П

这一节建立了用来构造测度的工具

定义 0.0.1. 非空集合X上的外测度是函数 $\mu^*: \mathcal{P}(X) \to [0, +\infty]$,并且满足以下条件:

- 1. $\mu^*(\phi) = 0$
- 2. $A \subset B \Rightarrow \mu^*(A) \leq \mu^*(B)$
- 3. $\mu^*(\bigcup_{1}^{\infty} A_j) \leq \sum_{1}^{\infty} \mu^*(A_j)$

命题 0.0.2. 设 $\varepsilon \subset \mathcal{P}(X), \rho : \varepsilon \to [0, +\infty]$ 满足: $\phi \in \varepsilon, X \in \varepsilon, \rho(\phi) = 0$ 对任意 $A \in \mathcal{P}(X)$,定义:

$$\begin{split} &\mu^*(A)=\inf\left\{\sum_1^\infty \rho(E_j):E_j\in\varepsilon,A\subset\bigcup_1^\infty E_j\right\}\\ &\mathbb{M}\,\mu^*\mathcal{L}- \wedge \mathbb{M}\,\mathbb{g} \end{split}$$

证明. 首先,由于 $X \in \varepsilon$,故 $\forall A \in \mathcal{P}(X), A \subset X$,该定义是良定义的

- 1. $\phi \in \varepsilon, \mu^*(\phi) = \rho(\phi) = 0$
- 2. $A \subset B$, $\forall \{E_j\}_1^{\infty}$ 覆盖B, 也覆盖A, 即 $\mu^*(A) \leq \sum_1^{\infty} \rho(E_j)$ 对任意 $\{E_j\}_1^{\infty}$ 成立,于是 $\mu^*(A) \leq \mu^*(B)$
- 3. $\forall \epsilon > 0$ 对于 $A_j \in \mathcal{P}(X)$, $\exists \left\{ E_j^k \right\}_{k=1}^{\infty} \subset \varepsilon : \sum_{k=1}^{\infty} \rho(E_j^k) < \mu^*(A_j) + \epsilon 2^{-j}$ 令 $A = \bigcup_{1}^{\infty} A_j \subset \bigcup_{j,k} E_j^k, \mu^*(A) \leq \sum_{j,k} \rho(E_j^k) \leq \sum_{1}^{\infty} \mu^*(A_j) + \epsilon$ 由 ϵ 任意性, $\mu^*(\bigcup_{1}^{\infty} A_j) \leq \sum_{1}^{\infty} \mu^*(A_j)$

定义 0.0.3. 设 μ *为X上的一个外测度, $A \subset X$ 称为 μ *-可测的,若: μ *(E) = μ *($E \cap A$) + μ *($E \cap A^c$)对所有 $E \subset X$ 成立

由于 $\mu^*(E) \leq \mu^*(E \cap A) + \mu^*(E \cap A^c)$ 平凡成立,故A是 μ^* -可测的,只需验证 $\mu^*(E) \geq \mu^*(E \cap A) + \mu^*(E \cap A^c)$ 对所有 $E: \mu^*(E) < +\infty$ 成立

定理 0.0.4. Caratheodory's Theorem

证明. 首先证明M是 σ -代数

由于 μ^* -可测的定义关于 A, A^c 对称,故M关于取补集封闭

设
$$A, B \in \mathcal{M}$$
, $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$

$$= \mu^*(E \cap A \cap B) + \mu^*(E \cap A \cap B^c) + \mu^*(E \cap A^c \cap B) + \mu^*(E \cap A^c \cap B^c)$$

$$A \cup B = (A \cap B) \cup (A \cap B^c) \cup (B \cap A^c)$$

$$\mu^*(E) \ge \mu^*(E \cap (A \cup B)) + \mu^*(E \cap (A \cup B)^c)$$

从而 $A \cup B$ 可测, $A \cup B \in \mathcal{M}$

若还有 $A \cap B = \phi$,

$$\mu^*(A \cup B) = \mu^*((A \cup B) \cap A) + \mu^*((A \cup B) \cap A^c) = \mu^*(A) + \mu^*(B)$$

即 μ *在M上有限可加

现往证M对于可数不交并封闭

设
$$\{A_j\}_1^\infty$$
为 \mathcal{M} 中一列不交集,令 $B_n = \bigcup_1^n A_j, B = \bigcup_1^\infty A_j$

归纳可得
$$B_n \in \mathcal{M}$$
, $\mu^*(E \cap B_n) = \mu^*(E \cap B_n \cap A_n) + \mu^*(E \cap B_n \cap A_n^c)$

$$= \mu^*(E \cap A_n) + \mu^*(E \cap B_{n-1})$$

令
$$B_0 = \phi$$
,归纳可得 $\mu^*(E \cap B_n) = \sum_{1}^n \mu^*(E \cap A_j)$

$$\mu^*(E) = \mu^*(E \cap B_n) + \mu^*(E \cap B_n^c) \ge \sum_{i=1}^n \mu^*(E \cap A_i) + \mu^*(E \cap B)$$

$$rightharpoonup n \to \infty$$
, $\mu^*(E) \ge \sum_{1}^{\infty} \mu^*(E \cap A_j) + \mu^*(E \cap B)$

$$\geq \mu^*(\bigcup_1^\infty (E \cap A_j)) + \mu^*(E \cap B^c) = \mu^*(E \cap B) + \mu^*(E \cap B^c)$$

于是
$$B = \bigcup_{1}^{\infty} A_j \in \mathcal{M}$$

在上式中取
$$E = B$$
,得 $\mu^*(\bigcup_1^\infty A_j) = \sum_1^\infty \mu^*(A_j)$

于是 $\mu_{|\mathcal{M}}^*$ 是测度

$$\mu^*(A)=0\Rightarrow \mu^*(E)\leq \mu^*(E\cap A)+\mu^*(E\cap A^c)=\mu^*(E\cap A^c)\leq \mu^*(E)$$
 从而 $A\in\mathcal{M}$,即 $\mu^*_{\mathcal{M}}$ 是完全的

定义 0.0.5. 设 $A \subset \mathcal{P}(X)$ 是一个代数, $\mu_0: A \to [0, +\infty]$ 称为预测度,若其满足以下条件:

$$\mu_0(\phi) = 0$$

设
$$\{A_j\}_1^\infty$$
是 \mathcal{A} 中的一列不交集,并且 $\bigcup_1^\infty A_j \in \mathcal{A}$,则 $\mu_0(\bigcup_1^\infty A_j) = \sum_1^\infty \mu_0(A_j)$

П

从而 μ_0 也是有限可加的

命题 0.0.6. 设 μ_0 是A上的一个预测度, μ^* 是其诱导的外测度, 那么:

a. $\mu_{|A}^* = \mu_0$;

b. A中的每个集合都是μ*-可测的

证明. a. 设 $E \in \mathcal{A}$,若 $E \subset \bigcup_{1}^{\infty} A_{j}, A_{j} \in \mathcal{A}$,

 $\diamondsuit B_n = E \cap (A_n \setminus (\bigcup_{1}^{n-1} A_j)) \in \mathcal{A}$ 于是 B_n 是不交的,且 $\bigcup_{1}^{\infty} B_n = E$

 $\mu_0(E) = \sum_{1}^{\infty} \mu_0(B_n) \le \sum_{1}^{\infty} \mu_0(A_n)$

由 A_n 的任意性, $\mu_0(E) \le \mu^*(E) \le \mu_0(E)$

其中第二个不等号是明显的,因为 $E \subset E \in \mathcal{A}$

 $A \subset \bigcup_{1}^{\infty} B_j, \sum_{1}^{\infty} \mu_0(B_j) < \mu^*(E) + \epsilon$

于是 $\mu^*(E) + \epsilon > \sum_{1}^{\infty} \mu_0(B_i) = \sum_{1}^{\infty} \mu_0((B_i \cap A) \cup (B_i \cap A^c))$

 $= \sum_{1}^{\infty} \mu_0(B_j \cap A) + \sum_{1}^{\infty} \mu_0(B_j \cap A^c)$

 $\geq \mu^*(E \cap A) + \mu^*(E \cap A^c)$

由 ϵ 的任意性, $\mu^*(E) \ge \mu^*(E \cap A) + \mu^*(E \cap A^c)$

从而A是 μ^* -可测的

定理 0.0.7. 令 $A \subset \mathcal{P}(X)$ 是一个代数, μ_0 是A上的预测度,M是A生成的 σ -代数则存在M上的测度 μ ,其在A上的限制等于 μ_0 ,且 $\mu = \mu_{|\mathcal{M}}^*$,其中 μ^* 是 μ_0 诱导的外测度,若 ν 是M上的另一个 μ_0 由扩张的测度,则 $\nu(E) \leq \mu(E) \ \forall E \in \mathcal{M}$ 其中等号在 $\mu(E) < +\infty$ 时成立,若 μ_0 是 σ -有限的,则 μ 是 μ_0 在M上唯一的扩张

证明. 首先由Caratheodory Theorem和命题2.3.6 μ_0 可诱导X上的外测度 μ^* ,其所有 μ^* -可测集构成包含A的 σ -代数,自然也包含M,且 μ^* 在M上的限制

是测度,即
$$\mu = \mu_{|\mathcal{M}}^*$$
, $\mu_{|\mathcal{A}} = \mu_A^* = \mu_0$
设 $E \in \mathcal{M}$, $\{A_j\}_1^\infty$ 为任意 \mathcal{A} 中覆盖 E 的集列,则
 $\nu(E) \leq \nu(\bigcup_1^\infty A_j) \leq \sum_1^\infty \nu(A_j) = \sum_1^\infty \mu_0(A_j)$
 $\nu(E) \leq \mu_{|\mathcal{M}}^*(E) = \mu(E)$
若 $\mu(E) < +\infty$, $\forall \epsilon > 0$, $\exists \{A_j\}_1^\infty \subset \mathcal{A}$:
 $\mu(A) \leq \sum_1^\infty \mu(A_j) = \sum_1^\infty \mu_0(A_j) < \mu(E) + \epsilon$
 $\mu(A \setminus E) = \mu(A) - \mu(E) < \epsilon$
 $\mu(E) \leq \mu(A) = \lim_{n \to \infty} \mu(\bigcup_1^n A_j) = \lim_{n \to \infty} \nu(\bigcup_1^n A_j)$
 $= \nu(A) = \nu(A \setminus E) + \nu(E) \leq \mu(A \setminus E) + \nu(E) < \epsilon + \nu(E)$
由 ϵ 任意性知 $\nu(E) \leq \mu(E)$
设 μ_0 是 σ -有限的,即 $\exists \{A_j\}_1^\infty \subset \mathcal{A} : X = \bigcup_1^\infty A_j, \mu_0(A_j) < +\infty$
不妨设 A_n 是不交的,否则代之以 $B_n = A_n \setminus (\bigcup_1^{n-1} A_j)$
 $\forall E \in \mathcal{M}, \mu(E) = \mu(E \cap X) = \mu(E \cap (\bigcup_1^\infty A_j)) = \mu(\bigcup_1^\infty (E \cap A_j))$
 $= \lim_{n \to \infty} \mu(\bigcup_1^n (E \cap A_j)) = \lim_{n \to \infty} \sum_1^n \mu(E \cap A_j)$
 $= \lim_{n \to \infty} \sum_1^n \nu(E \cap A_j) = \lim_{n \to \infty} \nu(\bigcup_1^n (E \cap A_j))$
 $= \nu(\bigcup_1^\infty (E \cap A_j)) = \nu(E \cap X) = \nu(E)$

于是 $\mu = \nu$