How to improve the performance of a neural network with unbalanced data for text classification in insurance application

Isaac Cohen Sabban, Olivier Lopez, Yann Mercuzot

OICA 2020

April 2020

Summary

- Goal

Goal: Prediction of the evolution of a claim

- Use artificial intelligence to early identify claims that require more attention
- Explore and find a model to deal with the unbalanced characteristic

Summary

- 1 Goal
- Neural Networks
 - Pre processing: N-Grams and The Embedding matrix
 - Convolutional Neural Network : CNN
 - LSTM
- Rebalancing of the dataset
- 4 Results

N-Grams

Definition

An n-gram is a contiguous sequence of n items from a given sample of text or speech.

Example

- "client hits a pedestrian on a protected passage, shock on the fender, to the bonnet, the pedestrian is injured".
- 1-Grams "client " "hits " "a" "pedestrian " "on " "a" "protected " "passage " "shock " "on " "the " "fender " "to " "the " "bonnet "
- 2-Grams"client hits" "hits a" "a pedestrian" "the pedestrian" "pedestrian is" "is injured"
- N-Grams helps us to catch the context

How does it works?

Each claim is composed by sentences to describe the claim circumstances, two representations are possible:

- 1 Associate a unique numerical value in order to transform our textual information into numerical values, exactly as Key-Value system creates a vector of values.
- 2 Transform the sentence into a matrix encode by the One Hot transformation

Example of the content of a claim

"client hits a pedestrian on a protected passage, shock on the fender, to the bonnet, the pedestrian is injured"

This sentence after the pre-processing step become :

Values vector

[1 22 5 2 ...]

Limitations

These representations are limited because:

- 1 The Dictionary could be very large
- 2 Every pair of entities has the same distance.

A better representation exists: The Embedding Matrix

Embedding Matrix

Definition

An embedding matrix is a linear mapping from the original space (one-of-k) to a real-valued space where entities can have meaningful relationships.

Advantages:

- Dimensional Reduction
- Takes into account the context

The perfect input for a Neural Network

Convolutional Neural Network: CNN

CNN performs processing sequence, each step is usually called a layer. Different kind of layer exist:

- Convolution layer
- Pooling layer
- Normalization layer
- Fully Connected layer
- Loss layer

Figure: Kim CNN

B : Filter or Feature Detector

C : Feature map

fr = row number of Bfc = column number of B

Size of C is given by
$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \quad \begin{cases} f = filter \ size \\ p = padding \\ s = stride \end{cases}$$

=

B: Filter or Feature Detector

C: Feature map

1*1+1*0+1*1+ 0*1+0*0+1*1=

Size of C is given by
$$\left[\frac{n+2p-f}{s}+1\right] \times \left[\frac{n+2p-f}{s}\right]$$

en by
$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \; \left\{ egin{array}{l} f = filter\ size \\ p = padding \\ s = stride \end{array} \right.$$

B : Filter or Feature Detector

C : Feature map

1*1+1*0+1*1+ 1*0+1*1+1*0+ 0*1+1*0+1*1= 4

Size of C is given by
$$\frac{n+2p}{s}$$

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \quad \begin{cases} f = filter \ size \\ p = padding \\ s = stride \end{cases}$$

B : Filter or Feature Detector

C : Feature map

1*1+1*0+1*1+ 1*0+1*1+1*0+ 1*1+1*0+1*1= 5

Size of C is given by $\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \ \begin{cases} f = filter \ size \\ p = padding \\ s = stride \end{cases}$

=

B : Filter or Feature Detector

C : Feature map

1*1+1*0+1*1+ 1*0+1*1+1*0+ 1*1+1*0+1*1= 5

Size of C is given by
$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \ \begin{cases} f = filter \ size \\ p = padding \\ s = stride \end{cases}$$

B : Filter or Feature Detector

C : Feature map

1*1+1*0+1*1+ 1*0+1*1+1*0+ 1*1+1*0+1*1= 5

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \quad \begin{cases} f = filter \ size \\ p = padding \\ s = stride \end{cases}$$

B : Filter or Feature Detector

C : Feature map

1*1+1*0+1*1+ 1*0+1*1+1*0+ 1*1+1*0+1*1= 5

Size of C is given by
$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \ \begin{cases} f = filter \ size \\ p = padding \\ s = stride \end{cases}$$

Neural network in insurance

B : Filter or Feature Detector

C : Feature map

0*1+1*0+1*1+ 0*0+0*1+1*0+ 0*1+0*0+0*1= 1

Size of C is given by
$$\frac{n+2p-1}{s}$$

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \quad \begin{cases} f = filter \ size \\ p = padding \\ s = stride \end{cases}$$

B: Filter or Feature Detector

C: Feature map

1*1+1*0+1*1+ 0*1+0*0+1*1=

Size of C is given by
$$\left| \frac{n+2p-f}{s} + 1 \right| \times \left| \frac{n+2p-f}{s} \right|$$

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \quad \begin{cases} f = filter \ size \\ p = padding \\ s = stride \end{cases}$$

Pooling Layer

Figure: Pooling Step

Neural network in insurance

Client
hits
а
is
injured

_						
C),1	0,9	0,5	0	0	0
C),7	0,1	0	0	0	0
	0	0	0	0	0	0
	0	0	0	0	0	0
C),8	0,1	0	0	0	0

Transpose of the Embedding Vector associate to the word « client »

Embedding dimension

Client	0,1	0,9	0,5	0	0	0
hits	0,7	0,1	0	0	0	0
a	0	0	0	0	0	0
is	0	0	0	0	0	0
injured	0,8	0,1	0	0	0	0

Word

Client	0,1	0,9	0,5	0	0	0
hits	0,7	0,1	0	0	0	0
a	0	0	0	0	0	0
is	0	0	0	0	0	0
injured	0.8	0.1	0	0	0	0

Word

Client	0,1	0,9	0,5	0	0	0
hits	0,7	0,1	0	0	0	0
a	0	0	0	0	0	0
is	0	0	0	0	0	0
injured	0,8	0,1	0	0	0	0

2 grams

Client	0,1	0,9	0,5	0	0	0
hits	0,7	0,1	0	0	0	0
a	0	0	0	0	0	0
is	0	0	0	0	0	0
injured	0.8	0.1	0	0	0	0

0,9 0,5 Client 0,7 0,1 hits 0 0 0 injured 0,8

2 grams

0 0

0

0

0

0 0 0 0

0 0

Client	0,1	0,9	0,5	0	0	0
hits	0,7	0,1	0	0	0	0
a	0	0	0	0	0	0
is	0	0	0	0	0	0
injured	0,8	0,1	0	0	0	0

3 grams

Word

Neural network in insurance

Long Short-Term Memory

The Recurrent Neural Networks' main idea is that data are dependent on each other.

- RNNs consider an information sequence unlike CNNs
- Recurrent because they perform the same task for each element of a sequence.
- RNNs have a memory cell
- LSTMs are designed to avoid the long-term dependency problem.

Summary

- Goal
- Neural Networks
- Rebalancing of the dataset
 - A censorship problem
 - Bagging
 - Rebalancing of the dataset
- 4 Results

Censorship and Kaplan Meier

We have a right censorship in our dataset because some claims are still going on.

We use Kaplan Meier to correct censorship's bias.

Definition

Bagging for bootstrap aggregation is a technique for reducing the variance of an estimated prediction function. It's seems to work especially well for high-variance, low-bias procedures, such as trees.

Problems

In some cases we know how to generate data:

- structured data : SMOTE (Synthetic Minority Over-Sampling TEchnique)
- images : mirroring, random cropping, rotation, shearing, local warping, color shifting, distortions, etc

But these techniques are not usable for text data

Balanced

Let:

- a dataset with K classes.
- $f_i = \frac{observation\ number\ of\ class\ i}{observation\ number\ in\ the\ dataset}$ the frequencies of each labels with $f_1 \geq f_2 \geq ... \geq f_k$.
- t the percentage of desired observations in the under-represented class.

The first rebalancing technique is to create sub datasets with the same frequency of each class.

We define $\tilde{f}_i = \frac{f_k * t}{f_i}$ the percentage to be drawn of each label.

Randomly Balanced

The second rebalancing technique is to have datasets which frequencies will be different for each neural network.

Let:

- \tilde{f}_i define as before
- a such that $a + t \le 1$
- \vec{U} a vector of independent variable uniformly distributed on [-a,a]

We define $\ddot{f}_i = \tilde{f}_i + U_i$ the percentage to be drawn of each label.

Lightly Balanced

Under sampling the major class such as the minor class account for 10% of our final data set.

- Distribution close to the original
- Distribution which can help us learn our minority class

Summary

- Goal
- 2 Neural Networks
- Rebalancing of the dataset
- 4 Results

We compared different methods to perform the embedding :

rand: All the words are randomly initialized and then modified during training.

static: The embedding network is initialized using Fasttext.

non-static: Same as static but word vectors are fine-tuned.

Neural network in insurance

Categories	min	mean	var	median	max
Standard claims (uncensored)	0	1	1	0.75	16.3
Extreme claims (uncensored)	0.25	3.83	6.93	3,08	16.3
Standard claims (after KM)	0,23	1.25	2.26	0,83	16.3
,					
Extreme claims (after KM)	0,25	5.24	11.7	4.17	16.3

Table: Empirical statistics on the variable T, before and after correction by Kaplan-Meier weights ("after KM"). The category "Extreme claims" corresponds to the situation where I=1 for x=3% of the claims, while "Standard claims" refers to the 97% lower part of the distribution of the final amount.

Neural network in insurance

David	F 1	NI I
Rank	Extreme	Normal
1	insurer 90%	insurer 87%
2	third party 56%	third party 61%
3	injured 38%	front 46%
4	to ram 30%	way 41%
5	to hit 24%	backside 40%
6	motorcycle 18%	left 20%
7	driver 17%	right 18%
8	pedestrian 16%	side 17%
9	inverse 15%	to shock 14%
10	deceased 13%	control 10%

Table: Ranking of the words (translated from French) used in the reports, depending on the category of claims (Extreme corresponds to I=1 and Standard to I=0.)

On minority class

Method	Model	type Embedding	precision	recall	f1-score
	Expert		0.94	0.05	0.02
Classical	Random Forest	static	0.20	0.22	0.21
Classical	Gradient Boosting	static	0.17	0.31	0.22
	CNN	non-static	0.78	0.06	0.12
	LSTM	non-static	0.66	0.11	0.19
Balanced	CNN	non-static	0.28	0.48	0.33
Dalanceu	LSTM	non-static	0.28	0.46	0.35
Randomly	CNN	non-static	0.33	0.42	0.37
Randonny	LSTM	non-static	0.34	0.48	0.40
Lightly	CNN	non-static	0.41	0.44	0.42
Ligitity	LSTM	non-static	0.47	0.40	0.43

Acknowledgments

Thanks to Olivier Lopez (Sorbonne Université, Paris, France), Yann Mercuzot (Pacifica, Paris, France).

Thank you for listening

mail: isaaccohensabban@gmail.com

Linkedin: https://www.linkedin.com/in/isaaccohensabban/

