

.....

Ficha de Exercícios n.º 1

Funções. Representação de funções

1. Observe os seguintes gráficos e representações gráficas:

Indique:

- 1.1 o domínio e o contradomínio de cada uma das funções dadas;
- **1.2** o valor de:

$$f_1(0);$$
 $f_2(-1);$ $f_3(0);$ $f_4(0);$ $f_5(1);$ $f_6(1);$ $f_6(-1);$

1.3 o valor de x para cada uma das igualdades seguintes:

$$f_3(x) = -2;$$
 $f_1(x) = 1;$ $f_6(x) = 1;$ $f_6(x) = -1.$

NORTE2020

Domínio, características e limites

2. Determine o domínio de cada uma das funções reais de variável real definidas por:

2.1
$$f_1(x) = 0$$

2.2
$$f_2(x) = -2$$

2.3
$$f_3(x) = x$$

2.4
$$f_4(x) = 3x - 1$$

2.5
$$f_5(x) = 1 - x^3$$

2.6
$$f_6(x) = \frac{1}{x} + 5$$

2.7
$$f_7(x) = \frac{2+x}{3-x}$$

2.8
$$f_8(x) = 2 + \frac{x}{x^2 + 1}$$

2.9
$$f_9(x) = \frac{2x+3}{1-x^2}$$

2.10
$$f_{10}(x) = \frac{-x}{x^2 + x}$$

2.11
$$f_{11}(x) = \frac{1-x^2}{x^2-3x+7}$$

3. Determine o domínio de cada uma das funções reais de variável real definidas por:

3.1
$$r_1(x) = \frac{\sqrt[3]{x}}{x}$$

3.2
$$r_2(x) = \frac{\sqrt{x+1}}{2x^2+5}$$

3.3
$$r_3(x) = \frac{\sqrt{x+1}}{2x-5}$$

3.4
$$r_4(x) = \frac{\sqrt{1-x}}{\sqrt{9+4x}}$$

3.5
$$r_5(x) = \frac{\sqrt{-x+3}}{\sqrt{x-2}}$$

3.6
$$r_6(x) = \frac{\sqrt{-x+3}}{\sqrt[3]{x-2}}$$

Domínio, características e limites

4. O gráfico mostra a relação entre o tempo gasto no percurso da viagem do João e a distância a casa.

O João saiu de casa, esperou pelo autocarro, saiu do autocarro e foi tomar café e, em seguida, foi para a Universidade. Quando saiu das aulas dirigiu-se a um centro comercial onde foi fazer compras. Depois de ter feito as compras, dirigiu-se para a paragem, apanhando imediatamente o autocarro que o trouxe até casa.

- **4.1** Qual é a distância da casa do João à Universidade?
- **4.2** Quantos metros percorreu João a pé?
- **4.3** Quanto tempo esperou o João pelos autocarros?
- **4.4** Sabendo que o João entrou no centro comercial às 11h40m, diga a que horas chegou ele à Universidade.

Domínio, características e limites

Características de uma função

5. A figura seguinte representa o gráfico de uma função *f*.

Indique:

- **5.1** os intervalos de crescimento e os intervalos de decrescimento de f;
- **5.2** o máximo absoluto de *f*;
- **5.3** o mínimo absoluto e o minimizante de *f*;
- **5.4** os zeros de *f*;
- 5.5 os intervalos em que a função é positiva e os intervalos em que é negativa;
- **5.6** um intervalo em que f seja injetiva e um intervalo em que f seja não injetiva.

Domínio, características e limites

6. O gráfico seguinte mostra o consumo de eletricidade de uma casa durante um dia:

- **6.1** Em que intervalos de tempo o consumo foi constante?
- **6.2** Durante o dia houve um corte de energia. Pelo gráfico podemos concluir a que horas foi? Justifique.
- **6.3** Em que período do dia foi crescente o consumo de eletricidade? E decrescente?
- **6.4** A que horas do dia o consumo atingiu o valor máximo? E o valor mínimo (não tendo em conta o corte de energia)?
- **6.5** A que horas se registaram máximos relativos e mínimos relativos?
- 7. Represente graficamente cada uma das seguintes funções:

7.1
$$f_1(x) = \begin{cases} x - 3 & \text{se } x \ge 2 \\ 3 & \text{se } x < 2 \end{cases}$$

7.2
$$f_2(x) = \begin{cases} -2x & se-1 < x < 4 \\ -x+1 & se \ x \le -1 \end{cases}$$

7.3
$$f_3(x) = \begin{cases} -1 & se \ x > 1 \\ 0 & se \ x = 1 \\ 1 & se \ x < 1 \end{cases}$$

7.4
$$f_4(x) = \begin{cases} -x & \text{se } 3 \le x < 6 \\ -3x + 1 & \text{se } -3 \le x < 3 \end{cases}$$

4 $\text{se } x = 6$

Limites

8. Nas alíneas seguintes calcule: $\lim_{x\to a^+} f(x)$, $\lim_{x\to a^-} f(x)$ e $\lim_{x\to a} f(x)$

8.1.

8.2.

8.3.

8.4.

9. Observe o gráfico de f.

Indique:

9.1.
$$\lim_{x \to -4^-} f(x)$$

9.2.
$$\lim_{x \to -4^+} f(x)$$

9.3.
$$\lim_{x \to -4} f(x)$$

9.4.
$$\lim_{x \to -1^{-}} f(x)$$

9.5.
$$\lim_{x \to -1^+} f(x)$$

9.6.
$$\lim_{x \to -1} f(x)$$

9.7.
$$\lim_{x \to 1^{-}} f(x)$$

9.8.
$$\lim_{x \to 1^+} f(x)$$

9.9.
$$\lim_{x \to 1} f(x)$$

Domínio, características e limites

10. Na figura, em referencial ortonormado Oxy, estão representadas duas funções f e g de domínio IR. Atendendo à informação dada na figura, responda às seguintes questões.

- **10.1.** Pode concluir que $\lim_{x\to 1} (g(x) f(x))$ é igual a:
- **(A)** 0
- **(B)** 2
- **(C)** 3
- (D) 1

10.2. Pode concluir que $\lim_{x\to 0^+} \frac{f(x)}{g(x)}$ é igual a:

- $(A) +\infty$
- **(B)** 0
- (C) 1
- **(D)** −∞

11. Calcule cada um dos seguintes limites:

11.1
$$\lim_{x \to 3} (-2x)$$

11.6
$$\lim_{x \to 1} \sqrt[3]{x^2 + 2x + 5}$$

11.2
$$\lim_{x\to 8} (-10)$$

11.7
$$\lim_{x\to 0} \left(\frac{x^2-3}{x-1}\right)^3$$

11.3
$$\lim_{x \to 1} (x^2 - 2x + 1)$$

11.8
$$\lim_{x \to 1} \sqrt{\frac{x^2 + 1}{3x}}$$

11.4
$$\lim_{x \to -3} \frac{1}{x}$$

11.5
$$\lim_{x\to 2} [(x-1)(x+5)^2]$$

12. Calcule os limites laterais nos pontos que se indicam e diga, justificando, se existe o limite nesses pontos.

Domínio, características e limites

12.1
$$f(x) = \begin{cases} 2x & , & x < 0 \\ x & , & x \ge 0 \end{cases}$$
; $x = 0$

$$\mathbf{12.2} \ \ g(x) = \begin{cases} \frac{1}{2} & , & x < -1 \\ 2 & , & -1 \le x \le 1 \\ -\frac{1}{x} & , & x > 1 \end{cases}$$

12.3
$$h(x) = \begin{cases} \frac{1}{x^2 + 1} &, & x > -1 \\ -\frac{1}{2x} &, & x \le -1 \end{cases}$$
; $x = -1$

13. Calcule os seguintes limites se existirem, ou mostre que não existem:

13.1
$$\lim_{x \to 1} f(x)$$
, sendo $f(x) = \begin{cases} 3x + 2 & , & x < 1 \\ x + 3 & , & x \ge 1 \end{cases}$

13.2
$$\lim_{x \to -2} f(x)$$
, sendo $f(x) = \begin{cases} 3x + 2 & , & x < 1 \\ x + 3 & , & x \ge 1 \end{cases}$

13.3
$$\lim_{x \to 5} f(x)$$
, sendo $f(x) = \begin{cases} 3x + 2 & , & x < 1 \\ x + 3 & , & x \ge 1 \end{cases}$

13.4
$$\lim_{x \to 2^+} f(x)$$
, sendo $f(x) = \frac{\sqrt{x-2}}{x}$

13.5
$$\lim_{x \to 2^+} f(x)$$
, sendo $f(x) = \frac{x}{\sqrt{x-2}}$

14. Determine, se existirem:

14.1
$$\lim_{x \to -\infty} (-x - x^3)$$

14.2
$$\lim_{x \to +\infty} (-x - x^2)$$

14.3
$$\lim_{x \to -\infty} \left(-x + x^3 \right)$$

14.4
$$\lim_{x \to +\infty} \left(-x + x^2 \right)$$

14.5
$$\lim_{x \to +\infty} \sqrt{x^3 - 3x + 1}$$

14.6
$$\lim_{x \to +\infty} (x^3 - 3x^2 + 2)$$

14.7
$$\lim_{x \to +\infty} \left(-3x^5 + x^4 + 2 \right)$$

15. Determine, se existirem:

15.1
$$\lim_{x \to +\infty} \frac{-2x+1}{x^2 + 3x}$$

15.2
$$\lim_{x \to +\infty} \frac{-2x^2 + 5}{x^2 + x}$$

15.3
$$\lim_{x \to +\infty} \frac{x^3 + 5x + 2}{x - 1}$$

15.4
$$\lim_{x \to +\infty} \left(\frac{x+1}{-x-3} \right)^3$$

15.5
$$\lim_{x \to +\infty} f(x)$$
, sendo $f(x) = \begin{cases} x^2, & x > 1000 \\ 2, & x \le 1000 \end{cases}$

15.6
$$\lim_{x \to -1} \frac{3x}{(x+1)^2}$$

15.7
$$\lim_{x \to 3} \frac{x^2 - 8x + 15}{x^2 - 9}$$

15.8
$$\lim_{x \to 0^+} \sqrt{\frac{x+1}{x}}$$

15.9
$$\lim_{x \to -1} \frac{x^3 + 1}{x + 1}$$

15.10
$$\lim_{x \to 1} \frac{x^3 - 6x^2 + 11x - 6}{2x^2 - 8x + 6}$$

15.11
$$\lim_{x \to -1} \frac{x^2 + 4x + 3}{x^2 - x - 2}$$

15.12
$$\lim_{x \to -3} \frac{x^2 - 9}{x + 3}$$

15.13
$$\lim_{x \to +\infty} \frac{2x/(x^2+1)}{(2x^2+1)/x^4}$$

Domínio, características e limites

/(2)

17.14
$$\lim_{x\to 0} \frac{2x/(x^2+1)}{(2x^2+1)/x^4}$$

17.15
$$\lim_{x\to 0} (6x^2 - x + 4)$$

17.16
$$\lim_{x \to +\infty} \frac{1}{\sqrt{x-2}}$$

16. Para cada valor real de **m** a expressão seguinte define uma função real de variável real *f*:

$$f(x) = \begin{cases} x^3 - mx + 7 & \text{se } x > 0 \\ 7 & \text{se } x = 0 \\ |x + 3| + m & \text{se } x < 0 \end{cases}$$

- **16.1.** Determine **m** de modo que exista $\lim_{x\to 0} f(x)$.
- **16.2.** Determine **m** de modo que $\lim_{x\to -4} f(x) = f(0)$.
- **17.** Sejam f e g as funções reais de variável real definidas por:

$$f(x) = \begin{cases} \sqrt{1+x^2} + x & \text{se } x \le 0 \\ 2x+1 & \text{se } x > 0 \end{cases} \quad \text{e} \qquad g(x) = x - \frac{x+1}{x-1}$$

- **17.1.** Mostre que existe $\lim_{x\to 0} f(x)$
- **17.2.** Calcule $\lim_{x \to -\infty} g(x)$.
- **17.3.** Calcule $\lim_{x \to +\infty} \frac{g(x)}{f(x)}$.

Domínio, características e limites

Soluções:

-1	

- 1.1 $D_{f1}=]-3$, 2] e $D'_{f1}=[1, 4[; D_{f2}=[-2, 3] \text{ e } D'_{f2}=[-2, 5] D_{f3}=\text{R e } D'_{f3}=\{-2, 0, 3\}$ $D_{f4}=\text{R_0}^+\text{ e } D'_{f4}=\text{R_0}^+; D_{f5}=\text{R}\{-1\}\text{ e } D'_{f5}=\text{R}\{2\}; D_{f6}=]-\infty$, 3[e $D'_{f6}=]-\infty$, 1[U]2, 3[U{4}]
- 1.2 2,2; -2; 3; 0; 0; 4; -1
- 1.3]-∞, -1[; 2; -2; {(≅-3), -1}

2.

- 2.1 IR 2.7 IIR\{3}
- 2.2 IR 2.8 IR
- 2.3 IR 2.9 IR\{-1, 1}
- 2.4 IR 2.10 IR\{-1, 0}
- 2.5 IR 2.11 IR
- 2.6 IR\{0}

3.

- 3.1 IR\{0} 3.4]-9/4, 1]
- 3.2 $[-1, +\infty[$ 3.5]2, 3]
- 3.3 [-1, $+\infty$ [\{5/2} 3.6]- ∞ , 3]\{2}

4.

- 4.1 3,5 Km 4.3 20 min
- 4.2 2000m 4.4 9h20m

5.

- 5.1 Estritamente crescente:]-6, -3[,]-1, 2[e]6, 10[
 - Estritamente decrescente:]-3, -2[e]2, 6[
- 5.2 Máximo absoluto: 7
- 5.3 Mínimo absoluto: -6
 - Minimizantes: -6, [-2, -1] e 6
- 5.4 -4, 4 e 8
- 5.5 Positiva:]-4, 4[∪]8, 10[
 - Negativa: [-6, -4[∪]4, 8[
- 5.6 Injetiva: [-6, -3]
 - Não injetiva: [-4, 0], por exemplo

6.

6.1 Das 0h às 6h, das 14h às 16h e das 16h às 17h

Domínio, características e limites

6.2 Das 16h às 17h, porque o consumo passou, bruscamente, a ser 0

6.3 Das 6h às 12h e das 17h às 20h

6.4 20h. Das 0h às 6h

6.5 Máximos: 12h e 20h

Mínimos: das 0h às 6h; das 14h às 16h; das 16h às 17h e às 24h

8.

8.1 1; 2; não existe

8.2 0; -2; não existe

8.3 $+\infty$; 2; não existe

8.4 4; 0; não existe

9.

9.1 2 9.2 2 9.3 2 9.4 2 9.5 2 9.6 2

9.7 2 9.8 4 9.9 não existe

10.

10.1 B 10.2 A

11.

11.1 -6 11.5 49

11.2 -10 11.6 2

11.3 0 11.7 27

11.4 -1/3 11.8 $\sqrt{2/3}$

12.

 $12.1 \qquad \lim_{x \to 0} f(x) = 0$

12.2 Não existe $\lim_{x \to -1} g(x)$

Não existe $\lim_{x\to 1} g(x)$

12.3 $\lim_{x \to -1} h(x) = 1/2$

13.

13.1 Não existe $\lim_{x \to 1} f(x)$

13.2 $\lim_{x \to -2} f(x) = -4$

 $\lim_{x \to 5} f(x) = 8$

13.4 $\lim_{x \to 2^+} f(x) = 0$

 $\lim_{x \to 2^+} f(x) = +\infty$

Domínio, características e limites

14.			
14.1	+∞	14.5	+∞
14.2	-∞	14.6	+∞
14.3	-∞	14.7	-∞
14.4	+∞		
15.			
15.1	0	15.9	3
15.2	-2	15.10	-1/2
15.3	+∞	15.11	-2/3
15.4	-1	15.12	-6
15.5	+∞	15.13	+∞
15.6	-∞	15.14	0
15.7	-1/3	15.15	4
15.8	+∞	1.16	0
16.			
16.1	m=4		
16.2	m=6		
17.			
17.2	-∞		
17.3	1 2		

