

Departement Informatik

Theoretische Informatik

Prof. Dr. Juraj Hromkovič

2. Zwischenklausur

Zürich, 13. Dezember 2011

Aufgabe 1

Wir betrachten die Sprachen

$$L_{\mathrm{H},001} = \{ \mathrm{Kod}(M) \mid M \text{ ist eine TM, die auf 001 hält} \}$$
 und $L_{\mathrm{A},001} = \{ \mathrm{Kod}(M) \mid M \text{ ist eine TM, die 001 akzeptiert} \}.$

- (a) Zeigen Sie, dass $L_{\rm H} \leq_{\rm EE} L_{\rm H,001}$ gilt.
- (b) Zeigen Sie, dass $L_{A,001} \leq_{\mathbf{R}} L_{H,001}$ gilt.

7+7 Punkte

Aufgabe 2

(a) Wandeln Sie die 5-KNF-Formel

$$\Phi = (x_1 \vee \overline{x_2} \vee \overline{x_4} \vee x_5) \wedge (x_2 \vee \overline{x_3} \vee x_4 \vee \overline{x_5} \vee x_6) \wedge (x_1 \vee x_3 \vee \overline{x_6})$$

in eine äquivalente Formel Ψ in 3-KNF um.

Hinweis: Zwei Formeln Φ und Ψ sind $\ddot{a}quivalent$, falls Φ genau dann erfüllbar ist, wenn auch Ψ erfüllbar ist.

(b) Zeigen Sie, dass $5SAT \leq_p 3SAT$ gilt. Dabei ist 5SAT die Einschränkung von SAT auf Eingaben, die nur Klauseln der Länge höchstens 5 enthalten.

3+7 Punkte

Aufgabe 3

Zeigen Sie, dass aus $L_{\rm H} \in \mathcal{L}_{\rm R}$ die Existenz eines Algorithmus folgt, der für jedes $x \in \{0,1\}^*$ die Kolmogorov-Komplexität K(x) berechnet.

10 Punkte

(bitte wenden)

Aufgabe 4

Das Independent-Set-Problem (kurz IS) ist das Problem, für einen gegebenen ungerichteten Graphen G=(V,E) und eine natürliche Zahl k zu entscheiden, ob G eine unabhängige Menge der Grösse mindestens k besitzt, d. h. eine Teilmenge $U\subseteq V$, so dass $\{u,v\}\notin E$ für alle $u,v\in U$.

Zeigen Sie, dass IS NP-vollständig ist.

Hinweis: Sie können eine Reduktion von CLIQUE verwenden.

6 Punkte