NATIONAL HIGHER SCHOOL OF MATHEMATICS DEPARTMENT OF PREPARATORY CYCLE COMPUTATIONAL MATHEMATICAL TOOLS

Lab-work N°01

Submitted By: Sull name:	
D :	
Froup / Section :	

Submitted To:
Mr. A. Ameraoui
Assoc. Professor
Dept. of PC

February, 2023

1 Non-linear equations solving problem

Let's define the function

$$f(x) = \cos(x) - xe^x$$
, for $x \in \left[0, \frac{\pi}{2}\right]$

1. Using Python package matplotlib.pyplot, plot the graph of the function f(x), while checking the uniqueness of the root of the equation f(x) = 0 (let denoted this root x_r).

```
In [1]: import numpy as np
In [2]: import matplotlib.pyplot as plt
In [3]: def f(x: float): # Or use f= lambda x : np.cos(x) - x*np.exp(x)

...
```

2. Write Python function NRroot(), that allows the approximation of x_r using the bisection method, for a given interval [a, b] and a precision $\varepsilon > 0$.

```
def BSroot(a: float, b: float, eps: float):
    ...
```

Report what the function returns for $a=0, b=\frac{\pi}{2}$ and $\varepsilon=10^{-8}$

```
1 In [4]:
2
3
4 ...
```

3. Write Python function NRroot(), to find the approximate value of the root x_r , using the Newton-Raphson method, for a given $x_0 \in [a, b]$. (the method requires the derivative of the function f).

```
def fprime(x: float):

def NRroot(x0: float, eps: float):

...
```

Report what the function returns for $x_0 = \frac{\pi}{4}$ and $\varepsilon = 10^{-8}$

```
1 In [5]:
2
3
4
5 ...
```

4. Write Python function SCroot(), to approximate the value of x_r to within $\varepsilon > 0$, using the secant sequence $(x_n)_{n \geq 0}$, defined for a given $x_0, x_1 \in [a, b]$:

$$\begin{cases} x_0, x_1 \in [a, b] \\ x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}, \text{ for all } n \geqslant 1 \end{cases}$$

```
def SCroot(x0: float, x1: float, eps: float):

...
```

Report what the function returns for $x_0 = 0, x_1 = \frac{\pi}{4}$ and $\varepsilon = 10^{-8}$

```
1 In [6]:
2
3
4 ...
```

5. We rewrite the function f(x), in the form $x = \cos(x)e^{-x} = g(x)$. Write Python function FProot(), to approximate the value of x_r to within $\varepsilon > 0$, using the fixed-point method $x_{n+1} = g(x_n)$ and for a given $x_0 \in [a, b]$.

```
from typing import Callable
Func = Callable[[float], float]
def FProot(g: Func, x0: float, eps: float):

...
```

Report what the function returns for $x_0 = \frac{\pi}{4}$ and $\varepsilon = 10^{-8}$

```
1 In [7]:
2
3
4 ...
```

6. Consider now, the Steffensen convergence acceleration procedure, given by:

$$\begin{cases} x_0 \in [a, b] \\ y_n = g(x_n) \\ x_{n+1} = x_n - \frac{(y_n - x_n)^2}{g(y_n) - 2y_n + x_n}, \text{ for all } n \ge 0 \end{cases}$$

Write Python function STroot(), to approximate the value of x_r to within $\varepsilon > 0$, using the Steffensen method and for a given $x_0 \in [a, b]$.

```
def STroot(x0: float, eps: float):

2
3
4
5 ...
```

Report what the function returns for $x_0 = \frac{\pi}{4}$ and $\varepsilon = 10^{-8}$

```
1 In [8]:
2
3
4 ...
```

7. Complete and comment on the results obtained in the following table :

ε	Nbr iterations BS	Nbr iterations NR	Nbr iterations FP	Nbr iterations ST
10^{-1}				
10^{-2}				
10^{-3}				
10^{-4}				
10^{-5}				
10^{-6}				
10^{-7}				
10^{-8}				
10^{-9}				
10^{-10}				

<u>comments:</u>			