Derivative Rules:

If c is a constant, then the derivative of a constant function at any value of x is zero.

$$\frac{d}{dx}[c] = 0$$

ux		
Power Rule:	Constant Multiple Rule:	
$\frac{d}{dx} \left[x^n \right] = n \cdot x^{n-1}$	$\frac{d}{dx} \left[c \cdot f(x) \right] = c \cdot \frac{d}{dx} \left[f(x) \right]$	
	$=c\cdot f'(x)$	
Sum/Difference Rule:	Quotient Rule:	
$\frac{d}{dx} [f(x) \pm g(x)] = \frac{d}{dx} [f(x)] \pm \frac{d}{dx} [g(x)]$	$\left \frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x)g(x) - f(x)g'(x)}{\left[g(x) \right]^2}$	
$=f'(x)\pm g'(x)$		
Product Rule:		
$[f(x)\cdot g(x)]' = f'(x)g(x) + f(x)g'(x)$		
Extended Product Rule:		
$\left[f(x)\cdot g(x)\cdot h(x)\right]' = f'(x)\cdot g(x)\cdot h(x) + f(x)\cdot g'(x)\cdot h(x) + f(x)\cdot g(x)\cdot h'(x)$		
<u>:</u>		
Chain Rule:		
$\left[f(g(x))\right]' = f'(g(x)) \cdot g'(x)$		
Extended Chain Rule:		
$\left\lceil f(g(h(x)))\right\rceil' = f'(g(h(x))) \cdot g'(h(x)) \cdot h'(x)$		

Basic Differentiation Rules:

Basic Differentiation Rules:		
$\frac{d}{dx}[c \cdot x] = c$	$\frac{d}{dx} \left[x^n \right] = n \cdot x^{n-1}$	$\frac{d}{dx} [x] = \frac{x}{ x }$
$\frac{d}{dx} \Big[\sin(x) \Big] = \cos(x)$	$\frac{d}{dx} \Big[\sec(x) \Big] = \sec(x) \tan(x)$	$\frac{d}{dx} \Big[\tan (x) \Big] = \sec^2 (x)$
$\left[\frac{d}{dx}\left[\cos\left(x\right)\right] = -\sin\left(x\right)\right]$	$\frac{d}{dx}\left[\csc(x)\right] = -\csc(x)\cot(x)$	$\frac{d}{dx}\left[\cot\left(x\right)\right] = -\csc^2\left(x\right)$
$\frac{d}{dx} \Big[e^x \Big] = e^x$	$(f^{-1})'(b) = \frac{1}{f'\begin{pmatrix} \text{whatever makes} \\ f(x) = b \end{pmatrix}}$	$\frac{d}{dx} \Big[\log_a (x) \Big] = \frac{1}{\ln(a)} \cdot \frac{1}{x}$
$\frac{d}{dx} \Big[\ln \big(x \big) \Big] = \frac{1}{x}$	$\int \int $	$\frac{d}{dx} \Big[a^x \Big] = \ln(a) \cdot a^x$
$\frac{d}{dx} \left[\arcsin\left(x\right) \right] = \frac{1}{\sqrt{1 - x^2}}$	$\frac{d}{dx} \Big[\arctan(x)\Big] = \frac{1}{1+x^2}$	$\frac{d}{dx} \Big[\operatorname{arcsec}(x) \Big] = \frac{1}{ x \sqrt{x^2 - 1}}$
$\frac{d}{dx} \Big[\arccos(x)\Big] = -\frac{1}{\sqrt{1-x^2}}$	$\frac{d}{dx} \Big[\operatorname{arccot}(x) \Big] = -\frac{1}{1+x^2}$	$\frac{d}{dx} \left[\operatorname{arccsc}(x) \right] = -\frac{1}{ x \sqrt{x^2 - 1}}$

Derivative Rules

Basic Differentiation Rules with Chain Rule:

$$\frac{d}{dx}[c \cdot x] = c \qquad \frac{d}{dx}[u^n] = n \cdot u^{n-1} \cdot u' \qquad \frac{d}{dx}[u] = \frac{u}{|u|} \cdot u'$$

$$\frac{d}{dx}[\sin(u)] = \cos(u) \cdot u' \qquad \frac{d}{dx}[\sec(u)] = \sec(u)\tan(u) \cdot u' \qquad \frac{d}{dx}[\tan(u)] = \sec^2(u) \cdot u'$$

$$\frac{d}{dx}[\cos(u)] = -\sin(u) \cdot u' \qquad \frac{d}{dx}[\csc(u)] = -\csc(u)\cot(u) \cdot u' \qquad \frac{d}{dx}[\cot(u)] = -\csc^2(u) \cdot u'$$

$$\frac{d}{dx}[e^u] = e^u \cdot u' \qquad (f^{-1})'(b) = \frac{1}{f'(\text{whatever makes})} \qquad \frac{d}{dx}[\log_a(u)] = \frac{1}{\ln(a)} \cdot \frac{1}{u} \cdot u'$$

$$\frac{d}{dx}[arcsin(u)] = \frac{1}{\sqrt{1-u^2}} \cdot u' \qquad \frac{d}{dx}[arctan(u)] = \frac{1}{1+u^2} \cdot u' \qquad \frac{d}{dx}[arcsec(u)] = \frac{1}{|u|\sqrt{u^2-1}} \cdot u'$$

$$\frac{d}{dx}[arccos(u)] = -\frac{1}{\sqrt{1-u^2}} \cdot u' \qquad \frac{d}{dx}[arccot(u)] = -\frac{1}{1+u^2} \cdot u' \qquad \frac{d}{dx}[arccoc(u)] = -\frac{1}{|u|\sqrt{u^2-1}} \cdot u'$$

Higher order derivatives:

First Derivative
$$y'$$
 $f'(x)$ $\frac{dy}{dx}$ $\frac{d}{dx} \Big[f(x) \Big]$

Second Derivative y'' $f''(x)$ $\frac{d^2y}{dx^2}$ $\frac{d^2}{dx} \Big[f(x) \Big]$

Third Derivative y''' $f'''(x)$ $\frac{d^3y}{dx^3}$ $\frac{d^3}{dx^3} \Big[f(x) \Big]$

Fourth Derivative $y^{(4)}$ $f^{(4)}(x)$ $\frac{d^4y}{dx^4}$ $\frac{d^4}{dx^4} \Big[f(x) \Big]$
 \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots n^{th} Dertivative $y^{(n)}$ $f^{(n)}(x)$ $\frac{d^ny}{dx^n}$ $\frac{d^n}{dx^n} \Big[f(x) \Big]$
 $\frac{d^2}{dx^2} \Big[f(x) \Big] \leftrightarrow \frac{d}{dx} \Big[\frac{d}{dx} \Big[f(x) \Big] \Big]$

Derivative Rules