Movie Analysis Project

Table of Contents

- 1. Business Understanding
- 2. Data Understanding
- 3. Data Preparation
- 4. Exploratory Data Analysis
- 5. Conclusions
- 6. Resources

1. Business Understanding

Background

My company is looking to get into movie creation using their newly created movie studio.

Business Goals

The primary focus of this data science project is to analyze and assess which features of a movie are the most cost efficient. The movie's return on investment will be used to measure cost efficiency in order to make an informed decision regarding what features of movie creation my company should invest in.

Business Success Criteria

The success of this project will be measured by providing three well-supported recommendations on the most cost efficient movie features (actors, directots, genre, marketing cost, movie rating (G, PG, PG-13, etc.)) to invest in. For this project, the most "cost efficient" features are measured by their return on investment which is defined as 100% times the total revenue divided by the initial investment of the film.

2. Data Understanding

Data on movies is collected by a variety of different sources. For this project, I used data from the following sources:

- · The Numbers' budgets dataset
 - This dataset includes 6 features and 5782 observations. Each entry in the dataset represents a different movie. For each entry, information is included about the movie's release data, production budget, domestic gross box office, and worldwide gross box office.
- · IMDB's film database
 - This database includes 8 tables. Its entity-related diagram (ERD) is shown below
 - From this database, I used the following tables: movie_basics, persons, and principals
 - movie_basics includes 6 features with 146144 observations. Each entry in this dataset represents a different movie, where movie_id is its unique ID (primary key). Additional information is included about each movie such as original_title, runtime_minutes, and genres.
 - The persons table includes **5 features** with **606648 entries**. Each entry represents a person who took part in a movie, where each person has a unique identifier (person_id). This table also includes information about each person such as their primary_name, birth_year, and primary_professions
 - The principals table contains 6 features and 1028186 entries, where each entry represents a person who worked in a movie. This table contains two foreign keys (movie_id and person_id).
 Additional information includes the character the person played and their role on the film (category).


```
In [1]: # importing necessary packages

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
import sqlite3
```

```
In [2]: #setting up connection to sqlite database
    conn = sqlite3.connect('im.db')
    cur = conn.cursor()
```

```
In [3]: # reading budgets csv into a pandas dataframe
budgets = pd.read_csv('zippedData/tn.movie_budgets.csv.gz')
budgets.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5782 entries, 0 to 5781
Data columns (total 6 columns):
```

#	Column	Non-Null Count	Dtype
0	id	5782 non-null	int64
1	release_date	5782 non-null	object
2	movie	5782 non-null	object
3	production_budget	5782 non-null	object
4	domestic_gross	5782 non-null	object
5	worldwide_gross	5782 non-null	object
ما 🛨 د تم	a_0 , $i_0+c_1/1$	+ / F \	

dtypes: int64(1), object(5)
memory usage: 271.2+ KB

From this output, we see that there are 6 columns, and each column has 0 NaN values. The output also shows that the datatypes for production_budget, domestic_gross, and worldwide_gross are objects. Typically in this stage, it would be helpful to visualize the budget data with a histogram to get a quick sense of the distributions, but since the data types are objects instead of integers or floats, trying to plots histograms will return an error.

During data preparation these data types will need to be converted to a type that aggregate functions can be performed on. There is also no column with return on investment data, so I will need to calculate that and include it as an additional column with this dataframe.

```
In [4]: # creating a dataframe with a list of all tables in the databas
        db_tables = pd.read_sql("""
        SELECT name
        FROM sqlite master
        WHERE type = 'table';
        """, conn)
        db tables
```

Out[4]:

name 0 movie basics directors 1 2 known for 3 movie akas 4 movie_ratings 5 persons 6 principals 7 writers

This output is important because it provides the names of all the tables available in this database. The tables I will be using in this analysis are movie basics, persons, and principals.

```
In [5]: # prints the name of each table in the database with the count
        table names = list(db tables['name'])
        tables = {key: None for key in table_names}
        for table name in tables.keys():
            query = f"SELECT COUNT(*) AS num rows FROM {table name}"
            tables[table name] = conn.execute(query).fetchone()[0]
        tables
Out[5]: {'movie_basics': 146144,
         'directors': 291174,
         'known_for': 1638260,
         'movie akas': 331703,
         'movie ratings': 73856,
         'persons': 606648,
         'principals': 1028186,
         'writers': 255873}
```

The output provides a quick overview of the number of rows in each table in the database. For example, movie_basics has 146,144 rows, while principals has 1,028,196 entries. This is important to consider when determining the relationship between tables and the type of join that may work best to optimize processing speeds.

```
In [6]:
        # reading the movie basics table into a pandas dataframe using
        movie_basics = pd.read_sql("""
        SELECT *
        FROM movie_basics
        """, conn)
        movie_basics.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 146144 entries, 0 to 146143
        Data columns (total 6 columns):
         #
                              Non-Null Count
             Column
                                               Dtype
         0
             movie id
                              146144 non-null
                                               object
         1
             primary_title
                              146144 non-null
                                                object
         2
             original_title
                              146123 non-null
                                               object
         3
                              146144 non-null
                                                int64
             start year
         4
             runtime minutes
                              114405 non-null
                                                float64
         5
                              140736 non-null
             genres
                                               obiect
        dtypes: float64(1), int64(1), object(4)
```

memory usage: 6.7+ MB

From this output, we see that there are 6 columns and 3 of those columns do not have NaN values. This means that during the Data Preparation phase I will have to inspect the columns with NaN values closely and make a decision about how to proceed with the NaN values.

This output provides a quick visualization about the shape of any columns stored as integer or float datatype within the <code>movie_basics</code> table. The bars for both <code>start_year</code> and <code>runtime_minutes</code> appear on the left most portion of the graph. This indicates that each feature has outliers that are much greater than the majority of the data. This means during the Data Preparation phase, I will need to inspect the outliers within each of these columns.

```
In [8]: # reading the principals table into a pandas dataframe using re
    principals = pd.read_sql("""

    SELECT *
    FROM principals
""", conn)
    principals.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1028186 entries, 0 to 1028185
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype				
0	movie_id	1028186 non-null	object				
1	ordering	1028186 non-null	int64				
2	person_id	1028186 non-null	object				
3	category	1028186 non-null	object				
4	job	177684 non-null	object				
5	characters	393360 non-null	object				
<pre>dtypes: int64(1), object(5)</pre>							
memory usage: 47.1+ MB							

```
In [9]: # getting a preview of the principals table
principals.head()
```

Out [9]:

characters	job	category	person_id	ordering	movie_id	
["The Man"]	None	actor	nm0246005	1	tt0111414	0
None	None	director	nm0398271	2	tt0111414	1
None	producer	producer	nm3739909	3	tt0111414	2
None	None	editor	nm0059247	10	tt0323808	3
["Beth Boothby"]	None	actress	nm3579312	1	tt0323808	4

From this output, we see that there are 6 columns and the job and category columns have a large number of NaN values. This means that during the Data Preparation phase I will have to inspect these columns closely and make a decision about how to proceed with the NaN values.

```
In [10]: # reading the persons table into a pandas dataframe using read_
persons = pd.read_sql("""

SELECT *
FROM persons
""", conn)
persons.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 606648 entries, 0 to 606647
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	person_id	606648 non-null	object
1	primary_name	606648 non-null	object
2	birth_year	82736 non-null	float64
3	death_year	6783 non-null	float64
4	<pre>primary_profession</pre>	555308 non-null	object
d+vn	ac: float64(2) obja	c+(3)	

dtypes: float64(2), object(3)

memory usage: 23.1+ MB

```
In [11]: # getting a preview of the persons table
persons.head()
```

Out[11]:

p	erson_id	primary_name	birth_year	death_year	pri
nm	0061671	Mary Ellen Bauder	NaN	NaN	miscellaneous,production_r
nm	0061865	Joseph Bauer	NaN	NaN	composer,music_department,s
nm	0062070	Bruce Baum	NaN	NaN	miscella
nm	0062195	Axel Baumann	NaN	NaN	camera_department,cinematograph
nm	0062798	Pete Baxter	NaN	NaN	production_designer,art_departm

From this output, we see that there are 5 columns and the birth_year, death_year, and primary_profession columns have NaN values. This means that during the Data Preparation phase I will have to inspect these columns closely and make a decision about how to proceed with the NaN values.

3. Data Preparation

During the data preparation stage, I focused on cleaning four datasets: budgets , $movie_basics$, persons , and principals .

The data cleaning process began by converting columns to their appropriate Python data types. To facilitate this, I created a function called <code>get_info()</code> to check each table's <code>.info()</code>, which allowed me to verify the data types and

identify NaN values in each feature. For instance, I converted the production_budget , domestic_gross , and worldwide_gross columns in the budgets dataframe from objects to floats, as they were originally stored incorrectly.

I filtered out outliers and included only movies released before 2024. Irrelevant columns, such as id in budgets, were removed. NaN values were addressed by filtering out rows in movie_basics where both runtime_minutes and genres were NaN.

In the principals table, I removed the job, characters, and ordering columns due to redundancy or irrelevance, and in the persons table, I removed birth_year, death_year, and primary_profession for the same reasons.

After cleaning and processing all four dataframes, I used filtering and join operations to create three new dataframes: top_people_budgets, top_roi_movie_basics, and budgets_no_outliers. These dataframes contain information about movies in the top 25% of ROIs, which I used for further analysis.

- top_people_budgets includes information about individuals who worked on movies in the top 25% of ROIs, such as their names, movie titles, and job professions.
- top_roi_movie_basics contains details about movies with the highest 25% ROI, including titles, genres, runtimes, and budget information.
- budgets_no_outliers provides budget information about all movies from the cleaned dataset.

In [12]: # getting a preview of the dataset budgets.head(3)

Out[12]:

	id	release_date	movie	production_budget	domestic_gross	worldwide_gross
0	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279
1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875
2	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350

```
In [13]: # defining columns to format
         budget_cols = ['production_budget', 'domestic_gross', 'worldwid
In [14]: # formatting budget columns by removing the $
         for col in budget_cols:
              budgets[col] = budgets[col].str.replace('$', '')
         # formatting budget columns by removing commas
         for col in budget cols:
              budgets[col] = budgets[col].str.replace(',', '')
In [15]: # changing dtype of budget and gross columns to int
         for col in budget cols:
              budgets[col] = budgets[col].astype(float)
In [16]:
         # calculating the return on investment for each film and creati
         budgets['roi (%)'] = round(((budgets['worldwide gross']
                                     - budgets['production budget']
                                     / budgets['production budget']
                                     * 100 , 1
In [17]: #converting dollar amounts to amounts that are easier to read
         for col in budget cols:
             budgets[col] = round(budgets[col]/1000000, 3)
In [18]: # renaming columns to include dollar sign
         budgets.rename(columns={'production_budget': 'production_budget'
```

```
In [19]: # creating histograms to visualize distributions for each colum
         fig, ax = plt.subplots(nrows = 1,
                                 ncols = 5,
                                 figsize = (18, 6)
         budgets.hist(ax = ax,
                       bins = 15
                      );
```


Now that the data types of the budget and gross features have been converted to their true data types, histograms can be plotted. The histograms show that the budget and gross columns are skewed right, which means they may contain outliers. This is something to be explored further during the Data Preparation phase.

In [20]: # gets a preview of format changes to budgets df budgets[:2]

Out[20]:

	id	release_date	movie	production_budget (millions of \$)	domestic_gross (millions of \$)	worldwide_gross (millions of \$)
0	1	Dec 18, 2009	Avatar	425.0	760.508	2776.345
1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	410.6	241.064	1045.664

In [21]: # Calculates z-score for each movie's production budget z = np.abs(stats.zscore(budgets['production_budget (millions of # Identify production budget outliers as movies with a z-score outliers = budgets[z > 3]

> # Print the production budget outliers outliers

Out [21]:

	id	release_date	movie	production_budget (millions of \$)	domestic_gross (millions of \$)	worldwide_gros (millions of
0	1	Dec 18, 2009	Avatar	425.0	760.508	2776.34
1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	410.6	241.064	1045.6€
2	3	Jun 7, 2019	Dark Phoenix	350.0	42.762	149.76
3	4	May 1, 2015	Avengers: Age of Ultron	330.6	459.006	1403.0°
4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	317.0	620.181	1316.72
141	42	Jun 3, 2011	X-Men: First Class	160.0	146.408	355.40
142	43	Dec 25, 2008	The Curious Case of Benjamin Button	160.0	127.509	329.60
143	44	Jul 14, 2010	The Sorcerer's Apprentice	160.0	63.151	217.98
144	45	May 12, 2006	Poseidon	160.0	60.675	181.67
145	46	Jun 10, 2016	Warcraft	160.0	47.226	425.52

146 rows × 7 columns

```
In [22]: # creating a new df of budgets with production budget outliers
         budgets_no_outliers = budgets.drop(outliers.index)
         # checking that the correct number of rows were removed
         len(budgets) - len(budgets_no_outliers)
Out[22]: 146
In [23]: budgets_no_outliers['id'].value_counts()
Out[23]: 74
               57
         54
               57
               57
         68
         72
               57
         76
               57
         30
               56
         34
               56
         38
               56
         42
               56
               56
         Name: id, Length: 100, dtype: int64
```

In [24]: # inspecting all entries with id of '4'
budgets_no_outliers[budgets_no_outliers['id'] == 4].head(15)

Out[24]:

	id	release_date	movie	production_budget (millions of \$)	domestic_gross (millions of \$)	worldwide_ç (millions
203	4	Jul 15, 2016	Ghostbusters	144.0	128.351	229
303	4	May 19, 1999	Star Wars Ep. I: The Phantom Menace	115.0	474.545	1027
403	4	Dec 14, 2018	Mortal Engines	100.0	15.951	8
503	4	Sep 29, 2006	Open Season	85.0	85.105	19 [.]
603	4	Dec 25, 1997	The Postman	80.0	17.651	20
703	4	Aug 8, 2003	S.W.A.T.	70.0	116.878	207
803	4	Sep 14, 2012	Resident Evil: Retribution	65.0	42.346	24(
903	4	Jan 11, 2013	Gangster Squad	60.0	46.001	104
1003	4	Apr 10, 1998	City of Angels	55.0	78.751	198
1103	4	Aug 9, 2013	Disney Planes	50.0	90.283	238
1203	4	Mar 15, 2013	Upside Down	50.0	0.102	26
1303	4	Oct 4, 1996	The Glimmer Man	45.0	20.405	36
1403	4	Feb 17, 2006	Eight Below	40.0	81.613	120
1503	4	Apr 21, 1995	Kiss of Death	40.0	14.942	14
1603	4	Dec 31, 2009	Obitaemyy ostrov	36.5	0.000	1!

In [25]: # dropping id column from dataset
budgets_no_outliers.drop(['id'], axis=1, inplace=True)
budgets_no_outliers.head(3)

Out [25]:

	release_date	movie	production_budget (millions of \$)	domestic_gross (millions of \$)	worldwide_gross (millions of \$)	
146	Sep 30, 2016	Deepwater Horizon	156.0	61.434	122.604	
147	Dec 10, 2010	The Chronicles of Narnia: The Voyage of the Da	155.0	104.387	418.187	
148	Jul 1, 2015	Terminator: Genisys	155.0	89.761	432.151	

In [26]: # checking for duplicate movie entries budgets_no_outliers.movie.value_counts()

Halloween	3
Home	3
Ben-Hur	2
Shaft	2
The Last House on the Left	2
Elephant	1
The Quiet American	1
My Own Private Idaho	1
Pink Ribbons, Inc.	1
Mr. Beanâ€∏s Holiday	1
	Ben-Hur Shaft The Last House on the Left Elephant The Quiet American My Own Private Idaho Pink Ribbons, Inc.

Name: movie, Length: 5562, dtype: int64

In [27]: # checking for any movie titles with more than one entry to see

multiple_values = budgets_no_outliers.movie.value_counts()
budgets_no_outliers[budgets_no_outliers.movie.isin(multiple_val

Out[27]:

	release_date	movie	production_budget (millions of \$)	domestic_gross (millions of \$)	worldwide_gros (millions of \$
203	Jul 15, 2016	Ghostbusters	144.000	128.351	229.00
243	Mar 27, 2015	Home	130.000	177.398	385.99
267	Aug 8, 2014	Teenage Mutant Ninja Turtles	125.000	191.205	485.00
271	Apr 1, 2010	Clash of the Titans	125.000	163.215	493.21
278	Aug 3, 2012	Total Recall	125.000	58.878	211.85
					••
5668	Nov 16, 1942	Cat People	0.134	4.000	8.00
5676	Oct 1, 1968	Night of the Living Dead	0.114	12.087	30.08
5677	Feb 8, 1915	The Birth of a Nation	0.110	10.000	11.00
5699	Aug 30, 1972	The Last House on the Left	0.087	3.100	3.10
5718	Feb 22, 2008	The Signal	0.050	0.251	0.40

146 rows × 6 columns

In [28]: # getting summary statistics for budgets df columns
round(budgets_no_outliers.describe(), 1)

Out [28]:

	production_budget (millions of \$)	domestic_gross (millions of \$)	worldwide_gross (millions of \$)	roi (%)
count	5636.0	5636.0	5636.0	5636.0
mean	27.2	36.6	75.9	383.6
std	31.0	54.6	129.8	2990.8
min	0.0	0.0	0.0	-100.0
25%	5.0	1.2	3.7	-53.5
50%	16.0	16.0	26.1	66.4
75%	38.0	48.6	89.2	269.9
max	156.0	474.5	1341.7	179900.0

With the budgest data set cleaned and processed the histograms display more helpful information. The histograms still appear right skewed even though production budget outliers were removed, but this is still an improvement from earlier. Now the tails for each feature are more prominent, and we can be more confident that analysis of the budgets data will lead reliable results.

In [30]: movie_basics.head(3)

Out [30]:

	movie_id	primary_title	original_title	start_year	runtime_minutes	genr
0	tt0063540	Sunghursh	Sunghursh	2013	175.0	Action,Crime,Dran
1	tt0066787	One Day Before the Rainy Season	Ashad Ka Ek Din	2019	114.0	Biography,Drar
2	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.0	Dran

In [31]: # returning preview of the rows of movie_basics for movies with
movie_basics[movie_basics['runtime_minutes'] > (movie_basics['r

Out[31]:

		movie_id	primary_title	original_title	start_year	runtime_minutes	
•	6311	tt1277455	A Time to Stir	A Time to Stir	2018	1320.0	
12	2974	tt1674154	City of Eternal Spring	City of Eternal Spring	2010	3450.0	Documentary
1	5381	tt1735956	Deregulation	Foreclose	2012	4200.0	C

In [32]: # returning the rows of movie_basics where the movie start year
movie_basics[movie_basics['start_year'] > 2024]

Out[32]:

		movie_id	primary_title	original_title	start_year	runtime_minutes	
	2949	tt10300398	Untitled Star Wars Film	Untitled Star Wars Film	2026	NaN	
į	52213	tt3095356	Avatar 4	Avatar 4	2025	NaN	Action,Adve
8	89506	tt5174640	100 Years	100 Years	2115	NaN	
9	96592	tt5637536	Avatar 5	Avatar 5	2027	NaN	Action,Adve

In [33]: # removing any rows with movies whose start year is past 2024
movie_basics = movie_basics[movie_basics['start_year'] <= 2024]
checks to ensure that rows were removed
movie_basics[movie_basics['start_year'] > 2024]

Out[33]:

movie id primary title original title start year runtime minutes genres

In [34]: # comparing movies whose primary title does not match its origi
movie_basics[movie_basics['primary_title'] != movie_basics['original"]

Out [34]:

original_title	primary_title	
Ashad Ka Ek Din	One Day Before the Rainy Season	1
La Telenovela Errante	The Wandering Soap Opera	4
Oda az igazság	So Much for Justice!	11
A zöld sárkány gyermekei	Children of the Green Dragon	13
Az ember tragédiája	The Tragedy of Man	15
Kibaiyanse! Watashi	Journey of the Sky Goddess	146026
Lupin the IIIrd: Mine Fujiko no Uso	Lupin the Third: Fujiko Mine's Lie	146028
Da San Yuan	Big Three Dragons	146037
Kirsebæreventyret	A Cherry Tale	146121
O Ensaio	The Rehearsal	146135

14504 rows × 2 columns

```
In [35]: # getting count of all movies whose primary title doesn't match
movie_basics[movie_basics['primary_title'] != movie_basics['ori
```

```
Out[35]: La traversée
                                           3
         Ici-bas
                                           2
                                           2
         0ro
         Ban shou shao nu
                                           2
         Sakura saku
                                           2
         Du yi wu er
                                           1
         Onze Jongens
                                           1
         Raiâ gêmu: Za fainaru sutêji
                                           1
         Deadtime Stories 2
                                           1
         0zen
```

Name: original_title, Length: 14452, dtype: int64

```
In [37]: # get a count for the number of each genre
         movie_basics['genres'].str.split(',').explode().value_counts()
Out[37]: Documentary
                         51640
         Drama
                         49882
         Comedy
                         25312
         Thriller
                         11883
         Horror
                         10805
         Action
                         10333
         Romance
                          9372
                          8722
         Biography
         Crime
                          6753
         Adventure
                          6463
         Family
                          6227
         History
                          6225
         Mystery
                          4659
         Music
                          4314
                          3513
         Fantasv
         Sci-Fi
                          3365
         Animation
                          2799
         Sport
                          2234
         News
                          1551
         Musical
                          1430
         War
                          1405
                           467
         Western
         Reality-TV
                            98
         Talk-Show
                            50
         Adult
                            25
         Short
                            11
         Game-Show
         Name: genres, dtype: int64
In [38]: # formatting genres column to create a list containing each gen
         movie basics["genres list"] = movie basics["genres"].str.split(
In [39]: # display number of nan values for each feature
         movie basics.isna().sum()
Out[39]: movie_id
                                 0
         primary title
                                 0
         start year
                                 0
         runtime minutes
                             31735
         genres
                              5408
         genres_list
                              5408
         dtype: int64
```

```
In [40]: # return the number of rows with nans in both genre and runtime
         len(movie basics.loc[movie basics['genres'].isnull()
                              & movie basics['runtime minutes'].isnull()
            )
Out[40]: 3236
In [41]: # removing rows from movie basics with null genre and runtime
         movie_basics_clean = movie_basics.drop(movie_basics.loc[movie_b
                                                   & movie basics['runtim
         movie_basics_clean.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 142904 entries, 0 to 146143
         Data columns (total 6 columns):
          #
              Column
                               Non-Null Count
                                                 Dtype
          0
              movie id
                                142904 non-null
                                                 object
          1
              primary title
                                142904 non-null
                                                 object
          2
              start year
                                142904 non-null
                                                 int64
          3
              runtime_minutes 114405 non-null
                                                 float64
          4
                                140732 non-null
                                                 object
              genres
          5
              genres list
                                140732 non-null
                                                 obiect
         dtypes: float64(1), int64(1), object(4)
         memory usage: 7.6+ MB
In [42]: # confirming that correct number of rows were filtered out
         len(movie_basics) - len(movie_basics_clean)
Out[42]: 3236
In [43]: # prints the number of NaNs in each column of movie_basics_clea
         movie basics clean.isna().sum()
Out[43]: movie_id
                                0
         primary_title
                                0
         start_year
                                0
         runtime minutes
                            28499
         genres
                             2172
         genres list
                             2172
         dtype: int64
```

```
In [44]: principals.person_id.value_counts()
Out[44]: nm1930572
                        378
         nm0000636
                        160
         nm0000616
                        148
         nm0103977
                        126
         nm4394575
                        103
         nm10306370
                          1
         nm9301008
                          1
         nm5456973
                          1
         nm5912469
                          1
         nm3636291
                          1
         Name: person_id, Length: 604546, dtype: int64
```

In [45]: principals[principals['person_id'] == 'nm4394575']

Out [45]:

	movie_id	ordering	person_id	category	job	characters
209253	tt2414424	9	nm4394575	editor	None	None
284938	tt2418914	7	nm4394575	editor	None	None
291705	tt3445098	9	nm4394575	editor	None	None
341007	tt2419230	8	nm4394575	editor	None	None
344804	tt2410964	8	nm4394575	editor	None	None
983231	tt9525226	7	nm4394575	editor	None	None
984125	tt6370780	8	nm4394575	editor	None	None
984135	tt6374832	8	nm4394575	editor	None	None
1012364	tt7843050	6	nm4394575	editor	None	None
1027958	tt9520500	7	nm4394575	editor	None	None

103 rows × 6 columns

This output shows that duplicate person_id 's correspond to the same person working on different movies. This can be seen because the same person_id can be found in rows with different movie_id 's.

```
In [46]: principals['category'].value_counts()
Out[46]: actor
                                 256718
         director
                                 146393
         actress
                                 146208
         producer
                                 113724
         cinematographer
                                  80091
         composer
                                  77063
         writer
                                  74357
         self
                                  65424
         editor
                                  55512
         production_designer
                                   9373
         archive footage
                                   3307
         archive sound
                                     16
         Name: category, dtype: int64
In [47]: principals['job'].value counts()
Out[47]: producer
                                                      108168
         screenplay
                                                        8172
         director of photography
                                                        6517
         writer
                                                        6479
         co-director
                                                        5796
         novel American Woman
                                                           1
         play "The Crucible" by
                                                           1
         based on the novel 'Phoenix Hunting' by
                                                           1
         Producer in Isla Mujeres Mexico
                                                           1
         book "The Princess of Suburbia
                                                           1
         Name: job, Length: 2965, dtype: int64
In [48]: principals['characters'].value counts()
Out[48]: ["Himself"]
                                          43584
          ["Herself"]
                                          16127
          ["Narrator"]
                                           2218
          ["Alex"]
                                            656
          ["David"]
                                            620
          ["Dennis Pehlke"]
                                              1
          ["Brittany Sanders"]
                                              1
          ["Winanut"]
                                              1
          ["Wommie"]
                                              1
          ["Barack Obama - Narrator"]
                                              1
         Name: characters, Length: 174762, dtype: int64
In [49]: # Dropping job and character columns
         principals.drop(['job', 'characters', 'ordering'], axis=1, inpl
```

```
In [50]: # get a count for the number of each profession
         persons['primary profession'].str.split(',').explode().value co
Out[50]: actor
                                        177838
                                        150214
         producer
         writer
                                        141504
         director
                                        129808
         actress
                                         95066
         cinematographer
                                         61984
         editor
                                         55234
         composer
                                         48823
         camera_department
                                         39466
         miscellaneous
                                         38661
         soundtrack
                                         20748
         music department
                                         18568
         assistant_director
                                         15916
         sound department
                                         15280
         editorial department
                                         14565
         production manager
                                          9768
         art department
                                          8913
         production designer
                                          7592
         visual effects
                                          6188
         art director
                                          4623
         stunts
                                          4309
         casting department
                                          2802
         executive
                                          2657
         make up department
                                          2613
         animation department
                                          2459
         casting director
                                          2397
         location management
                                          2253
         costume_department
                                          1938
         special_effects
                                          1856
         costume designer
                                          1548
         set decorator
                                          1435
                                           732
         manager
         transportation_department
                                           673
                                           313
         talent agent
         legal
                                            92
         publicist
                                            83
                                            72
         assistant
         Name: primary_profession, dtype: int64
```

In [51]: # dropping birth_year, death_year, and primary_profression from
persons.drop(['birth_year', 'death_year', 'primary_profession']

```
In [52]: # function that provides the .info() for the remaining three da
         data = [movie basics clean, principals, persons]
         def get info(dataframes):
             for df in dataframes:
                 print("----")
                 print()
                 print(df.info())
In [53]: get_info(data)
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 142904 entries, 0 to 146143
         Data columns (total 6 columns):
              Column
                               Non-Null Count
                                                Dtvpe
              _____
                               142904 non-null
          0
            movie id
                                                object
             primary_title 142904 non-null start vear 142904 non-null
          1
                                                object
          2
             start year
                                                int64
             runtime_minutes 114405 non-null
          3
                                                float64
          4
              genres
                              140732 non-null
                                                obiect
              genres list 140732 non-null
          5
                                                object
         dtypes: float64(1), int64(1), object(4)
         memory usage: 7.6+ MB
         None
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1028186 entries, 0 to 1028185
         Data columns (total 3 columns):
          #
              Column
                        Non-Null Count
                                           Dtype
          0 movie id
                         1028186 non-null object
              person id 1028186 non-null
          1
                                           object
          2
              category 1028186 non-null
                                           obiect
         dtypes: object(3)
         memory usage: 23.5+ MB
         None
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 606648 entries, 0 to 606647
         Data columns (total 2 columns):
          #
                           Non-Null Count
              Column
                                             Dtype
              person id 606648 non-null object
          0
              primary_name 606648 non-null object
          1
         dtypes: object(2)
         memory usage: 9.3+ MB
         None
```

The output from the get_info() function shows that in each table, each column's python data type matches its true data type. The principals and persons tables have zero NaN values. In the movie_basics_clean DataFrame, the following three columns still have a some NaN values: runtime_minutes, genres, genres_list. Since there is significantly less data in the budgets table, I keep the rows with the NaN values. This will help ensure that I do not lose any important data when joining the budgets table with the movie_basics_clean table.

Out [54]:

	person_id	primary_name	movie_id	category
0	nm0061671	Mary Ellen Bauder	tt2398241	producer
1	nm0061865	Joseph Bauer	tt0433397	composer
2	nm0061865	Joseph Bauer	tt1681372	composer

In [55]: film_people.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1027912 entries, 0 to 1027911
Data columns (total 4 columns):

```
#
    Column
                  Non-Null Count
                                    Dtype
                  1027912 non-null
0
    person id
                                    object
1
    primary_name
                  1027912 non-null
                                    object
2
    movie id
                  1027912 non-null
                                    object
3
    category
                  1027912 non-null
                                    object
```

dtypes: object(4)
memory usage: 39.2+ MB

```
In [56]: # get counts of the different categories of film professions
         film_people.category.value_counts()
Out[56]: actor
                                 256561
                                 146393
         director
         actress
                                 146124
         producer
                                 113724
         cinematographer
                                  80091
         composer
                                  77063
         writer
                                  74357
         self
                                  65392
         editor
                                  55512
         production_designer
                                   9373
         archive_footage
                                   3306
         archive_sound
                                      16
         Name: category, dtype: int64
         film_people.person_id.value_counts()
In [57]:
Out[57]: nm1930572
                       378
         nm0000636
                       160
                       148
         nm0000616
         nm0103977
                       126
         nm4394575
                       103
         nm0632884
                         1
         nm3232305
                         1
                         1
         nm8039614
                         1
         nm3943132
                         1
         nm2282568
         Name: person_id, Length: 604290, dtype: int64
```

In [58]: film_people[film_people['person_id'] == 'nm4394575']

Out [58]:

	person_id	primary_name	movie_id	category
415221	nm4394575	Sen Arima	tt2414424	editor
415222	nm4394575	Sen Arima	tt2418914	editor
415223	nm4394575	Sen Arima	tt3445098	editor
415224	nm4394575	Sen Arima	tt2419230	editor
415225	nm4394575	Sen Arima	tt2410964	editor
415319	nm4394575	Sen Arima	tt9525226	editor
415320	nm4394575	Sen Arima	tt6370780	editor
415321	nm4394575	Sen Arima	tt6374832	editor
415322	nm4394575	Sen Arima	tt7843050	editor
415323	nm4394575	Sen Arima	tt9520500	editor

103 rows × 4 columns

The above output shows that each row in film_people represents a movie that a professional was involved in. For example, the person_id that corresponds with nm4394575 is represented in 103 rows, with each row having a different movie_id .

In [59]:	film_people.value_counts()					
Out[59]:	person_id	primary_name	movie_id	category		
	nm3296031	Brendan Maclean	tt2815358	actor	2	
	nm2442121	Ivy Yi-Han Chen	tt8942260	actress	2	
	nm4454963	Mike Kai Sui	tt6450032	actor	2	
	nm3206691	Hasan Majuni	tt2258513	actor	2	
	nm1289422	Barbara Bacci	tt3153648	actress	2	
	nm4885985	Rémi Goulet	tt7610830	actor	1	
			tt4027334	actor	1	
			tt2224307	actor	1	
	nm4885974	Mónica Portillo	tt6207386	actress	1	
	nm0000002	Lauren Bacall	tt0858500	actress	1	
	Length: 10	27877, dtype: int	64			

In [60]: # removes duplicate rows that share the same movie_id and perso

film_people_duplicates = film_people.duplicated(keep = False)
film_people[film_people_duplicates].value_counts()

Out[60]:	person_id	primary_name	movie_id	category	
	nm9161308	Sameer Deshpande	tt5489544	actor	2
	nm1289422	Barbara Bacci	tt3153648	actress	2
	nm3296031	Brendan Maclean	tt2815358	actor	2
	nm3206691	Hasan Majuni	tt2258513	actor	2
	nm3187984	Abdellatif Chaougi	tt3592504	actor	2
	nm2442121	Ivy Yi-Han Chen	tt8942260	actress	2
	nm2335900	Justin Malone	tt1995481	actor	2
	nm1794850	David Chalmers	tt2073120	actor	2
	nm1141719	Nobuyuki Kase	tt5098626	actor	2
	nm3548929	Liuyuan Ding	tt5338100	actress	2
	nm0857847	Thich Nhát Hanh	tt5268106	actor	2
	nm0849468	Masashi Taniguchi	tt8108180	actor	2
	nm0605583	Robert Morin	tt6664852	actor	2
	nm0406809	Kunihiko Ida	tt5495582	actor	2
	nm0244327	Dorra Zarrouk	tt6549064	actress	2
	nm0172826	Luigi Cozzi	tt4537170	actor	2
	nm3414469	Mita Chatterjee	tt5282110	actress	2
	nm3741291	JC Cadena	tt7180088	actress	2
	nm9115981	Andy Johnson	tt7236082	editor	2
	nm5241644	Yu Li	tt2473710	actor	2
	nm8204953	Nikhil Chaudhary	tt6094992	producer	2
	nm7129726	Chloe Brown	tt5974592	actress	2
	nm6523411	Sereene Brown	tt4472884	actress	2
	nm5992239	Shawan Emer	tt3246048	actress	2
	nm5726235	Dorian Kane	tt7725546	actor	2
	nm5241644	Yu Li	tt6419578	actor	2
	nm4721563	Kristen StephensonPino	tt2557902	actress	2
	nm3772098	Ross Everett	tt2368182	actor	2
	nm4454963	Mike Kai Sui	tt6450032	actor	2
	nm3996622	Thomas Brenneck	tt5613920	actor	2
	nm3979007	Rameet Sandhu	tt5805424	actress	2
	nm3895623	Jacqueline Chong	tt6423408	actress	2
			tt3503838	actress	2
	nm3782659	Ece Baykal	tt6971730	actress	2
	nm0149828	Sudiptaa Chakraborty	tt5473578	actress	2
	dtype: int	64			

In [61]: # checks to confirm that there are no duplicates film_people_no_dups = film_people.drop_duplicates() film_people_no_dups.value_counts()

Out[61]:	person_id nm9993680	<pre>primary_name Christopher-Lawson Palmer</pre>	movie_id tt10427366	
	_	Reece Rios	tt1591509	actor
	nm1822600 1	Anastas Tanovski	tt7610008	actor
	nm1822582	Claude Stark	tt6046566	actor
	nm1822570 1	Esham	tt2006716	self
	nm4886005	Abi Alberto	tt2224159	director
	nm4885998 1	Mott Green	tt2224377	self
	nm4885985 1	Rémi Goulet	tt7610830	actor
	1		tt4027334	actor
	_	Lauren Bacall	tt0858500	actress
	Length: 10	27877, dtype: int64		

Type *Markdown* and LaTeX: α^2

In [62]: film_people_no_dups.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 1027877 entries, 0 to 1027911 Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	person_id	1027877 non-null	object
1	<pre>primary_name</pre>	1027877 non-null	object
2	<pre>movie_id</pre>	1027877 non-null	object
3	category	1027877 non-null	object
dtyp	es: object(4)		

memory usage: 39.2+ MB

In [65]: film_people_with_movies.head()

Out [65]:

	person_id	primary_name	movie_id	category	primary_title	start_year	
0	nm0061671	Mary Ellen Bauder	tt2398241	producer	Smurfs: The Lost Village	2017	Adventure
1	nm0038432	Kelly Asbury	tt2398241	director	director Smurfs: The Lost Village		Adventure
2	nm0449549	Jordan Kerner	tt2398241	producer	Smurfs: The Lost Village	2017	Adventure
3	nm0962596	Pamela Ribon	tt2398241	writer	Smurfs: The Lost Village	2017	Adventure
4	nm0678963	Peyo	tt2398241	writer	Smurfs: The Lost Village	2017	Adventure

Dtype

In [66]: film_people_with_movies.info()

Column

#

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1017239 entries, 0 to 1017238
Data columns (total 8 columns):

0 person_id 1017239 non-null object 1 primary name 1017239 non-null object

Non-Null Count

2 movie_id 1017239 non-null object 3 category 1017239 non-null object

4 primary_title 1017239 non-null object 5 start_year 1017239 non-null int64

6 genres 1006126 non-null object 7 genres_list 1006126 non-null object

dtypes: int64(1), object(7)
memory usage: 69.8+ MB

In [67]: # removing any person with a frequency less than three

#gets a count of the frequency of each person's name in the df
film_people_value_counts = film_people_with_movies.primary_name

selects the names that appear less than 3 times
remove_people = film_people_value_counts[film_people_value_coun

filters out rows that have a primary_name that is in remove_p
film_people_mult_movies = film_people_with_movies[~film_people_

In [68]: film_people_mult_movies.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 448252 entries, 1 to 1017213
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	person_id	448252 non-null	object
1	primary_name	448252 non-null	object
2	movie_id	448252 non-null	object
3	category	448252 non-null	object
4	<pre>primary_title</pre>	448252 non-null	object
5	start_year	448252 non-null	int64
6	genres	443892 non-null	object
7	genres_list	443892 non-null	object

dtypes: int64(1), object(7)

memory usage: 30.8+ MB

In [70]: # filtering movie_basics_clean to only include movies in the to
 top_roi_movie_basics = movie_basics_clean[movie_basics_clean['p
 top_roi_movie_basics.head()

Out [70]:

	movie_id	primary_title	start_year	runtime_minutes	genres	ge
33	tt0293429	Mortal Kombat	2021	NaN	Action,Adventure,Fantasy	A
40	tt0326592	The Overnight	2010	88.0	None	
97	tt0431021	The Possession	2012	92.0	Horror, Mystery, Thriller	
115	tt0443272	Lincoln	2012	150.0	Biography, Drama, History	[B
125	tt0448115	Shazam!	2019	132.0	Action,Adventure,Comedy	Α

In [71]: top_roi_movie_basics.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 798 entries, 33 to 145296
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	movie_id	798 non-null	object
1	primary_title	798 non-null	object
2	start_year	798 non-null	int64
3	runtime_minutes	720 non-null	float64
4	genres	792 non-null	object
5	genres_list	792 non-null	object
dtyp	es: float64(1), i	nt64(1), object(4)

memory usage: 43.6+ KB

In [72]: # creates df containing the people involved in the movies in th top roi film people = film people mult movies[film people mult top_roi_film_people.head()

Out [72]:

		person_id	primary_name	movie_id	category	primary_title	start_year	
_	833	nm0192984	Paul Currie	tt2119532	producer	Hacksaw Ridge	2016	Biograp
	834	nm0941777	Sam Worthington	tt2119532	actor	Hacksaw Ridge	2016	Biograp
	835	nm0460795	Andrew Knight	tt2119532	writer	Hacksaw Ridge	2016	Biograp
	837	nm0202704	Bruce Davey	tt2119532	producer	Hacksaw Ridge	2016	Biograp
	838	nm0000154	Mel Gibson	tt2119532	director	Hacksaw Ridge	2016	Biograp

In [73]: # removing any person with a frequency less than three

#gets a count of the frequency of each person's name in the df top_people_value_counts = top_roi_film_people.primary_name.valu # selects the names that appear less than 3 times remove ppl = top people value counts[top people value counts <</pre> # filters out rows that have a primary_name that is in remove_p top roi people = top roi film people[~top roi film people['prim

In [74]: top_roi_people.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 978 entries, 841 to 733268 Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	person_id	978 non-null	object
1	<pre>primary_name</pre>	978 non-null	object
2	<pre>movie_id</pre>	978 non-null	object
3	category	978 non-null	object
4	<pre>primary_title</pre>	978 non-null	object
5	start_year	978 non-null	int64
6	genres	978 non-null	object
7	genres_list	978 non-null	object
		1 ' 1/7\	

dtypes: int64(1), object(7)

memory usage: 68.8+ KB

	person_id	primary_name	movie_id	category	primary_title	start_year	
0	nm1954240	Teresa Palmer	tt2119532	actress	Hacksaw Ridge	2016	Bic
1	nm0001752	Steven Soderbergh	tt2268016	cinematographer	Magic Mike XXL	2015	
2	nm1475594	Channing Tatum	tt2268016	actor	Magic Mike XXL	2015	
3	nm1749221	Nina Jacobson	tt1650043	producer	Diary of a Wimpy Kid: Rodrick Rules	2011	
4	nm0331516	Ryan Gosling	tt1120985	actor	Blue Valentine	2010	

In [76]: top_people_budgets.person_id.value_counts()

Out[76]: nm0089658

```
nm0000881
              10
nm0366389
               8
nm1334526
               8
nm0172830
               8
               3
nm0000108
               3
nm0719637
               3
nm1950086
               2
nm0425053
nm2053216
```

34

Name: person_id, Length: 248, dtype: int64

```
In [77]: |top_people_budgets.category.value_counts()
Out[77]:
                                299
          actor
          producer
                                268
                                202
          actress
          writer
                                112
          director
                                 86
          composer
                                 49
                                 11
          cinematographer
          self
                                  3
          editor
                                  2
          Name: category, dtype: int64
In [78]:
          # replacing any jobs listed as actress to actor
          top_people_budgets['category'] = top_people_budgets.category.re
In [79]:
          top people budgets['category'] = top people budgets.category.st
In [80]:
          top_people_budgets.category.value_counts()
Out[80]: Actor
                                501
          Producer
                                268
          Writer
                                112
          Director
                                 86
          Composer
                                 49
          Cinematographer
                                 11
          Self
                                  3
          Editor
          Name: category, dtype: int64
          top people budgets[top people budgets['category'] == 'Cinematog
In [81]:
Out [81]:
                person id primary name
                                       movie id
                                                     category primary title start year
                                                               Magic Mike
                                Steven
               nm0001752
                                                                             2015
                                      tt2268016
                                               Cinematographer
                            Soderbergh
                                                                    XXI
           526 nm1227638
                          Mike Gioulakis tt4972582 Cinematographer
                                                                    Split
                                                                             2016
           529 nm0002947
                             Toby Oliver tt5052448 Cinematographer
                                                                  Get Out
                                                                             2017
                                                              Happy Death
           533 nm0002947
                             Toby Oliver tt5308322 Cinematographer
                                                                             2017
                                                                     Day
           538 nm1227638
                          Mike Gioulakis tt6857112 Cinematographer
                                                                     Us
                                                                             2019
```

```
In [82]: # creates a list of the 3 least frequent categories
         categories to drop = top people budgets.category.value counts()
         categories to drop
Out[82]: Index(['Editor', 'Self', 'Cinematographer'], dtype='object')
In [83]: # drops any rows where the category is in one of the 3 least fr
         top people budgets = top people budgets[~top people budgets['ca
In [84]: top people budgets.primary name.value counts()
Out[84]: Jason Blum
                                     34
         Michael Bay
                                     10
         Kristen Wiig
                                      8
         Dwayne Johnson
                                      8
         Anna Kendrick
                                      8
         Bear McCreary
                                      3
                                      3
         Scarlett Johansson
                                      3
         Sébastien K. Lemercier
                                      2
         Steven Soderbergh
         Gregory Plotkin
         Name: primary name, Length: 244, dtype: int64
         top people budgets[top people budgets['person id'] == 'nm151293
In [85]:
Out[85]:
            person id primary name movie id category primary title start year genres gen
         # verifying that there are two different Paul Walkers and no du
         top_people_budgets[top_people_budgets['primary name'] == 'Paul
Out[86]:
            person id primary name movie id category primary title start year genres gen
```

In [87]: top_people_budgets.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 1016 entries, 0 to 1031
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype	
0	person_id	1016 non-null	object	
1	primary_name	1016 non-null	object	
2	movie_id	1016 non-null	object	
3	category	1016 non-null	object	
4	primary_title	1016 non-null	object	
5	start_year	1016 non-null	int64	
6	genres	1016 non-null	object	
7	genres_list	1016 non-null	object	
8	release_date	1016 non-null	object	
9	movie	1016 non-null	object	
10	<pre>production_budget (millions of \$)</pre>	1016 non-null	float6	
4				
11	<pre>domestic_gross (millions of \$)</pre>	1016 non-null	float6	
4				
12	<pre>worldwide_gross (millions of \$)</pre>	1016 non-null	float6	
4				
13	roi (%)	1016 non-null	float6	
4				
dtypes: float64(4), int64(1), object(9)				

memory usage: 119.1+ KB

In [88]: # returns the .info() for top_people_budgets, top_roi_movie_bas
dfs_for_analysis = [top_people_budgets, top_roi_movie_basics, b
get_info(dfs_for_analysis)

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1016 entries, 0 to 1031
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype		
0	person_id	1016 non-null	object		
1	primary_name	1016 non-null	object		
2	movie_id	1016 non-null	object		
3	category	1016 non-null	object		
4	primary_title	1016 non-null	object		
5	start_year	1016 non-null	int64		
6	genres	1016 non-null	object		
7	genres_list	1016 non-null	object		
8	release_date	1016 non-null	object		
9	movie	1016 non-null	object		
10	<pre>production_budget (millions of \$)</pre>	1016 non-null	float6		
4					
11	<pre>domestic_gross (millions of \$)</pre>	1016 non-null	float6		
4					
12	<pre>worldwide_gross (millions of \$)</pre>	1016 non-null	float6		
4					
13	roi (%)	1016 non-null	float6		
4					
<pre>dtypes: float64(4), int64(1), object(9) memory usage: 119.1+ KB None</pre>					

None

<class 'pandas.core.frame.DataFrame'>
Int64Index: 798 entries, 33 to 145296
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	movie_id	798 non-null	object
1	primary_title	798 non-null	object
2	start_year	798 non-null	int64
3	runtime_minutes	720 non-null	float64
4	genres	792 non-null	object
5	genres_list	792 non-null	object
<pre>dtypes: float64(1), int64(1), object(4)</pre>			

memory usage: 43.6+ KB

None

<class 'pandas.core.frame.DataFrame'>
Int64Index: 5636 entries, 146 to 5781
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	release_date	5636 non-null	object
1	movie	5636 non-null	object
2	<pre>production budget (millions of \$)</pre>	5636 non-null	float6

```
4
 3
     domestic gross (millions of $)
                                        5636 non-null
                                                         float6
4
                                        5636 non-null
 4
     worldwide_gross (millions of $)
                                                         float6
 5
     roi (%)
                                                         float6
                                         5636 non-null
dtypes: float64(4), object(2)
memory usage: 308.2+ KB
None
```

The output from the <code>get_info()</code> function shows that in each table, each column's python data type matches its true data type. In the <code>top_roi_movie_basics</code> DataFrame, the following three columns still have a few NaN values: <code>runtime_minutes</code>, <code>genres</code>, <code>genres_list</code>. Since this DataFrame, only has 785 entries, simply removing these rows could result in significant data loss. I leave these NaN values because I still have enough data in each of those rows for meaningful analysis, and I do not want to lose any important data by removing these rows.

4. Exploratory Data Analysis

The following are findings from this analysis:

- Of the 5,636 movies with functional budget data, 37% did NOT achieve a
 positive ROI.
- The typical movie had an estimated 16 million dollar production budget, generated an estimated 26 million dollars in worldwide gross revenue, and produced an estimated 66% return on investment.
- Dramas and comedies were the two most common genres for the movies in the top 25% of ROI.
- The middle 50% of the movies with the highest ROI had runtimes between 87 and 113 minutes.
- The three film **professions that generate the highest ROI** for dramas and comedies are: **composers**, **directors**, & **producers**.
 - The 5 highest grossing drama & comedy composers are: Danny Elfman,
 Alexandre Desplat, Marco Beltrami, Thomas Newman, Theodore Shapiro
 - The 3 highest grossing drama & comedy *directors* are: David O. Russell,
 Steven Spielberg, Damien Chazelle
 - The 3 highest grossing drama & comedy *producers* are: Simon Kinberg,
 Michael De Luca, Dana Brunetti

In [89]: # getting summary statistics for the int cols of the budgets ta round(budgets_no_outliers.describe(), 1)

Out[89]:

	production_budget (millions of \$)	domestic_gross (millions of \$)	worldwide_gross (millions of \$)	roi (%)
count	5636.0	5636.0	5636.0	5636.0
mean	27.2	36.6	75.9	383.6
std	31.0	54.6	129.8	2990.8
min	0.0	0.0	0.0	-100.0
25%	5.0	1.2	3.7	-53.5
50%	16.0	16.0	26.1	66.4
75%	38.0	48.6	89.2	269.9
max	156.0	474.5	1341.7	179900.0

In [90]: len(budgets_no_outliers)

Out[90]: 5636

In [91]: # total percentage of films that did NOT have a positive ROI
round(len(budgets_no_outliers[budgets_no_outliers['roi (%)'] <=</pre>

Out[91]: 37.62

In [92]: # getting the top genres for the movies in the top 25% roi

top_genres_count = top_roi_movie_basics['genres'].str.split(","
top_genres = list(top_genres_count.index)
top_2_genres = top_genres[:2]

In [93]: # calculates percentage of the two most common genres
top_genres_count_normalized = top_roi_movie_basics['genres'].st
round(top_genres_count_normalized[:2].sum()* 100, 1)

Out[93]: 34.2

This output represents the percentage of all movies that were classified as either Dramas and/or Comedies.

```
In [94]: # setting colors for bars of barplot
top_genres_bar_colors = ['darkorange' if x in top_2_genres else
# setting colors for ticks of barplot
top_genres_tick_colors = ['black' if x in top_2_genres else 'gr
```

```
In [95]: # horizontal bar plot showing the counts of genres for highest
         fig. ax = plt.subplots(figsize = (12, 8))
         sns.barplot(y = top_genres,
                     x = top_genres_count,
                     palette = top_genres_bar_colors
                    );
         ax.set_title('Movie Genres in the Top Quartile of ROI',
                      fontsize = 21
                     )
         ax.set_xlabel('Frequency', fontsize = 20)
         ax.set_ylabel("Genre", fontsize=20)
         ax.tick params(labelsize=18)
         ax.spines['left'].set color('lightgrey')
         ax.spines['right'].set color('lightgrey')
         ax.spines['top'].set color('lightgrey')
         ax.spines['bottom'].set color('lightgrey')
         # this for loop sets the tick colors
         for ticklabel, tickcolor in zip(plt.gca().get yticklabels(), to
             ticklabel.set color(tickcolor)
         plt.savefig("top genres.png", bbox inches = 'tight');
```


This bar chart visualizes the the frequency genres of movies that were in the upper quartile of ROI. This visualization draws our attention to the two most common genres: **Drama** and **Comedy**. Specifically, these two genres made up more than one-third (34.2%) of all genres for the movies with the highest ROI.

```
In [96]: # creating a list of the top 2 genres of movies in top 25% roi
top2_genres = list(round(top_roi_movie_basics['genres'].explode
```

```
In [97]: # visualizes distribution of movie runtime minutes
sns.histplot(top_roi_movie_basics['runtime_minutes']);
```


This histogram shows the distribution of the runtimes for the movies with the highest ROI. This data appears to be approximately normal, but could also be considered left skewed because its left tail is relatively long.

```
In [98]: # getting summary statistics for top_roi_movie_basics runtimes
round(top_roi_movie_basics['runtime_minutes'].describe(), 1)
```

```
Out[98]:
          count
                    720.0
                     98.4
          mean
          std
                     26.5
          min
                      3.0
          25%
                     87.0
          50%
                     99.0
          75%
                    113.0
                    180.0
          max
```

Name: runtime_minutes, dtype: float64

This output provide summary statistics for movie runtimes. The 1st Quartile (25%) and 3rd Quartile (75%) are especially important because 50% of the data lies between these two values. I will be highlighting this in the boxplot used to visualize this distribution below.

```
In [99]: # boxplot for the runtime of the movies in top 25% of roi
         fig. ax = plt.subplots(figsize= (12, 8))
         sns.boxplot(top_roi_movie basics['runtime minutes'].
                     showfliers = False,
                     color = 'lightgrey'
         # creates dashed lines to emphasis Q1 and Q3 on the graph
         plt.axvline(x = 87.
                     color = 'darkorange',
                     label = 'axvline - full height',
                     linestyle = '--',
                     linewidth=7.0
         plt.axvline(x = 113.
                     color = 'darkorange',
                     label = 'axvline - full height',
                     linestyle = '--',
                     linewidth=7.0
         # formatting title and axes
         ax.set title("Distribution of Movie Runtimes ",
                      fontsize = 20
                      )
         ax.set_xlabel('Runtime (minutes)',
                       fontsize = 17
         ax.set_xticks([87, 113])
         ax.tick_params(axis='x',
                        colors='darkorange',
                         labelsize = 17
         # makes border of figure grey
         ax.spines['left'].set_color('lightgrev')
         ax.spines['right'].set color('lightgrev')
         ax.spines['top'].set color('lightgrey')
         ax.spines['bottom'].set color('lightgrey')
         plt.savefig("runtimes boxplot.png", bbox inches = 'tight');
```

/Users/chriskucewicz/anaconda3/envs/learn-env/lib/python3.8/si te-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing oth er arguments without an explicit keyword will result in an err or or misinterpretation.

warnings.warn(

This boxplot visualizes the distribution of runtimes of movies that were in the upper quartile of ROI. This visualization draws our attention to the runtime for the middle 50% of movies. Specifically, the middle 50% of movies had **runtimes between 87 and 113 minutes**.

```
In [100]: # creates a table of the median ROI for each film profession
    roi_categories = top_people_budgets.groupby(['category']).media
# sorts roi_categories from greatest ROI to least
    roi_categories_sorted = roi_categories.sort_values('roi (%)', a
    roi_categories_sorted
```

Out[100]:

roi (%) production_budget (millions of \$) worldwide_gross (millions of \$)

category			
Composer	724.7	18.0	115.5920
Director	685.7	23.0	172.0590
Producer	685.3	15.0	129.0865
Writer	613.3	41.0	207.0400
Actor	489.6	30.0	175.3620

```
In [101]: # saves the list of the top three professions by ROI %
top_3_roi_categories = roi_categories_sorted.head(3)
top_3_roi_categories
```

Out[101]:

roi (%) production_budget (millions of \$) worldwide_gross (millions of \$)

category			
Composer	724.7	18.0	115.5920
Director	685.7	23.0	172.0590
Producer	685.3	15.0	129.0865

The above output is a table that shows the top 3 highest average return on investment (ROI) grouped by film profession. For example, composers had an average ROI of 725% and producers had an average ROI of 685%.

```
In [102]: # calculates average ROI across all film professions which will
          roi h threshold = 0.5 * (roi categories sorted['roi (%)'].max()
                           + roi categories sorted['roi (%)'].min())
          # creates vertical threshold
          roi v threshold = 0.5 * (roi categories sorted['production budg
                           + roi categories sorted['production budget (mi
          fig, ax = plt.subplots(figsize = (12,8))
          # creates and plots scatterplot
          sns.scatterplot(data = top_people_budgets.groupby(['category'])
                           x = 'production_budget (millions of $)',
                           y = 'roi (%)',
                           s = 100.
                           hue='category',
                           )
          # plots name for top 3 professions near corresponding data poin
          for line in range(0, top 3 roi categories.shape[0]):
               ax.annotate(top_3_roi_categories.index[line],
                             (top 3 roi categories['production budget (mi
                              top 3 roi categories['roi (%)'].iloc[line])
                             fontsize=17,
                             xytext=(-20, -25),
                             textcoords='offset points'
                          )
          # removes leaend
          ax.get legend().remove()
          # draws horizontal line for median roi
          ax.axhline(y = roi h threshold,
                      color = 'red',
                      label = 'axvline - full height',
                      linestyle = '--'
          # draws vertical line for average median budget
          ax.axvline(x = roi v threshold,
                      color = 'red',
                      label = 'axvline - full height',
                      linestvle = '--'
          # formatting title and axes
          ax.set title("Average Return on Investment by Film Profession",
                       fontsize = 18
          ax.set xlabel('Production Budget (millions)',
                        fontsize = 15
          ax.set_ylabel('Return on Investment (%)',
```

```
fontsize=15
)
ax.tick_params(labelsize=16)

#ax.set_xticklabels(x.astype(int))

# makes border of figure grey
ax.spines['left'].set_color('lightgrey')
ax.spines['right'].set_color('lightgrey')
ax.spines['top'].set_color('lightgrey')
ax.spines['bottom'].set_color('lightgrey')
plt.savefig("roi_by_profession.png", bbox_inches = 'tight');
```


This scatterplot graphs the relationship between production budget and ROI based on film profession. The top left quadrant represents those professions that are involved in movies with low production budgets, but have a high return on investment. The three professions in this quadrant include composers, directors, and producers.

In [104]: top_grossing(top_3_roi_categories.index)

The top 5 highest grossing Composers are: ['Danny Elfman', 'Ale xandre Desplat', 'Marco Beltrami', 'Thomas Newman', 'Theodore Shapiro']

print(f"The top 5 highest grossing {category}s are:" +

The top 5 highest grossing Directors are: ['David O. Russell', 'Steven Spielberg', 'Damien Chazelle', 'Jon M. Chu', 'M. Night Shyamalan']

The top 5 highest grossing Producers are:['Simon Kinberg', 'Mi chael De Luca', 'Dana Brunetti', 'Wyck Godfrey', 'Peter Chernin']

```
In [105]: def plot top grossing(categories):
                  fig, ax = plt.subplots(nrows = 1, ncols = len(categorie
                  # creating an indexed list of categories and looping th
                  for index, category in enumerate(categories):
                      # stores a dataframe of those in the corresponding
                      top_category = top_people_budgets[(top_people_budge)
                                                         & (top people bud
                      # creates a table of the top 10 highest grossing pr
                      top_category_sum_gross = top_category.groupby(['pri
                      # selects the top 3 names from top category sum gro
                      top 3 category = list(top category sum gross.index)
                      # setting colors for bars of barplot
                      top sum category colors = ['orange' if x in top 3 d
                      # setting colors for ticks of barplot
                      top sum categories tick colors = ['black' if x in t
                      # creates barplot of top 10 highest grossing within
                      sns.barplot(
                          y = top_category_sum_gross.index,
                          x = top_category_sum_gross['worldwide_gross (mi
                          palette = top_sum_category_colors,
                          ax = ax[index]
                      )
                      # formatting title and axes
                      ax[index].set title(f"Cumulative Gross Revenue Acro
                                           fontsize = 18
                      ax[index].set xlabel('Total Gross $ (millions)',
                                           fontsize = 16
                                           )
                      ax[index].set_ylabel(f'{category}',
                                            fontsize=16
                                           )
                      ax[index].tick_params(labelsize=16)
                      ax[index].set yticklabels(labels = top category sum
                      # for loop adjusts the color of the tick parameters
                      for ticklabel, tickcolor in zip(ax[index].get_ytick
                          ticklabel.set_color(tickcolor)
                      # makes border of figure grey
                      ax[index].spines['left'].set color('lightgrey')
                      ax[index].spines['right'].set color('lightgrey')
                      ax[index].spines['top'].set_color('lightgrey')
```

```
ax[index].spines['bottom'].set_color('lightgrey');
fig.tight_layout(pad=5.0);
```

In [106]: plot_top_grossing(top_3_roi_categories.index)
 plt.savefig("total_gross_top3_professions.png", bbox_inches =

The above output shows the top 10 highest cumulative grossing composers, directors, and producers who create dramas and comedies. More specifically, each barplot highlights the top 3 in each category.

```
In [107]: # this is the same function as above except it does not involve
          def plot_individ_top_grossing(category, number):
                  fig. ax = plt.subplots(figsize = (12.6))
                  # stores a dataframe of those in the corresponding cate
                  top_category = top_people_budgets[(top_people_budgets['
                                                        & (top_people_bud
                  # creates a table of the top 10 highest grossing profes
                  top_category_sum_gross = top_category.groupby(['primary
                  # selects the top 3 names from top category sum gross
                  top 3 category = list(top category sum gross.index)[:nu
                  # setting colors for bars of barplot
                  top sum category colors = ['orange' if x in top 3 categ
                  # setting colors for ticks of barplot
                  top sum categories tick colors = ['black' if x in top 3
                  # creates barplot of top 10 highest grossing within res
                  sns.barplot(
                      y = top_category_sum_gross.index,
                      x = top_category_sum_gross['worldwide_gross (millio)
                      palette = top_sum_category_colors,
                  # formatting title and axes
                  ax.set title(f"Cumulative Gross Revenue Across Dramas &
                                          fontsize = 18
                  ax.set xlabel('Total Gross $ (millions)',
                                           fontsize = 16
                  ax.set ylabel(f'{category}',
                                           fontsize=16
                  ax.tick_params(labelsize=16)
                  ax.set_yticklabels(labels = top_category_sum_gross.inde
                  # for loop adjusts the color of the tick parameters to
                  for ticklabel, tickcolor in zip(ax.get_yticklabels(), t
                          ticklabel.set_color(tickcolor)
                  # makes border of figure grey
                  ax.spines['left'].set color('lightgrey')
                  ax.spines['right'].set color('lightgrey')
                  ax.spines['top'].set_color('lightgrey')
                  ax.spines['bottom'].set_color('lightgrey');
```

fig.tight_layout(pad=3.0);

In [108]:

plot_individ_top_grossing(top_3_roi_categories.index[0], 5);
plt.savefig("total_gross_composers.png", bbox_inches = 'tight')

The above output shows the top 10 highest cumulative grossing composers who create dramas and comedies. More specifically, this barplot highlights the top 5 highest cumulative grossing composers: Danny Elfman, Alexandre Desplat, Marco Beltrami, Thomas Newman, Theodore Shapiro.

In [109]:

plot_individ_top_grossing(top_3_roi_categories.index[1], 3)
plt.savefig("total_gross_directors.png", bbox_inches = 'tight')

The above output shows the top 10 highest cumulative grossing directors who create dramas and comedies. More specifically, this barplot highlights the top 3 highest cumulative grossing directors: David O. Russell, Steven Spielberg, Damien Chazelle.

In [110]: plot_individ_top_grossing(top_3_roi_categories.index[2], 3)
plt.savefig("total_gross_producers.png", bbox_inches = 'tight'

The above output shows the top 10 highest cumulative grossing producers who create dramas and comedies. More specifically, this barplot highlights the top 3 highest cumulative grossing producers: Simon Kinberg, Michael De Luca, Dana Brunetti.

5. Conclusions

Limitations

While the datasets and tables provided a variety of data, there was a notable limitation in the availability of budget information for movies. This led to a significant discrepancy between the number of entries in the budgets table (~5,000) and other tables within the IMDB database, one of which contained over 1 million entries. Consequently, the analysis was restricted by the limited amount of budget data, reducing the number of movies that could be analyzed. A more comprehensive dataset that includes budget information for a wider range of movies would enable a more thorough analysis and yield more informed recommendations about the factors that influence a movie's return on investment.

Recommendations

This analysis leads to three recommendations for movie creation:

- 1. Focus on creating movies within the *drama or comedy genres*.
- Over **one-third** of the movies with the highest ROI were classified as dramas and/or comedies.
 - 2. Create movies with *runtimes between 87 and 113 minutes*.

- Half of all movies with the highest ROI had runtimes between 87 and 113 minutes.
 - Focus on hiring high-quality composers, directors, and producers who specialize in comedy & drama, as these three film professions had the highest ROI.
- **Recommended drama & comedy composers** (top five highest cumulative grossing): Danny Elfman, Alexandre Desplat, Marco Beltrami, Thomas Newman, Theodore Shapiro
- **Recommended drama & comedy directors** (top three highest cumulative grossing): David O. Russell, Steven Spielberg, Damien Chazelle
- **Recommended drama & comedy producers** (top three highest cumulative grossing): Simon Kinberg, Michael De Luca, Dana Brunetti

Next Steps

With these recommendations in mind, I am interested the following next steps:

- · gathering more budget data on a wider number of movies
- performing regression analysis to answer the question: Which factors most strongly correlate with a movie's ROI?

6. Resources

 During the data preparation phase, I ran into the problem of a dataframe column containing a string of multiple film genres (i.e. comedy, drama, horror). I needed to find a way to separate the single string into different strings for each genre. I googled 'pandas column contains list of genres' and found two different solutions. On <u>saturncloud.io</u>

(https://saturncloud.io/blog/how-to-split-one-column-into-multiple-columns-in-pandas-

<u>dataframe/#:~:text=Using%20the%20pd.&text=Series.-,str.,list%20as%20a%20</u> the following code was helpful:

```
df[['First Name', 'Last Name']] = df['Name'].str.split('
', expand=True)
```

I also found a helpful solution on reddit

(https://www.reddit.com/r/learnpython/comments/krasnw/how to put my genre written by pytrashpandas which used the following code:

```
genre_count =
df['genre'].str.split(',').explode().value_counts()
```

The combination of these two solutions helped me to separate each string in the pandas dataframe column into different genres based on the comma (',') delimiter

When inspecting the tables within the given database, I was looking for a
way to return the name of each table with its corresponding number of rows. I
googled 'loop to create dataframe using read_sql' and found a solution on
stackoverflow (https://stackoverflow.com/questions/71432838/for-loop-tocreate-a-dataframe-using-pandas-read-sql-in-python) which contained the
following code:

```
for table_name in tables.keys(): sqlite_table = f"SELECT *
FROM {table_name} WHERE symbol='{company}'"
tables[table_name] = pd.read_sql(sqlite_table, database)
```

This solution helped me create a sql query using read_sql to return the number of rows in each table of the database.

After joining dataframes, I was trying to figure out how to return duplicated rows in a dataframe so I could see if a person_id and/or movie_id was duplicated in the dataframe. I googled 'subset dataframe pandas where count for value is more than 1' and found a solution on stackoverflow
 (https://stackoverflow.com/questions/48628417/how-to-select-rows-in-pandas-dataframe-where-value-appears-more-than-once) written by cs95 which contained the following code:

```
v = df.Parameter.value_counts()
df[df.Parameter.isin(v.index[v.gt(5)])]
```

This solution helped me return rows that included matching movie_id and person id.

 During the EDA phase, I was looking for a way to automate creating a series of bar graphs, so I tried creating a function using a for loop. I wasn't sure how to get the graph to appear on a specific axes, so I googled 'barplots using for loop matplotlib' and found a solution on stackoverflow (https://stackoverflow.com/questions/43962735/creating-barplots-using-for-loop-using-pandas-matplotlib) written by Robbie which contained the following code:

```
for i, zone in enumerate(zones):
data.loc[data.zone==zone].hist(column='0S Usage',
bins=np.linspace(0,1,10),
ax=axes[i],
```

```
sharey=True)
axes[i].set_title('OS Usage in {0}'.format(zone))
axes[i].set_xlabel('Value')
axes[i].set_ylabel('Count')
```

This solution helped me to be able to create three side-by-side horizontal bar plots with each bar plot on a different axes.

During the EDA phase, I wanted a to create a count of all the different film professions. The issue was that some entries has multiple film professions saved as a single string (i.e. writer, director, producer]. I needed a strategy to separate and count each individual profession so I googled 'pandas column contains any values in list' and found a solution on stackoverflow.com/questions/50355825/pandas-using-isin-to-return-if-column-contains-any-values-in-a-list-rather-th) written by piRSquared which contained the code:

```
df['Description'].str.split(expand =
True).isin(keywords list).any(1)
```

This solution helped me to create a count of each profession and then search the original dataframe for everyone who matched a certain profession.

When I was creating a visualization for the return on investment for each film profession, I was looking for a way to label the individual points on the scatter plot rather than relying on the key. I googled 'labeling points on a scatterplot seaborn' and found a solution on stackoverflow
 (https://stackoverflow.com/questions/46027653/adding-labels-in-x-y-scatter-plot-with-seaborn) written by Scott Boston and edited by Trenton McKinney which contained the following code:

```
def label_point(x, y, val, ax):
a = pd.concat({'x': x, 'y': y, 'val': val}, axis=1)
for i, point in a.iterrows():
ax.text(point['x']+.02, point['y'], str(point['val']))
```

This solution helped me to label specific points on my scatterplot and align the label positioning.

 When I was creating visualizations for to show the top genres or the top grossing composers or directors, I wanted to make sure the top categories really stood out to my audience, so I wanted a way to adjust the tick labels to make the names of the top categories stand out while making the remaining categories less prominent. I googled " and found a solution on <u>stackoverflow (https://stackoverflow.com/questions/39409530/every-tick-label-in-different-color)</u> written by tmdavison which contained the code:

```
for ticklabel, tickcolor in
zip(plt.gca().get_xticklabels(), my_colors):
    ticklabel.set_color(tickcolor)
```

This solution helped me to make the ticks I wanted my audience to focus on a darker shade than the other ticks.