

Machine Learning Model Metrics

Topics

- Regression Metrics
- Classifier Metrics
- Clustering Metrics

Machine Learning Workflows

Machine Learning Workflows

Regression Metric

R-Squared (R²)

 $R^2 \equiv 1 - rac{SS_{
m res}}{SS_{
m tot}}.$

- Coefficient of determination
- Adjusted R-Squared $\bar{R}^2 = 1 (1 R^2) \frac{n-1}{n-p-1} = R^2 (1 R^2) \frac{p}{n-p-1}$
 - Always less than R^2
 - R^2 can artificially increase with more explanatory variables (independent, predictors, input)
 - Adj. R^2 only increases when the R^2 increase more than likely by random chance

Regression Validation

- Recall : Anscombe's quartet
- Need visualization of data to see that the regression has broken down or is not suitable
- Analysis of residuals (visual and numerical)
 - Random or not?
 - Varied with time?
- Additional Reading
 - https://en.wikipedia.org/wiki/Regression_validation

- Consider Two Class Problem (yes/no)
 - When true answer is yes and your model says yes, that is a True Positive
 - When true answer is **no** and your model says **no**, that is a True Negative
 - When true answer is yes and your model says no, that is a False Negative
 - When true answer is **no** and your model says **yes**,
 that is a False Positive

Confusion Matrix

	Predicted:	Predicted:	
n=165	NO	YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

- Why a 90% "accurate" model is not always good enough
- My favorite professor's problem:
 - Land mine detection algorithms for the US Army
 - Yes: It is a land mine
 - No: It is not a land mine

- Why a 90% "accurate" model is not always good enough
- My favorite professor's problem:
 - Land mine detection algorithms for the US Army
 - Yes: It is a land mine
 - No: It is not a land mine
- What is the cost of a False Positive?

- Why a 90% "accurate" model is not always good enough
- My favorite professor's problem:
 - Land mine detection algorithms for the US Army
 - Yes: It is a land mine
 - No: It is not a land mine
- What is the cost of a False Positive?
- What is the cost of a False Negative?

- Precision: (PPV) positive prediction value
 - How often is a predicted Yes value correct?
- Recall: (TPR) true positive rate
 - How many of the expected Yes are predicted yes?

1CE	Predicted:	Predicted:	
n=165	NO	YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

- F-score (or F_1 Score)
 - Measure of accuracy combining Precision and Recall

$$F_1 = 2 \cdot rac{ ext{PPV} \cdot ext{TPR}}{ ext{PPV} + ext{TPR}} = rac{2 ext{TP}}{2 ext{TP} + ext{FP} + ext{FN}}$$

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Clustering Metrics

- Cluster Validation
 - https://en.wikipedia.org/wiki/Cluster_analysis#Evaluation_and_assessment
- Distance metric driven
 - Ratios of points to centroids or cluster members
 - Euclidean vs Mahalanobis vs other
- Davies-Bouldin index : average ratio of cluster-to-cluster size versus center distance
- Dunn index: ratio between the minimal inter-cluster distance to maximal intra-cluster distance
- Others

Conclusion

- Measures and analyses of machine learning models are critical before operationalizing
 - Fully understand the model
 - Measure the performances against expected and unexpected data
 - Weigh the consequences of erroneous responses

