ROZMAITOŚCI RÓŻNICZKOWALNE. LISTA 3.

Przestrzeń styczna

- 1. Niech $\lambda \neq 0$ będzie stałą rzeczywistą. Dla zbazowanej krzywej $(c, t_0) \in C_p M$ rozważmy krzywą c_λ zadaną wzorem $c_\lambda(t) = c(\lambda t)$. Uzasadnij, że w przestrzeni wektorowej $T_p M$ zachodzi $\lambda \cdot [c, t_0] = [c_\lambda, t_0/\lambda]$.
- 2. Jak zmieniają się wektory styczne do krzywej na rozmaitości M przy zmianie parametryzacji tej krzywej?
- 3. Niech M będzie rozmaitością z brzegiem, i niech $p \in \partial M$. Wyjaśnij dlaczego mamy do czynienia z inkluzją $T_p(\partial M) \subset T_pM$. Uzasadnij też, że $T_p(\partial M)$ jest podprzestrzenią wektorową w T_pM .
- 4. Dla $p \in \partial M$ niech $X \in T_p M$ będzie reprezentowany taką krzywą $[c, t_0]$, że w pewnej mapie $\varphi : U \to H^n = \{x_n \ge 0\}$ wokół $p, \varphi = (\varphi_1, \dots, \varphi_n)$, zachodzi $(\varphi_n \circ c)'(t_0) = 0$.
 - (1) Uzasadnij, że powyższa własność nie zależy od wyboru mapy wokół p.
 - (2) Uzasadnij, że wektor X o tej własności jest wektorem stycznym do brzegu ∂M (w sensie naturalnej inkluzji omówionej w poprzednim zadaniu).

Różniczki gładkich odwzorowań rozmaitości

- 5. Niech $f: M \to N$ będzie gładkim odwzorowaniem, i niech $p \in M$.
 - (1) uzasadnij, że rząd odwzorowania $\psi f \varphi^{-1}$ w punkcie $\varphi(p)$ (odpowiadającym punktowi p w mapie φ) nie zależy od wyboru map φ wokoł p i ψ wokół f(p). Liczbę tę nazywamy rzędem f w punkcie p.
 - (2) Uzasadnij, że rząd f w punkcie p jest równy rzędowi różniczki $df_p:T_pM\to T_{f(p)}N.$
- 6. Uzasadnij, że $d(f \circ g)_p = df_{q(p)} \circ dg_p$.
- 7. Udowodnij, że jeśli funkcja różniczkowalne $f: M \to R$ ma w punkcie p ekstremum lokalne, to $df_p = 0$ (jest zerowym odwzorowaniem).
- 8. Niech $f: M \to N$ będzie gładkim odwzorowaniem rozmaitości. Wykaż, że jeśli $df_p = 0$ dla wszystkich p to f jest odwzorowaniem stałym (na komponentach spójności). Na rozgrzewkę zrób to najpierw dla gładkiej funkcji rzeczywistej $f: M \to R$.

Pochodne kierunkowe i różniczki funkcji rzeczywistych

- 9. Dla funkcji gładkiej $f: M \to R$, wektorów stycznych $X,Y \in T_pM$, oraz liczby rzeczywistej a, uzasadnij następujące wzory dla pochodnych kierunkowych: (aX)f = a(Xf), (X+Y)f = Xf + Yf.
- 10. Dla gładkich funkcji rzeczywistych $f,g:M\to R$ wyprowadź wzory na pochodną w kierunku wektora $X\in T_pM$ dla sumy, iloczynu i ilorazu tych funkcji. Znajdź też odpowiednie wzory na różniczki $d(f+g)_p$, $d(f\cdot g)_p$ i $d(f/g)_p$.

Wiązki styczne i odwzorowania styczne pomiędzy nimi

- 11. Uzasadnij, że wiązka styczna do okręgu S^1 jest dyfeomorficzna z produktem $S^1 \times R$
- 12. Opisz wiązkę styczną rozmaitości ilorazowej M/Γ dla nieciągłej grupy Γ dyfeomerfizmów, jako rozmaitość ilorazową. Sprawdź szczegóły.
- 13. Niech $f: M \to N$ będzie gładkim odwzorowaniem, i niech $df: TM \to TN$ będzie odwzorowaniem stycznym do f.
 - (1) Załóżmy, że $df_p = 0$ i niech $X \in T_pM$. Uzasadnij, że $d(df)_X = 0$.

(2) Załóżmy, że f jest immersją, czyli że ma w każdym punkcie rząd równy wymiarowi dziedziny. Wykaż, że wówczas df jest taże immersją.

Wektory styczne w rozmaitościach produktowych

- 14. Uzasadnij, że dla $(p,q) \in M \times N$ mamy naturalny izomorfizm $T_{(p,q)}(M \times N) \cong T_pM \oplus T_qN$. Izomorfizm ten pozwala mówić o składowych wektora z $T_{(p,q)}M \times N$ stycznych do M i N.
- 15. Oznaczmy przez π_M, π_N rzuty produktu $M \times N$ rozmaitości na składowe M i N odpowiednio. Sprawdź, że składowe wektora stycznego $X \in T_{(p,q)}(M \times N)$ styczne do M i N (wg określenia z zad. 14) są odpowiednio równe wektorom $d(\pi_M)_{(p,q)}(X)$ i $d(\pi_N)_{(p,q)}(X)$.
- 16. Uzasadnij, że wiązka styczna $T(M \times N)$ jest dyfeomorficzna z produktem $TM \times TN$.

Gładkie pola wektorowe na rozmaitościach

- 17. X i Y są gładkimi polami wektorowymi, zaś f jest gładką funkcją na M. Uzasadnij, że (a) $f \cdot X$; (b) X + Y jest gładkim polem wektorowym na M.
- 18. Niech X będzie gładkim polem wektorowym, zaś f gładką funkcją rzeczywistą na rozmaitości M. Uzasadnij, że funkcja rzeczywista $Xf:M\to R$ określona za pomocą pochodnej kierunkowej wzorem Xf(p):=X(p)f jest gładka.
- 19. Posługując się rozkładem jedności uzasadnij, że każde gładkie pole wektorowe na domkniętym podzbiorze $A \subset M$ (czyli pole dające się rozszerzyć gładko na pewne otwarte otoczenie zbioru $A \le M$) daję się rozszerzyć do gładkiego pola na całej rozmaitości M.
- 20. Niech $\gamma:[a,b]\to M$ będzie gądką krzywą taką że (1) $\gamma'(t)\neq 0$ dla wszystkich $t\in[a,b]$, (2) γ jest różnowartościowa. Uzasadnij, że istnieje gładkie pole wektorowe X na M takie, że $X(\gamma(t))=\gamma'(t)$ dla wszystkich $t\in[a,b]$.
- 21. Mówimy, że wektor $X \in T_pM$, dla $p \in \partial M$ jest skierowany do wewnątrz M, jeśli w pewnej mapie φ wokół p X jest zadany krzywą $(c, t_0) \in C_pM$ takż, że $(\varphi_n \circ c)'(t_0) > 0$.
 - (1) Uzasadnij, że powyższa własność zależy tylko od wektora X, a więc nie zależy od wyboru mapy φ oraz krzywej (c, t_0)
 - (2) Posługując się rozkładem jedności udowodnij, że na każdej rozmaitości z brzegiem M istnieje gładkie pole wektorowe, które w punktach brzegu jest skierowane "do wewnatrz" M.