Sub-string/Pattern Matching in Sub-linear Time Using a Sparse Fourier Transform Approach

Krishna R. Narayanan

Department of Electrical and Computer Engineering Texas A&M University

Problem Statement

Database (x)

- Database/String: $\underline{x} = [x[0], x[1], \dots, x[N-1]]$ (length N)
- Query/Substring: $y = [y[0], x[1], \cdots, x[M-1]]$ (length $M = N^{\mu}$)
- ullet Determine all the L locations $\underline{ au}=[au_1, au_2,\cdots au_L]$ with high probability where
 - **1** Exact Matching: \underline{y} appears exactly in \underline{x}
 - $y := \underline{x}[\tau : \tau + M 1]$
 - 2 Approximate Matching: y is a noisy substring of \underline{x}
 - $\underline{y} := \underline{x}[\tau : \tau + M 1] \odot \underline{b}$
 - \underline{b} is a noise sequence with $d_H(\underline{y},\underline{x}[\tau:\tau+M-1]) \leq K$

Main Result

Theorem 1

Assume that a sketch of \underline{x} of size $O(\frac{N}{M}\log N)$ can be precomputed and stored. Then for the exact pattern matching and approximate pattern matching (with $K=\eta M,\ 0\leq \eta\leq 1/6$) problems, with the number of matches L scaling as $O(N^{\lambda})$, our algorithm has

- a sketching function for \underline{y} that computes $O(\frac{N}{M}\log N) = O(N^{1-\mu}\log N)$ samples
- a computational complexity of $O(\max(N^{1-\mu}\log^2 N, N^{\mu+\lambda}\log N))$
- a decoder that recovers all the L matching positions with a failure probability that approaches zero asymptotically

Main Result

Theorem 1

Assume that a sketch of \underline{x} of size $O(\frac{N}{M}\log N)$ can be precomputed and stored. Then for the exact pattern matching and approximate pattern matching (with $K=\eta M,\ 0\leq \eta\leq 1/6$) problems, with the number of matches L scaling as $O(N^{\lambda})$, our algorithm has

- a sketching function for \underline{y} that computes $O(\frac{N}{M}\log N) = O(N^{1-\mu}\log N)$ samples
- a computational complexity of $O(\max(N^{1-\mu}\log^2 N, N^{\mu+\lambda}\log N))$
- a decoder that recovers all the L matching positions with a failure probability that approaches zero asymptotically

Note

Particularly when L=O(1) or $L<\frac{N}{M}$ (i.e. $\lambda<1-\mu)$ our algorithm has a sub-linear time complexity.

Some Prior Work

Exact Matching

- [?]: First occurrence of the match (only τ_1)
 - Average complexity $O(N^{1-\mu} \log N)$ (sublinear)
 - Worst case complexity $O(N \log N)$

Approximate Matching

- [?]: Generalization of [?]
- Average complexity $O(NK/M \log N)$ (sub-linear only when $K \ll M$)
 [?]: $O(N/M^{0.359})$ (sub-linear even when K = O(M))
 - Combinatorial in nature

Sparse Fourier Transform Approach

- [?]: Faster GPS receiver
 - Exploited sparsity in Correlation function R_{XY}
- [?]: Robust Sparse Fourier Transform
 - Sparse Graph code Approach
 - Computational complexity : $O(N \log N)$

Motivation

Cross-correlation (<u>r</u>):

$$r[m] = (\underline{x} * \underline{y})[m] \triangleq \sum_{i=0}^{M-1} x[m+i]y[i], \quad 0 \le m \le N-1$$

- Naive implementation: $O(MN) = O(N^{1+\mu})$ (super-linear complexity)
- Fourier Transform Approach: $O(N \log N)$ complexity

Key Observation

• \underline{r} is Sparse with some noise.

$$r[m] \ = \left\{ \begin{array}{cc} & M, & \text{if } m \in \mathcal{T} \\ & n_m, & m \in [N] - \mathcal{T} \end{array} \right.$$

Sparse Fourier Transform Approach

$$\boxed{\underline{r} = \mathcal{F}_N^{-1} \left\{ \mathcal{F}_N \{ \underline{x} \} \odot \ \mathcal{F}_N \{ \underline{y}' \} \right\}}$$

- 1. Sketch of \underline{x} : Assume $\underline{X}[l] = \mathcal{F}\{\underline{x}\}$ is precomputed at positions $l \in \mathcal{S}$.
- 2. Sketch of y:
 - Compute $\underline{Y}'[l] = \mathcal{F}\{y'\}$ for $l \in \mathcal{S}$.
 - Only M non-zero values in y^\prime Efficient computation (folding and adding)
- 3. Sparse \mathcal{F}^{-1} :
 - Robust Sparse Inverse Fourier Transform (RSIDFT)
 - Efficient Implementation- sublinear time and sampling complexity

Example

Signal Domain

Fourier Domain (N-pt FFT)

Aliasing and Sparse Graph Codes

RSIDFT Framework

- Similar to FFAST
- Key modifications
 - Correlation peak is always positive
 - Take advantage in decoding algorithm sub-linear time complexity

RSIDFT Framework

RSIDFT-Decoding (Peeling Decoder)

- Observations: $\underline{z}_{i,k} = \begin{bmatrix} r_{i,1}[k], r_{i,2}[k], \cdots, r_{i,B}[k] \end{bmatrix}^T$
- Decoding- 3 steps
 - Bin Classification
 - Position Identification
 - Peeling Process

Decoder

Bin Classification

- Classify each check-node Zero-ton / Single-ton / Multi-ton
- Threshold constraints on first observation $z_{i,k}[1] = z$
- Threshold varies with η
 - different for $exact(\eta = 0)$ and approximate matching

$$\widehat{\mathcal{H}}_{i,j} = \begin{cases} \mathcal{H}_z & z/M < \gamma_1 \\ \mathcal{H}_s & \gamma_1 < z/M < \gamma_2 \\ \mathcal{H}_d & \gamma_2 < z/M < \gamma_3 \\ \mathcal{H}_m & z/M > \gamma_3 \end{cases}$$

where
$$(\gamma_1,\gamma_2,\gamma_3)=(\frac{1-2\eta}{2},\frac{3-4\eta}{2},\frac{5-6\eta}{2})$$

Decoder

Position Identification

Observation:

$$\underline{z}_{i,k} = \mathbb{W}_{i,k} \times \begin{bmatrix} r[k+(0)f_i] \\ r[k+(1)f_i] \\ \vdots \\ r[k+(g_i-1)f_i] \end{bmatrix}$$

Sensing Matrix:

$$\mathbb{W}_{i,k} = \left[\underline{w}^k, \underline{w}^{k+f_i}, \dots, \underline{w}^{k+(g_i-1)f_i}\right] \text{ where } \underline{w}^k = \begin{bmatrix} e^{\frac{j2\pi k s_1}{N}} \\ e^{\frac{j2\pi k s_2}{N}} \\ \vdots \\ e^{\frac{j2\pi k s_B}{N}} \end{bmatrix}, \quad g_i = \frac{N}{f_i}$$

Column that gives maximum correlation with the observation

$$\hat{k} = \underset{k \in \{j+lg_i\}}{\operatorname{arg\,max}} \ \underline{z}_{i,j}^{\dagger} \underline{w}^k$$

Decoder

Peeling Process:

Exact Matching

 Remove a decoded variable node's contribution from all participating bin nodes

Approximate Matching

- Remove a decoded variable node's contribution only from neighboring single-tons and double-tons
- Avoid error propagation

Simulation Results

Figure: Plot of Probability of Missing a Match vs. Sample Gain for Exact Matching of a substring of length $M=10^5$ from a equiprobable binary $\{+1,-1\}$ sequence of length $N=10^{12}$, divided into $G=10^5$ blocks each of length $\tilde{N}=10^7$. The substring was simulated to repeat in $L=10^6$ locations uniformly at random.

Simulation Results

Figure: Plot of Probability of Missing a Match vs. Sample Gain for Exact Matching of a substring of length $M=10^3$ from a equiprobable binary $\{+1,-1\}$ sequence of length $N=10^{12}$, divided into $G=10^6$ blocks each of length $\tilde{N}=10^6$. The substring was simulated to repeat in $L=10^6$ locations uniformly at random.

Questions?

Thank you!