CSC520 - Artificial Intelligence Lecture 19

Dr. Scott N. Gerard

North Carolina State University

Mar 25, 2025

Class Exercise

Use Variable Elimination

- Random variables
 - R: Raining
 - ► T: Traffic
 - L: Late for class

 \sum_{r}

 \sum_{t}

Compute
$$P(L) = \alpha \sum_{l} \sum_{r} P(L, T, R) = \alpha \sum_{l} P(L|T) \sum_{r} P(T|R) P(R)$$
.

	P	T
+t 0.17	0	+t
-t 0.83	0	-t

$$\begin{array}{c|cccc}
T & R & P(T,R) \\
\hline
+t & +r & 0.08 \\
-t & +r & 0.02 \\
+t & -r & 0.09 \\
-t & -r & 0.81
\end{array}$$

$$\begin{array}{cccc}
T & R & P(T|R) \\
\hline
+t & +r & 0.8 \\
-t & +r & 0.2 \\
+t & -r & 0.1 \\
-t & -r & 0.9
\end{array}$$

R
<u>+r</u>
-r

$$\begin{array}{c|cccc}
L & T & P(L|T) \\
\hline
+I & +t & 0.7 \\
-I & +t & 0.3 \\
+I & -t & 0.1 \\
-I & -t & 0.9
\end{array}$$

P(R)

0.1

0.9

Agenda

- Sequential Decision Problems
- Markov Decision Processes
- Policies and discounting
- Value iteration
- Reinforcement learning
- Model-based, Temporal difference and Q-learning

Sequential Decision Problems

Grid World

(b)

- Big rewards (+1 or -1) at terminal states
- Small living reward for each step (e.g., -0.04)
- Objective: Maximize cumulative rewards

Sequential Decision Problems

• Optimal policy with r = -0.04

Markov Decision Process

- MDP models a fully observable and stochastic sequential decision problem
- MDP is defined by:
 - ▶ Set of states $s \in S$
 - ▶ Set of actions $a \in A$
 - ▶ Transition function P(s'|s, a) = T(s, a, s')
 - Reward function R(s, a, s')
- Transitions follow Markov property
 - $P(s_{t+1}|s_1,a_1,s_2,a_2,\ldots s_t,a_t) = P(s_{t+1}|s_t,a_t)$

MDP Policies

- A policy maps a state to an action: $\pi: S \to A$
- An optimal policy maximizes the expected utility: $\pi^*(s)$
 - ► For each state, an optimal policy gives the action that maximizes the expected utility
- Goal is to compute an optimal policy

Dr. Gerard (NCSU)

Discounting

- Generally, earlier rewards are preferred than later rewards
 - ► For e.g., would you prefer \$1M today or after 5 years?
- ullet Future rewards are discounted using a discounting factor γ
 - ▶ $0 \le \gamma \le 1$
 - $U([s_0, a_0, s_1, a_1, \ldots]) = R(s_0, a_0, s_1) + \gamma R(s_1, a_1, s_2) + \gamma^2 R(s_2, a_2, s_3) + \ldots$
- Prevents the issue of infinite rewards for infinite sequence of actions

Dr. Gerard (NCSU)

Solving MDPs

- Solving MDP means finding an optimal policy: $\pi^*(s)$
- Value of a state: $V^*(s) =$ expected utility starting in state s and acting optimally
- Q-value of a state: $Q^*(s, a) = \text{expected utility starting in state } s$ and taking action a, and then acting optimally

Solving MDPs

$$\begin{split} Q(S1,U) &= T(s1,U,s1)[R(s1,U,s1) + \gamma V^*(s1)] \\ &+ T(s1,U,s2)[R(s1,U,s2) + \gamma V^*(s2)] \\ &+ T(s1,U,s3)[R(s1,U,s3) + \gamma V^*(s3)] \\ Q^*(s,a) &= \sum_{s'} T(s,a,s')[R(s,a,s') + \gamma V^*(s')] \\ V^*(s) &= \max_{s} Q^*(s,a) \end{split}$$

- V*(s1) is the utility of the optimal path to the end.
- $Q^*(s1, a1)$ is the utility of taking action a1 and then acting optimally.

Solving MDPs

Bellman equation

$$Q^*(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

$$V^*(s) = \max_{a} Q^*(s, a)$$

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q^*(s, a)$$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

- Iterative method for solving Bellman equations
- Initialize $V_0^*(s)$ with some initial values
 - Can be set given some prior knowledge
 - ▶ Otherwise, can be set to 0
- ullet Update $V^*(s)$ using Bellman equation

$$V_{i+1}^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_{i}^{*}(s')]$$

Repeat until convergence

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q (C)

Noise = 0.2, Discount = 0.9, Living reward = 0

Image credit: Dan Klein and Pieter Abbeel

Noise = 0.2, Discount = 0.9, Living reward = 0

Image credit: Dan Klein and Pieter Abbeel

Noise = 0.2, Discount = 0.9, Living reward = 0

Image credit: Dan Klein and Pieter Abbeel

◆ロト ◆個ト ◆ 差ト ◆ 差 ト り へ ○ ○

Dr. Gerard (NCSU)

Noise = 0.2, Discount = 0.9, Living reward = 0

Image credit: Dan Klein and Pieter Abbeel

Noise = 0.2, Discount = 0.9, Living reward = 0

Image credit: Dan Klein and Pieter Abbeel

Reinforcement Learning

- Agent performs an action on the environment
- As a result, agent receives a reward *r* from the environment and the state transitions to the next state
- Agent must learn to act to maximize expected rewards

Reinforcement Learning

- Similar to solving MDPs
 - ▶ MDP involves offline solution; transition probabilities *T* and the reward function *R* are given
 - ▶ RL involves online learning; *T* and *R* must be learnt
- Model-based vs model-free RL
 - Model-based learning involves estimating T and R and then solving the MDP to obtain the policy
 - ▶ In model-free learning, agent does not estimate *T* or *R*
- Passive vs active RL
 - ▶ In passive RL, policy is fixed and agent learns values of states
 - ▶ In active RL, policy is not fixed and agent selects the actions to execute; goal is to learn optimal policy

Model-based Learning

- Learn approximate T and R from given experience
- Solve the MDP to obtain $\pi^*(s)$

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

B, east, C, -1

C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Learned Model

 $\widehat{T}(s, a, s')$ T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

$\hat{R}(s, a, s')$

R(B, east, C) = -1 R(C, east, D) = -1 R(D, exit, x) = +10 ...

From: Dan Klein and Pieter Abbeel

Model-free Learning: Temporal Difference Learning

- Passive learning: policy π is fixed and objective is to learn $V^{\pi}(s)$
- Initialize $V^{\pi}(s)$ using prior knowledge or to 0
- Bellman: $V^{\pi}(s) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{\pi}(s')]$
- Update $V^{\pi}(s)$ using each experience sample: (s, a, s', r)
- From a sample, calculate: $current = R(s, a, s') + \gamma V^{\pi}(s')$
- Then update $V^{\pi}(s)$ using: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(current - V^{\pi}(s))$
- ullet Decrease lpha over time for convergence

Temporal Difference Learning - Example

States

Assume: $\gamma = 1$, $\alpha = 1/2$

Observed Transitions

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(R(s, a, s') + \gamma V^{\pi}(s') - V^{\pi}(s))$$

$$V^{\pi}(B) = 0 + \frac{1}{2}(-2 + 1 * 0 - 0)$$

$$V^{\pi}(C) = 0 + \frac{1}{2}(-2 + 1 * 8 - 0)$$

Q-Learning

- Active learning: agent selects actions to execute
- Initialize Q(s, a) using prior knowledge or to 0
- Agent selects an action to perform in state s
 - lacktriangle Exploitation: Select the optimal action $\mathop{\rm argmax}_a Q(s,a)$ with some probability $1-\epsilon$
 - \blacktriangleright Exploration: Select a random action with probability ϵ
- Agent performs selected action and gets experience: (s, a, s', r)
- From a sample, calculate: $current = R(s, a, s') + \gamma \max_{a'} Q(s', a')$
- Then update Q(s, a) using: $Q(s, a) \leftarrow Q(s, a) + \alpha(current - Q(s, a))$
- Decrease α over time for convergence
- It can be shown that, Q-learning converges to optimal policy

Class Exercise

States A B C D E

Assume: $\gamma = 1$, $\alpha = 1/2$

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(R(s, a, s') + \gamma V^{\pi}(s') - V^{\pi}(s))$$

• Calculate $V^{\pi}(E)$ if next observed transition is: (E, north, C, -2)