

Course > Section... > 1.3 A M... > 1.3.2 Q...

1.3.2 Quiz: Making Sense of the Lambert-Beer Model

☐ Bookmark this page

Here's the Lambert-Beer model Margo presented:

$$\begin{array}{ccc}
I_0 & & \mu & \longrightarrow I \\
& & \xrightarrow{\Delta x} & & x
\end{array}$$

View Larger Image **Image Description**

 μ uniform attenuation coefficient (units cm^1)

 I_0 input x-ray intensity (units kVp)

I output x-ray intensity (units kVp)

 Δx length of object (units cm)

$$I = I_0 e^{-\mu \Delta x}$$

Units of the Lambert Beer Model

• The units of intensity are peak kilovoltage, kVp, which is the maximum voltage applied across an X-ray tube.

- The units of Δx , the thickness, are centimeters, or cm.
- What are the units of μ , the attenuation coefficient? They are determined by the other units. Because $I=I_0e^{-\mu\Delta x}$ must have units kVp, and I_0 has units kVp as well, this means we want this means we want $e^{-\mu\Delta x}$ to be unitless. So the units of μ must cancel those of Δx , and hence the units of μ are 1/cm or cm⁻¹.

Question 1

1/1 point (graded)

From the Lambert-Beer model, we know that the intensity of an x-ray of initial intensity I_0 passing through an object with attenuation coefficient μ and length Δx is given by

$$I=I_0e^{-\mu\Delta x}$$

Compare the resulting intensities of light when a x-ray with initial intensity I_0 passes through each of the following objects.

Choose all that are correct.

Attenutation and Thickness Combinations

A:
$$\mu=0.5, \Delta x=1$$

B:
$$\mu=0.5, \Delta x=2$$

C:
$$\mu=1, \Delta x=2$$

D:
$$\mu=2, \Delta x=0.5$$

E:
$$\mu=3, \Delta x=3$$

- E results in the largest output intensity
- A results in the largest output intensity
- Output intensity for C > Output intensity for B

■ None of the above. ✓	
cause $m{f(t)}$	is determined by the product of the thickness and attenuation coefficient $0=e^{-t}$ is always decreasing, smaller values of $t=\mu\cdot\Delta x$ correspond to of I . The value of $\mu\cdot\Delta x$ is smallest in A and equal for B and C.
Submit	You have used 1 of 3 attempts
A nswer	s are displayed within the problem
uestion	2
1 point (grad	ed)
tenuation of eer model,	ned that attenuation depends on both the material (measured by the coefficient μ) and the thickness of the material. According to the Lambert-do objects that attenuate more light (because of material or thickness or n lesser output intensity? (Why or why not?)
tenuation of eer model,	ned that attenuation depends on both the material (measured by the coefficient μ) and the thickness of the material. According to the Lambert-do objects that attenuate more light (because of material or thickness or n lesser output intensity? (Why or why not?)
tenuation deer model, oth) result i	ned that attenuation depends on both the material (measured by the coefficient μ) and the thickness of the material. According to the Lambert-do objects that attenuate more light (because of material or thickness or n lesser output intensity? (Why or why not?)
tenuation deer model, oth) result i	ned that attenuation depends on both the material (measured by the coefficient μ) and the thickness of the material. According to the Lambert-do objects that attenuate more light (because of material or thickness or n lesser output intensity? (Why or why not?)
tenuation deer model, oth) result i Yes, alw Sometin	ned that attenuation depends on both the material (measured by the coefficient μ) and the thickness of the material. According to the Lambert-do objects that attenuate more light (because of material or thickness or n lesser output intensity? (Why or why not?)
tenuation deer model, oth) result i Yes, alw Sometin	ned that attenuation depends on both the material (measured by the coefficient μ) and the thickness of the material. According to the Lambert-do objects that attenuate more light (because of material or thickness or n lesser output intensity? (Why or why not?)
tenuation deer model, oth) result i Yes, alv Sometin	ned that attenuation depends on both the material (measured by the coefficient μ) and the thickness of the material. According to the Lambert-do objects that attenuate more light (because of material or thickness or n lesser output intensity? (Why or why not?) yays. mes, but not always.

Learn About Verified Certificates

© All Rights Reserved

© 2012–2018 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open edX logos are registered trademarks or trademarks of edX Inc. | 粤ICP备17044299号-2

