BONAFIDE CERTIFICATE

Certified that this project report entitled "PERFORMANCE ANALYSIS OF IMAGE QUALITY OF MPEG VIDEO WITH NEURO-FUZZY METHOD OVER BLUETOOTH" is the bonafide work done by Mr. SANKHA RAY, Reg.No:15506024 in partial fulfillment of the requirements for the award of the degree of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

Signature of the Guide

Head of the Department

(Mrs. Phamila, M.Tech)

(Prof. S.S.Sridhar, B.E, M.S, Ph.D)

Submitted for university examination held in **JUNE 2008** at **SRM UNIVERSITY**, S.R.M.Nagar, Kattakulathur, Kancheepuram District – 603 203.

Date Internal Examiner External Examiner

ABSTRACT

In a Bluetooth network, transmission rate can not be determined due to interferences by other wireless devices or general Bluetooth channel noises. MPEG Variable Bit Rate (VBR) video transmission is also not reliable and presents long delay and excessive data loss, due to variations in bit rate. It is therefore almost impossible to transmit MPEG VBR video over a Bluetooth channel, without data loss, excessive time delay or image quality degradation.

Firstly, this project presents a Traffic Shaping tool used to manage network traffic by shaping the traffic to a specified rate. Traffic shaping enables to control access to available bandwidth, to ensure that traffic conforms to the policies established for it, and to regulate the flow of traffic to avoid congestion that can occur when the transmitted traffic exceeds the access speed of its remote target interface. Traffic shaping uses a traffic descriptor for a packet—indicated by the classification of the packet—to ensure that a packet, or data source, adheres to the policies contracted for it and to determine the QoS to apply to the packet. Again it enables to control the traffic leaving an interface, matching its packet flow to the speed of a particular remote interface. By shaping a class of traffic to conform to downstream requirements, it is possible eliminate bottlenecks in topologies with data-rate mismatches.

Secondly, this project presents an integrated Rule-Based-Fuzzy (RBF) approach and Neuro-Fuzzy (NF) scheme to Moving Picture Expert Group (MPEG) video transmission in Bluetooth. In this work, a traffic-shaping buffer is introduced before the Host Controller Interface (HCI) of the Bluetooth protocol stack. This reduces the congestion of the traffic-shaper output rate to enable the MPEG VBR video to comply with the generic cell rate algorithm contract before entering the Bluetooth channel.

In general, a fuzzy scheme is more easily tuned by adjustment of the membership functions. By introducing two control inputs, a fuzzy scheme can trim its response. The two inputs in our scheme were buffer fullness and the deadline margin of the packet at the head of the Bluetooth send queue. A fuzzy scheme is well-suited to implementation on a mobile device, because not only are the decision calculations inherently simple but also by forming a Lookup-Table (LUT) from the fuzzy control surface, its operation can be reduced to simple LUT access. Because of Bluetooth's resemblance to Asynchronous Transfer Mode admission control, fuzzy logic bit rate control has been applied to Bluetooth wireless links. However, this application of fuzzy control was for a quite different purpose, flow control, to the work herein.

Finally, a packet-based algorithm functions like the early discard, and accept a newly arriving packet if the probability that all the cells of the packet are accepted is high. Some performance characteristics are derived of the cell and packet arrival process that are accepted by the leaky-bucket algorithm. From these analyses, a method to determine the values of the parameters of the leaky-bucket algorithm and certain relations between this leaky-bucket algorithm and the generic cell rate algorithm (GCRA) are obtained. The algorithm is represented as the queuing model with the cell and token buffers, where token are generated according to a given process and a cell that can get a token departs from the cell buffer. It is assumed that if a token is generated at the same time as the arrival of a cell then the departure of the cell that gets the token occurs before the arrival.

With the help of computer simulation the results is shown of the proposed scheme that reduces excessive time delay and data loss at the HCI, as compared with a conventional video transmission in Bluetooth.

ACKNOWLEDGEMENT

First and foremost, I express my most sincere thanks to the School of Computer Science and Engineering for providing all facilities and successful completion of this project.

.

I thank **Mrs. Phamila**, **ME**, **Lecturer**, **SRM University** for her encouragement and the facilities that were offered to me for carrying out this project.

I wish to express my sincere thanks and gratitude to **Prof. S. S. Sridhar, M.S., Ph.D, Professor and Head, School of Computer Science and Engineering, SRM University,** for his encouragement and the facilities that were offered to me for carrying out this project.

I am indebted to my project coordinator, **School of Computer Science and Engineering, SRM University,** for her valuable support.

Finally, I thank my beloved parents and friends for their moral and economic support towards my project.

CONTENTS

CHAPTERS	TITLE	Page No.
	ABSTRACT	ii
	LIST OF FIGURES	ix
	LIST OF ABBREVIATIONS	X
1	Introduction	11
	1.1 Introduction	11
	1.2 OVERVIEW OF THE PROJECT	11
	1.3 Existing System	13
	1.3.1 Frame size of the MPEG video	14
	1.3.2 UNRELIABLE UNPREDICTABLE TRANSMISSION RATE	14
	1.4 Proposed system	15
	1.4.1 ALTERING THE FRAME SIZE	15
	1.4.2 DETERMINING THE DEPARTURE RATE	16
	1.4.3. DEVELOPING TRAFFIC SHAPING BUFFER	16
	1.4.4. DEVELOPING RULE BASED SYSTEM	16
	1.4.5. Introducing Leaky Bucket	17
2	TECHNICAL DESCRIPTION OF THE BLUETOOTH TECHNOLOGY	18
	2.1 Data flow through the Bluetooth protocol stack	19
	2.1.1 BLUETOOTH ARCHITECTURE:	19
	2.1.2 DESCRIPTION OF QOS AND HCI	21
	2.1.2.1 QUALITY OF SERVICE (QOS)	21
	2.1.2.2 INTERFERENCE AND FLOW CONTROL OF THE HCI	22

	2.2 ARCHITECTURE FOR VIDEO STREAMING OVER BLUETOOTH	24
	2.2.1 Intermediate Protocols	26
	2.2.2 Streaming via HCI	26
	2.2.3 STREAMING VIA L2CAP	27
	2.2.4 Streaming via IP	28
3	THE FUZZY CONTROL SCHEME	29
	3.1 FUZZY LOGIC APPLICATION FOR MPEG ENCODING	30
	3.1.1 Introduction:	30
	3.1.2 ENHANCED FUZZY RULE-BASED VIDEO RATE CONTROL	31
	3.2 RBF Neural Networks	32
	3.2.1How RBF networks work:	32
	3.2.2RADIAL BASIS FUNCTION:	33
	3.3 APPLICATION OF A FUZZY RULE BASED SYSTEM	36
4	DESCRIPTION OF THE PROJECT MODULES	38
	4.1 MPEG ENCODER	40
	4.1.1 GENERAL DESCRIPTION	40
	4.1.2 APPLICATIONS	42
	4.1.3 TECHNICAL DESCRIPTION	43
	4.1.4 MOTION ESTIMATION	43
	4.1.5 MOTION COMPENSATION	43
	4.1.6 TEXTURE CODING	43
	4.1.7 Entropy encoder	44
	4.1.8 BITSTREAM PACKETIZATION	44
	4.1.9 TEXTURE UPDATE	45
	4.1.10 RATE ALLOCATOR	45
	4 1 11 VIDEO COMPRESSION	45

	4.1.12 MPEG-4	46
	4.1.13 H.263	47
	4.2 Traffic Shaping Buffer	48
	4.2.1 BENEFITS OF SHAPING TRAFFIC ON A NETWORK	49
	4.2.2 Using Traffic shaping buffer	50
	4.3 NEURO-FUZZY IMPLEMENTATION	51
	4.4 RULE-BASED-FUZZY IMPLEMENTATION	52
	4.4.1 THE MODEL STRUCTURE	53
	4.4.2 RBF NETWORK ARCHITECTURE	54
	4.4.3 RBF NETWORK LAYERS	54
	4.5 LEAKY BUCKET (GCRA)	56
	4.6. Data Flow Diagram	58
5	SYSTEM REQUIREMENTS	59
6	IMPLEMENTATION	60
7	RESULTS	65
0	RESULTS	70
8	CONCLUSIONS	72
9	REFERENCES	74

LIST OF FIGURES

Fig. No.	Title	Page No
1.3.1	Existing System	13
2.1.1	The dataflow through the Bluetooth Protocol stack	20
2.2.1	Architecture for streaming over Bluetooth	25
3.1.1	Configuration of FRC bused MPEG video encoder	30
3.2.1.1	Activation vs Distance Graph	33
3.2.2.2	Input b vs Output a	33
3.2.2.3	3D figure illustrating X, Y, Z	34
3.2.2.4	Weighted Sum of Radial Transfer Functions	35
3.2.2.5	Figure illustrating Spreading	35
3.3.1	The fuzzy control scheme for video transmission over a Bluetooth ACL link.	36
4.1	Architecture of the Project Model	39
4.1.1	Block Diagram of the BA131MPEG4E IP	41
4.2.1	A General example of Traffic Shaping Buffer	49
4.2.2.1	RBF networks Layers	54
4.5.1	AN EXAMPLE OF GCRA	57
4.6.1	Data Flow Diagram	58

LIST OF ABBREVIATIONS

ABBREVIATION EXPANSION

MPEG - Motion Pictures Experts Group

VBR - Variable Bit Rate

QP - Quantization Parameter

CBR - Constant Bit Rate

RF - Radio Frequency

HCI - Host Controller Interface

GCRA - Generic Cell Rate Algorithm

GOP - Group of Pictures

NF - Neuro-Fuzzy

SCO - Synchronous Connection Oriented

ACL - Asynchronous Connection-Less

VoIP - Voice/Video over IP

BNEP - Bluetooth Network Encapsulation

L2CAP - Logical Link Control and Adaptation Protocol

QoS - Quality of Service

RBF - Rule Based Fuzzy