

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Name:		Digital Design Laboratory	Semester:	III	
Date of		02 / 08 / 2024	Batch No:	A1	
Performance:		02 / 08 / 2024	Daten No.	AI	
Faculty Name:			Roll No:	16010123012	
Faculty Sign	&		Grade/Marks:	/25	
Date:			Graue/Marks:		

Experiment No: 2

Title: Binary Adders and Subtractors

Aim and Objective of the Experiment:	
To implement half and full adder–subtractor using gates and IC 7483	

COs to be achieved:

CO2: Use different minimization technique and solve combinational circuits.

Tools used:	
Trainer kits	

Theory:

Adder: The addition of two binary digits is the most basic operation performed by the digital computer. There are two types of adder:

- Half adder
- Full adder

Half Adder: Half adder is a combinational logic circuit with two inputs and two outputs. It is the basic building block for the addition of two single-bit numbers.

Full adder: A half adder has a provision not to add a carry coming from the lower order bits when multi-bit addition is performed. for this purpose, a third input terminal is added and this circuit is to add A, B, and C where A and B are the nth order bits of the number A and B respectively and C is the carry generated from the addition of (n-1) order bits. This circuit is referred to as full adder. **Subtractor:** Subtraction of two binary digits is one of the most basic operations performed by digital computer .there are two types of subtractors:

- Half subtractor
- Full subtractor

Semester: III Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Half subtractor: Logic circuit for the subtraction of B from A where A,B are 1 bit numbers is referred to as half subtract or .the subtract or process has two input and difference and borrow are the two outputs.

Full subtractor: As in the case of the addition using logic gates, a full subtractor is made by combining two half-sub tractors and an additional OR-gate. A full subtractor has the borrow in capability (denoted as BOR_{IN}) and so allows cascading which results in the possibility of multi-bit subtraction.

IC 7483

For subtraction of one binary number from another, we do so by adding 2's complement of the former to the latter number using a full adder circuit.

IC 7483 is a 16 pin, 4-bit full adder. This IC has a provision to add the carry output to transfer and end around carry output using Co and C4 respectively.

2's complement: 2's complement of any binary no. can be obtained by adding 1 in 1's complement of that no.

e.g. 2's complement of $+(10)_{10} = 1010$ is

1C of 1010 0101
$$+$$
 1 $-(10)_{10}$ 0110

In 2's complement subtraction using IC 7483, we are representing negative number in 2's complement form and then adding it with 1st number.

Implementation Details: Half Adder Block Diagram

Semester: III Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Half Adder Circuit

Truth Table for Half Adder

Inputs		Outpu	its
A	В	A	В
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

From the truth table (with steps):

A	В	Sum (S)	Carry (C)	Steps for Calculation
0	0	0	0	0 + 0 = 0, Sum = 0, Carry = 0
0	1	1	0	0 + 1 = 1, Sum = 1, Carry = 0
1	0	1	0	1 + 0 = 1, Sum = 1, Carry = 0
1	1	0	1	1 + 1 = 2, Sum = 0, Carry = 1

Full Adder Block Diagram

Semester: III Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University)

Full Adder Circuit

Truth Table for Full Adder

	Inputs	Out	puts	
Α	В	C _{in}	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

From the truth table (with steps):

Semester: III Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

\boldsymbol{A}	В	C_{in}	Sum (S)	Carry-out (C_{out})	Steps for Calculation
0	0	0	0	0	0 + 0 + 0 = 0, Sum = 0, Carry-out = 0
0	0	1	1	0	0 + 0 + 1 = 1, Sum = 1, Carry-out = 0
0	1	0	1	0	0 + 1 + 0 = 1, Sum = 1, Carry-out = 0
0	1	1	0	1	0 + 1 + 1 = 2, Sum = 0, Carry-out = 1
1	0	0	1	0	1 + 0 + 0 = 1, Sum = 1, Carry-out = 0
1	0	1	0	1	1 + 0 + 1 = 2, Sum = 0, Carry-out = 1
1	1	0	0	1	1 + 1 + 0 = 2, Sum = 0, Carry-out = 1
1	1	1	1	1	1 + 1 + 1 = 3, Sum = 1, Carry-out = 1

Half Subtractor Block Diagram

Truth Table for Half Subtractor						
A	В	Difference(D)	Borrow			
0	0	0	0			
0	1	1	1			

Semester: III Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

1	0	1	0
1	1	0	0

From the truth table (with steps):

\boldsymbol{A}	\boldsymbol{B}	Difference (D)	Borrow (B_{out})	Steps for Calculation
0	0	0	0	0 - 0 = 0, Difference = 0, Borrow = 0
0	1	1	1	0 - 1 = -1 (borrow 1), Difference = 1, Borrow = 1
1	0	1	0	1 - 0 = 1, Difference = 1, Borrow = 0
1	1	0	0	1 - 1 = 0, Difference = 0, Borrow = 0

Full Subtractor Block Diagram

Full Subtractor Circuit

Truth Table for Full subtractor

\mathbf{A}	В	$\mathbf{B}_{\mathbf{IN}}$	D	BOR _{OUT}

Digital Design Laboratory Semester: III Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

0	0	0	0	0	
0	0	1	1	1	
0	1	0	1	1	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	1	0	0	0	
1	1	1	1	1	

From the truth table (with steps):

A	B	B_{in}	Difference (D)	Borrow (B_{out})	Steps for Calculation
0	0	0	0	0	0 - 0 - 0 = 0, Difference = 0, Borrow = 0
0	0	1	1	1	0 - 0 - 1 = -1 (borrow 1), Difference = 1, Borrow = 1
0	1	0	1	1	0 - 1 - 0 = -1 (borrow 1), Difference = 1, Borrow = 1
0	1	1	0	1	0 - 1 - 1 = -2 (borrow 1), Difference = 0, Borrow = 1
1	0	0	1	0	1 - 0 - 0 = 1, Difference = 1, Borrow = 0
1	0	1	0	0	1 - 0 - 1 = 0, Difference = 0, Borrow = 0
1	1	0	0	0	1 - 1 - 0 = 0, Difference = 0, Borrow = 0
1	1	1	1	1	1 - 1 - 1 = -1 (borrow 1), Difference = 1, Borrow = 1

Example:

1)
$$710-210 = 510$$

 7 0111
 2 0010
 1° C of 2
 1101
 $+ 1$
 2° C of 2
1110
0111 + 11101
0101

Pin Diagram IC7483

Digital Design Laboratory Semester: III Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Digital Design Laboratory

Semester: III Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Implementation Details

Procedure:

- 1) Locate the IC 7483 and 4-not gates block on trainer kit.
- 2) Connect 1st input no. to A4-A1 input slot and 2nd (negative) no. to B4-B1 through 4-not gates (1C of 2nd no.)
- 3) Connect high input to Co so that it will get added with 1C of 2nd no. to get 2C.
- 4) Connect 4-bit output to the output indicators.
- 5) Switch ON the power supply and monitor the output for various input combinations.

Lab Work:

Semester: III Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Post Lab Subjective/Objective type Questions:

1. Design a full adder using two half adders.

- 2. Perform the following Binary subtraction with the help of appropriate ICs:
 - a. 6-4
 - b. 5-8
 - 7-9 c.

Semester: III Academic Year: 2024-25

Roll No: 16010123012

@2	-906-4=6+(-4)
	6=)0110, 4=>0100
11 10	-4=> (100
1377	2. 0110
	+ 1100
	0010 = 2
	b) 5-8 = 5 + (8)
	5=>00101, 8=>01000, -8=> 11000
1000	:. 00101
	+11000
1973	11101 => (-3)
10000	
111634	c) 7-9 = 7+(-9)
	7 => 00111 9 => 01001 -9 => 10111
	:. 00111
	+ 10 111
	10111 => (-2)

Conclusion:

We implemented half and full adder–subtractor circuits using the IC 7483, explored minimization techniques, and verified the circuits on the DDL kit.

Signature of faculty in-charge with Date:

Digital Design Laboratory Semester: III

Roll No: 16010123012_____

Academic Year: 2024-25