# Householder Reflections and Givens Rotations Matrix Computations — CPSC 5006 E

Julien Dompierre

Department of Mathematics and Computer Science Laurentian University

Sudbury, November 15, 2010

# QR Decomposition with Householder Reflections and Givens Rotations

- Matrix of a Linear Transformation
- Householder Reflections
- Givens Rotations
- QR decomposition
- Section 5.1 and 5.2 of the textbook



# Matrix Representation of a Linear Transformation

#### Theorem

Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be a linear transformation. Then there exists a unique matrix P called **standard matrix for the linear transformation**, such that

$$T(x) = Px$$
 for all  $x$  in  $\mathbb{R}^n$ .

In fact, P is the  $m \times n$  matrix whose jth column is the vector  $T(e_j)$ , where  $e_j$  is the jth column of the identity matrix in  $\mathbb{R}^n$ .

$$P = [T(e_1) \ T(e_2) \ \cdots \ T(e_n)].$$

All matrix transformation from  $\mathbb{R}^n$  to  $\mathbb{R}^m$  is a linear transformation and conversely, all linear transformation from  $\mathbb{R}^n$  to  $\mathbb{R}^m$  is a matrix transformation.

## Proof

#### Proof.

Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be a linear transformation,  $\{e_1, e_2, ..., e_n\}$  be a standard basis for  $\mathbb{R}^n$ , and u be an arbitrary vector in  $\mathbb{R}^n$ . Write the vectors as column vectors:

$$e_1 = \begin{bmatrix} 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, e_n = \begin{bmatrix} 0 \\ \vdots \\ 1 \end{bmatrix}, \text{and} \quad u = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}.$$

Express u in terms of the basis

$$u = a_1e_1 + \cdots + a_ne_n$$
.

Continued next slide...



# Proof (continued)

#### Proof.

Since T is a linear transformation

$$T(u) = T(a_1e_1 + \dots + a_ne_n)$$

$$= a_1T(e_1) + \dots + a_nT(e_n)$$

$$= [T(e_1) \cdot \dots \cdot T(e_n)] \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$

where  $[T(e_1)\cdots T(e_n)]$  is a matrix with columns  $T(e_1)$ , ...,  $T(e_n)$ . Thus the linear transformation T is defined by the matrix

$$P = [T(e_1) \cdots T(e_n)].$$

## Linear Transformation of a Line is a Line

The segment through vectors p and q in  $\mathbb{R}^n$  may be written in the parametric form

$$x = (1 - t)p + tq$$
,  $0 \le t \le 1$ .

If we apply the linear application  $T: \mathbb{R}^n \to \mathbb{R}^m$  to this segment, we get

$$T(x) = T((1-t)p + tq) = (1-t)T(p) + tT(q), \quad 0 \le t \le 1,$$

which is the equation of a segment through vectors  $\mathcal{T}(p)$  and  $\mathcal{T}(q)$  in  $\mathbb{R}^m$ 

# Reflection through the $x_1$ -axis

The vector 
$$e_1=\begin{bmatrix}1\\0\end{bmatrix}$$
 is transformed into  $T(e_1)=\begin{bmatrix}1\\0\end{bmatrix}$ .

The vector  $e_2=\begin{bmatrix}0\\1\end{bmatrix}$  is transformed into  $T(e_2)=\begin{bmatrix}0\\-1\end{bmatrix}$ .

The standard matrix of the transformation is  $P = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ .



# Reflection through the $x_2$ -axis

The vector 
$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 is transformed into  $T(e_1) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ .  
The vector  $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$  is transformed into  $T(e_2) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ .

The standard matrix of the transformation is  $P = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ .



# Reflection through the line $x_2 = x_1$

The vector 
$$e_1=\left[\begin{array}{c}1\\0\end{array}\right]$$
 is transformed into  $T(e_1)=\left[\begin{array}{c}0\\1\end{array}\right]$ . The vector  $e_2=\left[\begin{array}{c}0\\1\end{array}\right]$  is transformed into  $T(e_2)=\left[\begin{array}{c}1\\0\end{array}\right]$ .

The standard matrix of the transformation is  $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ .



# Reflection through the line $x_2 = -x_1$

The vector 
$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 is transformed into  $T(e_1) = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ .  
The vector  $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$  is transformed into  $T(e_2) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ .

The standard matrix of the transformation is  $P = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ .



# Rotation Around the Origin O of an Angle $\theta$

The vector 
$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 is transformed into  $T(e_1) = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$ .

The vector  $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$  is transformed into  $T(e_2) = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$ .

The standard matrix of the transformation is

$$P = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

In this case,  $\theta = 30^{\circ}$ .



### Rotation in Three Dimensions

Counterclockwise rotation of angle  $\theta$  around the  $x_3$ -axis:

$$P = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix}.$$

Counterclockwise rotation of angle  $\phi$  around the  $x_1$ -axis:

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix}$$

Counterclockwise rotation of angle  $\psi$  around the  $x_2$ -axis:

$$P = \begin{bmatrix} \cos \psi & 0 & -\sin \psi \\ 0 & 1 & 0 \\ \sin \phi & 0 & \cos \phi \end{bmatrix}$$

## Alston Scott Householder

Alston Scott Householder. Born: 5 May 1904 in Rockford, Illinois, USA. Died: 4 July 1993 in Malibu, California, USA.



## Householder Reflection



$$\operatorname{proj}_{v} x = \left(\frac{x \cdot v}{v \cdot v}\right) v.$$

## Householder Reflection as a Matrix

$$x - 2\operatorname{proj}_{v} x = x - 2\left(\frac{x \cdot v}{v \cdot v}\right) v = x - 2\left(\frac{v \cdot x}{v \cdot v}\right) v$$

$$= x - \frac{2}{v^{T}v} (v^{T}x) v = x - \frac{2}{v^{T}v} v (v^{T}x)$$

$$= x - \frac{2}{v^{T}v} (v v^{T}) x = \underbrace{\left(I - \frac{2}{v^{T}v} (v v^{T})\right) x}_{P}$$

$$= \left(I - \frac{2}{\|v\|_{2}^{2}} (v v^{T})\right) x = \left(I - 2\frac{v}{\|v\|_{2}} \frac{v^{T}}{\|v\|_{2}}\right) x$$

$$= \underbrace{\left(I - 2w w^{T}\right)}_{P} x = Px$$

where  $w = v/||v||_2$  is a unit vector in 2-norm.

#### Householder Reflectors

Householder reflectors are matrices of the form

$$P = I - 2w w^T,$$

where w is a unit vector (a vector of 2-norm unity).



Geometrically, Px represents a mirror image of x with respect to the hyperplane span $\{w\}^{\perp}$ .

# A Few Simple Properties

- P is symmetric, i.e.  $P = P^T$ .
- P is unitary. i.e.  $PP^T = I$ .
- In the complex case  $P = I 2w w^H$  is Hermitian  $(P = P^H)$  and unitary  $(PP^H = I)$ .
- P can be written as  $P = I \beta v v^T$  with  $\beta = 2/||v||_2^2$ , where v is a multiple of w. So we don't need to store the matrix P, but only the vector v and the scalar  $\beta$ .

# A Few Simple Properties (p. 211)

- Px (operation count?) can be evaluated  $x \beta(x^T v) \times v$  (operation count?)
- Similarly, if  $A \in \mathbb{R}^{m \times n}$  and  $P = I \beta v v^T \in \mathbb{R}^{m \times m}$ , then PA (operation count?) can be evaluated as

$$PA = (I - \beta v v^T)A = A - vz^T$$

where  $z^T = \beta v^T A$  (operation count?)

• Likewise, if  $A \in \mathbb{R}^{m \times n}$  and  $P = I - \beta v v^T \in \mathbb{R}^{n \times n}$ , then AP (operation count?) can be evaluated as

$$AP = A(I - \beta v v^{T}) = A - zv^{T}$$

where  $z = \beta Av$  (operation count?)



#### Householder Vector

<u>Problem 1:</u> Given a vector  $x \neq 0$ , find w such that the Householder reflection will zero out all but the first entry of x, i.e.

$$Px = (I - 2w w^T)x = [\alpha, 0, 0, \dots, 0] = \alpha e_1,$$

where  $\alpha$  is a (free) scalar.

Writing  $(I - \beta v v^T)x = \alpha e_1$  yields

$$\beta(\mathbf{v}^T \mathbf{x}) \ \mathbf{v} = \mathbf{x} - \alpha \mathbf{e}_1 \quad \rightarrow \quad \mathbf{v} = \frac{1}{\beta(\mathbf{v}^T \mathbf{x})} (\mathbf{x} - \alpha \mathbf{e}_1)$$

Desired v is a multiple of  $x - \alpha e_1$ , i.e., we can take

$$v = x - \alpha e_1$$

To determine  $\alpha$  we just recall that

$$||Px|| = ||(I - 2w w^T)x||_2 = ||x||_2 = ||\alpha e_1||.$$

As a result:  $|\alpha| = ||x||_2$ , or

$$\alpha = \pm ||x||_2$$

# Vector Sign

Should verify that both signs work, i.e., that in both cases we indeed get  $Px = \alpha e_1$  [exercise].

Which sign is best? To reduce cancellation, the resulting  $x - \alpha e_1$  should not be small. So  $\alpha = -\text{sign}(x_1) ||x||_2$ , then

$$v = x - \alpha e_1 = x + \text{sign}(x_1) ||x||_2 e_1$$
 and  $w = v/||v||_2$ .

$$v = \begin{bmatrix} \hat{x}_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} \quad \text{with} \quad \hat{x}_1 = \begin{cases} x_1 + \|x\|_2 & \text{if } x_1 > 0 \\ x_1 - \|x\|_2 & \text{if } x_1 \le 0 \end{cases}$$

OK, but will yield a negative multiple of  $e_1$  if  $x_1 > 0$ .



# Alternative (p. 210)

Define  $\sigma = \sum_{i=2}^{n} x_i^2$  and when  $x_1 > 0$  use  $\alpha = ||x||_2$ :

$$\hat{x}_1 = x_1 - \|x\|_2 = \frac{x_1^2 - \|x\|_2^2}{x_1 + \|x\|_2} = \frac{-\sigma}{x_1 + \|x\|_2}$$

So:

$$\hat{x}_1 = \begin{cases} \frac{-\sigma}{x_1 + \|x\|_2} & \text{if } x_1 > 0\\ x_1 - \|x\|_2 & \text{if } x_1 \le 0 \end{cases}$$

It is customary to compute a vector v such that  $v_1 = 1$ . So v is scaled by its first component.

If  $\sigma$  is zero, procedure will return v = [1; x(2:n)] and  $\beta = 0$ .

## Algorithm 5.1.1 Householder Vector (p. 210)

**Algorithm 1 Householder Vector**. Given  $x \in \mathbb{R}^n$ , this function computes  $v \in \mathbb{R}^n$  with v(1) = 1 and  $\beta \in \mathbb{R}$  such that  $P = I_n - \beta v v^T$  is orthogonal and  $Px = ||x||_2 e_1$ .

```
1: function [v, \beta] = \text{HouseholderVector}(x)
 2: n = length(x)
 3: \sigma = x(2:n)^T x(2:n), v = \begin{bmatrix} 1 \\ x(2:n) \end{bmatrix}
 4: if \sigma = 0 then
 5: \beta = 0
 6: else
 7: \mu = \sqrt{x(1)^2 + \sigma}
 8: if x(1) < 0 then
         v(1) = x(1) - \mu
10:
     else
          v(1) = -\sigma/(x(1) + \mu)
11:
12:
     end
       \beta = 2v(1)^2/(\sigma + v(1)^2), \quad v = v/v(1)
13:
14: end
```

# Problem 2: Householder QR Factorization (p. 224)

<u>Problem 2</u>: Given an  $m \times n$  matrix A, find Householder vectors  $w_1, w_2, \ldots, w_n$  such that

$$P_n \cdots P_2 P_1 A = (I - 2w_n w_n^T) \cdots (I - 2w_2 w_2^T)(I - 2w_1 w_1^T) A = R$$

where R is upper triangular  $(r_{ij} = 0 \text{ for } i > j)$ .

First step is easy: Select  $w_1$  so that the first column of A becomes  $\alpha e_1$ , i.e.,  $A_1 = P_1 A = (I - 2w_1 w_1^T) A$ .

Second step: Select  $w_2$  so that the second column of A has zeros below 2nd component, i.e.

$$A_2 = P_2 A_1 = P_2 P_1 A = (I - 2w_2 w_2^T)(I - 2w_1 w_1^T) A.$$

Etc... After j-1 steps:  $A_{j-1} \equiv P_{j-1} \cdots P_1 A$  has the following shape:



## Householder QR Factorization

$$A_{j-1} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & \cdots & a_{1n} \\ & a_{22} & a_{23} & \cdots & \cdots & a_{2n} \\ & & a_{33} & \cdots & \cdots & a_{3n} \\ & & \ddots & \ddots & \ddots \\ & & & a_{jj} & \cdots & a_{jn} \\ & & & a_{j+1,j} & \cdots & a_{j+1,n} \\ & & \vdots & \vdots & \vdots \\ & & & a_{m,j} & \cdots & a_{m,n} \end{bmatrix}.$$

To do: transform this matrix into one which is upper triangular up to the j-th column...

... while leaving the previous columns untouched.



## Householder QR Factorization

To leave the first j-1 columns unchanged, w must have zeros in positions 1 through j-1.

$$P_j = I - 2w_j w_j^T, \quad w_j = \frac{v}{\|v\|_2},$$

where the vector v can be expressed as a Householder vector for a shorter vector using the function **HouseholderVector**,

$$v = \begin{bmatrix} 0 \\ \text{HouseholderVector}(A(j:m,k)) \end{bmatrix}$$

The result is that work is done on the (j:m,j:n) submatrix.

# Algorithm 5.2.1 Householder QR Factorization (p. 224)

**Algorithm 2 NAIVE Householder QR Factorization** Given  $A \in R^{m \times n}$  with  $m \geq n$ , the following algorithm finds Householder matrices  $P_1, P_2, ..., P_n$  such that if  $Q = P_1 \cdots P_n$ , then  $Q^T A = R$  is upper triangular.

```
1: R = A

2: Q = I_m

3: for j = 1 : 1 : min(m - 1, n)

4: [v, \beta] = HouseholderVector(R(j : m, j))

5: v = \begin{bmatrix} 0_{j-1} \\ v \end{bmatrix}

6: P = I_m - \beta v v^T

7: R = PR

8: Q = QP

9: end
```

# Algorithm 5.2.1 Householder QR Factorization (p. 224)

**Algorithm 3 EFFICIENT Householder QR Factorization** Given  $A \in R^{m \times n}$  with  $m \ge n$ , the following algorithm finds Householder matrices  $P_1, P_2, ..., P_n$  such that if  $Q = P_1 \cdots P_n$ , then  $Q^T A = R$  is upper triangular. The upper triangular part of A is overwritten by the upper triangular part of R and components j+1:m of the jth Householder vector are stored in A(j+1:m,j), j < m.

```
1: for j = 1: 1: \min(m-1, n)

2: [v, \beta] = \text{HouseholderVector}(A(j: m, j))

3: A(j: m, j: n) = (I_{m-j+1} - \beta v v^T)A(j: m, j: n)

4: if j < m then

5: A(j+1: m, j) = v(2: m-j+1)

6: end

7: end
```

For line 3, see §5.1.5, page 211, for efficient multiplication of PA. This algorithm requires  $2n^2(m-n/3)$  flops.

# The Storage of Q and R on A (p. 225)

To clarify how A (in  $\mathbb{R}^{6 \times 5}$  for example) is overwritten by the previous algorithm, if

$$v^{(j)} = [\underbrace{0,...,0}_{j-1}, 1, v^{(j)}_{j+1}, ..., v^{(j)}_{m}]^{T}$$

is the jth Householder vector, then upon completion

$$A = \begin{bmatrix} r_{11} & r_{12} & r_{13} & r_{14} & r_{15} \\ v_2^{(1)} & r_{22} & r_{23} & r_{24} & r_{25} \\ v_3^{(1)} & v_3^{(2)} & r_{33} & r_{34} & r_{35} \\ v_4^{(1)} & v_4^{(2)} & v_4^{(3)} & r_{44} & r_{45} \\ v_5^{(1)} & v_5^{(2)} & v_5^{(3)} & v_5^{(4)} & r_{55} \\ v_6^{(1)} & v_6^{(2)} & v_6^{(3)} & v_6^{(4)} & v_6^{(5)} \end{bmatrix}.$$

We need an extra vector of size n to store the  $\beta$ 's. If the matrix  $Q = P_1 \cdots P_n$  is required, then it can be accumulated using Eqs (5.1.5) page 213.

## Householder QR versus Gram-Schmidt QR

The Householder QR yields the factorization

$$A = QR$$

where

$$Q = P_1 P_2 \dots P_m \in \mathbb{R}^{m \times m}$$

and

$$R = Q^T A = P_m \cdots P_1 A = A_m \in \mathbb{R}^{m \times n}.$$

The matrix R has zeros below the m-th row. Note also that this factorization always exists.

There is a **major** difference with Gram-Schmidt QR: Q is  $n \times n$  and R is  $m \times n$  (same as A).

**Question:** From the Householder QR, how to obtain  $A = Q_1R_1$  where  $Q_1$  as the same size as A and  $R_1$  is  $n \times n$ , as in (modified) Gram-Schmidt QR?

# Economy Size QR

**Answer:** simply use the partitioning

$$A = \left[ \begin{array}{cc} Q_1 & Q_2 \end{array} \right] \left[ \begin{array}{c} R_1 \\ 0 \end{array} \right] \quad \rightarrow \quad A = Q_1 R_1$$

Referred to as the "thin" QR factorization (or "economy-size QR" factorization in Scilab)

How to solve a least-squares problem  $A^TAx = A^Tb$  using the Householder factorization A = QR?

Answer: Solve  $R_1x_{LS} = Q_1^Tb$ , the right-hand side  $Q_1^Tb$  can be computed without assembling  $Q_1$ . Just apply  $Q_1^T$  to b. This entails applying the successive Householder reflections to b. (See algorithm 5.3.2, p. 240)

## The Rank-Deficient Case

Householder QR gives  $Q_1$  and  $R_1$  such that  $Q_1R_1=A$ . However, in the rank-deficient case,  $Q_1$  and A do not necessarily span the same space because  $R_1$  may be singular.

Remedy: Householder QR with column pivoting. Result will be:

$$A\Pi = Q \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix}$$

 $R_{11}$  is non singular. So rank(A) = size of  $R_{11} = rank(Q_1)$  and  $Q_1$  and A span the same subspace.

 $\Pi$  permutes columns of A.

# Householder with Pivoting

Algorithm: At step k, active matrix is A(k:n,k:m). Swap k-th column with column of largest 2-norm in A(k:n,k:m). If all the columns have zero norm, stop.



Practical Question: How to implement this (see section 5.4.1, p. 248)

# Properties of the QR Factorization (p. 229)

Consider the "thin" factorization A = QR, (size(Q) = [n,m] = size (A)). Assume  $r_{ii} > 0$ , i = 1, ..., m

- When A is of full column rank this factorization exists and is unique
- It satisfies:

$$\operatorname{span}\{a_1,\cdots,a_k\}=\operatorname{span}\{q_1,\cdots,q_k\},\quad k=1,\ldots,m$$

**3** R is identical with the Cholesky factor  $G^T$  of  $A^TA$ .

When A in rank-deficient and Householder with pivoting is used, then

$$range\{Q_1\} = range\{A\}$$



## James Wallace Givens, Jr

James Wallace Givens, Jr. (1910 December 14 — 1993 March 5) was a mathematician and a pioneer in computer science.

Givens, Wallace. "Computation of plane unitary rotations transforming a general matrix to triangular form". J. SIAM 6(1) (1958), pp. 26 50.

From 1968 to 1970 he was fourteenth president of the Society for Industrial and Applied Mathematics.

## Givens Rotations (p. 215)

Matrices of the form

$$G(i, k, \theta) = \begin{bmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & c & \cdots & s & \cdots & 0 \\ \vdots & & \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & -s & \cdots & c & \cdots & 0 \\ \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix}^{i}_{k}$$

where  $c = \cos \theta$  and  $s = \sin \theta$  for some  $\theta$ .

Premultiplication by  $G(i, k, \theta)^T$  amounts to a counterclockwise rotation of  $\theta$  radians in the (i, k) coordinate plane. Givens rotations are orthogonal.

## **Givens Rotations**

**Main idea of Givens rotations**: Consider  $y = G(i, k, \theta)^T x$  then

$$y_i = c x_i - s x_k$$
  
 $y_k = s x_i + c x_k$   
 $y_j = x_j \text{ for } j \neq i, k$ 

Can make  $y_k = 0$  by selecting

$$c = \frac{x_i}{t}$$
;  $s = \frac{-x_k}{t}$ ;  $t = \sqrt{x_i^2 + x_k^2}$ 

# Givens Rotations Algorithm 5.1.3 (p. 216)

**Algorithm 4 Givens Rotation**. Given scalar a and b ( $x_i$  and  $x_k$  in the previous slide), this function computes  $c = \cos(\theta)$  and  $s = \sin(\theta)$  such that  $\begin{bmatrix} c & s \\ -s & c \end{bmatrix}^T \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} r \\ 0 \end{bmatrix}.$ 

```
1: function [c, s] = GivensRotation(a, b)
2: if b = 0 then
3: c = 1 and s = 0
4: else
5: if |b| > |a| then
6: \tau = -a/b, \ s = 1/\sqrt{1 + \tau^2} \ \text{and} \ c = s\tau
7: else
8: \tau = -b/a, \ c = 1/\sqrt{1 + \tau^2} \ \text{and} \ s = c\tau
9: end
10: end
```

This algorithm requires 5 flops, 1 square root and no trig functions.

# Givens QR Method (p. 226)

Let A be a  $4 \times 3$  matrix. Then

# Givens QR Method (p. 226)

If t is the total number of rotations needed to transform A into an upper triangular matrix R, then

$$G_t^T \cdots G_2^T G_1^T A = R$$
  

$$(G_1 G_2 \cdots G_t)^T A = R$$
  

$$Q^T A = R$$

where 
$$Q^T = (G_1 G_2 \cdots G_t)^T$$
, i.e.  $Q = G_1 G_2 \cdots G_t$ .

# Givens QR Factorization — Algorithm 5.2.2 (p. 227)

**Algorithm 5 NAIVE Givens QR Factorization**. Given  $A \in \mathbb{R}^{m \times n}$  with  $m \ge n$ , the following algorithm overwrites A with  $Q^T A = R$ , where R is upper triangular and Q is orthogonal.

```
1: Q = I

2: R = A

3: for j = 1: n

4: for i = m : -1 : j + 1

5: [c, s] = GivensRotation(A(i - 1, j), A(i, j))

6: Create G(i - 1, i, \theta)

7: Q = QG(i - 1, i, \theta)

8: R = G^{T}(i - 1, i, \theta)R

9: end

10: end
```

# Applying Givens Rotations (p. 216)

If  $G(i, k, \theta) \in \mathbb{R}^{m \times m}$ , then the update  $A \leftarrow G(i, k, \theta)^T A$  effects just two rows of A,

$$A([i,k],:) = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}^T A([i,k],:)$$

and requires just 6n flops:

```
\begin{aligned} &\text{for } j = 1: n \\ &\tau_1 = A(i,j) \\ &\tau_2 = A(k,j) \\ &A(i,j) = c\tau_1 - s\tau_2 \\ &A(k,j) = s\tau_1 + c\tau_2 \end{aligned}
```

# Applying Givens Rotations (p. 216–217)

If  $G(i, k, \theta) \in \mathbb{R}^{n \times n}$ , then the update  $Q \leftarrow QG(i, k, \theta)$  effects just two columns of Q,

$$Q(:,[i,k]) = Q(:,[i,k]) \begin{bmatrix} c & s \\ -s & c \end{bmatrix}$$

and requires just 6m flops:

```
for j = 1 : m
	au_1 = Q(j, i)
	au_2 = Q(j, k)
Q(j, i) = c\tau_1 - s\tau_2
Q(j, k) = s\tau_1 + c\tau_2
end
```

# Givens QR Factorization — Algorithm 5.2.2 (p. 227)

**Algorithm 6 Givens QR Factorization**. Given  $A \in \mathbb{R}^{m \times n}$  with  $m \ge n$ , the following algorithm overwrites A with  $Q^T A = R$ , where R is upper triangular and Q is orthogonal.

```
1: for j = 1 : n

2: for i = m : -1 : j + 1

3: [c,s] = GivensRotation(A(i-1,j),A(i,j))

4: A(i-1:i,j:n) = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}^T A(i-1:i,j:n)

5: end

6: end
```

This algorithm requires  $3n^2(m-n/3)$  flops.

# Representing Products of Givens Rotations (p. 217)

lf

$$Z = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \quad \text{with } c^2 + s^2 = 1,$$

then we define the scalar  $\rho$  by

$$\begin{array}{l} \textbf{if} \ c=0 \ \textbf{then} \\ \rho=1 \\ \textbf{else} \ \textbf{if} \ |s|<|c| \ \textbf{then} \\ \rho=\text{sign}(c)s/2 \\ \textbf{else} \\ \rho=2\text{sign}(s)/c \\ \textbf{end} \end{array}$$

Essentially, this amounts to storing s/2 if the sin is smaller and 2/c if the cosine is smaller.

# Representing Products of Givens Rotations (p. 218)

With this encoding, it is possible to reconstruct  $\pm Z$  as follows:

```
if 
ho=1 then c=0 s=1 else if |
ho|<1 then s=2
ho c=\sqrt{1-s^2} else c=2/
ho s=\sqrt{1-c^2} end
```