实验题

用C, C++, Python, Java 之一实现下面五个函数:

用幂法求矩阵 $a_{n\times n}$ 的最大特征值及其特征向量.

假设矩阵 $a_{n\times n}$ 以行优先存储. 函数 power_eng 用幂法求其按绝对值最大的特征值及其特征向量. 特征值保存在 *pld 中,特征向量保存在 env[0,n) 中. 成功时返回 false,否则返回 true.

2. bool jacobi_eng(double* ev, double* a, int n);
用 Jacobi 方法求对称矩阵的全部特征值.

假设对称矩阵 $a_{n\times n}$ 以行优先存储. 函数 jacobi_eng用 Jacobi 方法求其所有的特征值. 特征值保

存在 ev[0,n) 中, 成功时返回 false, 否则返回 true.

3. void gauss_hessen(double* a, int n);

假设矩阵 $a_{n\times n}$ 以行优先存储. 函数 gauss_hessen用 Gauss 相似变换将矩阵 $a_{n\times n}$ 就地转换为上 Hessenberg 矩阵.

4. bool qr_aux(int i, int j);

矩阵特征值问题 QR 算法辅助函数.

假设 Hessenberg 矩阵 $a_{n\times n}$ 按行优先存储. 函数 qr_aux 用 QR 算法求其对角线上的子矩阵

$$\begin{pmatrix} a_{i,i} & a_{i,i+1} & a_{i,i+2} & \cdots & a_{i,j-2} & a_{i,j-1} \\ a_{i+1,i} & a_{i+1,i+1} & a_{i+1,i+2} & \cdots & a_{i+1,j-2} & a_{i+1,j-1} \\ 0 & a_{i+2,i+1} & a_{i+2,i+2} & \cdots & a_{i+2,j-2} & a_{i+2,j-1} \\ 0 & 0 & a_{i+3,i+2} & \cdots & a_{i+3,j-2} & a_{i+2,j-1} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 & a_{j-1,j-2} & a_{j-1,j-1} \end{pmatrix}$$

的所有特征值. 结果存放在 ev[i,j) 中. 成功时返回 false, 否则返回 true. 矩阵的首址 a, 维数 n, 以及特征值结果数组 en 以全局变量的形式给出.

当 j-i>2 时,函数 ar_aux 实现 QR 算法迭代. 检查次对角线元素

$$a_{i+1,i} \ a_{i+2,i+1} \ \cdots \ a_{j-1,j-2}$$

是否有零元素存在. 一旦发现零元素 $a_{k,k-1}$ 则将矩阵分为两个子矩阵:

$$a[i,k) \times [i,k)$$
 $\exists a[k,j) \times [k,j)$

递归调用 qr_aux(i,k) 和 qr_aux(k j).

qr_aux 至少需要三个全局变量, 其实现形式大致为

typedef std::complex<double> Complex; double* a; //Hessenberg 矩阵首址; int n; //Hessenberg 矩阵维数. Complex* en; //保存特征值.

```
bool qr_aux(int i, int j)
{
   //QR 算法的实现
}
```

QR 算法的驱动程序可以实现为:

```
bool
qr_eng(Complex* result, double* h, int m)
{ //QR 算法求 Hessenberg 矩阵 h (m x m)
    //的全部特征值,
    //结果存放在 result[0, m) 之中,
    //成功返回 false, 否则返回 true.

//给全局变量赋值
a = h;
n = m;
en = result;

//调用驱动函数
return qr_aux(0,n);
}
```

用上面实现的算法求下面五个矩阵的特征值.

1. 矩阵 A_{8×8} =

2. 矩阵 B_{10×10} =

$$\begin{pmatrix} 1 & 1/2 & 1/3 & 1/4 & 1/5 & 1/6 & 1/7 & 1/8 & 1/9 & 1/10 \\ & 1/3 & 1/4 & 1/5 & 1/6 & 1/7 & 1/8 & 1/9 & 1/10 & 1/11 \\ & & 1/5 & 1/6 & 1/7 & 1/8 & 1/9 & 1/10 & 1/11 & 1/12 \\ & & & 1/7 & 1/8 & 1/9 & 1/10 & 1/11 & 1/12 & 1/13 \\ & & & & 1/9 & 1/10 & 1/11 & 1/12 & 1/13 & 1/14 \\ & & & & & & 1/11 & 1/12 & 1/13 & 1/14 & 1/15 \\ & & & & & & & & 1/13 & 1/14 & 1/15 & 1/16 \\ & & & & & & & & & & 1/15 & 1/16 & 1/17 \\ & & & & & & & & & & & 1/17 & 1/18 \\ & & & & & & & & & & & & & 1/19 \end{pmatrix}$$

3. 矩阵 $C_{12\times12}$ =

4. 矩阵
$$D_{20\times 20} = \left(d_{jk}\right)$$
 $1 \le j, k \le 20$
其中 $d_{jk} = \sqrt{\frac{2}{21}} \sin\left(\frac{jk\pi}{21}\right)$.

5. 矩阵 *E*_{50×50} =

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 1 \\ -1 & 1 & 0 & \cdots & 0 & 1 \\ \vdots & \vdots & \vdots & \ddots & 0 & 1 \\ -1 & -1 & 1 & \cdots & 0 & 1 \\ -1 & -1 & -1 & \cdots & 1 & 1 \\ -1 & -1 & -1 & \cdots & -1 & 1 \end{pmatrix}$$
 50 阶Guass 矩阵

给出下面三个表格中信息:

1. 幂法

矩阵	最大特征值	特征向量	误差	运行时间	备注
Α					
В					
С					
D					
E					

注: 用 $\frac{\|Mx - \lambda x\|_2}{\|x\|_2}$ 计量误差. 其中 λ 为最大特征值, x 为 λ 对应的特征向量.

2. Jacobi 方法

矩阵	特征值	运行时间	备注
Α			
В			
С			
D			

3. QR 方法

矩阵	特征值	运行时间	备注
Α			
В			
С			
D			
E			

4. 求下面11次多项式的根

$$x^{11} + x^{10} + \dots + x + 1 = 0$$