Process Mining: Data Science in Action

Two-Phase Process Discovery And Its Limitations

prof.dr.ir. Wil van der Aalst www.processmining.org

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

From event logs to transition systems to process models

different abstractions thresholds learn a transition system possible to mediate using a state abstraction between overfitting and transition system underfitting [a,b,c,d] transform the transition systems into an equivalent Petri net е Petri net discovery of concurrency visualize (and convert if needed)

Algorithm discussed before

- 1. For each transition label in the transition system, a transition is added to the Petri net.
- 2. The minimal non-trivial regions are computed.
- For each minimal non-trivial region in the transition system, a place is added.
- 4. The corresponding arcs are generated.
- A token is added to each place that corresponds to a region containing the initial state.

Example: event log to transition system

Example: Minimal non-trivial regions

Example: Minimal regions define places

Weaknesses of approach based on state-based regions

- Inability to discover particular process constructs (can be handled through extensions of the basic algorithm).
- Inability to balance the four forces (fitness, precision, generalization, and simplicity) well.

Question: Construct Petri net using regions

What is the Petri net constructed based on state-based regions?

Answer: Petri net without places

Only trivial regions: \emptyset and $\{s1,s2,s3\}$

Petri net has no places:

Also allows for:

- (a)
- ⟨a,a,a⟩
- (a,a,a,a,a,a,a)

Question: Construct Petri net using regions

What is the Petri net constructed based on state-based regions?

Answer (1/2)

Regions:

- {s1} (a exits, b and c do not cross)
- {s2} (a enters, b does not cross, c exits)
- {s3} (a and b does not cross, c enters)

Answer (2/2)

Three regions: **{s1}**, **{s2}**, and **{s3}**.

Resulting Petri net allows for traces where b is executed before a or after c.

©Wil van der Aalst & TU/e (use only with permission & acknowledgements)

Question: Construct Petri net using regions

What is the Petri net constructed based on state-based regions?

Answer (1/2)

Regions:

- {s1,s2} (a does not cross, b exits)
- {s3,s4} (a does not cross, b enters)
- {s1,s3} (a exits and b does not cross)
- {s2,s4} (a enters and b does not cross)

Answer (2/2)

All underfitting ...

Petri net can simulate the behavior of the transition system, but not the other way around (no bisimulation).

Refinement ensuring bisimulation

Refinement ensuring bisimi

split *b* labels based on region information

ProM plug-in ensures bisimulation

ProM plug-in ensures bisimulation

ProM plug-in ensures bisimulation

Many refinements are possible

- One can impose various constraints on places.
- Typical examples:
 - At most k input or k output arcs.
 - Only pure split or join places.
 - Only free-choice places (separate choice and synchronization).
 - ...

Weaknesses of approach based on state-based regions

- Inability to discover particular process constructs (can be handled through extensions of the basic algorithm).
- Inability to balance the four forces (fitness, precision, generalization, and simplicity) well.

Step 1: Learning a transition system

Step 1: Learning a transition system

Step 1: Learning a transition system

Step 2: Discovering concurrency

- Classical state-based regions (including label splitting) ensure behavioral equivalence (bisimulation).
- No special attention for generalization or simplicity.

Summary

- Region-based techniques can be used to discover complex process patterns.
- Provide insights into the essence of process discovery.
- But:
 - Overfitting may be a problem (make sure the initial transition system is general enough).
 - Inability to leave out infrequent behavior (but can be done in the transition system).
 - Noise and incompleteness cannot be handled well.

Part I: Preliminaries Part III: Beyond Process Discovery Chapter 2 Chapter 3 Chapter 7 Chapter 8 Chapter 1 Chapter 9 Process Modeling and Data Mining Introduction Conformance Mining Additional **Operational Support** Analysis Checking Perspectives Part II: From Event Logs to Process Models Part IV: Putting Process Mining to Work Chapter 10 Chapter 11 Chapter 4 Chapter 5 Chapter 6 Chapter 12 Getting the Data Process Discovery: An Advanced Cass **Tool Support** Analyzing "Lasagna Analyzing "Spaghetti Introduction Discove aigues Processes" Processes" Part V: Reflection Chapter 14 Chapter 13 Cartography and **Epilogue Navigation** Wil M. P. van der Aalst Process Mining

2 Springer