

Chapter2: Boolean Algebra and Logic Gates

Lecture3- Canonical Forms

Engr. Arshad Nazir, Asst Prof Dept of Electrical Engineering SEECS

Objectives

- Study Canonical Forms
- Standard and non-standard Forms
- Conversion of Canonical Forms

Canonical Forms

- A canonical form is a standard method for representing Boolean functions.
- The two canonical forms that are used are:
 - > Sum of Minterms
 - Product of Maxterms
- These forms are sometimes considered the "brute force" method of representing functions as they seldom represent a function in a minimized form.
- Examples of these two forms are:

$$F_1 = xyz'+xy'z+x'y'z'$$

 $F_2 = (x+y+z')(x+y'+z)(x'+y'+z')$

Minterms

- Any given binary variable can be represented in two forms:
 - > x, its normal form, and
 - > X', its complement
- If we consider two binary variables and the AND operation, there are four combinations of the variables:
 - > xy
 - **>** Xy′
 - **>** X′y
 - > X'y'
- Each of the above four AND terms is called a minterm or a standard product.
- n variables can be combined to form 2ⁿ minterms.

Minterms Expressed

Minterms for Three Variables

X	Y	z	Product Term	Symbol
0	0	0	$\overline{X}\overline{Y}\overline{Z}$	\mathbf{m}_0
0	0	1	$\overline{X}\overline{Y}Z$	\mathbf{m}_1
0	1	0	$\overline{X}Y\overline{Z}$	m ₂
0	1	1	$\overline{X}YZ$	m_3
1	0	0	$X\overline{Y}\overline{Z}$	m_4
1	0	1	$X\overline{Y}Z$	m ₅
1	1	0	$XY\overline{Z}$	$\mathbf{m_6}$
1	1	1	XYZ	m ₇

Maxterms Expressed

Maxterms for Three Variables

X	Y	Z	Sum Term	Symbol
0	0	0	X+Y+Z	\mathbf{M}_{0}
0	0	1	$X+Y+\overline{Z}$	M_1°
0	1	0	$X + \overline{Y} + Z$	M_2
0	1	1	$X + \overline{Y} + \overline{Z}$	M_3
1	0	0	$\overline{X} + Y + Z$	M_4
1	0	1	$\overline{X} + Y + \overline{Z}$	M_5
1	1	0	$\overline{X} + \overline{Y} + Z$	M_6
1	1	1	$\overline{oldsymbol{X}}+\overline{oldsymbol{Y}}+\overline{oldsymbol{Z}}$	\mathbf{M}_{7}°
				-

Fall 2021

6

Truth Table to Expression (Sum of Minterms)

 Any Boolean function can be expressed as a sum of minterms or sum of products (i.e. the ORing of terms).

➤ You can form the function algebraically by forming a minterm for each combination of the variables that produces a 1 in the function. (Each row with output of 1 becomes a product term) x y Z . G

> Sum (OR) product terms together.

xyz + xyz' + x'yz

Minterms and Maxterms Expressed

Table 2.3 *Minterms and Maxterms for Three Binary Variables*

			М	interms	Maxterms		
x	y	z	Term	Designation	Term	Designation	
0	0	0	x'y'z'	m_0	x + y + z	M_0	
0	0	1	x'y'z	m_1	x + y + z'	M_1	
0	1	0	x'yz'	m_2	x + y' + z	M_2	
0	1	1	x'yz	m_3	x + y' + z'	M_3	
1	0	0	xy'z'	m_4	x' + y + z	M_4	
1	0	1	xy'z	m_5	x' + y + z'	M_5	
1	1	0	xyz'	m_6	x' + y' + z	M_6	
1	1	1	xyz	m_7	x' + y' + z'	M_7	

Copyright ©2012 Pearson Education, publishing as Prentice Hall

Sum of Minterms Example

X	y	Z	Function F ₁	Required Minterms
0	0	0	1	x'y'z'
0	0	1	0	
0	1	0	0	
0	1	1	1	x'yz
1	0	0	1	xy'z'
1	0	1	0	
1	1	0	0	
1	1	1	0	

$$F_1 = x'y'z' + x'yz + xy'z'$$

= $m_0+m_3+m_4$
= $\sum (0,3,4)$

Equivalent Representations of Circuits

- All three formats are equivalent
- Number of 1's in truth table output column equals AND terms for Sum-of-Products (SOP)

X	У	Z	L G
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$G = xyz + xyz' + x'yz$$

Truth Table to Expression (Product of Maxterms)

- Any Boolean function can be expressed as a product of maxterms or product of sums (i.e. the ANDing of terms).
 - ➤ You can form the function algebraically by forming a maxterm for each combination of the variables that produces a 0 in the function. (Each row with output of 0 becomes a standard sums)
 - > AND these maxterms together.

Product of Maxterms Example

х	y	Z	Function F ₁	Required Maxterms
0	0	0	1	
0	0	1	0	x + y + z'
0	1	0	0	x + y' + z
0	1	1	1	
1	0	0	1	
1	0	1	0	x' + y + z'
1	1	0	0	x' + y' + z
1	1	1	0	x' + y' + z'

$$F_1 = (x + y + z')(x + y' + z)(x' + y + z')(x' + y' + z)(x' + y' + z')$$

$$= M_1 M_2 M_5 M_6 M_7$$

$$= \pi(1, 2, 5, 6, 7)$$

Fall 2021

12

Minterms and Maxterms

- Each variable in a Boolean expression is a literal
- Boolean variables can appear in normal (x) or complement form (x')
- Each AND combination of terms is a minterm
- Each OR combination of terms is a maxterm

Minterms

• Example:

X	У	Z	Minte	rm	X	У	Z	Maxter	m
0	0	0	x'y'z'	m_0	0	0	0	x+y+z	M_0
0	0	1	x'y'z	m_1	0	0	1	x+y+z'	$M_\mathtt{1}$
			•••					•••	
1	0	0	xy'z'	m_4	1	0	0	x'+y+z	M_4
			•••					•••	
1	1	1	хуz	m_7	1	1	1	x'+y'+z'	M_7

Fall 2021 13

Maxterms

Obtaining Sum of Minterms Form

A	В	С	$\mathbf{F} = \mathbf{A'B} + \mathbf{B'} + \mathbf{C}$	Required Minterms	Required Designations
0	0	0	1	A'B'C'	m_0
0	0	1	1	A'B'C	m_1
0	1	0	1	A'BC'	m_2
0	1	1	1	A'BC	m ₃
1	0	0	1	AB'C'	m4
1	0	1	1	AB'C	m_5
1	1	0	0		
1	1	1	1	ABC	m7

$$F = A'B'C' + A'B'C + A'BC' + A'BC + AB'C' + AB'C + ABC$$

$$= m_0 + m_1 + m_2 + m_3 + m_4 + m_5 + m_7$$

$$F(A, B, C) = \sum (0, 1, 2, 3, 4, 5, 7)$$

Obtaining Product of Maxterms

A	В	С	F = A'B + B'C	Required Maxterms	Required Designations
0	0	0	0	A+B+C	M_0
0	0	1	1		
0	1	0	1		
0	1	1	1		
1	0	0	0	A' + B + C	M_4
1	0	1	1		
1	1	0	0	A' + B' + C	M_6
1	1	1	0	A' + B' + C'	M_7

$$F = (A+B+C)(A'+B+C)(A'+B'+C)(A'+B'+C')$$

$$= M_0 . M_4 . M_6 . M_7$$

$$F(A, B, C) = \pi(0, 4, 6, 7)$$

Canonical Form Conversion

- A function represented as Sum of minterms can be represented as the Product of maxterms of the remaining terms.
- The complement of a function expressed in sum of minterms equals the sum of minterms missing from the original function

$$F(A, B, C) = \sum (0, 3, 4) = m_0 + m_3 + m_4$$

 $F'(A, B, C) = \sum (1, 2, 5, 6, 7) = m_1 + m_2 + m_5 + m_6 + m_7$

• Now if we take the complement of F' using DeMorgan's theorem, we obtain F in the product of maxterms form:

```
\circ (F')' = (m<sub>1</sub>+m<sub>2</sub>+m<sub>5</sub>+m<sub>6</sub>+m<sub>7</sub>)'

\circ F = m<sub>1</sub>'. m<sub>2</sub>'. m<sub>5</sub>'. m<sub>6</sub>'. m<sub>7</sub>' [Complement of minterms]

\circ = M<sub>1</sub>M<sub>2</sub>M<sub>5</sub>M<sub>6</sub>M<sub>7</sub> [maxterms]

\circ = \pi(1,2,5,6,7)
```

This implies the following relation:

$$m_i' = Mj$$

• So sum of minterms: $\Sigma(0,3,4)$ = product of maxterms: $\pi(1,2,5,6,7)$

Table A: Conversion of Forms

	Desired Form									
		Minterm Expansion of F	Maxterm Expansion of F	Minterm Expansion of F'	Maxterm Expansion of F'					
Given Form	Minterm Expansion of F	-	maxterm nos are those nos, not on the minterm list of F	List minterms not present in F	Maxterm nos are same as minterm nos of F					
	Maxterm Expansion of F	minterm nos are those nos, not on the maxterm list of F	-	minterm nos are same as maxterm nos of F	List maxterms not present in F					

Table B: Application of Table A

	Desired Form									
0		Minterm Expansion of F	Maxterm Expansion of F	Minterm Expansion of F'	Maxterm Expansion of F'					
Given Form	F=∑(3,4,5,6,7)	-	F=π(0,1,2)	∑(0,1,2)	π(3,4,5,6,7)					
	F=π(0,1,2)	∑(3,4,5,6,7)	-	∑(0,1,2)	π(3,4,5,6,7)					

Standard Forms

- Standard forms are those forms that allow the terms forming the function to consist of any number of the variables.
- There are two standard forms:
 - sum of products (SOP)
 - product of sums (POS)
- Examples of these two forms are:

$$G=(X+Y')(X'+Y+Z)$$
 POS

Sum of Products

• The Sum of Products (SOP) is a Boolean expression containing AND terms, called product terms, of one or more literals each.

$$- F_1 = y' + xy + x'yz'$$

Product of Sums

• The Product of Sums (POS) is a Boolean expression containing OR terms, called sum terms, of one or more literals each.

Two Level Implementations

 The standard type of expression results in a two-level gating structure

(a) Sum of Products

(b) Product of Sums

Fig. 2-3 Two-level implementation

Conversion from Nonstandard to Standard Form

- A Boolean function may be expressed in a nonstandard form (fig 2.4a shows a function that is neither in sum of products nor in product of sums). It has three levels of gating
- It can be converted to a standard form (Sum of product) by using distributive law to remove parenthesis

Two-level implementation is preferred as it produces the least amount

of delay

The End