VHDL Timing Analysis

Rafael Corsi Ferrão - IMT

rafael.corsi@maua.br
http://www.maua.br

12 de novembro de 2014

Conteúdo

Conceitos

Análise estática

1 Conceitos

Conteúdo

Conceitos Análise estática

1 Conceitos

Timing Analysis

Conceitos

- Os dados trafegam entrem Flip-Flops
- o tempo da transmissão entre Flip-Flops é crítico
- ▶ parâmetros como Set-up Time, Hold-time, ... devem ser analisados para evitar a META ESTABILIDADE

Lógica combinacional

Conceitos

Análise estática

- Tempo de propagação
 - Quanto mais portas mais complexo é a analise
 - ► FPGA não possui portas mas sim LUTs, e esse tempo deve ser levado em conta

5/12

- ▶ esse é o grande problema !!
- ► FPGA é lenta se comparada com ASIC
- o caminho influência em até 50 % do tempo de propagação
- o roteamento depende da ferramenta, porém podemo alocar recursos!

Análise estática

Conceitos

Conteúdo

Conceitos

Análise estática

1 Conceitos

Conceitos

Conceitos

$$T_{clk,min} = T_{clk->Q} + T_{Logic} + T_{Routing} + T_{Setup} - T_{Skew}$$

Conceitos

Xilinx Vivado Log

Conceitos

