Project: Compute Galois corresp. Will release on Mon. due fri 3/3

Today: finite fields p:prime, q=pr

Recall: $\mathbb{F}_p = 7U_{p7L} = \{0,1,2,...,p-1\}$ w| +,-,:, defined mod p Prop (\{\xi_{13.5}, p. \xi_{19}\}): For every prime power q=p^n, \(\xi_{1}\)! field of order q. For any other integer, there is no fine field of that order. Pf: Let $f(x) = x^n - x \in \mathbb{F}_p[x]$. Df = -1, so f is separable. Let \mathbb{F}_q be the set of roots of f (in some splitting field).

Less than the second of the s

So Fig is a field! Fire Fig since $1^{p^n} = 1$, so F is the splitting field for f. Since $|F_p| = p$, $|F_g| = p^n$, $|F_g| = p^n$.

Conversely, let \mathbb{F} be a finite field \mathbb{W} char $\mathbb{F} = p$. Then \mathbb{F}_p is the prime subfield of \mathbb{F}_p and $|\mathbb{F}_p| = p \mathbb{F}_p \mathbb{F$

that F is the splitting field for x''-x (using order arguments), so $F \cong F_g$ by uniqueness of splitting fields.

Cor: If $f(x) \in \mathbb{F}_p[x]$ is irreducible of deg n, the splitting field for f over \mathbb{F}_p is isom. to \mathbb{F}_{p^n} .

Cor: Fpr/Fp is Galois

Let $\sigma_p: \mathcal{H}_{pn} \to \mathcal{H}_{pn}$ Frobenius $d \mapsto d^p$ automorphism since finite $\sigma_p^n = id$ since $d^{pn} = d$ $\forall d \in \mathcal{H}_{pn}$ but if man, $\sigma_p^m \neq id$ since otherwise $\chi^{pn} - \chi$ would have to many roots

50

Gal
$$(\nabla_p n / \nabla_p) = \langle \nabla_p \rangle = \frac{\pi}{2} / n \chi$$

Subgps: 72/472, d/n) Fpd (intermediate field)

Example: H_{64} p=2, n=6

Prop 17: Ffn/Fp is simple i.e. 3 an inred. poly of deg. n over Fp Yn 21.

Pf: The mult. gp. of a field is cyclic, so if θ is a generator of \mathbb{F}_{p^n} , then $\mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$. $m_{\theta,F}$ is irred. of deg n.

Prop 18: $x^{p^n} - x = TT$ all irred polys of deg dln

Pf: If f is an irred poly of deg dln, and d is a root of f, then $\alpha \in \mathbb{F}_{p^n} \subseteq \mathbb{F}_{p^n}$, so $f \mid x^{p^n} - x$. Other degrees, this doesn't hold.

Since $x^{p^n} - x$ is sep., each factor only appears once

Cor: There are only finitely many irred. polys of each deg. over Fp.

Ex: Over #2, x'-x = TT irred polys of deg 1, 2

$$\frac{x^4 + x}{x(x+1)} = x^2 + x + 1$$
 only irred. deg. 2 poly.

$$\frac{x(x-1)}{x_8-x} = x_6 + x_2 + x_4 + x_3 + x_5 + x + 1 = (x_3 + x + 1)(x_3 + x_5 + 1)$$

Irred polys / Fz of dleg & 3:

 $X_{3} + X_{5} + /$

Let's extend the containment diagrams infinitely:

Notice that Fpr, ..., Fprk S Fpr, ... hk

So the alg. closure is

Next time: composite exths