## Calculus AB Riemann Integrals Paul L. Bailey

Friday, November 3, 2017

**Definition 1.** Let  $a, b \in \mathbb{R}$  with a < b.

A partition of the closed interval [a, b] is a finite set

$$P = \{x_0, x_1, x_2, \dots, x_n\}$$

with the property that

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b.$$

Let  $P = \{x_0, x_1, x_2, \dots, x_n\}$  be a partition of [a, b]. We view P as indicating a way of breaking the interval [a, b] into n subintervals. The width of the i<sup>th</sup> subinterval is  $\Delta x_i = x_i - x_{i-1}$ , for  $i = 1, \dots, n$ .

The norm of the partition P is

$$||P|| = \max{\{\Delta x_i \mid i = 1, \dots, n\}}.$$

A choice set for P is a finite set

$$C = \{c_1, c_2, \dots, c_n\}$$

such that  $c_i \in [x_{i-1}, x_i]$ , for i = 1, ..., n. Note that this implies

$$c_1 < c_2 < \cdots < c_n.$$

Let  $f:[a,b]\to\mathbb{R}$ . The Riemann sum associated to a partition P and a choice set C for P is

$$R(f, P, C) = \sum_{i=1}^{n} f(c_i) \Delta x_i.$$

We say that f is Riemann integrable with integral I if there exists a real number  $I \in \mathbb{R}$  such that, for every positive real number  $\epsilon > 0$ , there exists a real number  $\delta > 0$  such that for every partition P and choice set C of P,

$$||P|| < \delta \implies |R(f, P, C) - I| < \epsilon.$$

If f is Riemann integrable with integral I, we write

$$\int_{a}^{b} f(x) \, dx.$$

This is read, "the integral from a to b of f(x) dx".

The Riemann integral represents the area between the graph of f and the x-axis. Note that this is signed area; that is, area below the x-axis is counted as negative.

**Remark 1** (Properties of the Riemann Integral). Let  $f:[a,b]\to\mathbb{R}$  and  $g:[a,b]\to\mathbb{R}$  be integrable. Let  $c,d\in[a,b]$  with  $a\leq c\leq d\leq b$ . Let  $k\in\mathbb{R}$ .

- (a) f is integrable on [c, d]
- **(b)**  $\int_{a}^{a} f(x) dx = 0$
- (c)  $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$
- (d)  $\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx$
- (e)  $\int_{a}^{b} k f(x) dx = k \int_{a}^{b} f(x) dx$
- (f)  $\int_a^b f(x) + g(x) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$
- (g) if  $f(x) \leq g(x)$  for all  $x \in [a, b]$ , then  $\int_a^b f(x) dx \leq \int_a^b f(x) dx$

**Theorem 1** (Fundamental Theorem of Calculus, Part I). (FTC I) Let  $f:[a,b] \to \mathbb{R}$  be integrable. Define a function

$$F: [a,b] \to \mathbb{R}$$
 by  $F(x) = \int_a^x f(t) dt$ .

Then F is differentiable at x for  $x \in (a,b)$ , and F'(x) = f(x).

Reason. Consider

$$F(x+h) - F(x) = \int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt = \int_{x}^{x+h} f(t) dt.$$

Now  $\int_x^{x+h} f(t) dt$  is the area under the graph of f from x to x+h. Since f is continuous, it is clear that, for very small h, this area is approximately the area of the rectangle whose height is f(x) and whose width is h; that is,

$$\int_{x}^{x+h} f(t) dt \approx f(x)h.$$

Thus, for very small h,

$$F'(x) pprox \frac{F(x+h) - F(x)}{h} = \frac{\int_x^{x+h} f(t) dt}{h} pprox \frac{f(x)h}{h} = f(x).$$

These approximations become precise as h approaches zero, so

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = f(x).$$

Theorem 2 (Fundamental Theorem of Calculus, Part II). (FTC II)

Let  $f:[a,b]\to\mathbb{R}$  and suppose that F is an antiderivative for f on (a,b). Then

$$\int_{a}^{b} f(t) dt = F(b) - F(a).$$

*Proof.* Let  $G(x) = \int_a^x f(t) dt$ . Then by FTC I, G is differentiable on (a,b), and G'(x) = F'(x) = f(x). Since F and G have the same derivative, they differ by a constant. Thus there exists a constant  $C \in \mathbb{R}$  such that

$$G(x) = F(x) + C$$
 for all  $x \in [a, b]$ .

Plugging in x = a, we have G(a) = F(a) + C. But  $G(a) = \int_a^a f(x) dx = 0$ , so F(a) = -C, so

$$G(x) = F(x) - F(a).$$

Finally, plug in x = b to get G(b) = F(b) - F(a), so

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$