First-Order Decay Rate and Half-lives for Selected Pollutants
(Data taken from: Nuclide and Isotopes, Chart of the Nuclides (Ed) F.W. Walker,
J.R. Parrington, F. Feiner, General Electric Company, 1989)

Radioactive Substances	Half-life (time)	Decay Rate (time ⁻¹)
(4)Actinium-227	21.77 yr	3.18 x 10 ⁻² yr ⁻¹
(3)Americium-241	432.7 yr	$1.60 \times 10^{-3} \text{ yr}^{-1}$
Arsenic-76	26.3 hr	$2.64 \times 10^{-2} \text{ hr}^{-1}$
Beryllium-7	53.28 d	$1.30 \times 10^{-2} d^{-1}$
(1,3)Bromide-82	1.475 d	$4.71 \times 10^{-1} d^{-1}$
Cadmium-109	462.0 d	$1.50 \times 10^{-3} d^{-1}$
Carbon-14	5730 yr	1.21 x 10 ⁻⁴ yr ⁻¹
Cerium-141	32.5 d	$2.13 \times 10^{-2} d^{-1}$
Cerium-143	1.38 d	$5.02 \times 10^{-1} \mathrm{d}^{-1}$
⁽⁴⁾ Cerium-144	284.6 d	$2.44 \times 10^{-3} d^{-1}$
Cesium-134	2.065 yr	$3.36 \times 10^{-1} \text{ yr}^{-1}$
Cesium-135	$2.3 \times 10^6 \text{ yr}$	$3.01 \times 10^{-7} \text{ yr}^{-1}$
Cesium-136	13.16 d	$5.27 \times 10^{-2} \mathrm{d}^{-1}$
(3,4)Cesium-137	30.17 yr	$2.30 \times 10^{-2} \text{ yr}^{-1}$
Chlorine-136	$3.01 \times 10^6 \text{ yr}$	$2.30 \times 10^{-6} \text{ yr}^{-1}$
(2)Chromium-51	27.70 d	$2.50 \times 10^{-2} \mathrm{d}^{-1}$
Cobalt-56	77.3 d	$8.97 \times 10^{-3} d^{-1}$
(2,3)Cobalt-57	271.8 d	$2.55 \times 10^{-3} d^{-1}$
Cobalt-58	70.88 d	$9.78 \times 10^{-3} d^{-1}$
(3)Cobalt-60	5.271 yr	1.32 x 10 ⁻¹ yr ⁻¹
Copper-64	12.70 hr	$5.46 \times 10^{-2} \text{ hr}^{-1}$
(4)Europium-154	8.59 yr	$8.07 \times 10^{-2} \text{ yr}^{-1}$
(2)Fluorine-18	1.83 hr	$3.79 \times 10^{-1} \text{ hr}^{-1}$
(1,3)Iodine-125	60.1 d	$1.15 \times 10^{-2} d^{-1}$
Iodine-126	13.0 d	$5.33 \times 10^{-2} d^{-1}$
(4)Iodine-129	$1.57 \times 10^7 \text{ yr}$	4.41 x 10 ⁻⁸ yr ⁻¹
(1,3,4)Iodine-131	8.040 d	$8.62 \times 10^{-2} \mathrm{d}^{-1}$
⁽²⁾ Iron-59	44.51 d	$1.56 \times 10^{-2} d^{-1}$
⁽⁴⁾ Krypton-85	10.73 yr	$6.46 \times 10^{-2} \text{ yr}^{-1}$
(4)Lead-210	22.3 yr	$3.11 \times 10^{-2} \text{ yr}^{-1}$
Molybdenum-99	2.748 d	$2.52 \times 10^{-1} d^{-1}$
Neodymium-147	10.98 d	$3.31 \times 10^{-2} d^{-1}$
⁽⁴⁾ Neptunium-237	$2.14 \times 10^6 \text{ yr}$	$3.24 \times 10^{-7} \text{ yr}^{-1}$
Nickel-63	100. yr	$3.96 \times 10^{-3} \text{ yr}^{-1}$
(2)Phosphorus-32	14.28 d	$4.85 \times 10^{-2} d^{-1}$
Potassium-40	1.28 x 10 ⁹ yr	$5.42 \times 10^{-10} \text{ yr}^{-1}$
(4)Plutonium-239	$2.41 \times 10^4 \text{ yr}$	$2.88 \times 10^{-5} \text{ yr}^{-1}$

(4)Plutonium-240	$6.56 \times 10^3 \text{ yr}$	$1.06 \times 10^{-4} \text{ yr}^{-1}$
(4)Radon-226	7.4 m	$9.37 \times 10^{-2} \mathrm{m}^{-1}$
(4)Ruthenium-106	1.02 yr	$6.78 \times 10^{-1} \text{ yr}^{-1}$
(1,2)Selenium-75	119.8 d	$5.79 \times 10^{-3} d^{-1}$
Sodium-22	2.605 yr	$2.7 \times 10^{-1} \text{ yr}^{-1}$
(2)Strontium-85	64.84 d	$1.07 \times 10^{-2} d^{-1}$
Strontium-89	50.52 d	$1.37 \times 10^{-2} d^{-1}$
(4)Strontium-90	29.1 yr	$2.38 \times 10^{-2} \text{ yr}^{-1}$
(2)Technetium-99m	6.01 hr	1.15 x 10 ⁻¹ hr ⁻¹
(4)Thorium-230	$7.54 \times 10^4 \text{ yr}$	$9.19 \times 10^{-6} \text{ yr}^{-1}$
(4)Thorium-232	$1.40 \times 10^{10} \text{ yr}$	4.95 x 10 ⁻¹¹ yr ⁻¹
Tin-119	293 d	$2.37 \times 10^{-3} d^{-1}$
(1,3,4)Tritium (³ H)	12.3 yr	$5.64 \times 10^{-2} \text{ yr}^{-1}$
(4)Uranium-234	$2.46 \times 10^5 \text{ yr}$	$2.82 \times 10^{-6} \text{ yr}^{-1}$
(4)Uranium-238	$4.47 \times 10^9 \text{ yr}$	1.55 x 10 ⁻¹⁰ yr ⁻¹
Xenon-133	5.243 d	$1.32 \times 10^{-1} d^{-1}$
Zinc-65	243.8 d	$2.84 \times 10^{-3} d^{-1}$

- used as hydrologic tracer used in medical applications industrial sources
- associated with the nuclear power and weapons

Organic Compound ⁽⁵⁾	Half-life ⁽⁶⁾ (time)	Decay Rate (time ⁻¹)
Acenaphthene	204 d	$3.4 \times 10^{-3} d^{-1}$
Acenaphthylene	120 d	$5.78 \times 10^{-3} d^{-1}$
Aldrin	3.2 yr	$2.17 \times 10^{-1} \text{ yr}^{-1}$
Anthracene	2.5 yr	$2.77 \times 10^{-1} \text{ yr}^{-1}$
Benzene	68 d	$1.02 \times 10^{-2} d^{-1}$
Benzo-a-anthracene	3.73 yr	$1.86 \times 10^{-1} \text{ yr}^{-1}$
Benzo-a-pyrene	2.9 yr	$2.39 \times 10^{-1} \text{ yr}^{-1}$
Bromoform	365 d	$1.90 \times 10^{-3} d^{-1}$
Carbon tetrachloride	360 d	$1.93 \times 10^{-3} d^{-1}$
Chlordane	7.6 yr	$9.12 \times 10^{-2} \text{ yr}^{-1}$
Chlorobenzene	300 d	$2.31 \times 10^{-3} d^{-1}$
Chloroethane	56 d	$1.24 \times 10^{-2} d^{-1}$
Chloroform	56 d	$1.24 \times 10^{-2} d^{-1}$
2-Chlorophenol	2.5 d	$2.77 \times 10^{-1} d^{-1}$
Chrysene	5.48 yr	$1.26 \times 10^{-1} \text{ yr}^{-1}$
4,4-DDD	31.3 yr	$2.22 \times 10^{-2} \text{ yr}^{-1}$
4,4-DDE	31.3 yr	$2.22 \times 10^{-2} \text{ yr}^{-1}$

4.4.555	24.2	
4,4-DDT	31.3 yr	$2.22 \times 10^{-2} \text{ yr}^{-1}$
Dichlorobenzene	110 d	$6.30 \times 10^{-3} d^{-1}$
1,1-Dichloroethane (DCA, 1,1)	144 d	$4.81 \times 10^{-3} d^{-1}$
1,2-Dichloroethane (DCA, 1,2)	365 d	$1.90 \times 10^{-3} d^{-1}$
1,2-trans-Dichloroethylene	266 d	$2.61 \times 10^{-3} d^{-1}$
1,2-cis-Dichloroethylene	140 d	$4.95 \times 10^{-3} d^{-1}$
Dieldrin	6 yr	1.15 x 10 ⁻¹ yr ⁻¹
Diethyl phthalate (DEP)	112 d	$6.19 \times 10^{-3} d^{-1}$
Dimethyl phthalate (DMP)	14 d	$4.95 \times 10^{-2} d^{-1}$
2,4-Dinitrophenol	17.5 d	$3.96 \times 10^{-2} d^{-1}$
2,4-Dinitrotoluene	1 yr	6.93 x 10 ⁻¹ yr ⁻¹
A-Endosulfan-alpha	9.1 d	$7.62 \times 10^{-2} d^{-1}$
B-Endosulfan-beta	9.1 d	$7.62 \times 10^{-2} d^{-1}$
Ethylbenzene	228 d	$3.04 \times 10^{-3} d^{-1}$
Fluoranthene	2.4 yr	$2.89 \times 10^{-1} \text{ yr}^{-1}$
Fluorene	120 d	$5.78 \times 10^{-3} d^{-1}$
Heptachlor	5.4 d	1.28 x 10 ⁻¹ d ⁻¹
Heptaclor epoxide	3 yr	$2.31 \times 10^{-1} \text{ yr}^{-1}$
Hexachlorobenzene	11.4 yr	$6.08 \times 10^{-2} \text{ yr}^{-1}$
gamma-BHC (lindane)	240 d	$2.89 \times 10^{-3} d^{-1}$
Nitrobenzene	1.08 yr	6.42 x 10 ⁻¹ yr ⁻¹
2-Nitrophenol	28 d	$2.48 \times 10^{-2} d^{-1}$
4-Nitrophenol	9.8 d	$7.07 \times 10^{-2} d^{-1}$
Parathion	130 d	$5.33 \times 10^{-3} d^{-1}$
Pentachlorophenol (PCP)	13.7 d	$5.06 \times 10^{-2} d^{-1}$
Phenanthrene	1.1 yr	6.30 x 10 ⁻¹ yr ⁻¹
Phenol	7 d	$9.90 \times 10^{-2} d^{-1}$
Pyrene	10.4 yr	6.67 x 10 ⁻² yr ⁻¹
2,3,7,8-Tetrachlorodibenzo-p-	3.23 yr	$2.15 \times 10^{-1} \text{ yr}^{-1}$
dioxin (TCDD)	,	3
Tetrachloroethylene (PCE)	2 yr	3.47 x 10 ⁻¹ yr ⁻¹
Toluene	8 d	$8.66 \times 10^{-2} d^{-1}$
1,2,4-Trichlorobenzene	365 d	1.90 x 10 ⁻³ d ⁻¹
Trichloroethylene (TCE)	4.49 yr	$1.54 \times 10^{-1} \text{ yr}^{-1}$
2,4,6-Trichlorophenol	5 yr	$1.39 \times 10^{-1} \text{ yr}^{-1}$
Vinyl chloride	7.92 yr	$8.75 \times 10^{-2} \text{ yr}^{-1}$
Xylene, ortho and para	30 d	$2.31 \times 10^{-2} d^{-1}$
11,10110, ordino una pura	J 0 4	2.51 A 10 G

- data taken from a compilation contained in Spitz, K. and J. Moreno. A Practical Guide to Groundwater and Solute Transport Modeling. John Wiley & Sons, New York, 1996.
- 6 represents most recent data and maximum half-life of compound given in Spitz and Moreno (1996).