Exercise objective:

To predict seismic geo-bodies using the "Seismic bodies (supervised 3D)" tool which is part of the machine learning plugin. In this exercise, we want to predict Chimney location.

Seismic data Preparation

Seismic need to be available in the survey. If not, **import** seismic, and interpret key seismic bodies locations (e.g. Chimney yes, Chimney no), or use existing trained model.

Workflow:

- 1. Open the Machine Learning Control Center with the 🚵 icon.
- 2. Click on Seismic.
- 3. Select Seismic bodies (supervised 3D), and Hit Go.

- 4. The "Seismic Classification" window pops up.
- 5. Select Input Data in the "Extract Data" tab.
- 6. In the "Select PointSet" window, Select the Survey and the 1st Class Example Locations (e.g. Chimney yes).
- **7. Press** OK in the "Specify Class Example Locations" window.

- 8. In the "Deep Learning": Class Definition Window, Hit icon (+) to add more PointSets.
- 9. In the "Specify PointSet" window, Select the Survey and the 2nd class example locations (e.g. Chimney no).
- **10.** Press OK in the "Specify Class Example Locations" window.

11. In the "Deep Learning: Class Definition" window, Verify that the default selected data are correct.

Press Proceed [Input Data Selection].

- 12. In the "Input Seismic for prediction" window, Select the appropriate 3D seismic cubes, and seismic attributes.
- 13. Press OK.

14. "Input Log Selection" window pops up.

Input logs can be modified. Keep the default parameters as indicated in this window.

- **15.** Specify a new name for the Output Deep Learning Example Data (e.g. DL_Example_Chimney_st8x8x16Z4).
- 16. Press Proceed.

Survey Input 1 Input 2 Input 3 Input 4

1 F3_Demo_2016_training_v6 1 Original Seismics v 2 Steering BG Details v 4 Dip steered median v 7a Al Cube Std v

Stepouts Inl: 8 : Crl: 8 : Z: 16 : Z step (ms) 4

Edge/Gap Policy Exclude incomplete Add data

Output Deep Learning Example Data Example_Chimney_st8x8x16Z4_AL v Select ...

17. The *Train* tab opens-up.

Select one of the learning algorithm (e.g. Keras-tensorflow) to train the extracted examples data.

Different machine learning platforms and parameters can be tested. Keep the defaults parameters.

- **18.** Specify a new *Output model* name (e.g Model_Keras_Chimney).
- 19. Press Run.
- 20. Once the computation is done, **Close** the ML log window.

21. Select the "Apply" tab. Check all selected data Ok.

The Survey, Training model can be modified here if necessary.

22. Press Proceed.

- 23. In the "Apply created training model" window, Verify, all the default selected input 3D cubes are correct.
 - a. To optimize computation time, **Modify** "Volume sub-selection" and set it to an area of interest, where Chimneys have been interpreted (e.g. Inline range: 670-710, Crossline range: 300-1250).
 - **b.** Specify a new name for the 3D output cubes: Classification, Chimney yes, Chimney no, and Confidence.
- 24. Press Run to continue.

25. When the processing is done, **Close** the "*Progress Viewer*" and the "*Apply Model*" windows.

QC results: display the predicted Chimney Yes probability 3D cube

- **26.** Right Click on the: Scene > Inline > Add and select Data.
- **27.** Select the predicted 3D Chimney location probability (e.g. Chimney_yes), and overlay the seismic (e.g. 1 Original Seismic).

Modify the Inline number to be within the input range.

28. Right-click on the Inline number, and Type in the Inline field: In-line 690 .

