

Part III - Knowledge and Reasoning

6 Agents that Reason Logically

- Knowledge-based Agents. Representations.
- Propositional Logic.
 The Wumpus World.

• 7 First-Order Logic

- Syntax and Semantics. Using First-Order Logic.
- Logical Agents. Representing Changes.
- Deducing Properties of the World.
- Goal-based Agents.

8 Building a Knowledge Base

Knowledge Engineering. – General Ontology.

Validity and Inference

- Testing for validity
 - Using truth-tables, checking all possible configurations
 - e.g.: $((P \lor Q) \land \neg Q) \Rightarrow P$

Р	Q	$P \vee Q$	¬ Q	(P∨Q) ∧ ¬Q	$((P \vee Q) \land \neg Q) \Rightarrow P$
False	False	False	True	False	True
False	True	True	False	False	True
True	False	True	True	True	True
True	True	True	False	False	True

A method for sound inference

Build and check a truth-table for Premises ⇒ Conclusion

Models

Definition

- A world in which a sentence is true under a particular interpretation
 - e.g. the Wumpus world example is a model for S(1,2)
 meaning "there is a stench in [1,2]"
- Entailment: $KB = \alpha$ if the models of KB are all models of α
- Models as mathematical objects
 - A mapping from propositional symbols to truth-values

Models as sets

PΛQ

 $P \Rightarrow Q$

 $P \Leftrightarrow Q$

Rules of Inference

Sound inference rules

- Pattern of inference, that occur again and again α
- Soundness proven once and for all (truth-table)

Classic rules of inference

Implication-Elimination, or Modus Ponens

•
$$\alpha \Rightarrow \beta, \alpha$$

$$\beta$$
e a. Cloudy A. Humir

e.g. Cloudy Λ Humid \Rightarrow Rain \mid = Rain Cloudy Λ Humid

Rules of Inference

Classic rules of inference

- And-Elimination
 - $\begin{array}{c}
 \bullet \quad \underline{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n} \\
 \hline
 \alpha_i
 \end{array}$
 - e.g. Cloudy Λ Humid |= Cloudy Cloudy \Rightarrow NoSunTan

- And-Introduction
 - $\begin{array}{c} \bullet & \alpha_1, \alpha_2, \dots, \alpha_n \\ \hline \alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n \end{array}$
 - e.g. Cloudy, Humid \Rightarrow Rain

- Or-Introduction
 - $\begin{array}{c} \bullet \\ \hline \alpha_1 \vee \alpha_2 \vee \ldots \vee \alpha_n \end{array}$

- Double-Negation-Elimination
 - $\frac{}{\alpha}$

Rules of Inference

The resolution rule of inference

- Unit Resolution

 $\alpha \vee \beta$, $\neg \beta$ α

 Resolution same as MP: $\frac{P \Rightarrow Q, P}{Q}$ i.e. $\frac{\neg \beta \Rightarrow \alpha, \neg \beta}{\alpha}$

$$\frac{\alpha \vee \beta, \ \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

e.g. monday \(\tau \) tuesday, \(\sigma \) monday \(|= \) tuesday

Truth-table for the resolution

α	β	γ	$\alpha \vee \beta$	$\neg \beta \lor \gamma$	$\alpha \vee \gamma$
False	False	False	False	True	False
False	False	True	False	True	True
False	True	False	True	False	False
False	True	True	<u>True</u>	<u>True</u>	<u>True</u>
True	False	False	True	True	True
True	False	True	True	True	True
True	True	False	True	False	True
True	True	True	<u>True</u>	<u>True</u>	<u>True</u>

Equivalence Rules

Inference as implication

– Equivalent notations, e.g. MP:

$$\alpha \Rightarrow \beta, \beta \models \beta$$
 $\alpha \Rightarrow \beta, \beta \models \beta$

$$((\alpha \Rightarrow \beta) \land \alpha) \Rightarrow \beta$$

Equivalence rules

– Associativity:

$$\alpha \wedge (\beta \wedge \gamma) \Leftrightarrow (\alpha \wedge \beta) \wedge \gamma$$
$$\alpha \vee (\beta \vee \gamma) \Leftrightarrow (\alpha \vee \beta) \vee \gamma$$

- Distributivity:

$$\alpha \Lambda (\beta \vee \gamma) \Leftrightarrow (\alpha \Lambda \beta) \vee (\alpha \Lambda \gamma)$$

 $\alpha \vee (\beta \wedge \gamma) \Leftrightarrow (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$

– De Morgan's Law:

$$\neg(\alpha \lor \beta) \Leftrightarrow \neg\alpha \land \neg\beta$$
$$\neg(\alpha \land \beta) \Leftrightarrow \neg\alpha \lor \neg\beta$$

Complexity of Inference

Proof by truth-table

- Complete
 - The truth-table can always be written.
- Exponential time complexity
 - A proof involving N proposition symbols requires 2^N rows.
 - In practice, a proof may refer only to a small subset of the KB.

Monotonicity

Knowledge always increases

if
$$KB_1 = \alpha$$
 then $(KB_1 \cup KB_2) = \alpha$

- Allows for <u>local</u> rules, e.g. Modus Ponens $\alpha \Rightarrow \beta$, $\alpha \not- \beta$
- Propositional and first-order logic are monotonic.

Horn Sentences

- A particular sub-class of sentences
 - Implication: $P_1 \wedge P_2 \wedge ... \wedge P_N \Rightarrow Q$ where $P_1, ... P_N, Q$ are non-negated atoms.
 - Particular cases:
 - $Q \Leftrightarrow (True \Rightarrow Q)$
 - $(P_1 \vee P_2 \vee \ldots \vee P_N \Rightarrow Q) \Leftrightarrow (P_1 \Rightarrow Q) \wedge \ldots \wedge (P_N \Rightarrow Q)$
 - $(P \Rightarrow Q_1 \land \dots \land Q_N) \Leftrightarrow (P \Rightarrow Q_1) \land \dots \land (P \Rightarrow Q_N)$
 - $(P \Rightarrow Q_1 \lor ... \lor Q_N)$ cannot be represented
- Prolog, a logic programming language
 - Horn sentences + Modus-Ponens $Q := P_1, P_2, ..., P_N$
 - Inference of polynomial time complexity

Part III - Knowledge and Reasoning

6 Agents that Reason Logically

- Knowledge-based Agents. Representations.
- Propositional Logic.
 The Wumpus World.

• 7 First-Order Logic

- Syntax and Semantics. Using First-Order Logic.
- Logical Agents. Representing Changes.
- Deducing Properties of the World.
- Goal-based Agents.

8 Building a Knowledge Base

Knowledge Engineering. – General Ontology.

An Agent for the Wumpus World

A reasoning agent

- Propositional logic as the "programming language"
- Knowledge base (KB) as problem representation
 - Percepts
 - Knowledge sentences
 - Actions
- Rule of inference (e.g. Modus Ponens) as the algorithm that will find a solution

The Knowledge Base

TELLing the KB: percepts

- Syntax and semantics
 - Symbol **S11**, meaning "there is a stench at [1,1]"
 - Symbol B12, meaning "there is a breeze at [1,2]"

Percept sentences

- Partial list:

[Stench, nil, nil, nil, nil]

The Knowledge Base

∧ ¬W13

TELLing the KB: knowledge

- Rules about the environment
 - "All squares adjacent to the wumpus have a stench."
 S12 ⇒ W11 ∨ W12 ∨ W22 ∨ W13
 - "A square with no stench has no wumpus and adjacent squares have no wumpus either."

$$\neg S11 \Rightarrow \neg W11 \land \neg W21 \land \neg W12$$

$$\neg S21 \Rightarrow \neg W11 \land \neg W21 \land \neg W22$$

$$\land \neg W31$$

$$\neg S12 \Rightarrow \neg W11 \land \neg W12 \land \neg W22$$

[Stench, nil, nil, nil, nil, nil]

Finding the Wumpus

- Checking the truth-table
 - Exhaustive check: every row for which KB is true also has W13 true
 - 12 propositional symbols, i.e.
 S11, S21, S12, W11, W21, W12, W22, W13, W31, B11, B21, B12
 - $2^{12} = 4096$ rows
 - > possible, but lengthy impossible for the complete problem

 $KB \Rightarrow W13$

- Reasoning by inference
 - Application of a sequence of inference rules (proof)
 - Modus Ponens, And-Elimination, and Unit-Resolution

Proof for "KB ⇒ W13"

Knowledge Base

R1:
$$\neg$$
S11 $\Rightarrow \neg$ W11 $\land \neg$ W21 $\land \neg$ W12

R2:
$$\neg S21 \Rightarrow \neg W11 \land \neg W21$$

 $\land \neg W22 \land \neg W31$

R3:
$$\neg S12 \Rightarrow \neg W11 \land \neg W12$$

 $\Lambda \neg W22 \Lambda \neg W13$

R4: $S12 \Rightarrow W11 \lor W12 \lor W22 \lor W13$

Inferences

- 1. Modus Ponens: ¬ S11, **R1** |- ¬W11 Λ ¬W21 Λ ¬W12
- 2. And-Elimination: ◆ |- ¬W11, ¬W21, ¬W12
- 3. Modus Ponens: ¬ S21, **R2** |- ¬W11 Λ ¬W21 Λ ¬W22 Λ ¬W31
- 4. And-Elimination: ◆ |- ¬W11, ¬W21, ¬W22, ¬W31

Proof for "KB ⇒ W13"

Knowledge Base

R1:
$$\neg$$
S11 $\Rightarrow \neg$ W11 $\land \neg$ W21

∧ ¬W12

R2:
$$\neg S21 \Rightarrow \neg W11 \land \neg W21$$

Λ¬W22 Λ¬W31

R3: $\neg S12 \Rightarrow \neg W11 \land \neg W12$

 $\Lambda \neg W22 \Lambda \neg W13$

R4: S12 \Rightarrow W11 \vee W12 \vee W22

∨ W13

Inferences

5. Modus Ponens: S12, R4

∨ W11

6. Unit-Resolution: ◆, ¬W11

Proof for "KB ⇒ W13"

Knowledge Base

R1:
$$\neg S11 \Rightarrow \neg W11 \land \neg W21$$

∧ ¬W12

R2:
$$\neg S21 \Rightarrow \neg W11 \land \neg W21$$

 $\Lambda \neg W22 \Lambda \neg W31$

R3: $\neg S12 \Rightarrow \neg W11 \land \neg W12$

 $\Lambda \neg W22 \Lambda \neg W13$

R4: $S12 \Rightarrow W11 \lor W12 \lor W22$

∨ W13

Inferences

KB +=
$$\neg$$
W11, \neg W21, \neg W12, \neg W22, \neg W31, (W13 \vee W12) \vee W22

- 7. Unit-Resolution: ♦, ¬W22 |- W13 ∨ W12
- 8. Unit-Resolution: ♦, ¬W12 |- W13

KB ⇒ W13

From Knowledge to Actions

TELLing the KB: actions

- Additional rules
 - e.g. "if the wumpus is 1 square ahead then do not go forward"

A12 Λ East Λ W22 $\Rightarrow \neg$ Forward

A12 Λ North Λ W13 $\Rightarrow \neg$ Forward

...

ASKing the KB

Cannot ask "which action?"
 but "should I go forward?"

[Stench, nil, nil, nil, nil]

A Knowledge-Based Agent Using Propositional Logic

```
function Propositional-KB-Agent (percept) returns action
       static KB,
                             // a knowledge base
                              // a time counter, initially 0
       Tell (KB, Make-Percept-Sentence (percept, t))
       foreach action in the list of possible actions
       do
          if Ask (KB, Make-Action-Query (t, action)) then
               Tell (KB, Make-Action-Sentence (action, t))
               t \leftarrow t + 1
               return action
       end
```


The Limits of Propositional Logic

A weak logic

- Too many propositions to TELL the KB
 - e.g. the rule "if the wumpus is 1 square ahead then do not go forward" needs 64 sentences (16 squares x 4 orientations)!
 - Result in increased time complexity of inference
- Handling change is difficult
 - Need time-dependent propositional symbols
 e.g. A11 means "the agent is in square [1,1]" when?
 at t = 0: A11-0; at t = 1: A21-1;
 at t = 2: A11-2
 - Need to rewrite rules as time-dependent
 e.g. A12-0 Λ East-0 Λ W22-0 ⇒ ¬Forward-0
 A12-2 Λ East-2 Λ W22-2 ⇒ ¬Forward-2

Summary

- Intelligent agents need ...
 - Knowledge about the world, so as to take good decisions.
- Knowledge can be ...
 - Defined using a knowledge representation language.
 - Stored in a knowledge base in the form of sentences.
 - Inferred, using an inference mechanism and rules.
- A representation language is defined by ...
 - A syntax, which specify the structure of sentences, and
 - A semantics, which specifies how the sentences relate to facts in the world.

Summary

Inference is ...

- The process of deducing new sentences from old ones.
- Sound if it derives true conclusions from true premises.
- Complete if it can derive all possible true conclusions.

Logics ...

- Make different commitments about what the world is made of and what kind of beliefs we can have about facts.
- Are useful for the commitments they do not make.

Propositional logic ...

- Commits only to the existence of facts.
- Has simple syntax and semantics and is therefore limited.

References

- Newell, A. (1982). The knowledge level. Artificial Intelligence, 18(1):82-127.
- Quine, W. V. (1960). Word and Object. MIT Press, Cambridge,
 Massachusetts.
- Rosenschein, S. J. (1985). Formal theories of knowledge in AI and robotics. New Generation Computing, 3(4):345-357.
- Tarski, A. (1956). Logic, Semantics, Metamathematics: Papers from 1923 to 1938. Oxford University Press, Oxford.