

Class Name : MATH 1050/1051 Fall 2018 Instructor Name : Nguyen

Student Name : _____ Instructor Note :

1. Calculate the distance between the points K = (0, -1) and E = (-8, 5) in the coordinate plane.

Give an exact answer (not a decimal approximation).

2. Use substitution to solve the system.

$$y = 3x + 11$$
$$-2x + 5y = 16$$

$$x = \square$$

$$y = \square$$

3. The equation of a circle is given below. Identify the center and radius. Then graph the circle.

$$x^2 + y^2 = 25$$

Center: (____, ___)

Radius: ____

4. Find the first four terms of the sequence given by the following.

$$a_n = (-1)^{n+1} \cdot n^2$$
, $n = 1, 2, 3, ...$

5. For a given arithmetic sequence, the first term, a_1 , is equal to -1, and the 10^{th} term, a_{10} , is equal to 62.

Find the value of the $95^{\rm th}$ term, a_{95} .

6. Compute the sums below. (Assume that the terms in the first sum are consecutive terms of an arithmetic sequence.)

(a)
$$7 + 11 + 15 + ... + 471 =$$

(b)
$$\sum_{i=1}^{145} (2i-6) =$$

7. Fill in the missing numbers in the table below.

Then use the table to fill in the apparent value of the following limit.

$$\lim_{x \to 5} \frac{9(5-x)}{25-x^2}$$

Round your answers to 4 decimal places where applicable.

	\rightarrow \leftarrow										
х	4.5	4.9	4.95	4.999	5	5.001	5.05	5.1	5.5		
$\frac{9(5-x)}{25-x^2}$	0.9474	0.9091				0.8999	0.8955	0.8911	0.8571		

$$\lim_{x \to 5} \frac{9(5-x)}{25-x^2} =$$

8. The function h is graphed below. Find the following limits. If a limit does not exist, write "Does Not Exist."

- (a) $\lim_{x \to 2^+} h(x)$
- (b) $\lim_{x \to 2^{-}} h(x)$
- (c) $\lim_{x \to 2} h(x)$

9. The function f is graphed below.

At what numbers in the interval $\left(-4,\,4\right)$ is f discontinuous?

If there is more than one number, separate them with commas. If there are no discontinuities, write "None."

Obj. 12 #5 Answers for class MATH 1050/1051 Fall 2018

1. Distance unsimplified: $\sqrt{100}$

Distance simplified: 10

2.

$$x = -3$$

$$y = 2$$

3. Center: (0, 0)

Radius: 5

5.
$$a_{95} = 657$$

6.

(a)
$$7 + 11 + 15 + \dots + 471 = 27,963$$

(b)
$$\sum_{i=1}^{145} (2i-6) = 20,300.$$

7.

х	4.5	4.9	4.95	4.999	5	5.001	5.05	5.1	5.5
$\frac{9(5-x)}{25-x^2}$	0.9474	0.9091	0.9045	0.9001		0.8999	0.8955	0.8911	0.8571

$$\lim_{x \to 5} \frac{9(5-x)}{25-x^2} = 0.9$$

8.

(a)
$$\lim_{x \to 2^+} h(x) = -1$$

(b)
$$\lim_{x \to 2^{-}} h(x) = 0$$

(c)
$$\lim_{x \to 2} h(x)$$
 Does Not Exist

$$9. -3, -2, 2$$