

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar Automatizálási és Alkalmazott Informatikai Tanszék

Vezérlőegységek automatizált tesztelésére, programozására és kalibrálására szolgáló berendezés tervezése és megvalósítása

DIPLOMATERY

Budavári Ruben Pál Készítette Dr. Iváncsy Szabolcs $Egyetemi\ konzulens$

Banai András Külső konzulens

Tartalomjegyzék

1.	\mathbf{Bev}	ezetés		5
	1.1.		etőrendszer bemutatása	
	1.2.	Célok	és tesztelő berendezés	6
2.	Mér	endő j	elek	7
3.	Har	dver		8
	3.1.	Alkatr	észek kiválasztása	8
		3.1.1.	Mikrokontroller	8
		3.1.2.	GPIO bővítőmodul	9
		3.1.3.	Flash	9
		3.1.4.	3.3V-os táp	10
		3.1.5.	Analóg switch a programozáshoz	10
		3.1.6.	Digitális potenciométer	10
	3.2.	Kapcs	olások	11
		3.2.1.	Ellenállásosztók és ADC	11
		3.2.2.	Jumperellenőrző	11
		3.2.3.	Vezérlőegység tápellátása	12
		3.2.4.	Táppanelre terhelés kapcsolása	12
		3.2.5.	Tápvonalakon rövidzárteszt	13
		3.2.6.	Programozás, kiegészítők	14
	3.3.	Kapcs	olási rajz és PCB	15
4.	Firr	nware		15
5.	Érté	ékelés,	eredmények	15

HALLGATÓI NYILATKOZAT

Alulírott Budavári Ruben Pál, hallgató kijelentem, hogy ezt a diplomatervet meg nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül (vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2017. december 7.	
	hallgató

Összefoglaló

A diplomamunkám során a Leviathan Solutions Elektronikai és Fejlesztő Kft. által fejlesztett beléptető- és munkaidő-nyilvántartó rendszer részét képező mikrokontrolleres panelhez terveztem egy tesztelő berendezést. A mikrokontrolleres panel feladata az ajtóknál elhelyezett olvasóktól érkező adat feldolgozása és a jogosultságoknak megfelelően megfelelő reakció, például ajtónyitás vagy visszajelző relé meghúzása. A megtervezendő eszköz feladata, hogy kapcsolódjon a kontrolleres panel (ezután ACU) be- és kimeneteire, ellenőrizze, hogy azokon nincs-e rövidzár és hogy funkcionálisan is megfelelően működnek-e. A termékcsaládhoz tartozik egy táppanel is, ennek a kalibrációja során többféle feszültséget és terhelést kéne manuálisan kapcsolni az eszközre. A teszternek feladata ezt a folyamatot is automatizálni. A diplomamunkám során megterveztem a teszter kapcsolási rajzát, valamint pcb tervét és megírásra került hozzá a firmware is. A firmware-nek tudnia kell parancsokat és adatokat fogadnia ethernet kapcsolaton keresztül és ennek megfelelően tesztet futtania; ami lehet rövidzárteszt, táppanel kalibráció vagy egy kártyaolvastatás szimulálása, ami során ellenőrizzük, hogy megtörténik-e a megfelelő válasz az ACU részéről.

Abstract

1. Bevezetés

A diplomamunkám során első lépés volt megismerni a beléptetőrendszert és átbeszélnünk, hogy pontosan milyen teszteket szeretnénk elvégezni. Mivel jelenleg is több ACU van használatban jelenleg is és ezeknek a meghibásodása esetén szeretnénk megtudni, hogy mi okozta a hibát; valamint a legyártott eszközöknél jó lenne elleőriznünk, hogy jó lett-e mindenhol a beforrasztás és sikeres volt-e a firmware-feltöltés, ezért célszerű egy olyan eszköz, ami ezeket elvégzi automatikusan vagy cask minimális emberi beavatkozással. Sok óra munkát meg tudunk azzal spórolni, ha ezek a tesztek konzisztensen, gyorsan és minimális felügyelettel elvégezhetőek. Ezen felül automatikus tesztek futtatására is használható a teszter, például bizonyos események generálására adott válaszzal kell, hogy reagáljon a készülék. Az átbeszéltek alapján szükség van egy rövidzártesztre, ekkor még nem indítjuk el az ACU-t (nem adunk neki tápfeszültséget), hanem vizsgáljuk, hogy a kritikus pontokon nincs-e rövidzár. Második teszt futtatása, amikor elindítjuk az eszközt és megnézzük, hogy feléled-e. Ha van rajta firmware, akkor azt ellenőrithetjük is a megfelelő bemenetekre adott megfelelő jelekkel. A teszter feladata, hogy a bootloader és a firmware feltöltését az ACU-ra megkönnyítse.

A diplomamunkámat egy félévnyi önálló laboratóriumi munka előzte meg⁽¹⁾, amiben elkészült a teszternek egy terve. Ezt a tervet több okból át kellett alakítani, amik közül az egyik volt, hogy szeretnénk, ha a termékhez tartozó táppanel kalibrációját is meg lehetne gyorsítani, ami jelenleg körülbelül 8-10 percet vesz igénybe. Ehehz a kalibrációhoz 8V és 13.8V között változtatható feszültségre van szükségünk, ami maximum 6A-ig terhelhető, valamint különböző terheléseket kell kalcsolni a táppanelre, miközben az kalibrálja magát és soros porton kommunikál a teszterrel. Ahhoz, hogy teljesen értsük milyen feladatokat kell megvalósítanunk, először meg kell értenünk a rendszer működését.

1.1. Beléptetőrendszer bemutatása

A beléptető két részből áll, egyik a PC-s szoftver, ahol a jogosultságokat lehet kiadni, embereket lehet regisztrálni és különböző feltételeket lehet szabni, ami alapján eldöntjük, hogy ki hova mehet be, mikor szeretnénk kameraképet látni a képernyőn vagy akár lekérdezhetünk munkaidőriportokat. Ez a szoftver etherneten kommunikál az ACU-kkal, amiből elméletileg akármennyi lehet egy rendszerben.

Minket a másik egység érdekel, ez egy mikrokontrolleres panel (ACU), ami az ajtók vezérlését végzi. Egyszerre 4 olvasót tud kezelni, ezek lehetnek PIN-es vagy kártyás beléptetők. Ezek az olvasó berendezések Wiegand kapcsolaton kommunikálnak a panelünkkel, ami egy kétvezetékes, párszor 10kHz-es protokoll. 4 relével az ajtókat tudja nyitni vagy csukni. Ki tudjuk választani jumperekkel, hogy 12V és GND között kapcsoljon vagy szárazkontakttal jelezzük az ajtó nyitását/zárását, ez utóbbi esetben kívülről kell a kívánt feszültségjelet biztosítanunk, amit egy másik vonalon kapcsol az eszköz. Alapkonfigurációban az ACU-hoz négy ajtó és mindegyikhez egy-egy olvasó, valamint nyomógomb tartozik. Ezt szoftverből át lehet állítani, így egytől négy ajtóig bármit beállíthatunk és ha kevesebb, mint 4 ajtóval dolgozunk, akkor a felszabaduló olvasóbemeneteket használhatjuk valamelyik másik ajtóhoz a másik irány vezérlésére. Ezeknek az ajtóknak 5 típusa van:

• Lehetnek normális ajtók, ekkor az olvastatás után előre beállított ideig nyitott állapotba kerül az ajtó, ekkor át lehet menni, ez idő lejárta után pedig becsukódik.

⁽¹⁾ az önálló laboratóriumi beszámolóból átemelt részek dőlt betűvel szerepelnek ebben a dolgozatban

- Másik lehetőség a bistabil ajtó. Ebben az esetben az érvényes kártyaolvastatás vagy pin beütése az ajtó nyitottságát megváltoztatja és úgy hagyja a következő érvényes olvastatásig.
- Harmadik lehetőség a forgóvilla. Ebben az esetben mindenképpen két ajtórelét fel kell használnunk egy forgóvillához a két irány miatt. Ezeket az eszközöket csak egyegy nyitóimpulzussal vezéreljük.
- Negyedik és ötödik lehetőség a kapu és a sorompó, ezek vezérlésükben leginkább a normális ajtókhoz hasonlítanak, őket is előre beállított ideig tartjuk nyitott állapotban, aztán visszazárnak.

Emellett mind a 4 olvasóhoz tartozik nyomógombos bemenet is, mert sok helyen csak a befelé irányban kell azonosítani magunkat, kifelé elég gombot nyomnunk. Minden ajtóhoz alkalmazhatunk nyitásérzékelőt is, ezeknek kétféle működése van: Egyik megoldás, hogy amikor kinyílik az ajtó fizikailag, egyből visszazár a relé, így az visszacsukás után nem nyitható újra. Másik lehetőség, hogy amíg az ajtó nyitási ideje tart, addig húzva tartjuk a relét, tehát ez idő alatt többször is ki lehet nyitni az ajtót. Minden olvasóhoz beköthető két ledvisszajelzés és egy beep. Ezek a kártyát olvastató felhasználó számára adnak visszajelzést, ami lehet érvényes vagy érvénytelen olvastatás jelzése, táskaellenőrzés feltartóztatás riasztása és még számos visszajelzés.

Az eszközben elérhető 2-2 AUX be- és kimenet. Ezekre rengeteg funkciót lehet vezetni. Jelezhetjük itt a "Ne zavarjanak" igényünket, használható ajtónyitás követésére, periódikus jelzésre, véletlenszerű kapcsolásra adott százalékkal, ... A berendezés megbontását észlelendő egy bemenet áll rendelkezésünkre, továbbá van egy FIRE bemenet, ami kinyitja az összes ajtót beállítástól függetlenül, ez lehet NO vagy NC is, jumperrel választható.

Az ACU és a PC-s szoftver folyamatos kapcsolatban van egymással, minden történésről eseményt generál és elküldi a szoftvernek az eszköz, valamint globális funkciók⁽²⁾ esetén lekérdezi a jogosultságokat.

1.2. Célok és tesztelő berendezés

A feladat, hogy ehhez a vezérlőegységhez egy tesztert készítsünk, amivel az esetleges rövidzárakat tudjuk megtalálni a fontosabb helyeken; a rendeltetésszerű működést tudjuk ellenőrizni; teszteseteket tudunk generálni (például egy kártyaolvastatást) és eközben folyamatos kapcsolatban állunk egy számítógéppel, ami felügyeli a tesztelést és szükség esetén utasításokat lehet kiadni rajta keresztül. A másik feladat, a korábban említett táppanel kalibrációjának meggyorsítása. Az egyértelmű szóhasználat miatt a vezérlőegység, kontrolleres panel, ACU lesz a beléptetőrendszerhez tartozó panel és teszter, amit tervezünk.

A fentebb említett üzemmódok részletesebben:

- 1. <u>Rövidzárteszt:</u> A vezérlőegység tápfeszültség nélküli tesztelése, ekkor a ki- és bemeneti, valamint tápvonalakat ellenőrizzük, hogy nincs-e valahol rövidzár.
- 2. <u>Alap teszt és felprogramozás:</u> A vezérlőegységre tápfeszültséget kapcsolva ellenőrizzük, hogy a megfelelő helyeken megvannak-e a tápfeszültségek és az értékük is jó-e,

⁽²⁾Olyan funkciók, amiben több kontroller egyszerre vesz részt, ekkor a PC-s szoftver hozza meg a döntést, hogy kinyithatja-e az adott illető az ajtót. Ilyen lehet például egy létszámkorlát, amiben 2-3 kontroller is ugyanahhoz a területhez tartozik.

ezért ez utóbbi a méréseket ADC-vel végezzük. Ha kontroller nem volt még használva, akkor először bootloadert kell rá tölteni. Két ATxmega mikrovezérlő található egy panelen, amiket a PDI bemenetükön lehet programozni. Hogy ez gyorsan menjen, ezért nekünk kell megoldanunk, hogy a programozót ne kelljen manuálisan átdugdosni, hanem egy analóg switch-csel fogjuk kapcsolni a vonalakat. A bootloader után már Etherneten tudja fogadni a normál firmware-t az eszköz.

- 3. <u>Tesztadatos tesztelés:</u>Ha már felprogramozták az eszközt, akkor az alapvető funkcionális tesztek elvégezhetőek rajta miután néhány alapbeállítást feltöltünk rá (például, hány ajtó legyen, néhány tesztfelhasználó, ...). A tesztadatok feltöltése után nézzük, hogy bizonyos bemenetekre, az azoknak megfelelő választ adja-e, jó ajtót nyit ki, jó ledet villant fel, jó időben teszi mindezt, a feszültségek közben hogyan változnak, ...
- 4. <u>Táppanel kalibráció:</u> A táppanelre a firmware feltöltése (szintén PDI) után 8V és 13.8V közötti feszültségeket kell kiadni 5-6 lépésben, amiben kell lennie egy elég pontos 12V-nak. Ezután kell 12Ω-ot és 2.5Ω-ot kapcsolni terhelésként az 1A-es és az 5A-es ágra. A teszt alatt UART-on kommunikálunk a táppanellel, és jelezzük, hogy milyen értékeket kellett mérnie az adott beállításnál.

2. Mérendő jelek

A lentebbi táblázatban [1 .táblázat] láthatóak a vezérlőegység jelei, amiket szeretnénk valamilyen módon mérni vagy generálni:

1. táblázat. Mérendő és generált jelek

Jel	Megjegyzés	Mennyi van belőle	Rövidzárteszt	Mi generáljuk	Mérjük
Olvasó Wiegand jele	D+ és D- jel	4x2	1	✓	X
Olvasók ledjei	Ezzel adunk visszajelzést az olvasóknak.	4x2	1	X	1
Olvasók "beep" jelei	Az olvasóba épített hangszórót vezérli.	4	1	X	1
Ajtónyitógombok		4	1	1	X
Nyitásérzékelők		4	1	1	Х
Ajtónyitó relék	NO és NC vonal is. Ellenállásosztóval mérjük.	4x2	X	X	1
FIRE	Tűzjelző bemenet.	1	1	1	Х
TMP	Megbontásérzékelő.	1	1	1	Х
AUX bemenetek	A teszter felől nézve kimenet.	2	1	1	Х
AUX kimenetek	A vezérlőegység felől kimenet. NO és NC vonal.	2x2	1	X	1
Ethernet	RJ45 csatlakozón keresztül.	1	X	1	1
Tápfeszültségek.	12V, 3.3V akkumulátor töltőfeszültség	3	1	X	1
1Hz	A vezérlőegység RTC-je által szolgáltatott 1 Hz-es jel.	1	X	X	1
Jumperállás	Az ajtónyitó reléknél a 3 és 4 pin nem lehet összekötve	1	1	X	1

3. Hardver

3.1. Alkatrészek kiválasztása

A teszter egy mikrokontrolleres panel lesz, ami egy tűágyhoz kapcsolódik. A tűágyba helyezzük a vezérlőegységet és így tudunk hozzá kapcsolódni. A tűágyhoz a teszter 2 db 40-es IDC csatlakozóval és a hozzájuk tartozó szalagkábelekkel fog csatlakozni.

3.1.1. Mikrokontroller

A mikrokontroller kiválasztásánál először meg kell határoznunk, hogy milyen funkciókat kell biztosítson ahhoz, hogy a kitalált feladatot el tudja látni. Az alábbi szempontok voltak a mérvadóak a döntésünkben.

 Megfelelő számú GPIO port, amivel tudunk kapcsolódni az ACUhoz és a külső ICkhez, kapcsolásokhoz.

- Támogassa hardveresen a megfelelő kommunikációs protokollokat, amire szükségünk lesz:SPI, UART.
- 3.3Vról működjön. Erre azért van szükség, mert a kontrolleres panel is és a táppanel is 3.3V-ról működik, így nem kell a szintillesztéssel foglalkozni.
- Legyen AD átalakító benne, mert szükséges a tápfeszültségeket mérni és ha megoldható, akkor ezt belső AD-vel tegyük.
- Ingyenes fejlesztői környezet.
- Nem elsődleges, de figyelembe vett szempontok voltak még:
- Legyen hozzá fejlesztőpanel, így a firmware írását már akkor el lehet kezdeni, amikor még nem került legyártásra a panel.
- Ha van olyan mikrovezérlő, amit már használtak/használnak a cégen belül, akkor tudnak tapasztalattal segíteni a kollegák.
- Legyen benne a sok funkciók miatt elegendő flash és ram, így nem kell külsőt használni. Mindekettőből párszor 100kB már elegendő.
- Támogassa az Etherneten való kommunikációt, például TCP/IP stack-kel vagy akár a fizikai réteg meglétével.

Így esett a választás a Texas Instruments TM4C1294NCPDT® [8] mikrokontrollerére. Felületszerelt, 128 láb, ebből 90 GPIO és ezen felül vannak az Ethernet vonalak, a kiválasztott protokollokat támogatja (4 SPI, 8 UART, ezek a 90 GPIO vonal között vannak), Ethernet MAC és PHY integrálva, 20 AD csatorna, 1MB Flash memória és 256 kB SRAM. Ha a fentebbi táblázatot megnézzük, látjuk, hogy szükséges ha mindegyik vizsgált jelre csak egy GPIO vonalat használunk el, az is 50 láb és erre jön rá a többi funkció (UART, saját ledek, nyomógomb, ...)

3.1.2. GPIO bővítőmodul

Annak ellenére, hogy a mikrokontrollernek 128 lába van, még ez sem elég ahhoz, hogy az összes ki- és bemeneti jelet tudja kezelni, ezért szükséges volt valamilyen módon bővíteni a GPIO lábakat. A Microchip® gyárt SPI-os és I2C-s GPIO bővítőmodulokat is, 8 és 16 GPIO lábbal. Ezek átlagos IO lábakként működnek (ki és bemenetként is használhatóak, felhúzóellenállás kapcsolható a lábakra, amit egyenként lehet állítani, interruptot is tudnak generálni szintre vagy élre). 2 db 16 lábas (MCP23S18) [4] SPI-os chipet választottam. SPI-on 10MHz-cel tudunk kommunikálni, ezzel a lassabban változó jeleket bőven tudjuk kezelni. Ezek a ledek, beep jelek, nyomógombok, nyitásérzékelők, ajtónyitó kimenetek. Az eszközök 2-2 interrupt vonalon tudnak jelezni a mikrokontrollerünk felé, ha változás történik; az IC lábai két portba vannak rendezve, ezzel szétválasztva és megkönnyítve a kezelést.

3.1.3. Flash

Bár a mikrokontrollerünkben található 1MB flash-t valószínű nem fogjuk teljesen kihasználni, mégis szükséges egy külső adattároló is, mivel teszteseteket kell tárolnunk és igény esetén kell tárolnunk az ACU formware-ét is, ami mi magunk fogunk feltölteni rá. Ehhez AT45DB641 [1] típusú 32MB-os flasht választottam. Ennek külön előnye, hogy van

egy 256 byte-os SRAM benne (ez megegyezik a page mérettel), így támogatni tudja a*read-modify-write* parancsot, aminek köszönhetően ha szeretnénk egy adatot módosítani, akkor nem kell kiolvasnunk az azon page-en levő összes adatot, törölni a lapot és újra beírni, hanem ezt a flash belül elintézi. SPI protokollal tudunk kommunikálni az eszközzel.

3.1.4. 3.3V-os táp

A 3.3V-os vonalunkon van az összes IC, ezért ennek az összes fogyasztása extrém esetben elérheti a 600mA-t is. Ez az az eset, amikor minden eszköz a maximumot fogyasztja, amit lehet, normál működés közben ez nem fordulhat elő, de ha nagyobb terhelésre tervezzük a tápot, azzal baj nem lehet. Először egy klasszikus 7805-ös tápra gondoltam, de ennek a feszültségesés és a nagy áram miatt nagy hűtőfelületre lenne szüksége, ami felesleges, ha van más megoldás is. Ezért döntöttem az MC34063AD [3] DC-DC konverter mellett, amihez számos online elérhető kalkulátort hívhatok segítségül, hogy a tervezett feszültség és áramértékek mellett meg tudjam határozni a többi alkatrész (ellenállás, kondenzátor, tekercs) nagyságát. Figyelnünk kell rá, hogy a bemeneten levő ellenállás ne csak értékileg legyen jó, hanem ki is bírja ezt a terhelést, ezért legalább 0.4W-os ellenállást kell ide választanunk.

3.1.5. Analóg switch a programozáshoz

PDI programozón keresztül fogjuk a kontrolleres paneleket programozni, és ahhoz, hogy ne kézzel kelljen átdugni a programozót egy analóg switch-es kapcsolást választottam. Maga a programozó egy PC-hez lesz csatlakoztatva a teszteren csak átvezetjük a jeleket. Azért választottam az analóg switchet, mert ezzel tudjuk biztosítani, hogy teljesen ugyanaz a jel, ugyanazzal az időzítéssel, jut át a programozó bemenetekre. Ez az IC kétszer tartalmaz egy bemenetű és két kimenetű kapcsolást. Az egyiket a PDI, másikat a CLK vonalhoz használom, a föld és a 3.3V-os táp direktben kapcsolódik az ACU-hoz. A választás a Fairchild™ által gyártott FSA2257[2] IC-re esett.

3.1.6. Digitális potenciométer

A táppanel programozáshoz szükséges 8V - 13.8V előállítását is a teszternek kell megoldania. A nehézséget az jelenti, hogy ezen a feszültségszinten 6A-t szeretnénk kiadni⁽³⁾, úgy hogy a feszültség és az áram közben élegyen stabil, azaz maximum 100mV feszültség-, és 100mA áramhullámosság legyen a kimeneten. A táp megtervezésesorán két lehetőség merült fel vagy SEPIC vagy Flyback kapcsolást kéne alkalmazni. A számítások után viszont látszott, hogy a SEPIC-nél az az áram, ami átfolyik a primer és szekunder oldalt összekötő kapacitáson, az megegyezik a kimeneti árammal (6A) és csúcsban elérheti a 11A-t is. A piacon jelenleg nincs ilyen kapacitás ami ezt elviselné és elfogadható áron kapható lenne, de az 1.8–2.2A-es kapacitások, amiket párhuzamosan kötve megoldható lenne a probléma is hasonlóan magas áron mozognak és erre jönne rá a tekercsek ára is. A Flyback kapcsolás sem bizonyult megfelelőnek is a transzformátor paraméterei voltak szűkösek és mivel a tesztert csak kis számban tervezzük gyártani, ezért nem éri meg külön transzformátort terveztetni és gyártatni. Ezért egy egyszerűbb megoldást választottunk: vannak a piacon SVS CCTV tápegységet[7], amik 12V-ot szolgáltatnak és ezt az értéket egy analóg potenciométerrel lehet állítani 10.5V és 14V között, emellett névlegesen 10A-t szolgáltatnak.

⁽³⁾⁶A az az áram, ami maximálisan kijöhet az 5A-es ágból a táppanelen, efelett le kell kapcsolni. Tehát azzal számolunk, hogy ezt a táppanel bemenetáül szolgáló eszköznek tudnia kell biztosítani

Ezt a kapcsolást megvizsgálva egy ellenálláson keresztül $(2k\Omega)$ egy komparátor bemenetére megy a potenciométer kivezetése és azon méri vissza az eszköz a kimeneti feszültségét. Ha kicseréljük a soros ellenállást és az analóg potenciométer helyére digitálisat teszünk, akkor a kívánt feszültségszinteket elő tudjuk állítani. Ezt a megoldást ki is próbáltuk és működőképesnek bizonyult, rövid ideig stabilan tudja tartani akár a 14A-t is 14V-on. Ehhez a megoldáshoz a teszterre egy digitális potenciométert terveztem, aminek kivezettem az egyik végpontját és a középső megcsapolását a táppanelre, a másikat a földre kötjük. A középső pont és a végpont összekötésére azért van szükség, mert a rövid átkapcsolások miatt létrejött átmenetek, – amik nem definiáltak, hogy milyen ellenállást szolgáltat ilyenkor az eszköz – ne okozzanak gondot. A soros ellenállás meghagyására azért van szükség (ugyanis ezt kivehetnénk és azt az értéket is előállíthatnánk a potenciométerrel), mert ha a valamilyen oknál fogva a potenciométert nullára állítjuk és a komparátor bemenetére 0V jut, akkor úgy érzékeli, hogy kevés a kimeneti feszültség és próbálja növelni, amit a végtelenségig tenne és ez a táp tönkremeneteléhez vezetne. A szükséges feszültségszintek előállításához a Microchip(R) által gyártott MCP4161[5] 5kΩ-os eszközt választottam, amivel SPI-on keresztül fogunk kommunikálni.

3.2. Kapcsolások

Az IC-k megválasztása után/közben megterveztem a kapcsolásokat, amit a teszterben lesznek. Alább a külön funkciókat megvalósító elképzeléseket részletezem.

3.2.1. Ellenállásosztók és ADC

Mivel a vezérlőegységen több olyan feszültséget szeretnénk mérni a 3.3V-ról működő mikrokontrollerünkkel, ami jóval efölött az érték fölött van, ezért ehhez ellenállásosztókat használunk. Szempont volt az, hogy közelítőleg kitöltve az osztott érték maximuma a 3.3V-os tartományt, így nagyobb felbontásban tudunk mérni, de kellett mindehova tartalékot hagyni, hogy az esetleges feszültségingadozás ne okozzon problémát. A 3.3V-ot tudjuk mérni több helyen is ha szeretnénk, mivel vannak kivezetve közvetlen AD lábak a mikrokontrollerről. A 12V-os vonalat több helyen is mérjük, magán az SVS CCTV tápegység után, a táppanel (amit kalibrálni kell) belső 12V-ját és mellette a 13.75V akkumulátor töltőfeszültséget és ennek a táppanelnek a kimenetén is mérjük. Ezekhez 20k Ω - 5k Ω ellenállásosztót használunk.

3.2.2. Jumperellenőrző

A vezérlőegység az ajtók nyitását relével végzi. A relék kimenete állítható, hogy 12V és GND között kapcsoljon vagy száraz kontakt legyen, ez utóbbi annyit takar, hogy a relé egy COM közös ponthoz képest kapcsolgat két kimenetet rövidzárba vagy szakadásba, mi pedig választhatunk, hogy melyiket használjuk fel. Ha az NO⁽⁴⁾ kimenetet használjuk, akkor zárt ajtónál szakadást, nyitott ajtónál rövidzárat érzékelünk. A száraz kontakt és a feszültségkimenet között jumperekkel választhatunk. A tesztelés során mi azzal számolunk, hogy nem lesznek jumperek a vezérlőegységen és mi magunknak beállítjuk a 12V-os kimenetet FET-ekkel. Ha viszont valaki rajtahagyta a jumpereket másik állásban a vezérlőegység paneljén, akkor tönkremenne a teszter és a vezérlőegység is. Ezt elkerülendő négy ugyanolyan kapcsolással ellenőrizzük, hogy minden rendben van-e.

⁽⁴⁾NO jelentése: Normally open, azaz alapból nyitott állapot. NC jelentése normally closed, azaz alapból rövidzár.

1. ábra. Jumperellenőrző kapcsolás

A Relay_Jumpx és Relay_testx jelek egymás invertáltjai (ahol x az ajtót jelöli, amihez a kapcsolás tartozik). Azt reméljük, hogy nincs jumper a vezérlőegységen feltéve. Az jelentene nekünk problémát, ha a 3 és 4 pinek lennének rövidre zárva (Relayx_3 és Relayx_4). Ezt úgy tudjuk ellenőrizni, hogy a Relay_testx vonalakra magas jelet adunk, ami a Schottky diódán kijut a Relayx_3 vonalra és ha a Relayx_4 vonalon magas jel jön vissza, az kinyitja a Q6 NMOS-FET-et és ezt tudjuk detektálni a Relay_okx vonalon, ami belülről fel van húzva belső ellenállással. Ha detektáltuk, hogy nincs jumper felhelyez-ve, akkor a Relay_testx vonalat alacsonyra húzzuk, ezzel együtt a Relay_Jumpx értéke magas lesz, kinyitja a Q3 tranzisztort, ami lehúzza a Q2 PMOS-FET gate lábát, ezzel kinyitva azt és a Relayx_2 vonalról a 12V átjut a Relayx_3 vonalra. Mivel az ajtónyitó relék a Relayx_3 vonalra kapcsolódnak, ezért van szükségünk oda 12V-ra, hogy azt vissza tudjuk mérni. A Relay_Jumpx jelekből a Relay_testx-et egy Texasos nandkapukat tartalmazó chippel oldom meg. [6]

3.2.3. Vezérlőegység tápellátása

Ahogy fentebb olvasható szeretnénk olyan tesztet is végezni, amikor a vezérlőegység nem kap tápellását és olyat is, amikor üzemszerűen működik. Mivel az SVS CCTV tápegység kimenetét keresztülvezetjük a teszteren és csak utána a kalibrálandó panelre, ugyanezt a kimenetet használhatjuk a kontrolleres panel táplálására is. Ezt tudjuk a teszterből beés kikapcsolni.

3.2.4. Táppanelre terhelés kapcsolása

A táppanel különböző ellenállásokkal való terheléséhez szeretnénk biztosítani, hogy ezek az ellenállások cserélhetőek legyenek és szabadon megválaszthatóak, ezért nem is terveztem a teszter paneljére a terheléseket, hanem a 4 csatlakozót vezettem ki, amikre ezek köthetőek. Nem is lenne célszerű olyan ellenállást fixen a teszterre tervezni, ami 60W-ot fogyaszt. A táppanel két kimenetére külön-külön tudjuk rákapcsolni a terheléseket.

2. ábra. Táppanel terhelésének kapcsolása.

3.2.5. Tápvonalakon rövidzárteszt

Az ACU-n a 3.3V-os és a 12V-os vonalon is szeretnénk megnézni, hogy van-e rövidzár a GND felé, mielőtt bekapcsoljuk a készüléket. Ahhoz hogy ezeken a vonalakon mérni tudjunk feszültséget kell kiadni rájuk, amitől viszont elindulna az eszköz, amit pedig nem szeretnénk. Ezért választottam azt a megoldást, hogy egy ellenálláson keresztül 3.3V-ra kapcsoljuk az egyik, majd a másik vonalat és közben AD átalakítóval nézzük, hogy emelkedik-e a feszültség. Ha rövidzár van a GND és a tápvonal között, akkor nem fog feszültség megjelenni az AD bemeneten. Az alábbi kapcsolás mutatja, hogy ezt hogyan valósítjuk meg. A diódára azért van szükség, hogy a teszter felé ne tudjon áram folyni. Bár ez megemeli a kezdeti feszültséget, amit érzékelni tudunk, de a kapcsolás emellett működőképes marad.

3. ábra. Tápvonalak tesztelése.

3.2.6. Programozás, kiegészítők

A mikrokontrollerünk programozását JTAG-en keresztül végezzük, ehhez a megfelelő jeleket⁽⁵⁾ IDC csatlakozón keresztül kivezettem.

2 nyomógombot és 3 ledet is terveztem a panelre, amelyeket tudunk bármire használni; a teszter firmware-ének ellenőrzését megkönnyíti, ha ilyen módon tudunk kommunikálni a panellel.

A mikrovezérlő órajelét egy 25MHz-es kristályoszcsillátor szolgáltatja. Bár van belső oszcillátora a mikrokontrollernek, az Ethernekhez szükséges a 25MHz-es oszcillátor és így nagyobb órajelről is tudjuk üzemeltetni az eszközünket.

A vezérlőegység időmérésének az alapja egy RTC, amit viszont kalibrálnunk kell minden egyes panelen. Ehhez tudunk olyan segítséget nyújtani, hogy ha jelezzük a vezérlőegység felé (például egy Ethernet csomaggal), hogy az egyik lábára érkező jel pontos 1Hz-es jel, akkor ő tudja magát kalibrálni. Ehhez egy olcsón beszerezhető GPS modult használunk, ami egy kész legyártott áramkör, aminek csak tápfeszültséget kell biztosítanunk és az másodpercenként impulzust generál, ehhez biztosítunk egy vonalat a panelünkön, valamint kivezetünk 3.3V-os tápfeszültséget is a GPS modulhoz. Ezzel az áramkörrel lehet kommunikálni UART kapcsolaton keresztül ezért egy TX és egy RX vonalat is kivezetünk és ha szükség lesz rá, akkor tudjuk használni. A GPS modul rögzítésére a PCB terven középen az alsó harmadnál elhelyezkedő 4 furat és 5 pin szolgál.

 $^{^{(5)}}JTAG\ jelei:\ TDI,\ TDO,\ TMS,\ TCK,\ \overline{RST}$

3.3. Kapcsolási rajz és PCB

Az eszköz tervezését az Altium® nevű programmal végeztem. A kapcsolási rajz elkészítése párhuzamosan zajlott a gondolkodással és tervezgetéssel, ezért többször is át kellett alakítani, ahogy jöttek az újabb és újabb ötletek, megvalósítási lehetőségek.

Szempont volt az is a tervezés során, hogy azokat az alkatrészeket, amik a cégben vannak lehessen használni, mert azzal már van tapasztalatunk és esetleg programmodulunk is. Egy ilyenre példa a flash memória, ugyanezt a típust használja egy másik panel is, ahol szintén ugyanaz a Texas Instrument által gyártott kontroller a központi egység, így ehhez már nem kell majd megírnunk a kommunikációs .h fájlt, mert készen van, csak használnunk kell.

A PCB tervezésnél az általános szempontok mellett figyelembe vettem, hogy minél kisebb helyen elférjen a kapcsolás. Az önálló laboratóriumi munka utáni átalakításnál már nagyobb tapasztalattal tudtam ebbe belefogni és sikerült a korábbinál kisebb tervet készíteni, annak ellenére, hogy több helyet foglalnak az alkatrészek.

4. Firmware

5. Értékelés, eredmények

Az első félév során elkészült kapcsolási rajz és PCB terv volt a célkitűzés, ami meg is valósult. A következő félévben a firmware írása és a kalibráció a feladat. A firmware írásába is belefogtam, de ennek még nagyon az elején tartok. Alább a teljes kapcsolási rajz és PCB terv látható.

4.ábra. Az eszköz3 dimenziós képe.

Hivatkozások

- [1] At45db321e-dte adatlap. http://www.tme.eu/en/Document/e3184090100272b67a422d10e8418c76/AT45DB321E-DTE.pdf. Látogatás: 2017-05-17.
- [2] Fsa2257 adatlap. http://www.onsemi.com/pub/Collateral/FSA2257-D.pdf. Látogatás: 2017-12-07.
- [3] Mc34063ad adatlap. https://www.onsemi.com/pub/Collateral/MC34063A-D.PDF. Látogatás: 2017-05-16.
- [4] Mcp23s18 adatlap. http://ww1.microchip.com/downloads/en/DeviceDoc/22103a.pdf. Látogatás: 2017-05-17.
- [5] Mcp4161 adatlap. http://ww1.microchip.com/downloads/en/DeviceDoc/22059b.pdf. Látogatás: 2017-12-07.
- [6] Sn74ls38d adatlap. http://www.ti.com/lit/ds/symlink/sn74ls38.pdf. Látogatás: 2017-05-17.
- [7] Svs cctv tápegység,. https://www.amazon.in/ZVision-10Amp-Power-Supply-Driver/dp/B00Z9SF8BY/. Látogatás: 2017-12-07.
- [8] Tm4c1294ncpdt adatlap. http://www.ti.com/lit/ds/symlink/tm4c1294ncpdt.pdf. Látogatás: 2017-12-07.