Note: all the simulations are under TT 25°C

1. With Feedback

Use Hspice to simulate the circuit with Vdd = 1.5V, C1 = 1pF, C2 = 1pF, RS1 = 50k Ω , $RF = 1k\Omega$, as shown in Fig. 1. Please design the device size of M1~M2 and the input common mode current Iin1, to make transimpedance DC gain $|(Vout/Iin)| > 0.85k\Omega$, its bandwidth (-3dB point to DC gain) > 650MHz and output common mode voltage be 0.75V (\pm 1%). (55%)

due date:2024/5/17

Notice: the sign of transimpedance DC gain should be negative and all of the transistors must stay in saturation region.

- a. Use ".op" command in Hspice and check the ".lis" file to show that M_1 and M_2 operate in **saturation** region. Screenshot V_{dd} , $V_{out1,DC}$, $V_{x,DC}$ and small signal parameters of active devices. (5%)
- b. Please use .tf command to print out the gain, input and output impedances. (5%)
- c. Use .op's parameters to calculate the **transimpedance DC gain, input and output impedances**, and compare your calculation and the simulation results in b. (15%)
- d. The small signal -3dB bandwidth has to be larger than 650MHz. Please simulate and plot the frequency response of this gain stage. Use .pz to simulate and mark the poles/zeros on this curve. (5%)
- e. Use .op's parameters to calculate the **output pole and the zero** of Vout/Iin(s) frequency response. Check your calculation and the simulation results in d. (10%)

f. Please screenshot your total current, calculate the figure of merit (FoM) value, discuss your design consideration and **comment on how to improve FoM** of your design in detail. (15%)

 $transimpedance\ gain(k\Omega) \times -3dB\ bandwidth(MHz)$

Hint: Please use the Vdd current. example:

**** voltage sources subckt element 0:vdd volts 1.5000 current -662.6471u

993.9707u

2. Without Feedback

Use Hspice to simulate the circuit as shown in Fig. 2 with Vdd = 1.5V, C3 = 1pF, C4 = 1pF, $RS2 = 50k\Omega$. Remove the feedback resistance, use the same size of M1~M2 and the same input current in Fig. 1 to simulate the circuit in Fig. 2. (25%)

Notice: All of the transistors must stay in saturation region.

- a. Use ".op" command in Hspice and check the ".lis" file to show that M_3 and M_4 operate in **saturation** region. Screenshot V_{dd} , $V_{out2,DC}$, $V_{y,DC}$ and small signal parameters of active devices. (5%)
- b. Please use .tf command to print out the gain, input, and output impedances. (5%)
- c. Use .op's parameters to calculate the **transimpedance DC gain and output impedances** and compare your calculation and the simulation results in a. (10%)
- d. Please simulate and plot the frequency response of this gain stage. Use .pz to simulate and mark the poles/zeros on this curve. (5%)

e. Use .op's parameters to calculate the **output pole** of Vout/Iin(s) frequency response. Check your calculation and the simulation results in d. (5%)

3. Discussion (20%)

- a. Discuss the difference of the circuit of fig. 1 and fig. 2. What are the advantages and drawbacks of the circuit of fig. 1? (15%)
- b. Please fill the table. 1 and table. 2. (5%)

table. 1

	table.	1			
Fig. 1					
Working item	Specification	Simulation	Calculation		
Vdd (V)		1.5			
C1, C2 (F)	1p				
transimpedance DC gain $(k\Omega)$	> 0.85				
bandwidth (MHz)	> 650				
Closed-loop poles/zeros (rad/s)					
Closed-loop input impedance (Ω)					
Closed-loop output impedance (Ω)					
Input common mode current (uA)					
Output common mode voltage (V)	0.75 (± 1%)				
M1 (W/L), m					
M2 (W/L), m					
FoM (uA/($k\Omega \times MHz$))					

table. 2

taute. 2				
Fig. 2				
Working item	Specification	Simulation	Calculation	
Vdd (V)	1.5			
C3, C4 (F)	1p			
transimpedance DC gain $(k\Omega)$	-			
bandwidth (MHz)	-			
Closed-loop poles/zeros (rad/s)				
Closed-loop input impedance (Ω)				
Closed-loop output impedance (Ω)				
Input common mode current (uA)	same as Iin1			
Output common mode voltage (V)	-			
M3 (W/L), m	same as M1			
M4 (W/L), m	same as M2			

Reference Code

```
*** input lin1 gnd Vx lin1_value ac 1 *** lin1_value 為你的lin1 DC value 

*** gain_bandwidth .op .tf V(Vout1) lin1 .ac DEC 10 1 100G .probe vdb(Vout1) vp(Vout1) .meas ac dcgain_in_db find Vdb(Vout1) at=10k .meas ac BW when Vdb(Vout1)='dcgain_in_db-3' .pz V(Vout1) lin1
```