UNIVERSITY OF BRISTOL

School of Mathematics

ALGEBRAIC GEOMETRY

 $\begin{array}{c} {\rm MATHM0036} \\ {\rm (Paper\ code\ MATH-M0036)} \end{array}$

May/June 2023 2 hours 30 minutes

This paper contains one sections. Each section should be answered in a separate booklet.

The exam contains FOUR questions All Four answers will be used for assessment.

Calculators of an approved type (permissible for A-Level examinations) are permitted.

Candidates may bring four sheets of A4 notes written double-sided into the examination.

On this examination, the marking scheme is indicative and is intended only as a guide to the relative weighting of the questions.

Cont... AG-2023

Q3. (a) (10 marks) Consider the family of algebraic varieties, with parameter $t \in \mathbb{C}$, given by

$$V_t := \mathbb{V}(xy - t) \subseteq \mathbb{A}^2$$
.

Sketch the variety of V_0, V_1 , and V_2 in \mathbb{R}^2 . Determine whether or not these varieties are smooth. Briefly justify your answers.

(b) (15 marks) Let $V \subseteq \mathbb{A}^n$ and $W \subseteq \mathbb{A}^m$ be two affine algebraic varieties, and

$$\varphi:V\longrightarrow W$$

a morphism. Show that the pullback

$$\varphi^*: \mathbb{C}[W] \longrightarrow \mathbb{C}[V]$$

is injective if and only if φ is dominant. Recall that a map φ is called dominant if its image, $\varphi(V)$, is dense in W.

Solution.

- (a) Let $f_t = xy t$. $\nabla f_0 = \nabla f_1 = \nabla f_2 = (y, x)$. Note that the kernel of ∇f_i is always one dimensional except at (0,0). However, (0,0) is in V_0 but not in V_1 nor V_2 . Therefore, V_0 is not smooth, but V_1 and V_2 are.
- (b) " \Leftarrow " Let $f \in \mathbb{C}[W]$. If $\varphi^*(f) = 0$, and φ is dominant, then $f \circ \varphi(x) = 0$, for all $x \in V$. Since $\varphi(V)$ is dense in W, and f is continuous, f = 0 on all W, and $f \in \mathbb{I}(W)$.
 - " \Longrightarrow " Assume that φ is not dominant. Then $\overline{\varphi(V)} \subsetneq W$ and by Nullstellensatz $\mathbb{I}(\overline{\varphi(V)}) \supsetneq \mathbb{I}(W)$. Choose $f \in \mathbb{I}(\overline{\varphi(V)}) \setminus \mathbb{I}(W)$. Then, $\varphi^*(f) = 0$, but $f \notin \mathbb{I}(W)$.

Continued...

Cont... XXXX-X-XX

Q2. (20 marks) (Standard - Unseen) Consider the product varieties $X = \mathbb{P}^1 \times \mathbb{P}^1$, $Y = \mathbb{V}(xw - yz) \subseteq \mathbb{P}^3$ and the Segre morphism

$$\varphi: X \longrightarrow Y$$
$$([s:t] \times [u:v]) \longmapsto [su:sv:tu:tv].$$

- (a) (10 marks) Find the inverse map $\psi: Y \to X$.
- (b) (10 marks) Prove that ψ is a morphism.

Solution.

(a) For any variable f let U_f denote a chart with $f \neq 0$. On the chart $U_t \times U_v$, we have the restrictions

$$\varphi: U_t \times U_v \longrightarrow U_w \subseteq Y$$
$$([s:1] \times [u:1]) \longmapsto [su:v:u:1].$$

$$\varphi: U_t \times U_u \longrightarrow U_z \subseteq Y$$
$$([s:1] \times [1:v]) \longmapsto [s:sv:1:v].$$

Therefore, we define,

$$\begin{split} \varphi_w: U_w &\longrightarrow \mathbb{P}^1 \times \mathbb{P}^1, \\ [\frac{x}{w}: \frac{y}{w}: \frac{z}{w}: 1] &\longmapsto ([\frac{y}{w}: 1], [\frac{z}{w}: 1]). \end{split}$$

$$\begin{split} \varphi_z : U_z &\longrightarrow \mathbb{P}^1 \times \mathbb{P}^1, \\ [\frac{x}{z} : \frac{y}{z} : 1 : \frac{w}{z}] &\longmapsto ([\frac{x}{z} : 1], [1 : \frac{w}{z}]). \end{split}$$

Similarly on other charts. Note that on $U_w \cap U_z \cap \mathbb{V}(xw - yz)$ the values of the above functions coincide, and therefore we can define a map ψ , given as above in charts U_x, \ldots, U_w .

(b) We have to check that (1) ψ is continuous, which is clear since it is locally a polynomial map, (2) for $f \in \mathcal{O}_X(U)$, $\psi^*(f) \in \mathcal{O}_Y(\varphi^{-1}(U))$. However, this is clear, since by a theorem in the notes we have to only check that the coordinate functions of ψ .

Cont... XXXX-X-XX

Q1. (20 marks) (Standard) A sheaf \mathcal{F} of rings associated to a topological space X consists of the following data:

- (i) To each open set $U \subseteq X$, it associates a ring $\mathcal{F}(U)$.
- (ii) To each inclusion of open sets $U \hookrightarrow V$, there exists a map $\operatorname{res}_{V,U} : \mathcal{F}(V) \to \mathcal{F}(U)$ called the restriction map from $\mathcal{F}(V)$ to $\mathcal{F}(U)$. These maps satisfy the property that $\operatorname{res}_{U,U} = \operatorname{id}_{\mathcal{F}(U)}$ and $\operatorname{res}_{V,U} \circ \operatorname{res}_{W,V} = \operatorname{res}_{W,U}$, where $U \subseteq V \subseteq W$ are open sets.

These data satisfy the following properties:

- (iii) Suppose that $f_i \in \mathcal{F}(U_i)$ are a collection of sections which agree on overlaps (formally, $\operatorname{res}_{U_i,U_i\cap U_j}f_i = \operatorname{res}_{U_j,U_i\cap U_j}f_j$ whenever the intersection exists). Then they lift to a section $f \in \mathcal{F}(U)$ which has the property that $\operatorname{res}_{U,U_i}f = f_i$ for all $i \in I$.
- (iv) Suppose that $f, f' \in \mathcal{F}(U)$ and that $\operatorname{res}_{U,U_i} f = \operatorname{res}_{U,U_i} f'$ for all $i \in I$. Then f = f'.

Let X be an irreducible quasi-projective variety.

- (a) (10 marks) Prove that any regular function $f \in \mathcal{O}_X(X)$ is continuous.
- (b) (10 marks) Show that the set of regular functions $\{\mathcal{O}_X(U)\}$, for $U \subseteq X$, forms a sheaf on X

Solution.

- (a) Let $a \in \mathbb{A}^1$, and $f \in \mathcal{O}_X(X)$. It is sufficient to show that $f^{-1}(a) \subseteq X$ is closed. We can cover $X = \cup U_i$ by a union of open affine sets, such that on each U_i , $f = \frac{k_i}{h_i}$. Note that $U_i \cap f^{-1}(a) = \{x : f^{-1}(x) = \frac{k_i(x)}{h_i(x)} = a\} = U_i \cap \{x : ah_i(x) k_i(x) = 0\} = U_i \cap \mathbb{V}(ah_i g_i)$. The function $ah_i g_i$ is homogenous, therefore it defines a closed subvariety of X, and we have proved that $f^{-1}(a)$ is closed in each U_i , and therefore it is closed in X.
- (b) Properties (i), (ii) are clear. For (iii), we just define $f|_{U_i} = f_i$ and since f_i 's agree on the intersection, f is well-defined. (iv) is also clear.

Continued...

Cont... XXXX-X-XX

Q4. (30 marks)(Standard - Workbook) Let Σ be the fan consisting of

- σ_1 cone spanned by $\{(1,0),(0,1)\};$
- σ_2 cone spanned by $\{(1,0),(1,-1)\};$
- τ cone spanned by $\{(1,0)\}.$
- (a) (6 marks) Determine whether or not the toric variety X_{Σ} has the following properties. Justify your answer.
 - (i) Smooth;
 - (ii) Complete.
- (b) (9 marks) Describe the coordinate rings of X_{σ_1} , X_{σ_2} , and X_{τ} .
- (c) (15 marks) Explain
 - (i) $\mathbb{C}[X_{\sigma_1}] \subseteq \mathbb{C}[X_{\tau}];$
 - (ii) $\mathbb{C}[X_{\sigma_2}] \subseteq \mathbb{C}[X_{\tau}];$
 - (iii) The gluing map of X_{σ_1} and X_{σ_2} along X_{τ} .

Solution.

- (a) (i) Yes, since the $\sigma_1 \cap \mathbb{Z}^2$ and $\sigma_2 \cap \mathbb{Z}^2$ both span \mathbb{Z}^2 .
 - (ii) No, since $|\Sigma| \subseteq \mathbb{R}^2$.
- (b) We have $\sigma_1^{\vee} = \text{cone}(\{(1,0),(0,1)\}), \sigma_2^{\vee} = \text{cone}(\{(1,1),(0,-1)\}) \tau^{\vee} = \text{cone}(\{(1,0),(0,1),(0,-1)\}).$ Therefore $\mathbb{C}[X_{\sigma_1}] = \mathbb{C}[x,y], \mathbb{C}[X_{\sigma_2}] = \mathbb{C}[xy,y^{-1}], \mathbb{C}[X_{\tau}] = \mathbb{C}[x,y,y^{-1}] = \mathbb{C}[xy,y,y^{-1}].$
- (c) Therefore, the equalities $\mathbb{C}[X_{\sigma_1}]_y = \mathbb{C}[X_{\tau}] = \mathbb{C}[X_{\sigma_2}]_{y^{-1}}$. These equalities give rise to the inclusions $X_{\tau} \subseteq X_{\sigma_1}$ and $X_{\tau} \subseteq X_{\sigma_2}$. We also have the isomorphisms of \mathbb{C} -algebras

$$\Phi: \mathbb{C}[X_{\sigma_1}] \supseteq \mathbb{C}[X_{\tau}] \longrightarrow \mathbb{C}[X_{\tau}] \subseteq \mathbb{C}[X_{\sigma_2}]$$
$$x \longmapsto xy$$
$$y \longmapsto y^{-1}.$$

The map Φ provides the information for gluing the coordinate rings, as well as the corresponding varieties $X_{\tau} \subseteq X_{\sigma_1}$ and $X_{\tau} \subseteq X_{\sigma_2}$.