

18 Key Design Patterns Every Developer Should Know

ByteByteGo.com

Abstract Factory

Family creator

Create groups of related items

Builder

Lego master

Build object step by step

Prototype

Cloner

Create copies from examples

Singleton

The one and only

With just one instance

Adapter

Universal plug

Connect different interfaces

Bridge

Connector

Link what is to how it works

Composite

Tree builder

Create tree-like structure

Decorator

Customizer

Add new features to existing object

Facade

One-stop shop

Single interface to all functions

Flyweight

Space saver

Share small, reusable items

Proxy

Middle man

Represent another object

Chain of responsibility

Replayer

Relay requests until it is handles

Command

Task wrapper

Turn a request into object

Iterator

Explorer

Assess element one by one

Mediator

Hub

Simplify communication between classes

Memento

Capsule

Capture and store object state

Observer

Broadcaster

Notify others about the change

Visitor

Guests

Explore an object without changing it

8 Data Structures That Power Your Databases

Types	Illustration	Use Case	Note
Skiplist	head	In-memory	used in Redis
Hash index	0	In-memory	Most common in-memory index solution
SSTable	Index file blob file Key Offset Length ubertwitterm zzz 3132 233	Disk-based	Immutable data structure. Seldom used alone
LSM tree	Skiplist Skiplist SStable 2 Stable 3 SStable 3	Memory + Disk	High write throughput. Disk compaction may impact performance
B-tree	7 16 9 11 17 22 23	Disk-based	Most popular database index implementation
Inverted index	today my name is Alex. What day a book today. Files	Search document	Used in document search engine such as Lucene
Suffix tree	7 9 14 13 11 5 15 15 pytegos bytegos bytegos bytegos 12 4 6 1	Search string	Used in string search, such as string suffix match
R-tree		Search multi-dimension shape	Such as the nearest neighbor

Airbnb's Microservice Architecture

API Architecture Styles

Style	Illustration	Use Cases	
SOAP	XML XML	XML-based for enterprise applications	
RESTful	Resource Resource	Resource-based for web servers	
GraphQL		Query language reduce network load	
gRPC	abc 0160102 abc	High performance for microservices	
WebSocket	push —	Bi-directional for low-latency data exchange	
Webhook	async	Asynchronous for event-driven application	

How to Improve API Performance?

Reference: Rapid API

Code First v.s API First Development 🗑 blog.bytebytego.com

CAP Theorem

	CA systems	CP systems	AP systems
Sacrifice	No sacrifice	Availability	Consistency
Use Cases	Single-node only	Strong consitency. Banks, financial systems	Low latency. Consistency requirement is not high
Real-world examples	Single node RBMS (MySQL, Oracle)	Zookeeper, BigTable	Cassandra, CouchDB

CI/CD Pipelines

MVC, MVP, MVVM, VIPER patterns

Elastic File System

Virtual Private Cloud

Route 53

Elastic Load Balancing

Web Application Firewall

RDS

DynamoDB

Redshift

Elastic MapReduce

Kinesis

SageMaker SageMaker

Glue

EventBridge

Simple Queuing Service

Simple Notification Service

CloudWatch

CloudFormation

BE IAM

% KMS

Azure Kubernetes
Service (AKS)

Azure Functions

Blob Storage

Managed Disk

File Storage

Virtual Network

DNS DNS

Load Balancer

Web Application Firewall

SQL Database

Cosmos DB

Synapse Analytics

HDInsight +

Streaming Analytics

Machine Learning

Data Factory

Event Grid

Storage Queues

Service Bus

Monitor Monitor

Resource Manager

Active Directory

(F) Key Vault

Cloud Functions

Cloud Storage

Persistent Disk

File Store

Virtual Private Cloud

Cloud DNS

Cloud Load Balancing

Cloud Armor

Cloud SQL
Firebase Realtin

Firebase Realtime Database

BigQuery

🖧 Dataproc

Dataflow

Vertex Al

Data Fusion

(Eventarc

Pub/Sub

Firebase Cloud Messaging

Cloud Monitoring

Deployment Manager

Cloud Identity

Cloud KMS

CLOUD

Virtual Machine

Oracle Container Engine

OCI Functions

△○ Object Storage

Persistent Volume

File Storage

Virtual Cloud Network

ONS

Load Balancer

Web Application Firewall

ATP

NoSQL Database

Autonomous

Data Warehouse

Big Data

Streaming

Data Science

Data Integration

Events

Streaming

Notifications

Monitoring

Resource Manager

NAI 🚰

Wault

Cloud Database Cheat Sheet

blog.bytebytego.com

What is Cloud Native?

1	1980 - 1990	2000	2010 - Cloud
Development Process	Waterfall	S Agile	DevOps
Application Architecture	Monolithic	N-Tier	API Gateway Service A B C Microservices
Deployment & Packaging	App Physical Server Physical server	App App Bins/ Bins/ Libs Libs Guest Guest OS OS Hypervisor Physical Server Virtual server	Container Container App App Bins/ Bins/ Libs Libs Container Engine OS Physical Server Container
Application Infrastructure	Data center	Hosted	Cloud

DevOps

SRE (Site Reliability Engineering)

Platform Engineering

Diagram as Code

```
from diagrams import Cluster, Diagram
from diagrams.aws.compute import ECS
from diagrams.aws.database import ElastiCache, RDS
from diagrams.aws.network import ELB
from diagrams.aws.network import Route53
with Diagram("Clustered Web Services", show=False):
    dns = Route53("dns")
    lb = ELB("lb")
    with Cluster("Services"):
        svc_group = [ECS("web1"),
                    ECS("web2"),
                     ECS("web3")]
    with Cluster("DB Cluster"):
        db_primary = RDS("userdb")
        db_primary - [RDS("userdb ro")]
    memcached = ElastiCache("memcached")
    dns >> lb >> svc_group
    svc_group >> db_primary
    svc_group >> memcached
```


How Discord Stores Trillions Of Messages

🗑 blog.bytebytego.com

How does Docker Work? Stolog.bytebytego.com

Forward Proxy v.s. Reverse Proxy

Forward Proxy

- · Avoid browsing restrictions
- · Block access to certain content
- · Protect user identity online

Forward Proxy Internet Web Server A Web Server B

Reverse Proxy

- · Load balancing
- · Protect from DDos attacks
- · Cache static content
- · Encrypt and decrypt SSL communications

How Git Commands work

ByteByteGo.com

Git Merge vs. Git Rebase 🗑 blog.bytebytego.com

How does Git Work?

How does Google Authenticator Work?

How does VISA Make Money?

merchant discount fee = interchange fee + acquiring markup
\$2.00
\$1.75
\$0.25

The merchant needs to compensate issuer and acquirer

How does UPI Work?

blog.bytebytego.com

1. Registration & Link to Bank Account

How did we get to HTTP/3?

How does HTTPS Work?

blog.bytebytego.com

JW [JSON WEB TOKEN]

Security Zines. com In Collaboration with Byte Byte Go

Load Balancing Algorithms

req 4

Bob

req 2

Service C

10 connections

blog.bytebytego.com

req 4

req 2

Service C

resp time: Ims

How to Learn Payments? blog.bytebytego.com End-to-End Payment System Design blog.bytebytego.com

Linux File Systems

	/bin	EXE	Essential command binaries
	/boot	L	System boot loader files
/	dev	• %	Device files
//,	letc		Host-specific system-wide configuration files
	/home	Ħ	User home directory
	/lib		Shared library modules
	/media	6	Media file such as CD-ROM
	/mnt	MA S	Temporary mounted filesystems
////	/opt		Add-on application software packages
	/proc	t.	Automatically generated file system
	/root		Home directory for root user
	/run		Run-time program data
	/sbin	EXE	System binaries
	/srv		Site-specific data served by this system
	/sys	Em	Virtual directory providing information about the system
//	/tmp	À	Temporary files
	/usr		Read-only user files
	/var	~	File that is expected to continuously change

How does Live Streaming Work? Bolog.bytebytego.com

Microservice Best Practices

blog.bytebytego.com

Microservice Tech Stack

blog.bytebytego.com

	Monorepo	Microrepo
Company	Google Meta Uber airbnb Linux Windows	amazon NETFLIX Linked in ORACLE
Collaboration	Service A Q Service B Q Common Q Q Q Services work under the same repository.	Service A Service B Common Service owners work under separate repositories.
Dependency	Service A Service B Common Dependency A = 1.1; Service share the same dependency.	Service A Service B Common A = 1.0; A = 1.1; A = 1.2; Service choose their own dependency.
Scalability	Service A Service B Service D Common Services share the same standard.	Service Service B Common Services set their own standard.
Tooling	Bazel Buck Nix Lerna	© Maven Maven Maven Cradle

Tech Stack

NETFLIX Tech Stack (CI/CD Pipeline) blog.bytebytego.com ATLASSIAN Jira Jenkins Animator Confluence Packer © spring Polyloote Spinnaker RELEASE PLAN Offplox pagerduty Scala JS BUILD Kotlin Dispatch **MP** Kayenta CHAP Gradle nebula Altas

Design Effective & Safe APIs

Design a Shopping Cart

Use resource names (nouns)	GET /querycarts/123	GET /carts/123
Use plurals	GET /cart/123	GET /carts/123
Idempotency	POST /carts	POST /carts (requestId: 4321)
Use versioning	GET /carts/v1/123	GET /v1/carts/123
Query after soft deletion	GET /carts	GET /carts? includeDeleted=true
Pagination	GET /carts	GET /carts? pageSize=xx&pageToken=xx
Sorting	GET /items	GET /items? sort_by=time
Filtering	GET /items	GET /items? filter=color:red
Secure Access	X-API-KEY=XXX	X-API-KEY = xxx hmac(URL + QueryString + Expiry + Body X-EXPIRY = xxx X-REQUEST-SIGNATURE = xxx
Resource cross reference	GET /carts/123? item=321	GET /carts/123/items/321
Add an item to a cart	POST /carts/123? addItem=321	POST /carts/123/items:add { itemId: "items/321" }
Rate limit	No rate limit - DDos	Design rate limiting rules based on IP, user, action group etc

How to store passwords in DB?

Amazon Prime Video monitoring - From Serverless to Monolithic

Based on: https://primevideotech.com/

API Architectural Styles Comparison

Source: altexsoft

How is SQL Executed in DB? blog.bytebytego.com

stack overflow Architecture

ByteByteGo.com

- 2. Event sourcing (CQRS) 3. Eventual consistency 4. Sharding 1. Microservice based
- 5. Heavy use cache 6. ...

What it actually is

1. Monolithic

2. Only 9 web servers

Top Redis Use Cases 🗑 blog.bytebytego.com

		Session
String	[\$ @	Cache
		Distributed Lock
		Counter
Int		Rate Limiter
	123	Global ID
Hash		Shopping Cart
Bitmap		User Retention
List		Message Queue
ZSet	iii	Rank/Leaderboard
Us a		

Top 4 Most Used Authentication Mechanisms blog.bytebytego.com 2 SSH Keys **OAuth Tokens** Client Server Client Server Access Token host key Request client user client ID host keys key U public authenticator U 0-C - C publickey Identity Validation + U - private 2 @--- C access token Authorization Server issuance client U userkey secret Response H hostkey C client hostkey 3 API API Access with public host key Server "Bearer" token host keys U public Response Codes: @--- H authenticator H Token Extraction * 200 OK O--- H Server U - private - H Authentication 400 Bad Request 401 Unauthorized Token Validation 3 4 SSL Certificates Credentials Client Server Client Server https://bytebytego.com HTTPS Connection username Credentials Encryption ****** with SSL ssl certificate 2 2 Authentication Status Secured Connection user password Validity Expiry Decrypts with SSL Check cert private key username lookup Issue Authority

Decrypts

with SSL cert private

key

(CA) Check

Domain Name Match Check

Random

6

Encrypted Key

hashed password

verification

User Database

Top caching strategies

Types of Memory and Storage

URL vs URI vs URN

blog.bytebytego.com

What is a Webhook?

blog.bytebytego.com

Cache Systems Every Developer Should Know

Why is Kafka Fast?

Why is Redis so fast?

