Kodutöö nr. 12

Joosep Näks ja Uku Hannes Arismaa

- 1. Leida arvu 9 indeks $k\tilde{o}igil$ võimalikel alustel mooduli 22 järgi.
- 2. Koostada indeksite tabel alusel 3 mooduli 25 järgi.

Kontrollin esiteks, et 3 on algjuur. Kuna $\varphi(25) = 20 = 2^2 \cdot 5$, on vaja kontrollida, et 3^4 ja 3^10 ei oleks kongruentsed ühega mooduli 25 järgi ning esimene on kongruentne arvuga 6 ja teine arvuga -1 ehk tõepoolest on tegu algjuurega. Tabeli moodustamiseks leian väärtused 3^1 kuni 3^{20} :

k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$\overline{3^k}$	3	9	2	6	18	4	12	11	8	24	22	16	23	19	7	21	13	14	17	1

Ning selle põhjal saab indeksite tabeli:

	0	1	2	3	4	5	6	7	8	9
0		20	3	1	6		4	15	9	2
1		8	7	1 17 13	18		12	19	5	14
2		16	11	13	10					

- 3. Leida ind $_2$ 3 mooduli 25 järgi. Kasutades saadud indeksit, koostada indeksite tabel alusel 2 mooduli 25 järgi.
- 4. Leida kõigi rühma $U(\mathbb{Z}_{37})$ elementide järgud ja kõik algjuured mooduli 37 järgi indeksite tabeli abil. Kontrollida vastust ilma astendamist kasutamata.

Leian kõigepealt algjuure mooduli 37 järgi. Kuna $\varphi(37) = 36 = 6^2$, peab vaid kontrollima, kas a^6 on kongruentne arvuga 1, et teada saada, kas a on algjuur. Proovin a = 2, sel juhul $a^6 \equiv -10 \not\equiv 1 \pmod{37}$ ehk 2 on algjuur. Et saada indeksid, leian väärtused 2^1 kuni 2^{18} (teine pool astmetest on samade arvude vastandarvud ehk neid pole vaja välja kirjutada):

Arvestades, et teoreemi 7.36 põhjal on elemendi b järk $\frac{36}{(\text{ind}_2 b, 36)}$ ehk saan moodustada leitud astmete põhjal indeksite ja järkude tabeli:

ind järk	0	1	2	3	4	5	6	7	8	9
0		36 1	1 36	26 18	2 1	23 36	27 4	32 9	3 12	16 9
1	24 3	30 6	28 9	11 36	33 12	13 36	4 9	7 36	17 36	35 36
2	25 36	22 18	31 36	15 12	29 36	10 18	12 3	6	34 18	21 12
3	14 18	9 4	5 36	20 9	8 9	19 36	18 2			

Algjuured on arvud, mille järk on 36 ehk 2, 5, 13, 15, 17, 18, 19, 20, 22, 24, 32 ja 35.

- 5. Lahendada kongruents $2020 \cdot x^{2022} \equiv 2033 \pmod{37}$ indeksite tabeli abil.
- 6. Milline kongruentsidest $12^{x^3} \equiv 3^2 \pmod{25}$ ja $13^{x^2} \equiv 2^4 \pmod{25}$ on lahenduv? Leida selle üldlahend.

Vaatlen esimest võrrandit. Teisest ülesandest näen, et 3 on algjuur mooduli 25 järgi. Seega lause 7.30 järgi saan võrrandi mõlemast poolest võtta indeksi aluse 3 järgi ning tulemuseks on samaväärne võrrand mooduli $\varphi(25) = 20$ järgi: ind $_312^{x^3} \equiv \text{ind}_33^2 \pmod{20}$. Indeksi omaduste järgi saab astme indeksi ette tuua: $x^3 \cdot \text{ind}_312 \equiv 2 \cdot \text{ind}_33 \pmod{20}$. Teise ülesande tabelist näen, et arvu 12 indeks on 7 ja arvu 3 indeks

on 1 ehk võrrandist jääb alles $7x^3 \equiv 2 \pmod{20}$. Kuna $4 \mid 20$, on kõik lahendid ka lahendid mooduli 4 järgi, kuid proovides läbi kõik x väärtused mooduli 4 järgi on näha, et ükski lahend ei sobi, ehk ka algsel võrrandil puuduvad lahendid.

Vaatlen teist võrrandit. Võtan jällegi mõlemast poolest indeksi alusel 3: $\operatorname{ind}_3 13^{x^2} \equiv \operatorname{ind}_3 2^4 \pmod{20}$ ehk kasutades indeksi omadusi ja teise ülesande tabelit saab $x^2 \cdot 17 \equiv 4 \cdot 3 \pmod{20}$. Korrutan mõlemad pooled läbi arvuga -7: $x^2 \equiv -4 \pmod{20}$. Tegurdades saan $20 = 2^2 \cdot 5$ ehk saan võrrandi jagada võrrandisüsteemiks

$$\begin{cases} x^2 \equiv -4 \pmod{4} \\ x^2 \equiv -4 \pmod{5} \end{cases}$$

Läbi proovides saan esimese võrrandi lahenditeks $x \equiv 0 \pmod{4}$ ja $x \equiv 2 \pmod{4}$ ehk $x \equiv 0 \pmod{2}$ ning teise võrrandi lahenditeks $x \equiv 1 \pmod{5}$ ja $x \equiv -1 \pmod{5}$. Seega on HJT põhjal esialgse võrrandi lahendid $x \equiv 6 \pmod{10}$ ja $x \equiv 4 \pmod{10}$.

- 7. Leida, milliste arvude 1 $\leq a \leq$ 27 korral on kongruents $x^{15} \equiv a \pmod{p}$ lahenduv korraga $k \tilde{o} i g i$ moodulite p = 7, 13, 27 järgi.
- 8. Olgu p > 2 algarv ja $a \in \mathbb{Z}$. Leida kongruentsi $x^{12} = a \pmod{p}$ kõik võimalikud lahendite arvud ja tuua iga juhu kohta näide, mis seda realiseerib.

Juhul, kui a=0, on alati 1 lahend, milleks on x=0, kuna \mathbb{Z}_p kõik elemendid peale $\overline{0}$ on pööratavad ning pööratavate elementide korrutamisel saab tulemuseks alati pööratava elemendi. Muudel juhtudel pole x = 0 kunagi lahend, kuna see annab iga mooduli järgi tulemuseks 0, seega saame edasi vaadata vaid pööratavaid x ja a väärtuseid.

Kui x_0 on mingi $x^{12} \equiv a \pmod{p}$ lahend, on x_0^{-1} võrrandi $x^{12} \equiv a^{-1} \pmod{p}$ lahend. Kui võrrandil $x^{12} \equiv a \pmod{p}$ leidub veel lahendeid, saab iga sellise lahendi x' kohta ühe võrrandi $x^{12} \equiv 1 \pmod{p}$ $x^{12} \equiv a \pmod p$ leidub veel lahendeid, saab iga sellise lahendix' kohta ühe võrrandi $x^{12} \equiv 1 \pmod p$ lahendi kuna kui vastavatesse võrranditesse lahendid x' ja x_0^{-1} sisse panna ning võrrandite pooled kokku korrutada saab $(x')^{12} \cdot (x_0^{-1})^{12} \equiv a \cdot a^{-1} \pmod p$ ehk $(x' \cdot x_0^{-1})^{12} \equiv 1 \pmod p$. Seega on iga lahendi x' kohta a=1 võrrandi lahend $x' \cdot x_0^{-1} \pmod p$ ehk colla sama mis x_0 , mis puhul tuleb lahend $x_0 \cdot x_0^{-1} = 1$). Sellised saadud lahendid on kõik erinevad kuna kui leidub kaks x' väärtust x_1' ja x_2' , mis annavad sama a=1 võrrandi lahendi, siis kehtib $x_1' \cdot x_0^{-1} = x_2' \cdot x_0^{-1}$ ning kui mõlemad pooled arvuga x_0 läbi korrutada, saab $x_1' = x_2'$ ehk need on samad arvud. Seega on võrrandi $x^{12} \equiv 1 \pmod p$ lahendite hulk vähemalt samasuur nagu ühegi võrrandi $x^{12} \equiv a \pmod p$ lahendite hulk.

Väide töötab ka vastupidi, kui võrrandil $x^{12} \equiv a \pmod p$ leidub mingi lahend x_0 , saab iga võrrandi $x^{12} \equiv 1 \pmod p$ lahendi x' kohta ühe $x'^{12} \equiv a \pmod p$ lahendi kujul $x' \cdot x_0$ kuna lahendid sisse pannes ja võrrandite pooled kokku korrutades saab $(x')^{12} \cdot (x_0)^{12} \equiv 1 \cdot a \pmod p$ ehk $(x' \cdot x_0)^{12} \equiv a \pmod p$. Seega kui võrrandil $x^{12} \equiv a \pmod p$ leidub lahendeid, on neid täpselt samapalju nagu võrrandil $x^{12} \equiv 1 \pmod p$.

On ka võimalus et võrrandil $x^{12} \equiv a \pmod{p}$ ei ole lahendeid, näiteks võrrandil $x^{12} \equiv 2 \pmod{3}$ saab väärtuseid läbi proovides et lahendid puuduvad.

Uurin võrrandi $x^{12} \equiv 1 \pmod{p}$ lahendite kogust. Teoreemi 7.6 põhjal on selle võrrandi lahendid arvud, mille järk on arvu 12 tegur ehk 1, 2, 3, 4, 6 või 12. Kui mingi tegur d ei jaga arvup-1, ei leidu Lagrange'i teoreemi tõttu ühtegi seda järku elementi. Kui aga leidub, seda järku elemendid teoreemis 7.12 tõestatud võrduse 25 põhjal $\{c^k \mid 1 \le k \le d, (k, d) = 1\}$, kus c on mingi algjuur, ning selliste elementide kogus on $\varphi(d)$.

Seega suurim võimalik lahendite kogus on võrrandil $x^{12} \equiv 1 \pmod{p}$, kus $12 \mid p-1$ ehk näiteks p=13 ning lahendite kogus sel juhul on teoreemis 7.12 tõestatud võrduse 24 põhjal $\sum_{n=0}^{\infty} \varphi(d) = 12$.

Teised võimalikud lahendite kogused sellisel kujul võrrandite puhul on kõigepealt moodulid p, mille puhul p-1 jagub arvuga 6 kuid mitte 12 ehk näiteks p=7, mille korral on lahendite kogus $\sum \varphi(d)=6$.

Veel on sellised moodulid, mille korral p-1 jagub arvuga 4 kuid mitte arvuga 12 ehk näiteks p=5, mille korral on lahendite kogus 4.

Oleksid võimalikud ka sellised moodulid, mille korral p-1 jagub arvuga 3 kuid mitte arvuga 6, kuid sel juhul peaks p = 3k + 1, kus k on paaritu arv, kuid kuna 3 ja k on paaritud, on ka nende korrutis paaritu ehk sellele 1 liites saab paarisarvu ning ainus paaris algarv on 2, mis ei sobi p väärtuseks.

On ka sellised moodulid, mille korral p-1 jagub arvuga 2 kuid mitte arvuga 4 ega 3 ehk näiteks p = 11, mis puhul on lahendite kogus 2.

Viimaks oleksid ka moodulid, mille korral p-1 ei jagu ei 2 ega 3ga, kuid selleks jällegi p olema paarisarv.

Kokkuvõttes on võimalikud lahendite kogused $0,\,1,\,2,\,4,\,6$ ja 12.

- 9*. Olgu p>2 algarv ja A rühma \mathbb{Z}_p^* alamrühm, kusjuures 6 | |A|. Tõestada, et leiduvad $a,b,c\in A$ nii, et a+b=c.
- 10^* . Olgu $n \in \mathbb{N}$. Tõestada, et leidub lõpmata palju selliseid algarve p, et mooduli p järgi vähim positiivne algjuur a > n.