Experimental Stats

- Sampling Bias: self-selection, non-response, undercoverage, survivorship Confounder: correlated/causal /w indepen var & causal /w depen var
- Probability Sampling: random, stratified, clustered Non-Probability Sampling: voluntary, convenience, snowball

Variability & Correlation vs Covariance

- Variance: Average squared distance from the mean, $\sigma^2 = \frac{1}{N} \sum_{i=1}^N (x_i \mu)^2$ Z-Score: $z = \frac{x_i \bar{x}}{\sigma}$
- Covariance: $(-\infty,\infty)$ scaled by variances, measures linear relationship between two variables, $\mathrm{Cov}(X,Y) = \sum (x_i \bar{x})(y_i \bar{y})$
- Correlation: [-1,1] unitless, normalized covariance, $\operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}} = \frac{\sum (x_i-\bar{x})(y_i-\bar{y})}{\sqrt{\sum (x_i-\bar{x})^2\sum (y_i-\bar{y})^2}}$

Intro Probability

- Combination: Unordered sampling without replacement: $\binom{n}{r} = \frac{n!}{r!(n-r)!}$ Permutation: Ordered sampling without replacement: $\frac{n!}{(n-r)!}$
 - Ex: $P(3 \text{ spades}, 2 \text{ hearts}) = \frac{\binom{13}{3}\binom{13}{13}\binom{2}{2}}{\binom{52}{5}}$, Split 12 people into 3 groups of 4: $\frac{\binom{12}{4}\binom{8}{4}\binom{4}{4}}{3!}$
- Unordered Sampling with Replacement: $\binom{n+r-1}{r}$ Ordered Sampling with Replacement: n^r
- Union: $P(A \cup B) = P(A) + P(B) P(A \cap B)$ Complement: P(X occurs at least Y times) = 1 P(X doesn't occur at least Y times)

Conditional Probability

- Bayes Formula: $P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(A\cap B)}{P(B)}$ Chain Rule: $P(A\cap B) = P(B|A)\cdot P(A) = P(A|B)\cdot P(B)$
- Independence: A and B independent if: 1. P(A|B) = P(A), or 2. P(B|A) = P(B), or 3. $P(A \cap B) = P(A) \cdot P(B)$
- If A and B are independent so are pairs $(A^c, B), (A, B^c), (A^c, B^c)$
- Ex: Health or Sick patient can test (+) or (-) then $P(+) = P(+|H) \cdot P(H) + P(+|S) \cdot P(S)$

Bayesian vs Frequentist

- Probability: Chance of event/data (e.g. training/experiment data) occurring among a set of MECE events, sum of possible probas = 1
- Likelihood: Chance of a hypothesis/params (e.g. model/distribution) occurring among set of infinite non-MECE hypotheses, sum of likelihoods ≠ 1
- Proba Func: Gives probas of varying data (events) given set of params
 Likelihood Func: Gives relative likelihoods of varying params given data
- Frequentist: Probability measured as relative freq of event over long run, assume data X is random \rightarrow find fixed params $\vec{\theta}$ that generated X
 - MLE: Max likelihood: $\vec{\theta}^*$ = argmax $P(X|\vec{\theta})$ = argmin $(-\log P(X|\vec{\theta}))$, ML: setup model as MLE optimization \rightarrow use GD e.g. logreg /w log loss
- Bayesian: Probability measured as confidence in occurrence of event, assume data X is fixed o find param $ilde{ heta}$ prob distribution given X and prior
 - $\quad \text{\textbf{Posterior}: (distribution)} \ P(\vec{\theta}|\boldsymbol{X}) = \frac{P(\boldsymbol{X}|\vec{\theta}) \cdot P(\vec{\theta})}{P(\boldsymbol{X})} \ \text{where} \ P(\boldsymbol{X}|\vec{\theta}) = \text{likelihood func \& } P(\vec{\theta}) = \text{prior (distributions), } P(\boldsymbol{X}) = \text{evidence (fixed)}$
 - MAP: Max posterior: $\vec{\theta}^*$ = argmax $P(\vec{\theta}|\mathbf{X})$ = argmax $P(\mathbf{X}|\vec{\theta})$ $P(\vec{\theta})$, update prior := posterior when new data, MAP = MLE if prior is uniform
 - o Bayesian methods useful when 1. prior knowledge, 2. small dataset (e.g. election, market crash), 3. online learning from one sample at a time

Moments

• Mean: $\mu = E(X) = \sum x_i \cdot p(x_i)$ Var: $\sigma^2 = \mathrm{Var}(X) = E[X^2] - \left(E[X]\right)^2 = \sum (x_i - \mu)^2 \cdot p(x_i)$ Skew: $\frac{E\left[(X - \mu)^3\right]}{\sigma^3}$ Kurtosis: $\frac{E\left[(X - \mu)^4\right]}{\sigma^4}$

Sampling Distribution

- Sampling Distribution of Sample Means: $ar{X}$ related to pop mean by: $\mu_{ar{X}}=\mu$ and to pop stdev by: $\sigma_{ar{X}}=\mathrm{standard\ error\ of\ }ar{X}=\frac{\sigma}{\sqrt{n}}$
- Central Limit Thm: If $n\geq 30$, then regardless of population shape, ar X has $ar X\sim N(\mu_{ar X},\sigma_{ar X})=N(\mu,rac{\sigma}{\sqrt{n}})$ distribution

Discrete Distributions - PMF p(X=r), CDF $p(X \le r)$

- **Bernoulli** $X \sim \operatorname{Bern}(p)$ experiment with success prob p, failure prob 1-p (e.g. roll 6 or not)
 - \circ Two events: Fail P(X=0)=1-p, Success P(X=1)=p Moments: E[X]=p, ${
 m Var}(X)=p(1-p)$
- Binomial $X \sim \operatorname{Bin}(n,p)$ # of successes in n Bernoulli trials (e.g. # of 6's rolled in 5 rolls)
 - $\circ \ \operatorname{PMF}(n,p) = P(X=r) = \binom{n}{r} p^r (1-p)^{n-r} \quad \text{where } \binom{n}{r} = \text{\# of subsets, } \ p^r (1-p)^{n-r} = \text{r success} + \text{n-r failures in subsets}$
 - $\circ E[X] = np, Var(X) = np(1-p)$
- Poisson $X\sim \mathrm{P}(\lambda)$ # of successes in infinite Bernoulli trials (e.g. # of earthquakes in a year, # of typos in a book)
 - $\circ E[X] = \lambda$, $Var(X) = \lambda$, If $P(\lambda = 2 \text{ hurricanes/yr on avg})$ and want # of hurricanes per 3 years, then use $P(\lambda = 2 \cdot 3 = 6)$

- Geometric $X \sim \operatorname{Geom}(p)$ # of Bernoulli trials until & including first success (e.g. # of coin flips to get first heads)
 - $\circ \ \mathrm{PMF} = P(X=k) = (1-p)^{k-1}p$, k-1 failures before first success + success, $\mathrm{CDF} = P(X \leq k) = 1 (1-p)^k$
 - $\circ E[X] = \frac{1}{n'} \operatorname{Var}(X) = \frac{1-p}{n^2}$, Memoryless: The prob of s more trials until first success given k failures already, is the same as taking s trials

Continuous Distributions – Integrated PDF $p(a \le X \le b) = \int_b^a f(x) \, dx$, CDF $P(X \le x) = \int_{-\infty}^x f(t) \, dt$

- Uniform $X \sim \mathrm{U}[a,b]$ choose randomly equally likely point in [a,b] (e.g. min postman arrives in next hour)
 - $\circ \ \operatorname{PDF} = f(x) = rac{1}{b-a}, ext{for } a \leq x \leq b \ ext{ take the integral of this from } a ext{ to } b$
 - $\circ \ E[X] = rac{a+b}{2}$, $\mathrm{Var}(X) = rac{(a-b)^2}{12}$, Universality of Uniform: sample from any distrib X, feed samples to the CDF of X to sim $\mathrm{U}[0,1]$ distribution of $\mathrm{U}[0,1]$ distr
- Normal $N(\mu, \sigma)$ (e.g. heights, darts on dartboard, IQ)
 - $\circ E[X] = \mu, Var(X) = \sigma^2$
- Exponential $X\sim \operatorname{Exp}(\lambda)$ time until next success, cts geometric equivalent (e.g. time until next accident, time between two Poisson events)
- Gamma $X \sim \mathrm{Gamma}(n, \frac{1}{\lambda})$ time until nth occurrence, generalized exponential rv (e.g. time until 3rd accident)
- Chi-Squared $X \sim \chi^2(k)$ sum of k samples squared from std normal distribution

Errors & Successes

- $\mathrm{FPR} = \frac{\mathrm{FP}}{\mathrm{FP} + \mathrm{TN}} = P(\mathrm{reject}\ H_0 | H_0\ \mathrm{true})$ = α = Significance Level = Type 1 Error Rate
- FNR = $\frac{FN}{FN+TP}$ = $P(\text{accept } H_0|H_0 \text{ false})$ = β = Type 2 Error Rate
- TNR = $\frac{\text{TN}}{\text{TN+FP}}$ = $P(\text{accept } H_0 | H_0 \text{ true})$ = $1 P(\text{reject } H_0 | H_0 \text{ true})$ = 1α = Specificity
- $\mathrm{TPR} = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}} = P(\mathrm{reject}\ H_0 | H_0\ \mathrm{false}) = 1 P(\mathrm{accept}\ H_0 | H_0\ \mathrm{false}) = 1 \beta = \mathrm{Sensitivity} = \mathrm{Recall} = \mathrm{Power}\ (\pi)$
- Power Analysis = Estimate one of the 4 BEAN variables given the other 3 (e.g. find n given $\alpha=0.05$, $1-\beta=0.80$, and some min effect size)
 - 1. Beta β : If $\beta \downarrow$ we have a smaller tolerance for false negatives, if $(1-\beta) \uparrow$ then $\pi \uparrow$ then $n \uparrow$
 - 2. Effect Size: Distance between sampling distribution means, if ES↑ then π↑ (note: n doesn't affect ES)
 - 3. Alpha α : Set by us, corresponding critical value splits β and α , if $\alpha \uparrow$ then $n \lor$ and we have a larger tolerance for false positives
 - 4. \underline{n} Sample Size: If $n\downarrow$ then SE $\frac{\sigma}{\sqrt{n}}\downarrow$ and H_a distribution tightens and $\pi\uparrow$
- Overpowered: n too large, classify tiny differences as significant Underpowered: n too small, unable to detect important differences

Confidence Interval

- CI Formula: Point Estimate \pm Error Bound = Point Estimate \pm (Critical Value * Standard Error) CI Size: $1-\alpha=CC\uparrow$ or $n\downarrow$ then CI width \uparrow
- CI for μ , When σ is Unknown: $ar x\pm t_{lpha/2,\ n-1}rac{s}{\sqrt n}$ CI for p Population Proportion: $\hat p\pm z_{lpha/2}\sqrt{rac{\hat p\hat q}{n}}$

Hypothesis Testing

- Test Stat Formula: $\frac{\text{statistic-parameter}}{\text{stdey of the statistic}} = \frac{\text{statistic-parameter}}{\text{standard error}}$
- p-Value: Converts test stat into conditional prob that given H_0 , we observe a value at least as extreme as this one, if $p<\alpha$ reject H_0
- Effect Size: Measures magnitude of experimental effect, p-val says intervention works, effect size says how much the intervention works
- Right Tailed Test: One-sample $H_0: \mu=\mu_0 ext{ vs } H_a: \ \mu>\mu_0$, Two-sample $H_0: \mu_1-\mu_2=0 ext{ vs } H_a: \ \mu_1-\mu_2>0$
- Non-Parametric Test: Tests that don't assume population distribution is normal (e.g. chi-squared, wilcoxon signed rank)
- **Z** vs **T-Test**: Use Z when σ known or n large or proportion test, else use T-test since T-distribution thicker tails compensate for smaller n
- One Sample Mean Tests (e.g. are soda bottles filled above 20oz?)
 - \circ One Sample Mean T-Test T-Stat: $t=rac{ar x-\mu_0}{s/\sqrt n}$, compare with critical value $\pm t_{lpha,\,n-1}$ for single tail tests, or $\pm t_{lpha/2,\,n-1}$ for two-tail tests
 - \circ Cohen's D Effect Size: $d=\left|rac{ar{x}-\mu_0}{s}
 ight|$ where d measures num of stdevs between the two means d=.2 is small effect, d=.8 is large
 - o One-Sample Paired Mean T-Test: Test mean difference of one population twice sampled (e.g. does SAT prep raise SAT score?)
- Two-Sample Mean Tests (e.g. compare avg revenue per user or avg posts per user between control and treatment)
 - Z-Test, T-Test with Uknown but Equal Stdevs, T-Test with Unknown Unequal Stdevs (Aspin-Welch's Test)
- Proportion Z-Tests
 - \circ One-Sample Proportion Z-Stat: $z=rac{\hat{p}-p_0}{\sqrt{rac{p_0q_0}{n}}}$, (e.g. are scanners erroring more than 2% of time?)

 \circ Two-Sample Proportion Z-Stat: $z=rac{\hat{p}_1-\hat{p}_2}{\sqrt{\hat{p}\hat{q}(rac{1}{n_1}+rac{1}{n_2})}}$, (e.g. compare CTR between control and treatment)

• Chi-Squared Distribution Test

- o Goodness of Fit Test Check distribution of categorical var matches expected distribution (e.g. each choice on a MC exam equally likely)
- Independence Test Check if two categorical vars are related or not based on distributions (e.g. do RHers like same subjects as LHers)
- · ANOVA Mean Test omnibus test, tells us at least one of the means are significantly different, but not which one
 - o Compare variation within each group with variation between each group, if between groups variation >> within, one or more groups stand out
 - \circ Use ANOVA for 3+ groups, since T-tests have lpha=.05 FPR, 3 groups have $1-(.95)^3=14.3\%$ chance of at least one FP
 - \circ If H_0 rejected, run post-hoc to see which mean differed (e.g. Dunnett), compare each pair of groups using lower lpha (thus lower π)
 - o One-Way ANOVA check if any groups from independent categorical var differ in the dependent var (e.g. black, green, or no tea on alertness)
 - Two-Way ANOVA check if interaction between two independent categorical vars on the dependent var (e.g. gender + stress level affect job?)