Réduction des endomorphismes.

Diagonalisation

Soit E un espace vectoriel de dimension finie sur K et f un endomorphisme de E. Le but de réduction est de chercher des bases dans E dans lesquelles la forme de la matrice associée à f est la plus simple possible. Si f est déja donné par une matrice $A = M_B(f)$ dans une base B, il s'agit de passer à une autre base B' de façon à ce que la nouvelle matrice $A' = M_{B'}(f) = P^{-1}AP$ soit "simple".

La forme la plus simple d'une matrice est la forme diagonale.

1.1. Définition: Un endomorphisme est diagonalisable si il admet une base dans laquelle sa matrice est diagonale.

Vecteurs propres, valeurs propres

Si $B = (e_1, ..., e_n)$ alors $M_B(f) = diag(\lambda_1, ..., \lambda_n)$ signifie que $f(e_i) = \lambda_i e_i, i = 1, ..., n$.

1.2. Définition: Un vecteur propre de f est vecteur non-nul v tel que f(v) est colinéaire à v: $f(v) = \lambda v$; le coefficient de proportionalité λ est la valeur propre associée. Un scalaire λ est une valeur propre de f s'il existe un vecteur non-nul v tel que $f(v) = \lambda v$.

La matrice de l'endomorphisme dans une base de vecteurs propres est diagonale, avec les valeurs propres sur la diagonale principale.

Une reformulation de la définition de la diagonalisabilité:

1.1'. Définition: Un endomorphisme est diagonalisable si il existe une base de vecteurs propres.

L'ensemble des valeurs propres de f s'appelle **spectre** de f.

Remarque. Si v est un vecteur propre, tout vecteur non-nul colinéaire à v est aussi un vesteur propre (avec la même valeur propre).

- 1.3. Théorème. Des vecteurs propres associés à des valeurs propres deux à deux distinctes sont linéairement indépendants.
 - • Démonstration. Soit $f(v_i) = \lambda_i v_i$, i = 1, ..., n et $\lambda_i \neq \lambda_j$ si $i \neq j$.

Supposons par absurde que la famille $v_1,...,v_n$ est liée. Soit k tel que les vecteurs $v_1,...,v_k$ sont linéairement indépendents et $v_1,...,v_k,v_{k+1}$ sont liés. Donc

$$v_{k+1} = \sum_{i=1}^{k} \alpha_i v_i . \ (*)$$
On a $f(v_{k+1}) = \sum_{i=1}^{k} \alpha_i f(v_i)$, donc
$$\lambda_{k+1} v_{k+1} = \sum_{i=1}^{k} \alpha_i \lambda_i v_i . \ (**)$$
On multiplie l'égalité (*) par λ_{k+1} :
$$\lambda_{k+1} v_{k+1} = \sum_{i=1}^{k} \alpha_{k+1} \lambda_i v_i . \ (***)$$

et on soustrait (**) de (***). Cela donne

$$0 = \sum_{i=1}^{k} \alpha_i (\lambda_{k+1} - \lambda_i) v$$

 $0 = \sum_{i=1}^k \alpha_i (\lambda_{k+1} - \lambda_i) v_i$ On note que $\lambda_{k+1} - \lambda_i \neq 0$ et que parmi les coefficients α_i il y a des coefficients non-nuls.

Par conséquent, les vecteurs $v_1, ..., v_k$ sont liés. Cela donne une contradiction à l'hypothèse de départ. • •

1.4. Corollaire. Soit $n = \dim(E) < \infty$. Alors

- 1. f admets au plus n valeurs propres.
- 2. Si f admet exactement n valeurs propres (deux à deux distinctes), fest diagonalisable.
 - \bullet Démonstration.
- 1. Le nombre de vecteurs de E linéairement indépendents ne dépasse pas la dimension de E.
- 2. Les n vecteurs propres associés sont linéairement indépendents et donc forment une base de E. • •

A la recherche des vecteurs propres: polynôme caractéristique.

Soit $\dim(E) < \infty$. On remarque que λ est une valeur propre si et seulement si $f - \lambda Id$ n'est pas injectif: $Ker(f - \lambda I) \neq \{0\}$. En dimension finie cette condition est équivalente à l'annulation du déterminant:

dét $(f - \lambda Id) = 0$. C'est l'équation caractéristique pour les valeurs propres.

[Rappel: $det(f - \lambda Id)$ est défini comme $det(M_B(f) - \lambda I_n)$ par rapport à une base B; noter que I_n est la matrice de l'identité Id dans n'importe quelle base.]

1.5. Définition. Le déterminant $p_f(x) = \det (f - xId)$ s'appelle polynôme caractéristique de f: c'est est un polynôme en x de degré $n = \dim(E)$.

On conclut que les valeurs propres sont précisement les racines du polynôme caractéristique.

Parfois on définit le polynôme caractéristique comme $\det(xId - f) = (-1)^n p_f(x).$

Le polynôme caractéristique d'une matrice A est $p_A(x) = \det (A - xI_n)$. Les matrices semblables A et $P^{-1}AP$ ont le même polynôme caractéristique - en fait, cette propriété permet de définir dét (f - xId).

Remarque: on a $p_{f+aId}(x) = p_f(x-a)$. Si f est diagonalisable, f+aId l'est aussi $(a \in K)$; les valeurs propres de f+aId s'obtiennent en ajoutant a aux valeurs propres de f.

.

Structure du polynôme caractéristique

.

- **1.6.** Soit $p_A(x) = \det(A xI_n) = (-1)^n x^n + c_1 x^{n-1} + \dots + c_{n-1} x + c_n$.
- 1. Les coefficients $c_1, ..., c_n$ sont des polynômes en éléments matriciels a_{ij} de A; c_k est un polynôme homogène de degré k.
 - 2. $c_1 = (-1)^{n-1}(a_{11} + a_{22} + ... + a_{nn}) = (-1)^{n-1}trace(A)$
 - 3. $c_n = \det(A)$.
 - 4. c_k est invariant par similitude: c_k est le même pour A et $P^{-1}AP$.
 - 1.7. Polynôme caractéristique d'une matrice diagonale: si

$$A = diag(\lambda_1, ..., \lambda_n)$$
, alors $p_A(x) = (-1)^n \prod_{i=1}^n (x - \lambda_i)$.

Donc une condition nécessaire pour que f soit diagonalisable est que p_f soit scindé (vérifiée automatiquement si $K = \mathbf{C}$). Voici une condition suffisante:

- **1.8. Corollaire.** Si p_f admet n racines distinctes (donc p_f est scindé à racines simples), f est diagonalisable.
 - • Démonstration. Voir le Corollaire 1.4. •

.

Remarque: Un polynôme "générique" n'a pas de racines multiples, donc un polynôme "générique" dans ${\bf C}$ admet n racines distinctes et un endomorphisme "générique" f est diagonalisable sur ${\bf C}$.

.

1.9. Polynôme caractéristique d'une matrice triangulaire:

Le déterminant d'une matrice triangulaire et le produit de ses éléments diagonaux, donc pour le polynôme caractéristique on a

$$p_A(x) = (-1)^n \prod_{i=1}^n (x - a_{ii}).$$

Exemples de matrices non-diagonalisables.

Soit A une matrice triangulaire avec $a_{11} = ... = a_{nn} = a$. Si A est diagonalisable, alors A est semblable à aI_n et donc $A = aI_n$. Par conséquent, une matrice triangulaire avec les mêmes éléments sur la diagonale et qui n'est pas elle-même diagonale n'est pas diagonalisable.

.

1.10. Exemple en dimension 2.

Soit
$$A = \begin{pmatrix} a, b \\ c, d \end{pmatrix}$$

Alors $p_A(x) = x^2 - (a+d)x + (ad - bc) = x^2 - tr(A)x + det(A)$. Les valeurs propres sont $\lambda_{1,2} = \frac{1}{2}((a+d) \pm \sqrt{(a-d)^2 + 4bc})$.

Soit $\Delta = (a-d)^2 + 4bc$ le discriminant.

1. $K = \mathbb{C}$. Si $\Delta \neq 0$, on a deux valeurs propres distinctes et A est diagonalisable. On peut écrire les vecteurs propres comme $v_k = \begin{pmatrix} b \\ \lambda_k - a \end{pmatrix}$

ou $v_k = \begin{pmatrix} \lambda_k - d \\ c \end{pmatrix}, k = 1, 2.$

2. $\vec{K} = \mathbf{R}$. Si $\Delta > 0$, on a deux valeurs propres **réelles** distinctes et A est diagonalisable (sur R).

Si $\Delta < 0$, il n'y a pas de racines réelles et A n'est diagonalisable sur R. On peut réduire A par similitude à la forme $A' = \begin{pmatrix} \alpha, \beta \\ -\beta, \alpha \end{pmatrix}$ où $\alpha = (a+d)/2$

et $\beta = \sqrt{-\Delta}/2$.

• • En effet, soit $\lambda = \alpha + i\beta$ et $\overline{\lambda} = \alpha - i\beta$ les valeurs propres de A et w et \overline{w} des vecteurs propres associés: $Av = \lambda w$ et $A\overline{w} = \overline{\lambda}\overline{w}$.

Les vecteurs w et \overline{w} forment une base de C^2 .

Soit w = u + iv avec $u, v \in \mathbb{R}^2$; les vecteurs u et v forment une base de \mathbb{R}^2

Séparant la partie réelle et la partie imaginaire dans l'égalité

 $A(u+iv) = (\alpha+i\beta)(u+iv)$ on obtient

 $Au = \alpha u - \beta v$ et $Av = \beta u + \alpha v$. • •

Si $\Delta = 0$, on a une racine double et A est diagonalisable si et seulement si A est déja diagonale.

Diagonalisation dans \mathbb{R}^n .

Soit $A \in Mat_n(R)$.

Supposons que le polynôme caractéristique $p_A(x)$ n'a pas de racines multiples dans C.

Soit donc $\mu_1, ..., \mu_k$ les racines réelles et $\lambda_1, \overline{\lambda_1}, ..., \lambda_s, \overline{\lambda_s}$ les racines nonréelles de $p_A(x)$. On a k+2s=n.

Pour chaque valeur propre μ_i soit $z_i \in \mathbb{R}^n$ un vecteur propre associé; pour chaque valeur propre λ_i soit $u_i, v_i \in \mathbb{R}^n$ le couple de vecteurs construit avant.

Les vecteurs $z_i, u_i, v_i, i = 1, ..., k, j = 1, ..., s$ forment une base de \mathbb{R}^n et la matrice A agit dans cette base de façon "diagonale par 2×2 - blocs": $Az_i = \mu_i z_i, Au_j = \alpha_j u_j - \beta_j v_j, Av_j = \beta_j u_j + \alpha_j v_j.$

1.10. Projecteurs.

Soit $E = F \oplus G$: chaque vecteur $v \in E$ s'écrit de manière unique $v = v_1 + v_2$, où $v_1 \in F$ et $v_2 \in G$.

Le **projecteur** P_F sur F parallèlement à G est défini par $P_F(v) = v_1$. Autrement dit, $P_F(v) = v$ si $v \in F$ et $P_F(v) = 0$ si $v \in G$, donc $Im(P_F) = F$ et $Ker(P_F) = G$. Evidenment, $P_F^2 = P_F$.

Les vecteurs non-nuls dans le sous-espace F sont les vecteurs propres de valeur propre 1; les vecteurs non-nuls dans le sous-espace G sont les vecteurs propres de valeur propre 0.

En choisissant des bases de F et G on diagonalise P_F .

Le polynôme caractéristique de P_F est $(-1)^n x^{n-k} (x-1)^k$, où $k = \dim(F)$.

Par symétrie, le projecteur P_G sur G parallelement à F est défini par $P_G(v)=v_2,$ ou encore $P_G=Id-P_F.$

Lemme. L'endomorphisme f est un projecteur si et seulement si $f^2 = f$.

• • Démonstration. Soit $f^2 = f$, F = Im(f) et G = Ker(f). Pour $v \in E$ soit $v_1 = f(v)$ et $v_2 = v - f(v)$. On a $v = v_1 + v_2$, $v_1 \in F$ et $f(v_2) = f(v) - f(f(v)) = 0$, donc $v_2 \in G$.

Si $v \in F \cap G$, alors v = f(u) et 0 = f(v) = f(f(u)) = f(u) = v, donc $F \cap G = 0$ et $E = F \oplus G$. Donc f est le projecteur sur F parallèlement à G. \bullet \bullet

.

Polynôme caractéristique d'une matrice triangulaire.

Si A est triangulaire, on a $p_A(x) = (-1)^n \prod_{i=1}^n (x - a_{ii})$.

Cas particulier: matrice triangulaire avec $a_{11} = ... = a_{nn} = a$. Si A est diagonalisable, alors A est semblable à aI_n et donc $A = aI_n$. Par conséquent, une matrice triangulaire avec les mêmes éléments sur la diagonale et n'est pas diagonalisable sauf si elle est déjà diagonale.

.

1.11. Lemme. Le polynôme caractéristique d'une matrice triangulaire par blocs est le produit des polynômes caractéristiques des blocs diagonaux: si les blocs diagonaux sont $A_1, ... A_k$, alors

$$p_A(x) = p_{A_1}(x)...p_{A_k}(x).$$

Cette proprété utile est la conséquence directe du lemme suivant:

Lemme. Soit A une matrice triangulaire par blocs avec deux blocs diagonaux A' et A''. Alors $det A = det A' \cdot det A''$.

• • Démonstration. On procède par récurrence sur la dimension de la matrice.

Soit A triangulaire supérieure. Pour calculer det A on développe suivant la première colonne $det(A) = \sum_{i=1}^{k} (-1)^{i+1} a_{i1} det A_{i1}$ (ici k est la taille du

premier bloc diagonal).

Chaque matrice A_{i1} est aussi triangulaire par blocs, la première bloc étant A'_{i1} et le deuxième A''. En appliquant l'hypothèse de récurrence on a $det A_{i1} = det A'_{i1} det A''$, donc

$$det A_{i1} = det A'_{i1} det A'', \text{ donc}$$

$$det(A) = \sum_{i=1}^{k} (-1)^{i+1} a_{i1} det A_{i1} = \sum_{i=1}^{k} (-1)^{i+1} a_{i1} det A''_{i1} \cdot det A'' = det A' det A''.$$

• •

1.12. Trigonalisation

Il est parfois utile (par exemple si un endomorphisme n'est pas diagonalisable) de chercher une base dans laquelle sa matrice est triangulaire.

Lemme. Toute matrice triangulaire supérieure est semblable à une matrice triangulaire inférieure.

• • Démonstration. La permutation des éléments de la base canonique $p(e_i) = e_{n-i+1}$ convertit les matrices triangulaires supérieures en matrices triangulaires inférieures. • •

On a vu que les valeurs propres d'une matrice triangulaire sont ses éléments diagonaux $\lambda_1, ..., \lambda_n$ et son polynôme caractéristique est

$$p_A(x) = (-1)^n \prod_{i=1}^n (x - \lambda_i).$$

.

Définition. Un endomorphisme est **trigonalisable** si il existe une base dans laquelle sa matrice est triangulaire (supérieure ou inférieure).

Théorème. Un endomorphisme est trigonalisable dans K si et seulement si son polynôme caractéristique est scindé dans K.

Plus précisement:

- $K = \mathbb{C}$: tout endomorphisme est trigonalisable dans \mathbb{C} .
- $K = \mathbf{R}$: un endomorphisme est trigonalisable dans \mathbf{R} si et seulement si toutes les racines complexes de son polynôme caractéristique sont réelles.

.

• • $D\acute{e}monstration$. On procède par récurrence sur la dimension de E. Supposons le théorème vrai pour la dimension inférieure à n. Soit dim E=n.

Soit λ une valeur propre de f et v un vecteur propre, $f(v) = \lambda v$. Prenons $v_1 = v$ et complétons v_1 en une base $(v_1, ..., v_n)$ de E. La matrice A de f dans cette base est triangulaire supérieure par blocs: le premier bloc diagonal est λ et le deuxième bloc (de dimension n-1) sera noté B. On a $p_f(x) = (\lambda - x)p_B(x)$, donc $p_B(x)$ est aussi scindé dans K. On peut appliquer l'hypothèse de récurrence à la matrice B; il exsite une matrice de passage P telle que $P^{-1}BP$ soit triangulaire supérieure. Soit \tilde{P} la matrice

diagonale par bloc avec le premier bloc de taille 1 egal à 1 et le deuxième bloc de taille n-1 égal à P. Alors $\tilde{P}^{-1}A\tilde{P}$ est triangulaire supérieure.

• •