Regularized and Retrofitted models for Learning Sentence Representation with Context

Tanay Kumar Saha¹ **Shafiq Joty**² Naeemul Hassan³ Mohammad Al Hasan¹

¹Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA

²Nanyang Technological University, Singapore

³University of Mississippi, Oxford, Mississippi

November 7, 2017

- Introduction and Motivation
- 2 Our Approach for Learning Sentence Representation
- 3 Experiments
- 4 Conclusion

- Introduction and Motivation
 - Distributed Representation of Sentences
 - Motivation
- Our Approach for Learning Sentence Representation
 - Content Model
 - Context Types
 - Regularized Models
 - Retrofitted Models
- 3 Experiments
 - Evaluation Tasks and Datasets
 - Classification and Clustering Performance
 - Summarization Performance
- 4 Conclusion

Distributed Representation of Sentences

- Represent sentences with condensed real-valued vectors that capture syntactic and semantic properties of the sentence
 - ▶ I play soccer \Rightarrow [0.2, 0.3, 0.4]
- Many sentence-level text processing tasks rely on representing sentences with fixed-length vectors
- ► The most common approach uses bag-of-ngrams (e.g., tf.idf)
- Distributed representation has been shown to perform better

Motivation

- Most existing Sen2Vec methods disregard context of a sentence
- ▶ Meaning of one sentence depends on the meaning of its neighbors
 - And I was wondering about the GD LEV
 - ► Is it reusable?
 - Or is it discarded to burn up on return to LEO?
- Our approach: incorporate extra-sentential context into Sen2Vec
- ▶ We propose two methods: regularization and retrofitting
- ▶ We experiment with two types of context: **discourse** and **similarity**.

- Introduction and Motivation
 - Distributed Representation of Sentences
 - Motivation
- Our Approach for Learning Sentence Representation
 - Content Model
 - Context Types
 - Regularized Models
 - Retrofitted Models
- 3 Experiments
 - Evaluation Tasks and Datasets
 - Classification and Clustering Performance
 - Summarization Performance
- 4 Conclusion

Our Approach

- Consider content as well as context of a sentence
- Treat the context sentences as atomic linguistic units
 - Similar in spirit to (Le & Mikolov, 2014)
 - Efficient to train compared to compositional methods like encoder-decoder models (e.g., SDAE, Skip-Thought)

Content Model (Sen2Vec)

- Treats sentences and words similarly
- Represented by vectors in shared embedding matrix
- **v**: he works in woodworking

Figure: Distributed bag of words or DBOW (Le & Mikolov, 2014)

Context Types

- Discourse Context
 - Formed by previous and following sentences in the text
 - Adjacent sentences in a text are logically connected by certain coherence relations (e.g., elaboration, contrast)
- Similarity Context
 - Based on more direct measures of similarity (e.g., cosine)
 - Considers similarity with all other sentences
- ightharpoonup Context can be represented by a **graph neighborhood**, $\mathcal{N}(\mathbf{v})$

Similarity Network Construction

- ► Represent the sentences with vectors learned from Sen2Vec, then measure the cosine similarity between the vectors
- Restrict context size of a sentence for computational efficiency
- Set thresholds for intra- and across-document connections
- Allow up to 20 most similar neighbors.

Regularized Models (REG-dis, REG-sim)

- ► Incorporate neighborhood **directly** into the objective function of the content-based model (Sen2Vec) as a regularizer
- Objective function:

$$J(\phi) = \sum_{\mathbf{v} \in V} \left[\mathcal{L}_{c}(\mathbf{v}) + \beta \mathcal{L}_{r}(\mathbf{v}, N(\mathbf{v})) \right]$$

$$= \sum_{\mathbf{v} \in V} \left[\underbrace{\mathcal{L}_{c}(\mathbf{v})}_{\text{Content loss}} + \beta \sum_{(\mathbf{v}, \mathbf{u}) \in E} ||\phi(\mathbf{u}) - \phi(\mathbf{v})||^{2} \right]$$
Graph smoothing
$$(1)$$

- Train with SGD
- ightharpoonup Regularization with **discourse** context \Rightarrow Reg-dis
- ightharpoonup Regularization with **similarity** context \Rightarrow REG-sim

Pictorial Depiction

Retrofitted Model (RET-dis, RET-sim)

- **Retrofit** vectors learned from Sen2Vec s.t. the revised vector $\phi(\mathbf{v})$:
 - Similar to the prior vector, $\phi'(\mathbf{v})$
 - Similar to the vectors of its neighboring sentences, $\phi(\mathbf{u})$
- Objective function:

$$J(\phi) = \sum_{\mathbf{v} \in V} \underbrace{\alpha_{\mathbf{v}} ||\phi(\mathbf{v}) - \phi'(\mathbf{v})||^{2}}_{\text{close to prior}} + \underbrace{\sum_{(\mathbf{v}, \mathbf{u}) \in E} \beta_{u, v} ||\phi(\mathbf{u}) - \phi(\mathbf{v})||^{2}}_{\text{graph smoothing}}$$
(2)

- Solve using Jacobi iterative method
- ightharpoonup Retrofit with **discourse** context \Rightarrow Retrofis
- ightharpoonup Retrofit with **similarity** context \Rightarrow Retr-sim

- Introduction and Motivation
 - Distributed Representation of Sentences
 - Motivation
- 2 Our Approach for Learning Sentence Representation
 - Content Model
 - Context Types
 - Regularized Models
 - Retrofitted Models
- 3 Experiments
 - Evaluation Tasks and Datasets
 - Classification and Clustering Performance
 - Summarization Performance
- 4 Conclusion

Evaluation Tasks and Datasets

Extractive summarization (ranking task)

- Select the most important sentences to form a summary
- Use the popular graph-based algorithm LexRank
 - ▶ nodes ⇒ sentences
 - ▶ edges ⇒ cosine similarity between vectors (learned by models)
- Benchmark datasets from DUC-01 and DUC-02 for evaluation

Dataset	#Doc.	#Avg. Sen.	#Avg. Sum.
DUC 2001 DUC 2002	486	40	2.17
DUC 2002	471	28	2.04

Evaluation Tasks and Datasets

Topic classification and clustering

- Use learned vectors to classify or cluster sentences into topics
- ► MaxEnt classifier and K-means++ clustering algorithm
- ► Text categorization corpora: **Reuters-21578** & **20-Newsgroups**.
 - ▶ But, we need sentence-level annotation for evaluation
 - Naive assumption: sentences of a document share the same topic label as the document ⇒ induces lot of noise
 - Our approach: LexRank to select top 20% sentences of each document as representatives of the document

Dataset	#Doc.	Total #sen.	Annot. #sen	Train #sen.	Test #sen.	#Class
Reuters	9,001	42,192	13,305	7,738	3,618	8
Newsgroups	7,781	95,809	22,374	10,594	9,075	

Classification and Clustering Performance

	Topic Classification Results					Topic Clustering Results				
	Reuters			Newsgroups		Reuters		Newsgroups		
	F_1	Acc	κ	F_1	Acc	κ	V	AMI	V	AMI
Sen2Vec	83.25	83.91	79.37	79.38	79.47	76.16	42.74	40.00	35.30	34.74
Tf-ldf W2V-avg C-PHRASE FastSent Skip-Thought	(-) 3.51 (+) 2.06 (-) 2.33 (-) 0.37 (-) 19.13	(-) 2.68 (+) 1.91 (-) 2.01 (-) 0.29 (-) 15.61	(-) 3.85 (+) 2.51 (-) 2.78 (-) 0.41 (-) 21.8	(-) 9.95 (-) 0.42 (-) 2.49 (-) 12.23 (-) 13.79	(-) 9.72 (-) 0.44 (-) 2.38 (-) 12.17 (-) 13.47	(-) 11.55 (-) 0.50 (-) 2.86 (-) 14.21 (-) 15.76	(-) 11.96 (-) 11.94 (-) 15.54	(-) 20.14 (-) 10.18 (-) 10.80 (-) 13.06 (-) 28.00	(-) 29.20 (-) 17.90 (-) 1.70 (-) 34.40 (-) 27.50	(-) 30.60 (-) 18.50 (-) 1.44 (-) 34.16 (-) 27.04
RET-sim RET-dis	(+) 0.92 (+) 1.66	(+) 1.28 (+) 1.79	(+) 1.65 (+) 2.30	(+) 2.00 (+) 5.00	(+) 1.97 (+) 4.91	(+) 2.27 (+) 5.71	(+) 3.72 (+) 4.56	(+) 3.34 (+) 4.12	(+) 5.22 (+) 6.28	(+) 5.70 (+) 6.76
REG-sim REG-dis	(+) 2.53 (+) 2.52	(+) 2.53 (+) 2.43	(+) 3.28 (+) 3.17	(+) 3.31 (+) 5.41	(+) 3.29 (+) 5.34	(+) 3.81 (+) 6.20	(+) 4.76 (+) 7.40	(+) 4.40 (+) 6.82	(+) 12.78 (+) 12.54	(+) 12.18 (+) 12.4 4

Table: Performance on topic classification & clustering in comparison to Sen2Vec

Summarization Performance

	DUC'01	DUC'02	
Sen2Vec	43.88	54.01	
Tf-Idf	(+) 4.83	(+) 1.51	
W2V-avg	(-) 0.62	(+) 1.44	
C-PHRASE	(+) 2.52	(+) 1.68	
FastSent	(-) 4.15	(-) 7.53	
Skip-Thought	(+) 0.88	(-) 2.65	
RET-sim	(-) 0.62	(+) 0.42	
RET-dis	(+) 0.45	(-) 0.37	
REG-sim	(+) 2.90	(+) 2.02	
REG-dis	(-) 1.92	(-) 8.77	

Table: ROUGE-1 scores on DUC datasets in comparison to Sen2Vec

- Introduction and Motivation
 - Distributed Representation of Sentences
 - Motivation
- Our Approach for Learning Sentence Representation
 - Content Model
 - Context Types
 - Regularized Models
 - Retrofitted Models
- 3 Experiments
 - Evaluation Tasks and Datasets
 - Classification and Clustering Performance
 - Summarization Performance
- 4 Conclusion

Conclusion and Future Work

- ► Novel models for learning vector representation of sentences that consider not only content of a sentence but also its context
- Two ways to incorporate context: retrofitting and regularizing
- Two types of context: discourse and similarity
- ▶ Discourse context beneficial for topic classification and clustering, whereas the similarity context beneficial for summarization
- ► Explore further how our models perform compared to existing compositional models, where documents with sentence-level sentiment annotation exists

Thanks!

- Code and Datasets: https://github.com/tksaha/con-s2v/tree/jointlearning
- Check our CON-S2V ECML-2017 paper