MP* KERICHEN 2021-2022

DM n^o8

Ce DM est à destination des 3/2. La première partie devra être traité la semaine de la rentrée. La seconde est déjà accessible.

FONCTION Γ

I. La fonction gamma

On va étudier la fonction Γ d'Euler, déjà rencontrée en exercice et définie, rappelons le, sur \mathbf{R}_+^* par

$$\Gamma: \mathbf{R}_+^* \to \mathbf{R}; x \mapsto \int_0^{+\infty} t^{x-1} e^{-t} dt,$$

pour tout réel strictement positif.

- 1. Montrer que Γ est de classe \mathcal{C}^{∞} et donner l'expression de ses dérivées.
- 2. Montrer que pour tout réel $x \ge 0$, $\Gamma(x+1) = x\Gamma(x)$; en déduire $\Gamma(n)$ pour tout entier $n \ge 1$.
- 3. Montrer que Γ est convexe.
- 4. Montrer que la dérivée de Γ s'annule en un et un seul point de \mathbf{R}_{+}^{*} .
- 5. Donner la limite en $+\infty$ et un équivalent en 0 de Γ . Tracer l'allure de la courbe représentative de Γ .
- 6. Soit un réel x > 0. Pour tout entier $n \ge 0$, l'application

$$u_n: \mathbf{R}_+^* \to \mathbf{R}; t \mapsto \begin{cases} t^{x-1} \left(1 - \frac{t}{n}\right)^{\frac{1}{n}}, \text{ si } t \leq n, \\ 0, \text{ sinon.} \end{cases}$$

Montrer que $\int_0^{+\infty} u_n(t) dt$ tend vers $\Gamma(x)$ lorsque n tend vers $+\infty$.

On considère dans le suite l'applications

$$I: \mathbf{R}_{+}^{*} \to \mathbf{R}; x \mapsto \int_{0}^{1} t^{x-1} e^{-t} dt$$

7. Montrer que pour tout réel x > 0,

$$I(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(n+x)}$$

- 8. Montrer que pour tout réel x qui n'est pas un entier négatif ou nul, $\sum \frac{(-1)^n}{n!(n+x)}$ converge.
- 9. Montrer que pour réel x, $\int_1^{+\infty} t^{x-1} e^{-t} dt$ converge. On dispose donc du prolongement à $\mathbb{C} \setminus \mathbb{Z}_-$ de Γ suivant :

$$\tilde{\Gamma}: \mathbf{R} \setminus \mathbf{Z}_- \to \mathbf{R}; x \mapsto \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(n+x)} + \int_1^{+\infty} t^{x-1} e^{-t} dt.$$

10. Montrer que $\tilde{\Gamma}$ est indéfiniment dérivable.

II. Caractérisation de la fonction gamma par convexité de son logarithme

On se propose de donner une caractérisation de la fonction Γ due à Bohr 1 et Mollerup, plus précisément :

l'ensemble \mathcal{F} des applications f de \mathbf{R}_{+}^{*} dans \mathbf{R} strictement positives, continues, telles que

- i. f(1) = 1;
- ii. Pour tout $x \in \mathbf{R}_+^*$, f(x+1) = xf(x);
- iii. l'application $\ln \circ f$ est convexe².

 $poss\`{e}de$ un unique élément, la fonction Γ d'Euler.

1. Inégalité d'Hölder

Soient p et q des réels conjugués, c'est-à-dire que $\frac{1}{p}+\frac{1}{q}=1.$

On rappelle l'inégalité d'Hölder vue en exercice en début d'année :

Soit n un entier naturel non nul, pour tout n-uplets $(x_i)_{i=1,\dots,n}$ et $(y_i)_{i=1,\dots,n}$ de réels positifs ou nuls, on a

$$\sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} x_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} y_i^q\right)^{\frac{1}{q}}.$$
 (1)

Soient f et g des éléments de $\mathcal{C}^0(\mathbf{R}_+^*, \mathbf{R})$.

(a) Soient [a, b] un segment non réduit à un point inclus dans \mathbb{R}_+^* . Montrer que

$$\left| \int_{a}^{b} f(t)g(t) dt \right| \le \left(\int_{a}^{b} |f|^{p} \right)^{\frac{1}{p}} \left(\int_{a}^{b} |g|^{q} \right)^{\frac{1}{q}}. \tag{2}$$

(b) On suppose que $|f|^p$ et $|g|^p$ sont intégrables sur \mathbb{R}_+^* . Montrer que fg est intégrable sur \mathbb{R}_+^* et que

$$\left| \int_{0}^{+\infty} f(t)g(t)dt \right| \leq \left(\int_{0}^{+\infty} |f|^{p} \right)^{\frac{1}{p}} \left(\int_{0}^{+\infty} |g|^{q} \right)^{\frac{1}{q}}. \tag{3}$$

$$\left(Inégalité \ d'H\"{o}lder. \right)$$

- 2. Montrer que $\Gamma \in \mathcal{F}$.
- 3. Soit f un élément de \mathcal{F} . Possons $g = \ln \circ f$. Montrer que pour tout élément x de]0,1[et tout entier naturel non nul n,

$$\ln n \le \frac{g(n+1+x) - g(n+1)}{x} \le \ln(n+1).$$

En déduire, que pour tout élément x de]0,1[et tout entier naturel non nul n,

$$0 \le g(x) - \ln\left(\frac{n!n^x}{x(x+1)\dots(x+n)}\right) \le \ln\left(1 + \frac{1}{n}\right).$$

- 4. En déduire que $f = \Gamma$.
- 5. Montrer que pour tout élément x de \mathbf{R}_{+}^{*} , $\Gamma\left(x\right)=\lim_{n\to+\infty}\left(\frac{n!n^{x}}{x(x+1)....(x+n)}\right)$.
- 6. Retrouver le résultat de la question précédente en utilisant la question I. 6.

IV. Fonction B³

- 1. Le frère!
- 2. Ce qui veut dire que f est très convexe.
- 3. Il s'agit d'un bêta majuscule

- 1. Montrer que la quantité $B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$ est bien définie pour tout élément x et tout élément y de \mathbb{R}_+^* .
- 2. Montrer que pour tout élément x et tout élément y de \mathbf{R}_{+}^{*} ,

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.$$

On pourra utiliser la partie I.

3. Calculer B $(\frac{1}{2}, \frac{1}{2})$, en déduire $\Gamma(\frac{1}{2})$, puis $\int_{-\infty}^{+\infty} e^{-s^2} ds$. Application: Une particule est attirée vers un point fixe O, par une force inversement proportionnelle à sa distance à O. Si la particule est initialement au repos, calculer le temps qu'elle mettra à atteindre le point O.