Equation of Continuity

The equation of continuity is derived from the principle of conservation of mass.

A non-viscous liquid in streamline flow passes through a tube AB of varying cross section. Let the cross sectional area of the pipe at points A and B be a_1 and a_2 respectively. Let the liquid enter with normal velocity v_1 at A and leave with velocity v_2 at B. Let ρ_1 and ρ_2 be the densities of the liquid at point A and B respectively.

Mass of the liquid entering per second at A = Mass of the liquid leaving per second at B

$$a_1v_1\rho_1 = a_2v_2\rho_2$$
 and $A_1v_1 = A_2v_2$

[If the liquid is incompressible $\rho_2 = \rho_1$] or $av = \text{constant or} \qquad a \propto \frac{1}{v}$

This expression is called the equation of continuity for the steady flow of an incompressible and non-viscous liquid.

- (1) The velocity of flow is independent of the liquid (assuming the liquid to be non-viscous)
- (2) The velocity of flow will increase if cross-section decreases and viceversa. That is why:
- (a) In hilly region, where the river is narrow and shallow (*i.e.*, small cross-section) the water current will be faster, while in plains where the river is wide and deep (*i.e.*, large cross-section) the current will be slower, and so deep water will appear to be still.
- (b) When water falls from a tap, the velocity of falling water under the action of gravity will increase with distance from the tap (i.e., $v_2 > v_1$). So in accordance with continuity equation the cross section of the water stream will decrease (i.e., $A_2 < A_1$), i.e., the falling stream of water becomes narrower.