Research Note 1

Jiaxin Hu

Email: jhu267@wisc.edu

Date: 2019.2.14

1 Clustering in Matrix and Tensor with Normal Settings

1.1 Biclustering in Matrix with Normal setting

Settings

- Suppose we have a $n \times p$ data matrix Y which has n rows and p columns
- Suppose there is a partition of rows C_1, \ldots, C_K which separates the rows into K subgroups. The partition C_k satisfies:
 - 1. $C_k \subseteq \{1, 2, \dots, n\}, \forall k \in \{1, 2, \dots, K\}$
 - 2. $C_i \cap C_j = \emptyset$, $\forall i \neq j \text{ and } i, j \in \{1, 2, \dots, K\}$
 - 3. $C_1 \cup C_2 \cup \cdots \cup C_K = \{1, 2, \dots, n\}$
- Suppose there is a partition of columns D_1, \ldots, D_R which separates the columns into R subgroups. The partition D_r satisfies:
 - 1. $D_r \subseteq \{1, 2, \dots, p\}, \forall r \in \{1, 2, \dots, R\}$
 - 2. $D_i \cap D_j = \emptyset$, $\forall i \neq j \text{ and } i, j \in \{1, 2, \dots, R\}$
 - 3. $D_1 \cup D_2 \cup \cdots \cup D_R = \{1, 2, \ldots, p\}$
- There are $R \times K$ biclusters of the data matrix in total.

Model and Assumptions

• Construct a model:

$$Y_{ij} = \mu_{kr} + \epsilon_{ij}, \ \epsilon_{ij} \sim_{i.i.d} N(0, \sigma^2), \ i = 1, \dots, n, \ j = 1, \dots, p$$

where refers to $\mathbb{E}Y_{ij} = \mu_{kr}$ if Y_{ij} belongs to the bicluster B_{kr} .

• The linear model can be rewritten in a matrix form:

$$\mathbf{Y}_{n \times p} = A_{n \times K} \mu_{K \times R} B_{n \times R}^T + \epsilon_{n \times p}, \ \epsilon_{ij} \sim_{i.i.d} N(0, \sigma^2), \ i = 1, \dots, n, \ j = 1, \dots, p$$

where A, B are membership matrix:

$$A = (a_{ik}) \begin{cases} 1 & row \ i \ is \ in \ group \ C_k \\ 0 & otherwise \end{cases}$$

$$B = (b_{jr}) \begin{cases} 1 & column \ j \ is \ in \ group \ D_r \\ 0 & otherwise \end{cases}$$

Loss Our goal is to find the biculsters of the data matrix i.e. to find the partitions C_k, D_r with unknown parameters K, R, μ_{kr} and λ in a sparse clustering case which can minimize the loss function.

• Loss function in non-sparse case:

$$\min_{\{C_k\}_K, \{D_r\}_R, \mu \in \mathbb{R}^{K \times R}} \left\{ \sum_{k=1}^K \sum_{r=1}^R \sum_{i \in C_k} \sum_{j \in D_r} (Y_{ij} - \mu_{kr})^2 \right\}$$

• Loss function in sparse case:

$$\min_{\{C_k\}_K, \{D_r\}_R, \mu \in \mathbb{R}^{K \times R}} \left\{ \frac{1}{2} \sum_{k=1}^K \sum_{r=1}^R \sum_{i \in C_k} \sum_{j \in D_r} (Y_{ij} - \mu_{kr})^2 + \lambda \sum_{k=1}^K \sum_{r=1}^R |\mu_{kr}| \right\}$$

which add a *lasso* or l_1 penalty to the original least square loss function. The larger the λ is, the sparser the μ is.

1.2 Clustering in Tensor with Normal setting

Settings

- Suppose we have a $n_1 \times n_2 \times \cdots \times n_D$ data tensor Y_{i_1,i_2,\dots,i_D} which has D modes. And in each mode M_d , the data is n_d dimensional.
- Suppose there is a partition in each mode $M_{d1}, \ldots, M_{dK_d}, d = 1, \ldots, D$ which separates the mode M_d into K_d subgroups. The partition $M_{dk_d}, d = 1, \ldots, D$ satisfies:
 - 1. $M_{dk_d} \subseteq \{1, 2, \dots, n_d\}, \ \forall k_d \in \{1, 2, \dots, K_d\}$
 - 2. $M_{di} \cap M_{dj} = \emptyset$, $\forall i \neq j \text{ and } i, j \in \{1, 2, \dots, K_d\}$
 - 3. $M_{d1} \cup M_{d2} \cup \cdots \cup M_{dK_d} = \{1, 2, \ldots, n_d\}$
- There are $K_1 \times K_2 \times \cdots \times K_D$ clusters of the data tensor in total.

Model and Assumptions

• Construct a model:

$$Y_{i_1,i_2,\dots,i_D} = \mu_{k_1,k_2,\dots,k_D} + \epsilon_{i_1,i_2,\dots,i_D}, \ \epsilon_{i_1,i_2,\dots,i_D} \sim_{i.i.d} N(0,\sigma^2)$$
$$i_d = 1, 2, \dots, n_d; \ k_d = 1, 2, \dots, K_d; \ d = 1, 2, \dots, D$$

where refers to $\mathbb{E}Y_{i_1,i_2,\dots,i_D} = \mu_{k_1,k_2,\dots,k_D}$ if Y_{i_1,i_2,\dots,i_D} belongs to the cluster B_{k_1,k_2,\dots,k_D} .

• Write the model in a tensor form:

$$\mathbf{Y}_{n_1 \times n_2 \times \dots \times n_D} = \mathbf{U}_{K_1 \times K_2 \times \dots K_D} \times_1 A_1^T \times_2 A_2^T \times_3 \dots \times_D A_D^T + \epsilon_{n_1 \times n_2 \times \dots \times n_D}$$
$$\epsilon_{i_1, i_2, \dots, i_D} \sim_{i.i.d} N(0, \sigma^2), \ i_d = 1, 2, \dots, n_d; \ d = 1, 2, \dots, D$$

where A_d would be the membership matrix of d mode with dimension $n_d \times K_d$:

$$A_d = (a_{i_dk_d}) \begin{cases} 1 & \text{if the } i_d\text{th element in mode d belongs to partition } M_{dk_d} \\ 0 & \text{otherwise} \end{cases}$$

And in the model, \times_d refers to the multiplication between a matrix and a tensor through the d mode. U refers to the tensor of μ_{k_1,\dots,k_d}

Loss Function Similar with biclustering, our goal is to find the partition that minimize the loss function with unknown parameter K_1, \ldots, K_D , **U** and penalty parameter λ . In the tensor case, the loss function is in the similar formula of matrix and in this case I just give the loss function in sparse case.

• Loss function in sparse case:

$$\min_{\{M_{1k_1}\}_{K_1},\dots\{M_{Dk_d}\}_{K_D},\mathbf{U}\in\mathbb{R}^{K_1\times\dots\times K_D}} \sum_{k_1=1}^{K_1} \dots \sum_{k_D=1}^{K_D} \sum_{i_1\in M_{1k_1}} \dots \sum_{i_D\in M_{Dk_D}} (Y_{i_1,\dots,i_D} - \mu_{k_1,\dots,k_D})^2 \\
+ \lambda \sum_{k_1=1}^{K_1} \dots \sum_{k_D=1}^{K_D} |\mu_{k_1,\dots,k_D}|$$

2 Clustering in Matrix and Tensor with Binary Settings

2.1 Biclustering in Matrix with binary setting

Settings

- The partition setting of C_1, \ldots, C_K and D_1, \ldots, D_R would be the same with the normal setting. There are $R \times K$ biclusters in total.
- The elements in the $n \times p$ data matrix Y belong to $\{0, 1\}$.

Model and Assumption

• For Y is a binary data matrix, we assume Y_{ij} follows Bernoulli distribution:

$$Y_{ij} \sim Ber(p_{ij}); \ \mathbb{E}Y_{ij} = p_{ij}; \ logit(\mathbb{E}Y_{ij}) = log \frac{p_{ij}}{1 - p_{ij}} = \mu_{kr}$$

 $i = 1, \dots, n; \ j = 1, \dots, p; \ Y_{ij} \ are \ independent.$

• Rewrite the model in a matrix form:

$$logit(\mathbb{E}\mathbf{Y})_{n\times p} = log(\mathbf{P})_{n\times p} = A_{n\times K}\mathbf{U}_{K\times R}B_{n\times R}^T$$

where $P_{ij} = \frac{p_{ij}}{1-p_{ij}}$, $U_{kr} = \mu_{kr}$ and A, B are membership matrices defined above.

Optimization Maximum Likelihood?

2.2 Clustering in Tensor with Binary setting

Settings

- The partition and the modes settings of the data tensor are the same with normal setting. The data $\mathbf{Y}_{n_1 \times \cdots \times n_D}$ has D modes and on each mode we have a partition $M_{d1}, \ldots M_{dK_d}, d = 1, \ldots, D$. There are $K_1 \times \ldots K_D$ clusters in total.
- Every element in the data belongs to $\{0,1\}$.

Model and Assumption

• For the data is binary, we assume the data follows a Bernoulli distribution and construct a logistic model:

$$Y_{i_1,...,i_D} \sim Ber(p_{i_1,...,i_D}); \ \mathbb{E}Y_{i_1,...,i_D} = p_{i_1,...,i_D}; \ i_d = 1,...,n_d$$

$$logit(\mathbb{E}Y_{i_1,...,i_D}) = log \frac{p_{i_1,...,i_D}}{1 - p_{i_1,...,i_D}} = \mu_{k_1,...,k_D}; \ k_d = 1,...,K_d$$

$$Y_{i_1,...,i_D} \ are \ independent$$

• Rewrite the model in tensor form:

$$logit(\mathbb{E}\mathbf{Y})_{n_1 \times \cdots \times n_D} = log(\mathbf{P})_{n_1 \times \cdots \times n_D} = \mathbf{U}_{K_1 \times K_2 \times \cdots \times K_D} \times_1 A_1^T \times_2 A_2^T \times_3 \cdots \times_D A_D^T$$
 where $P_{i_1, \dots, i_D} = \frac{p_{i_1, \dots, i_D}}{1 - p_{i_1, \dots, i_D}}$, $U_{k_1, \dots, k_D} = \mu_{k_1, \dots, k_D}$ and A_1, \dots, A_D are membership matrices defined above.

Optimization

3 Additional Simulation of Table 3

Simulation settings In this simulation case, n=100, p=50, K=3, R=3 and $Y_{ij} \sim_{i.i.d} N(\mu_{kr}, 4^2), \ \mu_{kr} \sim Unif(-2, 2)$. Replication time S=50.

	rowCER	colCER	sd of rCER	sd of cCER	sparse rate	selected λ
kmeans	0.2921	0.2541	0.0985	0.1256	-	
Bicluster $\lambda = 0$	0.2663	0.2326	0.1014	0.1257	-	
Bicluster $\lambda = 200$	0.2768	0.2354	0.0973	0.1290	0.4132	
Bicluster $\lambda = 400$	0.2921	0.2516	0.0902	0.1389	0.4342	
Bicluster $\lambda = 800$	0.3875	0.3432	0.1593	0.1804	0.3224	
Bicluster λ selected	0.2659	0.2332	0.1003	0.1355	0	51

Figure 1: ground truth

Figure 2: origin data matrix

Figure 3: $\lambda = 0$

Figure 4: $\lambda = 200$

Figure 5: λ selected