4 Fluid Kinematics

4.2 Flow Patterns and visualization.

(Fluid Mechanics, Cengel, 3rth)

Table of Contents

4.2 Flow Patterns and visualization.	1
Steady Flow (It does not depend on time)	1
Represent fluid in a 2-D plane. For differents values of constant C	1
Unsteady Flow (It does depend on time)	2
Represent fluid in a 2-D plane. For a constant $C = 2$. (Check video generated):	
Represent fluid in a 2-D plane. For constants $C = 2, 5$ and 8. (Check video	
$generated): \dots \dots$	3

It's better to explaing using examples. Process to solve is explained in book. So, let's get straight into it.

Steady Flow (It does not depend on time)

Let a 2-D velocity vector field be:

$$\overrightarrow{\overrightarrow{V}}(x,y,t) = ui + vj$$

$$\overrightarrow{\overrightarrow{V}}(x,y,t) = (0.5 + 0.8x)i + (1.5 - 0.8y)j$$

By solving the equation, solution is:

$$y = \frac{C}{0.8(0.5 + 0.8x)} + 1.875, \ C = constant$$

To represent the fluid pattern, it takes to give form to the general expression of function z = f(x, y, t):

$$z = f(x, y, t) = y - \frac{C}{0.8(0.5 + 0.8x)} - 1.875 = 0$$

Represent fluid in a 2-D plane. For differents values of constant C

DONE!

Unsteady Flow (It does depend on time)

Let a 2-D velocity vector field be:

$$\overrightarrow{V}(x, y, t) = ui + vj$$

$$\overrightarrow{V}(x, y, t) = xi + (-y * t)j$$

*It is spacial 2-D, and 1-D in time.

By solving the equation, solution is:

$$y = C * x^{-t}, \ C = constant$$

To represent the fluid pattern, it takes to give form to the general expression of function z = f(x, y, t):

$$z = f(x, y, t) = y * x^t - C = 0$$

To plot the function, z = f(x, y, t) must be represented on a plane parallel to x-y plane. So:

$$z = f(x, y, t) = y * x^t - C = level,$$

Represent fluid in a 2-D plane. For a constant C = 2. (Check video generated):

DONE!

Represent fluid in a 2-D plane. For constants $C=2,\,5$ and 8. (Check video generated):

DONE!