3.18

Hipotesis:

- 1. No va a variar la cantidad de habitantes por distrito
- 2. EL tiempoo que tarda la ambulancia de ir de un distrito a otro no se modifica por ninguna circunstancia adversa.
- 3. La ambulancia está siempre disponible
- 4. El tiempk que tarda la ambulancia desde un distrito al otro es siempre el mismo sin importar el punto del distrito en el que se encuentra.

Objetivo

Determinar en que distrito colocar la ambulanciapara minimizar el número de personas que están a más de 3 minutos de la misma durante un periodo dado.

Contantes:

 P_i : cantidad de habitantes en el distrito i con $i,j\epsilon\{1,2,3,4,5,6,7,8\}$ $P_2=B$ $P_3=C$ $P_4=D$ $P_5=E$ $P_6=F$ $P_7=G$ $P_8=H$

 $C_{i,j}$: 1 si del distrito i al j hay más de 3 minutos, 0 sino. $\forall i\neq j$ con $i,j\epsilon\{1,2,3,4,5,6,7,8\}$

Variables:

 X_i : 1 si la ambulancia se coloca en el distrito i, 0 sino. con $i \in \{1, 2, 3, 4, 5, 6, 7, 8\}$

Restricciones:

Bivalentes: $X_i \le 1 \text{ con } i \in \{1, 2, 3, 4, 5, 6, 7, 8\}$

Cantidad de ambulancias: $\sum_{i=1}^8 X_i = 1$

Funcional:

$$Z_{min} = \sum_{i=1}^{8} [X_i * \sum_{j=1}^{8} (C_{i,j} * P_j)] \ \forall i \neq j$$

Resolución por sistema:

Planteo del problema:

```
/* Declaracion de variables */
/* Declaracion de variables */
var X1 >= 0, binary;
var X2 >= 0, binary;
var X3 >= 0, binary;
var X4 >= 0, binary;
var X5 >= 0, binary;
var X6 >= 0, binary;
var X7 >= 0, binary;
var X8 >= 0, binary;
/* Declaracion constantes */
param A := 10;
param B := 20;
param C := 30;
param D := 40;
param E := 50;
param F := 60;
param G := 70;
param H := 80;
/* Definicion del funcional */
minimize z: X1 * (C + D + E + F + G + H)
+ X2 * (C + D + E + F + G + H)
+ X3 * (A + B + G + H) + X4 * (A + B + G + H)
+ X5 * (A + B + H)
+ X6 * (A + B)
+ X7 * (A + B + C + D) + X8 * (A + B + C + D + E);
/* Relaciones de variables */
s.t. cantAmbulancias: X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 = 1;
end;
Solución:
Problem:
            еj
Rows:
            2
Columns:
            8 (8 integer, 8 binary)
Non-zeros: 16
            INTEGER OPTIMAL
Status:
```

Objective: z = 30 (MINimum)

No.	Row name	Activ	rity I	Lower bound	Upper bound
1	z		30		
2	cantAmbulanci	ias	1	1	_
			1	1	_
No.	Column name	Activ	rity I	Lower bound	Upper bound
1	X1	*	0	0	1
2	X2	*	0	0	1
3	ХЗ	*	0	0	1
4	X4	*	0	0	1
5	X5	*	0	0	1
6	Х6	*	1	0	1
7	Х7	*	0	0	1
8	Х8	*	0	0	1

Integer feasibility conditions:

End of output

La solución nos indica que la ambulancia deberá ser colocada
a en el distrito 6. Lo cual tiene mucho sentido ya que es la que menos ciudades tiene a distancia mayor a 3 minutos y que estás ciudades son justamente las 2 que menos ciudadanos tienen.