PSTAT 126

Regression Analysis

Laura Baracaldo & Rodrigo Targino

Lecture 6
Multiple Linear Regression

Multiple Linear Regression Models (MLR)

Consider the linear regression model with p predictors:

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip} + \epsilon_i$$

For each $i=1,\ldots,n$ we assume $\epsilon_i \overset{i.i.d}{\sim} N(0,\sigma^2)$. Thus $y_i \overset{ind}{\sim} N(\mu_i,\sigma^2)$, with $\mu_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip}$.

Multiple Linear Regression Models (MLR)

Matrix Representation: By stacking up all the observations, we can obtain the matrix representation of the MLR model:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \qquad \boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \boldsymbol{I}_n)$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \dots & x_{1p} \\ 1 & x_{21} & \dots & x_{2p} \\ \vdots & \vdots & \dots & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

This implies $\boldsymbol{y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\boldsymbol{I}_n)$.

Estimation

LS and ML Estimation of β : Provided X^TX is non-singular:

$$\hat{\boldsymbol{\beta}}_{LSE} = \hat{\boldsymbol{\beta}}_{MLE} = (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y}$$

So that $\hat{y} = X\hat{\beta} = Hy$, with $H = X(X^TX)^{-1}X^T$ the *Projection Matrix* or *Hat Matrix*, which corresponds to the orthogonal projection onto the column space of X.

Estimation of σ^2 :

$$\hat{\sigma}^2 = \frac{\hat{\epsilon}^T \hat{\epsilon}}{n - p^*} = \frac{SSR}{n - p^*}$$

Algebraic Properties of the Projection Matrix H

- \boldsymbol{H} is symmetric: $\boldsymbol{H}^T = \boldsymbol{H}$.
- \boldsymbol{H} is idempotent: $\boldsymbol{H}^2 = \boldsymbol{H}$.
- If X is a $n \times p^*$ matrix with $rank(X) = p^*$, then $rank(H) = p^*$.
- X is invariant under H: HX = X
- The eigenvalues of H consist of p^* ones, and $n-p^*$ zeros.

Reminders:

- The rank of a matrix is the number of its linearly independent columns.
- If $Az = \lambda z$, then z is an eigenvector of A with corresponding eigenvalue λ .

Algebraic Properties of the Projection Matrix H

Note that the residuals of the MLR model can be written as:

$$\hat{\epsilon} = y - \hat{y} = y - Hy = (I - H)y = My$$

- ullet $oldsymbol{M}=(oldsymbol{I}-oldsymbol{H})$ is symmetric: $oldsymbol{M}^T=oldsymbol{M}$.
- M is idempotent: $M^2 = M$
- $rank(\mathbf{M}) = n p^*.$
- ullet The eigenvalues of M consist of $n-p^*$ ones, and p^* zeros.
- $\hat{\epsilon}$ and X are orthogonal: $\hat{\epsilon}^T X = 0$. Under normality this is equivalent to statistical independence.
- ullet M and H are orthogonal: MH=0. This implies $\hat{\epsilon}$ and \hat{eta} are independent (Under normality).

6/24

Inference on β and σ^2

• Distribution of $\hat{\beta}$:

$$E(\hat{\boldsymbol{\beta}}) = E\left[(\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y} \right]$$

$$= (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T E(\boldsymbol{y}) = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} = \boldsymbol{\beta}$$

$$V(\hat{\boldsymbol{\beta}}) = V\left[(\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y} \right]$$

$$= \left[(\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \right] V(\boldsymbol{y}) \left[(\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \right]^T = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \sigma^2$$

$$Var(\hat{\beta}_j) = \sigma^2 \left[\boldsymbol{X}^T \boldsymbol{X} \right]_{jj}^{-1} \qquad Cov(\hat{\beta}_i, \hat{\beta}_j) = \sigma^2 \left[\boldsymbol{X}^T \boldsymbol{X} \right]_{ij}^{-1}$$

$$\Rightarrow \hat{\boldsymbol{\beta}} \sim N_{p^*}(\boldsymbol{\beta}, (\boldsymbol{X}^T \boldsymbol{X})^{-1} \sigma^2).$$

Gauss-Markov Theorem: $\hat{\beta}$ is the best linear unbiased estimate (BLUE) of β .

7 / 24

Inference on β and σ^2

• **Distribution of** $\hat{\sigma}^2$. Note that:

$$\hat{m{\epsilon}} = m{M}m{y} = m{M}(m{X}m{eta} + m{\epsilon}) = m{M}m{\epsilon}$$

Lemma

If A is a symmetric and idempotent $n \times n$ real matrix and $Z \sim N(0, I_n)$ is a random vector of n independent standard normal variables, then Z^TAZ has chi-squared(r) distribution, r being the trace of A.

From the lemma we can prove that $\frac{\hat{\epsilon}^T\hat{\epsilon}}{\sigma^2}\sim\chi^2_{(n-p^*)}$ since:

$$rac{\hat{oldsymbol{\epsilon}}^T\hat{oldsymbol{\epsilon}}}{\sigma^2}=rac{oldsymbol{\epsilon}^Toldsymbol{M}oldsymbol{\epsilon}}{\sigma^2}$$

Species Example

```
Beta.hat <- solve(crossprod(X)) % * %(t(X) % * %v):t(Beta.hat)
       Intercept
                       Area Elevation
                                                     Adiacent
                                            Scruz
## [1,] 7.075377 -0.02397793 0.3195734 -0.2393552 -0.07484842
sigma.hat <- sqrt(sum(fit1$residuals^2)/(fit1$df.residual)); sigma.hat
## [1] 59.74333
XtX.inverse <- solve(crossprod(X)): XtX.inverse</pre>
                Intercept
                                   Area
                                            Elevation
                                                             Scruz
                                                                        Adjacent
## Intercept 9.849524e-02 3.879513e-05 -1.589754e-04 -4.059337e-04 2.421334e-05
## Area
             3.879513e-05 1.296222e-07 -2.439943e-07 1.163061e-07 4.003452e-08
## Elevation -1.589754e-04 -2.439943e-07 7.323822e-07 -1.457015e-07 -1.471043e-07
## Scruz
          -4.059337e-04 1.163061e-07 -1.457015e-07 7.594187e-06 -1.368476e-08
## Adjacent 2.421334e-05 4.003452e-08 -1.471043e-07 -1.368476e-08 7.747375e-08
Beta.hat.SE <- sigma.hat*sqrt(diag(XtX.inverse)); Beta.hat.SE</pre>
                     Area Elevation
                                                     Adjacent
    Intercept
                                            Scruz
## 18 74981844 0 02150944 0 05112795 0 16463800
                                                   0.01662902
```

PSTAT 126

9/24

Species Example

```
##
## Call:
## lm(formula = Species ~ Area + Elevation + +Scruz + Adjacent,
      data = gala)
##
## Residuals:
       Min
               1Q Median
                                 30
                                         Max
## -111.637 -34.930 -7.864 33.432 182.524
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.07538 18.74982 0.377 0.709093
## Area
            -0.02398 0.02151 -1.115 0.275554
## Elevation 0.31957 0.05113 6.250 1.54e-06 ***
          -0.23936 0.16464 -1.454 0.158434
## Scruz
## Adjacent -0.07485
                        0.01663 -4.501 0.000136 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 59.74 on 25 degrees of freedom
## Multiple R-squared: 0.7658, Adjusted R-squared: 0.7284
## F-statistic: 20.44 on 4 and 25 DF, p-value: 1.39e-07
```

Model Performance

- Goodness of fit.
- Estimators Quality.
- Usefulness of predictors.
- Prediction accuracy.

Goodness of fit

• Residual Standard Error (RSE) $\hat{\sigma}$

$$\hat{\sigma} = \sqrt{\frac{\hat{\boldsymbol{\epsilon}}^T \hat{\boldsymbol{\epsilon}}}{n - p^*}}$$

The smaller $\hat{\sigma}$ the better. But, how small?

Determination coefficient R^2

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} = 1 - \frac{SSR}{SST} = 1 - \frac{\mathbf{y}^{T} \mathbf{M} \mathbf{y}}{\mathbf{y}^{T} \mathbf{M}_{1} \mathbf{y}}$$

Where $\boldsymbol{M}_1 = (\boldsymbol{I} - \mathbf{1}(\mathbf{1}^T\mathbf{1})^{-1}\mathbf{1}^T)$

It can be proved that:

$$R^2 = cor^2(\boldsymbol{y}, \hat{\boldsymbol{y}})$$

Hypothesis tests for a set of predictors

We want to assess the usefulness of the predictors in the prediction of the response. For instance, let's suppose we want to test whether there is at least one predictor useful in the prediction of the response:

$$H_0: \beta_1 = \ldots = \beta_p = 0$$
 $H_1: \beta_j \neq 0$ for at least one $j \in 1, \ldots, p$.

This can be tested by comparing the full model: $y=X\beta+\epsilon$ to the null model: $y=\mu+\epsilon$.

General Hypothesis Test

Consider two models M_1 and M_2 , such that $c(M_1) \subset c(M_2)$. Where c(M) denotes the column space spanned by the predictors matrix of model M. This means that predictors included in model M_1 is a subset of predictors included in M_2 . How to decide which model is better?

- If there is not much difference in how well both models fit the data, we go with the *smaller* model M_1 .
- If the *larger* model M_2 fits better because of the additional variables, we go with model M_2 .

General Hypothesis Test

We have learned that we can evaluate the performance of a model by calculating the SSR. Small values of SSR will imply a better fit of the model. For $c(M_1) \subset c(M_2)$ it is always true that:

$$SSR_{M_2} \leq SSR_{M_1}$$

Let's consider the difference $SSR_{M_1}-SSR_{M_2}$. If this difference is small, there is not substantial difference between the fit of the larger model and the smaller model. Thus, we go with M_1 . If this difference is significant, the fit of the smaller model is substantially worse than the fit of the large model. Therefore, we go with model M_2 .

F-Test

We want to test the hypothesis:

 $H_0: M_1$ and M_2 are equivalent. $H_1: M_2$ fits better.

We consider the F-Statistic:

$$\begin{split} F &= \frac{(SSR_{M_1} - SSR_{M_2})/(df_{M_1} - df_{M_2})}{SSR_{M_2}/df_{M_2}} \\ &= \frac{\boldsymbol{y}^T (\boldsymbol{H}_2 - \boldsymbol{H}_1) \boldsymbol{y}/(df_{M_1} - df_{M_2})}{\boldsymbol{y}^T (\boldsymbol{I} - \boldsymbol{H}_2) \boldsymbol{y}/df_{M_2}} \sim F_{(df_{M_1} - df_{M_2}, df_{M_2})} \end{split}$$

With $m{H}_1$ and $m{H}_2$ the projection matrices for models M_1 and M_2 respectively. $F \sim F_{(df_{M_1}-df_{M_2},df_{M_2})}$, since $\frac{m{y}^T(m{H}_2-m{H}_1)m{y}}{\sigma^2} \sim \chi^2_{df_{M_1}-df_{M_2}}$ and $\frac{m{y}^T(m{I}-m{H}_2)m{y}}{\sigma^2} \sim \chi^2_{df_{M_2}}$

Case 1: Global F-Test

The global F-test:

$$H_0: \beta_1 = \ldots = \beta_p = 0$$
 $H_1: \beta_j \neq 0$ for at least one $j \in 1, \ldots, p$

Which is equivalent to:

$$H_0: M_0$$
 and M_F are equivalent. $H_1: M_F$ fits better.

Where M_0 is the null model (with no predictors): $\mathbf{y} = \mathbf{\mu} + \boldsymbol{\epsilon}$, and M_F is the full model (with p predictors): $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$.

Case 1: Global F-Test - ANOVA

Total Sum of Squares:

$$SSR_{M_0} = y^T (I - H_0)y = \sum_{i=1}^n (y_i - \bar{y})^2$$
, with $df = n - 1$.

Residual Sum of Squares:

$$SSR_{M_F} = \boldsymbol{y}^T (\boldsymbol{I} - \boldsymbol{H}_F) \boldsymbol{y} = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$
, with $df = n - p^*$.

Regression Sum of Squares:

$$\Rightarrow SSR_{M_0} - SSR_{M_F} = \boldsymbol{y}^T (\boldsymbol{H}_F - \boldsymbol{H}_0) \boldsymbol{y} = \sum_{i=1}^n (\hat{y}_i - \bar{y})^2$$
, with $df = p$.

Recall
$$H_0 = \boldsymbol{X}_0(\boldsymbol{X}_0^T\boldsymbol{X}_0)^{-1}\boldsymbol{X}_0^T = \boldsymbol{1}(\boldsymbol{1}^T\boldsymbol{1})^{-1}\boldsymbol{1}^T$$
 and $H_F = \boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T$.

Case 1: Global F-Test

For a significance level α , we reject H_0 if $F>F_{(1-\alpha;df_{M_1}-df_{M_2},df_{M_2})}$ or equivalently, if $p-value<\alpha$.

Recall: p-value: Probability of obtaining tests results as least as extreme as the observed results.

Case 2: F-test for a pair of predictors

$$H_0: \beta_l = \beta_k = 0$$
 $H_1: \beta_l \neq 0 \lor \beta_k \neq 0$

Which is equivalent to:

 $H_0: M_1$ and M_F are equivalent. $H_1: M_F$ fits better.

Where M_1 is the model that does not include predictors X_l nor X_k and M_F is the full model (with p predictors).

Case 2: F-test for a pair of predictors - ANOVA

$$SSR_{M_1} = \mathbf{y}^T (\mathbf{I} - \mathbf{H}_1) \mathbf{y}$$
, with $df = n - (p^* - 2) = n - p + 1$.
 $SSR_{M_F} = \mathbf{y}^T (\mathbf{I} - \mathbf{H}_F) \mathbf{y}$, with $df = n - p^* = n - p - 1$.
 $\Rightarrow SSR_{M_1} - SSR_{M_F} = \mathbf{y}^T (\mathbf{H}_F - \mathbf{H}_1) \mathbf{y}$, with $df = 2$.

Recall $H_1 = \boldsymbol{X}_1(\boldsymbol{X}_1^T\boldsymbol{X}_1)^{-1}\boldsymbol{X}_1^T$, with \boldsymbol{X}_1 the matrix without predictors X_l and X_k and $H_F = \boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T$.

Species Example: $\hat{\sigma}$ and R^2

```
fit1<- lm( Species ~ Area+Elevation+ + Scruz+ Adjacent, data=gala)
RSE<- sqrt(sum(fit1$residuals^2)/fit1$df.residual); RSE ## With Formula
## [1] 59.74333
sigma(fit1) ##With lm function
## [1] 59.74333
v.hat<- fit1$fitted.values
R2<- cor(y.hat,y)^2;R2 ## With Formula
## [1] 0.7658462
summary(fit1)$r.squared ##With lm function
## [1] 0.7658462
```

Species Example: Global F-Test

```
H_0: \beta_{Area} = \beta_{Elevation} = \beta_{Scruz} = \beta_{Adjacent} = 0 H_1: \beta_j \neq 0 for at least one j \in \{Area, Elevation, Scruz, Adjacent\}
```

```
fullmodel <- lm( Species ~ Area+Elevation+
                                          Scruz+ Adjacent, data=gala)
nullmodel <- lm(Species~1, data=gala)
anova1 <- anova(nullmodel, fullmodel); anova1
## Analysis of Variance Table
##
## Model 1: Species ~ 1
## Model 2: Species ~ Area + Elevation + Scruz + Adjacent
##
    Res.Df
              RSS Df Sum of Sq F Pr(>F)
## 1
        29 381081
    25 89232 4 291850 20.442 1.39e-07 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
pval \leftarrow 1-pf(anova1$F[2],4,25);pval
```

[1] 1.389845e-07

Species Example: F-test for a pair of predictors

$$H_0: \beta_{Area} = \beta_{Scruz} = 0$$
 $H_1: \beta_{Area} \neq 0 \lor \beta_{Scruz} \neq 0$

```
fullmodel<- lm( Species ~ Area+Elevation+ Scruz+ Adjacent, data=gala)
Model1 <- lm(Species~Elevation+ Adjacent, data=gala)
anova2<-anova(Model1, fullmodel);anova2

## Analysis of Variance Table
##
## Model 1: Species ~ Elevation + Adjacent
## Model 2: Species ~ Area + Elevation + Scruz + Adjacent
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 27 100003
## 2 25 89232 2 10771 1.5089 0.2406
pval<- 1-pf(anova2$F[2],2,25);pval</pre>
```