Tackling Super Smash Bros. Melee with Deep RL

Vlad Firoiu

A series of attacks ending in a KO.

Top-level gameplay. Not sped up!

"Yomi" in Melee

"Yomi" in Melee

The RL Environment

- Environment simulated with the Dolphin emulator
 - 1-2x real time on server hardware (no graphics)
- Game state is read from RAM on each frame
 - Player positions, velocities, facing direction, etc
 - 382 (!) action states (running, jumping, attacking)
 - mostly observable
- Action space
 - Full controller has 2 analog control sticks, 7 buttons, 2 triggers.
 - Compressed down to ~50 discrete actions.
- Reward structure
 - +/- 1 for kills/deaths
 - +/- 0.01 for damage dealt/taken

Methods

- RL: Importance-Weighted Advantage Actor-Critic (IMPALA)
 - o 50-200 environments per experiment.
 - Early versions had no importance weighting.
- DL: small MLP
 - Initially frame stacking.
 - Later added a GRU.
- Symmetric self-play
 - Against exact same parameters → double throughput.
 - Against mixture of old checkpoints.
 - Indicates rate of improvement over time.
 - Modern solution is AlphaStar League.

Results

After 1 day: garbage. Left the experiment running and forgot about it.

After 1 week... very strong, better than me.

After 1 more week, could beat professional players.

Rank	Kills	Deaths	
16	4	2	
31	4	1	
41	8	5	
49	3	2	
50	4	3	
51	6	4	
59	12	8	
61	12	5	
64	8	5	
70	4	1	
	16 31 41 49 50 51 59 61 64	16 4 31 4 41 8 49 3 50 4 51 6 59 12 61 12 64 8	

Limitations

A simple exploit.

Inhuman speed and reaction time.

Deep RL with Action Delay

- Action delay levels the playing field between human and Al
 - Removes "degenerate" inhuman behavior
- Humans have ~300ms visual reaction time
 - Varies with complexity of task (250-800)
 - Corresponds to 6 agent actions
- Issues for Deep RL
 - Makes credit assignment harder
 - Makes control much harder
 - Correct action depends on heavily on unknown future state

Deep RL with Action Delay

(a) An agent unrolled over time.

(b) A delayed agent unrolled over time.

The Action Delay Problem: SSBM

Training vs. the in-game AI with delays of 0 (light blue), 1(magenta), 2 (orange), 4 (dark blue) and 5 (brown) agent steps. Each agent step is 50 ms.

The Action Delay Problem: Atari

IMPALA trained on Atari with between 0 and 5 steps of delay (up to 333ms).

Solution: "Undoing" Delay

- We perceive moving objects slightly ahead in space.
 - See "Flash-Lag Effect", an optical illusion.
- Use a learned environment model to do the same.
 - Gives the policy a better estimate of the future state.

Results of Undoing Delay

Delay 4 against in-game AI, predicting 0 (blue), 2 (red) and 4 (orange) frames into the future.

Three delay=4 agents co-training for two days.

Results vs. Human Opponents

Good, but not superhuman.

More "human-like" than before, but still relies on very precise reactions.

Later agents went up to 300ms, but fell short of pro level.

Agent				
Delay	Prediction Steps	Days Trained	Wins Loss	Losses
6	0	7	0	6
	6	3	3	5
7	7	10	2	5

Performance against Professor Pro, a top-50 player.

Each win/loss is in a 4-stock match.

For this agent, 7 frames = 233ms.

Remarks & Future Work

- Delay not solved yet
 - Opponent is considered part of environment
 - Could combine MuZero with delay
- Exploration not solved yet
 - RL alone can't discover some important techniques and strategies
 - OpenAl 5 needed heavy reward shaping
 - AlphaStar used millions of human games
- Imitation learning for Smash Bros
 - Already a dataset of 100K tournament matches
 - Many more games are being recorded in the online "covid" era