Practice Problem Set #2

Biasing Basic-2 ENEL469: Analog Electronics

Consider the following circuits where β = 100, $|V_{BE(ON)}|$ = 0.7V. Assume $|V_{CE}|$ = 0.3V if the collector base junction is forward biased. For all the following circuits (A-N), determine I_B , I_C , V_{CE} , V_{CB} and the type of biasing applied to the BE and CB junctions. If needed use the following transistor equations, I_C = βI_B , and I_E = I_C + I_B .

A) Use the following given values

$$V_{CC}$$
 = 10 V, V_B = 4 V, R_B = 66 k Ω , and R_C = 1 k Ω .

B) Use the following given values

$$V_{CC}$$
 = -10 V, V_B = 4 V, R_B = 66 k Ω , and R_C = 1 k Ω .

Dr. Anis Haque Page 1 of 5

C) Use the following given values

$$V_{CC}$$
 = 10 V, V_B = -4 V, R_B = 66 k Ω , and R_C = 1 k Ω .

D) Use the following given values

$$V_{CC}$$
 = 10 V, V_B = 4 V,
 R_B = 66 k Ω , and R_C = 1 k Ω .

E) Use the following given values

$$\begin{split} &V_{CC} = -10 \text{ V, } V_B = -4 \text{ V,} \\ &R_B = 66 \text{ k}\Omega \text{, and } R_C = 1 \text{ k}\Omega. \end{split}$$

F) Use the following given values

$$V_{CC}$$
 = 10 V, V_B = 4 V, R_B = 0, and R_C = 1 k Ω .

G) Use the following given values

$$V_{CC}$$
 = 10 V, V_{B} = 4 V, R_{B} = 66 k Ω , and R_{C} = 0.

H) Use the following given values

$$\begin{split} &V_{CC} = 10 \text{ V, } V_B = 4 \text{ V,} \\ &R_B = 0 \text{, } R_C = 1 \text{ k}\Omega \text{, and } R_E = 1 \text{ k}\Omega. \end{split}$$

I) Use the following given values

$$V_{CC}$$
 = 10 V, V_B = 4 V and R_E = 1 k Ω .

J) Use the following given values

$$V_{CC}$$
 = 10 V, V_B = 4 V,
 R_B = 11 k Ω and R_C = 1 k Ω .

K) Use the following given values

$$\begin{split} &V_{CC} = 10 \text{ V, } V_B = 4 \text{ V,} \\ &R_B = 66 \text{ k}\Omega \text{ and } R_C = 5 \text{ k}\Omega. \end{split}$$

L) Use the following given values

$$\begin{split} V_{CC} &= 10 \text{ V, } V_B = 4 \text{ V,} \\ R_B &= 11 \text{ k}\Omega \text{ and } R_C = 200 \Omega. \end{split}$$

M) Use the following given values

$$V_E = -10 \text{ V, } V_B = 4 \text{ V,}$$

$$R_B = 66 \text{ k}\Omega \text{ and } R_C = 1 \text{ k}\Omega.$$

N) Use the following given values

$$\begin{split} V_{CC} &= 5 \text{ V, } V_E = -5 \text{ V, } V_B = 4 \text{ V,} \\ R_B &= 66 \text{ k}\Omega \text{ and } R_C = 1 \text{ k}\Omega. \end{split}$$

