

Предусловие

• Сохранить себе на гугл диск коллаб: https://clck.ru/3NAi6R

Что такое нейронная сеть?

- Это модель, которая имитирует работу мозга: она состоит из множества "нейронов", соединённых между собой, и может обучаться на примерах, чтобы выполнять задачи вроде:
- классификации (это кошка или собака?),
- прогнозирования (какая завтра будет температура?),
- распознавания (чей это голос?) и др.

Нейросеть берёт входные данные ightarrow обрабатывает их ightarrow выдаёт результат.

Как устроен нейрон?

• Искусственный нейрон в нейронной сети — это математическая модель, имитирующая работу биологического нейрона. Она принимает входные данные, обрабатывает их с помощью весов и функции активации, и выдает результат, который передается дальше по сети

Как устроена нейронная связь?

- Входной слой принимает данные
- Скрытые слои учат связи
- Выходной слой даёт ответ (например, О или 1)

Взвешенная сумма — это когда каждый элемент входа умножается на свой вес, а затем все эти произведения складываются.

• $z = x_1 \cdot w_1 + x_2 \cdot w_2 + ... + x_n \cdot w_n + b$

• Нейрон не просто суммирует входы. Он **учится**, какие входы важны, а какие нет, и выражает это через **веса**. Именно веса и взвешенная сумма позволяют адаптироваться к данным.

Как работает функция активации и вывод в нейронных связях

- Функция активации это математическая функция, которая применяется к сумме входных сигналов нейрона (взвешенных и с добавленным смещением) и решает, насколько сильно активировать нейрон, то есть передавать сигнал дальше.
- Функция активации нужна, чтобы нейрон мог моделировать нелинейные зависимости. Если бы мы не использовали функцию активации, то сеть была бы просто линейной комбинацией, и её возможности были бы сильно ограничены.

Принцип:

- Каждый нейрон получает входные значения $x_1, x_2, ..., x_n$.
- Каждый вход умножается на свой вес $w_1, w_2, ..., w_n$.
- Суммируются взвешенные входы + добавляется смещение b:

$$z = \sum_{i=1}^n w_i x_i + b$$

• Далее к z применяется функция активации $\phi(z)$, и это значение становится выходом нейрона:

$$y = \phi(z)$$

Пример

- Есть обученная нейросеть, которая может определять 10 животных: 😭 Собака, 🐷 Кошка, 🦺 Лиса, 👑 Кролик, 🐻 Медведь, 🚳 Лев, 🐺 Волк, 🐸 Тигр, 🐷 Свинья, 🗥 Лошадь.
- Мы подаем фото лисы на вход сети.

Шаги решения

- 1. Подаем на вход картинку (заранее преобразованную в тензор): (224, 224, 3)
- 2. В слоях модель собирает абстрактные признаки.
- 3. Сводим к массиву чисел: [0.12, -0.03, 0.55, ..., 0.88] числовое описание того, что находится на фото.
- 4. Финальный слой **10 нейронов**, по одному на каждое животное. Каждый нейрон "голосует", насколько он **уверен**, что фото принадлежит к его классу.

«Голосование» нейронов

Животное	Выход нейрона (после Softmax)
Собака	0.01
Кошка	0.02
Лиса	0.93
Кролик	0.01
Медведь	0.01
Лев	0.005
Волк	0.01
Тигр	0.01
Свинья	0.002
Лошадь	0.005

Название	Формула	Диапазон значений	Для чего используется	Что означает значение выхода	
Sigmoid	$\sigma(x) = rac{1}{1+e^{-x}}$	(0, 1)	Используется в задачах бинарной классификации (например, "да или нет"). Преобразует любое число в вероятность.	0.92 → "Сеть думает, что объект относится к классу 1 с вероятностью 92%"	
ReLU	$f(x) = \max(0, x)$	[0,+∞)	Простая и быстрая активация. Включает нейрон только при положительном сигнале. Широко применяется в скрытых слоях.	${f 0} ightarrow$ "Этот нейрон не считает информацию важной в этом примере (молчит)"	
Tanh	$ anh \ (x) \ = rac{e^x-e^{-x}}{e^x+e^{-x}}$	(-1, 1)	Используется для скрытых слоёв, когда важно направление сигнала (положительное или отрицательное). Центрирована в 0.	-0.6 → "Нейрон сигнализирует, что признак выражен в противоположном направлении"	
Leaky ReLU	$f(x) = \max \ (0.01x, \ x)$	(-∞, +∞)	Почти как ReLU, но сохраняет небольшой градиент даже при отрицательных входах (чтобы нейрон не "умирал").	-0.03 $ ightarrow$ "Нейрон почти не активен, но немного реагирует"	
Softmax	$softmax (z_i) = \frac{e^{z_i}}{\sum_j e^{z_j}}$	(0, 1), сумма = 1	Используется в многоклассовой классификации. Преобразует выходы в вероятности по классам, сумма которых = 1.	[0.1, 0.1, 0.7, 0.1] → "Сеть уверена на 70%, что это объект 3-го класса"	

Функции активации

Ступенчатая функция

$$f(x) = tanh(x) = \frac{2}{1+e^{-2x}} - 1$$

Линейная функция активации

$$A = CX$$

Гиперболический тангенс

Сигмоида

$$A = \frac{1}{1+e^{-x}}$$

Шаги обучения нейронной сети

- Основные шаги обучения это:
- Прямой проход (forward pass): входные данные проходят через все слои сети, считаются выходы.
- Вычисление ошибки (loss): рассчитывается, насколько результат сети отличается от правильного ответа.
- Обратный проход (backpropagation): ошибка распространяется обратно через сеть, рассчитывая градиенты функции потерь по весам.
- Обновление весов: веса корректируются с помощью алгоритма оптимизации (например, градиентного спуска), чтобы уменьшить ошибку.

Почему так?

- Прямой проход нужен, чтобы получить предсказание.
- Ошибка нужна, чтобы понять, насколько предсказание плохое.
- Обратный проход позволяет понять, в каком направлении менять веса, чтобы улучшить результат.
- Обновление весов это шаг к улучшению модели.
- Так повторяется множество раз (эпох), и сеть постепенно обучается.

Основные виды нейронных сетей

Вид сети	Структура / Вид связи	Главная особенность	Применение	Плюсы	Минусы
Полносвязная (Dense, FFNN)	Каждый нейрон предыдущего слоя связан с каждым нейроном следующего	Простая, полностью связная	Классификация, регрессия	Простая, универсальная	Плохо масштабируется на большие данные и изображения
Сверточная (CNN)	Связь с локальными участками входа, сверточные фильтры	Автоматически выделяет признаки, учитывает структуру изображения	Обработка изображений, видео	Эффективна для изображений	Не подходит для последовательно стей
Рекуррентная (RNN)	Циклические связи: выходы зависят от предыдущих состояний	Помнит последовательно сть, работает с временными данными	Текст, аудио, временные ряды	Обработка последовательно стей	Проблемы с долгой памятью (затухающие градиенты)