≡ Item Navigation

Minimum edit distance algorithm

When computing the minimum edit distance, you would start with a *source word* and transform it into the *target word*. Let's look at the following example:

Source: play → Target: stay Cost: insert: 1, delete: 1, replace: 2

$$p \rightarrow s$$

insert + delete: $p \rightarrow ps \rightarrow s$: 2

delete + insert: $p \rightarrow \# \rightarrow s$: 2

replace: $p \rightarrow s$: 2

To go from $\#\to\#$ you need a cost of 0. From $p\to\#$ you get 1, because that is the cost of a delete. $p\to s$ is 2 because that is the minimum cost one could use to get from ${\bf p}$ to ${\bf s}$. You can keep going this way by populating one element at a time, but it turns out there is a faster way to do this. You will learn about it next.

Mark as completed

☐ Like ☐ Dislike ☐ Report an issue