Apéndice A

Delta de Dirac

La delta de Dirac tiene representaciones numéricas en términos de límites. En sí, debe entenderse como un proceso límite. Las dos más utilizadas son las representaciones lorentziana,

$$\delta(x) = \lim_{\epsilon \to 0} \; \frac{\epsilon}{\pi(x^2 + \epsilon^2)}$$

gaussiana

$$\delta(x) = \lim_{\epsilon \to 0} \frac{e^{-x^2/(4\epsilon)}}{2\sqrt{\pi}\sqrt{\epsilon}}$$

y la que utiliza la función sinc, [CHECK]

$$\delta(x) = \lim_{\epsilon \to 0} \frac{\sin(x/\epsilon)}{\pi x}$$

La variable que tiene a cero ϵ cuantifica el ancho mientras que $1/\epsilon$ cuantifica la altura.

Hacer grafiquitos de estas funciones.

Apéndice B

Coordenadas esféricas y cilíndricas

Acá se condensan algunas expresiones asociadas al aspecto de los operadores diferenciales en los diferentes sistemas de coordenadas curvilíneos.

El prototipo de sistema curvilíneo es el esférico. Teníamos

$$d\mathbf{x} = dr\,\hat{r} + rd\theta\,\hat{\theta} + r\sin\theta\,\hat{\varphi}$$
 $dV = r^2\sin\theta dr d\theta d\phi$

donde $r^2 \sin \theta$ es el jacobiano de la transformación.

La idea es que en cualquier sistema curvilíneo de coordenadas $\{q_i\}$ se tiene para el diferencial total de una función f

$$df = \nabla f \cdot dx$$

y como en coordenadas cartesianas es

$$df = \boldsymbol{\nabla} f \cdot d\boldsymbol{x} = \sum_i \frac{\partial f}{\partial q_i} dq_i,$$

la idea es que tiene que valer lo mismo en todo sistema de coordenadas. Luego, en un sistema donde las coordenadas no son las cartesianas se tiene

$$d\mathbf{x} = h_1 dq_1 \hat{e}_1 + h_2 dq_2 \hat{e}_2 + h_3 dq_3 \hat{e}_3$$

donde los h_i dan la métrica del espacio coordenado. El gradiente será

$$\nabla f = g_1\hat{e}_1 + g_2\hat{e}_2 + g_3\hat{e}_3$$

donde g_i se ajusta pidiendo que el escalar df sea un invariante

$$\mathbf{\nabla} f \cdot d\mathbf{x} = \sum_{i} h_i g_i dq_i,$$

de lo cual surge que

$$\boldsymbol{\nabla} \equiv \sum_{i} \frac{1}{h_{i}} \frac{\partial}{\partial q_{i}} \hat{e}_{i}.$$

Este es el operador gradiente en un sistema curvilíneo.

La divergencia en cartesianas es

$$\boldsymbol{\nabla}\cdot\boldsymbol{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

y utilizando el teorema de la divergencia de Green,

$$\int_{\Omega} \mathbf{\nabla} \cdot \mathbf{F} d\Omega = \int_{\partial \Omega} \mathbf{F} \cdot d\mathbf{S}$$

se arriba a

$$\boldsymbol{\nabla}\cdot\boldsymbol{F} = \frac{1}{h_1h_2h_3}\left(\frac{\partial}{\partial q_1}\left[h_2h_3F_1\right] + \frac{\partial}{\partial q_2}\left[h_1h_3F_2\right] + \frac{\partial}{\partial q_3}\left[h_1h_2F_3\right]\right)$$

Luego, el laplaciano (que será el operador más usado en este curso) resulta de

$$\nabla^2 \varphi = \mathbf{\nabla} \cdot \mathbf{\nabla} \boldsymbol{\varphi},$$

es decir la divergencia del gradiente de la función.

En un sistema curvilíneo la delta será algo como

$$\delta({\pmb x}-{\pmb x}') = \frac{1}{h_1h_2h_3}\delta(q_1-q_1')\delta(q_2-q_2')\delta(q_3-q_3').$$

Apéndice C

Rejunte

Simplificaciones

Recordemos que

$$\sqrt{x^2} = |x|,$$

la simplificación de las raíces cuadradas implican el módulo para tener en cuenta las dos posibilidades del signo.

Ángulo entre dos vectores

En esféricas el ángulo entre dos vectores \boldsymbol{v}_1 y $\boldsymbol{v}_2,$ escribiendo los versores en cartesianas resulta

$$\cos\gamma \equiv \frac{\boldsymbol{v}_1\cdot\boldsymbol{v}_2}{|\boldsymbol{v}_1\cdot\boldsymbol{v}_2|} = \cos(\theta_1)\cos(\theta_2) + \sin(\theta_1)\sin(\theta_2)\cos(\varphi_1-\varphi_2)$$