- **2.3** You are given n = 10 measurements: 3, 5, 4, 6, 10, 5, 6, 9, 2, 8.
- $mean = \bar{X} = 58/10 = 5.8$ a. Calculate
- median=m=5**b.** Find
- \mathbf{c} . Find the mode = None
- 2.15 You are given n _ 8 measurements: 4, 1, 3, 1, 3, 1, 2, 2.
- a. Find the range= R=4-1=3
- b. Calculate $mean = \bar{X} = \frac{17}{8} = 2.13$. c. Calculate **variance** = $s^2 = 8.875/7 = 1.27$
- d. Calculate $s^2 = (45 (17^2)/8)/7 = 1.27$
- e. S = $\sqrt{1.27}$ = 1.13
- f. Approximating standard deviation (S)= Range/4 = 3/4 = 0.75

X_i	X_i^2	$(X_i - \bar{X})^2$
4	16	3.4969
1	1	1.2769
3	9	0.7569
1	1	1.2769
3	9	0.7569
1	1	1.2769
2	4	0.0169
2	4	0.0169
17	45	8.8752

2.37 Suppose that some measurements occur more than once and that the data x1, x2, ..., xk are arranged in a frequency table as shown here:

X_i	f_i	$X_i.f_i$	$X_i^2.f_i$
0	4	0	0
1	5	5	5
2	2	4	8
3	4	12	36
sum	15	21	49

a. Mean
$$= \bar{X} = \sum \frac{X_i f_i}{n} = \frac{21}{15} = 1.40$$
, $n = \sum f$

a. Mean
$$= \overline{X} = \sum \frac{X_i \cdot f_i}{n} = \frac{21}{15} = 1.40$$
, $n = \sum f_i$
b. Variance $= S^2 = \frac{\sum X_i^2 \cdot f_i - \frac{\left(\sum X_i \cdot f_i\right)^2}{n}}{n-1} = \frac{49 - \frac{(21)^2}{15}}{14} = 1.4$

2.42 Given the following data set: 8, 7, 1, 4, 6, 6, 4, 5, 7, 6, 3, 0

- 1. Sort data: 0, 1, 3, 4, 4, 5, 6, 6, 6, 7, 7, 8

- 5. IQR =Q3-Q1=6.75-3.25=3.50.
- 6. Lower fence= Q_1 1.5(IQR)=3.25- 1.5*3.5=-2
- 7. Upper fence= $Q_3 + 1.5(IQR) = 6.75 + 1.5*3.5 = 12$
- 9. Find the range= R=8-0=8.
- 10. Calculate $mean = \overline{X} = \frac{56}{12} = 4.67$. 11. Calculate **variance** = $\mathbf{s}^2 = 70.67/11 = 6.42$
- 12. S=2.53
- 13. Calculate the z-score for the smallest observations, x=0?
- 14. Z=(0-4.67)/2.53=-1.85
- 15. 11. Calculate the z-score for the largest observations, x=8?
- 16. Z=(8-4.67)/2.53=1.32

3.11 A set of bivariate data consists of these measurements on two variables,

$$x$$
 and y : $(3, 6) (5, 8) (2, 6) (1, 4) (4, 7) (4, 6)$

- **a.** Draw a scatterplot to describe the data.
- **b.** Does there appear to be a relationship between x and y?
- **c.** Calculate the correlation coefficient, r, .
- **d.** Find the best-fitting line using the computing formulas.

X	y	xy	X^2	Y^2
3	6	18	9	36
5	8	40	25	64
2	6	12	4	36
1	4	4	1	16
4	7	28	16	49
4	6	24	16	36
19	37	126	71	237

1.
$$\bar{X} = \frac{\sum x}{n} = \frac{19}{6} = 3.17$$

2.
$$\bar{y} = \frac{\sum_{n=0}^{\infty} y}{n} = \frac{37}{6} = 6.17$$

1.
$$\overline{X} = \frac{\sum x}{n} = \frac{19}{6} = 3.17.$$

2. $\overline{y} = \frac{\sum y}{n} = \frac{37}{6} = 6.17.$
3. $s_x^2 = \frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1} = \frac{71 - \frac{(19)^2}{6}}{5} = 2.17, \dots Sx = 1.47$
4. $s_y^2 = \frac{\sum y^2 - \frac{(y)^2}{n}}{n-1} = \frac{237 - \frac{(37)^2}{6}}{5} = 1.77, \dots Sy = 1.33$

4.
$$s_y^2 = \frac{\sum y^2 - \frac{(y)^2}{n}}{n-1} = \frac{237 - \frac{(37)^2}{6}}{5} = 1.77, \dots Sy = 1.33$$

5.
$$s_{xy} = \frac{\sum xy - \frac{(\sum x * \sum y)}{n}}{n-1} = \frac{126 - \frac{(19*37)}{6}}{5} = 1.77$$

6.
$$r = \frac{s_{xy}}{s_x s_y} = \frac{1.77}{(1.47*1.33)} = 0.903$$

6.
$$r = \frac{s_{xy}}{s_x s_y} = \frac{1.77}{(1.47*1.33)} = 0.903$$

7. Find the slope, $b = \frac{r * s_y}{s_x} = \frac{(0.903*1.33)}{1.47} = 0.82$,

8. The y-intercept,
$$a = \bar{y} - b\bar{x} = 6.17 - (0.82 * 3.17) = 3.57$$
.

9. Write the regression line
$$y = a + bx = 3.57 + 0.82x$$
.

10. If
$$x = 10$$
 then $y = 3.57 + 0.82(10) = 11.77$.