CNN Evolution

Deep Learning

Aziz Temirkhanov Lambda, HSE

LeNet

- Introducing Convolutions into Deep Learning tasks
- Subsampling (pooling)
- FC Network as head

ImageNet Large Scale Visual Recognition Challenge

- 1000 classes
- Over 1M images (currently 14M+)
- Web Scraped data, annotated with Amazon MTurk
- Image Classification task that rapidly speed up the development of CV

O.Russakovsky et al., 2015

ILSVRC

AlexNet

- Max Pooling, ReLU
- Dropout and Image Augmentation

AlexNet		
Top-1 acc	Top-5 acc	#params
56.5	79.0	61.1M

^{*}Tables taken from torchvision models

5/23

Image Augmentation

VGG

- Visual Geometry Group
- VGG16 and VGG19 16 or 19 layers
- Hard to train vanishing gradient
- Trained in several stages

Inception

A. Temirkhanov, HSE. 18.03.24

Google LeNet or Inception

Introduces a Inception block that computes several convolution simultaneously

(i.e. in parallel)

Does not train end-to-end, use Auxiliary Classifier

 GoogLeNet

 Top-1 acc
 Top-5 acc
 #params

 69.8
 89.5
 6.6M

8/23

Inception Block

(a) Inception module, naïve version

(b) Inception module with dimension reductions

Skip Connection

- Residual block or skip connection
- Mitigates Vanishing Gradient problem
- Thus, can stack much more layers!

10/23

ResNet Family

- Introduce Skip Connection (Residual) Block
- Stack more layers!
- BN to stabilize training
- No max pooling
- Global Average Pooling
- ResNet18, ResNet34, ResNet50, ResNet101, Resnet152

He et al., 2015

Global Average Pooling

DenseNet

- Introduces a DenseBlock
- Any 2 layers are connected
- Channel-wise feature map concatenation

Huang et al., 2016

MobileNet

- Optimized for mobile devices
- Depthwise and pointwise convolutions

Howard et al., 2017

Convolution Recap

A. Temirkhanov, HSE. 18.03.24 15/23

Depth Wise and Point Wise Convolutions

A. Temirkhanov, HSE. 18.03.24 16/23

MobileNet v2 and v3

- Reduce the number of channels
- Residual Connections
- NAS for v3 version

Sandler et al., 2018 Howard et al., 2019

EfficientNet

Transformers Era?

- Introduced in 2017, Transformer architecture (attention mechanism) had rapidly took over NLP domen
- Main rule of ML apply any good idea from different domain to your task
- Several years later ViT arrived at the scene
- But still, CNN is widely used
- Easier and faster to train, better as baseline model and out-of-box model

Not quite

- ConvNext: A ConvNet for the 2020s.
- NFNet: ConvNet without normalizations

Liu et al, 2022 Brok et al, 2021 Smith et al., 2023

A. Temirkhanov, HSE. 18.03.24 20/23

Downstream tasks

A. Temirkhanov, HSE. 18.03.24 21/23

Transfer Learning: Pre-Training

A. Temirkhanov, HSE. 18.03.24 22/23

A. Temirkhanov, HSE. 18.03.24 23/23