Partitioning Method

CS385 – Machine Learning - Clustering

Clustering Conception

- Cluster
 - Collection of data objects that are similar to one another within the same cluster and are dissimilar to the objects in other clusters
- Clustering Analysis
 - Birds of a feather flock together

Clustering Criterion

The existence of lungs

The environment to live

Clustering Similarity

- Numerical
 - Euclidean distance
 - Manhattan distance
 - Minkowski distance
 - ...
- Binary, Nominal, Ordinal etc.
 - Jaccard coefficient
 - $sim(p_i, p_j) = |p_i \cap p_j| / |p_i \cup p_j|$
- Mixed

Efrait, veg, mille crab 3

{ milk, fruit, iceream 3

- 2
- 5

Typical Application

- Business: CRM
- Biology: Gene
- Identification of groups of ...

- Image processing
- Gain distribution of data
- Web for information discovery
- Preprocessing step

Clustering – input and result

To find structure from the training data set

$$\begin{bmatrix} x_{11}x_{12}...x_{1n} \\ x_{21}x_{22}...x_{2n} \\ ... \\ x_{m1}x_{m2}...x_{mn} \end{bmatrix}$$

Criterion

- Given
 - *n* objects
 - *k* represents number of clusters
 - Criterion function
- Gain
 - *n* objects are organized into *k* cluster
 - the formed clusters optimize the *criterion function*

$$E = \frac{Total\ Distance(intraCluster)}{Total\ Distance(interCluster)} \bigvee$$

1 better

Clustering – 1-d example

Collection of data objects that are similar to one another within the same cluster and are dissimilar to the objects in other clusters

$$D = \{01, 02, 03, 04, 05\} = \{3, 1, 9, 10, 2\}, K = 2$$

Clustering1:
$$\{3,1,9\}, \{10,2\}$$

$$E1 = \frac{[d(3,1) + d(3,9) + d(1,9)] + [d(10,2)]}{d(3,10) + d(3,2) + d(1,10) + d(1,2) + d(9,10) + d(9,2)}$$

$$E2 = \frac{[d(3,1) + d(3,2) + d(1,2)] + [d(9,10)]}{d(3,10) + d(3,9) + d(1,10) + d(1,9) + d(2,10) + d(2,9)}$$

$$EN = \cdots$$

$$E = \frac{\sum_{m=1}^{K} \sum_{Oi,Oj \in C_m} d(O_i, O_j)}{\sum_{m=1}^{K} \sum_{n=1}^{K} \sum_{O_i \in C_m, O_j \in C_n} d(O_i, O_j)}$$

When the size of D grows → combination explosion

K-medoid

 medoid: an actual object, representative object centrally located in a cluster

$$E = \sum_{i=1}^{K} \sum_{O \in C_i} d(o, medoid_i)$$
 better

- Groups n objects into k clusters by minimizing the E
- Find k medoids that minimize E
 - Brute-force algorithm exhaustive search

K-medoid – exhaustive search

$$D = \{01, 02, 03, 04, 05\} = \{3, 1, 9, 10, 2\}, K=2$$

Iteration	Medoids	Clustering	E
1	3, 1	C1={ 3 ,9,10} C2={ 1 ,2}	13+1=14
2	3, 9	C1={ 3 ,1,2} C2={ 9 ,10}	3+1=4
3	3,10	C1={ 3 ,1,2} C2={ 10 ,9}	3+1=4
4	3, 2	•••	•••
		7	
10		/	

 $O(C_n^k k(n-k))$ Global minimum

K-medoid - PAM

- Partitioning Around Medoids
 - Arbitrarily choose *k* medoids
 - Repeat
 - assign each remaining object to the cluster with the nearest medoid
 - randomly select a non-medoid object → O_{random}
 - compute the total cost S of swapping medoid O_j with O_{random}
 - if S < 0 then swap O_i with O_{random} to form the new set of medoids
 - Until no change

Greedy Local Minimum

PAM – cost

on p of swapping O_i with O_{random}

(a) Reassigned to o_i

(b) Reassigned to o_{random}

(c) No change

(d) Reassigned to o_{random}

 Data object + Cluster center

Before swapping

--- After swapping

Fig 10.4

(a)

 $d(O_i, p)$ Before:

 $d(O_i,p)$ After:

 $d(O_j, p) < d(O_i,p)$ $C_p = d(O_i,p) - d(O_j, p) +$

(b)

Before: $d(O_j, p)$

After: d(O_{random},p)

 $C_p = d(O_{random}, p) -$

d(O_j, p) +/-

(c)

Before: $d(O_i, p)$

 $d(O_i,p)$ After:

Before: $d(O_i, p)$

After: d(O_{random},p)

 $C_p = d(O_{random}, p) -$

 $d(O_i, p)$ -

 $m(p) = O_i$ and

 $d(O_{random}, p) > d(O_i, p)$

 $m(p) = O_i$ and

 $d(O_{random}, p) < d(O_i, p)$

 $m(p) = O_i$ and

 $d(O_{random}, p) > d(O_i, p)$

 $m(p) = O_i$ and

 $d(O_{random}, p) < d(O_i, p)$

K-medoid - PAM IDEA

 $D = \{01, 02, 03, 04, 05\} = \{3, 1, 9, 10, 2\}, K = 2$

Iteration	Medoids	Clustering		E/swapping cost
1	3, 1	C1={ 3 ,9,10}	C2={ 1 ,2}	13+1=14 (E)

$$d(3,9)+d(3,10)+d(2,1) = 14$$

- Next step swapping 3 with 9 (random chosen)
- Exhaustive search idea
 - Calculate E for new medoids (9,1)
 - 3 assigned to 1, 10 assigned to 9, 2 assigned to 1
- PAM Idea
 - Calculate the cost of the swapping
 - Save the time on assigning

$$d(3,1)+d(9,10)+d(2,1) = 4$$

cost on
$$3== d(3,1)-d(3,9)$$

cost on $10== d(9,10)-d(3,10)$
cost on $2==d(2,1)-d(2,1)$

K-medoid – PAM – cost - example

$$D = \{01, 02, 03, 04, 05\} = \{3, 1, 9, 10, 2\}, K=2$$

Iteration	Medoids	Clustering		E/swapping cost
1	3, 1	C1={ 3 ,9,10}	C2={ 1 ,2}	13+1=14 (E)

(a)
$$m(p) = O_j$$
 and $d(O_{random}, p) > d(O_i, p)$

(b) m(p) =
$$O_j$$
 and d(O_{random} , p) < d(O_j , p)

(c)
$$m(p) = O_i$$
 and $d(O_{random}, p) > d(O_i, p)$

(d) m(p) =
$$O_i$$
 and d(O_{random} , p) < d(O_i , p)

Cost of
$$3 \leftarrow \rightarrow 9$$
: $-4 + -6 + 0 = -10$

$$O(n-k)$$

Per swapping/solution

global minimum $O(C_n^k(n-k))$

local minimum O(k(n-k))Per iteration/k solution

References

Section 10.2.2 K-Medoids: A Representative Object-Based Technique

from

Data Mining: Concepts and Techniques by Jiawei Han etc.

The e-book can be found via DigiPen Resource Library – Online Safari Books

