# İZMİR KATİP ÇELEBİ ÜN İVERSİTESI

### MEE210 ELECTRICAL MACHINES - Experiment #1

# **LABORATORY CONTENT:** Understanding AC characteristics on circuitry

### **EQUIPMENT REQUIRED: (students should bring electronic components)**

#### **Qty Description**

- 1 Signal generator (will be ready at lab.)
- 1 Oscilloscope (will be ready at lab.)
- 1 Breadboard
- 1 1 kΩ resistor
- 1 1 μF capacitor
- 1 0.1 mH inductor
- Wiring equipments (jumper cables, crocodiles, etc.)

#### **PRELIMINARY QUESTIONS:**

- 1) Analyze the circuit and find the equation for  $V_2$  in terms of other components.
- 2) Using a simulator, apply the circuit and print the output signal  $V_2$  and input voltage  $V_1 = 5sin(2\pi ft)$  where f is 50, 500 and 5000 Hz (three different frequency values).

#### **EXERCISE STEPS:**

- 1) Apply the circuit below (R1 is the internal resistance of signal generator, so you do not apply any extra 50 ohm resistor).
- 2) Measure the requested values of  $V_2$  output voltage signal. Draw the signals and fill the boxes.





| Frequency (Hz) | V <sub>2</sub> peak voltage | Is V <sub>2</sub> leading or lagging? | Lead/lag angle |
|----------------|-----------------------------|---------------------------------------|----------------|
| 50             |                             |                                       |                |
| 500            |                             |                                       |                |
| 5000           |                             |                                       |                |

## **POSTLIMINARY QUESTIONS:**

- 1) For a 220 V@50Hz input voltage, an electric motor is driven. The values written on the motor are like this:
  - -Nominal current: 1A
  - -Mechanical output power: 500W

Depending on these values, find RL circuit parameters. Then, simulate in Proteus for two states: raw state and compensated circuit state (with a capacitor parallel to the output) of the circuit with 99%. Print the voltage and current curves for these two states.