Combustion Theory and Applications in CFD

Princeton Combustion Summer School 2018

Prof. Dr.-Ing. Heinz Pitsch

Copyright ©2018 by Heinz Pitsch.

This material is not to be sold, reproduced or distributed without prior written permission of the owner, Heinz Pitsch.

Mobility & Transport

Power Generation

Mobility & Transport

Power Generation

Industry & Household

Mobility & Transport

Power Generation

Industry & Household

Fire Safety & Explosions

Mobility & Transport

Power Generation

Industry & Household

Combustion is omnipresent!

But causes emissions of

- Harmful pollutants
- Greenhouse gases

Design challenge

- Combustion extremely complex, multi-scale & multi-physics
- Devices usually big and high power
- Measurement in severe environments difficult
 - Computational engineering very important

Mobility & Transport

Fire Safety & Explosions

Combustion Science

Combustion research started many years ago

- Why is combustion science still important?
- Why is combustion science interesting?
- HPC as an important step

US DOE's International Energy Outlook 2016

World Energy Consumption

- Increase in world wide energy consumption from 2012 until 2040: 50%
- Fossil fuels > 75% by 2040

Large numbers

- 120 million tons daily
 CO₂ emissions in 2040
 - → 13 kg daily per person
- 10 billion liter daily fuel consumption
 - → I.3 liter daily liquid fuel use

Clean combustion extremely important!

Primary Energy Demand by Region & Source in 2040

Primary Energy Demand by Region & Source in 2040

Primary Energy Demand by Region & Source in 2040

DOE's International Energy Outlook 2016

Transport Sector World Energy Consumption by Source

Fraction of Battery
 Electric Vehicle (BEV)
 in 2040 still small

→ 6% BEV for450 scenario

DOE's International Energy Outlook 2016

World Net Electricity Generation by Source

 For positive effect of BEV, electric power should be from renewable sources

World Energy Demand in Mtoe by Fuel & Sector in 2040

Mitigation of GHG Emissions

888

3 240 Industry 1 324 349 826 77 3 132 Transport 552 1 098 1 712 Buildings

Opportunities

- Electrification, but
 - electrical power has to be from renewable sources
- Also, not all relevant applications can be electrified, i.e.
 - industrial processes requiring high process temperatures
 - applications requiring high energy densities
 - 0 ..

Conversion losses

3 729

Institute for Combustion Technology | Heinz Pitsch

100

Mitigation of GHG Emissions

Primary Energy and Conversion Process

Opportunities

- Cleaner fuels, e.g. natural gas
 - →Almost 50% lower specific carbon emissions compared with coal
- Biofuels
 - **→**CoE Tailor-Made Fuels from Biomass
- Carbon-free fossil fuel combustion
 - →CCS, CCU (SFB Oxyflame)
- Renewable electricity
 - **→**Storage
 - E-fuels
 - Ammonia
 - Hydrogen

1 64

2 461

24

Biofuels

Coal

Natural gas

What is Combustion?

 What is the difference between combustion and fuel oxidation in a fuel cell?

- In contrast to isothermal chemically reacting flows
 - Heat release induces temperature increase
 - Thereby combustion is self accelerating
- Important
 - Each chemical or physical process has associated time scale

- Interaction of flow (transport) and chemistry
 - Laminar and turbulent combustion
 - New dimensionless groups (similar to Reynolds number)
 - Damköhler number, Karlovitz number, ...

Combustion Applications: Examples

- Premixed combustion
 - Spark-ignition engine
 - Premixed

- Diesel engine
- Aircraft engine

Example: Aircraft engine

Reduction of Greenhouse Gas Emissions

Various approaches:

- Hydrogen economy
- CO₂-sequestration (Carbon Capture and Storage, CCS)
- Bio-fuels
- ...
- Increase in efficiency

Combustion Theory

Aim of this Course

Develop understanding of combustion processes from physical and chemical perspectives

- Fundamentals:
 - Thermodynamics
 - (Kinetics → see parallel course)
 - Fluid mechanics
 - Heat and mass transfer
- Applications:
 - Reciprocating engines
 - Gas turbines
 - Furnaces

Part I: Fundamentals and Laminar Flames

Part II: Turbulent Combustion

Combustion Theory

CEFRC Summer School
Princeton

June 28^{th} - July 2^{nd} , 2010

Norbert Peters¹

RWTH Aachen University

Part I: Fundamentals and Laminar Flames

- Introduction
- Fundamentals and mass balances of combustion systems
- Thermodynamics, flame temperature, and equilibrium
- Governing equations
- Laminar premixed flames: Kinematics and Burning Velocity
- Laminar premixed flames: Flame structure
- Laminar diffusion flames
- FlameMaster flame calculator

Request access and download at https://www.itv.rwth-aachen.de/index.php?id=flamemaster

Part II: Turbulent Combustion

- Turbulence
- Turbulent Premixed Combustion
- Turbulent Non-Premixed Combustion
- Turbulent Combustion Modeling
- Applications

Fundamentals and Mass Balances of Combustion Systems

Princeton Combustion Summer School 2018

Prof. Dr.-Ing. Heinz Pitsch

Thermodynamics

The final state (after very long time) of a homogeneous system is governed by the classical laws of thermodynamics!

Prerequisites:

- Definitions of concentrations and thermodynamic variables
- Mass and energy balances for multicomponent systems

Part I: Fundamentals and Laminar Flames

- Introduction
- Fundamentals and mass
 balances of combustion systems
- Thermodynamics, flame temperature, and equilibrium
- Governing equations
- Laminar premixed flames:
 Kinematics and burning velocity
- Laminar premixed flames:
 Flame structure
- Laminar diffusion flames
- FlameMaster flame calculator

- Definitions, Equation of State, Mass Balance
- Elementary and Global Reactions
- Coupling Functions
- Stoichiometry
- Mixture Fraction
- Burke-Schumann Solution

Definitions, Equation of State, Mass Balance

- In chemical reactions mass and chemical elements are conserved
- Combustion always in (gas) mixtures

The mole fraction

- Multi-component system with k different chemical species
- Mole: $6.0236 \cdot 10^{23}$ molecules are defined as one mole \rightarrow Avogadro number N_A
- Number of moles of species i: n_i
- Total number of moles:

$$n_s = \sum_{i=1}^k n_i$$

• Mole fraction of species i: $X_i \equiv \frac{n_i}{n_s}, \quad i=1,2,\ldots,k$

The mass fraction

• Mass m_i of all molecules of species i is related to its number of moles by

$$m_i = W_i n_i, \quad i = 1, 2, \dots, k$$

where W_i is the molecular weight of species i

- Total mass of all molecules in the mixture:
- Mass fraction of species *i*:
- Mean molecular weight W:
- Wean molecular weight w:
- Mass fraction and mole fraction:

$$Y_i = \frac{m_i}{m}, \quad i = 1, 2, \dots, k$$

 $m = \sum_{i=1}^{\kappa} m_i$

$$W = \sum_{i=1}^{k} W_i X_i = \left[\sum_{i=1}^{k} \frac{Y_i}{W_i}\right]^{-1}$$

$$Y_i = \frac{W_i}{W} X_i$$

The mass fraction of elements

- Mass fractions of elements are very useful in combustion
 - Mass of the species changes due to chemical reactions, but mass of the elements is conserved

- Number of atoms of element j in a molecule of species i: a_{ij}
- Mass of all atoms j in the system:

$$m_j = \sum_{i=1}^k \frac{a_{ij}W_j}{W_i} m_i, \quad j = 1, 2, \dots, k_e$$

where k_e is the total number of elements in the system, W_j is molecular weight of element j

The mass fraction of elements

Mass fraction of element j is then

$$Z_j = \frac{m_j}{m} = \sum_{i=1}^k \frac{a_{ij}W_j}{W_i} Y_i = \frac{W_j}{W} \sum_{i=1}^k a_{ij}X_i, \quad j = 1, 2, \dots, k_e,$$

From definitions above it follows

$$\sum_{i=1}^{k} X_i = 1, \ \sum_{i=1}^{k} Y_i = 1, \ \sum_{j=1}^{k_e} Z_j = 1$$

The partial molar density (concentration)

Number of moles per volume V or partial molar density,
 the concentration:

$$[X_i] = \frac{n_i}{V}, \quad i = 1, 2, \dots, k$$

Total molar density of the system is then

$$\frac{n_s}{V} = \sum_{i=1}^k [X_i]$$

The Partial Density

Density and partial density are defined

$$\rho = \frac{m}{V}, \quad \rho_i = \frac{m_i}{V} = \rho Y_i, \quad i = 1, 2, \dots, k$$

Partial molar density is related to partial density and mass fraction by

$$[X_i] = \frac{\rho_i}{W_i} = \frac{\rho Y_i}{W_i}, \quad i = 1, 2, \dots, k$$

(relation often important for evaluation of reaction rates)

The ideal gas thermal equation of state

- In most combustion systems, thermally ideal gas law is valid
- Even for high pressure combustion this is a sufficiently accurate approximation,
 because the temperatures are typically also very high
- In mixture of ideal gases, molecules of species i exert on the surrounding walls
 of the vessel the partial pressure

$$p_i = \frac{n_i \mathcal{R}T}{V} = [X_i]\mathcal{R}T = \frac{\rho Y_i}{W_i}\mathcal{R}T, \quad i = 1, 2, \dots, k$$

Universal gas constant equal to

$$R = 8.3143 \text{ J/mol/K} = 82.05 \text{ atm cm}^3/\text{mol/K}$$

Dalton's law

- For an ideal gas the total pressure is equal to the sum of the partial pressures
- Thermal equation of state for a mixture of ideal gases

$$p = \sum_{i=1}^{k} p_i = n_s \frac{\mathcal{R}T}{V} = \frac{\rho \mathcal{R}T}{W}$$

From this follows

$$p_i = pX_i, \quad i = 1, 2, \dots, k$$

And for the volume

$$V = n_i \frac{\mathcal{R}T}{p_i} = n \frac{\mathcal{R}T}{p}$$

=

*Example: Methane/Air Mixture

- Known: CH₄-air-mixture; 5 mass percent CH₄, 95 mass percent air
 - Air: 21% (volume fraction) O_2 , 79% N_2 (approximately)
- Unknown: Mole fractions and element mass fractions
- Solution:
 - Molar masses: $M_{\mathrm{O}_2} pprox$ 32 g/mol , $M_{\mathrm{N}_2} pprox$ 28 g/mol , $M_{\mathrm{CH}_4} pprox$ 16 g/mol
 - Mass fractions in the air: $Y_i = \frac{M_i}{M} X_i$

$$Y_{\text{O}_2,L} = \frac{M_{\text{O}_2} X_{\text{O}_2,L}}{M_{\text{O}_2} X_{\text{O}_2,L} + M_{\text{N}_2} X_{\text{N}_2,L}} \approx 0,232, \ Y_{\text{N}_2,L} = 1 - Y_{\text{O}_2,L} \approx 0,768$$

- In the mixture: $Y_{O_2} = 0.95 Y_{O_2,L} = 0.22$, $Y_{N_2} = 0.95 Y_{N_2,L} = 0.73$
- Mean molar mass: $M = [\sum_{i=1}^{3} Y_i/M_i]^{-1} = 27,5 \text{ g/mol}$

*Example: Methane/Air Mixture

• Mole fractions of Components: $X_i = M/M_i Y_i$

$$X_{\text{CH}_4} = 0,09, \ X_{\text{O}_2} = 0,19, \ X_{\text{N}_2} = 0,72$$

• Molar mass of elements: $M_{\rm H} \approx 1 \, {\rm g/mol}, \quad M_{\rm C} \approx 12 \, {\rm g/mol}$

• with:
$$Z_j = \sum_{i=1}^3 \frac{a_{ij} M_j}{M_i} Y_i$$

- Mass fractions of elements: $Z_H = 0.0125$, $Z_C = 0.0375$, $Z_O = Y_{O_2}$, $Z_N = Y_{N_2}$
- Simplification: Whole numbers for values of the molar masses

Course Overview

Part I: Fundamentals and Laminar Flames

- Introduction
- Fundamentals and mass balances of combustion systems
- Thermodynamics, flame temperature, and equilibrium
- Governing equations
- Laminar premixed flames:
 Kinematics and burning velocity
- Laminar premixed flames:
 Flame structure
- Laminar diffusion flames
- FlameMaster flame calculator

- Definitions, Equation of State, Mass Balance
- Elementary and Global Reactions
- Coupling Functions
- Stoichiometry
- Mixture Fraction
- Burke-Schumann Solution

Elementary and Global Reactions

- Distinction between elementary reactions and global reactions important!
- Elementary reactions
 - Describe actual micro-process of chemical reaction

$$\mathrm{H}^{\circ} + \mathrm{O}_2 \rightarrow \mathrm{OH}^{\circ} + \mathrm{O}^{\circ}$$

- Only take place, if collisions between reactants take place
- Reaction velocities can be determined experimentally oder theoretically
- Global reactions
 - Conversion of educts to products

$$2H_2 + O_2 = 2H_2O$$

- Ratios of amounts of substance
- Does not represent a chemical micro-process
- Temporal process of the reaction cannot be given

Elementary Reactions

- Observe the conservation of elements
- Chemical changes due to collisions of components
- Transition from educts to products symbolized by arrow
- Example: Bimolecular elementary reaction

$$H^{\circ} + O_2 \rightarrow OH^{\circ} + O^{\circ}$$

Elementary reactions also proceed backwards:

$$\mathrm{H}^{\circ} + \mathrm{O}_2 \leftarrow \mathrm{OH}^{\circ} + \mathrm{O}^{\circ}$$

Often symbolized by a double arrow:

$$H^{\circ} + O_2 \rightleftharpoons OH^{\circ} + O^{\circ}$$

- Conservation of elements
- Global ratios of amounts of substance
- Do not take place on atomic scale
- Global balance of a variety of elementary reactions
- Equality sign for global reactions
- Example for global reaction: $2H_2 + O_2 = 2H_2O$

meaning that 2 mol H₂ react with 1 mol O₂, yielding 2 mol H₂O

Multiples of the equation are also valid:

$$H_2 + \frac{1}{2}O_2 = H_2O$$

– This does not hold for elementary reactions!

- Multiplication of the equation of the global reaction by the molar masses
 - → Mass balance during combustion
- Example: Combustion of H₂ using the foregoing equation

$$2gH_2 + 16gO_2 = 18gH_2O$$

- Stoichiometric coefficient of reactants i: ν_i'
- Stoichiometric coefficient of products i: ν_i''
- Example:

$$CH_4 + 2O_2 = CO_2 + 2H_2O$$

$$- v'_{CH4} = 1, \qquad v \square'_{H2O} = 2$$

• Stoichiometric coefficient of a component (only for global reactions):

$$\nu_i := \nu_i'' - \nu_i'$$

- Example: $\frac{dC_i}{dt} = \nu_i \omega$
 - Rate of change for reactants negative
- Note:
 - Stoichiometric coefficients v_i of reactants are negative!
 - $-v_i$ are defined to be positive!

Formulation of global reactions:

Combustion of hydrocarbon fuel or an alcohol

$$\nu_{\rm B}'{\rm B} + \nu_{\rm O_2}'{\rm O_2} = \nu_{\rm CO_2}''{\rm CO_2} + \nu_{\rm H_2O}''{\rm H_2O}$$

- Atoms in the fuel: Carbon, hydrogen and oxygen
 - Number of atoms in the fuel a_{BC} , a_{BH} , a_{BO}
- Stochiometric coefficients of the global reaction are derived from $v_{B}{}'$
 - Balances of atoms
 - C: $\nu''_{CO_2} = a_{BC} \nu'_{B}$ • H: $\nu''_{H_2O} = a_{BH} \nu'_{B}/2$ • O: $\nu'_{O_2} = \nu''_{CO_2} + \nu''_{H_2O}/2 - a_{BO} \nu'_{B}/2$
- Example: $CH_4 + 2O_2 = CO_2 + 2H_2O$

$$a_{BC} = 1$$
, $a_{BH} = 4$, $a_{BO} = 0$, $\nu_{B} = 1$

Course Overview

Part I: Fundamentals and Laminar Flames

- Introduction
- Fundamentals and mass balances of combustion systems
- Thermodynamics, flame temperature, and equilibrium
- Governing equations
- Laminar premixed flames:
 Kinematics and burning velocity
- Laminar premixed flames:
 Flame structure
- Laminar diffusion flames
- FlameMaster flame calculator

- Definitions, Equation of State, Mass Balance
- Elementary and Global Reactions
- Coupling Functions
- Stoichiometry
- Mixture Fraction
- Burke-Schumann Solution

Coupling functions

Example: Global reaction

$$4 H_2 + 2O_2 = 4H_2O$$

- Consider conversion of 8 moles of H₂
 - How many moles of O₂ have been converted?
 - Reaction has taken place how many times?
- In equations:

$$\frac{dC_i}{dt} = \nu_i \omega \quad \text{with} \quad C_i = n_i/V$$

or

$$\frac{dn_i/\nu_i}{dt} = \omega V$$

 \rightarrow Change of n_i/v_i same for all species

Coupling functions

Global reaction, e.g.: $v_1 F + v_2 O = v_3 P$

$$V_1 F + V_2 O = V_3 P$$

- Conversion of:
 - n_1 moles of component 1
 - *n_i* moles of component *i*
- Reaction has taken place n_1/v_1 or n_i/v_i times $\rightarrow n_1/v_1 = n_i/v_i$
- Differential notation:

$$\frac{dn_i}{\nu_i} = \frac{dn_1}{\nu_1}, \quad \frac{dm_i}{\nu_i M_i} = \frac{dm_1}{\nu_1 M_1}, \quad \frac{dY_i}{\nu_i M_i} = \frac{dY_1}{\nu_1 M_1} \quad (i = 1, 2, ..., n)$$

Integrating, e.g. for fuel and oxygen from the unburnt state → Coupling function:

$$\frac{Y_{O_2} - Y_{O_2,u}}{\nu'_{O_2} M_{O_2}} = \frac{Y_{B} - Y_{B,u}}{\nu'_{B} M_{B}}$$

Coupling functions – Example H₂

Coupling function:

$$\frac{Y_{O_2} - Y_{O_2,u}}{\nu'_{O_2} M_{O_2}} = \frac{Y_{\mathsf{B}} - Y_{\mathsf{B},u}}{\nu'_{\mathsf{B}} M_{\mathsf{B}}} \qquad \Leftrightarrow \qquad \Delta Y_{O_2} = \nu \Delta Y_{B}$$

$$\nu = \frac{\nu'_{O_2} M_{O_2}}{\nu'_{\mathsf{D}} M_{B}}$$

Example:

A closed system contains H₂ und O₂. Through combustion reactions, 1 kg H₂ is consumed. What mass of O₂ has been converted? How much air is needed?

Multiply coupling function by total mass 1.

$$\Delta Y_{O_2} = \nu \Delta Y_B \quad \longrightarrow \quad \Delta m_{O_2} = \nu \Delta m_B$$

Determination of ν

Fulltiply coupling function by total mass
$$\Delta Y_{O_2} = \nu \Delta Y_B \qquad \Longrightarrow \quad \Delta m_{O_2} = \nu \Delta m_B$$
 etermination of ν
$$\mathrm{H_2} + \frac{1}{2}\mathrm{O}_2 = \mathrm{H_2O} \qquad \Longrightarrow \quad \nu = \frac{0.5 \cdot 32\mathrm{g/mol}}{2\mathrm{g/mol}} = 8$$

 \rightarrow For burning 1kg H₂, 8kg × 76.7/23.3 = 26.3 kg of air is needed

Coupling functions – Example Gasoline

Example: How much CO₂ is formed when burning 1 liter of gasoline?

Assumptions: Density of liquid gasoline is roughly 0.75 kg/l

Gasoline can be approximated by iso-octane

- 1. Starting point: One-step global reaction I-C₈H₁₈ + 12.5 O₂ = 8 CO₂ + 9 H₂O
- 2. Coupling function between fuel and CO $\frac{dm_B}{\nu_B'M_B} = \frac{dm_{CO_2}}{\nu_{CO_2}''M_{CO_2}}$
- 3. Integrations leads to

$$\Delta m_{CO_2} = \frac{\nu_{CO_2}^{"}M_{CO_2}}{\nu_B^{'}M_B} \Delta m_B$$

- → During combustion of 1liter Gasoline, 2.3 kg CO₂ are produced
- → Under standard conditions, this is roughly 1.3 m³ CO₂

Course Overview

Part I: Fundamentals and Laminar Flames

- Introduction
- Fundamentals and mass balances of combustion systems
- Thermodynamics, flame temperature, and equilibrium
- Governing equations
- Laminar premixed flames:
 Kinematics and burning velocity
- Laminar premixed flames:
 Flame structure
- Laminar diffusion flames
- FlameMaster flame calculator

- Definitions, Equation of State, Mass Balance
- Elementary and Global Reactions
 - **Coupling Functions**
- Stoichiometry
- Mixture Fraction
- Burke-Schumann Solution

Stoichiometry

- Stoichiometric:
 - Fuel-to-oxygen ratio such that both are entirely consumed when combustion to CO₂ and H₂O is completed
- For example,
 - Global reaction describing combustion of a single component hydrocarbon fuel C_mH_n (subscript F for fuel)

$$\nu_{\mathsf{F}}'\mathsf{C}_{m}\mathsf{H}_{n} + \nu_{\mathsf{O}_{2}}'\mathsf{O}_{2} = \nu_{\mathsf{CO}_{2}}''\mathsf{CO}_{2} + \nu_{\mathsf{H}_{2}\mathsf{O}}''\mathsf{H}_{2}\mathsf{O}$$

- Stoichiometric coefficients are

$$\nu'_{\mathsf{F}} = 1, \ \nu'_{\mathsf{O}_2} = m + \frac{n}{4}, \ \nu''_{\mathsf{CO}_2} = m \ \nu''_{\mathsf{H}_2\mathsf{O}} = \frac{n}{2}$$

where $\nu_{\rm F}'=1$ may be chosen arbitrarily to unity

Stoichiometric Mass Ratio

Mole number ratio for stoichiometric condition

$$\frac{n_{O_2,u}}{n_{F,u}} \mid_{st} = \frac{\nu'_{O_2}}{\nu'_{F}}$$

or in terms of mass fractions

$$\frac{Y_{O_2,u}}{Y_{F,u}}|_{st} = \frac{\nu'_{O_2}W_{O_2}}{\nu'_{F}W_{F}} = \nu$$

where v is called the stoichiometric mass ratio

- Typical values: Methane: v = 4; N-Dodecane: v = 3.5
- Mass ratio ν
 - → Fuel and oxidizer are both consumed when combustion is completed

Stoichiometric Mass Ratio

This is consistent with coupling function, since

$$\frac{Y_{O_2} - Y_{O_2,u}}{\nu'_{O_2} W_{O_2}} = \frac{Y_{F} - Y_{F,u}}{\nu'_{F} W_{F}}$$

leads to

$$\nu Y_F - Y_{\mathcal{O}_2} = \nu Y_{\mathsf{F},u} - Y_{\mathcal{O}_2,u}$$

Complete consumption of fuel and oxygen

$$Y_{\mathsf{F}} = Y_{\mathsf{O}_2} = 0$$

leads to

$$\frac{Y_{O_2,u}}{Y_{F,u}}|_{st} = \frac{\nu'_{O_2}W_{O_2}}{\nu'_{F}W_{F}} = \nu$$

*Extra: Minimum oxygen requirement

- Minimum oxygen requirement (molar): o_{min,m}
 - → Fuel/air mole number ratio before combustion at stoichiometric conditions
 - → Ratio of the stoichiometric coefficients

$$o_{\min,m} = \frac{n_{O_2,u}}{n_{B,u}}\Big|_{st} = \frac{X_{O_2,u}}{X_{B,u}}\Big|_{st} = \frac{\nu'_{O_2}}{\nu'_{B}}$$

Minumum oxygen requirement (mass): o_{min}

$$o_{\min} = \frac{m_{\mathrm{O}_2, u}}{m_{\mathrm{B}, u}} \bigg|_{st} = \frac{X_{\mathrm{O}_2, u}}{X_{\mathrm{B}, u}} \bigg|_{st} \cdot \frac{M_{\mathrm{O}_2}}{M_{\mathrm{B}}} = \frac{\nu'_{\mathrm{O}_2} M_{\mathrm{O}_2}}{\nu'_{\mathrm{B}} M_{\mathrm{B}}} \equiv \nu$$

*Extra: Minimum air requirement

- Minimum air requirement:
 - Mass of air per mass of fuel in complete combustion

$$\ell_{\mathsf{min}}$$

Relation between minimum oxygen and minimum air requirement:

$$\ell_{\min} = \frac{o_{\min}}{Y_{\text{O}_2,\text{Luft}}}, \ \ \ell_{\min,m} = \frac{o_{\min,m}}{X_{\text{O}_2,\text{Luft}}} \ \Rightarrow \ \ell_{\min} = \frac{o_{\min}}{0,232}, \ \ \ell_{\min,m} = \frac{o_{\min,m}}{0,21}$$

with:

- Mass fraction $Y_{O2,air} = 0.232$
- Mole fraction $X_{O2.air} = 0.21$

The equivalence ratio

- The equivalence ratio is the ratio of fuel to oxidizer ratio in the unburnt to that
 of a stoichiometric mixture
- For combustion with oxygen

$$\phi = \frac{Y_{F,u}/Y_{O_2,u}}{(Y_{F,u}/Y_{O_2,u})_{st}} = \frac{\nu Y_{F,u}}{Y_{O_2,u}}$$

- Can be written also in terms of
 - Fuel to air ratio
 - Mole fractions
- Stoichiometric mass ratio ν obtained from global reaction

Course Overview

Part I: Fundamentals and Laminar Flames

- Introduction
- Fundamentals and mass balances of combustion systems
- Thermodynamics, flame temperature, and equilibrium
- Governing equations
- Laminar premixed flames:
 Kinematics and burning velocity
- Laminar premixed flames:
 Flame structure
- Laminar diffusion flames
- FlameMaster flame calculator

- Definitions, equation of state, mass balance
- Elementary and Global Reactions
- Coupling Functions
- Stoichiometry
- Mixture Fraction
- Burke-Schumann Solution

- Equivalence ratio important parameter in combustion
- Mixture fraction quantifies local fuel-air ratio in non-premixed combustion
- Consider two separate feed streams of
 - Fuel
 - Oxidizer (air, pure oxygen)
- Streams mix and burn
- Fuel stream
 - Often consists of one component only
 - In general does not contain oxidizer
- Oxidizer stream
 - Generally does not contain fuel

In the following:

Fuel stream: Subscript 1

Oxidizer stream: Subscript 2

Definition mixture fraction

Mass fraction of the fuel stream in the mixture:

$$Z = \frac{m_1}{m_1 + m_2}$$

where m_1 and m_2 are the local mass originating from the individual streams

Mixture fraction always between zero and one

• Fuel stream: Z = 1

Oxidizer stream: Z = 0

Note: Index B means fuel

- Mass fraction of fuel in the fuel stream:
- Mass fraction of oxygen in the oxidizer stream: Y_{O_2}
- > Two-stream system before combustion: Divide $m_{B,u}=Y_{\mathrm{B},1}m_1$ for stream 1 by total mass
 - → Mixture fraction linear with fuel mass

$$Y_{B,u} = Y_{B,1} Z$$

 $Y_{O_2,u} = Y_{O_2,2} (1 - Z)$

ightharpoonup Insert into coupling function: $\nu Y_{\mathsf{B}} - Y_{\mathsf{O}_2} = \nu Y_{\mathsf{B},u} - Y_{\mathsf{O}_2,u}$

$$Z = \frac{\nu Y_{\text{B}} - Y_{\text{O}_2} + Y_{\text{O}_2,2}}{\nu Y_{\text{B},1} + Y_{\text{O}_2,2}}$$

Mixture fraction:
$$Z = \frac{\nu Y_{\text{B}} - Y_{\text{O}_2} + Y_{\text{O}_2,2}}{\nu Y_{\text{B},1} + Y_{\text{O}_2,2}}$$

- For stoichiometric composition:
 - The first two terms in the numerator have to cancel out
- > Stoichiometric mixture fraction:

$$Z_{st} = \frac{Y_{O_2,2}}{\nu Y_{F,1} + Y_{O_2,2}}$$

$$Z_{st} = [1 + \nu \frac{Y_{B,1}}{Y_{O_2,2}}]^{-1} = [1 + \frac{\nu'_{O_2} M_{O_2} Y_{B,1}}{\nu'_{B} M_{B} Y_{O_2,2}}]^{-1}$$

Mixture fraction definition by Bilger

• Consider elements C, H, O in combustion of a C_mH_n fuel with oxygen or air

$$v_F C_m H_n + v_{O2} O_2 = Products$$

Changes in elements

$$\frac{dn_C}{m\nu_F} = \frac{dn_H}{n\nu_F} = \frac{dn_O}{2\nu_{O2}}$$

or in terms of element mass fraction

$$\frac{dZ_C}{\nu_F m W_C} = \frac{dZ_H}{\nu_F n W_H} = \frac{dZ_O}{\nu_{O2} W_{O2}}$$

Coupling function:

$$\beta = \frac{Z_C}{\nu_F' m W_C} + \frac{Z_H}{\nu_F' n W_H} - 2 \frac{Z_O}{\nu_{O_2}' W_{O_2}}$$

 $\rightarrow \beta$ should not change by chemical reactions

Mixture fraction definition by Bilger

• Normalizing this such that Z = 1 in the fuel stream and Z = 0 in the oxidizer stream, one obtains Bilger's definition

$$Z = \frac{\beta - \beta_2}{\beta_1 - \beta_2}$$

or

$$Z = \frac{Z_{\rm C}/(mW_{\rm C}) + Z_{\rm H}/(nW_{\rm H}) + 2(Y_{\rm O_2,u} - Z_{\rm O})/(\nu'_{\rm O_2}W_{\rm O_2})}{Z_{\rm C,1}/(nW_{\rm C}) + Z_{\rm H,1}/(mW_{\rm H}) + 2Y_{\rm O_2,u}/(\nu'_{\rm O_2}W_{\rm O_2})}$$

 Because elements are conserved during combustion, element mass fractions calculated from

$$Z_j = \frac{m_j}{m} = \sum_{i=1}^k \frac{a_{ij}W_j}{W_i} Y_i = \frac{W_j}{W} \sum_{i=1}^k a_{ij}X_i, \quad j = 1, 2, \dots, k_e,$$

do not change

Relation of mixture fraction with equivalence ratio

Fuel-air equivalence ratio

$$\phi = \frac{Y_{F,u}/Y_{O_2,u}}{(Y_{F,u}/Y_{O_2,u})_{st}} = \frac{\nu Y_{F,u}}{Y_{O_2,u}}$$

Introducing $Y_{F,u} = Y_{F,1}Z$ and $Y_{O_2,u} = Y_{O_2,2}(1-Z)$

into
$$\nu Y_F - Y_{O_2} = \nu Y_{F,u} - Y_{O_2,u}$$

leads with
$$\frac{\nu Y_{\text{F},1}}{Y_{\text{O}_2,2}} = \frac{1 - Z_{st}}{Z_{st}}$$

to a unique relation between the equivalence ratio and the mixture fraction

$$\phi = \frac{Z}{1 - Z} \frac{(1 - Z_{st})}{Z_{st}}$$

The equivalence ratio

- This relation is also valid for multicomponent fuels (see exercise below)
- It illustrates that the mixture fraction is simply another expression for the local equivalence ratio

Exercise:

- The element mass fractions $Z_{H,F}, Z_{C,F}$ of a mixture of hydrocarbons and its mean molecular weight W are assumed to be known
- Determine its stoichiometric mixture fraction in air
- Hint: $Z_{H,F} = n W_H/W$, $Z_{C,F} = m W_C/W$

Course Overview

Part I: Fundamentals and Laminar Flames

- Introduction
- Fundamentals and mass balances of combustion systems
- Thermodynamics, flame temperature, and equilibrium
- Governing equations
- Laminar premixed flames:
 Kinematics and burning velocity
- Laminar premixed flames:
 Flame structure
- Laminar diffusion flames
- FlameMaster flame calculator

- Definitions, equation of state, mass balance
- Elementary and Global Reactions
- Coupling Functions
- Stoichiometry
- Mixture Fraction
- Burke-Schumann Solution

Burke-Schumann Solution

Diffusion Flame Structure at Complete Conversion

Profiles of Y_F and Y_{O_2} in the unburnt gas

Stoichiometric composition

$$Z_{st} = \frac{Y_{O_2,2}}{\nu Y_{F,1} + Y_{O_2,2}}$$

- If $Z < Z_{st}$, fuel is deficient
 - Mixture is fuel lean
 - Combustion terminates when all fuel is consumed: $Y_{F,b} = 0$ (burnt gas, subscript b)
- Remaining oxygen mass fraction in the burnt gas is calculated from

$$Z = \frac{\nu Y_{F} - Y_{O_{2}} + Y_{O_{2},2}}{\nu Y_{F,1} + Y_{O_{2},2}}$$

as

$$Y_{O_2,b} = Y_{O_2,2}(1 - \frac{Z}{Z_{st}}), \ Z \le Z_{st}$$

- If $Z > Z_{st}$ oxygen is deficient
 - → Mixture is fuel rich
- Combustion then terminates when all the oxygen is consumed: $Y_{O_2,b} = 0$

leading to

$$Y_{\mathsf{F},b} = Y_{\mathsf{F},1} \frac{Z - Z_{st}}{1 - Z_{st}}, \ Z \ge Z_{st}$$

• For hydrocarbon fuel C_mH_n , the element mass fractions in the unburnt mixture are

$$Z_{\rm C} = m \frac{W_{\rm C}}{W_{\rm F}} Y_{{\rm F},u}, \ Z_{\rm H} = n \frac{W_{\rm H}}{W_{\rm F}} Y_{{\rm F},u}, \ Z_{\rm O} = Y_{{\rm O}_2,u}$$

For the burnt gas, these are for the hydrocarbon fuel considered above

$$Z_{\mathsf{C}} = m \frac{W_{\mathsf{C}}}{W_{\mathsf{F}}} Y_{\mathsf{F},b} + \frac{W_{\mathsf{C}}}{W_{\mathsf{CO}_2}} Y_{\mathsf{CO}_2,b}$$

$$Z_{\mathsf{H}} = n \frac{W_{\mathsf{H}}}{W_{\mathsf{F}}} Y_{\mathsf{F},b} + 2 \frac{W_{\mathsf{H}}}{W_{\mathsf{H}_2\mathsf{O}}} Y_{\mathsf{H}_2\mathsf{O},b}$$

$$Z_{\mathsf{O}} = 2 \frac{W_{\mathsf{O}}}{W_{\mathsf{O}_2}} Y_{\mathsf{O}_2,b} + 2 \frac{W_{\mathsf{O}}}{W_{\mathsf{CO}_2}} Y_{\mathsf{CO}_2,b} + \frac{W_{\mathsf{O}}}{W_{\mathsf{H}_2\mathsf{O}}} Y_{\mathsf{H}_2\mathsf{O},b}$$

• Elements are conserved, hence $Z_{i,u} = Z_{i,b}$

• This leads with $Y_{\mathsf{F},u} = Y_{\mathsf{F},1}Z$ and $Y_{\mathsf{F},b} = 0$ for $Z \leq Z_{st}$

and
$$Z = \frac{\nu Y_{\text{F}} - Y_{\text{O}_2} + Y_{\text{O}_2,2}}{\nu Y_{\text{F},1} + Y_{\text{O}_2,2}}$$
 for $Z \ge Z_{st}$

to piecewise linear relations of the product mass fractions in terms of Z:

$$Z \leq Z_{st}$$
: $Y_{\text{CO}_2,b} = Y_{\text{CO}_2,st} \frac{Z}{Z_{st}}$ $Y_{\text{H}_2\text{O},b} = Y_{\text{H}_2\text{O},st} \frac{Z}{Z_{st}}$

$$Z \ge Z_{st}$$
: $Y_{\text{CO}_2,b} = Y_{\text{CO}_2,st} \frac{1-Z}{1-Z_{st}}$, $Y_{\text{H}_2\text{O},b} = Y_{\text{H}_2\text{O},st} \frac{1-Z}{1-Z_{st}}$

where

$$Y_{\text{CO}_2,st} = Y_{\text{F},1} Z_{st} \frac{mW_{\text{CO}_2}}{W_{\text{F}}}$$

Profiles in the burning mixture

Burke-Schumann Solution:

Summary

Part I: Fundamentals and Laminar Flames

- Introduction
- Fundamentals and mass balances of combustion systems
- Thermodynamics, flame temperature, and equilibrium
- Governing equations
- Laminar premixed flames:
 Kinematics and burning velocity
- Laminar premixed flames:
 Flame structure
- Laminar diffusion flames
- FlameMaster flame calculator

- Definitions, Equation of State, Mass Balance
- Elementary and Global Reactions
- Coupling Functions
- Stoichiometry
- Mixture Fraction
- Burke-Schumann Solution