Ho: 11 = 1/2 ~ HA: TT + 1/2 = B01 = M0 (X) w, (x) n - 104490000 x = 52263740 XNBinomial (n,x) Mo(52263740) - (104490000) $\times (12)$ $\times (12)$ -1.13490-07 eva (vor m, cx) tene-P0,20 mos 17 ~ Beta (1,1) = 0 (0,1)

Ejemplo

(Prueba de sabor): se conduce un experimento para determinar si un individuo tiene poder discriminatorio. El individuo debe identificar correctamente cuál de las dos marcas de un producto ha recibido. Si θ denota la probabilidad de que seleccione la marca correcta en el i-ésimo ensayo, entonces la variable Bernoulli x_i denota el resultado del experimento, tomando el valor 1 si acierta y 0 si falla. Suponga que en los primeros seis ensayos los resultados son: 1,1,1,1,1 y 0. El problema es verificar

$$H_0: \theta = 1/2$$
 vs. $H_1: \theta > 1/2$

Suponga que $\theta \sim U(0,1)$.

Ejemplo

Se quiere hacer inferencia sobre λ : el número promedio de goles que hace el visitante. Se tienen las siguiente hipótesis:

$$H_0: \lambda = 1$$
 vs. $H_1: \lambda = 2$

Se asume una verosimilitud Poisson y se tiene las probabilidades a priori: $p(H_0) = 0.7$ y $p(H_1) = 0.3$ Se toma una muestra aleatoria de 7 partidos y se encuentra que el visitante anoto: 3, 1, 0, 1, 0, 0 y 1 goles. ¿Qué se puede concluir?.

Ejemplo

Se quiere hacer inferencia sobre el número promedio de goles del equipo local. Se desea probar las siguientes hipótesis:

$$H_0: \lambda \leq 1$$
 vs. $H_1: \lambda > 1$

Los datos de los goies de los equipos locales de las primeras cuatro fechas del campeonato 2002-l en el primer tiempo son:

Suponga que $p(H_0) = 0.4$ y $p(H_1) = 0.6$, bajo hipótesis nula se selecciona $\lambda_0 \sim Beta(1,1)$ y bajo H_1 tenemos $\lambda_1 \sim Normal$ truncada(1.5,1). ¿Qué se puede concluir?.

1 = # 6 20 megio 96 80/62 96/ 60000 1000/ YN Poisson (7) $m_{o}(q) - (p)_{o}$ × (7)9) 5 S C + 2) 2 4 j 2 3 M 281+1-1 707 -17 5 4 1 D T (\geq y : \forall \geq \)

