Grammatiche Context-Free e Forma Normale di Chomsky

Tutorato 5: CFG, Forma Normale di Chomsky

Espressioni Regolari, Linguaggi Context-free e loro proprietà

Gabriel Rovesti

Corso di Laurea in Informatica - Università degli Studi di Padova

Anno Accademico 2024-2025

Contents

1	$\mathbf{E}\mathbf{sp}$	ressioni Regolari e Equivalenze con Automi	
	1.1	Definizione e Sintassi delle Espressioni Regolari	
	1.2	Semantica	
	1.3	Conversione da Espressioni Regolari a ε -NFA	
	1.4	Da NFA a Espressioni Regolari	
2	Linguaggi Context-free		
	2.1	Introduzione ai Linguaggi Context-free	
	2.2	Grammatiche Context-Free	
	2.3	Derivazioni e Alberi Sintattici	
3	Proprietà delle Grammatiche Context-free		
	3.1	Grammatiche Ambigue	
	3.2	Linguaggi Inerentemente Ambigui	
	3.3	Forma Normale di Chomsky	
4	Cor	nsiderazioni Finali	

1 Espressioni Regolari e Equivalenze con Automi

1.1 Definizione e Sintassi delle Espressioni Regolari

Le espressioni regolari sono un formalismo dichiarativo per descrivere linguaggi regolari, equivalenti in potere espressivo agli automi a stati finiti (DFA e NFA).

Concetto chiave

Le espressioni regolari sono costruite utilizzando tre operatori base (unione, concatenazione e chiusura di Kleene) a partire da costanti elementari. Sono un modo conciso per specificare linguaggi regolari.

Le espressioni regolari sono costruite utilizzando:

- Costanti di base:
 - $-\varepsilon$ per la stringa vuota
 - \emptyset per il linguaggio vuoto
 - $-a,b,\ldots$ per i simboli $a,b,\ldots\in\Sigma$
- Operatori:
 - + per l'unione
 - $-\cdot$ per la concatenazione
 - * per la chiusura di Kleene
- Parentesi per il raggruppamento: ()

Suggerimento

Le regole di precedenza per le espressioni regolari sono:

- 1. La chiusura di Kleene (*) ha la precedenza più alta
- 2. La concatenazione (\cdot) ha precedenza intermedia
- 3. L'unione (+) ha la precedenza più bassa

Usa le parentesi quando hai dubbi sulla precedenza degli operatori.

1.2 Semantica

Se E è un'espressione regolare, allora $\mathcal{L}(E)$ è il linguaggio rappresentato da E. La definizione è induttiva:

Caso Base:

- $\mathcal{L}(\varepsilon) = \{\varepsilon\}$
- $\mathcal{L}(\emptyset) = \emptyset$
- $\mathcal{L}(a) = \{a\} \text{ per } a \in \Sigma$

Caso Induttivo:

- $\mathcal{L}(E+F) = \mathcal{L}(E) \cup \mathcal{L}(F)$
- $\mathcal{L}(E \cdot F) = \mathcal{L}(E) \cdot \mathcal{L}(F)$
- $\mathcal{L}(E^*) = \mathcal{L}(E)^*$
- $\mathcal{L}((E)) = \mathcal{L}(E)$

Errore comune

Un errore comune è confondere l'espressione $01^* + 10^*$ (che rappresenta stringhe che iniziano con 0 seguite da un numero arbitrario di 1, o stringhe che iniziano con 1 seguite da un numero arbitrario di 0) con $(01)^* + (10)^*$ (che rappresenta stringhe formate da ripetizioni di 01 o ripetizioni di 10).

1.3 Conversione da Espressioni Regolari a ε -NFA

Procedimento di risoluzione

Per convertire un'espressione regolare R in un ε -NFA A tale che $\mathcal{L}(A) = \mathcal{L}(R)$:

1. Casi base:

- Per ε : un singolo stato iniziale e finale
- Per ∅: un automa che non accetta alcuna stringa
- Per un simbolo $a \in \Sigma$: due stati collegati da una transizione etichettata a

2. Casi induttivi:

- Per R_1+R_2 : costruisci un nuovo stato iniziale con ε -transizioni verso gli stati iniziali degli automi per R_1 e R_2
- Per $R_1\cdot R_2$: collega gli stati finali dell'automa per R_1 agli stati iniziali dell'automa per R_2 con ε -transizioni
- Per R^* : aggiungi un nuovo stato iniziale/finale e ε -transizioni appropriate per implementare il ciclo

1.4 Da NFA a Espressioni Regolari

La conversione da NFA a espressioni regolari è più complessa e si basa sul metodo di eliminazione degli stati.

Figure 1: Schema di costruzione dell'automa per l'unione

Procedimento di risoluzione

Per convertire un NFA in un'espressione regolare equivalente:

- 1. **Trasformazione iniziale**: Converti l'NFA in un GNFA (Automa a Stati Finiti Non-deterministico Generalizzato) in forma speciale:
 - Aggiungi un nuovo stato iniziale $q_{\rm start}$ che ha transizioni verso tutti gli altri stati, ma nessuna transizione entrante
 - Aggiungi un nuovo stato finale q_{accept} che ha transizioni da tutti gli altri stati, ma nessuna transizione uscente
 - Assicurati che ci sia una transizione (possibilmente etichettata con \emptyset) per ogni coppia di stati
- 2. Eliminazione iterativa degli stati: Elimina uno ad uno tutti gli stati diversi da q_{start} e q_{accept} :
 - Per ogni stato $q_{\rm rip}$ da eliminare, aggiorna le etichette delle transizioni dirette tra gli altri stati
 - Se abbiamo transizioni $q_i \xrightarrow{R_1} q_{\rm rip}, q_{\rm rip} \xrightarrow{R_2} q_{\rm rip}$ (ciclo), e $q_{\rm rip} \xrightarrow{R_3} q_j$
 - Più una transizione esistente $q_i \xrightarrow{R_4} q_j$
 - Allora la nuova etichetta diventa: $R_1(R_2)^*R_3 + R_4$
- 3. Risultato finale: Quando rimangono solo q_{start} e q_{accept} , l'etichetta della transizione da q_{start} a q_{accept} è l'espressione regolare equivalente all'NFA originale.

2 Linguaggi Context-free

2.1 Introduzione ai Linguaggi Context-free

Esistono linguaggi che non possono essere rappresentati da espressioni regolari o riconosciuti da automi a stati finiti. Un esempio classico è il linguaggio $\{0^n1^n|n\geq 0\}$. Per esprimere tali linguaggi, abbiamo bisogno di formalismi più potenti.

Figure 2: Schema di eliminazione di uno stato

Concetto chiave

I Linguaggi Context-Free (CFL) costituiscono una classe più ampia rispetto ai linguaggi regolari. Sono stati utilizzati nello studio dei linguaggi naturali dal 1950 e nello studio dei compilatori dal 1960.

Per descrivere i linguaggi context-free, utilizziamo due formalismi principali:

- Grammatiche context-free (CFG)
- Automi a pila (pushdown automata)

2.2 Grammatiche Context-Free

Concetto chiave

Una grammatica context-free è definita formalmente come una quadrupla $G = (V, \Sigma, R, S)$, dove:

- V è un insieme finito di variabili (o non-terminali)
- Σ è un insieme finito di simboli terminali, disgiunto da V
- R è un insieme di regole di produzione, ciascuna della forma $A\to \alpha$ dove $A\in V$ e $\alpha\in (V\cup \Sigma)^*$
- $S \in V$ è la variabile iniziale

La grammatica G_1 definita come:

$$A \to 0A1$$
$$A \to B$$
$$B \to \#$$

genera il linguaggio $\{0^n \# 1^n | n \ge 0\}$.

2.3 Derivazioni e Alberi Sintattici

Una grammatica genera stringhe attraverso derivazioni successive a partire dalla variabile iniziale.

Procedimento di risoluzione

Per generare una stringa utilizzando una grammatica context-free:

- 1. Si parte dalla variabile iniziale
- 2. Si sostituisce iterativamente una variabile con la parte destra di una regola che la contiene come parte sinistra
- 3. Si continua finché non rimangono solo simboli terminali

Per esempio, la derivazione $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000\#111$ nella grammatica G_1 genera la stringa 000#111.

Figure 3: Albero sintattico per 000#111 nella grammatica G_1

Un albero sintattico (o parse tree) è una rappresentazione grafica di una derivazione dove:

- La radice è la variabile iniziale
- I nodi interni sono variabili
- Le foglie sono terminali o ε

3 Proprietà delle Grammatiche Context-free

3.1 Grammatiche Ambigue

Concetto chiave

Una grammatica è ambigua se esiste almeno una stringa nel linguaggio che può essere generata da più di un albero sintattico distinto.

Ad esempio, la grammatica:

$$\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle | \langle EXPR \rangle \times \langle EXPR \rangle | (\langle EXPR \rangle) | a$$

è ambigua, perché la stringa $a + a \times a$ può essere interpretata in due modi diversi: come $(a + a) \times a$ o come $a + (a \times a)$.

Figure 4: Due diversi alberi sintattici per la stessa espressione $a + a \times a$

Per risolvere questa ambiguità, si possono introdurre livelli di priorità utilizzando diverse variabili. Ad esempio:

$$\langle EXPR \rangle \to \langle EXPR \rangle + \langle TERM \rangle | \langle TERM \rangle$$
$$\langle TERM \rangle \to \langle TERM \rangle \times \langle FACTOR \rangle | \langle FACTOR \rangle$$
$$\langle FACTOR \rangle \to (\langle EXPR \rangle) | a$$

3.2 Linguaggi Inerentemente Ambigui

Concetto chiave

Esistono linguaggi context-free che sono inerentemente ambigui, cioè ogni grammatica che li genera è necessariamente ambigua.

Un esempio classico è il linguaggio $\{a^ib^jc^k|i=j \text{ oppure } j=k\}.$

3.3 Forma Normale di Chomsky

Concetto chiave

Una grammatica context-free è in Forma Normale di Chomsky (CNF) se ogni regola è della forma:

- $A \to BC$ dove B e C sono variabili non iniziali, oppure
- $A \rightarrow a$ dove a è un terminale

Inoltre, può esistere la regola $S \to \varepsilon$ per la variabile iniziale S.

Ogni linguaggio context-free può essere generato da una grammatica in Forma Normale di Chomsky.

L'algoritmo per trasformare una grammatica in Forma Normale di Chomsky prevede i seguenti passi:

- 1. Aggiungere una nuova variabile iniziale
- 2. Eliminare le ε -regole
- 3. Eliminare le regole unitarie
- 4. Trasformare le regole restanti nella forma corretta

Procedimento di risoluzione

Passi per convertire una grammatica in Forma Normale di Chomsky:

- 1. Aggiungere una nuova variabile iniziale S_0 e la regola $S_0 \to S$.
- 2. Eliminare le ε -regole:
 - Per ogni regola $A \to \varepsilon$, identificare tutte le regole che contengono A nel lato destro.
 - Per ciascuna di queste regole, aggiungere nuove regole che considerano tutte le possibili combinazioni di presenza/assenza di A.
- 3. Eliminare le regole unitarie:
 - Per ogni regola $A \to B$, sostituirla con l'insieme di regole $A \to \alpha$ per ogni regola della forma $B \to \alpha$.
- 4. Trasformare le regole restanti:
 - Per regole della forma $A \to X_1 X_2 \dots X_n$ con n > 2, introdurre nuove variabili per spezzare la regola.
 - Per regole con terminali e variabili mescolati, introdurre nuove variabili per i terminali.

4 Considerazioni Finali

Concetto chiave

I linguaggi regolari e i linguaggi context-free formano due livelli fondamentali nella gerarchia di Chomsky. Mentre i linguaggi regolari sono più limitati ma più facili da implementare, i linguaggi context-free offrono maggiore espressività necessaria per modellare strutture più complesse come le espressioni aritmetiche e le costruzioni sintattiche dei linguaggi di programmazione.

La teoria dei linguaggi formali fornisce strumenti essenziali per:

- Analizzare la sintassi dei linguaggi di programmazione
- Implementare parser e compilatori
- Sviluppare strumenti per l'elaborazione del linguaggio naturale

• Comprendere i limiti teorici di ciò che può essere computato

Suggerimento

Per approfondire questi argomenti, si consiglia la lettura dei seguenti testi:

- $\bullet\,$ Hopcroft, Motwani, Ullman: "Introduction to Automata Theory, Languages, and Computation"
- Sipser: "Introduction to the Theory of Computation"