

Índice

Introducción	2
Estudio de valores	2
Tamaño de la población	2
Valor k de la selección por torneo	3
Tamaño de la sublista para el cruce	3
Tamaño de la sublista para la mutación	4
Probabilidad de mutación	
Resultados obtenidos por cada Algoritmo	
Genético básico	
CHC	
Multimodal	
Tabla global de resultados por datasets	
Resumen st70	
Resumen ch130	
Resumen a280	
Resumen vm1748	_
Análisis de los resultados obtenidos	/
Índice de Tablas	
Tabla 1. Tabla de Costes Genético Básico	5
Tabla 1. Tabla de Costes Genetico Basico Tabla 2. Tabla de Costes CHC	5 5
Tabla 3. Tabla de Costes Multimodal	5
Tabla 4. Resumen resultados para el dataset st70	6
Tabla 5. Resumen resultados para el dataset ch130	6
Tabla 6. Resumen resultados para el dataset a280	6
Índice de Gráficas	
Ilustración 1. Ejecución con tamaño de población 30, 50 y 100 respectivamente.	2
Ilustración 2. Ejecuciones con distintos valores de k.	3
Ilustración 3. Ejecución con distintos tamaños de la sublista para el cruce.	3
Ilustración 4. Ejecución con distintos tamaños de la sublista para la mutación	4
Ilustración 5. Ejecución con distintas probabilidades de mutación	4
Ilustración 6. Eficiencia Temporal	7
Ilustración 7. Coste Medio Normalizado	7
Ilustración 8. Mejor Resultado Normalizado	7
Ilustración 9. Numero de evaluaciones Normalizadas	7

Introducción

El objetivo de esta práctica es estudiar el funcionamiento de los algoritmos heurísticos no constructivos. Los algoritmos a estudiar son los evolutivos siguientes:

- Genético Simple. (Generacional)
- CHC
- Multimodal

Para ello, se implementará estos algoritmos para resolver el problema del *Viajante de Comercio* (*TSP*). El comportamiento de los algoritmos implementados deberá compararse entre sí y con las técnicas Greedy y Búsqueda Local implementadas en la práctica 1.

Estudio de valores

En este apartado vamos a exponer el porqué de los parámetros utilizados con una serie de gráficas representando ejecuciones que justifican estas elecciones. En las gráficas se podrá ver dos líneas, una indicando la mejor solución en cada iteración (línea azul) y otra indicando la media de la población en cada iteración (línea naranja). El eje X representa las iteraciones y el eje Y representa el coste.

Tamaño de la población

Ilustración 1. Ejecución con tamaño de población 30, 50 y 100 respectivamente.

Podemos observar, al ir eligiendo tamaño de poblaciones mayores, vamos consiguiendo mejores resultados ya que al tener cada vez más valores aleatorios y sus respectivos cruces, tenemos más posibilidades de encontrar más valores mínimos no explorados. Como se puede ver en las gráficas, conseguimos mejores resultados en menos iteraciones con la población de 100. A partir de aquí, todas las ejecuciones contarán con una población de 100 candidatos.

Valor k de la selección por torneo

Ilustración 2. Ejecuciones con distintos valores de k.

Para la primera ejecución, utilizamos sólo un candidato para la selección por torneo, en este caso no es más que una simple selección aleatoria, en la segunda ejecución hemos elegido un 5% de la población, en la tercera ejecución elegimos un 10% de la población y por último, en la cuarta ejecución, utilizamos un 50% de la población. Aunque el mejor resultado sea el de la primera ejecución, al ser una simple selección aleatoria lo descartamos y elegimos el valor del 5% de la población ya que es con el que mejor resultado obtenemos de todas las ejecuciones.

Tamaño de la sublista para el cruce

Ilustración 3. Ejecución con distintos tamaños de la sublista para el cruce.

Las gráficas corresponden a los tamaños de la sublista para el cruce de 10%, 30% y 50% del padre1 que se copian directamente en el descendiente. Observamos que el mejor es el resultado utilizando el 10% de *n*, siendo n el tamaño del padre.

Tamaño de la sublista para la mutación

Ilustración 4. Ejecución con distintos tamaños de la sublista para la mutación

Cada gráfica representa una ejecución teniendo el tamaño de la sublista para la mutación del 10%, 40% y 70% de n. Observamos que el mejor resultado lo obtiene la primera ejecución, trabajando con un 10% de n.

Probabilidad de mutación

Ilustración 5. Ejecución con distintas probabilidades de mutación

En estas ejecuciones modificamos la probabilidad de que un descendiente mute, probamos con las probabilidades de 1%, 10% y 40%. Observamos que la ejecución con un 40% de probabilidad no converge la población, con probabilidades superiores ocurre lo mismo. Si comparamos las otras dos ejecuciones, vemos que los resultados son parecidos, pero la primera converge más rápido obteniendo un mejor resultado.

Resultados obtenidos por cada Algoritmo

Para obtener estos resultados, hemos partido de una población aleatoria sembrando un candidato con la solución Greedy.

Genético básico

Tabla 1. Tabla de Costes Genético Básico

	St	70	Ch:	130	A280		Vm1748	
	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV
Semilla 0	830	16499	7579	16499	3157	16499	408101	16499
Semilla 1	830	16499	7579	16499	3157	16499	408101	16499
Semilla 2	824	16499	7579	16499	3157	16499	408101	16499
Semilla 3	830	16499	7579	16499	3157	16499	408101	16499
Semilla 4	830	16499	7579	16499	3157	16499	408101	16499
Media	828,8	16499	7579	16499	3157	16499	408101	16499
Desv. Típica	2,683	-	0	-	0	-	0	-

CHC

Tabla 2. Tabla de Costes CHC

	St70		Chí	130	A280 Vm1		.748	
	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV
Semilla 0	829	38464	7579	53046	3157	54630	408101	-
Semilla 1	825	55310	7579	53410	3157	54496	408101	-
Semilla 2	825	157142	7579	54084	3157	54216	408101	-
Semilla 3	825	156752	7579	54500	3157	53894	408101	-
Semilla 4	817	38390	7579	53382	3157	54068	408101	-
Media	824,2	89211,6	7579	53684,4	3157	54260,8	408101	-
Desv. Típica	4,382	-	0	-	0	-	0	-

Multimodal

Tabla 3. Tabla de Costes Multimodal

	St70		Ch1	L30	A280		Vm1	Vm1748	
	Coste	#EV	Coste	#EV	Coste	#EV	Coste	#EV	
Semilla 0	830	1650	7579	1700	3157	1650	408101	-	
Semilla 1	788	2490	7578	2820	3148	2170	408101	-	
Semilla 2	823	3100	7579	1700	3157	1650	408101	-	
Semilla 3	830	1650	7579	1700	3157	1650	408101	-	
Semilla 4	827	3210	7579	1700	3157	1650	408101	-	
Media	819,6	2352	7578,8	1924	3155,2	1754	408101	-	
Desv. Típica	17,897	-	0,447	-	4,025	-	0	-	

Tabla global de resultados por datasets

Resumen st70 (Solución óptima 675)

Tabla 4. Resumen resultados para el dataset st70

	Coste	Coste	Coste	Desviación	#EV	Tiempo
	Peor	Medio	Mejor	Típica	Media	Medio
Greedy	830	830	830	0	1	0,0039
BL El Mejor	1358	1226,8	1104	79,275	112.000	0,493
Genético Básico	824	824	824	2,683	16499	2,411
CHC	823	817,2	817	4,382	38390	19,07
Multimodal	Inf	Inf	788	17,897	2490	0,99

Resumen ch130 (Solución óptima 6110)

Tabla 5. Resumen resultados para el dataset ch130

	Coste	Coste	Coste	Desviación	#EV	Tiempo
	Peor	Medio	Mejor	Típica	Media	Medio
Greedy	7579	7579	7579	0	1	0,0069
BL El Mejor	23938	23566,7	22697	574,499	208.000	1,07
Genético Básico	7579	7579	7579	0	16499	16,69
CHC	7579	7579	7579	0	53684,4	74.11
Multimodal	Inf	Inf	7578	0,447	1924	2,61

Resumen a280 (Solución óptima 2579)

Tabla 6. Resumen resultados para el dataset a280

	Coste	Coste	Coste	Desviación	#EV	Tiempo
	Peor	Medio	Mejor	Típica	Media	Medio
Greedy	3157	3157	3157	0	1	0,01
BL El Mejor	28456	26900,9	25229	970,726	448.000	2,475
Genético Básico	4652	3201	3157	0	16499	33.52
CHC	3173	3157,32	3157	0	54260,8	361.61
Multimodal	Inf	Inf	3148	4,025	1754	3,85

Resumen vm1748

Tabla 7. Resumen resultados para el dataset vm1748

	Coste	Coste	Coste	Desviación	#EV	Tiempo
	Peor	Medio	Mejor	Típica	Media	Medio
Greedy	408101	408101	408101	0	1	0,533
BL El Mejor	15106312	14843003,7	14609878	146166,02	2796800	25,62
Genético Básico	408101	408101	408101	0	16499	601,51
CHC	-	-	408101	0	-	3784,79
Multimodal	1768661	723706	408101	0	-	102,08

Análisis de los resultados obtenidos

Ilustración 6. Eficiencia Temporal

Ilustración 7. Coste Medio Normalizado

Ilustración 9. Numero de evaluaciones Normalizadas

Ilustración 8. Mejor Resultado Normalizado

Antes de comentar los resultados, hemos de decir que estos resultados de los algoritmos genéticos son mejorables, debido a que les hemos "capado" el número de iteraciones para que devuelvan un resultado bueno en el menor tiempo posible, por lo que si en vez de cortarlos, les dejamos más tiempo, conseguiremos unos mejores resultados. Por lo que vamos a analizar los resultados sabiendo esta deficiencia en los genéticos.

Primero, en cuanto a la eficiencia temporal, observamos que el más rápido es el algoritmo Greedy seguido de la búsqueda local, es lo normal, debido a que un algoritmo genético para que llegue a un buen resultado es necesario muchas más ejecuciones y con ello, más tiempo.

Después, observando el coste medio normalizado, en el caso de los algoritmos genéticos es el coste medio de la población, el resultado del AG Multimodal no es real ya que cuando aplicamos el clearing, el valor que ponemos es *Infinito*, por lo que el coste medio de este algoritmo es muy alto. Quitando este apunte, vemos que tanto el AG Básico como el GHC convergen muy bien hasta el mejor coste, con lo que son unos buenos resultados, mejorando la BL el mejor.

En cuanto al número de evaluaciones normalizadas, vemos que, como es obvio, el mejor es el Algoritmo Greedy, pero eliminando este, el mejor es el AG Multimodal ya que gracias al clearing, evitamos buscar en áreas ya exploradas y con ello evaluaciones de sobra.

Por último observamos que, en cuanto al mejor resultado obtenido, el mejor algoritmo es el AG Multimodal ya que mejora en casi todos los casos al Greedy, por lo que suponemos que si dejáramos este algoritmo, con más iteraciones y población podríamos llegar a mucho mejores resultados.