Lecture 27: Model Selection + Multiple Regression Conditions

Chapter 8.2-8.3

Question for Today

Recall the Mario Kart analysis

Coefficients:

	Estimate Sto	d. Error t	value	Pr(> t)	
(Intercept)	41.34	1.71	24.15	< 2e-16	***
condused	-5.13	1.05	-4.88	2.91e-06	***
stockPhotoyes	1.08	1.06	1.02	0.308	
duration	-0.03	0.19	-0.14	0.888	
wheels	7.29	0.55	13.13	< 2e-16	***

Residual standard error: 4.901 on 136 degrees of freedom Multiple R-squared: 0.719, Adjusted R-squared: 0.7108

Question for Today

Two Common Strategies

There are two stepwise regression methods that add/subtract one variable at a time:

- Backward Elimination
- Forward Selection

Two Common Strategies

There are two stepwise regression methods that add/subtract one variable at a time:

- Backward Elimination
- Forward Selection

The criteria used will be p-values.

Starting here:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	41.3415	1.7117	24.15	0.0000
${\tt cond_used}$	-5.1306	1.0511	-4.88	0.0000
stockPhotoyes	1.0803	1.0568	1.02	0.3085
duration	-0.0268	0.1904	-0.14	0.8882
wheels	7.2852	0.5547	13.13	0.0000

Drop duration.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	41.3415	1.7117	24.15	0.0000
${\tt cond_used}$	-5.1306	1.0511	-4.88	0.0000
stockPhotoyes	1.0803	1.0568	1.02	0.3085
duration	-0.0268	0.1904	-0.14	0.8882
wheels	7.2852	0.5547	13.13	0.0000

Drop stockPhotoyes.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	41.2245	1.4911	27.65	0.0000
${\tt cond_used}$	-5.1763	0.9961	-5.20	0.0000
stockPhotoyes	1.1177	1.0192	1.10	0.2747
wheels	7.2984	0.5448	13.40	0.0000

Done.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	42.3698	1.0651	39.78	0.0000
${\tt cond_used}$	-5.5848	0.9245	-6.04	0.0000
wheels	7.2328	0.5419	13.35	0.0000

Forward Selection

Criticisms of the Techniques

Critics regard stepwise regression as data dredging, where intense computation is used as a substitute for subject area expertise when deciding on a model.

Criticisms of the Techniques

Critics regard stepwise regression as data dredging, where intense computation is used as a substitute for subject area expertise when deciding on a model.

Data mining involves automatically testing huge numbers of hypotheses about a single data set by exhaustively searching for combinations of variables that might show a correlation.

Criticisms of the Techniques

Assumptions of Multiple Regression

We investigate plots for the following model:

$$\widehat{\mathtt{price}} = b_0 + b_1 imes \mathtt{cond_new} + b_2 imes \mathtt{wheels}$$

We investigate plots for the following model:

$$\widehat{\mathtt{price}} = b_0 + b_1 imes \mathtt{cond_new} + b_2 imes \mathtt{wheels}$$

Normal probability plot of residuals

We investigate plots for the following model:

$$\widehat{\mathtt{price}} = b_0 + b_1 imes \mathtt{cond_new} + b_2 imes \mathtt{wheels}$$

- Normal probability plot of residuals
- Absolute values of residuals against fitted values: look for non-constant variance

We investigate plots for the following model:

$$\widehat{\mathtt{price}} = b_0 + b_1 imes \mathtt{cond_new} + b_2 imes \mathtt{wheels}$$

- Normal probability plot of residuals
- Absolute values of residuals against fitted values: look for non-constant variance
- Residuals against each predictor variable

Normal Probability Plot of Residuals

Absolute Values of Residuals Against Fitted Values

Residuals Against Each Predictor Variable: Condition

Residuals Against Each Predictor Variable: Wheels

George E.P. Box

There was a famous statistician named Box

famous for the Box/Cox Transformation.

George E.P. Box's Famous Quote

"All models are wrong, but some are useful."

Caution

We can tolerate a little leeway with model assumptions, but when they are grossly violated we have to be skeptical of any confidence intervals/p-values. If model assumptions are clearly violated

Caution

We can tolerate a little leeway with model assumptions, but when they are grossly violated we have to be skeptical of any confidence intervals/p-values. If model assumptions are clearly violated

- consider a new model
- get the assistance of someone who can help

Next Time

What if the outcome variable is not numerical, but rather a yes/no response variable?

Next Time

What if the outcome variable is not numerical, but rather a yes/no response variable?

- Was an email spam or not?
- ▶ Will someone develop cancer or not?
- Is a person female?

Next Time

What if the outcome variable is not numerical, but rather a yes/no response variable?

- ► Was an email spam or not?
- Will someone develop cancer or not?
- Is a person female?

We use logistic regression.