Secure Energy Harvesting from Footsteps and Thermal Gradients

Anna R Riya Abbhishree - CB.EN.U4CCE22013 Lathika Shree R. S - CB.EN.U4CCE22031 Lithika S - CB.EN.U4CCE22032 Amrish Seenu R - CB.EN.U4CCE22061

Literature Review

S1.	Title of the Paper	Source	Inference
1	An Efficient Inductive Rectifier Based Piezo-Energy Harvesting Using Recursive Pre-Charge and Accumulation Operation.	IEEE Journal of Solid-State Circuits, vol. 57, no. 8, pp. 2404- 2417, Aug. 2022, doi: 10.1109/JSSC.2022.3153590.	Optimize the piezoelectric energy harvesting process using recursive pre-charge techniques and to maintain high efficiency in harvesting and storing.
2	Switched-capacitor-assisted power gating for ultra low stand by power in CMOS digital Ics.	S. Sankar, M. Goel, PH. Chen, V. R. Rao, and M. S. Baghini, IEEETrans.CircuitsSyst.I,Reg.Pape rs,vol.67, no.12,pp.4281–4294,Dec.2020.	Leverage switched-capacitor techniques to minimize power loss and maximize energy transfer efficiency from piezoelectric and TEG outputs.
3	Self-Powered Standalone Performance of Thermoelectric Generator for Body Heat Harvesting.	A. Panbude and P. Veluswamy, in IEEE Sensors Letters, vol. 8, no. 11, pp. 1-4, Nov. 2024, Art no. 2504204, doi: 10.1109/LSENS.2024.3456289.	Potential for a TEG module to harness thermal energy from body heat.

Literature Review

S1. #	Title of the Paper	Source	Inference
4	Footstep Power Generation using Piezoelectric Sensor and Distribution using RFID	Sachin Chauhan, Manvendra Singh, Archie Tripathi, International Research Journal of Engineering and Technology (IRJET) February 2020.	Incorporate piezoelectric sensors to generate energy from mechanical pressure exerted during walking
5	RFID Security	Yi Qian; Feng Ye; Hsiao-Hwa Chen, IEEE, 2022, pp.193-205, doi: 10.1002/9781119244400.ch10.	Practical insights and advanced techniques for ensuring secure RFID implementations.

Problem Statement

 The rapid depletion of non-renewable energy resources necessitates the development of sustainable and innovative energy extraction methods, such as hybrid systems combining piezoelectric and thermoelectric generators, integrated with RFID-secured solutions for efficient and secure mobile charging.

Objectives

- Create a hybrid energy harvesting system that combines footstep and thermal energy for sustainable power generation.
- Make the system adaptable to various climates by utilizing natural and artificial temperature differences for thermoelectric generation.
- Implement IoT-based monitoring to track energy generation and optimize the system in real-time.
- Develop a mechanism for storing harvested energy to provide consistent power supply.
- Offer a renewable and eco-friendly alternative to non-renewable energy sources for public spaces and smart cities.
- Ensure the system provides secure energy access, supporting both sustainable and safe energy solutions.
- Innovation in Power Generation: To show how human activity may produce power using piezoelectric technology or other mechanisms.

Block Diagram

Simulation Results and Inference

Simulation Circuit Setup

Valid id scanned; Charging access initiated

Invalid ID; Charging access denied

Simulation Results and Inference

Pressure applied in piezoelectric senor and voltage readings taken.

MATLAB simulation of Thermo-electric generator (TEG) Generates an output voltage 13.78V

Methodologies

- Energy Generation through Piezoelectric Sensors: Piezoelectric sensors are embedded in walking surfaces to convert mechanical pressure from footsteps into electrical energy.
- Energy Storage: The electrical energy generated is converted into dc, smoothened and stored in rechargeable batteries for later use.
- User Authentication via RFID: Users are provided with RFID cards containing unique identification numbers. When
 a user scans their RFID card at the charging station, the system verifies their identity and grants access to the
 stored energy for a specified time.
- Mobile Charging: Authenticated users can connect their mobile devices to the charging station, drawing power from the stored energy
- LCD Interfacing: Displays the charging status along with user details and timer for charging access.

INITIAL SETUP

OUTPUT

References

- [1] S. Sankar, P. -H. Chen and M. S. Baghini, "An Efficient Inductive Rectifier Based Piezo-Energy Harvesting Using Recursive Pre-Charge and Accumulation Operation," in IEEE Journal of Solid-State Circuits, vol. 57, no. 8, pp. 2404-2417, Aug. 2022, doi: 10.1109/JSSC.2022.3153590.
- [2] S. Sankar, M. Goel, P.-H. Chen, V. R. Rao, and M. S. Baghini, "Switched-capacitor-assisted powergating for ultra low stand by power in CMOS digital ICs," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 12, pp. 4281–4294, Dec. 2020.
- A. Panbude and P. Veluswamy, "Self-Powered Standalone Performance of Thermoelectric Generator for Body Heat Harvesting," in IEEE Sensors Letters, vol. 8, no. 11, pp. 1-4, Nov. 2024, Art no. 2504204, doi: 10.1109/LSENS.2024.3456289.
- 4 Sachin Chauhan, Manvendra Singh, Archie Tripathi -- Footstep Power Generation using Piezoelectric Sensor and Distribution using RFID -- "International Research Journal of Engineering and Technology (IRJET)" -- Sept 2020.
- 5 Yi Qian; Feng Ye; Hsiao-Hwa Chen, "RFID Security," in *Security in Wireless Communication Networks*, IEEE, 2022, pp.193-205, doi: 10.1002/9781119244400.ch10.