Spatial Patterns in Nature

An Entry-Level Introduction to Their Emergence and Dynamics

SIAM DS23, Minitutorial MT1-2

Robbin Bastiaansen, Peter van Heijster, Frits Veerman

Minitutorial overview

- Introduction
- Multistability and patterns
- Explicit construction of front solutions
 - Existence
 - Stability
- Dynamics of existing structures
- Summary & Outlook

Spatial Patterns:

- Turing Patterns
- Coexistence States

Tipping can be more subtle:

- Spatial reorganization
- Fragmented Tipping

Dynamics of Patterns is:

- Slow Pattern Adaptation
- Fast Pattern Degradation

What if the system tips?

Crossing a Tipping Point:

→ Always full reorganization

Crossing a bifurcation:

Now also possible:

- → Spatial reorganization (Turing patterns)
- → Fragmented tipping (coexistence states)

Early Warning Signals signal for WHEN

Early Warning Signals

need to signal WHEN & WHAT

0.8 0.6 0.4 0.2 0. -0.2 -0.4 -0.8 -1000 -800 -600 -400 -200 0 200 400 600 800 1000

Existence of stationary pulse

$$\begin{split} & \pmb{U}_t = \varepsilon^2 \pmb{U}_{xx} + \pmb{U} - \pmb{U}^3 - \varepsilon (\alpha \pmb{V} + \gamma) \\ & \tau \pmb{V}_t = \pmb{V}_{xx} + \pmb{U} - \pmb{V} \\ & \text{where } (x,t) \in \mathbb{R} \times \mathbb{R}_+; 0 < \varepsilon \ll 1; 0 < \tau, \alpha, \gamma \in \mathbb{R} \end{split}$$

Observations:

• stationary: $\partial_t = 0$

$$0 = \varepsilon^{2} u_{xx} + u - u^{3} - \varepsilon (\alpha v + \gamma)$$
$$0 = v_{xx} + u - v$$

• five distinct spatial regions (due to smallness of ε)

- large, \cup constant (± 1) , \vee changing (outer/slow region)
- small, U changing, V constant (inner/fast region)

4D phase portrait

The dynamics of slow reduced system is constraint to fixed points of the fast reduced system.

Strong interaction

Slightly different parameters (change in the 6th digit of the parameter)... gives completely different dynamics

Nonlinear & backward diffusion

Macroscopic limit of a discrete model that models the difference in collective vs individual behaviour considering proliferation, death and motility/movement events of agents (cells) on a simple one-dimensional lattice [Johnston et al., 2017, Li et al, 2020, 2021]

$$\frac{\partial U}{\partial t} = \frac{\partial}{\partial x} \left(D(U) \frac{\partial U}{\partial x} \right) + R(U)$$

Heterogeneous media

Defects, even small, can for instance, pin travelling waves in nonlinear wave equations

[Derks, Doelman, Knight, Susanto, 2012, 2013]

Heterogeneous media

... and in reaction-diffusion equations

[PvH, Doelman, Kaper, Nishiura, Ueda, 2011]

A spatially heterogeneous world

Adding Spatial Heterogeneity

$$\frac{\partial y}{\partial t} = D \frac{\partial^2 y}{\partial x^2} + f(y, \mathbf{x}; \mu)$$

Now, the **local** difference in potentials determines the front movement

New behaviour:

- Multi-fronts can be stationary
- Maxwell point is smeared out

Fragmented Tipping

Other Spatial Heterogeneities

Fragmented Tipping

Tipping of (Turing) patterns

Tipping of patterns

More questions

- What determines the shape of the Busse balloon?
- How are transient patterns selected? (path through Busse balloon)
- What is the influence of spatial heterogeneities? (terrain features, roads, etc.)
- What can happen in 2D? Is this a fundamentally different context?
- Is a PDE always the best model to describe patterns? When is an `effective' ODE pulse/front interaction model more useful?

• ...

Interesting minisymposia:

- MS 29, Tipping Points in Natural Systems
- MS 32 & 47, Patterns in Nonlinear PDEs
- MS 36 & 50, Singular Perturbation Methods for Multi-Scale Infinite-Dimensional Systems
- MS 62 & 75, Pattern Formation in Nature: from Busse Balloons to Homoclinic Snaking
- MS 73 & 86, Dynamical Systems Methods in Climate Modeling
- MS 88 & 103, Branching Out: a New Generation's Perspective on Spatial Localisation in Higher Dimensions
- MS 99 & 100, Rate-Induced Tipping
- MS 114 & 128, Patterns in Earth's Climate System
- MS 130 & 144, Modeling and Data-Driven Methods for Collective Behaviour and Pattern Formation
- MS 138, 158 & 173, Front Propagaion and Invasion Phenomena