Relations with Constant Coefficients **Definition:** A linear **homogeneous** recurrence

Linear Homogeneous Recurrence

relation of degree k with constant coefficients is a recurrence

relation of the form $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$

where $c1, c2, \ldots, ck$ are real numbers, and $ck \neq 0$.

Initial values Solutions

Fibonacci

number

 $F_n = F_{n-1} + F_{n-2}$ $a_1 = a_2 = 1$ $F_n = F_{n-1} + F_{n-2}$ $a_1 = 1, a_2 = 3$ Lucas Number

 $F_n = F_{n-2} + F_{n-3}$ $a_1 = a_2 = a_3 =$ Padovan sequence

 $F_n = 2F_{n-1} + F_{n-2}$ $a_1 = 0, a_2 = 1$ Pell number How to solve linear recurrence relation:

characteristic equation

The basic approach for solving linear homogeneous recurrence relations is to

look for solutions of the form $a_n = r^n$, where r is a

of the recurrence

is subtracted from

only if

Example:

Recurrence

relations

relation $a_n =$

constant. Note that $a_n = r^n$ is a solution

 $c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$ if and

 $r^n = c_1 r^{n-1} + c_2 r^{n-2} + \dots + c_k r^{n-k}$. When both sides of this equation are divided by r^{n-k} and the right-hand side

 $r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \dots - c_{k-1}r - c_{k} = 0.$

Consequently, the sequence $\{an}$ with

the left, we obtain the equation

 $a_n = r^n$ is a solution if and only if r is a solution of this last equation. We call this the **characteristic equation** of the recurrence relation.

characteristic roots: The solutions of this equation are called the characteristic roots of the recurrence relation.

Theorem1:Let C_1 and C_2 be real numbers. Suppose that $r^2 - c_1r - c_2 = 0$,

has two distinct roots r_1 and r_2 . Then the sequence $\{a_n\}$ is a solution of the recurrence relation $a_n =$

 $C_1 \partial_{n-1} + C_2 \partial_{n-2}$ if and only if $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$, for $n = 0, 1, 2, \ldots$, where $\alpha 1$ and $\alpha 2$ are constants.

Proof: We must do two things to prove the theorem. First, it must be shown that if Γ_1 and Γ_2

are the roots of the characteristic equation, and $lpha_1$ and $lpha_2$ are constants,

 $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$, then the sequence $\{an\}$ is a solution of the recurrence relation. Because Γ_1

then the sequence { an} with

Second, it must be shown that

for some constants α_1 and α_2 .

then $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$,

Now we will show that if

 $= a_n$.

is a solution of the recurrence relation.

if the sequence $\{an\}$ is a solution,

 $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$,

and r_2 are roots of $r^2 - c_1 r - c_2 = 0$, it follows that $r_1^2 = c_1 r_1 + c_2$, $r_2^2 = c_1 r_2 + c_2$.

From these equations, we see that

$$c_1 a_{n-1} + c_2 a_{n-2} = c_1 (\alpha_1 r_1^{n-1} + \alpha_2 r_2^{n-1}) + c_2 (\alpha_1 r_1^{n-2} + \alpha_2 r_2^{n-2})$$

$$= \alpha_1 r_1^{n-2} (c_1 r_1 + c_2) + \alpha_2 r_2^{n-2} (c_1 r_2 + c_2)$$

$$= \alpha_1 r_1^{n-2} r_1^2 + \alpha_2 r_2^{n-2} r_2^2$$

$$= \alpha_1 r_1^n + \alpha_2 r_2^n$$

This shows that the sequence $\{\mathbf{a}_n\}$ with $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$,

is a solution of the recurrence relation.

Theorem2:Let c1 and c2 be real numbers with $c2 \neq 0$. Suppose that

 $r^2 - c_1 r - c_2 = 0$, has only one

the recurrence relation $\partial_n = C_1 \partial_{n-1} + C_2 \partial_{n-2}$ if and

root r0.A sequence {an} is a solution of

only if $a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n$, for $n = 0, 1, 2, \ldots$, where $\alpha 1$ and $\alpha 2$ are constants. Theorem3:Let C_1, C_2, \ldots, C_k be real

numbers. Suppose that the characteristic equation

$$r^k - c_1 r^{k-1} - \dots - c_k = 0$$

has k distinct roots $r1, r2, \dots, rk$. Then
a sequence $\{an\}$ is a solution of the
recurrence relation

 $\mathbf{a}_n = \mathbf{C}_1 \mathbf{a}_{n-1} + \mathbf{C}_2 \mathbf{a}_{n-2} + \cdots + \mathbf{C}_k \mathbf{a}_{n-k}$ if and only if $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \cdots + \alpha_k r_k^n$

for $n=0,\,1,\,2,\,\ldots$, where $lpha_1,\,lpha_2,\,\ldots$, $lpha_k$ are constants.

Problem1: What is the solution of the recurrence relation an = an-1 + 2an-2

with a0 = 2 and a1 = 7?

Solve: The characteristic equation of the recurrence relation is $r^2 - r - 2 = 0$. Its roots are r = 2 and r = -1. Hence, the sequence $\{an\}$ is a solution to the recurrence relation if and only if

 $a_n = \alpha_1 2^n + \alpha_2 (-1)^n$,

for some constants α_1 and α_2 . From the initial conditions, it follows that $a_0 = 2 = \alpha_1 + \alpha_2$

$$a_1 = 7 = \alpha_1 \cdot 2 + \alpha_2 \cdot (-1)$$
. Solving these two equations shows that

$$\alpha_1 = 3$$
 and $\alpha_2 = -1$. Hence, the solution to the recurrence relation and initial conditions is the

sequence
$$\{an\}$$
 with

 $a_n = 3 \cdot 2^n - (-1)^n$.

Solve: Recall that the sequence of Fibonacci numbers satisfies the recurrence relation $f_n = f_{n-1} + f_{n-2}$ and also satisfies the

initial conditions
$$f0 = 0$$
 and $f1 = 1$. The roots of the characteristic equation $r^2 - r - 1 = 0$ are $r1 = (1 + \sqrt{5})/2$ and $r2 = (1 - \sqrt{5})/2$.

Therefore. from Theorem 1 it follows that the Fibonacci numbers are given by

$$f_n = \alpha_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + \alpha_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$$
, for some constants $\alpha 1$ and $\alpha 2$. The initial conditions $f0 = 0$ and $f1 = 1$ can

be used to find these constants. We have

$$f_0 = \alpha_1 + \alpha_2 = 0,$$

recurrence relation $a_n = 6a_{n-1} - 9a_{n-2}$ with initial conditions $a_0 = 1$ and $a_1 = 1$

Solve: The only root of $r^2 - 6r + 9 = 0$ is r =3. Hence, the solution to this recurrence

 $f_1 = \alpha_1 \left(\frac{1 + \sqrt{5}}{2} \right) + \alpha_2 \left(\frac{1 - \sqrt{5}}{2} \right) = 1.$

equations for $\alpha 1$ and $\alpha 2$ is

 $\alpha 1 = 1/\sqrt{5}, \alpha 2 = -1/\sqrt{5}.$

are given by

6?

The solution to these simultaneous

Consequently, the Fibonacci numbers

 $f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$

Problem3: What is the solution of the

relation is $a_n = \alpha_1 3^n + \alpha_2 n 3^n$ for some constants α_1 and α_2 . Using the initial conditions, it follows that $a_0 = 1 = \alpha_1$

 $a_{1}=6=\alpha_{1}\cdot 3+\alpha_{2}\cdot 3$. Solving these two equations shows that $\alpha_{1}=1$ and $\alpha_{2}=$. Consequently, the solution to this recurrence relation and the initial conditions is

 $a_n = 3^n + n3^n$. Problem4: Find the solution to the recurrence relation

 $a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$

 $r^3 - 6r^2 + 11r - 6$. The characteristic roots are r = 1, r = 2, and r = 3, because $r^3 - 6r^2 + 11r - 6 = (r - 6)$ 1)(r-2)(r-3). Hence, the solutions to

with the initial conditions $\partial_0 = 2$, $\partial_1 =$

Solve: The characteristic polynomial of

5. and $a_2 = 15$.

this recurrence relation is

this recurrence relation are of the form
$$a_n = \alpha_1 \cdot 1^n + \alpha_2 \cdot 2^n + \alpha_3 \cdot 3^n$$
. To find the constants α_1 , α_2 , and α_3 , use the initial conditions. This gives $a_0 = 2 = \alpha_1 + \alpha_2 + \alpha_3$.

 $a_{1}=5=\alpha_{1}+\alpha_{2}\cdot 2+\alpha_{3}\cdot 3$. $a_2 = 15 = \alpha_1 + \alpha_2 \cdot 4 + \alpha_3 \cdot 9$ When these three simultaneous

equations are solved for
$$\alpha_1$$
, α_2 , and α_3 , we find that $\alpha_1=1$, $\alpha_2=-1$, and $\alpha_3=2$. Hence, the unique solution to this recurrence relation and

 $\alpha_{2}=-1$, and $\alpha_{3}=2$. Hence, the unique solution to this recurrence relation and the given initial

conditions is the sequence
$$\{\mathbf{a}_n\}$$
 with $a_n = 1 - 2^n + 2 \cdot 3^n$.

Problem5: Find the solution to the recurrence relation

recurrence relation
$$\mathbf{a}_{n} = -3\mathbf{a}_{n-1} - 3\mathbf{a}_{n-2} - \mathbf{a}_{n-3}$$
with initial conditions $\mathbf{a}_{0} = 1$, $\mathbf{a}_{1} = -2$,

and $a_2 = -1$. Solve: The characteristic equation of this recurrence relation is

Because
$$r^3 + 3r^2 + 3r + 1 = (r + 1)^3$$
, there is a single root $r = -1$ of multiplicity three of the characteristic equation. By Theorem 4 the solutions of this recurrence

 $r^3 + 3r^2 + 3r + 1 = 0$.

relation are of the form $a_n = \alpha_{1,0}(-1)^n + \alpha_{1,1}n(-1)^n + \alpha_{1,2}n^2(-1)^n$. To find the constants $\alpha 1.0$, $\alpha 1.1$, and

To find the constants
$$\alpha 1,0, \alpha 1,1,$$
 and $\alpha 1,2,$ use the initial conditions. This gives $a0=1=\alpha 1,0,$ $a=-2=-\alpha 1,0-\alpha 1,1-\alpha 1,2.$

 $\partial_{2}=-1=\alpha_{1,0}+2\alpha_{1,1}+4\alpha_{1,2}$ The simultaneous solution of these three equations is $\alpha_{1,0=1,\alpha_{1,1=3}}$, and $\alpha_{1,2}$ = -2.Hence, the unique solution to this

Hence, the unique solution to this recurrence relation and the given initial conditions is the sequence
$$\{a_n\}$$
 with

Linear Nonhomogeneous Recurrence Relations

 $a_n = (1 + 3n - 2n^2)(-1)^n$.

with Constant Coefficients Definition: recurrence relation of the

form $a_n = C_1 a_{n-1} + C_2 a_{n-2} + \cdots + C_k a_{n-k} + C_k a_{n-k}$ F(n).

is known as linear nonhomogeneous recurrence relation with constant coefficient.

depending only on n. The recurrence relation $\mathbf{a}_n = \mathbf{C}_1 \mathbf{a}_{n-1} + \mathbf{C}_2 \mathbf{a}_{n-2} + \cdots + \mathbf{C}_k \mathbf{a}_{n-k}$ is called the associated homogeneous recurrence relation.

where C_1 , C_2 , . . . , C_k are real numbers and F(n) is a function not identically zero

Theorem4: If
$$\{a_n^{(p)}\}$$
 is a particular solution of the nonhomogeneous linear recurrence relation with

constant coefficients $a_n = C_1 a_{n-1} + C_2 a_{n-2} + \cdots + C_k a_{n-k} + F(n)$, then every solution is of the form { $a_n^{(p)} + a_n^{(h)}$ }, where $\{a_n^{(h)}\}$ is a solution of the associated

homogeneous recurrence relation
$$a_n = C_1 a_{n-1} + C_2 a_{n-2} + \cdots + C_k a_{n-k}$$
.

Proof: Because $\{a_n^{(p)}\}$ is a particular solution of the nonhomogeneous

recurrence relation, we know that $a_n^{(p)} = c_1 a_{n-1}^{(p)} + c_2 a_{n-2}^{(p)} + \cdots + c_k a_{n-k}^{(p)} + F(n)$. Now suppose that $\{b_n\}$ is a second

solution of the nonhomogeneous

recurrence relation, so that

recurrence,

 $b_n = C_1 b_{n-1} + C_2 b_{n-2} + \cdots + C_k b_{n-k} + F(n)$. Subtracting the first of these two equations from the second shows that $b_n - a_n^{(p)} = c_1(b_{n-1} - a_{n-1}^{(p)}) + c_2(b_{n-2} - a_{n-2}^{(p)}) + \cdots + c_k(b_{n-k} - a_{n-k}^{(p)})$. It follows that $\{b_n - a_n^p\}$ is a solution of the associated homogeneous linear

say, $\{a_n^{(h)}\}$. Consequently, $b_n = a_n^{(p)} + a_n^{(h)}$ for all n.

Theorem5: Suppose that $\{a_n\}$ satisfies the linear nonhomogeneous recurrence

relation $a_n = C_1 a_{n-1} + C_2 a_{n-2} + \cdots$ $+ C_k a_{n-k} + F(n)$, where C_1, C_2, \ldots, C_k are real numbers, and

where
$$C_1$$
, C_2 , ..., C_k are real numbers, and $F(n) = (b_t n^t + b_{t-1} n^{t-1} + \cdots + b_1 n + b_0) s^n$, where b_0 , b_1 , ..., b_t and s are real

numbers. When s is not a root of the characteristic equation of the associated linear homogeneous recurrence relation, there is a particular solution of the form

$$(p_t n^t + p_{t-1} n^{t-1} + \dots + p_1 n + p_0) s^n$$
.
When s is a root of this characteristic equation and its multiplicity is m , there

is a particular solution of the form $(p_t n^t + p_{t-1} n^{t-1} + \cdots + p_1 n + p_0)s^n$.

recurrence relation
$$\mathbf{a}_n = 3\mathbf{a}_{n-1} + 2n$$
. What is the solution with $a1 = 3$? Solve: The associated linear

Problem6: Find all solutions of the

homogeneous equation is $\partial_n=3\partial_{n-1}$. Its solutions are $a_n^{(h)}=\alpha 3^r$ where α is a constant.

To determine whether there are any solutions of this form, suppose that

$$p_n=cn+d$$
 is such a solution. Then the equation $a_n=3a_{n-1}+2n$ becomes $cn+d=3(c(n-1)+d)+2n$.

follows that cn + dis a solution if and only if 2 + 2c = 0 and 2d - 3c = 0. This shows that cn + d is a solution if

Simplifying and combining like terms gives (2 + 2c)n + (2d - 3c) = 0. It

and only if
$$c = -1$$
 and $d = -3/2$.
Consequently, $a_n^{(p)} = -n - 3/2$ is a particular solution.

$$a_n = a_n^{(p)} + a_n^{(h)} = -n - \frac{3}{2} + \alpha \cdot 3^n,$$

where α is a constant. To find the solution with $\partial_1=3$, let n=1 in the formula we obtained for the general

Solution. We find that
$$3 = -1 - 3/2 + 3\alpha$$
, which implies that $\alpha = 11/6$. The solution is $\partial_n = -n - 3/2 + (11/6)^{3^n}$. Problem 7: Find all solutions of the

Problem7: Find all solutions of the recurrence relation $\partial_n = 5\partial_{n-1} - 6\partial_{n-2} + 7^n$.

Solve: The solutions of its associated Homogeneous recurrence relation

$$a_n=5a_{n-1}-6a_{n-2}$$
 are $a_n^{(h)}=\alpha_1\cdot 3^n+\alpha_2\cdot 2^n$, where α_1 and α_2 are constants. Because $F(n)=$

 $F(n) = 7^n$ a reasonable trial solution is $a_n^{(p)} = C \cdot 7^n$, where C is a constant. Substituting the terms of this sequence

where
$$C$$
 is a constant. Substituting the terms of this sequence into the recurrence relation implies that $C \cdot 7^n = 5C \cdot 7^{n-1} - 6C \cdot 7^{n-2} + 7^n$.

Factoring out 7^{n-2} , this equation becomes 49C = 35C - 6C + 49, which

implies that 20C = 49, or that C = 49/20.

Hence, $a_n^{(p)} = (49/20)7^n$ is a particular

solution. All solutions are of the form

 $a_n = \alpha_1 \cdot 3^n + \alpha_2 \cdot 2^n + (49/20)7^n$.