MA 544: Homework 6

Carlos Salinas

February 21, 2016

Problem 6.1 (Wheeden & Zygmund §4, Ex. 4)

Let f be defined and measurable in \mathbf{R}^n . If T is a nonsingular linear transformation of \mathbf{R}^n , show that $f(T\mathbf{x})$ is measurable. [If $E_1 = \{\mathbf{x} \mid f(\mathbf{x}) > a\}$ and $E_2 = \{\mathbf{x} \mid f(T\mathbf{x}) > a\}$.]

Proof.

PROBLEM 6.2 (WHEEDEN & ZYGMUND §4, Ex. 7)

Let f be use and less that $+\infty$ on a compact set E. Show that f is bounded above on E. Show also that f assumes its maximum on E, i.e., that there exists $\mathbf{x}_0 \in E$ such that $f(\mathbf{x}_0) \geq f(\mathbf{x})$ for all $\mathbf{x} \in E$.

Proof.

PROBLEM 6.3 (WHEEDEN & ZYGMUND §4, Ex. 8)

- (a) Let f and g be two functions which are use at \mathbf{x}_0 . Show that f+g is use at \mathbf{x}_0 . If f-g use at \mathbf{x}_0 ? When is fg use at \mathbf{x}_0 ?
- (b) If $\{f_k\}$ is a sequence of functions are usc at \mathbf{x}_0 , show that inf $f_k(\mathbf{x})$ is usc at \mathbf{x}_0 .
- (c) If $\{f_k\}$ is a sequence of functions which are usc at \mathbf{x}_0 and which converge uniformly near \mathbf{x}_0 , show that $\lim f_k$ is usc at \mathbf{x}_0 .

Proof.