Computer Vision Features

1 Find the Best Models

All the raw program output can be found in the *Resut-ComputerVision.txt* file. Here is the Best Models we found for the different features.

1.1 Y-Gradient

With the grid search of the following parameters of the *Random Forests Model*:

- Number of <u>Decision Tree Model</u>
 - o Range 25 to 150, step 25
- Min samples to split of node
 - o Range 25 to 150, step 25
- Restrict Features number for each <u>Decision Tree Model</u>
 - 0, 10, 20
 - 0 means use all features in every <u>Decision Tree Model</u>
- Use Bagging when training

We can get the accuracy of **85.5611%** on Test Set, when using the following parameters:

•	Number of <u>Decision Tree Model</u>	150
•	Min samples to split of node	25
•	Restrict Features number for each <i>Decision Tree Model</i>	20

1.2 X-Gradient

With the same grid search of the parameters of the <u>Random Forests Model</u> for Y-Gradient, we can get the accuracy of **85.9736%** on Test Set, when using the following parameters:

•	Number of <u>Decision Tree Model</u>	75
•	Min samples to split of node	25
•	Restrict Features number for each <i>Decision Tree Model</i>	10

1.3 Y-Gradient Histogram

With the grid search of the following parameters of the *Random Forests Model*:

- Number of <u>Decision Tree Model</u>
 - o Range 25 to 150, step 25
- Min samples to split of node
 - o Range 25 to 150, step 25
- Restrict Features number for each <u>Decision Tree Model</u>
 - 0, 2, 4
 - o 0 means use all features in every <u>Decision Tree Model</u>
- Use Bagging when training

We can get the accuracy of 57.0132% on Test Set, when using the following parameters:

•	Number of <u>Decision Tree Model</u>	25
•	Min samples to split of node	125
•	Restrict Features number for each Decision Tree Model	0

1.4 X-Gradient Histogram

With the grid search of the following parameters of the <u>Random Forests Model</u> for Y-Gradient Hisogram, we can get the accuracy of **78.5479%** on Test Set, when using the following parameters:

•	Number of <u>Decision Tree Model</u>	100
•	Min samples to split of node	25
•	Restrict Features number for each Decision Tree Model	0

2 Compare the Models

By comparing the 4 Best Models, we can generate the ROC Curves for them.

From the ROC Curves we can see that

- Directly use Gradient will performance better than use Histogram of the gradient
- When need less False Negative, Y-Gradient as the feature will be better
- When need less False Positive, X-Gradient as the feature will be better