第1章部分重点习题

1. 4 试求图 1.4 所示电路的 Uab 。

图 1.4 习题 1.4 电路图

1.7 电路如图 1.7 所示: (1) 求图 (a) 中的 ab 端等效电阻; (2) 求图 (b) 中电阻 R 。

图 1.7 习题 1.7 电路图

1.14 求图 1.14 所示电路的 a 点电位和 b 点电位。

图 1.14 习题 1.14 电路图

1.15 利用支路电流法求图 1.15 中各支路电流。

图 1.15 习题 1.15 电路图

1.16 利用支路电流法求图 1.16 所示电路的电流 I_1 、 I_2 及 I_3 。

图 1.16 习题 1.16 电路图

1.17 用节点分析法求图 1.17 中的电压 U。

图 1.17 习题 1.17 电路图

1.18 求图 1.18 所示电路的节点电压 V_a 。

图 1.18 习题 1.18 电路图

1.19 用叠加原理求图 1.19 所示电路的电压U 。

图 1.19 习题 1.19 电路图

1.21 用戴维南定理求图 1.21 所示电路的电压U 。

1.22 用诺顿定理求图 1.22 所示电路的电流 I 。

图 1.22 习题 1.22 电路图

1.23 试求图 1.23 所示电路的电流 I 及受控源功率。

图 1.23 习题 1.23 电路图

1.24 用电源等效变换求图 1.24 中的电流 I 及电压源功率。

第2章部分重要习题

2.6 换路前如图 2.6 所示电路已处于稳态,t=0时开关打开。求换路后的 i_L 及 u。

图 2.6 习题 2.6 电路图

2.8 换路前如图 2.8 电路已处于稳态,t=0时开关闭合。求换路后电容电压 $u_{\rm C}$ 及 $i_{\rm C}$ 。

2.10 在如图 2.10 所示电路中,开关接在位置 "1" 时已达稳态,在t=0 时开关转到 "2" 的位置,试用三要素法求t>0 时的电容电压 $u_{\rm C}$ 及 i 。

2.11 图 2.11 所示电路原已达稳态, t=0 开关打开。求t>0 时的响应 $u_{\rm C}$ 、 $i_{\rm L}$ 及 u 。

图 2.11 习题 2.11 电路图

2.12 在开关S 闭合前,如图 2.12 所示电路已处于稳态, t=0 时开关闭合。求开关闭合后的电流 $i_{\rm L}$ 。

图 2.12 习题 2.12 电路图

第3章部分重点习题

3.9 求图 3.5 中电流表和电压表的读数。

图 3.5 习题 3.9 电路图

3.17 利用支路电流法求图 3.12 中各支路电流。

3.18 用叠加原理计算图 3.13 中的电压U。

图 3.13 习题 3.18 电路图

3.19 已知 $u_{S1}=8\sqrt{2}\sin(4t)$ V, $u_{S2}=3\sqrt{2}\sin(4t)$ V,试用戴维南定理求图 3.14 中的电流i。

- 3.25 在下列各种情况下,应分别采用哪种类型(低通、高通、带通、带阻)的滤波电路。
- (1) 希望抑制 50Hz 交流电源的干扰;
- (2) 希望抑制 500Hz 以下的信号;
- (3) 有用信号频率低于 500Hz;
- (4) 有用信号频率为 500Hz。
- **3.29** 图 3.21 是 *RLC* 串联电路, $u_{\rm S}=4\sqrt{2}\,\sin(\omega t){\rm V}$ 。求谐振频率、品质因数、谐振时的电流和电阻两端、电感及电容两端的电压。

图 3.21 习题 3.29 电路图

第4章部分重点习题

- **4.5** 设两输入信号为 u_{i1} =40mV, u_{i2} =20mV,则差模电压 u_{id} 和共模电压 u_{ic} 为多少。若电压的差模放大倍数为 A_{ud} =100,共模放大倍数为 A_{uc} =-0.5,则总输出电压 u_o 为多少,共模抑制比 K_{CMR} 是多少。
 - 4.7 电路如图 4.2 所示,求输出电压u,与各输入电压的运算关系式。

图 4.2 习题 4.7 电路图

4.8 电路如图 4.3 所示,假设运放是理想的: (1) 写出输出电压 U_0 的表达式,并求出 U_0 的值: (2) 说明运放 A_1 、 A_2 各组成何种基本运算电路。

图 4.3 习题 4.8 电路图

4.15 电路如图 4.8 所示,运放均为理想的,试求输出电压 u_0 的表达式。

图 4.8 习题 4.15 电路图

4.21 电路如图 4.14 所示,运放为理想的,试求出电路的门限电压 U_{TH} ,并画出电压传输特性曲线。

4.22 电路如图 4.15 所示,已知运放最大输出电压 $U_{\text{om}}=\pm\,12$ V,试求出两电路的门限电压 U_{TH} ,并画出电压传输特性曲线。

图 4.15 习题 4.22 电路图

4.23 电路如图 4.16(a)所示,运放是理想的: (1)试求电路的门限电压 $U_{\rm TH}$,并画出电压传输特性曲线; (2)输入电压波形如图 4.16(b)所示,试画出输出电压 $u_{\rm o}$ 的波形。

4.24 电路如图 4.17 所示,已知运放为理想的,运放最大输出电压 $U_{om}=\pm 15V$:(1) A_1 、 A_2 、和 A_3 各组成何种基本电路;(2)若 $u_i=5\sin\omega$ (V),试画出与之对应的 u_{o1} 、 u_{o2} 和 u_o 的波形。

第5章部分重点习题

5.3 分析判断图 5.3 所示各电路中二极管是导通还是截止,并计算电压 U_{ab} ,设图中的二极管都是理想的。

图 5.3 习题 5.3 电路图

5.5 二极管电路如图 5.4(a)所示,设输入电压 $u_i(t)$ 波形如图 5.4(b)所示,在0 < t < 5ms 的时间间隔内,试绘出输出电压 $u_o(t)$ 的波形,设二极管是理想的。

5.7 在图 5.6 所示电路中,设二极管为理想的,输入电压 $u_i=10\mathrm{sin}\omega t(V)$,试分别画出输出电压 u_o 的波形,并标出幅值。

图 5.6 习题 5.7 电路图

5.8 图 5.7 所示电路中,设二极管为理想的, $u_i = 6 \sin \omega(V)$,试画出输出电压 u_o 的波形以及电压传输特性。

图 5.7 习题 5.8 电路图

5.9 图 5.8 所示电路中,设二极管是理想的,求图中标记的电压和电流值。

图 5.8 习题 5.9 电路图

5.13 已知稳压管的稳压值 $U_{\rm Z}=6{\rm V}$,稳定电流的最小值 $I_{\rm Z\,min}=4{\rm mA}$ 。求图 5.11 所示电路中 $U_{\rm O1}$ 和 $U_{\rm O2}$ 。

图 5.11 习题 5.13 电路图

5.17 电路如图 5.14 所示,三端集成稳压器静态电流 $I_{W}=6$ mA, R_{W} 为电位器,为了得到 10V 的输出电压,试问应将 R'_{W} 调到多大?

第6章部分重点习题

6.2 有两只工作于放大状态的晶体管,它们两个管脚的电流大小和实际流向如图 **6.2** 所示。 求另一管脚的电流大小,判断管子是 NPN 型还是 PNP 型,三个管脚各是什么电极;并求它们的 β 值。

图 6.2 习题 6.2 图

6.4 测得某放大电路中晶体三极管各极直流电位如图 **6.4** 所示,判断晶体管三极管的类型 (NPN 或 PNP)及三个电极,并分别说明它们是硅管还是锗管。

图 6.4 习题 6.4 图

6.5 用万用表直流电压挡测得晶体三极管的各极对地电位如图 6.5 所示,判断这些晶体管分别处于哪种工作状态(饱和、放大、截止或已损坏)。

图 6.5 习题 6.5 图

6.7 图 6.6 所示电路对正弦信号是否有放大作用?如果没有放大作用,则说明理由并将错误加以改正(设电容的容抗可以忽略)。

图 6.6 习题 6.7 电路图

6.10 图 6.8 所示为放大电路的直流通路,晶体管均为硅管,判断它的静态工作点位于哪个区 (放大区、饱和区、截止区)。

6.16 基本放大电路如图 6.13 所示。设所有电容对交流均视为短路, $U_{\rm BEQ}=0.7{\rm V}$, $\beta=100$ 。 $U_{\rm CES}=0.5{\rm V}$ (1)估算电路的静态工作点($I_{\rm CQ}$, $U_{\rm CEQ}$);(2)求电路的输入电阻 $R_{\rm i}$ 和输出电阻 $R_{\rm o}$;(3)求电路的电压放大倍数 $A_{\rm u}$ 和源电压放大倍数 $A_{\rm us}$;(4) 求不失真的最大输出电压 $U_{\rm omax}$ 。

图 6.13 习题 6.16 电路图

- **6.17** 放大电路如图 6.14 所示,设所有电容对交流均视为短路。已知 $U_{\rm BEQ} = 0.7{
 m V}$,β= 100 。
- (1)估算静态工作点(I_{CQ} , U_{CEQ});(2)画出小信号等效电路图;(3)求放大电路输入电阻 R_i 和输出电阻 R_o ;(4)计算交流电压放大倍数 A_u 源电压放大倍数 A_{us} 。

6.21 电路如图 6.18 所示,设所有电容对交流均视为短路, $U_{\rm BEQ} = -0.7{\rm V}$,β = 50。试 求该电路的静态工作点 Q、 $A_{\rm u}$ 、 $R_{\rm i}$ 和 $R_{\rm o}$ 。

第9章部分重点习题

- 9.2 某放大电路的信号源内阻很小,为了稳定输出电压,应当引入什么类型的负反馈?
- 9.4 要求得到一个电流控制的电流源,应当引入什么负反馈?
- **9.5** 在图 9.1 所示的各电路中,请指明反馈网络是由哪些元件组成的,判断引入的是正反馈还是负反馈?是直流反馈还是交流反馈?设所有电容对交流信号可视为短路。

图 9.1 习题 9.5 电路图

9.11 为了减小从电压信号源索取的电流并增加带负载的能力,应该引入什么类型的反馈?

综合必刷题

一、填空题

1. 流过一个理想电压源的电流由决定。(2. 0分) 2. 由n个节点, b条支路组成的电路, 共有个独立KCL方程和个独立KVL方程。(2. 0 分)
3. 受控源分为四类, 分别是、、、、、(请填写文字)(2.0分) 4. 如图所示, 元件A的功率P _A =, 该元件(吸收或提供)功率; 元件元件B的功率 P _B =, 该元件(吸收或提供)功率。
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(2.0分)
5. 如图所示电路中, 电流 I=A。
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(2.0分)
6. 某一实际电压源外接负载, 当电流 $I=0.5$ A时, 负载两端电压为4.8V, 当负载开路时, 电压为5V, 问电压源内阻 $R_0=\Omega$, 短路电流 $I_{SC}=\Lambda$ 。(2.0分)
7. 一阶RL电路中,已知R=5 Ω ,L=1mH,则时间常数 τ = ms。(1.0分)
8. RLC并联电路中, R=1kΩ, L=0. 5H, C=50 μF, 则此电路的谐振频率f _o =Hz, 谐振时品
质因数Q=。(2.0分)
9. 如图所示电路中,电压表V的读数是V。

10. 如图所示电路中,二极管的导通电压 $U_{D1}=U_{D2}=0$. 7V,当 $V_A=0$ V, $V_B=5$ V时,则Y点的电位为

(1.0分)

11. 如图所示, 基极电流 I_□=____, 发射极电流 I_□=____。

(1.0分)

12. 要得到一个由电压控制的电流电路, 应选____负反馈形式; 要得到一个由电流转化成电压的电路, 应选___负反馈形式。(2. 0分)

二、单选题

- 1. 电压是()。(3.0分)
- A、 两点之间的物理量, 与路径选择有关
- B、 两点之间的物理量, 与零点选择和路径选择都无关
- C、 两点之间的物理量,与零点选择有关
- D、 两点之间的物理量, 与零点选择和路径选择都有关
- 2.受控源与独立源的主要区别在于()。(3.0分)
- A、 独立于能提供能量, 而受控源不能提供能量
- B、 独立源电压Us或电流Is与其他支路的电压或电流无关,而受控源的电压或电流与其他支路 的电压或电流有关
- C、 独立源的电压与电流无关, 而受控源的电压与电流有关
- D、 独立源的电压与电流有关, 而受控源的电压与电流无关
- 3. 关于二端网络的等效概念, 下列描述错误的是()。(3.0分)
- A、 电压源并联电阻可等效为电流源串联电阻

- B、 <u>电流源串联电阻可等效为电流源</u>
- C、电流源并联电阻可等效为电压源串联电阻
- D、 <u>电压源并联电阻可等效为电压源</u>

4. 有三个电阻并联, 已知 R_i =4 Ω , R_i =6 Ω , R_i =12 Ω , 在三个并联电阻两端外加一个电流为 I_s =6A的电流源, 则对应各电阻中的电流分别为()。(3. 0分)

- A, $I_1=1A$, $I_2=3A$, $I_3=2A$
- B, $I_1 = 1A$, $I_2 = 2A$, $I_3 = 3A$
- C, $I_1=3A$, $I_2=2A$, $I_3=1A$
- D, $I_1=3A$, $I_2=1A$, $I_3=2A$
- 5. 某含源单口网络的开路电压为10V, 接上 $10\,\Omega$ 电阻时电压为7V, 则该单口网络的内阻 R_0 为()。(3. 0分)
- A, 6.0Ω
- B, 4.3Ω
- $C, \underline{5.0\Omega}$
- D, 4.6Ω
- 6. 如图所示电路中, 有几个节点, 几个网孔, 几条回路? ()

- A、 4个节点,3个网孔、7条回路
- B、4个节点,3个网孔、6条回路
- C、 2个节点,3个网孔、6条回路
- D、 2个节点,3个网孔、7条回路

7. 如图所示的电路中, 该受控源的模型是: ()

- A、电流控制的电压源
- B、电流控制的电流源
- C、电压控制的电流源
- D、 <u>电压控制的电压源</u>
- 8. 已知图中Uab=-26V, 求R= ()。

- A, $R=24 \Omega$
- B, $R=10 \Omega$
- C, $R=12 \Omega$
- D, $R=5 \Omega$
- 9. 下列选项中描述错误的是: () (3.0分)
- B、 <u>含源的线性单口网络</u>,可等效为一个理想的电压源与电阻的串联(或一个理想电流源与电阻 并联)。
- C、 叠加原理是利用线性电路的可加性和齐次性,求解某一支路的电流(或电压)。
- D、叠加原理适用于求线性电路中的电压和电流,不适用求功率。
- 10. 下列关于短路和开路描述正确的是: () (3.0分)
- A、 电压源Us=0相当于开路, 电流源Is=0相当于开路。
- B、 电压源Us=0相当于开路, 电流源Is=0相当于短路。
- C、电压源Us=0相当于短路, 电流源Is=0相当于开路。
- D、 <u>电压源Us=0相当于短路, 电流源Is=0相当于短路。</u>

- 11. 在单级共射极放大电路中, 如输入波形为正弦波, 而输出电压波形则出现了底部被削平的现象, 这种失真是()失真。(2.0分)
- A、 饱和
- B、截止
- C、 即饱和又截止
- D、 <u>无法判别</u>
- 12. 可以放大电压, 但不能放大电流的是()放大电路。(2.0分)
- A、共射极
- B、共集电极
- C、共基极
- D、 共射极和共基极
- 13. 下列关于电感储能的描述中错误的是 。(2.0分)
- A、 如果电感的电流为零,则其储能也为零
- B、 如果电感的电压为零,则其储能也为零
- C、 如果电感的磁链为零,则其储能也为零
- D、 如果电感的磁通量为零,则其储能也为零
- 14. 正弦RL串联电路,端电压与电流为关联参考方向,则其相位关系为: (2.0分)
- A、 电流滞后电压90°
- B、 电流超前电压90°
- C、 电流滞后电压小于90°
- D、 电流超前电压小于90°
- 15. 已知,某一正弦交流电路中的电压为u(t)=156 $\sin(377t+15°)V$,则下列描述有误的一项是: (2. 0分)
- A、 电压有效值为110V B、 电压的相量形式为 $U_{m}=156 \angle j15^{\circ}V$
- C、 <u>电路中的频率为60Hz</u> D、 <u>u是电压的瞬时值</u>
- 16. 已知电压u(t)=10sin(6πt+15°)V,电流i(t)=5cos(6πt-45°)A,则电压与电流的相位差为: (2.0分)
- A、 u超前i 60°

B、 u超前i 30°

C、 i超前u 60°

D、 <u>i超前u 30°</u>

- C、<u>净输入量增大</u>
- D、净输入量减小
- 22. 实现 u_0 =- $(u_{i1}$ + u_{i2})运算,应采用 运算电路。 (2. 0分)
- A、<u>反相比例</u>
- B、反相积分
- C、<u>减法</u>
- D、反相加法

三、简答题

1. 求如图所示电路的电流IL。

2. 用戴维南定理求如图所示电路的电压 ${\cal U}$ 。

3. 求如图所示电路的 a 点电位和 b 点电位。

4. 用电源等效变换求图中的电流 I 及电压源功率。

5. 用叠加原理求如图所示电路的电流 I 和电压 U 。

6. 计算图中电路的节点电位 V1 和 V3。

7. 求如图所示电路中Uab、Ubc和Uca。

8. 已知电路如图所示, 开关闭合前电路已处于稳态。t=0时开关闭合, 求t>0时的u(t)。

9. 如所示电路中,已知 $u_{\mathbb{S}}=-4\sqrt{2}\cos t(\mathbf{V})$,求i、u 及电压源提供的有功功率。

10. 如图所示电路中,设二极管为理想的,输入电压 $u_i=10\sin\omega t(V)$,试画出输出电压 u_o 的波形,并标出幅值。

11. 判断如图所示电路的级间交流反馈的组态。

12. 用戴维南定理求如图所示电路的电压 ${\it U}$ 。

$$\dot{A}_{\rm u} = \frac{\dot{U}_{\rm o}}{\cdot}$$

 $A_{u} = \frac{\dot{U}_{o}}{\dot{U}_{i}}$ 的表达式,并说明该电路的主要功能。 13. 如图所示, 求出

