#### Microeletrônica I

LAB 2

# Projeto I – Decodificador BCD para 7 segmentos

 A figura I mostra um decodificador BCD para 7 segmentos, com as saídas ativas em nível lógico baixo. A figura 2 mostra os displays de 7 segmentos do kit nexys 2.



Figura 1 – Decodificador BCD para 7 segmentos.

# Projeto I – Decodificador BCD para 7 segmentos



Figura 2 – Displays de 7 segmentos do kit nexys 2.

### Projeto I – Decodificador BCD para 7 segmentos

- Implemente em VHDL o decodificador BCD para 7 segmentos. Utilize apenas código concorrente (instruções:WHEN, SELECT e GENERATE);
- 2) Apresente a simulação comportamental para diferentes combinações das entradas;
- 3) Apresente o esquemático RTL obtido após a síntese;
- 4) Para implementação no kit Nexys 2, utilize os switches para as entradas do circuito e 1 display de 7 segmentos para as saídas. Obs: será necessário mapear o anodo do SSD escolhido).

Obs: Os pinos de entrada e saída devem ser do tipo std\_logic

### Projeto 2 - Peso de Hamming

O peso de Hamming de um vetor é o número de 'I's neste vetor. Por exemplo, o peso de Hamming do vetor "1001011" é 4.

#### Projeto 2 - Peso de Hamming

- I) Projete um circuito que determine o peso de Hamming de um vetor de comprimento genérico, utilizando apenas código concorrente (instruções: WHEN, SELECT e GENERATE);
- 2) Apresente a simulação para diferentes combinações das entradas;
- 3) Apresente o esquemático RTL obtido após a síntese;
- 4) Para implementação no kit Nexys 2 defina N=8. Utilize os switches para as entradas do circuito e um display de 7 segmentos mostrar o valor da saída (para isso reutilize o decodificador BCD implementado no projeto 1).

Obs: Todas as portas de entrada e saída devem ser especificadas como STD\_LOGIC(\_VECTOR).

### Projeto 3 – Ordenador binário com GENERATE

- Utilizando apenas código concorrente (instruções:WHEN, SELECT e GENERATE), projete um circuito capaz de ordenar os bits de um vetor de comprimento genérico. A ordem deve ser da esquerda para a direita, com todos os 'l's vindo primeiro (por exemplo, "00011001" se tornará "11100000").
  - Sugestão: primeiro conte o número de 'l's (isto é, determine o peso de Hamming do vetor) e depois realize a ordenação.
- 2) Apresente a simulação para diferentes combinações das entradas.
- 3) Para implementação no kit Nexys 2, defina N=8. Utilize os switches para o vetor de entrada e LEDs para o vetor de saída.

Obs: Os pinos de entrada e saída devem ser do tipo std\_logic ou std\_logic vector

# Projeto 4 - Circuito Aritmético com STD\_LOGIC



| Tipo            | Operação        | Opcode |
|-----------------|-----------------|--------|
| Unsigned        | y = a + b       | 000    |
|                 | y = a - b       | 001    |
|                 | y = - a + b     | 010    |
|                 | y = a + b + cin | 011    |
| Signed          | y = a + b       | 100    |
|                 | y = a - b       | 101    |
|                 | y = - a + b     | 110    |
|                 | y = a + b + cin | 111    |
| <b>F</b> ' 4/1\ |                 |        |

Figura 1(b)

Figura 3 - Mini ULA.

### Projeto 4 - Circuito Aritmético com STD\_LOGIC

- Projete o circuito aritmético mostrado na figura 3(a) que realiza as operações especificadas na tabela da figura 3(b) (que é uma mini ULA, com apenas a unidade aritmética). Utilize apenas código concorrente.
- No código VHDL, o número de bits das entradas a e b e da saída y deve ser genérico (N), para isso use o parâmetro GENERIC.
- 3) Apresente a simulação para diferentes combinações das entradas; Para simulação defina N=4.
- 4) Apresente o esquemático RTL obtido após a síntese;
- Para apresentação no kit Nexys2 defina N=2. Utilize os switches para as entradas do circuito e os LEDs para as saídas;

Obs: Todas as portas de entrada e saída devem ser especificadas como STD\_LOGIC(\_VECTOR).

#### Apresentação dos Resultados

- Implementar os projetos na ferramenta ISE e apresentar o funcionamento de cada projeto no kit Nexys2 (arquivo .BIT) durante a aula de laboratório.
- Elaborar um relatório técnico incluindo a descrição e o desenvolvimento de cada projeto, assim como os esquemáticos RTL obtidos após a síntese. As simulações para diferentes combinações das entradas também devem ser apresentadas (todos os resultados mostrados devem ser comentados e justificados). Lembre-se de incluir no relatório os códigos do design e do testbench e resumo dos recursos lógicos utilizados.
- O trabalho deverá ser entregue pela UFPR Virtual (faça um arquivo compactado incluindo os projetos no ISE e o relatório).