

FIG. 1

CTR 002

$$c = \text{High_capacity}/\text{Low_capacity}$$

FIG. 2

Example:
TF1=15.325 microsec - High_capacity = OC-192
TF2 = 125 microsec - Low_capacity = OC-3
 $\Rightarrow c = 64 = (\text{OC-192}/\text{OC-3})$

FIG. 3

FIG. 4

FIG. 5

Two time intervals: $SC1_length \cdot TF1 = 1$ UTC second

- $SC2_length \cdot TF2 = 1$ UTC second
- $TF2 = (SC1_length / SC2_length) \cdot TF1$, where the time cycles of TF1 and TF2 are aligned with respect to UTC.

For $k = 2$ and $c = 4$ (e.g., High_capacity=OC-192, Low_capacity=OC-48):

FIG. 6

Two time intervals: $SCI_length \cdot TF1 = 1$ UTC second

- $SC2_length \cdot TF2 = 1$ UTC second
- $TF2 = (SCI_length / SC2_length) \cdot TF1 = k \cdot TF1$, where the time cycles of $TF1$ and $TF2$ are aligned with respect to UTC.

For $k = 2$ and $c = 4$ (e.g., High_capacity=OC-192, Low_capacity=OC-48):

FIG. 7

Two time intervals: $SCI_length \cdot TF1 = I$ UTC second

- $SCI_length \cdot TF2 = I$ UTC second
- $TF2 = (SCI_length / SC2_length) \cdot TF1$, where the time cycles of $TF1$ and $TF2$ are aligned with respect to UTC.

For $k = 2$ and $c = 4$ (e.g., High_capacity=OC-192, Low_capacity=OC-48):

FIG. 8

Two time intervals: $SCI_length \cdot TF1 = I$ UTC second

- $SCI_length \cdot TF2 = 1$ UTC second
 - $TF2 = (SCI_length / SC2_length) \cdot TF1 = k \cdot TF1$, where the time cycles of $TF1$ and $TF2$ are aligned with respect to UTC.
- For $k = 2$ and $c = 4$ (e.g., High_capacity=OC-192, Low_capacity=OC-48):

FIG. 9

FIG. 10

$c=4$, e.g., OC-192/OC-48
 $k=2$, e.g., 25 microsec/12.5 microsec

FIG. 11

FIG. 12

FIG. 13

FIG. 14

SHEET 14 OF 65
ATTORNEY DOCKET NO.: SYN 1775
OFEK ET AL.
PATENT APPLICATION*

FIG. 15

FIG. 16

FIG. 17

N: number of input/output channels. E.g.: N=256

FIG. 18

TF_i j: Time frame duration on channel *j* at Input Interface *i*.

UTR_i: UTR on link connected to Input Interface *i*
Common Time Reference - CTR/UTC

FIG. 19

$\text{TF}_{i,j}$: Time frame duration on channel j at Input Interface i .
UTR i : UTR on link connected to Input Interface i
 $P_{i,j} = \text{TF}_{i,j}/\text{subTF}$

Common Time Reference - CTR/UTC

Alignment Subsystem for *high capacity* Channel j at Input Interface i
with a Plurality of Sub-Time Frame Queues

FIG. 18+2 TF_j : Time frame duration on channel j at Input Interface i .
 UTRi: UTR on link connected to Input Interface i

Rate Matching Buffer for Channel j at Output Interface i
with a Plurality of Time Frame Queues
 (Also single buffer with dual access memory with single phase
 switching and forwarding)

FIG. 21

FIG. 22

N: number of input/output channels. E.g., N=256
M • High_capacity = N_high • High_capacity + N_low • Low_capacity
M < N

FIG. 23

FIG. 24

FIG. 25

N: number of input/output channels. E.g., N=256
 L • Low_capacity = N_high • High_capacity + N_low • Low_capacity
 $L > N$

FIG. 26

FIG. 27

FIG. 28

N: number of input/output channels. E.g., N=256
L • Low_capacity = N • High_capacity
L = c • N > N

FIG. 29

FIG. 30

FIG. 31

FIG. 32

Channel Capacity	TF Duration	TF Size	STS-1s	TFs/s	
51.84	STS- 1	250 500 1000 125 250 500 62.5 125 250 62.5 31.25 15.625 7.8125 15.625 125 100 80 15.625 12.5 10	1620 3240 6480 2430 4860 9720 4860 9720 19440 19440 9720 4860 9720 19440 19440 15625 12500 10000 19531.25 15625 12500	1512 3024 6048 2268 4536 9072 4536 9072 18144 18144 9072 4536 9072 18144 18144 15625 12500 10000 19531.3 15625 12500	2 4 8 3 6 12 12 24 24 12 24 12 24 24 12 12 12 24 19.3 15.4 12.3 24.1 19.3 15.4
155.52	STS- 3			4000 2000 1000 8000 4000 2000 16000	
622.08	STS- 12				
2488.32	STS- 48				
9953.28	STS- 192				
1000	GE				
10000	10GE				

FIG. 33

<i>Ch Capacity</i>	<i>TF Dur.</i>	<i>TF Size</i>	<i>GE TFs</i>	<i>TFs/s</i>
1000	GE	80	10000	1.0
51.84	STS- 1	250	1512	0.15
		500	3024	0.30
		1000	6048	0.60
		125	2268	0.23
155.5	STS- 3	250	4536	0.45
		500	9072	0.91
		62.5	4536	0.45
622.1	STS- 12	125	9072	0.91
		250	18144	1.81
		62.5	18144	1.81
2488	STS- 48	31.25	9072	0.91
		15.625	4536	0.45
		7.8125	9072	0.91
9953	STS- 192	15.625	18144	1.81
10000	10GE	8	10000	1.00
		16	20000	2.00
				62500

FIG. 34

Ch Capacity	GE	TF Dur.	TF Size	GE TFs	TFs/s
1000	GE	62.5	7812.5	1.0	16000
51.84	STS- 1	250	1512	0.19	4000
		500	3024	0.39	2000
155.52	STS- 3	1000	6048	0.77	1000
		125	2268	0.29	8000
622.08	STS- 12	250	4536	0.58	4000
		500	9072	1.16	2000
2488.32	STS- 48	62.5	4536	0.58	16000
		125	9072	1.16	8000
9953.28	STS- 192	250	18144	2.32	4000
		62.5	18144	2.32	16000
10000	10GE	31.25	9072	1.16	32000
		15.625	4536	0.58	64000
10000		7.8125	9072	1.16	128000
		15.625	18144	2.32	64000
10000		12.5	15625	2.00	80000
		25	31250	4.00	40000

FIG. 35

TF Alignment of UTR(j) to UTC- with three input queues - principle of operation:

The same queue is not used simultaneously for:

1. Receiving data packets from the serial link, and
2. Forwarding data packets to the switch

FIG. 36

SHEET 36 OF 65

ATTORNEY DOCKET NO.: SYN 1775

DIEEK ET AL.

PATENT APPLICATION

FIG. 37

FIG. 38

SHET 38 OF 65

ATTORNEY DOCKET NO.: SYN 1775

OFEK ET AL.

PATENT APPLICATION

FIG. 39

FIG. 40

FIG. 41

FIG. 42

FIG. 43

FIG. 44

- $CCI_length \cdot TF1 = CC2_length \cdot TF2 = CC3_length \cdot TF2$
 - $TF2 = (SCI_length / SC2_length) \cdot TF1 = k \cdot TF1$, where the common cycles of $TF1$ and $TF2$ are aligned with respect to UTC.
- For $k = 2$ and $c = 4$ (e.g., High_capacity=OC-192, Low_capacity=OC-48):

FIG. 45

FIG. 46

$c=4$, e.g., OC-192/OC-48
 $k=2$, e.g., 25 microsec/12.5 microsec

FIG. 47

FIG. 48

FIG. 49

FIG. 50

FIG. 51

FIG. 52

- $CC1_length \cdot TF1 = CC2_length \cdot TF2 = CC3_length \cdot TF2$

- $TF2 = (SCI_length / SC2_length) \cdot TF1 = k \cdot TF1$, where the common cycles of $TF1$ and $TF2$ are aligned with respect to UTC.
- For $k = 2$ and $c = 4$ (e.g., High_capacity=OC-192, Low_capacity=OC-48):

FIG. 53

FLI - Fractional Lambda Interface

FLS - Fractional Lambda Switch

OXC - Optical Cross Connect

Grooming system

G - Giugling system

5840 5840

FIG. 54

FLI - Fractional Lambda Interface
FLS - Fractional Lambda Switch
OXC - Optical Cross Connect
G - Grooming system
D - Degrooming system

12 STS-1s per time frame

FIG. 55

FIG. 56

FIG. 57

ATTORNEY DOCKET NO.: SYN 1775 SHEET 57 OF 65

PATENT APPLICATION OFFER ET AL.

FIG. 58

FIG. 59

FIG. 60

FIG. 61

ATTORNEY DOCKET NO.: SYN 1775
SHEET 61 OF 69

PATENT APPLICATION
OFFEK ET AL.
8147

FIG. 62

SHEET 62 OF 65
ATTORNEY DOCKET NO.: SYN 1775
OFFICE ET AL.
PATENT APPLICATION

FIG. 63

FIG. 64

- SONET - synchronous optical network
- Multiplexing method: byte interleaving
- Signal hierarchy: OC-N (STS-N)
 - STS-N rate: $N \times 51.84$ Mb/s
 - Frame format: 9 rows by $90 \times N$ columns
 - capacity: $N \times 810$ bytes in 125 microsecond.
 - overhead: $N \times 27$ bytes
 - payload: $N \times 783$ bytes

FIG. 65

