## CSC236 - Week 1, Lecture 2

## Cristyn Howard

January 10, 2018

- abstract data type (ADT) an object and its operations
- <u>data structure</u> specific implementation of some ADT
- One example of an ADT is a Priority Queue (PQ).
  - object: maintains a set S of elements with keys that can be compared
  - operations:
    - \* INSERT(x, S): insert item x into set S such that the order is maintained
    - \* MAX(S): return a value with the maximum priority
    - \* EXTRACTMAX(S): find an element with max priority and remove it from the set
- PQ application example: might be used by an operating system to organize processes that need to be run
- Some data structures for PQs:

|   |                      | Worst-case run time of: |            |
|---|----------------------|-------------------------|------------|
|   | Data Structure       | INSERT                  | EXTRACTMAX |
| _ | unsorted linked list | O(1)                    | O(n)       |
|   | sorted linked list   | O(n)                    | O(1)       |
|   | heaps                | O(logn)                 | O(logn)    |

- Note that heaps are superior! So what are they, and how do they work?

Recall: Complete Binary Tree (CBT): start at the leftmost node, every node has at most two children, fill every level before moving to the next

Recall: Height of binary tree: length of longest path from the root to any leaf of the tree.

- For CBT of size n, height =  $\lfloor log_2 n \rfloor$
- heaps: store set S of size n in an n-node complete binary tree
  - elements in a heap are stored such that the priority of any node is greater than the priority of its children
  - heaps for set S are not unique, i.e. there are many valid heap configurations of set S
  - Example:  $S = \{3, 4, 5, 7, 7, 9, 9, 12, 17\}$ , A heap containing s:



- In a computer, heaps are stored in a (1-indexed) array such that the elements represent the nodes of the heap ordered from top-to-bottom, left-to-right.
  - An array storing our heap of S:  $\frac{\text{Index: } 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9}{\text{Value: } | 17 | 9 | 12 | 7 | 7 | 9 | 5 | 3 | 4 |}$
- How do we relate parents to children (and vice versa) when the heap is stored in an array?

|     | Parents to Children                              | Children to Parents                                  |
|-----|--------------------------------------------------|------------------------------------------------------|
| - [ | right child index = parent index $\times$ 2      | parent index = $\lfloor$ child index $/$ 2 $\rfloor$ |
| Î   | left child index = (parent index $\times$ 2) + 1 |                                                      |

- How are the PQ operations implemented on a heap stored as an array?
  - INSERT(): (A) add new element to last space in array; (B) get parent index, get parent value; (C) if parent value is smaller than new element value, swap element locations, go to B.
    - \* worst case run time of insert: compare & swap take constant time, the upper bound on the number of swaps is the height of the tree, thus Insert  $\in \Theta(logn)$ .
      - · O(logn): every insert takes at most  $c \times logn$  steps, for some constant c.
      - $\Omega(logn)$ :  $\exists$  some element for which insert takes at least  $c \times logn$  steps, (e.g. x > root).
  - MAX():  $\Theta(1)$ , get first element of the array
  - EXTRACTMAX(): (A) swap first & last elements of the array; (B) return last element & reduce heap size by one; (C) compare first element value to values of both children, swap element with larger of two children; (D) continue until element is larger than both children, or until the indices of both children are greater than heap size (i.e. element has no children)
    - \*  $\Theta(logn)$  for reasons similar to insert
  - SORTING: extract max until all elements have been removed from the array,  $\Theta(n \times log n)$