

CSCI 4502/5502 Data Mining

Fall 2020 Lecture 09 (Sep 22)

Reminders

- → Homework 3
- → Temporary 2-week remote instruction
 - ◆ Wed Sep 23 to Wed Oct 7
 - ◆ Stay healthy! Take good care!

Announcements

- ◆Homework I
 - grades posted in Canvas, please check
 - contact GSS first with grading questions
- ◆ Homework 2 is being graded
- ◆ No new homework this Thursday
 - work on course project proposal

Review

- ◆ Chapter 6: Mining Frequent Patterns
 - ◆ basic concepts, Apriori algorithm, correlation: lift
 - improve the efficiency of Apriori
 - #scans, #candidates, support counting
 - ◆ FP-growth: grow patterns w/o generating candidates
 - if c is frequent in DB|ab, then abc is frequent

FP-tree Construction

TID	Items bought	(ordered)	frequent ite	<u>ms</u>
100	$\{f, a, c, d, g, i, m, \}$	p $\{f,$	c, a, m, p	
200	$\{a, b, c, f, l, m, o\}$	$\{f,$	c, a, b, m	
300	$\{b, f, h, j, o, w\}$	$\{f,$	b }	
400	$\{b, c, k, s, p\}$	$\{c,$, b, p	H
500	$\{a, f, c, e, \overline{l}, p, m, \overline{l}\}$		c, a, m, p	T .

- ◆ Scan, find freq. I-itemset
- ◆ Sort freq. items in descending frequency
- ◆ Scan, construct FP-tree

 $min_sup = 0.6$

Conditional Pattern Base

◆ Traverse links of each frequent item, prefix paths

Conditional pattern bases

<u>item</u>	cond. pattern base
C	<i>f</i> :3
a	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

Conditional FP-trees

fcm, fam, cam,

fcam

a:3 m-conditional FP-tree

c:3

FP-growth

- ◆ Idea: Frequent pattern growth
 - * recursively grow freq. patterns by pattern and data partition
- Method
 - ♦ freq. item => conditional pattern base => conditional FP-tree
 - → repeat on each newly created FP-tree
 - until FP-tree is empty or single path

FP-growth vs. Apriori

Correlation Rules

- **♦** Correlation rule
 - $A \Rightarrow B$ [support, confidence, correlation]
- → Measure of dependent/correlated events

$$lift(A, B) = \frac{P(A \cup B)}{P(A)P(B)}$$

- + lift = 1? independent
- + lift < 1? negatively dependent
- + lift > 1? positively dependent

$$lift(A, B) = \frac{P(A \cup B)}{P(A)P(B)}$$

	basketball	not basketball	sum (row)
cereal	2000	1750	3750
not cereal	1000	250	1250
sum (col)	3000	2000	5000

$$lift(B, C) = \frac{2000/5000}{(3000/5000) \times (3750/5000)} = 0.89$$

$$lift(B,\overline{C}) = \frac{1000/5000}{(3000/5000) \times (1250/5000)} = 1.33$$

$$\chi^{2} = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}} \qquad e_{ij} = \frac{count(A = a_{i}) \times count(B = b_{j})}{N}$$

	basketball	not basketball	sum (row)
cereal	2000	1750	3750
not cereal	1000	250	1250
sum (col)	3000	2000	5000

$$+e_cb = 3750 * 3000 / 5000 = 2250$$

$$\star X^2 = (2000 - 2250)^2 / 2250 + (1750 - 1500)^2 / 1500 + (1000 - 750)^2 / 750 + (250 - 500)^2 / 500 = 227.78 (correlated)$$

Other Correlation Measures

$$all_conf(A, B) = \frac{sup(A \cup B)}{max\{sup(A), sup(B)\}} = min\{P(A|B), P(B|A)\}$$

$$max_conf(A, B) = max\{P(A|B), P(B|A)\}$$

$$Kulc(A, B) = \frac{1}{2}(P(A|B) + P(B|A))$$

$$cosine(A, B) = \frac{P(A \cup B)}{\sqrt{P(A) \times P(B)}} = \frac{sup(A \cup B)}{\sqrt{sup(A) \times sup(B)}}$$

$$= \sqrt{P(A|B) \times P(B|A)}.$$

Comparison (I)

Data										
Set	mc	тc	mc	mc	χ^2	lift	$all_conf.$	$max_conf.$	Kulc.	cosine
$\overline{D_1}$	10,000	1000	1000	100,000	90557	9.26	0.91	0.91	0.91	0.91
D_2	10,000	1000	1000	100	0	1	0.91	0.91	0.91	0.91
D_3	100	1000	1000	100,000	670	8.44	0.09	0.09	0.09	0.09
D_4	1000	1000	1000	100,000	24740	25.75	0.5	0.5	0.5	0.5
D_5	1000	100	10,000	100,000	8173	9.18	0.09	0.91	0.5	0.29
D_6	1000	10	100,000	100,000	965	1.97	0.01	0.99	0.5	0.10

- ♦ Null-transaction: e.g., ¬m¬c
- ◆ Null-variant: lift and X²
- ♦ Null-invariant: all_conf, max_conf, Kulc, cosine

Comparison (2)

Data										
Set	mc	тc	mc	mc	χ^2	lift	$all_conf.$	$max_conf.$	Kulc.	cosine
$\overline{D_1}$	10,000	1000	1000	100,000	90557	9.26	0.91	0.91	0.91	0.91
D_2	10,000	1000	1000	100	0	1	0.91	0.91	0.91	0.91
D_3	100	1000	1000	100,000	670	8.44	0.09	0.09	0.09	0.09
D_4	1000	1000	1000	100,000	24740	25.75	0.5	0.5	0.5	0.5
D_5	1000	100	10,000	100,000	8173	9.18	0.09	0.91	0.5	0.29
D_6	1000	10	100,000	100,000	965	1.97	0.01	0.99	0.5	0.10

→ Imbalance ratio

$$IR(A,B) = \frac{|sup(A) - sup(B)|}{sup(A) + sup(B) - sup(A \cup B)}$$

