Mathematical Analysis. Assignment 1. Sequences. Limits of sequences

- 1. Find the formula of a general term of a sequence
 - (a) $x_1 = \frac{1}{2}, x_{n+1} = \frac{2}{3-x_n}, n \in \mathbb{N};$
 - (b) $x_1 = 0, x_2 = 1, x_{n+2} = \frac{3x_{n+1} x_n}{2}, n \in \mathbb{N}.$

Answer: (a) $x_n = \frac{3 \cdot 2^{n-1} - 2}{3 \cdot 2^{n-1} - 1}$; (b) $x_n = 2 - 2^{2-n}$.

- 2. Prove that the following sequences are bounded:
 - (a) $x_n = \frac{5n^6+6}{(n^4+1)(n^2-2)};$
 - (b) $x_n = \sum_{k=1}^n \frac{1}{k(k+1)};$
 - (c) $x_n = \sum_{k=1}^n \frac{k}{(2k-1)(2k+1)(2k+3)};$
 - (d) $x_n = \sum_{k=1}^n \frac{1}{k^2};$
 - (e) $x_n \sum_{k=1}^n \frac{1}{n+k}$;
 - (f) $x_n = n \left(\sqrt{n^4 + n} \sqrt{n^4 n} \right);$
 - (g) $x_n = \left(1 + \frac{1}{n}\right)^n$;
 - (h) $x_n = \sqrt[n]{n}$.
- 3. Prove that the following sequences are unbounded:
 - (a) $x_n = \frac{3^n 2^n}{2^n + 1}$;
 - (b) $x_n = \frac{2^n}{n^2}$;
 - (c) $x_1 = x_2 = 1$, $x_{n+2} = x_{n+1} + \frac{3}{4}x_n$.
- 4. Prove that the following sequences are monotone starting from some term:
 - (a) $x_n = \frac{n^3}{n^2 3}$;
 - (b) $x_n = \sqrt{n^2 + n} n;$
 - (c) $x_n = \ln(n^2 + 9n) 2\ln n$;
 - (d) $x_n = \frac{100^n}{n!}$.
- 5. Using the definition of a limit of a sequence prove that
 - (a) $\lim_{k \to \infty} \frac{1}{k} = 0;$
 - (b) $\lim_{k \to \infty} \frac{3k}{2k-1} = \frac{3}{2}$;
 - (c) $\lim_{k \to \infty} (4\sqrt{n} n) = -\infty$.
- 6. Using the definition of a limit of a sequence prove that the following sequences are infinitesimal:
 - (a) $x_k = \frac{2 + (-1)^k}{k}$;
 - (b) $x_k = q^k \text{ if } |q| < 1.$

- 7. Find such sequences x_n and y_n that $\lim_{n\to\infty} x_n = +\infty$, $\lim_{n\to\infty} y_n = +\infty$, and besides that
 - (a) $\lim_{n\to\infty} (x_n y_n) = +\infty;$
 - (b) $\lim_{n \to \infty} (x_n y_n) = -\infty;$
 - (c) $\lim_{n \to \infty} (x_n y_n) = -\lg 13;$
 - (d) sequence $x_n y_n$ has neither a finite nor an infinite limit.
- 8. Find such sequences x_n and y_n that $\lim_{n\to\infty} x_n = 0$, $\lim_{n\to\infty} y_n = +\infty$, and besides that
 - (a) $\lim_{n\to\infty} (x_n y_n) = 0;$
 - (b) $\lim_{n \to \infty} (x_n y_n) = 19;$
 - (c) $\lim_{n \to \infty} (x_n y_n) = -\infty;$
 - (d) sequence $x_n y_n$ has neither a finite nor an infinite limit.
- 9. Prove that the definitions of a limit point of a sequence below are equivalent to each other.
 - (a) A is a limit point of sequence x_n if any neighborhood of this point contains infinitely many terms of a sequence.
 - (b) A is a limit point of sequence x_n if any deleted neighborhood of this point contains at least one term of a sequence.
 - (c) A is a limit point of sequence x_n if A is a limit of some subsequence of x_n .
- 10. Give an example of such a sequence x_n that its set of limit points is \mathbb{N} .
- 11. Prove that sequence $x_n = \frac{n\cos \pi n 1}{2n}$ diverges using Cauchy convergence criterion.
- 12. (Bernoulli's inequality) Prove that $(1+x)^k > 1 + kx$ for any integer k > 1 and for any x > -1, $x \neq 0$.
- 13. Justify the following statements without using continuity of elementary functions (i.e. it has not yet been proved that $x_n \to a$, $n \to \infty$ implies that $f(x_n) \to f(a)$, $n \to \infty$):
 - (a) $\lim_{k \to \infty} \sqrt[k]{a} = 1, a > 0;$
 - (b) $\lim_{k\to\infty} \sqrt[k]{k} = 1;$
 - (c) $\lim_{k\to\infty} \frac{k^{\alpha}}{b^k} = 0, b > 1;$
 - (d) $\lim_{k\to\infty} \frac{a^k}{k!} = 0$.
- 14. Find limits of the following sequences:
 - (a) $x_n = \frac{n^2+1}{2n+1} \frac{3n^2+1}{6n+1}$;
 - (b) $x_n = \frac{(n+1)^4 (n-1)^4}{(n^2+1)^2 (n^2-1)^2};$
 - (c) $x_n = \frac{\ln(n^2 n + 1)}{\ln(n^{10} + n + 1)};$
 - (d) $x_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n \frac{1}{\sqrt{k+1} + \sqrt{k-1}};$
 - (e) $x_n = \frac{\sqrt{n^2+1}-n}{\sqrt{n^3+1}-n\sqrt{n}};$
 - (f) $x_n = n\sqrt{n} \left(\sqrt{n+1} + \sqrt{n-1} 2\sqrt{n} \right);$

(g)
$$x_1 = 13$$
, $x_{n+1} = \sqrt{12 + x_n}$;

(h)
$$x_n = \left(\frac{2n+2}{2n-1}\right)^n$$
;

(i)
$$x_n = \left(\frac{n^2 - n + 1}{n^2 + n + 1}\right)^n$$
;

(j)
$$x_n = \frac{1}{n^3} \sum_{k=1}^n (2k-1);$$

(k)
$$x_n = \sum_{k=1}^n \left(\frac{k}{n}\right)^2 - \frac{n}{3};$$

(l)
$$x_1 = a > 0, x_{k+1} = \frac{1}{3} \left(2x_k + \frac{125}{x_k^2} \right).$$

Answer: (a)
$$-\frac{1}{6}$$
; (b) $+\infty$; (c) $\frac{1}{5}$; (d) $\frac{1}{\sqrt{2}}$; (e) $+\infty$; (f) $-\frac{1}{4}$; (g) 4; (h) e^2 ; (i) e^{-2} ; (j) 0; (k) $\frac{1}{2}$; (l) 5.

15. Give an example of a sequence that diverges and such that for any positive integer p

$$\lim_{k \to \infty} |x_{k+p} - x_k| = 0.$$