International Rectifier

PROVISIONAL

IRF7702

HEXFET® Power MOSFET

V_{DSS}	R _{DS(on)} max	I _D
-12V	$0.014@V_{GS} = -4.5V$	-8.0A
	$0.019@V_{GS} = -2.5V$	-7.0A
	$0.027@V_{GS} = -1.8V$	-5.8A

Ultra Low On-Resistance

- -1.8V Rated
- P-Channel MOSFET
- Very Small SOIC Package
- Low Profile (< 1.1mm)
- Available in Tape & Reel

Description

HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the ruggedized device design, that International Rectifier is well known for, provides the designer with an extremely efficient and reliable device for battery and load management.

The TSSOP-8 package has 45% less footprint area than the standard SO-8. This makes the TSSOP-8 an ideal device for applications where printed circuit board space is at a premium. The low profile (<1.1mm) allows it to fit easily into extremely thin environments such as portable electronics and PCMCIA cards.

Absolute Maximum Ratings

	•		
	Parameter	Max.	Units
V _{DS}	Drain- Source Voltage	-12	V
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ -4.5V	±8.0	
I _D @ T _C = 70°C	Continuous Drain Current, V _{GS} @ -4.5V	±7.0	A
I _{DM}	Pulsed Drain Current ①	±70	
P _D @T _C = 25°C	Power Dissipation	1.5	W
P _D @T _C = 70°C	Power Dissipation	0.96	VV
	Linear Derating Factor	0.01	W/°C
V_{GS}	Gate-to-Source Voltage	± 8.0	V
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	83	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-12			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.007		V/°C	Reference to 25°C, I _D = -1mA
				0.014	Ω	V _{GS} = -4.5V, I _D = -8.0A ②
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.019		V _{GS} = -2.5V, I _D = -7.0A ②
				0.027		V _{GS} = -1.8V, I _D = -5.8A ②
V _{GS(th)}	Gate Threshold Voltage	-0.45		-1.2	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
g _{fs}	Forward Transconductance	26			S	$V_{DS} = -10V, I_D = -8.0A$
I _{DSS}	Drain-to-Source Leakage Current			1.0	μΑ	V _{DS} = -12V, V _{GS} = 0V
				-25		$V_{DS} = -9.6V, V_{GS} = 0V, T_{J} = 70^{\circ}C$
1	Gate-to-Source Forward Leakage			-100		$V_{GS} = -8.0V$
I _{GSS}	Gate-to-Source Reverse Leakage			100	nA	V _{GS} = 8.0V
Q _g	Total Gate Charge		54	81		$I_D = -8.0A$
Q _{gs}	Gate-to-Source Charge		7.8	12	nC	$V_{DS} = -9.6V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		15	23		V _{GS} = -4.5V②
t _{d(on)}	Turn-On Delay Time		16			$V_{DD} = -6.0V$
t _r	Rise Time		21		ns	$I_D = -1.0A$
t _{d(off)}	Turn-Off Delay Time		320			$R_D = 6.0\Omega$
tf	Fall Time		250			$R_G = 6.0\Omega$ ②
C _{iss}	Input Capacitance		3470			V _{GS} = 0V
Coss	Output Capacitance		1040		pF	V _{DS} = -10V
C _{rss}	Reverse Transfer Capacitance		670			f = 1.0MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			4.5		MOSFET symbol
	(Body Diode)			-1.5	_	showing the
I _{SM}	Pulsed Source Current			70	A	integral reverse
	(Body Diode) ①			-70		p-n junction diode.
V _{SD}	Diode Forward Voltage			-1.2	V	$T_J = 25^{\circ}C$, $I_S = -1.5A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		58	87	ns	$T_J = 25^{\circ}C, I_F = -1.5A$
Q _{rr}	Reverse RecoveryCharge		41	62	nC	di/dt = 100A/μs ②

Notes:

① Repetitive rating; pulse width limited by max. junction temperature.

 $[\]ensuremath{\ensuremath{\mbox{3}}}$ When mounted on 1 inch square copper board, t<10 sec

② Pulse width \leq 300 μ s; duty cycle \leq 2%.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Source-Drain Diode Forward Voltage

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Threshold Voltage Vs. Temperature

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Typical Power Vs. Time

Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. Normalized On-Resistance Vs. Temperature

Fig 13. Typical On-Resistance Vs. Drain Current

Fig 14. Typical On-Resistance Vs. Gate Voltage

PROVISIONAL

IRF7702

TSSOP-8 Part Marking Information

EXAMPLE: THIS IS AN IRF7702

WORK WEEK 27-52, ALPHANUMERIC YEAR CODE (A,B, ...ETC.)

YEAR	Υ	WORK WEEK	W
2001	Α	27	Α
2002	В	28	В
2003	С	29	С
1994	D	30	D
1995	Ε		
1996	F		
1997	G		
1998	Н		
1999	J	1	1
2000	K	50	Χ
		51	Υ
		52	Z

TSSOP-8 Tape and Reel

TSSOP-8 Package Outline

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS AND INCHES.
- 3. CONTROLLING DIMENSION: MILLIMETER.
- (4) DATUM PLANE H IS LOCATED AS SHOWN.
- (5) DATUM A AND B TO BE DETERMINED AT DATUM PLANE H.
- 6 DIMENSIONS D AND E1 ARE MEASURED AT DATUM PLANE H.
- 7) DIMENSION L IS THE LEAD LENGTH FOR SOLDERING TO A SUBSTRATE.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE MO-153AA.

LEAD ASSIGNMENTS

International Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111
IR JAPAN: K&H Bldg, 2F, 30-4 Nishi-Ikehukura 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086

IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936

Data and specifications subject to change without notice. 6/00