Digital Logic Design

數位邏輯設計會

第 4 章 布林代數化簡

- 4-1 布林代數式的表示法
- 4-2 代數演算法
- 4-3 卡諾圖法
- 4-4 組合邏輯電路化簡

第 4 章 布林代數化簡

通常在設計數位邏輯電路時,為了減少邏輯閘使用的數量與 降低成本,我們會將布林代數式予以化簡,而化簡布林代數式的 方法很多,常用的化簡方法有代數演算法與卡諾圖法,本章將針 對這兩種化簡法做詳細的說明。

在說明這兩種化簡法之前,我們先介紹布林代數式的表示法

0

布林代數式的表示法有積之和(sum of product;簡稱SOP)與和之積(product of sum;簡稱POS)兩種,分別說明如下。

一 積之和 (SOP)

在介紹積之和之前,我們先說明下列專有名詞:

(一) 積項

在布林代數式中,二個或多個變數執行 $AND_$ 運算稱為乘積項或簡稱為積項(product),例如 $AB \times AC \times ABC$ 都稱為積項。

(二)標準積項

若一個積項中包含所有的輸入變數,則這個積項稱為標準積項(standard product)或最小項(minterm)。例如三個輸入變數為A、B、C時,則ABC、ABC、ABC、ABC等包含所有輸入變數的積項,都稱為標準積項或最小項。

通常以「 m_i 」表示標準積項或最小項,其中i為相對應的十進位數,例如二進位的 $000_{(2)} = ABC = m_0 \cdot 001_{(2)} = ABC = m_1 \cdot 010_{(2)}$ = $ABC = m_2 \cdot ... \cdot 111_{(2)} = ABC = m_7$,如表4-1 所示,列出三個輸入變數的標準積項(或最小項)表示法,共有 $2^3 = 8$ 種輸入情況,其中A 為最高有效位元(MSB),C 為最低有效位元(LSB),若A = 0 以補數 A 表示;若A = 1 以A 表示,其他以此類推。

▼表4-1 三個輸入變數的標準積項(或最小項)表示法

十進制值	輸入變數			標準積項(或最小項)表示法	
	A	В	С	布林代數	$m_{\rm i}$
0	0	0	0	\overline{ABC}	m_0
1	0	0	1	\overline{ABC}	m_1
2	0	1	0	$\overline{A}B\overline{C}$	m_2
3	0	1	1	ABC	m_3
4	1	0	0	$A\overline{BC}$	m_4
5	1	0	1	$A\overline{B}C$	m_5
6	1	1	0	$AB\overline{C}$	m_6
7	1	1	1	ABC	m_7

(三)標準積之和(SSOP)

將數個「標準積項」以OR 運算相加起來,稱為標準積之和(standard sum of product;簡稱SSOP)或最小項之和。例如4-1式即為標準積之和或最小項之和的布林代數式。

標準積之和或最小項之和通常以數學符號「Σ」表示,稱為標準積之和或最小項之和的簡易式。例如4-2 式即為標準積之和或最小項之和的簡易式。

其中F表示輸出函數,而 $A \setminus B \setminus C$ 為其輸入變數,且A 為 $MSB \setminus C$ 為LSB。

(四) 積之和 (SOP)

將數個「積項」以OR 運算相加起來,稱為積之和(sum of product;簡稱SOP)。例如4-3 式即為積之和的布林代數式。

$$F(A, B, C) = AB + \overline{A}BC + A\overline{B}C$$

4-3 式

其中F 表示輸出函數, 而 $A \times B \times C$ 為其輸入變數, 且A 為 MSB \times C 為LSB \circ 4-3 式中的積項AB 缺少了C 變數。

 (Δ) 積之和轉換成標準積之和 $(SOP \rightarrow SSOP)$

欲將積之和轉換成標準積之和,只要補充積之和的每一個積 項中欠缺的變數即可,補充的方法為「將有欠缺的變數本身加上 其補數,乘上原有積項」。

例如三個輸入變數為 $A \times B \times C$ 時,欲將積項 AB 轉換成標準 ___ 積項,因為少了變數 C,所以 $AB = AB \cdot 1 = AB \cdot (C + C) = ABC + ABC$,即可將積項 AB 轉換成標準積項 ABC 與 ABC。

例題 4-1 SOP 轉換成SSOP

將積之和 F(A,B,C) = AB + ABC 轉換成標準積之和的布林代數式與簡易式。

解

1. 標準積之和 (SSOP) 的布林代數式:

$$F(A,B,C) = A\overline{B} + AB\overline{C}$$

 $= A\overline{B} \cdot 1 + AB\overline{C}$ (: 乘法一致定理 $A \cdot 1 = A$)
 $= A\overline{B} \cdot (C + \overline{C}) + AB\overline{C}$ (: 加法補數定理 $C + \overline{C} = 1$)
 $= A\overline{B}C + A\overline{B}C + AB\overline{C}$ (: 乘法分配律 $A(B + C) = AB + AC$)

2. 標準積之和 (SSOP) 的簡易式:

或快速解法:將積之和布林代數式中,每個積項的變數原形以1、 補數以0、缺項以×表示。

即

$$F(A,B,C) = A\overline{B} + AB\overline{C}$$

= $10 \times +110$
 $\begin{cases} 100 \\ 101 \end{cases}$ ←二進位數
= $m_4 + m_5 + m_6$ ←最小項之和
= $\sum (4,5,6)$ ←標準積之和的簡易式

演練 1

將積之和 $F(A,B,C) = \overline{C} + ABC$ 轉換成標準積之和的布林代數式與簡易式。

二 和之積 (POS)

在介紹和之積之前,我們先說明下列專有名詞:

(一)和項

在布林代數式中,二個或多個變數執行OR 運算稱為和項,例如A+B、A+C 、A+B+C 都稱為和項(sum)。

(二)標準和項

若一個和項包含所有的輸入變數,則這個和項稱為標準和項(standard sum)或最大項(maxterm)。例如三個輸入變數為 $A \times B \times C$ 時,則 $A + B + C \times A + B + C \times A + B + C \times A + B + C$ 等包含所有輸入變數的和項,都稱為標準和項或最大項。

通常以「 M_i 」表示標準和項或最大項,其中i 為相對應的十進位數,例如二進位的 $000_{(2)} = A + B + C = M_0 \cdot 001_{(2)} = A + B + C = M_1 \cdot 010_{(2)} = A + B + C = M_2 \cdot \dots \cdot 111_{(2)} = A + B + C = M_7$,如表 4-3 所示,列出三個輸入變數的標準和項(或最大項)表示法,共 有 $2^3 = 8$ 種輸入情況,其中A 為MSB,C為LSB,若A = 0 以A 表示;若A = 1 以補數 A 表示,其他以此類推。

▼表4-2 三個輸入變數的標準和項(或最大項)表示法

十進制值	輸入變數			標準和項(最大項)表示法	
	A	В	C	布林代數	M_{i}
0	0	0	0	A + B + C	M_0
1	0	0	1	$A + B + \overline{C}$	M_1
2	0	1	0	$A + \overline{B} + C$	M_2
3	0	1	1	$A + \overline{B} + \overline{C}$	M_3
4	1	0	0	$\overline{A} + B + C$	M_4
5	1	0	1	$\overline{A} + B + \overline{C}$	M_5
6	1	1	0	$\overline{A} + \overline{B} + C$	M_6
7	1	1	1	$\overline{A} + \overline{B} + \overline{C}$	M_7

(三)標準和之積(SPOS)

將數個「標準和項」以AND 運算相乘起來,稱為標準和之積(standard product of sum;簡稱SPOS)或最大項之積。例如4-4 式即為標準和之積或最大項之積的布林代數式。

標準和之積或最大項之積通常以數學符號「Ⅱ」表示,稱為標準和之積或最大項之積的簡易式。例如4-5 式即為標準和之積或最大項之積的簡易式。

4-5 式

4-1 布林代數式的表示法

其中 F 表示輸出函數,而 $A \cdot B \cdot C$ 為其輸入變數,且 A 為 $MSB \cdot C$ 為 $LSB \circ$

(四)和之積

將數個「和項」以AND 運算相乘起來, 稱為和之積(product of sum; 簡稱POS)。例如4-6 式即為和之積的布林代數式。

$$F(A,B,C) = (A+B)(\overline{A}+B+C)(A+\overline{B}+C)$$

4-6 式

其中F 表示輸出函數, 而 $A \times B \times C$ 為其輸入變數, 且A 為 $MSB \times C$ 為 $LSB \circ 4-6$ 式中的和項A + B 缺少了C 變數。

(五)和之積轉換成標準和之積(POS → SPOS)

欲將和之積轉換成標準和之積,只要補充和之積的每一個和項中欠缺的變數即可,補充的方法為「將有欠缺的變數本身乘上 其補數,加上原有和項」。

例如三個輸入變數為 $A \cdot B \cdot C$ 時,欲將和項 A + B 轉換成標準和項,因為少了變數C,所以

$$\overline{A}+B=\overline{A}+B+0=\overline{A}+B+C\cdot\overline{C}=(\overline{A}+B+C)(\overline{A}+B+\overline{C})$$
,即可將和項 $\overline{A}+B$ 轉換成標準和項 $(\overline{A}+B+C)$ 與 $(\overline{A}+B+\overline{C})$

0

例題 4-2 POS 轉換成SPOS

將和之積F(A,B,C) = (A+B)(A+B+C)轉換成標準和之積的布林代數式與簡易式。

解 1. 標準和之積(SPOS)的布林代數式:

$$F(A,B,C) = (A+\overline{B})(\overline{A}+\overline{B}+C)$$

$$= (A+\overline{B}+0)(\overline{A}+\overline{B}+C) \qquad (∴加法一致定理 A+0=A)$$

$$= (A+\overline{B}+C\cdot\overline{C})(\overline{A}+\overline{B}+C) \qquad (∴乘法補數定理 C\cdot\overline{C}=0)$$

$$= (A+\overline{B}+C)(A+\overline{B}+\overline{C})(\overline{A}+\overline{B}+C)$$

$$(∴加法分配律A+BC=(A+B)(A+C))$$

2. 標準和之積 (SPOS) 的簡易式:

或快速解法:將和之積布林代數式中,每個和項的變數原形以0、 補數以1、缺項以 × 表示。

即

$$F(A,B,C) = (A+\overline{B}) + (\overline{A}+\overline{B}+C)$$
 $= 10 \times \cdot 110$ $= 10 \times 110$ $= 10 \times \cdot 110$ $= 10 \times 110$ $= 10 \times \cdot 110$

演練 2

將和之積 $F(A,B,C) = \overline{A(A+B+C)}$ 轉換成標準和之積的布林代數式與簡易式。

三 標準積之和與標準和之積的互換

根據表4-3 所示之真值表,可以寫出標準積之和與標準和之積的布林代數式,並且比較標準積之和與標準和之積的關係。

▼ 表 4-3 真值表

輸	入	輸出	
A	В	F	
0	0	1	
0	1	0	
1	0	1	
1	1	0	

(一) 標準積之和布林代數式

標年積之和が代数式
$$F(A,B) = \Sigma(0,2) = m_0 + m_2$$

$$= \overline{AB} + A\overline{B}$$

$$= B(\overline{A} + A) \quad (∴乘法分配律 A(B + C) = AB + AC)$$

$$= \overline{B} \cdot 1 \quad (∴加法補數定理 A + \overline{A} = 1)$$

$$= \overline{B} \quad (∴乘法一致定理 A \cdot 1 = A)$$

(二) 標準和之積布林代數式

$$F(A,B) = \Pi(1,3) = M_1 \cdot M_3$$

 $= (A + \overline{B})(\overline{A} + \overline{B})$
 $= (\overline{B} + A)(\overline{B} + \overline{A})$ (: 加法交換律 $A + B = B + A$)
 $= \overline{B} + A \cdot \overline{A}$ (: 加法分配律 $A + BC = (A + B)(A + C)$)
 $= \overline{B} + 0$ (: 乘法補數定理 $A \cdot \overline{A} = 1$)
 $= \overline{B}$ (: 加法一致定理 $A + 0 = A$)

(三)標準積之和(SSOP)與標準和之積(SPOS)的互換

由以上的證明得知 $F(A,B) = \Sigma(0,2) = \Pi(1,3)$,因此標準積之和與標準和之積互換時,只要將標準積之和的簡易式中未出現的數字,填入標準和之積的簡易式中即可,反之亦然。

「代數演算法」是利用第三章的「布林定理」來化簡複雜的布林代數式,但是對於初學者來說並不容易,需要對布林定理非常熟悉,加上經驗累積與靈活運用,才能將布林代數式化簡成為最簡的布林代數式。現在我們舉一些實例來說明如何運用布林定理進行化簡,讓學生更加瞭解與熟練布林代數演算法化簡的技巧

0

例題 4-3 布林定理化簡

化簡布林代數式
$$F(A,B,C) = A\overline{BC} + A\overline{BC} + ABC + \overline{ABC}$$
 。

解

$$F(A,B,C) = A\overline{BC} + A\overline{BC} + ABC + \overline{ABC}$$
 (提出公因數)
$$= A\overline{B}(\overline{C} + C) + BC(A + \overline{A})$$
 (:...乘法分配律 $A(B+C) = AB + AC$)
$$= A\overline{B} \cdot 1 + BC \cdot 1$$
 (:...加法補數定理 $C + \overline{C} = 1$)
$$= A\overline{B} + BC$$
 (:...乘法一致定理 $A \cdot 1 = A$)

演練 3

化簡布林代數式 F(A,B,C) = A + AC + AB + ABC。

例題 4-4 布林定理化簡 化簡布林代數式 $F(A,B,C)=C+A(\overline{B+C})+A\overline{C}$ 。

解 若函數非積之和的布林代數式,則應用第摩根定理轉換成積 之和,再利用布林定理來化簡。

$$F(A, B, C) = C + A(\overline{B} + \overline{C}) + A\overline{C}$$

$$= C + A(\overline{B} \cdot \overline{C}) + A\overline{C}$$

$$= C + A\overline{C}(\overline{B} + 1)$$

$$= C + A\overline{C} \cdot 1$$

$$= C + A\overline{C}$$

=(C+A)(C+C)

 $= (C + A) \cdot 1$

=C+A

(:第摩根第一定理
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$
)

(:. 乘法分配律 A(B+C) = AB + AC)

(:.加法分配律 A + BC = (A + B)(A + C))

$$(\cdot, % 法一致足垤 A \cdot 1 = A)$$

$$(:m法補數定理 $C+C=1)$$$

演練 4

化簡布林代數式
$$F(A,B,C) = \overline{BC} + A(\overline{A+B})$$

例題 4-5 布林定理化簡

化簡布林代數式
$$F(A,B) = (A+B)(\overline{A}+A\overline{B})$$
 。

解

$$F(A,B) = (A+B)(A+AB) \qquad (\textbf{\textit{E}} \textbf{\textit{H}})$$

$$=A\overline{A} + AA\overline{B} + B\overline{A} + BA\overline{B}$$
 (: 乘法分配律 $A(B+C) = AB + AC$)

$$= 0 + AB + BA + 0$$

$$=A\overline{B}+A\overline{B}$$

$$(:: m法一致定理A+0=A)$$

$$(::$$
乘法交換律 $A \cdot B = B \cdot A)$

演練 5

化簡布林代數式
$$F(A,B) = (A+B)(A+B)$$

4-3 卡諾圖法

上一節所介紹的代數演算法化簡,除了需要經驗的累積之外, 的無一定的標準法則可依循,且難以確定所得結果是否為最簡 式,在實際應用上並不方便,所以本節將說明另外一種較簡單的 卡諾圖法。

卡諾圖是由美國貝爾實驗室的電機工程師卡諾(Karnaugh) 所發展出來的,它是利用方格圖形來化簡複雜的布林代數式,常 應用於兩個、三個或四個變數的布林代數式化簡,至於五個或五 個以上變數的布林代數化簡,其化簡的步驟較複雜,所以較少使 用。

一 卡諾圖法化簡的步驟

卡諾圖法是利用方格圖形來化簡複雜的布林代數式,卡諾圖中每一個方格代表一個標準積項或標準和項,它可以用來表示輸出函數的標準積之和或標準和之積布林代數式。現在我們將卡諾圖化簡結果為最簡積之和(SOP)與最簡和之積(POS)布林代數式的步驟說明如下:

(一) 化簡結果為最簡積之和 (SOP) 布林代數式

若原始的布林代數式為積之和、標準積之和或真值表的輸出函數為1時,則用1 化簡,經過卡諾圖化簡後,所得結果為最簡積之和的布林代數式。

1. 根據輸入變數的個數,畫出卡諾圖。

若有 п 個輸入變數,則必須畫出2 п 個方格的卡諾圖,每一個方格代表一個標AB 準積項(或最小項)。例如4個輸入變數 ,必須書出 $2^4 = 16$ 個方格,如圖4-1 所 示為四變數之卡諾圖,其中A 為MSB, D為LSB,且相鄰兩格之間僅有一個輸入變 數不同,其中AB 兩變數依序為 $00 \cdot 01$ 、 11、10, CD 兩變數依序為00、01、11、 10。例如左上角方格表示輸入變數ABCD 為 $0000_{(2)}$,以標準積項ABCD表示,其他

▲ 圖 4-1 4 變數之卡諾圖

2. 在對應的方格中填入1(即對號入座)。

將真值表輸出函數為1 或布林代數式的標準積項填入卡諾圖 相對應的方格中。

3. 將相鄰的2 個1 圈起來。

如圖4-1 所示,卡諾圖中除了上下左右為相鄰之外,特別注意的是最左與最右、最上與最下皆為相鄰項,所以四個角落亦為相鄰項。

將相鄰的16個、8個、4個或2個1所組成的矩形圈起來, 其圈選的範圍越大越好,如此才能消掉更多的輸入變數,且圈選 數越少越好,使化簡所得的積項為最少,以得到最簡的積之和布 林代數式,而且卡諾圖中的每一個1都要圈選起來。另外因為加 法全等定理A + A = A,所以1可以重複圈選。

4. 若2ⁿ 個1 圈起來,可以消去n 個變數。

如圖4-1 所示,例如 \overline{ABCD} 與 \overline{ABCD} 二個1 圈起來 (:: 2 = 2¹),可以消去一個變數D; \overline{ABCD} 、 \overline{ABCD} 、 \overline{ABCD} 與 \overline{ABCD} 四個1 圈起來 (:: 4 = 2²),可以消去二個變數B 與D,其他以此類推。若只有單獨一個1,仍需個別圈起來,只是無法消去任何變數。

5. 將每個圈起來經化簡後的積項進行OR 運算,即可得到最簡的積之和布林代數式。

(二) 化簡結果為最簡和之積 (POS) 布林代數式

若原始的布林代數式為和之積、標準和之積或真值表的輸出 函數為0時,則用0化簡,經過卡諾圖化簡後,所得結果為最簡和 之積的布林代數式。

1. 根據輸入變數的個數,畫出卡諾圖。

若有n個輸入變數,則必須畫出2n個方格的卡諾圖,每一個方格代表一個標準和項(或最大項)。例如4個輸入變數,必須畫出2⁴=16個方格,如圖4-2所示為四變數之卡諾圖,其中A為MSB,D為LSB,且相鄰兩格之間僅有一個輸入變數不同,其中AB兩變數依序為00、01、11、10,CD兩變數依序為00、01、11、10。例如左上角方格表示輸入變數ABCD為0000₍₂₎,以標準和項A+B+
■20***○+D表示,其他以此類推。

AB CL	00	01	11	10
00	A+B+C+D	$A+B+C+\overline{D}$	$A+B+\overline{C}+\overline{D}$	$A+B+\overline{C}+D$
01	$A + \overline{B} + C + D$	$A + \overline{B} + C + \overline{D}$	$A + \overline{B} + \overline{C} + \overline{D}$	$A + \overline{B} + \overline{C} + D$
11	$\overline{A} + \overline{B} + C + D$	$\overline{A} + \overline{B} + C + \overline{D}$	$\overline{A} + \overline{B} + \overline{C} + \overline{D}$	$\overline{A} + \overline{B} + \overline{C} + D$
10	$\overline{A}+B+C+D$	$\overline{A}+B+C+\overline{D}$	$\overline{A} + B + \overline{C} + \overline{D}$	$\overline{A}+B+\overline{C}+D$

▲ 圖 4-2 4 變數之卡諾圖

2. 在對應的方格中填入0(即對號入座)。

將真值表輸出函數為0 或布林代數式的標準和項填入卡諾圖 相對應的方格中。

3. 將相鄰的2m 個0 圈起來。

如圖4-2 所示,卡諾圖中除了上下左右為相鄰之外,特別注意的是最左與最右、最上與最下皆為相鄰項,所以四個角落亦為相鄰項。

將相鄰的16個、8個、4個或2個0所組成的矩形圈起來, 其圈選的範圍越大越好,如此才能消掉更多的輸入變數,且圈選 數越少越好,使化簡所得的和項為最少,以得到最簡的和之積布 林代數式,而且卡諾圖中的每一個0都要圈選起來。另外因為乘 № ★ 全等定理 A· A = A,所以0可以重複圈選。

4. 若2ⁿ 個0 圈起來,可以消去n 個變數。

5. 將每個圈起來經化簡後的和項進行AND 運算,即可得到最簡的和之積布林代數式。

二 二變數卡諾圖法

若有2個輸入變數,則必須畫出2²=4個方格的卡諾圖,如圖4-3(a)所示為二變數的標準積項與標準和項表示法,其中A為MSB,B為LSB。圖4-3(b)卡諾圖內的數字就是對應的十進位值。

圖4-3(c) 為二變數卡諾圖所對應的標準積項,在卡諾圖中左方的0代表輸入變數 \overline{A} ,左方的1代表輸入變數A,上方的0代表輸入變數 \overline{B} ,上方的1代表輸入變數B。例如D號方格表示輸入變數AB為D00(2),以標準積項 \overline{A} 表示,其他以此類推。

圖4-3(d) 為二變數卡諾圖所對應的標準和項,在卡諾圖中左方的0代表輸入變數A,左方的1代表輸入變數 \overline{A} ,上方的0代表輸入變數B,上方的1代表輸入變數 \overline{B} 。例如0號方格表示輸入變數AB

图 $00_{(2)}$,以標準和項A+B表示,其他以此類推。

十進	輸	入	標準積項與標準和項表示法		
位值	A	В	標準積項	標準和項	
0	0	0	$\overline{AB} = m_0$	$A + B = M_0$	
1	0	1	$\overline{A}B = m_1$	$A + \overline{B} = M_1$	
2	1	0	$A\overline{B} = m_2$	$\overline{A} + B = M_2$	
3	1	1	$AB = m_3$	$\overline{A} + \overline{B} = M_3$	

(a) 二變數的標準積項與標準和項表示法

(b) 卡諾圖的方格編號

(c) 二變數標準積項

(d) 二變數標準和項

▲ 圖 4-3 二變數卡諾圖

現在我們舉一些實例說明如何運用二變數卡諾圖進行化簡,來更加瞭解與熟練卡諾圖法化簡的技巧。

例題 4-6 二變數卡諾圖化簡 化簡右表所示真值表之輸出函數F(A, B) 為

- 1. 最簡積之和。
- 2. 最簡和之積。

輸	入	輸出
A	В	F
0	0	1
0	1	0
1	0	1
1	1	0

解

1. 最簡積之和(**SOP**):用**1** 化簡 根據真值表寫出標準積之和布林代數式為 $F(A,B) = \overline{AB} + \overline{AB} = m_0 + m_2 = \Sigma(0,2)$ (1) 書出 $2^2 = 4$ 格卡諾圖。

- (2) 在對應的方格中填入1:在0、2號方格中填入1。
- (3) 將相鄰的二個1 圈起來。
- (4) 消去變數

(5) 將所有積項進行OR 運算,即為最簡的積之和布林代數式 $F(A,B) = \overline{B}$

- 2. 最簡和之積 (POS) : 用0 化簡 根據真值表寫出標準和之積布林代數式為 $F(A,B) = (A+B)(\overline{A}+\overline{B}) = M_1 + M_3 = \Pi(1,3)$
 - (1) 畫出 $2^2 = 4$ 格卡諾圖。
 - (2) 在對應的方格中填入0:在1、3 號方格中填入0。
 - (3) 將相鄰的二個0 圈起來。

(4) 消去變數:

(5) 將所有和項進行AND 運算,即為最簡的和之積布林代數式

$$F(A,B) = \overline{B}$$

演練 6

化簡右表所示真值表之輸出函數F(A, B) 為

1. 最簡積之和。2. 最簡和之積

輸	入	輸出	
A	В	F	
0	0	1	
0	1	1	
1	0	0	
1	1	0	

例題 4-7 二變數卡諾圖化簡 化簡布林代數式 $F(A,B) = \Sigma(0,2,3)$ 為:1. 最簡積之和。2. 最簡和之積。

解

- 1. 最簡積之和(SOP):用1 化簡
- (1) 畫出 $2^2 = 4$ 格卡諾圖。
- (2) 在對應的方格中填入1:在0、2、3 號方格中填入1。
- (3) 將相鄰的二個1 圈起來。

(4) 消去變數:

(5) 將所有積項進行OR 運算,即為最簡的積之和布林代數式 $F(A,B)=A+\overline{B}$

2. 最簡和之積 (POS): 用0 化簡

$$F(A, B) = \Sigma(0, 2, 3) = \Pi(1)$$

- (1) 畫出22 = 4 格卡諾圖。
- (2) 在對應的方格中填入0:在1 號方格中填入0。
- (3) 將單獨的一個0 圈起來。
- (4) 消去變數:

(5) 將所有和項進行AND 運算,即為最簡的和之積布林代數式 $F(A,B)=A+\overline{B}$

演練 7

化簡布林代數式 $F(A, B) = \Sigma(0, 3)$ 為:1. 最簡積之和。2. 最簡和之積。

三 三變數卡諾圖法

若有3個輸入變數,則必須畫出2³=8個方格的卡諾圖,如圖4-4(a)所示為三變數的標準積項與標準和項表示法,其中A為MSB,C為LSB。圖4-4(b)卡諾圖內的數字就是對應的十進位值。

圖4-4(c) 為三變數卡諾圖所對應的標準積項,在卡諾圖中左方的0 代表輸入變數 A ,左方的1 代表輸入變數 A ,上方的00 代表輸入變數 BC ,上方的01 表輸入變數 BC ,其他以此類推。例如0 號方格表示輸入變數 ABC 為 $000_{(2)}$,以標準積項 ABC 表示,其他以此類推。

圖4-4(d) 為三變數卡諾圖所對應的標準和項,在卡諾圖中左方的0 代表輸入變數A,左方的1 代表輸入變數A,上方的00 代表輸入變數B+C,上方的01 表輸入變數B+C,其他以此類推。例如0 號方格表示輸入變數ABC 為 $000_{(2)}$,以標準和項A+B+C 表示,其他以此類推。

十進	十進 輸入		標準積項與標準和項表示法		
位值	A	В	C	標準積項	標準和項
0	0	0	0	$\overline{ABC} = m_0$	$A + B + C = M_0$
1	0	0	1	$\overline{ABC} = m_1$	$A + B + \overline{C} = M_1$
2	0	1	0	$\overline{A}B\overline{C} = m_2$	$A + \overline{B} + C = M_2$
3	0	1	1	$\overline{A}BC = m_3$	$A + \overline{B} + \overline{C} = M_3$
4	1	0	0	$A\overline{B}\overline{C} = m_4$	$\overline{A} + B + C = M_4$
5	1	0	1	$A\overline{B}C = m_5$	$\overline{A} + B + \overline{C} = M_5$
6	1	1	0	$AB\overline{C} = m_6$	$\overline{A} + \overline{B} + C = M_6$
7	1	1	1	$ABC = m_7$	$\overline{A} + \overline{B} + \overline{C} = M_7$

A	00	01	11	10
0	0	1	3	2
1	4	5	7	6

(b) 卡諾圖的方格編號

A	BC 00	01	11	10	
0	$\overline{A}\overline{B}\overline{C}$	$\overline{A}\overline{B}C$	$\overline{A}BC$	$\overline{A}B\overline{C}$	
1	$A\overline{B}\overline{C}$	$A\overline{B}C$	ABC	$AB\overline{C}$	

(c) 三變數標準積項

A	C 00	01	11	10
0	A+B+C	$A+B+\overline{C}$	$A + \overline{B} + \overline{C}$	$A + \overline{B} + C$
1	$\overline{A}+B+C$	$\overline{A} + B + \overline{C}$	$\overline{A} + \overline{B} + \overline{C}$	$\overline{A} + \overline{B} + C$

(a) 三變數的標準積項與標準和項表示法

(d) 三變數標準和項

現在我們舉一些實例說明如何運用三變數卡諾圖進行化簡,來更加瞭解與熟練卡諾圖法化簡的技巧。

例題 4-8 三變數卡諾圖化簡

化簡布林代數式 $F(A,B,C) = A\overline{BC} + A\overline{BC} + ABC + \overline{ABC}$ 為

- 1. 最簡積之和,觀察是否與例題4-3 的代數演算法化簡結果相同?
- 2. 最簡和之積。

解

- 1. 最簡積之和(SOP):用1化簡
- (1) 畫出23 = 8 格卡諾圖。
- (2) 在對應的方格中填入1:例如ABC是在A=1、B=0且C=0的方格中填入1,其他以此類推。
- (3) 將相鄰的二個1 圈起來。

(4) 消去變數:

(5) 將所有積項進行OR 運算,即為最簡的積之和布林代數式 F(A,B) = AB + BC

所以卡諾圖化簡結果與例題 4-3 的代數演算法化簡結果相同。

2. 最簡和之積 (POS):用0 化簡

:
$$F(A,B,C) = ABC + ABC + ABC + ABC = m_3 + m_4 + m_5 + m_7$$

= $\Sigma(3,4,5,7)$
= $\Pi(0,1,2,6)$

- (1) 畫出23 = 8 格卡諾圖。
- (2) 在對應的方格中填入0:在0、1、2、6 號方格中填入0。
- (3) 將相鄰的二個0 圈起來。

(4) 消去變數:

(5) 將所有和項進行AND 運算,即為最簡的和之積布林代數式 F(A,B,C) = (A+B)(B+C)

演練 8

化簡布林代數式 $F(A,B,C) = \overline{ABC} + \overline{ABC} + \overline{ABC}$ 為:1. 最簡積之和。2. 最簡和之積。

例題 4-9 三變數卡諾圖化簡

解

- 1. 最簡和之積 (POS):用0 化簡
- (1) 畫出 $2^3 = 8$ 格卡諾圖。
- (2) 在對應的方格中填入 0:例如 B+C 是在 B=0 且 C=1 的方格中填入 0,其他以此類推。
- (3) 將相鄰二個0 圈起來。

(4) 消去變數:

(5) 將所有和項進行AND 運算,即為最簡的和之積布林代數式

$$F(A,B,C) = (\overline{A} + B)(\overline{A} + \overline{C})(B + \overline{C})$$

2. 最簡積之和(SOP):用1 化簡

由以上的卡諾圖可得知

$$F(A,B,C) = (B+\overline{C})(\overline{A}+B+C)(\overline{A}+\overline{B}+\overline{C})$$
$$= \Pi(1,4,5,7) = \Sigma(0,2,3,6)$$

- (1) 畫出23 = 8 格卡諾圖。
- (2) 在對應的方格中填入1:在0、2、3、6 號方格中填入1。
- (3) 將相鄰的二個1 圈起來。
- (4) 消去變數: A = 00 01 11 10 0 = 1 10 10 0 = 10 10 0 = 10 10 0 = 10

(5) 將所有積項進行OR 運算,即為最簡的積之和布林代數式 $F(A,B,C) = \overline{AB} + \overline{BC} + \overline{AC}$

演練 9

化簡布林代數式F(A,B,C) = (A+B)(B+C)(A+B+C) 為:1. 最簡和之積。2. 最簡積之和。

四 四變數卡諾圖法

若有4 個輸入變數,則必須畫出 $2^4 = 16$ 個方格的卡諾圖,如圖4-5(a) 所示為四變數的標準積項與標準和項表示法,其中A 為MSB,D 為LSB。圖4-5(b) 卡諾圖內的數字就是對應的十進位值。

圖4-5(c) 為四變數卡諾圖所對應的標準積項,在卡諾圖中左方的00 代表輸入變數 \overline{AB} ,左方的01 代表輸入變數 \overline{AB} ,上方的00 代表輸入變數 \overline{CD} ,上方的01 代表輸入變數 \overline{CD} ,其他以此類推。例如0 號方格表示輸入變數 \overline{ABCD} 為 $0000_{(2)}$,以標準積項 \overline{ABCD} 表示,其他以此類推。

圖4-5(d) 為四變數卡諾圖所對應的標準和項,在卡諾圖中左方的00 代表輸入變數A+B,左方的01 代表輸入變數A+B,上方的00 代表輸入變數 C+D,上方的01 代表輸入變數 C+D ,其他以此類推。例如0 號方格表示輸入變數 ABCD 為 $0000_{(2)}$,以標準和項A+B+C+D 表示,其他以此類推。

十進		輸	入		標準積項與標準和項表示法	
位值	A	В	С	D	標準積項	標準和項
0	0	0	0	0	$\overline{ABCD} = m_0$	$A + B + C + D = M_0$
1	0	0	0	1	$\overline{ABCD} = m_1$	$A + B + C + \overline{D} = M_1$
2	0	0	1	0	$\overline{ABCD} = m_2$	$A + B + \overline{C} + D = M_2$
3	0	0	1	1	$\overline{AB}CD = m_3$	$A + B + \overline{C} + \overline{D} = M_3$

4	0	1	0	0	$\overline{A}B\overline{C}\overline{D} = m_4$	$A + \overline{B} + C + D = M_4$
5	0	1	0	1	$\overline{A}B\overline{C}D = m_5$	$A + \overline{B} + C + \overline{D} = M_5$
6	0	1	1	0	$\overline{A}BC\overline{D} = m_6$	$A + \overline{B} + \overline{C} + D = M_6$
7	0	1	1	1	$\overline{A}BCD = m_7$	$A + \overline{B} + \overline{C} + \overline{D} = M_7$
8	1	0	0	0	$A\overline{BCD} = m_8$	$\overline{A} + B + C + D = M_8$
9	1	0	0	1	$A\overline{BCD} = m_9$	$\overline{A} + B + C + \overline{D} = M_9$
10	1	0	1	0	$A\overline{B}C\overline{D} = m_{10}$	$\overline{A} + B + \overline{C} + D = M_{10}$
11	1	0	1	1	$A\overline{B}CD = m_{11}$	$\overline{A} + B + \overline{C} + \overline{D} = M_{11}$
12	1	1	0	0	$AB\overline{C}\overline{D} = m_{12}$	$\overline{A} + \overline{B} + C + D = M_{12}$

13	1	1	0	1	$AB\overline{C}D = m_{13}$	$\overline{A} + \overline{B} + C + \overline{D} = M_{13}$
14	1	1	1	0	$ABC\overline{D} = m_{14}$	$\overline{A} + \overline{B} + \overline{C} + D = M_{14}$
15	1	1	1	1	$ABCD = m_{15}$	$\overline{A} + \overline{B} + \overline{C} + \overline{D} = M_{15}$

(a) 四變數的標準積項與標準和項表示法

(b) 卡諾圖的方格編號

(c) 四變數標準積項

AB CI	00	01	11	10
00	A+B+C+D	$A+B+C+\overline{D}$	$A+B+\overline{C}+\overline{D}$	$A+B+\overline{C}+D$
01	$A + \overline{B} + C + D$	$A + \overline{B} + C + \overline{D}$	$A + \overline{B} + \overline{C} + \overline{D}$	$A + \overline{B} + \overline{C} + D$
11	$\overline{A} + \overline{B} + C + D$	$\overline{A} + \overline{B} + C + \overline{D}$	$\overline{A} + \overline{B} + \overline{C} + \overline{D}$	$\overline{A} + \overline{B} + \overline{C} + D$
10	$\overline{A}+B+C+D$	$\overline{A}+B+C+\overline{D}$	$\overline{A} + B + \overline{C} + \overline{D}$	$\overline{A}+B+\overline{C}+D$

(d) 四變數標準和項

▲ 圖 4-5 四變數卡諾圖 (續)

現在我們舉一些實例說明如何運用四變數卡諾圖進行化簡,來更加瞭解與熟練卡諾圖法化簡的技巧。

例題 4-10 四變數卡諾圖化簡

化簡布林代數式 $F(A, B, C, D) = \Sigma(0, 1, 2, 3, 4, 5, 6, 7, 8, 10)$ 為

1. 最簡積之和。2. 最簡和之積。

解

- 1. 最簡積之和(SOP):用1化簡
- (1) 畫出24=16 格卡諾圖。
- (2) 在對應的方格中填入1: 在0、1、2、3、4、5、6、7、8、10 號 方格中填入1。
- (3) 將相鄰的八個或四個1 圈起來。

(4) 消去變數:

(5) 將所有積項進行OR 運算,即為最簡的積之和布林代數式 $F(A,B,C,D) = \overline{A} + \overline{BD}$

2. 最簡和之積 (**POS**) : 用**0** 化簡

 $F(A, B, C, D) = \Sigma(0, 1, 2, 3, 4, 5, 6, 7, 8, 10) = \Pi(9, 11, 12, 13, 14, 15)$

- (1) 畫出24 = 16 格卡諾圖。
- (2) 在對應的方格中填入0: 在9、11、12、13、14、15 號方格中填入0。
- (3) 將相鄰的四個0 圈起來。

(4) 消去變數:

(5) 將所有和項進行AND 運算,即為最簡的和之積布林代數式 $F(A,B,C,D) = (\overline{A} + \overline{B})(\overline{A} + \overline{D})$

演練 10

化簡布林代數式 $F(A, B, C, D) = \Sigma(0, 1, 2, 3, 8, 9, 10, 11, 12, 13)$ 為

1. 最簡積之和。2. 最簡和之積。

例題 4-11 四變數卡諾圖化簡

化簡布林代數式 $F(A,B,C,D) = (\overline{A} + B)(A + B + C)$ 為

- 1. 最簡和之積。2. 最簡積之和。解
- 1. 最簡和之積 (POS):用0 化簡
- (1) 畫出 $2^4 = 16$ 格卡諾圖。
- (2) 在對應的方格中填入 0: 例如A+B是在 A=1 且 B=0 的方格中填入 0,其他以此類推。
- (3) 將相鄰的四個0 圈起來。

(4) 消去變數:

(5) 將所有和項進行AND 運算,即為最簡的和之積布林代數式 $F(A,B,C,D) = (\overline{A}+B)(B+C)$

2. 最簡積之和(SOP):用1 化簡由以上的卡諾圖可得知

$$F(A,B,C,D) = (\overline{A} + B)(A + B + C) = \Pi(0,1,8,9,10,11)$$
$$= \Sigma(2,3,4,5,6,7,12,13,14,15)$$

- (1) 畫出 $2^4 = 16$ 格卡諾圖。
- (2) 在對應的方格中填入1:在2、3、4、5、6、7、12、13、14、 15 號方格中填入 1。
- (3) 將相鄰的八個或四個1 圈起來。

(4) 消去變數:

(5) 將所有積項進行OR 運算,即為最簡的積之和布林代數式 $F(A,B,C,D) = B + \overline{AC}$

演練 11

化簡布林代數式 F(A,B,C,D) = (A+B)(A+B)(C+D) 為

1. 最簡和之積。2. 最簡積之和。

五 隨意條件

在數位邏輯電路中,並非所有的輸入狀態都會發生,那麼部分不可能發生的輸入狀態,其輸出狀態是0 或1 並不會影響電路的功能,這種情形我們稱為隨意條件(don't care),在卡諾圖中以「x」或「 φ 」表示。

當我們利用卡諾圖化簡布林代數式時,可以將隨意條件「X」 視為0或1,甚至不使用皆可以,以得到最簡的布林代數式。現在 我們舉一些實例說明如何運用隨意條件來進行卡諾圖化簡。

例題 4-12 SOP 與隨意條件

化簡布林代數式 $F(A, B, C, D) = \Sigma(0, 2, 4, 6, 7, 9, 13) + d(1, 3, 5, 10, 15)$ 為(其中 d 表示don't care)

- 1. 最簡積之和。2. 最簡和之積。 解
- 1. 最簡積之和(SOP):用1化簡
- (1) 畫出 $2^4 = 16$ 格卡諾圖。
- (2) 在對應的方格中填入1:在0、2、4、6、7、9、13 號方格中填入1,在1、3、5、10、15 號方格中填入x。
- (3) 將相鄰的八個、四個1或×圈起來,將圈內的×視為1。

(4) 消去變數:

(5) 將所有積項進行OR 運算,即為最簡的積之和布林代數式 $F(A,B,C,D) = \overline{A} + \overline{CD}$

2. 最簡和之積 (POS): 用0 化簡

$$F(A, B, C, D) = \Sigma(0, 2, 4, 6, 7, 9, 13) + d(1, 3, 5, 10, 15)$$
$$= \Pi(8, 11, 12, 14) + d(1, 3, 5, 10, 15))$$

- (1) 畫出 $2^4 = 16$ 格卡諾圖。
- (2) 在對應的方格中填入0:在8、11、12、14 號方格中填入0, 在1、3、5、10、15 號方格中填入x。
- (3) 將相鄰的四個0 或 \times 圈起來,將圈內的 \times 視為 0。

(4) 消去變數:

(5) 將所有和項進行AND 運算,即為最簡的和之積布林代數式 $F(A,B,C,D) = (\overline{A}+D)(\overline{A}+\overline{C})$

演練 12

將布林代數式 $F(A, B, C, D) = \Sigma(0, 5, 8, 10, 15) + d(2, 7, 13, 14)$ 化簡為(其中 d 表示don't care)

- 1. 最簡積之和。
- 2. 最簡和之積。

例題 4-13 POS 與隨意條件

化簡布林代數式 $F(A, B, C, D) = \Pi(1, 2, 6, 8, 10, 11, 12) + d(0, 7, 13)$ 為(其中d表示don't care)

- 1. 最簡和之積。2. 最簡積之和。 解
- 1. 最簡和之積 (POS) : 用0 化簡
- (1) 畫出 $2^4 = 16$ 格卡諾圖。
- (2) 在對應的方格中填入0:在1、2、6、8、10、11、12 號方格中填入0,在0、7、13 號方格中填入×。
- (3) 將相鄰的二個0 或× 圈起來,將圈內的×視為 0。

(4) 消去變數:

(5) 將所有和項進行AND 運算,即為最簡的和之積布林代數式 F(A,B,C,D) = (A+C+D)(A+B+C)(A+C+D)(A+B+C)

2. 最簡積之和(SOP):用1 化簡

$$F(A, B, C, D) = \Pi(1, 2, 6, 8, 10, 11, 12) + d(0, 7, 13)$$
$$= \Sigma(3, 4, 5, 9, 14, 15) + d(0, 7, 13)$$

- (1) 畫出 $2^4 = 16$ 格卡諾圖。
- (2) 在對應的方格中填入1:在3、4、5、9、14、15 號方格中填入1 ,在0、7、13 號方格中填入x。
- (3) 將相鄰的二個1 或× 圈起來,將圈內的×視為 1。

(4) 消去變數:

(5) 將所有積項進行OR 運算,即為最簡的積之和布林代數式 $F(A,B,C,D) = \overline{ABC} + \overline{ACD} + \overline{ABC} + \overline{ACD}$

演練 13

化簡布林代數式 $F(A, B, C, D) = \Pi(0, 2, 3, 8, 10, 12) + d(4, 11, 13, 15)$ 為(其中d表示don't care)

- 1. 最簡和之積。
- 2. 最簡積之和。

組合邏輯電路化簡的方法,除了第三章3-5-5 節所介紹的多層NAND 或NOR 電路分析化簡的方法之外,也可以利用布林代數演算法或卡諾圖法化簡,以得到最簡的布林代數式。以下將針對AND-OR 電路、OR-AND 電路與各種邏輯閘組成的電路說明化簡的方法。

- 一 AND-OR 閘邏輯電路之化簡 由AND-OR 閘結構所組成的邏輯電路,其化簡的步驟為:
- (一)從輸入端開始,由左而右依序寫出每一個邏輯閘輸出的布林 代數式,直到寫出輸出端的標準積之和(SSOP)或積之和(SOP)布林代數式。
- (二) 再利用卡諾圖以1 化簡,以得到輸出端的最簡積之和(SOP)) 布林代數式。

例題 4-14 AND-OR 閘邏輯電 路化簡

化簡下圖的邏輯電路,並寫出輸出端F(A, B, C)的最簡SOP 布林代數式。

解

1. 從輸入端開始,由左而右 依序寫出每一個邏輯閘輸 出的布林代數式。

所以輸出端的標準積之和(SSOP)布林代數式為

$$F(A,B,C) = ABC + ABC + ABC + ABC + ABC$$

2. 利用卡諾圖:以1 化簡

所以輸出端的最簡積之和(SOP)布林代數式為 $F(A,B,C) = \overline{AB} + C$

演練 14

化簡下圖的邏輯電路,並寫出輸出端F(A, B, C)的最簡SOP 布林代數式。

二 OR-AND 閘邏輯電路之化簡

由OR-AND 閘結構所組成的邏輯電路,其化簡的步驟為:

- (一)從輸入端開始,由左而右依序寫出每一個邏輯閘輸出的布林 代數式,直到寫出輸出端的標準和之積(SPOS)或和之積(POS)布林代數式。
- (二) 再利用卡諾圖以**0** 化簡,以得到輸出端的最簡和之積(POS))布林代數式。

例題 4-15 OR-AND 閘邏輯電路化簡

化簡下圖的邏輯電路,並寫出輸出端F(A, B, C)的最簡POS 布林代數式。

解

1. 從輸入端開始,由左而右依序寫出每一個邏輯閘輸出的布林代 數式。 4 B C

所以輸出端的標準和之積(SPOS)布林代數式為F(A,B,C) = (A+B+C)(A+B+C)(A+B+C)(A+B+C)

2. 利用卡諾圖:以0 化簡

所以輸出端的最簡和之積(POS)布林代數式為 $F(A,B,C) = (A+\overline{B})(B+\overline{C})$

演練 15

化簡下圖的邏輯電路,並寫出輸出端F(A, B, C)的最簡POS 布林代數式。

三 各種邏輯閘組成的邏輯電路之化簡

由各種邏輯閘所組成的邏輯電路,其化簡的步驟為:

- (一)從輸入端開始,由左而右依序寫出每一個邏輯閘輸出的布林 代數式,直到寫出輸出端的布林代數式。
- (二)再利用布林代數演算法或卡諾圖法化簡,以得到輸出端的最 簡布林代數式。

例題 4-16 邏輯電路化簡

化簡下圖的邏輯電路,並寫出輸出端F(A, B, C)的最簡SOP 布林代數式。

解

1. 從輸入端開始,由左而右依序寫出每一個邏輯閘輸出的布林代數式。

所以輸出端的布林代數式為

$$F(A,B,C) = \overline{AB} \cdot \overline{B+C}$$

2. 利用布林代數演算法化簡:

$$F(A,B,C) = \overline{\overline{AB}} \cdot \overline{B+C}$$

$$)=AB\cdot B+C$$

$$=(A+\overline{B})\cdot(\overline{B}\cdot\overline{C})$$

$$\cdot (\overline{B} \cdot \overline{a})$$

$$(3 \cdot C)$$

$$=A\overline{BC}+\overline{BBC}$$

$$=A\overline{BC}+\overline{BC}$$

$$=ABC+BC$$

$$=\overline{BC}(A+1)$$

$$\frac{DC}{DC}$$
 1

$$=\overline{BC}\cdot 1$$

$$= BC \cdot 1$$
$$= \overline{BC}$$

$$\overline{BC} + \overline{BBC}$$
 (:: 第摩根第一定理 $\overline{A+B} = \overline{A} \cdot \overline{B}$) (:: 乘法公配律 $A(B+C) - AB + \overline{B}$)

$$(::乘法分配律 A(B+C)=AB+AC)$$

 $(::乘法全等定理 A \cdot A=A)$

(:: 第摩根第二定理 $A \cdot B = A + B$)

(∵加法空元素定理 A + 1 = 1)

(:: 乘法一致定理 A · 1 = A)

所以輸出端的最簡布林代數式為

$$F(A,B,C) = BC$$

演練 16

化簡右圖的邏輯電路。

- 1. 寫出輸出端F(A, B) 的最簡布林代數式。
- 2. 其輸出端F(A, B) = 1 的情況有幾種?

