

Statistisches Praktikum WiSe21/22

> 16.03.2022 Munich

Project partner:

Yeganeh Khazaei Statistisches Beratungslabor StaBLab der LMU Institut für Statistik

Group: **Alexander Marquard** Phu Nguyen Qian Fenq

AGENDA

BACKGROUND INFORMATION

• Background:

Meaningful evaluations of the data base and determination of measures (such as the reproduction number, incidence, or hospitalization incidence) serve as guiding criteria for measures against the further spread of the virus.

Task at hand:

Predict hospitalization rate one to two weeks in the future, taking into account both time and geographical factors.

DEFINITIONS

HOSPITALIZATION (RATE)

The number of COVID-19 patients admitted for treatment (per 100,000 population) in a given time period.

 $= \frac{\text{Number of hospitalizations}}{\text{Respective population}} \cdot 100.000$

DEFINITIONS

NOWCASTING

<u>Problem</u>: Delays in reporting (period between onset of illness and reporting).

- New hospitalizations being reported daily do not reflect actual numbers
- → **Nowcast**: An estimate is provided at the current point in time by using a statistical procedure

DEFINITIONS

DELAYED REPORTS

	Reported	Updated
01.08.2021	407	756
02.08.2021	416	786

TYPICAL COVID-19 PROGRESSION

BUREAUCRATIC REPORTING PROCESS OF A COVID-19 CASE

WHAT IS ACTUALLY PREDICTED THEN?

The <u>updated</u> hospitalization rate

- on the reported date of infection
- for the next two weeks

DATA COLLECTION

RKI

- New cases
- Hospitalizations

KITMetricslab

Population

LMU

Vaccination

FINALIZED DATA SET

Reported date	Year	Calendar week	Index	State	Age group	Population	New cases	Hospitalizations
2020-03-01	2020	9	9	Bayern	80+	871866	0	0
2020-03-08	2020	10	10	Bayern	80+	871866	3	2
2020-03-15	2020	11	11	Bayern	80+	871866	39	25
2020-03-22	2020	12	12	Bayern	80+	871866	214	132
2020-03-29	2020	13	13	Bayern	80+	871866	759	383

ABSOLUTE NUMBERS OF HOSPITALIZATIONS

NUMBERS REPORTED BY THE RKI

EXPLAINING THE HOSPITALIZATION RATE

HOSPITALIZATION RATE BROKEN DOWN INTO AGE GROUPS

EXPLAINING THE HOSPITALIZATION RATE

HOSPITALIZATION RATE BY <u>AGE GROUP</u> IN <u>BAYERN</u>

ANALYZING BAYERN BY USING GAM

Distribution assumption: Hospitalization; $|x_i \sim Poi(\lambda)|$ Link: Logit

$$E(Hospitalization_i) = \beta_0 + Agegroup_i + f(index_i)$$

Effect of the individual coefficients:

Intercept: $exp(1.06) \sim 3$

05-14: $\exp(-0.03) \sim 1$

15-34: $\exp(1.93) \sim 7$

35-59: $\exp(2.77) \sim 16$

60-79: $\exp(2.58) \sim 13$

80+: $\exp(2.3) \sim 10$

on-04 and 05-14 are the least impactful age groups.

This holds true for each individual state.

ANALYZING BAYERN BY USING GAM

The effect of the time varying covariable given the age groups stays nearly the same for each age group.

This holds true for each individual state

HOSPITALIZATION RATE BY STATE

SUB-CONCLUSION

- Differentiating between states seems to be beneficial in improving the prediction, due to the differences in trend for each state
- The trend for each age group regarding the hospitalization looks however quite similar

TIME SERIES

Does the time series show a clear trend or is it stable over the course of time

Is there a seasonal pattern?

Such as the time of the year or the day of the week?

TIME SERIES (EXAMPLES)

A stationary time series

A nonstationary time series

TIME SERIES

- Every realisation $y_1,...,y_n$ can be seen as a series of random variables $Y_1,...,Y_n$.
- If the (joint) distribution of Y₁,..., Y_n is known, one can predict every realisation of these random variables

3 IMPORTANT ASPECTS OF THE TIME SERIES

Mean

$$\mu_t = E(Y_t) = \int_{-\infty}^{\infty} y \cdot f_t(y) dy$$

With t time and μ_t mean of each random variable $Y_1,...,Y_n$

Covariance

$$\gamma(s,t) = \text{Cov}(Y_s,Y_t) = \text{E}(Y_s - \mu_s)(Y_t - \mu_t)$$

Is the covariance function.
It depends on the two timestamps s and t

Correlation

$$\rho(s,t) = \frac{\gamma(s,t)}{\sqrt{\gamma(s,s)\cdot\gamma(t,t)}}$$
Is the correlation function

LINEAR TIME SERIES

$$Y_t = \chi_0 \cdot a_t + \chi_1 \cdot a_{t-1} + ...$$

$$a_t \sim N(0, \sigma^2)$$

 $t = ..., -1, 0, 1, 2,...$
 χ_i weights, $i = 0, 1, 2, ...$

Backshift-Operator

$$Bx_{t} = x_{t-1}; Bx_{t-3} = x_{t-4}$$

$$B^{2}x_{t} = x_{t-2}; (1 - B)x_{t} = x_{t} - x_{t-1}$$

$$(1 - B)^{2}x_{t} = (1 - 2B + B^{2})x_{t} = x_{t} - 2x_{t-1} + x_{t-2}$$

IMPORTANT ASPECTS OF THE <u>LINEAR</u> TIME SERIES

ACF/Autocorrelation - $\rho(h)$

Measurement of information that Y_t provides to estimate Y_{t+h}

PACF/Partial autocorrelation - τ(h)

Measurement of information that Y_t provides to estimate Y_{t+h} given Y_{t+1} ,..., Y_{t+h-1}

DIFFERENT TYPES OF TIME SERIES

- Moving average models MA(q)
- Autoregressive models AR(p)
- Autoregressive moving average models ARMA(p,q)
- Autoregressive integrated moving average models ARIMA(p,d,q)
- Autoregressive integrated moving average models with seasonal component - ARIMA(P,D,Q)_s

EXAMPLE OF AUTOREGRESSIVE MODELS - AR(p)

AR(p) model is defined by:

$$Y_{t} = \phi_{1} \cdot Y_{t-1} + \phi_{2} \cdot Y_{t-2} + ... + a_{t}$$
 (with $t = 1, 2, ...$)
 \Leftrightarrow $(1 - \phi_{1} \cdot B - \phi_{2} \cdot B^{2} ...) + Y_{t} = a_{t}$

AR(1):

$$Y_{t} = \phi \cdot Y_{t-1} + a_{t}$$
 (with $t = 1, 2, ...$)
 $\Rightarrow y_{t} = b_{0} + b_{1} \cdot x_{t} + \varepsilon_{t}$
Where $b_{0} = 0$ and $x_{t} = y_{t-1}$

ANALYZING ACF AND PACF (BAYERN)

 $\begin{array}{c} \textbf{ACF} \\ \textbf{Autocorrelation} \\ \rho(\textbf{h}) \end{array}$

 $\begin{array}{c} \textbf{PACF} \\ \textbf{Partial autocorrelation} \\ \tau(\textbf{h}) \end{array}$

MODEL DECISION

- The time series is not stationary
- The time series is seasonal
- → ARIMA(P, D, Q)_s
- Using model selection we receive
- \rightarrow ARIMA(0, 1, 1)₅₃

MODEL EVALUATION (BAYERN)

MAPE (Mean Absolute Percentage Error)

Measure of prediction accuracy of a forecasting method

$$MAPE = \frac{1}{n} \cdot \sum_{t=1}^{n} \left| \frac{A_{t} - F_{t}}{A_{t}} \right|$$

A_t: true value

F₊: forecast value

MAPE at one week: 4%

MAPE at two weeks: 19.6%

FORECAST AT TWO WEEKS FOR BAYERN

FORECASTING RESULTS

SUMMARY

- <u>Difficult</u> to forecast
- Infections cannot be accounted for hospitalization (?)
- Right now (as of February) there is a clear positive trend

SUMMARY

- The predictions should be used with care
 - Unlikely that the hospitalization will keep following the current course
 - No information regarding second infections or hospitalizations due to anonymity
 - A lot of potential information that could be missing in the univariate time series which could then lead to better predictions

SUMMARY

- Kinds of data we were unable to obtain:
 - The exact number of infections
 - Can people be hospitalized multiple times
 - The exact date of hospitalization
 - Possible indicators (illness, smoking etc.)

TIME SERIES

Mercury

Mercury is the closest planet to the Sun

Jupiter

It's the biggest planet in the Solar System

ANHANG

HOSPITALIZATIONS VS. NEW CASES

HOSPITALIZATIONS VS. NEW CASES

