IT542_Assignment9

June 12, 2020

- 0.1 Assignment 9
- 0.2 Perform Clustering using Gaussian Mixture Models in the iris dataset and match the resulted clusters with the original labels with the help of adjusted Rand score (adjusted Rand score).

0.2.1 201916006

```
[1]: # Import all necessary liberaries

import numpy as np
import matplotlib.pyplot as plt
from sklearn import cluster, datasets, mixture
import seaborn as sns
```

```
[9]: # Load Iris Data Set
df = sns.load_dataset("iris")

# Look into the data and get the insights
df.head()
```

```
[9]:
       sepal_length sepal_width petal_length petal_width species
                5.1
                                           1.4
    0
                             3.5
                                                        0.2 setosa
                4.9
                             3.0
                                           1.4
                                                        0.2 setosa
    1
    2
                4.7
                             3.2
                                           1.3
                                                        0.2 setosa
    3
                4.6
                             3.1
                                           1.5
                                                        0.2 setosa
                5.0
                             3.6
                                           1.4
                                                        0.2 setosa
```

```
[10]: #plotting every pair of features against each other in a subplot, as this data_\( \simes \) set has 4 features

g = sns.PairGrid(df, hue="species", palette=sns.color_palette("cubehelix", 3),\( \simes \) vars=['sepal_length','sepal_width','petal_length','petal_width'])

g.map(plt.scatter)
plt.show()
```



```
[12]: #Importing adjusted Rand Score
from sklearn import metrics

# Get the predicted labels by GMM
df['gmm_pred'] = pred_gmm_iris

# labels and the GMM predicted labels iris['species']
iris_gmm_score = metrics.adjusted_rand_score(df['species'],pred_gmm_iris)

# Print the score
iris_gmm_score
```

[12]: 0.9038742317748124

[]: