DIY: 2 € NiMH batteries charger

Il faretto da giardino <u>Livarno mod z3199</u> è commercializzato da Lidl, ed utilizza 3 batterie AA al NiMH da 600 mA ricaricate da un pannello solare. Utilizza 10 Led ed ha due modalità di funzionamento: luce continua, a bassa intensità (15 mA) e luce più intensa temporizzata (150 mA), controllata di notte da un sensore di movimento (PIR).

Dopo due anni di perfetto funzionamento nel mio giardino, la cella solare, esposta alle intemperie, è diventata totalmente inutilizzabile.

Ho quindi deciso aggiungere un circuito di 'carica lenta' a 5 V per ricaricare le batterie. In questo modo ho la massima libertà di scelta tra le fonti di energia: con tale circuito, infatti, si può usare qualsiasi fonte USB a 5V. Inoltre appena arriverà la cella solare ordinata (1,1 W) potrò ripristinare il funzionamento originale.

L'analisi completa del circuito usato e delle possibili applicazioni sono in e3DHW-Power Management System, a introduction (

https://github.com/msillano/e3DHW-PMS/blob/master/e3dhw-pms-intro_it.pdf)

Il più universale carica batterie NiMH

Il circuito di *carica lenta* per 3 batterie ricaricabili NiMH, utilizzando una sorgente a 5 V è veramente semplice, richiede solo un diodo al silicio!

Il diodo ha un duplice scopo: abbassa la tensione dell'alimentatore da 5V a 4,4V ed esclude l'alimentatore quando questo non è alimentato in AC.

La corrente di carica ha un andamento esponenziale: quando la tensione alle batterie raggiunge 4.4 V la corrente assorbita è praticamente nulla, garantendo la completa carica. Le batterie ricaricabili al NiMH possono essere usate come batterie tampone e quindi possono rimanere sotto carica lenta per un tempo indefinito.

La sorgente a 5V (nella figura, '*USB wall charger*') può essere qualunque dispositivo a 5 V USB in grado di caricare uno smartphone: alimentatori da rete, power bank... o celle solari come in origine..

Materiale richiesto

- Un cavo di alimentazione USB, corto, di cui utilizzeremo solo la spina A maschio con un tratto di cavo.
- Un diodo al silicio, 50+V, 1A (e.g. IN4001).

Montaggio

- 1) Dissaldare ed eliminare il filo originale per la cella solare (S+ e S-)
- 2) Preparare il filo di alimentazione, tagliando la parte che non serve.
- 3) Spellare 5 6 cm del filo: occorrono solo il filo rosso (+) ed il filo nero (massa).
- 4) Inserire il filo nel passacavo usato per la cella solare.
- 5) Saldare il filo nero al contatto **B-** del circuito stampato (negativo delle batterie)
- 6) Saldare il filo rosso al diodo e poi al contatto **B+** del circuito stampato (positivo). Attenzione alla polarità del diodo: la fascia bianca va verso la batteria.
- 7) Bloccare i cavi con colla calda.

Misure

Condizioni(*)	USB [V]	USB [mA]	Nodo A [V]
Senza batterie, luce spenta, PIR on	5,03	0,06	4,38
Senza batterie, luce fissa accesa	5,01	15	4,28
Senza batterie, PIR, luce accesa	4,11	160	3,38
Batterie cariche, PIR, luce accesa	4,95	10	4,26
Batterie scariche, PIR, luce accesa	4,18	70	3,50
Batterie scariche, spento	4,80	40	4,11

(*) con un alimentatore da rete, nominalmente 5V 1A

Dalle misure si vede che l'alimentatore è relativamente stabile: infatti fornisce 5,03 V a vuoto, e la tensione scende a 4,11V con una corrente di 160 mA (max assorbimento in modalità PIR): in queste condizioni la tensione al nodo A è di 3,38V.

Con le batterie cariche inserite, la corrente necessaria per la lampada (160 mA) è fornita in parte dall'alimentatore (10 - 70 mA) e in parte dalle batterie che si scaricano lentamente.

Quando la tensione delle batterie arriva a 3,38 V l'alimentatore fornisce tutta la corrente necessaria (160 mA) e le batterie non si scaricano ulteriormente.

Questo garantisce che, con un'alimentazione a 5 V continua, la lampada non si spenga mai e che le batterie siano protette dai rischi sia di overcharge che di overdischarge.

Quando poi si spegne la luce, l'alimentatore ricarica (lentamente) le batterie (40 mA @ 4,11V) con andamento esponenziale fino al valore finale, nominalmente 4,4 V.

Senza l'alimentazione esterna a 5 V le batterie si scaricheranno più rapidamente.

Quando la tensione delle batterie raggiunge 2,50 V la luce dei led è molto debole, ma siamo già in zona di overdischarge. Infatti la tensione non dovrebbe mai scendere sotto i 2,7 V! Con una fonte di energia intermittente (e.g. solare) si deve intervenire prontamente quando le luce dei led comincia ad affievolirsi, ricaricando subito le batterie NiMH.

Questo però è un evento raro.

Consideriamo la corrente di standby del PIR, arrotondata a 0,1 mA e la durata della temporizzazione, 2 minuti: ipotizzando 10 accensioni nelle 24 ore: il consumo giornaliero è pari a 0.1 x 24 + 10 x 160 x 2 /

60 = 55.7 mAh. Quindi le batterie cariche (600 mAh) durano ben 10 giorni. Considerando anche solo 30 mA la corrente di ricarica, con 2 ore di sole al giorno le batterie si manterranno cariche.