

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) EP 0 978 875 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
09.02.2000 Bulletin 2000/06

(51) Int. H01L 23/522, H01L 23/528
Cl. 7:

(21) Application number: 98830489.5

(22) Date of filing: 07.08.1998

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT
LI LU MC NL PT SE
Designated Extension States:
AL LT LV MK RO SI

20127 Milano (IT)
, Vassalli, Omar
24020 Pradalunga (Bergamo) (IT)
, Zanotti, Luca
20041 Agrate Brianza (Milano) (IT)

(71) Applicant: STMicroelectronics S.r.l.
20041 Agrate Brianza (Milano) (IT)

(74) Representative:
Mittler, Enrico
c/o Mittler & C. s.r.l.,
Viale Lombardia, 20
20131 Milano (IT)

(72) Inventors:
, Bacchetta, Maurizio

(54) Integrated circuit comprising conductive lines with "negative" profile and related method of fabrication

(57) A semiconductor integrated circuit comprising lines of conductive material (4) for the electrical interconnection between parts of the circuit, and a layer of dielectric material (6), superimposed to the lines of conductive material (4). The lines of conductive material (4) have a vertical profile such that the smallest distance

between two adjacent lines of conductive material is located at their upper surfaces.

Fig.2

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25
A26
A27
A28
A29
A30
A31
A32
A33
A34
A35
A36
A37
A38
A39
A40
A41
A42
A43
A44
A45
A46
A47
A48
A49
A50
A51
A52
A53
A54
A55
A56
A57
A58
A59
A60
A61
A62
A63
A64
A65
A66
A67
A68
A69
A70
A71
A72
A73
A74
A75
A76
A77
A78
A79
A80
A81
A82
A83
A84
A85
A86
A87
A88
A89
A90
A91
A92
A93
A94
A95
A96
A97
A98
A99
A100
A101
A102
A103
A104
A105
A106
A107
A108
A109
A110
A111
A112
A113
A114
A115
A116
A117
A118
A119
A120
A121
A122
A123
A124
A125
A126
A127
A128
A129
A130
A131
A132
A133
A134
A135
A136
A137
A138
A139
A140
A141
A142
A143
A144
A145
A146
A147
A148
A149
A150
A151
A152
A153
A154
A155
A156
A157
A158
A159
A160
A161
A162
A163
A164
A165
A166
A167
A168
A169
A170
A171
A172
A173
A174
A175
A176
A177
A178
A179
A180
A181
A182
A183
A184
A185
A186
A187
A188
A189
A190
A191
A192
A193
A194
A195
A196
A197
A198
A199
A200
A201
A202
A203
A204
A205
A206
A207
A208
A209
A210
A211
A212
A213
A214
A215
A216
A217
A218
A219
A220
A221
A222
A223
A224
A225
A226
A227
A228
A229
A230
A231
A232
A233
A234
A235
A236
A237
A238
A239
A240
A241
A242
A243
A244
A245
A246
A247
A248
A249
A250
A251
A252
A253
A254
A255
A256
A257
A258
A259
A260
A261
A262
A263
A264
A265
A266
A267
A268
A269
A270
A271
A272
A273
A274
A275
A276
A277
A278
A279
A280
A281
A282
A283
A284
A285
A286
A287
A288
A289
A290
A291
A292
A293
A294
A295
A296
A297
A298
A299
A300
A301
A302
A303
A304
A305
A306
A307
A308
A309
A310
A311
A312
A313
A314
A315
A316
A317
A318
A319
A320
A321
A322
A323
A324
A325
A326
A327
A328
A329
A330
A331
A332
A333
A334
A335
A336
A337
A338
A339
A340
A341
A342
A343
A344
A345
A346
A347
A348
A349
A350
A351
A352
A353
A354
A355
A356
A357
A358
A359
A360
A361
A362
A363
A364
A365
A366
A367
A368
A369
A370
A371
A372
A373
A374
A375
A376
A377
A378
A379
A380
A381
A382
A383
A384
A385
A386
A387
A388
A389
A390
A391
A392
A393
A394
A395
A396
A397
A398
A399
A400
A401
A402
A403
A404
A405
A406
A407
A408
A409
A410
A411
A412
A413
A414
A415
A416
A417
A418
A419
A420
A421
A422
A423
A424
A425
A426
A427
A428
A429
A430
A431
A432
A433
A434
A435
A436
A437
A438
A439
A440
A441
A442
A443
A444
A445
A446
A447
A448
A449
A450
A451
A452
A453
A454
A455
A456
A457
A458
A459
A460
A461
A462
A463
A464
A465
A466
A467
A468
A469
A470
A471
A472
A473
A474
A475
A476
A477
A478
A479
A480
A481
A482
A483
A484
A485
A486
A487
A488
A489
A490
A491
A492
A493
A494
A495
A496
A497
A498
A499
A500
A501
A502
A503
A504
A505
A506
A507
A508
A509
A510
A511
A512
A513
A514
A515
A516
A517
A518
A519
A520
A521
A522
A523
A524
A525
A526
A527
A528
A529
A530
A531
A532
A533
A534
A535
A536
A537
A538
A539
A540
A541
A542
A543
A544
A545
A546
A547
A548
A549
A550
A551
A552
A553
A554
A555
A556
A557
A558
A559
A560
A561
A562
A563
A564
A565
A566
A567
A568
A569
A570
A571
A572
A573
A574
A575
A576
A577
A578
A579
A580
A581
A582
A583
A584
A585
A586
A587
A588
A589
A590
A591
A592
A593
A594
A595
A596
A597
A598
A599
A600
A601
A602
A603
A604
A605
A606
A607
A608
A609
A610
A611
A612
A613
A614
A615
A616
A617
A618
A619
A620
A621
A622
A623
A624
A625
A626
A627
A628
A629
A630
A631
A632
A633
A634
A635
A636
A637
A638
A639
A640
A641
A642
A643
A644
A645
A646
A647
A648
A649
A650
A651
A652
A653
A654
A655
A656
A657
A658
A659
A660
A661
A662
A663
A664
A665
A666
A667
A668
A669
A670
A671
A672
A673
A674
A675
A676
A677
A678
A679
A680
A681
A682
A683
A684
A685
A686
A687
A688
A689
A690
A691
A692
A693
A694
A695
A696
A697
A698
A699
A700
A701
A702
A703
A704
A705
A706
A707
A708
A709
A710
A711
A712
A713
A714
A715
A716
A717
A718
A719
A720
A721
A722
A723
A724
A725
A726
A727
A728
A729
A730
A731
A732
A733
A734
A735
A736
A737
A738
A739
A740
A741
A742
A743
A744
A745
A746
A747
A748
A749
A750
A751
A752
A753
A754
A755
A756
A757
A758
A759
A760
A761
A762
A763
A764
A765
A766
A767
A768
A769
A770
A771
A772
A773
A774
A775
A776
A777
A778
A779
A780
A781
A782
A783
A784
A785
A786
A787
A788
A789
A790
A791
A792
A793
A794
A795
A796
A797
A798
A799
A800
A801
A802
A803
A804
A805
A806
A807
A808
A809
A8010
A8011
A8012
A8013
A8014
A8015
A8016
A8017
A8018
A8019
A8020
A8021
A8022
A8023
A8024
A8025
A8026
A8027
A8028
A8029
A8030
A8031
A8032
A8033
A8034
A8035
A8036
A8037
A8038
A8039
A8040
A8041
A8042
A8043
A8044
A8045
A8046
A8047
A8048
A8049
A8050
A8051
A8052
A8053
A8054
A8055
A8056
A8057
A8058
A8059
A8060
A8061
A8062
A8063
A8064
A8065
A8066
A8067
A8068
A8069
A8070
A8071
A8072
A8073
A8074
A8075
A8076
A8077
A8078
A8079
A8080
A8081
A8082
A8083
A8084
A8085
A8086
A8087
A8088
A8089
A8090
A8091
A8092
A8093
A8094
A8095
A8096
A8097
A8098
A8099
A80100
A80101
A80102
A80103
A80104
A80105
A80106
A80107
A80108
A80109
A80110
A80111
A80112
A80113
A80114
A80115
A80116
A80117
A80118
A80119
A80120
A80121
A80122
A80123
A80124
A80125
A80126
A80127
A80128
A80129
A80130
A80131
A80132
A80133
A80134
A80135
A80136
A80137
A80138
A80139
A80140
A80141
A80142
A80143
A80144
A80145
A80146
A80147
A80148
A80149
A80150
A80151
A80152
A80153
A80154
A80155
A80156
A80157
A80158
A80159
A80160
A80161
A80162
A80163
A80164
A80165
A80166
A80167
A80168
A80169
A80170
A80171
A80172
A80173
A80174
A80175
A80176
A80177
A80178
A80179
A80180
A80181
A80182
A80183
A80184
A80185
A80186
A80187
A80188
A80189
A80190
A80191
A80192
A80193
A80194
A80195
A80196
A80197
A80198
A80199
A80200
A80201
A80202
A80203
A80204
A80205
A80206
A80207
A80208
A80209
A80210
A80211
A80212
A80213
A80214
A80215
A80216
A80217
A80218
A80219
A80220
A80221
A80222
A80223
A80224
A80225
A80226
A80227
A80228
A80229
A80230
A80231
A80232
A80233
A80234
A80235
A80236
A80237
A80238
A80239
A80240
A80241
A80242
A80243
A80244
A80245
A80246
A80247
A80248
A80249
A80250
A80

Description

5 The present invention relates to an integrated circuit with particular profile of the metal lines, in planarization processes with "air gaps" technique, and related method of fabrication.

10 The semiconductor integrated circuits obtained by means of large-scale integration technologies (LSI, VLSI, ULSI), with multiple levels of metal interconnections, require one or more process steps for defining an intermetal planarization.

15 10 The current techniques, used for defining intermetal planarization, are mainly two: the first technique provides for a silicon oxide deposition, a utilisation of a Spin On Glass (SOG) material, a subsequent partial dry etching, and, finally, a plasma enhanced chemical vapor deposition (PECVD) process; differently, the second technique, commonly used, provides for a high-density plasma chemical vapor deposition (HDPCVD) process, a subsequent oxide deposition and a chemical mechanical polishing (CMP) planarization.

20 In order to reduce the undesirable effects of capacitive coupling, crosstalking (crosstalk may be defined as a noise that appears in an inactive line due to interactions with dispersion electromagnetic fields originated by active lines), and the delay time constant RC, all effects that appear in presence of contiguous metal lines and with the dimension reduction existing in the technologies of fabrication of the semiconductor devices, some different solutions are provided for.

25 25 A solution is the utilisation of low k materials (wherein k is the dielectric constant), for example with $k = 1,8 - 3,5$ at 1 MHz, instead of the silicon dioxide used in the intermetal process (the dielectric constant of the silicon dioxide is about $k = 4$ at 1 MHz).

30 Another solution provides for the complete elimination of the intermetal filling materials, creating "air gaps" (with a dielectric constant new to 1) between the contiguous metal lines.

35 The air gaps are formed as a consequence of the non-conformity of the plasma enhanced chemical vapor deposition process. The scalability and the process simplicity are the main advantages of the air gaps structures.

40 In the intermetal processes, the air gaps are formed selectively in the thin spaces comprised between the metal lines. The air gaps show a better reduction in the capacity coupling effect compared to the utilisation of low k materials, in particular in presence of very small spaces.

45 40 Figure 1 shows a cross-sectional view of an intermetal level of an integrated circuit. A field oxide layer 2 is superimposed on a silicon layer 1, and metal (for example Al or Cu) stripes 3 are present in the field oxide layer 2 for connecting parts of the integrated circuit. A dielectric material layer 6, called intermetal dielectric layer and usually comprising silicon (silicon dioxide, IMD USG), is deposited for insulating the metal lines 3 from other possible upper metal levels. Due to the fact that the deposition of such a dielectric material is not able to completely fill the spaces comprised between the metal lines 3, void zones 8 (air gaps) are formed inside these spaces.

50 50 Conductive metal elements 7 (vias) can be deposited over the metal stripes 3 for allowing the electrical connection between the different metal levels of the whole structure. The metal that is deposited for forming the vias 7, usually tungsten, can diffuse in the air gaps because of a not good alignment of the same vias, maybe for a reduced supporting surface on the upper part of the metal stripes, as shown in Figure 1, in which a metal stripe 3' is defined as having a "positive" profile, that is a profile with the lower part larger than the upper part, and the related vias 7' diffuse in the underlying air gap 8'. This fact can create problems of short-

EP 0 978 875 A1

circuiting between a metal stripe and another adjacent one.

Figure 1 also shows overetch regions 9 of the field oxide 2, which are particularly advantageous because they allow to avoid edge effects of the capacity formed by two adjacent metal lines.

In view of the state of the art described, it has been an object of the present invention that of providing an integrated circuit comprising metal lines for the utilisation in intermetal planarization processes with air gaps technique, which resolves the above-mentioned problems.

According to the present invention, such an object is achieved by means of a semiconductor integrated circuit comprising lines of conductive material for the electrical interconnection between parts of said circuit, a layer of dielectric material, superimposed to said lines of conductive material, characterized in that said lines of conductive material have a vertical profile such that the smallest distance between two adjacent lines of conductive material is located at their upper surfaces.

The features and advantages of the present invention will be made clearer by the following detailed description of three particular embodiments thereof, illustrated as non-limiting examples in the annexed drawings, wherein:

Fig. 1 shows a cross-sectional view of an intermetal level of an integrated circuit, according to the prior art;

Fig. 2 shows a cross-sectional view of an intermetal level of an integrated circuit, according to a first embodiment of the present invention;

Figs. 3 to 5 show three different profiles of metal lines, according to three embodiments of the present invention.

Referring to Figure 2, a cross-sectional view similar to Figure 1 is shown, but wherein metal stripes 4 according to a first embodiment of the present invention are provided, that is with "negative" profiles, with the upper part larger than the lower part. Such a profile modifies the whole structure of the intermetal level because during the deposition of the intermetal dielectric material 6, due to the non-conformity of the deposition itself, an anticipated closure of the space between two adjacent metal lines at the upper surface of the metal lines 4 takes place, practically preventing the dielectric material 6 from penetrating in such a space.

Therefore, air gaps 8 are formed between adjacent metal stripes, and the air gaps 8 thus formed are deeper and larger than the air gaps usually obtained, as shown in Figure 1, because the upper part of the metal lines 4 does not allow the dielectric material to penetrate in the below regions, differently from Figure 1 wherein a part of the dielectric material 6 can penetrate between the metal lines. In this way the undesirable capacitive coupling effects are considerably reduced.

Moreover, the metal vias 7 are not subject to misalignment problems because the supporting surface on which they are deposited is larger than the one shown in Figure 1, and so the possible short-circuiting problems between adjacent metal stripes are avoided.

Figure 3 shows a cross-section profile of a metal stripe according to a first embodiment of

EP 0 978 875 A1

the present invention (just described in Figure 2). The geometric form is a trapezoidal one with the lower base smaller than the upper base, in such a way that the smallest distance between two adjacent metal lines is located in the upper part, so that the space available for an
5 undesirable introduction of dielectric material is reduced to a minimum. The α angle between the upper base and a side of the trapezium is preferably less than 85°.

Figure 4 shows a cross-section profile of a metal stripe according to a second embodiment of the present invention. The geometric form can be defined a "clepsydra" one, with the lower base
10 approximately equal to the upper base. Also the β angle between the upper base of the trapezium and a side connected to the upper base itself, is preferably less than 85°.

Finally, Figure 5 shows a cross-section profile of a metal stripe according to a third embodiment of the present invention. The presence of an "overhang" (for example an anti
15 reflecting layer, ARL) over the metal stripes allows to obtain the same results of the profiles previously described. All the profiles shown in Figures 3, 4 and 5 cause, in fact, the same effects in the morphology of the dielectric deposition PECVD, obtaining the desired air gaps.

To define profiles of metal stripes with the previously described geometrical features, it is
20 necessary to achieve particular working points in the step of etching the metal layer during the process of fabrication. An example of possible value ranges for the metal etching step, is the following:

25 Pressure: 10-80 mTorr;

Top power: 300-800 W;

30 Bottom power: 50-500 W;

Flow Cl₂: 20-200 sccm;

35 Flow BCl₃: 10-100 sccm;

Flow N₂: 0-20 sccm.

40

Claims

1. Semiconductor integrated circuit comprising lines of conductive material (4) for the electrical interconnection between parts of said circuit, a layer of dielectric material (6), superimposed to said lines of conductive material (4), characterized in that said lines of conductive material (4) have a vertical profile such that the smallest distance between two adjacent lines of conductive material is located at their upper surfaces.
45
2. Circuit according to claim 1, characterized in that said lines of conductive material (4) have a trapezoidal profile with an upper base larger than the respective lower base, and an angle between said upper base and a connected side less than 85°.
50
3. Circuit according to claim 1, characterized in that said lines of conductive material (4) have a profile as a clepsydra one, with an upper base that is approximately equal to its
55

EP 0 978 875 A1

respective lower base, and an angle between said upper base and a connected side less than 85°.

- 5 4. Circuit according to claim 1, characterized in that said lines of conductive material (4) have a "T" shape, with an overhang of metal material in their upper part.
- 10 5. Circuit according to anyone of the precedent claims, characterized by comprising several interconnection levels, each comprising lines of conductive material (4) and a layer of dielectric material (6) superimposed to them, according to anyone of the precedent claims.
- 15 6. Method of fabrication of a semiconductor integrated circuit comprising a step of deposition of a conductive material layer over an underlying insulating material (2), a step of etching of said conductive material layer for defining lines of electrical interconnection between parts of said circuit, and a step of chemical vapor deposition of a dielectric material layer over said lines, characterized in that said step of etching provides for forming lines of conductive material (4) with a profile according to anyone of the claims 1 to 4.
- 20

25

30

35

40

45

50

55

Fig.1

Fig.2

Fig.3

Fig.4

Fig.5

EP 0 978 875 A1

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
X	PATENT ABSTRACTS OF JAPAN vol. 096, no. 012, 26 December 1996 -& JP 08 213392 A (OKI ELECTRIC IND CO LTD), 20 August 1996 * the whole document * ---	1,2,5,6	H01L23/522 H01L23/528
X	US 4 905 068 A (SATOH SHINICHI ET AL) 27 February 1990 * the whole document *	1,4,5	
A		6	
X	US 5 310 700 A (LEE JIMMY J ET AL) 10 May 1994 * column 3, line 55 - column 4, line 35; figure 6 *	1,4,6	
X	US 5 726 498 A (LICATA THOMAS JOHN ET AL) 10 March 1998	1,2,5	
A	* column 3, line 5 - column 4, line 6; claims 1-6; figures 2,3 * * column 4, line 65 - column 5, line 4 *	3,6	
X	US 5 471 095 A (KAMINAGA ISAMU ET AL) 28 November 1995 * the whole document *	1,2,4-6	
			TECHNICAL FIELDS SEARCHED (Int.Cl.6)
			H01L
The present search report has been drawn up for all claims			
Place of search	Date of completion of the search	Examiner	
THE HAGUE	20 January 1999	Zeisler, P	
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document	
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			

EP 0 978 875 A1

**ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.**

EP 98 83 0489

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

20-01-1999

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 4905068 A	27-02-1990	JP	2584986 B	26-02-1997
		JP	63221642 A	14-09-1988
		DE	3802066 A	22-09-1988
US 5310700 A	10-05-1994	NONE		
US 5726498 A	10-03-1998	NONE		
US 5471095 A	28-11-1995	JP	6318589 A	15-11-1994