Calculus II

Homework on Lecture 21

1. Plot the number z on the complex plane (you may use one drawing only for all the numbers). Find all real numbers φ and ρ for which $z = e^{\rho + i\varphi}$. Your answer may contain expressions of the form $\arcsin x$, $\arccos x$, $\arctan x$, $\ln x$, only if x is a real number.

(a)
$$z = 1 + i\sqrt{3}$$
.

(b)
$$z = -2 - 3i$$
.

(c)
$$z = 1 - i\sqrt{3}$$
.

(d)
$$z = 1 + i$$
.

(e)
$$z = -1 - i$$
.

(f)
$$z = \frac{\sqrt{3}+i}{4}$$
.
(g) $z = -i$.

(g)
$$z = -i$$
.

(h)
$$z = 3 + 4i$$
.

2. Carry out the operations. For some of the problems you may want to review the Newton Binomial formula.

(a)
$$(5+3i)^2$$
.

(c)
$$(5+3i)^{-2}$$
.

(f)
$$(1+i)^5$$
.

(b)
$$\frac{5+3i}{2-3i}$$
.

(d)
$$(1+i)^3$$
.
(e) $(1+i)^4$.

(g)
$$(1+i)^{-5}$$
.

3. Find all complex solutions of the equation. The answer key has not been proofread. Use with caution.

(a)
$$z^3 = i$$
.

(b)
$$z^3 = -\frac{i}{8}$$
.

(c)
$$z^4 = -16$$
.

(d)
$$z^3 = -27$$
.

(e)
$$z^8 = 1$$
.

4. Express the number in polar form and compute the indicated power. The answer key has not been proofread, use with caution.

(a)
$$z = \sqrt{3} + i$$
, find z^3 .

(b)
$$z = \sqrt{3}i - 1$$
, find z^{10} .

(c)
$$z = -1 - i$$
, find z^{21} .

5. The de Moivre follows directly from Euler's formula and states that $(\cos(n\alpha) + i\sin(n\alpha)) = (\cos\alpha + i\sin\alpha)^n$. Expand the indicated expression and use it to express $\cos(n\alpha)$ and $\sin(n\alpha)$ via $\cos \alpha$ and $\sin \alpha$.

You may want to use the Newton binomial formulas (derived, say, via Pascal's triangle). The formulas you may want to use are:

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a+b)^2 = a^2 + 2ab + b^2 (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 (a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4 .$$

(a) Expand $(\cos \alpha + i \sin \alpha)^2$. Express $\cos(2\alpha)$ and $\sin(2\alpha)$ via $\cos \alpha$ and $\sin \alpha$.

(b) Expand $(\cos \alpha + i \sin \alpha)^3$. Express $\cos(3\alpha)$ and $\sin(3\alpha)$ via $\cos \alpha$ and $\sin \alpha$.

(c) Expand $(\cos \alpha + i \sin \alpha)^4$. Express $\cos(4\alpha)$ and $\sin(4\alpha)$ via $\cos \alpha$ and $\sin \alpha$.