Particle spectrograph

Wave operator and propagator

$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{2k^2(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\tau_{1^{}-\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{\text{-}}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}{}_{+}\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$r_1^{\#1} + \alpha \beta$	$r_1^{\#2} + \alpha \beta$	${\mathfrak l}_1^{\#1} + {\mathfrak a}^{\beta}$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

Quadratic (free) Lagrangian density
$-t_1\;\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
$\frac{2}{3}r_{1}\partial^{\beta}\omega^{\theta\alpha}_{\kappa}\partial_{\theta}\omega_{\alpha\beta}^{\kappa} - \frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{\kappa}\partial_{\kappa}\omega^{\alpha\beta\theta} + \frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{\kappa}\partial_{\kappa}\omega^{\theta\alpha\beta} +$
$2r_1\partial_\alpha\omega_\lambda^{\ \alpha}_{\ \ \theta}\partial_\kappa\omega^{\theta\kappa\lambda} - 2r_1\partial_\theta\omega_\lambda^{\ \alpha}_{\ \ \alpha}\partial_\kappa\omega^{\theta\kappa\lambda}_{\ \ \ } + 2r_1\partial_\alpha\omega_\lambda^{\ \alpha}_{\ \ \ \theta}\partial_\kappa\omega^{\kappa\lambda\theta}_{\ \ \ } -$
$4r_1\partial_\theta\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - \tfrac{1}{2}t_1\partial^\alpha f_{\ \theta\kappa}\partial^\kappa f_{\ \alpha}^{\ \theta} - \tfrac{1}{2}t_1\partial^\alpha f_{\ \kappa\theta}\partial^\kappa f_{\ \alpha}^{\ \theta} - \tfrac{1}{2}t_1\partial^\alpha f_{\ \kappa}\partial^\kappa f_{\alpha\lambda} +$
$t_1\;\omega_{\kappa\alpha}^{\;\;\alpha}\;\partial^\kappa f^{\prime}\; , + t_1\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^\kappa f^{\prime}\; , + 2t_1\;\partial^\alpha f_{\;\kappa\alpha}\;\partial^\kappa f^{\prime}\; , - t_1\;\partial_\kappa f^{\;\lambda}_{\;\;\lambda}\;\partial^\kappa f^{\prime}\; , + 2t_1\;\omega_{\prime\kappa\theta}\;\partial^\kappa f^{\prime\theta} -$
$t_1\;\omega_{_{I}lpha}^{\; \sigma^{_{K}}f_{_{I}}^{\;$
$\frac{1}{2}t_1\partial_{\kappa}f^{\lambda}_{\theta}\partial^{\kappa}f_{\lambda}^{\theta}-t_1\partial^{\alpha}f^{\lambda}_{\alpha}\partial^{\kappa}f_{\lambda\kappa}+\frac{2}{3}r_1\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta}-\frac{2}{3}r_1\partial_{\kappa}\omega^{\theta\alpha\beta}\partial^{\kappa}\omega_{\alpha\beta\theta}+$
$\frac{2}{3} r_1 \partial^\beta \omega_{\alpha}^{\ \alpha\lambda} \partial_\lambda \omega_{\alpha\beta}^{\ \ \prime} - \frac{8}{3} r_1 \partial^\beta \omega_{\lambda}^{\ \ \prime} \partial_\lambda \omega_{\alpha\beta}^{\ \ \prime} - 2 r_1 \partial_\alpha \omega_{\lambda}^{\ \alpha} \partial^\lambda \omega_{\beta\kappa}^{\ \beta\kappa} + 2 r_1 \partial_\theta \omega_{\lambda}^{\ \alpha} \partial^\lambda \omega^{\theta\kappa}_{\ \kappa}$

	$\sigma_{2}^{\#1}{}_{lphaeta}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2^+}^{\sharp 1} \dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_{2^+}^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

$f_{1^-}^{\#2}{}_{lpha}$	0	0	0	$i k t_1$	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ikt_1$
$f_{1}^{\#1}_{+\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{+}\alpha\beta$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{+}\alpha\beta$	$-\frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
	$\omega_{1}^{\#1} + \alpha^{eta}$	$\omega_{1}^{\#2} +^{\alpha\beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{#2} + \alpha$

	$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0^{+}}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0^{+}}^{#2}$ †	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$-t_1$

0

0

 $\tau_{0}^{\#1} + \tau_{0}^{\#2} + \sigma_{0}^{\#1} + \sigma_{0}^{\#1} + \sigma_{0}^{\#1}$

 $\tau_0^{\#2}$

 $\tau_0^{\#1}$

Source constraints/gauge generators				
SO(3) irreps	Multiplicities			
$\tau_{0+}^{\#2} == 0$	1			
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5			
Total constraints:	16			

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$