CSCE 411: Design and Analysis of Algorithms

Lecture 14: Single-Source Shortest Path

Date: March 6 Nate Veldt, updated by Samson Zhou

Course Logistics

- Reading from Chapter 24 this week, especially sections 24.1, and 24.3
- Homework 5 due Friday (tomorrow)

1 The Single-Source (weighted) Shortest Paths Problem

Consider a directed and weighted graph G = (V, E, w), where $w \colon E \to \mathbb{R}$ maps edges to weights.

Given a path $p = \{v_0, v_1, \dots, v_k\}$ from $i = v_0$ to $j = v_k$,

the weight of the path p is given by:

Let \mathcal{P}_{ij} be the set of paths from nodes i to j. The shortest path weight from i to j is:

$$\delta(i,j) = \begin{cases} \\ \\ \\ \\ \\ \\ \end{cases}$$

A from u to v is a path p such that $\delta(u, v) = w(p)$.

Definition Given a *source* node $s \in V$, the single-source shortest paths problem (SSSP) seeks to find the shortest path weight $\delta(s, u)$ for every $u \in V$.

1.1 Shortest Path Properties

Triangle Inequality For any set of three nodes s, u, and v,

$$\delta(s, u) \le \delta(s, v) + \delta(v, u)$$

Optimal Substructure

Lemma 1.1. If $p = \{v_0, v_1, \dots, v_k\}$ is a shortest path from v_0 to v_k , then all of its subpaths

Cycles and shortest paths

Lemma 1.2. : If G = (V, E, w) has no negative edges, then

1.2 Negative edges

Question 1. Assume G = (V, E, w) contains negative edges, and that it is strongly connected. If G contains a cycle where the sum of edge weights is negative, which of the following is true?

- The shortest path weight between every pair of nodes will be a finite negative number
- B The shortest path weight between some (but not necessarily all nodes) will be a finite negative number
- The shortest path weight can be $-\infty$ for some pairs of nodes, but not necessarily all pairs of nodes
- The shortest path weight will be $-\infty$ between all pairs

1.3 SSSP Algorithm Basics

Let s denote the starting node of an SSSP problem. In shortest path algorithms, we maintain two attributes for each $v \in V$:

Attribute	Explanation	Initialization	Invariant
u.d			
$u.\pi$			

Given values for these attributes, we can construct a *predecessor* graph:

- $V_{\pi} = \{v \in V : v.\pi \neq \text{NIL}\} \cup \{s\}$
- $E_{\pi} = \{(v.\pi, v) : v \in V_{\pi} \{s\}\}$

If $v.d = \delta(s, v)$ and $v.\pi$ gives the predecessor of v in a shortest path from s to v, then $G_{\pi} = (V_{\pi}, E_{\pi})$ is called a ______.

1.4 Relaxation and Generic Algorithm

Relax(u, v, w)if v.d > u.d + w(u, v) then

end if

 $\overline{\text{GENERICSSSP}(G, w, s)}$

INITIALIZE-SSSP(G, w, s)

while There is some edge (u, v) with v.d > u.d + w(u, v) do

end while

2 The Bellman Ford Algorithm

Let's do a quick recap of what we have learned so far about the SSSP problem.

Cycles Let p be a cycle in a directed graph.

- Case 1: $w(p) \ge 0$: then I can get rid of the cycle and I have a better path
- Case 2: w(p) < 0: then all paths are of length $-\infty$ because we can traverse p as many times as we want to decrease the path weight.

If Case 2 is true, we would prefer to be aware of this, in which case we state that all shortest paths have weight $-\infty$ and we're done.

Otherwise, we do not seek out paths with cycles when solving the SSSP problem.

```
Relax(u, v, w)

if v.d > u.d + w(u, v) then

v.d = u.d + w(u, v)

v.\pi = u

end if
```

```
GenericSSSP(G, w, s)
Initialize-SSSP(G, w, s)
while There is some edge (u, v) with v.d > u.d + w(u, v) do
Relax(u, v, w)
end while
```

Relaxations and Generic Algorithm Now we are ready to find a more concrete implementation of this approach, by answering the question:

2.1 Bellman-Ford Algorithm Pseudocode

```
\overline{\text{Bellman-Ford}(G, w, s)}
  for v \in V do
       v.d = \infty
       v.\pi = \text{NIL}
  end for
  s.d = 0
  for i = 1 to |V| - 1 do
       for (u, v) \in E do
           Relax(u, v, w)
       end for
  end for
  for (u, v) \in E do
       if v.d > u.d + w(u, v) then
           Return "the graph has a negative cycle"
       end if
  end for
  V_{\pi} = \{ v \in V \colon v.\pi \neq \text{NIL} \} \cup \{ s \}
  E_{\pi} = \{ (v.\pi, v) \colon v \in V_{\pi} - \{s\} \}
  Return (V_{\pi}, E_{\pi}) and \{v.d : v \in V\}
```

Question 2. What is the runtime complexity of running the Bellman-Ford Algorithms?

- O(V+E)
- $O(E \log V)$
- $O(E + V \log V)$
- O(EV)

 $\overline{\text{Bellman-Ford}(G,w,s)}$ $\overline{\text{InitializeSSSP}(G,w,s)}$ $\mathbf{for} \ i=1 \ \text{to} \ |V|-1 \ \mathbf{do}$ $\mathbf{for} \ (u,v) \in E \ \mathbf{do}$ $\overline{\text{Relax}(u,v,w)}$ $\mathbf{end} \ \mathbf{for}$ $\mathbf{end} \ \mathbf{for}$ $\overline{\text{Return}} \ \{v.d\}$

2.2 Correctness

Theorem 2.1. Assuming that G=(V,E,w) has no negative edges, when Bellman-Ford terminates, v.d will equal $\delta(s,v)$ for every $v\in V$.

2.3 Catching Negative Cycles

```
Bellman-Ford (Negative cycle check)

Do everything else...

for (u, v) \in E do

if v.d > u.d + w(u, v) then

Return an error, the graph has a negative cycle

end if

end for
```

Theorem 2.2. If G = (V, E, w) has a negative weight cycle that is reachable from s, then the code above will produce an error

3 Dijkstra's Algorithm

```
 \begin{split} & \text{Dijkstra}(G,w,s) \\ & \text{Initialize-SSSP}(G,w,s) \\ & S = \emptyset \\ & Q = V \\ & \textbf{while } Q \neq \emptyset \textbf{ do} \\ & u = \text{ExtractMin}(Q) \\ & S = S \cup \{u\} \\ & \textbf{for } v \in \text{Adj}[u] \textbf{ do} \\ & \text{Relax}(u,v,w) \\ & \textbf{end for} \\ & \textbf{end while} \end{split}
```

This algorithm maintains:

- $S = \text{set of vertices for which } v.d = \delta(s, d)$
- Q = min-priority queue storing v.d for all vertices in V S

Question 3. How many times does the while loop in Dijkstra's algorithm iterate?

- O(V) times
- O(E) times
- $O(EV) \ times$
- Depends on the graph

3.1 Example

3.2 Correctness

```
Dijkstra(G, w, s)

Initialize-SSSP(G, w, s)

S = \emptyset

Q = V

while Q \neq \emptyset do

u = \text{ExtractMin}(Q)

S = S \cup \{u\}

for v \in \text{Adj}[u] do

Relax(u, v, w)

end for
end while
```

We will take the following properties as given.

Upper bound property For each $v \in V$, the property $v.d \geq \delta(s, v)$ is maintained throughout the algorithm.

Convergence property Let $p = \{s, ..., u, v\}$ be a shortest path involving an edge $(u, v) \in E$. If $u.d = \delta(s, u)$ at any time prior to relaxing edge (u, v), then $v.d = \delta(s, v)$ after relaxing (u, v).

No path property If there is no path from s to v, then $v.d = \delta(s, v) = \infty$ throughout the algorithm.

Theorem 3.1. Dijkstra's algorithm, run on a weighted, directed graph G = (V, E, w) with positive weights and source $s \in V$, terminates with $u.d = \delta(s, u)$ for all $u \in V$

Proof. We maintain the following invariant throughout.

Invariant: At the start of the while loop, the node u added to S satisfies $u.d = \delta(s, u)$.

If this invariant is true, the theorem is shown. Why?

Assume this invariant is *not* true and we will show a contradiction.

Define u to be the first node added to S where $u.d \neq \delta(s, u)$.

- 1. We know $u \neq s$.
- 2. We know there is a path from s to u.
- 3. Let p be a shortest path from s to u, which goes from S to V-S, let y be the first node in p from V-S in this path, and x be its predecessor.

- 4. We know $x.d = \delta(s, x)$
- 5. We then know $y.d = \delta(s, y)$
- 6. We know that $\delta(s, y) \leq \delta(s, u)$
- 7. And we know $\delta(s, u) \leq u.d$
- 8. We know also that $u.d \leq y.d$
- 9. The last steps show $y.d = \delta(s, y) \le \delta(s, u) \le u.d \le y.d$. Why is this a contradiction?

3.3 Runtime Analysis

```
\begin{split} \text{Initialize-SSSP}(G, w, s) \\ S &= \emptyset; \ Q = V \\ \text{while} \ Q \neq \emptyset \ \text{do} \\ u &= \text{ExtractMin}(Q) \\ S &= S \cup \{u\} \\ \text{for} \ v \in \text{Adj}[u] \ \text{do} \\ \text{if} \ v.d > u.d + w(u, v) \ \text{then} \\ v.d &= u.d + w(u, v) \\ v.\pi &= u \\ \text{end if} \\ \text{end for} \\ \text{end while} \end{split}
```

Question 4. Assuming that all nodes are reachable from s, what runtime we can obtain for Dijkstra's algorithm? (Warning: there may be more answer that you can argue is valid! Don't just select an answer, think about a specific reasoning for the runtime analysis you select).

- O(V+E)
- $O(V^2)$
- O(VE)
- $O(E \log V)$
- $O(E + V \log V)$

3.4 Class Activity: another example

