

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014

KOD UCZNI	A Etap:	wojewódzki
	Data:	27 lutego 2014 r.
	Czas pracy:	120 minut

Informacje dla ucznia

- 1. Na stronie tytułowej arkusza, w wyznaczonym miejscu wpisz swój kod ustalony przez komisję.
- 2. Sprawdź, czy arkusz konkursowy zawiera 8 stron i 14 zadań.
- 3. Czytaj uważnie wszystkie zadania i polecenia.
- 4. Rozwiązania zapisuj długopisem lub piórem. Nie używaj korektora.
- **5.** W zadaniach od 2. do 9. postaw "x" przy prawidłowym wskazaniu PRAWDY lub FAŁSZU.
- **6.** Staraj się nie popełniać błędów przy zaznaczaniu odpowiedzi, ale jeśli się pomylisz, błędne zaznaczenie otocz kółkiem ⊗ i zaznacz inną odpowiedź znakiem "x".
- **7.** Rozwiązania zadań otwartych zapisz czytelnie w wyznaczonych miejscach. Pomyłki przekreślaj.
- **8.** Zapisy w brudnopisie nie będą sprawdzane i oceniane, chyba że wskażesz w nim fragmenty, które należy ocenić.
- 9. Nie wolno Ci korzystać z kalkulatora.

Liczba punktów możliwych do uzyskania: 60 Liczba punktów umożliwiająca uzyskanie tytułu laureata: 54

WYPEŁNIA KOMISJA KONKURSOWA

Nr zadania	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Razem
Liczba punktów możliwych do zdobycia	21	3	3	3	3	3	3	3	3	3	3	2	3	4	60
Liczba punktów uzyskanych przez uczestnika konkursu															

Podpisy przewodniczącego i członków komisji:

1	, i	3	
I.	Przewodniczący	. 6.	Członek
	Członek		
2.	Członek	8.	Członek
3.	Członek -	9.	Członek -
4.	Członek	10.	Członek -
	Członek -		

Zadanie 1. (0-21)

Rozwiąż krzyżówkę. Hasło – imiona i nazwisko jednego z pierwszych polskich matematyków żyjącego w latach 1631–1700, zajmującego się także mechaniką, filozofią i fizyką – odczytasz w zacieniowanych okienkach. Nie jest ono oceniane, ale zweryfikuje Twoje odpowiedzi.

- 1. Podobieństwo figur w skali 1:1.
- 2. Figura, którą jest bok wielokąta albo krawędź graniastosłupa.
- 3. Wyrażenie typu: 2:7 albo $\frac{a}{b}$.
- 4. Wyrażenie typu: 5x, y^2 , 3ab.
- 5. Wartość środkowa zbioru nieparzystej liczby wyników uporządkowanych niemalejąco.
- 6. Wynosi 0,5 dla wyrzucenia orła lub reszki w jednokrotnym rzucie symetryczną monetą.
- 7. Działanie, za pomocą którego można sprawdzić wynik odejmowania.
- 8. Każda z prostych wyznaczających środek okręgu opisanego na trójkacie.
- 9. Bryła powstająca w wyniku obrotu prostokąta wokół jednego z jego boków.
- 10. Część wspólna dwóch nierównoległych prostych na płaszczyźnie.

- 11. Najdłuższa cięciwa okręgu.
- 12. Część koła ograniczona dwoma promieniami i łukiem okręgu.
- 13. Czynność prowadząca do zapisania w najprostszej postaci wyrażenia: 2a + 3b a 4b
- 14. Równość dwóch stosunków.
- 15. Ostrosłup, którego podstawa jest trójkatem.
- 16. Punkt wspólny ramion kata.
- 17. Figura powstała przez obrót koła wokół średnicy.
- 18. Jedna z podstawowych jednostek miary kata płaskiego.
- 19. Półprosta dzieląca kąt na dwa kąty przystające.
- 20. Liczba przez którą dzielimy.
- 21. Wynik mnożenia.

W zadaniach	od 2. do 9	9. oceń, cz	zy podane	zdania są	prawdziwe
czv fałszywe.	Zaznacz	właściwa	odpowied	ź.	

Zadanie 2. (0-3)

-		•					/ 1	
К	OZI	nica	ı kw	adr	atów	ď	voc	h

I. kolejnych liczb całkowitych jest liczbą r	nieparzystą.	
	□ PRAWDA	□ FAŁSZ
II. kolejnych liczb naturalnych nieparzystyc	ch jest podzielna	przez 8.
	□ PRAWDA	□ FAŁSZ
III. liczb całkowitych różniących się o 2 jest	t liczbą podzielna	ą przez 4.
	□ PRAWDA	□ FAŁSZ
Zadanie 3. (0-3)		
I. Jeżeli wszystkie cyfry liczby czterocyfro	owei sa podzielno	e przez 3.
to liczba ta jest podzielna przez 3.	owej są podzielie	e prese e,
<i>J</i> 1 1	□ PRAWDA	□ FAŁSZ
II. Każda liczba trzycyfrowa podzielna prze przez 3.	ez 3 ma wszystki	ie cyfry podzielne
•	□ PRAWDA	□ FAŁSZ
III. Suma kwadratów trzech kolejnych liczb	naturalnych nie	dzieli się przez 3
	□ PRAWDA	□ FAŁSZ
7-1 4 (0.2)		
Zadanie 4. (0-3) Obwód prostokata można jednogracznia	wyznocznó wied	lzan ża
Obwód prostokąta można jednoznacznie I. jego pole wynosi 48 cm ² .	wyznaczyć wiec	iząc, że
i. jego pole wynosi 40 cm .	□ PRAWD	A □ FAŁSZ
II. jego pole jest równe 18 cm², a długości		
	□ PRAWD	A □ FAŁSZ
III. jego przekątne mają długość 9 cm, a kąt	między nimi ma	ı miarę 60°.
	□ PRAWD	A □ FAŁSZ
Zadanie 5. (0-3)		
Istnieje trójkat		
I. o bokach długości a , $\frac{1}{2}a$, $\sqrt{2}a$, gdzie a	a > 0.	
2	□ PRAWDA	□ FAŁSZ
II. o bokach długości b , $2b$, $3b$, gdzie $b > 0$		
	□ PRAWDA	□ FAŁSZ
III. o wysokościach długości 2, 4, 5.		
- -	□ PRAWDA	□ FAŁSZ

l.	objętość	powsta	tego	ostrosłu	ıpa į	jest	stała.
----	----------	--------	------	----------	-------	------	--------

□ PRAWDA □ FAŁSZ

BRUDNOPIS

II. pole powierzchni całkowitej powstałego ostrosłupa jest stałe.

□ PRAWDA □ FAŁSZ

III. suma długości krawędzi powstałego ostrosłupa jest stała.

□ PRAWDA □ FAŁSZ

		PIS

Zadanie 10. (0-3)

W trapezie ABCD punkt E jest środkiem ramienia AD. Uzasadnij, że pole trójkąta BCE jest równe sumie pól trójkątów ABE i ECD.

BRUDNOPIS

Zadanie 11. (0-3)

Stosunek obwodów dwóch trójkątów równobocznych jest równy 3. Suma objętości brył powstałych w wyniku obrotu tych trójkątów dookoła ich wysokości jest równa 1000 cm³. Oblicz objętość każdej z brył.

Zadanie 12. (0-2)	BRUDNOPIS
Lauame 12. (0-2)	DRUDNULL

Wśród 2500 losów loterii jest 10% wygrywających. Ile losów wygrywających należy dołożyć, aby było ich 25%?

Zadanie 13. (0-3)

Wyznacz ostatnią cyfrę sumy $2013^{2013} + 2014^{2014} + 2015^{2015}$. Odpowiedź uzasadnij.

Zadanie 14. (0-4)

Odległość między przystanią A i przystanią B statek przepływa z prądem rzeki w ciągu 5 godzin, a płynąc pod prąd, potrzebuje 7 godzin. Oblicz czas przepływu wody z przystani A do przystani B.

BRUDNOPIS