Homework 2-5 Creating Polynomial Equations Given a Graph

- 1) Given the following polynomial graph, answer the following:
 - a) The degree of the polynomial is **EVEN** of **ODD**
 - b) The leading coefficient is **POSITIVE** or **NEGATIVE**
 - There is an absolute MAXIMUM, MINIMUM, or NEITHER

$$f(x) = -3(x+a)^{2}(x-4)$$

2) Write a possible equation given the following graphs:

$$f(x) = -X(x+a)^2(x-b) + f(x) = (x+a)^2(x-b)^2 + f(x) = -(x-a)(x+b)(x-c)$$

$$\frac{f(x) = -(x-a)(x+b)(x-c)}{(x-a)(x+b)(x-c)}$$

3) Sketch the function $f(x) = -x(x+5)(x-3)^2$

X=0 X=-5 X=3 M=1 M=1 M=2 BDegree: AA

- 4) Given the graph of g(x) shown below, state whether the following statements are **true** or **false**.
 - a) The leading coefficient is positive <u>False</u>
 - b) As $x \to -\infty$, $f(x) \to -\infty$ True
 - c) As $x \to \infty$, $f(x) \to \infty$ False
 - d) g(x) has x-intercepts True
 - e) There is an absolute minimum <u>False</u>
 - f) There is a relative maximum True
 - g) The degree of the polynomial is odd False
 - h) There are two intervals where g(x) is decreasing True

- I got
- I almost got it...
- I need more practice...
- I don't get it... Help!