



# HNDIT1032 Computer and Network Systems

Week4- Karnaugh Maps



#### Introduction

- So far we can see that applying Boolean algebra can be awkward in order to simplify expressions.
- The Karnaugh map provides a simple and straight-forward method of minimizing Boolean expressions



## What is a Karnaugh map?

 A Karnaugh map provides a pictorial method of grouping together expressions with common factors and therefore eliminating unwanted variables.

#### STIATE

## Two Variable K Maps

- Two variable K Map is drawn for a boolean expression consisting of two variables.
- The number of cells present in two variable K Map =  $2^2$  = 4 cells.
- So, for a Boolean function consisting of two variables, we draw a 2 x 2 K Map.



## Two Variable K Maps...





## Two Variable K Maps...

| A | В | F  |
|---|---|----|
| 0 | 0 | 0  |
| 0 | 1 | 1  |
| 1 | 0 | 1- |
| 1 | 1 | 1  |
|   |   |    |

Truth Table.



F.

#### SLIATE SLIATE

## Three Variable K Maps

- Three variable K Map is drawn for a Boolean expression consisting of three variables.
- The number of cells present in three variable K Map =  $2^3$  = 8 cells.
- So, for a Boolean function consisting of three variables, we draw a 2 x 4 K Map.



## Three Variable K Maps...

| Α | В | С | Minterm                          |
|---|---|---|----------------------------------|
| 0 | 0 | 0 | $m_0$                            |
| 0 | 0 | 1 | $m_1$                            |
| 0 | 1 | 0 | $m_2$                            |
| 0 | 1 | 1 | $m_3$                            |
| 1 | 0 | 0 | $m_4$                            |
| 1 | 0 | 1 | $m_{\scriptscriptstyle 5}$       |
| 1 | 1 | 0 | $m_{_{\!\scriptscriptstyle{6}}}$ |
| 1 | 1 | 1 | $m_7$                            |
|   |   |   |                                  |

| A BC | 00 | 01 | 11 | 10 |
|------|----|----|----|----|
| 0    | m0 | m1 | m3 | m2 |
| 1    | m4 | m5 | m7 | m6 |



## Three Variable K Maps...





## Karnaugh Maps - Rules of Simplification

- No zeros allowed.
- No diagonals.
- Only power of 2 number of cells in each group.
- Groups should be as large as possible.
- Every one must be in at least one group.
- Overlapping allowed.
- Wrap around allowed.
- Fewest number of groups possible.



## Karnaugh Maps - Rules of Simplification...

· Groups may not include any cell containing a zero



• Groups may be horizontal or vertical, but not diagonal.





## Karnaugh Maps - Rules of Simplification...

Groups must contain 1, 2, 4, 8, or in general 2<sup>n</sup> cells.
 That is if n = 1, a group will contain two 1's since 2<sup>1</sup> = 2.
 If n = 2, a group will contain four 1's since 2<sup>2</sup> = 4.





## Karnaugh Maps - Rules of Simplification...

· Groups may overlap.



## Example 01

•  $F(A,B) = A\overline{B} + AB$ 

| BA | 0 | 1                            |
|----|---|------------------------------|
| 0  |   | $\lceil \overline{1} \rceil$ |
| 1  |   | 1                            |



## Example 01...

- The two adjacent 1's are grouped together.
   Through inspection it can be seen that variable B has its true and false form within the group.
- This eliminates variable B leaving only variable A which only has its true form. The minimized answer therefore is Z = A.

#### **⊗** SLIATE

## Example 02

• 
$$F(A,B) = \bar{A}\bar{B} + A\bar{B} + \bar{A}B$$



## Example 02



#### SLIATE

## Example 03

•  $F(A,B) = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C$ 



## Example 03

•  $F(A,B) = \overline{A}\overline{B} + A\overline{B} + \overline{A}B$ 



#### **⊗** SLIATE

## Example 04

•  $F(A,B) = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + \bar{A}BC + \bar{A}B\bar{C}$ 

#### **⊗** SUATE

## Example 04

•  $F(A,B) = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + \bar{A}BC + \bar{A}B\bar{C}$ 

Out = 
$$\overline{A}\overline{B}\overline{C}$$
 +  $\overline{A}\overline{B}C$  +  $\overline{A}BC$  +  $\overline{A}BC$  +  $\overline{A}B\overline{C}$ 

Out =  $\overline{A}$ 

Out =  $\overline{A}$ 

#### **⊗** SLIATE

## Example 05

•  $F(A,B) = \bar{A}\bar{B}C + \bar{A}BC + A\bar{B}C + ABC$ 

#### SI !!ATE

### Example 05

•  $F(A,B) = \bar{A}\bar{B}C + \bar{A}\bar{B}C + \bar{A}BC + \bar{A}B\bar{C}$ 



3. 
$$F(A,B,C) = \overline{A}\overline{B} + A\overline{B} + \overline{A}B$$

4. 
$$F(A,B,C) = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + \bar{A}BC + \bar{A}B\bar{C}$$

5. 
$$F(A,B,C) = \overline{A}\overline{B}C + \overline{A}BC + A\overline{B}C + ABC$$



### **Next Week Discussion**

How to draw circuits?