

Data Structures,
Algorithms & Data
Science Platforms

Yogesh Simmhan

simmhan@cds.iisc.ac.in

L5: Big Data Platforms

Spark, Storm, Giraph

Slide Credits:

- https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf
- https://www.slideshare.net/deanchen11/scala-bay-spark-talk
- https://databricks-training.s3.amazonaws.com/slides/advanced-spark-training.pdf
- Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, M. Zaharia, et al., NSDI 2012
- http://spark.apache.org/docs/latest/programming-guide.html

What is Big Data?

The term is fuzzy ... Handle with care!

So...What is Big Data?

Data whose characteristics exceeds the capabilities of conventional algorithms, systems and techniques to derive useful value.

https://www.oreilly.com/ideas/what-is-big-data

And, where does Big Data come from?

Web & Social Media

Web search, Social Networks & Micro-blogs

Web & Social Media

Social Networks & Micro-blogs

Facebook's mobile ad revenue as a share of total ad revenue

THE WALL STREET JOURNAL.

1.79 billion monthly active users as of September 30, 2016

Enterprises & Government

Online retail & eCommerce

Source: CRISIL Research

http://blogs.ft.com/beyond-brics/2014/02/28/online-retail-in-india-learning-to-evolve/

http://www.peridotcapital.com/2014/04/amazon-sales-growth-projections-for-next-two-years-appear-overly-optimistic.html

Enterprises & Government: Finance

Mobile Transactions & FinTech

ASIA/PACIFIC (USERS IN MILLIONS)

Since November 8, 2016,

Paytm has surpassed its

metrics -tripling

transactions per day to

7.5 million

Internet of Everything

- Personal Devices
 - Smart Phones, Fitbit
- Smart Appliances
- Smart Cities
 - Power, Water, Transportation, Environment
- Smart Retail
- Millions of sensor data streams

Why is Big Data Difficult?

CDS.IISc.ac.in | Department of Computational and Data Sciences

Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, QAS

It's estimated that **40 ZETTABYTES** 2005 2.5 QUINTILLION BYTES 1 43 TRILLION GIGABYTES 1 [2.3 TRILLION GIGABYTES] of data will be created by 2020, an increase of 300 of data are created each day 2020 times from 2005 **Volume** 6 BILLION PEOPLE **SCALE OF DATA** have cell phones Most companies in the U.S. have at least 100 TERABYTES [100,000 GIGABYTES] WORLD POPULATION: 7 BILLION of data stored

The FOUL of Big Data

From traffic patterns and manipulation history and medical reconstored, and analyzed to early services that the work But what exactly is big day massive amounts of data

As a leader in the sector break big data into four **Velocity**, **Variety and Veraci**

Depending on the industry data encompasses information internal and external source

The New York Stock Exchange captures

1 TR OF TRADE

Modern cars have close to 100 SENSORS

that monitor items such as

U.S. have at least

100 TERABYTES

[100,000 GIGABYTES]

of data stored

The New York Stock Exchange captures

1 TB OF TRADE INFORMATION

during each trading session

Modern cars have close to

100 SENSORS

that monitor items such as fuel level and tire pressure

Velocity

ANALYSIS OF STREAMING DATA

18.9 BILLION NETWORK CONNECTIONS

- almost 2.5 connections per person on earth

and services that the v But what exactly is big massive amounts of da

As a leader in the sec break big data into fo Velocity, Variety and Ver

Depending on the indus data encompasses inf internal and external sou mobile devices. Compa adapt their products an infrastructure, and find

By 2015

4.4 MILLION IT JO

will be created globally with 1.9 million in the

R V's

d music downloads to web ecords, data is recorded, to enable the technology world relies on every day, data, and how can these ata be used?

ctor, IBM data scientists our dimensions: **Volume**, racity

stry and organization, big formation from multiple urces such as transactions,

1 IN 3 BUSINESS LEADERS

don't trust the information

Poor data quality costs the US economy around

\$3.1 TRILLION A YEAR

orld relies on every day. ata, and how can these be used?

r, IBM data scientists r dimensions: Volume, ity

y and organization, big mation from multiple tes such as transactions, content, sensors and es can leverage data to services to better meet mize operations and ew sources of revenue.

o support big data, Inited States

400 MILLION TWEETS

are sent per day by about 200 million monthly active users

1 IN 3 BUSINESS LEADERS

don't trust the information they use to make decisions

Poor data quality costs the US economy around

\$3.1 TRILLION A YEAR

27% OF RESPONDENTS

in one survey were unsure of how much of their data was inaccurate

UNCERTAINTY OF DATA

Data Analysis Lifecycle

Acquire

- Acquire Data
 - Sensors, Web logs & crawls, Transactions

Goal

- Define Analytics
 - Trends, Clusters, Outliers, Classification

Process

- Translate to Scalable Applications
 - Develop algorithms, Map to abstractions, Implement on Platforms

Data Platforms

- Acquire, manage, process Big Data
- At large scales
- To meet application needs

Distributed Systems

- Distributed Computing
 - Clusters of machines
 - Connected over network
- Distributed Storage
 - Disks attached to clusters of machines
 - Network Attached Storage
- How can we make effective use of multiple machines?
- Commodity clusters vs. HPC clusters
 - Commodity: Available off the shelf at large volumes
 - Lower Cost of Acquisition
 - ► Cost vs. Performance
 - Low disk bandwidth, and high network latency
 - CPU typically comparable (Xeon vs. i3/5/7)
 - Virtualization overhead on Cloud
- How can we use many machines of modest capability?

Growth of Cloud Data Centers

Figure 17. Global Data Center Workloads by Applications

Ideal Strong/Weak Scaling

Scalability

- Strong vs. Weak Scaling
- **Strong Scaling**: How the performance varies with the # of processors for a *fixed total problem size*
- Weak Scaling: How the performance varies with the # of processors for a fixed problem size per processor
 - ► Big Data platforms are intended for "Weak Scaling"

Ease of Programming

- Programming distributed systems is difficult
 - ► Divide a job into multiple tasks
 - Understand dependencies between tasks: Control, Data
 - Coordinate and synchronize execution of tasks
 - Pass information between tasks
 - Avoid race conditions, deadlocks
- Parallel and distributed programming models/languages/abstractions/platforms try to make these easy
 - ► E.g. Assembly programming vs. C++ programming
 - ► E.g. C++ programming vs. Matlab programming

Availability, Failure

- Commodity clusters have lower reliability
 - Mass-produced
 - Cheaper materials
 - ► Smaller lifetime (~3 years)
- How can applications easily deal with failures?
- How can we ensure availability in the presence of faults?

Early Technologies

- MapReduce is a distributed data-parallel programming model from Google
- MapReduce works best with a distributed file system, called Google File System (GFS)
- Hadoop is the open source framework implementation from Apache that can execute the MapReduce programming model
- Hadoop Distributed File System (HDFS) is the open source implementation of the GFS design
- Elastic MapReduce (EMR) is Amazon's PaaS

Platforms...Think in terms of Stacks Cloudera

Cloudera's Distribution for Hadoop							
UI Framework		Hue	SDI		DK	Hue SDK	
Workflow 002	ie	e Scheduling oozie			Metadata ніve		
Data		Languages	, Compilers	Pig/ Hive	Fast		
Integration Flume, Sqoop	(Phedoop			read/write access	ite HBase		
	Coordi	Coordination			Zookeeper		

practicalanalytics.co

Platforms...Think in terms of Stacks BDAS

Platforms...Think in terms of Stacks HortonWorks

Apache Spark

Slides & Additional Reading Courtesy

https://stanford.edu/-rezab/sparkclass/slides/itas_workshop.pdf

Resilient Distributed Datasets, Matei Zaharia

http://spark.apache.org/docs/2.1.1/programming-guide.html

http://spark.apache.org/docs/latest/api/java/index.html
https://www.gitbook.com/book/jaceklaskowski/mastering-apache-spark/details

Apache Spark Internals, Pietro Michiardi, Eurecom

Why Spark?

- Ease of language definition
 - ► Typing, dataflows,
 - ▶ But Pig, Hive, HBase, etc. give you that

- Better performance using "In memory" compute
 - Multiple stages part of same job
 - Lazy evaluation, caching/persistence

In-memory computation

- Operate on data in (distributed) memory
 - Allows many operations to be performed locally
 - Write to disk only when data sharing required across workers
- This is unlike others like Hadoop Map/Reduce

RDD: The Secret Sauce

- RDD: Resilient Distributed Dataset
 - Immutable, partitioned collection of tuples
 - Operated on by deterministic transformations
 - Object-oriented flavor
 - RDD.operation() → RDD
- Recovery by re-computation
 - Maintains lineage of transformations
 - Recompute missing partitions if failure happens
 - Not possible/not automatic in Pig
- Allows caching & persistence for reuse

RDD Operations

Allows composability into Dataflows

Transformations
(define a new RDD)

map filter sample groupByKey reduceByKey sortByKey flatMap union join cogroup cross mapValues

Actions

(return a result to driver program)

collect reduce count save lookupKey

A Sample Spark Program

- Counts the number of bytes in a line, and sums the count per line
- Uses lambda expressions

A Sample Spark Program

Can pass complex functions as well

```
class GetLength implements Function<String, Integer> {
  public Integer call(String s) { return s.length(); }
}
class Sum implements Function2<Integer, Integer, Integer> {
  public Integer call(Integer a, Integer b) { return a + b; }
}
JavaRDD<String> lines = sc.textFile("data.txt");
JavaRDD<Integer> lineLengths = lines.map(new GetLength());
int totalLength = lineLengths.reduce(new Sum());
```

10/10/2018

RDD Partitions

- RDD is internally a collection of partitions
 - Each partition holds a list of items
- Partitions may be present on a different machine
 - ► Partition is the *unit of execution*
 - Partition is the unit of parallelism
- They are immutable
 - ► Each transformation on an RDD generates a new RDD with different partitions
 - Allows recovery of individual partitions

Creating RDD

- Load external data from distributed storage
- Create logical RDD on which you can operate
- Support for different input formats
 - ► HDFS files, Cassandra, Java serialized, directory, gzipped
- Can control the number of partitions in loaded RDD
 - ► Default depends on external DFS, e.g. 128MB on HDFS

```
JavaRDD<String> distFile = sc.textFile("data.txt");
```


RDD Operations

- Transformations
 - ► From one RDD to one or more RDDs
 - ► Lazy evaluation...use with care
 - Executed in a distributed manner
- Actions
 - ► Perform aggregations on RDD items
 - ► Return single (or distributed) results to "driver" code
- RDD.collect() brings RDD partitions to single driver machine

Caution: Local Variables & Closures

- Caution: Cannot pass "local" driver variables to lambda expressions/anonymous classes....only final
 - Will fail when distributed

```
int counter = 0;
JavaRDD<Integer> rdd = sc.parallelize(data);

// Wrong: Don't do this!!
rdd.foreach(x -> counter += x);

println("Counter value: " + counter);
```


RDD and PairRDD

- RDD is logically a collection of items with a generic type
- PairRDD is like a "Map", where each item in collection is a <key,value> pair, each a generic type
- Transformation functions use RDD or PairRDD as input/output
- E.g. Map-Reduce

```
JavaRDD<String> lines = sc.textFile("data.txt");
JavaPairRDD<String, Integer> pairs = lines.mapToPair(s -> new Tuple2(s, 1));
JavaPairRDD<String, Integer> counts = pairs.reduceByKey((a, b) -> a + b);
```


Transformation	Meaning
map(func)	Return a new distributed dataset formed by passing each element of the source through a function <i>func</i> .
filter(func)	Return a new dataset formed by selecting those elements of the source on which <i>func</i> returns true.
flatMap(func)	Similar to map, but each input item can be mapped to 0 or more output items (so <i>func</i> should return a Seq rather than a single item).

- JavaRDD<R> map(Function<T,R> f): 1:1 mapping from input to output. Can be different types.
- JavaRDD<T> filter(Function<T,Boolean> f): 1:0/1 from input to output, same type.
- JavaRDD<U> flatMap(FlatMapFunction<T,U> f): 1:N mapping from input to output, different types.

mapPartitions(func)

Similar to map, but runs separately on each partition (block) of the RDD, so *func* must be of type Iterator<T> => Iterator<U> when running on an RDD of type T.

- Earlier Map and Filter operate on one item at a time. No state across calls!
- JavaRDD<U> mapPartitions(FlatMapFunc<Iterator<T>,U> f)
- mapPartitions has access to iterator of values in entire partition, jot just a single item at a time.

sample(withReplacement, fraction, seed)	Sample a fraction <i>fraction</i> of the data, with or without replacement, using a given random number generator seed.
union(otherDataset)	Return a new dataset that contains the union of the elements in the source dataset and the argument.

- JavaRDD<T> sample(boolean withReplacement, double fraction): fraction between [0,1] without replacement, >0 with replacement
- JavaRDD<T> union(JavaRDD<T> other): Items in other RDD added to this RDD. Same type. Can have duplicate items (i.e. not a 'set' union).

intersection(otherDataset)	Return a new RDD that contains the intersection of elements in the source dataset and the argument.
distinct([numTasks]))	Return a new dataset that contains the distinct elements of the source dataset.

- JavaRDD<T> intersection(JavaRDD<T> other): Does a set intersection of the RDDs. Output will not have duplicates, even if inputs did.
- JavaRDD<T> distinct(): Returns a new RDD with unique elements, eliminating duplicates.

Transformations: **PairRDD**

groupByKey([numTasks])	When called on a dataset of (K, V) pairs, returns a dataset of (K, Iterable <v>) pairs. Note: If you are grouping in order to perform an aggregation (such as a sum or average) over each key, using reduceByKey or aggregateByKey will yield much better performance. Note: By default, the level of parallelism in the output depends on the number of partitions of the parent RDD. You can pass an optional numTasks argument to set a different number of tasks.</v>
reduceByKey(func, [numTasks])	When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the values for each key are aggregated using the given reduce function <i>func</i> , which must be of type $(V,V) => V$. Like in groupbykey, the number of reduce tasks is configurable through an optional second argument.

- JavaPairRDD<K,Iterable<V>> groupByKey(): Groups values for each key into a single iterable.
- JavaPairRDD<K,V> reduceByKey(Function2<V,V,V> func): Merge the values for each key into a single value using an <u>associative</u> and <u>commutative</u> reduce function. Output value is of same type as input.
- For aggregate that returns a different type?
- numPartitions can be used to generate output RDD with different number of partitions than input RDD.

aggregateByKey(zeroValue)(seqOp, combOp,
[numTasks])

When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values for each key are aggregated using the given combine functions and a neutral "zero" value. Allows an aggregated value type that is different than the input value type, while avoiding unnecessary allocations. Like in groupBykey, the number of reduce tasks is configurable through an optional second argument.

sortByKey([ascending], [numTasks])

When called on a dataset of (K, V) pairs where K implements Ordered, returns a dataset of (K, V) pairs sorted by keys in ascending or descending order, as specified in the boolean ascending argument.

- JavaPairRDD<K,U> aggregateByKey(U zeroValue, Function2<U,V,U> seqFunc, Function2<U,U,U> combFunc): Aggregate the values of each key, using given combine functions and a neutral "zero value".
 - SeqOp for merging a V into a U within a partition
 - CombOp for merging two U's, within/across partitions
- JavaPairRDD<K,V> sortByKey(Comparator<K> comp): Global sort of the RDD by key
 - <u>Each partition</u> contains a sorted range, i.e., output RDD is range-partitioned.
 - Calling collect will return an ordered list of records

join(otherDataset, [numTasks])

When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (V, W)) pairs with all pairs of elements for each key. Outer joins are supported through leftouterjoin, rightouterjoin, and fullouterjoin.

cartesian(otherDataset)

When called on datasets of types T and U, returns a dataset of (T, U) pairs (all pairs of elements).

- JavaPairRDD<K, Tuple2<V,W>> join(JavaPairRDD<K,W> other, int numParts): Matches keys in this and other. Each output pair is (k, (v1, v2)). Performs a hash join across the cluster.
- JavaPairRDD<T,U> cartesian(JavaRDDLike<U,?> other): Cross product of values in each RDD as a pair

Actions

reduce(func)	Aggregate the elements of the dataset using a function <i>func</i> (which takes two arguments and returns one). The function should be commutative and associative so that it can be computed correctly in parallel.
collect()	Return all the elements of the dataset as an array at the driver program. This is usually useful after a filter or other operation that returns a sufficiently small subset of the data.
count()	Return the number of elements in the dataset.
countBvKev()	Only available on RDDs of type (K. V). Returns a hashmap of (K. Int) pairs with the count of each key.

Actions

first()	Return the first element of the dataset (similar to take(1)).
take(n)	Return an array with the first <i>n</i> elements of the dataset.
takeSample(withReplacement, num, [seed])	Return an array with a random sample of <i>num</i> elements of the dataset, with or without replacement, optionally pre-specifying a random number generator seed.

RDD Persistence & Caching

- RDDs can be reused in a dataflow
 - ► Branch, iteration
- But it will be re-evaluated each time it is reused!
- Explicitly persist RDD to reuse output of a dataflow path multiple times
- Multiple storage levels for persistence
 - Disk or memory
 - Serialized or object form in memory
 - ► Partial spill-to-disk possible
 - Cache indicates "persist" to memory

RePartitioning

repartition

public JavaRDD<T> repartition(int numPartitions)

Return a new RDD that has exactly numPartitions partitions.

Can increase or decrease the level of parallelism in this RDD. Internally, this uses a shuffle to redistribute data.

If you are decreasing the number of partitions in this RDD, consider using coalesce, which can avoid performing a shuffle.

coalesce

Return a new RDD that is reduced into numPartitions partitions.

From DAG to RDD lineage

Samples: Word Count

```
rdd = sc.textFile("hdfs://...");
words = rdd.flatMap(x -> x.split(" "));
result = words.map(x->(x,1)).
  reduceByKey((x, y): x + y);
```


Samples: Per-key average

Sample: PageRank

```
neighbor URL
// URL
JavaRDD<String> lines =
spark.read().textFile(args[0]).javaRDD();
// Loads all URLs from input file and initialize their
neighbors.
JavaPairRDD<String, Iterable<String>> links =
lines.mapToPair(s -> {
      String[] parts = SPACES.split(s);
      return new Tuple2<>(parts[0], parts[1]);
    }).distinct().groupByKey().cache();
// Loads all URLs with other URL(s) link to from input file
and initialize ranks of them to one.
JavaPairRDD<String, Double> ranks = links.mapValues(rs->1.0);
```

10/10/2018


```
// Calculates and updates URL ranks continuously using PageRank algorithm.
for (int current = 0; current < Integer.parseInt(args[1]); current++) {</pre>
  // Calculates URL contributions to the rank of other URLs.
  JavaPairRDD<String, Double> contribs = links.join(ranks).values()
        .flatMapToPair(s -> \{ // 1 = adj list, 2 = ranks \}
          int urlCount = Iterables.size(s. 1());
          List<Tuple2<String, Double>> results = new ArrayList<>();
          for (String n : s._1) { // Send rank value to neighbor
            results.add(new Tuple2<>(n, s. 2() / urlCount));
          }
          return results.iterator();
        });
  // Re-calculates URL ranks based on neighbor contributions.
  ranks = contribs.reduceByKey(new Sum()).mapValues(sum -> 0.15 + sum * 0.85);
 // Collects all URL ranks and dump them to console.
    List<Tuple2<String, Double>> output = ranks.collect();
    for (Tuple2<?,?> tuple : output) {
      System.out.println(tuple._1() + " has rank: " + tuple._2() + ".");
}
```