Ex: Solve using Cramer's Rule.

Ep: Solve using Cramer's Rule.

Ep: Solve using Cramer's Rube.

Ex: Solve using Cramer's Rule.

3-1

Ex: Compute the adjugate and use it to Sind the inverse of the matrix.

A= (+ + i)

$$C_{12} = \begin{vmatrix} 3 & 1 \\ 11 \end{vmatrix}^{2} \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}^{2} \begin{vmatrix} 1 & 1 \end{vmatrix}^{2} \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}^{2} \begin{vmatrix} 1 & 1 & 1 \end{vmatrix}^{2} \begin{vmatrix} 1 & 1 & 1 \end{vmatrix}^{$$

$$A^{-1}$$
 det A^{2} A^{2} A^{3} A^{2} A^{3} A^{3} A^{3} A^{4} A^{2} A^{3} A^{4} A^{2} A^{3} A^{4} A^{4} A^{5} A^{5}

Ex: Compute the adjugate and use it to Sind the inverse of the matrix.

Ex: Compute the adjugate and use it to ful the inverse of the matrix.