FINAL DE LENGUAJES 2013

1. Sea $P: \omega^2 \times \Sigma^{*2} \to \omega$ dado por

$$P(x, y, \beta, \gamma) = (\exists \alpha \in \Sigma^*)_{|\alpha| \le x^2} \quad \beta \gamma^y = \bigcup_{t=x+1}^{|\alpha|} [\alpha]_t [\gamma]_t$$

Pruebe que P es Σ -PR. Puede usar las funciones que han sido probadas Σ -PR en el teórico. Enuncie los lemas que aplique.

- 2. V o F. Justifique.
 - (a) Hay un programa \mathcal{P} tal que para cada $n \geq 1$ se tiene que \mathcal{P} computa $p_n^{n,0}$.
 - (b) Supongamos $\Sigma_p \subseteq \Sigma$, y sea

$$\mathrm{Autohalt}^{\Sigma} = \lambda \mathcal{P}[(\exists t \in \omega) i(t, 0, \langle \mathcal{P} \rangle, \mathcal{P}) = n(\mathcal{P}) + 1].$$

Entonces para cualquier función Σ-r,

$$f: D_f \subseteq \omega \to \Sigma^*,$$

se tiene que Autohalt $^{\Sigma} \circ f$ no es Σ -r.

- (c) Sea $M=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ un autómata a pila. Supongamos que para $k\in\omega,\ q,p\in Q,\ x,y\in\Sigma^*$ y $\alpha,\beta,\gamma\in\Gamma^*$ se tiene que $(q,x,\beta\gamma)\vdash(p,y,\alpha\gamma)$. Entonces $(q,x,\beta)\vdash(p,y,\alpha)$.
- 3. De una gramática G tal que $L(G)=\{a^ib^jc^k:i,j,k\in\omega\ y\ i\geq j+2\}$. Pruebe la igualdad entre los lenguajes.
- 4. Dar una función Σ_p -r. $g:\omega\to\Sigma_p^*$ tal que $\operatorname{Im}(g)=\{\mathcal{P}\in Pro^{\Sigma_p}: \text{hay p primo tal que $p\in\operatorname{Im}\left(\Psi_{\mathcal{P}}^{1,0,\omega}\right)$}\}.$