Math 635 Lecture 18

Professor Alejandro Uribe-Ahumada

Transcribed by Thomas Cohn

3/3/21

Beginning where we left off last time...

Cor: Let M be a connected Riemannian manifold. Then $\forall p, q \in M$,

$$d(p,q) \stackrel{\text{def}}{=} \inf \big\{ \ell(c) \mid c \text{ continuous and piecewise } C^1 \text{ curve from } p \text{ to } q \big\}$$

is a distance function on M.

Proof: All that remains to be proved is $d(p,q)=0 \Rightarrow p=q$. So by contraposition, it's enough to show $p\neq q\Rightarrow d(p,q)>0$. Well, if $p\neq q$, then $\exists \varepsilon>0$ s.t. $\exp_p\big|_{B_\varepsilon(0)}$ is a diffeomorphism onto its image, and $q\not\in\exp_p(B_\varepsilon(0))$. Let c be a path from p to q. It's enough to show $\ell(c)>\varepsilon>2$.

Well, by continuity, $\exists t_1 > 0$ s.t. $c(t_1) \in S_{\varepsilon/2}$, the geodesic sphere of radius $\varepsilon/2$ centered at p. But $d(p, c(t_1))$ is the length of any corresponding radial geodesic, which is $\varepsilon/2$. So $\ell(c) \geq \ell(c|_{[0,t_1]}) \geq \varepsilon/2 > 0$. \square

Thm: $\forall p \in M, \exists W \text{ a neighborhood of } p, \text{ and } \exists \delta > 0 \text{ s.t. } \forall q \in W,$

$$\exp_q \big|_{B_{\delta}(0)} : B_{\delta}(0) \stackrel{\sim}{\to} \exp_q(B_{\delta}(0))$$

is a diffeomorphism onto its image, and $W \subseteq \exp_a(B_{\delta}(0))$.

Proof: Recall that given $p \in M$, there's a neighborhood V of p, and $\varepsilon > 0$, such that $\exp : B_{\varepsilon}(TV) \to M$ is defined, where $B_{\varepsilon}(TV) = \{(q, v) \in TV \mid q \in V, ||v|| < \varepsilon\}$. In other words, G(t, q, v) is defined past t = 1. Now, define

$$F: B_{\varepsilon}(TV) \to M \times M$$

 $(q, v) \mapsto (q, \exp_q(v))$

In particular, F(p,0) = (p,p). We claim that F is a local diffeomorphism near 0. To check this fact, introduce coordinates near p, and then "double" them to get coordinates on $M \times M$ near (p,p). Then the Jacobian is the block matrix

$$dF_{(p,0)} = \begin{pmatrix} I & 0 \\ I & I \end{pmatrix}$$

with the bottom-left entry being I because $\exp_q 0 = q$, and the bottom right entry being I because $d(\exp_p)_0 = \operatorname{Id}$. This matrix is invertible, so F is a local diffeomorphism. Thus, there's a neighborhood V' of p, with $V' \subset V$, and a $\delta > 0$, such that

$$F|_{B_{\delta}(TV')} \stackrel{\sim}{\to} F(B_{\delta}(TV'))$$

is a diffeomorphism onto its image, which is a neighborhood of $(p,p) \in M \times M$. Thus, $\exists W$, a neighborhood of p, such that $W \times W \subset F(B_{\delta}(TV'))$. In other words,

$$W \times W \subset \{(q, \exp_q(v)) \mid q \in V', ||v|| < \delta\} \stackrel{F}{\cong} \{(q, v) \mid q \in V', ||v|| < \delta\}$$

So $\forall q \in W, \{q\} \times B_{\delta}(0) \xrightarrow{\sim} \{q\} \times \exp_q(B_{\delta}(0))$ via F under an appropriate restriction. \square

Defn: Such a neighborhood W is called a totally normal neighborhood.

Lemma: Let W be a totally normal neighborhood, and $p, q \in W$. Then there is a unique geodesic (up to reparameterization) joining p and q, and entirely contained in W. Moreover, this geodesic is the shortest path (i.e. continuous and piecewise C^1) joining p to q.

Proof: Let $\gamma:[0,1]\to W$ be a geodesic, with $\gamma(0)=p$ and $\gamma(1)=q$. Lift γ to T_pM by $\exp_p^{-1}\big|_W$. Then $\gamma(t)=\exp_p(c(t))$, where $t\mapsto c(t)\in T_pM$ and c(0)=0. Note that $\dot{\gamma}(0)=\dot{c}(0)$, and $t\mapsto\exp_p(t\dot{c}(0))$ is a geodesic with the same initial conditions as γ . By the uniqueness (up to reparameterization) of geodesics with initial conditions, we must have $\gamma(t)=\exp_p(t\dot{c}(0))$, $\forall t$. This also implies that γ is the shortest path from p to q, since it's a radial geodesic. \square

Cor: All geodesics are locally length-minimizing.

Proof: Let $\gamma: I \to M$ be a geodesic. Take $t_0 \in \text{Int } I$, i.e., $t_0 \in (a,b) \subseteq [a,b] \subseteq I$. By the existence of totally normal neighborhoods of $\gamma(t_0)$, if b-a is small enough, then $\gamma([a,b])$ is contained in a totally normal neighborhood of $\gamma(t_0)$. \square

Cor: Suppose $\gamma:[0,1]\to M$ is a path (continuous, and piecewise C^1), and $d(\gamma(0),\gamma(1))=\ell(\gamma)$. Then γ is a geodesic, and in paricular, it's C^{∞} .

Proof: The idea is that global length minimization leads to local. Let $t_0 \in [0,1]$. Again find a neighborhood [a,b] of t_0 such that $\gamma([a,b])$ is contained in a totally normal neighborhood of $\gamma(t_0)$. Then γ must be the shortest path from $\gamma(a)$ to $\gamma(b)$. This means $\gamma|_{[a,b]}$ must be a geodesic, and γ is smooth in a neighborhood of t_0 . \square