COMP9517 Computer Vision

2025 Term 1 Week 4

A/Prof Yang Song

Pattern Recognition

Part 1

Computer Vision

- Low-level vision
 - Pixel-level manipulations/editing
 - Feature extraction
- Mid-level vision
 - Image images
 - Stitching, Panorama image
 - Image 3D modeling
 - Stereo model estimation/analysis
 - Image motion analysis
 - Segmentation (non-semantic)

- High-level vision
 - Semantic understanding/analysis
 - Predict what's in the image
- Higher level?
 - Reasoning?

Introduction

Pattern recognition

The scientific discipline whose goal is to automatically recognise patterns and regularities in the data (e.g. images)

Examples

- Object recognition (e.g. image classification)
- Text classification (e.g. spam/non-spam emails)
- Speech recognition (e.g. automatic subtitling)
- Event detection (e.g. in surveillance)
- Recommender systems (e.g. in webshops)

Pattern Recognition Categories

Based on different learning paradigms

- Supervised learning
 Learning patterns in a set of data with available labels (ground truth)
- Unsupervised learning
 Finding patterns in a set of data without any labels available
- Semi-supervised learning
 Using a combination of labelled and unlabelled data to learn patterns
- Weakly supervised learning
 Using noisy / limited / imprecise supervision signals in learning of patterns

Applications in Computer Vision

- Making decisions about image content
- Classifying objects in an image
- Recognising activities

Applications in Computer Vision

- Character recognition
- Human activity recognition
- Face detection/recognition
- Image-based medical diagnosis
- Biometric authentication

Pattern Recognition Overview

Pattern Recognition (First Lecture)

- Pattern recognition concepts
 - Definition and description of basic terminology
 - Recap of feature extraction and representation
- Supervised learning for classification
 - Nearest class mean classification
 - K-nearest neighbours classification
 - Bayesian decision theory and classification
 - Decision trees for classification
 - Ensemble learning and random forests

Pattern Recognition (Second Lecture)

- Supervised learning for classification
 - Simple linear classifiers
 - Support vector machines
 - Multiclass classification
 - Classification performance evaluation
- Supervised learning for regression
 - Linear regression
 - Least-squares regression
 - Regression performance evaluation

Pattern Recognition Concepts

- Objects are (identifiable) physical entities of which images are taken
- Regions (ideally) correspond to objects after image segmentation
- Classes are disjoint subsets of objects sharing common features
- Labels are associated with objects and indicate to which class they belong
- Classification is the process of assigning labels to objects based on features
- Classifiers are algorithms/methods performing the classification task
- Patterns are regularities in object features and are used by classifiers

Pattern Recognition Systems

Basic stages involved in the design of a classification system

More Pattern Recognition Concepts

- Pre-processing aims to enhance images for further processing
- Feature extraction reduces the data by measuring certain properties
- Feature descriptors represent scalar properties of objects
- Feature vectors capture all the properties measured from the data
- Feature selection aims to keep only the most descriptive features
- Models are (mathematical or statistical) descriptions of classes
- Training samples are objects with known labels used to build models
- **Cost** is the consequence of making an incorrect decision/assignment
- Decision boundary is the demarcation between regions in feature space

Pattern Recognition Example

Recall: feature representation

salmon or sea bass?

1D feature space

2D feature space

Feature Vector Representation

- Vector $x = [x_1, x_2, ..., x_d]$ where each x_i is a feature
 - Object measurement
 - Count of object parts
 - Colour of the object
 - ...

Features represent knowledge about the object and go by other names such as predictors, descriptors, covariates, independent variables...

- Feature vector examples
 - For fish recognition: [length, colour, lightness, ...]
 - For letter/digit recognition: [holes, moments, SIFT, ...]

Feature Extraction

- Characterise objects by measurements that are
 - Similar for objects in the same class/category
 - Different for objects in different classes
- Use distinguishing features
 - Invariant to object position (translation)
 - Invariant to object orientation (rotation)
 - Invariant to ... (depends on the application)
 - Good examples are shape, colour, texture
- Design of features often based on prior experience or intuition

Feature Extraction

- Select features that are robust to
 - Rigid transformations (translation and rotation)
 - Occlusions and other 3D-to-2D projective distortions
 - Non-rigid/articulated object deformations (e.g. fingers around a cup)
 - Variations in illumination and shadows
- Feature selection is problem- and domain-dependent and requires domain knowledge
- Classification techniques can help to make feature values less noise sensitive and to select valuable features out of a larger set

Supervised Learning Overview

Pattern Recognition Models

Generative models

- Model the "mechanism" by which the data was generated
- Represent each class by a probabilistic "model" p(x|y) and p(y)
- Obtain the joint probability of the data as p(x, y) = p(x|y)p(y)
- Find the decision boundary implicitly via the most likely p(y|x)
- Applicable to unsupervised learning tasks (unlabelled data)

Discriminative models

- Focus on explicit modelling of the decision boundary
- Applicable to supervised learning tasks (labelled data)

Classification

- to an object, using the object description in the form of features
- $x \rightarrow y =$ "salmon"

- Perfect classification is often impossible, instead determine the probability for each possible class
- $x \to \begin{cases} p_{\text{salmon}} = 0.5 \\ p_{\text{bass}} = 0.5 \end{cases}$
- Difficulties are caused by variability in feature values for objects in the same class versus objects in different classes
 - Variability may arise due to complexity but also due to noise
 - Noisy features and missing features are major issues
 - Not always possible to determine values of all features for an object

Binary Classification

Given a training set of N observations:

$$\{(x_i, y_i)\}, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$$

Classification is the problem of estimating:

$$y_i = f(x_i)$$

- Based on the minimum distance principle, where the class exemplars are just the class centroids (or means)
- **Training**: Given training sample pairs $\{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$, the centroid for each class k is obtained as

$$\mu_k = \frac{1}{|c_k|} \sum_{x_i \in c_k} x_i$$

• **Testing**: Each unknown object with feature vector x is classified as class k if x is closer to the centroid of class k than to any other class centroid

- Compute the Euclidean distance
 (or some other different
 distance metrics) between
 feature vector x and the
 centroid of each class
- Choose the closest class, if close enough (reject otherwise)

- Class 2 has two modes...
 where is its centroid, if one centroid is used?
- If modes are detected, two subclass centroids can be used

Pros

- ✓ Simple
- ✓ Fast
- ✓ Works well when classes are compact and far from each other

Cons

- × Poor results for complex classes (multimodal, non-spherical)
- × Cannot handle outliers and noisy data well

 K-NN is a classifier that decides the class label for a sample based on the K nearest samples in the data set

- For every new test sample, the distances between the test sample and all training samples are computed, and the K nearest training samples (neighbourhood) are used to decide the class label of test sample
- The sample will be assigned to the class which has the majority of members in the neighbourhood

- Euclidean distance is commonly used for continuous variables
- Hamming distance is commonly used for discrete variables

https://towardsdatascience.com/knn-using-scikit-learn-c6bed765be75

Hamming distance

 $Image\ credit:\ https://medium.com/geekculture/total-hamming-distance-problem-1b74decd71c9$

Pros

- ✓ Very simple and intuitive
- ✓ Easy to implement
- ✓ No a priori assumptions
- ✓ No training step
- ✓ Decision surfaces are non-linear

Cons

- × Slow algorithm for big data sets
- × Needs homogeneous (similar nature) feature types and scales
- × Does not perform well when the number of variables grows (curse of dimensionality)
- × Finding the optimal K (number of neighbours) to use can be challenging

K-Nearest Neighbours: Applications

- Automated MS-lesion segmentation by KNN
- Manually labeled image used as training set
- Features used: intensity and voxel locations (x, y, z coordinates)

Sun, Yiyou, et al. "Out-of-distribution detection with deep nearest neighbors." International Conference on Machine Learning (ICML). PMLR, 2022.

Figure 1 MS-lesion segmentation results. Top left: FLAIR image; top right: probabilistic segmentation, showing probability of lesion per voxel (see color bar); down left: binary segmentation, derived from probabilistic segmentation with threshold 0.4.

https://www.midasjournal.org/browse/publication/610

Bayesian Decision Theory

- Classifier decisions may or may not be correct, so they should be probabilistic (soft decisions rather than hard decisions)
- Probability distributions may be used to make classification decisions with the least expected error rate
- Introducing prior knowledge

Bayesian Decision Theory

- Bayesian classification assigns an object into the class to which it most likely belongs based on observed features
- Assume the following to be known:
 - Prior probability $p(c_i)$ for each class c_i
 - Class conditional distribution $p(x|c_i)$

To be learned from data or assigned

• Compute the **posterior probability** $p(c_i|x)$ as follows: If all the classes are disjoint, by Bayes Rule, the posterior probabilities are given by

$$p(c_i|x) = \frac{p(x|c_i)p(c_i)}{p(x)}$$

$$p(x,c_i) = p(x|c_i)p(c_i) = p(c_i|x)p(x)$$
$$p(x) = \sum_j p(x,c_j) = \sum_j p(x|c_j)p(c_j)$$

Bayesian Decision Theory

- Given an observation x, for which $p(c_1|x)$ is greater than $p(c_2|x)$, we would naturally prefer to decide that it belongs to c_1
- So the **Bayesian decision rule** is: $c = \arg \max_i (p(c_i|x))$
- This is equivalent to: $c = \arg \max_i (p(x|c_i)p(c_i))$

$$p(c_i|x) = \frac{p(x|c_i)p(c_i)}{p(x)} \propto p(x|c_i)p(c_i)$$

- Suppose we want to classify fish type: salmon, sea bass, other
- From past experience we already know the probability of each class:

$p(c_i)$	Salmon	Sea bass	Other
Prior	0.3	0.6	0.1

- If we were to decide based only on the prior, our best bet would be to always classify as sea bass
 - This is called decision rule based on prior
 - It never predicts other classes
 - This can behave very poorly

- Let us use some feature, e.g., length, to add more information
- From experience we know the class conditionals for length

$p(x c_i)$	Salmon	Sea bass	Other
length > 100 cm	0.5	0.3	0.2
50 cm < length < 100 cm	0.4	0.5	0.2
length < 50 cm	0.1	0.2	0.6

Now we can estimate the posterior probability for each class

$$p(c_i|x) \propto p(x|c_i)p(c_i)$$

If we have a fish with length 70 cm, what would be our prediction?

```
p(c_i = \text{salmon}|x = 70 \text{ cm}) \propto p(70 \text{ cm}|\text{salmon}) * p(\text{salmon}) = 0.4 * 0.3 = 0.12

p(c_i = \text{sea bass}|x = 70 \text{ cm}) \propto p(70 \text{ cm}|\text{sea bass}) * p(\text{sea bass}) = 0.5 * 0.6 = 0.30

p(c_i = \text{other}|x = 70 \text{ cm}) \propto p(70 \text{ cm}|\text{other}) * p(\text{other}) = 0.2 * 0.1 = 0.02
```

- Based on these probabilities, we predict the type as sea bass
- **Question**: What if $p(70 \ cm|salmon) = p(70 \ cm|sea \ bass) = 0.5$? What is the effect of prior $p(c_i)$?

$$p(c_i|x) \propto p(x|c_i)p(c_i)$$

If we have a fish with length 70 cm, what would be our prediction?

```
p(c_i = \text{salmon}|x = 70 \text{ cm}) \propto p(70 \text{ cm}|\text{salmon}) * p(\text{salmon}) = 0.4 * 0.3 = 0.12

p(c_i = \text{sea bass}|x = 70 \text{ cm}) \propto p(70 \text{ cm}|\text{sea bass}) * p(\text{sea bass}) = 0.5 * 0.6 = 0.30

p(c_i = \text{other}|x = 70 \text{ cm}) \propto p(70 \text{ cm}|\text{other}) * p(\text{other}) = 0.2 * 0.1 = 0.02
```

- Based on these probabilities, we predict the type as sea bass
- Question: If the price of salmon is twice that of sea bass, and sea bass is also more expensive than the other types of fish, is the cost of a wrong decision the same for any misclassification?

Bayesian Decision Risk

- If we only care about the classification accuracy (the prices of all types of fish are the same), then we can make the decision by maximizing the posterior probability
- If the prices are not the same, we minimize the loss
 - Cost of an action α_i based on our decision: $\lambda(\alpha_i|c_i)$
 - The expected loss associated with action α_i is:

$$R(\alpha_i|x) = \sum_j \lambda(\alpha_i|c_j)p(c_j|x)$$

- $R(\alpha_i|x)$ is also called **conditional risk**
- An optimal Bayes decision strategy is to minimize the conditional risk

Bayesian Decision Risk: Example

• Suppose we have the following loss function $\lambda(\alpha_i|c_i)$

$\lambda(\alpha_i c_i)$	Salmon	Sea bass	Other
If sell as salmon	0	2	3
If sell as bass	10	0	4
If sell as other	20	7	0

$$R(\text{sell as salmon}|50 < x < 100) = \lambda(\text{sell as salmon}|\text{salmon}) * p(\text{salmon}|50 < x < 100) + \lambda(\text{sell as salmon}|\text{sea bass}) * p(\text{sea bass}|50 < x < 100) + \lambda(\text{sell as salmon}|\text{other}) * p(\text{other}|50 < x < 100) \\ \propto 0 * p(50 < x < 100|\text{salmon}) * p(\text{salmon}) + 2 * p(50 < x < 100|\text{sea bass}) * p(\text{sea bass}) + 3 * p(50 < x < 100|\text{other}) * p(\text{other}) \\ = 0 * 0.4 * 0.3 + 2 * 0.5 * 0.6 + 3 * 0.2 * 0.1 = 0.66$$

Bayesian Decision Risk: Example

$$R(\text{sell as salmon}|50 < x < 100) \propto 0.66$$

 $R(\text{sell as sea bass}|50 < x < 100) \propto 1.28$
 $R(\text{sell as other}|50 < x < 100) \propto 4.5$

- So, if the length of the fish was in the range of [50,100], the loss would be minimized if the type was predicted as salmon
- Is the loss function in the example good? How to define the loss function?

Bayesian Decision Theory

Estimating the probabilities

- Values of $p(x|c_i)$ and $p(c_i)$ can be computed empirically from the samples
- If we know that the distributions follow a parametric model (defining the model), we may estimate the model parameters using the samples (learning the parameters)

Example

- Suppose class i can be described by a normal distribution whose covariance matrix Σ_i is known but the mean μ_i is unknown
- An estimate of the mean may then be the average of the labelled samples available in the training set: $\hat{\mu}_i = \bar{x}$

Bayesian Decision Rule Classifier

Pros

- ✓ Simple and efficient
- ✓ Considers uncertainties
- ✓ Permits combining new information with current knowledge

Cons

- × Struggles with complex data relationships
- × Choice of priors can be subjective

Decision Trees: Introduction

- Most pattern recognition methods address problems where feature vectors are real-valued and there exists some notion of a metric
- Some classification problems involve nominal data, with discrete descriptors and without a natural notion of similarity or ordering
 - Example: {high, medium, low}, {red, green, blue}
 - Nominal data are also called as categorical data
- Nominal data can be classified using rule-based method
- Continuous values can also be handled with rule-based method

Decision Trees: Example

- Suppose we have only two types of fish, salmon and sea bass, and assume we have only two features:
 - Length (x_1)
 - Width (x_2)
- We classify fish based on these two features

▲ Salmon

Decision Trees: Example

 For any new sample, start from the top of the tree, answer the questions, follow the appropriate path to the bottom, and then decide the label

Decision Trees: Summary

Approach

- Classify a sample through a sequence of questions
- Next question asked depends on answer to current question
- Sequence of questions displayed in a directed decision tree or simply tree

Structure

- Nodes in the tree represent features
- Leaf nodes contain the class labels
- One feature (or a few) at a time to split search space
- Each branching node has one child for each possible value of the parent feature

Classification

- Begins at the root node and follows the appropriate link to a leaf node
- Assigns the class label of the leaf node to the test sample

Decision Trees Construction

Algorithm

- 1. Select a feature to place at the node (the first one is the root)
- 2. Make one branch for each possible value (nominal) or range (numerical)
- 3. For each branch node, repeat steps 1 and 2 using only those samples that actually reach the branch

4. When all samples at a node have the same classification (or label), stop growing

that part of the tree

Decision Trees Construction

- How to determine which feature to split on?
 - One way is to use measures from information theory
 - Entropy and Information Gain

Constructing Optimal Decision Tree

- To construct optimal decision trees from training data we must define 'optimal'
- One simple criterion based on information theory is **entropy** The entropy of a set of events $y = \{y_1, y_2, ..., y_n\}$ is:

$$H(y) = \sum_{i=1}^{n} -p(y_i)\log_2 p(y_i)$$

High Randomness, Low Randomness,

where $p(y_i)$ is the probability of event y_i

https://researchoutreach.org/wp-content/uploads/2019/02/Biro-2nd-Law.jp

- Entropy may be viewed as the average uncertainty of the information source
 - If the source information has no uncertainty: H = 0
 - If the source information is uncertain: H > 0

Decision Trees: Entropy

Example of entropy computations

Let us look at the fish example

$$H(y) = \sum_{i=1}^{n} -p(y_i)\log_2 p(y_i)$$

$p(c_i)$	Salmon	Sea bass	Other
Prior	0.3	0.6	0.1

The entropy (uncertainty) of information (type of fish) is:

$$H = -[0.3 * \log(0.3) + 0.6 * \log(0.6) + 0.1 * \log(0.1)] = 1.29$$

Decision Trees: Information Gain

- Information gain is an entropy-based measure to guide which feature to use for producing optimal decision trees.
 - Measuring the information gain of selecting a specific feature while building the decision tree.
- If S is a set of training samples and f is one feature of the samples, then the information gain with respect to feature f is:

$$IG(S, f) = H(S) - H(S|f)$$

$$IG(S, f) = \text{Entropy}(S) - \sum_{f_a \in \text{values}(f)} \frac{|S_{f_a}|}{|S|} \text{Entropy}(S_{f_a})$$

Use the feature with highest information gain to split on.

Decision Trees: Information Gain Example

- Prior probabilities can be estimated using frequency of events in the training data
- Let us look again at the fish example with two features, length and width, but for the sake of example, assume three categories for each:

$$x_1 \in \{\text{Small}, \text{Medium}, \text{Large}\}\$$

 $x_2 \in \{\text{Small}, \text{Medium}, \text{Large}\}\$

 The table lists 15 observations/samples from two classes of salmon and sea bass

$$#Salmon = 6$$

 $#Sea bass = 9$

x_2	Туре
S	Salmon
S	Salmon
S	Salmon
M	Sea bass
L	Sea bass
M	Sea bass
M	Sea bass
L	Sea bass
M	Salmon
M	Salmon
L	Salmon
L	Sea bass
L	Sea bass
M	Sea bass
L	Sea bass
	S S S M L M M L M L L M M M M L L M

Decision Trees: Information Gain Example

 Before selecting the first feature we need to know the base entropy:

$$p(\text{salmon}) = 6/15 = 0.4$$

 $p(\text{sea bass}) = 9/15 = 0.6$
 $H_{\text{base}} = -0.6 \log_2(0.6) - 0.4 \log_2(0.4) = 0.97$

• To estimate $IG(S, x_1)$ we need to use the frequency table for x_1 to compute $H(S|x_1)$

		Туре		
		Salmon	Sea bass	
	S	1	4	5
x_1	М	2	5	7
	L	3	0	3
				15

x_1	x_2	Туре
S	S	Salmon
M	S	Salmon
M	S	Salmon
S	M	Sea bass
S	L	Sea bass
S	M	Sea bass
M	M	Sea bass
M	L	Sea bass
L	M	Salmon
L	M	Salmon
L	L	Salmon
S	L	Sea bass
М	L	Sea bass
М	M	Sea bass
М	L	Sea bass

Decision Trees: Information Gain Example

$$H(S|x_1) = \frac{5}{15}H(1,4) + \frac{7}{15}H(2,5) + \frac{3}{15}H(3,0) = 0.64$$

$$IG(S, x_1) = H_{\text{base}} - H(S|x_1) = 0.97 - 0.64 = 0.33$$

$$H(S|x_2) = \frac{3}{15}H(3,0) + \frac{6}{15}H(2,4) + \frac{6}{15}H(1,5) = 0.62$$

$$IG(S, x_2) = H_{\text{base}} - H(S|x_2) = 0.97 - 0.62 = 0.35$$

- Since $IG(S, x_2) > IG(S, x_1)$ the decision tree starts with spliting x_2
- Divide the dataset by its branches and repeat the same process on every branch
- A branch with entropy more than 0 needs further splitting

		Туре		
		Salmon	Sea bass	
	S	1	4	5
x_1	М	2	5	7
	L	3	0	3
				15

		Туре		
		Salmon	Sea bass	
	S	3	0	3
x_2	М	2	4	6
	L	1	5	6
				15

$$IG(S, f) = \text{Entropy}(S) - \sum_{f_a \in \text{values}(f)} \frac{|S_{f_a}|}{|S|} \text{Entropy}(S_{f_a})$$

Decision Trees: Example

#salmon #sea bass

Decision Trees Classifier

Pros

- ✓ Easy to interpret
- ✓ Can handle both numerical and categorical data
- ✓ Robust to outliers and missing values
- ✓ Gives information on importance of features (feature selection)

Cons

- × Tends to overfit
- × Only axis-aligned splits
- × Greedy algorithm (may not find the best tree)

Ensemble Learning

- Ensemble learning combines multiple models to improve the predictive performance compared to those obtained from any of the constituent models
- Multiple models can be created using
 - Different classifiers/learning algorithms
 - Different parameters for the same algorithm
 - Different training examples
 - Different feature sets

Random Forests

- Random forests is an ensemble learning method
- Constructs an ensemble of decision trees by training
- Outputs the majority of all class outputs by individual trees
- Overcomes the decision trees' habit of overfitting

https://en.wikipedia.org/wiki/Random forest

Random Forests: Breiman's algorithm

Training

- Let N be number of training instances and M the number of features
- Sample N instances at random with replacement from the original data
- At each node select $m \ll M$ features at random and split on the best feature
- Grow each tree to the largest extent possible (no pruning)
- Repeat B times. Keep the value of m constant during the forest growing

Testing

- Push a new sample down a tree and assign the label of the terminal node it ends up in
- Iterate over all trees in the ensemble to get B predictions for the sample
- Report the majority vote of all trees as the random forest prediction

Random Forests

- The random forest error rate depends on two factors:
 - Correlation between any two trees in the forest Increased correlation increases the forest error rate; uncorrelated trees lead to better generalization.
 - 2. Strength of each individual tree in the forest
 - Strong tree has low error rate
 - Increasing the strength of individual trees decreases the forest error rate
- Selecting parameter m
 - Reducing m reduces both the correlation and the strength
 - Increasing m increases both the correlation and the strength
 - Somewhere in between is an "optimal" range of values for m

Random Forests

Pros

- ✓ High accuracy among traditional classification algorithms for many problems
- ✓ Works efficiently and effectively on large datasets
- ✓ Handles thousands of input features without feature selection
- ✓ Handles missing values effectively

Cons

- Less interpretable than an individual decision tree
- × More complex and more time-consuming to construct than decision trees

Random Forests: An Application

- Random forests for predicting Alzheimer's disease
- Features: cortical thickness, Jacobian maps, sulcal depth

https://doi.org/10.1016/j.nicl.2014.08.023

References and Acknowledgements

- Shapiro & Stockman, Chapter 4
- Duda, Hart, Stork, Chapters 1, 2.1
- Hastie, Tibshirani, Friedman, The Elements of Statistical Learning,
 Chapters 2 and 12
- More references
 - Sergios Theodoridis & Konstantinos Koutroumbas, Pattern Recognition, 2009
 - Ian H. Witten & Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2005
- Some diagrams are extracted from the above resources

Example exam question

Which one of the following statements is correct for random forest classifiers?

- A. Increasing the correlation between the individual trees decreases the random forest classification error rate.
- B. Reducing the number of selected features at each node increases the correlation between the individual trees.
- C. Reducing the number of selected features at each node increases the strength of the individual trees.
- D. Increasing the strength of the individual trees decreases the random forest classification error rate.