Problème : irrationnalité du nombre e

A. f est la fonction définie sur \mathbb{R} par $f(x) = x e^{1-x}$.

On désigne par \mathcal{C} la courbe représentative de f dans un repère orthonormal $(O; \vec{i}, \vec{j})$ (unité : 4 cm).

- 1. Étudier la fonction f. Construire la courbe \mathcal{C} .
- 2. Calculer $I_1 = \int_0^1 f(x) dx$.
- **B.** Pour tout entier naturel $n \geq 1$, on pose

$$I_n = \int_0^1 x^n e^{1-x} dx.$$

1.a. Montrer que pour tout x dans [0; 1],

$$x^n \le x^n e^{1-x} \le e \, x^n.$$

- b. Calculer $J_n = \int_0^1 x^n dx$.
- c. En déduire que pour tout entier naturel $n \ge 1$,

$$\frac{1}{n+1} \le I_n \le \frac{e}{n+1}.$$

2. Montrer que, pour tout entier naturel $n \geq 1$,

$$I_{n+1} = (n+1)I_n - 1.$$

3. Pour tout entier naturel $n \geq 1$, on pose

$$k_n = n! e - I_n.$$

- a. Exprimer k_{n+1} à l'aide de k_n .
- b. Calculer k_1 . En déduire par récurrence sur n, que k_n est un entier naturel pour tout $n \ge 1$.
- c. Montrer que, quel que soit le naturel $n \geq 2$, le nombre $n! e = k_n + I_n$ n'est pas un entier naturel.
- 4.a. Soit p et q deux entiers naturels strictement positifs. Montrez que, pour $n \ge q$, le nombre $\frac{n!\,p}{q}$ est un entier naturel.
- 4.b. En déduire que e n'est pas un nombre rationnel.