Ed Dorlittle 2007 Winter Camp

6 Exercices

Attention! Les exercices ne sont pas classés par ordre de difficulté croissante...

Exercice 1 (Crux Mathematicorum 2003).

Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que, pour tout réel x:

$$f(x^3 + x) \leqslant x \leqslant (f(x))^3 + f(x)$$

Exercice 2.

Déterminer toutes les fonctions $f:\mathbb{Z} \to \mathbb{Z}$ bornées et telles que, pour tous entiers n,k:

$$f(n+k) + f(k-n) = 2f(k)f(n)$$

Exercice 3 (Équation de Jensen).

Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues et telles que, pour tous réels x, y:

$$f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}$$

Exercice 4 (D'après proposition OIM 1989).

Déterminer les réels a pour lesquels il existe une fonction $f:[0;1]\to\mathbb{R}$ continue et vérifiant les conditions suivantes :

- i) f(0) = 0 et f(1) = 1.
- ii) pour tous $x, y \in [0, 1]$ avec $x \leq y$, on a $f\left(\frac{x+y}{2}\right) = (1-a)f(x) + af(y)$.

Exercice 5 (OIM 1990).

Construire une fonction $f: \mathbb{Q}^{+*} \to \mathbb{Q}^{+*}$ telle que, pour tous $x, y \in \mathbb{Q}^{+*}$:

$$f(xf(y)) = \frac{f(x)}{y}$$

Exercice 6 (D'après proposition OIM 1991).

Déterminer les fonctions $f: \mathbb{Z} \to \mathbb{Z}$ telles que, pour tous entiers m, n:

$$f(m+f(f(n))) = -f(f(m+1)) - n$$

Exercice 7 (Iran 1999).

Déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que, pour tous réels x, y,

$$f(f(x) + y) = f(x^2 - y) + 4yf(x)$$

Exercice 8.

Soit $f: \mathbb{R} \to \mathbb{R}$ continue et telle que, pour tous réels x, y:

$$f(x+y)f(x-y) = (f(x))^2$$

Prouver que f est identiquement nulle ou que f ne s'annule pas.

Exercice 9 (Proposé OIM 1996).

Soit $f: \mathbb{R} \to \mathbb{R}$ telle que, pour tout réel x, on ait $|f(x)| \leq 1$ et

$$f\left(x + \frac{13}{42}\right) + f(x) = f\left(x + \frac{1}{6}\right) + f\left(x + \frac{1}{7}\right)$$

Prouver que f est périodique.

Exercice 10 (Irlande 1999).

Soit $f: \mathbb{N}^* \to \mathbb{N}^*$ telle que

- i) pour tous entiers a et b premiers entre eux f(ab) = f(a)f(b)
- ii) pour tous nombres premiers p, q, f(p+q) = f(p) + f(q)

Prouver que f(2) = 2, f(3) = 3 et f(1999) = 1999.

Exercice 11 (Corée 1999).

Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que, pour tout réel $x \notin \{-1, 1\}$:

$$f\left(\frac{x-3}{x+1}\right) + f\left(\frac{3+x}{1-x}\right) = x$$

Exercice 12 (OIM 1982).

Soit $f: \mathbb{N}^* \to \mathbb{N}^*$ vérifiant les conditions suivantes :

- i) pour tous entiers m, n > 0, $f(m+n) f(m) f(n) \in \{0, 1\}$
- ii) f(2) = 0, f(3) > 0 et f(9999) = 3333

Déterminer f(1982).

Exercice 13 (Tournoi des villes 1996).

Prouver qu'il n'existe aucune fonction $f: \mathbb{R} \to \mathbb{R}$ telle que, pour tout réel x, on ait $f(f(x)) = x^2 - 1996$.

Exercice 14 (Turquie 1999).

Déterminer toutes les fonctions $f:\mathbb{R}\to\mathbb{R}$ telles que :

- i) l'ensemble $\left\{\frac{f(x)}{x},\ x\in\mathbb{R}^\star\right\}$ soit fini ii) pour tout réel $x,\ f(x-1-f(x))=f(x)-x-1$

Exercice 15 (D'après proposition OIM 1997).

Existe-t-il deux fonctions $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ telles que, pour tout réel x:

$$f(g(x)) = x^2$$
 et $g(f(x)) = x^3$

Exercice 16 (D'après proposition OIM 1995).

Existe-t-il une fonction continue $f: \mathbb{R} \to \mathbb{R}$ vérifiant les trois conditions suivantes?

- i) il existe un réel M>0 tel que, pour tout réel $x,\,-M\leqslant f(x)\leqslant M$
- ii) f(1) = 1
- iii) Si $x \neq 0$ alors,

$$f\left(x + \frac{1}{x^2}\right) = f(x) + \left(f\left(\frac{1}{x}\right)\right)^2$$

Exercice 17 (OIM 2002).

Déterminer toutes les fonctions $f:\mathbb{R} \to \mathbb{R}$ telles que, pour tous réels x,y,z,t :

$$(f(x) + f(z))(f(y) + f(t)) = f(xy - zt) + f(xt + yz)$$

Exercice 18 (OIM 1992).

Déterminer toutes les fonctions $f:\mathbb{R} \to \mathbb{R}$ telles que, pour tous réels x,y :

$$f(x^2 + f(y)) = y + (f(x))^2$$

Exercice 19 (OIM 1999).

Déterminer toutes les fonctions $f:\mathbb{R}\to\mathbb{R}$ telles que, pour tous réels x,y:

$$f(x - f(y)) = f(f(y)) + xf(y) + f(x) - 1$$

Exercice 20 (OIM 1977).

Déterminer toutes les fonctions $f: \mathbb{N} \to \mathbb{N}$ telles que, pour tout entier $n \geqslant 0$:

$$f(n+1) > f(f(n))$$

Exercice 21 (OIM 1996).

Déterminer toutes les fonctions $f:\mathbb{N}\to\mathbb{N}$ telles que, pour tous entiers $m,n\geqslant 0$:

$$f(m + f(n)) = f(f(m)) + f(n)$$

Exercice 22 (Italie 1999).

a) Déterminer toutes les fonctions strictement monotones $f: \mathbb{R} \to \mathbb{R}$ telles que, pour tous réels x,y:

$$f(x + f(y)) = f(x) + y$$

b) Prouver que, pour tout entier n>1, il n'existe pas de fonction strictement monotone $f:\mathbb{R}\to\mathbb{R}$ telles que, pour tous réels x,y:

$$f(x+f(y)) = f(x) + y^n$$

Exercice 23 (Suisse 1999).

Déterminer toutes les fonctions $f: \mathbb{R}^* \to \mathbb{R}$ telles que, pour tous réels x non nul :

$$\frac{1}{x}f(-x) + f\left(\frac{1}{x}\right) = x$$

Exercice 24 (Vietnam 1999).

Soit $f:[0,1] \to \mathbb{R}$ continue telle que:

i) f(0) = f(1) = 0

ii) pour tous $x, y \in [0, 1]$, on ait $2f(x) + f(y) = 3f(\frac{2x+y}{3})$.

Prouver que f(x) = 0 pour tout $x \in [0, 1]$.

Exercice 25 (Autriche-Pologne 1997).

Prouver qu'il n'existe pas de fonction $f: \mathbb{Z} \to \mathbb{Z}$ telle que, pour tous entiers x, y:

$$f(x + f(y)) = f(x) - y$$

Exercice 26 (Ukraine 1997).

Déterminer toutes les fonctions $f:\mathbb{Q}^{+\star}\to\mathbb{Q}^{+\star}$ telles que, pour tout rationnel x>0:

$$f(x+1) = f(x) + 1$$
 et $f(x^2) = (f(x))^2$

Exercice 27.

Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que $\lim_{x\to 0} \frac{f(x)}{x} = 1$ et, pour tous réels x,y:

$$f(x+y) = f(x) + f(y) + 2xy$$

Exercice 28 (Irlande 1997).

Déterminer tous les polynômes P tels que, pour tout réel x:

$$(x-16)P(2x) = 16(x-1)P(x)$$

Exercice 29 (Proposé OIM 1987).

Soit $f: \mathbb{R}^{+*} \to R$ une fonction telle que, pour tout réel x > 0, $f(x) = f(\frac{1}{x})$. Prouver qu'il existe une fonction $u: [1; +\infty[\to \mathbb{R} \text{ telle que} :$

$$u\left(\frac{x+\frac{1}{x}}{2}\right) = f(x)$$

pour tout réel x > 0.

Exercice 30 (URSS 1974).

Soit $f:[0,1]\to\mathbb{R}$ telle que f(1)=1 et $f(x)\geqslant 0$ pour tout réel x. De plus, pour tous réels $x_1,x_2\geqslant 0$ tels que $x_1+x_2\leqslant 1$, on a $f(x_1+x_2)\geqslant f(x_1)+f(x_2)$.

- a) Prouver que, pour tout réel x, on a $f(x) \leq 2x$.
- b) Est-il exact que, pour tout réel x, on ait $f(x) \leq 1,9x$ et pourquoi?

Exercice 31 (Proposé OIM 1989).

Soient $g: \mathcal{C} \to \mathcal{C}$ une fonction, $a \in \mathcal{C}$ et $\omega \in \mathcal{C} \setminus \{1\}$ tel que $\omega^3 = 1$. Prouver qu'il existe une et une seule fonction $f: \mathcal{C} \to \mathcal{C}$ telle que :

$$f(z) + f(\omega z + a) = q(z)$$

pour tout $z \in \mathcal{C}$ et déterminer cette fonction f.

Exercice 32 (American Mathematical Monthly).

Soit n>1 un entier. Déterminer toutes les fonctions $f:\mathbb{R}\to\mathbb{R}$ telles que, pour tous réels x,y:

$$f(x+y^n) = f(x) + (f(y))^n$$

Exercice 33 (Roumanie 1999).

Déterminer toutes les fonctions monotones $f:\mathbb{R} \to \mathbb{R}$ telles que, pour tout réel x:

$$f(f(f(x))) - 3f(f(x)) + 6f(x) = 4x + 3$$

Exercice 34 (Proposé OIM 1995).

Montrer qu'il existe une et une seule fonction $f:\mathbb{N}^\star\to\mathbb{N}^\star$ telle que, pour tous entiers m,n>0 :

$$f(m+f(n)) = n + f(m+95)$$

Quelle est la valeur de $\sum_{k=1}^{19} f(k)$?

Exercice 35 (Crux Mathematicorum).

Trouver toutes les fonctions $f:\mathbb{R} \to \mathbb{R}$ strictement croissantes et bijectives telles que, pour tout réel x :

$$f(x) + f^{-1}(x) = 2x$$

Exercice 36 (Proposé OIM 2000).

Trouver toutes les paires de fonctions $f:\mathbb{R}\to\mathbb{R}$ et $g:\mathbb{R}\to\mathbb{R}$ telles que, pour tous réels x,y :

$$f(x + g(y)) = xf(y) - yf(x) + g(x)$$

Exercice 37 (OIM 1998).

On considère toutes les applications $f: \mathbb{N}^{\star} \to \mathbb{N}^{\star}$ telles que, pour tous entiers s, t > 0:

$$f\left(t^2f(s)\right) = s(f(t))^2$$

Déterminer la plus petite valeur possible de f(1998).

Exercice 38.

Déterminer toutes les fonctions continues $f: \mathbb{R} \to \mathbb{R}$ telles que, pour tous réels x, y:

$$(f(x) + f(y))f\left(\frac{x+y}{2}\right) = 2f(x)f(y)$$

Exercice 39 (Israël 1995).

Soit $\alpha \in \mathbb{R}$. Déterminer les fonctions $f: \mathbb{R}^{+\star} \to \mathbb{R}^{+\star}$ telles que, pour tous réels x > 0:

$$\alpha x^2 f\left(\frac{1}{x}\right) + f(x) = \frac{x}{x+1}$$

Exercice 40 (Autriche/Pologne 1994).

Soient a,b deux réels. Déterminer les fonctions à deux variables $f:\mathbb{R}^2\to\mathbb{R}$ telles que, pour tous réels x,y,z:

$$f(x,y) = af(x,z) + bf(y,z)$$

Exercice 41 (Turquie 1996).

Prouver qu'il n'existe pas de fonction $f: \mathbb{R} \to \mathbb{R}$ telle que, pour tous réels x, y > 0:

$$f(x+y) > f(x)(1+yf(x))$$

Exercice 42 (OIM 1975).

Déterminer toutes les fonctions polynômiales à deux variables P qui vérifient les conditions suivantes :

- i) il existe un entier n>0 tel que, pour tous réels x,y,t, on ait $P(tx,ty)=t^nP(x,y)$
- ii) pour tous a, b, c réels, on a P(b+c, a) + P(c+a, b) + P(a+b, c) = 0
- iii) P(1,0) = 1

Exercice 43 (OIM 1986).

Déterminer toutes les fonctions $f: \mathbb{R}^+ \to \mathbb{R}^+$ qui vérifient les conditions suivantes :

- i) f(2) = 0
- ii) pour tout $x \in [0, 2[, f(x) \neq 0]$
- iii) pour tous réels $x, y \ge 0$, f(xf(y))f(y) = f(x+y)

Exercice 44 (OIM 1993).

Existe-t-il une fonction $f: \mathbb{N}^* \to \mathbb{N}^*$ qui vérifie les conditions suivantes?

- i) f(1) = 2
- ii) pour tout entier n > 0, f(f(n)) = f(n) + n
- iii) f(n) < f(n+1)

Exercice 45 (OIM 1994).

Déterminer les fonctions $f:]-1,+\infty[\to]-1;+\infty[$ qui vérifient les conditions suivantes :

- i) pour tous réels x, y > -1, f(x + f(y) + xf(y)) = y + f(x) + yf(x)
- ii) la fonction $x\mapsto \frac{f(x)}{x}$ est strictement croissante sur] -1;0[et sur $\mathbb{R}^{+\star}$