* 19ECE 204 * Digital Electronics and Systems ASSIGNNENT-II

CB.EN.U4CSE19453

1) $F(x_1, x_2, x_3, x_4) = \sum_{i=1}^{n} (1, 2, 6, 9, 10, 12, 13, 14, 15)$

We can design the function F using 3.8 mux where each terminal can supresent two inputs without use of basic gates (assuming negated literals are available universely)

X	V	V	X	×	×	V	X
0	1	2	3	4	5	6	7
8	9	10	u	12	13	14	15
X	V	V	X	-	1	V	V

Curtailed Touth Table

The modelled MUX is shown below:

soot to promption of the ...

3. 5 M (2. 0, 4)

्राध्याक प्रधा । (वर्षाच्या र

30 K 3

winter.

1 (4, 4, 46) - Fab (* 3, 6, 4)

F(X4,X3,X2,X1)=sigma m(1,2,6,9,10,12,13,14,15)

2)

F(1,11,13) = Em(1,2,6,7)

Using 'OR' the given minterm to realize F through a decader.

B(1,72,73) = 11 M (0,1,0,5,6)

W.K.T.,

G= SM(3,4,7)

". SOP is complement of POS

aspersions to a inpute between use of board gated consuming regarded. Othership are available contextely in

curtailed hulb Table

	81	4.	a	Ь	c	d	e	f	9
			1	D	0	1	1	1	0
Coffee	0	0	0	0	0	0	1	1	1
Tea	0	1			0	1	1	1	0
Nilk	1	0	0	0			1	1	
Cou-cola	1	1	- '		1	0	+	1	

Algebraic - equation for each output terminal:

$$a = \overline{y_1}y_0 + y_1y_0 = y_10y_0$$
 $b = y_1y_0$
 $d = \overline{y_1}y_0 + y_1\overline{y_0} + \overline{y_1}y_0 = \overline{y_0} + \overline{y_1}$
 $e = 1$
 $g = \overline{y_1}y_0 + y_1y_0 = y_0$

+ = 1

9

Circuit "

encody 4:2

Building encoder:

Wg	w,	w,	Wo	4,	Yo
	0	ō	t	0	0
0	0	ι	D	0	t
0	1	0	0	1	σ
0	0	0	0	1	1

$$y_0 = \overline{w}_3 \, w_1 \, \overline{w}_0 + w_3 \, \overline{w}_1 \, \overline{w}_0$$

$$y_0 = \overline{w}_3 \, \overline{w}_1 \, w_1 \, \overline{w}_0 + w_3 \, \overline{w}_1 \, \overline{w}_0$$

CB.EN.U4CSE19453

CB.EN.U4CSE19453

4.) Designing I digit BCD adder

(a) 74151 8:1 MUX

(i) Pin Diagram:

Function Table:

Enable	Sel	ect Ir	put	Output
E	52	Sı	So	γ
0	×	x	x	0
l	0	0	O	D.
1	٥	0	1	Di
1	O	1	b	D ₂
1	o	,	1	D3
1	1	0	6	Dy
1	1	O	1	D5
1	1	1	٥	DG
t	,	1	1	D¥
	-	-	1	

(b) 7413 BIC 3:8 decoder

Pin diagram.

Observe in truth table 1/p -> active high ofp -> active law

Function Table 1

	CCION TO SE	_	1						'		-			
GI	G2A + Q2 B		C	В	A		<u>Vo</u>	Σ ₁	₹,	V2	74	Y ₅	$\overline{\gamma}_6$	7-
0	X		X	X	X		1	1	Į,	1	1	1	1	1
×	1		×	x	X		١	1	1	•	'	•	'	1
	0		٥	0	ô		0	1	1	1	1	1	!	1
<u>`</u>			0	0	1		1	0	1	1	1	١	1	1
'	0		O	1	0		,	1	0	1	1	1	,	1
١	0		0		1		-1	1	1	0	1	1	(1
1	0			'						1	0	1	,	1
	D		1	0	0		'	,	'					
'			1	0	1		1	1	1	1	'	0	1	1
1	D		1	,	٥		1	1	1	1	1	1	0	1
1	0							١,	١,	١,	١,	,	,	0
			1	1	1		'	'	'	'	'	'		
\	0	-		-		. l .	17	-6	* * * * * * * * * * * * * * * * * * *	-				
			GRA + GZB = GZ											
				Y	M71	,	-							
			17 Marie	-an			and hard the	CHIEF.	-			1	-	

GRA + GRB = GR

(ii) We can take the help of enable (E) to connect two 8:1 MUX to yield one 16:1 MUX as follows:

(enable of 16:1 MUX)

inputs of 16:1 MUX

E is enable and Y is output of 16:1 MUX

Hence A,B,C,D are address lines or Vis Oxis15 are output terminaly of 4:16 decodes.

Gi ts main enable which can be wed.