Quantum Algorithms (Childs) 학습일지

김태원

2023년 9월 19일

선형대수

1.1 스펙트럼 이론

스펙트럼spectral 이론은 선형 연산자의 구조를 파악하기 위한 개념이다. 벡터공간 V에 대해 아래와 같은 선형변환이 존재하여 자기 자신과 곱할 수도 있고 제곱이나 다항식을 취할 수도 있다고 하자.

$$A:V \rightarrow V$$

스펙트럼 이론은 연산자를 작은 부분으로 나눠 각 부분을 따로 분석하자는 발상이다. 아래와 같은 식이 있다고 하자.

$$x_{n+1} = Ax_n, \quad n = 0, 1, 2, \dots,$$

여기서 $A:V\to V$ 는 선형변환이고 x_n 은 시간 n상의 계가 지니는 상태다. 초기 상태 x_0 이 주어질 때 시간 n상의 상태 x_n 을 알고자 한다거나 x_n 의 장기간 행태를 분석하고자 할 수 있다. 물론 $x_n=A^nx_0$ 이다. 하지만 n이 조금만 커져도 A^nx_0 을 계산하기어렵다. 이에 대한 도구가 바로 고윳값eigenvalues과 고유벡터다. 스칼라 λ 가 존재하여 아래를 만족한다고 하자.

$$Ax_0 = \lambda x_0$$

그렇다면 아래가 성립하며 λ는 스칼라이기에 계산이 어렵지 않다.

$$A^n x_0 = \lambda^n x_0$$

정의 1.1. 스칼라 λ 는 0이 아닌 벡터 $\nu \in V$ 가 존재하여 아래를 만족하는 경우

$$Av = \lambda v$$

연산자 $A: V \rightarrow V$ 의 고윳값이라고 하며 v는 A의 고유벡터라고 한다.

λ가 고윳값이라는 사실을 안다면 고유벡터를 어렵지 않게 찾을 수 있다. 그냥 아래

를 풀면 된다.

$$Ax = \lambda x$$

$$\Leftrightarrow (A - \lambda I)x = 0$$

정의 1.2. A의 스펙트럼 $\sigma(A)$ 는 A의 모든 고윳값의 집합이다.

기초

2.1 양자 데이터

큐비트는 복소벡터공간상의 ℓ_2 -정규화 벡터로 나타낼 수 있는 상태다. 이를테면 $\mathfrak n$ 큐비트의 상태는 아래처럼 적는다.

$$|\psi\rangle = \sum_{x \in \{0,1\}^n} a_x |x\rangle$$

이때 ℓ_2 -정규화 벡터란 $\mathbf{a}_{\mathbf{x}} \in \mathbb{C}$ 가 아래를 만족한다는 뜻이다.

$$\sum_{x} |\alpha_{x}|^{2} = 1$$

상태 $|x\rangle$ 의 기저를 계산기저 $computational\ basis$ 라고 부른다고 한다. 군 G에 대해 $g\in G$ 에 대응하는 기저 상태를 $|q\rangle$ 라고 나타내고, 군에 대한 임의의 중첩은 아래처럼 나타낸다.

$$|\phi\rangle = \sum_{g \in G} b_g |g\rangle$$

양자컴퓨터가 상태 $|\psi\rangle$ 와 $|\phi\rangle$ 를 저장할 때 총 상태는 이들 두 상태의 텐서곱으로 아래 처럼 나타낼 수 있다.

2.2 양자 회로

양자 상태에 대해 가할 수 있는 연산은 정규화된 상태에서 정규화된 상태로 사상하는 것이 있다. 이를 유니타리 연산자 U라고 부르고 U는 아래를 만족한다.

$$uu^\dagger=u^\dagger u=\mathrm{I}$$

2.3 보편 게이트 집합

원리상 n 큐비트에 대한 유니타리 연산은 모두 하나 혹은 두 개의 큐비트로 구성된 게이트만으로 구현할 수 있다. 따라서 이들 하나 혹은 두 개의 큐비트로 구성된 게이트의 집합은 보편적이라고 한다.

회로는 유니타리 연산에 적절하게 근사해야 한다. 게이트 U_1, U_2, \ldots, U_t 로 구성된 회로는 아래를 만족하는 경우 U에 정밀도 ϵ 으로 근사한다.

$$\|u-u_t\cdots u_2u_1\|\leq \varepsilon$$

여기서 $\|\cdot\|$ 은 노름 가운데 하나로 $\|\mathbf{U}-\mathbf{V}\|$ 가 작을 때 \mathbf{U} 를 \mathbf{V} 와 구분하기 어려워야 한다는 조건을 지닌다. 이런 노름 가운데 하나로 스펙트럼spectral 노름을 꼽을 수 있다.

$$\|A\| := \max_{|\phi\rangle} \frac{\|A|\psi\rangle\|}{\||\psi\rangle\|}$$

여기서 $\||\psi\rangle\| = \sqrt{\langle \psi | \psi \rangle}$ 는 $|\psi\rangle$ 의 2-노름을 나타낸다. 스펙트럼 노름은 A의 최대 특잇 \mathbb{E} 값 singular value으로 볼 수 있다. 벡터를 최대한 늘릴 수 있는 행렬로 생각하면 된다.