Proof methods and Strategy

Proof methods (review)

p→q

- Direct technique
 - Premise: p
 - Conclusion: q
- Proof by contraposition
 - Premise: ¬q
 - Conclusion: ¬p
- Proof by contradiction
 - Premise: p ∧¬q
 - Conclusion: a contradiction

Prove a theorem (review)

How to prove a theorem?

- 1. Choose a proof method
- 2. Construct argument steps

Argument:

premises

conclusion

Proof by cases

Prove a theorem by considering different cases seperately

To prove q it is sufficient to prove

$$\mathbf{p_1} \vee \mathbf{p_2} \vee \dots \vee \mathbf{p_n}$$

$$p_1 \rightarrow q$$

$$p_2 \rightarrow q$$

. . .

$$p_n \rightarrow q$$

Exhaustive proof

- Exhaustive proof
 - Number of possible cases is relatively small.
 - A special type of proof by cases
 - Prove by checking a relatively small number of cases

Exhaustive proof (example)

Show that $n^2 \le 2^n$ if n is positive integer with n <3.

Proof (exhaustive proof):

- Check possible cases
 - n=1 1 ≤ 2
 - = n=2 4 ≤ 4

Exhaustive proof (example)

Prove that the only consecutive positive integers not exceeding 50 that are perfect powers are 8 and 9.

Proof (exhaustive proof):

Check possible cases

a=2 1,4,9,16,25,36,49

■ a=3 1,8,27

■ a=4 1,16

■ a=5 1,32

a=6 1

Definition:

An integer is a perfect power if it equals n^a, where a in an integer greater than 1.

The only consecutive numbers that are perfect powers are 8 and 9.

Proof by cases

Proof by cases must cover all possible cases.

Prove that if n is an integer, then $n^2 \ge n$.

Proof (proof by cases):

- ☐ Break the theorem into some cases
 - 1. n = 0
 - 2. $n \ge 1$
 - 3. n ≤ -1

Prove that if n is an integer, then $n^2 \ge n$.

Proof (proof by cases):

Check possible cases

1.
$$n = 0$$
 $0^2 \ge 0$

2.
$$n ≥ 1$$

$$n.n \ge 1.n$$
 $n^2 \ge n$

$$n^2 \ge 0$$
 $n^2 \ge n$

 $n^2 \ge n$ holds in all three cases, we can conclude that if n is an integer, then $n^2 \ge n$.

Prove that |xy|=|x||y|, where x and y are real numbers.

Proof (proof by cases):

- □ Break the theorem into some cases
 - 1. x and y both nonnegative
 - 2. x nonnegative and y is negative
 - 3. x negative and y nonnegative
 - 4. x and y both negative

Definition:

The absolute value of a, |a|, equals a when a≥0 and equals -a when a<0.

Prove that |xy|=|x||y|, where x and y are real numbers.

Proof (proof by cases):

- Check possible cases
 - 1. x and y both nonnegative

$$|xy| = xy$$

$$|x|=x |y|=y$$

Definition:

The absolute value of a, |a|,

equals a when a≥0 and

equals -a when a<0.

$$|x||y| = xy$$

$$|xy| = |x||y|$$

2. x nonnegative and y is negative

$$|-xy| = xy$$

$$|x|=x |-y|=y$$

$$|x||y| = xy$$

$$|xy| = |x||y|$$

Prove that |xy|=|x||y|, where x and y are real numbers.

Proof (proof by cases):

- Check possible cases
 - 3. x negative and y nonnegative

$$|-xy| = xy$$

$$|-x|=x |y|=y$$

Definition:

$$|-x||y| = xy$$

The absolute value of a, |a|,

equals a when a≥0 and

equals -a when a<0

$$|xy| = |x||y|$$

4. x and y both negative

$$|-x.-y| = xy$$

$$|-x|=x |-y|=y$$

$$|-x||-y| = xy$$

$$|xy| = |x||y|$$

It is true for all four cases, so |xy|=|x||y|, where x and y are real numbers.

Prove that $x^2 + 3y^2 = 8$ is false where x and y are integers.

Proof (proof by cases):

- Find possible cases
 - x = -2, -1, 0, 1, 2
 - y = -1, 0, 1
- Check possible cases
 - $x^2 = 0, 1, 4$
 - $y^2 = 0, 3$
 - Largest sum of x^2 and $3y^2$ is 7.
- \square So, $x^2 + 3y^2 = 8$ is false where x and y are integers.

Without loss of generality

- How to shorten the proof by cases.
 - If same argument is used in different cases.
 - □ Proof theses cases together, without loss of generality (WLOG).
 - Incorrect use of this principle can lead to errors.

Prove that |xy|=|x||y|, where x and y are real numbers.

Proof (proof by cases):

- Check possible cases
 - 1. x and y both nonnegative
 - 2. x nonnegative and y is negative
 - 3.x negative and y nonnegative
 - 4. x and y both negative

Prove that |xy|=|x||y|, where x and y are real numbers.

Proof (proof by cases):

- ☐ Check possible cases
 - 1. x and y both nonnegative
 - 2. x nonnegative and y is negative

$$|xy| = -xy$$
 $|x|=x |y| = -y |x||y| = -xy$
 $|xy| = |x||y|$

- 3. x negative and y nonnegative we can complete this case using the same argument as we used for case 2.
- 4. x and y both negative

Show that $(x+y)^r < x^r + y^r$ where x and y are positive real numbers and r is a real number with 0 < r < 1.

Proof:

 \square Without loss of generality assume x+y=1.

$$x + y = t$$

 $(x/t) + (y/t) = 1$
 $((x/t)+(y/t))^r < (x/t)^r + (y/t)^r$
 $t^r ((x/t)+(y/t))^r < t^r (x/t)^r + t^r (y/t)^r$
 $(x+y)^r < x^r + y^r$
So, the inequality $(x+y)^r < x^r + y^r$ is the same when $(x+y=1)$ and $(x+y=t)$.

Show that $(x+y)^r < x^r + y^r$ where x and y are positive real numbers and r is a real number with 0 < r < 1.

Proof:

- \square We assume x+y = 1.
- \square Since x and y are positive, 0< x < 1 and 0< y < 1.
- □ 0 < r < 1 0 < 1-r < 1
- \Box $x^{1-r} < 1$ $y^{1-r} < 1$
- $\Box x / x^r < 1 y / y^r < 1$
- $\square \quad \chi^r > \chi \qquad \qquad y^r > y$
- \square $\chi^r + y^r > \chi + y = 1$

Errors in proofs (example)

If x is a real number, then x^2 is a positive real number.

Proof:

Case 1: x is positive

 x^2 is the product of two positive numbers, so x^2 is positive.

Case2: x is negative

 x^2 is the product of two negative numbers, so x^2 is positive.

- \square Case x=0 is missed.
 - Case 3: x=0 $x^2 = 0$, so x^2 is not positive
 - Thus the theorem is false.

Errors in proofs (example)

Show that 1 = 2.

Proof:

Assume a and b are two equal positive integers.

- 1. a=b
- 2. $a^2 = ab$
- 3. $a^2 b^2 = ab b^2$
- 4. (a b)(a + b) = b(a b)
- 5. a + b = b
- 6. 2b = b
- **7**. 1 = 2
- Step 5: a b = 0, so dividing both sides of the equation by a-b is wrong.

Existence proofs

- □ A proof of a proposition of the form ∃x P(x) is called an existence proof.
- Existence proof
 - Constructive proof
 - ☐ Finding an element a that P(a) is true.
 - Nonconstructive proof
 - \square Prove $\exists x P(x)$ is true in some other way.
 - Prove by contradiction
 - ¬ $\exists x P(x) (\equiv \forall x \neg P(x))$ implies a contradiction.

Constructive proof (example)

There is a positive integer that can be written as the sum of squares of two positive integers.

Proof:

- Find an example
 - $5 = 2^2 + 1^2$

Nonconstructive proof (example)

There exist irrational numbers x and y such that x^y is rational

Proof:

- By previous example
 - \blacksquare $\sqrt{2}$ is irrational.
- \Box $(\sqrt{2})^{\sqrt{2}}$
- \square Case 1: If $(\sqrt{2})^{\sqrt{2}}$ is rational
 - Thus, theorem is proved
- \square Case 2: If $(\sqrt{2})^{\sqrt{2}}$ is irrational
 - $((\sqrt{2})^{\sqrt{2}})^{\sqrt{2}} = (\sqrt{2})^{\sqrt{2} \cdot \sqrt{2}} = (\sqrt{2})^{2} = 2$
 - 2 (=2/1) is rational.
 - Thus, theorem is proved.

Definition:

The real number r is rational if r=p/q, ∃ integers p and q that q≠0.

Uniqueness proofs

- Theorem assert the existence of a unique element.
 - Unique element:
 - There is exactly one element with a particular property.
 - What we need to show?
 - There is an element x with this property. (Existence)
 - □ No other element y has this property.
 If y has this property too, then x = y.
 (Uniqueness)

Uniqueness proofs

Proof of "there is an element with unique property P(x)":

$$\exists x (P(x) \land \forall y (y \neq x \rightarrow \neg P(x)))$$

Uniqueness proofs (example)

Show that if a and b are real numbers and $a\neq 0$, then there is a unique real number r such that ar + b = 0.

Proof: (uniqueness proof)

- Existence proof
 - r = -b/a
 - a(-b/a) + b = -b + b = 0

Uniqueness proofs (example)

Show that if a and b are real numbers and $a \neq 0$, then there is a unique real number r such that ar + b = 0.

Proof: (uniqueness proof)

- uniqueness proof
 - Assume s is a real number such that as + b = 0.

$$as + b = ar + b$$

 $as = ar$
 $s = r$ $(a \ne 0)$

So, if $s \neq r$, then $as+b \neq 0$.

Proof strategies

- Finding proofs can be challenging.
 - Replace terms by their definitions
 - Carefully analyze hypotheses and conclusion
 - Choose a proof technique
 - Attempt to prove the theorem
 - If it fails try different proof methods

Forward and backward reasoning

p→q

- Forward reasoning
 - Assume premises are true.
 - Using premises, axioms, other theorems, construct a sequence of steps that leads to the conclusion.
- Backward reasoning
 - Work on the conclusion
 - Find a statement r that you can prove $r \rightarrow q$.

Prove that arithmetic mean of two positive real numbers is more than their geometric mean.

Proof: (backward reasoning)

$$(x+y)/2 > \sqrt{xy}$$

 $(x+y)^2/4 > xy$
 $(x+y)^2 > 4xy$
 $x^2 + 2xy + y^2 > 4xy$
 $x^2 - 2xy + y^2 > 0$
 $(x-y)^2 > 0$

Arithmetic mean of x and y: (x+y)/2
Geometric mean of x and y: √xy

We can easily reverse the steps to construct a proof using forward reasoning.

Prove that arithmetic mean of two positive real numbers is more than their geometric mean.

Proof: (backward reasoning)

$$(x-y)^2 > 0$$

 $x^2 - 2xy + y^2 > 0$
 $x^2 + 2xy + y^2 > 4xy$
 $(x+y)^2 > 4xy$
 $(x+y)^2/4 > xy$
 $(x+y)/2 > \sqrt{xy}$

Arithmetic mean of x and y: (x+y)/2 Geometric mean of x and y: √xy

Game:

- ☐ There are 15 stones on a pile
- Two players takes turn to remove stones from the pile.
- A player can remove one, two or three stones at a time from the pile.
- The player who removes the last stone wins the game.

Show that player 1 can win the game no matter what player 2 does.

Proof: (backward reasoning)

Find a strategy for player 1 that player 1 always wins.

(backward reasoning)

- Player 1 wins.
- □ At last step, 1,2 or 3 stones are left on the pile. (How can player 1 make player 2 leave 1, 2 or 3 stones on the pile?)
- □ Player 1 leaves 4 stones on the pile.
 (How many stones should be left on the pile for player 1?)
- 5, 6 or 7 stones are left on the pile for player 1.
 (How can player 1 make player 2 leave 5, 6 or 7 stones on the pile?)

Proof: (backward reasoning)

- Player 1 leaves 8 stones on the pile. (How many stones should be left on the pile for player 1?)
- 9, 10 or 11 stones are left on the pile for player 1. (How can player 1 make player 2 leave 9, 10 or 11 stones on the pile?)
- ☐ Player 1 leaves 12 stones on the pile.

Proof: (backward reasoning)

- Strategy for player 1
 - Turn 1: leave 12 stones on the pile for player 2
 - Turn 2: player 2
 - Turn 3: leave 8 stones on the pile for player 2
 - Turn 4: player 2
 - Turn 5: leave 4 stones on the pile for player 2
 - Turn 6: player 2
 - Turn 7: removes all stones

Player 1 wins.

Adapting existing proofs

Often an existing proof can be adapted to prove a new result.

Some of the ideas in existing proofs may be helpful.

If 3 is a factor of n², then 3 is a factor of n.

Proof (proof by contradiction):

Assume 3 is a factor of n² and 3 is not a factor of n.

$$\exists a \quad n^2 = 3a$$

$$\exists b \ n = 3b+1 \ or \ n=3b+2$$

$$n^2 = (3b+1)^2 = 9b^2 + 6b + 1 = 3(3b^2 + 2b) + 1$$

Let
$$k = 3b^2 + 2b$$
.

$$n^2 = 3k + 1$$

So, 3 is not a factor of n².

(Contradiction)

If 3 is a factor of n², then 3 is a factor of n.

Proof (proof by contradiction):

Assume 3 is a factor of n² and 3 is not a factor of n.

$$\exists a \quad n^2 = 3a$$

 $\exists b \quad n = 3b+1 \quad or \quad n=3b+2$
 $Case 2: n=3b+2$
 $n^2 = (3b+2)^2 = 9b^2 + 12b + 4 = 3 (3b^2 + 4b + 1) + 1$
Let $k = 3b^2 + 4b + 1$.
 $n^2 = 3k + 1$ So, 3 is not a factor of n^2 .
(Contradiction)

So, if 3 is a factor of n², then 3 is a factor of n.

Prove that $\sqrt{3}$ is irrational.

Proof (proof by contradiction):

Assume $\sqrt{3}$ is rational.

$$\sqrt{3} = a/b$$

Definition:

The real number r is rational if r=p/q, \exists integers p and q that $q \neq 0$.

If a and b have common factor, remove it by dividing a and b by it.

$$\sqrt{3} = a/b$$

$$3 = a^2 / b^2$$

$$3b^2 = a^2$$

So, 3 is factor of a² and by previous theorem, 3 is factor of n.

Prove that $\sqrt{3}$ is irrational.

Proof (proof by contradiction):

$$3b^2 = a^2$$

 $\exists k \ a = 3k.$

$$3b^2 = 9k^2$$

$$b^2 = 3k^2$$

So, 3 is factor of b² and by previous theorem, 3 is factor of b.

$$\exists m$$
 $b = 3m$.

So, a and b have common factor 3 which contradicts the Assumption.

Definition:

The real number r is rational if r=p/q, ∃ integers p and q that q≠0.

Looking for counterexample

- □ Theorem proof
 - You might first try to prove theorem.
 - If your attempts are unsuccessful, try to find counterexample.

Looking for counterexample (example)

Every positive integer is the sum of the squares of three integers.

Proof:

Try to find a counterexample

$$1 = 0^{2} + 0^{2} + 1^{2}$$

$$2 = 0^{2} + 1^{2} + 1^{2}$$

$$3 = 1^{2} + 1^{2} + 1^{2}$$

$$4 = 0^{2} + 0^{2} + 2^{2}$$

$$5 = 0^{2} + 1^{2} + 2^{2}$$

$$6 = 1^{2} + 1^{2} + 2^{2}$$

$$7 = ?$$

Looking for counterexample (example)

Every positive integer is the sum of the squares of three integers.

Proof:

Try to find a counterexample

7 is a counterexample.

Since squares less than 7 are 0, 1 and 4, 7 cannot be written as a sum of three of these numbers.