CS258: Information Theory

Fan Cheng

Spring, 2018. chengfan@sjtu.edu.cn

Recap: Lossy Source Coding

- Shannon source coding theorem
- Probability inequalities
- Typicality: Application of Law of large numbers

Lecture 5: Symbol Codes

- Introduction
- Kraft inequality
- Optimality of symbol codes
- Huffman Coding

Symbol codes

A (binary) symbol code \mathcal{C} for an ensemble X is a mapping from the range of x, $A_{\mathcal{X}} = \{a_1, ..., a_I\}$, to $\{0, 1\}^+$. c(x) will denote the codeword corresponding to x, and I(x) will denote its length, with $I_i = I(a_i)$.

Symbol codes

A (binary) symbol code \mathcal{C} for an ensemble X is a mapping from the range of x, $A_{\mathcal{X}} = \{a_1, ..., a_l\}$, to $\{0, 1\}^+$. c(x) will denote the codeword corresponding to x, and l(x) will denote its length, with $l_i = l(a_i)$.

Symbol codes

A (binary) symbol code \mathcal{C} for an ensemble X is a mapping from the range of x, $A_{\mathcal{X}} = \{a_1, ..., a_l\}$, to $\{0, 1\}^+$. c(x) will denote the codeword corresponding to x, and l(x) will denote its length, with $l_i = l(a_i)$.

The extended code C^+ is a mapping from $\mathcal{A}^+_{\mathcal{X}}$ to $\{0,1\}^+$ obtained by concatenation, without punctuation, of the corresponding codewords:

$$c^{+}(x_1, x_2, ..., x_N) = c(x_1)c(x_2)...c(x_N)$$

 $c^{+}(acdbac) = 100000100001010010000010$

Unique decoding

The decoding result should be unique

Unique decoding

The decoding result should be unique

Prefix code

A symbol code is called a prefix code if no codeword is a prefix of any other codeword.

 $\{0,101\},\;\{1,110\}$

Unique decoding

The decoding result should be unique

Prefix code

A symbol code is called a prefix code if no codeword is a prefix of any other codeword.

 $\{0,101\},\;\{1,110\}$

Question: Given a list of positive integers $\{l_i\}$, does there exist a uniquely decodeable code with those integers as its codeword lengths?

Question: Given a list of positive integers $\{I_i\}$, does there exist a uniquely decodeable code with those integers as its codeword lengths?

Kraft inequality

For any uniquely decodeable code C(X) over the binary alphabet $\{0,1\}$, the codeword lengths must satisfy:

$$\sum_{i=1}^{l} 2^{-l_i} \le 1$$

where $I = |\mathcal{A}_{\mathcal{X}}|$

Question: Given a list of positive integers $\{I_i\}$, does there exist a uniquely decodeable code with those integers as its codeword lengths?

Kraft inequality

For any uniquely decodeable code C(X) over the binary alphabet $\{0,1\}$, the codeword lengths must satisfy:

$$\sum_{i=1}^{l} 2^{-l_i} \le 1$$

where $I = |\mathcal{A}_{\mathcal{X}}|$

Completeness. If a uniquely decodeable code satisfies the Kraft inequality with equality then it is called a complete code.

Question: Given a list of positive integers $\{l_i\}$, does there exist a uniquely decodeable code with those integers as its codeword lengths?

Kraft inequality

For any uniquely decodeable code C(X) over the binary alphabet $\{0,1\}$, the codeword lengths must satisfy:

$$\sum_{i=1}^{l} 2^{-l_i} \le 1$$

where $I = |\mathcal{A}_{\mathcal{X}}|$

Completeness. If a uniquely decodeable code satisfies the Kraft inequality with equality then it is called a complete code.

Kraft inequality and prefix codes. Given a set of codeword lengths that satisfy the Kraft inequality, there exists a uniquely decodeable prefix code with these codeword lengths.

Expected Length

The expected length L(C, X) of a symbol code C for ensemble X is

$$L(C,X) = \sum_{x \in A_{\mathcal{X}}} P(x)I(x)$$

We may also write this quantity as

$$L(C,X) = \sum_{x \in \mathcal{A}_{\mathcal{X}}} p_i I_i$$

Expected Length

The expected length L(C,X) of a symbol code C for ensemble X is

$$L(C,X) = \sum_{x \in A_{\mathcal{X}}} P(x)I(x)$$

We may also write this quantity as

$$L(C,X) = \sum_{x \in \mathcal{A}_{\mathcal{X}}} p_i I_i$$

Source coding theorem for symbol codes

For an ensemble X there exists a prefix code ${\sf C}$ with expected length satisfying

$$H(X) \le L(C, X) < H(X) + 1$$

Expected Length

The expected length L(C,X) of a symbol code C for ensemble X is

$$L(C,X) = \sum_{x \in \mathcal{A}_{\mathcal{X}}} P(x)I(x)$$

We may also write this quantity as

$$L(C,X) = \sum_{x \in \mathcal{A}_{\mathcal{X}}} p_i I_i$$

Source coding theorem for symbol codes

For an ensemble X there exists a prefix code ${\sf C}$ with expected length satisfying

$$H(X) \le L(C, X) < H(X) + 1$$

$$I_i = \log_2(1/p_i)$$

Huffman coding

Reading and Exercise

Reading: Ch. 5 (David MacKay)

Exercise

5.14, 5.19, 5.20, 5.21, 5.27