

日本国特許庁
JAPAN PATENT OFFICE

07.01.2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日
Date of Application: 2003年12月 2日

出願番号
Application Number: 特願2003-436211

[ST. 10/C]: [JP2003-436211]

出願人
Applicant(s): 山川 洋一

2005年 2月 25日

特許庁長官
Commissioner,
Japan Patent Office

山川 洋一

BEST AVAILABLE COPY

【書類名】 特許願
【整理番号】 3360PY
【あて先】 特許庁長官殿
【国際特許分類】 G01N 21/81
【発明者】
【住所又は居所】 千葉県千葉市美浜区真砂 4-3-2-1410
【氏名】 山川 洋一
【特許出願人】
【住所又は居所】 千葉県千葉市美浜区真砂 4-3-2-1410
【氏名又は名称】 山川 洋一
【提出物件の目録】
【物件名】 特許請求の範囲 1
【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1

【書類名】特許請求の範囲**【請求項1】**

ベース紙（B）に塩化コバルト（C_o）を保持させてなる湿度判定板（P）の表面に、該塩化コバルト（C_o）が露出する少なくとも1つの湿度判定面（M₁～M₄）が設けられ、この湿度判定面（M₁～M₄）での塩化コバルト（C_o）の変色により湿度判定を行えるようにした湿度インジケータにおいて、

前記湿度判定板（P）の表面を覆う第1フィルム（F₁）と、同判定板（P）の裏面を覆う第2フィルム（F₂）とを備え、

少なくとも第1フィルム（F₁）と湿度判定板（P）の表面との間には、前記湿度判定面（M₁～M₄）の全面を臨ませた扁平な空気層（A_u）が形成され、

この空気層（A_u）を大気に直接連通させる複数の小孔（H）が相互に間隔をおいて第1フィルム（F₁）に形成されることを特徴とする、湿度インジケータ。

【請求項2】

前記第1及び第2フィルム（F₁， F₂）は前記湿度判定板（P）の外周縁から食み出すように形成されると共に、その各フィルム（F₁， F₂）の外周縁部（F_{1a}， F_{2a}）相互が直接接合（m）されることを特徴とする、請求項1に記載の湿度インジケータ。

【請求項3】

前記湿度判定板（P）の表面には、相異なる複数の湿度レベルにそれぞれ対応して複数の湿度判定面（M₁～M₄）が間隔をおいて並設されており、

前記空気層（A_u）は前記複数の湿度判定面（M₁～M₄）に対し共通に形成されることを特徴とする、請求項1又は2に記載の湿度インジケータ。

【請求項4】

前記ベース紙（B）は、吸湿性のある濾紙であり、

第2フィルム（F₂）と湿度判定板（P）の裏面との間には、該裏面の少なくとも前記湿度判定面（M₁～M₄）と対応する領域を臨ませた扁平な第2の空気層（A_d）が形成されており、

この第2の空気層（A_d）を大気に直接連通させる複数の小孔（H'）が第2フィルム（F₂）に相互に間隔をおいて形成されることを特徴とする、請求項1， 2又は3に記載の湿度インジケータ。

【請求項5】

前記各フィルム（F₁， F₂）には、帯電防止処理が施されていることを特徴とする、請求項1， 2， 3又は4に記載の湿度インジケータ。

【書類名】明細書

【発明の名称】湿度インジケータ

【技術分野】

【0001】

本発明は、湿度変化に応じた塩化コバルトの変色作用を湿度判定に利用できるようにした湿度インジケータに関する。

【背景技術】

【0002】

上記湿度インジケータとしては、例えばベース紙に塩化コバルトを保持させてなる湿度判定板の表面に、該塩化コバルトが露出する湿度判定面を設け、この湿度判定面での塩化コバルトの変色（青→ピンク）によりベース紙周辺の湿度判定を視覚的に行えるようにした構造のものが従来公知である。

【0003】

このような湿度インジケータは、湿気を嫌う種々の工業製品（例えば、エポキシ系樹脂が湿気吸収によりひび割れの原因となることがある回路基板等の電子部品）の輸送等において、透明な気密性包装袋の内部に製品や乾燥剤と一緒に封入されて使用される。即ち、そのような使用状態で製品を輸送する際には、包装袋内の湿度が規定限界を超えていないか否かを湿度インジケータの湿度判定面の色から目視判定可能であるため、乾燥剤の入った包装袋内が適正な湿度状態（乾燥状態）に保たれているかを簡単にチェックできるものであり、そのため、斯かる湿度インジケータは、電子工業界等において従来より広く使用されている。

【0004】

ところで従来の湿度インジケータでは、その湿度判定板の表裏とも（従って塩化コバルトが露出した湿度判定面も）が外部に剥き出しの状態におかれしており、この湿度判定板を作業者が手で直接掴んでドライパックから出し入れするようにしていた。

【発明の開示】

【発明が解決しようとする課題】

【0005】

上記のように従来では、上記包装袋を開封してこれから製品を取り出す際に、作業者が湿度インジケータを手で摘んでパックより取り出して、湿度判定面の色をチェックするようしている。そのため、湿度判定面の塩化コバルトが手に付着し、体内に侵入する可能性があるが、塩化コバルトには発癌性があることが知られており、従ってこのような塩化コバルトがたとえ微量でも手に付着し体内に侵入する可能性がある作業環境は、改善することが望ましい。

【0006】

また従来の湿度インジケータでは、その湿度判定面が外部に剥き出しの状態とされたため、内部が低湿度状態に保たれる密閉収納容器や上記のような乾燥剤入り包装袋から大気中に出されたときに、その湿度判定面の塩化コバルトが室内空気との直接接触で比較的速度やかに変色してしまうため、次のような問題がある。即ち、上記包装袋を開封して中の湿度インジケータを取り出したときに、その湿度判定面が比較的短時間で変色すると、作業者が変色前の色を見落として誤判定を行うことがあり、また未使用的湿度インジケータを密閉収納容器より取り出して上記包装袋に移し替える際に、作業がもたつく等して移し替え前に変色が起きた場合に、使用者が当該湿度インジケータを不良品と見誤る等して、種々のトラブルの原因となることがある。

【0007】

また、従来から湿度インジケータのベース紙は、濾紙（フィルタペーパー）その他の紙で形成されていたが、そのような紙、特に濾紙においては、その外面や切断面から微細なダスト（紙の屑、繊維等）が発生し易く、それが電子部品に付着するとその性能に影響する可能性があるので、上記ベース紙から発生したダストが外部に拡散しないようにすることが望ましい。

【0008】

さらに電子部品は、これに帶電状態の他の部品や包装材を近づけることにより性能に影響を受ける可能性がある上、帶電状態の部品等には静電気でダストが付着し易くなるので、その帶電の影響やダストの影響を避ける意味でも湿度インジケータ自体を極力帶電しにくくすることが望ましい。

【0009】

本発明は、前述の諸事情に鑑みてなされたもので、従来の上記問題を簡単な構造で解決することを目的とする。

【課題を解決するための手段】**【0010】**

上記目的を達成するために請求項1の発明は、ベース紙に塩化コバルトを保持させてなる湿度判定板の表面に、該塩化コバルトが露出する少なくとも1つの湿度判定面が設けられ、この湿度判定面での塩化コバルトの変色により湿度判定を行えるようにした湿度インジケータにおいて、前記湿度判定板の表面を覆う第1フィルムと、同判定板の裏面を覆う第2フィルムとを備え、少なくとも第1フィルムと湿度判定板の表面との間には、前記湿度判定面の全面を臨ませた扁平な空気層が形成され、この空気層を大気に直接連通させる複数の小孔が相互に間隔をおいて第1フィルムに形成されることを特徴とする。

【0011】

また請求項2の発明は、前記請求項1の発明の特徴に加えて、前記第1及び第2フィルムは前記湿度判定板の外周縁から食み出すように形成されると共に、その各フィルムの外周縁部相互が直接接合されることを特徴とする。

【0012】

また請求項3の発明は、前記請求項1又は2の発明の特徴に加えて、前記湿度判定板の表面には、相異なる複数の湿度レベルにそれぞれ対応して複数の湿度判定面が間隔をおいて並設されており、前記空気層は前記複数の湿度判定面に対し共通に形成されることを特徴とする。

【0013】

また請求項4の発明は、前記請求項1～3の何れかの発明の特徴に加えて、前記ベース紙は、吸湿性のある濾紙であり、第2フィルムと湿度判定板の裏面との間には、該裏面の少なくとも前記湿度判定面と対応する領域を臨ませた扁平な第2の空気層が形成されており、この第2の空気層を大気に直接連通させる複数の小孔が第2フィルムに相互に間隔をおいて形成されることを特徴とする。

【0014】

また請求項5の発明は、前記請求項1～4の何れかの発明の特徴に加えて、前記各フィルムには、帶電防止処理が施されていることを特徴とする。

【発明の効果】**【0015】**

以上のように各請求項の発明によれば、湿度判定板の表裏を第1及び第2フィルムで覆うようにしたので、湿度インジケータを作業者が手で直接摘んでも、その湿度判定面の塩化コバルトが手に付着し延いては体内に侵入するのを効果的に防止でき、作業者は安心して湿度インジケータを取り扱うことができ。また湿度インジケータのベース紙から微細なダスト（紙の屑、繊維等）が発生しても、それが上記各フィルムで遮られて外部に拡散しにくい構造であるため、ダストを嫌う電子部品等と一緒に封入されても、ダストの電子部品への影響を効果的に防止できる。

【0016】

また第1フィルムと湿度判定板の表面との間には、湿度判定面の全面を臨ませた扁平な空気層が形成され、この空気層を大気に直接連通させる複数の小孔が第1フィルムに相互に間隔をおいて形成されるので、内部が低湿度状態に保たれる密閉収納容器等から湿度インジケータが大気中に取り出されたときに、その大気の湿度に応じて空気層の湿度が変化するのに適度なタイムラグが確保され、従って、湿度判定面の変色に至る経過時間（変色

所要時間)を適度に設定可能となり、その時間が比較的短い場合に生じる虞れのある誤判定やトラブルの発生防止に有効であり、しかも上記タイムラグ(従って変色所要時間)の長さは、上記複数の小孔の分散密度や内径等を適宜設定することで、使用目的や作業環境等に応じて容易に調整可能である。またその各小孔に対し湿度判定面を直接臨ませた場合には、湿度判定面の、各小孔に対応する部分のコバルトだけが部分的に変色して、体裁を損なうばかりか判定作業も行い辛くなる等の問題があるが、本発明では、各小孔と湿度判定面との間に上記空気層を介在させたので、湿度判定面の、小孔対応部分だけでなくその全面を一様に変色させることができて、上記問題を解消することができる。

【0017】

また特に請求項2の発明によれば、第1及び第2フィルムは湿度判定板の外周縁から食み出るように形成されると共に、その各フィルムの外周縁部相互が直接接合されるので、ベース紙の外周縁部を第1及び第2フィルムで完全に覆うことができ、従って、ベース紙の外周切断面からのダスト発生も確実に防止でき、またフィルム相互を直接接合することで、その接合作業が比較的容易に且つ確実に実施可能となることから、接合工程の簡素化が図られる。

【0018】

また特に請求項3の発明によれば、湿度判定板の表面には、相異なる複数の湿度レベルにそれぞれ対応して複数の湿度判定面が間隔をおいて並設されており、空気層は複数の湿度判定面に対し共通に形成されるので、複数の湿度判定面毎に空気層を形成する場合と比べて空気層形成のための工程簡素化が図られる。

【0019】

また特に請求項4の発明によれば、湿度判定板のベース紙は、吸湿性のある濾紙であり、第2フィルムと湿度判定板の裏面との間には、該裏面の少なくとも湿度判定面と対応する領域を臨ませた扁平な第2の空気層が形成されており、この第2の空気層を大気に直接連通させる複数の小孔が第2フィルムに相互に間隔をおいて形成されるので、湿度インジケータが密閉収納容器等から大気中に出されたときに、その大気中の湿気がベース紙の裏側から該ベース紙内を通してその表側空気層へも伝わるようになり、従ってその表側の湿度判定面の湿度変化に対する感度をより高めることができる。

【0020】

また特に請求項5の発明によれば、各フィルムには帯電防止処理が施されているので、湿度判定板自体が帯電しにくくなる上、ダストが静電気で該フィルムに付着しにくくなり、これにより、湿度インジケータが電子部品と一緒に封入されても、その電子部品への帯電の影響やダストの影響を極力避けることができる。

【発明を実施するための最良の形態】

【0021】

本発明の実施の形態を、添付図面に例示した本発明の実施例に基づいて以下に具体的に説明する。

【0022】

添付図面において、図1～図4は、本発明の一実施例を示すものであって、図1は、湿度インジケータの全体平面図と一部拡大図、図2は、図1の2-2線拡大縦断面図、図3は、図2の3矢視部拡大断面図、図4は、包装袋に湿度インジケータを電子部品及び乾燥剤と共に封入した状態を示す斜視図である。

【0023】

湿度の目視判定に用いる湿度インジケータIは、平板状の湿度判定板Pと、これを被覆するカバーボディCにより構成されている。

【0024】

前記湿度判定板Pは、吸湿性を有する濾紙等のフィルタペーパーによるベース紙Bと、そのベース紙Bに保持した塩化コバルトC_oとを備える。このベース紙Bは、カード状(図示例では正方形)に形成され、その表面には、塩化コバルトC_oが露出する複数の湿度判定面M1～M4が設けられ、この湿度判定面M1～M4での塩化コバルトC_oの変色

具合により湿度判定を行えるようにしている。

【0025】

図示例において、第1湿度判定面M1は、湿度インジケータIが置かれる霧囲気湿度が5%以下では青色のままであるが、5%を超えて増加するとピンク色に変色するよう予め調整された塩化コバルトC_oが露出しており、また第2湿度判定面M2は、霧囲気湿度が10%以下では青色のままであるが、10%を超えて増加するとピンク色に変色するよう予め調整された塩化コバルトC_oが露出しており、さらに第3湿度判定面M3は、霧囲気湿度が20%以下では青色のままであるが、20%を超えて増加するとピンク色に変色するよう予め調整された塩化コバルトC_oが露出しており、さらに第4湿度判定面M4は、霧囲気湿度が30%以下では青色のままであるが、30%を超えて増加するとピンク色に変色するよう予め調整された塩化コバルトC_oが露出している。

【0026】

複数の湿度判定面M1～M4は、図示例では縦横2個ずつ並列配置されるが、この配列は任意であり、例えば横一列又は縦一列に配置してもよい。

【0027】

また図示例では、湿度判定面M1～M4に対応した変色特性を各々發揮し得るよう濃度調整された塩化コバルト溶液をベース紙Bに上から滴下、浸透させて該ベース紙Bに保持させるようにしており、その塩化コバルト溶液の滴下位置に対応したベース紙Bの表面が湿度判定面M1～M4となる。そして、ベース紙Bの表面には、前記溶液の滴下部分の周縁の滲みを体裁よく隠しつつ湿度判定面M1～M4の境界を明確に表示するための黒字の太腺Lが適宜形状（図示例では四角形）に印刷され、更に各湿度判定面M1～M4によりチェック可能な限界湿度の表示（5%，10%，20%，30%）が各湿度判定面M1～M4上又はその近傍に印刷されている。尚、以上説明した湿度判定板Pの構造は従来公知である。

【0028】

一方、前記カバーボディCは、湿度判定板Pの表面を覆う第1フィルムF1と、同判定板Pの裏面を覆う第2フィルムF2により構成される。その第1及び第2フィルムF1，F2は湿度判定板Pの外周縁から食み出すように形成されると共に、その両フィルムF1，F2の外周縁部F1a，F2a相互が直接接合mされて、全体として扁平な四角形の袋状に形成される。

【0029】

各フィルムF1，F2は、透明な合成樹脂製フィルムで形成されており、図示例では、比較的高融点且つ高強度で丈夫な合成樹脂材（例えばポリエスチル、ナイロン等）で形成された外側樹脂層1と、比較的低融点の合成樹脂材（例えばポリエチレン、EVA等）で形成された内側樹脂層2とを互いに一体に接合した二層構造となっており、両フィルムF1，F2の外周縁部F1a，F2a相互の直接接合mは、各々のフィルムF1，F2の内側樹脂層2，2相互を直接接触させて熱圧着することにより行われる。この場合、熱圧着に使用される熱ロール等には、各々のフィルムF1，F2の比較的高融点の外側樹脂層1を直接圧接させるようにしているため、その熱ロール等に樹脂が強くこびり付かず加工性が良好である。

【0030】

また前記外側樹脂層1には帯電防止処理が施されている。その帯電防止処理の手法としては、例えば外側樹脂層1に帯電防止剤を練り込むようにするか、或いは外側樹脂層1の表面（内側樹脂層2と反対側の面）に帯電防止加工を施すようにする。

【0031】

また第1フィルムF1と湿度判定板Pの表面との間には、複数の湿度判定面M1～M4の全面を臨ませた扁平な表側空気層A_uが形成される。即ちこの表側空気層A_uに対応する領域を除いて第1フィルムF1が湿度判定板Pの表面に熱圧着されており、その熱圧着がされなかった領域において第1フィルムF1と湿度判定板Pとの間に生じている小さな隙間が表側空気層A_uを構成している。尚、図示例では、前記表側空気層A_uが、複数の

湿度判定面M1～M4の全部を臨ませる共通の空気層として、それら湿度判定面M1～M4の全部を包含するような平面形態に形成される。

【0032】

また、第2フィルムF2と湿度判定板Pの裏面との間には、該裏面の少なくとも湿度判定面M1～M4と対応する領域（図示例では該裏面の全面）を臨ませた扁平な裏側空気層Adが形成されている。この裏側空気層Adの形成の仕方は、前記した表側空気層Auの形成の仕方と同様である。

【0033】

第1フィルムF1には、表側空気層Auを大気に直接連通させる多数の小孔H…が相互に間隔をおいて形成され、また第2フィルムF2にも、裏側空気層Adを大気に直接連通させる多数の小孔H'…が相互に間隔をおいて形成される。尚、図示例では、加工の便宜上、各フィルムF1, F2には各空気層Au, Adの対応部分だけでなく、その全面に小孔H…, H'…が穿設される。

【0034】

前記小孔H…の内径は、作業者が湿度インジケータIを手で摘んだときに、各フィルムF1, F2に接する指が湿度判定面M1～M4の塩化コバルトCoに直接触れない程度の大きさ（図示例では内径0.8mm）に設定される。しかも前記小孔H…, H'…の分散密度や内径は、低湿度状態の包装袋、密閉収納容器等から湿度インジケータIが大気中に出されたときでも、その大気の湿度に応じて空気層Au, Adの湿度が変化するのに適度なタイムラグが確保されて、湿度判定面M1～M4の塩化コバルトCoが比較的短時間で変色するのを防止でき、その変色に因る誤判定やトラブルの防止に有効となるように、設定される。

【0035】

例えば、本実施例では、40mm四方の正方形のフィルムF1, F2に各々560個の内径0.8mmの小孔H…, H'…が等間隔に穿設され、その分散密度は35個/cm²となっている。この場合において、塩化コバルトCoが青からピンクに完全に変色するまでの変色所要時間を測定すると、そのときの周囲の雰囲気湿度にもよるが、第1湿度判定面（限界湿度5%）で概ね5～7分、第2湿度判定面（限界湿度10%）で概ね15～20分、第3湿度判定面（限界湿度20%）で概ね30～35分、第4湿度判定面（限界湿度30%）で概ね45～50分程度となっている。これに対して、同じ湿度判定板PをカバーボディCで覆わずに剥き出し状態のままで使用した場合の変色所要時間は、第1湿度判定面（限界湿度5%）で概ね4～5分、第2湿度判定面（限界湿度10%）で概ね10～15分、第3湿度判定面（限界湿度20%）で概ね20～25分、第4湿度判定面（限界湿度30%）で概ね35～40分程度となっており、本実施例品の方が変色所要時間が適度に長くなっていることが判る。

【0036】

尚、図3においては、理解し易くするために前記空気層Au, AdやフィルムF1, F2の厚みを実際の縮尺よりも多少誇張して描いてある。

【0037】

次に前記実施例の作用を説明する。本実施例の湿度インジケータIは、湿気を嫌う回路基板等の電子部品の輸送の際に、図4に例示するように透明な気密性の包装袋DPの内部に電子部品Eや乾燥剤Dと一緒に封入されて使用され、その包装袋DPごと電子部品Eの輸送が行われる。尚、このような包装袋に代えて、密閉蓋付きの容器を用いてもよい。

【0038】

その輸送中においては、包装袋DP内の湿度が規定限界を超えていないか否かを湿度インジケータIの湿度判定面M1～M4の色（変色しているか否か）で目視判定可能であるため、乾燥剤Dが入った包装袋DP内が輸送時に適正な湿度状態（乾燥状態）に保たれているかを簡単にチェックできる。

【0039】

而して包装袋DPを開封してこれから電子部品Eを取り出す際には、作業者が湿度イン

ジケータ I を手で摘んで袋より取り出して湿度判定面 M 1 ~ M 4 の色をチェックするが、本実施例の湿度インジケータ I では、その湿度判定板 P の表裏を第 1 及び第 2 フィルム F 1, F 2 で覆っているので、湿度インジケータ I を作業者が手で直接摘んでも、湿度判定面 M 1 ~ M 4 の塩化コバルト C o が手に付着し延いては体内に侵入するのを効果的に防止でき、作業者は安心して湿度インジケータ I を取り扱うことができる。また、湿度判定板 P のベース紙 B から微細なダスト（紙の屑、繊維等）が発生しても、それが上記各フィルム F 1, F 2 で遮られて外部に拡散しにくい構造であるため、ダストを嫌う電子部品 E と一緒に包装袋 D P 内に封入されても、ダストの電子部品 E への悪影響を効果的に防止できる。

【0040】

その上、図示例では、各フィルム F 1, F 2 (特に外側樹脂層 1) に帯電防止処理が施されているため、被覆される湿度判定板 P 自体が帯電しにくくなる上、ダストが静電気で該フィルム F 1, F 2 に付着しにくくなり、従って、湿度インジケータ I が包装袋 D P 内に電子部品 E と一緒に封入されても、その電子部品 E への帯電の影響やダストの影響を極力避けることができる。

【0041】

また特に第 1 フィルム F 1 と湿度判定板 P の表面との間には、第 1 ~ 第 4 湿度判定面 M 1 ~ M 4 の全面を臨ませた扁平な表側空気層 A u が形成され、この空気層 A u を大気に直接連通させる多数の小孔 H … が第 1 フィルム F 1 に相互に間隔をおいて形成されている。このため、低湿度状態に保たれる前記包装袋 D P 等から湿度インジケータ I が大気中に取り出されたときに、その大気の湿度に応じて空気層の湿度が変化するのに適度なタイムラグが確保され、従って、湿度判定面 M 1 ~ M 4 の塩化コバルト C o が比較的短時間で変色するのを防止でき、即ち各湿度判定面 M 1 ~ M 4 の変色に至る経過時間（変色所要時間）を過不足なく適度に設定可能となるため、例えばその時間が比較的短いことに起因した誤判定やトラブルの発生防止に有効である。しかも上記タイムラグ（従って変色所要時間）の長さは、上記小孔 H … の分散密度や内径等を適宜設定することで、使用目的や作業環境等に応じて容易に調整可能である。

【0042】

ところで前記小孔 H … に対し仮に湿度判定面 M 1 ~ M 4 を直接（即ち表側空気層 A u を介さずに）臨ませた場合には、湿度判定面 M 1 ~ M 4 の、各小孔 H … に対応する部分の塩化コバルト C o だけが部分的に変色して、体裁を損なうばかりか判定作業も辛くなる等の問題があるが、本実施例のように各小孔 H … と湿度判定面 M 1 ~ M 4 との間に上記表側空気層 A u を介在させることにより、湿度判定面 M 1 ~ M 4 の、小孔対応部分だけでなくその全面を一様に変色させることができ、上記問題が解消される。

【0043】

また特に第 1 及び第 2 フィルム F 1, F 2 は湿度判定板 P の外周縁から食み出すように形成されると共に、その各フィルム F 1, F 2 の外周縁部 F 1 a, F 2 a 相互が直接接合 m されている。このため、ベース紙 B の外周縁部を第 1 及び第 2 フィルム F 1, F 2 で完全に覆うことができるから、ベース紙 B の外周切断面からのダスト発生も確実に防止でき、またフィルム F 1, F 2 相互の直接接合は、比較的容易で且つ確実に行えることから、工程簡素化が図られる。

【0044】

さらに第 2 フィルム F 2 と湿度判定板 P の裏面との間には、該裏面の少なくとも湿度判定面 M 1 ~ M 4 と対応する領域を臨ませた扁平な裏側空気層 A d が形成されており、この裏側空気層 A d を大気に直接連通させる複数の小孔 H' … が第 2 フィルム F 2 に相互に間隔をおいて形成されている。このため、湿度インジケータ I が包装袋 D P 等から大気中に出されたときに、その大気中の湿気がベース紙 B の裏側から裏側空気層 A d 及び該ベース紙 B 内を通してその表側空気層 A u へも伝わるようになり、従ってその表側の湿度判定面 M 1 ~ M 4 の湿度変化に対する感度をより高めることができる。

【0045】

以上、本発明の実施例を詳述したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。

【0046】

例えば、前記実施例では、雰囲気湿度がそれぞれ4段階の限界湿度（5%，10%，20%，30%）以上に増加したときに変色する4つの四角形状の湿度判定面M1～M4をベース紙Bの表面に縦横に並べたものを示したが、本発明では、湿度判定面の限界湿度、個数、配列、形状等は任意であり、前記実施例のものに限定されない。

【0047】

また前記実施例では、表側空気層A_uは複数の湿度判定面M1～M4の全部を臨ませる共通の空気層として、それら湿度判定面M1～M4の全部を包含するような平面形態に形成されているが、本発明では、個々の湿度判定面毎に、或いは幾つかの湿度判定面毎に表側空気層A_uを形成するようにしてもよい。尚、この点は、裏側空気層A_dについても同様である。

【0048】

また前記実施例では、湿度判定板Pの表側と裏側にそれぞれ空気層A_u，A_dを形成したものを示したが、本発明（請求項4を除く）では、第2の空気層としての裏側空気層A_dを省略してもよい。

【0049】

また前記実施例では、第1，第2フィルムF1，F2をベース紙Bより大形に形成して、その両フィルムF1，F2の外周縁部F1a，F2a相互を直接接合（熱圧着）するようにしたものを示したが、本発明（請求項2を除く）では、第1及び第2フィルムF1，F2をベース紙Bと同形に形成して、そのベース紙Bの表面及び裏面に第1及び第2フィルムF1，F2をそれぞれ熱圧着するか、或いは接着剤等を介して直接接合するようにしてもよい。

【図面の簡単な説明】

【0050】

【図1】本発明の一実施例に係る湿度インジケータの全体平面図と一部拡大図

【図2】図1の2-2線拡大縦断面図

【図3】図2の3矢視部拡大断面図

【図4】包装袋に湿度インジケータを電子部品及び乾燥剤と共に封入した状態を示す斜視図

【符号の説明】

【0051】

A_d・・・裏側空気層（第2の空気層）

A_u・・・表側空気層

B・・・ベース紙

C_o・・・塩化コバルト

F1・・・第1フィルム

F2・・・第2フィルム

H, H'・・・小孔

I・・・湿度インジケータ

M1～M4・・・第1～第4湿度判定面

P・・・湿度判定板

【書類名】図面
【図1】

【図 2】

【図3】

【図4】

【書類名】要約書

【要約】

【課題】 塩化コバルトの変色により湿度判定を行えるようにした湿度インジケータを作業者が手で直接扱んでも、湿度判定面の塩化コバルトが手に付着し延いては体内に侵入するのを効果的に防止し、またその湿度インジケータのベース紙から微細なダストが発生しても周囲に拡散しにくくして、ダストの電子部品への影響を効果的に防止する。

【解決手段】 湿度判定板Bの表面を覆う第1フィルムF1と、同判定板Bの裏面を覆う第2フィルムF2とを備え、少なくとも第1フィルムF1と湿度判定板Bの表面との間に塩化コバルトC〇を露出させた湿度判定面M1～M4の全面を臨ませた扁平な空気層Auが形成され、この空気層Auを大気に直接連通させる複数の小孔Hが相互に間隔をおいて第1フィルムF1に形成される。

【選択図】 図1

認定・付加情報

特許出願の番号	特願2003-436211
受付番号	20302270200
書類名	特許願
担当官	第一担当上席 0090
作成日	平成16年 1月29日

<認定情報・付加情報>

【提出日】 平成15年12月 2日

特願 2003-436211

出願人履歴情報

識別番号 [504012480]

1. 変更年月日 2003年12月 2日

[変更理由] 新規登録

住所 千葉県千葉市美浜区真砂4-3-2-1410
氏名 山川 洋一

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/017979

International filing date: 26 November 2004 (26.11.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP
Number: 2003-436211
Filing date: 02 December 2003 (02.12.2003)

Date of receipt at the International Bureau: 10 March 2005 (10.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.