-L.44-

Mathematik I für Studierende der Informatik (Diskrete Mathematik) Thomas Andreae, Christoph Stephan

Wintersemester 2011/12 Blatt 13

B: Hausaufgaben zum 2./3. Februar 2012

1. a) In Hausaufgabe 1b) (Blatt 11) wurde ein lineares Gleichungssystem betrachtet, dessen allgemeine Lösung $x=(x_1,x_2,x_3)$ wie folgt lautete (für $t\in\mathbb{R}$):

$$x_1 = \frac{5}{3} - \frac{2}{3}t$$
, $x_2 = -\frac{4}{3} + \frac{1}{3}t$, $x_3 = t$.

Überprüfen Sie, ob es sich bei dieser allgemeinen Lösung um eine Gerade handelt und geben Sie diese ggf. in Parameterform an, d.h. mit Stütz- und Richtungsvektor.

b) In Hausaufgabe 1d) (Blatt 11) wurde ein lineares Gleichungssystem betrachtet, dessen allgemeine Lösung $x=(x_1,x_2,x_3)$ wie folgt lautete (für $s,t\in\mathbb{R}$):

$$x_1 = 2 - \frac{1}{2}s - \frac{1}{2}t$$
, $x_2 = s$, $x_3 = t$.

Überprüfen Sie, ob es sich bei dieser allgemeinen Lösung um eine Ebene handelt und geben Sie diese ggf. in **Parameterform** an, d.h. mit **Stützvektor** und zwei **Spannvektoren**.

c) In Hausaufgabe 2 (Blatt 11) wurde ein lineares Gleichungssystem betrachtet, dessen allgemeine Lösung $x=(x_1,x_2,x_3,x_4,x_5,x_6)$ wie folgt lautete (für $r,s,t\in\mathbb{R}$):

$$x_1 = -3 + 5r + 3s + t$$
, $x_2 = 1 - 2r - 3s$, $x_3 = r$, $x_4 = s$, $x_5 = -2 + 3t$, $x_6 = t$.

Man gebe die Lösungsmenge auf eine Art an, die der Parameterform einer Ebene ähnlich ist, d.h. mit Stützvektor und mehreren Spannvektoren.

a)
$$X = (X_1, X_2, X_3) = (\frac{5}{3} - \frac{2}{3}t, -\frac{1}{3} + \frac{4}{3}t, t)$$

 $= (\frac{5}{3}, -\frac{1}{3}, 0) + t(-\frac{2}{3}, \frac{4}{3}, 1), t \in \mathbb{R}.$
Stitzvelstor Rishmagsvelstor

$$k) \times = (\times_{1}, \times_{2}, \times_{3}) = (2 - \frac{1}{2}s - \frac{1}{2}t, s, t)$$

$$= (2, 0, 0) + s(-\frac{1}{2}, 1, 0) + t(-\frac{1}{2}, 0, 1), s, t \in \mathbb{R}$$
Shitzpelifor

c)
$$\times = (\times_{1} \times_{2} \times_{3} \times_{4} \times_{5} \times_{6})$$

 $= (-3+5\tau+3s+t, \Lambda-2\tau-3s, \tau, s, -2+3t, t)$
 $= (-3, 1, 0, 0, -2, 0) + \tau(5, -2, 1, 0, 0, 0) + s(3, -3, 0, 1, 0, 0)$
Shitewebbor $+t(1, 0, 0, 0, 3, \Lambda), \tau, s, t \in \mathbb{R}$.

- 4. a) Finden Sie heraus, ob die Vektoren $v_1 = (2, 4, -2, -4)$, $v_2 = (-2, 3, 3, 3)$ und $v_3 = (-5, 18, 9, 6)$ linear abhängig oder linear unabhängig sind.
 - b) Ebenso für $v_1 = (2, 4, -2, -4), v_2 = (-2, 3, 3, 3)$ und $v_3 = (-4, -1, 6, 7)$.
 - c) Ebenso für $v_1 = (1, 1, 1, 1), v_2 = (-1, 0, 1, 1), v_3 = (2, 2, 0, -1)$ und $v_4 = (-1, 5, 13, 14).$
 - d) Ebenso für $v_1 = (4,3,0,1)$, $v_2 = (5,6,7,8)$, $v_3 = (1,0,0,7)$, $v_4 = (0,0,7,0)$ und $v_5 = (4,7,1,1)$.

G)	2.	- 2	-4	0	
	4	3	-1	000	
٠	-5	333	6	0	
	-4	3	7	0	
	14	-1	-2	0000	
	4	1 3 3 3	767	0	
	-2	3	6	0	
	-4		7	i	
	1	-1711	-5	0000	
	0	7	2721	00	
	1000	- A	-/	00	
	•	, ,			

1	- 1	-2	0
0	1	1	0
0	1	2	0
0	-1	-1	O
Λ	-1	-2	0
O	1	1	0
0	O	1	0
0	0	. Q.	0
20	D. Dan		,

Es frest, dass es mur die triviale Lösung ×n=0, ×2=0, ×3=0 gibt. Deshall sind die Vektoren V1, V2, V3 linear unaberängig.

C)	1111	-1011	2307	-A 534	0000	
	1	-1	2	-1	0	
	0	1	0	6	0	
	000	122	0 -3	14	000	
	1	-1	2	-1	O	
	0	1	0	6	0	İ
	0	0	-2	2	0	
	0	0	-3	23	0	

Λ	<u> </u>	1 5	L -	1	0
Ö	1	1)	6	0
() (N C - 0	_	-1	D
) (0 -	3	3	0
1	· _	n 1	2 -	-1	O
O) ,	1 (2	6	O
C) (,	1 -	-1	0
· C) () (D
ಳ್ಯ	fol	et,	cash	es n	ist
t-	insi.	ale	الله الله	، نحم قط	لغم

Es folgt, dass es nicht triviale Lösungen giet. Deschalb sind die Vektoren von, vir Linear alhängri. - L.47-

d) V11. V5 sind linear abhängig aufgrund von Satz 4.9 (Grambich, Abschnit 4.10); sieht auch Ergänzungsskript Seite 26.