

Artificial Intelligence as Statistical Learning

- ▶ Before we talk about GNNs, we need to specify what we mean by learning and intelligence
 - ⇒ Statistical Learning and Empirical Learning

Observations and Information

- ► An Artificial Intelligence (AI) extracts information from observations ⇒ Sorry to disappoint you
- E.g., this image is an observation. The intelligence tells you this is your professor, Alejandro

- ▶ Names vary across communities. My own professional bias is to talk of signals and signal processing
 - \Rightarrow And to call Observations = Input(s) and to call Information = Output(s)

- ► An Artificial Intelligence (AI) extracts information from observations ⇒ Sorry to disappoint you
- E.g., this image is an observation. The intelligence tells you this is your professor, Alejandro

- Names vary across communities. My own professional bias is to talk of signals and signal processing
 - \Rightarrow And to call Observations = Input(s) and to call Information = Output(s)

 \triangleright Observations (inputs) x and information (outputs) y are related by a statistical model p(x, y)

- \triangleright Given that the universe (nature) associates inputs x and outputs y according to distribution p(x, y)
 - \Rightarrow The AI should predict y from x with the conditional distribution \Rightarrow y $\sim p(y|x)$
 - \Rightarrow Or, if we want deterministic output, a conditional expectation \Rightarrow $\mathbf{y} = \mathbb{E} \big[\mathbf{y} \, \big| \, \mathbf{x} \, \big]$
- ▶ There is a lot to say about statistical estimation but this is beyond the scope of this course

 \triangleright Observations (inputs) x and information (outputs) y are related by a statistical model p(x, y)

- \triangleright Given that the universe (nature) associates inputs x and outputs y according to distribution p(x, y)
 - \Rightarrow The AI should predict y from x with the conditional distribution \Rightarrow y $\sim p(y|x)$
 - \Rightarrow Or, if we want deterministic output, a conditional expectation \Rightarrow $\mathbf{y} = \mathbb{E} \big[\mathbf{y} \, \big| \, \mathbf{x} \, \big]$
- ▶ There is a lot to say about statistical estimation but this is beyond the scope of this course

 \triangleright Observations (inputs) x and information (outputs) y are related by a statistical model p(x, y)

- \triangleright Given that the universe (nature) associates inputs x and outputs y according to distribution p(x, y)
 - \Rightarrow The AI should predict y from x with the conditional distribution \Rightarrow y $\sim p(y|x)$
 - \Rightarrow Or, if we want deterministic output, a conditional expectation \Rightarrow $\mathbf{y} = \mathbb{E} \big[\mathbf{y} \, \big| \, \mathbf{x} \, \big]$
- ▶ There is a lot to say about statistical estimation but this is beyond the scope of this course

▶ Al is not perfect. Nature and Al may produce different outputs when presented with the same input

Nature relates x and y with distribution p(x, y)

The Al relates x and \hat{y} with function $\Phi(x)$

- Loss function $\ell(y, \hat{y}) = \ell(y, \Phi(x))$ measures cost of predicting $\hat{y} = \Phi(x)$ when actual output is y
 - \Rightarrow In estimation problems we often use quadratic loss $\Rightarrow \ell(\mathbf{y}, \hat{\mathbf{y}}) = \|\mathbf{y} \hat{\mathbf{y}}\|_2^2$
 - \Rightarrow In classification problems we often use hit loss $\Rightarrow \ell(y,\hat{y}) = \|y \hat{y}\|_0 = \#(y \neq \hat{y})$

Average the loss $\ell(y, \Phi(x))$ over nature's distribution p(x, y) and choose best estimator/classifier

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} \mathbb{E}_{\rho(\mathbf{x},\mathbf{y})} \Big[\ell \Big(\mathbf{y}, \Phi(\mathbf{x}) \Big) \Big]$$

- ▶ Predict $\Phi(\mathbf{x})$. Nature draws \mathbf{y} . Evaluate loss ℓ . Take loss expectation over distribution p(x,y)
 - ⇒ Optimal estimator is the function with minimum average cost over all possible estimators.

► This optimization program is called the statistical risk minimization (SRM) problem

Learning, or Training, is the process of solving the statistical risk minimization problem

- ightharpoonup Outcome of learning is function Φ^* with minimum average statistical loss \Rightarrow We learn to estimate \mathbf{y}
 - \Rightarrow During execution time, we just evaluate $\Phi(x^*)$ to predict output associated with input x

A Word on Models

- ▶ We have seen how to formulate learning as a mathematical program
- ▶ Our formulation requires access to a model (probability distribution). This is easier said than done

7

- ▶ We have reduced learning to the solution of a statistical risk minimization (SRM) problem
 - \Rightarrow Requires access to the distribution $p(x, y) \Rightarrow A$ model of how x and y are jointly generated

► This block diagram does not work without a model ⇒ Where is the model coming from?

▶ Maybe we know the laws that relate inputs and outputs ⇒ Indeed, we very often do

▶ Do not underestimate models ⇒ This is how we design the vast majority of marvels around you

ightharpoonup Or, we acquire data pairs $(\mathbf{x}_q, \mathbf{y}_q) \sim p(\mathbf{x}, \mathbf{y})$ to estimate the model \Rightarrow We learn the distribution

▶ Very powerful too ⇒ What we do not design with models, we design with systems identification

▶ Bypass the learning of the distribution \Rightarrow Go straight to the learning of the estimation map $\Phi(x)$

► Very powerful ⇒ Recent impressive transformations in speech processing and computer vision

Empirical Risk Minimization

Learning bypasses models. It tries to imitate observations. Let us formulate mathematically.

▶ Al and ML in this course refer to the pipeline where we learn from data samples. Not distributions

► Al learns to imitate input-output pairs observed in nature.

► Statistical Risk Minimization works on the cost averaged over the distribution of inputs and outputs

$$\Phi^* = \mathop{\mathsf{argmin}}_{\Phi} \mathbb{E}_{\rho}(\mathbf{x}, \mathbf{y}) \Big[\ell \Big(\, \mathbf{y}, \, \Phi(\mathbf{x}) \Big) \Big]$$

- ► This expectation can be approximated with data
 - \Rightarrow Acquire training set with Q pairs $(\mathbf{x}_q, \mathbf{y}_q) \in \mathcal{T}$ drawn independently from distribution $p(\mathbf{x}, \mathbf{y})$
 - \Rightarrow For sufficiently large Q we can approximate $\Rightarrow \mathbb{E}_{\rho}(\mathbf{x}, \mathbf{y}) \Big[\ell \Big(\mathbf{y}, \Phi(\mathbf{x}) \Big) \Big] \approx \frac{1}{Q} \sum_{q=1}^{Q} \ell \Big(\mathbf{y}_{q}, \Phi(\mathbf{x}_{q}) \Big)$
 - ⇒ This is just the law of large numbers. True under very mild conditions

▶ Replace statistical risk minimization (SRM) with empirical risk minimization (ERM)

$$\Phi_{\mathsf{S}}^* = \operatorname*{argmin}_{\Phi} \mathbb{E}_{\rho}(\mathsf{x},\mathsf{y}) \Big[\ell \Big(\, \mathsf{y}, \, \Phi(\mathsf{x}) \Big) \Big] \qquad \Rightarrow \qquad \Phi_{\mathsf{E}}^* = \operatorname*{argmin}_{\Phi} \frac{1}{Q} \sum_{q=1}^Q \ell \Big(\, \mathsf{y}_q, \, \Phi(\mathsf{x}_q) \Big)$$

- ightharpoonup Since the objectives are close, one would think the optima are close $\Rightarrow \Phi_S^* \approx \Phi_E^*$
 - \Rightarrow Alas, this it not true $\Rightarrow \Phi_S^* \not\approx \Phi_E^* \Rightarrow$ Statistical and empirical risk minimizers need not be close
- ▶ In fact, the solution of ERM is trivial \Rightarrow Make $\Phi(\mathbf{x}_q) = \mathbf{y}_q$ for all pairs in the training set
- ► As trivial as nonsensical ⇒ Yields no information about observations outside the training set

ERM with Learning Parametrizations

- ▶ Our first attempt at learning from data led to an ERM problem that does not make sense
- ► The search for a problem that makes sense brings us to the notion of learning parametrizations

ightharpoonup A sensical ERM problem, requires the introduction of a function class $\mathcal C$

$$\Phi^* = \mathop{\mathsf{argmin}}_{\Phi \in \mathcal{C}} rac{1}{Q} \sum_{q=1}^Q \ell \Big(\mathbf{y}_q, \, \Phi(\mathbf{x}_q) \Big)$$

For example, we can select the class of linear functions $\Phi(x) = Hx$ and solve for

$$\mathbf{H}^* = \operatorname*{argmin} rac{1}{Q} \sum_{q=1}^Q \ell \Big(\mathbf{y}_q, \, \mathbf{H} \, \mathbf{x}_q \Big)$$

- ▶ This choice of parametrization may be good or bad. But at least is sensical
 - \Rightarrow Good or bad, having H^* allows estimates $\hat{y} = H^*x$ for observations x outside the training set

ightharpoonup Selecting $\mathcal C$ to contain sufficiently smooth functions makes SRM and ERM close

$$\underset{\Phi \in \mathcal{C}}{\operatorname{argmin}} \, \mathbb{E}_{\rho}(\mathsf{x},\mathsf{y}) \Big[\ell \Big(\mathsf{y}, \, \Phi(\mathsf{x}) \Big) \Big] \quad \approx \quad \underset{\Phi \in \mathcal{C}}{\operatorname{argmin}} \, \frac{1}{Q} \sum_{q=1}^Q \ell \Big(\mathsf{y}_q, \, \Phi(\mathsf{x}_q) \Big)$$

► Fundamental theorem of statistical learning ⇒ ERM is a valid approximation of SRM

lacktriangle Need to identify the appropriate function class $\mathcal{C} \Rightarrow \mathsf{But}$ this problem is unavoidable

► SRM learns from model ⇒ Parametrized ERM learns from data ⇒ Three differences:

- ► SRM learns from model ⇒ Parametrized ERM learns from data ⇒ Three differences:
 - \Rightarrow The distribution is unknown \Rightarrow We have access to a training set of data samples

- ► SRM learns from model ⇒ Parametrized ERM learns from data ⇒ Three differences:
 - \Rightarrow The nonparametric ERM problem is nonsensical \Rightarrow We restrict the function class

- ► SRM learns from model ⇒ Parametrized ERM learns from data ⇒ Three differences:
 - \Rightarrow The statistical risk \Rightarrow Is replaced by the empirical risk

▶ Here, Machine learning (ML) ≡ Artificial Intelligence (AI) ≡ Empirical Risk Minimization (ERM)

$$\mathbf{\Phi}^* = \underset{\mathbf{\Phi} \in \mathcal{C}}{\mathsf{argmin}} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{T}} \ell \Big(\mathbf{y}, \mathbf{\Phi}(\mathbf{x}) \Big) = \underset{\mathbf{\Phi} \in \mathcal{C}}{\mathsf{argmin}} \frac{1}{Q} \sum_{q=1}^{Q} \ell \Big(\mathbf{y}_q, \mathbf{\Phi}(\mathbf{x}_q) \Big)$$

- The components of ERM are a dataset, a loss function and, most importantly, a function class
- ▶ Make parametrization more explicit \Rightarrow Parameter $\mathbf{H} \in \mathbb{R}^p$ to span function class $\Phi(\mathbf{x}; \hat{\mathbf{H}})$

$$\textbf{H}^* = \mathop{\mathsf{argmin}}_{\textbf{H}} \sum_{(\textbf{x},\textbf{y}) \in \mathcal{T}} \ell \Big(\textbf{y}, \boldsymbol{\Phi}(\textbf{x}; \boldsymbol{\mathsf{H}}) \Big)$$

- ▶ Designing an ML / Al system means selecting the appropriate function class \mathcal{C} \Rightarrow What else?
 - ⇒ The function class determines generalization from inputs in training set to unseen inputs

Stochastic Gradient Descent (SGD)

▶ SGD is the customary method for the minimization of the empirical risk

▶ We have seen that the training of an estimator requires minimization of the empirical risk

$$\mathbf{H}^* = \underset{\mathbf{H} \in \mathbb{R}^p}{\operatorname{argmin}} \frac{1}{Q} \sum_{q=1}^{Q} \ell \Big(\mathbf{y}_q, \Phi(\mathbf{x}_q; \mathbf{H}) \Big) = \underset{\mathbf{H} \in \mathbb{R}^p}{\operatorname{argmin}} L(\mathbf{H})$$

▶ Minimization of the average loss function defined as the average of pointwise loss function

$$L(\mathsf{H}) := rac{1}{Q} \sum_{q=1}^{Q} \ell \Big(\mathsf{y}_q, \Phi(\mathsf{x}_q; \mathsf{H}) \Big)$$

▶ It's particular form notwithstanding, just a minimization ⇒ Use gradient descent algorithm

▶ Gradient $g(H) = \nabla L(H)$ is perpendicular to level set of loss L(H)

▶ Thus, they point towards the minimum. Not directly. Towards

$$\Rightarrow$$
 Angle is less than $\pi/2 \ \Rightarrow -\mathbf{g}^T(\mathbf{H})(\mathbf{H}-\mathbf{H}^*) \geq 0$

▶ We can then use gradients in a gradient descent algorithm

$$\mathbf{H}_{t+1} = \mathbf{H}_t - \epsilon \ \mathbf{g}(\mathbf{H}_t)$$

▶ Converges to the optimum H^* if the stepsize ϵ is sufficiently small

▶ The gradient of the average loss function is the average of the gradients of the pointwise losses

$$\mathbf{g}(\mathbf{H}) = \nabla L(\mathbf{H}) = \frac{1}{Q} \sum_{q=1}^{Q} \nabla_{\mathbf{H}} \ell \left(\mathbf{y}_{q}, \Phi(\mathbf{x}_{q}; \mathbf{H}) \right)$$

Equipped with gradients, we write the gradient descent method as the recursion given by

$$oldsymbol{\mathsf{H}}_{t+1} \; = \; oldsymbol{\mathsf{H}}_t - \epsilon \, oldsymbol{\mathsf{g}}(oldsymbol{\mathsf{H}}_t) \; = \; oldsymbol{\mathsf{H}}_t - rac{\epsilon}{Q} \sum_{q=1}^Q
abla_{oldsymbol{\mathsf{H}}} \ell \Big(oldsymbol{\mathsf{y}}_q, \Phi(oldsymbol{\mathsf{x}}_q; oldsymbol{\mathsf{H}}_t) \Big)$$

► This is all good, but those gradients are costly to compute ⇒ An average of Q pointwise gradients

- \blacktriangleright At iteration t, select a batch of $Q_t \ll Q$ samples \mathcal{T}_t . Randomly chosen from dataset \mathcal{T}
- $\qquad \qquad \textbf{ Define stochastic gradient as sum over batch } \hat{\mathbf{g}}(\mathbf{H}_t) \ = \ \frac{1}{Q_t} \sum_{(\mathbf{x}_q, \mathbf{y}_q) \in \mathcal{T}_t} \nabla_{\mathbf{H}} \ell \Big(\mathbf{y}_q, \Phi(\mathbf{x}_q; \mathbf{H}_t) \Big)$
- ► SGD ≡ Replace gradients with stochastic gradients in gradient descent

$$\mathbf{H}_{t+1} = \mathbf{H}_t - \epsilon \, \hat{\mathbf{g}}(\mathbf{H}_t) = \mathbf{H}_t - \frac{1}{Q_t} \sum_{(\mathbf{x}_q, \mathbf{y}_q) \in \mathcal{T}_t} \nabla_{\mathbf{H}} \ell \Big(\mathbf{y}_q, \Phi(\mathbf{x}_q; \mathbf{H}_t) \Big)$$

This is cheaper to implement because the sum is over a smaller number of pointwise gradients.

▶ If samples are chosen independently and with equal probability $\Rightarrow \mathbb{E}(\hat{\mathbf{g}}(\mathbf{H}_t)) = \mathbf{g}(\mathbf{H}_t)$

► Stochastic gradients point in the right direction on average

We move towards the optimum more often than not

- ► Expected angle is accute $\Rightarrow \mathbb{E}\Big[-\hat{\mathbf{g}}^T(\mathbf{H})(\mathbf{H}-\mathbf{H}^*)\Big] \geq 0$
- ► Can build a submartingale and prove convergence

Stochastic Gradient Descent Memorabilia

▶ I covered SGD briefly because there are some things I wanted you to know.

- ▶ GD converges because negative gradients point towards the optimum $\Rightarrow -\mathbf{g}^T(\mathbf{H})(\mathbf{H} \mathbf{H}^*) \geq 0$
- ► SGD converges because stochastic gradients do so on expectation $\Rightarrow \mathbb{E}\left[-\hat{\mathbf{g}}^T(\mathbf{H})(\mathbf{H}-\mathbf{H}^*)\right] \geq 0$
- lacktriangle Computing stochastic gradients is much cheaper ($Q_t \ll Q$) than the cost of computing gradients

$$\hat{\mathbf{g}}(\mathbf{H}_t) \; = \; \frac{1}{Q_t} \sum_{(\mathbf{x}_q, \mathbf{y}_q) \in \mathcal{T}_t} \nabla_{\mathbf{H}} \ell \Big(\mathbf{y}_q, \Phi(\mathbf{x}_q; \mathbf{H}_t) \Big) \qquad \text{vs} \qquad \hat{\mathbf{g}}(\mathbf{H}_t) \; = \; \frac{1}{Q} \sum_{(\mathbf{x}_q, \mathbf{y}_q) \in \mathcal{T}} \nabla_{\mathbf{H}} \ell \Big(\mathbf{y}_q, \Phi(\mathbf{x}_q; \mathbf{H}_t) \Big)$$

► The difference between a method that works and a method that does not work.

- ► Convergence means that as iteration index t grows $\Rightarrow \liminf_{t \to \infty} \|\mathbf{H}_t \mathbf{H}^*\|^2 \leq \mathcal{O}\left(\epsilon / \sqrt{Q_t}\right)$
 - \Rightarrow We do not converge exactly \Rightarrow We approach the optimum and hover around it
 - ⇒ Size of hover region is proportional to stepsize
 - ⇒ Size of hover region is inversely proportional to square root of batch size

▶ For large batch size Q_t we have $\hat{\mathbf{g}}(\mathbf{H}_t) \approx \mathbf{g}(\mathbf{H}_t) \Rightarrow \mathsf{Not}$ needed \Rightarrow Mistakes corrected in next step

When Objectives are not Convex

- ▶ Plots illustrates, comments apply, and results hold for convex functions
 - ⇒ Not always (rarely!) true ⇒ Notably, not true for neural networks. Convolutional or not

- ► Gradients may move iterates towards
 - ⇒ Global minimum H*
 - ⇒ Local minimum H[†]
- Depending on initial condition

ightharpoonup We may converge to local minima but we won't care \Rightarrow Implicitly assume that \mathbf{H}^{\dagger} is optimal

Stochastic Gradient Descent is Finicky

▶ Stochastic gradient descent is not a great algorithm. Just the one we have.

► Convergence speed and convergence itself is very sensitive to choice of parameters

- ▶ Requires trying different stepsizes and different batch sizes. Maybe different initial conditions
 - \Rightarrow Small changes in any of these parameters may have large effects on convergence

The Importance of Learning Parametrizations

- ▶ Al reduces to ERM. And in ERM all we have to do is choose a parametrization.
- ▶ Not an easy choice ⇒ The parametrization controls generalization. Make or break.
- ▶ The parametrization is a model of how outputs are related to inputs ⇒ It has to be accurate

To illustrate effect of learning parametrizations generate fake data following models we specify

- ▶ A linear model with inputs $\mathbf{x} \in \mathbb{R}^n$ and outputs $\mathbf{y} \in \mathbb{R}^m$ related by $\Rightarrow \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{w}$
 - \Rightarrow For some matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$. Noise $\mathbf{w} \in \mathbb{R}^p$ Gaussian white, independent with mean $\mathbb{E}(\mathbf{w}) = \mathbf{0}$

A non-linear model postprocessing the linear model with a sign function $\Rightarrow y = \text{sign}(Ax + w)$

- ▶ Given that we know the models we can compute the Statistical Risk Minimizer (SRM). ""The Al"
- For instance, if we use the squared 2-norm loss to penalize AI estimation errors

$$\Phi_{\mathcal{S}}^{*}(\mathbf{x}) = \operatorname*{argmin}_{\Phi} \mathbb{E}_{
ho(\mathbf{x},\mathbf{y})} \left[\left. rac{1}{2} ig\| \mathbf{y} - \Phi(\mathbf{x}) ig\|_{2}^{2} \,
ight]$$

- ▶ Using the given model $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{w}$ and taking derivatives, the Al is $\Rightarrow \Phi_S^*(\mathbf{x}) = \mathbf{A}\mathbf{x}$
- ► Literally, the Al mimics nature.

- ightharpoonup Suppose model is unknown \Rightarrow Instead, we have access to Q data pairs $(\mathbf{x}_q,\mathbf{y}_q)$ in training set $\mathcal T$
- ▶ Hypothesize a linear parametrization $\Phi(x) = Hx$ Formulate parametrized ERM problem

$$\mathbf{H}^* = \underset{\mathbf{H} \in \mathbb{R}^{m \times n}}{\operatorname{argmin}} \frac{1}{Q} \sum_{q=1}^{Q} \left[\frac{1}{2} \left\| \mathbf{y}_q - \mathbf{H} \mathbf{x}_q \right\|_2^2 \right] = \underset{\mathbf{H} \in \mathbb{R}^{m \times n}}{\operatorname{argmin}} L(\mathbf{H})$$

- Solve with SGD $\Rightarrow \mathbf{H}_{t+1} = \mathbf{H}_t \epsilon \, \hat{\mathbf{g}}(\mathbf{H}_t) = \mathbf{H}_t \frac{\epsilon}{Q_t} \sum_{q=1}^{Q_t} \left(\mathbf{y}_q \mathbf{H}_t \mathbf{x}_q \right) \mathbf{x}_q^T$
- ightharpoonup Can use linear parametrization irrespectively of the actual model relating inputs \mathbf{x}_q to outputs \mathbf{y}_q .
 - ⇒ But it will work well only if the parametrization matches the unknown model.

- ▶ Data generated by linear model with dimensions $m = n = 10^2$. Number of samples $Q = 10^3$.
- ► ERM learning with linear parametrization. ⇒ SGD trajectory iterates reduce loss (left)
- ▶ Live operation tested outside of training set ⇒ loss is also reduced in test set

► The model is linear. The parametrization is linear. The parametrization learn the model.

- ▶ Data generated by sign model with dimensions $m = n = 10^2$. Number of samples $Q = 10^3$.
- ► ERM learning with linear parametrization. ⇒ SGD trajectory iterates reduce loss (left)
- ▶ But we converge to a high loss. We do not learn. ⇒ Situation is just as bad in the test set

Model is NOT linear. Parametrization is linear. The parametrization DOES NOT learn the model.

Parametrization and Model are Matched but There is Insufficient Data

- ▶ Data generated by linear model with dimensions $m = n = 10^2$. Number of samples $Q = 10^2$.
- ► ERM learning with linear parametrization. ⇒ SGD trajectory iterates reduce loss (left)
- ► Live operation tested outside of training set ⇒ loss is **NOT** reduced in test set

▶ Model is linear. Parametrization is linear. Not enough data to learn model. ⇒ There never is

Machine Learning is Model Free but Not Model Free

- ► Machine learning does not require a model relating inputs x to outputs y
 - ⇒ For example, we don't need to know the matrix **A**
- But we need to know a class of functions to which the model belongs
 - \Rightarrow For example, we need to know the model relating inputs to outputs is linear
- ▶ Model also needs to be sufficiently simple to operate with insufficient data
 - ⇒ This is where we leverage structure using convolutional architectures such as CNNs and GNNs