One way ANOVA

Session 3

MATH 80667A: Experimental Design and Statistical Methods for Quantitative Research in Management HEC Montréal

Outline

Hypothesis tests for ANOVA

Parametrizations and interpretation

Planned comparisons and post-hoc tests

Hypothesis tests for ANOVA

General recipe of hypothesis testing

- (1) Define variables
- (2) Write down hypotheses
- (3) Choose/compute a test statistic
- (4) Compare statistic to null distribution
- (5) Compute *p*-value / confidence interval
 - (6) Conclude (reject/fail to reject)

Level = probability of condemning an innocent

Fix level α before the experiment.

Choose small α (typical value is 5%)

Reject \mathscr{H}_0 if p-value less than lpha

F-test for one way ANOVA

Global null hypothesis

No difference between treatments

- ullet \mathscr{H}_0 (null): all of the K treatment groups have the same average μ
- \mathcal{H}_a (alternative): at least two treatments have different averages

Building a statistic

Denote

- ullet y_{ik} is observation i of group k
- $\widehat{\mu}_1,\ldots,\widehat{\mu}_K$ the sample average of groups $1,\ldots,K$
- $\widehat{\mu}$ is overall sample mean

Decomposing variability into bits

$$\sum_{i} \sum_{k} (y_{ik} - \widehat{\mu})^2 = \sum_{i} \sum_{k} (y_{ik} - \widehat{\mu}_k)^2 + \sum_{k} n_i (\widehat{\mu}_k - \widehat{\mu})^2.$$
total sum of squares within sum of squares between sum of squares

null model

alternative model

added variability

Degrees of freedom

The parameters of the null distribution are called degrees of freedom

- ullet K-1 is the number of constraints imposed by the null
- ullet n-K is the number of observations minus number of mean parameters estimated under alternative

F-test statistic

Omnibus test

With K groups and n observations, the statistic is

$$F = \frac{\text{between sum of squares}/(K-1)}{\text{within sum of squares}/(n-K)}$$

The null distribution (benchmark) is F(K-1, n-K).

Intuition behind *F*-test

Idea of *F*-statistic: under the null, both numerator and denominator are estimators of the variance.

- ullet the F ratio should be approximately one on average
- the numerator is more variable (so skewed null distribution)...

Pairwise differences and t-tests

The pairwise differences (p-values) and confidence intervals for groups j and k are based on the t-statistic:

$$t = \frac{\text{estimated - postulated difference}}{\text{uncertainty}} = \frac{(\widehat{\mu}_j - \widehat{\mu}_k) - (\mu_j - \mu_k)}{\text{se}(\widehat{\mu}_j - \widehat{\mu}_k)}$$

which has a Student-t null distribution, denoted $\mathsf{St}(n-k)$.

The standard error $\mathbf{se}(\widehat{\mu}_j-\widehat{\mu}_k)$ uses the pooled variance estimate (based on all groups).

t-tests

If we postulate $\delta_{jk}=\mu_j-\mu_k=0$, the test statistic becomes

$$t=rac{\hat{\delta}_{jk}-0}{\mathsf{se}(\hat{\delta}_{jk})}$$

The p-value is $p=1-\Pr(-|t|\leq T\leq |t|)$ for $T\sim \mathsf{St}_{n-k}$.

ullet probability of statistic being more extreme than t

The larger the values of t (positive or negative), the more evidence against the null hypothesis.

Example

Consider the pairwise average difference in scores between the praised (group C) and the reproved (group D) of the arithmetic study.

- ullet Sample averages are $\widehat{\mu}_C=27.4$ and $\widehat{\mu}_D=23.4$
- ullet The estimated pooled standard deviation for the five groups is 1.15
- ullet The estimated average difference between groups C and D is $\hat{\delta}_{CD}=4$.
- ullet The standard error for the difference is $\mathsf{se}(\hat{\delta}_\mathit{CD}) = 1.6216$

Example

ullet If $\mathscr{H}_0:\delta_{CD}=0$, the t statistic is

$$t = rac{\hat{\delta}_{\it CD} - 0}{\mathsf{se}(\hat{\delta}_{\it CD})} = rac{4}{1.6216} = 2.467$$

- The p-value is p=0.018.
- ullet We reject the null at level lpha=5% since 0.018<0.05.
- Conclude that there is a significant difference at level $\alpha=0.05$ between the average scores of subpopulations C and D.

Null distribution

The blue area defines the set of values for which we fail to reject null \mathcal{H}_0 . All values of t falling in the red aread lead to rejection at level 5%.

Critical values

For a test at level lpha (two-sided), fail to reject all values of the test statistic t that are in interval

$$\mathfrak{t}_{n-k}(\alpha/2) \leq t \leq \mathfrak{t}_{n-k}(1-\alpha/2)$$

Because of symmetry around zero, $\mathfrak{t}_{n-k}(1-\alpha/2)=-\mathfrak{t}_{n-k}(\alpha/2)$.

- We call $\mathfrak{t}_{n-k}(1-lpha/2)$ a **critical value**.
- in R, qt(1-alpha/2, df = n k) where n is the number of observations and k the number of groups

Confidence interval

Let $\delta_{jk}=\mu_j-\mu_k$ denote the population difference, $\hat{\delta}_{jk}$ the estimated difference (difference in sample averages) and $\mathbf{se}(\hat{\delta}_{jk})$ the estimated standard error.

The region for which we fail to reject the null is

$$\mathfrak{t}_{n-k}(lpha/2) \leq rac{\hat{\delta}_{jk} - \delta_{jk}}{\mathsf{se}(\hat{\delta}_{jk})} \leq \mathfrak{t}_{n-k}(1-lpha/2)$$

which rearranged gives the (1-lpha) confidence interval for the (unknown) difference δ_{jk} .

$$\hat{\delta}_{jk} + \mathsf{se}(\hat{\delta}_{jk}) \mathfrak{t}_{n-k}(lpha/2) \leq \delta_{jk} \leq \hat{\delta}_{jk} + \mathsf{se}(\hat{\delta}_{jk}) \mathfrak{t}_{n-k}(1-lpha/2)$$

Interpretation of confidence intervals

The reported confidence interval is

$$[\hat{\delta}_{jk} + \mathsf{se}(\hat{\delta}_{jk})\mathfrak{t}_{n-k}(lpha/2), \hat{\delta}_{jk} + \mathsf{se}(\hat{\delta}_{jk})\mathfrak{t}_{n-k}(1-lpha/2)].$$

Each bound is of the form

 $estimate + critical value \times standard error$

confidence interval = [lower, upper] units

If we replicate the experiment and compute confidence intervals each time

 on average, 95% of those intervals will contain the true value if the assumptions underlying the model are met.

Interpretation in a picture: coin toss analogy

Each interval either contains the true value (black horizontal line) or doesn't.

Why confidence intervals?

Test statistics are standardized,

- Good for comparisons with benchmark
- typically meaningless (standardized = unitless quantities)

Two options for reporting:

- ullet p-value: probability of more extreme outcome if no mean difference
- confidence intervals: set of all values for which we fail to reject the null hypothesis at level lpha for the given sample

Example

- ullet Mean difference of $\hat{\delta}_{\it CD}=4$, with ${\sf se}(\hat{\delta}_{\it CD})=1.6216$.
- ullet The critical values for a test at level lpha=5% are -2.021 and 2.021
 - \circ qt(0.975, df = 45 5)
- Since |t|>2.021, reject \mathscr{H}_0 : the two population are statistically significant at level lpha=5%.
- The confidence interval is

$$[4-1.6216 \times 2.021, 4+1.6216 \times 2.021] = [0.723, 7.28]$$

The postulated value $\delta_{CD}=0$ is not in the interval: reject \mathscr{H}_0 .

Pairwise differences in R

```
library(tidyverse) # data manipulation
library(emmeans) # marginal means and contrasts
url <- "https://edsm.rbind.io/data/arithmetic.csv"</pre>
# load data, define column type (factor and integer)
arithmetic <- read_csv(url, col_types = "fi")</pre>
# fit one-way ANOVA model
model <- lm(score ~ group, data = arithmetic)</pre>
# Compute average of groups with model specification
margmeans <- emmeans::emmeans(model, specs = "group")</pre>
# Contrasts (default to pairwise comparisons) - no adjustment
contrast(margmeans, adjust = 'none', infer = TRUE)
#infer = TRUE for confidence intervals
```

Parametrizations and interpretation

Parametrization 1: sample averages

Most natural parametrization, not useful for test

- Sample sizes in each group: n_1, \ldots, n_K , are known.
- ullet sample average of each treatment group: $\widehat{\mu}_1,\ldots,\widehat{\mu}_K$.

K means = K parameters

Overall mean is

$$n\widehat{\mu} = n_1\widehat{\mu}_1 + \cdots + n_K\widehat{\mu}_K$$

Parametrization 2: contrasts

In terms of differences, relative to a baseline category j

- Intercept = sample mean $\widehat{\mu}_j$
- ullet Coefficient for group k
 eq j: $\widehat{\mu}_k-\widehat{\mu}_j$
 - \circ difference between averages of group k and baseline

In **R**, the baseline is the smallest alphanumerical value.

```
lm(response ~ group)
```

Parametrization 3: sum-to-zero

In terms of differences, relative to average of $\widehat{\mu}_1,\ldots,\widehat{\mu}_K$

- Intercept = $(\widehat{\mu}_1 + \cdots + \widehat{\mu}_K)/K$
- Coefficient for group k: $\widehat{\mu}_k$ minus intercept

In **R**, the last factor level is dropped by default.

```
lm(response ~ group, contrasts = contr.sum(group))
```

Warning: Intercept $eq \widehat{\mu}$ unless the sample is balanced.

Comparison for the arithmetic example

group	mean	contrasts	sum-to-zero
intercept		19.66	21.00
control 1	19.66		-1.33
control 2	18.33	-1.33	-2.66
praised	27.44	7.77	6.44
reproved	23.44	3.77	2.44
ignored	16.11	-3.55	

Planned comparisons and posthoc tests

Planned comparisons

Oftentimes, we are not interested in the global null hypothesis.

 Can formulate planned comparisons at registration time for effects of interest

What is the scientific question of interest?

Arithmetic example

group 1 group 2 group 3

(control) (praise, reprove, ignore)

Hypothesis of interest

- \mathscr{H}_{01} : $\mu_{\mathrm{praise}} = \mu_{\mathrm{reproved}}$ (attention)
- \mathscr{H}_{02} : $\frac{1}{2}(\mu_{ ext{control}_1} + \mu_{ ext{control}_2}) = \mu_{ ext{praised}}$ (encouragement)

Contrasts

With placeholders for each group, write $\mathscr{H}_{01}:\mu_{ ext{praised}}=\mu_{ ext{reproved}}$ as

$$0 \cdot \mu_{ ext{control}_1}$$
 + $0 \cdot \mu_{ ext{control}_2}$ + $1 \cdot \mu_{ ext{praised}}$ - $1 \cdot \mu_{ ext{reproved}}$ + $0 \cdot \mu_{ ext{ignored}}$

The sum of the coefficients, (0,0,1,-1,0), is zero.

Contrast = sum-to-zero constraint

Similarly, for
$$\mathscr{H}_{02}: \frac{1}{2}(\mu_{\mathrm{control}_1} + \mu_{\mathrm{control}_2}) = \mu_{\mathrm{praise}}$$

$$\frac{1}{2} \cdot \mu_{\mathrm{control}_1} + \frac{1}{2} \cdot \mu_{\mathrm{control}_2} - 1 \cdot \mu_{\mathrm{praised}} + 0 \cdot \mu_{\mathrm{reproved}} + 0 \cdot \mu_{\mathrm{ignored}}$$

The entries of the contrast vector $\left(\frac{1}{2},\frac{1}{2},-1,0,0\right)$ sum to zero.

Equivalent formulation is obtained by picking (1,1,-2,0,0)

Contrasts in R

```
library(emmeans)
linmod <- lm(score ~ group, data = arithmetic)</pre>
linmod_emm <- emmeans(linmod, specs = 'group')</pre>
contrast_specif <- list(</pre>
  controlvspraised = c(0.5, 0.5, -1, 0, 0),
  praisedvsreproved = c(0, 0, 1, -1, 0)
contrasts_res <-
  contrast(object = linmod_emm,
                     method = contrast_specif)
# Obtain confidence intervals instead of p-values
confint(contrasts res)
```

Post-hoc tests

Maybe there is some difference between groups?

Unplanned comparisons: go fishing...

Comparing all pairwise differences =
$$\binom{K}{2}$$
 tests

With K=5 groups, we get 10 pairwise comparisons.

```
emmeans(modlin, pairwise ~ group)
```

If there were no differences between the groups, how many do we expect to find significant by chance with lpha=0.1?