Вариант №4

Вопрос 1.

Формула геометрической вероятности. Зависит ли вероятность попасть в подобласть Ω от её расположения и формы в случае применения этой ф-лы?

Ответ

.....

Вопрос 2.

События А и В несовместны

$$P(A) = 0.2$$
 $P(B) = 0.2$

Найти : Р(А+В)

Omsem P(A+B) = P(A) + P(B) = 0.2+0.2 = 0.4

Вопрос 3

Рассчитать число перестановок с повторениями для слова ананас.

A-3

H-2

C-1

P6(3,2,1) = 6!/3!2!1! = 720/6*2*1 = 60

Omsem 60

Вопрос 4.

Теорема умножения вероятностей для произвольных (зависимых) событий. В качестве примера следующая задача: На экзамене 20 вопросов. Студент знает 13. Ему подряд задают 5. Как по теореме умножения записать вероятность того, что он ответит на все заданные вопросы?

Ответ:

.....

Вопрос 5.

Привести пример случайного события. Дать определение случайного события.

Ответ:

Событие называется случайным если при заданных условиях может произойти или не произойти

Вопрос 6.

Из колоды в 52 карты выбирается одна.

Событие $A = \{$ вынут туз $\}$. Что входит в событие \overline{A} (описать его словами)? Как подсчитать вероятность \overline{A} , зная P(A).

Вопрос № 7.

Из 9 карточек, образующих слово «фломастер» наудачу выбирают 6 и выкладывают слева направо. Вероятность того, что в результате выкладывания получится слово «мастер» по формуле классической вероятности равна:

1.
$$\frac{1}{A_9^6}$$
 2. $\frac{1}{A_9^3}$ 3. $\frac{1}{C_9^6}$

Ответ: 1

Вопрос № 8.

Расчёт вероятностей событий производится по формуле классической вероятности, если

- 1. Ω конечно
- 2. Ω непрерывно
- 3. Ω конечно и элементарные исходы равновозможны

Ответ 3
