Practical-2 KVL

Aim:

To verify Kirchhoff's voltage law for the given circuit.

Apparatus Required:

Sl.No.	Apparatus	Range	Quantity
1	RPS (regulated power supply)	(0-30V)	1
2	Resistance	1Kohm,2Kohm,3Kohm	6
3	Ammeter	(0-30mA)MC	3
4	Voltmeter	(0-30V)MC	3
5	Bread Board & Wires		Required

Statement:

KVL: In any closed path / mesh, the algebraic sum of all the voltages is zero.

Precautions:

- Voltage control knob should be kept at minimum position.
- Current control knob of RPS should be kept at maximum position.

Procedure for KVL:

- Give the connections as per the circuit diagram.
- Set a particular value in RPS.
- Note all the voltage reading
- Repeat the same for different voltages

HARDWARE SETUP:

Circuit for KVL verification:

As per given in lab session

KVL - Theoretical Values:

Sl.No.	R	PS	Voltage			Error
	E1	E2	V1	V1 V2 V3		
	V	V	V	V	V	V
1	10.04		9.62	0.207	0.206	10.04-10.033= 0.007
2	5		0.1027	4.78	0.1038	5-4.98 =0.02

KVL - Practical Values:

Sl.No.	R	PS	Voltage			KVL
	E1	E2	V1 V2 V3		E1=V1+V2+V3	
	V	V	V	V	V	V
1	20		3.333	6.667	10	3.333+6.667+10=20
2	10		1.667	3.333	5	1.667+3.333+5=10
3	5		0.833	1.667	2.5	0.833+1.667+2.5=5

Practical-3 KCL

Aim:

To verify Kirchhoff's current law for the given circuit.

Apparatus Required:

Sl.No.	Apparatus	Range	Quantity
1	RPS (regulated power supply)	(0-30V)	2
2	Resistance	3kΩ, $2kΩ$ $1kΩ$	6
3	Ammeter	(0-30mA)MC	3
4	Voltmeter	(0-30V)MC	3
5	Bread Board & Wires		Required

Statement:

KCL: The algebraic sum of the currents meeting at a node/junction is equal to zero.

Precautions:

- Voltage control knob should be kept at minimum position.
- Current control knob of RPS should be kept at maximum position.

Procedure for KCL:

- Give the connections as per the circuit diagram.
- Set a particular value in RPS.
- Note down the corresponding ammeter reading
- Repeat the same for different voltages

HARDWARE SETUP:

Circuit for KCL verification:

As per given in lab session

KCL - Theoretical Values:

S1.	Voltage	Current		Error	
No.	Е	I1 I2 I3			
	Volts	mA	mA	mA	mA
1	10	0.2	1	1.01	0.02
2	5	0.1	0.5	0.5	0.01

KCL - Practical Values:

Sl.	Voltage	Current			I=I1+I2+I3
No.	Е	I1 I2 I3			
	Volts	mA	mA	mA	mA
1	20	20.002	9.997	6.668	36.667
2	10	10.001	4.999	3.334	18.334
3	5	5	2.499	1.667	9.166