Descriptive Statistics

Representative value

 Mean, median, mode, range, min, max, variation, standard deviation, interquartile range, outlier

Visualization

- Histogram
- Boxplot
- Scatterdiagram

Data for task

- Install packages
 - "Rling"
 - Download "Rling_1.0.tar.gz"
 - > install.packages("C:/yourpath/Rling_1.0.tar.gz", repos=NULL, type="source") # or
 - > install.packages(file.choose(), repos=NULL, type="source")
- Load packages
 - > library(Rling) #install first
- Load data
 - > data(ldt)
- Load "Idt.Rdata" directly
- Check data "ldt" with head() and str()

Measures of central tendency

- Mean

Mean

- aka, the average
$$\frac{-}{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Median
 - The middle value when values are ranked in ascending or descending order
 - (n+1)/2th value, where n='number of values'
 - Useful when there are extreme values that seriously affect the mean
 - Example: consider salaries of a company's 6 employees: \$17,200, 18,500, 21,200, 23,000, 24,200 while the company CEO's salary is \$225,000. The company's mean salary will be \$54,850 while teh median will be: \$22,100
- Mode
 - Most frequently occurring value
 - Useful for finding most common, popular item/characteristic of a data set
 - Possible to have more than one mode
 - Example: in the data set [2, 3, 5, 5, 6, 7, 7, 8, 10] modes are: 5 and 7 (bimodal)
- In a symmetrical distribution, mean, median and mode will be identical

Measures of central tendency in R (2)

- Check the mean of word length
 - mean(ldt\$Length)
- Check the median of word length
 - Median: the value in the middle of the ordered values
 - Sort word length values in ascending order
 - Check the 50th and 51st element
 - median (odd-numbered items): the middle value
 - median (even-numbered items): average of the two middle values
 - measure the median of word length using function median()

Measures of central tendency in R (3)

- Check the mode of the word length
 - No built-in function for 'mode'
 - Using table() and names()
 - > myt = table(ldt\$Length)
 - > names(myt)[myt == max(myt)]
- Task (mymode)
 - Write a function 'mymode' that inputs a numeric vector and outputs its mode value(s).
 - Test your function with "Idt\$Length"
 - Test your function with "var= c(2, 3, 5, 5, 6, 7, 7, 8, 10)"

Measures of dispersion

Range

- Representing min and max values
- Use range(), min(), max()

Variance

- The average of the squared deviations from the mean
- Use var()

Why squared?

Stadndard deviation

- The square root of the variance
- Use sd() or sqrt(var())

Interquartile range

- The difference between the third (75%) and the first (25%) quartiles.
- A robust measure as impact of outliers are weakened
- Useful for non-normal distribution
- Use IQR()

	population	sample	
variance	$\sigma^2 = \frac{1}{n} \sum_{i=1}^n \left(x_i - \overline{x} \right)^2$	$s^{2} = \frac{1}{(n-1)} \sum_{i=1}^{n} \left(x_{i} - \overline{x} \right)^{2}$	
standard deviation	$\sigma = \sqrt{\sigma^2}$	$S = \sqrt{S^2}$	

Outliers

- A data point or observation whose value is quite different from the others in the data set being analyzed
- Sometimes they represent data entry errors
- To check if the data was entered correctly
- To investigate whether the cases in question actually belong to the same population as the other cases

Histogram (1)

- Histogram
 - Numerical data (continuous, discrete)
 - Cf. bar chart (categorical data)

Histogram (2)

- Basic histogram
 - > md = ldt\$Length
 - > hist(md)

(or, hist(ldt\$Length)

Histogram (3)

Adjust graph with arguments

```
> hist(md, main="Word Length"
xlab="Num of letters",
col="yellow")
```


Histogram (4)

Density plot

> hist(md, main="Word Length", xlab="Num of letters", col="yellow", prob=TRUE)

> lines(density(md), lwd=1.5)

Histogram (5)

Show mean and median

```
>hist(md, main="Word Length",
xlab="Num of letters",
col="yellow", prob=TRUE)
>lines(density(md), lwd=1.5)
>abline(v=mean(md), col="red",
lwd=2)
>abline(v=median(md), col="blue",
lwd=2)
```


Histogram (6)

Add legend

```
>hist(md, main="Word Length",
xlab="Num of letters", col="yellow",
prob=TRUE)
>lines(density(md), lwd=1.5)
>abline(v=mean(md), col="red", lwd=2)
>abline(v=median(md), col="blue",
lwd=2)
> legend(x="topright", c("mean",
"median"), col=c("red", "blue"),
lwd=c(2,2)
```


Box plot (1)

 Shows a variable's spread, symmetry, skewness and outliers

Box plot (2)

Box plot (3)

Box plot

>boxplot(md,
main="Word Length",
ylab="Num of
Characters", col="green")

Box plot (4)

Task

 Using the data below, draw histograms and a box plot and compare them.

	А	В	С	D
Score 1	12	6	2	1
Score 2	15	22	3	22
Score 3	23	26	6	36
Score 4	24	33	8	37
Score 5	30	35	13	45
Score 6	31	47	14	47
Score 7	33	54	19	48
Score 8	36	55	23	51
Score 9	50	62	60	52
Score 10	73	63	69	69

Scatter diagram

- Correlation between two variables...
- Cover it more in the correlation chapter...

Graph into file

- Save a graph into a file
 - Use functions: jpeg(), bmp(), png(), tiff()
 - Example:
 - > jpeg("filename.jpg")
 - > hist(mydata)
 - > dev.off()