ARE213 Problem Set #1A

Peter Alstone & Frank Proulx September 21, 2013

1 Problem #1

1.1 Part A

Data records are excluded from the dataset based whether the following variables take the noted values as found in the data manual:

1.2 Part B

We dropped all rows where any data were missing in that row. One way that the data cleaning process could be improved would be to only remove records based on the variables of interest (as are determined in subsequent analysis) since missing values in fields that are not eventually used in the analysis do not pose a problem.. This would result in a more iterative approach, however, and increase workload on the researcher.

We used some exploratory analysis to understand if the records that were dropped due to missing data *somewhere* in the record were representative. First we compared a few simple summary statistics between the "full record" and "partial record" data on variables of interest for this analysis. These are summarized in Table 1. Better APGAR scores and lower incidence of smoking may be correlated with having full datasets, which indicates the people who have missing data may bias the sample. We also used agnostic linear regression to understand the relationship between the presence of full records and three key variables: one-minute apgar (omaps), five-minute apgar (fmaps), and number of cigarettes smoked each day (cigar). The results summarized in Table 2 indicate there is statistical significance in each of the factors (i.e. all three are useful predictors for whether a person has a full data record) but also that the influence of the factors is small. Figure 1 shows the distribution in the number of cigarettes smoked by those with and without

full records. The distribution of values is basically the same (clusters around multiples of five up to 20, or, a "pack a day") between the two datasets.

Overall, in spite of the bias from removing heavier smokers with lower apgar scores from the data, the overall number removed is relatively small and the size of the bias (indicated by the coefficients in the linear model) is relatively small.

Table 1: Comparison of data with full records to those with missing data across key variables

full.record	mean.omaps	sd.omaps	mean.fmaps	sd.fmaps	mean.cigar	sd.cigar
FALSE	7.905	1.572	8.880	1.030	3.945	7.422
TRUE	8.117	1.260	9.009	0.707	1.907	5.297

Figure 1: Cigarette use rate by presence of full data record.

1.3 Part C

The summary table for the remaining data after cleaning is below.

Table 2: Linear model results for predicting whether full records are present based on selected variable of interest in the dataset

	Dependent variable:
	full.record
omaps	0.002***
-	(0.001)
fmaps	0.007***
	(0.001)
cigar	-0.003***
	(0.0001)
Constant	0.882***
	(0.007)
Observations	119,384
\mathbb{R}^2	0.007
Adjusted R ²	0.007
Residual Std. Error	0.195
F Statistic	276.305
Note:	*p<0.1; **p<0.05; ***p<

3

Table 3: Summary for cleaned dataset

Statistic	N	Mean	St. Dev.	Min	Max
rectype	114,610	1.262	0.440	1	2
pldel3	114,610	1.018	0.133	1	2
birattnd	114,610	1.202	0.564	1	5
cntocpop	114,610	1.443	1.137	0	3
stresfip	114,610	41.743	2.167	0	55
dmage	114,610	27.757	5.699	12	49
ormoth	114,610	0.091	0.522	0	5
mrace3	114,610	1.259	0.657	1	3
dmeduc	114,610	13.211	2.272	0	17
dmar	114,610	1.251	0.434	1	2
adequacy	114,610	1.297	0.546	1	3
nlbnl	114,610	0.967	1.148	0	12
dlivord	114,610	1.986	1.174	1	14
dtotord	114,610	2.420	1.520	1	24
totord9	114,610	2.407	1.458	1	8
monpre	114,610	2.502	1.326	0	9
nprevist	114,610	11.153	3.524	0	49
disllb	114,610	350.412	362.325	0	777
isllb10	114,610	3.321	3.188	0	9
dfage	114,610	30.062	6.410	13	78
orfath	114,610	0.095	0.531	0	5
dfeduc	114,610	13.277	2.325	0	17
birmon	114,610	6.474	3.394	1	12
weekday	114,610	4.047	1.881	1	7
dgestat	114,610	39.153	2.445	17	47
csex	114,610	1.485	0.500	1	2
dbrwt	114,610	$3,\!373.291$	585.175	227	6,067
dplural	114,610	1.028	0.174	1	4
omaps	114,610	8.117	1.260	0	10
fmaps	114,610	9.009	0.707	0	10
clingest	114,610	39.109	2.057	17	44
delmeth5	114,610	1.549	1.010	1	5
anemia	114,610	1.990	0.099	1	2
cardiac	114,610	1.993	0.083	1	2
lung	114,610	1.993	0.085	1	2
diabetes	114,610	1.973	0.162	1	2
herpes	114,610	1.994	0.078	1	2
chyper	114,610	1.992	0.087	1	2
phyper	114,610	1.969_{1}	0.172	1	2
pre4000	114,610	1.986^{4}	0.119	1	2
preterm	114,610	1.986	0.118	1	2
tobacco	114,610	1.841	0.366	1	2
cigar	114,610	1.907	5.297	0	98
cigar6	114,610	0.346	0.861	0	5
alcohol	114,610	1.990	0.098	1	2

drink 114 610 0.031

0.619 0 91

2 Problem #2

2.1 Part A

The table below shows the mean differences between smoking and non-smoking mothers for one-minute APGAR scores (ompas), five-minute (fmaps), and birth weight in grams (dbrwt). Unconditioned on the other variables, there is no statistically significant difference in APGAR score but a significant difference is present in birth weight¹. Infants whose mother smoked had a 7% lower birth weight than those who did not.

Table 4: Comparison of key birthing infant health indicators for different maternal smoking status

tobacco	mean.omaps	mean.fmaps	mean.dbrwt
smoker	8.10275922478923	9.00908792291689	3171.13916566298
nonsmoker	8.12019430374491	9.00923773146226	3411.61697666694
difference	0.0174350789556872	0.00014980854536617	240.477811003963

2.2 Part B

The average treatment effect (ATE) of maternal smoking can be determined definitively by comparing the unadjusted difference in mean birth weight of infants whose mothers were randomly assigned into treatment (a smoking habit). This is obviously not possible or even palatable for a variety of ethical reasons to verify with RCT so an alternative approach to identifying the ATE that "controls for observables" effectively is the next-best option.

T he key assumptions that need to hold for accurate prediction of the ATE based on the data are:

- test
- test2

 $^{^1}$ Welch Two Sample t-test, alternative hypothesis: true difference in means is not equal to 0; p-value less than 2.2e-16, 95 percent confidence interval: -249.5463 to -231.4093

3 Appendix

```
R code for problem #1:
### This is Frank Proulx's solution to ARE213 PS1a, problem 1
## Data is in the file "ps1.dta"
library(foreign) #this is to read in Stata data
library(Hmisc)
library(psych)
data <- read.dta("ps1.dta")</pre>
print(nrow(data))
## Problem 1a: Fix missing values
## The following are the error codes for each of the 15 variables that need fixi
# cardiac: 9
# lung: 9
# diabetes: 9
# herpes: 9
# chyper: 9
# phyper: 9
# pre4000: 9
# preterm: 9
# tobacco: 9
# cigar: 99
# cigar6: 6
# alcohol: 9
# drink: 99
# drink5: 5
# wgain: 99
data <- subset (data, (cardiac != 9) & (lung != 9) & (diabetes !=9) & (herpes !=
print(nrow(data)) #number of records remaining after cleaning
print(describe(data, skew=FALSE, ranges=FALSE))
write.csv(data, file = "ps1dataclean.csv")
#'omaps' and 'fmaps' are the APGAR scores
```

```
#'dbrwt' is the birth weight in grams
# 'tobacco' is smoker status (1=yes, 2=no)

smokers <- subset(data, tobacco==1)
nonsmokers <- subset(data, tobacco==2)

smokerstats <- c(mean(smokers$omaps), mean(smokers$fmaps), mean(smokers$dbrwt))
nonsmokerstats <- c(mean(nonsmokers$omaps), mean(nonsmokers$fmaps), mean(nonsmokersdbrwt))
meandif <- nonsmokerstats - smokerstats

print(smokerstats)
print(nonsmokerstats)
print(nonsmokerstats)
print(t.test(data$omaps~data$tobacco))
print(t.test(data$fmaps~data$tobacco))
print(t.test(data$fmaps~data$tobacco))</pre>
```