CLAIMS

We claim:

1	1. A gasification reactor vessel, comprising:
2	a pressure shell, said pressure shell having an encircling body wall and
3	shell ends at each of opposite ends of the body wall;
4	a plurality of cooling ducts extending around an outer surface of said
5	body wall, said ducts being fixedly connected to said outer surface, interior spaces of said
6	cooling ducts communicating with said outer surface;
7	a fluid supply conduit communicating with said cooling ducts;
8	a fluid discharge conduit communicating with said cooling ducts; and
9	a lining of a refractory encircling an inner surface of said encircling
10	body wall.
1	2. A gasification reactor vessel according to claim 1, wherein each cooling
2	duct comprises a pair of spaced webs fixedly connected at common edges of each to said body
3	wall outer surface, and an arcuate segment joining opposite edges of said webs.
1	3. A gasification reactor vessel according to claim 2, wherein the webs of
2	each duct are fixedly connected to said body wall outer surface with welded connections.
1	4. A gasification reactor vessel according to claim 2, wherein said ducts
2	extend longitudinally of said body wall, said fluid supply and fluid discharge conduits are
3	appular and located, respectively, at one of two apposite, ends of said shell hody

1	5. A gasification reactor vessel according to claim 4, wherein said ducts
2	each are spaced on said body wall outer surface circularly from ducts adjacent thereto.
1	6. A gasification reactor vessel according to claim 4, wherein said ducts are
2	arrayed circularly around said body wall outer surface with each duct in abutment with ducts
3	adjacent thereto.
1	7. A gasification reactor vessel according to claim 2, wherein said ducts
2	extend circularly around said body wall outer surface, said fluid supply and fluid discharge
3	conduits being annular and disposed, respectively, at one of two opposite ends of said shell
4	body .
1	8. A gasification reactor vessel according to claim 7, wherein said ducts are
2	arranged obliquely of a central axis of said body wall.
1	9. A gasification reactor vessel according to claim 8, wherein said ducts
2	extend in a spiral course around said body wall outer surface.
3	10. A gasification reactor vessel according to claim 7, wherein each duct
4	encircles said body outer wall surface spaced from ducts adjacent thereto.
1	11. A gasification reactor vessel according to claim 1, wherein said

refractory lining comprises at least two separate concentric layers of refractory material.

2

A gasification reactor vessel according to claim 11, wherein the 12. 1 refractory material is at least one of a ceramic and polytetrafluoroethylene. 2 A method for gasification of ash-free and low ash fuels, residues and 13. 1 2 waste comprising: reacting said fuels, residues and waste with an oxygen-containing 3 oxidizing agent in a reaction space of a pressure vessel of a fly stream reactor, said pressure 4 5 vessel having a refractory lining therein: and regulating a temperature of said pressure vessel so that said temperature 6 is above a dew point temperature of any water contained in a gas atmosphere present in said 7 8 reaction space. A method according to claim 13 further comprising setting a pressure of 14. 1 the coolant flowable in said ducts irrespective of a pressure present in said reaction space, 2 whereby the temperature of said pressure vessel can be regulated for maintaining said pressure 3 vessel temperature above a dew point temperature in the reaction space. 4 A method according to claim 13, wherein the temperature of said 15. 1 pressure vessel is regulated to be more than at least about 5° C above the dew point of any gas 2 atmosphere water present in said reaction space. 3 A method according to claim 13, wherein said pressure vessel has 16. 1 cooling ducts on an outer surface of said pressure vessel for regulating the temperature of said 2

- 3 pressure vessel with coolant flowable through said ducts, and regulating pressure vessel
- 4 temperature with coolant which is above or below coolant boiling point.