2 Partial Automorphisms and the work of Kocay

2.1 Partial permutations

We extend the traditional definition of a function to that of "partial" functions, eventually focusing on "partial" bijections from a set to itself. In the process, we develop the cycle structure of a partial permutation π and show that a partial permutation on a set X partitions the set into five classes, U, D, R, T, P. The class U is the set of elements on which neither π nor π^{-1} is defined. D is the set (partial "domain") on which π is defined but π^{-1} is not; R is the set (partial "range") on which π^{-1} is defined but π is not; P is the set on which π acts as a true permutation. We prove that if X is finite, a partial permutation gives a bijection from D to R passing, possibly through an intermediate set of elements, T.

We are especially interested in applying partial functions to graph reconstruction.

We begin with the standard definition of a function.

Definition. A function $f: A \to B$ (from A into B) is a subset of $A \times B$ which satisfies the following two properties:

- 1. if $a \in A$ then there exists $b \in B$ such that $(a, b) \in f$,
- 2. if $((a, b_1) \in f) \land ((a, b_2) \in f)$ then $b_1 = b_2$.

By the second property, above, if $(a, b) \in f$ then we may write b = f(a). The first property tells us that for every $a \in A$, f(a) exists.

Definition. A partial function f from set A into B is a subset of $A \times B$ which is required to satisfy only the second condition above: if $((a, b_1) \in f) \wedge ((a, b_2) \in f)$ then $b_1 = b_2$.

If $f:A\to B$ and $g:B\to C$ are partial functions then we may create the partial function $g\circ f:A\to C$ by defining

$$(a,c) \in g \circ f \iff \exists b \in B \text{ such that } ((a,b) \in f, (b,c) \in C).$$

The function $g \circ f$ is the **composition** of f with g.

A partial function f allows the possibility that there are elements $a \in A$ such that f(a) does not exist. The concept of "partial" function generalizes the idea of a function; it merely allows "input" elements from A to have no defined output. The standard definitions of domain, range, injection, surjection and permutation (normally described in a first introduction to functions) generalize naturally to partial functions.

Definition. The domain of a partial function is the set $Dom(f) \subseteq A$ on which f is defined, that is,

$$Dom(f) := \{ a \in A : \exists b \in B, (a, b) \in f \}.$$

A partial function $f: A \to B$ is a function if and only Dom(f) = A.

Definitions. The range of a partial function is the set $Rng(f) \subseteq B$ of images of A under f:

$$Rng(f) := \{b \in A : \exists a \in B, (a, b) \in f\}.$$

A partial function f is a **partial injection** if

$$((a_1,b) \in f) \wedge ((a_2,b) \in f) \implies a_1 = a_2.$$

If $f: A \to B$ is a partial injection then $f^{-1} := \{(b, a) : (a, b) \in f\}$ is a partial function from B into A.

A partial injection $f: A \to B$ is **partial permutation** on A if B = A. A partial function $f: A \to B$ is a **partial surjection** if Rng(f) = B.

If a partial function $f: A \to B$ is in fact a (genuine) function, then we will drop the word "partial", so that single terms like "injection" and "permutation" and "surjection" have their standard meanings for the class of functions.

If $g: X \to X$ and $f: X \to X$ are partial functions then $\text{Dom}(g \circ f) \subseteq \text{Dom}(f) \subseteq X$. We write f^2 for $(f \circ f)$ and recursively define, for natural number $n, f^{n+1} := f^n \circ f$.

Lemma 1.

Suppose $f: X \to X$ is a partial function and suppose there exists an integer n such that $Dom(f^{n+1}) = Dom(f^n)$. Write $P := Dom(f^{n+1})$. Then $f|_P$ is a surjection from P onto P. If P is finite then $f|_P$ is a permutation.

The set P is the maximal set on which f acts like a (genuine) permutation. Note that if X is finite then there will always be some integer n such that $Dom(f^{n+1}) = Dom(f^n)$.

Let f be a partial permutation $f: X \to X$ and suppose that there exists a natural number n such that

$$P := \text{Dom}(f^{n+1}) = \text{Dom}(f^n).$$

Write

$$D := \text{Dom}(f) - \text{Rng}(f),$$

$$R := Dom(f) - Dom(f).$$

(Thus D is the set of elements of X for which f is defined but for which f^{-1} is not. Similarly R is the set of elements of X for which f is not defined but f^{-1} is.) Set

$$T := (Dom(f) \cap Rng(f)) - P.$$

The elements of T are those which "temporarily" involve f; if $t \in T$ then f(t) exists, as does $f^{-1}(t)$ but there is some integer n for which neither $f^n(t)$ nor $(f^{-1})^n(t)$ exist.

Let U represent the elements u of X for which both f(u) and $f^{-1}(u)$ are undefined. In this way, we partition the set X into mutually disjoint subsets:

$$X = U \sqcup D \sqcup R \sqcup T \sqcup P. \tag{1}$$

We could avoid the set U by presuming that f acts as the identity on any element not listed in the domain or range. For this reason, it will be convenient to assume $U = \emptyset$. We will also assume, from here on, that X is finite.

It is well known that if f is a permutation acting on a finite set P then there is an essentially unique way to write f as a product of cycles. This **cycle decomposition** of a permutation can be extended to a similar cycle decomposition of a partial permutation acting on a finite set X.

Given an element $d \in D$, we consider the sequence $d, f(d), f^2(d), ...$ Since X is finite, this sequence must eventually end at a member of R. So there exists an integer k and element $r \in R$ such that the sequence has length k + 1: $d, f(d), f^2(d), ..., f^{k-1}(d), r = f^k(d)$. (We write [d, ..., r] for this sequence.) The endpoints of the sequence [d, ..., r] are in D and R; the internal elements $f^j(d), 1 \le j \le k - 1$ lie in T. Indeed, this sequence provides a one-to-one correspondence between D and R.

Each element of D (and each corresponding element of R) provides a sequence

$$d, f(d), f^{2}(d), ..., f^{k-1}(d), r = f^{k}(d).$$

(The length k will vary with d (and r).) Each element of T is in exactly one such sequence. Given d and $r = f^k(d)$ we call the sequence $f(d), f^2(d), ..., f^{k-1}(d)$ the **thread** through T from d to r.

We summarize our progress to this point.

Lemma 2.

Let π be a partial permutation acting on a finite set X. Then π partitions X into the five sets, P, D, T, R, U described above equation 1. Furthermore |D| = |R| and powers of π provide a bijection from D onto R If we order $D = \{d_1, d_2, ..., d_m\}$ then the elements of T may be uniquely labeled as $t_{i,j} := f^j(d_i), 1 \le i \le m$.

Suppose the cardinality of D (and the cardinality of R) is an integer m. Just as we may partition P into the orbits of f, we may partition $D \sqcup T \sqcup R$ into m sequences beginning at a member of D, passing through T and ending at a member of R. Let us order $D = \{d_1, d_2, ..., d_m\}$ and, given this ordering, similarly order $R = \{r_1, r_2, ..., r_m\}$ with the understanding that a sequence starting at d_i ends at r_i We may then extend f to a permutation by $f(r_i) = d_i$. In this way, we extend f to a permutation of X and the sequence

$$[d_i, f(d_i), f^2(d_i), ..., f^{k-1}(d_i), r_i = f^k(d_i)]$$

extends to the k + 1-cycle

$$(d_i, f(d_i), f^2(d_i), ..., f^{k-1}(d_i), r_i).$$

Corollary 3.

Let π be a partial permutation acting on a finite set X and partition X as in equation 1. We may uniquely extend π to a permutation $\hat{\pi}$ on X by replacing sequences [d,...,r] with permutations (d,...,r) (so that $\hat{\pi}(r) = d$) and by requiring that $\hat{\pi}$ act as the identity map on U.

Some examples.

1. Suppose

$$f = \{(1,2), (2,3), (3,1), (4,5), (5,4), (6,7), (7,8), (8,9), (10,11)\}$$

is a partial permutation of $X := \{1, 2, 3, ..., 11\}$.

In this case the elements 9 and 11 are not in the domain and 6 and 10 are not in the range. So $D = \{6, 10\}$ and $R = \{9, 11\}$. If one begins at the element 6, the function f traverses through $T = \{f(6) = 7, f(7) = 8\}$, before ending at 9. On the remaining five elements, $P = \{1, 2, 3, 4, 5\}$, the function f acts as a permutation The cycle/sequence decomposition for f is

2. Suppose f acting on X = [1..12] is given by the table below.

$$\pi = \begin{bmatrix} 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline 6 & 6 & 10 & 7 & 1 & 9 & 11 & 12 & 8 & 2 \end{bmatrix}.$$

Note that $1, 2 \in R$ and since 3, 4 do not show up in the second column, they must be in D. The cycle/sequence decomposition for f is

$$(8, 9, 11), [3, 6, 7, 1], [4, 5, 10, 12, 2].$$

and so
$$P = \{8, 9, 11\}, T = \{6, 7, 5, 10, 12\}, D = \{3, 4\}, R = \{1, 2\}.$$

3. The previous problem would not significantly change if, instead of the previous table, we claimed that f acts on X = [1..15]. In this case, the numbers 13, 14, 15 are neither in the domain nor the range of f and so we could assign them to U and set $U = \{13, 14, 15\}$.

Exercises on Partial Permutations

- 1. Suppose $f = \{(1,2), (2,3), (3,1), (4,7), (5,6), (7,8), (8,9), (9,11)\}$ is a partial permutation of $X := \{1,2,3,...,11\}$.
 - (a) Write out the f in our cycle notation.
 - (b) Identify the sets P, T, D, R and U.
- 2. Redo problem 1 with $f = \{(1, 2), (2, 3), (3, 1), (5, 6), (7, 8), (8, 9), (9, 11)\}$
- 3. Redo problem 1 with the new assumption that $X := \{1, 2, 3, ..., 15\}.$
- 4. Construct a partial permutation f with $P = \{1, 3, 5, 6, 8\}, D = \{2, 4, 7\}, R = \{11, 12, 13\}$ and $T = \{9, 10\}$. Assume U is empty.
- 5. How many different solutions are available in problem 4??

2.2 Graphs that share two cards

We now apply the concept of partial permutation to some problems in graph theory, examining partial automorphisms of graphs.

We suppose $\Gamma(V, E)$ is a graph with adjacency relation \sim .

Definitions.

An **automorphism** of Γ is a permutation f of V with the property that a is adjacent to b (written $a \sim b$) if and only if f(a) is adjacent to f(b).

A partial automorphism of Γ is a partial permutation with the property that if a and b are in the domain of f then $a \sim b \iff f(a) \sim f(b)$. (This does not quite fit the definition of Kocay, who assumes that f can be extended to an automorphism of a larger graph.)

A card of a graph is a subgraph induced by deleting a vertex.

Suppose $\Gamma_1(V_1, E_1)$ and $\Gamma_2(V_2, E_2)$ are two graphs, each of order n with a common card C. This means that there are vertices $a_1 \in V_1$ and $a_2 \in V_2$ and graph isomorphisms α_1 and α_2 ,

$$\alpha_1: (V_1 - \{a_1\}) \to C \text{ and } \alpha_2: (V_2 - \{a_2\}) \to C.$$
 (2)

So $\alpha_2^{-1}\alpha_1$ is an automorphism from $V_1 - \{a_1\}$ to $V_2 - \{a_2\}$.

Suppose also that Γ_1 and Γ_2 share a second common card C'. This means that there are vertices $b_1 \in V_1$ and $b_2 \in V_2$ and graph isomorphisms β_1 and β_2 ,

$$\beta_1: (V_1 - \{b_1\}) \to C' \text{ and } \beta_2: (V_2 - \{b_2\}) \to C'.$$
 (3)

Now $\pi := \beta_2^{-1}\beta_1$ is a graph automorphism from $V_1 - \{b_1\}$ on the left in the drawing above to $V_2 - \{b_2\}$ on the right. Thus π is a partial automorphism with $D = \{a_1, b_2\}$ and $R = \{a_2, b_1\}$.

The partial automorphism π , with its two threads, have been created by our assumption that Γ_1 and Γ_2 share two vertex deleted subgraphs. C and C'. We may clean up our notation a bit by giving preference to our first card C and assuming that C provides us with a labeling of the vertices of the graph $\Gamma_1 \cup \Gamma_2$. By this, I mean that we identify $V_1 - \{a_1\}$ and $V_2 - \{a_2\}$ with C and so the functions α_1, α_2 are the identity maps on C. We will described C as the **base card** of what follows.

Given base card C, we can redo all of the above, defining

$$\pi := \beta_2^{-1} \beta_1 \tag{4}$$

We explore the threads the partial permutation π creates as it traces $\{b_2, a_1\}$ through to $\{b_1, a_2\}$. π is a partial automorphism as it acts on everything but b_1, a_2 and π^{-1} is also a partial automorphism as it acts on everything but b_2, a_1 .

I will write this

$$\pi: \{a_1, b_2\} \leadsto \{a_2, b_1\}.$$
 (5)

We will call the pair of cards C and C' "crossing" if $a_1 \leadsto b_1$ and $b_2 \leadsto a_2$. The card pair C and C' are "parallel" if $a_1 \leadsto a_2$ and $b_2 \leadsto b_1$.

For the partial automorphism π , $D = \{a_1, b_2\}$, $R = \{a_2, b_1\}$. The threads T and the set P, on which π is a permutation, are unknown. We attempt to identify these in several specific cases.

In this picture, the original vertex set V_1 consists of everything but a_2 ; the original vertex set V_2 consists of everything but a_1 . The card C is everything but the two vertices a_1 and a_2 and the card C' is isomorphic to two graphs, the one obtained by deleting vertices b_1 and a_2 and the one obtained by deleting a_1 and a_2 .

If the partial automorphism π can be extended to an automorphism of Γ by mapping a_1 to a_2 then the graph Γ_1 is reconstructible.

Here is a specific example in which the two graphs Γ_1 and Γ_2 are not isomorphic.

The graph, Γ_2 , on the right, has a 4-cycle $b_2 - 1 - 2 - 3 - b_2$ containing a bump (b_2) while the all 4-cycles in the graph on the left are made up of cubic vertices.

The card C is

The card C' is both

An isomorphism π , mapping the graph on the left to the graph on the right, without mapping a_1 to a_2 is

$$\pi = \frac{\begin{bmatrix} a_1 & b_2 & 3 & 2 & z & 1 & 4 \\ 1 & b_1 & 4 & z & 2 & a_2 & 3 \end{bmatrix}.$$

In this case, the graphs are small enough that we can list all isomorphisms. There are two. Here is the other.

$$\pi_2 = \begin{bmatrix} a_1 & b_2 & 3 & 2 & z & 1 & 4 \\ 1 & 2 & z & 4 & b_1 & 3 & a_2 \end{bmatrix}.$$

We may view either of these isomorphisms as a partial permutation on the larger graph on nine vertices.

We may construct $\Gamma_1 \cup \Gamma_2$ as follows. The partial automorphisms π_1 and π_2 act on this graph.

The partial automorphism π_1 has cycle structure $(2, z)(3, 4)[a_1, 1, a_2][b_2, b_1]$. It is a "parallel" partial automorphism, sending a_1 to a_2 . Later we will denote this partial automorphism as type P(2, 1). On the other hand, the partial automorphism π_2 has cycle structure $[a_1, 1, 3, z, b_1][b_2, 2, 4, a_2]$. It is a "crossing" partial automorphism, sending a_1 to b_1 . We will later say this partial automorphism has type C(4, 3).

Exercises on Partial Automorphism of Kocay Graphs

1. The graph below is the card of two different graphs, Γ_1 and Γ_2 .

Reconstruct the two graphs Γ_1 and Γ_2 and show that they are not isomorphic.

- 2. Show that the card above appears *twice* in the decks of Γ_1 and Γ_2 .
- 3. Using the two cards from problem 2, find all partial automorphisms of $\Gamma_1 \cup \Gamma_2$.

3 Bidegree graphs

We consider an example described by William Kocay in several papers in the early 1980s.

3.1 A regular graph less one edge

A regular graph of degree k is reconstructible. But what if we remove an edge? Is the new graph reconstructible? This simple changes seems to give a very hard problem.

We suppose a graph $\Gamma_1(V_1, E_1)$ which has n vertices of degree k and has exactly two vertices of degree k-1, call them a_1 and b_1 . We assume that a_1 and b_1 are not adjacent (else the graph would be easy to reconstruct.)

Suppose that this graph is a counterexample to the graph reconstruction conjecture. Then there exists a graph $\Gamma_2(V_2, E_2)$ which has n vertices of degree k and has exactly two vertices of degree k-1, a_2 and b_2 such that the card C obtained by deleting vertex a_2 from Γ_2 is the same as the card obtained by deleting a_1 from Γ_1 . Let us identify the card C in both graphs, so the $V_1 - \{a_1\} = V_2 - \{a_2\}$.

Furthermore, if this is a counterexample to the graph reconstruction conjecture then the card obtained by deleting vertex b_1 from Γ_1 , call it C', is isomorphic the card obtained by deleting b_2 from Γ_2 .

The card C obtained by deleting a_1 has k vertices of degree k-1. These are the "short" vertices, vertices with too few edges. All but one of these "short" vertices is adjacent to a_1 in Γ_1 . And all but one of these "short" vertices is adjacent to a_2 in Γ_2 .

If Γ_1 and Γ_2 are nonisomorphic then a_1 is adjacent to k-2 vertices $z_1, z_2, ..., z_{k-2}$ that are also adjacent to a_2 . The short vertex in the card C which is not adjacent to a_1 must be the "true" bump b_1 .

Here is a representation of the graph Γ_1 with short vertices a_1 and b_1 . If we remove the vertex a_1 we have a graph with k short vertices, represented here by b_1 , b_2 and the set Z. The set Z has size k-2 and represents somewhat anonymous vertices adjacent to a_1 . The set $X = \{x_0, x_1, ..., x_{k-2}\}$ represents the k-1 vertices (other than a_1) that are adjacent to b_2 . Similarly, the set $Y = \{x_0, x_1, ..., x_{k-2}\}$ represents the k-1 vertices adjacent to b_1 . It is possible that X, Y and Z have some vertices in common.

The graph Γ_1 .

The graph Γ_2 , is drawn below.

The graph Γ_2

Note that if Γ_1 is not isomorphic to Γ_2 then the simple change of the single edge $a_1 \sim b_2$ to $a_2 \sim b_1$ has created a nonisomorphic graph.

The two graphs Γ_1 and Γ_2 have the same card C.

If the graphs Γ_1 and Γ_2 have a second card $C' \cong \Gamma_1 - \{b_1\} \cong \Gamma_2 - \{b_2\}$ then the two graphs below are isomorphic.

The two versions of C'

The automorphism π maps the graph on the left onto the graph on the right.

The short vertices (vertices of degree k-1) in the graph on the left are a_1 and the members of Y. The short vertices in the graph on the right are a_2 and the members of X.

If the two graphs Γ_1 and Γ_2 are not isomorphic then π cannot map a_1 to a_2 . It must then map a_1 to some member of X only a_2 and the members of X are the short vertices in the graph on the right. Let's assume, without loss of generality, that $x_0 := \pi(a_1)$.

Similarly, π must map some member of Y to a_2 , say $\pi(y_0) = a_2$. Label the remaining k-2 members of X and Y so that $\pi(y_i) = x_i$.

$$\pi = \begin{bmatrix} a_1 & y_i & y_0 \\ x_0 & x_i & a_2 \end{bmatrix}.$$

Kocay will draw all of this together in one large graph and view π as a partial autmorphism.

 $\Gamma_1 \cup \Gamma_2$

We wish to trace the threads created by following a_1 and b_2 . Since a_1 and b_2 are adjacent, then their images under π are also adjacent. Since $D = \{a_1, b_2\}$ and $R = \{a_2, b_1\}$, eventually the threads starting at a_1 and b_2 must end up at a_2 and b_1 .

3.2Bumps and cubics

We explore this by first setting k=3 and following the 1982b paper, "Partial automorphisms and the reconstruction of bidegreed graphs", Congressus Numeratium.¹

Consider the graph Γ_1 which has degrees two and three and has exactly two vertices of degree 2, a_1 and b_1 . As before, we suppose that a_1 and b_1 are not adjacent.

We focus on the cards created by short vertices. We remove the vertex a_1 and attempt to reconstruct the graph. We do this by introducing a new vertex a_2 of degree two and build the graph $\Gamma = \Gamma_1 \cup \{a_2\}$. If after joining a_2 to two vertices in $\Gamma_1 - \{a_1\}$, Γ_2 is isomorphic to Γ_1 then we have reconstructed Γ_1 .

The vertex a_1 has two neighbors in Γ_1 , call them b_2 and z, and so the graph $\Gamma_1 - \{a_1\}$ has exactly three vertices of degree two, the vertex b_1 which was originally of degree 2, and the two vertices, b_2 and z whose degree dropped to 2 when a_1 was deleted. Now if Γ_2 is not isomorphic to Γ_1 then a_2 is not adjacent to both b_2 and z. Let us assume then that a_2 is adjacent to z and b_1 .

Let x_0, x_1 be the neighbors of b_2 . Let y_0, y_1 be the neighbors of b_1 . In $\Gamma - \{b_1\}$, y_0 and y_1 have degree 2 and in $\Gamma - \{b_2\}$, x_0 and x_1 have degree 2. The partial automorphism $\pi : \Gamma_1 - \{b_1\} \to \Gamma_2 - \{b_2\}$ must map the set $\{a_1, y_0, y_1\}$ of vertices of degree two in $\Gamma_1 - \{b_1\}$ to $\{a_2, x_0, x_1\}$, the set of vertices of degree two in $\Gamma_2 - \{b_2\}$. If Γ_1, Γ_2 is a counterexample to the GRC then π will not map a_1 to a_2 . We may assume then, without loss of generality, that

$$\pi(a_1) = x_0, \pi(y_1) = x_1, \pi(y_0) = a_2,$$

that is, in two-row function notation

$$\pi = \begin{bmatrix} a_1 & y_1 & y_0 \\ x_0 & x_1 & a_2 \end{bmatrix}.$$

Note that b_2 is adjacent to both a_1 and $a_2 = \pi(a_1)$. Similarly b_1 is adjacent to both y_0 and $a_2 = \pi(y_0)$.

A strategy here will be to consider the two threads created by a_1 and b_2 . Let P be the the vertices that are not in these two threads. (Kocay calls this set V'. It is the set on which π acts as a true automorphism.) I think that the larger P, the less control we have on our reconstruction.

Consider the two threads

$$[a_1, x_0 = \pi(a_1), \pi^2(a_1), \pi^3(a_1), \dots, \pi^{k_1}(a_1)]$$
$$[b_2, \pi(b_2), \pi^2(b_2), \pi^3(b_2), \dots, \pi^{k_2-1}(b_2) = y_0, \pi^{k_2}(b_2)]$$

Since a_1 is adjacent to b_2 then for $j \leq \min\{k_1, k_2\}$, $\pi^j(a_1)$ is adjacent to $\pi^j(b_2)$. Similarly, since b_2 is adjacent to $a = \pi(a_1)$ then for $j \leq \min\{k_1 - 1, k_2\}$, $\pi^j(b_2)$ is adjacent to $\pi^{j+1}(a_1)$. Thus we have a path starting at a_1 , snaking its way back and forth $(a_1, b_2, x_0 = \pi(a_1), \pi(b_2)...)$ across the two threads.

The partial permutation π^{-1} also creates a path through the threads, beginning with a_2, b_1, y_0 and going in the opposite direction of the first path.

 $^{^{1}}$ Kocay uses letters v,u,r,s,w,x,a,b,z whereas I use $b_{1},a_{1},y_{1},y_{0},b_{2},a_{2},x_{0},x_{1},z$, respectively. Kocay's partial automorphism p is the automorphism π here.

²Kocay instead labels x_0, x_1, y_0, y_1 as a, b, s, r.

Case 1. (The crossing case.)³ In this case the partial automorphism π acts as follows, $(a_1, b_2) \rightsquigarrow (b_1, a_2)$, that is iteration of π maps a_1 to b_1 and b_2 to a_2 .

We write $[a_1, ..., b_1]$ for the set of vertices

$${a_1, \pi(a_1), \pi^2(a_1), ..., \pi^{k_1}(a_1) = b_1}.$$

Similarly we write $[b_2, ..., a_2]$ for the set of vertices (thread)

$$\{b_2, \pi(b_2), \pi^2(b_2), ..., \pi^{k_2}(b_2) = a_2\}.$$

Now b_2 is adjacent to both a_1 and $x_0 = \pi(a_1)$. The partial automorphism π preserves these adjacencies. The vertex a_1 is adjacent to b_2 and z.

The action of the partial automorphism π on the vertices of $\Gamma_1 \cup \Gamma_2$ is essentially something like this. In dark blue is the thread

$$[a_1, \pi(a_1) = x_0, ..., \pi^{k_1}(a_1) = b_1].$$

In light blue is the thread

$$[b_2, \pi(b_1), ..., \pi^{k_2-1}(b_2) = y_0, \pi^{k_2}(b_2) = a_2].$$

Since π and π^{-1} are partial automorphisms, they preserve the edges in the thread and so we have a zigzag path winding through the two threads.

This picture assumes that z and y_1 are not in the two threads but as we will see, we may indeed need to have these two vertices down among the two threads.

This picture has been drawn as if the two threads have the same length. In this case, the vertex z (appearing twice in this picture) is in a large cycle of length 2k + 1.

Need the lengths, k_1 and k_2 of the two threads be equal? Let us suppose that $k_2 > k_1$. (If $k_1 > k_2$, we may replace π and π^{-1} and consider the threads running from right to left, mapping b_1 eventually to a_1 and a_2 to b_2 .)

Suppose $k_2 \ge k_1 + 2$. Then both the partial automorphisms π and π^{-1} preserve edges Then our threads have this form and b_1 is adjacent to too many vertices. Since a_1 and b_2 are adjacent, $b_1 = \pi^{k_2}(a_1)$ it is adjacent to $\pi^{k_2}(b_2)$. Since $x_0 = \pi(a_1)$ is adjacent to b_2 then $b_1 = \pi^{k_2-1}(x_0)$ it is adjacent to $\pi^{k_2-1}(b_2)$. But b_1 is already adjacent to $y_0 = \pi k_2 - 1(b_2)$ and also adjacent to a_2 and so a_3 , a vertex of degree 3 in $a_3 = \pi k_2 - 1$, is adjacent to at least four vertices.

 $^{^3}$ This case is section 3 of Kocay's 1982b paper.

What if $k_2 = k_1 + 1$? In this case, by a similar argument, b_1 is adjacent to y_0, a_2 and $\pi^{-1}(y_0)$.

Now the two threads induce vertices of degree three and since $b_1 \sim a_2$ then $a_1 \sim \pi^{-k_2}(a_2) = \pi(b_2)$. Thus $z = \pi(b_2)$ and the vertex y_0 is adjacent to b_2 . The graph $\Gamma_1 \cup \Gamma_2$ is exactly the union of two threads.

We can identify this graph. Create a cubic graph as follows. The vertices of the cubic graph are $u_1, u_2, ... u_k$ and $v_1, v_2, ..., v_k$. For all i, join u_i to v_i . For i in the interval (1, k), join u_i to v_{i-1}, v_{i+1} and join v_i to u_{i-1}, u_{i+1} . Join u_1 to u_k and v_1 to v_k .

The graph Γ_1 is the graph created by removing the edge from u_1 to u_k .

Exercise. Show that this graph is reconstructible.