

THE SOCIALIST REPUBLIC OF ROMANIA

[coat of arms] ROMANIA

NATIONAL COUNCIL FOR SCIENCE AND TECHNOLOGY

STATE PATENT AND TRADEMARK OFFICE

]	PATEN'	T (19)	RO	(11)	92436
(12) Dl	ESCRIP	TION	OF	THI	${f E}$
INVE	NTION				

`	tion No. 118,467 ate: April 19, 1985	(51) Int. Cl. ⁴ : A 61 K 9/20
(61) Continu	ation patent	
application to	o patent no.:	·
(45) Publicat	ion date: September	
30, 1987	-	
(86) Internat	ional application	(30) Priority
(PCT)		(32) Date:
No.:	Date:	(33) Country:
(87) Internati	ional publication:	(31) Certificate no.:
No.:	Date:	1
(89)		

(71) Applicant: (72) Inventors: Ioan Puşcaş, M.D., Şimleul Silvaniei, district Maramureş; Carmen Puşcaş, M.D., Şimleul Silvaniei, district Maramureş; Gheorghe Buzaş, M.D., Cluj-Napoca; Lucian Sturzu, engineer, Şimleul Silvaniei, district Maramureş.

(73) Assignee: Întreprinderea de Medicamente, București

Synergistic pharmaceutical composition for the treatment of gastritis, gastroduodenitis and gastric and duodenal ulcers

(57) Abstract

Synergistic pharmaceutical composition for the treatment of gastritis, gastroduodenitis, and gastric and duodenal ulcers according to the invention comprising in addition to a carbonic anhydrase inhibitor, a *beta*-adrenergic blocker selected from among propranolol, atenolol, pindolol, timolol, oxprenolol, acebutolol or metoprolol having a weight ratio of carbonic anhydrase inhibitor to *beta*-blocker of 1.37 to 231.

Group: 4

oslositility of the contract o

(19) RO (11)

The present invention relates to a synergistic pharmaceutical composition for the treatment of gastritis, gastroduodenitis, and gastric and duodenal ulcers used to reduce gastric acid secretion.

Pharmaceutical compositions used for the treatment of gastric and duodenal ulcers comprising a mixture of acetazolamide and sodium or potassium citrate, sodium and/or potassium bicarbonate, magnesium oxide, aluminum hydroxide, or a mixture of ethoxzolamide and magnesium salts of amino acids selected from among magnesium aspartate, glycinate or glutamate, sodium citrate and potassium bicarbonate, or a mixture of ethoxzolamide and potassium bicarbonate, sodium citrate, magnesium oxide and aluminum hydroxide, are known.

The disadvantage of these compositions is that the therapeutic effect is seen only after a 3-5 days latent period, and that side effects such as somnolence, fatigue or paresthesia of the extremities may appear.

The object of the present invention is to obtain a synergistic pharmaceutical composition for the treatment of gastritis, gastroduodenitis, and gastric and duodenal ulcers, through vasomotor impulse regulation of gastric secretions.

The means for attaining the object of the invention consists in the selection of ingredients and the mixture ratio thereof.

Pharmaceutical composition according to the invention comprising a carbonic anhydrase inhibitor and a *beta*-adrenergic blocker selected from among propranolol, atenolol, pindolol, timolol, oxprenolol, acebutolol or metoprolol having a weight ratio of carbonic anhydrase inhibitor to *beta*-blocker of 1.37 to 231.

The following are 28 examples of embodiments of the invention.

Example 1

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.9 acetazolamide, 0.3 sodium bicarbonate, 0.7 potassium bicarbonate, 2.25 magnesium oxide, 0.5 aluminum hydroxide, 0.3 sodium citrate, 0.15 propranolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 6.

Example 2

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 1.62 acetazolamide, 0.54 sodium bicarbonate, 1.26 potassium bicarbonate, 4.05 magnesium oxide, 0.9 aluminum hydroxide, 0.54 sodium citrate, 0.02 propranolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 81.

Example 3

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.37 ethoxzolamide, 1.15 potassium bicarbonate, 2.5 magnesium oxide, 0.625 aluminum hydroxide, 0.5 sodium citrate, 0.17 propranolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 2.18.

Example 4

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.666 ethoxzolamide, 2.07 potassium bicarbonate, 4.5 magnesium oxide, 1.125 aluminum hydroxide, 0.9 sodium citrate, 0.023 propranolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 29.

Example 5

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.9 acetazolamide, 0.3 sodium bicarbonate, 0.7 potassium bicarbonate, 2.25 magnesium oxide, 0.5 aluminum hydroxide, 0.3 sodium citrate, 0.11 atenolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 8.2.

Example 6

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 1.62 acetazolamide, 0.54 sodium bicarbonate, 1.26 potassium bicarbonate, 4.05 magnesium oxide, 0.9 aluminum hydroxide, 0.54 sodium citrate, 0.023 atenolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 70.4.

Example 7

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.37 ethoxzolamide, 1.15 potassium bicarbonate, 2.5 magnesium oxide, 0.625 aluminum hydroxide, 0.5 sodium citrate, 0.125 atenolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 2.9.

Example 9 [sic] [8]

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.666 ethoxzolamide, 2.07 potassium bicarbonate, 4.5 magnesium oxide, 1.125 aluminum hydroxide, 0.9 sodium citrate, 0.017 atenolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 39.2.

Example 9

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.9 acetazolamide, 0.3 sodium bicarbonate, 0.7 potassium bicarbonate, 2.25 magnesium oxide, 0.5 aluminum hydroxide, 0.3 sodium citrate, 0.03 pindolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 30.

Example 10

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 1.26 acetazolamide, 0.54 sodium bicarbonate, 1.26 potassium bicarbonate, 4.05 magnesium oxide, 0.9 aluminum hydroxide, 0.54 sodium citrate, 0.01 pindolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 162.

Example 11

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.37 ethoxzolamide, 1.15 potassium bicarbonate, 2.5 magnesium oxide, 0.625 aluminum hydroxide, 0.5 sodium citrate, 0.028 pindolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 13.2.

Example 12

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.666 ethoxzolamide, 2.07 potassium bicarbonate, 4.5 magnesium oxide, 1.125 aluminum hydroxide, 0.9 sodium citrate, 0.007 pindolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 95.1.

Example 13

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.9 acetazolamide, 0.3 sodium bicarbonate, 0.7 potassium bicarbonate, 2.25 magnesium oxide, 0.5 aluminum hydroxide, 0.3 sodium citrate, 0.023 timolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 39.1.

Example 14

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 1.62 acetazolamide, 0.54 sodium bicarbonate, 1.26 potassium bicarbonate, 4.05 magnesium oxide, 0.9 aluminum hydroxide, 0.54 sodium citrate, 0.007 timolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 231.

Example 15

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.37 ethoxzolamide, 1.15 potassium bicarbonate, 2.5 magnesium oxide, 0.625 aluminum hydroxide, 0.5 sodium citrate, 0.017 timolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 21.8.

Example 16

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.666 ethoxzolamide, 2.07 potassium bicarbonate, 4.5 magnesium oxide, 1.125 aluminum hydroxide, 0.9 sodium citrate, 0.003 timolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 222.

Example 17

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.9 acetazolamide, 0.3 sodium bicarbonate, 0.7 potassium bicarbonate, 2.25 magnesium oxide, 0.5 aluminum hydroxide, 0.3 sodium citrate, 0.057 oxprenolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 15.8.

Example 18

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 1.26 acetazolamide, 0.54 sodium bicarbonate, 1.26 potassium bicarbonate, 4.01 magnesium oxide, 0.9 aluminum hydroxide, 0.54 sodium citrate, 0.015 oxprenolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 108.

Example 19

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.37 ethoxzolamide, 1.15 potassium bicarbonate, 2.5 magnesium oxide, 0.625 aluminum hydroxide, 0.5 sodium citrate, 0.063 oxprenolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 5.8.

Example 20

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.666 ethoxzolamide, 2.07 potassium bicarbonate, 4.5 magnesium oxide, 1.125 aluminum hydroxide, 0.9 sodium citrate, 0.017 oxprenolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 39.2.

Example 21

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.9 acetazolamide, 0.3 sodium bicarbonate, 0.7 potassium bicarbonate, 2.25 magnesium oxide, 0.5 aluminum hydroxide, 0.3 sodium citrate, 0.32 acebutolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 2.8.

Example 22

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 1.62 acetazolamide, 0.54 sodium bicarbonate, 1.26 potassium bicarbonate, 4.05 magnesium oxide, 0.9 aluminum hydroxide, 0.54 sodium citrate, 0.18 acebutolol. The molar ratio of sulfonamide inhibitor to beta-adrenergic blocker is 9.

Example 23

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.37 ethoxzolamide, 1.15 potassium bicarbonate, 2.5 magnesium oxide, 0.625 aluminum hydroxide, 0.5 sodium citrate, 0.27 acebutolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 1.37.

Example 24

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.666 ethoxzolamide, 2.07 potassium bicarbonate, 4.5 magnesium oxide, 1.125 aluminum hydroxide, 0.9 sodium citrate, 0.18 acebutolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 3.7.

Example 25

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.9 acetazolamide, 0.3 sodium bicarbonate, 0.7 potassium bicarbonate, 2.25 magnesium oxide, 0.5 aluminum hydroxide, 0.3 sodium citrate, 0.12 metoprolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 7.5.

Example 26

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 1.62 acetazolamide, 0.54 sodium bicarbonate, 1.26 potassium bicarbonate, 4.05 magnesium oxide, 0.9 aluminum hydroxide, 0.54 sodium citrate, 0.34 metoprolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 47.6

Example 27

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.37 ethoxzolamide, 1.15 potassium bicarbonate, 2.5 magnesium oxide, 0.625 aluminum hydroxide, 0.5 sodium citrate, 0.13 metoprolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 2.8.

Example 28

To obtain the pharmaceutical product, mix the following ingredients (amounts are expressed in mmol): 0.666 ethoxzolamide, 2.07 potassium bicarbonate, 4.5 magnesium oxide, 1.125 aluminum hydroxide, 0.9 sodium citrate, 0.03 metoprolol. The molar ratio of sulfonamide inhibitor to *beta*-adrenergic blocker is 22.2.

Carbonic anhydrase represents an essential phase in determining the rate of the gastric acid secretion process. Inhibiting gastric secretion through various inhibitors leads to reduced hydrochloric acid production, thus creating the necessary conditions for the healing of the gastroduodenal mucosa damaged by hydrochloric acid and peptin.

The gastric acid secretion process occurs in the gastric glands in the fundic area of the gastric mucosa and is controlled by a combination of neural, hormonal and food stimuli.

Hydrochloric acid is produced in the parietal cells the main stimuli being gastrin, acetylcholine and histamine. For these secretagogues, specific receptors at the level of parietal cells have been posited and identified.

It is assumed that adrenergic stimulation (adrenaline, noreadrenaline, isoprenaline, etc.) occurs at the level of specific receptors grafted on parietal cells, however, the existence and identification of such receptors has not been experimentally demonstrated.

Currently, anatomically and pharmacologically defined adrenergic receptors are divided into *alfa* and *beta*-receptors; when the response to a series of agonists consists of the succession adrenaline – noreadrenaline – isoproterenol (isoprenaline) – *alfa* receptors, and (isoproterenol) – noreadrenaline – adrenaline – *beta*-receptors, respectively.

In vitro studies of the effect of adrenergic agonists on the activity of purified, human red blood cell and gastric mucosa carbonic anhydrase have shown, first, a strong activating effect of isoprenaline on enzyme activity, and second, a *beta*-adrenergic receptor behavior (table 1).

The effect of adrenergic agonists on the activity of purified, red blood cell [RBC], and human gastric mucosa (GM) carbonic anhydrase [CA]

Concentration (M)]	Isoprenaline		Orciprenaline	Adrenaline	Noradrenaline
	Pure CA	RBC	MG	Pure CA	Pure CA	Pure CA
0	2040	2572	1.96	2088	2060	2094
10-8	2040	2680	1.96	2047	2040	2136
10 ⁻⁷	2125	2662	1.95	2033	2081	2122
10-6	2168	2736	1.96	2047	2109	2122
10 ⁻⁵	2416	2699	1.96	2518	2225	2122
10-4	3076	3051	2.46	3295	2181	2136
2 · 10-4			2.81		2255	
2 · 10-4					2428	1
4 · 10-4					2562	
5 · 10-4			3.33		2528	
1 · 10 ⁻³ 4083		4558	4.12			2164
2 · 10 ⁻³ 5425	İ	7358	5.73			

The study of the effect of some *beta*-adrenergic blockers such as propranolol, timolol, oxprenolol, pindolol, atenolol, metoprolol or practolol indicated a strong inhibiting action on the activity of purified, human red blood cell and gastric mucosa carbonic anhydrase (table 2).

The effect of some beta-adrenergic blockers on the activity of pure [sic], red blood cell [RBC], and human gastric mucosa (GM) carbonic anhydrase (CA)

	Propr	Propranolol		Pindolol	lol	Atenol	lolol		Timolol	lol			
Concentration	ć		ć					MC.	1		Propranolol	Acebutolol	Metoprolol
E	CA	RBC	Σ 5	RBC	В	Pure	RBC	[SIC] [GM]	Pure	Wb	Pure CA	Practelol [sic]	Pure CA
												Pure CA	
.01	2047	3328	2.07	3624	1.91	2077	3492	1.04	2048	1.06	1966	1993	1959
	2047			3672	1.53	2072	3378		2034	1.05	2047	1999	2000
10-′	2075	3328	2.05	3648	1.92	2106	3492		2000	1.05	1889	1980	2041
10*	2075	3284	2.07	3672	1.52	2034	3539		2006	1.04	1966	1927	2055
10-3	2006	31.75	2.04	2061	1.37	2135	3635		2020	1.03	1915	1877	2055
10-	1716	2777	1.91			1979	3635	1.05	1809	86.0	1779	1720	2027
$2 \cdot 10^{-4}$	1636	2221	1.28						1530	96.0			
3 · 104	1338	1126	1.09						1299	0.93			
$3 \cdot 4 \cdot 10^4$	1211	1079	1.06			1759		0.99			1300		
5 · 104						1618	2064	98.0	1023	0.80	1100	1186	1408
10-3						*							
4 · 10 ⁻³												952	
10^{-2}													

In vivo administration of some beta-adrenergic blockers to patients with gastroduodenal disorders leads to slightly decreased gastric acid secretion parameters and carbonic anhydrase activity (table 3).

Table 3
The effect of some beta-adrenergic blockers on the production of hydrochloric acid and on the activity of [human] gastric mucosa (GM) and red blood cell [RBC] carbonic anhydrase (CA) in patients with duodenal ulcers after three days of treatment

				C	A
Beta-blocker	Nos. of cases	Dose mg/day	H+ Flow mEq/h	GM	RBC
Control group	29	•	9.87 ± 2.71	1.87 ± 0.13	2876 ± 139
Propranolol	20	3 × 20	7.27 ± 1.82	1.62 ± 0.35	2514 ± 275
Pindolol	20	3 × 10	7.98 ± 1.17	1.70 ± 0.31	2590 ± 113
Practolol	20	3 × 200	6.89 ± 1.65	1.58 ± 0.39	2476 ± 326
Oxprenolol	20	3 × 20	7.14 ± 0.98	1.67 ± 0.19	2623 ± 170
Metoprolol	20	3 × 10	6.97 ± 1.82	1.76 ± 0.27	2768 ± 123
Atenolol	20	3 × 10	7.45 ± 1.63	1.79 ± 0.33	2796 ± 273
Timolol	20	3 × 20	7.16 ± 2.08	1.71 ±0.29	2783 ± 315

In vitro study of the interaction between adrenergic agonists and acetazolamide, a carbonic anhydrase specific inhibitor, which operates at the active-site level through zinc ion chelation, proves the existence of a noncompetitive antagonism and indicates the fact that adrenergic agonists do not operate at the level of the zinc atom.

Table 4

The interaction between adrenergic agonists and acetazolamide on the activity of purified carbonic anhydrase

Concentration (M)	Acetazolamide	Isoprenaline	Isoprenaline + Acetazolamide 10 ⁻⁸ M	Isoprenaline + Acetazolamide 10 ⁻⁷ M	Isoprenaline + Acetazolamide 10 ⁻⁴ M
0	2061	2047	2020	2000	2040
10 ⁻⁹	2047	2131	1754	631	536
10-8	1742	2189	1851	660	552
10 ⁻⁷	608	2189	1851	666	552
10 ⁻⁶	563	2264	1839	702	602
10-5	557	2372	1876	804	643
10-4	514	2814	2047	893	696
10 ⁻³	493	3940	2776	1656	994

In vitro study of the interaction between adrenergic agonists and histamine, a strong carbonic anhydrase activator, indicates the existence of a noncompetitive synergism (table 5).

Table 5
The interaction between adrenergic agonists and histamine on the activity of pure [sic]
carbonic anhydrase

Concentration (M)	Histamine	Isoprenaline	Histamine + Isoprenaline 10 ⁻⁶ M	Histamine + Isoprenaline 10 ⁻⁵ M	Histamine + Isoprenaline 10 ⁻¹ M
10 ⁻⁸	1993	1993	2020	2006	2020
10-8	2191		2104	2361	3237
10 ⁻⁷					
10 ⁻⁶	2377	2147	2377	2361	3372
10-5	2510	2377	2546	2528	3575
10 ⁻⁴	2690	2904	2785	2617	3655
10 ⁻³	2824		2925	3184	3794
10 ⁻²	3910		3822	4156	4494

In vitro study of the activity of carbonic anhydrase indicates that beta-adrenergic blockers interacting with acetazolamide promote noncompetitive synergism (table 6), with histamine noncompetitive antagonism (table 7), and with isoprenaline competitive antagonism (Table 8).

Table 6
The interaction between beta-adrenergic blockers and acetazolamide on the activity of purified carbonic anhydrase

Concentration (M)	Propranolol	Acetazolamide	Propranolol + Acetazolamide 10 ⁻⁸ M	Propranolol + Acetazolamide 10 ⁻⁷ M	Propranolol + Acetazolamide 10 ⁻⁶ M
0	2068	2081		·	
10 ⁻⁸ M		1833	3		
10 ⁻⁷ M		875			;
10 ⁻⁶ M		445			
10 ⁻⁴ M	1657		1517	755	214
2 · 10 ⁻⁴ M	1417		1164	425	0
3 · 10 ⁻⁴ M	1139	·	938	300	0
$3 \cdot 38 \cdot 10^{-4} \text{ M}$	953		807	243	0

Table 7
The interaction between beta-adrenergic blockers and histamine on the activity of purified carbonic anhydrase

Concentration (M)	Atenolol	Propranolol	Histamine	Histamine + Propranolol 2 · 10 ⁻⁴	Histamine	Histamine + Propranolol 10 ⁻³
0	2074	1967	1980	1993	2102	2074
10-8	2173		2288	1759	2246	1710
10 ⁻⁷	2088		2303	1724	2417	1906
10 ⁻⁶	2102	2511	2511	1747	2656	2022
10 ⁻⁵	2088		2720	2033	2843	2140
10-4	1954		2872	2101	2962	2104
2 · 10-4		1440				
10 ⁻³	1733		3010	2334	3110	2246
10-2			3972	3389	4153	3557

Table 8
The interaction between beta-adrenergic blockers and isoprenaline on the activity of
pure [sic] carbonic anhydrase

Concentration (M)	Atenolol	Isoprenaline	Orciprenaline	Atenolol + +Isoprenaline	Atenolol + + Orciprenaline
0	2000	2040	2054	2040	2040
10-8	2139	2125	2068	2153	2168
10 ⁻⁷	2082	2110	2197	2197	2139
10 ⁻⁶	1946	2227	2242	2082	2168
10 ⁻⁵	1920	2400	2351	2082	2242
10-4	1882	2846	2809	2432	2569
1.6 · 10-4	0		2929		2096
10 ⁻³	1633	4000		3076	
4 · 10-3	669				

Table 8 (continuation)

Concentration (M)	Atenolol	Isoprenaline	Isoprenaline + +Atenolol 5 · 10 ⁻⁴ M	Isoprenaline + + Atenolol 8 · 10 ⁻⁴ M
0	3492	3416	3469	3492
10-8	3378	3708	2716	2475
10-7	3492	3733	2826	2593
10 ⁻⁶	3539	3683	2845	2593
10 ⁻⁵	3635	3912	2921	2864
10-4	3635	4073	3446	3039
5 · 10 ⁻⁴	2735	-	•	•
8 · 10-4	2426		-	*
10 ⁻³	2064	5868	4938	4575
2.36 · 10 ⁻³	V 4	6619	6044	5911

These results indicate the fact that carbonic anhydrase acts as an adrenergic betareceptor and could be the binding site of adrenergic agonists based on their secretory effect on gastric acid secretion.

In vivo combined administration of carbonic anhydrase inhibitors and betaadrenergic blockers to patients with gastroduodenal disorders has therapeutic effects (reduced secretion parameters) and leads to healing using reduced inhibitor doses (table 9).

Table 9
The effect of beta-adrenergic blockers combined with acetazolamide or ethoxzolamide on acid gastric secretion parameters in patients with duodenal ulcers after three days of treatment

				C	A
Name	Nos. of	Dose	Flow	Concentration	Volume
Name	cases	mg/day	mEq/h	mEq/l	ml/h
Control group	20	-	9.87 ± 2.71	76 ± 22	129 ± 27
Acetazolamide	20	3 × 600	4.39 ± 1.12	45 ± 12	97 ± 37
Ethoxzolamide	20	3 × 100	3.87 ± 0.98	37 ± 17	105 ± 28
Propranolol	20	3 × 200	7.27 ± 1.82	61 ± 21	119 ± 31
Practolol	20	3 × 200	6.89 ± 2.65	57 ± 28	120 ± 22
Pindolol	20	3 × 10	7.98 ± 2.17	69 ± 22	115 ± 17
Acetazolamide	20	3 × 600	1.89 ± 0.4	27 ± 5	70 ± 13
Propranolol	-	3 × 20			
Acetazolamide+	20	3 × 600	0.87 ± 0.12	19 ± 4	46 ± 15
+ Practolol					
Acetazolamide	20	3 × 600	0.62 ± 0.31	21 ± 5	29 ± 17
Pindolol	•	3 × 10			
Ethoxzolamide	20	3 × 100	1.12 ± 0.27	26 ± 7	43 ± 11
+ Propranolol		3 × 20			
Ethoxzolamide+	20	3 × 100	0.47 ± 0.09	17 ± 6	27 ± 14
+ Practolol		3 × 200			
Ethoxzolamide	20	3 × 100	0.71 ± 0.17	24 ± 3	29 ± 7
+ Pindolol	-	3 × 10	-		

The composition according to the invention has the following advantages:

- -- it allows a 10 to 50% reduction of the effective sulfonamide inhibitor dose;
- -- it is well tolerated by the body and it causes no side effects.

Claims

1. Synergistic pharmaceutical composition for the treatment of gastritis, gastroduodenitis, and gastric and duodenal ulcers comprising a carbonic anhydrase inhibitor selected from among sodium acetazolamide, potassium bicarbonate, [TN: word appears to be missing] oxide, or ethoxzolamide combined with sodium bicarbonate, potassium bicarbonate, magnesium oxide, aluminum hydroxide and sodium citrate, characterized in that in order to obtain superior therapeutic effects and reduce the anhydrase inhibitor dose said composition comprises in addition to the carbonic anhydrase inhibitor also a beta-adrenergic blocker selected from among propranolol, atenolol, pindolol, timolol, oxprenolol,

- acebutolol or metoprolol having a weight ratio of carbonic anhydrase inhibitor to beta-blocker of 1.37: 231.
- 2. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is acetazolamide and the *beta*-adrenergic blocker used is propranolol, the weight ratio thereof is 6 to 81.
- 3. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is ethoxzolamide and the *beta*-adrenergic blocker used is propranolol, the weight ratio thereof is 2.10 to 29.
- 4. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is acetazolamide and the *beta*-adrenergic blocker used is atenolol [sic], the weight ratio thereof is 8.2 to 70.4.
- 5. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is ethoxzolamide and the *beta*-adrenergic blocker used is atenolol, the weight ratio thereof is 2.9 to 39.2.
- 6. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is acetazolamide and the beta-adrenergic blocker used is pindolol, the weight ratio thereof is 30 to 126.
- 7. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is ethoxzolamide and the *beta*-adrenergic blocker used is pindolol, the weight ratio thereof is 13.2 to 95.1.
- 8. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is acetazolamide and the *beta*-adrenergic blocker used is timolol, the weight ratio thereof is 39.1 to 231.
- 9. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is ethoxzolamide and the *beta*-adrenergic blocker used is timolol, the weight ratio thereof is 21.8 to 222.
- 10. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is acetazolamide and the beta-adrenergic blocker used is oxprenolol, the weight ratio thereof is 15.8 to 108.
- 11. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is ethoxzolamide and the beta-adrenergic blocker used is oxprenolol, the weight ratio thereof is 5.8 to 39.2.
- 12. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is acetazolamide and the beta-adrenergic blocker used is acebutolol, the weight ratio thereof is 2.8 to 9.
- 13. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is acetazolamide and the beta-adrenergic blocker used is acebutolol, the weight ratio thereof is 1.37 to .7.
- 14. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is acetazolamide and the beta-adrenergic blocker used is metoprolol, the weight ratio thereof is 7.5 to 47.6.
- 15. Synergistic pharmaceutical composition according to claim, 1 characterized in that if the carbonic anhydrase inhibitor used is acetazolamide and the beta-adrenergic blocker used is metoprolol, the weight ratio thereof is 2.8 to 22.2.

(56) Bibliography

R.S.R. patents nos. 65972; 82715; 65969

President of the inventions commission: Alexandra Voicu, engineer

Examiner: Elena Pentelescu, pharmacist

State Patent and Trademark Office, Bucharest, Printed on September 30, 1987. First edition, I. P. Galați cd. 48107

REPUBLICA SOCIALISTA ROMANIA

CONSILIUL NATIONAL
PENTRU
STINTA SI TEHNOLOGIE

OFICIUL DE STAT PENTRU INVENȚII ȘI MĂRCI

BREVET DE INVENTIE " RO " 92436

DESCRIEREA INVENTIEI

(21) Cerere de brevet nr.: 118467

(22) Data înregistrării : 19.04.85

(61) Complementară la invenția

brevet nr.:

(45) Data publicării: 30.09.87

(86) Cerere internațională (PCI):

nr.:

(87) Publicarea cererii internaționale:

nr.:

(39)

(51) 1nt. Cl.4: A 61 K 9/20

(30) Prioritate

(32) Data :

(33) Tara:

(31) Certificat nr.:

(71) Solicitant; (72) Inventator: medic Puscaș Ioan, medic Puscaș Carmen, Şimleul Silvaniei, județul Maramureș, medic Buzaș Gheorghe, Cluj-Napoca, ing. Sturzu Lucian, Şimleul Silvaniei, județul Maramureș

(73) Titular: Intreprinderes de Medicamente, București

Compoziție medicamentoasă sinergică pentru tratamentul gastritelor, gastroduodenitelor și ulcerelor gastroduodenale

(57) Rezumat

Compoziția medicamentoasă sinergetică pentru tratamentul gastritelor, gastroduodenitelor și ulcerelor gastroduodenale conform invenției, conține pe lingă un inhibitor de anhidrază carbonică și un β -blocant adrenergic ales dintre propranolol, atenolol, pindolol, timolol, exprenolol, acebutolol sau metoprolol intr-un raport in greutate intre inhibitorul de anhidrază carbonică și g-blocent de 1,37...231.

RO (11) 9243

15

20

25

30

35 .

Prezenta invenție se referă la o compoziție medicamentoasă sinergică pentru tratamentul gastritelor, gastroduodenitelor și ulcerelor gastroduodenale, utilizată în scopul reducerii secreției gastrice acide.

Sint cunoscute compoziții medicamentoase utilizate în tratamentul ulcerelor gastroduodenale constituite din asocierea acetazolaminei cu citrat de sodiu sau potasiu, bicarbonat de sodiu și/sau potasiu, oxid de magneziu, hidroxid de aluminiu sau asocierea etoxzolamidei cu săruri de magneziu ale aminoacizilor alese dintre aspartat, glicinat sau glutamat de magneziu, citrat de sodiu și bicarbonat de potasiu sau asocierea etoxzolamidei cu bicarbonat de potasiu, citrat de sodium, oxid de magneziu și hidroxid de aluminiu.

Dezavantajul acestor compoziții constă în aceea că instalarea efectului terapeutic se face după o perioadă de latență de 3...5 zile, cît și faptul că pot apărea și fenomene secundare cum ar fi: somnolență, oboseală sau parestezii ale extremităților.

Scopul prezentei invenții este de a obține o compoziție medicamentoasă sinergică pentru tratamentul gastritelor, gastroduodenitelor și ulcerelor gastroduodenale, prin reglarea motorie a secreției gastrice.

Problema pe care o rezolvă invenția este alegerea ingredientelor și a raportului lor de asociere.

Compoziția medicamentoasă, conform invenției constă din aceea că este constituită dintr-un inhibitor de anhidrază carbonică și un β-blocant adrenergic ales dintre propranolol, atenolol, pindolol, timolol, oxprenolol, acebutolol sau metoprolol într-un raport în greutate între inhibitorul de anhidrază carbonică și β-blocant de 1,37....231.

Se dau în continuare 28 exemple de realizare a invenției.

Exemplul 1. Pentru obținerea produsului medicamentos se asociază următoarele ingredinte (cantitățile sint exprimate în mmoli): 0,9 acetazolamidă, 0,3 bicarbonat de sodiu, 0,7 bicarbonat de potasiu, 2,25 oxid de magneziu, 0,5 hidroxid de aluminiu, 0,3 citrat de sodiu, 0,15 propranolol.

Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este 6.

Exemplul 2. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sînt exprimate în mmoli): 1,62 acetazolamidă, 0,54 bicarbonat de sodiu, 1,26 bicarbonat de potasiu, 4,05 oxid de magneziu, 0,9 hidroxid de aluminiu, 0,54 citrat de sodiu, 0,02 propranolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este 81.

Exemplul 3. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sînt exprimate în mmoli): 0,37 etoxazolamidă, 1,15 bicarbonat de potasiu, 2,5 oxid de magneziu, 0,625 hidroxid de aluminiu, 0,5 citrat de sodiu, 0,17 propranolol. Raportul molar dintre inhibitorul sulfonamidic și β-blocantul adrenergic este 2,18.

Exemplul 4. Pentru obținerea produsulyui medicamentos se asociază următoarele ingrediente (cantitățile sint exprimate în mmoli): 0,666 etoxzolamidă, 2,07 bicarbonat de potasiu, 4,5 oxid de magneziu, 1,125 hidroxid de aluminiu. 0,9 citrat de sodiu, 0,023 propranolol. Raportul molar dintre inhibitorul sulfonamidic şi β-blocantul adrenergic este de 29.

Exemplul 5. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sint exprimate în mmoli): 0,9 acetazolamidă, 0,3 bicarbonat de sodiu, 0,7 bicarbonat de potasiu, 2,25 oxid de magneziu, 0,5 hidroxid de aluminiu, 0,3 citrat de sodiu, 0,11 atenolol. Raportul molar dintre inhibitorul sulfonamidic și \$-blocantul adrenergic este de 8,2.

Exemplul 6. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sînt exprimate în mmoli): 1,62 acetazolamidă, 0,54 bicarbonat de sodiu, 1,26 bicarbonat de potasiu, 4,05 oxid de magneziu, 0,9 hidroxid de aluminiu, 0,54 citrat de sodiu, 0,023 atenolol. Raportul molar dintre inhibitorul sulfonamidic și β-blocantul adrenergic este de 70,4.

Exemplul 7. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sînt exprimate în mmoli): 0,37 etoxzolamidă, 1,15 bicarbonat de potasiu, 2,5 oxid de magneziu, 0,625 hidroxid de aluminiu, 0,5 citrat de sodiu, 0,125 atenolol. Raportul moiar dintre inhibitorul sulfonamidic și 3 -blocantul adrenergic este de 2,9.

Exemplul 9. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sînt exprimate în mmoli): 0,666 etoxzolamidă, 2,07 bicarbonat de potasiu, 4,5 oxid de magneziu, 1,125 hidroxid de aluminiu. 0,9 citrat de sodiu, 0,017 atenolol. Raportul molar dintre inhibitorul sulfonamidic și β-blocantul adrenergic este de 39,2.

Exemplul 9. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sînt exprimate în mmoli): 0,9 acetazolamidă, 0,3 bicarbonat de sodiu, 0,7 bicarbonat de po-

45

50

55

60

10

15

20

30

45

50

55

3.

tasiu, 2,25 oxid de magneziu, 0,5 hidroxid de aluminiu, 0,3 citrat de sodiu, 0,03 pindolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este de 30.

Exemplul 10. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sînt exprimate în mmoli): 1,26 acetazolamidă, 0,54 bicarbonat de sodiu, 1,26 bicarbonat de potasiu, 4,05 oxid de magneziu, 0,9 hidroxid de aluminiu, 0,54 citrat de sodiu, 0,01 pindolol. Raportul molar dintre inhibitorul sulfonamidic și β-blocantul adrenergic este de 162.

Exemplul 11. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sînt exprimate în mmoli): 0,37 etoxzolamidă, 1,15 bicarbonat de potasiu, 2,5 oxid de magneziu, 0,625 hidroxid de aluminiu, 0,5 citrat de sodiu, 0,028 pindolol. Raportul molar dintre inhibitorul sulfonamidic și f-blocantul adrenergic este de 13,2.

Exemplul 12. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sînt exprimate în mmoli): 0.666 etoxzolamidă, 2.07 bicarbonat de potasiu, 4.5 oxid de magneziu, 1.125 hidroxid de aluminiu, 0.9 citrat de sodiu, 0.007 pindolol. Raportul molar dintre inhibitorul sulfonamidic și β -blocantul adrenergic este de 95.1.

Exemplul 13. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sînt exprimate în mmoli): 0,9 acetazolamidă, 0,3 bicarbonat de sodiu, 0,7 bicarbonat de potașiu, 2,25 oxid de magneziu, 0,5 hidroxid de aluminiu, 0,3 citrat de sodiu, 0,023 timolul. Raportul molar dintre inhibitorul sulfonamidic și 2-blocantul adrenergic este de 39,1.

Exemplul 14. Pentru obținerea produsului medicamentos se asociază următoerele ingrediente (cantitățile sînt exprimate în mmoli): 1,62 acetazolamidă, 0,54 bicarbonat de sodiu, 1,26 bicarbonat de potasiu, 4,05 oxid de magneziu, 0,9 hidroxid de aluminiu, 0,54 citrat de sodiu, 0,007 timolul. Raportul molar dintre inhibitorul sulfonamidic și β-blocantul adrenergic este de 231.

Exemplul 15. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sînt exprimate în mmoli): 0,37 eloxzolamidă, 1,15 bicarbonat de potasiu, 2,5 oxid de magneziu, 0,625 hidroxid de aluminiu, 0,5 citrat de sodiu, 0,017 timolul, Raportul molar dintre inhibitorul sulfonamidic si β -blocantul adrenergic este de 21.8.

Exemplul 16. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sînt exprimate în mmoli): 0,666 etoxzolamidă, 2,07 bicarbonat de potasiu, 4,5 oxid de magneziu 1,125 hidroxid de aluminiu, 0,9 citrat de sodiu, 0,003 timolul. Raportul molar dintre inhibitorul sulfonamidic şi β-blocantul adrenergic este de 222.

Exemplul 17. Pentru obținerea produsului medicamentos se asociază următoarcle ingrediente (cantitățile sînt exprimate în mmoli): 0,9 acetazolamidă, 0,3 bicarbonat de sodiu, 0,7 bicarbonat de potasiu, 2,25 oxid de magneziu, 0,5 hidroxid de aluminiu, 0,3 citrat de sodiu, 0,057 oxprenolul. Raportul molar dintre inhibitorul sulfonamidic și f-blocantul adrenergic este de 15,8.

Exemplul 18. Pentru obținerea produsului medicamentos se asociază următoarele ingredinte (cantitățile sînt exprimate în mmoli): 1,26 acetazolamidă, 0,54 bicarbonat de sodiu, 1,26 bicarbonat de potasiu, 4,01 oxid de magneziu, 0,9 hidroxid de aluminiu, 0,54 citrat de sodiu, 0,015 oxprenolol. Raportul molar dintre inhibitorul sulfonamidic și f-blocantul adrenergic este de 108.

Exemplul 19. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sint exprimate în mmoli): 0,37 etoxzolamidă, 1,15 bicarbonat de potasiu, 2,5 oxid de magneziu, 0,625 hidroxid de aluminiu, 0,5 citrat de sodiu, 0,063 oxprenolol. Raportul molar dintre inhibitorul sulfonamidic și β-blocantul adrenergic este de 5,8.

Exemplul 20. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sînt exprimate în mmoli): 0,666 etoxzolamidă, 2,07 bicarbonat de potasiu, 4,5 oxid de magneziu, 1,125 hidroxid de aluminiu, 0,9 citrat de sodiu, 0,017 oxprenolol. Raportul molar dintre inhibitorul sulfonamidic și 3-blocantul adrenergic este de 39,2.

Exemplul 21. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sînt exprimate în mmoli): 0,9 acetazolamidă, 0,3 bicarbonat de sodiu, 0,7 bicarbonat de potasiu, 2,25 oxid de magneziu, 0,5 hidroxid de aluminiu, 0,3 citrat de sodiu, 0,32 acebutolol. Raportul molar dintre inhibitorul sulfonamidic și β-blocantul adrenergic este de 2,8.

(A)

Exemplul 22. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sint exprimate în mmoli): 1,62 acetazolamidă, 0,54 bicarbonat de sodiu, 1,26 bicarbonat de potasium, 4,05 oxid de magneziu, 0,9 hidroxid de aluminiu, 0,54 citrat de sodiu, 0,18 acebutolol. Raportul molar dintre inhibitorul sulfonamidic și β-blocantul adrenergic este 9.

Exemplul 23. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sînt exprimate în mmoli): 0,37 etoxzolamidă, 1,15 bicarbonat de potasiu, 2,5 oxid de magneziu, 0,625 hidroxid de aluminiu, 0,5 citrat de sodiu, 0,27 acebutolol. Raportul molar dintre inhibitorul sulfonamidic și β-blocantul adrenergic este 1,37.

Exemplul 24. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sînt exprimate în mmoli): 0,666 etoxzolamidă, 2,07 bicarbonat de potasiu, 4,5 oxid de magneziu, 1,125 hidroxid de aluminiu, 0,9 citrat de sodiu, 0,18 acebutolol. Raportul molar dintre inhibitorul sulfonamidic si β -blocantul adrenergic este 3,7.

Exemplul 25. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sint exprimate în mmoli): 0,9 acetazoladimă, 0,3 bicarbonat de sodiu, 0,7 bicarbonat de potasiu, 2,25 oxid de magneziu, 0,5 hidroxid de aluminiu, 0,3 citrat de sodiu, 0,12 metoprolol, Raportul molar dintre inhibitorul sulfonamidic și β-blocantul adrenergic este 7,5.

Exemplul 26. Pentru obținerea produsului medicamentos se asociază următoarcle ingrediente (cantitățile sînt exprimate in mmoli): 1,62 acetazolamidă, 0,34 blenrbonat de sodiu, 1,26 bicarbonat no potasiu, 4,05 oxid de magneziu, 0,9 hidroxid de aluminiu, 0,54 citrat de sodiu. 0.034 metoproloi, Raportul molar dlatry labbitorul sulfonamidic și \$-blocantul adrenorgic onto 47,6.

Recupiul 27, Pentra obținerea produ**suld medicamentos** se asociază următotale ingrediente (contitățile sint expelitale in mall) i 0,47 etoxzolamidă, in Metrional, do potaniu. 2.5 oxid de macheriu, adia indroxid de aluminiu, Marie Red and 12 metoprotol. Rapartit maler diales inhibitorul sulfonamidic și \$-blocantul adrenergic este de 2,8.

6

Exemplul 28. Pentru obținerea produsului medicamentos se asociază următoarele ingrediente (cantitățile sint exprimate în mmoli): 0,666 etoxzolamidă. 2,07 bicarbonat de potasiu, 4,5 oxid de magneziu, 1,125 hidroxid de aluminiu. 0,9 citrat de sodiu, 0,03 metoprolol. Raportul molar dintre inhibitorul sulfonamidic și β-blocantul adrenergic este 22,2.

Anhidraza carbonică reprezită o etapă esențială determinantă de viteză în procesul secreției gastrice acide. Inhibiția ei cu diverși inhibitori conduce la scăderea producției de acid clorhidric. creind astfel condițiile necesare regenerării mucoasei gastroduodenale afectată de agresiunea clorhidropeptică.

Procesul de secreție gastrică acidă care se desfășoară la nivelul glandelor gastrice din zona fundică a mucoasei gastrice re realizează sub controlul unui complex de factori neurohormonali și alimentari. Producerea acidului clorhidric se desfășoară la nivelul celulelor parietale, factorii de stimulare principali fiind reprezentați de gastrină, acetilcolină și histamină. Pentru acești secretagogi s-au postulat și identificat receptori specifici la nivelul celulei parietale.

Stimularea adrenergică (adrenalină, noisoprenalină etc.) a fost radrenalină, postulată a se desfășura la nivelul unor receptori specifici, grefați pe celula parictală, dar existența și identificarea unor asemenea receptori nu a fost demonstrată experimental.

In prezent receptorii adrenergici, definiți analomic, și farmacologic, se împart în receptori alfa și beta după cum răspunsul față de o serie de agonișții prezintă succesiunea adrenalină - noradrenalină -- isoproterenol (isoprenalină) — receptori alfa — respectiv (isoproterenol) — noradrenalină — adrenalină — receptori beta.

Studiile in vitro, legate de influența agoniștilor adrenergici asupra activității anhidrazei carbonice purificate din hematii și din mucoasa gastrică umană, au evidențiat în primul rind o puternică acțiune activatoare a isoprenalinei asupra activității enzimei, iar în al doilea rînd, un comportament de receptor beta-adrenergic (tabelul 1).

10

15

35

40

55

60

Tabelul 1

Efectul agoniștilor adrenergici asupra activității anhidrazei carbonice purificate, din hematii
și din mucoasa gastrică umană (MG)

	· Isop	renalina		Orcipre-	Adrena-	Noradre-
Concentrația (M)	AC pur	ă Hemații M	(G	nalină AC pură	lină AC pură	nalină AC pură
0	2010	2572	1,96	2088	2060	2094
108	2040	2680	1,96	2047	2040	2136
10-7	2125	2662	1,95	2033	2081	2122
10—6	2168	2736	1,96	2047	2109	2122
105	2416	2699	1,96	2518	2225	2122
10-4	3076	3051	2,46	3295	2181	2136
2 · 10-4			2,81		2255	
2.10-4					2428	
4.10-4		·		·	2562	
5-10-4			3,33		2528	
1 · 10 - 3 4083		4558	4,12			2164
2·10-3 5425		7358	5,73		·	

Studiul influenței unor beta-blocanți adrenergici ca: propranolol, timolol, oxprenolol, pindolol, atenolol, metaprolol sau practolol, au evidențiat o puternică acțiune inhibitoare asupra activității anhidrazei carbonice purificate din hematii sau din mucoasa gastrică umană (tabelul 2).

Tabelul 2

Efectul	Efectul unor beta-blocanți adrenergici asupra activității anhidrazet	slocanți ad	trenergici	asupra acti	vitășii and		bonice pur	e (AC) d	carbonice pure (AC) din hematit și din mucodsa gastrica umana (MG)	t ain mu	coasa gastri	ca umana (1	(5)
	Propranolul	nolul		Pindolol	lol	Atenolol	olol		Timolol	lol			
Concentra- ția (M)	AC purš	Hematil	MG	Hematli	MC	AC pura	Hematil	MG	Ac pură	MG	Propra- nolol Ac purá	Acebutolol Practelol Ac pură	Metoprolol AC pura
10-8	2047	3328	2,07	3624 3672	1,91	2077	3492 3378	1,04	2048 2034	1,06	1966 2047	1993 1999	1959
10-7	2075	3328	2,05	3648	1,92	2106	3492	, ,	2000	1,05	1889	1980	2041
į	2075	3284	2,07	3672	1,52	2034	3539		2006	1,04	1966	1927	2055
10~	2006	3175	2.04	2061	1,37	2135	3635		2020	1,03	1915	1877	2055
ļ _	1716	2777	1,91	,		1979	3635	1,05	1809	86'0	1779	1720	2027
2.10	1636	2221	1,28	,					1530	86'0			
3.101	1338	1126	1,09						1299	0,93			
3.4.10-4	1211	1079	1,06			1759		66'0			1300		
5.10-4						1618	2064	98'0	1023	08'0	1100	1186	1408
701													-
4.10						<i>:</i>						. 952	
10-3		·											
				_									

In vivo, administrarea unor beta-blocanți adrenergici la pacienți cu afecțiuni gastroduodenale realizează reduceri modeste atit ale parametrilor secreției gastrice acide, cit și ale activității anhidrazei carbonice (tabelul 3).

Tabelul 3

Influența unor beta-blocanți adrenergici asupra producerii acidului clorhidric și activității anhidrazei carbonice (AC) din mucoasa gastrică (MG) și hematii (H) la pacienți cu ulcere duodenale, după 3 zile de administrare

				AC	
Beta-blocant	Nr. cazuri	Doza mg/zi	Debit H÷ mEq/h	MG	Hematii
Lot martor	29		9,87±2,71	1,87±0,13	2876 <u>±</u> 139
Propranolol	20	3×20	7,27±1,62	1,62 <u>-1</u> -0,35	2514 <u>+</u> 275
Pindolol	20	3 ×10	7,98±1,17	1,70:1-0,31	2590 <u>±</u> 113
Practolol	20	3×200	6,89±1,65	1,58±0,39	2476±326
Oxprenolol	20	3 ×20	7,14 <u>+</u> 0,98	1,67 <u>+</u> -0,19	2623士170
Metoprolol	20	3 ×10	6,97±1,82	1.76士0.27	2768土123
Atenolol	20	3×10 ⋅	7,45±1,63	1,79±0,33	2796 <u>±</u> 273
Timolol	20	3 ×20	7,16±2,08	1,71士0,29	2783±315

Studiul in vitro al interacțiunii agoniștilor adrenergici și acetazolamidă, inhibitor specific al anhidrazei carbonice acționind la nivelul situsului activ prin chelatarea ionului de zinc, demonstrează existența unui antagonism necompetitiv, evidențiind astfel faptul că agoniștii adrenergici nu acționează la nivelul atomului de zinc.

Tabelul 4

Interacțiunea agoniștilor adrenergiei cu acetazolamida asupra activității anhidrazei carbonice purificate

Concentrația (M)	Acetazol- amida	Izoprena- lina	Izoprenali- na + Aceta- zolamida 10 ⁻⁸ M	Izoprenali- na + Aceta- zolamida 10-'M	Izoprenali- na + Aceta- zolamida 10-4M
0	2061	2947	2020	2000	2040
10-9	2047	2131	1754	631	536
10-8	1742	2189	1851	660	552
10-7	608	2189	1851	666	552
. 10-6	563	2264	1839	702	602
10-5	557	2372	1876	804	643
104	514	2814	2047	893	696 .
103	493	3940	2776	1656	994

Studiul in vitro al interacțiunii agoniștilor adrenergici cu histamina, un activator puternic al anhidrazei carbonice, evidențiază existența unui sinergism necompetitiv (tabelul 5).

Interacțiunea agonistilor adrenergici cu histamina asupra activității anhidrazei carbonice pure

		distributazes ca	1 CONTROL PARTS	l	i
Concentrația (M)	Histamină	Izoprena- lina	Hist. + Izop.	Hist. + Izop. 10 ⁻⁵ M	Hist. + Izop. 10-1M
10-8	1993	1993	2020	2006	2020
10-8	2191	_	2104	2361	3237
10-7					
105	2377	2147	2377	2361	3372
10-5	2510	2377	2546	2528	3575
10-4	2690	2904	2785	2617	3655
103	2824	_	2925	3184	3794
10-2	3910	_	3822	4156	4494
	1	1		,	

Studiul in vitro al interacțiuni betablocanților adrenergici asupra activității anhidrazei carbonice evidențiază existența unui sinergism necompetitiv cu acetazolamida (tabelul 6), a unui antagonism necompetitiv cu histamina (tabelul 7) și a unui antagonism competitiv cu isoprenalina (tabelul 8).

Tabelul 6
Interacțiunea unor beta-blocanți adrenergici cu acetazolamida asupra activității anhidrazei carbonice purificate

Concentrația (M)	Propranolol	Acetazol- amidă	Propran. + Acetazol. 10-8 M	Propran. + Acetazol. 10 ⁻⁷ M	Propran. +- Acetazol. 106 M
0	2068	2081			
108M	}	_1833		}	
10 ⁻⁷ M		875			
10-6M		445	}		
10 M	1657		1517	755	214
2·10-4M	1417	,	1164	425	o
3 · 10 ─ M	1139		938	300	. 0
3·38·10— ⁴ M	953		807	243	0

Tabelul 7

Interacțiunea unor beta-blocanți adrenergici cu histamina asupra activității anhidrazei carbonice purificate

Concen- trația (M)	Atenolol	Propa- nolol	Histami- nă	Hist. + Propran. 2·10-	Hist.	Hist{ Aten. 10-3
0	2074	1967	1980	1993	2102	2074
10-8	- 2173		2288	1759	2246	1710
10-7	2088		2303	1724	2417	1906
10	2102	2511	2511	1747	2656	2022
105	2088		2720	2033	2843	2140
10-4	1954		2372	2101	2962	2104
2 · 10 4		1440				
10-3	1733		3010	2334	3110	2246
10-2			3972	3389	4153	3557

carbonice pure

Tabelul 8

Interacțiunea unor beta-blocanți edrenergiei cu isoprenelina asupra activității anhidrazei

Concentrație (M)	Atenoloi	Izoprenalină	Orciprenalină	Atenoiol+ -+Izoprenalină	Atenolol-† -†Orciprenalină
0	2000	2040	2054	2040	2040
10-8	2139	2125	2068	2153	2168
10-7	2082	2110	2197	2197	2139
10~	1946	2227	2242	2032	2168
10-5	1920	2400	2351	2082	2242
10-4	1882	2346	2809	2432	2569
1,6 · 10-4	-		2929		2096
10-3	1633	4000		3076	
4.10-3	669				

Tabelul 8 (continuare)

Concentrație (M)	Atenolol	Izoprenalin ă	Izoprenalină+ +Atenolol 5·10 ⁻⁴ M	Izoprenalinä+ +Atenolol 8·10 ⁴ M
0	3492	3416	3469	3492
108	3378	3700	2716	2475
107	3492	3733	2826	2593
10-6	3539	2683	2845	2593
10 - 5	3635	3912	2921	2864
10-4	3635	4973	3446	3039
5·10 4	2735	_	_	 -
8-10-4	2425	_		-
10-3	2064	5868	4938	4575
2,36 · 103	- 8	6619	G044	5911

Aceste rezultate evidențiază saptul că anhidraza carbonică prezintă comportament de receptor beta - adrenergic și ar putea reprezenta sediul de legare a agoniștilor adrenergici pentru esectele lor de secretagogi ai secreției gastrice acide.

Administrarea asociată in vivo de inhibitori ai anhidrazei carbonice și beta -- blocanți adrenergici, la pacienți cu afecțiuni gastroduodenale, conduce la obtinerea unor efecte terapeutice (reducerea parametrilor secretori) și la vindecarea cu doze reduse de inhibitori (tabelul 9).

Tabelul 9

Efectul asocierii beta-blocanți adrenergici cu acetazolamidă sau etoxzolamidă asupra parametrilor secreției gastrice acide la pacienții cu ulcere duodenale după 3 zile de tratament

Denumirea	Nr. cazuri	Doză, mg/zi	Debit, mEc/ii	Concentratie, mEq/1	Volum, ml/h
Lot marter	20	_	9,87±2,71	76 <u>:1</u> 22	129 <u>+</u> 27
Acetazolamidā	20	3×600	4,39±1,12	4 5 <u>±</u> 12	97王37
Etoxzolamidă	20	3×100	3.87±0.93	37土17	105±28
Propranolol	20	3×200	7,27:1,82	61=21	119±31
Practolol	20	3×200	ಕ,೬೨ <u>⊹</u> 2,65	57士28	120±22
Pindolol	20	3×10	7,93 12,17	69±22	115±17
Acetazolamidā	20	3≿600	1,89 <u>+</u> 0,4	27士5	70 <u>±</u> 13
Proprenoiol	_	3×20		0	
Acetazolamidă- 	20	3×600	0,87 <u>-ir</u> 0,12	19±4	46±15
Acetazolamidă	20	3≿600	0,62±;0,31	21士5	29±17
Pindolol		3×10			
Eloxzolamidă + -j-Propranelol	20	3×100 3×20	1,12 <u>±</u> 0,27	26 <u>-1-</u> 7	43 <u>±</u> 11
Etoxozolamidă+ +Practolol	20	3×100 3×200	0,47±0,09	17士6	27±14
Etoxzolamidă-¦- -¦-Pindolol	20	3×100 3×10	0,71±0,17	24<u>-1-</u>3	29士7

5

10

15

25

Compoziția, conform invenției, prezintă următoarele avantaje:

— conduce la reducerea dozei eficiente de inhibitor sulfonamidic cu 10 și 50%;

— este bine suportată de organism și nu dă efecte secundare.

Revendicări

1. Compoziție medicamentoasă sinergică pentru tratamentul gastritelor, gastroduodenitelor și ulcerelor gastroduodenale continind un inhibitor de anhidrază carbonică ales dintre acetazolamidă de sodiu, bicarbonat de potasiu, oxid de sau etoxzolamidă asociat cu bicarbonat de sodiu, bicarbonat de potasiu, oxid de magneziu, hidroxid de aluminiu și citrat de sodiu, caracterizată prin aceea că, în vederea obținerii unor efecte terapeutice, superioare și a reducerii dozei de inhibitor de anhidrază conține pe lingă inhibitorul de anhidrază carbonică și un β-blocant adrenergic ales dintre propranolol, atenolol, pindolol, timolol, oxprenolol, acebutolol sau metoprolol intr-un raport in greutate, intre

inhibitorul de anhidrază carbonică și β -blocant, de 1,37...231.

2. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că în cazul utilizării ca inhibitor de anhidrază carbonică a acetazolaminei și ca β-blocant adrenergic a propranolului, raportul în greutate între acestea este 6...81.

3. Compoziție medicamentoasă conform revendicării 1, caracterizată prin aceea că în cazul utilizării ca inhibitor de anhidrază carbonică a etoxzolamidei și ca \beta-blocant adrenergic a propranololului, raportul în greutate între acestea este 2,10...29.

4. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că în cazul utilizării, ca inhibitor de anhidrază carbonică a acetazolamidei și ca β-blocant al etanolului, raportul în greutate între acestea este 8,2...70,4.

5. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că, în cazul utilizării ca inhibitor de anhidrază carbonică a etoxzolamidei și ca β -blocant a atenolului, raportul în greutate între acestea este 2,9...39,2.

15

25

30

20

- 6. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că, în cazul utilizării ca inhibitor de anhidrază carbonică a acetazolamidei și ca β-blocant a pindolului, raportul în greutate între acestea este 30...126.
- 7. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că, în cazul utilizării ca inhibitor de anhidrază carbonică a etoxzolamidei și ca β-blocant a pindolului, raportul în greutate între acestea este 13,2...95,1.
- 8. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că, în cazul utilizării ca inhibitor de anhidrază carbonică a acetazolamidei și ca β-blocant a timolului, raportul în greutate între acestea este 39,1...231.
- 9. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că, în cazul utilizării ca inhibitor de anhidrază carbonică a etoxzolamidei și ca β -blocant a timolului, raportul în greutate între acestea este 21,8...222.
- 10. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că, în cazul utilizării ca inhibitor de anhidrază carbonică a acetazolamidei și ca β-blocant a oxprenolului, raportul în greutate între acestea este 15,8...108.
- 11. Compoziție medicamentoasă, conform revendicării I, caracterizată prinaceea că, în cazul utilizării ca inhibitor

de anhidrază carbonică a etoxzolamidei și ca β-blocant a oxprenolului, raportul în greutate între acestea este 5,8...39,2

12. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că, în cazul utilizării ca înhibitor de anhidrază carbonică a acetazolamidei și ca β -blocant a acebutolului, raportul în greutate între acestea este 2,8...9,0.

13. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că, în cazul utilizării ca inhibitor de anhidrază carbonică a etoxzolamidei și ca β-blocant a acebutolului, raportul în greutate între acestea este 1,37...3,7.

14. Compoziție medicamentoasă, conform revendicării 1. caracterizată prin aceea că, în cazul utilizării ca inhibitor de anhidrază carbonică a acetazolamidei și ca β-blocant a metoprololului, raportul în greutate între acestea este 7,5... 47,6.

15. Compoziție medicamentoasă, conform revendicării 1, caracterizată prin aceea că, în cazul utilizării ca inhibitor de anhidrază carbonică a etoxzolamidei și ca β-blocant a metoprololului, raportul în greutate între acestea este 2,8... 22,2.

(56) Referințe bibliografice

Brevete, R.S.R., nr. 65972; 82715; 65969

Președintele comisiei de invenții: ing. Voicu Alexandra

Examinator: farm. Pentelescu Elena