hw3 gh.py Sep 22, 18 23:54 Page 1/2 ECE471 Selected Topics in Machine Learning - Assignment 2 Submit by Sept. 26, 10pm tldr: Classify mnist digits with a convolutional neural network. Get at least 95.5% accuracy on the test test. import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras.datasets.mnist import load data # Fix seed np.random.seed(1618) tf.set_random_seed(1618) # Data parameters NUM CLASSES = 10 HEIGHT = 28WIDTH = 28NUM CHANNELS = 1 # Load data and split into train, val, test sets (x_train, y_train), (x_test, y_test) = load_data() (x_train, y_train), (x_val, y_val) = \ (x_train[:50000], y_train[:50000]), (x_train[50000:], y_train[50000:]) # Normalize and reshape data and labels x_train, x_val, x_test = \ map(lambda x: (x / 255.0).reshape([-1, HEIGHT, WIDTH, NUM_CHANNELS]), [x_train, x_val, x_test]) y_train, y_val, y_test = \ map(lambda y: keras.utils.to_categorical(y, NUM_CLASSES), [y_train, y_val, y_test]) # Hyperparameters BATCH SIZE = 32 $NUM_EPOCHS = 2$ # Create CNN using Keras API activation = keras.activations.relu regularizer = keras.regularizers.12(1=0.05) model = keras.Sequential() model.add(keras.layers.Conv2D(32, 5, activation=activation, kernel regularizer=regularizer)) model.add(keras.layers.Conv2D(64, 3, activation=activation, kernel_regularizer=regularizer)) model.add(keras.layers.MaxPooling2D(3)) model.add(keras.layers.Dropout(0.25)) model.add(keras.layers.Flatten()) model.add(keras.layers.Dense(128, activation=activation)) model.add(keras.layers.Dropout(0.5)) model.add(keras.layers.Dense(NUM_CLASSES, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adam(), metrics=['accuracy']) model.fit(x_train, y_train, batch size=BATCH SIZE. epochs=NUM_EPOCHS, verbose=1, validation_data=[x_val, y_val]) loss, acc = model.evaluate(x_test, y_test, verbose=1) num_params = np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()])

```
hw3 gh.py
 Sep 22, 18 23:54
                                                                                    Page 2/2
print('Test loss:', loss)
print('Test accuracy:', acc)
print('Number of parameters:', num_params)
''' Output
Train on 50000 samples, validate on 10000 samples
Epoch 1/2
2018-09-22 20:49:57.609976: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions t
hat this TensorFlow binary was not compiled to use: AVX2 FMA
50000/50000 [======] - 125s 2ms/step - loss: 0.5212 - acc: 0.8933 - val loss: 0.2
130 - val acc: 0.9696
Epoch 2/2
50000/50000 [======] - 125s 2ms/step - loss: 0.2682 - acc: 0.9471 - val loss: 0.1
701 – val_acc: 0.9752
10000/10000 [======] - 6s 625us/step
Test loss: 0.164031094706
Test accuracy: 0.9751
Number of parameters: 1266475.0
```