Levenshtein et Classification

Sylvain Gault

8 septembre 2024

- 1 Distance d'Édition
- 2 Classifieur Bayesien
- 3 Régression logistique (en très condensé)

Mesurer la similarité

Correcteur orthographique

- L'utilisateur a tapé « graffe », quel est le mot le plus proche?
 - gaffe
 - greffe
 - ...
 - graphe

Bioinformatique

- Aligner deux séquences de nucléotides avec des mutations
 - -AGGCTATCACCT
 - TAG-CTATCGCCT

Autres

• Traduction automatique, Extraction d'informations, Reconnaissance de la parole, etc.

Distance d'édition

Définition : distance d'édition entre deux chaînes de caractères

- Nombre minimum d'opérations d'édition
 - Insertion
 - Suppression
 - Substitution
- Nécéssaires pour transformer l'une en l'autre

Autres opérations possibles, mais rarement utilisés

- Déplacement longue distance
- Transposition
- ...

Distance d'édition minimum

Exemple

- INTE-NTION
- -EXECUTION
- dss-is----

Calcul

- Distance 5 si toutes les opérations ont un coût 1
- Distance 8 si les substitutions ont un coût 2 (Lenvenshtein)

Autres exemples

Traduction automatique

- Mesurer la qualité de la traduction
 - H : Spokesman confirms senior gorvernment adviser was shot
 - M : Spokesman said senior adviser was shot dead
- 1 substitution, 2 insertions, 1 suppression

Extraction d'Entités Nommées

- Détecter quand il s'agir de la même entité
 - IBM Inc. announced today
 - IBM profits
 - Stanford President John Hennessy announced yesterday
 - for Stanford University President John Hennessy
- Peu de différence : Même entité

Trouver la distance d'édition minimum

Technique

- Recherche un chemin (séquence d'éditions) depuis le début jusqu'à la fin
- État initial : Le mot à transformer
- État final : Le mot à recréer
- Opérateurs : Insertion, suppression, substitution
- Coût : Ce qu'on veut minimiser : Le nombre d'éditions

Définir la similarité

Recherche d'édition minimum

Problèmes et solutions

- L'espace des séquences d'édition est énorme
- Besoin d'une stratégie intelligente

Recherche d'édition minimum

Problèmes et solutions

- L'espace des séquences d'édition est énorme
- Besoin d'une stratégie intelligente
- Beaucoup de chemins amènent au même état

Problèmes et solutions

- L'espace des séquences d'édition est énorme
- Besoin d'une stratégie intelligente
- Beaucoup de chemins amènent au même état
- On a besoin uniquement du plus court chemin

Définition de la distance d'édition minimum

Formalisme

- Chaîne X de longueur n
- Chaîne Y de longueur m
- D(i,j) la distance d'édition minimum entre X[1..i] et Y[1..j]
- On recherche D(n, m)

Programmation Dynamique pour distance d'édition minimum

Programmation dynamique

- Méthode récursive avec cache
- Résoudre un problème par combiaison de solutions à des sous-problèmes
- Approche Bottom-up
 - Calcul de D(i,j) pour des petites valeurs de i,j
 - En déduire la valeur de D(i,j) pour des i,j plus grands
 - \rightarrow Calculer D(i,j) pour tous les $i \le n$ et tous les $j \le m$

Distance de Levenshtein

Initialisation

- D(i,0) = i i suppressions
- D(0,j) = j j insertion

Relation de récurrence

- D(i,j) = minimum de
 - D(i-1,j)+1 suppression
 - D(i, j-1) + 1 insertion
 - D(i-1,j-1)+2 Si $X[i] \neq Y[j]$ substitution
 - D(i-1,j-1) + 0 Si X[i] = Y[j] matching

Terminaison

• Quand D(n, m) est connu

Calculer la similarité

Distance d'Edition Calculer la similarité

Calculer la similarité

Distance d'Edition Calculer la similarité

Calculer la similarité

Trace du chemin

Backtrack

- En pratique, il faut garder une trace du chemin vers l'arrivée
- À chaque nœud, garder en mémoire le ou les nœuds précédents de coût minimum
- Ce chemin donne la séquence d'insertions, suppressions, substitutions, correspondances

Complexité

En temps

- O(nm)
- Il faut remplir toute la grille

En espace

- *O*(nm)
- Il faut remplir toute la grille

De la backtrace

- $\mathcal{O}(n+m)$
- Au pire, on a que des suppression et que des insertions

Distance d'édition pondérée

Podération

- Toutes les erreurs ne sont pas aussi fréquentes
 - Dépend du type d'erreurs considérés : fautes de frappe sur un clavier azerty? Clavier virtuel de smartphone? Fonction "swipe"? Erreurs de reconnaissance vocale? etc.
- Coût différents pour l'insertion de différentes lettres
- Coût différent pour la suppression de différentes lettres
- Coût différent pour la substitutions de différentes paires de lettres
- Algorithme autrement identique

Questions?

Questions?

Questions?

• Questions?

TP

TP

TP

TP

Classifieur Bayesien

- Distance d'Édition
- 2 Classifieur Bayesien
- 3 Régression logistique (en très condensé)

Intuition d'un classifieur bayesien

Exemple

Spam ou non?

Our Names are Frances and Patrick Connolly and our foundation is donating (£1.5 Million Pounds) to you. Contact us via my email at (capinolly@gmail.com) for further details.

Best Regards,

Frances & Patrick Connolly,

Identification d'auteurs

Comment savoir qui a écrit quel texte?

- En 1787-1788, des lettres anonymes ont été envoyé à l'état de New-York pour ratifier la constitution
- Leurs 3 auteurs étaient connus
- L'auteur de 12 de ces lettres restait non-identifié
- Résolu en 1963 Mosteller et Wallace avec une méthode Bayesienne

Intuition d'un classifieur bayesien

Identification du genre de l'auteur

Auteur masculin ou féminin?

- Nombre de pronoms, de déterminants, de groupe nominaux, etc.
- Féminin : Plus de pronoms
- Masculin : Plus de faits et déterminants

Classifieur Bayesien

Intuition d'un classifieur bayesien

Analyse de sentiments

Avis sur les films : Positif ou négatif?

• Incroyablement décevant

Intuition d'un classifieur bayesien

Analyse de sentiments

Avis sur les films : Positif ou négatif?

- Incroyablement décevant
- Rempli de personnages loufoques, de savante satire et d'énormes retournements de situation

Intuition d'un classifieur bayesien

Analyse de sentiments

Avis sur les films : Positif ou négatif?

- Incroyablement décevant
- Rempli de personnages loufoques, de savante satire et d'énormes retournements de situation
- Ce film est le plus grand échec jamais filmé

Analyse de sentiments

Avis sur les films : Positif ou négatif?

- Incroyablement décevant
- Rempli de personnages loufoques, de savante satire et d'énormes retournements de situation
- Ce film est le plus grand échec jamais filmé
- Pathétique. Le pire était le passage avec les scènes de boxe

Catégorisation d'articles scientifiques

Exemples

- Antagonistes et inhibiteurs
- Chimie
- Médication
- Embryologie
- Épidémiologie
- ...

Classification de texte

Type de tâches

- Assigner une catégorie de sujet, un genre, ...
- Détection de spam
- Identification d'auteurs
- Identification d'âge et genre
- Analyse de sentiment
- Identification de langue
- ...

Intuition d'un classifieur bayesien

Classification de texte

Définition

- Entrée :
 - Un document d
 - Un ensemble déterminé de classes $C = c_1, c_2, ..., c_k$
- Sortie :
 - Une classe $c \in C$

Méthodes de classification

Méthodes manuelles

- Règles basées sur des combinaisons mots ou autres features
 - « dollar » + « donated »
- Fonctionne raisonnablement bien
- Maintenir les règles à jour demande beaucoup d'effort
- → Utile comme premier filtre

Méthodes de classification

Machine Learning Supervisé

- Entrée :
 - Un document d
 - Un ensemble déterminé de classes $C = c_1, c_2, ..., c_k$
 - Un jeu de données d'entraînement de n exemples correctement classifiés $(d_1, c_1), (d_2, c_2), ..., (d_n, c_n)$
- Sortie :
 - Un classifieur $\gamma: d \rightarrow c$

Méthodes de classification

Méthodes existantes

- Classifieur bayesien naïf
- Régression logistique
- SVM (Support-Vector Machine)
- KNN (k-Nearest Neighbors)
- ...

Méthodes de classification

Méthodes existantes

- Classifieur bayesien naïf
- Régression logistique
- SVM (Support-Vector Machine)
- KNN (k-Nearest Neighbors)
- ..

Intuition d'un classifieur bayesien

Méthodes de classification

Méthodes existantes

- Classifieur bayesien naïf
- Régression logistique
- SVM (Support-Vector Machine)
- KNN (k-Nearest Neighbors)
- ...

Classifieur Bayesien

Intuition d'un classifieur bayesien

Intuition de la classification bayesienne naïve

Présentation

- Basée sur le théorème de Bayes
- Représente les documents comme des sacs de mots (Bag of Words)

Bag of Words

Description

- Perd l'ordre des mots (comme un ensemble)
- Garde l'information du nombre d'occurence des mots
- Peut être appliqué sur un sous-ensemble des mots

Exemple : entrée

• « je me présente, je m'appelle Henry »

Exemple: sortie

- « je » : 2
- « me » : 1
- « présente » : 1
- •

Classifieur Bayesien

Intuition d'un classifieur bayesien

Bag of Words

Utilisation

- Affecter un certain poids à chaque mot pour chaque classe
- Ex. : « génial » vs. « nul », « algorithm » vs. « protein »

Théorème de Bayes appliqué aux documents

Théorème de Bayes

• Pour un document d et une classe c

$$P(c|d) = \frac{P(d|c)P(c)}{P(d)}$$

Formalisation

Utilisation du théorème de Bayes

Utilisation

$$c^* = \operatorname*{argmax}_{c \in \mathcal{C}} P(c|d)$$

$$= \operatorname*{argmax}_{c \in \mathcal{C}} \frac{P(d|c)P(c)}{P(d)}$$

$$= \operatorname*{argmax}_{c \in \mathcal{C}} P(d|c)P(c)$$

 Produit de la vraisemblance et de la probabilité à priori de la classe c

Classifieur bayesien naïf

Calcul

$$c^* = \underset{c \in C}{\operatorname{argmax}} P(d|c)P(c)$$
$$= \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, ..., x_n|c)P(c)$$

• x_i les features du documents : liste des mots, longueur, etc.

Calcul

$$c^* = \operatorname*{argmax}_{c \in C} P(x_1, x_2, ..., x_n | c) P(c)$$

- P(c): Probabilité d'une classe c quelque soit le document
 - Probabilité d'un spam quelque soit le mail
 - Probabilité d'un avis négatif quelque soit le commentaire
 - Probabilité d'une autrice quelque soit l'œuvre

Classifieur bayesien naïf

Calcul

$$c^* = \operatorname*{argmax}_{c \in C} P(x_1, x_2, ..., x_n | c) P(c)$$

- P(c): Probabilité d'une classe c quelque soit le document
 - Probabilité d'un spam quelque soit le mail
 - Probabilité d'un avis négatif quelque soit le commentaire
 - Probabilité d'une autrice quelque soit l'œuvre
- Fréquence d'apparition de la classe c dans le corpus d'entraînement

Classifieur bayesien naïf

Calcul

$$c^* = \operatorname*{argmax}_{c \in C} P(x_1, x_2, ..., x_n | c) P(c)$$

- Calculer directement $P(x_1, x_2, ..., x_n | c)$ nécessiterait d'optimiser $\mathcal{O}(|X|^n |C|)$ variables
- Seulement possible avec énormément d'exemples

Supposition d'indépendance : Naïveté

But

• Calculer $P(x_1, x_2, ..., x_n | c)$

Suppositions

- Bag of Words: Supposition que la position des mots n'a pas d'importance
- Indépendance conditionnelle : Suppose que la probabilité des $P(x_i|c_j)$ sont indépendantes pour une classe c donnée

Résultat

$$P(x_1, x_2, ..., x_n | c) = P(x_1 | c)P(x_2 | c)...P(x_n | c)$$

Classifieur bayesien naïf multinomial

Formule non-naïve

$$c^* = \operatorname*{argmax}_{c \in C} P(x_1, x_2, ..., x_n | c) P(c)$$

Formule naïve

$$c^* = \operatorname*{argmax}_{c \in \mathcal{C}} P(c) \prod_{x \in X} P(x|c)$$

39 / 57

Application à la classification de texte

Application

$$c^* = \underset{c \in C}{\operatorname{argmax}} P(c) \prod_{x \in X} P(x|c)$$

- Pour chaque classe c_i
- Calculer $P(c_i) \prod P(w_i|c_i)$ $w_i \in BoW$
- Retenir la classe qui a la probabilité la plus élevée

Calcul du produit en pratique

Problème

$$c^* = \underset{c \in C}{\operatorname{argmax}} P(c) \prod_{x \in X} P(x|c)$$

- Les valeurs de P(X|c) sont petites (très inférieures à 1)
- Leur produit est encore plus petit
- On arrive à 0 et plus rien ne se passe

Calcul du produit en pratique

Solution

• Passer au log

$$c^* = \underset{c \in C}{\operatorname{argmax}} \log \left(P(c) \prod_{x \in X} P(x|c) \right)$$
$$= \underset{c \in C}{\operatorname{argmax}} \log (P(c)) + \sum_{x \in X} \log (P(x|c))$$

- Le log change les produits en sommes
- Mais ne change pas l'ordre des classes
 - $0 < a < b \Leftrightarrow log(a) < log(b)$
- C'est un max sur une somme de poids
- Le classifieur Bayesien naïf est un classifeur linéaire

Application à la classification de texte

Application

$$c^* = \operatorname*{argmax}_{c_j \in C} P(c_j) \prod_{w_i \in BoW} P(w_i | c_j)$$

• Comment calculer ces $P(w_i|c_i)$?

Entraînement d'un modèle bayesien naïf

Première idée

- Utiliser les fréquences d'apparition des mots dans les données d'entraînement
- $P(c_j)$: Probabilité d'une classe : pourcentage de documents de cette classe dans le corpus d'entraînement
 - Pourcentage de spam, pourcentage de femmes, ...
- $P(w_i|c_j)$: Parmi tous les documents de classe c_j , quelle est la probabilité de rencontrer le mot w_i ?

Entraînement d'un modèle bayesien naïf

Première idée

- Utiliser les fréquences d'apparition des mots dans les données d'entraînement
- $P(c_j)$: Probabilité d'une classe : pourcentage de documents de cette classe dans le corpus d'entraînement
 - Pourcentage de spam, pourcentage de femmes, ...
- $P(w_i|c_j)$: Parmi tous les documents de classe c_j , quelle est la probabilité de rencontrer le mot w_i ?
 - Sélectionner tous les documents de classe c_i
 - Compter le pourcentage d'occurrence du mot w_i par rapport à tous les mots.

Entraînement d'un modèle bayesien naïf

Problème

- $\widehat{P}(w_i|c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)}$
- Si un mot n'a pas été vu dans l'ensemble d'entraînement
- $\widehat{P}("fantastique"|positif) = 0$
- Donc la classe positif ne sera jamais sélectionnée avec la formule :
- $c^* = \underset{c_j \in C}{\operatorname{argmax}} P(c_j) \prod_{w_i \in BoW} P(w_i | c_j)$

Entraînement

Entraînement d'un modèle bayesien naïf

Solution

• Lissage Laplacien (Lissage additif)

$$\widehat{P}(w_i|c_j) = \frac{count(w_i, c_j) + 1}{\sum_{w \in V} (count(w, c_j) + 1)}$$

$$= \frac{count(w_i, c_j) + 1}{\left(\sum_{w \in V} count(w, c_j)\right) + |V|}$$

Entraînement

Étapes

- À partir du corpus d'entraînement, extraire le Volcabulaire V
- Calculer les $P(c_j)$ comme le pourcentage de documents de la classe c_j parmi tout le corpus.
- Calculer les $P(w_i|c_j)$
 - Concaténer tous les documents de la classe c_j dans un méga-document Text_i
 - Pour chaque mot $w_k \in V$:
 - $n_k \leftarrow$ nombre d'occurrence du mot w_k dans $Text_i$
 - $P(w_i|c_j) \leftarrow \frac{n_k+1}{n+|V|}$

Optimisation pour l'analyse de sentiments

Fréquence des mots

- L'apparition des mots est plus importante que leur fréquence
 - Le fait que le mot fantastique apparaîsse nous apporte beaucoup d'information
 - Le fait qu'il apparaîsse 5 fois, beaucoup moins

Classifieur Bayesien Naïf Binaire

- Ou binary NB
- Coupe le comptage des mots à 1
- Note : différent du classifieur Bayesien Naïf de Bernoulli

Questions?

Questions?

Questions?

Questions?

• Questions?

TP TP

TP

TP

TP

- 1 Distance d'Édition
- 2 Classifieur Bayesien
- 3 Régression logistique (en très condensé)

Régression logistique

Généralités

- Outil important dans beaucoup de sciences naturelles et sociales
- Modèle de base pour ML
- Base des réseaux de neurones (1 ReLU = stack de sigmoïdes)

Modèles génératifs et discriminatifs

Classifieur Bayesien Naïf

- Génératif
- Il construit une représentation explicite des classes
 - Quels mots sont probablement du spam
 - Quels features d'une image sont très cat-like ou dog-like
- $c^* = \operatorname{argmax}_{c \in C} P(d|c)P(c)$

Régression logistique

- Discriminatif
- Il essaye juste de distinguer les classes sans apriori sur ce qui est pertinent
 - Les spams contiennent le symbole \$
 - Les chiens ont des colliers
- $c^* = \operatorname{argmax}_{c \in C} P(c|d)$

Régression logistique vue de très loin

Vu de loin

- Étant donné des données avec plusieurs features x_i
- Prédit une classe y
- Rien d'autre qu'une fonction linéaire sur les x_i
- Applique une sigmoïde pour garder le résultat du calcul entre 0 et 1

Régression logistique vue de très loin

Vu de loin

- Étant donné des données avec plusieurs features x_i
- Prédit une classe y
- Rien d'autre qu'une fonction linéaire sur les x_i
- Applique une sigmoïde pour garder le résultat du calcul entre 0 et 1
- Le reste c'est du détail technique pour faire marcher le bousin

Régressions logistiques

Autres aspects qui font marcher le truc

- La fonction de coût cross-entropy
 - son log marche bien avec l'exp de la sigmoïde
- La descente de gradient
 - Manière d'ajuster les poids (pas la seule)
- Variante stochastique de la descente de gradient
 - Plus rapide et facile à calculer (tient en mémoire)
- Variante mini-batch
 - Convergence plus lisse

Régressions logistiques pour le NLP

Appliquées sur le Bag-of-Words

- Les features sont les fréquences d'apprition des mots
- Potentiellement tronquées à 1
- Potentiellement tronquées à k
- Potentiellement « écrasées » avec un log

Questions?

Questions?

Questions?

Questions?

• Questions?

TP TP

TP

TP

TP