1 Vetores Aleatórios - PDF Conjunta

Lembrando do caso de uma variável aleatória no qual:

$$\int_{a}^{b} f_X(x)dx = P_X((a,b])$$

Para 3 variáveis:

$$\int \int \int_{V} f_{X}(x_{1}, x_{2}, x_{3}) dx_{1} dx_{2} dx_{3} = P_{X}(V),$$
 no qual V é um conjunto de pontos em \mathbb{R}^{3} .

Para definirmos formalmente a PDF precisamos do conceito de CDF.

1.1 CDF de um Vetor Aleatório

Podemos fazer:

$$F_X(x_1, x_2, x_3, \dots, x_N) = P_X((-\infty, x_1] \times (-\infty, x_2] \times \dots (-\infty, x_N])$$

com a expansão para: $\{1, 2\} \times \{3, 4\} = \{(1, 3), (1, 4), (2, 3), (2, 4)\}$
o operador \times é o produto cartesiano

1.2 Definição da PDF Conjunta

É a função obtida pela derivação parcial da CDF com respeito a todas as componentes do vetor. No exemplo em que $F_X(x_1, x_2) = P_X(A)$, temos $f_X(x_1, x_2) = \frac{\partial^2}{\partial x_1 x_2} F_X(x_1, x_2)$.

$$f_X(x_1, x_2, \dots, x_N) = \frac{\partial^N}{\partial x_1 \partial x_2 \dots \partial x_N} F_X(x_1, x_2, \dots, x_N).$$

2 PDF Marginal de um Vetor Aleatório

Considere um vetor aleatório X de N componentes. Considere ainda uma função $g: \mathbb{R}^N \to \mathbb{R}$, tal que g(x) é i-ésima componente de X, com $1 \le i \le N$ com i inteiro.

Temos uma variável aleatória Y = g(X), definido por Y(s) = g(X(s)). A PDF de X com respeito a i-ésima componente é definida como a PDF de Y. Denominada PDF Marginal de X na i-ésima componente.

Pergunta: se temos a PDF conjunta de X, como calcularmos a PDF marginal com respeito à i-ésima componente?

$$f_{X_i}(x_i) = \underbrace{\int \int}_{N-1 \text{ integrais}} f_X(x_1, x_2, \dots, x_N) \underbrace{dx_2 dx_{i-1} dx_{i+1} dx_{i+2} dx_N}_{dx_j \ \forall j \in \{1, \dots, N\} - \{i\}}.$$

Extensão do conceito da PDF Marginal para m componentes do vetor X difere em definirmos a seguinte função de vetor aleatório:

$$g: \mathbb{R}^N \to \mathbb{R}^m, m \leq N,$$

com g(x) o vetor formado pelas m componentes escolhidas de Y = g(X) é um vetor aleatório de m componentes.

A PDF conjunta de Y é uma PDF Marginal de X:

$$f_{X_1,X_2,\dots,X_M}(x_1,x_2,x_3,\dots,x_m) = \underbrace{\int \int}_{N-m \text{ integrals}} f_X(x_1,x_2,\dots,x_N) \underbrace{dx_2dx_{i-1}dx_{i+1}dx_{i+2}dx_N}_{\text{N-m components de integração}}.$$

Observação: Sabendo a PDF conjunta de um vetor, conseguimos calcular a PDF marginal com respeito a quaisquer grupo de componentes (integrando com respeito a todos os outros componentes). O contrário nem sempre é possível (calcular a conjunta a partir de marginais).

Breve Exemplo

Considere X um vetor aleatório $X: S \to \mathbb{R}^2$ e $f_x(x_1, x_2) = x_1 + x_1 x_2, \forall x_1, x_2 \in \mathbb{R}^2$ tais que $0 \le x_1 \le \frac{1}{2}, 0 \le x_2 \le K$, com $K \in \mathbb{R}$ e $f_X(x_1, x_2) = 0$, caso contrário.

Ponto Inicial: Determinar o valor de K para definir a PDF Conjunta.

A Qual a PDF Marginal de X_1 ? Integrar X_2 de $0 \to K$

B Qual a PDF Marginal de X_2 ? Integrar X_1 de $0 \to 0.5$

C Qual a probabilidade de $X_1 > X_2$?

Considerar a região total em que $X_1 > X_2$ (região abaixo da reta y = x) e integrar para obter probabilidade.

D Qual a probabilidade de X_2 estar entre $\frac{K}{2}$ e K? É possível usar a PDF marginal nesse caso.

E X_1 e X_2 são dependentes ou independentes? Essa é *spoiler* de aulas posteriores.