Q1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

1. Data type of columns in a table

Customer Table

Query

select column_name,data_type from `target365217.target_ds.INFORMATION_SCHEMA.CO LUMNS`

where table_name="Customers";

Output

column_name	data_type
customer_id	STRING
customer_unique_id	STRING
customer_zip_code_prefix	INT64
customer_city	STRING
customer_state	STRING

Geolocation Table

Query

select column_name,data_type from `target365217.target_ds.INFORMATION_SCHEMA.CO LUMNS`

where table_name=" Geolocation";

column_name	data_type
geolocation_zip_code_prefix	INT64
geolocation_lat	FLOAT64
geolocation_lng	FLOAT64
geolocation_city	STRING
geolocation_state	STRING

Order items Table

Query

select column_name,data_type from `target365217.target_ds.INFORMATION_SCHEMA.CO LUMNS`

where table_name=" Order_items";

Output

column_name	data_type
order_id	STRING
order_item_id	INT64
product_id	STRING
seller_id	STRING
shipping_limit_date	TIMESTAMP
price	FLOAT64
freight_value	FLOAT64

Order reviews Table

Query

select column_name,data_type from `target365217.target_ds.INFORMATION_SCHEMA.CO LUMNS`

where table_name=" Order_reviews";

column_name	data_type
review_id	STRING
order_id	STRING
review_score	INT64
review_comment_title	STRING
review_creation_date	TIMESTAMP
review_answer_timestamp	TIMESTAMP

Orders Table

Query

select column_name,data_type from `target365217.target_ds.INFORMATION_SCHEMA.CO LUMNS`

where table_name=" Orders ";

Output

column_name	data_type
order_id	STRING
customer_id	STRING
order_status	STRING
order_purchase_timestamp	TIMESTAMP
order_approved_at	TIMESTAMP
order_delivered_carrier_date	TIMESTAMP
order_delivered_customer_date	TIMESTAMP
order_estimated_delivery_date	TIMESTAMP

Payments Table

Query

select column_name,data_type from `target365217.target_ds.INFORMATION_SCHEMA.CO LUMNS`

where table_name=" Payments";

column_name	data_type
order_id	STRING
payment_sequential	INT64
payment_type	STRING
payment_installments	INT64
payment_value	FLOAT64

Products Table

Query

select column_name,data_type from `target365217.target_ds.INFORMATION_SCHEMA.CO LUMNS`

where table_name=" Products";

Output

column_name	data_type
product_id	STRING
product_category	STRING
product_name_length	INT64
product_description_length	INT64
product_photos_qty	INT64
product_weight_g	INT64
product_length_cm	INT64
product_height_cm	INT64
product_width_cm	INT64

Sellers Table

Query

select column_name,data_type from `target365217.target_ds.INFORMATION_SCHEMA.CO LUMNS`

where table_name=" Sellers";

column_name	data_type
seller_id	STRING
seller_zip_code_prefix	INT64
seller_city	STRING
seller_state	STRING

2. Time period for which the data is given

Query

select order_id,extract(year from order_purchase_dt) as order_purchase_year, extract(year from order_delivered_carrier_dt) as order_delivered_carrier_year, extract(year from order_delivered_customer_dt) as order_delivered_customer_year, extract(year from order_estimated_delivery_dt) as order_estimated_delivery_year from `target-365217.target_ds.order_dates_analysis` where extract(year from order_purchase_dt) between 2016 and 2018 limit 10;

order_id	order_purch	order_delivered_carrier_year	order_delivered_customer_year	order_estimated_delivery_year
7a4df5d8cff4090e541401a20a	2017	nuli	nuli	2017
35de4050331c6c644cddc86f4	2017	nuli	nuli	2018
b5359909123fa03c50bdb0cfe	2017	nuli	nuli	2018
dba5062fbda3af4fb6c33b1e04	2018	nuli	nuli	2018
90ab3e7d52544ec7bc3363c82	2017	nuli	nuli	2017
fa65dad1b0e818e3ccc5cb0e3	2017	2017	nuli	2017
1df2775799eecdf9dd8502425	2017	2017	nuli	2017
6190a94657e1012983a274b8	2017	2017	nuli	2017
58ce513a55c740a3a81e8c8b7	2017	2017	nuli	2017
088683f795a3d30bfd61152c4f	2017	2017	nuli	2017

3. Cities and States covered in the dataset

Query

select distinct g.geolocation_city,g.geolocation_state from `target-365217.target_ds.Geolocation` as g right join `target-365217.target_ds.Customers` as c on g.geolocation_zip_code_prefix = c.customer_zip_code_prefix limit 10;

Output

geolocation_city //	geolocation_state
acu	RN
açu	RN
ico	CE
icó	CE
ipe	RS
ipê	RS
ipu	CE
ita	SC
itá	SC
itu	SP

Query

```
select
c.customer_city,
c.customer_zip_code_prefix,
count(distinct o.order_id) as total_order,
date(o.order_purchase_timestamp) as purchase_date
from `target-365217.target_ds.Orders` as o
join `target-365217.target_ds.Customers` as c
on o.customer_id = c.customer_id
group by c.customer_city,c.customer_zip_code_prefix,purchase_date
order by total_order desc limit 10;
```

Output

customer_city //	customer_state	customer_zi	total_order	purchase_d
curitiba	PR	80030	14	2017-01-05
curitiba	PR	82200	6	2017-01-05
rio de janeiro	RJ	22775	5	2018-01-22
ubatuba	SP	11680	4	2017-11-24
niteroi	RJ	24230	4	2017-11-24
santana de parnaiba	SP	6540	4	2017-11-24
uberlandia	MG	38408	4	2017-11-24
vila velha	ES	29101	4	2018-02-22
indaiatuba	SP	13348	3	2017-07-25
curvelo	MG	35790	3	2017-09-16

Insights

• As per the analysis I found that most of the orders is from PR,RJ,SP states in year 2017 to 2018.

Recommendation

• I would like to recommend that please provide some discount in products to increase the order demand in these states.

2. In-depth Exploration

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

View Created

```
create view `target-365217.target_ds.purchase_trend_analysis` as(select c.customer_id,c.customer_city,c.customer_state,

o.order_id,

o.order_purchase_timestamp,

oit.product_id,

p.product_category,

oit.price,

from `target-365217.target_ds.Customers` as c

left join `target-365217.target_ds.Orders` as o

on c.customer_id = o.customer_id

left join `target-365217.target_ds.Order_items` as oit

on o.order_id = oit.order_id

left join `target-365217.target_ds.Products` as p

on oit.product_id = p.product_id);
```

1111	purc	hase_trend_analysis	Q QUERY	+º SHA
S	СНЕМА	DETAILS		
	∓ Fil	ter Enter property name or value	9	
		Field name	Туре	Mode
		customer_id	STRING	NULLABLE
		customer_city	STRING	NULLABLE
		customer_state	STRING	NULLABLE
		order_id	STRING	NULLABLE
		order_purchase_timestamp	TIMESTAMP	NULLABLE
		product_id	STRING	NULLABLE
		product_category	STRING	NULLABLE
		price	FLOAT	NULLABLE

Few Analytical Question for more Analysis

• Which city/state has maximum orders

Query

-- which city/state has max order select customer_city,customer_state ,count(order_id) as order_count from `target-365217.target_ds.purchase_trend_analysis` group by customer_city,customer_state order by order_count desc limit 10;

Output

customer_city	customer_state	order_count
sao paulo	SP	17946
rio de janeiro	RJ	7885
belo horizonte	MG	3167
brasilia	DF	2407
curitiba	PR	1762
campinas	SP	1669
porto alegre	RS	1619
salvador	BA	1419
guarulhos	SP	1340
sao bernardo do campo	SP	1070

· Which product category has max ordered by user?

Query

select customer_id,product_category,count(product_category) as product_ordered_c ount from `target-365217.target_ds.purchase_trend_analysis` group by customer_id,product_category order by product_ordered_count desc limit 10;

customer_id	product_category	product_ord
fc3d1daec319d62d49bfb5e1f8	HEALTH BEAUTY	21
bd5d39761aa56689a265d95d	automotive	20
be1b70680b9f9694d8c70f41fa	computer accessories	20
10de381f8a8d23fff822753305	Furniture Decoration	15
adb32467ecc74b53576d9d13a	Garden tools	15
a7693fba2ff9583c78751f2b66	telephony	14
d5f2b3f597c7ccafbb5cac0bcc	Garden tools	14
7d321bd4e8ba1caf74c4c1aab	telephony	13
daf15f1b940cc6a72ba558f093	babies	12
3b54b5978e9ace64a63f90d17	housewares	12

Which year/month has max order count?

Query

select extract(year from date(order_purchase_timestamp)) as year,FORMAT_DATE(' %B',date(order_purchase_timestamp)) as order_month,count(order_id) as total_orde r from `target-365217.target_ds.purchase_trend_analysis` group by order_month,year order by total_order desc limit 10;

Output

year	1.	order_month	total_order
	2017	November	8758
	2018	January	8257
	2018	March	8240
	2018	April	7980
	2018	May	7945
	2018	February	7706
	2018	August	7308
	2018	July	7111
	2018	June	7085
	2017	December	6357

Which city from Brazil has maximum orders?

Query

select extract(year from date(order_purchase_timestamp)) as year,FORMAT_DATE(' %B',date(order_purchase_timestamp)) as order_month,count(order_id) as total_orde r,customer_city from `target-365217.target_ds.purchase_trend_analysis` group by order_month,year,customer_city order by total_order desc limit 10;

vear .	order_month	total_order	customer_city .
1001	le le	- /1	le distormer_only
2018	August	1493	sao paulo
2018	May	1434	sao paulo
2018	April	1354	sao paulo
2018	March	1321	sao paulo
2017	November	1306	sao paulo
2018	January	1245	sao paulo
2018	July	1241	sao paulo
2018	June	1237	sao paulo
2018	February	1210	sao paulo
2017	December	961	sao paulo

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

Query

with purchase_time as (select distinct time(order_purchase_timestamp) as purchase_time, case

when time(order_purchase_timestamp) between "00:00:00" and "05:00:00" then "Dawn" when time(order_purchase_timestamp) between "05:00:00" and "11:58:00" then "Morning" when time(order_purchase_timestamp) between "12:00:00" and "16:58:00" then "Afternoon"

else "night"

end as result

from `target-365217.target_ds.purchase_trend_analysis`)

select result,count(purchase_time)as total_purchase from purchase_time group by result order by total_purchase;

Output

result	14	total_purcha
Dawn		3650
Morning		12095
Afternoon		14906
night		20167

Insights

- User are more looking for health beauty products
- User had ordered more products in year 2018 as compare to 2017.
- User from sao paulo have high order rate as compare to another city.
- Brazilian User are more active in night for purchase as compare to other time.

Recommendation

- Show more products that is related to beauty health followed by computer accessories.
- Show less discount on products at night to users so that we can manage traffic at night and it will help to divert the traffic to another timestamp too.

3. Evolution of E-commerce orders in the Brazil region

1. Get month on month orders by region, states?

Query

select customer_id,customer_city,customer_state,FORMAT_DATE('%B',date(order_purchase_timestamp)) as order_month,count(order_id) as total_order from `target-365217.target_ds.purchase_trend_analysis` group by order_month,customer_state,customer_city,customer_id order by total_order desc limit 12;

Output

customer_id	customer_city //	customer_state	order_month	total_order
fc3d1daec319d62d49bfb5e1f8	sao paulo	SP	July	21
bd5d39761aa56689a265d95d	goiania	GO	August	20
be1b70680b9f9694d8c70f41fa	sao paulo	SP	February	20
10de381f8a8d23fff822753305	uniao da vitoria	PR	November	15
adb32467ecc74b53576d9d13a	goiania	GO	January	15
d5f2b3f597c7ccafbb5cac0bcc	santos	SP	December	14
a7693fba2ff9583c78751f2b66	indaiatuba	SP	February	14
7d321bd4e8ba1caf74c4c1aab	sao paulo	SP	April	13
3b54b5978e9ace64a63f90d17	sao paulo	SP	May	12
9eb3d566e87289dcb0acf28e1	belo horizonte	MG	June	12
daf15f1b940cc6a72ba558f093	celso ramos	SC	April	12
0d93f21f3e8543a9d0d8ece01	juiz de fora	MG	October	12

2. How are customers distributed in Brazil?

• User distribution on the basis of product they bought or interested?

Query

select count(customer_id) user_count ,product_category from `target-365217.target_ds.purchase_trend_analysis` group by product_category order by user count desc limit 10;

user_count	product_category
11115	bed table bath
9670	HEALTH BEAUTY
8641	sport leisure
8334	Furniture Decoration
7827	computer accessories
6964	housewares
5991	Watches present
4545	telephony
4347	Garden tools
4235	automotive

User Distribution on the basis of purchase time?

Query

with purchase_time as (select distinct time(order_purchase_timestamp) as purchase _time,

case

when time(order_purchase_timestamp) between "00:00:00" and "05:00:00" then "Dawn"

when time(order_purchase_timestamp) between "05:00:00" and "11:58:00" then "M orning"

when time(order_purchase_timestamp) between "12:00:00" and "16:58:00" then "Aft ernoon"

else "night"

end as result

from 'target-365217.target ds.purchase trend analysis')

select result,count(purchase_time)as total_purchase from purchase_time group by re sult

order by total purchase;

Output

result	total_purcha
Dawn	3650
Morning	12095
Afternoon	14906
night	20167

Insights

- Users interest is mainly towards health and home accessories products.
- User are highly active in night time as compare to dawn or morning time.

Recommendation

• Showcase health and home accessories products in night time with good discount.

- 4. Impact on Economy: Analyze the money movemented by e-commerce by looking at order prices, freight and others.
 - 1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)?

Query

```
with order cost analysis 2017 as (select FORMAT DATE('%B',date(order purchas
e_timestamp)) as order_month,extract(year from date(order_purchase_timestamp) )
as vear.
count(order id) as order count from `target-
365217.target_ds.purchase trend analysis`
where FORMAT DATE('%B',date(order purchase timestamp)) in ("January","Febru
ary","March","April","May","June","July","August")
and extract(year from date(order_purchase_timestamp) )=2017
group by order month, year
order by order_month desc
order cost analysis 2018 as (
 select FORMAT DATE('%B',date(order purchase timestamp)) as order month,extr
act(year from date(order purchase timestamp)) as year,
count(order_id) as order_count from `target-
365217.target ds.purchase trend analysis`
where FORMAT_DATE('%B',date(order_purchase_timestamp)) in ("January","Febru
ary", "March", "April", "May", "June", "July", "August")
and extract(year from date(order purchase timestamp) )=2018
group by order month, year
order by order month desc
)select ocas.order month ,ocas.order count as 'order count 2017',
ocae.order count as 'order count 2018', ((ocae.order count - ocas.order count)/100
) as percentage increase
from order cost analysis 2017 as ocas,
order cost analysis 2018 as ocae
where ocas.order month = ocae.order month
order by ocas.order month;
```

order_month	h	order_count_2017	order_count_2018	percentage_increase
April		2697	7980	52.83
August		4948	7308	23.6
February		1998	7706	57.08
January		966	8257	72.91
July		4576	7111	25.35
June		3611	7085	34.74
March		3041	8240	51.99
May		4176	7945	37.69

2. Mean & Sum of price and freight value by customer state

Query

select customer_state,round(avg(freight_value),2) as avg_freight_value_per_state, round(avg(price),2) as avg_price_per_state, round(sum(freight_value),2) as total_freight_value_per_state, round(sum(price),2) as total_price_state_per_state, from target-365217.target_ds.purchase_trend_analysis group by customer_state order by avg_freight_value_per_state limit 10;

Output

customer_state	avg_freight	avg_price_p	total_freight	total_price
SP	15.15	109.65	718723.07	5202955.05
PR	20.53	119.0	117851.68	683083.76
MG	20.63	120.75	270853.46	1585308.03
RJ	20.96	125.12	305589.31	1824092.67
DF	21.04	125.77	50625.5	302603.94
SC	21.47	124.65	89660.26	520553.34
RS	21.74	120.34	135522.74	750304.02
ES	22.06	121.91	49764.6	275037.31
GO	22.77	126.27	53114.98	294591.95
MS	23.37	142.63	19144.03	116812.64

Insights

- Increase in orders around 30% to 70% in between 2017 and 2018 from January to august.
- As per analysis I found that SP state is the on which has less freight_price which in it self says the delivery cost will be less.

Recommendation

 Give more offers in between month of January and August since it shows that users order count had increased in these months allot.

5. Analysis on sales, freight and delivery time

1. Calculate days between purchasing, delivering and estimated delivery

Query

select order_id,
date(order_purchase_timestamp) as order_date,
date(order_delivered_customer_date) as delivery_date,
date(order_estimated_delivery_date) as est_delivery_date,
date_diff(date(order_estimated_delivery_date),date(order_delivered_customer_date)
,day) as order_estimate_delivery_date_diff,

date_diff(date(order_delivered_customer_date),date(order_purchase_timestamp),day) as order_purchase_delivery_date_diff,

date_diff(date(order_estimated_delivery_date),date(order_purchase_timestamp),day) as order_purchase_estimate_date_diff from target-365217.target_ds.Orders order by order_id;

order_id	order_date	delivery_date //	est_delivery	order_estim	order_purch	order_purch
00010242fe8c5a6d1ba2dd792	2017-09-13	2017-09-20	2017-09-29	9	7	16
00018f77f2f0320c557190d7a1	2017-04-26	2017-05-12	2017-05-15	3	16	19
000229ec398224ef6ca0657da	2018-01-14	2018-01-22	2018-02-05	14	8	22
00024acbcdf0a6daa1e931b03	2018-08-08	2018-08-14	2018-08-20	6	6	12
00042b26cf59d7ce69dfabb4e	2017-02-04	2017-03-01	2017-03-17	16	25	41
00048cc3ae777c65dbb7d2a06	2017-05-15	2017-05-22	2017-06-06	15	7	22
00054e8431b9d7675808bcb8	2017-12-10	2017-12-18	2018-01-04	17	8	25
000576fe39319847cbb9d288c	2018-07-04	2018-07-09	2018-07-25	16	5	21
0005a1a1728c9d785b8e2b08	2018-03-19	2018-03-29	2018-03-29	0	10	10
0005f50442cb953dcd1d21e1f	2018-07-02	2018-07-04	2018-07-23	19	2	21

2. Create columns

- time_to_delivery = order_purchase_timestamp-order_delivered_customer_date
- diff_estimated_delivery = order_estimated_delivery_dateorder_delivered_customer_date
- 3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery
- 4. Top 5 states with highest/lowest average freight value sort in desc/asc limit 5

CTE Prepared for below Questions

with sales_freight_analysis as (select c.customer_state, o.order_purchase_timestamp, o.order_delivered_customer_date, o.order_estimated_delivery_date, date_diff(order_delivered_customer_covery.

 ${\tt date_diff}(order_delivered_customer_date, o. order_purchase_timestamp, day) \ as \ time_to_delivery,$

abs(date_diff(o.order_delivered_customer_date,order_estimated_delivery_date,day)) as diff _estimated_delivery,

avg(oi.freight_value) as avg_freight_value,

avg(date_diff(order_delivered_customer_date,o.order_purchase_timestamp,day)) as avg_time_to_delivery,

avg(date_diff(o.order_delivered_customer_date,order_estimated_delivery_date,day)) as avg
diff estimated delivery

from target-365217.target_ds.Customers as c

left join target-365217.target_ds.Orders as o

on c.customer_id = o.customer_id

left join target-365217.target_ds.Order_items as oi

on o.order id = oi.order id

group by c.customer_state,

o.order purchase timestamp,

o.order_delivered_customer_date,

o.order_estimated_delivery_date)

select * from sales freight analysis;

Output										
customer_state	/ ord	der_purchase_timestamp	/	order_delivered_customer_date //	order_estimated_delivery_date	time_to_deli	diff_estimat	avg_freight	avg_time_to	avg_diff_est
CE	20	18-02-16 18:31:12 UTC		2018-04-03 23:50:57 UTC	2018-03-20 00:00:00 UTC	46	14	27.59	46.0	14.0
CE	20	18-03-03 16:51:20 UTC		2018-04-20 20:58:44 UTC	2018-04-04 00:00:00 UTC	48	16	27.1	48.0	16.0
CE	20	18-05-12 14:03:02 UTC		2018-06-18 17:19:58 UTC	2018-06-12 00:00:00 UTC	37	6	38.14	37.0	6.0
CE	20	18-03-19 08:48:09 UTC		2018-04-17 17:31:50 UTC	2018-05-07 00:00:00 UTC	29	19	68.99	29.0	-19.0
SP	20	17-11-18 16:10:29 UTC		2018-01-04 18:04:30 UTC	2017-12-07 00:00:00 UTC	47	28	12.89	47.0	28.0
SP	20	18-01-06 08:13:47 UTC		2018-02-14 19:41:34 UTC	2018-03-07 00:00:00 UTC	39	20	17.29	39.0	-20.0
SP	20	17-11-30 18:53:51 UTC		2018-01-03 22:41:26 UTC	2018-01-03 00:00:00 UTC	34	0	8.31	34.0	0.0
MG	20	17-10-25 15:07:24 UTC		2017-11-25 12:57:07 UTC	2017-11-16 00:00:00 UTC	30	9	25.11	30.0	9.0
MG	20	18-01-18 12:49:48 UTC		2018-02-16 16:23:00 UTC	2018-02-16 00:00:00 UTC	29	0	32.08	29.0	0.0
MG	20	17-11-28 13:50:19 UTC		2017-12-27 21:43:23 UTC	2017-12-21 00:00:00 UTC	29	6	14.43	29.0	6.0
MG	20	17-09-27 16:03:02 UTC		2017-11-10 19:03:45 UTC	2017-10-24 00:00:00 UTC	44	17	17.24	44.0	17.0
MG	20	18-01-08 17:51:23 UTC		2018-02-07 23:22:33 UTC	2018-02-05 00:00:00 UTC	30	2	17.61	30.0	2.0
MG	20	18-03-13 13:18:23 UTC		2018-04-19 18:48:29 UTC	2018-04-04 00:00:00 UTC	37	15	15.19	37.0	15.0
BA	20	18-05-04 08:41:08 UTC		2018-06-12 12:32:08 UTC	2018-05-30 00:00:00 UTC	39	13	22.82	39.0	13.0
RS	20	18-02-28 23:30:36 UTC		2018-04-04 17:12:47 UTC	2018-03-27 00:00:00 UTC	34	8	16.29	34.0	8.0
RS	20	18-02-25 18:53:53 UTC		2018-03-27 22:06:48 UTC	2018-03-27 00:00:00 UTC	30	0	15.1	30.0	0.0

Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5?

Query

select customer_state from sales_freight_analysis order by avg_freight_value desc limit 5;

Output

select customer_state from sales_freight_analysis order by avg_freight_value limit 5;

Output

Top 5 states with highest/lowest average time to delivery?

Query

select customer_state from sales_freight_analysis order by avg_time_to_delivery desc limit 5 ;

Query

select customer_state from sales_freight_analysis order by avg_time_to_delivery limit 5;

Output

Top 5 states where delivery is really fast/ not so fast compared to estimated date?

Query

select customer_state from sales_freight_analysis order by avg_diff_estimated_delivery des c limit 5;

Output

select customer_state from sales_freight_analysis order by avg_diff_estimated_delivery limit 5;

Insights

 As per analysis it is found that there is a huge gap between estimated date and delivery date of product.

Recommendation

• Please try to reduce the gap between estimated date and delivery date of product.

6. Payment type analysis

1. Month over Month count of orders for different payment types

Query

select p.payment_type,FORMAT_DATE('%B',date(o.order_purchase_timestamp)) as ord er_month, count(o.order_id) as order_count, from target-365217.target_ds.Payments as p left join target-365217.target_ds.Orders as o on p.order_id = o.order_id group by p.payment_type,order_month order by order_count desc limit 10;

payment_type	order_month	order_count //
credit_card	May	8350
credit_card	August	8269
credit_card	July	7841
credit_card	March	7707
credit_card	April	7301
credit_card	June	7276
credit_card	February	6609
credit_card	January	6103
credit_card	November	5897
credit_card	December	4378

2. Distribution of payment installments and count of orders?

Query

select payment_installments,count(order_id) as order_count from target-365217.target_ds.Payments group by payment_installments limit 10;

Output

payment_in	order_count
0	2
1	52546
2	12413
3	10461
4	7098
5	5239
6	3920
7	1626
8	4268
9	644

Insights

- Most of the users are relying on credit card payment
- Most of the User refer to do payment by installments.

Recommendation

• Provide more credit card option if not then provide UPI payment as secondary payment option.