Communication Theory Spring-2025

Assignment 1

Deadline: February 9, 11:59 PM

Instructions:

• All questions are compulsory.

• Clearly state the assumptions (if any) made that are not specified in the questions.

• Submission format: Rollnumber.pdf

Cautions:

(a) One late homework assignment is allowed without penalty.

(b) 2 marks will be deducted on other late assignments.

Questions

1. Consider the following two passband signals:

$$u_p(t) = \operatorname{sinc}(2t)\cos(100\pi t)$$

and

$$v_p(t) = \operatorname{sinc}(t) \sin\left(101\pi t + \frac{\pi}{4}\right)$$

(a) Find the complex envelopes u(t) and v(t) for $u_p(t)$ and $v_p(t)$, respectively, with respect to the frequency reference $f_c = 50$ Hz.

(b) What is the bandwidth of $u_p(t)$? What is the bandwidth of $v_p(t)$?

(c) Find the inner product $\langle u_p, v_p \rangle$ using the result in (a).

(d) Find the convolution $y_p(t) = (u_p * v_p)(t)$ using the result in (a).

2. Find the Fourier transforms of the signals shown in the below figure :

Figure 1

- 3. (a) Determine the Fourier transform of each of the following signals:
 - (i) $\operatorname{sinc}^3(t)$
 - (ii) $te^{-|\alpha|t}\cos(\beta t)$
 - (b) Using the properties of the Fourier transform, evaluate the following integrals:
 - (i) $\int_0^\infty e^{-\alpha t} \operatorname{sinc}^2(t) dt$
 - (ii) $\int_0^\infty e^{-\alpha t} \cos(\beta t) dt$
- 4. Consider the signal:

$$s(t) = \mathbb{I}_{[-1,1]}(t)\cos(400\pi t).$$

- (a) Find and sketch the baseband signal u(t) that results when s(t) is downconverted as shown in the upper branch of Figure 2.
- (b) The signal s(t) is passed through a bandpass filter with impulse response:

$$h(t) = \mathbb{I}_{[0,1]}(t) \sin\left(400\pi t + \frac{\pi}{4}\right).$$

Find and sketch the baseband signal v(t) that results when the filter output y(t) = (s * h)(t) is downconverted as shown in the lower branch of Figure 2.

Figure 2

5. Find the inverse Fourier transforms of the spectra shown in the figure:

Figure 3

6. Consider the tent signal:

$$s(t) = (1 - |t|)\mathbb{I}_{[-1,1]}(t)$$

where $\mathbb{I}_{[-1,1]}(t)$ is the indicator function for $t \in [-1,1]$.

- (a) Find and sketch the Fourier transform S(f).
- (b) Compute the 99% energy containment bandwidth in kHz, assuming that the unit of time is milliseconds.