Statistical analysis in RStudio

Contents

1	INTRODUCTION	1
2	MATERIALS AND METHODS	2
3	RESULTS	6
4	DISCUSSION	6

0.0.1 Abstact

1 INTRODUCTION

Summer	Year.Month	Site	Species	average.count
summer-2007	2007.Jun	A	HARBOUR	14.1
summer-2007	$2007.\mathrm{Jun}$	В	HARBOUR	0.3
summer-2007	$2007.\mathrm{Jun}$	\mathbf{C}	HARBOUR	14.7
summer-2007	$2007.\mathrm{Jun}$	Spit	HARBOUR	0.1
summer-2007	$2007.\mathrm{Jun}$	Wall	HARBOUR	0.7
summer-2007	$2007.\mathrm{Jun}$	D	HARBOUR	0.0

2 MATERIALS AND METHODS

Normal Q-Q Plot


```
##
    Shapiro-Wilk normality test
##
##
## data: data$average.count
## W = 0.67749, p-value < 2.2e-16
##
    Kruskal-Wallis rank sum test
##
##
## data: data$average.count and data$Summer
## Kruskal-Wallis chi-squared = 6.236, df = 3, p-value = 0.1007
##
   Pairwise comparisons using Wilcoxon rank sum test with continuity correction
##
## data: data$average.count and data$Summer
##
##
        2007 2008 2009
## 2008 0.89 -
## 2009 0.20 0.43 -
## 2010 0.43 0.64 0.89
## P value adjustment method: holm
```

```
##
## Pairwise comparisons using Wilcoxon rank sum test with continuity correction
##
## data: data$average.count and data$Summer
##
## 2007 2008 2009
## 2008 0.54 - -
## 2009 0.17 0.17 -
## 2010 0.17 0.32 0.75
##
## P value adjustment method: BH
```



```
##
## Kruskal-Wallis rank sum test
##
## data: data$average.count[data$Summer == "2007"] and data$Year.Month[data$Summer == "2007"]
## Kruskal-Wallis chi-squared = 1.3113, df = 2, p-value = 0.5191
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
```

```
##
   Pairwise comparisons using Wilcoxon rank sum test with continuity correction
##
##
## data: data$average.count[data$Summer == "2007"] and data$Year.Month[data$Summer == "2007"]
##
##
            2007.Aug 2007.Jul
## 2007.Jul 0.63
## 2007.Jun 0.63
                     0.63
## P value adjustment method: BH
##
##
    Kruskal-Wallis rank sum test
## data: data$average.count and data$Species
## Kruskal-Wallis chi-squared = 18.66, df = 1, p-value = 1.562e-05
```



```
## Kruskal-Wallis rank sum test
##
## data: data$average.count and data$Species
## Kruskal-Wallis chi-squared = 18.66, df = 1, p-value = 1.562e-05
##
##
Pairwise comparisons using Wilcoxon rank sum test with continuity correction
```

##

```
## data: data$average.count and data$Species
##
           GREY
##
## HARBOUR 1.6e-05
##
## P value adjustment method: BH
##
##
   Kruskal-Wallis rank sum test
##
## data: data$average.count[data$Summer == "2007"] and data$Species[data$Summer == "2007"]
## Kruskal-Wallis chi-squared = 3.2976, df = 1, p-value = 0.06938
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
##
##
   Pairwise comparisons using Wilcoxon rank sum test with continuity correction
##
## data: data$average.count[data$Summer == "2007"] and data$Species[data$Summer == "2007"]
##
## HARBOUR 0.071
## P value adjustment method: BH
##
  Kruskal-Wallis rank sum test
##
## data: data$average.count[data$Summer == "2008"] and data$Species[data$Summer == "2008"]
## Kruskal-Wallis chi-squared = 2.727, df = 1, p-value = 0.09866
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
##
  Pairwise comparisons using Wilcoxon rank sum test with continuity correction
##
## data: data$average.count[data$Summer == "2008"] and data$Species[data$Summer == "2008"]
           GREY
##
## HARBOUR 0.1
## P value adjustment method: BH
##
##
   Kruskal-Wallis rank sum test
## data: data$average.count[data$Summer == "2009"] and data$Species[data$Summer == "2009"]
## Kruskal-Wallis chi-squared = 10.332, df = 1, p-value = 0.001307
```

```
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
##
  Pairwise comparisons using Wilcoxon rank sum test with continuity correction
## data: data$average.count[data$Summer == "2009"] and data$Species[data$Summer == "2009"]
##
          GREY
## HARBOUR 0.0013
## P value adjustment method: BH
##
## Kruskal-Wallis rank sum test
## data: data$average.count[data$Summer == "2010"] and data$Species[data$Summer == "2010"]
## Kruskal-Wallis chi-squared = 4.1213, df = 1, p-value = 0.04235
## Warning in wilcox.test.default(xi, xj, paired = paired, ...): cannot compute
## exact p-value with ties
## Pairwise comparisons using Wilcoxon rank sum test with continuity correction
## data: data$average.count[data$Summer == "2010"] and data$Species[data$Summer == "2010"]
##
          GREY
##
## HARBOUR 0.043
## P value adjustment method: BH
```

3 RESULTS

4 DISCUSSION

4.0.1 REFERENCES