Classification of Singularities

By Laurent's Theorem, if f(z) is analytic in a punctured disk around α , it has a convergent Laurent expansion

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - \alpha)^n$$

Three possibilities:

Removable singularity None of the a_n with n < 0 are nonzero A pole Only finitely many a_n with n < 0 are nonzero Essential singularity Infinitely many a_n with n < 0 are nonzero

Typical Questio (first step to using Residue Theorem):

Find and classify the singularities of f(z), and find the residue at each one.

Examples:

$$\frac{1}{1+z^2} \qquad \frac{1}{e^z - 1} \qquad z \cos\left(\frac{1}{z - 1}\right)$$
$$\frac{\cos(z)}{z^2 \sin(z)} \qquad \frac{\tan z}{z}$$

Easy (and examinable!) theorems about poles

Theorem

f has a pole of order k at α if and only if

$$f(z) = \frac{g(z)}{(z - \alpha)^k}$$

where g(z) analytic and nonzero in some disk around α .

Theorem

If f has a zero of order k at α , then 1/f has a pole of order k at α .

Corollary

If f has a zero of order m at α , and g has a zero of order n at α , then

- $\frac{f}{\sigma}$ has a pole of order n-m if n>m
- $ightharpoonup rac{f}{g}$ has a removable singularity if $m \geq n$

Easy way to find residues at poles

Theorem

Suppose that f has a pole of order k at α . Then

$$\operatorname{Res}\{f;\alpha\} = \frac{1}{(k-1)!} \lim_{z \to \alpha} \frac{d^{k-1}}{dz^{k-1}} (z - \alpha)^k f(z)$$

Proof.

Just compute the right hand side.

Corollary

If f=g/h, where g and h are analytic at α , $g(\alpha) \neq 0$, $h(\alpha) = 0$, $h(\alpha) \neq 0$, then f has a simple pole at α and

$$\operatorname{Res}\{f;\alpha\} = \frac{g(\alpha)}{h'(\alpha)}$$