Package 'seismic'

October 14, 2022

Type Package

Title Predict Information Cascade by Self-Exciting Point Process
Version 1.1
Date 2022-05-20
Author Hera He, Murat Erdogdu, Qingyuan Zhao
Maintainer Qingyuan Zhao <qingyzhao@gmail.com></qingyzhao@gmail.com>
An implementation of self-exciting point process model for information cascades, which occurs when many people engage in the same acts after observing the actions of others (e.g. post resharings on Facebook or Twitter). It provides functions to estimate the infectiousness of an information cascade and predict its popularity given the observed history. See http://snap.stanford.edu/seismic/ for more information and datasets.
<pre>URL http://snap.stanford.edu/seismic/</pre>
License GPL-3
NeedsCompilation no
RoxygenNote 7.1.2
Repository CRAN
Date/Publication 2022-05-20 21:30:02 UTC
R topics documented: get.infectiousness 2 pred.cascade 3 seismic 4 tweet 4
Index 5

2 get.infectiousness

get.infectiousness

Estimate the infectiousness of an information cascade

Description

Estimate the infectiousness of an information cascade

Usage

```
get.infectiousness(
    share.time,
    degree,
    p.time,
    max.window = 2 * 60 * 60,
    min.window = 300,
    min.count = 5
)
```

Arguments

```
share.time observed resharing times, sorted, share.time[1] =0

degree observed node degrees

p.time equally spaced vector of time to estimate the infectiousness, p.time[1]=0

max.window maximum span of the locally weight kernel

min.window minimum span of the locally weight kernel

min.count the minimum number of resharings included in the window
```

Details

Use a triangular kernel with shape changing over time. At time p.time, use a triangluer kernel with slope = min(max(1/(p.time/2), 1/min.window), max.window).

Value

a list of three vectors:

- infectiousness. the estimated infectiousness
- p.up. the upper 95 percent approximate confidence interval
- p.low. the lower 95 percent approximate confidence interval

Examples

```
data(tweet)
pred.time <- seq(0, 6 * 60 * 60, by = 60)
infectiousness <- get.infectiousness(tweet[, 1], tweet[, 2], pred.time)
plot(pred.time, infectiousness$infectiousness)</pre>
```

pred.cascade 3

pred.cascade

Predict the popularity of information cascade

Description

Predict the popularity of information cascade

Usage

```
pred.cascade(
  p.time,
  infectiousness,
  share.time,
  degree,
  n.star = 100,
  features.return = FALSE
)
```

Arguments

```
p.time equally spaced vector of time to estimate the infectiousness, p.time[1]=0

infectiousness a vector of estimated infectiousness, returned by get.infectiousness

share.time observed resharing times, sorted, share.time[1] =0

degree observed node degrees

n.star the average node degree in the social network

features.return

if TRUE, returns a matrix of features to be used to further calibrate the prediction
```

Value

a vector of predicted populatiry at each time in p. time.

Examples

```
data(tweet)
pred.time <- seq(0, 6 * 60 * 60, by = 60)
infectiousness <- get.infectiousness(tweet[, 1], tweet[, 2], pred.time)
pred <- pred.cascade(pred.time, infectiousness$infectiousness, tweet[, 1], tweet[, 2], n.star = 100)
plot(pred.time, pred)</pre>
```

4 tweet

seismic

Predicting information cascade by self-exciting point process model

Description

This package implements a self-exciting point process model for information cascades. An information cascade occurs when many people engage in the same acts after observing the actions of others. Typical examples are post/photo resharings on Facebook and retweets on Twitter. The package provides functions to estimate the infectiousness of an information cascade and predict its popularity given the observed history. For more information, see http://snap.stanford.edu/seismic/.

References

SEISMIC: A Self-Exciting Point Process Model for Predicting Tweet Popularity by Q. Zhao, M. Erdogdu, H. He, A. Rajaraman, J. Leskovec, ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2015.

tweet

An example information cascade

Description

A dataset containing all the (relative) resharing time and node degree of a tweet. The original Twitter ID is 127001313513967616.

Format

A data frame with 15563 rows and 2 columns

Details

- relative_time_second. resharing time in seconds
- number_of_followers. number of followers

Index

```
get.infectiousness, 2, 3
pred.cascade, 3
seismic, 4
tweet, 4
```