## Normalizing Flow as a trained prior

Allow for exact likelihood evaluation

$$p_x(x = 0.99)$$

$$p_x(x = 0.01)$$





Train network and use as prior in bayesian formulation:

$$\underset{\mathbf{x}}{\operatorname{argmax}} p(\mathbf{x} \mid \mathbf{y}) = \underset{\mathbf{x}}{\operatorname{argmax}} \log p(\mathbf{y} \mid \mathbf{x}) + \log p(\mathbf{x})$$



$$\underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} ||A\mathbf{x} - \mathbf{d}||_{2}^{2} + \log R(\mathbf{x})$$

Reparametrize optimization with trained generative network

$$\mathbf{x} = G_{\theta}(\mathbf{z})$$