Chapitre 3

Suites numériques

1 Notion de suite

Définition: suite

Une suite est une fonction dont l'ensemble de définition est \mathbf{N} , l'ensemble des entiers naturels. La suite u associe à tout nombre entier n un unique réel u(n). On note généralement ce nombre u_n , et on l'appelle le **terme de rang** n **de la suite** u.

La suite est notée $(u_n)_{n\in\mathbb{N}}$ ou plus simplement (u_n) .

Exemples : divers modes de génération d'une suite

Les termes d'une suite peuvent être générés de diverses manières. En voici trois (qui sont assez anecdotiques en première) :

- La suite u dont le terme de rang n est la $\mathbf{n}^{\mathsf{i}\mathsf{e}\mathsf{m}\mathsf{e}}$ décimale de π .

$$u_0 = 3$$
, $u_1 = 1$, $u_2 = 4$, $u_3 = 1$, ...

• La suite d dont le terme de rang n est le nombre d'entiers naturels qui divisent n.

$$d_1 = 1$$
, $d_2 = 2$, $d_3 = 2$, $d_4 = 3$, $d_5 = 2$, ...

• La suite ϕ , dite **de Fibonacci**, dont les deux premiers termes valent 1 et dont chaque terme suivant s'obtient en faisant la somme des deux précédents.

$$\phi_0 = 1$$
, $\phi_1 = 1$, $\phi_2 = 2$, $\phi_3 = 3$, $\phi_4 = 5$, . . .

Ces exemples compliqués mais intéressants ne seront pas étudiés en détail; ils montrent cependant la diversité des méthodes que l'on peut utiliser pour générer une suite.

Voici trois modes courants de génération d'une suite :

1.1 À l'aide d'une fonction

Soit f une fonction dont l'ensemble de définition contient \mathbf{N} , alors on peut définir la suite (u_n) par :

Pour tout
$$n \in \mathbb{N}$$
, $u_n = f(n)$

Exemple

La suite v est définie par :

Pour tout
$$n \in \mathbb{N}$$
, $v_n = \frac{n}{n^2 + 1}$ (1)

On a alors
$$v_0 = f(0) = 0$$
, $v_1 = f(1) = \frac{1}{2} \dots$

Pour calculer v_{40} , il suffit de remplacer n par 40.

On dit que (1) est **l'expression du terme général de** v.

1.2 À l'aide d'une relation de récurrence

On peut définir les termes d'une suite (u_n) en donnant son premier terme u_0 et une relation qui permet de calculer un terme de la suite à partir du (ou des) précédents.

Exemple

La suite u est définie par

$$u_0 = 2$$
 et pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n - 5$

On se sert de la relation de récurrence pour calculer d'abord u_1 , puis u_2 et ainsi de suite :

$$u_1 = 2u_0 - 5$$
 $u_2 = 2u_1 - 5$ $u_3 = 2u_2 - 5$ $u_3 = 2 \times (-7) - 5$ $u_4 = 2 \times (-7) - 5$ $u_5 = -7$ $u_7 = 2 \times (-7) - 5$ $u_8 = 2u_1 - 5$ $u_9 = 2u_1 - 5$

Pour déterminer u_n , il faut d'abord calculer u_0 , u_1 , ..., u_{n-1} .

1.3 À l'aide d'un algorithme

Voici un exemple célèbre, très simple à programmer : la suite de Syracuse, que nous noterons σ . On peut générer ses premiers termes avec l'algorithme suivant :

Algorithme

```
Variables
   a, n, i sont des entiers naturels

Debut

Afficher "Entrer le nombre de termes souhaités"
Lire n

Afficher "Entrer la valeur de départ"
Lire a

Répéter n fois :

Si a est pair:

Alors a <- a / 2

Sinon:
```

1. NOTION DE SUITE

```
a <- 3 * a + 1

Fin Si

Afficher a

Fin Pour

Fin
```

Une conjecture (encore non démontrée à ce jour) affirme que quelle que soit la valeur de l'entier σ_0 choisie par l'utilisateur alors, pourvu que n soit assez grand, la boucle pour finira par afficher 4, 2, 1, 4, 2, 1... (programmez et essayez).

Exercice 1

Pour chacune des suites suivantes, déterminer les trois premiers termes

1. (u_n) définie pour tout $n \in \mathbb{N}$ par : $u_n = \frac{2n+1}{n+5}$

2. (v_n) définie pour tout $n \in \mathbf{N}$ par : $\left\{ \begin{array}{l} v_0 = 3 \\ v_{n+1} = 2v_n - 5n \end{array} \right.$

1.4 Représentation graphique

Soit u une suite et $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ un repère du plan, alors on peut représenter u dans $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ en plaçant les points $A_n(n; u_n)$.

Exercice 2

Dans un repère, représenter graphiquement les trois premiers termes des deux suites (u_n) et (v_n) de l'exercice 1.

1. Représentation graphique des trois premiers termes de (u_n) :

2. Représentation graphique des trois premiers termes de (v_n) :

2 Sens de variation d'une suite

Définition

Soit u une suite.

On dit que u est **croissante** si pour tout $n \in \mathbb{N}$, $u_{n+1} \geqslant u_n$.

On dit que u est **décroissante** si pour tout $n \in \mathbb{N}$, $u_{n+1} \leq u_n$.

On dit que u est **constante** si pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n$.

On dit que u est **monotone** si elle est croissante ou décroissante.

Remarque

Une suite peut être croissante (décroissante, constante ou monotone) à partir d'un certain rang. Soit $n_0 \in \mathbb{N}$.

La suite u est croissante à partir du rang n_0 si pour tout entier $n \ge n_0$, $u_{n+1} \ge u_n$.

Exemples et méthodes

Exemple: suite définie par récurrence

Soit u la suite définie par

$$\begin{cases} u_0 &= 3 \\ u_{n+1} &= u_n + n^2 \text{ pour tout } n \in \mathbf{N} \end{cases}$$

Alors pour tout $n \in \mathbf{N}$ on a

$$u_{n+1} - u_n = u_n + n^2 - u_n$$
$$= n^2$$
$$\geqslant 0$$

Donc $u_{n+1} \geqslant u_n$ et on en conclut que cette suite est croissante.

Exemple : suite dont on connaît le terme général

Soit v la suite définie pour tout $n \in \mathbb{N}$ par $v_n = n^2 + 6n + 1$.

Alors $v_n=(n+3)^2-8$, donc on peut écrire $v_n=f(n)$ où f est la fonction polynôme du second degré définie sur R par $f(x)=(x+3)^2-8$.

Or cette fonction est croissante sur $]-3;+\infty[$ donc a fortiori sur \mathbb{R}_+ . Ainsi v est croissante.

L'exemple précédent ne doit pas laisser croire que si l'on a affaire à une série définie par son terme général, alors il faut étudier la fonction associée.

Soit la suite w définie pour tout $n \in \mathbf{N}$ par $w_n = \frac{1}{2^n}$. Alors

$$w_{n+1} - w_n = \frac{1}{2^{n+1}} - \frac{1}{2^n}$$

$$= \frac{1}{2^{n+1}} - \frac{2}{2^{n+1}}$$

$$= -\frac{1}{2^{n+1}}$$

$$\leq 0$$

Donc $w_{n+1} \leq w_n$ et on en conclut que cette suite est décroissante.

Exemple: suite strictement positive

Soit u la suite définie pour tout entier n>0 par : $u_{n+1}=\frac{1}{n+1}$. Puisque $u_n>0$ pour tout entier $n\neq 0$, on peut calculer :

$$\frac{u_{n+1}}{u_n} = \frac{\frac{1}{n+1}}{\frac{1}{n}}$$
$$= \frac{1}{n+1} \times \frac{n}{1}$$
$$= \frac{n}{n+1}$$

Or n < n+1, donc $\frac{u_{n+1}}{u_n} < 1$, donc $u_{n+1} < u_n$. Ainsi (u_n) est strictement décroissante.

Méthodes pour déterminer le sens de variation d'une suite (u_n)

Voici trois méthodes parmi lesquelles on peut choisir :

- **1.** On étudie le signe de la différence $u_{n+1} u_n$.
 - Si pour tout entier n, $u_{n+1} u_n > 0$, alors la suite est strictement croissante.
 - · Si pour tout entier n, $u_{n+1} u_n < 0$, alors la suite est strictement décroissante.
- 2. Si la suite est définie explicitement, on étudie le sens de variation de la fonction f telle que $u_n = f(n)$.
- 3. Si tous les termes de la suite sont strictement positifs, on compare $\frac{u_{n+1}}{u_n}$ à 1.
 - · Si pour tout entier n, $\frac{u_{n+1}}{u_n} > 1$, alors la suite est strictement croissante.
 - · Si pour tout entier n, $\frac{u_{n+1}}{u_n} < 1$, alors la suite est strictement croissante.

3 Recherches de seuils

Soit u une suite numérique. Voici deux situations classiques :

• u est une suite croissante et l'on conjecture que **pour n'importe nombre** M, **si grand soit-il**, on peut toujours trouver un rang n_0 tel qu'à partir de ce rang n_0 , tous les termes de la suite u sont supérieurs à M.

3. RECHERCHES DE SEUILS 7

Par exemple dans la situation représentée ci-dessus, pour M=5,5 on a $n_0=6$:

pour tout
$$n \ge 6$$
, $u_n \ge 5, 5$

Quand cette conjecture est vraie on écrit :

$$\lim_{n\to +\infty}u_n=+\infty$$

• u est une suite positive, décroissante, et l'on conjecture que **pour n'importe nombre positif** ε , **si petit soit-il**, on peut toujours trouver un rang n_0 tel qu'à partir de ce rang n_0 , tous les termes de la suite u sont inférieurs à ε .

Par exemple dans la situation représentée ci-dessus, pour $\varepsilon=1$ on a $n_0=5$:

pour tout
$$n \geqslant 5$$
, $u_n \leqslant 1$

Quand cette conjecture est vraie, on écrit :

$$\lim_{n o +\infty} u_n = 0$$

Rechercher un seuil pour la suite u c'est se fixer une valeur de M (dans le premier cas, ou de ε dans le deuxième) et déterminer n_0 .

3.1 Par le calcul

Quand le terme général d'une suite n'est pas trop compliqué, on peut déterminer un seuil « à la main ».

Considérons la suite v définie pour tout $n \in \mathbb{N}$ par $v_n = 3 + 4n$. On conjecture que

$$\lim_{n \to +\infty} v_n = +\infty$$

Prenons alors M égal à 1000, alors

$$v_n \geqslant 1000 \iff 3 + 4n \geqslant 1000$$

 $\iff 4n \geqslant 997$
 $\iff n \geqslant \frac{997}{4}$
 $\iff n \geqslant 249, 25$
 $\iff n \geqslant 250 \text{ (car } n \text{ est entier)}$

En prenant $n_0=250$ on peut donc écrire :

$$n \geqslant 250 \Longrightarrow v_n \geqslant 1000$$

3.2 À l'aide d'un algorithme

Soit la suite u définie par

$$\left\{ \begin{array}{ll} u_0 & = & \frac{1}{2} \\[1mm] u_{n+1} & = & u_n^2 \quad \text{pour tout } n \in \mathbf{N} \end{array} \right.$$

Alors une étude rapide u nous permet de conjecturer que

$$\lim_{n \to +\infty} u_n = 0$$

Écrivons alors un algorithme qui, quand l'utilisateur entre un nombre ε strictement positif, retourne le seuil n_0 pour lequel on a

$$n \ge n_0 \Longrightarrow u_n \leqslant \varepsilon$$

En langage naturel:

Algorithme

```
Variables
A est un nombre réel
N est un entier

Debut

N <- 0
A <- 0,5
Afficher "Entrer la valeur de epsilon : "
Lire E
Tant que A > E
N <- N+1
A <- A*A
Fin Tant Que
```

3. RECHERCHES DE SEUILS 9

```
Afficher "La valeur du seuil est : ",N
Fin
```

Voici le code Python:

Python

```
n = 0
a = 0.5
epsilon = float(input('Entrer la valeur de epsilon : '))
while a > epsilon:
    n = n + 1
    a = a ** 2
print('La valeur du seuil est :', n)
```

Lorsqu'on entre 10^{-20} pour arepsilon l'algorithme nous renvoie la valeur 7 pour n_0 . On en déduit donc

$$n \geqslant 7 \Longrightarrow u_n \leqslant 10^{-20}$$