

# Voltage Regulators

## LM340 series voltage regulators

### general description

The LM340-XX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. One of these is local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to be used in logic systems, instrumentation, HiFi, and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.

The LM340-XX series is available in two power packages. Both the plastic TO-220 and metal TO-3 packages allow these regulators to deliver over 1.0A if adequate heat sinking is provided. Even with over 1.0A of output current available the regulators are essentially blow-out proof. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.

Considerable effort was expended to make the LM340-XX series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

#### features

- Output current in excess of 1A
- Internal thermal overload protection
- No external components required
- Output transistor safe area protection
- Internal short circuit current limit
- Available in plastic TO-220 and metal TO-3 packages

## voltage range

| LM340-05 | 5V  | LM340-15 | 15V |
|----------|-----|----------|-----|
| LM340-06 | 6V  | LM340-18 | 18V |
| LM340-08 | 8V  | LM340-24 | 24V |
| LM340-12 | 12V |          |     |

#### schematic and connection diagrams





**Order Numbers:** 

LM340-05T LM340-15T LM340-06T LM340-18T LM340-08T LM340-24T LM340-12T

See Package 26



BOTTOM VIEW Order Numbers:

LM340-05K LM340-15K LM340-06K LM340-18K LM340-08K LM340-24K LM340-12K

See Package 18

## absolute maximum ratings

Input Voltage ( $V_O = 5V$  through 18V) ( $V_O = 24V$ ) Internal Power Dissipation (Note 1) 35V 40V Internally Limited **Operating Temperature Range** 0°C to 70°C Maximum Junction Temperature TO-3 Package 150°C 125°C TO-220 Package  $-65^{\circ}$ C to  $150^{\circ}$ C Storage Temperature Range Lead Temperature To-3 Package (Soldering, 10 sec) 300°C TO-220 Package (Soldering, 10 sec) 230°C

#### electrical characteristics

**LM340-05** (V<sub>IN</sub> = 10V,  $I_{OUT}$  = 500 mA,  $0^{\circ}C \le T_{A} \le 70^{\circ}C$ , unless otherwise specified)

| PARAMETER                | CONDITIONS                                                                                                                                      | MIN  | TYP | MAX        | UNITS    |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|------------|----------|
| Output Voltage           | T <sub>j</sub> = 25°C                                                                                                                           | 4.8  | 5.0 | 5.2        | V        |
| Line Regulation          | $T_{\rm j} = 25^{\circ}{\rm C}$ , $7{\rm V} \le {\rm V_{IN}} \le 25{\rm V}$<br>${\rm I_{OUT}} = 100~{\rm mA}$<br>${\rm I_{OUT}} = 500~{\rm mA}$ |      |     | 50<br>100  | mV<br>mV |
| Load Regulation          | $T_j$ = 25°C, 5 mA $\leq$ $I_{OUT} \leq$ 1.5A                                                                                                   |      |     | 100        | m∨       |
| Output Voltage           | $7V \le V_{IN} \le 20V$ , 5 mA $\le I_{OUT} \le 1.0A$<br>$P_D \le 15W$                                                                          | 4.75 |     | 5.25       | V        |
| Quiescent Current        | $T_j = 25^{\circ}C$                                                                                                                             |      | 6.0 | 10         | mA       |
| Quiescent Current Change | $7V \le V_{1N} \le 25V$ $5 \text{ mA} \le I_{OUT} \le 1.5A$                                                                                     |      |     | 1,3<br>0.5 | mA<br>mA |
| Output Noise Voltage     | $T_A = 25^{\circ}C$ , 10 Hz $\leq f \leq$ 100 kHz                                                                                               |      | 40  |            | μ∨       |
| Long Term Stability      | }                                                                                                                                               |      |     | 20         | m∨       |
| Ripple Rejection         | I <sub>OUT</sub> = 20 mA, f = 120 Hz                                                                                                            |      | 70  |            | dB       |
| Dropout Voltage          | $T_{j} = 25^{\circ}C, I_{OUT} = 1.0A$                                                                                                           |      | 2.0 |            | v        |

## **LM340-06** ( $V_{IN}$ = 11V, $I_{OUT}$ = 500 mA, $0^{\circ}C \le T_{A} \le 70^{\circ}C$ , unless otherwise specified)

| PARAMETER                | CONDITIONS                                                                                                                                                                 | MIN  | ТҮР | MAX        | UNITS    |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|------------|----------|
| Output Voltage           | $T_j = 25^{\circ}C$                                                                                                                                                        | 5.75 | 6.0 | 6.25       | V        |
| Line Regulation          | $\begin{aligned} T_{\rm j} &= 25^{\circ}\text{C, 8V} \leq \text{V}_{\rm IN} \leq 25\text{V} \\ I_{\rm OUT} &= 100\text{ mA} \\ I_{\rm OUT} &= 500\text{ mA} \end{aligned}$ |      |     | 60<br>120  | mV<br>mV |
| Load Regulation          | $T_j = 25^{\circ}C$ , 5 mA $\leq I_{OUT} \leq 1.5A$                                                                                                                        |      |     | 120        | m∨       |
| Output Voltage           | $8V \le V_{IN} \le 21V$ , 5 mA $\le I_{OUT} \le 1.0A$<br>$P_D \le 15W$                                                                                                     | 5.7  |     | 6.3        | V        |
| Quiescent Current        | T <sub>j</sub> = 25°C                                                                                                                                                      |      | 6.0 | 10         | mA       |
| Quiescent Current Change | $8V \le V_{IN} \le 25V$ $5 \text{ mA} \le I_{OUT} \le 1.5A$                                                                                                                |      |     | 1.3<br>0.5 | mA<br>mA |
| Output Noise Voltage     | $T_A = 25^{\circ}C$ , 10 Hz $\leq f \leq 100$ kHz                                                                                                                          |      | 45  |            | μ∨       |
| Long Term Stability      | ł                                                                                                                                                                          | ļ    |     | 24         | mV       |
| Ripple Rejection         | I <sub>OUT</sub> = 20 mA, f = 120 Hz                                                                                                                                       |      | 65  |            | dB       |
| Dropout Voltage          | T <sub>j</sub> = 25°C, I <sub>OUT</sub> = 1.0A                                                                                                                             |      | 2.0 |            | V        |

**Note 1:** Thermal resistance without a heat sink for junction to case temperature is  $4.0^{\circ}$  C/W for the TO-3 package and  $2.0^{\circ}$  C/W for the TO-220 package. Thermal resistance for case to ambient temperature is  $35^{\circ}$  C/W for the TO-3 package and  $50^{\circ}$  C/W for the TO-220 package.

## electrical characteristics (con't)

**LM340–08** ( $V_{IN}$  = 14V,  $I_{OUT}$  = 500 mA,  $0^{\circ}C \le T_{A} \le 70^{\circ}C$ , unless otherwise specified)

| PARAMETER                | CONDITIONS                                                                                                                                              | MIN | TYP | MAX        | UNITS    |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------------|----------|
| Output Voltage           | T <sub>j</sub> = 25°C                                                                                                                                   | 7.7 | 8.0 | 8.3        | V        |
| Line Regulation          | $T_{\rm j} = 25^{\circ}{\rm C}$ , $10.5{\rm V} \le {\rm V_{IN}} \le 25{\rm V}$<br>${\rm I_{OUT}} = 100~{\rm mA}$<br>${\rm I_{OUT}} = 500~{\rm mA}$      |     |     | 80<br>160  | mV<br>mV |
| Load Regulation          | $T_j = 25^{\circ}C$ , 5 mA $\leq I_{OUT} \leq 1.5A$                                                                                                     |     |     | 160        | m∨       |
| Output Voltage           | $10.5 \text{V} \le \text{V}_{\text{IN}} \le 23 \text{V}, 5 \text{ mA} \le \text{I}_{\text{OUT}} \le 1.0 \text{A}$ $\text{P}_{\text{D}} \le 15 \text{W}$ | 7.6 |     | 8.4        | V        |
| Quiescent Current        | $T_j = 25^{\circ}C$                                                                                                                                     | }   | 6.0 | 10         | mA       |
| Quiescent Current Change | 10.5V $\leq$ V <sub>IN</sub> $\leq$ 25V<br>5 mA $\leq$ I <sub>OUT</sub> $\leq$ 1.5A                                                                     |     |     | 1.0<br>0.5 | mA<br>mA |
| Output Noise Voltage     | $T_A = 25^{\circ}C$ , 10 Hz $\leq f \leq$ 100 kHz                                                                                                       |     | 52  |            | μ∨       |
| Long Term Stability      |                                                                                                                                                         |     |     | 32         | mV       |
| Ripple Rejection         | I <sub>OUT</sub> = 20 mA, f = 120 Hz                                                                                                                    |     | 62  |            | dB       |
| Dropout Voltage          | $T_{j} = 25^{\circ}C$ , $I_{OUT} = 1.0A$                                                                                                                |     | 2.0 |            | V        |

## **LM340-12** ( $V_{IN}$ = 19V, $I_{OUT}$ = 500 mA, $0^{\circ}C \le T_A \le 70^{\circ}C$ , unless otherwise specified)

| PARAMETER                | CONDITIONS                                                                                                   | MIN  | ТҮР  | MAX        | UNITS    |
|--------------------------|--------------------------------------------------------------------------------------------------------------|------|------|------------|----------|
| Output Voltage           | T <sub>j</sub> = 25°C                                                                                        | 11.5 | 12.0 | 12.5       | V        |
| Line Regulation          | $T_j = 25^{\circ}C$ , $14.5V \le V_{IN} \le 30V$<br>$I_{OUT} = 100 \text{ mA}$<br>$I_{OUT} = 500 \text{ mA}$ |      |      | 120<br>240 | mV<br>mV |
| Load Regulation          | ${}^{4}_{T_{j}}$ = 25°C, 5 mA $\leq$ I <sub>OUT</sub> $\leq$ 1.5A                                            |      |      | 240        | mV       |
| Output Voltage           | $14.5V \le V_{IN} \le 27V, 5 \text{ mA} \le I_{OUT} \le 1.0A$ $P_D \le 15W$                                  | 11.4 |      | 12.6       | V        |
| Quiescent Current        | $T_j = 25^{\circ}C$                                                                                          |      | 6.0  | 10         | mA       |
| Quiescent Current Change | $14.5V \le V_{IN} \le 30V$<br>5 mA $\le I_{OUT} \le 1.5A$                                                    |      |      | 1.0<br>0.5 | mA<br>mA |
| Output Noise Voltage     | $T_A = 25^{\circ}C$ , 10 Hz $\leq f \leq 100$ kHz                                                            |      | 75   |            | μV       |
| Long Term Stability      |                                                                                                              | 1    |      | 48         | mV       |
| Ripple Rejection         | I <sub>OUT</sub> = 20 mA, f = 120 Hz                                                                         |      | 61   |            | dB       |
| Dropout Voltage          | T <sub>j</sub> = 25°C, I <sub>OUT</sub> = 1.0A                                                               |      | 2.0  |            | V        |

## **LM340-15** (V<sub>IN</sub> = 23V, I<sub>OUT</sub> = 500 mA, $0^{\circ}$ C $\leq$ T<sub>A</sub> $\leq$ $70^{\circ}$ C, unless otherwise specified)

| PARAMETER                | CONDITIONS                                                                                    | MIN   | TYP  | MAX        | UNITS    |
|--------------------------|-----------------------------------------------------------------------------------------------|-------|------|------------|----------|
| Output Voltage           | T <sub>i</sub> = 25°C                                                                         | 14.4  | 15.0 | 15.6       | V        |
| Line Regulation          | $T_{j}$ = 25°C, 17.5V $\leq$ V <sub>IN</sub> $\leq$ 30V $I_{OUT}$ = 100 mA $I_{OUT}$ = 500 mA |       |      | 150<br>300 | mV<br>mV |
| oad Regulation           | $T_j = 25^{\circ}C$ , 5 mA $\leq I_{OUT} \leq 1.5A$                                           |       |      | 300        | mV       |
| Output Voltage           | $17.5V \le V_{IN} \le 30V$ , 5 mA $\le I_{OUT} \le 1.0A$<br>$P_D \le 15W$                     | 14.25 |      | 15.75      | V        |
| Quiescent Current        | T <sub>j</sub> = 25°C                                                                         |       | 6.0  | 10         | mA       |
| Quiescent Current Change | $17.5V \le V_{IN} \le 30V$<br>5 mA $\le I_{OUT} \le 1.5A$                                     |       |      | 1.0<br>0.5 | mA<br>mA |
| Output Noise Voltage     | $T_A = 25^{\circ}C$ , 10 Hz $\leq f \leq$ 100 kHz                                             |       | 90   |            | μV       |
| Long Term Stability      |                                                                                               |       |      | 60         | mV       |
| Ripple Rejection         | I <sub>OUT</sub> = 20 mA, f = 120 Hz                                                          |       | 60   |            | dB       |
| Dropout Voltage          | T <sub>i</sub> = 25°C, I <sub>OUT</sub> = 1.0A                                                |       | 2.0  |            | V        |

## electrical characteristics (con't)

**LM340–18** (V  $_{\text{IN}}$  = 27V, I  $_{\text{OUT}}$  = 500 mA, 0  $^{\circ}$ C  $\leq$  T  $_{\text{A}}$   $\leq$  70  $^{\circ}$ C, unless otherwise specified)

| PARAMETER                | CONDITIONS                                                                                              | MIN  | TYP  | MAX        | UNITS    |
|--------------------------|---------------------------------------------------------------------------------------------------------|------|------|------------|----------|
| Output Voltage           | T <sub>j</sub> = 25°C                                                                                   | 17.3 | 18.0 | 18.7       | ٧ .      |
| Line Regulation          | $T_{\rm j}$ = 25°C, 21V $\leq$ V <sub>IN</sub> $\leq$ 33V $I_{\rm OUT}$ = 100 mA $I_{\rm OUT}$ = 500 mA |      |      | 180<br>360 | mV<br>mV |
| Load Regulation          | $T_j = 25^{\circ}C$ , 5 mA $\leq I_{OUT} \leq 1.0A$                                                     |      | ,    | 360        | mV       |
| Output Voltage           | $21V \le V_{IN} \le 33V, 5 \text{ mA} \le I_{OUT} \le 1.0A$ $P_D \le 15W$                               | 17.1 |      | 18.9       | V        |
| Quiescent Current        | $T_j = 25^{\circ}C$                                                                                     |      | 6.0  | 10         | mA       |
| Quiescent Current Change | $21V \le V_{IN} \le 33V$ $5 \text{ mA} \le I_{OUT} \le 1.0A$                                            |      |      | 1.0<br>0.5 | mA<br>mA |
| Output Noise Voltage     | $T_A = 25^{\circ}C$ , 10 Hz $\leq f \leq 100 \text{ kHz}$                                               |      | 110  |            | μ∨       |
| Long Term Stability      |                                                                                                         |      |      | 72         | mV       |
| Ripple Rejection         | I <sub>OUT</sub> = 20 mA, f = 120 Hz                                                                    |      | 59   |            | dB       |
| Dropout Voltage          | T <sub>j</sub> = 25°C, I <sub>OUT</sub> = 1.0A                                                          |      | 2.0  |            | V        |

**LM340-24** ( $V_{IN} = 33V$ ,  $I_{OUT} = 500$  mA,  $0^{\circ}C \le T_A \le 70^{\circ}C$ , unless otherwise specified)

| PARAMETER                | CONDITIONS                                                                                            | MIN  | TYP  | MAX        | UNITS    |
|--------------------------|-------------------------------------------------------------------------------------------------------|------|------|------------|----------|
| Output Voltage           | T <sub>j</sub> = 25°C                                                                                 | 23.0 | 24.0 | 25.0       | V        |
| Line Regulation          | $T_{\rm j}$ = 25°C, 27V $\leq$ V $_{\rm IN}$ $\leq$ 38V $I_{\rm OUT}$ = 100 mA $I_{\rm OUT}$ = 500 mA |      |      | 240<br>480 | mV<br>mV |
| Load Regulation          | $T_j = 25^{\circ}C$ , 5 mA $\leq I_{OUT} \leq 1.0A$                                                   |      |      | 480        | mV       |
| Output Voltage           | $27V < V_{1N} < 38V$ , 5 mA $\leq I_{OUT} \leq 1.0A$ $P_D \leq 15W$                                   | 22.8 |      | 25.2       | V        |
| Quiescent Current        | T <sub>j</sub> = 25°C                                                                                 |      | 6.0  | 10         | mA       |
| Quiescent Current Change | $27V \le V_{IN} \le 38V$ $5 \text{ mA} \le I_{OUT} \le 1.0A$                                          |      |      | 1.0<br>0.5 | mA<br>mA |
| Output Noise Voltage     | $T_A = 25^{\circ}C$ , 10 Hz $\leq f \leq 100$ kHz                                                     |      | 170  |            | μV       |
| Long Term Stability      |                                                                                                       |      |      | 96         | mV       |
| Ripple Rejection         | I <sub>OUT</sub> = 20 mA, f = 120 Hz                                                                  |      | 56   |            | dB       |
| Dropout Voltage          | T <sub>j</sub> = 25°C, I <sub>OUT</sub> = 1.0A                                                        |      | 2.0  |            | V        |

## typical performance characteristics





## typical applications

## **Fixed Output Regulator**



- \*Required if the regulator is located far from the power supply filter.
  \*\*Although no output capacitor is needed for stability, it does help transient response.
  (If needed use 0.1 µF, ceramic, disc.)

#### Adjustable Output Regulator



 $\rm V_{OUT}$  = 5V + (16.7 mA +  $\rm I_{Q}$  )  $\rm R_{2}$  $\triangle I_{Q}$  = 1.5 mA over line and load changes

#### **Current Regulator**



$$I_{OUT} = \frac{V_{2.3}}{R_1} + I_{Q}$$
  
 $\triangle I_{Q} = 1.5 \text{ mA over line and load changes}$ 

### High Current Voltage Regulator



T<sub>A</sub> = 25°C @  $V_{IN}$  10V, 0A  $\leq$   $I_{L} \leq$  10A Load Regulation = 2 mV @ I  $_L$  = 10A, 9V  $\leq$   $V_{IN} \leq$  12V Line Regulation = 20 mV