1. A 1MB block of memory is allocated using the buddy system which splits into **2 equal parts**. Show the results of the following sequence of requests and returns in a figure that is similar to the one shown in class:

shown in class.	1. A 1120 1 2 36 512	T T
Request A: 70KB;	7 10 10 (6) 256 \ 512:	X / r
Request B: 35KB;	2. A 15 kg/206 5/2"	\cup \cup \cup
Request C:80KB;	3 IN 18 60 C 120 512.	
Return A;	- 17 10 10 10 10 10 10 10 10 10 10 10 10 10	
Request D: 60KB;	9 [128/15/2]	
Return B;		
Return D;	S. D 6/13/69 5/2	
Return C.		
	6 ID 69 128/512-	
	712 56 1C 128 512	
	1.	

2. A 512 KB block of memory is allocated using the buddy system which splits into **4 equal parts**. Show the results of the following sequence of requests and returns in a figure that is similar to the one shown in class:

3. Given the following Memory configuration, determine where a new request of 7MB block should go for all the 4 placement algorithms - Next fit, First fit, Best fit, Worst Fit.

