

Instituto Tecnológico de Costa Rica

PROCESAMIENTO Y ANÁLISIS DE IMÁGENES DIGITALES CE-5201

Tarea 3 - Parte 1

Estudiante

Marcelo Sánchez Solano Emanuel Esquivel López Luis López Salas

Carné

 $\begin{array}{c} 2016115728 \\ 2016133597 \\ 2015088115 \end{array}$

Croma de color

Descripción

Si consideramos una imagen A a color cuyas dimensiones son $m \times n$, a su vez consideramos una imagen B la cual contiene el fondo a la cual se le montara la imagen A, la imagen A es posible descomponerse en 3 matrices RGB respectivamente conteniendo la información de cada uno de los canales. En la imagen A se desea saber únicamente cuales pixeles son verdes, por lo que para verificar esta condición sabemos que en la imagen A los pixeles son verdes si se cumple que:

$$A_R(i,j) = 0 \land A_G(i,j) = 255 \land A_B(i,j) = 0$$

Pero debido a que no siempre se tendrán valores puros como 0 o 255 se toma una tolerancia la cual va a variar entre 80-150 aproximadamente, por lo que la expresión vendría quedando de la siguiente manera:

$$A_R(i,j) \leq tol_rb \land A_G(i,j) \geq 255 - tol_g \land A_B(i,j) \leq tol_rb$$

Una vez obtenidos los pixeles considerados verdes se genera una matriz X la cual es binaria, esta se utiliza para general la imagen resultante C, de la siguiente manera.

$$C(i,j) = \begin{cases} A(i,j) & \text{si} \quad X(i,j) = 0 \\ B(i,j) & \text{si} \quad X(i,j) = 1 \end{cases}$$

A Continuación se puede ver el resultado obtenido.

Figura 1: Imagen con tolerancia 1

Figura 1: Imagen con tolerancia 115

Como se puede ver el factor de la tolerancia toma un valor muy importante en los resultados.

Eliminación de bordes verdes

Con el fin de eliminar los bordes verdes en la imagen se debe obtener la silueta de la imagen A para poder mediante distintos métodos matemáticos poder eliminar los bordes indeseados verdes.

Para esto necesitamos definir una matriz T la cual sera el borde externo de la imagen A obtenida de la siguiente manera.

$$T(i,j) = A_R(i,j) \le tol_rb \land A_G(i,j) \ge 255 - tol_g \land A_B(i,j) \le tol_rb$$

Una vez la con el borde externo para calcular el borde interno se aplica el operador morfológico de erosión, mediante la utilización de una matriz estructurada de 3 dimensiones, con valores 1 en sus entradas, la matriz con borde interno es V

Por ultimo para obtener la silueta se realiza la diferencia entre las matrices.

$$S = T - Y$$

Por ultimo al igual que en la tares 2, se desea eliminar los bordes verdes en la imagen, por lo que se utiliza la convolución, de la matriz A con un kernel especifico el cual es el siguiente.

$$\begin{pmatrix}
a & b & a \\
b & 0 & b \\
a & b & a
\end{pmatrix}$$

Con valores a = 0.073235 y b = 0.176765.

Se realizan varias iteraciones, para los resultados se utilizo 45 iteraciones para tener bien difuminada la imagen, Por ultimo se realiza el reemplazo mediante la formula:

$$C(i,j) = \begin{cases} C(i,j) & \text{si} \quad S(i,j) = 0 \\ Df(i,j) & \text{si} \quad S(i,j) = 1 \end{cases}$$

Donde Df es la imagen difuminada y S es la silueta.

En la imagen se puede ver los resultados.

Figura 3: Resultado imagen final.