PSY-GS 8875 Behavioral Data Science

Overview

Overview: Week 4

Readings

- ESL Chapters: 3.4, 3.4.1, 3.4.2, and 4.4.4
- HML: Chapter 6

Optional

- Jacobucci et al. 2016
- Seeboth and Mõttus 2018

- Ridge (ℓ_2 -norm) regression
- LASSO (ℓ_1 -norm) regression
- Activity: predicting life outcomes with personality

Regularization

generalizability: extent to which a model can make predictions beyond the data it was fit

- Most models aim to fit the data the best it can (e.g, OLS)
- The data are the data the data we have are the best we know of what represents the population

Premise

- Most models aim to fit the data the best it can (e.g., OLS)
- If we know that our model is overfitting the data we have (high variance, low bias), then we might want to introduce some bias to reduce the overfitting
- Said differently, we might want to purposefully underfit our model to the data we have with the goal to better generalize to other samples

Methods

- Ridge (ℓ_2 -norm) regression
- LASSO (ℓ_1 -norm) regression
- Elastic net (mix of ridge and LASSO)

Ridge Regression

- Shrink regression parameters toward zero based on some penalty
- Especially if there are fewer observations than there are variables (n << p)
- Multicollinearity can also be reduced by shrinking coefficients (recall that multicollinearity can inflate estimated coefficients)

Recall

$$\widehat{\beta} = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}$$

and

$$\widehat{eta} = \arg\min_{\widehat{eta}} \sum (\widehat{\mathbf{y}} - \mathbf{y})^2$$

Ridge Regression

$$\widehat{eta}_{ extit{ridge}} = (\mathbf{X}^\mathsf{T}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}$$

and

$$\widehat{\beta}_{\textit{ridge}} = \arg\min_{\widehat{\beta}} \sum (\widehat{\mathbf{y}} - \mathbf{y})^2 + \lambda \sum \beta^2$$

What did we add to these equations?

Ridge Regression

$$\widehat{eta}_{ extit{ridge}} = (\mathbf{X}^\mathsf{T}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}$$

and

$$\widehat{\beta}_{\textit{ridge}} = \arg\min_{\widehat{\beta}} \sum (\widehat{\mathbf{y}} - \mathbf{y})^2 + \lambda \sum \beta^2$$

What did we add to these equations?

What is $\lambda = 0$?

R Example

Ridge Regression | R Example

Dataset

- 50 items from the Big Five IPIP inventory [source]
- 428 people (subsampled from the original N = 9,790)
- 313 people in a different subsample to test
- Outcome: total score on well-being measured by the Warwick-Edinburgh Mental Well-Being Scale
- Published analyses using these data: Seeboth and Mõttus -2018

Head over to the regularization.R script

Optimal λ

- Choosing λ shouldn't be arbitrary
- What might be some ways to select λ ? (what criterion/methods have we learned about?)

- ullet Choosing λ shouldn't be arbitrary
- What might be some ways to select λ ? (what criterion/methods have we learned about?)
- k-folds cross-validation to minimize mean squared error or accuracy is common

Template in R

```
# Set seed for reproducibility
set.seed(42) # don't forget!!
# Perform cross-validation
ridge cv <- cv.glmnet(</pre>
  x = X, # predictors
  y = Y, # outcome
  alpha = 0, # O = ridge; 1 = lasso
 nfolds = 10 # number of folds
# Print/plot summary
ridge_cv; plot(ridge_cv)
```

By default, glmnet standardizes your variables

Perform Cross-validation to Obtain λ

- Use the ncds_sample.RData dataset (don't forget to only keep complete.cases)
 - Should have n = 383
- Set a seed
- Using the following for your predictors and outcome:
 - Predictors: ncds_sample[,2:51]
 - Outcome: ncds_sample[,"wem_well_being"]
- Perform cross-validation ridge regularization using 5-folds
- print and plot the output: What is the min λ ?

	Lambda	Index	Measur	re .	SE	Nonzero
min	4.58	75	5 34.	79 1.	660	50
1se	13.99	63	36.	28 2.	043	50

Difference in Coefficients

```
# Obtain coefficients of best ridge
ridge best <- glmnet(</pre>
  x = X, y = Y, family = "gaussian",
  alpha = 0, lambda = ridge_cv$lambda.min
# Standard linear model
standard_lm <- lm(wem_well_being ~ ., data = ncds_sample)
# Compute difference between standard and ridge coefficients
mean(abs(coef(ridge_best)[-1] - coef(standard_lm)[-1]))
[1] 0.2050615
range(abs(coef(ridge_best)[-1] - coef(standard_lm)[-1]))
[1] 0.0002459013 0.5770982055
# Remember the scaling factor with \{qlmnet\} = sd(Y) / length(Y)
```

Generalizability?

Predict New Sample

- Load in the ncds_test.RData dataset (don't forget to only keep complete.cases)
 - Should have n = 288
- Get predictions from standard and ridge models
 - Standard: predict(standard_lm, newdata = ncds_test)
 - Ridge: predict(ridge_best, newx = X_test)
- Compute RMSE for both standard and ridge model
- Which model generalized better?

New Sample:

Standard RMSE: 0.3379202

Ridge RMSE: 0.3326264

Did we generalize better?

New Sample:

Standard RMSE: 0.3379202

Ridge RMSE: 0.3326264

Did we generalize better?

What about the original sample?

Standard RMSE: 0.0000000000003376473

Ridge RMSE: 0.00000000000005325026

How about R^2 ?

	Train	Test	# of Predictors
Standard	0.609	0.447	50
Ridge	0.578	0.490	50

Do you prefer standard or ridge?

Least Absolute and Shrinkage Selection Operator (LASSO)
Regression

- Shrink regression parameters toward zero based on some penalty
- Especially if there are fewer observations than there are variables (n << p)
- Multicollinearity can also be reduced by shrinking coefficients (recall that multicollinearity can inflate estimated coefficients)
- Set a "soft-threshold" to shrink small parameter estimates to zero

Recall

$$\widehat{\beta} = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}$$

and

$$\widehat{eta} = \arg\min_{\widehat{eta}} \sum (\widehat{\mathbf{y}} - \mathbf{y})^2$$

Ridge Regression

$$\widehat{eta}_{ extit{ridge}} = (\mathbf{X}^\mathsf{T}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}$$

and

$$\widehat{\beta}_{\textit{ridge}} = \arg\min_{\widehat{\beta}} \sum (\widehat{\mathbf{y}} - \mathbf{y})^2 + \lambda \sum \beta^2$$

LASSO Regression

$$\widehat{\beta}_{\textit{LASSO}} = \arg\min_{\widehat{\beta}} \frac{1}{2} \sum (\widehat{\mathbf{y}} - \mathbf{y})^2 + \lambda \sum |\beta|,$$

where

$$\lambda \sum_{j=1}^{p} |\beta_j| = \lambda |\beta_j| + \lambda \sum_{k \neq j}^{p} |\beta_k|$$

Coordinate Descent

$$S(\rho_j, \lambda) = \beta_j = \begin{cases} \frac{\rho_j + \lambda}{z_j} & \text{for } \rho_j < -\lambda \\ 0 & \text{for } -\lambda \le \rho_j \le \lambda \\ \frac{\rho_j - \lambda}{z_j} & \text{for } \rho_j > \lambda \end{cases}$$

where $z_j = 1$ when the data are normalized (so you can ignore it)

Technical references

- coordinate descent
- LASSO

LASSO Regressionn

 ${\sf R} \,\, {\sf Example}$

LASSO Regression | R Example

- The only change for LASSO regression is to use alpha = 1
- ullet λ can similarly be chosen using cross-validation
- ullet One major difference is that the LASSO often shrinks some eta coefficients to zero (performing some feature selection on your behalf!)

LASSO Regression | R Example

Perform Cross-validation to Obtain λ

- Use the ncds_sample.RData dataset (don't forget to only keep complete.cases)
- Set a seed
- Using the following for your predictors and outcome:
 - Predictors: ncds_sample[,2:51]
 - Outcome: ncds_sample[,"wem_well_being"]
- Perform cross-validation LASSO regularization using 5-folds
- print and plot the output: What is the min λ ?

LASSO Regression | R Example

I	⊿ambda	Index	Measur	e	SE N	onzero
\min	0.1571	. 37	7 36.	06 1.	751	33
1se	0.5266	24	1 37.	55 3.	260	22

Difference in Coefficients

```
# Obtain coefficients of best LASSO
lasso best <- glmnet(</pre>
 x = X, y = Y, family = "gaussian",
  alpha = 1, lambda = lasso_cv$lambda.min
# Standard linear model
standard lm <- lm(wem well being ~ ., data = ncds sample)
# Compute difference between standard and ridge coefficients
mean(abs(coef(lasso_best)[-1] - coef(standard_lm)[-1]))
[1] 0.1741861
```

range(abs(coef(lasso_best)[-1] - coef(standard_lm)[-1]))

```
[1] 0.003204905 0.445243491
```

Generalizability?

Predict New Sample

- Load in the ncds_test.RData dataset (don't forget to only keep complete.cases)
- Get predictions from standard and LASSO models
 - Standard: predict(standard_lm, newdata = ncds_test)
 - LASSO: predict(lasso_best, newx = X_test)
- Compute RMSE for both standard and LASSO model
- Which model generalized better?

New Sample:

Standard RMSE: 0.3379202

LASSO RMSE: 0.303368

Did we generalize better?

New Sample:

Standard RMSE: 0.3379202

LASSO RMSE: 0.303368

Did we generalize better?

What about the original sample?

Standard RMSE: 0.0000000000003376473

LASSO RMSE: 0.00000000000002264283

How about R^2 ?

	Train	Test	# of Predictors
Standard	0.609	0.447	50
Ridge	0.578	0.490	50
LASSO	0.591	0.494	33

Do you prefer standard, ridge, or LASSO?

At Home Activity

At Home Activity

- Select a binary (dichotomous) outcome of interest (see ncds_codebook.xlsx for descriptions of variables)
- Use the personality variables (columns 2-51) to predict your outcome
- Perform standard, ridge, and LASSO logistic regression on the ndcs_sample.RData and predict ndcs_test.RData
- Discuss which method you would prefer and why

Readings for Next Week

Readings

- ESL Chapters: 11.1-11.5
- HML: Chapter 13
- 3Blue1Brown YouTube
- Brilliant Wiki on Backpropagation

Optional

- Urban and Gates 2021
- Smith 2018
- Optimization for Deep Learning