```
In [7]: import yfinance as yf

# Specify the ticker symbol
ticker_symbol = "TSLA"

# Fetch stock data
stock_data = yf.Ticker(ticker_symbol)

# Get historical data
historical_data = stock_data.history(period="1y") # Adjust the period as needed (1y for 1 year)

# Print the historical data
print(historical_data.head())
```

		0pen	High	Low	Close	\
Date						
2023-02-27	00:00:00-05:00	202.029999	209.419998	201.259995	207.630005	
2023-02-28	00:00:00-05:00	210.589996	211.229996	203.750000	205.710007	
2023-03-01	00:00:00-05:00	206.210007	207.199997	198.520004	202.770004	
2023-03-02	00:00:00-05:00	186.740005	193.750000	186.009995	190.899994	
2023-03-03	00:00:00-05:00	194.800003	200.479996	192.880005	197.789993	
		Volume	Dividends	Stock Splits		
Date						
2023-02-27	00:00:00-05:00	161028300	0.0	0.0		
2023-02-28	00:00:00-05:00	153144900	0.0	0.0		
2023-03-01	00:00:00-05:00	156852800	0.0	0.0		
2023-03-02	00:00:00-05:00	181500700	0.0	0.0		
2023-03-03	00:00:00-05:00	154193300	0.0	0.0		

```
In [11]: import requests
         from bs4 import BeautifulSoup
         # URL of the webpage containing Tesla revenue data
         url = "https://www.macrotrends.net/stocks/charts/TSLA/tesla/revenue"
         # Send a GET request to the webpage
         response = requests.get(url)
         # Check if the request was successful (status code 200)
         if response.status_code == 200:
             # Parse the HTML content using BeautifulSoup
             soup = BeautifulSoup(response.text, 'html.parser')
             # Locate the HTML element containing the revenue data (this is just an example)
             revenue element = soup.find('span', {'class': 'revenue'})
             # Extract the revenue data
             if revenue element:
                 tesla_revenue = revenue_element.text
                 print("Tesla Revenue:", tesla_revenue)
             else:
                 print("Revenue data not found on the webpage.")
         else:
             print("Failed to retrieve webpage. Status code:", response.status_code)
```

Failed to retrieve webpage. Status code: 403

```
In [12]: import yfinance as yf

# Set the ticker symbol for Tesla
ticker_symbol = "TSLA"

# Create a Ticker object
tesla_ticker = yf.Ticker(ticker_symbol)

# Get historical data for the past year
historical_data = tesla_ticker.history(period="1y")

# Print the historical data
print(historical_data.head())
```

		0pen	High	Low	Close	\
Date		•	•			
2023-02-27	00:00:00-05:00	202.029999	209.419998	201.259995	207.630005	
2023-02-28	00:00:00-05:00	210.589996	211.229996	203.750000	205.710007	
2023-03-01	00:00:00-05:00	206.210007	207.199997	198.520004	202.770004	
2023-03-02	00:00:00-05:00	186.740005	193.750000	186.009995	190.899994	
2023-03-03	00:00:00-05:00	194.800003	200.479996	192.880005	197.789993	
		Volume	Dividends S	Stock Splits		
Date						
2023-02-27	00:00:00-05:00	161028300	0.0	0.0		
2023-02-28	00:00:00-05:00	153144900	0.0	0.0		
2023-03-01	00:00:00-05:00	156852800	0.0	0.0		
2023-03-02	00:00:00-05:00	181500700	0.0	0.0		
2023-03-03	00:00:00-05:00	154193300	0.0	0.0		

```
In [14]: import requests
         from bs4 import BeautifulSoup
         # URL of the webpage containing GME revenue data
         url = "https://www.macrotrends.net/stocks/charts/TSLA/tesla/revenue"
         # Send a GET request to the webpage
         response = requests.get(url)
         # Check if the request was successful (status code 200)
         if response.status_code == 200:
             # Parse the HTML content using BeautifulSoup
             soup = BeautifulSoup(response.text, 'html.parser')
             # Locate the HTML element containing the revenue data (this is just an example)
             revenue element = soup.find('span', {'class': 'revenue'})
             # Extract the revenue data
             if revenue element:
                 gme_revenue = revenue_element.text
                 print("GME Revenue:", gme_revenue)
             else:
                 print("Revenue data not found on the webpage.")
         else:
             print("Failed to retrieve webpage. Status code:", response.status code)
```

Failed to retrieve webpage. Status code: 403

```
In [16]: import yfinance as yf
         import matplotlib.pyplot as plt
         # Set the ticker symbol for Tesla
         ticker_symbol = "TSLA"
         # Create a Ticker object
         tesla_ticker = yf.Ticker(ticker_symbol)
         # Get historical data for the past year
         historical_data = tesla_ticker.history(period="1y")
         # Plot the closing prices
         plt.figure(figsize=(12, 6))
         plt.plot(historical_data.index, historical_data['Close'], label='Tesla Closing Price', color='blue')
         # Customize the plot
         plt.title('Tesla Stock Price Over Time')
         plt.xlabel('Date')
         plt.ylabel('Closing Price (USD)')
         plt.legend()
         plt.grid(True)
         # Show the plot
         plt.show()
```



```
In [17]: import yfinance as yf
         import matplotlib.pyplot as plt
         # Set the ticker symbol for GameStop
         ticker symbol = "GME"
         # Create a Ticker object
         gme_ticker = yf.Ticker(ticker_symbol)
         # Get historical data for the past year
         historical_data = gme_ticker.history(period="1y")
         # Plot the closing prices
         plt.figure(figsize=(12, 6))
         plt.plot(historical_data.index, historical_data['Close'], label='GameStop Closing Price', color='red')
         # Customize the plot
         plt.title('GameStop Stock Price Over Time')
         plt.xlabel('Date')
         plt.ylabel('Closing Price (USD)')
         plt.legend()
         plt.grid(True)
         # Show the plot
         plt.show()
```


In []: