# Kapitel 1

# Einführung des Kähler-Differentials

# **Definition Leibnizregel**

**Definition 1.** [Kapitel 16 David Eisenbud 1994] Sei S ein Ring und M ein S-Modul

Ein Homomoprphismus abelscher Gruppen  $d: S \longrightarrow M$  ist eine <u>Derivation</u>, falls gilt:

$$\forall s_1, s_2 \in S : d(s_1 \cdot s_2) = s_1 d(s_2) + s_2 d(s_1)$$
 (Leibnitzregel)

Sei S eine R-Algebra, dann nennen wir eine <u>Derivation</u>  $d: S \longrightarrow M$  <u>R-linear</u>, falls sie zusätzlich ein R-Modulhomomorphismus ist, also falls gilt:

$$\forall r_1, r_2 \in R \, \forall s_1, s_2 \in S : d(r_1s_1 + r_2s_2) = r_1d(s_1) + r_2d(s_2)$$

### Summe von Derivationen

Lemma 2. [Eigene Überlegung]

Seien S eine R-Algebra und M ein S-Modul. Seien weiter  $d, d': S \longrightarrow M$  zwei Derivationen. Dann ist auch  $d, d': S \longrightarrow M$  eine Derivation.

Beweis. Zeige also, dass d+d' die Leibnizregel erfüllt (siehe definition 1). Seien dazu  $s_1, s_2 \in S$  beliebig, somit gilt:

$$(d+d')(s_1s_2) = d(s_1s_2) + d'(s_1s_2)$$

$$= s_1d(s_2) + s_2d(s_1) + s_1d'(s_2) + s_2d'(s_1)$$

$$= s_1(d(s_2) + d'(s_2)) + s_2(d(s_1) + d'(s_1))$$

$$= s_1(d+d')(s_2) + s_2(d+d')(s_1)$$

Damit erfüllt  $d + d' : S \longrightarrow M$  die Leibnizregel und ist eine Derivation.

### Differenzial indempotenter Elemente

Lemma 3. [Aufgabe 16.1 David Eisenbud 1994]

Sei S ein Ring und M ein S-Modul und  $d: S \longrightarrow M$  eine Derivation. Sei weiter  $a \in S$  ein indempotentes Element  $(a^2 = a)$ .

Dann gilt 
$$d(a) = 0$$
.

Insbesondere gilt somit auch d(1) = 0.

Beweis. Nutze hierfür allein die Leibnizregel (crefDefinition Leibnizregel)

Schritt 1: 
$$d_S(a) = d_S(a^2) = ad_S(a) + ad_S(a)$$
  
Schritt 2:  $ad_S(a) = ad_S(a^2) = a^2d_S(a) + a^2d_S(a) = ad_S(a) + ad_S(a)$   
 $\Rightarrow d_S(a) = ad_S(a) = 0$ 

#### **Definition Kaehler-Differenzial**

**Definition 4.** Kapitel 16 David Eisenbud 1994

 $Sei\ S\ eine\ R$ -Algebra.

Das S-Modul  $\Omega_{S/R}$  der Kähler-Differenziale von S über R und die dazugehörige universelle R-lineare Derivation  $d_S: S \longrightarrow \Omega_{S/R}$  mit  $\operatorname{im}(d_S) = \Omega_{S/R}$  sind durch die folgende universelle Eigenschaft definiert:

Für alle R-linearen Derivationen  $e: S \longrightarrow M$  von S in ein S-Modul M existiert genau ein S-Modulhomomorphismus  $e': \Omega_{S/R} \longrightarrow M$ , sodass folgendes Diagramm kommutiert:



### Eindeutigkeit des Kaehler-Differentials

**Lemma 5.** (Das Kähler-Differentials ist eindeutig) [Eigene Überlegung] Sei S eine R-Algebra.

Dann ist das S-Modul  $\Omega_{S/R}$  der Kähler-Differenziale von S über R und die dazugehörige universelle R-lineare Derivation  $d_S$  bis auf eine eindeutige Isomorphie eindeutig bestimmt.

Beweis. Seien  $d_S: S \longrightarrow \Omega_{S/R} und d_S': S \longrightarrow \Omega_{S/R}'$  beide eine universelle R-lineare Derivation.

Durch die universelle Eigenschaft der universellen Ableitung erhalten wir eindeutig bestimmte Funktionen  $\varphi:\Omega_{S/R}\longrightarrow\Omega'_{S/R}$  und  $\varphi':\Omega'_{S/R}\longrightarrow\Omega_{S/R}$ , für welche die folgenden Diagramme kommutieren:



Wende nun die Universelle Eingenschaft von  $d_S$  auf  $d_S$  selbst an und erhalte  $id_{\Omega_{S/R}} = \varphi' \circ \varphi$ .

$$S \xrightarrow{d_S} \Omega_{S/R}$$
 
$$\downarrow \exists ! i d_{\Omega_{S/R}} = \varphi' \circ \varphi$$
 
$$\Omega_{S/R}$$

Analog erhalte auch  $id_{\Omega'_{S/R}} = \varphi \circ \varphi'$ . Damit existiert genau ein Isomorphismus  $\varphi' \circ \varphi : \Omega_{R/S} \longrightarrow \Omega'_{R/S}$  mit  $d'_S = d_S \circ (\varphi' \circ \varphi)$ .

# Differenzial ist Ableitung

Korrolar 6. [Eigene Überlegung]

Für Differentialraum des Plynomrings R[x] gilt:

$$\Omega_{R[x]/R} = R[x]\langle \div R[x](x)\rangle$$

Wobei  $R[x]\langle d_{R[x]}(x)\rangle$  das von  $d_{R[x]}(x)$  erzeugt Modul über R[x] ist. Genauer gesagt entspricht die universellen Derivation des Polynomrings R[x] der formalen Ableitung von Polynomfunktionen, wie wir sie aus der Analysis kennen. Für  $P(x) \in R[x]$  gilt also:

$$d_{R[x]}(P(x)) = P'(x)d_{R[x]}(x)$$

Beweis. Da  $d_{R[x]}$  R-linear ist, genügt es die Behauptung für Monome  $P(x) \in k[x]$  zu zeigen, führe dazu eine Induktion über den Grad n von  $P(x) = ax^n$ :

**IA**: 
$$d_{R[x]}(ax) = ad_{R[x]}(x) + xd_{R[x]}(a) = ad_{R[x]}(x)$$

**IV**: Für 
$$n \in \mathbb{N}$$
 gilt  $d_S(ax^n) = nax^{n-1}d_S(x)$ 

**IS**: 
$$d_S(ax^{n+1}) = ax^n d_{R[x]}(x) + x d_{R[x]}(ax^n) = ax^n d_{R[x]}(x) + x \cdot (nax^{n-1} d_{R[x]}(x))$$
  
=  $(n+1)ax^n d_{R[x]}(x)$ 

Propositon 11 delta

Lemma 7. [Lemma 16.11 David Eisenbud 1994]

Seien S, S' zwei R-Algebran. Sei weiter  $f: S \longrightarrow S'$  ein R-Algebranhomomorphismus und  $\delta: S \longrightarrow S'$  ein Homomorphismus abelscher Gruppen mit  $\delta(S)^2 = 0$ . Dann qilt:

 $f + \delta$  ist ein R-Algebrenhomomorphismus

 $\delta$  ist eine R-linear und  $\forall s_1, s_2 \in S : \delta(s_1 \cdot s_2) = f(s_1)\delta(s_2) + f(s_2)\delta(s_1)$ .

Beweis.

" $\Rightarrow$  ": Da f und  $f + \delta$  R-linear sind, ist auch  $\delta = (f + \delta) - f$  R-linear. Seien nun  $s_1, s_2 \in S$  beliebig, somit gilt:

$$(f + \delta)(s_1 \cdot s_2) = (f + \delta)(s_1) \cdot (f + \delta)(s_2)$$

$$\Rightarrow f(s_1 \cdot s_2) + \delta(s_1 \cdot s_2) = f(s_1)f(s_2) + f(s_1)\delta(s_2) + f(s_2)\delta(s_1) + \delta(s_1)\delta(s_2)$$

$$\Rightarrow \delta(s_1 \cdot s_2) = f(s_1)\delta(s_2) + f(s_2)\delta(s_1) + \delta(s_1)\delta(s_2) \quad mit \ \delta(s_1)\delta(s_2) \in \delta(S)^2 = 0$$

$$\Rightarrow \delta(s_1 \cdot s_2) = f(s_1)\delta(s_2) + f(s_2)\delta(s_1) + \delta(s_1)\delta(s_2)$$

" $\Leftarrow$  ": Da f und  $\delta$  beide R-lineare Homomorphismen abelscher Gruppen sind, trifft die auch für  $f + \delta$  zu.

Wähle nun also  $s_1, s_2 \in S$  beliebig, somit gilt:

$$(f + \delta)(s_1) \cdot (f + \delta)(s_2)$$

$$= f(s_1)f(s_2) + f(s_1)\delta(s_2) + f(s_2)\delta(s_1) + \delta(s_1)\delta(s_2)$$

$$= f(s_1 \cdot s_2) + \delta(s_1 \cdot s_2)$$

$$= (f + \delta)(s_1 \cdot s_2)$$

Damit haben wir gezeigt, dass  $f + \delta$  ein R-Algebrenhomomorphismus ist.

#### Kontruktion Kaehler-Differential

Theorem 8. (Konstruktion des Kähler-Differentials/Theorem 16.21 David Eisenbud 1994]

Sei S ein R-Algebra. Definiere eine S-Modulstruktur auf  $S \otimes_R S$  durch:

$$S \oplus (S \otimes_R S) \longrightarrow S \otimes_R S, (s, s_1 \otimes s_2) \longmapsto ss_1 \otimes s_2$$

Betrachte  $\mu: S \otimes_R S \longrightarrow S$ ,  $s_1 \otimes s_2 \longmapsto s_1 \cdot s_2$  mit  $I := kern(\mu)$ .

Dann ist durch  $e: S \longrightarrow I/I^2$ ,  $s \longmapsto [s \otimes 1 - 1 \otimes s]$  die universelle R-lineare Derivation auf S definiert.

Beweis. Zeige zunächst, dass e eine R-linare Derivation ist. Betrachte dazu:

$$f_1: S \longrightarrow S \otimes_R S$$
,  $s \longmapsto s \otimes 1$ ,  $f_2: S \longrightarrow S \otimes_R S$ ,  $s \longmapsto 1 \otimes s$   
Damit ist die Wirkung von  $S$  auf  $S \otimes_R S$  durch  
 $S \oplus (S \otimes_R S) \longrightarrow S \otimes_R S$ ,  $(s, s_1 \otimes s_2) \longmapsto f_1(s)(s_1 \otimes s_2)$  gegeben.

Setze nun in der Notation von lemma 7  $f=f_1$  und  $\delta=e.$ 

Damit ist  $f+\delta=f_1+\delta=f_2$  ein R-Algebra-Homomorphismus und es folgt aus lemma 7 und unserer Definition der Wirkung von S auf  $S\otimes_R S$ , dass e eine R-lineare Derivation ist. Durch die Universelle Eigenschaft von  $d_S$  existiert also genau ein R-Algebrenhomomorphismus  $e':\Omega_{S/R}\longrightarrow I/I^2$  mit  $e=d_S\circ e'$ . Betrachte nun folgende Umkehrabbildung  $\phi$  zu e':

$$\phi: I/I^2 \longrightarrow \Omega_{S/R}, [s_1 \otimes s_2] \longmapsto s_1 d_S(s_2)$$

Um zu prüfen, dass  $\phi$  die Umkehrabbildung von e ist, wähle  $s, s_1, s_2 \in S$  beliebig, somit gilt:

$$(\phi \circ e')(d_S(s)) = (\phi \circ e)(s) = \phi([s \otimes 1 - 1 \otimes s]) = sd_S(1) + 1d_S(b) = d_S(b)$$

$$(e' \circ \phi)([s_1 \otimes s_2]) = e'(s_1d_{s_2}) = s_1e(s_2) = [s_11 \otimes s_2 - s_1s_2 \otimes 1] = [s_1 \otimes s_2 - s_1s_2 \otimes 1] = [s_1 \otimes s_2]$$

Differenzial des Produktes von Algebren [Proposition 16.10 David Eisenbud 1994]

**Proposition 9.** Seien  $S_1, \ldots, S_n$  R-Algebran. Sei dazu  $S := \prod_{i \in \{1, \ldots, n\}} S_i$  deren direktes Produkt. Dann gilt:

$$\Omega_{S/R} = \prod_{i \in \{1, \dots, n\}} \Omega_{S_i/R}$$

Beweis. Sei für  $i \in \{1, ..., n\}$  jeweils  $e_i \in S$  die Einbettung des Einselement's von  $S_i$  in S, somit ist  $p_i : e_i S \longrightarrow S_i$  ein Isomorphismus.

Nutze weiter, dass  $e_i$  jeweils ein indempotentes Element von  $(e_i^2 = e_i)$  von S ist:

Nach lemma 3 gilt 
$$d_S(e_i)=0$$
  $\Rightarrow \forall s \in s: d_S(e_i s)=d_S({e_i}^2 s)=e_i d_S(e_i s)+e_i s d_S(e_i)=e_i d_S(e_i s)$ 

Mit diesem Wissen können wir einen Isomorphismus  $\Phi: \Omega_{S/R} \longrightarrow \prod_{i \in \{1,...,n\}} \Omega_{S_i/R}$  definieren:

$$\Omega_{S/R} \qquad \qquad d_S(s) = \sum_{i \in \{1, \dots, n\}} d_S(e_i s)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\prod_{i \in \{1, \dots, n\}} e_i d_S(e_i S) \qquad \qquad (e_1 d_S(e_1 s), \dots, e_n d_S(e_n s))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\prod_{i \in \{1, \dots, n\}} \Omega_{S_i/R} \qquad ((d_{S_1} \circ p_1)(s), \dots, (d_{S_n} \circ p_n)(s))$$

Da der Differenzialraum  $\Omega_{S/R}$  bis auf eine eindeutige Isomophie eindeutig ist (lemma 5), definiere diesen ab jetzt als  $\prod_{i \in \{1,...,n\}} \Omega_{S_i/R}$ .

# Realtiv Cotangent Sequenz

Satz 10. (Relativ Cotangent Sequenz) [vgl. Proposition 16.2 David Eisenbud 1994]

Seien  $\alpha:R\longrightarrow S$  und  $\beta:S\longrightarrow T$  zwei Ringhomomorphismen. Dann existiert folgende exakte Sequenz:

$$T \otimes_S \Omega_{S/R} \xrightarrow{D_\beta} \Omega_{T/R} \xrightarrow{d_{T_R}(t) \mapsto d_{T_S}(t)} \Omega_{T/S} \longrightarrow 0$$

$$mit: D_\beta: T \otimes_S \Omega_{S/R} \longrightarrow \Omega_{T/R}, \ t \otimes d_S(s) \longmapsto t(d_{T_R} \circ \beta)(s)$$

Im Besonderen gilt für die Differenzialräume von T über R und S:

$$\Omega_{T/S} \simeq \Omega_{T/R}/T\langle (d_{T_R} \circ \beta)(S) \rangle$$

Beweis. Durch  $st:=\beta(S)\cdot t$  und  $rt:=(\beta\circ\alpha)(r)\cdot t$  können wir T als S- bzw. R-Algebra betrachten.

Zeige zunächst, dass  $g:\Omega_{T/R}\longrightarrow\Omega_{T/S}\,,\,d_{T_R}(t)\longmapsto d_{T_S}(t)$  surjektiv ist:

 $d_{T_S}$  ist R - Linear, da R durch  $(\beta \circ \alpha)$  auf T wirkt, es lässt sich also die universelle Eigenschaft von  $d_{T_R}$  auf  $d_{T_S}$  anwenden:

$$T \xrightarrow[d_{T_S}]{d_{T_R}} \Omega_{T/R}$$

$$\Omega_{T/S}$$

Wir können also alle Elemente  $d_{T_S}(s) \in \Omega_{T/S}$  als  $g(d_{T_R}(s))$  darstellen. Dies zeigt, dass  $g:\Omega_{T/R} \longrightarrow \Omega_{T/S}$ ,  $d_{T_R}(t) \longmapsto d_{T_S}(t)$  surjektiv ist.

Zeige nun, dass  $\Omega_{T/S} \simeq \Omega_{T/R}/T\langle (d_{T_R} \circ \beta)(S) \rangle$  gilt:

Definiere zunächst folgende S-lineare Derivation:

$$e: T \longrightarrow \Omega_{T/R}/T\langle (d_{T_R} \circ \beta)(S) \rangle, t \longmapsto [d_{T_R}(t)]_{T\langle (d_{T_R} \circ \beta)(S) \rangle}$$

Wir sehen, dass e auch S-linear ist:

Seien dazu 
$$s \in S$$
 und  $t \in T$  beliebig, somit gilt: 
$$e(st) = [d_{T_R}(st)]_{T\langle (d_{T_R} \circ \beta)(S)\rangle}$$

$$= [\beta(s)d_{T_R}(t)]_{T\langle (d_{T_R}\circ\beta)(S)\rangle} + [td_T(\beta(s))]_{T\langle (d_T\circ\beta)(S)\rangle}$$
$$= [\beta(s)d_T(t)]_{T\langle (d_{T_R}\circ\beta)(S)\rangle} + 0 = se(t)$$

Dies bedeutet, dass wir die universelle Eigenschaft von  $d_{T_S}$  anwenden können:



Dadurch erhalten wir  $e': \Omega_{T/S} \longrightarrow \Omega_{T/R}/T\Omega_{S/R}$ . Für die Umkehrfunktion  $\phi$ nutze  $g:\Omega_{T/R}\longrightarrow\Omega_{T/S}\,,\,d_{T_R}(t)\longmapsto d_{T_S}(t)$ vom Beginn des Beweises:

Für alle 
$$s \in S$$
 gilt  $d_{T_S}(s) = 0$ .

Somit gilt 
$$T\langle (d_{T_R} \circ \beta)(S) \rangle \subseteq kern(g)$$
.

Also ist die Umkehrfunktion  $\phi$  von e' wohldefiniert:

$$\phi:\Omega_{T/R}/T\langle (d_{T_R}\circ\beta)(S)\rangle \longrightarrow \Omega_{T/S}\,,\, [d_{T_R}(t)]_{T\langle (d_{T_R}\circ\beta)(S)\rangle} \longmapsto d_{T_S}(t).$$

Damit gilt  $\Omega_{T/S} \simeq \Omega_{T/R}/T\langle (d_{T_R} \circ \beta)(S) \rangle$ .

Auf unsere Sequenz bezogen bedeutet dies:

Es gilt 
$$im(\Omega_{T/R} \to \Omega_{T/S}) \simeq \Omega_{T/R}/im(D_{\beta})$$
.

Somit gilt auch 
$$im(D_{\beta}) = kern(\Omega_{T/R} \to \Omega_{T/S}).$$

Damit haben wir gezeigt, dass die Relative Cotangent Sequenz exakt ist.

# Konormale Sequenz [vlg. Proposition 16.3 David Eisenbud 1994]

**Satz 11.** Sei  $\pi: S \longrightarrow T$  ein R-Algebrenephimorphismus mit  $Kern(\pi) := I$ Dann ist folgende Sequenz rechtsexakt:

$$I/I^2 \xrightarrow{1 \otimes d_S} T \otimes_S \Omega_{S/R} \xrightarrow{D\pi} \Omega_{T/R} \longrightarrow 0$$

$$mit: 1 \otimes d_S: I/I^2 \longrightarrow T \otimes_S \Omega_{S/R}, [s] \longmapsto 1 \otimes d_S(s)$$

$$D\pi: T \otimes_S \Omega_{S/R} \longrightarrow \Omega_{T/R}, t \otimes d_S(s) \longmapsto t \cdot (d_S \circ \pi)(s)$$

Beweis.

Zeigen zunächst, dass  $1 \otimes d_S$  wohldefiniert ist. Seien dazu  $s,s' \in I$  beliebig, somit gilt:

$$(1 \otimes d_S)(s \cdot s') = 1 \otimes sd_S(s') + 1 \otimes s'd_S(s) = \pi(s) \otimes d_S(s') + \pi(s') \otimes d_S(s) = 0$$

 $D\pi$  ist surjektiv, da  $\Omega_{S/R}$  und  $\Omega_{T/S}$  jeweils von  $d_S$  und  $d_T$  erzeugt werden und sich somit die Surjektivität von  $\pi$  auf  $D\pi$  vererbt:

$$\Omega_{S/R} \xrightarrow{D\pi} \Omega_{T/R}$$

$$\begin{array}{ccc}
d_S & & d_T \\
S & \xrightarrow{\pi} & T
\end{array}$$

Für  $im(1 \otimes d_S) \stackrel{!}{=} kern(D\pi)$  zeige  $(T \otimes_S \Omega_{S/R})/Im(f) \simeq \Omega_{T/R}$ :

$$(T \otimes_S \Omega_{S/R})/(T \otimes_S d_S(I)) = T \otimes_S (\Omega_{S/R}/d_S(I)) \simeq T \otimes_S d_S(S/I) \simeq T \otimes_S d_T(T)$$

# Kapitel 2

# Kolimiten

# 2.1 Einführung in den Kolimes

### Definition des Kolimes

**Definition 1.** [vgl. Anhang A6 David Eisenbud 1994] Sei A eine Kategorie.

- Ein <u>Diagramm</u> über A ist eine Kategorie B zusammen mit einem Funktor  $\mathcal{F}: \mathcal{B} \longrightarrow A$ .
- Sei  $\mathcal{F}: \mathcal{B} \longrightarrow \mathcal{A}$  ein Diagramm und  $A \in \mathcal{A}$  ein Objekt. Dann definieren wir einen Morphismus  $\psi: \mathcal{F} \longrightarrow A$  als eine Menge von Funktionen  $\{\psi_B \in Hom(F(B), A) | B \in \mathcal{B}\}$ , wobei für alle  $B_1, B_2 \in \mathcal{B}$  und  $\varphi \in Hom(B_1, B_2)$  folgendes Diagramm kommutiert:



• Der <u>Kolimes</u>  $\varinjlim \mathcal{F}$  eines Diagramms  $\mathcal{F}: \mathcal{B} \longrightarrow \mathcal{A}$  ist ein Paar aus einem Objekt  $A \in \mathcal{A}$  zusammen mit einem Morphismus  $\psi: \mathcal{F} \longrightarrow A$ , welche folgende universelle Eingenschaft erfüllen:

Für Objekte  $A' \in \mathcal{A}$  und alle Morphismen  $\psi' : \mathcal{F} \longrightarrow A'$  existiert genau eine Funktion  $\varphi \in Hom(A, A')$ , sodass folgendes Diagramm kommutiert:



Eindeutigkeit des Kolimes [vgl. A6 David Eisenbud 1994]

**Lemma 2.** Seien  $\mathcal{B}$ ,  $\mathcal{A}$  zwei Kategorien und  $\mathcal{F}: \mathcal{B} \longrightarrow \mathcal{A}$  ein Funktor. Dann ist im Falle der Existenz  $\lim \mathcal{F}$  eindeutig bestimmt.

Beweis. Seien  $A_1 \in \mathcal{A}, (\psi_1 : \mathcal{F} \longrightarrow A_1)$  und  $A_2 \in \mathcal{A}, (\psi_2 : \mathcal{F} \longrightarrow A_2)$  beide gleich  $\lim \mathcal{F}$ .

Erhalte durch die universelle Eigenschaft des Kolimes die eindeutig bestimmten Funktionen  $\varphi_1 \in Hom_{\mathcal{A}}(A_1, A_2)$  und  $\varphi_2 \in Hom_{\mathcal{A}}(A_2, A_1)$ , für welche die folgende Diagramme kommutieren:



Wende nun die Universelle Eigenschaft von  $\psi_1$  auf  $\psi_1$  selbst an und erhalte  $id_{A_1} = \varphi_2 \circ \varphi_1$ . Analog erhalte auch  $id_{A_2} = \varphi_1 \circ \varphi_2$ .



Somit existiert genau eine Isomorphie  $\varphi_1: A_1 \longrightarrow A_2$ .

### Vereinfachung des Kolimes

Korrolar 3. [Eigene Überlegung ]

Sei  $\mathcal{A}$  eine Kategorie und  $(\mathcal{B}, \mathcal{F} : \mathcal{B} \longrightarrow \mathcal{A})$  ein Diagramm. Betrachte die Unterkategorie  $\mathcal{F}(B) \subseteq \mathcal{A}$  zusammen mit dem Inklusionsfunktor  $\mathcal{F}(B) \hookrightarrow \mathcal{A}$  ebenfalls als Diagramm. Dann gilt:

$$\varinjlim \mathcal{F} \ existiert \ genau \ dann, \ wenn \ \varinjlim (\mathcal{F}(\mathcal{B}) \hookrightarrow \mathcal{A}) \ existiert.$$
$$Mit \ \varinjlim \mathcal{F} = \varinjlim (\mathcal{F}(\mathcal{B}) \hookrightarrow \mathcal{A}).$$

Beweis. Dies folgt direkt aus unserer Definition von Morphismen:

In definition 1 haben wir einen Morphismus  $\psi: \mathcal{F} \longrightarrow A$  als eine Menge von Funktionen  $\psi_{\mathcal{B}} \in Hom_{\mathcal{A}}(\mathcal{F}(B), A)$  definiert. Dies zeigt, dass es keinen Unterschied macht, ob wir von Morphismen  $\psi: \mathcal{F} \longrightarrow A$  oder von Morphismen  $\psi: (\mathcal{F}(B) \hookrightarrow A) \longrightarrow A$  reden.

Wenn wir nun die universelle Eigenschaft des Kolimes genauer betrachten, sehen wir, dass diese sich nur auf Morphismen  $\mathcal{F} \longrightarrow A$  bzw.  $(\mathcal{F}(\mathcal{B}) \hookrightarrow \mathcal{A}) \longrightarrow A$  und auf die Kategorie  $\mathcal{A}$  bezieht. Es macht also keinen Unterschied, ob wir vom Kolimes des Diagramms  $(\mathcal{B}, \mathcal{F} : \mathcal{B} \longrightarrow \mathcal{A})$  oder vom Kolimes des Diagramms  $(\mathcal{F}(\mathcal{B}), \mathcal{F}(\mathcal{B}) \hookrightarrow \mathcal{A})$  sprechen.

Es genügt also im Fall von Kolimtenn Diagramme  $(\mathcal{B}, \mathcal{B} \hookrightarrow \mathcal{A})$  mit  $\mathcal{B} \subseteq \mathcal{A}$  zu betrachten. Zur Vereinfachung schreibe für  $\mathcal{B} \subseteq \mathcal{A}$  in Zukunft  $\varinjlim \mathcal{B}$  anstatt von  $\varinjlim (\mathcal{B} \hookrightarrow \mathcal{A})$ .

## DifferenzkokernUndKoproduktDef

**Definition 4.** [vlg. A6 David Eisenbud 1994] Sei A eine Kategorie.

- Das Koprodukt von  $\{B_i\}_{i\in\Lambda}\subseteq\mathcal{A}$  wird durch  $\coprod_{i\in\Lambda}\{B_i\}:=\varinjlim_{\longrightarrow}\mathcal{B}$  definiert, wobei  $\{B_i\}_{i\in\Lambda}$  die Objekte und die Identitätsabbildungen  $\{id_{B_i}:B_i\longrightarrow B_i\}_{i\in\Lambda}$  die einzigen Morphismen von  $\mathcal{B}$  sind.
- Der Differenzkokern von  $f, g \in Hom_{\mathcal{A}}(C_1, C_2)$  wird durch  $\varinjlim \mathcal{C}$  definiert, wobei  $\{C_1, C_2\}$  die Objekte und  $\{f, g\}$  zusammen mit den Identitätsabbildungen die Morphismen von  $\mathcal{C}$  sind.

### NeuDifferenzenkokerndef

# Bemerkung 5. | Wikipedia |

Sei A eine Kategorie. Sei weiter  $C_1, C_2 \in Obj_A$  und  $f, g \in Hom_A(C_1, C_2)$ . Im Falle der Existenz ist der Differnenzenkokern von f, g nach definition 4 durch ein Objekt  $C \in Obj_A$  und einen Morphismus  $\psi = \{\psi_{C_1}, \psi_{C_2}\}$  gegeben, wobei gilt:

$$\psi_{C_2} = f \circ \psi_1 = g \circ \psi_2$$

Wir sehen, dass  $\psi$  eindeutig durch  $q := \psi_2 \in Hom_{\mathcal{A}}(C_1, C_2)$  gegeben ist. Der Differnzenkokern ist also eindeutig durch  $(C \in obj_{\mathcal{A}}, q \in Hom_{\mathcal{A}}(C_1, C_2))$  gegeben, wobei q folgenden Eigenschaften besitzt:

Es gilt  $f \circ q = g \circ g$  und für alle  $C \in Obj_A$  und  $q' \in Hom_A$  mit  $f \circ q' = g \circ q'$  existiert genau ein  $\varphi \in Hom_A$ , mit  $q \circ \varphi = q'$ :

$$C_1 \xrightarrow{f,g} C_2 \xrightarrow{q} C$$

$$\downarrow^{q'} \qquad \downarrow^{\exists ! \varphi}$$

$$C'$$

Wenn wir fortan vom Differenzkokern sprechen meinen wir damit das Paar (C,q).

# Kolimes durch Koprodukt und Differenzkokern

**Theorem 6.** [Proposition A6.1 David Eisenbud 1994]

Sei  $\mathcal{A}$  eine Kategorie, in der Koprodukte beliebiger Mengen von Objekten und Differenzkokerne von je zwei Morphismen existieren. Dann existiert für jedes Diagramm  $\mathcal{F}: \mathcal{B} \longrightarrow \mathcal{A}$  dessen Kolimes  $\lim \mathcal{F}$ .

Beweis. In korrolar 3 haben wir gesehen, dass es genügt den Fall  $\mathcal{B}\subseteq\mathcal{A}$  zu betrachten. Konstruiere also für eine beliebige Unterkategorie  $\mathcal{B}\subseteq\mathcal{A}$  deren Kolimes  $\lim\mathcal{B}$ :

Bezeichne für jeden Morphismus  $\gamma \in Morph_{\mathcal{C}}$  dessen Definitionsbreich mit  $B_{\gamma} \in$ 

 $\mathcal{B}$ . Weiter, wenn wir einen Morphismus  $\psi$  gegeben haben und  $\psi_{\gamma(B_{\gamma})}$  betrachten, ist damit  $\psi_B$  gemeint, wobei B die Zielmenge von  $\gamma$  ist. Definiere nun:

- $C_1 := \coprod_{\gamma \in Morph_{\mathcal{B}}} B_{\gamma}$  ist das Koprodukt aller Objekte von  $\mathcal{B}$ , in dem jedes Objekt so oft vorkommt, wie es Definitionsbereich eines  $\gamma \in Morph_{\mathcal{B}}$  ist. Sei  $\psi^1 : \{B_{\gamma} | \gamma \in Morph_{\mathcal{B}}\} \longrightarrow C_1$  der dazugehörige Morphismus.
- $C_2 := \coprod_{B \in Obj_{\mathcal{B}}}$  ist das Koprodukt aller Objekte von  $\mathcal{B}$ . Sei  $\psi^2 : \{B|B \in Obj_{\mathcal{B}}\} \longrightarrow C_2$  der dazugehörige Morphismus.

Konstruiere nun  $f, g \in Hom_{\mathcal{A}}(C_1, C_2)$  so, dass der Differenzkokern von f und g dem Kolimes von  $\mathcal{B}$  entspricht. Nutze dazu die universelle Eigenschaft von  $(C_1, \psi^1) = \lim \{B_{\gamma} | \gamma \in Morph_{\mathcal{B}}\}:$ 

Für f betrachte den Morphismus  $\zeta: \{B_{\gamma}|\gamma \in Morph_{\mathcal{B}}\} \longrightarrow C_2$ , mit  $\zeta_{B_{\gamma}} := \psi_{\gamma(B_{\gamma})}^2$  für  $B_{\gamma} \in \{B_{\gamma}|\gamma \in Morph_{\mathcal{B}}\}$ . Wähle  $f \in Hom_{\mathcal{B}}(C_1, C_2)$  als die eindeutige Funktion, mit  $\zeta = f \circ \psi^1$ .

Für g betrachte den Morphismus  $\zeta':\{B_\gamma|\gamma\in Morph_\mathcal{B}\}\longrightarrow C_2$ , mit  $\zeta'_{B_\gamma}:=\psi^2_{\gamma(B_\gamma)}\circ\gamma$  für  $B_\gamma\in\{B_\gamma|\gamma\in Morph_\mathcal{B}\}$ . Wähle  $g\in Hom_\mathcal{B}(C_1,C_2)$  als die eindeutige Funktion, mit  $\zeta'=g\circ\psi^1$ .



Sei  $C \in Obj_{\mathcal{B}}$  zusammen mit  $q \in Hom_{\mathcal{A}}(C_2, C)$  der Differenzkokern von f, g. Betrachte abschließend  $\psi : \mathcal{B} \longrightarrow C$ , mit  $\psi_B = q \circ \psi_B^2$  für  $B \in Obj_{\mathcal{B}}$ . Um zu sehen, dass  $\psi$  ein Morphismus ist, wähle  $B_1, B_2 \in Obj_{\mathcal{B}}$  beliebig und betrachte folgendes kommutatives Diagramm:



Zeige nun, dass  $(C, \psi)$  die Universelle Eigenschaft des Kolimes besitzt. Nutze dazu nacheinander die universellen Eigenschaften von  $(C_2, \psi^2)$  und (q, C):

Da  $\psi'$  ein Morphismus von  $\mathcal{B}$  nach C' ist, ist  $\psi'$  insbesondere auch ein Morphismus von  $\{B|B\in Obj_{\mathcal{B}}\}$  nach C. Somit existiert genau ein  $q'\in Hom_{\mathcal{B}}(C_2,C')$  mit  $\psi^2\circ q'=\psi'$ .

Zeige nun  $q' \circ f \stackrel{!}{=} q' \circ g$ . Sei dazu  $c \in C_1$  beliebig und  $\gamma \in Morph_{\mathcal{B}}, b \in B_{\gamma}$  mit  $\psi_{B_{\gamma}}^1(b) = c$ , dann gilt:

$$\begin{split} (q' \circ f)(c) &= (q' \circ f \circ \psi_{B_{\gamma}}^{1})(b) = (q' \circ \zeta_{B_{\gamma}})(b) = (q' \circ \psi_{B_{\gamma}}^{2})(b) = \psi'_{B_{\gamma}}(b) \\ & (q' \circ g)(c) = (q' \circ g \circ \psi_{B_{\gamma}}^{1})(b) = (q' \circ \zeta'_{B_{\gamma}})(b) \\ &= (q' \circ \psi_{\gamma(B_{\gamma})}^{2} \circ \gamma)(b) = (\psi'_{\gamma(B_{\gamma})} \circ \gamma)(b) = \psi'_{B_{\gamma}}(b) \end{split}$$

Somit können wir die universelle Eigenschaft von q auf q' anwenden und erhalten ein eindeutiges  $\varphi \in Hom(C, C')$  mit  $q' = q \circ \varphi$ .



Dieses  $\varphi \in Hom(C,C')$  erfüllt auch  $\psi \circ \varphi = \psi^2 \circ q \circ \varphi = \psi^2 \circ q' = \psi'$  und ist nach Konstruktion eindeutig. Damit gilt  $\lim \mathcal{B} = (C,\psi)$ .

# Bemerkung 7. (Unendliche Indexmengen)

Wir wollen uns hier nochmal kurz in Erinnerung rufen, was es bedeutet, wenn wir eine unendlich große Indexmenge  $\Lambda$  vor uns haben:

1. Sei A eine Kategorie und  $\{B_i\}_{i\in\Lambda}\subseteq Obj_A$ , dann gilt:

$$\bigoplus_{i \in \Lambda} B_i = \bigcup_{\{i_1, \dots, i_n\} \subseteq \Lambda} \bigoplus_{k=1}^n B_{i_k} = \{(b_{i_1}, \dots, b_{i_n}) | n \in \mathbb{N} \land \{i_1, \dots, i_n\} \subseteq \Lambda\}$$

2. Sei  $\{M_i\}_{i\in\Lambda}$  eine Menge von R-Moduln (oder R-Algebren), dann gilt:

$$\bigotimes_{i \in \Lambda} M_i = \bigcup_{\{i_1, \dots, i_n\} \subseteq \Lambda} \bigotimes_{k=1}^n M_{i_k} = \{ (m_{i_1} \otimes \dots \otimes m_{i_n}) | n \in \mathbb{N} \land \{i_1, \dots, i_n\} \subseteq \Lambda \}$$

3. Für den Polynomring über R in unendlich vielen Variablen  $\{x_i\}_{i\in\Lambda}$  gilt:

$$P[\{x_i\}_{i \in \Lambda}] = \bigcup_{\{i_1, \dots, i_n\} \subseteq \Lambda} P[x_{i_1}, \dots, x_{i_n}] = \{P(x_{i_1}, \dots, x_{i_n}) | n \in \mathbb{N} \land \{i_1, \dots, i_n\} \subseteq \Lambda\}$$

Dies zeigt, dass sich diesen drei Fällen eine unendliche Indexmenge  $\Lambda$  immer auf endliche Indexmengen  $\{1,\ldots,n\}$  zurückführen lässt.

# R-Algebra-Kolimiten

Proposition 8. [vlg. Proposition A6.7 David Eisenbud 1994] In der Kategorie der R-Algebren existieren Kolimiten beliebiger Diagramme, wobei gilt:

- 1. Das Koprodukt einer Familie von R Algebren  $\{S_i\}_{i\in\Lambda}$  entspricht deren Tesorprodukt  $\bigotimes_{i\in\Lambda} S_i$ .
- 2. Der Differenzkokern zweier R-Algebrenhomomorphismen  $f,g:S_1 \longrightarrow S_2$  einspricht dem Homomorphismus  $q:S_2 \longrightarrow S_2/Q$ ,  $y \longmapsto [y]$ , wobei  $Q:=\{f(x)-g(x)\mid x\in S_1\}$  das Bild der Differenz von f und g ist.

Beweis.

<u>Zu 1.</u>: Sei  $\mathcal{B} = \{S_i\}_{i \in \Lambda}$  die Unterkategorie der R-Algebren, welche  $\{S_i\}_{i \in \Lambda}$  zusammen mit den Identitätsabbildungen enthält. Somit gilt nach definition 4  $\coprod_{i \in \Lambda} S_i = \lim \mathcal{B}$ . Seien weiter:

 $\psi: \mathcal{B} \longrightarrow \coprod_{i \in \Lambda} S_i$ der Morphismus des Koprodukts und

 $g: \bigoplus_{i \in \Lambda} S_i \longrightarrow \bigotimes_{i \in \Lambda} S_i$  die multilineare Abbildung des Tensorprodukts.

Konstruiere daraus einen Morphismus  $\psi'$  und eine multilineare Abbildung g':

$$\psi': \mathcal{B} \longrightarrow \bigotimes_{i \in \Lambda} S_i, \text{ mit } \psi'_{S_i}: S_i \longrightarrow \bigotimes_{i \in \Lambda} S_i, s_i \longmapsto g(1, .., 1, s_i, 1, .., 1) \text{ für } i \in \Lambda$$
$$g': \bigoplus_{i \in \Lambda} S_i \longrightarrow \coprod_{i \in \Lambda} S_1, s \longmapsto \prod_{i \in \{i \in \Lambda \mid s_i \neq 0\}} \psi_i(s_i)$$

Somit liefern uns die universellen Eigenschaften folgende zwei R-Algebra-Homomorphismen:



Wende nun die Universelle Eigenschaft von  $\psi$  auf  $\psi$  selbst an und erhalte  $id_{\coprod_{i\in\Lambda}S_i}=\phi\circ\varphi$ . Analog erhalte auch durch die universelle Eigenschschaft des Tensorpruduktes  $id_{\bigotimes_i S_i}=\varphi\circ\phi$ .



Damit haben wir Isomorphismen zwischen  $\coprod_{i\in\Lambda} S_i$  und  $\bigotimes_i S_i$  gefunden. Da das Koprodukt  $\coprod_{i\in\Lambda} S_i = \varinjlim_{i\in\Lambda} \mathcal{B}$  bis auf eine eindeutige Isomorphie eindeutig bestimmt ist (lemma 2), definiere dies ab jetzt als  $\bigotimes_{i\in\Lambda} S_i$ .

<u>Zu 2.:</u> Zeige, dass  $q: S_2 \longrightarrow S_2/Q$  die in bemerkung 5 eingeführten Eigenschaften des Differenzkokern's besitzt:

$$q \circ f = q \circ g$$
 gilt, da  $kern(q) = Q = \{f(x) - g(x) \mid x \in C_2\}.$ 

Sei nun ein R-Algabrahomomorphismus  $q': S_2 \longrightarrow T'$  mit  $q' \circ f = q' \circ g$  gegeben. Somit gilt  $q' \circ (f-g) = 0$ , wodurch Q ein Untermodul von Q' := kern(q') ist. Mit dem Isomorphiesatz für R-Algebren erhalten wir:

$$S_2/Q' \simeq (S_2/Q)/(Q'/Q).$$

Somit ist  $q': S_2 \longrightarrow (S_2/Q)/(Q'/Q)$ ,  $y \longmapsto [y]'$  eine isomorphe Darstellung von  $q': S_2 \longrightarrow T'$ .

$$\Rightarrow \exists ! \varphi : S_2/Q \longrightarrow (S_2/Q)/(Q'/Q), [y] \longmapsto [y]' \ mit \ (\varphi \circ q) = q'.$$

Also ist  $S_2/Q$  zusammen mit  $q:S_2\longrightarrow S_2/Q$  der bis auf eine eindeutige Isomorphie eindeutig bestimmte Differenzkokern von f und g.

Damit haben wir gezeigt, dass Koprodukte beliebiger Mengen von R-Algebren und Differenzkokerne von je zwei R-Algebrenhomomorphismus existieren. Nach theorem 6 existieren somit in der Kategorie der R-Algebren Kolimiten beliebiger Diagramme.

# R-Modul-Kolimiten

**Proposition 9.** [Proposition A6.2 David Eisenbud 1994] In der Kategorie der R-Moduln existieren Kolimiten beliebiger Diagramme, wobei gilt:

- 1. Das Koprodukt einer Familie von R-Moduln  $\{M_i\}_{i\in\Lambda}$  entspricht deren direkter Summe  $\bigoplus_{i\in\Lambda} M_i$ .
- 2. Der Differenzenkokern zweier R-Modulhomomorphismen  $f, g: M_1 \longrightarrow M_2$  entspricht dem Homomorphismus  $q: M_2 \longrightarrow M_2/Q$ ,  $y \longmapsto [y]$ , wobei  $Q := \{f(x) g(x) \mid x \in M_1\}$  das Bild der Differenz von f und g ist.

Beweis.

<u>Zu 1.</u>: Sei  $\mathcal{B} = \{M_i\}_{i \in \Lambda}$  die Unterkategorie der R-Moduln, welche  $\{M_i\}_{i \in \Lambda}$  zusammen mit den Identitätsabbildungen enthält. Betrachte als Morphismus  $\psi$  die jeweilige Einbettung von  $M_i$  in  $\bigoplus_{i \in \Lambda} M_i$ :

$$\psi: \mathcal{B} \longrightarrow \bigoplus_{i \in \Lambda} M_i \text{ mit } \psi_{M_i}: M_i \longrightarrow \bigoplus_{i \in \Lambda} M_i \,,\, m_i \longmapsto (0, \ldots \cdots, 0, m_i, 0, \cdots, 0) \text{ für } i \in \Lambda$$

Somit lässt sich jedes  $(m_1, \dots m_n) \in \bigoplus_{i \in \Lambda} M_i$  (im Fall von  $|\lambda| = \infty$  siehe bemerkung 7) eindeutig durch die Elemente  $m_i \in M_i$  (für  $i \in \{i, \dots, n\}$ ) dar-

stellen:

$$(m_1, \cdots, m_n) = \sum_{i=1}^n \psi_{M_i}(m_i)$$

Damit erfüllt  $\psi$  die universelle Eigenschaft von  $\varinjlim \mathcal{B}$ , denn sei  $\psi': \mathcal{B} \longrightarrow M'$  ein bieliebiger Morphismus, so existiert genau ein R-Modulhomomorphismus:

$$\varphi: \bigoplus_{i \in \Lambda} M_i \longrightarrow M', (m_1, \cdots, m_n) \longmapsto \sum_{i=1}^n \psi'_{M_i}(m_i)$$

$$\psi' \qquad \qquad \psi' \qquad$$

Also ist  $\bigoplus_{i\in\Lambda} M_i$  zusammen mit den Einbettungen  $\psi_{M_i}: M_i \hookrightarrow \bigoplus_{i\in\Lambda} M_i$  das bis auf eine eindeutige Isomorphie eindeutig bestimmte Koprodukt von  $\{M_i\}_{i\in\Lambda}$ . 2. Gehe hier vor wie bei proposition 9. Dort haben wir schon gezeigt, dass der Differenzkokern von zwei R-Algebra-Homomorphismen dem Kokern, von deren Differenz entspricht.

Damit haben wir gezeigt, dass Koprodukte beliebiger Mengen von R-Moduln und Differenzkokerne von je zwei R-Modulhomomorphismen existieren. Nach theorem 6 existieren somit in der Kategorie der R-Moduln Kolimiten beliebiger Diagramme.

# 2.2 Darstellung von Lokalisierung als Kolimes

# Lokalisierung von Algebren als Kolimes

**Proposition 10.** [vlg. Aufgabe A6.7 David Eisenbud 1994] Sei S eine R – Algebra und  $U \subseteq S$  multiplikativ abgeschlossen. Dann gilt:

$$S[U^{-1}] = \lim_{\longrightarrow} \mathcal{B}$$

Wobei  $\mathcal{B}$  aus den Objekten  $\{S[t^{-1}]|t \in U\}$  und den Morphismen  $S[t^{-1}] \longrightarrow S[tt'^{-1}], (\frac{s}{t^n})_t \longmapsto (\frac{st'^n}{(tt')^n})_{(tt')}$  (für  $t, t' \in U$ ) besteht.

Beweis. Sei  $\psi: \mathcal{B} \longrightarrow T$  der Kolimes von  $\mathcal{B}$ . Zeige  $S[U^{-1}] \simeq T$ , definiere dazu:

$$\begin{split} \psi': \mathcal{B} &\longrightarrow S[U^{-1}] \\ \psi'_{S[t^{-1}]}: S[t^{-1}] &\longrightarrow S[U^{-1}] \,,\, (\frac{s}{t^n})_t \longmapsto (\frac{s}{t^n})_U \end{split}$$

 $\psi'$  ist ein Morphismus, da für beliebige  $t,t'\in U$  und  $s\in S$  gilt:

$$\left(\frac{s}{t^n}\right)_{\scriptscriptstyle U} = \left(\frac{st'^n}{(tt')^n}\right)_{\scriptscriptstyle U}$$

Durch die Universelle Eigenschaft des Kolimes erhalten wir einen eindeutigen Homomorphismus  $\varphi$  mit:

$$\varphi \circ \psi_{S[t^{-1}]} = \psi'_{S[t^{-1}]}$$
 für alle  $S[t^{-1}] \in \mathcal{B}$ .

Für die Umkehrabbildung  $\phi: S[U^{-1}] \longrightarrow T$  benötigen wir kleinere Vorüberlegungen: Zunächst stellen wir fest, dass  $\psi'$  ganz  $S[U^{-1}]$  abdeckt, also:

Jedes 
$$(\frac{s}{u})_{\scriptscriptstyle U} \in S[U^{-1}]$$
 lässt sich in der Form  $(\frac{s}{u})_{\scriptscriptstyle U} = \psi_{S[t^{-1}]}((\frac{s}{t})_{\scriptscriptstyle t})$  schreiben (für  $t=u$ ).

Allerdings ist diese Darstellung nicht eindeutig. Zeige also noch, dass  $\phi$  unabhängig von der Wahl von eines Repräsentanten ist. Seien dazu  $s_1, s_2 \in S$ ,  $t_1, t_2 \in U$  beliebig, somit gilt:

$$Sei \ \psi'_{S[t^{-1}]}((\frac{s_1}{t_1})_t) = \psi'_{S[t^{-1}]}((\frac{s_2}{t_2})_t)$$

$$\Rightarrow \exists u \in U : (s_1t_1 - s_2t_2) \cdot u = 0$$

$$\Rightarrow (\frac{s_1u}{t_1u})_{t_u} = (\frac{s_2u}{t_2u})_{t_u}$$

$$\Rightarrow \psi_{S[t^{-1}]}((\frac{s_1}{t_1})_t) = \psi_{S[t^{-1}]}((\frac{s_2}{t_2})_t)$$

Mit diesem Wissen können wir den R-Algebra-Homomorphismus  $\phi: S[U^{-1}] \longrightarrow T$  definieren:

$$\phi: S[U^{-1}] \longrightarrow T \,,\, \psi_{S[t^{-1}]}'((\frac{s}{t})_t) \longmapsto \psi_{S[t^{-1}]}((\frac{s}{t})_t)$$

 $\phi\circ\varphi=id_T$ ergibt sich direkt aus der universellen Eigenschaft des Kolimes:

$$\mathcal{B}$$

$$\psi$$

$$T \leftarrow \exists! id_T = \phi \circ \varphi$$

$$T \leftarrow T$$

Für  $\varphi\circ\phi\stackrel{!}{=}id_{S[U^{-1}]}$  wähle  $s\in S, t\in U$  beliebig. Für diese gilt:

$$(\varphi \circ \phi)(\psi'((\frac{s}{t})_{\iota})) = \varphi(\psi((\frac{s}{t})_{\iota}) = \psi'((\frac{s}{t})_{\iota})$$

Damit haben wir gezeigt, dass  $\varphi, \phi$  Isomorphismen sind und somit  $T \simeq S[U^{-1}]$  gilt. Da der Kolimes bis auf eine eindeutige Isomorphie eindeutig ist (siehe lemma 2), definiere ab sofort  $\lim \mathcal{B}$  als  $S[U^{-1}]$ .

Lokalisierung von Moduln als Kolimes [Beweis von Proposition 16.9 David Eisenbud 1994]

**Korrolar 11.** Sei M ein S-Modul, wobei S eine R-Algebra ist. Sei weiter  $U \subseteq S$ 

multiplikativ abgeschlossen. Dann gilt:

$$M[U^{-1}] = \varinjlim \mathcal{C}$$

Wobei C aus den Objekten  $\{S[U^{-1}] \otimes_{S[t^{-1}]} M[t^{-1}] | t \in U\}$  und folgenden Morphismen besteht:

$$S[U^{-1}] \otimes_{S[t^{-1}]} M[t^{-1}] \longrightarrow S[U^{-1}] \otimes_{S[(tt')^{-1}]} M[(tt')^{-1}],$$
$$(\frac{s}{u})_{U} \otimes (\frac{m}{t^{n}})_{t} \longmapsto (\frac{s}{u})_{U} \otimes (\frac{t'^{n}m}{(tt')^{n}})_{t}$$

Auch wenn sich proposition 11 hier nicht direkt anwenden lässt, so können wir doch im Beweis gleich vorgehen.

Beweis. Sei  $\psi: \mathcal{C} \longrightarrow T$  der Colimes von  $\mathcal{C}$ . Zeige  $M[U^{-1}] \simeq T$ , definiere dazu folgenden Morphismus:

$$\psi': \mathcal{C} \longrightarrow M[U^{-1}]$$

$$\psi'_t: S[U^{-1}] \otimes_{S[t^{-1}]} M[t^{-1}] \longrightarrow M[U^{-1}], (\frac{s}{u})_U \otimes (\frac{m}{t^n})_t \longmapsto (\frac{sm}{ut^n})_U$$

Die Wohldefiniertheit von  $\psi'_t$  für ein beliebiges  $t \in U$  folgt direkt aus der Universellen Eigenschaft des Tensorprodukt's. Denn für die bilineare Abbildung  $f: S[U^{-1}] \oplus M[t^{-1}] \longrightarrow M[t^{-1}]$ ,  $((\frac{s}{n})_U, (\frac{m}{t^n})_t) \longmapsto (\frac{sm}{nt^n})_U$  gilt:

$$S[U^{-1}] \oplus M[t^{-1}] \xrightarrow{g} S[U^{-1}] \otimes_{S[t^{-1}]} M[t^{-1}]$$

$$\downarrow \exists ! \psi_t'$$

$$M[U^{-1}]$$

Durch die Universelle Eigenschaft des Kolimes erhalten wir nun einen eindeutigen Homomorphismus  $\varphi: T \longrightarrow M[U^{-1}]$  mit:

$$\varphi \circ \psi_t = \psi_t'$$
 für alle  $t \in U$ .

Für die Umkehrabbildung  $\phi: M[U^{-1}] \longrightarrow T$  benötigen wir kleinere Vorüberlegungen: Wir stellen fest, dass für jedes  $t \in U$  gilt:

Jedes 
$$(\frac{m}{u})_U \in M[U^{-1}]$$
 lässt sich in der Form  $(\frac{m}{u})_U = \psi_t((\frac{1}{u})_U \otimes (\frac{m}{1})_t)$  schreiben.

Diese Darstellung ist unabhängig von den Wahl von  $t \in U$ , denn für beliebige  $t_1, t_2, u \in U$  und  $m \in M$  gilt:

$$\psi_{t_1}'((\frac{1}{u})_{{}_U}\otimes (\frac{m}{1})_{{}_{t_1}})=(\frac{m}{u})_{{}_U}=\psi_{t_2}'((\frac{1}{u})_{{}_U}\otimes (\frac{m}{1})_{{}_{t_2}})$$

Für  $\psi$  gilt in diesem Fall:

$$\psi_{t_1}((\frac{1}{u})_{U} \otimes (\frac{m}{1})_{t_1}) = \psi_{t_1t_2}((\frac{1}{u})_{U} \otimes (\frac{m}{1})_{t_1t_2}) = \psi_{t_2}((\frac{1}{u})_{U} \otimes (\frac{m}{1})_{t_2})$$

Definiere nun mit diesem Wissen folgenden Homomorphismus:

$$\phi: M[U^{-1}] \longrightarrow T, \ \psi_t((\frac{1}{u})_U \otimes (\frac{m}{1})_t) \longmapsto \psi'_t((\frac{1}{u})_U \otimes (\frac{m}{1})_t)$$

 $\phi\circ\varphi=id_A$  ergibt sich direkt aus der Universellen Eigenschaft des Kolimes. Für  $\varphi\circ\phi\stackrel{!}{=}id_{M[U^{-1}]}$  wähle  $(\frac{m}{u})_U\in M[U^{-1}]$  beliebig, für dieses gilt:

$$(\varphi \circ \phi)(\psi_t'((\frac{1}{u})_{\scriptscriptstyle U} \otimes (\frac{m}{1})_{\scriptscriptstyle t})) = \varphi(\psi_t((\frac{1}{u})_{\scriptscriptstyle U} \otimes (\frac{m}{1})_{\scriptscriptstyle t})) = \psi_t'((\frac{1}{u})_{\scriptscriptstyle U} \otimes (\frac{m}{1})_{\scriptscriptstyle t})$$

Damit haben wir  $T \simeq M[U^{-1}]$  gezeigt, definiere also ab sofort  $M[U^{-1}]$  als den Kolimes von  $\mathcal{C}$ .

# 2.3 Kähler-Differenzial von Kolimiten

Differenzial des Kolimes von R-Algebren [vlg. Korolar 16.7 David Eisenbud 1994]

### Proposition 12.

1. Sei  $T = \bigotimes_{i \in \Lambda} S_i$  das Koprodukt der R-Algebren  $S_i$ . Dann gilt:

$$\Omega_{T/R} \simeq \bigoplus_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R})$$

2. Seien  $S_1, S_2$  R-Algebren und  $\varphi, \varphi': S_1 \longrightarrow S_2$  R-Algebra-Homomorphismen. Sei weiter  $q: S_2 \longrightarrow T$  der Differenzkokern von  $\varphi, \varphi'$ . Dann ist folgende Sequenz rechtsexakt:

$$T \otimes_{S_1} \Omega_{S_1/R} \xrightarrow{\quad f \quad} T \otimes_{S_2} \Omega_{S_2/R} \xrightarrow{\quad g \quad} \Omega_{T/R} \longrightarrow 0$$

$$mit: f: T \otimes \Omega_{S_1/R} \longrightarrow T \otimes_{S_2} \Omega_{S_2/R}, \ t \otimes d_{S_1}(x_1) \longmapsto t \otimes d_{S_2}(\varphi(x_1) - \varphi(x_2))$$
$$g: T \otimes_{S_2} \Omega_{S_2/R} \longrightarrow \Omega_{T/R}, \ t \otimes d_{S_2}(x_2) \longmapsto (d_T \circ q)(x_2)$$

Beweis.

Für 1. finde durch die Universelle Eigenschaft des Kähler-Differenzials Isomorphismen  $\Omega_{T/R} \longleftrightarrow \bigoplus_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R})$ .

Definiere das Differenzial  $e: T \longrightarrow \bigoplus_{i \in \Lambda} T \otimes_{S_i} \Omega_{S_i/R}$ ,  $(s_i \otimes ...) \longmapsto (1 \otimes d_{S_1}, ...)$  und erhalte dadurch

$$T \xrightarrow{d_T} \Omega_{T/R}$$

$$\downarrow_{\exists ! \varphi} \qquad \varphi : \Omega_{T/R} \longrightarrow \bigoplus_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R}).$$

$$\bigoplus_{i \in \Lambda} T \otimes_{S_i} \Omega_{S_i/R}$$

Definiere nun das Differenzial  $k: S_i \hookrightarrow T \longrightarrow \Omega_{T/R}$  und erhalte dadurch:

$$S_{i} \xrightarrow{d_{S_{i}}} \Omega_{S_{i}/R} \xrightarrow{a} T \otimes_{S_{i}} \Omega_{S_{i}/R}$$

$$\downarrow_{\exists !k'} \qquad \qquad \phi_{i} : \bigoplus_{i \in \Lambda} (T \otimes_{S_{i}} \Omega_{S_{i}/R}) \longrightarrow \Omega_{T/R}$$

$$\Omega_{T/R}$$

$$\phi: \bigoplus_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R}) \longrightarrow \Omega_{T/R}, (..., t_i \otimes d_{S_i}(s_i), ...) \longmapsto \prod_{i \in \Lambda} t_i \cdot \phi_i(d_{S_i}(s_i))$$

Damit haben wir zwei zueinander inverse Funktionen  $\varphi, \phi$  gefunden.

$$\Rightarrow \Omega_{T/R} \simeq \bigoplus_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R})$$

Für 2. Wende satz 11 auf den Differenzkokern  $q: S_2 \longrightarrow S_2/Q$  (vlg. proposition 9) an und erhalte dadurch eine exakte Sequenz, welche ähnlich zu der gesuchten ist:

$$Q/Q^2 \xrightarrow{f'} T \otimes \Omega_{S_2/R} \xrightarrow{g} \Omega_{T/R} \longrightarrow 0$$

mit  $f': Q/Q^2 \longrightarrow T \otimes_{S_2} \Omega_{S/R}$ ,  $[s_2]_{Q^2} \longmapsto 1 \otimes d_{S_2}(s_2)$ . Somit gilt  $im(f) = T \otimes_{S_2} d_{S_2}(Q) = im(f')$ .  $\Rightarrow$  die gesuchte Sequenz ist exakt.

 $\mathbf{S}$ 

# **Differenzial von Polynomalgebren 1** [vlg. Proposition 16.1 David Eisenbud 1994]

**Korrolar 13.** Sei  $S = R[x_1, ..., x_n]$  eine Polynomalgebra über R. Dann gilt:

$$\Omega_{S/R} = \bigoplus_{i \in \{1, \dots, n\}} S\langle d_S(x_i) \rangle$$

Wobei  $S\langle d_S(x_i)\rangle$  das von  $d_S(x_i)$  erzeugt Modul über S ist.

Beweis. Wie in bemerkung 8 gezeigt, können wir S als  $\bigotimes_{i \in \{1,...,n\}} R[x_i]$  schreiben. In proposition 13 haben wir gezeigt, wie das Differenzial eines solchen Tensorproduktes aussieht:

$$\Omega_{S/R} = \bigoplus_{i \in \{1, \dots, n\}} (S \otimes_{R[x_i]} \Omega_{R[x_i]/R})$$

Da  $R[x_i]$  die aus dem Element  $x_i$  erzeugte Algebra über R ist, folgt [vlg. BE-MERKUNG ZU ENDLICH ERZEUGTEN ALGEBREN]:

$$\Omega_{S/R} = \bigoplus_{i \in \{1, \dots, n\}} \left( S \otimes_{R[x_i]} R[x_i] \langle d_{S[x_i]}(x_i) \rangle \right) \simeq \bigoplus_{i \in \{1, \dots, n\}} S \langle d_S(x_i) \rangle$$

Für die letzte Isomorphie nutze, dass wegen  $R[x_i] \subseteq S$  zum Einen  $d_{R[x_i]}$  als Einschränkung von  $d_S$  gesehen werden kann und zum Anderen  $S \otimes_{R[x_i]} R[x_i] \simeq S$  gilt.

# Differenzial von Polynomalgebren 2 [vgl. Korrolar 16.6 David Eisenbud 1994]

**Korrolar 14.** Sei S eine R-Algebra und  $T := S[x_1, ..., x_n]$  eine Polynomalgebra über S. Dann gilt:

$$\Omega_{T/R} \simeq (T \otimes_S \Omega_{S/R}) \oplus \bigoplus_{i \in \{1, \dots, n\}} T \langle d_T(x_i) \rangle$$

Beweis. Betrachte T als Tensorprodukt über R-Algebren und wende anschließend proposition 13 an:

$$\begin{split} T &\simeq S \otimes_R R[x_1,...,x_n] \\ \Rightarrow & \Omega_{T/R} \simeq (T \otimes_S \Omega_{S/R}) \oplus (T \otimes_{R[x_1,...,x_n]} \Omega_{R[x_1,...,x_n]/R}) \end{split}$$

Zuletzt wende den soeben gezeigten korrolar 14 an und nutze schließlich  $R[x_1, ..., x_n] \subseteq T$  um das Tensorprodukt zu vereinfachen:

$$T \otimes_{R[x_1,...,x_n]} \Omega_{R[x_1,...,x_n]/R}$$

$$\simeq T \otimes_{R[x_1,...,x_n]} \bigoplus_{i \in \{1,...,n\}} R[x_1,...,x_n] \langle d_{R[x_i]}(x_i) \rangle$$

$$\simeq \bigoplus_{i \in \{1,...,n\}} T \langle d_R(x_i) \rangle$$

Differenzial der Lokalisierung [vlg. Proposition 16.9 David Eisenbud 1994]

**Theorem 15.** Sei S eine R – Algebra und  $U \subseteq S$  multiplikativ abgeschlossen. Dann gilt:

$$\Omega_{S[U^{-1}]/R} \simeq S[U^{-1}] \otimes_S \Omega_{S/R}, \text{ Wobei:}$$

$$d_{S[U^{-1}]}((\frac{1}{u})_U) \longmapsto -(\frac{1}{u^2})_U \otimes d_S(u)$$

Beweis. Wir wollen THEOREM16.8 auf  $\mathcal{B} = \{S[t^{-1}] | t \in U\}$  aus proposition 11 anwenden.

Zeige also zunächsten den einfacheren Fall  $\Omega_{S[t^{-1}]/R} \simeq S[t^{-1}] \otimes_S \Omega_{S/R}$  für ein beliebiges  $t \in U$ :

Nutze hierfür die Isomorphe Darstellung  $S[t^{-1}] \simeq S[x]/(tx-1)$ , sowie die Isomorphie  $\Omega_{S[x]/R} \simeq S[x] \otimes_S \Omega_{S/R} \oplus S[x] d_{S[x]}(x)$ . aus korrolar 15

Daraus erhalten wir folgende Isomorphismen:

$$\alpha: S[t^{-1}] \longrightarrow S[x]/(tx-1)$$

$$\beta: S[x]/(tx-1) \longrightarrow S[t^{-1}]$$

$$\gamma: \Omega_{S[x]/R} \longrightarrow S[x] \otimes_S \Omega_{S/R} \oplus S[x] d_{S[x]}(x)$$

Nutze diese nun, um  $\Omega_{S[t^{-1}]/R}$  isomorph zu  $S[t^{-1}] \otimes_S \Omega_{S/R}$  umzuformen:

$$\Omega_{S[t^{-1}]/R} \qquad \qquad d_{S[t^{-1}]}((\frac{s}{t})_t)$$

$$\downarrow^{D\alpha} \qquad \qquad \downarrow^{D\alpha}$$

$$\Omega_{S[x]/R}/d_{S[x]}(tx-1) \qquad \qquad [d_{S[x]}(sx)] = [xd_{S[x]}(s) + sd_{S[x]}(x)]$$

$$\downarrow^{\gamma} \qquad \qquad \downarrow^{\gamma}$$

$$(S[x] \otimes_S \Omega_{S/R} \oplus S[x]d_{S[x]}x)/((tx-1)d_{S[x]}(tx-1)) \qquad \qquad [x \otimes d_S(s), sd_{S[x]}(x)]$$

$$\downarrow^{\beta} \qquad \qquad \downarrow^{\beta}$$

$$(S[t^{-1}] \otimes_S \Omega_{S/R}) \oplus S[t^{-1}]d_{S[x]}(x)/d_{S[x]}(tx-1) =: M \qquad \qquad [(\frac{1}{t})_t \otimes d_S(s), sd_{S[x]}(x)]$$

$$\downarrow^{\beta} \qquad \qquad \downarrow^{\beta}$$

$$(S[t^{-1}] \otimes_S \Omega_{S/R}) \oplus S[t^{-1}]d_{S[x]}(x)/d_{S[x]}(tx-1) =: M \qquad \qquad [(\frac{1}{t})_t \otimes d_S(s), sd_{S[x]}(x)]$$

$$\downarrow^{\beta} \qquad \qquad \downarrow^{\beta}$$

$$((\frac{1}{t})_t \otimes d_S(s)) - ((\frac{s}{t^2})_t \otimes d_S(t))$$

Die ersten drei Schritte ergeben sich aus den oben angegeben Isomorphismen. Für den letzten Schritt definiere:

$$f: M \longrightarrow S[t^{-1}] \otimes_S \Omega_{S/R}, [(\frac{1}{t})_t \otimes d_S(s), sd_{S[x]}(x)] \longmapsto ((\frac{1}{t})_t \otimes d_S(s)) - ((\frac{s}{t^2})_t \otimes d_S(t))$$

Damit f ein Isomorphismus ist, genügt es zu zeigen, dass  $S[t^{-1}] \otimes_S \Omega_{S/R}$  ein eindeutiges Repräsentantensystem von M ist.

Sei dazu  $[m_1, (\frac{s}{t^n})_t d_{S[x]}(x)]$  ein beliebiger Erzeuger von M. Somit gilt:

$$\begin{split} d_{S[x]}(tx-1) &= t d_{S[x]}(x) + \beta(x) d_{S[x]}(s) \\ \Rightarrow & [0, d_{S[x]}(x)] = [-(\frac{1}{t^2})_t d_S(t), 0] \\ \Rightarrow & [m_1, (\frac{s}{t^n})_t d_{S[x]}(x)] = [m_1 - (\frac{s}{t^{n+2}})_t d_S(t), 0] = [f([m_1, (\frac{s}{t^n})_t d_{S[x]}(x)]), 0] \end{split}$$

f ist also wie vermutet ein Isomorphismus und aus obigen Umformungen folgt  $\Omega_{S[t^{-1}]/R} \simeq S[t^{-1}] \otimes_S \Omega_{S/R} = \Omega_{S/R}[t^{-1}].$ 

Definiere für beliebige  $t \in U$  folgenden Isomorphismus:

$$f\circ\beta\circ\gamma\circ D\alpha=:\delta_t:\Omega_{S[t^{-1}]/R}\longrightarrow\Omega_{S/R}[t^{-1}]\,,\,d_{S[t^{-1}]}((\frac{1}{t})_t)\longmapsto -(\frac{d_S(t)}{t^2})_t$$

Zeige nun den Allgemeinen Fall  $\Omega_{S[U^{-1}]/R} \simeq S[U^{-1}] \otimes_S \Omega_{S/R}$ : Wähle  $\mathcal{B} = \{S[t^{-1}]|t \in U\}$  wie in proposition 11, sodass  $\lim_{t \to \infty} \mathcal{B} = S[U^{-1}]$  gilt.

Mit THEOREM16.8 folgt somit:

$$\begin{split} \Omega_{S[U^{-1}]/R} &= \varinjlim \mathcal{F} \text{ mit:} \\ \mathcal{F} : \mathcal{B} &\longrightarrow \left(S[U^{-1}] - Module\right), \, S[t^{-1}] \longmapsto S[U^{-1}] \otimes \Omega_{S[t^{-1}]/R} \\ & (\varphi : S[t^{-1}] \longrightarrow S[tt'^{-1}]) \\ &\longmapsto \left(1 \otimes D\varphi : S[U^{-1}] \otimes_{S[t^{-1}]} \Omega_{S[t^{-1}]/R} \longrightarrow S[U^{-1}] \otimes_{S[t^{-1}]} \left(S[t^{-1}] \otimes_{S[t^{-1}]} \Omega_{S[tt'^{-1}]/R}\right)\right) \end{split}$$

Zur Vereinfachung der Morphismen in  $\mathcal{F}(\mathcal{B})$  definiere folgenden Isomorphismus:

$$g: S[U^{-1}] \otimes_{S[t^{-1}]} (S[t^{-1}] \otimes_{S[t^{-1}]} \Omega_{S[tt'^{-1}]/R}) \longrightarrow S[U^{-1}] \otimes_{S[tt'^{-1}]} \Omega_{S[tt'^{-1}]/R}$$

$$(\frac{s}{u})_{U} \otimes ((\frac{s'}{t})_{t} \otimes d_{S[tt'^{-1}]}(x)) \longmapsto (\frac{s}{u})_{U} \otimes \varphi((\frac{s'}{t})_{t}) d_{S[tt'^{-1}]}(x)$$

Als letzten Schritt wollen wir ?? anwenden. Nutze dazu  $\delta_t : \Omega_{S[t^{-1}]/R} \longrightarrow \Omega_{S/R}[t^{-1}]$  um den zu  $\mathcal{F}$  isomorphen Funktor  $\mathcal{F}' := \delta \circ \mathcal{F}$  zu erhalten. Um ein genaueres Bild von  $\mathcal{F}'$  zu erlangen, betrachte folgendes Kommutatives Diagramm:



$$(\frac{s}{t})_{t} \xrightarrow{\varphi} (\frac{st'}{tt'})_{tt'}$$

$$\downarrow d_{S[t^{-1}]} \qquad \downarrow d_{S[t^{-1}]}$$

$$1 \otimes ((\frac{1}{t})_{t}d_{S[t^{-1}]}((\frac{s}{t})_{t}) + (\frac{s}{1})_{t}d_{S[t^{-1}]}((\frac{1}{t})_{t})) \xrightarrow{g \circ (1 \otimes D\varphi)} 1 \otimes ((\frac{1}{tt'})_{tt'}d_{S[tt'^{-1}]}((\frac{st'}{1})_{tt'}) + (\frac{st'}{1})_{tt'}d_{S[tt'^{-1}]}((\frac{1}{tt'})_{tt'}))$$

$$\downarrow \delta_{t} \qquad \qquad \downarrow \delta_{tt'}$$

$$1 \otimes ((\frac{d_{S}(s)}{t})_{t} - (\frac{sd_{S}(t)}{t^{2}})_{t}) \xrightarrow{1 \otimes \varphi} 1 \otimes ((\frac{t'd_{S}(s)}{tt'})_{tt'} - (\frac{st'd_{S}(t)}{(tt')^{2}})_{tt'}) (*)$$

Dass das Diagramm in dieser Form kommutiert, ergibt sich in fast allen Fällen direkt aus dem Einsetzen in die entsprechenden Homomorphismen. Der einzige

Fall, welcher nicht direkt klar ist, ist (\*). Rechne diesen also nochmal nach:

$$\begin{split} \delta_{tt'} \big( 1 \otimes \big( \big( \frac{1}{tt'} \big)_{tt'} d_{S[tt'^{-1}]} \big( \big( \frac{st'}{1} \big)_{tt'} \big) + \big( \frac{st'}{1} \big)_{tt'} d_{S[tt'^{-1}]} \big( \big( \frac{1}{tt'} \big)_{tt'} \big) \big) \big) \\ &= 1 \otimes \big( \big( \frac{d_{S}(st')}{tt'} \big)_{tt'} - \big( \frac{t'sd_{S}(tt')}{(tt')^{2}} \big)_{tt'} \big) \\ &= 1 \otimes \big( \big( \frac{t'd_{S}(s')}{tt'} \big)_{tt'} + \big( \frac{sd_{S}(t')}{tt'} \big)_{tt'} - \big( \frac{tt'd_{S}(t')}{(tt')^{2}} \big)_{tt'} - \big( \frac{t'^{2}sd_{S}(t)}{(tt')^{2}} \big)_{tt'} \big) \\ &= 1 \otimes \big( \big( \frac{t'd_{S}(s)}{tt'} \big)_{tt'} - \big( \frac{t'^{2}sd_{S}(t)}{(tt')^{2}} \big)_{tt'} \big) \\ &= (1 \otimes \varphi) \big( 1 \otimes \big( \big( \frac{d_{S}(s)}{t} \big)_{t} - \big( \frac{sd_{S}(t)}{t^{2}} \big)_{t} \big) \big) \end{split}$$

Damit ist  $\mathcal{F}'$  zu  $\mathcal{F}$  isomorph und für  $\mathcal{C} := \mathcal{F}'(\mathcal{B})$  gilt  $\Omega_{S[U^{-1}]/R} = \varinjlim \mathcal{F}' = \varinjlim \mathcal{C}$  [vlg. korrolar 3]. Wobei die Form von  $\mathcal{C}$  genau dem Fall aus ?? entspricht:

$$\mathcal{C} = \{S[U^{-1}] \otimes_{S[t^{-1}]} \Omega_{S/R}[t^{-1}] | t \in U\} \text{ mit den Morphismen}$$

$$1 \otimes \varphi : S[U^{-1}] \otimes_{S[t^{-1}]} \Omega_{S/R}[t^{-1}] \longrightarrow S[U^{-1}] \otimes_{S[tt'^{-1}]} \Omega_{S/R}[tt'^{-1}]$$

$$(\frac{s}{u})_{\scriptscriptstyle U} \otimes (\frac{d_S(x)}{t^n})_{\scriptscriptstyle t} \longmapsto (\frac{s}{u})_{\scriptscriptstyle U} \otimes (\frac{t'^n d_S(x)}{(tt')^n})_{\scriptscriptstyle tt'}$$

Somit folgt  $\lim_{\longrightarrow} \mathcal{C} = \Omega_{S/R}[U^{-1}]$  und wir haben  $\Omega_{S[U^{-1}]/R} = \Omega_{S/R}[U^{-1}]$  gezeigt.

# Kapitel 3

# Körpererweiterungen

# 3.1 Einführung in transzendente Körpererweiterungen

Sei im folgenden k ein Körper.

Wir haben in BEISPIEL gesehen, dass das Kähler-Differenzial algebraischer Körpererweiterungen über k der Null-Vektorraum über k ist. Dies liegt daran, dass im Falle einer algebraischen Körpererweiterung  $k(\alpha)/k$  ein irreduzibles Polynom  $f(x) \in k[x]$  existiert, mit  $f(\alpha) = 0$  und  $k[\alpha] \simeq k[x]/(f(x))$ .

Im Falle einer transzendenten Körpererweiterung  $k(\beta)$  existiert kein solches Polynom in k[x] und es gilt  $k(\beta) \simeq k(x)$ . In KORROLAR haben wir gesehen, dass in diesem Falle  $\Omega_{k(x)/k} \simeq$ ??? gilt. Dies motiviert dazu Transzendente Körpererweiterungen und deren Differenzial näher zu untersuchen. Dazu wird hier elementares Wissen über algebraische Körpererweiterungen vorausgesetzt [eventuell nach zu lesen in Christian Karpfinger, Kurt Meyberg 2009].

In diesem Kapitel führen wir Transzendenzbasisen ein und untersuchen diese näher.

**Definition 1.** [vlg. Anhang A1 David Eisenbud 1994sowie Kapitel 22 Christian Karpfinger, Kurt Meyberg 2009]
Sei L/k eine Körpererweiterung. Dann definieren wir:

• Eine endliche Teilmengen  $\{l_1, \ldots, l_n\} \subseteq L$  heißt <u>algebraisch unabhängig</u> über k, falls gilt:

$$\forall P(x_1, ..., x_n) \in k[x_1, ..., x_n] : P(l_1, ..., l_n) \neq 0$$

- Eine Teilmenge  $B \subseteq L$  heißt <u>transzendent</u> über k, falls jede ihrer endlichen Teilmengen  $\{b_1, \ldots, b_n\} \subseteq B$  algebraisch unabhängig über k ist.
- Eine Teilmenge  $B \subseteq L$  ist eine <u>Transzendenzbasis</u> von L/k, falls sie transzendent über k und die Körpererweiterung L/k(B) algebraisch ist.

• Falls eine Transzendenzbasis von B von L/k existiert, sodass k(B) = L gilt, so ist L/k eine pur transzendente Körpererweiterung.

# pur transzendente Erweiterung

Korrolar 2. [Eigene Überlegung]

Sei L/k eine pur transzendente Körpererweiterung mit Transzendenzbasis B. Dann gilt:

$$L \simeq k(\{x_b\}_{b \in B})$$

Insbesondere ist  $\{x_b\}_{b\in B}$  eine Transzendenzbasis der Körpererweiterung der rationalen Funktionen  $k(\{x_b\}_{b\in B})$  über k.

Beweis. Betrachte folgenden Körpermorphismus und zeige, dass es sich dabei um einen Isomorphismus handelt:

$$\Phi: k(\{x_b\}_{b\in B}) \longrightarrow k(B), \frac{P(x_{b_1}, \dots, x_{b_n})}{Q(x_{b_1}, \dots, x_{b_n})} \longmapsto \frac{P(b_1, \dots, b_n)}{Q(b_1, \dots, b_n)}$$

Da B als Transzendenzbasis insbesondere transzendent über k ist, ist jede endliche Teilmenge von algebraisch unabhängig über k. Dies bedeutet:

$$\forall \{b_1, \dots, b_n\} \in B \,\forall P(x_{b_1}, \dots, x_{b_n}) \in k[x_{b_1}, \dots, x_{b_n}] :$$
$$P(x_{b_1}, \dots, x_{b_n}) \Rightarrow P(b_1, \dots, b_n) \neq 0$$

Folglich ist  $\Phi$  wohldefiniert und insbesondere injektiv.

Dass  $\Phi$  surjektiv ist, folgt direkt aus der Definition von L = k(B) als Quotientenkörper über k[x].

Dass  $\{x_b\}_{b\in B}$  Transzendenzbasis von  $k(\{x_i\}_{i\in B})$  ist folgt direkt aus ??. Denn jede endliche Teilmenge  $\{x_{b_1},\ldots x_{b_n}\}\subseteq \{x_b\}_{b\in B}$  ist transzendent, da  $k[x_1,\ldots ,x_n]$  und  $k[x_{b_1},\ldots x_{b_n}]$  isomorph zueinander sind. Außerdem ist die triviale Körpererweiterung  $k(x_{b_1},\ldots x_{b_n})/k(x_{b_1},\ldots x_{b_n})$  algebraisch.

### Transzendenzbasis ist maximale transzendente Menge

**Lemma 3.** [Lemma 22.1 Christian Karpfinger, Kurt Meyberg 2009] Sei L/k ein Körpererweiterung und  $B \subseteq L$  eine über k transzendente Teilmenge. Dann gilt:

B ist genau dann eine Transzendenzbasis von L/k, wenn B bezüglich der Inklusion ein maximales Element der Menge aller über k transzendenten Elemente aus L ist.

Beweis.

"⇒:" Sei B eine Transzendenzbasis über k. Zeige, dass für ein beliebiges Element  $a \in L \setminus B$  die Menge  $B \cup \{a\} \subseteq L$  nicht transzendent über k ist:

Da die Körpererweiterung 
$$L/k(B)$$
 algebraisch ist, existiert  $0 \neq P(x) \in k(B)[x]$  mit  $P(a) = 0$ .

Aus der Definition von k(B) geht hervor, dass  $\{b_1, \ldots b_n\} \subseteq B$  existiert, mit  $P(x) \in k(\{b_1, \ldots b_n\})[x]$ .

Wir können ohne weitere Einschränkung annehmen, dass  $P(x) \in k[\{b_1, \ldots, b_n\}][x]$  gilt, denn falls dies nicht der Fall sein sollte, wähle  $m \in \mathbb{N}$  groß genug, sodass  $(P(x) \cdot (\prod_i^n b_i)^m) \in k[\{b_1, \ldots, b_n\}]$  gilt.

Wähle nun 
$$P'(x_1, \ldots, x_n, x) \in k[x_1, \ldots, x_n, x]$$
 mit  $P'(b_1, \ldots, b_n, x) = P(x)$ .  
Dies erfüllt  $P'(b_1, \ldots, b_n, a) = 0$ .

Folglich ist  $B \cup \{b_1, \dots, b_n, a\}$  algebraisch abhängig und insbesondere  $B \cup \{a\}$  nicht transzendent über k.

"←:" Sei B bezüglich der Inklusion ein maximales Element der Menge aller über k transzendenten Elemente aus L. Zeige für ein beliebiges Element  $a \in L \setminus k(B)$ , dass dieses algebraisch über k(B) ist:

Nach Voraussetzung existiert eine endliche Teilmenge  $\{b_1, \ldots, b_n, a\} \subseteq B \cup \{a\}$ , welche algebraisch abhängig über k ist.

Also existiert 
$$P(x_1,...,x_{n+1}) \in k[x_1,...,x_{n+1}]$$
 mit  $P(b_1,...,b_n,a) = 0$ .  
Für  $P'(x) := P(b_1,...,b_n,x) \in k(B)[x]$  gilt somit  $P'(a) = 0$ 

Die Existenz eines solchen Polynoms P'(x) zeigt uns, dass a algebraisch über k(B) ist.

Damit haben wir gezeigt, dass jedes  $a \in L$  algebraisch über k(B) ist. Folglich ist L/k(B) algebraisch und B eine Transzendenzbasis von L über k.

### Existenz von Transzendenzbasen

**Proposition 4.** [Kapitel 22.1.3 Christian Karpfinger, Kurt Meyberg 2009] Jede Körpererweiterung  $L \subseteq k$  besitzt eine Transzendenzbasis  $B \subseteq L$ .

Beweis. Verwende hierzu das Lemma von Zorn:

lemma 3 besagt, dass die Transzendenzbasen von L/k gerade die maximalen Elemente der Menge aller über k transzendenten Elemente aus L sind.

Das Lemma von Zorn besagt, dass jede partiell geordenete Menge, in der jede total geordneten Untermenge (auch Kette genannt) eine obere Schranke besitzt, ein Maximales Element besitzt [vlq. Kapitel A2.3 Christian Karpfinger, Kurt

27

Meyberg 2009/.

Sei also  $\mathbb B$  eine Kette von Transzendenten Mengen.

Offensichtlich ist  $\tilde{B} := \bigcup_{B \in \mathbb{B}} \in L$  eine obere Schranke von  $\mathbb{B}$ . Zeige also noch, dass  $\tilde{B}$  auch transzendent ist.

Annahme:  $\hat{B}$  ist nicht transzendent:

Also existiert  $\{b_1, \ldots, b_n\} \in B$  mit:  $\{b_1, \ldots, b_n\}$  ist algebraisch abhängig über k. Da  $\mathbb{B}$  bezüglich der Inklusion total geordnet ist, existiert ein  $B \in \mathbb{B}$  mit  $\{b_1, \ldots, b_n\} \subseteq B$ . Dies steht aber im Widerspruch dazu, dass  $B \in \mathbb{B}$  transzendent über k ist.

Damit war unsere Annahme falsch und wir haben gezeigt, dass die Menge der über k transzendente Teilmengen von L mindestens ein maximales Element und damit L/k eine Transzendenzbasis besitzt.

# Transzendent ist pur transzendent plus algebraisch 1

**Korrolar 5.** [Eigene Überlegung] Für jede Körpererweiterung L/k existiert ein Zwischenkörper  $K \subseteq L$ , sodass K/k eine pur transzendente und L/K eine algebraische Körpererweiterung ist.

Beweis. Nach proposition 4 existiert eine Transzendenzbasis B von L/k. Wie in definition 1 beschrieben ist somit k(B)/k pur transzendent und L/k(B) algebraisch.

Wähle also K := k(B).

# Transzendenzbasen sind immer gleich lang [Theorem A1.1 David Eisenbud 1994]

**Proposition 6.** Sei L/k eine Körpererweiterung. Seinen weiter A, B zwei Transzendenzbasen von L über k. Dann gilt:

$$|A| = |B|$$

Wir nennen |B| den Transzendenzgrad von L/k.

Beweis. Im Fall von  $|A| = |B| = \infty$  sind wir schon fertig, Sei also ohne Einschränkung  $A = \{a_1, \ldots, a_m\}$  und  $B = \{b_1, \ldots, b_n\}$  mit  $min(m, n) = n < \infty$ . Wir wollen zunächst in n Schritten die Elemente aus B durch Elemente aus A ersetzten und damit zeigen, dass  $\{a_1, \ldots, a_n\}$  eine Transzendenzbasis von L über k ist:

Für den *i*-ten Schritt definiere  $A_i := \{a_1, \dots, a_{i-1}\} \subseteq A$ ,  $B_i := \{b_i, \dots, b_n\} \subseteq B$  und gehe davon aus, dass  $A_i \cup B_i$  eine Transzendenzbasis ist:

Nach lemma 3 ist  $\{a_i\} \cup A_i \cup B_i = A_{i+1} \cup B_i$  nicht transzendent und somit

algebraisch abhängig.

Also existiert 
$$P \in k[x, x_1, \dots, x_n]$$
 mit  $P(a_i, a_1, \dots, a_{i-1}, b_i, \dots, b_n) = 0$ .  
Definiere  $P'(x) := P(a_i, a_1, \dots, a_{i-1}, x, b_{i+1}, \dots, b_n) \in k(A_{i+1} \cup B_{i+1})[x]$ .  
Dieses erfüllt  $P'(b_i) = 0$ .

Da  $A_i \subseteq A$  algebraisch unabhängig ist, gilt  $P(a_1, \ldots, a_{i-1}, x_i, \ldots, x_n) \neq 0$ . Nummeriere also gegebenenfalls B vor der Bildung von P'(x) so um, dass auch  $P'(x) \neq 0$  gilt.

Die Existenz eines solchen P'(x) zeigt uns, dass die Körpererweiterungen  $L \subset k(A_{i+1} \cup B_i) = k(A_{i+1} \cup B_{i+1})(\{b_i\}) \subset k(A_{i+1} \cup B_{i+1})$  algebraisch sind und legt nahe, dass  $A_{i+1} \cup B_{i+1}$  wieder eine Transzendenzbasis ist. Um dies zu zeigen nehme zunächst an  $A_{i+1} \cup B_{i+1}$  wäre algebraisch abhängig.

Also existiert 
$$Q \in k[x_1, \dots, x_n]$$
 mit  $Q(a_1, \dots, a_i, b_{i+1}, \dots, b_n) = 0$ .  
Definiere  $Q'(x) := Q(a_1, \dots, a_{i-1}, x, b_{i+1}, b_n) \in k(a_1, \dots, a_{i-1}, b_{i+1}, b_n)[x]$ .  
Dieses erfüllt  $Q'(a_i) = 0$ .

Da  $(A_{i+1} \cup B_{i+1}) \setminus \{a_i\} \subseteq A_i \cup B_i$  algebraisch unabhängig ist gilt  $Q'(x) \neq 0$ . Die Existenz eines solchen Q'(x) zeigt uns, dass die Körpererweiterung  $L \subset k(A_{i+1} \cup B_{i+1}) \subset k((A_{i+1} \cup B_{i+1}) \setminus \{a_i\}) = k((A_i \cup B_i) \setminus \{b_i\})$  algebraisch ist. Damit ist  $(A_i \cup B_i) \setminus \{b_i\}$  eine Transzendenzbasis, was nach lemma 3 im Widerspruch dazu steht, dass  $A_i \cup B_i$  eine Transzendenzbasis ist. Folglich ist  $A_{i+1} \cup B_{i+1}$  transzendent und somit eine Transzendenzbasis von L über k.

Dieses Verfahren zeigt uns, dass  $\{a_1, \ldots, a_n\} \subseteq A$  eine Transzendenbasis von L über k ist. Nach lemma 3 muss somit  $A = \{a_1, \ldots, a_n\}$  und m = n gelten.  $\square$ 

# Unterschiedliche Transzendenzbasen bsp

**Beispiel 7.** [Eigene Überlegung] Sei dazu L = k(y) der Körper der rationalen Funktionen über k. Betrachte zwei unterschiedliche Transzendenzbasen von L/k:

- 1.  $B = \{y\}$  ist eine Transzendenzbasis von L/k mit  $\deg(L/k(B)) = 1$ .
- **2.** Für  $n \in \mathbb{N}$  ist  $B' = \{y^n\}$  eine Transzendenzbasis von L/k mit  $\deg(L/k(B)) = n$ .

$$f(x) = x^n - y^n \in k(y^n)[x]$$
 ist Minnimalpolynom von  $x$  über  $k(y^n)$ .  
 $\Rightarrow k(y)/k(y^n)$  ist eine algebraische Körpererweiterung vom Grad  $n$ 

Dies zeigt, dass die Form des Körpers k(B) und insbesondere der Grad der Körpererweiterung L/k(B) sehr von der Wahl der Transzendenzbasis B abhängt.

# 3.2 Kähler-Differenzial von Körpererweiterungen

Definition der Differenzialbasis [vlg. Chapter 16.5 David Eisenbud 1994]

**Definition 8.** Sei  $L \supset k$  eine Körpererweiterung. Dann nennen wir eine Teilmenge  $\{b_i\}_{i\in\Lambda}\subseteq L$  eine <u>Differenzialbasis</u> von L über k, falls  $\{d_K(b_i)\}_{i\in\Lambda}$  eine Vektorraumbasis von  $\Omega_{L/R}$  über L ist.

**Differential von rationalen Funktionen 1** [vlg. Chapter 16.5 David Eisenbud 1994]

**Beispiel 9.** Sei k ein Körper und  $L = k(\{x_i\}_{i \in \{1,...,n\}})$  der Körper der rationalen Funktionen in n Varablen über k.

Dann gilt:

$$\Omega_{L/k} \simeq L\langle d_{k[x_1,\dots x_n]}(x_i)\rangle$$

Insbesondere ist  $\{x_i\}_{i\in\{1,\ldots,n\}}$  eine Differenzialbasis von  $\Omega_{L/k}$ .

Beweis. Betrachte  $L = k[x_1, \ldots, x_n][k[x_1, \ldots, x_n]^{-1}]$  als Lokalisierung um theorem 16 anwenden zu können. Anschließend forme noch  $\Omega_{k[x_1, \ldots, x_n]/k}$  mithilfe von korrolar 14 isomorph um:

$$\Omega_{L/k} \simeq L \otimes \Omega_{k[x_1,...,x_n]/k}$$

$$\simeq L \otimes \bigoplus_{i \in \{1,...,n\}} k[x_1,...,x_n] \langle d_{k[x_1,...x_n]}(x_i) \rangle$$

$$\simeq L \langle d_{k[x_1,...,x_n]}(x_i) \rangle$$

Damit ist  $\{d_L(x_i)\}_{i\in\{1,\ldots,n\}}$  eine Vektorraumbasis von  $\Omega_{L/k}$ .

Differential von rationalen Funktionen 2 [Aufgabe 16.6 David Eisenbud 1994]

Korrolar 10. Sei k ein Körper und  $L \supset k$  eine Körpererweiterung und  $T = L(\{x_i\}_{i \in \{1,...,n\}})$  der Körper der rationalen Funktionen in n Varablen über L. Dann gilt:

$$\Omega_{T/k} \simeq (T \otimes_L \Omega_{L/R}) \oplus \bigoplus_{i \in \{1, \dots, n\}} T \langle d_T(x_i) \rangle$$

Beweis. Betrachten T als Lokalisierung von  $L[x_1, \ldots, x_n]$  und gehen dann analog zu beispiel 9 vor:

$$\Omega_{T/k} \simeq T \otimes_{L[x_1,...,x_n]} \Omega_{L[x_1,...,x_n]/k} \text{ (theorem 16)}$$

$$\Omega_{L[x_1,...,x_n]/R} \simeq (L[x_1,...,x_n] \otimes_L \Omega_{L/R}) \oplus_{i \in \{1,...,n\}} L[x_1,...,x_n] \langle d_{L[x_1,...,x_n]}(x_i) \rangle \text{ (korrolar 15)}$$

$$\Rightarrow \Omega_{T/k} \simeq (T \otimes_L \Omega_{L/R}) \oplus_{i \in \{1,...,n\}} T \langle d_T(x_i) \rangle$$

# Cotangent Sequenz von Koerpern 1 [Aufgabe 16.6 David Eisenbud 1994]

**Bemerkung 11.** Sei  $L \supset k$  eine Körpererweiterung und  $T = L(x_1, \ldots, x_n)$  der Körper der rationalen Funktionen in n Variablen über L. Dann ist die COTAN-GENT SEQUENZ (satz 10) von  $k \hookrightarrow L \hookrightarrow T$  eine kurze Exakte Sequenz:

$$0 \longrightarrow T \otimes_L \Omega_{L/k} \longrightarrow \Omega_{T/k} \longrightarrow \Omega_{T/L} \longrightarrow 0$$

Im Genauen ist  $\varphi: T \otimes_L \Omega_{L/k} \longrightarrow \Omega_{T/k}$ ,  $t \otimes d_L(l) \longmapsto t \cdot d_T(l)$  injektiv.

Beweis. Die Injektivität von  $\varphi$  folgt direkt aus der isomorphen Darstellung von  $\Omega_{T/k}$ , die wir uns in korrolar 10 erarbeitet haben.

$$\Omega_{T/k} \simeq (T \otimes_L \Omega_{L/R}) \oplus \bigoplus_{i \in \{1, \dots, n\}} T \langle d_T(x_i) \rangle$$

Um sicher zu gehen definiere  $\varphi' \simeq \varphi$  und durchlaufe die in korrolar 10 genutzten Isomorphismen noch einmal Schritt für Schritt:

Damit ist  $\varphi$  eine injektive Einbettung von  $T \otimes_L \Omega_{L/k}$  in  $\Omega_{T/k}$ .

# Aufbaulemma Koerperdifferenzial [vlg. Lemma 16.15 David Eisenbud 1994]

**Lemma 12.** Sei  $L \subset T$  eine seperable und algebraische Körpererweiterung und  $R \longrightarrow L$  ein Ringhomomorphismus. Dann gilt:

$$\Omega_{T/R} = T \otimes_L \Omega_{L/R}$$

Insbesondere ist in diesem Fall die COTANGENT SEQUENZ (satz 10) von  $R \to L \hookrightarrow T$  eine kurze Exakte Sequenz:

$$0 \longrightarrow T \otimes_L \Omega_{L/R} \longrightarrow \Omega_{T/R} \longrightarrow \Omega_{T/L} \longrightarrow 0$$

Beweis. Wähle  $\alpha \in T$  mit  $L[\alpha] = T$ . Sei weiter f(x) das Minimalpolynom von  $\alpha$ . Betrachte dazu die conormale Sequenz von  $\pi : L[x] \longrightarrow L[x]/(f) \simeq T$  (satz 11):

$$(f)/(f^2) \xrightarrow{1 \otimes d_{L[x]}} T \otimes_{L[x]} \Omega_{L[x]/R} \xrightarrow{D\pi} \Omega_{T/R} \longrightarrow 0$$

Wende nun Proposition 16.6 auf  $\Omega_{L[x]/R}$  an und tensoriere mit T, somit gilt:

$$T \otimes_{L[x]} \Omega_{L[x]/R} \simeq T \otimes_L \Omega_{L/R} \oplus T \langle d_{L[x]}(x) \rangle$$

Zusammen mit der conormalen Sequenz bedeutet dies:

$$\Omega_{T/R} \simeq (T \otimes_L \Omega_{L/R} \oplus T \langle d_{L[x]}(x) \rangle) / (d_{L[x]}(f))$$

Wenn wir  $d_{L[x]}:(f)\longrightarrow T\otimes_L\Omega_{L/R}\oplus T\langle d_{L[x](x)}\rangle$  wie in ?? betrachten , sehen wir:

$$d_{L[x]}((f)) = J \oplus (f'(\alpha)d_{L[x]}) = J \oplus T\langle d_{S[x]}(x)\rangle$$
, wobei  $J \subseteq T \otimes_L \Omega_{L/R}$  ein Ideal ist.

Für die letzte Gleichheit nutze, dass  $T \supset L$  seperabel und somit  $f'(\alpha) \neq 0$  ist und nach obiger Wahl  $T = L[\alpha]$  gilt.

Damit erhalten wir nun:

$$\Omega_{T/R} \simeq (T \otimes_L \Omega_{L/R})/J$$
  
 $\Rightarrow T \otimes_L \Omega_{L/R} \hookrightarrow \Omega_{T/R} \text{ ist surjektiv.}$ 

Somit muss J = 0 gelten und es folgt  $T \otimes_L \Omega_{L/R} \simeq \Omega_{T/R}$ .

Damit haben wir insbesondere auch gezeigt, dass  $T \otimes_L \Omega_{L/R} \to \Omega_{T/R}$  injektiv und somit die COTANGENT SEQUENZ von  $R \to L \hookrightarrow T$  eine kurze exakte Sequenz ist.

# Transzendenzbasis ist Differenzialbasis [vlg. Theorem 16.4 David Eisenbud 1994]

**Theorem 13.** Sei  $T \supset k$  eine seperabel generierte Körpererweiterung und  $B = \{b_i\}_{i \in \Lambda} \subseteq T$ . Dann ist B genau dann eine Differenzialbasis von T über k, falls eine der folgedenen Bedingungen erfüllt ist:

- 1. char(k) = 0 und B ist eine Transzendenzbasis von T über k.
- 2. char(k) = p und B ist eine p-Basis von T über k.

Beweis.

 $\frac{\textbf{1.,,\Leftarrow":}}{\text{Damit ist die K\"{o}rpererweiterung }L:=k(B)\supset k \text{ algebraisch und seperabel}.}$ 

Mit lemma 12 folgt:

$$\Omega_{T/k} = T \otimes_L \Omega_{L/k}$$

Betrachte  $L = k[B][k[B] \setminus 0^{-1}]$  als Lokalisierung und wende theorem 16 auf  $\Omega_{L/k}$  an, somit gilt:

$$\Omega_{L/k} = L \otimes_{k[B]} \Omega_{k[B]/k}$$

In korrolar 14 haben wir gesehen, dass  $\Omega_{k[B]/k}$  ein freis Modul über k[B] mit  $\{b_i\}_{i\in\Lambda}$  als Basis ist. Dies liefert uns letztendlich die gewünschte Darstellung

$$\Omega_{T/k} = \bigoplus_{\{i \in \Lambda\}} T \langle d_T(b_i) \rangle.$$

1.,, $\Rightarrow$ ": Sei  $d_T(B)$  eine Vektorraumbasis von  $\Omega_{T/k}$ . Zeige zunächst, dass T algebraisch über L := k(B) ist:

Die COTANGENT SEQUENZ (satz 10) von  $k \hookrightarrow L \hookrightarrow T$  besagt  $\Omega_{T/L} \simeq \Omega_{T/k}/T \langle d_T(S) \rangle$  und nach Vorraussetzung gilt  $\Omega_{T/k} = T \langle d_T(B) \rangle$ .  $\Rightarrow \Omega_{T/L} \simeq \Omega_{T/k}/T \langle d_T(L) \rangle = \Omega_{T/k}/T \langle d_T(B) \rangle = \Omega_{T/k}/\Omega_{T/k} = 0$ 

Da, wie wir in " $\Leftarrow_1$ ."gezeigt haben, jede Transzendenzbasis B' von T über L auch eine Differenzialbasis von  $\Omega_{T/L} = 0$  ist, gilt für diese  $B' = \emptyset$ . Somit ist T schon algebraisch über L.

Zeige noch, dass B auch algebraisch unabhängig über L ist: Sei dazu  $\Gamma$  eine minimale Teilmenge von  $\Lambda$ , für welche T noch algebraisch über  $k(\{b_i\}_{i\in\Gamma})$  ist. Für diese ist  $\{b_i\}_{i\in\Gamma}$  algebraisch unabhängig über K. Damit ist nach  $, \Leftarrow_1.$  " $\{b_i\}_{i\in\Gamma}$  ebenfalls eine Differenzialbasis von T über k. Also muss schon  $\Gamma = \Lambda$  gegolten haben und B ist eine Transzendenzbasis von T über k.

 $\mathbf{2}$ .,,<br/>
←": Sei B eine p-Basis von T über k.

Somit wird nach DEFINITION-PROPOSITION T von B als Algebra über  $(k*T^p)$  und  $\Omega_{T/(k*T^p)}$  von  $d_T(B)$  als Vektorraum über T (PROPOSITION) erzeugt. Zeige also  $\Omega_{T/k} \simeq \Omega_{T/(T^p*k)}$ :

Die Cotangent Sequenz (satz 10) von  $K \hookrightarrow (k * T^p) \hookrightarrow T$  besagt:

$$\Omega_{T/(T^p*k)} \simeq \Omega_{T/k}/d_T(T^p*k)$$

Für beliege  $t^p \in T^p$  gilt  $d_T(t^p) = pt^{p-1}d_T(t) = 0$ , da char(T) = p.  $\Rightarrow d_T(T^p * k) = d_T(k(T^p)) = 0$ 

Damit ist  $d_T: T \longrightarrow \Omega_{T/k}$  auch  $(T^p * k)$ -linear und es gilt  $\Omega_{T/k} \simeq \Omega_{T/(T^p * k)}$ .

 $\frac{\textbf{2.,,\Rightarrow":}}{\text{Zeige zun\"{a}chst, dass }T\text{ von }B\text{ als Algebra \"{u}ber }k\text{ erzeugt wird:}}$ 

Die COTANGENT SEQUENZ (satz 10) von 
$$k \hookrightarrow L := k(B) \hookrightarrow T$$
 besagt  $\Omega_{T/L} \simeq \Omega_{T/k}/T \langle d_T(L) \rangle$  und nach Vorraussetzung gilt  $\Omega_{T/k} = T \langle d_T(B) \rangle$ .  

$$\Rightarrow \Omega_{T/L} \simeq \Omega_{T/k}/T \langle d_T(L) \rangle = \Omega_{T/k}/T \langle d_T(B) \rangle = \Omega_{T/k}/\Omega_{T/k} = 0$$

Da, wie wir in " $\Leftarrow_2$ ."gezeigt haben, jede p-Basis B' von T über L auch eine Differenzialbasis von  $\Omega_{T/L}=0$  ist, gilt für diese  $B'=\emptyset$ . Somit wird T schon von B als Algebra über k erzeugt.

Zeige noch, dass B auch minimal als Erzeugendensystem von T als Algebra über k ist:

Sei dazu  $\Gamma$  die minimale Teilmenge von  $\Lambda$ , für welche T noch von  $\{b_i\}_{i\in\Gamma}$  als Algebra über k erzeugt wird. Dann ist  $\{b_i\}_{i\in\Gamma}$  eine p-Basis von T über k. Somit ist nach  $\underset{\longleftarrow}{\leftarrow}_2$ ." $\{b_i\}_{i\in\Gamma}$  ebenfalls eine Differenzialbasis von T über k. Es muss also schon  $\Gamma = \Lambda$  gegolten haben und B ist eine p-Basis von T über k.

# Kapitel 4

# Aufgaben

- Aufgabe 6.7 aus David Eisenbud 1994 ist proposition 11.
- Aufgabe 16.6 a) aus David Eisenbud 1994 ist bemerkung 11.

Cotangent Sequenz von Koerpern 3 [Aufgabe 16.6 b) David Eisenbud 1994] Wir nennen eine Körpererweiterung  $T \supset L$  pur inseperabel, falls gilt:

$$char(L) = p > 0 \ und \ \forall t \in T \ \exists l \in L \ \exists n \in \mathbb{N} : t^{p^n} = l$$

**Proposition 1.** Seien  $T \supset L \supset k$  endliche Körpererweiterungen. Betrachte die COTANGENT SEQUENZ (satz 10) von  $k \hookrightarrow L \hookrightarrow T$ :

$$T \otimes_L \Omega_{L/k} \xrightarrow{\varphi} \Omega_{T/k} \longrightarrow \Omega_{T/L} \longrightarrow 0$$

Sei weiter die Körpererweiterung  $T\supset L$  algebraisch und pur inseperabel und existiere ein  $\alpha\in T$  mit  $L(\alpha)=T$  und  $Mipo(\alpha)=f(x)=x^p-a$ . Dann gilt:

$$\varphi$$
 ist injektiv  $\Leftrightarrow d_L(a) = 0$ 

Beweis. Lege zunächst T = L[x]/(f(x)) fest und betrachte den kanonischen Epimorphismus  $\pi: L[x] \longrightarrow T$ , sowie die dazugehörige Konormale Sequenz (satz 11). Forme diese leicht um (2), sodass wir sie mit der COTANGENT SEQUENZ von  $k \hookrightarrow L \hookrightarrow T$  (3) vergleichen können:

$$(f(x))/(f(x)^2) \xrightarrow{1 \otimes d_{L[x]}} T \otimes_{L[x]} \Omega_{L[x]/k} \xrightarrow{D\pi} \Omega_{T/k} \longrightarrow 0$$
 (1)

$$T\langle d_{L[x]}(f(x))\rangle \longrightarrow T \otimes_L \Omega_{L/k} \oplus T\langle d_{L[x]}(x)\rangle \xrightarrow{\widetilde{D\pi}} \Omega_{T/k} \longrightarrow 0$$
 (2)

$$T \otimes_L \Omega_{L/k} \xrightarrow{\varphi} \Omega_{T/k} \longrightarrow \Omega_{T/L} \longrightarrow 0$$
 (3)

Zeige, dass (2) auch wirkliche exakt ist:

$$(1 \otimes d_{L[x]})(f(x)) = T \otimes_{L[x]} L[x] \langle d_{L[x]}(f(x)) \rangle \simeq T \langle d_{L[x]}(f(x)) \rangle$$

$$\Rightarrow \text{ Ersetze } 1 \otimes d_{L[x]} : (f(x))/(f(x)^2) \longrightarrow T \otimes_{L[x]} \Omega_{L[x]/k}$$

$$\text{durch } T \langle d_{L[x]}(f(x)) \rangle \hookrightarrow T \otimes_{L[x]} \Omega_{L[x]/k}.$$

nach korrolar 15 gilt  $\Omega_{L[x]/k} \simeq L[x] \otimes_L \Omega_{L/k} \oplus L[x] \langle d_{L[x]}(x) \rangle$  und tensorieren mit T ergibt  $T \otimes_{L[x]} \Omega_{L[x]/k} \simeq T \otimes_L \Omega_{L/k} \oplus T \langle d_{L[x]}(x) \rangle$ .

<u>"⇒</u> ": Wenn wir nun unsere zwei exakten Sequenzen betrachten sehen wir, dass  $\varphi$  eine Einschränkung von  $D\pi$  auf einen kleineren Definitionsbereich ist. Zeige also, dass  $D\pi$  injektiv ist:

Nach Vorraussetung gilt 
$$d_L(a) = 0$$
 also auch  $d_{L[x]}(a) = 0$   

$$\Rightarrow d_{L[x]}(f) = d_{L[x]}(x^p) - d_{L[x]}(a) = px^{p-1}d_{L[x]}(x) - d_{L[x]}(a) = 0 - 0$$

$$\Rightarrow T\langle d_{L[x]}(f(x))\rangle = 0$$

Bezogen auf die exakte Sequenz (2) bedeutet dies, dass  $D\pi$  injektiv ist.

"<br/> $\Leftarrow$ ": Da $\varphi$ nach Vorrausetzung injektiv ist, genügt e<br/>s $\varphi 1 \otimes a = 0$ zu zeigen:

In 
$$T$$
 gilt  $[f(x)]_T = 0$   

$$\Rightarrow 0 = d_T([f(x)]_T) = d_T([x^p]_T) - d_T([a]_T) = d_T([a]_T)$$

$$\Rightarrow \varphi(1 \otimes d_L(a)) = d_T([a]_T) = 0$$

Da  $\varphi$  nach Voraussetzung injektiv ist, gilt  $1 \otimes d_{L[x]}(a) = 0$  und somit auch  $d_L(a) = 0$ .

Cotangent Sequenz von Koerpern 3 Beispiel [Aufgabe 16.6 b) David Eisenbud 1994]

Beispiel 2. Betrachte das in proposition 1 gegebenen Szenario und wähle:

$$k = \mathbb{F}_3, L = k[y]/(y^2 + 1), T = L(\sqrt[3]{y}) \simeq L[x]/(x^3 - y).$$

Hierbei gilt  $d_L(x) \neq 0$  und somit ist  $\varphi : T \otimes_L \Omega_{L/k} \longrightarrow \Omega_{L/k}$  nicht injektiv.

seperabel generierte Koerpererweiterung mit DifR(T)(R) ist 0 [Aufgabe 16.10 David Eisenbud 1994(steht im Bezug zu Korrolar 16.17)]

**Beispiel 3.** Sei k ein Körper mit char(k) = p > 0 und sei weiter K(x) der

Raum der Rationalen Funktionen über k.

Definiere: 
$$L := k(x^{1/p^{\infty}}) = \lim_{\longrightarrow} \{k(x^{1/p^n}) | n \in \mathbb{N}\}$$

Dann gilt :  $\Omega_{L/k} = 0$ 

Prüfe noch, ob  $L \supset k$  eine seperabel generierte Körpererweiterung ist.

Beweis. Es gilt:

$$d_L(x^{1/p^n}) = d_L\left(\prod_{i \in \{1, \dots, p\}} x^{1/p^{n+1}}\right) = p \cdot \left(\prod_{i \in \{1, \dots, p-1\}} x^{1/p^{n+1}}\right) \cdot d_L(x^{1/p^{n+1}}) = 0$$

Nute noch proposition 13 und beispiel 9 um zu folgern, dass  $\Omega_{L/k}$  von  $\{d_L(x^{1/p^n})|n\in\mathbb{N}\}$  erzeugt wird.

Differenzial algebraischer Algebren ist Null [Aufgabe 16.11 David Eisenbud 1994]

**Beispiel 4.** Sei K ein  $K\"{o}rper$  mit char(K) = 0 und T eine noethersche K-Algebra. Dann gilt:

$$\Omega_{T/K} = 0$$

 $T = \prod_{i \in \{1, \dots, n\}} K(\alpha_i) \text{ ist ein endliches Produkt algebraischer K\"{o}rpererweiterungen}.$ 

Beweis.

"⇒ ": DaT noethersch ist, ist Tals Algebra über K endlich erzeugt und es gilt:

$$T = \prod_{i \in \{1, \dots, n\}} K[\alpha_i] / I_i$$

Wobei  $I_i \subseteq K[\alpha_i]$  ein Ideal ist. $(\forall i \in \{1, \dots, n\})$ 

Zur Vereinfachung definiere  $T':=\prod_{i\in\{1,\dots,n\}}K[\alpha_i]$ . Betrachte nun den Differentialraum von T genauer:

$$\Omega_{T/K} = d_{T'} \left( \prod_{i \in \{1, \dots, n\}} K[\alpha_i] / I_i \right)$$

$$= \prod_{i \in \{1, \dots, n\}} d_{K[\alpha]} \left( K[\alpha_i] / I_i \right) \quad (proposition 9)$$

Betrachte also jeweils für  $i \in \{1, ..., n\}$  die K-Algebra  $K[\alpha_i]/I_i$ . Sei  $I_i \neq K[\alpha_i]$ , da andernfalls  $K[\alpha_i]/I_i = 0$  und somit  $\alpha_i$  kein Erzeuger vor T wäre.

Unterscheide nun zwischen den zwei möglichen Fällen  $\underline{I_i=0}$  und  $\underline{I_i\neq 0}$ :

Dies bedeutet 
$$K[\alpha_i] \simeq K[x]$$
  
 $\Rightarrow \Omega_{K[\alpha_i]/K} \simeq K[x] \langle d_{K[x]}(x) \rangle \neq 0$  (korrolar 14)

Dies steht allerdings im Widerspruch zu  $K[\alpha_i] = 0$ . Folglich war unsere Annahme falsch und  $\alpha_i$  ist algebraisch über K.

Folglich ist  $K[\alpha_i] = K(\alpha_i)$  eine algebraische Körpererweiterung.

$$K[\alpha_i] \simeq K[x]$$
 und  $I \simeq (f(x))$  mit  $f(x) \in K[x]$   
 $\Rightarrow K[\alpha_i] \simeq K[\beta_1, \dots \beta_n] = K(\beta_1, \dots \beta_n)$ , wobei  $\beta_1, \dots \beta_n$  die Nullstellen von f sind.

Somit haben wir gezeigt, dass auch in diesem Fall  $K[\alpha_i]/I_i$  eine Algebraische Körpererweiterung ist.

<u>"</u> proposition 9 besagt, dass das direkte Produkt unter Bildung des Differenzials erhalten bleibt, also gilt in diesem Fall:

$$\Omega_{T/K} = \prod_{i \in \{1, \dots, n\}} \Omega_{K(\alpha_i)/K}$$

Nach Voraussetzung sind alle Körpererweiterungen  $K\alpha_i\supset K$  algebraisch. Wir haben schon in BSP gesehen, dass somit deren Differentiale gleich 0 sind. Folglich ist auch das direkte Produkt der einzelnen Differenziale und somit  $\Omega_{T/K}$  gleich 0.