Lecture 12:

Software Packages
Caffe / Torch / Theano / TensorFlow

Administrative

Milestones were due 2/17; looking at them this week Assignment 3 due Wednesday 2/22 If you are using Terminal: BACK UP YOUR CODE!

Caffe Overview

From U.C. Berkeley
Written in C++
Has Python and MATLAB bindings
Good for training or finetuning feedforward models

Most important tip...

Don't be afraid to read the code!

Caffe: Main classes

Blob: Stores data and derivatives (header source)

Layer: Transforms bottom blobs to top blobs (header + source)

Net: Many layers; computes gradients via forward / backward (header source)

Solver: Uses gradients to update weights (header source)

"Typed JSON" from Google

Define "message types" in .proto files

.proto file

```
message Person {
  required string name = 1;
  required int32 id = 2;
  optional string email = 3;
}
```

https://developers.google.com/protocol-buffers/

"Typed JSON" from Google

Define "message types" in .proto files

Serialize instances to text files (.prototxt)

.proto file

```
message Person {
  required string name = 1;
  required int32 id = 2;
  optional string email = 3;
}
```

.prototxt file

```
name: "John Doe"
id: 1234
email: "jdoe@example.com"
```

https://developers.google.com/protocol-buffers/

"Typed JSON" from Google

Define "message types" in .proto files

Serialize instances to text files (.prototxt)

Compile classes for

```
message Person {
  required string name = 1;
  required int32 id = 2;
  optional string email = 3;
```

.proto file

```
Java class
```

```
Person john = Person.newBuilder()
    .setId(1234)
    .setName("John Doe")
    .setEmail("jdoe@example.com")
    .build();
output = new FileOutputStream(args[0]);
john.writeTo(output);
```

.prototxt file

```
name: "John Doe"
id: 1234
email: "jdoe@example.com"
```

C++ class

```
Person john;
fstream input(argv[1].
    ios::in | ios::binary);
john.ParseFromIstream(&input);
id = john.id():
name = john.name();
email = john.email();
```

```
message NetParameter {
                                                                                        message SolverParameter {
      optional string name = 1; // consider giving the network a name
      // The input blobs to the network.
                                                                                         // Specifying the train and test networks
      repeated string input = 3;
      // The shape of the input blobs.
                                                                                         // Exactly one train net must be specified using one of the following fields:
      repeated BlobShape input_shape = 8;
70
                                                                                                 train_net_param, train_net, net_param, net
      // 4D input dimensions -- deprecated. Use "shape" instead.
                                                                                         // One or more test nets may be specified using any of the following fields:
      // If specified, for each input blob there should be four
                                                                                                 test_net_param, test_net, net_param, net
      // values specifying the num, channels, height and width of the input blob.
                                                                                         // If more than one test net field is specified (e.g., both net and
      // Thus, there should be a total of (4 * #input) numbers.
                                                                                         // test_net are specified), they will be evaluated in the field order given
      repeated int32 input_dim = 4;
                                                                                         // above: (1) test_net_param, (2) test_net, (3) net_param/net.
76
                                                                                         // A test_iter must be specified for each test_net.
      // Whether the network will force every layer to carry out backward operation.
      // If set False, then whether to carry out backward is determined
                                                                                 114
                                                                                         // A test_level and/or a test_stage may also be specified for each test_net.
      // automatically according to the net structure and learning rates.
      optional bool force_backward = 5 [default = false];
                                                                                 116
      // The current "state" of the network, including the phase, level, and stage.
                                                                                         // Proto filename for the train net, possibly combined with one or more
      // Some layers may be included/excluded depending on this state and the states
                                                                                          // test nets.
83
      // specified in the layers' include and exclude fields.
                                                                                         optional string net = 24;
0.4
      optional NetState state = 6;
                                                                                         // Inline train net param, possibly combined with one or more test nets.
      // Print debugging information about results while running Net::Forward,
                                                                                         optional NetParameter net_param = 25;
      // Net::Backward, and Net::Update.
      optional bool debug_info = 7 [default = false];
                                                                                          optional string train met = 1: // Proto filename for the train met.
```

https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto

<- All Caffe proto types defined here, good documentation!

Caffe: Training / Finetuning

No need to write code!

- 1. Convert data (run a script)
- 2. Define net (edit prototxt)
- 3. Define solver (edit prototxt)
- 4. Train (with pretrained weights) (run a script)

Caffe Step 1: Convert Data

DataLayer reading from LMDB is the easiest

Create LMDB using convert imageset

Need text file where each line is

"[path/to/image.jpeg] [label]"

Create HDF5 file yourself using h5py

Caffe Step 1: Convert Data

ImageDataLayer: Read from image files

WindowDataLayer: For detection

HDF5Layer: Read from HDF5 file

From memory, using Python interface

All of these are harder to use (except Python)

```
name: "LogisticRegressionNet"
layers {
  top: "data"
  top: "label"
  name: "data"
 type: HDF5 DATA
  hdf5 data param {
    source: "examples/hdf5 classification/data/train.txt"
    batch size: 10
  include {
    phase: TRAIN
lavers {
  bottom: "data"
  top: "fc1"
  name: "fc1"
  type: INNER PRODUCT
  blobs lr: 1
  blobs lr: 2
 weight decay: 1
  weight decay: 0
```

```
inner product param {
    num output: 2
   weight filler {
      type: "gaussian"
      std: 0.01
    bias filler {
      type: "constant"
      value: 0
layers {
  bottom: "fc1"
  bottom: "label"
  top: "loss"
  name: "loss"
 type: SOFTMAX LOSS
```

```
name: "LogisticRegressionNet"
layers {
 top: "data"
                          Layers and Blobs
 top: "label"
                          often have same
 name: "data"
 type: HDF5 DATA
                          name!
 hdf5 data param {
   source: "examples/hdf5 classification/data/train.txt"
   batch size: 10
 include {
   phase: TRAIN
layers {
 bottom: "data"
 top: "fc1"
 name: "fc1"
 type: INNER PRODUCT
 blobs lr: 1
 blobs lr: 2
 weight decay: 1
 weight decay: 0
```

```
inner product param {
    num output: 2
   weight filler {
      type: "gaussian"
      std: 0.01
    bias filler {
      type: "constant"
      value: 0
layers {
  bottom: "fc1"
  bottom: "label"
  top: "loss"
  name: "loss"
  type: SOFTMAX LOSS
```

```
name: "LogisticRegressionNet"
layers {
 top: "data"
                          Layers and Blobs
 top: "label"
                         often have same
 name: "data"
 type: HDF5 DATA
                         name!
 hdf5 data param {
   source: "examples/hdf5 classification/data/train.txt"
   batch size: 10
 include {
   phase: TRAIN
layers {
 bottom: "data"
 top: "fc1"
                          Learning rates
 name: "fc1"
                          (weight + bias)
 type: INNER PRODUC
 blobs lr: 1
 blobs lr: 2
                          Regularization
 weight decay: 1
 weight decay: 0
                          (weight + bias)
```

```
inner product param {
    num output: 2
    weight filler {
      type: "gaussian"
      std: 0.01
    bias filler {
      type: "constant"
      value: 0
layers {
  bottom: "fc1"
  bottom: "label"
  top: "loss"
  name: "loss"
  type: SOFTMAX LOSS
```

```
name: "LogisticRegressionNet"
layers {
 top: "data"
                         Layers and Blobs
 top: "label"
                         often have same
 name: "data"
 type: HDF5 DATA
                         name!
 hdf5 data param {
   source: "examples/hdf5 classification/data/train.txt"
   batch size: 10
 include {
   phase: TRAIN
layers {
 bottom: "data"
 top: "fc1"
                          Learning rates
 name: "fc1"
                          (weight + bias)
 type: INNER PRODUC
 blobs lr: 1
 blobs lr: 2
                          Regularization
 weight decay: 1
 weight decay: 0
                          (weight + bias)
```

```
Number of output
  classes
 inner product param {
    num output: 2
   weight filler {
      type: "gaussian"
      std: 0.01
    bias filler {
      type: "constant"
     value: 0
layers {
  bottom: "fc1"
  bottom: "label"
  top: "loss"
  name: "loss"
  type: SOFTMAX LOSS
```

```
name: "LogisticRegressionNet"
layers {
 top: "data"
                         Layers and Blobs
 top: "label"
                         often have same
 name: "data"
 type: HDF5 DATA
                         name!
 hdf5 data param {
   source: "examples/hdf5 classification/data/train.txt"
   batch size: 10
 include {
                           Set these to 0 to
   phase: TRAIN
                           freeze a layer
lavers {
 bottom: "data"
 top: "fc1"
                         Learning rates
 name: "fc1"
                          (weight + bias)
 type: INNER
             CODUCT
 blobs lr: 1
 blobs lr: 2
                          Regularization
 weight decay: 1
 weight decay: 0
                          (weight + bias)
```

```
Number of output
  classes
 inner product param {
    num output: 2
   weight filler {
      type: "gaussian"
      std: 0.01
    bias filler {
      type: "constant"
     value: 0
layers {
  bottom: "fc1"
  bottom: "label"
  top: "loss"
  name: "loss"
  type: SOFTMAX LOSS
```

- .prototxt can get ugly for big models
- ResNet-152 prototxt is 6775 lines long!
- Not "compositional"; can't easily define a residual block and reuse

```
nout: "data"
     input_dim: 224
     input_dim: 224
                     num_output: 64
                     kernel_size: 7
                     stride: 2
                     bias term: false
             bottom: "conv1"
             batch norm param
                     use global stats: true
30 3
```

```
layer {
               bottom: "res5c"
               top: "pool5"
                     "pool5"
               type: "Pooling"
               pooling_param {
                        kernel size: 7
                        stride: 1
                       pool: AVE
      layer {
               bottom: "pool5"
               top: "fc1000"
               name: "fc1000"
               type: "InnerProduct"
               inner_product_param
                       num_output: 1000
6765
       layer {
               bottom: "fc1000"
                    "prob"
               name: "prob"
               type: "Softmax"
6774
```

https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-152-deploy.prototxt

Caffe Step 2: Define Net (finetuning)

Original prototxt:

```
layer {
 name: "fc7"
  type: "InnerProduct"
  inner product param {
    num output: 4096
[... ReLU, Dropout]
laver {
 name: "fc8"
  type: "InnerProduct"
  inner product param {
    num output: 1000
```

Pretrained weights:

```
"fc7.weight": [values]
"fc7.bias": [values]
"fc8.weight": [values]
"fc8.bias": [values]
```

Modified prototxt:

```
layer {
  name: "fc7"
  type: "InnerProduct"
  inner product param {
    num output: 4096
[... ReLU, Dropout]
laver {
  name: "my-fc8"
  type: "InnerProduct"
  inner product param {
    num output: 10
```

Caffe Step 2: Define Net (finetuning)

Original prototxt:

```
layer {
       "fc7"
 name:
       """ roduct
  inner product param
   num output: 4096
[... ReLU, Dropout]
laver {
 name: "fc8"
  type: "InnerProduct"
  inner product param {
    num output: 1000
```

Same name: weights copied

Protrained weights:

```
fc7.weight": [values]
fc7.bias": [values]
"rc8.weignt": [values]
"fc8.bias": [values]
```

Modified prototxt:

```
layer {
       "fc7"
 name:
 typ
       roduct"
  inner product param {
   num output: 4096
[... ReLU, Dropout]
laver {
 name: "my-fc8"
 type: "InnerProduct"
 inner product param {
   num output: 10
```

Caffe Step 2: Define Net (finetuning)

Original prototxt:

```
layer {
 name: "fc7"
  type: "InnerProduct"
  inner product param {
    num output: 4096
[... ReLU, Dropout]
laver {
 name:
  type: "Imperioduct"
  inner product param {
    num output: 1000
```

Same name: weights copied

Pretrained weights:

```
"fc7.weight": [values]
"fc7.bias": [values]
'fc8.weight": [values]
'fc8.bias": [values]
```

Different name: weights reinitialized

Modified prototxt:

```
layer {
  name: "fc7"
  type: "InnerProduct"
  inner product param {
    num output: 4096
[... ReLU, Dropout]
layer {
  name:
        ..IIIA_ICO.
  type: "InnerProduct"
  inner product param {
    num output: 10
```

Caffe Step 3: Define Solver

Write a prototxt file defining a <u>SolverParameter</u> If finetuning, copy existing solver.prototxt file Change net to be your net Change snapshot prefix to your output Reduce base learning rate (divide by 100)

```
Maybe change max iter and
  snapshot
```

```
net: "models/bvlc_alexnet/train_val.prototxt"
test iter: 1000
test_interval: 1000
base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 100000
display: 20
max iter: 450000
momentum: 0.9
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: "models/bvlc_alexnet/caffe_alexnet_train"
solver_mode: GPU
```

Caffe Step 4: Train!

```
./build/tools/caffe train \
  -gpu 0 \
  -model path/to/trainval.prototxt \
  -solver path/to/solver.prototxt \
  -weights path/to/
pretrained weights.caffemodel
```

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp

Caffe Step 4: Train!

```
./build/tools/caffe train \
    -gpu 0 \
    -model path/to/trainval.prototxt \
    -solver path/to/solver.prototxt \
    -weights path/to/
pretrained_weights.caffemodel

-gpu -1 for CPU mode
```

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp

Caffe Step 4: Train!

```
./build/tools/caffe train \
  -mod path/to/trainval.prototxt \
  -solver path/to/solver.prototxt \
  -weights path/to/
pretrained weights.caffemodel
-gpu all for multi-GPU data parallelism
```

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp

Caffe: Model Zoo

AlexNet, VGG, GoogLeNet, ResNet, plus others

https://github.com/BVLC/caffe/wiki/Model-Zoo

Caffe: Python Interface

Not much documentation...

Read the code! Two most important files:

caffe/python/caffe/_caffe.cpp:

Exports Blob, Layer, Net, and Solver classes

caffe/python/caffe/pycaffe.py

Adds extra methods to Net class

Caffe: Python Interface

Good for:

Interfacing with numpy

Extract features: Run net forward

Compute gradients: Run net backward (DeepDream, etc)

Define layers in Python with numpy (CPU only)

Caffe Pros / Cons

- (+) Good for feedforward networks
- (+) Good for finetuning existing networks
- (+) Train models without writing any code!
- (+) Python interface is pretty useful!
- (-) Need to write C++ / CUDA for new GPU layers
- (-) Not good for recurrent networks
- (-) Cumbersome for big networks (GoogLeNet, ResNet)

Torch Overview

From NYU + IDIAP
Written in C and Lua
Used a lot a Facebook, DeepMind

Torch: Lua

```
High level scripting language, easy to
   interface with C
Similar to Javascript:
    One data structure:
        table == JS object
    Prototypical inheritance
        metatable == JS prototype
    First-class functions
Some gotchas:
    1-indexed =(
    Variables global by default =(
    Small standard library
```

Learn Lua in 15 Minutes

more or less

For a more in-depth Lua tutorial, watch this sides or check out a transcript of the sides.

```
-- Two dashes start a one-line comment.
    Adding two ['s and ]'s makes it a
    multi-line comment.
-- 1. Variables and flow control
num = 42 -- All numbers are doubles.
-- Don't freak out, 64-bit doubles have 52 bits for
-- storing exact int values; machine precision is
-- not a problem for ints that need < 52 bits.
 - 'walternate' -- Immutable strings like Python.
t = "double-quotes are also fine"
u = [[ Double brackets
       start and end
       multi-line strings.]]
t = nil -- Undefines t; Lua has garbage collection.
-- Blocks are denoted with keywords like do/end:
while num < 50 do
 num = num + 1 -- No ++ or += type operators.
```

http://tylerneylon.com/a/learn-lua/

Torch: Tensors

Torch tensors are just like numpy arrays

Torch: Tensors

Torch tensors are just like numpy arrays

```
import numpy as np

figure 1

import numpy as np

figure 2

figure 2

figure 3

figure 4

figure 4

figure 4

figure 5

figure 6

figure 6

figure 7

f
```

Torch: Tensors

Torch tensors are just like numpy arrays

```
import numpy as np

# Simple feedforward network (no biases) in numpy

# Batch size, input dim, hidden dim, num classes

N, D, H, C = 100, 1000, 100, 10

# First and second layer weights

wl = np.random.randn(D, H)

wz = np.random.randn(H, C)

# Random input data

x = np.random.randn(N, D)

# Forward pass
# First layer
# Forward pass
# First layer
# Second layer

# Second layer

# Second layer
```

```
1 require 'torch'
2
3 -- Simple feedforward network (no biases) in torch
4
5 -- Batch size, input dim, hidden dim, num classes
6 local N, D, H, C = 100, 1000, 100, 10
7
8 -- First and second layer weights
9 local w1 = torch.randn(D, H)
10 local w2 = torch.randn(H, C)
11
12 -- Random input data
13 local x = torch.randn(N, D)
14
15 -- Forward pass
16 local a = torch.mm(x, w1) -- First layer
17 a:cmax(0) -- In-place ReLU
18 local scores = torch.mm(a, w2) -- Second layer
19
20 print[scores]
```

Torch: Tensors

Like numpy, can easily change data type:

```
import numpy as np
4 # Simple feedforward network (no biases) in numpy
 dtype = np.float32 # Use 32-bit floats
8 # Batch size, input dim, hidden dim, num classes
N. D. H. C = 100, 1000, 100, 10
 # First and second layer weights
 w1 = np.random.randn(D, H).astype(dtype)
 w2 = np.random.randn(H, C).astype(dtype)
 # Random input data
 x = np.random.randn(N, D).astype(dtype)
# Forward pass
 a = x.dot(w1) # First layer
 a = np.maximum(a, 0) # In-place ReLU
 scores = a.dot(w2) # Second layer
 print scores
```

```
require 'torch'
4 -- Simple feedforward network (no biases) in torch
local dtype = 'torch.FloatTensor' -- Use 32-bit floats
8 -- Batch size, input dim, hidden dim, num classes
9 local N, D, H, C = 100, 1000, 100, 10
 -- First and second layer weights
 local w1 = torch.randn(D, H):type(dtype)
 local w2 = torch.randn(H, C):type(dtype)
5 -- Random input data
6 local x = torch.randn(N, D):type(dtype)
8 -- Forward pass
 local a = torch.mm(x, w1) -- First layer
                            -- In-place ReLU
 a:cmax(0)
 local scores = torch.mm(a, w2) -- Second layer
 print(scores)
```

Torch: Tensors

Unlike numpy, GPU is just a datatype away:

```
import numpy as np
4 # Simple feedforward network (no biases) in numpy
 dtype = np.float32 # Use 32-bit floats
8 # Batch size, input dim, hidden dim, num classes
N. D. H. C = 100, 1000, 100, 10
 # First and second layer weights
 w1 = np.random.randn(D, H).astype(dtype)
 w2 = np.random.randn(H, C).astype(dtype)
 # Random input data
 x = np.random.randn(N, D).astype(dtype)
 # Forward pass
 a = x.dot(w1)
                 # First layer
 a = np.maximum(a, 0) # In-place RetU
 scores = a.dot(w2) # Second layer
 print scores
```

```
require 'torch'
 require 'cutorch'
 -- Simple feedforward network (no biases) in torch
6 local dtype = 'torch.CudaTensor' -- Use CUDA
8 -- Batch size, input dim, hidden dim, num classes
9 local N, D, H, C = 180, 1880, 188, 18
1 -- First and second layer weights
 local w1 = torch.randn(D, H):type(dtype)
 local w2 = torch.randn(H, C):type(dtype)
5 -- Random input data
local x = torch.randn(N, D):type(dtype)
8 -- Forward pass
 local a = torch.mm(x, wl) -- First layer
 a:cmax(0)
                                 -- In-place ReLU
 local scores = torch.mm(a, w2) -- Second layer
 print(scores)
```

Torch: Tensors

Documentation on GitHub:

https://github.com/torch/torch7/blob/master/doc/tensor.md

https://github.com/torch/torch7/blob/master/doc/maths.md

nn module lets you easily build and train neural nets

```
require 'torch'
require 'nn'
-- Batch size, input dim, hidden dim, num classes
local N, D, H, C = 100, 1000, 100, 10
-- Build a one-layer ReLU network
local net = nn.Sequential()
net:add(nn.Linear(D, H))
net:add(nn.ReLU())
net:add(nn.Linear(H, C))
-- Collect all weights and gradients in a single Tensor
local weights, grad weights = net:getParameters()
-- Loss functions are called "criterions"
local crit = nn.CrossEntropyCriterion() -- Softmax loss
-- Generate some random input data
local x = torch.randn(N, D)
local y = torch.Tensor(N):random(C)
-- Forward pass: Compute scores and loss
local scores = net:forward(x)
local loss = crit:forward(scores, y)
-- Backward pass: compute gradients
grad weights:zero()
local dscores = crit:backward(scores, y)
local dx = net:backward(x, dscores)
-- Make a gradient step
local learning rate = 1e-3
weights:add(-learning rate, grad weights)
```

nn module lets you easily build and train neural nets

Build a two-layer ReLU net

```
require 'torch'
 require 'nn'
 -- Batch size, input dim, hidden dim, num classes
 local N, D, H, C = 100, 1000, 100, 10
    Build a one-layer ReLU network
 local net = nn.Sequential()
 net:add(nn.Linear(D, H))
 net:add(nn.ReLU())
 net:add(nn.Linear(H, C))
4 -- Collect all weights and gradients in a single Tensor
 local weights, grad weights = net:getParameters()
 -- Loss functions are called "criterions"
 local crit = nn.CrossEntropyCriterion() -- Softmax loss
 -- Generate some random input data
 local x = torch.randn(N, D)
 local y = torch.Tensor(N):random(C)
 -- Forward pass: Compute scores and loss
 local scores = net:forward(x)
 local loss = crit:forward(scores, y)
    Backward pass: compute gradients
 grad weights:zero()
 local dscores = crit:backward(scores, y)
 local dx = net:backward(x, dscores)
 -- Make a gradient step
 local learning rate = 1e-3
 weights:add(-learning rate, grad weights)
```

nn module lets you easily build and train neural nets

Get weights and gradient for entire network

```
require 'torch'
require 'nn'
-- Batch size, input dim, hidden dim, num classes
local N, D, H, C = 100, 1000, 100, 10
-- Build a one-layer ReLU network
local net = nn.Sequential()
net:add(nn.Linear(D, H))
net:add(nn.ReLU())
net:add(nn.Linear(H, C))
-- Collect all weights and gradients in a single Tensor
local weights, grad weights = net:getParameters()
-- Loss functions are called "criterions"
local crit = nn.CrossEntropyCriterion() -- Softmax loss
-- Generate some random input data
local x = torch.randn(N, D)
local y = torch.Tensor(N):random(C)
-- Forward pass: Compute scores and loss
local scores = net:forward(x)
local loss = crit:forward(scores, y)
  Backward pass: compute gradients
grad weights:zero()
local dscores = crit:backward(scores, y)
local dx = net:backward(x, dscores)
-- Make a gradient step
local learning rate = 1e-3
weights:add(-learning rate, grad weights)
```

nn module lets you easily build and train neural nets

Use a softmax loss function

```
require 'torch'
require 'nn'
-- Batch size, input dim, hidden dim, num classes
local N, D, H, C = 100, 1000, 100, 10
-- Build a one-layer ReLU network
local net = nn.Sequential()
net:add(nn.Linear(D, H))
net:add(nn.ReLU())
net:add(nn.Linear(H, C))
-- Collect all weights and gradients in a single Tensor
local weights, grad weights = net:getParameters()
-- Loss functions are called "criterions"
local crit = nn.CrossEntropyCriterion() -- Softmax loss
-- Generate some random input data
local x = torch.randn(N, D)
local y = torch.Tensor(N):random(C)
-- Forward pass: Compute scores and loss
local scores = net:forward(x)
local loss = crit:forward(scores, y)
-- Backward pass: compute gradients
grad weights:zero()
local dscores = crit:backward(scores, y)
local dx = net:backward(x, dscores)
-- Make a gradient step
local learning rate = 1e-3
weights:add(-learning rate, grad weights)
```

nn module lets you easily build and train neural nets

Generate random data

```
require 'torch'
require 'nn'
-- Batch size, input dim, hidden dim, num classes
local N, D, H, C = 100, 1000, 100, 10
-- Build a one-layer ReLU network
local net = nn.Sequential()
net:add(nn.Linear(D, H))
net:add(nn.ReLU())
net:add(nn.Linear(H, C))
-- Collect all weights and gradients in a single Tensor
local weights, grad weights = net:getParameters()
-- Loss functions are called "criterions"
local crit = nn.CrossEntropyCriterion() -- Softmax loss
-- Generate some random input data
local x = torch.randn(N, D)
local y = torch.Tensor(N):random(C)
-- Forward pass: Compute scores and loss
local scores = net:forward(x)
local loss = crit:forward(scores, y)
-- Backward pass: compute gradients
grad weights:zero()
local dscores = crit:backward(scores, y)
local dx = net:backward(x, dscores)
-- Make a gradient step
local learning rate = 1e-3
weights:add(-learning rate, grad weights)
```

nn module lets you easily build and train neural nets

Forward pass: compute scores and loss

```
require 'torch'
require 'nn'
-- Batch size, input dim, hidden dim, num classes
local N, D, H, C = 100, 1000, 100, 10
-- Build a one-layer ReLU network
local net = nn.Sequential()
net:add(nn.Linear(D, H))
net:add(nn.ReLU())
net:add(nn.Linear(H, C))
-- Collect all weights and gradients in a single Tensor
local weights, grad weights = net:getParameters()
-- Loss functions are called "criterions"
local crit = nn.CrossEntropyCriterion() -- Softmax loss
-- Generate some random input data
local x = torch.randn(N, D)
local y = torch.Tensor(N):random(C)
-- Forward pass: Compute scores and loss
local scores = net:forward(x)
local loss = crit:forward(scores, y)
-- Backward pass: compute gradients
grad weights:zero()
local dscores = crit:backward(scores, y)
local dx = net:backward(x, dscores)
-- Make a gradient step
local learning rate = 1e-3
weights:add(-learning rate, grad weights)
```

nn module lets you easily build and train neural nets

Backward pass: Compute gradients. Remember to set weight gradients to zero!

```
require 'torch
require 'nn'
-- Batch size, input dim, hidden dim, num classes
local N, D, H, C = 100, 1000, 100, 10
-- Build a one-layer ReLU network
local net = nn.Sequential()
net:add(nn.Linear(D, H))
net:add(nn.ReLU())
net:add(nn.Linear(H, C))
-- Collect all weights and gradients in a single Tensor
local weights, grad weights = net:getParameters()
-- Loss functions are called "criterions"
local crit = nn.CrossEntropyCriterion() -- Softmax loss
-- Generate some random input data
local x = torch.randn(N, D)
local y = torch.Tensor(N):random(C)
-- Forward pass: Compute scores and loss
local scores = net:forward(x)
local loss = crit:forward(scores, y)
   Backward pass: compute gradients
grad weights:zero()
local dscores = crit:backward(scores, y)
local dx = net:backward(x, dscores)
-- Make a gradient step
local learning rate = 1e-3
weights:add(-learning rate, grad weights)
```

nn module lets you easily build and train neural nets

Update: Make a gradient descent step

```
require 'torch'
require 'nn'
-- Batch size, input dim, hidden dim, num classes
local N, D, H, C = 100, 1000, 100, 10
-- Build a one-layer ReLU network
local net = nn.Sequential()
net:add(nn.Linear(D, H))
net:add(nn.ReLU())
net:add(nn.Linear(H, C))
-- Collect all weights and gradients in a single Tensor
local weights, grad weights = net:getParameters()
-- Loss functions are called "criterions"
local crit = nn.CrossEntropyCriterion() -- Softmax loss
  Generate some random input data
local x = torch.randn(N, D)
local y = torch.Tensor(N):random(C)
-- Forward pass: Compute scores and loss
local scores = net:forward(x)
local loss = crit:forward(scores, y)
   Backward pass: compute gradients
grad weights:zero()
local dscores = crit:backward(scores, y)
local dx = net:backward(x, dscores)
  Make a gradient step
local learning rate = 1e-3
weights:add(-learning rate, grad weights)
```

Running on GPU is easy:

```
require 'torch'
require 'cutorch'
require 'nn'
require 'cunn'
-- Batch size, input dim, hidden dim, num classes
local N, D, H, C = 100, 1000, 100, 10
local dtype = 'torch.CudaTensor'
-- Build a one-layer ReLU network
local net = nn.Sequential()
net:add(nn.Linear(D, H))
net:add(nn.ReLU())
net:add(nn.Linear(H, C))
net:type(dtype)
-- Collect all weights and gradients in a single Tensor
local weights, grad weights = net:getParameters()
-- Loss functions are called "criterions"
local crit = nn.CrossEntropyCriterion() -- Softmax loss
crit:type(dtype)
-- Generate some random input data
local x = torch.randn(N, D):type(dtype)
local y = torch.Tensor(N):random(C):type(dtype)
-- Forward pass: Compute scores and loss
local scores = net:forward(x)
local loss = crit:forward(scores, y)
-- Backward pass: compute gradients
grad weights:zero()
local dscores = crit:backward(scores, y)
local dx = net:backward(x, dscores)
-- Make a gradient step
local learning rate = 1e-3
weights:add(-learning rate, grad weights)
```

Running on GPU is easy:

Import a few new packages

```
require 'torch'
require 'cutorch'
require 'nn'
require 'cunn'
local N, D, H, C = 100, 1000, 100, 10
local dtype = 'torch.CudaTensor'
-- Build a one-layer ReLU network
local net = nn.Sequential()
net:add(nn.Linear(D, H))
net:add(nn.ReLU())
net:add(nn.Linear(H, C))
net:type(dtype)
-- Collect all weights and gradients in a single Tensor
local weights, grad weights = net:getParameters()
-- Loss functions are called "criterions"
local crit = nn.CrossEntropyCriterion() -- Softmax loss
crit:type(dtype)
-- Generate some random input data
local x = torch.randn(N, D):type(dtype)
local y = torch.Tensor(N):random(C):type(dtype)
-- Forward pass: Compute scores and loss
local scores = net:forward(x)
local loss = crit:forward(scores, y)
  Backward pass: compute gradients
grad weights:zero()
local dscores = crit:backward(scores, y)
local dx = net:backward(x, dscores)
-- Make a gradient step
local learning rate = 1e-3
weights:add(-learning rate, grad weights)
```

Running on GPU is easy:

Import a few new packages

Cast network and criterion

```
require 'torch
require 'cutorch'
require 'cunn'
-- Batch size, input dim, hidden dim, num classes
local N, D, H, C = 100, 1000, 100, 10
local dtype = 'torch.CudaTensor'
-- Build a one-layer ReLU network
local net = nn.Sequential()
net:add(nn.Linear(D, H))
net:add(nn.ReLU())
  Collect all weights and gradients in a single Tensor
local weights, grad weights = net:getParameters()
-- Loss functions are called "criterions"
local crit - on CrossEntropyCriterion() -- Softmax loss
local x = torch.randn(N, D):type(dtype)
local y = torch.Tensor(N):random(C):type(dtype)
-- Forward pass: Compute scores and loss
local scores = net:forward(x)
local loss = crit:forward(scores, y)
  Backward pass: compute gradients
grad weights:zero()
local dscores = crit:backward(scores, y)
local dx = net:backward(x, dscores)
-- Make a gradient step
local learning rate = 1e-3
weights:add(-learning rate, grad weights)
```

Running on GPU is easy:

Import a few new packages

Cast network and criterion

Cast data and labels

```
require 'torch
require 'cutorch'
require 'cunn'
-- Batch size, input dim, hidden dim, num classes
local N, D, H, C = 100, 1000, 100, 10
local dtype = 'torch.CudaTensor'
-- Build a one-layer ReLU network
local net = nn.Sequential()
net:add(nn.Linear(D, H))
net:add(nn.ReLU())
net:add(nn.Linear(H, C))
net:type(dtype)
local weights, grad weights = net:getParameters()
-- Loss functions are called "criterions"
local crit = nn.CrossEntropyCriterion() -- Softmax loss
crit:type(dtype)
-- Generate some random i
local x = torch.randn( 0):type(dtype)
                           random(C):type(dtype
         COLUMN TENSOR AT
-- Forward pass: Compute scores and loss
local scores = net:forward(x)
local loss = crit:forward(scores, y)
  Backward pass: compute gradients
grad weights:zero()
local dscores = crit:backward(scores, y)
local dx = net:backward(x, dscores)
-- Make a gradient step
local learning rate = 1e-3
weights:add(-learning rate, grad weights)
```

optim package implements different update rules: momentum, Adam, etc

```
'equire 'torch'
require 'optim'
-- Batch size, input dim, hidden dim, num classes
local N, D, H, C = 100, 1000, 100, 10
-- Build a one-layer ReLU network
local net = nn.Sequential()
net:add(nn.Linear(D, H))
net:add(nn.ReLU())
net:add(nn.Linear(H, C))
-- Collect all weights and gradients in a single Tensor
local weights, grad weights = net:getParameters()

    Loss functions are called "criterions"

local crit = nn.CrossEntropyCriterion() -- Softmax loss
-- Calback to interface with optim methods
local function f(w)
 assert(w == weights)
 -- Generate some random input data
 local x = torch.randn(N, D)
 local y = torch.Tensor(N):random(C)
 -- Forward pass: Compute scores and loss
 local scores = net:forward(x)
 local loss = crit:forward(scores, y)
 -- Backward pass: compute gradients
 grad weights:zero()
 local dscores = crit:backward(scores, y)
 local dx = net:backward(x, dscores)
 return loss, grad weights
end
-- Make a step using Adam
local state = {learningRate=le-3}
optim.adam(f, weights, state)
```

optim package implements different update rules: momentum, Adam, etc

Import optim package

```
require 'optim'
  Batch size, input dim, hidden dim, num classes
local N, D, H, C = 100, 1000, 100, 10
  Build a one-layer ReLU network
local net = nn.Sequential()
net:add(nn.Linear(D, H))
net:add(nn.ReLU())
net:add(nn.Linear(H, C))
-- Collect all weights and gradients in a single Tensor
local weights, grad weights = net:getParameters()

    Loss functions are called "criterions"

local crit = nn.CrossEntropyCriterion() -- Softmax loss
-- Calback to interface with optim methods
local function f(w)
 assert(w == weights)
  -- Generate some random input data
 local x = torch.randn(N, D)
 local y = torch.Tensor(N):random(C)
 -- Forward pass: Compute scores and loss
 local scores = net:forward(x)
 local loss = crit:forward(scores, y)
 -- Backward pass: compute gradients
 grad weights:zero()
 local dscores = crit:backward(scores, y)
 local dx = net:backward(x, dscores)
 return loss, grad weights
-- Make a step using Adam
local state = {learningRate=le-3}
optim.adam(f, weights, state)
```

optim package implements different update rules: momentum, Adam, etc

Import optim package

Write a callback function that returns loss and gradients

```
require 'optim'
-- Batch size, input dim, hidden dim, num classes
local N, D, H, C = 100, 1000, 100, 10
  Build a one-layer ReLU network
local net = nn.Sequential()
net:add(nn.Linear(D, H))
net:add(nn.ReLU())
net:add(nn.Linear(H, C))
-- Collect all weights and gradients in a single Tensor
local weights, grad weights = net:getParameters()
 - Loss functions are called "criterions"
local crit = nn.CrossEntropyCriterion() -- Softmax loss
-- Calback to interface with optim methods
local function f(w)
 assert(w == weights)
  -- Generate some random input data
 local x = torch.randn(N, D)
 local y = torch.Tensor(N):random(C)
  -- Forward pass: Compute scores and loss
 local scores = net:forward(x)
 local loss = crit:forward(scores, y)
  -- Backward pass: compute gradients
  grad weights:zero()
 local dscores = crit:backward(scores, y)
 local dx = net:backward(x, dscores)
 return loss, grad weights
-- Make a step using Adam
local state = {learningRate=le-3}
optim.adam(f, weights, state)
```

optim package implements different update rules: momentum, Adam, etc

Import optim package

Write a callback function that returns loss and gradients

state variable holds hyperparameters, cached values, etc; pass it to adam ____

```
-- Batch size, input dim, hidden dim, num classes
local N, D, H, C = 100, 1000, 100, 10
  Build a one-layer ReLU network
local net = nn.Sequential()
net:add(nn.Linear(D, H))
net:add(nn.ReLU())
net:add(nn.Linear(H, C))
-- Collect all weights and gradients in a single Tensor
local weights, grad weights = net:getParameters()

    Loss functions are called "criterions"

local crit = nn.CrossEntropyCriterion() -- Softmax loss
-- Calback to interface with optim methods
local function f(w)
  assert(w == weights)
  -- Generate some random input data
 local x = torch.randn(N, D)
 local y = torch.Tensor(N):random(C)
 -- Forward pass: Compute scores and loss
  local scores = net:forward(x)
 local loss = crit:forward(scores, y)
  -- Backward pass: compute gradients
  grad weights:zero()
 local dscores = crit:backward(scores, y)
 local dx = net:backward(x, dscores)
 return loss, grad weights
     state = {learningRate=le-3}
ptim.adam(f, weights, state
```

Caffe has Nets and Layers; Torch just has Modules

Caffe has Nets and Layers; Torch just has Modules

Modules are classes written in Lua; easy to read and write

Forward / backward written in Lua using Tensor methods

Same code runs on CPU / GPU

```
1 local Linear, parent = torch.class('nn.Linear', 'nn.Module')
2
3 function Linear:__init(inputSize, outputSize, bias)
4    parent.__init(self)
5    local bias = ((bias == nil) and true) or bias
6    self.weight = torch.Tensor(outputSize, inputSize)
7    self.gradWeight = torch.Tensor(outputSize, inputSize)
8    if bias then
9        self.bias = torch.Tensor(outputSize)
10        self.gradBias = torch.Tensor(outputSize)
11    end
12    self:reset()
13    end
```

Caffe has Nets and Layers; Torch just has Modules

Modules are classes written in Lua; easy to read and write

updateOutput: Forward pass;
compute output

```
local Linear, parent = torch.class('nn.Linear', 'nn.Module')
```

```
function Linear:updateOutput(input)
   if input:dim() == 1 then
      self.output:resize(self.weight:size(1))
     if self.bias then self.output:copy(self.bias) else self.output:zero() end
      self.output:addmv(1, self.weight, input)
   elseif input:dim() == 2 then
      local nframe = input:size(1)
      local nElement = self.output:nElement()
      self.output:resize(nframe, self.weight:size(1))
     if self.output:nElement() -= nElement then
         self.output:zero()
     self.addBuffer = self.addBuffer or input.new()
      if self.addBuffer:nElement() -= nframe then
         self.addBuffer:resize(nframe):fill(1)
      self.output:addmm(0, self.output, 1, input, self.weight:t())
      if self.bias then self.output:addr(1, self.addBuffer, self.bias) end
   else
      error('input must be vector or matrix')
   end
   return self.output
```

Caffe has Nets and Layers; Torch just has Modules

Modules are classes written in Lua; easy to read and write

updateGradInput: Backward; compute gradient of input

```
local Linear, parent = torch.class('nn.Linear', 'nn.Module')
```

```
function Linear:updateGradInput(input, gradOutput)
       if self.gradInput then
          local nElement = self.gradInput:nElement()
          self.gradInput:resizeAs(input)
          if self.gradInput:nElement() ~= nElement then
             self.gradInput:zero()
          end
          if input:dim() == 1 then
             self.gradInput:addmv(0, 1, self.weight:t(), gradOutput)
          elseif input:dim() == 2 then
74
             self.gradInput:addmm(0, 1, gradOutput, self.weight)
          end
          return self.gradInput
       end
```

Caffe has Nets and Layers; Torch just has Modules

Modules are classes written in Lua; easy to read and write

accGradParameters: Backward; compute gradient of weights

```
local Linear, parent = torch.class('nn.Linear', 'nn.Module')
```

```
function Linear:accGradParameters(input, gradOutput, scale)
   scale = scale or 1
  if input:dim() == 1 then
      self.gradWeight:addr(scale, gradOutput, input)
      if self.bias then self.gradBias:add(scale, gradOutput) end
  elseif input:dim() == 2 then
      self.gradWeight:addmm(scale, gradOutput:t(), input)
     if self, bias then
         self.gradBias:addmv(scale, gradOutput:t(), self.addBuffer)
      end
   end
```

Tons of built-in modules and loss functions

Abs.lua	□ TemporalConvolution.lua
AbsCriterion.lua	∏emporalMaxPooling.lua
Add.lua	TemporalSubSampling.lua
AddConstant.lua	Threshold.lua
	Transpose.lua
BCECriterion.lua	
BatchNormalization.lua	VolumetricAveragePooling.lua
Bilinear.lua	VolumetricConvolution.lua
CAddTable.lua	○ VolumetricDropout.lua
CDivTable.lua	VolumetricFullConvolution.lua
S. Ottoballina ed	○ VolumetricMaxPooling.lua
CMakeLists.txt	VolumetricMaxUnpooling.lua
CMul.lua	WeightedEuclidean.lua
CMulTable.lua	WeightedMSECriterion.lua

MarginCriterion.lua
MarginRankingCriterion.lua
Max.lua
Mean.lua
Min.lua
MixtureTable.lua
Module.lua
Mul.lua
MulConstant.lua
MultiCriterion.lua
MultiLabelMarginCriterion.lua
MultiLabelSoftMarginCriterion.lua
MultiMarginCriterion.lua
Narrow.lua

SparseLinear.lua
SpatialAdaptiveMaxPooling.lua
SpatialAveragePooling.lua
SpatialBatchNormalization.lua
SpatialContrastiveNormalization.lua
SpatialConvolution.lua
SpatialConvolutionLocal.lua
SpatialConvolutionMM.lua
SpatialConvolutionMap.lua
SpatialCrossMapLRN.lua
SpatialDivisiveNormalization.lua
SpatialDropout.lua
SpatialFractionalMaxPooling.lua
SpatialFullConvolution.lua
SpatialFullConvolutionMap.lua
SpatialLPPooling.lua
SpatialMaxPooling.lua
SpatialMaxUnpooling.lua

	ClassSimplexCriterion.lua
Ð	Concat.lua
	ConcatTable.lua
	Container.lua
	Contiguous lua
	Copy.lua
	Cosine.lua
	CosineDistance.lua
Ð	CosineEmbeddingCriterion.lua
Ð	Criterion.lua
Ð	CriterionTable.lua
Ð	CrossEntropyCriterion.lua
	DepthConcat.lua
	DistKLDivCriterion.lua
	DotProduct.lua
	Dropout.lua
	ELU.Jua

Tons of built-in modules and loss functions

New ones all the time:

MarginCriterion.lua MarginRankingCriterion.lua Max.lua Mean.lua Min.lua MixtureTable.lua Module.lua Mul.lua MulConstant.lua MultiCriterion.lua MultiLabelMarginCriterion.lua MultiLabelSoftMarginCriterion.lua MultiMarginCriterion.lua Narrow.lua

Added 2/19/2016 Added 2/16/2016

SparseLinear.lua
SpatialAdaptiveMaxPooling.lua
SpatialAveragePooling.lua
SpatialBatchNormalization.lua
SpatialContrastiveNormalization.lua
SpatialConvolution.lua
SpatialConvolutionLocal.lua
SpatialConvolutionMM.lua
SpatialConvolutionMap.lua
SpetialCrossMapLRN.lua
SpatialDivisiveNormalization.lua
SpetialDropout.lua
SpatialFractionalMaxPooling.lua
SpatialFullConvolution.lua
SpatialFullConvolutionMap.lua
SpatialLPPooling.lua
SpatialMaxPooling.lua
SpatialMaxUnpooling.lua

ClassSimplexCriterion.lua
○ Concat.lua
ConcatTable.lua
Container.lua
Configuous.lua
Copy.lua
Cosine.lua
CosineDistance.lua
CosineEmbeddingCriterion.lua
Criterion.lua
CriterionTable.lua
CrossEntropyCriterion.lua
DepthConcat.lua
DistKLDivCriterion.lua
DotProduct.lua
Dropout.lua
ELUJua

https://github.com/torch/nn

Writing your own modules is easy!

```
TimesTwo.lua
      require 'nn'
      local times_two, parent = torch.class('nn.TimesTwo', 'nn.Module')
      function times_two:__init()
        parent.__init(self)
      end
      function times_two:updateOutput(input)
        self.output:mul(input, 2)
        return self.output
  14
      function times_two:updateGradInput(input, gradOutput)
        self.gradInput:mul(gradOutput, 2)
        return self.gradInput
      end
```

```
times_two_example.lua
       require 'nn'
       require 'TimesTwo'
       local times_two = nn.TimesTwo()
       local input = torch.randn(4, 5)
       local output = times_two:forward(input)
       print('here is input:')
      print(input)
       print('here is output:')
       print(output)
       local gradOutput = torch.randn(4, 5)
       local gradInput = times_two:backward(input, gradOutput)
       print('here is gradOutput:')
       print(gradOutput)
       print('here is gradInput')
      print(gradInput)
```

```
local seq = nn.Sequential()
seq:add(mod1)
seq:add(mod2)
local out = seq:forward(x)
           X
        mod1
        mod2
          out
```


Torch: nngraph

Use nngraph to build modules that combine their inputs in complex ways

Inputs: x, y, z

Outputs: c

$$a = x + y$$

$$b = a \odot z$$

$$c = a + b$$

Torch: nngraph

Use nngraph to build modules that combine their inputs in complex ways

Inputs: x, y, z

Outputs: c

$$a = x + y$$

$$b = a \odot z$$

$$c = a + b$$

Torch: nngraph

Use nngraph to build modules that combine their inputs in complex ways

Inputs: x, y, z

Outputs: c

$$a = x + y$$

$$b = a \odot z$$

$$c = a + b$$

Torch: Pretrained Models

loadcaffe: Load pretrained Caffe models: AlexNet, VGG, some others https://github.com/szagoruyko/loadcaffe

GoogLeNet v1: https://github.com/soumith/inception.torch

GoogLeNet v3: https://github.com/Moodstocks/inception-v3.torch

ResNet: https://github.com/facebook/fb.resnet.torch

Torch: Package Management

After installing torch, use luarocks to install or update Lua packages

(Similar to pip install from Python)

```
luarocks install torch
luarocks install nn
luarocks install optim
luarocks install lua-cjson
```

Torch: Other useful packages

torch.cudnn: Bindings for NVIDIA cuDNN kernels

https://github.com/soumith/cudnn.torch

torch-hdf5: Read and write HDF5 files from Torch

https://github.com/deepmind/torch-hdf5

lua-cjson: Read and write JSON files from Lua

https://luarocks.org/modules/luarocks/lua-cjson

cltorch, clnn: OpenCL backend for Torch, and port of nn

https://github.com/hughperkins/cltorch, https://github.com/hughperkins/clnn

torch-autograd: Automatic differentiation; sort of like more powerful nngraph,

similar to Theano or TensorFlow

https://github.com/twitter/torch-autograd

fbcunn: Facebook: FFT conv, multi-GPU (DataParallel, ModelParallel)

https://github.com/facebook/fbcunn

Torch: Typical Workflow

Step 1: Preprocess data; usually use a Python script to dump data to HDF5

Step 2: Train a model in Lua / Torch; read from HDF5 datafile, save trained model to disk

Step 3: Use trained model for something, often with an evaluation script

Torch: Typical Workflow

Example: https://github.com/jcjohnson/torch-rnn

Step 1: Preprocess data; usually use a Python script to dump data to HDF5 (https://github.com/jcjohnson/torch-rnn/blob/master/scripts/preprocess.py)

Step 2: Train a model in Lua / Torch; read from HDF5 datafile, save trained model to disk (https://github.com/jcjohnson/torch-rnn/blob/master/train.lua)

Step 3: Use trained model for something, often with an evaluation script (https://github.com/jcjohnson/torch-rnn/blob/master/sample.lua)

Torch: Pros / Cons

- (-) Lua
- (-) Less plug-and-play than Caffe You usually write your own training code
- (+) Lots of modular pieces that are easy to combine
- (+) Easy to write your own layer types and run on GPU
- (+) Most of the library code is in Lua, easy to read
- (+) Lots of pretrained models!
- (-) Not great for RNNs

Theano Overview

From Yoshua Bengio's group at University of Montreal

Embracing computation graphs, symbolic computation

High-level wrappers: Keras, Lasagne


```
import theano, tensor as T
# Define symbolic variables
x = T.matrix('x')
 = T.matrix('y')
  = T.matrix('z')
# Compute some other values symbolically
# Compile a function that computes c
f = theano.function(
      inputs=[x, y, z],
      outputs=c
# Evaluate the compiled function
  on some real values
xx = np.random.randn(4, 5)
yy = np.random.randn(4, 5)
zz = np.random.randn(4, 5)
print f(xx, yy, zz)
# Repeat the same computation
 explicitly using numpy ops
bb = aa * zz
cc = aa + bb
print cc
```

Define symbolic variables; these are inputs to the graph


```
import theano, tensor as T
# Define symbolic variables
x = T.matrix('x')
y = T.matrix('y')
z = T.matrix('z')
# Compute some other values symbolically
# Compile a function that computes c
 = theano.function(
      inputs=[x, y, z],
      outputs=c
# Evaluate the compiled function
  on some real values
xx = np.random.randn(4, 5)
yy = np.random.randn(4, 5)
zz = np.random.randn(4, 5)
print f(xx, yy, zz)
# Repeat the same computation
# explicitly using numpy ops
bb = aa * zz
cc = aa + bb
print cc
```

Compute intermediates and outputs symbolically


```
import theano, tensor as T
# Define symbolic variables
x = T.matrix('x')
y = T.matrix('y')
z = T.matrix('z')
# Compute some other values symbolically
# Compile a function that computes c
f = theano.function(
      inputs=[x, y, z],
      outputs=c
# Evaluate the compiled function
  on some real values
xx = np.random.randn(4, 5)
yy = np.random.randn(4, 5)
zz = np.random.randn(4, 5)
print f(xx, yy, zz)
# Repeat the same computation
 explicitly using numpy ops
bb = aa * zz
cc = aa + bb
```

Compile a function that produces c from x, y, z (generates code)

print cc


```
import theano, tensor as T
# Define symbolic variables
x = T.matrix('x')
y = T.matrix('y')
z = T.matrix('z')
# Compute some other values symbolically
# Compile a function that computes c
f = theano.function(
      inputs=[x, y, z],
      outputs=c
# Evaluate the compiled function
# on some real values
xx = np.random.randn(4, 5)
yy = np.random.randn(4, 5)
zz = np.random.randn(4, 5)
print f(xx, yy, zz)
# Repeat the same computation
  explicitly using numpy ops
cc = aa + bb
print cc
```

Run the function, passing some numpy arrays (may run on GPU)


```
import theano, tensor as T
# Define symbolic variables
x = T.matrix('x')
y = T.matrix('y')
z = T.matrix('z')
# Compute some other values symbolically
# Compile a function that computes c
f = theano.function(
      inputs=[x, y, z],
      outputs=c
  Evaluate the compiled function
  on some real values
xx = np.random.randn(4, 5)
yy = np.random.randn(4, 5)
zz = np.random.randn(4, 5)
print f(xx, yy, zz)
# Repeat the same computation
# explicitly using numpy ops
print cc
```

Repeat the same computation using numpy operations (runs on CPU)


```
import theano
import theano, tensor as T
# Batch size, input dim, hidden dim, num classes
N, D, H, C = 64, 1999, 199, 19
x = T.matrix('x')
y = T.vector('y', dtype='int64')
w1 = T.matrix('w1')
w2 = T.matrix('w2')
# Forward pass: Compute scores
a = x.dot(w1)
a relu = T.nnet.relu(a)
scores = a relu.dot(w2)
# Forward pass: compute softmax loss
probs = T.nnet.softmax(scores)
loss = T.nnet.categorical crossentropy(probs, y).mean()
# Compile a function to compute loss, scores
f = theano.function(
      inputs=[x, y, w1, w2],
      outputs=[loss, scores],
# Run the function
xx = np.random.randn(N, D)
yy = np.random.randint(C, size=N)
wwl = le-3 * np.random.randn(D, H)
ww2 = 1e-3 * np.random.randn(H, C)
loss, scores = f(xx, yy, ww1, ww2)
print loss
```

```
import theano
                                                                        import theano, tensor as T
Define symbolic variables:
                                                                        # Batch size, input dim, hidden dim, num classes
                                                                        N, D, H, C = 64, 1999, 199, 19
               x = data
                                                                        y = T.vector('y', dtype='int64'
                                                                        w1 = T.matrix('w1')
                y = labels
                                                                        w2 = T.matrix('w2')
                                                                        # Forward pass: Compute scores
               w1 = first-layer weights
                                                                        a = x.dot(w1)
                                                                        a relu = T.nnet.relu(a)
                                                                        scores = a relu.dot(w2)
               w2 = second-layer
                                                                        # Forward pass: compute softmax loss
                                                                        probs = T.nnet.softmax(scores)
weights
                                                                        loss = T.nnet.categorical crossentropy(probs, y).mean()
                                                                        # Compile a function to compute loss, scores
                                                                        f = theano.function(
                                                                              inputs=[x, y, w1, w2],
                                                                             outputs=[loss, scores],
                                                                        # Run the function
                                                                        xx = np.random.randn(N, D)
                                                                        yy = np.random.randint(C, size=N)
                                                                        wwl = le-3 * np.random.randn(D, H)
                                                                        ww2 = 1e-3 * np.random.randn(H, C)
                                                                        loss, scores = f(xx, yy, ww1, ww2)
                                                                        print loss
```

Forward: Compute scores (symbolically)

```
import theano
import theano.tensor as T
# Batch size, input dim, hidden dim, num classes
N. D. H. C = 64, 1000, 100, 10
x = T.matrix('x')
y = T.vector('y', dtype='int64')
w1 = T.matrix('w1')
w2 = T.matrix('w2')
# Forward pass: Compute scores
a = x.dot(w1)
a relu = T.nnet.relu(a)
scores = a relu.dot(w2)
# Forward pass: compute softmax loss
probs = T.nnet.softmax(scores)
loss = T.nnet.categorical crossentropy(probs, y).mean()
# Compile a function to compute loss, scores
f = theano.function(
      inputs=[x, y, w1, w2],
      outputs=[loss, scores],
# Run the function
xx = np.random.randn(N, D)
yv = np.random.randint(C, size=N)
ww1 = 1e-3 * np.random.randn(D, H)
ww2 = 1e-3 * np.random.randn(H, C)
loss, scores = f(xx, yy, ww1, ww2)
print loss
```

Forward: Compute probs, loss (symbolically)

```
import theano
import theano.tensor as T
# Batch size, input dim, hidden dim, num classes
N, D, H, C = 64, 1000, 100, 10
x = T.matrix('x')
y = T.vector('y', dtype='int64')
w1 = T.matrix('w1')
w2 = T.matrix('w2')
# Forward pass: Compute scores
a = x.dot(w1)
a relu = T.nnet.relu(a)
scores = a relu.dot(w2)
# Forward pass: compute softmax loss
probs = T.nnet.softmax(scores)
loss = T.nnet.categorical crossentropy(probs, y).mean()
# Compile a function to compute loss, scores
f = theano.function(
      inputs=[x, y, w1, w2],
      outputs=[loss, scores],
# Run the function
xx = np.random.randn(N, D)
yv = np.random.randint(C, size=N)
ww1 = 1e-3 * np.random.randn(D, H)
ww2 = 1e-3 * np.random.randn(H, C)
loss, scores = f(xx, yy, ww1, ww2)
print loss
```

Compile a function that computes loss, scores

```
import theano
import theano.tensor as T
# Batch size, input dim, hidden dim, num classes
N. D. H. C = 64, 1000, 100, 10
x = T.matrix('x')
y = T.vector('y', dtype='int64')
w1 = T.matrix('w1')
w2 = T.matrix('w2')
# Forward pass: Compute scores
a = x.dot(w1)
a relu = T.nnet.relu(a)
scores = a relu.dot(w2)
# Forward pass: compute softmax loss
probs = T.nnet.softmax(scores)
loss = T.nnet.categorical crossentropy(probs, y).mean()
 Compile a function to compute loss, scores
 = theano.function(
      inputs=[x, y, w1, w2],
      outputs=[loss, scores],
# Run the function
xx = np.random.randn(N, D)
yy = np.random.randint(C, size=N)
ww1 = 1e-3 * np.random.randn(D, H)
ww2 = 1e-3 * np.random.randn(H, C)
loss, scores = f(xx, yy, ww1, ww2)
print loss
```

Stuff actual numpy arrays into the function

```
import theano
import theano, tensor as T
# Batch size, input dim, hidden dim, num classes
N, D, H, C = 64, 1999, 199, 19
x = T.matrix('x')
y = T.vector('y', dtype='int64')
w1 = T.matrix('w1')
w2 = T.matrix('w2')
# Forward pass: Compute scores
a = x.dot(w1)
a relu = T.nnet.relu(a)
scores = a relu.dot(w2)
# Forward pass: compute softmax loss
probs = T.nnet.softmax(scores)
loss = T.nnet.categorical crossentropy(probs, y).mean()
 Compile a function to compute loss, scores
 = theano.function(
      inputs=[x, y, w1, w2],
      outputs=[loss, scores],
 Run the function
xx = np.random.randn(N, D)
   = np.random.randint(C, size=N)
   = le-3 * np.random.randn(D, H)
   = le-3 * np.random.randn(H, C)
loss, scores = f(xx, yy, ww1, ww2)
```

print loss

```
import theano
import theano.tensor as T
# Batch size, input dim, hidden dim, num classes
N, D, H, C = 64, 1000, 100, 10
x = T.matrix('x')
y = T.vector('y', dtype='int64')
w1 = T.matrix('w1')
w2 = T.matrix('w2')
# Forward pass: Compute scores
a = x.dot(w1)
a relu = T.nnet.relu(a)
scores = a relu.dot(w2)
# Forward pass: compute softmax loss
probs = T.nnet.softmax(scores)
loss = T.nnet.categorical crossentropy(probs, y).mean()
# Backward pass: compute gradients
dw1, dw2 = T.grad(loss, [w1, w2])
f = theano.function(
      inputs=[x, y, w1, w2],
      outputs=[loss, scores, dw1, dw2],
```

```
import theano
import theano.tensor as T

# Batch size, input dim, hidden dim, num classes
N, D, H, C = 64, 1000, 100, 10

x = T.matrix('x')
y = T.vector('y', dtype='int64')
w1 = T.matrix('w1')
w2 = T.matrix('w2')

# Forward pass: Compute scores
a = x.dot(w1)
a_relu = T.nnet.relu(a)
scores = a_relu.dot(w2)

# Forward pass: compute softmax loss
probs = T.nnet.softmax(scores)
loss = T.nnet.categorical_crossentropy(probs, y).mean()
```

```
# Backward pass: compute gradients
dw1, dw2 = T.grad(loss, [w1, w2])

f = theano.function(
    inputs=[x, y, w1, w2],
    outputs=[loss, scores, dw1, dw2],
)
```

Same as before: define variables, compute scores and loss symbolically

```
import theano
import theano.tensor as T
# Batch size, input dim, hidden dim, num classes
N, D, H, C = 64, 1000, 100, 10
x = T.matrix('x')
y = T.vector('y', dtype='int64')
w1 = T.matrix('w1')
w2 = T.matrix('w2')
# Forward pass: Compute scores
a = x.dot(w1)
a relu = T.nnet.relu(a)
scores = a relu.dot(w2)
# Forward pass: compute softmax loss
probs = T.nnet.softmax(scores)
loss = T.nnet.categorical crossentropy(probs, y).mean()
# Backward pass: compute gradients
dw1, dw2 = T.grad(loss, [w1, w2])
f = theano.function(
      inputs=[x, y, w1, w2],
      outputs=[loss, scores, dw1, dw2],
```

Theano computes gradients for us symbolically!

```
import theano
import theano.tensor as T
# Batch size, input dim, hidden dim, num classes
N, D, H, C = 64, 1000, 100, 10
x = T.matrix('x')
y = T.vector('y', dtype='int64')
w1 = T.matrix('w1')
w2 = T.matrix('w2')
# Forward pass: Compute scores
a = x.dot(w1)
a relu = T.nnet.relu(a)
scores = a relu.dot(w2)
# Forward pass: compute softmax loss
probs = T.nnet.softmax(scores)
loss = T.nnet.categorical crossentropy(probs, y).mean()
# Backward pass: compute gradients
dw1, dw2 = T.grad(loss, [w1, w2])
  = theano.function(
      inputs=[x, y, w1, w2],
      outputs=[loss, scores, dw1, dw2],
```

Now the function returns loss, scores, and gradients


```
import theano
import theano.tensor as T
# Batch size, input dim, hidden dim, num classes
N, D, H, C = 64, 1000, 100, 10
x = T.matrix('x')
y = T.vector('y', dtype='int64')
w1 = T.matrix('w1')
w2 = T.matrix('w2')
# Forward pass: Compute scores
a = x.dot(w1)
a relu = T.nnet.relu(a)
scores = a relu.dot(w2)
# Forward pass: compute softmax loss
probs = T.nnet.softmax(scores)
loss = T.nnet.categorical crossentropy(probs, y).mean()
# Backward pass: compute gradients
dw1, dw2 = T.grad(loss, [w1, w2])
f = theano.function(
      inputs=[x, y, w1, w2],
      outputs=[loss, scores, dw1, dw2],
```

```
# Run the function
xx = np.random.randn(N, D)
yy = np.random.randint(C, size=N)
ww1 = 1e-2 * np.random.randn(D, H)
ww2 = 1e-2 * np.random.randn(H, C)

learning_rate = 1e-1
for t in xrange(50):
  loss, scores, dww1, dww2 = f(xx, yy, ww1, ww2)
  print loss
  ww1 -= learning_rate * dww1
  ww2 -= learning_rate * dww2
```

Use the function to perform gradient descent!

```
import theano
import theano.tensor as T
# Batch size, input dim, hidden dim, num classes
N, D, H, C = 64, 1000, 100, 10
x = T.matrix('x')
y = T.vector('y', dtype='int64')
w1 = T.matrix('w1')
w2 = T.matrix('w2')
# Forward pass: Compute scores
a = x.dot(w1)
a relu = T.nnet.relu(a)
scores = a relu.dot(w2)
# Forward pass: compute softmax loss
probs = T.nnet.softmax(scores)
loss = T.nnet.categorical crossentropy(probs, y).mean()
# Backward pass: compute gradients
dw1, dw2 = T.grad(loss, [w1, w2])
f = theano.function(
      inputs=[x, y, w1, w2],
      outputs=[loss, scores, dw1, dw2],
```

```
# Run the function
xx = np.random.randn(N, D)
yy = np.random.randint(C, size=N)
ww1 = le-2 * np.random.randn(D, H)
ww2 = le-2 * np.random.randn(H, C)

learning_rate = le-1
for t in xrange(50):
  loss, scores, dww1, dww2 = f(xx, yy, ww1, ww2)
  print loss
  ww1 -= learning_rate * dww1
  ww2 -= learning_rate * dww2
```

Problem: Shipping weights and gradients to CPU on every iteration to update...

```
N, D, H, C = 64, 1000, 100, 10
  = T.matrix('x')
  = T.vector('y', dtype='int64')
w1 = theano.shared(le-3 * np.random.randn(D, H), name='w1')
w2 = theano.shared(1e-3 * np.random.randn(H, C), name='w2')
a = x.dot(w1)
a relu = T.nnet.relu(a)
scores = a relu.dot(w2)
probs = T.nnet.softmax(scores)
loss = T.nnet.categorical crossentropy(probs, y).mean()
dw1, dw2 = T.grad(loss, [w1, w2])
learning rate = 1e-1
train = theano.function(
            inputs=[x, y],
            outputs=loss,
            updates=(
              (w1, w1 - learning rate * dw1),
               (w2, w2 - learning rate * dw2)
```

Same as before: Define dimensions, define symbolic variables for x, y

```
N, D, H, C = 64, 1000, 100, 10
x = T.matrix('x')
y = T.vector('y', dtype='int64')
w1 = theano.shared(le-3 * np.random.randn(D, H), name='w1')
w2 = theano.shared(le-3 * np.random.randn(H, C), name='w2'
a = x.dot(w1)
a relu = T.nnet.relu(a)
scores = a relu.dot(w2)
probs = T.nnet.softmax(scores)
loss = T.nnet.categorical crossentropy(probs, y).mean()
dw1, dw2 = T.grad(loss, [w1, w2])
learning rate = 1e-1
train = theano.function(
            inputs=[x, y],
            outputs=loss,
            updates=(
              (w1, w1 - learning rate * dw1),
              (w2, w2 - learning rate * dw2)
```

Define weights as **shared variables** that persist in the graph between calls; initialize with numpy arrays

```
N, D, H, C = 64, 1000, 100, 10
x = T.matrix('x')
y = T.vector('y', dtype='int64')
w1 = theano.shared(le-3 * np.random.randn(D, H), name='w1')
w2 = theano.shared(1e-3 * np.random.randn(H, C), name='w2')
a = x.dot(w1)
a relu = T.nnet.relu(a)
scores = a relu.dot(w2)
probs = T.nnet.softmax(scores)
loss = T.nnet.categorical crossentropy(probs, y).mean()
dw1, dw2 = T.grad(loss, [w1, w2])
learning rate = 1e-1
train = theano.function(
            inputs=[x, y],
            outputs=loss,
            updates=(
              (w1, w1 - learning rate * dw1),
              (w2, w2 - learning rate * dw2)
```

Same as before: Compute scores, loss, gradients symbolically

```
N, D, H, C = 64, 1000, 100, 10
x = T.matrix('x')
y = T.vector('y', dtype='int64')
w1 = theano.shared(le-3 * np.random.randn(D, H), name='w1')
w2 = theano.shared(1e-3 * np.random.randn(H, C), name='w2')
a = x.dot(w1)
a relu = T.nnet.relu(a)
scores = a relu.dot(w2)
probs = T.nnet.softmax(scores)
loss = T.nnet.categorical crossentropy(probs, y).mean()
dw1, dw2 = T.grad(loss, [w1, w2])
learning rate = 1e-1
train = theano.function(
            inputs=[x, y],
            outputs=loss,
            updates=(
              (w1, w1 - learning rate *
              (w2, w2 - learning rate * dw2)
```

Compiled function inputs are x and y; weights live in the graph

```
N, D, H, C = 64, 1000, 100, 10
x = T.matrix('x')
y = T.vector('y', dtype='int64')
w1 = theano.shared(le-3 * np.random.randn(D, H), name='w1')
w2 = theano.shared(1e-3 * np.random.randn(H, C), name='w2')
a = x.dot(w1)
a relu = T.nnet.relu(a)
scores = a relu.dot(w2)
probs = T.nnet.softmax(scores)
loss = T.nnet.categorical crossentropy(probs, y).mean()
dw1, dw2 = T.grad(loss, [w1, w2])
learning rate = le-1
train = theano.function(
            inputs=[x, y],
            outputs=loss,
            updates=(
              (wl, wl - learning rate * dwl)
              (w2, w2 - learning rate * dw2)
```

Function includes an **update** that updates weights on every call

```
N, D, H, C = 64, 1000, 100, 10
x = T.matrix('x')
y = T.vector('y', dtype='int64')
w1 = theano.shared(le-3 * np.random.randn(D, H), name='w1')
w2 = theano.shared(1e-3 * np.random.randn(H, C), name='w2')
a = x.dot(w1)
a relu = T.nnet.relu(a)
scores = a relu.dot(w2)
probs = T.nnet.softmax(scores)
loss = T.nnet.categorical crossentropy(probs, y).mean()
dw1, dw2 = T.grad(loss, [w1, w2])
learning rate = 1e-1
train = theano.function(
            inputs=[x, y],
            outputs=loss,
            updates=(
              (w1, w1 - learning rate * dw1),
              (w2, w2 - learning rate * dw2)
```

```
xx = np.random.randn(N, D)
yy = np.random.randint(C, size=N)

for t in xrange(100):
  loss = train(xx, yy)
  print loss
```

To train the net, just call function repeatedly!

Theano: Other Topics

Conditionals: The ifelse and switch functions allow conditional control flow in the graph

Loops: The **scan** function allows for (some types) of loops in the computational graph; good for RNNs

Derivatives: Efficient Jacobian / vector products with R and L operators, symbolic hessians (gradient of gradient)

Sparse matrices, optimizations, etc

Theano: Multi-GPU

Experimental model parallelism:

http://deeplearning.net/software/theano/tutorial/using_multi_gpu.html

Data parallelism using platoon:

https://github.com/mila-udem/platoon

Lasagne: High Level Wrapper

Lasagne gives layer abstractions, sets up weights for you, writes update rules for you

```
import numpy as np
import theano
import theano, tensor as T
import lasagne
N, D, H, C = 64, 1888, 188, 18
x = T.matrix('x')
y = T.vector('y', dtype='int64')
relu = lasagne.nonlinearities.rectify
softmax = lasagne.nonlinearities.softmax
net = lasagne.layers.InputLayer(shape=(None, D), input var=x)
net = lasagne.layers.DenseLayer(net, H, nonlinearity=relu)
net = lasagne.layers.DenseLayer(net, C, nonlinearity=softmax)
probs = lasagne.layers.get output(net)
loss = lasagne.objectives.categorical crossentropy(probs, y).mean()
params = lasagne.layers.get_all_params(net, trainable=True)
updates = lasagne.updates.nesterov momentum(loss, params,
                    learning rate=le-2, momentum=0.0)
train fn = theano.function([x, y], loss, updates=updates)
xx = np.random.randn(N, D)
yy = np.random.randint(C, size=N).astype(np.int64)
for t in xrange(188):
  loss val = train fn(xx, yy)
  print loss val
```

Lasagne: High Level Wrapper

Set up symbolic Theano variables for data, labels

```
import numpy as np
import theano
import theano, tensor as T
import lasagne
N, D, H, C = 64, 1888, 188, 18
 = T.matrix('x')
 = T.vector('y', dtype='int64'
relu = lasagne.nonlinearities.rectify
softmax = lasagne.nonlinearities.softmax
net = lasagne.layers.InputLayer(shape=(None, D), input var=x)
net = lasagne.layers.DenseLayer(net, H, nonlinearity=relu)
net = lasagne.layers.DenseLayer(net, C, nonlinearity=softmax)
probs = lasagne.layers.get output(net)
loss = lasagne.objectives.categorical crossentropy(probs, y).mean()
params = lasagne.layers.get_all_params(net, trainable=True)
updates = lasagne.updates.nesterov momentum(loss, params,
                    learning rate=le-2, momentum=0.0)
train fn = theano.function([x, y], loss, updates=updates)
xx = np.random.randn(N, D)
yy = np.random.randint(C, size=N).astype(np.int64)
for t in xrange(188):
  loss val = train fn(xx, yy)
  print loss val
```

Lasagne: High Level Wrapper

Forward: Use Lasagne layers to set up layers; don't set up weights explicitly

```
import numpy as np
import theano.tensor as T
import lasagne
N, D, H, C = 64, 1888, 188, 18
x = T.matrix('x')
 = T.vector('y', dtype='int64')
relu = lasagne.nonlinearities.rectify
softmax = lasagne.nonlinearities.softmax
net = lasagne.layers.InputLayer(shape=(None, D), input var=x)
net = lasagne.layers.DenseLayer(net, H, nonlinearity=relu)
net = lasagne.layers.DenseLayer(net, C, nonlinearity=softmax)
probs = lasagne.layers.get output(net)
loss = lasagne.objectives.categorical crossentropy(probs, y).mean()
params = lasagne.layers.get_all_params(net, trainable=True)
updates = lasagne.updates.nesterov momentum(loss, params,
                    learning rate=le-2, momentum=0.0)
train fn = theano.function([x, y], loss, updates=updates)
xx = np.random.randn(N, D)
yy = np.random.randint(C, size=N).astype(np.int64)
for t in xrange(188):
  loss val = train fn(xx, yy)
  print loss val
```

Lasagne: High Level Wrapper

Forward: Use Lasagne layers to compute loss

```
import numpy as np
import theano
import theano, tensor as T
import lasagne
N, D, H, C = 64, 1888, 188, 18
x = T.matrix('x')
y = T.vector('y', dtype='int64')
relu = lasagne.nonlinearities.rectify
softmax = lasagne.nonlinearities.softmax
net = lasagne.layers.InputLayer(shape=(None, D), input var=x)
net = lasagne.layers.DenseLayer(net, H, nonlinearity=relu)
net = lasagne.layers.DenseLayer(net, C, nonlinearity=softmax)
probs = lasagne.layers.get output(net)
loss = lasagne.objectives.categorical crossentropy(probs, y).mean(
params = lasagne.layers.get all params(net, trainable=True)
updates = lasagne.updates.nesterov momentum(loss, params,
                    learning rate=le-2, momentum=0.0)
train fn = theano.function([x, y], loss, updates=updates)
xx = np.random.randn(N, D)
yy = np.random.randint(C, size=N).astype(np.int64)
for t in xrange(100):
  loss val = train fn(xx, yy)
  print loss val
```

Lasagne: High Level Wrapper

Lasagne gets parameters, and writes the update rule for you

```
import numpy as np
import theano.tensor as T
import lasagne
N, D, H, C = 64, 1888, 188, 18
x = T.matrix('x')
y = T.vector('y', dtype='int64')
relu = lasagne.nonlinearities.rectify
softmax = lasagne.nonlinearities.softmax
net = lasagne.layers.InputLayer(shape=(None, D), input var=x)
net = lasagne.layers.DenseLayer(net, H, nonlinearity=relu)
net = lasagne.layers.DenseLayer(net, C, nonlinearity=softmax)
probs = lasagne.layers.get output(net)
loss = lasagne.objectives.categorical crossentropy(probs, y).mean()
params = lasagne.layers.get all params(net, trainable=True)
updates = lasagne.updates.nesterov momentum(loss, params,
                    learning rate=le-2, momentum=0.0)
train fn = theano.function([x, y], loss, updates=updates)
xx = np.random.randn(N, D)
yy = np.random.randint(C, size=N).astype(np.int64)
for t in xrange(100):
  loss val = train fn(xx, yy)
  print loss val
```

Lasagne: High Level Wrapper

Same as Theano: compile a function with updates, train model by calling function with arrays

```
import numpy as np
import theano.tensor as T
import lasagne
N, D, H, C = 64, 1888, 188, 18
x = T.matrix('x')
y = T.vector('y', dtype='int64')
relu = lasagne.nonlinearities.rectify
softmax = lasagne.nonlinearities.softmax
net = lasagne.layers.InputLayer(shape=(None, D), input var=x)
net = lasagne.layers.DenseLayer(net, H, nonlinearity=relu)
net = lasagne.layers.DenseLayer(net, C, nonlinearity=softmax)
probs = lasagne.layers.get output(net)
loss = lasagne.objectives.categorical crossentropy(probs, y).mean()
params = lasagne.layers.get_all_params(net, trainable=True)
updates = lasagne.updates.nesterov momentum(loss, params,
                    learning rate=le-2, momentum=0.0)
train fn = theano.function([x, y], loss, updates=updates)
  = np.random.randint(C, size=N).astype(np.int64)
  loss val = train fn(xx, yy)
  print loss val
```

keras is a layer on top of Theano; makes common things easy to do

(Also supports TensorFlow backend)

```
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.optimizers import SGD
D, H, C = 1000, 100, 10
model = Sequential()
model.add(Dense(input dim=D, output dim=H))
model.add(Activation('relu'))
model.add(Dense(input dim=H, output dim=C))
model.add(Activation('softmax'))
sqd = SGD(lr=le-3, momentum=0.9, nesterov=True)
model.compile(loss='categorical crossentropy', optimizer=sgd)
N = 1000
X = np.random.randn(N, D)
y = np.random.randint(C, size=N)
model.fit(X, y, nb epoch=5, batch size=32, verbose=2)
```

keras is a layer on top of Theano; makes common things easy to do

Set up a two-layer ReLU net with softmax

```
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.optimizers import SGD
D, H, C = 1000, 100, 10
model = Sequential()
model.add(Dense(input dim=D, output dim=H))
model.add(Activation('relu'))
model.add(Dense(input dim=H, output dim=C))
model.add(Activation('softmax'))
sqd = SGD(lr=le-3, momentum=0.9, nesterov=True)
model.compile(loss='categorical crossentropy', optimizer=sgd)
N = 1000
X = np.random.randn(N, D)
y = np.random.randint(C, size=N)
model.fit(X, y, nb epoch=5, batch size=32, verbose=2)
```

keras is a layer on top of Theano; makes common things easy to do

We will optimize the model using SGD with Nesterov momentum

```
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.optimizers import SGD
D, H, C = 1000, 100, 10
model = Sequential()
model.add(Dense(input dim=D, output dim=H))
model.add(Activation('relu'))
model.add(Dense(input dim=H, output dim=C))
model.add(Activation('softmax'))
sqd = SGD(lr=le-3, momentum=0.9, nesterov=True)
model.compile(loss='categorical crossentropy', optimizer=sgd)
N = 1000
X = np.random.randn(N, D)
y = np.random.randint(C, size=N)
model.fit(X, y, nb epoch=5, batch size=32, verbose=2)
```

keras is a layer on top of Theano; makes common things easy to do

Generate some random data and train the model

```
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.optimizers import SGD
D, H, C = 1000, 100, 10
model = Sequential()
model.add(Dense(input dim=D, output dim=H))
model.add(Activation('relu'))
model.add(Dense(input dim=H, output dim=C))
model.add(Activation('softmax'))
sqd = SGD(lr=le-3, momentum=0.9, nesterov=True)
model.compile(loss='categorical crossentropy', optimizer=sgd)
N = 1000
 = np.random.randn(N, D)
 = np.random.randint(C, size=N)
model.fit(X, y, nb epoch=5, batch size=32, verbose=2)
```

Problem: It crashes, stack trace and error message not useful :(

```
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.optimizers import SGD
D, H, C = 1000, 100, 10
model = Sequential()
model.add(Dense(input dim=D, output dim=H))
model.add(Activation('relu'))
model.add(Dense(input dim=H, output dim=C))
model.add(Activation('softmax'))
sqd = SGD(lr=le-3, momentum=0.9, nesterov=True)
model.compile(loss='categorical crossentropy', optimizer=sgd)
N = 1000
X = np.random.randn(N, D)
y = np.random.randint(C, size=N)
model.fit(X, y, nb epoch=5, batch size=32, verbose=2)
```

```
Traceback (seet recent call bart)
    signation input the enterphases in southing I
    --- IN model Albitik, y. ob apached, batch size-III, serbose-III
                        mc/partis/main/m2016/framparts/.onc/bast/Hib/pythes2.3/Hib partagec/targe/mainfo.gyr in Hi/patlf, K, p. bate
    A size, so speck, vertexe, cattleans, solimative uplit, validative sate, shuffle, show accuracy, class weight, same
                                                                del predictionif, X, batch_size-LH, serbose-ti-
    dissociantia control transfer and a spirit a
  or liabels, batch size, on spech, vertices, california, sel f, sel ice, sharries, metricul
                                                                                                                                                    tillich long "gior" I a benjusish 1811
                                                                                                                                        meto - frinc batchi
                      280
meant topicopolis in (test, topic)
return with function/imputs
    /home/justia/code/csittia/frameworks/.env/local/filit/pythost.//csite-packages/theans/compiles/soction_soticle_apr. in
                                               daett, forge, friedright
                                                                                                                                                                                    motivació. As notes acid. As position, et arrord.
                                                                                                                                                  # sist-style linkers raise their own comptions
    Annother Education and American Company of the Company of the American Amer
  e, thick, ext tofu, storage sup!
                                                                                                   # extra long error message in that case
    -- 208 remisered type, exclusive, exclusive
  Josephy Control of the Control of th
                                               (self, forgs, friendps)
                                                                            ortanta - self.fell
                                                                                                                    of heuntriestf.fo. 'position of error's:
whether both discretize the explicit should be presented by the (1, 2, 3) below the state of (1, 2, 3) by the (1, 3) by
       Doubt type: Descripedints, astric. Temportpediadil. (Now, You). Temportpedil. (d), tempor
  with, astic) theories, and on the proof of t
  MON: No running with most Theano optimization disabled could give you a back-trace of when this note was created. This can be done with by writing the Theano Flag "sphilation-flash complete". If that does not work, Theano optimization
    6201: the the Deann Fing 'comption surbenity-bight for a delegarist and storage may footprint of this apply note
```

Solution: y should be one-hot

```
(too much API for me ...)
```

```
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.optimizers import SGD
D, H, C = 1000, 100, 10
model = Sequential()
model.add(Dense(input dim=D, output dim=H))
model.add(Activation('relu'))
model.add(Dense(input dim=H, output dim=C))
model.add(Activation('softmax'))
sgd = SGD(lr=le-3, momentum=0.9, nesterov=True)
model.compile(loss='categorical crossentropy', optimizer=sqd)
N = 1000
X = np.random.randn(N, D)
y = np.random.randint(C, size=N)
model.fit(X, y, nb epoch=5, batch size=32, verbose=2)
```

```
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.optimizers import SGD
from keras.utils import np utils
D. H. C = 1000, 100, 10
model = Sequential()
model.add(Dense(input dim=D, output dim=H))
model.add(Activation('relu'))
model.add(Dense(input dim=H, output dim=C))
model.add(Activation('softmax'))
sqd = SGD(lr=1e-3, momentum=0.9, nesterov=True)
model.compile(loss='categorical crossentropy', optimizer=sqd)
N, N batch = 1000, 32
X = np.random.randn(N, D)
  = nn random randint(C size=N)
y = np utils.to categorical(y
model.fit(X, y, nb epoch=5, batch size=N batch, verbose=2)
```

Theano: Pretrained Models

Lasagne Model Zoo has pretrained common architectures:

https://github.com/Lasagne/Recipes/tree/master/modelzoo

AlexNet with weights: https://github.com/uoguelph-mlrg/theano_alexnet

sklearn-theano: Run OverFeat and GoogLeNet forward, but no fine-

tuning? http://sklearn-theano.github.io

caffe-theano-conversion: CS 231n project from last year: load models and weights from caffe! Not sure if full-featured https://github.com/kitofans/caffe-theano-conversion

Theano: Pretrained Models

Best choice

Lasagne Model Zoo has pretrained common architectures:

https://github.com/Lasagne/Recipes/tree/master/modelzoo

AlexNet with weights: https://github.com/uoguelph-mlrg/theano_alexnet

sklearn-theano: Run OverFeat and GoogLeNet forward, but no finetuning? http://sklearn-theano.github.io

caffe-theano-conversion: CS 231n project from last year: load models and weights from caffe! Not sure if full-featured https://github.com/kitofans/caffe-theano-conversion

Theano: Pros / Cons

- (+) Python + numpy
- (+) Computational graph is nice abstraction
- (+) RNNs fit nicely in computational graph
- (-) Raw Theano is somewhat low-level
- (+) High level wrappers (Keras, Lasagne) ease the pain
- (-) Error messages can be unhelpful
- (-) Large models can have long compile times
- (-) Much "fatter" than Torch; more magic
- (-) Patchy support for pretrained models

TensorFlow

https://www.tensorflow.org

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 12 - 121 22 Feb 2016

TensorFlow

From Google

Very similar to Theano - all about computation graphs

Easy visualizations (TensorBoard)

Multi-GPU and multi-node training

```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1888, 188, 18
x = tf.placeholder(tf.float32, shape=[None, D])
y = tf.placeholder(tf.float32, shape=[None, C])
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32))
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32))
a = tf.matmul(x, w1)
a relu = tf.nn.relu(a)
scores = tf.matmul(a relu, w2)
probs = tf.nn.softmax(scores)
loss = -tf.reduce sum(y * tf.log(probs))
learning rate = 1e-2
train step = tf.train.GradientDescentOptimizer(learning rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
with tf.Session() as sess:
  sess.run(tf.initialize all variables())
  for t in xrange(100):
    , loss value = sess.run([train step, loss],
                             feed dict={x: xx, y: yy})
    print loss value
```

Create placeholders for data and labels: These will be fed to the graph

```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1888, 188, 18
  = tf.placeholder(tf.float32, shape=[None, D])
y = tf.placeholder(tf.float32, shape=[None, C])
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32))
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32))
a = tf.matmul(x, w1)
a relu = tf.nn.relu(a)
scores = tf.matmul(a relu, w2)
probs = tf.nn.softmax(scores)
loss = -tf.reduce sum(y * tf.log(probs))
learning rate = 1e-2
train step = tf.train.GradientDescentOptimizer(learning rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
with tf.Session() as sess:
  sess.run(tf.initialize all variables())
  for t in xrange(100):
    , loss value = sess.run([train step, loss],
                             feed dict={x: xx, y: yy})
    print loss value
```

Create Variables to hold weights; similar to Theano shared variables

Initialize variables with numpy arrays

```
import tensorflow as tf
 import numpy as np
N, D, H, C = 64, 1888, 188, 18
x = tf.placeholder(tf.float32, shape=[None, D])
y = tf.placeholder(tf.float32, shape=[None, C])
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32))
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32)
a = tf.matmul(x, w1)
a relu = tf.nn.relu(a)
scores = tf.matmul(a relu, w2)
probs = tf.nn.softmax(scores)
 loss = -tf.reduce sum(y * tf.log(probs))
learning rate = le-2
train step = tf.train.GradientDescentOptimizer(learning rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
with tf.Session() as sess:
  sess.run(tf.initialize all variables())
  for t in xrange(100):
     , loss value = sess.run([train step, loss],
                              feed dict={x: xx, y: yy})
    print loss value
```

Forward: Compute scores, probs, loss (symbolically)

```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1888, 188, 18
x = tf.placeholder(tf.float32, shape=[None, D])
y = tf.placeholder(tf.float32, shape=[None, C])
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32))
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32))
a = tf.matmul(x, w1)
a relu = tf.nn.relu(a)
scores = tf.matmul(a relu, w2)
probs = tf.nn.softmax(scores)
loss = -tf.reduce sum(y * tf.log(probs))
learning rate = 1e-2
train step = tf.train.GradientDescentOptimizer(learning rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
with tf.Session() as sess:
  sess.run(tf.initialize all variables())
  for t in xrange(100):
    , loss value = sess.run([train step, loss],
                             feed dict={x: xx, y: yy})
    print loss value
```

Running train_step will use SGD to minimize loss

```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1888, 188, 18
x = tf.placeholder(tf.float32, shape=[None, D])
y = tf.placeholder(tf.float32, shape=[None, C])
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32))
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32))
a = tf.matmul(x, w1)
a relu = tf.nn.relu(a)
scores = tf.matmul(a relu, w2)
probs = tf.nn.softmax(scores)
loss = -tf.reduce sum(y * tf.log(probs))
learning rate = 1e-2
train step = tf.train.GradientDescentOptimizer(learning rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
with tf.Session() as sess:
  sess.run(tf.initialize all variables())
  for t in xrange(100):
     , loss value = sess.run([train step, loss],
                              feed dict={x: xx, y: yy})
    print loss value
```

Create an artificial dataset; y is one-hot like Keras

```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1888, 188, 18
x = tf.placeholder(tf.float32, shape=[None, D])
y = tf.placeholder(tf.float32, shape=[None, C])
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32))
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32))
a = tf.matmul(x, w1)
a relu = tf.nn.relu(a)
scores = tf.matmul(a relu, w2)
probs = tf.nn.softmax(scores)
loss = -tf.reduce sum(y * tf.log(probs))
learning rate = 1e-2
train step = tf.train.GradientDescentOptimizer(learning rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] =
with tf.Session() as sess:
  sess.run(tf.initialize all variables())
  for t in xrange(100):
     , loss value = sess.run([train step, loss],
                             feed dict={x: xx, y: yy})
    print loss value
```

Actually train the model

```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1888, 188, 18
x = tf.placeholder(tf.float32, shape=[None, D])
y = tf.placeholder(tf.float32, shape=[None, C])
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32))
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32))
a = tf.matmul(x, w1)
a relu = tf.nn.relu(a)
scores = tf.matmul(a relu, w2)
probs = tf.nn.softmax(scores)
loss = -tf.reduce sum(y * tf.log(probs))
learning rate = 1e-2
train step = tf.train.GradientDescentOptimizer(learning rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
with tf.Session() as sess:
  sess.run(tf.initialize all variables())
  for t in xrange(100):
    , loss value = sess.run([train step, loss],
                             feed dict={x: xx, y: yy})
    print loss value
```

Tensorboard makes it easy to visualize what's happening inside your models

```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1000, 100, 10
 = tf.placeholder(tf.float32, shape=[None, D])
y = tf.placeholder(tf.float32, shape=[None, C])
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32))
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32))
a = tf.matmul(x, w1)
scores = tf.matmul(a relu, w2)
probs = tf.nn.softmax(scores)
loss = -tf.reduce sum(y * tf.log(probs))
loss summary = tf.scalar summary('loss', loss)
w1 hist = tf.histogram summary('w1', w1)
w2 hist = tf.histogram summary('w2', w2)
learning rate = le-2
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
with tf.Session() as sess:
 merged = tf.merge all summaries()
 writer = tf.train.SummaryWriter('/tmp/fc logs', sess.graph def)
  sess.run(tf.initialize all variables())
  for t in xrange(100):
    summary str. , loss value = sess.run(
                                  [merged, train step, loss],
                                  feed dict={x: xx, y: yy})
    writer.add summary(summary str. t)
    print loss value
```

Tensorboard makes it easy to visualize what's happening inside your models

Same as before, but now we create summaries for loss and weights

```
import tensorflow as tf
import numpy as no
N, D, H, C = 64, 1000, 100, 10
 = tf.placeholder(tf.float32, shape=[None, D])
 = tf.placeholder(tf.float32, shape=[None, C])
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32))
w2 = tf.Variable(le-3 * np.random.randn(H, C).astvpe(np.float32))
a = tf.matmul(x, w1)
loss = -tf.reduce sum(y * tf.log(probs))
loss summary = tf.scalar summary('loss', loss)
w1 hist = tf.histogram summary('w1', w1)
w2 hist = tf.histogram summary('w2', w2)
learning rate = le-2
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
with tf.Session() as sess:
 merged = tf.merge all summaries()
 writer = tf.train.SummaryWriter('/tmp/fc logs', sess.graph def)
  sess.run(tf.initialize all variables())
  for t in xrange(100):
    summary str. , loss value = sess.run(
                                   [merged, train step, loss],
                                  feed dict={x: xx, y: yy})
    writer.add summary(summary str. t)
    print loss value
```

Tensorboard makes it easy to visualize what's happening inside your models

Create a special "merged" variable and a SummaryWriter object

```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1000, 100, 10
 = tf.placeholder(tf.float32, shape=[None, D])
 = tf.placeholder(tf.float32, shape=[None, C])
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32))
w2 = tf.Variable(1e-3 * np.random.randn(H, C).astvpe(np.float32))
a = tf.matmul(x, w1)
probs = tf.nn.softmax(scores)
loss = -tf.reduce sum(y * tf.log(probs))
loss summary = tf.scalar summary('loss', loss)
w1 hist = tf.histogram summary('w1', w1)
w2 hist = tf.histogram summary('w2', w2)
learning rate = le-2
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
  for t in xrange(100):
    summary str. , loss value = sess.run(
                                   [merged, train step, loss],
                                  feed dict={x: xx, y: yy})
    writer.add summary(summary str. t)
    print loss value
```

Tensorboard makes it easy to visualize what's happening inside your models

In the training loop, also run merged and pass its value to the writer

```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1000, 100, 10
 = tf.placeholder(tf.float32, shape=[None, D])
 = tf.placeholder(tf.float32, shape=[None, C])
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32))
w2 = tf.Variable(le-3 * np.random.randn(H, C).astvpe(np.float32))
a = tf.matmul(x, w1)
probs = tf.nn.softmax(scores)
loss = -tf.reduce sum(y * tf.log(probs))
loss summary = tf.scalar summary('loss', loss)
w1 hist = tf.histogram summary('w1', w1)
w2 hist = tf.histogram summary('w2', w2)
learning rate = le-2
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
with tf.Session() as sess:
  merged = tf.merge all summaries()
 writer = tf.train.SummaryWriter('/tmp/fc logs', sess.graph def)
  sess.run(tf.initialize all variables())
   summary str. , loss value = sess.run
                                   merged, train step, loss),
                                  feed dict={x: xx, y: yy})
```

Start Tensorboard server, and we get graphs!


```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1888, 188, 18
x = tf.placeholder(tf.float32, shape=[None, D], name='x')
y = tf.placeholder(tf.float32, shape=[None, C], name='y')
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32), name='w1')
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32), name='w2')
with tf.name scope('scores') as scope:
  a = tf.matmul(x, w1)
  a relu = tf.nn.relu(a)
  scores = tf.matmul(a relu, w2)
with tf.name scope('loss') as scope:
  probs = tf.nn.softmax(scores)
  loss = -tf.reduce sum(y * tf.log(probs))
loss summary = tf.scalar summary('loss', loss)
w1 hist = tf.histogram summary('w1', w1)
w2 hist = tf.histogram summary('w2', w2)
learning rate = 1e-2
train step = tf.train.GradientDescentOptimizer(learning rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
```

Add names to placeholders and variables

```
import tensorflow as tf
import numpy as np
4 C = 64, 1000, 100, 10
x = tf.placeholder(tf.float32, shape=[None, D]
y = tf.placeholder(tf.float32, shape=[None, C]
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32)
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32)
with tf.name scope('scores') as scope:
 a = tf.matmul(x, w1)
 scores = tf.matmul(a relu, w2)
with tf.name scope('loss') as scope:
 probs = tf.nn.softmax(scores)
 loss = -tf.reduce sum(y * tf.log(probs))
loss summary = tf.scalar summary('loss', loss)
wl hist = tf.histogram summary('wl', wl)
w2 hist = tf.histogram summary('w2', w2)
learning rate = 1e-2
train step = tf.train.GradientDescentOptimizer(learning rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
```

Add names to placeholders and variables

Break up the forward pass with name scoping

```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1888, 188, 18
x = tf.placeholder(tf.float32, shape=[None, D], name='x')
y = tf.placeholder(tf.float32, shape=[None, C], name='y')
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32), name='w1'
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32), name='w2'
with tf.name scope('scores') as scope:
 loss = -tf.reduce sum(y * tf.log(probs))
loss summary = tf.scalar summary('loss', loss)
wl hist = tf.histogram summary('wl', wl)
w2 hist = tf.histogram summary('w2', w2)
learning rate = 1e-2
train step = tf.train.GradientDescentOptimizer(learning rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
```

Tensorboard shows the graph!

Tensorboard shows the graph!

Name scopes expand to show individual operations

TensorFlow: Multi-GPU

Data parallelism:

synchronous or asynchronous

TensorFlow: Multi-GPU

Data parallelism: synchronous or asynchronous

Model parallelism: Split model across GPUs

TensorFlow: Distributed

Single machine:

Like other frameworks

Many machines:

Not open source (yet) =(

TensorFlow: Pretrained Models

You can get a pretrained version of Inception here:

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/android/README.md

(In an Android example?? Very well-hidden)

The only one I could find =(

TensorFlow: Pros / Cons

- (+) Python + numpy
- (+) Computational graph abstraction, like Theano; great for RNNs
- (+) Much faster compile times than Theano
- (+) Slightly more convenient than raw Theano?
- (+) TensorBoard for visualization
- (+) Data AND model parallelism; best of all frameworks
- (+/-) Distributed models, but not open-source yet
- (-) Slower than other frameworks right now
- (-) Much "fatter" than Torch; more magic
- (-) Not many pretrained models

Overview

	Caffe	Torch	Theano	TensorFlow
Language	C++, Python	Lua	Python	Python
Pretrained	Yes ++	Yes ++	Yes (Lasagne)	Inception
Multi-GPU: Data parallel	Yes	Yes cunn.DataParallelTable	Yes platoon	Yes
Multi-GPU: Model parallel	No	Yes fbcunn.ModelParallel	Experimental	Yes (best)
Readable source code	Yes (C++)	Yes (Lua)	No	No
Good at RNN	No	Mediocre	Yes	Yes (best)

Extract AlexNet or VGG features?

Extract AlexNet or VGG features? Use Caffe

Fine-tune AlexNet for new classes?

Fine-tune AlexNet for new classes? Use Caffe

Image Captioning with finetuning?

Image Captioning with finetuning?

- -> Need pretrained models (Caffe, Torch, Lasagne)
- -> Need RNNs (Torch or Lasagne)
- -> Use Torch or Lasagna

Segmentation? (Classify every pixel)

Segmentation? (Classify every pixel)

- -> Need pretrained model (Caffe, Torch, Lasagna)
- -> Need funny loss function
- -> If loss function exists in Caffe: Use Caffe
- -> If you want to write your own loss: **Use Torch**

Object Detection?

Object Detection?

- -> Need pretrained model (Torch, Caffe, Lasagne)
- -> Need lots of custom imperative code (NOT

Lasagne)

-> Use Caffe + Python or Torch

Language modeling with new RNN structure?

Language modeling with new RNN structure?

- -> Need easy recurrent nets (NOT Caffe, Torch)
- -> No need for pretrained models
- -> Use Theano or TensorFlow

Implement BatchNorm?

-> Don't want to derive gradient? **Theano** or

TensorFlow

-> Implement efficient backward pass? Use Torch

My Recommendation

Feature extraction / finetuning existing models: Use Caffe

Complex uses of pretrained models: Use Lasagne or Torch

Write your own layers: Use Torch

Crazy RNNs: Use Theano or Tensorflow

Huge model, need model parallelism: Use TensorFlow


```
template <typename Dtype>
     class Blob {
      public:
       Blob()
            : data_(), diff_(), count_(0), capacity_(0) {}
 28
 29
       /// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
       explicit Blob(const int num, const int channels, const int height,
           const int width);
       explicit Blob(const vector<int>& shape);
 33
219
       const Dtype* cpu_data() const;
       void set_cpu_data(Dtype* data);
       const int* gpu_shape() const;
       const Dtype* gpu_data() const;
       const Dtype* cpu_diff() const;
       const Dtype* gpu_diff() const;
224
       Dtype* mutable_cpu_data();
       Dtype* mutable_gpu_data();
       Dtype* mutable_cpu_diff();
       Dtype* mutable_gpu_diff();
       protected:
        shared_ptr<SyncedMemory> data_;
        shared_ptr<SyncedMemory> diff_;
271
        shared ptr<SyncedMemory> shape data;
        vector<int> shape_;
        int count_;
274
        int capacity_;
```

N-dimensional array for storing activations and weights

```
template <typename Dtype>
     class Blob {
      public:
       Blob()
            : data_(), diff_(), count_(0), capacity_(0) {}
       /// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
       explicit Blob(const int num, const int channels, const int height,
           const int width);
       explicit Blob(const vector<int>& shape);
       const Dtype* cpu_data() const;
       void set_cpu_data(Dtype* data);
       const int* gpu_shape() const;
       const Dtype* gpu_data() const;
       const Dtype* cpu_diff() const;
       const Dtype* gpu_diff() const;
224
       Dtype* mutable_cpu_data();
       Dtype* mutable_gpu_data();
       Dtype* mutable_cpu_diff();
       Dtype* mutable_gpu_diff();
       protected:
        shared_ptr<SyncedMemory> data_;
        shared_ptr<SyncedMemory> diff_;
        shared ptr<SyncedMemory> shape data;
        vector<int> shape_;
        int count_;
274
        int capacity_;
```

N-dimensional array for storing activations and weights

Template over datatype

```
template <typename Dtype>
     class Blob {
      public:
       Blob()
            : data_(), diff_(), count_(0), capacity_(0) {}
       /// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
       explicit Blob(const int num, const int channels, const int height,
           const int width);
       explicit Blob(const vector<int>& shape);
 33
219
       const Dtype* cpu_data() const;
       void set_cpu_data(Dtype* data);
       const int* gpu_shape() const;
       const Dtype* gpu_data() const;
       const Dtype* cpu_diff() const;
       const Dtype* gpu_diff() const;
224
       Dtype* mutable_cpu_data();
       Dtype* mutable_gpu_data();
       Dtype* mutable_cpu_diff();
       Dtype* mutable_gpu_diff();
       protected:
        shared_ptr<SyncedMemory> data_;
        shared_ptr<SyncedMemory> diff_;
        shared ptr<SyncedMemory> shape data;
        vector<int> shape_;
        int count_;
274
        int capacity_;
```

N-dimensional array for storing activations and weights

Template over datatype

Two parallel tensors:

data: values

diffs: gradients

```
template <typename Dtype>
     class Blob {
      public:
       Blob()
            : data_(), diff_(), count_(0), capacity_(0) {}
29
       /// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
       explicit Blob(const int num, const int channels, const int height,
           const int width);
       explicit Blob(const vector<int>& shape);
 33
       const Dtype* cpu_data() const;
       void set_cpu_data(Dtype* data);
       const int* gpu_shape() const;
       const Dtype* gpu_data() const;
       const Dtype* cpu_diff() const;
       const Dtype* gpu_diff() const;
224
       Dtype* mutable_cpu_data();
       Dtype* mutable_gpu_data();
       Dtype* mutable_cpu_diff();
       Dtype* mutable_gpu_diff();
       protected:
        shared_ptr<SyncedMemory> data_;
        shared_ptr<SyncedMemory> diff_;
        shared_ptr<SyncedMemory> shape_data_;
        vector<int> shape_;
        int count_;
274
        int capacity_;
```

N-dimensional array for storing activations and weights

Template over datatype

Two parallel tensors:

data: values

diffs: gradients

Stores CPU / GPU versions of each tensor

```
template <typename Dtype>
     class Blob {
      public:
       Blob()
            : data_(), diff_(), count_(0), capacity_(0) {}
       /// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
29
       explicit Blob(const int num, const int channels, const int height,
           const int width);
       explicit Blob(const vector<int>& shape);
 33
       const Dtype* cpu_data() const;
219
       void set_cpu_data(Dtype* data);
       const int* gpu_shape() const;
       const Dtype* gpu_data() const;
       const Dtype* cpu_diff() const;
       const Dtype* gpu_diff() const;
       Dtype* mutable_cpu_data();
       Dtype* mutable_gpu_data();
       Dtype* mutable_cpu_diff();
       Dtype* mutable_gpu_diff();
       protected:
        shared_ptr<SyncedMemory> data_;
        shared_ptr<SyncedMemory> diff_;
        shared ptr<SyncedMemory> shape data ;
        vector<int> shape_;
        int count_;
274
        int capacity_;
```

A small unit of computation

```
template <typename Dtype>
class Layer {
 public:
 /** @brief Using the CPU device, compute the layer output. */
 virtual void Forward cpu(const vector<8lob<0type>*>& bottom,
     const vector<Blob<Dtype>*>& top) = 0;
  * @brief Using the GPU device, compute the layer output.
           Fall back to Forward_cpu() if unavailable.
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
     const vector<Blob<Dtype>">& top) {
   // LOG(WARNING) << "Using CPU code as backup.";
   return Forward_cpu(bottom, top);
  * @brief Using the CPU device, compute the gradients for any parameters and
           for the bottom blobs if propagate down is true.
  -/
 virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
     const vector<bool>& propagate_down,
     const vector<Blob<Dtype>">& bottom) = 0;
  * Øbrief Using the GPU device, compute the gradients for any parameters and
           for the bottom blobs if propagate_down is true.
           Fall back to Backward_cpu() if unavailable.
 virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
     const vector<bool>& propagate_down,
     const vector<Blob<Dtype>*>& bottom) {
   // LOG(WARNING) << "Using CPU code as backup.";
   Backward_cpu(top, propagate_down, bottom);
```

A small unit of computation

Forward: Use "bottom" data to compute "top" data

```
template <typename Dtype>
class Layer {
public:
 /** @brief Using the CPU device, compute the layer output. */
 virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
     const vector<Blob<Dtype>*>& top) = 0;
  * @brief Using the GPU device, compute the layer output.
           Fall back to Forward_cpu() if unavailable.
 virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
     const vector<Blob<Dtype>">& top) (
   // LOG(WARNING) << "Using CPU code as backup.";
   return Forward_cpu(bottom, top);
   * @brief Using the CPU device, compute the gradients for any parameters and
            for the bottom blobs if propagate down is true.
 virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
     const vector<bool>& propagate_down,
     const vector<Blob<Dtype>">& bottom) = 0;
  * Øbrief Using the GPU device, compute the gradients for any parameters and
            for the bottom blobs if propagate_down is true.
           Fall back to Backward_cpu() if unavailable.
 virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
     const vector<bool>& propagate_down,
     const vector<Blob<Dtype>*>& bottom) {
   // LOG(WARNING) << "Using CPU code as backup.";
   Backward_cpu(top, propagate_down, bottom);
```

A small unit of computation

Forward: Use "bottom" data to compute "top" data

Backward: Use "top" diffs to compute "bottom" diffs

```
template <typename Dtype>
class Layer {
 public:
 /** @brief Using the CPU device, compute the layer output. */
 virtual void Forward cpu(const vector<8lob<0type>*>& bottom,
     const vector<Blob<Dtype>*>& top) = 0;
  * @brief Using the GPU device, compute the layer output.
           Fall back to Forward_cpu() if unavailable.
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
     const vector<Blob<Dtype>">& top) (
   // LOG(WARNING) << "Using CPU code as backup.";
   return Forward_cpu(bottom, top);
  * @brief Using the CPU device, compute the gradients for any parameters and
            for the bottom blobs if propagate down is true.
 virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
     const vector<bool>& propagate_down,
     const vector<Blob<Dtype>">& bottom) = 0;
   * @brief Using the GPU device, compute the gradients for any parameters and
            for the bottom blobs if propagate_down is true.
           Fall back to Backward_cpu() if unavailable.
 virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
     const vector<bool>& propagate_down,
     const vector<Blob<Dtype>*>& bottom) {
   // LOG(WARNING) << "Using CPU code as backup.";
   Backward_cpu(top, propagate_down, bottom);
```

A small unit of computation

Forward: Use "bottom" data to compute "top" data

Backward: Use "top" diffs to compute "bottom" diffs

Separate CPU / GPU implementations

```
template <typename Dtype>
class Layer {
public:
 /** @brief Using the CPU device, compute the layer output. */
 virtual void Forward_cpu(const vector<8lob<Dtype>*>& bottom,
     const vector<Blob<Dtype>*>& top) = 0;
    @brief Using the GPU device, compute the layer output.
           Fall back to Forward_cpu() if unavailable.
 virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
     const vector<Blob<Dtype>">& top) (
   // LOG(WARNING) << "Using CPU code as backup.";
   return Forward_cpu(bottom, top);
   * @brief Using the CPU device, compute the gradients for any parameters and
            for the bottom blobs if propagate down is true.
 virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
     const vector<bool>& propagate_down,
     const vector<Blob<Dtype>*>& bottom) = 0;
   * @brief Using the GPU device, compute the gradients for any parameters and
            for the bottom blobs if propagate_down is true.
           Fall back to Backward_cpu() if unavailable.
  virtual void Backward_gpu{const vector<Blob<Dtype>'>& top,
     const vector<bool>& propagate_down,
     const vector<Blob<Dtype>*>& bottom) {
   // LOG(WARNING) << "Using CPU code as backup.";
    Backward_cpu(top, propagate_down, bottom);
```

Tons of different layer types:

https://github.com/BVLC/caffe/tree/master/src/caffe/layers

Tons of different layer types:

batch norm convolution cuDNN convolution

.cpp: CPU implementation

.cu: GPU implementation

https://github.com/BVLC/caffe/tree/master/src/caffe/layers

Caffe: Net

Collects layers into a DAG

Run all or part of the net **forward** and **backward**

```
template <typename Dtype>
    class Net (
     public:
       explicit Net(const NetParameter& param, const Net* root_net = NULL);
       explicit Net(const string& param_file, Phase phase,
           const Net* root_net = NULL);
      virtual ~Net() {}
      * The From and To variants of Forward and Backward operate on the
      * (topological) ordering by which the net is specified. For general DAG
      * networks, mote that (1) computing from one layer to another might entail
      * extra computation on unrelated branches, and (2) computation starting in
      * the middle may be incorrect if all of the layers of a fan-in are not
      * included.
     Dtype ForwardFromTo(int start, int end);
     Dtype ForwardFrom(int start);
     Dtype ForwardTo(int end);
     /// @brief Run forward using a set of bottom blobs, and return the result.
     const vector<8lob<Dtype>*>& Forward(const vector<8lob<Dtype>* > & bottom,
         Dtype* loss = NULL);
67
       * The network backward should take no input and output, since it solely
       * computes the gradient w.r.t the parameters, and the data has already been
       * provided during the forward pass.
      void Backward();
      void BackwardFromTo(int start, int end);
      void BackwardFrom(int start);
      void BackwardTo(int end);
```

```
template <typename Dtype>
    class Solver (
     public:
42
      // The main entry of the solver function. In default, iter will be zero. Pass
      // in a non-zero iter number to resume training for a pre-trained net.
      virtual void Solve(const char* resume_file = NULL);
      inline void Solve(const string resume_file) { Solve(resume_file.c_str()); }
59
      void Step(int iters);
      // The Restore method simply dispatches to one of the
      // RestoreSolverStateFrom___ protected methods. You should implement these
      // methods to restore the state from the appropriate snapshot type.
      void Restore(const char* resume_file);
      // The Solver::Snapshot function implements the basic snapshotting utility
      // that stores the learned net. You should implement the SnapshotSolverState()
      // function that produces a SolverState protocol buffer that needs to be
      // written to disk together with the learned net.
67
      void Snapshot();
```

Trains a Net by running it forward / backward, updating weights

```
template <typename Dtype>
    class Solver (
     public:
      // The main entry of the solver function. In default, iter will be zero. Pass
      // in a non-zero iter number to resume training for a pre-trained net.
      virtual void Solve(const char* resume_file = NULL);
57
      inline void Solve(const string resume_file) { Solve(resume_file.c_str()); }
      void Step(int iters);
      // The Restore method simply dispatches to one of the
       // RestoreSolverStateFrom___ protected methods. You should implement these
      // methods to restore the state from the appropriate snapshot type.
      void Restore(const char* resume_file);
      // The Solver:: Snapshot function implements the basic snapshotting utility
      // that stores the learned net. You should implement the SnapshotSolverState()
      // function that produces a SolverState protocol buffer that needs to be
      // written to disk together with the learned net.
67
      void Snapshot();
```

Trains a Net by running it forward / backward, updating weights

Handles snapshotting, restoring from snapshots

```
template <typename Dtype>
class Solver (
 public:
  // The main entry of the solver function. In default, iter will be zero. Pass
  // in a non-zero iter number to resume training for a pre-trained net.
  virtual void Solve(const char* resume_file = NULL);
  inline void Solve(const string resume_file) { Solve(resume_file.c_str()); }
  // The Restore method simply dispatches to one of the
  // RestoreSolverStateFrom___ protected methods. You should implement these
  // methods to restore the state from the appropriate snapshot type.
  void Restore(const char* resume_file);
  // The Solver:: Snapshot function implements the basic snapshotting utility
  // that stores the learned net. You should implement the SnapshotSolverState(
  // function that produces a SolverState protocol buffer that needs to be
  // written to disk together with the learned net.
  void Snapshot();
```

Trains a Net by running it forward / backward, updating weights

Handles snapshotting, restoring from snapshots

Subclasses implement different update rules


```
template <typename Dtype>
class Solver (
 public:
  // The main entry of the solver function. In default, iter will be zero. Pass
  // in a non-zero iter number to resume training for a pre-trained net.
  virtual void Solve(const char* resume_file = NULL);
  inline void Solve(const string resume_file) { Solve(resume_file.c_str()); }
  void Step(int iters);
  // The Restore method simply dispatches to one of the
  // RestoreSolverStateFrom___ protected methods. You should implement these
  // methods to restore the state from the appropriate snapshot type.
  void Restore(const char* resume_file);
  // The Solver::Snapshot function implements the basic snapshotting utility
  // that stores the learned net. You should implement the SnapshotSolverState()
  // function that produces a SolverState protocol buffer that needs to be
  // written to disk together with the learned net.
  void Snapshot();
15
       template <typename Dtype>
       class SGDSolver : public Solver<Dtype> {
16
```

```
template <typename Dtype>
     class RMSPropSolver : public SGDSolver<Dtype> {
84
130
     template <typename Dtype>
     class AdamSolver : public SGDSolver<Dtype> {
```