

Contribution à la représentation de processus par des techniques de méta-modélisation.

Erwan Breton

Le cadre de nos travaux

- Omniprésence du processus
 - Qualité : norme ISO 9000:2000
 - Gestion : ABC (Activity-Based Costing)
 - Médecine : protocoles
 - ○Informatique : workflow, EAI, B2B
 - Processus logiciels
- - Ontologie
 - **OXML**
 - Méta-modélisation

Le partenariat

- **▼ Thèse CIFRE**
- Laboratoire CRGNA
 - O Centre de Recherches en Gestion de Nantes-Atlantique
 - Travaux sur la modélisation et la méta-modélisation
- - Transformation outillée des systèmes d'information
 - Evolutions conjonturelles (Y2K, Euro)
 - Migration (données, applications)
 - TMA (Tierce Maintenance Applicative)

La TMA

Sous-traitance par une société de la maintenance de son patrimoine applicatif auprès d'un opérateur externe

- **Les missions**
 - Maintenir opérationnelle système d'information
 - OCorrection des anomalies
 - Nouvelles fonctionnalités
- Croissance en 2001: +16 %
- ▶ Prévisions pour 2002 : +12 %

Demande + composants
Composants modifiés

Plan de la présentation

- Example Les problématiques autour du processus
- Example Les techniques de méta-modélisation
- La représentation de processus : PMM
- L'exploitation des modèles
- Une mise en œuvre industrielle
- Conclusion et perspectives

Plan de la présentation

- Les problématiques autour du processus
- Example Les techniques de méta-modélisation
- La représentation de processus : PMM
- L'exploitation des modèles
- Une mise en œuvre industrielle
- Conclusion et perspectives

Le processus ?

- Qui fait quoi et quand
- **X**Qui
 - OActeur, rôle
- Fait
 - **O**Tâche
- **Quoi**
 - ODocuments, outils
- Quand
 - Ordonnancement
- × ...

- 1. Un incident est signalé
- 2. Le chef de projet du lot applicatif réalise une étude préliminaire
- 3. Au besoin, il organise une réunion avec le client
- 4. Il désigne un responsable pour l'incident
- 5. Le responsable rédige un devis

. .

Les enjeux

- Capitalisation du savoir
 - Identification et réutilisation de pratiques éprouvées
- - O Guider et assister les réalisateurs
- Délai
 - Optimisation des opérations et des échanges
- **C**oût
 - Meilleure gestion des ressources
- Traçabilité
 - Faciliter le suivi et la communication avec le client

Les besoins

- Définir explicitement un processus standard
- L'adapter en fonction du contexte
- Contrôler son application
 - OCohérence avec le modèle
 - OMesures des performances

Contribution à la représentation de processus par des techniques de méta-modélisation.

Initial (1)

Repeatable (2)

Les difficultés

- Des documents textuels
 - Charte qualité
 - Guides méthodologiques
 - Compte-rendu d'activité
- Comment les manipuler ?
- Nécessité d'organiser l'information
 - Structuration
 - Formalisation
 - ODe l'implicite à l'explicite

Les particularités de la TMA

- Processus métier de Sodifrance
 - Standardisé
- Mis en œuvre pour des clients
 - Peu de maîtrise sur l'environnement d'exécution
- Comment minimiser le coût et les impacts de l'adaptation ?
- Nécessité de séparer
 - Le processus métier
 - Le contexte d'opérationnalisation

La séparation des aspects, une préoccupation partagée

⋉Le MDA

- Assurer la stabilité du SI
- Face aux évolutions technologiques

Comment

- Séparation des aspects
- Importance de la modélisation
 - PIM et PSM
- OEt de la méta-modélisation
- Transformation de modèles
- Génération de code

Plan de la présentation

- Example Les problématiques autour du processus
- Example Les techniques de méta-modélisation
- La représentation de processus : PMM
- L'exploitation des modèles
- Une mise en œuvre industrielle
- Conclusion et perspectives

Des méta-modèles Un méta-méta-modèle

Des mécanismes génériques

- Pour la définition de méta-modèles
 - Explicite
 - ODans un langage unique
- Pour l'uniformisation du stockage
 - **OUREP**, Universalis
- Pour l'échange de modèle
 - ○XMI, mapping MOF/IDL
- Pour la manipulation des modèles
 - Transformation, génération de code

Les sNets

Un système de méta-modélisation

- Basé sur des réseaux sémantiques typés, partitionnés et réflexifs
- Finalisé au cours de la thèse de Richard Lemesle
- OPartenariat entre le CRGNA et Sodifrance NT-Migration (forte culture d'entreprise au niveau méta)

1995	1996	1997	1998	1999	2000	2001	2002
sNets							
	UML						
		MOF					
					MDA		

SCRIPTOR-Transformation

SCRIPTOR-Generation

Plan de la présentation

- Example Les problématiques autour du processus
- Example Les techniques de méta-modélisation
- **区** La représentation de processus : PMM
- L'exploitation des modèles
- Une mise en œuvre industrielle

La définition du méta-modèle

- Notre première préoccupation
 - ODéfinir un formalisme dédié aux experts métier
 - OContrainte : conserver la terminologie utilisée
- Différentes sources d'inspiration
 - Nombreux formalismes existants
- - Représentation de divers formalismes avec le MOF
 - Alignement des formalismes
 - Proposition d'un noyau minimal
 - Processus, Activité, Transition, Objet

Le méta-modèle PMM

+ des mécanismes d'extension

Le modèle du processus de TMA

Apparition d'un standard : SPEM

- Software Process Engineering Metamodel
 - Méta-modèle
 - Profil UML

PMM vs. SPEM

PMM	SPEM
PMMPackage	Package
PMMProcess	Process
PMMActivity	WorkDefinition
PMMTask	Activity
PMMRole	Role
PMMProduct	WorkProduct
PMMProcessData	InformationElement

Mécanismes d'extension dans PMM

Plan de la présentation

- Example Les problématiques autour du processus
- Example Les techniques de méta-modélisation
- La représentation de processus : PMM
- L'exploitation des modèles
- Une mise en œuvre industrielle
- Conclusion et perspectives

Différents aspects, différents outils, différents formalismes

Modéliser

Comprendre Améliorer Adapter

PMM

Automatiser

Distribuer les tâches Acheminer les informations Intégrer les applications

Moteurs de workflow

???

Contrôler

Mesurer Surveiller Communiquer

Outil de suivi

Planifier

Prévoir les charges et les délais

Affecter les ressources

Outil de planification

Les mécanismes d'interopérabilité

Les difficultés

∠ La transformation

- OD'un formalisme de description (PMM) vers des formalismes exécutables
- Oldentification de « workflow patterns »
- Problème : sémantique d'exécution de PMM ?
 - OLes 3 parties d'un méta-modèle

Syntaxe concrète	Syntaxe abstraite	Sémantique
		???

Expérimentation avec les réseaux de Petri

Généralisation

La spécification des règles

- Expliciter les évolutions
 - OLors d'un mouvement
 - Lors de la fin d'une activité
- **Comment**?
 - OEn spécifiant les actions
- Solution: Action Semantics for UML
 - Langage d'action pour les modèles UML
- Proposition
 - La remonter au niveau du MOF pour définir la sémantique d'exécution des méta-modèles

Plan de la présentation

- Example Les problématiques autour du processus
- Example Les techniques de méta-modélisation
- La représentation de processus : PMM
- L'exploitation des modèles
- Une mise en œuvre industrielle

Du processus au workflow

Le cycle de développement

Le poste de travail des utilisateurs

Les relations produit/processus

- Relations souvent constatées entre les produits et les processus
 - OLe processus utilise et consomme des produits
 - La forme du processus influe sur la forme du produit (et inversement)
- Apport de la méta-modélisation
 - Modularité
 - Explicitation des relations et des transformations
- - L'intégration (mise en relation)
 - La correspondance structurelle (transformation)

Plan de la présentation

- Example Les problématiques autour du processus
- Example Les techniques de méta-modélisation
- La représentation de processus : PMM
- L'exploitation des modèles
- Une mise en œuvre industrielle
- **IX** Conclusion et perspectives

Bilan

- Pertinence industrielle des techniques de métamodélisation
 - OPour la définition de processus
 - Pour leur opérationnalisation
- ∨ Validation de la démarche MDA
- De l'implicite à l'explicite
 - Représentation des processus
 - Oconcepts de base des formalismes de processus
 - ORelations entre méta-modèles
 - OSémantique d'exécution des modèles de processus

Perspectives industrielles

- - OProjet RNTL TRAMs : migrations basées sur les MMs
- Prise en compte des nouveaux standards
 - **OSPEM**
 - **OEDOC**
 - OMM de définition de workflow de l'OMG (à venir)
- Intégration d'aspects supplémentaires
 - Qualité: ISO 9000:2000
 - Gestion: ABC

Pistes de recherches

- L'organisation des méta-modèles de processus
 - Unification des concepts de base (noyau?)
 - Séparation des concepts spécifiques (extensions?)
- L'exécutabilité des modèles
 - Implémentation d'un langage d'actions au niveau du MOF
- Les relations entre méta-modèles
 - Produit/processus
 - Modularité et mise en relation des méta-modèles
 - Problématique MDA