1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

1. Data type of columns in a table

ANS: If we see the table Payments,

- the first column is order_id which is of VARCHAR type containing the order id from 2016-2018(if we join it with orders table which contains the order id between 206-2018).
- The second col is payment_sequence which is int type. Third is payment_type which contains values like credit_card,voucher,not_defined,debit_card.
- c. 4^t column is payment installment which is also int type.
- d. 5th column is payment_value which is float type.

2. Time period for which the data is given

ANS: For orders dataset the data is given from 2016-2018

3. Cities and States of customers ordered during the given period

ANS:

```
14 SELECT
15 DISTINCT
16 c.customer_id,
17 c.customer_city,
18 c.customer_state
19 from 'akash-218509.TargetDataset.orders' as o join 'akash-218509.TargetDataset.customers' as c on
20 o.customer_id=c.customer_id
Query results
                                                                           EXECUTION GRAPH PREVIEW
JOB INFORMATION
                       RESULTS
                                      JSON
                                                  EXECUTION DETAILS
                                    customer_city
       customer id
                                                                 customer state
  1 0735e7e4298a2ebbb4664934...
                                    acu
                                                                 RN
  2 903b3d86e3990db01619a4eb...
                                    acu
                                                                 RN
  3 38c97666e962d4fea7fd6a83e...
                                                                 RN
  4 77c2f46cf580f4874c9a5751c2...
                                                                 CE
                                    ico
  5 4d3ef4cfffb8ad4767c199c36a...
                                    ico
                                                                 CE
                                                                 CF
  6 3000841b86e1fbe9493b52324...
                                    ico
  7 3c325415ccc7e622c66dec4bc...
                                                                 CE
  8 04f3a7b250e3be964f01bf22bc...
                                   ico
                                                                 CE
     894202b8ef01f4719a4691e79...
                                                                 CE
                                    ico
 10 0471560667500400161419660
```

2. In-depth Exploration:

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

```
SELECT
MONTH,YEAR,
COUNT(*) as OrderPurchasedCount
FROM(
SELECT
   order_id,
   order_purchase_timestamp,
   BrazilDateTimeZone,
   EXTRACT(DAY FROM BrazilDateTimeZone) as DAY,
   EXTRACT(MONTH FROM BrazilDateTimeZone) as MONTH,
   EXTRACT(YEAR FROM BrazilDateTimeZone) as YEAR,
   EXTRACT(DAYOFWEEK FROM BrazilDateTimeZone) as DAYOFWEEK,
   CAST(BrazilDateTimeZone AS TIME) as brazilTime
   FROM(
```

```
SELECT
    order_id,
    order_purchase_timestamp,
    DATETIME(order_purchase_timestamp,"Brazil/West") as Brazi
lDateTimeZone
    FROM `akash-218509.TargetDataset.orders`))
group by MONTH,YEAR order by YEAR,MONTH
```

ow	MONTH	YEAR	OrderPurchased
1	9	2016	4
2	10	2016	324
3	12	2016	1
4	1	2017	801
5	2	2017	1783
6	3	2017	2681
7	4	2017	2402
8	5	2017	3707
9	6	2017	3241
10	7	2017	4028
11	8	2017	4337
12	9	2017	4280
13	10	2017	4630
14	11	2017	7554

Insights:There is sudden spike of orders for the month of Nov 2017,looking further on daily trend on 24th Nov 2017 there was Black Friday Sale

https://www.independent.co.uk/news/world/black-friday-2017-brazil-shoppers-discount-sales-brazil-south-africa-a8073651.html

Recommendation:During the sale time inventory should should be full.Based on customer analysis and discounts on specific products their inventory should be specially taken care for.

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
SELECT
DayPart,
COUNT(DayPart) As DayPartCount
FROM(
```

```
select
    order_purchase_timestamp,
    BrazilDateTimeZone,
   brazilTime,
    case
     when brazilTime between cast('00:00:00' as time) and cast('
05:59:59' as time) then "Dawn"
     when brazilTime between cast('06:00:00' as time) and cast('
11:59:59' as time) then "Morning"
     when brazilTime between cast('12:00:00' as time) and cast('
17:59:59' as time) then "Afternoon"
     when brazilTime between cast('18:00:00' as time) and cast('
23:59:59' as time) then "Night"
    END as DayPart
    FROM(
        SELECT
        order_purchase_timestamp,
        BrazilDateTimeZone,
        CAST(BrazilDateTimeZone AS TIME) as brazilTime
         FROM(
              SELECT
              order purchase timestamp,
              DATETIME(order purchase timestamp, "Brazil/West") as
BrazilDateTimeZone
              FROM `akash-218509.TargetDataset.orders`)))
 group by DayPart
```

Row	DayPart	DayPartCount	
1	Morning	38291	
2	Night	14285	
3	Afternoon	36986	
4	Dawn	9879	

Insights: Customer tends to buy most during the morning and afternoon time.

Recommendation: special offer, discount notifications should be sent

3. Evolution of E-commerce orders in the Brazil region:

1. Get month on month orders by states

```
WITH orderBrazil AS(
SELECT
  order id,
  customer id,
  order_purchase_timestamp,
  BrazilDateTimeZone,
  EXTRACT(DAY FROM BrazilDateTimeZone) as DAY,
  EXTRACT(MONTH FROM BrazilDateTimeZone) as MONTH,
  EXTRACT(YEAR FROM BrazilDateTimeZone) as YEAR,
  EXTRACT(DAYOFWEEK FROM BrazilDateTimeZone) as DAYOFWEEK,
  CAST(BrazilDateTimeZone AS TIME) as brazilTime
  FROM(
SELECT
        order_id,
        customer id,
        order_purchase_timestamp,
        DATETIME(order_purchase_timestamp, "Brazil/West") as Brazi
1DateTimeZone
        FROM `akash-218509.TargetDataset.orders`))
SELECT
MONTH, YEAR, customer state,
COUNT(*) as OrderCount
 FROM orderBrazil as ob
join `akash-218509.TargetDataset.customers` as c
on ob.customer id=c.customer id
group by MONTH, YEAR, customer state
order by YEAR, MONTH
```

w	MONTH	YEAR	customer_state	OrderCount
1	9	2016	RR	1
2	9	2016	RS	1
3	9	2016	SP	2
4	10	2016	SP	113
5	10	2016	RS	24
6	10	2016	BA	4
7	10	2016	PR	19
8	10	2016	RJ	56
9	10	2016	RN	4
10	10	2016	MT	3
11	10	2016	РВ	1
12	10	2016	SC	11
13	10	2016	AL	2
14	10	2016	PE	7

2. Distribution of customers across the states in Brazil

```
SELECT
COUNT(c.customer_id) as Customer_count,
c.customer_state
FROM `akash-218509.TargetDataset.customers` as c join
`akash-218509.TargetDataset.orders` as o
on c.customer_id=o.customer_id
group by c.customer_state
order by Customer_count desc
```

Row	Customer_count	customer_state
1	41746	SP
2	12852	RJ
3	11635	MG
4	5466	RS
5	5045	PR
6	3637	SC
7	3380	BA
8	2140	DF
9	2033	ES
10	2020	GO
11	1652	PE
12	1336	CE
13	975	PA
14	907	MT

Insights: TOP 3 states SP,RJ and MG are customer base of about 2/3 of the total customers

Recommendation:Inventory should always be up to the mark for these high customer_count states.

4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

2. Mean & Sum of price and freight value by customer state

```
SELECT

customer_state,

AVG(oi.price+oi.freight_value) as mean,

SUM(oi.price+oi.freight_value) as Sum

FROM `akash-218509.TargetDataset.customers` as c join `akash-2185

09.TargetDataset.orders` as o
on c.customer_id=o.customer_id join `akash-218509.TargetDataset.order_items` as oi on oi.order_id=o.order_id

group by customer_state
order by mean
```

Row	customer_state	mean	Sum
1	SP	124.800904	5921678.11
2	PR	139.535790	800935.439
3	MG	141.378740	1856161.49
4	RS	142.073257	885826.759
5	ES	143.972477	324801.910
6	RJ	146.078742	2129681.98
7	SC	146.123946	610213.599
8	DF	146.811903	353229.440
9	G0	149.038546	347706.930
10	ВА	160.965167	611506.670
11	MS	166.003260	135956.669
12	AM	168.701393	27835.7299
13	MT	176.463469	186168.960
14	PE	178.426184	322237.689

Insight: The mean freight value for states like SP,PR are very high and their estimated delivery time is also very high Recommendation: Use of Delivery Partner/Warehouse near these states

5. Analysis on sales, freight and delivery time

1. Calculate days between purchasing, delivering and estimated delivery

```
select * from(
select
```

```
order_id,
DATE_DIFF(order_estimated_delivery_date,order_purchase_times
tamp,DAY) as EstimatedDays,
DATE_DIFF(order_delivered_customer_date,order_purchase_times
tamp,DAY) as ActualDays
from `akash-218509.TargetDataset.orders`)
WHERE EstimatedDays is NOT NULL and ActualDays is Not NULL
```

V	order_id	EstimatedDays	ActualDays
1	635c894d068ac37e6e03dc54e	32	30
2	3b97562c3aee8bdedcb5c2e45	33	32
3	68f47f50f04c4cb6774570cfde	31	29
4	276e9ec344d3bf029ff83a161c	39	43
5	54e1a3c2b97fb0809da548a59	36	40
6	fd04fa4105ee8045f6a0139ca5	35	37
7	302bb8109d097a9fc6e9cefc5	28	33
8	66057d37308e787052a32828	32	38
9	19135c945c554eebfd7576c73	33	36
10	4493e45e7ca1084efcd38ddeb	33	34
11	70c77e51e0f179d75a64a6141	31	42
12	d7918e406132d7c81f1b84527	31	35
13	43f6604e77ce6433e7d68dd86	25	32
14	37073d851c3f30deebe598e5a	22	31

Insights: For most of the cases the numbers are close to actuals.

Recommendation:

2. Find time_to_delivery & diff_estimated_delivery. Formula for the same given below: time_to_delivery = order_purchase_timestamp-order_delivered_customer_date diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date

```
select * from
(
select
o.order_id,
DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_t
imestamp,DAY) as time_to_delivery,
```

DATE_DIFF(o.order_delivered_customer_date,o.order_estimated_delivery_date,DAY) as diff_estimated_delivery from `akash-218509.TargetDataset.orders` as o) where time_to_delivery is NOT NULL AND diff_estimated_delivery is NOT NULL

Row	order_id	time_to_delivery	diff_estimated_c
1	1950d777989f6a877539f5379	30	12
2	2c45c33d2f9cb8ff8b1c86cc28	30	-28
3	65d1e226dfaeb8cdc42f66542	35	-16
4	635c894d068ac37e6e03dc54e	30	-1
5	3b97562c3aee8bdedcb5c2e45	32	0
6	68f47f50f04c4cb6774570cfde	29	-1
7	276e9ec344d3bf029ff83a161c	43	4
8	54e1a3c2b97fb0809da548a59	40	4
9	fd04fa4105ee8045f6a0139ca5	37	1
10	302bb8109d097a9fc6e9cefc5	33	5
11	66057d37308e787052a32828	38	6
12	19135c945c554eebfd7576c73	36	2
13	4493e45e7ca1084efcd38ddeb	34	0
14	70c77e51e0f179d75a64a6141	42	11

3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery:

```
c.customer_state,
AVG(oi.freight_value) as MeanFreightValue,
AVG(DATE_DIFF(o.order_delivered_customer_date,o.order_purcha
se_timestamp,DAY)) as time_to_delivery,
AVG(DATE_DIFF(o.order_delivered_customer_date,o.order_estima
ted_delivery_date,DAY)) as diff_estimated_delivery
from `akash-218509.TargetDataset.customers` as c join `akash
-218509.TargetDataset.orders` as o
    on c.customer_id = o.customer_id
join `akash-218509.TargetDataset.order_items` oi
    on oi.order_id=o.order_id
    group by c.customer_state
    order by MeanFreightValue desc
```

JOB	INFORMATION	RESULTS	JSON	EXECUTION DET	AILS	EXECUTION
Row	customer_state		MeanFreightValı	time_to_delivery	diff_estimate	d_c
1	RR		42.9844230	27.8260869	-17.434782	
2	PB	•	42.7238039	20.1194539	-12.150170	
3	RO		41.0697122	19.2820512	-19.080586	
4	AC		40.0733695	20.3296703	-20.010989	
5	PI		39.1479704	18.9311663	-10.682600	
6	MA		38.2570024	21.2037500	-9.1099999	
7	то		37.2466031	17.0032258	-11.461290	
8	SE		36.6531688	20.9786666	-9.1653333	
9	AL		35.8436711	23.9929742	-7.9765807	
10	PA		35.8326851	23.3017077	-13.374762	
11	RN		35.6523629	18.8733205	-13.055662	
12	AP		34.0060975	27.7530864	-17.444444	
13	AM		33.2053939	25.9631901	-18.975460	
14	PE		32.9178626	17.7920962	-12.552119	

Insights:For states where average time_to_delivery is higher the freight value itself is higher.

Recommendation: Warehouses around these states could bring down freight charges significantly

4.5 Sort the data to get the following:

Top 5 states with highest average freight value - sort in desc/asc limit 5

```
c.customer_state as customer_state_AVGhigh_freight,
AVG(oi.freight_value) as Average_freight_value
from `akash-218509.TargetDataset.orders` as o join `akash-21
8509.TargetDataset.order_items` as oi
on o.order_id=oi.order_id join `akash-218509.TargetDataset.c
ustomers` as c on c.customer_id=o.customer_id
group by c.customer_state
order by Average_freight_value desc
limit 5
```

JOB II	NFORMATION	RESULTS	JSON	EXE
Row	customer_state_AVGhigh_freight		Average_freight_	
1	RR		42.9844230	
2	PB		42.7238039	
3	RO		41.0697122	
4	AC		40.0733695	
5	PI		39.1479704	

Top 5 states with lowest average freight value - sort in desc/asc limit 5

```
c.customer_state as customer_state_AVGlow_freight,
AVG(oi.freight_value) as Average_freight_value
from `akash-218509.TargetDataset.orders` as o join `akash-21
8509.TargetDataset.order_items` as oi
on o.order_id=oi.order_id join `akash-218509.TargetDataset.c
ustomers` as c on c.customer_id=o.customer_id
group by c.customer_state
order by Average_freight_value asc limit 5
```

low	customer_state_AVGlow_freight	Average_freight_
1	SP	15.1472753
2	PR	20.5316515
3	MG	20.6301668
4	RJ	20.9609239
5	DF	21.0413549

INSIGHTS: For states where delivery time is less has the least freight value and for states where the delivery time is high has the most freight value

Recommendation: Setup of warehouses near top states with high reight value

4.6. Top 5 states with highest average time to delivery

```
select
c.customer_state,
ROUND(AVG(DATE_DIFF(o.order_delivered_customer_date,o.order_
purchase_timestamp,DAY))) as TimeForDelivery
from `akash-218509.TargetDataset.customers` as c join `akash-218509.TargetDataset.orders` as o
on c.customer_id=o.customer_id
group by c.customer_state
order by TimeForDelivery desc
limit 5
```

JUB II	NFORMATION	RESULIS	JOUN	EVECO
DW	customer_state		TimeForDelivery	
1	RR		29.0	
2	AP		27.0	
3	AM		26.0	
4	AL		24.0	
5	PA		23.0	

Top 5 states with lowest average time to delivery

```
select
c.customer_state,
ROUND(AVG(DATE_DIFF(o.order_delivered_customer_date,o.order_
purchase_timestamp,DAY))) as TimeForDelivery
from `akash-218509.TargetDataset.customers` as c join `akash-218509.TargetDataset.orders` as o
on c.customer_id=o.customer_id
group by c.customer_state
order by TimeForDelivery asc
limit 5
```

low	customer_state	TimeForDelivery
1	SP	8.0
2	MG	12.0
3	PR	12.0
4	DF	13.0
5	SC	14.0

Insights: Few states average delivery time is around a month

Recommendation: Use of delivery partner for those states where Target has difficulty/takes more time to deliver.

4.7 Top 5 states where delivery is really fast compared to estimated date

```
select
c.customer_state,
ROUND(AVG(DATE_DIFF(o.order_estimated_delivery_date,o.order_
delivered_customer_date,DAY))) as avg_delivery_time
from `akash-218509.TargetDataset.customers` as c join `akash-218509.TargetDataset.orders` as o
on c.customer_id=o.customer_id
group by c.customer_state
order by avg_delivery_time asc
limit 5
```

w	customer_state	avg_delivery_tim
1	AL	8.0
2	MA	9.0
3	SE	9.0
4	ES	10.0
5	SP	10.0

Top 5 states where delivery is not so fast compared to estimated date

```
select
c.customer_state,
ROUND(AVG(DATE_DIFF(o.order_delivered_customer_date,o.order_
estimated_delivery_date,DAY))) as avg_delivery_time
from `akash-218509.TargetDataset.customers` as c join `akash
-218509.TargetDataset.orders` as o
on c.customer_id=o.customer_id
group by c.customer_state
order by avg_delivery_time asc
limit 5
```

JOB INFORMATION		RESULTS	JSON	EXEC
w	customer_state		avg_delivery_tim	
1	AC		-20.0	
2	RO		-19.0	
3	AM		-19.0	
4	AP		-19.0	
5	RR		-16.0	

Insights:For Few states the delivery date is more than 15 days from the estimated date.

Recommendation: Setup of warehouse/delivery partner for these states.

1. Month over Month count of orders for different payment types

```
WITH orderBrazil AS(
      SELECT
        order id,
         order_purchase_timestamp,
         BrazilDateTimeZone,
         EXTRACT(MONTH FROM BrazilDateTimeZone) as MONTH,
         EXTRACT(YEAR FROM BrazilDateTimeZone) as YEAR
        FROM(
      SELECT
               order_id,
               customer_id,
               order purchase timestamp,
               DATETIME(order purchase timestamp, "Brazil/West") as BrazilDateTi
      meZone
               FROM `akash-218509.TargetDataset.orders`))
       SELECT
      p.payment_type,
      ob.MONTH, ob.YEAR,
       COUNT(p.payment_type) as payment_type_count
       FROM orderBrazil as ob
       join `akash-218509.TargetDataset.payments` as p
       on ob.order_id=p.order_id
       group by MONTH, YEAR, payment type
       order by YEAR, MONTH
```

		_		
Row	payment_type	MONTH	YEAR	payment_type_c
1	credit_card	9	2016	3
2	credit_card	10	2016	254
3	voucher	10	2016	23
4	debit_card	10	2016	2
5	UPI	10	2016	63
6	credit_card	12	2016	1
7	voucher	1	2017	61
8	UPI	1	2017	197
9	credit_card	1	2017	584
10	debit_card	1	2017	9
11	credit_card	2	2017	1356

Insights: credit card is the most used payment method.

Recommendation: Points or offers on payment on particular credit cards or in general credit cards

2. Count of orders based on the no. of payment installments

```
select
p.payment_installments,
```

```
COUNT(p.order_id) as OrderIdCount
  from `akash-218509.TargetDataset.payments` as p join `akash-218509.Targ
etDataset.orders` as o on p.order_id=o.order_id
  group by payment_installments
```

	_	
Row	payment_installı	OrderldCount
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644
11	10	5328
12	11	23
13	12	133
14	13	16

Insights: Majority of people tends to pay out in 1 installment, but there is significant amount of people which tends to pay till 10 installments.

Recommendation: NO cost EMI for people paying under an year