笔记前言:

本笔记的内容是去掉步骤的概述后,视频的所有内容。

本猴觉得,自己的步骤概述写的太啰嗦,大家自己做笔记时,应该每个人都有自己的最舒服最简练的写法,所以没给大家写。再是本猴觉得,不给大家写这个概述的话,大家会记忆的更深,掌握的更好!

所以老铁!一定要过呀!不要辜负本猴的心意! ~~~

【祝逢考必过,心想事成~~~~】

【一定能过!!!!!

数理统计第零课

一、求离散型的期望 E(X)

例 1: 已知一个工厂一周获利 10 万元的概率为 0.2, 获利 5 万元的概率为 0.3, 亏损 2 万元的概率为 0.5, 该工厂一周内利润的期望是多少?

X	10	5	-2
P	0.2	0.3	0.5

$$E(X) = \sum x_i p_i = 10 \times 0.2 + 5 \times 0.3 + (-2) \times 0.5 = 2.5 \ (\overline{\mathcal{H}} \overline{\mathcal{H}})$$

二、求连续型的期望 E(X)

例 1: 设随机变量 X 的密度函数为
$$f(x) = \begin{cases} 0, & x < 0 \\ 4x^3, & 0 \le x \le 1, \\ 0, & x > 1 \end{cases}$$

$$E(X) = \int_{-\infty}^{+\infty} xf(x) dx = \int_{-\infty}^{0} x \cdot 0 dx + \int_{0}^{1} x \cdot 4x^{3} dx + \int_{1}^{+\infty} x \cdot 0 dx$$
$$= 0 + \frac{4}{5} + 0$$
$$= \frac{4}{5}$$

三、已知 Y = g(x),求 E(Y)

例 1: 已知随机变量 X 的分布列为:

Х	0	1	2	3
P	0.1	0.2	0.3	0.4

求 Y = 2X - 1 的期望。

$$\begin{split} E(Y) &= \sum g(x_i) p_i \\ &= \sum (2x_i - 1) p_i \\ &= (2 \times 0 - 1) \times 0.1 + (2 \times 1 - 1) \times 0.2 + (2 \times 2 - 1) \times 0.3 + (2 \times 3 - 1) \times 0.4 \\ &= 3 \end{split}$$

例 2: 设随机变量 X 的密度函数为
$$f(x) = \begin{cases} 0, & x < 0 \\ 4x^3, & 0 \le x \le 1, \\ 0, & x > 1 \end{cases}$$

 $Y = X^2$,求 E(Y)。

$$E(Y) = \int_{-\infty}^{+\infty} g(x) \cdot f(x) dx$$

$$= \int_{-\infty}^{+\infty} x^2 \cdot f(x) dx$$

$$= \int_{-\infty}^{0} x^2 \cdot 0 dx + \int_{0}^{1} x^2 \cdot 4x^3 dx + \int_{1}^{+\infty} x^2 \cdot 0 dx$$

$$= 0 + \frac{2}{3} + 0$$

$$= \frac{2}{3}$$

四、求方差 D(X)

例 1: 已知随机变量 X 的分布列为:

X	0	1	2	3
P	0.1	0.2	0.3	0.4

求 D(X)。

方法一:
$$E(X) = \sum x_i p_i = 0 \times 0.1 + 1 \times 0.2 + 2 \times 0.3 + 3 \times 0.4 = 2$$

$$D(X) = \sum [x_i - E(X)]^2 \cdot p_i$$

$$= (0-2)^2 \cdot 0.1 + (1-2)^2 \cdot 0.2 + (2-2)^2 \cdot 0.3 + (3-2)^2 \cdot 0.4 = 1$$

方法二: X² 0 1 4 9 P 0.1 0.2 0.3 0.4

$$E(X^2) = 0 \times 0.1 + 1 \times 0.2 + 4 \times 0.3 + 9 \times 0.4 = 5$$

$$E(X) = \sum x_i p_i = 0 \times 0.1 + 1 \times 0.2 + 2 \times 0.3 + 3 \times 0.4 = 2$$

$$D(X) = E(X^2) - E^2(X) = 5 - 2^2 = 1$$

例 2: 设随机变量 X 的密度函数为 $f(x) = \begin{cases} 0, & x < 0 \\ 4x^3, & 0 \le x \le 1, \\ 0, & x > 1 \end{cases}$

求 D(X)。

$$E(x^{2}) = \int_{-\infty}^{+\infty} g(x) \cdot f(x) dx$$

$$= \int_{-\infty}^{+\infty} x^{2} \cdot f(x) dx$$

$$= \int_{-\infty}^{0} x^{2} \cdot 0 dx + \int_{0}^{1} x^{2} \cdot 4x^{3} dx + \int_{1}^{+\infty} x^{2} \cdot 0 dx$$

$$= 0 + \frac{2}{3} + 0$$

$$= \frac{2}{3}$$

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{-\infty}^{0} x \cdot 0 dx + \int_{0}^{1} x \cdot 4x^{3} dx + \int_{1}^{+\infty} x \cdot 0 dx$$

$$= 0 + \frac{4}{5} + 0$$

$$= \frac{4}{5}$$

$$D(X) = E(X^{2}) - E^{2}(X) = \frac{2}{3} - \left(\frac{4}{5}\right)^{2} = \frac{2}{75}$$

五、根据 E(X)、D(X) 的性质进行复杂运算

_		
	E	D
	E(C) = C	D(C) = 0
性	E(CX) = CE(X)	$D(CX) = C^2D(X)$
ĺ	$E(X \pm Y) = E(X) \pm E(Y)$	$D(X \pm Y) = D(X) + D(Y)$
质	$E(XY) = E(X)E(Y)(X \setminus Y$ 相互独立时)	(X、Y相互独立时)
	$D(X) = E(X^2) - I$	$E^2(X)$

例 1: 已知

X	0	1	2	3
P	0.1	0.2	0.3	0.4

求
$$E(2X^2-5)$$
 、 $D(\sqrt{7}X-5)$ 。

$$E(X) = \sum x_i p_i = 0 \times 0.1 + 1 \times 0.2 + 2 \times 0.3 + 3 \times 0.4 = 2$$

$$D(X) = (0-2)^2 \cdot 0.1 + (1-2)^2 \cdot 0.2 + (2-2)^2 \cdot 0.3 + (3-2)^2 \cdot 0.4 = 1$$

$$E(2X^2 - 5) = E(2X^2) - E(5) = 2E(X^2) - 5 = 2 \times [E^2(X) + D(X)] - 5 = 2 \times (2^2 + 1) - 5 = 5$$

$$D(\sqrt{7}X - 5) = D(\sqrt{7}X) + D(5) = 7D(X) + 0 = 7 \times 1 + 0 = 7$$

六、E(X)、D(X) 与各种分布的综合题

X服从的分布	E(X)	D(X)	P
二项分布 B(n,p)	np	np(1 - p)	$P(X=d)=C_n^d p^d (1-p)^{n-d}$
泊松分布 P(λ)	λ	λ	$P(X=d) = \frac{\lambda^d}{d!} e^{-\lambda}$
均匀分布 U[a, b]	a+b 2	(b-a) ²	$P(c \le X \le d) = \frac{d - c}{b - a}$
指数分布 E(λ)	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$P(c \le X \le d) = \frac{1}{e^{c\lambda}} - \frac{1}{e^{d\lambda}}$
正态分布 N(μ,σ²)	μ	σ^2	$P(c \le X \le d) = \Phi\left(\frac{d-\mu}{\sigma}\right) - \Phi\left(\frac{c-\mu}{\sigma}\right)$

	Е	D
7	E(C) = C	D(C) = 0
J.Z.L.	E(CX) = CE(X)	$D(CX) = C^2D(X)$
性	$E(X \pm Y) = E(X) \pm E(Y)$	$D(X \pm Y) = D(X) + D(Y)$
质	E(XY) = E(X)E(Y) (X、Y相互独立时)	(X X Y 相互独立时)
	D(X) = E(X)	$(2) - E^2(X)$

例 1: 随机变量 X 服从二项分布,且E(X) = 6,D(X) = 3,求 P(X=1)

$$\begin{cases} E(X) = 6 = np \\ D(X) = 3 = np(1 - p) \end{cases} \implies n = 12 \quad p = 0.5$$

$$P(X=d)=C_n^d p^d (1-p)^{n-d}$$

$$P(X=1)=C_{12}^{1}(0.5)^{1}(1-0.5)^{12-1}=3\times 2^{-10}$$

例 2: 已知 X 服从 $\lambda=1$ 的泊松分布,求 $P[X=E(X^2)]$

$$E(X) = 1 D(X) = 1$$

$$E(X^{2}) = E^{2}(X) + D(X) = 1^{2} + 1 = 2$$

$$P[X = E(X^{2})] = P(X = 2) = \frac{1^{2}}{2!} e^{-1} = \frac{1}{2e}$$

$$P(X = d) = \frac{\lambda^{d}}{d!} e^{-\lambda}$$

数理统计第一课

一、求某一未知参数的矩估计

X服从的分布	E(X)	D(X)	Р
二项分布 B(n,P)	nР	nP(1 – P)	$P(X=d)=C_n^d P^d (1-P)^{n-d}$
泊松分布 B(λ)	λ	λ	$P(X=d) = \frac{\lambda^{d}}{d!} e^{-\lambda}$
均匀分布 U[a,b]	<u>a+b</u> 2	$\frac{(b-a)^2}{12}$	$P(c \le X \le d) = \frac{c - d}{b - a}$
指数分布 E(λ)	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$P(c \le X \le d) = \frac{1}{e^{c\lambda}} - \frac{1}{e^{d\lambda}}$
正态分布 N(μ,σ²)	μ	σ^2	$P(c \le X \le d) = \Phi\left(\frac{d-\mu}{\sigma}\right) - \Phi\left(\frac{c-\mu}{\sigma}\right)$

例 1: 设一大批产品的次品率是 P,每次从中随机抽取出 10 件进行 检验,用 x_i 表示第 i 次抽出的 10 件产品中次品的个数,则可以认为 $x_1, x_2, ..., x_n$ 独立同分布,总体分布是二项分布 B(10,P),求 P 的矩估计。

$$E(X)=nP=10P$$

$$E(X)=nP \Longrightarrow P = \frac{E(X)}{10}$$

$$E(X) = \frac{x_1 + x_2 + \dots + x_n}{n}$$

$$\widehat{P} = \frac{x_1 + x_2 + \dots + x_n}{10n}$$

例 2: 设 $x_1, x_2, ..., x_n$ 为总体的一个样本, $x_1, x_2, ..., x_n$ 为相应的样本值,求下述总体的概率密度中的未知参数的矩估计。

$$f(x) = \begin{cases} \theta C^{\theta} x^{-(\theta+1)}, & x > C \\ 0, & 其他 \end{cases}$$

(其中: C>0 为已知, θ>1 且 θ 为未知参数)

$$E(X) = \int_{-\infty}^{+\infty} xf(x)dx = \int_{C}^{\infty} x\theta C^{\theta}x^{-(\theta+1)}dx$$

$$= \int_{C}^{\infty} \theta C^{\theta}x^{-\theta}dx$$

$$= \frac{\theta C^{\theta}x^{-\theta+1}}{-\theta+1} \Big|_{C}^{\infty}$$

$$= \frac{C\theta}{\theta-1}$$

$$E(X) = \frac{C\theta}{\theta-1} \implies \theta = \frac{E(X)}{E(X)-C}$$

$$E(X) = \frac{x_1 + x_2 + \dots + x_n}{n}$$

$$\hat{\theta} = \frac{x_1 + x_2 + \dots + x_n}{x_1 + x_2 + \dots + x_n - nC}$$

二、求两个未知参数的矩估计

X 服从的分布	E(X)	D(X)	Р
二项分布 B(n,P)	nР	nP(1 – P)	$P(X=d)=C_n^d P^d (1-P)^{n-d}$
泊松分布 B(λ)	λ	λ	$P(X=d) = \frac{\lambda^{d}}{d!} e^{-\lambda}$
均匀分布 U[a,b]	<u>a+b</u> 2	$\frac{(b-a)^2}{12}$	$P(c \le X \le d) = \frac{c - d}{b - a}$
指数分布 E(λ)	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$P(c \le X \le d) = \frac{1}{e^{c\lambda}} - \frac{1}{e^{d\lambda}}$
正态分布 N(μ,σ²)	μ	σ^2	$P(c \le X \le d) = \Phi\left(\frac{d-\mu}{\sigma}\right) - \Phi\left(\frac{c-\mu}{\sigma}\right)$

例 1: 设总体 X 在[a,b]上服从均匀分布,a,b 未知, $x_1, x_2, ..., x_n$ 是来自 X 的样本,试求 a,b 的矩估计量。

$$\begin{split} E(X) &= \frac{a+b}{2} \qquad D(X) = \frac{(b-a)^2}{12} \\ E(X^2) &= \frac{(b-a)^2}{12} + \left(\frac{a+b}{2}\right)^2 \\ \begin{cases} E(X) &= \frac{a+b}{2} \\ E(X^2) &= \frac{(b-a)^2}{12} + \left(\frac{a+b}{2}\right)^2 \end{cases} \Longrightarrow \begin{cases} a = E(X) - \sqrt{3}E(X^2) - 3E^2(X) \\ b = E(X) + \sqrt{3}E(X^2) - 3E^2(X) \end{cases} \\ E(X) &= \frac{x_1 + x_2 + \dots + x_n}{n} \qquad E(X^2) = \frac{x_1^2 + x_2^2 + \dots + x_n^2}{n} \\ \hat{a} &= \frac{x_1 + x_2 + \dots + x_n}{n} - \sqrt{\frac{3(x_1^2 + x_2^2 + \dots + x_n^2)}{n} - \frac{3(x_1 + x_2 + \dots + x_n)^2}{n^2}} \\ \hat{b} &= \frac{x_1 + x_2 + \dots + x_n}{n} + \sqrt{\frac{3(x_1^2 + x_2^2 + \dots + x_n^2)}{n} - \frac{3(x_1 + x_2 + \dots + x_n)^2}{n^2}} \end{split}$$

数理统计第二课

一、求出某离散型参数的最大似然估计量

离散型分布	Р
二项分布 B(n,P)	$P(X=d)=C_n^d P^d (1-P)^{n-d}$
泊松分布 P(λ)	$P(X=d) = \frac{\lambda^{d}}{d!} e^{-\lambda}$

例 1: 设 X 具有分布律

X	1	2	3
P _K	θ^2	2θ(1-θ)	$(1-\theta)^2$

其中 $\theta(0<\theta<1)$ 为未知参数,已知取得了样本值 $x_1=1$, $x_2=2$, $x_3=1$,求 θ 的最大似然估计值。

$$\begin{split} & P\{X \!\!=\!\! x_1\} \!\!=\!\! P\{X \!\!=\!\! 1\} \!\!=\!\! \theta^2 \\ & P\{X \!\!=\!\! x_2\} \!\!=\!\! P\{X \!\!=\!\! 2\} \!\!=\!\! 2\theta(1 \!\!-\!\! \theta) \\ & P\{X \!\!=\!\! x_3\} \!\!=\!\! P\{X \!\!=\!\! 1\} \!\!=\!\! \theta^2 \\ & \ln P\{X \!\!=\!\! x_3\} \!\!=\!\! \ln(\theta^2) \!\!=\!\! 2\ln \theta \\ & \ln P\{X \!\!=\!\! x_2\} \!\!=\!\! \ln[2\theta(1 - \theta)] \!\!=\!\! \ln\! 2 \!\!+\!\! \ln\! \theta \!\!+\!\! \ln(1 \!\!-\!\! \theta) \\ & \ln P\{X \!\!=\!\! x_3\} \!\!=\!\! \ln(\theta^2) \!\!=\!\! 2\ln \theta \\ & \frac{d \ln P\{X \!\!=\!\! x_3\} \!\!=\!\! \frac{2}{\theta}}{d \theta} \!\!=\!\! \frac{1}{\theta} - \frac{1}{1 \!\!-\!\! \theta} \\ & \frac{d \ln P\{X \!\!=\!\! x_3\} \!\!=\!\! \frac{2}{\theta}}{d \theta} \!\!=\!\! \frac{2}{\theta} \end{split}$$

$$\frac{2}{\theta} + \left(\frac{1}{\theta} - \frac{1}{1-\theta}\right) + \frac{2}{\theta} = 0 \Longrightarrow \theta = \frac{5}{6}$$
$$\therefore \hat{\theta} = \frac{5}{6}$$

二、求出某连续型参数的最大似然估计量

连续型分布	f(x)
均匀分布	$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & 其他 \end{cases}$
指数分布	$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$
正态分布	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

例 1: 设总体 X 的密度函数为 $f(x) = \begin{cases} \sqrt{\theta}x^{\sqrt{\theta}-1}, & 0 \le x \le 1 \\ 0, & \text{其他} \end{cases}$

其中 $\theta>0$ 为未知数, $x_1,x_2,...,x_n$ 是来自总体 X 的一个样本,试求 θ 的最大似然估计量。

$$f(x_1) = \sqrt{\theta} x_1^{\sqrt{\theta} - 1}$$

$$f(x_2) = \sqrt{\theta} x_2^{\sqrt{\theta} - 1}$$

. . .

$$\begin{split} f(x_n) &= \sqrt{\theta} x_n^{\sqrt{\theta} - 1} \\ &\ln f(x_1) = \ln (\sqrt{\theta} x_1^{\sqrt{\theta} - 1}) = \ln \sqrt{\theta} + \ln (x_1^{\sqrt{\theta} - 1}) = \frac{1}{2} \ln \theta + (\sqrt{\theta} - 1) \ln x_1 \\ &\ln f(x_2) = \frac{1}{2} \ln \theta + (\sqrt{\theta} - 1) \ln x_2 \end{split}$$

...

$$\begin{aligned} & \ln f(x_n) = \frac{1}{2} \ln \theta + (\sqrt{\theta} - 1) \ln x_n \\ & \frac{d \ln f(x_1)}{d \theta} = \frac{1}{2\theta} + \frac{\ln x_1}{2\sqrt{\theta}} \\ & \frac{d \ln f(x_2)}{d \theta} = \frac{1}{2\theta} + \frac{\ln x_2}{2\sqrt{\theta}} \end{aligned}$$

...

$$\begin{split} &\frac{\text{dlnf}(x_n)}{\text{d}\theta} \!=\! \frac{1}{2\theta} + \frac{\ln x_n}{2\sqrt{\theta}} \\ &\left(\frac{1}{2\theta} + \frac{\ln x_1}{2\sqrt{\theta}}\right) \!+\! \left(\frac{1}{2\theta} + \frac{\ln x_2}{2\sqrt{\theta}}\right) + \dots + \left(\frac{1}{2\theta} + \frac{\ln x_n}{2\sqrt{\theta}}\right) \!=\! 0 \\ & \Longrightarrow \frac{n}{2\theta} + \frac{\ln x_1 + \ln x_2 + \dots + \ln x_n}{2\sqrt{\theta}} \!=\! 0 \Longrightarrow \frac{n}{2\theta} + \frac{\ln (x_1 \times x_2 \times \dots \times x_n)}{2\sqrt{\theta}} \!=\! 0 \\ & \Longrightarrow \theta \!=\! \frac{n^2}{\ln^2(x_1 \times x_2 \times \dots \times x_n)} \\ & \therefore \hat{\theta} \!=\! \frac{n^2}{\ln^2(x_1 \times x_2 \times \dots \times x_n)} \end{split}$$

数理统计第三课

一、区间估计

求μ还是σ	σ	置信水平	求什么	答案	备注	
			置信区间	$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}} \ , \ \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}}\right)$		
	已知		单侧置信下限	$\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha}$		
			单侧置信上限	$\overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha}$		
μ			置信区间			
	未知	1–α	1 ~	单侧置信下限	$\frac{+\sqrt{n}\frac{\alpha}{2}(n-1)}{\overline{X} - \frac{S}{\sqrt{n}}t_{\alpha}(n-1)}$	z _? , t _? (?), χ ² _? (?)均可通过查表得到
			单侧置信上限	$\overline{X} + \frac{S}{\sqrt{n}} t_{\alpha}(n-1)$	$S^{2} = \frac{(x_{1} - \overline{X})^{2} + (x_{2} - \overline{X})^{2} + \dots + (x_{n} - \overline{X})^{2}}{n - 1}$	
			置信区间	$\left(\frac{\sqrt{n-1}\times S}{\sqrt{\chi_{1}^{\alpha}(n-1)}}\;,\;\frac{\sqrt{n-1}\times S}{\sqrt{\chi_{1}^{2}-\frac{\alpha}{2}(n-1)}}\right)$		
σ	未知		单侧置信下限	$\frac{\sqrt{n-1}\times S}{\sqrt{\chi_{\alpha}^{2}(n-1)}}$		
			单侧置信上限	$\frac{\sqrt{n-1}\times S}{\sqrt{\chi^2_{1-\alpha}(n-1)}}$		

例 1: 有一大批糖果,现从中随机取出 16 袋称重如下:

设糖果的重量近似地服从正态分布,试求总体均值 μ 的置信水平

为 0.95 的置信区间。

置信区间为:
$$\left(\overline{X} - \frac{s}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1), \overline{X} + \frac{s}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1)\right)$$

其中: $\overline{X} = \frac{506+508+499+\cdots+496}{16} = 503.75$
 $n=16 \Rightarrow n-1=15$
 $S^2 = \frac{(x_1-\overline{X})^2+(x_2-\overline{X})^2+\cdots+(x_n-\overline{X})^2}{n-1}$
 $= \frac{\left(506-503.75\right)^2+\left(508-503.75\right)^2+\cdots+\left(496-503.75\right)^2}{15}$

$$\Rightarrow$$
 S=6.2022

$$1-\alpha=0.95 \Rightarrow \frac{\alpha}{2}=0.025$$

$$\therefore t_{\frac{\alpha}{2}}(n-1) = t_{0.025}(15) = 2.1315$$

·· 置信区间为(500.4,507.1)

例 2: 有一大批糖果,现从中随机取出 16 袋称重如下:

506 508 499 503 504 510 497 512

514 505 493 496 506 502 509 496

设糖果的重量近似地服从正态分布,试求总体标准差 σ 的置信水平 为 0.95 的置信区间。

置信区间为:
$$\left(\frac{\sqrt{n-1}\times S}{\sqrt{\chi_{\alpha}^2(n-1)}}, \frac{\sqrt{n-1}\times S}{\sqrt{\chi_{1-\alpha}^2(n-1)}}\right)$$
 其中: $\overline{X} = \frac{506+508+499+\cdots+496}{16} = 503.75$ $n=16 \Rightarrow n-1=15$
$$S^2 = \frac{(x_1-\overline{X})^2+(x_2-\overline{X})^2+\cdots+(x_n-\overline{X})^2}{n-1} \Rightarrow S=6.2022$$
 $1-\alpha=0.95 \Rightarrow \frac{\alpha}{2}=0.025$ $1-\frac{\alpha}{2}=0.975$ $\chi_{\alpha}^2(n-1)=\chi_{0.025}^2(15)=27.488$ $\chi_{1-\alpha}^2(n-1)=\chi_{0.975}^2(15)=6.262$

数理统计第四课

一、判断单项参数与某数值关系

假设情况	已知条件	何时拒绝H ₀	备注
$H_0: \mu = \mu_0$	σ	$\left rac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} ight \geq z_{\frac{\alpha}{2}}$ मिर्ग	
H ₁ : μ≠μ ₀ (均值)		$\left \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \right \ge t_{\frac{\alpha}{2}} (n-1)$ िंग	
$H_0: \sigma = \sigma_0$ $H_1: \sigma \neq \sigma_0$ (方差,标准差,波动性)		$\frac{(n-1)S^2}{\sigma_0^2} \ge \chi_{\frac{\alpha}{2}}^2(n-1)$ 或 $\frac{(n-1)S^2}{\sigma_0^2} \le \chi_{1-\frac{\alpha}{2}}^2(n-1)$ 时	
$H_0: \mu \leq \mu_0$	σ	$rac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \ge z_{\alpha}$ 时	
H ₁ : μ>μ ₀ (均值)		$rac{\overline{x}-\mu_0}{s/\sqrt{n}} \ge t_{lpha}(n-1)$ 时	$S=?$ $z_{?}, t_{?}(?), \chi_{?}(?)$
$H_0: \sigma \leq \sigma_0$ $H_1: \sigma > \sigma_0$ (方差,标准差,波动性)		$rac{(\mathrm{n}-1)\mathrm{S}^2}{\sigma_0^2} \geq \chi_{lpha}^2 (\mathrm{n}-1)$ िं	均可通过查表获得
$H_0: \mu \geq \mu_0$	σ	$rac{\overline{\mathbf{x}} - \mu_0}{\sigma/\sqrt{\mathbf{n}}} \leq -\mathbf{z}_{lpha}$	
H ₁ : μ<μ ₀ (均值)		$rac{\overline{x}-\mu_0}{s/\sqrt{n}} \le -t_{lpha}(n-1)$ िंग	
$H_0: \sigma \ge \sigma_0 \ H_1: \sigma < \sigma_0 \ (方差,标准差,波动性)$		$\frac{(n-1)S^2}{\sigma_0^2} \le \chi_{1-\alpha}^2(n-1)$ 时	

例 1: 某车间用一台包装机包装葡萄糖。袋装糖的净重是一个随机变量,它服从正态分布。当机器正常时,其均值为 0.5kg,标准差为 0.015kg。某日开工后为检验包装机是否正常,随机地抽取它所包装的糖 9 袋,称得净重为(kg)

0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512 问机器是否正常? (提示: 长期实践表明标准差比较稳定,设 σ =0.015, 于是 $X\sim N(\mu,\ 0.015^2)$,取显著性水平 α =0.05)

 H_0 : $\mu = \mu_0 = 0.5$ (机器正常)

 H_1 : $\mu \neq \mu_0 = 0.5$ (机器不正常)

$$\left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| \ge z_{\frac{\alpha}{2}}$$
时,拒绝 H_0 其中 $\overline{X} = \frac{0.497 + 0.506 + \dots + 0.512}{9} = 0.511$

$$\mu_0 = 0.5$$
 $\sigma = 0.015$

$$n = 9 \implies \sqrt{n} = 3$$

$$\alpha = 0.05 \implies \frac{\alpha}{2} = 0.025$$

查表得 $z_{0.025} = 1.96$

$$\left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| = \left| \frac{0.511 - 0.5}{0.015/3} \right| = 2.2 > 1.96 = z_{0.025}$$

$$\text{RR} \left| \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \right| > Z_{\frac{\alpha}{2}}$$

- : 拒绝H₀
- : 该机器不正常

例 2: 某元件寿命 $X(以 h 计)服从正态分布 <math>N(\mu, \sigma^2)$, μ 和 σ^2 均未知。现测得 16 只元件的寿命如下:

159 280 101 212 224 379 179 264

222 362 168 250 149 260 485 170

取 α=0.05, 问是否有理由认为元件的平均寿命大于 225h?

$$\vec{X} = \frac{159 + 280 + \dots + 170}{16} = 241.5$$

∴
$$H_0$$
: $\mu \le \mu_0 = 225$

$$H_1: \mu > \mu_0$$

若
$$\frac{\overline{X}-\mu_0}{S/\sqrt{n}} \geq t_{\alpha}(n-1)$$
时,拒绝 H_0

其中:
$$\overline{X} = 241.5$$
 $\mu_0 = 225$

n = 16
$$\Rightarrow \sqrt{n}$$
 = 4, n - 1=15
S = $\sqrt{\frac{1}{15}}[(159 - 241.5)^2 + (280 - 241.5)^2 + \dots + (170 - 241.5)^2]$
= 98.7259

$$\alpha = 0.05$$

查表得 $t_{0.05}(15) = 1.7531$

- ∴ 接受H₀
- : 有理由认为元件平均寿命不大于 225h

例 3: 某厂生产的某型号的电池,其寿命(以 h 计)长期以来服从 σ_0^2 =5000 的正态分布,现有一批这种电池,从它的生产情况来看,寿命的波动性有所改变。现随机取 26 只电池,测出其寿命的样本 方差 S^2 =9200。问根据这一数据能否推断这批电池的寿命的波动性较以往的有显著的变化(取 α =0.02)?

$$\alpha = 0.02 \implies \frac{\alpha}{2} = 0.01 \implies 1 - \frac{\alpha}{2} = 0.99$$

查表得 $\chi^2_{0.01}(25) = 44.314$, $\chi^2_{0.99}(25) = 11.524$

$$\therefore \frac{(n-1)S^2}{\sigma_0^2} = \frac{25 \times 9200}{5000} = 46 > 44.314$$

$$\mathbb{P} \frac{(n-1)S^2}{\sigma_0^2} > \chi_{\frac{\alpha}{2}}^2 (n-1)$$

- ∴ 拒绝H₀
- :: 有显著变化

数理统计第五课

一、判断两项参数间的关系

假设情况	已知条件	何时拒绝H ₀	备注
$\mu_1 - \mu_2 = \delta$	$\sigma_1, \ \sigma_2$	$\left \frac{\overline{X_1} - \overline{X_2} - \delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}\right \geq Z\frac{\alpha}{2}$	
		$\left \frac{\overline{x_1}-\overline{x_2}-\delta}{s_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\right \ge t\frac{\alpha}{2}(n_1+n_2-2)$	
$\sigma_1^2 = \sigma_2^2$		$\frac{s_1^2}{s_2^2} \geq F_{\frac{\alpha}{2}}(n_1-1,n_2-1) \ \vec{\exists} \!$	
$\mu_1 - \mu_2 \le \delta$	$\sigma_1, \ \sigma_2$	$\frac{\overline{x_1} - \overline{x_2} - \delta}{\sqrt{\frac{\sigma_1^2}{n_1^2} + \frac{\sigma_2^2}{n_2}}} \ge z_{\alpha}$	$S_{w} = \sqrt{\frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2}}$
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		$\frac{\overline{X_{1}} - \overline{X_{2}} - \delta}{S_{W} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}} \ge t_{\alpha}(n_{1} + n_{2} - 2)$	$S = \sqrt{\frac{1}{n-1} \left[\left(x_1 - \overline{X} \right)^2 + \left(x_2 - \overline{X} \right)^2 + \dots + \left(x_n - \overline{X} \right)^2 \right]}$ $z_2, t_2, F_2(?,?)$
$\sigma_1^2 \le \sigma_2^2$		$\frac{s_1^2}{s_2^2} \ge F_{\alpha}(n_1 - 1, n_2 - 1)$	均可通过查表求得
$\mu_1 - \mu_2 \ge \delta$	$\sigma_1, \ \sigma_2$	$\frac{\overline{X_1} - \overline{X_2} - \delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \le -z_{\alpha}$	
F1 F2 = 0		$\frac{\overline{x_1} - \overline{x_2} - \delta}{s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \le -t_\alpha (n_1 + n_2 - 2)$	71
$\sigma_1^2 \ge \sigma_2^2$		$\frac{s_1^2}{s_2^2} \le F_{1-\alpha}(n_1 - 1, n_2 - 1)$	

例 1: 甲、乙两公司都试生产 700MB 的光盘,从甲的产品中抽查了 7 张光盘,从乙生产的产品中抽查了 9 张光盘。分别测得他们的实际 存储量如下:

$$Y(Z)$$
 681.5 682.7 674.2 674.6 680.7 677.8 681.0 681.4 681.1

现已知甲的光盘储量 $X\sim N(\mu_1,2)$,乙的光盘储量 $Y\sim N(\mu_2,3)$ 。在显著性水平 $\alpha=0.05$ 下,甲、乙两家公司生产的光盘的平均储量有无显著差异?

$$\overline{X_1} = \frac{683.7 + 682.5 + \dots + 677.9}{7} = 681.17$$

$$\overline{X_2} = \frac{681.5 + 682.7 + \dots + 681.1}{9} = 679.44$$

$$\therefore$$
 H₀: $\mu_1 = \mu_2$

$$H_1$$
: $\mu_1 \neq \mu_2$

若
$$\left| \frac{\overline{X_1} - \overline{X_2} - \delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \right| \ge z_{\frac{\alpha}{2}} , 拒绝H_0$$

$$: H_0$$
为 $μ_1=μ_2$,即 $μ_1-μ_2=0$

$$\delta = 0$$
 $\overline{X_1} = 681.17$ $\overline{X_2} = 679.44$

$$\sigma_1^2 = 2, \ \sigma_2^2 = 3$$

$$n_1 = 7, n_2 = 9$$

$$\alpha = 0.05 \Rightarrow \frac{\alpha}{2} = 0.025$$

$$\therefore \left| \frac{\overline{X_1} - \overline{X_2} - \delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \right| = \left| \frac{681.17 - 679.44}{\sqrt{\frac{2}{7} + \frac{3}{9}}} \right| = 2.1988 > 1.96$$

$$\therefore \left| \frac{\overline{X_1} - \overline{X_2} - \delta}{\sqrt{\frac{\sigma_1^2 + \frac{\sigma_2^2}{n_1}}{n_1^2 n_2}}} \right| \ge \underline{z_{\frac{\alpha}{2}}}, 拒绝H_0$$

: 两家有差异

例 2: 用两种方法(1 和 2)测定冰自-0.72℃转变为 0℃的水的溶化热(以 cal/g 计)。测得以下数据:

如上两个样本分别来自总体 $N(\mu_1, \sigma_1^2)$, $N(\mu_2, \sigma_2^2)$,且两样本独立。请判断 $\sigma_1^2 = \sigma_2^2$ 假设是否合理(去显著性水平 $\alpha = 0.01$)

$$\overline{X_1} = \frac{79.98 + 80.04 + \cdots + 80.02}{13} = 80.02$$
 $\overline{X_2} = \frac{80.02 + 79.94 + \cdots + 79.97}{8} = 79.98$
 $S_1^2 = \frac{1}{13 - 1} [(79.98 - 80.02)^2 + \cdots + (80.02 - 80.02)^2] = 0.024^2$
 $S_2^2 = \frac{1}{8 - 1} [(80.02 - 79.98)^2 + \cdots + (79.97 - 79.98)^2] = 0.03^2$
 $H_0: \sigma_1^2 = \sigma_2^2$
 $H_1: \sigma_1^2 \neq \sigma_2^2$
 $\frac{1}{8^2} \geq F_{\frac{\alpha}{2}}(n_1 - 1, n_2 - 1)$ 或 $\frac{S_1^2}{S_2^2} \leq F_{1 - \frac{\alpha}{2}}(n_1 - 1, n_2 - 1)$ 时拒绝 H_0

$$\overline{A} = \frac{1}{S_2^2} \ge F_{\frac{\alpha}{2}}(n_1 - 1, n_2 - 1)$$
以 $\frac{1}{S_2^2} \le F_{1-\frac{\alpha}{2}}(n_1 - 1, n_2 - 1)$ 則 犯

其中
$$S_1^2 = 0.024^2$$
, $S_2^2 = 0.03^2$

$$\alpha{=}0.01 \Longrightarrow \tfrac{\alpha}{2}{=}0.005$$

$$n_1 = 13 \implies n_1 - 1 = 12$$

$$n_2=8 \implies n_2-1=7$$

查表得:
$$F_{0.005}(12, 7) = 8.18$$

$$F_{1-0.005}(12, 7) = \frac{1}{F_{0.005}(7, 12)} = 0.18$$

$$\therefore \frac{S_1^2}{S_2^2} = \frac{0.024^2}{0.03^2} = 0.64$$

$$::$$
 接受 H_0 , 即 $\sigma_1^2 = \sigma_2^2$ 是合理的

数理统计第六课

一、对于成对数据的检验

假设	何时拒绝H ₀		
$H_0: \mu_D = 0$ $H_1: \mu_D \neq 0$	$\left \frac{\overline{D}}{S_D/\sqrt{n}}\right \ge t_{\frac{\alpha}{2}}(n-1)$		
$\begin{array}{c c} H_0\colon \ \mu_D \leq 0 \\ H_1\colon \ \mu_D \! > \! 0 \end{array}$	$\frac{\overline{D}}{S_D/\sqrt{n}} \ge t_{\alpha}(n-1)$		
$\begin{array}{ccc} H_0\colon \; \mu_D \geq 0 \\ H_1\colon \; \mu_D \leq 0 \end{array}$	$\left \frac{\overline{D}}{S_D/\sqrt{n}} \le -t_{\alpha}(n-1) \right $		

例 1: 做以下的实验以比较人对红光或绿光的反映时间(以 S 计)。实验在点亮红光或绿光的同时,启动计时器,要求受试者见到红光或绿光点亮时,就按下按钮,切断计时器,这就能测得反应时间。测量的结果如下表:

(设显著性水平 α=0.05)

$$H_0$$
: $\mu_D \ge 0$
 H_1 : $\mu_D < 0$
当 $\frac{\overline{D}}{S_D/\sqrt{n}} \le -t_\alpha (n-1)$ 时,拒绝 H_0
 $\overline{D} = \frac{-0.13 + (-0.09) + \cdots + (-0.10)}{8} = -0.0625$
 $n=8 \Rightarrow \sqrt{n} = 2\sqrt{2}, n-1=7$
 $S_D = \sqrt{\frac{1}{7} \times \{[-0.13 - (-0.0625)]^2 + \cdots + [-0.10 - (-0.0625)]^2\}} = 0.0765$
 $\alpha = 0.05$,查表得: $t_{0.05}(7) = 1.8946$

- ∴ 拒绝H₀
- :: 对红光反应时间小于绿光

二、P值检验

假设情况	已知条件	P值	何时拒绝H ₀	备注
H_0 : $\mu = \mu_0$	σ	$2P\left\{z \ge \left \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}\right \right\} = 2 - 2\Phi\left(\left \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}\right \right)$		
H_1 : $\mu \neq \mu_0$		$2P\Big\{t \ge \left \frac{\overline{X} - \mu_0}{S/\sqrt{n}}\right \Big\}$	/s	
$H_0: \sigma = \sigma_0$ $H_1: \sigma \neq \sigma_0$		$2P\left\{\chi^2 \ge \frac{(n-1)S^2}{\sigma_0^2}\right\}$		
$H_0: \mu \leq \mu_0 \\ H_1: \mu > \mu_0$	σ	$P\!\!\left\{\!z\geq\left \frac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}\right \!\right\}\!\!=\!1\!-\!\Phi\!\left(\left \frac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}\right \right)$	P值≤α	Φ(?)可通过查表求得 P{t ≥?}、P{χ² ≥?}可由计算器算得
或 $H_0: \mu \ge \mu_0$ $H_1: \mu < \mu_0$		$P\Big\{t \ge \left \frac{\overline{x} - \mu_0}{s / \sqrt{n}}\right \Big\}$		$S = \sqrt{\frac{1}{n-1}} \left[(x_1 - \overline{X})^2 + (x_2 - \overline{X})^2 + \dots + (x_n - \overline{X})^2 \right]$
$H_0: \sigma \leq \sigma_0 \\ H_1: \sigma > \sigma_0$		$p \int_{\mathcal{V}^2} \left((n-1)S^2 \right)$		
或 $H_0: \sigma \geq \sigma_0$ $H_1: \sigma < \sigma_0$		$P\{\chi^2 \ge \frac{(\kappa^2 - \gamma^2)}{\sigma_0^2}\}$		

例 1: 设总体 X~N(μ, σ^2), μ未知, σ^2 =100, 现有样本:

 $x_1, x_2, x_3 ... x_{51}, x_{52}$,算得 \overline{X} =62.75,于是猜测 μ >60,现在用 P 值法来检验此。(设显著性水平 α =0.02)

$$H_0$$
: $\mu \le \mu_0 = 60$

$$H_1: \mu > \mu_0 = 60$$

若 P值≤α,则拒绝H₀

即 若
$$1-\Phi(\left|\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\right|) \leq 0.02$$
,则拒绝 H_0

其中: \overline{X} =62.75 μ_0 =60

 $\sigma^2 = 100 \implies \sigma = 10 \quad n = 52$

 $\therefore \Phi\left(\left|\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}\right|\right) = \Phi\left(\left|\frac{62.75 - 60}{10/\sqrt{52}}\right|\right) = \Phi(1.983)$

查表得: Φ(1.983)=0.9762

 $1 - \Phi\left(\left|\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}\right|\right) = 1 - 0.9762 = 0.0238 > 0.02$

∴ 接受H₀

数理统计第七课

一、方差分析

方差来源	平方和	自由度	均方	F比
因素	S_A	类型数-1	$\overline{S_A}$	
误差	S _E	数据总个数-类型数	$\overline{S_E}$	F比
总和	S _T	数据总数-1		

例 1: 设有三台机器,用来生产规格相同的铝合金薄板。 取样,测量薄板的厚度(精确到千分之一厘米),得到结果如表。 请检验机器这一因素对薄板厚度的影响是否显著。(α=0.05)

机器1	机器2	机器3
0.236	0.257	0.258
0.238	0.253	0.264
0.248	0.255	0.259
0.245	0.254	0.267
0.243	0.261	0.262

$$H_0: \mu_1{=}\mu_2{=}\mu_3 \qquad H_1: \mu_1$$
 , μ_2 , μ_3 不全相等

$$S_T = 0.00124533$$

$$S_A = 0.00105333$$

$$S_E = S_T - S_A = 0.000192$$

$$\overline{S_A} = \frac{0.00105333}{3-1} = 0.00052667$$

$$\overline{S_E} = \frac{0.000192}{15-3} = 0.000016$$

$$F_{11} = \frac{0.00052667}{0.000016} = 32.92$$

方差来源	平方和	自由度	均方	F比
因素	0.00105333	2	0.00052667	
误差	0.000192	12	0.000016	32.92
总和	0.00124533	14		

查表得 F_{0.05}(2,12)=3.89

$$F_{\text{HL}} > F_{0.05}(2,12)$$

:: 有显著影响

例 2: 右表列出了用于某电器的四种类型的电路的响应时间(以毫秒计)请检验电路类型对电路响应时间的影响是否显著。(α=0.05)

类型1	类型2	类型3	类型4
19	20	16	18
22	21	15	22
20	33	18	19
18	27	26	
15	40	17	

$$H_0: μ_1 = μ_2 = μ_3 = μ_4$$
 $H_1: μ_1, μ_2, μ_3, μ_4$ 不全相等

$$S_T = 714.44$$

$$S_A = 318.98$$

$$S_E = S_T - S_A = 395.46$$

$$\overline{S_A} = \frac{S_A}{\cancel{2} \cancel{2} \cancel{2} \cancel{2} \cancel{2} \cancel{2} - 1} = \frac{318.98}{4-1} = 106.33$$

$$\overline{S_E} = \frac{S_E}{\text{数据总个数-类型数}} = \frac{395.46}{18-4} = 28.25$$

$$F_{tt} = \frac{\overline{S_A}}{\overline{S_E}} = \frac{106.33}{28.25} = 3.76$$

方差来源	平方和	自由度	均方	F此
因素	318.98	3	106.33	
误差	395.46	14	28.25	3.76
总和	714.44	17		

查表得 F_{0.05}(3,14)=3.34

- $F_{tt} > F_{0.05}(3,14)$
- :: 有显著影响

数理统计第八课

一、求一元线性回归模型系数

例 1: 为研究温度对某化学反应产品得率的影响,测得数据如下。 求相应的一元线性回归模型系数。

温度 x	100	110	120	130	140	150	160	170	180	190
得率 Y	45	51	54	61	66	70	74	78	85	89

$$\begin{split} S_{xy} &= (100 \times 45 + 110 \times 51 + \dots + 190 \times 89) \\ &- \frac{1}{10} (100 + 110 + \dots + 190) (45 + 51 + \dots + 89) = 3985 \\ S_{xx} &= (100^2 + 110^2 + \dots + 190^2) \\ &- \frac{1}{10} (100 + 110 + \dots + 190)^2 = 8250 \\ \hat{b} &= \frac{3985}{8250} = 0.48303 \\ \hat{a} &= \frac{1}{10} (45 + 51 + \dots + 89) - \frac{1}{10} (100 + 110 + \dots + 190) \times 0.48303 \end{split}$$

$$\therefore Y = -2.73935 + 0.48303x$$

=-2.73935

二、对一元线性回归模型的方差进行估计

例 1:为研究温度对某化学反应产品得率的影响,测得数据如下。请对一元线性回归模型的方差进行估计。

温度 x	100	110	120	130	140	150	160	170	180	190
得率 Y	45	51	54	61	66	70	74	78	85	89

$$S_{xy}=3985$$
 $\hat{b} = 0.48303$ $S_{yy}=(45^2 + 51^2 + \dots + 89^2) - \frac{1}{10}(45 + 51 + \dots + 89)^2 = 1932.1$ $\widehat{\sigma^2} = \frac{1932.1 - 0.48303 \times 3985}{10 - 2} = 0.90$

三、在一元线性回归模型中检验回归效果显著性

例 1: 为研究温度对某化学反应产品得率的影响,测得数据如下。 取 α =0.05 检验回归效果的显著性。

温度 x	100	110	120	130	140	150	160	170	180	190
得率 Y	45	51	54	61	66	70	74	78	85	89

$$\hat{b} = 0.48303$$

$$S_{xx} = 8250$$

$$\widehat{\sigma^2} = 0.90$$

设
$$H_0$$
: $b=0$, H_1 : $b\neq 0$

$$\frac{|\widehat{b}|}{\widehat{\sigma}}\sqrt{S_{xx}} = \frac{_{|0.48303|}}{\sqrt{0.90}}\sqrt{8250} = 46.25$$

$$\alpha = 0.05 \Rightarrow \frac{\alpha}{2} = 0.025$$

- : 46.25≥2.3060
- $\therefore \frac{|\widehat{b}|}{\widehat{\sigma}} \sqrt{S_{xx}} \ge t_{\frac{\alpha}{2}}(n-2)$
- :: 回归效果显著

四、在一元线性回归模型中求系数 b 的置信区间

例 1: 为研究温度对某化学反应产品得率的影响,测得数据如下。

取 α =0.05 求系数 b 的置信区间。

温度x	100	110	120	130	140	150	160	170	180	190
得率 Y	45	51	54	61	66	70	74	78	85	89

$$\hat{b} = 0.48303$$

$$S_{xx} = 8250$$

$$\widehat{\sigma^2} = 0.90$$

$$\alpha = 0.05 \Rightarrow \frac{\alpha}{2} = 0.025$$

$$t_{\frac{\alpha}{2}}(n-2)\frac{\hat{\sigma}}{\sqrt{S_{xx}}}=2.3060\times\frac{\sqrt{0.90}}{\sqrt{8250}}=0.02409$$

: 置信区间为 (0.48303-0.02409, 0.48303+0.02409)

即 (0.45894, 0.50712)

五、Y约为x的指数函数时,求Y关于x的回归方程

例 1: 下表是 1957 年美国旧轿车价格的调查资料。现以 x 表示轿车的使用年数,Y 表示相应的平均价格,作出散点图,求 Y 关于 x 的回归方程。

使用 年数 X	1	2	3	4	5	6	7	8	9	10
平均 价格Y	2651	1943	1494	1087	765	538	484	290	226	204

使用 年数 X	1	2	3	4	5	6	7	8	9	10
lnY	7.8827	7.5720	7.3092	6.9912	6.6399	6.2879	6.1821	5.6699	5.4205	5.3181

经计算得:

 $\hat{b} = -0.29768$

 $\hat{a} = 8.164585$

 $Y = e^{8.164585 - 0.29768x} = 3514.26e^{-0.29768x}$