

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Variable Compleja I

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Índice general

1.	Relaciones de Ejercicios		
	1.1.	Números complejos	5
	1.2.	Topología del plano complejo	15
	1.3.	Funciones holomorfas	16
	1.4.	Funciones analíticas	17

1. Relaciones de Ejercicios

1.1. Números complejos

Ejercicio 1.1.1. Probar que el conjunto de matrices

$$M = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$$

con las operaciones de suma y producto de matrices, es un cuerpo isomorfo a C.

Para comprobar ahora que M es isomorfo a \mathbb{C} , se debe probar que existe un isomorfismo entre ambos cuerpos. Sea la siguiente aplicación:

$$f: \ \mathbb{C} \longrightarrow M$$

$$z \longmapsto \begin{pmatrix} \operatorname{Re} z & -\operatorname{Im} z \\ \operatorname{Im} z & \operatorname{Re} z \end{pmatrix}$$

Para probar que f es un isomorfismo, hemos de probar que es un homomorfismo (entre anillos, puesto que los cuerpos son un caso particular), y que es biyectivo. En primer lugar, comprobamos que es un homomorfismo:

1.
$$f(z_1 + z_2) = f(z_1) + f(z_2)$$
.

$$f(z_1 + z_2) = \begin{pmatrix} \operatorname{Re} z_1 + \operatorname{Re} z_2 & -(\operatorname{Im} z_1 + \operatorname{Im} z_2) \\ \operatorname{Im} z_1 + \operatorname{Im} z_2 & \operatorname{Re} z_1 + \operatorname{Re} z_2 \end{pmatrix} = \begin{pmatrix} \operatorname{Re} z_1 & -\operatorname{Im} z_1 \\ \operatorname{Im} z_1 & \operatorname{Re} z_1 \end{pmatrix} + \begin{pmatrix} \operatorname{Re} z_2 & -\operatorname{Im} z_2 \\ \operatorname{Im} z_2 & \operatorname{Re} z_2 \end{pmatrix} = f(z_1) + f(z_2).$$

2.
$$f(z_1 \cdot z_2) = f(z_1) \cdot f(z_2)$$
.

$$f(z_1 \cdot z_2) = \begin{pmatrix} \operatorname{Re} z_1 \cdot \operatorname{Re} z_2 - \operatorname{Im} z_1 \cdot \operatorname{Im} z_2 & -(\operatorname{Re} z_1 \cdot \operatorname{Im} z_2 + \operatorname{Im} z_1 \cdot \operatorname{Re} z_2) \\ \operatorname{Im} z_1 \cdot \operatorname{Re} z_2 + \operatorname{Re} z_1 \cdot \operatorname{Im} z_2 & \operatorname{Re} z_1 \cdot \operatorname{Re} z_2 - \operatorname{Im} z_1 \cdot \operatorname{Im} z_2 \end{pmatrix} = \\ = \begin{pmatrix} \operatorname{Re} z_1 & -\operatorname{Im} z_1 \\ \operatorname{Im} z_1 & \operatorname{Re} z_1 \end{pmatrix} \cdot \begin{pmatrix} \operatorname{Re} z_2 & -\operatorname{Im} z_2 \\ \operatorname{Im} z_2 & \operatorname{Re} z_2 \end{pmatrix} = f(z_1) \cdot f(z_2).$$

3.
$$f(1) = 1$$
.

Tenemos que
$$f(1) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = Id_2 = 1.$$

Por tanto, f es un homomorfismo. Ahora, comprobamos que es biyectivo. Para ello, comprobamos que es inyectivo y sobreyectivo.

 \bullet f es inyectiva.

Sean $z_1, z_2 \in \mathbb{C}$ de forma que $f(z_1) = f(z_2)$. Entonces, igualando componente a componente, tenemos que Re $z_1 = \text{Re } z_2$ y Im $z_1 = \text{Im } z_2$. Por lo tanto, $z_1 = z_2$ y f es inyectiva.

• f es sobreyectiva.

Sea $A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in M$. Entonces, sea $z = a + bi \in \mathbb{C}$, y tenemos que f(z) = A. Por tanto, f es sobreyectiva.

Por tanto, f también es biyectiva, y por tanto es un isomorfismo. Por tanto, M es isomorfo a \mathbb{C} .

Ejercicio 1.1.2. Calcular la parte real, la parte imaginaria y el módulo de los siguientes números complejos:

1.
$$z_1 = \frac{i - \sqrt{3}}{1 + i}$$
.

Tenemos que:

$$z_1 = (-\sqrt{3} + i) \cdot \frac{1}{1+i} = (-\sqrt{3} + i) \cdot \frac{1-i}{1+1} = \frac{-\sqrt{3} + i\sqrt{3} + i - i^2}{2} = \frac{1-\sqrt{3} + (1+\sqrt{3})i}{2}$$

Por tanto, tenemos que:

$$\operatorname{Re} z_1 = \frac{1 - \sqrt{3}}{2},$$

$$\operatorname{Im} z_1 = \frac{1 + \sqrt{3}}{2},$$

$$|z_1| = \sqrt{\left(\frac{1 - \sqrt{3}}{2}\right)^2 + \left(\frac{1 + \sqrt{3}}{2}\right)^2} = \sqrt{\frac{1 + 1 + 3 + 3}{4}} = \sqrt{2}.$$

2.
$$z_2 = \frac{1}{i\sqrt{3} - 1}$$
.

Tenemos que:

$$z_2 = \frac{1}{i\sqrt{3} - 1} = \frac{-1 - \sqrt{3}i}{1 + 3}$$

Por tanto, tenemos que:

$$\operatorname{Re} z_{2} = -\frac{1}{4},$$

$$\operatorname{Im} z_{2} = -\frac{\sqrt{3}}{4},$$

$$|z_{2}| = \sqrt{\left(-\frac{1}{4}\right)^{2} + \left(-\frac{\sqrt{3}}{4}\right)^{2}} = \sqrt{\frac{1+3}{16}} = \frac{1}{2}.$$

Ejercicio 1.1.3. Sea $U=\{z\in\mathbb{C}\mid |z|<1\}$. Fijado $a\in U,$ se considera la función $f:U\to\mathbb{C}$ dada por

$$f(z) = \frac{z - a}{1 - \overline{a}z}$$
 $\forall z \in U$.

Probar que f es una bivección de U sobre sí mismo y calcular su inversa.

En primer lugar, comprobamos que f es una aplicación de U sobre U. Dado $z \in U$, tenemos que:

$$|f(z)| = \left| \frac{z - a}{1 - \overline{a}z} \right| = \frac{|z - a|}{|1 - \overline{a}z|} < 1 \iff |z - a| < |1 - \overline{a}z| \iff |z - a|^2 < |1 - \overline{a}z|^2 \iff$$

$$\iff (z - a)(\overline{z} - \overline{a}) < (1 - \overline{a}z)(1 - a\overline{z}) \iff z\overline{z} - a\overline{z} - z\overline{a} + a\overline{a} < 1 - a\overline{z} - z\overline{a} + a\overline{a}z\overline{z} \iff$$

$$\iff |z|^2 + |a|^2 < 1 + |a|^2|z|^2 \iff |z|^2 - |a|^2|z|^2 < 1 - |a|^2 \iff$$

$$\iff |z|^2(1 - |a|^2) < 1 - |a|^2 \iff |z|^2 < 1.$$

donde hemos usado que, como |a| < 1, entonces $|a|^2 < 1$ y por tanto $1 - |a|^2 > 0$. Por tanto, f es una aplicación de U sobre U. A partir de ahora por tanto consideramos $f: U \to U$. Veamos que es biyectiva. Para ello, vamos a probar que es inyectiva y sobreyectiva.

• Invectividad:

Sean $z_1, z_2 \in U$ tales que $f(z_1) = f(z_2)$. Entonces, tenemos que:

$$\frac{z_1 - a}{1 - \bar{a}z_1} = \frac{z_2 - a}{1 - \bar{a}z_2} \Longrightarrow (z_1 - a)(1 - \bar{a}z_2) = (z_2 - a)(1 - \bar{a}z_1) \Longrightarrow
\Longrightarrow z_1 - \alpha - \bar{a}z_1z_2 + |a|^2 z_2 = z_2 - \alpha - \bar{a}z_2z_1 + |a|^2 z_1 \Longrightarrow
\Longrightarrow z_1 - |a|^2 z_1 = z_2 - |a|^2 z_2 \Longrightarrow (1 - |a|^2) z_1 = (1 - |a|^2) z_2 \Longrightarrow z_1 = z_2.$$

Sobrevectividad:

Sea $w \in U$. Vamos a buscar $z \in U$ tal que f(z) = w. Para ello, vamos a despejar z de la ecuación f(z) = w:

$$\frac{z-a}{1-\overline{a}z} = w \Longrightarrow z - a = w(1-\overline{a}z) \Longrightarrow z - a = w - w\overline{a}z \Longrightarrow z + w\overline{a}z = a + w \Longrightarrow$$
$$\Longrightarrow z(1+w\overline{a}) = a + w \Longrightarrow z = \frac{a+w}{1+w\overline{a}}.$$

Por tanto, dado $w \in U$, consideramos $z = \frac{a+w}{1+w\overline{a}}$. Vamos a comprobar que $z \in U$:

$$\begin{split} |z| &= \left| \frac{a+w}{1+w\overline{a}} \right| = \frac{|a+w|}{|1+w\overline{a}|} < 1 \Longleftrightarrow |a+w| < |1+w\overline{a}| \Longleftrightarrow |a+w|^2 < |1+w\overline{a}|^2 \Longleftrightarrow \\ &\iff (a+w)(\overline{a}+\overline{w}) < (1+w\overline{a})(1+\overline{w}a) \Longleftrightarrow \\ &\iff a\overline{a}+a\overline{w}+w\overline{a}+w\overline{w} < 1+w\overline{a}+\overline{w}a+a\overline{a}w\overline{w} \Longleftrightarrow \\ &\iff |a|^2+|w|^2<1+|w|^2|a|^2 \Longleftrightarrow |a|^2-|w|^2|a|^2<1-|w|^2 \Longleftrightarrow \\ &\iff |w|^2(1-|a|^2)<1-|a|^2 \Longleftrightarrow |w|^2<1. \end{split}$$

Por tanto, $z \in U$ y f(z) = w. Por tanto, f es sobreyectiva.

Por tanto, f es biyectiva. Además, hemos comprobado que su inversa es:

$$f^{-1}: U \longrightarrow U$$

$$w \longmapsto \frac{a+w}{1+w\overline{a}}$$

Ejercicio 1.1.4. Dados $z_1, z_2, \ldots, z_n \in \mathbb{C}^*$, encontrar una condición necesaria y suficiente para que se verifique la siguiente igualdad:

$$\left| \sum_{k=1}^{n} z_k \right| = \sum_{k=1}^{n} |z_k|.$$

Veamos que dicha condición es que, para cada $k \in \Delta_n$, se tenga que $\exists \lambda_k \in \mathbb{R}^+$ tal que $z_k = \lambda_k \ z_1$. Comprobaremos que dicha condición es necesaria y suficiente.

- \implies) Veamos que es una condición necesaria. Demostramos por inducción sobre n.
 - $\underline{n=1}$: La igualdad es trivialmente cierta, tomando $\lambda_1=1$.
 - n = 2: Hay dos opciones:

Opción Rutinaria Supongamos que se cumple para n=2. Entonces, tenemos que:

$$|z_{1} + z_{2}| = |z_{1}| + |z_{2}| \Longrightarrow |z_{1} + z_{2}|^{2} = (|z_{1}| + |z_{2}|)^{2} \Longrightarrow$$

$$\Longrightarrow z_{1}\overline{z_{1}} + z_{1}\overline{z_{2}} + z_{2}\overline{z_{1}} + z_{2}\overline{z_{2}} = |z_{1}|^{2} + 2|z_{1}||z_{2}| + |z_{2}|^{2} \Longrightarrow$$

$$\Longrightarrow z_{1}\overline{z_{2}} + z_{2}\overline{z_{1}} = 2|z_{1}||z_{2}| \Longrightarrow (z_{1}\overline{z_{2}})^{2} + 2|z_{1}||z_{2}| + (z_{2}\overline{z_{1}})^{2} = 4|z_{1}|^{2}|z_{2}|^{2} \Longrightarrow$$

$$\Longrightarrow (z_{1}\overline{z_{2}})^{2} - 2|z_{1}||z_{2}| + (z_{2}\overline{z_{1}})^{2} = 0 \Longrightarrow (z_{1}\overline{z_{2}} - z_{2}\overline{z_{1}})^{2} = 0 \Longrightarrow z_{1}\overline{z_{2}} = z_{2}\overline{z_{1}}$$

Tenemos ahora dos opciones:

Opción 1 Tenemos que:

$$z_1\overline{z_2} = z_2\overline{z_1} = \overline{z_1}\overline{z_2} \Longrightarrow z_1\overline{z_2} \in \mathbb{R}^*$$

Tomamos ahora $\lambda_2 = \frac{z_2\overline{z_2}}{z_1\overline{z_2}} \in \mathbb{R}$, por lo que:

$$\lambda_2 \ z_1 = \frac{z_2 \overline{z_2}}{z_1 \overline{z_2}} \ z_1 = z_2$$

Opción 2 Sea ahora $z_1 = a + bi$ y $z_2 = c + di$. Entonces, tenemos que:

$$z_1\overline{z_2} = (a+bi)(c-di) = ac+bd+(bc-ad)i,$$

$$z_2\overline{z_1} = (c+di)(a-bi) = ac+bd+(ad-bc)i.$$

Por tanto, tenemos que:

$$z_1\overline{z_2} = z_2\overline{z_1} \Longrightarrow bc - ad = ad - bc \Longrightarrow ad = bc.$$

Distinguimos en función del valor de b:

• Si b = 0, entonces ad = 0.

- Si a = b = 0, entonces $z_1 = 0 \notin \mathbb{C}^*$, por lo que no es posible.
- o Si $a \neq 0$, entonces d = b = 0, por lo que $z_1 = a$, $z_2 = c$, con $z_1, z_2 \in \mathbb{R}^*$. Por tanto, tomando $\lambda_2 = c/a$, se tiene que $z_2 = \lambda_2 z_1$.
- Si $b \neq 0$, entonces c = ad/b. Por tanto, tomando $\lambda_2 = d/b$, se tiene que $z_2 = \lambda_2 z_1$.

$$\lambda_2 \ z_1 = \frac{d}{b}(a+bi) = \frac{ad}{b} + di = c + di = z_2.$$

Por tanto, tenemos que $z_2 = \lambda_2 z_1$, con $\lambda_2 \in \mathbb{R}$. Para ver que $\lambda_2 \in \mathbb{R}^+$, tenemos que:

$$|z_1 + z_2| = |z_1(1 + \lambda_2)| = |z_1||1 + \lambda_2|$$

$$|z_1| + |z_2| = |z_1| + |\lambda_2||z_1| = |z_1| + |\lambda_2||z_1| = |z_1|(1 + |\lambda_2|).$$

Igualando, y como $|z_1| \neq 0$, tenemos que $|1 + \lambda_2| = 1 + |\lambda_2|$. Por tanto, como la igualdad de la desigualdad triangular en \mathbb{R} se da si los dos números tienen el mismo signo, tenemos que $\lambda_2 \in \mathbb{R}^+$.

- Otra Opción Vemos ahora los elementos de \mathbb{C} como elementos de \mathbb{R}^2 , con el producto escalar de \mathbb{R}^2 y la norma euclídea. En Análisis Matemático I se provó que, en \mathbb{R}^2 , se cumple la igualdad si y solo si:
 - 1. z_1 y z_2 son linealmente dependientes. Es decir, $\exists \lambda \in \mathbb{R}$ tal que $z_2 = \lambda \ z_1$.
 - 2. Su producto escalar es positivo. Es decir, $\langle z_1, z_2 \rangle > 0$. Esto se da si y solo si:

$$\langle z_1, z_2 \rangle = \langle z_1, \lambda | z_1 \rangle = \lambda \langle z_1, z_1 \rangle = \lambda ||z_1||^2 > 0 \iff \lambda > 0.$$

En cualquier caso se cumple para n=2.

Supongamos que se cumple para n, demostrémolo para n+1. Por hipótesis (no de inducción, sino por trabajar en esta implicación), tenemos que:

$$\left| \sum_{k=1}^{n+1} z_k \right| = \sum_{k=1}^{n+1} |z_k|.$$

Por tanto:

$$\left| \left(\sum_{k=1}^{n} z_k \right) + z_{n+1} \right| = \left(\sum_{k=1}^{n} |z_k| \right) + |z_{n+1}|$$

Usando ahora la hipótesis de inducción, tenemos que:

$$\left| \left(\sum_{k=1}^{n} \lambda_k \right) z_1 + z_{n+1} \right| = \left(\sum_{k=1}^{n} |\lambda_k z_1| \right) + |z_{n+1}| \Longrightarrow$$

$$\implies \left| \left(\sum_{k=1}^{n} \lambda_k \right) z_1 + z_{n+1} \right| = \left(\sum_{k=1}^{n} \lambda_k \right) |z_1| + |z_{n+1}| \Longrightarrow$$

$$\implies \left| \left(\sum_{k=1}^{n} \lambda_k \right) z_1 + z_{n+1} \right| = \left| \left(\sum_{k=1}^{n} \lambda_k \right) z_1 \right| + |z_{n+1}|$$

Notando por $w = \left(\sum_{k=1}^{n} \lambda_k\right) z_1 \in \mathbb{C}^*$, y aplicando lo ya demostrado para n = 2, vemos que $\exists \rho \in \mathbb{R}^+$ tal que $z_{n+1} = \rho$ w. Por tanto:

$$z_{n+1} = \rho \ w = \rho \left(\sum_{k=1}^{n} \lambda_k\right) z_1$$

Tomando $\lambda_{n+1} = \rho\left(\sum_{k=1}^{n} \lambda_k\right) \in \mathbb{R}^+$, se tiene que $z_{n+1} = \lambda_{n+1} z_1$. Por tanto, se cumple para n+1.

Por tanto, por inducción se cumple para todo $n \in \mathbb{N}$.

 \Leftarrow) Veamos que es una condición suficiente. Supongamos que, para cada $k \in \Delta_n$, se tiene que $\exists \lambda_k \in \mathbb{R}^+$ tal que $z_k = \lambda_k \ z_1$. Entonces, tenemos que:

$$\left| \sum_{k=1}^{n} z_k \right| = \left| \sum_{k=1}^{n} \lambda_k \ z_1 \right| = \left| \left(\sum_{k=1}^{n} \lambda_k \right) z_1 \right| = \left(\sum_{k=1}^{n} \lambda_k \right) |z_1| = \sum_{k=1}^{n} \lambda_k |z_1| = \sum_{k=1}^{n} |\lambda_k \ z_1| = \sum_{k=1}^{n} |z_k|.$$

Ejercicio 1.1.5. Describir geométricamente los subconjuntos del plano dados por

1. $A = \{z \in \mathbb{C} \mid |z+i| = 2|z-i|\}.$

Sea $z = x + iy \in A \subset \mathbb{C}$. Entonces, tenemos que:

$$|x + iy + i| = 2|x + iy - i| \Longrightarrow |x + (y + 1)i| = 2|x + (y - 1)i| \Longrightarrow$$

$$\Longrightarrow \sqrt{x^2 + (y + 1)^2} = 2\sqrt{x^2 + (y - 1)^2} \Longrightarrow x^2 + (y + 1)^2 = 4(x^2 + (y - 1)^2) \Longrightarrow$$

$$\Longrightarrow x^2 + y^2 + 2y + 1 = 4x^2 + 4y^2 - 8y + 4 \Longrightarrow 3x^2 + 3y^2 - 10y + 3 = 0 \Longrightarrow$$

$$\Longrightarrow x^2 + y^2 - \frac{10}{3}y + 1 = 0 \Longrightarrow x^2 + \left(y - \frac{5}{3}\right)^2 - \frac{25}{9} + 1 = 0 \Longrightarrow$$

$$\Longrightarrow x^2 + \left(y - \frac{5}{3}\right)^2 = \frac{16}{9}$$

Por tanto, A es la circunferencia de centro $\left(0, \frac{5}{3}\right)$ y radio $\frac{4}{3}$.

2. $B = \{z \in \mathbb{C} \mid |z - i| + |z + i| = 4\}.$

Sea $z=x+iy\in B\subset \mathbb{C}.$ Entonces, tenemos que:

$$|x + iy - i| + |x + iy + i| = 4 \Longrightarrow |x + (y - 1)i| + |x + (y + 1)i| = 4 \Longrightarrow$$

$$\Longrightarrow \sqrt{x^2 + (y - 1)^2} + \sqrt{x^2 + (y + 1)^2} = 4 \Longrightarrow$$

$$\Longrightarrow x^2 + (y - 1)^2 = 16 + x^2 + (y + 1)^2 - 8\sqrt{x^2 + (y + 1)^2} \Longrightarrow$$

$$\Longrightarrow -2y = 16 + 2y - 8\sqrt{x^2 + (y + 1)^2} \Longrightarrow$$

$$\Longrightarrow 4 + y = 2\sqrt{x^2 + (y + 1)^2} \Longrightarrow 16 + 8y + y^2 = 4x^2 + 4y^2 + 4 + 8y \Longrightarrow$$

$$\Longrightarrow 4x^2 + 3y^2 = 12 \Longrightarrow \frac{x^2}{3} + \frac{y^2}{4} = 1$$

Por tanto, se trata de una elipse con centro en el origen. El semieje menor mide $\sqrt{3}$ y el semieje mayor mide 2. Por tanto, la distancia focal es $\sqrt{4-3}=1$. Es decir, se trata de una elipse con ejes en los puntos (0,i), (0,-i) y eje mayor de longitud 4. Esto se podría haber interpretado de forma directa al ver que la suma de las distancias de un punto a dos puntos fijos es constante.

Ejercicio 1.1.6. Probar que se cumple la siguiente igualdad para todo $z \in \mathbb{C}^* \setminus \mathbb{R}^-$:

$$\arg z = 2\arctan\left(\frac{\operatorname{Im} z}{\operatorname{Re} z + |z|}\right) \qquad z \in \mathbb{C}^* \setminus \mathbb{R}^-.$$

Fijado $z \in \mathbb{C}^* \setminus \mathbb{R}^-$, consideramos arg $z \in]-\pi, \pi[$. Entonces, como en particular se tiene arg $z \in \operatorname{Arg} z$, tenemos que:

$$\cos(\arg z) = \frac{\operatorname{Re} z}{|z|} \qquad \land \qquad \operatorname{sen}(\arg z) = \frac{\operatorname{Im} z}{|z|}.$$

De esta forma, como $z \notin \mathbb{R}^-$ (y por tanto $|z| \neq -\operatorname{Re} z$), tenemos que:

$$\frac{\operatorname{Im} z}{\operatorname{Re} z + |z|} = \frac{\operatorname{sen}(\operatorname{arg} z) \cdot |z|}{\operatorname{cos}(\operatorname{arg} z) \cdot |z| + |z|} = \frac{\operatorname{sen}(\operatorname{arg} z)}{\operatorname{cos}(\operatorname{arg} z) + 1}$$

Por ser ambas expresiones iguales, tenemos que:

$$2\arctan\left(\frac{\operatorname{Im} z}{\operatorname{Re} z + |z|}\right) = 2\arctan\left(\frac{\operatorname{sen}(\operatorname{arg} z)}{\cos(\operatorname{arg} z) + 1}\right)$$

La demostración se terminaría si vemos que las expresiones anteriores valen arg z. Para ello, Definimos ahora la función auxiliar siguiente:

$$f:]-\pi, \pi[\longrightarrow \mathbb{R}$$

$$\alpha \longmapsto \alpha - 2 \arctan\left(\frac{\sin \alpha}{\cos \alpha + 1}\right)$$

En primer lugar, tenemos que $f(0) = 0 - 2\arctan(0) = 0$. Por otro lado, como $f \in C^1(]-\pi,\pi[\,,\mathbb{R})$, consideramos la derivada de f:

$$f'(\alpha) = 1 - 2 \cdot \frac{1}{1 + \left(\frac{\sin \alpha}{\cos \alpha + 1}\right)^2} \cdot \frac{\cos \alpha(\cos \alpha + 1) + \sin \alpha \sin \alpha}{(\cos \alpha + 1)^2} =$$

$$= 1 - 2 \cdot \frac{\cos^2 \alpha + \cos \alpha + \sin^2 \alpha}{(\cos \alpha + 1)^2 + \sin^2 \alpha} = 1 - 2 \cdot \frac{1 + \cos \alpha}{\cos^2 \alpha + 1 + 2\cos \alpha + \sin^2 \alpha} =$$

$$= 1 - 2 \cdot \frac{1 + \cos \alpha}{2 + 2\cos \alpha} = 1 - \frac{1 + \cos \alpha}{1 + \cos \alpha} = 0 \qquad \forall \alpha \in]-\pi, \pi[.$$

Por tanto, f es constante, por lo que $f(\alpha) = 0$ para todo $\alpha \in]-\pi, \pi[$. Tomando como ángulo $\alpha = \arg z$, que por la elección hecha sabemos que $\arg z \in]-\pi, \pi[$, tenemos que:

$$\arg z = 2 \arctan \left(\frac{\operatorname{sen}(\arg z)}{\cos(\arg z) + 1} \right)$$

Por tanto, por lo anteriormente visto tenemos que:

$$\arg z = 2 \arctan \left(\frac{\operatorname{Im} z}{\operatorname{Re} z + |z|} \right) \qquad z \in \mathbb{C}^* \setminus \mathbb{R}^-.$$

como queríamos demostrar.

Ejercicio 1.1.7. Probar que, si $z = x + iy \in \mathbb{C}^*$, con $x, y \in \mathbb{R}$, se tiene:

$$\arg z = \begin{cases} \arctan(y/x) & \text{si } x > 0, \\ \arctan(y/x) + \pi & \text{si } x < 0, y > 0, \\ \arctan(y/x) - \pi & \text{si } x < 0, y < 0, \\ \frac{\pi}{2} & \text{si } x = 0, y > 0, \\ -\frac{\pi}{2} & \text{si } x = 0, y < 0. \end{cases}$$

Como arg $z \in \text{Arg } z$, tenemos que:

$$\cos(\arg z) = \frac{\operatorname{Re} z}{|z|} \qquad \land \qquad \operatorname{sen}(\arg z) = \frac{\operatorname{Im} z}{|z|}.$$

Por tanto, tenemos que $x = \text{Re } z = |z| \cos(\arg z)$ e $y = \text{Im } z = |z| \sin(\arg z)$. Por tanto, distinguimos en función de los valores de x e y, usando además que $\arg z \in]-\pi,\pi[$:

• Si x > 0:

En este caso, $x = |z| \cos(\arg z) > 0 \Longrightarrow \arg z \in]-\pi/2, \pi/2[$.

$$\arctan\left(\frac{y}{x}\right) = \arctan\left(\frac{\operatorname{sen}(\operatorname{arg} z)}{\operatorname{cos}(\operatorname{arg} z)}\right) = \arctan\left(\tan(\operatorname{arg} z)\right) = \operatorname{arg} z$$

donde, en la última igualdad, hemos usado que la arcotangente es la inversa de la tangente en el intervalo $]-\pi/2,\pi/2[$.

• Si x < 0, y > 0:

En este caso, $y = |z| \operatorname{sen}(\arg z) > 0 \Longrightarrow \arg z \in]0, \pi[$. Además, se tiene que $x = |z| \cos(\arg z) < 0$. Por tanto, $\arg z \in]^{\pi/2}, \pi[$. No obstante, como no pertenece a la rama principal, hemos de considerar $\theta = \arg z - \pi \in]^{-\pi/2}, 0[$, que por la periodicidad de la tangente sabemos que $\tan(\theta) = \tan(\arg z)$. Por tanto, tenemos que:

$$\arctan\left(\frac{y}{x}\right) = \arctan\left(\tan(\arg z)\right) = \arctan\left(\tan(\theta)\right) = \theta = \arg z - \pi \Longrightarrow$$

$$\Longrightarrow \arg z = \arctan\left(\frac{y}{x}\right) + \pi$$

• Si x < 0, y < 0:

En este caso, $y = |z| \operatorname{sen}(\operatorname{arg} z) < 0 \Longrightarrow \operatorname{arg} z \in]-\pi, 0[$. Además, se tiene que $x = |z| \operatorname{cos}(\operatorname{arg} z) < 0$. Por tanto, $\operatorname{arg} z \in]-\pi, -\pi/2[$. No obstante, como no pertenece a la rama principal, hemos de considerar $\theta = \operatorname{arg} z + \pi \in]0, \pi/2[$, que por la periodicidad de la tangente sabemos que $\operatorname{tan}(\theta) = \operatorname{tan}(\operatorname{arg} z)$. Por tanto, tenemos que:

$$\arctan\left(\frac{y}{x}\right) = \arctan\left(\tan(\arg z)\right) = \arctan\left(\tan(\theta)\right) = \theta = \arg z + \pi \Longrightarrow$$

$$\implies \arg z = \arctan\left(\frac{y}{x}\right) - \pi$$

• Si x = 0, y > 0:

En este caso, $y=|z|\sin(\arg z)>0 \Longrightarrow \arg z\in]0,\pi[$. Además, se tiene que $x=|z|\cos(\arg z)=0$. Por tanto, $\arg z=\pi/2$.

• Si x = 0, y < 0:

En este caso, $y = |z| \operatorname{sen}(\arg z) < 0 \Longrightarrow \arg z \in]-\pi, 0[$. Además, se tiene que $x = |z| \cos(\arg z) = 0$. Por tanto, $\arg z = -\pi/2$.

Ejercicio 1.1.8. Probar las fórmulas de De Moivre:

$$\cos(n\theta) + i \sin(n\theta) = (\cos\theta + i \sin\theta)^n \quad \forall \theta \in \mathbb{R}, \forall n \in \mathbb{N}.$$

Demostraremos las fórmulas de De Moivre por inducción sobre n.

- n=1: La igualdad es trivialmente cierta.
- Supongamos que se cumple para n, demostrémoslo para n+1:

$$(\cos \theta + i \sin \theta)^{n+1} = (\cos \theta + i \sin \theta)^n (\cos \theta + i \sin \theta) =$$

$$= (\cos(n\theta) + i \sin(n\theta))(\cos \theta + i \sin \theta) =$$

$$= \cos(n\theta) \cos \theta - \sin(n\theta) \sin \theta + i(\cos(n\theta) \sin \theta + \sin(n\theta) \cos \theta) =$$

$$= \cos((n+1)\theta) + i \sin((n+1)\theta).$$

Por tanto, por inducción se cumple para todo $n \in \mathbb{N}$. Como no hemos impuesto restricciones sobre θ , se cumple para todo $\theta \in \mathbb{R}$.

Ejercicio 1.1.9. Calcular las partes real e imaginaria del número complejo

$$z = \left(\frac{1 + i\sqrt{3}}{2}\right)^8.$$

Sea $z' = \frac{1 + i\sqrt{3}}{2}$. Entonces, tenemos que:

$$|z'| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1,$$

 $\arg(z') = \arctan\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3}$

donde, para calcular el argumento, hemos empleado que Rez' > 0. Por tanto, tenemos que:

$$z' = \cos\left(\frac{\pi}{3}\right) + i \operatorname{sen}\left(\frac{\pi}{3}\right)$$

$$z = (z')^8 = \left[\cos\left(\frac{\pi}{3}\right) + i \operatorname{sen}\left(\frac{\pi}{3}\right)\right]^8 \stackrel{(*)}{=} \cos\left(\frac{8\pi}{3}\right) + i \operatorname{sen}\left(\frac{8\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right) + i \operatorname{sen}\left(\frac{2\pi}{3}\right).$$

donde en (*) hemos usado las fórmulas de De Moivre. Por tanto, tenemos que:

Re
$$z = \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$$
,
Im $z = \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2}$.

Ejercicio 1.1.10. Probar que, para todo $x \in \mathbb{R}$, se tiene:

$$\operatorname{sen}\left(\frac{x}{2}\right) \sum_{k=0}^{n} \cos(kx) = \cos\left(\frac{nx}{2}\right) \operatorname{sen}\left(\frac{(n+1)x}{2}\right), \tag{1.1}$$

$$\operatorname{sen}\left(\frac{x}{2}\right) \sum_{k=0}^{n} \operatorname{sen}(kx) = \operatorname{sen}\left(\frac{nx}{2}\right) \operatorname{sen}\left(\frac{(n+1)x}{2}\right) \tag{1.2}$$

Demostraremos ambas igualdades de forma simultánea. Para ello, multiplicaremos la segunda igualdad por i y sumaremos ambas:

$$\operatorname{sen}\left(\frac{x}{2}\right) \sum_{k=0}^{n} \left(\cos(kx) + i\operatorname{sen}\left(kx\right)\right) \stackrel{(*)}{=} \operatorname{sen}\left(\frac{x}{2}\right) \sum_{k=0}^{n} \left(\cos(x) + i\operatorname{sen}(x)\right)^{k}$$

donde en (*) hemos usado la fórmula de De Moivre. Considerando el número complejo $z = \cos(x) + i \sin(x)$, definimos $u = \cos\left(\frac{x}{2}\right) + i \sin\left(\frac{x}{2}\right)$, por lo que $u^2 = z$. Además, tenemos que:

$$1 - z^k = u^k \overline{u}^k - u^{2k} = u^k (\overline{u}^k - u^k) = -2i \operatorname{sen}\left(k \cdot \frac{x}{2}\right) \cdot u^k \qquad \forall k \in \mathbb{N}.$$

Por tanto, usando dicho valor de z, tenemos que:

$$\operatorname{sen}\left(\frac{x}{2}\right) \sum_{k=0}^{n} \left(\cos(kx) + i\operatorname{sen}\left(kx\right)\right) = \operatorname{sen}\left(\frac{x}{2}\right) \sum_{k=0}^{n} z^{k}$$

La suma de la derecha es la suma de una progresión geométrica, cuya suma parcial se calcula de igual forma que en \mathbb{R} :

$$\operatorname{sen}\left(\frac{x}{2}\right) \sum_{k=0}^{n} \left(\cos(kx) + i\operatorname{sen}\left(kx\right)\right) \stackrel{(*)}{=} \operatorname{sen}\left(\frac{x}{2}\right) \cdot \frac{1 - z^{n+1}}{1 - z} =$$

$$= \operatorname{sen}\left(\frac{x}{2}\right) \cdot \frac{-2i\operatorname{sen}\left(\left(n+1\right) \cdot \frac{x}{2}\right) \cdot u^{n+1}}{-2i\operatorname{sen}\left(\frac{x}{2}\right) \cdot u} =$$

$$= \operatorname{sen}\left(\frac{\left(n+1\right)x}{2}\right) \cdot u^{n} =$$

$$= \operatorname{sen}\left(\frac{\left(n+1\right)x}{2}\right) \left[\cos\left(\frac{nx}{2}\right) + i\operatorname{sen}\left(\frac{nx}{2}\right)\right]$$

donde en (*) hemos calculado la suma parcial, donde hemos supuesto que $z \neq 1$; es decir, que $x \notin 2\pi \mathbb{Z}$ (ya que, en dicho caso, ambas igualdades son triviales). Igualando las partes real e imaginaria, obtenemos las igualdades pedidas.

1.2. Topología del plano complejo

Ejercicio 1.2.1. Estudiar la continuidad de la función argumento principal; esta es, arg : $\mathbb{C}^* \to \mathbb{R}$.

Ejercicio 1.2.2. Dado $\theta \in \mathbb{R}$, se considera el conjunto $S_{\theta} = \{z \in \mathbb{C}^* \mid \theta \notin \operatorname{Arg} z\}$. Probar que existe una función $\varphi \in \mathcal{C}(S_{\theta})$ que verifica $\varphi(z) \in \operatorname{Arg}(z)$ para todo $z \in S_{\theta}$.

Ejercicio 1.2.3. Probar que no existe ninguna función $\varphi \in \mathcal{C}(\mathbb{C}^*)$ tal que $\varphi(z) \in \operatorname{Arg} z$ para todo $z \in \mathbb{C}^*$, y que el mismo resultado es cierto, sustituyendo \mathbb{C}^* por $\mathbb{T} = \{z \in \mathbb{C} \mid |z| = 1\}$.

Ejercicio 1.2.4. Probar que la función $\operatorname{Arg}: \mathbb{C}^* \to \mathbb{R}/2\pi\mathbb{Z}$ es continua, considerando en $\mathbb{R}/2\pi\mathbb{Z}$ la topología cociente. Más concretamente, se trata de probar que, si $\{z_n\}$ es una sucesión de números complejos no nulos, tal que $\{z_n\} \to z \in \mathbb{C}^*$ y $\theta \in \operatorname{Arg} z$, se puede elegir $\theta_n \in \operatorname{Arg} z_n$ para todo $n \in \mathbb{N}$, de forma que $\{\theta_n\} \to \theta$.

Ejercicio 1.2.5. Dado $z \in \mathbb{C}$, probar que la sucesión $\left\{ \left(1 + \frac{z}{n}\right)^n \right\}$ no es convergente y calcular su límite.

1.3. Funciones holomorfas

Ejercicio 1.3.1. En cada uno de los siguientes casos, estudiar la derivabilidad de la función $f: \mathbb{C} \to \mathbb{C}$ definida como se indica:

1.
$$f(z) = z(\operatorname{Re} z)^2$$
 para todo $z \in \mathbb{C}$.

2.
$$f(x+iy) = x^3 - y + i\left(y^3 + \frac{x^2}{2}\right)$$
 para todo $x, y \in \mathbb{R}$.

3.
$$f(x+iy) = \frac{x^3 + iy^3}{x^2 + y^2}$$
 para todo $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}, \text{ con } f(0) = 0.$

Ejercicio 1.3.2. Probar que existe una función entera f tal que:

Re
$$f(x+iy) = x^4 - 6x^2y^2 + y^4$$
 para todo $x, y \in \mathbb{R}$.

Si se exige además que f(0) = 0, entonces f es única.

Ejercicio 1.3.3. Encontrar la condición necesaria y suficiente que deben cumplir $a, b, c \in \mathbb{R}$ para que exista una función entera f tal que:

Re
$$f(x+iy) = ax^2 + bxy + cy^2$$
 para todo $x, y \in \mathbb{R}$.

Ejercicio 1.3.4. Sea Ω un dominio y $f \in \mathcal{H}(\Omega)$. Supongamos que existen $a, b, c \in \mathbb{R}$ con $a^2 + b^2 > 0$, tales que:

$$a \operatorname{Re} f(z) + b \operatorname{Im} f(z) = c$$
 para todo $z \in \Omega$.

Probar que f es constante.

Ejercicio 1.3.5. Sea Ω un dominio y $f \in \mathcal{H}(\Omega)$. Probar que si $\overline{f} \in \mathcal{H}(\Omega)$, entonces f es constante.

Ejercicio 1.3.6. Sea Ω un dominio y $f \in \mathcal{H}(\Omega)$. Sea $\Omega^* = \{\overline{z} \mid z \in \Omega\}$ y $f^* : \Omega^* \to \mathbb{C}$ la función definida por:

$$f^*(z) = \overline{f(\overline{z})}$$
 para todo $z \in \Omega^*$.

Probar que $f^* \in \mathcal{H}(\Omega^*)$.

Ejercicio 1.3.7. Probar que la restricción de la función exponencial a un subconjunto abierto no vacío del plano, nunca es una función racional.

1.4. Funciones analíticas

Ejercicio 1.4.1. Calcular el radio de convergencia de las siguientes series de potencias:

$$1. \sum_{n\geqslant 1} \frac{n!}{n^n} z^n$$

$$2. \sum_{n \geqslant 0} z^{2n}$$

3.
$$\sum_{n\geq 0} 2^n z^{n!}$$

4.
$$\sum_{n>0} (3+(-1)^n)^n z^n$$

5.
$$\sum_{n>0} (n+a^n) z^n \text{ con } a \in \mathbb{R}^+$$

6.
$$\sum_{n\geq 0} a^{n^2} z^n \text{ con } a \in \mathbb{C}$$

Ejercicio 1.4.2. Conocido el radio de convergencia R de la serie $\sum_{n\geqslant 0} \alpha_n z^n$, calcular el de las siguientes:

1.
$$\sum_{n\geqslant 0} n^k \alpha_n z^n \text{ con } k \in \mathbb{N} \text{ fijo.}$$

$$2. \sum_{n\geqslant 0} \frac{\alpha_n}{n!} z^n$$

Ejercicio 1.4.3. Caracterizar las series de potencias que convergen uniformemente en todo el plano.

Ejercicio 1.4.4. Estudiar la convergencia puntual, absoluta y uniforme, de la serie $\sum_{n \geq 0} f_n$ donde:

$$f_n(z) = \left(\frac{z-1}{z+1}\right)^n$$
 para todo $z \in \mathbb{C} \setminus \{-1\}$