1. 实验名称及目的

ADRC 姿态控制器设计实验: 把系统的模型作用当做系统的内扰,那么它连同系统的外扰一起,均可作为对系统的扰动。这个补偿分量并不区分内扰和外扰,直接检测并补偿他们的总和作用—对系统的总扰动。由于这个分量的补偿作用,被控对象实际上被化成积分器串联型而易于构造出理想的控制器,这个补偿分量的补偿作用实质上是一种抗扰作用。因此我们将此控制器称为"自抗扰控制器"(ADRC)。本实验将对四旋翼的姿态作为控制目标,进行设计 ADRC 控制器设计实验包含有控制器搭建->SITL->HITL->实飞。

2. 实验原理

ADRC 可以说是 PID 的升级版,保留了 PID 的优点,改良了 PID 的缺点,其结构和 PI D 一样,ADRC 可以被看作三个作用效果的结合,分别是 TD (跟踪微分器)、ESO (扩张状态观测器)、NLSEF (非线性控制律)。TD 是为了防止目标值突变而安排的过渡过程;ADRC 的灵魂就在于 ESO。

3. 实验效果

实现四旋翼姿态控制。

4. 文件目录

文件夹/文件名称		说明	
Sim	AttitudeControl_ADRC_Sim.slx	ADRC 姿态控制器数字联调模型文件	
	Init_control_adrc.m	控制器参数文件	
	icon	图片等其他文件。	
	icon	图片等其他文件。	
HIL	AttitudeControl_ADRC_HIL.slx	ADRC 姿态控制器 HITL 仿真模型文件	
HIL	Init_control.m	控制器参数文件	
	px4_simulink_app_params.c	QGC 参数写入文件	
	icon	图片等其他文件。	
	AttitudeControl_ADRC_FLY.slx	ADRC 姿态控制器实飞模型文件	
FLY	Init_control.m	控制器参数文件	
	px4_simulink_app_params.c	QGC 参数写入文件	
	px4_fmu-v6c_default1133.px4	Pixhawk 6C 官方 1.13.3 版本固件	
第 09 讲_实验五_姿态控制器设计实验-ADRC.pdf		本实验配套课件	

5. 实验环境

序号	软件要求	硬件要求	
		名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1

2	RflySim 平台集合版	Pixhawk 6C 飞控 ^②	1
3	MATLAB 2017B 及以上	遥控器 [®]	1
		遥控器接收器	1
		数据线、杜邦线等	若干
		SD卡及读卡器	1

- ①: 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html
- ②: 须保证平台安装时的编译命令为: px4_fmu-v6c_default, 固件版本为: 1.13.3。其他配套 飞控请见: http://doc.rflysim.com/hardware.html
- ③: 本实验演示所使用的遥控器为: 天地飞 WFLY-ET10、配套接收器为: WFLY-RF209
- S。遥控器相关配置见: http://doc.rflysim.com/hardware.html

6. Sim 实验步骤

Step 1:

在 MATLAB 中打开 init_control_adrc.m 文件并运行, 等待运行完成之后, 打开 Attitude Control_ADRC_Sim.slx 文件, 该文件中输入中 CH1、CH3、CH4 均为 1500, CH5 为 1000, CH2 中设置为在 0.004*100=0.4s (0.004 为仿真步长)之后, 输入由 1500 变化为 1700。

Step 2:

运行 Simulink 中的运行按钮

即可在 Simulink 中弹出俯仰通道的指令与响应曲线图如下:

7. HITL 实验步骤

Step 1:

在 MATLAB 中打开 init_control.m 文件并运行,等待运行完成之后,打开 AttitudeControl ADRC HIL.slx 文件,点击 Simulink 中的编译按钮。

在 Simulink 的下方点击 View diagnostics 指令,即可弹出诊断对话框,可查看编译过程。 在诊断框中弹出 Build process completed successfully,即可表示编译成功,左图为生成的编译报告。

Step 2:

用 USB 数据线链接飞控与电脑。在 MATLAB 命令行窗口输入: PX4Upload 并运行或点击 PX4 PSP: Upload code to Px4FMU, 弹出 CMD 对话框,显示正在上传固件至飞控中,等待上传成功。

Step 3:

上传成功后, 打开 QGroundControl 软件, 确认为如下设置:

Step 4:

双击打开"*\桌面\RflyTools\HITLRun.lnk"或"*\PX4PSP\RflySimAPIs\HITLRun.bat"文件,在弹出的 CMD 对话框中输入插入的飞控 Com 端口号,即可自动启动 RflySim3D、CopterSim、QGroundControl 软件,等待 CopterSim 的状态框中显示: PX4: GPS 3D fixed & EKF initialization finished。即可在 QGroundControl 中设置飞机起飞等操作。

遥控器的设置如下图,通过控制不同的通道即可在 RflySim3D 中观察到无人机的飞行姿态,完成硬件在环仿真。注:具体设置请见本平台的遥控器配置手册。

Step 6:

通过 CH5 解锁之后,在 RflySim3D 中即可看到飞机正常起飞,通过 Step 7 中 CH1~CH 4 调整飞机姿态和高度。

8. 官方固件实飞实验步骤

官方固件实飞实验运行环境			
序号	软件要求	硬件要求	
		名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版及以上版本	飞思 X450 飞机 ^②	1
	MATLAB 2017B 及以上	遥控器 [®]	1
		数据线、杜邦线等	若干

- ①: 推荐配置请见: https://doc.rflysim.com
- ②:本实验中所使用的飞机为飞思 X450 飞机的模型设计版,该飞机所搭载的飞控为 Pixhawk 6C mini,须保证平台安装时的编译命令为: px4_fmu-v6c_default,固件版本为: 1.13. 3。其他配套飞控请见: http://doc.rflysim.com。
- ③: 本实验演示所使用的遥控器为: 天地飞ET10、配套接收器为: WFLYRF209S。遥控器相关配置见: ..\e11 RC-Config\Readme.pdf

Step 1:

请扫码或点击下方二维码,将本例程文件夹下: <u>px4_fmu-v6c_default1133.px4</u>(飞控固件)上传至飞控中。

Step 2:

将飞机通过 USB 与电脑进行连接, 打开 QGC 软件, 设置机架为: DJI F450 w/ DJI ESC s;

Step 3:

选择加载本例程文件夹下的参数文件: X450.params 文件。

加载成功后, 断开飞机, 再次进行连接飞机确保所有设置均已完成。

Step 4:

打开 QGC 地面站在其中进行如下设置:

注: 该飞行模式中的各通道设置须于遥控器中所设置的通道对映。

Step 5:

手动摆动飞机,查看 QGC 右上角仪表盘的显示情况,并确认飞机状态切换到手动 Man ual 模式下。

Step 6:

请在指定飞场进行无人机实飞,若正常起飞,说明无人机状态良好;若未正常起飞,请检查传感器校准、参数设置等,具体请联系飞机生产厂家进行解决。请务必保证飞机状态良好的情况下,再进行下一步操作。

9. 实飞实验步骤

官方固件实飞实验运行环境			
序号	软件要求	硬件要求	

		名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台集合版及以上版本	飞思 X450 飞机 ^②	1
	MATLAB 2017B 及以上	遥控器 [®]	1
		数据线、杜邦线等	若干

- ①: 推荐配置请见: https://doc.rflysim.com
- ②:本实验中所使用的飞机为飞思 X450 飞机的模型设计版,该飞机所搭载的飞控为 Pixhawk 6C mini,须保证平台安装时的编译命令为: px4_fmu-v6c_default,固件版本为: 1.13. 3。其他配套飞控请见: http://doc.rflysim.com。
- ③: 本实验演示所使用的遥控器为: 天地飞ET10、配套接收器为: WFLY RF209S。遥控器相关配置见: ..\e11 RC-Config\Readme.pdf

Step 1:

打开 FLY\AttitudeControl ADRC FLY.slx 文件,在 Simulink 中,点击编译命令。

Step 2:

在 Simulink 的下方点击 View diagnostics 指令,即可弹出诊断对话框,可查看编译过程。 在诊断框中弹出 Build process completed successfully,即可表示编译成功,左侧为生成的编译报告。

Step 3:

用 USB 数据线链接飞控(或飞机)与电脑。在 MATLAB 命令行窗口输入: PX4Upload 并运行, 弹出 CMD 对话框,显示正在上传固件至飞机中,等待上传成功。

Step 4:

打开 QGroundComtrol 软件,等待飞机连接成功。确认无人机机架类型选择如下图,并设置遥控器通道如下,其中 CH5 为解锁, CH6 为模式切换。

Step 5:

遥控器的设置如下图。注:遥控器设置中, CH5 通道需设置为二段式开关, CH6 通道设置为三段式开关。具体设置请见本平台的遥控器配置手册。

Step 6:

为确保安全,可在飞机上系上安全绳,并将安全绳的另一端固定在重物上。飞行时人 在安全半径以外,在姿态模式下,高度可能比较难控,注意不要急推油门,让油门在中位 附近,缓慢推油门。

10.参考文献

- [1]. 全权,杜光勋,赵峙尧,戴训华,任锦瑞,邓恒译.多旋翼飞行器设计与控制[M],电子工业出版 社,2018.
- [2]. 全权,戴训华,王帅.多旋翼飞行器设计与控制实践[M],电子工业出版社, 2020.

11.常见问题

Q1: 无

A1: 无