BANGALORE INSTITUTE OF TECHNOLOGY K.R.ROAD, V.V.PURAM, BANGALORE-560 004

Department of Computer Science & Engineering

DBMS LABORATORY WITH MINI PROJECT Manual

V-Sem CSE 21CSL55

Prepared By:

Suma L, Prathima M G

Assistant Professors, Dept. of CSE

DBMS LABORATORY WITH MINI PROJECT

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2017 -2018)

SEMESTER - V

Course Code :21CSL55

CIE Marks : 50 Teaching Hours/Week (L:T:P: S) :0:0:2:0

SEE Marks :50 Total Hours of Pedagogy :24 Total Marks :100

Credits:01 Exam Hours:03

CREDITS - 02

Course objectives: This course will enable students to

- CLO 1. Foundation knowledge in database concepts, technology and practice to groom students into well-informed database application developers.
- CLO 2. Strong practice in SQL programming through a variety of database problems.
- CLO 3. Develop database applications using front-end tools and back-end DBMS...

Description (If any):

PART-A: SQL Programming (Max. Exam Mks. 50)

- Design, develop, and implement the specified queries for the following problems using Oracle, MySQL, MS SQL Server, or any other DBMS underLINUX/Windows environment.
- Create Schema and insert at least 5 records for each table. Add appropriate database constraints.

PART-B: Mini Project (Max. Exam Mks. 40)

• For any problem selected, make sure that the application should have five or more tables. Indicative areas include: Organization, health care, Ecommerce etc.

Lab Experiments:

1. Consider the following schema for a Library Database:

BOOK(Book id, Title, Publisher Name, Pub Year)

BOOK AUTHORS(Book id, Author Name)

PUBLISHER(Name, Address, Phone)

BOOK COPIES(Book id, Programme id, No-of Copies)

BOOK LENDING(Book id, Programme id, Card No, Date Out, Due Date)

LIBRARY PROGRAMME(Programme id, Branch Name, Address)

Write SQL queries to

- 1. Retrieve details of all books in the library id, title, name of publisher, authors, number of copies in each branch, etc.
- 2. Get the particulars of borrowers who have borrowed more than 3 books, but from Jan 2017 to Jun 2017.
- 3. Delete a book in BOOK table. Update the contents of other tables to reflect this data manipulation operation.
- 4. Partition the BOOK table based on year of publication. Demonstrate its working with a simple query.
- **5.** Create a view of all books and its number of copies that are currently available in the Library.

2. Consider the following schema for Order Database:

SALESMAN(Salesman id, Name, City, Commission)

CUSTOMER(Customer id, Cust Name, City, Grade, Salesman id)

ORDERS(Ord No, Purchase Amt, Ord Date, Customer id, Salesman id)

Write SQL queries to

- 1. Count the customers with grades above Bangalore's average.
- 2. Find the name and numbers of all salesman who had more than one customer.
- 3. List all the salesman and indicate those who have and don't have customers in their cities (Use UNION operation.)
- 4. Create a view that finds the salesman who has the customer with the highest order of a day.
- 5. Demonstrate the DELETE operation by removing salesman with id 1000. All his orders must also be deleted.

3. Consider the schema for Movie Database:

ACTOR(Act_id, Act_Name, Act_Gender)

DIRECTOR(Dir id, Dir Name, Dir Phone)

MOVIES(Mov id, Mov Title, Mov Year, Mov Lang, Dir id)

MOVIE CAST(Act id, Mov id, Role)

RATING(Mov id, Rev Stars)

Write SQL queries to

- 1. List the titles of all movies directed by 'Hitchcock'.
- 2. Find the movie names where one or more actors acted in two or more movies.
- 3. List all actors who acted in a movie before 2000 and also in a movie after 2015 (use JOIN operation).
- 4. Find the title of movies and number of stars for each movie that has at least one rating and find the highest number of stars that movie received. Sort the result by movie title.
- 5. Update rating of all movies directed by 'Steven Spielberg' to 5.

4. Consider the schema for College Database:

STUDENT(USN, SName, Address, Phone, Gender)

SEMSEC(SSID, Sem, Sec)

CLASS(USN, SSID)

SUBJECT(Subcode, Title, Sem, Credits)

IAMARKS(USN, Subcode, SSID, Test1, Test2, Test3, FinalIA)

Write SQL queries to

- 1. List all the student details studying in fourth semester 'C' section.
- 2. Compute the total number of male and female students in each semester and in each section.
- 3. Create a view of Test1 marks of student USN '1BI15CS101' in all subjects.
- 4. Calculate the FinalIA (average of best two test marks) and update the corresponding table for all students.
- 5. Categorize students based on the following criterion:

If FinalIA = 17 to 20 then CAT = 'Outstanding'

If FinalIA = 12 to 16 then CAT = 'Average'

If FinalIA < 12 then CAT = 'Weak'

Give these details only for 8th semester A, B, and C section students.

5. Consider the schema for Company Database:

EMPLOYEE(SSN, Name, Address, Sex, Salary, SuperSSN, DNo)

DEPARTMENT(DNo, DName, MgrSSN, MgrStartDate)

DLOCATION(DNo,DLoc)

PROJECT(PNo, PName, PLocation, DNo)

WORKS ON(SSN, PNo, Hours)

Write SQL queries to

- 1. Make a list of all project numbers for projects that involve an employeewhose last name is 'Scott', either as a worker or as a manager of thedepartment that controls the project
- 2. Show the resulting salaries if every employee working on the 'IoT' project is given a 10 percent raise.
- 3. Find the sum of the salaries of all employees of the 'Accounts' department, as well as the maximum salary, the minimum salary, and the average salary inthis department
- 4. Retrieve the name of each employee who works on all the projects controlled by department number 5 (use NOT EXISTS operator).
 - 6. For each department that has more than five employees, retrieve the department number and the number of its employees who are making morethan Rs. 6,00,000...

Part B: Mini project

- For any problem selected, write the ER Diagram, apply ER-mapping rules, normalize the relations, and follow the application development process.
- Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable frontend tool.
 - Indicative areas include; health care, education, industry, transport, supply chain, etc.

Course outcomes: The students should be able to:

- CO 1. Create, Update and query on the database.
- CO 2. Demonstrate the working of different concepts of DBMS
- CO 3. Implement, analyze and evaluate the project developed for an application

Conduction of Practical Examination:

CIE marks for the practical course is **50 Marks**.

The split-up of CIE marks for record/journal and test are in the ratio **60:40**.

• Each experiment to be evaluated for conduction with an observation sheet and record write-up. Rubrics

for the evaluation of the journal/write-up for hardware/software experiments designed by the faculty

who is handling the laboratory session and is made known to students at the beginning of the practical session.

• Record should contain all the specified experiments in the syllabus and each experiment write-up will

be evaluated for 10 marks.

- Total marks scored by the students are scaled downed to 30 marks (60% of maximum marks).
- Weightage to be given for neatness and submission of record/write-up on time.
- Department shall conduct 02 tests for 100 marks, the first test shall be conducted after the 8th week of

the semester and the second test shall be conducted after the 14th week of the semester.

- In each test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will
- carry a weightage of 60% and the rest 40% for viva-voce.
- The suitable rubrics can be designed to evaluate each student's performance and learning ability.

Rubrics suggested in Annexure-II of Regulation book

• The average of 02 tests is scaled down to 20 marks (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and average marks of two tests is

the total CIE marks scored by the student.

1. Consider the following schema for a Library Database:

BOOK(Book_id, Title, Publisher_Name, Pub_Year)
BOOK_AUTHORS(Book_id, Author_Name)
PUBLISHER(Name, Address, Phone)
BOOK_COPIES(Book_id, Programme_id, No_of_Copies)
BOOK_LENDING(Book_id, Programme_id, Card_No, Date_Out, Due_Date)
LIBRARY_PROGRAMME(Programme_id, Programme_Name, Address)

CREATE TABLE PUBLISHER (NAME VARCHAR2 (20), PHONE INTEGER, ADDRESS VARCHAR2 (20), CONSTRAINT PKP PRIMARY KEY(NAME));

CREATE TABLE BOOK
(BOOK_ID VARCHAR(8),
TITLE VARCHAR2 (20),
PUBLISHER_NAME VARCHAR(20),
PUB_YEAR INTEGER,
CONSTRAINT PKB PRIMARY KEY(BOOK_ID),
CONSTRAINT FKB FOREIGN KEY(PUBLISHER_NAME) REFERENCES
PUBLISHER(NAME));

CREATE TABLE BOOK_AUTHORS
(BOOK_ID VARCHAR(8),
AUTHOR_NAME VARCHAR2 (20),
CONSTRAINT PKBA PRIMARY KEY (BOOK_ID,AUTHOR_NAME),
CONSTRAINT FKBA FOREIGN KEY(BOOK_ID) REFERENCES BOOK(BOOK_ID)ON
DELETE CASCADE);

CREATE TABLE LIBRARY_PROGRAMME
(PROGRAMME_ID VARCHAR(6),
PROGRAMME_NAME VARCHAR2 (20),
ADDRESS VARCHAR2 (20),
CONSTRAINT PKLB PRIMARY KEY(PROGRAMME_ID));

CREATE TABLE BOOK_COPIES
(BOOK_ID VARCHAR(8),
PROGRAMME_ID VARCHAR2(6),
NO_OF_COPIES INTEGER,
CONSTRAINT PKBC PRIMARY KEY(BOOK_ID, PROGRAMME_ID),
CONSTRAINT FKBC FOREIGN KEY(BOOK_ID) REFERENCES BOOK(BOOK_ID) ON
DELETE CASCADE,
CONSTRAINT FKBB FOREIGN KEY(PROGRAMME_ID) REFERENCES
LIBRARY PROGRAMME (PROGRAMME_ID));

CREATE TABLE BOOK_LENDING (BOOK_ID VARCHAR(8),

PROGRAMME ID VARCHAR2(6),

CARD NO INTEGER,

DATE OUT DATE,

DUE DATE DATE.

CONSTRAINT PKBL PRIMARY KEY(BOOK ID, PROGRAMME ID, CARD NO), CONSTRAINT FKBL FOREIGN KEY(BOOK ID) REFERENCES BOOK(BOOK ID)ON DELETE CASCADE,

INSERT INTO PUBLISHER VALUES ('MCGRAW-HILL', 9989076587, 'BANGALORE'); INSERT INTO PUBLISHER VALUES ('PEARSON', 9889076565, 'NEWDELHI'): INSERT INTO PUBLISHER VALUES ('RANDOM HOUSE', 7455679345, 'HYDRABAD'); INSERT INTO PUBLISHER VALUES ('HACHETTE LIVRE', 8970862340, 'CHENAI'); INSERT INTO PUBLISHER VALUES ('GRUPO PLANETA', 7756120238, 'BANGALORE');

SQL> SELECT * FROM PUBLISHER;

NAME	PHONE	ADDRESS
MCGRAW-HILL	9989076587	BANGALORE
PEARSON	9889076565	NEWDELHI
RANDOM HOUSE	745567934	5 HYDRABAD
HACHETTE LIVRE	897086234	0 CHENAI
GRUPO PLANETA	775612023	8 BANGALORE

INSERT INTO BOOK VALUES ('1','DBMS', 'MCGRAW-HILL',2017); INSERT INTO BOOK VALUES ('2','ADBMS', 'MCGRAW-HILL',2016); INSERT INTO BOOK VALUES ('3','CN', 'PEARSON',2016); INSERT INTO BOOK VALUES ('4','CG', 'GRUPO PLANETA',2015); INSERT INTO BOOK VALUES ('5','OS', 'PEARSON',2016);

SQL> SELECT * FROM BOOK;

BOOK_ID TITLE		PUBLISHER_NA	ME	PUB_YEAR	-
1	DBMS	MCGRAW-HILL	ı	2017	
2	ADBMS	MCGRAW-HILL	,	2016	
3	CN	PEARSON	2016		
4	CG	GRUPO PLANETA	2015		
5	OS	PEARSON	2016		

INSERT INTO BOOK AUTHORS VALUES ('1','NAVATHE'); INSERT INTO BOOK AUTHORS VALUES ('2','NAVATHE'); INSERT INTO BOOK AUTHORS VALUES ('3', 'TANENBAUM'); INSERT INTO BOOK AUTHORS VALUES ('4','EDWARD ANGEL'); INSERT INTO BOOK AUTHORS VALUES ('5','GALVIN');

SQL> SELECT * FROM BOOK AUTHORS;

BOOK ID AUTHOR NAME

NAVATHE

- 2 NAVATHE
- 3 TANENBAUM
- 4 EDWARD ANGEL
- 5 GALVIN

INSERT INTO LIBRARY_BRANCH VALUES ('10','VV PURAM','BANGALORE'); INSERT INTO LIBRARY_BRANCH VALUES ('11','BIT','BANGALORE'); INSERT INTO LIBRARY_BRANCH VALUES ('12','RAJAJI NAGAR', 'BANGALORE'); INSERT INTO LIBRARY_BRANCH VALUES ('13','JP NAGAR','BANGALORE'); INSERT INTO LIBRARY_BRANCH VALUES ('14','JAYANAGAR','BANGALORE');

SQL> SELECT * FROM LIBRARY_BRANCH;

BRANCH BRANCH NAME ADDRESS 10 VV PURAM **BANGALORE** BIT 11 BANGALORE 12 RAJAJI NAGAR **BANGALORE** 13 JP NAGAR **BANGALORE** 14 **JAYANAGAR BANGALORE**

INSERT INTO BOOK_COPIES VALUES ('1','10', 10); INSERT INTO BOOK_COPIES VALUES ('1','11', 5); INSERT INTO BOOK_COPIES VALUES ('2','12', 2); INSERT INTO BOOK_COPIES VALUES ('2','13', 5); INSERT INTO BOOK_COPIES VALUES ('3','14', 7); INSERT INTO BOOK_COPIES VALUES ('5','10', 1); INSERT INTO BOOK_COPIES VALUES ('4','11', 3);

SQL> SELECT * FROM BOOK COPIES;

BOOK ID BRANCH NO OF COPIES

1	10	10
1	11	5
2	12	2
2	13	5
3	14	7
5	10	1
4	11	3

INSERT INTO BOOK_LENDING VALUES ('1', '10', 101,'01-JAN-17','01-JUN-17'); INSERT INTO BOOK_LENDING VALUES ('3', '14', 101,'11-JAN-17','11-MAR-17'); INSERT INTO BOOK_LENDING VALUES ('2', '13', 101,'21-FEB-17','21-APR-17'); INSERT INTO BOOK_LENDING VALUES ('4', '11', 101,'15-MAR-17','15-JUL-17'); INSERT INTO BOOK_LENDING VALUES ('1', '11', 104,'12-APR-17','12-MAY-17')

SQL> SELECT * FROM BOOK LENDING;

BOO	K_ID BR	ANCH CAR	D_NO DATE_OUT	DUE_DATE
1	10	101	01-JAN-17	01-JUN-17

3	14	101	11-JAN-17	11-MAR-17
2	13	101	21-FEB-17	21-APR-17
4	11	101	15-MAR-17	15-JUL-17
1	11	104	12-APR-17	12-MAY-17

Queries:

1. Retrieve details of all books in the library – id, title, name of publisher, authors, number of copies in each branch, etc.

SELECT B.BOOK_ID, B.TITLE, B.PUBLISHER_NAME, A.AUTHOR_NAME, C.NO_OF_COPIES, L.BRANCH_ID FROM BOOK B, BOOK_AUTHORS A, BOOK_COPIES C, LIBRARY_PROGRAMME L WHERE B.BOOK_ID=A.BOOK_ID AND B.BOOK_ID=C.BOOK_ID AND L.PROGRAMME ID=C.PROGRAMME ID;

OUTPUT:

BOOK	ID TITLE	PUBLISHER_NAME	AUTHOR_NAME	NO_C	F_COPIES	BRANCH
1	DBMS	MCGRAW-HILL	NAVATHE		10	10
1	DBMS	MCGRAW-HILL	NAVATHE		5	11
2	ADBMS	MCGRAW-HILL	NAVATHE		2	12
2	ADBMS	MCGRAW-HILL	NAVATHE		5	13
3	CN	PEARSON TANI	ENBAUM	7		14
5	OS	PEARSON	GALVIN		1	10
4	CG	GRUPO PLANETA	EDWARD ANGEL		3	11

2. Get the particulars of borrowers who have borrowed more than 3 books, but from Jan 2017 to Jun 2017.

SELECT CARD_NO FROM BOOK_LENDING WHERE DATE_OUT BETWEEN '01-JAN-2017' AND '01-JUL-2017' GROUP BY CARD_NO HAVING COUNT (*)>3;

OUTPUT:

CARD_NO -----101

3. Delete a book in BOOK table. Update the contents of other tables to reflect this data manipulation operation.

Before Deleting:

SQL>SELECT * FROM BOOK;

1 DBMS MCGRAW-HILL 01-JAN-1	BOOK_ID TITLE		
2 ADBMS MCGRAW-HILL 01-JAN-1 3 CN PEARSON 16-SEP-1		A	1 2 3

4	CG	GRUPO PLANETA	11-SEP-15
5	OS	PEARSON	23-MAY-16

SQL>SELECT * FROM BOOK_COPIES;

BOOK ID BRANCH NO OF COPIES

1	10	10
1	11	5
2	12	2
2	13	5
3	14	7
5	10	1
4	11	3

DELETE FROM BOOK WHERE BOOK ID='3';

SQL> SELECT * FROM BOOK;

BOOK_ID TITLE		PUBLISHER_NAME	PUB_YEAR
1	DBMS	MCGRAW-HILL	01-JAN-17
2	ADBMS	MCGRAW-HILL	10-JUN-16
4	CG	GRUPO PLANETA	11-SEP-15
5	OS	PEARSON	23-MAY-16

SQL>SELECT * FROM BOOK COPIES;

BOOK ID BRANCH NO OF COPIES

1	10	10
1	11	5
2	12	2
2	13	5
5	10	1
4	11	3

4. Partition the BOOK table based on year of publication. Demonstrate its working with a simple query.

CREATE TABLE BOOKPART
PARTITION BY RANGE (PUB_YEAR)
(PARTITION P1 VALUES LESS THAN(2016),
PARTITION P2 VALUES LESS THAN (MAXVALUE))
AS SELECT * FROM BOOK;

OUTPUT:

BOOKPART P2 BOOKPART P1

SQL> SELECT * FROM BOOKPART PARTITION (P1); BOOK_ID TITLE PUBLISHER_NAME PUB_YEAR 4 CG GRUPO PLANETA 2015 SQL> SELECT * FROM BOOKPART PARTITION (P2); BOOK ID TITLE PUBLISHER NAME PUB YEAR ------DBMS MCGRAW-HILL
ADBMS MCGRAW-HILL
OS PEARSON DBMS 2017 2 2016 5 PEARSON 2016

5. Create a view of all books and its number of copies that are currently available in the Library.

CREATE VIEW BC AS SELECT B.BOOK_ID,C.TITLE,B.PROGRAMME_ID, (B.NO_OF_COPIES-(SELECT COUNT(*) FROM BOOK_LENDING WHERE B.BOOK_ID=BOOK_ID AND B.PROGRAMME_ID=PROGRAMME_ID)) AS NO_COPY FROM BOOK_COPIES B,BOOK C WHERE B.BOOK_ID=C.BOOK_ID;

OUTPUT:

SQL> SELECT * FROM BC;

BOOK_IDTITLE		BRANCH	NO_COPY
1	DBMS	10	9
1	DBMS	11	5
2	ADBMS	12	2
2	ADBMS	13	4
5	OS	10	1
4	CG	11	2

2. Consider the following schema for Order Database:

SALESMAN(Salesman_id, Name, City, Commission)
CUSTOMER(Customer_id, Cust_Name, City, Grade, Salesman_id)
ORDERS(Ord No, Purchase Amt, Ord Date, Customer id, Salesman id)

CREATE TABLE SALESMAN(SALESMAN_ID VARCHAR(8),

NAME VARCHAR(20), CITY VARCHAR(20), COMMISSION VARCHAR2(10), CONSTRAINT PKS PRIMARY KEY(SALESMAN_ID));

CREATE TABLE CUSTOMER (CUSTOMER ID VARCHAR(8),

CUST_NAME VARCHAR2 (20), CITY VARCHAR2 (20), GRADE NUMBER (3), SALESMAN_ID VARCHAR(8),

CONSTRAINT PKC PRIMARY KEY(CUSTOMER_ID), CONSTRAINT FKC FOREIGN KEY(SALESMAN_ID) REFERENCES

SALESMAN(SALESMAN ID) ON DELETE SET NULL);

CREATE TABLE ORDERS (ORD_NO VARCHAR(8),

PURCHASE AMT NUMBER(10, 2),

ORD DATE DATE,

CUSTOMER ID VARCHAR(8),

SALESMAN ID VARCHAR(8),

CONSTRAINT PKO PRIMARY KEY (ORD NO),

CONSTRAINT FKOC FOREIGN KEY (CUSTOMER_ID) REFERENCES CUSTOMER (CUSTOMER_ID) ON DELETE CASCADE,

CONSTRAINT FKOS FOREIGN KEY (SALESMAN_ID) REFERENCES SALESMAN (SALESMAN ID) ON DELETE CASCADE);

INSERT INTO SALESMAN VALUES ('1000', 'JOHN', 'BANGALORE', '25%');

INSERT INTO SALESMAN VALUES ('2000', 'RAVI', 'BANGALORE', '20%');

INSERT INTO SALESMAN VALUES ('3000', 'KUMAR', 'MYSORE', '15%');

INSERT INTO SALESMAN VALUES ('4000', 'SMITH','DELHI','30%');

INSERT INTO SALESMAN VALUES ('5000', 'HARSHA','HYDRABAD','15%');

INSERT INTO CUSTOMER VALUES ('C1', 'PREETHI', 'BANGALORE', 100, '1000');

INSERT INTO CUSTOMER VALUES ('C2', 'VIVEK', 'MANGALORE', 300, '1000');

INSERT INTO CUSTOMER VALUES ('C3', 'BHASKAR', 'CHENNAI', 400, '2000');

INSERT INTO CUSTOMER VALUES ('C4', 'CHETHAN', 'BANGALORE', 200, '2000');

INSERT INTO CUSTOMER VALUES ('C5', 'MAMATHA', 'BANGALORE', 400, '3000');

INSERT INTO ORDERS VALUES ('O1', 5000, '04-MAY-17', 'C1', '1000');

INSERT INTO ORDERS VALUES ('02', 6000, '04-MAY-17', 'C1', '1000'); INSERT INTO ORDERS VALUES ('03', 7000, '04-MAY-17', 'C2', '1000'); INSERT INTO ORDERS VALUES ('04', 450, '20-JAN-17', 'C1', '2000'); INSERT INTO ORDERS VALUES ('05', 1000, '24-FEB-17', 'C2', '2000'); INSERT INTO ORDERS VALUES ('06', 3500, '13-APR-17', 'C3', '3000'); INSERT INTO ORDERS VALUES ('07', 550, '09-MAR-17', 'C4', 2000); INSERT INTO ORDERS VALUES ('08', 6500, '04-MAY-17', 'C5', 1000); INSERT INTO ORDERS VALUES ('09', 7500, '09-MAR-17', 'C2', 2000);

SELECT * FROM SALESMAN;

SALESMAN	NAME	CITY	COMMISSION
1000	JOHN	BANGALORE	25%
2000	RAVI	BANGALORE	20%
3000	KUMAR	MYSORE	15%
4000	SMITH	DELHI	30%
5000	HARSHA	HYDRABAD	15%

SELECT * FROM CUSTOMER;

CUSTOMER CUST_NAME			CITY	GRADE	SALESMAN
	C1	PREETHI	BANGALORE	100	1000
	C2	VIVEK	MANGALORE	300	1000
	C3	BHASKAR	CHENNAI	400	2000
	C4	CHETHAN	BANGALORE	200	2000
	C5	MAMATHA	BANGALORE	400	3000

SELECT * FROM ORDERS;

ORD_NO	PURCHASE_AMT ORD_DATE		CUSTOMER S	SALESMAN
		-		
O1	5000	04-MAY-17	C1	1000
O2	6000	04-MAY-17	C1	1000
O3	7000	04-MAY-17	C2	1000
O4	450	20-JAN-17	C1	2000
O5	1000	24-FEB-17	C2	2000
O6	3500	13-APR-17	C3	3000
O7	550	09-MAR-17	C4	2000
O8	6500	04-MAY-17	C5	1000
O9	7500	09-MAR-17	C2	2000

Queries:

1. Count the customers with grades above Bangalore's average.

SELECT GRADE, COUNT (DISTINCT CUSTOMER_ID) AS NO_OF_CUSTOMER FROM CUSTOMER
GROUP BY GRADE
HAVING GRADE > (SELECT AVG(GRADE)
FROM CUSTOMER
WHERE CITY='BANGALORE');

OUTPUT:

GRADE	NO_OF_CUSTOMER
400	2
300	1

2. Find the name and numbers of all salesmen who had more than one customer.

SELECT SALESMAN_ID, NAME FROM SALESMAN S WHERE ((SELECT COUNT (*) FROM CUSTOMER WHERE SALESMAN_ID=S.SALESMAN_ID)>1);

OUTPUT:

SALESMAN NAME

1000 JOHN 2000 RAVI

3.List all salesmen and indicate those who have and don't have customers in their cities (Use UNION operation.)

SELECT S.SALESMAN_ID, S.CITY

FROM SALESMAN S

WHERE EXISTS (SELECT CITY FROM CUSTOMER WHERE S.CITY=CITY AND

S.SALESMAN ID=SALESMAN ID)

UNION

SELECT SALESMAN ID, 'NO MATCH OF CITIES'

FROM SALESMAN S

WHERE NOT EXISTS (SELECT CITY FROM CUSTOMER WHERE S.CITY=CITY AND S.SALESMAN ID=SALESMAN ID);

OUTPUT:

SALESMAN CITY

1000	BANGALORE
2000	BANGALORE
3000	NO MATCH OF CITIES
4000	NO MATCH OF CITIES
5000	NO MATCH OF CITIES

4. Create a view that finds the salesman who has the customer with the highest order of a day.

SELECT DISTINCT S.SALESMAN_ID,S.ORD_DATE FROM ORDERS S WHERE (SELECT SUM(PURCHASE_AMT) FROM ORDERS WHERE SALESMAN_ID=S.SALESMAN_ID AND ORD_DATE=S.ORD_DATE AND S.CUSTOMER_ID=CUSTOMER_ID) =(SELECT MAX(SUM(PURCHASE_AMT)) FROM ORDERS S1 WHERE S1.ORD_DATE=S.ORD_DATE GROUP BY S1.ORD_DATE,S1.SALESMAN_ID,S1.CUSTOMER_ID);

OUTPUT:

SALESMAN ORD DATE

1000	04-MAY-17
3000	13-APR-17
2000	20-JAN-17
2000	24-FEB-17
2000	09-MAR-17

5.Demonstrate the DELETE operation by removing salesman with id 1000. All his orders must also be deleted.

Use ON DELETE CASCADE at the end of foreign key definitions while creating child tableorders and then execute the following:

Use ON DELETE SET NULL at the end of foreign key definitions while creating child tablecustomers and then executes the following:

DELETE FROM SALESMAN WHERE SALESMAN ID=1000;

SQL> SELECT * FROM SALESMAN;

SALESMAN	NAME	CITY	COM	MISSION	
2000	RAVI		BANGALORE	20%	
3000	KUMAR		MYSORE		15%
4000	SMITH		DELHI	30%	
5000	HARSHA	HYDR	ABAD	15%	

SQL> SELECT * FROM CUSTOMER;

CUSTOMER CUST_NAME		CITY GRADE SALESMAN		[
C1	PREETHI	BANGALORE	100	
C2	VIVEK	MANGALORE	300	
C3	BHASKAR	CHENNAI	400	2000
C4	CHETHAN	BANGALORE	200	2000
C5	MAMATHA	BANGALORE	400	3000

SQL> SELECT * FROM ORDERS;

ORD_NO PURCHASE_AMT ORD_DATECUSTOMER SALESMAN

O2	450	20-JAN-17	C1	2000
O3	1000	24-FEB-17	C2	2000
O4	3500	13-APR-17	C3	3000

3. Consider the schema for Movie Database:

ACTOR (Act_id, Act_Name, Act_Gender)
DIRECTOR (Dir_id, Dir_Name, Dir_Phone)
MOVIES (Mov_id, Mov_Title, Mov_Year, Mov_Lang, Dir_id)
MOVIE_CAST (Act_id, Mov_id, Role)
RATING (Mov_id, Rev_Stars)

CREATE TABLE ACTOR (ACT_ID NUMBER (3), ACT_NAME VARCHAR (20), ACT_GENDER CHAR (1), CONSTRAINT PKAC PRIMARY KEY(ACT_ID));

CREATE TABLE DIRECTOR(
DIR_ID NUMBER (3),
DIR_NAME VARCHAR (20),
DIR_PHONE NUMBER (10),
CONSTRAINT PKDI PRIMARY KEY(DIR_ID));

CREATE TABLE MOVIES (MOV_ID NUMBER (4),

MOV_TITLE VARCHAR (25), MOV_YEAR NUMBER (4), MOV_LANG VARCHAR (12),

DIR_ID NUMBER (3),

CONSTRAINT PKMV PRIMARY KEY(MOV ID),

CONSTRAINT FKMV FOREIGN KEY(DIR ID) REFERENCES DIRECTOR(DIR ID));

CREATE TABLE MOVIE CAST (

ACT ID NUMBER (3),

MOV ID NUMBER (4),

ROLE VARCHAR (10),

CONSTRAINT PKMC PRIMARY KEY(ACT ID, MOV ID),

CONSTRAINT FKMC FOREIGN KEY(ACT ID) REFERENCES ACTOR(ACT ID),

CONSTRAINT FKMCC FOREIGN KEY(MOV ID) REFERENCES MOVIES(MOV ID));

CREATE TABLE RATING (

MOV ID NUMBER (4),

REV STARS INTEGER,

CONSTRAINT FKRA FOREIGN KEY(MOV ID) REFERENCES MOVIES(MOV ID));

INSERT INTO ACTOR VALUES (301, 'ANUSHKA', 'F');

INSERT INTO ACTOR VALUES (302, 'PRABHAS', 'M');

INSERT INTO ACTOR VALUES (303,'ARAVIND','M');

INSERT INTO ACTOR VALUES (304, 'JERMY', 'M');

INSERT INTO ACTOR VALUES (305,'KIM NEWMEN','M');

SQL> SELECT * FROM ACTOR;

ACT_ID	ACT_NAME	ACT_G
301	ANUSHKA	F
302	PRABHAS	M
303	ARAVIND	M
304	JERMY	M
305	KIM NEWMEN	M

INSERT INTO DIRECTOR VALUES (60, 'RAJAMOULI', 8751611001);

INSERT INTO DIRECTOR VALUES (61, 'HITCHCOCK', 7766138911);

INSERT INTO DIRECTOR VALUES (62, FARAN', 9986776531);

INSERT INTO DIRECTOR VALUES (63, 'STEVEN SPIELBERG', 8989776530);

INSERT INTO DIRECTOR VALUES (64, 'MAHESH', 8989776539);

SQL> SELECT * FROM DIRECTOR;

DIR_ID	DIR_NAME	DIR_PHONE
60	RAJAMOULI	8751611001
61	HITCHCOCK	7766138911
62	FARAN	9986776531
63	STEVEN SPIELBERG	8989776530
64	MAHESH	8989776539

INSERT INTO MOVIES VALUES (1001, 'BAHUBALI-2', 2017, 'TELAGU', 60); INSERT INTO MOVIES VALUES (1002, 'BAHUBALI-1', 2015, 'TELAGU', 60);

INSERT INTO MOVIES VALUES (1003, 'PSYCHO', 2008, 'ENGLISH', 61);

INSERT INTO MOVIES VALUES (1004,'WAR HORSE', 2011, 'ENGLISH', 63); INSERT INTO MOVIES VALUES (1005,'LAST BUS', 2016, 'KANNADA', 64); INSERT INTO MOVIES VALUES (1006,'THE BIRDS', 2011, 'ENGLISH', 61); INSERT INTO MOVIES VALUES (1007,'TITANIC', 2012, 'ENGLISH', 63);

SQL> SELECT * FROM MOVIES;

MOV_ID MOV_TITLE		MOV_YEAR MOV_LANG		DIR_ID	
1001	BAHUBALI-2	2017	TELAGU	60	
1002	BAHUBALI-1	2015	TELAGU	60	
1003	PSYCHO	2008	ENGLISH	61	
1004	WAR HORSE	2011	ENGLISH	63	
1005	LAST BUS	2016	KANNADA	64	
1006	THE BIRDS	2011	ENGLISH	61	
1007	TITANIC	2012	ENGLISH	63	

INSERT INTO MOVIE_CAST VALUES (301, 1002, 'HEROINE');

INSERT INTO MOVIE_CAST VALUES (301, 1001, 'HEROINE');

INSERT INTO MOVIE_CAST VALUES (303, 1005, 'HERO');

INSERT INTO MOVIE_CAST VALUES (302, 1002, 'HERO');

INSERT INTO MOVIE_CAST VALUES (302, 1001, 'HERO');

INSERT INTO MOVIE_CAST VALUES (304, 1004, 'HERO');

INSERT INTO MOVIE_CAST VALUES (305, 1005, 'HERO');

INSERT INTO MOVIE CAST VALUES (305, 1007, 'HERO');

SQL> SELECT * FROM MOVIE CAST;

ACT_{ID}	MOV_II	O ROLE
301	1002	HEROINE
301	1001	HEROINE
303	1005	HERO
302	1002	HERO
302	1001	HERO
304	1004	HERO
305	1005	HERO
305	1007	HERO

INSERT INTO RATING VALUES (1001, 4);

INSERT INTO RATING VALUES (1002, 2):

INSERT INTO RATING VALUES (1003, 5);

INSERT INTO RATING VALUES (1004, 4);

INSERT INTO RATING VALUES (1005, 3);

INSERT INTO RATING VALUES (1006, 8);

INSERT INTO RATING VALUES (1007, 0);

INSERT INTO RATING VALUES (1001, 2);

INSERT INTO RATING VALUES (1002, 5);

SQL> SELECT * FROM RATING;

MOV ID REV STARS

1001 4

```
    1001
    2

    1002
    2

    1002
    5

    1003
    5

    1004
    4

    1005
    3

    1006
    8

    1007
    0
```

Queries:

1. List the titles of all movies directed by 'Hitchcock'.

SELECT M.MOV_TITLE
FROM MOVIES M,DIRECTOR D
WHERE M.DIR ID=D.DIR ID AND D.DIR NAME = 'HITCHCOCK';

OUTPUT:

MOV TITLE

PSYCHO

THE BIRDS

1. Find the movie names where one or more actors acted in two or more movies.

SELECT MOV_TITLE FROM MOVIES M, MOVIE_CAST MV WHERE M.MOV_ID=MV.MOV_ID AND ACT_ID IN (SELECT ACT_ID

FROM MOVIE_CAST GROUP BY ACT_ID

HAVING COUNT (ACT_ID)>=1)

GROUP BY MOV TITLE

HAVING COUNT (*)>1:

OUTPUT:

MOV_TITLE

BAHUBALI-1

BAHUBALI-2

LAST BUS

3.List all actors who acted in a movie before 2000 and also in a movie after 2015 (use JOIN operation).

SELECT A.ACT_NAME FROM ACTOR A JOIN MOVIE CAST C

ON A.ACT ID=C.ACT ID

JOIN MOVIES M

ON C.MOV_ID=M.MOV_ID

WHERE M.MOV YEAR NOT BETWEEN 2000 AND 2015;

OUTPUT:

ACT NAME

ANUSHKA

PRABHAS

ARAVIND

KIM NEWMEN

4. Find the title of movies and number of stars for each movie that has at least one rating and find the highest number of stars that movie received. Sort the result by movie title.

SELECT MOV_TITLE, MAX(REV_STARS) FROM MOVIES INNER JOIN RATING USING (MOV_ID) GROUP BY MOV_TITLE HAVING MAX (REV_STARS)>0 ORDER BY MOV_TITLE;

OUTPUT:

MOV_TITLE	MAX(REV_STARS)
BAHUBALI-1	5
BAHUBALI-2	4
LAST BUS	3
PSYCHO	5
THE BIRDS	8
WAR HORSE	4

5. Update rating of all movies directed by 'Steven Spielberg' to 5

UPDATE RATING
SET REV_STARS=5
WHERE MOV_ID IN (SELECT M.MOV_ID FROM MOVIES M,DIRECTOR D
WHERE M.DIR_ID=D.DIR_ID AND
D.DIR NAME = 'STEVEN SPIELBERG');

BEFORE UPDATING

SQL> SELECT * FROM RATING;

MOV_{ID}	REV_STARS
1001	4
1002	2
1003	5
1004	4 <
1005	3
1006	8
1007	0 <
1001	2
1002	5

AFTER UPDATING

SQL> SELECT * FROM RATING;

MOV_{ID}	REV_STARS
1001	4
1002	2
1003	5
1004	5 <
1005	3
1006	8
1007	5 <
1001	2
1002	5

4. Consider the schema for College Database:

STUDENT (USN, SName, Address, Phone, Gender)
SEMSEC (SSID, Sem, Sec)
CLASS (USN, SSID)
SUBJECT (Subcode, Title, Sem, Credits)
IAMARKS (USN, Subcode, SSID, Test1, Test2, Test3, FinalIA)

STUDENT DATABASE

CREATE TABLE STUDENT (USN VARCHAR (10), SNAME VARCHAR (20), ADDRESS VARCHAR (20), PHONE NUMBER (10), GENDER CHAR (1), CONSTRAINT PKST PRIMARY KEY(USN));

CREATE TABLE SEMSEC (SSID VARCHAR (5), SEM NUMBER (2), SEC CHAR (1), CONSTRAINT PKSEM PRIMARY KEY(SSID));

CREATE TABLE CLASS (USN VARCHAR (10),
SSID VARCHAR (5),
CONSTRAINT PKCL PRIMARY KEY (USN, SSID),
CONSTRAINT FKUSN FOREIGN KEY (USN) REFERENCES STUDENT (USN),
CONSTRAINT FKSSID FOREIGN KEY (SSID) REFERENCES SEMSEC (SSID));

CREATE TABLE SUBJECT (SUBCODE VARCHAR (8), TITLE VARCHAR (20), SEM NUMBER (2), CREDITS NUMBER (5), CONSTRAINT PKSUB PRIMARY KEY (SUBCODE));

CREATE TABLE IAMARKS (USN VARCHAR (10), SUBCODE VARCHAR (8), SSID VARCHAR (5),

TEST1 NUMBER, TEST2 NUMBER, TEST3 NUMBER, FINALIA NUMBER,

CONSTRAINT PKIA PRIMARY KEY (USN, SUBCODE, SSID), CONSTRAINT FKUS FOREIGN KEY (USN) REFERENCES STUDENT (USN), CONSTRAINT FKSU FOREIGN KEY (SUBCODE) REFERENCES SUBJECT (SUBCODE), CONSTRAINT FKSSI FOREIGN KEY (SSID) REFERENCES SEMSEC (SSID));

INSERT INTO STUDENT VALUES ('1BI16CS001','ABHILASH','BELAGAVI',8877881122,'M'); INSERT INTO STUDENT VALUES ('1BI16CS011','AMOGH','BENGALURU',7722829912,'M'); INSERT INTO STUDENT VALUES ('1BI16CS113','ANANYA','BENGALURU',7712312312,'F'); INSERT INTO STUDENT VALUES ('1BI16CS049','HARSHA','MANGALURU',8877881122,'M'); INSERT INTO STUDENT VALUES ('1BI16CS065','KRUTHI','BENGALURU',9900211201,'F');

INSERT INTO STUDENT VALUES ('1BI16CS071','MEGHA','BENGALURU',9923211099,'F'); INSERT INTO STUDENT VALUES ('1BI16CS091','MANJU','BENGALURU', 7894737377,'M'); INSERT INTO STUDENT VALUES ('1BI16CS009','KIRAN','BENGALURU',7894737377,'M'); INSERT INTO STUDENT VALUES ('1BI16CS021','NAYANA','BENGALURU',7894737377,'F'); INSERT INTO STUDENT VALUES ('1BI16CS093','KUMAR','BENGALURU',7894737377,'M'); INSERT INTO STUDENT VALUES ('1BI16CS100','SWETHA','BENGALURU',7894737377,'F')

INSERT INTO STUDENT VALUES ('1BI15CS027','ANVITHA','TUMKUR', 9845091341,'F'); INSERT INTO STUDENT VALUES ('1BI15CS012','AJAY','DAVANGERE',7696772121,'M'); INSERT INTO STUDENT VALUES ('1BI15CS015','ANVITHA','BELLARY', 9944850121,'F'); INSERT INTO STUDENT VALUES ('1BI15CS101','NEMISA SINHA','MANGALURU',8812332201,'M'); INSERT INTO STUDENT VALUES ('1BI15CS200','PAVAN','KALBURGI',9900232201,'M'); INSERT INTO STUDENT VALUES ('1BI15CS191','SIRI','SHIMOGA',9905542212,'F');

INSERT INTO STUDENT VALUES ('1BI14CS007','ADITYA','SHIMOGA',9905542212,'M'); INSERT INTO STUDENT VALUES ('1BI14CS018','AMOGH ','MYSORE',9905541112,'M'); INSERT INTO STUDENT VALUES ('1BI14CS020','AMULYA','SHIMOGA',8812332201,'F'); INSERT INTO STUDENT VALUES ('1BI14CS051','KEERTHI','SHIMOGA',9905542212,'M'); INSERT INTO STUDENT VALUES ('1BI14CS078','MANJULA','SHIMOGA',9905541234,'F'); INSERT INTO STUDENT VALUES ('1BI14CS112','POOJA','SHIMOGA',9985541112,'F'); INSERT INTO STUDENT VALUES ('1BI14CS114','PRADEEP','SHIMOGA',9901232212,'M');

INSERT INTO STUDENT VALUES ('1BI14CS066','PRAKASH','SHIMOGA',9901232212,'M'); INSERT INTO STUDENT VALUES ('1BI14CS132','PRIYA','MYSORE',9901232212,'F'); INSERT INTO STUDENT VALUES ('1BI14CS161','SIRI','TUMKUR',9901232212,'F');

SQL> SELECT * FROM STUDENT;

USN	SNAME	ADDRESS	PHONE G	
1BI16CS001	 ABHILASH	BELAGAVI	 8877881122	<u>-</u> М
1BI16CS001	AMOGH	BENGALURU	7722829912	M
1BI16CS011	ANANYA	BENGALURU	7712312312	F
1BI16CS049	HARSHA	MANGALURU	8877881122	M
1BI16CS065	KRUTHI	BENGALURU	9900211201	F
1BI16CS003	MEGHA	BENGALURU	9923211099	F
1BI16CS091	MANJU	BENGALURU	7894737377	M
1BI16CS009	KIRAN	BENGALURU	7894737377	M
1BI16CS021	NAYANA	BENGALURU	7894737377	F
1BI16CS093	KUMAR	BENGALURU	7894737377	M
1BI16CS100	SWETHA	BENGALURU	7894737377	F
1BI15CS027	ANVITHA	TUMKUR	9845091341	F
1BI15CS012	AJAY	DAVANGERE	7696772121	M
1BI15CS015	ANVITHA	BELLARY	9944850121	F
1BI15CS101	NEMISA SINHA	MANGALURU	8812332201	M
1BI15CS200	PAVAN	KALBURGI	9900232201	M
1BI15CS191	SIRI	SHIMOGA	9905542212	F
1BI14CS007	ADITYA	SHIMOGA	9905542212	M
1BI14CS018	AMOGH	MYSORE	9905541112	M
1BI14CS020	AMULYA	SHIMOGA	8812332201	F
1BI14CS051	KEERTHI	SHIMOGA	9905542212	M
1BI14CS078	MANJULA	SHIMOGA	9905541234	F
1BI14CS112	POOJA	SHIMOGA	9985541112	F
1BI14CS114	PRADEEP	SHIMOGA	9901232212	M
1BI14CS066	PRAKASH	SHIMOGA	9901232212	M
1BI14CS132 I	PRIYA	MYSORE	9901232212	F

1BI14CS161 SIRI TUMKUR 9901232212 F

INSERT INTO SEMSEC VALUES ('CSE4A', 4,'A');

INSERT INTO SEMSEC VALUES ('CSE4B', 4,'B');

INSERT INTO SEMSEC VALUES ('CSE4C', 4,'C');

INSERT INTO SEMSEC VALUES ('CSE6A', 6,'A');

INSERT INTO SEMSEC VALUES ('CSE6B', 6,'B');

INSERT INTO SEMSEC VALUES ('CSE8A', 8,'A');

INSERT INTO SEMSEC VALUES ('CSE8B', 8,'B');

INSERT INTO SEMSEC VALUES ('CSE8C', 8,'C');

SQL> SELECT * FROM SEMSEC;

SSID	SEM S	
CSE4A	4	A
CSE4B	4	В
CSE4C	4	\mathbf{C}
CSE6A	6	A
CSE6B	6	В
CSE8A	8	A
CSE8B	8	В
CSE8C	8	C

INSERT INTO CLASS VALUES ('1BI16CS001','CSE4A');

INSERT INTO CLASS VALUES ('1BI16CS011','CSE4A');

INSERT INTO CLASS VALUES ('1BI16CS113','CSE4A');

INSERT INTO CLASS VALUES ('1BI16CS049','CSE4B');

INSERT INTO CLASS VALUES ('1BI16CS065','CSE4B');

INSERT INTO CLASS VALUES ('1BI16CS071','CSE4B');

INSERT INTO CLASS VALUES ('1BI16CS091','CSE4B');

INSERT INTO CLASS VALUES ('1BI16CS009','CSE4C');

INSERT INTO CLASS VALUES ('1BI16CS021','CSE4C'); INSERT INTO CLASS VALUES ('1BI16CS093','CSE4C');

DIGERT DITO OLAGO VALUES (IDII (CO1001/COE4C))

INSERT INTO CLASS VALUES ('1BI16CS100','CSE4C');

INSERT INTO CLASS VALUES ('1BI15CS027','CSE6A');

INSERT INTO CLASS VALUES ('1BI15CS012','CSE6A'); INSERT INTO CLASS VALUES ('1BI15CS015','CSE6A');

INSERT INTO CLASS VALUES ('1BI15CS101', 'CSE6B');

INSERT INTO CLASS VALUES ('1BI15CS200', 'CSE6B');

INSERT INTO CLASS VALUES ('1BI15CS191', 'CSE6B');

INSERT INTO CLASS VALUES ('1BI14CS007','CSE8A');

INSERT INTO CLASS VALUES ('1BI14CS018','CSE8A');

INSERT INTO CLASS VALUES ('1BI14CS020', 'CSE8A');

INSERT INTO CLASS VALUES ('1BI14CS051','CSE8A');

INSERT INTO CLASS VALUES ('1BI14CS078','CSE8B');

INSERT INTO CLASS VALUES ('1BI14CS112','CSE8B');

INSERT INTO CLASS VALUES ('1BI14CS114','CSE8B');

INSERT INTO CLASS VALUES ('1BI14CS066','CSE8C'); INSERT INTO CLASS VALUES ('1BI14CS132','CSE8C');

INSERT INTO CLASS VALUES ('1BI14CS161','CSE8C');

```
SQL> SELECT * FROM CLASS;
USN
             SSID
1BI14CS007
             CSE8A
1BI14CS018
             CSE8A
1BI14CS020
             CSE8A
1BI14CS051
             CSE8A
1BI14CS066
             CSE8C
1BI14CS078
             CSE8B
1BI14CS112
             CSE8B
1BI14CS114
             CSE8B
1BI14CS132
             CSE8C
1BI14CS161
             CSE8C
1BI15CS012
             CSE6A
1BI15CS015
             CSE6A
1BI15CS027
             CSE6A
1BI15CS101
             CSE6B
             CSE6B
1BI15CS191
1BI15CS200
             CSE6B
1BI16CS001
             CSE4A
1BI16CS009
             CSE4C
1BI16CS011
             CSE4A
1BI16CS021
             CSE4C
1BI16CS049
             CSE4B
             CSE4B
1BI16CS065
             CSE4B
1BI16CS071
1BI16CS091
             CSE4B
1BI16CS093
             CSE4C
1BI16CS100
             CSE4C
1BI16CS113
             CSE4A
INSERT INTO SUBJECT VALUES ('10CS81','SA', 8, 4);
INSERT INTO SUBJECT VALUES ('10CS82', 'SMAD', 8, 4);
INSERT INTO SUBJECT VALUES ('10CS83','WNMC', 8, 4);
INSERT INTO SUBJECT VALUES ('10CS84','WEB', 8, 4);
INSERT INTO SUBJECT VALUES ('10CS61', 'ME', 6, 4);
INSERT INTO SUBJECT VALUES ('10CS62','USP', 6, 4);
INSERT INTO SUBJECT VALUES ('10CS63','SD', 6, 4);
INSERT INTO SUBJECT VALUES ('10CS64', 'CNII', 6, 4);
INSERT INTO SUBJECT VALUES ('10CS65','CG', 6, 3);
INSERT INTO SUBJECT VALUES ('15CS41','M4', 4, 4);
INSERT INTO SUBJECT VALUES ('15CS42','SE', 4, 4);
INSERT INTO SUBJECT VALUES ('15CS43','DAA', 4, 4);
INSERT INTO SUBJECT VALUES ('15CS44','MPMC', 4, 4);
INSERT INTO SUBJECT VALUES ('15CS45','OOC', 4, 3);
INSERT INTO SUBJECT VALUES ('15CS46','DC', 4, 3);
SQL> SELECT * FROM SUBJECT;
SUBCODE
             TITLE
                                   SEM CREDITS
_____
10CS81
             SA
```

10CS82	SMAD	8	4
10CS83	WNMC	8	4
10CS84	WEB	8	4
10CS61	ME	6	4
10CS62	USP	6	4
10CS63	SD	6	4
10CS64	CNII	6	4
10CS65	CG	6	3
15CS41	M4	4	4
15CS42	SE	4	4
15CS43	DAA	4	4
15CS44	MPMC	4	4
15CS45	OOC	4	3
15CS46	DC	4	3

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI15CS101','10CS61','CSE6B', 20, 23, 20);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI15CS101','10CS62','CSE6B', 18, 19, 19);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI15CS101','10CS63','CSE6B', 19, 20, 20);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI15CS101','10CS64','CSE6B', 20, 20, 19);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI15CS101','10CS65','CSE6B', 18, 20, 19);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS007','10CS81','CSE8A', 15, 10, 12);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS007','10CS82','CSE8A', 15, 20, 12);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS007','10CS83','CSE8A', 5, 10, 5);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS007','10CS84','CSE8A', 15, 20, 12);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS078','10CS81','CSE8B', 15, 20, 12);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS078','10CS82','CSE8B', 15, 20, 12);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS078','10CS83','CSE8B', 10, 8, 10):

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS078','10CS84','CSE8B', 15, 20, 12);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS066','10CS81','CSE8C', 15, 20, 12);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS066','10CS82','CSE8C', 12, 13, 14);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS066','10CS83','CSE8C', 15, 20, 12);

INSERT INTO IAMARKS (USN, SUBCODE, SSID, TEST1, TEST2, TEST3) VALUES ('1BI14CS066','10CS84','CSE8C', 15, 20, 12);

SQL> SELECT * FROM IAMARKS;

USN	SUBCO	DE SSII	D TEST1	TEST2	TEST3	FINALIA
1BI150	CS101	10CS61	CSE6B	20	23	20
1BI150	CS101	10CS62	CSE6B	18	19	19
1BI150	CS101	10CS63	CSE6B	19	20	20
1BI150	CS101	10CS64	CSE6B	20	20	19
1BI150	CS101	10CS65	CSE6B	18	20	19
1BI140	CS007	10CS81	CSE8A	15	10	12
1BI140	CS007	10CS82	CSE8A	15	20	12
1BI140	CS007	10CS83	CSE8A	5	10	5
1BI140	CS007	10CS84	CSE8A	15	20	12
1BI140	CS078	10CS81	CSE8B	15	20	12
1BI140	CS078	10CS82	CSE8B	15	20	12
1BI140	CS078	10CS83	CSE8B	10	8	10
1BI140	CS078	10CS84	CSE8B	15	20	12
1BI140	CS066	10CS81	CSE8C	15	20	12
1BI140	CS066	10CS82	CSE8C	12	13	14
1BI140	CS066	10CS83	CSE8C	15	20	12
1BI140	CS066	10CS84	CSE8C	15	20	12
_						

Queries:

1.List all the student details studying in fourth semester 'C' section.

SELECT S.*, SS.SEM, SS.SEC

FROM STUDENT S, SEMSEC SS, CLASS C

WHERE S.USN = C.USN AND

SS.SSID = C.SSID AND

SS.SEM = 4 AND

SS.SEC='C';

OUTPUT:

USN SNAM	Е	ADDRESS	PHONE G SEM S		
1BI16CS009	KIRAN	BENGALURU	7894737377 M	4	\mathbf{C}
1BI16CS021	NAYANA	BENGALURU	7894737377 F	4	C
1BI16CS093	KUMAR	BENGALURU	7894737377 M	4	C
1BI16CS100	SWETHA	BENGALURU	7894737377 F	4	C

2. Compute the total number of male and female students in each semester and in each section.

SELECT SS.SEM, SS.SEC, S.GENDER, COUNT (S.GENDER) AS COUNT

FROM STUDENT S, SEMSEC SS, CLASS C

WHERE S.USN = C.USN AND

SS.SSID = C.SSID

GROUP BY SS.SEM, SS.SEC, S.GENDER

ORDER BY SEM;

OUTPUT:

SEM	S	G	COUNT
	-		
4	A	F	1
4	A	M	2
4	В	F	2

4	В	M	2
4	C	F	2
4	C	M	
6	A	F	2 2 1
6	A	M	1
6	В	F	1
6	В	M	2
8	A	F	1
8	A	M	3
8	В	F	2
8	В	M	1
8	C	F	2
8	C	M	1

3.Create a view of Test1 marks of student USN '1BI15CS101' in all subjects.

CREATE VIEW STU_TEST1_MARKS_VIEW AS SELECT TEST1, SUBCODE FROM IAMARKS WHERE USN = '1BI15CS101';

OUTPUT:

SQL> SELECT * FROM STU_TEST1_MARKS_VIEW;

TEST1	SUBCODE
20	10CS61
12	10CS62
19	10CS63
20	10CS64
15	10CS65

4. Calculate the FinalIA (average of best two test marks) and update the corresponding table for all students.

UPDATE IAMARKS SET FINALIA=((TEST1+TEST2+TEST3)-LEAST(TEST1,TEST2,TEST3))/2;

OUTPUT:

SQL> SELECT * FROM IAMARKS;

USN	SUBCODE	SSID	TEST1	TEST2	TEST3	FINALIA
1BI15CS101	10CS61	CSE6B	20	23	20	21.5
1BI15CS101	10CS62	CSE6B	18	19	19	19

DBMS LABORATORY WITH MINI PROJECT

1BI15CS101	10CS63	CSE6B 19	20	20	20
1BI15CS101	10CS64	CSE6B 20	20	19	20
1BI15CS101	10CS65	CSE6B 18	20	19	19.5
1BI14CS007	10CS81	CSE8A 15	10	12	13.5
1BI14CS007	10CS82	CSE8A 15	20	12	17.5
1BI14CS007	10CS83	CSE8A 5	10	5	7.5
1BI14CS007	10CS84	CSE8A 15	20	12	17.5
1BI14CS078	10CS81	CSE8B 15	20	12	17.5
1BI14CS078	10CS82	CSE8B 15	20	12	17.5
1BI14CS078	10CS83	CSE8B 10	8	10	10
1BI14CS078	10CS84	CSE8B 15	20	12	17.5
1BI14CS066	10CS81	CSE8C 15	20	12	17.5
1BI14CS066	10CS82	CSE8C 12	13	14	13.5
1BI14CS066	10CS83	CSE8C 15	20	12	17.5
1BI14CS066	10CS84	CSE8C 15	20	12	17.5

5.Categorize students based on the following criterion:

If FinalIA = 17 to 20 then CAT = 'Outstanding'

If FinalIA = 12 to 16 then CAT = 'Average'

If FinalIA < 12 then CAT = 'Weak'

Give these details only for 8th semester A, B, and C section students.

SELECT S.USN,S.SNAME,S.ADDRESS,S.PHONE,S.GENDER,IA.SUBCODE, (CASE

WHEN IA.FINALIA BETWEEN 17 AND 20 THEN 'OUTSTANDING' WHEN IA.FINALIA BETWEEN 12 AND 16 THEN 'AVERAGE'

ELSE 'WEAK'

END) AS CAT

FROM STUDENT S, SEMSEC SS, IAMARKS IA, SUBJECT SUB

WHERE S.USN = IA.USN AND

SS.SSID = IA.SSID AND

SUB.SUBCODE = IA.SUBCODE AND

SUB.SEM = 8;

OUTPUT:

USN	SNAME	ADDRESS	PHONE G SUBCODE	CAT
				-
1BI14CS007	ADITYA	SHIMOGA	9905542212 M 10CS84	OUTSTANDING
1BI14CS007	ADITYA	SHIMOGA	9905542212 M 10CS83	WEAK
1BI14CS007	ADITYA	SHIMOGA	9905542212 M 10CS82	OUTSTANDING
1BI14CS007	ADITYA	SHIMOGA	9905542212 M 10CS81	AVERAGE
1BI14CS078	MANJULA	SHIMOGA	9905541234 F 10CS84	OUTSTANDING
1BI14CS078	MANJULA	SHIMOGA	9905541234 F 10CS83	WEAK
1BI14CS078	MANJULA	SHIMOGA	9905541234 F 10CS82	OUTSTANDING
1BI14CS078	MANJULA	SHIMOGA	9905541234 F 10CS81	OUTSTANDING
1BI14CS066	PRAKASH	SHIMOGA	9901232212 M10CS84	OUTSTANDING
1BI14CS066	PRAKASH	SHIMOGA	9901232212 M 10CS83	OUTSTANDING
1BI14CS066	PRAKASH	SHIMOGA	9901232212 M 10CS82	AVERAGE
1BI14CS066	PRAKASH	SHIMOGA	9901232212 M 10CS81	OUTSTANDING

5. Consider the schema for Company Database:

EMPLOYEE(SSN, Name, Address, Sex, Salary, SuperSSN, DNo)

DEPARTMENT(DNo, DName, MgrSSN, MgrStartDate)

DLOCATION(DNo,DLoc)

PROJECT(PNo, PName, PLocation, DNo)

WORKS ON(SSN, PNo, Hours)

CREATE TABLE EMPLOYEE(SSN VARCHAR(8),

Name VARCHAR(10),

Address VARCHAR(30),

Sex CHAR(2),

Salary NUMBER(10), SuperSSN VARCHAR(8), DNo VARCHAR(6),

CONSTRAINT PK SSN PRIMARY KEY(SSN));

CREATE TABLE DEPARTMENT(DNo VARCHAR(6),

DName VARCHAR(10),

MgrSSN VARCHAR(8),

MgrStartDate DATE,

CONSTRAINT PK DNo PRIMARY KEY(DNo),

CONSTRAINT FK_MgrSSN FOREIGN KEY(MgrSSN) REFERENCES EMPLOYEE(SSN));

CREATE TABLE DLOCATION(DNo VARCHAR(6),

DLoc VARCHAR(15),

CONSTRAINT PK DNo DLoc PRIMARY KEY(DNo,DLoc),

CONSTRAINT FK DNo FOREIGN KEY(DNo) REFERENCES DEPARTMENT(DNo));

CREATE TABLE PROJECT(PNo VARCHAR(5),

PName VARCHAR(10),

PLocation VARCHAR(14),

DNo VARCHAr(6),

CONSTRAINT PK PNo PRIMARY KEY(PNo),

CONSTRAINT FK PDNo FOREIGN KEY(DNo) REFERENCES DEPARTMENT(DNo));

CREATE TABLE WORKS ON(SSN VARCHAR(8),

PNo VARCHAR(5),

Hours NUMBER(5).

CONSTRAINT PK PNo SSN PRIMARY KEY(PNo,SSN),

CONSTRAINT FK_WSSN FOREIGN KEY(SSN) REFERENCES EMPLOYEE(SSN),

CONSTRAINT FK PNo FOREIGN KEY(PNo) REFERENCES PROJECT(PNo));

ALTER TABLE EMPLOYEE ADD CONSTRAINT FK_SSN FOREIGN KEY(SuperSSN)

REFERENCES EMPLOYEE(SSN);

ALTER TABLE EMPLOYEE ADD CONSTRAINT FK_EDNo FOREIGN KEY(DNo)

REFERENCES DEPARTMENT(DNo);

 $INSERT\ INTO\ EMPLOYEE (SSN,\ Name,\ Address,\ Sex,\ Salary) VALUES ('100','John','VV)$

Puram, Bangalore', 'M', 660000);

INSERT INTO EMPLOYEE(SSN, Name, Address, Sex, Salary)VALUES('200', 'Scott', 'MG

Road, Bangalore', 'M', 700500);

```
INSERT INTO EMPLOYEE(SSN, Name, Address, Sex.
Salary)VALUES('300', 'Smith', 'Jayanagar, Bangalore', 'M', 600000);
INSERT INTO EMPLOYEE(SSN, Name, Address, Sex,
Salary)VALUES('400', 'Vani', 'Vijayanagar, Bangalore', 'F', 800000);
INSERT INTO EMPLOYEE(SSN, Name, Address, Sex, Salary)VALUES('500', 'Gopal', 'PB
Nagar, Bangalore', 'M', 500000);
INSERT INTO EMPLOYEE(SSN, Name, Address, Sex, Salary) VALUES(600, 'Ravi', 'Kormangala
Bangalore', 'M', 700000);
INSERT INTO EMPLOYEE(SSN, Name, Address, Sex, Salary) VALUES(700, 'Raghu', 'RR Nagar
Bangalore', 'M', 680000):
INSERT INTO EMPLOYEE(SSN, Name, Address, Sex, Salary) VALUES(800, 'Vinod', 'RT Nagar
Bangalore', 'M', 800000);
INSERT INTO EMPLOYEE(SSN, Name, Address, Sex, Salary) VALUES(900, 'Shankar', 'CH pete
Bangalore', 'M', 606000);
INSERT INTO EMPLOYEE(SSN, Name, Address, Sex, Salary) VALUES(1000, 'Sagar', 'VV Puram
Bangalore', 'M', 800000);
INSERT INTO DEPARTMENT VALUES('D1','Accounts','200','11-Feb-2015');
INSERT INTO DEPARTMENT VALUES('D2','Research','200','11-Mar-2016'):
INSERT INTO DEPARTMENT VALUES('D3','Finance','400','16-Jun-2015');
INSERT INTO DEPARTMENT VALUES('D4','Admin','100','30-Apr-2017');
INSERT INTO DEPARTMENT VALUES('D5', 'Testing', '400', '21-Mar-2016');
INSERT INTO DLOCATION VALUES('D1', 'Bangalore');
INSERT INTO DLOCATION VALUES('D2','Mysore');
INSERT INTO DLOCATION VALUES('D1','Mysore');
INSERT INTO DLOCATION VALUES('D3', 'Bangalore');
INSERT INTO DLOCATION VALUES('D4','Mangalore');
INSERT INTO PROJECT VALUES('P1','Billing','Bangalore','D1');
INSERT INTO PROJECT VALUES('P8','IoT','Mysore','D2');
INSERT INTO PROJECT VALUES('P3','Network','Davangere','D2');
INSERT INTO PROJECT VALUES('P4','Tax','Kolar','D1');
INSERT INTO PROJECT VALUES('P5', 'Salary', 'Bangalore', 'D3');
INSERT INTO PROJECT VALUES('P6', 'Placement', 'Mysore', 'D4');
INSERT INTO PROJECT VALUES('P7','Software','Bangalore','D5');
INSERT INTO WORKS ON VALUES('100','P1',8);
INSERT INTO WORKS ON VALUES('200','P3',10);
INSERT INTO WORKS ON VALUES('300','P8',10);
INSERT INTO WORKS ON VALUES('100','P8',10);
INSERT INTO WORKS ON VALUES('400','P4',10):
INSERT INTO WORKS ON VALUES('400','P6',12);
INSERT INTO WORKS ON VALUES('500','P7',10);
INSERT INTO WORKS ON VALUES('600','P4',10);
INSERT INTO WORKS ON VALUES('700','P5',10);
INSERT INTO WORKS ON VALUES('800','P1',10);
INSERT INTO WORKS ON VALUES('900','P4',10);
INSERT INTO WORKS ON VALUES('1000','P5',10);
UPDATE EMPLOYEE SET SuperSSN='200' where SSN='100';
UPDATE EMPLOYEE SET SuperSSN='200' where SSN='300';
UPDATE EMPLOYEE SET SuperSSN='200' where SSN='400';
UPDATE EMPLOYEE SET SuperSSN='300' where SSN='200';
UPDATE EMPLOYEE SET SuperSSN='300' where SSN='500';
```

```
UPDATE EMPLOYEE SET SuperSSN='200' where SSN='600'; UPDATE EMPLOYEE SET SuperSSN='200' where SSN='800'; UPDATE EMPLOYEE SET SuperSSN='200' where SSN='800'; UPDATE EMPLOYEE SET SuperSSN='200' where SSN='900'; UPDATE EMPLOYEE SET SuperSSN='200' where SSN='1000'; UPDATE EMPLOYEE SET DNo='D1' where SSN='1000'; UPDATE EMPLOYEE SET DNo='D2' where SSN='200'; UPDATE EMPLOYEE SET DNo='D3' where SSN='300'; UPDATE EMPLOYEE SET DNo='D4' where SSN='400'; UPDATE EMPLOYEE SET DNo='D4' where SSN='500'; UPDATE EMPLOYEE SET DNo='D1' where SSN='600'; UPDATE EMPLOYEE SET DNo='D1' where SSN='700'; UPDATE EMPLOYEE SET DNo='D1' where SSN='800'; UPDATE EMPLOYEE SET DNo='D1' where SSN='900'; UPDATE EMPLOYEE SET DNo='D1' where SSN='1000';
```

SELECT * FROM EMPLOYEE;

SSN	NAME	ADDRESS SE	S.	ALA	RY SUPERS	SN DNO	
100	John	VV Puram, Bangalore	N	Л	660000	200	D1
200	Scott	MG Road,Bangalore	N	Л	700500	300	D2
300	Smith	Jayanagar,Bangalore	N	Л	600000	200	D3
400	Vani	Vijayanagar,Bangalore	e F	,	800000	200	D4
500	Gopal	PB Nagar,Bangalore	N	Л	500000	300	D2
600	Ravi	Kormangala Bangalore	e N	Л	700000	200	D1
700	Raghu	RR Nagar Bangalore	N	Л	680000	200	D1
800	Vinod	RT Nagar Bangalore	N	Л	800000	200	D1
900	Shanka	r CH pete Bangalore	N	Л	606000	200	D1
1000	Sagar	VV Puram Bangalore	N	Л	800000	200	D1

SELECT * FROM DEPARTMENT;

DNO	DNAME	MGRSSN	MGRSTARTD
D1	Accounts	200	11-FEB-15
D2	Research	200	11-MAR-16
D3	Finance	400	16-JUN-15
D4	Admin	100	30-APR-17
D5	Testing	400	21-MAR-16

SELECT * FROM DLOCATION;

DNO DLOC

- D1 Bangalore
- D1 Mysore
- D2 Mysore
- D3 Bangalore
- D4 Mangalore

SELECT * FROM PROJECT;

PNO	PNAME	PLOCATION	DNO
P1	Billing	Bangalore	D1
P8	IoT	Mysore	D2
P3	Network	Davangere	D2
P4	Tax	Kolar	D1
P5	Salary	Bangalore	D3

```
P6
       Placement
                     Mysore
                                   D4
P7
       Software
                     Bangalore
                                   D5
SELECT * FROM WORKS ON;
SSN
       PNO
               HOURS
100
       P1
               8
300
       P3
                 10
300
       P8
                 10
100
       P8
                 10
400
       P4
                 10
400
       P6
                 12
500
       P7
                 10
400
       P8
                 10
       P4
600
                 10
700
       P5
                 10
800
       P1
                 10
900
       P4
                 10
       P5
1000
                 10
```

Oueries:

1. Make a list of all project numbers for projects that involve an employee whose last name is 'Scott', either as a worker or as a manager of the department that controls the project.

```
SELECT DISTINCT PNo
  FROM PROJECT
  WHERE PNo IN(
         (SELECT P.PNo
          FROM PROJECT P, DEPARTMENT D, EMPLOYEE E
            WHERE P.DNo=D.DNo AND D.MgrSSN=E.SSN AND E.Name='Scott')
           UNION
      (SELECT W.PNo
          FROM WORKS ON W, EMPLOYEE E
            WHERE E.SSN=W.SSN AND E.Name='Scott'));
```

OUTPUT:

PNO

P1

P3

P4

P8

2. Show the resulting salaries if every employee working on the 'IoT' project is given a 10 percentraise.

```
SELECT E.Name,1.1* E.Salary AS Increased salary
FROM EMPLOYEE E, WORKS ON W, PROJECT P
WHERE E.SSN=W.SSN AND W.PNo=P.PNo AND P.PName='IoT';
```

OUTPUT:

NAME	INCREASED_SALARY
John	726000
Smith	660000
Vani	880000

3. Find the sum of the salaries of all employees of the 'Accounts' department, as well as the maximum salary, the minimum salary, and the average salary in this department.

SELECT SUM (E. Salary) AS TOTAL_SALARY,MAX(E. Salary) AS MAX_SALARY,MIN(E. Salary) AS MIN_SALARY,AVG(E. Salary) AS AVG_SALARY FROM EMPLOYEE E, DEPARTMENT D

WHERE E. DNo= D. DNo AND D.DName='Accounts';

OUTPUT:

TOTAL_SALARY	MAX_SALARY	MIN_SALARY	Y AVG_SALARY
			_
4246000	800000	606000	707666.667

4.Retrieve the name of each employee who works on all the projects controlledby department number 5 (use NOT EXISTS operator).

SELECT E.Name FROM EMPLOYEE E WHERE NOT EXISTS((SELECT PNo FROM PROJECT WHERE DNo='D5') MINUS (SELECT W.PNo FROM WORKS ON W WHERE E.SSN=W.SSN));

OUTPUT:

NAME

Gopal

5. For each department that has more than five employees, retrieve the department number and thenumber of its employees who are making more than Rs. 6,00,000.

SELECT D.DNo,COUNT(*)
FROM EMPLOYEE E, DEPARTMENT D
WHERE E.DNo= D.DNo AND E.Salary>600000
GROUP BY D.DNo
HAVING COUNT(*)>=5;

OUTPUT:

DNO COUNT(*)
----D1 6