9.8 非正弦信号产生电路

1. 电压比较器 voltage comparator

(1) 单门限电压比较器

功能:将输入模拟电压信号 (v_I) 与一个门限电压 (V_T) 相比较,输出高电平或者低电平信号 (v_O) 。

(1) 单门限电压比较器 ①传输特性曲线

• <u>门限电压(或阈值电压)</u>V_T: 输出电压发生翻转时的对应的<u>输入电压</u>。

特别的, $V_T = 0$ 时,称为过零比较器。

- 两种输出电平:
 高电平V_{OL}; 低电平V_{OL}。
- 两种类型:反相、同相。

实现电路? 门限电压 $V_{
m T}$? $V_{
m OH}$ 和 $V_{
m OL}$?

②基本电路 -- 开环的放大器

反相输入单门限电压比较器

同相输入单门限电压比较器

计算 V_{T} :

- (1)输出翻转时的输入信号 $V_{T} \approx v_{I}$
- (2) 放大器进入线性区: 虚短、虚断

放大区: $v_0 = A_{vd}(v_+ - v_-)$ 若 $A_{\rm vd} \rightarrow \infty$

$v_+ > v$	$v_{\rm O} = V_{\rm OH}$
$v_+ < v$	$v_{\rm O} = V_{\rm OL}$

③ $V_{\rm T}$ 的分析与设计

输出信号翻转时 $V_{\rm T} = v_{\rm I}; \quad V_- = V_+$

以反相单门限比较器为例

$$V_{\rm T} = v_{\rm I(M)}$$

$$= V_{\rm CC} R_2 / (R_1 + R_2)$$

$$V_{\text{REF}} = \frac{V_{\text{REF}} R_2}{R_1 + R_2} + \frac{v_1 R_1}{R_1 + R_2}$$

$$V_{\text{REF}} = 0$$

$$V_{+} = 0$$

翻转时:
$$\frac{V_{\text{REF}}R_2}{R_1 + R_2} + \frac{V_{\text{T}}R_1}{R_1 + R_2} = 0$$

$$V_{\text{T}} = -V_{\text{REF}}R_2/R_1$$

 V_{OH} 和 V_{OL} 与负载有关,如何稳定?

④V_{OH}和V_{OL}的控制

利用稳压二极管的限幅功能

前提: C的电源电压值显著大于VZ

$$v_{\text{I}} < V_{\text{REF}}$$
时, $v_{\text{O}} = V_{\text{OL}} = -V_{\text{Z}}$
 $\pm V_{\text{Z}}$ $v_{\text{I}} > V_{\text{REF}}$ 时, $v_{\text{O}} = V_{\text{OH}} = +V_{\text{Z}}$

$$V_{\mathrm{T}} = V_{\mathrm{REF}}$$

$v_{\rm I}$	= 0	< 0	> 0
$v_3 - v_N$	= 0	$>V_{ m Z}$	$< V_{\rm Z}$
Dz状态	截止	稳压导通	
比较器	开环	深度负反馈 $V_N = V_P = 0$	
v_0	= 0	$=V_{\mathbf{Z}}$	$= -V_{\mathbf{Z}}$

$$V_{\mathbf{Z}} + V_{\mathbf{REF}}$$
 $-V_{\mathbf{Z}} + V_{\mathbf{REF}}$

9.8.3 一电压器比较器电路如图题 9.8.3 所示。(1)若稳压管 D_z 的双向限幅 值为 $\pm V_z = \pm 6$ V,运放的开环电压增益 L_z $A_{vo} = \infty$,试画出比较器的传输特性; (2)若在同相输入端与地之间接上一参考 电压 $V_{REF} = -5$ V,重画(1)问的内容。

(1) 单门限比较器 ⑤应用举例

LM139/339系列集成电压比较器 (a) 外引脚图; (b) 基本比较器电路

(1) 单门限比较器 ⑤应用举例

▶ 波形变换:任意波形→矩形波

▶ 报警、产生控制信号:

特点: 快速响应

▶ 整形:

(1) 单门限比较器 ⑥问题与思考

> 比较器与运算放大器的关系?

比较器属于运算放大器的一种;

晶体管的工作区不同;

通用运算放大器要求稳定(密勒补偿,速度慢);

专用比较器通常强调速度快(通常比运放快1000倍)。

▶ 单门限比较器优缺点:

优点: 电路简单, 灵敏度高。

缺点: 抗干扰能力差!

1. 电压比较器 (2) 双门限(滞回、迟滞) 比较器

已知 $v_{\rm O} = V_{\rm om}^+$ 或 $V_{\rm om}^-$

则,双门限:

$$V_{\rm T} = \frac{R_1 V_{\rm REF}}{R_1 + R_2} + \frac{R_2}{R_1 + R_2} V_{\rm om}^+$$

$$\downarrow \mathbb{R} \quad V_{\rm REF} \quad R_2$$

$$\Delta V = V_{\mathrm{T}} - V_{\mathrm{T}}'$$

$$= \frac{R_2}{R_1 + R_2} \left(V_{\mathrm{om}}^+ - V_{\mathrm{om}}^- \right)$$

传输特性: $(以V_{REF}=0$ 为例)

在输出反转瞬间V+=V

1. 电压比较器 (3) 窗口比较器

传输特性:

设 $R_1 = R_2$,则两门限:

$$V_{L} = \frac{(V_{CC} - 2V_{D})R_{2}}{R_{1} + R_{2}}$$
$$= \frac{1}{2}(V_{CC} - 2V_{D})$$

$$V_{\rm H} = V_{\rm L} + 2V_{\rm D}$$

应用: 拣选,报警等

2 方波发生器(弛张振荡器、多谐信号发生器)

要求:

- 比较器能连续翻转.
 - A, R_1, R_{2f} 组成迟滞比较器
- 周期能受控(RC电路) 反相输入

(1) 工作原理

当输出为高电平,

$$v_{\rm O} = +V_{\rm OM};$$

当输出为低电平,

$$v_{\rm o} = -V_{\rm om}$$
,

则门限电压为

$$V_{\rm H} = \frac{R_1 V_{\rm OM}}{R_1 + R_{\rm 2f}}$$

$$V_{\rm L} = -\frac{R_1 V_{\rm OM}}{R_1 + R_{\rm 2f}}$$

2 方波发生器 (1) 工作原理

(a) 设 $v_0 = + V_{OM}$ 则: $v_+ = V_H$ 此时,输出给C充电!

在
$$v_c < V_H$$
 时, $v_- < v_+$, v_o 保持 + V_{OM} 不变;

一旦
$$v_c > V_H$$
, 就有 $v_- > v_+$,

$$v_0$$
 立即由 + V_{OM} 变成 - V_{OM}

2 方波发生器 (1) 工作原理

(b) 当 $v_0 = -V_{OM}$ 时, $v_+ = V_L$ 此时, C 经输出端放电。

 v_c 降到 V_L 时, v_o 上翻。

当 v_0 重新回到+ V_{OM} 以后,电路又进入另一个周期性的变化。

输出波形:

$$V_{\rm H} = -V_{\rm L} = \frac{R_1 V_{\rm OM}}{R_1 + R_{\rm 2f}}$$

(c) 周期与频率的计算

$$V_{\rm H} = -V_{\rm L} = \frac{R_{\rm l}}{R_{\rm l} + R_{\rm 2f}} V_{\rm OM}$$

v。上升阶段表示式:

$$v_c(t) = V_{\rm OM} + (V_{\rm L} - V_{\rm OM}) e^{-\frac{t}{RC}}$$

v。下降阶段表示式:

$$v_c(t) = -V_{\rm OM} + (V_{\rm H} + V_{\rm OM})e^{-RC}$$

$$T_1 = T_2 = RC \ln \left(1 + \frac{2R_1}{R_{2f}} \right)$$

$$T = 2RC \ln \left(1 + \frac{2R_1}{R_{2f}} \right)$$

$$f=1/T$$

2 方波发生器 (2) 电路的改进:

2 方波发生器 (2) 电路的改进:矩形波发生器

C充电时,充电电流经电位器的上半部、二极管D1; C放电时,放电电流经二极管D2、电位器的下半部。 改变C的充、放电时间常数

3 锯齿波发生电路

(1) 三角波发生器(锯齿波的特例)

电路1:应用现有电路设计

电路一: 方波发生器→矩形波→积分电路→三角波

$$v_{o} = -\frac{1}{R_4 C_2} \int v_{o1} \, \mathrm{d}t$$

- 三角波周期由方波发生器确定;
- 三角波幅值?

$$V_{\rm om} = \frac{T}{4} \times \frac{V_{\rm Z}}{R_4 C_2}$$

(1) 三角波发生器

$$V_{\rm P} = \frac{R_{\rm l}}{R_{\rm l} + R_{\rm 2}} v_{\rm ol} + \frac{R_{\rm 2}}{R_{\rm l} + R_{\rm 2}} v_{\rm om} = 0$$

$$v_{\text{om}} = -\frac{R_1}{R_2} v_{\text{ol}} \quad (v_{\text{ol}} = \pm V_Z)$$

$$|V_{\text{om}}| = \frac{R_1}{R_2} V_Z = \frac{V_Z}{R_4 C} \frac{T_1}{2}$$

$$T = 2T_1 = \frac{4R_1R_4C}{R_2}$$

改变充放电时间常数

充电: $(R_5/\!/R_6)C$

放电: R₆C

(2) 锯齿波发生电路

特例:

使放电的时间常数为0。

$$T = \frac{2R_1RC}{R_2}$$

9 波形产生于变换电路

小结

掌握:正弦波振荡电路;

掌握:比较器(单门限,双门限);

掌握: 方波/矩形波发生电路;

掌握:三角波/锯齿波发生电路。

预习:整流滤波电路

作业

P479: 9.8.5, 9.8.6;

P481: 9.8.8, 9.8.9, 9.8.10.

