Problemas de Algebra Lineal. Curso 2010-11

Capítulo 2. Aplicaciones lineales

- 1. Aplicaciones lineales. Matrices
- **36.** Sea $f: \mathbb{R}[x]_{\leq 2} \longrightarrow \mathbb{R}(2,2)$ la aplicación definida por

$$f(a+bx+cx^2) = \begin{pmatrix} b+c & a \\ b & c \end{pmatrix}.$$

Prueba que f es lineal y halla su matriz en las bases

$$\{1, x, x^2\}$$

de $\mathbb{R}[x]$ <2 y

$$\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \}$$

- de $\mathbb{R}(2,2)$.
- **37.** Sea $E = \mathbb{R}_{\leq n}[x]$ el espacio vectorial de polinomios de grado menor o igual que n en una variable x a coeficientes reales, y $a \in \mathbb{R}$ un escalar. Determina si las siguientes aplicaciones L de E en E son lineales y halla sus matrices en la base $\{1, x, \ldots, x^n\}$:
- (a) L(p(x)) = p(a);
- (b) L(p(x)) = xp'(x);
- (c) L(p(x)) = p(x+1);
- (d) L(p(x)) = xp'(x) p''(x);
- (e) $L(p(x)) = \frac{p(x) p(0)}{x}$.
- **38.** Sean **K** un cuerpo, y B una matriz $m \times n$ con coeficientes en **K**. Determina cuales de las siguientes aplicaciones son lineales:
- (a) tr : $\mathbf{K}(n,n) \to \mathbf{K}$, tal que tr (A) := traza de A.
- (b) $\det : \mathbf{K}(n,n) \to \mathbf{K}$, tal que $\det(A) := \det(A)$.
- (c) $R_B: \mathbf{K}(p,m) \to \mathbf{K}(p,n)$, tal que $R_B:=AB$, para todo $A \in \mathbf{K}(p,m)$.
- (d) $L_B: \mathbf{K}(n,p) \to \mathbf{K}(m,p)$, tal que $L_B:=BA$, para todo $A \in \mathbf{K}(n,p)$.
- **39.** Sean $n \ge 0$, y $E = \mathbb{R}[x]_{\le n}$.
- (a) Halla la matriz de la aplicación derivada $D: E \longrightarrow E$ en la base $\{1, x, x^2, \dots, x^n\}$.
- (b) En el caso n=3, halla las matrices de las potencias de D^i de D.
- **40.** Considera el siguiente subespacio vectorial de \mathbb{R}^4 : $E = \{(x, y, y, z) | x, y, z \in \mathbb{R}\}$. Sea $f: E \longrightarrow E$ la aplicación definida por

$$f(x, y, y, z) = (x + z, y, y, x + y + z)$$

- (a) Demuestra que f es una aplicación lineal.
- (b) Fija una base de E y determina la matriz de f en esa base.
- **41.** Sean E un espacio vectorial de dimensión 3 sobre \mathbb{R} , (v_1, v_2, v_3) una base de E, y

$$u_1 = v_1 - v_2 + v_3$$
, $u_2 = v_1 - v_3$, $u_3 = -v_2 + v_3$, $u_4 = 2v_1 - 2v_2 + v_3$.

Determina $a \in \mathbb{R}$ de manera que exista una aplicación lineal $f: E \longrightarrow E$ tal que

$$f(u_1) = u_1$$
, $f(u_2) = u_2$, $f(u_3) = u_1 + u_2 + au_3$, $f(u_4) = 2u_1 + 2u_2 - 3u_3$.

1

2. Composiciones. Cambios de base

42. Sean E, F y G tres espacios vectoriales sobre \mathbb{Q} de dimensiones 3, 4, y 2 respectivamente. Sean $\mathcal{U} = \{u_1, u_2, u_3\}$, $\mathcal{V} = \{v_1, v_2, v_3, v_4\}$, $\mathcal{W} = \{w_1, w_2\}$, bases de E, F y G respectivamente. Sean A y B las matrices

$$A = \begin{pmatrix} 3 & 0 & 1 \\ -1 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 & \frac{1}{3} & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}$$

Sean $f: E \longrightarrow F$, y $g: F \longrightarrow G$ aplicaciones lineales tales que: La matriz de f en las bases \mathcal{U}, \mathcal{V} es A, y la matriz de g en las bases \mathcal{V}, \mathcal{W} es B. Halla la matriz de $g \circ f$ en las bases \mathcal{U}, \mathcal{W} .

43. Sean E un espacio vectorial y $\mathcal{U} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ una base de E. Sea $\mathcal{V} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ la base de E definida por

$$\mathbf{v}_1 = \mathbf{u}_1 + 3\mathbf{u}_3, \quad \mathbf{v}_2 = 2\mathbf{u}_1 + \mathbf{u}_2 + \mathbf{u}_3, \quad \mathbf{v}_3 = 2\mathbf{u}_1 + 5\mathbf{u}_3.$$

Dado un vector arbitrario $\mathbf{w} \in E$, sean $X = (x^1, x^2, x^3)$ las componentes de \mathbf{w} en la base \mathcal{U} e $Y = (y^1, y^2, y^3)$ las componentes de \mathbf{w} en la base \mathcal{V} .

- (a) Halla la relación entre X e Y y expresa el resultado mediante el cálculo matricial. Utiliza la fórmula que has obtenido para hallar las componentes de $\mathbf{v}_1 + \mathbf{v}_2 \mathbf{v}_3$ en la base \mathcal{U}
- (b) Calcula las componentes de los vectores \mathbf{u}_i en la base \mathcal{V} . Halla a continuación las componentes de $\mathbf{u}_1 + \mathbf{u}_2 \mathbf{u}_3$ en la base \mathcal{V} .
- **44.** Sean $E = \mathbb{R}[x]_{\leq 1}$, $F = \mathbb{R}[x]_{\leq 2}$, y $f : E \longrightarrow F$ la aplicación lineal tal que $f(1) = 1 x + 3x^2$, $f(x) = 2 + x^2$.

Sean

$$\mathcal{U} = \{\mathbf{u}_1 = 1 + 2x, \mathbf{u}_2 = 3 + 2x\},\$$

У

$$\mathcal{V} = {\{\mathbf{v}_1 = 1 + 3x^2, \mathbf{v}_2 = 2 + x + x^2, \mathbf{v}_3 = 2 + 5x^2\}}$$

bases de E y F respectivamente. Halla la matriz de f en las bases $\mathcal U$ y $\mathcal V$.

45. Sea f el endomorfismo de \mathbb{R}^3 que en la base canónica tiene por matriz

$$A = \begin{pmatrix} -1 & 0 & 1 \\ -3 & 4 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

Sea $\mathcal{U} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ la base de \mathbb{R}^3 definida por

$$\mathbf{u}_1 = (5, 3, 0), \quad \mathbf{u}_2 = (0, 1, 0), \quad \mathbf{u}_3 = (1, 0, 3).$$

2

- (a) Halla la matriz de f en la base \mathcal{U} .
- (b) Calcula la matriz de f^n en la base \mathcal{U} . Calcula la matriz de f^n en la base canónica.

Núcleo, imagen y rango

- **46.** Halla el núcleo, la imagen y el rango de las siguientes aplicaciones lineales:
- (a) $D: \mathbb{R}[x]_{<4} \longrightarrow \mathbb{R}[x]_{<4}$.
- (b) $L: \mathbb{Q}^3 \longrightarrow \mathbb{Q}^4$, definida por $L(x, y, z) = (2x y, z + y, z + y, 2x + z), \quad \forall (x, y, z) \in \mathbb{Q}^3$ (c) $L: \mathbb{C}(2,2) \longrightarrow \mathbb{C}^3$, definida por L(A) = (a+b,c+d,a+b+c+d), para todo $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{C}(2,2).$
- 47. Sea $f: E \longrightarrow F$ una aplicación lineal, y $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ un conjunto de vectores de E.
- (a) Prueba que si $\{f(\mathbf{v}_1), \dots, f(\mathbf{v}_r)\}$ es linealmente independiente, entonces $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ es linealmente independiente. ¿Es cierto el recíproco?.
- (b) Es cierto que si $\{\mathbf{v}_1,\ldots,\mathbf{v}_r\}$ genera E, entonces $\{f(\mathbf{v}_1),\ldots,f(\mathbf{v}_r)\}$ genera F. X su recíproco?.
- **48.** Sea $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ una aplicación lineal, de matriz M en las bases canónicas y E, F subespacios vectoriales de \mathbb{R}^m y \mathbb{R}^n respectivamente. Sea E el subespacio de soluciones del sistema de ecuaciones lineales

$$A \cdot X = 0$$

en la incógnita $X \in \mathbb{R}^m$. Prueba que $f^{-1}(E)$ es el subespacio de soluciones del sistema de ecuaciones

$$(A \cdot M) \cdot Y = 0$$

en la incógnita $Y \in \mathbb{R}^n$.

49. Sea $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ la aplicación lineal definida por

$$f(x, y, z) = (x + 2z, 2x + y + z, y - 3z, x + y - z),$$

y sean F el subespacio de \mathbb{R}^3 generado por $\mathbf{v}_1 = (1,0,1), \mathbf{v}_2 = (1,-1,0), y E el subespacio$ de \mathbb{R}^4 de ecuaciones

$$u + v - w + t = 0$$
, $v + 2t = 0$.

- (a) Halla las dimensiones del núcleo y de la imagen de f.
- (b) Halla un conjunto de generadores de f(F). Compara las dimensiones de F y de f(F).
- (c) Halla las ecuaciones de $f^{-1}(E)$. Compara las dimensiones de E y de $f^{-1}(E)$.
- Sea $f: \mathbb{R}[x]_{\leq n} \longrightarrow \mathbb{R}[x]_{\leq n}$ definida por

$$f(p(x)) = p(x+1).$$

Prueba que f es un isomorfismo y halla su inverso.

Sea $f: \mathbb{R}(2,3) \longrightarrow \mathbb{R}(2,3)$ la aplicación definida por

$$f(A) = P \cdot A \cdot Q$$

para todo $A \in \mathbb{R}(2,3)$, donde

$$P = \begin{pmatrix} 3 & 7 \\ 2 & 5 \end{pmatrix}, \quad Q = \begin{pmatrix} 2 & 0 & 5 \\ 1 & 0 & 2 \\ 1 & 1 & 0 \end{pmatrix}.$$

3

- (a) Prueba que f es lineal.
- (b) Prueba que f es un isomorfismo y halla su inverso f^{-1} .

4. Teorema de isomorfismo

52. Sean F, G dos subespacios vectoriales de un espacio vectorial E. Sea

$$\phi: F/(F \cap G) \longrightarrow (F+G)/G$$

la aplicación definida por

$$\phi([u]) = [[u]]$$

donde [u] denota la clase de equivalencia de u en $F/(F \cap G)$ y [[u]] denota la clase de equivalencia de u en (F+G)/G.

- (a) Prueba que ϕ está bien definida.
- (b) Prueba que ϕ es un isomorfismo.
- (c) Deduce de (b) la fórmula de Grassmann.
- **53.** Sean n, m enteros ≥ 1 y r un entero tal que $0 \leq r \leq n, m$. Sea $\pi : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ la aplicación lineal definida por $\pi(x_1, \dots, x_n) = (x_1, \dots, x_r, 0, \dots, 0)$. Halla la matriz de π en las bases canónicas y determina el rango de f.
- **54.** Sean E y F dos espacios vectoriales de dimensión finita sobre \mathbb{R} , y $f: F \longrightarrow E$ una aplicación lineal de rango r. Prueba que existen bases \mathcal{U} de E y \mathcal{V} de F tales que la matriz de f en las bases \mathcal{V} y \mathcal{U} es

$$\begin{pmatrix} \mathbf{I}_r & 0 \\ 0 & 0 \end{pmatrix}$$

5. Algebra de endomorfismos

- **55.** Sea E un espacio vectorial sobre un cuerpo K, $\lambda \in K$. Se llama homotecia vectorial de razón λ el endomorfismo de E definido por $f(x) = \lambda x$, para todo $x \in E$. Demuestra que si dim E = 1 todo endomorfismo de E es una homotecia vectorial.
- **56.** Sean E un espacio vectorial sobre \mathbb{R} , $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ una base de E y f un endomorfismo de E tal que:

$$f(\mathbf{v}_1) = \mathbf{v}_1 + \mathbf{v}_2, \qquad f(\mathbf{v}_3) = \mathbf{v}_1, \qquad \text{Ker } f = \langle \mathbf{v}_1 + \mathbf{v}_2 \rangle.$$

- (a) Halla la matriz de f en la base $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.
- (b) Calcula $f(4\mathbf{v}_1 \mathbf{v}_2 + 3\mathbf{v}_3)$.
- (c) Halla una base del núcleo y una base de la imagen de f, de f^2 y de f^3 .
- **57.** Sea f un endomorfismo de un espacio vectorial de dimensión finita E tal que $\det(f Id) \neq 0$.
- (a) Prueba que existe un único endomorfismo g de E tal que $f \circ g + Id = g$.
- (b) Prueba que el endomorfismo g de (a) es un isomorfismo.
- **58.** Sea E un espacio vectorial sobre K, de dimensión finita $n \ge 1$. Sea $f: E \longrightarrow E$ una aplicación lineal. Prueba que son equivalentes:
- (a) Im f = Ker f
- (b) $f \neq 0, f^2 = 0, n \text{ es par y rg } (f) = \frac{n}{2}$
- **59.** Sea f un endomorfismo de un espacio vectorial E sobre \mathbf{K} .

(a) Sean P(x), Q(x) dos polinomios primos entre sí, es decir, cuyo máximo común divisor es 1. Esta condición es equivalente a que existan polinomios A(x) y B(x) verificando la llamada identidad de Bézout

$$1 = A(x)P(x) + B(x)Q(x).$$

- Prueba que si P(f)Q(f) = 0 entonces $E = \text{Ker}P(f) \oplus \text{Ker}Q(f)$.
- (b) Sea $P = P_1 \cdot P_2 \cdots P_n$ el producto de *n* polinomios primos dos a dos. Prueba que si P(f) = 0, entonces $E = \operatorname{Ker} P_1(f) \oplus \operatorname{Ker} P_2(f) \oplus \cdots \oplus \operatorname{Ker} P_n(f)$. (Indicación: Razona por inducción sobre n. Prueba en primer lugar que P_1 es primo con $P_2 \cdots P_n$.)
- **60.** Sean E un espacio vectorial y $f: E \longrightarrow E$ un endomorfismo tal que $f^2 = f$ (Se dice que f es un proyector.)
- (a) Prueba que f(Id f) = 0.
- (b) Prueba que $E = \operatorname{Ker} f \oplus \operatorname{Ker} (Id f)$. Indicación: Utiliza la identidad de Bézout para los polinomios P(x) = x, Q(x) = 1 - x.
- Sea f el endomorfismo de \mathbb{R}^2 cuya matriz en la base canónica es $\begin{pmatrix} 3 & 1 \\ -6 & -2 \end{pmatrix}$.
- (a) Prueba que f es un proyector.
- (b) Halla una base $\{\mathbf{u}\}$ de Kerf y una base $\{\mathbf{v}\}$ de Ker(Id-f). Prueba que $\{\mathbf{u},\mathbf{v}\}$ es una base de \mathbb{R}^2 .
- (c) Expresa todo vector $(x, y) \in \mathbb{R}^2$ como combinación lineal de la base $\{\mathbf{u}, \mathbf{v}\}$.
- (d) Halla la matriz de f en la base $\{\mathbf{u}, \mathbf{v}\}$.
- **62.** Sean E un espacio vectorial y $f: E \longrightarrow E$ un endomorfismo tal que $f^2 = Id_E$ (se dice que f es un endomorfismo idempotente).
- (a) Prueba que $(f Id_E)(f + Id_E) = 0$.
- (b) Prueba que $E = \operatorname{Ker}(f Id_E) \oplus \operatorname{Ker}(f + Id_E)$.
- (c) Prueba que el endomorfismo de \mathbb{R}^2 cuya matriz en la base canónica es $\frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ es idempotente. Halla en este caso $Ker(f - Id_E)$ y $Ker(f + Id_E)$
- Sea $D: \mathcal{C}^{\infty}(\mathbb{R}) \longrightarrow \mathcal{C}^{\infty}(\mathbb{R})$ la aplicación definida por D(f) = f'. Prueba que el conjunto $F_{\lambda} = \text{Ker}(D - \lambda Id)^n$ de soluciones de la ecuación $(D - \lambda)^n(f) = 0$ es un subespacio vectorial de dimensión n de $\mathcal{C}^{\infty}(\mathbb{R})$ y que las funciones $\{x^i e^{\lambda x}\}_{0 \le i \le n}$, forman una base de F_{λ} . (Indicación: Prueba por inducción sobre n que $(D-\lambda)^n(he^{\lambda x})=D^n(h)e^{\lambda x}$ por tanto " $f \in F_{\lambda}$ si y solo si $D^{n}(f) = 0$ ".

6. Dualidad

- **64.** Comprueba que las siguientes aplicaciones son formas lineales:
- (a) $f: \mathbb{C}^3 \longrightarrow \mathbb{C}$ definida por $f(x, y, z) = \begin{vmatrix} 1 & 0 & -i \\ 2 & 3 & 7 \\ x & y & z \end{vmatrix}$; (b) $f: \mathbb{Q}^3 \longrightarrow \mathbb{Q}$ definida por $f(x, y, z) = \begin{pmatrix} a & b & c \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, donde $a, b, c \in \mathbb{Q}$ están fijados.
- (c) $tr: \mathbb{R}(3,3) \to \mathbb{R}$ definida por $tr(A) = \sum_{i=1}^3 a_i^i$.

65. Sea $E=\mathbb{R}_{\leq n}[x]$. Sean $a\in\mathbb{R},$ y, para todo i tal que $0\leq i\leq n,$ $\xi_i:E\longrightarrow\mathbb{R}$ la aplicación definida por

$$\langle \xi_i, p \rangle = \frac{(D^i p)(a)}{i!},$$

donde, $D^0=id_E$ y, para todo entero $i\geq 1,\, D^i$ denota la derivada $i\text{-}\acute{\text{e}}\text{sima}.$

(a) Prueba que ξ_i es lineal para todo i y que

$$\langle \xi_i, (x-a)^j \rangle = \begin{cases} 1, & \text{si} \quad i=j\\ 0, & \text{si} \quad i \neq j, \end{cases}$$

(b) Prueba que el conjunto de polinomios $\{1, (x-a), \dots, (x-a)^n\}$ es una base de E, y que la expresión de un polinomio $p(x) \in E$ en la base $\{1, (x-a), \dots, (x-a)^n\}$ es la fórmula de Taylor:

$$p(x) = p(a) + p'(a)(x - a) + \dots + \frac{(D^n p)(a)}{n!}(x - a)^n.$$

- **66.** Sean E un espacio vectorial de dimensión n, $\{\xi_1,\ldots,\xi_n\}$ un conjunto de n formas lineales sobre E y $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ un conjunto de n vectores de E tales que la matriz A definida por $a_i^j = \langle \xi_j, \mathbf{u}_i \rangle$ es inversible. Prueba que $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ es una base de E.
- 67. Sean E un espacio vectorial de dimensión finita y \mathbf{u}, \mathbf{v} dos bases de E, X Y las coordenadas de un vector $x \in E$ en las bases \mathbf{u} y \mathbf{v} respectivamente, y P la matriz de cambio de coordenadas, $Y = P \cdot X$. Sean $\mathbf{u}^*, \mathbf{v}^*$ las bases duales, ξ y η las coordenadas de una forma lineal $\omega \in E^*$ en las bases \mathbf{u}^* y \mathbf{v}^* respectivamente. Sea Q la matriz de cambio de coordenadas, $\xi = Q \cdot \eta$. ¿Qué relacción existe entre P y Q?.
- **68.** Sea $E = \mathbb{R}^3$.
- (a) Sea $\mathcal{U} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ la base de E definida por $\mathbf{u}_1 = (1,0,3)$, $\mathbf{u}_2 = (2,0,5)$, $\mathbf{u}_3 = (-1,1,2)$. Halla la base $\mathcal{U}^* = \{\mathbf{u}_1^*, \mathbf{u}_2^*, \mathbf{u}_3^*\}$ dual de la base \mathcal{U} . Calcula en particular $u_i^*(2,1,10)$, para i=1,2,3.
- (b) Sea \mathcal{W} la base de E^* definida por $\omega_1(x,y,z) = 2x 3y + z$, $\omega_2(x,y,z) = 4x 3y$, $\omega_3(x,y,z) = 3x 2y$. Halla la base $\mathcal{U} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ de E de la cual \mathcal{W} es dual. Calcula en particular las componentes del vector $\mathbf{e}_1 = (1,0,0)$ en esta base.
- **69.** Sean $E = \mathbb{R}_{\leq n}[x]$, a_0, a_1, \ldots, a_n , n+1 números reales distintos, y $T: E \longrightarrow \mathbb{R}^{n+1}$ la aplicación definida por

$$T(p) = (p(a_0), p(a_1), \dots, p(a_n)).$$

- (a) Prueba que T es lineal.
- (b) Halla la matriz de T usando la base $\{1, x, \dots, x^n\}$ en E y la base canónica en \mathbb{R}^{n+1} .
- (c) Prueba que T es un isomorfismo.
- (d) Prueba que las formas lineales $\{\xi_{a_i}(p(x)) = p(a_i)\}_{0 \le i \le n}$ forman una base de E^* .
- **70.** Sea $E = \mathbb{R}_{\leq n}[x]$.
- (a) Prueba que la aplicación $f: E \to \mathbb{R}$ definida por $f(p) := \int_0^1 p(t) dt$ es una forma lineal.
- (b) Sean $a_0, a_1, ..., a_n \in \mathbb{R}$ tales que $a_i \neq a_j$ si $i \neq j$. Demuestra que existen $w_0,, w_n \in \mathbb{R}$ tales que para todo $p \in E$ se cumple

$$f(p) = w_0 \cdot p(a_0) + w_1 \cdot p(a_1) + \dots + w_n \cdot p(a_n).$$

(*Indicación*: Las formas lineales, $\xi_{a_i} \in E^*$ definidas por $\xi_{a_i}(p) = p(a_i)$, forman una base de E^* , ver el problema anterior.)

(c) Halla el valor de los escalares w_0, w_1, w_2 del aparatado anterior en el caso n=2, $a_0=0, \, a_1=1/2 \, {\rm y} \, a_2=1.$