DATA130008 Introduction to Artificial Intelligence

Lab 2

April 3rd 2019

- Gomoku
 - Final project to be released in May
- Alpha-Beta Pruning
 - Submit in class via OJ
- Constraint Satisfaction Problems
 - Take home as an assignment (Project 2)

- Gomoku
 - Final project to be released in May
- Alpha-Beta Pruning
 - Submit in class via OJ
- Constraint Satisfaction Problems
 - Take home as an assignment (Project 2)

- Gomoku Rule
- Solve Gomoku
 - Genetic Algorithm
 - Monte Carlo Tree Search
 - Reinforcement Learning
 - Adaptive Dynamic Programming
 - Dependency-Based Search
 - Threat-Space Search
 - Proof-Number Search

- Gomoku Rule
- Solve Gomoku
 - Genetic Algorithm
 - Monte Carlo Tree Search
 - Reinforcement Learning
 - Adaptive Dynamic Programming
 - Dependency-Based Search
 - Threat-Space Search
 - Proof-Number Search

Gomoku Rule

- Goal: Five in a row, 15×15
- Proved: Black first leads to win (1899)
- Gomoku:
 - Free/Standard Gomoku Rule: Victoria 15 × 15
 - Swap 2 Rule
- Renju:
 - Free Renju Rule/Soosyrv-8 Rule
- Focus on: Free Gomoku

- Gomoku Rule
- Solve Gomoku
 - Genetic Algorithm
 - Monte Carlo Tree Search
 - Reinforcement Learning
 - Adaptive Dynamic Programming
 - Dependency-Based Search
 - Threat-Space Search
 - Proof-Number Search

- State representation
 - Board representation
 - (x, y, ●/○/・)
 - Features
 - Patterns
 - Turns
 - Offensive/Defensive
 - **....**
 - Axiom/Structured
- Search for next step
 - Single agent
 - Adaptive agent

- Gomoku Rule
- Solve Gomoku
 - Genetic Algorithm
 - Monte Carlo Tree Search
 - Reinforcement Learning
 - Adaptive Dynamic Programming
 - Dependency-Based Search
 - Threat-Space Search
 - Proof-Number Search

- Initialization: Coding Scheme
- Selection
- Crossover
- Mutation
- Fitness function

- Coding Scheme
 - Coordinates of consecutive K steps
 - N sequences
 - Representation:
 - $\bullet A_2A_1A_7A_3A_8A_5A_6$
 - $\bullet A_5A_3A_1A_4A_9A_2A_8$
 - $\blacksquare A_1A_6A_8A_2A_5A_3A_4$
 - $\bullet A_2A_9A_3A_4A_7A_8A_6$
 - A₁A₄A₇A₆A₅A₈A₂
 Both you and the enemy

- Selection
 - Fitness function
 - Example:
 - f(s) = 4800 * (number of four structures in neighborhood)
 - + 97 * (number of three structures in neighborhood)
 - + 17 * (number of two structures in neighborhood)

- Crossover
 - Parents:

$$A_2A_1A_7A_3A_8A_5A_6$$
$$A_5A_3A_1A_4A_9A_2A_8$$

Children:

$$A_2A_1A_7A_3A_9A_2A_8$$
$$A_5A_3A_1A_4A_8A_5A_6$$

Mutation

$$A_2A_9A_3A_4A_7A_8A_6$$
$$A_2A_9A_7A_8A_3A_4A_6$$

Procedure

- Gomoku Rule
- Solve Gomoku
 - Genetic Algorithm
 - Monte Carlo Tree Search
 - Reinforcement Learning
 - Adaptive Dynamic Programming
 - Dependency-Based Search
 - Threat-Space Search
 - Proof-Number Search

Solve Gomoku: Monte Carlo Tree Search

- Monte Carlo Tree Search: Simulation, Expectation
 - Selection
 - Expansion
 - Simulation
 - Backpropagation

Zhentao Tang, Dongbin Zhao, Kun Shao, and Le Lv. ADP with MCTS algorithm for Gomoku.

Solve Gomoku: Monte Carlo Tree Search

- Input original state s0
- Output action a corresponding to the highest value of MCTS

```
add Heuristic Knowledge;
                                                          Simulation(state s_t)
obtain possible action moves M from state s_0;
                                                            if (s_t is win and s_t is terminal) then return 1.0;
                                                                                               else return 0.0;
for each move m in moves M do
                                                             end if
  reward r_{total} \leftarrow 0;
                                                             if (s<sub>t</sub> satisfied with Heuristic Knowledge)
   while simulation times < assigned times do
                                                               then obtain forced action a_i;
      reward r \leftarrow \text{Simulation}(s(m));
                                                                     new state s_{t+1} \leftarrow f(s_t, a_t);
      r_{total} \leftarrow r_{total} + r;
                                                               else choose random action a_r \in untried actions;
      simulation times add one;
                                                                     new state s_{t+1} \leftarrow f(s_t, a_r);
   end while
                                                             end if
   add (m, r_{total}) into data;
                                                             return Simulation(s_{t+1})
   end for each
return action Best(data)
                                                          Best(data)
                                                             return action a //the maximum r_{total} of m from data
```

Zhentao Tang, Dongbin Zhao, Kun Shao, and Le Lv. ADP with MCTS algorithm for Gomoku. 2016 IEEE Symp. Ser. Comput. Intell. SSCI 2016, (61273136), 2017.

- Gomoku Rule
- Solve Gomoku
 - Genetic Algorithm
 - Monte Carlo Tree Search
 - Reinforcement Learning
 - Adaptive Dynamic Programming
 - Dependency-Based Search
 - Threat-Space Search
 - Proof-Number Search

Solve Gomoku: Adaptive Dynamic Programming

- State representation: Board situation
 - Patterns (Structured)
 - 5 or 6 adjacent positions
 - Turns
 - Whose turn to move
 - Offensive/Defensive
 - Winning probability

Dongbin Zhao, Zhen Zhang, and Yujie Dai.

Self-teaching adaptive dynamic programming for Gomoku.

Neurocomputing, 78(1):23-29, 2012.

Zhentao Tang, Dongbin Zhao, Kun Shao, and Le Lv.

ADP with MCTS algorithm for Gomoku.

Solve Gomoku: Adaptive Dynamic Programming

Value function

Critics network

$$h_i(t) = \sum_{i=1}^{n} x_j(t) w_{ji}^{(1)}(t)$$

$$g_i(t) = \frac{1}{1 + \exp^{-h_i(t)}}$$

$$p(t) = \sum_{i=1}^{m} w_i^{(2)}(t) g_i(t)$$

$$v(t) = \frac{1}{1 + \exp^{-p(t)}}$$

Dongbin Zhao, Zhen Zhang, and Yujie Dai.

Self-teaching adaptive dynamic programming for Gomoku.

Neurocomputing, 78(1):23–29, 2012.

Zhentao Tang, Dongbin Zhao, Kun Shao, and Le Lv.

ADP with MCTS algorithm for Gomoku.

Solve Gomoku: Adaptive Dynamic Programming

Dongbin Zhao, Zhen Zhang, and Yujie Dai.

Self-teaching adaptive dynamic programming for Gomoku.

Neurocomputing, 78(1):23–29, 2012.

Zhentao Tang, Dongbin Zhao, Kun Shao, and Le Lv.

ADP with MCTS algorithm for Gomoku.

- Gomoku Rule
- Solve Gomoku
 - Genetic Algorithm
 - Monte Carlo Tree Search
 - Reinforcement Learning
 - Adaptive Dynamic Programming
 - Dependency-Based Search
 - Threat-Space Search
 - Proof-Number Search

Goal: Five in a row

Louis Victor Allis and Hj Van Den Herik. Go-moku and threat-space search.

- Threat Sequence
- Winning Threat Sequence

Louis Victor Allis and Hj Van Den Herik. Go-moku and threat-space search.

- Gain square
- Cost square
- Rest square
- Dependent
 - Dependency tree

Conflict

Threat A
Threat B

Threat D2

Conflict

Threat D1

Louis Victor Allis and Hj Van Den Herik. Go-moku and threat-space search.

Search tree:

Threat A being independent of threat B is not allowed to occur in the search tree of 13 threat B.

Only threats for the attacker are included. 11

Depth	Type of threat	Gain square	Cost squares
1	Four	115	k15
1	Four	k15	115
1	Four	e15	d15
2	Four	i11	h12
3	Straight Four	i8	i7
2	Four	h12	i11
1	Four	d15	e15
1	Four	012	011
1	Four	011	012
1	Four	a12	a11
1	Four	a11	a12
1	Three	i11	i7,i8,i12
2	Four	h12	e15
2	Four	e15	h12
3	Five	d15	
1	Three	i8	i7,i11,i12
1	Four	05	04
1	Four	04	05
1	Four	11	k1
1	Four	k1	11
1	Four	e1	d1
1	Four	d1	e1
1	Four	a5	a4
1	Four	a4	a5

Louis Victor Allis and Hj Van Den Herik.

Go-moku and threat-space search.

Solve Gomoku: Complementary

- Representation
 - Axiom
 - Structure

Louis Victor Allis.

Searching for Solutions in Games and Artificial Intelligence.

- Victoria
 - Threat-space search
 - Proof-number search
- Threat-Space Search
 - a module capable of quickly determining whether a winning threat sequence exists
 - used as a first evaluation function
 - Win for the attacker
 - No win: proof-number search
 - a heuristic evaluation procedure

Louis Victor Allis and Hj Van Den Herik. Go-moku and threat-space search. . Ist. Psu. Edu/, 1993.

- Gomoku Rule
- Solve Gomoku
 - Genetic Algorithm
 - Monte Carlo Tree Search
 - Reinforcement Learning
 - Adaptive Dynamic Programming
 - Dependency-Based Search
 - Threat-Space Search
 - Proof-Number Search

- Board situation
 - 3 types: Win (1), Lose (0), unknown
- 2 players:

Win or Lose: BLACK's View

- Black turn
 - Win if there is an action leading to Black win
 - Lose if all actions leading to Black lose
- White turn
 - Win if all actions leading to Black win
 - Lose if there is an action leading to Black lose
- Black: OR
- White: AND

Louis Victor Allis.

Searching for Solutions in Games and Artificial Intelligence. 1994.

- AND/OR Tree
 - 3 Values: true, false, unknown
 - Terminal node: true, false
 - Frontier node: unknown
 - 2 Nodes: AND, OR
 - Black: OR
 - True if one child is true
 - Unknown if no true and has unknown
 - False if all children are false
 - White: AND
 - False if one child is false
 - Unknown if no false and has unknown
 - True if all children are true

Louis Victor Allis.

Searching for Solutions in Games and Artificial Intelligence. 1994.

AND/OR Tree

AND: circle; OR: square

- Proof number
 - Proof set: a set of frontier nodes S is a proof set if proving all nodes within S proves T
 - The proof number of T is defined as the cardinality of the smallest proof set of T
- Disproof number
- State of leaf nodes
 - Win: 0, ∞
 - Lose: 0, ∞
 - Unknown: 1, 1

Louis Victor Allis.

Searching for Solutions in Games and Artificial Intelligence.

- AND/OR Tree
 - Proof number
 - AND: sum
 - OR: min
 - Disproof number
 - AND: min
 - OR: sum
- Proof-Number Search
 - Most-proving node

AND: circle; OR: square

Louis Victor Allis.

Searching for Solutions in Games and Artificial Intelligence.

Algorithm

```
procedure ProofNumberSearch(root);
   Evaluate(root);
   SetProofAndDisproofNumbers(root);
   while root.proof ≠ 0 and root.disproof ≠ 0 and
        ResourcesAvailable() do
        mostProvingNode := SelectMostProving(root);
        DevelopNode(mostProvingNode);
        UpdateAncestors(mostProvingNode)
   od;
   if root.proof = 0 then root.value := true
   elseif root.disproof = 0 then root.value := false
   else root.value := unknown
   fi
end
```

```
function SelectMostProving(node);
   while node.expanded do
       case node.type of
          or:
             i := 1:
              while node.children[i].proof \neq node.proof do
                i := i+1
              od
          and:
             i := 1:
              while node.children[i].disproof \neq node.disproof do
                i := i+1
              od
       esac;
      node := node.children[i]
   od;
   return node
\mathbf{end}
```

Louis Victor Allis.

Searching for Solutions in Games and Artificial Intelligence.

1994.

Algorithm

```
procedure SetProofAndDisproofNumbers(node);
    if node.expanded then
        case node.type of
            and:
               node.proof := \Sigma_{N \in Children(node)} N.proof;
               node.disproof := Min_{N \in Children(node)} N.disproof
            or:
               node.proof := Min_{N \in Children(node)} N.proof;
               \operatorname{node.disproof} := \Sigma_{N \in \operatorname{Children(node)}} \operatorname{N.disproof}
        esac
    elseif node.evaluated then
        case node.value of
            false: node.proof := \infty; node.disproof := 0
            true : node.proof := 0; node.disproof := \infty
            \underline{\mathsf{unknown}}: node.proof := 1; node.disproof := 1
        esac
    else node.proof := 1; node.disproof := 1
end
```

Louis Victor Allis.

Searching for Solutions in Games and Artificial Intelligence.

1994.

Solve Gomoku: Complementary

- Transposition
 - Hash table
 - Directed Acyclic Graphs

Louis Victor Allis.

Searching for Solutions in Games and Artificial Intelligence. 1994.

Gomoku Competition

- Gomoku manager
 - http://gomocup.org/download-gomocup-manager/
- Al
 - http://gomocup.org/download-gomoku-ai/
- Python Template
 - https://github.com/stranskyjan/pbrain-pyrandom
- Gomocup
 - http://gomocup.org/

- Gomoku
 - Final project to be released in May
- Alpha-Beta Pruning
 - Submit in class via OJ
- Constraint Satisfaction Problems
 - Take home as an assignment (Project 2)

Lab2: Adversarial Search (Minimax)

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess
 - One player maximizes result
 - The other minimizes result
- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Compute each node's minimax value: the best achievable utility against a rational (optimal) adversary

Minimax values: computed recursively

Terminal values: part of the game

Alpha-Beta Pruning

- General configuration (MIN version)
 - We're computing the MIN-VALUE at some node n
 - We're looping over *n*'s children
 - *n*'s estimate of the childrens' min is dropping
 - Who cares about n's value? MAX
 - Let a be the best value that MAX can get at any choice point along the current path from the root
 - If n becomes worse than a, MAX will avoid it, so we can stop considering n's other children (it's already bad enough that it won't be played)


```
function ALPHA-BETA-SEARCH(state) returns an action
   v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty)
   return the action in ACTIONS(state) with value v
function MAX-VALUE(state, \alpha, \beta) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow -\infty
   for each a in ACTIONS(state) do
      v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a), \alpha, \beta))
     if v \geq \beta then return v
     \alpha \leftarrow \text{MAX}(\alpha, v)
   return v
function MIN-VALUE(state, \alpha, \beta) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow +\infty
   for each a in ACTIONS(state) do
      v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a), \alpha, \beta))
     if v < \alpha then return v
      \beta \leftarrow \text{MIN}(\beta, v)
   return v
```

Figure 5.7 The alpha—beta search algorithm. Notice that these routines are the same as the MINIMAX functions in Figure 5.3, except for the two lines in each of MIN-VALUE and MAX-VALUE that maintain α and β (and the bookkeeping to pass these parameters along).

For MAX node

 β is fixed as β_{parent}

v is used to update α initialized as α_{parent}

For MIN node

 α is fixed as α_{parent}

For MAX node

 β is fixed as β_{parent}

v is used to update α initialized as α_{parent}

For MIN node

 α is fixed as α_{parent}

For MAX node

 β is fixed as β_{parent}

v is used to update α initialized as α_{parent}

For MIN node

 α is fixed as α_{parent}

For MAX node

 β is fixed as β_{parent}

v is used to update α initialized as α_{parent}

For MIN node

 α is fixed as α_{parent}

For MAX node

 β is fixed as β_{parent}

v is used to update α initialized as α_{parent}

For MIN node

 α is fixed as α_{parent}

For MAX node

 β is fixed as β_{parent}

v is used to update α initialized as α_{parent}

For MIN node

 α is fixed as α_{parent}

For MAX node

 β is fixed as β_{parent}

v is used to update α initialized as α_{parent}

For MIN node

 α is fixed as α_{parent}

For MAX node

 β is fixed as β_{parent}

v is used to update α initialized as α_{parent}

For MIN node

 α is fixed as α_{parent}

For MAX node

 β is fixed as β_{parent}

v is used to update α initialized as α_{parent}

For MIN node

 α is fixed as α_{parent}

For MAX node

 β is fixed as β_{parent}

v is used to update α initialized as α_{parent}

For MIN node

 α is fixed as α_{parent}

For MAX node

 β is fixed as β_{parent}

v is used to update α initialized as α_{parent}

For MIN node

 α is fixed as α_{parent}

For MAX node

 β is fixed as β_{parent}

v is used to update α initialized as α_{parent}

For MIN node

 α is fixed as α_{parent}

For MAX node

 β is fixed as β_{parent}

v is used to update α initialized as α_{parent}

For MIN node

 α is fixed as α_{parent}

Input Example:

Square represents MAX node while circle stands for MIN node. For each test case, it contains two lines. The first line consists of two integers, the role of the root node (1 for MAX node and 0 for MIN node) and the depth of the tree. The second line is a nested list which stands for the game tree.

```
1 5 [[[[3,17],[2,12]],[[15],[25,0]]],[[[2,5],[3]],[[2,14]]]]
```


Practice for Alpha-beta Pruning

For each test case, the output should include two lines. The first line contains the result for minimax search. The second line should consist of **pruned nodes**

in order.

Alpha-Beta Pruning Template


```
rule, n = map(int, input().strip().split())
tree = eval(input().strip())
root_node = construct_tree(n-1, tree, rule)
print(get_value(root_node, float('-inf'), float('inf')))
# print out unvisited nodes
print(' '.join( [str(node) for node in get_unvisited_nodes(root_node)]))
```

- def get_value(node, alpha, beta)
 - Choose which function to call
- def max_value(node, alpha, beta)
- def min_value(node, alpha, beta)

Alpha-Beta Pruning Template


```
def construct tree(n, tree, rule):
                                                                                 class Node:
                                                                                   """Node of the tree.
   """Construct a tree using given information and return the root node.
                                                                                   Attributes:
  Args:
                                                                                     rule: int, 0 or 1, 1 for MAX node and 0 for MIN node
     n: int, the height of tree
                                                                                     successor: list of Node representing children of the current node
                                                                                     is leaf: bool, whether the node is a leaf or not
     tree: the input tree described with list nested structure
                                                                                     value: value of the node
     rule: int, root node's type, 1 for max, 0 for min
                                                                                     visited: bool, visited or not
   Returns:
                                                                                   Hint:
     root node
                                                                                     We use this class to construct a tree in construct tree method.
                                                                                   def init (self, rule=0, successor=None, is leaf=False, value=None):
  Hint: tree structure example
                                                                                     if successor is None:
     root node:
                                                                                       successor = []
       rule: 1 (MAX node)
                                                                                     self.rule = 'max' if rule == 1 else 'min'
       is leaf: False
                                                                                     self.successor = successor
       value: 5
                                                                                     self.is leaf = is leaf
                                                                                     self.value = value
       visited: bool, visited or not
                                                                                     self.visited = False
       successor: [child1, child2, child3, ...]
          and each child has similar structure of root_node
                                                                                 def get unvisited nodes(node):
                                                                                   """Get unvisited nodes for the tree.
   111111
  node = Node(rule=rule)
                                                                                   Args:
  successors = []
                                                                                     node: class Node object, root node of the current tree (or leaf)
  if n == 1: # leaf
     for t in tree:
                                                                                   Returns:
                                                                                     float list of values of the unvisited nodes.
       successors.append(Node(rule=1-rule, is leaf=True, value=t))
  else: # sub-tree
                                                                                   unvisited = []
     for t in tree:
                                                                                   if node.successor:
       successors.append(construct tree(n-1, t, 1-rule))
                                                                                     for successor in node.successor:
   node.successor = successors
                                                                                       unvisited += get unvisited nodes(successor)
   return node
                                                                                   else:
                                                                                     if not node.visited:
                                                                                       unvisited.append(node.value)
                                                                                   return unvisited
```

What You Need to Do for Alpha-Beta Pruning

- Implement the following 3 functions:
 - def get_value(node, alpha, beta)
 - Choose which function to call
 - def max_value(node, alpha, beta)
 - def min_value(node, alpha, beta)

- Gomoku
 - Final project to be released in May
- Alpha-Beta Pruning
 - Submit in class via OJ
- Constraint Satisfaction Problems
 - Take home as an assignment (Project 2)
 - 20 points in total (it accounts for 7% in the course)

CSP for N-Queens

- Formulation 1:
 - Variables: X_{ij}
 - Domains: {0,1}
 - Constraints:

$$\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0,0), (0,1), (1,0)\}$$

 $\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0,0), (0,1), (1,0)\}$
 $\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\}$
 $\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0,0), (0,1), (1,0)\}$

$$\sum_{i,j} X_{ij} = N$$

CSP for N-Queens

Formulation 2:

• Variables: Q_k

• Domains: $\{1, 2, 3, ... N\}$

Constraints:

Implicit: $\forall i,j$ non-threatening (Q_i,Q_j)

Explicit:
$$(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$$

• • •

Code implement for CSP (csp.py)


```
class CSP:
    def __init__(self):
        self.vars_num = 0
        self.variables = []
        self.values = {}
        self.unary_factors = {}
        self.binary_factors = {}
        def add_variable(self, var, domain)
        def get_neighbor_vars(self, var)
        def add_unary_factor(self, var, factor_function)
        def add_binary_factor(self, var1, var2, factor_function)
        def _update_binary_factor_table(self, var1, var2, table)
```

Problem a

- Problem a
 - Create an N-Queen problem on the board of size n * n.
 - O(n)

Code implement for Backtracking Search

submission.py

```
class BacktrackingSearch:
     def __init__(self):
       self.num assignments = 0
       self.num operations = 0
       self.first assignment num operations = 0
       self.all assignments = []
       self.csp = None
       self.mcv = False
       self.ac3 = False
       self.domains = {}
     def reset results(self)
     def check factors(self, assignment, var, val)
     def solve(self, csp, mcv=False, ac3=False)
     def backtrack(self, assignment)
     def get unassigned variable(self, assignment)
     def arc consistency check(self, var)
Usage:
  search = BacktrackingSearch()
  search.solve(csp)
```

Code implement for Backtracking Search


```
def Backtracking(assignment):
    if all variables assigned:
        add current assignment to assignments
    else:
        var < - choose an unassigned variable
    for value in domain of var:
        add {var = value} to assignment
        Backtracking(assignment)
        delete var from assignment</pre>
```

Improve Backtracking Search

- You can improve the performance of CSP by 3 ways:
 - Ordering:
 - Which variable should be assigned next?
 - Most Constrained Variable (MCV)
 - Also called Minimum remaining values (MRV)
 - In what order should its values be tried? (LCV)
- Filtering: Can we detect inevitable failure early?
 - Arc-consistency checking (AC -3)
- Structure: Can we exploit the problem structure?
 - Tree structure
 - Cutting set conditioning

Improve Backtracking Search

- You can improve the performance of CSP by 3 ways:
 - Ordering:
 - Which variable should be assigned next?
 - Most Constrained Variable (MCV)
 Problem b
 - Also called Minimum remaining values (MRV)
 - In what order should its values be tried? (LCV)
- Filtering: Can we detect inevitable failure early?
 - Arc-consistency checking (AC -3).

 Problem c
- Structure: Can we exploit the problem structure?
 - Tree structure
 - Cutting set conditioning

Code implement for Backtracking Search


```
def Backtracking(assignment):
  if all variables assigned:
    add current assignment to assignments
  else:
    if MRC not implemented:
      randomly choose var from unassigned variables
    else(MRC implemented):
      choose variable by MCV
  for value in domain of var:
    add{var, value} to assignment
    if AC-3 not implemented:
      Backtracking(assignment)
    else(AC-3 implemented):
      localCopy <- store a deep copy for domains
      arc consistency checking
      Backtracking(assignment)
      use pre-stored localCopy to undo modify on domain
    delete assigned value for var
```


Problem b

- Select a variable with the least number of remaining domain values.
- Modify function <u>get_unassigned_variable</u> such that when mcv is <u>True</u>, it returns a variable with the least number of remaining domain values.

Problem c

- AC-3 algorithm: reduce the size of the domain values for the unassigned variables based on arc consistency.
- Fill in function arc_consistency_check such that when ac3 is *True*, AC-3 will be used after each variable is made.

Select a variable with the least number of remaining domain

Hint: self.domains[var] gives you all the possible values
Hint: get_delta_weight gives the change in weights given
a partial assignment, a variable, and a proposed value to
this variable

Hint: for ties, choose the variable with lowest index in self.csp.variables

 After assigning new value to var, update domain for var's neighbors with AC-3.

Hint: get variables neighboring variable var:
 self.csp.get_neighbor_vars(var)

Hint: check if a value or two values are inconsistent:

For unary factors

self.csp.unary factors[var1][val1] == 0

For binary factors

self.csp.binary_factors[var1][var2][val1][val2] == 0

- You need to submit your own version of code.
- You are encouraged to discuss with your group members. It might take some time to get familiar with all the supportive codes.
- Homework 2 is due on April 23rd, Tuesday, 11:55pm, 2019.