Lab 06: Passive Filter Circuits

Arturo Salinas-Aguayo ECE 2001 Electrical Circuits

ECE 2001 Electrical Circuits
Dr. David J. Giblin, Section 331.660.701.810-1253
Mechanical Engineering Department

Contents

1	Abstract	2		
2	Introduction			
3	Theory	3		
	3.1 Low-Pass RC Filter	3		
	3.2 High-Pass RC Filter	3		
	3.3 Second-Order RLC Circuit (Bandpass Filter)	3		
4	Experimental Procedures	4		
	4.1 Circuit One: RC High-Pass Filter	4		
	4.2 Circuit Two: RC Low-Pass Filter	4		
	4.3 Circuit Three: Parallel Capacitor Low Pass Filter	5		
	4.4 Circuit Four Series RLC Bandpass Filter	6		
	4.4.1 Resistor at 200Ω	6		
	4.4.2 Resistor at 2000Ω	7		
5	Results and Discussion	7		
	5.1 Low-Pass Filter Analysis	7		
	5.2 High-Pass Filter Analysis	9		
	5.3 RC Parallel Filter	10		
	5.4 RLC Bandpass Filter	11		
	5.5 RLC Low Pass Filter	14		
6	Conclusion	14		

1 Abstract

This lab introduces frequency domain behavior of passive filters composed of resistors, capacitors, and inductors. Through experimentation with low-pass and high-pass filters, as well as an underdamped RLC configuration, the frequency response and phase shift characteristics are observed. Emphasis is placed on understanding cutoff frequency, amplitude response, and the resonance phenomenon.

2 Introduction

While earlier labs focused on transient response, this experiment shifts the focus to the steady-state sinusoidal behavior of filters. The goal is to understand how the amplitude and phase of a circuit's output vary as a function of frequency. By examining first-order filters and a second-order resonant circuit, intuition is built for applications in audio electronics, communication systems, and signal processing.

Filters are circuits that selectively allow or reject certain frequencies. Low-pass filters allow low frequencies to pass while attenuating higher ones. High-pass filters do the opposite. The transition point between passing and attenuation is the cutoff frequency, defined where the output amplitude is $\frac{1}{\sqrt{2}}$ of the input.

3 Theory

3.1 Low-Pass RC Filter

A first-order RC low-pass filter has the following configuration:

The transfer function is:

$$H(f) = \frac{1}{1 + j2\pi fRC}$$

The cutoff frequency is given by:

$$f_c = \frac{1}{2\pi RC}$$

3.2 High-Pass RC Filter

A high-pass RC filter simply swaps the resistor and capacitor:

The transfer function becomes:

$$H(f) = \frac{j2\pi fRC}{1 + j2\pi fRC}$$

With the same cutoff frequency:

$$f_c = \frac{1}{2\pi RC}$$

3.3 Second-Order RLC Circuit (Bandpass Filter)

An underdamped RLC circuit exhibits resonance. The circuit is: Its transfer function peaks at:

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$
 (resonant frequency)

And has a quality factor Q:

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

4 Experimental Procedures

4.1 Circuit One: RC High-Pass Filter

A 22nF capacitor was substituted in place of the 15nF capacitor. A high pass filter is formed when the output of an RC circuit is taken off the resistor.

Cutoff Frequency - 3556.31HzCutoff Frequency Phase - 45.49°

- Input signal: 5 V_{pp} sine wave
- \bullet Frequency sweep: 1 Hz to 100 MHz
- \bullet Measure amplitude and phase of output across resistor.

4.2 Circuit Two: RC Low-Pass Filter

A typical low-pass filter is formed when the output of an RC circuit is taken off the capacitor.

Cutoff Frequency - 3681.29Hz Cutoff Frequency Phase - -45.50°

- Same input signal and frequency sweep
- Measure output across capacitor

4.3 Circuit Three: Parallel Capacitor Low Pass Filter

Cutoff Frequency: 1377.21Hz Cutoff Frequency Phase: -53.18°

- \bullet Determine resonant frequency and bandwidth
- Plot Bode plot of magnitude response

4.4 Circuit Four Series RLC Bandpass Filter

4.4.1 Resistor at 200Ω

Cutoff Frequencies: 5105.05Hz, -30.278° 5597.57, -28.30°

- Determine resonant frequency and bandwidth
- Plot Bode plot of magnitude response

4.4.2 Resistor at 2000Ω

- Determine resonant frequency and bandwidth
- Plot Bode plot of magnitude response

5 Results and Discussion

5.1 Low-Pass Filter Analysis

Table 1: Scopy Measurements – Circuit 1: RC High-Pass Filter

Frequency (Hz)	Gain (dB)	Phase $(^{\circ})$
1.00	-81.680	123.927
5.99	-54.359	86.142
35.94	-41.073	86.300
215.44	-26.350	85.221
1291.55	-11.371	70.992
3569.05	-4.393	50.071
7742.64	-1.522	30.026
46415.90	-0.076	6.315
278256.00	0.014	1.098
10000000.00	0.040	-0.450

Circuit 1, RC High-Pass Filter

- \bullet Compare theoretical cutoff with measured
- \bullet Plot amplitude response and extract $-3\,\mathrm{dB}$ point

5.2 High-Pass Filter Analysis

Table 2: Scopy Measurements – Circuit 2: RC Low-Pass Filter

Frequency (Hz)	Gain (dB)	Phase (°)
1.00	-0.045	-0.779
5.99	-0.031	-0.058
35.94	-0.036	-0.487
215.44	-0.063	-2.738
1291.55	-0.507	-15.575
3686.10	-2.466	-37.314
7742.64	-6.089	-56.304
46415.90	-19.171	-78.441
278256.00	-33.672	-78.289
10000000.00	-38.133	141.555

Circuit 2, RC Low-Pass Filter

• Same analysis as low-pass

• Note phase shift at low frequencies

5.3 RC Parallel Filter

Table 3: Scopy Measurements – Circuit 3: RC Parallel Low-Pass Filter

Frequency (Hz)	Gain (dB)	Phase (°)
1.00	-0.072	-0.738
5.99	-0.048	-0.242
35.94	-0.061	-1.382
215.44	-0.156	-7.839
1377.65	-2.385	-42.622
7742.64	-14.098	-101.253
46415.90	-37.471	-147.796
278256.00	-66.917	-168.630
1668100.00	-64.770	101.918
10000000.00	-40.640	150.371

Circuit 3, RC Parallel

- \bullet Compare calculated resonant frequency with observed
- $\bullet\,$ Discuss the role of Q and peak amplitude

5.4 RLC Bandpass Filter

Table 4: Scopy Measurements – Circuit 4a: Series RLC Bandpass Filter $(R=200\,\Omega)$

Frequency (Hz)	Gain (dB)	Phase (°)
1.00	18.009	1.113
5.99	-0.016	-0.019
35.94	-0.016	-0.138
215.44	-0.017	-0.797
1291.55	0.174	-5.155
5089.87	3.675	-33.948
5607.23	4.286	-40.791
7742.64	4.358	-95.247
46415.90	-28.705	-168.845
278256.00	-64.036	-175.566

Figure 1: Area of Interest

5.5 RLC Low Pass Filter

6 Conclusion

This lab demonstrated the role of passive filters in shaping the frequency content of signals. First-order filters showed characteristic $-20\,\mathrm{dB/decade}$ roll-off near cutoff, while the second-order RLC circuit showed clear resonant behavior. Agreement between theory, simulation, and measurement confirms the behavior of these filters and prepares students for future work in frequency-selective networks and analog signal processing.