Topic 11

Memory Hierarchy

- **Cache (3)**

Improve Performance – Associative Caches

- n-way set associative cache
 - Each set contains n blocks
 - A main memory block can use any block within the corresponding set
 - Each address maps to a unique set (not block)
 - Set index = (Block address) % (number of sets in cache)
 - However, to locate a block in a set, need to compare n times
 - all n tags in a set must be checked and compared
 - n comparators (more effective faster)

Associative Caches

- Fully associative opposite extreme of direct mapped
 - Allow a given block to go in any cache entry
 - Must search all entries to find a hit
 - One comparator each block (expensive)
 - # of comparator = cache size (block number)

Associative Cache Example

Locating a Block

Memory address Tag Index Word/Byte offset

- Memory address decomposition
 - Index locate a set in cache
 - Tag upper address bits to locate block
 - Word/Byte offset to locate a word/byte in a block
- Size of index field
 - Increasing degree of associativity decreases the number of sets, decreases number of bits for index, increases tag field
 - Doubling # of blocks by 2 halves # of set by 2
 - Reduce index bits by 1
 - Increase tag bits by 1
- All blocks in a set must be searched
 - Tag field compared in parallel
 - Extra hardware and extra access (hit) time

Set Associative Cache Organization

Spectrum of Associativity

For a cache with 8 blocks

One-way set associative (direct mapped)

Block	Tag	Data
0		
1		
2		
3		
4		
5		
6		
7		

Two-way set associative

Set	Tag	Data	Tag	Data
0				
1				
2				
3				

Four-way set associative

Set	Tag	Data	Tag	Data	Tag	Data	Tag	Data
0					·			
1								

Eight-way set associative (fully associative)

Tag	Data														

- Compare caches of 4 two-word blocks
 - Direct mapped, 2-way set associative, fully associative
 - Block access sequence: 0, 8, 0, 12, 8

Direct mapped (1-way associative)

Word Addr

Data

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	00 00 0	miss	00

lw R3←mem[0] lw R4 \leftarrow mem[8] R0 sw R5 \rightarrow mem[0] **R1** lw R6←mem[12] R2 sw R7 \rightarrow mem[8] R3 R4 **R5** R6 R7

Indx	V	D	Tag	Data
00	N			
01	N			
10	N			
11	N			
		· · · · · ·		
		M	liss	

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	00 00 0	miss	00

lw	R3←mem[0]		
lw	R4←mem[8]	R0	20
SW	R5→mem[0]	R1	23
lw sw	R6←mem[12] R7→mem[8]	R2	36
<i>2</i>		R3	23
		R4	87
		R5	62
		R6	99
		R7	135

Indx	V	D	Tag	Data	
00	Υ	0	00	110	
				120	
01	N				
10	N				
11	N				
		F	etch	า	

Word Addr

Data

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	00 00 0	hit	00

lw R3←mem[0] $lw R4 \leftarrow mem[8]$ R0 sw R5 \rightarrow mem[0] **R1** lw R6←mem[12] R2 sw R7 \rightarrow mem[8] R3 R4 **R5** R6 R7

Indx	V	D	Tag	Data	
00	Y	0	00	110	
				120	
01	N				
10	Ν				
11	N				
	L	.08	ad a	again	

Word Addr

Data

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	01 00 0	miss	00

lw	R3 ← mem[0]		
lw		R0	20
SW	R5→mem[0]	R1	23
lw sw	R6←mem[12] R7→mem[8]	R2	36
DW		R3	110
		R4	87
		R5	62
		R6	99
		R7	135
		•••	•••

Indx	V	D	Tag	Data		
00	Υ	0	00	110		
				120		
01	N					
10	N					
11	N					
miss						

Word Addr

Data

m m

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	01 00 0	miss	00

 $lw R3 \leftarrow mem[0]$ 1w R4 \(\tag{mem[8]} R₀ 20 sw R5 \rightarrow mem[0] **R1** 23 lw R6←mem[12] 36 sw R7 \rightarrow mem[8] R2 **R3** 110 R4 87 **R5** 62 R6 99 135 R7

Indx	V	n	Tag	Data	5	23
	V				6	615
00	Υ	0	01	110→3	7	712
ı				120→300	8	3
01	N					<u> </u>
					9	300
10	N				10	62
10	IN				11	99
11	N				12	234
11	IN				13	912
			_		14	0
		R	epla	ace	15	10

Word Addr

Data

110

120

133

233

36

4

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	01 00 0	hit	00

lw R3←mem[0] **R4**←mem[8] 20 R0 $R5 \rightarrow mem [0]$ **R1** 23 R6←mem[12] 36 R2 $R7 \rightarrow mem [8]$ 110 R3 3 R4 **R5** 62 R6 99 135 R7

Word Addr

Data

110

120

133

233

36

23

615

712

3

300

62

99

234

912

0

10

4

6

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	00 00 0	miss	00

lw			
lw	R4 ← mem[8]	R0	20
sw lw	R5→mem[0] R6←mem[12]	R1	23
SW		R2	36
		R3	110
		R4	3
		R5	62
		R6	99
		R7	135

m

m

m

Indx	V	D	Tag	Data	
00	Υ	0	01	3	
				300	
01	N				
10	N				
11	N				
Miss					

Word Addr

Data

CPU

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	00 00 0	miss	00

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R₀ sw R5 \rightarrow mem[0] **R1** lw R6←mem[12] R2 sw R7 \rightarrow mem[8] **R3** R4 **R5** R6 R7

m

m

Indx	V	D	Tag	Data	
00	Υ	0	00	3→110	
				300→12	
01	Ζ				
10	N				
11	N				
Replace					

Data

Word Addr

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	00 00 0	hit	00

lw R3←mem[0] R4 ← mem [8] R0 $R5 \rightarrow mem[0]$ **R1** R6←mem[12] R7→mem[8] R2 R3 R4 **R5** R6 R7

m

m

Word Addr

Data

CPU

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
01100 00	01 10 0	miss	10

lw	R3←mem[0]		
lw	R4←mem[8]	R0	20
SW lw		R1	23
	R7→mem[8]	R2	36
		R3	110
		R4	3
		R5	62
		R6	99
		R7	135

m

m

m

m

Indx	V	D	Tag	Data	
00	Υ	1	00	62	
				120	
01	N				
10	N				
11	N				
Miss					

Data

Word Addr

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
01100 00	01 10 0	miss	10

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] 20 R₀ sw R5 \rightarrow mem[0] **R1** 23 lw R6←mem[12] 36 $R7 \rightarrow mem [8]$ R2 **R3** 110 R4 3 **R5** 62 R6 99 135 R7

m

m

m

Indx	V	D	Tag	Data	5	23
1	V				6	615
00	Y	1	00	62	7	712
ı				120	8	3
01	N					
					9	300
10	V	0	01	224	10	62
10	I	U	UI	234	11	99
11	N			912	12	234
11	IN				13	912
		-	14	0		
		F	15	10		

Word Addr

Data

110

120

133

233

36

4

CPU

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
01100 00	01 10 0	hit	10

 $lw R3 \leftarrow mem[0]$ 1w R4←mem[8] R₀ sw R5 \rightarrow mem[0] **R1** lw R6←mem[12] R2 $R7 \rightarrow mem [8]$ **R3** R4 **R5** R6 R7

m

m

m

Indx	V	D	Tag	Data	
00	Υ	1	00	62	
				120	
01	N				
10	Υ	0	01	234	
				912	
11	N				
Load again					

Word Addr

Data

CPU

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	01 00 0	miss	00

lw R3←mem[0]		
lw R4←mem[8]	R0	20
sw R5 \rightarrow mem[0] lw R6 \leftarrow mem[12]	R1	23
sw R7→mem[8]	R2	36
	R3	110
	R4	3
	R5	62
	R6	234
	R7	135

m

m

m

m

m

Indx	V	D	Tag	Data
00	Υ	1	00	62
				120
01	N			
10	Υ	0	01	234
				912
11	N			
Miss				

Data

Word Addr

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	01 00 0	miss	00

lw	R3 ← mem[0]		
lw	R4←mem[8]	R0	20
SW		R1	23
lw sw	R6←mem[12] R7→mem[8]	R2	36
5 W	it / / inclin [0]	R3	110
		R4	3
		R5	62
		R6	234
		R7	135

m

m

m

m

m

Indx	V	D	Tag	Data		
00	Υ	1	00	62		
				120		
01	Ν					
10	Υ	0	01	234		
				912		
11	N					
Write back						

Data

110→62

Word Addr

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	01 00 0	miss	00

lw R3←mem[0]		
lw R4←mem[8]	R0	20
sw R5 \rightarrow mem[0]	R1	23
lw R6←mem[12]	R2	36
sw R7→mem[8]		
	R3	110
	R4	3
	R5	62
	R6	234
	R7	135

m

m

m

m

m

lndx	V	D	Tag	Data	5	23
ĺ	V				6	615
00	Υ	0	01	62→3	7	712
				120→300		
01	N				8	3
O I	IN				9	300
10	V	0	01	224	10	62
10	Y	U	01	234	11	99
44	NI			912	12	234
11	N				13	912
					14	0
	F	Re	pla	ce	15	10

Word Addr

Data

62

120

133

233

36

CPU

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	01 00 0	miss	00

 $lw R3 \leftarrow mem[0]$ 1w R4←mem[8] R₀ 20 sw R5 \rightarrow mem[0] **R1** 23 lw R6←mem[12] 36 R2 sw $R7 \rightarrow mem[8]$ **R3** 110 R4 3 **R5** 62 234 R6 135 R7

m

m

m

m

Indx	V	D	Tag	Data
00	Y	1	01	3→135
				300
01	Z			
10	Y	0	01	234
				912
11	N			
Write, set dirty				

Word Addr

Data

62

120

133

233

36

23

615

712

300

62

99

234

912

0

10

10

11

12

13

14

15

CPU

25

2-way associative

Word Addr D

Data

110

120

133

615

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	000 0 0	miss	0

3 233 4 36 5 23

6

lw	R3←mem[0]		
lw	R4←mem[8]	R0	20
SW	$R5 \rightarrow mem[0]$	R1	23
lw	R6←mem[12]	ΙΧΙ	
SW	R7→mem[8]	R2	36
		R3	23
		R4	87
		R5	62
		R6	99
		R7	135

m

CPU

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	000 0 0	miss	0

lw R3←mem[0] lw R4 \leftarrow mem[8] R0 sw R5 \rightarrow mem[0] **R1** lw R6←mem[12] sw R7 \rightarrow mem[8] R2 R3 R4 R5 R6 R7

Indx	V	D	Tag	Data	
0	Υ	0	000	110	
				120	
	N				
1	N				
	N				
'		F	etcl	า	

Word Addr

Data

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	000 0 0	hit	0

lw R3←mem[0] lw R4 \leftarrow mem[8] R0 sw R5 \rightarrow mem[0] **R1** lw R6←mem[12] sw R7 \rightarrow mem[8] R2 R3 R4 **R5** R6 R7

CPU

Indx	V	D	Tag	Data	
0	Υ	0	000	110	
				120	
	N				
1	N				
	N				
	L	.08	ad a	again	

Word Addr

Data

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	010 0 0	miss	0

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R0 sw R5 \rightarrow mem[0] **R1** lw R6←mem[12] sw R7 \rightarrow mem[8] R2 R3 R4 **R5** R6 R7

Indx		D	Tag	Data
0	Υ	0	000	110
				120
	N			
1	N			
	Z			
miss				

Word Addr

Data

m m

Word Addr Data

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	010 0 0	miss	0

Tag Indx V Data D Q N N Fetch, not replace

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	010 0 0	hit	0

lw R3←mem[0] **R4**←mem[8] R₀ 20 $R5 \rightarrow mem [0]$ **R1** 23 R6←mem[12] 36 R2 $R7 \rightarrow mem [8]$ R3 110 3 R4 **R5** 62 R6 99 R7 135

m

Word Addr

Data

110

120

133

233

36

23

615

712

3

300

62

99

234

912

0

10

4

5

6

CPU

Word Addr

110

120

133

233

36

23

615

712

3

300

62

99

234

912

0

10

15

0

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	000 0 0	hit	0

Write, set dirty

 $1 \text{w} R3 \leftarrow \text{mem}[0]$ R4 ← mem [8] 20 R0 $R5 \rightarrow mem[0]$ **R1** 23 R6←mem[12] 36 R2 $R7 \rightarrow mem [8]$ R3 110 3 R4 **R5** 62 R6 99 R7 135

m

m

h

CPU

33

Word Addr Data

6

8

9

10

11

110 120

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01100 00	011 0 0	miss	0

3 233 4 36 5 23

615

712

3

300

62

99

0

133

lw R3←mem[0]
lw R4←mem[8]
sw R5→mem[0]
lw R6←mem[12]
sw R7→mem[8]
R1
R2
R3
R3
R3
R1
R3
R1
R1
R2
R3
R3
R3
R3
R3
R3
R3

m

m

h

m

 Indx
 V
 D
 Tag
 Data

 0
 Y
 1
 000
 62

R1 23 R2 36 R3 110 R4 3 R5 62 R6 99 R7 135

120
Y 0 010 3
300
N 0 010

Miss

12 234 13 912

14

15 10

CPU

34

Replacement Policy

- Direct mapped: no choice
- Set associative
 - Prefer non-valid entry, if there is one
 - Otherwise, choose among entries in the set
- Choosing policy
 - Least-recently used (LRU)
 - Choose the one unused for the longest time
 - Need a tracking mechanism for usage
 - Simple for 2-way, manageable for 4-way, too hard beyond that
 - Random
 - Gives approximately the same performance as LRU for high associativity

Word Addr Data

110 120

133

233

36

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01100 00	011 0 0	miss	0

 $lw R3 \leftarrow mem[0]$ R4←mem[8] 20 R0 $R5 \rightarrow mem [0]$ **R1** 23 $R6\leftarrow mem[12]$ 36 R2 $R7 \rightarrow mem [8]$ R3 110 R4 3 **R5** 62 R6 99 R7 135

m

h

m

CPU

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01100 00	011 0 0	hit	0

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R0 sw R5 \rightarrow mem[0] R1 lw R6←mem[12] R2 sw R7 \rightarrow mem[8] R3 R4 R5 R6 R7

m

h

m

Indx	V	D	Tag	Data
0	Υ	1	000	62
				120
	Υ	0	011	234
				912
1	17			
	Z			
Load again				

Data

Word Addr

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	010 0 0	miss	0

lw	R3 ← mem[0]		
lw	R4←mem[8]	R0	20
SW	2 3	R1	23
lw sw	R6←mem[12] R7→mem[8]	R2	36
5 W	it / / mem [0]	R3	110
		R4	3
		R5	62
		R6	234
		R7	135
		Κ/	133

m

m

h

m

m

Indx	V	D	Tag	Data
0	Υ	1	000	62
				120
	Υ	0	011	234
				912
1	N			
	N			
Miss				

Data

Word Addr

Word Addr Data

110→62

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	010 0 0	miss	0

miss 0

lw R3←mem		
lw R4←mem	RU	20
sw R5→mem	P 1	23
lw R6←mem		36
sw R7→mem	[0]	
	R3	110
	R4	3
	R5	62
	R6	234
	R7	135

m

m

h

m

m

inax	V	ט	ıag	Data		/
0	Υ	1	000	62		,
		LR	C	120		
	Υ	0	011	234		
				912		
1	Ν					
	N					
Write back						

Write back

CPU

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	010 0 0	miss	0

lw R3←mem[0]		
lw R4←mem[8]	R0	20
sw R5 \rightarrow mem[0] lw R6 \leftarrow mem[12]	R1	23
sw R7→mem[8]	R2	36
	R3	110
	R4	3
	R5	62
	R6	234
	R7	135

m

m

m

m

Indx	V	D	Tag	Data	5	23
	V			62 → 3	6	615
0	Y	0	010		7	712
		LR	U	120→300	8	3
	Υ	0	011	234	9	_
				912		300
1	Ν				10	62
·					11	99
	N				12	234
	IN				13	912
			_		14	0
Replace			15	10		

Word Addr

Data

62

120

133

233

36

CPU

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	010 0 0	miss	0

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R0 sw R5 \rightarrow mem[0] R1 lw R6←mem[12] R2 sw $R7 \rightarrow mem[8]$ R3 R4 **R5** R6 R7

m

m

m

Indx	V	D	Tag	Data	
0	Υ	1	010	→ 3→135	
				300	
	Υ	0	011	234	
				912	
1	N				
	Z				
Write, set dirty					

Data

Word Addr

Fully associative (4-way associative)

Word Addr Data

110 120

133

4-way (fully) associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	0000 0	miss	-

36

1w R3←mem[0] R4←mem[8] R0 20 $R5 \rightarrow mem[0]$ **R1** 23 lw R6←mem[12] 36 R2 $R7 \rightarrow mem [8]$ R3 23 R4 87 **R5** 62

m

Tag Indx V D Data N N N Miss

CPU

R6

R7

99

135

4-way (fully) associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	0000 0	miss	-

1w R3←mem[0] lw R4 \leftarrow mem[8] R0 sw R5 \rightarrow mem[0] **R1** lw R6←mem[12] R2 sw R7 \rightarrow mem[8] R3 R4 **R5** R6 R7

ndx	V	D	Tag	Data	
	Υ	0	0000	110	
				120	
	N				
	N				
	N				
'		F	etch		•

Word Addr

Data

m

4-way (fully) associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	0000 0	hit	-

1w R3←mem[0] lw R4←mem[8] R0 sw R5 \rightarrow mem[0] **R1** lw R6←mem[12] R2 sw R7 \rightarrow mem[8] R3 R4 **R5** R6 R7

Indx	V	D	Tag	Data	
	Υ	0	0000	110	
				120	
	N				
	N				
	Z				
•	L	.08	ad a	gain	

Word Addr

Data

m

4-way (fully) associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	0100 0	miss	-

 $lw R3 \leftarrow mem[0]$ 1w R4 - mem [8] R0 sw R5 \rightarrow mem[0] **R1** lw R6←mem[12] R2 sw R7 \rightarrow mem[8] R3 R4 **R5** R6 R7

Indx	V	D	Tag	Data
	Υ	0	0000	110
				120
	N			
	N			
	N			
,		m	iss	

Word Addr

Data

m m

4-way (fully) associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	0100 0	miss	-

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R0 20 sw R5 \rightarrow mem[0] **R1** 23 lw R6←mem[12] 36 sw R7 \rightarrow mem[8] R2 R3 110 R4 87 **R5** 62 R6 99 R7 135

m

Indx	V	D	Tag	Data	5	23
IIIUX	v				6	615
	Υ	0	0000	110	7	712
				120		
	Υ	0	0100	3	8	3
	•		0100		9	3 00
				300	10	62
	N					
					11	99
	N				12	234
	IN				13	912
	<u> </u>				14	0
Fet	ch	۱, ۱	not r	eplace	e 15	10

Word Addr

Data

110

120

133

233

36

CPU

47

4-way (fully) associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	0100 0	hit	-

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R₀ sw R5 \rightarrow mem[0] R1 lw R6←mem[12] R2 sw R7 \rightarrow mem[8] R3 R4 **R5** R6 R7

m

Indx	V	D	Tag	Data
	Υ	0	0000	110
				120
	Υ	0	0100	3
				300
	N			
	N			
		1	oad	again

Data

Word Addr

CPU

4-way (fully) associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	0000 0	hit	-

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R0 sw R5 \rightarrow mem[0] R1 lw R6←mem[12] R2 sw R7 \rightarrow mem[8] R3 R4 **R5** R6 R7

m

m

h

Indx	V	D	Tag	Data
	Υ	1	0000	√ 110 > 62
				120
	Y	0	0100	3
				300
	N			
	N			
Write, set dirty				

Word Addr

Data

CPU

R7

Word Addr

Data

4-way (fully)	associative cache
---------------------------------	-------------------

Requested mem addr	Word addr	Hit/miss	Cache set
01100 00	0110 0	miss	-

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R0 sw R5 \rightarrow mem[0] R1 lw R6←mem[12] sw R7 \rightarrow mem[8] R2 R3 R4 **R5** R6

m

m

h

m

Indx	V	D	Tag	Data	
	Υ	1	0000	62	
				120	
	Υ	0	0100	3	
				300	
	N				
	N				
'	Miss				

CPU

CPU

Data

110

120

133

233

36

23

615

712

3

300

62

99

234

912

0

10

14

15

Fetch

4-way (fully) associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01100 00	0110 0	hit	-

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R₀ sw R5 \rightarrow mem[0] **R1** lw R6←mem[12] R2 sw R7 \rightarrow mem[8] **R3** R4 **R5** R6 R7

m

h

m

Indx	V	D	Tag	Data
	Υ	1	0000	62
				120
	Υ	0	0100	3
				300
	Υ	0	0110	234
				912
	N			
	Load again			

Data

Word Addr

CPU

4-way (fully) associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	0100 0	hit	-

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R₀ 20 sw R5 \rightarrow mem[0] **R1** 23 lw R6←mem[12] 36 R2 $R7 \rightarrow mem[8]$ R3 110 R4 3 **R5** 62 234 R6 135 R7

m

h

m

h

Indx	V	D	Tag	Data
	Υ	1	0000	62
				120
	Υ	~	0100	3→135
				300
	Y	7	0110	234
				912
	Ν			
Write, set dirty				

Data

110

Word Addr

CPU

How Much Associativity

- Increased associativity decreases miss rate
 - But with diminishing improvement
- Simulation of a system with 64KB
 D-cache, 16-word blocks, SPEC2000

1-way: 10.3%

2-way: 8.6%

4-way: 8.3%

8-way: 8.1%

How Much Associativity

Exercise

- 2K blocks in cache
- 4-way associative
- 8 words in each block
- 32-bit byte address 0x810023FE requested by CPU, for example

```
lui x10, 0x81002
addi x10, x10, 0x3FE //x10=0x810023FE
lb x5, 0(x10)
```

 Show address and organization of the target cache block, and locate the requested data

Improve Performance – Multilevel Caches

- Multilevel cache decreases miss penalty
- Primary (L-1) cache attached to CPU
 - Small, but fast
- Level-2 (secondary) cache services misses from primary cache
 - Larger, slower, but still faster than main memory
- Main memory services L-2 cache misses
- Some high-end systems include L-3 cache

Multilevel Cache Example

Given

- CPU base CPI = 1, clock rate = 4GHz
- Miss rate (misses/instruction) = 2%
- Main memory access time = 100ns
 - As miss penalty, ignoring other times
- With one-level cache
 - Miss penalty = 100ns/0.25ns = 400 cycles
 - Effective CPI = $1 + 0.02 \times 400 = 9$

Example (cont.)

- Now add L-2 cache
 - Access time = 5ns (L-1 miss penalty)
 - Miss rate for L-2 = 25% of L1 misses (have to access main memory)
 - L-1 cache miss have a miss on L-2
- Primary (L-1) cache miss with L-2 hit
 - Miss penalty = 5ns/0.25ns = 20 cycles
- Primary cache miss with L-2 miss main memory hit
 - Extra penalty = 400 cycles
- CPI = base CPI + L-1 miss L-2 hit (cycles per instruction)
 + L-1 miss L-2 miss (cycles per instruction)
 - CPI = 1 + 0.02 × 75% × 20 + 0.02 × 25% × (20+400) = 3.4
- Performance ratio = 9/3.4 = 2.6

Multilevel Cache Considerations

Primary cache

- Focus on minimal hit time because miss penalty is smaller
- And to reduce CPU clock cycle
- Secondary cache
 - Focus on low miss rate to avoid main memory access
 - Hit time has less overall impact

Multilevel Cache Considerations

- Comparison with single level cache
 - L-1
 - Smaller cache size
 - Smaller block size, because of
 - Smaller total cache size
 - Reduced search time -> reduced hit time
 - Reduced miss penalty -> less time to fetch
 - L-2
 - Cache and block size much larger
 - because of less critical hit time
 - Higher associativity and block size to reduce miss rate
 - Because miss penalty is more severe

Cache Controller

- Example cache characteristics
 - Direct-mapped, write-back, write allocate
 - Block size: 4 words (16 bytes)
 - Cache size: 16 KB (1024 blocks)
 - 32-bit byte addresses
 - Valid bit and dirty bit per block
 - Blocking cache
 - CPU waits until access is complete

Interface Signals

Finite State Machines

- Use an FSM for sequence control steps
- Set of states, transition on each clock edge
 - State values are binary encoded
 - Current state stored in a register
 - Next state
 = f_n (current state,
 current inputs)
- Control output signals $= f_o$ (current state)

Cache Controller FSM

