Vigo Photonics SA (VGO)

Kajetan Lach

November 19, 2024

1 Wstęp

Vigo Photonics to polskie przedsiębiorstwo specjalizujące się w wytwarzaniu materiałów i przyrządów półprzewodnikowych do zastosowań fotonicznych i mikroelektronicznych. Spółka jest liderem na światowym rynku fotonowych detektorów średniej podczerwieni, a wszystkie produkty opiera na własnej, unikalnej technologii.

2 Analiza log-zwrotów spółki (Vigo Photonics)

Pierwszy rozdział zawiera analizę log-zwrotów spółki.

2.1 Wykresy kursów zamknięcia oraz log-zwrotów

Poniższy wykres ilustruje zmianę cen zamknięcia akcji w czasie.

Zmianę log-zwrotów, wyliczonych według wzoru

$$r_1 = \ln \frac{S_0}{S_1}, r_2 = \ln \frac{S_2}{S_1}, ..., r_n = \ln \frac{S_n}{S_{n-1}}$$

gdzie $s_0, s_1, ..., s_n$ są kursami zamknięcia z kolejnych dni, na osi czasu ilustruje wykres poniżej.

2.2 Wartość oczekiwana

Zakładając, że log-zwroty $r_1, r_2, ..., r_n$ są niezależnymi realizacjami zmiennej losowej X, wyliczamy μ przy użyciu nieobciążonego estymatora wartości oczekiwanej:

$$E(\overline{X}_n) = \frac{1}{n} \sum_{i=1}^n X_i = \mu$$

w wyniku czego otrzymujemy wynik

$$\mu = -0.0006787669$$

2.3 Wariancja i odchylenie standardowe

Korzystając ze wzoru na nieobciążony estymator wariancji

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X}_n)^2$$

otrzymujemy $\sigma^2 = 0.0006189792$ oraz $\sigma = 0.02487929$.

2.4 Kwantyle

Z wykorzystaniem klasycznego estymatora kwantyli wyestymowano kwantyle rzędu $\alpha=5\%,50\%i95\%$. Wyniki przedstawione zostały w tabeli poniżej:

\overline{x}_n	s_n^2	s_n	q(5%)	q(50%)	q(95%)
-0.0006787669	0.0006189792	0.02487929	-0.03620640	0	0.04055989

2.5 Histogram log-zwrotów

Na histogramie dziennych log-zwrotów cen akcji na czerwono i niebiesko oznaczono odpowiednio wartość wyestymowanej średniej oraz wartości kwantyli przedstawionych wcześniej.

2.6 Dystrybuanta

Z wykorzystaniem dystrybuanty empirycznej jako nieobciążonego estymatora

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n 1_{\{x_i \le x\}} = \left(\frac{\text{liczba elementów w próbie} \le x}{n}\right)$$

estymujemy dystrybuantę F zaprezentowaną na wykresie poniżej

2.7 Analiza dobroci dopasowania rozkładu normalnego i t-Studenta

Korzystając z **estymatora największej wiarygodności (MLE)** parametru estymujemy parametry rozkładu normalnego i t-Studenta.

m	s	df
-0.0006787669	0.0248544	314.3698

2.7.1 Wykresy diagnostyczne

Poniższe wykresy prezentują kolejno porównania: histogram-gęstość wybranych rozkładów, kwantyl-kwantyl, dystrybuanta empiryczna-dystrybuanta teoretyczna wybranych rozkładów oraz prawdopodobieństwo teoretyczne wybranych rozkładów-prawdopodobieństwo empiryczne.

Na ich podstawie można stwierdzić, że rozkład normalny lepiej dopasowuje się do danych.

2.7.2 Weryfikacja wyboru z wykorzystainem statystyk oraz kryteriów informacyjnych

Poniższe tabele prezentują wyniki testów statystycznych oraz kryteriów informacyjnych dla rozkładów normalnego i t-Studenta.

Statystyki	Rozkład normalny	Rozkład t-Studenta	
Kolmogorov-Smirnov	0.08251589	0.469477	
Cramer-von Mises	1.18780300	39.177553	
Anderson-Darling	6.95700925	183.184800	

Kryteria	Rozkład normalny	Rozkład t-Studenta
AIC	-2271.782	922.0439
BIC	-2263.353	926.2585

Powyższe wyniki potwierdzają, że rozkład normalny lepiej dopasowuje się do danych.

2.7.3 Test hipotezy równości rozkładów metodą Monte Carlo

Testujemy hipotezę zerową o równości dystrybuant

$$H_0: F = F_0$$

przeciwko hipotezie alternatywnej (kontrhipotezie)

$$H_1: F \neq F_0$$

gdzie F_0 jest dystrybuantą rozkładu normalnego wybranego w poprzedniej podsekcji, a F dystrybuantą nieznaną.

Do przetestowania hipotezy zerowej o równości dystrybuant wykorzystamy metodę Monte Carlo przy użyciu statystyki Kołmogorowa-Smirnowa.

W tym celu generujemy N=10000 prób z rozkładu normalnego o parametrach

$$m = -0.0006787669$$
 oraz $s = 0.0248544$

wyestymowanych wcześniej oraz obliczamy wartość statystyki Kołmogorowa-Smirnowa dla każdej z nich.

Następnie obliczamy prawdopodobieństwo

$$p = P(D_n > d_n)$$

gdzie D_n to wartość statystyki dla wygenerowanych prób a d_n to jej wartość dla log-zwrotów spółki.

Ustalamy poziom istotności $\alpha=0.05$ i sprawdzamy czy $p<\alpha$. W naszym przypadku

$$p = 0.0025 < \alpha = 0.05$$

co pozwala nam odrzucić hipotezę zerową na rzecz hipotezy alternatywnej.