

WORKS OF
PROFESSOR CECIL H. PEABODY
PUBLISHED BY
JOHN WILEY & SONS.

Thermodynamics of the Steam-engine and other Heat-engines.

This work is intended for the use of students in technical schools, and gives the theoretical training required by engineers. 8vo, cloth, \$1.00.

Tables of the Properties of Saturated Steam and other Vapors.

These tables were prepared for the use of students in technical schools and colleges, and of engineers in general. 8vo, cloth, \$1.00.

Valve-gears for Steam-engines.

This book is intended to give engineering students instruction in the theory and practice of designing valve-gears for steam-engines. 8vo, cloth, \$2.50.

Steam-boilers.

By Prof. Cecil H. Peabody and Prof. EDWARD F. MILLER. Nearly 400 pages; 142 illustrations. 8vo, cloth, \$4.00.

OF THE PROPERTIES OF

SATURATED STEAM)

AND OTHER VAPORS.

BY

CECIL H. PEABODY,

PROFESSOR OF MARINE ENGINEERING AND NAVAL ARCHITECTURE,
MASSACHUSETTS INSTITUTE OF TECHNOLOGY.

SIXTH EDITION, REVISED AND ENLARGED.

FOURTH THOUSAND.

NEW YORK:
JOHN WILEY & SONS.

536.7
P35

Copyright, 1888,
BY
CECIL H. PEABODY.

SATURATED STEAM, AND OTHER VAPORS.

A COMPARISON of the several tables of the properties of saturated steam, expressed in English units, reveals discrepancies of considerable magnitude; and investigation shows that, while all are in some manner founded on the experiments of Regnault, various methods of calculation have been used, and in some cases other experimental data have been employed. A review of the whole subject, in connection with the preparation of notes on thermodynamics for the use of the students of the Massachusetts Institute of Technology, made it seem important to calculate a set of tables, to accompany those notes, founded on the best and most recent data.

In presenting the tables for general use, it appears proper to state in full the data and the methods of calculation employed, so that each one may see the degree of accuracy and correctness of the tables, and the reliance to be placed on them.

Tables of the properties of other vapors have been added, which will be discussed hereafter.

Pressure of Saturated Steam.—As a conclusion from all the experiments on the tension of saturated steam, Regnault gives, in the *Mémoires de l'Institut de France, etc., Tome XXI.*, the following data:—

TEMPERATURE C.	PRESSURE MM. OF MERCURY.
-32	0.32
-16	1.29
0	4.60
25	23.55
50	91.98
75	288.50
100	760.00
130	2030.0
160	4651.6
190	9426.
220	17390.
230	21510.

From these data he calculated, by the aid of seven-place logarithms, the following formulæ, which give the pressure in millimetres of mercury for any temperature in degrees Centigrade:—

A. For steam from -32° to 0° C.

$$p = a + ba^n.$$

$$a = -0.08038.$$

$$\log b = 9.6024724 - 10.$$

$$\log a = 0.033398.$$

$$n = 32^{\circ} - t.$$

B. For steam from 0° to 100° C.

$$\log p = a - ba^n + c\beta^n.$$

$$a = 4.7384380.$$

$$\log b = 0.6116485.$$

$$\log c = 8.1340339 - 10.$$

$$\log a = 9.9967449 - 10.$$

$$\log \beta = 0.006865036.$$

$$n = t.$$

C. For steam from 100° to 220° C.

$$\log p = a - ba^n + c\beta^n.$$

$$a = 5.4583895.$$

$$\log b = 0.4121470.$$

$$\log c = 7.7448901 - 10.$$

$$\log a = 9.997412127 - 10.$$

$$\log \beta = 0.007590697.$$

$$n = t - 100.$$

D. For steam from -20° to 220° C.

$$\log p = a - ba^n - c\beta^n.$$

$$a = 6.2640348.$$

$$\log b = 0.1397743.$$

$$\log c = 0.6924351.$$

$$\log a = 9.994049292 - 10.$$

$$\log \beta = 9.998343862 - 10.$$

$$n = t + 20.$$

By aid of the formulæ *A* and *B*, Regnault calculated and recorded tables of the pressures of saturated steam for temperatures from -32° to 100° C. The formula *D* was calculated from the data given above for the temperatures -20° , $+40^{\circ}$, 100° , 160° , and 220° C., and was intended to represent the whole range of experiments. By this formula, instead of formula *C*, he calculated the pressures set down in his tables for temperatures from 100° C. to 220° C.

that differ but little from those that will be given later. Some of the more recent tables in the French system were calculated by his equations.

Equations for the Pressure of Steam at Paris. — In view of the preceding statements, it appeared desirable to re-calculate the constants for Equations *B* and *C*, with a degree of accuracy that should exclude any doubt as to the reliability of the results. Accordingly, the logarithms required were taken from Vega's ten-place table, and then the remainder of the calculations were carried on with natural numbers, checking by independent methods, with the following results : —

B. For steam from 0° to 100° C.

$$\log p = a - ba^n + c\beta^n.$$

$$a = 4.7393622142.$$

$$\log b = 0.6117400190.$$

$$\log c = 8.1320378383 - 10.$$

$$\log \alpha = 9.996725532820 - 10.$$

$$\log \beta = 0.006864675924.$$

$$n = t.$$

C. For steam from 100° to 220° C.

$$\log p = a - ba^n + c\beta^n.$$

$$a = 5.4574301234.$$

$$\log b = 0.4119787931.$$

$$\log c = 7.7417476470 - 10.$$

$$\log \alpha = 9.99741106346 - 10.$$

$$\log \beta = 0.007642489113.$$

$$n = t - 100.$$

To show the degree of accuracy attained, the following tables are given : —

EQUATION *B*.

<i>t.</i>	<i>p.</i>	LOG <i>p</i> FROM TABLE OF LOGARITHMS.	LOG <i>p</i> CALCULATED BY EQUATION.
0	4.60	0.6627578317
25	23.55	1.3719909115	1.37199097
50	91.98	1.9636934052	1.96369346
75	288.50	2.4601458175	2.46014587
100	760	2.8808135923	2.88081365

EQUATION *C*.

<i>t.</i>	<i>p.</i>	LOG <i>p</i> FROM TABLE OF LOGARITHMS.	LOG <i>p</i> CALCULATED BY EQUATION.
100	760.00	2.8808135923

C and the numerical work was not carried to so large a number of decimal places. For the calculation of tables, the constants are carried to seven places of significant figures only; this gives six significant figures in the result, of which five are recorded in the table.

Pressure of Steam at Latitude 45°.—French System.—It is customary to reduce all measurements to the latitude of 45°, and to sea-level. The standard thermometer should then have its boiling and freezing points determined under, or reduced to such conditions. The value of g , the acceleration due to gravity, is, at Paris, latitude 48° 50' 14" and 60 metres above sea-level, 9.809218 metres; and at 45°, and at sea-level, it is 9.806056 metres. Consequently, 760 mm. of mercury at 45° gives a pressure equal to that of 759.755 mm. at Paris; and this corresponds to a temperature of 99.991 C.

In other words, the thermometer which is standard at 45° has each degree 0.99991 of the length of the degree of a thermometer standard at Paris.

To reduce Equation *B* to 45° latitude, we have

$$\log p = a + \log \frac{980.9218}{980.6056} - b a^{0.00001t} + c \beta^{0.00001t};$$

and for Equation *C*,

$$\begin{aligned}\log p &= a + \log \frac{980.9218}{980.6056} - b a^{(0.00001t - 100)} + c \beta^{(0.00001t - 100)} \\ &= a + \log \frac{980.9218}{980.6056} - b a^{-0.000} a^{0.00001(t - 100)} + c \beta^{-0.000} \beta^{0.00001(t - 100)}.\end{aligned}$$

The resulting equations which were used in calculating Table III are

***B.* For steam from 0° to 100° C. at 45° latitude.**

$$\log p = a_1 - b a_1^n + c \beta_1^n.$$

$$a_1 = 4.739502.$$

$$\log b = 0.6117400.$$

$$\log c = 8.13204 - 10.$$

$$\log a_1 = 9.996725828 - 10$$

$$\log \beta_1 = 0.0068641.$$

$$n = t.$$

***C.* For steam from 100° to 220° C. at 45° latitude.**

$$\log p = a_1 - b_1 a_1^n + c_1 \beta_1^n.$$

$$a_1 = 5.457570.$$

$$\log b_1 = 0.4120021.$$

$$\log c_1 = 7.74168 - 10.$$

$$\log a_1 = 9.997411296 - 10.$$

$$\log \beta_1 = 0.0076418.$$

$$n = t - 100.$$

equations for the pressure of steam, so that they will give the pressures in pounds on the square inch for degrees Fahrenheit, there are required the comparison of measures of length, and of weight, the comparison of the scales of the thermometers, and the specific gravity of mercury.

Professor Rogers (*Proceedings of the Am. Acad. of Arts and Sciences, 1882-83*, also *Additional Observations, etc.*) gives for the length of the metre, 39.3702 inches. This differs from the value given by Capt. Clarke (*Proceedings of the Royal Society, vol. xxv., 1866*), by an amount that does not affect the values in the tables; his value being 39.370432 inches.

Professor Miller (*Phil. Transactions, exlvi., 1856*) gives for the weight of one kilogram, 2.20462125 pounds.

Regnault gives, for the weight of one litre of mercury, 13.5959 kilograms.

The degree Fahrenheit is $\frac{5}{9}$ of the length of the degree Centigrade.

$$\text{Let } k = \frac{13.5959 \times 2.204621}{39.3702};$$

then the equations *B* and *C* have for the reduction to degrees Fahrenheit, and pounds on the square inch,

$$\log p = a_1 + \log k - ba_1^{n^{\frac{5}{9}}} + c\beta_1^{n^{\frac{5}{9}}},$$

$$\log p = a_1 + \log k - b_1 a_1^{n^{\frac{5}{9}}} + c_1 \beta_1^{n^{\frac{5}{9}}}.$$

The resulting equations, which were used in calculating Tables I and II, are:—

B. For steam from 32° to 212° F., in pounds on the square inch.

$$\log p = a_2 - ba_2^n + c\beta_2^n.$$

$$a_2 = 3.025908.$$

$$\log b = 0.6117400.$$

$$\log c = 8.13204 - 10.$$

$$\log a_2 = 9.998181015 - 10.$$

$$\log \beta_2 = 0.0038134.$$

$$n = t - 32.$$

C. For steam from 212° to 428° F., in pounds on the square inch.

$$\log p = a_2 - b_1 a_2^n + c_1 \beta_2^n.$$

$$a_2 = 3.743976.$$

$$\log b_1 = 0.4120021.$$

$$\log c_1 = 7.74168 - 10.$$

$$\log a_2 = 9.998561831 - 10.$$

$$\log \beta_2 = 0.0042454.$$

$$n = t - 212.$$

All of the foregoing equations make the pressure a function of the tem-

Other Equations for the Pressure of Steam.—Rankine, in his *Steam Engine and other Prime Movers*, gives the following equation:—

$$\log p = A - \frac{B}{T} - \frac{C}{T^2}$$

For pounds on the square inch, corresponding to degrees Fahrenheit,—

$$A = 6.1007.$$

$$\log B = 3.43642.$$

$$\log C = 5.59873.$$

$$T = t + 461.^{\circ}2 \text{ F.}$$

This equation has been largely used for calculating tables on the English system. The following table will give a comparison between the results from this formula and those from Formulae *B* and *C*.

TEMPERATURE.	PRESSURE.	
	Reynault at 45° latitude.	Rankine.
32	0.0890	0.083
77	0.4555	0.452
122	1.7789	1.78
167	5.579	5.58
212	14.99	14.70
257	33.711	33.71
302	69.27	69.21
347	129.79	129.8
392	225.56	225.9
428	336.26	336.3

Differential Co-efficient $\frac{dp}{dt}$.—As will be seen later, the differential co-efficient $\frac{dp}{dt}$ is used in calculating the volume and density of saturated vapors.

From the general equation of the form,

$$\log p = a + b\alpha^n + c\beta^n,$$

differentiation gives

$$\frac{1}{p} \frac{dp}{dt} = \frac{1}{M^2} b \log \alpha \cdot \alpha^n + \frac{1}{M^2} c \log \beta \cdot \beta^n,$$

in which *M* is the modulus of the common system of logarithms.

The equation may be written,—

$$\frac{1}{p} \frac{dp}{dt} = A\alpha^n + B\beta^n.$$

French units.

B. For 0° to 100° C., mm. of mercury,

$$\log A = 8.8512729 - 10.$$

$$\log B = 6.69305 - 10.$$

$$\log \alpha_1 = 9.996725828 - 10.$$

$$\log \beta_1 = 0.0068641.$$

C. For 100° to 220° C., mm. of mercury.

$$\log A = 8.5495158 - 10.$$

$$\log B = 6.34931 - 10.$$

$$\log \alpha_1 = 9.997411296 - 10.$$

$$\log \beta_1 = 0.0076418.$$

English units.

B. For 32° to 212° F., pounds on the square inch.

$$\log A = 8.5960005 - 10.$$

$$\log B = 6.43778 - 10.$$

$$\log \alpha_2 = 9.998181015 - 10.$$

$$\log \beta_2 = 0.0038134.$$

C. For 212° to 428° F., pounds on the square inch,

$$\log A = 8.2942434 - 10.$$

$$\log B = 6.09403 - 10.$$

$$\log \alpha_2 = 9.998561831 - 10.$$

$$\log \beta_2 = 0.0042454.$$

Heat of the Liquid and Specific Heat.—A preliminary series of experiments convinced Regnault that the specific heat of water at low temperature is unity. To test the specific heat at higher temperatures, he ran hot water from a boiler, and at a known temperature, into a calorimeter in which the temperature varied from 8° to 14° C., and the resulting upper temperature varied from 17° to 29° C. Knowing the original weight of water in the calorimeter, the weight run in from the boiler, and the initial and final temperatures in the calorimeter, he calculated the mean specific heat of water between the temperature of the boiler and the final temperatures of the calorimeter. A series of forty such experiments was made, with the temperature of the boiler varying from 108° to 192° C., from which Regnault concluded that the mean specific heat from 0° to 100° is 1.005; and from 0° to 200° , 1.016. The corresponding heat of the liquid, i.e., the heat required to raise one kilogram of water from 0° to a given temperature, t , is

and solving for the two constants by aid of the two known values of q , the following equation, which is commonly used, is deduced :—

$$q = t + 0.00002t^2 + 0.0000003t^3.$$

The specific heat at any temperature is, therefore, —

$$c = \frac{dq}{dt} = 1 + 0.00004t + 0.0000009t^2.$$

These equations are for use with the Centigrade scale ; for the Fahrenheit scale, a given temperature may be reduced to the Centigrade scale, and then introduced in the same equations.

The process of making the experiments is really a complex one ; for the water, in leaving the boiler, has work done on it by the steam pressure in the boiler, and it has a certain velocity impress on it at the same time, and again, in entering the calorimeter, it does work against the atmospheric pressure, and the kinetic energy of its motion is changed into heat. At higher temperatures there is a double change of state ; part of the water changes to steam on leaving the boiler, and that steam is condensed again in the calorimeter. It is probable that the error of neglecting the effect of these several actions is inconsiderable.

The degree of accuracy to be accorded to this work is indicated by the fact that Regnault gives four significant figures in stating the data for the calculation of the constants in the equations.

Rowland's Experiments. — A series of experiments was made by Rowland at Baltimore, to determine the mechanical equivalent of heat, which gave a delicate method of determining the heat of the liquid, and the specific heat.

The apparatus used was similar to that used by Joule, with modifications to give greater certainty of results. The calorimeter was of larger size, and the paddle had the upper vanes curved like the blades of a centrifugal pump, to give a strong circulation up through the centre, past the thermometer for taking the temperatures, and down at the outside. The paddle was driven by a petroleum engine, and the power applied was measured by making the calorimeter into a friction brake, with two arms at which the turning moment was measured. Radiation was made as small as possible, and then was made determinate by use of a water-jacket outside of the calorimeter.

The experiments consisted essentially in delivering a measured amount of work to the water in the calorimeter, and in noting the rise of temperature produced thereby.

The whole range covered by the experiments was from 2° to 41° C. The results show that 430 kilogrammetres of work are required to raise one kilogramme of water from 2° to 3° C. Assuming that the same amount will be required to raise the same weight from 2° to 1° , 1° to 2° , 2° to 3° , etc.,

ROWLAND'S MECHANICAL EQUIVALENT OF HEAT.

Degrees, C.	Total Number of Kilogram-meters.	Mechanical Equivalent of Heat.	Heat of the Liquid, Experimental.	Heat of the Liquid, Calculated.	Degrees, C.	Total Number of Kilogram-meters.	Mechanical Equivalent of Heat.	Heat of the Liquid, Experimental.	Heat of the Liquid, Calculated.
1	430	-	1.0008	1.007	22	9424	426.1	22.065	22.063
2	860	-	2.0135	2.014	23	9850	426.0	23.063	23.061
3	1290	-	3.0204	3.022	24	10277	425.9	24.062	24.059
4	1721	-	4.0295	4.029	25	10701	425.8	25.055	25.058
5	2150	429.8	5.0339	5.036	26	11128	425.7	26.054	26.053
6	2580	429.5	6.0408	6.040	27	11553	425.6	27.050	27.048
7	3009	429.3	7.0452	7.045	28	11978	425.6	28.045	28.042
8	3439	429.0	8.0520	8.049	29	12399	425.5	29.031	29.037
9	3868	428.8	9.0564	9.054	30	12828	425.6	30.035	30.032
10	4296	428.5	10.059	10.058	31	13253	425.6	31.030	31.027
11	4723	428.3	11.058	11.060	32	13675	425.6	32.018	32.023
12	5151	428.1	12.061	12.061	33	14101	425.7	33.016	33.018
13	5578	427.9	13.060	13.063	34	14527	425.7	34.011	34.014
14	6006	427.7	14.063	14.004	35	14952	425.8	35.008	35.009
15	6433	427.4	15.065	15.066	36	15379	425.8	36.008	36.007
16	6861	427.2	16.064	16.066	37	15805	-	37.007	37.005
17	7289	427.0	17.066	17.066	38	16231	-	38.003	38.004
18	7717	426.8	18.068	18.066	39	16657	-	39.000	39.002
19	8144	426.6	19.068	19.066	40	17083	-	39.998	40.000
20	8571	426.4	20.068	20.066	41	17508	-	40.993	-
21	8997	426.2	21.065	21.004					

In the above table, column 1 gives the number of degrees above freezing on the Centigrade scale; column 2 gives the number of kilogrammetres required to raise one kilogramme of water from freezing point to the given temperature; column 3 is Rowland's mechanical equivalent of heat at the given temperature derived from 10° intervals on column 2; column 4 is obtained by dividing the numbers in column 2 by the mechanical equivalent of heat at 16.2° C., or 62° F., from column 3; and column 5 is calculated by considering the specific heat to be constant for each five degrees of temperature. These specific heats were derived from a curve obtained by plotting temperatures for abscissæ, and heats of the liquid for ordinates. The values of the specific heats will be given later, in connection with those for higher temperatures.

A review of the preceding table shows that the specific heat at low temperatures varies quite markedly, so that it appeared advisable to investigate the effect of this variation on Regnault's experiments already quoted. This was done quite expeditiously by multiplying the mean specific heat given by him for his several experiments by the true average specific heat for the range of temperature in the calorimeter. This corrected specific heat was

temperature of the boiler. The results were then plotted as before, and compared with the heats of the liquid derived from Regnault's mean specific heats uncorrected. The points by the corrected method were a little more regularly arranged than the points obtained by assuming the specific heat to be unity at low temperatures; but the improvement was inconsiderable. The inequality of the specific heat at low temperatures is seldom so much as the unavoidable errors of the method.

It appeared, that if the specific heat was assumed to be constant, from 40° to 45° , from 45° to 155° , and from 155° to 200° C., the straight lines thus drawn represented the experimental values as recalculated quite nearly; and, further, they represented the uncorrected experimental values more nearly than Regnault's equation.

Specific Heat of Water.—The combination of Rowland's and Regnault's experiments on the heat of the liquid by the method described gives the specific heats set down in the following table, Centigrade scale:—

From	SPECIFIC HEAT.						
	0° to	5° C.	32° to	41° F.	.	.	1.0072
5°	10°		41°	50°	.	.	1.0044
10°	15°		50°	59°	.	.	1.0016
15°	20°		59°	68°	.	.	1.
20°	25°		68°	77°	.	.	0.9984
25°	30°		77°	86°	.	.	0.9948
30°	35°		86°	95°	.	.	0.9954
35°	40°		95°	104°	.	.	0.9982
40°	45°		104°	113°	.	.	1.
45°	155°		113°	311°	.	.	1.008
155°	200°		311°	392°	.	.	1.046

Thermal Unit.—Heat is measured in calories, or British thermal units (*BTU*). A calorie commonly is defined as the heat required to raise one kilogramme of water from freezing point to 1° C.; and a British thermal unit, that required to raise one pound from 32° to 33° F. Nothing is known about the specific heat of water from 0° to 2° C.; consequently the commonly accepted value of the thermal unit is an ideal quantity inferred from the behavior of water at higher temperatures. It is more scientific to take an easily verified quantity for the standard; and there is a practical convenience in choosing 62° F. for the standard temperature, because it is near the mean temperature of the air during experimental work. Therefore, it is near the mean temperature in the calorimeter during ordinary work with that instru-

one pound of water from 62° to 63° F. This agrees substantially with the definition of the calorie, as the heat required to raise one kilogramme of water from 15° to 16° C.

In the tables for other vapors than steam, the old definition for the calorie, and Regnault's value for the heat of the liquid, are retained, to avoid entire recalculation.

Mechanical Equivalent of Heat. — The mechanical equivalent in metre-kilogrammes of one calorie at 16° C., deduced from Rowland's experiments in the third column of the table on page 58, is 427.1.

Since the value given by Joule is commonly quoted, it will be of interest to make a comparison of his latest work (1873) with Rowland's, as given in the following table : —

Temperature.	Joule's Value at Manchester, English System.	Reduced to the Air Thermometer and to the latitude of Baltimore.		Rowland's Value, corresponding.
		English.	French.	
14.7°	772.7	776.1	425.8	427.6
12.7°	774.6	778.5	427.1	428.0
13.5°	773.1	776.4	426.0	427.3
14.5°	767.0	770.5	422.7	427.5
17.3°	774.0	777.0	426.3	426.9

The value of g at Baltimore, latitude $39^{\circ} 17'$, is 980.05 centimetres therefore, reducing to 45° of latitude, and at the sea level, the value of the mechanical equivalent of heat is

$$J = 426.9.$$

To reduce to the English system, multiply by $\frac{5}{4}$, and by the length of the metre in feet, so that

$$J = 778.$$

Total Heat. — This term is defined as the heat required to raise a unit of weight of water from freezing point to a given temperature, and to entirely evaporate it at that temperature. The experiments made by Regnault were in the reverse order; that is, steam was led from a boiler into the calorimeter, and there condensed. Knowing the initial and final weights of the calorimeter, the temperature of the steam, and the initial and final temperatures of the water in the calorimeter, he was able, after applying the necessary corrections, to calculate the total heats for the several experiments.

As a conclusion of the work, he gives the following values for the total heats : —

Assuming an equation of the form

$$\lambda = A + Bt,$$

Regnault calculated the constants from the values given for 100° and 195°, and gives the equation

$$\lambda = 606.5 + 0.305t.$$

Wishing to see the effect of the varying value of the specific heat at low temperatures, I recalculated the total heats given by experiment, by a method resembling that used in recalculation of the heats of the liquid, and plotted the results together with Regnault's values uncorrected. The recalculated points were a little more regular than the original ones, and lay nearer the line represented by the above equation. Especially did the recalculated points for those experiments, for which the true mean specific heat of the water in the calorimeter was nearly unity, lie near that line. It therefore appears that the equation represents our best knowledge of the total heat of steam.

For the Fahrenheit scale the equation becomes

$$\lambda = 1091.7 + 0.305(t - 32).$$

Heat of Vaporization.—If the heat of the liquid be subtracted from the total heat, the remainder is called the heat of vaporization, and is represented by r , so that

$$r = \lambda - q.$$

Internal and External Latent Heat.—The heat of vaporization overcomes external pressure, and changes the state from liquid to vapor at constant temperature and pressure. Let the specific volume of the saturated vapor be s , and that of the liquid be σ , then the change of volume is $s - \sigma = u$, on passing from the liquid to the vaporous state. The external work is

$$p(s - \sigma) = pu,$$

and the corresponding amount of heat, or the external latent heat, is

$$Ap(s - \sigma) = Apu,$$

A being the reciprocal of the mechanical equivalent of heat.

The heat required to do the disgregation work, or the internal latent heat, is

$$\rho = r - Apu.$$

Specific Volume and Density of Steam.—On account of the great difficulty of direct determination of the weight of saturated steam, it is customary to calculate the specific volume of steam by aid of the following equation, derived by the application of the principles of thermo-dynamics to the general

in which A is the reciprocal of the mechanical equivalent of heat, T is the temperature from the absolute zero, and σ is the volume of one unit of weight of the liquid from which the vapor is formed. The differential co-efficient $\frac{dp}{dt}$ can be calculated by aid of the equations on page 11.

The absolute temperature is obtained by adding 273.7 to the temperature in degrees Centigrade, or 460.7 to the temperature in degrees Fahrenheit.

The volumes and densities of saturated steam given in Tables I, II, and III, were calculated by this method.

It is of interest to consider the degree of accuracy that may be expected from this method of calculating the density of saturated vapor. The value of r depends on λ and q ; for the first, Regnault gives three figures in the data from which the empirical equation is deduced, and the experimental work does not indicate a greater degree of accuracy. The fourth figure, if stated, is likely to be in error to the extent of five units. The value of T is commonly stated in four figures, of which the last may be in error by two units. A , as determined by Rowland, has four figures, the last being uncertain to the extent of one or two units. The differential co-efficient $\frac{dp}{dt}$ is deduced from the equations for calculating p ; and those equations are derived from data having five places of significant figures. Now the Equations *B* and *C*, for steam at 45° of latitude for the English system give a pressure of 14.6967 pounds on the square inch; but the specific volume calculated by aid of Equation *B* is 26.550 cubic feet, while Equation *C* gives 26.637 cubic feet. The mean, 26.60, differs from either extreme by about one in seven hundred. This discrepancy is due to the fact that the curves represented by Equations *B* and *C* meet at the common temperature, 212°, but do not have a common tangent. Since the equations are empirical and not logical, the error or uncertainty is unavoidable, and all calculated specific volumes are affected by a similar uncertainty. The greatest probable error is in determining r , for which it may be about one in one thousand. The error introduced into this equation by using the values of A in common use, that is, 772 instead of 778, is about one in one hundred.

Tate and Fairbairn's Experiments.—In 1860 an attempt was made by Tate and Fairbairn to determine the specific volume of steam by direct experiment. The following table, taken from the *Philosophical Transactions*. Vol. cl., gives the results of all their experiments, together with the volumes calculated by their empirical formula,

	Pressure in Inches of Mercury. <i>P.</i>	Maximum Temperature, Fahrenheit, of Saturation. <i>T</i>	Specific Volume from Experiments. <i>V</i>	Specific Volume from Formula. <i>V</i>	Error of Formula.
1	5.35	130.77	8275.3	8183	+ 1.1
2	8.62	155.33	5333.5	5326	- 0.2
3	0.45	159.36	4920.2	4900	- 2.6
4	12.47	170.92	3722.6	3766	+ 1.1
5	12.61	171.48	3715.1	3710	+ 1.4
6	13.62	174.92	3438.1	3478	+ 1.6
7	16.01	182.30	3051.0	2985	- 6.6
8	18.36	188.30	2623.4	2620	+ 0.4
9	22.88	198.78	2140.5	2124	- 0.9
1'	53.61	242.00	943.1	937	- 0.7
2'	55.52	244.82	908.0	900	- 0.9
3'	55.80	245.22	892.5	900	+ 7.5
4'	66.84	255.50	750.4	758	- 1.1
5'	76.20	263.14	649.2	669	+ 3.0
6'	81.53	267.21	635.3	628	- 1.1
7'	84.20	269.20	605.7	608	- 0.4
8'	92.23	274.70	584.4	562	- 2.2
9'	90.08	273.30	543.2	545	+ 0.4
10'	90.60	279.12	515.0	519	+ 0.8
11'	104.54	282.58	497.2	490	- 1.4
12'	112.78	287.25	458.3	461	+ 0.7
13'	122.25	292.53	433.1	428	- 1.2
14'	114.25	288.25	440.6	450	+ 2.3

It is apparent that the errors of this formula are much larger than the probable errors of the thermo-dynamic method.

The following table, giving the volumes in cubic metres of one kilogramme of saturated steam, shows the comparison of the two methods:—

By equation

$$s = \frac{d\phi}{dT} + \sigma . \quad . \quad 211.5 \quad 12.11 \quad 1.660 \quad 0.3875 \quad 0.1277$$

From equation

$$V = 25.62 + \frac{49153}{P + 0.72}, \quad 54.97 \quad 11.43 \quad 1.643 \quad 0.3706 \quad 0.1343$$

Steam Entropy.—From the second law of thermo-dynamics may be deduced the equation

$$d\phi = \frac{dQ}{T},$$

in which ϕ is the entropy, dQ is the heat applied or withdrawn, and T is the absolute temperature. Since the entropy depends on the state of the substance only, and not on the method of arriving at that state, we may calculate the increase of entropy in one unit of weight of a given mixture of water and steam, above the entropy of one pound of water at the same temperature.

freezing point to the temperature t , and that the portion x is then changed into steam. During the first operation the change of entropy will be

$$\theta = \int_0^t \frac{dq}{T} = \int_0^t \frac{cdt}{T}.$$

During the second operation the change of entropy will be

$$\frac{xr}{T},$$

since the heat is added at the constant temperature t . The entire change of entropy will be

$$\phi = \frac{xr}{T} + \int_0^t \frac{cdt}{T} = \frac{xr}{T} + \theta.$$

At any other state the entropy of a unit of weight of a mixture of steam and water will be

$$\phi_1 = \frac{x_1 r_1}{T_1} + \theta_1,$$

and the change of entropy will be

$$\phi - \phi_1 = \frac{xr}{T} + \theta - \frac{x_1 r_1}{T_1} - \theta_1.$$

During an adiabatic change no heat is transmitted, and the entropy is constant.

$$\frac{xr}{T} + \theta = \frac{x_1 r_1}{T_1} + \theta_1.$$

When the initial state including the value of x is known, and also the final temperature or pressure, the final value of x_1 may be calculated by the above equation; and the initial and final volumes may be found by the equations

$$v = xu + \sigma, \quad v_1 = x_1 u_1 + \sigma;$$

the value of u for a given temperature or pressure, from the equation,

$$s = u + \sigma.$$

Entropy of the Liquid. — When the specific heat of a liquid is known in terms of the temperature, the entropy of the liquid,

$$\theta = \int_0^t \frac{cdt}{T},$$

is readily calculated. For water we have, for example, the entropy of the liquid at 13° C.

$$1.0072 \log_e \frac{T_5}{T_0} + 1.0044 \log_e \frac{T_{10}}{T_5} + 1.0016 \log_e \frac{T_{10}}{T_{15}}.$$

For other liquids having the general formula for the heat of the liquid,

$$q = at + bt^2 + ct^3,$$

Other Vapors.—Tables IV to IX are taken from Zeuner's *Mechanischen Wärmetheorie*. His values for the specific volume and density were calculated with 273 for the absolute temperature of 0° C., and with 424 for the mechanical equivalent of heat. To bring these tables into accord with Tables I, II, and III, the values of the specific volume and density have been modified by using 273.7 for the absolute temperature of 0° C., and 426.7 for the mechanical equivalent of heat at Paris.

The equations by which the tables were calculated, taken from Regnault's memoirs, *Académie des Sciences, Comptes rendus, Tome XXXVI*, are here assembled, together with Zeuner's equations for the differential co-efficient,

$$\frac{1}{p} \frac{dp}{dt}$$

TEMPERATURE AND PRESSURE.

1	log p	n	b	a
	2			
Alcohol	$a - ba^n + c\beta^n$	5.4502028	-4.9800000	0.0485397
Ether	$a + ba^n - c\beta^n$	5.0280208	0.0002284	3.1000390
Chloroform	$a - ba^n - c\beta^n$	5.22533803	2.0531281	0.0008073
Carbon bisulphide .	$a - ba^n - c\beta^n$	5.4011002	3.4405003	0.2857380
Carbon tetrachloride .	$a - ba^n - c\beta^n$	12.0002331	9.1375180	1.0074800

TEMPERATURE AND PRESSURE—Concluded.

	log a.	log b.	n	Limits.
	6	7	8	9
Alcohol	1.00708567	1.0400485	t+20	-20°, +150° C.
Ether	0.0145775	1.000877	t+20	-20°, +120°
Chloroform	1.0074144	1.0808170	t-20	+20°, +164°
Carbon bisulphide .	1.0077628	1.0011907	t+20	-20°, +140°
Carbon tetrachloride .	1.0007120	1.0040780	t+20	-20°, +188°

The equation for the temperature and pressure of the saturated vapor of acetone, as recalculated by Zeuner, is,—

$$\log p = a - ba^n + c\beta^n.$$

$$a = 5.3085419$$

$$\frac{1}{\rho} \frac{dp}{dt} = A\alpha^n + B\beta^n$$

From Zeuner's *Wärmetheorie*.

	SIGN.		Log ($A\alpha^n$)	Log ($B\beta^n$)
	$A\alpha^n$	$B\beta^n$		
Alcohol	+	-	-1.1720041 - 0.0029143t	-2.9002701 - 0.0590515t
Ether	+	+	-1.3390024 - 0.0031223t	-4.4610396 + 0.0145775t
Chloroform	+	+	-1.3410130 - 0.0025856t	-2.0607124 - 0.0131824t
Carbon bisulphide	+	+	-1.4339778 - 0.0022372t	-2.0511078 - 0.00088003t
Carbon tetrachloride,	+	+	-1.8611078 - 0.0002880t	-1.3812195 - 0.0050220t
Aceton	+	+	-1.3268535 - 0.0020148t <i>t</i> , temperature C.	-1.9004582 - 0.0215592t

HEAT OF THE LIQUID.

Alcohol	$q = 0.54754t + 0.0011218t^2 + 0.000002206t^3$
Ether	$q = 0.52901t + 0.0002959t^2$
Chloroform	$q = 0.23235t + 0.0000507t^2$
Carbon bisulphide	$q = 0.23523t + 0.0000815t^2$
Carbon tetrachloride	$q = 0.19798t + 0.0000906t^2$
Aceton	$q = 0.50643t + 0.0003965t^2$

TOTAL HEAT.

Ether	$\lambda = 94 + 0.45t - 0.00055556t^2$
Chloroform	$\lambda = 67 + 0.1375t$
Carbon bisulphide	$\lambda = 90 + 0.14601t - 0.0004123t^2$
Carbon tetrachloride	$\lambda = 52 + 0.14625t - 0.000172t^2$
Aceton	$\lambda = 140.5 + 0.36644t - 0.000516t^2$

The total heat of alcohol varies in so irregular a manner that no equation can be given for it.

Zeuner gives the following empirical equations for calculating the heat equivalent of the internal work, which are proposed to lessen the labor of calculation:

HEAT EQUIVALENT OF INTERNAL WORK.

Water	$\rho = 575.40 - 0.791t$
Ether	$\rho = 86.54 - 0.10648t - 0.0007160t^2$
Chloroform	$\rho = 62.44 - 0.11282t - 0.0000140t^2$
Carbon bisulphide	$\rho = 82.79 - 0.11446t - 0.0004020t^2$
Carbon tetrachloride	$\rho = 48.57 - 0.06844t - 0.0002080t^2$
Aceton	$\rho = 131.63 - 0.20184t - 0.0006280t^2$

Sulphur Dioxide and Ammonia.—The use of ice-machines has brought into prominence liquids which vaporize at low temperatures. For two such

SULPHUR DIOXIDE.		AMMONIA.	
$\log p = a - ba^n - c\beta^n$		$\log p = a - ba^n - c\beta^n$	
$a = 5.6663790$		$a = 11.5043330$	
$b = 3.0146890$		$b = 7.4503520$	
$c = 0.1465100$		$c = 0.9499674$	
$\log \alpha = 1.9972989$		$\log \alpha = 1.9996014$	
$\log \beta = 1.9872900$		$\log \beta = 1.9939729$	
$n = t + 28$		$n = t + 22$	
Limits, $-28, +62$.		Limits, $-22, +82$.	

Unfortunately the heat of the liquid and the total heat for these substances have not been determined. We have, however, some of the properties of these substances in the gaseous state or more properly in the state of superheated vapors.

Now, it has been shown by Zeuner that superheated steam may have its properties represented by the equation

$$pv = BT - Cp^a,$$

in which p is the pressure in pounds on the square foot or kilograms on the square meter, v is the volume of a pound in cubic feet or of a kilogram in cubic meters, and T is the absolute temperature. The constants have the following values when calculated from the properties of saturated steam:

French units,	$B = 51.3$	$C = 198$	$a = \frac{1}{4}$
English units,	$B = 93.5$	$C = 971$	$a = \frac{1}{4}$

It was first proposed by Ledoux to find similar equations to represent the properties of superheated sulphur dioxide and ammonia, and to use such equations for calculating approximate tables of the properties of these vapors when saturated, just as the tables of the properties of saturated steam had been used in establishing the equation for superheated steam.

In the *Thermodynamics of the Steam-engine* by the author, pages 452 to 459, this calculation has been carried out with the best ascertained properties of the superheated vapors of sulphur dioxide and ammonia with the following results:

SULPHUR DIOXIDE.		AMMONIA.	
French units, $pv = 14.5 T - 48p^{0.22}$	$pv = 54.3 T - 142p^{\frac{1}{4}}$	English units, $pv = 26.4 T - 184p^{0.22}$	$pv = 99 T - 540p^{\frac{1}{4}}$

The application of these equations to the vapors when saturated gives

HEAT OF VAPORIZATION.

SULPHUR DIOXIDE.

AMMONIA.

$$\begin{array}{ll} \text{French units, } r = 98 - 0.27t & r = 300 - 0.8t \\ \text{English units, } r = 176 - 0.27(t - 32) & r = 540 - 0.8(t - 32). \end{array}$$

SPECIFIC HEAT OF THE LIQUID.

SULPHUR DIOXIDE.

$c = 0.4$

AMMONIA.

$c = 1.1$

Tables X and XI were calculated by aid of the equations written, and may be of use for approximate calculations, in default of more reliable tables.

Specific Volume of Liquids. — Table XII was taken from the *Phys.-Chem. Tabellen* of Landolt and Börnstein.

Volume of Water. — Table XIII gives the volumes of water compared with its volume at 4°. From 0° to 100° C., the values are those given by Rossetti. Above 100°, the values are those calculated by the equations given by Hirn in the *Annales de Chimie et de Physique, 1867*.

Volumes of Liquids. — The volumes of liquids at high temperatures, compared with the volume at freezing point, are represented by the following equations given by Hirn in the *Annales* : —

Water 100° C. to 200° C. (vol. at 4° C. = unity)	$v = 1 + 0.00010867875t + 0.0000030073653t^2 + 0.000000028730422t^3 - 0.00000000066457031t^4$	Logs. 0.0361445-10 4.4781802-10 1.4583419-10 8.8225409-20
Alcohol 30° C. to 100° C. (vol. at 0° C. = unity)	$v = 1 + 0.00073892265t + 0.00001055235t^2 - 0.00000002480842t^3 + 0.0000000004113567t^4$	6.8685001-10 3.0233492-10 2.4660517-10 0.6035278-10
Ether 30° C. to 130° C. (vol. at 0° C. = unity)	$v = 1 + 0.0013489059t + 0.0000065537t^2 - 0.000000034490750t^3 + 0.00000000033772002t^4$	7.1209817-10 4.8104806-10 2.5377028-10 0.5285571-10
Carbon bisulphide 30° to 100° C. (vol. at 0° C. = unity)	$v = 1 + 0.0011680550t + 0.0000016480598t^2 - 0.00000000081110062t^3 + 0.0000000000040589t^4$	7.0074636-10 4.2172103-10 0.0091229-10 .7849404-20
Carbon tetrachloride 30° to 100° C. (vol. at 0° C. = unity)	$v = 1 + 0.0010671883t + 0.0000035051978t^2 - 0.000000014040281t^3 + 0.00000000085182318t^4$	7.0282400-10 4.5520763-10 2.1746202-10 3.0303494-20

Other Data. — For convenience the following data are assembled : —	
Length of the metre in inches	{ 39.3702 (Rogers) 39.370432 (Clarke)
Weight of the kilogramme in pounds	2.20462125
Weight of 1 litre (1 cu. decimetre) of mercury	13.5959 kilos.
One horse power, in foot pounds per second	550
<i>Cheval à vapeur</i> , in kilogrammetres per second	75
Normal pressure of the atmosphere	{ 760 mm. of mercury. 10,333 kilos per sq. m. 14.6967 lbs. per sq. in. 2116.32 lbs. per. sq. ft.
Absolute temperature of freezing point	{ 273. [°] 7 C. 492. [°] 7 F.

Explanation of the Tables. — In Table I, the first column gives the temperature, t , of saturated steam.

The second column gives the corresponding pressure, p , in pounds on the square inch, above an absolute vacuum; the differences are placed between the two numbers from which they are derived. For example, the pressure at 40° F. is 0.1216 pounds per square inch; and the difference to be used in interpolation, and placed half a line lower, is 48.

The third column gives the heat of the liquid, q , required to raise the temperature of one pound of water from 32° F. to a given temperature.

The fourth column gives the total heat, λ , required to raise one pound of water from 32° F. to a given temperature, and to entirely vaporize it under the pressure due to that temperature.

The fifth column gives the heat of vaporization, or the heat required to vaporize one pound of water at a given temperature, under the pressure corresponding.

The sixth column gives the heat required to do the disgregation work during the vaporization of one pound of water.

The seventh column gives the heat required to overcome the external pressure, and do the work of increasing the volume from σ to s .

The eighth column gives the entropy of the liquid.

The ninth and tenth columns give the specific volume, or volume in cubic feet, of one pound of saturated steam, and the density or weight of one cubic foot in pounds.

Table II differs from Table I in that it is arranged to give the properties of saturated steam for each pound of pressure.

Table III gives the properties of saturated steam in French units; and Tables IV to XI give the properties of other saturated vapors in the same

TABLE I.
SATURATED STEAM.
ENGLISH UNITS.

Temperature, Degrees Fahr. <i>t</i>	Pressure, Pounds per Square Inch. <i>p</i>	Heat of the Liquid. <i>q</i>	Heat of Total Heat. <i>x</i>	Heat of Vaporization. <i>y</i>	Heat equivalent of Internal Work. <i>a</i>	Heat equivalent of External Work. <i>Aph</i>	Entropy of the Liquid. $\int \frac{cdt}{T}$	Specific Volume. <i>s</i>	DENSITY.	Temperature, Degrees Fahr. <i>t</i>	
									Weight, in Pounds, of one Cubic Foot. <i>y</i>		
32	0.0890	36	0	1091.7	1091.7	1035.9	55.8	0.0000	3387 127	0.0002952 115	32
33	0.0926	37	1.01	1092.0	1091.0	1035.1	55.9	0.0020	3260 122	0.0003067 120	33
34	0.0963	39	2.01	1092.3	1090.3	1034.3	56.0	0.0041	3138 116	0.0003187 122	34
35	0.1002	40	3.02	1092.6	1089.6	1033.6	56.0	0.0061	3022 112	0.0003309 127	35
36	0.1042	41	4.03	1092.9	1088.9	1032.8	56.1	0.0081	2910 107	0.0003436 132	36
37	0.1083	43	5.04	1093.2	1088.2	1032.0	56.2	0.0101	2803 103	0.0003568 136	37
38	0.1126	44	6.04	1093.5	1087.5	1031.3	56.2	0.0122	2700 99	0.0003704 140	38
39	0.1170	46	7.05	1093.8	1086.7	1030.4	56.3	0.0142	2601 95	0.0003845 145	39
40	0.1216	48	8.06	1094.1	1086.0	1029.6	56.4	0.0162	2506 91	0.0003990 151	40
41	0.1264	49	9.06	1094.4	1085.3	1028.8	56.5	0.0182	2415 87	0.0004141 155	41
42	0.1313	50	10.07	1094.8	1084.7	1028.1	56.6	0.0202	2328 84	0.0004296 160	42
43	0.1364	51	11.07	1095.1	1084.0	1027.3	56.7	0.0222	2244 80	0.0004456 165	43
44	0.1417	54	12.08	1095.4	1083.3	1020.5	56.8	0.0242	2164 77	0.0004621 171	44
45	0.1471	57	13.08	1095.7	1082.6	1025.8	56.8	0.0262	2087 74	0.0004792 176	45
46	0.1528	58	14.09	1096.0	1081.0	1025.0	56.9	0.0282	2013 71	0.0004908 181	46
47	0.1586	60	15.00	1096.3	1081.2	1024.2	57.0	0.0302	1942 68	0.0005149 187	47
48	0.1640	62	16.10	1096.6	1080.5	1023.4	57.1	0.0322	1874 66	0.0005336 194	48
49	0.1708	65	17.10	1096.9	1079.8	1022.6	57.2	0.0341	1808 63	0.0005530 201	49
50	0.1773	66	18.10	1097.2	1079.1	1021.8	57.3	0.0361	1745 60	0.0005731 200	50
51	0.1839	69	19.11	1097.5	1078.4	1021.1	57.3	0.0381	1685 59	0.0005937 213	51
52	0.1908	71	20.11	1097.8	1077.7	1020.3	57.4	0.0400	1626 58	0.0006150 219	52
53	0.1979	73	21.11	1098.1	1077.0	1019.5	57.5	0.0420	1570 54	0.0006369 226	53
54	0.2052	76	22.11	1098.4	1076.3	1018.7	57.6	0.0439	1510 51	0.0006595 234	54
55	0.2128	78	23.11	1098.7	1075.6	1017.9	57.7	0.0459	1465 50	0.0006820 240	55
56	0.2200	81	24.11	1099.0	1074.9	1017.1	57.8	0.0478	1415 48	0.0007009 248	56
57	0.2287	83	25.12	1099.3	1074.2	1016.3	57.9	0.0497	1367 46	0.0007317 254	57
58	0.2370	86	26.12	1099.6	1073.5	1015.6	57.9	0.0517	1321 45	0.0007571 263	58
59	0.2456	89	27.12	1099.9	1072.8	1014.8	58.0	0.0536	1276 42	0.0007834 270	59
60	0.2545	92	28.12	1100.2	1072.1	1014.0	58.1	0.0555	1234 41	0.0008104 280	60
61	0.2637	95	29.12	1100.5	1071.4	1012.9	58.2	0.0574	1192 40	0.0008384 284	61

Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Heat of the Liquid.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume.	DENSITY.	Temperature, Degrees Fahr.	
τ	ϕ	ϑ	λ	ρ	A_{fr}	γ	s	γ	τ	
64	0.2920-104	32.12	1101.5	1069.4	1010.9	58.5	0.0632	1078.36	0.0009273-313	64
65	0.3033-107	33.12	1101.8	1068.7	1010.1	58.6	0.0651	1042.53	0.0009586-325	65
66	0.3140-110	34.12	1102.1	1068.0	1009.4	58.6	0.0670	1000.33	0.0009914-329	66
67	0.3250-114	35.12	1102.4	1067.3	1008.6	58.7	0.0680	970.3316	0.001024-35	67
68	0.3364-117	36.12	1102.7	1066.6	1007.8	58.8	0.0708	944.7304	0.001059-35	68
69	0.3481-121	37.12	1103.0	1065.9	1007.0	58.9	0.0727	914.3203	0.001094-36	69
70	0.3602-124	38.11	1103.3	1065.2	1006.2	59.0	0.0745	885.0283	0.001130-37	70
71	0.3726-129	39.11	1103.6	1064.5	1005.4	59.1	0.0764	850.7272	0.001167-38	71
72	0.3854-128	40.11	1103.9	1063.8	1004.6	59.2	0.0783	820.5263	0.001205-40	72
73	0.3986-132	41.11	1104.2	1063.1	1003.8	59.3	0.0802	803.2253	0.001245-41	73
74	0.4122-140	42.11	1104.5	1062.4	1003.0	59.4	0.0820	777.9244	0.001286-41	74
75	0.4262-144	43.11	1104.8	1061.7	1002.3	59.4	0.0839	753.5236	0.001327-43	75
76	0.4406-149	44.11	1105.1	1061.0	1001.5	59.5	0.0858	729.9228	0.001370-44	76
77	0.4555-153	45.10	1105.4	1060.3	1000.7	59.6	0.0876	707.4219	0.001414-45	77
78	0.4708-157	46.10	1105.7	1059.6	999.9	59.7	0.0895	685.2211	0.001459-46	78
79	0.4865-162	47.09	1106.0	1058.9	999.1	59.8	0.0913	664.1203	0.001507-48	79
80	0.5027-167	48.09	1106.3	1058.2	998.3	59.9	0.0932	643.8197	0.001553-49	80
81	0.5194-171	49.08	1106.6	1057.5	997.5	60.0	0.0950	624.1191	0.001602-51	81
82	0.5365-177	50.08	1107.0	1056.9	996.8	60.1	0.0968	605.0181	0.001655-52	82
83	0.5542-181	51.07	1107.3	1056.2	996.0	60.2	0.0987	586.6178	0.001705-53	83
84	0.5723-187	52.07	1107.6	1055.5	995.2	60.3	0.1005	568.8171	0.001758-55	84
85	0.5910-192	53.06	1107.9	1054.8	994.4	60.4	0.1023	551.7165	0.001813-56	85
86	0.6102-197	54.06	1108.2	1054.1	993.7	60.4	0.1041	535.2160	0.001869-57	86
87	0.6200-203	55.05	1108.5	1053.4	992.9	60.5	0.1060	519.2155	0.001926-59	87
88	0.6502-209	56.05	1108.8	1052.7	992.1	60.6	0.1078	503.7148	0.001985-60	88
89	0.6711-214	57.04	1109.1	1052.1	991.4	60.7	0.1096	488.9143	0.002045-62	89
90	0.6925-221	58.04	1109.4	1051.4	990.6	60.8	0.1114	474.6139	0.002107-64	90
91	0.7140-226	59.03	1109.7	1050.7	989.8	60.9	0.1132	460.7136	0.002171-66	91
92	0.7372-233	60.03	1110.0	1050.0	989.0	61.0	0.1150	447.1131	0.002237-67	92
93	0.7605-239	61.03	1110.3	1049.3	988.2	61.1	0.1168	434.0125	0.002304-68	93
94	0.7844-246	62.02	1110.6	1048.6	987.4	61.2	0.1186	421.5122	0.002372-71	94
95	0.8090-252	63.02	1110.9	1047.9	986.6	61.3	0.1204	408.3118	0.002443-73	95
96	0.8342-259	64.01	1111.2	1047.2	985.8	61.4	0.1222	397.5114	0.002516-74	96
97	0.8601-266	65.01	1111.5	1046.5	985.0	61.5	0.1240	386.1110	0.002590-76	97
98	0.8807-273	66.01	1111.8	1045.8	984.2	61.6	0.1258	375.1107	0.002660-78	98
99	0.9140-281	67.01	1112.1	1045.1	983.4	61.7	0.1275	364.4104	0.002744-80	99
100	0.9421-289	68.01	1112.4	1044.4	982.7	61.7	0.1293	354.0100	0.002824-82	100

Temperature, Degrees Fahrenheit.	Pressure, Pounds per Square Inch.	Specific Volume								DENSITY. Weight, in Pounds, of One Cubic Foot.	Temperature, Degrees Fahrenheit.
		t	P	Heat of the Liquid	Heat of Vaporization	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	s		
t	P	q	λ	r	p	A _{μn}	$\int \frac{cdt}{T}$				t
104	1.0019349	72.0	1113.7	1041.7	979.6	62.1	0.1364	316.188	0.003163 ₂	104	
105	1.0038328	73.0	1114.0	1041.0	978.8	62.2	0.1382	307.385	0.003254 ₁ ₃	105	
106	1.1266336	74.0	1114.3	1040.3	978.0	62.3	0.1400	298.882	0.003347 ₉ ₄	106	
107	1.1602345	75.0	1114.6	1039.6	977.2	62.4	0.1417	290.679	0.003441 ₉ ₆	107	
108	1.1947354	76.0	1114.9	1038.9	976.4	62.5	0.1435	282.777	0.003537 ₉ ₉	108	
109	1.2301362	77.0	1115.2	1038.2	975.6	62.6	0.1452	275.075	0.003630 ₁₀ ₂	109	
110	1.2663372	78.0	1115.5	1037.5	974.8	62.7	0.1470	267.572	0.003738 ₁₀ ₄	110	
111	1.3035381	79.0	1115.8	1036.8	974.0	62.8	0.1487	260.370	0.003842 ₁₀ ₆	111	
112	1.3416391	80.0	1116.1	1036.1	973.2	62.9	0.1505	253.368	0.003948 ₁₀ ₉	112	
113	1.3807400	81.0	1116.4	1035.4	972.4	63.0	0.1522	246.566	0.004057 ₁₁ ₁	113	
114	1.4207411	82.0	1116.7	1034.7	971.6	63.1	0.1540	239.964	0.004168 ₁₁ ₅	114	
115	1.4618421	83.0	1117.0	1034.0	970.8	63.2	0.1558	233.562	0.004283 ₁₁ ₆	115	
116	1.5039431	84.0	1117.3	1033.3	970.0	63.3	0.1575	227.360	0.004399 ₁₂ ₀	116	
117	1.5470442	85.0	1117.6	1032.6	969.2	63.4	0.1592	221.358	0.004519 ₁₂ ₁	117	
118	1.5912452	86.0	1117.9	1031.9	968.4	63.5	0.1610	215.556	0.004640 ₁₂ ₄	118	
119	1.6364464	87.0	1118.2	1031.2	967.6	63.6	0.1627	209.955	0.004764 ₁₂ ₈	119	
120	1.6828474	88.1	1118.5	1030.4	966.7	63.7	0.1645	204.453	0.004892 ₁₃ ₀	120	
121	1.7302487	89.1	1118.8	1029.7	966.0	63.7	0.1662	199.152	0.005022 ₁₃ ₄	121	
122	1.7789498	90.1	1119.2	1029.1	965.3	63.8	0.1679	193.950	0.005156 ₁₃ ₇	122	
123	1.8287510	91.1	1119.5	1028.4	964.5	63.9	0.1697	188.948	0.005293 ₁₃ ₉	123	
124	1.8797521	92.1	1119.8	1027.7	963.7	64.0	0.1714	184.147	0.005432 ₁₄ ₂	124	
125	1.9318534	93.1	1120.1	1027.0	962.9	64.1	0.1731	179.446	0.005574 ₁₄ ₆	125	
126	1.9852547	94.1	1120.4	1026.3	962.1	64.2	0.1748	174.844	0.005720 ₁₄ ₈	126	
127	2.0300500	95.1	1120.7	1025.6	961.3	64.3	0.1765	170.443	0.005868 ₁₅ ₂	127	
128	2.0950500	96.1	1121.0	1024.9	960.5	64.4	0.1783	160.142	0.006020 ₁₅ ₆	128	
129	2.1533574	97.1	1121.3	1024.2	959.7	64.5	0.1800	161.941	0.006176 ₁₆ ₀	129	
130	2.2110600	98.1	1121.6	1023.5	958.9	64.6	0.1817	157.839	0.006336 ₁₆ ₂	130	
131	2.2719614	99.1	1121.9	1022.8	958.1	64.7	0.1834	153.038	0.006498 ₁₆ ₆	131	
132	2.3333628	100.2	1122.2	1022.0	957.2	64.8	0.1851	150.137	0.006646 ₁₆ ₉	132	
133	2.3961642	101.2	1122.5	1021.3	956.4	64.9	0.1868	140.436	0.006833 ₁₇ ₂	133	
134	2.4603058	102.2	1122.8	1020.6	955.6	65.0	0.1885	142.836	0.007005 ₁₇ ₆	134	
135	2.5261671	103.2	1123.1	1019.9	954.8	65.1	0.1902	139.234	0.007181 ₁₇ ₈₀	135	
136	2.5932687	104.2	1123.4	1019.2	954.0	65.2	0.1919	135.833	0.007361 ₁₈ ₄	136	
137	2.6619702	105.2	1123.7	1018.5	953.2	65.3	0.1936	132.532	0.007545 ₁₈ ₇	137	
138	2.7321702	106.2	1124.0	1017.8	952.4	65.4	0.1952	129.331	0.007732 ₁₉ ₂	138	
139	2.8040734	107.2	1124.3	1017.1	951.6	65.5	0.1969	126.230	0.007924 ₁₉ ₆	139	
140	2.8774751	108.2	1124.6	1016.4	950.8	65.6	0.1986	123.230	0.008120 ₁₉ ₈	140	
141	2.9525757	109.2	1124.9	1015.7	950.0	65.7	0.2003	120.229	0.008318 ₂₀ ₄	141	

Temperature, Degrees Fahr. <i>t</i>	Pressure, Pounds per Square Inch. <i>P</i>	Heat of the Liquid. <i>q</i>	Heat of Total Heat. <i>q + λ</i>	Heat of Vaporization. <i>r</i>	Heat equivalent of Internal Work. <i>p</i>		Heat equivalent of External Work. <i>Δμu</i>		Entropy of the Liquid. <i>T dT</i>		Specific Volume. <i>v</i>	Weight, in Pounds of one Cubic Foot. <i>γ</i>	DENSITY. <i>v</i>	Temperature, Degrees Fahr. <i>t</i>
					<i>p</i>	<i>p</i>	<i>p</i>	<i>p</i>	<i>T</i>	<i>T</i>				
144	3.1877 ₈₁₉	112.2	1125.9	1013.7	947.7	66.0	0.2053	111.8 ₂₃₀	0.008042 ₂₁₇	144				
145	3.2096 ₈₃₆	113.3	1126.2	1012.9	946.8	65.1	0.2070	109.2 ₂₃₀	0.009150 ₂₂₀	145				
146	3.3532 ₈₅₅	114.3	1126.5	1012.2	946.0	63.2	0.2086	106.6 ₂₃₀	0.009370 ₂₂₅	146				
147	3.4387 ₈₇₃	115.3	1126.8	1011.5	945.2	63.3	0.2103	104.1 ₂₃₁	0.009604 ₂₂₉	147				
148	3.5200 ₈₉₂	116.3	1127.1	1010.8	944.4	60.4	0.2119	101.7 ₂₃₁	0.009836 ₂₃₇	148				
149	3.6152 ₉₁₁	117.3	1127.4	1010.1	943.6	60.5	0.2136	99.3 ₂₃₀	0.010077 ₂₄	149				
150	3.7063 ₉₃₀	118.3	1127.7	1009.4	942.8	60.6	0.2152	97.0 ₂₃₁	0.010311 ₂₄	150				
151	3.7903 ₉₅₀	119.3	1128.0	1008.7	942.0	66.7	0.2169	94.7 ₂₃₁	0.010552 ₂₅	151				
152	3.8804 ₉₇₀	120.3	1128.3	1008.0	941.3	66.7	0.2185	92.6 ₂₃₂	0.010802 ₂₅	152				
153	3.9603 ₉₉₀	121.3	1128.6	1007.3	940.5	66.8	0.2202	90.4 ₂₃₂	0.011052 ₂₆	153				
154	4.0003 ₁₀₁₁	122.3	1128.9	1000.0	939.7	66.9	0.2218	88.3 ₂₀₁	0.011312 ₂₀	154				
155	4.1914 ₁₀₃₂	123.3	1129.2	1005.9	938.9	67.0	0.2235	86.4 ₂₁₇	0.011572 ₂₇	155				
156	4.2948 ₁₀₅₄	124.3	1129.5	1005.2	938.1	67.1	0.2251	84.4 ₁₉₁	0.011842 ₂₇	156				
157	4.4000 ₁₀₇₅	125.4	1129.8	1004.4	937.2	67.2	0.2267	82.5 ₁₈₆	0.012112 ₂₈	157				
158	4.5075 ₁₀₉₇	126.4	1130.1	1003.7	936.4	67.3	0.2284	80.7 ₁₈₀	0.012330 ₂₈	158				
159	4.6172 ₁₁₂₀	127.4	1130.4	1003.0	935.6	67.4	0.2300	78.9 ₁₇₆	0.012672 ₂₉	159				
160	4.7202 ₁₁₄₃	128.4	1130.7	1002.3	934.8	67.5	0.2316	77.1 ₁₇₁	0.012963 ₃₀	160				
161	4.8485 ₁₁₆₆	129.4	1131.0	1001.6	934.0	67.6	0.2332	75.4 ₁₆₆	0.013263 ₃₀	161				
162	4.9601 ₁₁₈₉	130.4	1131.4	1001.0	933.3	67.7	0.2349	73.7 ₁₆₃	0.013563 ₃₀	162				
163	5.0793 ₁₂₁₁	131.4	1131.7	1000.3	932.5	67.8	0.2365	72.1 ₁₅₈	0.013863 ₃₁	163				
164	5.2000 ₁₂₄	132.4	1132.0	999.6	931.7	67.9	0.2381	70.5 ₁₅₅	0.014173 ₃₂	164				
165	5.3244 ₁₂₆	133.4	1132.3	998.9	930.9	68.0	0.2397	69.0 ₁₅₀	0.014493 ₃₂	165				
166	5.4504 ₁₂₉	134.4	1132.6	998.2	930.1	68.1	0.2413	67.5 ₁₄₆	0.014813 ₃₃	166				
167	5.5790 ₁₃₁	135.4	1132.9	997.5	929.3	68.2	0.2429	66.0 ₁₄₃	0.015143 ₃₄	167				
168	5.7104 ₁₃₄	136.4	1133.2	996.8	928.5	68.3	0.2445	64.6 ₁₄₀	0.015483 ₃₄	168				
169	5.8444 ₁₃₇	137.4	1133.5	996.1	927.7	68.4	0.2461	63.2 ₁₃₇	0.015823 ₃₅	169				
170	5.9813 ₁₃₉	138.5	1133.8	995.3	926.8	68.5	0.2477	61.8 ₁₃₂	0.016173 ₃₅	170				
171	6.1200 ₁₄₂	139.5	1134.1	994.6	926.0	68.6	0.2493	60.5 ₁₂₈	0.016523 ₃₆	171				
172	6.2024 ₁₄₅	140.5	1134.4	993.9	925.2	68.7	0.2509	59.2 ₁₂₆	0.016883 ₃₆	172				
173	6.4074 ₁₄₇	141.5	1134.7	993.2	924.4	68.8	0.2525	57.9 ₁₂₃	0.017243 ₃₈	173				
174	6.5544 ₁₅₀	142.5	1135.0	992.5	923.7	68.8	0.2541	56.7 ₁₂₀	0.017603 ₃₈	174				
175	6.7044 ₁₅₃	143.5	1135.3	991.8	922.9	68.9	0.2557	55.5 ₁₁₈	0.018003 ₃₈	175				
176	6.8584 ₁₅₆	144.5	1135.6	991.1	922.1	69.0	0.2573	54.4 ₁₁₄	0.018384 ₄₀	176				
177	7.0144 ₁₅₉	145.5	1135.9	990.4	921.3	69.1	0.2589	53.2 ₁₁₂	0.018784	177				
178	7.1734 ₁₆₂	146.5	1136.2	989.7	920.5	69.2	0.2604	52.1 ₁₁₂	0.019184 ₄₀	178				
179	7.3374 ₁₆₅	147.5	1136.5	989.0	919.7	69.3	0.2620	51.0 ₁₀₅	0.019584 ₄₂	179				
180	7.5004 ₁₆₈	148.5	1136.8	988.3	918.0	69.4	0.2636	50.0 ₁₀₃	0.020004 ₄₂	180				

Temperature, Degrees Fahr. <i>t</i>	Pressure, in Pounds per Square Inch. <i>P</i>	Heat of the Liquid			Heat of Vaporization			Heat equivalent of Internal Work. <i>P</i>	Heat equivalent of External Work. <i>Aphu</i>	Entropy of the Liquid $\int \frac{cdt}{T}$	Specific Volume <i>s</i>	DENSITY. Weight, in Pounds, of one Cubic Foot. γ	Temperature, Degrees Fahr. <i>t</i>	
		<i>q</i>	<i>λ</i>	Total Heat. <i>r</i>	Heat of Vaporization <i>r</i>	Heat equivalent of Internal Work. <i>P</i>								
184	8.192	152.6	1138.1	985.5	915.7	69.8	0.2600	46.08	0.02172	184				
185	8.373	181	153.6	1138.4	984.8	914.9	69.9	0.2714	45.09	0.02218	185			
186	8.558	185	154.6	1138.7	984.1	914.1	70.0	0.2730	44.17	0.02264	186			
187	8.746	191	155.6	1139.0	983.4	913.4	70.0	0.2745	43.28	0.02311	187			
188	8.937	195	156.6	1139.3	982.7	912.6	70.1	0.2761	42.41	0.02355	188			
189	9.132	198	157.6	1139.6	982.0	901.8	70.2	0.2777	41.56	0.02406	189			
190	9.330	202	158.6	1139.9	981.3	911.0	70.3	0.2792	40.73	0.02455	190			
191	9.532	206	159.6	1140.2	980.6	910.2	70.4	0.2808	39.92	0.02505	191			
192	9.738	209	160.6	1140.5	979.9	909.4	70.5	0.2823	39.13	0.02556	192			
193	9.947	213	161.6	1140.8	979.2	908.8	70.6	0.2838	38.35	0.02608	193			
194	10.160	217	162.6	1141.1	978.5	907.8	70.7	0.2854	37.59	0.02660	194			
195	10.377	221	163.7	1141.4	977.7	906.9	70.8	0.2869	36.85	0.02714	195			
196	10.598	224	164.7	1141.7	977.0	906.2	70.8	0.2885	36.13	0.02768	196			
197	10.822	229	165.7	1142.0	976.3	905.4	70.9	0.2900	35.42	0.02823	197			
198	11.051	232	166.7	1142.3	975.6	904.6	71.0	0.2915	34.73	0.02879	198			
199	11.283	237	167.7	1142.6	974.9	903.8	71.1	0.2930	34.06	0.02930	199			
200	11.520	241	168.7	1142.9	974.2	903.0	71.2	0.2946	33.40	0.02994	200			
201	11.761	244	169.7	1143.2	973.5	902.2	71.3	0.2961	32.76	0.03053	201			
202	12.005	249	170.7	1143.6	972.9	901.5	71.4	0.2976	32.13	0.03112	202			
203	12.254	254	171.7	1143.9	972.2	900.8	71.4	0.2991	31.52	0.03173	203			
204	12.508	257	172.7	1144.2	971.5	900.0	71.5	0.3007	30.92	0.03235	204			
205	12.765	263	173.7	1144.5	970.8	899.2	71.6	0.3022	30.33	0.03297	205			
206	13.028	266	174.7	1144.8	970.1	898.4	71.7	0.3037	29.76	0.03361	206			
207	13.294	271	175.8	1145.1	969.3	897.5	71.8	0.3052	29.19	0.03426	207			
208	13.565	276	176.8	1145.4	968.6	896.7	71.9	0.3067	28.63	0.03493	208			
209	13.841	281	177.8	1145.7	967.9	896.0	71.9	0.3082	28.09	0.03560	209			
210	14.122	285	178.8	1146.0	967.2	895.2	72.0	0.3097	27.57	0.03628	210			
211	14.407	290	179.8	1146.3	966.5	894.4	72.1	0.3112	27.05	0.03697	211			
212	14.697	293	180.8	1146.6	965.8	893.5	72.3	0.3127	26.60	0.03760	212			
213	14.990	299	181.8	1146.9	965.1	892.6	72.5	0.3142	26.16	0.03824	213			
214	15.280	303	182.8	1147.2	964.4	891.8	72.6	0.3157	25.07	0.03860	214			
215	15.592	309	183.8	1147.5	963.7	891.0	72.7	0.3172	25.19	0.03969	215			
216	15.901	313	184.8	1147.8	963.0	890.2	72.8	0.3187	24.73	0.04043	216			
217	16.214	319	185.8	1148.1	962.3	889.5	72.8	0.3202	24.28	0.04118	217			
218	16.533	324	186.8	1148.4	961.6	888.7	72.9	0.3217	23.84	0.04194	218			
219	16.857	329	187.8	1148.7	960.9	887.9	73.0	0.3232	23.41	0.04272	219			
220	17.180	335	188.9	1149.0	960.1	887.1	73.0	0.3246	22.98	0.04352	220			
221	17.521	340	189.9	1149.3	959.4	886.3	73.1	0.3261	22.56	0.04432	221			

Temperature, Degrees Fahr. <i>t</i>	Pressure, Pounds per Square Inch. <i>P</i>	Heat of the Liquid			Heat of Vaporization <i>r</i>	Heat equivalent of Internal Work. <i>A</i>	Heat equivalent of External Work. <i>A'fne</i>	Entropy of the Liquid $\int \frac{cdt}{T}$	Specific Volume <i>s</i>	Weight, in Pounds, of one Cubic Foot. <i>y</i>	Temperature, Degrees Fahr. <i>t</i>
		<i>q</i>	<i>λ</i>	Total Heat.							
224	18.557 ₂₅₇	192.9	1150.3	957.4	884.0	73.4	0.3305	21.37 ₃₈	0.04079 ₈₅	224	
225	18.914 ₃₆₂	193.9	1150.6	956.7	883.3	73.4	0.3320	20.09 ₃₇	0.04764 ₈₆	225	
226	19.270 ₃₆₈	194.9	1150.9	956.0	882.5	73.5	0.3335	20.62 ₃₇	0.04850 ₈₈	226	
227	19.644 ₃₇₄	195.9	1151.2	955.3	881.7	73.6	0.3349	20.25 ₃₆	0.04938 ₉₀	227	
228	20.018 ₃₇₉	196.9	1151.5	954.6	880.9	73.7	0.3364	19.89 ₃₆	0.05028 ₉₀	228	
229	20.307 ₃₈₆	197.9	1151.8	953.9	880.2	73.7	0.3379	19.54 ₃₄	0.05118 ₉₀	229	
230	20.783 ₃₉₂	198.9	1152.1	953.2	879.4	73.8	0.3393	19.20 ₃₃	0.05208 ₉₂	230	
231	21.175 ₃₉₇	199.9	1152.4	952.5	878.6	73.9	0.3408	18.87 ₃₃	0.05300 ₉₄	231	
232	21.572 ₄₀₄	201.0	1152.7	951.7	877.8	73.9	0.3423	18.54 ₃₂	0.05304 ₉₅	232	
233	21.970 ₄₁₀	202.0	1153.0	951.0	877.0	74.0	0.3437	18.22 ₃₂	0.05489 ₉₇	233	
234	22.386 ₄₁₇	203.0	1153.3	950.3	876.2	74.1	0.3452	17.90 ₃₁	0.05586 ₉₉	234	
235	22.803 ₄₂₃	204.0	1153.6	949.6	875.4	74.2	0.3466	17.51 ₃₁	0.05685 ₉₉	235	
236	23.220 ₄₂₉	205.0	1153.9	948.9	874.6	74.3	0.3481	17.29 ₃₀	0.05784 ₁₀₁	236	
237	23.655 ₄₃₆	206.0	1154.2	948.2	873.9	74.3	0.3495	16.99 ₂₉	0.05885 ₁₀₂	237	
238	24.001 ₄₄₂	207.0	1154.5	947.5	873.1	74.4	0.3510	16.70 ₂₈	0.05987 ₁₀₃	238	
239	24.533 ₄₄₉	208.0	1154.8	946.8	872.3	74.5	0.3524	16.42 ₂₈	0.06090 ₁₀₅	239	
240	24.982 ₄₅₆	209.0	1155.1	946.1	871.6	74.5	0.3538	16.14 ₂₇	0.06195 ₁₀₆	240	
241	25.438 ₄₆₂	210.0	1155.4	945.4	870.8	74.6	0.3553	15.87 ₂₇	0.06301 ₁₀₈	241	
242	25.900 ₄₇₀	211.0	1155.8	944.8	870.1	74.7	0.3567	15.60 ₂₆	0.06409 ₁₁₀	242	
243	26.370 ₄₇₆	212.0	1156.1	944.1	869.3	74.8	0.3581	15.34 ₂₆	0.06519 ₁₁₁	243	
244	26.846 ₄₈₄	213.0	1156.4	943.4	868.5	74.9	0.3596	15.08 ₂₅	0.06630 ₁₁₃	244	
245	27.330 ₄₉₁	214.1	1156.7	942.6	867.7	74.9	0.3610	14.83 ₂₅	0.06743 ₁₁₃	245	
246	27.821 ₄₉₈	215.1	1157.0	941.9	866.9	75.0	0.3624	14.58 ₂₄	0.06858 ₁₁₅	246	
247	28.310 ₅₀₅	216.1	1157.3	941.2	866.1	75.1	0.3639	14.34 ₂₃	0.06073 ₁₁₆	247	
248	28.824 ₅₁₂	217.1	1157.6	940.5	865.3	75.2	0.3653	14.11 ₂₃	0.07080 ₁₁₈	248	
249	29.336 ₅₂₀	218.1	1157.9	939.8	864.5	75.3	0.3667	13.88 ₂₃	0.07207 ₁₂₀	249	
250	29.856 ₅₂₈	219.1	1158.2	939.1	863.8	75.3	0.3681	13.65 ₂₂	0.07327 ₁₂₁	250	
251	30.384 ₅₃₅	220.1	1158.5	938.4	863.0	75.4	0.3695	13.43 ₂₂	0.07448 ₁₂₃	251	
252	30.910 ₅₄₃	221.1	1158.8	937.7	862.2	75.5	0.3709	13.21 ₂₂	0.07571 ₁₂₆	252	
253	31.462 ₅₅₀	222.1	1159.1	937.0	861.4	75.6	0.3724	12.99 ₂₁	0.07697 ₁₂₈	253	
254	32.012 ₅₅₉	223.1	1159.4	936.3	860.7	75.6	0.3738	12.78 ₂₁	0.07825 ₁₂₈	254	
255	32.571 ₅₆₆	224.1	1159.7	935.6	859.9	75.7	0.3752	12.57 ₂₀	0.07953 ₁₂₀	255	
256	33.137 ₅₇₄	225.1	1160.0	934.9	859.1	75.8	0.3766	12.37 ₂₀	0.08082 ₁₃₂	256	
257	33.711 ₅₈₃	226.2	1160.3	934.1	858.2	75.9	0.3780	12.17 ₁₉	0.08214 ₁₃₃	257	
258	34.204 ₅₉₀	227.2	1160.6	933.4	857.5	75.9	0.3794	11.98 ₁₉	0.08347 ₁₃₅	258	
259	34.884 ₅₉₉	228.2	1160.9	932.7	856.7	76.0	0.3808	11.79 ₁₉	0.08482 ₁₃₇	259	
260	35.483 ₆₀₇	229.2	1161.2	932.0	855.9	76.1	0.3822	11.60 ₁₈	0.08619 ₁₃₈	260	
261	36.090 ₆₁₆	230.2	1161.5	931.3	855.1	76.2	0.3836	11.42 ₁₈	0.08757 ₁₄₀	261	

	Pressure, P Pounds per Square Inch.	Heat of the Liquid. q	Total Heat. λ	Heat of Vaporization. r	Heat equivalent of Internal Work. P	Heat equivalent of External Work. Δfμ	Entropy of the Liquid. Δct T	Specific Volume s	Weight, in Pounds, of one Cubic Foot. γ	DENSITY. t
54	37.903 641	233.2	1162.5	929.3	852.9	76.4	0.3878	10.89	0.00182 145	264
55	38.604 651	234.2	1162.8	928.6	852.1	76.5	0.3891	10.72	0.00187 147	265
56	39.255 659	235.2	1163.1	927.9	851.3	76.6	0.3906	10.55	0.00194 150	266
57	39.914 668	236.2	1163.4	927.2	850.6	76.6	0.3919	10.39	0.00204 151	267
58	40.582 677	237.2	1163.7	926.5	849.8	76.7	0.3933	10.23	0.00215 152	268
59	41.250 686	238.2	1164.0	925.8	849.0	76.8	0.3947	10.07	0.00227 153	269
60	41.915 695	239.3	1164.3	925.0	848.1	76.9	0.3961	9.918	0.00248 152	270
61	42.640 705	240.3	1164.6	924.3	847.4	76.9	0.3975	9.766	0.00264 153	271
62	43.345 714	241.3	1164.9	923.6	846.6	77.0	0.3988	9.617	0.00280 154	272
63	44.050 723	242.3	1165.2	922.9	845.8	77.1	0.4002	9.471	0.00296 155	273
64	44.782 733	243.3	1165.5	922.2	845.0	77.2	0.4016	9.328	0.00312 156	274
65	45.515 743	244.3	1165.8	921.5	844.2	77.3	0.4030	9.187	0.00328 157	275
66	46.258 753	245.3	1166.1	920.8	843.5	77.3	0.4043	9.049	0.00345 158	276
67	47.011 762	246.3	1166.4	920.1	842.7	77.4	0.4057	8.913	0.00362 159	277
68	47.773 772	247.3	1166.7	919.4	841.0	77.5	0.4071	8.780	0.00379 160	278
69	48.545 783	248.3	1167.0	918.7	841.1	77.6	0.4084	8.649	0.00396 161	279
70	49.328 792	249.3	1167.3	918.0	840.4	77.6	0.4098	8.521	0.01173 162	280
71	50.112 800	250.3	1167.6	917.3	839.6	77.7	0.4112	8.395	0.1191	281
72	50.902 809	251.4	1168.0	916.6	838.8	77.8	0.4125	8.271	0.1200	282
73	51.714 818	252.4	1168.3	915.9	838.0	77.9	0.4139	8.149	0.1227	283
74	52.506 828	253.4	1168.6	915.2	837.2	78.0	0.4152	8.030	0.1245	284
75	53.394 838	254.4	1168.9	914.5	836.5	78.0	0.4166	7.913	0.1264	285
76	54.245 845	255.4	1169.2	913.8	835.7	78.1	0.4179	7.797	0.1283	286
77	55.098 857	256.4	1169.5	913.1	834.9	78.2	0.4193	7.684	0.1302	287
78	55.998 867	257.4	1169.8	912.4	834.1	78.3	0.4206	7.573	0.1321	288
79	56.889 877	258.4	1170.1	911.7	833.4	78.3	0.4220	7.464	0.1340	289
80	57.729 886	259.4	1170.4	911.0	832.6	78.4	0.4233	7.356	0.1359	290
81	58.629 891	260.4	1170.7	910.3	831.8	78.5	0.4247	7.251	0.1379	291
82	59.539 892	261.4	1171.0	909.6	831.0	78.6	0.4260	7.148	0.1399	292
83	60.445 893	262.4	1171.3	908.9	830.3	78.6	0.4273	7.046	0.1419	293
84	61.348 895	263.4	1171.6	908.2	829.5	78.7	0.4287	6.946	0.1440	294
85	62.339 895	264.5	1171.9	907.4	828.6	78.8	0.4300	6.847	0.1461	295
86	63.289 897	265.5	1172.2	906.7	827.8	78.9	0.4313	6.750	0.1482	296
87	64.259 898	266.5	1172.5	906.0	827.0	79.0	0.4327	6.655	0.1503	297
88	65.239 899	267.5	1172.8	905.3	826.3	79.0	0.4340	6.562	0.1524	298
89	66.229 900	268.5	1173.1	904.6	825.5	79.1	0.4353	6.470	0.1545	299
90	67.229 902	269.5	1173.4	903.9	824.7	79.2	0.4366	6.380	0.1567	300
91	68.249 903	270.5	1173.7	903.2	823.9	79.3	0.4380	6.292	0.1580	301

Temperature, Degrees Fahr. <i>t</i>	Pressure, Pounds per Square Inch. <i>p</i>	Heat of the Liquid.		Heat of Vaporization <i>r</i>	Heat equivalent of Internal Work. <i>Aph</i>	Heat equivalent of External Work. <i>cdt</i> / <i>T</i>	Entropy of the Liquid. <i>s</i>	Specific Volume <i>y</i>	Weight, in Pounds, of One Cubic Foot.	DENSITY.	Temperature, Degrees Fahr. <i>t</i>
		<i>q</i>	<i>λ</i>								
304	71.36	273.5	1174.7	901.2	821.7	79.5	0.4419	6.035	0.1657	304	
305	72.42	106	274.5	1175.0	900.5	820.9	0.4433	5.952	0.1680	305	
306	73.50	108	275.5	1175.3	899.8	820.1	0.4446	5.871	0.1703	306	
	109							80	24		
307	74.59	110	276.6	1175.6	899.0	819.3	79.7	0.4459	5.791	0.1727	307
308	75.69	110	277.6	1175.9	898.3	818.5	79.8	0.4472	5.712	0.1751	308
309	76.80	111	278.6	1176.2	897.6	817.7	79.9	0.4485	5.634	0.1775	309
	113							76	24		
310	77.93	114	279.6	1176.5	896.9	817.0	79.9	0.4498	5.558	0.1799	310
311	79.07	116	280.6	1176.8	896.2	816.2	80.0	0.4511	5.484	0.1823	311
312	80.23	116	281.6	1177.1	895.5	815.4	80.1	0.4524	5.410	0.1848	312
313	81.39	116	282.7	1177.4	894.7	814.5	80.2	0.4538	5.337	0.1873	313
	118							71	26		
314	82.57	120	283.7	1177.7	894.0	813.8	80.2	0.4552	5.266	0.1899	314
315	83.77	121	284.8	1178.0	893.2	812.0	80.3	0.4565	5.195	0.1925	315
316	84.98	122	285.8	1178.3	892.5	812.1	80.4	0.4579	5.120	0.1951	316
	122							68	26		
317	86.20	123	286.9	1178.6	891.7	811.3	80.4	0.4592	5.058	0.1977	317
318	87.43	123	287.9	1178.9	891.0	810.5	80.5	0.4606	4.991	0.2004	318
319	88.68	127	289.0	1179.2	890.2	809.6	80.6	0.4619	4.925	0.2031	319
	127							64	27		
320	89.95	128	290.0	1179.5	889.5	808.8	80.7	0.4633	4.861	0.2058	320
321	91.23	129	291.0	1179.8	888.8	808.1	80.7	0.4646	4.707	0.2085	321
322	92.52	130	292.1	1180.2	888.1	807.3	80.8	0.4659	4.735	0.2112	322
323	93.82	132	293.1	1180.5	887.4	806.5	80.9	0.4672	4.673	0.2140	323
	132							61	28		
324	95.14	134	294.2	1180.8	886.6	805.7	80.9	0.4686	4.612	0.2168	324
325	96.48	135	295.2	1181.1	885.9	804.9	81.0	0.4699	4.552	0.2197	325
326	97.83	137	296.3	1181.4	885.1	804.1	81.1	0.4713	4.493	0.2226	326
	137							57	29		
327	99.20	138	297.3	1181.7	884.4	803.3	81.1	0.4726	4.430	0.2255	327
328	100.58	139	298.4	1182.0	883.6	802.4	81.2	0.4739	4.370	0.2284	328
329	101.97	141	299.4	1182.3	882.9	801.6	81.3	0.4752	4.323	0.2313	329
	141							56	30		
330	103.38	143	300.5	1182.6	882.1	800.8	81.3	0.4766	4.267	0.2343	330
331	104.81	144	301.5	1182.9	881.4	800.0	81.4	0.4779	4.213	0.2374	331
332	106.25	145	302.6	1183.2	880.6	799.1	81.5	0.4792	4.159	0.2404	332
333	107.70	147	303.6	1183.5	879.9	798.4	81.5	0.4805	4.107	0.2435	333
	147							52	31		
334	109.17	149	304.6	1183.8	879.2	797.6	81.6	0.4818	4.055	0.2460	334
335	110.60	151	305.7	1184.1	878.4	796.7	81.7	0.4832	4.004	0.2498	335
336	112.17	152	306.7	1184.4	877.7	796.0	81.7	0.4845	3.954	0.2529	336
	152							50	32		
337	113.09	153	307.8	1184.7	876.9	795.1	81.8	0.4858	3.904	0.2561	337
338	115.22	155	308.8	1185.0	876.2	794.3	81.9	0.4871	3.855	0.2594	338
339	116.77	157	309.9	1185.3	875.4	793.5	81.9	0.4884	3.807	0.2627	339
	157							47	33		
340	118.34	159	310.0	1185.6	874.7	792.7	82.0	0.4897	3.760	0.2660	340
341	119.93	160	312.0	1185.9	873.9	791.8	82.1	0.4910	3.713	0.2693	341
	160							45	33		

Temperature, Degrees Fahr. <i>t</i>	Pressure, Pounds per Square Inch.	Heat of the Liquid. <i>P</i>	Heat of Total Heat. <i>q</i>	Heat of Vaporization. <i>r</i>	Heat equivalent of Internal Work. <i>p</i>	Heat equivalent of External Work. <i>Aph</i>	Entropy of the Liquid. $\int \frac{cdt}{T}$	Specific Volume. <i>s</i>	DENSITY.	Temperature, Degrees Fahr. <i>t</i>	
									γ		
344	124.78	315.1	1186.9	871.8	789.5	82.3	0.4949	3.578	0.2795	344	
345	120.43	165	316.1	1187.2	871.1	82.3	0.4962	3.534	0.2830	345	
346	128.10	107	317.2	1187.5	870.3	82.4	0.4975	3.491	0.2865	346	
		169			787.9			42	35		
347	120.79	170	318.2	1187.8	809.6	87.1	82.5	0.4988	3.449	0.2900	347
348	131.43	170	319.3	1188.1	808.8	780.3	82.5	0.5001	3.407	0.2935	348
349	133.21	172	320.3	1188.4	808.1	785.5	82.6	0.5014	3.365	0.2971	349
	174							41	37		
350	134.95	176	321.4	1188.7	807.3	784.7	82.6	0.5027	3.324	0.3008	350
351	136.71	177	322.4	1189.0	806.6	783.9	82.7	0.5040	3.284	0.3045	351
352	138.48	177	323.5	1189.3	805.8	783.0	82.8	0.5053	3.245	0.3082	352
353	140.27	179	324.5	1189.6	805.1	782.3	82.8	0.5066	3.206	0.3119	353
	181							38			
354	142.08	183	325.6	1189.9	864.3	781.4	82.9	0.5078	3.168	0.3157	354
355	143.91	183	326.6	1190.2	863.6	780.7	82.9	0.5091	3.130	0.3105	355
356	145.75	184	327.7	1190.5	862.8	770.8	83.0	0.5104	3.092	0.3234	356
	187							36	38		
357	147.62	188	328.7	1190.8	862.1	779.0	83.1	0.5117	3.056	0.3272	357
358	149.50	188	329.7	1191.1	861.4	778.3	83.1	0.5130	3.020	0.3317	358
359	151.40	190	330.8	1191.4	860.6	777.4	83.2	0.5142	2.984	0.3351	359
	193							35	40		
360	153.33	194	331.8	1191.7	859.9	776.7	83.2	0.5155	2.949	0.3391	360
361	155.27	195	332.9	1192.0	859.1	775.8	83.3	0.5168	2.914	0.3431	361
362	157.22	198	333.9	1192.4	858.5	775.2	83.3	0.5181	2.880	0.3472	362
363	159.20	200	335.0	1192.7	857.7	774.3	83.4	0.5193	2.846	0.3513	363
								33	42		
364	161.20	202	336.0	1193.0	857.0	773.5	83.5	0.5206	2.818	0.3555	364
365	163.22	203	337.1	1193.3	856.2	772.7	83.5	0.5219	2.780	0.3597	365
366	165.25	206	338.1	1193.6	855.5	771.9	83.6	0.5231	2.748	0.3630	366
								32	43		
367	167.31	208	339.2	1193.9	854.7	771.1	83.6	0.5244	2.716	0.3682	367
368	169.30	209	340.2	1194.2	854.0	770.4	83.6	0.5257	2.685	0.3725	368
369	171.48	212	341.3	1194.5	853.2	769.5	83.7	0.5269	2.654	0.3768	369
								31	44		
370	173.60	214	342.3	1194.8	852.5	768.7	83.8	0.5282	2.623	0.3812	370
371	175.74	215	343.3	1195.1	851.8	768.0	83.8	0.5294	2.503	0.3850	371
372	177.80	218	344.4	1195.4	851.0	767.1	83.9	0.5307	2.567	0.3901	372
373	180.07	220	345.5	1195.7	850.2	766.3	83.9	0.5320	2.534	0.3940	373
								20	46		
374	182.27	222	346.5	1196.0	849.5	765.5	84.0	0.5332	2.505	0.3992	374
375	184.40	224	347.5	1196.3	848.8	764.8	84.0	0.5345	2.470	0.4038	375
376	186.73	226	348.6	1196.6	848.0	763.9	84.1	0.5357	2.448	0.4084	376
								28	47		
377	188.00	228	349.6	1196.9	847.3	763.2	84.1	0.5370	2.420	0.4131	377
378	191.27	231	350.6	1197.2	846.6	762.4	84.2	0.5382	2.393	0.4178	378
379	193.58	233	351.7	1197.5	845.8	761.6	84.2	0.5395	2.360	0.4227	379
								28	49		
380	195.01	234	352.8	1197.8	845.0	760.8	84.2	0.5407	2.338	0.4276	380
								25	47		

Temperature, Degrees Fahr. <i>t</i>	Pressure, Pounds per Square Inch. <i>P</i>	Heat of the Liquid. <i>q</i>	Heat of Vaporization <i>r</i>	Heat estimate of Internal Work. <i>p</i>	Heat estimate of External Work. <i>q'p</i>	Entropy of the Liquid. <i>s</i>	Entropy of the Vapor. <i>s'</i>	Weight, in Pounds, of one Cubic Foot. <i>y</i>	Temperature, Degrees Fahr. <i>s</i>
384	205.43 ²⁴⁴	350.9	1199.1	842.2	757.8	84.1	0.5457	2.237 ₂₅	0.4470 ₂₄
385	207.87 ²⁴⁶	358.0	1199.4	844.4	756.9	84.5	0.5460	2.241 ₂₅	0.4521 ₂₄
386	210.33 ²⁴⁸	350.0	1199.7	840.7	756.2	84.5	0.5481	2.187 ₂₄	0.4572 ₂₄
387	212.81 ²⁵⁰	360.4	1200.0	839.9	755.3	84.6	0.5494	2.163 ₂₄	0.4623 ₂₄
388	215.31 ²⁵³	361.1	1200.3	830.2	754.6	84.6	0.5506	2.139 ₂₄	0.4675 ₂₃
389	217.84 ²⁵⁵	362.2	1200.6	838.4	753.8	84.6	0.5518	2.115 ₂₃	0.4728 ₂₂
390	220.39 ²⁵⁷	363.2	1200.9	837.7	753.0	84.7	0.5531	2.092 ₂₃	0.4780 ₂₃
391	222.90 ²⁶⁰	364.3	1201.2	836.9	752.2	84.7	0.5543	2.069 ₂₃	0.4833 ₂₄
392	225.50 ²⁶³	365.3	1201.5	836.2	751.4	84.8	0.5555	2.046 ₂₃	0.4887 ₂₄
393	228.10 ²⁶⁴	366.4	1201.8	835.4	750.6	84.8	0.5568	2.024 ₂₃	0.4941 ₂₄
394	230.83 ²⁶⁷	367.4	1202.1	834.7	749.9	84.8	0.5580	2.002 ₂₃	0.4990 ₂₅
395	233.50 ²⁶⁹	368.4	1202.4	834.0	749.1	84.9	0.5592	1.980 ₂₃	0.5051 ₂₅
396	236.10 ²⁷²	369.5	1202.7	833.2	748.3	84.9	0.5604	1.958 ₂₃	0.5107 ₂₆
397	238.91 ²⁷⁴	370.5	1203.0	832.5	747.6	84.9	0.5616	1.937 ₂₃	0.5163 ₂₆
398	241.67 ²⁷⁷	371.6	1203.3	831.7	746.7	85.0	0.5629	1.916 ₂₃	0.5219 ₂₈
399	244.42 ²⁷⁹	372.6	1203.6	831.0	746.0	85.0	0.5641	1.895 ₂₃	0.5277 ₂₉
400	247.21 ²⁸²	373.7	1203.9	830.2	745.2	85.0	0.5653	1.874 ₂₀	0.5333 ₂₈
401	250.03 ²⁸⁴	374.7	1204.2	829.5	744.5	85.0	0.5665	1.854 ₂₀	0.5394 ₂₉
402	252.87 ²⁸⁷	375.8	1204.5	828.8	743.7	85.1	0.5677	1.834 ₂₀	0.5452 ₃₀
403	255.74 ²⁸⁹	376.8	1204.9	828.1	743.0	85.1	0.5689	1.814 ₂₀	0.5412 ₃₀
404	258.63 ²⁹²	377.9	1205.2	827.3	742.2	85.1	0.5701	1.794 ₁₉	0.5572 ₃₁
405	261.57 ²⁹⁵	378.9	1205.5	826.6	741.4	85.2	0.5714	1.775 ₁₉	0.5633 ₃₁
406	264.50 ²⁹⁷	380.0	1205.8	825.8	740.6	85.2	0.5726	1.756 ₁₉	0.5695 ₃₁
407	267.47 ³⁰⁰	381.0	1206.1	825.1	739.9	85.3	0.5738	1.737 ₁₈	0.5756 ₃₂
408	270.47 ³⁰²	382.0	1206.4	824.4	739.2	85.3	0.5741	1.719 ₁₉	0.5818 ₃₃
409	273.40 ³⁰⁵	383.1	1206.7	823.6	738.3	85.3	0.5762	1.700 ₁₈	0.5881 ₃₄
410	276.54 ³⁰⁸	384.1	1207.0	822.9	737.6	85.3	0.5774	1.682 ₁₈	0.5945 ₃₅
411	279.02 ³¹¹	385.2	1207.3	822.1	736.8	85.4	0.5786	1.664 ₁₈	0.6010 ₃₆
412	282.73 ³¹³	386.2	1207.6	821.4	736.1	85.4	0.5798	1.646 ₁₇	0.6074 ₃₆
413	285.80 ³¹⁶	387.3	1207.9	820.6	735.3	85.4	0.5810	1.629 ₁₇	0.6147 ₃₆
414	289.02 ³¹⁹	388.3	1208.2	819.9	734.5	85.4	0.5822	1.612 ₁₇	0.6206 ₃₄
415	292.21 ³²¹	389.4	1208.5	819.1	733.7	85.4	0.5834	1.593 ₁₇	0.6274 ₃₅
416	295.42 ³²⁵	390.4	1208.8	818.4	733.0	85.4	0.5846	1.578 ₁₇	0.6347 ₃₇
417	298.67 ³²⁷	391.5	1209.1	817.6	732.2	85.4	0.5858	1.561 ₁₆	0.6416 ₃₆
418	301.04 ³³⁰	392.5	1209.4	816.9	731.5	85.4	0.5870	1.543 ₁₇	0.6474 ₃₇
419	305.24 ³³³	393.6	1209.7	816.1	730.7	85.4	0.5881	1.528 ₁₆	0.6547 ₃₇
420	308.57 ³³⁶	394.6	1210.0	815.4	730.0	85.4	0.5893	1.512 ₁₆	0.6617 ₃₇
421	311.93 ³³⁹	395.6	1210.3	814.7	729.3	85.4	0.5905	1.499 ₁₅	0.6683 ₃₈

Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	γ	Heat of the Liquid.	λ	Total Heat.	ρ	Heat of Vaporization.	α_{Av}	$\frac{cdt}{T}$	Specific Volume	γ	DENSITY.	t
												Weight, in Pounds, of one Cubic Foot.	
424	322.18	347	398.8	1211.3	812.5	727.0	85.5	0.5041	1.449 ¹⁵	0.0007	424	424	
425	325.65	351	399.8	1211.6	811.8	726.3	85.5	0.5053	1.434 ¹⁵	0.0078	425	425	
426	329.16	354	400.9	1211.9	811.0	725.5	85.5	0.5064	1.419 ¹⁵	0.7057	426	426	
427	332.70	356	401.9	1212.2	810.3	724.8	85.5	0.5076	1.404 ¹⁴	0.7127	427	427	
428	336.20	356	403.0	1212.5	809.5	724.0	85.5	0.5088	1.390 ¹⁴	0.7197	428	428	

TABLE II.

SATURATED STEAM.

ENGLISH UNITS.

Pressure, Pounds per Square Inch.	Temperature, Degrees Fahr.	Heat of the Liquid.	Heat of Vaporization.	Heat extracted by External Work.	Heat equivalent to External Work.	Heat of Vaporization per lb. of Steam.	Specific Volume.	Weight, in Pounds of One Cubic Foot.	DENSITY.	Pressure, Pounds per Square Inch.
1	101.99	70.0	1113.1	1043.0	981.1	61.9	0.13820	334.6	161.0	1
2	126.27	94.4	1120.5	1026.1	961.9	64.2	0.17551	173.6	155.2	2
3	141.02	109.8	1125.1	1015.3	949.5	65.8	0.20143	118.4	148.1	3
4	153.00	124.1	1128.6	1007.2	940.4	66.8	0.22033	96.31	17.09	4
5	162.34	130.7	1131.5	1000.8	933.1	67.7	0.23551	73.32	17.09	5
6	170.14	138.6	1133.8	995.2	920.7	68.5	0.24840	61.07	14.55	6
7	176.90	145.4	1135.9	980.5	921.4	69.1	0.25887	53.37	13.30	7
8	182.92	151.5	1137.7	980.2	916.5	69.7	0.26882	47.07	13.30	8
9	188.33	156.9	1139.4	982.5	912.4	70.1	0.27563	42.13	13.30	9
10	193.25	161.0	1140.9	979.0	908.4	70.6	0.28442	38.16	13.30	10
11	197.78	166.5	1142.3	975.8	904.8	71.0	0.29442	34.82	12.71	11
12	201.98	170.7	1143.6	973.0	901.5	71.4	0.29763	33.14	12.37	12
13	205.89	174.0	1144.7	970.1	898.4	71.7	0.30359	30.82	12.03	13
14	209.57	178.3	1145.8	967.5	895.5	72.0	0.30941	27.79	11.61	14
15	213.03	181.8	1146.9	965.1	892.6	72.5	0.31443	26.17	11.53	15
16	216.32	185.1	1147.0	962.8	890.0	72.8	0.31962	24.50	11.37	16
17	219.44	188.3	1148.0	960.0	887.0	73.0	0.32398	23.22	11.22	17
18	222.40	191.3	1149.8	958.5	885.3	73.2	0.32892	22.00	11.10	18
19	225.24	194.1	1150.7	956.0	883.2	73.4	0.33324	20.90	10.99	19
20	227.95	196.9	1151.5	954.0	881.0	73.6	0.33631	19.94	10.80	20
21	230.55	199.5	1152.3	952.8	879.0	73.8	0.34041	19.01	10.61	21
22	233.00	202.0	1153.0	951.0	877.0	74.0	0.34358	18.20	10.43	22
23	235.47	204.5	1153.7	949.2	875.0	74.2	0.34773	17.45	10.23	23
24	237.70	206.8	1154.4	947.0	873.2	74.4	0.35066	16.76	10.03	24
25	240.04	209.1	1155.1	946.0	871.5	74.5	0.35339	16.15	9.84	25
26	242.21	211.2	1155.8	944.0	869.0	74.7	0.35770	15.65	9.65	26
27	244.32	213.4	1156.5	943.1	868.2	74.9	0.36000	15.00	9.44	27
28	246.30	215.4	1157.1	941.7	866.7	75.0	0.36229	14.43	9.21	28
29	248.34	217.4	1157.7	940.3	865.1	75.2	0.36577	14.03	8.99	29
30	250.27	219.4	1158.3	938.9	863.6	75.3	0.36885	13.59	8.71	30
31	252.15	221.3	1158.8	937.5	862.0	75.5	0.37112	13.18	8.49	31
32	253.98	223.1	1159.4	936.3	860.7	75.6	0.37337	12.78	8.27	32
33	255.76	224.9	1159.9	935.0	859.1	75.8	0.37562	12.41	8.05	33

Pressure, Pounds per Square Inch.	Temperature, Degrees Fahr. <i>t</i>	Heat of the Liquid <i>q</i>	Total Heat, <i>λ</i>	Heat of Vaporization <i>r</i>	Heat equivalent of Internal Work, <i>p</i>	Heat equivalent of External Work, <i>Aρn</i>	Entropy of the Liquid $\int \frac{cdt}{T}$	Specific Volume <i>s</i>	Weight, in Pounds, of one Cubic Foot. <i>γ</i>	DENSITY.
										P
34	257.50 ₁₀₀	226.7	1160.4	933.7	857.8	75.9	0.3787	12.07 ₃₂	0.08280 ₂₂₈	34
35	259.19 ₁₀₀	228.4	1161.0	932.6	856.6	76.0	0.3811	11.73 ₃₀	0.08508 ₂₂₃	35
36	260.85 ₁₀₀	230.0	1161.5	931.5	855.3	76.2	0.3834	11.46 ₂₉	0.08730 ₂₂₈	36
37	262.47 ₁₅₀	231.7	1162.0	930.3	854.0	76.3	0.3856	11.16 ₂₈	0.08964 ₂₂₇	37
38	264.06 ₁₅₅	233.3	1162.5	929.2	852.8	76.4	0.3878	10.88 ₂₆	0.09191 ₂₂₆	38
39	265.61 ₁₅₅	234.8	1163.0	928.2	851.7	76.5	0.3900	10.62 ₂₅	0.09417 ₂₂₇	39
40	267.13 ₁₄₉	236.4	1163.4	927.0	850.3	76.7	0.3921	10.37 ₂₄	0.09644 ₂₂₅	40
41	268.62 ₁₄₆	237.0	1163.9	926.0	849.2	76.8	0.3942	10.13 ₂₂	0.09860 ₂₂₁	41
42	270.08 ₁₄₃	239.3	1164.3	925.0	848.1	76.9	0.3962	9.90 ₂₁₆	0.10000 ₂₂₁	42
43	271.51 ₁₄₀	240.8	1164.8	924.0	847.0	77.0	0.3982	9.69 ₂₀₆	0.1032 ₂₂	43
44	272.94 ₁₃₈	242.2	1165.2	923.0	845.9	77.1	0.4001	9.484 ₁₉₇	0.1054 ₂₃	44
45	274.29 ₁₃₆	243.6	1165.6	922.0	844.8	77.2	0.4020	9.287 ₁₉₀	0.1077 ₂₂	45
46	275.65 ₁₃₄	245.0	1166.0	921.0	843.7	77.3	0.4038	9.097 ₁₈₃	0.1099 ₂₃	46
47	276.99 ₁₃₁	246.3	1166.4	920.1	842.7	77.4	0.4056	8.914 ₁₇₄	0.1122 ₂₂	47
48	278.30 ₁₂₉	247.6	1166.8	919.2	841.7	77.5	0.4074	8.740 ₁₆₇	0.1144 ₂₂	48
49	279.58 ₁₂₇	248.9	1167.2	918.3	840.7	77.6	0.4092	8.573 ₁₅₉	0.1166 ₂₂	49
50	280.85 ₁₂₅	250.2	1167.6	917.4	839.7	77.7	0.4109	8.414 ₁₅₅	0.1188 ₂₃	50
51	282.10 ₁₂₂	251.5	1168.0	916.5	838.7	77.8	0.4126	8.250 ₁₄₉	0.1211 ₂₂	51
52	283.32 ₁₂₁	252.7	1168.4	915.7	837.8	77.9	0.4143	8.110 ₁₄₂	0.1233 ₂₂	52
53	284.53 ₁₁₉	253.9	1168.7	914.8	836.8	78.0	0.4160	7.968 ₁₃₈	0.1255 ₂₂	53
54	285.72 ₁₁₇	255.1	1169.1	914.0	835.9	78.1	0.4175	7.820 ₁₃₃	0.1277 ₂₂	54
55	286.89 ₁₁₆	256.3	1169.4	913.1	834.9	78.2	0.4191	7.600 ₁₂₈	0.1299 ₂₂	55
56	288.05 ₁₁₄	257.5	1169.8	912.3	834.0	78.3	0.4207	7.508 ₁₂₅	0.1321 ₂₃	56
57	289.10 ₁₁₂	258.6	1170.1	911.5	833.1	78.4	0.4222	7.443 ₁₂₀	0.1344 ₂₂	57
58	290.31 ₁₁₁	259.7	1170.5	910.8	832.4	78.4	0.4237	7.323 ₁₁₅	0.1360 ₂₁	58
59	291.42 ₁₀₉	260.8	1170.8	910.0	831.5	78.5	0.4252	7.208 ₁₁₂	0.1387 ₂₂	59
60	292.51 ₁₀₈	261.9	1171.2	909.3	830.7	78.6	0.4267	7.096 ₁₀₉	0.1409 ₂₂	60
61	293.50 ₁₀₆	263.0	1171.5	908.5	829.8	78.7	0.4281	6.987 ₁₀₅	0.1431 ₂₂	61
62	294.65 ₁₀₅	264.1	1171.8	907.7	828.9	78.8	0.4295	6.882 ₁₀₃	0.1453 ₂₂	62
63	295.70 ₁₀₄	265.2	1172.1	906.9	828.0	78.9	0.4309	6.779 ₉₉	0.1475 ₂₂	63
64	296.74 ₁₀₃	266.2	1172.4	906.2	827.3	78.9	0.4323	6.680 ₉₇	0.1497 ₂₂	64
65	297.77 ₁₀₁	267.2	1172.7	905.5	826.5	79.0	0.4337	6.583 ₉₃	0.1519 ₂₂	65
66	298.78 ₉₉	268.3	1173.0	904.7	825.6	79.1	0.4350	6.490 ₈₉	0.1541 ₂₁	66
67	299.77 ₉₉	269.3	1173.3	904.0	824.8	79.2	0.4363	6.401 ₈₇	0.1562 ₂₂	67
68	300.70 ₉₈	270.3	1173.6	903.3	824.1	79.2	0.4370	6.314 ₈₆	0.1584 ₂₂	68
69	301.74 ₉₇	271.2	1173.9	902.7	823.4	79.3	0.4389	6.228 ₈₄	0.1606 ₂₂	69
70	302.71 ₉₅	272.2	1174.3	902.1	822.7	79.4	0.4402	6.144 ₈₁	0.1628 ₂₁	70
71	303.66 ₉₅	273.2	1174.6	901.4	821.9	79.5	0.4415	6.063 ₇₀	0.1649 ₂₂	71

SATURATED STEAM—Continued.

Pressure, Pounds per Square Inch.	Temperature, Degrees Fahr.	Heat of the Liquid.	λ	Total Heat,	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	$\frac{1}{T} \cdot R$	Specific Volume,	Weight, g. Cubic Centimeters.	Density
74	306.46 ₉₂	276.0	1175.4	899.4	819.7	79.7	0.4452	5.834 ₇₂	0.1714		
75	307.32 ₉₀	276.9	1175.7	898.8	819.1	79.7	0.4461	5.762 ₇₂	0.1733		
76	308.28 ₉₀	277.8	1176.0	898.2	818.4	79.8	0.4476	5.691 ₇₁	0.1751		
77	309.18 ₈₈	278.7	1176.2	897.5	817.6	79.9	0.4487	5.621 ₆₇	0.1770		
78	310.00 ₈₈	279.6	1176.5	896.9	817.0	79.9	0.4496	5.551 ₆₇	0.1791		
79	310.94 ₈₆	280.5	1176.8	896.3	816.3	80.0	0.4511	5.488 ₆₃	0.1822		
80	311.80 ₈₆	281.4	1177.0	895.6	815.5	80.1	0.4522	5.425 ₆₃	0.1843		
81	312.66 ₈₅	282.3	1177.3	895.0	814.9	80.1	0.4534	5.362 ₆₁	0.1865		
82	313.51 ₈₅	283.2	1177.6	894.4	814.2	80.2	0.4545	5.301 ₆₁	0.1886		
83	314.36 ₈₃	284.1	1177.8	893.7	813.4	80.3	0.4557	5.240 ₅₈	0.1908		
84	315.19 ₈₃	285.0	1178.1	893.1	812.8	80.3	0.4568	5.182 ₅₇	0.1933		
85	316.02 ₈₂	285.8	1178.3	892.5	812.1	80.4	0.4579	5.125 ₅₆	0.1951		
86	316.84 ₈₁	286.7	1178.6	891.9	811.5	80.4	0.4590	5.069 ₅₅	0.1971		
87	317.65 ₈₀	287.5	1178.8	891.3	810.8	80.5	0.4601	5.014 ₅₃	0.1991		
88	318.45 ₈₀	288.4	1179.1	890.7	810.2	80.5	0.4619	4.961 ₅₃	0.2011		
89	319.25 ₇₉	289.2	1179.3	890.1	809.5	80.6	0.4632	4.909 ₅₁	0.2037		
90	320.04 ₇₇	290.0	1179.6	889.6	808.9	80.7	0.4633	4.858 ₅₀	0.2054		
91	320.83 ₇₇	290.8	1179.8	889.0	808.3	80.7	0.4643	4.808 ₄₈	0.2084		
92	321.60 ₇₇	291.6	1180.0	888.4	807.6	80.8	0.4653	4.760 ₄₈	0.2104		
93	322.37 ₇₇	292.4	1180.3	887.9	807.1	80.8	0.4663	4.712 ₄₇	0.2122		
94	323.14 ₇₅	293.2	1180.5	887.3	806.4	80.9	0.4673	4.665 ₄₆	0.2144		
95	323.89 ₇₅	294.0	1180.7	886.7	805.8	80.9	0.4683	4.619 ₄₆	0.2164		
96	324.64 ₇₄	294.8	1181.0	886.2	805.2	81.0	0.4693	4.574 ₄₅	0.2184		
97	325.38 ₇₄	295.6	1181.2	885.6	804.6	81.0	0.4703	4.530 ₄₄	0.2204		
98	326.12 ₇₄	296.4	1181.4	885.0	803.9	81.1	0.4713	4.486 ₄₂	0.2224		
99	326.86 ₇₂	297.1	1181.6	884.5	803.4	81.1	0.4723	4.444 ₄₁	0.2247		
100	327.58 ₇₂	297.9	1181.8	884.0	802.8	81.2	0.4733	4.403 ₄₁	0.2274		
101	328.30 ₇₂	298.6	1182.1	883.5	802.3	81.2	0.4743	4.362 ₄₀	0.2294		
102	329.02 ₇₁	299.4	1182.3	882.9	801.6	81.3	0.4753	4.322 ₄₀	0.2314		
103	329.73 ₇₀	300.1	1182.5	882.4	801.1	81.3	0.4762	4.282 ₃₈	0.2334		
104	330.43 ₇₀	300.9	1182.7	881.8	800.4	81.4	0.4771	4.244 ₃₇	0.2354		
105	331.13 ₇₀	301.6	1182.9	881.3	799.9	81.4	0.4780	4.206 ₃₇	0.2374		
106	331.83 ₆₉	302.3	1183.1	880.8	799.5	81.5	0.4790	4.166 ₃₇	0.2394		
107	332.52 ₆₈	303.0	1183.4	880.4	798.9	81.5	0.4799	4.132 ₃₆	0.2414		
108	333.20 ₆₈	303.8	1183.6	879.8	798.2	81.6	0.4808	4.096 ₃₆	0.2434		
109	333.88 ₆₈	304.5	1183.8	879.3	797.7	81.6	0.4817	4.060 ₃₅	0.2454		

P	T	T	q	λ	Total Heat.	Heat of Vaporization	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid	Specific Volume	DENSITY.		P
											γ	γ	
114	337.20 ₅₆	308.0	1184.8	876.8	795.0	81.8	0.4860	3.894 ₃₂	0.2568 ₂₁	114			
115	337.86 ₅₆	308.7	1185.0	876.3	794.4	81.9	0.4860	3.862 ₃₁	0.2589 ₂₁	115			
116	338.50 ₅₄	309.4	1185.2	875.8	793.9	81.9	0.4877	3.831 ₃₀	0.2610 ₂₁	116			
117	339.14 ₆₄	310.0	1185.4	875.4	793.5	81.9	0.4886	3.801 ₃₁	0.2631 ₂₂	117			
118	339.78 ₆₄	310.7	1185.6	874.9	792.9	82.0	0.4894	3.770 ₃₀	0.2653 ₂₁	118			
119	340.42 ₆₄	311.4	1185.8	874.4	792.4	82.0	0.4903	3.740 ₂₉	0.2674 ₂₁	119			
120	341.05 ₆₂	312.0	1186.0	874.0	791.9	82.1	0.4911	3.711 ₂₈	0.2695 ₂₀	120			
121	341.67 ₆₂	312.7	1186.2	873.5	791.4	82.1	0.4919	3.683 ₂₈	0.2715 ₂₁	121			
122	342.29 ₆₂	313.3	1186.3	873.0	790.8	82.2	0.4927	3.655 ₂₈	0.2730 ₂₁	122			
123	342.91 ₆₁	314.0	1186.5	872.5	790.3	82.2	0.4935	3.627 ₂₈	0.2757 ₂₂	123			
124	343.52 ₆₀	314.6	1186.7	872.1	789.0	82.2	0.4943	3.599 ₂₇	0.2779 ₂₁	124			
125	344.13 ₆₀	315.2	1186.9	871.7	789.4	82.3	0.4951	3.572 ₂₆	0.2800 ₂₀	125			
126	344.73 ₆₀	315.9	1187.1	871.2	788.9	82.3	0.4959	3.546 ₂₆	0.2820 ₂₁	126			
127	345.33 ₆₀	316.5	1187.3	870.8	788.4	82.4	0.4967	3.520 ₂₆	0.2841 ₂₁	127			
128	345.93 ₆₀	317.1	1187.4	870.3	787.9	82.4	0.4974	3.494 ₂₅	0.2862 ₂₁	128			
129	346.53 ₅₉	317.7	1187.6	869.9	787.5	82.4	0.4982	3.469 ₂₅	0.2883 ₂₁	129			
130	347.12 ₅₉	318.4	1187.8	869.4	786.9	82.5	0.4990	3.444 ₂₅	0.2904 ₂₁	130			
131	347.71 ₅₈	319.0	1188.0	869.0	786.5	82.5	0.4997	3.419 ₂₄	0.2925 ₂₁	131			
132	348.29 ₅₈	319.6	1188.2	868.6	786.1	82.5	0.5005	3.395 ₂₄	0.2946 ₂₁	132			
133	348.87 ₅₈	320.2	1188.4	868.2	785.6	82.6	0.5012	3.371 ₂₄	0.2967 ₂₁	133			
134	349.45 ₅₈	320.8	1188.6	867.7	785.1	82.6	0.5020	3.347 ₂₄	0.2988 ₂₁	134			
135	350.03 ₅₇	321.4	1188.7	867.3	784.7	82.6	0.5027	3.323 ₂₃	0.3009 ₂₁	135			
136	350.60 ₅₇	322.0	1188.9	866.9	784.2	82.7	0.5035	3.300 ₂₃	0.3030 ₂₁	136			
137	351.17 ₅₆	322.6	1189.0	866.4	783.7	82.7	0.5042	3.277 ₂₂	0.3051 ₂₁	137			
138	351.73 ₅₆	323.2	1189.2	866.0	783.3	82.7	0.5049	3.255 ₂₁	0.3072 ₂₀	138			
139	352.20 ₅₆	323.8	1189.4	865.6	782.8	82.8	0.5056	3.234 ₂₂	0.3092 ₂₁	139			
140	352.85 ₅₅	324.4	1189.5	865.1	782.3	82.8	0.5064	3.212 ₂₁	0.3113 ₂₁	140			
141	353.40 ₅₅	325.0	1189.7	864.7	781.0	82.8	0.5071	3.191 ₂₁	0.3134 ₂₁	141			
142	353.95 ₅₅	325.6	1189.9	864.3	781.4	82.9	0.5078	3.170 ₂₁	0.3155 ₂₁	142			
143	354.50 ₅₅	326.1	1190.1	864.0	781.1	82.9	0.5085	3.149 ₂₁	0.3176 ₂₁	143			
144	355.05 ₅₄	326.7	1190.2	863.5	780.0	82.9	0.5092	3.128 ₂₁	0.3197 ₂₁	144			
145	355.50 ₅₄	327.2	1190.4	863.2	780.2	83.0	0.5099	3.107 ₂₀	0.3218 ₂₁	145			
146	356.13 ₅₄	327.8	1190.6	862.8	779.8	83.0	0.5106	3.087 ₁₉	0.3239 ₂₀	146			
147	356.67 ₅₃	328.3	1190.7	862.4	779.4	83.0	0.5113	3.068 ₁₉	0.3259 ₂₁	147			
148	357.20 ₅₃	328.0	1190.9	862.0	778.9	83.1	0.5119	3.049 ₁₉	0.3280 ₂₀	148			
149	357.73 ₅₃	329.4	1191.0	861.6	778.5	83.1	0.5126	3.030 ₁₉	0.3300 ₂₁	149			
150	358.26 ₅₂	330.0	1191.2	861.2	778.1	83.1	0.5133	3.011 ₁₉	0.3321 ₂₁	150			
151	358.78 ₅₂	330.5	1191.4	860.9	777.7	83.2	0.5140	2.992 ₁₉	0.3342 ₂₁	151			

Pressure, Pounds per Square Inch. <i>p</i>	Temperature, Degrees Fahr. <i>t</i>	Heat of the Liquid. <i>q</i>	Heat of Vaporization. <i>r</i>	λ	Total Heat. <i>s</i>	μ	Heat equivalent of Internal Work. <i>p</i>	Heat equivalent of External Work. <i>μp</i>	Entropy of the Liquid. <i>s</i>	Specific Volume. <i>s</i>	DENSITY, in Pounds of Gas per Cubic Foot. γ	Pressure, Pounds per Square Inch. <i>P</i>
154	360.34 ₅₂	332.2	1191.8	850.6	776.3	83.3	0.5160	2.937	18	0.3105 ₂₁	154	
155	360.86 ₅₁	332.7	1192.0	850.3	776.0	83.3	0.5166	2.916	18	0.3126 ₂₁	155	
156	361.37 ₅₁ 51	333.3	1192.2	858.9	775.6	83.3	0.5173	2.901	18	0.3147 ₂₁ 20	156	
157	361.88 ₅₁	333.8	1192.3	858.5	775.2	83.3	0.5179	2.884	17	0.3167 ₂₁	157	
158	362.30 ₅₁	334.3	1192.5	858.12	774.8	83.4	0.5186	2.867	17	0.3188 ₂₁	158	
159	362.90 ₅₀	334.9	1192.7	857.8	774.4	83.4	0.5192	2.850	17	0.3209 ₂₁	159	
160	363.40 ₅₀	335.4	1192.8	857.4	774.0	83.4	0.5198	2.833	17	0.3230 ₂₁	160	
161	363.90 ₅₀	335.9	1193.0	857.1	773.7	83.4	0.5205	2.816	17	0.3251 ₂₁	161	
162	364.40 ₅₀	336.4	1193.1	856.7	772.2	83.5	0.5211	2.799	16	0.3272 ₂₁	162	
163	364.90 ₄₉	337.0	1193.3	856.3	772.8	83.5	0.5217	2.783	16	0.3293 ₂₁	163	
164	365.30 ₄₉	337.5	1193.4	855.9	772.4	83.5	0.5224	2.767	16	0.3314 ₂₁	164	
165	365.82 ₄₉	338.0	1193.6	855.6	772.0	83.6	0.5230	2.751	16	0.3335 ₂₀	165	
166	366.37 ₄₉	338.5	1193.7	855.2	771.6	83.6	0.5236	2.736	15	0.3355 ₂₀	166	
167	366.85 ₄₈	339.0	1193.9	854.9	771.3	83.6	0.5242	2.721	15	0.3375 ₂₀	167	
168	367.33 ₄₈	339.5	1194.0	854.5	770.9	83.6	0.5248	2.706	15	0.3395 ₂₁	168	
169	367.81 ₄₈	340.0	1194.2	854.2	770.5	83.7	0.5254	2.691	15	0.3416 ₂₁	169	
170	368.29 ₄₈	340.5	1194.3	853.8	770.1	83.7	0.5260	2.676	15	0.3437 ₂₁	170	
171	368.77 ₄₇	341.0	1194.4	853.4	769.7	83.7	0.5266	2.661	14	0.3458 ₂₀	171	
172	369.24 ₄₇	341.5	1194.6	853.1	769.4	83.7	0.5272	2.647	14	0.3478 ₂₀	172	
173	369.71 ₄₇	342.0	1194.7	852.7	768.9	83.8	0.5278	2.633	15	0.3498 ₂₁	173	
174	370.18 ₄₇	342.5	1194.8	852.3	768.5	83.8	0.5284	2.618	15	0.3520 ₂₁	174	
175	370.65 ₄₇	343.0	1195.0	852.0	768.2	83.8	0.5290	2.603	15	0.3541 ₂₁	175	
176	371.12 ₄₇	343.5	1195.1	851.6	767.8	83.8	0.5296	2.589	14	0.3562 ₂₁	176	
177	371.50 ₄₆	344.0	1195.3	851.3	767.5	83.8	0.5302	2.575	14	0.3583 ₂₁	177	
178	372.05 ₄₆	344.4	1195.4	851.0	767.1	83.9	0.5308	2.561	13	0.3604 ₂₁	178	
179	372.51 ₄₆ 46	344.9	1195.6	850.7	766.8	83.9	0.5314	2.548	13	0.3625 ₂₁ 20	179	
180	372.97 ₄₆	345.4	1195.7	850.3	766.4	83.9	0.5319	2.535	13	0.3645 ₂₁	180	
181	373.43 ₄₅	345.9	1195.9	850.0	766.1	83.9	0.5325	2.522	13	0.3666 ₂₁	181	
182	373.88 ₄₅	346.4	1196.0	849.6	765.6	84.0	0.5331	2.508	13	0.3687 ₂₁	182	
183	374.33 ₄₅	346.9	1196.1	849.3	765.3	84.0	0.5337	2.495	13	0.3708 ₂₁	183	
184	374.78 ₄₅	347.3	1196.2	848.9	764.9	84.0	0.5342	2.482	12	0.4020 ₂₀	184	
185	375.23 ₄₅	347.8	1196.4	848.6	764.6	84.0	0.5347	2.470	12	0.4040 ₂₀	185	
186	375.68 ₄₄	348.2	1196.5	848.3	764.3	84.0	0.5353	2.457	12	0.4070 ₂₀	186	
187	376.12 ₄₄	348.7	1196.6	847.9	763.8	84.1	0.5359	2.445	12	0.4090 ₂₁	187	
188	376.56 ₄₄	349.2	1196.8	847.6	763.5	84.1	0.5364	2.432	12	0.4111 ₂₁	188	
189	377.00 ₄₄	349.8	1196.9	847.3	763.2	84.1	0.5370	2.420	12	0.4132 ₂₁	189	
190	377.44 ₄₄	350.1	1197.1	847.0	762.9	84.1	0.5375	2.408	12	0.4153 ₂₁	190	

Pressure, Pounds per Square Inch.	Temperature, Degrees Fahr.	Heat of the Liquid	Total Heat.	Heat of Vaporization	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume	Weight, in Pounds, of one Cubic Foot.	DENSITY.	Pressure, Pounds per Square Inch.
										γ	
194	379.18 ₄₃	351.0	1197.6	845.7	761.5	84.2	0.5397	2.361 ₁₂	0.4236 ₂₁	194	
195	379.61 ₄₃	352.4	1197.7	845.3	761.1	84.2	0.5402	2.349 ₁₂	0.4257 ₂₁	195	
196	380.04 ₄₃	353.8	1197.8	845.0	760.8	84.2	0.5408	2.337 ₁₂	0.4278 ₂₀	196	
197	380.47 ₄₂	353.3	1198.0	844.7	760.4	84.3	0.5413	2.325 ₁₁	0.4298 ₂₀	197	
198	380.89 ₄₂	353.7	1198.1	844.4	760.1	84.3	0.5418	2.314 ₁₀	0.4318 ₂₀	198	
199	381.31 ₄₂	354.1	1198.2	844.1	759.8	84.3	0.5423	2.304 ₁₀	0.4338 ₂₁	199	
200	381.73 ₄₂	354.6	1198.4	843.8	759.5	84.3	0.5429	2.294 ₁₀	0.4359 ₂₀	200	
201	382.15 ₄₂	355.0	1198.5	843.5	759.1	84.4	0.5434	2.284 ₁₀	0.4370 ₂₀	201	
202	382.57 ₄₂	355.4	1198.6	843.2	758.8	84.4	0.5439	2.274 ₁₁	0.4390 ₂₁	202	
203	382.99 ₄₂	355.9	1198.8	842.9	758.5	84.4	0.5444	2.263 ₁₁	0.4420 ₂₁	203	
204	383.41 ₄₁	356.3	1198.9	842.6	758.2	84.4	0.5449	2.252 ₁₁	0.4441 ₂₀	204	
205	383.82 ₄₁	356.8	1199.0	842.2	757.8	84.4	0.5454	2.241 ₁₀	0.4461 ₂₁	205	
206	384.23 ₄₁	357.2	1199.1	841.9	757.4	84.5	0.5459	2.231 ₁₀	0.4482 ₂₁	206	
207	384.64 ₄₁	357.6	1199.3	841.7	757.2	84.5	0.5465	2.221 ₁₀	0.4503 ₂₁	207	
208	385.05 ₄₁	358.0	1199.4	841.4	756.9	84.5	0.5470	2.211 ₁₀	0.4524 ₂₀	208	
209	385.46 ₄₁	358.5	1199.5	841.0	756.5	84.5	0.5475	2.200 ₁₀	0.4544 ₂₁	209	
210	385.87 ₄₁	358.9	1199.6	840.7	756.2	84.5	0.5480	2.190 ₁₀	0.4565 ₂₁	210	
211	386.28 ₄₀	359.3	1199.8	840.5	756.0	84.5	0.5485	2.180 ₉	0.4586 ₂₁	211	
212	386.68 ₄₀	359.7	1199.9	840.2	755.6	84.6	0.5489	2.171 ₉	0.4607 ₂₁	212	
213	387.08 ₄₀	360.1	1200.0	839.9	755.3	84.6	0.5494	2.162 ₉	0.4627 ₂₀	213	
214	387.48 ₄₀	360.6	1200.1	839.5	754.9	84.6	0.5499	2.152 ₁₀	0.4648 ₂₁	214	
215	387.88 ₄₀	361.0	1200.2	839.2	754.6	84.6	0.5504	2.142 ₁₀	0.4669 ₂₁	215	
216	388.28 ₄₀	361.4	1200.4	839.0	754.4	84.6	0.5509	2.132 ₉	0.4690 ₂₁	216	
217	388.67 ₃₉	361.8	1200.5	838.7	754.1	84.6	0.5514	2.123 ₉	0.4711 ₂₀	217	
218	389.06 ₃₉	362.2	1200.6	838.4	753.8	84.6	0.5519	2.114 ₉	0.4731 ₂₀	218	
219	389.45 ₃₉	362.6	1200.7	838.1	753.4	84.7	0.5524	2.105 ₉	0.4751 ₂₁	219	
220	389.84 ₃₉	363.0	1200.8	837.8	753.1	84.7	0.5529	2.096 ₉	0.4772 ₂₀	220	
221	390.23 ₃₉	363.5	1201.0	837.5	752.8	84.7	0.5533	2.087 ₉	0.4792 ₂₁	221	
222	390.62 ₃₉	363.9	1201.1	837.2	752.5	84.7	0.5538	2.078 ₉	0.4813 ₂₁	222	
223	391.01 ₃₉	364.3	1201.2	836.9	752.2	84.7	0.5543	2.069 ₉	0.4834 ₂₁	223	
224	391.40 ₃₉	364.7	1201.3	836.6	751.9	84.7	0.5548	2.000 ₉	0.4855 ₂₁	224	
225	391.79 ₃₈	365.1	1201.4	836.3	751.6	84.7	0.5553	2.051 ₉	0.4870 ₂₁	225	
226	392.17 ₃₈	365.5	1201.6	836.1	751.3	84.8	0.5557	2.042 ₈	0.4890 ₂₁	226	
227	392.55 ₃₈	365.9	1201.7	835.8	751.0	84.8	0.5562	2.034 ₈	0.4917 ₂₀	227	
228	392.93 ₃₈	366.3	1201.8	835.5	750.7	84.8	0.5567	2.026 ₉	0.4930 ₂₀	228	
229	393.31 ₃₈	366.7	1201.9	835.2	750.4	84.8	0.5571	2.017 ₈	0.4950 ₂₀	229	
230	393.69 ₃₈	367.1	1202.0	834.9	750.1	84.8	0.5576	2.000 ₈	0.4970 ₂₁	230	
231	394.07 ₃₈	367.5	1202.1	834.6	749.8	84.8	0.5581	2.001 ₉	0.5000 ₂₁	231	

Pressure, Pounds per Square Inch.	Temperature, Degrees Fahr. F	Heat of Vaporization.							Heat equivalent of Internal Work,	A/α	$\int \frac{dt}{T}$	Specific Volume in feet	Weight, in Pounds, of one Cubic Foot.	DENSITY, Pounds per Square Inch.
		ρ	η	λ	Total Heat,	Heat of Liquid.	γ	κ						
234	395.19 ³⁷	368.6	1202.5	\$333.9	749.0	84.9	0.5504	1.976 _S	0.50032 ₂₀	234				
235	395.50 ³⁷	360.0	1202.6	\$333.6	748.7	84.9	0.5509	1.968 _S	0.50082 ₂₁	235				
236	395.93 ³⁷	360.4	1202.7	\$333.3	748.4	84.9	0.5503	1.960 _S	0.51032 ₂₀	236				
237	396.30 ³⁷	360.8	1202.8	\$333.0	748.1	84.9	0.5608	1.952 _S	0.5123 ₂₁	237				
238	396.67 ³⁷	370.2	1202.9	\$32.7	747.8	84.9	0.5612	1.944 _S	0.5144 ₂₁	238				
239	397.04 ³⁷	370.6	1203.0	\$32.4	747.5	84.9	0.5617	1.936 _S	0.5165 ₂₁	239				
240	397.41 ³⁶	371.0	1203.2	\$32.2	747.3	84.9	0.5621	1.928 _S	0.5186 ₂₀	240				
241	397.77 ³⁶	371.3	1203.3	\$32.0	747.0	85.0	0.5626	1.921 _S	0.5206 ₂₀	241				
242	398.15 ³⁶	371.7	1203.4	\$31.7	746.7	85.0	0.5630	1.913 _S	0.5226 ₂₁	242				
243	398.49 ³⁶	372.1	1203.5	\$31.4	746.4	85.0	0.5635	1.906 _S	0.5247 ₂₁	243				
244	398.85 ³⁶	372.5	1203.6	\$31.1	746.1	85.0	0.5639	1.898 _S	0.5268 ₂₁	244				
245	399.21 ³⁶	372.8	1203.7	\$30.9	745.9	85.0	0.5643	1.891 _S	0.5289 ₂₁	245				
246	399.57 ³⁶	373.2	1203.8	\$30.6	745.6	85.0	0.5648	1.883 _S	0.5311 ₂₁	246				
247	399.93 ³⁶	373.6	1203.9	\$30.3	745.3	85.0	0.5652	1.875 _S	0.5332 ₂₁	247				
248	400.29 ³⁶	374.0	1204.0	\$30.0	745.0	85.0	0.5656	1.868 _S	0.5353 ₂₁	248				
249	400.64 ³⁵	374.3	1204.1	\$29.8	744.8	85.0	0.5661	1.861 _S	0.5374 ₂₀	249				
250	400.99 ³⁵	374.7	1204.2	\$29.5	744.5	85.0	0.5665	1.854 _S	0.5396 ₂₀	250				
251	401.34 ³⁵	375.1	1204.3	\$29.3	744.2	85.1	0.5669	1.847 _S	0.5413 ₂₀	251				
252	401.69 ³⁵	375.4	1204.5	\$29.1	744.0	85.1	0.5673	1.840 _S	0.5433 ₂₁	252				
253	402.04 ³⁵	375.8	1204.6	\$28.8	743.7	85.1	0.5678	1.833 _S	0.5454 ₂₁	253				
254	402.39 ³⁵	376.2	1204.7	\$28.5	743.4	85.1	0.5682	1.826 _S	0.5475 ₂₁	254				
255	402.74 ³⁵	376.5	1204.8	\$28.3	743.2	85.1	0.5686	1.819 _S	0.5496 ₂₁	255				
256	403.09 ³⁵	376.9	1204.9	\$28.0	742.9	85.1	0.5690	1.812 _S	0.5517 ₂₁	256				
257	403.44 ³⁵	377.3	1205.0	\$27.7	742.6	85.1	0.5695	1.805 _S	0.5538 ₂₁	257				
258	403.79 ³⁴	377.0	1205.1	\$27.5	742.4	85.1	0.5699	1.798 _S	0.5558 ₂₁	258				
259	404.13 ³⁴	378.0	1205.2	\$27.2	742.1	85.1	0.5703	1.792 _S	0.5580 ₂₁	259				
260	404.47 ³⁴	378.4	1205.3	\$26.9	741.7	85.2	0.5707	1.785 _S	0.5601 ₂₀	260				
261	404.81 ³⁴	378.7	1205.4	\$26.7	741.5	85.2	0.5711	1.779 _S	0.5621 ₂₁	261				
262	405.15 ³⁴	379.1	1205.5	\$26.4	741.2	85.2	0.5715	1.773 _S	0.5642 ₂₁	262				
263	405.49 ³⁴	379.4	1205.6	\$26.2	741.0	85.2	0.5719	1.766 _S	0.5663 ₂₁	263				
264	405.83 ³⁴	379.8	1205.7	\$25.9	740.7	85.2	0.5724	1.759 _S	0.5684 ₂₁	264				
265	406.17 ³⁴	380.2	1205.8	\$25.6	740.4	85.2	0.5728	1.753 _S	0.5705 ₂₁	265				
266	406.51 ³³	380.5	1205.9	\$25.4	740.2	85.2	0.5732	1.746 _S	0.5726 ₂₀	266				
267	406.84 ³⁴	380.8	1206.0	\$25.2	740.0	85.2	0.5736	1.740 _S	0.5746 ₂₁	267				
268	407.18 ³⁴	381.2	1206.1	\$24.9	739.7	85.2	0.5740	1.734 _S	0.5767 ₂₁	268				
269	407.52 ³³	381.5	1206.2	\$24.7	739.5	85.2	0.5744	1.728 _S	0.5788 ₂₁	269				
270	407.85 ³³	381.9	1206.3	\$24.4	739.2	85.2	0.5748	1.722 _S	0.5809 ₂₀	270				
271	408.18 ³³	382.3	1206.4	\$24.1	739.0	85.2	0.5752	1.716 _S	0.5830 ₂₀	271				

Pressure, Pounds per Square Inch.	Temperature, Degrees Fahr. F	Heat of the Liquid. q	Total Heat. λ	Heat of Vaporization. r	Heat equivalent of Internal Work. p	Heat equivalent of External Work. Apu	$\int \frac{cdt}{T}$	Specific Volume. s	Weight, in Pounds, of one Cubic Foot. γ	DENSITY.	Pressure, Pounds per Square Inch.
										P	
274	409.17 ₃₃	380.3	1206.7	823.4	738.1	85.3	0.5764	1.697 ₆	0.5892 ₂₁	274	
275	409.50 ₃₃	383.6	1206.8	823.2	737.9	85.3	0.5768	1.691 ₆	0.5913 ₂₁	275	
276	409.83 ₃₃	384.0	1206.9	822.9	737.6	85.3	0.5772	1.685 ₆	0.5934 ₂₁	276	
277	410.16 ₃₂	384.3	1207.0	822.7	737.4	85.3	0.5776	1.679 ₆	0.5955 ₂₁	277	
278	410.48 ₃₂	384.6	1207.1	822.5	737.2	85.3	0.5779	1.673 ₅	0.5976 ₂₁	278	
279	410.80 ₃₂	385.0	1207.2	822.2	736.9	85.3	0.5783	1.668 ₆	0.5997 ₂₃	279	
280	411.12 ₃₃	385.3	1207.3	822.0	736.7	85.3	0.5787	1.662 ₆	0.602 ₂	280	
281	411.44 ₃₂	385.6	1207.4	821.8	736.5	85.3	0.5791	1.656 ₆	0.604 ₂	281	
282	411.76 ₃₂	386.0	1207.5	821.5	736.2	85.3	0.5795	1.650 ₅	0.606 ₂	282	
283	412.08 ₃₂	386.3	1207.6	821.3	736.0	85.3	0.5799	1.645 ₆	0.608 ₂	283	
284	412.40 ₃₂	386.6	1207.7	821.1	735.8	85.3	0.5803	1.639 ₅	0.610 ₂	284	
285	412.72 ₃₂	387.0	1207.8	820.8	735.5	85.3	0.5806	1.634 ₅	0.612 ₂	285	
286	413.04 ₃₂	387.3	1207.9	820.6	735.3	85.3	0.5810	1.628 ₅	0.614 ₂	286	
287	413.36 ₃₂	387.7	1208.0	820.3	735.0	85.3	0.5814	1.623 ₆	0.616 ₂	287	
288	413.68 ₃₂	388.0	1208.1	820.1	734.7	85.4	0.5818	1.617 ₆	0.618 ₂	288	
289	414.00 ₃₂	388.3	1208.2	819.9	734.5	85.4	0.5822	1.612 ₅	0.620 ₂	289	
290	414.32 ₃₁	388.6	1208.3	819.7	734.3	85.4	0.5826	1.607 ₆	0.622 ₃	290	
291	414.63 ₃₁	389.0	1208.4	819.4	734.0	85.4	0.5829	1.601 ₅	0.625 ₂	291	
292	414.94 ₃₁	389.3	1208.5	819.2	733.8	85.4	0.5833	1.596 ₅	0.627 ₂	292	
293	415.25 ₃₁	389.6	1208.6	819.0	733.6	85.4	0.5837	1.591 ₆	0.629 ₂	293	
294	415.56 ₃₁	390.0	1208.7	818.7	733.3	85.4	0.5840	1.585 ₅	0.631 ₂	294	
295	415.87 ₃₁	390.3	1208.8	818.5	733.1	85.4	0.5844	1.580 ₅	0.633 ₂	295	
296	416.18 ₃₁	390.6	1208.9	818.3	732.9	85.4	0.5848	1.575 ₅	0.635 ₂	296	
297	416.49 ₃₁	390.9	1209.0	818.1	732.7	85.4	0.5851	1.570 ₆	0.637 ₂	297	
298	416.80 ₃₁	391.3	1209.1	817.8	732.4	85.4	0.5855	1.564 ₅	0.639 ₂	298	
299	417.11 ₃₁	391.6	1209.2	817.6	732.2	85.4	0.5859	1.559 ₅	0.641 ₃	299	
300	417.42 ₃₀	391.9	1209.3	817.4	732.0	85.4	0.5863	1.554 ₅	0.644 ₂	300	
301	417.73 ₃₀	392.2	1209.3	817.1	731.7	85.4	0.5866	1.549 ₅	0.646 ₂	301	
302	418.02 ₃₀	392.5	1209.4	816.9	731.5	85.4	0.5870	1.544 ₅	0.648 ₂	302	
303	418.32 ₃₀	392.8	1209.5	816.7	731.3	85.4	0.5873	1.539 ₅	0.650 ₂	303	
304	418.62 ₃₀	393.2	1209.6	816.4	731.0	85.4	0.5877	1.534 ₅	0.652 ₂	304	
305	418.92 ₃₀	393.5	1209.7	816.2	730.8	85.4	0.5880	1.529 ₅	0.654 ₂	305	
306	419.22 ₃₀	393.8	1209.8	816.0	730.6	85.4	0.5884	1.524 ₄	0.656 ₂	306	
307	419.52 ₃₀	394.1	1209.9	815.8	730.4	85.4	0.5888	1.520 ₅	0.658 ₂	307	
308	419.82 ₃₀	394.4	1210.0	815.6	730.2	85.4	0.5891	1.515 ₅	0.660 ₂	308	
309	420.12 ₃₀	394.7	1210.1	815.4	730.0	85.4	0.5895	1.510 ₅	0.662 ₂	309	
310	420.42 ₃₀	395.0	1210.2	815.2	729.8	85.4	0.5898	1.505 ₅	0.664 ₂	310	

Pressure, Pounds per Square Inch.	Temperature, Degrees Fahr.	Heat of the Liquid.				Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	$\int \frac{cdT}{T}$	Specific Volume.	DENSITY.	
		P	T	q	λ						γ	P
314	421.62 ₃₀	306.3	1210.5	814.2	728.7	85.5	0.5913	1.486 ₅	0.673 ₂	314		
315	421.92 ₂₉	306.6	1210.6	814.0	728.5	85.5	0.5916	1.481 ₅	0.675 ₂	315		
316	422.21 ₂₉	306.9	1210.7	813.8	728.3	85.5	0.5919	1.477 ₅	0.677 ₂	316		
317	422.50 ₂₉	307.2	1210.8	813.6	728.1	85.5	0.5923	1.472 ₄	0.670 ₂	317		
318	422.79 ₂₉	307.5	1210.9	813.4	727.9	85.5	0.5926	1.468 ₄	0.681 ₂	318		
319	423.08 ₂₉	307.8	1211.0	813.2	727.7	85.5	0.5930	1.464 ₅	0.683 ₂	319		
320	423.37 ₂₉	308.1	1211.1	813.0	727.5	85.5	0.5933	1.459 ₅	0.685 ₃	320		
321	423.66 ₂₉	308.4	1211.2	812.8	727.3	85.5	0.5937	1.454 ₄	0.688 ₂	321		
322	423.95 ₂₉	308.7	1211.2	812.5	727.0	85.5	0.5940	1.450 ₄	0.690 ₂	322		
323	424.24 ₂₉	309.0	1211.3	812.3	726.8	85.5	0.5944	1.445 ₄	0.692 ₂	323		
324	424.53 ₂₉	309.3	1211.4	812.1	726.6	85.5	0.5947	1.441 ₄	0.694 ₂	324		
325	424.82 ₂₈	309.6	1211.5	811.9	726.4	85.5	0.5950	1.437 ₄	0.696 ₂	325		
326	425.10 ₂₈	309.9	1211.6	811.7	726.2	85.5	0.5954	1.432 ₄	0.698 ₂	326		
327	425.38 ₂₉	400.2	1211.7	811.5	726.0	85.5	0.5957	1.428 ₄	0.700 ₂	327		
328	425.67 ₂₉	400.5	1211.8	811.3	725.8	85.5	0.5960	1.424 ₄	0.702 ₂	328		
329	425.96 ₂₈	400.8	1211.9	811.1	725.6	85.5	0.5964	1.420 ₅	0.704 ₃	329		
330	426.24 ₂₈	401.1	1212.0	810.8	725.3	85.5	0.5967	1.415 ₄	0.707 ₂	330		
331	426.52 ₂₈	401.4	1212.0	810.6	725.1	85.5	0.5970	1.411 ₄	0.709 ₂	331		
332	426.80 ₂₈	401.7	1212.1	810.4	724.9	85.5	0.5974	1.407 ₄	0.711 ₂	332		
333	427.08 ₂₈	402.0	1212.2	810.2	724.7	85.5	0.5977	1.403 ₄	0.713 ₂	333		
334	427.36 ₂₈	402.3	1212.3	810.0	724.5	85.5	0.5980	1.399 ₄	0.715 ₂	334		
335	427.64 ₂₈	402.6	1212.4	809.8	724.3	85.5	0.5984	1.395 ₄	0.717 ₂	335		
336	427.92 ₂₈	402.0	1212.5	809.6	724.1	85.5	0.5987	1.391 ₄	0.719 ₂	336		

TABLE III.

SATURATED STEAM.

FRENCH UNITS.

Temperature, Degrees Centi- grade.	Pressure, Millimeters of Mercury.	γ	λ	ρ	μ	A_{ph}	$\frac{cdt}{T}$	s	γ	DENSITY.	Temperature, Degrees Centi- grade.
α	β	γ	λ	ρ	μ	A_{ph}	$\frac{cdt}{T}$	s	γ	γ	α
0	4.602 ₃₃₉	0.000	606.5	606.5	575.5	31.0	0.00000	211.5 ₁₃₈	0.004730 ₃₂₇	0.004730 ₃₂₇	0
1	4.944 ₃₀₂	1.007	606.8	605.8	574.7	31.1	0.00367	197.7 ₁₃₁	0.005057 ₃₆₀	0.005057 ₃₆₀	1
2	5.303 ₂₈₆	2.014	607.1	605.1	573.9	31.2	0.00733	184.6 ₁₂₂	0.005417 ₃₈₃	0.005417 ₃₈₃	2
3	5.689 ₂₇₁	3.022	607.4	604.4	573.2	31.2	0.01098	172.4 ₁₁₂	0.005800 ₄₀₃	0.005800 ₄₀₃	3
4	6.100 ₂₅₀	4.029	607.7	603.7	572.4	31.3	0.01461	161.2 ₁₀₄	0.006203 ₄₂₇	0.006203 ₄₂₇	4
5	6.536 ₂₃₀	5.030	608.0	603.0	571.6	31.4	0.01823	150.8 ₉₆	0.006630 ₄₅₀	0.006630 ₄₅₀	5
6	7.001 ₂₁₅	6.040	608.3	602.3	570.8	31.5	0.02183	141.2 ₉₀	0.007080 ₄₈₁	0.007080 ₄₈₁	6
7	7.494 ₁₉₅	7.045	608.6	601.6	570.0	31.6	0.02542	132.2 ₈₃	0.007561 ₅₀₈	0.007561 ₅₀₈	7
8	8.019 ₁₇₇	8.049	608.9	600.9	569.3	31.6	0.02800	123.9 ₇₇	0.008060 ₅₂₉	0.008060 ₅₂₉	8
9	8.570 ₁₅₉	9.054	609.2	600.1	568.4	31.7	0.03255	116.2 ₇₂	0.008608 ₅₆₉	0.008608 ₅₆₉	9
10	9.107 ₁₃₈	10.058	609.6	599.5	567.7	31.8	0.03600	109.0 ₆₇	0.009177 ₆₀₂	0.009177 ₆₀₂	10
11	9.795 ₁₀₆₅	11.060	609.9	598.8	566.9	31.9	0.03902	102.3 ₆₂	0.009779 ₆₃₁	0.009779 ₆₃₁	11
12	10.480 ₇₀₄	12.061	610.2	598.1	566.1	32.0	0.04313	96.09 ₅₉₀	0.010418 ₆₇₁	0.010418 ₆₇₁	12
13	11.164 ₄₇₄	13.063	610.5	597.4	565.3	32.1	0.04663	90.19 ₅₄₃	0.011088 ₇₁	0.011088 ₇₁	13
14	11.911 ₇₉₁	14.064	610.8	596.7	564.5	32.2	0.05012	84.76 ₅₀₇	0.011770 ₇₆	0.011770 ₇₆	14
15	12.702 ₈₃₇	15.066	611.1	596.0	563.8	32.2	0.05350	79.69 ₄₇₂	0.012555 ₇₉	0.012555 ₇₉	15
16	13.530 ₈₈₄	16.066	611.4	595.3	563.0	32.3	0.05705	74.97 ₄₄₁	0.013348 ₈₃	0.013348 ₈₃	16
17	14.423 ₉₃₇	17.066	611.7	594.6	562.2	32.4	0.06050	70.56 ₄₁₂	0.014178 ₈₈	0.014178 ₈₈	17
18	15.390 ₉₈₀	18.066	612.0	593.9	561.4	32.5	0.06330	66.44 ₃₈₆	0.015059 ₉₃	0.015059 ₉₃	18
19	16.349 ₁₀₄₀	19.066	612.3	593.2	560.6	32.6	0.06735	62.58 ₃₆₀	0.015989 ₉₇	0.015989 ₉₇	19
20	17.305 ₁₁₀₃	20.066	612.6	592.5	559.8	32.7	0.07076	58.98 ₃₃₇	0.016951 ₁₀₃	0.016951 ₁₀₃	20
21	18.498 ₁₁₆₅	21.064	612.9	591.8	559.0	32.8	0.07415	55.61 ₃₁₅	0.017981 ₁₀₈	0.017981 ₁₀₈	21
22	19.003 ₁₂₂₀	22.063	613.2	591.1	558.2	32.9	0.07754	52.46 ₂₉₅	0.019000 ₁₁₄	0.019000 ₁₁₄	22
23	20.802 ₁₂₉₀	23.061	613.5	590.4	557.5	32.9	0.08091	49.51 ₂₇₇	0.020200 ₁₁₉	0.020200 ₁₁₉	23
24	22.188 ₁₃₆₀	24.050	613.8	589.7	556.7	33.0	0.08427	46.74 ₂₅₉	0.021391 ₁₂₆	0.021391 ₁₂₆	24
25	23.554 ₁₄₄₀	25.058	614.1	589.0	555.9	33.1	0.08762	44.15 ₂₄₃	0.022651 ₁₃₂	0.022651 ₁₃₂	25
26	24.004 ₁₅₁₆	26.053	614.4	588.3	555.1	33.2	0.09004	41.72 ₂₂₇	0.023971 ₁₃₈	0.023971 ₁₃₈	26
27	26.510 ₁₅₉₇	27.048	614.7	587.7	554.4	33.3	0.09426	39.45 ₂₁₄	0.025351 ₁₄₅	0.025351 ₁₄₅	27
28	28.107 ₁₆₇₀	28.042	615.0	587.0	553.6	33.4	0.09756	37.31 ₂₀₁	0.026801 ₁₅₃	0.026801 ₁₅₃	28
29	29.786 ₁₇₆₇	29.037	615.3	586.3	552.8	33.5	0.10085	35.30 ₁₈₈	0.028331 ₁₅₉	0.028331 ₁₅₉	29
30	31.553 ₁₈₅₈	30.032	615.7	585.7	552.1	33.6	0.10413	33.42 ₁₇₇	0.020021 ₁₆₈	0.020021 ₁₆₈	30

Temperature, Degrees Centi- grade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	Total Heat.	Heat of Vaporization	Heat equivalent of Internal Work.	Heat equivalent of External Work.	$\int \frac{cdt}{T}$	Specific Volume	Weight, in Kilos, of one Cubic Meter.	DENSITY.	Temperature, Degrees Centi- grade.
										γ	
t	μ	φ	λ	γ	μ	φ	A/μ	s	γ	t	
31	33.411	1953	31.027	610.0	585.0	551.3	33.7	0.10740	31.65	0.03160	31
32	35.364	2052	32.023	616.3	584.3	550.5	33.8	0.11067	29.98	0.03357	32
33	37.416	2155	33.018	616.6	583.6	549.7	33.9	0.11392	28.42	0.03519	33
34	39.571	2262	34.014	616.9	582.9	548.9	34.0	0.11710	26.94	0.03712	34
35	41.833	2374	35.009	617.2	582.2	548.2	34.0	0.12039	25.50	0.03913	35
36	44.207	2480	36.007	617.5	581.5	547.4	34.1	0.12362	24.25	0.04124	36
37	46.697	2611	37.005	617.8	580.8	546.6	34.2	0.12683	23.02	0.04344	37
38	49.308	2742	38.004	618.1	580.1	545.8	34.3	0.13004	21.86	0.04574	38
39	52.05	2860	39.002	618.4	579.4	545.0	34.4	0.13324	20.77	0.04815	39
40	54.91	301	40.0	618.7	578.7	544.2	34.5	0.1364	19.74	0.05006	40
41	57.92	314	41.0	619.0	578.0	543.4	34.6	0.1396	18.76	0.05320	41
42	61.00	329	42.0	619.3	577.3	542.6	34.7	0.1428	17.84	0.05604	42
43	64.35	345	43.0	619.6	576.6	541.8	34.8	0.1459	16.98	0.05889	43
44	67.80	360	44.0	619.9	575.9	541.0	34.9	0.1491	16.16	0.06187	44
45	71.40	376	45.0	620.2	575.2	540.2	35.0	0.1522	15.30	0.06497	45
46	75.10	394	46.0	620.5	574.5	539.4	35.1	0.1554	14.66	0.06822	46
47	79.10	411	47.0	620.8	573.8	538.6	35.2	0.1585	13.97	0.07160	47
48	83.21	430	48.0	621.1	573.1	537.8	35.3	0.1617	13.31	0.07512	48
49	87.51	447	49.0	621.4	572.4	537.0	35.4	0.1648	12.69	0.07875	49
50	91.98	467	50.0	621.8	571.8	536.3	35.5	0.1679	12.11	0.08250	50
51	96.05	489	51.0	622.1	571.1	535.5	35.6	0.1710	11.56	0.08653	51
52	101.54	510	52.1	622.4	570.3	534.6	35.7	0.1741	11.03	0.09060	52
53	106.04	531	53.1	622.7	569.6	533.8	35.8	0.1772	10.53	0.09497	53
54	111.05	554	54.1	623.0	568.9	533.0	35.9	0.1803	10.06	0.00040	54
55	117.10	576	55.1	623.3	568.2	532.2	36.0	0.1833	9.61	0.10414	55
56	123.25	601	56.1	623.6	567.5	531.4	36.1	0.1864	9.18	0.10894	56
57	129.26	625	57.1	623.9	566.8	530.7	36.1	0.1805	8.78	0.11390	57
58	135.51	651	58.1	624.2	566.1	529.9	36.2	0.1925	8.39	0.11915	58
59	142.02	678	59.1	624.5	565.4	529.1	36.3	0.1956	8.03	0.12455	59
60	148.80	705	60.1	624.8	564.7	528.3	36.4	0.1986	7.687	0.13015	60
61	155.85	733	61.1	625.1	564.0	527.5	36.5	0.2016	7.302	0.13586	61
62	163.18	762	62.1	625.4	563.3	526.7	36.6	0.2046	7.051	0.14186	62
63	170.80	792	63.1	625.7	562.6	525.9	36.7	0.2076	6.754	0.14816	63
64	178.72	823	64.2	626.0	561.8	525.0	36.8	0.2106	6.470	0.15467	64
65	186.05	855	65.2	626.3	561.1	524.2	36.9	0.2136	6.201	0.16189	65
66	195.50	888	66.2	626.6	560.4	523.4	37.0	0.2166	5.947	0.16829	66
67	204.38	922	67.2	626.9	559.7	522.6	37.1	0.2196	5.705	0.17537	67
68	213.60	957	68.2	627.2	559.0	521.8	37.2	0.2225	5.472	0.18277	68
69	223.99	997	69.2	627.5	558.3	521.0	37.3	0.2254	5.250	0.19058	69

Temperature, Degrees Cent. grade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.						Heat equivalent of Internal Work, A_{phu}	Heat equivalent of External Work, $\int \frac{cdT}{T}$	Entropy of the Liquid.	Specific Volume, s	Weight, in Kilos, of one Cubic Meter, γ	DENSITY.	Temperature, Degrees Cent. grade.
		t	p	η	λ	r	Total Heat,							
71	243.30 ¹⁰⁶⁸	71.2	628.2	557.0	519.5	37.5	0.2313	4.839 ¹⁹¹	0.2067 ⁸⁴	71				
72	254.07 ¹¹⁰⁷	72.2	628.5	558.3	518.7	37.6	0.2342	4.648 ¹⁸³	0.2153 ⁸⁸	72				
73	265.14 ¹¹⁴⁸	73.2	628.8	559.6	517.0	37.7	0.2371	4.465 ¹⁷⁴	0.2239 ⁹¹	73				
74	276.02 ¹¹⁸⁹	74.2	629.1	554.9	517.1	37.8	0.2400	4.291 ¹⁶⁷	0.2330 ⁹⁵	74				
75	288.51 ¹²³²	75.2	629.4	554.2	516.3	37.9	0.2420	4.124 ¹⁵⁹	0.2425 ⁹⁷	75				
76	300.83 ¹²⁷⁶	76.2	629.7	553.5	515.5	38.0	0.2458	3.905 ¹⁵²	0.2522 ¹⁰¹	76				
77	313.59 ¹³²¹	77.3	630.0	552.7	514.0	38.1	0.2487	3.813 ¹⁴⁵	0.2623 ¹⁰³	77				
78	326.80 ¹³⁶⁸	78.3	630.3	552.0	513.8	38.2	0.2516	3.608 ¹³⁹	0.2726 ¹⁰⁷	78				
79	340.48 ¹⁴¹⁵	79.3	630.6	551.3	513.0	38.3	0.2544	3.529 ¹³²	0.2833 ¹¹¹	79				
80	354.63 ¹⁴⁶⁴	80.3	630.9	550.6	512.3	38.3	0.2573	3.397 ¹²⁷	0.2944 ¹¹⁴	80				
81	369.27 ¹⁵¹⁴	81.3	631.2	549.9	511.5	38.4	0.2601	3.270 ¹²¹	0.3058 ¹¹⁸	81				
82	384.41 ¹⁵⁶⁷	82.3	631.5	549.2	510.7	38.5	0.2630	3.149 ¹¹⁶	0.3176 ¹²²	82				
83	400.08 ¹⁶¹⁹	83.3	631.8	548.5	509.9	38.6	0.2658	3.033 ¹¹¹	0.3208 ¹²⁵	83				
84	416.27 ¹⁶⁷⁴	84.3	632.1	547.8	509.1	38.7	0.2686	2.922 ¹⁰⁷	0.3423 ¹²⁹	84				
85	433.01 ¹⁷³⁰	85.3	632.4	547.1	508.3	38.8	0.2714	2.815 ¹⁰¹	0.3552 ¹³³	85				
86	450.31 ¹⁷⁸⁷	86.3	632.7	546.4	507.5	38.9	0.2742	2.714 ⁹⁸	0.3685 ¹³⁷	86				
87	468.18 ¹⁸⁴⁶	87.3	633.0	545.7	506.7	39.0	0.2770	2.616 ⁹³	0.3822 ¹⁴³	87				
88	486.04 ¹⁹⁰⁷	88.3	633.3	545.0	505.9	39.1	0.2798	2.523 ⁹⁰	0.3965 ¹⁴⁶	88				
89	505.71 ¹⁹⁶⁹	89.4	633.6	544.2	505.0	39.2	0.2826	2.433 ⁸⁶	0.4111 ¹⁴⁰	89				
90	525.40 ²⁰³²	90.4	634.0	543.6	504.3	39.3	0.2854	2.347 ⁸²	0.4260 ¹⁵⁵	90				
91	545.72 ²⁰⁸⁸	91.4	634.3	542.9	503.6	39.3	0.2881	2.265 ⁷⁹	0.4415 ¹⁶⁰	91				
92	560.70 ²¹⁶⁴	92.4	634.6	542.2	502.8	39.4	0.2909	2.186 ⁷⁶	0.4575 ¹⁶⁴	92				
93	588.34 ²²³³	93.4	634.9	541.5	502.0	39.5	0.2937	2.110 ⁷²	0.4739 ¹⁶⁹	93				
94	610.07 ²³⁰³	94.4	635.2	540.8	501.2	39.6	0.2964	2.038 ⁶⁷	0.4908 ¹⁷³	94				
95	633.70 ²³⁷⁵	95.4	635.5	540.1	500.4	39.7	0.2991	1.968 ⁶⁷	0.5081 ¹⁸⁰	95				
96	657.45 ²⁴⁴⁸	96.4	635.8	539.4	499.6	39.8	0.3019	1.901 ⁶⁵	0.5261 ¹⁸⁴	96				
97	681.03 ²⁵²⁴	97.4	636.1	538.7	498.8	39.9	0.3046	1.836 ⁶²	0.5445 ¹⁰¹	97				
98	707.17 ²⁶⁰²	98.4	636.4	538.0	498.1	39.9	0.3073	1.774 ⁵⁹	0.5630 ¹⁰⁵	98				
99	733.19 ²⁶⁸¹	99.4	636.7	537.3	497.3	40.0	0.3100	1.715 ⁵⁴	0.5831 ¹⁰¹	99				
100	760.00 ²⁷⁵	100.4	637.0	536.6	496.4	40.2	0.3127	1.661 ⁵²	0.6024 ¹⁰⁵	100				
101	787.5 ²⁸²³	101.4	637.3	535.9	495.6	40.3	0.3154	1.600 ⁵³	0.6210 ²⁰⁸	101				
102	815.8 ²⁹⁰²	102.5	637.6	535.1	494.7	40.4	0.3181	1.556 ⁵¹	0.6427 ²¹⁸	102				
103	845.0 ³⁰¹	103.5	637.9	534.4	493.9	40.5	0.3208	1.505 ⁴⁹	0.6645 ²²³	103				
104	875.1 ³⁰⁹	104.5	638.2	533.7	492.2	40.5	0.3235	1.456 ⁴⁷	0.6808 ²²⁹	104				
105	900.0 ³¹⁹	105.5	638.5	533.0	492.4	40.6	0.3261	1.400 ⁴⁷	0.7097 ²³⁶	105				
106	937.0 ³²⁸	106.5	638.8	532.3	491.6	40.7	0.3288	1.355 ⁴⁵	0.7333 ²⁴³	106				
107	970.7 ³³⁷	107.5	639.1	531.6	490.8	40.8	0.3314	1.320 ⁴²	0.7576 ²⁴⁹	107				
108	1004.4 ³⁴⁷	108.5	639.4	530.9	490.1	40.8	0.3341	1.278 ⁴²	0.7825 ²⁵⁵	108				
109	1039.1 ³⁵⁷	109.5	639.7	530.2	489.3	40.9	0.3367	1.248 ⁴⁰	0.8080 ²⁶⁰	109				

Temperature, Degrees Centi- grade.	Pressure, Millimeters of Mercury.	Heat of the Liquid								Entropy of the Liquid.								Density.	
		t	p	Heat of Vaporization	v	Heat of Total Heat.	p	Heat equivalent of Internal Work.	ΔfH	Heat equivalent of External Work.	ΔfU	Specific Volume	γ	Weight, in Kilograms, of one Cubic Meter.	γ	Temperature, Degrees Centi- grade.	t		
111	1111.4-377	111.5	640.4	528.9	487.8	41.1	0.3420	1.162	0.8608	0.8608	111								
112	1140.1-395	112.5	640.7	528.2	487.0	41.2	0.3446	1.120	0.8881	0.8881	112								
113	1187.9-308	113.5	641.0	527.5	486.3	41.2	0.3471	1.091	0.9160	0.9160	113								
114	1227.7-410	114.6	641.3	526.7	485.4	41.3	0.3498	1.057	0.9456	0.9456	114								
115	1268.7-420	115.6	641.6	526.0	484.6	41.4	0.3524	1.025	0.9755	0.9755	115								
116	1310.7-432	116.6	641.9	525.3	483.8	41.5	0.3550	0.994	1.0060	1.0060	116								
117	1353.0-444	117.6	642.2	524.6	483.1	41.5	0.3576	0.9643	1.037	1.037	117								
118	1398.9-455	118.6	642.5	523.9	482.3	41.6	0.3601	0.9354	1.066	1.066	118								
119	1443.8-467	119.6	642.8	523.2	481.5	41.7	0.3627	0.9076	1.102	1.102	119								
120	1490.5-480	120.6	643.1	522.5	480.7	41.8	0.3653	0.8808	1.135	1.135	120								
121	1538.5-492	121.6	643.4	521.8	480.0	41.8	0.3678	0.8550	1.170	1.170	121								
122	1587.7-506	122.6	643.7	521.1	479.2	41.9	0.3704	0.8300	1.205	1.205	122								
123	1638.3-518	123.6	644.0	520.4	478.4	42.0	0.3729	0.8059	1.241	1.241	123								
124	1680.1-532	124.6	644.3	519.7	477.6	42.1	0.3755	0.7820	1.278	1.278	124								
125	1743.3-545	125.6	644.6	519.0	476.8	42.2	0.3780	0.7602	1.315	1.315	125								
126	1797.8-559	126.6	644.9	518.3	476.1	42.3	0.3805	0.7386	1.351	1.351	126								
127	1853.7-573	127.7	645.2	517.5	475.2	42.3	0.3830	0.7175	1.394	1.394	127								
128	1911.0-587	128.7	645.5	516.8	474.4	42.4	0.3855	0.6969	1.431	1.431	128								
129	1969.7-601	129.7	645.8	516.1	473.6	42.5	0.3881	0.6778	1.479	1.479	129								
130	2029.8-617	130.7	646.2	515.5	473.0	42.5	0.3906	0.6594	1.517	1.517	130								
131	2091.5-633	131.7	646.5	514.8	472.2	42.6	0.3931	0.6419	1.560	1.560	131								
132	2154.8-647	132.7	646.8	514.1	471.4	42.7	0.3955	0.6233	1.605	1.605	132								
133	2219.5-663	133.7	647.1	513.4	470.6	42.8	0.3980	0.6061	1.650	1.650	133								
134	2285.8-679	134.7	647.4	512.7	469.8	42.9	0.4005	0.5896	1.696	1.696	134								
135	2353.7-695	135.7	647.7	512.0	469.1	42.9	0.4030	0.5736	1.743	1.743	135								
136	2423.2-712	136.7	648.0	511.3	468.3	43.0	0.4054	0.5583	1.791	1.791	136								
137	2494.4-729	137.7	648.3	510.6	467.5	43.1	0.4079	0.5434	1.840	1.840	137								
138	2567.2-745	138.7	648.6	509.9	466.7	43.2	0.4103	0.5289	1.890	1.890	138								
139	2641.7-762	139.8	648.9	509.1	465.9	43.2	0.4128	0.5140	1.942	1.942	139								
140	2717.9-780	140.8	649.2	508.4	465.1	43.3	0.4152	0.4943	1.995	1.995	140								
141	2795.0-798	141.8	649.5	507.7	464.3	43.4	0.4177	0.4783	2.048	2.048	141								
142	2875.7-816	142.8	649.8	507.0	463.5	43.5	0.4191	0.4756	2.103	2.103	142								
143	2957.3-833	143.8	650.1	506.3	462.8	43.5	0.4225	0.4733	2.158	2.158	143								
144	3040.8-853	144.8	650.4	505.6	462.0	43.6	0.4249	0.4714	2.215	2.215	144								
145	3126.4-872	145.8	650.7	504.9	461.2	43.7	0.4273	0.4699	2.273	2.273	145								
146	3213.3-892	146.8	651.0	504.2	460.4	43.8	0.4297	0.4684	2.332	2.332	146								
147	3302.5-911	147.8	651.3	503.5	459.6	43.9	0.4321	0.4679	2.390	2.390	147								
148	3393.6-931	148.8	651.6	502.8	458.9	43.9	0.4325	0.4674	2.449	2.449	148								
149	3483.3-951	149.8	651.9	502.1	458.2	44.0	0.4329	0.4670	2.508	2.508	149								

Temperature, Degrees Centi- grade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	γ	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	$\int \frac{cdt}{T}$	Specific Volume.	DENSITY.		Temperature, Degrees Centi- grade.
									ρ	γ	
151	3070.1	903	151.8	652.6	500.8	450.6	44.2	0.4417	0.3770	2.646	151
152	3778.4	1014	152.9	652.9	500.0	455.8	44.2	0.4440	0.3686	2.713	152
153	3879.8	1035	153.0	653.2	499.3	455.0	44.3	0.4464	0.3596	2.781	153
154	3983.3	1057	154.0	653.5	498.6	454.2	44.4	0.4488	0.3509	2.850	154
155	4089.0	1079	155.0	653.8	497.0	453.4	44.5	0.4511	0.3424	2.920	155
156	4196.9	1102	156.0	654.1	497.2	452.7	44.5	0.4536	0.3342	2.992	156
157	4307.1	1124	158.0	654.4	496.4	451.8	44.6	0.4560	0.3262	3.066	157
158	4419.5	1148	159.0	654.7	495.7	450.0	44.7	0.4584	0.3184	3.141	158
159	4534.3	1171	160.1	655.0	494.9	449.2	44.7	0.4608	0.3108	3.217	159
160	4651.4	1195	161.1	655.3	494.2	449.4	44.8	0.4633	0.3035	3.295	160
161	4770.9	1218	162.2	655.6	493.4	448.5	44.9	0.4657	0.2964	3.374	161
162	4882.7	1243	163.2	655.9	492.7	447.7	45.0	0.4681	0.2895	3.454	162
163	5017.1	127	164.2	656.2	492.0	447.0	45.0	0.4705	0.2828	3.536	163
164	5144.1	129	165.3	656.5	491.2	446.1	45.1	0.4729	0.2762	3.620	164
165	5273.1	132	166.3	656.8	490.5	445.3	45.2	0.4752	0.2699	3.705	165
166	5405.1	134	167.4	657.1	489.7	444.5	45.2	0.4776	0.2637	3.792	166
167	5539.1	137	168.4	657.4	489.0	443.7	45.3	0.4800	0.2577	3.890	167
168	5676.0	140	169.5	657.7	488.2	442.9	45.3	0.4824	0.2519	3.970	168
169	5816.0	143	170.5	658.0	487.5	442.1	45.4	0.4847	0.2402	4.061	169
170	5950.0	145	171.6	658.4	486.8	441.3	45.5	0.4871	0.2407	4.154	170
171	6104.1	147	172.6	658.7	486.1	440.5	45.6	0.4895	0.2364	4.248	171
172	6251.1	151	173.7	659.0	485.3	439.7	45.6	0.4918	0.2302	4.345	172
173	6402.1	153	174.7	659.3	484.6	438.9	45.7	0.4941	0.2251	4.444	173
174	6555.1	157	175.8	659.6	483.8	438.1	45.7	0.4965	0.2201	4.543	174
175	6712.1	159	176.8	659.9	483.1	437.3	45.8	0.4988	0.2159	4.644	175
176	6871.1	162	177.8	660.2	482.4	436.5	45.9	0.5011	0.2106	4.747	176
177	7033.1	165	178.9	660.5	481.6	435.7	45.9	0.5035	0.2061	4.852	177
178	7198.1	168	179.9	660.8	480.9	434.9	46.0	0.5058	0.2017	4.950	178
179	7363.1	171	181.0	661.1	480.1	434.1	46.1	0.5081	0.1973	5.068	179
180	7537.1	175	182.0	661.4	479.4	433.3	46.1	0.5104	0.1931	5.178	180
181	7712.1	177	183.1	661.7	478.6	432.4	46.2	0.5127	0.1890	5.201	181
182	7880.1	181	184.1	662.0	477.9	431.7	46.2	0.5150	0.1850	5.405	182
183	8070.1	183	185.2	662.3	477.1	430.8	46.3	0.5173	0.1811	5.522	183
184	8253.1	187	186.2	662.6	476.4	430.1	46.3	0.5196	0.1773	5.640	184
185	8440.1	191	187.3	662.9	475.6	429.2	46.4	0.5219	0.1730	5.760	185
186	8631.1	193	188.3	663.2	474.9	428.5	46.4	0.5242	0.1700	5.882	186
187	8824.1	197	189.4	663.5	474.1	427.6	46.5	0.5264	0.1664	6.007	187
188	9021.1	201	190.4	663.8	473.4	426.9	46.5	0.5287	0.1630	6.134	188

SATURATED STEAM

Temperature, Degrees Centi- grade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	> Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume.	DENSITY.		Temperature, Degrees Cen- tigrade.
									P	s	
191	9039.211	193.5	664.8	471.3	424.6	46.7	0.5335	0.153231	6.525	136	191
192	9844.214	194.6	665.1	470.5	423.7	46.8	0.5377	0.150130	6.601	137	192
193	10058.218	195.6	665.4	469.8	423.0	46.8	0.5400	0.147130	6.708	140	193
194	10276.222	196.7	665.7	469.0	422.2	46.8	0.5422	0.144129	6.808	142	194
195	10498.226	197.7	666.0	468.3	421.4	46.9	0.5444	0.141228	7.080	145	195
196	10724.229	198.8	666.3	467.5	420.6	46.9	0.5467	0.138427	7.225	147	196
197	10953.233	199.8	666.6	466.8	419.8	47.0	0.5489	0.135727	7.372	149	197
198	11180.238	200.9	666.9	466.0	419.0	47.0	0.5511	0.133027	7.521	151	198
199	11424.240	201.9	667.2	465.3	418.2	47.1	0.5533	0.130326	7.672	153	199
200	11664.245	203.0	667.5	464.5	417.4	47.1	0.5555	0.127725	7.827	157	200
201	11900.249	204.0	667.8	463.8	416.7	47.1	0.5577	0.125224	7.984	159	201
202	12158.253	205.0	668.1	463.1	415.9	47.2	0.5599	0.122824	8.143	162	202
203	12411.257	206.1	668.4	462.3	415.1	47.2	0.5621	0.120423	8.305	165	203
204	12668.262	207.1	668.7	461.6	414.4	47.2	0.5643	0.118123	8.470	169	204
205	12930.265	208.2	669.0	460.8	413.5	47.3	0.5665	0.115823	8.639	170	205
206	13195.270	209.2	669.3	460.1	412.8	47.3	0.5687	0.113522	8.810	171	206
207	13405.274	210.3	669.6	459.3	412.0	47.3	0.5700	0.111321	8.984	170	207
208	13730.279	211.3	669.9	458.6	411.3	47.3	0.5731	0.109221	9.160	178	208
209	14018.283	212.4	670.2	457.8	410.4	47.4	0.5752	0.107121	9.338	181	209
210	14301.287	213.4	670.6	457.2	409.8	47.4	0.5774	0.105020	9.519	185	210
211	14588.292	214.5	670.9	456.4	409.0	47.4	0.5795	0.103019	9.704	190	211
212	14880.297	215.5	671.2	455.7	408.3	47.4	0.5817	0.101119	9.894	186	212
213	15177.301	216.5	671.5	455.0	407.6	47.4	0.5839	0.099219	10.08	20	213
214	15478.307	217.6	671.8	454.2	406.7	47.5	0.5860	0.097319	10.28	20	214
215	15785.311	218.6	672.1	453.5	406.0	47.5	0.5881	0.095418	10.48	20	215
216	16006.315	219.7	672.4	452.7	405.2	47.5	0.5903	0.093618	10.68	21	216
217	16411.321	220.7	672.7	452.0	404.5	47.5	0.5924	0.091817	10.88	21	217
218	16732.320	221.8	673.0	451.2	403.7	47.5	0.5945	0.089117	11.10	21	218
219	17058.331	222.8	673.3	450.5	403.0	47.5	0.5967	0.086416	11.31	22	219
220	17389.	223.9	673.6	449.7	402.2	47.5	0.5988	0.0838	11.53		220

TABLE IV.
SATURATED VAPOR OF ETHER.
FRENCH UNITS.

Temperature, Degrees Centi- grade.	t	Pressure, Millimeters of Mercury.	ρ	Heat of the Liquid.	λ	Total Heat.	γ	Heat of Vaporization.	σ	Heat equivalent of Internal Work.	$A\mu u$	$\int \frac{cdt}{T}$	s	Specific Volume.	DENSITY.	Temperature, Degrees Centi- grade.
															γ	
0	184.30	0.00	94.00	94.00	86.45	7.55	0.0000	1.278		0.782					0	0
10	286.83	5.32	98.44	93.12	85.37	7.75	0.01900	0.8440		1.185					10	10
20	432.78	10.70	102.78	92.08	84.13	7.95	0.03772	0.5741		1.742					20	20
30	634.80	16.14	107.00	90.86	82.72	8.14	0.05593	0.4013		2.402					30	30
40	907.04	21.63	111.11	89.48	81.15	8.33	0.07374	0.2877		3.746					40	40
50	1264.8	27.19	115.11	87.02	79.41	8.51	0.09117	0.2108		4.744					50	50
60	1725.0	32.80	119.00	86.20	77.53	8.67	0.10883	0.1580		6.329					60	60
70	2304.9	38.48	122.78	84.30	75.49	8.81	0.1250	0.1203		8.313					70	70
80	3022.8	44.21	126.44	82.23	73.32	8.91	0.1415	0.0932		10.73					80	80
90	3898.3	50.00	130.00	80.00	71.03	8.97	0.1576	0.0731		13.68					90	90
100	4953.3	55.86	133.44	77.58	68.62	8.96	0.1735	0.0577		17.33					100	100
110	6214.6	61.77	136.78	75.01	66.13	8.88	0.1891	0.0450		21.79					110	110
120	7710.2	67.74	140.00	72.26	63.57	8.69	0.2045	0.0364		27.47					120	120

TABLE V.
SATURATED VAPOR OF ALCOHOL.
FRENCH UNITS.

Temperature, Degrees Centi- grade.	* τ	Pressure, Millimeters of Mercury.	Heat of the Liquid.	* Total Heat.	Heat of Vaporization.	P	Heat equivalent of Internal Work.	$A_p u$	Heat equivalent of External Work.	$\frac{\text{Entropy of}}{\text{ccs}}$ the Liquid.	* Specific Volume.	DENSITY.	* γ	Temperature, Degrees Centi- grade.
0		12.70	0.00	230.5	230.50	223.88	13.12	0.0000	32.21		0.03105		0	
10		24.23	5.59	244.4	238.81	225.20	13.52	0.01996	17.39		0.05750		10	
20		44.46	11.42	252.0	240.58	226.50	14.02	0.04003	9.847		0.1016		20	
30		78.52	17.40	258.0	240.51	226.03	14.48	0.06029	5.753		0.1738		30	
40		133.80	23.71	262.0	238.20	223.44	14.85	0.08073	3.465		0.2886		40	
50		219.00	30.21	264.0	233.79	218.50	15.10	0.1014	2.143		0.4666		50	
60		350.21	37.37	265.0	227.03	212.88	15.25	0.1223	1.359		0.7358		60	
70		541.15	44.58	265.2	220.02	205.28	15.34	0.1435	0.8855		1.129		70	
80		812.01	52.11	265.2	213.00	197.60	15.40	0.1650	0.5921		1.689		80	
90		1180.3	50.07	260.0	206.03	190.54	15.49	0.1868	0.4073		2.455		90	
100		1607.8	58.18	267.3	190.12	183.54	15.58	0.2090	0.2874		3.479		100	
110		2307.6	70.74	266.6	192.86	177.15	15.71	0.2315	0.2083		4.801		110	
120		3231.7	85.87	272.5	180.83	170.07	15.80	0.2544	0.1544		6.477		120	
130		4328.0	94.08	276.0	181.02	164.00	16.03	0.2776	0.1170		8.547		130	
140		5674.6	104.70	280.5	175.80	150.55	16.25	0.3013	0.0905		11.05		140	
150		7318.4	114.82	285.3	170.48	154.03	16.45	0.3254	0.0714		14.01		150	

TABLE VI.
SATURATED VAPOR OF CHLOROFORM.
FRENCH UNITS.

Temperature, Degrees Centi- grade.	Pressure, Millimeters of Mercury.	α	β	γ	γ	δ	Heat of Vaporization.	ρ	A_{ph}	$\int \frac{cdt}{T}$	ζ	Specific Volume.	DENSITY.	Temperature, Degrees Centi- grade.	
													γ	γ	
0	59.72	0.00	67.00	67.00	62.45	4.55	0.00000					2.377	0.4207	0	0
10	100.47	2.33	68.38	66.04	61.29	4.75	0.00830	1.475					0.6780	10	10
20	160.47	4.07	69.75	65.08	60.14	4.94	0.01640	0.9001					2.042	20	20
30	247.51	7.02	71.12	64.10	59.00	5.10	0.02432	0.0437					1.554	30	30
40	309.26	0.37	72.50	63.13	57.87	5.26	0.03196	0.4440					2.248	40	40
50	535.05	11.74	73.87	62.13	56.73	5.40	0.03040	0.3155					3.170	50	50
60	755.44	14.12	75.25	61.13	55.80	5.53	0.04004	0.2291					4.356	60	60
70	1042.1	10.51	76.62	60.11	54.45	5.66	0.05909	0.1760					5.88	70	70
80	1407.6	18.91	78.00	59.09	53.31	5.78	0.00057	0.1280					7.78	80	80
90	1805.2	21.32	79.37	58.05	52.16	5.89	0.00720	0.5001					10.09	90	90
100	2428.5	23.74	80.75	57.01	51.01	6.00	0.07386	0.0777					12.87	100	100
110	3111.0	26.17	82.12	55.95	49.84	6.11	0.08027	0.0618					16.18	110	110
120	3925.7	28.61	83.50	54.89	48.67	6.22	0.08655	0.0500					20.00	120	120
130	4885.1	31.06	84.87	53.81	47.48	6.33	0.00270	0.0410					24.39	130	130
140	6000.2	33.52	86.25	52.73	46.30	6.43	0.09872	0.0340					29.4	140	140
150	7280.6	35.00	87.62	51.03	45.10	6.53	0.10402	0.0286					35.0	150	150
160	8734.2	38.47	89.00	50.53	43.90	6.63	0.11041	0.0243					41.2	160	160

TABLE VII.
SATURATED VAPOR OF CARBON BISULPHIDE.
FRENCH UNITS.

Temperature, Degrees Centi- grade,	Pressure, Millimeters of Mercury.	Heat of the Liquid.	Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Heat of the Vapor.	Heat of the Liquid.	Specific Volume.	DENSITY.	Temperature, Degrees Centi- grade.
<i>t</i>	<i>p</i>	<i>q</i>	<i>λ</i>	<i>r</i>	<i>s</i>	<i>t</i>	<i>u</i>	<i>v</i>	<i>x</i>	<i>y</i>	<i>t</i>
0	127.01	0.00	90.00	90.00	82.76	7.21	0.00000	1.766	0.5002	0	0
10	108.46	2.30	91.42	89.00	81.58	7.48	0.00847	1.177	0.8490	10	10
20	90.03	4.74	92.76	88.02	80.31	7.71	0.01070	0.8071	1.2330	20	20
30	73.402	7.13	94.01	86.88	78.97	7.91	0.01472	0.5084	1.7530	30	30
40	617.53	9.54	95.18	85.01	77.51	8.10	0.03252	0.4088	2.4410	40	40
50	857.07	11.06	96.27	84.31	76.01	8.27	0.04013	0.3017	3.3115	50	50
60	1104.5	14.41	97.28	82.87	74.15	8.42	0.04756	0.2261	4.4117	60	60
70	1552.1	16.80	98.20	81.34	72.78	8.56	0.05482	0.1720	5.7001	70	70
80	2032.5	19.34	99.04	79.70	71.03	8.67	0.06192	0.1338	7.473	80	80
90	2610.1	21.83	99.80	77.97	69.20	8.77	0.06886	0.1052	9.51	90	90
100	3325.2	24.34	100.48	76.14	67.29	8.85	0.07500	0.0837	11.95	100	100
110	4104.1	26.86	101.07	74.21	65.31	8.90	0.08233	0.0674	14.84	110	110
120	5148.8	29.40	101.58	72.18	63.24	8.94	0.08886	0.0540	18.21	120	120
130	6201.6	31.96	102.01	70.05	61.09	8.96	0.09527	0.0452	22.12	130	130
140	7304.0	34.53	102.36	67.83	58.88	8.95	0.10157	0.0375	26.7	140	140
150	9005.9	37.12	102.62	65.50	56.58	8.92	0.10775	0.0314	31.8	150	150

TABLE VIII.

SATURATED VAPOR OF CARBON TETRACHLORIDE.

FRENCH UNITS.

Temperature, Degrees Centi- grade. <i>t</i>	Pressure, Millimeters of Mercury. <i>P</i>	Heat of the Liquid. <i>q</i>	Total Heat. <i>λ</i>	Heat of Vaporization. <i>r</i>	Heat equivalent of Internal Work. <i>p</i>	Heat equivalent of External Work. <i>Aph</i>	Entropy of the Liquid. $\int \frac{cdx}{T}$	Specific Volume. <i>s</i>	DENSITY.		Temperature, Degrees Centi- grade. <i>c</i>
									Weight, in Kilos, of one Cubic Meter. <i>γ</i>		
0	32.05	0.00	52.00	52.00	48.54	3.46	0.00000	3.272	0.3056	C	
10	55.97	1.00	53.44	51.45	47.85	3.60	0.00714	2.005	0.4987	10	
20	90.09	3.00	54.86	50.87	47.13	3.74	0.01400	1.283	0.7794	20	
30	142.27	6.02	56.23	50.21	46.33	3.88	0.02087	0.8510	1.175	30	
40	214.81	8.00	57.58	49.52	45.51	4.01	0.02749	0.5831	1.715	40	
50	314.38	10.12	58.88	48.76	44.02	4.14	0.03306	0.4109	2.434	50	
60	447.43	12.20	60.16	47.90	43.00	4.25	0.04028	0.2069	3.368	60	
70	621.15	14.30	61.40	47.10	42.75	4.35	0.04648	0.2192	4.562	70	
80	843.29	16.42	62.60	46.18	41.74	4.44	0.04255	0.1850	6.061	80	
90	1122.3	18.55	63.77	45.22	40.50	4.72	0.05849	0.1263	7.92	90	
100	1407.1	20.70	64.90	44.20	39.62	4.58	0.00433	0.0980	10.20	100	
110	1887.4	22.87	66.01	43.14	38.52	4.62	0.07006	0.0770	12.90	110	
120	2303.7	25.00	67.07	42.01	37.30	4.65	0.07509	0.0611	16.87	120	
130	2906.0	27.27	68.10	40.83	36.18	4.65	0.08122	0.0490	20.41	130	
140	3709.0	29.49	69.10	39.61	34.95	4.63	0.08066	0.0395	25.3	140	
150	4543.1	31.73	70.07	38.34	33.75	4.50	0.09201	0.0321	31.2	150	
160	5513.1	34.00	71.00	37.00	32.47	4.53	0.09720	0.0262	38.2	160	

TABLE IX.
SATURATED VAPOR OF ACETON.
FRENCH UNITS.

Temperature, Degrees Centi- grade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume.	Weight, in Kilos, of one Cubic Meter.	Temperature, Degrees Centi- grade.	
<i>t</i>	<i>P</i>	<i>q</i>	<i>r</i>	<i>p</i>	<i>d/pn</i>	$\int \frac{dR}{T}$	<i>s</i>	<i>r</i>	<i>t</i>	
0	63.33	0.00	140.50	140.50	131.82	8.08	0.00000	4.275	0.29330	0
10	110.32	5.10	144.11	139.01	129.51	9.50	0.01882	2.088	0.3723	10
20	180.08	10.20	147.02	137.33	127.10	10.17	0.03027	1.758	0.5088	20
30	280.05	15.55	151.03	135.48	124.83	10.65	0.05389	1.187	0.8425	30
40	419.35	20.80	154.33	133.44	121.30	11.05	0.07119	0.8927	1.215	40
50	608.81	26.31	157.53	131.22	119.80	11.30	0.08820	0.5830	1.715	50
60	860.06	31.81	160.03	128.82	117.22	11.60	0.10449	0.4215	2.372	60
70	1180.9	37.30	163.02	126.23	114.43	11.80	0.1214	0.3106	3.220	70
80	1611.1	43.05	166.51	123.46	111.49	11.97	0.1370	0.2328	4.206	80
90	2140.8	48.70	169.30	120.51	108.41	12.10	0.1530	0.1773	5.640	90
100	2706.2	54.61	171.98	117.37	105.17	12.20	0.1694	0.1372	7.280	100
110	3594.3	60.50	174.50	114.00	101.78	12.28	0.1850	0.1076	9.204	110
120	4552.0	66.48	177.04	110.50	98.23	12.33	0.2004	0.0850	11.08	120
130	5684.0	72.54	179.42	106.88	94.53	12.35	0.2150	0.0689	14.51	130
140	7007.6	78.67	181.69	103.02	90.07	12.35	0.2300	0.0561	17.83	140

TABLE X.
SATURATED VAPOR OF AMMONIA.

ENGLISH UNITS.

Temperature, Degrees Fahr- enheit.	Pressure, Pounds per Square Inch.	Heat of the Liquid.				ρ	$A\rho u$	$\int \frac{cdt}{T}$	Entropy of the Liquid.	Specific Vol- ume.	DENSITY	Weight, in pounds, of one Cubic Foot.	Temperature, Degrees Fahr- enheit.	
		γ	λ	γ	Total Heat.									
-40	9.93	-79	519	508	549	49	-0.1737	26.9	0.0373	-40				
-35	11.53	-74	520	594	544	50	-0.1607	23.3	0.0429	-35				
-30	13.36	-68	522	590	540	50	-0.1482	20.3	0.0492	-30				
-25	15.40	-63	523	586	535	51	-0.1354	17.8	0.0562	-25				
-20	17.70	-57	525	582	531	51	-0.1229	15.6	0.0640	-20				
-15	20.25	-52	526	578	526	53	-0.1103	13.7	0.0726	-15				
-10	23.10	-46	528	574	523	52	-0.0983	12.2	0.0821	-10				
-5	26.25	-41	529	570	517	53	-0.0859	10.8	0.0925	-5				
0	29.74	-35	531	566	513	53	-0.0738	9.63	0.104	0				
5	33.58	-30	532	562	508	53	-0.0619	8.60	0.116	5				
10	37.80	-24	534	558	504	54	-0.0501	7.71	0.130	10				
15	42.43	-19	535	554	500	54	-0.0386	6.93	0.144	15				
20	47.40	-13	537	550	495	55	-0.0271	6.24	0.160	20				
25	53.01	-8	538	546	491	55	-0.0157	5.64	0.177	25				
30	59.01	-2	540	543	486	56	-0.0044	5.11	0.196	30				
35	65.58	8	541	538	482	56	0.0067	4.64	0.216	35				
40	72.59	9	543	534	478	56	0.0177	4.20	0.237	40				
45	80.21	14	544	530	473	57	0.0287	3.85	0.260	45				
50	88.44	20	546	526	469	57	0.0395	3.52	0.284	50				
55	97.30	25	547	522	464	58	0.0502	3.23	0.310	55				
60	106.82	31	549	518	460	58	0.0608	2.96	0.338	60				
65	117.04	36	550	514	456	58	0.0718	2.72	0.367	65				
70	127.98	42	552	510	451	59	0.0817	2.51	0.398	70				
75	139.67	47	553	506	447	59	0.0921	2.32	0.431	75				
80	152.15	53	555	502	442	60	0.1028	2.14	0.467	80				
85	165.47	58	556	498	438	60	0.1124	1.99	0.504	85				
90	179.64	64	558	494	434	60	0.1224	1.82	0.548	90				
95	194.70	69	559	490	428	61	0.1324	1.71	0.584	95				
100	210.70	75	561	486	425	61	0.1428	1.59	0.627	100				

TABLE XI.
SATURATED VAPOR OF SULPHUR DIOXIDE.

ENGLISH UNITS,

Temperature, Degrees Fahr- enheit.	Pressure, Pounds per Square Inch.	Heat of the Liquid.	Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	$\int \frac{cdt}{T}$	Entropy of the Liquid.	Specific Vol. ume.	DENSITY.	Temperature, Degrees Fahr- enheit.
										γ	
-40	3.14	-29	166	195	182	13	-0.0632	28.0	0.0484	-40	
-35	3.70	-27	167	194	180	14	-0.0584	19.7	0.0507	-35	
-30	4.34	-25	168	193	179	14	-0.0539	17.0	0.0590	-30	
-25	5.07	-23	168	191	177	14	-0.0492	14.7	0.0682	-25	
-20	5.90	-21	169	189	176	14	-0.0447	12.7	0.0785	-20	
-15	6.83	-19	170	189	175	14	-0.0401	11.1	0.0901	-15	
-10	7.88	-17	170	187	173	14	-0.0357	9.73	0.103	-10	
-5	9.05	-15	171	186	172	14	-0.0312	8.56	0.117	-5	
0	10.85	-13	172	185	170	15	-0.0268	7.54	0.133	0	
5	11.81	-11	172	188	168	15	-0.0225	6.67	0.150	5	
10	13.41	-9	173	182	167	15	-0.0182	5.93	0.169	10	
15	15.19	-7	174	181	166	15	-0.0140	5.29	0.180	15	
20	17.15	-5	174	179	164	15	-0.0098	4.72	0.212	20	
25	19.30	-3	175	178	163	15	-0.0057	4.23	0.236	25	
30	21.66	-1	176	177	162	15	-0.0016	3.81	0.263	30	
35	24.24	1	176	175	160	15	0.0024	3.43	0.291	35	
40	27.06	3	177	174	158	16	0.0064	3.10	0.322	40	
45	30.12	5	177	172	156	16	0.0104	2.81	0.356	45	
50	33.45	7	178	171	155	16	0.0144	2.58	0.390	50	
55	37.07	9	179	170	154	16	0.0182	2.32	0.430	55	
60	40.98	11	179	168	152	16	0.0221	2.11	0.473	60	
65	45.20	13	180	167	151	16	0.0259	1.94	0.516	65	
70	49.75	15	181	166	150	16	0.0297	1.78	0.563	70	
75	54.64	17	181	164	148	16	0.0334	1.63	0.614	75	
80	59.90	19	182	163	146	17	0.0372	1.50	0.668	80	
85	65.54	21	183	162	145	17	0.0409	1.38	0.725	85	
90	71.57	23	183	160	143	17	0.0445	1.27	0.786	90	
95	78.02	25	184	159	142	17	0.0482	1.18	0.849	95	
100	84.90	27	185	158	141	17	0.0518	1.09	0.917	100	

TABLE XII.

SPECIFIC GRAVITY AND SPECIFIC VOLUME OF LIQUIDS.

Name of Liquid.	Specific Gravity, compared with Water at 4° C.	Specific Volume. Cubic Meters per Kilo.
Alcohol, C_2H_6O	0.80025 [Mendelejeff, 1860]	0.001240
Ether, $C_4H_{10}O$	0.736 [Kopp, 1860]	0.001358
Chloroform.	1.527 [Thorpe, 1880]	0.000655
Carbon bisulphide, CS_2	1.2022 [Thorpe, 1880]	0.000774
Carbon tetrachloride, CCl_4	1.0320 [Thorpe, 1880]	0.000613
Acetone, C_3H_6O	0.81 [Zander, 1882]	0.00123
Sulphur Dioxide SO_2	1.4336 [Andreeff, 1859]	0.0006981
Ammonia NH_3	0.0304 [Andreeff, 1859]	0.001571

TABLE XIII.

VOLUME OF WATER.

Vol. at 4° C=1.

[Rossetti, 1871] and [Hirn, 1807.]

Tempera-ture.	Volume.	Tempera-ture.	Volume.	Tempera-ture.	Volume.	Tempera-ture.	Volume.
10	1.000253	60	1.01691	110	1.0512	160	1.1018
20	1.001744	70	1.02256	120	1.0590	170	1.1130
30	1.00425	80	1.02887	130	1.0694	180	1.1268
40	1.00770	90	1.03507	140	1.0795	190	1.1403
50	1.01106	100	1.04312	150	1.0908	200	1.1544

1.0	0.0000	0.00995	0.01980	0.02956	0.03922	0.04879	0.05827	0.06766	0.07696	0.08618	
1.1	0.09531	0.1044	0.1133	0.1222	0.1310	0.1398	0.1484	0.1570	0.1655	0.1739	
1.2	0.1823	0.1906	0.1988	0.2070	0.2151	0.2231	0.2311	0.2390	0.2469	0.2540	
1.3	0.2624	0.2700	0.2776	0.2852	0.2927	0.3001	0.3075	0.3148	0.3221	0.3293	
1.4	0.3365	0.3436	0.3507	0.3577	0.3646	0.3716	0.3784	0.3853	0.3920	0.3988	
1.5	0.4055	0.4121	0.4187	0.4253	0.4318	0.4382	0.4447	0.4511	0.4574	0.4637	
1.6	0.4700	0.4762	0.4824	0.4886	0.4947	0.5008	0.5068	0.5128	0.5188	0.5247	
1.7	0.5306	0.5365	0.5423	0.5481	0.5539	0.5596	0.5653	0.5710	0.5766	0.5822	
1.8	0.5878	0.5933	0.5988	0.6043	0.6098	0.6152	0.6206	0.6259	0.6313	0.6366	
1.9	0.6418	0.6471	0.6523	0.6575	0.6627	0.6678	0.6729	0.6780	0.6831	0.6881	
2.0	0.6931	0.6981	0.7031	0.7080	0.7129	0.7178	0.7227	0.7275	0.7324	0.7372	
2.1	0.7419	0.7467	0.7514	0.7561	0.7608	0.7655	0.7701	0.7747	0.7793	0.7839	
2.2	0.7884	0.7930	0.7975	0.8020	0.8065	0.8109	0.8154	0.8198	0.8242	0.8286	
2.3	0.8329	0.8372	0.8416	0.8459	0.8502	0.8544	0.8587	0.8629	0.8671	0.8713	
2.4	0.8755	0.8796	0.8838	0.8879	0.8920	0.8961	0.9002	0.9042	0.9083	0.9123	
2.5	0.9103	0.9203	0.9213	0.9282	0.9322	0.9361	0.9400	0.9439	0.9478	0.9517	
2.6	0.9555	0.9594	0.9632	0.9670	0.9708	0.9746	0.9783	0.9821	0.9858	0.9895	
2.7	0.9933	0.9969	1.0006	1.0043	1.0080	1.0116	1.0152	1.0188	1.0225	1.0260	
2.8	1.0296	1.0332	1.0367	1.0403	1.0438	1.0473	1.0508	1.0543	1.0578	1.0613	
2.9	1.0647	1.0682	1.0716	1.0750	1.0784	1.0818	1.0852	1.0886	1.0919	1.0953	
3.0	1.0986	1.1019	1.1053	1.1086	1.1119	1.1151	1.1184	1.1217	1.1249	1.1282	
3.1	1.1314	1.1346	1.1378	1.1410	1.1442	1.1474	1.1506	1.1537	1.1569	1.1600	
3.2	1.1632	1.1663	1.1694	1.1725	1.1756	1.1787	1.1817	1.1848	1.1878	1.1909	
3.3	1.1939	1.1969	1.2000	1.2030	1.2060	1.2090	1.2119	1.2149	1.2179	1.2208	
3.4	1.2238	1.2267	1.2296	1.2326	1.2355	1.2384	1.2413	1.2442	1.2470	1.2499	
3.5	1.2528	1.2556	1.2585	1.2613	1.2641	1.2669	1.2698	1.2726	1.2754	1.2782	
3.6	1.2809	1.2837	1.2865	1.2892	1.2920	1.2947	1.2975	1.3002	1.3029	1.3056	
3.7	1.3083	1.3110	1.3137	1.3164	1.3191	1.3218	1.3244	1.3271	1.3297	1.3324	
3.8	1.3350	1.3376	1.3403	1.3420	1.3445	1.3481	1.3507	1.3533	1.3558	1.3584	
3.9	1.3610	1.3635	1.3661	1.3686	1.3712	1.3737	1.3762	1.3788	1.3813	1.3838	
4.0	1.3863	1.3888	1.3913	1.3938	1.3962	1.3987	1.4012	1.4036	1.4061	1.4085	
4.1	1.4110	1.4134	1.4159	1.4183	1.4207	1.4231	1.4255	1.4279	1.4303	1.4327	
4.2	1.4351	1.4375	1.4398	1.4422	1.4446	1.4469	1.4493	1.4516	1.4540	1.4563	
4.3	1.4586	1.4609	1.4633	1.4656	1.4679	1.4702	1.4725	1.4748	1.4770	1.4793	
4.4	1.4816	1.4839	1.4861	1.4884	1.4907	1.4929	1.4951	1.4974	1.4996	1.5019	
4.5	1.5041	1.5063	1.5085	1.5107	1.5129	1.5151	1.5173	1.5195	1.5217	1.5239	
4.6	1.5261	1.5282	1.5304	1.5326	1.5347	1.5369	1.5390	1.5412	1.5433	1.5454	
4.7	1.5476	1.5497	1.5518	1.5539	1.5560	1.5581	1.5602	1.5623	1.5644	1.5665	
4.8	1.5686	1.5707	1.5728	1.5748	1.5769	1.5790	1.5810	1.5831	1.5851	1.5872	
4.9	1.5892	1.5913	1.5933	1.5953	1.5974	1.5994	1.6014	1.6034	1.6054	1.6074	
5.0	1.6094	1.6114	1.6134	1.6154	1.6174	1.6194	1.6214	1.6233	1.6253	1.6273	
5.1	1.6292	1.6312	1.6332	1.6351	1.6371	1.6390	1.6409	1.6429	1.6448	1.6467	
5.2	1.6487	1.6506	1.6525	1.6544	1.6563	1.6582	1.6601	1.6620	1.6639	1.6658	
5.3	1.6677	1.6696	1.6715	1.6734	1.6752	1.6771	1.6790	1.6808	1.6827	1.6845	
5.4	1.6864	1.6882	1.6901	1.6919	1.6938	1.6956	1.6974	1.6993	1.7011	1.7029	
5.5	1.7047	1.7066	1.7084	1.7102	1.7120	1.7138	1.7156	1.7174	1.7192	1.7210	
5.6	1.7228	1.7246	1.7263	1.7281	1.7299	1.7317	1.7334	1.7352	1.7370	1.7387	

SHORT-TITLE CATALOGUE
OF THE
PUBLICATIONS
OF
JOHN WILEY & SONS,
NEW YORK.
LONDON: CHAPMAN & HALL, LIMITED.

ARRANGED UNDER SUBJECTS.

Descriptive circulars sent on application.

Books marked with an asterisk are sold at *net* prices only.

All books are bound in cloth unless otherwise stated.

AGRICULTURE.

CATTLE FEEDING—DAIRY PRACTICE—DISEASES OF ANIMALS—
GARDENING, ETC.

Armsby's Manual of Cattle Feeding.....	12mo,	\$1 75
Downing's Fruit and Fruit Trees.....	8vo,	5 00
Grotenfelt's The Principles of Modern Dairy Practice. (Woll.)	12mo,	2 00
Kemp's Landscape Gardening.....	12mo,	2 50
Loudon's Gardening for Ladies. (Downing).	12mo,	1 50
Maynard's Landscape Gardening.....	12mo,	1 50
Steel's Treatise on the Diseases of the Dog.....	8vo,	3 50
“ Treatise on the Diseases of the Ox.....	8vo,	6 00
Stockbridge's Rocks and Soils.....	8vo,	2 50
Woll's Handbook for Farmers and Dairymen.....	12mo,	1 50

ARCHITECTURE.

BUILDING—CARPENTRY—STAIRS—VENTILATION—LAW, ETC.

Berg's Buildings and Structures of American Railroads.....	4to,	7 50
Birkmire's American Theatres—Planning and Construction.	8vo,	3 00
“ Architectural Iron and Steel.....	8vo,	3 50
“ Compound Riveted Girders.....	8vo,	2 00
“ Skeleton Construction in Buildings	8vo,	3 00

Birkmire's Planning and Construction of High Office Buildings.		
Carpenter's Heating and Ventilating of Buildings.....	8vo,	\$3 50
Freitag's Architectural Engineering.....	8vo,	3 00
Gerhard's Sanitary House Inspection.....	16mo,	2 50
" Theatre Fires and Panics.....	12mo,	1 00
Hatsfield's American House Carpenter.....	8vo,	1 50
Holly's Carpenter and Joiner.....	18mo,	5 00
Kidder's Architect and Builder's Pocket-book....	16mo, morocco,	75
Merrill's Stones for Building and Decoration.....	8vo,	4 00
Monckton's Stair Building—Wood, Iron, and Stone.....	4to,	5 00
Wait's Engineering and Architectural Jurisprudence.....	8vo,	4 00
	Sheep,	6 00
Worcester's Small Hospitals—Establishment and Maintenance, including Atkinson's Suggestions for Hospital Archi- tecture.....	12mo,	6 50
World's Columbian Exposition of 1893.....	Large 4to,	1 25
		2 50

ARMY, NAVY, Etc.

MILITARY ENGINEERING—ORDNANCE—LAW, ETC.

Bourne's Screw Propellers.....	4to,	5 00
* Bruff's Ordnance and Gunnery.....	8vo,	6 00
Chase's Screw Propellers.....	8vo,	3 00
Cooke's Naval Ordnance	8vo,	12 50
Cronkhite's Gunnery for Non-com. Officers....	32mo, morocco,	2 00
* Davis's Treatise on Military Law.....	8vo,	7 00
	Sheep,	7 50
* " Elements of Law.....	8vo,	2 50
De Brack's Cavalry Outpost Duties. (Carr.)....	32mo, morocco,	1 25
Dietz's Soldier's First Aid.....	16mo, morocco,	15 00
* Dredge's Modern French Artillery....	Large 4to, half morocco,	10 00
" Record of the Transportation Exhibits Building, World's Columbian Exposition of 1893..	4to, half morocco,	5 00
Durand's Resistance and Propulsion of Ships.....	8vo,	3 00
Dyer's Light Artillery.....	12mo,	1 50
Hoff's Naval Tactics.....	8vo,	1 50
* Ingalls's Ballistic Tables.....	8vo,	1 50

Mahan's Permanent Fortifications. (Mercur.).	8vo, half morocco,	\$7 50
Mercur's Attack of Fortified Places.....	12mo,	2 00
" Elements of the Art of War.....	8vo,	4 00
Metcalfe's Ordnance and Gunnery.....	12mo, with Atlas,	5 00
Murray's A Manual for Courts-Martial	16mo, morocco,	1 50
" Infantry Drill Regulations adapted to the Springfield		
Rifle, Caliber .45.....	32mo, paper,	10
*Phelps's Practical Marine Surveying.....	8vo,	2 50
Powell's Army Officer's Examiner.....	12mo,	4 00
Sharpe's Subsisting Armies.....	32mo, morocco,	1 50
Very's Navies of the World.....	8vo, half morocco,	3 50
Wheeler's Siege Operations.....	8vo,	2 00
Winthrop's Abridgment of Military Law.....	12mo,	2 50
Woodhull's Notes on Military Hygiene.....	16mo,	1 50
Young's Simple Elements of Navigation.....	16mo, morocco,	2 00
" " " " " " first edition.....		1 00

ASSAYING.

SMELTING—ORE DRESSING—ALLOYS, ETC.

Fletcher's Quant. Assaying with the Blowpipe..	16mo, morocco,	1 50
Furman's Practical Assaying.....	8vo,	3 00
Kunhardt's Ore Dressing.....	8vo,	1 50
O'Driscoll's Treatment of Gold Ores.....	8vo,	2 00
Ricketts and Miller's Notes on Assaying.....	8vo,	3 00
Thurston's Alloys, Brasses, and Bronzes.....	8vo,	2 50
Wilson's Cyanide Processes.....	12mo,	1 50
" The Chlorination Process.....	12mo,	1 50

ASTRONOMY.

PRACTICAL, THEORETICAL, AND DESCRIPTIVE.

Craig's Azimuth.....	4to,	8 50
Doolittle's Practical Astronomy.....	8vo,	4 00
Gore's Elements of Geodesy.....	8vo,	2 50
Hayford's Text-book of Geodetic Astronomy.....	8vo,	3 00
* Michie and Harlow's Practical Astronomy.....	8vo,	3 00
* White's Theoretical and Descriptive Astronomy.....	12mo,	2 00

BOTANY.

GARDENING FOR LADIES, ETC.

Baldwin's Orchids of New England.....	Small 8vo,	\$1 50
London's Gardening for Ladies. (Downing.).....	12mo,	1 50
Thomé's Structural Botany.....	16mo,	2 25
Westermaier's General Botany. (Schneider.).....	8vo,	2 00

BRIDGES, ROOFS, ETC.

CANTILEVER—DRAW—HIGHWAY—SUSPENSION.

(See also ENGINEERING, p. 7.)

Boller's Highway Bridges.....	8vo,	2 00
* " The Thames River Bridge.....	4to, paper,	5 00
Burr's Stresses in Bridges.....	8vo,	3 50
Crehore's Mechanics of the Girder.....	8vo,	5 00
Dredge's Thames Bridges.....	7 parts, per part,	1 25
Du Bois's Stresses in Framed Structures.....	Small 4to,	10 00
Foster's Wooden Trestle Bridges	4to,	5 00
Greene's Arches in-Wood, etc.....	8vo,	2 50
" Bridge Trusses.....	8vo,	2 50
" Roof Trusses	8vo,	1 25
Howe's Treatise on Arches	8vo,	4 00
Johnson's Modern Framed Structures.....	Small 4to,	10 00
Merriman & Jacoby's Text-book of Roofs and Bridges.		
Part I., Stresses.....	8vo,	2 50
Merriman & Jacoby's Text-book of Roofs and Bridges.		
Part II., Graphic Statics	8vo,	2 50
Merriman & Jacoby's Text-book of Roofs and Bridges.		
Part III., Bridge Design.....	8vo,	2 50
Merriman & Jacoby's Text-book of Roofs and Bridges.		
Part IV., Continuous, Draw, Cantilever, Suspension, and Arched Bridges.....	8vo,	2 50
* Morison's The Memphis Bridge.....	Oblong 4to,	10 00
Waddell's Iron Highway Bridges.....	8vo,	4 00
" De Pontibus (a Pocket-book for Bridge Engineers).	16mo, morocco,	3 00
Wood's Construction of Bridges and Roofs.....	8vo,	2 00

CHEMISTRY.

QUALITATIVE—QUANTITATIVE—ORGANIC—INORGANIC, ETC.

Adriance's Laboratory Calculations.....	12mo,	\$1 25
Allen's Tables for Iron Analysis.....	8vo,	3 00
Austen's Notes for Chemical Students.....	12mo,	1 50
Bolton's Student's Guide in Quantitative Analysis.....	8vo,	1 50
Classen's Analysis by Electrolysis. (Herrick and Boltwood.).	8vo,	3 00
Crafts's Qualitative Analysis. (Schaeffer.)	12mo,	1 50
Drechsel's Chemical Reactions. (Merrill.).....	12mo,	1 25
Fresenius's Quantitative Chemical Analysis. (Allen.).....	8vo,	6 00
" Qualitative " " (Johnson.)....	8vo,	3 00
" " " " (Wells.) Trans.		
16th German Edition.....	8vo,	5 00
Fuertes's Water and Public Health.....	12mo,	1 50
Gill's Gas and Fuel Analysis.....	12mo,	1 25
Hammarsten's Physiological Chemistry. (Mandel.).....	8vo,	4 00
Helm's Principles of Mathematical Chemistry. (Morgan).12mo,		1 50
Kolbe's Inorganic Chemistry.....	12mo,	1 50
Ladd's Quantitative Chemical Analysis.....	12mo,	1 00
Landauer's Spectrum Analysis. (Tingle.).....	8vo,	3 00
Löb's Electrolysis and Electrosynthesis of Organic Compounds. (Lorenz.).....	12mo,	1 00
Mandel's Bio-chemical Laboratory.....	12mo,	1 50
Mason's Water-supply.....	8vo,	5 00
" Examination of Water.....	12mo,	1 25
Meyer's Organic Analysis. (Tingle.) (<i>In the press.</i>)		
Miller's Chemical Physics.....	8vo,	2 00
Mixter's Elementary Text-book of Chemistry.....	12mo,	1 50
Morgan's The Theory of Solutions and its Results.....	12mo,	1 00
" Elements of Physical Chemistry.....	12mo,	2 00
Nichols's Water-supply (Chemical and Sanitary).....	8vo,	2 50
O'Brine's Laboratory Guide to Chemical Analysis.....	8vo,	2 00
Perkins's Qualitative Analysis.....	12mo,	1 00
Piuner's Organic Chemistry. (Austen.).....	12mo,	1 50
Poole's Calorific Power of Fuels.....	8vo,	3 00
Ricketts and Russell's Notes on Inorganic Chemistry (Non-metallie).....	Oblong 8vo, morocco,	75

Schimpf's Volumetric Analysis.....	12mo,	\$2 50
Spencer's Sugar Manufacturer's Handbook.....	16mo, morocco,	2 00
" Handbook for Chemists of Beet Sugar Houses.	16mo, morocco,	3 00
Stockbridge's Rocks and Soils.....	8vo,	2 50
Tillman's Descriptive General Chemistry. (<i>In the press.</i>)		
Van Deventer's Physical Chemistry for Beginners. (Boltwood.)	12mo,	1 50
Wells's Inorganic Qualitative Analysis.....	12mo,	1 50
" Laboratory Guide in Qualitative Chemical Analysis.	8vo,	1 50
Whipple's Microscopy of Drinking-water.....	8vo,	3 50
Wiechmann's Chemical Lecture Notes.....	12mo,	8 00
" Sugar Analysis.....	Small 8vo,	2 50
Wulling's Inorganic Phar. and Med. Chemistry.....	12mo,	2 00

DRAWING.

ELEMENTARY—GEOMETRICAL—MECHANICAL—TOPOGRAPHICAL.

Hill's Shades and Shadows and Perspective.....	8vo,	2 00
MacCord's Descriptive Geometry.....	8vo,	3 00
" Kinematics.....	8vo,	5 00
" Mechanical Drawing	8vo,	4 00
Mahan's Industrial Drawing. (Thompson.).....	2 vols., 8vo,	3 50
Reed's Topographical Drawing. (H. A.).....	4to,	5 00
Reid's A Course in Mechanical Drawing	8vo,	2 00
" Mechanical Drawing and Elementary Machine Design.		
8vo. (<i>In the press.</i>)		
Smith's Topographical Drawing. (Macmillan.).....	8vo,	2 50
Warren's Descriptive Geometry.....	2 vols., 8vo,	3 50
" Drafting Instruments.....	12mo,	1 25
" Free-hand Drawing	12mo,	1 00
" Linear Perspective.....	12mo,	1 00
" Machine Construction.....	2 vols., 8vo,	7 50
" Plane Problems.....	12mo,	1 25
" Primary Geometry.....	12mo,	.75
" Problems and Theorems.....	8vo,	2 50

Warren's Shades and Shadows.....	8vo,	\$3 00
" Stereotomy—Stone-cutting.....	8vo,	2 50
Whelpley's Letter Engraving	12mo,	2 00

ELECTRICITY AND MAGNETISM.

ILLUMINATION—BATTERIES—PHYSICS—RAILWAYS.

Anthony and Brackett's Text-book of Physics. (Magie.) Small		
	8vo,	3 00
Anthony's Theory of Electrical Measurements.....	12mo,	1 00
Barker's Deep-sea Soundings.....	8vo,	2 00
Benjamin's Voltaic Cell.....	8vo,	3 00
" History of Electricity.....	8vo,	3 00
Classen's Analysis by Electrolysis. (Herrick and Boltwood.)	8vo,	3 00
Cosmic Law of Thermal Repulsion.....	12mo,	75
Crehore and Squier's Experiments with a New Polarizing Photo-		
Chronograph.....	8vo,	3 00
Dawson's Electric Railways and Tramways. Small, 4to, half		
morocco,	12 50	
* Dredge's Electric Illuminations....2 vols., 4to, half morocco,	25 00	
" " " Vol. II.....	4to,	7 50
Gilbert's De magnetæ. (Mottelay.).....	8vo,	2 50
Holman's Precision of Measurements.....	8vo,	2 00
" Telescope-mirror-scale Method.....	Large 8vo,	75
Löb's Electrolysis and Electrosynthesis of Organic Compounds.		
(Lorenz.).	12mo,	1 00
* Michie's Wave Motion Relating to Sound and Light,.....	8vo,	4 00
Morgan's The Theory of Solutions and its Results.....	12mo,	1 00
Niaudet's Electric Batteries. (Fishback.).	12mo,	2 50
Pratt and Alden's Street-railway Road-beds.....	8vo,	2 00
Reagan's Steam and Electric Locomotives.....	12mo,	2 00
Thurston's Stationary Steam Engines for Electric Lighting Pur-		
poses.....	8vo,	2 50
*Tillman's Heat.....	8vo,	1 50

ENGINEERING.

CIVIL—MECHANICAL—SANITARY, ETC.

(See also BRIDGES, p. 4; HYDRAULICS, p. 9; MATERIALS OF ENGINEERING, p. 10; MECHANICS AND MACHINERY, p. 12; STEAM ENGINES AND BOILERS, p. 14.)

Baker's Masonry Construction.....	8vo,	\$5 00
" Surveying Instruments.....	12mo,	3 00
Black's U. S. Public Works.....	Oblong 4to,	5 00
Brooks's Street-railway Location.....	16mo, morocco,	1 50
Butts's Civil Engineers' Field Book.....	16mo, morocco,	2 50
Byrne's Highway Construction.....	8vo,	5 00
" Inspection of Materials and Workmanship.....	16mo,	3 00
Carpenter's Experimental Engineering	8vo,	6 00
Church's Mechanics of Engineering—Solids and Fluids.....	8vo,	6 00
" Notes and Examples in Mechanics.....	8vo,	2 00
Crandall's Earthwork Tables.....	8vo,	1 50
" The Transition Curve.....	16mo, morocco,	1 50
*Dredge's Penn. Railroad Construction, etc., Large 4to,	half morocco,	20 00
* Drinker's Tunnelling.....	4to, half morocco,	25 00
Eissler's Explosives—Nitroglycerine and Dynamite.....	8vo,	4 00
Folwell's Sewerage.....	8vo,	3 00
Fowler's Cofferdam Process for Piers.....	8vo,	2 50
Gerhard's Sanitary House Inspection.....	12mo,	1 00
Godwin's Railroad Engineer's Field-book.....	16mo, morocco,	2 50
Gore's Elements of Geodesy.....	8vo,	2 50
Howard's Transition Curve Field-book.....	16mo, morocco,	1 50
Howe's Retaining Walls (New Edition.).....	12mo,	1 25
Hudson's Excavation Tables. Vol. II.....	8vo,	1 00
Hutton's Mechanical Engineering of Power Plants.....	8vo,	5 00
Johnson's Materials of Construction.....	Large 8vo,	6 00
" Stadia Reduction Diagram, Sheet, 234 x 284 inches,		50
" Theory and Practice of Surveying.....	Small 8vo,	4 00
Kent's Mechanical Engineer's Pocket-book.....	16mo, morocco,	5 00
Kiersted's Sewage Disposal.....	12mo,	1 25
Mahan's Civil Engineering. (Wood.).....	8vo,	5 00
Merriman and Brook's Handbook for Surveyors.....	16mo, mor.,	2 00
Merriman's Geodetic Surveying.....	8vo,	3 00
" Retaining Walls and Masonry Dams.....	8vo,	2 00
" Sanitary Engineering.....	8vo,	2 00
Nagle's Manual for Railroad Engineers.....	16mo, morocco,	3 00
Ogden's Sewer Design. (<i>In the press.</i>)		
Patton's Civil Engineering.....	8vo, half morocco,	7 50

Palton's Foundations.....	8vo,	\$5 00
Pratt and Alden's Street-railway Road-beds.....	8vo,	2 00
Rockwell's Roads and Pavements in France.....	12mo,	1 25
Searles's Field Engineering	16mo, morocco,	3 00
" Railroad Spiral.....	16mo, morocco,	1 50
Siebert and Biggin's Modern Stone Cutting and Masonry..	8vo,	1 50
Smart's Engineering Laboratory Practice.....	12mo,	2 50
Smith's Wire Manufacture and Uses.....	Small 4to,	3 00
Spalding's Roads and Pavements.....	12mo,	2 00
" Hydraulic Cement.....	12mo,	2 00
Taylor's Prismoidal Formulas and Earthwork.....	8vo,	1 50
Thurston's Materials of Construction.....	8vo,	5 00
* Trautwine's Civil Engineer's Pocket-book.....	16mo, morocco,	5 00
* " Cross-section.....	Sheet,	25
* " Excavations and Embankments.....	8vo,	2 00
* " Laying Out Curves.....	12mo, morocco,	2 50
Waddell's De Pontibus (A Pocket-book for Bridge Engineers).	16mo, morocco,	8 00
Wait's Engineering and Architectural Jurisprudence.....	8vo,	6 00
" Law of Field Operation in Engineering, etc.....	Sheep,	6 50
Warren's Stereotomy—Stone-cutting.....	8vo,	2 50
* Webb's Engineering Instruments.....	16mo, morocco,	50
" " New Edition.....		1 25
Wegmann's Construction of Masonry Dams.....	4to,	5 00
Wellington's Location of Railways.....	Small 8vo,	5 00
Wheeler's Civil Engineering.....	8vo,	4 00
Wolf's Windmill as a Prime Mover.....	8vo,	3 00

HYDRAULICS.

WATER-WHEELS—WINDMILLS—SERVICE PIPE—DRAINAGE, ETC.

(See also ENGINEERING, p. 7.)

Bazin's Experiments upon the Contraction of the Liquid Vein. (Trautwine).	8vo,	2 00
Bovey's Treatise on Hydraulics.....	8vo,	4 00
Coffin's Graphical Solution of Hydraulic Problems.....	12mo,	2 50
Ferrel's Treatise on the Winds, Cyclones, and Tornadoes..	8vo,	4 00
Fuertes's Water and Public Health.....	12mo,	1 50
Ganguillet & Kutter's Flow of Water. (Hering & Trautwine.)	8vo,	4 00
Hazen's Filtration of Public Water Supply.		

Kiersted's Sewage Disposal.....	12mo.	\$1.25
Mason's Water Supply.....	8vo.	5.00
" Examination of Water.....	12mo.	1.25
Merriman's Treatise on Hydraulics.....	8vo.	4.00
Nichols's Water Supply (Chemical and Sanitary).....	8vo.	2.50
Wegmann's Water Supply of the City of New York.....	4to.	10.00
Weisbach's Hydraulics. (Du Bois.).....	8vo.	5.00
Whipple's Microscopy of Drinking Water.....	8vo.	3.50
Wilson's Irrigation Engineering.....	8vo.	4.00
" Hydraulie and Placer Mining.....	12mo.	2.00
Wolt's Windmill as a Prime Mover.....	8vo.	3.00
Wood's Theory of Turbines.....	8vo.	2.50

MANUFACTURES.

BOILERS—EXPLOSIVES—IRON—STEEL—SUGAR—WOOLLAWS, ETC.

Allen's Tables for Iron Analysis.....	8vo.	3.00
Beaumont's Woollen and Worsted Manufacture.....	12mo.	1.50
Bolland's Encyclopedia of Foundry Terms.....	12mo.	3.00
" The Iron Founder.....	12mo.	2.50
" " " " Supplement.....	12mo.	2.50
Bouvier's Handbook on Oil Painting.....	12mo.	2.00
Eissler's Explosives, Nitroglycerine and Dynamite.....	8vo.	4.00
Fodr's Boiler Making for Boiler Makers.....	18mo.	1.00
Metcalfe's Cost of Manufactures.....	8vo.	3.00
Metcalfe's Steel—A Manual for Steel Users.....	12mo.	2.00
*Reisig's Guide to Piece Dyeing.....	8vo.	25.00
Spencer's Sugar Manufacturer's Handbook.....	16mo. morocco	2.00
" Handbook for Chemists of Beet Sugar Houses.....	16mo. morocco	3.00
Thurston's Manual of Steam Boilers.....	8vo.	5.00
Walke's Lectures on Explosives.....	8vo.	4.00
West's American Foundry Practice.....	12mo.	2.50
" Moulder's Text-book.....	12mo.	2.50
Wiechmann's Sugar Analysis.....	Small 8vo.	2.50
Woodbury's Fire Protection of Mills.....	8vo.	2.50

MATERIALS OF ENGINEERING.

STRENGTH—ELASTICITY—RESISTANCE, ETC.

(See also ENGINEERING, p. 7.)

Baker's Masonry Construction.....	8vo.	5.00
Beardslee and Kent's Strength of Wrought Iron.....	8vo.	1.50
Bovey's Strength of Materials.....	8vo.	7.50
Burr's Elasticity and Resistance of Materials.....	8vo.	5.00
Byrne's Highway Construction.....	8vo.	5.00

Lanza's Applied Mechanics.....	.8vo,	7 50
Martens's Materials. (Henning.).....	.8vo. (<i>In the press.</i>)	
Merrill's Stones for Building and Decoration.....	.8vo,	5 00
Merriman's Mechanics of Materials.....	.8vo,	4 00
" Strength of Materials.....	12mo,	1 00
Patton's Treatise on Foundations.....	.8vo,	5 00
Rockwell's Roads and Pavements in France.....	12mo,	1 25
Spalding's Roads and Pavements.....	12mo,	2 00
Thurston's Materials of Construction.....	.8vo,	5 00
" Materials of Engineering.....	3 vols., .8vo,	8 00
Vol. I., Non-metallic8vo,	2 00
Vol. II., Iron and Steel.....	.8vo,	3 50
Vol. III., Alloys, Brasses, and Bronzes.....	.8vo,	2 50
Wood's Resistance of Materials.....	.8vo,	2 00

MATHEMATICS.

CALCULUS—GEOMETRY—TRIGONOMETRY, ETC.

Baker's Elliptic Functions.....	.8vo,	1 50
Ballard's Pyramid Problem.....	.8vo,	1 50
Barnard's Pyramid Problem.....	.8vo,	1 50
*Bass's Differential Calculus.....	12mo,	4 00
Briggs's Plane Analytical Geometry.....	12mo,	1 00
Chapman's Theory of Equations.....	12mo,	1 50
Compton's Logarithmic Computations.....	12mo,	1 50
Davis's Introduction to the Logic of Algebra.....	.8vo,	1 50
Halsted's Elements of Geometry.....	.8vo,	1 75
" Synthetic Geometry.....	.8vo,	1 50
Johnson's Curve Tracing.....	12mo,	1 00
" Differential Equations—Ordinary and Partial.		
	Small 8vo,	3 50
" Integral Calculus.....	12mo,	1 50
" " " Unabridged. Small 8vo.		
	(<i>In the press.</i>)	
" Least Squares.....	12mo,	1 50
*Ludlow's Logarithmic and Other Tables. (Bass.).....	.8vo,	2 00
* " Trigonometry with Tables. (Bass.).....	.8vo,	3 00
*Mahan's Descriptive Geometry (Stone Cutting)8vo,	1 50
Merriman and Woodward's Higher Mathematics.....	.8vo,	5 00
Merriman's Method of Least Squares8vo,	2 00
Parker's Quadrature of the Circle8vo,	2 50
Rice and Johnson's Differential and Integral Calculus,		
2 vols. in 1, small 8vo,		2 50

Rice and Johnson's Differential Calculus.....	Small 8vo,	\$3 00
" Abridgment of Differential Calculus.	Small 8vo,	1 50
"	8vo,	2 50
Totten's Metrology.....	12mo,	3 50
Warren's Descriptive Geometry.....	2 vols., 8vo,	1 25
" Drafting Instruments.....	12mo,	1 00
" Free-hand Drawing.....	12mo,	3 50
" Higher Linear Perspective.....	8vo,	1 00
" Linear Perspective.....	12mo,	75
" Primary Geometry.....	12mo,	1 25
" Plane Problems.....	12mo,	2 50
" Problems and Theorems.....	8vo,	1 50
" Projection Drawing.....	12mo,	2 00
Wood's Co-ordinate Geometry.....	12mo,	1 00
" Trigonometry.....	Large 8vo,	3 00
Woolf's Descriptive Geometry.....		

MECHANICS—MACHINERY.

TEXT-BOOKS AND PRACTICAL WORKS.

(See also ENGINEERING, p. 7.)

Baldwin's Steam Heating for Buildings.....	12mo,	2 50
Benjamin's Wrinkles and Recipes.....	12mo,	2 00
Chordal's Letters to Mechanics.....	12mo,	2 00
Church's Mechanics of Engineering.....	8vo,	6 00
" Notes and Examples in Mechanics.....	8vo,	2 00
Crechore's Mechanics of the Girder.....	8vo,	5 00
Cromwell's Belts and Pulleys.....	12mo,	1 50
" Toothed Gearing.....	12mo,	1 50
Compton's First Lessons in Metal Working.....	12mo,	1 50
Compton and De Groodt's Speed Lathe.....	12mo,	1 50
Dana's Elementary Mechanics	12mo,	2 00
Dingey's Machinery Pattern Making.....	12mo,	
Dredge's Trans. Exhibits Building, World Exposition.	Large 4to, half morocco,	10 00
Du Bois's Mechanics. Vol. I., Kinematics	8vo,	3 50
" " Vol. II., Statics..	8vo,	4 00
" " Vol. III., Kinetics.....	8vo,	3 50
Fitzgerald's Boston Machinist.....	18mo,	1 00
Flather's Dynamometers.....	12mo,	2 00
" Rope Driving.....	12mo,	2 00
Hall's Car Lubrication.....	12mo,	1 00
Holly's Saw Filing	18mo,	75
Johnson's Theoretical Mechanics. An Elementary Treatise		

Jones's Machine Design. Part II., Strength and Proportion of Machine Parts.....	8vo,	\$3 00
Lanza's Applied Mechanics.....	8vo,	7 50
MacCord's Kinematics.....	8vo,	5 00
Merriman's Mechanics of Materials.....	8vo,	4 00
Metcalf's Cost of Manufactures.....	8vo,	5 00
*Michie's Analytical Mechanics.....	8vo,	4 00
Richards's Compressed Air.....	12mo,	1 50
Robinson's Principles of Mechanism.....	8vo,	3 00
Smith's Press-working of Metals.....	8vo,	3 00
Thurston's Friction and Lost Work.....	8vo,	3 00
“ The Animal as a Machine	12mo,	1 00
Warren's Machine Construction.....	2 vols., 8vo,	7 50
Weisbach's Hydraulics and Hydraulic Motors. (Du Bois.)	8vo,	5 00
“ Mechanics of Engineering. Vol. III., Part I., Sec. I. (Klein.).....	8vo,	5 00
Weisbach's Mechanics of Engineering. Vol. III., Part I., Sec. II. (Klein.).....	8vo,	5 00
Weisbach's Steam Engines. (Du Bois.).....	8vo,	5 00
Wood's Analytical Mechanics.....	8vo,	3 00
“ Elementary Mechanics.....	12mo,	1 25
“ “ “ Supplement and Key.....	12mo,	1 25

METALLURGY.

IRON—GOLD—SILVER—ALLOYS, ETC.

Allen's Tables for Iron Analysis.....	8vo,	3 00
Egleston's Gold and Mercury.....	Large 8vo,	7 50
“ Metallurgy of Silver.....	Large 8vo,	7 50
* Kerl's Metallurgy—Copper and Iron.....	8vo,	15 00
* “ “ Steel, Fuel, etc.....	8vo,	15 00
Kunhardt's Ore Dressing in Europe.....	8vo,	1 50
Metcalf's Steel—A Manual for Steel Users.....	12mo,	2 00
O'Driscoll's Treatment of Gold Ores.....	8vo,	2 00
Thurston's Iron and Steel.....	8vo,	3 50
“ Alloys.....	8vo,	2 50
Wilson's Cyanide Processes.....	12mo,	1 50

MINERALOGY AND MINING.

MINE ACCIDENTS—VENTILATION—ORE DRESSING, ETC.

Barringer's Minerals of Commercial Value....Oblong morocco,	2 50
Beard's Ventilation of Mines.....	12mo,
Boyd's Resources of South Western Virginia.....	8vo,
“ Map of South Western Virginia....Pocket-book form,	2 00

Brush and Penfield's Determinative Mineralogy. New Ed.	Svo,	\$4 00
Chester's Catalogue of Minerals.....	8vo,	1 25
" " " "	Paper,	50
" Dictionary of the Names of Minerals.....	8vo,	3 00
Dana's American Localities of Minerals.....	Large Svo,	1 00
" Descriptive Mineralogy. (E. S.).....	Large half morocco,	12 50
" Mineralogy and Petrography. (J. D.).....	12mo,	2 00
" Minerals and How to Study Them. (E. S.)	12mo,	1 50
" Text-book of Mineralogy. (E. S.)...New Edition.	8vo,	4 00
* Drinker's Tunnelling, Explosives, Compounds, and Rock Drills.	4to, half morocco,	25 00
Egleston's Catalogue of Minerals and Synonyms.....	8vo,	2 50
Eissler's Explosives—Nitroglycerine and Dynamite.....	8vo,	4 00
Hussak's Rock-forming Minerals. (Smith.).....	Small Svo,	2 00
Ihlseng's Manual of Mining.....	8vo,	4 00
Kunhardt's Ore Dressing in Europe.....	8vo,	1 50
O'Driscoll's Treatment of Gold Ores.....	8vo,	2 00
* Penfield's Record of Mineral Tests.....	Paper, 8vo,	50
Rosenbusch's Microscopical Physiography of Minerals and Rocks. (Iddings.).....	8vo,	5 00
Sawyer's Accidents in Mines.....	Large Svo,	7 00
Stockbridge's Rocks and Soils.....	8vo,	2 50
Walke's Lectures on Explosives.....	8vo,	4 00
Williams's Lithology.....	8vo,	3 00
Wilson's Mine Ventilation.....	12mo,	1 25
" Hydraulic and Placer Mining.....	12mo,	2 50

STEAM AND ELECTRICAL ENGINES, BOILERS, Etc.

STATIONARY—MARINE—LOCOMOTIVE—GAS ENGINES, ETC.

(See also ENGINEERING, p. 7.)

Baldwin's Steam Heating for Buildings.....	12mo,	2 50
Clerk's Gas Engine.....	Small 8vo,	4 00
Ford's Boiler Making for Boiler Makers.....	18mo,	1 00
Hemenway's Indicator Practice.....	12mo,	2 00
Hoadley's Warm-blast Furnace.....	8vo,	1 50
Kneass's Practice and Theory of the Injector.....	8vo,	1 50
MacCord's Slide Valve.....	4to,	10 00
Meyer's Modern Locomotive Construction.....	8vo,	4 00
Peabody and Miller's Steam-boilers.....	8vo,	1 00
Peabody's Tables of Saturated Steam.....	8vo,	5 00
" Thermodynamics of the Steam Engine.....	8vo,	2 50
" Valve Gears for the Steam-Engine.....	8vo,	2 50
" the Indicator.....	Large Svo,	2 50

Reagan's Steam and Electric Locomotives.....	12mo,	\$2 00
Röntgen's Thermodynamics. (Du Bois.).....	8vo,	5 00
Sinclair's Locomotive Running.....	12mo,	2 00
Snow's Steam-boiler Practice.....	8vo. (<i>In the press.</i>)	
Thurston's Boiler Explosions.....	12mo,	1 50
" Engine and Boiler Trials.....	8vo,	5 00
" Manual of the Steam Engine. Part I., Structure and Theory.....	8vo,	6 00
" Manual of the Steam Engine. Part II., Design, Construction, and Operation.....	8vo,	6 00
	2 parts,	10 00
Thurston's Philosophy of the Steam Engine.....	12mo,	75
" Reflection on the Motive Power of Heat. (Carnot.)	12mo,	1 50
" Stationary Steam Engines.....	8vo,	2 50
" Steam-boiler Construction and Operation.....	8vo,	5 00
Spangler's Valve Gears.....	8vo,	2 50
Weisbach's Steam Engine. (Du Bois.).....	8vo,	5 00
Whitham's Constructive Steam Engineering.....	8vo,	6 00
" Steam-engine Design.....	8vo,	5 00
Wilson's Steam Boilers. (Flather.).....	12mo,	2 50
Wood's Thermodynamics, Heat Motors, etc.....	8vo,	4 00

TABLES, WEIGHTS, AND MEASURES.

FOR ACTUARIES, CHEMISTS, ENGINEERS, MECHANICS—METRIC
TABLES, ETC.

Adriance's Laboratory Calculations.....	12mo,	1 25
Allen's Tables for Iron Analysis.....	8vo,	3 00
Bixby's Graphical Computing Tables.....	Sheet,	25
Compton's Logarithm s.....	12mo,	1 50
Crandall's Railway and Earthwork Tables.....	8vo,	1 50
Egleston's Weights and Measures.....	18mo,	75
Fisher's Table of Cubic Yards.....	Cardboard,	25
Hudson's Excavation Tables. Vol. II.....	8vo,	1 00
Johnson's Stadia and Earthwork Tables.....	8vo,	1 25
Ludlow's Logarithmic and Other Tables. (Bass.).....	12mo,	2 00
Totten's Metrology.....	8vo,	2 50

VENTILATION.

STEAM HEATING—HOUSE INSPECTION—MINE VENTILATION.

Baldwin's Steam Heating.....	12mo,	2 50
Beard's Ventilation of Mines.....	12mo,	2 50
Carpenter's Heating and Ventilating of Buildings.....	8vo,	3 00
Gerhard's Sanitary House Inspection.....	12mo,	1 00
Reid's Ventilation of American Dwellings.....	12mo,	1 50

MISCELLANEOUS PUBLICATIONS.

Alcott's Gems, Sentiment, Language.....	Gilt edges,	\$ 5 00
Bailey's The New Tale of a Tub.....	8vo,	75
Ballard's Solution of the Pyramid Problem.....	8vo,	1 50
Barnard's The Metrological System of the Great Pyramid..	8vo,	1 50
Davis's Elements of Law.....	8vo,	2 00
Emmon's Geological Guide-book of the Rocky Mountains..	8vo,	1 50
Ferrel's Treatise on the Winds.....	8vo,	4 00
Haines's Addresses Delivered before the Am. Ry. Assn...12mo.		2 50
Mott's The Fallacy of the Present Theory of Sound..Sq. 16mo,		1 00
Perkins's Cornell University.....	Oblong 4to,	1 50
Ricketts's History of Rensselaer Polytechnic Institute....8vo,		3 00
Rotherham's The New Testament Critically Emphasized.	12mo,	1 50
" The Emphasized New Test. A new translation.	Large 8vo,	2 00
Totten's An Important Question in Metrology.....	8vo,	2 50
Whitehouse's Lake Mearris.....	Paper,	25
* Wiley's Yosemite, Alaska, and Yellowstone	4to,	3 00

HEBREW AND CHALDEE TEXT-BOOKS.

FOR SCHOOLS AND THEOLOGICAL SEMINARIES.

Gesenius's Hebrew and Chaldee Lexicon to Old Testament. (Tregelles.).	Small 4to, half morocco,	5 00
Green's Elementary Hebrew Grammar.....	12mo,	1 25
" Grammar of the Hebrew Language (New Edition).8vo,		3 00
" Hebrew Chrestomathy.....	8vo,	2 00
Letteris's Hebrew Bible (Massoretic Notes in English).		
	8vo, arabesque,	2 25

MEDICAL.

Bull's Maternal Management in Health and Disease.....	12mo,	1 00
Hammarsten's Physiological Chemistry. (Mandel.).	8vo,	4 00
Mott's Composition, Digestibility, and Nutritive Value of Food.		
	Large mounted chart,	1 25
Ruddinan's Incompatibilities in Prescriptions.....	8vo,	2 00
Steel's Treatise on the Diseases of the Ox.....	8vo,	6 00
" Treatise on the Diseases of the Dog.....	8vo,	3 50
Woodhull's Military Hygiene.....	16mo,	1 50
Worcester's Small Hospitals—Establishment and Maintenance, including Atkinson's Suggestions for Hospital Architecture.....	12mo,	1 25