Therefore, if also, $|y-x|<\frac{|x^n-a|}{2}\left(\sum_{k=0}^{n-1}\binom{n}{k}|x|^k\right)^{-1}$, the above is as large as $|x^n-a|^2/2>0$ and so x^n-a and y^n-a have the same sign when

$$0 < \delta < \min\left(1, \frac{|x^n - a|}{2} \left(\sum_{k=0}^{n-1} \binom{n}{k} |x|^k\right)^{-1}\right) \blacksquare$$

Theorem 2.11.2 Let a > 0 and let n > 1. Then there exists a unique x > 0 such that $x^n = a$.

Proof: Let S denote those numbers $y \ge 0$ such that $t^n - a < 0$ for all $t \in [0, y]$. Now note that from the binomial theorem,

$$(1+a)^n - a = \sum_{k=0}^n \binom{n}{k} a^k 1^{n-k} - a \ge 1 + a - a = 1 > 0$$

Thus S is bounded above and $0 \in S$. Let $x \equiv \sup(S)$. Then by definition of sup, for every $\delta > 0$, there exists $t \in S$ with $|x - t| < \delta$.

If $x^n-a>0$, then by the above lemma, for $t\in S$ sufficiently close to $x,(t^n-a)(x^n-a)>0$ which is a contradiction because the first factor is negative and the second is positive. Hence $x^n-a\leq 0$. If $x^n-a<0$, then from the above lemma, there is a $\delta>0$ such that if $t\in (x-\delta,x+\delta), x^n-a$ and t^n-a have the same sign. This is also a contradiction because then $x\neq \sup(S)$. It follows $x^n=a$.

From now on, we will use this fact that n^{th} roots exist whenever it is convenient to do so.

2.12 Exercises

- 1. Let S=[2,5]. Find $\sup S$. Now let S=[2,5). Find $\sup S$. Is $\sup S$ always a number in S? Give conditions under which $\sup S \in S$ and then give conditions under which $\inf S \in S$.
- 2. Show that if $S \neq \emptyset$ and is bounded above (below) then $\sup S$ (inf S) is unique. That is, there is only one least upper bound and only one greatest lower bound. If $S = \emptyset$ can you conclude that 7 is an upper bound? Can you conclude 7 is a lower bound? What about 13.5? What about any other number?
- 3. Let S be a set which is bounded above and let -S denote the set $\{-x : x \in S\}$. How are $\inf(-S)$ and $\sup(S)$ related? **Hint:** Draw some pictures on a number line. What about $\sup(-S)$ and $\inf S$ where S is a set which is bounded below?
- 4. Which of the field axioms is being abused in the following argument that 0=2? Let x=y=1. Then

$$0 = x^2 - y^2 = (x - y)(x + y)$$

and so 0 = (x - y)(x + y). Now divide both sides by x - y to obtain 0 = x + y = 1 + 1 = 2.

- 5. Give conditions under which equality holds in the triangle inequality.
- 6. Let $k \leq n$ where k and n are natural numbers. P(n,k), permutations of n things taken k at a time, is defined to be the number of different ways to form an ordered list of k of the numbers, $\{1, 2, \dots, n\}$. Show

$$P(n,k) = n \cdot (n-1) \cdots (n-k+1) = \frac{n!}{(n-k)!}$$