© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°05

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 – E3A MP 2008

Questions de cours et exemples

Soit E un \mathbb{R} -espace vectoriel de dimension finie et f un endomorphisme de E.

- $|\mathbf{1}|$ Donner la définition d'un polynôme annulateur de f.
- **2** Quelle est la structure de l'ensemble J_f des polynômes annulateurs de f?
- $\boxed{\bf 3}$ Donner la définition du polynôme minimal de f que l'on notera π_f .
- 4 Prouver l'existence de π_f .

5 Un premier exemple.

Soit f l'endomorphisme de \mathbb{R}^4 de matrice canoniquement associée :

$$\mathbf{M} = (m_{i,j}) \text{ où } \forall (i,j) \in \{1,2,3,4\}^2, \ m_{i,j} = \frac{1}{4}(1+(-1)^{i+j})$$

- **5.a** Calculer M^k pour $k \in \mathbb{N}^*$.
- **5.b** Déterminer π_f .

6 Un second exemple.

6.a Chercher les solutions à valeurs réelles des équations différentielles :

$$y'' + y = \operatorname{ch}(x)$$
 et $y'' + y = \operatorname{sh}(x)$

où ch et sh désignent respectivement les fonctions cosinus hyperbolique et sinus hyperbolique.

6.b On considère l'équation différentielle (H_1) : $y^{(4)} = y$.

Soit f une fonction de classe \mathcal{C}^4 sur \mathbb{R} .

Démontrer que f est solution de (H_1) si et seulement si la fonction g = f'' + f est solution d'une équation différentielle du second ordre (H_2) que l'on déterminera.

- **6.c** Résoudre l'équation (H_2) .
- **6.d** En déduire les solutions de (H_1) .
- **6.e** On note alors E le sous-espace vectoriel du \mathbb{R} -espace vectoriel des applications de classe \mathcal{C}^{∞} sur \mathbb{R} à valeurs réelles engendré par (cos, sin, ch, sh).
 - **6.e.i** Quelle est la dimension de E?
 - **6.e.ii** Justifier que la dérivation induit sur E un endomorphisme δ .
 - **6.e.iii** Déterminer le polynôme minimal π_{δ} de δ .

© Laurent Garcin MP Dumont d'Urville

Problème

Dans tout le problème, $E = \mathbb{R}[X]$ et $\mathcal{L}(E)$ désigne l'algèbre des endomorphismes de E munie de ses opérations usuelles. Soit $n \in \mathbb{N}^*$. L'ensemble des polynômes à coefficients réels et de degré inférieur ou égal à n sera noté $E_n = \mathbb{R}_n[X]$.

On rappelle que si f est un endomorphisme de $\mathbf{E},\,f^0=\mathrm{Id}_{\mathbf{E}}$ et

$$\forall m \in \mathbb{N}^*, f^m = f \circ f^{m-1}$$

Lorsque f est un endomorphisme de E_n , on note χ_f son polynôme caractéristique. Soient $u: P \in E \mapsto P'$ et $v: P \in E \mapsto P(X + 1)$.

Partie I – Quelques propriétés des endomorphismes u et v

- $\boxed{7}$ Rappeler la dimension de E_n . En donner une base usuelle.
- Montrer que u et v sont des endomorphismes de E qui laissent stable E_n . On note alors u_n et v_n les endomorphismes de E_n induits par u et v.
- **9** Ecrire les matrices U_n et V_n de u_n et v_n dans la base canonique de E_n .
- 10 Préciser le noyau et l'image de chacun de ces endomorphismes.
- 11 Les endomorphismes u_n et v_n commutent-ils?
- **12** Quel est le polynôme caractéristique de u_n ? u_n est-il diagonalisable?
- **13** Quel est le polynôme caractéristique de v_n ? v_n est-il diagonalisable?
- 14 On note $w_n = v_n \mathrm{Id}_{\mathbf{E}_n}$ et on pose :

$$Q_0 = 1 \text{ et } \forall k \in [[1, n]], \ Q_k = \frac{1}{k!} \prod_{i=0}^{k-1} (X - j)$$

- **14.a** Vérifier que la famille $\mathcal{B} = (Q_k)_{0 \le k \le n}$ est une base de E_n .
- **14.b** Déterminer $w_n(Q_0)$. Montrer que pour tout $k \in \mathbb{N}^*$, il existe un réel α_k non nul tel que

$$w_n(\mathbf{Q}_k) = \alpha_k \mathbf{Q}_{k-1}$$

- **14.c** Ecrire la matrice de W_n de w_n dans la base \mathcal{B} .
- **14.d** Donner une base de $Ker(w_n)$ ainsi que de $Im(w_n)$.
- **14.e** Calculer $w_n^j(Q_k)$ pour $j \in \mathbb{N}$ et $k \in [0, n]$.
- 15 Détermination des coordonnées d'un polynôme de E_n dans la base \mathcal{B} .
 - **15.a** Soit $P \in E_n$. Justifier l'existence et l'unicité d'une famille de scalaires $(\beta_k)_{0 \le k \le n}$ telle que

$$P = \sum_{k=0}^{n} \beta_k Q_k$$

- **15.b** Calculer $w_n^j(P)(0)$ pour $j \in \mathbb{N}$.
- **15.c** Exprimer alors les coordonnées de P dans la base \mathcal{B} .
- **15.d** Déterminer la base duale de la base \mathcal{B} .
- **15.e** Calculer w_n^{n+1} et $w_n^n(Q_n)$.

Partie II – Recherche de quelques polynômes minimaux

16 Soit $f \in \mathcal{L}(\mathbf{E}_n)$. Justifier que π_f divise χ_f .

17 Recherche de π_{u_n} .

- **17.a** Déterminer u_n^{n+1} .
- **17.b** Calculer $u_n^n(X^n)$.
- 17.c Conclure.
- **17.d** De même, déterminer le polynôme minimal de w_n .

18 Recherche de π_{v_n} .

- **18.a** Montrer qu'il existe $m \in [[1, n+1]]$ tel que $\pi_{v_n} = (X-1)^m$.
- **18.b** Prouver que m = n + 1.

| 19 | Polynômes annulateurs de u.

Soit P un polynôme de degré m écrit P = $\sum_{j=0}^{m} a_j X^j$.

- **19.a** Que sait-on de a_m ?
- **19.b** On note r l'endomorphisme P(u). Déterminer $r(X^m/m!)$.
- **19.c** Déterminer l'ensemble des polynômes annulateurs de *u*.

20 Polynômes annulateurs de v. Soit P un polynôme annulateur de v.

- **20.a** Montrer que : $\forall n \in \mathbb{N}^*$, $(X-1)^{n+1}$ divise P.
- **20.b** Déterminer l'ensemble des polynômes annulateurs de *v*.

21 Soit s l'endomorphisme qui à tout polynôme P associe le polynôme P(1 - X).

- **21.a** Vérifier que *s* est une symétrie de E.
- **21.b** Déterminer l'ensemble des polynômes annulateurs de s.

Partie III -

Soit f un endomorphisme de l'espace vectoriel normé E_n . On rappelle que :

$$\exp(f) = \sum_{m=0}^{+\infty} \frac{f^m}{m!}$$

- **22** Montrer que l'on a la relation $v_n = \exp(u_n)$.
- 23 On va montrer dans cette question que $u_n = \sum_{m=1}^{+\infty} \frac{(-1)^{m+1}}{m} (v_n \mathrm{Id}_{\mathbf{E}_n})^m$.
 - 23.a Prouver que

$$\forall k \in [0, n], \ u_n(Q_k) = \sum_{m=0}^k u_n(Q_m)(0)Q_{k-m}$$

On pourra utiliser la question 15.c de la partie I.

- **23.b** Calculer $u_n(Q_m)(0)$ pour $m \in \llbracket 0, n \rrbracket$.
- 23.c Conclure.