AMENDMENTS TO THE CLAIMS

WHAT WE CLAIMS IS:

1. (Original) A compound of formula I:

$$(R^{2})_{p}$$
 $(CH_{2})_{y}$
 $(CH_{2})_{y}$
 $(CH_{2})_{q}$
 $(CH_{2})_{q}$
 $(CH_{2})_{q}$
 $(CH_{2})_{q}$
 $(CH_{2})_{q}$
 $(CH_{2})_{q}$
 $(CH_{2})_{q}$

or a pharmaceutically acceptable salt, solvate or stereoisomer thereof, wherein:

L and L¹ are both hydrogen or combine together to form an oxo group;

E is: O, S, NR^{1b} , SO, SO₂, CR^9 , or $C(R^9)_2$, provided that when E is CR^9 , or $C(R^9)_2$, R^9 may combine with an adjacent R^1 to form a 5, 6, or 7-member saturated or unsaturated carbocycle;

wherein the Z ring has 0, or 1 double bond;

 R^1 is selected from the group consisting of:

hydrogen,

C₁-C₈ alkyl,

C₂-C₈ alkenyl,

C₂-C₄ haloalkyl

(D)C3-C7 cycloalkyl,

(D)phenyl,

aryl,

C(O)OC₁-C₈ alkyl,

wherein phenyl, aryl, alkenyl, and cycloalkyl groups are optionally substituted with hydroxy, halo, C_1 - C_8 alkyl, C_1 - C_4 alkoxy, C_2 - C_4 haloalkyl, and (D) C_3 - C_7 cycloalkyl provided that the halo, hydroxy are not substituted on a carbon atom adjacent to a heteroatom;

R_{1a} is: hydrogen,

C₁-C₈ alkyl,

(D)C3-C7 cycloalkyl,

(D)phenyl,

(D)aryl,

(D)heteroaryl;

 $(D)C(O)C_1-C_4$ alkyl,

 $(D)C(O)OC_1-C_4$ alkyl,

 $(CH_2)_mN(R^8)_2$,

 $(CH_2)_mNR^8C(O)C_1$ -C₄ alkyl,

 $(CH_2)_mNR^8SO_2(C_1-C_4 \text{ alkyl}),$

 $(CH_2)_mOR^8$

 $(CH_2)_mSC_1-C_4$ alkyl,

 $(CH_2)_mSO(C_1-C_4 \text{ alkyl}),$

 $(CH_2)_mSO_2(C_1-C_4 \text{ alkyl})$, or

 $(CH_2)_mSO_2 N(R^8)_2;$

wherein C_1 - C_8 alkyl, C_3 - C_7 cycloalkyl, phenyl, aryl and heteroaryl are optionally substituted with one to five substituents independently selected from the group consisting of perfluoro C_1 - C_4 alkoxy, halo, hydroxy, C_1 - C_8 alkyl, C_1 - C_4 alkoxy, and C_1 - C_4 haloalkyl; provided that halo and hydroxy groups are not substituted on a carbon atom adjacent to a heteroatom;

R1b is: hydrogen,

C₁-C₈ alkyl,

(D)C3-C7 cycloalkyl,

 $SO_2(C_1-C_8 \text{ alkyl}),$

 $(D)C(O)C_1-C_4$ alkyl,

 $(D)C(O)OC_1-C_4$ alkyl,

 $(D)CON(R^8)2$, or

 $SO_2(D)$ phenyl, wherein the phenyl group is optionally substituted with one to five substituent selected from halo, and C_1 - C_8 alkyl;

R² is: hydrogen,

C₁-C₈ alkyl,

CONHC₁-C₄ alkyl,

(D)phenyl, oxo, or

(D)C₃-C₇ cycloalkyl, provided that when R^2 is oxo, R^2 is on one of the ring carbon atoms adjacent to the nitrogen atom bearing the Z ring;

R³ is: phenyl, aryl or thienyl;

wherein phenyl, aryl and thienyl are optionally substituted with one to three substituents independently selected from the group consisting of: cyano, perfluoro C_1 - C_4 alkoxy, halo, C_1 - C_8 alkyl, (D) C_3 - C_7 cycloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl;

R⁴ is: hydrogen,

C₁-C₈ alkyl,

 $CH_2(CH_2)_mC_1$ - C_4 alkoxy,

C(O)C₁-C₄ alkyl or

 $C(O)OC_1-C_4$ alkyl;

R is: hydroxy,

halo,

C₁-C₈ alkyl,

C2-C8 alkenyl,

C₁-C₈ alkoxy,

C₁-C₄ haloalkyl,

(D)C3-C7 cycloalkyl,

- (D)aryl,
- (D)heteroaryl;
- $(D)C(O)C_1-C_4$ alkyl,
- $(D)C(O)OC_1-C_4$ alkyl,
- (D)C(O)heteroaryl,
- $(D)N(R^8)_2,$
- (D)NR8C(O)C₁-C₄ alkyl,
- (D) $NR^8SO_2(C_1-C_4 \text{ alkyl})$,
- (D)OC₁-C₄ alkyl,
- $(D)OC(O)C_1-C_4$ alkyl,
- (D)heterocyclic,
- (D)SC₁-C₄ alkyl, or
- (D) $SO_2N(R^8)_2$;

wherein C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_3 - C_7 cycloalkyl, phenyl, aryl, heterocyclic, and heteroaryl are optionally substituted with one to five substituents independently selected from R^8 ; and provided that when R is halo or hydroxy it is not substituted on a carbon adjacent to a heteroatom;

each R⁸ is independently:

hydrogen,

oxo,

C₁-C₈ alkyl,

(D)C3-C7 cycloalkyl,

phenyl, aryl or

heteroaryl,

wherein C_1 - C_8 alkyl, C_3 - C_7 cycloalkyl, phenyl, aryl and heteroaryl are optionally substituted with one to three substituents selected from the group consisting of C_1 - C_8 alkyl, halo, and hydroxy; provided that the halo and hydroxy groups are not substituted on a carbon adjacent to a heteroatom;

T is:

R⁹ is independently:

hydrogen,

 (C_1-C_8) alkyl,

C₂-C₈ alkenyl,

 $C(O)C_1-C_8$ alkyl,

C₂-C₈ alkynyl,

phenyl,

aryl, or

heteroaryl;

R¹⁰ is: hydrogen,

```
(C<sub>1</sub>-C<sub>8</sub>) alkyl,
          C<sub>3</sub>-C<sub>8</sub> alkenyl,
         C(O)C_1-C_8 alkyl,
          C<sub>2</sub>-C<sub>8</sub> alkynyl,
          phenyl,
          aryl, or
          heteroaryl;
R<sup>11</sup> is independently:
          hydrogen, (C<sub>1</sub>-C<sub>8</sub>) alkyl, (D)phenyl, or aryl;
R<sup>12</sup> is independently:
          C<sub>1</sub>-C<sub>8</sub> alkyl,
          phenyl,
          aryl,
          heteroaryl,
          (CH_2)_nN(R^8)_2,
          (CH_2)_nNR^8C(O)C_1-C_4 alkyl,
          (CH_2)_nNR^8C(O)OC_1-C_4 alkyl,
          (CH_2)_n(OCH_2CH_2)_qN(R^8)_2,
          (CH_2)_n(OCH_2CH_2)_qNR^8C(O)C_1\text{-}C_4 \ alkyl,
          (CH_2)_n(OCH_2CH_2)_qNR^8SO_2(C_1-C_4 \text{ alkyl}), \text{ or }
          (CH_2)_n[O]_q(C_1-C_8)alkylheterocyclic; and wherein for R^{12}, n is 2–8 when R^{12} is
          substituted on a carbon atom adjacent to a heteroatom;
R<sup>13</sup> is independently:
          hydrogen,
          C<sub>1</sub>-C<sub>8</sub> alkyl,
         (D)C3-C7 cycloalkyl,
```

(D)phenyl, C(O)C₁-C₈ alkyl, SO₂C₁-C₈ alkyl, or SO₂-phenyl;

D is: a bond or C₁-C₄ alkyl;

g is: 0, 1, or 2;

y is: 1 or 2;

m is: 1-4;

n is: 0-8;

p is: 0-4; and

q is: 0-1.

- 2. (Original) The compound according to Claim 1 wherein for the Z ring y is 1, or 2
- 3. (Original) The compound according to Claim 1 wherein the Z ring is saturated.
- 4. (Original) The compound according to Claim 1 wherein the Z ring is cyclopentyl or cyclohexyl.
- 5. (Original) The compound according to Claim 3 wherein E is O, S, NR^{1b}, SO₂, SO, or CHR⁹.
- 6. (Presently amended) The compound according to Claim 5 Claim 1-wherein E is CH₂.
- 7. (Original) The compound according to Claim 1 wherein E is CHR⁹ and R⁹ combines with adjacent R¹ to form a benzene ring.
- 8. (Original) The compound according to Claim 1 wherein for the Z ring R^1 is hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_2 - C_4 haloalkyl, $(D)C_3$ - C_7 cycloalkyl, 2-fluorobenzyl, (D)phenyl, $(CH_2)_mC(O)C_1$ - C_4 alkyl, $(CH_2)_mN(R^8)_2$, or $(CH_2)_mNR^8C(O)C_1$ - C_4 alkyl; D is a bond or CH_2 ; and p is 1; and m is 1.
- 9. (Original) The compound according to Claim 1 wherein R is hydrogen, methyl, trifluoromethyl, phenyl or benzyl, wherein phenyl and benzyl groups are optionally substituted with halo or hydroxy and p is 1.

- 10. (Original) The compound according to Claim 1 wherein R^{1a} is C_1 - C_8 alkyl, C_1 - C_8 alkenyl, C_2 - C_4 haloalkyl, (D) C_3 - C_7 cycloalkyl, (D)phenyl, (D)COR 8 , (D)N(R^8)₂, or (D)NR 8 COR 8 .
- 11. (Presently amended) The compound according to $\underline{\text{Claim 10}}$ Claim 1 wherein R^{1a} is isopropyl, isobutyl, cyclohexylmethyl, phenyl, 2-fluorobenzyl or benzyl.
- 12. (Presently amended) The compound according to Claim 1 Claim 11 wherein E is selected from the group consisting of: -NCH₃, -NCH(CH₃)₂, S, CR⁹, C(R⁹)₂, -NC(O)CH₃, -NC(O)CH₃, -NCH₂CH₃, NSO₂CH₃, and O.
- 13. (Original) The compound according to Claim 12 wherein E is CR^9 or $C(R^9)_2$, wherein each R^9 is independently selected from hydrogen and C_1 - C_4 alkyl, and wherein each R^9 may combine with an adjacent R^1 to form a 5 or 6-member carbocycle.
- 14. (Original) The compound according to Claim 1 wherein R² is hydrogen, C₁-C₈ alkyl, C₁-C₄ haloalkyl, (D)C₃-C₇ cycloalkyl, (D)phenyl, or (D)C(O)C₁-C₈ alkyl.
- 15. (Original) The compound of Claim 1 wherein R³ is phenyl optionally being para-substituted with chloro, bromo, benzyloxy, methoxy or methyl.
- 16. (Presently amended) The compound of <u>Claim 15</u> any one of <u>Claims 1 to 15</u> wherein R³ is phenyl para-substituted with chloro.
- 17. (Presently amended) The compound of Claim 1 any one of Claims 1 to 15 wherein R^{10} is hydrogen, C_1 - C_4 alkyl, or C(O)C1-C4 alkyl.
- 18. (Presently amended) The compound of Claim 17 any one of Claims 1 to 15 wherein R^{10} is hydrogen at each occurrence.
 - 19. (Cancelled)
- 20. (Presently amended) The compound according to Claim 1 Claims 1 to 15 wherein "T" is a moiety of the formula:

21. (Presently amended) The compound according to Claim 1 any of Claims 1 to 15 wherein "T" is a moiety selected from the group consisting of:

22. (Presently amended) The compound of <u>Claim 1</u> any one of <u>Claims 1 to 15</u> wherein T is a moiety of the formula:

wherein R is as described in Claim 1; and wherein the carbon atom marked * represents a chiral center.

23. (Presently amended) The compound of Claim 1 any one of Claims 1 to 15 wherein L and L^1 are each hydrogen; and T is a moiety of the formula:

24. (Presently amended) The compound according to Claim 1 any one of Claims 1 to 15 wherein L and L^1 are each hydrogen, and T is a moiety of the formula:

- 25. (Presently amended) The compound of <u>any one of Claims Claims</u> 22, 23, or 24 wherein the carbon atom marked with * has the R or S configuration.
 - 26. (Cancelled)
- 27. (Presently amended) A pharmaceutical composition comprising a compound of <u>Claim 1</u> any one of <u>Claims 1 25</u> and a pharmaceutical carrier.

28. (Original) The pharmaceutical composition of Claim 27 further comprising a second active ingredient selected from the group consisting of an insulin sensitizer, insulin mimetic, sulfonylurea, alpha-glucosidase inhibitor, HMG-CoA reductase inhibitor, sequestrant cholesterol lowering agent, beta 3 adrenergic receptor agonist, neuropeptide Y antagonist, phosphodiester V inhibitor, and an alpha2 adrenergic receptor antagonist.

29. (Original) A compound selected from the group consisting of:

N-(1-(4-Chloro-benzyl)-2-{4-[4-(2-fluoro-benzyl)-1-methyl-piperidin-4-yl]-piperazin-1-yl}-2-oxo-ethyl)-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,

N-{1-(4-Chloro-benzyl)-2-[4-(4-isobutyl-1-isopropyl-piperidin-4-yl)-piperazin-1-yl]-2-oxo-ethyl}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,

 $N-\{1-(4-Chloro-benzyl)-2-[4-(1-isobutyl-cyclopentyl)-piperazin-1-yl]-2-oxo-ethyl\}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,$

 $N-\{1-(4-Chloro-benzyl)-2-[4-(4-cyclohexylmethyl-1-methyl-piperidin-4-yl)-piperazin-1-yl]-2-oxo-ethyl\}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,$

N-{1-(4-Chloro-benzyl)-2-[4-(4-isobutyl-1-methyl-piperidin-4-yl)-piperazin-1-yl]-2-oxoethyl}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,

 $N-\{1-(4-Chloro-benzyl)-2-[4-(4-isobutyl-1-methanesulfonyl-piperidin-4-yl)-piperazin-1-yl]-2-oxo-ethyl\}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,$

N-{1-(4-Chloro-benzyl)-2-[4-(1-ethyl-4-isobutyl-piperidin-4-yl)-piperazin-1-yl]-2-oxoethyl}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,

N-[2-[4-(1-Acetyl-4-isobutyl-piperidin-4-yl)-piperazin-1-yl]-1-(4-chloro-benzyl)-2-oxoethyl]-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,

N-{1-(4-Chloro-benzyl)-2-[4-(4-isobutyl-1,1-dioxo-hexahydro-116-thiopyran-4-yl)-piperazin-1-yl]-2-oxo-ethyl}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,

 $N-\{1-(4-Chloro-benzyl)-2-[4-(3-isobutyl-1-methyl-piperidin-3-yl)-piperazin-1-yl]-2-oxoethyl\}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,$

 $N-\{1-(4-Chloro-benzyl)-2-[4-(3-isobutyl-1-methyl-piperidin-3-yl)-piperazin-1-yl]-2-oxoethyl\}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,$

 $N-\{1-(4-Chloro-benzyl)-2-[4-(4-isobutyl-tetrahydro-pyran-4-yl)-piperazin-1-yl]-2-oxoethyl\}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide, and$

1,2,3,4-Tetrahydro-isoquinoline-3-carboxylic acid {1-(4-chloro-benzyl)-2-[4-(1-diethylaminomethyl-cyclopentyl)-piperazin-1-yl]-2-oxo-ethyl}-amide, and its pharmaceutically acceptable salt, solvate, prodrug and enantiomer thereof.

30. (Original) A process for preparing a compound of formula I:

$$(R^2)_p$$
 $(CH_2)_y$
 (I)
 $(CH_2)_n$
 $(CH_2)_n$

or a pharmaceutically acceptable salt or stereoisomer thereof, wherein:

-CLL'- $(CH_2)_n$ -T is:

 R^{10} is a CBz or Boc protecting group, hydrogen, (C₁-C₈) alkyl, C₃-C₈ alkenyl, C(O)C₁-C₈ alkyl, C₂-C₈ alkynyl, phenyl, aryl, or heteroaryl;

Q is represent the moiety:

L and L^1 are both hydrogen or combine together to form an oxo group;

E is: O, S, NR^{1b}, SO, SO₂, CR⁹, or C(R⁹)₂, provided that when E is CR⁹, or C(R⁹)₂, R⁹ may combine with an adjacent R¹ to form a 5, 6, or 7-member saturated or unsaturated carbocycle;

wherein the Z ring has 0, or 1 double bond;

R¹ is selected from the group consisting of:

hydrogen,

C₁-C₈ alkyl,

C₂-C₈ alkenyl,

C₂-C₄ haloalkyl

(D)C3-C7 cycloalkyl,

(D)phenyl,

aryl,

 $C(O)OC_1$ - C_8 alkyl,

wherein phenyl, aryl, alkenyl, and cycloalkyl groups are optionally substituted with hydroxy, halo, C_1 - C_8 alkyl, C_1 - C_4 alkoxy, C_2 - C_4 haloalkyl, and (D) C_3 - C_7 cycloalkyl provided that the halo, hydroxy are not substituted on a carbon atom adjacent to a heteroatom;

R_{1a} is: hydrogen,

C₁-C₈ alkyl,

(D)C3-C7 cycloalkyl,

(D)phenyl,

(D)aryl,

(D)heteroaryl;

 $(D)C(O)C_1-C_4$ alkyl,

 $(D)C(O)OC_1-C_4$ alkyl,

 $(CH_2)_mN(R^8)_2$,

 $(CH_2)_mNR^8C(O)C_1-C_4$ alkyl,

 $(CH_2)_mNR^8SO_2(C_1-C_4 \text{ alkyl}),$

(CH₂)_mOR⁸,

 $(CH_2)_mSC_1-C_4$ alkyl,

 $(CH_2)_mSO(C_1-C_4 \text{ alkyl}),$

 $(CH_2)_mSO_2(C_1-C_4 \text{ alkyl}), \text{ or }$

 $(CH_2)_mSO_2 N(R^8)_2;$

wherein C_1 - C_8 alkyl, C_3 - C_7 cycloalkyl, phenyl, aryl and heteroaryl are optionally substituted with one to five substituents independently selected from the group consisting of perfluoro C_1 - C_4 alkoxy, halo, hydroxy, C_1 - C_8 alkyl, C_1 - C_4 alkoxy, and C_1 - C_4 haloalkyl; provided that halo and hydroxy groups are not substituted on a carbon atom adjacent to a heteroatom;

R1b is: hydrogen,

C₁-C₈ alkyl,

(D)C3-C7 cycloalkyl,

 $SO_2(C_1-C_8 \text{ alkyl}),$

 $(D)C(O)C_1-C_4$ alkyl,

 $(D)C(O)OC_1-C_4$ alkyl,

 $(D)CON(R^8)2$, or

SO₂(D)phenyl, wherein the phenyl group is optionally substituted with one to five substituents selected from halo, and C₁-C₈ alkyl;

R² is: hydrogen,

C₁-C₈ alkyl,

CONHC₁-C₄ alkyl,

(D)phenyl,

oxo, or

(D)C₃-C₇ cycloalkyl, provided that when R^2 is oxo, R^2 is on one of the ring carbon atoms adjacent to the nitrogen atom bearing the Z ring;

R³ is: phenyl, aryl or thienyl;

wherein phenyl, aryl and thienyl are optionally substituted with one to three substituents independently selected from the group consisting of: cyano, perfluoroC₁-C₄ alkoxy, halo, C₁-C₈ alkyl, (D)C₃-C₇ cycloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl;

R⁴ is: hydrogen,

C₁-C₈ alkyl,

CH₂(CH₂)_mC₁-C₄ alkoxy,

 $C(O)C_1-C_4$ alkyl, or

C(O)OC₁-C₄ alkyl;

R is: hydroxy,

halo,

C₁-C₈ alkyl,

```
C2-C8 alkenyl,
C<sub>1</sub>-C<sub>8</sub> alkoxy,
C<sub>1</sub>-C<sub>4</sub> haloalkyl,
(D)C3-C7 cycloalkyl,
(D)aryl,
(D)heteroaryl;
(D)C(O)C_1-C_4 alkyl,
(D)C(O)OC_1-C_4 alkyl,
(D)C(O)heteroaryl,
(D)N(R^8)_{2}
(D)NR^{8}C(O)C<sub>1</sub>-C<sub>4</sub> alkyl,
(D)NR^8SO_2(C_1-C_4 \text{ alkyl}),
(D)OC_1-C_4 alkyl,
(D)OC(O)C_1-C_4 alkyl,
(D)heterocyclic,
(D)SC<sub>1</sub>-C<sub>4</sub> alkyl, or
(D)SO_2N(R^8)_2;
```

wherein C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_3 - C_7 cycloalkyl, phenyl, aryl, heterocyclic, and heteroaryl are optionally substituted with one to five substituents independently selected from R^8 ; and provided that when R is halo or hydroxy it is not substituted on a carbon adjacent to a heteroatom;

```
hydrogen,
oxo,
C<sub>1</sub>-C<sub>8</sub> alkyl,
(D)C<sub>3</sub>-C<sub>7</sub> cycloalkyl,
```

each R⁸ is independently:

phenyl, aryl or

heteroaryl,

wherein C_1 - C_8 alkyl, C_3 - C_7 cycloalkyl, phenyl, aryl and heteroaryl are optionally substituted with one to three substituents selected from the group consisting of C_1 - C_8 alkyl, halo, and hydroxy; provided that the halo and hydroxy groups are not substituted on a carbon adjacent to a heteroatom;

 R^9 is independently hydrogen, (C₁-C₈) alkyl, C₂-C₈ alkenyl, C(O)C₁-C₈ alkyl, C₂-C₈ alkynyl, phenyl, aryl, or heteroaryl;

R¹¹ is independently:

hydrogen, (C₁-C₈) alkyl, (D)phenyl or aryl;

D is: a bond or C₁-C₄ alkyl;

g is: 0, 1, or 2;

y is: 1 or 2;

m is: 1-4;

n is: 0-8;

p is: 0-4; and

q is: 0-1;

comprising the steps of:

a) reacting a compound having a structural formula 1:

with CH₂CH=C(O)OR^a wherein R^a is hydrogen or C₁-C₈ alkyl and X is halo, in the presence of a catalyst and a base in a suitable organic solvent to give the compound of formula 2:

b) reductively aminating the compound of formula 2 in the presence of amine in an acidic condition to give a compound of formula 3:

c) cyclizing the compound of formula 3 by Michael addition to give a compound of formula 4 or stereoisomers thereof:

$$(R)_{p}$$
 R^{10}
 R^{11}
 R^{11}
 R^{11}

d) coupling the compound of formula 4 or stereoisomers thereof wherein R^a is H, with a compound of formula 5:

$$R^{a}O$$

$$NHR^{4}$$
.HCl
(5);

wherein R^a is C_1 - C_8 alkyl, to give a compound of formula 6:

e) coupling the compound of formula 6 wherein R^a is H, with a compound having a structural formula:

$$(R^2)_p$$
 $(CH_2)_y$
 Q

to afford the compound of formula 1.

31. (Original) The process of Claim 30, wherein:

in Step a) is 2-boromobenzaldehyde.

32. (Presently amended) The process of <u>Claim 30</u> Claim 31, wherein CH₂CH=C(O)OR^a in Step (a) is methylacrylate.

- 33. (Presently amended) The process of Claim 30 Claim 32, wherein the catalyst in Step (a) is selected from the group consisting of: Pd(Ph₃P)₂Cl₂, Pd(Ph₃P)₄Cl₂, Pd(Ph₃P)₄Cl₂/Ph₃P-Bu₄NBr, Pd(Ph₃P)₄Cl₂/H₂ and Pd(OAc)₂/P(O-tol)₃; and wherein the base in Step (a) is N(R)₃ where R is hydrogen or C₁-C₈ alkyl.
- 34. (Presently amended) The process of <u>Claim 30 Claim 33</u>, wherein the amine in Step (b) is selected from the group consisting of: benzylamine, alpha-methylbenzylamine and BocNH₂.
- 35. (Original) The process of Claim 34, wherein Step (b) further comprises the step of reducing an intermediate imine compound in the presence of reducing agent selected from the group consisting of: NaCNBH₃, Na(OAc)₃BH, NaBH₄/H+ and a combination of Et₃SiH and TFA in CH₃CN or CH₂Cl₂.
- 36. (Presently amended) The process of Claim 30 31, wherein the stereoisomer of compound of formula (4) (7) in Step (c) is a compound of formula 7a:

$$(R)_{p}$$

$$R^{11}$$

$$R^{11}$$

$$(7a).$$

37. (Original) The process of Claim 36, wherein the compound of formula 7a is prepared by asymmetric hydrogenation of a compound having structural formula,

$$(R)_{p}$$
 NR^{10}

- 38. (Presently amended) The process of Claim <u>30</u> 31, wherein the Michael addition in Step (c) is carried out under basic workup condition.
- 39. (Presently amended) The process of Claim 30 31, wherein the Step (e) further comprises deprotecting or protecting of the compound of formula (4) at NR¹⁰.
 - 40. (Original) A process for preparing a compound of formula I:

$$(R^2)_p$$
 $(CH_2)_y$
 R^3
 $(CH_2)_n$ -T
 $(CH_2)_n$

or a pharmaceutically acceptable salt or stereoisomer thereof, wherein:

 $-LL'(CH_2)_n$ -T is represented by the group:

and Q represents the moiety:

E is: O, S, NR^{1b} , SO, SO₂, CR^9 , or $C(R^9)_2$, provided that when E is CR^9 , or $C(R^9)_2$, R^9 may combine with an adjacent R^1 to form a 5, 6, or 7-member saturated or unsaturated carbocycle;

wherein the Z ring has 0, or 1 double bond;

 R^1 is selected from the group consisting of: hydrogen,

C₁-C₈ alkyl,

C₂-C₈ alkenyl,

C2-C4 haloalkyl

(D)C3-C7 cycloalkyl,

(D)phenyl,

aryl,

 $C(O)OC_1-C_8$ alkyl,

wherein phenyl, aryl, alkenyl, and cycloalkyl groups are optionally substituted with hydroxy, halo, C₁-C₈ alkyl, C₁-C₄ alkoxy, C₂-C₄ haloalkyl, and (D)C₃-C₇ cycloalkyl provided that the halo, hydroxy are not substituted on a carbon atom adjacent to a heteroatom;

R_{1a} is: hydrogen,

C₁-C₈ alkyl,

(D)C3-C7 cycloalkyl,

(D)phenyl,

(D)aryl,

(D)heteroaryl;

 $(D)C(O)C_1-C_4$ alkyl,

 $(D)C(O)OC_1-C_4$ alkyl,

 $(CH_2)_m N(R^8)_2$

 $(CH_2)_mNR^8C(O)C_1-C_4$ alkyl,

 $(CH_2)_mNR^8SO_2(C_1-C_4 \text{ alkyl}),$

 $(CH_2)_mOR^8$,

 $(CH_2)_mSC_1-C_4$ alkyl,

 $(CH_2)_mSO(C_1-C_4 \text{ alkyl}),$

 $(CH_2)_mSO_2(C_1-C_4 \text{ alkyl}), \text{ or }$

 $(CH_2)_mSO_2 N(R^8)_2;$

wherein C_1 - C_8 alkyl, C_3 - C_7 cycloalkyl, phenyl, aryl and heteroaryl are optionally substituted with one to five substituents independently selected from the group consisting of perfluoro C_1 - C_4 alkoxy, halo, hydroxy, C_1 - C_8 alkyl, C_1 - C_4 alkoxy, and C_1 - C_4 haloalkyl; provided that halo and hydroxy groups are not substituted on a carbon atom adjacent to a heteroatom;

R1b is: hydrogen,

C₁-C₈ alkyl,

(D)C3-C7 cycloalkyl,

 $SO_2(C_1-C_8 \text{ alkyl}),$

 $(D)C(O)C_1-C_4$ alkyl,

 $(D)C(O)OC_1-C_4$ alkyl,

 $(D)CON(R^8)2$, or

 $SO_2(D)$ phenyl, wherein the phenyl group is optionally substituted with one to five substituent selected from halo, and C_1 - C_8 alkyl;

R² is: hydrogen,

C₁-C₈ alkyl,

CONHC₁-C₄ alkyl,

(D)phenyl,

oxo, or

(D)C₃-C₇ cycloalkyl, provided that when R² is oxo, R² is on one of the ring carbon atoms adjacent to the nitrogen atom bearing the Z ring;

R³ is: phenyl, aryl or thienyl;

wherein phenyl, aryl and thienyl are optionally substituted with one to three substituents independently selected from the group consisting of: cyano, perfluoro C_1 - C_4 alkoxy, halo, C_1 - C_8 alkyl, (D) C_3 - C_7 cycloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl;

R⁴ is: hydrogen,

C₁-C₈ alkyl,

 $CH_2(CH_2)_mC_1$ - C_4 alkoxy,

 $C(O)C_1$ - C_4 alkyl or

 $C(O)OC_1-C_4$ alkyl;

R is: hydroxy,

halo,

C₁-C₈ alkyl,

C₂-C₈ alkenyl,

C₁-C₈ alkoxy,

C₁-C₄ haloalkyl,

(D)C₃-C₇ cycloalkyl,

(D)aryl,

(D)heteroaryl;

(D) $C(O)C_1$ - C_4 alkyl,

(D)C(O)OC $_1$ -C $_4$ alkyl,

(D)C(O)heteroaryl,

 $(D)N(R^8)_2$,

(D) $NR^8C(O)C_1$ - C_4 alkyl,

(D) $NR^8SO_2(C_1-C_4 \text{ alkyl})$,

(D) OC_1 - C_4 alkyl,

(D)OC(O) C_1 - C_4 alkyl,

(D)heterocyclic,

(D) SC_1 - C_4 alkyl, or

(D) $SO_2N(R^8)_2$;

wherein C₁-C₈ alkyl, C₁-C₈ alkoxy, C₃-C₇ cycloalkyl, phenyl, aryl, heterocyclic, and heteroaryl are optionally substituted with one to five substituents independently selected from R⁸; and provided that when R is halo or hydroxy it is not substituted on a carbon adjacent to a heteroatom;

each R⁸ is independently:

hydrogen,

oxo,

C₁-C₈ alkyl,

(D)C3-C7 cycloalkyl,

phenyl,

aryl or

heteroaryl,

wherein C₁-C₈ alkyl, C₃-C₇ cycloalkyl, phenyl, aryl and heteroaryl are optionally substituted with one to three substituents selected from the group consisting of C₁-C₈ alkyl, halo, and hydroxy; provided that the halo and hydroxy groups are not substituted on a carbon adjacent to a heteroatom;

R⁹ is independently:

hydrogen,

 (C_1-C_8) alkyl,

C2-C8 alkenyl,

 $C(O)C_1-C_8$ alkyl,

C2-C8 alkynyl,

phenyl,

aryl, or

heteroaryl;

R is: hydrogen,

 (C_1-C_8) alkyl,

C₃-C₈ alkenyl,

 $C(O)C_1$ - C_8 alkyl, C_2 - C_8 alkynyl, phenyl, aryl, or

heteroaryl;

R¹¹ is independently:

hydrogen, (C₁-C₈) alkyl, or (D)phenyl, or aryl;

D is: a bond or C₁-C₄ alkyl;

g is: 0, 1, or 2;

y is: 1 or 2;

m is: 1-4;

n is: 0-8;

p is: 0-4; and

q is: 0-1;

comprising the steps of:

a) esterifying a compound of formula 1 with an alcohol RaOH

1;

to form a compound of formula 2:

2;

wherein R^a is a group selected from $C_1\text{-}C_4$ alkyl, and (D) phenyl;

b) reacting a compound of formula 2 with R¹¹COR¹¹ to form a compound of formula:

3;

wherein R¹¹ is independently hydrogen, C₁-C₄ alkyl;

c) reacting a compound of formula 3 with an activating group to form a compound of formula 4:

wherein A is an activating group;

d) deoxygenating the compound of formula 4 by hydrogenation to afford a compound of formula 5:

5;

e) optionally reacting the compound of formula 5 wherein HA is an acidic, with an inorganic base to form a compound of formula 6:

wherein M is a univalent cation;

f) resolving the compound of formula 5 or the compound of formula 6 wherein M is hydrogen to afford a chiral compound of formula 7:

wherein Ra' is H or Ra;

g) coupling the compound of formula 7 with a compound of formula 8:

8;

to afford a compound of formula 9:

h) coupling the compound of formula 9 with a compound of formula 10:

$$(R^2)_p$$
 $(CH_2)_y$
 Q

10;

to afford a compound of formula I:

$$(R^2)_p$$
 N
 R^4
 R^{11}
 R^{11}

I.

- 41. (Original) The process according to Claim 40 wherein the esterification is performed via an acylhalide intermediate formed by reaction of compound (1) with thionyl chloride, or oxalylchloride.
- 42. (Presently amended) The process according to <u>Claim 40 Claim 41</u> wherein the activating agent is trifluoromethanesulfonic anhydride to form the triflate.
 - 43. (Original) A process for preparing a compound of formula I:

$$(R^2)_p$$
 $(CH_2)_y$
 $(CH_2)_y$
 (I)

or a pharmaceutically acceptable salt or stereoisomer thereof, wherein $-LL'(CH_2)_n$ -T is represented by the group:

 R^{10} is a CBz or Boc protecting group, hydrogen, (C₁-C₈) alkyl, C₃-C₈ alkenyl, C(O)C₁-C₈ alkyl, C₂-C₈ alkynyl, phenyl, aryl, or heteroaryl;

Q represents the moiety:

E is: O, S, NR^{1b} , SO, SO_2 , CR^9 , or $C(R^9)_2$, provided that when E is CR^9 , or $C(R^9)_2$, R^9 may combine with an adjacent R^1 to form a 5, 6, or 7-member saturated or unsaturated carbocycle;

wherein the Z ring has 0, or 1 double bond;

R¹ is selected from the group consisting of:

hydrogen,

C₁-C₈ alkyl,

C₂-C₈ alkenyl,

C₂-C₄ haloalkyl

(D)C₃-C₇ cycloalkyl,

(D)phenyl,

aryl,

C(O)OC₁-C₈ alkyl,

wherein phenyl, aryl alkenyl, and cycloalkyl groups are optionally substituted with hydroxy, halo, C_1 - C_8 alkyl, C_1 - C_4 alkoxy, C_2 - C_4 haloalkyl, and (D) C_3 - C_7 cycloalkyl provided that the halo, hydroxy are not substituted on a carbon atom adjacent to a heteroatom;

R_{1a} is: hydrogen,

C₁-C₈ alkyl,

(D)C3-C7 cycloalkyl,

(D)phenyl,

(D)aryl,

(D)heteroaryl;

 $(D)C(O)C_1-C_4$ alkyl,

(D)C(O)OC₁-C₄ alkyl,

 $(CH_2)_mN(R^8)_2$,

 $(CH_2)_mNR^8C(O)C_1-C_4$ alkyl,

 $(CH_2)_mNR^8SO_2(C_1-C_4 \text{ alkyl}),$

(CH₂)_mOR⁸,

(CH₂)_mSC₁-C₄ alkyl,

 $(CH_2)_mSO(C_1-C_4 \text{ alkyl}),$

 $(CH_2)_mSO_2(C_1-C_4 \text{ alkyl}), \text{ or }$

 $(CH_2)_mSO_2 N(R^8)_2;$

wherein C_1 - C_8 alkyl, C_3 - C_7 cycloalkyl, phenyl, aryl and heteroaryl are optionally substituted with one to five substituents independently selected from the group consisting of perfluoro C_1 - C_4 alkoxy, halo, hydroxy, C_1 - C_8 alkyl, C_1 - C_4 alkoxy, and C_1 - C_4 haloalkyl; provided that halo and hydroxy groups are not substituted on a carbon atom adjacent to a heteroatom;

R1b is: hydrogen,

C₁-C₈ alkyl,

(D) C_3 - C_7 cycloalkyl,

 $SO_2(C_1-C_8 \text{ alkyl}),$

 $(D)C(O)C_1-C_4$ alkyl,

 $(D)C(O)OC_1-C_4$ alkyl,

(D)CON(\mathbb{R}^8)2, or

 $SO_2(D)$ phenyl, wherein the phenyl group is optionally substituted with one to 1 to 5 substituent selected from halo, and C_1 - C_8 alkyl;

R² is: hydrogen,

 C_1 - C_8 alkyl,

CONHC₁-C₄ alkyl,

(D)phenyl, oxo, or

(D)C₃-C₇ cycloalkyl, provided that when R^2 is oxo, R^2 is on one of the ring carbon atoms adjacent to the nitrogen atom bearing the Z ring;

 R^3 is: phenyl, aryl or thienyl; wherein phenyl, aryl and thienyl are optionally substituted with one to three substituents independently selected from the group consisting of: cyano, perfluoroC₁-C₄ alkoxy, halo, C₁-C₈ alkyl, (D)C₃-C₇ cycloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl;

 R^4 is: hydrogen, $C_1\text{-}C_8 \text{ alkyl},$ $CH_2(CH_2)_mC_1\text{-}C_4 \text{ alkoxy},$ $C(O)C_1\text{-}C_4 \text{ alkyl}, \text{ or}$ $C(O)OC_1\text{-}C_4 \text{ alkyl};$

R is: hydroxy,
halo,

C₁-C₈ alkyl,

C₂-C₈ alkenyl,

C₁-C₈ alkoxy,

C₁-C₄ haloalkyl,

(D)C₃-C₇ cycloalkyl,

(D)aryl,

(D)heteroaryl;

(D)C(O)C $_1$ -C $_4$ alkyl,

 $(D)C(O)OC_1-C_4$ alkyl,

(D)C(O)heteroaryl,

 $(D)N(R^8)_2$,

(D)NR 8 C(O)C $_1$ -C $_4$ alkyl,

(D) $NR^8SO_2(C_1-C_4 \text{ alkyl})$,

(D) OC_1 - C_4 alkyl,

 $(D)OC(O)C_1-C_4$ alkyl,

(D)heterocyclic,

(D)SC₁-C₄ alkyl, or

(D) $SO_2N(R^8)_2$;

wherein C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_3 - C_7 cycloalkyl, phenyl, aryl, heterocyclic, and heteroaryl are optionally substituted with one to five substituents independently selected from R^8 ; and provided that when R is halo or hydroxy it is not substituted on a carbon adjacent to a heteroatom;

each R⁸ is independently:

hydrogen,

oxo,

C₁-C₈ alkyl,

(D)C3-C7 cycloalkyl,

phenyl,

aryl or

heteroaryl,

wherein C_1 - C_8 alkyl, C_3 - C_7 cycloalkyl, phenyl, aryl and heteroaryl are optionally substituted with one to three substituents selected from the group consisting of C_1 - C_8 alkyl, halo, and hydroxy; provided that the halo and hydroxy groups are not substituted on a carbon adjacent to a heteroatom;

R⁹ is independently:

hydrogen,

 (C_1-C_8) alkyl,

C₂-C₈ alkenyl,

 $C(O)C_1-C_8$ alkyl,

C₂-C₈ alkynyl, phenyl, aryl, or

heteroaryl;

R¹¹ is independently:

hydrogen, (C_1-C_8) alkyl, or (D)phenyl, aryl;

D is: a bond or C_1 - C_4 alkyl;

g is: 0, 1, or 2;

y is: 1 or 2;

m is: 1-4;

n is: 0-8;

p is: 0-4; and

q is: 0-1;

comprising the steps of:

a) reacting a compound formula 1:

1;

wherein X is halo and R^{11} is independently, hydrogen or C1-C4 alkyl, with $CNCH_2CO_2R^a$ wherein R^a is C_1 - C_8 alkyl, or benzyl to afford a compound of formula 2:

$$(R)_p$$
 R^{11}
 R^{11}
 CO_2R^a

b) protecting the compound of formula 2 to form the compound of formula 3:

c) hydrogenating the compound of formula 3 to afford a compound of formula 4:

d) coupling the compound of formula 4 wherein R^{a'} is hydrogen with a compound of formula 5:

5;

to afford a compound of formula 6:

e) coupling the compound of formula 6 with a compound of formula 7:

$$(R^2)_p \xrightarrow{H}_{N} (CH_2)_y$$
 Q
7;

to afford a compound of formula I:

$$(R^{2})_{p}$$
 N
 R^{4}
 R^{10}
 R^{11}
 $R^$

- 44. (Original) A method of preventing or treating obesity in a mammal comprising the administration of a therapeutically effective amount of the compound of formula I as recited in Claim 1.
- 45. (Original) A method of preventing or treating diabetes mellitus in a mammal comprising the administration of a therapeutically effective amount of the compound of formula I as recited in Claim 1.
- 46. (Original) A method of preventing or treating male or female sexual dysfunction in a mammal comprising the administration of a therapeutically effective amount of the compound of formula I as recited in Claim 1.
- 47. (Original) The method of 46, wherein the male or female sexual dysfunction is erectile dysfunction.