Title:
Synthetic mRNA Expression System for Tumor-Specific Logic-Gated Gene Activation
Applicant:
Matthew Fornear
Inventor:
Matthew Fornear
Field of Invention:
This invention relates to synthetic biology, molecular therapeutics, and genetic engineering. More specifically,
it concerns the design and function of a synthetic mRNA expression system that activates transcription and
translation only under tumor-specific intracellular conditions.
Background:
Modern cancer treatments struggle to distinguish between tumor and healthy cells. Single-marker therapies
often fail due to expression overlap between malignant and normal tissues. A more robust approach is to
require multiple tumor-specific signals to be present before a therapeutic payload is expressed. This invention
achieves that via a logic-gated synthetic mRNA circuit.
Summary of the Invention:
The invention provides a modular genetic construct that integrates three cancer-associated intracellular
conditions as logical inputs:
Elevated MYC activity (sensed by a synthetic MYC-responsive promoter)
2. Elevated reactive oxygen species (ROS) (sensed by a riboswitch embedded in the 5' UTR)
3. Suppressed let-7 microRNA levels (sensed by four tandem let-7 response elements in the 3' UTR)
Only when all three conditions are met will the mRNA survive and be translated, producing the intended

Provisional Patent Draft: Synthetic Logic-Gated mRNA Expression System

protein payload.

Detailed Description:

- Promoter:
 - Sequence: CACGTGCACGTGCACGTGCACGTGTATAAAAG
 - Composed of four E-box motifs (CACGTG) and a minimal TATA box core promoter.
 - Responds to elevated MYC activity, common in cancer cells.
- 5' UTR ROS Riboswitch:
- Sequence: GGAAGAGGAGGAAGAGGAGGAACAGTACACGTAGCTGTACTCGGATGCTAC
- Folds into a structure that blocks the ribosome binding site unless ROS levels are elevated.
- Coding Sequence (Payload):
- Example: Enhanced Green Fluorescent Protein (GFP) coding sequence.
- Can be substituted with therapeutic genes such as Diphtheria toxin A (DTA), Granzyme B, or TRAIL.
- 3' UTR let-7 Response Elements:
 - Sequence (repeated 4x): AACTATACAACCTACTACCTCA
- Matches the seed region of let-7a microRNA, promoting degradation in non-cancerous cells.
- Polyadenylation Signal:
- Ensures proper mRNA termination and export.

Claims:

- 1. A nucleic acid construct comprising:
 - (a) a MYC-responsive promoter;
 - (b) a 5' untranslated region (UTR) containing a ROS-activated riboswitch;
 - (c) a coding sequence encoding a detectable or therapeutic protein;
 - (d) a 3' UTR containing multiple microRNA let-7 binding sites.
- 2. The construct of claim 1, wherein the coding sequence encodes green fluorescent protein (GFP).

- 3. The construct of claim 1, wherein the coding sequence encodes a cytotoxic protein selected from the group consisting of diphtheria toxin A, TRAIL, or Granzyme B.
- 4. The construct of claim 1, wherein expression occurs only when MYC activity is elevated, ROS levels are elevated, and let-7 levels are low.
- 5. A method of selectively expressing a gene in tumor cells, comprising introducing the construct of claim 1 into a cell population and allowing expression only in cells exhibiting the specified input conditions.

Appendix:

- Full GenBank sequence export (attached)
- mRNA folding analysis report (dot-bracket + MFE)
- Benchling plasmid map screenshots