Тематическое моделирование

Лектор: Алтухов Никита Александрович Аналитик данных Сбербанк

Мешок слов

Токены

		and	beautiful	blue	is	king	love	old	queen	sky	the	this
Документы*	0	1	1	1	1	0	0	0	0	1	1	0
	1	1	1	0	2	1	0	1	1	0	2	0
	2	0	1	1	0	0	1	0	0	1	0	1
	3	1	1	0	0	1	0	1	1	0	2	0

^{*}Документ - набор текстовой информации

TF-IDF

Токены

	adore	cats	dogs	don	hate	like	love	spiders
0	0.000000	0.000000	0.556451	0.000000	0.000000	0.000000	0.830881	0.000000
1	0.000000	0.000000	0.462208	0.690159	0.000000	0.556816	0.000000	0.000000
2	0.707107	0.707107	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
3	0.000000	0.000000	0.000000	0.000000	0.707107	0.000000	0.000000	0.707107

Документы*

 $\mathsf{tf}_{x,y} = \mathsf{frequency} \ \mathsf{of} \ x \ \mathsf{in} \ y$

 df_x = number of documents containing x

N = total number of documents

п-граммы

Токен это: слог, слово, n-грамма

This is Big Data Al Book

Uni-Gram	This	Is	Big		Data		Al		Book	
Bi-Gram	This is	Is Big	Big Data		Data Al		Al Book			
Tri-Gram	This is Big	Is Big Data		Big Data	Al	Data A	Al Book			

Тематическое моделирование

- Тема набор ключевых слов (термов / терминов / токенов), совместно часто встречающихся в документах
- Тема условное распределение на множестве терминов. Вероятность термина w в теме t, p(w|t)
- Тематика документа условное распределение на множестве тем. Вероятность темы t в документе d, p(t|d)
- Тематическая модель автоматически выявляет латентные темы по наблюдаемым частотам термов p(w|d)

Задачи тематического моделирования

- Классификация и категоризация документов
- Автоматическое аннотирование документов
- Суммаризация коллекции текстов
- Сегментация (разделение большого документа по темам)
- Рекомендательная система

Базовые предположения

- Порядок документов в коллекции не важен
- Порядок слов в документе не важен (Bag-of-Words)
- Каждая пара (d, w) связана с некоторой темой $t \in T$. Тема латентна
- Гипотеза условной независимости: слова в документе зависят только от темы и не зависят от самого документа p(w|t,d) = p(w|t)

Вероятностный процесс порождения текста

- Документ d это смесь распределений p(w|t) с весами p(t|d)
- Для каждой позиции определяется тема, к которой слово будет относиться по условному распределению тем в документе
- Берем распределение слов в теме и генерируем слово для позиции в документе

Формальная постановка задачи

- Дано:
 - W словарь термов (слов или словосочетаний)
 - D коллекция текстовых документов
 - ndw сколько раз термин w встретился в документе d
- Найти параметры вероятностной тематической модели:

$$p(w|d) = \sum_{t \in T} \phi_{wt} \theta_{td}$$
$$p(w|d) = \sum_{t} p(w|t)p(t|d),$$

Сумма по столбцам равна единице => распределение вероятностей

LSA

Латентно-семантический анализ

SVD - разложение (Сингулярное разложение)

pLSA

Вероятностный латентно-семантический анализ

В итоге совместная вероятность увидеть документ и слово:

$$P(D, W) = P(D) \sum_{Z} P(Z|D)P(W|Z)$$

pLSA

Вероятностный латентно-семантический анализ

$$P(D, W) = P(D) \sum_{Z} P(Z|D)P(W|Z)$$

Правая часть этого уравнения сообщает нам, насколько вероятно, увидеть какой-то документ, а затем на основе распределения тем этого документа, насколько вероятно найти определенное слово в этом документе

pLSA

Вероятностный латентно-семантический анализ

$$P(D, W) = \sum_{Z} P(Z)P(D|Z)P(W|Z)$$

Если раскрутить логику в обратную сторону, начав с темы, то получим эквивалентное уравнение. Начнем с темы P(z), а затем независимо сгенерируем документ с P(d|z) и слово с P(w|z).

Связь LSA и pLSA

$$P(D, W) = \sum_{Z} P(Z)P(D|Z)P(W|Z)$$

$$A \approx \underline{U_{t}} \underline{S_{t}} \underline{V_{t}}^{T}$$

ЕМ-алгоритм (англ. Expectation-maximization (EM) algorithm) — алгоритм, используемый в математической статистике для нахождения оценок максимального правдоподобия параметров вероятностных моделей, в случае, когда модель зависит от некоторых скрытых переменных.

ЕМ-алгоритм

$$\sum_{d,w} n_{dw} \ln \sum_{t} \phi_{wt} \theta_{td} \rightarrow \max_{\Phi,\Theta}$$

ЕМ-алгоритм: метод простой итерации для системы уравнений

Вычисление условных распределений тем для каждого слова в каждом документе

Частотные вероятности оценки слов в темах и тем в документах

Е-шаг:
$$\int p_{tdw} = \underset{t \in T}{\mathsf{norm}} (\phi_{wt} \theta_{td})$$

Е-шаг:
$$\begin{cases} p_{tdw} = \operatorname{norm} \left(\phi_{wt} \theta_{td} \right) \\ \phi_{wt} = \operatorname{norm} \left(\sum_{d \in D} n_{dw} p_{tdw} \right) \\ \theta_{td} = \operatorname{norm} \left(\sum_{w \in d} n_{dw} p_{tdw} \right) \end{cases}$$

$$\theta_{td} = \underset{t \in T}{\mathsf{norm}} \left(\sum_{w \in d} n_{dw} p_{tdw} \right)$$

где
$$\underset{t \in T}{\mathsf{norm}}(x_t) = \frac{\max\{x_t, 0\}}{\sum\limits_{s \in T} \max\{x_s, 0\}}$$
 — операция нормировки вектора.

Минусы pLSA

- Количество параметров в модели pLSA растет линейно с количеством документов, следовательно, очень часто переобучается, нужно использовать регуляризацию
- Нет единственного решения у задачи, следовательно без регуляризации решение неустойчиво
- Медленно сходится
- Нет управления разреженностью Ф и Ө

LDA

Латентное размещение Дирихле

• Вектор-столбцы $\phi_t = (\phi_{wt})_{w \in W}$ и $\theta_d = (\theta_{td})_{t \in T}$ порождаются из распределения Дирихле с параметрами $\alpha \in \mathbb{R}^{|T|}$, $\beta \in \mathbb{R}^{|W|}$

$$\operatorname{Dir}(\phi_t|\beta) = \frac{\Gamma(\beta_0)}{\prod_{w} \Gamma(\beta_w)} \prod_{w} \phi_{wt}^{\beta_w - 1}, \quad \phi_{wt} > 0; \quad \beta_0 = \sum_{w} \beta_w, \ \beta_w > 0;$$

$$Dir(\theta_d|\alpha) = \frac{\Gamma(\alpha_0)}{\prod_t \Gamma(\alpha_t)} \prod_t \theta_{td}^{\alpha_t - 1}, \quad \theta_{td} > 0; \quad \alpha_0 = \sum_t \alpha_t, \ \alpha_t > 0;$$

Пример:

$$\mathsf{Dir}(\theta|\alpha),$$
 $|T|=3,$ $\theta, \alpha \in \mathbb{R}^3$

 $\alpha_1 = \alpha_2 = \alpha_3 = 0.1$ Разреженные вектора!!

$$\alpha_1 = \alpha_2 = \alpha_3 = 1$$

 $\alpha_1 = \alpha_2 = \alpha_3 = 10$

LDA

Тематическая модель

$$p(w|d) = \sum_{t \in T} \phi_{wt} \theta_{td}, \quad \phi_t \sim \text{Dir}(\phi|\beta), \quad \theta_d \sim \text{Dir}(\theta|\alpha)$$

```
Вход: векторы гиперпараметров \beta, \alpha; Выход: коллекция документов; выбрать вектор \phi_t из \mathrm{Dir}(\phi|\beta) для каждой темы t\in T; выбрать вектор \theta_d из \mathrm{Dir}(\theta|\alpha) для каждого документа d\in D; для всех документов d\in D для всех позиций термов i=1,\ldots,n_d в документе d выбрать тему t_i из p(t|d)\equiv\theta_{td}; выбрать терм w_i из p(w|t_i)\equiv\phi_{wt_i};
```

Выводы

- Можно так же рассматривать через Дивергенцию Кульбака-Лейблера, это позволяет снять ограничения $\beta_w > 0$, $\alpha_t > 0$
- LDA и pLSA почти не отличаются на больших данных
- LDA имеет больше параметров по сравнению с pLSA
- Популярность LDA немного переоценена, робастные pLSA (с регуляризацией и разными примочками) почти не отличаются по перплексии от LDA

Список источников

GitHub: https://github.com/nikitosl/spbu-nlp-2020

https://medium.com/technovators/topic-modeling-art-of-storytelling-in-nlp-4dc83e96a987

http://www.machinelearning.ru/wiki/images/b/bc/Voron-2015-BigARTM.pdf

LSA: https://habr.com/ru/post/110078/https://habr.com/ru/post/230075/https://habr.com/ru/post/240209/

pLSA: https://towardsdatascience.com/topic-modelling-with-plsa-728b92043f41 http://www.machinelearning.ru/wiki/index.php?title=PLSA

SVD: https://habr.com/ru/company/surfingbird/blog/139863/https://habr.com/ru/company/yandex/blog/313892/

LDA: https://towardsdatascience.com/lda-topic-modeling-an-explanation-e184c90aadcd

https://habr.com/ru/company/surfingbird/blog/150607/

https://habr.com/ru/post/417167/

https://logic.pdmi.ras.ru/~sergey/teaching/mlkfu14/17-lda.pdf

https://towardsdatascience.com/topic-modeling-and-latent-dirichlet-allocation-in-python-9bf156893c24