LU_SNR_db

Leading University, Sylhet

Contents

Function:	1
STL Function	1
Stack & Queue & Deque & Priority_Queue	2
Others	2
Math	3
Bits:	4
Bitset Function	5
Combination And Permutation	6
Geometry	8
Algorithm	11
Binary Search	11
Sieve Algorithm (find prime number)	11
Prime Factorization (Integer factorization)	11
Prime Factorization using Sieve algorithm	12
Find N'th Fibonacci number using Binet's Formula	12
Binary Exponentiation using Iterative method	13
Sum and Count of Divisor	13
Number of divisors	13
Depth First Search(DFS)	14
Breadth-first search (BFS) And 0/1 BFS	15
Dijkstra's Shortest Path Algorithm(Single Source Shortest Path)	15
Floyd-Warshall Algorithm(All Pair Shortest Path)	16
Minimum fraction	17
Count words in a string using stringstream	17

Function:

```
• char ch = toupper('z'); or, ch=('z' ^ 32);
                                                               => ch='Z':
  char ch = tolower('B'); or, ch=('B' | 32);
                                                               => ch='b';
  abs(x) = abs(-x) = x;
   \mathbf{sqrt}(\mathbf{x}) = \sqrt{\mathbf{x}}; [ \mathbf{sqrtl}(\mathbf{x}) return long double; ]
  pow(x, y) = x^y; [powl(x, y) return long double;] => round(pow(x, y));
  log10(3) = 0.4771212;
                                 log2(3) = 1.584962501;
  round(x.y) => if y>=5 then ans = x+1;
   ceil(x.y) = if y = 01 then ans = x+1; or, ans=(a+b-1)/b; [ceil symbol=> [x.y]= x+1;]
  floor(x.y) => if x.y positive then ans=x; if x.y negative then ans=x-1;
   <u>ex:</u> floor(-2.3) = -3, floor(3.8) = 3;
  trunc(x.y) => if x.y positive / negative then ans = x; if ex: floor(-2.3) = -2, floor(3.8) = 3;
  stoi(s) => convert string to integer; [stoll(s)-> for long long int value.]
  to_string(num) => convert integer to string;
  getline(cin, name) => input a line. [ignore buffer_use => fflush(stdin); or, cin.ignore();]
  s2.substr(s1_pos, s2_len) => This function generates a new string with its value initialized
   to a copy of a sub-string of this object. [if string s1="abcdef"; then, string s2=s1.substr(1,3);
   -> s2 = "bcd"; string s2 = s1.substr(1); -> s2 = "bcdef"; ]
  next_permutation(): It is used to rearrange the elements in the range [first, last) into the
   next lexicographically greater permutation. {{1,2,3}, {1,3,2}, {2,1,3}, {2,3,1}, {3,1,2}, {3,2,1}};
         int arr[] = \{1, 2, 3\};
                                        => O(n*n!)
         do{
           //Add any conditions;
           cout << arr[0] << " " << arr[1] << " " << arr[2] << "\n";
         } while (next_permutation(arr, arr + 3));
```

STL Function:

- **size()** Returns the number of elements in the vector. [v.size(); mp.size(); st.size();]
- **empty()** Returns whether the container is empty. If **empty** return **true(1)**, if **not empty** return **false(0)**. [**v.empty()**; **mp.empty()**; **st.empty()**;]
- **front()** Returns a reference to the first element in the vector. [v.front();]
- **back()** Returns a reference to the last element in the vector. [v.back();]
- push_back() It push the elements into a vector from the back.
- **pop_back()** It is used to pop or remove elements from a vector from the back.
- insert() It inserts new elements before the element at the specified position. [v.insert(v.begin(), value); mp.insert({key, value}); st.insert(key);]

- Leading University
- erase() It is used to remove elements from a container from the specified position or range. [v.erase(v.begin() + position); mp.erase(value); st.erase(value); str.erase(v.begin() + position);]
- **clear()** It is used to remove all the elements. [name.clear();]
- **mp.count(**K**)** The function returns the number of times the key K is present in the map/set container. [**st.count(K)**;] => O(logn);
- max_size()- Returns the maximum number of elements a set container can hold. [v.max_size(); mp.max_size(); st.max_size();]
- **find()** An iterator to the first element in the range that compares equal to val. If no elements match, the function returns last(**v.end()**). [**find (v.begin(), v.end(),** val);] => O(n); [**mp.find(**val); **st.find(**val);] => O(log(n))
- lower_bound() Let v={1,5,7}; if we search 1 return 0's index address, if we search 2 return 1's index address, if we search 0 return 0's index address, if we search 7<value then return v.end() address. (must be sorted) => 0(logn)
 [auto x=lower_bound(v.begin(), v.end(), val);] [auto x = mp.lower_bound(val); auto x = st.lower_bound(val);] →(x->first; x->second;)
- **upper_bound()** Let v={1,5,7}; if we search **1** return **1's** index address, if we search **2** return **1's** index address, if we search **0** return **0's** index address, if we search **7<value** then return **v.end()** address. **(must be sorted)** =>0(logn)
- rand(): The rand() function is used in C++ to generate random numbers in the range [0, RAND_MAX). Ex: a=rand(); a=(rand()%10)+1 [=> a>=1 && a<=10]; if lb=20 and ub=40 Then, a=(rand() % (ub lb + 1)) + lb [=> a>=20 && a<=40];
- **Ordered Set**: The complexity of the **insert** and **erase** functions is O(log n).

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template <typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag,
tree_order_statistics_node_update>;

// *s.find_by_order(k): K-th element in a set (counting from zero).
// s.order_of_key(k): Number of items strictly smaller than k. (same as, lower bound of k)
```

Stack & Queue & Deque & Priority Queue:

ordered_set<int> s; // we can change the data type.

- push(): Adds the element 'x'. [s.push(x); q.push(x); pd.push(x);]
 - In Deque, you can push both side [dq.push_back(x); dq.push_front(x);]
- pop(): Deletes the element. [name.pop();]
 - In Deque, you can pop both side [dq.pop_back(x); dq.pop_front(x);]
- top(): Returns a reference to the top most element of the stack. [s.top(); pq.top();]
- front(): Returns a reference to the first element of the queue. [q.front(); dq.front();]

- back(): Returns a reference to the last element of the queue. [q.back(); dq.back();]
- **empty():** Returns whether the stack/queue is empty. It return **true** if the stack/queue is empty otherwise returns false. [**name.empty()**;]
- **dq.at(x):** Returns a reference to the element at position **x** in the deque container object. <u>Ex</u>: $dq = \{10,3,15,20\}$; ans= dq.at(2); =>ans=15
- **priority_queue**<int>**max_heapPQ**; => In this queue elements are in non-increasing. [same as **multiset** <int, greater<int>> s;]
- **priority_queue<**int, vector<int>, **greater<int>>min_heapPQ**; => In this queue elements are in non-decreasing order. [similar to **multiset**]

Others:

- **binary_search()**; Return true(1) or false(0). If found return **1**. Else return **0**; [**binary_search(**start_address, end_address, **value_to_find)**;]
- max_element(): Return the maximum value's address of the vector.

```
[int max= *max_element(v.begin(),v.end()); ] => O(n)
```

• min_element(): Return minimum value's address of the vector.

```
[int min= *min_element(v.begin(),v.end()); ] => O(n)
```

• accumulate(): Return summation of the vector.

```
[int sum= accumulate(v.begin(),v.end(), 0); ] => O(n)
```

• count(): Return count of the 'val' element.

```
[int c = count(v.begin(), v.end(), val);] => O(n)
```

- all of()/any_of()/none of(): Are all of/at least one/none of the elements greater than
 0? (you can change this condition) => return true(1) or, false(0).
 - > all_of(v.begin(), v.end(), [](int x){return x>0;});
 - > any_of(v.begin(), v.end(), [](int x){return x>0;});
 - > none_of(v.begin(), v.end(), [](int x){return x>0;});
- iota(): The algorithm iota() creates a range of sequentially increasing values.

```
[iota(a, a+5, 10); => a[5]={10,11,12,13,14};]
• is_sorted(): Return bool value. If, vector are sorted return 1. Else return 0.
```

```
[bool x= is_sorted(v.begin(), v.end()); ] \Rightarrow 0(n)
```

• gcd(): Return a and b gcd(Greatest Common Divisor) value.

```
[int gcd = \underline{gcd(a,b)};] => O(logn)
```

• lcm(): Return a and b lcm(Least Common Multiple) value.

```
[int lcm = (a*b)/\_gcd(a,b);] => O(logn)
```

- **memset()**: Initialize a **1D** vector with **-1**(or, **0**): =>0(n)
 - memset(vec_name, -1, sizeof(vec_name)); -> use any time.
- Initialize a **1D** vector with 1(or, any number): =>0(n) **vector**<int> vec(n, 1); [n=row, m=col] -> use only initialize time.

Initialize a 2D vector with 1(or, any number): =>0(n)
 vector<vector<int>> vec(n, vector<int> (m, 1)); [n=row, m=col]

Math:

```
• p+(p+1)+...+(q-1)+q = (q+p)(q-p+1)/2; [Ex: 7+8+9+10+11=(11+7)(11-7+1)/2=45]
• 1+2+3+...+(n-1)+n = (n*(n+1))/2; [Ex: 1+2+3+4+5=(5*(5+1))/2=15]
• 1+3+5+...+(2n-3)+(2n-1)=N^2; [N-> number of size] [Ex: 1+3+5=3^2=9]
• 2+4+6+...+(2n-2)+2n = N*(N+1); [N-> number of size] [Ex: 2+4+6 = 3*(3+1) = 12]
• 1^2+2^2+3^2+...+(n-1)^2+n^2=n(n+1)(2n+1)/6; [Ex: 1+4+9=3(3+1)(2*3+1)/6=14]
• 1^3 + 2^3 + 3^3 + ... + (n-1)^3 + n^3 = \{n(n+1)/2\}^2; [Ex: 1+8+27=\{3(3+1)/2\}^2=36]
• 1^2 + 3^2 + 5^2 + ... + (2n - 3)^2 + (2n - 1)^2 = N*(4N^2 - 1) / 3; [Ex: 1+9+25 = 3*(4*3^2 - 1)/3 = 35]
• 1^3 + 3^3 + 5^3 + ... + (2n - 3)^3 + (2n - 1)^3 = N^2 (2N^2 - 1); [Ex: 1 + 27 + 125 = 3^2 (2*3^2 - 1) = 153]
• 1^4 + 2^4 + 3^4 + ... + (n-1)^4 + n^4 = n(n+1)(2n+1)(3n^2 + 3n - 1) / 30;
   [Ex: 1+16+81+256 = 4(4+1)(2*4+1)(3*4^2+3*4-1)/30 = 354]
• c^a + c^{a+1} + \cdots + c^b = (c^{b+1} - c^a) / (c-1); [c!=1]
• 2^0 + 2^1 + 2^2 + 2^3 + ... + 2^{(k-1)} = 2^k - 1; [Ex: 1 + 2 + 4 + 8 + 16 + 32 = 2^6 - 1 = 63]
• If F(n) = -1 + 2 - 3 + ... + (-1)^{n} * n
   \triangleright If N even number, ans = N/2;
   \rightarrow If N odd number, ans = ((N + 1) / 2) * (-1);
• N-th Odd number = (2 * N) - 1;
• N-th Even number = 2*N;
• a + a*k + a*k^2 + ... + b = ((b*k) - a) / (k-1). [ex: 3 + 6 + 12 + 24 = ((24*2) - 3) / (2-1) = 45]
• a + (a+4) + (a+2*4) + ... + b = (n*(a+b)) / 2. [n-> number of size]
   [ex: 3 + 7 + 11 + 15 = (4 * (3 + 15)) / 2 = 36.]
• even ± even = even; even ± odd = odd;
                                                 odd ± odd = even;
• even × even = even; even × odd = even;
                                                 odd \times odd = odd:
• Number of digits in N = floor(log10(N)) + 1;
• Number of trailing zeros in N! => while(N) sum+=N/5, N/=5; [Ex: 10! = 3628800;]
• For a grid of size (N \times N) the total number of squares formed: ((n*(n+1))*(2n+1)) / 6;
```

• The number of ways of selecting one or more things from N different things is given by 2^N -1. (combination)

• Angle between clock minute and hour, ans = abs ((0.5 * 11 * m) - (30 * h));

- Number of possible of N bits = 2^N . [4bits, 24 = 16 => 0 to 15 number possible with using 4 bits] $(2^n 1) \rightarrow$ highest value.
- $N = 2^x = x = log2(N)$. Ex: $64 = 2^6 [log2(64) = 6]$.

• 5 minutes Clock Angular Value is 30°. [1 min = 6°]

 \triangleright For smaller angle, if (ans >180) ans = 360 - ans;

- $\log_{\mathbf{u}}(\mathbf{x}) = \frac{\log k(\mathbf{x})}{\log k(\mathbf{u})}$ [k-> any base (2,10)]; $\log_{\mathbf{a}}(\mathbf{k}) = \frac{1}{\log k(a)}$; $\mathbf{a}^{\mathbf{x}} = \mathbf{b}$;=> $\mathbf{x} = \log_{\mathbf{a}} \mathbf{b}$;
- (A * B) = ((A % Mod) * (B % Mod)) % Mod; <= [Same As +,- Operator]
- (A / B) = ((A % Mod) * (BinExp(A, Mod-2) % Mod)) % Mod;

Bits:

- Bitwise AND(&): (1 & 1)= 1;
- Bitwise $OR(|\cdot|)$: (0 | 1) = 1; (1 | 0) = 1; (1 | 1) = 1;
- Bitwise ExOR(^): (0 ^ 1)= 1; (1 ^ 0)=1;
- **Bitwise NOT(~):** inverts all bits of it. [$a = 1001_2 -> (~a) = 0110$]
- **Right Shift(>>):** right shifting an integer "x" with an integer "y" denoted as '(x>>y)' is equivalent to **dividing** x with **2^y**. Ex: let's take N=32; which is 100000 in Binary Form. Now, if N=(N>>2) then N will become N=N / (2^2). Thus, N=32 / (2^2) = 8 which can be written as 1000. [$18 = (10010)_2 \rightarrow (18>>1) = 01001$; (18>>2) = 00100;
- **Left Shift(<<):** left shifting an integer "x" with an integer "y" denoted as '(x<<y)' is equivalent to **multiplying** x with **2^y**. <u>Ex</u>: let's take N=22; which is 00010110 in Binary Form. Now, if N=(N<<2) then N will become N=N * (2^2). Thus, N=22 * (2^2) = 88 which can be written as 01011000. [$3 = (11)_2$; => (3 <<1) = 110; (3 <<2) = 1100;]
- (N&1) == 1 -> N odd number; (N&1) == 0 -> N even number;
- (N / 2) == (N >> 1); (N * 2) == (N << 1);
- (2^N) == (1LL << N); => N = (1LL << (long long)log2(N));
- A quick way to swap a and $b \Rightarrow [a = b, b = a, a = b]$
- CheckBit(x, k) => (x & (1LL << k));
- SetBit(x, k) => (x |= (1LL << k));
- ClearBit(x, k) => $(x \&= \sim (1LL << k));$
- FlipBit(x, k) => $(x ^= \sim (1 << k));$
- MSB(mask) => 63 _builtin_clzll(mask); [Most Significant Bit position]
- LSB(mask) => _builtin_ctzll(mask); [Least Significant Bit position]
- __builtin_popcount(x): This function is used to count the number of one's(set bits) in an integer(32 bits). Similarly you can use __builtin_popcountll(x) for long long data types (64 bits). Ex: x = 5 (101) => ans=2;
- _builtin_clz(x): It counts number of zeros before the first occurrence of one(set bit) of the integer(32 bit).(clz = count leading zero's.)
 Ex: x= 16 (00000000 00000000 000000000 00010000) => ans = 27
- __builtin_parity(x): This function returns true(1) if the number has odd parity else it returns false(0) for even parity.(parity= count the number of one's)

 Ex: x = 7 (111) => ans = 1; x = 6 (110) => ans = 0;
- _builtin_ctz(x): Count number of zeros from last to first occurrence of one(set bit) of the given integer.(ctz = count trailing zeros;) Ex: x = 16 (00010000) => ans = 4;

Bitset Function:

bitset< highest_Bit_number > name(data);

- **bitset**<64> b1(val); or, **bitset**<4>b2("1011"); => auto-convert to binary;
- **to_ulong():** Converts the contents of the **bitset** to an **unsigned long integer**; [Ex: b1 = 1001, int val = b1.**to_ulong()**; => val = 9;]
- **to_string()**: Converts the contents of the **bitset** to a **string**; [Ex: b1 = 1001, s1 = b1.to_string(); => s1= "1001";]
- **flip(**position**)**: flip function flips all bits (**1 to 0** and **0 to 1**). [Ex: b1 = 1001; b1.**flip(**1); =>b1 = 1011; b1.flip(1); =>b1=1001;]
- **count()**: returns the total number of **set bits**(1); [Ex: b1=1001; bit= b1.count(); => bit =2;]
- any(): function to check if any of its bits are set or not; [Ex: b1=1001, any_set = b1.any(); => any_set = 1; b2=0000; any_set = b1.any(); => any_set = 0;]
- **set()**: b1.set(**pos**) makes bset[pos] = 1;(i.e. default is 1). b1.set(**pos**, **value**) makes bset[pos] = 0 or, 1; [Ex: b1=1001; b1.set() => b1 = 1111; b1.set(1) => b1 = 1011; b1.set(0) => b1=1001; b1.set(3, 0);=> b1=0001; b1.set(2,1)=> b1=1101;]
- **reset():** reset function makes all bits 0; [Ex: b1 = 1001; b1.reset()=> b1 = 0000; b1.reset(3)=> b1 = 0001;]

Combination And Permutation:

$$Arr nC_r = \frac{nPr}{r!}$$
 Or, $nPr = nCr * r!$

Combination(C):

If, Order Doesn't Matter and Repetition Allowed then,

Possibilities,
$${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

• If, Order Doesn't Matter and Repetition Not Allowed then,

Possibilities,
$${}^{n}C_{r} = \frac{(n+r-1)!}{r!(n-1)!}$$

- **Properties**: nCr = nC(n-r), $nC_0 = nCn = 1$, nC1 = nC(n-1) = n, nCr + nC(r-1) = (n+1)Cr, nCx = nCy => x = y or, x + y = n.
- nCr has maximum value if:

>
$$r = n/2$$
; when n is **Even**.
> $r = (n+1)/2$; when n is **Odd**.

• Short Technique:

$$\mathbf{nCr} = \frac{n*(n-1)*(n-2)*...r'th\ times}{r*(r-1)*(r-2)*...r'th\ times}$$

$$\underline{\underline{Ex}}: {}^{20}C_3 = \frac{20*19*18}{3*2*1} = 1140, {}^{10}C_8 = {}^{10}C_{10-8} = {}^{10}C_2 = \frac{10*9}{2*1} = 45, {}^{20}C_{15} = {}^{20}C_{20-15} = {}^{20}C_5 = \frac{20*19*18*17*16}{5*4*3*2*1} = 15504.$$

Permutation(P):

- If, **Order Matter** and **Repetition Allowed** then, Possibilities = n^r
- If, **Order Matter** and **Repetition Not Allowed** then, Possibilities = $\frac{n!}{(n-r)!}$
- **Properties**: $nP_0 = 1$, nP1 = n, nP(n-1) = n!, nPr/nP(r-1) = n r + 1.
- Short Technique: nPr = n*(n-1)*(n-2)*... r'th times.

```
Ex: {}^{10}P_3 = 10 * (10-1) * (10-2) = 720, {}^{15}P_4 = 15 * 14 * 13 * 12 = 32760.
```

Find Combination(nCr):

 $\Rightarrow O(r*log(n))$

```
Ex: 5C2 = 10, 13C5 = 1287;
void nCr(ll n, ll r)
{
    ll p = 1, k = 1, m;
    if (n - r < r) r = n - r;
    if (r!= 0)
    {
        while(r)
        {
             p*=n, k*=r;
            m=_gcd(p, k);
            p/=m, k/=m;
            n--, r--;
        }
    }
    else p = 1;
    cout < p < endl;
}</pre>
```

Find Permutation (nPr):

=> O(n)

Ex: 5P2= 20, 6P3= 120;

LU_SNR_db

Leading University

```
ll fact(ll n)
{
    if(n <= 1) return 1;
    return n * fact(n - 1);
}
ll nPr(ll n, ll r)
{
    return fact(n) / fact(n - r);
}
int main()
{
    ll n, r;
    cin>>n>>r;
    cout<<nPr(n, r);
}</pre>
```

Geometry:

GEOMETRY QUICK GUIDE 2: 2D SHAPES (UK)

TRIANGLES	QUADRILATERALS		REGULAR POLYGONS
Equilateral triangle	Square		Equilateral triangle
All sides equal; interior angles 60°	All sides equal; all angles 90°		3 sides; angle 60°

Isosceles triangle	Rectangle		Square
2 sides equal; 2 congruent angles	Opposite sides equal, all angles 90°		4 sides; angle 90°
Scalene triangle No sides or angles equal	Rhombus All sides equal; 2 pairs of parallel lines; opposite angles equal		Regular Pentagon 5 sides; angle 108°
	₹ → †		
Right triangle	Parallelogram		Regular Hexagon
1 right angle	Opposite sides equal, 2 pairs of parallel lines		6 sides; angle 120°
Acute triangle All angles acute	Kite Adjacent sides equal; 2 congruent angles		Regular Octagon 8 sides; angle 135°
An angles acute	The same section is	Congressive angles	Sides, dright 135
Obtuse triangle 1 obtuse angle	Trapezium 1 pair of parallel sides	Trapezoid No pairs of parallel sides	Regular Decagon 10 sides; angle 144°

Law of sines

$$\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$$

Heron's Formula

Ceva's Theorem
Given AE, BF & CD concurrent,
AD BE CF
$\frac{1}{BD} \times \frac{1}{CE} \times \frac{1}{AF} = 1$

LU SNR_db

Leading University

SQUARE

s = sideArea: $A = s^2$ Perimeter: P = 4s

CIRCLE

r = radius, d = diameterDiameter: d = 2r

Area: $A = \pi r^2$

Circumference: $C = 2\pi r = \pi d$

RECTANGLE

l = length, w = width

Area: A = lw

Perimeter: P = 2l + 2w

SECTOR OF CIRCLE

 $r = \text{radius}, \theta = \text{angle in radians}$

Area: $A = \frac{1}{2}\theta r^2$ Arc Length: $s = \theta r$

TRIANGLE

b = base, h = height

Area: $A = \frac{1}{2}bh$

Perimeter: $\bar{P} = a + b + c$

ELLIPSE

a = semimajor axisb = semiminor axis

Area: $A = \pi ab$

Circumference:

$$C \approx \pi \left(3(a+b) - \sqrt{(a+3b)(b+3a)}\right)$$

EQUILATERAL TRIANGLE

s = side

Height: $h = \frac{\sqrt{3}}{2}s$

Area: $A = \frac{\sqrt{3}}{4}s^2$

ANNULUS

r = inner radius,

R = outer radiusAverage Radius: $\rho = \frac{1}{2}(r+R)$

Width: w = R - r

Area: $A = \pi (R^2 - r^2)$

or $A = 2\pi \rho w$

PARALLELOGRAM

b = base, h = height, a = side

Area: A = bh

Perimeter: P = 2a + 2b

TRAPEZOID

a, b = bases; h = height;

c, d = sides

Area: $A = \frac{1}{2}(a+b)h$

Perimeter:

Kite:

P = a + b + c + d

REGULAR POLYGON

s = side length,

n = number of sides

Circumradius: $R = \frac{1}{2}s \csc(\frac{\pi}{n})$

Area: $A = \frac{1}{4}ns^2 \cot(\frac{\pi}{n})$

or $A = \frac{1}{2}nR^2\sin(\frac{2\pi}{n})$

Area = $(d1 * d2) / 2 = s^2 * sin(C);$ **Rhombus**: **Area** = (d1 * d2) / 2;

Perimeter = 4*s;

Perimeter = 2(s1 + s2);

d1 and d2= lengths of the diagonals, s = s1 = s2 = length of side, C = interior angle;

- . ~

3D GEOMETRY FORMULAS

CUBE

s = side

Volume: $V = s^3$

Surface Area: $S = 6s^2$

GENERAL CONE OR PYRAMID

A =area of base, h =height

Volume: $V = \frac{1}{3}Ah$

RECTANGULAR SOLID

l = length, w = width,

h = height

Volume: V = lwh

Surface Area:

S = 2lw + 2lh + 2wh

RIGHT CIRCULAR CONE

r = radius, h = height

Volume: $V = \frac{1}{3}\pi r^2 h$

Surface Area:

 $S = \pi r \sqrt{r^2 + h^2} + \pi r^2$

SPHERE

r = radius

Volume: $V = \frac{4}{3}\pi r^3$

Surface Area: $S = 4\pi r^2$

FRUSTUM OF A CONE

r = top radius, R = base radius,

h = height, s = slant height

Volume: $V = \frac{\pi}{3}(r^2 + rR + R^2)h$

Surface Area:

 $S = \pi s(R+r) + \pi r^2 + \pi R^2$

RIGHT CIRCULAR CYLINDER

r = radius, h = height

Volume: $V = \pi r^2 h$

Surface Area: $S = 2\pi rh + 2\pi r^2$

SQUARE PYRAMID

s = side, h = height

Volume: $V = \frac{1}{3}s^2h$

Surface Area:

 $S = s(s + \sqrt{s^2 + 4h^2})$

TORUS

r =tube radius, R =torus radius

Volume: $V = 2\pi^2 r^2 R$

Surface Area: $S = 4\pi^2 rR$

REGULAR TETRAHEDRON

s = side

Volume: $V = \frac{1}{12}\sqrt{2}s^3$

Surface Area: $S = \sqrt{3}s^2$

Algorithm

```
Binary Search:
                                                                => O(\log(n))
void BinarySearch(vector<ll> &v, int n, int target)
  int low = 0, high = v.size() - 1, c = 0, mid = 0;
  while (high - low > 1) // or, low <= right
    C++;
    mid = (low + high) >> 1; // or, mid = low + (high - low)/2; or, (low + high)/2;
    if (v[mid] < target) low = mid + 1;
    else high = mid;
  if (v[low] == target) cout << low << "Found n";
  else if (v[high] == target) cout << high << "Found\n";</pre>
  else cout << "Not Found\n";</pre>
}
Sieve Algorithm (find prime number):
                                                                =>0(nloglogn)
const int N = 1e7 + 10; // N=10^7
vector<bool> isPrime(N, 1);
void sieve()
  isPrime[0] = isPrime[1] = false;
  for (int i = 2; i < N; i++)
    if (isPrime[i] == true)
      for (int j = 2 * i; j < N; j += i)
        isPrime[j] = false;
    }
  }
Prime Factorization (Integer factorization): => 0(sqrt(n))
Ex: 36 => 2 2 3 3
int main()
{
  int n;
  cin >> n;
  vector<int> prime factors;
  for (int i = 2; i * i <= n; i++)
    while (n \% i == 0)
```

```
prime_factors.push_back(i);
      n = i;
    }
  if (n > 1) prime_factors.push_back(n);
  for (auto &prime : prime_factors)
   cout << prime << " ";
}
Prime Factorization using Sieve algorithm:
                                                                      => O(\log(n))
Ex: 50 => 2 5 5
vector<int> spf(N); // SPF : smallest prime factor
void sieve() // => O(nloglogn)
  for (int i = 1; i < N; i++) spf[i] = i;
  for (int i = 2; i * i < N; i++)
    if (spf[i] == i)
      for (int j = i * i; j < N; j += i)
         if (spf[j] == j) spf[j] = i;
    }
  }
int main()
  sieve();
  int n;
  cin >> n;
  while (n!=1)
    cout << spf[n] << " ";
    n = spf[n];
  }
Find N'th Fibonacci number using Binet's Formula:
                                                                          => 0(1)
int fib(int n){
  double phi = (sqrt(5) + 1) / 2;
  return round(pow(phi, n) / sqrt(5));
}
```

```
Binary Exponentiation using Iterative method:
                                                                          => 0(\log(b)).
Ex: 3^{13} => 3^{(8+4+0+1)} => 3^8 * 3^4 * 3^0 * 3^1 => 1594323:
                                                            \rightarrow(a<sup>b</sup>)
const int Mod = 1e9 + 7;
long long BinExpIter(long long a, long long b)
  long long ans = 1;
  while (b)
    if (b & 1)
      ans = ans * a;
      // ans=(ans*a) % Mod;
    }
    a = a * a;
    // a=(a*a) \% Mod;
    b >>= 1:
  return ans;
Binary Exponentiation for N^{1/x}:
                                                                   => O(x*log(N*10^d))
3^{1/5}= 1.2457312346;
double eps = 1e-6; // eps=1e-d; =>with d decimal accuracy
double BinExpPow (double n, int x)
  double l = 0, r = n, m = (l + r) / 2;
  while (r - l > eps)
    if (pow(m, x) > n) r = m;
    else l = m;
    m = (l + r) / 2;
  return m;
Sum and Count of Divisor:
                                                                           =>0(sqrt(n))
<u>Ex(sum)</u>: 20 \Rightarrow 22 (1+2+4+5+10+20). <u>Ex(count)</u>: 20 \Rightarrow 6 (1,2,4,5,10,20).
int main()
  ll n, sum = 0, i, c = 0;
  cin >> n;
  for (i = 1; i * i <= n; i++)
    if (n \% i == 0)
```

```
sum += i, ++c;
      if (i != n / i) sum += n / i, ++c;
    }
  cout <<"Sum = "<< sum <<" Count = "<< c << endl;
Number of divisors:
                                                                  => O(n\log(n))
Ex: 32 => 2 4 8 16 32
const int N = 1e5 + 10;
vector<int> divisor[N];
int main()
  for (int i = 2; i < N; i++)
    for (int j = i; j < N; j += i)
      divisor[j].push_back(i);
  int n; cin >> n;
  for (auto &it : divisor[n]) cout << it << " ";
  cout << endl;
}
                                           Graph:
const int fx[] = \{+0,+0,+1,-1,-1,+1,+1,+1\}; // king's move (0 to 3 index => Side Moves)
const int fy[] = \{-1,+1,+0,+0,+1,+1,-1,-1\}; // king's move (4 to 7 index => Diagonal Moves)
const int kx[] = \{-2, -2, -1, -1, +1, +1, +2, +2\}; // knight's move
const int ky[] = \{-1,+1,-2,+2,-2,+2,-1,+1\}; // knight's move
Depth First Search(DFS):
                                                                             => O(V+E)
const ll N = 1e5 + 10;
vector<ll> g[N], height(N), depth(N);
bool vis[N];
int Par[N];
void dfs(ll vertex, ll par = -1)
       /*** Take action on vertex after entering the vertex. ***/
  vis[vertex] = true;
  // bool isLoopExists = false; //<= Use For Finding Cycle
  Par[vertex] = par;
  for (auto &child : g[vertex])
      /** Take action on child before entering the child node. **/
    if (vis[child]) continue;
    dfs(child, vertex);
```

```
/* => Use for Finding Cycle:
        if(vis[child] && child == par) continue;
        if(vis[child]) return true;
        isLoopExists |= dfs(child, vertex);
      /* => Use for Tree (No need Visited array):
        if(child == par) continue;
        depth[child] = depth[vertex]+1;
        dfs(child, vertex);
       height[vertex] = max(height[vertex], height[child]+1);
      /*** Take action on child after exiting child node. ***/
    /*** Take action on vertex before exiting the vertex. ***/
Breadth-first search (BFS) And 0/1 BFS:
                                                                       => O(V+E)
const int N=1e5+10:
vector<int>g[N];
                        //vector<pair<int, int>> g[N]; =>For 0/1 BFS
bool vis[N];
                        // No need vis array for 0/1 BFS.
vector<int> level(N);
                        //vector<int> level(N, INT MAX); =>For 0/1 BFS
void bfs(int source)
  queue<int>q;
                      //deque<int>q; =>For 0/1 BFS
                      //q.push_fornt(source); =>For 0/1 BFS
  q.push(source);
  vis[source]=1;
                      //level[source] = 0; => For 0/1 BFS
  while(!q.empty())
  {
   int par=q.front();
    q.pop();
                    //q.pop_front(); => For 0/1 BFS
    for(auto &child: g[par])
      if(vis[child]) continue;
      q.push(child);
      vis[child]=1:
      level[child]=level[par]+1;
     /*=> For 0/1 BFS:
      int u = child.first, w = child.second;
       if(level[par] + w < level[u])
         level[u] = level[par] + w;
         if(w==0) q.push_front(u);
         else q.push_back(u);
```

```
}
  }
<u>Dijkstra's Shortest Path Algorithm(Single Source Shortest Path):</u>
const int N = 1e5 + 10, INF = 1e9 + 7;
                                                                        \Rightarrow O((V+E)*log(V))
vector<pair<int, int>> g[N]; //g[u].pb({v,w});
vector<int> dist(N, INF); //store minimum distance;
vector<bool> vis(N);
void dijkstra(int s)
{
  multiset<pair<int, int>> st;
  st.insert({0, s});
  dist[s] = 0;
  while (st.size())
    int u = (st.begin())->second;
    // int u_w=(st.begin())->first;
    st.erase(st.begin());
    if (vis[u]) continue;
    vis[u] = 1;
    for (auto &child: g[u])
      int v = child.first;
      int v = child.second;
      if (dist[u] + v_w < dist[v])
        dist[v] = dist[u] + v_w;
        st.insert({dist[v], v});
   }
  }
Floyd-Warshall Algorithm(All Pair Shortest Path):
                                                                               =>0(n^3)
=> finding the shortest paths in a weighted graph with positive or negative edge weights
(but with no negative cycles);
const int N=510, INF=1e9+10;
int dp[N][N];
int n, m;
void floyd_warshall()
  for (int k = 1; k \le n; ++k)
```

```
for (int i = 1; i \le n; ++i)
      for (int j = 1; j \le n; ++j)
        if (dp[i][k] < INF && dp[k][j] < INF)
             dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j]);
    }
int main()
  cin>>n>>m;
  for(int i=1;i<=n; ++i)
    for(int j=1;j<=n; ++j)
      if(i==j) dp[i][j]=0;
      else dp[i][j]=INF;
    }
  for(int i=0;i < m;i++)
    int x, y, wt; cin>>x>>y>>wt;
    dp[x][y]=wt;
  floyd_warshall();
  return 0:
}
                                          Others:
Sorting pair Using Compare Function:
                                                                        =>0(n*log(n))
If vector<pair<ll, ll>> vec{{3, 4}, {1, 2}, {3, 5}, {3, 2}, {6, 1}};
bool cmp(pair<ll, ll> a, pair<ll, ll> b)
  if (a.first != b.first) return a.first < b.first;
                                                  // =>first value increasing order;
  return a.second > b.second;
                                                  //=> second value descending order;
sort(vec.begin(), vec.end(), cmp); //=> vec={{1,2}, {3,5}, {3,4}, {3,2}, {6,1}};
Minimum fraction:
If a/b = c/d
                             => ex: 12/18 = 2/3
c = a / gcd(a,b); d = b / gcd(a,b);
```

Count words in a string using stringstream:

```
#include<sstream>
#include<string>
int countWords(string str)
  stringstream sf(str);
  string word;
  int count = 0;
  while (sf >> word)
       count++:
                     // <= u can change statement
  return count;
Find SubString of a stirng:
                                                                 => O(n^2)
str = "abcd" => a, ab, abc, abcd, b, bc, bcd, c, cd, d.
for (int i = 0; i < str.length(); i++)
{
    string subStr;
    for (int j = i; j < str.length(); j++)
    {
      subStr += str[j];
      cout << subStr << endl;</pre>
    }
Find SubSequences / SubSet using Iterative:
                                                                                => 0(n*2^n)
\{1, 2, 3\} = \{1\}, \{2\}, \{1, 2\}, \{3\}, \{2, 3\}, \{1, 2, 3\}, \{4\}, \{1, 4\}, \{2, 4\}, \dots
vector<vector<int>> subsets(vector<int> &nums)
{
  vector<vector<int>> allSubSets:
  int n = nums.size();
 ///=> In Bits SubSets, the nums array is which Bit position you want for SubSets;
  for (int i = 0; i < (1 << n); i++)
                                   //for 2^n possible solution
    vector<int> subset;
    ///int tempA=a, tempB=b; ///=> for Bits SubSets
    for (int j = 0; j < n; j++) //for nums array
      if (i & (1 << j))
        subset.push_back(nums[j]);
        ///tempA |= (1LL << nums[j]); ///ON the nums[j] position Bit in tampA
      ///else tempB |= (1LL << nums[j]); ///ON the nums[j] position Bit in tampB
    allSubSets.push back(subset);
```

```
///ans=max(ans, temA*tempB); //qn needed operation
  }
  return allSubSets;
Find SubSequences / SubSet using Recursion:
                                                                             => O(n*2^n)
s = "abc" => subsequences = { "a"," b", "c", "ab", "bc", "ac", "abc"};
vector<string> subsequences;
void AllSubsequences(string &s, string subseq="", int index=0)
  if (index == s.length())
    subsequences.push_back(subseq);
    return;
  AllSubsequences(s, subseq, index + 1);
  AllSubsequences(s, subseq + s[index], index + 1);
Extended Euclid:
                                                //=> O(log(min(a, b)))
For this Eq. (a*x) + (b*y) = gcd(a, b);
ll extended_euclid(ll a, ll b, ll &x, ll &y)
  if (b == 0)
    x = 1, y = 0;
    return a;
  ll x1, y1;
  ll gcd = extended_euclid(b, a % b, x1, y1);
  x = y1;
  y = x1 - y1 * (a / b);
  return gcd;
```

- ◆ Subarrays/Substring: A subarray is a contiguous part of array and maintains relative ordering of elements. For an array/string of size n, there are n*(n+1)/2 non-empty subarrays/substrings. ["1234" => {1,2}, {1,2,3}, {2,3,4} etc.]
- ◆ **Subsequence**: A subsequence maintain relative ordering of elements but may or may not be a contiguous part of an array. For a sequence of size n, we can have (2^n)-1 non-empty subsequences in total. ["1234" => {1,2,4}, {2,4} etc.]
- ◆ Subset: A subset MAY NOT maintain relative ordering of elements and can or cannot be a contiguous part of an array. For a set of size n, we can have (2^n) sub-sets in total. ["1234" => {1,3,2}, {4,2,3} etc.]
- ◆ **Co-Prime:** That means a pair of numbers are said to be co-prime when they have their highest common factor as 1. [i.e: gcd(A, B)=1;]
- ◆ Lexicographic or Lexicographically: means sorting in the natural order / dictionary order. [Ex: "a" < "b"; "aa" < "ab"; "aab" < "ab"; "abcd" < "baa";]
- ◆ **Parity**: is a term used to refer to the property of being even or odd.
- ◆ **Permutations**: are often used to count the **number of ways to arrange** a certain number of objects. The number of permutations of a set of n objects is given by **n!**.
- ◆ MEX: usually refers to the "minimum excluded value" of a set. Given a set of non-negative integers, the MEX is the smallest non-negative integer that is not present in the set. Ex: {0, 1, 3, 4, 7} => MEX is 2;