PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-192830

(43)Date of publication of application: 10.07.2002

(51)Int.CI.

B41M 5/00 B41J 2/01

(21)Application number: 2000-392501

(71)Applicant: KONICA CORP

(22)Date of filing:

25.12.2000

(72)Inventor: KATO EISAKU

TSUBAKI YOSHINORI USHIKU MASAYUKI OBAYASHI KEIJI

(54) INK JET RECORDING PAPER

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an ink jet recording paper, in which the bleeding during storage after printing and water resistance to a water-soluble dye are improved without deteriorating its bronzing and which has an excellent color reproducing stability to the change of environmental humidity at printing.

SOLUTION: The ink jet recording paper has an ink absorbing layer including a compound having a polyvinyl alcohol, a cationic polymer and a zirconium or an aluminum atom except zirconium oxide and aluminum oxide on a non- water absorbing support under the state that the pH of the film surface of the front surface of the ink absorbing layer after being printed with an ink jet printer is set to be 4 to 6.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2002-192830

(P2002-192830A) (43)公開日 平成14年7月10日(2002.7.10)

 (51) Int. C1. 7
 識別記号
 F I
 デーマコート' (参考)

 B41M 5/00
 B 2C056

 B41J 2/01
 B41J 3/04
 101
 Y 2H086

審査請求 未請求 請求項の数4 OL (全19頁)

(21)出願番号 (71)出願人 000001270 特願2000-392501(P2000-392501) コニカ株式会社 (22)出願日 平成12年12月25日(2000.12.25) 東京都新宿区西新宿1丁目26番2号 (72)発明者 加藤 栄作 東京都日野市さくら町1番地コニカ株式会 社内 (72)発明者 椿 義徳 東京都日野市さくら町1番地コニカ株式会 社内 (72)発明者 牛久 正幸 東京都日野市さくら町1番地コニカ株式会 社内 最終頁に続く

(54) 【発明の名称】 インクジェット記録用紙

(57) 【要約】

【課題】 本発明の目的は、ブロンジングを悪化させることなく水溶性染料に対してプリント後の保存中の滲みや耐水性を改良し、プリント時の環境湿度変化に対する色再現の安定性に優れたインクジェット記録用紙を提供することである。

【解決手段】 非吸水性支持体上に、ポリビニルアルコール、カチオン性ポリマー、及びジルコニウムまたはアルミニウム原子を有する化合物(ただし、酸化ジルコニウムおよび酸化アルミニウムを除く)とを含有するインク吸収層を有し、かつインクジェットプリンターでプリント後の該インク吸収層表面の膜面 p Hが4~6であることを特徴とするインクジェット記録用紙。

【特許請求の範囲】.

【請求項1】 非吸水性支持体上に、ポリビニルアルコ ール、カチオン性ポリマー、及びジルコニウムまたはア ルミニウム原子を有する化合物(ただし、酸化ジルコニ ウムおよび酸化アルミニウムを除く)とを含有するイン ク吸収層を有し、かつインクジェットプリンターでプリ ント後の該インク吸収層表面の膜面 p Hが4~6である ことを特徴とするインクジェット記録用紙。

1

前記インク吸収層が、ホウ酸またはその 【請求項2】 塩と有機酸またはその塩とを、1 m² 当たり2~20ミ リモル含有し、かつプリント前の該インク吸収層表面の 膜面 p H が 3. 5~5. 5 であることを特徴とする請求 項1に記載のインクジェット記録用紙。

【請求項3】 前記カチオン性ポリマーの少なくとも1 種が、下記一般式(1)で表される繰り返し単位を有す るカチオン性ポリマーであることを特徴とする請求項1 または2に記載のインクジェット記録用紙。

【化1】

一般式(1)

〔式中、Rは水素原子または炭素原子数が1~4のアル キル基、R₁、R₂、R₃はそれぞれアルキル基を表し、 Jは単なる結合手または2価の有機基を表す。X はア ニオン基を表す。〕

【請求項4】 前記インク吸収層が少なくとも2層から なり、非吸水性支持体から最も離れたインク吸収層が、 前記一般式(1)で表される繰り返し単位を有するカチ オン性ポリマーを少なくとも1種含有することを特徴と する請求項1または2に記載のインクジェット記録用 紙。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はインクジェット記録 用紙に関し、詳しくは、インク吸収性が良好で、滲みの 発生が少なく、かつ環境湿度変化に対する色再現の安定 性に優れたインクジェット記録用紙に関する。

[0002]

【従来の技術】近年、インクジェット記録材料は、急速 にその画質向上が図られ、写真画質に迫りつつある。特 に、写真画質に匹敵する画質をインクジェット記録で達 成するために、インクジェット記録用紙(以下、単に記 録用紙ともいう)の面からもその改良が進んでおり、高 平滑性の支持体上に微粒子と親水性ポリマーからなる微 小な空隙層を設けた空隙型の記録用紙は、高い光沢を有 し、鮮やかな発色を示し、インク吸収性及び乾燥性に優 れていることから、最も写真画質に近いものの一つにな 50 合物を含有したインクジェット記録用紙が開示されてい

りつつある。特に、非吸水性支持体を使用した場合は、 吸水性支持体に見られるようなプリント後のコックリン グ、いわゆる「しわ」の発生がなく、高平滑な表面を維 持できるため、より髙品位なプリントを得ることができ

【0003】インクジェット記録は、一般に、水溶性染 料インクを用いる場合と顔料インクを用いる場合とに大 きく分けられる。顔料インクは、画像の耐久性が高い が、画像状に光沢が変化しやすく、その結果、写真画質 10 に近いプリントを得にくく、一方、水溶性染料インクを 用いると、画像の鮮明性が高く、かつ均一な表面光沢を 有する写真画質に匹敵するカラープリントが得られる。 【0004】しかしながら、この水溶性染料は親水性が 高いため、滲みが発生したり耐水性が劣るという欠点を 有している。すなわち、画像記録後に、高湿下で長期間 保存したり、プリント面上に水滴が付着した場合、染料 が滲みやすい。

【0005】この問題を解決するため、一般には、カチ オン性物質のような染料固着性物質を多孔質層中に添加 20 しておくことが行われている。例えば、カチオン性ポリ マーを用いてアニオン性の染料と結合させ、強固に不動 化する方法が好ましく用いられている。このようなカチ オン性ポリマーとしては、4級アンモニウム塩の重合物 等があげられ、例えば、「インクジェットプリンター技 術と材料」(株式会社シーエムシー発行 1998年7 月)や特開平9-193532号の従来技術に記載され ている。また、水溶性の多価金属イオンを予めインクジ エット記録用紙中に添加しておき、インクジェット記録 時に染料を凝集固着させて不動化させる方法も提案され 30 ている。

【0006】しかしながら、かかるカチオン性ポリマー や水溶性多価金属イオンの添加により、滲みや耐水性を 高めれば、染料が凝集して表面で凝集しやすくなり、そ の結果として、画像表面が金属光沢状のブロンジング現 象を起こしやすくなる。このブロンジング現象は、一般 にプリントを髙湿状態で保管した場合に起きやすくな る。

【0007】ジルコニウム原子やアルミニウム原子を含 有する化合物をインクジェット記録用紙に用いることは 40 既に知られている。例えば、特開昭55-53591 号、同55-150396号、同56-867789 号、同58-89391号および同58-94491号 には、水溶性染料と結合して難溶性塩を形成する水溶性 多価金属塩を添加したインクジェット記録用紙が開示さ れている。また、特開昭60-67190号、同61-10484号、および同61-57379号には、カチ オン性ポリマーと水溶性多価金属塩を添加したインクジ エット記録用紙が開示されている。また、特開昭60-257286号には、塩基性ポリ水酸化アルミニウム化

る。また、特開平1.0-258567号には、親水性髙分子と4A族元素含有水溶性化合物を併用する方法が、特開平10-309862号には親水性高分子と多価カルボン酸にジルコニル化合物を併用する方法が開示されている。さらに、ジルコニウム元素を含む化合物に関しては、特開平4-7189号に多孔性顔料と酸塩化ジルコニウム化合物を用いた方法が開示されている。同公量には、酸塩化ジルコニウム塩の添加により、比較的少量には、酸塩化ジルコニウム塩の添加により、比較的少量のバインダーで接着強度が得られ、画質向上が図れたと記載されている。また、特開平6-32046号には、ジルコニウム化合物をシリカと変性ポリビニルアルレルと組み合わせた方法が開示されている。さらに、欧州特許第754、560号には、水溶性パインダー、顔料、ジルコニウム化合物、カチオン性ポリマーを併用する方法が開示されている。

【0008】しかしながら、上記のような水溶性多価金属塩を含有させる場合、充分な滲みや耐水性を向上させる効果を得るまで添加量を増すとブロンジングを引き起こしやすい欠点があることが判明した。また、上記の塩基性ポリ水酸化アルミニウムや酸塩化ジルコニウム塩等は、上記のような欠点がないものの、プリント後、経時保存した際に、形成画像の色変化を起こしやすい欠点があることが判明した。

【0009】すなわち、塩基性ポリ水酸化アルミニウムや酸塩化ジルコニウム塩をインク吸収層に含有したインクジェット記録用紙では、高湿下でブリントした場合に、湿度が低い場合にプリントした場合に比較し、色の変化が大きくなりやすいことが判明し、早急な改良が必要とされている。

[0010]

【発明が解決しようとする課題】本発明は、上記課題を鑑みなされたものであり、その目的は、ブロンジングを悪化させることなく水溶性染料に対してプリント後の保存中の滲みや耐水性を改良し、かつブリント時の環境湿度変化に対する色再現の安定性に優れたインクジェット記録用紙を提供することである。

[0011]

【課題を解決するための手段】本発明の上記目的は、以下の構成により達成された。

【0012】1. 非吸水性支持体上に、ボリビニルアル 40 コール、カチオン性ポリマー、及びジルコニウムまたはアルミニウム原子を有する化合物(ただし、酸化ジルコニウムおよび酸化アルミニウムを除く)とを含有するインク吸収層を有し、かつインクジェットプリンターでプリント後の該インク吸収層表面の膜面 p H が 4 ~ 6 であることを特徴とするインクジェット記録用紙。

【0013】2. 前記インク吸収層が、ホウ酸またはその塩と有機酸またはその塩とを、 $1 \, \text{m}^2$ 当たり $2 \sim 2 \, 0$ ミリモル含有し、かつプリント前の該インク吸収層表面の膜面 $p \, \text{H}$ が $3.5 \sim 5.5 \, \text{c}$ であることを特徴とする前 50

記1項に記載のインクジェット記録用紙。

【0014】3. 前記カチオン性ポリマーの少なくとも1種が、前記一般式(1)で表される繰り返し単位を有するカチオン性ポリマーであることを特徴とする前記1または2項に記載のインクジェット記録用紙。

【0015】4. 前記インク吸収層が少なくとも2層からなり、非吸水性支持体から最も離れたインク吸収層が、前記一般式(1)で表される繰り返し単位を有するカチオン性ボリマーを少なくとも1種含有することを特徴とする前記1または2項に記載のインクジェット記録用紙。

【0016】本発明者らは、上記課題に対し鋭意検討を行った結果、ポリビニルアルコール、特定のカチオン性ポリマー、及びジルコニウムまたはアルミニウム原子を有する特定の化合物とを含有させることで、ブロンジングを引き起こすことなく、滲みや耐水性を改良することができることを見いだした。更に、インク吸収層表面の膜面pHが、湿度変化に対する色変動に強く関与していることを見いだし、膜面pHを4~6の範囲にコントロールすることにより、プリント時の湿度環境、とりわけ高湿度下でのプリントの際の色再現性を大きく改良できることを見いだし、本発明に至った次第である。

【0017】以下、本発明の詳細について説明する。請求項1に係る発明では、インク吸収層がポリピニルアルコール、カチオン性ポリマー、及びジルコニウムまたはアルミニウム原子を有する化合物(ただし、酸化ジルコニウムおよび酸化アルミニウムを除く)とを含有し、かつインクジェットプリンターでプリント後の該インク吸収層表面の膜面pHが4~6であることが特徴である。

30 【0018】 (ポリビニルアルコール) はじめに、本発明のインクジェット記録用紙に用いられるポリビニルアルコールについて、以下説明する。

【0019】本発明に用いられるボリビニルアルコールとしては、ボリ酢酸ビニルを加水分解して得られる通常のボリビニルアルコールの他に、末端をカチオン変性したボリビニルアルコールやアニオン性基を有するアニオン変性ボリビニルアルコール等の変性ボリビニルアルコールも含まれる。

【0020】酢酸ビニルを加水分解して得られるポリビニルアルコールは、平均重合度が1000以上のものが好ましく用いられ、特に、平均重合度が1500~500のものが好ましく用いられ、更に、ケン化度は70~100%のものが好ましく、80~99.5%のものが特に好ましい。また、ポリビニルアルコールは、重合度、ケン化度や変性の種類等の異なるものを2種類以上併用してもよい。

【0021】上記ポリビニルアルコールの使用量は、インクジェット記録用紙 $1m^2$ あたり $0.5\sim10g$ 、好ましくは $1\sim6g$ である。

【0022】本発明のインクジェット記録用紙のインク

吸収層中には、上記ボリビニルアルコール以外の親水性ボリマーを含有することができ、そのような親水性ボリマーの例としては、例えば、ゼラチン、ボリエチレンオキシド、ボリビニルピロリドン、カゼイン、澱粉、寒天、カラギーナン、ポリアクリル酸、ボリメタクリル酸、ボリアクリルアミド、ボリメタクリルアミド、ボリスチレンスルホン酸、セルロース、ヒドロキシルエチルセルロース、カルボキシルメチルセルロース、ヒドロキシルエチルセルロース、ガルボキシルメチルセルロース、ボリビ 10 ニルアルコールに対して、好ましくは0~50質量%、特に好ましくは0~20質量%の範囲で用いることがで

5

【0023】 (カチオン性ポリマー) 次に、本発明に係るカチオン性ポリマーについて説明する。

きる。

【0024】本発明の記録用紙のインク吸収層に用いら れるカチオン性ポリマーとして、特に制限はなく、イン クジェット記録用紙で従来公知のカチオン性ポリマーが 挙げられ、その中でも第4級アンモニウム塩基を有する カチオン性ポリマーが好ましい。例えば、特開昭57-64591号に記載のグアニジル基を有するカチオン性 ポリマー、特開昭59-20696号に記載のジメチル ジアリルアンモニウムクロライド、特開昭59-331 76号に記載のポリアミンスルホン類、特開昭63-1 15780号の(メタ)アクリル酸アルキル第4級アン モニウム塩または(メタ)アクリルアミドアルキル第4 級アンモニウム塩型カチオン性ポリマー、特開昭64-9776号および同64-75281号に記載のジメチ ルアリルアンモニウムクロライドとアクリルアミドの共 重合ポリマー、特開平3-133686号に記載の繰り 30 返し単位中に第4級窒素原子を2個以上含有するカチオ

ン性ポリマー、特開平4-288283号に記載の第4級アンモニウム塩基を有するポリビニルピロリドン、特開平6-92010号および同6-234268号に記載の2級アミンとエピハロヒドリンとの反応により得られるカチオン性ポリマー、国際特許公開99-64248号に記載のポリスチレン型カチオン性ポリマー、特開平11-348409号に記載の2種以上のカチオン性基を有する繰り返し単位からなるカチオン性ポリマーなどを挙げることができる。

6

① 【0025】本発明で特に好ましいカチオン性ポリマーは、前記一般式(1)で表される繰り返し単位を有するカチオン性ポリマーである。

【0026】前記一般式(1)において、Rで表されるアルキル基としては、メチル基が好ましい。R、R、R、およびR、で表されるアルキル基は、好ましくはメチル基、エチル基またはベンジル基である。Jで表される2価の有機基としては、好ましくは-CON(R')-を表す。R'は水素原子またはアルキル基を表す。

【0027】Xで表されるアニオン基は、例えば、ハロ20 ゲンイオン、酢酸イオン、メチル硫酸イオン、p-トルエンスルホン酸塩などを挙げることができる。

【0028】好ましいカチオン性ポリマーは、前記一般式(1)で表される繰り返し単位からなるホモポリマーであってもよく、他の共重合可能な単量体との共重合であってもよい。共重合可能な繰り返し単位としては、前記一般式(1)以外のカチオン性単量体および、カチオン性基を有しない単量体を挙げることができる。

【0029】カチオン性基を有する単量体としては、例 えば、下記の繰り返し単位を挙げることができる。

80 [0030]

【化2】

【0031】カチオン性基を有しない共重合可能な繰り 返し単位としては、例えば、エチレン、スチレン、ブタ ジエン、メチルメタクリレート、エチルメタクリレー ト、プロピルメタクリレート、ブチルメタクリレート、 オクチルメタクリレート、メチルアクリレート、エチル アクリレート、プロピルアクリレート、ブチルアクリレ ート、オクチルアクリレート、ヒドロキシルエチルメタ クリレート、アクリルアミド、酢酸ビニル、ビニルメチ 30 示すが、本発明はこれらに限定されるものではない。 ルエーテル、塩化ビニル、4-ビニルピリジン、N-ビ ニルピロリドン、Nービニルイミダゾール、アクリルニ トリルなどを挙げることができる。

【0032】本発明で好ましく用いられるカチオン性ポ リマーが、前記一般式(1)で表される繰り返し単位を 有する場合、前記一般式(1)で表される繰り返し単位 は、好ましくは20モル%以上、特に好ましくは40~ 100モル%である。

【0033】本発明に係る一般式(1)で表される繰り 返し単位を有するカチオン性ポリマーの具体例を以下に

[0034]

[化3]

[0035] [化4]

$$\begin{array}{c} 11 \\ P-9 \\ \\ -(CH_2-CH)_{80}- \\ -(CH_2-CH)_{20}- \\ COOC_4H_9(n) \\ \\ CH_3 \\ I+\\ CH_2-N-CH_3 \\ CI \\ CI \\ C_2H_5 \end{array}$$

P-13
$$-(CH_{2}-CH)_{60}--(CH_{2}-CH)_{10}--(CH_$$

[0036] [化5]

сн₃

【0037】上記カチオン性ポリマーの平均分子量は、概ね $3000\sim20$ 万であり、好ましくは $5000\sim1$ 0万である。平均分子量は、ゲルパーミエーションクロマトグラフィーから求められたポリエチレングリコール換算の値で表す。

【0038】本発明に係るカチオン性ポリマーの使用量は、記録用紙 $1m^2$ 当たり、概ね $0.1\sim10g$ 、好ましくは $0.2\sim5g$ である。

【0039】 (ジルコニウム原子またはアルミニウム原 40子を有する化合物) 次に、本発明に係るジルコニウム原子またはアルミニウム原子を有する化合物について説明する。

【0040】本発明に係るジルコニウム原子またはアルミニウム原子を有する化合物(ただし、酸化ジルコニウムおよび酸化アルミニウムを除く)は、その化合物自身は水溶性であっても非水溶性であっても良いが、インク吸収層に均一に添加できるものが好ましい。

【0041】本発明で用いることのできるジルコニウム 原子またはアルミニウム原子を含有する化合物は、無機 50

酸や有機酸の単塩および複塩、有機金属化合物、金属錯 体などのいずれであっても良い。

【0042】本発明で用いることのできるジルコニウム 原子を有する化合物の具体例としては、二フッ化ジルコ ニウム、三フッ化ジルコニウム、四フッ化ジルコニウ ム、ヘキサフルオロジルコニウム酸塩(例えば、カリウ ム塩)、ヘプタフルオロジルコニウム酸塩(例えば、ナ トリウム塩、カリウム塩やアンモニウム塩)、オクタフ ルオロジルコニウム酸塩(例えば、リチウム塩)、フッ 化酸化ジルコニウム、二塩化ジルコニウム、三塩化ジル コニウム、四塩化ジルコニウム、ヘキサクロロジルコニ ウム酸塩(例えば、ナトリウム塩やカリウム塩)、酸塩 化ジルコニウム(例えば、塩化ジルコニル)、二臭化ジ ルコニウム、三臭化ジルコニウム、四臭化ジルコニウ ム、臭化酸化ジルコニウム、三ヨウ化ジルコニウム、四 ヨウ化ジルコニウム、過酸化ジルコニウム、水酸化ジル コニウム、硫化ジルコニウム、硫酸ジルコニウム、p-トルエンスルホン酸ジルコニウム、硫酸ジルコニル、硫 酸ジルコニルナトリウム、酸性硫酸ジルコニル三水和

16

物、硫酸ジルコニウムカリウム、セレン酸ジルコニウ ム、硝酸ジルコニウム、硝酸ジルコニル、リン酸ジルコ ニウム、炭酸ジルコニル、炭酸ジルコニルアンモニウ ム、酢酸ジルコニウム、酢酸ジルコニル、酢酸ジルコニ ルアンモニウム、乳酸ジルコニル、クエン酸ジルコニ ル、ステアリン酸ジルコニル、リン酸ジルコニウム、リ ン酸ジルコニル、シュウ酸ジルコニウム、ジルコニウム イソプロピレート、ジルコニウムブチレート、ジルコニ ウムアセチルアセトネート、アセチルアセトンジルコニ ウムブチレート、ステアリン酸ジルコニウムブチレー ト、ジルコニウムアセテート、ピス(アセチルアセトナ ト) ジクロロジルコニウム、トリス (アセチルアセトナ ト) クロロジルコニウムなどが挙げられる。

【0043】これらのジルコニウム原子を含む化合物の 中でも、炭酸ジルコニル、炭酸ジルコニルアンモニウ ム、酢酸ジルコニル、硝酸ジルコニル、酸塩化ジルコニ ウム、乳酸ジルコニル、クエン酸ジルコニルが好まし く、特に、炭酸ジルコニルアンモニウム、酢酸ジルコニ ルが最も好ましい。

【0044】本発明で用いることのできるアルミニウム 20 原子を有する化合物の具体例としては、フッ化アルミニ ウム、ヘキサフルオロアルミン酸(例えば、カリウム塩 等)、塩化アルミニウム、塩基性塩化アルミニウム(例 えば、ポリ塩化アルミニウム)、テトラクロロアルミン 酸塩(例えば、ナトリウム塩等)、臭化アルミニウム、 テトラプロモアルミン酸塩(例えば、カリウム塩な ど)、ヨウ化アルミニウム、アルミン酸塩(例えば、ナ トリウム塩、カリウム塩、カルシウム塩等)、塩素酸ア ルミニウム、過塩素酸アルミニウム、チオシアン酸アル ミニウム、硫酸アルミニウム、塩基性硫酸アルミニウ ム、硫酸アルミニウムカリウム(ミョウバン)、硫酸ア ンモニウムアルミニウム(アンモニウムミョウバン)、 硫酸ナトリウムアルミニウム、燐酸アルミニウム、硝酸 アルミニウム、燐酸水素アルミニウム、炭酸アルミニウ ム、ポリ硫酸珪酸アルミニウム、ギ酸アルミニウム、酢 酸アルミニウム、乳酸アルミニウム、蓚酸アルミニウ ム、アルミニウムイソプロピレート、アルミニウムブチ レート、エチルアセテートアルミニウムジイソプロピレ ート、アルミニウムトリス (アセチルアセトネート)、 アルミニウムトリス (エチルアセトアセテート)、アル 40 ミニウムモノアセチルアセトネートビス(エチルアセト アセトネート) 等を挙げることができる。

【0045】これらの中でも、塩化アルミニウム、塩基 性塩化アルミニウム、硫酸アルミニウム、塩基性硫酸ア ルミニウム、塩基性硫酸珪酸アルミニウムが好ましい。

【0046】上記ジルコニウム原子またはアルミニウム 原子を含む化合物は、インク吸収層を形成する塗布液に 添加してから塗布乾燥しても良いし、多孔質層を一旦塗 布乾燥した後、インク吸収層にオーバーコート法により 添加しても良い。

【0047】上記ジルコニウム原子またはアルミニウム 原子を含む化合物をインク吸収層を形成する塗布液に添 加する場合、水や有機溶媒あるいはこれらの混合溶媒に 均一に溶解して添加すること、あるいはサンドミルなど の湿式粉砕法や乳化分散などの方法により微細な粒子に 分散して添加することができる。インク吸収層が複数の 層から構成される場合には、1層のみ添加してもよく、 2層以上の層あるいは全ての層を形成する塗布液に添加 することもできる。

【0048】また、多孔質インク吸収層を一旦形成した 後、オーバーコート方法により添加する場合には均一な 溶液に溶解して添加するのが好ましい。

【0049】ジルコニウム原子またはアルミニウム原子 を含む化合物は、インクジェット記録用紙1 m² 当た り、通常0.01~5g、好ましくは0.05~2g、 特に好ましくは0.1~1gの範囲で用いられる。

【0050】上記化合物は2種以上を併用しても良く、 この場合、ジルコニウム原子を含む化合物を2種以上を 併用することも、アルミニウム原子を含む化合物を2種 以上併用することも、更には、ジルコニウム原子とアル ミニウム原子を含む化合物を併用することもできる。

【0051】(膜面pH)請求項1に係る発明では、プ リント後のインク吸収層表面の膜面pHは4~6である ことが特徴の1つである。また、請求項2に係る発明で は、プリント前のインク吸収層表面の膜面 p Hが、3. 5~5.5であることが特徴の1つである。

【0052】プリント後のインク吸収層表面の膜面pH が4未満の場合には、インク吸収層表面でブロンジング が起きやすい。また、pHが6を越える場合には、本発 明の効果である、環境湿度が変化した際の色変動が大き くなる。特に好ましいプリント後の膜面pHは4.5~ 5.5である。

【0053】ここで、インク吸収層表面の膜面pHと は、J. TAPPI 紙パルプ試験方法 No49-8 6に規定される方法で測定されたものであり、黒色イン クでベタ印字したプリントのインク吸収層表面に、pH が6. 2~7. 3の純水約50μ1を滴下し、平面電極 を押し当てて測定することができる。

【0054】プリント後の膜面pHは、プリント前のイ ンク吸収層表面の膜面pHを適切に調整したり、あるい は、インク吸収層中に酸バッファを適宜添加することな どにより、本発明で規定する膜面pHの範囲に調整する ことができる。

【0055】本発明において、好ましいプリント前のイ ンク吸収層表面の膜面 p H は、3.5~5.5である。 【0056】一般に、インク液のpHは酸性染料の凝集 性を回避するために酸性領域を避けることが多く、通常 はpH6~9程度であることが多いが、そのような比較 的高いpHのインク液を用いると、プリント後の膜面p 50 Hが上昇しやすく、プリント後の膜面pHが6を越える

ようになる。

【0057】プリント後の膜面pHが6を越えると、プ リント時の環境湿度が変化した際に色変動を起こしやす いが、現時点では、その原因は明確ではないが一つの原 因として以下の理由が考えられる。

【0058】すなわち、ジルコニウム原子やアルミニウ ム原子を含む化合物は、一般に、高いpH領域で酸化物 を形成しやすいと推測される。そして、アルミニウムや ジルコニウムの酸化物の形成は、皮膜の失透性に多少と も影響を与えると考えられるが、インク吸収層中では、 一般に、イエロー、マゼンタ、シアンの各色素は異なる 深さの位置に定着される結果、このようなインク吸収層 全体で生じる失透が、結果として、色変化を生ずる要因 となっていると考えられる。また、他の推測としては、 プリント時の環境湿度が変化した場合、インク中の水分 の蒸発速度に変化が生じ、その結果、皮膜中の水分変化 の履歴に差を生じ、その間に起こる酸化物の生成量や形 状(粒子径)に差が生じて、色変化を引き起こすのでは ないかと推測される。

【0059】本発明の改良のメカニズムは、上記のよう なプリント後の酸化物の形成を防止させることにより、 色変動防止に対して効果を発揮していると考えられる。 プリント後の酸化物の形成を効率的に抑制するために は、インク吸収層の膜面 p Hを予め低くしておくこと は、上記の推測から考え、有力な手段であり、特に、膜 面pHを6以下にすることは有効な手段の一つである。 【0060】また、別の有効な手段は、酸として作用す るpHバッファを添加しておくことで、比較的高いpH を有するインクを吸収してもプリント後の膜面 p Hの上

昇を抑えることができる。

【0061】pHバッファ剤としては、弱酸が好まし く、例えば、ホウ酸、炭酸、あるいは各種の有機酸が挙 げられる。しかしながら、炭酸は、低pH領域で炭酸ガ スを放出し易く、塗布液を調製する際や塗布時に種々の 故障を起こしやすい為に不都合である。好ましい弱酸と しては、ホウ酸や有機酸であるが、有機酸としては、例 えば、非揮発性のフタル酸、テレフタル酸、サリチル 酸、安息香酸、セバチン酸、ラウリン酸、パルミチン 酸、アスコルビン酸、クエン酸、リンゴ酸、乳酸、コハ ク酸、蓚酸、ポリアクリル酸、ベンジル酸等各種の有機 40 た、2次凝集粒子を形成してバインダー中に分散された 酸を挙げることができる。上記各種の弱酸は、酸単独で 用いても、一部ナトリウム塩やカリウム塩として用いて も良いが、請求項2に係る発明では、インク吸収層にホ ウ酸またはその塩と有機酸またはその塩とを、1 m² 当 たり2~20ミリモル含有させることが特徴である。

【0062】本発明においては、特に好ましいのはホウ 酸である。このホウ酸及び/またはその塩としては、ホ ウ素原子を中心原子とする酸素酸及び/またはその塩の ことを示し、具体的には、オルトほう酸、二ほう酸、メ タほう酸、四ほう酸、五ほう酸、八ほう酸及びそれらの 50 塩が含まれる。

【0063】ホウ酸またはその塩あるいは有機酸または その塩の使用量は、記録用紙1m²当たり、概ね2~5 0ミリモルであり、請求項2に係る発明では2~20ミ リモルであり、特に好ましくは、3~20ミリモルであ る。ここでいう添加量とは、ホウ酸またはその塩の場 合、硼素原子もモル数を示し、有機酸の場合カルボキシ ル基のモル数を示す。

【0064】 (インクジェット記録用紙の構成因子) 本 発明のインクジェット記録用紙について、上記に説明し 10 た以外の構成因子について、以下説明する。

【0065】本発明に係るインク吸収層は、親水性バイ ンダーを主たる構成成分とするいわゆる膨潤型のインク 吸収層であっても、また、少量のバインダーと微粒子を 多く含有する空隙型のインク吸収層であってもよいが、 インク吸収性が良好である観点から、空隙型インク吸収 層が好ましい。

【0066】空隙型インク吸収層は、少量のバインダー と微粒子から主として形成されるが、本発明で用いられ る微粒子としては、無機微粒子が、より高い発色濃度を 与え、かつより小粒径の微粒子が得られやすい点から好 ましい。

【0067】本発明のインクジェット記録用紙で好まし く用いられる無機微粒子について説明する。

【0068】無機微粒子としては、従来インクジェット 記録用紙で公知の各種の固体微粒子を用いることができ

【0069】無機微粒子の例としては、例えば、軽質炭 酸カルシウム、重質炭酸カルシウム、炭酸マグネシウ 30 ム、カオリン、クレー、タルク、硫酸カルシウム、硫酸 バリウム、二酸化チタン、酸化亜鉛、水酸化亜鉛、硫化 亜鉛、炭酸亜鉛、ハイドロタルサイト、珪酸アルミニウ ム、ケイソウ土、珪酸カルシウム、珪酸マグネシウム、 合成非晶質シリカ、コロイダルシリカ、アルミナ、コロ イダルアルミナ、擬ベーマイト、水酸化アルミニウム、 リトポン、ゼオライト、水酸化マグネシウム等の白色無 機顔料等を挙げることができる。

【0070】上記微粒子は、1次粒子のままでバインダ ー中に均一に分散された状態で用いられることも、ま 状態で添加されても良いが、後者がより好ましい。

【0071】上記無機微粒子の形状は本発明では特に制 約を受けず、球状、棒状、針状、平板状、数珠状の物で あっても良い。無機微粒子は、その平均粒径は3~20 0 nmのものが好ましい。平均粒径が200 nmを越え る微粒子を使用した場合には記録用紙の光沢性が低下し たり、あるいは表面での光散乱による最高濃度の低下が 生じたりして鮮明な画像が得にくくなる。平均粒径の下 限は特に限定されないが粒子の製造上の観点から概ね3 nm以上、特に6nm以上が好ましい。特に好ましい無

機微粒子は、その平均粒径が10~100nmである。 【0072】上記において、微粒子の平均粒径は、粒子 そのものあるいは空隙層の断面や表面を電子顕微鏡で観察し、多数個の任意の粒子の粒径を求めてその単純平均 値(個数平均)として求められる。ここで個々の粒径は その投影面積に等しい円を仮定した時の直径で表したも のである。

【0073】本発明に係る無機微粒子としては、無機微粒子と少量の有機物(低分子化合物でも、高分子化合物でもよい)とからなる複合粒子でも、実質的には無機微 10粒子と見なす。この場合も乾燥被膜中に観察される最高次粒子の粒径をもってしてその無機微粒子の粒径とする。

【0074】上記無機微粒子と少量の有機物との複合粒子における有機物/無機微粒子の質量比は、概ね1/100~1/4である。

【0075】本発明に係る無機微粒子としては、低コストであることや高い反射濃度が得られる観点から低屈折率の微粒子であることが好ましく、シリカ、中でも気相法で合成されたシリカまたはコロイダルシリカがより好 20ましい。また、カチオン表面処理された気相法シリカ、カチオン表面処理されたコロイダルシリカ及びアルミナ、コロイダルアルミナ、擬ベーマイト等も用いることができる。

【0076】空隙型のインク吸収層に用いられる無機微粒子の添加量は、要求されるインク吸収容量、空隙層の空隙率、無機微粒子の種類、親水性バインダーの種類に大きく依存するが、一般には記録用紙 $1m^2$ 当たり、通常 $3\sim30g$ 、好ましくは $5\sim25g$ である。空隙型インク吸収層に用いられる無機微粒子とポリビニルアルコールの比率は、質量比で通常 $2:1\sim20:1$ であり、特に $3:1\sim10:1$ であることが好ましい。

【0077】次に、本発明のインクジェット記録用紙に 用いられる支持体について説明する。

【0078】本発明のインクジェット記録用紙の支持体は、非吸水性の支持体である。吸水性支持体を用いた場合、ジルコニウムまたはアルミニウム原子を含む化合物がインク吸収層を形成する際、またはその後の保存時に支持体中に拡散して本発明の効果を十分に発揮することができない。

【0079】本発明に用いられる非吸水性支持体としては、プラスチック樹脂フィルム支持体、あるいは紙の両面をプラスチック樹脂フィルムで被覆した支持体が挙げられる。プラスチック樹脂フィルム支持体としては、例えば、ボリエステルフィルム、ボリ塩化ビニルフィルム、ポリプロピレンフィルム、セルローストリアセテートフィルム、ポリスチレンフィルムあるいはこれらの積層したフィルム支持体等が挙げられる。これらのプラスチック樹脂フィルムは、透明または半透明なものも使用できる。

【0080】本発明においては、プリント時のコックリング(しわ)が発生しない非吸水性支持体が好ましく、特に好ましい支持体は、紙の両面をブラスチック樹脂で被覆した支持体であり、最も好ましいのは紙の両面をポリオレフィン樹脂で被覆した支持体である。

【0081】以下、本発明で特に好ましい支持体である 紙の両面をポリオレフィン樹脂で被覆した支持体につい て説明する。

【0082】本発明の支持体に用いられる紙は、木材パルプを主原料とし、必要に応じて木材パルプに加えてポリプロピレン等の合成パルプあるいはナイロンやボリエステル等の合成繊維を用いて抄紙される。木材パルプとしてはLBKP、LBSP、NBKP、NBSP、LDP、NDP、LUKP、NUKPのいずれも用いることができるが短繊維分の多いLBKP、NBSP、LBSP、NDP、LDPをより多く用いることが好ましい。ただし、LBSP及び/またはLDPの比率は10~70%が好ましい。上記パルプは、不純物の少ない化学パルプ(硫酸塩パルプや亜硫酸塩パルプ)が好ましく用いられ、また漂白処理を行って白色度を向上させたパルプも有用である。

【0083】紙中には、例えば、高級脂肪酸、アルキルケテンダイマー等のサイズ剤、炭酸カルシウム、タルク、酸化チタン等の白色顔料、スターチ、ポリアクリルアミド、ポリビニルアルコール等の紙力増強剤、蛍光増白剤、ポリエチレングリコール類等の水分保持剤、分散剤、4級アンモニウム等の柔軟化剤等を適宜添加することができる。

【0084】抄紙に使用するパルプの濾水度は、CSF30の規定で200~500mlが好ましく、また、叩解後の繊維長がJIS P 8207に規定される24メッシュ残分と42メッシュ残分の和が30~70%が好ましい。なお、4メッシュ残分は20%以下であることが好ましい。

【0085】紙の坪量は $50\sim250$ gが好ましく、特に、 $70\sim200$ gが好ましい。紙の厚さは $50\sim21$ 0 μ mが好ましい。

【0086】紙は、抄紙段階または抄紙後にカレンダー処理して高平滑性を与えることもできる。紙密度は $0.7\sim1.2$ g/m $^{'}$ (JIS P 8118)が一般的である。更に原紙剛度はJIS P 8143に規定される条件で $20\sim200$ gが好ましい。

【0087】紙表面には表面サイズ剤を塗布しても良く、表面サイズ剤としては前記原紙中に添加できるのと同様のサイズ剤を使用できる。

【0088】紙のpHは、JIS P 8113で規定された熱水抽出法により測定された場合、pH5~9であることが好ましい。

【0089】次に、この紙の両面を被覆するポリオレフ ィン樹脂について説明する。この目的で用いられるポリ オレフィン樹脂としては、ボリエチレン、ボリブロピレン、ボリイソブチレン、ボリエチレンが挙げられるが、プロピレンを主体とする共重合体等のボリオレフィン類が好ましく、ボリエチレンが特に好ましい。

【0090】以下、特に好ましいボリエチレンについて 説明する。紙表面及び裏面を被覆するボリエチレンは、 主として低密度のボリエチレン(LDPE)及び/また は髙密度のボリエチレン(HDPE)であるが、他のL LDPEやボリプロピレン等も一部使用することができ る。

【0091】特に、塗布層側のポリオレフィン層は、ルチルまたはアナターゼ型の酸化チタンをその中に添加し、不透明度及び白色度を改良したものが好ましい。酸化チタン含有量はポリオレフィンに対して概ね $1\sim20$ %、好ましくは $2\sim15\%$ である。

【0092】ポリオレフィン層中には白地の調整を行う ための耐熱性の高い着色顔料や蛍光増白剤を添加するこ とができる。

【0093】着色顔料としては、例えば、群青、紺青、 コバルトブルー、フタロシアニンブルー、マンガンブル 20 ー、セルリアン、タングステンブルー、モリブデンブル ー、アンスラキノンブルー等が挙げられる。

【0094】 蛍光増白剤としては、例えば、ジアルキルアミノクマリン、ビスジメチルアミノスチルベン、ビスメチルアミノスチルベン、ビスメチルアミノスチルベン、4-アルコキシ-1、8-ナフタレンジカルボン酸-N-アルキルイミド、ビスベンズオキサゾリルエチレン、ジアルキルスチルベン等が挙げられる。

【0095】紙の表裏のポリエチレンの使用量は、インク吸収層の膜厚やバック層を設けた後で低湿及び高湿化 30でのカールを最適化するように選択されるが、一般にはポリエチレン層の厚さはインク吸収層側で $15\sim50\mu$ m、バック層側で $10\sim40\mu$ mの範囲である。表裏のポリエチレンの比率はインク受容層の種類や厚さ、中紙の厚み等により変化するカールを調整する様に設定されるのが好ましく、通常は表/裏のポリエチレンの比率は、厚みで概ね $3/1\sim1/3$ である。

【0096】更に、上記ポリエチレンで被覆紙支持体は、以下 $(1) \sim (7)$ の特性を有していることが好ましい。

【0097】(1)引っ張り強さは、JIS P 81 13で規定される強度で縦方向が19.6~294N、 横方向が9.8~196Nであることが好ましい。

【0098】(2)引き裂き強度は、JIS P 81 16で規定される強度で縦方向が0.20~2.94 N、横方向が0.098~2.45Nが好ましい。

【0099】(3) 圧縮弾性率は、9.8 k N/c m²が好ましい。

(4) 不透明度は、JIS P 8138に規定された方法で測定したときに80%以上、特に85~98%が 50

好ましい。

【0100】(5)白さは、JIS Z 8727で規定されるL'、a'、b'が、L'= $80\sim96$ 、a'=- $3\sim+5$ 、b'=- $7\sim+2$ であることが好ましい。

【0101】(6) クラーク剛直度は、記録用紙の搬送 方向のクラーク剛直度が50~300cm³/100で ある支持体が好ましい。

【0102】 (7) 原紙中の水分は、中紙に対して4~10%が好ましい。

10 (8) インク受容層を設ける光沢度 (75度鏡面光沢度) は10~90%が好ましい。

【0103】本発明のインクジェット記録用紙のインク吸収層は単一の層構成を有するインク吸収層であっても多層構成からなるインク吸収層であっても良いが、環境湿度が変化した際の色変化がより少ない多層構成のインク吸収層がより好ましく、請求項4に係る発明では、インク吸収層が少なくとも2層からなり、非吸水性支持体から最も離れたインク吸収層が、前記一般式(1)で表される繰り返し単位を有するカチオン性ポリマーを少なくとも1種含有することが特徴である。

【0104】本発明のインクジェット記録用紙のインク 吸収層は硬膜剤を含有しても良い。硬膜剤としては、前 述のホウ酸も硬膜作用を有するがこれ以外に、エポキシ 系硬膜剤(例えば、ジグリシジルエチルエーテル、エチ レングリコールジグリシジルエーテル、1.4-ブタン ジオールジグリシジルエーテル、1,6-ジグリシジル シクロヘキサン、N. N-ジグリシジル-4-グリシジ ルオキシアニリン、ソルビトールポリグリシジルエーテ ル、グリセロールポリグリシジルエーテル等)、アルデ ヒド系硬膜剤(例えば、ホルムアルデヒド、グリオキザ ール等)、活性ハロゲン系硬膜剤(例えば、2,4-ジ クロロー4-ヒドロキシー1、3、5-s-トリアジン 等)、活性ビニル系化合物(例えば、1,3,5-トリ スアクリロイルーヘキサヒドロー s ートリアジン、ビス ビニルスルホニルメチルエーテル等)、アルミ明礬、イ ソシアネート化合物等が挙げられる。

【0105】硬膜剤の使用量は、ボリビニルアルコールの種類及び量、硬膜剤の種類、無機微粒子の種類等により変化するが、通常ボリビニルアルコール1g当たり5 40 ~500mg、好ましくは10~300mgである。

【0106】本発明のインクジェット記録用紙のインク 吸収層及び必要に応じて設けられるその他の層には、前 記した以外に各種の添加剤を添加することができる。

【0107】上記の添加剤としては、例えば、ポリスチレン、ポリアクリル酸エステル類、ポリメタクリル酸エステル類、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、またはこれらの共重合体、尿素樹脂、またはメラミン樹脂等の有機ラテックス微粒子、カチオンまたはノニオンの各種界面活性剤、特開昭57-74193号、同57-

87988号及び同62-261476号に記載の紫外線吸収剤、特開昭57-74192号、同57-87989号、同60-72785号、同61-146591号、特開平1-95091号及び同3-13376号等に記載されている退色防止剤、特開昭59-42993号、同59-52689号、同62-280069号、同61-242871号及び特開平4-219266号等に記載されている蛍光増白剤、硫酸、リン酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウムであり、出調整剤、消泡剤、防腐剤、増粘剤、帯電防止剤、マット剤等の公知の各種添加剤を含有させることもできる。

【0108】本発明のインクジェット記録用紙において、多孔質層及び下引き層など必要に応じて適宜設けられる各種の親水性層を支持体上に塗布する方法は、公知の方法から適宜選択して行うことができる。好ましい方法は、各層を構成する塗布液を支持体上に塗設して乾燥して得られる。この場合、2層以上を同時に塗布することもでき、特に、全ての親水性バインダー層を1回の塗布で形成する多層同時塗布方法が好ましい。

【0109】塗布方式としては、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、カーテン塗布方法あるいは米国特許第2,681,294号記載のホッパーを使用するエクストルージョンコート法が好ましく用いられる。

【0110】本発明のインクジェット記録用紙を用いて画像記録する際には、水性インクを用いた記録方法が好ましく用いられる。

【0111】上記水性インクとは、下記着色剤及び液媒 30 体、その他の添加剤を有する記録液体である。着色剤としては、インクジェットで公知の直接染料、酸性染料、塩基性染料、反応性染料あるいは食品用色素等の水溶性染料あるいは水分散性顔料が使用できる。

【0112】水性インクの溶媒としては、水及び水溶性 の各種有機溶剤、例えば、メチルアルコール、イソプロ ピルアルコール、ブチルアルコール、tert‐ブチル アルコール、イソブチルアルコール等のアルコール類; ジメチルホルムアミド、ジメチルアセトアミド等のアミ ド類;アセトン、ジアセトンアルコール等のケトンまた 40 はケトンアルコール類;テトラヒドロフラン、ジオキサ ン等のエーテル類;ポリエチレングリコール、ポリプロ ピレングリコール等のポリアルキレングリコール類;エ チレングリコール、プロピレングリコール、ブチレング リコール、トリエチレングリコール、1,2,6-ヘキ サントリオール、チオジグリコール、ヘキシレングリコ ール、ジエチレングリコール、グリセリン、トリエタノ ールアミン等の多価アルコール類; エチレングリコール メチルエーテル、ジエチレングリコールメチル(又はエ チル) エーテル、トリエチレングリコールモノブチルエ 50

ーテル等の多価アルコールの低級アルキルエーテル類等が挙げられる。中でも、ジエチレングリコール、トリエタノールアミンやグリセリン等の多価アルコール類、トリエチレングリコールモノブチルエーテルの多価アルコールの低級アルキルエーテル等は好ましいものである。【0113】その他の水性インクの添加剤としては、例えば、pH調節剤、金属封鎖剤、防カビ剤、粘度調整剤、表面張力調整剤、湿潤剤、界面活性剤及び防錆剤、等が挙げられる。

10 【0114】水性インク液は記録用紙に対する濡れ性を良好にするために、20Cにおいて、通常、0.025 ~ 0.06 N/m、好ましくは $0.03 \sim 0.05$ N/mの範囲内の表面張力を有するのが好ましい。上記インクのpHは、好ましくは $5 \sim 10$ であり、特に好ましくは $6 \sim 9$ である。

[0115]

20

【実施例】以下に、本発明の実施例を挙げて具体的に説明するが、本発明の実施態様はこれらに限定されない。 なお、実施例中で記載の「%」は、特に断りのない限り 質量%を表す。

【0116】実施例1

(支持体の作製) 含水率が 6%、坪量が 200 g/m²の写真用原紙の裏面側に、押し出し塗布法により密度が 0.92の低密度ポリエチレンを 35μ mの厚さで塗布した。次いで、表面側にアナターゼ型酸化チタンを 5%含有する密度が 0.92の低密度ポリエチレンを 40μ mの厚さで押し出し塗布法で塗布して両面をポリエチレンで被覆した支持体を作製した。表側にコロナ放電を行いポリビニルアルコールからなる下引き層を 0.03 g/m²、裏面にもコロナ放電を行った後ラテックス層を 0.12 g/m²に成るように塗布した。

【0117】 (記録用紙-1の作製)

《シリカ分散液-1の調製》1次粒子の平均粒径が、約12nmの気相法シリカ(トクヤマ製:QS-20)160kgを、三田村理研工業株式会社製のジェットストリーム・インダクターミキサーTDSを用いて、硝酸でpHを3.0に調整したエタノール10Lを含む480Lの純水中に室温で吸引分散した後、全量を600Lに純水で仕上げた。

【0118】《シリカ分散液-2の調製》カチオン性ポリマー(例示化合物P-19)を2.12kg、エタノールを2.2L、n-プロパノールを1.1L含有する水溶液(pH=4.0)15Lに、上記調製したシリカ分散液-1の60.0Lを攪拌しながら添加し、次いで、ホウ砂(Na,B,O,・10H,O:分子量=381.4)80gを含有する水溶液8.0Lを添加し、サンノブコ株式会社製の消泡剤SN381を2g含有する水溶液200mlを添加した。

【0119】この混合液を、三和工業株式会社製の髙圧 ホモジナイザーで分散し、全量を純水で85Lに仕上げ

てシリカ分散液-2・を調製した。

【0120】《シリカ分散液-3の調製》カチオン性ポ リマー (例示化合物 P-1) を2. 12 kg、エタノー ルを4. 2L、n-プロパノールを1. 1L含有する水 溶液 (pH=4.0) 15Lに、上記調製したシリカ分 散液-1の60.0Lを攪拌しながら添加し、次いで、 ホウ砂80gを含有する水溶液8.0Lを添加し、アニ オン性蛍光増白剤UVITEX NFW LIQUID (チバスペシャリティケミカルズ社製)5gを添加し た。

25

【0121】この混合液を、三和工業株式会社製高圧ホ モジナイザーで分散し、全量を純水で85Lに仕上げて シリカ分散液-3を調製した。

【0122】《Oil分散液-1の調製》耐光性改良剤 ST-108.4kgkgおよび酢酸エチル18Lとを混合し、50℃で加熱 溶解した。これを酸処理ゼラチン3.5kgとカチオン 性ポリマー (P-19) 1. 5 kgとサポニン50%水 溶液の6 L とを含有する水溶液75 L に添加混合して、

三和工業株式会社製の高圧ホモジナイザーで乳化分散 し、減圧で酢酸エチルを除去した後、全量を110Lに 仕上げた。

26

[0123]

【化6】

耐光性改良剤ST-1

【0124】《塗布液の調製》以下に示す方法に従っ て、第1層、第2層、第3層、第4層の塗布液を調製し

【0125】〔第1層用塗布液の調製〕上記調製したシ リカ分散液-2を600ml、40℃で攪拌しながら、 以下の添加剤を順次混合した。

[0126]

ポリビニルアルコール (クラレ工業株式会社製:PVA203) の

10%水溶液

6 m l

ボリビニルアルコール(クラレ工業株式会社製: PVA235とPVA245

の7/3の混合物)の5%水溶液

296ml

Oil分散液-1

40ml

第一工業株式会社製:ラテックスエマルジョン・AE-803 18ml ポリアミン (大原パラジウム社製:パラフィックスEP)

純水で全量を1000m1に仕上げた。

【0127】 〔第2層用塗布液の調製〕 上記調製したシ

以下の添加剤を順次混合した。

リカ分散液-2を640ml、40℃で攪拌しながら、 [0128]

ポリビニルアルコール (クラレ工業株式会社製: PVA203) の

10%水溶液 6 m 1

ポリビニルアルコール(クラレ工業株式会社製:PVA235とPVA245

の7/3の混合物)の5%水溶液

2 4 0 m 1

Oil分散液-1

5 5 m l

チオエーテル系酸化防止剤(*1)20%水溶液

30ml

純水で全量を1000mlに仕上げた。

 $[0 \ 1 \ 2 \ 9] * 1 : HO-C_2H_4S-C_2H_4S-C_2H_4$ ОН

2を640m1、40℃で攪拌しながら、以下の添加剤 を順次混合した。

〔第3層用塗布液の調製〕上記調製したシリカ分散液-

[0130]

ポリビニルアルコール (クラレ工業株式会社製: PVA203) の

ボリビニルアルコール(クラレ工業株式会社製:PVA235とPVA245

の7/3の混合物)の5%水溶液

240ml

〇il分散液-1

25m1

純水で全量を1000m1に仕上げた。

【0131】〔第4層用塗布液の調製〕上記調製したシ

以下の添加剤を順次混合した。

リカ分散液-2を650ml、40℃で攪拌しながら、 [0132]

ポリビニルアルコール (クラレ工業株式会社製: PVA203) の

10%水溶液

ボリビニルアルコール(クラレ工業株式会社製:PVA235とPVA245

・の7/3の混合物)の5%水溶液

サポニン50%水溶液

ベタイン型界面活性剤-1(5%水溶液)

純水で全量を1000mlに仕上げた。

2 2 0 m l 4 m l 3 m l

28

[0133] [化7]

ベタイン型界面活性剤-1

【0134】上記のようにして調製した各塗布液を、下記のフィルターにて濾過した。

第1層~第3層:東洋濾紙株式会社製TCP10、2段 第4層:東洋濾紙株式会社製TCP30、2段

濾過済みの各塗布液を、上記で作製したポリオレフィンで両面を被覆した支持体の酸化チタンを含有する表面側に、第1層(50μ m)、第2層(50μ m)、第3層(50μ m)、第4層(45μ m)の順で各層を塗布した。なお、かっこ内の数値は、それぞれの湿潤膜厚を示 20し、第1層~第4層は同時塗布した。

【0135】塗布は、各塗布液を40℃でスライド型カーテン塗布で行い、塗布直後に5℃に保たれた冷却ゾーンで10秒間冷却した後、20~30℃の風で30秒

間、70℃の風で60秒間、50℃の風で60秒間、50℃の風で30秒間順次乾燥して記録用紙-1を得た。 【0136】この記録用紙は、1m²当たり硼素原子を 1.2ミリモル含有している。

(記録用紙-2~19の作製)上記記録用紙-1の作製 10 において、記録用紙の膜面pHを変化させ、更に、ジル コニウム原子を有する化合物を表1に記載のように添加 した以外は同様にして、記録用紙-2~19を作製し た。

【0137】なお、ジルコニウム原子を有する化合物は、塗布液添加(塗布直前に、塗布液とインライン混合)した場合と、一旦インク吸収層を形成した後、水溶液としてオーバーコート(OC)した場合のいずれかの方法で、記録用紙に付与した。

【0138】また、記録用紙のインク吸収層表面の膜面 p H を調整するに当たっては、水酸化ナトリウムまたは 硝酸の各0.1モル/L水溶液を記録用紙にオーバーコートすることで調整した。

[0139]

【表1】

記録	ジルコニウム化合物 膜面 pH								
用紙番号	11.04.0	添加量 (g/m²)	添加方法	//(スリント 前	プリント 後	滲み	ブロン ジング	環境湿度 依存性	備考
	-		_	4.7	6.3	2.35	無	3.2	比較例
2	_	-	_	3.7	5.1	2.21	無	2.8	比較例
3	ZR1	0.1	塗布液添加	4.6	6.3	1.45	無	13.8	比較例
4	ZR1	0.1	塗布液添加	4.0	5.7	1.43	無	7.1	本発明
5	ZR1	0.1	塗布液添加	3.5	4.8	1.35	無	5.9	本発明
6	ZR1	0.1	塗布液添加	2.8	3.6	1.11	有	2.2	比較例
7	ZR1	0.2	塗布液添加	4.5	6.3	1.21	無	17.2	比較例
8	ZR1	0.2	塗布液添加	4.0	5.8	1.18	無	9.3	本発明
9	ZRI	0.2	塗布液添加	3.5	4.7	1.12	無	5.8	本発明
10	ZR1	0.2	塗布液添加	2.6	3.4	1.07	有	2.0	比較例
11	ZR2	0.1	塗布液添加	4.6	6.2	1.48	無	12.8	比較例
12	ZR2	0.1	塗布液添加	4.1	5.6	1.52	無	6.6	本発明
13	ZR2	01.1	塗布液添加	2.9	3.5	1.04	有	1.5	比較例
14	ZR3	0.1	塗布液添加	4.7	6.3	1.38	無	13.1	比較例
15	ZR3	0.1	塗布液添加	3.7	5.3	1.28	無	6.0	本発明
16	ZR3	0.1	塗布液添加	3.0	3.7	1.05	有	1.3	比較例
17	ZR4	0.1	0C	5.0	6.4	1.67	無	10.2	比較例
18	ZR4	0.1	0C	4.0	5.6	1.60	無	4.7	本発明
19	ZR4	0.1	OC	2.8	3.3	1.52	有	2.2	比較例

【0140】なお、表1に記載の各ジルコニウム化合物の詳細を、以下に示す。

ZR1:第一希元素化学工業(株)社製 酢酸ジルコニルZA

ZR2:第一希元素化学工業(株)社製 酸塩化ジルコニル

ZR3:硫酸ジルコニウム

ZR4:ジルコニウムアセチルアセトナートビスエチル アセトアセテート

(プリント評価)上記作製した記録用紙-1~19について、ピエゾ型ヘッドを搭載したデスクトップ型インクジェットプリンターを用いて、以下の評価を行った。

【0141】なお、評価に用いた各インクのpHは、以

50 下の通りである。

イエローイシク: 7. 2、マゼンタインク: 7. 8、シアンインク: 6. 5、黒インク: 7. 8

〔膜面 p H の測定〕ブリント前およびプリント後の黒ベタプリント部分の膜面 p H を東亜電波工業製の平面電極を用いて測定した。

【0142】 〔滲みの評価〕マゼンタベタ画像部を背景とし、線幅が約0.5 mmの黒細線をプリントし、40℃、相対湿度80%で1週間保存した後、線幅をマイクロデンシトメーターで測定し、線幅の増大比を滲みとして求めた。

【0143】〔ブロンジングの評価〕イエロー、マゼンタ、シアン、黒の各ベタブリントを23℃、相対湿度80%で2週間保存したときの、表面におけるブロンジングの発生の有無を目視で評価した。

【0144】〔環境湿度依存性の評価〕23℃、相対湿度20%および23℃、相対湿度80%の2つの環境条件で、反射濃度が1.0付近のニュートラルグレーパッチをプリントした。得られたプリントの色差を測定し、2つの環境条件下での色差を求めた。

【0145】色差= $(\Delta a^2 + \Delta b^2)^{1/2}$ 以上により得られた各評価結果を、同じく表1に示す。

【0146】表1より明らかなように、ジルコニウム原子を有する化合物を含有する記録用紙 $-3\sim19$ は、いずれもジルコニウム原子を有する化合物を含有しない記録用紙-1、2に比べて、滲みが大きく改善されていることがわかる。

【0147】但し、ジルコニウム原子を有する化合物を添加し、プリント後の膜面 p Hが6を越える記録用紙ー3、7、11、14、17では、プリント時の環境湿度が変化した場合の色変動が非常に大きい。また、膜面 p 30 Hが4未満の記録用紙-6、10、13、16、19ではプロンジングが発生している。

【0148】これに対して、ジルコニウム原子を有する化合物を含有し、膜面pHが $4\sim6$ の間にある本発明の記録用紙-4、5、8、9、12、15、18は、ブロンジングの発生や環境湿度の変化に対する大きな色変動を起こすことなく滲みを改善していることが判る。

【0149】実施例2

実施例1で調製したシリカ分散液-2およびシリカ分散

液-3において、ホウ酸系化合物の量を増量した以下のシリカ分散液-4およびシリカ分散液-5を調製した。【0150】《シリカ分散液-4の調製》カチオン性ポリマー(P-19)を2.12kg、エタノールを2.2L、n-プロパノールを1.1L含有する水溶液(pH=2.3)15Lに、シリカ分散液-1の60.0Lを攪拌しながら添加し、ついで、ホウ酸320gとホウ砂190gを含有する水溶液8.0Lを添加し、サンノブコ株式会社消泡剤・SN381を2gを含有する水溶10液200mlを添加した。

【0151】この混合液を、三和工業株式会社製高圧ホモジナイザーで分散し、全量を純水で85Lに仕上げてシリカ分散液-4を調製した。

【0152】《シリカ分散液-5の調製》カチオン性ポリマー(P-1)を2.12kg、エタノールを4.2 L、n-プロパノールを1.1L含有する水溶液(pH=2.3)15Lに、シリカ分散液-1の60.0Lを攪拌しながら添加し、ついで、ホウ酸320gとホウ砂190gを含有する水溶液8.0Lを添加し、アニオン20性蛍光増白剤UVITEXNFW LIQUID(チバスペシャリティケミカルズ製)5gを添加した。

【0153】この混合液を、三和工業株式会社製高圧ホモジナイザーで分散し、全量を純水で85Lに仕上げてシリカ分散液-5を調製した。

【0154】(記録用紙-21~39の作製)実施例1において、第1層と第2層で用いたシリカ分散液-2をシリカ分散液-4に、また、第3層と第4層で用いたシリカ分散液-3をシリカ分散液-5に変更し、更に表2に記載のようにジルコニウム原子の種類と量、膜面pH値を変更した以外は同様にして、記録用紙-21~39を作製した。

【0155】これら各記録用紙は、1m²当たり10. 4ミリモルの硼素原子をインク吸収層中に含有する。

【0156】(記録用紙の評価)以上のようにして作製した各記録用紙について、実施例1と同様の方法で滲み、ブロンジング、環境湿度依存性の評価を行い、得られた結果を表2に示す。

[0157]

【表2】

記録	・ジルコニウム化合物			膜面	面 pH		_		
用紙 番号	化合物名	添加量 (g/m²)	添加方法	ブリント 前	ブリント 後	滲み	ブロン ジング	環境湿度 依存性	備考
21				5.6	6.3	2.66	無	3.5	比較例
22			_	4.4	5.2	2.54	無	3.4	比較例
23	ZRI	0.1	塗布液添加	5.6	6.3	1.50	無	12.2	比較例
24	ZRI	0.1	塗布液添加	5.0	5.6	1.45	無	6.2	本発明
25	ZRI	0.1	塗布液添加	3.8	4.2	1.36	無	5.5	本発明
26	ZRI	0.1	塗布液添加	2.9	3.2	1.14	有	1.5	比較例
27	ZR1	0.2	塗布液添加	5.7	6.3	1.13	無	16.1	比較例
28	ZR1	0.2	塗布液添加	5.3	5.7	1.14	無	8.8	本発明
29	ZR1	0.2	塗布液添加	3.9	4.4	1.15	無	5.2	本発明
30	ZR1	0.2	塗布液添加	3.2	3.5	1.10	有	1.4	比較例
31	ZR2	0.1	塗布液添加	5.6	6.2	1.52	無	11.2	比較例
32	ZR2	0.1	塗布液添加	4.6	5.1	1.55	無	5.6	本発明
33	ZR2	0.1	塗布液添加	3.3	3.7	1.11	有	1.2	比較例
34	ZR3	0.1	塗布液添加	5.8	6.3	1.44	無	13.0	比較例
35	ZR3	0.1	塗布液添加	4.8	5.4	1.31	無	6.2	本発明
36	ZR3	0.1	塗布液添加	3.2	3.6	1.11	有	1.3	比較例
37	ZR4	0.1	00	5.7	6.4	1.72	無	10.0	比較例
38	ZR4	0.1	00	4.7	5.2	1.65	無	4.2	本発明
39	ZR4	0.1	00	3.0	3.5	1.61	有	2.1	比較例

【0158】表2より明らかなように、ジルコニウム原子を有する化合物を含有し、膜面pHが4~6の間にある本発明の記録用紙-24、25、28、29、32、35、38は、実施例1の結果と同様に、ブロンジングの発生や環境湿度の変化に対する大きな色変動を起こすことなく滲みを改善していることが判る。

【0159】また、実施例1と実施例2で得られた結果 30 を比較すると、ホウ酸塩化合物をpHバッファとして比較的多く存在させることにより、プリント後の膜面pH の上昇を抑えることができ、プリント前の膜面pHを 3.5~5.5にする事で概ねプリント後の膜面pHを

4~6に調整することが確認できた。

【0160】実施例3

実施例2で作製した記録用紙-22および25において、第1層~第4層のシリカ分散液を表3に示すように変更した以外は同様にして、記録用紙-22A~22 C、および25A~25Cを作製し、実施例1と同様の方法で滲み、ブロンジング、環境湿度依存性の評価を行い、得られた結果を表3に示す。

【0161】 【表3】

記録	٤	ノリカ分	散液番	号	ジルコ	膜罩	ij р Н	ブロン		環境	
用紙 番号	第1層	第2層	第3層	第4層	ニウム 化合物	プリント 前	プリント 後	滲み	シング	: !!!!	備考
22	4	4	5	5		4.4	5.2	2.66	無	3.5	比較例
22A	4	4	4	4	_	4.5	5.2	3.52	無	6.4	比較例
22B	5	5	5	5	_	4.3	5.1	2.12	無	4.2	比較例
220	5	5	4	4		4.4	5.2	2.81	無	7.2	比較例
25	4	4	5	5	ZR1	3.8	4.2	1.36	無	5.5	本発明
25A	4	4	4	4	ZR1	3.9	4.3	1.61	無	7.4	本発明
25B	5	5	5	5	ZR1	3.8	4.2	1.23	無	6.8	本発明
25C	5	5	4	4	ZRI	3.8	4.2	1.40	無	8.8	本発明

【0162】表3より明らかなように、カチオン性ポリマーを変更した記録用紙であっても、ジルコニウム原子を有する化合物を添加し、ブリント後のベタ部の膜面 p Hを6以下にすることで、ブロンジングや環境湿度が変化したときの色変動を少なくしたまま滲みを改善していることが判る。

【0163】特に、カチオン性ポリマーとして、一般式 (1)で表される繰り返し単位を有するカチオン性ポリマー (P-1)を含有するシリカ分散液-5を用いた記録用紙25、25B、25Cの滲みが良好であり、また、シリカ分散液-5を最上層(第4層)に使用した記50 録用紙-25と25Bの色変動が、良好であることが判

る。最も好ましいのは、シリカ分散液-5を最上層に使用し、下層には一般式(1)以外のカチオン性ポリマーを使用した記録用紙25である。

【0164】実施例4

実施例1で作製した記録用紙-3において、表4に記載の酸を第1層に添加した以外は同様にして記録用紙-4 $1\sim49$ を作製した。用いた酸は、いずれもメタノール

溶液として記録用紙-3の上にオーバーコートして70~80℃で乾燥して作製し、実施例1と同様の方法で滲み、プロンジング、環境湿度依存性の評価を行い、得られた結果を表4に示す。

[0165]

【表4】

記録		膜面		ブロン	環境湿度		
用紙 番号	有機酸化合物	ブリント前	プリント後	滲み	ジング	依存性	備考
3	_	4.6	6.3	1.45	無	13.5	比較例
41	安息香酸	4.6	5.7	1.52	無	8.3	本発明
42	安息香酸	4.1	5.0	1.55	無	6.2	本発明
43	安息香酸	3.5	4.2	1.50	無	4.2	本発明
44	安息香酸	3.1	3.5	1.22	有	2.3	比較例
45	アスコルビン酸	4.3	5.3	1.61	無	6.9	本発明
46	クエン酸	4.8	5.2	1.63	無	6.0	本発明
47	クエン酸	4.3	4.6	1.41	無	5.1	本発明
48	クエン酸	3.8	4.1	1.33	無	4.7	本発明
49	クエン酸	3.5	3.7	1.25	有	3.5	比較例

【0166】表4より明らかなように、有機酸をインク吸収層に含有させることにより、ブリント後のインク吸収層表面の膜面pHを4~6の範囲に調整した記録用紙41、42、43、45、46、47、48は、ブロンジングの発生が無く、また環境湿度の影響を小さくしたままで滲みを改善していることが判る。

【0167】実施例5

上記実施例2において、ジルコニウム原子を含む化合物 を表5に記載のアルミニウム原子を含む原子に変更した 以外は同様にして記録用紙 $-51\sim59$ を作製した。なお、表5中のAL1は塩基性塩化アルミニウム、AL2は硫酸アルミニウムである。

【0168】上記作製した記録用紙-51~59に記録用紙21、22を加えて、実施例1と同様の方法で滲み、プロンジング、環境湿度依存性の評価を行い、得られた結果を表5に示す。

[0169]

【表5】

記録	アル	ミニウム	- 化合物	膜道	6 pH	滲み ブロ ジン			
用紙 番号	化合物名	添加量 (g/๗)	添加方法	プリント 前	プリント 後		シンケ	環境湿度 依存性	備考
21	-	1	-	5.6	6.3	2.66	無	3.5	比較例
22	_		-	4.4	5.2	2.54	無	3.4	比較例
51	AL1	0.1	塗布液添加	5.7	6.5	1.38	無	9.8	比較例
52	ALT	0.1	塗布液添加	5.0	5.7	1.35	無	4.2	本発明
53	AL1	0.1	塗布液添加	4.3	4.8	1.30	無	4.3	本発明
54	AL1	0.1	塗布液添加	3.6	4.3	1.27	無	3.8	本発明
55	ALI	0.1	塗布液添加	3.1	3.8	1,11	有	2.2	比較例
56	AL2	0.1	0C	5.5	6.5	1.42	無	10.3	比較例
57	AL2	0.1	GC .	4.6	5.2	1.40	無	5.7	本発明
58	AL2	0.1	ac	3.7	4.5	1.37	無	4.3	本発明
59	AL2	0.1	0C	3.0	3.6	1.14	有	2.5	比較例

【0170】表5より明らかなように、アルミニウム原子を有する化合物を使用した場合でも、プリント後の膜面pHを4~6の間に調整することで、プロンジングや環境湿度が変化したときの色変動を抑制して滲みを防止できることを確認できた。

[0171]

【発明の効果】本発明により、ブロンジングを悪化させることなく水溶性染料に対してプリント後の保存中の滲みや耐水性を改良し、かつプリント時の環境湿度変化に対する色再現の安定性に優れたインクジェット記録用紙を提供することができた。

フロントページの続き

(72)発明者 大林 啓治 東京都日野市さくら町1番地コニカ株式会 社内

Fターム(参考) 2C056 EA13 FC06 2H086 BA16 BA19 BA31 BA35 BA41