Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий

Дисциплина:

«Организация и обеспечение аудита настроек средств защиты информации»

ОТЧЕТ ПО МОДУЛЮ №1

«Угрозы ИБ»

Чу Ван Доан, студент группы N3347
Dow!
(подпись)
Проверил:
Пенин Андрей Семенович
-
(отметка о выполнении)

(подпись)

Выполнил:

Содержание

Содержание	2
Введение	
Задание	5
Ход работы	6
1. Атака с использованием фишинга	6
1.1. Вид угрозы	
1.2. Источник угрозы	
1.3. Способ реализации	6
1.4. Цель	7
1.5. Меры предосторожности	7
1.5.1. Технические меры	7
1.5.2. Организационные меры	8
2. DDoS-атака на корпоративный веб-сайт	8
2.1. Вид угрозы	9
2.2. Источник угрозы	9
2.3. Способ реализации	9
2.4. Цель	10
2.5. Меры предосторожности	10
2.5.1. Технические меры	10
2.5.2. Организационные меры	11
3. Взлом Wi-Fi-сети	12
3.1. Вид угрозы	12
3.2. Источник угрозы	12
3.3. Способ реализации	13
3.4. Цель	14
3.5. Меры предосторожности	14
3.5.1. Технические меры	14
3.5.2. Организационные меры	
4. Разглашение информации в социальных сетях	16
4.1. Вид угрозы	16
4.2. Источник угрозы	16
4.3. Способ реализации	17
4.4. Цель	17
4.5. Меры предосторожности	18
4.5.1. Технические меры	18
4.5.2. Организационные меры	18
5. Отсутствие регулярного резервного копирования	
5.1. Вид угрозы	
5.2. Источник угрозы	20

Список использованных источников	
Заключение	24
5.5.2. Организационные меры	22
5.5.1. Технические меры	21
5.5. Меры предосторожности	21
5.4. Цель	21
5.3. Способ реализации	20

Введение

Цель работы – Анализ инцидентов информационной безопасности.

Для достижения поставленной цели необходимо решить следующие задачи:

- Выбрать 5 случайных инцидентов (из списка 20 инцидентов информационной безопасности).
- Определить угрозы (связанные с каждым инцидентом), включая:
 - Вид угрозы.
 - Источник угрозы.
 - Способ реализации.
 - Цель угрозы.
- Предложить меры предотвращения (включая не менее 2 мер техническую и организационную для каждой угрозы).

Задание

2. Атака с использованием фишинга

Сотрудник получил письмо, якобы от имени банка, с просьбой перейти по ссылке и ввести учетные данные. После выполнения действий злоумышленники получили доступ к внутренним системам компании.

7. DDoS-атака на корпоративный веб-сайт

Злоумышленники инициировали распределенную атаку (DDoS) на веб-ресурсы компании, что привело к нарушению их доступности для клиентов.

10. Взлом Wi-Fi-сети

Злоумышленники атаковали недостаточно защищенную корпоративную Wi-Fi-сеть, используя атаку злоумышленника "посередине" (МІТМ), и перехватили сетевой трафик, включая учетные данные для доступа к внутренним системам.

14. Разглашение информации в социальных сетях

Сотрудники непреднамеренно или намеренно разглашают корпоративную информацию или делятся конфиденциальными данными в соцсетях, что наносит ущерб компании.

20. Отсутствие регулярного резервного копирования

Компания не поддерживает регулярное создание резервных копий данных, что увеличивает риск их полной утраты в случае аварий или кибератак.

Хол работы

1. Атака с использованием фишинга

Сотрудник получил письмо, якобы от имени банка, с просьбой перейти по ссылке и ввести учетные данные. После выполнения действий злоумышленники получили доступ к внутренним системам компании.

1.1. Вид угрозы

Это фишинговая атака (Phishing Attack), а именно целевой фишинг (spear-phishing), когда электронное письмо персонализировано и нацелено на конкретного сотрудника компании, выдавая себя за доверенную организацию (банк).

1.2. Источник угрозы

Источник атаки может быть следующим:

- Поддельное электронное письмо, отправленное извне, использующее адрес, похожий на настоящий адрес банка (email spoofing).
- Фальшивый веб-сайт, созданный с целью имитации официального сайта банка для кражи учетных данных.
- Внешний злоумышленник может быть как независимым хакером, так и организованной киберпреступной группой с конкретной целью.

1.3. Способ реализации

- Отправка поддельного электронного письма злоумышленник использует технику email spoofing или домен, схожий с официальным доменом банка, чтобы обмануть жертву и вызвать доверие.
- Вставка вредоносной ссылки письмо содержит ссылку, ведущую на фальшивый веб-сайт, который визуально идентичен официальному сайту банка.
- Кража учетных данных сотрудник вводит логин и пароль на поддельном сайте, после чего информация немедленно передается злоумышленнику.
- Доступ к внутренним системам используя похищенные учетные данные, атакующий входит в критически важные системы компании.

• Эскалация привилегий (Privilege Escalation) – если украденный аккаунт обладает высокими правами доступа, злоумышленник может получить контроль над важными системами или установить вредоносное ПО для дальнейшего распространения атаки.

1.4. Цель

- Компрометация учетных данных злоумышленник использует украденные логины и пароли для проникновения во внутреннюю систему компании.
- Кража критически важной информации доступ к финансовым данным, информации о клиентах и другим конфиденциальным сведениям компании.
- Установка вредоносного ПО или ransomware атакующий может зашифровать файлы компании и потребовать выкуп за их восстановление.
- Использование скомпрометированных учетных записей проведение несанкционированных финансовых операций или организация внутренних атак (insider attack).

1.5. Меры предосторожности

1.5.1. Технические меры

- Настройка защиты электронной почты (Email Security)
- Внедрение DMARC, SPF, DKIM для предотвращения подделки писем.
- Использование фильтрации электронной почты для выявления писем с фишинговыми ссылками.
- Защита браузера и контроль доступа к веб-ресурсам
- Применение Web Filtering для блокировки доступа к фальшивым сайтам.
- Использование HTTPS Inspection для анализа и проверки содержимого веб-страниц.
- Двухфакторная аутентификация (Multi-Factor Authentication MFA)
- Обязательное использование 2FA/MFA при входе во внутренние системы.
- Использование приложений ОТР вместо SMS для снижения риска атак "человек посередине" (МІТМ).
- Мониторинг и обнаружение вторжений
- Внедрение SIEM (Security Information and Event Management) для отслеживания подозрительных попыток входа.

- Настройка оповещений при входе с неизвестного IP-адреса или устройства.
- Ограничение доступа и защита данных
- Применение принципа минимально необходимого доступа (Principle of Least Privilege PoLP).
- Использование Data Loss Prevention (DLP) для предотвращения утечек критически важной информации.
- Шифрование и защита учетных данных
- Применение менеджеров паролей для безопасного хранения учетных записей.
- Шифрование конфиденциальных данных при передаче и хранении.

1.5.2. Организационные меры

- Обучение сотрудников кибербезопасности
- Проведение регулярных тренингов по распознаванию фишинговых писем.
- Имитация фишинговых атак для проверки реакции сотрудников.
- Процедуры аутентификации критически важных запросов
- Запрет выполнения финансовых операций или передачи конфиденциальных данных через электронную почту без подтверждения через официальный канал.
- Внедрение двойного подтверждения (dual approval) для критически важных транзакций.
- Политика реагирования на инциденты
- Разработка плана реагирования на фишинговые атаки.
- Внедрение процедуры быстрой отчетности о подозрительных письмах, чтобы сотрудники могли немедленно сообщать о выявленных угрозах.
- Периодические проверки безопасности
- Проведение тестов на проникновение (penetration testing) для оценки уязвимостей.
- Анализ логов доступа для выявления подозрительной активности.

2. DDoS-атака на корпоративный веб-сайт

Злоумышленники инициировали распределенную атаку (DDoS) на веб-ресурсы компании, что привело к нарушению их доступности для клиентов.

2.1. Вид угрозы

Это атака распределенного отказа в обслуживании (Distributed Denial-of-Service – DDoS Attack), при которой злоумышленник использует большую сеть скомпрометированных устройств (ботнет), чтобы отправить огромный объем поддельного трафика на веб-сайт компании, перегружая его и вызывая сбои в работе сервиса.

2.2. Источник угрозы

- Botnet сеть компьютеров, зараженных вредоносным ПО и находящихся под контролем хакеров. Она может включать от тысяч до миллионов устройств по всему миру.
- Устройства IoT слабо защищенные устройства Интернета вещей (IoT), которые злоумышленники используют для участия в атаке.
- Арендованные DDoS-атаки некоторые хакерские группы предлагают DDoS-услуги на даркнете, позволяя злоумышленникам арендовать ботнет для проведения атак.
- Внутренние атаки (Insider Attack) в некоторых случаях атака DDoS может исходить изнутри организации, например, по вине недовольного сотрудника.

2.3. Способ реализации

Атака может быть осуществлена различными методами:

Атаки, перегружающие полосу пропускания (Volume-based Attacks)

- UDP Flood отправка большого количества поддельных UDP-пакетов на целевой сервер, чтобы занять доступную полосу пропускания.
- ICMP Flood (Ping Flood) массовая отправка ICMP-запросов (ping) на сервер, что приводит к перегрузке системы.
- DNS Amplification использование открытых DNS-серверов для отправки увеличенных ответов на жертву, перегружая сеть.

Атаки, истощающие ресурсы сервера (Protocol-based Attacks)

- SYN Flood отправка множества TCP-запросов без завершения трехстороннего рукопожатия (3-way handshake), что потребляет ресурсы сервера и блокирует новые соединения.
- HTTP Flood генерация большого количества поддельных HTTP-запросов к веб-сайту, истощая вычислительные ресурсы сервера.

Атаки на уровне приложений (Application Layer Attacks)

- Slowloris удерживание HTTP-соединений открытыми как можно дольше, тем самым исчерпывая доступные ресурсы сервера.
- Атака на API массовая отправка запросов к API веб-приложения с целью перегрузки системы.

2.4. Цель

- Нарушение работы сервиса атака может привести к недоступности веб-сайта компании, что негативно сказывается на клиентах и доходах.
- Вымогательство (Ransom DDoS RDoS) злоумышленники требуют выкуп за прекращение атаки.
- Подрыв репутации снижение доверия клиентов к компании из-за постоянных сбоев в работе.
- Отвлекающая атака DDoS может использоваться как прикрытие для других атак, таких как взлом системы и кража данных.

2.5. Меры предосторожности

2.5.1. Технические меры

Использование специализированных систем защиты от DDoS

- Внедрение Web Application Firewall (WAF) для выявления и блокировки вредоносного трафика.
- Использование CDN (Content Delivery Network), таких как Cloudflare, Akamai, для распределения трафика и снижения нагрузки на сервер.
- Подключение DDoS Protection Services от провайдеров, таких как AWS Shield, Cloudflare, Imperva.

Фильтрация и ограничение сетевого трафика

- Настройка Rate Limiting для ограничения количества запросов с одного IP-адреса.
- Применение IP Reputation Filtering для блокировки IP-адресов, принадлежащих ботнетам.
- Использование Reverse Proxy для перераспределения нагрузки и защиты основного сервера.

Защита сетевой инфраструктуры

- Внедрение Network Intrusion Detection System (NIDS) для обнаружения подозрительных атак.
- Использование Anycast Routing для распределения вредоносного трафика между несколькими серверами.
- Применение Blackhole Routing для автоматического удаления вредоносного трафика до его попадания на сервер.

Защита уровня приложений

- Включение TLS/SSL для шифрования передаваемого трафика.
- Интеграция САРТСНА в формы авторизации для предотвращения автоматизированных атак ботами.
- Использование Dynamic Rate Limiting для динамического регулирования лимитов запросов в зависимости от поведения пользователя.

2.5.2. Организационные меры

Разработка плана реагирования на инциденты

- Cоздание Incident Response Plan для оперативного устранения последствий атаки.
- Взаимодействие с провайдерами интернет-услуг (ISP) для снижения нагрузки на инфраструктуру.

Мониторинг и регулярные проверки

- Внедрение SIEM (Security Information and Event Management) для отслеживания сетевого трафика в реальном времени.
- Анализ логов доступа для выявления признаков атаки на ранних стадиях.

Обучение сотрудников

- Подготовка IT-отдела к выявлению и реагированию на DDoS-атаки.
- Повышение осведомленности о социальной инженерии, чтобы избежать установки вредоносного ПО.

Регулярные проверки безопасности

- Проведение penetration testing (пентестов) для оценки устойчивости системы к атакам.
- Проверка и обновление конфигурации межсетевых экранов (firewall) для повышения уровня защиты.

3. Взлом Wi-Fi-сети

Злоумышленники атаковали недостаточно защищенную корпоративную Wi-Fi-сеть, используя атаку злоумышленника "посередине" (МІТМ), и перехватили сетевой трафик, включая учетные данные для доступа к внутренним системам.

3.1. Вид угрозы

Это атака на Wi-Fi-сеть с использованием метода "человек посередине" (Man-in-the-Middle - MITM), при которой злоумышленник эксплуатирует уязвимости в корпоративной Wi-Fi-сети для перехвата и анализа сетевого трафика. Это может привести к утечке конфиденциальной информации, включая учетные данные для доступа к внутренним системам.

3.2. Источник угрозы

- Слабая защита Wi-Fi использование устаревших и уязвимых протоколов шифрования, таких как WEP или WPA, которые легко взламываются.
- Некорректная или небезопасная конфигурация Wi-Fi отсутствие защиты, например, фильтрации по MAC-адресам и сильной аутентификации.
- Компрометация устройств Wi-Fi уязвимые роутеры и точки доступа (AP) могут быть взломаны, если их прошивка не обновляется.
- Атака "злой двойник" (Evil Twin Attack) создание злоумышленником поддельной Wi-Fi-сети с таким же именем (SSID), чтобы жертвы подключились к ней.

• Внутренние угрозы – компрометированный сотрудник или зараженное устройство в сети может эксплуатировать уязвимости Wi-Fi для атак на корпоративные системы.

3.3. Способ реализации

Сбор информации о сети Wi-Fi

- Использование инструментов Aircrack-ng, Kismet для сканирования сети и сбора информации о целевом Wi-Fi.
- Определение SSID, типа шифрования, используемого канала и подключенных устройств.

Атака на Wi-Fi-сеть

- Brute-force атака на WPA/WPA2 перехват handshake (процесс аутентификации между клиентом и точкой доступа) и перебор миллионов паролей.
- Взлом WEP/WPA если сеть использует слабое шифрование, его можно взломать с помощью инструментов Reaver, Hashcat.

Атака Man-in-the-Middle (MITM)

- Evil Twin Attack создание поддельной точки доступа с идентичным SSID, чтобы пользователи подключались к ней.
- ARP Spoofing подмена MAC-адреса, чтобы перехватить трафик между роутером и устройством сотрудника.
- DNS Spoofing перенаправление пользователей на фальшивые веб-сайты для кражи учетных данных.

Компрометация внутренних систем

- Мониторинг сетевого трафика и перехват паролей пользователей.
- Доступ к критически важным системам с украденными учетными записями.
- Установка вредоносного ПО или бэкдора для удаленного контроля над системой.

3.4. Цель

- Кража учетных данных злоумышленник использует похищенные логины и пароли для доступа к внутренним системам компании.
- Перехват и блокировка данных мониторинг и подслушивание важных корпоративных коммуникаций внутри сети.
- Изменение сетевого трафика перенаправление пользователей на поддельные сайты для фишинга или установки вредоносного ПО.
- Эскалация привилегий если атакующий получает доступ к учетной записи с высоким уровнем привилегий, он может захватить контроль над всей системой.

3.5. Меры предосторожности

3.5.1. Технические меры

Настройка безопасного Wi-Fi

- Использование WPA3 вместо WPA2/WEP для усиленной защиты.
- Отключение SSID broadcasting, чтобы снизить вероятность обнаружения сети злоумышленниками.
- Включение MAC Address Filtering для ограничения подключения только доверенных устройств.
- Настройка брандмауэра (Firewall) на точке доступа, чтобы блокировать несанкционированные соединения.

Шифрование и защита сетевых данных

- Использование VPN (Virtual Private Network) для шифрования всего сетевого трафика.
- Включение HTTPS Everywhere, чтобы все веб-транзакции проходили через защищенные соединения.
- Активация DNSSEC, чтобы защитить систему от атак DNS Spoofing.

Мониторинг и обнаружение вторжений

• Внедрение Intrusion Detection System (IDS) для выявления подозрительного трафика.

• Hacтройка WIDS (Wireless Intrusion Detection System) для обнаружения поддельных точек доступа.

Предотвращение атак Man-in-the-Middle (MITM)

- Включение Client Isolation в настройках Wi-Fi, чтобы запретить прямое взаимодействие между устройствами внутри сети.
- Использование ARP Spoofing Protection на маршрутизаторе для защиты от подмены ARP-адресов.
- Внедрение HSTS (HTTP Strict Transport Security) для предотвращения атак MITM через HTTP.

Защита конечных устройств

- Обязательное использование антивирусного ПО и endpoint protection на ноутбуках и мобильных устройствах сотрудников.
- Включение брандмауэра (firewall) на персональных компьютерах и мобильных устройствах для снижения риска атак.

3.5.2. Организационные меры

Обучение сотрудников по безопасности Wi-Fi

- Избегать подключения к публичным Wi-Fi-сетям или неизвестным точкам доступа.
- Всегда использовать VPN при работе удаленно.
- Проверять HTTPS в адресной строке браузера, чтобы избежать атак DNS Spoofing.

Разработка политики безопасности Wi-Fi

- Создание отдельных Wi-Fi-сетей для гостей и сотрудников, отделенных от внутренней корпоративной сети.
- Регулярная смена паролей Wi-Fi и использование сложных паролей.
- Требование обязательной регистрации устройств, подключаемых к корпоративному Wi-Fi.

Регулярные проверки и обновления безопасности

• Проведение Wi-Fi Pentesting для выявления уязвимостей в сети.

- Регулярное обновление прошивки роутеров и сетевого оборудования для устранения известных уязвимостей.
- Мониторинг логов доступа, чтобы обнаружить подозрительные подключения.

4. Разглашение информации в социальных сетях

Сотрудники непреднамеренно или намеренно разглашают корпоративную информацию или делятся конфиденциальными данными в соцсетях, что наносит ущерб компании.

4.1. Вид угрозы

Этот инцидент относится к категории утечки информации (Information Leakage), которая может произойти по следующим причинам:

- Неумышленное раскрытие (Unintentional Disclosure) сотрудники случайно делятся корпоративной информацией, не осознавая ее конфиденциальность.
- Преднамеренное раскрытие (Intentional Disclosure) сотрудник или инсайдер намеренно публикует или передает чувствительные данные.
- Техническая эксплуатация (Technical Exploitation) хакеры используют социальные сети для сбора информации или обмана сотрудников с целью раскрытия данных.

4.2. Источник угрозы

- Сотрудники компании публикация постов, изображений или документов, содержащих конфиденциальную информацию, без осознания серьезности ситуации.
- Официальные аккаунты компании в соцсетях случайная публикация внутренних документов или неосторожные ответы клиентам, приводящие к утечке данных.
- Атаки социальной инженерии (Social Engineering) хакеры используют методы обмана, чтобы заставить сотрудников раскрыть информацию.
- Связь личного и корпоративного аккаунта сотрудники используют личные аккаунты, связанные с корпоративными данными, что может привести к утечке.
- Взлом аккаунта в соцсетях компрометация учетной записи сотрудника или компании, что позволяет злоумышленникам распространять конфиденциальную информацию.

4.3. Способ реализации

Случайная утечка информации сотрудниками

- Публикация скриншотов электронной почты, документов или внутренних совещаний в соцсетях.
- Размещение фото рабочего места, на которых видны белые доски, печатные документы или пароли.
- Публичные комментарии в форумах и чатах без осознания рисков утечки данных.

Преднамеренная утечка информации сотрудниками

- Недовольные сотрудники намеренно сливают внутренние документы в сеть, чтобы подорвать репутацию компании.
- Передача конфиденциальных данных третьим лицам (конкурентам, СМИ).

Использование данных из соцсетей злоумышленниками

- OSINT (Open-Source Intelligence) сбор открытой информации из соцсетей для составления детального профиля компании.
- Spear Phishing использование собранных данных для таргетированных фишинговых атак на сотрудников.
- Мошенничество с поддельным наймом (Fake Recruitment Scam) злоумышленники притворяются рекрутерами или партнерами, чтобы выманить корпоративную информацию.

4.4. Цель

- Сбор конфиденциальной информации о компании, сотрудниках и бизнес-стратегиях.
- Подрыв репутации за счет утечки негативных внутренних данных.
- Подготовка к дальнейшим атакам, таким как фишинг или социальная инженерия.
- Использование внутренних данных для кражи интеллектуальной собственности.

4.5. Меры предосторожности

4.5.1. Технические меры

Контроль и мониторинг публикаций

- Внедрение DLP (Data Loss Prevention) для обнаружения и блокировки утечки конфиденциальной информации.
- Hacтройка SIEM (Security Information and Event Management) для мониторинга аномальной активности в соцсетях.

Защита корпоративных аккаунтов в соцсетях

- Обязательное включение двухфакторной аутентификации (2FA) на всех корпоративных аккаунтах.
- Ограничение количества сотрудников, имеющих доступ к соцсетям компании.
- Использование инструментов мониторинга социальных сетей для выявления и удаления утекшей информации.

Шифрование и защита внутренних документов

- Ограничение прав доступа к важным документам.
- Использование водяных знаков (watermarking) для отслеживания источника утечки данных.

Блокировка доступа с ненадежных устройств

- Разрешение входа в корпоративные аккаунты только с управляемых устройств.
- Внедрение Mobile Device Management (MDM) для контроля данных на мобильных устройствах сотрудников.

4.5.2. Организационные меры

Разработка политики информационной безопасности в соцсетях

• Создание политики конфиденциальности в соцсетях, которая четко определяет, что сотрудники могут и не могут публиковать.

- Запрет на публикацию внутренних данных, рабочих документов или обсуждение конфиденциальных вопросов в соцсетях.
- Установление санкций за утечку информации.

Обучение сотрудников защите информации

- Проведение курсов кибербезопасности по защите персональных и корпоративных данных в соцсетях.
- Обучение сотрудников распознавать фишинг и атаки социальной инженерии.

Строгий контроль корпоративных аккаунтов в соцсетях

- Назначение специальной команды для управления официальными аккаунтами компании.
- Внедрение процедуры утверждения перед публикацией корпоративного контента.

Регулярные проверки безопасности

- Мониторинг соцсетей для выявления потенциальных утечек информации.
- Анализ журналов входа в корпоративные аккаунты для выявления подозрительной активности.
- Проведение тестирования социальной инженерии (pentest social engineering) для оценки осведомленности сотрудников в области безопасности.

5. Отсутствие регулярного резервного копирования

Компания не поддерживает регулярное создание резервных копий данных, что увеличивает риск их полной утраты в случае аварий или кибератак.

5.1. Вид угрозы

Этот инцидент относится к категории риска потери данных (Data Loss Risk), связанного с отсутствием регулярных механизмов резервного копирования. Если компания не имеет четкой политики резервного копирования или выполняет его неправильно, риск потери данных возрастает в следующих случаях:

• Сбой системы или отказ оборудования (Hardware Failure) – жесткие диски, серверы или хранилища могут выйти из строя.

- Кибератаки (Cyberattacks) атаки, такие как Ransomware, могут зашифровать или уничтожить критически важные данные.
- Человеческий фактор (Human Error) случайное удаление данных, ошибки конфигурации или перезапись файлов.
- Природные катастрофы (Natural Disasters) наводнения, пожары, землетрясения или другие катастрофические события могут привести к уничтожению данных.

5.2. Источник угрозы

- Отсутствие четкой политики резервного копирования компания не определяет частоту и методы создания резервных копий.
- Неполные или устаревшие резервные копии использование ручного или нерегулярного резервного копирования, что приводит к недостаточной защите данных.
- Хранение резервных копий на том же носителе сохранение бэкапов на тех же серверах или устройствах, что повышает риск потери как оригинальных данных, так и их резервных копий.
- Отсутствие тестирования восстановления данных отсутствие регулярных проверок, гарантирует ли резервное копирование возможность восстановления информации в

5.3. Способ реализации

Атака ransomware

- Хакеры шифруют данные во всей системе и требуют выкуп.
- Без резервных копий компания может потерять все данные или быть вынуждена заплатить выкуп.

Отказ оборудования

- Поломка жестких дисков, SSD или RAID-массивов без резервных копий приводит к безвозвратной потере данных.
- Неожиданный сбой оборудования может остановить бизнес-процессы.

Человеческие ошибки

- Сотрудник может случайно удалить важные файлы или форматировать хранилище.
- Без резервного копирования данные не подлежат восстановлению.
 Инсайдерские атаки

- Недовольный сотрудник может намеренно удалить или повредить критически важные данные.
- Без резервных копий восстановление утраченной информации будет невозможным.
 Природные катастрофы
- Пожары, наводнения, землетрясения могут уничтожить серверы и хранилища данных.
- Без удаленных резервных копий (offsite backup) вся информация может быть безвозвратно утеряна.

5.4. Цель

- Прерывание работы бизнеса потеря критически важных данных может остановить все бизнес-процессы.
- Вымогательство (Ransomware) злоумышленники требуют выкуп за восстановление зашифрованных или удаленных данных.
- Кража и уничтожение данных хакеры могут скопировать информацию перед удалением, а затем использовать ее для шантажирования или продажи конкурентам.
- Подрыв репутации компании утечка или потеря данных подрывает доверие клиентов и партнеров, что может привести к серьезным финансовым и юридическим последствиям.

5.5. Меры предосторожности

5.5.1. Технические меры

Внедрение стратегии 3-2-1 Backup Strategy

- 3 копии данных оригинал и два резервных бэкапа.
- 2 типа носителей хранение на разных устройствах (локальный сервер, облачное хранилище).
- 1 копия вне основной площадки (offsite backup) хранение резервной копии в удаленном дата-центре.
- Определение частоты резервного копирования (ежедневное, еженедельное) в зависимости от критичности данных.

Использование автоматизированных систем резервного копирования

- Внедрение Backup as a Service (BaaS) от надежных поставщиков, таких как AWS Backup, Azure Backup, Google Cloud Backup.
- Использование специализированного ПО для автоматического бэкапа (Veeam, Acronis, Commvault).

Безопасное хранение резервных копий

- Исключение хранения резервных копий на том же сервере, что и основные данные.
- Использование air-gapped backup изолированных копий, недоступных из сети, чтобы предотвратить заражение ransomware.
- Шифрование резервных данных с помощью AES-256 для защиты от утечек.

Периодическое тестирование восстановления данных

- Регулярное проведение тестов восстановления (disaster recovery testing), не реже одного раза в квартал.
- Гарантия быстрого восстановления данных для минимизации простоев бизнеса.

Мониторинг безопасности резервных копий

- Настройка систем мониторинга, которые отслеживают подозрительные попытки доступа к резервным копиям.
- Внедрение многофакторной аутентификации (MFA) для защиты учетных записей, имеющих доступ к системам резервного копирования.

5.5.2. Организационные меры

Разработка политики управления резервным копированием

- Определение типов данных, подлежащих резервному копированию, сроков хранения и методов копирования.
- Установка Recovery Point Objective (RPO) максимальной допустимой потери данных.
- Определение Recovery Time Objective (RTO) допустимого времени восстановления данных.

Обучение сотрудников защите данных

- Инструктаж по личному резервному копированию данных в рабочих процессах.
- Обучение методам реагирования на атаки ransomware и восстановлению данных из резервных копий.

Ограничение доступа к резервным копиям

- Предоставление доступа к бэкапам только ответственным сотрудникам.
- Внедрение Role-Based Access Control (RBAC) для минимизации риска несанкционированного доступа.

Разработка плана восстановления данных (Disaster Recovery Plan)

- Определение четких процедур восстановления при масштабной потере данных.
- Выделение резервных дата-центров, обеспечивающих бесперебойную работу бизнеса при авариях.

Регулярные проверки безопасности

- Проведение penetration testing для оценки уязвимостей резервных данных.
- Мониторинг логов и систем оповещения, чтобы выявлять подозрительные активности.

Заключение

В современных условиях информационной безопасности компании сталкиваются с множеством угроз, каждая из которых может привести к серьезным последствиям – от финансовых потерь до утраты конфиденциальных данных и подрыва репутации. Разбор рассмотренных инцидентов показывает, что недостаточная защищенность цифровой инфраструктуры, отсутствие четкой политики безопасности и недостаточная осведомленность сотрудников могут стать критическими уязвимостями.

- 1. Фишинговые атаки представляют собой один из наиболее распространенных методов кибератак, направленных на компрометацию учетных данных и получение несанкционированного доступа к корпоративным системам. Эффективное противодействие требует внедрения многофакторной аутентификации (MFA), мониторинга подозрительной активности и регулярного обучения сотрудников.
- 2. DDoS-атаки направлены на дестабилизацию корпоративных веб-ресурсов, что может привести к финансовым и репутационным потерям. Основными методами защиты являются использование специализированных сервисов защиты от DDoS, балансировка нагрузки и фильтрация трафика.
- 3. Взлом Wi-Fi-сети через атаку "человек посередине" (МIТМ) позволяет злоумышленникам перехватывать сетевой трафик, включая учетные данные пользователей. Предотвращение таких атак требует использования современных стандартов шифрования (WPA3), регулярного обновления прошивок маршрутизаторов, а также применения VPN и контроля доступа к Wi-Fi.
- 4. Разглашение информации в социальных сетях сотрудниками, даже если оно происходит ненамеренно, может привести к утечке конфиденциальных данных и использованию их злоумышленниками для целенаправленных атак. Политики информационной безопасности, обучение сотрудников и мониторинг публичных упоминаний компании помогают минимизировать этот риск.
- 5. Отсутствие регулярного резервного копирования делает компанию уязвимой к атакам программ-вымогателей (ransomware), сбоям в работе оборудования и человеческим ошибкам. Для обеспечения сохранности данных необходимо реализовать стратегию 3-2-1, использовать автоматизированные системы резервного копирования и регулярно проверять возможность восстановления данных.

Общие рекомендации по защите корпоративной информации:

- Многоуровневая защита (Defense-in-Depth): Использование нескольких уровней защиты (фильтрация трафика, аутентификация, шифрование, мониторинг и резервное копирование) для минимизации риска успешных атак.
- Обучение сотрудников: Повышение осведомленности персонала о методах кибератак и правилах безопасного обращения с данными.
- Разработка и соблюдение политик безопасности: Четко определенные правила работы с корпоративными данными, доступом к системам и взаимодействия в сети.
- Мониторинг и аудит безопасности: Внедрение SIEM-систем для анализа активности в сети, обнаружения аномального поведения и быстрого реагирования на угрозы.
- Регулярное тестирование защиты: Проведение пентестов и оценка уязвимостей для предотвращения возможных атак.

Список использованных источников

- 1. https://www.occ.gov/topics/consumers-and-communities/consumer-protection/fra
 https://www.occ.gov/topics/consumers-and-communities/consumer-protection/fra
 https://www.occ.gov/topics/consumers-and-communities/consumer-protection/fra
 https://www.occ.gov/topics/consumers-and-communities/consumer-protection/fra
 https://www.occ.gov/topics/consumers-and-communities/consumer-protection/fra
 https://www.occ.gov/topics/consumer-protection/fra
 https://www.occ.gov/topics/consumer-protection/fra
 https://www.occ.gov/topics/consumer-protection/fra
 https://www.occ.gov/topics/consumer-protection/fra
 <a href="https://www.occ.gov/topics/consumer-protection-protecti
- 2. https://www.cyber.gc.ca/en/guidance/defending-against-distributed-denial-service
 -ddos-attacks-itsm80110
- 3. https://en.wikipedia.org/wiki/Denial-of-service attack
- 4. https://www.micromindercs.com/blog/common-ddos-mitigation-strategies-a-comp rehensive-guide
- 5. https://websitechuyennghiep.vn/cyber-attack-la-gi.html
- 6. https://antoanthongtin.gov.vn/gp-atm/cac-phuong-phap-tan-cong-ngan-hang-1024
 99
- 7. https://www.microsoft.com/vi-vn/security/business/security-101/what-is-a-ddos-attack
- 8. https://cystack.net/vi/blog/tan-cong-mang-cyber-attack