HYS72T64000HP-[3S/3.7]-A HYS72T1280x0HP-[3S/3.7]-A HYS72T256220HP-[3S/3.7]-A HYS72T256040HP-[3S/3.7]-A

240-Pin Registered DDR2 SDRAM Modules DDR2 SDRAM RDIMM SDRAM RoHS Compliant

Qimonda

www.qimonda.com

HYS72T64000HP-[3S/3.7]-A, HYS72T1280x0HP-[3S/3.7]-A, HYS72T256220HP-[3S/3.7]-A, HYS72T256040HP- [3S/3.7]-A						
Revision H	listory: 2007-07, Rev. 1.02					
Page	Subjects (major changes since last revision)					
All	Adapted internet edition					
All	Editorial changes					
Previous R	Previous Revision: 2006-09, Rev. 1.01					
All	Qimonda update					
Previous R	Revision: 2006-02, Rev. 1.0					

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

techdoc@qimonda.com

1 Overview

This chapter gives an overview of the 1.8 V 240-Pin Registered DDR2 SDRAM Modules with parity bit product family and describes its main characteristics.

1.1 Features

- 240-Pin PC2–5300 and PC2–4200 DDR2 SDRAM memory modules.
- One rank 64M ×72, 128M ×72, and two ranks 128M ×72, 256M ×72, and four rank 256M ×72 module organization and 64M ×8, 128M ×4 chip organization
- Registered DIMM Parity bit for address and control bus
- 512 MB, 1 GB, and 2 GB module built with 512 Mbit DDR2 SDRAMs in P-TFBGA-60 chipsize packages.
- Standard Double-Data-Rate-Two Synchronous DRAMs (DDR2 SDRAM) with a single + 1.8 V (± 0.1 V) power supply
- All speed grades faster than DDR2–400 comply with DDR2–400 timing specifications.
- Programmable CAS Latencies (3, 4, 5, 6), Burst Length (4 & 8)

- · Auto Refresh (CBR) and Self Refresh
- · Programmable self refresh rate via EMRS2 setting
- Programmable partial array refresh via EMRS2 settings
- · DCC enabling via EMRS2 setting
- All inputs and outputs SSTL 18 compatible
- Off-Chip Driver Impedance Adjustment (OCD) and On-Die Termination (ODT)
- Serial Presence Detect with E²PROM
- RDIMM Dimensions (nominal): 30 mm high, 133.35 mm wide
- Based on standard reference card layouts Raw Card "G", "H", "J", "N" and "F"
- RoHS compliant products¹⁾

					TABLE 1
					Performance Table
Product Type Speed Code			-3S	-3.7	Unit
DRAM Speed Grade			DDR2-667D	DDR2-533C	
Module Speed Grade			PC2-5300	PC2-4200	
CAS-RCD-RP latencies			5-5-5	4-4-4	t _{CK}
Max. Clock Frequency	@CL5	f_{CK5}	333	266	MHz
	@CL4	f_{CK4}	266	266	MHz
	@CL3	f_{CK3}	200	200	MHz
Min. RAS-CAS-Delay t_{RCD}			15	15	ns
Min. Row Precharge Time t_{RP}			15	15	ns
Min. Row Active Time t_{RAS}			45	45	ns
Min. Row Cycle Time		t_{RC}	60	60	ns

¹⁾ RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.

1.2 Description

The Qimonda HYS72T[64/128/256]xx0HP–[3S/3.7]–A module family are Registered DIMM (with parity) modules with 30 mm height based on DDR2 technology.

DIMMs are available as ECC modules in 64M \times 72 (512 MB), 128M \times 72 (1 GB), 256M x72 (2GB) organization and density, intended for mounting into 240-Pin connector sockets.

The memory array is designed with 512-Mbit Double-Data-Rate-Two (DDR2) Synchronous DRAMs. All control and address signals are re-driven on the DIMM using register devices and a PLL for the clock distribution. This reduces

capacitive loading to the system bus, but adds one cycle to the SDRAM timing. Decoupling capacitors are mounted on the PCB board. The DIMMs feature serial presence detect based on a serial E2PROM device using the 2-pin I2C protocol. The first 128 bytes are programmed with configuration data and the second 128 bytes are available to the customer.

TABLE 2

	Ordering Infor	mation for RoHS C	ompliant Products
Product Type ¹⁾	Compliance Code ²⁾	Description	SDRAM Technology
PC2-5300-555			
HYS72T64000HP-3S-A	512 MB 1Rx8 PC2-5300P-555-12-F0	1 Rank ECC	512 Mbit (×8)
HYS72T128000HP-3S-A	1 GB 1Rx4 PC2-5300P-555-12-H0	1 Rank ECC	512 Mbit (×4)
HYS72T128020HP-3S-A	1 GB 2Rx8 PC2-5300P-555-12-G0	2 Ranks, ECC	512 Mbit (×8)
HYS72T256220HP-3S-A	2 GB 2Rx4 PC2-5300P-555-12-J2	2 Ranks, ECC	512 Mbit (×4)
HYS72T256040HP-3S-A	2 GB 4Rx8 PC2-5300P-555-12-N0	4 Ranks, ECC	512 Mbit (×8)
PC2-4200-444			
HYS72T64000HP-3.7-A	512 MB 1Rx8 PC2-4200P-444-12-F0	1 Rank ECC	512 Mbit (×8)
HYS72T128000HP-3.7-A	1 GB 1Rx4 PC2-4200P-444-12-H0	1 Rank ECC	512 Mbit (×4)
HYS72T128020HP-3.7-A	1 GB 2Rx8 PC2-4200P-444-12-G0	2 Ranks, ECC	512 Mbit (×8)
HYS72T256220HP-3.7-A	2 GB 2Rx4 PC2-4200P-444-12-J2	2 Ranks, ECC	512 Mbit (×4)
HYS72T256040HP-3.7-A	2 GB 4Rx8 PC2-5300P-555-12-N0	4 Ranks, ECC	512 Mbit (×8)

All Product Type number end with a place code, designating the silicon die revision. Example: HYS72T64000HP-3.7-A, indicating Rev. "B" dies are used for DDR2 SDRAM components. For all Qimonda DDR2 module and component nomenclature see Chapter 6 of this data sheet.

TABLE 3

					Address i dilli	at Table
DIMM Density	Module Organization	Memory Ranks	ECC/ Non-ECC	# of SDRAMs	# of row/bank/column bits	Raw Card
512 MB	64M ×72	1	ECC	9	14/2/10	F
1 GB	128M ×72	1	ECC	18	14/2/11	Н
1 GB	128M ×72	2	ECC	18	14/2/10	G

²⁾ The Compliance Code is printed on the module label and describes the speed grade, for example "PC2–4200R–444–12–R0", where 4200P means Registered DIMM modules (with Parity Bit) with 4.26 GB/sec Module Bandwidth and "444–12" means Column Address Strobe (CAS) latency = 4, Row Column Delay (RCD) latency = 4 and Row Precharge (RP) latency = 4 using the latest JEDEC SPD Revision 1.2 and produced on the Raw Card "R"

DIMM Density	Module Organization	Memory Ranks	ECC/ Non-ECC	# of SDRAMs	# of row/bank/column bits	Raw Card
2 GB	256M ×72	2	ECC	36	14/2/11	J
2 GB	256M ×72	4	ECC	36	14/2/10	N

TABLE 4

			Components on Modules
Product Type ¹⁾	DRAM Components ¹⁾²⁾	DRAM Density	DRAM Organisation
HYS72T64000HP	HYB18T512800AF	512 Mbit	64M × 8
HYS72T128000HP	HYB18T512400AF	512 Mbit	128M × 4
HYS72T128020HP	HYB18T512800AF	512 Mbit	64M × 8
HYS72T256220HP	HYB18T512400AF	512 Mbit	128M × 4
HYS72T256040HP	HYB18T512800AF	512 Mbit	64M × 8

¹⁾ Green Product

²⁾ For a detailed description of all functionalities of the DRAM components on these modules see the component data sheet.

2 Pin Configuration

This chapter contains the pin configuration and block diagrams.

2.1 Pin Configuration

The pin configuration of the Registered DDR2 SDRAM DIMM is listed by function in **Table 5** (240 pins). The abbreviations used in columns Pin and Buffer Type are explained in **Table 6**

and **Table 7** respectively. The pin numbering is depicted in **Figure 1**.

	TABLE	5
Pin	Configuration of RDII	им

				Pin Configuration of Ruliwiw
Pin No.	Name	Pin Type	Buffer Type	Function
Clock Signals	5			
185	CK0	I	SSTL	Clock Signal CK0, Complementary Clock Signal CK0
186	СКО	I	SSTL	The system clock inputs. All address and command lines are sampled on the cross point of the rising edge of CK and the falling edge of CK. A Delay Locked Loop (DLL) circuit is driven from the clock inputs and output timing for read operations is synchronized to the input clock.
52	CKE0	I	SSTL	Clock Enables 1:0
171	CKE1	I	SSTL	Activates the DDR2 SDRAM CK signal when HIGH and deactivates the CK signal when LOW. By deactivating the clocks, CKE0 initiates the Power Down Mode or the Self Refresh Mode.
				Note: 2-Ranks module
	NC	NC	<u> </u>	Not Connected
				Note: 1-Rank module
Control Signa	als			
193	<u>so</u>	I	SSTL	Chip Select
76	S1	I	SSTL	Enables the associated DDR2 SDRAM command decoder when LOW and disables the command decoder when HIGH. When the command decoder is disabled, new commands are ignored but previous operations continue. Rank 0 is selected by $\overline{S0}$ Rank 1 is selected by $\overline{S1}$ The input signals also disable all outputs (except CKE and ODT) of the register(s) on the DIMM when both inputs are high. When \overline{S} is HIGH, all register outputs (except CK, ODT and Chip select) remain in the previous state. <i>Note: 2-Ranks module</i>
	NC	NC	<u> </u>	Not Connected
l				Note: 1-Rank module

Pin No.	Name	Pin Type	Buffer Type	Function
220	S2	I	SSTL	Rank 2 is selected by \$\overline{\S2}\$
	NC	NC		•
	NC	NC	_	Not Connected
221	<u>S3</u>	1	SSTL	Note: 1-Rank, 2-Ranks module
221	53	!	SSIL	Rank 3 is selected by S3
	NC	NC	_	Not Connected
				Note: 1-Rank, 2-Ranks module
192	RAS	I	SSTL	Row Address Strobe (RAS), Column Address Strobe (CAS), Write
74	CAS	I	SSTL	Enable (WE)
73	WE	I	SSTL	When sampled at the cross point of the rising edge of CK, and falling edge of CK, RAS, CAS and WE define the operation to be executed by the SDRAM.
18	RESET	I	CMOS	Register Reset The RESET pin is connected to the RST pin on the register and to the OE pin on the PLL. When LOW, all register outputs will be driven LOW and the PLL clocks to the DRAMs and the register(s) will be set to low-level. The PLL will remain synchronized with the input clock.
Address Sign	nals		•	
71	BA0	I	SSTL	Bank Address Bus 1:0
190	BA1	I	SSTL	Selects internal SDRAM memory bank
54	BA2	I	SSTL	Bank Address Bus 2 Greater than 512Mb DDR2 SDRAMS
	NC	I	SSTL	Not Connected Less than 1Gb DDR2 SDRAMS
188	A0	I	SSTL	Address Bus 12:0, Address Signal 10/AutoPrecharge
183	A1	I	SSTL	During a Bank Activate command cycle, defines the row address when
63	A2	I	SSTL	sampled at the crosspoint of the rising edge of CK and falling edge of
182	A3	I	SSTL	CK. During a Read or Write command cycle, defines the column address when sampled at the cross point of the rising edge of CK and
61	A4	ı	SSTL	falling edge of CK. In addition to the column address, AP is used to
60	A5	I	SSTL	invoke autoprecharge operation at the end of the burst read or write
180	A6	ı	SSTL	 cycle. If AP is HIGH, autoprecharge is selected and BA[1:0] defines the bank to be precharged. If AP is LOW, autoprecharge is disabled.
58	A7	I	SSTL	During a Precharge command cycle, AP is used in conjunction with
179	A8	1	SSTL	BA[1:0] to control which bank(s) to precharge. If AP is HIGH, all banks
177	A9	i i	SSTL	will be precharged regardless of the state of BA[1:0] inputs. If AP is
70	A10	1	SSTL	LOW, then BA[1:0] are used to define which bank to precharge.
	AP	i i	SSTL	-
57	A11	i i	SSTL	-
176	A12	1	SSTL	-
196	A13	1	SSTL	Address Signal 13
100	NC	NC		Not Connected
	INC	INC		Note: Non CA parity modules based on 256 Mbit component
				Note: Non On party modules based on 200 with component

Pin No.	Name	Pin Type	Buffer Type	Function
174	A14	I	SSTL	Address Signal 14
				Note: CA Parity module
	NC	NC	_	Not Connected
				Note: Non CA parity module. Less than 1 GBit per DRAM die.
173	A15	I	SSTL	Address Signal 14
				Note: CA Parity module
	NC	NC	-	Not Connected
				Note: Non CA parity module. Less than 1 GBit per DRAM die.
Data Signals				
3	DQ0	I/O	SSTL	Data Bus 63:0
4	DQ1	I/O	SSTL	Data Input/Output pins
9	DQ2	I/O	SSTL	
10	DQ3	I/O	SSTL	
122	DQ4	I/O	SSTL	
123	DQ5	I/O	SSTL	
128	DQ6	I/O	SSTL	
129	DQ7	I/O	SSTL	
12	DQ8	I/O	SSTL	
13	DQ9	I/O	SSTL	
21	DQ10	I/O	SSTL	
22	DQ11	I/O	SSTL	
131	DQ12	I/O	SSTL	
132	DQ13	I/O	SSTL	
140	DQ14	I/O	SSTL	
141	DQ15	I/O	SSTL	
24	DQ16	I/O	SSTL	
25	DQ17	I/O	SSTL	
30	DQ18	I/O	SSTL	
31	DQ19	I/O	SSTL	
143	DQ20	I/O	SSTL	
144	DQ21	I/O	SSTL	
149	DQ22	I/O	SSTL	
150	DQ23	I/O	SSTL	
33	DQ24	I/O	SSTL	
34	DQ25	I/O	SSTL	
39	DQ26	I/O	SSTL	
40	DQ27	I/O	SSTL	
152	DQ28	I/O	SSTL	
153	DQ29	I/O	SSTL	
158	DQ30	I/O	SSTL	
	1 1 1 1		1	1

Pin No.	Name	Pin Type	Buffer Type	Function
159	DQ31	I/O	SSTL	Data Bus 63:0
80	DQ32	I/O	SSTL	Data Input/Output pins
81	DQ33	I/O	SSTL	
86	DQ34	I/O	SSTL	
87	DQ35	I/O	SSTL	
199	DQ36	I/O	SSTL	
200	DQ37	I/O	SSTL	
205	DQ38	I/O	SSTL	
206	DQ39	I/O	SSTL	
89	DQ40	I/O	SSTL	
90	DQ41	I/O	SSTL	
95	DQ42	I/O	SSTL	
96	DQ43	I/O	SSTL	
208	DQ44	I/O	SSTL	
209	DQ45	I/O	SSTL	
214	DQ46	I/O	SSTL	
215	DQ47	I/O	SSTL	
98	DQ48	I/O	SSTL	
99	DQ49	I/O	SSTL	
107	DQ50	I/O	SSTL	
108	DQ51	I/O	SSTL	
217	DQ52	I/O	SSTL	
218	DQ53	I/O	SSTL	
226	DQ54	I/O	SSTL	
227	DQ55	I/O	SSTL	
110	DQ56	I/O	SSTL	
111	DQ57	I/O	SSTL	
116	DQ58	I/O	SSTL	
117	DQ59	I/O	SSTL	
229	DQ60	I/O	SSTL	
230	DQ61	I/O	SSTL	
235	DQ62	I/O	SSTL	
236	DQ63	I/O	SSTL	
Check Bits	•			
42	CB0	I/O	SSTL	Check Bits 7:0
43	CB1	I/O	SSTL	Check Bit Input / Output pins
48	CB2	I/O	SSTL	Note: NC on Non-ECC module
49	CB3	I/O	SSTL	

Pin No.	Name	Pin Type	Buffer Type	Function
161	CB4	I/O	SSTL	Check Bits 7:0
162	CB5	I/O	SSTL	Check Bit Input / Output pins
167	CB6	I/O	SSTL	Note: NC on Non-ECC module
168	CB7	I/O	SSTL	
Data Strobe B	us			
7	DQS0	I/O	SSTL	Data Strobes 17:0
6	DQS0	I/O	SSTL	The data strobes, associated with one data byte, sourced with data
16	DQS1	I/O	SSTL	transfers. In Write mode, the data strobe is sourced by the controller and is centered in the data window. In Read mode the data strobe is
15	DQS1	I/O	SSTL	sourced by the DDR2 SDRAM and is sent at the leading edge of the
28	DQS2	I/O	SSTL	data window. DQS signals are complements, and timing is relative to
27	DQS2	I/O	SSTL	the crosspoint of respective DQS and DQS. If the module is to be
37	DQS3	I/O	SSTL	operated in single ended strobe mode, all DQS signals must be tied on the system board to $V_{\rm SS}$ through a 20 Ω to 10 k Ω resistor and DDR2
36	DQS3	I/O	SSTL	SDRAM mode registers programmed appropriately.
84	DQS4	I/O	SSTL	Note: See block diagram for corresponding DQ signals
83	DQS4	I/O	SSTL	
93	DQS5	I/O	SSTL	
92	DQS5	I/O	SSTL	
105	DQS6	I/O	SSTL	
104	DQS6	I/O	SSTL	
114	DQS7	I/O	SSTL	
113	DQS7	I/O	SSTL	
46	DQS8	I/O	SSTL	
45	DQS8	I/O	SSTL	
125	DQS9	I/O	SSTL	
126	DQS9	I/O	SSTL	
134	DQS10	I/O	SSTL	
135	DQS10	I/O	SSTL	
146	DQS11	I/O	SSTL	
147	DQS11	I/O	SSTL	
155	DQS12	I/O	SSTL	
156	DQS12	I/O	SSTL	
202	DQS13	I/O	SSTL	
203	DQS13	I/O	SSTL	
211	DQS14	I/O	SSTL	
212	DQS14	I/O	SSTL	
223	DQS15	I/O	SSTL	
224	DQS15	I/O	SSTL	
232	DQS16	I/O	SSTL	

Pin No.	Name	Pin Type	Buffer Type	Function
233	DQS16	I/O	SSTL	Data Strobes 17:0
164	DQS17	I/O	SSTL	
165	DQS17	I/O	SSTL	
Data Mask	1			
125	DM0	1	SSTL	Data Masks 8:0
134	DM1	1	SSTL	The data write masks, associated with one data byte. In Write mode,
146	DM2	I	SSTL	DM operates as a byte mask by allowing input data to be written if it is LOW but blocks the write operation if it is HIGH. In Read mode, DM
155	DM3	I	SSTL	lines have no effect.
202	DM4	I	SSTL	Note: x8 based module
211	DM5	I	SSTL	
223	DM6	I	SSTL	
232	DM7	I	SSTL	
164	DM8	I	SSTL	
EEPROM	•			
120	SCL	I	CMOS	Serial Bus Clock This signal is used to clock data into and out of the SPD EEPROM.
119	SDA	I/O	OD	Serial Bus Data This is a bidirectional pin used to transfer data into or out of the SPD EEPROM. A resistor must be connected from SDA to $V_{\rm DDSPD}$ on the motherboard to act as a pull-up.
239	SA0	I	CMOS	Serial Address Select Bus 2:0
240	SA1	I	CMOS	These signals are tied at the system planar to either $V_{\rm SS}$ or $V_{\rm DDSPD}$ to
101	SA2	I	CMOS	configure the serial SPD EEPROM address range
Parity				
55	ERR_OUT	0	CMOS	Parity bits
68	PAR_IN	I	CMOS	Note: Only for modules with parity bit for address and control bus. Not connected on non-parity registered modules.
Power Supplies	•			
1	V_{REF}	Al	_	I/O Reference Voltage Reference voltage for the SSTL-18 inputs.
238	$V_{ m DDSPD}$	PWR	_	EEPROM Power Supply Serial EEPROM positive power supply, wired to a separated power pin at the connector which supports from 1.7 Volt to 3.6 Volt.
51, 56, 62, 72, 75, 78, 170, 175, 181, 191, 194	V_{DDQ}	PWR	_	I/O Driver Power Supply Power and ground for the DDR SDRAM
53, 59, 64, 67, 69, 172, 178, 184, 187, 189, 197	V_{DD}	PWR	_	Power Supply Power and ground for the DDR SDRAM

Pin No.	Name	Pin Type	Buffer Type	Function
2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 65, 66, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 198, 201, 204, 207, 210, 213, 216, 219, 222, 225, 228, 231, 234, 237		GND	_	Ground Plane Power and ground for the DDR SDRAM
Other Pins			•	
19, 102, 137, 138,	NC	NC	_	Not connected Pins not connected on Qimonda RDIMM's
195	ODT0	I	SSTL	On-Die Termination Control 1:0
77	ODT1	I	SSTL	Asserts on-die termination for DQ, DM, DQS, and \overline{DQS} signals if enabled via the DDR2 SDRAM mode register. Note: 2-Ranks module
	NC	NC	_	Note: 1-Rank modules

TABLE 6

Abbreviations for Buffer Type

Abbreviation	Description
SSTL	Serial Stub Terminated Logic (SSTL_18)
CMOS	CMOS Levels
OD	Open Drain. The corresponding pin has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR.

TABLE 7

Abbreviations for Pin Type

	Abbieviations for Fill Type
Abbreviation	Description
I	Standard input-only pin. Digital levels.
0	Output. Digital levels.
I/O	I/O is a bidirectional input/output signal.
Al	Input. Analog levels.
PWR	Power
GND	Ground
NU	Not Usable
NC	Not Connected

FIGURE 1

3 Electrical Characteristics

This chapter lists the electrical characteristics.

3.1 Absolute Maximum Ratings

Caution is needed not to exceed absolute maximum ratings of the DRAM device listed in Table 8 at any time.

			Absolu		TABLE 8 num Ratings
Symbol	Parameter	Rating	AUSUIC	Unit	Note
		Min.	Max.		
V_{DD}	Voltage on $V_{\rm DD}$ pin relative to $V_{\rm SS}$	-1.0	+2.3	V	1)
V_{DDQ}	Voltage on $V_{\rm DDQ}$ pin relative to $V_{\rm SS}$	-0.5	+2.3	V	1)2)
V_{DDL}	Voltage on V_{DDL} pin relative to V_{SS}	-0.5	+2.3	V	1)2)
V_{IN},V_{OUT}	Voltage on any pin relative to V_{SS}	-0.5	+2.3	V	1)
T_{STG}	Storage Temperature	– 55	+100	°C	1)2)

¹⁾ When $V_{\rm DD}$ and $V_{\rm DDQ}$ and $V_{\rm DDL}$ are less than 500 mV; $V_{\rm REF}$ may be equal to or less than 300 mV.

Attention: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

					TABLE 9
DRAM Component Operating Temperature Range					
Symbol	Parameter	Rating		Unit	Note
		Min.	Max.		
T_{OPER}	Operating Temperature	0	95	°C	1)2)3)4)

¹⁾ Operating Temperature is the case surface temperature on the center / top side of the DRAM.

²⁾ Storage Temperature is the case surface temperature on the center/top side of the DRAM.

²⁾ The operating temperature range are the temperatures where all DRAM specification will be supported. During operation, the DRAM case temperature must be maintained between 0 - 95 °C under all other specification parameters.

³⁾ Above 85 °C the Auto-Refresh command interval has to be reduced to $t_{\rm REFI}$ = 3.9 μs

⁴⁾ When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by setting EMR(2) bit A7 to "1". When the High Temperature Self Refresh is enabled there is an increase of $I_{\rm DD6}$ by approximately 50%

3.2 **DC Operating Conditions**

This chapter contains the DC operating condition tables.

		TABLE 10						
Operating Conditions								
Parameter	Symbol	Values	Values		Note			
		Min.	Max.					
Operating temperature (ambient)	T_{OPR}	0	+65	°C				
DRAM Case Temperature	T_{CASE}	0	+95	°C	1)2)3)4)			
Storage Temperature	T_{STG}	- 50	+100	°C				
Barometric Pressure (operating & storage)	PBar	+69	+105	kPa	5)			
Operating Humidity (relative)	H_{OPR}	10	90	%				
Storage Humidity (without condensation)	H_{STG}	5	95	%				

- 1) DRAM Component Case Temperature is the surface temperature in the center on the top side of any of the DRAMs.
- 2) Within the DRAM Component Case Temperature Range all DRAM specifications will be supported
- 3) Above 85 °C DRAM Case Temperature the Auto-Refresh command interval has to be reduced to $t_{\rm REFI}$ = 3.9 $\mu \rm s$
- 4) When operating this product in the 85 °C to 95 °C T_{CASE} temperature range, the High Temperature Self Refresh has to be enabled by setting EMR(2) bit A7 to "1". When the High Temperature Self Refresh is enabled there is an increase of I_{DD6} by approximately 50%.
- 5) Up to 3000 m.

TABLE 1° Supply Voltage Levels and DC Operating Condition							
Parameter	Symbol	Symbol Values			Unit	Note	
		Min.	Тур.	Max.			
Device Supply Voltage	V_{DD}	1.7	1.8	1.9	V		
Output Supply Voltage	V_{DDQ}	1.7	1.8	1.9	V	1)	
Input Reference Voltage	V_{REF}	$0.49 \times V_{\mathrm{DDQ}}$	$0.5 \times V_{\mathrm{DDQ}}$	$0.51 \times V_{\mathrm{DDQ}}$	V	2)	
SPD Supply Voltage	V_{DDSPD}	1.7	_	3.6	V		
DC Input Logic High	$V_{IH(DC)}$	V _{REF} + 0.125	_	$V_{\rm DDQ}$ + 0.3	V		
DC Input Logic Low	$V_{IL(DC)}$	- 0.30	_	$V_{\sf REF}$ – 0.125	V		
In / Output Leakage Current	I_{L}	– 5	_	5	μΑ	3)	

- 1) Under all conditions, $V_{\rm DDQ}$ must be less than or equal to $V_{\rm DD}$
- 2) Peak to peak AC noise on V_{REF} may not exceed ± 2% V_{REF} (DC). V_{REF} is also expected to track noise in V_{DDQ} . 3) Input voltage for any connector pin under test of 0 V ≤ $V_{\text{IN}} \le V_{\text{DDQ}} + 0.3$ V; all other pins at 0 V. Current is per pin

3.3 Timing Characteristics

This chapter describes the AC characteristics tables.

3.3.1 Speed Grades Definitions

Speed Grade Definitions for: DDR2-667D (Table 12), DDR2-533C (Table 13)

		c	anned Grade	Dofinition S	nood Rine	TABLE 12
				ed Grade Definition Sp DDR2-667D		Notes
QAG Sort Name			-3S	-3 S		
CAS-RCD-RP latencies			5-5-5	5-5-5		
Parameter		Symbol	Min.	Max.	_	
Clock Frequency	@ CL = 3	t_{CK}	5	8	ns	1)2)3)4)
	@ CL = 4	t_{CK}	3.75	8	ns	1)2)3)4)
	@ CL = 5	t _{CK}	3	8	ns	1)2)3)4)
Row Active Time	Row Active Time		45	70000	ns	1)2)3)4)5)
Row Cycle Time		t_{RC}	60	_	ns	1)2)3)4)
RAS-CAS-Delay		t_{RCD}	15	_	ns	1)2)3)4)
Row Precharge Time		t_{RP}	15	_	ns	1)2)3)4)

¹⁾ Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0)

- 3) Inputs are not recognized as valid until $V_{\rm REF}$ stabilizes. During the period before $V_{\rm REF}$ stabilizes, CKE = 0.2 x $V_{\rm DDQ}$ is recognized as low.
- 4) The output timing reference voltage level is $V_{\rm TT}$.
- 5) $t_{\text{RAS,MAX}}$ is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x $t_{\text{REFI-}}$

		Spe	ed Grade D	Definition Sp	eed Bins f	TABLE 13 for DDR2–533C
Speed Grade			DDR2-	DDR2-533C		Note
QAG Sort Name			-3.7	-3.7		
CAS-RCD-RP latencies		4-4-4	4-4-4			
Parameter		Symbol	Min.	Max.	_	
Clock Frequency	@ CL = 3	t_{CK}	5	8	ns	1)2)3)4)
	@ CL = 4	t _{CK}	3.75	8	ns	1)2)3)4)
	@ CL = 5	t _{CK}	3.75	8	ns	1)2)3)4)
Row Active Time	·	t_{RAS}	45	70000	ns	1)2)3)4)5)
Row Cycle Time		t_{RC}	60	_	ns	1)2)3)4)

Rev. 1.02, 2007-07 03292006-08VU-L8WK

²⁾ The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode

Speed Grade			DDR2-533C		Note
QAG Sort Name –			-3.7		
CAS-RCD-RP latencies		4-4-4		t _{CK}	
Parameter	Symbol	Min.	Max.	_	
RAS-CAS-Delay	t_{RCD}	15	_	ns	1)2)3)4)
Row Precharge Time	t_{RP}	15	_	ns	1)2)3)4)

¹⁾ Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0)

- 3) Inputs are not recognized as valid until $V_{\rm REF}$ stabilizes. During the period before $V_{\rm REF}$ stabilizes, CKE = 0.2 x $V_{\rm DDQ}$ is recognized as low.
- 4) The output timing reference voltage level is $V_{\rm TT}$.
- 5) $t_{RAS,MAX}$ is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x t_{REFI} .

²⁾ The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode.

3.3.2 Component AC Timing Parameters

Speed Grade Definitions for: DDR2-667 (Table 14), DDR2-533C (Table 15)

Parameter	Symbol	DDR2-667		Unit	Notes ¹⁾²⁾³⁾⁴⁾⁵⁾⁶⁾
		Min.	Max.		7)8)
DQ output access time from CK / CK	t_{AC}	-450	+450	ps	9)
CAS to CAS command delay	t_{CCD}	2	<u> </u>	nCK	
Average clock high pulse width	t _{CH.AVG}	0.48	0.52	$t_{CK.AVG}$	10)11)
Average clock period	$t_{CK.AVG}$	3000	8000	ps	
CKE minimum pulse width (high and low pulse width)	t_{CKE}	3	_	nCK	12)
Average clock low pulse width	$t_{CL.AVG}$	0.48	0.52	$t_{CK.AVG}$	10)11)
Auto-Precharge write recovery + precharge time	t_{DAL}	WR + t_{nRP}	<u> </u>	nCK	13)14)
Minimum time clocks remain ON after CKE asynchronously drops LOW	t_{DELAY}	$t_{\rm IS}$ + $t_{\rm CK\ .AVG}$ + $t_{\rm IH}$	_	ns	
DQ and DM input hold time	$t_{DH.BASE}$	175	_	ps	19)20)15)
DQ and DM input pulse width for each input	t_{DIPW}	0.35	_	$t_{CK.AVG}$	
DQS output access time from CK / CK	t_{DQSCK}	-400	+400	ps	9)
DQS input high pulse width	t_{DQSH}	0.35	<u> </u>	$t_{CK.AVG}$	
DQS input low pulse width	t_{DQSL}	0.35	<u> </u>	$t_{CK.AVG}$	
DQS-DQ skew for DQS & associated DQ signals	t_{DQSQ}	_	240	ps	16)
DQS latching rising transition to associated clock edges	t_{DQSS}	- 0.25	+ 0.25	$t_{CK.AVG}$	17)
DQ and DM input setup time	$t_{DS.BASE}$	100	<u> </u>	ps	18)19)20)
DQS falling edge hold time from CK	t_{DSH}	0.2	_	$t_{CK.AVG}$	17)
DQS falling edge to CK setup time	t_{DSS}	0.2	<u> </u>	$t_{CK.AVG}$	17)
CK half pulse width	t _{HP}	$\begin{array}{c} Min(t_{CH.ABS},\\ t_{CL.ABS}) \end{array}$	_	ps	21)
Data-out high-impedance time from CK / CK	t_{HZ}	_	$t_{AC.MAX}$	ps	9)22)
Address and control input hold time	$t_{IH.BASE}$	275	_	ps	25)23)
Control & address input pulse width for each input	t_{IPW}	0.6	_	$t_{CK.AVG}$	
Address and control input setup time	$t_{IS.BASE}$	200	<u> </u>	ps	24)25)
DQ low impedance time from CK/CK	$t_{LZ.DQ}$	2 x t _{AC.MIN}	t _{AC.MAX}	ps	9)22)
DQS/DQS low-impedance time from CK / CK	$t_{LZ.DQS}$	t _{AC.MIN}	t _{AC.MAX}	ps	9)22)
MRS command to ODT update delay	t_{MOD}	0	12	ns	35)
Mode register set command cycle time	t_{MRD}	2	<u> </u>	nCK	
OCD drive mode output delay	t_{OIT}	0	12	ns	35)
DQ/DQS output hold time from DQS	t_{QH}	$t_{HP} - t_{QHS}$	<u> </u>	ps	26)
DQ hold skew factor	t_{QHS}	_	340	ps	27)

Parameter	Symbol DDR2-667			Unit	Notes ¹⁾²⁾³⁾⁴⁾⁵⁾⁶⁾
		Min.	Max.		7)0)
Average periodic refresh Interval	t_{REFI}	_	7.8	μS	28)29)
		_	3.9	μS	29)30)
Auto-Refresh to Active/Auto-Refresh command period	t_{RFC}	105	_	ns	31)
Precharge-All (4 banks) command period	t_{RP}	t_{RP}		ns	
Read preamble	t_{RPRE}	0.9	1.1	$t_{CK.AVG}$	32)33)
Read postamble	t_{RPST}	0.4	0.6	$t_{CK.AVG}$	32)34)
Internal Read to Precharge command delay	t_{RTP}	7.5		ns	35)
Write preamble	t_{WPRE}	0.35	_	$t_{CK.AVG}$	
Write postamble	t_{WPST}	0.4	0.6	$t_{CK.AVG}$	
Write recovery time	t_{WR}	15		ns	35)
Internal write to read command delay	t_{WTR}	7.5	_	ns	35)36)
Exit power down to read command	t_{XARD}	2	_	nCK	
Exit active power-down mode to read command (slow exit, lower power)	t _{XARDS}	7 – AL	_	nCK	
Exit precharge power-down to any valid command (other than NOP or Deselect)	t_{XP}	2	_	nCK	
Exit self-refresh to a non-read command	t _{XSNR}	t _{RFC} +10		ns	35)
Exit self-refresh to read command	t_{XSRD}	200		nCK	
Write command to DQS associated clock edges	WL	RL-1	•	nCK	

- 1) For details and notes see the relevant Qimonda component data sheet
- 2) $V_{\rm DDQ}$ = 1.8 V ± 0.1V; $V_{\rm DD}$ = 1.8 V ± 0.1 V.
- 3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue.
- 4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
- 5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, input reference level is the crosspoint when in differential strobe mode.
- 6) Inputs are not recognized as valid until $V_{\rm REF}$ stabilizes. During the period before $V_{\rm REF}$ stabilizes, CKE = 0.2 x $V_{\rm DDQ}$ is recognized as low.
- 7) The output timing reference voltage level is $V_{\rm TT}$.
- 8) New units, ' $t_{\text{CK,AVG}}$ ' and 'nCK', are introduced in DDR2–667 and DDR2–800. Unit ' $t_{\text{CK,AVG}}$ ' represents the actual $t_{\text{CK,AVG}}$ of the input clock under operation. Unit 'nCK' represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and DDR2–533, ' t_{CK} ' is used for both concepts. Example: t_{XP} = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 Tm) is 2 x $t_{\text{CK,AVG}}$ + $t_{\text{ERR,2PER(Min)}}$.
- 9) When the device is operated with input clock jitter, this parameter needs to be derated by the actual $t_{\text{ERR}(6-10\text{per})}$ of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has $t_{\text{ERR}(6-10\text{PER}),\text{MIN}} = -272$ ps and $t_{\text{ERR}(6-10\text{PER}),\text{MAX}} = +293$ ps, then $t_{\text{DQSCK,MIN}(\text{DERATED})} = t_{\text{DQSCK,MIN}} t_{\text{ERR}(6-10\text{PER}),\text{MAX}} = -400$ ps -293 ps -693 ps and $t_{\text{DQSCK,MAX}} t_{\text{ERR}(6-10\text{PER}),\text{MIN}} = 400$ ps +272 ps =+672 ps. Similarly, $t_{\text{LZ,DQ}}$ for DDR2–667 derates to $t_{\text{LZ,DQ,MIN}(\text{DERATED})} = -900$ ps -293 ps =-1193 ps and $t_{\text{LZ,DQ,MAX}(\text{DERATED})} = 450$ ps +272 ps =+722 ps. (Caution on the MIN/MAX usage!)
- 10) Input clock jitter spec parameter. These parameters are referred to as 'input clock jitter spec parameters' and these parameters apply to DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution.
- 11) These parameters are specified per their average values, however it is understood that the relationship between the average timing and the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations).
- 12) $t_{\text{CKE.MIN}}$ of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of $t_{\text{IS}} + 2 \times t_{\text{CK}} + t_{\text{IH}}$.

- 13) DAL = WR + RU $\{t_{RP}(ns) / t_{CK}(ns)\}$, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For t_{RP} , if the result of the division is not already an integer, round up to the next highest integer. t_{CK} refers to the application clock period. Example: For DDR2–533 at t_{CK} = 3.75 ns with t_{WR} programmed to 4 clocks. t_{DAL} = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.
- 14) $t_{\text{DAL}.nCK}$ = WR [nCK] + $t_{\text{nRP}.nCK}$ = WR + RU{ t_{RP} [ps] / $t_{\text{CK}.\text{AVG}}$ [ps] }, where WR is the value programmed in the EMR.
- 15) Input waveform timing $t_{\rm DH}$ with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to the input signal crossing at the $V_{\rm IL,DC}$ level for a falling signal and from the differential data strobe crosspoint to the input signal crossing at the $V_{\rm IL,DC}$ level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between $V_{\rm IL,DC,MAX}$ and $V_{\rm IH,DC,MIN}$. See **Figure 3**.
- 16) t_{DQSQ} : Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate mismatch between DQS / $\overline{\text{DQS}}$ and associated DQ in any given cycle.
- 17) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. t_{JIT.PER}, t_{JIT.CC}, etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.
- 18) Input waveform timing $t_{\rm DS}$ with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the $V_{\rm IH,AC}$ level to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the $V_{\rm IL,AC}$ level to the differential data strobe crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between $V_{\rm II,DC,MAX}$ and $V_{\rm ih,DC,MIN}$. See **Figure 3**.
- 19) If t_{DS} or t_{DH} is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed.
- 20) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal ((L/U/R)DQS / DQS) crossing.
- 21) $t_{\rm HP}$ is the minimum of the absolute half period of the actual input clock. $t_{\rm HP}$ is an input parameter but not an input specification parameter. It is used in conjunction with $t_{\rm QHS}$ to derive the DRAM output timing $t_{\rm QH}$. The value to be used for $t_{\rm QH}$ calculation is determined by the following equation; $t_{\rm HP}$ = MIN ($t_{\rm CLABS}$), where, $t_{\rm CLABS}$ is the minimum of the actual instantaneous clock high time; $t_{\rm CLABS}$ is the minimum of the actual instantaneous clock low time.
- 22) $t_{\rm HZ}$ and $t_{\rm LZ}$ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which specifies when the device output is no longer driving ($t_{\rm HZ}$), or begins driving ($t_{\rm LZ}$).
- 23) Input waveform timing is referenced from the input signal crossing at the $V_{\rm IL,DC}$ level for a rising signal and $V_{\rm IH,DC}$ for a falling signal applied to the device under test. See **Figure 4**.
- 24) Input waveform timing is referenced from the input signal crossing at the $V_{\rm IH,AC}$ level for a rising signal and $V_{\rm IL,AC}$ for a falling signal applied to the device under test. See **Figure 4**.
- 25) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. $t_{\rm JIT,PER}$, $t_{\rm JIT,CC}$, etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not.
- 26) $t_{\rm QH} = t_{\rm HP} t_{\rm QHS}$, where: $t_{\rm HP}$ is the minimum of the absolute half period of the actual input clock; and $t_{\rm QHS}$ is the specification value under the max column. {The less half-pulse width distortion present, the larger the $t_{\rm QH}$ value is; and the larger the valid data eye will be.} Examples: 1) If the system provides $t_{\rm HP}$ of 1315 ps into a DDR2–667 SDRAM, the DRAM provides $t_{\rm QH}$ of 975 ps minimum. 2) If the system provides $t_{\rm HP}$ of 1420 ps into a DDR2–667 SDRAM, the DRAM provides $t_{\rm QH}$ of 1080 ps minimum.
- 27) t_{QHS} accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual t_{HP} at the input is transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation of the output drivers.
- 28) The Auto-Refresh command interval has be reduced to 3.9 μ s when operating the DDR2 DRAM in a temperature range between 85 °C and 95 °C.
- 29) 0 °C $\leq T_{\text{CASE}} \leq$ 85 °C
- 30) 85 °C < $T_{CASE} \le$ 95 °C
- 31) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.
- 32) t_{RPST} end point and t_{RPRE} begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (t_{RPST}) , or begins driving (t_{RPSE}) . Figure 2 shows a method to calculate these points when the device is no longer driving (t_{RPST}) , or begins driving (t_{RPSE}) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent.
- 33) When the device is operated with input clock jitter, this parameter needs to be derated by the actual $t_{\rm JIT.PER}$ of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has $t_{\rm JIT.PER.MIN} = -72$ ps and $t_{\rm JIT.PER.MAX} = + 93$ ps, then $t_{\rm RPRE.MIN(DERATED)} = t_{\rm RPRE.MIN} + t_{\rm JIT.PER.MIN} = 0.9$ x $t_{\rm CK.AVG} 72$ ps = + 2178 ps and $t_{\rm RPRE.MAX(DERATED)} = t_{\rm RPRE.MAX} + t_{\rm JIT.PER.MAX} = 1.1$ x $t_{\rm CK.AVG} + 93$ ps = + 2843 ps. (Caution on the MIN/MAX usage!).
- 34) When the device is operated with input clock jitter, this parameter needs to be derated by the actual $t_{\rm JIT.DUTY}$ of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has $t_{\rm JIT.DUTY.MIN} = -72$ ps and $t_{\rm JIT.DUTY.MAX} = +93$ ps, then $t_{\rm RPST.MIN(DERATED)} = t_{\rm RPST.MIN} + t_{\rm JIT.DUTY.MIN} = 0.4$ x $t_{\rm CK.AVG} 72$ ps = +928 ps and $t_{\rm RPST.MAX(DERATED)} = t_{\rm RPST.MAX} + t_{\rm JIT.DUTY.MAX} = 0.6$ x $t_{\rm CK.AVG} + 93$ ps = + 1592 ps. (Caution on the MIN/MAX usage!).

- 35) For these parameters, the DDR2 SDRAM device is characterized and verified to support $t_{nPARAM} = RU\{t_{PARAM} / t_{CK.AVG}\}$, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support $t_{nRP} = RU\{t_{RP} / t_{CK.AVG}\}$, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which $t_{RP} = 15$ ns, the device will support $t_{nRP} = RU\{t_{RP} / t_{CK.AVG}\} = 5$, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at Tm + 5 is valid even if (Tm + 5 Tm) is less than 15 ns due to input clock jitter.
- 36) t_{WTR} is at lease two clocks (2 x t_{CK}) independent of operation frequency.

TABLE 15

Parameter	Symbol	DDR2-533	DDR2-533		
		Min.	Max.		6)7)
DQ output access time from CK / CK	t_{AC}	-500	+500	ps	
CAS A to CAS B command period	t_{CCD}	2	_	t_{CK}	
CK, CK high-level width	t_{CH}	0.45	0.55	t_{CK}	
CKE minimum high and low pulse width	t_{CKE}	3	_	t_{CK}	
CK, CK low-level width	t_{CL}	0.45	0.55	t_{CK}	
Auto-Precharge write recovery + precharge time	t_{DAL}	WR + t_{RP}	_	t_{CK}	8)18)
Minimum time clocks remain ON after CKE asynchronously drops LOW	t_{DELAY}	$t_{\rm IS}$ + $t_{\rm CK}$ + $t_{\rm IH}$	_	ns	9)
DQ and DM input hold time (differential data strobe)	t _{DH} (base)	225	_	ps	10)
DQ and DM input hold time (single ended data strobe)	t _{DH1} (base)	–25	_	ps	11)
DQ and DM input pulse width (each input)	t_{DIPW}	0.35	_	t_{CK}	
DQS output access time from CK / CK	t_{DQSCK}	-450	+450	ps	
DQS input low (high) pulse width (write cycle)	$t_{DQSL,H}$	0.35	_	t_{CK}	
DQS-DQ skew (for DQS & associated DQ signals)	t_{DQSQ}	_	300	ps	11)
Write command to 1st DQS latching transition	t_{DQSS}	- 0.25	+ 0.25	t_{CK}	
DQ and DM input setup time (differential data strobe)	t _{DS} (base)	100	_	ps	11)
DQ and DM input setup time (single ended data strobe)	t _{DS1} (base)	-25	_	ps	11)
DQS falling edge hold time from CK (write cycle)	t_{DSH}	0.2	_	t_{CK}	
DQS falling edge to CK setup time (write cycle)	t_{DSS}	0.2	_	t_{CK}	
Clock half period	t_{HP}	MIN. (t_{CL}, t_{CH})			12)
Data-out high-impedance time from CK / CK	t_{HZ}	_	t _{AC.MAX}	ps	13)
Address and control input hold time	t _{IH} (base)	375	_	ps	11)
Address and control input pulse width (each input)	t_{IPW}	0.6	_	t_{CK}	
Address and control input setup time	t _{IS} (base)	250	_	ps	11)
DQ low-impedance time from CK / CK	$t_{LZ(DQ)}$	$2 \times t_{AC.MIN}$	t _{AC.MAX}	ps	14)
DQS low-impedance from CK / CK	$t_{\rm LZ(DQS)}$	t _{AC.MIN}	t _{AC.MAX}	ps	14)
MRS command to ODT update delay	t_{MOD}	0	12	ns	
Mode register set command cycle time	t_{MRD}	2	_	t_{CK}	
OCD drive mode output delay	t_{OIT}	0	12	ns	
Data output hold time from DQS	t_{QH}	t_{HP} $-t_{QHS}$	_		
Data hold skew factor	t_{QHS}	_	400	ps	

Parameter	Symbol	DDR2-533	DDR2-533		Notes ¹⁾²⁾³⁾⁴⁾⁵⁾	
		Min.	Max.		6)7)	
Average periodic refresh Interval	t_{REFI}	_	7.8	μS	14)15)	
Average periodic refresh Interval	t_{REFI}	_	3.9	μS	16)18)	
Auto-Refresh to Active/Auto-Refresh command period	t_{RFC}	105	_	ns	17)	
Precharge-All (4 banks) command period	t_{RP}	t_{RP}	_	ns		
Read preamble	t_{RPRE}	0.9	1.1	t_{CK}	14)	
Read postamble	t_{RPST}	0.40	0.60	t_{CK}	14)	
Active bank A to Active bank B command period	t_{RRD}	7.5	_	ns	14)18)	
Active bank A to Active bank B command period	t_{RRD}	10	_	ns	16)22)	
Internal Read to Precharge command delay	t_{RTP}	7.5	_	ns		
Write preamble	t_{WPRE}	0.25	_	t_{CK}		
Write postamble	t_{WPST}	0.40	0.60	t_{CK}	19)	
Write recovery time for write without Auto- Precharge	t_{WR}	15	_	ns		
Internal Write to Read command delay	t_{WTR}	7.5	_	ns	20)	
Exit power down to any valid command (other than NOP or Deselect)	t_{XARD}	2	_	t _{CK}	21)	
Exit active power-down mode to Read command (slow exit, lower power)	t _{XARDS}	6 – AL	_	t _{CK}	21)	
Exit precharge power-down to any valid command (other than NOP or Deselect)	t_{XP}	2	_	t _{CK}		
Exit Self-Refresh to non-Read command	t _{XSNR}	t _{RFC} +10	_	ns		
Exit Self-Refresh to Read command	t_{XSRD}	200	_	t_{CK}		
Write recovery time for write with Auto- Precharge	WR	$t_{\rm WR}/t_{\rm CK}$		t_{CK}	22)	

- 1) For details and notes see the relevant Qimonda component data sheet
- 2) $V_{\rm DDQ}$ = 1.8 V \pm 0.1 V; $V_{\rm DD}$ = 1.8 V \pm 0.1 V.
- 3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue.
- 4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
- 5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode.
- 6) Inputs are not recognized as valid until $V_{\rm REF}$ stabilizes. During the period before $V_{\rm REF}$ stabilizes, CKE = 0.2 x $V_{\rm DDQ}$ is recognized as low.
- 7) The output timing reference voltage level is $V_{\rm TT}$.
- 8) For each of the terms, if not already an integer, round to the next highest integer. $t_{\rm CK}$ refers to the application clock period. WR refers to the WR parameter stored in the MR.
- 9) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode.
- 10) For timing definition, refer to the Component data sheet.
- 11) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate mis-match between DQS / DQS and associated DQ in any given cycle.
- 12) MIN (t_{CL} , t_{CH}) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for t_{CL} and t_{CH}).

- 13) The $t_{\rm HZ}$, $t_{\rm RPST}$ and $t_{\rm LZ}$, $t_{\rm RPRE}$ parameters are referenced to a specific voltage level, which specify when the device output is no longer driving $(t_{\rm HZ}, t_{\rm RPST})$, or begins driving $(t_{\rm LZ}, t_{\rm RPRE})$. $t_{\rm HZ}$ and $t_{\rm LZ}$ transitions occur in the same access time windows as valid data transitions. These parameters are verified by design and characterization, but not subject to production test.
- 14) The Auto-Refresh command interval has be reduced to 3.9 μs when operating the DDR2 DRAM in a temperature range between 85 °C and 95 °C.
- 15) 0 °C $\leq T_{\text{CASE}} \leq$ 85 °C
- 16) 85 °C $< T_{\text{CASE}} \le$ 95 °C
- 17) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.
- 18) The t_{RRD} timing parameter depends on the page size of the DRAM organization. See Table 2 "Ordering Information for RoHS Compliant Products" on Page 4.
- 19) The maximum limit for the t_{WPST} parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly.
- 20) Minimum $t_{\rm WTR}$ is two clocks when operating the DDR2-SDRAM at frequencies \leq 200 MHz.
- 21) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In "standard active power-down mode" (MR, A12 = "0") a fast power-down exit timing t_{XARD} can be used. In "low active power-down mode" (MR, A12 ="1") a slow power-down exit timing t_{XARDS} has to be satisfied.
- 22) WR must be programmed to fulfill the minimum requirement for the t_{WR} timing parameter, where $WR_{MIN}[cycles] = t_{WR}(ns)/t_{CK}(ns)$ rounded up to the next integer value. $t_{DAL} = WR + (t_{RP}/t_{CK})$. For each of the terms, if not already an integer, round to the next highest integer. t_{CK} refers to the application clock period. WR refers to the WR parameter stored in the MRS.

3.3.3 ODT AC Electrical Characteristics

This chapter contains the ODT AC characteristic tables.

	TABLE 16	
FAC Character	and Operating Conditions for DDR2-667	

ODT AG Gharacter, and Operating Conditions for DDR2-007									
Symbol	Parameter / Condition	Values	Values						
		Min.	Max.						
t_{AOND}	ODT turn-on delay	2	2	nCK	1)				
t_{AON}	ODT turn-on	t _{AC.MIN}	$t_{AC.MAX}$ + 0.7 ns	ns	1)2)				
t_{AONPD}	ODT turn-on (Power-Down Modes)	$t_{\rm AC.MIN}$ + 2 ns	2 t _{CK +} t _{AC.MAX} + 1 ns	ns	1)				
t_{AOFD}	ODT turn-off delay	2.5	2.5	nCK	1)				
t_{AOF}	ODT turn-off	t _{AC.MIN}	$t_{AC.MAX}$ + 0.6 ns	ns	1)3)				
t_{AOFPD}	ODT turn-off (Power-Down Modes)	$t_{\rm AC.MIN}$ + 2 ns	2.5 t _{CK +} t _{AC.MAX} + 1 ns	ns	1)				
t_{ANPD}	ODT to Power Down Mode Entry Latency	3	_	nCK	1)				
t_{AXPD}	ODT Power Down Exit Latency	8	_	nCK	1)				

- New units, 't_{CK,AVG}' and 'nCK', are introduced in DDR2-667 and DDR2-800. Unit 't_{CK,AVG}' represents the actual t_{CK,AVG} of the input clock under operation. Unit 'nCK' represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and DDR2-533, 't_{CK}' is used for both concepts. Example: t_{XP} = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 Tm) is 2 × t_{CK,AVG}+ t_{EPR,2PER(MIN)}.
- 2) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from t_{AOND}, which is interpreted differently per speed bin. For DDR2-667/800, t_{AOND} is 2 clock cycles after the clock edge that registered a first ODT HIGH counting the actual input clock edges.
- 3) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from t_{AOFD}. Both are measured from t_{AOFD}, which is interpreted differently per speed bin. For DDR2-667/800,if t_{CK,AVG} = 3 ns is assumed, t_{AOFD} = 1.5 ns (0.5 × 3 ns) after the second trailing clock edge counting from the clock edge that registered a first ODT LOW and by counting the actual input clock edge.

TABLE 17

ODT AC Character. and Operating Conditions for DDR2-533

	OD I AG Glidiacion, and Operating Goliations for DDR2 666									
Symbol	Parameter / Condition	Values		Unit	Note					
		Min.	Max.							
t_{AOND}	ODT turn-on delay	2	2	t _{CK}						
t_{AON}	ODT turn-on	t _{AC.MIN}	t _{AC.MAX} + 1 ns	ns	1)					
t_{AONPD}	ODT turn-on (Power-Down Modes)	$t_{AC.MIN}$ + 2 ns	$2 t_{CK} + t_{AC.MAX} + 1 ns$	ns						
t_{AOFD}	ODT turn-off delay	2.5	2.5	t_{CK}						
t_{AOF}	ODT turn-off	$t_{AC.MIN}$	$t_{AC.MAX}$ + 0.6 ns	ns	2)					
t_{AOFPD}	ODT turn-off (Power-Down Modes)	$t_{AC.MIN}$ + 2 ns	$2.5 t_{CK} + t_{AC.MAX} + 1 ns$	ns						
t_{ANPD}	ODT to Power Down Mode Entry Latency	3		t_{CK}						
t_{AXPD}	ODT Power Down Exit Latency	8		t_{CK}						

¹⁾ ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from t_{AOND} , which is interpreted differently per speed bin. For DDR2-400/533, t_{AOND} is 10 ns (= 2 x 5 ns) after the clock edge that registered a first ODT HIGH if t_{CK} = 5 ns.

²⁾ ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from t_{AOFD} . Both are measured from t_{AOFD} , which is interpreted differently per speed bin. For DDR2-400/533, t_{AOFD} is 12.5 ns (= 2.5 x 5 ns) after the clock edge that registered a first ODT HIGH if t_{CK} = 5 ns.

3.4 I_{DD} Specifications and Conditions

This chapter describes the I_{DD} Specifications and Conditions.

- Table 18 "IDD Measurement Conditions" on Page 27
- Table 19 "Definitions for IDD" on Page 28
- Table 20 "IDD Specification for HYS72T[64/128/256]xx0HP-3S-A" on Page 29
- Table 21 "IDD Specification for HYS72T[64/128/256]xx0HP-3.7-A" on Page 30

TABLE 18

I_{DD} Measurement Conditions

$I_{ m DD}$ Measure	ment Co	nditions
Parameter	Symbol	Note 1)2)3)4)5)
Operating Current 0 One bank Active - Precharge; $t_{\text{CK}} = t_{\text{CK.MIN}}, t_{\text{RC}} = t_{\text{RC.MIN}}, t_{\text{RAS}} = t_{\text{RAS.MIN}}$, CKE is HIGH, $\overline{\text{CS}}$ is HIGH between valid commands. Address and control inputs are SWITCHING, Databus inputs are SWITCHING.	I_{DD0}	
Operating Current 1 One bank Active - Read - Precharge; $I_{\text{OUT}} = 0 \text{ mA}$, $\underline{\text{BL}} = 4$, $t_{\text{CK}} = t_{\text{CK.MIN}}$, $t_{\text{RC}} = t_{\text{RC.MIN}}$, $t_{\text{RAS}} = t_{\text{RAS.MIN}}$, $t_{\text{RCD}} = t_{\text{RCD.MIN}}$, $t_{\text{RCD.MIN}} = t_{RCD.MIN$	I_{DD1}	6)
Precharge Standby Current All banks idle; \overline{CS} is HIGH; CKE is HIGH; $t_{CK} = t_{CK.MIN}$; Other control and address inputs are SWITCHING, Databus inputs are SWITCHING.	$I_{\rm DD2N}$	
Precharge Power-Down Current Other control and address inputs are STABLE, Data bus inputs are FLOATING.	I_{DD2P}	
Precharge Quiet Standby Current All banks idle; $\overline{\text{CS}}$ is HIGH; CKE is HIGH; $t_{\text{CK}} = t_{\text{CK.MIN}}$; Other control and address inputs are STABLE, Data bus inputs are FLOATING.	I_{DD2Q}	
Active Standby Current Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CL_{MIN} ; $t_{CK} = t_{CK.MIN}$; $t_{RAS} = t_{RAS.MAX}$, $t_{RP} = t_{RP.MIN}$; CKE is HIGH, \overline{CS} is HIGH between valid commands. Address inputs are SWITCHING; Data Bus inputs are SWITCHING; $I_{OUT} = 0$ mA.	I_{DD3N}	
Active Power-Down Current All banks open; $t_{CK} = t_{CK.MIN}$, CKE is LOW; Other control and address inputs are STABLE, Data bus inputs are FLOATING. MRS A12 bit is set to LOW (Fast Power-down Exit);	$I_{\mathrm{DD3P(0)}}$	
Active Power-Down Current All banks open; $t_{CK} = t_{CK.MIN}$, CKE is LOW; Other control and address inputs are STABLE, Data bus inputs are FLOATING. MRS A12 bit is set to HIGH (Slow Power-down Exit);	$I_{\mathrm{DD3P(1)}}$	
Operating Current - Burst Read All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CL_{MIN} ; $t_{CK} = t_{CKMIN}$; $t_{RAS} = t_{RASMAX}$; $t_{RP} = t_{RPMIN}$; CKE is HIGH, CS is HIGH between valid commands; Address inputs are SWITCHING; Data bus inputs are SWITCHING; $I_{OUT} = 0$ mA.	$I_{\rm DD4R}$	6)
Operating Current - Burst Write All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CL_{MIN} ; $t_{CK} = t_{CK.MIN}$; $t_{RAS} = t_{RAS.MAX.}$, $t_{RP} = t_{RP.MAX}$; CKE is HIGH, \overline{CS} is HIGH between valid commands. Address inputs are SWITCHING; Data Bus inputs are SWITCHING;	I_{DD4W}	
Burst Refresh Current $t_{\text{CK}} = t_{\text{CK.MIN}}$, Refresh command every $t_{\text{RFC}} = t_{\text{RFC.MIN}}$ interval, CKE is HIGH, $\overline{\text{CS}}$ is HIGH between valid commands, Other control and address inputs are SWITCHING, Data bus inputs are SWITCHING.	I_{DD5B}	

Parameter	Symbol	Note 1)2)3)4)5)
Distributed Refresh Current $t_{\text{CK}} = t_{\text{CK.MIN.}}$, Refresh command every $t_{\text{RFC}} = t_{\text{REFI}}$ interval, CKE is LOW and $\overline{\text{CS}}$ is HIGH between valid commands, Other control and address inputs are SWITCHING, Data bus inputs are SWITCHING.	I_{DD5D}	
Self-Refresh Current CKE \leq 0.2 V; external clock off, CK and $\overline{\text{CK}}$ at 0 V; Other control and address inputs are FLOATING, Data bus inputs are FLOATING. I_{DD6} current values are guaranteed up to T_{CASE} of 85 °C max.	I_{DD6}	
All Bank Interleave Read Current All banks are being interleaved at minimum $t_{\rm RC}$ without violating $t_{\rm RRD}$ using a burst length of 4. Control and address bus inputs are STABLE during DESELECTS. $I_{\rm out}$ = 0 mA.	I_{DD7}	6)

- 1) $V_{\rm DDQ}$ = 1.8 V ± 0.1 V; $V_{\rm DD}$ = 1.8 V ± 0.1 V
- 2) $I_{
 m DD}$ specifications are tested after the device is properly initialized and $I_{
 m DD}$ parameter are specified with ODT disabled.
- 3) Definitions for $I_{\rm DD}$ see Table 19
- 4) For two rank modules: All active current measurements in the same $I_{\rm DD}$ current mode. The other rank is in $I_{\rm DD2P}$ Precharge Power-Down Mode
- 5) For details and notes see the relevant Qimonda component data sheet
- 6) $I_{\rm DD1}, I_{\rm DD4R}$ and $I_{\rm DD7}$ current measurements are defined with the outputs disabled ($I_{\rm OUT}$ = 0 mA). To achieve this on module level the output buffers can be disabled using an EMRS(1) (Extended Mode Register Command) by setting A12 bit to HIGH.

TABLE 19

	Definitions for I _{DD}
Parameter	Description
LOW	$V_{\rm IN} \leq V_{\rm IL(ac).MAX}$, HIGH is defined as $V_{\rm IN} \geq V_{\rm IH(ac).MIN}$
STABLE	Inputs are stable at a HIGH or LOW level
FLOATING	Inputs are $V_{\rm REF}$ = $V_{\rm DDQ}/2$
SWITCHING	Inputs are changing between HIGH and LOW every other clock (once per 2 cycles) for address and control signals, and inputs changing between HIGH and LOW every other data transfer (once per cycle) for DQ signals not including mask or strobes

	TABLE 20						
			I_{\parallel}	DD Specificat	ion for HYS721	Γ[64/128/2 <mark>56]</mark> χχ	0HP-3S-A
Product Type	HYS72T64000HP-3S-A	HYS72T128000HP-3S-A	HYS72T128020HP-3S-A	HYS72T256220HP-3S-A	HYS72T256040HP-3S-A	Units	Note ¹⁾
Organization	512 MB	1 GB	1 GB	2 GB	2 GB		
	× 72	× 72	× 72	× 72	× 72		
	1 Ranks	1 Ranks	2 Ranks	2 Ranks	4 Ranks		
	-3S	- 3S	-3S	-3 S	- 3S		
I_{DD0}	1020	1870	1280	1960	1370	mA	2)
I_{DD1}	1150	2130	1410	2220	1500	mA	2)
I_{DD2P}	430	690	690	780	780	mA	3)
I_{DD2N}	840	1500	1500	2400	2400	mA	3)
I_{DD2Q}	750	1320	1320	2040	2040	mA	3)
I _{DD3P_0 (fast)}	560	940	940	1280	1280	mA	3)
$I_{\mathrm{DD3P_1~(slow)}}$	440	700	700	810	810	mA	3)4)
I_{DD3N}	840	1500	1500	2400	2400	mA	3)5)
I_{DD4R}	1560	2940	1810	3030	1900	mA	2)
I_{DD4W}	1650	3120	1900	3210	1990	mA	2)
I_{DD5B}	1650	3120	1900	3210	1990	mA	2)
I_{DD5D}	440	700	700	810	810	mA	3)6)
I_{DD6}	45	90	90	180	180	mA	3)6)
I_{DD7}	1710	3240	1960	3330	2050	mA	2)

¹⁾ Module $I_{\rm DD}$ is calculated on the basis of component $I_{\rm DD}$ and includes currents of Registers and PLL. ODT disabled. $I_{\rm DD1}$, $I_{\rm DD4R}$, and $I_{\rm DD7}$, are defined with the outputs disabled.

²⁾ The other rank is in $I_{\rm DD2P}$ Precharge Power-Down Current mode

³⁾ Both ranks are in the same $I_{\rm DD}$ current mode

⁴⁾ Fast: MRS(12)=0

⁵⁾ Slow: MRS(12)=1

⁶⁾ $I_{\rm DD5D}$ and $I_{\rm DD6}$ values are for 0°C \leq $T_{\rm Case}$ \leq 85°C

							TABLE 21
				$I_{ extsf{DD}}$ Specifica	ation for HYS7	² T[64/128/25	6]xx0HP-3.7-A
Product Type	HYS72T64000HP-3.7-A	HYS72T128000HP-3.7-A	HYS72T128020HP-3.7-A	HYS72T256220HP-3.7-A	HYS72T256040HP-3.7-A	Units	Note ¹⁾
Organization	512 MB	1 GB	1 GB	2 GB	2 GB		
	× 72	×72	×72	×72	×72		
	1 Ranks	1 Ranks	2 Ranks	2 Ranks	4 Ranks		
	-3.7	-3.7	-3.7	-3.7	-3.7		
I_{DD0}	920	1670	1120	1740	1370	mA	2)
I_{DD1}	1010	1850	1210	1920	1500	mA	2)
I_{DD2P}	370	570	570	640	780	mA	3)
I_{DD2N}	690	1220	1220	1940	2400	mA	3)
I_{DD2Q}	600	1040	1040	1580	2040	mA	3)
I _{DD3P_0 (fast)}	470	790	790	1080	1280	mA	3)
I _{DD3P_1 (slow)}	380	590	590	680	810	mA	3)4)
I_{DD3N}	690	1220	1220	1940	2400	mA	3)5)
I_{DD4R}	1140	2120	1350	2190	1900	mA	2)
I_{DD4W}	1190	2210	1390	2280	1990	mA	2)
I_{DD5B}	1500	2840	1710	2910	1990	mA	2)
I_{DD5D}	380	610	610	720	810	mA	3)6)
I_{DD6}	36	72	72	144	180	mA	3)6)
I_{DD7}	1590	3030	1800	3100	2050	mA	2)

¹⁾ Module $I_{\rm DD}$ is calculated on the basis of component $I_{\rm DD}$ and includes currents of Registers and PLL. ODT disabled. $I_{\rm DD1,}$ $I_{\rm DD4R,}$ and $I_{\rm DD7,}$ are defined with the outputs disabled.

²⁾ The other rank is in $I_{\rm DD2P} \, {\rm Precharge} \, {\rm Power-Down} \, {\rm Current} \, \, {\rm mode}$

³⁾ Both ranks are in the same $I_{\rm DD} {\rm current}$ mode

⁴⁾ Fast: MRS(12)=0

⁵⁾ Slow: MRS(12)=1

⁶⁾ $I_{\rm DD5D}$ and $I_{\rm DD6}$ values are for 0°C \leq $T_{\rm Case}$ \leq 85°C

4 SPD Codes

This chapter lists all hexadecimal byte values stored in the EEPROM of the products described in this data sheet. SPD stands for serial presence detect. All values with XX in the table are module specific bytes which are defined during production.

List of SPD Code Tables

- Table 22 "HYS72T[64/128/256]xx0HP-3S-A" on Page 31
- Table 23 "HYS72T[64/128/256]xx0HP-3.7-A" on Page 36

TABLE 22 HYS72T[64/128/256]xx0HP-3S-A							
Product Type			HYS72T128000HP-3S-A	HYS72T128020HP-3S-A	HYS72T256220HP-3S-A	HYS72T256040HP-3S-A	
Organiz	ation	512MB	1 GByte	1 GByte	2 GByte	2 GByte	
		×72	×72	×72	×72	×72	
		1 Rank (×8)	1 Rank (×4)	2 Ranks (×8)	2 Ranks (×4)	4 Ranks (×8)	
Label C	ode	PC2- 5300P- 555	PC2- 5300P- 555	PC2- 5300P- 555	PC2- 5300P- 555	PC2- 5300P- 555	
JEDEC :	SPD Revision	Rev. 1.2					
Byte#	Description	HEX	HEX	HEX	HEX	HEX	
0	Programmed SPD Bytes in EEPROM	80	80	80	80	80	
1	Total number of Bytes in EEPROM	08	08	08	08	08	
2	Memory Type (DDR2)	08	08	08	08	08	
3	Number of Row Addresses	0E	0E	0E	0E	0E	
4	Number of Column Addresses	0A	0B	0A	0B	0A	
5	DIMM Rank and Stacking Information	60	60	61	61	63	
6	Data Width	48	48	48	48	48	
7	Not used	00	00	00	00	00	
8	Interface Voltage Level	05	05	05	05	05	
9	t _{CK} @ CL _{MAX} (Byte 18) [ns]	30	30	30	30	30	
10	t _{AC} SDRAM @ CL _{MAX} (Byte 18) [ns]	45	45	45	45	45	
11	Error Correction Support (non-ECC, ECC)	06	06	06	06	06	

Product	t Type	HYS72T64000HP-3S-A	HYS72T128000HP-3S-A	HYS72T128020HP-3S-A	HYS72T256220HP-3S-A	HYS72T256040HP-3S-A
Organiz	ation	512MB	1 GByte	1 GByte	2 GByte	2 GByte
		×72	×72	× 72	×72	× 72
		1 Rank (×8)	1 Rank (×4)	2 Ranks (×8)	2 Ranks (×4)	4 Ranks (×8)
Label Code		PC2- 5300P- 555	PC2- 5300P- 555	PC2- 5300P- 555	PC2- 5300P- 555	PC2- 5300P- 555
JEDEC	SPD Revision	Rev. 1.2				
Byte#	Description	HEX	HEX	HEX	HEX	HEX
12	Refresh Rate and Type	82	82	82	82	82
13	Primary SDRAM Width	08	04	08	04	08
14	Error Checking SDRAM Width	08	04	08	04	08
15	Not used	00	00	00	00	00
16	Burst Length Supported	0C	0C	0C	0C	0C
17	Number of Banks on SDRAM Device	04	04	04	04	04
18	Supported CAS Latencies	38	38	38	38	38
19	DIMM Mechanical Characteristics	01	01	01	01	01
20	DIMM Type Information	01	01	01	01	01
21	DIMM Attributes	04	05	05	07	07
22	Component Attributes	03	03	03	03	03
23	t _{CK} @ CL _{MAX} -1 (Byte 18) [ns]	3D	3D	3D	3D	3D
24	t _{AC} SDRAM @ CL _{MAX} -1 [ns]	50	50	50	50	50
25	t _{CK} @ CL _{MAX} -2 (Byte 18) [ns]	50	50	50	50	50
26	t _{AC} SDRAM @ CL _{MAX} -2 [ns]	60	60	60	60	60
27	t _{RP.MIN} [ns]	3C	3C	3C	3C	3C
28	$t_{RRD.MIN}$ [ns]	1E	1E	1E	1E	1E
29	$t_{RCD.MIN}$ [ns]	3C	3C	3C	3C	3C
30	$t_{RAS.MIN}$ [ns]	2D	2D	2D	2D	2D
31	Module Density per Rank	80	01	80	01	80
32	$t_{AS.MIN}$ and $t_{CS.MIN}$ [ns]	20	20	20	20	20
33	$t_{ m AH.MIN}$ and $t_{ m CH.MIN}$ [ns]	27	27	27	27	27
34	t _{DS.MIN} [ns]	10	10	10	10	10
35	$t_{DH.MIN}$ [ns]	17	17	17	17	17

Product		HYS72T64000HP-3S-A	HYS72T128000HP-3S-A	HYS72T128020HP-3S-A	HYS72T256220HP-3S-A	HYS72T256040HP-3S-A
Organiz	ation	512MB	1 GByte	1 GByte	2 GByte	2 GByte
		× 72				
		1 Rank (×8)	1 Rank (×4)	2 Ranks (×8)	2 Ranks (×4)	4 Ranks (×8)
Label Code		PC2- 5300P- 555	PC2- 5300P- 555	PC2- 5300P- 555	PC2- 5300P- 555	PC2- 5300P- 555
JEDEC	SPD Revision	Rev. 1.2				
Byte#	Description	HEX	HEX	HEX	HEX	HEX
36	t _{WR.MIN} [ns]	3C	3C	3C	3C	3C
37	t _{WTR.MIN} [ns]	1E	1E	1E	1E	1E
38	t _{RTP.MIN} [ns]	1E	1E	1E	1E	1E
39	Analysis Characteristics	00	00	00	00	00
40	$t_{\rm RC}$ and $t_{\rm RFC}$ Extension	00	00	00	00	00
41	$t_{ m RC.MIN}$ [ns]	3C	3C	3C	3C	3C
42	t _{RFC.MIN} [ns]	69	69	69	69	69
43	$t_{CK.MAX}$ [ns]	80	80	80	80	80
44	$t_{DQSQ.MAX}[ns]$	18	18	18	18	18
45	t _{QHS.MAX} [ns]	22	22	22	22	22
46	PLL Relock Time	0F	0F	0F	0F	0F
47	$T_{CASE.MAX}$ Delta / ΔT_{4R4W} Delta	53	53	53	53	53
48	Psi(T-A) DRAM	78	78	78	78	78
49	ΔT_0 (DT0)	4B	4B	4B	4B	4B
50	$\Delta T_{\rm 2N}$ (DT2N, UDIMM) or $\Delta T_{\rm 2Q}$ (DT2Q, RDIMM)	2E	2E	2E	2E	2E
51	ΔT_{2P} (DT2P)	26	26	26	26	26
52	ΔT_{3N} (DT3N)	26	26	26	26	26
53	$\Delta T_{ m 3P.fast}$ (DT3P fast)	2B	2B	2B	2B	2B
54	$\Delta T_{ m 3P.slow}$ (DT3P slow)	1B	1B	1B	1B	1B
55	$\Delta T_{\rm 4R}$ (DT4R) / $\Delta T_{\rm 4R4W}$ Sign (DT4R4W)	4A	4A	4A	4A	4A
56	ΔT_{5B} (DT5B)	20	20	20	20	20
57	ΔT_7 (DT7)	22	22	22	22	22
58	Psi(ca) PLL	C4	C4	C4	C4	C4
59	Psi(ca) REG	8C	8C	8C	8C	8C

Product	t Type	HYS72T64000HP-3S-A	HYS72T128000HP-3S-A	HYS72T128020HP-3S-A	HYS72T256220HP-3S-A	HYS72T256040HP-3S-A
Organiz	ation	512MB	1 GByte	1 GByte	2 GByte	2 GByte
		×72	× 72	×72	×72	× 72
		1 Rank (×8)	1 Rank (×4)	2 Ranks (×8)	2 Ranks (×4)	4 Ranks (×8)
Label Code		PC2- 5300P- 555	PC2- 5300P- 555	PC2- 5300P- 555	PC2- 5300P- 555	PC2- 5300P- 555
JEDEC	SPD Revision	Rev. 1.2				
Byte#	Description	HEX	HEX	HEX	HEX	HEX
60	ΔT_{PLL} (DTPLL)	68	68	68	68	68
61	ΔT_{REG} (DTREG) / Toggle Rate	94	94	94	94	94
62	SPD Revision	12	12	12	12	12
63	Checksum of Bytes 0-62	47	C2	49	C5	4D
64	Manufacturer's JEDEC ID Code (1)	7F	7F	7F	7F	7F
65	Manufacturer's JEDEC ID Code (2)	7F	7F	7F	7F	7F
66	Manufacturer's JEDEC ID Code (3)	7F	7F	7F	7F	7F
67	Manufacturer's JEDEC ID Code (4)	7F	7F	7F	7F	7F
68	Manufacturer's JEDEC ID Code (5)	7F	7F	7F	7F	7F
69	Manufacturer's JEDEC ID Code (6)	51	51	51	51	51
70	Manufacturer's JEDEC ID Code (7)	00	00	00	00	00
71	Manufacturer's JEDEC ID Code (8)	00	00	00	00	00
72	Module Manufacturer Location	XX	XX	XX	XX	xx
73	Product Type, Char 1	37	37	37	37	37
74	Product Type, Char 2	32	32	32	32	32
75	Product Type, Char 3	54	54	54	54	54
76	Product Type, Char 4	36	31	31	32	32
77	Product Type, Char 5	34	32	32	35	35
78	Product Type, Char 6	30	38	38	36	36
79	Product Type, Char 7	30	30	30	32	30
80	Product Type, Char 8	30	30	32	32	34
81	Product Type, Char 9	48	30	30	30	30
82	Product Type, Char 10	50	48	48	48	48
83	Product Type, Char 11	33	50	50	50	50

Product	Туре	HYS72T64000HP-3S-A	HYS72T128000HP-3S-A	HYS72T128020HP-3S-A	HYS72T256220HP-3S-A	HYS72T256040HP-3S-A
Organiza	ation	512MB	1 GByte	1 GByte	2 GByte	2 GByte
		×72	×72	×72	×72	× 72
		1 Rank (×8)	1 Rank (×4)	2 Ranks (×8)	2 Ranks (×4)	4 Ranks (×8)
Label Code		PC2- 5300P- 555	PC2- 5300P- 555	PC2- 5300P- 555	PC2- 5300P- 555	PC2- 5300P- 555
JEDEC S	SPD Revision	Rev. 1.2				
Byte#	Description	HEX	HEX	HEX	HEX	HEX
84	Product Type, Char 12	53	33	33	33	33
85	Product Type, Char 13	41	53	53	53	53
86	Product Type, Char 14	20	41	41	41	41
87	Product Type, Char 15	20	20	20	20	20
88	Product Type, Char 16	20	20	20	20	20
89	Product Type, Char 17	20	20	20	20	20
90	Product Type, Char 18	20	20	20	20	20
91	Module Revision Code	2x	2x	2x	2x	2x
92	Test Program Revision Code	xx	xx	xx	xx	xx
93	Module Manufacturing Date Year	xx	xx	xx	xx	xx
94	Module Manufacturing Date Week	xx	xx	xx	xx	xx
95 - 98	Module Serial Number	xx	xx	xx	xx	xx
99 - 127	Not used	00	00	00	00	00
128 - 255	Blank for customer use	FF	FF	FF	FF	FF

			Н	′S72T[64/1		BLE 23 0HP-3.7-A
Product	Туре	HYS72T64000HP-3.7-A	HYS72T128000HP-3.7-A	HYS72T128020HP-3.7-A	HYS72T256220HP-3.7-A	HYS72T256040HP-3.7-A
Organiz	ation	512MB	1 GByte	1 GByte	2 GByte	2 GByte
		×72	×72	×72	×72	×72
		1 Rank (×8)	1 Rank (×4)	2 Ranks (×8)	2 Ranks (×4)	4 Ranks (×8)
Label Code		PC2- 4200P- 444	PC2- 4200P- 444	PC2- 4200P- 444	PC2- 4200P- 444	PC2- 4200P- 444
JEDEC :	JEDEC SPD Revision		Rev. 1.2	Rev. 1.2	Rev. 1.2	Rev. 1.2
Byte#	Description	HEX	HEX	HEX	HEX	HEX
0	Programmed SPD Bytes in EEPROM	80	80	80	80	80
1	Total number of Bytes in EEPROM	08	08	08	08	08
2	Memory Type (DDR2)	08	08	08	08	08
3	Number of Row Addresses	0E	0E	0E	0E	0E
4	Number of Column Addresses	0A	0B	0A	0B	0A
5	DIMM Rank and Stacking Information	60	60	61	61	63
6	Data Width	48	48	48	48	48
7	Not used	00	00	00	00	00
8	Interface Voltage Level	05	05	05	05	05
9	t _{CK} @ CL _{MAX} (Byte 18) [ns]	3D	3D	3D	3D	3D
10	t _{AC} SDRAM @ CL _{MAX} (Byte 18) [ns]	50	50	50	50	50
11	Error Correction Support (non-ECC, ECC)	06	06	06	06	06
12	Refresh Rate and Type	82	82	82	82	82
13	Primary SDRAM Width	08	04	08	04	08
14	Error Checking SDRAM Width	08	04	08	04	08
15	Not used	00	00	00	00	00
16	Burst Length Supported	0C	0C	0C	0C	0C
17	Number of Banks on SDRAM Device	04	04	04	04	04
18	Supported CAS Latencies	38	38	38	38	38
19	DIMM Mechanical Characteristics	01	01	01	01	01
20	DIMM Type Information	01	01	01	01	01

Produc	t Type	HYS72T64000HP-3.7-A	HYS72T128000HP-3.7-A	HYS72T128020HP-3.7-A	HYS72T256220HP-3.7-A	HYS72T256040HP-3.7-A
Organiz	zation	512MB	1 GByte	1 GByte	2 GByte	2 GByte
		×72	× 72	× 72	× 72	× 72
		1 Rank (×8)	1 Rank (×4)	2 Ranks (×8)	2 Ranks (×4)	4 Ranks (×8)
Label Code		PC2- 4200P- 444	PC2- 4200P- 444	PC2- 4200P- 444	PC2- 4200P- 444	PC2- 4200P- 444
JEDEC	SPD Revision	Rev. 1.2				
Byte#	Description	HEX	HEX	HEX	HEX	HEX
21	DIMM Attributes	04	05	05	07	07
22	Component Attributes	03	03	03	03	03
23	t _{CK} @ CL _{MAX} -1 (Byte 18) [ns]	3D	3D	3D	3D	3D
24	t _{AC} SDRAM @ CL _{MAX} -1 [ns]	50	50	50	50	50
25	t _{CK} @ CL _{MAX} -2 (Byte 18) [ns]	50	50	50	50	50
26	t _{AC} SDRAM @ CL _{MAX} -2 [ns]	60	60	60	60	60
27	$t_{RP.MIN}$ [ns]	3C	3C	3C	3C	3C
28	$t_{RRD.MIN}$ [ns]	1E	1E	1E	1E	1E
29	$t_{RCD.MIN}$ [ns]	3C	3C	3C	3C	3C
30	$t_{RAS.MIN}$ [ns]	2D	2D	2D	2D	2D
31	Module Density per Rank	80	01	80	01	80
32	$t_{AS.MIN}$ and $t_{CS.MIN}$ [ns]	25	25	25	25	25
33	$t_{\rm AH.MIN}$ and $t_{\rm CH.MIN}$ [ns]	37	37	37	37	37
34	$t_{DS.MIN}$ [ns]	10	10	10	10	10
35	t _{DH.MIN} [ns]	22	22	22	22	22
36	$t_{\mathrm{WR.MIN}}$ [ns]	3C	3C	3C	3C	3C
37	t _{WTR.MIN} [ns]	1E	1E	1E	1E	1E
38	$t_{RTP.MIN}$ [ns]	1E	1E	1E	1E	1E
39	Analysis Characteristics	00	00	00	00	00
40	$t_{\rm RC}$ and $t_{\rm RFC}$ Extension	00	00	00	00	00
41	$t_{RC.MIN}$ [ns]	3C	3C	3C	3C	3C
42	$t_{RFC.MIN}$ [ns]	69	69	69	69	69
43	$t_{CK.MAX}$ [ns]	80	80	80	80	80
44	$t_{\text{DQSQ.MAX}}$ [ns]	1E	1E	1E	1E	1E

Produc	t Type	HYS72T64000HP-3.7-A	HYS72T128000HP-3.7-A	HYS72T128020HP-3.7-A	HYS72T256220HP-3.7-A	HYS72T256040HP-3.7-A
Organiz	zation	512MB	1 GByte	1 GByte	2 GByte	2 GByte
		×72	×72	×72	×72	×72
		1 Rank (×8)	1 Rank (×4)	2 Ranks (×8)	2 Ranks (×4)	4 Ranks (×8)
Label C	code	PC2- 4200P- 444	PC2- 4200P- 444	PC2- 4200P- 444	PC2- 4200P- 444	PC2- 4200P- 444
JEDEC	SPD Revision	Rev. 1.2				
Byte#	Description	HEX	HEX	HEX	HEX	HEX
45	t _{QHS.MAX} [ns]	28	28	28	28	28
46	PLL Relock Time	0F	0F	0F	0F	0F
47	$T_{CASE.MAX}$ Delta / ΔT_{4R4W} Delta	51	51	51	51	51
48	Psi(T-A) DRAM	78	78	78	78	78
49	ΔT_0 (DT0)	3F	3F	3F	3F	3F
50	$\Delta T_{\rm 2N}$ (DT2N, UDIMM) or $\Delta T_{\rm 2Q}$ (DT2Q, RDIMM)	22	22	22	22	22
51	ΔT_{2P} (DT2P)	1E	1E	1E	1E	1E
52	ΔT_{3N} (DT3N)	1E	1E	1E	1E	1E
53	$\Delta T_{\text{3P.fast}}$ (DT3P fast)	24	24	24	24	24
54	$\Delta T_{ m 3P.slow}$ (DT3P slow)	17	17	17	17	17
55	$\Delta T_{\rm 4R}$ (DT4R) / $\Delta T_{\rm 4R4W}$ Sign (DT4R4W)	34	34	34	34	34
56	ΔT_{5B} (DT5B)	1E	1E	1E	1E	1E
57	ΔT_7 (DT7)	20	20	20	20	20
58	Psi(ca) PLL	C4	C4	C4	C4	C4
59	Psi(ca) REG	8C	8C	8C	8C	8C
60	ΔT_{PLL} (DTPLL)	61	61	61	61	61
61	ΔT_{REG} (DTREG) / Toggle Rate	78	78	78	78	78
62	SPD Revision	12	12	12	12	12
63	Checksum of Bytes 0-62	19	94	1B	97	1F
64	Manufacturer's JEDEC ID Code (1)	7F	7F	7F	7F	7F
65	Manufacturer's JEDEC ID Code (2)	7F	7F	7F	7F	7F
66	Manufacturer's JEDEC ID Code (3)	7F	7F	7F	7F	7F
67	Manufacturer's JEDEC ID Code (4)	7F	7F	7F	7F	7F
68	Manufacturer's JEDEC ID Code (5)	7F	7F	7F	7F	7F

Produc	t Туре	HYS72T64000HP-3.7-A	HYS72T128000HP-3.7-A	HYS72T128020HP-3.7-A	HYS72T256220HP-3.7-A	HYS72T256040HP-3.7-A
Organiz	zation	512MB	1 GByte	1 GByte	2 GByte	2 GByte
		×72	× 72	× 72	× 72	× 72
		1 Rank (×8)	1 Rank (×4)	2 Ranks (×8)	2 Ranks (×4)	4 Ranks (×8)
Label Code		PC2- 4200P- 444	PC2- 4200P- 444	PC2- 4200P- 444	PC2- 4200P- 444	PC2- 4200P- 444
JEDEC	SPD Revision	Rev. 1.2				
Byte#	Description	HEX	HEX	HEX	HEX	HEX
69	Manufacturer's JEDEC ID Code (6)	51	51	51	51	51
70	Manufacturer's JEDEC ID Code (7)	00	00	00	00	00
71	Manufacturer's JEDEC ID Code (8)	00	00	00	00	00
72	Module Manufacturer Location	xx	xx	XX	xx	xx
73	Product Type, Char 1	37	37	37	37	37
74	Product Type, Char 2	32	32	32	32	32
75	Product Type, Char 3	54	54	54	54	54
76	Product Type, Char 4	36	31	31	32	32
77	Product Type, Char 5	34	32	32	35	35
78	Product Type, Char 6	30	38	38	36	36
79	Product Type, Char 7	30	30	30	32	30
80	Product Type, Char 8	30	30	32	32	34
81	Product Type, Char 9	48	30	30	30	30
82	Product Type, Char 10	50	48	48	48	48
83	Product Type, Char 11	33	50	50	50	50
84	Product Type, Char 12	2E	33	33	33	33
85	Product Type, Char 13	37	2E	2E	2E	2E
86	Product Type, Char 14	41	37	37	37	37
87	Product Type, Char 15	20	41	41	41	41
88	Product Type, Char 16	20	20	20	20	20
89	Product Type, Char 17	20	20	20	20	20
90	Product Type, Char 18	20	20	20	20	20
91	Module Revision Code	2x	2x	2x	2x	2x
92	Test Program Revision Code	xx	XX	xx	xx	xx

Product	Туре	HYS72T64000HP-3.7-A	HYS72T128000HP-3.7-A	HYS72T128020HP-3.7-A	HYS72T256220HP-3.7-A	HYS72T256040HP-3.7-A
Organiza	ation	512MB	1 GByte	1 GByte	2 GByte	2 GByte
		×72	×72	× 72	×72	×72
		1 Rank (×8)	1 Rank (×4)	2 Ranks (×8)	2 Ranks (×4)	4 Ranks (×8)
Label Co	ode	PC2- 4200P- 444	PC2- 4200P- 444	PC2- 4200P- 444	PC2- 4200P- 444	PC2- 4200P- 444
JEDEC S	SPD Revision	Rev. 1.2				
Byte#	Description	HEX	HEX	HEX	HEX	HEX
93	Module Manufacturing Date Year	xx	xx	xx	xx	xx
94	Module Manufacturing Date Week	xx	xx	xx	xx	хх
95 - 98	Module Serial Number	xx	xx	xx	xx	хх
99 - 127	Not used	00	00	00	00	00
128 - 255	Blank for customer use	FF	FF	FF	FF	FF

5 Package Outlines

This chapter contains the package outlines of the products.

- 1. Drawing according to ISO 8015
- 2. Dimensions in mm
- 3. General tolerances +/- 0.15

FIGURE 6 Package Outline Raw Card G L-DIM-240-12 4x |⊕|0.1|A|B|C 133.35 4 MAX. 128.95 120 4 С 2.5 5 1.27 ±0.1 63 121 240 <u>Юрининининининининин || ининининининин</u> В (3) Detail of contacts 1 — — Burr max. 0.4 allowed GLD09656

- 1. Drawing according to ISO 8015
- 2. Dimensions in mm
- 3. General tolerances +/- 0.15

- 1. Drawing according to ISO 8015
- 2. Dimensions in mm
- 3. General tolerances +/- 0.15

FIGURE 8 Package Outline Raw Card J L-DIM-240-20 4x + 0.1 A B C 133.35 4 MAX. 128.95 30 ιф 120 C-5 1.27 ±0.1 63 55 240 В 3 MIN. Detail of contacts 0.8±0.05 (0.1|A|B|C) 1 — — Burr max. 0.4 allowed GLD09659

- 1. Drawing according to ISO 8015
- 2. Dimensions in mm
- 3. General tolerances +/- 0.15

FIGURE 9 Package Outline Raw Card N L-DIM-240-44 4x |⊕|ø0.1|A|B|C 133.35 4 MAX. 128.95 Φ C 1.27±0.1 63 55 1.5±0.1 В 240 3 MIN. Detail of contacts 0.8±0.05 ⊕ 0.1 A B C 1 — — Burr max. 0.4 allowed GLD01118

- 1. Drawing according to ISO 8015
- 2. Dimensions in mm
- 3. General tolerances +/- 0.15

6 Product Type Nomenclature

Qimonda's nomenclature uses simple coding combined with some propriatory coding. **Table 24** provides examples for module and component product type number as well as the field number. The detailed field description together with possible values and coding explanation is listed for modules in **Table 25** and for components in **Table 26**.

										TAI	BLE 24
							No	omencla	ture Fie	lds and l	Examples
Example for	Field N	umber									
	1	2	3	4	5	6	7	8	9	10	11
Micro-DIMM	HYS	64	Т	64/128	0	2	0	K	М	-5	–A
DDR2 DRAM	HYB	18	Т	512/1G	16	•	0	Α	С	- 5	

			TABLE 25
			DDR2 DIMM Nomenclature
Field	Description	Values	Coding
1	Qimonda Module Prefix	HYS	Constant
2	Module Data Width [bit]	64	Non-ECC
		72	ECC
3	DRAM Technology	Т	DDR2
4	Memory Density per I/O [Mbit];	32	256 MByte
	Module Density ¹⁾	64	512 MByte
		128	1 GByte
		256	2 GByte
		512	4 GByte
5	Raw Card Generation	09	Look up table
6	Number of Module Ranks	0, 2, 4	1, 2, 4
7	Product Variations	09	Look up table
8	Package, Lead-Free Status	A Z	Look up table
9	Module Type	D	SO- D IMM
		М	Micro-DIMM
		R	Registered
		U	U nbuffered
		F	Fully Buffered

Field	Description	Values	Coding
10	Speed Grade	-2.5F	PC2-6400 5-5-5
		-2.5	PC2-6400 6-6-6
		– 3	PC2-5300 4-4-4
		- 3S	PC2-5300 5-5-5
		-3.7	PC2-4200 4-4-4
		– 5	PC2-3200 3-3-3
11	Die Revision	-A	First
		– B	Second

¹⁾ Multiplying "Memory Density per I/O" with "Module Data Width" and dividing by 8 for Non-ECC and 9 for ECC modules gives the overall module memory density in MBytes as listed in column "Coding".

TABLE 26DDR2 DRAM Nomenclature

Field	Description	Values	Coding
1	Qimonda Component Prefix	HYB	Constant
2	Interface Voltage [V]	18	SSTL_18
3	DRAM Technology	Т	DDR2
4	Component Density [Mbit]	256	256 Mbit
		512	512 Mbit
		1G	1 Gbit
		2G	2 Gbit
5+6	Number of I/Os	40	×4
		80	×8
		16	×16
7	Product Variations	0 9	Look up table
8	Die Revision	Α	First
		В	Second
9	Package, Lead-Free Status	С	FBGA, lead-containing
		F	FBGA, lead-free
10	Speed Grade	–25F	DDR2-800 5-5-5
		-2.5	DDR2-800 6-6-6
		-3	DDR2-667 4-4-4
		-3 S	DDR2-667 5-5-5
		-3.7	DDR2-533 4-4-4
		- 5	DDR2-400 3-3-3

Table of Contents

1	Overview	🤅
1.1	Features	3
1.2	Description	
2	Pin Configuration	(
- 2.1	Pin Configuration	6
3	Electrical Characteristics	
3.1	Absolute Maximum Ratings	
3.2	DC Operating Conditions	
3.3	Timing Characteristics	
3.3.1	Speed Grades Definitions	17
3.3.2	Component AC Timing Parameters	19
3.3.3	ODT AC Electrical Characteristics	
3.4	I _{DD} Specifications and Conditions	27
4	SPD Codes	3 ⁻
5	Package Outlines	4
6	Product Type Nomenclature	46
	Table of Contents	48

Edition 2007-07 Published by Qimonda AG Gustav-Heinemann-Ring 212 D-81739 München, Germany © Qimonda AG 2007. All Rights Reserved.

Legal Disclaimer

The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Qimonda Office.

Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.