

Duale Hochschule Baden-Württemberg Mannheim

Bachelorthesis

Integration einer Container-Umgebung in einen automatisierten Deployment-Prozess und die Untersuchung ihrer Effekte auf diesen

Studiengang Wirtschaftsinformatik

Studienrichtung Software Engineering

Sperrvermerk

Verfasser/in: Yves Torsten Staudenmaier

Matrikelnummer: 7146590

Firma: SV Informatik GmbH Abteilung: IE2 – Deployment

Kurs: WWI17SEC

Studiengangsleiter: Prof. Dr.-Ing. habil. Dennis Pfisterer

Wissenschaftlicher Betreuer: Marius Ebel

info@mariusebel.net +49 176 / 473 45452

Firmenbetreuer: Thomas Teske

thomas.teske@sv-informatik.de

+49 621 / 454 44096

Bearbeitungszeitraum: 17.02.—08.05.2020

Sperrvermerk

Der Inhalt dieser Arbeit darf weder als Ganzes noch in Auszügen Personen außerhalb des Prüfungsprozesses und des Evaluationsverfahrens zugänglich gemacht werden, sofern keine anders lautende Genehmigung der Ausbildungsstätte vorliegt. Die Bachelorarbeit enthält unternehmensinterne Architektur- und Prozessmodellierung und deren Dokumentation. Es ist zum Zeitpunkt der Anmeldung nicht sicher, ob interne Schnittstellen in der Anwendungslandschaft offen gelegt werden.

Mannheim, 05.05.2020

Nadja Haumbach, Ausbildungsverantwortliche

Lesehinweise

Die folgenden Hinweise sollen das Lesen dieser Projektarbeit erleichtern und spezielle Formatierung definieren:

- Im Sinne der Gleichberechtigung wird in dieser Arbeit entweder die Form "die Entwickler*in" oder die grammatikalisch korrekte Form "die/der Entwickler/in" verwendet werden. Bei der Kurzform mit der Sternnotation wird auf Grund der Lesbarkeit der weibliche Artikel benutzt.
- Produkt- oder Eigennamen werden in Kapitälchen gesetzt, wie beispielsweise Node. Js.
- Hochgestellte Ziffern weisen auf Fußnoten am Seitenende hin.

Kurzfassung

Titel Integration einer Container-Umgebung in einen automatisierten

Deployment-Prozess und die Untersuchung ihrer Effekte auf die-

sen

Verfasser/in: Yves Torsten Staudenmaier

Kurs: WWI17SEC

Ausbildungsstätte: SV Informatik GmbH

Inhaltsverzeichnis

ΑŁ	bstract	Ш
Αŀ	bbildungsverzeichnis	VI
Ta	abellenverzeichnis	VII
Qι	uelltextverzeichnis	VII
Αŀ	bkürzungsverzeichnis	IX
De	efinitionen der Begrifflichkeiten	X
1	Einleitung	1
2	Wie können Container-Anwendungen den Prozess des automatisierten "Deployments" unterstützen? 2.1 Grundlagen: Definieren der Begrifflichkeiten zur Forschungsfrage eins 2.1.1 Methodik der Anforderungsanalyse	. 4 . 7 . 7 . 7 . 7
3	Welche wirtschaftlichen Vorteile hat der Einsatz von Container auf den Prozess des automatisierten "Deployments"?	8
4	Welche besonderen sicherheitstechnischen Aspekte muss ein solcher Prozess im Bereich der Versicherung erfüllen? 4.1 Sicherheitstechnische Anforderungen an den Betrieb einer Anwendung 4.1.1 IT-Sicherheit: Grundnorm ISO 27001	. 10 . 10 . 10 . 10 . 12

DHBW Mannheim IV

5	kritische Betrachtung5.1 Zusammenfassung der Erkenntnisse	13
Lit	teraturverzeichnis	X
Ar	nhang	XII
A Ergänzungen zur Forschungsfrage eins A.1 Anforderungsdokument		XII XII
В	Ergänzungen zur Forschungsfrage zwei	XVI
C	C Ergänzungen zur Forschungsfrage drei	
Eh	nrenwörtliche Erklärung	XVIII

Abbildungsverzeichnis

Abbildung 1.1	Dilbert Comic zu Kubernetes	-
Abbildung 2.1	Entwicklungsprozess der Anforderungen	٦
Abbildung A.1	Volere Snow Card	٠

DHBW Mannheim VI

Tabellenverzeichnis

Tabelle 0.1	Überblick über die verwendeten Begriffsdefinitionen dieser Bachelor-	
	thesis	X

DHBW Mannheim VII

Quelltextverzeichnis

DHBW Mannheim VIII

Abkürzungsverzeichnis

AWL Anwendungslandschaft

BaFin Bundesanstalt für Finanzdienstleistungsaufsicht

VAIT Versicherungsaufsichtliche Anforderungen an die IT

IE2 — Deployment

IE – Entwicklungs- und Betriebsunterstützung

IU11 IT-Einkauf/-Recht

CAB "Change Advisory Board"

ITIL Information Technology Infrastructure Library

SV SparkassenVersicherung

SVI SV Informatik GmbH

i.d.R. in der Regel

Überblick über die Begriffsdefinitionen

Die Fokus-Komponente beschreibt bla bla

Begriff	Definition	Autoren
Test	Much of the innovative programming that powers the Internet, creates operating systems, and produces software is the result of open source code, that is, code that is freely distributed—as opposed to being kept secret—by those who write it. Leaving source code	Autor
Test	Def	Autor

Tabelle 0.1: Überblick über die verwendeten Begriffsdefinitionen dieser Bachelorthesis

1 Einleitung

Motivation der Arbeit irgendwas Orginelles...

Solved all your problems. You're welcome.

Abbildung 1.1: Dilbert Comic zu KUBERNETES Quelle: Dilbert on Kubernetes 2017

Redaktionelle Anmerkung: Abbildung nur als komprimiertes Format verfügbar (Qualitätseinbuße)

Problemstellung/-abgrenzung

Zielstellung der Arbeit

Forschungsfragen/-design Die Forschungsfragen mit der sich diese Bachelorarbeit beschäftigen wird, sind eine direkte Konsequenz aus der Zielstellung und aus den unternehmensinternen Anforderungen an einen möglichen automatisierten Prozess. Dabei liegt der Fokus auf der Betrachtung beider Teildisziplinen der Wirtschaftsinformatik, nämlich der Informatik und der Wirtschaft – jedoch wird der größere Teil dieser Arbeit einen informationstechnischen Fokus besitzen. Die folgende Aufzählung nennt die einzelnen Forschungsfragen, die im weiteren Verlauf ein gemeinsames Ergebnis erbringen werden. Dieses ist in Kapitel 5 auf Seite 13 zu finden.

- 1. Wie können Container-Anwendungen den Prozess des automatisierten "Deployments"¹ unterstützen?
- 2. Welche wirtschaftlichen Vorteile hat der Einsatz von Container auf den Prozess des automatisierten "Deployments"?

 $^{^{1}\}mathrm{die}$ Definition dieses Begriffes ist in Kapitel 2.1.4 auf Seite 7 zu finden

Kapitel 1 Einleitung

3. Welche besonderen sicherheitstechnischen Aspekte muss ein solcher Prozess im Bereich der Versicherung erfüllen?

Die Forschungsfrage eins wird einen Ist-Zustand analysieren. Dieser enthält eine Prozessanalyse, eine identifizierte Technologie-Wertekette² sowie einen Anforderungskatalog der Entwicklungsabteilungen an den zu konzeptionierenden "Deployment"-Prozess für die Container-Anwendungen. Danach wird ein Konzept eines container-basierten, automatisierten "Deployment"-Prozesses erstellt, dabei wird die Methodologie und das eigentliche Konzept erläutert. Die Forschungsfrage eins schließt mit einem Teilergebnis ab.

Die Forschungsfrage zwei beschäftigt sich mit den wirtschaftlichen Vorteilen eines Einsatzes der Container auf den Prozess des automatisierten "Deployment"-Prozesses. Dabei werden die Erstellung eines "Business Case³", die Prüfung der Übereinstimmung der Ziele dieser Arbeit mit der Geschäftsstrategie der SV Informatik GmbH (SVI) und mögliche Disharmonien dieser identifiziert. Außerdem entsteht eine Konzeption eines verbesserten Geschäftsszenarios, das die Kosteneinsparpotentiale und die Zielharmonisierung enthalten wird. Ein Ausblick schließt die Forschungsfrage zwei ab.

Die Forschungsfrage drei identifiziert sicherheitsrelevante Anforderungen, die nicht nur die funktionalen/nicht-funktionalen Anforderungen einer Anwendung betreffen, sondern auch die komplette Anwendungslandschaft (AWL). Dabei beeinflusst die Bundesanstalt für Finanzdienstleistungsaufsicht (BaFin) und auch verschiedene DIN/ISO-Normen diese Anforderungen. Außerdem soll analysiert werden, wie bei der Beschaffung von "open source"- bzw. "closed source"-Anwendungen mögliche Schwachstellen identifiziert werden, die potentielle Angriffsvektoren in der AWL eröffnen würden, und wie mit diesen verfahren wird. Dabei soll versucht werden Rückschlüsse auf die Anwendung OpenShift" von Red Hat" zu ziehen. Auch hier wird ein Teilergebnis diese Forschungsfrage abschließen

Einordnung der Abteilung in den Geschäftsprozess Die Abteilung IE2 – Deployment (IE2), die sich im Bereich der Organisationseinheit IE – Entwicklungs- und Betriebsunterstützung (IE) befindet, befasst sich in erster Linie mit dem Transport ("Deployment") von Software-Artefakten der einzelnen Software-Produkte der SVI.

²Definition: <Defintion/>

³engl. Geschäftsszenario

⁴ "OPENSHIFT is an open source container application platform by Red Hat based on the Kubernetes container orchestrator for enterprise app development and deployment." Quelle: Red Hat, Inc. 2020a

⁵ "Red Hat ist der weltweit führender Anbieter von Open Source-Lösungen, die auf verlässlichen und leistungsstarken Technologien in den Bereichen Cloud, Virtualisierung, Storage, Linux, Mobile und Middleware basieren. Darüber hinaus bieten wir Support-, Trainings- und Consulting-Services an, die mehrfach prämiert wurden."Red Hat, Inc. 2020b

Kapitel 1 Einleitung

Diese werden für die SV SparkassenVersicherung (SV) entwickelt, betrieben und gewartet. Zu den zentralen Aufgaben der Abteilung gehören die Planung, Durchführung und Überwachung der "Build/Deployment"-Prozesse auf den verschiedenen Serverumgebungen. Des weiteren stellt IE2 die Einspielung von datenbank-relevanten Objekten sicher. Auch entwickelt sie die Bau- und Transportprozesse kontinuierlich weiter und passt diese an die sich ständig veränderten Anforderung der Entwicklungsabteilungen an. Von zentraler Bedeutung ist die Planung und Durchführung der Veröffentlichungen der neuen Versionen einer zu betreuenden Anwendung. Zu dieser Aufgabe gehören auch Aufbau und Bereitstellung der Systemtest-, Releasetest- und Produktions-Umgebungen. Eine weitere zentrale Aufgabe, die nach der Organisationsumstrukturierung am 01.01.2020 in der Abteilung IE2 angesiedelt wurde, ist das Umgebungsmanagement. Die Aufgaben dieses Teilbereichs befasst sich mit folgenden Inhalten: Planung von Aktivitäten in der Produktionsumgebung, Planung und Koordination der Infrastruktur und Notfall-"Fix" der Produktion, der allgemeinen "Patch"-Planung; Beratung zur Erweiterung, Koordination und Planung von verschiedenen Testumgebungen. Außerdem ist das Umgebungsmanagement Teil des "Change Advisory Board" (CAB), das ein Gremium nach der Sammlung Information Technology Infrastructure Library (ITIL) darstellt. Dieses ist für die Freigabe von "Changes" verantwortlich und hat ständige, wie auch der Situation angepasste, Mitglieder.

Aufbau der Arbeit In Kapitel 2 auf der nächsten Seite

In Kapitel 3 auf Seite 8

In Kapitel 4 auf Seite 9

In Kapitel 5 auf Seite 13

2 Wie können Container-Anwendungen den Prozess des automatisierten "Deployments" unterstützen?

Dieses Kapitel ...

2.1 Grundlagen: Definieren der Begrifflichkeiten zur Forschungsfrage eins

Dieses Teilkapitel soll grundlegende Begrifflichkeiten, die im weiteren Verlauf dieser Arbeit verwendet werden, definieren, um so eine einheitliche Terminologie der Begriffe zu entwickeln. Dadurch wird ein gemeinsames Verständnis erzeugt.

2.1.1 Methodik der Anforderungsanalyse

Die Anforderungsanalyse leitet sich aus dem thematischen Komplex des "Requirements-Engineering" ab, die verschiedene Bedeutungsvarianten besitzt – dabei "[...] steht [es] einmal für alle konkreten Aktivitäten am Beginn einer Systementwicklung, die auf eine Präzisierung der Problemstellung abzielen. Ebenso steht es aber auch für eine ganze Teildisziplin im Grenzbereich zwischen Systems-Engineering, Informatik und Anwendungswissenschaften." Diese Analyse soll, laut der herrschenden Meinung der Wissenschaft, am Anfang jeder Systementwicklung stehen, um so bestimmte Vorgehensweise anzuwenden. Dabei entstehen, wenn der später weiter definierte Prozess verfolgt wird, viele systematisch verbundene Dokumente, die Anforderungen enthalten. So ist jede Anforderung wieder ein Cluster von kleineren Anforderungen, die miteinander verbunden sind. Diese werden durch den IEEE-Standard 1220 definiert als "a statement that identifies a product or process operational, functional, or design characteristic or constraint, which is unambiguous, testable or measurable, and necessary for product or process acceptability (by consumers or internal quality assurance guidelines)." Dieser

⁶Partsch 2010, S.19.

⁷IEEE 2005, S.9.

Kapitel 2 Forschungsfrage 1

Standard legt mit höchster Priorität den Fokus auf die Formulierung einer Anforderung als elementar wichtig für das Produkt bzw. für das Erreichen der Akzeptanz des Produktes. Ziel der Analyse ist es, funktionale und nicht-funktionale Anforderungen zu identifizieren und diese testbar zu dokumentieren. Funktionale Anforderungen definieren genau, was ein System später erfüllen muss, sie ergeben sich aus der Fragestellung "Was tut das System?/Was soll es aufgrund der Aufgabenstellung können?" Nichtfunktionale Anforderungen konkretisieren die Qualitätsansprüche an das System, die Forderung an das zu implementierende System als Ganzes, sowie Randbedingungen, die aus Projekt-/Prozess-/Unternehmensbedingungen resultieren können. 9

Abbildung 2.1: Entwicklungsprozess der Anforderungen Quelle: in Anlehnung an Hull, Jackson und Dick 2011, S.28

Das "statement of needs" ist der Startpunkt für die Entwicklung einer Anforderung die am Ende des Prozesses, der in Abbildung 2.1 dargestellt ist, präzise dokumentiert sein wird. Dieses ist am Anfang immer ein Ausdruck eines Anspruchs oder Wunsches an das zu entwerfende System; dabei bildet das "statement" und die "stakeholder requirements" die "problem domain". Diese definiert grundständige Methodik, wie auch eine nicht-technische Herangehensweise, die auf die Projektbeteiligten ("stakeholder") angepasst ist. Nachfolgend werden die Projektbeteiligen als "stakeholder" bezeichnen, dabei ist die Rolle beschrieben als "(Stakeholder) sind Personen oder Organisationen, die ein potenzielles Interesse an einem zukünftigen System haben und somit in der Regel auch Anforderungen an das System stellen." ¹⁰ Später definiert die "problem domain" den Zweck des Systems – dadurch ist bei der Ermittlung der Anforderungen

⁸Partsch 2010, S.27.

⁹vgl. Partsch 2010, S.27-29.

¹⁰Partsch 2010, S.8.

Kapitel 2 Forschungsfrage 1

die Frage "Was ist der Zweck des Systems?" anstelle "Was soll das System ihrer Meinung nach tun?". Dies soll die "stakeholder" extrinsisch motivieren über den Zweck des zu entwerfenden Systems und nicht über einen möglichen Lösungsweg (das Wie) nachzudenken. Durch diesen Ansatz folgen Antworten nach dem Muster "Ich möchte etwas tun können ..." – wissenschaftlich bzw. literarisch betrachtet sind diese Form der Anforderungen als "capability requirement(s)" bekannt. Sie stellen die wichtigsten Erkenntnisse in der "problem domain" dar. Nun wird im weiteren Verlauf ein Modell konstruiert, das den Projektbeteiligten, den "stakeholder", präsentiert wird. Dies unterliegt der Einschränkung, dass es jede/jedem Projektbeteiligte/n versteht. Denn sie validieren das konstruiert Modell in jedem weiteren Schritt, der in Abbildung 2.1 auf der vorherigen Seite, ersichtlich ist. Die Anforderungen an das Modell sind quantitativ gering: es muss nicht-technisch sein und es muss geeignet sein die Anforderungen an das Systems abzubilden. Eine solche Darstellung ist dann geeignet, wenn sie den gewünschten Zweck an das System abbildet, das heißt, dass sie keine technischen Details zeigt, sondern einen Überblick bietet. Ein "use scenario"¹² wird meist verwendet, da es sich eignet menschliche Aktionen bzw. Ziele darzustellen. Abschließend müssen die "stakeholder"-Anforderungen folgende Kriterien erfüllen:

- kurz und prägnant formulierte Beschreibung, jedoch einfach zu verstehen und
- gleichzeitig sollten sie nicht-technisch aber realistisch formuliert sein.

Die "solutions domain", die auf Abbildung 2.1 auf der vorherigen Seite zu sehen ist, ist die Nachfolgerin von der "problem domain". Der Hauptunterschied zwischen den beiden Bereichen ist, dass die "solution domain" idealtypisch qualitativ hochwertig beschriebene Anforderungen als "Input" bekommt. Dazu konträr erhält die "problem domain" vage formulierte Wunschliste oder einem nicht klar definierten Ziel als initialen "Input". Ausgehend von der Aussage von E. Hull, "in an ideal world, all the requirements would be clearly articulated, individual test able requirements", 13 ist zu deduzieren, dass viele Ebenen zu erforschen gibt, um dieser Aufforderung zu entsprechen. So muss iterativ in jeder Ebene eine neue Analyse des "Inputs" erfolgen, um einen Ausgangspunkt für das weitere Vorgehen zu initialisieren. Die Komplexität diese Ebenen ist anhängig von dem Grad der Innovation sowie vom Kontext des zu entwickelnden Systems. Jede Entscheidung während des Prozess kann mögliche Entscheidungspfade in einer anderen Ebene verhindern. Ziel des Prozesses ist es, ein Anforderungsdokument/-katalog zu entwerfen, das laut der gesichteten Literatur in verschiedenen Repräsentationen vorliegen kann. Dennoch sollten primäre Bestandteile, wie die Rahmenbedingungen, die Projektbeteiligten, die Projektaspekte und die funktionale/nicht-funktionale Anforderungen, enthalten sein. Ein Beispiel dieses Katalogs ist im Anhang A.1 auf Seite XII zur Ansicht enthalten.

¹¹vgl. Hull, Jackson und Dick 2011, S.94.

¹²vgl. Hull, Jackson und Dick 2011, S.94.

¹³Hull, Jackson und Dick 2011, S.115.

Kapitel 2 Forschungsfrage 1

2.1.2 Cloud Computing

2.1.3 Container

Definition

Grundgedanken und Architektur

Docker, Inc. als Anbieter

- 2.1.4 "Deployment"
- 2.2 Ist-Analyse des jetzigen "Deployment"-Prozesses
- 2.3 Konzeption eines container-basierten, automatisierten "Deployments"
- 2.4 Ergebnis der Forschungsfrage eins

3 Welche wirtschaftlichen Vorteile hat der Einsatz von Container auf den Prozess des automatisierten "Deployments"?

4 Welche besonderen sicherheitstechnischen Aspekte muss ein solcher Prozess im Bereich der Versicherung erfüllen?

Diese Kapitel ...

Informations- und Kommunikationssysteme sind in der heutigen Gesellschaft von elementarer Bedeutung – sie spielen eine immer größer werdende Rolle. Der Innovationsgrad in der Informationstechnik ist konstant hoch und deswegen sind folgende Bereiche ständiger Weiterentwicklung unterlegen: steigende Vernetzung der Bevölkerung, IT-Verbreitung und Durchdringung, verschwinden der Netzgrenzen, kürze Angriffszyklen auf wichtige Infrastruktur, höhere Interaktivität von Anwendungen und die Verantwortung der Benutzer eines IT-Systems. ¹⁴

4.1 Sicherheitstechnische Anforderungen an den Betrieb einer Anwendung

Informationen sind elementarer Bestandteil der heutigen Welt – diese sind von sehr hohem Wert für Unternehmen und Behörden. Die meisten Geschäftsprozesse, die im heutigen Prozessablauf einer Organisation verankert sind, funktionieren nicht ohne IT-Unterstützung. Somit ist die Informationstechnologie elementarer Bestandteil jedes Unternehmens. Deswegen ist ein zuverlässiges System mit entsprechender Softund Hardware unerlässlich. Es muss darauf geachtet werden, dass die Informationen, die auf diesen System verteilt sind, ausreichend gut geschützt sind, damit es nicht zu einer Bedrohungslage kommt. Unzureichend geschützte Systeme stellen ein sehr hohes Risiko dar. "Dabei ist ein vernünftiger Informationsschutz ebenso wie eine Grundsicherung der IT schon mit verhältnismäßig geringen Mitteln zu erreichen. Die verarbeiteten Daten und Informationen müssen adäquat geschützt, Sicherheitsmaßnahmen sorgfältig geplant, umgesetzt und kontrolliert werden. Hierbei ist es aber wichtig, sich nicht nur auf die Sicherheit von IT-Systemen zu konzentrieren, da Informationssicherheit ganzheitlich betrachtet werden muss. Sie hängt auch stark von infrastrukturellen,

¹⁴vgl. Bundesamt für Sicherheit in der Informationstechnik (BSI) 2020, S.2f.

Kapitel 4 Forschungsfrage 3

organisatorischen und personellen Rahmenbedingungen ab. "¹⁵ Die Mängel in der IT-Sicherheit führen meist zu folgenden drei Kategorien von Problemen¹⁶:

- Verlust der Verfügbarkeit
- Verlust der Vertraulichkeit
- Verlust der Integrität

Der Verlust der Verfügbarkeit eines IT-Systems fällt in der Regel (i.d.R.) sofort auf, da meist Aufgaben ohne diese Informationen nicht weitergeführt werden können. Meist fällt dies in dem Verlust der Funktionen eines Systems auf. Die Vertraulichkeit von personenbezogenen Daten ist ein bestehendes Grundrecht jedes Bürgers beziehungsweise jedes Kunden. Dies ist in verschiedenen Gesetzen wie auch Verordnung geregelt. Diese Daten müssen geschützt werden, da jedes Konkurrenzunternehmen Interesse an den Daten des Unternehmens hat. "Gefälschte oder verfälschte Daten können beispielsweise zu Fehlbuchungen, falschen Lieferungen oder fehlerhaften Produkten führen. Auch der Verlust der Authentizität (Echtheit und Überprüfbarkeit) hat, als ein Teilbereich der Integrität, eine hohe Bedeutung: Daten werden beispielsweise einer falschen Person zugeordnet. So können Zahlungsanweisungen oder Bestellungen zulasten einer dritten Person verarbeitet werden, ungesicherte digitale Willenserklärungen können falschen Personen zugerechnet werden, die digitale Identität wird gefälscht."¹⁷

4.1.1 IT-Sicherheit: Grundnorm ISO 27001

4.1.2 IT-Grundschutz-Katalog

4.1.3 Versicherungsaufsichtliche Anforderungen an die IT (VAIT)

4.2 Beschaffung von "open source"-Software

In der SVI gibt es, wie in den meisten anderen Unternehmen, eine prozessorientierte Vorgehensweise, um Software zu beschaffen. Die Beschaffung von Software orientiert sich an ITIL Version 4 – formal ist die Beschaffung von Software mit Hilfe eines

¹⁵Bundesamt für Sicherheit in der Informationstechnik (BSI) 2020, S.1.

¹⁶vgl. Bundesamt für Sicherheit in der Informationstechnik (BSI) 2020, S.1ff.

¹⁷Bundesamt für Sicherheit in der Informationstechnik (BSI) 2020, S.1.

Kapitel 4 Forschungsfrage 3

"service requests" ¹⁸ zu beantragen. Für die Verteilung der Anwendung müssen danach mehrere "changes" eingereicht werden. Im weiteren Verlauf wird die "open source" ¹⁹-Variante beleuchtet, da es sich bei den verwendeten Containern, die von Docker Inc. angeboten werden, um diese Variante handelt. Definitionsgemäß muss "open source"-Software laut Opensource.org 2020 folgende Kriterien erfüllen: "free redistribution, source code, derived works, integrity of the author's source Code, no discrimination against persons or groups, no discrimination against fields of endeavor, distribution of license, license must not be specific to a product, license must not restrict other software, license must be technology-neutral".

Es gibt in der SVI drei Prozesse, die sich in zwei Aspekten unterscheiden: die Kosten und die Anforderungen, die an einen Prozess gestellt werden. Folgende Anfragen gibt es: die Beschaffungsanfrage, die "freeware"-Beschaffung und die juristische Prüfung von Vertragsdokumenten oder Sachverhalten. Die Beschaffungsanfrage wird bei kostenpflichtiger Software beantragt. Da es in diesem Kapitel um die kostenlose Software geht, wird auf die weitere Ausführung dieser Anfrage verzichtet. Der Prozess "freeware"-Beschaffung wird laut den Juristen der Abteilung IT-Einkauf/-Recht (IU11) kaum²⁰ verwendet, denn die Fachbereiche²¹ (die IT-Abteilungen) arbeiten zum jetzigen Zeitpunkt an dem Prozess vorbei – sie übergehen wissentlich diesen. Folgende Probleme haben sich bei der Befragung der Fachbereiche herausgestellt: die Anforderungen, die dieser Prozess an sie stellt, sind "nicht verhältnismäßig" gegen über dem Nutzen; die Fachbereiche wissen nicht, dass es einen solchen Prozess gibt oder ignorieren diesen. Die Anforderungen/Kriterien, die die Abteilung IU11 festgelegt hat, sind folgende: es muss eine Produktverantwortliche definiert werden, es muss eine Architekturfreigabe von den zuständigen "Entreprise"-Architekten beantragt werden und es muss der genaue, angedachte Verwendungszweck der einzukaufenden "freeware/open source"-Software definiert werden. Diese Hürden, aus Sicht der IT-Abteilung, erfüllen nicht die Kosten-Nutzen-Konformität. Aus rechtlicher Sicht ist das ein sehr hoch zu bewertendes Risiko, da es zu unmittelbaren juristischen Konsequenzen führen kann. Deswegen nutzt die IT-Abteilung meist den rechtlichen Prozess (juristische Prüfung von Vertragsdokumenten oder Sachverhalten) da dieser nicht die oben genannten Hürden enthält. Bei diesem wird der Verwendungszweck der Software erfragt und die Lizenz dieser durch IU11 geprüft. Jedoch ist davon auszugehen, dass eine offizielle Beschaffungsanfrage bei "open source"-Software in wenigen²² Fällen gestellt wird. Begründet durch die Administrator-Berechtigung, die es Benutzern erlaubt ohne Restriktionen alles auf ihrem Computer zu installieren, kann keine numerische Aus-

¹⁸a request from a user or a user's authorized representative that initiates a service action which has been agreed as a normal part of service delivery. Quelle: AXELOS Limited und Stationery Office (Great Britain) 2019, S.195

 $^{^{19}}$ ausführliche Definition 0.1 auf Seite X

 $^{^{20}}n \leq 5, n \in \mathbb{N}_0,$ gemessen p. a.

 $^{^{21}}$ aus Sicht von IU11

 $^{^{22}}n \leq 10, n \in \mathbb{N}_0$, gemessen p. a.

Kapitel 4 Forschungsfrage 3

sage über die Dunkelziffer getroffen werden. Es bleibt nur die Hypothese der Juristen der Abteilung IU11, die weder falsifizierbar noch validierbar ist.

Ist die Software in der AWL implementiert, gibt es noch eine Anwendung, Nexus Lifecycle von sonatype, die auf eventuelle Schwachstellen dieser benutzten Software prüft. Nexus Lifecycle ist eine Hilfsanwendung, die u. a. auch von Creditreform verwendet wird. Das Ziel dieses Produktes ist es, die gesamte Software-"Supply Chain" kontinuierlich zu bereinigen und sicher zu halten. Aus dem Prüfbericht werden dann entsprechende Maßnahmen abgeleitet. Die erste ist die Software, in der die Schwachstelle gefunden wurde, als unsicher zu markieren und danach zu sperren. Nun müssen die Entwicklungsabteilung versuchen die Schwachstellen zu beseitigen. Problematisch ist es, wenn diese ignoriert werden. In letzter Konsequenz wird der Betrieb und die Verteilung der Anwendung gestoppt. Dies führt zu massiven Problem in der Produktion und somit verringert sich die vertragliche, mit dem Kunden vereinbarte, Verfügbarkeit der Systeme.

4.3 Konzept zur Implementierung der Sicherheitsanforderungen

4.4 Ergebnis der Forschungsfrage drei

 $^{^{23}}$ vgl. Sonatype Inc. 2020.

5 kritische Betrachtung

- 5.1 Zusammenfassung der Erkenntnisse
- 5.2 Fazit
- 5.3 Ausblick

Literaturverzeichnis

- Atomic Requirement Download (19. Aug. 2019). URL: https://www.volere.org/atomic-requirement-download/.
- AXELOS Limited und Stationery Office (Great Britain) (2019). ITIL® Foundation, ITIL 4 edition. v4. OCLC: 1122856407. Norwich: TSO (The Stationery Office). ISBN: 9780113316076. URL: https://www.axelos.com/getmedia/5896d51f-ab6c-4843-992b-4f045eab0875/ITIL-4-Foundation-glossary_v0_22.aspx (besucht am 10.03.2020).
- Bundesamt für Sicherheit in der Informationstechnik (BSI) (2020). IT-Grundschutz-Kompendium. 2020. Aufl. OCLC: 1027470677. Bundesanzeiger Verlag GmbH. 816 S. ISBN: 9783846209066. URL: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Kompendium/IT_Grundschutz_Kompendium_Edition2020.pdf?_blob=publicationFile&v=6 (besucht am 09.03.2020).
- Dilbert on Kubernetes (11. Aug. 2017). URL: https://miro.medium.com/max/1024/1*RODEnf 7sjswuBHouioQFg.jpeg.
- Hull, Elizabeth, Ken Jackson und Jeremy Dick (2011). Requirements engineering. 3rd ed. London; New York: Springer. 207 S. ISBN: 9781849964043 9781849964050.
- IEEE (2005). "IEEE Standard for Application and Management of the Systems Engineering Process". In: *IEEE Std 1220-2005 (Revision of IEEE Std 1220-1998)*, S. 1–96. DOI: 10.1109/IEEESTD.2005.96469.
- Opensource.org (2020). The Open Source Definition. The Open Source Definition. URL: https://opensource.org/osd (besucht am 10.03.2020).
- Partsch, Helmuth (2010). Requirements-Engineering systematisch: Modellbildung für softwaregestützte Systeme. 2., überarb. und erw. Aufl. eXamen.press. OCLC: 845656932. Berlin: Springer. 394 S. ISBN: 9783642053580 9783642053573. URL: http://dx.doi.org/10.1007/978-3-642-05358-0.
- Red Hat, Inc. (2020a). OpenShift Container Platform by Red Hat, Built on Kubernetes. OpenShift Container Platform by Red Hat, Built on Kubernetes. URL: https://www.openshift.com/ (besucht am 11.03.2020).
- Red Hat, Inc. (2020b). Red Hat Wir entwickeln Open Source-Technologien für Unternehmen. Red Hat Wir entwickeln Open Source-Technologien für Unternehmen. URL: https://www.redhat.com/de (besucht am 11.03.2020).

Kapitel 5 Literaturverzeichnis

Sonatype Inc. (2020). Nexus Lifecycle Product. Nexus Lifecycle Product. URL: https://de.sonatype.com/product-nexus-lifecycle?utm_campaign=NVS&utm_source=ppc&utm_medium=adwords&ahcsource=paid&utm_term=%2Bnexus%20%2Blifecycle&hsa_tgt=kwd-437257894053&hsa_grp=90875397990&hsa_src=s&hsa_net=adwords&hsa_mt=b&hsa_ver=3&hsa_ad=406628330148&hsa_acc=2665806879&hsa_kw=%2Bnexus%20%2Blifecycle&hsa_cam=8625747087&gclid=EAIaIQobChMIgsvQt8mP6AIVh-h3Ch29zQJJEAAYASAAEgK02fD_BwE (besucht am 10.03.2020).

Volere Requirements Specification Template (19. Aug. 2019). URL: https://www.volere.org/templates/volere-requirements-specification-template/.

DHBW Mannheim XI

A Ergänzungen zur Forschungsfrage eins

In diesem Teil des Anhangs sind Ergänzungen zur Forschungsfrage zwei des Kapitels 3 auf Seite 8 beschrieben.

A.1 Anforderungsdokument

Ein Anforderungskatalog hat bestimmte Anforderungen, die an den Katalog gestellt werden. Neben der Forderung nach Einhaltung der Qualitätskriterien, definiert nach dem ISO-Standard 9000/9001, sind noch folgende Forderungen in der Literatur beschrieben:²⁴

- vollständig (inhaltlich d. h., alle Anforderungen sind erfasst –, formal, Norm-konform)
- konsistent (keine Widersprüche zwischen den Bestandteilen des Dokuments, insbesondere keine Konflikte zwischen verschiedenen Anforderungen)
- lokal änderbar (Änderungen an einer Stelle sollten keine Einflüsse auf Konsistenz und Vollständigkeit des Gesamtdokuments haben)
- verfolgbar (ursprüngliche Stakeholderwünsche und Zusammenhänge zwischen Anforderungen sind leicht zu finden)
- klar strukturiert
- umfangsmäßig angemessen
- sortierbar/projezierbar (nach verschiedenen Kriterien, für verschiedene Stakeholder).

Die folgende Aufzählung beschreibt eine Vorlage für das Anforderungsdokument nach Quelle: Sie nutzt die Hilfsmittelsammlung "Volere". Diese bietet im Themenbereich "requirements engineering" kostenpflichtig Dokumentenvorlagen an. Die beiden Bekanntesten sind die hier gezeigte "Volere Requirements Specification Template" und das kostenlose "Volere Atomic Requirement Template", das umgangssprachlich "Snow Card" genannt wird. Die "Snow Card" (A.1 auf Seite XV) ist eine Karteikarte, die

DHBW Mannheim XII

²⁴sig. Partsch 2010, S.34.

benutzt wird, um eine vollständige Aufnahme aller Informationen einer einzelnen Anforderung zu gewährleisten. 25 Die folgende Liste wurde in Anlehnung an die Quelle Volere Requirements Specification Template 2019 erstellt.

DHBW Mannheim XIII

²⁵vgl. Atomic Requirement Download 2019.

- Projekt-Treiber
 - 1. Zweck des Projekts
 - 2. Auftraggeber, Kunde und andere Stakeholder
 - 3. Nutzer des Produkts
- Projekt-Randbedingungen
 - 1. Einschränkungen
 - 2. Namenskonventionen und Definitionen
 - 3. Relevante Fakten und Annahmen
- Funktionale Anforderungen
 - 1. Arbeitsrahmen
 - 2. Systemgrenzen
 - 3. Funktionale und Daten-Anforderungen
- Nicht-funktionale Anforderungen
 - 1. Look-and-Feel-Anforderungen
 - 2. Usability-Anforderungen
 - 3. Performanz-Anforderungen
 - 4. Operationale und Umfeld-Anforderungen
 - 5. Wartungs- und Unterstützungsanforderungen
 - 6. Sicherheitsanforderungen
 - 7. Kulturelle und politische Anforderungen
 - 8. Rechtliche Anforderungen
- Projekt-Aspekte
 - 1. Offene Punkte
 - 2. Standardlösungen
 - 3. Neu aufgetretene Probleme
 - 4. Installationsaufgaben
 - 5. Migrationstätigkeiten
 - 6. Risiken
 - 7. Kosten
 - 8. Nutzerdokumentation
 - 9. Zurückgestellte Anforderungen
 - 10. Lösungsideen

DHBW Mannheim XIV

Requirement #: Requirement Type: Event/BUC/PUC #:

Description:

Rationale:

Originator: Fit Criterion:

Customer Satisfaction: Priority:

Supporting Materials: History:

Customer Dissatisfaction: Conflicts:

Abbildung A.1: Volere Snow Card Quelle: Atomic Requirement Download 2019

DHBW Mannheim XV

B Ergänzungen zur Forschungsfrage zwei

DHBW Mannheim XVI

C Ergänzungen zur Forschungsfrage drei

DHBW Mannheim XVII

Ehrenwörtliche Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit mit dem Thema: Integration
einer Container-Umgebung in einen automatisierten Deployment-Prozess und die Un-
tersuchung ihrer Effekte auf diesen selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe. Ich versichere zudem, dass die
eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

Ort, Datum	Yves Torsten Staudenmaier

DHBW Mannheim XVIII