

Universidade Federal de Goiás (UFG) Regional Jataí (REJ) Unidade Acadêmica Especial de Ciências Exatas (CIEXA) Curso de Física Licenciatura

Plano de Ensino

Identificação		
Professor:	Paulo Freitas Gomes	
Email:	paulofisicajatai@gmail.com	
Repositório on line:	https://github.com/paulofreitasgomes/Disciplinas	
Disciplina:	Novas Tecnologias no Ensino de Física	
Curso:	Física Licenciatura	
Ano/Semestre:	2017/2	
Carga Horária Total:	80 horas (Teórica: 64, Prática: 0)	
Horário das aulas:	Quarta as 15:30 horas e Quinta as 19 e 21 horas	
Local:	CA 1 sala 16	

1 Ementa

Como consta no PPC: Uso de tecnologias no ensino de Física. Relação entre tecnologia e sociedade. Uso dos AVA's (Ambientes Virtuais de Aprendizagem) e internet no ensino de Física. Uso de softwares para simulação de fenômenos físicos em sala de aula. Desenvolvimento de hipermídias para o ensino de Física. Uso e aplicação do computador em simulações e em problemas de Física para o Ensino Médio; noções de HTML; Java e Java script; utilização de softwares educacionais.

2 Objetivo Geral

Apresentar ao aluno técnicas computacionais que o permitem entender e explicar de forma mais interativa conceitos da física.

3 Objetivo Específico

Fazer com que o aluno entenda e explique problemas selecionados da física utilizando recursos computacionais e divulgando o conteúdo gerado usando os meios digitais.

4 Conteúdo

Como consta no PPC: Uso de tecnologias no ensino de Física. Relação entre tecnologia e sociedade. Uso dos AVA's (Ambientes Virtuais de Aprendizagem) e internet no ensino de Física. Uso de softwares para simulação de fenômenos físicos em sala de aula. Desenvolvimento de hipermídias para o ensino de Física. Uso e aplicação do computador em simulações e em problemas de Física para o Ensino Médio; noções de HTML; Java e Java script; utilização de softwares educacionais.

5 Metodologia

Aulas expositivas no quadro negro e uso de datashow/slides, vídeos demonstrativos de experimentos. Ao longo do curso serão apresentados exemplos de uso de recursos computacionais utilizados na explicação de conceitos de física, além de artigos e vídeos que servirão de inspiração para o trabalho dos alunos.

6 Processos e critérios de avaliação

Haverá 4 avaliações: as 3 primeiras terão como objetivo avaliar o andamento da produção do aluno. A última avaliação será o seminário (de 10 a 15 minutos) onde o aluno deve apresentar os resultados de seu trabalho. A produção do aluno a ser avaliada compreende os itens a seguir:

- Material didático: consiste do texto que o aluno deverá elabor abordando e explicando didaticamente o tópico da física escolhido para o público de Ensino Médio. O texto pode estar na forma de apostila ou artigo e deverá ser apresentado ao professor como um arquivo pdf.
- Recursos computacionais: o aluno deverá utilizar de recursos computacionais para auxiliar o ensino dos tópicos selecionados no material didático e apresentação. Entende-se por recursos digitais os mesmos recursos mencionados na ementa desta disciplina (conforme consta no PPC).
- Vídeo: Um vídeo deverá ser elaborado e adicionado a plataforma Youtube. O vídeo deverá ser didático e ter o mesmo objetivo que o seminário e o texto explicativo: apresentar e explicar o tópico escolhido visando o público de Ensino Médio.

Cada avaliação terá como objetivo averiguar o andamento das atividades dos alunos em relação ao material didático, recursos computacionais e vídeo. Para isso serão feitas 3 avaliações distribuídas uniformemente durante o semestre para que o aluno comece a trabalhar desde a primeira semana. Todo o material produzido pelo aluno será disponibilizado *on line* de forma que fique acessível a qualquer interessado.

A média final será a média aritmética das notas descritas acima:

$$M = \frac{1}{4}(A1 + A2 + A3 + S)$$

Se $M \ge 6$, o aluno está aprovado. Caso contrário, estará reprovado. É necessário 75 % de presença no mínimo para aprovação. As presenças serão verificadas em todas as aulas.

6.1 Formulário de Avaliação

Serão avaliados 3 itens e cada um deles será avaliado quanto a proposta e execução. A proposta é a ideia que o aluno quer implementar. Já execução avalia tanto o progresso feito em relação a última proposta quanto o sucesso do trabalho (se conseguiu implementar a proposta). A nota do item é dividida igualmente entre proposta e execução. A nota final é a soma de toda a pontuação.

Material didático: 1	máximo 4 pontos.		
Proposta:	Execução:		
Recursos computacionais: máximo 4 pontos.			
Proposta:	Execução:		
Vídeo: máximo 2 pontos.			
Proposta:	Execução:		

7 Local de divulgação dos resultados e avaliações

As notas serão divulgadas juntamente com as avaliações em horário de aula.

8 Bibliografia Básica e Complementar (3+5)

- 1. CAMILETTI, G. A utilização da modelagem computacional quantitativa no aprendizado exploratório de Física. Caderno Catarinense de Ensino de Física, Florianópolis, v.18, n.2, p.214-218, ago. 2001. Disponível em http://www.periodicos.ufsc.br/index.php/fisica/issue/archivehttp://www.periodicos.ufsc.br/index.php/fisica/issue/archive.
- 2. DOMINGUES, M.O. Introdução a programas físico-matemáticos livres. Revista Brasileira de Ensino de Física, São Paulo, v.25, n.2, p.148-156, jun. 2003. Disponível em: http://www.sbfisica.org.br/rbef/edicoes.shtml.
- 3. FIOLHAIS, C. e TRINDADE, J. Física no computador: o computador como uma ferramenta no ensino e na aprendizagem das Ciências Físicas. Revista Brasileira de Ensino de Física, São Paulo, v.25, n.3, p.259-272, set. 2003. Disponível em: http://www.sbfisica.org.br/rbef/edicoes.shtml.
- 4. Modelus 4. A visual introduction for teachers. Disponível em: http://modellus.fct.unl.pt/file.php/32Modellus_4_A_visual_introduction_for_teachers.pdf.
- 5. VEIT, E.A. e TEODORO, V.D. Modelagem no ensino/aprendizagem de física e os novos parâmetros curriculares nacionais para o ensino médio. Revista Brasileira de Ensino de Física, São Paulo, v.24, n.2, p. 87-96, jun. 2002. Disponível em: http://www.sbfisica.org.br/rbef/indice.php?vol=24&num=2http://www.sbfisica.org.br/rbef/indice.php?vol=24&num=2.
- 6. Tutorial e exercícios referentes ao programa Modellus disponível em: http://modellus.fct.unl.pt. Tutorial e exercícios referentes ao programa Phun disponível em: http://www.phunland.com/wiki/Home.
- 7. Tutorial Dokuwiki. Disponível em: < http://wikidowiki.if.uff.br>.
- 8. MEDEIROS, A e MEDEIROS, C. F. Possibilidades e limitações das simulações computacionais no Ensino de Física. Revista Brasileira de Ensino de Física. São Paulo, v. 24, n. 2, p. 77-86, 2002.
- 9. CAVALCANTE, M. A.; PIFFER, A. e NAKAMURA, P. O uso da internet na compreensão de temas de Física moderna para o ensino médio. Revista Brasileira de Ensino de Física, São Paulo, v.23, n.1, p.108-112, mar. 2001. Disponível em: http://www.sbfisica.org.br/rbef/edicoes.shtml.

Material adicional será fornecido ao longo do curso.

9 Cronograma

Dia	Atividade	Descrição
05/10/17	Apresentação do curso	Exemplo 1: Fractal de Mandelbrot e de Julia
01/11/17	Avaliação 1	Definição do tema: nota A1.
09/11/17	Exemplo 2	Movimento planetário no sistema solar.
15/11/17	Não haverá aula.	Feriado Nacional: Proclamação da República.
07/12/17	Avaliação 2	Texto e recursos computacionais: nota A2.
14/12/17	Exemplo 3	Transformada de Fourier.
17/12/17	Início do Recesso Acadêmico.	
15/01/18	Início das Aulas em 2018.	
01/02/18	Avaliação 3	Texto, vídeo e recursos computacionais: nota A3.
14/02/18	Não haverá aula.	Quarta feira de cinzas.
28/02/18	Avaliação final.	Texto, vídeo e recursos computacionais: nota A4.
22/02/18	Seminário	15 minutos de duração cada: nota S.

Tabela 1: Cronograma.

Paulo Freitas Gomes Prof. Adjunto

> Prof. Dr. Paulo Freitas Gomes Coordenação de Física UAE de Ciências Exatas UFG – Jataí