

•		V	-					
ĐIỂM:								
		ow much						
16.								
	QUIC	K NOTI	Ξ					

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

CÂU 1. Tìm mệnh đề sai trong các mệnh đề sau:

- A Hai vecto được gọi là cùng phương nếu chúng có giá song song với nhau.
- B Nếu hai vectơ cùng phương thì chúng cùng hướng hoặc ngược hướng.
- (C) Hai vecto được gọi là bằng nhau nếu chúng cùng độ dài và cùng hướng.
- \bigcirc Nếu vectơ \overrightarrow{a} và vectơ \overrightarrow{b} cùng bằng vectơ \overrightarrow{c} thì hai vectơ \overrightarrow{a} và vectơ \overrightarrow{b} bằng nhau.

₽ Lời giải.

Hai vecto được gọi là cùng phương nếu chúng có giá song song hoặc trùng nhau.

Chọn đáp án (A).....

CÂU 2. Cho hình hộp chữ nhất ABCD.A'B'C'D'. Khi đó, vectơ bằng vectơ \overrightarrow{AB} là

$$(\mathbf{B})\overrightarrow{BA}.$$

$$(\mathbf{C})\overrightarrow{CD}.$$

$$(\mathbf{D})\overrightarrow{B'A'}.$$

$oldsymbol{A} \overline{D'C'}$. $oldsymbol{\mathcal{D}}$ Lời giải.

Dễ thấy vectơ bằng với vectơ \overrightarrow{AB} là vectơ nào $\overrightarrow{D'C'}$ vì chúng cùng hướng và có cùng độ dài.

Chọn đáp án (A).....

CÂU 3. Cho hình hộp ABCD.A'B'C'D'. Vectơ nào dưới đây cùng phương với vectơ \overrightarrow{AB} ?

 $igathbox{ }\overrightarrow{CD}.$

 $\bigcirc B)\overrightarrow{B'C'}$.

 $(\mathbf{C})\overrightarrow{AD}$.

 $(\mathbf{D})\overrightarrow{AC'}.$

🗭 Lời giải.

Vectơ cùng phương với \overrightarrow{AB} là \overrightarrow{CD} , vì hai vectơ này có giá song song với nhau.

Chon đáp án (A)....

CÂU 4. Cho hình hộp ABCD.A'B'C'D'. Mênh đề nào sau đây sai?

$$(\mathbf{A})\overrightarrow{AC'} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'}.$$

$$(\mathbf{B})\overrightarrow{BC'} = \overrightarrow{BC} + \overrightarrow{BD} + \overrightarrow{BB'}.$$

$$\overrightarrow{\mathbf{C}}\overrightarrow{DB'} = \overrightarrow{DA} + \overrightarrow{DC} + \overrightarrow{DD'}.$$

$$(\mathbf{D})\overrightarrow{BD'} = \overrightarrow{BA} + \overrightarrow{BC} + \overrightarrow{BB'}.$$

D Lời giải.

Theo quy tắc hình hộp, ta có mệnh đề sai là $\overrightarrow{BC'} = \overrightarrow{BC} + \overrightarrow{BD} + \overrightarrow{BB'}$.

Chọn đáp án B....

CÂU 5.

Cho hình tứ diện ABCD. Gọi M, N lần lượt là trung điểm AB, CD, I là trung điểm của đoạn MN. Mệnh đề nào sau đây sai?

$$(\mathbf{A})\overrightarrow{AN} = (\overrightarrow{AD} + \overrightarrow{AC}).$$

$$(\mathbf{B})\overrightarrow{IN} + \overrightarrow{IM} = \overrightarrow{0}.$$

$$(\mathbf{C})\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0}.$$

$$(\mathbf{D})\overrightarrow{NC} + \overrightarrow{ND} = \overrightarrow{0}.$$

🗭 Lời giải.

Đáp án B đúng: Vì I là trung điểm MN nên ta có: $\overrightarrow{IN} + \overrightarrow{IM} = \overrightarrow{0}$.

Đáp án C đúng: Vì M là trung điểm AB nên ta có: $\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0}$. Đáp án D đúng. Vì N là trung điểm CD nên ta có $\overrightarrow{NC} + \overrightarrow{ND} = \overrightarrow{0}$.

Chọn đáp án $\stackrel{\frown}{A}$

CÂU 6.

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Hãy tìm mệnh đề đúng trong những mệnh đề sau đây

- $(\mathbf{A})\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'} = \overrightarrow{AC'}.$
- $(\mathbf{B})\overrightarrow{AD} + \overrightarrow{DB'} = \overrightarrow{B'A}.$

 $(\mathbf{C})\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{BD}.$

 $(\mathbf{D})\overrightarrow{AC} - \overrightarrow{AB'} = \overrightarrow{CB'}.$

🗭 Lời giải.

Theo quy tắc hình hộp ta có $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'} = \overrightarrow{AC'}$.

Chọn đấp án (A)....

CÂU 7. Cho tứ diên ABCD, có bao nhiêu vectơ có điểm đầu là A và điểm cuối là một trong các đỉnh còn lai của tứ diên? (**A**)1. **(B)**3.

🗭 Lời giải.

Có ba vecto là: \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} .

Chọn đáp án (B).....

CÂU 8. Cho hình hôp ABCD.A'B'C'D'. Hai vectơ nào sau đây cùng phương?

- $(\mathbf{A}) \overrightarrow{A'B} \text{ và } \overrightarrow{A'B'}.$ $(\mathbf{B}) \overrightarrow{B'C'} \text{ và } \overrightarrow{CD}.$
- $(\mathbf{C})\overrightarrow{AB}$ và $\overrightarrow{B'C'}$.
- $(\mathbf{D})\overrightarrow{AB}$ và $\overrightarrow{D'C'}$.

🗭 Lời giải.

Hai vecto \overrightarrow{AB} và $\overrightarrow{D'C'}$ có giá song song nên cùng phương.

Chọn đáp án (D).....

CÂU 9.

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, CD, G là trung điểm của MN. Vecto $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD}$ bằng Vectơ nào sau đây

- $(\mathbf{A})4\overrightarrow{MG}$.
- $(\mathbf{B})\overrightarrow{GD}$.
- $(\mathbf{C})\vec{0}$.
- $(\mathbf{D})\overrightarrow{MN}$.

Lời giải.

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = \left(\overrightarrow{GA} + \overrightarrow{GB}\right) + \left(\overrightarrow{GC} + \overrightarrow{GD}\right) = 2\overrightarrow{GM} + 2\overrightarrow{GN} = 2\left(\overrightarrow{GM} + \overrightarrow{GN}\right) = \overrightarrow{0}.$$
Chọn đáp án \overrightarrow{C}

CÂU 10. Cho hình lập phương ABCD.A'B'C'D'. Chọn mệnh đề đúng?

$$\overrightarrow{A}\overrightarrow{AC} = \overrightarrow{C'A'}.$$

$$(\mathbf{D})\overrightarrow{AB} + \overrightarrow{C'D'} = \overrightarrow{0}.$$

🗭 Lời giải.

Ta có $\overrightarrow{AB} + \overrightarrow{C'D'} = \overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{0}$.

Chọn đáp án \bigcirc D......

CÂU 11. Cho hình lăng trụ ABC.A'B'C', M là trung điểm của BB'. Đặt $\overrightarrow{CA} = \overrightarrow{a}$, $\overrightarrow{CB} = \overrightarrow{b}$, $\overrightarrow{AA'} = \overrightarrow{c}$. Khẳng định nào sau đây đúng?

- $(\overrightarrow{A} \overrightarrow{AM} = \overrightarrow{b} + \overrightarrow{c} \frac{1}{2} \overrightarrow{a}.$ $(\overrightarrow{B} \overrightarrow{AM} = \overrightarrow{a} \overrightarrow{c} + \frac{1}{2} \overrightarrow{b}.$ $(\overrightarrow{C} \overrightarrow{AM} = \overrightarrow{a} + \overrightarrow{c} \frac{1}{2} \overrightarrow{b}.$ $(\overrightarrow{D} \overrightarrow{AM} = \overrightarrow{b} \overrightarrow{a} + \frac{1}{2} \overrightarrow{c}.$

🗭 Lời giải.

$$\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BM} = \overrightarrow{CB} - \overrightarrow{CA} + \frac{1}{2}\overrightarrow{BB'}$$
$$= \overrightarrow{b} - \overrightarrow{a} + \frac{1}{2}\overrightarrow{AA'} = \overrightarrow{b} - \overrightarrow{a} + \frac{1}{2}\overrightarrow{c}.$$

Chọn đáp án D

CÂU 12.

Cho tứ diện ABCD có $M,\,N$ lần lượt là trung điểm các cạnh AC và BD. Gọi G là trung điểm của đoạn thẳng MN. Hãy chọn khẳng định sai

$$(\mathbf{A})\overrightarrow{GA} + \overrightarrow{GC} = 2\overrightarrow{GM}.$$

$$(\mathbf{B})\overrightarrow{GB} + \overrightarrow{GD} = \overrightarrow{MN}.$$

$$(\mathbf{C})\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{0}.$$

$$(\mathbf{D})2\overrightarrow{NM} = \overrightarrow{AB} + \overrightarrow{CD}.$$

🗭 Lời giải.

$$\bigodot$$
 $\overrightarrow{GA} + \overrightarrow{GC} = 2\overrightarrow{GM}$ đúng vì M là trung điểm AC .

$$m{\Theta} \ \overrightarrow{GB} + \overrightarrow{GD} = \overrightarrow{MN}$$
 đúng vì $\overrightarrow{GB} + \overrightarrow{GD} = 2\overrightarrow{GN} = \overrightarrow{MN}$

Chọn đáp án \bigcirc

CÂU 13. Cho tứ diện đều SABC có cạnh a. Gọi M, N lần lượt là trung điểm SA, BC. Các mệnh đề sau đúng hay sai?

Mệnh đề	Ð	S
a) Độ dài của vectơ \overrightarrow{SA} bằng a	X	
$\mathbf{b)} \ \overrightarrow{SA} \cdot \overrightarrow{SB} = \frac{a^2 \sqrt{3}}{2}.$	X	
c) $\overrightarrow{SB} + \overrightarrow{AB} + \overrightarrow{SC} + \overrightarrow{AC} = 4\overrightarrow{MN}$.		X
d) Gọi I là trọng tâm của tứ diện. Khoảng cách từ I đến (ABC) bằng $\frac{3a\sqrt{6}}{4}$.		X

a)
$$|\overrightarrow{SA}| = SA = a$$
.

b)
$$\overrightarrow{SA} \cdot \overrightarrow{SB} = \left| \overrightarrow{SA} \right| \cdot \left| \overrightarrow{SB} \right| \cdot \sin \widehat{ASB} = a \cdot a \cdot \sin 60^{\circ} = \frac{a^2 \sqrt{3}}{2}$$
.

c) Do
$$N$$
 là trung điểm của BC nên $\overrightarrow{SB} + \overrightarrow{SC} = 2\overrightarrow{SN}$ và $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{MB}$. Suy ra $\overrightarrow{SB} + \overrightarrow{SC} + \overrightarrow{AB} + \overrightarrow{AC} = 2\left(\overrightarrow{SN} + \overrightarrow{AN}\right)$ Do M là trung điểm của \overrightarrow{SA} nên $\overrightarrow{NA} + \overrightarrow{NS} = 2\overrightarrow{NM} \Leftrightarrow \overrightarrow{AN} + \overrightarrow{SN} = 2\overrightarrow{MN}$. Do đó $\overrightarrow{SB} + \overrightarrow{SC} + \overrightarrow{AB} + \overrightarrow{AC} = 2 \cdot 2 \cdot \overrightarrow{MN} = 4\overrightarrow{MN}$.

d) Gọi
$$G$$
 là trọng tâm tam giác ABC .

Do tứ diện SABC là tứ diện đều và I là trọng tâm tứ diện nên $d\left(I,(ABC)\right)=IG$

Tam giác ABC đều cạnh a, N là trung điểm của BC, suy ra $AN = \frac{a\sqrt{3}}{2}$.

Do G là trọng tâm tam giácABC nên $AG = \frac{2}{3}AN = \frac{a\sqrt{3}}{3}$. Do tứ diện SABC là tứ diện đều nên $SG\bot(ABC) \Rightarrow SG\bot AG$.

Tam giác SAG vuông tại G nên $SG = \sqrt{SA^2 - AG^2} = \sqrt{a^2 - \frac{a^2}{3}} = \frac{a\sqrt{6}}{3}$.

Do I là trọng tâm tứ diệnSABC nên $IG = \frac{1}{4}SG = \frac{1}{4} \cdot \frac{a\sqrt{6}}{3} = \frac{a\sqrt{6}}{12}$.

Vậy
$$d(I, (ABC)) = \frac{a\sqrt{6}}{12}$$
.

Chọn đáp án a đúng b đúng c sai d sai

CÂU 14. Cho hình lập phương ABCD.A'B'C'D' có cạnh a. Gọi M là trung điểm AD. Các mệnh đề sau đúng hay sai?

Mệnh đề	Ð	\mathbf{S}
$\mathbf{a)} \ \overrightarrow{A'B'} = \overrightarrow{CD}.$		X
$\overrightarrow{DC'} = \overrightarrow{DC} + \overrightarrow{DD'}.$	X	

Mệnh đề		\mathbf{S}
$\mathbf{c)} \ \overrightarrow{AB'} \cdot \overrightarrow{CD'} = 0.$	X	
$\mathbf{d)} \ \overrightarrow{B'M} = \overrightarrow{BB'} + \overrightarrow{A'B'} + \frac{1}{2}\overrightarrow{B'C'}.$		X

🗭 Lời giải.

a)
$$\overrightarrow{A'B'} = -\overrightarrow{CD}$$
.

b)
$$\overrightarrow{DC} + \overrightarrow{DD'} = \overrightarrow{DC} + \overrightarrow{CC'} = \overrightarrow{DC'}$$
.

c)
$$\overrightarrow{AB'} \cdot \overrightarrow{CD'} = \overrightarrow{AB'} \cdot \overrightarrow{BA'} = 0$$

d)
$$\overrightarrow{B'M} = \overrightarrow{B'B} + \overrightarrow{BM} = \overrightarrow{BB'} + \frac{1}{2} \left(\overrightarrow{BA} + \overrightarrow{BD} \right) = \overrightarrow{BB'} + \frac{1}{2} \left(\overrightarrow{B'A'} + \overrightarrow{B'D'} \right)$$

= $\overrightarrow{BB'} + \frac{1}{2} \left(\overrightarrow{B'A'} + \overrightarrow{B'A'} + \overrightarrow{B'C'} \right) = \overrightarrow{BB'} + \overrightarrow{B'A'} + \frac{1}{2} \overrightarrow{B'C'}$

Chọn đáp án a sai b đúng c đúng d sai

CÂU 15. Cho tứ diện ABCD có cạnh a. Gọi M, N lần lượt là trung điểm của AB, CD. Các mệnh đề sau đúng hay sai?

Mệnh đề	Ð	S
a) \overrightarrow{AB} và \overrightarrow{CD} cùng hướng.		X
b) $\overrightarrow{EA} + \overrightarrow{EB} + \overrightarrow{EC} + \overrightarrow{ED} = \overrightarrow{0}$ với E là trung điểm MN .	X	
c) $\overrightarrow{AB} \cdot \overrightarrow{CD} + \overrightarrow{AC} \cdot \overrightarrow{DB} + \overrightarrow{AD} \cdot \overrightarrow{BC} = \overrightarrow{0}$.	X	
d) Điểm I xác định bởi $P=3\overrightarrow{IA^2}+\overrightarrow{IB^2}+\overrightarrow{IC^2}+\overrightarrow{ID^2}$ có giá trị nhỏ nhất. Khi đó giá trị nhỏ nhất của P là $2a^2$.	X	

🗩 Lời giải.

- a) \overrightarrow{AB} và \overrightarrow{CD} ngược hướng.
- b) Vì M là trung điểm AB nên $\overrightarrow{EA} + \overrightarrow{EB} = 2\overrightarrow{EM}$, N là trung điểm CD nên $\overrightarrow{EC} + \overrightarrow{ED} = 2\overrightarrow{EN}$. Ta có $\overrightarrow{EA} + \overrightarrow{EB} + \overrightarrow{EC} + \overrightarrow{ED} = 2\left(\overrightarrow{EM} + \overrightarrow{EN}\right) = \overrightarrow{0}$.

c)
$$\overrightarrow{AB} \cdot \overrightarrow{CD} + \overrightarrow{AC} \cdot \overrightarrow{DB} + \overrightarrow{AD} \cdot \overrightarrow{BC} = (\overrightarrow{AC} + \overrightarrow{CB}) \cdot \overrightarrow{CD} + \overrightarrow{AC} \cdot \overrightarrow{DB} + \overrightarrow{AD} \cdot \overrightarrow{BC}$$

 $= \overrightarrow{AC} \cdot (\overrightarrow{CD} + \overrightarrow{DB}) + \overrightarrow{AD} \cdot \overrightarrow{BC} + \overrightarrow{CB} \cdot \overrightarrow{CD} = \overrightarrow{AC} \cdot \overrightarrow{CB} + \overrightarrow{AD} \cdot \overrightarrow{BC} + \overrightarrow{CB} \cdot \overrightarrow{CD}$
 $= \overrightarrow{CB} (\overrightarrow{AC} - \overrightarrow{AD}) + \overrightarrow{CB} \cdot \overrightarrow{CD} = \overrightarrow{0}$

d) Gọi O là điểm thoả mãn hệ thức $3\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{0}$ suy ra O cố định vì A, B, C, D cố định. Ta có

$$P = 3\overrightarrow{IA}^{2} + \overrightarrow{IB}^{2} + \overrightarrow{IC}^{2} + \overrightarrow{ID}^{2}$$

$$= 3\left(\overrightarrow{IO} + \overrightarrow{OA}\right)^{2} + \left(\overrightarrow{IO} + \overrightarrow{OB}\right)^{2} + \left(\overrightarrow{IO} + \overrightarrow{OC}\right)^{2} + \left(\overrightarrow{IO} + \overrightarrow{OD}\right)^{2}$$

$$= 6IO^{2} + 3OA^{2} + OB^{2} + OC^{2} + OD^{2} + 2\overrightarrow{IO}\left(3\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD}\right)$$

$$= 6IO^{2} + 3OA^{2} + OB^{2} + OC^{2} + OD^{2}.$$

Do đó để P nhỏ nhất thì I trùng với O. Gọi G là trọng tâm tam giác BCD. Vì $3\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 3\overrightarrow{OA} + \left(\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD}\right) = 3\overrightarrow{OA} + 3\overrightarrow{OG}$ nên $\overrightarrow{OA} + \overrightarrow{OG} = \overrightarrow{0}$. Suy ra O là trung điểm của AG.

Ta có
$$BG = \frac{2}{3} \cdot \frac{a\sqrt{3}}{2} = \frac{a}{\sqrt{3}} \Rightarrow AG = \sqrt{AB^2 - BG^2} = \sqrt{a^2 - \left(\frac{a}{\sqrt{3}}\right)^2} = \frac{a\sqrt{2}}{\sqrt{3}}$$

$$\Rightarrow OA = \frac{1}{2}AG = \frac{a}{\sqrt{6}} \Rightarrow OA^2 = \frac{a^2}{6}.$$

Lai có
$$OD^2 = OC^2 = OB^2 = OG^2 + BG^2 = \frac{a^2}{6} + \frac{a^2}{3} = \frac{a^2}{2}$$
.

Vậy giá trị nhỏ nhất là $P=3\cdot\frac{a^2}{6}+3\cdot\frac{a^2}{2}=2a^2$ khi I trùng với O.

Chọn đáp án a sai b đúng c đúng d đúng

CÂU 16. Cho tứ diện đều ABCD cạnh a có G là trọng tâm của tam giác BCD và I là điểm thuộc đoạn thẳng AG sao cho $\overrightarrow{AI} = 3\overrightarrow{IG}$. Các mệnh đề sau đúng hay sai?

	Mệnh đề	Ð	\mathbf{S}
a) \overrightarrow{GA}	$+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}.$		X
$\mathbf{b)} \; \overrightarrow{IB} \; \cdot$	$+\overrightarrow{IC}+\overrightarrow{ID}=3\overrightarrow{IG}.$	X	

Mệnh đề	Đ	\mathbf{S}
c) $\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID}$.	X	
$\mathbf{d)} \ \overrightarrow{IB} = \frac{3}{4}\overrightarrow{AB} - \frac{1}{4}\overrightarrow{AC} - \frac{1}{4}\overrightarrow{AD}.$	X	

🗩 Lời giải.

- a) G là trọng tâm của tam giác BCD nên $\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{0}$.
- b) $\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} = \overrightarrow{IG} + \overrightarrow{GB} + \overrightarrow{IG} + \overrightarrow{GC} + \overrightarrow{IG} + \overrightarrow{GD} = 3\overrightarrow{IG} + \left(\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD}\right) = 3\overrightarrow{IG}$.
- c) $\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{0}\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} = \overrightarrow{IA} + 3\overrightarrow{IG} = \overrightarrow{IA} + \overrightarrow{AI} = \overrightarrow{0}$.
- d) $\overrightarrow{AI} = 3\overrightarrow{IG} \Leftrightarrow \overrightarrow{IA} = -\frac{3}{4}\overrightarrow{AG}$. $\overrightarrow{IB} = \overrightarrow{IA} + \overrightarrow{AB} = -\frac{3}{4}\overrightarrow{AG} + \overrightarrow{AB} = -\frac{3}{4} \cdot \frac{1}{3} \left(\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} \right) + \overrightarrow{AB} = \frac{3}{4}\overrightarrow{AB} - \frac{1}{4}\overrightarrow{AC} - \frac{1}{4}\overrightarrow{AD}$.

Chọn đáp án a sai b đúng c đúng d đúng

CÂU 17. Cho tứ diện ABCD. Gọi E là trung điểm AD, F là trung điểm BC. Ta có $\overrightarrow{AB} + \overrightarrow{DC} = k\overrightarrow{EF}$. Tìm giá trị của k. $\textcircled{$\wp$}$ Lời giải.

Đáp án: 2

Do E là trung điểm $AD,\ F$ là trung điểm BC nên $\overrightarrow{EA} + \overrightarrow{ED} = \overrightarrow{0};\ \overrightarrow{FB} + \overrightarrow{FC} = -\left(\overrightarrow{BF} + \overrightarrow{CF}\right) = \overrightarrow{0}.$

Có
$$\begin{cases} \overrightarrow{AB} = \overrightarrow{AE} + \overrightarrow{EF} + \overrightarrow{FB} \\ \overrightarrow{DC} = \overrightarrow{DE} + \overrightarrow{EF} + \overrightarrow{FB} \end{cases} \Rightarrow \overrightarrow{AB} + \overrightarrow{DC} = 2\overrightarrow{EF}.$$

CÂU 18. Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = 2, AD = 3. Độ dài vecto $\overrightarrow{B'D'}$ bằng bao nhiêu (làm tròn đến hàng phần trăm)?

🗭 Lời giải.

Đáp án: 3,61

Ta có:
$$\left|\overrightarrow{B'D'}\right| = B'D' = BD = \sqrt{AB^2 + AD^2} = \sqrt{13}$$
.

Vậy độ dài vecto $\overrightarrow{B'D'}$ bằng $\sqrt{13} \approx 3,61$.

CÂU 19. Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai vectơ $\overrightarrow{A'B}$ và $\overrightarrow{AC'}$ bằng \bigcirc Lời giải.

Đáp án: 90

$$\overrightarrow{A'B} = \overrightarrow{A'A} + \overrightarrow{AB} = \overrightarrow{AB} - \overrightarrow{AA'}.$$

$$\overrightarrow{AC'} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'}.$$

$$\Rightarrow \overrightarrow{A'B} \cdot \overrightarrow{AC'} = \left(\overrightarrow{AB} - \overrightarrow{AA'}\right) \cdot \left(\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'}\right) = \overrightarrow{AB}^2 - \overrightarrow{AA'}^2 = 0.$$

 \Rightarrow Góc giữa hai vecto $\overrightarrow{A'B}$ và $\overrightarrow{AC'}$ bằng 90°.

CÂU 20. Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc nhau và SA = SB = SC = a. Gọi M là trung điểm của AB. Góc giữa hai vecto \overline{SM} và \overline{BC} bằng

🗩 Lời giải.

Đáp án: 120

Ta có
$$\cos\left(\overrightarrow{SM},\overrightarrow{BC}\right) = \frac{\overrightarrow{SM}\cdot\overrightarrow{BC}}{|\overrightarrow{SM}|\cdot|\overrightarrow{BC}|} = \frac{\overrightarrow{SM}\cdot\overrightarrow{BC}}{SM\cdot BC}.$$

$$\begin{split} \overrightarrow{SM} \cdot \overrightarrow{BC} &= \frac{1}{2} \left(\overrightarrow{SA} + \overrightarrow{SB} \right) \cdot \left(\overrightarrow{SC} - \overrightarrow{SB} \right) \\ &= \frac{1}{2} \left(\overrightarrow{SA} \cdot \overrightarrow{SC} - \overrightarrow{SA} \cdot \overrightarrow{SB} + \overrightarrow{SB} \cdot \overrightarrow{SC} - \overrightarrow{SB} \cdot \overrightarrow{SB} \right) \\ &= -\frac{1}{2} \overrightarrow{SB} \cdot \overrightarrow{SB} = -\frac{1}{2} SB^2 = -\frac{a^2}{2}. \end{split}$$

Tam giác SAB và SBC vuông cân tại S nên $AB = BC = a\sqrt{2}$.

$$\Rightarrow SM = \frac{AB}{2} = \frac{a\sqrt{2}}{2}.$$

Do đó
$$\cos\left(\overrightarrow{SM},\overrightarrow{BC}\right)=\frac{-\frac{a^2}{2}}{\frac{a\sqrt{2}}{2}\cdot a\sqrt{2}}=-\frac{1}{2}.$$
 Suy ra $\left(\overrightarrow{SM},\overrightarrow{BC}\right)=120^{\circ}.$

CÂU 21. Cho hình hộp ABCD.A'B'C'D'. Xét các điểm M, N lần lượt thuộc các đường thẳng A'C, C'D sao cho đường thẳng MN song song với đường thẳng BD'. Khi đó tỉ số $\frac{MN}{BD'}$ bằng

🗭 Lời giải.

Đáp án: 0,25

Đặt
$$\overrightarrow{BA} = \overrightarrow{x}$$
, $\overrightarrow{BB'} = \overrightarrow{y}$, $\overrightarrow{BC} = \overrightarrow{z}$

Đặt $\overrightarrow{BA} = \overrightarrow{x}, \overrightarrow{BB'} = \overrightarrow{y}, \overrightarrow{BC} = \overrightarrow{z}.$ Do $\overrightarrow{CM}, \overrightarrow{CA'}$ là hai vectơ cùng phương $\Rightarrow \exists \, k \in \mathbb{R} \colon \overrightarrow{CM} = k \cdot \overrightarrow{CA'}.$ Và $\overrightarrow{C'N}, \overrightarrow{C'D}$ là hai vectơ cùng phương $\Rightarrow \exists \, h \in \mathbb{R} \colon \overrightarrow{C'N} = h \cdot \overrightarrow{C'D}.$

Ta có:
$$\overrightarrow{BD'} = \overrightarrow{BA} + \overrightarrow{BC} + \overrightarrow{BB'} = \overrightarrow{x} + \overrightarrow{y} + \overrightarrow{z},$$
 (1)
 $\overrightarrow{MN} = \overrightarrow{CN} - \overrightarrow{CM} = \overrightarrow{CC'} + \overrightarrow{C'N} - \overrightarrow{CM} = \overrightarrow{CC'} + h \cdot \overrightarrow{C'D} - k \cdot \overrightarrow{CA'}$

$$MN = CN - CM = CC' + C'N - CM = CC' + h \cdot C'D - k \cdot CA'$$

$$(2)$$

 $=\overrightarrow{y}+h\cdot(-\overrightarrow{y}+\overrightarrow{x})-k\cdot(\overrightarrow{y}-\overrightarrow{z}+\overrightarrow{x})=(h-k)\cdot\overrightarrow{x}+(1-h-k)\cdot\overrightarrow{y}+k\cdot\overrightarrow{z}$

$$= y + h \cdot (-y + x) - k \cdot (y - z + x) = (h - k) \cdot x + (1 - h - k) \cdot y + Do MN / B'D \text{ nên tồn tại } t \in \mathbb{R} \colon \overrightarrow{MN} = t \cdot \overrightarrow{BD'}.$$

$$\text{Từ (1) và (2) ta có} \begin{cases} h - k = t \\ 1 - h - k = t \\ k = t \end{cases} \Leftrightarrow \begin{cases} k = t \\ h = 2t \\ 1 - 3t = t \end{cases} \Rightarrow \overrightarrow{MN} = \frac{1}{4} \overrightarrow{BD'}.$$

Vây
$$\frac{MN}{BD'} = \frac{1}{4} = 0,25.$$