Numerical Solutions for Partial Differential Equations

Machine Learning Bui	lding - Block	Models for	Computedional	Fluid Dynamics	
Adrian Lozano - Duan (MIT)					

S. Introduction

- Aircraft certification requerves regordus numerical simulation with minimal crops tolerance
- Simulation of acrodynamics requires Iluid dynamics, different flow physics
- Single model for all flow physics, captures complex geometries

S. Equations

- Conservation of mass
- Conservation of momentum
- Boundary limits at surface edge

&, Axumplions

- Learn flow Physics from a collection of small cases, this

 There are a collection of essential physics flows that can be combined
 to model rows at larger scales
- Flows at scale of flight simulation is a combination of exential flows at smaller scales

5, Model Architecture (NUS) (Wall Model)

- Predictor: force at location given flow chass

 Each flow has a predictive model (hause building block)
- Classifier : essential Physical flow

\$5 Duta

- Numerical source on state and policy of encitation of encitation and ensure compared to the second encountry of the property of the second encountry.

Sc Validation

- Well understood Physical models at small eccules can be used as validation

(aves for ML models

& Conclusions

- Ensemble of classifier and predictor is anthe interesting
- Information theory can describe the amount of information inputs cautain about the output. No information about the output can be predicted without it being in the input data.