Bayesian Modeling and Inference: An Introduction to STAN for the Social Sciences

Bayesian Linear Regression with Stan

May 23, 2025

Contents

Objective	2
Prerequisites	2
Part 1: Setting Up	2
Part 2: Simulating Data	2
Part 3: Defining the Stan Model	3
Part 4: Fitting the Model in R	4
Part 5: Inspecting Model Fit and Convergence	4
Trace Plots	5
Posterior Density Plots	5
Part 6: Posterior Predictive Checks (PPCs)	7
Part 7: Interpretation and Visualization	10
Part 8: Student Exploration Questions	11
Q1. Influence of Priors	11
Q2. Impact of Data	11
Q3. Model Diagnostics	12
Q4. Interpreting Output	12
Q5. Multiple Predictors (Advanced)	12

Objective

In this tutorial, we will:

- Implement a simple Bayesian linear regression model in Stan.
- Fit the model to simulated data using R.
- Inspect model convergence and posterior distributions.
- Perform posterior predictive checks.
- Interpret the results.
- Explore how changes in priors, data, and model specification affect the outcomes.

Prerequisites

- Basic understanding of R.
- R and RStudio installed.
- rstan, bayesplot, ggplot2, dplyr (or tidyverse) R packages installed.
- Conceptual understanding of Bayesian linear regression, priors, likelihood, posterior, and MCMC.

You can install the necessary packages using:

```
install.packages(c("rstan", "bayesplot", "ggplot2", "dplyr"))
```

Part 1: Setting Up

```
library(rstan)
library(bayesplot)
library(ggplot2)
library(dplyr)

rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
```

Part 2: Simulating Data

```
alpha_true <- 10
beta_true <- 2.5
sigma_true <- 5
N <- 100

set.seed(42)
x <- rnorm(N, mean = 60, sd = 10)
y_deterministic <- alpha_true + beta_true * x
y <- rnorm(N, mean = y_deterministic, sd = sigma_true)
sim_data <- data.frame(x = x, y = y)

ggplot(sim_data, aes(x = x, y = y)) +</pre>
```

Simulated Data with True Regression Line

Discussion

- alpha_true: The true intercept.
- beta_true: The true slope.
- sigma_true: The standard deviation of errors.

Part 3: Defining the Stan Model

Save the following code in a file named $linear_regression.stan$:

```
data {
  int<lower=0> N;
  vector[N] x;
  vector[N] y;
}
parameters {
```

```
real alpha;
  real beta;
  real<lower=0> sigma;
model {
  alpha ~ normal(0, 100);
 beta ~ normal(0, 10);
 sigma ~ cauchy(0, 20);
  y ~ normal(alpha + beta * x, sigma);
generated quantities {
  vector[N] y_rep;
  vector[N] log_lik;
  for (n in 1:N) {
    y_rep[n] = normal_rng(alpha + beta * x[n], sigma);
    log_lik[n] = normal_lpdf(y[n] | alpha + beta * x[n], sigma);
  }
}
```

Part 4: Fitting the Model in R

```
setwd("/Users/user/Desktop/Lectures 2024/Bayesian Course - UoM/Bayesian Linear Regression")
stan_data <- list(
    N = N,
    x = sim_data$x,
    y = sim_data$y
)
model_compiled <- stan_model(file = "linear_regression.stan")
fit <- sampling(
    object = model_compiled,
    data = stan_data,
    iter = 2000,
    warmup = 1000,
    chains = 4,
    seed = 123,
    refresh = 0
)</pre>
```

Part 5: Inspecting Model Fit and Convergence

```
print(fit, pars = c("alpha", "beta", "sigma"), probs = c(0.025, 0.5, 0.975))
## Inference for Stan model: anon_model.
```

```
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
##
                        sd 2.5% 50% 97.5% n_eff Rhat
        mean se_mean
## alpha 8.62
                 0.08 2.77 3.25 8.62 14.16
## beta 2.52
                 0.00 0.05 2.42 2.52 2.60
                                           1240
                                                    1
## sigma 4.61
                 0.01 0.33 4.03 4.59 5.30
##
## Samples were drawn using NUTS(diag_e) at Mon May 19 11:26:24 2025.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
```

Trace Plots

```
mcmc_trace(fit, pars = c("alpha", "beta", "sigma")) +
   ggtitle("Trace Plots for Parameters")
```

Trace Plots for Parameters

Posterior Density Plots

```
mcmc_dens_overlay(fit, pars = c("alpha", "beta", "sigma")) +
    ggtitle("Posterior Density Overlays")
```

Posterior Density Overlays

mcmc_areas(fit, pars = c("alpha", "beta", "sigma"), prob = 0.95) +
 ggtitle("Posterior Densities with 95% Credible Intervals")

Part 6: Posterior Predictive Checks (PPCs)

```
posterior_draws <- extract(fit)
y_rep_matrix <- posterior_draws$y_rep

color_scheme_set("brightblue")

ppc_dens_overlay(y = sim_data$y, yrep = y_rep_matrix[1:50, ]) +
    ggtitle("Posterior Predictive Check: Density Overlay")</pre>
```



```
ppc_stat(y = sim_data$y, yrep = y_rep_matrix, stat = "mean") +
    ggtitle("PPC for Mean of y")
```



```
ppc_stat(y = sim_data$y, yrep = y_rep_matrix, stat = "sd") +
   ggtitle("PPC for SD of y")
```


Part 7: Interpretation and Visualization

```
alpha_samples <- posterior_draws$alpha
beta_samples <- posterior_draws$beta

p <- ggplot(sim_data, aes(x = x, y = y)) +
    geom_point(alpha = 0.5) +
    labs(title = "Data with Posterior Regression Lines", x = "Predictor (x)", y = "Outcome (y)") +
    theme_minimal()

num_lines_to_plot <- 100
num_available_samples <- length(alpha_samples)
sample_indices <- sample(num_available_samples, min(num_lines_to_plot, num_available_samples))

for (i in sample_indices) {
    p <- p + geom_abline(intercept = alpha_samples[i], slope = beta_samples[i], color = "grey60", alpha = }

p <- p + geom_abline(intercept = mean(alpha_samples), slope = mean(beta_samples), color = "red", size = p <- p + geom_abline(intercept = alpha_true, slope = beta_true, color = "blue", linetype = "dashed", si
print(p)</pre>
```

Data with Posterior Regression Lines

Part 8: Student Exploration Questions

Q1. Influence of Priors

- Q1.1: Change the prior for sigma to sigma ~ student_t(7, 5, 1) or sigma ~ normal(5, 1) T[0,]. Re-run the model. How does the posterior for sigma, alpha, and beta change?
- Q1.2: Change the prior for beta to a narrow prior beta ~ normal(0, 0.1). Does the posterior move toward 0?
- Q1.3: Try a wrong but informative prior beta ~ normal(-5, 0.5). Can the data override the prior?

Q2. Impact of Data

```
N_small <- 20
x_small <- rnorm(N_small, mean = 60, sd = 10)
y_deterministic_small <- alpha_true + beta_true * x_small
y_small <- rnorm(N_small, mean = y_deterministic_small, sd = sigma_true)
stan_data_small <- list(N = N_small, x = x_small, y = y_small)

fit_small_N <- sampling(model_compiled, data = stan_data_small, iter = 2000, warmup = 1000, chains = 4,
print(fit_small_N, pars = c("alpha", "beta", "sigma"))</pre>
```

- Q2.2: Increase the true error sigma_true <- 15. Re-simulate and re-fit. What changes?
- Q2.3: Standardize x and y. What happens to alpha, beta, and appropriate priors?

Q3. Model Diagnostics

```
fit_bad_mcmc <- sampling(model_compiled, data = stan_data, iter = 100, warmup = 50, chains = 4, seed =
print(fit_bad_mcmc, pars = c("alpha", "beta", "sigma"))
mcmc_trace(fit_bad_mcmc, pars = c("alpha", "beta", "sigma"))</pre>
```

• Examine Rhat and trace plots. Would you trust this model?

Q4. Interpreting Output

```
print(fit, pars = "beta", probs = c(0.05, 0.95))
## Inference for Stan model: anon_model.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
##
                       sd 5% 95% n_eff Rhat
        mean se_mean
## beta 2.52
                   0 0.05 2.44 2.59 1240
##
## Samples were drawn using NUTS(diag_e) at Mon May 19 11:26:24 2025.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
beta_posterior_samples <- extract(fit)$beta</pre>
prob_beta_gt_2 <- mean(beta_posterior_samples > 2.0)
print(paste("Probability that beta > 2.0:", round(prob_beta_gt_2, 3)))
```

[1] "Probability that beta > 2.0: 1"

Q5. Multiple Predictors (Advanced)

- Q5.1: Simulate a second predictor x2 <- rnorm(N, mean = 30, sd = 5) with beta2_true <- -1.5.
- Q5.2: Modify Stan code to include a matrix X of predictors and a vector beta.
- Q5.3: Update stan_data to include K and X. Re-fit and evaluate estimates of beta1 and beta2.