Aufgabe 2

(a) Gegeben sei die kontextfreie Grammatik $G=(V,\Sigma,P,S)$ mit Sprache L(G), wobei V=S,T,U und $\Sigma=\{a,b,c,d,e\}$. P bestehe aus den folgenden Produktionen:

$$P = \{$$
 $S \rightarrow U \mid SbU$ $T \rightarrow dSe \mid a$ $U \rightarrow T \mid UcT$ $\}$

Der Automat auf flaci.com (FLACI: Formale Sprachen, abstrakte Automaten, Compiler und Interpreter) Ein Projekt der Hochschule Zittau/Görlitz und der Pädagogischen Hochschule Schwyz: flaci.com/Gib25c5oc

(i) Zeigen Sie $acdae \in L(G)$.

$$S \vdash U \vdash UcT \vdash TcT \vdash acT \vdash acdSe \vdash acdUe \vdash acdae$$

- (ii) Bringen Sie *G* in Chomsky-Normalform.
 - i. Elimination der ε -Regeln

— Alle Regeln der Form $A \to \varepsilon$ werden eliminiert. Die Ersetzung von A wird durch ε in allen anderen Regeln vorweggenommen.

☑ Nichts zu tun

- ii. Elimination von Kettenregeln
 - Jede Produktion der Form $A \to B$ mit $A, B \in S$ wird als Kettenregel bezeichnet. Diese tragen nicht zur Produktion von Terminalzeichen bei und lassen sich ebenfalls eliminieren.

$$P = \{$$
 $S \rightarrow dSe \mid a \mid UcT \mid SbU$ $T \rightarrow dSe \mid a$ $U \rightarrow dSe \mid a \mid UcT$ $\}$

- iii. Separation von Terminalzeichen
 - Jedes Terminalzeichen σ , das in Kombination mit anderen Symbolen auftaucht, wird durch ein neues Nonterminal S_σ ersetzt und die Menge der Produktionen durch die Regel $S_\sigma \to \sigma$ ergänzt.

$$P = \{ \\ S \rightarrow DSE \mid a \mid UCT \mid SBU \\ T \rightarrow DSE \mid a \\ U \rightarrow DSE \mid a \mid UCT \\ B \rightarrow b \\ C \rightarrow c \\ D \rightarrow d \\ E \rightarrow e \\ \}$$

iv. Elimination von mehrelementigen Nonterminalketten

— Alle Produktionen der Form $A \to B_1B_2 \dots B_n$ werden in die Produktionen $A \to A_{n-1}B_n$, $A_{n-1} \to A_{n-2}B_{n-1}, \dots, A_2 \to B_1B_2$ zerteilt. Nach der Ersetzung sind alle längeren Nonterminalketten vollständig heruntergebrochen und die Chomsky-Normalform erreicht.

$$P=\{$$
 $S o DS_E \mid a \mid UC_T \mid SB_U$ $T o DS_E \mid a$ $U o DS_E \mid a$ $U o DS_E \mid a \mid UC_T$ $U o CU$ $U o CU$

(b) Geben Sie eine kontextfreie Grammatik für $L = \{ a^i b^k c^i | i, k \in \mathbb{N} \mid a \} n$.

```
Wir interpretieren \mathbb N als \mathbb N_0. P=\{ S\to aSc\ |\ aBc\ |\ B\ |\ \varepsilon B \qquad \to b\ |\ Bb \}
```

Der Automat auf flaci.com (FLACI: Formale Sprachen, abstrakte Automaten, Compiler und Interpreter) Ein Projekt der Hochschule Zittau/Görlitz und der Pädagogischen Hochschule Schwyz: flaci.com/Ghp3bfdtg

(c) Zeigen Sie, dass $L=\{a^ib^kc^i|i,k\in\mathbb{N}\land i< k\,|\,n\}$ icht kontextfrei ist, indem Sie das Pumping-Lemma für kontextfreie Sprachen anwenden.

Exkurs: Pumping-Lemma für Reguläre Sprachen

Es sei L eine kontextfreie Sprache. Dann gibt es eine Zahl j, sodass sich alle Wörter $\omega \in L$ mit $|\omega| \geq j$ zerlegen lassen in $\omega = uvwxy$, sodass die folgenden Eigenschaften erfüllt sind:

- (i) $|vx| \ge 1$ (Die Wörter v und x sind nicht leer.)
- (ii) $|vwx| \le j$ (Die Wörter v, w und x haben zusammen höchstens die Länge j.)
- (iii) Für alle $i\in\mathbb{N}_0$ gilt $uv^iwx^iy\in L$ (Für jede natürliche Zahl (mit 0) i ist das Wort uv^iwx^iy in der Sprache L)