Ejercicio 19 Sección 1.8 Grossman 2 Ed.

BY DANIEL CHAVEZ

Muestre que la matriz $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ es igual a su propia inversa si $A=\pm I$ o si $a_{11}=-a_{22}$ y $a_{21}a_{12}=1-a_{11}^2$.

Dan:

- la matriz principal.
- restricciones y ayudas para resolver.

Piden:

- calcular la inversa de la matriz segun las restricciones que tenemos.
- averiaguar si la matriz que nos dan es igual a asu propia inversa

Solucion:

Si
$$A = \pm I$$
 entonces $A^2 = I$ si $a_{11} = -a_{22}$ y $a_{21}a_{12} = 1 - a_{11}^2$ entonces $\begin{pmatrix} -a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}^2 = \begin{pmatrix} a_{22}^2 + a_{12}a_{21} & -a_{22}a_{12} + a_{12}a_{22} \\ -a_{22}a_{21} + a_{22}a_{21} & a_{21}a_{12} + a_{22}^2 \end{pmatrix} = I.$

asi queda demostrado que la matriz A si tiene su propia inversa segun los parametros dados.