WHAT IS CLAIMED IS:

1	1. A method of manufacturing an air bag cover assembly, the
2	method comprising:
3	providing a front panel, a back plate, a switch and infrared-absorbing
4	material;
5	positioning the front panel and the back plate so that inner surfaces of
6	the front panel and the back plate define a switch pocket therebetween;
7	positioning the switch in the switch pocket;
8	directing infrared radiation at the infrared-absorbing material for a
9	time sufficient to heat the infrared-absorbing material to a desired temperature;
10	controlling the amount of heat applied to the infrared-absorbing
11	material by the infrared radiation; and
12	cooling the heated infrared-absorbing material, the cooled material
13	fixedly securing the back plate to the front panel.
1	2. The method as claimed in claim 1 further comprising the step
2	of forcing the heated infrared-absorbing material to flow prior to the step of cooling.
1	3. The method as claimed in claim 1 wherein the back plate
2	includes a plurality of spaced holes extending therethrough and wherein the infrared-
3	absorbing material forms a plurality of stakes connected to the inner surface of the
4	front panel and extending through the plurality of spaced holes and wherein the
5	heated infrared-absorbing material forms a plurality of solid connectors after the step
6	of cooling.
1	4. The method as claimed in claim 1 wherein the infrared-
2	absorbing material is a heat-activated adhesive and wherein the method further
3	comprises applying the adhesive to at least one of the inner surfaces.
1	
1	5. A system of manufacturing an air bag cover assembly including
2	a front panel, a back plate, a switch and infrared-absorbing material, the system
3	comprising:

at least one infrared lamp for emitting infrared radiation;
a base including a fixture mounted thereon for receiving and retaining
the front panel and the back plate so that inner surfaces of the front panel and the
back plate define a switch pocket therebetween; and
a controlled coupled to the at least one infrared lamp for controlling
power supplied to the at least one infrared lamp so that the at least one infrared lamp
emits infrared radiation at the infrared-absorbing material for a time sufficient to heat

absorbing material bonds the plastic parts together when cooled.

6. The system as claimed in claim 5 further comprising a mechanism mounted for movement relative to the base for forcing the heated infrared-absorbing material to flow.

the infrared-absorbing material to a desired temperature, wherein the heated infrared-

- 7. The system as claimed in claim 5 wherein the back plate includes a plurality of spaced holes extending therethrough and wherein the infrared-absorbing material forms a plurality of stakes connected to the inner surface of the front panel and extending through the plurality of spaced holes and wherein the heated infrared-absorbing material forms a plurality of solid connectors when cooled.
- 8. The system as claimed in claim 5 wherein the infrared-absorbing material is a heat-activated adhesive.