1 Let (X,d) be a metric space and let A,B be two non-empty subsets of X. Prove that if $A \cap B \neq \emptyset$, then we have the following inequality for the diameters:

Homework 8

$$\delta(A \cup B) \le \delta(A) + \delta(B)$$
.

Solution If A or B or unbounded, then there is nothing to prove.

Assume A and B are unbounded. Let $a, b \in A \cup B$. Then there are two cases:

 $a, b \in A \text{ or } a, b \in B$

It follows trivially that $d(a,b) \leq \delta(A) + \delta(B)$ in either case.

 $a \in A$ and $b \in B$

Note that this case is this same if a and b are switched since a metric is symmetric.

Let $c \in A \cap B$.

$$d(a,b) \leq d(a,c) + d(c,b)$$

Since $c \in A$, $d(a,c) \leq \delta(A)$, and since $c \in B$, $d(c,b) \leq \delta(B)$. Thus,

$$d(a,b) \le \delta(A) + \delta(B)$$
.

Combining the inequalities, we have that $d(a,b) \le \delta(A) + \delta(B)$ for all $a,b \in A \cup B$. Thus, $\le \delta(A) + \delta(B)$ is an upper bound for d(a,b) for all $a,b \in A \cup B$, so by definition,

$$\delta(A \cup B) = \sup\{d(a, b) \mid a, b \in A \cup B\} \le \delta(A) + \delta(B).$$

2 Let X be a non-empty set and let $d: X \times X \to \mathbb{R}$ be the discrete metric on X defined as follows: for any $x, y \in X$,

$$d(x,y) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}$$

Find the open and the closed subsets of this metric space.

Solution An open ball with radius $0 < r \le 1$ centered at $a \in X$ is simply the set $\{a\}$. If r > 1, then the open ball is X. In other words, every neighborhood of a point a is either the set $\{a\}$ or the entire set X.

Let A be a non-empty proper subset of X. Then every point of A has an open ball contained in A, so every element of A is in A° . As A is a proper subset of X, any open ball contained in A must have radius $0 < r \le 1$. It follows that every point in A° is contained in A. Thus, every non-empty proper subset of A is open.

Let $x \in X$. Then x is adherent point of A if $x \in A$. Otherwise, we can take a ball of radius 1, and it will have no intersection with A. Thus, we have that $\bar{A} \subseteq A$. Since $A \subseteq \bar{A}$, we have that $A = \bar{A}$. Thus, every non-empty proper subset of X is closed.

If A is empty or exactly X, then A is both closed and open. So, every subset of X is both open and closed.

3 Let (X, d_1) be a metric space and let $d_2: X \times X \to \mathbb{R}$ be the metric defined as follows: for any $x, y \in X$,

$$d_2(x,y) = \frac{d_1(x,y)}{1 + d_1(x,y)}.$$

Prove that a subset A of X is open with respect to the distance d_1 if and only if it is open with respect to the distance d_2 .

Solution We will denote open balls with respect to d_i with a superscript i.

$$"\Longrightarrow"$$

We will show that given r > 0 and $a \in X$, an open ball of radius r with respect to d_2 is contained in an open ball of radius r with respect to d_1 .

First note that if $x \geq 0$,

$$x - \frac{x}{1+x} = \frac{x^2}{1+x} \ge 0 \implies x \ge \frac{x}{1+x}$$

with equality only when x = 0. Thus,

$$d_2(x,a) = \frac{d_1(x,a)}{1 + d_1(x,a)} \le d_1(x,a).$$

So, an open ball with radius r with respect to d_2 is contained in an open ball with radius r with respect to d_1 .

Let a be an interior point of A with respect to d_1 . Then for some r > 0, $B_r^2(a) \subseteq B_r^1(a) \subseteq A$. Thus, a is also an interior point of A with respect to d_2 . Thus, all interior points of A with respect to d_1 are also interior points with respect to d_2 , so A is open with respect to d_2 .

Note that $d_2(x,y) < 1$ for all $x,y \in X$. So, every open ball with radius $r \ge 1$ is the entire set X.

If A = X, then A is clearly open with respect to d_1 .

If $A \subset X$, then consider the complement of A. We wish to show that if $A^{\mathbb{C}}$ is closed with respect to d_2 , then it is also closed with respect to d_1 .

Let a be an adherent point of $A^{\mathbb{C}}$ with respect to d_2 . Then there exists r > 0 such that $B_r^2(a) \cap A^{\mathbb{C}} \neq \emptyset$. From the first case, we proved that $B_r^2(a) \subseteq B_r^1(a)$. Thus, $B_r^1(a) \cap A^{\mathbb{C}} \neq 0$. It follows that $A^{\mathbb{C}}$ is closed with respect to d_1 , which, by definition, means that A is open with respect to d_1 . **4** Let $1 \leq p, q \leq \infty$ and consider the two metrics on \mathbb{R}^n given by

$$d_p(x,y) = \left(\sum_{k=1}^n |x_k - y_k|^p\right)^{1/p} \quad \text{and} \quad d_q(x,y) = \left(\sum_{k=1}^n |x_k - y_k|^q\right)^{1/q},$$

with the obvious modifications if p or q are infinity. Prove that a set $A \subseteq \mathbb{R}^n$ is open with respect to the metric d_p if and only if it is open with respect to the distance d_q .

Solution We will first show that if $p \ge q$, then $d_p(x,0) \le d_q(x,0)$. Consider $\left(\sum_{k=1}^n |a_k|^x\right)^{1/x}$ for x > 0. Then its derivative is

$$\left(\sum_{k=1}^{n}|a_{k}|^{x}\right)^{1/x}\left(-\frac{1}{x^{2}}\sum_{k=1}^{n}|a_{k}|^{x}+\frac{\sum_{k=1}^{n}|a_{k}|^{x}\ln|a_{k}|}{x\sum_{k=1}^{n}|a_{k}|^{x}}\right)=\left(\sum_{k=1}^{n}|a_{k}|^{x}\right)^{1/x}\left(\frac{-\left(\sum_{k=1}^{n}|a_{k}|^{x}\right)^{2}+\sum_{k=1}^{n}|a_{k}|^{x}\ln|a_{k}|^{x}}{x^{2}\sum_{k=1}^{n}|a_{k}|^{x}}\right)$$

Since $x > \ln x$ for all x > 0, the derivative is negative. So, $p \ge q \implies d_p(x,0) \le d_q(x,0)$.

We will denote open balls with respect to d_i with a superscript i.

Let $1 \le p, q < \infty$. Assume without loss of generality that $p \ge q$. Then $d_p(x-y,0) = d_p(x,y) \le d_q(x-y,0) = d_q(x,y)$.

 $"\Longrightarrow"$

If A is open with respect to d_p , then $A^{\rm C}$ is closed with respect to d_p . Since $d_p(x,y) \leq d_q(x,y)$, $B_r^p(x) \subseteq B_r^q(x)$ for all $x \in X$ and r > 0. Thus, if $x \in A^{\rm C}$, then $B_r^p(x) \cap A^{\rm C} \neq \emptyset$. It follows that $B_r^q(x) \cap A^{\rm C} \neq \emptyset$ as well. Thus, if x is an adherent point of $A^{\rm C}$ with respect to d_p , then it is an adherent point of $A^{\rm C}$ with respect to d_q as well. So, $A^{\rm C}$ is closed with respect to d_q , meaning A is open with respect to d_p .

" 🚐 "

Assume A is open with respect to d_q . Let x be an interior point of A with respect to d_q . Then $B_r^p(x) \subseteq B_r^q(x) \subseteq A$, so by definition, A is open with respect to d_p as well.

We can switch the role of p and q, and the result will be the same.

If $p = q = \infty$, then $d_p = d_q$, so there is nothing to prove. If $p = \infty$ while q is finite (or vice versa), then we still have $d_p(x, y) \le d_q(x, y)$, so we can apply the same argument as the above.

5 Let (X, d) be a metric space and let A be a non-empty subset of X. Prove that A is open if and only if it can be written as the union of a family of open balls of the form $B_r(x) = \{y \in X \mid d(x, y) < r\}$.

Solution " \Longrightarrow "

Suppose A is open. Then we have that $A = A^{\circ}$. By definition, for every point $a \in A$, there exists $r_a > 0$ such that $B_{r_a}(a) \subseteq A$. Since $a \in B_{r_a}(a)$,

$$A = \bigcup_{a \in A} \{a\} \subseteq \bigcup_{a \in A} B_{r_a}(a) \subseteq A.$$

Thus, A is a union of open balls.

" ⇐ "

Suppose A is a union of open balls. A union (finite or infinite) of open sets is open, so A is open.

- **6** Fix r > 0. Let (X, d) be a metric space and let A be a non-empty subset of X with diameter $\delta(A) < r$. Let $a \in X$ and assume that $A \cap B_r(a) \neq \emptyset$. Then $A \subseteq B_{2r}(a)$.
- **Solution** Let $b \in A$ and $c \in A \cap B_r(a)$. As $b, c \in A$, d(b, c) < r. Since $c \in B_r(a)$, we have that d(a, c) < r. Then by the triangle inequality, $d(b, a) \le d(b, c) + d(c, a) < 2r$. By definition, $b \in B_{2r}(a)$. This applies to all $b \in A$, so $A \subseteq B_{2r}(a)$.
 - 7 Let (X,d) be a metric space and let A,B be two non-empty subsets of X. Prove that

$$A^{\circ} \cap B^{\circ} = (A \cap B)^{\circ}$$
 and $(A^{\circ})^{\circ} = A^{\circ}$.

- **Solution** $x \in (A \cap B)^{\circ} \iff \exists r > 0 \text{ s.t. } B_r(x) \subseteq A \cap B \iff B_r(x) \subseteq A \text{ and } B_r(x) \subseteq B \iff x \in A^{\circ} \text{ and } x \in B^{\circ}.$ $x \in (A^{\circ})^{\circ} \iff \exists r > 0 \text{ s.t. } B_r(x) \subseteq A^{\circ} \subseteq A \iff x \in A^{\circ}.$
 - **8** Let (X, d) be a metric space and let A be a subset of X. Prove that a point $x \in X$ is an adherent point of A if and only if d(x, A) = 0.

Solution " \Longrightarrow "

Let $x \in X$ be an adherent point of A. Then for all r > 0, $A \cap B_r(x) \neq \emptyset$. Thus, for all r, there exists $a \in A$ such that $0 \le d(x, a) < r$. Since this is true for any r > 0, 0 is clearly the greatest lower bound. Thus, $\inf\{d(x, a) \mid a \in A\} = d(x, A) = 0$.

"⇐="

Let $x \in X$ and assume d(x, A) = 0. Let r > 0. Then by definition, there exists $a \in A$ such that d(x, a) < r. If not, then 0 would not be the greatest lower bound for the distance between x and a. Thus, $B_r(x) \cap A \neq \emptyset$. This holds for all r > 0, so by definition, x is an adherent point of A.

- **9** Let (X,d) be a metric space and let A be a subset of X. Prove that the diameter of A is equal to the diameter of the closure of A, that is, $\delta(A) = \delta(\bar{A})$.
- **Solution** Let $x, y \in \bar{A}$. Then by definition, for every r > 0, we have that $B_{r/2}(x) \cap A \neq \emptyset$ and $B_{r/2}(y) \cap A \neq \emptyset$. Let $a_x \in B_{r/2}(x) \cap A$ and $a_y \in B_{r/2}(y) \cap A$. Then $d(x,y) \leq d(x,a_x) + d(y,a_y) + d(a_x,a_y) < \delta(A) + r$. Thus, $d(x,y) \leq \delta(A)$ for all $x,y \in \bar{A}$. So, $\delta(\bar{A}) \leq \delta(A)$. If $\delta(\bar{A}) = \infty$, then it follows that $\delta(A) = \infty$ also.

We also have that $A \subseteq \bar{A} \implies \delta(A) \le \delta(\bar{A})$. If $\delta(A) = \infty$, then $\delta(\bar{A}) = \infty$ as well.

Taking the two inequalities, we have $\delta(A) = \delta(\bar{A})$ as desired.

10 Let (X,d) be a metric space and let A be a subset of X and O be an open subset of X. Prove that

$$O \cap \overline{A} \subseteq \overline{O \cap A}$$
 and $\overline{O \cap \overline{A}} = \overline{O \cap A}$.

Conclude that if $O \cap A = \emptyset$, then $O \cap \bar{A} = \emptyset$.

Solution If $O \cap \overline{A} = \emptyset$, then the proof is trivial. Assume the intersection is non-empty.

Let $a \in O \cap \overline{A}$. Then there exists R > 0 such that $B_R(a) \subseteq O$ and $B_R(a) \cap A \neq \emptyset$. Then $B_R(a) \cap O \cap A = B_R(a) \cap A \neq \emptyset$. If r < R, then the same reasoning holds. If r > R, then $B_R(a) \subseteq B_r(a)$, so $B_r(a) \cap A$ is non-empty.

First note that $\bar{O} \cap \bar{A} \subseteq \overline{\bar{O} \cap \bar{A}} \subseteq \bar{O} \cap \bar{A} \implies \bar{O} \cap \bar{A} = \overline{\bar{O} \cap \bar{A}}$.

 $a \in \overline{O \cap \overline{A}} \iff \forall r > 0 \ B_r(a) \cap \overline{A} \cap O \neq \emptyset \iff B_r(a) \cap \overline{A} \cap \overline{O} \neq \emptyset \iff a \in \overline{\overline{O} \cap \overline{A}} = \overline{O \cap A}.$

If $O \cap A = \emptyset$, then as \emptyset is closed, $O \cap \bar{A} \subseteq \overline{O \cap A} = O \cap A = \emptyset$. Thus, $O \cap \bar{A} = \emptyset$.

- 11 Let (X,d) be a metric space and let $a \in X$ and r > 0. Prove that the closed ball $K_r(a) = \{x \in X \mid d(x,a) \le a\}$ r} is a closed set.
- **Solution** Every element of $K_r(a)$ is an adherent point. We wish to show that these are the only adherent points of $K_r(a)$. Then it follows that $K_r(a) = K_r(a)$.

Suppose there exists $x \in \overline{K_r(a)}$ such that d(x,a) > r. Then for all R > 0, $B_R(x) \cap K_r(a) \neq \emptyset$. Take R = d(a, x) - r. Let $y \in B_R(x) \cap K_r(a)$. Then

$$d(a, x) + d(x, y) < r + d(a, x) - r = d(a, x).$$

This is a contradiction since $d(x,y) \ge 0$, so no such x exists. Thus, the only adherent points of $K_r(a)$ must be contained in $K_r(a)$, so $K_r(a)$ is closed.

12 Let (X,d) be a metric space and let A,B be two subsets of X. Prove that

$$Fr(A \cup B) \subseteq Fr(A) \cup Fr(B)$$
.

Show also that if $\bar{A} \cap \bar{B} = \emptyset$, then $Fr(A \cup B) = Fr(A) \cup Fr(B)$.

Solution
$$\operatorname{Fr}(A \cup B) = (\overline{A \cup B}) \cap \overline{(A \cup B)^{\operatorname{C}}}$$

 $= (\overline{A} \cup \overline{B}) \cap \overline{A^{\operatorname{C}} \cap B^{\operatorname{C}}}$
 $\subseteq (\overline{A} \cup \overline{B}) \cap (\overline{A^{\operatorname{C}}} \cap \overline{B^{\operatorname{C}}})$
 $= (\overline{A} \cap \overline{A^{\operatorname{C}}} \cap \overline{B^{\operatorname{C}}}) \cup (\overline{B} \cap \overline{A^{\operatorname{C}}} \cap \overline{B^{\operatorname{C}}})$
 $\subseteq (\overline{A} \cap \overline{A^{\operatorname{C}}}) \cup (\overline{B} \cap \overline{A^{\operatorname{C}}})$
 $= \operatorname{Fr}(A) \cup \operatorname{Fr}(B)$

 $\text{If } \bar{A} \cap \bar{B} = \emptyset \text{, then } (\bar{A} \cap \bar{B})^{\mathrm{C}} = \bar{A}^{\mathrm{C}} \cup \bar{B}^{\mathrm{C}} = X. \text{ So, } \bar{A} \cap \overline{B^{\mathrm{C}}} = X \cap \bar{A} = \bar{A}. \text{ We also have that } \overline{A^{\mathrm{C}} \cap B^{\mathrm{C}}} = \overline{A^{\mathrm{C}}} \cap \overline{B^{\mathrm{C}}}.$ Thus, this turns \subseteq into = in the above, so equality holds.

13 Let (X,d) be a metric space and let A be a subset of X. Prove that

$$\operatorname{Fr}(\bar{A}) \subseteq \operatorname{Fr}(A)$$

 $\operatorname{Fr}(A^{\circ}) \subseteq \operatorname{Fr}(A)$
 $\bar{A} = A^{\circ} \cup \operatorname{Fr}(A)$.

Solution
$$\operatorname{Fr}(\bar{A}) = \bar{A} \cap \overline{A^{\operatorname{C}}} = A \cap \overline{\operatorname{Ext}(A)} = A \cap \overline{(A^{\operatorname{C}})^{\circ}} = A \cap \overline{A^{\operatorname{C}}} = \operatorname{Fr}(A)$$

$$\operatorname{Fr}(A^{\circ}) = \overline{A^{\circ}} \cap \overline{(A^{\circ})^{\operatorname{C}}} = \bar{A} \cap \overline{A^{\operatorname{C}}} = \operatorname{Fr}(A)$$

$$\operatorname{Fr}(A) = \bar{A} \cap \overline{A^{\operatorname{C}}} = \bar{A} \cap (A^{\circ})^{\operatorname{C}} \text{ Taking the union of both sides with } A^{\circ} \text{ yields}$$

$$(\bar{A} \cup A^{\circ}) \cap ((A^{\circ})^{\mathbf{C}} \cup A^{\circ}) = \bar{A} = A^{\circ} \cup \operatorname{Fr}(A).$$

14 Let (X,d) be a metric space and let A be a subset of X. Prove that A is closed if and only if $Fr(A) \subseteq A$.

Solution " \Longrightarrow "

If A is closed, then $A = \overline{A}$. Intersecting both sides with $\overline{A^C}$ yields $A \cap \overline{A^C} = \overline{A} \cap \overline{A^C} = \operatorname{Fr}(A)$. Then

"⇐ "

If $\operatorname{Fr}(\underline{A}) \subseteq A$, then $\bar{A} \cap \overline{A^{\operatorname{C}}} = \bar{A} \cap (\underline{A}^{\circ})^{\operatorname{C}} \subseteq A$. Taking the union with A° on both sides yields $\bar{A} \subseteq A$. Since $A \subseteq \overline{A}$ also, it follows that $A = \overline{A} \Longrightarrow \overline{A}$ is closed.

15 Let (X,d) be a metric space and let A be a subset of X. Prove that A is open if and only if $Fr(A) \cap A = \emptyset$.

Solution " \Longrightarrow "

If A is open, then $A = A^{\circ}$. Then $Fr(A) \cap A = (A^{\circ})^{\mathbb{C}} \cap \bar{A} \cap A = (A^{\circ})^{\mathbb{C}} \cap A = (A^{\circ})^{\mathbb{C}} \cap A^{\circ} = \emptyset$ " \Leftarrow "

If $Fr(A) \cap A = \emptyset$, then if we take the union of both sides with A° , we get

$$A^{\circ} = ((A^{\circ})^{\mathcal{C}} \cap \bar{A} \cap A) \cup A^{\circ} = ((A^{\circ})^{\mathcal{C}} \cap A) \cup A^{\circ} = A$$