10/585955

WRITTEN OPINION OF THE INTERNATIONAL SEARCHING AUTHORITY SUPPLEMENTARY SHEET

International application No.

PCT/EP2005/000226

Regarding Point V.

iAP20 Rec'd PCT/PTO

- The present report refers to the following document:

 D1: EP 1 073 827 A (SIEMENS AG) 7 February 2001 (2001-02-07)
- The document D1 is considered to be the nearest prior art. It discloses (the references in brackets refer to this document; see figure 2):

a turbine blade with a blade leaf arranged along a blade axis and with a platform region which, arranged at the root of the blade leaf, has a platform extending transversely with respect to the blade axis, the platform having a first platform wall not bearing the blade leaf and a second platform wall bearing the blade leaf, the first platform wall having in its run an aerodynamic rounding at the root of the blade leaf along a transition from the blade leaf to the platform.

The subject of the independent claim 1 differs from this in that:

the second platform wall has in its run, with respect to the first platform wall and in continuation of the blade leaf, a set-back step.

2.1 The subject of claim 1 is therefore novel (PCT Article 33(2)).

The object to be achieved by means of the present invention may therefore be seen in:

achieving improved cooling in the root region of the blade leaf, without the thermomechanical properties of the root of the blade leaf being adversely influenced.

2.2 The solution proposed for this object in claim 1 of the present application is based on inventive activity (PCT Article 33(3)) for the following reasons:

PCT/EP2005/000226

on account of the set-back step, the second platform wall makes available sufficient interspace which can be acted upon with cooling medium for the non-bearing platform wall. By means of this concept, the second platform wall bearing the blade leaf can be optimized in configuration according to thermomechanical criteria.

2.3 Claims 2-10 are dependent on claim 1 and consequently likewise fulfill the requirements of the PCT as regards novelty and inventive activity.