My artifact of choice is a skeletal report from PHYS333 on transmission line impedance. Figure 1 of this report shows data collected on the impedance of the transmission line linearized and fit to a model to extract parameters.

Characterization of the Impedance of a Coaxial Cable Skeletal Report

Physics 333, Fall 2022 Calvin Sprouse 2022 Oct 20

Impedance Characterization of a 10m RG58 Coaxial Cable

experimental value of characteristic impedance. The intercept of the trendline is two times an attenuation parameter of Figure 1. Impedance measurements taken for a distribution of load resistances. The slope of the trendline is the current into the coaxial cable and current out of the coaxial cable.

Results and Analysis

Collected data was transferred from the logbook into an *Excel* spreadsheet. The input peak voltages V_i , terminal peak voltages V_T , and load resistance R_L , were placed in separate columns. From these columns $-\frac{V_T}{V_i}$ and $\frac{1}{R_L}\frac{V_T}{V_i}$ were calculated in separate columns. These columns represent the y and x values respectively in a linear equation of the form y = mx + b and are shown graphically in Figure 1. The uncertainties associated with these measurements were not evaluated or estimated.

A qualitative analysis of Figure 1 reveals a linear trend in the calculated values. The data is consistent with the model behavior described by Equation 1:

$$-\frac{V_T}{V_i} = \left(\frac{1}{R_L} \frac{V_T}{V_i}\right) Z_C - 2\alpha$$
 Equation 1

where Z_C is the characteristic impedance of the coaxial cable and α is a unitless attenuation coefficient relating the current into the transmission line to the current out of the transmission line.

Figure 1 was analyzed by a linear trend line done in *Excel* and from this analysis the experimental values $Z_C = 48.94\Omega$ and $\alpha = 0.75$ were obtained. The uncertainties associated with these values were not evaluated or estimated.

Another value of the characterstic impedance of the transmission line was found by Equation 2:

$$Z_C = \frac{1}{2\pi} \sqrt{\frac{\mu}{\epsilon}} \ln\left(\frac{b}{a}\right)$$
 Equation 2

where μ is the magnetic permeability of the dielectric, ϵ is the electric permittivity of the dielectric, b is the outer diameter of the conductor, and a is the inner diameter of the conductor.

μ	$1.2500 * 10^{-6} Hm^{-1}$
ϵ	$6.5077 * 10^{-11} Fm^{-1}$
b	2.95 mm
a	0.850 mm

Table 1. A collection of physical values for the coaxial cable with an inner dielectric composed of Polyethylene.^{[1][2]}

A measurement of characteristic impedance is obtained by evaluating Equation 2 with the parameters listed in Table 1 of $Z_C = 48.7\Omega$, with associated uncertainties not evaluated or estimated. This measured value of characteristic impedance differs from the previous experimentally measured characteristic impedance by 0.490% not accounting for uncertainties or error in measurement.

From the manufacturer datasheet the RG58 AWG Type C coaxial cable used in this experiment has a nominal characteristic impedance of $54\Omega^{[1]}$. The characteristic impedance measured by Equation 2 differs by 9.81% and the characteristic impedance measured by Equation 1 differs by 9.37% not accounting for uncertainties or error in measurements.

References

- [1] Belden Wire & Cable. 50 Ohm Wireless Transmission Coax, RG-58, 20 AWG Str TC, 95% TC Braid, PVC Jkt, CM. 2022. https://www.mouser.com/datasheet/2/46/8219_techdata-1393977.pdf.
- [2] Professional Plastics. Electrical Properties of Plastic Materials. 2022.
 https://www.professionalplastics.com/professionalplastics/ElectricalPropertiesofPlastics.
 pdf.