Chapitre

Combinatoire et dénombrement

5. Cardinalité

5.1. Introduction

Théorème 1.1 : Équipotence

2 ensembles E et F sont dits équipotents (écrit $E \sim F$) s'il existe une bijection φ de $E \to F$

Théorème 1.2 : Propriétés de la relation équipotence

Elle est réflexive : $\forall E, E \sim E. \ \varphi = Id_E$

Elle est symétrique : $E \sim F \Rightarrow F \sim E$ car $\varphi^{-1}F \rightarrow E$ est bijective

Emme est transitive : $\forall E, F, G$, si $E \sim F$ et $F \sim G$, alors $E \sim G$ car si $\varphi : E \to F$ et $\psi : F \to G$ bijectives alors $\psi \circ \varphi : E \to G$ est bijective car composée de bijections.

Conséquences

E et F ont le même cardinal $\iff E \sim F$

5. Ensembles finis

5.2. Notations

Pour $n \in \mathbb{N}$, on définit n! par 0! = 1, 1! = 1, $(n + 1)! = n! \times (n + 1)$

5.2. Définition

Théorème 2.1: Définition

E est fini si $E=\varnothing$ ou s'il existe $n\in\mathbb{N}$, tel que $E\sim \llbracket 1;n
rbracket$

5.2. Popriétés et propositions

Lemmes fondamentaux

Lemme 2.1

Il existe une injection de $[\![1;n]\!] \to [\![n,m]\!] \iff n \le m$

Lemme 2.2

Il existe une bijection de $[1; m] \rightarrow [1, n] \iff n = m$

Si $E \neq \emptyset$, alors les Lemme 5.2.3 et 5.2.3 montrent l'unicité de l'entier n tel que $E \sim [1; n]$. On écrit alors $\operatorname{card}(E) = |E| = n$ et si $E = \emptyset, n = 0$

Rmq: Si E et F sont de cardinal finis, alors $E \sim F \Rightarrow \operatorname{card}(E) = \operatorname{card}(F)$

cardinalité et surjectivité

Soient E et F 2 ensembles finis (c'est faux avec des ensembles infinis). Soit $f:E\to F$ une application.

- Si f est injective, $Card(E) \leq card(F)$
- Si f est surjective, $card(E) \ge card(F)$
- Si $\operatorname{card}(E) = \operatorname{card}(F)$, f est bijective \iff injective \iff surjective

Autres propositions

Soit E un ensemble fini et $A \subset E$, alors

- · A est fini
- $\cdot \operatorname{card}(A) \leq \operatorname{card}(E)$
- $A = E \iff \operatorname{card}(A) = \operatorname{card}(E)$

Soit E un ensemble fini et $A_1 \to A_k$ le sous-ensemble de E tels que $A_1 \cap A_j = \varnothing$ si $i \neq j$. Alors $\cup_{i=1}^k = \sum_{i=1}^k \operatorname{card}(A_i)$

Soit
$$A, B \subset E : \operatorname{card}(A \cup B) = \operatorname{card}(A) + \operatorname{card}(B) - \operatorname{card}(A \cap B)$$

$$card(A \setminus B) = card(A) - card(A \cap B)$$

Lemme des bergers

Lemme 2.3: Lemme des bergers

Principe : Si un ensemble E possède une partition en p sousensembles contenant chacun r éléments, alors E contient $p \times r$ éléments. Soit E un ensemble fini et F un ensemble et soit $f:E \to F$ une application.

Compter les éléments de E revient à compter les éléments de l'image réciproque de f

$$\operatorname{card}(E) = \sum_{y \in F} = \operatorname{card}(f^{-1}(\{y\}))$$

En effet, f est une application donc $\forall y\neq y'\in F,\, f^{-1}(\{y\})\cap f^{-1}(\{y'\})=\varnothing$

 $\forall x \in E, f(x) \text{ existe donc } x \in f^{-1}(\{f(x)\}). \text{ D'où } \cup_{y \in F} f^{-1}(\{y\}) = E$

D'où $\operatorname{card}(E) = \sum \operatorname{card}(f^{-1}(\{y\}))$ car $f^{-1}(\{y\}) \subset E$ donc de cardinal fini et comme E est fini, $\{y \in F, \operatorname{card}(f^{-1}(\{y\})) \neq 0\}$ est également fini

Principe des tiroirs

Lemme 2.4: Principe des tiroirs

Soit E, F 2 ensembles finis tel que $card(E) \geq card(F)$ alors il n'existe pas d'affectation injective de $E \to F$, i.e soit $f: E \to F$, $\exists y \in F$, tel que $f^{-1}(\{y\})$ contient 2 éléments.

5. Analyse combinatoire

Théorème 3.1:

Le nombre d'applications de X vers Y, de cardinaux respectifs $n,p\geq 1$ est p^n

5.3. Fonction caractéristique

Théorème 3.2: Fonction caractéristique

Soit X un ensemble et A une partie de X. Une fonction caractéristique de A est l'application χ_A de X vers $\{0,1\}$, prenant la valeur 1 sur A et 0 sur $X \setminus A$.

La fonction prend la valeur 1 si $x \in A$ et 0 si $x \notin A$

Théorème 3.3:

L'application $A \to \chi_A$ est une bijection de l'ensemble des parties de X vers (l'ensemble des applications de X vers $\{0,1\}$.)

Théorème 3.4:

L'ensemble des parties de X est fini de cardinal 2^n

Preuve 3.1

D'après le théorème précédant, comme l'application $A \to \chi_A$ est bijective, card(P(x) = card(l'ensemble des applications de <math>X vers $\{0,1\}$.). En appliquant le théorème 5.3, en prenant $Y = \{0.1\}$ et p=2, on obtient 2^n .

5.3. Arrangement

Un arrangement parmis n objets est une suite de p objets distincts pris parmi les n objets donnés. On note le nombre d'arangements A_n^p . Trouver A revient à trouver le nombre d'injections de [1,p] dans l'ensemble des n objets.

π

Théorème 3.5 :

$$A_n^p = n(n-1)\dots(n-p+1) = \frac{n!}{(n-p)!}$$

Ū

Preuve 3.2

Prenons ici la première égalité comme définition de A_n^p . Pour tout entier p, notons P(p) la propriété suivante : pour tout ensemble X de cardinal p et tout ensemble fini Y de cardinal $n \geq p$ le cardinal de l'ensemble des injections de $X \to Y$, noté I(X,Y) est A_p^p .

P(0) est vraie : \forall ensembles Z, il y a une seule application de l'ensemble vide dans Z, et elle est injective.

Soit maintenant $p \ge 1$ un entier tel que P(p-1) est vraie. Nous devons montrer qu'alors le cardinal de I(X,Y) est A_n^p .

Fixons un élément a de X, et soit $X' = X \setminus \{a\}$, qui est de cardinal p-1.

À toute injection f de I(X,Y), on peut associer bijectivement le couple (g,b) où g est la restriction de f à X' et b est f(a).

On a donc : $card(I(X,Y)) = card(I(X',Y)) \times (n-p+1) = A_n^{p-1}(n-p+1) = A_n^p$

Note : card(f(a)) correspond à la dernière possibilité, une fois que celles de X' sont prises. C'est pourquoi son cardinal est (n-p+1)

Théorème 3.6:

Le nombre de bijection d'un ensemble X vers Y de même cardinal est $A_n^n=n!$.

5.3. Combinaisons

On appelle combinaison de n éléments de X pris p à p toute partie de X à p éléments. On le note C_n^p . L'ordre n'a pas d'importance.

Théorème 3.7:

Le nombre de parties à p éléments de X est $C_n^p = \frac{n!}{p!(n-p)!} = \frac{A_p^p}{p!}.$

U

Preuve 3.3

Si $f:[1,p] \to X$ est une injection, f([1,p]) est une partie à p éléments de X, d'où une application $\psi:f \to f([1,p])$ de I([1,p],X) dans $P_p(X)$.

Soit B une partie à p éléments de X.

 $\psi^{-1}(\{B\})$ est formée des injections $f:[1,p]\to X$ ayant pour image B, i.e. des bijections de [1,p] sur B. D'après le théorème précédant, la réciproque est donc de cardinal p!.

On a alors : $A_n^p=card(I([1,p],X))=\sum_{B\in P(X)}p!card(P(X))$ et il vient $card(P(X))=\frac{A_n^p}{p!}$.

Propriétés

- $C_n^0 = 1$
- $\cdot C_n^n = 0$
- $\cdot C_n^1 = n$
- Propriété de symétrie : $C_n^{n-p}=C_n^p$
- Nombre de parties d'un ensemble : $\sum_{k=0}^{n} C_n^p = 2^n$

5.3. Autres propriétés

- Cardinal des parties d'un ensemble à n éléments : 2^n
- * Nombre de fonction d'un ensemble à k éléments vers un ensemble à n éléments : n^k
- Nombre de bijections d'un ensemble à n éléments vers un ensemble à n éléments : n!. Il s'agit du nombre n-uplet de l'un des ensemble, où l'ordre des éléments comptent.

5. En résumé

5.4.1 irage

MATHÉMATIQUES & Combinatoire et dénombrement, Rangement

5.4. Rangement

- π Théorème 4.1 : Formules
 - $A_n^p = \frac{n!}{(n-p)!}$
 - $C_n^p = \frac{n!}{p!(n-p)!}$
 - $K_n^p = \frac{(n+p-1)!}{p!(n-1)!}$