Ministry of Education Superior And Scientific Research *****

University of Carthage

National Institute of Applied Science and Technology

Hand Motion Recognition

Developed by : MSEIBI souha

JABRI chaima

CHAABANI elaa

JLASSI wejden

Member of Jury : Mr. KETATA Raouf

Mme Fafa ben htira

collaborative robot

gestures recognition

Vision-based approaches rely on:

image shaping

RGB colors

Robotic glove

sensors that detects all mouvements

Send Data by Bluetooth module

Control robotic hand

Expensive

Low precision

Hand gesture recognition

based on models and articulation

Detect hand mouvements,

interpret hand gestures using models

providing high speed robotic hand tracking

Providing low cost

ARDUINO UNO

• Easy to use

Introduction

Has a lot of modules to

simplify the work

- Less expensive
- Available

STM32H753ZI

- More Professional
- It can work in real time
- Available

SG90 SERVO MOTOR

- Tiny and lightweight
- Operating voltage 5V /40mA
- 180° (90° in each direction)
- Speed 0.1s/60°
- Torque 2.5 KG
- Available

Introduction

MG946R SERVO MOTOR

- Precise control
- 5 operating voltage/ 40mA current
- Rotate 360°
- Low speed
- 13 KG Torque
- High cost

L298N MODULE

Less expensive

Introduction

- It can deliver up to 2A peak and 20W continuous.
- Unable to control one servo motors

MODULE XL4015

- 5A 75W
- Include short circuit protection
- It can deliver up to 4A peak and 50W continuous.
- Unable to control all the servo motors used

COMPUTER WEBCAM

- Low cost
- Low resolution

STM-CAM MODULE

- High cost
- Resolution : Up to 1280 * 1024
- Up to 30 frames / second

SOFTWARE PROCESS

Object Detection Pipeline

Data collection

Label the Data

Data Preprocessing

Train the model

Evaluate the model

Our approach

We broke down the problem into subproblems that we solved seperately.

Technologies and frameworks

Frame Selection

18

Code and implementation

Problem and solution

Conclusion

Data Labelling

- 0. WRIST
- 1. THUMB_CMC
- 2. THUMB_MCP
- 3. THUMB_IP
- 4. THUMB_TIP
- 5. INDEX_FINGER_MCP
- 6. INDEX_FINGER_PIP
- 7. INDEX_FINGER_DIP 8. INDEX_FINGER_TIP
- 9. MIDDLE_FINGER_MCP
- 10. MIDDLE_FINGER_PIP

- 11. MIDDLE_FINGER_DIP
- 12. MIDDLE_FINGER_TIP
- 13. RING_FINGER_MCP
- 14. RING_FINGER_PIP
- 15. RING_FINGER_DIP
- 16. RING_FINGER_TIP
- 17. PINKY_MCP
- 18. PINKY_PIP
- 19. PINKY_DIP
- 20. PINKY_TIP

Object Detection and tracking

Model Output

3D hand motion recogintion environment:

The accuracy: How close the acquired data are to their real value

The real time aquisition:

How reliable is my model.

3D hand tracking environment:

Software choice

3D hand tracking environment:

Steps to create the environment

3D hand tracking environment: Acquired data Plots

3D hand tracking environment:

Acquired data Plots

- UART Universal Asynchronous Receiver/Transmitter
- USART Universal Synchronous/Asynchronous Receiver/Transmitter

USART COMMUNICATION

we have established USART communication between STM32H745ZI high-performance MCU and python. The module is used over a USB link which allows the transmission of data from python to the board.

Electrical and Requirement mechanical design

Code and implementation

Problem and solution

Conclusion

Code and implementation

Problem and solution

The main goal of this project is to create and set up a system of hand motion recognition allowing the user to detect to and track the hand gesture in real time using computer vision technology and adding IoT funtionalities. However, this project always remains open for evolution as an example we can add piezelectric sensors allowing the system to manipulate objects in real world.