Arquitetura de um processador

Fundamentos de Arquitetura de Computadores

Prof. John Lenon C. Gardenghi

Faculdade do Gama Universidade de Brasília

Caminho de dados para desvio condicional

Exemplo: beq \$t0, \$t1, label.

Extraído de [1, Figura 4.9].

Caminho de dados simples

Extraído de [1, Figura 4.10].

Caminho de dados simples - com busca de instrução

Extraído de [1, Figura 4.11].

Controle da ULA

Identificador	Operação
0000	and
0001	or
0010	add
0110	sub
0111	slt

Identificação das operações na ULA.

Controle da ULA

ALUOp	Instrução	funct	ação desejada	controle da ULA	
00	load word	XXXXXX	add	0010	
00	store word	XXXXXX	add	0010	
01	branch equal	XXXXXX	sub	0110	
10	add	100000	add	0010	
10	sub	100010	sub	0110	
10	and	100100	and	0000	
10	or	100101	or	0001	
10	slt	101010	slt	0111	

Combinação dos bits ALUOp e do campo funct. Note que sempre que ALUOp vale 10, os bits mais significativos de funct também valem 10.

Controle da ULA

ALI	Funct field							
ALUOp1	ALUOp0	F5	F4	F3	F2	F1	FO	Operation
0	0	Х	Х	Х	Х	Х	Х	0010
X	1	Х	Х	Х	Х	Х	Х	0110
1	Х	Х	Х	0	0	0	0	0010
1	X	Х	Х	0	0	1	0	0110
1	X	Х	Х	0	1	0	0	0000
1	Х	Х	Х	0	1	0	1	0001
1	X	Х	Х	1	0	1	0	0111

Extraído de [1, Figura 4.13].

Tabela verdade entre os bits ALUOp e o campo funct. Como ALUOp nunca vale 11, então quando um deles valer 1, o outro pode ser desprezado.

Projeto do controle central

Extraído de [1, Figura 4.15].

Projeto do controle central

Extraído de [1, Figura 4.17].

Definição dos sinais de controle

Instrução	RegDst	ALUSrc	MemtoReg	RegWrite	MemRead	MemWrite	PCSrc	ALUOp1	ALU0p0
formato R	1	0	0	1	0	0	0	1	0
lw	0	1	1	1	1	0	0	0	0
SW	×	1	×	0	0	1	0	0	0
beq	X	0	×	0	0	0	1	0	1

Operação do caminho de dados - add \$t1, \$t2, \$t3

Extraído de [1, Figura 4.19].

Operação do caminho de dados - load

Extraído de [1, Figura 4.20].

Operação do caminho de dados - beq

Extraído de [1, Figura 4.21].

Pipeline - Lavadora de roupas

Suponha que você precise lavar 4 trouxas de roupa. Sua tarefa é

- 1. lavar a roupa na máquina,
- 2. secar a roupa na secadora,
- 3. passar a roupa e
- 4. guardar a roupa.

Extraído de [1, Figura 4.25].

Pipeline - Lavadora de roupas

Extraído de [1, Figura 4.25].

Pipeline com 3 chamadas de 1w

Extraído de [1, Figura 4.27].

Pipeline stall

Extraído de [1, Figura 4.30].

Caminho de dados numa implementação pipeline

Extraído de [1, Figura 4.33].

Caminho de dados numa implementação pipeline

Extraído de [1, Figura 4.35].

Extraído de [1, Figura 4.36].

Extraído de [1, Figura 4.36].

lw

Extraído de [1, Figura 4.37].

Extraído de [1, Figura 4.38].

Extraído de [1, Figura 4.38].

Caminho de dados numa implementação pipeline

Extraído de [1, Figura 4.41].

Caminho de dados numa implementação pipeline

Extraído de [1, Figura 4.42].

Controle numa implementação pipeline

Extraído de [1, Figura 4.46].

Controle numa implementação pipeline

Extraído de [1, Figura 4.50].

Caminho de dados completo na implementação pipeline

Extraído de [1, Figura 4.51].

Referência bibliográfica

D. A. Patterson e J. L. Hennessy. Computer and organization design: the hardware/software interface. 5 ed. Elsevier, 2014.