18.100B Problem Set 3

Due Friday September 29, 2006 by 3 PM

Problems:

- 1) (10 pts) In vector spaces, metrics are usually defined in terms of *norms* which measure the length of a vector. If V is a vector space defined over \mathbb{R} , then a norm is a function from vectors to real numbers, denoted by $\|\cdot\|$ satisfying:
 - i) $||x|| \ge 0$ and $||x|| = 0 \iff x = 0$,
 - ii) For any $\lambda \in \mathbb{R}$, $||\lambda x|| = |\lambda|||x||$,
 - iii) $||x + y|| \le ||x|| + ||y||$.

Prove that every norm defines a metric.

2) (10 pts) Let M be a metric space with metric d. Show that d_1 defined by

$$d_1(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

is also a metric on M. Observe that M itself is bounded in this metric.

3) (10 pts) Let A and B be two subsets of a metric space M. Recall that A° , the interior of A, is the set of interior points of A. Prove the following:

$$a)A^{\circ} \cup B^{\circ} \subseteq (A \cup B)^{\circ}, \qquad b)A^{\circ} \cap B^{\circ} = (A \cap B)^{\circ}$$

Give an example of two subsets A and B of the real line such that $A^{\circ} \cup B^{\circ} \neq (A \cup B)^{\circ}$.

- 4) (10 pts) Let A be a subset of a metric space M. Recall that \overline{A} , the closure of A, is the union of A and its limit points. Recall that a point x belongs to the boundary of A, ∂A , if every open ball centered at x contains points of A and points of A^c , the complement of A. Prove that:
 - a) $\partial A = \overline{A} \cap \overline{A^c}$,
 - b) $p \in \partial A \iff p \text{ is in } \overline{A}, \text{ but not in } A^{\circ} \text{ (symbolically, } \partial A = \overline{A} \setminus A^{\circ}),$
 - c) ∂A is a closed set,
 - d) A is closed $\iff \partial A \subseteq A$.
- 5) (10 pts) Show that, in \mathbb{R}^n with the usual (Euclidean) metric, the closure of the open ball $B_R(p)$, R > 0, is the closed ball

$$\{q \in \mathbb{R}^n : d(p,q) \le R\}.$$

Given an example of a metric space for which the corresponding statement is false.

6) (10 pts) Prove directly form the definition that the set $K \subseteq \mathbb{R}$ given by

$$K = \{0, 1, \frac{1}{2}, \frac{1}{3}, \dots \frac{1}{n}, \dots\}$$

is compact.

7) (10 pts) Let K be a compact subset of a metric space M, and let $\{\mathcal{U}_{\alpha}\}_{{\alpha}\in I}$ be an open cover of K. Show that there is a positive real number δ with the property that for every $x\in K$ there is some $\alpha\in A$ with

$$B_{\delta}(x) \subseteq \mathcal{U}_{\alpha}$$
.

Extra problems:

- 1) Let M be a non-empty set, and let d be a real-valued function of ordered pairs of elements of M satisfying
 - i) $d(x,y) = 0 \iff x = y$,
 - ii) $d(x, y) \le d(x, z) + d(y, z)$.

Show that d is a metric on M.

- 2) Determine the boundaries of the following sets, $A \subseteq X$:
 - i) $A = \mathbb{Q}, X = \mathbb{R}$
 - ii) $A = \mathbb{R} \setminus \mathbb{Q}, X = \mathbb{R}$
 - iii) $A = (\mathbb{Q} \times \mathbb{Q}) \cap B_R(0), X = \mathbb{R}^2$
- 3) Describe the interior of the Cantor set.
- 4) Let M be a metric space with metric d, and let d_1 be the metric defined above (in problem 2). Show that the two metric spaces (M, d), (M, d_1) have the same open sets.