

Medical Engineering - Imaging Systems

Ultra Sound

Prof. Dr.-Ing. habil. Andreas Maier Pattern Recognition Lab (CS 5) SS 2021

Ultra Sound

Ultrasound Applications

Ultrasound in Medicine

Physics of Sound Waves

Imaging Modes

Safety in US Imaging

Ultrasound Applications: SONAR

Source: National Ocean Service

Ultrasound Applications: Echolocation

 $Source: By \ Shung \ https://commons.wikimedia.org/w/index.php?curid=11999649$

Ultrasound Applications: Medical

Ultrasound Applications: Medical (cont.)

3D Ultrasound of fetuses. Source: [1]

Ultrasound Applications: Medical (cont.)

Ultrasound image of a beating heart (click for video).

Ultrasound Applications: Medical (cont.)

Applications of ultrasound in medicine

- Pregnancy
- Gynecology
- Gastrointestinal tract
- Heart
- Blood vessels (stenosis, aneurysms)
- Blood flow

Ultra Sound

Ultrasound Applications

Ultrasound in Medicine

Physics of Sound Waves

Imaging Modes

Safety in US Imaging

Ultrasound Imaging

Ultrasound (US) imaging (or ultrasonography)

- A medical imaging technique that uses high frequency sound waves and their echoes
- → similar to echolocation (bats, whales, dolphins) and SONAR (submarines)

Ultrasound Imaging (cont.)

Acoustic spectrum

	Frequencies f	Examples
Infrasound	0 16 Hz	Seismic waves
Audible sound	16 Hz 20 kHz	Music
		Human speech
Ultrasound	20 kHz and up	Bats
		Dolphins
		SONAR
		Acoustic microscopy
		Medical Imaging

 \rightarrow Medical ultrasound: $f \approx 1$ MHz ... 40 MHz

From discovery of underlying physical principles to first clinical scanner

From discovery of underlying physical principles to first clinical scanner

1880: Discovery of piezoelectic effect

From discovery of underlying physical principles to first clinical scanner

1880: Discovery of piezoelectic effect

1920: Ultrasound-based distance measurement in water (SONAR)

From discovery of underlying physical principles to first clinical scanner

1880: Discovery of piezoelectic effect

1920: Ultrasound-based distance measurement in water (SONAR)

1933: Therapeutic use of ultrasound

From discovery of underlying physical principles to first clinical scanner

1880: Discovery of piezoelectic effect

1920: Ultrasound-based distance measurement in water (SONAR)

1933: Therapeutic use of ultrasound

1952: First 2D pulse echo image

From discovery of underlying physical principles to first clinical scanner

1880: Discovery of piezoelectic effect

1920: Ultrasound-based distance measurement in water (SONAR)

1933: Therapeutic use of ultrasound

1952: First 2D pulse echo image

1953: Breast imaging using ultrasound

From discovery of underlying physical principles to first clinical scanner

1880: Discovery of piezoelectic effect

1920: Ultrasound-based distance measurement in water (SONAR)

1933: Therapeutic use of ultrasound

1952: First 2D pulse echo image

1953: Breast imaging using ultrasound

1957: Echocardiography using ultrasound motion mode (M-mode)

From discovery of underlying physical principles to first clinical scanner

1880: Discovery of piezoelectic effect

1920: Ultrasound-based distance measurement in water (SONAR)

1933: Therapeutic use of ultrasound

1952: First 2D pulse echo image

1953: Breast imaging using ultrasound

1957: Echocardiography using ultrasound motion mode (M-mode)

1957: Doppler imaging

From discovery of underlying physical principles to first clinical scanner

1880: Discovery of piezoelectic effect

1920: Ultrasound-based distance measurement in water (SONAR)

1933: Therapeutic use of ultrasound

1952: First 2D pulse echo image

1953: Breast imaging using ultrasound

1957: Echocardiography using ultrasound motion mode (M-mode)

1957: Doppler imaging

1958: First ultrasound scanner in clinical use

Ultra Sound

Ultrasound Applications

Ultrasound in Medicine

Physics of Sound Waves

Imaging Modes

Safety in US Imaging

Sound Waves

Waves

- Spatially propagating, periodically repeating processes
- Distinction based on direction of propagation
 - Transverse waves
 - Longitudinal waves

Sound Waves

- Sound waves are longitudinal waves
- Caused by local periodic compression of matter
- In liquids and gases: only longitudinal waves possible

Sound waves can be characterized by

- Frequency f (Hz)
 - Oscillation count per second
- Sound velocity $v \text{ (m s}^{-1})$
 - Independent of f
 - Varies with material properties (e.g. elasticity, density)
- Wavelength λ (m)
 - Distance between two oscillation maxima
- Intensity J (W m⁻²)
 - Acoustic power density

Fundamental wave equation:

$$\lambda = c/f$$

 \rightarrow Sound velocity v = ds/dt

Acoustic impedance Z (g cm⁻² s⁻¹)

Z of a medium is determined by its material properties

$$Z = \sqrt{E \cdot D}$$

Acoustic impedance

Tensile modulus (elasticity)

Density of medium

Sound velocity in, and impedance of various biological materials

Medium	v [m/s]	$Z [{\rm gcm^{-2}s^{-1}}]$
Air	331	43
Fat	1470	1.42 · 10 ⁵
Water	1492	1.48 · 10 ⁵
Brain tissue	1530	1.56 · 10 ⁵
Muscles	1568	1.63 · 10 ⁵
Bones	3600	6.12 · 10 ⁵

Characteristics at Boundaries

At boundaries between two media, sound waves ...

- ...are partially reflected
 - → Reflection coefficient

$$R = \frac{J_r}{J_0} = \left(\frac{Z_2 - Z_1}{Z_2 + Z_1}\right)^2$$

- ...and partially transmitted
 - → Transmission coefficient

$$T = \frac{J_t}{J_0} = \frac{4 \cdot Z_1 \cdot Z_2}{(Z_1 + Z_2)^2}$$

Holds for perpendicular incidence

Reflectivity at boundaries between various materials

Material 1	Material 2	Reflected portion
Brain	Skull bone	43.5%
Fat	Muscle	1%
Fat	Kidney	0.6%
Muscle	Blood	0.1%
Soft tissue	Water	0.25%
Soft tissue	Air	99.9%

Reflection of sound waves at smooth surfaces (angles $lpha_{1},lpha_{2})$

$$lpha_1=lpha_2$$

Diffuse reflection at rough boundaries

 \rightarrow Width of reflection cone increases with decreasing λ and increasing roughness

Small inhomogeneities (size: a) in the material cause scattering of the waves.

- $a \gg \lambda$: Geometric range (high scattering) \rightarrow Vessels
- $a \approx \lambda$: Stochastic range (medium scattering) \rightarrow Liver
- $a \ll \lambda$: Rayleigh range (low scattering) \rightarrow Blood

Reflection

- Reflection defines borders in ultrasound images
- Large portions of the incident intensity can be reflected
 - → especially at borders of materials with large difference in impedance

Scattering ...

- ...adds to reflective response
- ... generates speckle noise
 - \rightarrow especially for inhomogeneities with $a \approx \lambda$ (geometric range)

Attenuation

Exponential law of attenuation

$$J(x) = J_0 \cdot \exp(-\mu \cdot x) \tag{1}$$

Acoustic intensity J decreases with increasing penetration depth (x)

Attenuation coefficient μ [dB]

- Attenuation that occurs with each cm the sound wave travels in a medium.
- Depends on material (tissue type) and ultrasound frequency f
- Consists of absorption μ_a and scattering μ_s part: $\mu = \mu_a + \mu_s$
- Absorption leads to heating of tissue

Attenuation (cont.)

Maximum penetration depth for various frequencies f

f [MHz]	Max. depth [cm]	Typical Applications
1	50	n/a
3.5	15	Fetus, liver, heart, kidney
5	10	Brain
7.5	7	Prostate
10	5	Pancreas (intraoperative)
20	1.2	Eye, skin
40	0.6	Intravascular

- For high maximum penetration depth, small frequencies are necessary.
- Resolution decreases with decreasing frequency
- more later ...

Transducers

Ultrasound transducers

- ... send and receive ultrasound waves (and their echoes)
- ... convert mechanical energy into electrical energy and vice versa
- ... make use of the piezoelectric effect

Source: Medical Imaging Systems [1]

Transducers (cont.)

Piezoelectric effect

- Mechanical pressure (piezo (gr.)) is converted to electric polarization
 - → Electric voltage is generated (measurable using two electrodes)
- Electric field causes stretching of piezoelectric material
 - \rightarrow Can be used to generate sound waves

Spatial Resolution

Lateral resolution

- Minimal distance perpendicular to US beam to distinguish two points
- Affected by beam width and depth of imaging

Axial resolution

- Resolution in direction parallel to US beam
- Does not change with depth
- Also known as longitudinal or azimuthal resolution

Axial resolution (cont.)

Shortest pulse: single wave

Axial resolution (cont.)

Shortest pulse: single wave

- ightarrow Two distinguishable echoes are generated only if $d > \lambda/2$.
- ightarrow Resolution decreases when λ increases (frequency $f = c/\lambda$).

Frequency trade-off

- Transducer frequency is directly related to resolution
 - High frequency → high resolution
 - Low frequency o low resolution
- However, it is also directly related to attenuation
 - High frequency \rightarrow high attenuation
 - Low frequency → low attenuation
- High frequency \rightarrow low penetration depth with high resolution
- Low frequency → deep penetration with low resolution

Frequency trade-off (cont.)

f = 4 MHz

f = 14 MHz

Ultra Sound

Ultrasound Applications

Ultrasound in Medicine

Physics of Sound Waves

Imaging Modes

Safety in US Imaging

Imaging Modes

Most common US imaging modes

- A-mode
- B-mode
- M-mode
- Doppler mode
 - Pulse wave Doppler
 - Continuous wave Doppler
 - Spectral Doppler
 - Color Doppler

A-mode

- Amplitude-mode
- Single transducer scans on a line through the body (1D)
- Depth: time required for US beam to hit boundary and reflect signal
- Reflected signal strength can be measured (amplitude)
- Echoes are plotted on screen as function of depth

→ Simplest scanning method.

B-mode

- Brightness-mode (or 2D mode): spatially encoded echo amplitude
- Time required for echo: position
- Amplitude: image brightness
- Uses array of transducers to generate 2D images

Left to right: sector probe, linear array, curved array.

→ Most common scanning method.

B-mode (cont.)

Prof. Dr.-Ing. habil. Andreas Maier

Heart with enlarged atrium

(sector probe)
Pattern Recognition Lab (CS 5)

(curved array) Medical Engineering II

Liver with large tumor

B-mode (cont.)

Various views of the heart

M-mode

- Motion-mode
- Pulses are emitted in quick succession (same probe position)
- Either an A-mode or a B-mode image is taken each time
- Time-dependent organ movement relative to the probe can be measured
 - \rightarrow velocity of specific organ structures

→ Example: Cardiac (echocardiography) wall movement analysis.

M-mode (cont.)

Combined B- and M-mode visualization of dog heart

Doppler ultrasonography

- Enables visualization of blood flow (velocity)
- Continuous wave (CW) Doppler
 - → Half of transducer array emits, half detects pulses (simultaneously)
 - → No distance information
- Pulsed Wave (PW) Doppler
 - → Pulse-based
 - → Distance information is obtained (time-gating)

 \rightarrow Makes use of the Doppler effect.

Doppler ultrasonography (cont.) - Doppler effect

- Change in wave frequency by relative movement between source and observer
- Characteristic frequency shifts appear → proportional to velocity
- Named after Christian Johann Doppler (*1803, † 1853)
- Examples
 - Siren of ambulance
 - Astronomical red-shift
 - Blood flow

Doppler ultrasonography (cont.)

- Doppler effect in US blood flow imaging
 - Source: Moving blood cells (through scattering of US wave)
 - Observer: US transducer
 - Doppler angle θ (between blood and sound direction) \to the smaller the better

Doppler ultrasonography (cont.)

- Spectral Doppler
 - → Visualize spectrum of blood speeds
- Color Doppler
 - → Color-coded overlay on top of B-mode image

Doppler ultrasonography (cont.)

Spectral doppler.

Doppler ultrasonography (cont.)

Mitral valve insufficiency (dog heart), color doppler

Dimensionality of acquired images

- 1D \rightarrow A- or M-mode
- 2D → many B-mode scan lines (e.g. linear/curved transducer array)
- 3D \rightarrow several 2D images at different angles combined into single volume
- 4D \rightarrow 3D + time

Ultra Sound

Ultrasound Applications

Ultrasound in Medicine

Physics of Sound Waves

Imaging Modes

Safety in US Imaging

Safety in US Imaging

US waves are not ionizing, however they can harm the body ...

- ...through heating
 - \rightarrow locally, proportional to absorbed acoustic intensity (J)
- ... through cavitation
 - → emerging gas bubbles in low pressure phase of sound wave
 - → collapse at high pressure phase
- → Acoustic intensities for medical diagnostics rather low
- → harmless, it is even used during pregnancy

Therapeutical use of ultrasound

- Break up gallstones and kidney stones
- Heat and destroy diseased or cancerous tissue