INFORMATIKAI ALAPISMERETEK

KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

> NEMZETI ERŐFORRÁS MINISZTÉRIUM

Fontos tudnivalók

Általános megjegyzések:

Ha egy kérdésre a jó válasz(ok) mellett a vizsgázó válaszában hibás választ is megjelöl, akkor a kérdésre adható pontszámból le kell vonni a rossz válaszok számát. Negatív pontszám nem adható, ezért több hibás válasz esetén a minimális pontszám nullánál kevesebb nem lehet.

Pl. Ha egy jó válasz mellett a vizsgázó egy hibás választ is bejelöl, akkor 0 pontot kell adni.

Egyes esetekben előfordulhat, hogy egy általánostól eltérő rendszer használata miatt valamely kérdésre a vizsgázó nem a várt válasz adja, de a válasza és az <u>indoklása</u> elfogadható. Ilyen esetben a kérdésre adható pontszámot meg kell adni.

Pl. Táblázatkezelőkben magyar beállításnál a tizedesek elválasztásának a jele a vessző, és ez a várt válasz. Ha a vizsgázók munkájuk során angol beállítást használnak, vagy a vizsgázó odaírja ezt megjegyzésként, akkor az előző helyett az angol beállítású környezetben használt pont lesz a helyes válasz.

A javítási-értékelési útmutatóban feltüntetett válaszokra kizárólag a megadott pontszámok adhatók.

A megadott pontszámok további bontása csak ott lehetséges, ahol erre külön utalás van. Az így kialakult pontszámok csak egész pontok lehetnek. I.

Teszt jellegű, illetve egyszerű, rövid szöveges választ igénylő feladatok

Hardver

1) b	1 pont
2) d, a, b, c	1+1+1+1 pont
3) b	1 pont
4) H, H, I, I	1+1+1+1 pont
5) d	1 pont
6) c	1 pont
7) c, d, b, a	1+1+1+1 pont
8) a	1 pont
9) I, I, H, H	1+1+1+1 pont
<u>Szoftver</u>	
10) H, H, H, H	
11) b	-
12) H, I, H, I	_
13) c	
14) d, a, b, c	1+1+1+1 pont
Szövegszerkesztés, táblázatkezelés	
15) b	1 pont
16) c	1 pont
17) a	1 pont
18) b	1 pont
Informatikai alapok	
19) d	1 pont
20) c	1 pont
21) H, H, I, I	1+1+1+1 pont

Hálózati ismeretek, HTML

22)	c	1 pont
23)	c	1 pont
24)	a	1 pont
25)	d	1 pont
26)	b	1 pont

A feladatokra adható összes pontszám: 50 pont

II.

Programozási, illetve adatbázis-feladatok számítógépes megoldása

1. feladat 10 pont

Kódolja az alábbi algoritmust egy konkrét programozási nyelven!

A feladat megoldásaként teljes, fordítható és futtatható kódot kérünk, mely az adatokat – ha szükséges – a billentyűzetről (standard input) olvassa, és a képernyőre (standard output) írja ki. Vizuális fejlesztőeszköz használata esetén az algoritmust konzol alkalmazásként (szöveges ablakban futó) kérjük elkészíteni! A Véletlenegész függvény a megadott határok közötti véletlen egész számot generál. Ha a függvény nem létezik a használt nyelvben, akkor alkalmazzon megfelelő képletet, amely a megadott intervallumba eső véletlenszámot generál!

```
Konstans
     N=20, M=30
Változó
     I,J,L:egész
     A[1..N], B[1..M], C[1..N]: egész elemű tömb
Program
A[1] := -50, Ki: A[1]
Ciklus I:=2-től N-ig
  A[I] := A[I-1] + Véletlenegész(1,3) // 1 és 3 közötti vél. egész szám
  Ki: A[I]
Ciklus vége
B[1] := -40, Ki: B[1]
Ciklus I:=2-től M-ig
  B[I]:=B[I-1]+Véletlenegész(1,3) // 1 és 3 közötti vél. egész szám
  Ki: B[I]
Ciklus vége
I:=1, J:=1, L:=0
Ciklus amíg (I \le N) és (J \le M)
   Ha A[I]<B[J]
     akkor
       I:=I+1
     különben
       Ha A[I]>B[J]
         akkor J:=J+1
         különben
            L:=L+1
             C[L]:=A[I]
             I := I+1, J := J+1
       Elágazás vége
   Elágazás vége
Ciklus vége
Ciklus I:=1-től L-ig
  KI: C[I]
```

```
Ciklus vége
Program vége.

    bármilyen elemi hiba esetén csak 0 pont adható

    alkalmas egész típus használata: 1 pont

    pontos, az algoritmussal egyező definíciók és deklarációk: 1 pont

    Ha az 1..3 intervallumba eső véletlenszámok generálása helyes: 1 pont

    Mindkét vektor generálása az algoritmus alapján történik,

    a vektorok teljesen feltöltöttek, és mindkét vektorba növekvő
    számsorozat kerül: 1 pont
  - Ha a generált számok kiírásra kerülnek: 1 pont

    Ciklus helyes kódolása: 1 pont

    Külső elágazás helyes kódolása: 1 pont

    Belső elágazás helyes kódolása: 1 pont

e) A C tömb kiíratás 1 pont
Megoldás Delphi nyelven:
program Feladat1;
{$APPTYPE CONSOLE}
 Informatikai Alapismeretek
Középpszint
 1. feladat
}
```

```
Randomize;
WriteLn;
WriteLn('A sorozat: ');
A[1]:=-50; Write(A[1],' ');
For I:=2 to N Do
   Begin
   A[I]:=A[I-1]+RandomRange(1,3);
   Write(A[I],' ');
   End;
WriteLn;
```

A:Array[1..N] of integer; B:Array[1..M] of integer; C:Array[1..N] of integer;

uses

begin

SysUtils, Math;

M=30;
var I,J,L:integer;

const N=20;

```
WriteLn;
WriteLn('B sorozat: ');
B[1]:=-40; Write(B[1],'');
For I:=2 to M Do
  Begin
  B[I] := B[I-1] + RandomRange(1,3);
  Write(B[I], ' ');
  End;
WriteLn;
I:=1; J:=1; L:=0;
While (I \le N) and (J \le M) do
  begin
    If A[I] < B[J]</pre>
      then
         I:=I+1
      else
        If A[I]>B[J]
         then J:=J+1
          else
            begin
              L:=L+1;
              C[L]:=A[I];
              I := I + 1;
              J:=J+1;
            end;
  end;
WriteLn;
Writeln('A két sorozat metszete:');
For I:=1 to L Do
  Write(C[I],' ');
writeln;
ReadLn;
```

end.

2. feladat 10 pont

A matematikában barátságos számoknak nevezzük azokat a pozitív egész számpárokat, amelyekre teljesül, hogy az egyik szám felírható a másik szám (saját magánál kisebb) osztóinak az összegeként, és fordítva!

Például: a 220 és a 284 barátságos számpár, mert

- 220 önmagánál kisebb osztói: 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110 és
 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284; illetve
- 284 önmagánál kisebb osztói: 1, 2, 4, 71, 142 és 1 + 2 + 4 + 71 + 142 = 220.
 A következő számpárok szintén barátságosak: (220;284), (1184;1210), (2620;2924), (5020;5564), (6232;6368), (10744;10856).

Írjon programot, amely két megadott számról eldönti, hogy barátságos számok-e! Az adatbekérésnél ellenőrzi nem kell!

A feladat megoldásaként teljes, fordítható és futtatható kódot kérünk, mely az adatokat – ha szükséges – billentyűzetről (standard input) olvassa, és a képernyőre (standard output) írja ki. Vizuális fejlesztőeszköz használata esetén az algoritmust konzol alkalmazásként (szöveges ablakban futó) kérjük elkészíteni! Beadandó a feladatot megoldó program forráskódja!

- - A bemenő adatok deklarálása megfelelő egész típussal: 1 pont
 - Az adatok helyes bekérése: 1 pont
- - Van olyan programrészlet, amely ezt a feladatot végzi el: 1 pont (ez a pont minden olyan esetben megadható, amikor a vizsgázó nyilvánvalóan felismerte, hogy ezt a részfeladatot meg kell valósítani!)
 - Helyes az összegzés intervalluma: 1 pont
 - Helyes az oszthatósági feltétel: 1 pont
 - Helyes az összegzés: 1 pont
 - Megtörténik az összeg és a szám összehasonlítása: 1 pont
- - Mindkét irányban megtörténik az előző pontban leírt tulajdonság vizsgálata: 1 pont
 - A két részeredményt ÉS művelet kapcsolja össze, és a végeredmény kiírásra kerül: 1 pont

Megoldás Delphi nyelven:

```
program Feladat2;
{$APPTYPE CONSOLE}
 Informatikai Alapismeretek
 Középpszint
 2. feladat
}
uses
  SysUtils;
Var A,B:Longint;
Function Tulajdonsag(A,B:longint):Boolean;
// A függvény logikai igaz értéket ad vissza, ha az A
önmagánál kisebb
// osztóinak az összege megegyezik B-vel!
Var I,S:Longint;
begin
  S := 0;
  // A önmagánál kisebb osztóinak az összegzése
  For I:=1 to A div 2 do
    Begin
      If A mod I=0
        then S:=S+I;
    end;
  Tulajdonsag:=S=B;
  // Igazat ad vissza, ha ez az összeg megegyezik B-vel!
end;
begin
WriteLn;
Write('Adja meg az egyik szamot: '); Readln(A);
Write('Adja meg a másik szamot : '); Readln(B);
WriteLn;
Write('A megadott szamok ');
If tulajdonsag(A,B) and Tulajdonsag(B,A)
// Ha a tulajdonság kölcsönösen teljesül,
   Then Writeln('baratsagos szamok!')
     //akkor a számpár barátságos
   Else Writeln('nem baratsagos szamok!');
    //különben nem!
Readln;
end.
```

3. feladat 15 pont

Îrjon programot, amely egy dolgozat eredményeinek az elemzését segíti!

- A felhasználónak legyen lehetősége beírni a tanulók nevét és pontszámát! Az elérhető maximális pontszám 50, amelyet konstans adatként tároljon a program! (A konstans értékének a változása a program helyes működését ne befolyásolja!) A pontszám bevitele ellenőrzött legyen! A nevek bevitelét nem kell ellenőrizni! Az adatbevitel végét a felhasználó a név helyett beírt üres stringgel jelezze! Maximum 20 tanuló eredményének a bevitelére legyen lehetőség!
- A program minden tanuló esetében határozza meg a százalékos eredményt, illetve az érdemjegyet, majd írja ki ezeket táblázatos formában! A 2-es érdemjegyhez legalább 40%-os, a 3-ashoz legalább 55%-os, a 4-eshez legalább 70%-os, az 5-öshöz legalább 85%-os eredmény szükséges!
- A program határozza meg az osztályzatok átlagát, és írja ki két tizedesjegy pontossággal!

A feladat megoldásaként teljes, fordítható és futtatható kódot kérünk, mely az adatokat billentyűzetről (standard input) olvassa, és a képernyőre (standard output) írja ki. Vizuális fejlesztőeszköz használata esetén az algoritmust konzol alkalmazásként (szöveges ablakban futó) kérjük elkészíteni!

Beadandó a feladatot megoldó program forráskódja!

- Ez a pont csak abban az esetben adható meg, ha a programkód tartalmaz a b-f szakaszokba tartozó, összességében legalább 5 pontot érő részmegoldást! A nevek tárolására alkalmas tömb helyes deklarálása: 1 pont A pontszámok tárolására alkalmas tömb helyes deklarálása: 1 pont A százalék és osztályzat tömb deklarálása nem kötelező, a program ezek nélkül is megírható (bár a javasolt megoldás a számított adatok tömbben tárolása!) Amennyiben konstansdefiníciókban, vagy egyéb változódeklarációkban hiba van, hibánként -1 pont, de minimum 0 pont jár erre a feladatrészre. c) Ellenőrzött beolvasás 4 pont Nevek és pontszámok eltárolásra kerülnek: 1 pont A pontszámok beolvasása ellenőrzött: 1 pont (Elég, ha hibaüzenet nélkül működik az ellenőrzött adatbevitel) A beolvasás végjelig tart: 1 pont (Csak akkor adható meg a pont, ha nem történik indextúllépés) A nevek darabszáma tárolásra kerül (vagy a program további része megállapítja azt): 1 pont Százalékos teljesítmények helyes kiszámítása: 1 pont Osztályzatok helyes megállapítása: 2 pont (a pontszám nem osztható) - A pontok akkor is járnak, ha az eredmények nem kerülnek tárolásra, de a program kiszámítja azokat (Hibánként -1 pont, minimum 0 pont) Lehetséges hibák: Nincs név, százalék, vagy érdemjegy Nincs fejléc

f) Átlageredmény kiszámítása 2 pont

- Összegzés tétel helyes alkalmazása: 1 pont
- Átlageredmény helyes: 1 pont

Megoldás Delphi nyelven:

```
program Feladat3;
 {$APPTYPE CONSOLE}
   Informatikai Alapismeretek
   Középpszint
   3. feladat
uses
        SysUtils;
Const Max=20;
                      Maxpont=50;
Var Nevek:Array[1..Max] of String[40];
               Pont, Szazalek, Osztalyzat: Array[1.. Max] of Byte;
               I, Db:byte;
               Atlag:real;
begin
     {Beolvasás}
       WriteLn;
        I := 0;
       Repeat // Nevek és pontok beolvasása, üres string végjelig
               Inc(I);
               Writeln(I,'. tanulo:');
               Write(' Nev: ');
               ReadLn(Nevek[I]);
               If Nevek[I] <> '' // Ha nem akar kilépni a felhasználó a bevitelből
                       Then
                              Repeat // Következő pont ellenőrzött beolvasása
                                      Write(' Pontszam: ');
                                      ReadLn(Pont[I]);
                              Until (Pont[I] In [0..Maxpont]); // Továbblép, ha jó a pont
               Writeln;
        \label{eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuou
        If (Nevek[I]='') Then Db:=I-1 // Darabszám korrigálás, ha szükséges
                                                                        Else Db:=I;
```

```
{Feldolgozás}
  For I:=1 to Db do
    Begin
      Szazalek[I]:=Trunc((Pont[I]/Maxpont)*100);
               // A százalékos teljesítmények meghatározása
      Case Szazalek[I] of
               // Az osztályzatok meghatározása
         0..39 :Osztalyzat[I]:=1;
        40..54 :Osztalyzat[I]:=2;
        55...69 :Osztalyzat[I]:=3;
        70..84 :Osztalyzat[I]:=4;
        85..100:Osztalyzat[I]:=5;
      End;
    End;
// Táblázatszerű kiírás
   Writeln('Nev':20,'Pont':10,'%':10,'Jegy':10);
   For I:=1 to Db do
     Begin
       Writeln(Nevek[I]:20,' ',Pont[I]:8,' ',Szazalek[I]:10,'
',Osztalyzat[I]:8);
     End;
// Osztályzatok átlagának meghatározás
   Atlag:=0;
   For I:=1 to Db do
     Begin
       Atlag:=Atlag+Osztalyzat[I];
     End;
   Atlag:=Atlag/Db;
   Writeln;
   Writeln('Osztalyatlag:',Atlag:8:2);
  ReadLn;
End.
```

4. feladat 15 pont

A. Hozzon létre egy "tanulok" nevű adatbázist! Az adatbázison belül hozzon létre egy "pontok" nevű táblát! Hozza létre a szükséges mezőket a megfelelő típussal és állítsa be a kulcsmezőt! Töltse fel a megadott adatokkal! A táblázat a tavalyi informatikai alapismeretek vizsgára vonatkozó adatokat tartalmaz!

Név (kulcsmező)	Osztály	Szóbeli ideje	Teszt	Gyakorlat	Szóbeli
Horváth Lénárd	12.D	2006.05.27	31	36	46
Kiss Tamás	12.D	2006.05.28	20	49	40
Kovács Lajos	11.E	2006.05.29	26	35	46
Nagy Lujza	11.E	2006.05.27	39	40	48
Pál László	12.E	2006.05.27	21	30	46
Sajó Andrea	12.D	2006.05.28	27	46	45
Szabó Laura	12.E	2006.05.27	30	43	46

B. Készítsen lekérdezést, mely listázza az olyan tanulók összes adatát, akiknek a keresztneve L-lel kezdődik, nem előrehozott érettségit tettek, és mindhárom vizsgarészből jobb eredményt értek el, mint az adott feladatrészre vonatkozó átlageredmény! (Tehát pl. a teszten jobb eredményt ért el, mint a tesztek átlageredménye, és így tovább!)

Megjegyzés: Azon adatbázis-kezelőknél, ahol adatbázisokat nem tudunk létrehozni, csak táblákat, ott adatbázis helyett alkönyvtárat (mappát) készítsünk, és ebben hozzuk létre a táblát megvalósító fájlt. Ekkor a beadandó a létrehozott alkönyvtár (mappa) és tartalma.

Amennyiben az adatbázis létrehozása és feltöltése nem az adott keretrendszerből, hanem valamilyen programnyelvi kóddal (pl. SQL) történik, beadandó a használt forrásnyelvű kód is.

- - Létezik az adatbázis és a tábla, a nevük a megadott: 1 pont
 - Léteznek a megfelelő típusú és nevű adatmezők: 2 pont (hibánként -1 pont, minimum 0 pont)
 - A kulcs beállításra került: 1 pont
- - A 3 pont csak abban az esetben adható meg, ha az adatbevitel semmiféle hibát nem tartalmaz!
 - Hibánként -1 pont, minimum 0 pont.
- - A lekérdezés létezik és a tanulók összes adatát listázza¹: 1 pont
 - Legalább egy pontszám átlagának a meghatározása, segédlekérdezéssel vagy beágyazott lekérdezéssel ²: 1 pont
 - Mindhárom pontszám átlagának a meghatározása, segédlekérdezéssel vagy beágyazott lekérdezéssel ³: 1 pont
 - Helyes szűrés a keresztnévre⁴: 1 pont
 - Helyes szűrés az előrehozott érettségire⁵; 1 pont
 - Helyes szűrés legalább egy vizsgarészre : 1 pont
 - Helyes szűrés mindhárom vizsgarészre : 1 pont
 - A lekérdezés a mintának megfelelő eredményt adja: 1 pont

Egy lehetséges megoldás a következő:

Figyelem: a megoldásban szerepeltetett felső indexek az előbbiekben felsorolt részfeladatokat jelölik, nem részei az SQL lekérdezésnek!

Segédlekérdezés:

SELECT Avg(pontok.Teszt) AS AvgOfTeszt, Avg(pontok.Gyakorlat) AS AvgOfGyakorlat, Avg(pontok.Szóbeli) AS AvgOfSzóbeli FROM pontok; ^{2;3}

A fő lekérdezés:

SELECT pontok.Név, pontok.Osztály, pontok.[Szóbeli ideje], pontok.Teszt, pontok.Gyakorlat, pontok.Szóbeli

FROM pontok, Segéd¹

WHERE (((pontok.Név) Like "* L*")⁴ AND ((pontok.Osztály) Not Like "11*")⁵ AND ((pontok.Teszt)>[Segéd]![AvgOfTeszt]) AND ((pontok.Gyakorlat)>[Segéd]![AvgOfGyakorlat]) AND

((pontok.Szóbeli)>[Segéd]![AvgOfSzóbeli]))^{6,7};