

Packet Trace - Проверка адресации IPv4 и IPv6

Таблица адресации

Устройство	Интерфейс	IP адрес/префикс		Шлюз по умолчанию
R1	G0/0	10.10.1.97	255.255.255.224	_
		2001:db8:1:1::1/64		
	S0/0/1	10.10.1.6	255.255.255.252	_
		2001:db8:1:2::2/64		
		fe80::1		
R2	S0/0/0	10.10.1.5	255.255.255.252	<u> </u>
		2001:db8:1:2::1/64		
	S0/0/1	10.10.1.9	255.255.255.252	<u> </u>
		2001:db8:1:3::1/64 fe80::2		
R3	G0/0	10.10.1.17	255.255.255.240	_
		2001:db8:1:4::1/64		
	S0/0/1	10.10.1.10	255.255.255.252	_
		2001:db8:1:3::2/64		
		fe80::3		
PC1	NIC			
PC2	NIC			
			,	

Задачи

- Часть 1. Заполнение таблицы адресации
- Часть 2. Проверка подключения с помощью команды ping
- Часть 3. Определение пути с помощью трассировки маршрута

Общие сведения

Двойной стек позволяет сосуществовать адресам IPv4 и IPv6 в одной и той же сети. В этом упражнении вы изучите внедрение двойного стека, включая документирование конфигурации IPv4 и

IPv6 для оконечных устройств, проверку связи по IPv4- и IPv6-протоколам с помощью команды **ping** и трассировку пути по IPv4 и IPv6.

Часть 1. Заполнение таблицы адресации

Шаг 1. Проверьте IPv4-адресацию с помощью команды ipconfig.

- а. Щелкните PC1 и откройте Command Prompt (Командная строка).
- b. Введите команду **ipconfig /all** для сбора данных об IPv4-адресе. Заполните **таблицу адресации**, указав IPv4-адрес, маску подсети и шлюз по умолчанию.
- с. Щелкните PC2 и откройте Command Prompt (Командная строка).
- d. Введите команду **ipconfig /all** для сбора данных об IPv4-адресе. Заполните **таблицу адресации**, указав IPv4-адрес, маску подсети и шлюз по умолчанию.

Шаг 2. Проверьте IPv6-адресацию с помощью команды ipv6config.

- а. На **PC1** введите команду **ipv6config /all** для сбора данных об IPv6-адресе. Заполните **таблицу адресации**, указав IPv6-адрес, префикс подсети и шлюз по умолчанию.
- b. На **PC2** введите команду **ipv6config /all** для сбора данных об IPv6-адресе. Заполните **таблицу адресации**, указав IPv6-адрес, префикс подсети и шлюз по умолчанию.

Часть 2. Проверка подключения с помощью команды ping

Шаг 1. Проверьте IPv4-соединение с помощью команды ping.

a.	С РС1 отправьте	эхо-запрос на	IPv4-адрес PC2 .
----	-----------------	---------------	-------------------------

Получилось?

b. С **PC2** отправьте эхо-запрос на IPv4-адрес **PC1**.

Получилось?

Шаг 2. Проверьте IPv6-соединение с помощью команды ping.

a.	C PC1	отправьте эхо-запрос на IPv6-адрес P 0	C2.
----	--------------	---	-----

Получилось?

b. С **PC2** отправьте эхо-запрос на IPv6-адрес **PC1**.

Получилось?

Часть 3. Определение пути путем отслеживания маршрута

Шаг 1. Используйте команду tracert для определения IPv4-пути.

а. На РС1 выполните трассировку маршрута до РС2.

```
PC> tracert 10.10.1.20
```

Какие адреса встретились на пути?

С какими интерфейсами связаны эти четыре адреса?

b. На **PC2** выполните трассировку маршрута до **PC1**.

Какие адреса встретились на пути?

С какими интерфейсами связаны эти четыре адреса?

Шаг 2. Используйте команду tracert для определения IPv6-пути.

а. На **PC1** выполните трассировку маршрута до IPv6-адреса **PC2**.

```
PC> tracert 2001:db8:1:4::a
```

Какие адреса встретились на пути?

С какими интерфейсами связаны эти четыре адреса?

b. На **PC2** выполните трассировку маршрута до Pv6-адреса **PC1**.

Какие адреса встретились на пути?

С какими интерфейсами связаны эти четыре адреса?