ÜBUNGEN ZU "C*-ALGEBREN UND K-THEORIE" ÜBUNGSBLATT 8 ABGABE: 12.12.2016

VL: PD DR. A. ALLDRIDGE; ÜBUNGEN: CH. MAX, MSC, D. OSTERMAYR, MSC

Aufgabe 1. (6 Punkte)

- (1) Sei A eine C^* -Algebra und τ ein linearer involutiver Antiautomorphismus. Man konstruiere einen linearen involutiven Antiautomorphismus $\tilde{\tau}$ von $A \oplus A$ mit der Eigenschaft, dass $(A \oplus A, \tilde{\tau})$ bis auf Isomorphie unabhängig von τ ist.
- (2) Seien nun $A=\mathcal{C}_0(X)$ und τ wie in Beispiel 1.9.4. Man identifiziere den zu $(A\oplus A,\tilde{\tau})$ assoziierten Raum sowie den zugehörigen Automorphismus (Theorem 1.9.7) und interpretiere (1) in diesem Kontext.

Aufgabe 2. Sei \mathcal{H} ein separabler Hilbertraum unendlicher Dimension. Man zeige: (6 Punkte) Es gibt zwei lineare involutive Antiautomorphismen τ_1 , τ_2 von $\mathcal{L}(\mathcal{H})$, so dass

$$(\mathcal{L}(\mathcal{H}), \tau_1) \ncong (\mathcal{L}(\mathcal{H}), \tau_2).$$

Analog zeige man die Existenz zweier nicht äquivalenter reeller Strukuren auf $\mathcal{K}(\mathcal{H})$.

Aufgabe 3. Sei \mathcal{H} ein separabler Hilbertraum und $A \subseteq \mathcal{L}(\mathcal{H})$ eine C^* -Algebra mit $\mathcal{K}(\mathcal{H}) \subseteq A$. Man zeige: Jede treue irreduzible Darstellung $\pi \colon A \longrightarrow \mathcal{L}(\mathcal{H})$ ist unitär äquivalent zur Inklusion $A \subseteq \mathcal{L}(\mathcal{H})$.