MATH 631: MIDTERM EXAM

Instructions: Complete all problems in Part I. Submit solutions to three out of the five problems from Part II. Good luck.

Part I. Complete all of the following.

- 1. Draw a lattice diagram for the abelian group $\mathbb{Z}/36\mathbb{Z}$.
- 2. Consider the symmetric group S_5 .
 - (a) List all conjugates of $\sigma = (123)(45)$.
 - (b) Find $[S_5: N_{S_5}(<\sigma>)]$. Give a one sentence explanation of your answer. A BETTER QUESTION WOULD HAVE BEEN FIND $[S_5: C_{S_5}(<\sigma>)]$.
- 3. Let $Z_{450} = \langle x \rangle$ denote the cyclic group of order $450 = 2 \cdot 3^2 \cdot 5^2$.
 - (a) Compute the number of generators of Z_{450} .
 - (b) List all the elements of Z_{450} of order 9.
- 4. List, up to isomorphism, all abelian groups of order 72.
- 5. (a) Carefully state the Sylow Theorems.
 - (b) Prove that a group of order 55 is not simple.

Part II. Choose any three of the following.

- 1. Let g_1, g_2, \dots, g_r be representatives of conjugacy classes of the finite group G and assume these elements pairwise commute. Prove that G is abelian.
- 2. Suppose G is a finite group with |G| = n and that p is the smallest prime so that $p \mid n$. Prove that if $H \leq G$ and [G:H] = p, then $H \triangleleft G$.
- 3. (a) Let G be a finite group with |G| = 77. Prove that G is cyclic.
 - (b) Prove that a group G with order |G| = 12 is not simple.
- 4. (a) Prove that a group G with order $|G| = 380 = 2^2 \cdot 5 \cdot 19$ is not simple.
 - (b) Let G be a group with order $|G|=315=3^2\cdot 5\cdot 7$. Suppose that a Sylow 3-subgroup P of G is normal. Prove that $P\leq Z(G)$.
- 5. Let p be a prime number and suppose that $|P| = p^{\alpha}$ for some $\alpha \in \mathbb{Z}^+$. Prove that the center of P is not trivial, $Z(P) \neq \{e\}$.