

107-2 臺大機械系機械工程實務學期成果

HMA 10 李昱揚 林冠宇 林楚鈞 許定為 曾柏翰

单型型 全車僅重1055g,較一般組別減少33%

流線 流線型車體與高風扇設計,模擬總風阻係數僅0.11

力量 風扇推力0.834N, 0-100cm/s僅需12.5秒

女捷 阿克曼轉向搭配一煞即停的制動,使車輛運動性能極佳

精準 視覺與紅外線超音波雙系統循跡,依場地需求隨時改變

品名	數量	小計	品名	數量	小計
PLA-3D 列印用材	若干	0	網路攝影機	1	120
200*300密集板	2	50	M3 培林	6	90
3S 1300mAh鋰聚合物電池	1	417	彈簧	4	4
電子變速器 40A	1	330	尼龍螺母(防鬆螺母)	10	10
10A 18650電池	1	140	M3 8mm螺絲	10	0
18650 5V升壓模組	1	49	M3 50mm半牙螺絲	5	25
A2212 1000 kV無刷馬達	1	180	*控制板不列入計算	總計	2010
SG90伺服馬達	2	160	控制板	數量	小計
麵包板	1	15	Arduino Mega	1	240
HC-SR04 超音波模組	3	240	Arduino Nano	1	100
TCRT5000 紅外線模組	6	180	Raspberry Pi 3b+	1	1290

車體與車架

外型設計仿效有史以來風阻係數最低的車體 - Eco-Runner Team Delft: Ecorunner V - 期許透過 此設計降低空氣阻力。車架更整合了所有可能用到的感測器:包括相機、超音波測距器以及兩 種紅外線感測器, 使我們的控制有更多選擇。

另由於風扇架幾何較為細長, 其共振頻率與馬達震動極接近, 故有更新設計提高支架共振頻率。

▲ 利用ansys的static structure套件,設定邊界條件 為:底板,fixed suport、馬達軸處,837.758 rad/s。

▲ 以Solidworks 模擬車體流場速度 分布,藉此得阻力係數為0.11。

控制邏輯

轉向與懸吊

轉向和懸吊是生而為車的重要設計。由於期中的懸吊過軟轉向 也太佔空間, 期中之後我們改採麥花臣式懸吊, 藉此簡化結構 並增加車體剛性;轉向方面則是以阿克曼轉向機構為基礎, 再 長的軸距設計下非常有利。而期中之後, 我們以同一組轉向幾 縮短桿長並移至下板上方,挪出空間以放置感測器的線路。

制動系統

剎車是車輛最重要的安全部件。為求 煞車結構簡單, 我們採單後輪的設計, 如此摩擦後輪就能得到立即的煞車反 🖊 應。另煞車皮使用泡棉材質的防撞條, 令控制端有機會控制煞車的力度。

第一代的風扇設計採用經典翼型-NACA23018直接繪製而成;在 邊界條件下,第二代風扇確實比第一代風扇有更好的推力表現。

NACA23018

交显	57	6	53	69	75		重要	零件尺 ⁻	寸驗	證編號示	意
里里		2 30,00								21,00	
ツ 懸						8	3 34,00				
<u> </u>				62,00						4	
										/	

				V		1,2,2 > < 1	. אניי ב				
半徑(mm)	15	21	27	33	39	45	51	57	63	69	75
設計弦長(mm)	13.0	13.9	14.7	15.3	15.5	15.0	13.9	12.5	10.8	9.0	6.8
實際弦長(mm)	12.1	13.2	14.1	15.0	14.3	13.7	12.9	10.6	9.0	6.8	Χ
誤差(%)	6.92	5.18	4.15	1.96	7.74	8.67	7.19	15.20	16.67	24.44	X
設計槳葉角(deg)	21.002	17.099	14.887	13.467	12.478	11.752	11.194	10.754	10.398	10.103	9.855
實際槳葉角(deg)	20.98	20.08	18.52	18.85	18.05	18.56	19.07	21.67	24.07	31.21	Χ
誤差(%)	0.1	-17.47	-24.04	-39.95	-44.64	-57.94	-70.37	-100.98	-131.48	-208.93	X

0.19(m/s)

	5.0	0.0	/\	אנים אואוין דיין אויין דיין איינין דיין	נייווועם	見がバリ	
	16.67	24.44	X	1	62mm	61.81mm	-0.3%
4	10.398	10.103	9.855	2	30mm	30.23mm	0.77%
	24.07	31.21	X	3	84mm	83.89mm	-0.13%
98	-131.48	-208.93	Χ	4	21mm	20.8mm	0.95%

量守恆的方式回推風扇之推力大 小。其中入口處與出口處的風速乃 是用熱線風速計量測。

不同於拉力實驗,本實驗目的為 了解車輛運作過程中常用風速功 率(PWM=97、100)的風扇推力,與 詳細風場分布情形。

PWM97扇葉推力與風速數據◀ PWM100扇葉推力與風速數據▶ PWM與扇葉轉速關係 V

		1 V V	141 2.	: /2/2 :	/ ₹ †¬	于人心	LHF	
8000	Relat	ion betv	veen fan	duty an	d fan ro	tation s	peed	
7000 -							. 0	Φ
(md.) p					0			
fina rotation speed (rpm)		0	0	0				
fua rot	0							
3000	rpm =55 R ² =0.9	3.833333 80824	PWM-494	120.6111	11			
2000	96	97	98	99	100	101	102	103
95	90	91		gg duty (PW		101	102	103

摩擦力&抓地力實驗

0.0304

0.0403

0.0270

0.0315

0.195 0.455

0.25 0.455

0.25 0.535

0.25 0.545

0.244 0.506

0.202 0.420

0.275

地板及坡道分別進行實驗。

抬升高度(mm)

18.25

25.78

20.02

Test2

Test4

Average

身內部缺陷產生的摩擦;抓地力實驗乃是為了檢視車輛的抓地

性能:我們將車子橫放,以精度為5g的電子彈簧秤拉動,並對

		33	0.63
推力	1 (N)	0.12	2112
PWM	100	背景	風速
		0.19	(m/s)
In	let	Thi	roat
H(cm)	V(m/s)	H(cm)	V(m/s)
24	0.42	24	4.63
28	28 0.41		4.07
32	0.35	28	3.5
36	0.26	30	3.39
40	40 0.26		3.27
		33	2.71
		34	2.05
		35	1.53
		36	1.14
推力	J (N)	0.32	2842

彈簧秤一端繫於椅腳,一端繫於車上,並以不同的PWM訊號 驅動風扇觀察推力與轉速的關係,其中彈簧秤是數位型,於出 廠時已經校正。

與風洞實驗不同,本實驗旨在找到風扇的最大推力為何。

PWM	推力 (N)	加速度 (m/s²)
105	0.540	0.052
106	0.540	0.052
108	0.540	0.052
110	0.834	0.080
115	0.834	0.080
120	0.834	0.080

加速度實驗

各張照片中白色電池盒形心位置定位車輛,再根據相機錄影的 禎數與照片中之比例尺得知車輛的位置與時間之關係, 進而繪

與拉力實驗不同,本實驗的加速度包含循跡時車輛扭擺造成的 影響,並將推力區間集中於常用範圍(PWM97-PWM101)。

不同PWM之加速度 ▲

車架設計

風扇設計 成車實驗

機電整合

前懸吊設計 制動系統設計 轉向系統設計 視覺模組設計

林楚鈞