LP 8 – Phénomènes de transport

Bilan d'une variable extensive : position du problème

Lois phénoménologiques type Fourier : ordres de grandeur

Conductivités thermiques

Matériau	$\lambda \ (W.m^{-1}.K^{-1})$
Eau	0.6
Air	24×10^{-3}
Cuivre	389
Bois et contreplaqué	$\times 10^{-1}$
Béton	1
Verre	1
Acier	$\times 10^{1}$
Diamant	10^{3}

Conductivités électriques

Matériau	σ (S/m)
Métaux	> 104
Semi-conducteurs	$10^{-6} < \sigma < 10^4$
Isolants	< 10 ⁻⁶

Viscosités dynamiques

Corps	Air	Eau	Huile d'olive	Glycérine
η (Pa.s)	$\sim 10^{-5}$	$\sim 10^{-3}$	~ 0.1	~ 1.5

Coefficients de diffusion : ordres de grandeur

Milieu	$a (m^2/s)$
Cuivre	10^{-4}
Acier	10^{-5}
Béton	5×10^{-7}
Eau	10^{-7}
Air	2×10^{-5}

Type de diffusion	$D (m^2/s)$
Molécules dans un gaz	$10^{-6} \text{ à } 10^{-4}$
Molécules dans un liquide	$10^{-12} \text{ à } 10^{-8}$
Atomes dans un solide	10^{-30} à 10^{-16}