

2	Find the two values of x such that	
		$\frac{12^{3x} \times 3^{4x^2 - 3x} \times 3}{24^{2x}} = 27$
	Show your working clearly.	
_		(Total for Question 2 is 4 marks)

The diagram shows a sketch of the speed-time graph of part of a cyclist's journey along a straight horizontal road.

(a) Calculate the deceleration, in m/s², for the last 2 seconds of this part of the cyclist's journey.

	m/s ²
(2)	

At time t = 0 seconds, the speed of the cyclist is u m/s. The cyclist travelled a total distance of 65 m in the 8 seconds.

(b) Calculate the value of u

$$u = \dots$$
 (3)

4	The line L_1 has equation $5x + 4y = 16$		
	The line L_2 is parallel to L_1 and passes through the point with coordinates (8, 15) L_2 crosses the x-axis at the point A and the y-axis at the point B.		
	Calculate the length, to the nearest whole number, of AB.		
$\lfloor -$	(Total for Question 4 is 5 marks)		

5	y is directly proportional to x^3 x is inversely proportional to the square root of w.	
	y = 729 when $x = 4.5x = 25$ when $w = 0.16$	
	Find a formula for y in terms of w .	
_	(Total for Question 5 is 5 marks)	

(Total for Question 5 is 5 marks)
(Total for Question 5 is 5 marks)
(Total for Question 5 is 5 marks)
(Total for Question 5 is 5 marks)
(Total for Question 5 is 5 marks)
(Total for Question 5 is 5 marks)
(Total for Question 5 is 5 marks)
(Total for Question 5 is 5 marks)
(Total for Question 5 is 5 marks)
(Total for Question 5 is 5 marks)
(Total for Question 5 is 5 marks)
(Total for Question 5 is 5 marks)
(Total for Question 5 is 5 marks)
(Total for Question 5 is 5 marks)
(Total for Question 5 is 5 marks)

6

The diagram shows triangle ABC in which

$$AB = (x + 3) \text{ cm}$$

 $BC = 2x \text{ cm}$
 $AC = (3x + 1) \text{ cm}$
 $\angle ABC = 120^{\circ}$

Find the size, in degrees to 3 significant figures, of $\angle ACB$.

The diagram shows a circle of radius 2x cm.

The lines AB and DC are parallel and $AB = DC = 2x \,\text{cm}$. The area of the region shown shaded in the diagram is $kx^2 \,\text{cm}^2$

Find the exact value of k.

8	A bag contains <i>n</i> beads. There are 4 orange beads in the bag. The rest of the beads are purple.
	Donald is going to take at random 2 beads from the bag.
	The probability that both beads will be the same colour is $\frac{51}{91}$
	Find the value of n .
	Show clear algebraic working.

<i>n</i> =
 (Total for Question 8 is 6 marks)

Figure 2

Figure 2 shows a circle ABCDE with centre O.

$$\angle BAO = 18^{\circ}$$
 $\angle AOD = 120^{\circ}$

The area of segment BCD, shown shaded in Figure 2, is $T \, \text{cm}^2$ Given that the perimeter of the sector AODE is $5(3 + \pi) \, \text{cm}$, calculate the value, to one decimal place, of T.

The diagram shows cuboid ABCDEFGH in which

$$AD = 3 \,\mathrm{cm}$$

$$DC = \sqrt{\frac{18x}{1 - 2x}} \text{ cm}$$

$$DC = \sqrt{\frac{18x}{1 - 2x}} \text{ cm} \qquad AH = \frac{6}{\sqrt{3 - 8x}} \text{ cm}$$

where
$$0 < x < \frac{3}{8}$$

Given that the length of CH is L cm, where $L = \frac{k}{\sqrt{(3-8x)(1-2x)}}$ and k is a positive integer,

(a) find the value of kShow your working clearly.

	<i>k</i> =	(5)
Given that $x = 0.3$		
(b) calculate the volume, in cm ³ , of the cuboid.		
		cm ³
	(Total for Question 10 is 7 mar	(2) ks)

11 x is directly proportional to	w^3		
y is inversely proportional to \sqrt{w}			
$y = 2$ when $x = \frac{1}{4}$			
Find the value of p and the	value of q such that $xy^p = q$		
		<i>p</i> =	
		$q = \dots$	
		(Total for Question 11	is 4 marks)

PQRST is a regular pentagon.R, U and T are points on a circle, centre O.QR and PT are tangents to the circle.RSU is a straight line.

Prove that ST = UT.

Figure 4

Figure 4 shows triangle \overrightarrow{OAB} in which $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$

P is the point on AB such that AP: PB = 2: 1 Q is the point on OP such that OQ: QP = 1: 3

R is the point on OB such that RQA is a straight line.

Calculate, in its simplest form, the ratio OR: RB

14 \mathscr{E} = {odd numbers between 0 and 30}

 $A = \{\text{multiples of 3}\}\$

 $B = \{ prime numbers \}$

 $C = \{\text{factors of 30}\}\$

(a) Complete the Venn diagram for this information showing the position of each of the numbers in the universal set.

(3)

(b) Find (i) $n([A \cup C] \cap B)$

(ii)
$$n([B \cap C'] \cup A')$$

(2)

A number is chosen at random from the universal set, $\mathscr E$

(c) Write down the probability that the number is in the set $C \cap A'$

(2)

Given that the number chosen from \mathscr{E} is a multiple of 3

(d) find the probability that the number is also a factor of 30

(2)

Figure 4

Figure 4 shows a regular hexagon ABCDEF

Given that the area of hexagon $ABCDEF = 150\sqrt{3} \text{ cm}^2$

(a) find the perimeter, in cm, of the hexagon.

Figure 5

Figure 5 shows a shape *AGHIJKLBCDEF* made from a regular octagon *GHIJKLBA* and the regular hexagon *ABCDEF* from part (a).

(b) Work out the length, in cm to one decimal place, of the straight line KF

(6)

(4)

16 (a) Solve the inequality 5(x+1) < xShow clear algebraic working.

(2)

(b) Solve the simultaneous equations

$$3x^2 + y^2 - 7 = 0$$
$$y - 3x - 5 = 0$$

Show clear algebraic working.

(5)

(c) Hence find the value of x for which

$$5(x+1) < x$$
 and $3x^2 + y^2 - 7 = 0$ and $y - 3x - 5 = 0$ (1)

(Total for Question 16 is 8 marks)

17	A how contains 8 groom counters and 2 white counters arely	
1/	A box contains 8 green counters and 2 white counters only.	
	Peter takes at random 2 counters from the box.	
	(a) Calculate the probability that Peter will take 1 green counter and 1 white counter.	(3)
	A bag contains 28 blue beads and <i>n</i> red beads only.	
	Naasir selects a bead from the bag at random.	
	(b) Explain why the probability of the bead being red cannot be $\frac{6}{11}$	(3)
	Naasir keeps the first bead and selects a second bead at random from the bag.	
	The probability of both beads being different colours is $\frac{1}{2}$	
	Given that there are fewer blue beads than red beads,	
	(c) calculate the probability that both beads are blue. Show clear algebraic working.	
		(5)

18 A curve C and a straight line L are drawn on a grid.

C has equation $y = 5x^2 - 16x - 5$

L has equation y + 5x = 7

(a) Find the coordinates of the points of intersection of C and L Show clear algebraic working.

(5)

P is the point on the curve with equation $y = 5x^2 - 16x - 5$ with x coordinate 2

The line \mathbf{Q} is the tangent to the curve at the point P

The line **Q** crosses the x-axis at the point X and the y-axis at the point Y The point M lies on **Q** and is such that XM = MY

(b) Calculate the coordinates of the point M Give your coordinates as exact values.

(5)

In Figure 2, $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$, $\overrightarrow{FE} = \lambda \mathbf{b}$ and $\overrightarrow{ED} = \mu \mathbf{a}$, where λ and μ are positive constants. B is the point of intersection of OC and AF such that OB : OC = AB : AF = 1 : 3

(a) Find, in terms of a or b or a and b, simplifying your answers where possible,

(i)
$$\overrightarrow{AB}$$
 (ii) \overrightarrow{CF} (2)

(b) Find, in terms of a, b, λ and where necessary μ , simplifying your answers where possible,

(i)
$$\overrightarrow{CD}$$
 (ii) \overrightarrow{AE} (3)

Given that $\overrightarrow{AE} = 4\overrightarrow{CD}$

(c) find the value of μ and the value of λ .

(4)

Given also that $|\mathbf{a}| = 4 \text{ cm}$, $|\mathbf{b}| = 1 \text{ cm}$ and that the area of the trapezium *CDEF* is 5 cm^2

(d) calculate the size, in degrees to 3 significant figures, of $\angle CFE$.

(4)

Figure 3

Figure 3 shows the plan for a lawn that is in the shape of a trapezium ABCD in which

$$AB = 4x$$
 metres $BC = (5x + 3)$ metres $CD = 5x$ metres $DA = (2x + 3)$ metres

The perimeter of the lawn is *P* metres.

(a) Find and simplify an expression for P in terms of x.

(2)

The area of the lawn is $A \text{ m}^2$

(b) Show that
$$A = 14x^2 + 12x$$

(2)

The owner of the lawn wants the perimeter of the lawn to be greater than $52 \, \text{m}$. He also wants the area of the lawn to be at most $162 \, \text{m}^2$

(c) Find the range of possible values of *x*. Show clear algebraic working.

(6)

Figure 3

Figure 3 shows a solid right triangular prism ABCDEF.

A cross section ABC of the prism is an isosceles triangle in which AB = AC.

$$\angle ACB = 35^{\circ}$$
 $CB = 8 \text{ cm}$ $CD = 24 \text{ cm}$

(a) Calculate the total surface area, in cm² to 3 significant figures, of the prism.

(5)

Diagram **NOT** accurately drawn

Figure 4

Figure 4 shows a solid right circular cylinder with radius r cm and length h cm.

The total surface area of the cylinder is $(224 + 60\sqrt{3})\pi$ cm²

Given that
$$r = 3\sqrt{3} + 2$$

(b) find the exact value of h. Show your working clearly and give your answer in the form $a\sqrt{27}$ where a is an integer.

(6)

Figure 3

Figure 3 shows a solid silver paperweight made from a cuboid and a half cylinder.

The cuboid is $2a \,\mathrm{cm}$ wide, $b \,\mathrm{cm}$ long and $b \,\mathrm{cm}$ high.

The plane face of the half cylinder coincides with the top face of the cuboid.

The total surface area of the paper weight is $A \text{ cm}^2$

(a) Find an expression for A in terms of π , a and b.

(2)

Given that $a = 6\sqrt{5}$ and that the surface area of the paperweight can be written as

$$(2b^2 + 6ab + 60\pi\sqrt{15})$$
 cm²

(b) show that the exact value of b is $10\sqrt{3} - 6\sqrt{5}$

(5)

The paperweight is melted down to form a different cuboid.

This second cuboid is $2a \,\mathrm{cm}$ wide, $b \,\mathrm{cm}$ long and $h \,\mathrm{cm}$ high, as shown in Figure 4.

Diagram **NOT** accurately drawn

Figure 4

(c) Calculate the size, to the nearest degree, of angle GAC.

(5)

