20th CSEC – Past Year Paper Solution 2015-2016 Sem 2 MH 1812 – Discrete Mathematics

1) $p \land q \rightarrow p \lor q$;

Therefore, the first clause is true. Now the validity of the argument depends on the validity of r only. $r \rightarrow s$;

No other information about s is given, we cannot infer the validity of r from this argument.

$$(\neg r \rightarrow q) = r \wedge q;$$

Since we know g is true, this argument does not imply the validity of r.

 $p \vee r$;

Since we know p is true, this argument does not imply the validity of r as well.

Hence the validity of r is undecidable from the premises given.

The validity of the argument $(p \lor q) \land r$ is undecidable.

2)

a) Prove that $S \cup T \subset U$

Suppose $x \in S \cup T$, then:

x is divisible by both 2 and 3.

Since 1cm(2,3) = 6,

x is divisible by 6

Therefore $x \in U$

Prove that $U \subset S \cup T$

Suppse $y \in U$, then

y is divisible by 6

Since 6 = 1 cm (2,3),

y is divisible by both 2 and 3.

Therefore $x \in S \cup T$

b) The proposition $\neg(\forall x \in U, \exists y \in T, x \cdot y \notin S)$ is true

It is equivalent to $(\forall x \in U, \forall y \in T, x \cdot y \in S)$

Suppose $x \in U, y \in T$, then

x is divisible by 6, y is divisible by 3

Since x is divisible by 6, x must be divisible by 2.

 $x \cdot y$ must be divisible by 2

Therefore for all x in U, for all y in T, $x \cdot y$ belongs to $S(\forall x \in U, \forall y \in T, x \cdot y \in S)$.

$$\therefore \neg (\forall x \in U, \exists y \in T, x \cdot y \notin S)$$
 is true

3)

a) From $a_n = 7a_{n-1} - 12a_{n-2}$, we have the characteristics equation:

$$s^2 - 7s + 12 = 0$$

Solving the equation, we have

$$s_1 = 3, s_2 = 4$$

$$\Rightarrow a_n = \alpha s_1^n + \beta s_2^n$$

$$a_0 = 2, a_1 = 3$$

$$\alpha + \beta = 2$$

$$3\alpha + 4\beta = 3$$

20th CSEC – Past Year Paper Solution 2015-2016 Sem 2 MH 1812 – Discrete Mathematics

Solving for α and β , we have $\alpha=5, \beta=-3$ $\therefore \alpha_n=5\times 3^n-3\times 4^n$

b) It is easily verifiable that
$$D_2=(2-1)(D_1+D_0)=n!\sum_{k=0}^2\frac{(-1)^k}{k!}=1$$

$$\therefore D_n=n!\sum_{k=0}^n\frac{(-1)^k}{k!}$$

holds for n = 2. Suppose that

$$D_{p-2} = (p-2)! \sum_{k=0}^{p-2} \frac{(-1)^k}{k!}$$
 and $D_{p-1} = (p-1)! \sum_{k=0}^{p-1} \frac{(-1)^k}{k!}$

holds for some integer p

$$D_{p} = (p-1)(D_{p-1} + D_{p-2})$$

$$D_{p} = (p-1)\left((p-1)! \sum_{k=0}^{p-1} \frac{(-1)^{k}}{k!} + (p-2)! \sum_{k=0}^{p-2} \frac{(-1)^{k}}{k!}\right)$$

$$D_{p} = (p-1) \times (p-1)! \sum_{k=0}^{p-1} \frac{(-1)^{k}}{k!} + (p-1)! \sum_{k=0}^{p-2} \frac{(-1)^{k}}{k!}$$

$$D_{p} = (p-1) \times (p-1)! \left(\frac{(-1)^{p-1}}{p-1!}\right) + p! \sum_{k=0}^{p-2} \frac{(-1)^{k}}{k!}$$

$$D_{p} = (p-1) \times (-1)^{p-1} + p! \sum_{k=0}^{p-2} \frac{(-1)^{k}}{k!}$$

$$D_{p} = (-1)^{p} + p(-1)^{p-1} + p! \sum_{k=0}^{p-2} \frac{(-1)^{k}}{k!}$$

$$D_{p} = p! \left(\frac{(-1)^{p}}{p!} + \frac{(-1)^{p-1}}{(p-1)!}\right) + p! \sum_{k=0}^{p-2} \frac{(-1)^{k}}{k!}$$

$$D_{p} = p! \sum_{k=0}^{p} \frac{(-1)^{k}}{k!}$$

Therefore, since $D_0 = 1$, $D_1 = 0$

$$D_p = p! \sum_{k=0}^{p} \frac{(-1)^k}{k!}$$

holds for all $n \geq 2$.

4)

a)

i) Is R reflexive? No. A counterexample can be given:

$$1 \not\equiv 1^3 - 1 \pmod{3}$$

20th CSEC – Past Year Paper Solution 2015-2016 Sem 2 MH 1812 – Discrete Mathematics

ii۱	lc R c	ymmetric?	Νο Δ	counter	evamnle	can h	ne gi	Ven
ш	12 12 2	viiiiietiici	INO. A	counter	example	Call L	ש או	ven

$$0 \equiv 2^3 - 2 \pmod{3}$$

However,

$$2 \not\equiv 0^3 - 0 \pmod{3}$$

iii) Is R transitive? No. A counterexample can be given:

$$0 \equiv 2^3 - 2 \pmod{3}$$

$$2 \equiv 8^3 - 8 \pmod{3}$$

However,

$$0 \not\equiv 8^3 - 8 \pmod{3}$$

b)

i) The cardinality of the set T of all functions $f: S \to S$ is

$$|T| = n^n$$

ii) The cardinality of the set U is equal to the number of permutations for n symbols:

$$|U| = A_n^n = n!$$

5)

a)

- i) X has a Euler path since it has exactly 2 vertices with odd degree. Y has a Euler path by the same reasoning.
- ii) Neither X nor Y have a Euler circuit since they have odd degree vertices.
- iii) X and Y both have Hamilton circuit (starting from the vertex in the center of each hexagon. Go to any other vertex that it is linked to. Go around the hexagon in such a way that the 3rd vertex of the path is not connected to the center. Finally, go back to the center vertex).
- b) No. X and Y have different numbers of edges.

--End of Answers--

Solver: Li Shanlan