Help

The main idea of controlling the boundary conditions with the surface of the bodies

The array vol_inf_fb (volume information fluid or body) in the program contain information of what is placed in the control volume – fluid or this control volume is a body. The program calculate only the control volumes which are full with fluid. The control volumes are separated in two groups:

- 1. The control volumes, which are surrounded from control volumes which contain only fluid. Here the applying of the boundary conditions and check related to that is not needed.
- 2. The control volumes, which are neighbor at least one volume part of the body or are in the beginning or the end of the computational area. Here are included all checks, which are needed to be applied to account the boundary conditions. This calculation take more time, because of the included checks in loop.

In the program is used the array vol_inf_fb_bool from bool elements. The array is constructed in the following way:

```
if(vol_inf_fb[node] == fluid) vol_inf_fb_bool[node] = true;
else vol_inf_fb_bool[node] = false;
```

The input files of the program

The program is ruled by two types of files. One is EnteredData.txt and other files for bodies.

The "EnteredData.txt" file contain information about fluid, mesh, the way of solving data and boundary conditions for computational domain. Here is one example for "EnteredData.txt" file: BC – Boundary Conditions

value	Name of variable in program	Description
0	//u_gas_nd	horizontal velocity of fluid in initial BC
0	//v_gas_nd	vertical velocity of fluid in initial BC
1	//T_gas_nd	Temperature of fluid in initial BC
1	//p_gas_nd	pressure of fluid in initial BC
1.095	//Ma	Mach number based on thermal velocity
0.666	//Pr	Prandtl number
1.666	//gamma	γ
0.606	//c_mu	c_{μ}
0.05	//Kn	Knudsen number
50	//Fr	Frud number
0	//SolveGravityField	0 – no gravity
		1 – solve vertical gravity field, opposite to OY
5000	//Nt	number of time steps
9	//Nx	number of nodes on OX axis
122	//Ny	number of nodes on OY axis
50	//N_I	number of maximum iterations of step by time
50	$//N_I_p_c - if(N_I == 1) MUST$	number of maximum iterations of step when
	$N_I_p_c >= 2$, if($N_I > 1$) $N_I_p_c$	solve equation for p and T
	can be 1	
1	$//N_I_T - if(N_I == 1) MUST N_I_T$	this is not in use now
	$>= 2$, if(N_I > 1) N_I_T can be 1	
0.05	//ht	time step

0	//x_b	begin coordinate of computational domain on
1	//www.co	OX
0	//x_e	end coordinate of computational domain on OX
U	//y_b	begin coordinate of computational domain on OY
1.5	//y_e	end coordinate of computational domain on OY
5	//kind_of_mesh == Li_mesh = 1,	kind of mesh
	Par_mesh = 2, Li_mesh_flat = 3 li,	
	$Par_mesh_flat = 4,$	
	Polynom3_flat_mesh = 5	
0.1	//hxmin	minimal step on OX
0.1	//hxmax	maximal step on OX
10.3	//xfmin	coordinate of where step on OX is minimal front
		body
10.1	//xfmax	coordinate of to where step on OX is maximal
		front body
10.5	//xbmin	coordinate of where step on OX is minimal back
		body
10.7	//xbmax	coordinate of to where step on OX is maximal
		back body
10.4	//xmid	where is middle of body on OX
0.001	//hymin	minimal step on OY
0.1	//hymax	maximal step on OY
0.6	//ytmin	coordinate of where step on OY is minimal top body
0.8	//ytmax	coordinate of to where step on OY is maximal top body
0.4	//ybmin	coordinate of where step on OY is minimal
0.4	// y ommi	bottom body
0.2	//ybmax	coordinate of to where step on OY is maximal
0.2	, rry officials	bottom body
0.5	//ymid	where is middle of body on OY
1e-008	//MaxError Velocities	maximum error for velocities
1e-009	//MaxError p c	maximum error for pressure and temperature
1e-009	//MaxError T	maximum error for temperature
1000	//max time for solve	Maximum time of calculation before stop the
		program in hours. When program finished here
		is written time of calculation, including reading
		input data, in hours.
0	//solve is finished	0 – the calculation is not reached to the steady
		state
		1 – the calculation is reached to the steady state
		and the program is stopped
		(For information of condition look at the source)
500	//Nt save solved data	Number of steps on time when solved data will
		be saved (velocities, pressure, temperature and
		density)
100	//Nt_save_DragCoefficient	Number of steps on time when drag coefficient
		(C _D) will be saved
100	//Nt save temp data	Number of steps on time when temporal data
		will be saved
1	//N_I_check	Number of iteration when we check is errors in
		solving system are lower then given
	•	

0	//ToReadSolvedDataFromFile	0 – not read data from file (the program start to solve from beginning)
		1 – to read solved data from file (program continue)
1	//ToReadSolvedDataFromBinaryFile	0 – read solved data from ASCII file (.txt) 1 – read solved data from binary file (.bin)
1	//ToWriteSolvedDataToBinaryFile	0 – write solved data from ASCII file (.txt) 1 – write solved data from binary file (.bin)
0	//ToContinueFromInterpolation	0 – not change readied data 1 – after read data execute procedure to apply velocities and temperature of the body in control volumes in the body. This vanish velocity slip and temperature jump values from arrays.
0	//ToImport_data_for_circles_from_fileb	0 – to not import data for circles 1 – to import data for circles
1	//ToImport_data_for_polyhedrons_fro m_file_b	0 – to not import data for polyhedrons 1 – to import data for polyhedrons
0	//ToImport_data_for_circles_from_file p	not in use
0	//ToImport_data_for_polyhedrons_fro m_file_p	not in use
0	//ToImport_data_for_circles_from_file V	not in use
0	//ToImport_data_for_polyhedrons_fro m file V	not in use
1	//Periodic_boundary_conditions_abou t OX	0 – not periodic BC on OX 1 – periodic BC on OX
0	//Given_velocity_on_xb	0 – the velocity on inlet is not given 1 – the velocity on inlet is given Use with cautions!
0	//Given_velocity_on_xe	0 – the velocity on the outlet is not given 1 – the velocity on the outlet is given Use with cautions!
0	//Pressure_BC	0 – not Pressure BC 1 – Pressure BC
1	//ToStartFromExactSolutionForChann elFlowWithPressureBC	0 – to initialize matrixes with conditions for velocities, pressure and temperature 1 – to start from analytical solution for compressible, isothermal, gas in microchannal
0	//p_BC_xb_correction_method == 0> no correction for p_BC_xb; p_BC_xb_correction_method == 1 == p_BC_xb_correction_method_Vmax_ xb> V maximum inflow == 1, p_BC_xb_correction_method == 2 == p_BC_xb_correction_method_Vmean_xb> V mean inflow == 1 0	See in source
0	//GivenReKn -> u_given_xb = Re * Kn * sqrt(15.0 * M_PI / 128.0);	See in source

4	//correct p BC xb	See in source
2.2147	//u_given_xb	See in source
0.0001	//u_given_xb_error	See in source
0	//p correction auto	See in source
0.001	//p correction min	See in source
2	//p correction max	See in source
0.05	//p correction	See in source
1.5	//p BC xb	pressure in x_b (begin of channel)
1	//T BC xb	temperature in x b (begin of channel)
1	//p BC xe	pressure in x_e (end of channel)
1	//T BC xe	temperature in x_e (end of channel)
1	//dudx_0_BC_xb	0 – not apply this BC
		$\left 1 - \frac{\partial u}{\partial x} \right _{x=x_b} = 0$
0	//durhodx 0 BC xb	0 – not apply this BC
		$\left 1 - \frac{\partial (u.\rho)}{\partial x} \right _{x=x_b} = 0$
0	//drhodt_durhodx_dvrhody_0_BC_xb	0 – not apply this BC
		1 – calculate u for first raw control volumes from
		on OX: $\left. \left(\frac{\partial (\rho)}{\partial t} + \frac{\partial (u \cdot \rho)}{\partial x} + \frac{\partial (v \cdot \rho)}{\partial y} \right) \right _{x=x_{-}b} = 0$
0	//dudx_0_BC_xe	0 – not apply this BC
		1 – calculate u for first raw control volumes from
		on OX: $\frac{\partial u}{\partial x}\Big _{x=x_e} = 0$
0	//durhodx_0_BC_xe	0 – not apply this BC
		1 – calculate u for last raw control volumes from
		on OY: $\frac{\partial (u.\rho)}{\partial x} = 0$
		$\left \frac{\partial \Pi}{\partial x} \right = 0$
0	//dul - 44 doub - 4- doub - 4- 0 DC	
0	//drhodt_durhodx_dvrhody_0_BC_xe	0 – not apply this BC
		1 – calculate u for last raw control volumes from
		on OY: $\left(\frac{\partial(\rho)}{\partial t} + \frac{\partial(u.\rho)}{\partial x} + \frac{\partial(v.\rho)}{\partial y}\right)\Big _{x=x} = 0$
		$\left \begin{array}{cccc} \operatorname{OH} \circ 1 \cdot \left(\begin{array}{cccc} \partial t & \partial x & \partial y \end{array} \right) \right = 0$
	//www.Min Mont O DC	1, -1, -6
0	//u_uMin_Mout_0_BC_xe	0 – not apply this BC 1 – not tested
0	//dudy 0 BC yb	0 – not apply this BC
	//dudy_0_bc_y0	
		$\left 1 - \frac{\partial u}{\partial y} \right _{y=y_b} = 0$
		$\left Cy \right _{y=y_b}$
0	//dudy 0 BC ye	0 – not apply this BC
		$ \cdot \cdot \partial u $
		$\left 1 - \frac{\partial u}{\partial y} \right _{y = y_e} = 0$
_		
0	//dvdx_0_BC_xb	0 – not apply this BC
		$\left 1 - \frac{\partial v}{\partial x} \right _{x=x_b} = 0$
		$\left \begin{array}{ccc} \partial x \right _{x=x-b} \end{array}$
L	L	

0	//dvdx_0_BC_xe	0 – not apply this BC
		$\begin{vmatrix} 1 & \partial v \end{vmatrix} = 0$
		$\left 1 - \frac{\partial v}{\partial x} \right _{x = x_e} = 0$
0	//dvdy_0_BC_yb	0 – not apply this BC
	7 =	
		$\left 1 - \frac{\partial v}{\partial y} \right _{y = y_b} = 0$
0	//dydy_0_BC_yo	0 - not apply this BC
0	//dvdy_0_BC_ye	
		$\left 1 - \frac{\partial v}{\partial y} \right _{y=y_e} = 0$
0	//dpdx_0_BC_xb	0 – not apply this BC
		$1 - \frac{\partial p}{\partial x} = 0$
		$\partial x _{x=x_b}$
0	//dpdx_0_BC_xe	$\begin{vmatrix} 1 - \frac{\partial p}{\partial x} \Big _{x=x_b} = 0 \\ 0 - \text{not apply this BC} \end{vmatrix}$
		$\left 1 - \frac{\partial p}{\partial x} \right _{x=x_e} = 0$
		$\left \frac{\partial x}{\partial x} \right _{x=x_e}$
0	//dTdx_0_BC_xb	0 – not apply this BC
		$\left 1 - \frac{\partial T}{\partial x} \right = 0$
		$\left 1 - \frac{\partial T}{\partial x} \right _{x=x_{-}b} = 0$
0	//dTdx_0_BC_xe	0 – not apply this BC
		$\begin{vmatrix} 1 - \frac{\partial T}{\partial x} \end{vmatrix} = 0$
		$\left 1 - \frac{\partial T}{\partial x} \right _{x=x_{-}e} = 0$
1	//To_Use_Kn_local_in_wall_BC	0 – use Kn number, when calculate velocity slip
		and temperature jump BC
		1 – use local Kn number, when calculate velocity
1	//ToSolveContinuityEquation	slip and temperature jump BC 0 – to not solve and write continuity equation to
1	7/10501veContinuityEquation	files
		1 – to solve and write continuity equation to files
0	//use_interpolation_for_u_BC_by_tim	0 – to not change inlet BC of u
	e	1 – to change inlet BC of u
0	//t_BC_b	time to start change
0.4	//t_BC_e //u_BC_xb_t_BC_b	time to end change u inlet, when start change
0.4	//u BC xb t BC b	u inlet, when finish change
1	//w u	weight coefficient for u SOR $(1 \le w_u \le 2)$
1	//w_v	weight coefficient for v SOR $(1 \le w_v \le 2)$
1	//w_p	weight coefficient for pressure SOR $(1 \le w_p \le 1)$
1	//_ 75	2)
1	//w_Temper	weight coefficient for temperature SOR (1 ≤
2	//N SubDomains x	w_Temper ≤ 2) Number of subdomaind on OX, when use MPI
1	//N SubDomains y	Number of subdomaind on OY, when use MPI
0	//ToReadSolvedDataFromSeparateFil	0 – read input data for entire computational
	eForEachSubDomain	domain, like without MPI
	15-22-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-	1 – read input data from file for each subdomain
1	//ToWriteSolvedDataToFileForEntire	0 – to not write solved (input) data for entire
	ComputationalDomain	computational domain, like without MPI
		1 – write solved (input) data for entire computational domain, like without MPI
<u> </u>		compatational domain, fixe without WH I

0	//ToWriteSolvedDataToSeparateFileF	0 – to not write solved (input) data in separate
	orEachSubDomain	file for every subdomain
		1 – write solved (input) data in separate file for
		every subdomain
0	//ToOnlyWriteDataFor_Nx_Ny_ForA	0 – usual calculations
	llSubDomains_AndExit	1 – if you want only to change the number of
	_	processes (subdomains), this will write
		information to file and will exit the program
		without any calculation.

The other type of files are files which contain information about solving bodies. This files contains geometry of body, temperature jump and velocity slip boundary conditions. The files are named like:

solve_polyhedrons_b.txt - this mean:

solve – the body will be solved

polyhedrons – that is file which contain information about polyhedron

b – mean body

.txt – mean that this is text file (ASCII code)

I will explain contain of file solve_polyhedrons_b.txt:

To decide which nodes from mesh are inside and which are outside polyhedron we need to give a coordinate of two points inside polyhedron. Two points must not be in the same line with any of the vertexes of polyhedron.

The coordinate for vertexes of polyhedron must be entered by clockwise or back of clockwise. The important is to be in one of two directions. The tests are made with clockwise direction.

1	//N_polyhedrons	number of polyhedrons
4	//N_polyhedron_vertex	number of vertex of polyhedron
-1.1 -0.1	//point1_inside_x point1_inside_y	coordinate of first point inside
		polyhedron (x, y)
15.01 -2.11	//point2_inside_x point2_inside_y	coordinate of second point inside
		polyhedron (x, y)
0 0	//u_polyhedron v_polyhedron	velocity of polyhedron
0	//pressure in polyhedron - must be 0	pressure in polyhedron
1	//Temperature in polyhedron	temperature in polyhedron
1	//is_VelocitySlipBC_body	0 – non-slip BC
		1 – use velocity slip BC
1.1466	//F_VelocitySlip	Velocity slip coefficient of
		polyhedron
0.01	//w_VelocitySlipBC	not used variable
1	//is_TemperatureJumpBC_body	0 – no temperature jump BC
		1 – temperature jump BC
2.1904	//F_TemperatureJump	temperature jump coefficient of
		polyhedron
0	//dTdn_on_wall_0	0 – not apply this BC
		$\left 1 - \frac{\partial T}{\partial n} \right _{wall} = 0$ - temperature of
		the wall is equal to the
		temperature of the fluid next to
		the wall.
0	//ToSolveDragCoefficientForThisBody	0 – not solve C _D
		1 – solve C _D and write data to file

-10.00001	0.100001	x and y coordinate of first vertex
		of polyhedron
1000.0001	0.100001	x and y coordinate of second
		vertex of polyhedron
1000.0001	-10.000001	x and y coordinate of third vertex
		of polyhedron
-10.00001	-10.000001	x and y coordinate of forth vertex
		of polyhedron

Output data for drag coefficient.

The output file is with name CD.0.txt. This name contain the following information:

CD – Drag Coefficient

0 – number of body for which are solved data. Numbers are 0, 1, 2 ... n.

txt – this is text file (ASCII code)

The file contain following columns

The the contain tonowing containing			
ht	step by time in time when is solved drag coefficient		
CD_fr_x	drag coefficient of friction on OX		
CD_p_x	drag coefficient of pressure on OX		
S_for_CD_bottom	area of bottom surfaces of body		
S_for_CD_front	area of front surfaces of body		
S_for_CD_top	area of top surfaces of body		
S_for_CD_behind	area of behind surfaces of body		
CD_fr_bottom	drag coefficient of friction on bottom surfaces		
CD_p_bottom	drag coefficient of pressure on bottom surfaces		
CD_fr_front	drag coefficient of friction on front surfaces		
CD_p_front	drag coefficient of pressure on front surfaces		
CD_fr_top	drag coefficient of friction on top surfaces		
CD_p_top	drag coefficient of pressure on top surfaces		
CD_fr_behind	drag coefficient of friction on behind surfaces		
CD_p_behind	drag coefficient of pressure on behind surfaces		

Output files for velocities, pressure, temperature and density. The data is put in order:

$$p(i, j) \leftrightarrow p(node), node = i + j * Nx;$$

This arrange is very useful if we want to solve a part of all computational domain. In process of solving there is check for boundary conditions. This check is for volumes to the body surfaces. The problem is that the volumes to the body surfaces are in more cases around 4% of all volumes. This arrange will be very useful when we make parallelization of algorithm.