P1 de Álgebra Linear I -2011.1

2 de Abril de 2011.

Gabarito

1)

a) Considere os vetores

$$\overrightarrow{v}_1 = (1, -2, 2)$$
 e $\overrightarrow{v}_2 = (1, 0, 1)$.

Determine vetores \overrightarrow{w}_1 e \overrightarrow{w}_2 que satisfaçam simultaneamente as seguintes três propriedades:

- \overrightarrow{w}_1 é paralelo a \overrightarrow{v}_1 ,
- \overrightarrow{w}_2 é ortogonal a \overrightarrow{v}_1 ,
- $\bullet \ \overrightarrow{v}_2 = \overrightarrow{w}_1 + \overrightarrow{w}_2.$
- b) Considere vetores \overrightarrow{w} e \overrightarrow{v} de \mathbb{R}^3 tais que seus módulos verificam

$$||\overrightarrow{w}|| = 1, \quad ||\overrightarrow{v}|| = 4, \quad e \quad ||\overrightarrow{w} \times \overrightarrow{v}|| = 4.$$

Calcule o produto escalar $\overrightarrow{w} \cdot \overrightarrow{v}$.

c) Considere os vetores de \mathbb{R}^3

$$\overrightarrow{v}_3 = (1, 2, 0)$$
 e $\overrightarrow{v}_4 = (0, 2, 1)$.

Determine, se possível, um vetor \overrightarrow{w} tal que

$$\overrightarrow{v}_3 \times \overrightarrow{w} = (2, -1, 1) \qquad \text{e} \qquad \overrightarrow{v}_4 \times \overrightarrow{w} = (-1, 1, -2).$$

Resposta:

(a) O vetor \overrightarrow{w}_1 é a projeção ortogonal de \overrightarrow{v}_2 no vetor \overrightarrow{v}_1 (veja a figura):

$$\overrightarrow{w}_1 = \frac{\overrightarrow{v}_1 \cdot \overrightarrow{v}_2}{\overrightarrow{v}_1 \cdot \overrightarrow{v}_1} \overrightarrow{v}_1 = \frac{(1, -2, 2) \cdot \overrightarrow{(1, 0, 1)}}{(1, -2, 2) \cdot \overrightarrow{(1, -2, 2)}} (1, -2, 2) = \frac{3}{9} (1, -2, 2).$$

Portanto,

$$\overrightarrow{w}_1 = (1/3, -2/3, 2/3).$$

Finalmente,

$$\overrightarrow{w}_2 = \overrightarrow{v}_2 - \overrightarrow{w}_1 = (1,0,1) - (1/3, -2/3, 2/3) = (2/3, 2/3, 1/3).$$

Figura 1: Os vetores \bar{w}_1 e \bar{w}_2

(b) Observe que se θ é o ângulo formado pelos vetorer \overrightarrow{w} e \overrightarrow{v} temos

$$4 = |\overrightarrow{w} \times \overrightarrow{v}| = |\overrightarrow{w}| |\overrightarrow{v}| |\sin \theta| = 4 |\sin \theta|.$$

Logo $\sin \theta = \pm 1 e \cos \theta = 0$. Portanto,

$$\overrightarrow{w} \cdot \overrightarrow{v} = |\overrightarrow{w}| |\overrightarrow{v}| \cos \theta = 0.$$

(c) O vetor \overrightarrow{w} é simultaneamente ortogonal aos vetores (2, -1, 1) e (-1, 1, -2). Portanto, \overrightarrow{w} é paralelo ao vetor

$$(2,-1,1) \times (-1,1,2) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & 1 \\ -1 & 1 & -2 \end{vmatrix} = (1,3,1).$$

Logo \overrightarrow{w} é da forma

$$\overrightarrow{w} = t(1, 3, 1).$$

Devemos determinar o valor de t. Sabemos que por hipótese se verifica

$$(2,-1,1) = (1,2,0) \times t (1,3,1) = t \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 0 \\ 1 & 3 & 1 \end{vmatrix} = t (2,-1,1).$$

Logo t=1. Devemos ver se esta condição é compatível com $\overrightarrow{v}_4 \times \overrightarrow{w}=(-1,1,-2)$. Verificamos:

$$(0,2,1) \times (1,3,1) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 2 & 1 \\ 1 & 3 & 1 \end{vmatrix} = (-1,1,-2).$$

Portanto,

$$\overrightarrow{w} = (1, 3, 1).$$

2)

a) Considere os pontos $A=(3,1,1),\,B=(2,1,2)$ e a reta r de equações paramétricas

$$r: (0,3,2) + t(1,0,-1), t \in \mathbb{R}.$$

Para cada ponto C da reta r calcule a área de triângulo de vértices $A, B \in C$.

b) Considere o plano π de equação cartesiana

$$\pi : y = 1$$

e os pontos A' = (1, 1, 2) e B' = (2, 1, 1) de π .

Determine um ponto C' do plano π tal que A', B', C' sejam os vértices de um triângulo retângulo isósceles cujos catetos são A'B' e A'C' (observe que |A'B'| = |A'C'|).

Resposta:

(a) Dado o ponto C(t)=(t,3,2-t) da reta consideramos os vetores

$$\overline{AC(t)} = (t - 3, 2, 1 - t), \qquad \overline{BA} = (1, 0, -1).$$

Sabemos que a área $\Delta(t)$ do triângulo de vértices A, B e C(t) é

$$\Delta(t) = \frac{1}{2} || \overline{AC(t)} \times \overline{BA} ||.$$

Calculamos o produto vetorial $\overline{AC(t)} \times \overline{BA}$:

$$\overline{AC(t)} \times \overline{BA} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ t - 3 & 2 & 1 - t \\ 1 & 0 & -1 \end{vmatrix} =$$

$$= (-2, -(-t + 3 - 1 + t), -2) = (-2, -2, -2).$$

O módulo deste vetor é $\sqrt{4+4+4}=\sqrt{12}=2\sqrt{3}$. Portanto, $\Delta(t)=\sqrt{3}$. De fato, esta área não depende do ponto C(t) da reta considerado.

(b) O vetor $\overrightarrow{A'C'}$ é perpendicular a $\overrightarrow{A'B'}=(1,0,-1)$ (os catetos são perpendiculares) e ao vetor normal do plano π , $\overrightarrow{n}=(0,1,0)$, pois o segmento A'C' está contido no plano. Portanto, o vetor $\overrightarrow{A'C'}$ é paralelo a $(1,0,-1)\times(0,1,0)$.

$$(1,0,-1) \times (0,1,0) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{vmatrix} = (1,0,1).$$

Logo $\overrightarrow{A'C'} = t(1,0,1)$.

Como o triângulo é isósceles $||\overrightarrow{A'C'}|| = ||\overrightarrow{A'B'}||$

$$||\overrightarrow{A'C'}|| = |t| ||(1,0,1)|| = |t| \sqrt{2} = ||\overrightarrow{A'B'}|| = ||(1,0,-1)|| = \sqrt{2}.$$

Portanto, temos $t = \pm 1$ e

$$C' = A' \pm (1, 0, 1) = (1, 1, 2) \pm (1, 0, 1).$$

Assim existem duas possibilidades:

$$C' = (2, 1, 3)$$
 (se $t = 1$), $C' = (0, 1, 1)$ (se $t = -1$).

3) Considere a reta r_1 de equações paramétricas

$$r_1: (2t, 1+t, -1-t), t \in \mathbb{R},$$

e a reta r_2 de equações cartesianas

$$x + 2y - 2z = 1$$
, $x - y = 2$.

- a) Escreva a reta r_1 como interseção de dois planos π e ρ (escritos em equações cartesianas) tais que π seja paralelo ao eixo \mathbb{X} e ρ seja paralelo ao eixo \mathbb{Z} .
- b) Determine uma equação paramétrica da reta r_2 .
- c) Considere o ponto P = (0, 1, -1) da reta r_1 . Encontre <u>todos</u> os pontos Q da reta r_1 tal que a distância entre P e Q seja $2\sqrt{6}$ (isto é, de forma que o comprimento do segmento PQ seja $2\sqrt{6}$).

Resposta:

(a) O plano π é paralelo ao vetor diretor da reta, (2, 1, -1), e ao vetor $\mathbf{i} = (1, 0, 0)$. Logo seu vetor normal \overrightarrow{n} é paralelo a

$$\left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & -1 \\ 1 & 0 & 0 \end{array} \right| = (0, -1, -1).$$

Portanto, a equação cartesiana do plano π é da forma

$$y + z = d$$
.

Como o ponto (0, 1, -1) pertence ao plano π , d = 0. Logo

$$\pi: y + z = 0.$$

Analogamente, o plano ρ é paralelo ao vetor diretor da reta, (2, 1, -1), e ao vetor $\mathbf{k} = (0, 0, 1)$. Logo seu vetor normal \overrightarrow{m} é paralelo a

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & -1 \\ 0 & 0 & 1 \end{vmatrix} = (1, -2, 0).$$

Portanto, a equação cartesiana do plano ρ é da forma

$$x - 2y = e.$$

Como o ponto (0,1,-1) pertende ao plano, e=-2. Logo

$$\rho$$
: $x - 2y = -2$.

(b) Escolhemos y como parâmetro, y=t, e temos x=2+t. Portanto

$$2z = -1 + x + 2y = -1 + 2 + t + 2t = 1 + 3t, \quad z = 1/2 + 3t/2.$$

Portanto,

$$(2+t, t, 1/2 + 3t/2), t \in \mathbb{R}.$$

(d) Dado um ponto $Q=(2\,t,1+t,-1-t)$ da reta r_1 temos

$$\overline{PQ} = (2t, t, -t).$$

Este vetor tem módulo

$$|t|\sqrt{6}$$
.

Queremos que $|t|\sqrt{6}=2\sqrt{6}$. Logo |t|=2 e portanto $t=\pm 2$. Existem duas soluções:

$$Q = (4, 3, -3), (t = 2),$$
 $Q = (-4, -1, 1), (t = -2).$

4) Considere o sistema de equações linerares

$$x + y + 2z = 1$$
,

$$2x + y + 0z = b$$
.

$$x + 2y + az = 3$$
.

- a) Determine, se possível, a e b para que o sistema não tenha solução.
- b) Determine, se possível, a e b para que o sistema tenha solução única.

c) Determine, se possível, a e b para que o sistema tenha infinitas soluções.

Resposta: Para resolver a questão escalonamos o sistema.

$$x + y + 2z = 1,$$

 $2x + y + 0z = b,$
 $x + 2y + az = 3.$

$$x + y + 2z = 1,$$

 $-y - 4z = b - 2,$ (II)-2 (I)
 $y + (a - 2)z = 2$ (III)-(I).

$$x + y + 2z = 1,$$

 $-y - 4z = b - 2,$
 $(a - 6)z = b$ (III)+(II).

Portanto,

- Sistema sem solução: a=6 e $b\neq 0$.
- Sistema com solução única: $a \neq 6$ e $b \in \mathbb{R}$ (b qualquer valor).
- Sistema com infinitas soluções: a=6 e b=0.