Demostraciones en textos de matemáticas preuniversitarias

José A. Alonso

11 de agosto de 2022

Índice general

1.	4° d	e ESO	$(15 \text{ a}\tilde{\text{n}}\text{os})$	5
	1.1.	Númer	os reales	Ę
		1.1.1.	Números racionales e irracionales	١
		1.1.2.	Densidad de los números reales	6
	1.2.	Potenc	ias y raíces	6
		1.2.1.	Logaritmos	6
	1.3.	Sumas	y productos de polinomios	Ĉ
	1.4.	Divisió	n de polinomios	6
	1.5.	Raíces	de un polinomio	6
		1.5.1.	Regla de Ruffini	.(
		1.5.2.	Cálculo de las raíces de un polinomio	.(
	Es ur	na recop	pilación de los teoremas que aparecen en los libros de textos de matemática	18
ant	tes de	la Uni	versidad. La mayoría sin demostraciones.	

4 ÍNDICE GENERAL

Capítulo 1

4° de ESO (15 años)

Del libro Matemáticas de 4° de ESO $^{\circ}$ de Apuntes marea Verde.

1.1. Números reales

1.1.1. Números racionales e irracionales

9

Teorema 1.1.1. $\sqrt{2}$ no es un número racional.

Demostración: Demostración (por reducción al absurdo)

Supongamos que $\sqrt{2}$ es racional. Entonces, se puede escribir como una fracción irreducible

 $\sqrt{2} = \frac{a}{b}$

Por tanto,

$$2 = \frac{a^2}{b^2}$$
$$a^2 - 2b^2$$

Luego a^2 es par y por lo tanto a también lo es (el cuadrado de un número impar es siempre impar). Ponemos a=2k y sustituimos:

$$(2k)^2 = 2b^2$$
$$4k^2 = 2b^2$$

 $2k^2 = b^2$

Luego b^2 es par y por tanto b también lo será. En definitiva: a y b son los 2 números pares que es una contradicción con el que $\frac{a}{b}$ es irreducible.

- 6
- $11\sqrt{7}$ es irracional.
- 14 En cada suma o resta el error absoluto es la suma de los errores absolutos.
- 14 Los errores relativos se suman al multiplicar dos números.
- $\blacksquare \ 32 \ e$ es límite de la sucesión $\left(1+\frac{1}{n}\right)^n$
- 33 $e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$

1.1.2. Densidad de los números reales

16

Teorema 1.1.2. Los números reales son densos, es decir, entre cada dos números reales hay infinitos números en medio.

Demostración: Sea a y b dos números reales tales que a < b. Entonces, se consideran

$$c = \frac{a+b}{2}$$
$$d = \frac{a+c}{2}$$

y se tiene

Repitiendo el proceso se obtienen infinitos números entre a y b.

• 16 Los racionales son también densos.

1.2. Potencias y raíces

1.2.1. Logaritmos

48

Teorema 1.2.1. El logaritmo de 1 es cero (en cualquier base)

Demostración: Como $a^0=1$, por definición de logaritmo, tenemos que $\log_a 1=0$.

48

Teorema 1.2.2. Si a > 0, entonces $\log_a a = 1$.

1.2. POTENCIAS Y RAÍCES

7

Demostración: Como $a^1=a$, por definición de logaritmo, tenemos que $\log_a a=1$.

- 48 Solo tienen logaritmos los números positivos.
- **4**8

Teorema 1.2.3. $\log_a(xy) = \log_a x + \log_a y$.

Demostración: Sean $A = \log_a x$ y $B = \log_a y$. Por definición de logaritmos sabemos que:

$$a^A = x$$
$$a^B = y$$

Multiplicando:

$$xy = a^A a^B$$
$$= a^{A+B}$$

Luego,

$$\log_a(xy) = A + B$$
$$= \log_a x + \log_a y.$$

48

Teorema 1.2.4. El logaritmo de un cociente es igual al logaritmo del dividendo menos el logaritmo del divisor.

Demostración: Sean $A = \log_a x$ y $B = \log_a y$. Por definición de logaritmos sabemos que:

$$a^A = x$$
$$a^B = y$$

Dividiendo

$$\frac{x}{y} = \frac{a^A}{a^B}$$
$$= a^{A-B}$$

8

Luego,

$$\log_a(\frac{x}{y}) = A - B$$
$$= \log_a x - \log_a y$$

48

Teorema 1.2.5. El logaritmo de una potencia es igual al exponente multiplicado por el logaritmo de la base de la potencia.

Demostración: Sea $A = \log_a x$. Por definición de logaritmos sabemos que:

$$a^A = x$$

Por tanto,

$$x^y = (a^A)^y$$
$$= a^{Ay}$$

Luego,

$$\log_a(x^y) = yA$$
$$= y \log_a x$$

48

Teorema 1.2.6. $\log_a \sqrt[n]{b} = \frac{\log_a}{n}$.

Demostración:

$$\log_a \sqrt[n]{b} = \log_a b^{\frac{1}{n}}$$
$$= \frac{\log_a}{n}$$

■ 49 Cambio de base:

$$\log_a x = \frac{\log_b x}{\log_b a}$$

1.3. Sumas y productos de polinomios.

- 65 Propiedades de la suma de polinomios.
- 68 Propiedades del producto de polinomios.

1.4. División de polinomios

• Existencia de la división.

1.5. Raíces de un polinomio

- 78

Teorema 1.5.1. Si un número real α es una raíz del polinomio p(x), entonces el polinomio $x - \alpha$ divide a p(x).

Demostración: Dividiendo p(x) entre $x - \alpha$ se tiene

$$p(x) = (x - \alpha)c(x) + r(x)$$

Como el polinomio divisor, $x - \alpha$, es de grado 1, y el polinomio resto ha de ser de inferior grado, se deduce que el resto anterior es un número real. Luego,

$$p(x) = (x - \alpha)c(x) + \beta$$

El polinomio de la izquierda, p(x), es idéntico al de la derecha. Por esa razón, al evaluarlos en cierto número real obtendremos el mismo valor. Procedamos a particularizarlos para $x = \alpha$ Al ser α raíz de p(x), $p(\alpha) = 0$. Esto nos lleva a

$$0 = p(\alpha)$$

$$= (\alpha - \alpha)c(\alpha) + \beta$$

$$= 0c(\alpha) + \beta$$

$$= 0 + \beta$$

$$= \beta$$

y, así, el resto es 0, y $p(x) = (x - \alpha)c(x)$.

79

Teorema 1.5.2. Si un polinomio p(x) admite una descomposición factorial de la forma $p(x) = (x - \alpha) \times c(x)$ para cierto polinomio c(x) y cierto número real α , entonces el número α es una raíz del polinomio p(x).

Demostración: Basta evaluar p en $x = \alpha$:

$$p(\alpha) = (\alpha - \alpha) \times c(\alpha)$$
$$= 0 \times c(\alpha)$$
$$= 0$$

• 79 (Condition for linear divisor of polynomial en ProofWiki)

Teorema 1.5.3. Teorema del factor. Un número real α es raíz de un polinomio p(x) si y solo si el polinomio $x - \alpha$ divide a p(x); es decir, si y solo si el polinomio p(x) admite una descomposición factorial de la forma $p(x) = (x - \alpha) \times c(x)$.

Demostración: Es consecuencia de las dos propiedades anteriores.

- lacksquare 80 Todo polinomio de grado n tiene a lo sumo n raíces reales, alguna de las cuales puede aparecer repetida entre esos no más de n números reales.
- 81 Todo polinomio de grado impar posee, al menos, una raíz real.

1.5.1. Regla de Ruffini

■ 84 [Teorema del resto]. El valor numérico que adopta un polinomio p(x) en $x = \alpha$ coincide con el resto que aparece al dividir p(x) entre $x - \alpha$. (Little Bézout theorem en ProofWiki).

1.5.2. Cálculo de las raíces de un polinomio

86

Teorema 1.5.4. Dado un polinomio cualquiera cuyos coeficientes son todos números enteros, sus raíces enteras, si las tuviera, se encuentran necesariamente entre los divisores enteros de su término independiente.

Demostración

```
Supongamos que cierto número entero es una raíz del polinomio. a[\text{U}+2099]\,x^n \,+\, a[\text{U}+2099]_{-1}x^{n-1}\,+\,\dots\,+\, a_2x^2\,+\, a_1x\,+\, a_0 Tal número debe anularlo: a[\text{U}+2099]^n\,+\, a[\text{U}+2099]_{-1}^{n-1}\,+\,\dots\,+\, a_2^2\,+\, a_1\,+\, a_0\,=\,0 a[\text{U}+2099]^n\,+\, a[\text{U}+2099]_{-1}^{n-1}\,+\,\dots\,+\, a_2^2\,+\, a_1\,=\,-a_0 (a[\text{U}+2099]^{n-1}\,+\, a[\text{U}+2099]_{-1}^{n-2}\,+\,\dots\,+\, a_2\,+\, a_1)\,=\,-a_0
```

 $a[U+2099]^{n-1} + a[U+2099]_{-1}^{n-2} + \cdots + a_2 + a_1 = -a_0/$

En la última igualdad, el número del lado izquierdo es entero, porque está expresado como una suma de productos de números enteros. Por ello, el número del lado derecho, $-a_0/$, también es entero. Al ser también enteros tanto $-a_0$ como , alcanzamos que es un divisor de a_0 .