{1}{12}$ . Найдите вероятность P(XY=0).
- **2.** Независимые дискретные случайные величины X, Y могут принимать только значения 0 и 1. При этом P(X=0)=0.2, P(Y=0)=0.7. Найдите математическое ожидание  $E[(X-Y)^2]$ .
- 3. Вероятность выигрыша 40 рублей в одной партии равна 0,3, вероятность проигрыша 10 рублей равна 0,3, а вероятность проигрыша 30 рублей равна 0,4. Найдите дисперсию капитала игрока после 4 партий.
- 4. Отрезок длины 35 поделен на две части длины 15 и 20 соответственно. 6 точек последовательно бросаются наудачу на отрезок. Пусть X случайная величина, равная числу точек, попавших на отрезок длины 20. Найдите математическое ожидание и среднее квадратичное отклонение величины X.
- **5.** Для пуассоновской случайной величины X отношение  $\frac{P(X=10)}{P(X=9)} = 4$ . Найдите математическое ожидание E(X).

- 1. Независимые случайные величины X,Y принимают только целые значения: X от 1 до 13 с вероятностью  $\frac{1}{13},Y$  от 1 до 14 с вероятностью  $\frac{1}{14}$ . Найдите вероятность P(X+Y<6).
- **2.** Независимые случайные величины  $X_1, X_2, \ldots, X_7$  принимают только целые значения  $-9, -8, \ldots, 12, 13$ . Найдите математическое ожидание  $E(X_1 \cdot X_2 \ldots X_7)$ , если известно, что возможные значения равновероятны.
- 3. Вероятность выигрыша 20 рублей в одной партии равна 0,7, вероятность проигрыша 10 рублей равна 0,1, а вероятность проигрыша 70 рублей равна 0,2. Найдите дисперсию капитала игрока после 6 партий.
- 4. На плоскости начерчены две окружности, радиусы которых 5 и 15 соответственно. Меньшая окружность содержится внутри большего круга. В большой круг наудачу бросаются 10 точек. Пусть случайная величина X число точек, попавших в малый круг. Вычислите математическое ожидание E(X) и дисперсию D(X).
- 5. Случайные величины X, Y распределены по геометрическому закону. Найдите дисперсию D(X-Y), если их математические ожидания равны 6, а коэффициент корреляции X и Y равен 0,8.

- 1. Независимые случайные величины  $X_1, \ldots, X_4$  принимают только целые значения от 0 до 10. Найдите вероятность  $P(X_1 \cdot X_2 \ldots X_4 = 0)$ , если известно, что все возможные значения равновероятны.
- **2.** Независимые случайные величины  $X_1,\ldots,X_5$  могут принимать только значения 0 и 1. При этом  $P(X_i=0)=0.6,\ i=1,\ldots,5.$  Найдите математическое ожидание  $E[2^{X_1+\ldots+X_5}].$
- 3. Вероятность повышения цены акции за один рабочий день на 1% равна 0,2, вероятность повышения на 0,3% равна 0,7, а вероятность понижения на 2% равна 0,1. Найдите математическое ожидание изменения цены акции за 200 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- 4. Производится 640 независимых испытаний, состоящих в том, что одновременно подбрасываются 7 монет. Пусть X число испытаний, в которых выпало 2 герба. Найдите математическое ожидание E(X).
- **5.** Случайные величины  $X_1, \dots, X_{15}$  распределены по геометрическому закону с одинаковым математическим ожиданием, равным 3. Найдите математическое ожидание  $E(X_1^2 + \dots + X_{15}^2)$ .

- 1. Независимые случайные величины X,Y принимают только целые значения: X от -8 до 7 с вероятностью  $\frac{1}{16},Y$  от -9 до 8 с вероятностью  $\frac{1}{18}$ . Найдите P(XY<0).
- **2.** Распределение дискретной случайной величины X задано таблипей

| X | 3   | 6   | 7   |   |
|---|-----|-----|-----|---|
| P | 0,4 | 0,4 | 0,2 | ľ |

Найдите дисперсию D(X).

- 3. Вероятность выигрыша 60 рублей в одной партии равна 0,2, вероятность проигрыша 10 рублей равна 0,2, а вероятность проигрыша 20 рублей равна 0,6. Найдите дисперсию капитала игрока после 4 партий.
- **4.** Для случайных величин X, Y даны их математические ожидания и дисперсии  $E(X)=E(Y)=9,\ D(X)=D(Y)=40,$  а также коэффициент корреляции 0,5. Найдите математическое ожидание  $E[(X+Y)^2].$
- 5. На плоскости начерчены два квадрата, стороны которых 25 и 50 соответственно. Меньший квадрат содержится внутри большего квадрата. В большой квадрат случайным образом бросают точки до тех пор, пока не попадут в маленький квадрат. Пусть случайная величина X число бросаний. Найдите математическое ожидание E(X) и дисперсию D(X).

- 1. Независимые случайные величины  $X,\,Y,\,Z$  принимают только целые значения: X от 1 до 16 с вероятностью  $\frac{1}{16},\,Y$  от 1 до 13 с вероятностью  $\frac{1}{13},\,Z$  от 1 до 9 с вероятностью  $\frac{1}{9}$ . Найдите вероятность P(X < Y < Z).
- **2.** Для случайной величины X известно, что  $E(X)=3,\, E(|X|)=4,\, D(|X|)=20.$  Найдите дисперсию D(X).
- 3. Вероятность повышения цены акции за один рабочий день на 4% равна 0,2, вероятность повышения на 0,1% равна 0,4, а вероятность понижения на 2% равна 0,4. Найдите математическое ожидание изменения цены акции за 200 рабочих дней, считая, что начальная цена акции составляет 1000 рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- **4.** Случайные величины X, Y принимают только значения 0 и 1. Найдите дисперсию D(X-Y), если вероятности P(X=1)=P(Y=1)=0.8, а коэффициент корреляции X и Y равен 0.9.
- 5. На плоскости начерчены два квадрата, стороны которых 5 и 25 соответственно. Меньший квадрат содержится внутри большего квадрата. В большой квадрат случайным образом бросают точки до тех пор, пока не попадут в маленький квадрат. Пусть случайная величина X число бросаний. Найдите математическое ожидание E(X) и дисперсию D(X).

- 1. Случайная величина X равномерно распределена на отрезке [-8,12]. Найдите вероятность  $P\left(\frac{1}{X-8}>4\right)$ .
- **2.** Случайная величина X равномерно распределена на отрезке [-1,1]. Найдите математическое ожидание  $E\left(\sqrt[7]{X^{12}}\right)$ .
- 3. Для нормальной случайной величины X с математическим ожиданием E(X)=15 и дисперсией D(X)=16 найдите вероятность P(X>10,2).
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели,  $n \geqslant 1$ . Известно, что отношения цен  $\frac{S(n)}{S(n-1)}, \ n>1$ , являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu=0.00264$  и  $\sigma=0.0671$ . Найдите вероятность того, что цена акции будет расти подряд две недели.
- **5.** Для независимых, распределенных по геометрическому закону случайных величин  $X_1, X_2, \ldots$  найдите предел

$$\lim_{n\to\infty} P(X_1+\ldots+X_n>8n+\sqrt{3n}),$$

если известно, что  $E(X_i) = 8$ .

1.  $\Phi$ ункция плотности вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} 0, & x < 5, \\ \frac{C}{x^4}, & x \geqslant 5. \end{cases}$$

Найдите константу C и вероятность P(X < 6).

- **2.** Случайная величина X равномерно распределена на отрезке [-5,4]. Найдите  $E\left(e^{4X}\right)$ .
- 3. Случайная величина X распределена по показательному закону. Найдите математическое ожидание  $E\{(X+3)^2\}$ , если дисперсия D(X)=100.
- 4. Пусть S(n) цена акции в конце n-ой недели,  $n\geqslant 1$ . Найдите вероятность того, что цена акции в конце третьей недели будет выше, чем в конце первой недели, если известно, что отношения цен  $\frac{S(n)}{S(n-1)},\ n>1$ , являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu=0.00143$  и  $\sigma=0.0435$ .
- **5.** Для независимых случайных величин  $X_1, X_2, \ldots$ , равномерно распределенных на отрезке [1, 7], найдите предел

$$\lim_{n\to\infty} P(X_1+\ldots+X_n>4n+2).$$

1. Плотность вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} \frac{3}{16}x^2, & \text{ если } |x| \leqslant a, \\ 0, & \text{ если } |x| > a. \end{cases}$$

Найдите a и  $P\left(-\frac{a}{4} < X < \frac{a}{4}\right)$ .

- **2.** Случайная величина X равномерно распределена на отрезке [0,1]. Найдите дисперсию  $D\left(5X^{\frac{2}{5}}\right)$ .
- **3.** Для нормальной случайной величины X с математическим ожиданием E(X)=10 и дисперсией D(X)=4 найдите вероятность P(X<12,2).
- 4. Пусть S(n) цена акции к концу n-ой недели,  $n \geqslant 1$ . Известно, что отношения цен  $\frac{S(n)}{S(n-1)}$ , n>1, являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu=0.0013$  и  $\sigma=0.0468$ . Найдите вероятность того, что за три недели цена акции вырастет более, чем на 2%.
- **5.** Для независимых случайных величин  $X_1, X_2, \ldots$ , равномерно распределенных на отрезке [1, 10], найдите предел

$$\lim_{n \to \infty} P\left(X_1 + \ldots + X_n < \frac{11}{2}n + \sqrt{n}\right).$$

- 1. Случайная величина X имеет плотность вероятности f(x). Найдите плотность вероятности g(x) случайной величины  $Y=X^3$ .
- **2.** Случайная величина X равномерно распределена на отрезке [-1,1]. Найдите математическое ожидание  $E\left(\sqrt[5]{X^{14}}\right)$ .
- **3.** Для нормальной случайной величины X с математическим ожиданием E(X)=0.7 и дисперсией D(X)=49 найдите вероятность P(|X|>4.9).
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели,  $n\geqslant 1$ . Предполагая, что отношения цен  $\frac{S(n)}{S(n-1)}, n>1$ , являются независимыми случайными величинами, распределенными логнормально с параметрами  $\mu=0.00236$  и  $\sigma=0.0599$ , найдите вероятность того, что цена акции в конце четвертой недели будет выше, чем в конце первой недели.
- **5.** Для независимых, распределенных по геометрическому закону случайных величин  $X_1, X_2, \ldots$  найдите предел

$$\lim_{n\to\infty} P(X_1+\ldots+X_n>9n-\sqrt{n}),$$

если известно, что  $E(X_i) = 9$ .

- 1. Случайная величина X равномерно распределена на отрезке [-2,9]. Найдите вероятность  $P\left(\frac{1}{X-2}<6\right)$ .
- **2.** Случайная величина X равномерно распределена на отрезке [0,1]. Найдите дисперсию  $D\Big(4X^{\frac{7}{4}}\Big).$
- **3.** Случайные величины  $X_1,\ldots,X_{10}$  независимы и распределены по показательному закону. Найдите  $E\{(X_1+\ldots+X_{10}-3)^2\}$ , если  $E(X_1)=\ldots=E(X_{10})=3$ .
- 4. Пусть S(n) цена акции в конце n-ой недели,  $n\geqslant 1$ . Найдите вероятность того, что цена акции в конце третьей недели будет выше, чем в конце первой недели, если известно, что отношения цен  $\frac{S(n)}{S(n-1)},\ n>1$ , являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu=0.00446$  и  $\sigma=0.0858$ .
- **5.** Для независимых, распределенных по показательному закону случайных величин  $X_1, X_2, \ldots$  найдите предел

$$\lim_{n\to\infty} P(X_1+\ldots+X_n>4n-\sqrt{2n}),$$

если известно, что  $E(X_i) = 4$ .

1. Плотность вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} \frac{1}{18}x^2, & \text{если } |x| \leqslant a, \\ 0, & \text{если } |x| > a. \end{cases}$$

Найдите a и  $P\left(|X| > \frac{a}{6}\right)$ .

- **2.** Случайная величина X равномерно распределена на отрезке [-1,5]. Найдите  $E(e^{4X})$ .
- 3. Случайная величина X имеет нормальное распределение с параметрами E(X)=40 и  $D(X)=\sigma^2$ . Найдите вероятность попадания X в интервал  $(40-2\sigma,40)$ .
- 4. Пусть S(n) цена акции к концу n-ой недели,  $n\geqslant 1$ . Известно, что отношения цен  $\frac{S(n)}{S(n-1)},\ n>1,$  являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu=0{,}0019$  и  $\sigma=0{,}0785.$  Найдите вероятность того, что за три недели цена акции вырастет более, чем на  $6\,\%$ .
- **5.** Для независимых случайных величин  $X_1, X_2, \ldots$ , распределенных по биномиальному закону с параметрами n=4 и  $p=\frac{2}{3}$ , найдите предел

$$\lim_{t \to \infty} P\left(X_1 + \ldots + X_t > \frac{8}{3}t + \sqrt{2t}\right).$$

- 1. Распределение случайной величины X задано плотностью вероятности f(x). Найдите плотность вероятности g(x) случайной величины Y=8-7X.
- **2.** Случайная величина X равномерно распределена на отрезке [0,1]. Найдите дисперсию  $D\Big(5X^{\frac{7}{5}}\Big).$
- 3. Для нормальной случайной величины X с математическим ожиданием E(X)=29 и дисперсией D(X)=64 найдите вероятность P(26,6 < X < 34,6).
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели,  $n \geqslant 1$ . Известно, что отношения цен  $\frac{S(n)}{S(n-1)}, \ n>1$ , являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu=0.00126$  и  $\sigma=0.0641$ . Найдите вероятность того, что цена акции будет расти подряд три недели.
- **5.** Для независимых, распределенных по показательному закону случайных величин  $X_1, X_2, \ldots$  найдите предел

$$\lim_{n\to\infty} P(X_1+\ldots+X_n>5n+\sqrt{n}),$$

если известно, что  $E(X_i) = 5$ .

- 1. Случайная величина X имеет плотность вероятности f(x). Найдите плотность вероятности g(x) случайной величины  $Y=X^7$ .
- **2.** Случайная величина X равномерно распределена на отрезке [-1,1]. Найдите математическое ожидание  $E\left(\sqrt[5]{X^6}\right)$ .
- **3.** Для нормальной случайной величины X известно, что математическое ожидание E(X)=20,3 и вероятность P(X<41)=0,98928. Найдите дисперсию D(X).
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели,  $n\geqslant 1$ . Предполагая, что отношения цен  $\frac{S(n)}{S(n-1)}, n>1$ , являются независимыми случайными величинами, распределенными логнормально с параметрами  $\mu=0.00211$  и  $\sigma=0.0475$ , найдите вероятность того, что цена акции в конце четвертой недели будет выше, чем в конце первой недели.
- **5.** Для независимых, распределенных по геометрическому закону случайных величин  $X_1, X_2, \ldots$  найдите предел

$$\lim_{n\to\infty} P(X_1+\ldots+X_n<9n+\sqrt{2n}),$$

если известно, что  $E(X_i) = 9$ .

- 1. Случайная величина X равномерно распределена на отрезке [-9,18]. Найдите вероятность  $P\left(\frac{1}{X-9}<3\right)$ .
- **2.** Случайная величина X равномерно распределена на отрезке [-2,1]. Найдите  $E(e^{5X})$ .
- **3.** Для нормальной случайной величины X известно, что дисперсия D(X)=81 и вероятность P(X<54)=0,61791. Найдите математическое ожидание m=E(X).
- 4. Пусть S(n) цена акции в конце n-ой недели,  $n\geqslant 1$ . Найдите вероятность того, что цена акции в конце третьей недели будет выше, чем в конце первой недели, если известно, что отношения цен  $\frac{S(n)}{S(n-1)},\ n>1$ , являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu=0.00266$  и  $\sigma=0.0707$ .
- **5.** Для независимых, распределенных по закону Пуассона случайных величин  $X_1, X_2, \ldots$  найдите предел

$$\lim_{n \to \infty} P(X_1 + \ldots + X_n < 5n + \sqrt{3n}),$$

если известно, что  $E(X_i) = 5$ .

- 1. Распределение случайной величины X задано плотностью вероятности f(x). Найдите плотность вероятности g(x) случайной величины Y=9-4X.
- **2.** Случайная величина X равномерно распределена на отрезке [0,1]. Найдите дисперсию  $D\Big(4X^{\frac{3}{4}}\Big).$
- **3.** Математические ожидания и дисперсии независимых нормальных случайных величин  $X,\ Y,\ Z,\ U$  равны 1. Найдите вероятность P(X+Y+Z-U<0).
- 4. Пусть S(n) цена акции к концу n-ой недели,  $n \geqslant 1$ . Известно, что отношения цен  $\frac{S(n)}{S(n-1)},\ n>1$ , являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu=0.00132$  и  $\sigma=0.0589$ . Найдите вероятность того, что за три недели цена акции вырастет более, чем на  $4\,\%$ .
- **5.** Для независимых, распределенных по геометрическому закону случайных величин  $X_1, X_2, \ldots$  найдите предел

$$\lim_{n\to\infty} P(X_1+\ldots+X_n<8n-\sqrt{2n}),$$

если известно, что  $E(X_i) = 8$ .

1. Плотность вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} \frac{3}{2}x^2, & \text{если } |x| \leqslant a, \\ 0, & \text{если } |x| > a. \end{cases}$$

Найдите a и  $P\left(|X| > \frac{a}{5}\right)$ .

- **2.** Случайная величина X равномерно распределена на отрезке [-3,4]. Найдите  $E(e^{4X})$ .
- **3.** Случайные величины  $X_1,\ldots,X_8$  независимы и распределены по показательному закону. Найдите  $E\{(X_1+\ldots+X_8-3)^2\}$ , если  $E(X_1)=\ldots=E(X_8)=3$ .
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели,  $n\geqslant 1$ . Предполагая, что отношения цен  $\frac{S(n)}{S(n-1)},\, n>1$ , являются независимыми случайными величинами, распределенными логнормально с параметрами  $\mu=0.00353$  и  $\sigma=0.0696$ , найдите вероятность того, что цена акции в конце четвертой недели будет выше, чем в конце первой недели.
- **5.** Для независимых, распределенных по закону Пуассона случайных величин  $X_1, X_2, \ldots$  найдите предел

$$\lim_{n\to\infty} P(X_1+\ldots+X_n>6n+\sqrt{2n}),$$

если известно, что  $E(X_i) = 6$ .

1. Плотность вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} \frac{3}{16}x^2, & \text{если } |x| \leqslant a, \\ 0, & \text{если } |x| > a. \end{cases}$$

Найдите a и  $P\left(-\frac{a}{3} < X < \frac{a}{3}\right)$ .

- **2.** Случайная величина X равномерно распределена на отрезке [-1,1]. Найдите математическое ожидание  $E\left(\sqrt[3]{X^{14}}\right)$ .
- 3. Случайная величина X имеет нормальное распределение с параметрами E(X)=20 и  $D(X)=\sigma^2$ . Найдите вероятность попадания X в интервал  $(20-\sigma,20)$ .
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели,  $n \geqslant 1$ . Известно, что отношения цен  $\frac{S(n)}{S(n-1)}, \ n>1$ , являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu=0.00257$  и  $\sigma=0.0547$ . Найдите вероятность того, что цена акции будет расти подряд три недели.
- **5.** Для независимых случайных величин  $X_1, X_2, \ldots$ , распределенных по биномиальному закону с параметрами n=7 и  $p=\frac{1}{2}$ , найдите предел

$$\lim_{t \to \infty} P\left(X_1 + \ldots + X_t < \frac{7}{2}t + \sqrt{3t}\right).$$

- **1.** Случайная величина X равномерно распределена на отрезке [-3,6]. Найдите вероятность  $P\left(\frac{1}{X-3}>5\right)$ .
- **2.** Случайная величина X равномерно распределена на отрезке [0,1]. Найдите дисперсию  $D\Big(6X^{\frac{7}{6}}\Big)$ .
- 3. Для нормальной случайной величины X с математическим ожиданием E(X)=17 и дисперсией D(X)=16 найдите вероятность P(15.8 < X < 21.8).
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели,  $n \geqslant 1$ . Предполагая, что отношения цен  $\frac{S(n)}{S(n-1)}, n > 1$ , являются независимыми случайными величинами, распределенными логнормально с параметрами  $\mu = 0{,}0025$  и  $\sigma = 0{,}0565$ , найдите вероятность того, что цена акции в конце четвертой недели будет выше, чем в конце первой недели.
- **5.** Для независимых, распределенных по закону Пуассона случайных величин  $X_1, X_2, \ldots$  найдите предел

$$\lim_{n\to\infty} P(X_1+\ldots+X_n>4n-\sqrt{n}),$$

если известно, что  $E(X_i) = 4$ .

1. Функция плотности вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} 0, & x < 4, \\ \frac{C}{x^3}, & x \geqslant 4. \end{cases}$$

Найдите константу C и вероятность P(X < 5).

- **2.** Случайная величина X равномерно распределена на отрезке [-1,5]. Найдите  $E(e^{2X})$ .
- 3. Случайная величина X распределена по показательному закону. Найдите математическое ожидание  $E\{(X+4)^2\}$ , если дисперсия D(X)=100.
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели,  $n \geqslant 1$ . Известно, что отношения цен  $\frac{S(n)}{S(n-1)}, n > 1$ , являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu = 0.00205$  и  $\sigma = 0.0544$ . Найдите вероятность того, что цена акции будет расти подряд две недели.
- **5.** Для независимых случайных величин  $X_1, X_2, \ldots$ , распределенных по биномиальному закону с параметрами n=5 и  $p=\frac{1}{2}$ , найдите предел

$$\lim_{t\to\infty} P\left(X_1+\ldots+X_t>\frac{5}{2}t-\sqrt{3t}\right).$$

- 1. Случайная величина X равномерно распределена на отрезке [-8,12]. Найдите вероятность  $P\left(\frac{1}{X-8}<2\right)$ .
- **2.** Случайная величина X равномерно распределена на отрезке [-1,1]. Найдите математическое ожидание  $E\left(\sqrt[15]{X^2}\right)$ .
- 3. Для нормальной случайной величины X с математическим ожиданием E(X)=26 и дисперсией D(X)=49 найдите вероятность P(X>21,1).
- 4. Пусть S(n) цена акции в конце n-ой недели,  $n\geqslant 1$ . Найдите вероятность того, что цена акции в конце третьей недели будет выше, чем в конце первой недели, если известно, что отношения цен  $\frac{S(n)}{S(n-1)},\ n>1$ , являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu=0.00196$  и  $\sigma=0.0821$ .
- **5.** Для независимых случайных величин  $X_1, X_2, \ldots$ , равномерно распределенных на отрезке [1, 10], найдите предел

$$\lim_{n \to \infty} P\left(X_1 + \ldots + X_n < \frac{11}{2}n - \sqrt{2n}\right).$$

- 1. Случайная величина X имеет плотность вероятности f(x). Найдите плотность вероятности g(x) случайной величины  $Y=X^9$ .
- **2.** Случайная величина X равномерно распределена на отрезке [0,1]. Найдите дисперсию  $D\left(2X^{\frac{5}{2}}\right).$
- **3.** Математические ожидания и дисперсии независимых нормальных случайных величин  $X,\ Y,\ Z,\ U$  равны 1. Найдите вероятность P(X-Y+Z+U<6).
- 4. Пусть S(n) цена акции к концу n-ой недели,  $n \geqslant 1$ . Известно, что отношения цен  $\frac{S(n)}{S(n-1)}$ , n > 1, являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu = 0.00162$  и  $\sigma = 0.0387$ . Найдите вероятность того, что за три недели цена акции вырастет более, чем на  $5\,\%$ .
- **5.** Для независимых, распределенных по показательному закону случайных величин  $X_1, X_2, \ldots$  найдите предел

$$\lim_{n\to\infty} P(X_1+\ldots+X_n<9n+\sqrt{2n}),$$

если известно, что  $E(X_i) = 9$ .

1. Функция плотности вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} 0, & x < 5, \\ \frac{C}{x^3}, & x \geqslant 5. \end{cases}$$

Найдите константу C и вероятность P(X < 6).

- **2.** Случайная величина X равномерно распределена на отрезке [-1,1]. Найдите математическое ожидание  $E\left(\sqrt[3]{X^{10}}\right)$ .
- 3. Для нормальной случайной величины X известно, что дисперсия D(X)=121 и вероятность P(X<57)=0,18406. Найдите математическое ожидание m=E(X).
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели,  $n\geqslant 1$ . Предполагая, что отношения цен  $\frac{S(n)}{S(n-1)}, n>1$ , являются независимыми случайными величинами, распределенными логнормально с параметрами  $\mu=0.0043$  и  $\sigma=0.0562$ , найдите вероятность того, что цена акции в конце четвертой недели будет выше, чем в конце первой недели.
- **5.** Для независимых случайных величин  $X_1, X_2, \ldots$ , принимающих с равной вероятностью значения 5, 14 и 23, найдите предел

$$\lim_{n \to \infty} P\left(X_1 + \ldots + X_n > 14n + \sqrt{2n}\right).$$

- 1. Распределение случайной величины X задано плотностью вероятности f(x). Найдите плотность вероятности g(x) случайной величины Y=1-6X.
- **2.** Случайная величина X равномерно распределена на отрезке [-2,2]. Найдите  $E(e^{4X})$ .
- 3. Для нормальной случайной величины X известно, что математическое ожидание E(X)=43.5 и вероятность P(X<53)=0.97128. Найдите дисперсию D(X).
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели,  $n\geqslant 1$ . Известно, что отношения цен  $\frac{S(n)}{S(n-1)},\ n>1$ , являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu=0{,}00124$  и  $\sigma=0{,}092$ . Найдите вероятность того, что цена акции будет расти подряд две недели.
- **5.** Для независимых, распределенных по показательному закону случайных величин  $X_1, X_2, \ldots$  найдите предел

$$\lim_{n \to \infty} P(X_1 + \ldots + X_n < 9n - \sqrt{n}),$$

если известно, что  $E(X_i) = 9$ .

1. Плотность вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} \frac{3}{2}x^2, & \text{ если } |x| \leqslant a, \\ 0, & \text{ если } |x| > a. \end{cases}$$

Найдите a и  $P\left(|X| > \frac{a}{6}\right)$ .

- **2.** Случайная величина X равномерно распределена на отрезке [0,1]. Найдите дисперсию  $D\Big(8X^{\frac{3}{8}}\Big)$ .
- **3.** Для нормальной случайной величины X с математическим ожиданием E(X)=13 и дисперсией D(X)=16 найдите вероятность P(X<14.6).
- 4. Пусть S(n) цена акции в конце n-ой недели,  $n\geqslant 1$ . Найдите вероятность того, что цена акции в конце третьей недели будет выше, чем в конце первой недели, если известно, что отношения цен  $\frac{S(n)}{S(n-1)},\ n>1$ , являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu=0.00159$  и  $\sigma=0.0945$ .
- **5.** Для независимых случайных величин  $X_1, X_2, \ldots$ , принимающих с равной вероятностью значения 2, 10 и 18, найдите предел

$$\lim_{n \to \infty} P\left(X_1 + \ldots + X_n < 10n + \sqrt{2n}\right).$$

1. Плотность вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} \frac{3}{16}x^2, & \text{если } |x| \leqslant a, \\ 0, & \text{если } |x| > a. \end{cases}$$

Найдите a и  $P\left(-\frac{a}{4} < X < \frac{a}{4}\right)$ .

- **2.** Случайная величина X равномерно распределена на отрезке [-1,1]. Найдите математическое ожидание  $E\left(\sqrt[9]{X^2}\right)$ .
- **3.** Для нормальной случайной величины X с математическим ожиданием E(X)=4 и дисперсией D(X)=64 найдите вероятность P(|X|>4).
- 4. Пусть S(n) цена акции к концу n-ой недели,  $n\geqslant 1$ . Известно, что отношения цен  $\frac{S(n)}{S(n-1)},\ n>1$ , являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu=0.00172$  и  $\sigma=0.0996$ . Найдите вероятность того, что за две недели цена акции вырастет более, чем на  $4\,\%$ .
- **5.** Для независимых случайных величин  $X_1, X_2, \ldots$ , принимающих с равной вероятностью значения 9, 18 и 27, найдите предел

$$\lim_{n \to \infty} P\left(X_1 + \ldots + X_n < 18n - \sqrt{2n}\right).$$

- **1.** Случайная величина X равномерно распределена на отрезке [-3,11]. Найдите вероятность  $P\left(\frac{1}{X-3}>4\right)$ .
- **2.** Случайная величина X равномерно распределена на отрезке [-4,2]. Найдите  $E(e^{4X})$ .
- 3. Случайная величина X распределена по показательному закону. Найдите математическое ожидание  $E\{(X+8)^2\}$ , если дисперсия D(X)=36.
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели,  $n \geqslant 1$ . Известно, что отношения цен  $\frac{S(n)}{S(n-1)}, \ n > 1$ , являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu = 0{,}00242$  и  $\sigma = 0{,}0505$ . Найдите вероятность того, что цена акции будет расти подряд две недели.
- **5.** Для независимых, распределенных по закону Пуассона случайных величин  $X_1, X_2, \ldots$  найдите предел

$$\lim_{n \to \infty} P(X_1 + \ldots + X_n < 7n - \sqrt{2n}),$$

если известно, что  $E(X_i) = 7$ .

1. Плотность вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} \frac{3}{16}x^2, & \text{если } |x| \leqslant a, \\ 0, & \text{если } |x| > a. \end{cases}$$

Найдите a и  $P\left(|X| > \frac{a}{8}\right)$ .

- **2.** Случайная величина X равномерно распределена на отрезке [-5,3]. Найдите  $E(e^{3X})$ .
- 3. Для нормальной случайной величины X с математическим ожиданием E(X)=2,1 и дисперсией D(X)=49 найдите вероятность P(|X|>6,3).
- 4. Пусть S(n) цена акции в конце n-ой недели,  $n\geqslant 1$ . Найдите вероятность того, что цена акции в конце третьей недели будет выше, чем в конце первой недели, если известно, что отношения цен  $\frac{S(n)}{S(n-1)},\ n>1$ , являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu=0.00435$  и  $\sigma=0.0831$ .
- **5.** Для независимых случайных величин  $X_1, X_2, \ldots$ , распределенных по биномиальному закону с параметрами n=9 и  $p=\frac{1}{3}$ , найдите предел

$$\lim_{t \to \infty} P\left(X_1 + \ldots + X_t < 3t - \sqrt{2t}\right).$$

1. Плотность вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} \frac{1}{18}x^2, & \text{если } |x| \leqslant a, \\ 0, & \text{если } |x| > a. \end{cases}$$

Найдите a и  $P\left(-\frac{a}{3} < X < \frac{a}{3}\right)$ .

- **2.** Случайная величина X равномерно распределена на отрезке [-1,1]. Найдите математическое ожидание  $E\left(\sqrt[3]{X^4}\right)$ .
- 3. Случайная величина X имеет нормальное распределение с параметрами E(X)=20 и  $D(X)=\sigma^2$ . Найдите вероятность попадания X в интервал  $(20-2\sigma,20)$ .
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели,  $n\geqslant 1$ . Предполагая, что отношения цен  $\frac{S(n)}{S(n-1)},\, n>1$ , являются независимыми случайными величинами, распределенными логнормально с параметрами  $\mu=0,00298$  и  $\sigma=0,0365$ , найдите вероятность того, что цена акции в конце четвертой недели будет выше, чем в конце первой недели.
- 5. Для независимых случайных величин  $X_1, X_2, \ldots$ , принимающих с равной вероятностью значения 8, 14 и 20, найдите предел

$$\lim_{n \to \infty} P\left(X_1 + \ldots + X_n > 14n - \sqrt{3n}\right).$$

- 1. Случайная величина X равномерно распределена на отрезке [-5,10]. Найдите вероятность  $P\left(\frac{1}{X-5}<9\right)$ .
- **2.** Случайная величина X равномерно распределена на отрезке [0,1]. Найдите дисперсию  $D\Big(9X^{\frac{4}{9}}\Big)$ .
- 3. Для нормальной случайной величины X с математическим ожиданием E(X)=28 и дисперсией D(X)=81 найдите вероятность P(19.9 < X < 37).
- 4. Пусть S(n) цена акции к концу n-ой недели,  $n \geqslant 1$ . Известно, что отношения цен  $\frac{S(n)}{S(n-1)},\ n>1$ , являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu=0.00145$  и  $\sigma=0.0745$ . Найдите вероятность того, что за три недели цена акции вырастет более, чем на  $7\,\%$ .
- **5.** Для независимых случайных величин  $X_1, X_2, \ldots$ , равномерно распределенных на отрезке [1,13], найдите предел

$$\lim_{n \to \infty} P\left(X_1 + \ldots + X_n > 7n - \sqrt{n}\right).$$

1.  $\Phi$ ункция плотности вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} 0, & x < 5, \\ \frac{C}{x^4}, & x \geqslant 5. \end{cases}$$

Найдите константу C и вероятность P(X < 6).

- **2.** Случайная величина X равномерно распределена на отрезке [-5,3]. Найдите  $E(e^{3X})$ .
- **3.** Для нормальной случайной величины X известно, что дисперсия D(X)=49 и вероятность P(X<45)=0,18406. Найдите математическое ожидание m=E(X).
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели,  $n \geqslant 1$ . Предполагая, что отношения цен  $\frac{S(n)}{S(n-1)}, n > 1$ , являются независимыми случайными величинами, распределенными логнормально с параметрами  $\mu = 0.00465$  и  $\sigma = 0.088$ , найдите вероятность того, что цена акции в конце четвертой недели будет выше, чем в конце первой недели.
- **5.** Для независимых случайных величин  $X_1, X_2, \ldots$ , принимающих с равной вероятностью значения 5, 10 и 15, найдите предел

$$\lim_{n \to \infty} P\left(X_1 + \ldots + X_n < 10n - \sqrt{n}\right).$$

- 1. Случайная величина X равномерно распределена на отрезке [-2,8]. Найдите вероятность  $P\left(\frac{1}{X-2}>6\right).$
- **2.** Случайная величина X равномерно распределена на отрезке [-1,1]. Найдите математическое ожидание  $E\left(\sqrt[7]{X^8}\right)$ .
- **3.** Случайные величины  $X_1, \ldots, X_6$  независимы и распределены по показательному закону. Найдите  $E\{(X_1+\ldots+X_6-5)^2\}$ , если  $E(X_1)=\ldots=E(X_6)=5$ .
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели,  $n \geqslant 1$ . Известно, что отношения цен  $\frac{S(n)}{S(n-1)}, \, n > 1$ , являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu = 0{,}0015$  и  $\sigma = 0{,}0432$ . Найдите вероятность того, что цена акции будет расти подряд две недели.
- **5.** Для независимых, распределенных по закону Пуассона случайных величин  $X_1, X_2, \ldots$  найдите предел

$$\lim_{n\to\infty} P(X_1+\ldots+X_n>5n+\sqrt{3n}),$$

если известно, что  $E(X_i) = 5$ .

- 1. Случайная величина X имеет плотность вероятности f(x). Найдите плотность вероятности g(x) случайной величины  $Y=X^5$ .
- **2.** Случайная величина X равномерно распределена на отрезке [0,1]. Найдите дисперсию  $D\Big(8X^{\frac{3}{8}}\Big).$
- 3. Для нормальной случайной величины X с математическим ожиданием E(X)=20 и дисперсией D(X)=36 найдите вероятность P(X>18,2).
- 4. Пусть S(n) цена акции к концу n-ой недели,  $n\geqslant 1$ . Известно, что отношения цен  $\frac{S(n)}{S(n-1)},\ n>1,$  являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu=0.00169$  и  $\sigma=0.056$ . Найдите вероятность того, что за три недели цена акции вырастет более, чем на  $4\,\%$ .
- **5.** Для независимых случайных величин  $X_1, X_2, \ldots$ , распределенных по биномиальному закону с параметрами n=4 и  $p=\frac{2}{5}$ , найдите предел

$$\lim_{t \to \infty} P\left(X_1 + \ldots + X_t > \frac{8}{5}t - \sqrt{3t}\right).$$

- 1. Распределение случайной величины X задано плотностью вероятности f(x). Найдите плотность вероятности g(x) случайной величины Y=7-4X.
- **2.** Случайная величина X равномерно распределена на отрезке [-5,5]. Найдите  $E(e^{4X})$ .
- **3.** Для нормальной случайной величины X с математическим ожиданием E(X)=24 и дисперсией D(X)=49 найдите вероятность P(X<20.5).
- 4. Пусть S(n) цена акции в конце n-ой недели,  $n\geqslant 1$ . Найдите вероятность того, что цена акции в конце третьей недели будет выше, чем в конце первой недели, если известно, что отношения цен  $\frac{S(n)}{S(n-1)},\ n>1$ , являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu=0.00367$  и  $\sigma=0.0851$ .
- **5.** Для независимых случайных величин  $X_1, X_2, \ldots$ , равномерно распределенных на отрезке [3, 15], найдите предел

$$\lim_{n \to \infty} P\left(X_1 + \ldots + X_n > 9n + \sqrt{3n}\right).$$

1. Плотность вероятности случайной величины X имеет вид

$$f(x) = \begin{cases} \frac{1}{18}x^2, & \text{ если } |x| \leqslant a, \\ 0, & \text{ если } |x| > a. \end{cases}$$

Найдите a и  $P\left(|X|>\frac{a}{7}\right)$ .

- **2.** Случайная величина X равномерно распределена на отрезке [0,1]. Найдите дисперсию  $D\Big(10X^{\frac{3}{10}}\Big).$
- 3. Для нормальной случайной величины X известно, что математическое ожидание E(X)=40,4 и вероятность P(X<35)=0,18406. Найдите дисперсию D(X).
- 4. Пусть S(n) цена акции к концу n-ой недели,  $n \geqslant 1$ . Известно, что отношения цен  $\frac{S(n)}{S(n-1)}, \ n > 1$ , являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu = 0.00133$  и  $\sigma = 0.0996$ . Найдите вероятность того, что за две недели цена акции вырастет более, чем на  $4\,\%$ .
- **5.** Для независимых, распределенных по геометрическому закону случайных величин  $X_1, X_2, \ldots$  найдите предел

$$\lim_{n \to \infty} P(X_1 + \ldots + X_n < 4n + \sqrt{3n}),$$

если известно, что  $E(X_i) = 4$ .

- 1. Случайная величина X равномерно распределена на отрезке [-9,17]. Найдите вероятность  $P\left(\frac{1}{X-9}<3\right)$ .
- **2.** Случайная величина X равномерно распределена на отрезке [-1,1]. Найдите математическое ожидание  $E\left(\sqrt[9]{X^2}\right)$ .
- 3. Математические ожидания и дисперсии независимых нормальных случайных величин  $X,\ Y,\ Z,\ U$  равны 1. Найдите вероятность P(X+Y+Z-U<0).
- 4. Пусть S(n) обозначает цену акции к концу n-ой недели,  $n \geqslant 1$ . Известно, что отношения цен  $\frac{S(n)}{S(n-1)}, \ n>1$ , являются независимыми случайными величинами, которые распределены логнормально с параметрами  $\mu=0{,}0018$  и  $\sigma=0{,}0598$ . Найдите вероятность того, что цена акции будет расти подряд две недели.
- **5.** Для независимых случайных величин  $X_1, X_2, \ldots$ , равномерно распределенных на отрезке [0, 15], найдите предел

$$\lim_{n \to \infty} P\left(X_1 + \ldots + X_n < \frac{15}{2}n + \sqrt{3n}\right).$$

- 1. Случайный вектор (X,Y) распределен по закону:  $P(X=1,Y=1)=0.15;\ P(X=1,Y=2)=0.1;\ P(X=1,Y=3)=0.15;\ P(X=2,Y=1)=0.19;\ P(X=2,Y=2)=0.15;\ P(X=2,Y=3)=0.26.$  Найдите условную вероятность P(Y=2|X=2).
- **2.** Найдите распределение случайной величины  $Z = \min(4, X Y)$  и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|        | X = 2         | X = 3          | X = 4         |
|--------|---------------|----------------|---------------|
| Y = -1 | $\frac{1}{6}$ | $\frac{1}{12}$ | $\frac{1}{6}$ |
| Y = 0  | $\frac{1}{6}$ | $\frac{1}{6}$  | $\frac{1}{4}$ |

**3.** Найдите E(X), D(X), E(Y), D(Y), E(XY), Cov(X,Y) и  $\rho(X,Y)$  для случайного дискретного вектора (X,Y), распределенного по закону

|       | X = 0 | X = 1 | X = 2 |
|-------|-------|-------|-------|
| Y = 0 | 0,1   | 0,1   | 0,1   |
| Y = 1 | 0,1   | 0,2   | 0,4   |

4. Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} 12e^{-3x-4y}, & \text{если } 0 \leqslant x < +\infty, \ 0 \leqslant y < +\infty, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите вероятность P(X > 1).

**5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi} e^{-x^2 - 10x - 26 - 3xy - 16y - \frac{5}{2}y^2}.$$

Найдите D(X|Y=y).

1. Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1        | X = 0         | X = 1         |   |
|--------|---------------|---------------|---------------|---|
| Y = -1 | $\frac{1}{8}$ | $\frac{1}{8}$ | $\frac{1}{8}$ | ] |
| Y = 0  | $\frac{1}{8}$ | $\frac{3}{8}$ | $\frac{1}{8}$ |   |

выясните, зависимы или нет события  $A = \{X = -1\}$  и  $B = \{X = Y\}$ .

**2.** Найдите распределение случайной величины  $Z = \max(X, Y)$  и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|        | X = -3         | X = -2         | X = -1         |
|--------|----------------|----------------|----------------|
| Y = -2 | $\frac{1}{12}$ | 0              | $\frac{5}{24}$ |
| Y = -1 | $\frac{5}{24}$ | $\frac{1}{12}$ | $\frac{5}{12}$ |

- **3.** Дано:  $P(X=40)=0.9, \quad P(X=80)=0.1, \quad E(Y|X=40)=4, \ E(Y|X=80)=1.$  Найдите E(Y).
- **4.** Случайный вектор (X,Y) равномерно распределен в треугольнике  $x\geqslant 0,\ y\geqslant 0,\ 52x+y\leqslant 52.$  Найдите математическое ожидание  $E(X^{10}Y)$ .
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{\pi} e^{-\frac{5}{2}x^2 - 18x - 36 - xy - 6y - \frac{1}{2}y^2}.$$

Найдите условное математическое ожидание E(Y|X=x).

**1.** Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1         | X = 0           | X = 1          |
|--------|----------------|-----------------|----------------|
| Y = -1 | $\frac{3}{32}$ | $\frac{5}{32}$  | $\frac{3}{32}$ |
| Y = 0  | $\frac{5}{32}$ | $\frac{13}{32}$ | $\frac{3}{32}$ |

выясните, зависимы или нет события  $A = \{X = -1\}$  и  $B = \{X = Y\}$ .

**2.** Найдите распределение случайной величины Z = X + Y и E(Z), если известно распределение случайного дискретного вектора (X,Y):

|        | X = 2         | X = 3         | X = 4          |
|--------|---------------|---------------|----------------|
| Y = -2 | $\frac{1}{4}$ | $\frac{1}{6}$ | $\frac{1}{8}$  |
| Y = -1 | $\frac{1}{8}$ | $\frac{1}{4}$ | $\frac{1}{12}$ |

**3.** Дискретный случайный вектор (X,Y) задан распределением

| / 1 I  | v              |                | 1              |
|--------|----------------|----------------|----------------|
|        | X = 0          | X = 1          | X = 2          |
| Y = -2 | $\frac{1}{12}$ | $\frac{1}{12}$ | $\frac{5}{24}$ |
| Y = -1 | $\frac{1}{8}$  | $\frac{1}{4}$  | $\frac{1}{4}$  |

. Найдите условное математи-

ческое ожидание  $E(Y|X \ge 1)$ .

- 4. Случайный вектор (X,Y) имеет плотность распределения  $f(x,y) \ = \ \begin{cases} \frac{1}{2}\,x + Cy, & \text{если } 0 < x < 1, \ 0 < y < 2, \\ 0, & \text{в остальных точках.} \end{cases}$  Найдите константу C и P(X+Y<1).
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид:  $f_{X,Y}(x,y) = \frac{1}{\pi} \, e^{-\frac{1}{2}x^2 4x 16 xy 12y \frac{5}{2}y^2}. \text{ Найдите } D(Y|X=x).$

**1.** Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1         | X = 0          | X = 1          |
|--------|----------------|----------------|----------------|
| Y = -1 | $\frac{1}{12}$ | $\frac{1}{6}$  | $\frac{1}{12}$ |
| Y = 0  | $\frac{1}{6}$  | $\frac{5}{12}$ | $\frac{1}{12}$ |

выясните, зависимы или нет события  $A = \{X = -1\}$  и  $B = \{Y = 0\}$ .

**2.** Найдите распределение случайной величины Z = X - Y и E(Z), если известно распределение случайного дискретного вектора (X,Y):

|        | X = 1          | X = 2          | X = 3          |
|--------|----------------|----------------|----------------|
| Y = -1 | $\frac{1}{12}$ | $\frac{1}{24}$ | $\frac{5}{24}$ |
| Y = 0  | $\frac{1}{6}$  | $\frac{1}{6}$  | $\frac{1}{3}$  |

- **3.** Дано: P(X=10)=0.2, P(X=70)=0.8, E(Y|X=10)=2, E(Y|X=70)=4. Найдите E(XY).
- **4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} Ce^{-x-2y}, & \text{если } 0 \leqslant x < +\infty, \ 0 \leqslant y < +\infty, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу C и P(X < 1).

**5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi} e^{-x^2 + x - \frac{1}{2} - xy - \frac{1}{2}y^2}.$$

Найдите условное математическое ожидание E(X|Y=y).

**1.** Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1         | X = 0          | X = 1          |
|--------|----------------|----------------|----------------|
| Y = -1 | $\frac{5}{28}$ | $\frac{1}{14}$ | $\frac{5}{28}$ |
| Y = 0  | $\frac{1}{14}$ | $\frac{9}{28}$ | $\frac{5}{28}$ |

выясните, зависимы или нет события  $A = \{X = 1\}$  и  $B = \{X + Y = 0\}$ .

**2.** Найдите распределение случайной величины  $Z = \max(5, X - Y)$  и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|        | X = 3         | X = 4         | X = 5         |  |
|--------|---------------|---------------|---------------|--|
| Y = -2 | $\frac{1}{4}$ | $\frac{1}{8}$ | $\frac{1}{8}$ |  |
| Y = -1 | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ |  |

- **3.** Дано:  $P(X=50)=0.3,\ P(X=80)=0.7,\ E(Y|X=50)=3,\ E(Y|X=80)=4.$  Найдите  $D\{E(Y|X)\}.$
- **4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} \frac{1}{9} \, x + Cy, & \text{если } 0 < x < 2, \ 0 < y < 4, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу C и P(X+Y>1).

**5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi} e^{-\frac{5}{2}x^2 - 3xy - y^2}.$$

Найдите E(X|Y=y).

1. Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1        | X = 0         | X = 1         |  |
|--------|---------------|---------------|---------------|--|
| Y = -1 | $\frac{1}{8}$ | $\frac{1}{8}$ | $\frac{1}{8}$ |  |
| Y = 0  | $\frac{1}{8}$ | $\frac{3}{8}$ | $\frac{1}{8}$ |  |

выясните, зависимы или нет события  $A = \{X = 1\}$  и  $B = \{X + Y = 0\}$ .

**2.** Найдите распределение случайной величины  $Z = \min(X,Y)$  и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|        | X = -2         | X = -1         | X = 0         |
|--------|----------------|----------------|---------------|
| Y = -1 | $\frac{1}{6}$  | $\frac{1}{24}$ | $\frac{1}{6}$ |
| Y = 0  | $\frac{5}{24}$ | $\frac{1}{12}$ | $\frac{1}{3}$ |

**3.** Распределение случайного вектора (X,Y) задается таблицей

|       | X = 0                        | X = 1                        |
|-------|------------------------------|------------------------------|
| Y = 0 | $\frac{1}{2}x$               | $\frac{1}{2} - \frac{1}{2}x$ |
| Y = 1 | $\frac{1}{2} - \frac{1}{2}x$ | $\frac{1}{2}x$               |

. Найдите x так, чтобы коэффициент

корреляции между X и Y был равен  $-\frac{1}{4}.$ 

- **4.** Случайный вектор (X,Y) имеет плотность распределения  $f(x,y) \ = \ \begin{cases} Ce^{-2x-y}, & \text{если } 0 \leqslant x < +\infty, \ 0 \leqslant y < +\infty, \\ 0, & \text{в остальных точках.} \end{cases}$  Найдите константу C и P(X<2).
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид:  $f_{X,Y}(x,y) = \frac{1}{2\pi} \, e^{-\frac{5}{2}x^2 + 9x \frac{17}{2} 3xy + 5y y^2}. \text{ Найдите } D(Y|X=x).$

1. Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1         | X = 0          | X = 1          |
|--------|----------------|----------------|----------------|
| Y = -1 | $\frac{1}{16}$ | $\frac{3}{16}$ | $\frac{1}{16}$ |
| Y = 0  | $\frac{3}{16}$ | $\frac{7}{16}$ | $\frac{1}{16}$ |

выясните, зависимы или нет события  $A = \{X = -1\}$  и  $B = \{Y = 0\}$ .

**2.** Найдите распределение случайной величины  $Z = \frac{X}{Y}$  и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|        | X = -1        | X = 0         | X = 1          |
|--------|---------------|---------------|----------------|
| Y = -1 | $\frac{1}{4}$ | $\frac{1}{6}$ | $\frac{1}{8}$  |
| Y = 1  | $\frac{1}{8}$ | $\frac{1}{4}$ | $\frac{1}{12}$ |

- **3.** Дано:  $P(X=20)=0.5,\ P(X=60)=0.5,\ E(Y|X=20)=1,\ E(Y|X=60)=4,\ D(Y|X=20)=5$  и D(Y|X=60)=8. Найдите D(Y).
- **4.** Случайный вектор (X,Y) равномерно распределен в треугольнике  $x\geqslant 0,\ y\geqslant 0,\ 5x+12y\leqslant 60.$  Найдите значение функции распределения  $F_X(4)$  и E(X).
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{\pi} e^{-\frac{1}{2}x^2 + 5x - \frac{41}{2} - xy + 13y - \frac{5}{2}y^2}.$$

Найдите условное математическое ожидание E(Y|X=x).

- 1. Случайный вектор (X,Y) распределен по закону:  $P(X=1,Y=1)=0.18;\ P(X=1,Y=2)=0.11;\ P(X=1,Y=3)=0.11;\ P(X=2,Y=1)=0.16;\ P(X=2,Y=2)=0.16;\ P(X=2,Y=3)=0.28.$  Найдите условную вероятность P(X=1|Y=3).
- **2.** Найдите распределение случайной величины  $Z = \min(2, X Y)$  и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|       | X = 1         | X = 2         | X = 3         |
|-------|---------------|---------------|---------------|
| Y = 0 | $\frac{1}{4}$ | $\frac{1}{8}$ | $\frac{1}{8}$ |
| Y = 1 | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ |

**3.** Найдите E(X) и Cov(X,Y) для случайного дискретного вектора (X,Y), распределенного по закону

|       | X = 0 | X = 1 | X = 2 |
|-------|-------|-------|-------|
| Y = 0 | 0,3   | 0,1   | 0     |
| Y = 1 | 0,1   | 0,1   | 0,4   |

**4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} \frac{2}{7} \, x + Cy, & \text{если } 0 < x < 1, \; 0 < y < 3, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу C.

**5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{\pi} e^{-2x^2 - 2xy - y^2}.$$

Найдите E(X|Y=y).

**1.** Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1         | X = 0          | X = 1         |  |
|--------|----------------|----------------|---------------|--|
| Y = -1 | $\frac{1}{7}$  | $\frac{3}{28}$ | $\frac{1}{7}$ |  |
| Y = 0  | $\frac{3}{28}$ | $\frac{5}{14}$ | $\frac{1}{7}$ |  |

выясните, зависимы или нет события  $A = \{XY \neq 0\}$  и  $B = \{X + Y = 0\}$ .

**2.** Найдите распределение случайной величины Z = X + Y и E(Z), если известно распределение случайного дискретного вектора (X,Y):

|        | X = 2         | X = 3         | X = 4         |
|--------|---------------|---------------|---------------|
| Y = -2 | $\frac{1}{4}$ | $\frac{1}{8}$ | $\frac{1}{8}$ |
| Y = -1 | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ |

**3.** Найдите Cov(X,Y) и  $\rho(X,Y)$  для случайного дискретного вектора (X,Y), распределенного по закону

|       | X = 0 | X = 1 | X = 2 |
|-------|-------|-------|-------|
| Y = 0 | 0,3   | 0,2   | 0     |
| Y = 1 | 0     | 0,1   | 0,4   |

4. Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} 12e^{-4x-3y}, & \text{если } 0 \leqslant x < +\infty, \ 0 \leqslant y < +\infty, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите вероятность P(X < 2).

**5.** Плотность распределения случайного вектора (X,Y) имеет вид:  $f_{X,Y}(x,y) = \frac{1}{\pi} \, e^{-\frac{1}{2}x^2-2-xy+4y-\frac{5}{2}y^2}. \text{ Найдите } D(X|Y=y).$ 

1. Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1         | X = 0          | X = 1          |  |
|--------|----------------|----------------|----------------|--|
| Y = -1 | $\frac{1}{12}$ | $\frac{1}{6}$  | $\frac{1}{12}$ |  |
| Y = 0  | $\frac{1}{6}$  | $\frac{5}{12}$ | $\frac{1}{12}$ |  |

выясните, зависимы или нет события  $A = \{X = -1\}$  и  $B = \{Y = 0\}$ .

**2.** Найдите распределение случайной величины  $Z = \max(X,Y)$  и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|       | X = -1         | X = 0          | X = 1         |
|-------|----------------|----------------|---------------|
| Y = 0 | $\frac{1}{6}$  | $\frac{1}{24}$ | $\frac{1}{6}$ |
| Y = 1 | $\frac{5}{24}$ | $\frac{1}{12}$ | $\frac{1}{3}$ |

**3.** Дискретный случайный вектор (X,Y) задан распределением

|       | X = -1        | X = 0         | X = 1         |
|-------|---------------|---------------|---------------|
| Y = 0 | $\frac{1}{4}$ | $\frac{1}{8}$ | $\frac{1}{8}$ |
| Y = 1 | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ |

1 . Найдите условное математи-

ческое ожидание E(Y|X+Y=1).

- **4.** Случайный вектор (X,Y) равномерно распределен в треугольнике  $x\geqslant 0,\ y\geqslant 0,\ 55x+y\leqslant 55.$  Найдите математическое ожидание  $E(X^9Y).$
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi} e^{-\frac{5}{2}x^2 + 9x - \frac{17}{2} - 3xy + 5y - y^2}.$$

Найдите условное математическое ожидание E(X|Y=y).

**1.** Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1        | X = 0         | X = 1         |
|--------|---------------|---------------|---------------|
| Y = -1 | $\frac{1}{8}$ | $\frac{1}{8}$ | $\frac{1}{8}$ |
| Y = 0  | $\frac{1}{8}$ | <u>3</u><br>8 | $\frac{1}{8}$ |

выясните, зависимы или нет события  $A = \{X = -1\}$  и  $B = \{X = Y\}$ .

**2.** Найдите распределение случайной величины  $Z = \frac{X}{Y}$  и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|        | X = -1         | X = 0          | X = 1          |  |
|--------|----------------|----------------|----------------|--|
| Y = -1 | $\frac{1}{12}$ | $\frac{1}{12}$ | $\frac{5}{24}$ |  |
| Y = 1  | $\frac{1}{8}$  | $\frac{1}{4}$  | $\frac{1}{4}$  |  |

**3.** Дискретный случайный вектор (X,Y) задан распределением

|       | X = -2         | X = -1         | X = 0          |
|-------|----------------|----------------|----------------|
| Y = 2 | $\frac{1}{12}$ | 0              | $\frac{5}{24}$ |
| Y = 3 | $\frac{5}{24}$ | $\frac{1}{12}$ | $\frac{5}{12}$ |

. Найдите условное матема-

тическое ожидание  $E(Y|X \leqslant -1)$ .

- 4. Случайный вектор (X,Y) имеет плотность распределения  $f(x,y) \ = \begin{cases} Ce^{-2x-y}, & \text{если } 0\leqslant x<+\infty,\ 0\leqslant y<+\infty, \\ 0, & \text{в остальных точках.} \end{cases}$  Найдите константу C и P(X<1).
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид:  $f_{X,Y}(x,y) = \frac{1}{2\pi} \, e^{-\frac{5}{2}x^2 2xy \frac{1}{2}y^2}.$  Найдите E(X|Y=y).

- 1. Случайный вектор (X,Y) распределен по закону:  $P(X=1,Y=1)=0.11;\ P(X=1,Y=2)=0.19;\ P(X=1,Y=3)=0.19;\ P(X=2,Y=1)=0.17;\ P(X=2,Y=2)=0.1;\ P(X=2,Y=3)=0.24.$  Найдите условную вероятность P(X=2|Y=2).
- **2.** Найдите распределение случайной величины  $Z = \max(5, X Y)$  и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|        | X = 3         | X = 4         | X = 5          |
|--------|---------------|---------------|----------------|
| Y = -2 | $\frac{1}{4}$ | $\frac{1}{6}$ | $\frac{1}{8}$  |
| Y = -1 | $\frac{1}{8}$ | $\frac{1}{4}$ | $\frac{1}{12}$ |

- **3.** Дано:  $P(X=40)=0.4,\ P(X=60)=0.6,\ E(Y|X=40)=4,\ E(Y|X=60)=1.$  Найдите  $\mathrm{Cov}(X,Y).$
- **4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} \frac{1}{8} \, x + Cy, & \text{если } 0 < x < 2, \ 0 < y < 3, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу C и P(X + Y > 1).

**5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi} e^{-\frac{5}{2}x^2 - 3xy - 6x - y^2 - 4y - 4}.$$

Найдите D(Y|X=x).

- 1. Случайный вектор (X,Y) распределен по закону:  $P(X=1,Y=1)=0.14;\ P(X=1,Y=2)=0.13;\ P(X=1,Y=3)=0.15;\ P(X=2,Y=1)=0.11;\ P(X=2,Y=2)=0.2;\ P(X=2,Y=3)=0.27.$  Найдите условную вероятность P(Y=3|X=1).
- **2.** Найдите распределение случайной величины  $Z = \min(X, Y)$  и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|        | X = -2        | X = -1        | X = 0         |
|--------|---------------|---------------|---------------|
| Y = -1 | $\frac{1}{6}$ | $\frac{1}{8}$ | $\frac{1}{6}$ |
| Y = 0  | $\frac{1}{8}$ | $\frac{1}{4}$ | $\frac{1}{6}$ |

- **3.** Дано:  $P(X=30)=0.7, \quad P(X=70)=0.3, \quad D(Y|X=30)=9$  и D(Y|X=70)=5. Найдите  $E\{D(Y|X)\}.$
- **4.** Случайный вектор (X,Y) равномерно распределен в треугольнике  $x \ge 0, y \ge 0, 7x + 3y \le 21$ . Найдите значение функции распределения  $F_X(2)$  и E(X).
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{3}{2\pi} e^{-\frac{5}{2}x^2 - xy - x - y^2 - 2y - 1}.$$

Найдите условное математическое ожидание E(Y|X=x).

**1.** Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1         | X = 0          | X = 1          |
|--------|----------------|----------------|----------------|
| Y = -1 | $\frac{3}{14}$ | $\frac{1}{28}$ | $\frac{3}{14}$ |
| Y = 0  | $\frac{1}{28}$ | $\frac{2}{7}$  | $\frac{3}{14}$ |

выясните, зависимы или нет события  $A = \{X = 1\}$  и  $B = \{X + Y = 0\}$ .

**2.** Найдите распределение случайной величины Z = X - Y и E(Z), если известно распределение случайного дискретного вектора (X,Y):

|        | X = 1          | X = 2          | X = 3         |
|--------|----------------|----------------|---------------|
| Y = -1 | $\frac{1}{4}$  | $\frac{1}{12}$ | $\frac{1}{8}$ |
| Y = 0  | $\frac{5}{24}$ | $\frac{1}{12}$ | $\frac{1}{4}$ |

**3.** Найдите E(Y) и D(X) для случайного дискретного вектора (X,Y), распределенного по закону

|       | X = 0 | X = 1 | X = 2 |
|-------|-------|-------|-------|
| Y = 0 | 0,1   | 0,2   | 0     |
| Y = 1 | 0,1   | 0,1   | 0,5   |

**4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} 12e^{-4x-3y}, & \text{если } 0 \leqslant x < +\infty, \ 0 \leqslant y < +\infty, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите вероятность P(X > 2).

**5.** Плотность распределения случайного вектора (X,Y) имеет вид:  $f_{X,Y}(x,y) = \frac{1}{2\pi} \, e^{-\frac{1}{2}x^2 - x - \frac{5}{2} - 2xy - 4y - \frac{5}{2}y^2}.$  Найдите условное математическое ожидание E(X|Y=y).

**1.** Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1         | X = 0          | X = 1          |  |
|--------|----------------|----------------|----------------|--|
| Y = -1 | $\frac{3}{16}$ | $\frac{1}{16}$ | $\frac{3}{16}$ |  |
| Y = 0  | $\frac{1}{16}$ | $\frac{5}{16}$ | $\frac{3}{16}$ |  |

выясните, зависимы или нет события  $A = \{X = -1\}$  и  $B = \{Y = 0\}$ .

**2.** Найдите распределение случайной величины  $Z = \min(X, Y)$  и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|        | X = -3         | X = -2         | X = -1         |
|--------|----------------|----------------|----------------|
| Y = -2 | $\frac{1}{12}$ | $\frac{1}{12}$ | $\frac{5}{24}$ |
| Y = -1 | $\frac{1}{8}$  | $\frac{1}{4}$  | $\frac{1}{4}$  |

**3.** Найдите E(X), D(X), E(Y), D(Y), E(XY), Cov(X,Y) и  $\rho(X,Y)$  для случайного дискретного вектора (X,Y), распределенного по закону

|       | X = 0 | X = 1 | X = 2 |  |
|-------|-------|-------|-------|--|
| Y = 0 | 0,2   | 0,1   | 0     |  |
| Y = 1 | 0     | 0,1   | 0,6   |  |

- 4. Случайный вектор (X,Y) имеет плотность распределения  $f(x,y) \ = \begin{cases} 6e^{-3x-2y}, & \text{если } 0\leqslant x<+\infty, \ 0\leqslant y<+\infty, \\ 0, & \text{в остальных точках.} \end{cases}$  Найдите вероятность P(X<2).
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид:  $f_{X,Y}(x,y) = \frac{3}{2\pi} \, e^{-x^2+x-\frac{41}{2}-xy-13y-\frac{5}{2}y^2}. \text{ Найдите } D(X|Y=y).$

**1.** Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1        | X = 0         | X = 1         |
|--------|---------------|---------------|---------------|
| Y = -1 | $\frac{1}{8}$ | $\frac{1}{8}$ | $\frac{1}{8}$ |
| Y = 0  | $\frac{1}{8}$ | <u>3</u><br>8 | $\frac{1}{8}$ |

выясните, зависимы или нет события  $A = \{X = 1\}$  и  $B = \{X + Y = 0\}$ .

**2.** Найдите распределение случайной величины  $Z = \frac{X}{Y}$  и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|        | X = -2        | X = 0         | X = 2         |
|--------|---------------|---------------|---------------|
| Y = -2 | $\frac{1}{4}$ | $\frac{1}{8}$ | $\frac{1}{8}$ |
| Y=2    | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ |

**3.** Найдите E(X) и Cov(X,Y) для случайного дискретного вектора (X,Y), распределенного по закону

|       | X = 0 | X = 1 | X = 2 |
|-------|-------|-------|-------|
| Y = 0 | 0,1   | 0,1   | 0     |
| Y = 1 | 0,1   | 0,1   | 0,6   |

- **4.** Случайный вектор (X,Y) имеет плотность распределения  $f(x,y) \ = \ \begin{cases} Ce^{-2x-y}, & \text{если } 0 \leqslant x < +\infty, \ 0 \leqslant y < +\infty, \\ 0, & \text{в остальных точках.} \end{cases}$  Найдите константу C и P(X < 1).
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид:  $f_{X,Y}(x,y) = \frac{1}{2\pi} \, e^{-\frac{1}{2}x^2-x-1-xy-y^2}. \text{ Найдите } D(X|Y=y).$

**1.** Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1         | X = 0          | X = 1          |  |
|--------|----------------|----------------|----------------|--|
| Y = -1 | $\frac{5}{28}$ | $\frac{1}{14}$ | $\frac{5}{28}$ |  |
| Y = 0  | $\frac{1}{14}$ | $\frac{9}{28}$ | $\frac{5}{28}$ |  |

выясните, зависимы или нет события  $A = \{X = -1\}$  и  $B = \{X = Y\}$ .

**2.** Найдите распределение случайной величины  $Z = \max(X, Y)$  и E(Z), если известно распределение дискретного случайного вектора (X, Y):

|       | X = -1        | X = 0          | X = 1         |
|-------|---------------|----------------|---------------|
| Y = 0 | $\frac{1}{6}$ | $\frac{1}{12}$ | $\frac{1}{6}$ |
| Y = 1 | $\frac{1}{6}$ | $\frac{1}{6}$  | $\frac{1}{4}$ |

**3.** Найдите E(Y) и D(X) для случайного дискретного вектора (X,Y), распределенного по закону

|       | X = 0 | X = 1 | X = 2 |
|-------|-------|-------|-------|
| Y = 0 | 0,2   | 0,2   | 0     |
| Y = 1 | 0     | 0,2   | 0,4   |

4. Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} \frac{2}{5} \, x + Cy, & \text{если } 0 < x < 1, \ 0 < y < 3, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу C и P(X + Y < 1).

**5.** Плотность распределения случайного вектора (X,Y) имеет вид:  $f_{X,Y}(x,y) = \frac{1}{2\pi} \, e^{-\frac{5}{2}x^2-x-1-2xy-y-\frac{1}{2}y^2}.$  Найдите условное математическое ожидание E(X|Y=y).

**1.** Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1         | X = 0          | X = 1         |    |
|--------|----------------|----------------|---------------|----|
| Y = -1 | $\frac{1}{7}$  | $\frac{3}{28}$ | $\frac{1}{7}$ | ]. |
| Y = 0  | $\frac{3}{28}$ | $\frac{5}{14}$ | $\frac{1}{7}$ |    |

выясните, зависимы или нет события  $A = \{XY \neq 0\}$  и  $B = \{X + Y = 0\}$ .

**2.** Найдите распределение случайной величины  $Z = \max(5, X - Y)$  и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|        | X = 3          | X = 4          | X = 5         |
|--------|----------------|----------------|---------------|
| Y = -2 | $\frac{1}{4}$  | $\frac{1}{12}$ | $\frac{1}{8}$ |
| Y = -1 | $\frac{5}{24}$ | $\frac{1}{12}$ | $\frac{1}{4}$ |

- **3.** Дано:  $P(X=50)=0.3,\ P(X=90)=0.7,\ E(Y|X=50)=1,\ E(Y|X=90)=4.$  Найдите E(Y).
- **4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} \frac{2}{7} \, x + Cy, & \text{если } 0 < x < 1, \ 0 < y < 3, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу C.

**5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi} e^{-\frac{5}{2}x^2 + 21x - \frac{89}{2} - 3xy + 13y - y^2}.$$

Найдите D(Y|X=x).

**1.** Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1         | X = 0           | X = 1          |  |
|--------|----------------|-----------------|----------------|--|
| Y = -1 | $\frac{1}{28}$ | $\frac{3}{14}$  | $\frac{1}{28}$ |  |
| Y = 0  | $\frac{3}{14}$ | $\frac{13}{28}$ | $\frac{1}{28}$ |  |

выясните, зависимы или нет события  $A = \{XY \neq 0\}$  и  $B = \{X + Y = 0\}$ .

**2.** Найдите распределение случайной величины Z = X - Y и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|        | X = 2         | X = 3         | X = 4         |  |
|--------|---------------|---------------|---------------|--|
| Y = -2 | $\frac{1}{6}$ | $\frac{1}{8}$ | $\frac{1}{6}$ |  |
| Y = -1 | $\frac{1}{8}$ | $\frac{1}{4}$ | $\frac{1}{6}$ |  |

**3.** Дискретный случайный вектор (X,Y) задан распределением

|       | X = 0         | X = 1         | X = 2         |
|-------|---------------|---------------|---------------|
| Y = 1 | $\frac{1}{4}$ | $\frac{1}{8}$ | $\frac{1}{8}$ |
| Y = 2 | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ |

. Найдите условное математиче-

ское ожидание  $E(Y|X \ge 1)$ .

- **4.** Случайный вектор (X,Y) имеет плотность распределения  $f(x,y) \ = \ \begin{cases} Ce^{-2x-y}, & \text{если } 0 \leqslant x < +\infty, \ 0 \leqslant y < +\infty, \\ 0, & \text{в остальных точках.} \end{cases}$  Найдите константу C и P(X<2).
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид:  $f_{X,Y}(x,y) = \frac{1}{\pi} \, e^{-\frac{1}{2}x^2 xy \frac{5}{2}y^2}.$  Найдите условное математическое ожидание E(X|Y=y).

**1.** Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1         | X = 0          | X = 1          |  |
|--------|----------------|----------------|----------------|--|
| Y = -1 | $\frac{5}{28}$ | $\frac{1}{14}$ | $\frac{5}{28}$ |  |
| Y = 0  | $\frac{1}{14}$ | $\frac{9}{28}$ | $\frac{5}{28}$ |  |

выясните, зависимы или нет события  $A = \{X = -1\}$  и  $B = \{X = Y\}$ .

**2.** Найдите распределение случайной величины Z = X + Y и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|        | X = 2         | X = 3         | X = 4         |
|--------|---------------|---------------|---------------|
| Y = -2 | $\frac{1}{4}$ | $\frac{1}{8}$ | $\frac{1}{8}$ |
| Y = -1 | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ |

3. Распределение случайного вектора (X,Y) задается таблицей

|       | X = 0                         | X = 1                        |
|-------|-------------------------------|------------------------------|
| Y = 0 | $-\frac{1}{3} + \frac{2}{3}x$ | $\frac{2}{3} - \frac{2}{3}x$ |
| Y = 1 | $\frac{2}{3} - \frac{2}{3}x$  | $\frac{2}{3}x$               |

. Найдите x так, чтобы коэффици-

ент корреляции между X и Y был равен  $-\frac{1}{4}$ .

- 4. Случайный вектор (X,Y) имеет плотность распределения  $f(x,y) \ = \begin{cases} \frac{2}{7}\,x + Cy, & \text{если } 0 < x < 1, \ 0 < y < 3, \\ 0, & \text{в остальных точках.} \end{cases}$  Найдите константу C и P(X+Y<1).
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид:  $f_{X,Y}(x,y) = \frac{1}{\pi} \, e^{-\frac{1}{2}x^2-2-xy-4y-\frac{5}{2}y^2}.$  Найдите условное математическое ожидание E(Y|X=x).

**1.** Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1         | X = 0          | X = 1          |
|--------|----------------|----------------|----------------|
| Y = -1 | $\frac{5}{28}$ | $\frac{1}{14}$ | $\frac{5}{28}$ |
| Y = 0  | $\frac{1}{14}$ | $\frac{9}{28}$ | $\frac{5}{28}$ |

выясните, зависимы или нет события  $A = \{X = 1\}$  и  $B = \{X + Y = 0\}$ .

**2.** Найдите распределение случайной величины  $Z = \min(2, X - Y)$  и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|       | X = 1         | X = 2          | X = 3         |
|-------|---------------|----------------|---------------|
| Y = 0 | $\frac{1}{6}$ | $\frac{1}{12}$ | $\frac{1}{6}$ |
| Y = 1 | $\frac{1}{6}$ | $\frac{1}{6}$  | $\frac{1}{4}$ |

**3.** Дискретный случайный вектор (X,Y) задан распределением

| , t ±  | v             |               | 1             |
|--------|---------------|---------------|---------------|
|        | X = 2         | X = 3         | X = 4         |
| Y = -1 | $\frac{1}{6}$ | $\frac{1}{8}$ | $\frac{1}{6}$ |
| Y = 0  | $\frac{1}{8}$ | $\frac{1}{4}$ | $\frac{1}{6}$ |

. Найдите условное математи-

ческое ожидание  $E(Y|X \leq 3)$ .

- **4.** Случайный вектор (X,Y) имеет плотность распределения  $f(x,y) \ = \begin{cases} 12e^{-3x-4y}, & \text{если } 0\leqslant x<+\infty,\ 0\leqslant y<+\infty, \\ 0, & \text{в остальных точках.} \end{cases}$  Найдите P(X<1).
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид:  $f_{X,Y}(x,y) = \frac{1}{2\pi} \, e^{-\frac{5}{2}x^2 + 9x 9 2xy + 3y \frac{1}{2}y^2}.$  Найдите условное математическое ожидание E(X|Y=y).

**1.** Для случайного дискретного вектора $\ddot{\mathrm{E}}(X,Y)$ , распределенного по закону

|        | X = -1         | X = 0          | X = 1          |
|--------|----------------|----------------|----------------|
| Y = -1 | $\frac{1}{16}$ | $\frac{3}{16}$ | $\frac{1}{16}$ |
| Y = 0  | $\frac{3}{16}$ | $\frac{7}{16}$ | $\frac{1}{16}$ |

выясните, зависимы или нет события  $A = \{X = -1\}$  и  $B = \{Y = 0\}$ .

**2.** Найдите распределение случайной величины  $Z = \max(X,Y)$  и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|        | X = -3         | X = -2         | X = -1         |
|--------|----------------|----------------|----------------|
| Y = -2 | $\frac{1}{12}$ | 0              | $\frac{5}{24}$ |
| Y = -1 | $\frac{5}{24}$ | $\frac{1}{12}$ | $\frac{5}{12}$ |

- **3.** Дано: P(X = 40) = 0.3, P(X = 90) = 0.7, E(Y|X = 40) = 4, E(Y|X = 90) = 3. Найдите  $D\{E(Y|X)\}$ .
- **4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} \frac{1}{2} \, x + Cy, & \text{если } 0 < x < 1, \ 0 < y < 2, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу C и P(X + Y > 1).

**5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi} e^{-\frac{1}{2}x^2 - 3x - 5 - 2xy - 7y - \frac{5}{2}y^2}.$$

Найдите условное математическое ожидание E(Y|X=x).

- 1. Случайный вектор (X,Y) распределен по закону:  $P(X=1,Y=1)=0.17;\ P(X=1,Y=2)=0.18;\ P(X=1,Y=3)=0.12;\ P(X=2,Y=1)=0.14;\ P(X=2,Y=2)=0.16;\ P(X=2,Y=3)=0.23.$  Найдите условную вероятность P(Y=1|X=1).
- **2.** Найдите распределение случайной величины Z = X + Y и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|        | X = 1          | X = 2          | X = 3          |
|--------|----------------|----------------|----------------|
| Y = -1 | $\frac{1}{12}$ | $\frac{1}{24}$ | $\frac{5}{24}$ |
| Y = 0  | $\frac{1}{6}$  | $\frac{1}{6}$  | $\frac{1}{3}$  |

- 3. Дано:  $P(X=10)=0.1,\ P(X=60)=0.9,\ E(Y|X=10)=2,\ E(Y|X=60)=4,\ D(Y|X=10)=9$  и D(Y|X=60)=5. Найдите D(Y).
- **4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} \frac{1}{9} \, x + Cy, & \text{если } 0 < x < 2, \ 0 < y < 4, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу C.

**5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{3}{2\pi} e^{-\frac{5}{2}x^2 - 3x - \frac{9}{2} - xy + 3y - y^2}.$$

Найдите D(X|Y=y).

**1.** Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1        | X = 0         | X = 1         |
|--------|---------------|---------------|---------------|
| Y = -1 | $\frac{1}{8}$ | $\frac{1}{8}$ | $\frac{1}{8}$ |
| Y = 0  | $\frac{1}{8}$ | $\frac{3}{8}$ | $\frac{1}{8}$ |

выясните, зависимы или нет события  $A = \{X = -1\}$  и  $B = \{X = Y\}$ .

**2.** Найдите распределение случайной величины  $Z = \min(2, X - Y)$  и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|       | X = 1          | X = 2          | X = 3          |
|-------|----------------|----------------|----------------|
| Y = 0 | $\frac{1}{12}$ | $\frac{1}{24}$ | $\frac{5}{24}$ |
| Y = 1 | $\frac{1}{6}$  | $\frac{1}{6}$  | $\frac{1}{3}$  |

- **3.** Дано:  $P(X=10)=0.9,\ P(X=80)=0.1,\ E(Y|X=10)=2,\ E(Y|X=80)=3.$  Найдите  $\mathrm{Cov}(X,Y).$
- **4.** Случайный вектор (X,Y) равномерно распределен в треугольнике  $x\geqslant 0,\ y\geqslant 0,\ 26x+y\leqslant 26.$  Найдите математическое ожидание  $E(X^{10}Y).$
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi} e^{-\frac{1}{2}x^2 - 2xy - \frac{5}{2}y^2}.$$

Найдите условное математическое ожидание E(X|Y=y).

- 1. Случайный вектор (X,Y) распределен по закону:  $P(X=1,Y=1)=0.13;\ P(X=1,Y=2)=0.17;\ P(X=1,Y=3)=0.15;\ P(X=2,Y=1)=0.14;\ P(X=2,Y=2)=0.13;\ P(X=2,Y=3)=0.28.$  Найдите условную вероятность P(X=2|Y=1).
- **2.** Найдите распределение случайной величины  $Z = \max(3, X Y)$  и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|        | X = 2          | X = 3          | X = 4         |
|--------|----------------|----------------|---------------|
| Y = -1 | $\frac{1}{4}$  | $\frac{1}{12}$ | $\frac{1}{8}$ |
| Y = 0  | $\frac{5}{24}$ | $\frac{1}{12}$ | $\frac{1}{4}$ |

- **3.** Дано:  $P(X=10)=0.4,\ P(X=60)=0.6,\ E(Y|X=10)=4,\ E(Y|X=60)=1.$  Найдите E(XY).
- **4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} 12e^{-3x-4y}, & \text{если } 0 \leqslant x < +\infty, \ 0 \leqslant y < +\infty, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите P(X > 2).

**5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{\pi} e^{-2x^2 + 12x - 18 - 2xy + 6y - y^2}.$$

Найдите D(Y|X=x).

**1.** Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1        | X = 0         | X = 1         |  |
|--------|---------------|---------------|---------------|--|
| Y = -1 | $\frac{1}{8}$ | $\frac{1}{8}$ | $\frac{1}{8}$ |  |
| Y = 0  | $\frac{1}{8}$ | <u>3</u><br>8 | $\frac{1}{8}$ |  |

выясните, зависимы или нет события  $A = \{X = 1\}$  и  $B = \{X + Y = 0\}$ .

**2.** Найдите распределение случайной величины Z = X - Y и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|        | X = 2          | X = 3          | X = 4          |
|--------|----------------|----------------|----------------|
| Y = -2 | $\frac{1}{12}$ | 0              | $\frac{5}{24}$ |
| Y = -1 | $\frac{5}{24}$ | $\frac{1}{12}$ | $\frac{5}{12}$ |

**3.** Дискретный случайный вектор (X,Y) задан распределением

|        | X = -1         | X = 0          | X = 1         |
|--------|----------------|----------------|---------------|
| Y = -2 | $\frac{1}{6}$  | $\frac{1}{24}$ | $\frac{1}{6}$ |
| Y = -1 | $\frac{5}{24}$ | $\frac{1}{12}$ | $\frac{1}{3}$ |

Найдите условное математическое ожидание E(Y|X+Y=-1).

- **4.** Случайный вектор (X,Y) равномерно распределен в треугольнике  $x\geqslant 0,\ y\geqslant 0,\ 5x+12y\leqslant 60.$  Найдите значение функции распределения  $F_X(8)$  и E(X).
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид:  $f_{X,Y}(x,y) \ = \ \frac{3}{2\pi} \, e^{-x^2-xy-\frac{5}{2}y^2}.$  Найдите условное математическое ожидание E(X|Y=y).

1. Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1         | X = 0          | X = 1          |  |
|--------|----------------|----------------|----------------|--|
| Y = -1 | $\frac{1}{12}$ | $\frac{1}{6}$  | $\frac{1}{12}$ |  |
| Y = 0  | $\frac{1}{6}$  | $\frac{5}{12}$ | $\frac{1}{12}$ |  |

выясните, зависимы или нет события  $A = \{X = -1\}$  и  $B = \{Y = 0\}$ .

**2.** Найдите распределение случайной величины  $Z = \min(X, Y)$  и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|       | X = -1        | X = 0         | X = 1          |  |
|-------|---------------|---------------|----------------|--|
| Y = 0 | $\frac{1}{4}$ | $\frac{1}{6}$ | $\frac{1}{8}$  |  |
| Y = 1 | $\frac{1}{8}$ | $\frac{1}{4}$ | $\frac{1}{12}$ |  |

- **3.** Дано:  $P(X=10)=0.9,\ P(X=70)=0.1,\ D(Y|X=10)=7$  и D(Y|X=70)=9. Найдите  $E\{D(Y|X)\}.$
- **4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} Ce^{-x-y}, & \text{если } 0 \leqslant x < +\infty, \ 0 \leqslant y < +\infty, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу C и P(X < 2).

**5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi} e^{-x^2 + 4x - 4 - 3xy + 6y - \frac{5}{2}y^2}.$$

Найдите D(X|Y=y).

**1.** Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1         | X = 0          | X = 1          |  |
|--------|----------------|----------------|----------------|--|
| Y = -1 | $\frac{1}{12}$ | $\frac{1}{6}$  | $\frac{1}{12}$ |  |
| Y = 0  | $\frac{1}{6}$  | $\frac{5}{12}$ | $\frac{1}{12}$ |  |

выясните, зависимы или нет события  $A = \{X = 1\}$  и  $B = \{Y = -1\}$ .

**2.** Найдите распределение случайной величины  $Z = \frac{X}{Y}$  и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|        | X = -3         | X = 0          | X = 3          |
|--------|----------------|----------------|----------------|
| Y = -3 | $\frac{1}{12}$ | $\frac{1}{12}$ | $\frac{5}{24}$ |
| Y = 3  | $\frac{1}{8}$  | $\frac{1}{4}$  | $\frac{1}{4}$  |

**3.** Найдите  $\mathrm{Cov}(X,Y)$  и  $\rho(X,Y)$  для случайного дискретного вектора (X,Y), распределенного по закону

|       | X = 0 | X = 1 | X = 2 |
|-------|-------|-------|-------|
| Y = 0 | 0,3   | 0,2   | 0,1   |
| Y = 1 | 0,1   | 0,1   | 0,2   |

- **4.** Случайный вектор (X,Y) имеет плотность распределения  $f(x,y) \ = \begin{cases} \frac{2}{7}\,x + Cy, & \text{если } 0 < x < 1, \ 0 < y < 3, \\ 0, & \text{в остальных точках.} \end{cases}$  Найдите константу C и P(X+Y < 1).
- **5.** Плотность распределения случайного вектора (X,Y) имеет вид:  $f_{X,Y}(x,y) = \frac{1}{2\pi} \, e^{-x^2-3xy-6x-\frac{5}{2}y^2-10y-10}. \text{ Найдите } D(Y|X=x).$

- 1. Случайный вектор (X,Y) распределен по закону:  $P(X=1,Y=1)=0.16;\ P(X=1,Y=2)=0.14;\ P(X=1,Y=3)=0.12;\ P(X=2,Y=1)=0.15;\ P(X=2,Y=2)=0.18;\ P(X=2,Y=3)=0.25.$  Найдите условную вероятность P(Y=2|X=1).
- **2.** Найдите распределение случайной величины  $Z = \max(X, Y)$  и E(Z), если известно распределение дискретного случайного вектора (X, Y):

|        | X = -3        | X = -2        | X = -1        |
|--------|---------------|---------------|---------------|
| Y = -2 | $\frac{1}{4}$ | $\frac{1}{8}$ | $\frac{1}{8}$ |
| Y = -1 | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ |

- **3.** Дано:  $P(X=30)=0.6,\ P(X=90)=0.4,\ D(Y|X=30)=6$  и D(Y|X=90)=7. Найдите  $E\{D(Y|X)\}.$
- **4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} 6e^{-3x-2y}, & \text{если } 0 \leqslant x < +\infty, \ 0 \leqslant y < +\infty, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите P(X > 2).

**5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi} e^{-\frac{1}{2}x^2 - \frac{1}{2} - xy - y - y^2}.$$

Найдите условное математическое ожидание E(X|Y=y).

1. Для случайного дискретного вектора (X,Y), распределенного по закону

|        | X = -1         | X = 0          | X = 1          |
|--------|----------------|----------------|----------------|
| Y = -1 | $\frac{3}{16}$ | $\frac{1}{16}$ | $\frac{3}{16}$ |
| Y = 0  | $\frac{1}{16}$ | $\frac{5}{16}$ | $\frac{3}{16}$ |

выясните, зависимы или нет события  $A = \{X = -1\}$  и  $B = \{Y = 0\}$ .

**2.** Найдите распределение случайной величины  $Z = \min(4, X - Y)$  и E(Z), если известно распределение дискретного случайного вектора (X,Y):

|        | X = 2          | X = 3          | X = 4         |
|--------|----------------|----------------|---------------|
| Y = -1 | $\frac{1}{6}$  | $\frac{1}{24}$ | $\frac{1}{6}$ |
| Y = 0  | $\frac{5}{24}$ | $\frac{1}{12}$ | $\frac{1}{3}$ |

- **3.** Дано:  $P(X=10)=0.3,\ P(X=70)=0.7,\ E(Y|X=10)=1,\ E(Y|X=70)=4.$  Найдите  $D\{E(Y|X)\}.$
- **4.** Случайный вектор (X,Y) имеет плотность распределения

$$f(x,y) = \begin{cases} Ce^{-2x-y}, & \text{если } 0 \leqslant x < +\infty, \ 0 \leqslant y < +\infty, \\ 0, & \text{в остальных точках.} \end{cases}$$

Найдите константу C и P(X < 1).

**5.** Плотность распределения случайного вектора (X,Y) имеет вид:

$$f_{X,Y}(x,y) = \frac{1}{2\pi} e^{-x^2 - 10x - 26 - 3xy - 16y - \frac{5}{2}y^2}.$$

Найдите условное математическое ожидание E(Y|X=x).

- 1. Пусть  $X_1, X_2, \dots, X_6$  выборка из равномерного распределения на отрезке  $[6,12], \ \widehat{F}(x)$  соответствующая выборочная функция распределения. Найдите вероятность  $P\left(\widehat{F}(8)=\frac{1}{2}\right)$ .
- **2.** В некотором городе сторонники партии A составляют 23 %, партии B-29 %. Известно, что объем бесповторной выборки составляет 5 % от числа всех избирателей. Пусть  $\widehat{p}_A$  выборочная доля сторонников партии A,  $n_B$  число отобранных сторонников партии B. Найдите (приближенно)  $\text{Cov}(\widehat{p}_A, n_B)$ .
- 3. Случайная величина X распределена по закону Пуассона  $P(X=k)=\frac{\lambda^k e^{-\lambda}}{k!}.$  Результаты 465 независимых наблюдений X отражены в таблице

| Значение Х | 0   | 1   | 2  | 3  |
|------------|-----|-----|----|----|
| Частота    | 205 | 155 | 78 | 27 |

Найдите методом моментов точечную оценку  $\widehat{\lambda}$ .

4. Численность повторной выборки составляет 1340 единиц. Доля признака составляет 8%. Найдите с доверительной вероятностью 0,994, в каких пределах находится отклонение частоты от доли признака.

- **1.** Пусть  $X_1, X_2, \ldots, X_8$  выборка из распределения  $P(X=l)=\frac{1}{11},$   $l=1,2,\ldots,11,\; \widehat{F}(x)$  соответствующая эмпирическая функция распределения. Найдите вероятность  $P\left(\widehat{F}(3+0)-\widehat{F}(3)=\frac{1}{4}\right).$
- **2.** Значения признаков X и Y заданы на множестве  $\Omega = \{1, 2, \dots, 100\}$  таблицей частот

|         | Y = 3 | Y = 6 | Y = 8 |
|---------|-------|-------|-------|
| X = 300 | 11    | 13    | 17    |
| X = 900 | 10    | 18    | 31    |

Из  $\Omega$  без возвращения извлекаются 15 элементов. Пусть  $\overline{X}$  и  $\overline{Y}$  — средние значения признаков в выборочной совокупности. Найдите  $\mathrm{Cov}(\overline{X},\overline{Y}).$ 

- 3. В 26 независимых испытаниях случайная величина X значение 3 приняла 14 раз, а значение 6-12 раз. Найдите несмещенную оценку дисперсии D(X).
- 4. Глубина моря измеряется прибором, систематическая ошибка которого равна 0, а случайные ошибки распределены нормально со среднеквадратичным отклонением 18 м. Каково наименьшее число независимых измерений, при котором удается определить глубину с ошибкой меньше 3 метров с надежностью не ниже 0,994?

1. Итоговое распределение баллов на некотором письменном экзамене задано таблицей

| Оценка работы | 2 | 3  | 4  | 5  |
|---------------|---|----|----|----|
| Число работ   | 6 | 24 | 18 | 30 |

Работы проверяли 6 преподавателей, которые разделили все работы между собой поровну случайным образом. Предполагая независимость оценки от личности проверяющего, найдите математическое ожидание и дисперсию среднего балла по результатам одного преподавателя.

**2.** Значения признаков X и Y заданы на множестве  $\Omega = \{1, 2, \dots, 2000\}$  таблицей частот

|        | Y = 2 | Y = 4 | Y = 5 |  |
|--------|-------|-------|-------|--|
| X = 7  | 200   | 300   | 200   |  |
| X = 10 | 200   | 100   | 1 000 |  |

Из  $\Omega$  с возвращением извлекаются 200 элементов. Пусть  $\overline{X}$  и  $\overline{Y}$  — средние значения признаков в выборочной совокупности. Найдите  $\mathrm{Cov}(\overline{X},\overline{Y})$ .

3. Случайная величина X (время бесперебойной работы устройства) имеет показательное распределение с плотностью  $f(x) = \lambda e^{-\lambda x}$  ( $x \geqslant 0$ ). По эмпирическому распределению времени работы

| Время работы    | 0 - 30 | 30 - 60 | 60 - 90 | 90 - 120 |  |
|-----------------|--------|---------|---------|----------|--|
| Число устройств | 130    | 41      | 12      | 7        |  |

методом моментов найдите точечную оценку  $\widehat{\lambda}$ .

**4.** При испытании  $n=1\,040$  элементов зарегистрировано m=104 отказов. Найдите доверительный интервал, покрывающий неизвестную вероятность p отказа элемента с надежностью  $\gamma \approx 0.97$ .

- 1. Две игральные кости, красная и синяя, подбрасываются до тех пор, пока не выпадет 14 различных с учетом цвета комбинаций очков. Пусть  $S_i$  сумма очков на красной и синей кости в i-той комбинации,  $\overline{S}$  среднее арифметическое всех этих сумм,  $i=1,\ldots,14$ . Найдите математическое ожидание и дисперсию среднего значения  $\overline{S}$ .
- **2.** Значения признака X в генеральной совокупности заданы таблиней частот

| Интервал | 11 - 31 | 31 - 51 | 51 - 71 |  |  |
|----------|---------|---------|---------|--|--|
| Частота  | 500     | 1 300   | 1 000   |  |  |

Из этой совокупности производится бесповторная выборка объема 200. Пусть m — генеральное, а  $\overline{X}$  — выборочное среднее. Найдите среднеквадратичную ошибку в приближенном равенстве  $m \approx \overline{X}$ . При вычислении генеральной дисперсии не следует использовать поправку Шеппарда.

- **3.** Пусть  $X_1, X_2, \dots, X_n$  выборка из распределения с плотностью  $f(x) = \begin{cases} 6e^{6(\theta-x)} & \text{при } x \geqslant \theta, \\ 0 & \text{при } x < \theta. \end{cases}$  Проверьте, является ли оценка  $\widehat{\theta} = \overline{X} \frac{1}{6}$  несмещенной оценкой параметра  $\theta$ ?
- 4. Производится выборочное обследование возраста читателей массовых библиотек. Сколько карточек необходимо взять для обследования, чтобы с вероятностью 0,95 можно было бы утверждать, что средний возраст в выборочной совокупности отклонится от генерального среднего не более, чем на 3 года? Генеральное среднее квадратичное отклонение принять равным 30 годам.

- 1. Две игральные кости, красная и синяя, подбрасываются до тех пор, пока не выпадет 18 различных с учетом цвета комбинаций очков. Пусть  $S_i$  число очков на красной кости в i-той комбинации,  $\overline{S}$  среднее арифметическое всех этих чисел,  $i=1,\ldots,18$ . Найдите математическое ожидание и дисперсию среднего значения  $\overline{S}$ .
- 2. В некоторой области имеется  $100\,000$  жителей, из которых пенсионеры составляют  $6\,\%$ . Пусть  $\widehat{p}$  доля пенсионеров среди случайно (без возвращения) отобранных  $12\,000$  жителей данной области. Найдите среднеквадратичную погрешность в приближенном равенстве  $0.06 \approx \widehat{p}$ .
- 3. Даны результаты 8 независимых измерений одной и той же величины прибором, не имеющим систематических ошибок: 362, 379, 313, 426, 385, 409, 371, 382 м. Найдите несмещенную оценку дисперсии ошибок измерений, если истинная длина известна и равна 375 м.
- 4. Обследуется средняя продолжительность телефонного разговора. Сколько телефонных разговоров должно быть зафиксировано, чтобы с вероятностью 0,95 можно было бы утверждать, что отклонение средней продолжительности зафиксированных разговоров от генеральной средней не превосходит 9 секунд, если среднее квадратичное отклонение длительности одного разговора равно 3 минутам?

**1.** Признак X(k) задан на множестве  $\Omega = \{1, 2, \dots, 10\}$  следующей таблицей:

| k    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|------|---|---|---|---|---|---|---|---|---|----|
| X(k) | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 3 | 2 | 3  |

Из  $\Omega$  извлекается случайная повторная выборка объема 5. Найдите математическое ожидание и дисперсию среднего значения  $\overline{X}$  признака X в выборке.

- 2. В некотором округе имеется  $400\,000$  избирателей, из которых желающие принять участие в выборах составляют  $67\,\%$ . Пусть  $\widehat{p}$  доля желающих проголосовать среди случайно (без возвращения) отобранных  $11\,000$  избирателей. Найдите среднеквадратичную погрешность в приближенном равенстве  $0.67 \approx \widehat{p}$ .
- 3. Даны результаты 8 независимых измерений одной и той же величины прибором, не имеющим систематических ошибок: 367, 375, 315, 421, 386, 406, 374, 381 м. Найдите несмещенную оценку дисперсии ошибок измерений, если истинная длина неизвестна.
- 4. Выборочно обследовали качество кирпича. Из n=1700 проб в m=50 случаях кирпич оказался бракованным. В каких пределах заключается доля брака для всей продукции, если результат гарантируется с надежностью  $\gamma\approx 0.97?$

- 1. Пусть  $X_1, X_2, \dots, X_6$  выборка из равномерного распределения на отрезке  $[7,12], \hat{F}(x)$  соответствующая выборочная функция распределения. Найдите  $P(\hat{F}(10) = \hat{F}(11))$ .
- **2.** Значения признака X в генеральной совокупности заданы таблицей частот

| Интервал | 7 - 11 | 11 - 15 | 15 - 19 |  |
|----------|--------|---------|---------|--|
| Частота  | 5      | 15      | 6       |  |

Из этой совокупности производится повторная выборка объема 2. Пусть m — генеральное, а  $\overline{X}$  — выборочное среднее. Найдите среднеквадратичную опибку в приближенном равенстве  $m \approx \overline{X}$ . При вычислении генеральной дисперсии не следует использовать поправку Шеппарда.

- **3.** Пусть  $X_1, X_2, \dots, X_n$  выборка из распределения с плотностью  $f(x) = \begin{cases} 7e^{7(\theta-x)} & \text{при } x \geqslant \theta, \\ 0 & \text{при } x < \theta. \end{cases}$  Проверьте, является ли оценка  $\widehat{\theta} = \overline{X} \frac{1}{7}$  несмещенной оценкой параметра  $\theta$ ?
- 4. Выборка из большой партии электроламп содержит 110 ламп. Средняя продолжительность горения отобранных ламп оказалось равной 1600 ч. Найдите приближенный 0,994-доверительный интервал для средней продолжительности горения лампы во всей партии, если известно, что среднеквадратичное отклонение продолжительности горения лампы в партии равно 21 ч.

- **1.** Пусть  $X_1, X_2, \dots, X_4$  выборка из равномерного распределения на отрезке  $[8,17], \ \widehat{F}(x)$  соответствующая выборочная функция распределения. Найдите дисперсию  $D\left[\widehat{F}(13)\right]$ .
- **2.** Статистические данные о результатах экзамена в трех группах приведены в таблице

| №<br>группы | Число<br>студентов | Средний<br>балл | Среднее<br>квадр. откл. |
|-------------|--------------------|-----------------|-------------------------|
| 1           | 18                 | 64              | 9                       |
| 2           | 22                 | 67              | 15                      |
| 3           | 22                 | 66              | 20                      |

При проведении экзамена студенты случайным образом размещались (в соответствии с числом мест) в нескольких аудиториях. В одной из них находилось 20 студентов. Найдите математическое ожидание и дисперсию среднего балла по результатам, полученным в данной аудитории, предполагая, что условия для выполнения экзаменационных работ во всех аудиториях одинаковы.

- 3. В 22 независимых испытаниях случайная величина X значение 3 приняла 12 раз, а значение 4–10 раз. Найдите несмещенную оценку дисперсии D(X).
- 4. В результате проведенного социологического опроса  $n=1\,660$  человек рейтинг кандидата в президенты составил 7 %. Найдите доверительный интервал для рейтинга кандидата с гарантированной надежностью  $95\,\%$ .

**1.** Признак X(k) задан на множестве  $\Omega = \{1, 2, \dots, 10\}$  следующей таблицей:

| k    |    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|------|----|---|---|---|---|---|---|---|---|---|----|
| X(k) | ;) | 3 | 3 | 2 | 3 | 1 | 3 | 2 | 2 | 3 | 2  |

Из  $\Omega$  извлекается случайная бесповторная выборка объема 5. Найдите математическое ожидание и дисперсию среднего значения  $\overline{X}$  признака X в выборке.

**2.** Значения признака X в генеральной совокупности заданы таблиней частот

| Интервал | 5 - 25 | 25 - 45 | 45 - 65 |
|----------|--------|---------|---------|
| Частота  | 3      | 14      | 8       |

Из этой совокупности производится повторная выборка объема 7. Пусть m — генеральное, а  $\overline{X}$  — выборочное среднее. Найдите среднеквадратичную ошибку в приближенном равенстве  $m \approx \overline{X}$ . При вычислении генеральной дисперсии не следует использовать поправку Шеппарда.

- 3. Даны результаты 8 независимых измерений одной и той же величины прибором, не имеющим систематических ошибок: 368, 377, 314, 425, 388, 402, 373, 381 м. Найдите несмещенную оценку дисперсии ошибок.
- 4. В  $30\,000$  сеансах игры с автоматом выигрыш появился  $5\,200$  раз. Найдите для вероятности выигрыша p приближенный 0,994-доверительный интервал.

**1.** Итоговое распределение баллов на некотором письменном экзамене задано таблицей

| Оценка работы | 2  | 3  | 4  | 5  |
|---------------|----|----|----|----|
| Число работ   | 10 | 40 | 40 | 30 |

Работы проверяли 10 преподавателей, которые разделили все работы между собой поровну случайным образом. Предполагая независимость оценки от личности проверяющего, найдите математическое ожидание и дисперсию среднего балла по результатам одного преподавателя.

**2.** Значения признаков X и Y заданы на множестве  $\Omega = \{1, 2, \dots, 100\}$  таблицей частот

|         | Y = 1 | Y = 6 | Y = 7 |
|---------|-------|-------|-------|
| X = 300 | 14    | 14    | 13    |
| X = 700 | 16    | 10    | 33    |

Из  $\Omega$  без возвращения извлекаются 10 элементов. Пусть  $\overline{X}$  и  $\overline{Y}$  — средние значения признаков в выборочной совокупности. Найдите  $\mathrm{Cov}(\overline{X},\overline{Y}).$ 

- 3. Даны результаты 8 независимых измерений одной и той же величины прибором, не имеющим систематических ошибок: 362, 377, 315, 429, 388, 407, 371, 382 м. Найдите несмещенную оценку дисперсии ошибок измерений, если истинная длина неизвестна.
- 4. Брокер на бирже желает найти 0.95-доверительный интервал для математического ожидания недельной доходности выбранной акции. Известно, что выборочная средняя недельная доходность за последний год (52 недели) составила  $\overline{r} = 0.013$ . Найдите искомый доверительный интервал в предположении, что недельные доходности независимы и распределены нормально с постоянными параметрами, причем генеральное среднеквадратичное отклонение недельной доходности равно 0.01.

- 1. Пусть  $X_1, X_2, \dots, X_7$  выборка из равномерного распределения на отрезке  $[10,18], \widehat{F}(x)$  соответствующая выборочная функция распределения. Найдите вероятность  $P\left(\widehat{F}(13) = \frac{4}{7}\right)$ .
- 2. В некоторой области имеется  $500\,000$  жителей, из которых пенсионеры составляют  $10\,\%$ . Пусть  $\widehat{p}$  доля пенсионеров среди случайно (без возвращения) отобранных  $12\,000$  жителей данной области. Найдите среднеквадратичную погрешность в приближенном равенстве  $0,1\approx\widehat{p}$ .
- 3. Случайная величина X распределена по закону Пуассона  $P(X=k)=\frac{\lambda^k e^{-\lambda}}{k!}.$  Результаты 469 независимых наблюдений X отражены в таблице

| Значение Х | 0   | 1   | 2  | 3  |
|------------|-----|-----|----|----|
| Частота    | 204 | 157 | 82 | 26 |

Найдите методом моментов точечную оценку  $\widehat{\lambda}$ .

4. Численность повторной выборки составляет  $1\,200$  единиц. Доля признака составляет  $9\,\%$ . Найдите с доверительной вероятностью 0,97, в каких пределах находится отклонение частоты от доли признака.

- 1. Пусть  $X_1, X_2, \dots, X_5$  выборка из равномерного распределения на отрезке  $[4,11], \ \widehat{F}(x)$  соответствующая выборочная функция распределения. Найдите  $P(\widehat{F}(5)=\widehat{F}(8))$ .
- **2.** Статистические данные о результатах экзамена в трех группах приведены в таблице

| №<br>группы | Число<br>студентов | Средний<br>балл | Среднее<br>квадр. откл. |
|-------------|--------------------|-----------------|-------------------------|
| 1           | 21                 | 76              | 5                       |
| 2           | 19                 | 77              | 17                      |
| 3           | 21                 | 68              | 12                      |

При проведении экзамена студенты случайным образом размещались (в соответствии с числом мест) в нескольких аудиториях. В одной из них находилось 20 студентов. Найдите математическое ожидание и дисперсию среднего балла по результатам, полученным в данной аудитории, предполагая, что условия для выполнения экзаменационных работ во всех аудиториях одинаковы.

**3.** Случайная величина X (время бесперебойной работы устройства) имеет показательное распределение с плотностью  $f(x) = \lambda e^{-\lambda x}$  ( $x \ge 0$ ). По эмпирическому распределению времени работы

| Время работы    | 0-30 | 30-60 | 60-90 | 90–120 |
|-----------------|------|-------|-------|--------|
| Число устройств | 133  | 41    | 14    | 3      |

методом моментов найдите точечную оценку  $\widehat{\lambda}$ .

4. Выборочно обследовали качество кирпича. Из  $n=1\,400$  проб в m=45 случаях кирпич оказался бракованным. В каких пределах заключается доля брака для всей продукции, если результат гарантируется с надежностью  $\gamma\approx 0.95$ ?

**1.** Признак X(k) задан на множестве  $\Omega = \{1, 2, \dots, 10\}$  следующей таблицей:

| k    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|------|---|---|---|---|---|---|---|---|---|----|
| X(k) | 3 | 2 | 3 | 2 | 1 | 3 | 1 | 1 | 1 | 3  |

Из  $\Omega$  извлекается случайная повторная выборка объема 5. Найдите математическое ожидание и дисперсию среднего значения  $\overline{X}$  признака X в выборке.

- **2.** В некотором городе сторонники партии A составляют 25 %, партии B-29 %. Известно, что объем бесповторной выборки составляет 12 % от числа всех избирателей. Пусть  $\widehat{p}_A$  выборочная доля сторонников партии A,  $n_B$  число отобранных сторонников партии B. Найдите (приближенно)  $\text{Cov}(\widehat{p}_A, n_B)$ .
- 3. В 25 независимых испытаниях случайная величина X значение 3 приняла 10 раз, а значение 5-15 раз. Найдите несмещенную оценку дисперсии D(X).
- 4. При испытании  $n=1\,010$  элементов зарегистрировано m=104 отказов. Найдите доверительный интервал, покрывающий неизвестную вероятность p отказа элемента с надежностью  $\gamma\approx 0.94$ .

- 1. Две игральные кости, красная и синяя, подбрасываются до тех пор, пока не выпадет 16 различных с учетом цвета комбинаций очков. Пусть  $S_i$  сумма очков на красной и синей кости в i-той комбинации,  $\overline{S}$  среднее арифметическое всех этих сумм,  $i=1,\dots,16$ . Найдите математическое ожидание и дисперсию среднего значения  $\overline{S}$ .
- **2.** Значения признака X в генеральной совокупности заданы таблиней частот

| Интервал | 3-7 | 7–11 | 11-15 |
|----------|-----|------|-------|
| Частота  | 50  | 150  | 60    |

Из этой совокупности производится бесповторная выборка объема 40. Пусть m — генеральное, а  $\overline{X}$  — выборочное среднее. Найдите среднеквадратичную ошибку в приближенном равенстве  $m \approx \overline{X}$ . При вычислении генеральной дисперсии не следует использовать поправку Шеппарда.

- 3. Даны результаты 8 независимых измерений одной и той же величины прибором, не имеющим систематических ошибок: 366, 378, 315, 422, 388, 404, 372, 383 м. Найдите несмещенную оценку дисперсии ошибок измерений, если истинная длина известна и равна 375 м.
- 4. Обследуется средняя продолжительность телефонного разговора. Сколько телефонных разговоров должно быть зафиксировано, чтобы с вероятностью 0,95 можно было бы утверждать, что отклонение средней продолжительности зафиксированных разговоров от генеральной средней не превосходит 12 секунд, если среднее квадратичное отклонение длительности одного разговора равно 4 минутам?

- 1. Две игральные кости, красная и синяя, подбрасываются до тех пор, пока не выпадет 20 различных с учетом цвета комбинаций очков. Пусть  $S_i$  число очков на красной кости в i-той комбинации,  $\overline{S}$  среднее арифметическое всех этих чисел,  $i=1,\ldots,20$ . Найдите математическое ожидание и дисперсию среднего значения  $\overline{S}$ .
- **2.** Значения признаков X и Y заданы на множестве  $\Omega = \{1, 2, \dots, 2000\}$  таблицей частот

|       | Y = 2 | Y = 4 | Y = 6 |
|-------|-------|-------|-------|
| X = 7 | 400   | 200   | 200   |
| X = 9 | 300   | 100   | 800   |

Из  $\Omega$  с возвращением извлекаются 600 элементов. Пусть  $\overline{X}$  и  $\overline{Y}$  — средние значения признаков в выборочной совокупности. Найдите  $\mathrm{Cov}(\overline{X},\overline{Y}).$ 

3. Случайная величина X распределена по закону Пуассона  $P(X=k)=\frac{\lambda^k e^{-\lambda}}{k!}.$  Результаты 465 независимых наблюдений X отражены в таблице

| Значение Х | 0   | 1   | 2  | 3  |
|------------|-----|-----|----|----|
| Частота    | 202 | 160 | 79 | 24 |

Найдите методом моментов точечную оценку  $\widehat{\lambda}$ .

4. В результате проведенного социологического опроса  $n=1\,100$  человек рейтинг кандидата в президенты составил  $10\,\%$ . Найдите доверительный интервал для рейтинга кандидата с гарантированной належностью  $95\,\%$ .

- **1.** Пусть  $X_1, X_2, \ldots, X_7$  выборка из распределения  $P(X = l) = \frac{1}{9},$   $l = 1, 2, \ldots, 9, \ \widehat{F}(x)$  соответствующая эмпирическая функция распределения. Найдите вероятность  $P\left(\widehat{F}(5+0) \widehat{F}(5) = \frac{2}{7}\right)$ .
- 2. В некотором округе имеется  $700\,000$  избирателей, из которых желающие принять участие в выборах составляют  $89\,\%$ . Пусть  $\widehat{p}$  доля желающих проголосовать среди случайно (без возвращения) отобранных  $9\,000$  избирателей. Найдите среднеквадратичную погрешность в приближенном равенстве  $0.89 \approx \widehat{p}$ .
- 3. Даны результаты 8 независимых измерений одной и той же величины прибором, не имеющим систематических ошибок: 367, 377, 317, 422, 389, 402, 371, 381 м. Найдите несмещенную оценку дисперсии ошибок измерений, если истинная длина неизвестна.
- **4.** В  $50\,000$  сеансах игры с автоматом выигрыш появился  $4\,400$  раз. Найдите для вероятности выигрыша p приближенный 0,94-доверительный интервал.

- 1. Пусть  $X_1, X_2, X_3$  выборка из равномерного распределения на отрезке  $[8,15], \widehat{F}(x)$  соответствующая выборочная функция распределения. Найдите дисперсию  $D\left[\widehat{F}(13)\right]$ .
- 2. В некоторой области имеется  $500\,000$  жителей, из которых пенсионеры составляют  $11\,\%$ . Пусть  $\widehat{p}$  доля пенсионеров среди случайно (без возвращения) отобранных  $9\,000$  жителей данной области. Найдите среднеквадратичную погрешность в приближенном равенстве  $0,11\approx\widehat{p}$ .
- **3.** Пусть  $X_1, X_2, \dots, X_n$  выборка из распределения с плотностью

$$f(x) = \begin{cases} 7e^{7(\theta - x)} & \text{при } x \geqslant \theta, \\ 0 & \text{при } x < \theta. \end{cases}$$

Проверьте, является ли оценка  $\widehat{\theta}=\overline{X}-\frac{1}{7}$  несмещенной оценкой параметра  $\theta?$ 

4. Брокер на бирже желает найти 0,95-доверительный интервал для математического ожидания недельной доходности выбранной акции. Известно, что выборочная средняя недельная доходность за последний год (52 недели) составила  $\overline{r}=0,008$ . Найдите искомый доверительный интервал в предположении, что недельные доходности независимы и распределены нормально с постоянными параметрами, причем генеральное среднеквадратичное отклонение недельной доходности равно 0,01.

**1.** Признак X(k) задан на множестве  $\Omega = \{1, 2, \dots, 10\}$  следующей таблицей:

| k    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|------|---|---|---|---|---|---|---|---|---|----|
| X(k) | 3 | 3 | 3 | 2 | 1 | 1 | 2 | 1 | 3 | 2  |

Из  $\Omega$  извлекается случайная бесповторная выборка объема 5. Найдите математическое ожидание и дисперсию среднего значения  $\overline{X}$  признака X в выборке.

**2.** Значения признаков X и Y заданы на множестве  $\Omega = \{1, 2, \dots, 100\}$  таблипей частот

|         | Y = 3 | Y = 4 | Y = 7 |
|---------|-------|-------|-------|
| X = 500 | 12    | 19    | 12    |
| X = 800 | 11    | 16    | 30    |

Из  $\Omega$  без возвращения извлекаются 8 элементов. Пусть  $\overline{X}$  и  $\overline{Y}$  — средние значения признаков в выборочной совокупности. Найдите  $\mathrm{Cov}(\overline{X},\overline{Y})$ .

3. Случайная величина X (время бесперебойной работы устройства) имеет показательное распределение с плотностью  $f(x) = \lambda e^{-\lambda x}$  ( $x \geqslant 0$ ). По эмпирическому распределению времени работы

| Время работы    | 0-20 | 20-40 | 40-60 | 60-80 |
|-----------------|------|-------|-------|-------|
| Число устройств | 134  | 42    | 13    | 8     |

методом моментов найдите точечную оценку  $\widehat{\lambda}$ .

4. Производится выборочное обследование возраста читателей массовых библиотек. Сколько карточек необходимо взять для обследования, чтобы с вероятностью 0,95 можно было бы утверждать, что средний возраст в выборочной совокупности отклонится от генерального среднего не более, чем на 3 года? Генеральное среднее квадратичное отклонение принять равным 10 годам.

- 1. Две игральные кости, красная и синяя, подбрасываются до тех пор, пока не выпадет 17 различных с учетом цвета комбинаций очков. Пусть  $S_i$  сумма очков на красной и синей кости в i-той комбинации,  $\overline{S}$  среднее арифметическое всех этих сумм,  $i=1,\ldots,17$ . Найдите математическое ожидание и дисперсию среднего значения  $\overline{S}$ .
- 2. В некотором округе имеется  $700\,000$  избирателей, из которых желающие принять участие в выборах составляют  $83\,\%$ . Пусть  $\widehat{p}$  доля желающих проголосовать среди случайно (без возвращения) отобранных  $6\,000$  избирателей. Найдите среднеквадратичную погрешность в приближенном равенстве  $0.83 \approx \widehat{p}$ .
- 3. Даны результаты 8 независимых измерений одной и той же величины прибором, не имеющим систематических ошибок: 365, 378, 319, 424, 385, 406, 374, 381 м. Найдите несмещенную оценку дисперсии ошибок измерений, если истинная длина неизвестна.
- 4. Выборка из большой партии электроламп содержит 100 ламп. Средняя продолжительность горения отобранных ламп оказалось равной 1100 ч. Найдите приближенный 0,72-доверительный интервал для средней продолжительности горения лампы во всей партии, если известно, что среднеквадратичное отклонение продолжительности горения лампы в партии равно 44 ч.

- **1.** Пусть  $X_1, X_2, \dots, X_5$  выборка из равномерного распределения на отрезке  $[7,13], \ \widehat{F}(x)$  соответствующая выборочная функция распределения. Найдите дисперсию  $D\left[\widehat{F}(10)\right]$ .
- **2.** Значения признаков X и Y заданы на множестве  $\Omega = \{1, 2, \dots, 2000\}$  таблицей частот

|        | Y = 1 | Y = 3 | Y = 6 |  |
|--------|-------|-------|-------|--|
| X = 8  | 400   | 300   | 300   |  |
| X = 10 | 400   | 300   | 300   |  |

Из  $\Omega$  с возвращением извлекаются 300 элементов. Пусть  $\overline{X}$  и  $\overline{Y}$  — средние значения признаков в выборочной совокупности. Найдите  $\mathrm{Cov}(\overline{X},\overline{Y}).$ 

**3.** Пусть  $X_1, X_2, \dots, X_n$  — выборка из распределения с плотностью

$$f(x) = \begin{cases} 9e^{9(\theta - x)} & \text{при } x \geqslant \theta, \\ 0 & \text{при } x < \theta. \end{cases}$$

Проверьте, является ли оценка  $\widehat{\theta} = \overline{X} - \frac{1}{9}$  несмещенной оценкой параметра  $\theta$ ?

4. Глубина моря измеряется прибором, систематическая ошибка которого равна 0, а случайные ошибки распределены нормально со среднеквадратичным отклонением 11 м. Каково наименьшее число независимых измерений, при котором удается определить глубину с ошибкой меньше 4 метров с надежностью не ниже 0,97?

- 1. Пусть  $X_1, X_2, X_3$  выборка из равномерного распределения на отрезке  $[4,12], \ \widehat{F}(x)$  соответствующая выборочная функция распределения. Найдите  $P(\widehat{F}(6)=\widehat{F}(9))$ .
- **2.** Значения признака X в генеральной совокупности заданы таблиней частот

| Интервал | 7–27 | 27-47 | 47 - 67 |  |
|----------|------|-------|---------|--|
| Частота  | 50   | 130   | 80      |  |

Из этой совокупности производится бесповторная выборка объема 50. Пусть m — генеральное, а  $\overline{X}$  — выборочное среднее. Найдите среднеквадратичную ошибку в приближенном равенстве  $m \approx \overline{X}$ . При вычислении генеральной дисперсии не следует использовать поправку Шеппарда.

**3.** Случайная величина X (время бесперебойной работы устройства) имеет показательное распределение с плотностью  $f(x) = \lambda e^{-\lambda x}$  ( $x \geqslant 0$ ). По эмпирическому распределению времени работы

| Время работы    | 0-20 | 20-40 | 40-60 | 60-80 |
|-----------------|------|-------|-------|-------|
| Число устройств | 130  | 44    | 17    | 6     |

методом моментов найдите точечную оценку  $\widehat{\lambda}$ .

**4.** В  $40\,000$  сеансах игры с автоматом выигрыш появился  $4\,500$  раз. Найдите для вероятности выигрыша p приближенный 0,72-доверительный интервал.

- **1.** Пусть  $X_1, X_2, \ldots, X_6$  выборка из распределения  $P(X=l)=\frac{1}{9},$   $l=1,2,\ldots,9,\; \widehat{F}(x)$  соответствующая эмпирическая функция распределения. Найдите вероятность  $P\left(\widehat{F}(5+0)-\widehat{F}(5)=\frac{1}{3}\right)$ .
- **2.** Статистические данные о результатах экзамена в трех группах приведены в таблице

| <b>№</b><br>группы | Число<br>студентов | Средний<br>балл | Среднее<br>квадр. откл. |
|--------------------|--------------------|-----------------|-------------------------|
| 1                  | 19                 | 66              | 7                       |
| 2                  | 22                 | 71              | 17                      |
| 3                  | 19                 | 64              | 19                      |

При проведении экзамена студенты случайным образом размещались (в соответствии с числом мест) в нескольких аудиториях. В одной из них находилось 20 студентов. Найдите математическое ожидание и дисперсию среднего балла по результатам, полученным в данной аудитории, предполагая, что условия для выполнения экзаменационных работ во всех аудиториях одинаковы.

3. Случайная величина X распределена по закону Пуассона  $P(X=k)=rac{\lambda^k e^{-\lambda}}{k!}.$  Результаты 468 независимых наблюдений X отражены в таблице

| Значение Х | 0   | 1   | 2  | 3  |
|------------|-----|-----|----|----|
| Частота    | 205 | 160 | 81 | 22 |

Найдите методом моментов точечную оценку  $\widehat{\lambda}$ .

4. Выборка из большой партии электроламп содержит 170 ламп. Средняя продолжительность горения отобранных ламп оказалось равной 1100 ч. Найдите приближенный 0,95-доверительный интервал для средней продолжительности горения лампы во всей партии, если известно, что среднеквадратичное отклонение продолжительности горения лампы в партии равно 37 ч.

**1.** Итоговое распределение баллов на некотором письменном экзамене задано таблицей

| Оценка работы | 2 | 3  | 4  | 5  |
|---------------|---|----|----|----|
| Число работ   | 5 | 20 | 15 | 20 |

Работы проверяли 5 преподавателей, которые разделили все работы между собой поровну случайным образом. Предполагая независимость оценки от личности проверяющего, найдите математическое ожидание и дисперсию среднего балла по результатам одного преподавателя.

**2.** Значения признака X в генеральной совокупности заданы таблиней частот

| Интервал | 3-19 | 19–35 | 35-51 |
|----------|------|-------|-------|
| Частота  | 400  | 1 400 | 800   |

Из этой совокупности производится повторная выборка объема 700. Пусть m — генеральное, а  $\overline{X}$  — выборочное среднее. Найдите среднеквадратичную ошибку в приближенном равенстве  $m \approx \overline{X}$ . При вычислении генеральной дисперсии не следует использовать поправку Шеппарда.

- 3. Даны результаты 8 независимых измерений одной и той же величины прибором, не имеющим систематических ошибок: 368, 377, 316, 423, 385, 407, 373, 381 м. Найдите несмещенную оценку дисперсии ошибок измерений, если истинная длина известна и равна 376 м.
- 4. Численность повторной выборки составляет  $1\,280$  единиц. Доля признака составляет  $9\,\%$ . Найдите с доверительной вероятностью 0,97, в каких пределах находится отклонение частоты от доли признака.

- 1. Пусть  $X_1, X_2, \dots, X_6$  выборка из равномерного распределения на отрезке  $[10,16], \widehat{F}(x)$  соответствующая выборочная функция распределения. Найдите вероятность  $P\left(\widehat{F}(13) = \frac{1}{2}\right)$ .
- **2.** В некотором городе сторонники партии A составляют 18 %, партии B-26 %. Известно, что объем бесповторной выборки составляет 11 % от числа всех избирателей. Пусть  $\widehat{p}_A$  выборочная доля сторонников партии A,  $n_B$  число отобранных сторонников партии B. Найдите (приближенно)  $\text{Cov}(\widehat{p}_A, n_B)$ .
- **3.** В 24 независимых испытаниях случайная величина X значение 1 приняла 11 раз, а значение 2-13 раз. Найдите несмещенную оценку дисперсии D(X).
- 4. Обследуется средняя продолжительность телефонного разговора. Сколько телефонных разговоров должно быть зафиксировано, чтобы с вероятностью 0,994 можно было бы утверждать, что отклонение средней продолжительности зафиксированных разговоров от генеральной средней не превосходит 15 секунд, если среднее квадратичное отклонение длительности одного разговора равно 5 минутам?

- 1. Две игральные кости, красная и синяя, подбрасываются до тех пор, пока не выпадет 19 различных с учетом цвета комбинаций очков. Пусть  $S_i$  число очков на красной кости в i-той комбинации,  $\overline{S}$  среднее арифметическое всех этих чисел,  $i=1,\ldots,19$ . Найдите математическое ожидание и дисперсию среднего значения  $\overline{S}$ .
- 2. В некоторой области имеется  $400\,000$  жителей, из которых пенсионеры составляют  $10\,\%$ . Пусть  $\widehat{p}$  доля пенсионеров среди случайно (без возвращения) отобранных  $6\,000$  жителей данной области. Найдите среднеквадратичную погрешность в приближенном равенстве  $0.1\approx\widehat{p}$ .
- 3. Даны результаты 8 независимых измерений одной и той же величины прибором, не имеющим систематических ошибок: 365, 379, 316, 427, 386, 403, 371, 384 м. Найдите несмещенную оценку дисперсии ошибок измерений, если истинная длина неизвестна.
- **4.** При испытании  $n=1\,050$  элементов зарегистрировано m=102 отказов. Найдите доверительный интервал, покрывающий неизвестную вероятность p отказа элемента c надежностью  $\gamma \approx 0.95$ .

**1.** Признак X(k) задан на множестве  $\Omega = \{1, 2, \dots, 10\}$  следующей таблицей:

| k    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|------|---|---|---|---|---|---|---|---|---|----|
| X(k) | 2 | 3 | 2 | 1 | 1 | 3 | 1 | 1 | 1 | 3  |

Из  $\Omega$  извлекается случайная бесповторная выборка объема 5. Найдите математическое ожидание и дисперсию среднего значения  $\overline{X}$  признака X в выборке.

**2.** Значения признака X в генеральной совокупности заданы таблиней частот

| Интервал | 7-27 | 27-47 | 47-67 |
|----------|------|-------|-------|
| Частота  | 3    | 13    | 7     |

Из этой совокупности производится повторная выборка объема 5. Пусть m — генеральное, а  $\overline{X}$  — выборочное среднее. Найдите среднеквадратичную ошибку в приближенном равенстве  $m \approx \overline{X}$ . При вычислении генеральной дисперсии не следует использовать поправку Шеппарда.

3. Случайная величина X распределена по закону Пуассона  $P(X=k)=\frac{\lambda^k e^{-\lambda}}{k!}.$  Результаты 464 независимых наблюдений X отражены в таблице

| Значение Х | 0   | 1   | 2  | 3  |
|------------|-----|-----|----|----|
| Частота    | 201 | 159 | 77 | 27 |

Найдите методом моментов точечную оценку  $\widehat{\lambda}$ .

4. Выборочно обследовали качество кирпича. Из  $n=1\,400$  проб в m=60 случаях кирпич оказался бракованным. В каких пределах заключается доля брака для всей продукции, если результат гарантируется с надежностью  $\gamma\approx 0.72?$ 

**1.** Признак X(k) задан на множестве  $\Omega = \{1, 2, \dots, 10\}$  следующей таблицей:

|      |   |   |   |   |   |   |   |   |   | 10 |
|------|---|---|---|---|---|---|---|---|---|----|
| X(k) | 3 | 3 | 3 | 1 | 2 | 2 | 3 | 2 | 3 | 3  |

Из  $\Omega$  извлекается случайная повторная выборка объема 5. Найдите математическое ожидание и дисперсию среднего значения  $\overline{X}$  признака X в выборке.

**2.** Значения признака X в генеральной совокупности заданы таблиней частот

| Интервал | 5-9 | 9-13 | 13–17 |
|----------|-----|------|-------|
| Частота  | 50  | 150  | 90    |

Из этой совокупности производится бесповторная выборка объема 50. Пусть m — генеральное, а  $\overline{X}$  — выборочное среднее. Найдите среднеквадратичную ошибку в приближенном равенстве  $m \approx \overline{X}$ . При вычислении генеральной дисперсии не следует использовать поправку Шеппарда.

- 3. Даны результаты 8 независимых измерений одной и той же величины прибором, не имеющим систематических ошибок: 361, 377, 314, 424, 387, 409, 373, 383 м. Найдите несмещенную оценку дисперсии ошибок измерений, если истинная длина известна и равна 379 м.
- 4. Производится выборочное обследование возраста читателей массовых библиотек. Сколько карточек необходимо взять для обследования, чтобы с вероятностью 0,97 можно было бы утверждать, что средний возраст в выборочной совокупности отклонится от генерального среднего не более, чем на 1 год? Генеральное среднее квадратичное отклонение принять равным 13 годам.

- 1. Две игральные кости, красная и синяя, подбрасываются до тех пор, пока не выпадет 15 различных с учетом цвета комбинаций очков. Пусть  $S_i$  число очков на красной кости в i-той комбинации,  $\overline{S}$  среднее арифметическое всех этих чисел,  $i=1,\ldots,15$ . Найдите математическое ожидание и дисперсию среднего значения  $\overline{S}$ .
- **2.** Значения признаков X и Y заданы на множестве  $\Omega = \{1, 2, \dots, 2000\}$  таблицей частот

|        | Y = 1 | Y = 4 | Y = 6 |  |
|--------|-------|-------|-------|--|
| X = 7  | 100   | 200   | 200   |  |
| X = 10 | 100   | 200   | 1 200 |  |

Из  $\Omega$  с возвращением извлекаются 200 элементов. Пусть  $\overline{X}$  и  $\overline{Y}$  — средние значения признаков в выборочной совокупности. Найдите  $\mathrm{Cov}(\overline{X},\overline{Y})$ .

- 3. В 20 независимых испытаниях случайная величина X значение 2 приняла 7 раз, а значение 4-13 раз. Найдите несмещенную оценку дисперсии D(X).
- 4. В результате проведенного социологического опроса  $n=1\,830$  человек рейтинг кандидата в президенты составил 6 %. Найдите доверительный интервал для рейтинга кандидата с гарантированной належностью  $99.4\,\%$ .

- 1. Пусть  $X_1, X_2, \dots, X_6$  выборка из равномерного распределения на отрезке  $[7,11], \ \widehat{F}(x)$  соответствующая выборочная функция распределения. Найдите вероятность  $P\left(\widehat{F}(10)=\frac{1}{2}\right)$ .
- **2.** Статистические данные о результатах экзамена в трех группах приведены в таблице

| №<br>группы | Число<br>студентов | Средний<br>балл | Среднее<br>квадр. откл. |
|-------------|--------------------|-----------------|-------------------------|
| 1           | 19                 | 70              | 8                       |
| 2           | 22                 | 66              | 13                      |
| 3           | 20                 | 66              | 15                      |

При проведении экзамена студенты случайным образом размещались (в соответствии с числом мест) в нескольких аудиториях. В одной из них находилось 20 студентов. Найдите математическое ожидание и дисперсию среднего балла по результатам, полученным в данной аудитории, предполагая, что условия для выполнения экзаменационных работ во всех аудиториях одинаковы.

3. Случайная величина X (время бесперебойной работы устройства) имеет показательное распределение с плотностью  $f(x) = \lambda e^{-\lambda x}$  ( $x \geqslant 0$ ). По эмпирическому распределению времени работы

| Время работы    | 0-30 | 30-60 | 60-90 | 90-120 |
|-----------------|------|-------|-------|--------|
| Число устройств | 131  | 40    | 12    | 3      |

методом моментов найдите точечную оценку  $\widehat{\lambda}$ .

4. Брокер на бирже желает найти 0,994-доверительный интервал для математического ожидания недельной доходности выбранной акции. Известно, что выборочная средняя недельная доходность за последний год (52 недели) составила  $\overline{r}=0,014$ . Найдите искомый доверительный интервал в предположении, что недельные доходности независимы и распределены нормально с постоянными параметрами, причем генеральное среднеквадратичное отклонение недельной доходности равно 0,05.

**1.** Признак X(k) задан на множестве  $\Omega = \{1, 2, \dots, 10\}$  следующей таблицей:

| k    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|------|---|---|---|---|---|---|---|---|---|----|
| X(k) | 2 | 3 | 2 | 2 | 3 | 2 | 3 | 2 | 1 | 1  |

Из  $\Omega$  извлекается случайная повторная выборка объема 5. Найдите математическое ожидание и дисперсию среднего значения  $\overline{X}$  признака X в выборке.

- 2. В некотором округе имеется 600 000 избирателей, из которых желающие принять участие в выборах составляют 84%. Пусть  $\hat{p}$  доля желающих проголосовать среди случайно (без возвращения) отобранных 13 000 избирателей. Найдите среднеквадратичную погрешность в приближенном равенстве  $0.84 \approx \hat{p}$ .
- **3.** Пусть  $X_1, X_2, \dots, X_n$  выборка из распределения с плотностью

$$f(x) = \begin{cases} 6e^{6(\theta - x)} & \text{при } x \geqslant \theta, \\ 0 & \text{при } x < \theta. \end{cases}$$

Проверьте, является ли оценка  $\widehat{\theta} = \overline{X} - \frac{1}{6}$  несмещенной оценкой параметра  $\theta$ ?

4. Глубина моря измеряется прибором, систематическая ошибка которого равна 0, а случайные ошибки распределены нормально со среднеквадратичным отклонением 16 м. Каково наименьшее число независимых измерений, при котором удается определить глубину с ошибкой меньше 4 метров с надежностью не ниже 0,72?

- 1. По двум независимым малым выборкам, объемы которых n=10 и l=8, извлеченным из нормальных генеральных совокупностей X и Y с равными дисперсиями, найдены выборочные средние  $\overline{x}=426,9; \ \overline{y}=435,9$  и исправленные дисперсии  $s_x^2=24,3; \ s_y^2=28,8$ . Требуется при уровне значимости  $\alpha=0,01$  проверить нулевую гипотезу  $H_0\colon E(X)=E(Y)$  при альтернативной гипотезе  $H_1\colon E(X)\neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x=6$  и  $n_y=14$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2=90$  и  $s_y^2=60$ . При уровне значимости  $\alpha=0{,}05$  проверьте гипотезу  $H_0\colon D(X)=D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X)>D(Y)$ .
- 3. В некоторой стране немцы составляют 50%, французы 30%, итальянцы 20%. В гостинице остановились: немцев 26, французов 11 и итальянцев 13. При 5%-м уровне значимости проверьте гипотезу о том, что отклонение процентного состава постояльцев по национальностям от среднего по стране объясняется исключительно случайными факторами.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 8, 9, 10; 2) 10, 11, 12; 3) 12, 13, 14. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.01$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым выборкам, объемы которых  $n_x = 38$  и  $n_y = 23$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x} = 638$  и  $\overline{y} = 620$ . Генеральные дисперсии известны: D(X) = 96 и D(Y) = 62. Требуется при уровне значимости  $\alpha = 0{,}004$  проверить гипотезу  $H_0 \colon E(X) > E(Y)$  при альтернативной гипотезе  $H_1 \colon E(X) \neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x=12$  и  $n_y=7$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2=28$  и  $s_y^2=30$ . При уровне значимости  $\alpha=0.02$  проверьте гипотезу  $H_0\colon D(X)=D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X)\neq D(Y)$ .
- 3. Две монеты подброшены 400 раз. В результате две решки выпали в 93 бросках, орел и решка в 203 бросках и два орла в 104 бросках. При 5%-м уровне значимости проверьте гипотезу о том, что число орлов при броске двух монет распределено по биномиальному закону с параметрами 2 и 1/2.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 2, 3, 4; 2) 4, 5, 6; 3) 6, 7, 8. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.05$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым выборкам, объемы которых  $n_x = 13$  и  $n_y = 20$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x} = 818$  и  $\overline{y} = 805$ . Генеральные дисперсии известны: D(X) = 95 и D(Y) = 53. Требуется при уровне значимости  $\alpha = 0.03$  проверить гипотезу  $H_0: E(X) = E(Y)$  при альтернативной гипотезе  $H_1: E(X) \neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x=6$  и  $n_y=17$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2=50$  и  $s_y^2=10$ . При уровне значимости  $\alpha=0.05$  проверьте гипотезу  $H_0\colon D(X)=D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X)>D(Y)$ .
- 3. Две монеты подброшены 400 раз. В результате две решки выпали в 91 бросках, орел и решка в 199 бросках и два орла в 110 бросках. При 5%-м уровне значимости проверьте гипотезу о том, что число орлов при броске двух монет распределено по биномиальному закону с параметрами 2 и 1/2.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 3, 4, 5; 2) 5, 6, 7; 3) 7, 8, 9. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.01$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым выборкам, объемы которых  $n_x = 15$  и  $n_y = 22$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x} = 613$  и  $\overline{y} = 607$ . Генеральные дисперсии известны: D(X) = 79 и D(Y) = 67. Требуется при уровне значимости  $\alpha = 0.05$  проверить гипотезу  $H_0: E(X) > E(Y)$  при альтернативной гипотезе  $H_1: E(X) \neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x = 4$  и  $n_y = 5$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2 = 9$  и  $s_y^2 = 23$ . При уровне значимости  $\alpha = 0.02$  проверьте гипотезу  $H_0 \colon D(X) = D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1 \colon D(X) \neq D(Y)$ .
- 3. В некоторой стране немцы составляют 50%, французы 30%, итальянцы 20%. В гостинице остановились: немцев 29, французов 13 и итальянцев 8. При 5%-м уровне значимости проверьте гипотезу о том, что отклонение процентного состава постояльцев по национальностям от среднего по стране объясняется исключительно случайными факторами.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 4, 5, 6; 2) 6, 7, 8; 3) 8, 9, 10. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.01$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым малым выборкам, объемы которых n=10 и l=8, извлеченным из нормальных генеральных совокупностей X и Y с равными дисперсиями, найдены выборочные средние  $\overline{x}=426,9; \ \overline{y}=435,9$  и исправленные дисперсии  $s_x^2=24,3; \ s_y^2=28,8$ . Требуется при уровне значимости  $\alpha=0,01$  проверить нулевую гипотезу  $H_0\colon E(X)=E(Y)$  при альтернативной гипотезе  $H_1\colon E(X)\neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x=15$  и  $n_y=6$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2=7$  и  $s_y^2=28$ . При уровне значимости  $\alpha=0,1$  проверьте гипотезу  $H_0\colon D(X)=D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X)\neq D(Y)$ .
- 3. Две монеты подброшены 400 раз. В результате две решки выпали в 93 бросках, орел и решка в 207 бросках и два орла в 100 бросках. При 5%-м уровне значимости проверьте гипотезу о том, что число орлов при броске двух монет распределено по биномиальному закону с параметрами 2 и 1/2.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 6, 7, 8; 2) 8, 9, 10; 3) 10, 11, 12. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.05$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым выборкам, объемы которых  $n_x = 12$  и  $n_y = 26$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x} = 203$  и  $\overline{y} = 218$ . Генеральные дисперсии известны: D(X) = 86 и D(Y) = 56. Требуется при уровне значимости  $\alpha = 0{,}004$  проверить гипотезу  $H_0 \colon E(X) = E(Y)$  при альтернативной гипотезе  $H_1 \colon E(X) \neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x = 8$  и  $n_y = 14$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2 = 50$  и  $s_y^2 = 40$ . При уровне значимости  $\alpha = 0.01$  проверьте гипотезу  $H_0: D(X) = D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1: D(X) > D(Y)$ .
- 3. В некоторой стране немцы составляют 50%, французы 30%, итальянцы 20%. В гостинице остановились: немцев 28, французов 14 и итальянцев 8. При 5%-м уровне значимости проверьте гипотезу о том, что отклонение процентного состава постояльцев по национальностям от среднего по стране объясняется исключительно случайными факторами.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 2, 3, 4; 2) 4, 5, 6; 3) 6, 7, 8. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.05$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым выборкам, объемы которых  $n_x = 27$  и  $n_y = 32$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x} = 540$  и  $\overline{y} = 525$ . Генеральные дисперсии известны: D(X) = 54 и D(Y) = 51. Требуется при уровне значимости  $\alpha = 0.03$  проверить гипотезу  $H_0 \colon E(X) > E(Y)$  при альтернативной гипотезе  $H_1 \colon E(X) \neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x = 4$  и  $n_y = 17$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2 = 40$  и  $s_y^2 = 30$ . При уровне значимости  $\alpha = 0.05$  проверьте гипотезу  $H_0\colon D(X) = D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X) > D(Y)$ .
- 3. В некоторой стране немцы составляют 50%, французы 30%, итальянцы 20%. В гостинице остановились: немцев 30, французов 15 и итальянцев 5. При 5%-м уровне значимости проверьте гипотезу о том, что отклонение процентного состава постояльцев по национальностям от среднего по стране объясняется исключительно случайными факторами.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 1, 2, 3; 2) 3, 4, 5; 3) 5, 6, 7. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.01$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым выборкам, объемы которых  $n_x=33$  и  $n_y=30$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x}=860$  и  $\overline{y}=863$ . Генеральные дисперсии известны: D(X)=54 и D(Y)=84. Требуется при уровне значимости  $\alpha=0{,}004$  проверить гипотезу  $H_0\colon E(X)=E(Y)$  при альтернативной гипотезе  $H_1\colon E(X)\neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x=3$  и  $n_y=6$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2=9$  и  $s_y^2=19$ . При уровне значимости  $\alpha=0.02$  проверьте гипотезу  $H_0\colon D(X)=D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X)\neq D(Y)$ .
- 3. Две монеты подброшены 400 раз. В результате две решки выпали в 109 бросках, орел и решка в 198 бросках и два орла в 93 бросках. При 5%-м уровне значимости проверьте гипотезу о том, что число орлов при броске двух монет распределено по биномиальному закону с параметрами 2 и 1/2.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 2, 3, 4; 2) 4, 5, 6; 3) 6, 7, 8. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.01$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым малым выборкам, объемы которых n=10 и l=8, извлеченным из нормальных генеральных совокупностей X и Y с равными дисперсиями, найдены выборочные средние  $\overline{x}=426,9; \ \overline{y}=435,9$  и исправленные дисперсии  $s_x^2=24,3; \ s_y^2=28,8$ . Требуется при уровне значимости  $\alpha=0,01$  проверить нулевую гипотезу  $H_0\colon E(X)=E(Y)$  при альтернативной гипотезе  $H_1\colon E(X)\neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x=18$  и  $n_y=5$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2=19$  и  $s_y^2=28$ . При уровне значимости  $\alpha=0{,}02$  проверьте гипотезу  $H_0\colon D(X)=D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X)\neq D(Y)$ .
- 3. Две монеты подброшены 400 раз. В результате две решки выпали в 104 бросках, орел и решка в 199 бросках и два орла в 97 бросках. При 5%-м уровне значимости проверьте гипотезу о том, что число орлов при броске двух монет распределено по биномиальному закону с параметрами 2 и 1/2.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 7, 8, 9; 2) 9, 10, 11; 3) 11, 12, 13. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.01$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым малым выборкам, объемы которых n=10 и l=8, извлеченным из нормальных генеральных совокупностей X и Y с равными дисперсиями, найдены выборочные средние  $\overline{x}=711,5; \ \overline{y}=726,5$  и исправленные дисперсии  $s_x^2=67,5;$   $s_y^2=80,0$ . Требуется при уровне значимости  $\alpha=0,01$  проверить нулевую гипотезу  $H_0\colon E(X)=E(Y)$  при альтернативной гипотезе  $H_1\colon E(X)\neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x=8$  и  $n_y=20$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2=60$  и  $s_y^2=20$ . При уровне значимости  $\alpha=0.01$  проверьте гипотезу  $H_0\colon D(X)=D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X)>D(Y)$ .
- 3. В некоторой стране немцы составляют 50%, французы 30%, итальянцы 20%. В гостинице остановились: немцев 29, французов 11 и итальянцев 10. При 5%-м уровне значимости проверьте гипотезу о том, что отклонение процентного состава постояльцев по национальностям от среднего по стране объясняется исключительно случайными факторами.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 2, 3, 4; 2) 4, 5, 6; 3) 6, 7, 8. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.01$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым выборкам, объемы которых  $n_x = 32$  и  $n_y = 12$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x} = 611$  и  $\overline{y} = 605$ . Генеральные дисперсии известны: D(X) = 95 и D(Y) = 87. Требуется при уровне значимости  $\alpha = 0.03$  проверить гипотезу  $H_0: E(X) = E(Y)$  при альтернативной гипотезе  $H_1: E(X) \neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x=5$  и  $n_y=13$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2=90$  и  $s_y^2=50$ . При уровне значимости  $\alpha=0.05$  проверьте гипотезу  $H_0\colon D(X)=D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X)>D(Y)$ .
- 3. Две монеты подброшены 400 раз. В результате две решки выпали в 98 бросках, орел и решка в 192 бросках и два орла в 110 бросках. При 5%-м уровне значимости проверьте гипотезу о том, что число орлов при броске двух монет распределено по биномиальному закону с параметрами 2 и 1/2.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 9, 10, 11; 2) 11, 12, 13; 3) 13, 14, 15. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.05$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым выборкам, объемы которых  $n_x = 27$  и  $n_y = 14$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x} = 406$  и  $\overline{y} = 396$ . Генеральные дисперсии известны: D(X) = 68 и D(Y) = 51. Требуется при уровне значимости  $\alpha = 0{,}004$  проверить гипотезу  $H_0 \colon E(X) > E(Y)$  при альтернативной гипотезе  $H_1 \colon E(X) \neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x=8$  и  $n_y=3$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2=20$  и  $s_y^2=29$ . При уровне значимости  $\alpha=0.02$  проверьте гипотезу  $H_0\colon D(X)=D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X)\neq D(Y)$ .
- 3. В некоторой стране немцы составляют  $50\,\%$ , французы  $30\,\%$ , итальянцы  $20\,\%$ . В гостинице остановились: немцев 22, французов 15 и итальянцев 13. При 5%-м уровне значимости проверьте гипотезу о том, что отклонение процентного состава постояльцев по национальностям от среднего по стране объясняется исключительно случайными факторами.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 5, 6, 7; 2) 7, 8, 9; 3) 9, 10, 11. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.01$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым малым выборкам, объемы которых n=10 и l=8, извлеченным из нормальных генеральных совокупностей X и Y с равными дисперсиями, найдены выборочные средние  $\overline{x}=284,6; \ \overline{y}=290,6$  и исправленные дисперсии  $s_x^2=10,8;$   $s_y^2=12,8$ . Требуется при уровне значимости  $\alpha=0,01$  проверить нулевую гипотезу  $H_0\colon E(X)=E(Y)$  при альтернативной гипотезе  $H_1\colon E(X)\neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x = 5$  и  $n_y = 4$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2 = 2$  и  $s_y^2 = 14$ . При уровне значимости  $\alpha = 0,1$  проверьте гипотезу  $H_0\colon D(X) = D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X) \neq D(Y)$ .
- 3. Две монеты подброшены 400 раз. В результате две решки выпали в 92 бросках, орел и решка в 206 бросках и два орла в 102 бросках. При 5%-м уровне значимости проверьте гипотезу о том, что число орлов при броске двух монет распределено по биномиальному закону с параметрами 2 и 1/2.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 5, 6, 7; 2) 7, 8, 9; 3) 9, 10, 11. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.05$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым выборкам, объемы которых  $n_x = 24$  и  $n_y = 18$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x} = 697$  и  $\overline{y} = 695$ . Генеральные дисперсии известны: D(X) = 75 и D(Y) = 90. Требуется при уровне значимости  $\alpha = 0{,}004$  проверить гипотезу  $H_0 \colon E(X) > E(Y)$  при альтернативной гипотезе  $H_1 \colon E(X) \neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x = 9$  и  $n_y = 19$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2 = 100$  и  $s_y^2 = 80$ . При уровне значимости  $\alpha = 0.01$  проверьте гипотезу  $H_0: D(X) = D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1: D(X) > D(Y)$ .
- 3. В некоторой стране немцы составляют  $50\,\%$ , французы  $30\,\%$ , итальянцы  $20\,\%$ . В гостинице остановились: немцев 20, французов 16 и итальянцев 14. При 5%-м уровне значимости проверьте гипотезу о том, что отклонение процентного состава постояльцев по национальностям от среднего по стране объясняется исключительно случайными факторами.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 6, 7, 8; 2) 8, 9, 10; 3) 10, 11, 12. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.01$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым выборкам, объемы которых  $n_x = 19$  и  $n_y = 20$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x} = 858$  и  $\overline{y} = 853$ . Генеральные дисперсии известны: D(X) = 59 и D(Y) = 54. Требуется при уровне значимости  $\alpha = 0.03$  проверить гипотезу  $H_0: E(X) = E(Y)$  при альтернативной гипотезе  $H_1: E(X) \neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x=15$  и  $n_y=3$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2=15$  и  $s_y^2=18$ . При уровне значимости  $\alpha=0,1$  проверьте гипотезу  $H_0\colon D(X)=D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X)\neq D(Y)$ .
- 3. Две монеты подброшены 400 раз. В результате две решки выпали в 96 бросках, орел и решка в 204 бросках и два орла в 100 бросках. При 5%-м уровне значимости проверьте гипотезу о том, что число орлов при броске двух монет распределено по биномиальному закону с параметрами 2 и 1/2.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 3, 4, 5; 2) 5, 6, 7; 3) 7, 8, 9. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.05$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым выборкам, объемы которых  $n_x = 21$  и  $n_y = 22$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x} = 653$  и  $\overline{y} = 668$ . Генеральные дисперсии известны: D(X) = 93 и D(Y) = 68. Требуется при уровне значимости  $\alpha = 0{,}004$  проверить гипотезу  $H_0 \colon E(X) = E(Y)$  при альтернативной гипотезе  $H_1 \colon E(X) \neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x = 9$  и  $n_y = 16$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2 = 100$  и  $s_y^2 = 30$ . При уровне значимости  $\alpha = 0.01$  проверьте гипотезу  $H_0: D(X) = D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1: D(X) > D(Y)$ .
- 3. В некоторой стране немцы составляют 50%, французы 30%, итальянцы 20%. В гостинице остановились: немцев 29, французов 14 и итальянцев 7. При 5%-м уровне значимости проверьте гипотезу о том, что отклонение процентного состава постояльцев по национальностям от среднего по стране объясняется исключительно случайными факторами.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 4, 5, 6; 2) 6, 7, 8; 3) 8, 9, 10. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.05$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым малым выборкам, объемы которых n=10 и l=8, извлеченным из нормальных генеральных совокупностей X и Y с равными дисперсиями, найдены выборочные средние  $\overline{x}=284,6; \ \overline{y}=290,6$  и исправленные дисперсии  $s_x^2=10,8;$   $s_y^2=12,8$ . Требуется при уровне значимости  $\alpha=0,01$  проверить нулевую гипотезу  $H_0\colon E(X)=E(Y)$  при альтернативной гипотезе  $H_1\colon E(X)\neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x = 10$  и  $n_y = 19$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2 = 30$  и  $s_y^2 = 10$ . При уровне значимости  $\alpha = 0.05$  проверьте гипотезу  $H_0: D(X) = D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1: D(X) > D(Y)$ .
- 3. В некоторой стране немцы составляют 50%, французы 30%, итальянцы 20%. В гостинице остановились: немцев 30, французов 14 и итальянцев 6. При 5%-м уровне значимости проверьте гипотезу о том, что отклонение процентного состава постояльцев по национальностям от среднего по стране объясняется исключительно случайными факторами.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 4, 5, 6; 2) 6, 7, 8; 3) 8, 9, 10. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.01$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым выборкам, объемы которых  $n_x = 18$  и  $n_y = 33$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x} = 243$  и  $\overline{y} = 228$ . Генеральные дисперсии известны: D(X) = 50 и D(Y) = 57. Требуется при уровне значимости  $\alpha = 0{,}004$  проверить гипотезу  $H_0 \colon E(X) > E(Y)$  при альтернативной гипотезе  $H_1 \colon E(X) \neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x = 6$  и  $n_y = 7$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2 = 14$  и  $s_y^2 = 15$ . При уровне значимости  $\alpha = 0,1$  проверьте гипотезу  $H_0: D(X) = D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1: D(X) \neq D(Y)$ .
- 3. Две монеты подброшены 400 раз. В результате две решки выпали в 113 бросках, орел и решка в 195 бросках и два орла в 92 бросках. При 5%-м уровне значимости проверьте гипотезу о том, что число орлов при броске двух монет распределено по биномиальному закону с параметрами 2 и 1/2.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 5, 6, 7; 2) 7, 8, 9; 3) 9, 10, 11. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.01$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым выборкам, объемы которых  $n_x = 13$  и  $n_y = 35$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x} = 404$  и  $\overline{y} = 409$ . Генеральные дисперсии известны: D(X) = 84 и D(Y) = 71. Требуется при уровне значимости  $\alpha = 0.05$  проверить гипотезу  $H_0: E(X) = E(Y)$  при альтернативной гипотезе  $H_1: E(X) \neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x=12$  и  $n_y=7$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2=4$  и  $s_y^2=8$ . При уровне значимости  $\alpha=0,1$  проверьте гипотезу  $H_0\colon D(X)=D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X)\neq D(Y)$ .
- 3. В некоторой стране немцы составляют  $50\,\%$ , французы  $30\,\%$ , итальянцы  $20\,\%$ . В гостинице остановились: немцев 25, французов 15 и итальянцев 10. При 5%-м уровне значимости проверьте гипотезу о том, что отклонение процентного состава постояльцев по национальностям от среднего по стране объясняется исключительно случайными факторами.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 6, 7, 8; 2) 8, 9, 10; 3) 10, 11, 12. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0,01$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым выборкам, объемы которых  $n_x=39$  и  $n_y=37$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x}=900$  и  $\overline{y}=896$ . Генеральные дисперсии известны: D(X)=57 и D(Y)=85. Требуется при уровне значимости  $\alpha=0{,}004$  проверить гипотезу  $H_0\colon E(X)>E(Y)$  при альтернативной гипотезе  $H_1\colon E(X)\neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x=7$  и  $n_y=20$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2=60$  и  $s_y^2=40$ . При уровне значимости  $\alpha=0.01$  проверьте гипотезу  $H_0\colon D(X)=D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X)>D(Y)$ .
- 3. Две монеты подброшены 400 раз. В результате две решки выпали в 86 бросках, орел и решка в 206 бросках и два орла в 108 бросках. При 5%-м уровне значимости проверьте гипотезу о том, что число орлов при броске двух монет распределено по биномиальному закону с параметрами 2 и 1/2.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 7, 8, 9; 2) 9, 10, 11; 3) 11, 12, 13. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.05$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым малым выборкам, объемы которых n=10 и l=8, извлеченным из нормальных генеральных совокупностей X и Y с равными дисперсиями, найдены выборочные средние  $\overline{x}=284,6; \ \overline{y}=290,6$  и исправленные дисперсии  $s_x^2=10,8; \ s_y^2=12,8$ . Требуется при уровне значимости  $\alpha=0,01$  проверить нулевую гипотезу  $H_0\colon E(X)=E(Y)$  при альтернативной гипотезе  $H_1\colon E(X)\neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x=3$  и  $n_y=18$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2=80$  и  $s_y^2=20$ . При уровне значимости  $\alpha=0.01$  проверьте гипотезу  $H_0\colon D(X)=D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X)>D(Y)$ .
- 3. В некоторой стране немцы составляют 50%, французы 30%, итальянцы 20%. В гостинице остановились: немцев 29, французов 11 и итальянцев 10. При 5%-м уровне значимости проверьте гипотезу о том, что отклонение процентного состава постояльцев по национальностям от среднего по стране объясняется исключительно случайными факторами.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 2, 3, 4; 2) 4, 5, 6; 3) 6, 7, 8. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.05$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым выборкам, объемы которых  $n_x = 36$  и  $n_y = 10$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x} = 490$  и  $\overline{y} = 507$ . Генеральные дисперсии известны: D(X) = 75 и D(Y) = 74. Требуется при уровне значимости  $\alpha = 0{,}004$  проверить гипотезу  $H_0 \colon E(X) = E(Y)$  при альтернативной гипотезе  $H_1 \colon E(X) \neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x = 8$  и  $n_y = 7$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2 = 3$  и  $s_y^2 = 5$ . При уровне значимости  $\alpha = 0,1$  проверьте гипотезу  $H_0\colon D(X) = D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X) \neq D(Y)$ .
- 3. Две монеты подброшены 400 раз. В результате две решки выпали в 110 бросках, орел и решка в 196 бросках и два орла в 94 бросках. При 5%-м уровне значимости проверьте гипотезу о том, что число орлов при броске двух монет распределено по биномиальному закону с параметрами 2 и 1/2.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 1, 2, 3; 2) 3, 4, 5; 3) 5, 6, 7. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.05$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым малым выборкам, объемы которых n=10 и l=8, извлеченным из нормальных генеральных совокупностей X и Y с равными дисперсиями, найдены выборочные средние  $\overline{x}=284,6; \ \overline{y}=290,6$  и исправленные дисперсии  $s_x^2=10,8;$   $s_y^2=12,8$ . Требуется при уровне значимости  $\alpha=0,01$  проверить нулевую гипотезу  $H_0\colon E(X)=E(Y)$  при альтернативной гипотезе  $H_1\colon E(X)\neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x = 9$  и  $n_y = 6$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2 = 5$  и  $s_y^2 = 22$ . При уровне значимости  $\alpha = 0,1$  проверьте гипотезу  $H_0\colon D(X) = D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X) \neq D(Y)$ .
- 3. Две монеты подброшены 400 раз. В результате две решки выпали в 110 бросках, орел и решка в 200 бросках и два орла в 90 бросках. При 5%-м уровне значимости проверьте гипотезу о том, что число орлов при броске двух монет распределено по биномиальному закону с параметрами 2 и 1/2.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 4, 5, 6; 2) 6, 7, 8; 3) 8, 9, 10. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.01$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым выборкам, объемы которых  $n_x=33$  и  $n_y=14$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x}=446$  и  $\overline{y}=441$ . Генеральные дисперсии известны: D(X)=82 и D(Y)=52. Требуется при уровне значимости  $\alpha=0{,}004$  проверить гипотезу  $H_0\colon E(X)>E(Y)$  при альтернативной гипотезе  $H_1\colon E(X)\neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x = 4$  и  $n_y = 13$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2 = 80$  и  $s_y^2 = 10$ . При уровне значимости  $\alpha = 0.01$  проверьте гипотезу  $H_0: D(X) = D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1: D(X) > D(Y)$ .
- 3. В некоторой стране немцы составляют  $50\,\%$ , французы  $30\,\%$ , итальянцы  $20\,\%$ . В гостинице остановились: немцев 23, французов 13 и итальянцев 14. При 5%-м уровне значимости проверьте гипотезу о том, что отклонение процентного состава постояльцев по национальностям от среднего по стране объясняется исключительно случайными факторами.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 1, 2, 3; 2) 3, 4, 5; 3) 5, 6, 7. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.05$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым выборкам, объемы которых  $n_x = 28$  и  $n_y = 16$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x} = 241$  и  $\overline{y} = 230$ . Генеральные дисперсии известны: D(X) = 55 и D(Y) = 77. Требуется при уровне значимости  $\alpha = 0.05$  проверить гипотезу  $H_0: E(X) = E(Y)$  при альтернативной гипотезе  $H_1: E(X) \neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x=15$  и  $n_y=6$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2=2$  и  $s_y^2=11$ . При уровне значимости  $\alpha=0,1$  проверьте гипотезу  $H_0\colon D(X)=D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X)\neq D(Y)$ .
- 3. В некоторой стране немцы составляют  $50\,\%$ , французы  $-30\,\%$ , итальянцы  $-20\,\%$ . В гостинице остановились: немцев -23, французов -12 и итальянцев -15. При 5%-м уровне значимости проверьте гипотезу о том, что отклонение процентного состава постояльцев по национальностям от среднего по стране объясняется исключительно случайными факторами.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 1, 2, 3; 2) 3, 4, 5; 3) 5, 6, 7. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.05$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым малым выборкам, объемы которых n=10 и l=8, извлеченным из нормальных генеральных совокупностей X и Y с равными дисперсиями, найдены выборочные средние  $\overline{x}=569,2;$   $\overline{y}=581,2$  и исправленные дисперсии  $s_x^2=43,2;$   $s_y^2=51,2$ . Требуется при уровне значимости  $\alpha=0,01$  проверить нулевую гипотезу  $H_0: E(X)=E(Y)$  при альтернативной гипотезе  $H_1: E(X) \neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x=6$  и  $n_y=20$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2=60$  и  $s_y^2=10$ . При уровне значимости  $\alpha=0.01$  проверьте гипотезу  $H_0\colon D(X)=D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X)>D(Y)$ .
- 3. Две монеты подброшены 400 раз. В результате две решки выпали в 103 бросках, орел и решка в 203 бросках и два орла в 94 бросках. При 5%-м уровне значимости проверьте гипотезу о том, что число орлов при броске двух монет распределено по биномиальному закону с параметрами 2 и 1/2.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 1, 2, 3; 2) 3, 4, 5; 3) 5, 6, 7. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.05$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым выборкам, объемы которых  $n_x = 25$  и  $n_y = 27$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x} = 898$  и  $\overline{y} = 891$ . Генеральные дисперсии известны: D(X) = 73 и D(Y) = 55. Требуется при уровне значимости  $\alpha = 0.05$  проверить гипотезу  $H_0 \colon E(X) > E(Y)$  при альтернативной гипотезе  $H_1 \colon E(X) \neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x=8$  и  $n_y=13$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2=60$  и  $s_y^2=40$ . При уровне значимости  $\alpha=0.01$  проверьте гипотезу  $H_0\colon D(X)=D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X)>D(Y)$ .
- 3. Две монеты подброшены 400 раз. В результате две решки выпали в 103 бросках, орел и решка в 207 бросках и два орла в 90 бросках. При 5%-м уровне значимости проверьте гипотезу о том, что число орлов при броске двух монет распределено по биномиальному закону с параметрами 2 и 1/2.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 3, 4, 5; 2) 5, 6, 7; 3) 7, 8, 9. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.01$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым выборкам, объемы которых  $n_x = 27$  и  $n_y = 29$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x} = 693$  и  $\overline{y} = 682$ . Генеральные дисперсии известны: D(X) = 96 и D(Y) = 69. Требуется при уровне значимости  $\alpha = 0{,}004$  проверить гипотезу  $H_0 \colon E(X) > E(Y)$  при альтернативной гипотезе  $H_1 \colon E(X) \neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x=17$  и  $n_y=3$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2=23$  и  $s_y^2=29$ . При уровне значимости  $\alpha=0.02$  проверьте гипотезу  $H_0\colon D(X)=D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X)\neq D(Y)$ .
- 3. В некоторой стране немцы составляют 50%, французы 30%, итальянцы 20%. В гостинице остановились: немцев 26, французов 15 и итальянцев 9. При 5%-м уровне значимости проверьте гипотезу о том, что отклонение процентного состава постояльцев по национальностям от среднего по стране объясняется исключительно случайными факторами.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 1, 2, 3; 2) 3, 4, 5; 3) 5, 6, 7. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.01$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым выборкам, объемы которых  $n_x = 22$  и  $n_y = 31$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены выборочные средние:  $\overline{x} = 488$  и  $\overline{y} = 480$ . Генеральные дисперсии известны: D(X) = 80 и D(Y) = 94. Требуется при уровне значимости  $\alpha = 0.05$  проверить гипотезу  $H_0: E(X) = E(Y)$  при альтернативной гипотезе  $H_1: E(X) \neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x=6$  и  $n_y=15$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2=70$  и  $s_y^2=60$ . При уровне значимости  $\alpha=0.05$  проверьте гипотезу  $H_1\colon D(X)=D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X)>D(Y)$ .
- 3. Две монеты подброшены 400 раз. В результате две решки выпали в 105 бросках, орел и решка в 196 бросках и два орла в 99 бросках. При 5%-м уровне значимости проверьте гипотезу о том, что число орлов при броске двух монет распределено по биномиальному закону с параметрами 2 и 1/2.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 9, 10, 11; 2) 11, 12, 13; 3) 13, 14, 15. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.05$  гипотезу о совпадении всех трех генеральных средних.

- 1. По двум независимым малым выборкам, объемы которых n=10 и l=8, извлеченным из нормальных генеральных совокупностей X и Y с равными дисперсиями, найдены выборочные средние  $\overline{x}=569,2;$   $\overline{y}=581,2$  и исправленные дисперсии  $s_x^2=43,2,$   $s_y^2=51,2$ . Требуется при уровне значимости  $\alpha=0,01$  проверить нулевую гипотезу  $H_0: E(X)=E(Y)$  при альтернативной гипотезе  $H_1: E(X) \neq E(Y)$ .
- **2.** По двум независимым выборкам, объемы которых  $n_x=3$  и  $n_y=5$ , извлеченным из нормальных генеральных совокупностей X и Y, найдены несмещенные оценки генеральных дисперсий  $s_x^2=10$  и  $s_y^2=19$ . При уровне значимости  $\alpha=0{,}02$  проверьте гипотезу  $H_0\colon D(X)=D(Y)$  о равенстве генеральных дисперсий при альтернативной гипотезе  $H_1\colon D(X)\neq D(Y)$ .
- 3. В некоторой стране немцы составляют 50%, французы 30%, итальянцы 20%. В гостинице остановились: немцев 21, французов 17 и итальянцев 12. При 5%-м уровне значимости проверьте гипотезу о том, что отклонение процентного состава постояльцев по национальностям от среднего по стране объясняется исключительно случайными факторами.
- 4. Из трех нормальных генеральных совокупностей с одинаковыми дисперсиями извлечены выборки: 1) 7, 8, 9; 2) 9, 10, 11; 3) 11, 12, 13. Для объединенной выборочной совокупности объема 9 вычислите межгрупповую дисперсию, среднюю групповую дисперсию и проверьте на уровне значимости  $\alpha=0.01$  гипотезу о совпадении всех трех генеральных средних.

## Рекомендуемая литература

- [1] **Солодовников, А. С.** Математика в экономике [Текст] : учеб. В 3 ч. Ч. 3. Теория вероятностей и математическая статистика / А. С. Солодовников, В. А. Бабайцев, А. В. Браилов. М.: Финансы и статистика, 2008. 464 с.
- [2] **Браилов, А. В.** Сборник задач по курсу «Математика в экономике» [Тескт] : учеб. пособие. Ч. 3. Теория вероятностей / А. В. Браилов, А. С. Солодовников. М.: Финансы и статистика, 2017. 128 с.

#### ОПИСАНИЕ ФУНКЦИОНАЛЬНОСТИ ИЗДАНИЯ:

Интерфейс электронного издания (в формате pdf) можно условно разделить на 2 части.

Левая навигационная часть (закладки) включает в себя содержание книги с возможностью перехода к тексту соответствующей главы по левому щелчку компьютерной мыши.

Центральная часть отображает содержание текущего раздела. В тексте могут использоваться ссылки, позволяющие более подробно раскрыть содержание некоторых понятий.

#### Минимальные системные требования:

Celeron 1600 Mhz; 128 M6 RAM; Windows XP/7/8 и выше; 8х CDROM; разрешение экрана  $1024\times768$  или выше; программа для просмотра pdf.

# Сведения о лицах, осуществлявших техническую обработку и подготовку материалов:

Оформление электронного издания АНО «Ижевский институт компьютерных исследований».

 УДК 519.2(072) ББК 22.17я73 Б87

#### Браилов А. В., Рябов П. Е.

Сборник задач по теории вероятностей и математической статистике [Электронный ресурс] : учеб. пособие / А. В. Браилов, П. Е. Рябов. Текстовое (символьное) электронное издание (1,44 Мб). — М.-Ижевск: Институт компьютерных исследований, 2018. — 1 электрон. опт. диск (CD-R).

#### Аннотация

Учебное пособие по теории вероятностей и математической статистики предназначено для организации самостоятельной работы студентов бакалавриата экономических специальностей, изучающих дисциплину «Теория вероятностей и математическая статистика». В теоретической справке приведены решения типовых задач, которые вошли в варианты заданий учебного пособия. Учебное издание содержит 180 вариантов контрольных заданий.

#### Описание функциональности издания

Интерфейс электронного издания (в формате pdf) можно условно разделить на 2 части.

Левая навигационная часть (закладки) включает в себя содержание книги с возможностью перехода к тексту соответствующей главы по левому щелчку компьютерной мыши.

Центральная часть отображает содержание текущего раздела. В тексте могут использоваться ссылки, позволяющие более подробно раскрыть содержание некоторых понятий.

Издание располагается в каталоге Publication.

#### Минимальные системные требования

Celeron 1600 Mhz; 128 M6 RAM; Windows XP/7/8 и выше; 8x CDROM; разрешение экрана 1024 × 768 или выше; программа для просмотра pdf.

<sup>©</sup> Браилов А. В., Рябов П. Е., 2018

<sup>©</sup> Оформление электронного издания Ижевский институт компьютерных исследований, 2018