Examenul de bacalaureat național 2015 Proba E. c) Matematică *M șt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_1 + a_2 + a_3 = 3 + (3 + 2) + (3 + 2 \cdot 2) =$	3 p
	=15	2p
2.	$-\frac{b}{2a} = -1$	2p
	$-\frac{\Delta}{4a} = -\frac{12}{4} = -3$	3p
3.	$x^2 - 4x + 4 = 0$	3 p
	x = 2 care verifică ecuația	2p
4.	Numărul submulțimilor cu 3 elemente ale unei mulțimi cu 5 elemente este egal cu C_5^3 =	3 p
	=10	2p
5.	M(-2,3)	2p
	AM = 4	3р
6.	$\cos a = \frac{2\sqrt{2}}{3}$	3p
	$\operatorname{ctg} a = 2\sqrt{2}$	2p

CLIDITE COLLEGE LIE	(20.1
SUBIECTUL al II-lea	(30 de puncte)

1.a)	$\det(A(3)) = \begin{vmatrix} 2 & 3 \\ 1 & 3 \end{vmatrix} = 2 \cdot 3 - 1 \cdot 3 =$	3p
	= 3	2p
b)	$A(-2015) = \begin{pmatrix} 2 & -2015 \\ 1 & 3 \end{pmatrix}, \ A(2015) = \begin{pmatrix} 2 & 2015 \\ 1 & 3 \end{pmatrix}$	2p
	$A(-2015) + A(2015) = \begin{pmatrix} 4 & 0 \\ 2 & 6 \end{pmatrix} = 2 \cdot \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} = 2A(0)$	3 p
c)	$\det(A(x)) = \begin{vmatrix} 2 & x \\ 1 & 3 \end{vmatrix} = 6 - x$	2p
	$x^2 + x - 6 = 0 \Leftrightarrow x_1 = -3 \text{ si } x_2 = 2$	3p
2.a)	$f(\hat{0}) = \hat{0}^3 + a \cdot \hat{0} =$	2p
	$=\hat{0}$	3p
b)	$f(\hat{3}) = \hat{2} + a \cdot \hat{3}$	2p
	$\hat{2} + a \cdot \hat{3} = \hat{3} \Rightarrow a = \hat{2}$	3p
c)	$\hat{1} + a = \hat{3} + a \cdot \hat{2} \Rightarrow a = \hat{3}$	2p
	$f(\hat{3}) = \hat{1}$ și $f(\hat{4}) = \hat{1} \Rightarrow f(\hat{3}) = f(\hat{4})$	3p

SUBIECTUL al III-lea		(30 de puncte)	
1.a)	$f'(x) = \frac{\left(x + \ln x\right)' \cdot x - \left(x + \ln x\right) \cdot x'}{x^2} =$	2p	
	$= \frac{\left(1 + \frac{1}{x}\right) \cdot x - x - \ln x}{x^2} = \frac{1 - \ln x}{x^2}, \ x \in (0, +\infty)$	3р	
b)	y-f(1)=f'(1)(x-1)	2p	
	f(1)=1, $f'(1)=1$, deci ecuația tangentei este $y=x$	3 p	
c)	$f'(x) = 0 \Leftrightarrow x = e$	1p	
	$f'(x) \ge 0$ pentru orice $x \in (0,e] \Rightarrow f$ este crescătoare pe $(0,e]$	2 p	
	$f'(x) \le 0$ pentru orice $x \in [e, +\infty) \Rightarrow f$ este descrescătoare pe $[e, +\infty)$	2 p	
2.a)	$\int_{0}^{1} \left(f(x) - \frac{1}{x+1} \right) dx = \int_{0}^{1} \left(x + \frac{1}{x+1} - \frac{1}{x+1} \right) dx = \int_{0}^{1} x dx =$	3р	
	$=\frac{x^2}{2}\Big _0^1=\frac{1}{2}$	2 p	
b)	$\int_{0}^{1} x f(x) dx = \int_{0}^{1} \left(x^{2} + \frac{x}{x+1}\right) dx = \int_{0}^{1} \left(x^{2} + 1 - \frac{1}{x+1}\right) dx =$	2 p	
	$ = \left(\frac{x^3}{3} + x - \ln(x+1)\right) \Big _0^1 = \frac{4}{3} - \ln 2 $	3р	
c)	$\mathcal{A} = \int_{0}^{1} f(x) dx = \int_{0}^{1} \left(x + \frac{1}{x+1} \right) dx = \left(\frac{x^{2}}{2} + \ln(x+1) \right) \Big _{0}^{1} = \frac{1}{2} + \ln 2$	3р	
	$\frac{1}{2} + \ln 2 = \frac{1}{2} + \ln \left(n^2 + n \right) \Rightarrow n = -2 \text{ nu este număr natural și } n = 1$	2 p	