ภาคผนวก M

การทดลองที่ 13 การพัฒนาอัลกอริทึมแบบขนาน ด้วย OpenMP

การพัฒนาอัลกอริทึมแบบขนานบนซีพียูในปัจจุบันจำเป็นต้องอาศัยภาษาคอมพิวเตอร์ระดับสูง เช่น ภาษา C/ C++ ภาษา Java เป็นต้น เพื่อช่วยลดเวลารัน (Run Time) ซึ่งเท่ากับเร่งความเร็ว (Speedup) ให้อัลกอริ ทึมหรือโปรแกรม โดยการสร้างเทรดผู้ช่วย (Worker Thread) และมอบหมายงานให้ไปรันบนซีพียูคอร์ที่ยังว่าง อยู่ ผู้อ่านสามารถประยุกต์ใช้หลักการนี้บนเครื่องคอมพิวเตอร์ทั่วไปจนถึงเครื่องซูเปอร์คอมพิวเตอร์ตามเนื้อหา ในบทที่ 8 ดังนั้น การทดลองมีวัตถุประสงค์ดังนี้

- เพื่อพัฒนาโปรแกรมภาษา C ด้วยไลบรารี OpenMP ให้สามารถทำงานแบบมัลติเทรดและใช้งานซีพียู มัลติคอร์ได้เต็มที่
- เพื่อเรียนรู้การวัด CPU Utilization (%CPU) เวลาจริง (T_{real}) เวลาผู้ใช้ (T_{user}) และเวลาระบบ (T_{sys}) ในซีพียูมัลติคอร์
- เพื่อทำความเข้าใจการวัดประสิทธิภาพของอัลกอริทึมแบบขนานด้านความซับซ้อนเชิงเวลาด้วยพีชคณิต BigO และตัวชี้วัด Speedup จากเวลาที่วัดได้

M.1 การวัด CPU Utilization

ร**ูปที่** M.1: กราฟแสดงการใช้งานซีพียู (CPU Usage Monitor) ย้อนหลังและค่าสรุป ณ เวลาปัจจุบัน ที่มา: abload.de

ผู้อ่านสามารถติดตั้งเครื่องมือและกราฟกราฟแสดงการใช้งานซีพียู (CPU Usage Monitor) ย้อนหลังและค่า สรุป ณ เวลาปัจจุบันของบอร์ด Pi3 ประกอบการทดลองที่ 13 ตามขั้นตอนเหล่านี้

- 1. เลื่อนเมาส์ไปบนตำแหน่งว่างของ Task Bar
- 2. คลิกขวา เพื่อให้เมนูต่อไปนี้ปรากฏขึ้นแล้วคลิกซ้ายเลือก Add/Remove Panel Items
- 3. คลิกที่แท็บ Panel Applets
- 4. เลื่อนรายการขึ้นลงเพื่อหารายการชื่อ CPU Usage Monitor แล้วคลิก Add
- 5. กดปุ่ม Up และ Down เพื่อวางตำแหน่งของ CPU Usage Monitor ในตำแหน่งที่ต้องการ โปรดสังเกต รายชื่อ เมื่อได้ตำแหน่งที่ต้องการแล้วกด Close หมายเหตุ **Spacer** หมายถึง ช่องว่างที่คั่นระหว่าง Applet ที่อยู่บน Task Bar
- 6. สังเกตด้านขวาของ Task Bar จะมีจอสีเทาขนาดเล็กแสดงเป็นกราฟแท่ง โดยแท่งขวาสุดคือ วินาทีล่าสุด
- 7. เลื่อนเมาส์ไปบนกราฟแล้วคลิกขวาเพื่อเพิ่มการแสดงผลเป็นตัวเลขหน่วยเป็นเปอร์เซ็นต์ (%)
- 8. ทดสอบการทำงานโดยการเปิดคลิปเดียวกันบน YouTube.com ที่ความละเอียดแตกต่างกัน เช่น 240p, 480p และ 720p ทีละค่าเพื่อให้เห็นค่า % CPU_{max} ที่แตกต่าง

M.2 การคูณแมทริกซ์แบบขนาน

$$C = A \times B \tag{M.1}$$

การคูณแมทริกซ์เป็นพื้นฐานของการคำนวณพื้นฐานทางวิทยาศาสตร์ และวิศวกรรมศาสตร์ กำหนดให้แม ทริกซ์จตุรัส A ขนาด $N \times N$ สามารถเขียนในรูปแบบของอะเรย์ 2 มิติในภาษา C/C++ ได้ดังนี้

$$A = \Big(A[i][j]\Big)$$

โดยดัชนีตัวแรก i คือ หมายเลขแถว มีค่าตั้งแต่ 0 ถึง N-1 ดัชนีตัวที่สอง j คือ หมายเลขคอลัมน์ มีค่าตั้งแต่ 0 ถึง N-1 ดังนั้น

$$A = \begin{pmatrix} A[0][0] & A[0][1] & \dots & A[0][N-1] \\ A[1][0] & A[1][1] & \dots & A[1][N-1] \\ \\ A[N-1][0] & A[N-1][1] & \dots & A[N-1][N-1] \end{pmatrix}$$

เมื่อทำความเข้าใจพื้นฐานของแมทริกซ์ในรูปแบบของอะเรย์ส 2 มิติแล้ว ผู้อ่านสามารถทำการทดลองตาม ขั้นตอนต่อไปนี้

- 1. ย้ายและสร้างไดเรคทอรี /home/Pi/Lab13 บนโปรแกรม Terminal ด้วยคำสั่งต่อไปนี้ตามลำดับ
 - \$ cd /home/Pi/
 - \$ mkdir Lab13
 - \$ cd Lab13
 - \$ nano multMatrix.c

2. กรอกโปรแกรมต่อไปนี้ด้วยโปรแกรม nano และบันทึกในไฟล์ชื่อ multMatrix.c ในไดเรคทอรีที่สร้าง

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <omp.h>
#define N 200
float A[N][N], B[N][N], C[N][N]; // matrices of NxN elements
int main () {
/* DECLARING VARIABLES */
int i, j, k; // indices for matrix multiplication
float t_mul; // Multiply time
clock_t c_1, c_2; // start time and stop time
/* FILLING MATRICES WITH RANDOM NUMBERS */
srand ( time(NULL) );
for(i=0;i<N;i++) {
  for(j=0;j<N;j++) {
   A[i][j] = (rand()%100);
   B[i][j] = (rand()%100);
}
/* MATRIX MULTIPLICATION */
printf("Max number of threads: %i \n",omp_get_max_threads());
#pragma omp parallel
  printf("Number of threads: %i \n",omp_get_num_threads());
  c_1=time(NULL); // time measure: start time
  #pragma omp parallel for private(k, j)
    for(i=0;i<N;i++) {
      for(j=0;j<N;j++) {
        C[i][j]=0.; // set initial value of resulting matrix C=0
        for (k=0; k<N; k++) {
          C[i][j]=C[i][j]+A[i][k]*B[k][j];
        }
      }
    }
  c_2=time(NULL); // time measure: stop time
  t_mul = (float)(c_2-c_1); // Multiply time
```

```
printf("Mutiply Time: %f \n",t_1);

/* TERMINATE PROGRAM */
return 0;
}
```

3. exit ออกจากโปรแกรม nano เพื่อคอมไพล์โปรแกรมด้วยคำสั่งต่อไปนี้

```
$ gcc -fopenmp multMatrix.c -o mulMatrix
```

แก้ไขหากมีข้อผิดพลาดจนกว่าจะคอมไพล์โปรแกรมสำเร็จและมีไฟล์ชื่อ mulMultrix

4. ตั้งค่าจำนวนเทรด n=1 ของโปรแกรมด้วยคำสั่งต่อไปนี้

```
$ export OMP_NUM_THREADS=1
```

5. รันโปรแกรมจับเวลาด้วยคำสั่ง time ดังนี้จำนวน 5 ครั้งเพื่อหาค่าเฉลี่ย ขณะทำการทดลองขอให้ผู้อ่าน ใช้นาฬิกาข้อมือจับเวลาไปพร้อมๆ กัน เพื่อเปรียบเทียบกับค่าของ $T_{mul,n}$ และ T_{real}

```
Tmul = 1.000 Treal = 0.671 \$ \text{ time ./mulMatrix} Tuser = 0.661 Tsys = 0.021
```

ซึ่งจะรายงานผลการจับเวลาการทำงานของทั้งโปรแกรมในแง่มุมต่างๆ

6. จดบันทึกค่า CPU Utilization สูงสุดหรือ % CPU_{max} ที่สังเกตได้ หาค่าเฉลี่ยของ $T_{mul,n}$ T_{real} T_{user} และ T_{sys} ที่ได้ลงในตารางที่ M.1

ตารางที่ M.1: เวลาและ % CPU_{max} ของการคูณแมทริซ์ที่ขนาด N และจำนวนเทรดเท่ากับ 1, 2, 4, 8 เทรด

	0						
เวลาเฉลี่ย	N=200	N=400	N=800	N=1000			
	(วินาที)	(วินาที)	(วินาที)	(วินาที)			
<i>n</i> =1 เทรด							
$T_{mul,1}$	1.000000	5.0000	49.0000	99.0000			
T_{real}	0.671	5.306	49.289	99.815			
T_{user}	0.661	5.300	49.235	99.712			
T_{sys}	0.021	0.001	0.022	0.041			
$\%CPU_{max}$	10.7%	27.9%	35%	30.2%			
<i>n</i> =2 เทรด							
$T_{mul,2}$	0.00000	2.0000	25.0000	50.000			
T_{real}	0.371	2.739	24.936	50.526			
T_{user}	0.697	5.301	48.972	100.449			
T_{sys}	0.002	0.010	0.101	0.031			
$\%CPU_{max}$	14.2%	28.8%	55.6%	54.8%			
n=4 เทรด							
$T_{mul,4}$	0.0000	2.00000	13.000	27.000			
T_{real}	0.281	1.427	13.697	27.439			
T_{user}	0.704	5.145	49.558	100.458			
T_{sys}	0.011	0.011	0.050	0.118			
$\%CPU_{max}$	10.4%	45.1%	97.5%	100%			
n=8 เทรด							
$T_{mul,8}$	0.0000	1.000	14.000	29.0000			
T_{real}	0.257	1.529	14.671	28.900			
T_{user}	0.719	5.124	52.792	105.917			
T_{sys}	0.011	0.019	0.088	0.155			
$\%CPU_{max}$	10.7%	47.6%	98.0%	100%			

7. เปลี่ยนจำนวนเทรดเท่ากับ n=2 เทรด ด้วยคำสั่งต่อไปนี้

\$ export OMP_NUM_THREADS=2

แล้ววนกลับไปทำข้อ 5 เพื่อกรอกค่าเฉลี่ยเวลาในตารางที่ M.1 จนครบ แล้วจึงเปลี่ยนจำนวนเทรด n=4 และ 8 เทรด

8. เปลี่ยนขนาดข้อมูล N=400 แล้วกลับไปเริ่มทำข้อ 3 จนถึงข้อ 8 จนครบ N= 800 และ 1000 จากตารางที่ M.1 ผู้อ่านสามารถใช้ประกอบการคำนวณประสิทธิภาพการคำนวณแบบขนานในหัวข้อถัดไป

M.3 ความซับซ้อนของการคำนวณ (Complexity)

ผู้อ่านสามารถประยุกต์ใช้อัตราส่วนระหว่างความซับซ้อนเชิงเวลา (Run Time Complexity) $O(N_2)$ และ $O(N_1)$ ที่จำนวน n เทรดเหมือนกัน เพื่อวัดความซับซ้อนของอัลกอริทึมได้ดังสมการต่อไปนี้

$$\frac{O(N_2^3)}{O(N_1^3)} = \frac{T_{N_2,n}}{T_{N_1,n}} \tag{M.2}$$

สำหรับการคูณแมทริกซ์ $T_{N,n}$ คือ $T_{mul,n}$ เป็นระยะเวลาเฉลี่ยของการคูณแมทริกซ์ขนาด $N \times N$ ด้วยจำนวน n เทรดจากหัวข้อที่ผ่านมา ผู้อ่านสามารถคำนวณค่าอัตราส่วนของเวลาในตารางที่ M.2 เพื่อใช้วิเคราะห์ต่อไป

ตารางที่ M.2: อัตราส่วนเวลาการคูณแมทริซ์ที่ขนาด N และเวลาที่ขนาด 200 ที่จำนวนเทรดเท่ากับ 1, 2, 4,

8 เทรด จากสมการที่ (M.2)

(IVI.Z)	N=200	N=400	N=800	N=1000
n = 1 เทรด $T_{N,1}/T_{200,1}$	1.00	5.000	49.00	99.000
$\sqrt[2]{T_{N,1}/T_{200,1}}$	1.00	2.236	7.00	9.95
$\sqrt[3]{T_{N,1}/T_{200,1}}$	1.00	1.71	3.659	4.626
n = 2 เทรด $T_{N,2}/T_{200,2}$	1.00	2.000	25.000	50.000
$\sqrt[2]{T_{N,2}/T_{200,2}}$	1.00	1.414	5.00	7.071
$\sqrt[3]{T_{N,2}/T_{200,2}}$	1.00	1.26	2.924	3.684
n = 4 เทรด $T_{N,4}/T_{200,4}$	1.00	2.000	13.000	27.000
$\sqrt[2]{T_{N,4}/T_{200,4}}$	1.00	1.414	3.61	5.19
$\sqrt[3]{T_{N,4}/T_{200,4}}$	1.00	1.26	2.351	3
n =8 เทรด $T_{N,8}/T_{200,8}$	1.00	1.000	14.000	29.000
$\sqrt[2]{T_{N,8}/T_{200,8}}$	1.00	1.00	3.742	5.385
$\sqrt[3]{T_{N,8}/T_{200,8}}$	1.00	1.000	2.41	3.072

จงเปรียบเทียบค่าผลการคำนวณของ $\sqrt[2]{T_{N_2,n}/T_{200,1}}$ และ $\sqrt[3]{T_{N_2,n}/T_{200,1}}$ ที่ได้ในตารางที่ M.2 เมื่อ N_2 = 400, 800 และ 1000 และ n= 1, 2, 4 และ 8 ตามลำดับ ว่ามีค่าใกล้เคียงกับ $N_2/200$ = 2, 4, 5 อย่างไร เพราะ เหตุใด

เพราะ N2 = 400,800,1000 N2/200 จึงเท่ากับ 2,4,5

M.4 ประสิทธิภาพ (Performance) ของการคำนวณแบบขนาน

ผู้อ่านสามารถวัดประสิทธิภาพ (Performance) ของอัลกอริทึมใดๆ ได้จากอัตราส่วนของเวลาเดิม (T_{old}) และ เวลาใหม่ (T_{new}) ที่ได้ทำการปรับปรุงอัลกอริทึมนั้นๆ ที่มา: Patterson and Hennessy (2016)

$$\frac{Perf_{new}}{Perf_{old}} = \frac{T_{old}}{T_{new}} \tag{M.3}$$

ดังนั้น ประสิทธิภาพของการคำนวณแบบแบบขนานสามารถวัดได้จากอัตราส่วนระหว่างระยะเวลา $T_{alg,1}$ ของ 1 เทรดและ $T_{alg,n}$ ของ n เทรด และตั้งชื่อเรียกว่า Speedup(n) ด้วยสมการต่อไปนี้

$$Speedup(n) = \frac{T_{alg,1}}{T_{alg,n}} \tag{M.4}$$

โดย $T_{alg,n}$ คือ ช่วงการรันโปรแกรมอัลกอริทึมด้วยจำนวน n เทรด โดยไม่รวมช่วงเวลาอื่นๆ ซึ่งไม่ได้เกี่ยวข้อง กับการอัลกอริทึมแบบขนาน ผู้อ่านสามารถประยุกต์ตัวชี้วัดนี้กับอัลกอริทึมการคูณแมทริกซ์ ดังนี้

$$Speedup(n) = \frac{T_{mul,1}}{T_{mul,n}} \tag{M.5}$$

โดย $T_{mul,n}$ คือ ช่วงการรันโปรแกรมคำนวณแมทริกซ์จริงๆ ด้วยจำนวน n เทรด ที่ขนาด N เท่ากันโดยไม่ รวมช่วงเวลาสุ่มค่าตั้งต้น และการแสดงผลอื่นๆ ผู้อ่านคำนวณค่า Speedup(n) และกรอกในตารางที่ M.3 เพื่อ วิเคราะห์ผลการคำนวณที่ได้โดยตอบคำถามในกิจกรรมท้ายการทดลอง

ตารางที่ M.3: ผลการคำนวณ Speedup(n) ของการคูณแมทริซ์ที่ขนาด N และจำนวนเทรดเท่ากับ 1, 2, 4, 8 เทรด จากสมการที่ (M.5)

Speedup	N=200	N=400	N=800	N=1000
<i>n</i> =1 เทรด				
Speedup(1)	1.00	1.00	1.00	1.00
<i>n</i> =2 เทรด	1/0	2.5	1.96	1.98
Speedup(2)				1.70
n=4 เทรด	1/0	2.5	3.77	3.67
Speedup(4)				
n=8 เทรด	1/0	F 0	3.5	3.41
Speedup(8)	1/0	5.0	3.3	J.11

จำนวนเทรด และ จำนวนซีพียุคอร์ มีผลต่อค่า Speedup อย่างไร วิเคราะห์ทั้งหมด 3 กรณีดังนี้

- จำนวนเทรด < จำนวนซีพียูคอร์ speedup น้อย
- จำนวนเทรด = จำนวนซีพียูคอร์ speedup ปานกลาง
- จำนวนเทรด > จำนวนซีพียูคอร์
 speedup สูง

M.5 กิจกรรมท้ายการทดลอง

1. เหตุใดการทดลองจึงต้องใช้การหาค่าเฉลี่ยเวลาต่างๆ

เพื่อให้สามารถได้ค่าที่น่าเชื่อถือ เพราะถ้าวัดครั้งเดียวอาจจะมี ปัจจัยอื่นที่ทำให้ค่าที่วัดได้ผิดพลาด

- 2. T_{sys} หมายถึง เวลาซีพียูทำงานประเภทไหน เวลาที่ซีพียูใช้ในการประมวลผลบน kernal space
- 3. T_{user} หมายถึง เวลาซีพียูทำงานประเภทไหน เวลาที่ซีพียูใช้ในการประมวลผลบน user space
- 4. T_{real} มีความสัมพันธ์กับ T_{mul} อย่างไร
- 5. T_{user} มีความสัมพันธ์กับ T_{mul} และจำนวนเทรด n อย่างไร
- 6. เหตุใดค่าเฉลี่ยเวลา T_{user} จึงไม่แตกต่างกัน ที่ N คงที่
- 7. เวลาส่วนใหญ่ของการรับ $T_{real} \ T_{user}$ และ T_{sys} สัมพันธ์กันอย่างไร จงสร้างสมการ
- 8. จำนวนเทรดที่เพิ่มขึ้นทำให้การคำนวณเร็วขึ้นอย่างไร มีข้อจำกัดหรือไม่
- 9. ที่ขนาดข้อมูล N=1000 จำนวนเทรดที่เพิ่มขึ้นทำให้ T_{user} เปลี่ยนแปลงอย่างไร มีข้อจำกัดหรือไม่
- 10. ที่ขนาดข้อมูล N ต่างๆ ค่า % CPU_{max} มีการเปลี่ยนแปลงและมีความสัมพันธ์กับจำนวนเทรด n อย่างไร
- 11. ขนาดข้อมูล N ที่เพิ่มขึ้นมีผลต่อ Speedup(n) ที่ n=1, 2, 4 และ 8 หรือไม่ อย่างไร