(5%) The constrained 1-center problem: Given n planar points and a straight line L, find a smallest circle, whose center is restricted to lying on L, to cover these n points. The following lists an algorithm for solving this problem. Evaluate the time complexity, T(n), of this algorithm using the recurrence relation of T(n).

Input: n points and a straight line L: y = y'.

Output: The constrained 1-center on L.

Step 1. If n is no more than 2, solve this problem by a brute-force method.

Step 2. Form disjoint pairs of points $(p_1, p_2), (p_3, p_4), ..., (p_{n-1}, p_n)$. If n is odd, let the final pair be (p_n, p_1) .

Step 3. For each pair of points, (p_i, p_{i+1}) , find the point $x_{i,i+1}$ on L such that $d(p_i, x_{i,i+1}) = d(p_{i+1}, x_{i,i+1})$.

Step 4. Find the median of the $\lceil n/2 \rceil$ numbers of $x_{i,i+1}$'s. Denote it as x_m .

Step 5. Calculate the distance between p_i and x_m for all i. Let p_j be the point which is the farthest from x_m . Let x_j denote the projection of p_j onto L. If x_j is to the left (right) of x_m , then the optimal solution, x^* , must be to the left (right) of x_m .

Step 6. If $x^* < x_m$, for each $x_{i,i+1} > x_m$, prune the point p_i if p_i is closer to x_m than p_{i+1} ; otherwise prune the point p_{i+1} . If $x^* > x_m$, for each $x_{i,i+1} < x_m$, prune the point p_i if p_i is closer to x_m than p_{i+1} ; otherwise prune the point p_{i+1} .

Step 7. Go to Step 1.

Pa .

reps. 31 # d(xm, pz), pz 西p;为d(xm, pz) 最大之墨b

> 含 p; 在 L 的 提影 為 X; 若 X; 在 Xm 之 左 (右) 便) 则 X^{*}在 Xm 之 左 (右) 便)

rtep 6. 若xt < Xm, 指氧Xi, xii > Xm 之 較靠近Xm 之里b

step 7. 近迴直至 B.C. = T(n)=T(3n)

 $\therefore \quad T(n) = T(\frac{2}{4}n) + O(n) = O(n).$