NUMERICAL DIFFERENTIATION & INTEGRATION

- 1. Numerical differentiation
- 3. Maxima and minima of a tabulated function
- 5. Quadrature formulae
- 7. Romberg's method
- g. Method of undetermined coefficients
- 11. Numerical double integration

2. Formulae for derivatives

1) Derivatives awing forward difference for

- 4. Numerical integration
- 6. Errors in quadrature formulae
- 8. Euler-Maclaurin formula
- 10. Gaussian integration

8.1. NUMERICAL DIFFERENTIATION

It is the process of calculating the value of the derivative of a function at some assigned value of x from the given set of values (x_i, y_i) . To compute dy/dx, we first replace the exact relation y = f(x) by the best interpolating polynomial $y = \phi(x)$ and then differentiate the latter as many times as we desire. The choice of the interpolation formula to be used, will depend on the assigned value of x at which dy/dx is desired.

If the values of x are equi-spaced and dy/dx is required near the beginning of the table, we employ Newton's forward formula. If it is required near the end of the table, we use Newton's backward formula. For values near the middle of the table, dy/dx is calculated by means of Stirling's or Bessel's formula.

If the values of x are not equi-spaced, we use Newton's divided difference formula to represent the function.

Hence corresponding to each of the interpolation formulae, we can derive a formula for finding the derivative.

Obs. While using these formulae, it must be observed that the table of values defines the function at these points only and does not completely define the function and the function may not be differentiable at all. As such, the process of numerical differentiation should be used only if the tabulated values are such that the differences of some order are constants. Otherwise, errors are bound to creep in which go on increasing as derivatives of higher order are found. This is due to the fact that the difference between f(x) and the approximating polynomial $\phi(x)$ may be small at the data points but $f'(x) - \phi'(x)$ may be large.

8.2. FORMULAE FOR DERIVATIVES

Consider the function y = f(x) which is tabulated for the values $x_i = x_0 + ih$, $i = 0, 1, 2, \dots, n$.

bas

(1) Derivatives using forward difference formula. Newton's forward interpolation formula (p. 152) is

$$y = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!} \Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!} \Delta^3 y_0 + \dots$$

Differentiating both sides w.r.t. p, we have

$$\frac{dy}{dp} = \Delta y_0 + \frac{2p-1}{2!} \Delta^2 y_0 + \frac{3p^2 - 6p + 2}{3!} \Delta^3 y_0 + \dots$$

Since $p = \frac{(x - x_0)}{h}$, therefore $\frac{dp}{dx} = \frac{1}{h}$.

Now

$$\frac{dy}{dx} = \frac{dy}{dp} \cdot \frac{dp}{dx} = \frac{1}{h} \left[\Delta y_0 + \frac{2p-1}{2!} \Delta^2 y_0 + \frac{3p^2 - 6p + 2}{3!} \Delta^3 y_0 \right]$$

$$+\frac{4p^3-18p^2+22p-6}{4!}\Delta^4y_0+\dots$$
 ...(1)

At $x = x_0$, p = 0. Hence putting p = 0,

$$\left(\frac{dy}{dx}\right)_{x_0} = \frac{1}{h} \left[\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 - \frac{1}{4} \Delta^4 y_0 + \frac{1}{5} \Delta^5 y_0 - \frac{1}{6} \Delta^6 y_0 + \dots \right] \dots (2)$$

Again differentiating (1) w.r.t. x, we get

$$\frac{d^2y}{dx^2} = \frac{d}{dp} \left(\frac{dy}{dp}\right) \frac{dp}{dx}$$

$$=\frac{1}{h}\left[\frac{2}{2!}\Delta^2 y_0 + \frac{6p-6}{3!}\Delta^3 y_0 + \frac{12p^2 - 36p + 22}{4!}\Delta^4 y_0 + \dots\right]\frac{1}{h}$$

Putting p = 0, we obtain

$$\left(\frac{d^2y}{dx^2}\right)_{x_0} = \frac{1}{h^2} \left[\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 - \frac{5}{6} \Delta^5 y_0 + \frac{137}{180} \Delta^6 y_0 + \dots \right] \qquad \dots (3)$$

(2) Derivatives using backward difference formula. Newton's backward interpolation formula (p. 153) is

$$y = y_n + p \nabla y_n + \frac{p(p+1)}{2!} \nabla^2 y_n + \frac{p(p+1)(p+2)}{3!} \nabla^3 y_n + \dots$$

Differentiating both sides w.r.t. p, we get

$$\frac{dy}{dx} = \nabla y_n + \frac{2p+1}{2!} \nabla^2 y_n + \frac{3p^2 + 6p + 2}{3!} \nabla^3 y_n + \dots$$

Since $p = \frac{x - x_n}{h}$, therefore $\frac{dp}{dx} = \frac{1}{h}$.

Now
$$\frac{dy}{dx} = \frac{dy}{dp} \cdot \frac{dp}{dx} = \frac{1}{h} \left[\nabla y_n + \frac{2p+1}{2!} \nabla^2 y_n + \frac{3p^3 + 6p + 2}{3!} \nabla^3 y_n + \dots \right] \dots (5)$$

At $x = x_n$, p = 0. Hence putting p = 0, we get

$$\left(\frac{dy}{dx}\right)_{x_n} = \frac{1}{h} \left[\nabla y_n + \frac{1}{2} \nabla^2 y_n + \frac{1}{3} \nabla^3 y_n + \frac{1}{4} \nabla^4 y_n + \frac{1}{5} \nabla^5 y_n + \frac{1}{6} \nabla^6 y_n + \dots \right] \quad \dots (6)$$

Again differentiating (5) w.r.t. x, we have

$$\frac{d^2y}{dx^2} = \frac{d}{dp} \left(\frac{dy}{dx} \right) \frac{dp}{dx} = \frac{1}{h} \left[\nabla^2 y_n + \frac{6p+6}{3!} \nabla^3 y_n + \frac{6p^2 + 18p + 11}{12} \nabla^4 y_n + \dots \right]$$

Putting p = 0, we obtain

$$\left(\frac{d^2y}{dx^2}\right)_{x_n} = \frac{1}{h^2} \left[\nabla^2 y_n + \nabla^3 y_n + \frac{11}{12} \nabla^4 y_n + \frac{5}{6} \nabla^5 y_n + \frac{137}{180} \nabla^6 y_n + \dots \right] \qquad \dots (7)$$

Guass forward Method for differentation yp(x) = yo + G1 Δyo + G2 Δ2y-1 + G3 Δ3y-1 + G4 Δ4y-2 + ---- $G_{12} = \frac{b(b-1)}{2!} = \frac{(b^2-b)}{2!}$ $G_{13} = \frac{(b+1)b(b-1)}{3!} = \frac{(b^3-b)}{3!}$ $G_{14} = \frac{(b+1)b(b-1)(b-2)}{4!} = \frac{(b^4-2b^3-b^2+2b)}{4!}$ dy = 1 (dy) = 1 (2 / 3 + G1 Δ / 3 + G2 Δ / 3 + G3 Δ / 3 + G4 Δ / 3 - 2 + - -) $\frac{dy}{dx} = \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3$ $\frac{dy}{dx} = \frac{1}{h} \left[\Delta y_0 + \frac{(2b-1)}{2l} \Delta^2 y_1 + \frac{(3b^2-1)}{3l} \Delta^3 y_{-1} + \frac{(4b^3-6b^2-2b^2)}{4l} \Delta^4 y_{-2} \right]$ $\frac{d^2y}{dn^2} = \frac{1}{h^2} \left[\frac{\Delta^2y_0 + \Delta^3y_{-1}(6p)}{3!} + \frac{(12p^2 - 12p_{-2})}{4!} \right] \frac{\Delta^4y_{-2} + \cdots - \cdots}{4!}$ dy = 1 Dyo - Dyo + D3y + D4y-2 --- $\frac{d^{2}y}{dx^{2}} = \frac{1}{h^{2}} \left[\frac{\Delta^{2}y_{0} - \Delta^{4}y_{-2}}{12} \right]$

(3) Derivatives using central difference formulae. Suring S loi maia (p. 101) is

$$\begin{split} y_p &= y_0 + \frac{p}{1!} \bigg(\frac{\Delta y_0 + \Delta y_{-1}}{2} \bigg) + \frac{p^2}{2!} \; \Delta^2 y_{-1} \\ &\quad + \frac{p \left(p^2 - 1^2 \right)}{3!} \bigg(\frac{\Delta^3 y_{-1} + \Delta^3 y_{-2}}{2} \bigg) + \frac{p^2 \left(p^2 - 1^2 \right)}{4!} \; \Delta^4 y_{-2} + \dots \end{split}$$

Differentiating both sides w.r.t. p, we get

$$\frac{dy}{dp} = \left(\frac{\Delta y_0 + \Delta y_{-1}}{2}\right) + \frac{2p}{2!} \Delta^2 y_{-1} + \frac{3p^2 - 1}{3!} \left(\frac{\Delta^3 y_{-1} + \Delta^3 y_{-2}}{2}\right) + \frac{4p^3 - 2p}{4!} \Delta^4 y_{-2} + \dots$$
Since $p = \frac{x - x_0}{h}$, $\therefore \frac{dp}{dx} = \frac{1}{h} \cdot \begin{bmatrix} \Delta^2 y_{-1} + \frac{b}{2} \left(\Delta^3 y_{-1} + \Delta^3 y_{-2}\right) + \frac{(6p^2 - 1)}{12} \Delta^3 y_{-2} \end{bmatrix}$
Now $\frac{dy}{dx} = \frac{dy}{dp} \cdot \frac{dp}{dx} = \frac{1}{h} \left[\left(\frac{\Delta y_0 + \Delta y_{-1}}{2}\right) + p\Delta^2 y_{-1} + \frac{3p^2 - 1}{6} \left(\frac{\Delta^3 y_{-1} + \Delta^3 y_{-2}}{2}\right) + \frac{2p^3 - p}{12} \Delta^4 y_{-2} + \dots \right]$

At $x = x_0$, p = 0. Hence putting p = 0, we get

$$\left(\frac{dy}{dx}\right)_{x_0} = \frac{1}{h} \left[\frac{\Delta y_0 + \Delta y_{-1}}{2} - \frac{1}{6} \frac{\Delta^3 y_{-1} + \Delta^3 y_{-2}}{2} + \frac{1}{30} \frac{\Delta^5 y_{-2} + \Delta^5 y_{-3}}{2} + \dots \right] \dots (9)$$

Similarly
$$\left(\frac{d^2y}{dx^2}\right)_{x_0} = \frac{1}{h^2} \left[\Delta^2 y_{-1} - \frac{1}{12} \Delta^4 y_{-2} + \frac{1}{90} \Delta^6 y_{-3} - \dots \right]$$
 ...(10)

Example 8.1. Given that

find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at (a) x = 1.1 (Madras B.E., 2003 S) (b) x = 1.6.

Sol. (a) The difference table is:

x	y	Δ.	Δ^2	Δ3	Δ^4	Δ^5	Δ6
1.0	7.989		1		* THE 13.47	(1)	211)
	2.100	0.414	Description of	mehme m	ent when A	.S.A olan	mi3
1.1 1.1 mile	8 403	CA1. 311 1 1 1 2	- 0.036	the same	or of the for or	antil a pa	m ody gools
1.2	8.781	0.378	-0.030	0.006	tarial of the	najorak a	לעובי מחם ה
1.0 00	10.00	0.348	0.030	-0.004	- 0.002	0.000	21
1.3	9.129	1 4 114	- 0.026	0.004	0.000	0.002	- 0.003
		0.322		0.004	ST MOPT COLL	0.001-	.1000.000
1.4	9.451	0.299	- 0.023	1	- 0.001		
1:5	9.750	0.299	0.010	0.005			
1.0	0.100	0.281	- 0.018		0	1.1,00	8
1.6	10.031	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \))	- 0 H4	. 61.1	10 46	1.0

We have

$$\left(\frac{dy}{dx}\right)_{x_0} = \frac{1}{h} \left[\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 - \frac{1}{4} \Delta^4 y_0 + \frac{1}{5} \Delta^5 y_0 - \frac{1}{6} \Delta^6 y_0 + \dots \right] \qquad \dots (i)$$

and

$$\left(\frac{d^2y}{dx^2}\right)_{x_0} = \frac{1}{h^2} \left[\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 - \frac{5}{6} \Delta^5 y_0 + \frac{137}{180} \Delta^6 y_0 - \dots \right] \qquad \dots (ii)$$

Here h = 0.1, $x_0 = 1.1$, $\Delta y_0 = 0.378$, $\Delta^2 y_0 = -0.03$ etc.

Substituting these values in (i) and (ii), we get

$$\left(\frac{dy}{dx}\right)_{1,1} = \frac{1}{0.1} \left[0.378 - \frac{1}{2}(-0.03) + \frac{1}{3}(0.004) - \frac{1}{4}(0) + \frac{1}{5}(-0.001) - \frac{1}{6}(-0.003) \right] = 3.946$$

$$\left(\frac{d^2y}{dx^2}\right)_{1,1} = \frac{1}{(0.1)^2} \left[-0.03 - (0.004) + \frac{11}{12}(0) - \frac{5}{6}(-0.001) + \frac{137}{180}(-0.003) \right] = -3.545.$$

(b) We use the above difference table and the backward difference operator ∇ instead of Δ .

$$\left(\frac{dy}{dx}\right)_{x_{n}} = \frac{1}{h} \left[\nabla y_{n} + \frac{1}{2} \nabla^{2} y_{n} + \frac{1}{3} \nabla^{3} y_{n} + \frac{1}{4} \nabla^{4} y_{n} + \frac{1}{5} \nabla^{5} y_{n} + \frac{1}{6} \nabla^{6} y_{n} + \dots \right] \qquad \dots (i)$$

and
$$\left(\frac{d^2y}{dx^2}\right)_x = \frac{1}{h^2} \left[\nabla^2 y_n + \nabla^3 y_n + \frac{11}{12} \nabla^4 y_n + \frac{5}{6} \nabla^5 y_n + \frac{137}{180} \nabla^6 y_n + \dots \right] \qquad \dots (ii)$$

Here h = 0.1, $x_n = 1.6$, $\nabla y_n = 0.281$, $\nabla^2 y_n = -0.018$ etc. Putting these values in (i) and (ii), we get

$$\left(\frac{dy}{dx}\right)_{1.6} = \frac{1}{0.1} \left[0.281 + \frac{1}{2}(-0.018) + \frac{1}{3}(0.005) + \frac{1}{4}(-0.001) + \frac{1}{5}(-0.001) + \frac{1}{6}(-0.003)\right] = 2.727$$

$$\left(\frac{d^2y}{dx^2}\right)_{1.6} = \frac{1}{(0.1)^2} \left[-0.018 + 0.005 + \frac{11}{12} \left(-0.001 \right) + \frac{5}{6} \left(-0.001 \right) + \frac{137}{180} \left(-0.003 \right) \right] = -1.703.$$

Example 8.2. A slider in a machine moves along a fixed straight rod. Its distance x cm. along the rod is given below for various values of the time t seconds. Find the velocity of the slider and its acceleration when t = 0.3 second.

$$t = 0$$
 0.1 0.2 0.3 0.4 0.5 0.6
 $x = 30.13$ 31.62 32.87 33.64 33.95 33.81 33.24

Sol. The difference table is:

	-				PO 10 4 1 2 2 4 4		
t	x ,	Δ	30 \D^2	Δ^3	<u> </u>	Δ^5	Δ^6
0	30.13			8100 -		061 6	· ·
0.1	31.62	1.49	- 0.24		0 281	150.01)	7. du
0.2	32.87	1.25	- 0.48	- 0.24	0.26	.60	daw da
0.3	33.64	0.77	= 0.46	0.02	-=0.01	0.27	0.29
0.4	33.95	0.31	- 0.45	0.01	0.01	0.02	/ j.
(11) 0.5	33.81	0.14	△ = 0.43 - \\	0.02	0.01	1 0 × 1	107 dx
0.6	33.24	- 0.57	36 60 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		x i 0 m Å	12

As the derivatives are required near the middle of the table, we use Stirling's formulae :

$$\left(\frac{dx}{dt}\right)_{t_0} = \frac{1}{h} \left(\frac{\Delta x_0 + \Delta x_{-1}}{2}\right) - \frac{1}{6} \left(\frac{\Delta^3 x_{-1} + \Delta^3 x_{-2}}{2}\right) + \frac{1}{30} \left(\frac{\Delta^5 x_{-2} + \Delta^5 x_{-3}}{2}\right) + \dots$$
 ...(i)

$$\left(\frac{d^2x}{dt^2}\right)_{t_0} = \frac{1}{h^2} \left[\Delta^2 x_{-1} - \frac{1}{12} \Delta^4 x_{-2} + \frac{1}{90} \Delta^6 x_{-3} \dots \right] \dots (ii)$$

Here h = 0.1, $t_0 = 0.3$, $\Delta x_0 = 0.31$, $\Delta x_{-1} = 0.77$, $\Delta^2 x_{-1} = -0.46$ etc. Putting these values in (i) and (ii), we get

$$\left(\frac{dx}{dt}\right)_{0.3} = \frac{1}{0.1} \left[\frac{0.31 + 0.77}{2} - \frac{1}{6} \left(\frac{0.01 + 0.02}{2}\right) + \frac{1}{30} \left(\frac{0.02 - 0.27}{2}\right) - \dots \right] = 5.33$$

7.53

0.208

0.206

$$\left(\frac{d^2x}{dt^2}\right)_{0.3} = \frac{1}{(0.1)^2} \left[-0.46 - \frac{1}{12} (-0.01) + \frac{1}{90} (0.29) - \dots \right] = -45.6$$
ence the required velocity is 5.00.

Hence the required velocity is 5.33 cm/sec and acceleration is - 45.6 cm/sec². Example 8.3. Using Bessel's formula, find f'(7.5) from the following table:

f(x): 0.198

0.201 0.203Sol. Taking $x_0 = 7.50$, h = 0.1, we have $p = \frac{x - x_0}{h} = \frac{x - 7.50}{0.01}$

The difference table is

x	p	y_p	Δ	Δ^2	Δ^3	Δ4	Δ^5	Δ^6
7.47	-3	0.193	of der	12	And inte		A	
		1/11	0.002					
7.48	- 2	0.195		0.001			•	
			0.003	31002	- 0.001		1	
7.49	- 1	0.198	81	0.000	0.001	0.000		
		PHE 0	0.003		- 0.001	0.000	0.003	
7.50	0	0.201	99.61	=0.001	,	0.003	(A)	-0.01
		Eldo 1	0.002		0.002	31233	-0.007	
7.51	1	0.203	NO 64	0.001	,	- 0.004	874	
			0.003		-0.002			
7.52	2	0.206		- 0.001		531	Marie.	
			0.002	1	o. Newber		and the said of	11000
7.53	3	0.208	Action Hardenberr	THE PERSON NAMED IN	ena kan in ena kan in			

Bessel's formula (p. 162) is

$$\begin{split} y_p &= y_0 + p \; \Delta y_0 + \frac{p \, (p-1)}{2\,!} \cdot \frac{\Delta^2 y_{-1} + \Delta^2 y_0}{2} + \frac{(p-\frac{1}{2}) \, p \, (p-1)}{3\,!} \cdot \Delta^3 y_{-1} \\ &\quad + \frac{(p+1) \, p \, (p-1) \, (p-2)}{4\,!} \cdot \frac{\Delta^4 y_{-2} + \Delta^4 y_{-1}}{2} + \frac{(p-\frac{1}{2}) \, (p+1) \, p \, (p-1) \, (p-2)}{5\,!} \cdot \Delta^5 y_{-2} \\ &\quad + \frac{(p+2) \, (p+1) \, p \, (p-1) \, (p-2) \, (p-3)}{6\,!} \cdot \frac{\Delta^6 y_{-3} + \Delta^6 y_{-2}}{2} + \dots \end{split} \quad ...(i) \end{split}$$

Since

$$p = \frac{x - x_0}{h}$$
, $\frac{dp}{dx} = \frac{1}{h}$ and $\frac{dy}{dx} = \frac{dy}{dp} \cdot \frac{dp}{dx} = \frac{1}{h} \frac{dy}{dp}$

Differentiating (i) w.r.t. p and putting p = 0, we get

$$\left(\frac{dy}{dx}\right) = \frac{1}{h} \left(\frac{dy}{dp}\right)_{p=0} = \frac{1}{h} \left[\Delta y_0 - \frac{1}{4}(\Delta^2 y_{-1} + \Delta^2 y_0) + \frac{1}{12}\Delta^3 y_{-1} + \frac{1}{24}(\Delta^4 y_{-2} + \Delta^4 y_{-1}) - \frac{1}{120}\Delta^5 y_{-2} - \frac{1}{240}(\Delta^6 y_{-3} + \Delta^6 y_{-2})\right]$$

$$\left(\frac{dy}{dx}\right)_{7.5} = \frac{1}{0.01} \left[0.002 - \frac{1}{4} \left(-0.001 + 0.001 \right) + \frac{1}{12} \left(0.002 \right) + \frac{1}{24} \left(-0.004 + 0.003 \right) - \frac{1}{120} \left(-0.007 \right) - \frac{1}{240} \left(-0.010 + 0 \right) \right]$$

$$\left[\because \quad \Delta^6 y_{-2} = 0 \right]$$

$$= 0.2 + 0 + 0.01666 - 0.0416 + 0.00583 + 0.00416 = 0.223.$$

Example 8.4. Find f'(10) from the following data:

x: 3 5 11 27 34 f(x): -13 23 899 17315 35606.

Sol. As the values of x are not equi-spaced, we shall use Newton's divided difference formula. The divided difference table is

x	f(x)	1st div. diff.	2nd div. diff.	3rd div. diff.	(4th div. diff.
3	- 13		200.1	Q121	7.	me i
		18 -	, 900 O			
5	23 000 0	10	000.0 16	607.0	1	95.T
	SUM U	146	\$57 e	0.998		
11 0	899 100 0		39.96	1917	4.1	0.0002
	T00,0.=	1025	1000	1.003		
27	17315		100 u 69.04	0.003	7	7.51
	all additions to	2613	510			
34	35606		190 0 -	อกขอ	Α.	7.52

Fifth differences being zero, Newton's divided difference formula is

$$\begin{split} f(x) &= f(x_0) + (x - x_0)f(x_0, x_1) + (x - x_0)(x - x_1)f(x_0, x_1, x_2) \\ &+ (x - x_0)(x - x_1)(x - x_2)f(x_0, x_1, x_2, x_3) + (x - x_0)(x - x_1) \\ &\times (x - x_2)(x - x_3)f(x_0, x_1, x_2, x_3, x_4) \end{split}$$

Differentiating it w.r.t. x, we get

$$\begin{split} f'(x) &= f(x_0, x_1) + (2x - x_0 - x_1) f(x_0, x_1, x_2) \\ &+ [3x^2 - 2x(x_0 + x_1 + x_2) + x_0 x_1 + x_1 x_2 + x_2 x_0)] \times f(x_0, x_1, x_2, x_3) \\ &+ [4x^3 - 3x^2(x_0 + x_1 + x_2 + x_3) + 2x(x_0 x_1 + x_1 x_2 + x_2 x_3 + x_3 x_0 + x_1 x_3 + x_0 x_2) \\ &- (x_0 x_1 x_2 + x_1 x_2 x_3 + x_2 x_3 x_0 + x_0 x_1 x_3)] f(x_0, x_1, x_2, x_3, x_4) \end{split}$$

Putting $x_0 = 3$, $x_1 = 5$, $x_2 = 11$, $x_3 = 27$ and x = 10, we obtain $f'(0) = 18 + 12 \times 16 + 23 \times 0.998 - 426 \times 0.0002 = 232.869.$

8.3. MAXIMA AND MINIMA OF A TABULATED FUNCTION

Newton's forward interpolation formula is

$$y = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!} \Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!} \Delta^3 y_0 + \dots$$

Differentiating it w.r.t. p, we get

$$\frac{dy}{dp} = \Delta y_0 + \frac{2p-1}{2} \Delta^2 y_0 + \frac{3p^2 - 6p + 2}{6} \Delta^3 y_0 + \dots$$
 ...(1)

i.e.

For maxima or minima, dy/dp = 0. Hence equating the righthand side of (1) to zero and retaining only upto third differences, we obtain

$$\Delta y_0 + \frac{2p-1}{2} \Delta^2 y_0 + \frac{3p^2 - 6p + 2}{6} \Delta^3 y_0 = 0$$

$$(\frac{1}{2} \Delta^3 y_0) p^2 + (\Delta^2 y_0 - \Delta^3 y_0) p + (\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0) = 0.$$
In the corresponding the difference to the corresponding to the difference to the corresponding to the corresponding to the difference to the corresponding to the difference to the corresponding to the corresponding to the difference to the corresponding to the difference to the corresponding to the difference to the corresponding to the correspond

Substituting the values of Δy_0 , $\Delta^2 y_0$, $\Delta^3 y_0$ from the difference table, we solve this quadratic for p. Then the corresponding values of x are given by $x = x_0 + ph$ at which y is maximum

Example 8.5. From the table below, for what value of x, y is minimum? Also find this value of y.

0.205 0.262 Sol. The difference table is

		Dinleri (H) (1 11 11 15	(to the behalf the	1 marie	
x	y	Δ		Δ^2	i	Δ^3
1997 37 5 1	0.205	1 14	15	4 I	17	
4	0.240	0.035			us viteb ş	is bud in
	0.259	0.019		0.016		0.000
6	0.262	- 0.012		0.015	Tel	0.001
2017.75 m	10.250 (1.75) 1.0000.0 = 01 n a .0s				1.00 m	
8	0.224	0.020	13 24 1 33 4	-,, 16	outer air	Entered with

Taking $x_0 = 3$, we have $y_0 = 0.205$, $\Delta y_0 = 0.035$, $\Delta^2 y_0 = -0.016$ and $\Delta^3 y_0 = 0$.

Newton's forward difference formula gives

$$y = 0.205 + p(0.035) + \frac{p(p-1)}{2}(-0.016)$$
 ...(i)

Differentiating it w.r.t. p, we have

$$\frac{dy}{dp} \approx 0.035 + \frac{2p-1}{2} (-0.016)$$

dy/dp = 0 : 0.035 - 0.008(2p - 1) = 0For y to be minimum, which gives p = 2.6875

$$\therefore x = x_0 + ph = 3 + 2.6875 \times 1 = 5.6875.$$

Hence y is minimum when x = 5.6875.

Putting p = 2.6875 in (i), the minimum value of y = $0.205 + 2.6875 \times 0.035 + \frac{1}{2} (2.6875 \times 1.6875)(-0.016) = 0.2628$.

$$= 0.205 + 2.6875 \times 0.035 + \frac{1}{2} (2.6873 \times 1.007)$$

All the formula at one place (Numerical differentiation) $\begin{cases} \frac{dy}{dx} = \frac{1}{h} \left[\Delta y_0 + \frac{(2b-1)}{2!} \Delta^2 y_0 + \frac{(3b^2 - 6b + L)}{3!} \Delta^3 y_0 + - - - \right] - 0 \end{cases}$ forward. $\begin{cases} \frac{d^2y}{dx^2} = \frac{1}{h^2} \left[\Delta^2 y_0 + \frac{(4b-4)}{3!} \Delta^3 y_0 + \left(\frac{6b^2 - 18b + 11}{12}\right) \Delta^4 y_0 + - - - \right] + 2 \end{cases}$ $\begin{cases} \frac{dy}{dz} = \frac{1}{\pi} \left[\nabla^{2}y_{n} + \frac{(2b+1)}{2!} \right] \nabla^{2}y_{n} + \frac{(3b^{2}+6b+2)}{3!} \nabla^{3}y_{n} + - - - - \right] \xrightarrow{\text{Backword difference}} \begin{cases} \frac{dy}{dz^{2}} = \frac{1}{\pi^{2}} \left[\nabla^{2}y_{n} + \frac{(b+1)}{2!} \nabla^{3}y_{n} + \left(\frac{(6b^{2}+18b+11)}{12} \right) \nabla^{4}y_{n} + - - - - \right] \xrightarrow{\text{G}} \end{cases}$ $\begin{cases} \frac{dy}{dx} = \frac{1}{h} \left[\frac{1}{2} (\Delta y_0 + \Delta y_{-1}) + b \Delta^2 y_1 + \frac{(3b^2 - 1)}{12} (\Delta^2 y_{-1} + \Delta^3 y_{-2}) + \dots \right] & \text{Strilling} \\ \frac{d^2y}{dx^2} = \frac{1}{h^2} \left[\Delta^2 y_1 + \frac{6b}{12} (\Delta^3 y_{-1} + \Delta^3 y_{-2}) + (\frac{6b^2 y}{12}) \Delta^4 y_{-2} + \dots \right] & \text{(central different differ$ un-equal opacing (Divided difforme formula) 4= 40 + (x-20) [20, x,] + (x-20) (x-2) [20, x, 20] + (x-20) (x-2) [20, x, 2] 8 = 40 + (x-no) [xu, xi] + (x2-(x0+x1)x+x0x1)[x0,x1,x2] + { 23-(x0+x1+x2)x2+(x0x1+x1) $\frac{dy_{b}}{dx} = [x_{0}, x_{1}] + \{2x - (x_{0} + x_{1})\}[x_{0}, x_{0}] + \{3x^{2} - 2(x_{0} + x_{1} + x_{2})x + (x_{0} x_{1} + x_{1} + x_{2} + x_{0} x_{2})\}$ $\frac{d^{2}y}{dx^{2}} = 2 \left[x_{0}, x_{1}, \right] + \left[6x - 2 \left(x_{0} + x_{1} + x_{2} \right) \right] \left[x_{0}, x_{1}, x_{2}, x_{3} \right] + - - - -$ Equation (1), (3), and (5) gives position maxima & minima **E**X 1.0 Rustron: V (Y) 43.1 44.917

lus:-

Scanned with CamScanner

1 reliment

Example: - (Marima & minima finding)

- * you have to see in which region you have (peak/dip).
- * According apply the numerical differential formula. (dy =0).
- * Calculate dy =0 => \$ will give the desired vesult.
- of for non equispaced data; use Newton's finite different method.

Questo on: - Find minimum value of fires which has value

$$\frac{dy}{dp} = 0 = \left[\Delta y_0 + \frac{(2p-1)}{2l} \Delta^2 y_0 + \frac{(3p^2-2)}{3l} \Delta^3 y_0 + - - \right] = 0$$

$$\Rightarrow b = \frac{1}{2} \quad x = x_0 + ph = 0 + \frac{1}{2}y_2 = 1$$

$$\Rightarrow b = \frac{1}{2} \quad h = 1 \quad h = 0$$

$$y = y_0 + p \Delta y_0 + b \frac{(b+1)}{2!} \Delta^2 y_0 + - - -$$
= 2. am

if continuous increasing (dioreasing (no dif / peak), roots well be imaginary.

(Two way to Calculate the differentiation depending upon point of reforma)

from following table of values of x &y, obtain

y 2.7103 3.3201 4.0552 4.9530 6.0496 7.3891 9.8350

Solution :-

Difference table

×	9	Δ ,	Δ^2	Δ3	Δ4	Δ5	Δ6
<u>(1.6)</u>	2.7183						4
-	"	0.6018)	7 PP -	A. A	NV 15 3.
(1.2)	3.3201		0.1333	(I)			
	(0.7351		0.0294			
1.4	4.0552		0.1627		0.0067		Marie San Marie Ma
		0.8978		0.0361		0.00 3	
-1-6-	4. 9530-		6.1900) -		0.00 80	<	(0.0001)
		1.0966		0.0441		0.00.14	
1.8	6.0496		0.2429	and the same of th	0.0094		
٠		1.3395		0.0535		· W	. A sharp the
2.0	7.3891		0.2964		No.	- 1	
	(1.6359		1	ted to the	19 43	,
(2.2)	9.0250		_				

(Newton forward method)

choose:
$$26 = 1.0$$
, $h = 0.2$, $\beta = 1$, $2c = 1.2$ use $-eq^{3}$, (1)

$$\left(\frac{dy}{dx}\right)_{x=1,2} = \frac{1}{0.2} \left[0.6010 + \frac{0.1323}{2} + \frac{1}{6} \times (0.0294) + \frac{1}{12} (0.0067) - \frac{1}{20} (0.0013) \right]$$

Newton Backword Method

2=2.0

Choose: In= 2.2, h= 0.2, K=2n+ph,=0p=1

hure
$$\nabla y_n = 1.6359$$

m= 2.0, p=0 so eg reduce to. n=0.20

$$\frac{d^{2}\psi}{dx^{2}} = \frac{1}{12} \left[\nabla_{y_{1}}^{2} + \nabla_{y_{1}}^{3} + \nabla_{y_{1}}^{3} + \frac{1}{12} \nabla_{y_{1}}^{4} + \cdots \right] =$$

Central difference formula :-

Chouse:
$$\chi = \chi_0$$
, $\rho = 0$, $\frac{dy}{dx} = \frac{1}{4} \left[\frac{1}{2} (\Delta y + \Delta y - 1) + \frac{1}{12} (\Delta^2 y + \Delta^3 y - 2) + \frac{1}{40} (----) \right]$

$$\frac{d^2y}{dx^2} = \frac{1}{12} \left[\Delta^2 y_{-1} + \frac{1}{12} \Delta^4 y_{-2} + \frac{1}{90} \Delta^6 y_{-3} \right]$$

$$\frac{d^{2y}}{dx^{2}} = \frac{1}{6.04} \left[0.1988 - \frac{0.0080}{12} + 0.0001 \right]$$

$$= 4.9533$$

$$\frac{dy}{dx} = \frac{1}{\pi} \begin{bmatrix} c_1, c_2, c_3 \end{bmatrix} \begin{cases} q = \frac{1}{2} \\ c_2 = -\frac{1}{12} \\ c_3 = \frac{1}{60} \end{cases}$$

$$\frac{dy}{dx} = \frac{1}{60} \begin{bmatrix} c_1, c_2, c_3 \end{bmatrix} \begin{cases} q = \frac{1}{2} \\ c_4 = -\frac{1}{12} \\ c_5 = -\frac{1}{12} \\ c_6 = -\frac{1}{12} \\ c_7 = \frac{1}{12} \\ c_8 = -\frac{1}{12} \\ c_8 = -\frac{1}{12} \\ c_8 = -\frac{1}{12} \\ c_8 = -\frac{1}{12} \end{cases}$$

$$= \frac{1}{60} \begin{bmatrix} c_1, c_2, c_3 \\ c_5 = \frac{1}{60} \\ c_6 = \frac{1}{60} \\ c_7 = \frac{1}{60} \\ c_8 = -\frac{1}{12} \\ c_9 = -\frac{1}{12} \\$$

$$\frac{3}{4x} = 0.\frac{1}{20} \left[\frac{1}{2} \left(0.8978 + 1.0966 \right) \right]$$

$$-\frac{1}{12} \left(0.0361 + 0.00441 \right)$$

$$+\frac{1}{60} \left(0.0013 + 0.0014 \right)$$

$$= \frac{1}{0.20} \left[0.9972 - 0.00683 + 0.000045 \right]$$

$$= 4.9520246$$