$_{ m QCM}^{ m Algo}$

Soit le graphe orienté valué G=< S, A, C> représenté par :

- 1. Dans le graphe G, parmi les séquences de sommets suivantes, lesquelles sont des chemins élémentaires?
 - (a) (1, 3, 5, 6, 4)
 - (b) (2, 4, 3, 5, 7, 8, 6, 4)
 - (c) (7, 8, 6, 4, 3)
 - (d) (2, 4, 3, 5, 6, 7)
 - (e) (7,6,4,5,3)
- 2. Le graphe G est fortement connexe?
 - (a) Faux
 - (b) Vrai
- 3. Dans le graphe G, quelle séquence de sommets correspond au plus court chemin de 1 vers 4?
 - (a) (1,2,3,4)
 - (b) (1, 3, 2, 4)
 - (c) (1,3,5,4)
 - (d) (1, 2, 5, 4)
 - (e) (1,7,8,6,4)
- 4. Dans le graphe G, il n'existe pas de plus court chemin de 5 vers 1?
 - (a) Faux
 - (b) Vrai
- 5. Dans le graphe G, la plus petite distance de 1 à 6 est égale à?
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4
 - (e) 5

- 6. Les algorithmes de recherche des plus courts chemins existent?
 - (a) d'un sommet vers un autre
 - (b) d'un sommet vers tous les autres
 - (c) de tous les sommets vers tous les sommets
- 7. L'algorithme de Dijkstra admet des graphes à coûts quelconques?
 - (a) non
 - (b) oui
- 8. L'algorithme de Disjkstra utilise un principe analogue à celui de WARSHALL?
 - (a) non
 - (b) oui
- 9. L'algorithme de Dijkstra admet des graphes présentant des circuits?
 - (a) non
 - (b) oui
- 10. L'algorithme de Dijkstra recherche des plus courts chemins, s'ils existent?
 - (a) d'un sommet vers un autre
 - (b) d'un sommet vers tous les autres
 - (c) de tous les sommets vers tous les sommets

Quel événement important s'est déroulé le 14 juillet 1709?

Interrogation:

JE NE CROIS PAS EN LA LINEARITÉ DU TEMPS. IL N'Y a Ni Passé ni futur. Tout n'est qu'un et l'existence, au sens TEMPOREL DU TERME, EST ILLUSOIRE. PAR CONSEQUENT, LA QUESTION NE SERT à RIEN ET IL M'EST IMPOSSIBLE D'Y RÉPONDRE.

QCM 5

Lundi 4 mars 2024

Question 11

Soit $(E,\langle\,,\rangle\,)$ un espace préhilbertien réel et A un sous-ensemble de E. Alors :

a.
$$A^{\perp} = \{u \in A, \forall v \in E, \langle u, v \rangle = 0\}$$

b.
$$A^{\perp} = \{ u \in A, \forall v \in A, \langle u, v \rangle = 0 \}$$

c.
$$A^{\perp} = \{u \in E, \forall v \in E, \langle u, v \rangle = 0\}$$

d.
$$A^{\perp} = \left\{ u \in E, \forall v \in A, \langle u, v \rangle = 0 \right\}$$

e. Aucun des autres choix

Question 12

Soit (E, \langle , \rangle) un espace préhilbertien réel. Considérons une famille $\mathcal{F} = (u_1, \dots, u_n)$ de vecteurs de E. Alors $\mathcal{F}^{\perp} = (\operatorname{Vect} \mathcal{F})^{\perp}$.

- a. Vrai
- b. Faux

Question 13

Soit (E, \langle , \rangle) un espace préhilbertien réel. Considérons une famille orthogonale $\mathcal F$ de vecteurs de E.

- a. \mathcal{F} est libre
- b. Si \mathcal{F} ne contient pas 0_E , alors cette famille est libre
- c. Si ${\mathcal F}$ contient $0_E,$ alors cette famille est liée
- d. Aucun des autres choix

Question 14

Soient (E, \langle , \rangle) un espace euclidien de dimension $n \in \mathbb{N}^*$ et $\mathcal{B} = (e_1, \dots, e_n)$ une base orthonormée de E. Alors pour tout $u \in E$:

a.
$$u = \sum_{i=1}^{n} \langle u, e_i \rangle \ e_i$$

b.
$$u = \sum_{i=1}^n \left\langle u \,, e_i
ight
angle \, u$$

- c. Les coordonnées de u dans la base \mathcal{B} sont $(\langle u, e_1 \rangle, \dots, \langle u, e_n \rangle)$
- d. Aucun des autres choix

Question 15

Soient (E, \langle , \rangle) un espace préhilbertien réel et F un sous-espace vectoriel de dimension finie de E. Alors :

a.
$$F \oplus F^{\perp} = E$$

b.
$$F^{\perp\perp} = F$$

c. Aucun des autres choix

Question 16

Soient $(E, \langle \, , \rangle)$ un espace préhilbertien réel et F un sous-espace vectoriel de dimension finie de E.

Pour tout $u \in E$, le projeté orthogonal de u sur F est le vecteur $p_F(u)$ défini par :

a.
$$p_F(u) \in F$$

b.
$$u - p_F(u) \in F^{\perp}$$

c.
$$p_F(u) \in F$$
 et $u - p_F(u) \in F^{\perp}$

d.
$$p_F(u) \in F$$
 et $u - p_F(u) \in F$

e. Aucun des autres choix

Question 17

Soit la suite de fonctions (f_n) définie sur [0,1] par : $\forall x \in [0,1], f_n(x) = x^n$. Alors :

a. Pour tout
$$x \in [0,1]$$
, $f_n(x) \xrightarrow[n \to +\infty]{} 0$

b. Pour tout
$$x \in [0,1]$$
, $f_n(x) \xrightarrow[n \to +\infty]{} 1$

c. Pour tout
$$x \in [0,1]$$
, $(x < 1) \Longrightarrow \left(f_n(x) \xrightarrow[n \to +\infty]{} 0 \right)$

d.
$$f_n(1) \xrightarrow[n \to +\infty]{} 1$$

e. Aucun des autres choix

Question 18

Soit la suite de fonctions (f_n) définie sur [0,1] par : $\forall x \in [0,1], f_n(x) = x^n$. Alors :

- a. (f_n) converge simplement vers la fonction nulle sur [0,1]
- b. (f_n) converge simplement vers la fonction $x \mapsto 1$ sur [0,1]
- c. (f_n) ne converge simplement vers aucune fonction sur [0,1]
- d. Aucun des autres choix

Question 19

Soient une suite de fonctions (f_n) et une fonction réelle f, toutes définies sur \mathbb{R} .

On dit que la suite (f_n) converge simplement vers la fonction f sur $\mathbb R$ si :

a.
$$\forall x \in \mathbb{R}, \quad f_n(x) \xrightarrow[n \to +\infty]{} f(x)$$

b.
$$\forall x \in \mathbb{R}, \quad f_n(x) \xrightarrow[x \to +\infty]{} f(x)$$

c. Aucun des autres choix

Question 20

Soit (f_n) une suite de fonctions, toutes continues et dérivables sur \mathbb{R} , convergeant simplement sur \mathbb{R} vers une fonction f.

Alors:

- a. La fonction f est continue sur $\mathbb R$
- b. La fonction f est dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$, $f'(x) = \lim_{n \to +\infty} f'_n(x)$

c.
$$\int_0^1 f_n(x) dx \xrightarrow[n \to +\infty]{} \int_0^1 f(x) dx$$

d. Aucun des autres choix

QCM 2

Architecture des ordinateurs

Lundi 4 mars 2024

Pour toutes les questions, une ou plusieurs réponses sont possibles.

- 21. Choisir les affirmations correctes :
 - A. Une instruction se trouve toujours à une adresse paire.
 - B. L'accès à un octet est possible à partir d'une adresse paire ou impaire.
 - C. L'accès d'un mot de 16 bits est possible uniquement à partir d'une adresse paire.
 - D. L'accès d'un mot de 32 bits est possible uniquement à partir d'une adresse paire.
- 22. Quelle(s) syntaxe(s) est(sont) acceptée(s) par l'instruction MOVEM ?
 - A. MOVEM <list>, <ea>
 - B. MOVEM < list>, < list>
 - C. MOVEM <ea>,<list>
 - D. Aucune de ces réponses.
- 23. Où se trouvent les flags X, N, Z, V et C?
 - A. Ils se trouvent dans la mémoire RAM.
 - B. Ils se trouvent dans le registre USP.
 - C. Ils se trouvent dans les 8 bits de poids faible du registre SR.
 - D. Aucune de ces réponses.
- 24. Où se trouvent les données de la pile du mode utilisateur ?
 - A. Elles se trouvent dans le registre A7.
 - B. Elles se trouvent dans la mémoire RAM.
 - C. Elles se trouvent dans le registre SSP.
 - D. Aucune de ces réponses.
- 25. Où se trouvent les données de la pile du mode superviseur ?
 - A. Elles se trouvent dans le registre A7.
 - B. Elles se trouvent dans la mémoire RAM.
 - C. Elles se trouvent dans le registre USP.
 - D. Aucune de ces réponses.

Architecture des ordinateurs – EPITA – S4 – 2023/2024

- 26. Après l'exécution d'une instruction RTS :
 - A. Le registre PC est toujours décrémenté de quatre.
 - B. Le registre PC est toujours incrémenté de quatre.
 - C. Le registre PC n'est pas modifié.
 - D. Le sommet de la pile a été copié dans le registre PC.
- 27. La pile du 68000 est de type :
 - A. LIFO
 - B. LILO
 - C. FIFO
 - D. Aucune de ces réponses
- 28. Quelle(s) instruction(s) n'est (ne sont) pas possible(s) ?
 - A. ADDQ.B #1,D0
 - B. ADDQ.W #8,D1
 - C. ADDQ.L #8,D7
 - D. ADDQ.L D0,D1
- 29. Quelle(s) instruction(s) n'est (ne sont) pas possible(s)?
 - A. ADDA.B #1,A0
 - B. ADDA.L #8,D1
 - C. ADDA.W #8,A0
 - D. ADDA.L D0,A0
- 30. Quelle est la valeur de D1.L après l'exécution de l'instruction suivante ? ADD.B D0,D1 Valeurs initiales: D0.L = \$000000F0, D1.L = \$00000011
 - A. \$00000101
 - B. \$FFFFFF01
 - C. \$00000001
 - D. Aucune de ces réponses