```
import pandas as pd
import numpy as np
from sklearn import linear_model
import matplotlib.pyplot as plt
```

df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/homeprices.csv')
df

	area	price
0	2600	550000
1	3000	565000
2	3200	610000
3	3600	680000
4	4000	725000

```
%matplotlib inline
plt.xlabel('area')
plt.ylabel('price')
plt.scatter(df.area,df.price,color='red',marker='+')
```

<matplotlib.collections.PathCollection at 0x7f4ad5028250>


```
new_df = df.drop('price',axis='columns')
new_df
```

```
area
        2600
      1 3000
      2 3200
price = df.price
price
     0
          550000
     1
          565000
     2
          610000
          680000
          725000
     Name: price, dtype: int64
# Create linear regression object
reg = linear_model.LinearRegression()
reg.fit(new df,price)
     LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
reg.predict([[3300]])
     array([628715.75342466])
reg.coef_
     array([135.78767123])
reg.intercept_
     180616.43835616432
3300*135.78767123 + 180616.43835616432
     628715.7534151643
reg.predict([[5000]])
     array([859554.79452055])
area_df = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/areas.csv")
area df.head(3)
```

	area	prices
0	1000	3.164041e+05
1	1500	3.842979e+05
2	2300	4.929281e+05
3	3540	6.613048e+05
4	4120	7.400616e+05
5	4560	7.998082e+05
6	5490	9.260908e+05
7	3460	6.504418e+05
8	4750	8.256079e+05
9	2300	4.929281e+05
10	9000	1.402705e+06
11	8600	1.348390e+06
12	7100	1.144709e+06

```
area_df.to_csv("prediction.csv")
```

✓ 0s completed at 13:32

×