

Delegation and stake pools 2

Incentives

WHY SIMULATIONS?

In theory, there is no difference between theory and practice.

But in practice, there is.

- By Benjamin Brewster

Convergence

- Understanding the Nash-Equilibria of a "game" is crucial when trying to understand the game.
- We know all Equilibria of the Cardano RSS are "nice": k pools of equal size.
- But will the system reach an equilibrium?
- If so, how fast?
- This is the question of convergence.

What could go wrong?

- Red wants to go left to increase his rewards.
- Green pulls right instead.
- If they moved together, they could reach an equilibrium, but they keep dragging each other down.

Simulation

- We have studied the "staking game" by simulating it.
- We first generate a random population of players.
- Then we let the players move, each trying to get higher rewards.
- Hopefully, this will lead to an equilibrium.

SAMPLING

Generating random players

- Each player has random stake and random costs.
- We pick costs uniformly from an interval [c_{min}, c_{max}].
- For stake, we try to be more realistic by using a Pareto distribution.
- This captures the empirical observation that wealth is not distributed equally, but rather follows an "80-20"-rule.

Pareto Distribution

80% of people

have

20% of stake.

20% of people

have

80 % of stake.

Sample Distribution

A lot of people have little stake.

Few people have a lot of stake.

THE ALGORITHM

03/07/2020

Initial strategy

- After players have been generated, they each pick an initial strategy.
- For most of our simulations, they initially simply don't do anything neither run a pool nor delegate.
- Alternatively, they could all delegate to one big pool...
- ...or do something random...
- ...or even start nicely organized into k pools of equal size.

Simulation steps

- 1. Pick a random player.
- 2. Check whether that player can increase his rewards by changing his strategy.
- 3. If yes, he changes the strategy, and we go back to step 1.
- 4. If not, we try another player.
- 5. If no player has a profitable move, we stop.

SIMULATING "NAIVE" RSS

03/07/2020

Trying the "naive" RSS

- We simulated a "proportional" RSS, where pool rewards are simply proportional to pool stake.
- We tried it with different initial strategies.
- Even if we start with k pools of equal size, things go very wrong very quickly...

Simulated "naive" RSS

Result for the "naive" RSS

- The "naive" RSS converges quickly in less than 100 steps.
- We start with k pools of equal size.
- We quickly end up with one big dictatorial pool.

SIMULATING Cardano RSS

Trying the Cardano RSS

- We ran most simulations with all players doing nothing initially.
- Trying other initial strategies doesn't change the simulation result.
- We always reach a "nice" equilibrium with k pools of equal size quickly.

Simulated Cardano RSS

INCENTIVES Simulations

Not just pretty pictures...

Pools											
player	rank	cost-rank	stake-rank	actual	cost	declared cost	margin	player stake	pool stake	reward	desirability
1	4	54	1	0.00156	856	0.00156856	0.00898774	0.07704926	0.10000000	0.10154099	0.099073896587544
2	5	19	5	0.00121	229	0.00121229	0.00125302	0.02052438	0.10000000	0.10041049	0.099073896587539
3	9	5	17	0.00108	3188	0.00108188	0.00088317	0.01216771	0.10000000	0.10024335	0.099073896587511
4	3	16	7	0.00120	205	0.00120205	0.00063505	0.01694531	0.10000000	0.10033891	0.099073896587553
5	2	6	26	0.00108	8805	0.00108805	0.00053598	0.01075376	0.10000000	0.10021508	0.099073896587558
6	1	1	81	0.00100	213	0.00100213	0.00047005	0.00613080	0.10000000	0.10012262	0.099073896587589
7	7	3	39	0.00105	867	0.00105867	0.00047469	0.00898080	0.10000000	0.10017962	0.099073896587522
8	6	18	8	0.00121	088	0.00121088	0.00042690	0.01635433	0.10000000	0.10032709	0.099073896587534
9	8	2	62	0.00103	8849	0.00103849	0.00026601	0.00693720	0.10000000	0.10013874	0.099073896587515
10	10	12	16	0.00115	913	0.00115913	0.00011986	0.01224503	0.10000000	0.10024490	0.099073896587504

We also get detailed information about the equilibrium...

...which enables us to study things like Sybil protection.

P0015										
player	rank	cost-rank	stake-rank	actual cost	declared cost	margin	player stake	pool stake	reward	desirability
1	8	54	1	0.00156856	0.00156856	0.23109808	0.07704926	0.10000000	0.13852463	0.105305784121818
2	1	73	2	0.00173639	0.00173639	0.09972617	0.03741446	0.10000000	0.11870723	0.105305784121865
3	3	52	3	0.00156655	0.00156655	0.05102956	0.02507001	0.10000000	0.11253500	0.105305784121842
4	2	19	5	0.00121229	0.00121229	0.03433392	0.02052438	0.10000000	0.11026219	0.105305784121863
5	7	80	4	0.00181011	0.00181011	0.03273015	0.02135839	0.10000000	0.11067919	0.105305784121826
6	6	45	6	0.00152048	0.00152048	0.02935389	0.02002176	0.10000000	0.11001088	0.105305784121833
7	10	16	7	0.00120205	0.00120205	0.01831648	0.01694531	0.10000000	0.10847266	0.105305784121808
8	4	18	8	0.00121088	0.00121088	0.01552360	0.01635433	0.10000000	0.10817716	0.105305784121835
9	5	64	10	0.00163171	0.00163171	0.00394146	0.01470840	0.10000000	0.10735420	0.105305784121835
10	9	82	9	0.00181572	0.00181572	0.00298747	0.01487410	0.10000000	0.10743705	0.105305784121813

Result for the Cardano RSS

- We have run these simulations hundreds of times for a range of different settings.
- We tried various initial strategies, Pareto parameters and cost intervals.
- Details differ (it's random, after all!), but we always reach a nice equilibrium eventually.

THANK YOU FOR YOUR ATTENTION!

03/07/2020 22