Modeling Determinants of Undergraduate Computing Students' Participation in Internships

Megan Wolf, Amanpreet Kapoor, Charlie Hobson & Christina Gardner-McCune
University of Florida

Motivation

Industry Internships

Students

- build technical skills
- develop professional skills
- gain authentic experiences
- explore computing pathways
- develop professional identities
- secure future employment and higher salaries

(e.g., Minnes et al., 2021)

Employers

- provide cues for hiring fulltime employees
- offer an opportunity to evaluate potential candidates

(e.g., Stepanova et al., 2021)

Computing Programs

- increase retention in computing programs
- improve quality of capstone projects

(e.g., Fryling et al., 2018)

Motivation

Graduating computing undergraduate students who pursue an internship in US

(Kapoor and Gardner-McCune, 2020)

Research Question

What are the factors that influence undergraduate computing students' participation in internships?

Prior Work

- Participation in internships in computing
 - importance of internships (Kapoor and Gardner-McCune, 2019)
 - student demographics (Kapoor and Gardner-McCune, 2020)
 - barriers that support/prohibit securing internships (Kapoor and Gardner-McCune, 2020)
 - used qualitative and bivariate analysis
- Modeling internships in other domains
 - race, gender, age, first-generation status, and participation in high-impact practices such as research, etc. influenced internship participation (Hoekstra, 2021)

Prior Work

- Theoretical background on identity
 - James Marcia's theory of identity development (Marcia, 1966)
 - four statuses across two dimensions: exploration and commitment
 - o identity diffusion (low exploration, low commitment)
 - identity foreclosure (low exploration, high commitment)
 - identity moratorium (high exploration, low commitment)
 - identity achievement (high exploration, high commitment)

- Study Design
 - Larger study: mixed methods based on a Concurrent Triangulation Design
 - surveys and interviews
 - This work:
 - o cross-sectional survey data
 - quantitative approach to analysis
- Research question
 - What are the factors that influence undergraduate computing students' participation in internships?

Research Site

- Population: Computing undergraduate students
- Sample: students enrolled in an undergraduate computing degree program at a large public university in the US

Context:

- admission to the site is selective
- students can select a major when they start the program but have the flexibility to switch it at any time
- students enrolled in CS, Computer Engineering (CE), and Digital Arts & Sciences (DAS) majors
- o participation in an internship is not mandatory before graduation

- Participants and recruitment
 - study approved by the Institutional Review Board at the research site
 - participants were recruited from CS1, CS2, software engineering, HCI, and OS courses and offered extra credit or random gift cards
 - 43% response rate (N=698, Total course enrollments=1620)
 - Discarded data:
 - students who were not in CS-related majors
 - CS minors
 - o students who completed less than 80% of the survey
 - o students who were not in an undergraduate program
 - students without gender classification
 - o non-traditional students over age 24
 - o students with a high proportion of relevant missing data

- Participants
 - 518 students enrolled in
 - o CS (66%),
 - o CE (26%),
 - o DAS (4%), or
 - o double majors including CS (4%)
 - Average age of students: 20
 - O Min = 18
 - o Max = 24
 - \circ SD = 1.4

Survey

- 11 sections
 - o demographics,
 - o professional goals and identity,
 - o degree program experience,
 - o social support,
 - involvement in external activities

Questions developed from

- findings of our prior work and pilot study
- O NCWIT Student Experience of the Major Survey
- CRA Data Buddies Survey
- Bennion and Adams' Extended Objective Measure of Ego Identity
 Status (EOM-EIS) instrument for measuring Marcia's identity statuses

- Response (dependent) variable
 - binary categorical variable
 - participation in internship(s) or co-op(s) during a student's enrollment in a degree program
 - not counting internships during high school
- Explanatory or independent variables
 - 13 independent variables

Explanatory (independent) variable descriptions

Variable Category	Independent Variable	Description (Coded value)					
Demographic and Socioeconomic Factors	Household income ★	{"Less than \$20,000" (1) "Over \$150,000" (7)}					
	Race/ethnicity ▲	{White/Asian (0), Underrepresented: all other ethnic and racial representations (1)}					
	Gender ▲	{Male (0), Female (1)}					
	Age ■	Numerical (Range: 18-24)					
	Employment status ▲	{Unemployed (0), Employed - working along with the degree program (1)}					
Academic Profile	GPA ■	University-level grade point average on a 4.0 scale					
	High school courses in CS ▲	{No (0), Yes (1)}					
	Year in school ★	{Freshman (1), Sophomore (2), Junior (3), Senior (4), Super Senior (5)}					
Identity	Diffusion score ⊙	Marcia identity status composite score (scale: 6-30): Low exploration, low commitment					
	Foreclosure score ⊙	Marcia identity status composite score (scale: 6-30): Low exploration, high commitment					
	Moratorium score ⊙	Marcia identity status composite score (scale: 6-30): High exploration, low commitment					
	Achievement score ⊙	Marcia identity status composite score (scale: 6-30): High exploration, high commitment					
External Involvement	External involvement score ①	Composite score based on involvement in 14 activities, e.g., hackathons, clubs, etc.(scale: 0-42)					
Key: Binary encoded categorical ▲ Ordinal encoded categorical ★ Quantitative ■ Quantitative variable computed from ordinal scale questions ⊙							

Modeling Determinants of Undergraduate Computing Students' Participation in Internships | ACM SIGCSE 2023 | Megan Wolf, Amanpreet Kapoor, Charlie Hobson & Christina Gardner-McCune

- Analysis
 - binary logistic regression model
 - o participation in internship (Yes/No) is the response variable
 - 13 explanatory variables (excluded one variable later multicollinearity)
 - The logit (i.e., the natural logarithm of an odds ratio) forms the basis of logistic regression
 - The odds ratio represents the odds that an outcome will occur (e.g., a student participates in an internship), given the presence of some factor and controlling for other predictors

Model

$$Z = \ln\left(\frac{P_i}{1 - P_i}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{12} X_{12}$$

- \circ P_i is the probability of event i,
- \circ β_0 is the constant coefficient,
- \circ $X_1 ... X_{12}$ are the explanatory variables,
- \circ $\beta_1 \dots \beta_{12}$ are coefficients of explanatory variables

Null and Alternate Hypothesis

$$H_0 = \beta_1 = \beta_2 = \dots = \beta_{12} = 0$$

$$H_A = \beta_1 = \beta_2 = \cdots = \beta_{12} \neq 0$$

- Data imputation
 - handling 1.4% missing data
 - o 326 of the total 23828 data points were replaced
- Multicollinearity
 - o correlation coefficients such as Pearson's R (correlated if $\geq \pm 0.7$)
 - variance inflation factor (correlated if VIF > 5)
 - Age was highly correlated with the year in school (Pearson's R = 0.80) and hence we excluded age

Results

Descriptive Statistics of Dependent/Response Variable (N=518)

- No internship experience
- Participated in at least 1 internship

Results

	Coef. β	Std. Err	Z	p > Z	CI for Coef. β		Odds Ratio	CI for Odds Ratio	
	·				[0.025	0.975]	exp(β)	5%	95%
Const	-5.53	1.60	-3.45	0.00	-8.67	-2.39	0.00	0.00	0.09
HS CS Edu.	0.29	0.21	1.36	0.18	-0.13	0.71	1.34	0.88	2.04
Employment	0.10	0.23	0.45	0.65	-0.35	0.56	1.11	0.70	1.75
Year in School	0.57	0.10	5.72	0.00**	0.38	0.77	1.77	1.46	2.16
GPA	0.51	0.28	1.80	0.07	-0.05	1.06	1.66	0.96	2.89
Household Income	0.22	0.06	3.76	0.00**	0.11	0.34	1.25	1.11	1.40
Gender	-0.28	0.24	-1.16	0.25	-0.76	0.19	0.75	0.47	1.22
Race	0.16	0.24	0.67	0.50	-0.31	0.63	1.18	0.73	1.88
Moratorium Score	0.01	0.03	0.48	0.64	-0.04	0.07	1.01	0.96	1.07
Diffusion Score	-0.06	0.03	-2.14	0.03*	-0.12	-0.01	0.94	0.89	0.99
Achievement Score	0.01	0.03	0.29	0.77	-0.05	0.07	1.01	0.95	1.07
Foreclosure Score	-0.01	0.03	-0.34	0.74	-0.06	0.05	0.99	0.94	1.05
Involvement Score	0.12	0.02	6.79	0.00**	0.09	0.16	1.13	1.09	1.17
No. of Observ Df Res Df	Pseudo R ² : 0.21 Log-Likelihood: -279.5 LL-Null: -352.2			LLR p-value: 4.7e-25 * p < 0.05 ** p < 0.001					

3/1

Results

- Model fit evaluation:
 - o McFadden's pseudo- R^2 coefficient (ρ^2) = 0.21
 - indicates an excellent model fit
 - o According to McFadden, "values of .2 to .4 for ρ^2 represent an excellent fit"

Discussion

- Participation in internships is associated with:
 - year in school
 - household income
 - external involvement score
 - diffusion identity score (low exploration and low commitment)
- Compared with previous work on undergraduate internship participation (Hoekstra, 2021)
 - Similar results:
 - year in school
 - external involvement
 - New results:
 - o race and gender were not associated with internship participation
 - o household income and diffusion identity score predict internship participation

Conclusion

- We recommend CS departments :
 - provide resources and opportunities for students' participation in activities outside the curriculum by funding student organizations, coding competitions, etc.
 - underscore the importance of involvement in external activities
 - develop support programs for students from low socio-economic backgrounds to prepare for internship recruitment process

Limitations

- EOM-EIS identity scales had lower internal consistency due to the limited number of items used for each status
- our findings could be biased by the choice of our modeling technique
- observational study and results should not be interpreted as causal relationships
- data is from a modest sample of computing undergraduates enrolled at a single institution in the US where participation in internships was optional

Questions

kapooramanpreet@ufl.edu

Thanks to the SIGCSE Special Project Grant for supporting our project ☺

