- Week 4
- Neuroscience Introduction
 - The brain
 - everything that happens between Stimuli and Behavior
 - · Numbers of neurons
 - Studying the brain in humans
 - fMRI scanner
 - · changes in blood oxygen
 - human brain
 - Relating neuronal responses to properties of an animal and its environment
 - · Fine-scale sensory tuning

- Exploratory Data Analysis

- Model
 - · Raw data
 - · extracted signals
 - analysis
 - · visualization
 - sharing
 - exploring
 - Interactive feedback
- Methods
 - Supervised methods
 - predict our data as a function of other data
 - Unsupervised methods
 - find structure in the data own its own
- Time series
 - · supervised (regression and tuning
 - time series as a function of some other variable
 - unsupervised (dimensionality reduction and clustering)
 - identify simple and more compact representations
 - aid our understanding
- Clustering for preprocessing
 - · raw data is complex and high-dimensional
 - · clustering finds collections of inputs that are similar to one another
 - these groups of clusters may be the more meaningful "unit" of measurement
- Clustering to find waveforms associated with individual neurons based on their traces across multiple electrodes
- Dimensionality reduction
 - · Raw data is complex and high-dimensional
 - Dimensionality reduction describes the data using a simpler, more compact representation
 - This representation may make interesting patterns in the data more clear or easier to see

- PCA Overview

- Raw data can be Complex, High-Dimensional
 - to understand a phenomenon we measure various related quantities
 - If we knew what to measure or how to represent our measurements we might find simple relationships
 - But in practice we often measure redundant signals, e.g., US and European shoe sizes
 - We also represent data via the method by which it was gathered, e.g. pixel representation
 of brain imaging data

- Dimensionality reduction
 - Issues
 - Measure redundant signals
 - Represent data via the method by which it was gathered
 - · Goal: Find a 'better' representation for data
 - To visualize and discover hidden patterns
 - Preprocessing for supervised task, e.g., feature hashing
- Shoe Size
 - We take noisy measurements on european and american scale
 - modulo noise, we expect perfect correlation
 - · How can we do 'better', i.e., find a simpler, compact representation?
 - pick a direction and project onto this direction
- Goal: Minimize Reconstruction Error
 - Minimize Euclidean distances between original points and their projections
 - PCA solution solves this problem
 - PCA reconstruct 2D data via 2D data with single degree of freedom. Evaluate reconstructions (represented by blue line) by Euclidean distances
 - Linear Regression predict y from x. Evaluate accuracy of predictions (represented by blue line) by vertical distances between points and the line
- Another Goal: Maximize Variance
 - To identify patterns we want to study variation across observations
 - Can we do 'better' i.e., find a compact representation that captures variation
 - PCA solution finds directions of maximal variance
- PCA Assumptions and Solution
- PCA Formulation
 - PCA: find lower-dimensional representation of raw data
 - X is n x d (raw data)
 - Z = XP is n x k (reduced representation, PCA 'scores')
 - P is d x k (columns are k principal components)
 - Linearity assumption (Z = XP) simplifies problem
 - Variance constraints
- Given training points
 - · X matrix storing points
 - x j^(i): jth feature for i'th point
 - mau_j: mean of j'th feature
 - · Variance of 1st feature
 - the sum of the squared difference between each sample and the mean, divided by the number of samples
 - Variance of 1st feature (assuming zero mean)
 - drop the mau term since by assumption it equals zero
 - Covariance of 1st and 2nd features (assuming zero mean)
 - computing the product of the two feature values for each data point, taking the sum of these products, and finally dividing by n, the number of samples that we have
 - · large positive covariance indicates that the two feature are highly correlated
 - large negative covariance indicates that the two features are highly anti correlated
 - Covariance Matrix
 - Covariance matrix generalizes this idea for many features
 - Cx = (1/n)X'X
 - d x d matrix

- each entry stores pairwise covariance information about the d features
- ith diagonal entry equals variance of i'th feature
- ij'th entry is covariance between i'th and nth features
- Symmetric (makes sense given definition of covariance)
- PCA Formulation
 - PCA: find lower-dimensional representation of raw data
 - X is n x d (raw data)
 - Z = XP is n x k (reduced representation, PCA 'scores')
 - P is d x k (columns are k principal components)
 - Variance / Covariance constraints
 - What constraints make sense in reduced representation?
 - No feature correlation, i.e., all off-diagonals in Cz are zero
 - Rank-ordered features by variance, i.e., sorted diagonals of Cz
 - Variance of the first feature in the reduced dimension is the largest, followed by the variance in the second feature, and so on
- PCA Solution
 - All covariance matrices have an eigendecomposition
 - Cx = UAU' (eigendecomposition)
 - U is d x d (column are eigenvectors, sorted by their eigenvalues)
 - A is d x d(diagonals are eigenvalues, off-diagonal are zero)
 - The d eigenvectors are orthonormal directions of max variance
 - associated eigenvalues equal variance in these directions
 - 1st eigenvector is direction of max variance (variance is lambda_1)
- Choosing k
 - How should we pick the dimension of the new representation?
 - Visualization: Pick top 2 or top 3 dimensions for plotting purposes
 - Other analyses: Capture 'most' of the variance in the data
 - Recall that eigenvalues are variances in the directions specified by eigenvectors, and that eigenvalues are sorted
 - Fraction of retained variance
 - · can choose k such that we retain fraction of the variance, e.g.
- Other Practical Tips
 - PCA assumptions (linearity, orthogonality) not always appropriate
 - Various extensions to PCA with different underlying assumptions e.g., manifold learning, Kernel PCA, ICA
 - Centering is crucial, i.e., we must preprocess data so that all features have zero mean before applying PCA
 - PCA results dependent on scaling of data
 - Data is sometimes rescaled in practice before applying PCA
- PCA Algorithm
- Orthogonal and Orthonormal Vectors
 - · Orthogonal vectors are perpendicular to each other
 - equivalently, their dot product equals zero
 - · Orthonormal vectors are orthogonal and have unit norm
 - a are b are orthonormal, but b are d are not orthonormal
- PCA Iterative Algorithm
 - k = 1: Find direction of max variance, project onto this direction
 - locations along this direction are the new 1D representation
 - More generally, for $i = \{1,...,k\}$

- find direction of max variance that is orthonormal to previously selected directions,
 project onto this direction
- locations along this direction are i the feature in new representation
- PCA Derivation
- Eigendecomposition
- All covariance matrices have an eigendecomposition
 - Cx = UAU' (eigendecomposition)
 - U is d x d (column are eignevectors, sorted by their eigenvalues)
 - A is d x d (diagonals are eigenvalues, off-diagonals are zero)
- Eigenvector/Eigenvalue equation: Cxu = lambda*u
 - By definition u'u = 1(unit norm)
- PCA Formulation
 - PCA: find lower-dimensional representation of raw data
 - X is n x d (raw data)
 - Z = XP is n x k (reduced representation, PCA 'scores')
 - P is d x k (columns are k principal components)
 - Variance / Covariance constraints
- PCA Formulation, k = 1
 - PCA: find one-dimensional representation of raw data
 - X is n x d (raw data)
 - z = Xp is n x 1 (reduced representation, PCA 'scores')
 - p is d x 1 (columns are k principal components)
 - variance = sigma Z squared / n = square Euclidean norm of the vector z / n
 - Goal: maximizes variance
 - · resulting principal component p to be unit norm
 - noting the relationship between the Euclidean distance and the dot product, we can rewrite the variance as a dot product z transpose z
 - relationship between Euclidean distance and dot product = (1/n)z'z

- Connection to Eigenvectors
 - Recall eigenvector/eigenvalue equation: Cx * u = lambda * u
 - By definition u'u = 1, and thus u' Cx * u = lambda
 - But this is the expression we're optimizing, and thus maximal variance achieved when p is top eigenvector of Cx
- Distributed PCA

- Computing PCA Solution
 - Given: n x d matrix of uncentered raw data
 - Compute k << d dimensional representation
 - Step 1: Center Data
 - computing the mean of each feature and subtracting the mean
 - Step 2: Compute Covariance or Scatter Matrix
 - (1/n) * X' * X versus X' * X
 - Step 3: Eigendecomposition
 - Step 4: Compute PCA Scores
- PCA at Scale
 - · Case 1 Big n and small d
 - O(d squared) local storage, O(d cubed) local computation, O(dk) communication
 - Similar strategy as closed-form linear regression
 - · Case 2 Big n and Big d
 - O(d) local storage and computation on workers, O(dk) communication
 - Iterative algorithm
- Step 0: Data Parallel storage
 - Example: n = 6; 3 workers
 - workers: O(nd) Distributed Storage
- Step 1: Center Data
 - Compute d feature means, m element of R^d
 - Example n = 6; 3 workers
 - workers
 - reduce
 - m = (1/n) * (summation features)

Step 1: Center Data

- ullet Compute d feature means, $\mathbf{m} \in \mathbb{R}^d$
- Communicate m to all workers

Step 1: Center Data

- Compute d feature means, $\mathbf{m} \in \mathbb{R}^d$
- Communicate m to all workers
- Subtract m from each data point

- Step 2: Compute Scatter Matrix (X'X)
 - Compute matrix product via outer products (just like we did for closed-form linear regression!)

- Step 3: Eigendecomposition
 - · perform locally since d is small

- Step 4: Compute PCA Scores
 - · Multiply each point by principal components, P
 - · workers -> map

- Distributed PCA, Part 2 (Optional)
- PCA at Scale
 - · Case 1: Big n and Small d
 - O(d^2) local storage, O(d^2) local computation, O(dk) communication
 - Similar strategy as closed-form linear regression
 - · Case 2: Big n and Big d
 - O(d) local storage and computation on workers, O(dk) communication

- Iterative algorithm
- An Iterative Approach
 - We can use algorithms that rely on a sequence of matrix-vector products to compute top k
 eigenvectors (P)
 - E.g., Krylov subspace or random projection methods
 - Krylov subspace methods (used in MLlib) iteratively compute X'Xv for some v element R^d provided by the method
 - Requires O(k) passes over data, O(d) local storage on workers

Repeat for O(k) iterations:

→ 1. Communicate $\mathbf{v}_i \in \mathbb{R}^d$ to all workers

- We don't need to compute the covariance matrix!
- Step1: communicate vi element R^d to all workers
- Step2: Compute qi = X'Xvi in a distributed fashion
 - Step1: b_i = XviStep2: qi = X'bi
 - · Perform in single map-reduce

O(nd) Distributed Storage

O(d) Local Storage O(nd) Distributed Computation

O(d) Local Storage
O(d) Local Computation

O(d) Communication

q = trainData.map(rescaleByBi).reduce(sumVectors)

map:

reduce: