Project Title: System Verification and Validation Plan for Mechatronics

Team #20, OpenASL
Robert Zhu zhul49
Zifan Meng mengz17
Jiahui Chen chenj194
Kelvin Huynh huynhk12
Runze Zhu zhur25
Mirza Nafi Hasan hasanm21

November 02, 2022

Contents

1	Revision History ii							
2	Symbols, Abbreviations and Acronyms							
3	General Information							
	3.1 Summary							
	3.2 Objectives							
	3.3 Relevant Documentation	1						
4	Plan							
	4.1 Verification and Validation Team							
	4.2 SRS Verification Plan							
	4.3 Design Verification Plan							
	4.4 Implementation Verification Plan							
	4.5 Automated Testing and Verification Tools							
	4.6 Software Validation Plan	3						
5	System Test Description							
	5.1 Tests for Functional Requirements	3						
	5.1.1 Area of Testing1	3						
	5.1.2 Area of Testing2							
	5.2 Tests for Nonfunctional Requirements							
	5.2.1 Accuracy Requirement							
	5.2.2 Usability Requirement							
	5.2.3 Portability Requirement							
	5.2.4 Cultural Requirements (Future Implementation)							
	5.5 Traceability Detween Test Cases and Requirements	U						
6	References	7						
7	Appendix	8						
	7.1 User Experience Survey Questions	8						
	7.2 Reflection							
\mathbf{L}	ist of Tables							
	1 Symbols, Abbreviations, and Acronyms	iv						
	2 Verification and Validation Team Members and Roles							
	3 Traceability Between Test Cases and Requirements							

1 Revision History

Date	Version	Notes
November 02,	1.0	
2022	Everyone	
Date 2	1.1	Notes

2 Symbols, Abbreviations and Acronyms

Term, Abbreviation, or Acronym	Description	
ASL	Shorthand for American Sign Language. It is a form of sign language primarily used in the US and in parts of Canada	
CFR	Shorthand for Camera Functional Requirement	
CV	Shorthand for computer vision, computer vision is an interdisciplinary scientific field that deals with how computers can gain high-level understanding from digital images or videos	
FPS	Shorthand for frames per second. It is the measure of how many frames are displayed within a second. This is a camera performance metric.	
MLFR	Shorthand for Machine Learning Functional Requirement	
NFR	Shorthand for Non-Functional Requirement	
OpenASL	This is the name of the project which is to create a sign language translator. The objective and purpose of this project can be found in the <i>Problem Statement</i> [3] and SRS [4] documentation of the project respectively	
OpenCV	Shorthand for computer vision, computer vision is an interdisciplinary scientific field that deals with how computers can gain high-level understanding from digital images or videos	
RDP	Shorthand for Real-time Data Processing	
SRS	Shorthand for System Requirement Specification	
TC	Shorthand for Test Case	

Table 1: Symbols, Abbreviations, and Acronyms

3 General Information

3.1 Summary

[Say what software is being tested. Give its name and a brief overview of its general functions. —SS]

3.2 Objectives

The objectives to be fulfilled by utilizing the VnV plan are as follows:

- Building confidence that the software was implemented correctly for the purpose of the project
- Ensuring that OpenASL displays adequate usability for its intended purpose. See *Problem Statement* [3] documentation

3.3 Relevant Documentation

The relevant documentation used to formulate the VnV plan include:

- Problem Statement [3]
- Development Plan [1]
- SRS [4]
- Hazard Analysis [2]

4 Plan

[Introduce this section. You can provide a roadmap of the sections to come. —SS]

4.1 Verification and Validation Team

Name	Responsibility	
Robert Zhu	White/Black Box Testing; Manual SRS Verification	
Zifan Meng	OpenCV Verification; Manual code Verification	
Jiahui Chen	End-to-End Testing; Manual SRS Verification	
Kelvin Huynh	Machine Learning Verification; Manual code Verification	
Runze Zhu	White/Black Box Testing; End-to-End Testing	
Mirza Nafi Hasan	Performance Testing; Manual code Verification	
Classmate Peer Review	Provide peer reviews for our project	
Dr. Spencer Smith / TAs	Provide reviews and feedback for our project	

Table 2: Verification and Validation Team Members and Roles

4.2 SRS Verification Plan

The approaches for the SRS verification plan can be peer reviews from other teams, reviews from our group and reviews from TAs. An SRS checklist will be used to verify all the requirements for the project. The requirements will be verified using the system tests that are listed in detail in the SystemTest Description section.

4.3 Design Verification Plan

Similar to the SRS verification plan, the approaches involve peer reviews from teammates and other teams and the reviews from TAs. Their feedback can be utilized to verify our design. In addition, the checklists for MG and MIS are also approaches for the design verification to ensure that the actual device is implemented under the project's goal and scope.

4.4 Implementation Verification Plan

Implementation verification is the process of reviewing, testing and verifying that the device is working correctly under the desired performance. Both dynamic and static techniques will be utilized for the verification. The dynamic techniques include the system tests that are listed in the next section for the implementation of the functional and nonfunctional requirements for the device. Unit tests should also be performed during the implementation verification plan. In terms of the static techniques, code inspection and code walkthrough should be done for every single line of code that will be added to the main script by at least two team members before uploading. And for any new changes that need to be fixed in the program, the whole team should review and agree with the

new implementation before uploading the new changes to avoid the potential risk and problem for the project.

4.5 Automated Testing and Verification Tools

As stated in the Development Plan [1], unit testing is planned to be accomplished through the use of the Pytest Unit Testing framework. Code coverage can also be determined using this same framework using the pytest-cov plugin. The framework would enable us to utilize automated testing; however, unit tests have not been developed for the current phase of the project.

For performance testing, there are options available such as the utilization of OpenCV's getTickCount() and getTickFrequency() which can be used to calculate the FPS of the camera. In addition, there is also the use of Python's own time library function, time.perf_counter(), enabling us to measure the execution time of our code.

In terms of code verification, the code for the project will loosely follow the PEP8 Python coding standard. The linter that the project will use is the Flake8 linter for Python which will enable us to conform to this coding standard and catch syntactic errors that the code may have.

4.6 Software Validation Plan

The software will be validated through blackbox and white box testing. The whitebox testing is used to validate the inner working of the project such as coding. The only input for our device is the hand gestures from the users, so the blackbox testing can be adopted to ensure that the correct word is outputted. Various inputs are needed for the validation process and it can be achieved by having different users perform different hand gestures.

5 System Test Description

5.1 Tests for Functional Requirements

[Subsets of the tests may be in related, so this section is divided into different areas. If there are no identifiable subsets for the tests, this level of document structure can be removed. —SS]

[Include a blurb here to explain why the subsections below cover the requirements. References to the SRS would be good. —SS]

5.1.1 Area of Testing1

[It would be nice to have a blurb here to explain why the subsections below cover the requirements. References to the SRS would be good. If a section covers tests for input

constraints, you should reference the data constraints table in the SRS.—SS]

Title for Test

1. test-id1

Control: Manual versus Automatic

Initial State:

Input:

Output: [The expected result for the given inputs —SS]

Test Case Derivation: [Justify the expected value given in the Output field —SS]

How test will be performed:

2. test-id2

Control: Manual versus Automatic

Initial State:

Input:

Output: [The expected result for the given inputs —SS]

Test Case Derivation: [Justify the expected value given in the Output field —SS]

How test will be performed:

5.1.2 Area of Testing2

. . .

5.2 Tests for Nonfunctional Requirements

5.2.1 Accuracy Requirement

1. TC-NFR1: Translation Accuracy

Type: Manual

Initial State: Camera is placed in front of the user

Input/Condition: A sequence of user's hand gestures

Output/Result: The screen displays words/phrases/sentences corresponding to the user's hand gestures, results should have acceptable accuracy.

How test will be performed: Users will sign in front of the device for a short period of time. After that, users will look at the screen and verify that the results are accurate enough for people to understand.

5.2.2 Usability Requirement

1. TC-NFR4: Understandability

Type: Manual

Initial State: Users do not know how to use the device Input/Condition: Users will read through instructions

Output/Result: Users will understand how to use the device

How test will be performed: Users will read the instructions before using the device. They will then try all functions of the device, rate the understandability of the instructions on a scale of 1 to 10 and provide feedback through a survey.

2. TC-NFR3: Ease of use

Type: Manual

Initial State: User is working with the device for the first time

Input/Condition: Users will read the instructions and learn how to use the device

Output/Result: Users will learn to work with the translator on their own without any difficulties. How the test will be performed: Multiple new users will be given the device along with its instructions, and we will compare how long it takes each user to learn the device and use its main functionalities.

How test will be performed:

5.2.3 Portability Requirement

1. TC-NFR6: Portability

Type: Manual

How test will be performed: Users will carry the device and perform some everyday activities. Users can then rate the experience on a scale of 1 to 10 and provide feedback on the portability of the device through a survey.

5.2.4 Cultural Requirements (Future Implementation)

1. TC-NFR7: Cultural Requirement

Type: Manual

Initial State: Users are working with the ASL translator

Input/Condition: Users perform different styles of sign language

Output/Result: The translator will output the translation in English

How test will be performed: The test will be performed by letting users perform different forms of sign languages (other than ASL) in front of the camera, and check if the corresponding output is the correct translation.

5.3 Traceability Between Test Cases and Requirements

Requirement IDs CFR1, CFR2, MLFR1, MLFR2, MLFR3, MLFR4, MLFR5, MLFR6, MLFR7 can be found in the SRS [4] documentation

Test Case ID	Requirement ID	Requirement Description
TC-CFR1	CFR1	The camera detects hand gestures and capture images
TC-MLFR1	CFR2, MLFR1, MLFR5	The system recognizes joints of the user's hand
TC-MLFR2	MLFR2, MLFR6	The system recognizes x, y, z coordinates of each joint relative to the camera
TC-MLFR3	MLFR3	The system identifies and separates two hands from each other
TC-MLFR4	MLFR1, MLFR3	The system identifies more than two hands and notifies users
TC-MLFR5	MLFR7	The model updates the database in learning mode
TC-RDP1	MLFR4, MLFR5	The model processes data in real-time according to user's continuous input
TC-RDP2	MLFR6	The system provides text-to-speech translation in real-time
TC-NFR1	TC-NFR1	The system provides results that have acceptable accuracy
TC-NFR3	TC-NFR3	New users quickly understands how to use the device
TC-NFR4	TC-NFR4	Instructions are easily understandable
TC-NFR6	TC-NFR6	The device is small and portable
TC-NFR7	TC-NFR7	The system has the ability of translating different forms of sign languages

Table 3: Traceability Between Test Cases and Requirements

6 References

- [1] R. Zhu, Z. Meng, J. Chen, K. Huynh, R. Zhu, and M. N. Hasan. Development plan. https://github.com/kelhuynh/OpenASL/blob/main/docs/DevelopmentPlan/DevelopmentPlan.pdf, 2022.
- [2] R. Zhu, Z. Meng, J. Chen, K. Huynh, R. Zhu, and M. N. Hasan. Hazard analysis. https://github.com/kelhuynh/OpenASL/blob/main/docs/HazardAnalysis/HazardAnalysis.pdf, 2022.
- [3] R. Zhu, Z. Meng, J. Chen, K. Huynh, R. Zhu, and M. N. Hasan. Problem statement and goals. https://github.com/kelhuynh/OpenASL/blob/main/docs/ProblemStatementAndGoals/ProblemStatement.pdf, 2022.
- [4] R. Zhu, Z. Meng, J. Chen, K. Huynh, R. Zhu, and M. N. Hasan. System requirements specification. https://github.com/kelhuynh/OpenASL/blob/main/docs/SRS/SRS.pdf, 2022.

7 Appendix

7.1 User Experience Survey Questions

- On a scale of 1-10, how easy was it to learn the functions of the device (10 = very easy to learn, 1 = very difficult to learn)? Was there anything in particular that you found confusing about the device?
- Does the system translate your signs fast enough? Was there any delay in its processing?
- At any point, did you have to slow down your signing for the machine to correctly process your signing?
- On a scale of 1-10, how portable would you say the device is? (10 = very portable, 1 = not portable at all) Was there anything in particular that made the device less portable? (too large and bulky, too fragile, connections get loose, etc.)
- Does the hand tracking require you to reposition the camera repeatedly? Is this a major inconvenience?

7.2 Reflection

- 1. What knowledge and skills will the team collectively need to acquire to successfully complete the verification and validation of your project? examples of possible knowledge and skills include dynamic testing knowledge, static testing knowledge, specific tool usage, etc. You should look to identify at least one item for each team member
 - i) filler
- 2. For each of the knowledge areas and skills identified in the previous question, what are at least two approaches to acquiring the knowledge or mastering the skill? Of the identified approaches, which will each team member pursue, and why did they make this choice?

Jiahui Chen: TestProject

In order to successfully complete the verification and validation plans for the project, knowledge of TestProject is needed for end-to-end testing. End-to-end testing is a software testing method to test the workflow of the application from the beginning to the end to ensure the application performs as expected. TestProject, a Python testing framework. will be used for the end-to-end testing in our project. TestProject can develop automation framework easily for generic purposes with the Python open source SDK, it can also support PyTest which will be used for unit testing. Some approaches to acquire the knowledge of TestProject are self-study online tutorials such as watching the tutorials on Test Automation, take courses on

udemy or ask other teams who are proficient on TestProject for help. The approach that our team will pursue is watching online tutorials on our own. Because we can find all the knowledge we need for the project and there are many tutorial websites and videos available on the websites. And online tutorials offer a more flexible learning time.