Assignment 6

EE24Btech11024 - G. Abhimanyu Koushik

1) The Miller indices of the first three Bragg peaks in the X-ray diffraction pattern obtained from a polycrystalline iron sample at room temperature are							
polytrystal		pro we recent compensation			(XE 2017)		
a) (111), (2	00), (220)	b) (100), (110), (111)	c) (100), (110), (200)	d) (110),	(200), (220)		
2) The number of close packed planes in the lattice of an FCC metal is (XE 2017)							
a) 2		b) 4	c) 6	d) 12			
3) Which of the following treatment(s) can increase the electrical conductivity of silicon? (i) Heating (ii) Doping with arsenic (iii) Doping with aluminum (iv) Exposure to light (XE 2017)							
· · · · · · · · · · · · · · · · · · ·		c) Only (i), (ii) and (iv) d) All (i), (ii), (iii) and (iv)					
4) The unit cell volume of polyethylene (PE) is $0.0933 \ nm^3$. Assuming two ethylene repeat units are contained within each unit cell, the density of a totally crystalline PE will beg/cm^3. (Take the atomic weights for carbon and hydrogen as $12.01 \ g/mol$ and $1.008 \ g/mol$, respectively and (Avagadro's number as 6.023×10^23 repeat units/mol)							
(XE 2017) 5) A continuous and aligned carbon fibre (CF) reinforced polymer composite with 30% of CF and rest resin was designed for a specific application. The modulus of elasticity of CF is 170 <i>GPa</i> and that of resin is 3.0 <i>GPa</i> . The modulus of elasticity for this composite in the direction of fibre alignment is							
6) Match the composites in Column I with the most suitable application in Column II							
	Column I		Column II				
		ilicates filled butyl rubber	1. Automobile pistons				
		orced aluminium alloy	2. Contact lenses				
		oide whiskers reinforced alumina icles reinforced plastic composite	3. Ski boards				
	S. Carbon part	icies reinforceu piastic composite	es 4. Tennis balls 5. Cutting tool inserts for	machining			
	1		. J. Culung tool mould for	macmilli			

(XE 2017)

a) P-4, Q-1, R-5, S-3

c) P-3, Q-5, R-5, S-3

b) P-2, Q-3, R-4, S-5

- d) P-2, Q-1, R-3, S-5
- 7) Match the processes in Column I with products in Column II

Column I	Column II
P. Slip casting	1. Metal powders
Q. Zone refining	2. Thin films
R. Sputtering	3. Ceramic parts
S. Atomization	4. Single crystal
	5. Metal sheets

(XE 2017)

- a) P-3, Q-4, R-2, S-1
- b) P-2, Q-1, R-2, S-1

- c) P-3, Q-4, R-5, S-1
- d) P-3, Q-4, R-1, S-5
- 8) The value of diffusivity (D) for the diffusion of carbon (C) in γ -iron at 1300°C is ______×10⁻¹³ m^2/s . (Given $D_0 = 2 \times 10^{-5} \ m^2/s$; activation energy $Q = 142 \ kJ/mol$; $R = 8.314 \ J/mol \cdot K$) (XE 2017)
- 9) Refer to the figure below:

If the alloy contains 47 wt. % of A and 53 wt. % of B at $1300^{\circ}C$, the wt. % of liquid present in the alloy at this temperature will be _____

(XE 2017)

- 10) Which of the following statement(s) is/are true
 - (i) All piezoelectric materials are necessarily ferroelectric
 - (ii) All ferroelectric materials are necessarily piezoelectric
 - (iii) All pyroelectric materials are necessarily piezoelectric
 - (iv) All pyroelectric materials are necessarily ferroelectric

(XE 2017)

- a) (i) and (ii)
- b) (ii) and (iii)
- c) (i) and (iv)
- d) (ii) and (iv)
- 11) If the energy of formation of vacancies in pure copper is 0.9 eV, the fraction of vacancies in pure copper at $27^{\circ}C$ will be ______ $\times 10^{-16}$. (Boltzmann's constant is 8.62×10^{-5} eV/K) (XE 2017)

12)		rial with a critical flaw size of eture stress for a critical flaw si	•	
			•	(XE 2017)
13)	•	terial that is transparent under s possible reason(s) for the colo	· 11	d when doped with transition
	i) The electronic	e energy levels of the host mat	erial changes significantl	y by doping
(ii) The doped ele	ement selectively absorbs certai ement emits radiation of specif	n wavelength of light oth	
(1	ii) The doped en	ement enints radiation of specif	ic wavelength	(VE 2017)
				(XE 2017)
	a) Only (i)	b) Both (i) and (ii)	c) Both (i) and (iii)	d) Both (ii) and (iii)