COMS 230: Discrete Computational Structures

Homework # 2

Larisa Andrews

September 11, 2017

1. Question 1

universe: All students in class

S(x): x is a sophomore.

H(x): x has done their homework.

a) $\forall x S(x)$

b) $\exists x H(x)$

universe: all ISU students.

C(x): x is a student in class

a) $\forall x [C(x) \to S(x)]$

b) $\exists x [C(x) \land H(x)]$

2. Question 2

Let P(x) be "x is true when lights are off"

and let Q(x) be "x is true when lights are on"

There will never be a world where the lights are on and off.

But there may be a world where the lights are on and another world where the lights are off.

Therefore $\forall x (P(x) \leftrightarrow Q(x)) \not\equiv$

 $\forall x P(x) \leftrightarrow \forall x Q(x)$

3. Question 3

a) $\exists x \exists y \forall z [(x \neq y \land S(x) \land S(y)) \land (F(z) \rightarrow (A(z,y) \lor A(z,x)))]$

b) $\forall x \exists y \exists z [F(x) \to ((S(y) \land A(x,y)) \land (S(z) \land A(x,z)))]$

4. Question 4

Assuming $\exists x \land \exists y \land y \neq x$

a)
$$x = F(x, y) \vee F(y, x)$$

b)
$$P1 = \forall y (F(x, y))$$

c)
$$P = F(y, x)$$

d) P3 = F(P1, x)

5. Question 5

a) universe: a student in class L(x): x has visited London

B(x): x has visited bucking ham palace

Left column	Right column	(1)
$\exists x L(x)$	Hyp 1	(2)
$\forall x [L(x) \to B(x)]$	Hyp 2	(3)
$L(j) \to B(j)$ (for any j)	Universal Instantiation	(4)
L(j)(for any j)	Universal Instantiation	(5)
B(j)	Modus Ponens (4) , (5)	(6)
$\exists x B(x)$	Existential Generalization	(7)

b) universe: all movies

P(x): x is a popular movie.

I(x): x is a movie made in Iowa.

A(x): x is an action movie.

Left column	Right column	(8)
$\forall x [A(x) \to P(x)]$	Hyp 1	(9)
$\exists x [A(x) \land I(x)]$	Hyp 2	(10)
$A(b) \to P(b)$ (for all b)	Universal Instantiation	(11)
$A(b) \wedge I(b)$ (for all b)	Universal Instantiation	(12)
A(b)(for all b)	Simplification(12)	(13)
P(b)(for all b)	Modus ponens, (13) , (11)	(14)
I(b)(for all b)	Simplification (12)	(15)
$P(b) \wedge I(b)$ (for all b)	Conjuction (14) , (15)	(16)
$\exists x [P(x) \land I(x)]$	Existential Generalization	(17)

6. Question 6

a) Universe: All People H(x): x lives in Hawaii

O(x): x lives close to the ocean S(x): x knows how to surf B(x): x owns a surf board

Left column	Right column	(18)
$\forall x[H(x) \to O(x)]$	Hyp 1	(19)
$\forall x [\neg S(x) \to \neg O(x)]$	Hyp 2	(20)
$\forall x[S(x) \to B(x)]$	Hyp 3	(21)
$H(a) \to O(a)$ (for all a)	Universal Instantiation	(22)
$\neg S(a) \to \neg O(a)$ (for all a)	Universal Instantiation	(23)
$S(a) \to B(a)$ (for all a)	Universal Instantiation	(24)
$O(b) \to S(a)$ (for all a)	Contrapositive (23)	(25)
H(a) = True(for all a)	Assumption that H(a) is true	(26)
O(a)(for all a)	Modus Ponens, (22) , (26)	(27)
S(a)(for all a)	Modus Ponens, (25) , (27)	(28)
B(a)(for all a)	Modus Ponens, (24) , (28)	(29)
$H(a) \to B(a)$ (for all a)	26	(30)
$\forall x[H(x) \to B(x)]$	Existential Generalization	(31)
b)		
Left column	Right column	(32)
$\forall x[P(x) \to Q(x)]$	Hyp 1	(33)
$\forall x[Q(x) \to R(x)]$	Hyp 2	(34)
$P(a) \to Q(a)$ (for all a)	Universal Instantiation	(35)
$Q(a) \to R(a)$ (for all a)	Universal Instantiation	(36)
P(a) = True(for all a)	Assumption that P(a) is true	(37)
Q(a)(for all a)	Modus Ponens, (35) , (37)	(38)
R(a)(for all a)	Modus Ponens, (36) , (28)	(39)
$P(a) \to Q(a)$ (for all a)	37	(40)
$\forall x [P(x) \to Q(x)]$	Existential Generalization	(41)

Left column	Right column	(42)
$\forall x [H(x) \to O(x)]$	Hyp 1	(43)
$\forall x [\neg S(x) \to \neg O(x)]$	Hyp 2	(44)
$\forall x[S(x) \to B(x)]$	Нур 3	(45)
$H(a) \to O(a)$ (for all a)	Universal Instantiation	(46)
$\neg S(a) \to \neg O(a)$ (for all a)	Universal Instantiation	(47)
$S(a) \to B(a)$ (for all a)	Universal Instantiation	(48)
$O(a) \to S(a)$ (for all a)	Contrapositive (23)	(49)
$H(a) \to S(a)$ (for all a)	universal transitivity, (46) , (49)	(50)
$H(a) \to B(a)$ (for all a)	universal transitivity, (48) , (50)	(51)
$\forall x[H(x) \to B(x)]$	Existential Generalization	(52)

Yes, my proof is shorter.