#### Ejercicio 1.1

uve = sqrt(2)\*despejamiento./R1;

porcentaje = (despejamiento./R1)\*100;



#### Ejercicio 1.3

```
clear; clc;
f = 2.3e9;
c=3e8;
lambda= c/f;
% Alturas, distancia y radio en metros
d = 20.09e3; %en Km
R0 =6370e3;
e = [796 800 803 799 805];
a = [10 \ 0 \ 0 \ 0 \ 8];
d1 = [0 \ 0.806e3 \ 1.910e3 \ 3.721e3 \ d];
d2 = \bar{d} - d1;
         ______
k = 4/3;
Re = R0*k;
dmax = sqrt(2*Re)*(sqrt(e(1)+a(1))+sqrt(e(end)+a(end)));
%Como hay obstáculos, solo existen pérdidas por difracción
    "Hay pérdidas por difracción"
  %parámetros
   flecha = d1.*d2/(2*Re);
   altura_rayo = ((e(end)+a(end)-e(1)-a(1))/d) * d1 + e(1)+a(1);
   despejamiento = e + flecha - altura_rayo;
   R1 = sqrt(lambda*d1.*d2/d); %Altura del primer rayo de Fresnel
   uve = sqrt(2)*despejamiento./R1;
   %Metodo 3: 3 obstáculos
   %Obstaculo a la izquierda del dominante
   do1_o2_SI = d1(3)-d1(2); %distancia entre obstaculo dominante y obstaculo izquierdo
   flecha_SI = do1_o2_SI*d1(2)/(2*Re);
   altura_rayo_SI = ((e(1)+a(1)-e(3))*do1_o2_SI/d1(3))+e(3);
   despejamiento_SI = e(2) + flecha_SI - altura_rayo_SI;
   R1_SI = sqrt(lambda*do1_o2_SI*d1(2)/d1(3)); %Altura del primer rayo de Fresnel
   uve_SI = sqrt(2)*(despejamiento_SI/R1_SI);
    Ldif_vpSI = 6.9 + 20*log10(sqrt((uve_SI-0.1)^2+1)+uve_SI-0.1);
%______
   %Obstaculo a la derecha del dominante
   do2_o3_SD = d1(4)-d1(3); %distancia entre obstaculo dominante y obstaculo derecho
   flecha_SD = do2_o3_SD*d2(4)/(2*Re);
   altura_rayo_SD = ((a(end)+e(end)-e(3))*do2_o3_SD/d2(3))+e(3);
   despejamiento_SD = e(4) + flecha_SD - altura_rayo_SD;
   R1_SD = sqrt(lambda*do2_o3_SD*d2(4)/d2(3)); %Altura del primer rayo de Fresnel
   uve_SD = sqrt(2)*(despejamiento_SD/R1_SD);
   Ldif_vpSD = 6.9 + 20*log10(sqrt((uve_SD-0.1)^2+1)+uve_SD-0.1);
```

| <b>⊞</b> a                  | [10,0,0,0,8]                         |
|-----------------------------|--------------------------------------|
| ដ altura_rayo               | [806,806.2808,806.6655,807.2965,813] |
| ដ altura_rayo_SD            | 803.9961                             |
| ่ altura_rayo_SI            | 804.7340                             |
| str ans                     | "Hay pérdidas por difracción"        |
| <del>L</del> c              | 300000000                            |
| <b></b> C                   | 10.8036                              |
| d d                         | 20090                                |
| <b>⊞</b> d1                 | [0,806,1910,3721,20090]              |
| <b>⊞</b> d2                 | [20090,19284,18180,16369,0]          |
| despejamiento despejamiento | [-10,-5.3658,-1.6213,-4.7108,-8]     |
| despejamiento_SD            | -3.2510                              |
| despejamiento_SI            | -4.6816                              |
| dmax                        | 2.3453e+05                           |
| do1_o2_SI                   | 1104                                 |
| do2_o3_SD                   | 1811                                 |
| <del>∐</del> e              | [796,800,803,799,805]                |
| <mark>⊞</mark> f            | 2.3000e+09                           |
| 🛗 flecha                    | [0,0.9150,2.0442,3.5857,0]           |
| 🖶 flecha_SD                 | 1.7451                               |
| flecha_SI                   | 0.0524                               |
| <u></u> k                   | 1.3333                               |
| Lad_dB                      | 12.2260                              |
| lambda                      | 0.1304                               |
| Ldif_vd                     | 4.7277                               |
| Ldif_vpSD                   | 3.3895                               |
| Ldif_vpSI                   | -0.4404                              |
| H RO                        | 6370000                              |
| <u>₩</u> R1                 | [0,10.0455,15.0148,19.8860,0]        |
| R1_SD                       | 14.5838                              |
|                             | 7.7953                               |
| ₩ Re                        | 8.4933e+06                           |
| <b>⊞</b> T                  | 0.5452                               |
| uve                         | [-Inf,-0.7554,-0.1527,-0.3350,-Inf]  |
| uve_SD                      | -0.3153                              |
| uve_SI                      | -0.8493                              |
|                             |                                      |
|                             |                                      |

# Ejercicio 4.1

1. Calculad con PROYECTO RADIO las alturas de las antenas para que se cumpla la condición de despejamiento suficiente para la atmósfera estándar.

La altura de la antena 1 debe ser de 17 metros y la altura de la antena 2 debe ser de 12 metros para que se cumpla la condición de despejamiento suficiente (55.5%) siendo el parámetro de difracción <=-0.78.



# <u>4.2</u>

```
clear;clc;
f = 2.3e9;
c=3e8;
lambda= c/f;
% Alturas, distancia y radio en metros
d = 20.09e3; \%en Km
R0 =6370e3;
e = [796 803 799 805];
a = [17 \ 0 \ 0 \ 12];
d1 = [0 \ 1.910e3 \ 3.721e3 \ d];
d2 = d - d1;
Ptx_dBm = 23;
G_dB = 19;
Lt_dB = 1;
% -----
k = 4/3;
Re = R0*k;
dmax = sqrt(2*Re)*(sqrt(e(1)+a(1))+sqrt(e(end)+a(end)));
% -----
%Como hay obstáculos, solo existen pérdidas por difracción "Hay pérdidas por difracción"
```





La potencia recibida es -66.7359dBm la cual es mayor al umbral, -70.5dBm, por tanto, el servicio es viable.

No hay pérdidas por difracción ya que al imponer nosotros el porcentaje de despejamiento mínimo para que no afecten los obstáculos (55.5%), las alturas estarán colocadas de tal manera que no existan estas pérdidas, por tanto Lad = 0.

### Ejercicio 4.3



Al modificar K con 2/3, la potencia recibida cambiará a -77.3283dBm lo cual es menor que el umbral, que es -70.5dBm, por tanto, el servicio no se puede dar.

Se tienen perdidas por difracción al ser el despejamiento

>= -0.78, siendo Lad = 10.59dB.

La variación del factor de K afecta en la elevación de nuestro terreno, cuanto menor sea el factor mayor será la elevación y mayores serán las pérdidas de difracción al disminuir este factor.

