

UNIVERSIDAD NACIONAL DE UCAYALI

Facultad de Ingeniería de Sistemas e Ingeniería Civil DEPARTAMENTO ACADÉMICO DE INGENIERÍA DE SISTEMAS

SILABO

Curso:

MÉTODOS NUMÉRICOS

Docente:

Mg. Ing. Hernando Tejada Gonzales

Pucallpa – Perú.

UNIVERSIDAD NACIONAL DE UCAYALI FACULTAD DE INGENIERIA DESISTEMAS Y DE INGENIERIA CIVIL ESCUELA PROFESIONAL DE INGENIERIA DE SISTEMAS

SILABO

I. SUMILLA

La naturaleza de esta asignatura corresponde al Área Curricular de Estudios Específicos, su carácter es teórico-práctico, cuyo propósito es desarrollar métodos y técnicas para la solución de problemas con gran dificultad de resolver mediante métodos analíticos clásicos; en estos casos son útiles las técnicas numéricas, realizando cálculos puramente aritméticos y lógicos. La eficiencia en el cálculo de dicha aproximación depende, en parte, de la felicidad de implementación del algoritmo y de las características especiales y limitaciones de los instrumentos de cálculo (las computadoras). Se desarrollarán, durante el semestre académico, conocimientos sobre errores, condicionamiento y estabilidad, solución numérica de una ecuación no-lineal en una variable, resolución de sistemas de ecuaciones lineales, interpolación y aproximación Polinomial, integración numérica, ecuaciones diferenciales ordinarias.

II. DATOS GENERALES

3.1. Nombre de la Asignatura : METODOS NUMERICOS
3.2. Carrera Profesional : Ingeniería de Sistemas
3.3. Código del curso : FEMNU16

3.3. Código del curso : EEMNU16 3.4. Año / ciclo académico : 2022 / VII 3.5. Créditos : 04

3.6. Total, de horas semestrales : 68
3.7. No Total de Horas por semana : 04

Práctica:
3.8. Fecha de inicio : 16/05/22
3.9. Fecha de término : 10/09/22

3.10.Área curricular : Estudios Específicos

3.11. Duración : 17 semanas

3.12.Pre – Requisito : Investigación de operaciones II (EEIDO15) 3.13.Docente Responsable : Mg. Ing. Hernando Tejada Gonzales

Teoría:

3.14.Email : hernando_tejada@unu.edu.pe

III. COMPETENCIA GENERALES.

Conoce números en coma flotante y entiende el concepto de errores, Encuentra ceros de funciones mediante métodos geométricos y algorítmicos, Resuelve sistemas lineales y no lineales mediante métodos algorítmicos y Encuentra autovalores de matrices cuadradas, Aproxima funciones mediante algoritmos, Interpola funciones tabulares y realiza interpolación segmentaria, usa Métodos algorítmicos para calcular integrales simples y múltiples, Resuelve ecuaciones diferenciales y sistemas de ecuaciones diferenciales mediante métodos numéricos.

IV. PROGRAMACIÓN

4.1. Primera Unidad Didáctica:

- 5.1.1. Denominación de la unidad: Cálculo numérico, limites, derivadas, integrales y raíces de ecuaciones.
- 5.1.2. Duración: 8 semanas
- 5.1.3. Competencias específicas.

Conoce los Errores, condicionamiento, estabilidad, solución numérica de las ecuaciones lineales y no lineales en una variable y múltiples variables

5.1.4. Contenidos programados por capítulos:

N°	Saber Conceptual	Saber Procedimental	Saber Actitudinal
a 1	Presentación y análisis del sílabo Introducción al Cálculo Numérico	Exposición del docente	
Semana 1	Nociones Generales: Límites y continuidad, Derivadas, Integrales definidas e indefinidas, sucesiones, series, convergencia y divergencia, sistemas de numeración.	Demuestra seguridad sobre los conceptos básicos del curso	Participa activamente Es solidario con sus compañeros
Semana 2	Límites y Continuidad: Definiciones, límites por la derecha e izquierda, límites que existen y que no existen, límites finitos e infinitos, propiedades y teoremas	Manifiesta seguridad al fundamentar sobre límites y continuidad	Participa activamente Es solidario con sus compañeros
Semana 3	Derivadas e Integrales: Tasa de variación, derivada de una función en un punto, ecuaciones, teoremas, reglas. Integral definida e indefinida, propiedades, teoremas, métodos, reglas.	Manifiesta seguridad al fundamentar sobre derivadas e integrales	Participa activamente Es solidario con sus compañeros
Semana 4	Aproximaciones y errores, redondeo y truncamiento, exactitud y precisión, cifras significativas, punto flotante, error absoluto y relativo. Examen práctico.	Identifica los diferentes tipos de errores y los resuelve. Aplica los conocimientos.	Participa activamente Trabaja en forma grupal con responsabilidad
Semana 5	Raíces de ecuaciones - métodos cerrados: - Método de Bisección - Método de falsa posición	Utiliza los métodos cerrados para resolver raíces de ecuaciones	Participa activamente Trabaja en forma grupal con responsabilidad
Semana 6	Raíces de ecuaciones - métodos abiertos: - Iteración de punto fijo - Método de la secante - Método de Newton-Raphson	Utiliza los métodos abiertos para resolver raíces de ecuaciones	Participa activamente Trabaja en forma grupal con responsabilidad
Semana 7	Raíces de ecuaciones - raíces de polinomios: - Método de Müller - Método de Bairstow	Utiliza los métodos para resolver raíces de polinomios	Participa activamente Trabaja en forma grupal con responsabilidad
Semana 8	EXAMEN PARCIAL	Aplica todos los conocimientos adquiridos para la solución de casos prácticos	Demuestra con responsabilidad los conocimientos adquiridos

4. Segunda Unidad Didáctica:

- 5.2.1. Denominación de la unidad: Ecuaciones algebraicas lineales, curvas, diferenciación e integración y ecuaciones diferenciales.
- 5.2.2. Duración: 9 semanas
- Competencias específicas.
 Conoce la interpolación y aproximación polinomial, integración numérica y ecuaciones diferenciales ordinarias
- 5.2.4. Contenidos programados por capítulos:

N°	Saber Conceptual	Saber Procedimental	Saber Actitudinal
Semana 9	Ecuaciones algebraicas lineales: - Eliminación de Gauss simple - Método de Gauss-Jordan	Utiliza los métodos aprendidos para resolver ecuaciones algebraicas lineales	Participa activamente Trabaja en forma grupal con responsabilidad
Semana 10	Ecuaciones algebraicas lineales: - Descomposición LU - Matriz inversa	Utiliza los métodos aprendidos para resolver ecuaciones algebraicas lineales	Participa activamente Trabaja en forma grupal con responsabilidad
Semana 11	Ecuaciones algebraicas lineales: - Método de Gauss-Seidel - Método de Jacobi	Utiliza los métodos aprendidos para resolver ecuaciones algebraicas lineales	Participa activamente Trabaja en forma grupal con responsabilidad
Semana 12	Ajustes de Curvas - regresión: - Regresión lineal - Regresión polinomial	Utiliza los métodos de regresión aprendidos para resolver ajustes de curvas	Participa activamente Trabaja en forma grupal con responsabilidad
Semana 13	Ajustes de Curvas - interpolación: - Interpolación de Lagrange - Interpolación de Newton	Utiliza los métodos de interpolación aprendidos para resolver ajustes de curvas	Participa activamente Trabaja en forma grupal con responsabilidad
Semana 14	Diferenciación e integración numéricas: - Regla del trapecio - Regla de Simpson	Utiliza las reglas para resolver diferenciación e integraciones numéricas	Participa activamente Trabaja en forma grupal con responsabilidad
Semana 15	Ecuaciones diferenciales ordinarias: - Método de Euler - Método de Euler modificado	Utiliza los métodos de Euler para resolver ecuaciones diferenciales ordinarias	Participa activamente Trabaja en forma grupal con responsabilidad
Semana 16	Ecuaciones diferenciales ordinarias: - La serie de Taylor - Método de Runge-Kutta	Utiliza los métodos de Runge-Kutta para resolver ecuaciones diferenciales ordinarias	Participa activamente Trabaja en forma grupal con responsabilidad
Semana 17	EXAMEN FINAL	Aplica todos los conocimientos adquiridos para la solución de casos prácticos	Demuestra con responsabilidad los conocimientos adquiridos

5. Desarrollo de la Enseñanza - Aprendizaje

Primera Unidad

N°	Tema	Actividad	Responsable	
Semana 1	Introducción al cálculo numérico	Conceptualización		
Semana 2	Límites y Continuidad	Conceptualización Desarrollo de casos		
Semana 3	Derivadas e Integrales	Conceptualización Desarrollo de casos	Mg. Ing.	
Semana 4	Teoría de errores	Conceptualización Desarrollo de casos	Hernando Tejada Gonzales Docente del	
Semana 5	Raíces de ecuaciones - métodos cerrados	Conceptualización Diseño e implementación		
Semana 6	Raíces de ecuaciones - métodos abiertos	Conceptualización Diseño e implementación	curso	
Semana 7	Raíces de ecuaciones - raíces de polinomios	Conceptualización Diseño e implementación		
Semana 8	EXAMEN P			

Segunda Unidad

N°	Saber Conceptual	Saber Procedimental	Saber Actitudinal	
Semana 9	Ecuaciones algebraicas lineales (parte 1)	Conceptualización Diseño e implementación		
Semana 10	Ecuaciones algebraicas lineales (parte 2)	Conceptualización Diseño e implementación		
Semana 11	Ecuaciones algebraicas lineales (parte 3)	Conceptualización Diseño e implementación		
Semana 12	Ajustes de Curvas - regresiones:	Conceptualización Diseño e implementación	Mg. Ing. Hernando	
Semana 13	Ajustes de Curvas - interpolaciones	Conceptualización Diseño e implementación	Tejada Gonzales Docente del	
Semana 14	Diferenciación e integración numéricas	Conceptualización Diseño e implementación	curso	
Semana 15	Ecuaciones diferenciales ordinarias (parte 1)	Conceptualización Diseño e implementación		
Semana 16	Ecuaciones diferenciales ordinarias (parte 2)	Conceptualización Diseño e implementación		
Semana 17	Semana 17 EXAMEN FINAL			

6. ESTRATEGIAS METODOLOGICAS

Clases magistrales y Evaluación (Clases síncronas)

Prácticas individuales y Trabajos grupales y análisis de resultados (Asíncronas)

7. ESTRATEGIAS DE ENSEÑANZA - APRENDIZAJE

8.1 De enseñanza.

✓ Clases magistrales; Prácticas individuales; Trabajos grupales; Evaluación y análisis de resultados

8.2 De aprendizaje.

✓ Recirculación de la información, Elaboración, Organización.

8.3 De investigación formativa.

- ✓ Los estudiantes realizan una revisión bibliográfica de los trabajos de investigación realizados sobre: dificultades más frecuentes de los docentes en su práctica pedagógica.
- ✓ Elaboran instrumentos (encuestas).
- ✓ Procesan los datos
- ✓ Seleccionan y priorizan problemas. (Estrategias de aprendizaje, estrategias de enseñanza. Material didáctico, actitudes del estudiante, clima institucional, tutoría y orientación educativa etc.).
- ✓ Los estudiantes en función a lo obtenido aprenden a formular problemas.

8.4 De responsabilidad social.

- ✓ Docentes y estudiantes participación en eventos académicos y culturales. (Extensión Universitaria y Responsabilidad Social)
- ✓ Docentes y estudiantes de la carrera profesional participan en proyectos de capacitación docente y orientación vocacional en las Instituciones Educativas de la Ciudad de Pucallpa.

8. RECURSOS DIDÁCTICOS

Pizarra, separatas, instrumentos de medición, ordenador y software para la elaboración de algoritmos.

9. EVALUACIÓN DEL APRENDIZAJE

o. Lineardian del minerale					
N° UNIDAD	EVIDENCIAS	POND. %	INDICADORES	TÉCNICAS	INSTRUMENTOS
	Desempeño	20	Resuelve los ejercicios aplicando las propiedades correctamente.	Resolución de problemas.	Examen escrito Lista de cotejo.
ı	Conocimiento	50	Conoce las propiedades de los ejercicios propuestos.	Comprensión de ejercicios.	Examen escrito
	Producto	30	Demuestra dominio teórico y practica para resolver ejercicios.		Escala valorativa de evaluación del examen.
	Desempeño	20	Resuelve los ejercicios aplicando las propiedades correctamente.	Resolución de problemas.	Examen escrito Lista de cotejo.
II	Conocimiento	50		Comprensión de ejercicios.	Examen escrito
	Producto	30	teórico y practica para	Examen desarrollado apropiadamente.	Escala valorativa de evaluación del examen.

Criterios de Evaluación: De acuerdo con lo establecido en el Reglamento de Evaluación del Aprendizaje del Currículo de la Carrera Profesional:

Sistemas	Pruebas de evaluación	Peso
	Examen Parcial	1
G	Examen final	1
	Promedio de prácticas o trabajos calificados	1

Calificación: La fórmula para la obtención del promedio parcial de cada unidad didáctica es la siguiente:

El promedio final se calcula de la siguiente manera:

Nota Final =
$$(EP + EF + PP) / 3$$

EP = Examen Parcial; EF = Examen Final; PP = Promedio de Prácticas; PC = Practicas calificadas.

10. CRONOGRAMA DE PRACTICAS CALIFICADAS

UNIDAD DIDACTICA	SEMANA	PRACTICAS CALIFICADAS	Fecha Aprox.
I	3	1	01/06
I	6	2	22/06
I	EXAMEN PARCIAL		
II	11	3	27/07
II	14	4	15/08
II	16	5	29/08
II	EXAMEN FINAL		

11. BIBLIOGRAFÍA SUGERIDA

Textos Básicos:

- CHAPRA Y CANALE. "<u>Métodos Numéricos para Ingenieros</u>". Séptima Edición McGraw Hill 2015.
- 2. ALAN JEFFREY. <u>"Advanced Engineering Mathematics"</u>. Primera Edición. Harcourt/Academic Press 2002.
- 3. AXEL OSSES. "Análisis Numérico" J.C. Saez, Chile. 2011.
- 4. A.A. Samarski, <u>"Introducción a los Métodos Numéricos"</u>. Primera Edición. Editorial Mir, Rusia. 1986.

Virtual:

- 5. DELGADO, NIETO. <u>"Métodos Numéricos con Octave"</u> https://www.ugr.es/~jjmnieto/images/MNBOCTAVE-web.pdf
- 6. MATHEWS, FINK. <u>"Métodos Numéricos con MathLab"</u> https://www.academia.edu/28632762/_Libro_Metodos_Numericos_con_MATLAB_J ohn Mathews

Pucallpa, mayo del 2022

Firma del Director de Departamento Académico Mg. Ing. Hernando Tejada Gonzales