Лабораторная работа 3.3.1

Герасименко Д.В.

2 курс ФРКТ, группа Б01-104

Аннотация

Тема:

Измерение удельного заряда электрона методами магнитной фокусировки и магнетрона

Цель работы:

Определение значения магнитных полей, при которых происходит фокусировка электронного пучка, и по результатам измерений считать удельный заряд электрона e/m

Оборудование:

А) Электронно-лучевая трубка и блок питания к ней; источник постоянного тока; соленоид; электростатический вольтметр; милливеберметр; ключи. В) Электронная лампа с цилиндрическим анодом; соленоид; источники питания лампы и соленоида; вольтметр постоянного тока; миллиамперметр, амперметр.

А. Метод магнитной фокусировки

Теория:

Движение заряженной частицы в однородном магнитном представляет собой спирали, радиус которых определяется формулой: $R=\frac{mv}{qB}=\frac{v}{\omega_B}$. За время циклотронного периода $(T_B=\frac{2\pi R_B}{v_\perp})$ частица преодолеет расстояние L (шаг спирали):

$$L = v_{\parallel} T_B = \frac{2\pi v cos(\alpha)}{\frac{e}{m} B}$$

где α - угол в $[\overrightarrow{v},\overrightarrow{B}]$, соответственно при малых углах α верно, что после оборота все электроны, вышедшие из одной точки, сфокусируются: $L \approx \frac{2\pi v}{\frac{c}{m}B}$. В данном методе электроны разгоняются анодным напряжением U, фокусировка происходит при разных шагах $\frac{L}{n}$, откуда получается исходная формула:

$$\frac{e}{m} = \frac{8\pi^2 U}{L^2} \frac{n^2}{B^2} \tag{1}$$

Экспериментальная установка:

Основной частью установки является электронный осциллограф, трубка которого вынута и установлена в длинном соленоиде, создающим магнитное поле. Напряжение на отклоняющие пластины и питание подводятся к трубке многожильным кабелем.

Пучок электронов, вылетающих из катода с разными скоростями, ускоряется анодным напряжением. Пропустив пучок сквозь две узкие диафрагмы, можно выделить электроны с практически одинаковой продольной скоростью. Небольшое переменное напряжение, поступающее с клеммы "Контрольный сигнал" осциллографа на отклоняющие пластины, изменяет только поперечную составляющую скорости. При увеличении магнитного поля линия на экране стягивается в точку, а затем снова удлиняется.

Магнитное поле создается постоянным током, величина которого регулируется ручками источника питания и измеряется амперметром. Ключ служит для изменения направления поля в соленоиде.

Величина магнитного поля определяется с помощью милливеберметра.

На точность результатов может влиять внешнее магнитное поле, особенно продольное.

Измерения магнитного поля с помощью милливеберметра обычно проводятся в предварительных опыта: при отключении ключа устанавливается связь между силой тока и индукцией магнитного поля в соленоиде.

рис.1. Схема установки

Ход работы:

1) Определим связь между индукцией B магнитного поля и током I через обмотку магнита. Снимем зависимость магнитного потока: $\Phi = BSN$ в прямом и обратном направлениях. Погрешности прямых измерений: $\sigma_I = 0,01A; \sigma_\Phi = 0,01 \text{MB}$ б

I, A	Ф, мВб
0,26	0,35
0,41	0,50
0,79	1,05
1,01	1,35
1,49	1,95
2,28	3,00
2,54	3,30
3,06	3,90
3,64	4,50

Таблица 1. Зависимость $\Phi(I)$ в прямом направлении.

График 1. $\Phi(I)$ в прямом направлении.

I, A	Ф, мВб
0,26	4,66
0,41	4,47
0,79	3,98
1,01	3,69
1,49	3,07
2,28	2,05
2,54	1,71
3,06	1,03
3,64	0,28

Таблица 2. Зависимость $\Phi(I)$ в обратном направлении.

График 2. $\Phi(I)$ в обратном направлении.

2) Постепенно увеличивая ток, зафиксируем значения, при которых наблюдается фокус. По ним определеим соответствующие значения величины магнитного поля, исходя из калибровки прибора.

N	1	2	3	4	5
I_{Φ}, A	0,53	1,12	1,7	2,34	2,89
B_{Φ} , мТл	2,24	4,74	7,2	9,9	12,2

Таблица 3. Зависимость $B_{\Phi} = f(I)$ в прямом направлении

 Γ рафик 3. $B_{\Phi}=f(I)$ в прямом направлении.

Аналогично для тока в обратном направлении:

N	1	2	3	4	5
I_{Φ}, A	0,58	1,15	1,8	2,36	2,86
B_{Φ} , мТл	14,2	11,7	8,9	6,5	4,3

Таблица 4. Зависимость $B_{\Phi}=f(I)$ в обратном направлении

График 4. $B_{\Phi} = f(I)$ в обратном направлении.

В итоге, подставив в формулу (1) мы получаем, что

$$rac{e}{m} = (1,6\pm 0,2)\cdot 10^{11} {
m K}$$
л/кг

В. Метод магнитной фокусировки

Теория:

Здесь удельный заряд электрона определяется по формуле

$$\frac{e}{m_e} = \frac{8V_a}{B_{\rm KD}^2 r_a^2},\tag{2}$$

где V_a - анодное напряжение, $B_{\rm kp}$ - критическое поле, r_a - радиус анода.

Описание установки.

Рис 2. Схема установки.

Два крайних цилиндра изолированы от среднего небольшими зазорами и используются для устранения краевых эффектов на торцах среднего цилиндра, ток с которого используется при измерениях. В качестве катода используется тонкая вольфрамовая проволока. Катод разогревается переменным током, отбираемым от стабилизированного источника питания.

С этого же источника на анод лампы подается напряжение, регулируемое с помощью потенциометра и измеряемое вольтметром.

Индукция магнитного поля в соленоиде рассчитывается по току I_m , протекающему через обмотку соленоида. Коэффициент пропорциональности между ними указан в установке.

Лампа закреплена в соленоиде. Магнитное поле в соленоиде создается постоянным током, сила которого регулируется ручками источника питания и измеряется амперметром.

Ход работы.

- 1) Параметры установки:
- коэффициент пропорциональности между анодным током и магнитной индукцией $B-K=2, 8\cdot 10^2~{\rm Tr/A};$
- радиус анода $r_A = 12$ мм;
- $\sigma_{I_m}=4$ мА, $\sigma_B=0,1$ мТл, $\sigma_{I_a}=2$ мкА;

Снимем зависимость анодного тока от тока через соленоид для различных значений V_a

I_m , MA	σ_{I_m} , мА	В, мТл	σ_B , мТл	I_a , мк A	σ_{I_a} , мк A
0	4	0,0	0,1	266	2
20	4	0,6	0,1	270	2
32	4	0,9	0,1	266	2
36	4	1,0	0,1	266	2
44	4	1,2	0,1	266	2
60	4	1,7	0,1	266	2
76	4	2,1	0,1	262	2
88	4	2,5	0,1	256	2
96	4	2,7	0,1	252	2
100	4	2,8	0,1	242	2
108	4	3,0	0,1	236	2
116	4	3,2	0,1	232	2
124	4	3,5	0,1	230	2
132	4	3,7	0,1	232	2
136	4	3,8	0,1	222	2
144	4	4,0	0,1	206	2
148	4	4,1	0,1	200	2
156	4	4,4	0,1	186	2
160	4	4,5	0,1	180	2
168	4	4,7	0,1	164	2
176	4	4,9	0,1	140	2
182	4	5,1	0,1	104	2
184	4	5,2	0,1	88	2
188	4	5,3	0,1	56	2
190	4	5,3	0,1	40	2
194	4	5,4	0,1	28	2
202	4	5,7	0,1	18	2
208	4	5,8	0,1	12	2
216	4	6,0	0,1	10	2
224	4	6,3	0,1	6	2
236	4	6,6	0,1	4	2
244	4	6,8	0,1	3	2
256	4	7,2	0,1	2	2
284	4	8,0	0,1	0	2

I_m , MA	σ_{I_m} , мА	В, мТл	σ_B , мТл	I_a , мк A	σ_{I_a} , мк A
0	4	0,0	0,1	254	2
8	4	0,2	0,1	258	2
36	4	1,0	0,1	254	2
48	4	1,3	0,1	254	2
60	4	1,7	0,1	254	2
76	4	2,1	0,1	254	2
84	4	2,4	0,1	252	2
92	4	2,6	0,1	250	2
104	4	2,9	0,1	238	2
108	4	3,0	0,1	226	2
116	4	3,2	0,1	220	2
120	4	3,4	0,1	216	2
128	4	3,6	0,1	214	2
134	4	3,8	0,1	220	2
140	4	3,9	0,1	220	2
152	4	4,3	0,1	202	2
158	4	4,4	0,1	200	2
162	4	4,5	0,1	192	2
170	4	4,8	0,1	184	2
180	4	5,0	0,1	168	2
192	4	5,4	0,1	120	2
196	4	5,5	0,1	90	2
204	4	5,7	0,1	50	2
208	4	5,8	0,1	32	2
212	4	5,9	0,1	24	2
216	4	6,0	0,1	20	2
224	4	6,3	0,1	14	2
232	4	6,5	0,1	10	2
242	4	6,8	0,1	6	2
256	4	7,2	0,1	4	2
268	4	7,5	0,1	3	2
284	4	8,0	0,1	2	2
300	4	8,4	0,1	0	2

Таблица 6. Зависимость $I_a(B)$ для $V_a = (80 \pm 1)$ В.

I_m , мА	σ_{I_m} , мА	В, мТл	σ_B , мТл	I_a , мк A	σ_{I_a} , мк A
0	4	0,0	0,1	262	2
16	4	0,4	0,1	260	2
44	4	1,2	0,1	258	2
52	4	1,5	0,1	260	2
68	4	1,9	0,1	260	2
84	4	2,4	0,1	260	2
104	4	2,9	0,1	256	2
112	4	3,1	0,1	240	2
116	4	3,2	0,1	234	2
120	4	3,4	0,1	226	2
128	4	3,6	0,1	226	2
140	4	3,9	0,1	218	2
144	4	4,0	0,1	208	2
152	4	4,3	0,1	230	2
164	4	4,6	0,1	220	2
174	4	4,9	0,1	198	2
180	4	5,0	0,1	190	2
186	4	5,2	0,1	184	2
190	4	5,3	0,1	180	2
196	4	5,5	0,1	166	2
200	4	5,6	0,1	158	2
204	4	5,7	0,1	142	2
208	4	5,8	0,1	108	2
212	4	5,9	0,1	84	2
216	4	6,0	0,1	54	2
222	4	6,2	0,1	34	2
228	4	6,4	0,1	24	2
234	4	6,6	0,1	18	2
240	4	6,7	0,1	12	2
248	4	6,9	0,1	10	2
264	4	7,4	0,1	6	2
278	4	7,8	0,1	4	2
288	4	8,1	0,1	2	2
300	4	8,4	0,1	1	2
312	4	8,7	0,1	0	2

Таблица 7. Зависимость $I_a(B)$ для $V_a = (90 \pm 1)$ В.

I_m , мА	σ_{I_m} , мА	В, мТл	σ_B , мТл	I_a , мкА	σ_{I_a} , мк A
0	4	0,0	0,1	264	2
14	4	0,4	0,1	266	2
40	4	1,1	0,1	264	2
64	4	1,8	0,1	266	2
72	4	2,0	0,1	268	2
80	4	2,2	0,1	268	2
96	4	2,7	0,1	264	2
108	4	3,0	0,1	264	2
120	4	3,4	0,1	250	2
130	4	3,6	0,1	238	2
144	4	4,0	0,1	232	2
156	4	4,4	0,1	248	2
164	4	4,6	0,1	242	2
168	4	4,7	0,1	236	2
180	4	5,0	0,1	214	2
192	4	5,4	0,1	204	2
200	4	5,6	0,1	198	2
208	4	5,8	0,1	178	2
212	4	5,9	0,1	158	2
216	4	6,0	0,1	150	2
224	4	6,3	0,1	98	2
230	4	6,4	0,1	50	2
238	4	6,7	0,1	28	2
248	4	6,9	0,1	20	2
260	4	7,3	0,1	11	2
272	4	7,6	0,1	8	2
280	4	7,8	0,1	6	2
292	4	8,2	0,1	4	2
300	4	8,4	0,1	3	2

 \mathbf{T} аблица 8. Зависимость $I_a(B)$ для $V_a = (100 \pm 1)$ В.

I_m , мА	σ_{I_m} , мА	В, мТл	σ_B , мТл	I_a , мкА	σ_{I_a} , мк A
0	4	0,0	0,1	268	2
20	4	0,6	0,1	270	2
40	4	1,1	0,1	264	2
54	4	1,5	0,1	266	2
68	4	1,9	0,1	270	2
88	4	2,5	0,1	268	2
114	4	3,2	0,1	266	2
140	4	3,9	0,1	244	2
156	4	4,4	0,1	244	2
168	4	4,7	0,1	254	2
172	4	4,8	0,1	250	2
180	4	5,0	0,1	242	2
188	4	5,3	0,1	224	2
196	4	5,5	0,1	214	2
208	4	5,8	0,1	200	2
212	4	5,9	0,1	200	2
220	4	6,2	0,1	186	2
224	4	6,3	0,1	166	2
230	4	6,4	0,1	128	2
236	4	6,6	0,1	88	2
240	4	6,7	0,1	58	2
244	4	6,8	0,1	40	2
248	4	6,9	0,1	32	2
256	4	7,2	0,1	22	2
262	4	7,3	0,1	20	2
268	4	7,5	0,1	14	2
278	4	7,8	0,1	10	2
284	4	8,0	0,1	8	2
292	4	8,2	0,1	8	2

Таблица 9. Зависимость $I_a(B)$ для $V_a = (110 \pm 1)$ В.

График 5. График для определения $B_{\rm kp}$ в зависимости от V_a . По этому графику мы получаем зависимость $B_{\rm kp}^2$ от V_a .

$B_{\rm \kappa p}^2, \cdot 10^{-5} {\rm Tr}^2$	V_a , B
2,3	70
2,7	80
3,25	90
3,72	100
4,1	110

Таблица 10. $B_{\kappa p}^2$ от V_a

По этим данным построим график.

График 6. График зависимости $B_{\rm kp}^2$ от V_a .

По этим данным мы получаем

$$\frac{e}{m} = (1, 3 \pm 0, 5) \cdot 10^{11} \mathrm{K}$$
л/кг

Вывод

В ходе данной работы было измерено удельное значение заряда электрона двумя методами. Как показали расчеты, метод с магнитной фокусировкой даёт более точный результат. Это связано с более простым устройством поля в устоновке с электронным осциллографом, где его можно всюду считать постоянным, в случае же с двухэлектродной вакуумной лампой такого эффекта добиться нельзя ввиду зависимости напряженности от расстояния до оси анода. Также 2й метод основан на сглаживании измерений - кривой $I_A(B)$, что в принципе ведет к большим погрешностям, чем в исселедовании с помощью линейной аппроксимации