Name:	
D. 1	
Pid:	

- 1. (10 points) Let us formulate the pigeonhole principle using propositional formulas. Let Ω $\{x_{1,1},\ldots,x_{n+1,1},x_{1,2}\ldots,x_{n+1,n}\}$ (informally $x_{i,j}$ is true iff we put ith pigeon into jth hole). Consider the following propositional formulas on the variables from Ω .
 - L_i $(i \in [n+1])$ is equal to $\bigvee_{j=1}^n x_{i,j}$. (Informally this formula says that any pigeon has a hole.)
 - R_j $(j \in [n])$ is equal to $\bigwedge_{i_1=1}^{n+1} \bigwedge_{i_2=i_1+1}^{n+1} (\neg x_{i_1,j} \vee \neg x_{i_2,j})$. (Informally this formula says that in each hole there is a pigeon.)

Show that there is a natural deduction derivation of $\neg \left((\bigwedge_{i=1}^{n+1} L_i) \land (\bigwedge_{i=1}^n R_i) \right)$.

2. (10 points) Let $\phi = \bigvee_{i=1}^{m} \lambda_i$ be a clause; we say that the width of the clause is equal to m. Let $\phi = \bigwedge_{i=1}^{\ell} \chi_i$ be a formula in CNF; we say that the width of ϕ is equal to the maximal width of χ_i for $i \in [\ell]$.

Let $p_n: \{T, F\}^n \to \{T, F\}$ such that $p_n(x_1, \dots, x_n) = T$ iff the set $\{i: x_i = T\}$ has odd number of elements. Show that any CNF representation of p_n has width n.

3. (10 points) Write a natural deduction derivation of $(W \vee Y) \implies (X \vee Z)$ from hypotheses $W \implies X$ and $Y \implies Z$.

4. (10 points) We say that a clause C can be obtained from clauses A and B using the resolution rule if $C = A' \vee B'$, $A = x \vee A'$, and $B = \neg x \vee B'$, for some variable x.

We say that a clause C can be derived from clauses A_1, \ldots, A_m using resolutions if there is a sequence of clauses $D_1, \ldots, D_\ell = C$ such that each D_i

- is either obtained from clauses D_j and D_k for j, k < i using the resolution rule, or
- is equal to A_j for some $j \in [m]$, or
- is equal to $D_j \vee E$ for some j < i and a clause E.

Show that if A_1, \ldots, A_m semantically imply C, then C can be derived from clauses A_1, \ldots, A_m using resolutions.