Optimization problems and algorithms

Optimization problem

minimize $f(\theta)$

- $m{ ilde{ heta}}$ $heta \in \mathbf{R}^d$ is the *variable* or *decision variable*
- $lackbox{} f: \mathbf{R}^d
 ightarrow \mathbf{R}$ is the *objective function*
- ightharpoonup goal is to choose θ to minimize f
- $lackbox{}{} heta^{\star}$ is ${}_{optimal}$ means that for all $heta, \ f(heta) \geq f(heta^{\star})$
- $lackbox{} f^\star = f(heta^\star)$ is the ${\it optimal\ value}$ of the problem
- optimization problems arise in many fields and applications, including machine learning

Optimality condition

- ▶ let's assume that f is differentiable, i.e., partial derivatives $\frac{\partial f(\theta)}{\partial \theta_i}$ exist
- ightharpoonup if θ^{\star} is optimal, then $\nabla f(\theta^{\star}) = 0$
- ightharpoonup
 abla f(heta) = 0 is called the *optimality condition* for the problem
- lacktriangle there can be points that satisfy abla f(heta) = 0 but are not optimal
- lacktriangle we call points that satisfy $\nabla f(\theta) = 0$ stationary points
- ▶ not all stationary points are optimal

4

Solving optimization problems

- ▶ in some cases, we can solve the problem analytically
- e.g., least squares: minimize $f(\theta) = ||X\theta y||_2^2$
 - $lackbox{ }$ optimality condition is $abla f(heta) = 2X^{ extsf{T}}(X heta y) = 0$
 - lacktriangle this has unique solution $heta^\star = (X^\intercal X)^{-1} X^\intercal y = X^\dagger y$ (when columns of X are linearly independent)
- ▶ in other cases, we resort to an *iterative algorithm* that computes a sequence $\theta^1, \theta^2, \ldots$ with, hopefully, $f(\theta^k) \to f^*$ as $k \to \infty$

Iterative algorithms

- ightharpoonup iterative algorithm computes a sequence $\theta^1, \theta^2, \dots$
- $\triangleright \theta^k$ is called the kth iterate
- $\triangleright \theta^1$ is called the *starting point*
- ▶ many iterative algorithms are descent methods, which means

$$f(\theta^{k+1}) < f(\theta^k), \quad k = 1, 2, \dots$$

i.e., each iterate is better than the previous one

lacktriangle this means that $f(heta^k)$ converges, but not necessarily to f^\star

Stopping criterion

- ightharpoonup in practice, we stop after a finite number K of steps
- lacktriangle typical stopping criterion: stop if $||
 abla f(heta^k)||_2 \leq \epsilon$ or $k=k^{\mathsf{max}}$
- ightharpoonup ϵ is a small positive number, the *stopping tolerance*
- $\triangleright k^{\text{max}}$ is the maximum number of iterations
- ightharpoonup in words: we stop when θ^k is almost a stationary point
- lacktriangle we hope that $f(heta^K)$ is not too much bigger than f^\star
- $lackbox{}$ or more realistically, that $heta^K$ is at least useful for our application

Non-heuristic and heuristic algorithms

- lacktriangle in some cases we *know* that $f(\theta^k) \to f^{\star}$, for any θ^1
- ▶ in words: we'll get to a solution if we keep iterating
- ► called *non-heuristic*

- lacktriangle other algorithms do not guarantee that $f(heta^k) o f^\star$
- lacktriangle we can hope that even if $f(heta^k)
 ot \to f^\star$, $heta^k$ is still useful for our application
- ▶ called *heuristic*

Convex functions

▶ a function $f: \mathbb{R}^d \to \mathbb{R}$ is *convex* if for any θ , $\tilde{\theta}$, and α with $0 \le \alpha \le 1$,

$$f(\alpha\theta + (1-\alpha)\tilde{\theta}) \le \alpha f(\theta) + (1-\alpha)f(\tilde{\theta})$$

- lacktriangleright roughly speaking, f has 'upward curvature'
- lacksquare for d=1, same as $f''(heta)\geq 0$ for all heta

Convex optimization

optimization problem

minimize
$$f(\theta)$$

is called convex if the objective function f is convex

• for convex optimization problem, $\nabla f(\theta) = 0$ only for θ optimal, *i.e.*, all stationary points are optimal

- ▶ algorithms for convex optimization are non-heuristic
- ▶ i.e., we can solve convex optimization problems (exactly, in principle)

Convex ERM problems

- lacksquare linear prediction model $\hat{y} = heta^{\mathsf{T}} x$
- lacktriangledown regularized empirical risk function $f(\theta)=\mathcal{L}(\theta)+\lambda r(\theta)$, with $\lambda\geq 0$,

$$\mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n p(heta^ op x^i - y^i), \qquad r(heta) = q(heta_1) + \dots + q(heta_d)$$

 $lackbox{}{}$ f is convex if loss penalty p and parameter penalty q functions are convex

- ▶ convex penalties: square, absolute, tilted absolute, Huber, logistic
- ▶ non-convex penalties: log Huber, squareroot

Gradient method

Gradient method

- assume f is differentiable
- lacktriangle at iteration $heta^k$, create affine (Taylor) approximation of f valid near $heta^k$

$$\hat{f}(\theta; \theta^k) = f(\theta^k) + \nabla f(\theta^k)^T (\theta - \theta^k)$$

- $ightharpoonup \hat{f}(heta; heta^k)pprox f(heta)$ for heta near $heta^k$
- lacktriangle choose $heta^{k+1}$ to make $\hat{f}(heta^{k+1}; heta^k)$ small, but with $|| heta^{k+1}- heta^k||_2$ not too large
- ▶ choose θ^{k+1} to minimize $\hat{f}(\theta; \theta^k) + \frac{1}{2h^k} ||\theta \theta^k||_2^2$
- $ightharpoonup h^k > 0$ is a trust parameter or step length or learning rate
- ightharpoonup solution is $heta^{k+1} = heta^k h^k
 abla f(heta^k)$
- roughly: take step in direction of negative gradient

Gradient method update

ightharpoonup choose θ^{k+1} to as minimizer of

$$|f(heta^k) +
abla f(heta^k)^T (heta - heta^k) + rac{1}{2h^k} || heta - heta^k||_2^2$$

rewrite as

$$f(\theta^k) + \frac{1}{2h^k}||(\theta - \theta^k) + h^k \nabla f(\theta^k)||_2^2 - \frac{h^k}{2}||\nabla f(\theta^k)||_2^2$$

- \blacktriangleright first and third terms don't depend on θ
- ▶ middle term is minimized (made zero!) by choice

$$\theta = \theta^k - h^k \nabla f(\theta^k)$$

How to choose step length

- ▶ if h^k is too large, we can have $f(\theta^{k+1}) > f(\theta^k)$
- lacktriangle if h^k is too small, we have $f(\theta^{k+1}) < f(\theta^k)$ but progress is slow

- ▶ a simple scheme:
 - $lack ext{if } f(heta^{k+1}) \geq f(heta^k), ext{ set } h^{k+1} = h^k/2, \, heta^{k+1} = heta^k \qquad ext{ (a rejected step)}$
 - lacksquare if $f(heta^{k+1}) < f(heta^k)$, set $h^{k+1} = 1.2h^k$ (an accepted step)
- ▶ reduce step length by half if it's too long; increase it 20% otherwise

Gradient method summary

choose an initial
$$\theta^1 \in \mathbf{R}^d$$
 and $h^1 > 0$ (e.g., $\theta^1 = 0$, $h^1 = 1$)

for
$$k = 1, 2, \ldots, k^{\text{max}}$$

- 1. compute $\nabla f(\theta^k)$; quit if $||\nabla f(\theta^k)||_2$ is small enough
- 2. form tentative update $\theta^{\text{tent}} = \theta^k h^k \nabla f(\theta^k)$
- 3. if $f(\theta^{\mathrm{tent}}) < f(\theta^k)$, set $\theta^{k+1} = \theta^{\mathrm{tent}}$, $h^{k+1} = 1.2 h^k$
- 4. else set $h^k := 0.5h^k$ and go to step 2

Gradient method convergence

▶ (assuming some technical conditions hold) we have

$$||
abla f(heta^k)||_2 o 0$$
 as $k o \infty$

- ▶ i.e., the gradient method always finds a stationary point
- ▶ for convex problems
 - gradient method is non-heuristic
 - lackbox for any starting point $heta^1$, $f(heta^k) o f^\star$ as $k o \infty$
- ▶ for non-convex problems
 - gradient method is heuristic
 - lacktriangle we can (and often do) have $f(heta^k)
 eq f^\star$

Example: Convex objective

- ▶ *f* is convex
- \blacktriangleright optimal point is $\theta^* = (2/3, 2/3)$, with $f^* = 1/9$

Example: Convex objective

- igwedge $f(heta^k)$ is a decreasing function of k, (roughly) exponentially
- $lacksquare ||
 abla f(heta^k)|| o 0 ext{ as } k o \infty$

Example: Non-convex objective

- $f(\theta) = \frac{1}{3} (p^{\mathsf{lh}}(\theta_1 + 3) + p^{\mathsf{lh}}(2\theta_2 + 6) + p^{\mathsf{lh}}(\theta_1 + \theta_2 1))$
- ightharpoonup f is sum of log-Huber functions, so not convex
- ▶ gradient algorithm converges, but limit depends on initial guess

Example: Non-convex objective

Example: Non-convex objective

Gradient method for ERM

Gradient of empirical risk function

- lacktriangledown predictor is $\hat{y}=g_{ heta}(x)$; we consider case of scalar y
- empirical risk is sum of terms for each data point

$$\mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n \ell(\hat{y}^i, y^i) = rac{1}{n} \sum_{i=1}^n \ell(g_{ heta}(x^i), y^i)$$

- lacktriangle convex if loss function ℓ is convex in first argument and predictor is linear, i.e., $g_ heta(x)= heta^ op x$
- gradient is sum of terms for each data point

$$abla \mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n \ell'(g_{ heta}(x^i), y^i)
abla g_{ heta}(x^i).$$

- $lackbox{} \ell'(\hat{y},y)$ is derivative of ℓ with respect to its first argument \hat{y}
- $ightharpoonup
 abla g_{ heta}(x)$ is the gradient of $g_{ heta}(x)$ with respect to heta

Evaluating gradient of empirical risk function

- lacktriangle assume linear predictor, $g_{ heta}(x) = heta^{ extsf{T}} x$, so $abla g_{ heta}(x) = x$
- gradient is

$$abla \mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n \ell'(heta^{ extsf{T}} x^i, y^i) x^i$$

- lacksquare compute n-vector $\hat{y}^k = X heta^k$
- lacktriangledown compute n-vector z^k , with entries $z^k_i=\ell'(\hat{y}^k_i,y^i)$
- ightharpoonup compute *d*-vector $\nabla \mathcal{L}(\theta^k) = (1/n)X^Tz^k$
- ▶ first and third steps are matrix-vector multiplication, each costing 2nd flops
- ightharpoonup second step costs order n flops (dominated by other two)
- ▶ total is 4nd flops

Validation

- > can evaluate performance measure on train and test data sets as gradient method runs
- > predictor is often good enough well before gradient descent has converged
- ▶ optimization is only a surrogate for what we want (i.e., a predictor that predicts well on unseen data)