Transformações Geométricas

Jefersson Alex dos Santos

jefersson@dcc.ufmg.br

CIÊNCIA DA COMPUTAÇÃO

¹Baseado nas aulas do Prof. Alexandre Xavier Falcão

• Nesta aula vamos considerar transformações geométricas ϕ em um espaço afim sobre os spels $p \in D_I$ de uma imagem $\hat{I} = (D_I, \vec{I})$.

- Nesta aula vamos considerar transformações geométricas ϕ em um espaço afim sobre os spels $p \in D_I$ de uma imagem $\hat{I} = (D_I, \vec{I})$.
- O espaço afim é uma generalização do espaço Euclideano, que inclui pontos, vetores, e certas operações entre eles, tais como adição e multiplicação por um escalar.

- Nesta aula vamos considerar transformações geométricas ϕ em um espaço afim sobre os spels $p \in D_I$ de uma imagem $\hat{I} = (D_I, \vec{I})$.
- O espaço afim é uma generalização do espaço Euclideano, que inclui pontos, vetores, e certas operações entre eles, tais como adição e multiplicação por um escalar.
- Uma transformação geométrica mapeia um ponto (ou vetor) em um outro ponto (ou vetor) do espaço afim (e.g., translação, rotação, escalamento, e projeção).

UF<u>m</u>G

Introdução

• Uma transformação ϕ (e.g., translação) sobre um spel $p \in D_I \subset Z^n \subset \Re^n$ gera um novo ponto $q = \phi(p) \in \Re^n$.

U F <u>m</u> G

- Uma transformação ϕ (e.g., translação) sobre um spel $p \in D_I \subset Z^n \subset \Re^n$ gera um novo ponto $q = \phi(p) \in \Re^n$.
- Se aplicarmos ϕ para todo spel em D_I , a imagem $\hat{I}=(D_I,\vec{I})$ será mapeada em um **domínio real** $D_J\subset \mathfrak{R}^n$, gerando $\hat{J}=(D_J,\vec{J})$ tal que para todo $q\in D_J$ existe um $p=\phi^{-1}(q)\in D_I\subset Z^n$ cujo $\vec{I}(p)=\vec{J}(q)$.

U F <u>m</u> G

Introdução

• Para obtermos uma imagem $\hat{J}=(D_J,\vec{J})$ com **domínio inteiro** $D_J\subset Z^n$, devemos aplicar a inversa $\phi^{-1}(q)$ em todo $q\in D_J$, obtendo $p=\phi^{-1}(q)\in \Re^n$.

- Para obtermos uma imagem $\hat{J}=(D_J,\vec{J})$ com **domínio inteiro** $D_J\subset Z^n$, devemos aplicar a inversa $\phi^{-1}(q)$ em todo $q\in D_J$, obtendo $p=\phi^{-1}(q)\in \Re^n$.
- Depois o valor $\vec{J}(q) = \vec{I}(p)$ é obtido por **interpolação** dos valores conhecidos $\vec{I}(p_i)$ para $p_i \in D_I \subset Z^n$ em uma dada adjacência $\mathscr{A}(p) \subset D_I$.

- Para obtermos uma imagem $\hat{J}=(D_J,\vec{J})$ com **domínio inteiro** $D_J\subset Z^n$, devemos aplicar a inversa $\phi^{-1}(q)$ em todo $q\in D_J$, obtendo $p=\phi^{-1}(q)\in \Re^n$.
- Depois o valor $\vec{J}(q) = \vec{I}(p)$ é obtido por **interpolação** dos valores conhecidos $\vec{I}(p_i)$ para $p_i \in D_I \subset Z^n$ em uma dada adjacência $\mathscr{A}(p) \subset D_I$.
- Esta estratégia também evita a formação de "buracos" na imagem transformada, já que seu domínio deve ser inteiro.

UF<u>m</u>G

$UF\underline{m}G$

Introdução

A adjacência $\mathscr A$ é definida pelo piso e teto das coordenadas reais de $p\in D_I$.

Nesta aula iremos estudar as seguintes transformações geométricas:

- Translação e escalamento.
- Rotação em torno da origem e eixo principal (x, y, ou z).
- Rotação em torno de ponto arbitrário.
- Reflexão
- Cisalhamento

Coordenadas Homogêneas

- Permite que as transformações espaciais sejam realizadas por meio de multiplicação de matrizes
- Facilita a combinação de várias transformações em um resultado composto

Um ponto que tem suas coordenadas expressas por (x,y,z) é descrito por coordenadas homogêneas como (wx,wy,wz,w), sendo w um valor diferente de zero Exemplo: (3,2,8,4) e (6,4,16,8) são representações diferentes para o mesmo ponto

Transformação para coordenadas cartesianas

(1) Divisão dos primeiros componentes pelo último e (2) remoção do último

Transformações Afins

Affine Transform

- Transformações lineares e translações. Outros grupos: Euclideano, Projetivo
- Preservam paralelismo entre retas e planos
- Não preservam comprimentos, distâncias, áreas, volumes, ângulos, ou perpendicularidade

Transformações Afins

Affine Transform

- Transformações lineares e translações. Outros grupos: Euclideano, Projetivo
- Preservam paralelismo entre retas e planos
- Não preservam comprimentos, distâncias, áreas, volumes, ângulos, ou perpendicularidade

Podem ser expressas como:

$$x_q = ax_p + by_p + cz_p + j$$

$$y_q = dx_p + ey_p + fz_p + k$$

$$z_q = gx_p + hy_p + iz_p + l$$

Transformações Afins

Affine Transform

- Transformações lineares e translações. Outros grupos: Euclideano, Projetivo
- Preservam paralelismo entre retas e planos
- Não preservam comprimentos, distâncias, áreas, volumes, ângulos, ou perpendicularidade

Podem ser expressas como:

$$\begin{array}{rcl} x_q &=& ax_p + by_p + cz_p + j \\ y_q &=& dx_p + ey_p + fz_p + k \\ z_q &=& gx_p + hy_p + iz_p + l \end{array}$$

Ou na forma matricial, utilizando **coordenadas homogêneas**:

$$\begin{bmatrix} x_q \\ y_q \\ z_q \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & j \\ d & e & f & k \\ g & h & i & l \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix}$$

Roteiro da Aula

UF<u>m</u>G

- 1 Translação
- 2 Escalamento
- 3 Rotação
- 4 Reflexão
- 5 Cisalhamento
- 6 Interpolação

UF<u>m</u>G

Translação

Seja $q = \phi(p) = (x_q, y_q, z_q)$ o ponto $p = (x_p, y_p, z_p)$ transladado do vetor $\vec{t} = (t_x, t_y, t_z)$. Temos que:

$$\begin{bmatrix} x_q \\ y_q \\ z_q \end{bmatrix} = \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} + \begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix}$$

Translação

Se representarmos os pontos p e q em **coordenadas homogêneas**, $p=(x_p,y_p,z_p,1)$ e $q=(x_q,y_q,z_q,1)$, a translação passa a ser multiplicativa e pode ser facilmente combinada com as demais transformações geométricas, que são multiplicativas.

U F <u>m</u> G

Translação

Se representarmos os pontos p e q em **coordenadas homogêneas**, $p=(x_p,y_p,z_p,1)$ e $q=(x_q,y_q,z_q,1)$, a translação passa a ser multiplicativa e pode ser facilmente combinada com as demais transformações geométricas, que são multiplicativas.

$$\begin{bmatrix} x_q \\ y_q \\ z_q \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix}$$

Para aplicar a inversa, basta transladar de $(-t_x, -t_y, -t_z, 1)$.

Roteiro da Aula

 $UF_{\underline{m}}G$

- 1 Translação
- 2 Escalamento
- 3 Rotação
- 4 Reflexão
- 5 Cisalhamento
- 6 Interpolação

UF<u>m</u>G

Escalamento

Fatores s_x , s_y e s_z podem ser aplicados às coordenadas dos pontos para aumentar/reduzir o tamanho de um objeto (imagem), ou refletí-lo em relação a um dos planos de coordenadas.

$$\begin{bmatrix} x_q \\ y_q \\ z_q \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix}$$

Fatores maiores que 0 e menores que 1 ocasionam redução de tamanho, fatores maiores que 1 ocasionam aumento, e fatores menores que 0 ocasionam reflexão. A inversa $\mathbf{S}^{-1}(s_x,s_y,s_z)$ é $\mathbf{S}(1/s_x,1/s_y,1/s_z)$.

Roteiro da Aula

- 1 Translação
- 2 Escalamento
- 3 Rotação
- 4 Reflexão
- 5 Cisalhamento
- 6 Interpolação

Seja $\vec{V}=(0,0,1,1)$ o vetor que representa o eixo z com origem em (0,0,0,1), a rotação em torno da origem e eixo z

modifica apenas as coordenadas x e y dos pontos, seguindo a regra da mão direita (polegar direito na direção e sentido de \vec{V} , e os demais dedos girando para dentro da mão.).

Esta rotação é representada por uma matriz $\mathbf{R_z}(\theta)$ obtida das relações trigonométricas abaixo.

$$x_p = r\cos(\alpha)$$

Esta rotação é representada por uma matriz $\mathbf{R_z}(\theta)$ obtida das relações trigonométricas abaixo.

Relações:

$$x_p = r\cos(\alpha)$$

 $y_p = r\sin(\alpha)$

Esta rotação é representada por uma matriz $\mathbf{R_z}(\theta)$ obtida das relações trigonométricas abaixo.

$$x_p = r\cos(\alpha)$$

 $y_p = r\sin(\alpha)$
 $x_q = r\cos(\theta + \alpha)$

Propriedade:

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

Esta rotação é representada por uma matriz $\mathbf{R_z}(\theta)$ obtida das relações trigonométricas abaixo.

$$x_p = r\cos(\alpha)$$

$$y_p = r\sin(\alpha)$$

$$x_q = r\cos(\theta + \alpha)$$

$$x_q = r\cos(\alpha)\cos(\theta) - r\sin(\alpha)\sin(\theta)$$

Esta rotação é representada por uma matriz $\mathbf{R}_{\mathbf{z}}(\theta)$ obtida das relações trigonométricas abaixo.

$$x_{p} = r\cos(\alpha)$$

$$y_{p} = r\sin(\alpha)$$

$$x_{q} = r\cos(\theta + \alpha)$$

$$x_{q} = r\cos(\alpha)\cos(\theta) - r\sin(\alpha)\sin(\theta)$$

$$x_{q} = x_{p}\cos(\theta) - y_{p}\sin(\theta)$$

Esta rotação é representada por uma matriz $\mathbf{R}_{\mathbf{z}}(\theta)$ obtida das relações trigonométricas abaixo.

$$x_{p} = r\cos(\alpha)$$

$$y_{p} = r\sin(\alpha)$$

$$x_{q} = r\cos(\theta + \alpha)$$

$$x_{q} = r\cos(\alpha)\cos(\theta) - r\sin(\alpha)\sin(\theta)$$

$$x_{q} = x_{p}\cos(\theta) - y_{p}\sin(\theta)$$

$$y_{q} = r\sin(\theta + \alpha)$$

Propriedade:

$$\sin(a+b) = \cos(a)\sin(b) + \sin(a)\cos(b)$$

Esta rotação é representada por uma matriz $\mathbf{R}_{\mathbf{z}}(\theta)$ obtida das relações trigonométricas abaixo.

$$x_{p} = r\cos(\alpha)$$

$$y_{p} = r\sin(\alpha)$$

$$x_{q} = r\cos(\theta + \alpha)$$

$$x_{q} = r\cos(\alpha)\cos(\theta) - r\sin(\alpha)\sin(\theta)$$

$$x_{q} = x_{p}\cos(\theta) - y_{p}\sin(\theta)$$

$$y_{q} = r\sin(\theta + \alpha)$$

$$y_{q} = r\cos(\alpha)\sin(\theta) + r\sin(\alpha)\cos(\theta)$$

Esta rotação é representada por uma matriz $\mathbf{R}_{\mathbf{z}}(\theta)$ obtida das relações trigonométricas abaixo.

$$x_{p} = r\cos(\alpha)$$

$$y_{p} = r\sin(\alpha)$$

$$x_{q} = r\cos(\theta + \alpha)$$

$$x_{q} = r\cos(\alpha)\cos(\theta) - r\sin(\alpha)\sin(\theta)$$

$$x_{q} = x_{p}\cos(\theta) - y_{p}\sin(\theta)$$

$$y_{q} = r\sin(\theta + \alpha)$$

$$y_{q} = r\cos(\alpha)\sin(\theta) + r\sin(\alpha)\cos(\theta)$$

$$y_{q} = x_{p}\sin(\theta) + y_{p}\cos(\theta)$$

Esta rotação é representada por uma matriz $\mathbf{R}_{\mathbf{z}}(\theta)$ obtida das relações trigonométricas abaixo.

$$x_{p} = r\cos(\alpha)$$

$$y_{p} = r\sin(\alpha)$$

$$x_{q} = r\cos(\theta + \alpha)$$

$$x_{q} = r\cos(\alpha)\cos(\theta) - r\sin(\alpha)\sin(\theta)$$

$$x_{q} = x_{p}\cos(\theta) - y_{p}\sin(\theta)$$

$$y_{q} = r\sin(\theta + \alpha)$$

$$y_{q} = r\cos(\alpha)\sin(\theta) + r\sin(\alpha)\cos(\theta)$$

$$y_{q} = x_{p}\sin(\theta) + y_{p}\cos(\theta)$$

$$z_{q} = z_{p}$$

U F <u>m</u> G

Rotação em torno da origem e eixo
$$\boldsymbol{z}$$

$$\begin{bmatrix} x_q \\ y_q \\ z_q \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0 \\ \sin(\theta) & \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix}$$

U F <u>m</u> G

Rotações em torno da origem e eixos x e y

As rotações em torno da origem e eixos x e y são obtidas de forma similar.

$$\mathbf{R}_{\mathbf{x}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) & 0 \\ 0 & \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R}_{\mathbf{y}}(\theta) = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotação em torno de um ponto arbitrário

O objeto (imagem) deve ser transladado para que seu centro geométrico fique na origem do sistema de coordenadas. Após aplicar a rotação, transladamos de volta o objeto (imagem) evitando cortes de cena.

Rotação em torno de um ponto arbitrário

Por exemplo, a rotação $\mathbf{R}_x(\theta)$ de um ângulo θ em torno do vetor $\vec{V} = (1,0,0,1)$ e do centro geométrico $(x_c, y_c, z_c, 1)$ de um objeto (imagem) é dada por

$$\begin{bmatrix} 1 & 0 & 0 & d/2 \\ 0 & 1 & 0 & d/2 \\ 0 & 0 & 1 & d/2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) & 0 \\ 0 & \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -x_c \\ 0 & 1 & 0 & -y_c \\ 0 & 0 & 1 & -z_c \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

onde d é a diagonal do objeto (imagem).

Roteiro da Aula

- 1 Translação
- 2 Escalamento
- 3 Rotação
- 4 Reflexão
- 5 Cisalhamento
- 6 Interpolação

Reflexão

Apenas valores da coordenada do eixo refletido sofrem alteração (inversão de sinal)

$$\mathbf{E}_{\mathbf{yz}}(\boldsymbol{\theta}) = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{E}_{\mathbf{xz}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{E}_{\mathbf{x}\mathbf{y}}(\boldsymbol{\theta}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Roteiro da Aula

UF<u>m</u>G

- 1 Translação
- 2 Escalamento
- 3 Rotação
- 4 Reflexão
- 5 Cisalhamento
- 6 Interpolação

Cisalhamento

Shear

- Altera as coordenadas dos pontos de acordo com uma função de direção
- Causa uma deformação dos objetos presentes na imagem
- Altera os pontos em direção paralela a um plano

Com respeito ao plano yz, a transformação pode ser expressa como:

$$\begin{array}{rcl}
x_q & = & x_p \\
y_q & = & y_p + c_y x_p \\
z_q & = & z_p + c_z x_p
\end{array}$$

Cisalhamento

Shear

Forma matricial usando coordenadas homogêneas:

$$\mathbf{C_{yz}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ c_y & 1 & 0 & 0 \\ c_z & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{C_{xz}}(\theta) = \begin{bmatrix} 1 & c_x & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & c_z & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{C}_{\mathbf{x}\mathbf{y}}(\boldsymbol{\theta}) = \begin{bmatrix} 1 & 0 & c_x & 0 \\ 0 & 1 & c_y & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Roteiro da Aula

- 1 Translação
- 2 Escalamento
- 3 Rotação
- 4 Reflexão
- 5 Cisalhamento
- 6 Interpolação

Interpolação

Ao aplicar a transformação inversa para obter a transformação direta, a interpolação dos valores da imagem original é adotada em uma adjacência \mathscr{A} .

A adjacência \mathscr{A} é definida pelas coordenadas inteiras mais próximas, abaixo e acima, das coordenadas reais (x_p,y_p,z_p) de $p\in D_I$.

Interpolação pelo Vizinho Mais Próximo

O valor da intensidade a ser atribuído ao spel p terá o mesmo valor do spel que estiver mais próximo na imagem original.

	10	10	4	4	22	22
	10	10	4	4	22	22
	2	2	18	18	7	7
	2	2	18	18	7	7
	9	9	14	14	25	25
ĺ	9	9	14	14	25	25

Interpolação Bilinear

- Assume que os valores dos spels variam linearmente em todas as direções
- Utiliza média ponderada de distâncias

U F <u>m</u> G

Interpolação Bilinear

- Assume que os valores dos spels variam linearmente em todas as direções
- Utiliza média ponderada de distâncias

$$\vec{I}(p_{12}) = (x_p - x_{p_1})\vec{I}(p_2) + (x_{p_2} - x_p)\vec{I}(p_1)$$

$$\vec{I}(p_{34}) = (x_p - x_{p_3})\vec{I}(p_4) + (x_{p_4} - x_p)\vec{I}(p_3)$$

- Assume que os valores dos spels variam linearmente em todas as direções
- Utiliza média ponderada de distâncias

$$\vec{I}(p_{12}) = (x_p - x_{p_1})\vec{I}(p_2) + (x_{p_2} - x_p)\vec{I}(p_1)$$

$$\vec{I}(p_{34}) = (x_p - x_{p_3})\vec{I}(p_4) + (x_{p_4} - x_p)\vec{I}(p_3)$$

$$\vec{I}(p) = (y_p - y_{p_{12}})\vec{I}(p_{34}) + (y_{p_{34}} - y_p)\vec{I}(p_{12})$$

U F <u>m</u> G

Interpolação Bilinear

- Assume que os valores dos spels variam linearmente em todas as direções
- Utiliza média ponderada de distâncias

Características

- Reduz problemas causados pela interpolação pelo vizinho mais próximo
- Causa borramento devido a sua natureza de suavização

Comparação

U F <u>m</u> G

Comparação

(b)using nearest interpolation (128x128)

(c)using nearest interpolation (256x256)

(a)The original image (64x64)

(d)using bilinear interpolation (128x128)

(e)using bilinear interpolation (256x256)

No caso 3D, temos

$$\vec{I}(p_{24}) = (y_p - y_{p_4})\vec{I}(p_2) + (y_{p_2} - y_p)\vec{I}(p_4)$$

$$\vec{I}(p_{68}) = (y_p - y_{p_8})\vec{I}(p_6) + (y_{p_6} - y_p)\vec{I}(p_8)$$

$$\vec{I}(p_{13}) = (y_p - y_{p_3})\vec{I}(p_1) + (y_{p_1} - y_p)\vec{I}(p_3)$$

$$\vec{I}(p_{57}) = (y_p - y_{p_7})\vec{I}(p_5) + (y_{p_5} - y_p)\vec{I}(p_7)$$

No caso 3D, temos

$$\vec{I}(p_{2468}) = (z_p - z_{p_{24}})\vec{I}(p_{68}) + (z_{p_{68}} - z_p)\vec{I}(p_{24})$$

$$\vec{I}(p_{1357}) = (z_p - z_{p_{13}})\vec{I}(p_{57}) + (z_{p_{57}} - z_p)\vec{I}(p_{13})$$

No caso 3D, temos

$$\vec{I}(p_{2468}) = (z_p - z_{p_{24}})\vec{I}(p_{68}) + (z_{p_{68}} - z_p)\vec{I}(p_{24})$$

$$\vec{I}(p_{1357}) = (z_p - z_{p_{13}})\vec{I}(p_{57}) + (z_{p_{57}} - z_p)\vec{I}(p_{13})$$

$$\vec{I}(p) = (x_p - x_{p_{1357}})\vec{I}(p_{2468}) + (x_{p_{2468}} - x_p)\vec{I}(p_{1357})$$

Interpolação Bilinear

Se uma imagem $\hat{I}=(D_I,\vec{I})$ tem voxels de dimensões $(d_{x_1},d_{y_1},d_{z_1})$ e desejamos gerar por interpolação uma imagem $\hat{J}=(D_I,\vec{J})$ com voxels $(d_{x_2},d_{y_2},d_{z_2})$, então é mais rápido

• interpolar primeiro $\hat{I}=(D_I,\vec{I})$ ao longo de x, gerando $\hat{I}_1=(D_I,\vec{I}_1)$ com tamanho de voxel $(d_{x_2},d_{y_1},d_{z_1})$,

Se uma imagem $\hat{I}=(D_I,\vec{I})$ tem voxels de dimensões $(d_{x_1},d_{y_1},d_{z_1})$ e desejamos gerar por interpolação uma imagem $\hat{J}=(D_I,\vec{J})$ com voxels $(d_{x_2},d_{y_2},d_{z_2})$, então é mais rápido

- interpolar primeiro $\hat{I}=(D_I,\vec{I})$ ao longo de x, gerando $\hat{I}_1=(D_I,\vec{I}_1)$ com tamanho de voxel $(d_{x_2},d_{y_1},d_{z_1})$,
- depois interpolar $\hat{I}_1=(D_I,\vec{I}_1)$ ao longo de y, gerando $\hat{I}_2=(D_I,\vec{I}_2)$ com tamanho de voxel $(d_{x_2},d_{y_2},d_{z_1})$, e

Se uma imagem $\hat{I}=(D_I,\vec{I})$ tem voxels de dimensões $(d_{x_1},d_{y_1},d_{z_1})$ e desejamos gerar por interpolação uma imagem $\hat{J}=(D_I,\vec{J})$ com voxels $(d_{x_2},d_{y_2},d_{z_2})$, então é mais rápido

- interpolar primeiro $\hat{I}=(D_I,\vec{I})$ ao longo de x, gerando $\hat{I}_1=(D_I,\vec{I}_1)$ com tamanho de voxel $(d_{x_2},d_{y_1},d_{z_1})$,
- depois interpolar $\hat{I}_1=(D_I,\vec{I}_1)$ ao longo de y, gerando $\hat{I}_2=(D_I,\vec{I}_2)$ com tamanho de voxel $(d_{x_2},d_{y_2},d_{z_1})$, e
- por fim interpolar $\hat{I}_2=(D_I,\vec{I}_2)$ ao longo de z, gerando $\hat{J}=(D_I,\vec{J})$ com tamanho de voxel $(d_{x_2},d_{y_2},d_{z_2})$.

U F <u>m</u> G

Interpolação Bilinear

Por exemplo, a interpolação bilinear ao longo de x em uma dada linha y_p e fatia z_p é realizada para todo p de p_1 até o último voxel da linha, com incrementos d_{x_2} .

$$y_p = y_{p_1} = y_{p_2}$$

$$z_p = z_{p_1} = z_{p_2}$$

$$x_p = x_{p_1} + d_{x_2}$$

$$\vec{I}(p) = (x_p - x_{p_1})\vec{I}(p_2) + (x_{p_2} - x_p)\vec{I}(p_1)$$

onde p_2 é o próximo voxel na linha após p.

UF**m**G

Interpolação Bilinear

Exemplo de escalamento e rotação em torno do centro da imagem e eixo z.

Interpolação Bicúbica

- Utiliza vizinhança 4×4 ao redor do spel p
- Emprega funções como a B-Spline cúbica

U F <u>m</u> G

Interpolação Bicúbica

- ullet Utiliza vizinhança 4×4 ao redor do spel p
- Emprega funções como a B-Spline cúbica

Interpolação Bicúbica

- ullet Utiliza vizinhança 4×4 ao redor do spel p
- Emprega funções como a B-Spline cúbica

Características

- Não sofre do problema de bordas serrilhadas
- Não causa borramento
- Preserva detalhes finos na imagem