А. Ю. Пирковский

Функциональный анализ

Π екция 24

24.1. Локально выпуклые пространства

В процессе изучения функционального анализа вы, вероятно, заметили, что не все естественно возникающие векторные пространства являются нормированными. В частности, пространство всех числовых последовательностей, пространства непрерывных и гладких функций на прямой, пространство голоморфных функций на комплексной плоскости и многие другие не имеют никакой естественной нормы. Однако, как мы вскоре увидим, на каждом из них имеется естественная топология, согласованная с линейной структурой. Топологические векторные пространства, о которых пойдет речь ниже, начиная приблизительно с 1940-х гг. изучаются в функциональном анализе наряду с нормированными пространствами. Теория топологических векторных пространств имеет ряд важных приложений в комплексном анализе, геометрии, математической физике. Кроме того, она оказывается весьма полезной и в более классических разделах функционального анализа — теории банаховых пространств и теории операторов.

Напомним, что символом \mathbb{K} мы обозначаем либо поле \mathbb{R} , либо поле \mathbb{C} .

Определение 24.1. Топологическое векторное пространство — это векторное пространство X над \mathbb{K} , снабженное топологией, относительно которой операции

$$X \times X \to X, \quad (x, y) \mapsto x + y,$$

 $\mathbb{K} \times X \to X, \quad (\lambda, x) \mapsto \lambda x,$

непрерывны.

Пример 24.1. Всякое нормированное пространство, разумеется, является топологическим векторным пространством (убедитесь). Другие примеры появятся чуть позже.

Если X и Y — топологические векторные пространства, то через $\mathcal{L}(X,Y)$ обозначается множество всех непрерывных линейных операторов из X в Y.

Предложение 24.1. Пусть X и Y — топологические векторные пространства. Справедливы следующие утверждения:

(i) линейный оператор $T\colon X\to Y$ непрерывен тогда и только тогда, когда он непрерывен в нуле;

(ii) $\mathscr{L}(X,Y)$ — векторное подпространство в $\operatorname{Hom}_{\mathbb{K}}(X,Y)$.

Доказательство. Упражнение.

Произвольные топологические векторные пространства — слишком общие объекты, чтобы из них можно было построить достаточно содержательную теорию. Нас будут интересовать топологические векторные пространства специального типа. Прежде чем их определять, напомним несколько общетопологических определений.

Определение 24.2. Пусть X — топологическое пространство.

- (i) Семейство β открытых подмножеств X называется *базой* топологии на X, если каждое непустое открытое подмножество X является объединением множеств из β .
- (ii) Семейство σ открытых подмножеств X называется *предбазой* топологии на X, если семейство $\{U_1 \cap \ldots \cap U_n : U_i \in \sigma, n \in \mathbb{N}\}$ является базой топологии.
- (iii) Семейство β_x окрестностей точки $x \in X$ называется базой в x, если для любой окрестности U точки x найдется такая окрестность $V \in \beta_x$, что $V \subseteq U$.
- (iv) Семейство σ_x окрестностей точки $x \in X$ называется npedbasoù b x, если семейство $\{U_1 \cap \ldots \cap U_n : U_i \in \sigma, n \in \mathbb{N}\}$ является базой в x.

Пример 24.2. Если X — метрическое пространство, то множество всех открытых шаров в X является базой его топологии, а множество всех открытых шаров с центрами в фиксированной точке x — базой в x. Если $X = \mathbb{R}^2$, то множество всех открытых полос вида $\{(x,y) \in \mathbb{R}^2 : |x| < \varepsilon\}$ и $\{(x,y) \in \mathbb{R}^2 : |y| < \varepsilon\}$ (где $\varepsilon > 0$) является предбазой в нуле, но не является базой в нуле.

Вот два простых утверждения, связанные с понятиями базы и предбазы. Докажите их сами в качестве упражнений.

Предложение 24.2. Пусть X — множество и σ — семейство его подмножеств, покрывающее X. Тогда на X существует единственная топология, для которой σ является предбазой.

Предложение 24.3. Пусть X и Y — топологические пространства, $f: X \to Y$ — отображение, $x \in X$, y = f(x), σ_y — предбаза в y, β_x — база в x. Для того чтобы f было непрерывным в x, необходимо и достаточно, чтобы для каждого множества $V \in \sigma_y$ существовало такое множество $U \in \beta_x$, что $f(U) \subseteq V$.

Вернемся теперь к топологическим векторным пространствам и обсудим конструкцию, обобщающую пример 24.1. Напомним, что функция $p\colon X\to [0,+\infty)$ на векторном пространстве X называется nonyhopmoй, если

- (i) $p(x+y) \leqslant p(x) + p(y)$ $(x, y \in X);$
- (ii) $p(\lambda x) = |\lambda| p(x)$ $(x \in X, \lambda \in \mathbb{K}).$

Определение 24.3. Полинормированное пространство — это пара (X, P), состоящая из векторного пространства X и семейства полунорм P на X.

На полинормированном пространстве (X, P) можно ввести топологию следующим образом. Для каждого $x \in X$, каждой полунормы p на X и каждого $\varepsilon > 0$ положим

$$U_{p,\varepsilon}(x) = \{ y \in X : p(y-x) < \varepsilon \}. \tag{24.1}$$

Определение 24.4. Топологией, *порожеденной семейством полунорм* P, называется топология $\tau(P)$, предбазой которой является семейство $\{U_{p,\varepsilon}(x): x \in X, \ p \in P, \ \varepsilon > 0\}$.

Множество $U_{p,\varepsilon}(x)$ естественно представлять себе как «открытый шар по полунорме p с центром в точке x радиуса ε ». Следует, однако, иметь в виду, что если полунорма

Лекция 24 163

p не является нормой, то такой шар содержит в себе нетривиальное аффинное подпространство $x + p^{-1}(0)$.

Отметим, что если семейство P состоит из одной-единственной нормы $\|\cdot\|$, то топология $\tau(P)$ — это стандартная топология нормированного пространства X, порожденная метрикой $\rho(x,y) = \|x-y\|$. Разумеется, в этом случае шары $U_{p,\varepsilon}(x)$ образуют не просто предбазу, а базу топологии $\tau(P)$, однако для произвольного семейства P это уже не всегда так (см. пример 24.2). Чтобы получить базу, удобно ввести еще одно обозначение. Для каждых $x \in X$, $\varepsilon > 0$ и каждого конечного набора $p_1, \ldots, p_n \in X$ положим

$$U_{p_1,\dots,p_n,\varepsilon}(x) = \bigcap_{i=1}^n U_{p_i,\varepsilon}(x) = \{ y \in X : p_i(y-x) < \varepsilon \ \forall i=1,\dots,n \}.$$

Предложение 24.4. Пусть (X, P) — полинормированное пространство. Справедливы следующие утверждения:

- (i) для каждого $x \in X$ семейство $\{U_{p,\varepsilon}(x) : p \in P, \varepsilon > 0\}$ предбаза в x;
- (ii) для каждого $x \in X$ семейство $\{U_{p_1,\dots,p_n,\varepsilon}(x): p_i \in P, n \in \mathbb{N}, \varepsilon > 0\}$ база в x;
- (iii) семейство $\{U_{p_1,\dots,p_n,\varepsilon}(x):x\in X.\ p_i\in P,\ n\in\mathbb{N},\ \varepsilon>0\}$ база топологии $\tau(P)$.

Доказательство. Утверждение (i) легко выводится из неравенства треугольника (убедитесь). Утверждение (ii) следует из (i) почти по определению, а (iii) — непосредственное следствие (ii). □

Предложение 24.5. Если (X, P) — полинормированное пространство, то $(X, \tau(P))$ — топологическое векторное пространство.

Доказательство. Непрерывность сложения следует из легко проверяемого включения

$$U_{p,\varepsilon/2}(x) + U_{p,\varepsilon/2}(y) \subseteq U_{p,\varepsilon}(x+y).$$

Непрерывность умножения на скаляр доказывается чуть сложнее: достаточно убедиться, что для каждых $\lambda \in \mathbb{K}, x \in X, p \in P$ и $\varepsilon > 0$ найдется такое $\delta > 0$, что

$$U_{\delta}(\lambda) \cdot U_{p,\delta}(x) \subseteq U_{p,\varepsilon}(\lambda x),$$

где $U_{\delta}(\lambda)=\{\mu\in\mathbb{C}:|\mu-\lambda|<\delta\}$. Сделайте это сами в качестве упражнения. \square

Замечание 24.1. Отметим тот очевидный факт, что если (X, P) — полинормированное пространство и $X_0 \subseteq X$ — векторное подпространство, то топология на X_0 , унаследованная из $(X, \tau(P))$, порождается ограничениями на X_0 всевозможных полунорм из семейства P.

В дальнейшем мы будем изучать топологические векторные пространства именно такого вида, как в предложении 24.5. Скоро мы увидим, что их можно определить и в других, более геометрических терминах. Одно из преимуществ таких пространств (хотя и не главное, но приятное) заключается в том, что многие утверждения о них можно формулировать на двух языках: на языке топологий и на языке полунорм. Вот две иллюстрации:

Предложение 24.6. Пусть (X, P) — полинормированное пространство. Направленность (x_{λ}) сходится в топологии $\tau(P)$ к элементу $x \in X$ тогда и только тогда, когда $p(x_{\lambda} - x) \to 0$ для всех $p \in P$.

Доказательство. Упражнение.

Предложение 24.7. Пусть (X, P) — полинормированное пространство. Топология $\tau(P)$ хаусдорфова тогда и только тогда, когда для кажедого $x \in X \setminus \{0\}$ существует такая полунорма $p \in P$, что $p(x) \neq 0$.

Доказательство. Упражнение.

Посмотрим теперь на несколько стандартных примеров.

Пример 24.3. Пусть X — множество и \mathbb{K}^X — пространство всех \mathbb{K} -значных функций на X. Для каждого $x \in X$ определим полунорму $\|\cdot\|_x$ на \mathbb{K}^X формулой $\|f\|_x = |f(x)|$. Топология на \mathbb{K}^X , порожденная семейством полунорм $\{\|\cdot\|_x : x \in X\}$, называется *топологией поточечной сходимости*. Из предложения 24.6 следует, что направленность (f_λ) сходится в этой топологии тогда и только тогда, когда она сходится поточечно. Нетрудно проверить (проверьте!), что топология поточечной сходимости на \mathbb{K}^X совпадает с тихоновской топологией.

Пример 24.4. Пусть X — топологическое пространство и C(X) — пространство всех непрерывных \mathbb{K} -значных функций на X. Для каждого компакта $K\subseteq X$ определим полунорму $\|\cdot\|_K$ на C(X) формулой $\|f\|_K=\sup_{x\in K}|f(x)|$. Топология на C(X), порожденная семейством полунорм $\{\|\cdot\|_K: K\subset X-\text{компакт}\}$, называется компактнооткрытой топологией, или топологией компактной сходимости. Из предложения 24.6 следует, что направленность (f_λ) сходится к функции $f\in C(X)$ в этой топологии тогда и только тогда, когда она сходится к f равномерно на каждом компакте.

Пример 24.5. Стандартная топология на пространстве гладких функций $C^{\infty}[a,b]$ порождается последовательностью полунорм $\{\|\cdot\|_n : n \in \mathbb{Z}_{\geqslant 0}\}$, где $\|f\|_n = \sup_{t \in [a,b]} |f^{(n)}(t)|$. Из предложения 24.6 следует, что направленность (f_{λ}) сходится к функции $f \in C^{\infty}[a,b]$ в этой топологии тогда и только тогда, когда она сходится к f равномерно вместе со всеми производными.

Пример 24.6. Пусть $U \subseteq \mathbb{R}^n$ — открытое множество. Для каждого мультииндекса $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}_{>0}^n$ и каждой гладкой функции $f \in C^{\infty}(U)$ положим

$$D^{\alpha}f = \frac{\partial^{|\alpha|}f}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}},$$

где $|\alpha| = \alpha_1 + \dots + \alpha_n$. Для каждого компакта $K \subset U$ определим полунорму $\|\cdot\|_{K,\alpha}$ на $C^{\infty}(U)$ формулой $\|f\|_{K,\alpha} = \sup_{x \in K} |D^{\alpha}f(x)|$. Стандартная топология на $C^{\infty}(U)$ порождается семейством полунорм $\{\|\cdot\|_{K,\alpha} : \alpha \in \mathbb{Z}_{\geqslant 0}^n, \ K \subset U - \text{компакт}\}$. Из предложения 24.6 следует, что направленность (f_{λ}) сходится к функции $f \in C^{\infty}(U)$ в этой топологии тогда и только тогда, когда она сходится к f равномерно на каждом компакте вместе со всеми частными производными.

Лекция 24 165

Пример 24.7. Пусть X и Y — нормированные пространства. Для каждого $x \in X$ определим полунорму $\|\cdot\|_x$ на пространстве ограниченных линейных операторов $\mathcal{B}(X,Y)$ формулой $\|T\|_x = \|Tx\|$. Топология на $\mathcal{B}(X,Y)$, порожденная семейством полунорм $\{\|\cdot\|_x : x \in X\}$, называется cunbhoù операторной топологией и обозначается SOT (поанглийски strong operator topology). Из предложения 24.6 следует, что направленность (T_λ) сходится к оператору $T \in \mathcal{B}(X,Y)$ в этой топологии тогда и только тогда, когда она сходится поточечно.

Пример 24.8. Пусть X и Y — нормированные пространства. Для каждого $x \in X$ и каждого $f \in Y^*$ определим полунорму $\|\cdot\|_{x,f}$ на пространстве $\mathscr{B}(X,Y)$ формулой $\|T\|_{x,f} = |f(Tx)|$. Топология на $\mathscr{B}(X,Y)$, порожденная семейством полунорм $\{\|\cdot\|_{x,f}: x \in X, \ f \in Y^*\}$, называется слабой операторной топологией и обозначается WOT (по-английски weak operator topology). Из предложения 24.6 следует, что направленность (T_λ) сходится к оператору $T \in \mathscr{B}(X,Y)$ в этой топологии тогда и только тогда, когда направленность $f(T_\lambda x)$ сходится к f(Tx) для каждого $x \in X$ и каждого $x \in Y^*$. Отметим, что если $x \in Y$ и $x \in Y$ 0 гильбертовы пространства, то в силу теоремы Рисса 7.3 слабая операторная топология на $x \in Y$ 1 порождается семейством полунорм $x \in Y$ 2, $x \in X$ 3, $x \in X$ 4, $x \in X$ 5, $x \in X$ 6, $x \in X$ 6, $x \in X$ 7, $x \in X$ 8, $x \in X$ 9, где $x \in X$ 9.

Наша следующая цель — охарактеризовать топологии, порожденные семействами полунорм, в геометрических терминах. С этой целью дадим несколько определений (см. также определение 9.2).

Определение 24.5. Пусть X — векторное пространство и $S \subseteq X$ — непустое подмножество. Его выпуклой оболочкой называется пересечение всех выпуклых подмножеств пространства X, содержащих S. Выпуклая оболочка множества S обозначается через $\operatorname{conv}(S)$. Аналогично определяются закругленная оболочка $\operatorname{circ}(S)$ и абсолютно выпуклая оболочка $\Gamma(S)$ множества S.

Из предложения 9.11 следует, что conv(S) (соответственно, circ(S), $\Gamma(S)$) — это наименьшее выпуклое (соответственно, наименьшее закругленное, наименьшее абсолютно выпуклое) множество, содержащее S. Вот более явное описание этих оболочек:

Предложение 24.8. Пусть X — векторное пространство и $S \subseteq X$ — непустое подмножество. Тогда

$$\operatorname{conv}(S) = \left\{ \sum_{i=1}^{n} \lambda_{i} x_{i} : x_{i} \in S, \ \lambda_{i} \geqslant 0, \ \sum_{i=1}^{n} \lambda_{i} = 1, \ n \in \mathbb{N} \right\},$$
$$\operatorname{circ}(S) = \left\{ \lambda x : x \in S, \ \lambda \in \mathbb{K}, \ |\lambda| \leqslant 1 \right\},$$
$$\Gamma(S) = \left\{ \sum_{i=1}^{n} \lambda_{i} x_{i} : x_{i} \in S, \ \lambda_{i} \in \mathbb{K}, \ \sum_{i=1}^{n} |\lambda_{i}| \leqslant 1, \ n \in \mathbb{N} \right\}.$$

Доказательство. Упражнение.

Следствие 24.9. Пусть X — векторное пространство и $S \subseteq X$ — непустое подмножество. Справедливы следующие утверждения:

(i) если S закруглено, то $u \operatorname{conv}(S)$ закруглено;

(ii) $\Gamma(S) = \operatorname{conv}(\operatorname{circ}(S))$.

Первые два пункта следующего утверждения нам уже встречались в контексте нормированных пространств (см. предложение 9.11).

Предложение 24.10. Пусть X — топологическое векторное пространство и $S \subseteq X$ — непустое подмножество. Справедливы следующие утверждения:

- (i) если S выпукло, то \overline{S} и Int(S) тоже выпуклы;
- (ii) если S закруглено, то и \overline{S} закруглено;
- (iii) если S закруглено $u \in Int(S)$, то u Int(S) закруглено;
- (iv) если S открыто, то conv(S) и $\Gamma(S)$ тоже открыты;
- (v) если S открыто $u \in S$, то $u \operatorname{circ}(S)$ открыто.

Доказательство. Упражнение.

Определение 24.6. Топологическое векторное пространство называется *локально вы- пуклым*, если в нем есть база окрестностей нуля, состоящая из выпуклых множеств.

Вместо того чтобы говорить «локально выпуклое топологическое векторное пространство», обычно используют более короткий термин «локально выпуклое пространство».

Пример 24.9. Если (X, P) — полинормированное пространство, то топологическое векторное пространство $(X, \tau(P))$ локально выпукло. В самом деле, из определения полунормы легко следует, что все множества вида $U_{p,\varepsilon}(0)$ абсолютно выпуклы, поэтому таковы же и их конечные пересечения, образующие базу окрестностей нуля.

Оказывается, все локально выпуклые пространства получаются таким образом, как в примере 24.9:

Теорема 24.11. Топологическое векторное пространство локально выпукло тогда и только тогда, когда его топология порождается некоторым семейством полунорм.

Прежде чем доказывать теорему, дадим еще одно, более удобное определение локально выпуклых пространств.

Лемма 24.12. Пусть X — топологическое векторное пространство. Справедливы следующие утверждения:

- (i) каждая окрестность нуля в X содержит закругленную окрестность нуля;
- (ii) если X локально выпукло, то каждая окрестность нуля в X содержит абсолютно выпуклую окрестность нуля.

Доказательство. (i) Пусть $U \subseteq X$ — окрестность нуля. Положим $\bar{\mathbb{D}} = \{z \in \mathbb{C} : |z| \leqslant 1\}$. Из непрерывности умножения на скаляр следует, что существует такая окрестность нуля $V \subseteq X$, что $\bar{\mathbb{D}} \cdot V \subseteq U$. Положим $W = \bar{\mathbb{D}} \cdot V$. Очевидно, W — закругленное множество. Кроме того,

$$W=\bigcup\{\lambda V:0<\lambda\leqslant 1\},$$

откуда следует, что W открыто (объясните, почему). Таким образом, W — искомая окрестность нуля.

Лекция 24 167

(ii) Пусть $U\subseteq X$ — окрестность нуля. Не ограничивая общности, можно считать, что она выпукла. Пользуясь утверждением (i), выберем закругленную окрестность нуля $W\subseteq U$, и положим $W'=\mathrm{conv}(W)$. Применяя следствие 24.9 (i) и предложение 24.10 (iv), заключаем, что W' — абсолютно выпуклая окрестность нуля, причем $W'\subseteq U$ в силу выпуклости U.

Следствие 24.13. Топологическое векторное пространство локально выпукло тогда и только тогда, когда в нем есть база окрестностей нуля, состоящая из абсолютно выпуклых множеств.

Доказательство теоремы 24.11. Пусть X — локально выпуклое пространство. Пользуясь следствием 24.13, выберем базу $\mathscr V$ абсолютно выпуклых окрестностей нуля в X, и положим $P = \{p_V : V \in \mathscr V\}$ (где p_V — функционал Минковского множества V, см. определение 9.3). Пусть τ — исходная топология пространства X. Для завершения доказательства достаточно установить, что $\tau = \tau(P)$. В силу предложения 9.12 (v), для каждого $V \in \mathscr V$ имеем включения $U_{p_V,1}(0) \subseteq V \subseteq U_{p_V,2}(0)$. Первое из этих включений влечет за собой непрерывность тождественного отображения $(X, \tau(P)) \to (X, \tau)$ (см. предложение 24.1 (i)), а второе — непрерывность тождественного отображения $(X, \tau) \to (X, \tau(P))$. Следовательно, $\tau = \tau(P)$, как и требовалось.

Замечание 24.2. На самом деле нетрудно проверить (проверьте!), что для каждой абсолютно выпуклой окрестности нуля $V \subseteq X$ справедливо равенство $U_{p_V,1}(0) = V$.

Таким образом, связь между полинормированными и локально выпуклыми пространствами примерно такая же, как между метрическими пространствами и метризуемыми топологическими пространствами. Конечно, структура полинормированного пространства более богата, нежели структура соответствующего локально выпуклого пространства; иначе говоря, одна и та же топология вполне может порождаться разными семействами полунорм. Однако, как правило, при работе с полинормированными пространствами конкретное семейство полунорм не так уж важно — важна топология, которую это семейство порождает. По этой причине термин «полинормированное пространство» гораздо меньше распространен, чем термин «локально выпуклое пространство». Следуя сложившейся традиции, термин «полинормированное пространство» мы в дальнейшем использовать не будем; однако сам факт «полинормируемости» локально выпуклых пространств будем использовать постоянно.