

OI. WORKPACKAGE OVERVIEW / DEPENDENCIES

02. SENSOR SELECTION MATRIX

TABLE OF CONTENT

01. WORKPACKAGE OVERVIEW / DEPENDENCIES

OBJECTIVE

- (i) To design a real-time digital service to monitor in long-term and in a sustainable manner the multi-criteria performance of façade and structural systems.
- (ii) To devise effective predictive maintenance of façades by leveraging on data-driven performance models, low-cost sensing and knowledge on potential resilience losses

TASKS / TIMELINE

Task No.	Tasks	Start	End	Duration	Oct-23	Nov-23	Dec-23 Jan-24	Feb-24	Mar-24 Apr-24	May-24 Jun-24	Jul-24	Aug-24 Sep-23	Oct-24 Nov-	24 Dec-24	Jan-25 F	eb-25 Mar-25	Apr-25 N	1ay-25 Jun-25	Jul-25 Aug-25 Sep-2
4.1.1	Identification of requirements of the monitoring system and relevant information gathered by it	2023-10-01	2024-06-30	9															
4.1.2	Development of the data acquisition and collection architecture on a schematic level	2024-03-01	2024-12-31	10															
4.1.3	Design seamless technical integration of components into the façade and structural elements	2024-10-01	2025-09-30	12															

DELIVERABLES

Deliverables	Tasks	Task		Deadline
D4.1.1	Digital control system for facades	4.1	PFE	M24 (Sep-25)
D4.1.2	Digital control system for timber material	4.1	RINA	M24 (Sep-25)
D4.1.3	Maintenance and optimization tool for facades	4.1	PFE	M24 (Sep-25)

WP 8 - MULTI-CRITERIA REAL-TIME MONITORING OF MATERIALS AND BUILDING COMPONENTS

OBJECTIVE

(i) To design a real-time digital service to <u>monitor in long-term</u> and in a sustainable manner the <u>multi-criteria performance</u> of <u>façade and structural systems</u>.

(ii) To devise <u>effective predictive maintenance of façades</u> by leveraging on data-driven performance models, low-cost sensing and knowledge on potential resilience losses

Performance Indicators

Hazard-related Indicators

What to Monitor?

When to Monitor?

How to Monitor?

OVERVIEW

This project has received funding from the European Union under the Horizon Europe Research & Innovation Programme (Grant Agreement no. 101123467 MultiCare).

Views and opinions expressed are however those of author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

02. SENSOR SELECTION MATRIX

WPII

	Faça	de Intervention			Performa	ince	Enviro	Economical	
Mitigation Strategy	Strategy	Components	Design Criteria	Value		Reference	Carbon Footprint	Design for Disassembly	Cost
Control daylight radiation	Shading System	External Blind	g value	N/A	DIN EN 13561	External blinds - Performance requirements including safety			
	Change Glass Property								
Maintaining Durability			Stiffness						
Low Damage System	Low Damage Connection Detail		Damage						
Carry Self Weight	Create stiffeness perpendicular to surface	reate stiffeness perpendicular to surface				Aluminium constructions under predominantly static loading;			
Carry Seri Weight	create stifferiess perpendicular to surface	create stiffeness perpendicular to surface			DIN 4113	static analysis and structural design			

https://tud365.sharepoint.com/:x:/r/sites/Project101123467MULTICARE/Gedeelde%20documenten/General/WS3.%20Multi-hazard%20resilience%20and%20sustainability%20assessment,%20design/WP5/MULTICARE_WP5,8,11%20Matrix.xlsx?d=w4d06b52658cf4ce89f5ca9c402774a8e&csf=1&web=1&e=HqqJOz

MATRIX OVERVIEW (WIP)

METRICS METHODOLOGY

This project has received funding from the European Union under the Horizon Europe Research & Innovation Programme (Grant Agreement no. 101123467 MultiCare).

Views and opinions expressed are however those of author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

WP8 - SENSOR SELECTION METRICS

Conventional Façade Performance indicator

What to Monitor?

When to Monitor?

How to Monitor?

Herzog, T., Krippner, R., & Lang, W. (2012). Facade Construction Manual. Birkhäuser.

FAÇADE FUNCTION

Klein, T. (2013). Integral facade construction: Towards a new product architecture for curtain walls. TU Delft.

FAÇADE FUNCTION TREE

Table 1

Environmental parameters to be monitored to characterise the impact of façades on comfort according international standards and after previous work [10].

Comfort domain	Occupant-centred metrics	Façade characteristics	Environmental parameters at the façade	Environmental parameters at occupant position
Thermal comfort [28,41, 42]	PMV [28,41,42] PMV ^a [43] ^a PPD [28,41,42]		Surface temperature [41,42] Air temperature [41,42] Irradiance [43] ^a	
	Top [28,40,41]	U-Value [45-49]	Solar beam direction [43] ^a	
	DR [28,41,42]	g-value [50-53]	Air velocity [41,42]	Air temperature [28,41,42]
	PD [28,41,42]	Thermal inertia [54]	Air flow rate [28,41,42]	MRT [28,41,42]
	RH [44]Degree Hours [44]	Air tightness [55–58]	Air flow temperature [28,41,42]	Irradiance on the occupant [43] ^a
	PPDweighted [44]	Vent location and dimension	Air flow rate moisture content [28, 41,42]	Air velocity [28,41,42]
Visual comfort [59-61]	DT [59]	Light transmittance [51-53,62]	, -	
	ET [59]	Light reflectance [51]		Horizontal illuminance at desk level [59, 60,64]
	fDGP, exceed [59]	Openings size and location [59]		Contrast illuminance [60]
	DGP [59]	Shading factor [63]	Illuminance [60]	Vertical Illuminance at eye level [59]
	DGPe [59]	Blinds Openness coefficient [63]	Light beam direction	Luminance [59]
	View out [59]	Blinds Colour rendering index [63]	Light colour [60]	View [59]
Air quality comfort [28,	PD [28]			
65–67]	CO2 (ppm) [28,65]			
	TVOC (μg/m3) [28]			
	CH2O (µg/m3) [28,66]			
	C1A/C1B VOC (µg/m3)			
	[28]			
	R value [28]			
	CO (mg/m3) [66]			
	C6H6 [66]			
	C10H8 (µg/m3) [66]			
	NO2 (μg/m3) [66] PAHs [66]			
	C2HCl3 [66]	Air tightness [55–58]	Air flow rate [28]	Air pollutant content [28,66]
	C2Cl4 (µg/m3) [66]	Vent location and dimension [28]	Air flow pollutant content [28,66]	Air moisture content [28]
	Rn (Bq/m3) [66]	Material pollutant emission [68]	Air flow moisture content [28]	Air CO ₂ content [28]
Acoustic comfort [28,69, 70]	L _{eq} [dbA] [28]	Airborne Sound Insolation [58, 71]		
		Sound absorption [72]	Noise level	Noise level [28,73]
		Sound reflectance [72]	Noise frequency characteristics	Noise frequency characteristics
Interaction		Type of actuation system Mode of actuation	Not applicable	Not applicable
		Level of automation Interactive scenario		
		Interface		
Vibration [74,75]		Mass [58] Stiffness of the façade [58,76]	Acceleration (tri-axis) [77,78]	Acceleration (tri-axis) [77,78]

Table 5. Most frequent KPIs found in the literature starting from Table 4.

Indicator	Frequency					
Thermal comfort	10 times					
Energy consumption	10 times					
CO ₂ /GHG emission	6 times					
Indoor air quality	5 times					
Renewable energy sources	4 times					
Daylight factor	4 times					
Discomfort hours (27–28 °C)	3 times					
Daylight requirement	3 times					
Investment costs	3 times					
Degree of satisfaction	3 times					
Wellbeing	3 times					
Solid waste	2 times					
Solar radiation	2 times					
Accessibility	2 times					
Initial costs	2 times					
Degree of privacy	2 times					
Eco-efficiency	2 times					

Luna-Navarro, A., Fidler, P., Law, A., Torres, S., & Overend, M. (2021). Building Impulse Toolkit (BIT): A novel IoT system for capturing the influence of façades on occupant perception and occupant-façade interaction. Building and Environment, 193, 107656.

Mosca, F., & Perini, K. (2022). Reviewing the Role of Key Performance Indicators in Architectural and Urban Design Practices. Sustainability, 14(21), 14464. https://doi.org/10.3390/su142114464

PARAMETERS IN FAÇADE MONITORING

This project has received funding from the European Union under the Horizon Europe Research & Innovation Programme (Grant Agreement no. 101123467 MultiCare).

Views and opinions expressed are however those of author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

Parameter	Characteristics
Goal	Sense-only , sense and react
Sampling	Periodic, event-triggered
Sensed Phenomenon	Single, Multiple ; discrete, distribute
Data Rate	Low, high
Mobility	Mobiles nodes, mobile base-station
Connectivity	Connected, intermittent, sporadic
Processing	Filtering, compression, aggregation, tracking, event detection, classification, decision making; Node, network, gateway, server
Storage	Caching, persistent; Node, network, gateway, server
Services	Localization, time synchronization, authentication, encryption, reprogramming, reconfiguration
Communication Primitives	Single-hop unicast, multi-hop unicast, single-hop broadcast, flooding, collection, cluster

Oppermann, F. J., Boano, C. A., & Römer, K. (2014). A decade of wireless sensing applications: Survey and taxonomy. In: The Art of Wireless Sensor Networks. Volume 1: Fundamentals, pp. 11-50. Berlin/Heidelberg, Germany: Springer. https://doi.org/10.1007/978-3-642-40009-4_2

SENSOR PARAMETER

WP 4 - KPI

HOW TO MONITOR THE FAÇADE?

Definition of Sensor Model

......

Sub Domain				D	ata Acquistion					Installation		Component
Performance Indicator	Description	Sensor Type	Mesured Unit	d Sampling	Acquisition Rate	Sensing Range	Accuracy	Position	Component	Mounting Type	Sensor Distribution	Sensor Model
Natural Lighting	Realume monitoring to ensure sufficient natural lighting in interior	area Illuminance Senso	or Lux	Periodic Realtime				Exterior	Cladding/Infill			
Protection against Solar radiation	Realtim monitoring of exterior solar radiation on façade surface	Irradiance Sensor		Periodic Realtime				Exterior (Cladding/Infill			
Protection against Solar radiation	Realtime monitoring to ensure enricient protection against Solar ra	αιaτιοn Irradiance Sensor	/v/m²	Periodic Realtime					Cıaadıng/Infili		- 7	
Thermal indoor comfort	Realtime monitoring of interior façade surface temperature	Temperature Sens		Periodic Realtime					Cladding/Infill			
Thermal indoor comfort	Realtime monitoring of exterior facade surface temperature without			Periodic Realtime					Cladding/Infill			
P Heat/Cold Insulation	Routine checkup to ensure effective performance of insulation layer	er Heat flux sensor	W/m²	Periodic Weekly? Event				Interior	Cladding/Infill			
Waterproofing	Routine checkup to ensure effective protection against water leaka			Trigger Rain Leve	I				Façade Structure			
P Air Tightness	Routine checkup to ensure effective sealant and protection of air le		m/s	Periodic Realtime					Façade Gap			
P Noise Control	Realume monitoring to ensure effective noise pollution prevention		r dB	Periodic Realtime				Interior	Cladding/Infill			
	Routine checkup to ensure structural performance of the façade sy										•	
Structural Durability	requirement	SHM		Periodic Weekly?				Inside I	Façade Structure			
D	•											
D												
	d a d											
Hazard Indicator (from WP5)												
***************************************				Event								
Inter-Storey Drift				Trigger Vibration								
l Vibration	•	Vibration Sensor		Periodic Realtime								
Indoor Surface Temperature		Temperature Sens		Periodic Realtime								
Standard Effective Temperature		Temperature Sens		Periodic Realtime								
Operative Temperature		Temperature Sens	sor	Periodic Realtime								
Stress / Strain in façade structure	•											
H Deflection in façade element												
H Swaying of façade element												
H Water Leakage		Humidity Sensor		Event Trigger Rain Leve	ı							
Humidity Level		indicy sensor						i				
1	-										_	
4												

WP 5 – Hazard related Indicators

https://tud365.sharepoint.com/:x:/r/sites/Project101123467MULTICARE/Gedeelde%20documenten/General/WS3.%20Multi-hazard%20resilience%20and%20sustainability%20assessment,%20design/WP5/MULTICARE_WP5,8,11%20Matrix.xlsx?d=w4d06b52658cf4ce89f5ca9c402774a8e&csf=1&web=1&e=HqqJOz

SENSOR SELECTION MATRIX

NEXT STEPS:

- Finalize the Sensor Parameter for Selection Matrix
- Defining relevant sensors for façade monitoring
- Define design specification for Sensor System

Definition of Design Specification for Sensor System							
General Requirements	Waterproof level, UV tolerance, Size ()						
Real-Time Sensing	Data Transmission Protocol ()						
Data Logging	Data format, Naming Convention, Data storage, Accessibility, Right Management ()						
Processing	Type of software required, Processing Protocol ()						
Visualization	Type of visualization, Which data to show ()						

OUTLOOK

THANK YOU

- Priedemann Facade ExpertsAm Wall 17, Berlin, Germany
- ✓ Jens.boeke@priedemann.net
- +49 33701 32 79-53
- www.priedemann.net

