MATH 161, Autumn 2024 SCRIPT 1: Sets, Functions and Cardinality

Sets and functions are among the most fundamental objects in mathematics. A formal treatment of set theory was first undertaken at the end of the 19th Century and was finally codified in the form of the Zermelo-Fraenkel axioms. While fascinating in its own right, pursuit of these formalisms at this point would distract us from our main purpose of studying Calculus. Thus, we present a simplified version that will suffice for our immediate purposes.

Sets

Definition 1.1. (Working Definition) A set is an object S with the property that, given any x, we have the dichotomy that precisely one of the two conditions $x \in S$ or $x \notin S$ is true. In the former case, we say that x is an element of S, and in the latter, we say that x is not an element of S.

A set is often presented in one of the following forms:

• A complete listing of its elements.

Example: the set $S = \{1, 2, 3, 4, 5\}$ contains precisely the five smallest positive integers.

• A listing of some of its elements with ellipses to indicate unnamed elements.

Example 1: the set $S = \{3, 4, 5, ..., 100\}$ contains the positive integers from 3 to 100, including 6 through 99, even though these latter are not explicitly named.

Example 2: the set $S = \{2, 4, 6, \dots, 2n, \dots\}$ is the set of all positive even integers.

• A two-part indication of the elements of the set by first identifying the source of all elements and then giving additional conditions for membership in the set.

Example 1: $S = \{x \in \mathbb{N} \mid x \text{ is prime}\}\$ is the set of primes.

Example 2: $S = \{x \in \mathbb{Z} \mid x^2 < 3\}$ is the set of integers whose squares are less than 3.

Definition 1.2. Two sets A and B are equal if they contain precisely the same elements, that is, $x \in A$ if and only if $x \in B$. When A and B are equal, we denote this by A = B.

Definition 1.3. A set A is a *subset* of a set B if every element of A is also an element of B, that is, if $x \in A$, then $x \in B$. When A is a subset of B, we denote this by $A \subset B$. If $A \subset B$ but $A \neq B$ we say that A is a *proper* subset of B.

Exercise 1.4. Let $A = \{1, \{2\}\}.$

Is $1 \in A$? Yes.

Is $2 \in A$? No.

Is $\{1\} \subset A$? Yes.

Is $\{2\} \subset A$? No.

Is $1 \subset A$? No.

Is $\{1\} \in A$? No.

Is $\{2\} \in A$? Yes.

Is $\{\{2\}\}\subset A$? Yes.

Explain.

Definition 1.5. Let A and B be two sets. The union of A and B is the set

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$$

Definition 1.6. Let A and B be two sets. The *intersection* of A and B is the set

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}.$$

Theorem 1.7. Let A and B be two sets. Then:

a) A = B if and only if $A \subset B$ and $B \subset A$.

Proof. Let P(n) be the contrapositive of Theorem 1.7 (a), where we want to prove P(n). Then, P(n) is the statement that if $A \not\subset B$ or $B \not\subset A$, then $A \neq B$ (the or here is inclusive).

By Definition 1.3, if $A \not\subset B$, then there exists some $x \in A$ such that $x \notin B$. Therefore, by Definition 1.2, $A \neq B$.

Similarly, by Definition 1.3, if $B \not\subset A$, then there exists some $y \in B$ such that $y \notin A$. Therefore, by Definition 1.2, $A \neq B$.

This completes the proof.

QED

b) $A \subset A \cup B$.

Proof. We prove this by contradiction. Assume $A \not\subset A \cup B$. Then, by Definition 1.3, there must exist some $x \in A$ such that $x \notin A \cup B$. This violates Definition 1.5. This completes the proof.

QED

c) $A \cap B \subset A$.

Proof. We prove this by contradiction. Assume $A \cap B \not\subset A$. Then, by Definition 1.3, there must exist some $x \in A \cap B$ such that $x \notin A$. This violates Definition 1.6. This completes the proof.

QED

A special example of the intersection of two sets is when the two sets have no elements in common. This motivates the following definition.

Definition 1.8. The *empty set* is the set with no elements, and it is denoted \emptyset . That is, no matter what x is, we have $x \notin \emptyset$.

Definition 1.9. Two sets A and B are disjoint if $A \cap B = \emptyset$.

Exercise 1.10. Show that if A is any set, then $\emptyset \subset A$.

Proof. We prove this by contradiction. Assume $\emptyset \not\subset A$. Then, by Definition 1.3, there must exist some $x \in \emptyset$ such that $x \notin A$. This requires that $x \in \emptyset$, which violates Definition 1.8. This completes the proof.

QED

Definition 1.11. Let A and B be two sets. The difference of B from A is the set

$$A \setminus B = \{ x \in A \mid x \notin B \}.$$

The set $A \setminus B$ is also called the *complement* of B relative to A. When the set A is clear from the context, this set is sometimes denoted B^c , but we will try to avoid this imprecise formulation and use it only with warning.

Exercise 1.12. Let $A = \{x \in \mathbb{N} \mid x \text{ is even}\}; B = \{x \in \mathbb{N} \mid x \text{ is odd}\}; C = \{x \in \mathbb{N} \mid x \text{ is prime}\}; D = \{x \in \mathbb{N} \mid x \text{ is a perfect square}\}.$ Find all possible set differences.

$$A \setminus B = A$$
.

$$B \setminus A = B$$
.

$$A \setminus C = \{x \in \mathbb{N} \mid x \text{ is even } | x \ge 4\}.$$

$$C \setminus A = \{x \in \mathbb{N} \mid x \text{ is prime } | x \neq 2\}.$$

$$A \setminus D = \{x \in \mathbb{N} \mid x \text{ is even } | \text{ for all } y \in A, x \neq y^2\}.$$

$$D \setminus A = \{x \in \mathbb{N} \mid x \text{ is a perfect square } | \sqrt{x} \notin A\}.$$

$$B \setminus C = \{x \in B \mid x \text{ is not prime}\}.$$

$$C \setminus B = \{2\}.$$

$$B \setminus D = \{x \in B \mid x \text{ is not a perfect square}\}.$$

$$D \setminus B = \{x \in D \mid x \text{ is even}\}.$$

$$C \setminus D = C$$
.

$$D \setminus C = D$$
.

$$A \setminus A = B \setminus B = C \setminus C = D \setminus D = \emptyset.$$

Theorem 1.13. Let A, B and X be sets. Then:

a)
$$X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$$

Proof. We proceed by direct proof. By Definition 1.5 and Definition 1.11, the LHS is the set of all elements in X that are in neither A nor B. In formal notation, $X \setminus (A \cup B) = \{x \in X \mid x \notin A, x \notin B\}$.

By Definition 1.6 and Definition 1.11, the RHS is the set of all elements that are in both, $(X \setminus A)$ and $(X \setminus B)$. In turn, $(X \setminus A)$ is $\{x \in X \mid x \notin A\}$ and $(X \setminus B)$ is $\{x \in X \mid x \notin B\}$. Therefore, $X \setminus (A \cup B) = \{x \in X \mid x \notin A, x \notin B\}$.

Hence, the expression for LHS matches the expression for RHS. This completes the proof.

QED

b)
$$X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$$

Proof. We proceed by direct proof. By Definition 1.6 and Definition 1.11, the LHS is the set of all elements in X that are in not in the intersection of A and B, i.e., elements that

are in X, and also are in either A or B or neither, but not both. In formal notation, this is $\{x \in X \mid x \notin A \cap B\}$.

By Definition 1.5 and Definition 1.11, the RHS is the set of all elements that are in $(X \setminus A)$ or $(X \setminus B)$ or both. This, in turn, is the set of all elements $(x \in X \mid x \notin A)$ or $(x \in X \mid x \notin B)$ or $(x \in X \mid x \notin A, x \notin B)$. If an element is not in A, or it is not in B, or it is in neither A nor B, then it is not in $A \cap B$. Therefore, the RHS is $\{x \in X \mid x \notin A \cap B\}$.

Hence, the expression for LHS matches the expression for RHS. This completes the proof.

QED

Sometimes we will encounter families of sets. The definitions of intersection/union can be extended to infinitely many sets.

Definition 1.14. Let $\mathcal{A} = \{A_{\lambda} \mid \lambda \in I\}$ be a collection of sets indexed by a nonempty set I. Then the intersection and union of \mathcal{A} are the sets

$$\bigcap_{\lambda \in I} A_{\lambda} = \{ x \mid x \in A_{\lambda}, \text{ for all } \lambda \in I \},$$

and

$$\bigcup_{\lambda \in I} A_{\lambda} = \{x \mid x \in A_{\lambda}, \text{ for some } \lambda \in I\}.$$

Theorem 1.15. Let X be a set, and let $A = \{A_{\lambda} \mid \lambda \in I\}$ be a nonempty collection of sets. Then:

1.
$$X \setminus \left(\bigcup_{\lambda \in I} A_{\lambda}\right) = \bigcap_{\lambda \in I} (X \setminus A_{\lambda}).$$

Proof. We proceed by direct proof. By Definition 1.11 and Definition 1.14, the LHS is the set $\{x \in X \mid x \notin \bigcup_{\lambda \in I} A_{\lambda}\}$. Since $x \notin \bigcup_{\lambda \in I} A_{\lambda}$, this implies that for all $\lambda \in I$, $x \notin A_{\lambda}$.

By Definition 1.11 and Definition 1.14, the RHS is the intersection of sets $\{x \in X \mid x \notin A_{\lambda}\}$ for all $\lambda \in I$.

Hence, the expression for LHS matches the expression for RHS. This completes the proof.

QED

2.
$$X \setminus (\bigcap_{\lambda \in I} A_{\lambda}) = \bigcup_{\lambda \in I} (X \setminus A_{\lambda}).$$

Proof. We proceed by direct proof. By Definition 1.11 and Definition 1.14, the LHS is the set $\{x \in X \mid x \notin \bigcap_{\lambda \in I} A_{\lambda}\}$. Since $x \notin \bigcap_{\lambda \in I} A_{\lambda}$, this implies that $\neg \forall \lambda \in I : x \in A_{\lambda}$. This is equivalent to $\exists \lambda \in I : x \in X, x \notin A_{\lambda}$.

By Definition 1.11 and Definition 1.14, the RHS is the set $\{x \mid x \in X \setminus A_{\lambda}, \text{ for some } \lambda \in I\}$. This is equivalent to $\exists \lambda \in I : x \in X, x \notin A_{\lambda}$.

Hence, the expression for LHS matches the expression for RHS. This completes the proof.

QED

Definition 1.16. Let A and B be two nonempty sets. The Cartesian product of A and B is the set of ordered pairs

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}.$$

If (a, b) and $(a', b') \in A \times B$, we say that (a, b) and (a', b') are equal if and only if a = a' and b = b'. In this case, we write (a, b) = (a', b').

Functions

Definition 1.17. Let A and B be two nonempty sets. A function f from A to B is a subset $f \subset A \times B$ such that for all $a \in A$ there exists a unique $b \in B$ satisfying $(a,b) \in f$. To express the idea that $(a,b) \in f$, we most often write f(a) = b. To express that f is a function from A to B in symbols we write $f: A \to B$.

Exercise 1.18. Let the function $f: \mathbb{Z} \to \mathbb{Z}$ be defined by f(n) = 2n. Write f as a subset of $\mathbb{Z} \times \mathbb{Z}$. $f \subset \mathbb{Z} \times \mathbb{Z}$ is the set $f = \{(n, 2n) \mid n \in \mathbb{Z}\} = \{\dots, (-2, -4), (-1, -2), (0, 0), (1, 2), (2, 4), \dots\}$.

Definition 1.19. Let $f: A \to B$ be a function. The *domain* of f is A and the *codomain* of f is B. If $X \subset A$, then the *image of* X *under* f is the set

$$f(X) = \{ f(x) \in B \mid x \in X \}.$$

If $Y \subset B$, then the preimage of Y under f is the set

$$f^{-1}(Y) = \{ a \in A \mid f(a) \in Y \}.$$

Exercise 1.20. Must $f(f^{-1}(Y)) = Y$ and $f^{-1}(f(X)) = X$? For each, either prove that it always holds or give a counterexample.

Let *A* and *B* be non-empty sets such that $A = \{1, 2\}, B = \{1, 2, 3\}$. Let $f: A \to B$ be defined by f(1) = 1, f(2) = 2. Let $Y \subset B = \{2, 3\}$. Then $f^{-1}(Y) = \{2\}$ and $f(f^{-1}(Y)) = \{2\} \neq Y$. Thus, we have a counterexample where $f(f^{-1}(Y)) \neq Y$.

Let *A* and *B* be non-empty sets such that $A = \{1, 2, 3\}, B = \{1, 2\}$. Let $f: A \to B$ be defined by f(1) = 1, f(2) = 2, f(3) = 2. Let $X \subset A = \{2\}$. Then $f(X) = \{2\}$ and $f^{-1}(f(X)) = \{2, 3\} \neq X$. Thus, we have a counterexample where $f^{-1}(f(X)) \neq X$.

Definition 1.21. A function $f: A \to B$ is *surjective* (also known as 'onto') if, for every $b \in B$, there is some $a \in A$ such that f(a) = b. The function f is *injective* (also known as 'one-to-one') if for all $a, a' \in A$, if f(a) = f(a'), then a = a'. The function f is *bijective*, (also known as a bijection or a 'one-to-one' correspondence) if it is surjective and injective.

Exercise 1.22. Let $f: \mathbb{N} \to \mathbb{N}$ be defined by f(n) = n + 2. Is f injective? Yes, since a + 2 = a' + 2 implies a = a'. Is f surjective? No, since 1 and 2 are not in the image of f.

Exercise 1.23. Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by f(x) = x + 2. Is f injective? Yes (same proof as above, for Exercise 1.22). Is f surjective? Yes, since for all $y \in \mathbb{Z}$, there exists $x \in \mathbb{Z}$ such that y = x + 2.

Exercise 1.24. Let $f: \mathbb{N} \to \mathbb{N}$ be defined by $f(n) = n^2$. Is f injective? Yes, since $a^2 = (a')^2$ implies a = a'. Is f surjective? No, since 2 is not in the image of f.

Exercise 1.25. Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by $f(x) = x^2$. Is f injective? No, since $a^2 = (a')^2$ does not imply a = a'. This is because a = -a' also leads to $a^2 = (a')^2$. Is f surjective? No, since 2 is not in the image of f.

Definition 1.26. Let $f:A\longrightarrow B$ and $g:B\longrightarrow C$. Then the composition $g\circ f:A\longrightarrow C$ is defined by $(g\circ f)(x)=g(f(x))$, for all $x\in A$.

Proposition 1.27. Let A, B, and C be sets and suppose that $f: A \longrightarrow B$ and $g: B \longrightarrow C$. Then $g \circ f: A \longrightarrow C$ and

a) if f and g are both injections, so is $g \circ f$.

Proof. We prove this by contradiction. Assume that $g \circ f$ is not an injection, i.e., $(g \circ f)(a) = (g \circ f)(a')$ but $a \neq a'$.

Since g is an injection, we know that b = b', i.e., f(a) = f(a'). Since f is an injection, this implies that a = a'. We have reached a contradiction and this completes the proof.

QED

b) if f and g are both surjections, so is $g \circ f$.

Proof. We prove this by contradiction. Assume that $g \circ f$ is not a surjection, i.e., $\exists c \in C$ such that $\forall a \in A : (g \circ f)(a) \neq c$. In other words, we assume that there exists some $c \in C$ such that there is no $a \in A$ for which $(g \circ f)(a) = c$. Let this value of c be denoted by c_0 .

Since g is surjective, $\forall c \in C : \exists b \in B \text{ such that } g(b) = c$. Hence, let b_0 be defined by $g(b_0) = c_0$. Since f is surjective, $\forall b \in B : \exists a \in A \text{ such that } f(a) = b$. Hence, let a_0 be defined by $f(a_0) = b_0$.

Then, $(g \circ f)(a_0) = g((f(a'_0))) = g(b_0) = c_0$, and we have reached a contradiction. This completes the proof.

QED

c) if f and g are both bijections, so is $g \circ f$.

Proof. We have shown above that if f and g are both injections, so is $g \circ f$, and if f and g are both surjections, so is $g \circ f$.

Since f and g are both bijections, i.e., f and g are both injections as well as surjections, we know that $g \circ f$ is both an injection and a surjection. Therefore, $g \circ f$ is a bijection.

QED

Proposition 1.28. Suppose that $f: A \to B$ is bijective. Then there exists a bijection $g: B \to A$ that satisfies $(g \circ f)(a) = a, \forall a \in A$, and $(f \circ g)(b) = b$, for all $b \in B$. The function g is often called the inverse of f and denoted f^{-1} . It should not be confused with the preimage.

Proof. We know that f is surjective, i.e., for all $b \in B$, there exists some $a_b \in A$ such that $f(a_b) = b$. We use this formulation to define $g(b) = a_b$. Then $(f \circ g)(b) = f(g(b)) = f(a_b) = b$ for all $b \in B$. Let $a \in A$ and let b = f(a). We know that $b = f(a_b)$, hence $f(a) = f(a_b)$ which implies $a = a_b$, since f is injective.

Therefore, $(g \circ f)(a) = g(b) = a_b = a$, hence $(g \circ f)(a) = a$ for all $a \in A$.

For all $a \in A$, there exists $b \in B$ such that g(b) = a, namely $g(b) = a_b$. This follows from our earlier formulation of a_b . Hence, g is surjective.

Suppose g(b) = g(b'). Then, it follows that $a_b = a_{b'}$. We know that $a_b = a_{b'}$ implies $f(a_b) = f(a_{b'})$, i.e., b = b'. Hence, b = b' follows from g(b) = g(b'), and g is injective.

Since g is both surjective and injective, we know that it is bijective. This completes the proof. QED

Definition 1.29. We say that two sets A and B are in *bijective correspondence* when there exists a bijection from A to B or, equivalently, from B to A.

Cardinality

Definition 1.30. Let $n \in \mathbb{N}$ be a natural number. We define [n] to be the set $\{1, 2, ..., n\}$. Additionally, we define $[0] = \emptyset$.

Definition 1.31. A set A is *finite* if $A = \emptyset$ or if there exists a natural number n and a bijective correspondence between A and the set [n]. If A is not finite, we say that A is *infinite*.

Theorem 1.32. Let $n, m \in \mathbb{N}$ with n < m.

Then there does not exist an injective function $f:[m] \to [n]$.

Hint: Fix $k \in \mathbb{N}$. Prove, by induction on n, that for all $n \in \mathbb{N}$, there is no injective function $f: [n+k] \to [n]$.

Proof by Contradiction. Since $n, m \in \mathbb{N}$ and m > n, let m = n + k for some $k \in \mathbb{N}$. We want to prove, by induction on n, that for all $n \in \mathbb{N}$, there is no injective function $f : [n + k] \to [n]$.

Consider the base case for n=1. We want to show that there is no injective function $f:[1+k]\to [1]$. We know that $[1+k]=\{1,2,\ldots,1+k\}$ and $[1]=\{1\}$. Since $k\in\mathbb{N}$, we have that k>0, i.e., $k\geq 1$. Since there is only one element in the set [1], any function $f:[1+k]\to [1]$ must be defined by f(x)=1 for all $x\in [1+k]$.

Hence, by this definition, for all $x \in [1+k]$, f(x) = f(x') = 1 even if $x \neq x'$. We have an explicit counterexample, since $1, 2 \in [1+k]$ and f(1) = 1 = f(2). Therefore, there is no injective function $f: [1+k] \to [1]$. This completes the base case.

Our inductive step is that we assume there is no injective function $g': [n+k] \to [n]$, then we use this to show that there is no injective function $g: [n+k+1] \to [n+1]$. By contraposition, this is equivalent to saying that if there exists an injective function $g: [n+k+1] \to [n+1]$, then there exists an injective function $g': [n+k] \to [n]$.

Hence, we begin by assuming that there exists an injective function $g:[n+k+1] \rightarrow [n+1]$.

Case 1: $\not\exists a \in [n+k+1]$ such that g(a) = n+1. Then, define $g' : [n+k] \to [n]$ by g'(x) = g(x). Then, if g is injective, so is g'.

Case 2: $\exists ! a \in [n+k+1]$ such that g(a) = n+1. (Note: we know that any such a must be unique from our assumption that g is injective). Then, for all $x \in [n+k]$, define

$$g'(x) = \begin{cases} g(x), & \text{if } x < a \\ g(x+1), & \text{if } x \ge a \end{cases}$$

We first show that for all $x \in [n+k], g'(x) \in [n]$.

Case un: If x < a, i.e., $x \ne a$, then since g is injective, $g(x) \ne g(a) = n + 1$, hence $g'(x) = g(x) \in [n]$.

Case deux: If $x \ge a$, i.e, x+1 > a and $x+1 \ne a$, then since g is injective, $g(x+1) \ne g(a) = n+1$, hence $g'(x) = g(x+1) \in [n]$.

We now show that g'(x) is injective. To do this, we take two elements $p, q \in [n+k]$ such that $p \neq q$, and we show that $g'(p) \neq g'(q)$.

Case one: p, q < a. In this case, g'(p) = g(p) and g'(q) = g(q). Since g is injective, if $p \neq q$, then $g(p) \neq g(q)$, hence $g'(p) \neq g'(q)$. Therefore, g' is injective.

Case two: p < a and $q \ge a$. From these conditions, it follows that q+1 > a > p, hence $p \ne q+1$. In this case, g'(p) = g(p) and g'(q) = g(q+1). Since g is injective, if $p \ne q+1$, then $g(p) \ne g(q+1)$, hence $g'(p) \ne g'(q)$. Therefore, g' is injective.

Case three: q < a and $p \ge a$. From these conditions, it follows that p + 1 > a > q, hence $p + 1 \ne q$. In this case, g'(p) = g(p + 1) and g'(q) = g(q). Since g is injective, if $p + 1 \ne q$, then $g(p + 1) \ne g(q)$, hence $g'(p) \ne g'(q)$. Therefore, g' is injective.

Case four: $p, q \ge a$. In this case, g'(p) = g(p+1) and g'(q) = g(q+1). Since g is injective, if $p \ne q$, i.e., $p+1 \ne q+1$, then $g(p+1) \ne g(q+1)$, hence $g'(p) \ne g'(q)$. Therefore, g' is injective.

This completes the proof.

QED

The above proof is the one we did in class. I have also attempted another proof below, which I am not entirely sure is valid.

Direct Proof by Induction. Since $n, m \in \mathbb{N}$ and m > n, let m = n + k for some $k \in \mathbb{N}$. We want to prove, by induction on n, that for all $n \in \mathbb{N}$, there is no injective function $f : [n + k] \to [n]$.

Consider the base case for n=1. We want to show that there is no injective function $f:[1+k]\to [1]$. We know that $[1+k]=\{1,2,\ldots,1+k\}$ and $[1]=\{1\}$. Since $k\in\mathbb{N}$, we have that k>0, i.e., $k\geq 1$. Since there is only one element in the set [1], any function $f:[1+k]\to [1]$ must be defined by f(x)=1 for all $x\in [1+k]$.

Hence, by this definition, for all $x \in [1+k]$, f(x) = f(x') = 1 even if $x \neq x'$. We have an explicit counterexample, since $1, 2 \in [1+k]$ and f(1) = 1 = f(2). Therefore, there is no injective function $f: [1+k] \to [1]$. This completes the base case.

Next, we want to show that if there is no injective function $f:[n+k] \to [n]$, then there is no injective function $f:[n+k+1] \to [n+1]$.

Since there is no injective function $f: \{1, 2, ..., n+k\} \to \{1, 2, ..., n\}$, this implies that for any function $f: \{1, 2, ..., n+k\} \to \{1, 2, ..., n\}$, there exist some $a, a' \in [n+k]$ such that f(a) = f(a') but $a \neq a'$.

 $[n+k] \subset [n+k+1]$ and $[n] \subset [n+1]$, hence for all $y \in [n+k], y \in [n+k+1]$ and for all $z \in [n], z \in [n+1]$.

Therefore, for any function $f: \{1, 2, ..., n+k+1\} \rightarrow \{1, 2, ..., n+1\}$, we know that there exist $a, a' \in [n+k+1]$ such that f(a) = f(a') but $a \neq a'$, and this completes the inductive step.

This completes the proof.

QED

Theorem 1.33. Let A be a finite set. Suppose that A is in bijective correspondence both with [m] and with [n]. Then m = n.

Proof. We prove this by contradiction. Assume $m \neq n$, and without loss of generality let m = n + k, where $k \in \mathbb{N}$.

Since A is in bijective correspondence with [m], there exists a bijective function $f: A \to [m]$. Hence, there exists an inverse bijective function $f^{-1}: [m] \to A$.

Since A is in bijective correspondence with [n], there exists a bijective function $g: A \to [n]$.

Then, $g \circ f^{-1}$: $[m] \to [n]$ must be a bijection. We know that m = n + k, hence this implies that there exists a bijection from [n + k] to [n].

We know that any function from [n+k] to [n] cannot be injective, hence there cannot be such a bijection. We have reached a contradiction, and this completes the proof.

QED

The preceding result allows us to make the following important definition.

Definition 1.34 (Cardinality of a finite set). If A is a finite set that is in bijective correspondence with [n], then we say that the *cardinality* of A is n, and we write |A| = n. (By Theorem 1.33, there is exactly one such natural number n.) We define the cardinality of the empty set to be 0.

Exercise 1.35. Let A and B be finite sets.

a) If $A \subset B$, then $|A| \leq |B|$.

Proof. Suppose A is in bijective correspondence with [p] and B is in bijective correspondence with [q].

Let $f:[p] \to A$ be an injection, and let $g:B \to [q]$ be an injection. Let $h:A \to B$ be defined by h(x) = x for all $x \in A$. Hence, if h(x) = h(x'), then x = x', so h is an injection.

Theorem 1.32 says that if m > n, then there does not exist an injection from [m] to [n]. The contrapositive is that if there exists an injection from [m] to [n], then $m \le n$.

Since h is an injection from A to B, we know that $|A| \leq |B|$. This completes the proof.

QED

b) Let $A \cap B = \emptyset$. Then $|A \cup B| = |A| + |B|$.

Proof. We want to show that if A is in bijective correspondence with [p] and B is in bijective correspondence with [q], then $A \cup B$ is in bijective correspondence with [p+q].

If $A \cap B = \emptyset$, then for all $a \in A$, $a \notin B$. Hence $A \cup B = \{a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n\}$.

We know that $[q] = \{1, 2, ..., q\}$ is in bijective correspondence with $\{p + 1, p + 2, ..., p + q\}$.

We know that the elements $\{a_1, a_2, \ldots, a_n\}$ are in bijective correspondence with [p]. The elements $\{b_1, b_2, \ldots, b_n\}$ are in bijective correspondence with [q], and hence also with $\{p + 1, p + 2, \ldots, p + q\}$.

Hence, $A \cup B$ is in bijective correspondence with $\{1,2,\ldots,p,p+1,p+2,\ldots,p+q\} = [p+q].$ QED

c) $|A \cup B| + |A \cap B| = |A| + |B|$.

Proof. We rewrite the expression in terms of unions of disjoint sets, so that we can use the result from part b. Thus, $A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$.

$$A = (A \setminus B) \cup (A \cap B).$$

$$B = (B \setminus A) \cup (A \cap B).$$

Then, the LHS is $|A \cup B| + |A \cap B| = |A \setminus B| + |B \setminus A| + 2 \cdot |A \cap B|$.

The RHS is $|A| + |B| = |A \setminus B| + |B \setminus A| + 2 \cdot |A \cap B|$. This completes the proof.

QED

d) $|A \times B| = |A| \cdot |B|$.

Proof. Let n = |A|. We prove this by induction on n. For the base case, let n = 0, i.e., $A = \emptyset$. Then, since there are no elements in A, we know that $A \times B = \emptyset$. Hence, $|A \times B| = 0 = 0 \cdot |B| = |A| \cdot |B| = n \cdot |B|$.

For the inductive step, we want to show that if |A| = n + 1, then $|A \times B| = (n + 1) \cdot |B|$.

Let
$$A' = A \setminus \{x\}$$
 for some $x \in A$. Then, $A \times B = (A' \times B) \cup (\{x\} \times B)$.

We know that |A'| = n, hence by the inductive hypothesis, $|A' \times B| = |A'| \cdot |B| = n \cdot |B|$.

Next, $|\{x\} \times B| = |\{x\}| \cdot |B| = 1 \cdot |B|$. Since $A' \cap \{x\} = \emptyset$, we know that $|A \times B| = |A' \times B| + |\{x\} \times B| = n \cdot |B| + 1 \cdot |B| = (n+1) \cdot |B|$. This completes the proof.

QED

Important Note: In future scripts you may assume basic properties of finite sets and methods of counting elements without having to refer back to the notions presented in this script. When |A| = n, we say that A contains n elements.

Definition 1.36. An set A is said to be *countable* either if it is finite if or if it is in bijective correspondence with \mathbb{N} . An infinite set that is not countable is called *uncountable*.

Exercise 1.37. Prove that \mathbb{Z} is a countable set.

Proof. To prove that \mathbb{Z} is a countable set, we must show that there exists a bijection between \mathbb{Z} and \mathbb{N} . To do this, we construct a function $f: \mathbb{Z} \to \mathbb{N}$ and then show that it is bijective.

Let this function f be defined by

$$f(x) = \begin{cases} 1 & \text{if } x = 0, \\ 2x & \text{if } x > 0, \\ -2x + 1 & \text{if } x < 0. \end{cases}$$

First, we show that f is surjective. We know that f(0) = 1, so we need to show that f(x) reaches every $n \in \mathbb{N}, n > 1$. All natural numbers greater than 1 are either even or odd. For all even natural numbers, we have that $n = f(\frac{n}{2})$. For all odd natural numbers, we have that $n = f(\frac{1-n}{2})$.

Next, we show that f is injective. By contraposition, we want to show that if $x \neq x'$, then $f(x) \neq f(x')$. We know that 0 is the only element in \mathbb{Z} such that f(x) = 1. We also know that if x > 0 and x' < 0 or vice versa, then $f(x) \neq f(x')$. Finally, if x, x' > 0 and $x \neq x'$, then $2x \neq 2x'$. Similarly, if x, x' < 0 and $x \neq x'$, then $-2x + 1 \neq -2x' + 1$.

This completes the proof.

QED

Theorem 1.38. Every subset of \mathbb{N} is countable.

Hint: when A is an infinite subset of \mathbb{N} , construct a bijection $f: \mathbb{N} \to A$ inductively/recursively. This looks similar to a proof by induction: define an initial term (or terms) explicitly and then present a rule that defines f(n+1) assuming that $f(1), \ldots, f(n)$ have already been defined. For example, the factorial of n is defined inductively by letting 0! = 1 and

$$(n+1)! = (n+1) \cdot n!$$

for $n \geq 0$. After constructing your function you must verify that it is indeed a bijection.

Proof. We prove this by contradiction. Assume there is some set $M \subset \mathbb{N}$ that is not countable.

Case 1: M is finite. In this case, let q = |M|. Then, we know that there is a bijective correspondence between M and [q]. Hence, M is countable and we have reached a contradiction.

Case 2: M is infinite, hence $M \neq \emptyset$. By the well-ordering principle, we know that every nonempty subset of \mathbb{N} has a least element. Therefore, for any $K \subset \mathbb{N}$, let j(K) denote the least element of K.

Then, let $f: \mathbb{N} \to M$ be defined by f(1) = j(M) and for all $n \in \mathbb{N}, n \ge 1$,

$$f(n+1) = j(M \setminus \{f(1), f(2), \dots, f(n)\}).$$

We want to show that f is bijective. We know that for all $m \in M$, there exists some subset $M_m \subset M$ such that $m = j(M_m)$. Then, we want to show that for all $m \in M$, there exists a unique $n \in \mathbb{N}$ such that f(n) = m. We demonstrate this by construction: for all $m \in M$, $n = 1 + |M \setminus M_m|$ is the unique element in \mathbb{N} such that f(n) = m.

First, we show that $f(1 + |M \setminus M_m|) = m$. By the recursive definition of f, we know that $f(1 + |M \setminus M_m|) = j(M \setminus \{f(1), f(2), \dots, f(|M \setminus M_m|)\} = m$.

Next, we show that this n is unique. Suppose there is some $n' \neq n$. Then, $f(n') = j(M \setminus \{f(1), f(2), \dots, f(n'-1)\}$. Since $n' \neq n, \{f(1), f(2), \dots, f(n'-1)\} \neq \{f(1), f(2), \dots, f(n-1)\}$, hence $M \setminus \{f(1), f(2), \dots, f(n'-1)\} \neq M \setminus \{f(1), f(2), \dots, f(n-1)\}$, hence $j(M \setminus \{f(1), f(2), \dots, f(n'-1)\}) \neq j(M \setminus \{f(1), f(2), \dots, f(n-1)\})$. Therefore, $f(n') \neq f(n)$.

This completes the proof.

QED

Theorem 1.39. If there exists an injection $f: A \longrightarrow B$ where B is countable, then A is countable. Hint: Use Theorem 1.38.

Proof. Case 1: f is bijective. In this case, |A| = |B|, so if B is countable, then A is countable.

Case 2: f is not bijective, i.e., f is injective but not surjective. Then, there exists some element $b_0 \in B$ such that for all $a \in A$, $f(a) \neq b_0$. Hence, |A| < |B|.

Subcase one: If B is finite, and B is countable, then there exists a bijective correspondence from B to [k] for some $k \in \mathbb{N}$. Then, we know that there exists a bijective correspondence from A to [j] for some $j \in \mathbb{N}, j < k$. Hence, A is countable.

Subcase two: If B is infinite, and B is countable, then there exists a bijective correspondence $g: B \to \mathbb{N}$. Since $f: A \to B$ is an injection, we have that $g \circ f: A \to X$ is a bijection, where $X \subset \mathbb{N}$.

By Theorem 1.38, every subset of \mathbb{N} is countable, hence X is countable. A is in bijective correspondence with X, therefore A is countable. This completes the proof.

QED

Corollary 1.40. Every subset of a countable set is also countable.

Proof. Let B be a countable set, and let $A \subset B$. Then, for all $a \in A, a \in B$.

Let $f: A \to B$ be defined by f(n) = n. If f(n) = f(n'), then n = n', hence f is injective.

Since there exists an injection $f: A \to B$ and B is countable, A is also countable.

QED

Corollary 1.41. If there exists a surjection $g: B \to A$ where B is countable, then A is countable. Hint: Use Theorem 1.39.

Proof. Since B is countable, either there exists a bijective correspondence $f: B \to [n]$ or there exists a bijective correspondence $f: B \to \mathbb{N}$.

Since $g: B \to A$ is surjective, we know that for all $a \in A$, there exists $b_i \in B$ such that $g(b_i) = a$. If A is finite, then we define $h: A \to [n]$. If A is infinite, then we define $h: A \to \mathbb{N}$. In both cases, for all $a \in A$, $h(a) = \min\{i \in \mathbb{N} \mid g(b_i) = a\}$.

We want to show that h is injective. Suppose $a, a' \in A$ are such that h(a) = h(a'). Then, $g(b_i) = a$ and $g(b_i) = a'$, so a = a'. Hence, h is injective and since both [n] and \mathbb{N} are countable, therefore A is countable.

QED

Exercise 1.42. Prove that $\mathbb{N} \times \mathbb{N}$ is countable by considering the function $f : \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ given by $f(n,m) = (10^n - 1)10^m$.

(Alternatively you could use either one of the functions $g(n,m) = 2^n \cdot 3^m$ and $h(n,m) = \binom{n+m}{2} + n$.)

Proof. Let $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be defined by $g(n, m) = 2^n \cdot 3^m$.

Assume $n \neq n_0$, and without loss of generality suppose $n_0 < n$. We want to show that $g(n_0, m) \neq g(n, m)$.

Suppose $g(n_0, m) = g(n, m)$, i.e., $2^{n_0} \cdot 3^m = 2^n \cdot 3^m$. Then, dividing both sides by 2^{n_0} , we get $3^m = 2^{n-n_0} \cdot 3^m$. Since $n \neq n_0, n - n_0 \neq 0$, hence the LHS is odd while the RHS is even. Thus, we have reached a contradiction.

Similarly, assume $m \neq m_0$, and without loss of generality suppose $m_0 < m$. We want to show that $g(n, m_0) \neq g(n, m)$.

Suppose $g(n, m_0) = g(n, m)$, i.e., $2^n \cdot 3^{m_0} = 2^n \cdot 3^m$. Then, dividing both sides by 3^{m_0} , we get $2^n = 2^n \cdot 3^{m-m_0}$. Then, the RHS is divisible by 3 but the LHS is not. Thus, we have reached a contradiction.

Therefore, g is injective. By Theorem 1.39, there exists an injection $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and \mathbb{N} is countable. Therefore, $\mathbb{N} \times \mathbb{N}$ is countable.

QED

Additional Exercises

In all exercises you are expected to prove your answer, unless explicitly stated otherwise.

- 1. In each of the following, write out the elements of the sets.
 - a) $(\{n \in \mathbb{Z} \mid \text{n is divisible by } 2\} \cap \mathbb{N}) \cup \{-5\}$
 - b) $\{F, G, H\} \times \{5, 8, 9\}$
 - c) $\{[n] \mid n \in \mathbb{N}, 1 \le n \le 3\}$
 - d) $\{(x,y) \in \mathbb{N} \times \mathbb{N} \mid y = 2x, \ x = 2y\}$
 - e) $(\{1,2\} \times \{1,2\}) \times \{1,2\}$
 - f) $(\{1,2\} \cup \{1,2\}) \cup \{1,2\}$
 - g) $\{1, 2\} \cup \emptyset$
 - h) $\{1, 2\} \cap \emptyset$
 - i) $\{1, 2\} \cup \{\emptyset\}$
 - j) $\{1, 2\} \cap \{\emptyset\}$
 - k) $\{\{a\} \cup \{b\} \mid a \in \mathbb{N}, b \in \mathbb{N}, 1 \le a \le 4, 3 \le b \le 5\}$
 - l) $\{\{12\}\}\cup\{12\}$
- 2. Let A and B be subsets of the set X. The symmetric sum $A \oplus B$ (sometimes also called symmetric difference) of sets A and B is defined by

$$A \oplus B = (A \setminus B) \cup (B \setminus A).$$

Prove that

$$A \oplus B = (A \cup B) \cap [X \setminus (A \cap B)].$$

Proof. We proceed by direct proof. By Theorem 1.7, $A \oplus B = (A \cup B) \cap [X \setminus (A \cap B)]$ if and only if $A \oplus B \subset (A \cup B) \cap [X \setminus (A \cap B)]$ and $(A \cup B) \cap [X \setminus (A \cap B)] \subset A \oplus B$.

First, we want to show that $A \oplus B \subset (A \cup B) \cap [X \setminus (A \cap B)]$. Consider an element $y \in A \oplus B$. By the definition of the symmetric sum, $y \in \{x \in A \mid x \notin B\} \cup \{x \in B \mid x \notin A\}$, therefore either $y \in \{x \in A \mid x \notin B\}$ or $y \in \{x \in B \mid x \notin A\}$.

In both cases, $y \in A \cup B$ and $y \in [X \setminus (A \cap B)]$. Since for all $y \in A \oplus B$, $y \in (A \cup B) \cap [X \setminus (A \cap B)]$, this shows that $A \oplus B \subset (A \cup B) \cap [X \setminus (A \cap B)]$.

Next, we want to show that $(A \cup B) \cap [X \setminus (A \cap B)] \subset A \oplus B$. Consider an element $z \in (A \cup B) \cap [X \setminus (A \cap B)]$. Then, $z \in (A \cup B)$ and $z \in [X \setminus (A \cap B)]$.

 $z \in (A \cup B)$ implies $z \in A$ or $z \in B$. $z \in [X \setminus (A \cap B)]$ implies $z \notin A \cap B$. Therefore, either $z \in A$ and $z \notin B$ in which case $z \in A \setminus B \subset A \oplus B$, or $z \in B$ and $z \notin A$ in which case $z \in B \setminus A \subset A \oplus B$.

Thus, for all $z \in (A \cup B) \cap [X \setminus (A \cap B)]$, $z \in A \oplus B$. Hence, $(A \cup B) \cap [X \setminus (A \cap B)] \subset A \oplus B$. This completes the proof.

QED

3.

Definition 1.43. Let A be a set. The "power set" of A, denoted $\wp(A)$, is the set of all subsets of A; that is, $\wp(A) = \{B \mid B \subset A\}$.

- (a) If A is a set, show that $\wp(A) \neq \emptyset$.
 - *Proof.* If A is any set, we know that $\emptyset \subset A$. Hence, $\emptyset \in \wp(A)$, therefore $\wp(A) \neq \emptyset$. QED
- (b) Let \emptyset be the empty set. Write down the elements of $\wp(\wp(\emptyset))$. $\wp(\wp(\emptyset)) = {\emptyset, {\emptyset}}.$
- 4. Let A, B, C be subsets of \mathbb{N} . Extend Theorem 1.7 by showing that, for any $k \in \mathbb{N}$

$$A \subset A \cup B \cup C$$
,
 $A \cap B \cap C \subset A$.

Can this be extended to four sets A, B, C, D? What about five? Is there any limit?

- 5. (a) Set $A = \{1, 2\}$, $B = \{3, 4\}$, and $f = \{(a, b) \mid a \in A, b \in B\}$. Write out the elements of f. Is f a function $A \to B$?
 - (b) Let $C = \{(1,2), (2,2), (3,2)\}$. Can C be a function? (For starters, what would A and B be?)
 - (c) Write out the elements of the set $D = \{(b, a) \mid (a, b) \in C\}$, where C is as given in b). Can D be a function?
- 6. Take the sets $A = \{1, 2, 3\}$ and $B = \{1, 4, 9\}$. Consider the following four statements:
 - (a) For all $a \in A$, there is some $b \in B$ such that $a^2 = b$.
 - (b) There is some $b \in B$ such that, for all $a \in A$, $a^2 = b$.
 - (c) There is some $b \in B$ such that $a^2 = b$ for all $a \in A$.
 - (d) For all $a \in A$, $a^2 = b$ for some $b \in B$.

Each statement is equivalent to exactly one other in the list. Which statements are true? Which pairs are equivalent to each other?

- 7. Let $f: \mathbb{N} \to \mathbb{N}$ be given by $f(n) = n^3$.
 - (a) Is f surjective? Is f injective?

- (b) Let $A \subset \mathbb{N}$ be the set $\{1, 2, \dots, 30\}$. What is $f^{-1}(f(A))$? What is $f(f^{-1}(A))$?
- 8. Define $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ by f(m,n) = mn. Is f injective? Surjective? If $A \subset \mathbb{Z}$ is the set of even integers, what is $f^{-1}(A)$?
- 9. Let $f: A \to B$ and $g: B \to C$ be functions.
 - (a) Suppose that f and $g \circ f$ are injective. Is g necessarily injective?

Proof. No. For a counterexample, consider $A = \{1\}, B = \{p, q\}, C = \{x\}$. Let $f: A \to B$ be defined by f(1) = p and let $g: B \to C$ be defined by g(p) = g(q) = x. Then both f and $g \circ f$ are injective, but g is not injective.

More generally, let $B_0 \subset B$ be the image of f. Then, for every $b_0 \in B_0$, i.e., for every element of B that is reached by f, there exists a unique $a \in A$ such that $f(a) = b_0$.

Similarly, let $C_0 \subset C$ be the image of $g \circ f$. Then, for every $c_0 \in C_0$, i.e., for every element of C that is reached by $g \circ f$, there exists a unique $a \in A$ such that $(g \circ f)(a) = c_0$.

However, there could exist some $b' \in B, b' \notin B_0$ such that $g(b') = c_0$. Then $g(b_0) = g(b') = c_0$ and $b_0 \neq b'$. Hence, g is not necessarily injective.

QED

(b) Suppose that g and $g \circ f$ are injective. Is f necessarily injective?

Proof. Let $x \neq y$. Then, since $g \circ f$ is injective, we know that $(g \circ f)(x) \neq (g \circ f)(y)$. Further, since g is injective, we know that $f(x) \neq f(y)$.

Thus, $f(x) \neq f(y)$ follows from $x \neq y$, hence we know that f is necessarily injective.

QED

(c) Suppose that f and $g \circ f$ are surjective. Is g necessarily surjective?

Proof. Yes. Since f is surjective, $\forall b \in B, \exists a \in A \text{ such that } f(a) = b.$

Since $g \circ f$ is surjective, $\forall c \in C, \exists a \in A \text{ such that } (g \circ f)(a) = g(f(a)) = c$.

Assume g is not surjective. Then, there exists some $c_0 \in C$ such that for all $b \in B$, $g(b) \neq c_0$.

We know that there exists some $a_0 \in A$ such that $(g \circ f)(a_0) = c_0$, and $f(a_0) = b_0$. Hence, $g(b_0) = c_0$ and we have reached a contradiction.

QED

(d) Suppose that g and $g \circ f$ are surjective. Is f necessarily surjective?

Proof. No. For a counterexample, consider $A = \{1\}$, $B = \{p, q\}$, $C = \{x\}$. Let $f: A \to B$ be defined by f(1) = p and let $g: B \to C$ be defined by g(p) = g(q) = x. Then both g and $g \circ f$ are surjective, but f is not surjective.

QED

- 10. Let $f: A \longrightarrow B$ be a function. Let $X \subset A$ and $Y \subset B$.
 - (a) Prove that if f is surjective then $f(f^{-1}(Y)) = Y$.

Proof. If f is surjective, we know that for all $b \in B$, there exists some $a \in A$ such that f(a) = b. To denote this, for all $i \in \mathbb{N}, i \leq |B|$, let a_i correspond to b_i by the relation $f(a_i) = b_i$.

Let $Y \subset B = \{b_1, b_2, \dots, b_n\}$, then we have that $f^{-1}(Y) = \{a_1, a_2, \dots, a_n\}$. Hence, $f(f^{-1}(Y)) = \{b_1, b_2, \dots, b_n\} = Y$.

QED

(b) Prove that if f is injective then $f^{-1}(f(X)) = X$.

Proof. If f is injective, we know that f(a) = f(a') implies a = a'.

Let $X \subset A = \{a_1, a_2, \dots, a_n\}$. Since f is one-to-one, we know that the number of elements in f(X) must be the same as the number of elements in X, i.e., |f(X)| = |X|. Hence, let $f(X) = \{b_1, b_2, \dots, b_n\}$.

Assume $b_i, b_k \in f(X)$ and $b_i = b_k$, i.e., $f(a_i) = f(a_k)$. Then, since f is injective, $a_i = a_k$. Since f is a function, any particular $a_i \in X$ cannot map to two or more different $b_i \in f(X)$. Since f is injective, for every $b_i \in f(X)$, $\exists! a_i \in X$ such that $f(a_i) = b_i$. Hence, we know that $f^{-1}(f(X)) = \{a_1, a_2, \ldots, a_n\} = X$.

QED

(c) Are the converse statements also true? i.e. If $f(f^{-1}(Y)) = Y$ for all subsets $Y \subset B$, must f be surjective? If $f^{-1}(f(X)) = X$ for all subsets $X \subset A$, must f be injective?

Proof. Yes. Both the converse statements are true. We prove them by contraposition. In the first case, we assume that f is not surjective, and then show that there exists some $Y \subset B$ such that $f(f^{-1}(Y)) \neq Y$. We present a demonstration by counterexample. Let $A = \{1\}, B = \{p, q\}, Y = \{p, q\}$, and let $f: A \to B$ be defined by f(1) = p.

Let $A = \{1\}, B = \{p, q\}, Y = \{p, q\}$, and let $f: A \to B$ be defined by f(1) = p. Since $\neg \exists a \in A$ such that f(a) = q, f is not surjective. Then, $f^{-1}(Y) = \{1\}$ and $f(f^{-1}(Y)) = f(1) = p \neq Y$.

In the second case, we assume that f is not injective, and then show that there exists some $X \subset A$ such that $f^{-1}(f(X)) \neq X$. We present a demonstration by counterexample. Let $A = \{1,2\}, B = \{p\}, X = \{1\}$, and let $f : A \to B$ be defined by f(1) = p, f(2) = p. Then f(X) = f(1) = p and $f^{-1}(f(X)) = f^{-1}(p) = \{1,2\} \neq X$.

QED

11. Let $f: A \longrightarrow B$ be a bijection. Let g be the inverse function to f, given by Proposition 1.27. Let $Y \subset B$. Show that $g(Y) = f^{-1}(Y)$.

Note: g(Y) denotes the image of Y under the map g and $f^{-1}(Y)$ denotes the preimage of Y under f. Thus when $g = f^{-1}$ exists as a function, the two possible interpretations of $f^{-1}(Y)$ coincide.

Proof. Define $g: B \to A$ as $g(b) = a_b$ for all $b \in B$, where a_b is the unique element of A such that $f(a_b) = b$.

Let $Y \subset B = \{b_1, b_2, ..., b_n\}$, then we have that the preimage $f^{-1}(Y) = \{a_{b1}, a_{b2}, ..., a_{bn}\}$.

By the definition of g, the image of Y under the map g is $g(Y) = a_b$ for all $b \in Y$. Hence, $g(Y) = \{a_{b1}, a_{b2}, \dots, a_{bn}\}.$

This completes the proof.

QED

- 12. Recall the definition of power set, Definition 1.43.
 - (a) Let A be any set. Show that there is no bijection between A and its power set $\wp(A)$. (Hint: If $f: A \to \wp(A)$ is any function, think about the set $B = \{a \in A \mid a \notin f(a)\} \subset A$.)

Proof. We prove this by contradiction. Assume that there exists a bijection $f: A \to \wp(A)$. We show that f cannot be surjective.

Let $B \subset A$ be defined by $B = \{a \in A \mid a \notin f(a)\}$. Then, $B \in \wp(A)$.

If f is surjective, then for all $Y \in \wp(A)$, there exists some $a \in A$ such that f(a) = Y. We want to show that there exists some $Y_0 \in \wp(A)$ such that for all $a \in A$, $f(a) \neq Y_0$.

Let $Y_0 = B$. Assume that there exists some $a_0 \in A$ such that $f(a_0) = B$.

If $a_0 \in B$, then by definition $a_0 \notin f(a_0)$, hence $f(a_0) \neq B$. If $a_0 \notin B$, then by definition $a_0 \in f(a_0)$, hence $f(a_0) \neq B$.

Therefore, f is not surjective, hence it is not bijective. This completes the proof.

QED

The above is my official submission for the homework assignment. Out of curiosity, I have attempted another proof, which I am not sure is fully valid/rigorous.

Second Proof Attempt. Assume that there exists a bijection $f: A \to \wp(A)$. Then, there must exist a bijection $g: \wp(A) \to A$, i.e., g must be both injective and surjective. We show that g cannot be injective using the fact that for all $j, k \in \mathbb{N}$, there does not exist an injection from [j+k] to [j].

Let |A| = k, then we know that there exists a bijection $h: A \to [k]$.

By definition, $\wp(A)$ is the set of all subsets of A. Hence, for all $a \in A$, and for all $A' \in \wp(A)$, either $a \in A'$ or $a \notin A'$. Therefore, $|\wp(A)| = 2^{|A|}$.

In Script 0, we showed that $(1+x)^n \ge 1 + nx$ for all $x > -1, n \in \mathbb{N}$. Substituting x = 1, we get that $2^n \ge 1 + n$ for all $n \in \mathbb{N}$. Hence, $2^{|A|} \ge 1 + |A|$. Therefore, $|\wp(A)| \ge 1 + |A|$, i.e, there exists some bijection $q : \wp(A) \to [1+k]$. Hence, there also exists some bijection $q' : [1+k] \to \wp(A)$.

Therefore, if $g: \wp(A) \to A$ is bijective, then $h \circ g: \wp(A) \to [k]$ must be bijective.

Hence, $h \circ g \circ q' \colon [1+k] \to [k]$ must be bijective. We know that $h \circ g \circ q'$ cannot be injective, hence it cannot be bijective.

We have reached a contradiction, and this completes the proof.

QED

(b) Show that there is no injective map from $\wp(\mathbb{N})$ to \mathbb{N} .

Proof. Let $g: \wp(A) \to A$ be a function. We show that g cannot be injective using the fact that for all $j, k \in \mathbb{N}$, there does not exist an injection from [j+k] to [j].

Let |A| = k, then we know that there exists a bijection $h: A \to [k]$.

By definition, $\wp(A)$ is the set of all subsets of A. Hence, for all $a \in A$, and for all $A' \in \wp(A)$, either $a \in A'$ or $a \notin A'$. Therefore, $|\wp(A)| = 2^{|A|}$.

In Script 0, we showed that $(1+x)^n \ge 1 + nx$ for all $x > -1, n \in \mathbb{N}$. Substituting x = 1, we get that $2^n \ge 1 + n$ for all $n \in \mathbb{N}$. Hence, $2^{|A|} \ge 1 + |A|$. Therefore, $|\wp(A)| \ge 1 + |A|$, i.e, there exists some bijection $q:\wp(A) \to [1+k]$. Hence, there also exists some bijection $q':[1+k] \to \wp(A)$.

Therefore, if $g: \wp(A) \to A$ is injective, then $h \circ g: \wp(A) \to [k]$ must be injective (since h is bijective).

Hence, $h \circ g \circ q' : [1+k] \to [k]$ must be injective (since q' is bijective). We have reached a contradiction, and this completes the proof.

QED

- 13. Let A be a set with cardinality n. Let $f: [n] \longrightarrow A$ be a bijection. Show that $A = \{f(1), f(2), \dots, f(n)\}$ and deduce that we can write $A = \{a_1, a_2, \dots, a_n\}$.
- 14. Let $f: A \to B$ be a function.
 - (a) Let X and Y be subsets of A. Is it true that $f(X \cup Y) = f(X) \cup f(Y)$? Is it true that $f(X \cap Y) = f(X) \cap f(Y)$? Either prove or give a counterexample in each case.

Proof for Unions. Suppose $m \in f(X \cup Y)$. Then, m = f(k) for some $k \in X \cup Y$. If $k \in X$, then $m \in f(X)$. If $k \in Y$, then $m \in f(Y)$. Therefore, $m \in f(X) \cup f(Y)$. Hence, $f(X \cup Y) \subset [f(X) \cup f(Y)]$.

Suppose $m \in f(X) \cup f(Y)$. If $m \in f(X)$, then m = f(k) for some $k \in X$, i.e., m = f(k) for some $k \in X \cup Y$, hence $m \in f(X \cup Y)$. If $m \in f(Y)$, then m = f(k) for some $k \in Y$, i.e., m = f(k) for some $k \in X \cup Y$, hence $m \in f(X \cup Y)$. Hence, $[f(X) \cup f(Y)] \subset f(X \cup Y)$. Therefore, $f(X \cup Y) = f(X) \cup f(Y)$.

QED

Proof for Intersections. We present a counterexample. Let $A = \{1, 2\}, B = \{p\}$. Let $X \subset A, Y \subset A$ be defined by $X = \{1\}, Y = \{2\}$.

Then, $X \cap Y = \emptyset$, therefore $f(X \cap Y) = \emptyset$.

 $f(X) = f(Y) = \{p\}, \text{ hence } f(X) \cap f(Y) = \{p\}.$

 $\{p\} \neq \emptyset$. This completes the proof by counterexample.

QED

(b) Now let X and Y be subsets of B. Is it true that $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$? Is it true that $f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$? Either prove or give a counterexample in each case.

Proof for Unions. Suppose $m \in f^{-1}(X \cup Y)$. Then, $f(m) \in X \cup Y$. If $f(m) \in X$, then $m \in f^{-1}(X)$, hence $m \in f^{-1}(X) \cup f^{-1}(Y)$. If $f(m) \in Y$, then $m \in f^{-1}(Y)$, hence $m \in f^{-1}(X) \cup f^{-1}(Y)$. Hence, $f^{-1}(X \cup Y) \subset [f^{-1}(X) \cup f^{-1}(Y)]$.

Suppose $m \in f^{-1}(X) \cup f^{-1}(Y)$. If $m \in f^{-1}(X)$, then $f(m) \in X$, hence $f(m) \in X \cup Y$, therefore $m \in f^{-1}(X \cup Y)$. If $m \in f^{-1}(Y)$, then $f(m) \in Y$, hence $f(m) \in X \cup Y$, therefore $m \in f^{-1}(X \cup Y)$. Hence, $[f^{-1}(X) \cup f^{-1}(Y)] \subset f^{-1}(X \cup Y)$.

Therefore, $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.

QED

Proof for Intersections. Suppose $m \in f^{-1}(X \cap Y)$. Then, $f(m) \in X \cap Y$, i.e., $f(m) \in X$ and $f(m) \in Y$. Hence, $m \in f^{-1}(X)$ and $m \in f^{-1}(Y)$, therefore $m \in f^{-1}(X) \cap f^{-1}(Y)$. Hence, $f^{-1}(X \cap Y) \subset [f^{-1}(X) \cap f^{-1}(Y)]$.

Suppose $m \in f^{-1}(X) \cap f^{-1}(Y)$. Then, $m \in f^{-1}(X)$ and $m \in f^{-1}(Y)$. Hence, $f(m) \in X$ and $f(m) \in Y$, so $f(m) \in X \cap Y$. Therefore, $m \in f^{-1}(X \cap Y)$. Hence, $[f^{-1}(X) \cap f^{-1}(Y)] \subset f^{-1}(X \cap Y)$.

Therefore, $f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$.

QED

- 15. Suppose that $A, B \subset \mathbb{N}$. Prove that if A and B are finite and there is a bijection $f: A \to B$, then |A| = |B|.
- 16. Prove that there is no set A with maximal cardinality. In other words, show that there does not exist a set A with the property that if B is a set, then B has smaller cardinality than A.
- 17. a) Let X be a countable set and Y a finite set such that $X \cap Y = \emptyset$. Show that $X \cup Y$ is countable.

Proof. Case 1: X is finite. Then, let a = |X| and b = |Y|, then we know that $|X \cup Y| = a + b$. Let $c \in \mathbb{N}$, c = a + b, then we know that $X \cup Y$ is countable since there exists a bijection from $X \cup Y$ to [c].

Case 2: X is infinite. We know that there exists a bijection $f: X \to \mathbb{N}$ and there exists a bijection from Y to [b], where b = |Y|. Then, define $g: X \cup Y \to \mathbb{N}$ by

$$g(x) = \begin{cases} i, \text{ for } x_i \in Y \\ f(x_j) + b, \text{ for } x_j \notin Y. \end{cases}$$

for all $x \in X \cup Y$. (Note: we know that $X \cap Y = \emptyset$, hence $\forall i, \forall j, x_i \neq x_j$.)

We first show that g is surjective. For all $n \in \mathbb{N}$, there exists an $x_n \in X \cup Y$ such that $g(x_n) = n$. This is given by

$$x_n = \begin{cases} x_{i=n} & \text{if } n \le b \\ f^{-1}(n-b), & \text{if } n > b. \end{cases}$$

Next, we show that q is injective.

Case 1: $x_i, x_{i'} \in Y, x_i \neq x_{i'}$. Then, $g(x_i) = i \neq i' = g(x_{i'})$.

Case 2: $x_j, x_{j'} \notin Y, x_j \neq x_{j'}$. Then, since f is injective, $f(x_j) \neq f(x_{j'})$, hence $f(x_j) + b \neq f(x_{j'}) + b$, therefore $g(x_i) \neq g(x_{j'})$.

Case 3: $x_i \in Y, x_j \notin Y$ (it follows that $x_i \neq x_j$). Then, $g(x_i) = i \leq b$ while $g(x_j) = f(x_j) + b > b$, therefore $g(x_i) \neq g(x_j)$.

This completes the proof.

QED

b) Prove that a union of 2 disjoint countable sets is countable.

Proof. Let $X \cap Y = \emptyset$ where X and Y are countable. Then, we want to show that $X \cup Y$ is countable.

Case 1: if X, Y are finite, then $|X \cup Y| = |X| + |Y|$, hence $X \cup Y$ is countable.

Case 2: if X is finite and Y is countable or vice versa, then by part a), $X \cup Y$ is countable.

Case 3: if X, Y are infinite and countable, then we know that there exists a bijection $f: X \to \mathbb{N}$ and there exists a bijection $g: Y \to \mathbb{N}$.

Then, we define $h: X \cup Y \to \mathbb{N}$ as

$$h(m) = \begin{cases} (2 \cdot f(m)) - 1 & \text{if } m \in X \\ 2 \cdot g(m), & \text{if } m \in Y. \end{cases}$$

First, we show that h is surjective. For all $n \in \mathbb{N}$,

$$n = \begin{cases} h(m_i) \text{ such that } m \in Y, i = \frac{n}{2} \text{ if } n \text{ is even} \\ h(m_j) \text{ such that } m \in X, j = \frac{n+1}{2} \text{ if } n \text{ is odd.} \end{cases}$$

Next, we show that h is injective.

Case 1: $m \in Y, m' \in X$, then h(m) is even and h(m') is odd, hence $h(m) \neq h(m')$.

Case 2: $m \in Y, m' \in Y, m \neq m'$. Then, $h(m) = 2 \cdot g(m) \neq 2 \cdot g(m') = h(m')$ since g is injective.

Case 3: $m \in X, m' \in X, m \neq m'$. Then, $h(m) = (2 \cdot f(m)) - 1 \neq (2 \cdot f(m')) - 1 = h(m')$ since f is injective.

This completes the proof.

QED

c) Use a) and b) to prove that \mathbb{Z} is countable.

Proof. Let $\mathbb{N}_0 = \{-1, -2, -3, \dots\}$ be the set of negative integers. Then, we know that \mathbb{N}_0 is countable, since there exists a bijection $f \colon \mathbb{N}_0 \to \mathbb{N}$ defined as f(n) = -n for all $n \in \mathbb{N}_0$.

We also know that $\mathbb{Z} = \mathbb{N} \cup \mathbb{N}_0 \cup \{0\}$.

By part a), \mathbb{N}_0 is countable and $\{0\}$ is finite, and they are disjoint, hence $\mathbb{N}_0 \cup \{0\}$ is countable.

By part b), \mathbb{N} is countable and $\mathbb{N}_0 \cup \{0\}$ is countable, and they are disjoint, hence $\mathbb{N} \cup \mathbb{N}_0 \cup \{0\}$ is countable. Therefore, \mathbb{Z} is countable.

QED

d) Suppose that A_1, A_2, \ldots are sets such that A_i is countable for each $i \in \mathbb{N}$. Show that, for each n,

$$\bigcup_{i=1}^{n} A_i$$

is countable.

Proof. Case 1: n = 1, i.e., $\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{1} A_i = A_1$. Then, by definition, A_1 is countable. Case 2: n > 1. First, we rewrite this to construct a finite union of disjoint countable sets, so that we can use the result from part b) by induction on n.

Let $C = \bigcap_{i=1}^n A_i$, then we know that C is countable. Then, $\bigcup_{i=1}^n A_i = \bigcup_{i=1}^n (A_i \setminus C) \cup C$. By part b), we know that if $\bigcup_{i=1}^n (A_i \setminus C)$ is countable, then so is $\bigcup_{i=1}^n (A_i \setminus C) \cup C$.

For all $i \geq 1, i \leq n$, let $A_i \setminus C$ be denoted by M_i . Hence, we want to show that $\bigcup_{i=1}^n M_i$ is countable, where each M_i is countable and $\bigcap_{i=1}^n M_i = \emptyset$.

We prove this by induction on n. By part b), the base case is true for n=2.

Next, we want to show that if $\bigcup_{i=1}^n M_i$ is countable, then $\bigcup_{i=1}^{n+1} M_i$ is countable.

We know that $\bigcup_{i=1}^{n+1} M_i = \bigcup_{i=1}^n M_i \cup M_{n+1}$. By the inductive hypothesis, $\bigcup_{i=1}^n M_i$ is countable and M_{n+1} is countable, hence by part b), $\bigcup_{i=1}^{n+1} M_i$ is countable.

This completes the proof.

QED

e) Prove that a countable union of countable sets is countable. That is, if $\{A_i\}_{i\in\mathbb{N}}$ is a countable collection of countable sets, then

$$\bigcup_{i\in\mathbb{N}}A_i$$

is countable.

Proof. Let the countable sets A_i be indexed by i and let the elements of each of the countable sets A_i be indexed by j. Then, every element in the countable union of countable sets (i.e., every element in $\bigcup_{i \in \mathbb{N}} A_i$) can be specified as a_{ij} (i.e., the jth element of the ith set). For example, $A_1 = \{a_{11}, a_{12}, a_{13}, \dots\}$.

Let $M = \bigcup_{i \in \mathbb{N}} A_i$, then it suffices to show that there exists an injection $f: M \to \mathbb{N} \times \mathbb{N}$, since we know that $\mathbb{N} \times \mathbb{N}$ is countable.

For all $m \in M$, let f(m) = (i, j). We want to show that f is injective.

Case 1: $m, m' \in A_i, m \neq m'$. It follows that $m = a_{ij}$ and $m' = a_{ij'}$ for some j, j'. Then, $f(m) = (i, j) \neq (i, j') = f(m')$.

Case 2: $m \in A_i, m' \in A_{i'}$. It follows that $m \neq m'$. We know that $m = a_{ij}$ and $m' = a_{i'j'}$.

Subcase 2a: j = j'. Then, $f(m) = (i, j) \neq (i', j) = f(m')$.

Subcase 2b: $j \neq j'$. Then, $f(m) = (i, j) \neq (i', j') = f(m')$.

Therefore, f is injective and this completes the proof.

QED

f) Prove that if A and B are countable then $A \times B$ is countable.

Proof. We know that there exists a bijection $f: A \to \mathbb{N}$ and there exists a bijection $g: B \to \mathbb{N}$.

Then, define $h: A \times B \to \mathbb{N} \times \mathbb{N}$ by h(a,b) = (f(a),g(b)). We know that $\mathbb{N} \times \mathbb{N}$ is countable, hence it suffices to show that h is injective.

Suppose $a \neq a'$, then $h(a,b) = (f(a),g(b)) \neq (f(a'),g(b)) = h(a',b)$ since f is injective. Analogously, suppose $b \neq b'$, then $h(a,b) = (f(a),g(b)) \neq (f(a),g(b')) = h(a,b')$ since g is injective.

Similarly, if $a \neq a'$ and $b \neq b'$, then $f(a) \neq f(a')$ and $g(b) \neq g(b')$, therefore $h(a,b) = (f(a), g(b)) \neq (f(a'), g(b')) = h(a', b')$.

Therefore, h is injective and this completes the proof.

QED

g) Prove that if A_1, A_2, \dots, A_n are countable, then so is $A_1 \times A_2 \times \dots \times A_n$.

Proof. We prove this by induction on n.

For the base case, we want to show that if A_1 and A_2 are countable, then so is $A_1 \times A_2$. This is established in part f).

For the inductive step, we want to show that if $A_1 \times A_2 \times \cdots \times A_n$ is countable and A_{n+1} is countable, then $A_1 \times A_2 \times \cdots \times A_n \times A_{n+1}$ is countable.

Let $M = A_1 \times A_2 \times \cdots \times A_n$, where M is countable. By part f), if A_{n+1} is countable, then $M \times A_{n+1}$ is countable.

This completes the proof.

QED

h) Let $A_n = \{0, 1\}$, for every n. Show that $A_1 \times A_2 \times \cdots \times A_n \times \cdots$ is uncountable.

Proof. We know that $\wp(\mathbb{N})$ is uncountable, hence it suffices to show that there exists a bijection $f: A_1 \times A_2 \times \cdots \times A_n \times \cdots \to \wp(\mathbb{N})$. We prove this by induction on n.

Define
$$f_n: A_1 \times A_2 \times \cdots \times A_n \to \wp([n])$$
 as $f_n(a_i) = \{i \in [n] \mid a_i = 1\}.$

(Side note: The intuition behind this formalism is that every element of $\wp(\mathbb{N})$ is mapped by the string of the ordered pair such that if the *i*th element of the ordered pair is 0, that element is not in $L \subset \mathbb{N}, L \in \wp(\mathbb{N})$; and if the *i*th element of the ordered pair is 1, that element is in $L \subset \mathbb{N}, L \in \wp(\mathbb{N})$. Here, I use the term ordered pair even though it has more than 2 elements and so is not strictly speaking a pair).

For the base case, $f_2: A_1 \times A_2 \to \wp([2])$. Then, $f_2(0,0) = \emptyset$, $f_2(0,1) = \{2\}$, $f_2(1,0) = \{1\}$, $f_2(1,1) = \{1,2\}$. Hence, f is bijective.

For the inductive step, we want to show that if $f_n: A_1 \times A_2 \times \cdots \times A_n \to \wp([n])$ is bijective, then $f_{n+1}: A_1 \times A_2 \times \cdots \times A_{n+1} \to \wp([n+1])$ is bijective.

We note that $f_{n+1}(a_i) = \{i \in [n+1] \mid a_i = 1\}.$

Case 1: $a_{n+1} = 0$. Then, $f_{n+1}(a) = f_n(a)$ for all $a \in A_1 \times A_2 \times \cdots \times A_{n+1}$. Hence, if f_n is bijective then f_{n+1} is bijective.

Case 2: $a_{n+1} = 1$. Then, $f_{n+1}(a) = \{f_n(a) \cup a_{n+1}\}$ for all $a \in A_1 \times A_2 \times \cdots \times A_{n+1}$. Hence, if f_n is bijective then f_{n+1} is bijective.

This completes the proof.

QED