Olimpiada Națională de Matematică

Etapa Județeană și a Municipiului București, 9 Martie 2013

SOLUŢII ŞI BAREME ORIENTATIVE – CLASA a XI-a

Problema 1. Fie $(a_n)_{n\geq 1}$ un şir crescător şi mărginit. Calculați $\lim_{n\to\infty} (2a_n-a_1-a_2)(2a_n-a_2-a_3)\cdots (2a_n-a_{n-2}-a_{n-1})(2a_n-a_{n-1}-a_1).$

Soluție. Notăm

$$x_n = (2a_n - a_1 - a_2)(2a_n - a_2 - a_3) \cdots (2a_n - a_{n-2} - a_{n-1})(2a_n - a_{n-1} - a_1).$$

Şirul $(a_n)_{n\geq 1}$ este convergent; fie $L=\lim_{n\to\infty}a_n$. Avem $a_n\leq L$, oricare ar fi $n\geq 1$.

deci $0 \le x_n \le 2^{n-1}(L-a_1)(L-a_2)\cdots(L-a_{n-2})(L-a_1) = y_n$. Presupunem că $y_n > 0$, în caz contrar $y_n = 0$ și apoi $x_n = 0$.

Din criteriul cleştelui obţinem $\lim_{n\to\infty} x_n = 0$.

$$1 \mathbf{p}$$

Problema 2. Fie matricele de ordin 2 cu elemente reale A și B astfel încât

$$AB = A^2B^2 - (AB)^2$$
 şi $\det(B) = 2$.

- a) Arătați că matricea A nu este inversabilă.
- b) Calculați $\det(A+2B) \det(B+2A)$.

Soluție. a) Avem $A(AB - BA - I_2)B = O_2$, de unde

$$A(AB - BA - I_2) = O_2,$$

deoarece B este inversabilă. Presupunând că matricea A este inversabilă, rezultă $AB-BA=I_2$, fals, deoarece $\operatorname{tr}(AB-BA)=0\neq 2=\operatorname{tr}(I_2)$.

b) Fie
$$f(x) = \det(A + xB)$$
, unde $x \in \mathbb{R}$. Deoarece $\det(A) = 0$, există $a \in \mathbb{R}$ astfel ca $f(x) = ax + \det(B)x^2 = 2x^2 + ax$, oricare ar fi $x \in \mathbb{R}$.

Problema 3. Fie A o matrice neinversabilă de ordin n, n > 1, cu elemente în mulțimea numerelor complexe, toate elementele având modulul egal cu 1.

- a) Arătați că pentru n=3, două dintre liniile sau două dintre coloanele matricei A sunt proporționale.
 - b) Rămâne adevărată concluzia de la punctul anterior pentru n = 4?

Soluție. a) Scoatem factor comun de pe fiecare linie primul element al său. Repetăm procedeul de pe fiecare coloană, obținând o matrice

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & a & b \\ 1 & c & d \end{pmatrix},$$

cu a, b, c, d numere complexe de modul 1.

Condiția det(A) = 0 revine la (a-1)(d-1) = (b-1)(c-1).

Conjugând, obţinem $\overline{ad}(a-1)(d-1)=\overline{bc}(b-1)(c-1)$. Dacă (a-1)(d-1)=0, atunci (b-1)(c-1)=0, deci două linii sau două coloane sunt egale

cu (1 1 1) şi problema este rezolvată.2p

Dacă $(a-1)(d-1) = (b-1)(c-1) \neq 0$, atunci $\overline{ad} = \overline{bc}$, deci ad = bc. Din (a-1)(d-1) = (b-1)(c-1) rezultă a+d=b+c, prin urmare $\{a,d\} = \{b,c\}$ sau a=b=c=d. Rezultă că ultimele două linii sau coloane sunt egale, de unde obținem cerința.

......1p

b)¹ Matricea $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & i & -i \\ 1 & -i & 1 & -i \\ 1 & i & i & -1 \end{pmatrix}$ are determinantul nul şi are orice

două linii (coloane) neproporționale, deci concluzia nu mai rămâne adevărată pentru n=4.

......2p

Problema 4. Se consideră o funcție monotonă $f: \mathbb{R} \to \mathbb{R}$.

- a) Demonstrați că f are limite laterale în fiecare punct $x_0 \in \mathbb{R}$.
- b) Definim funcția $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \lim_{t \nearrow x} f(t)$, i.e. g(x) este limita la stânga în punctul x. Arătați că dacă funcția g este continuă, atunci funcția f este continuă.

Soluție. Vom presupune că funcția f este monoton crescătoare.

a) Fie $x_0 \in \mathbb{R}$. Mulţimea $\{f(x) \mid x < x_0\}$ este mărginită superior de $f(x_0)$, conform monotoniei funcţiei f. Notăm cu $L = \sup\{f(x) \mid x < x_0\}$ şi arătăm că $L = f(x_0 - 0)$.

¹Exemplul se obține astfel: minorul elementului din colțul stânga sus al matricei obținute prin scăderea primei linii din celelalte trei linii este un determinant al unei matrice antisimetrice.

1p
Într-adevăr, fie $\varepsilon > 0$; există $a < x_0$ astfel încât $f(a) > L - \varepsilon$, deoarece $L = \sup\{f(x) \mid x < x_0\}$. Din monotonie rezultă $ f(x) - L = L - f(x) < \varepsilon$, oricare ar fi $x \in (a, x_0)$, de unde $L = f(x_0 - 0)$.
Analog se arată că f are limită la dreapta în orice punct din \mathbb{R} . b) Fie $x_0 \in \mathbb{R}$ și fie numerele $t, s, a, b \in \mathbb{R}$ astfel încât $t < a < x_0 < s < b$. Atunci $f(t) \le f(a) \le f(x_0) \le f(s) \le f(b)$.
Atunci $g(a) = \lim_{t \nearrow a} f(t) \le f(x_0)$ și $g(b) = \lim_{s \nearrow b} f(s) \ge f(x_0)$, adică
$g(a) \le f(x_0) \le g(b).$
Cum a, b sunt alese arbitrar, din continuitatea funcției g avem $g(x_0) = \lim_{a \nearrow x_0} g(a) = \lim_{b \searrow x_0} g(b)$, deci $g(x_0) \ge f(x_0) \ge g(x_0)$, adică $g(x_0) = f(x_0)$. Prin urmare $f = g$, de unde rezultă concluzia.
\sim

Observație. Se pot acorda maximum 1 punct la a) și maximum 2 puncte la b) dacă raționamente intuitive sau pe un desen pot fi transcrise riguros în limbajul analizei matematice corecte.