cases	doc_1		doc_2		decision	id
	authors	Olindo Zanotti Michael Dumbser Arturo Hidalgo Dinshaw S. Balsara	authors	O. Zanotti M. Dumbser A. Hidalgo D. Balsara		
	title	An ADER-WENO Finite Volume AMR code for Astrophysics	-	An ADER-WENO Finite Volume AMR code for Astrophysics 2014-01-24 00:00:00		
	publication_date	2014-01-24 00:00:00	source	SupportedSources.SEMANTIC_SCHOLAR	shown	
	source	SupportedSources.OPENALEX	journal volume	arXiv: Instrumentation and Methods for Astrophysics		
	journal	8th International Conference of Numerical Modeling of Space Plasma Flows	doi			1072
		(ASTRONUM 2013)	urls	• https://www.semanticscholar.org/paper/1a82e8a146daf1859243697d2bd454b7f800dde6		
	volume doi	488 None	id	 id-976187453671677469		
	urls	https://openalex.org/W2963139272		A high order one-step ADER-WENO finite volume scheme with Adaptive Mesh Refinement (AMR) in multiple space dimensions is presented. A high order one-step time discretization is achieved using a local space-time discontinuous Galerkin predictor method, while a high order spatial accuracy is obtained through a WENO		
	id	id-8587170392853109231		reconstruction. Thanks to the one-step nature of the underlying scheme, the resulting algorithm can be efficiently imported within an AMR framework on space-time adaptive meshes. We provide convincing evidence that the presented high order AMR scheme behaves better than traditional second order AMR methods. Tests are shown		
	abstract versions			of the new scheme for nonlinear systems of hyperbolic conservation laws, including the classical Euler equations and the equations of ideal magnetohydrodynamics. The proposed scheme is likely to become a useful tool in several astrophysical scenarios.		
	, C1 S1011S		versions			