Sp18 CS 61B Discussion 10

Welcome!

Wayne Li

wli2@berkeley.edu

https://wayne-li2.github.io/

Announcements

- Done with MT2!
- We'll be grading through the week (hopefully not into Spring Break)
- No quiz
- Not doing worksheet but take one for scratch paper

Quiz Instructions

- If you haven't yet, please also neatly put your email address outside the name box if you want to be emailed!
- Bubble number 41.

Aside

- Simple yet classic problem
- Given a point (x, y) and a dataset of (x_i, y_i):
 - Find the k-nearest points (Euclidean distance) to the input point.
- Come up with an naive algorithm!
 - Hint: Use a data structure we recently learned!

- Use a max-heap (not a min-heap!) of size k to maintain nearest neighbors.
- peek() returns the kth nearest element found so far
- For each value v, if v is closer than peek(), then pop().
 - Then, add v to the heap.

What's the runtime?

- What's the runtime?
 - \circ O(nd + n log k)
- What's d?

- What's the runtime?
 - \circ O(nd + n log k)
- What's d?
 - d is the dimensions of your point.
 - If our points are in 3 dimensions (x, y, z), then calculating the distance will take longer.

- At d ~ 30, this algorithm becomes kind of slow (practical terms).
 - Your first experience with big data, and how linear runtimes are no longer good enough.
 - Can we get a sublinear query time with respect to n?
 - Remember, in big data, n >>>> k

What about a quadtree for k dimensions?

- What about a quadtree for k dimensions?
 - Quickly infeasible.
 - o 2D -> 4 children.
 - o 3D -> 8 children.
 - 4D -> 16 children.
 - That's a lot of hardcoded children

- Use a k-D Tree!
 - Exactly like a binary search tree!
 - Except each layer is a separate decision.
- Note: k-NN is just one application of the k-D tree
- Note 2: The "k" in k-NN means something different than the "k" in "k-D tree".

- Example: 2-D Tree
- Root -----> (8, 8) Compare x values.
- Less than x
 / Greater than x
- Children ----> (4, **10**) (12, **2**)
- Less than y / \ / Greater than y

Compare y values.

• ...and repeat

- Result: Partition a k-D space.
- What's the runtime to build a k-D tree?

- Result: Partition a k-D space.
- What's the runtime to build a k-D tree with **n** points?
 - O(n log n)

- Is O(n log n) to build a good runtime?
 - Yes! Hopefully, you only build the tree once, and query it a billion times.
 - If your query is sublinear, then overall it is a good tradeoff.

A's children have all been searched, B is the best estimate for entire tree

- Can we modify this algorithm for k-nearest neighbors?
 - Hint: Same idea as before...

- Can we modify this algorithm for k-nearest neighbors?
 - Hint: Same idea as before...
- Use a max-heap!

- Runtime of k-NN with k-D tree?
 - We know it is O(n log n) to build tree.
 - What about query time?

- At worst, check every single node.
- \sim O(nd + n log k)
 - Actually $O(dn^{1} 1/d) + n^{1} 1/d \log k$
 - As d increases, runtime -> O(nd + n log k)
- How to fix?

Approximate k-NN search (CS 170)

- Use an approximation algorithm!
 - In this case, shrink the "circle" by epsilon length.
 - Thus, search less branches.
- In practice, 10x to 100x speed up.

Advanced Topics

- Random projections! (CS 174)
 - Say d = 1000. Infeasible even for k-D tree.
 - Instead, randomly select 100 dimensions!
 - You'll still be pretty accurate (proof is hard)
- ... so much more

Moral of the Story

- CS 189 is probably the coolest class at Berkeley!
 - Prof. Shewchuk is probably the best professor I've ever had as well.
- Mathematics is an important side-skill to CS!

References

- Prof. Shewchuk's notes on k-NN:
 - https://people.eecs.berkeley.edu/~jrs/189/lec/24.p
 df
 - https://people.eecs.berkeley.edu/~jrs/189/lec/25.p
 df
- https://en.wikipedia.org/wiki/K-d_tree

Tree Traversals

Tree Traversals

- Depth First
 - Preorder (DBACFEG)
 - Inorder (ABCDEFG)
 - Postorder (ACBEGFD)

Recursive Preorder

- preOrder(Node n):
 - Process(n)
 - preOrder(n.left)
 - preOrder(n.right)

Do: Recursive Inorder/Postorder

Recursive Inorder

- inOrder(Node n):
 - inOrder(n.left)
 - Process(n)
 - o inOrder(n.right)

Recursive Postorder

- postOrder(Node n):
 - postOrder(n.left)
 - postOrder(n.right)
 - Process(n)

Do: Iterative Preorder

Hint: Use a data structure!

- Hint: Use a data structure!
 - Stack!

- iterativePreOrder(Tree t):
 - Create stack S, add t.root
 - o while S not empty:
 - n = S.pop(), then process(n)
 - S.push(n.right), then S.push(n.left)

Why do we push the right one first?

- Why do we push the right one first?
 - So on the stack, we pop left, then right.

Do: Iterative Inorder (Hard!)

Hint: Use a data structure!

- Hint: Use a data structure!
- Hint 2: It's the same data structure as before.

- Hint: Use a data structure!
- Hint 2: It's the same data structure as before.
- Hint 3: You need an additional pointer.

- iterativeInOrder(Tree t):
 - Create stack S, leave it empty
 - Set pointer current = t.root

- iterativeInOrder(Tree t):
 - Create stack S, leave it empty
 - Set pointer current = t.root
 - while (current != null): // findLeftmostNode(current)
 - S.push(current)
 - current = current.left

- iterativeInOrder(Tree t):
 - O ...
 - while S not empty:
 - $\mathbf{n} = \mathbf{S.pop()}$, then $\mathbf{process(n)}$
 - if n.right exists:
 - n = n.right, then findLeftmostNode(n)

Do: Iterative Postorder (Really Hard!)

Hint: Using one stack is possible, but super hard

Iterative Postorder: Find it!

• Answer: 4, 5, 2, 6, 7, 3, 1

- Answer: 4, 5, 2, 6, 7, 3, 1
- Hint: Reverse this order:
 - 0 1, 3, 7, 6, 2, 5, 4
 - What does this sorta look like to you?

- It's a preorder traversal that goes root, right, left!
 - Instead of the usual root, left, right.
- With this in mind, what are some ways we can get the reverse of a preorder traversal?
 - Hint: Use a data structure.

- It's a preorder traversal that goes root, right, left!
 - Instead of the usual root, left, right.
- With this in mind, what are some ways we can get the reverse of a preorder traversal?
 - Hint: Use a data structure.
 - Use a stack!

- iterativePostOrder(Tree t):
 - Create stack S, add t.root
 - Create result stack R
 - o while S not empty:
 - $\mathbf{n} = \mathbf{S.pop()}$, then $\mathbf{R.push(n)}$
 - S.push(n.left), then S.push(n.right) // Swapped!

- iterativePostOrder(Tree t):
 - O ...
 - o while S not empty:
 - $\mathbf{n} = \mathbf{S.pop()}$, then $\mathbf{R.push(n)}$
 - S.push(n.left), then S.push(n.right) // Swapped!
 - while R not empty: process(R.pop())