"An eiganstrain analysis of mechanical properties of nanostructured ceramic coatings by synchrotron probe"

Thomas Tsakalakos

Dept. of Materials Science and Engineering, Rutgers University M. Croft¹, Physics Dept., Rutgers University

K. Akdogan, A. Ignatov, N. Ahmedi, L. Balarinni, J. Giminez, M. McNeley, 1

Zhong², N. Jisrawi³, J. Skaritka², N. Simos², T. Fast³, R. Sadangi³, V. Shukla³

¹Department of Physics, Rutgers University, Piscataway, NJ 08854;

²National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY; 11973

³Mat Sc & Eng. Dept, Rutgers University, Piscataway, NJ; 08854

⁴ Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, DC 20375

L. Kabacoff G. Kim,

E. Lavernia

R. Rigney

K. Scandell

Office of Naval Research
Perpetual Technologies, Canada
University of California, Davis
A&A INc, S. Brunswick NJ
MT NAVSEA

Brookhaven National Synchrotron Light Source X-17B1

We acknowledge the support of the Office of Naval Research under grant N00014-02-1-0772.

Report Documentation Page					Form Approved OMB No. 0704-0188	
maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE JUN 2010		2. REPORT TYPE N/A		3. DATES COVE	RED	
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER	
_	llysis of mechanical	5b. GRANT NUMBER				
ceramic coatings by synchrotron probe				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
					5e. TASK NUMBER	
					5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Dept. of Materials Science and Engineering, Rutgers University				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)				
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited						
	OTES 07. ECI Internation Colorado on 7-12 Ju					
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 54	RESPONSIBLE PERSON	

Form Approved OMB No. 0704-0188

Outline

- Introductory Remarks
- Residual Stresses
- · Synchrotron EDXRD Strain & Phase Mapping
- · Thermal Sprayed Nanostructured Coatings
- · In situ four-point bending experiments
- Eigenstrain Analysis
- Reliable Life prediction
- Applications to Engineering Systems

M and R denote matrix and reinforcement respectively

2 Residual stress fields can be categorised according to characteristic length scales $l_{0,l},\,l_{0,ll},\,$ and $l_{0,ll}$ over which they self-equilibrate: for type I, $l_{0,l}$ represents considerable fraction of component; for type II, $l_{0,ll}$ is comparable to grain dimensions, while for type III, $l_{0,ll}$ is less than grain diameter

TYPE OF RESIDUAL STRESSES MEASURED BY EDXRD

Type I $\sigma_{\rm I}$ Macroscale Type II $\sigma_{\rm II}$ Mesoscale Type III $\sigma_{\rm III}$ Nanoscale

For a two phase material, the macrostress σ_{I} (type I) is continuous across phases, but the type II and III stresses are not. As a result, even when the sampling area is greater than the characteristic areas for type σ_{II} II and type σ_{III} III, non-zero phase-average microstresses can be recorded. Considering the stresses in two phases:

0=f< σ_{α} >^{II}+(1-f)< σ_{β} >^{II} where f is the volume fraction of phase α.

Energy (keV) <u>77</u> 78 (321)1000 Most Bragg Compressed Line 750 Intensit Most fatigue Expanded crack 1040 250 steel

EDXRD Bragg Line Width

$$E_{hkl} [in keV] = \frac{b}{d_{hkl} \sin \theta}$$

$$b = 6.199[keV(A)]$$

Assume Gaussian fitting

$$(\delta \mathbf{E})^2 = (\delta \mathbf{E}_{det})^2 + (\delta \mathbf{E}_{gs})^2 + (\delta \mathbf{E}_{ms})^2$$

radioactive & atomic florescence standards

$$\delta \mathbf{E}_{\text{det}} = \frac{\mathbf{a}}{\mathbf{E}}$$

coherent scattering
domain (<~grain) size</pre>

Debye-Sherrer

$$(\delta \mathbf{E}_{gs})^2 = (\frac{\mathbf{bK}}{\mathbf{d}_{gs} \sin{(\theta)}})^2$$

micro-strain
$$\delta E_{ms} = 2e E$$

standards

- *d_o values to determine strains.
- *How:
 - Find regions with Stress-free
 - ❖Find samples of Stress-free
 - ❖Use powders
 - ♦ Use of equilibrium conditions:
 - Multi phases
 - *Force/moment balance

Constitutive equation

$$\sigma_{ij} = \frac{E}{1+\nu} \left[\epsilon_{ij} + \delta_{ij} \left(\frac{\nu}{1-2\nu} \right) \left(\epsilon_{11} + \epsilon_{22} + \epsilon_{33} \right) \right]$$

In-Situ Study of the Development of Intergranular/Interphase Strains

- Materials: Cementite/Ferrite; Ti-6Al-4V substrate
- New Alumina/Titania coatings with new bond coating
- New Titania (Rutile) coating, Amorphous Fe-C-B alloy coating
- Diamond Like Coatings, Aluminum alloy coatings,
- 4-point bending unload cycle
- homogeneous plastic deformation macro/micro scopically
- Measured:
- Lattice strain response for individual phases and reflections.

I I

Total deformation by an in-situ-4-point bending

4130 Steel

2 phases: cementite + ferrite

- •Both 4130 steels subjected to 4-point bending loading
- •Experiment carried out at BNL, NSLS source

⇒Rietveld Analysis

- • σ_{33}/σ_{11} = -2 (Upper bound model)
- •Vol. Fraction (Data) = 10 %
- •Manufacturer specification = 9 %

Lattice strain response for Individual Reflections in steel

Ti-6Al-4V /Substrate

Thermal and Mechanical:

Ti-6-4:

- Young's Modulus = 115 GPa
- Poisson's Ratio = 0.349
- CTE = $10 \times 10^{-6} \text{ K}^{-1}$

Distribution of α and β phase of Ti6Al-4V as a function of Temperature

Thermal strain in α and β phase of Ti6Al-4V as a function of Temperature

Thermal Sprayed Nanostructured Coatings

- n-Al2O3-13TiO2 coatings fabricated by conventional plasma spray
- 2X the bond strength and 4X the wear resistance
- Extraordinary deformability without failure
- Direct transition to fleetpandcia. Gruber industry (fully commercial)

No failure even after Severe deformation

MCM shafts fail after 18months service Requiring dry docking for weld repair

Uncoated shaft experiences Severe scoring damage

No visible damage after Four years of service

Courtesy Dr. Larry Kabacoff and Dr .Patricia Gruber ONR ISOPE 2007

Advanced Coating Technology Development for Enhanced Durability and Reduced Cost in Naval Applications

Fundamentals of the Process

Coating Properties

Ruter Vanostructured Coatings

Material Systems

 $1.Al_2O_3-13wt\%TiO_2$ coatings made from starting micron size (Metco 130) and nanosized powders (Inframat 2613)(Particle size 20-30 nm) With Grit Blasting

In addition we compared the phases and strains as a function of coating thickness in both micro- and nano- coatings.

Substrates: 1) 1020 Steel (with a Ni bond coat)

2) Titanium (with a Ti bond coat)

Varying thickness of micro- and nano- coatings were applied.

Substrates were grit blasted (compressive stresses).

Table 1, summarizes the coating samples produced with 1020 steel. Table 2 is similar for the titanium substrate coating samples produced.

All the samples were prepared by A&A company,

Rue Ti substrate samples PRODUCTIONAL

Starting Powder	Substrate	Coating thickness	Designation
		None	T1
		Grit blast only	T2
		Grit blast and bond coat	T3
	Titanium	2 passes on T3	T4
Micron		Typical coating on T3	T5
		Over-coating, on T3,	T6
		before failure	
		Over-coating, on T3,	T7
		after failure	
		2 passes on T3	T8
		Typical coating on T3	T9
		Over-coating, on T3,	T10
		before failure	
Nanosize	Titanium	Over-coating, on T3,	T11
		after failure	

A series of EDXRD spectra as a function of (x_3) depth for a nano-aluminatitania coating on a Ti substrate. Note that the spectra are displaced equally so that the coding region can be seen. The Miller indices for the Ti (hcp) substrate and the spinel structure phase in the coating are indicated.

Wide view of EDXRD patterns of powders obtained by delaminating TS titania-alumina coatings under 4-point compression and then grinding the coating into powder. The T5 is a typical thickness micro-coating and T9 is a typical thickness nano-coating. Note: the γ -Al₂O₃ spinel and α -Al₂O₃ corundum Bragg line indexing; the expected Ce atomic fluorescence lines in the nano material;

The γ -Al₂O₃ spinel γ -400 Bragg line for the T5(micro)- and T9(nano)-coating powders. This is the line used to evaluate the strain variations in the coatings. Note: the strong broadening of the small grain size nano material line relative to the micro material; the nano- material is dilatation of the lattice parameter by +0.2% relative to the micromaterial; the prominent α -Al₂O₃ corundum phase Bragg line in the amorphous phase.

Ti-K edge XAS near edge structures for a series of Ti compounds. The pre-edge features are shown on an expanded scale in the inset of the figure. Comparison of the n- and μ -feed powder spectra are to the anatase phase TiO2 standard clearly confirm this as the the feed powder phase in both cases. The Ti environment in the plasma sprayed (PS) n- and μ - coatings are dramatically differend and are unambiguously not anatase phase. Note that the FS oscillations above the edge are sharper for the μ -PS-coating (relative to the μ -PS-coating). The broadening of the μ -PS-coating FS features are typical of a more disordered local environment as expected for nano-phase materials.

 TiO_{x} , 2>x>1.5

Chemically reduced Ti.

Rutes Strain Mapping

A comparison plot of the ϵ_{33} strain in as-received titanium substrate, and grit blasted titanium substrate. It can be noted that in the grit balsted sample surface compression introduces a bending moment in the other underlying bulk material which is clearly visible by the sloping data between 0< x3<1.5

Strain Mapping

Effect of bond coat on compressive strain \mathcal{E}_{33} of Grit Blasted Ti

VALIDATION 2. Grit Blasted

Schematic of model for Grit Blasted strains/stresses

EDXRD Grit Blasted; Steep strain gradients; High Resolution

Strain profile of ε_{33} across the entire thickness of a Ti double-sided shot peened specimen. The inset shows schematic of the x-ray scattering geometry along with the definition of the coordinate directions. Note the schematic representation of the lip which was optically profiled in Figure above.

VALIDATION 2.

The strain profiles of ϵ_{33} and ϵ_{11} in the vicinity of the peened surface layer and the underlying bulk material of the Ti specimen. The insets illustrate the x-ray scattering geometries for the ϵ_{33} (top) and ϵ_{11} (bottom) measurements. Note the stress scale (lower right) uses E=118 GPa and v=0.33 . ϵ_{33} = -2 $v/(1-v) \sim -\epsilon_{11}$

In-situ 4-point bending experiment Ti

Linear depth variation

Bending released: Residual stresses and bending

Rutge

Modeling and Theory

Four-point Bending of substrate and coatings plates

Strain Mapping

 ϵ_{11} depth (x₃) variation profiles of of DLC/4142 steel substrate test specimen at various load levels in the four point bending geometry

Phase Mapping

 ϵ_{33} depth (x_3) variation profiles of alumina-titania-coating/Tisubstrate test specimen at various load levels in the four point bending geometry.

Eigenstrain Modeling

under four point bend test.

Rute

Eigenstrain Analysis

Schematic of the layered stack structure of the substrate/coating materials systems used in this study

stresses and strain –the elasto-plastic analysis Eigenstrain

Multiaxial stress state

$$\begin{cases} \boldsymbol{\sigma_{ij,net}^e \varepsilon_{ij,net}^e} = \boldsymbol{\sigma_{ij,tot}^a \varepsilon_{ij,tot}^a} \\ \boldsymbol{\varepsilon_{ij,tot}^a} = f\left(\boldsymbol{\sigma_{ij,tot}^a}\right) \end{cases}$$

$$\begin{cases} \boldsymbol{\sigma}_{22,net}^{e} \boldsymbol{\varepsilon}_{22,net}^{e} = \boldsymbol{\sigma}_{22,tot}^{a} \boldsymbol{\varepsilon}_{22,tot}^{a} \\ \boldsymbol{\varepsilon}_{22,tot}^{a} = \frac{\boldsymbol{\sigma}_{22,tot}^{a}}{\boldsymbol{E}} + \left(\frac{\boldsymbol{\sigma}_{22,tot}^{a}}{\boldsymbol{E}}\right)^{\frac{1}{n'}} \end{cases}$$

Plastic Zone

Equations of the multiaxial stresses and Hencky's equations of plasticity

$$\begin{cases} \varepsilon_{11}^{a} = \frac{1}{E} \left[\sigma_{11}^{a} - \nu \left(\sigma_{22}^{a} + \sigma_{33}^{a} \right) \right] - \frac{f \left(\sigma_{eq}^{a} \right)}{\sigma_{eq}^{a}} \left[\sigma_{11}^{a} - \frac{1}{2} \left(\sigma_{22}^{a} + \sigma_{33}^{a} \right) \right] \\ \varepsilon_{22}^{a} = \frac{1}{E} \left[\sigma_{22}^{a} - \nu \left(\sigma_{33}^{a} + \sigma_{11}^{a} \right) \right] - \frac{f \left(\sigma_{eq}^{a} \right)}{\sigma_{eq}^{a}} \left[\sigma_{22}^{a} - \frac{1}{2} \left(\sigma_{33}^{a} + \sigma_{11}^{a} \right) \right] \\ \varepsilon_{33}^{a} = \frac{1}{E} \left[\sigma_{33}^{a} - \nu \left(\sigma_{11}^{a} + \sigma_{22}^{a} \right) \right] - \frac{f \left(\sigma_{eq}^{a} \right)}{\sigma_{eq}^{a}} \left[\sigma_{33}^{a} - \frac{1}{2} \left(\sigma_{11}^{a} + \sigma_{22}^{a} \right) \right] \\ \sigma_{11}^{e} \varepsilon_{11}^{e} = \sigma_{11}^{a} \varepsilon_{11}^{a} \\ \sigma_{22}^{e} \varepsilon_{22}^{e} = \sigma_{22}^{a} \varepsilon_{22}^{a} \\ \sigma_{33}^{e} \varepsilon_{33}^{e} = \sigma_{33}^{a} \varepsilon_{33}^{e} \end{cases}$$

where:
$$f(\sigma_{eq}^a) = \left(\frac{\sigma_{eq}^a}{K'}\right)^{\frac{1}{n'}}$$

Modeling and Theory

[A], [B] and [D] are the elastic stiffness matrices derived by Tsai(1988):

[A] =
$$\int_h [C(x_3)] dx_3$$
, [B] = $\int_h [C(x_3)] x_3 dx_3$ and [D] = $\int_h [C(x_3)] x_3^2 dx_3$ (10)

 \vec{N} and \vec{M} are the forces and moments respectively, generated by the eigenstrains $\epsilon_{ij}^*(x_3)$

$$\vec{N}^* = \int_{h} [C(x_3)] \vec{\varepsilon}^*(x_3) dx_3 \quad \text{and} \quad \vec{M}^* = \int_{h} [C(x_3)] \vec{\varepsilon}^*(x_3) x_3 dx_3 \tag{11}$$

From (8) and (9) we obtain:

$$\begin{pmatrix} \vec{N} + \vec{N}^* \\ \vec{M} + \vec{M}^* \end{pmatrix} = \begin{bmatrix} [A] & [B] \\ [B] & [D] \end{pmatrix} \begin{pmatrix} \vec{\varepsilon}^0 \\ \vec{k} \end{pmatrix} = [C'] \begin{pmatrix} \vec{\varepsilon}^0 \\ \vec{k} \end{pmatrix} \tag{12}$$

Eq. (12) depicts 3 algebraic equations for \vec{N} and three for \vec{M} totaling 6 equations.

By inverting the matrix of these equation we solve with respect to the 6 components ε_{ii}^{0} and κ_{ii} : of

$$\begin{pmatrix} \vec{\varepsilon}^{0} \\ \vec{k} \end{pmatrix} = [C']^{-1} \begin{pmatrix} \vec{N} + \vec{N}^{*} \\ \vec{M} + \vec{M}^{*} \end{pmatrix}$$

Rutee

Modulus and yield stress was

The material properties used in this analysis are E = 116.3 GPa, v = 0.349, K = 855 MPa, and n = 0.0149

The stress strain curve for Ti-6Al-4V alloy expressed by the Ramberg-Osgood equation:

$$\varepsilon = \frac{\sigma}{E} + \left(\frac{\sigma}{K}\right)^{\frac{1}{n}}$$
 is depicted in Figure 8.

Experimental results from slopes of Bending versus strain curves4-point bending experiments the Elastic Modulus of Ti-6Al-4V substrate.

E'=137 GPa , E=117±3 GPa and yield stress σ_y =843 MPa

Literature: E=116.3±3 GPa, σ_y =830 MPa E_{coating} and K_{lc} Fracture toughness, Tensile strength of Coating ~0,

Strain Mapping

 ϵ_{11} depth (x_3) variation profiles of alumina-titania-coating/Tisubstrate test specimen at various load levels in the four point bending geometry

Phase Mapping

 ϵ_{33} depth (x_3) variation profiles of alumina-titania-coating/Tisubstrate test specimen at various load levels in the four point bending geometry.

Rutgers

Modeling and Theory

🥕 💹 👩 💆 🔇 📂 4:01 PM

Energy Dispercsive X-ray Diffraction

Thank you. Questions?

A look to the future a EDXRD Residual Stress

- In-situ Synchrotron triaxial strain measurements
- Anisotropic materials
- Small strain systems
- ←Real time studies
- ←Small diffraction volumes (e.g. gradients, buried interfaces, grain boundaries,)
- ←Line Broadening studies
- Email tsakalak@rci.rutgers.edu

EDXRD Capabilities

Two themes (0-300 KeV photons)

- a) High resolution Energy Dispersive X-ray Diffraction (EDXRD) 1 μ m to 1 cm
- b) High Energy EDXRD :Penetration depth ~ 2 inches of steel and 2 ft of Al Two strategies
- a) Strain Mapping (Internal/Residual Stress Spatial Distributions)
- b) Phase Mapping (Spatial Distributions of Phases Stresses in each phase)

Three Scales:

- a) Nanometer scale 0.1 to 100 nm (Line broadening EDXRD is best.
- b) Mesoscopic scale 100 nm to 5 μm (individual grains, particles etc)
- c) Macroscopic scale 5 µm to 10-100 mm

In situ Load/stress application (tensile, compressive, three point bending, etc load during measurement)

Performance studies in fatigue, fracture toughness, crack propagation, thermal shock stress effects and weldmends, shot \$ laser peening, & other.

Measurement of microscopic stresses within each phase due to mismatch stresses and or thermal effects.

Complex strain regimes

Rute

Modeling and Theory

$$\sigma_{11} = \frac{E\mathcal{E}_{11}}{1 - v^2} = -\frac{Ex_3}{1 - v^2} \frac{d^2 v_3}{dx_1^2} = \frac{Ex_3}{1 - v^2} \kappa_{11}$$

Integrating over cross section area we obtain the moment

$$M = -\int_{h} \sigma_{11} L_2 x_3 dx_3 = \left(\frac{EI}{1 - v^2}\right) \frac{d^2 v_3}{dx_1^2} = E' I \kappa_{11}$$

Where
$$E' = \frac{E}{1 - v^2}$$
 and $I = \frac{L_2 h^3}{12}$

The transverse strain $\varepsilon_{33}=(1/E)(-v(\sigma_{11}+\sigma_{22}))=-v(1+v)\sigma_{11}=[-v/(1-v)]\varepsilon_{11}$

$$\varepsilon_{33} = [-v/(1-v)] \varepsilon_{11}$$

For v=1/3, $\varepsilon_{33}=-(1/2)$ ε_{11}

Rute

Modeling and Theory

Micromechanics and Kirchoff's formalism of multilayers

For such loading, we can neglect the transverse components of the strain ε_{3i} . Large deformations have not been employed here due to the small thickness. In the context of micromechanics the elastic strain tensor ε^{el}_{ij} is given by:

$$\varepsilon_{ij}^{el}(x_3) = \varepsilon_{ij}^{tot}(x_3) - \varepsilon_{ij}^{*}(x_3)$$
(1)

where the total strain from classical Kirchoff plate theory is given by:

$$\varepsilon_{ij}^{tot}(x_3) = \varepsilon_{ij}^0 + \kappa_{ij} x_3 \tag{2}$$

where the curvatures κ_{ij} and the strains $\varepsilon^{\theta}_{ij}$ at $x_3 = 0$ can be assumed to be constant in the plate and i, j indices take values 1, 2 (in plane stresses case).

From micromechanics the constitutive equation can be written as:

$$\sigma_{ij}(x_3) = [C_{ijkl}](\varepsilon_{kl}^{tot} - \varepsilon_{kl}^*)$$
(3)

where C_{ijkl} represent the general stiffness matrix for the in plane stress-strain tensor case. From Eqs. (2) and (3) we can obtain the resultant force and moment due to the stress distribution in the x_3 through the thickness of our plate.

$$N_{ij} = \int_h \sigma_{ij}(x_3) dx_3$$
 and $M_{ij} = \int_h \sigma_{ij}(x_3) x_3 dx_3$