Cluster Forests

Computational Statistics and Data Analysis, vol. 66 (2013), pp. 178-192

Donghui YanBerkeley University

Aiyou Chen Google Inc

Michael I. Jordan
Berkeley University

2015.10.21 Group Meeting Report 指導教授 | 林志青 0356624 | 葉美伶

Outline

- Background
 - Before CF Random forest
- Cluster Forest
 - The Method
- Experiments Result
 - Summary of UC Irvine datasets
 - Evaluation of the clustering result (ρr, ρc)
- Conclusion

Before CF - Random Forest

Before CF - Random Forest

Before CF - Random Forest

Cluster Forest - Method

- Growth of clustering vectors
 - [alg 1] Feature competition
 - It aims to provide a good initialization for the growth of a clustering vector.
 - It prevent noisy or "weak" features from entering the clustering vector at the initialization
 - [alg 2] The growth of a clustering vector
- The CF algorithm

Aims to,

- Provide a good initialization for the growth of a clustering vector.
- Prevent noisy or "weak" features from entering the clustering vector at the initialization.

clustering vector: data will projected on it

F: feature space

 \bar{f} : set of feature, current in used

SSw: within-cluster squared error distance

SSb: between-cluster squared error distance

1: Sample b features, $f_1^{(i)}, \ldots, f_b^{(i)}$, from the feature space \mathcal{F}

$$\kappa(\tilde{\boldsymbol{f}}) = \frac{SS_W(\tilde{\boldsymbol{f}})}{SS_B(\tilde{\boldsymbol{f}})}$$

- 1: Sample b features, $f_1^{(i)}, \ldots, f_b^{(i)}$, from the feature space \mathcal{F}
- 2: Apply K-means to the data projected on $(f_1^{(i)}, \ldots, f_b^{(i)})$ to get $\kappa(f_1^{(i)}, \ldots, f_b^{(i)})$

 $\kappa(\tilde{\boldsymbol{f}}) = \frac{SS_W(\tilde{\boldsymbol{f}})}{SS_B(\tilde{\boldsymbol{f}})}$

q times

1: Sample b features,
$$f_1^{(i)}, \ldots, f_b^{(i)}$$
, from the feature space \mathcal{F}

Apply K-means to the data projected on $(f_1^{(i)}, \dots, f_b^{(i)})$ to get $\kappa(f_1^{(i)}, \dots, f_b^{(i)})$

 $\kappa(\tilde{\boldsymbol{f}}) = \frac{SS_W(\tilde{\boldsymbol{f}})}{SS_B(\tilde{\boldsymbol{f}})}$

q times

1: Sample b features,
$$f_1^{(i)}, \ldots, f_b^{(i)}$$
, from the feature space \mathcal{F}

Apply K-means to the data projected on $(f_1^{(i)}, \ldots, f_b^{(i)})$ to get $\kappa(f_1^{(i)}, \ldots, f_b^{(i)})$

 $\kappa(\tilde{\boldsymbol{f}}) = \frac{SS_W(\tilde{\boldsymbol{f}})}{SS_B(\tilde{\boldsymbol{f}})}$

q times

1: Sample b features,
$$f_1^{(i)}, \ldots, f_b^{(i)}$$
, from the feature space \mathcal{F}

2: Apply K-means to the data projected on $(f_1^{(i)}, \ldots, f_b^{(i)})$ to get $\kappa(f_1^{(i)}, \ldots, f_b^{(i)})$

3: Set
$$(f_1^{(0)}, \dots, f_b^{(0)}) \leftarrow \operatorname{arg\,min}_{i=1}^q \kappa(f_1^{(i)}, \dots, f_b^{(i)})$$

q times

1: Sample b features,
$$f_1^{(i)}, \ldots, f_b^{(i)}$$
, from the feature space \mathcal{F}

Sample b features, $f_1^{(i)}, \dots, f_b^{(i)}$, from the feature space \mathcal{F} Apply K-means to the data projected on $(f_1^{(i)}, \dots, f_b^{(i)})$ to get $\kappa(f_1^{(i)}, \dots, f_b^{(i)})$

3: Set
$$(f_1^{(0)}, \dots, f_b^{(0)}) \leftarrow \operatorname{arg\,min}_{i=1}^q \kappa(f_1^{(i)}, \dots, f_b^{(i)})$$

setting q = 1 reduces to the usual mode

1: Sample b features, denoted as f_1, \ldots, f_b , from the feature space \mathcal{F}

- 1: Sample b features, denoted as f_1, \ldots, f_b , from the feature space \mathcal{F}
- 2: Apply K-means (the base clustering algorithm) to the data induced by the feature vector $(\tilde{f}, f_1, \dots, f_b)$

- 1: Sample b features, denoted as f_1, \ldots, f_b , from the feature space \mathcal{F}
- 2: Apply K-means (the base clustering algorithm) to the data induced by the feature vector $(\tilde{f}, f_1, \dots, f_b)$
- 3: **if** $\kappa(\tilde{f}, f_1 \dots, f_b) < \kappa(\tilde{f})$ **then** expand \tilde{f} by $\tilde{f} \leftarrow (\tilde{f}, f_1, \dots, f_b)$ and set $\tau \leftarrow 0$.

1: Grow a clustering vector, $\tilde{f}^{(l)}$, according to Algorithm 2.

T times

Grow a clustering vector, $\tilde{f}^{(l)}$, according to Algorithm 2.

Apply the base clustering algorithm to the data induced by clustering vector $\tilde{f}^{(l)}$ to get a partition of the data

- 1: Grow a clustering vector, $\tilde{f}^{(l)}$, according to Algorithm 2.
- 2: Apply the base clustering algorithm to the data induced by clustering vector $\tilde{f}^{(l)}$ to get a partition of the data
- 3: Construct $n \times n$ co-cluster indicator matrix (or affinity matrix) $P^{(l)}$

$$P_{ij}^{(l)} = \begin{cases} 1, & \text{if } X_i \text{ and } X_j \text{ are in the same cluster} \\ 0, & \text{otherwise} \end{cases}$$

	X1	X2	Х3	Х4	Х5
X1	1	1	0	1	0
X2	1	1	0	1	1
Х3	0	0	1	0	1
X4	1	1	0	1	0
X5	0	1	1	0	1

- 1: Grow a clustering vector, $\tilde{f}^{(l)}$, according to Algorithm 2.
- 2: Apply the base clustering algorithm to the data induced by clustering vector $\tilde{f}^{(l)}$ to get a partition of the data
- 3: Construct $n \times n$ co-cluster indicator matrix (or affinity matrix) $P^{(l)}$

$$P_{ij}^{(l)} = \begin{cases} 1, & \text{if } X_i \text{ and } X_j \text{ are in the same cluster} \\ 0, & \text{otherwise} \end{cases}$$

4: Average the indicator matrices to get $P \leftarrow \frac{1}{T} \sum_{l=1}^{T} P^{(l)}$

Apply spectral clustering to P to get the final clustering.

Experiments Result – Summary of UC Irvine datasets

Dataset	Features	Classes	#Instances
Soybean	35	4	47
SPECT	22	2	267
ImgSeg	19	7	2100
Heart	13	2	270
Wine	13	3	178
WDBC	30	2	569
Robot	90	5	164
Madelon	500	2	2000

Table 1: A summary of datasets.

Evaluation of the clustering result – Precision and Recall

Evaluation of the clustering result – pr and pc

Experiments Result - on UC Irvine datasets

Dataset	CF	RP	bC2	EA	:
Soybean	92.36	87.04	83.16	86.48	- /
SPECT	56.78	49.89	50.61	51.04	
ImgSeg	79.71	85.88	82.19	85.75	
Heart	56.90	52.41	51.50	53.20	
Wine	79.70	71.94	71.97	71.86	(bC2) bagged clustering (RP) random projection
WDBC	79.66	74.89	74.87	75.04	(RP) random projection (EA) evidence accumulation
Robot	63.42	41.52	39.76	58.31	(NJW) NJW spectral clustering algorithm
Madelon	50.76	50.82	49.98	49.98	K-means-1 (itr = 200) _ K-means-2 (itr = 1000)

Table 2: ρ_r for different datasets and methods (CF calculated when q=1)

Experiments Result - on UC Irvine datasets

Dataset	CF	RP	bC2	EA
Soybean	84.43	71.83	72.34	76.59
SPECT	68.02	61.11	56.28	56.55
ImgSeg	48.24	47.71	49.91	51.30
Heart	68.26	60.54	59.10	59.26
Wine	79.19	70.79	70.22	70.22
WDBC	88.70	85.41	85.38	85.41
Robot	41.20	35.50	35.37	37.19
Madelon	55.12	55.19	50.20	50.30

(bC2) bagged clustering

(RP) random projection

(EA) evidence accumulation

(NJW) NJW spectral clustering algorithm

K-means-1 (itr = 200)

K-means-2 (itr = 1000)

Table 3: ρ_c for different datasets and methods (CF calculated when q=1).

Experiments Result - on UC Irvine datasets

Experiments Result – Comparison between CF, NJW, and K-means

Dataset	CF	NJW	K-means-1	K-means-2
Soybean	92.36	83.72	83.16	83.16
	84.43	76.60	72.34	72.34
SPECT	56.78	53.77	50.58	50.58
	68.02	64.04	56.18	56.18
ImgSeg	79.71	82.48	81.04	80.97
	48.24	53.38	48.06	47.21
Heart	56.90	51.82	51.53	51.53
	68.26	60.00	59.25	59.25
Wine	79.70	71.91	71.86	71.86
	79.19	70.78	70.23	70.22
WDBC	79.93	81.10	75.03	75.03
	88.70	89.45	85.41	85.41
Robot	63.60	69.70	39.76	39.76
	41.20	42.68	35.37	35.37
Madelon	50.76	49.98	49.98	49.98
	55.12	50.55	50.20	50.20

(bC2) bagged clustering

(RP) random projection

(EA) evidence accumulation

(NJW) NJW spectral clustering algorithm

K-means-1 (itr = 200)

K-means-2 (itr = 1000)

Conclusion

- This paper provides a clustering alg. framework, the base clustering alg. are pluggable.
- CF favors strong features and is noise-resistant
- Strong feature generates smaller tree, a set of weak features may generate larger tree.
- -> Not only consider strong features.