

Claims

1. A method for producing a mixture of a 5α -pregnane derivative represented by the formula (II):

5 wherein R¹¹ and R¹² are each independently a hydrogen atom or a hydroxyl-protecting group, and a 5α -pregnane derivative represented by the formula (III):

wherein R¹¹ and R¹² are as defined above, which comprises
10 reacting a pregnane derivative represented by the formula (I):

wherein R¹ is a hydroxyl-protecting group and R² is a hydrogen atom or a hydroxyl-protecting group, with a metal selected from alkali metals and alkaline earth metals in the presence
15 of a proton donor and an amine and/or ammonia.

2. The method of claim 1, wherein R² and R¹² are hydrogen atoms.

3. The method of claim 2, wherein R¹ and R¹¹ are tri-substituted
20 silyl groups having three, same or different, substituents selected from the group consisting of an alkyl group

optionally having substituent(s), an aryl group optionally having substituent(s), an alkoxy group optionally having substituent(s) and an aryloxy group optionally having substituent(s).

5

4. The method of claim 3, wherein R¹ and R¹¹ are tert-butyldimethylsilyl groups.

5. The method of any one of claims 1 to 4, wherein the metal
10 is an alkali metal.

6. The method of claim 5, wherein the alkali metal is lithium.

7. A method for producing a mixture of (20S)-7 α ,21-dihydroxy-
15 20-methyl-5 α -pregn-3-one represented by the formula (VI):

and (20S)-7 α ,21-dihydroxy-20-methyl-5 α -pregn-1-en-3-one represented by the formula (VII):

20 , which comprises the steps of

(a) reacting a pregnane derivative represented by the formula (I):

(I)

wherein R¹ is a hydroxyl-protecting group and R² is a hydrogen atom or a hydroxyl-protecting group, with a metal selected from alkali metals and alkaline earth metals in the presence
5 of a proton donor and an amine and/or ammonia to give a mixture of a 5 α -pregnane derivative represented by the formula (IV) :

(IV)

wherein R²¹ is a hydroxyl-protecting group and R²² is a hydrogen atom or a hydroxyl-protecting group, and a 5 α -pregnane derivative represented by the formula (V) :

(V)

wherein R²¹ and R²² are as defined above; and
15 (b) eliminating the hydroxyl-protecting groups of the mixture obtained by the aforementioned step.

8. The method of claim 7, wherein R² and R²² are hydrogen atoms.

9. The method of claim 8, wherein R¹ and R²¹ are tri-substituted
20 silyl groups having three, same or different, substituents selected from the group consisting of an alkyl group

optionally having substituent(s), an aryl group optionally having substituent(s), an alkoxy group optionally having substituent(s) and an aryloxy group optionally having substituent(s).

5

10. The method of claim 9, wherein R¹ and R²¹ are tert-butyldimethylsilyl groups.

11. The method of any one of claims 7 to 10, wherein the metal
10 is an alkali metal.

12. The method of claim 11, wherein the alkali metal is lithium.