Pumping-Lemma

Zeigen Sie, dass die folgenden Sprachen nicht kontextfrei sind:

Exkurs: Pumping-Lemma für Kontextfreie Sprachen

Es sei L eine kontextfreie Sprache. Dann gibt es eine Zahl j, sodass sich alle Wörter $\omega \in L$ mit $|\omega| \geq j$ zerlegen lassen in $\omega = uvwxy$, sodass die folgenden Eigenschaften erfüllt sind:

- (a) $|vx| \ge 1$ (Die Wörter v und x sind nicht leer.)
- (b) $|vwx| \le j$ (Die Wörter v, w und x haben zusammen höchstens die Länge j.)
- (c) Für alle $i\in\mathbb{N}_0$ gilt $uv^iwx^iy\in L$ (Für jede natürliche Zahl (mit 0) i ist das Wort uv^iwx^iy in der Sprache L)
- $-L = \{ a^n b^n c^{2n} \mid n \in \mathbb{N} \}$

Annahme: *L* ist kontextfrei.

$$\forall \omega \in L: \omega = uvwxy$$

$$j \in \mathbb{N}: |\omega| \geq j$$

$$\omega = a^j b^j c^{2j}$$
: $|\omega| = 4j > j$

Damit gilt:
$$|vwx| \le j$$
, $|vx| \ge 1$

Zu zeigen: Keine Möglichkeit der Zerlegung, damit $\omega' \in L$

1. Fall *vwv* enthält nur *a*'s

o. E. d. A. (ohne Einschränkung der Allgemeinheit) stecken alle a's in der Zerlegung vwx, d. h. u ist leer

$$u:\varepsilon$$

$$v:a^l$$

$$w:a^{j-(l+m)}$$

$$x:a^m$$

$$v^2wx^2y$$

$$a^{2l}a^{j-(l+m)}a^{2m}b^{j}c^{2j} =$$

Nebenrechnung: 2l+j-(l+m)+2m=j+l+m>j, da $|vx|\geq 1\rightarrow l+m\geq 1$

$$\Rightarrow \omega' = uv^2wx^2y \notin L$$

2. Fall *vwv* enthalten *a*'s und *b*'s

o. E. d. A.
$$|v|_a = |x|_b$$

$$u: a^p v: a^l w: a^{j-(p+l)}b^{j-(l+r)} x: b^l y: b^r c^{2j}$$

 $\Rightarrow uv^0wx^0v$

NT 1 1

Nebenrechnung:
$$a$$
's: $p + j - (l + p) = j - l$

b's:
$$j - (l + r) = j - l$$

```
ist falsch, da j-l echt kleiner ist, da |vx| \ge 1 \rightarrow l \ge 1
\Rightarrow \omega' \notin L
```

- **3. Fall** vwx enthält nur b's analog zu Fall 1
- **4. Fall** vwx enthält nur b's und c's analog zu Fall 2
- **5. Fall** *vwx* enthält nur *c*'s analog zu Fall 1
- \Rightarrow Es gibt keine Zerlegung, sodass $\forall i \in \mathbb{N}_0$
- ⇒ Annahme ist falsch
- \Rightarrow *L* ist nicht kontextfrei

$$-L = \{ a^n b^{n^2} \mid n \in \mathbb{N} \}$$

Annahme: L kontextfrei

 \Rightarrow Pumping-Lemma: $j \in \mathbb{N}$: $|w| \ge j$

$$\omega = a^j b^{j^2}$$
$$j + j^2 > j$$

- **1. Fall** *vwx* enthält nur *a*'s
 - \Rightarrow ungleich viele a's wie b's als Quadrat

$$\Rightarrow \omega' \notin E$$

- **2. Fall** *vwx* enthält nur *b*'s
 - \Rightarrow analog zu Fall 1

$$\Rightarrow \omega' \notin E$$

- **3. Fall** vwx enthält a's und b's
 - o. E. d. A. v nur a's; x nur b's

u:
$$a^{j-(l+m)}$$

$$v$$
: a^l

$$w$$
: $a^m b^n$

$$x: b^{l^2}$$

y:
$$b^{j^2-(n+l^2)}$$

$$\Rightarrow uv^0wx^0y = \omega'$$

$$a \cdot i - (1+m) + 0 \cdot 1 + m = i - 1$$

a:
$$j - (l + m) + 0 \cdot l + m = j - l$$

b: $n - 0 \cdot l^2 + j^2 - (n + l^2) = j^2 - l^2 = (j - l)(j + l) \neq (j - l)(j - l)$

$$\Rightarrow \in L$$