CMPE 481 Data Analysis and Visualization Assignment 2 - Decision Trees Zuhal Didem Aytaç – 2018400045

Step 0. Decision Tree Algorithm

The code processes as follows:

- It reads the given txt file and plots.
- For each row, it creates a Data object (with attributes x,y and group)
- In given data, it stores the minimum and maximum values for x and y.
- For each axis, it tries to split the range to 100.
- For each split trial, it calculates the information gain.
- For each axis, it finds and returns the best split point.
- It compares the splits and selects the one with higher information gain as the initial split.
- It reports the following values for initial split: split axis, split point, entropies of the resulting groups, weighted average entropy.
- After initial step is determined and reported, it continues with the second split.
- It decides which one of the groups to split further.
- It selects the group with higher entropy.
- It applies the same processes for the second split.
- It tries to split the group with higher entropy with respect to both x and y axis.
- It selects the split with higher entropy as the second split.
- It reports the following values for second split: split axis, split point, entropies of the resulting groups, weighted average entropy.
- It plots the results.
 - It plots the dataset
 - It draws the initial split with a thick line.
 - o It draws the second split with a thin line.
 - It shows the boundary points in the legend.
- It then applies the Decision Tree Classifier of scikit-learn activity to the dataset.
- It uses the 'gini' criterion for the model.
- It extracts the split points and axis from the decision tree text.
- It plots the same results for the scikit learn splits.

Running the Code (python version: Python 3.10.0)

Step 1. Decision Boundaries

The given dataset and the code's output are shown below.

The code outputs the decisions as follows:

First split is made with respect to axis y at point 4.07020

Entropy bottom: 0.99545 Entropy top: 0.00000

Weighted average entropy: 0.60301

Second split is made with respect to axis x at point 4.76246

Entropy left: 0.74015 Entropy right: 0.68975

Weighted average entropy: 0.71268

Step 2. Plot of the Decision Tree

Step 3. Comparison with Scikit-Learn

The code's output and scikit learn's output are given below to compare. As seen, the classification is similar with small differences in boundary points. The difference is at %0.01 level

Step 4.1. Decision Boundaries

I wanted to try a dataset where one group is centered on the middle. The outputs are given below.

The code outputs the decisions as follows:

First split is made with respect to axis x at point 5.97249

Entropy left: 0.88960 Entropy right: 0.00000

Weighted average entropy: 0.59701

Second split is made with respect to axis y at point 1.99407

Entropy bottom: 0.00000 Entropy top: 0.99256

Weighted average entropy: 0.67809

Step 4.2. Plot of the Decision Tree

The code's output and scikit learn's output are given below to compare. As seen, the classification is similar with small differences in boundary points.

