Pattern Recognition Assignment#2

April 13, 2023

- Q1. Given a test sample $\mathbf{x} = (2, 5)^{\top}$ and the following eight training samples of three categories, please answer the following questions.
 - (a) Please determine the category of \mathbf{x} using the single-nearest neighbor algorithm.
 - (b) Please determine the category of ${\bf x}$ using the k-nearest neighbor algorithm, where k = 3.

Training examples	Category	Training examples	Category	
$\mathbf{a} = (3,9)^{\top}$	ω_1	$\mathbf{e} = (5,1)^{\top}$	ω_3	
$\mathbf{b} = (1,3)^{\top}$	ω_3	$\mathbf{f} = (4,5)^{T}$	ω_2	
$\mathbf{c} = (1,2)^{T}$	ω_3	$\mathbf{g} = (6,9)^{T}$	ω_1	
$\mathbf{d} = (3,8)^{T}$	ω_1	$\mathbf{h} = (7,3)^{\top}$	ω_3	

Q2. Given a set of one-dimensional training samples $D = \{x_1, x_2, ..., x_{10}\}$ as follows:

_	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}
	-0.17	0.24	-0.79	0.32	0.44	0.08	0.26	0.06	-0.71	0.65

- (a) Suppose these data points are independently and identically sampled from $N(\mu, 1)$. Please estimate μ by maximum-likelihood estimation and further calculate the mean squared error (MSE) between the estimated distribution $\hat{p}(x) \sim N(\hat{\mu}, 1)$ and the ground-truth distribution $p(x) \sim N(0, 1)$ over the given training samples, i.e., $\frac{1}{10} \sum_{i=1}^{10} (p(x_i) \hat{p}(x_i))^2$.
- (b) Given the window function $\varphi(u) \sim N(0,1)$ and $h_n = \frac{1}{\sqrt{n}}$, please estimate the probability density function (pdf) by the Parzen window method. Furthermore, please calculate the MSE between the estimated Parzen pdf and the ground-truth distribution over D.

(Tips: It is recommended to write computer programs to calculate the MSEs.)