An introduction to SGDT

+ some geometric remarks

Daniele Palombi

(Student @ Sapienza – University of Rome, Volunteer @ Progetto ItaCa)

February 2021

We want to solve:

$$X \cong X^X$$

We want to solve:

$$X \cong X^X$$

Unfortunately:

Theorem (Lawvere)

In a CCC, if there's an onto map $X \to Y^X$, then every endomorphism $f: Y \to Y$ has a fixpoint.

We want to solve:

$$X \cong X^X$$

Unfortunately:

Theorem (Lawvere)

In a CCC, if there's an onto map $X \to Y^X$, then every endomorphism $f: Y \to Y$ has a fixpoint.

No non-trivial sets satisfy this!

Scott's solution: define domains as objects of a different category (pointed DCPOs).

Scott's solution: define domains as objects of a different category (pointed DCPOs).

Cool fact: DCPOs can be endowed with a suitable topology (the *Scott topology*) s.t. continuous functions between them are precisely DCPO morphisms.

Scott's solution: define domains as objects of a different category (pointed DCPOs).

Cool fact: DCPOs can be endowed with a suitable topology (the *Scott topology*) s.t. continuous functions between them are precisely DCPO morphisms.

DT becomes a full-fledged theory of computational spaces!

However, DCPOs are pretty hard to deal with. One would like to treat domains as sets

¹All the nice topological intuition carries over in a precise way.

However, DCPOs are pretty hard to deal with. One would like to treat domains as sets \Rightarrow Define a (family of) topos(es) of domains¹ \mathcal{E} in which:

- One can take fixpoints of endomorphisms $X \to X$.
- One can find fixpoints for various endofunctors $\mathcal{E} \to \mathcal{E}$.
- A (known?) category of domains embeds into it.

¹All the nice topological intuition carries over in a precise way.

However, DCPOs are pretty hard to deal with. One would like to treat domains as sets \Rightarrow Define a (family of) topos(es) of domains¹ \mathcal{E} in which:

- One can take fixpoints of endomorphisms $X \to X$.
- One can find fixpoints for various endofunctors $\mathcal{E} \to \mathcal{E}$.
- A (known?) category of domains embeds into it.

We won't talk about that right now...

¹All the nice topological intuition carries over in a precise way.

Suppose we want to solve:

$$\mathcal{W} \cong \mathbb{N} \rightharpoonup_{\mathsf{fin}} \mathcal{T}$$

$$\mathcal{T}\cong\mathcal{W}\to_{mon}\mathcal{P}(\textbf{V}\times\textbf{V})$$

Suppose we want to solve:

$$\mathcal{W}\cong\mathbb{N} \rightharpoonup_{\text{fin}} \mathcal{T}$$

$$\mathcal{T} \cong \mathcal{W} \to_{\text{mon}} \mathcal{P}(\textbf{V} \times \textbf{V})$$

Both Sets and Domains aren't that helpful with that.

Step indexing: Adding steps (natural numbers, in its most simple form) at different places in definitions in order to get a handle on recursion.

Step indexing: Adding steps (natural numbers, in its most simple form) at different places in definitions in order to get a handle on recursion.

Let's try changing a bit what we're trying to solve and take:

$$\mathcal{P}^{\downarrow}(\mathbb{N} \times \mathbf{V} \times \mathbf{V}) := \{ \rho \mid (n, v, w) \in \rho \Rightarrow (m, v, w) \in \rho \ \forall m \leq n \}$$

Observe that $\mathcal{P}^{\downarrow}(\mathbb{N} \times \mathbf{V} \times \mathbf{V})$ comes equipped with the metric:

$$d(X, Y) = \inf\{2^{-n} \mid \forall j < n. \forall v, w \in \mathbf{V}. (j, v, w) \in X \leftrightarrow (j, v, w) \in Y\}$$

Observe that $\mathcal{P}^{\downarrow}(\mathbb{N} \times \mathbf{V} \times \mathbf{V})$ comes equipped with the metric:

$$d(X,Y) = \inf\{2^{-n} \mid \forall j < n. \forall v, w \in \mathbf{V}. (j,v,w) \in X \leftrightarrow (j,v,w) \in Y\}$$

Moreover:

- 1. All the distances are of the form 2^{-n} .
- 2. $d(X,Z) \leq \max\{d(X,Y),d(Y,Z)\} \quad \forall X,Y,Z.$

Observe that $\mathcal{P}^{\downarrow}(\mathbb{N} \times \mathbf{V} \times \mathbf{V})$ comes equipped with the metric:

$$d(X,Y) = \inf\{2^{-n} \mid \forall j < n. \forall v, w \in \mathbf{V}. (j,v,w) \in X \leftrightarrow (j,v,w) \in Y\}$$

Moreover:

- 1. All the distances are of the form 2^{-n} .
- 2. $d(X,Z) \le \max\{d(X,Y),d(Y,Z)\} \quad \forall X,Y,Z$.

 $\mathcal{P}^{\downarrow}(\mathbb{N} \times \mathbf{V} \times \mathbf{V})$ is a bisected (1) ultrametric (2) space!

Let's move to the category BiCUlt of *complete bisected ultrametric spaces* and *non-expansive*² functions.

 $^{^2}f: X \to Y$ is non-expansive if $\forall a, b \in X.d_Y(f(a), f(b)) \le d_X(a, b)$.

Let's move to the category BiCUlt of *complete bisected ultrametric spaces* and *non-expansive*² functions.

A locally non-expansive functor is a BiCUlt-enriched functor.

A lne functor $F: BiCUlt^{op} \times BiCUlt \rightarrow BiCUlt$ is *locally* contractive if $\forall f,g:X\rightarrow Y$ and $h,k:Z\rightarrow W$ we have:

$$d(F(f,h),F(g,k)) \leq \frac{1}{2} \cdot \max\{d(f,g),d(h,k)\}$$

 $^{^2}f: X \to Y$ is non-expansive if $\forall a, b \in X.d_Y(f(a), f(b)) \leq d_X(a, b)$.

Remark

Composing any lne functor with the functor $\frac{1}{2} \cdot -$, which maps the space (X, d_X) to $(X, \frac{1}{2} \cdot d_X)$ and acts as the identity on morphisms, will give a locally contractive functor.

Remark

Composing any lne functor with the functor $\frac{1}{2} \cdot -$, which maps the space (X, d_X) to $(X, \frac{1}{2} \cdot d_X)$ and acts as the identity on morphisms, will give a locally contractive functor.

Theorem ([BST10])

Let F an I c functor s.t. F(1,1) is inhabited. Then, there exists an inhabited $X \in BiCUlt\ s.t.$ $F(X,X) \cong X$. If moreover $F(\emptyset,\emptyset)$ is inhabited, then such X is unique up to iso.

Now we can upgrade our definition from earlier to:

$$\mathcal{T}\cong \left(\mathbb{N} \rightharpoonup_{\text{fin}} \frac{1}{2}\cdot \mathcal{T}\right) \rightarrow_{\text{mon, n.e.}} \mathcal{P}^{\downarrow}(\mathbb{N}\times \mathbf{V}\times \mathbf{V})$$

And use the fixpoint theorem for lc functors to show that it has a unique solution.

Cool! But, these spaces are awful to deal with. Again, one would like to treat such objects as sets

³Contractions on a non-empty complete metric space have a unique fixpoint.

Cool! But, these spaces are awful to deal with. Again, one would like to treat such objects as sets \Rightarrow Define a (family of) topos(es) \mathcal{E} in which:

- There's a version of Banach's fixpoint theorem³.
- One can find fixpoints for lc endofunctors $\mathcal{E} \to \mathcal{E}$.
- There's an operator that behaves like the $\frac{1}{2}$ · functor.
- (possibly?) BiCUlt embeds into it.

³Contractions on a non-empty complete metric space have a unique fixpoint.

 $(\mathcal{E}, \blacktriangleright : \mathcal{E} \to \mathcal{E}, -^{\dagger} : \mathcal{E}(\blacktriangleright -, -) \to \mathcal{E}(1, -))$, where \mathcal{E} has fin. prods. and \blacktriangleright is pointed⁴. s.t. (incrementally):

⁴i.e. there's a natural transformation $n: id_{\mathcal{E}} \to \blacktriangleright$.

 $(\mathcal{E}, \blacktriangleright : \mathcal{E} \to \mathcal{E}, -^{\dagger} : \mathcal{E}(\blacktriangleright -, -) \to \mathcal{E}(1, -))$, where \mathcal{E} has fin. prods. and \blacktriangleright is pointed⁴. s.t. (incrementally):

• $\forall f : \triangleright X \rightarrow X, f^{\dagger}$ is !s.t.

$$\begin{array}{ccc}
1 & \xrightarrow{f^{\dagger}} & X \\
f^{\dagger} \downarrow & & \uparrow f \\
X & \xrightarrow{n_X} & X
\end{array}$$

• ▶ preserves finite limits.

⁴i.e. there's a natural transformation $n: id_{\mathcal{E}} \to \blacktriangleright$.

 $(\mathcal{E}, \blacktriangleright: \mathcal{E} \to \mathcal{E}, -^{\dagger}: \mathcal{E}(\blacktriangleright -, -) \to \mathcal{E}(1, -))$, where \mathcal{E} has fin. prods. and \blacktriangleright is pointed⁴. s.t. (incrementally):

• $\forall f : \triangleright X \rightarrow X, f^{\dagger}$ is !s.t.

$$\begin{array}{ccc}
1 & \xrightarrow{f^{\dagger}} & X \\
f^{\dagger} \downarrow & & \uparrow f \\
X & \xrightarrow{n_X} \triangleright X
\end{array}$$

- ▶ preserves finite limits.
- \mathcal{E} is cartesian closed.
- Every loc. contr. $F : \mathcal{E} \to \mathcal{E}$ has a fixpoint (up to iso).

⁴i.e. there's a natural transformation $n: id_{\mathcal{E}} \to \blacktriangleright$.

 $(\mathcal{E}, \blacktriangleright : \mathcal{E} \to \mathcal{E}, -^{\dagger} : \mathcal{E}(\blacktriangleright -, -) \to \mathcal{E}(1, -))$, where \mathcal{E} has fin. prods. and \blacktriangleright is pointed⁴. s.t. (incrementally):

• $\forall f : \triangleright X \rightarrow X, f^{\dagger}$ is !s.t.

- ▶ preserves finite limits.
- \mathcal{E} is cartesian closed.
- Every loc. contr. $F : \mathcal{E} \to \mathcal{E}$ has a fixpoint (up to iso).
- \mathcal{E} is LCC + each slice is •.

⁴i.e. there's a natural transformation $n: id_{\mathcal{E}} \to \blacktriangleright$.

Recall that an endofunctor $F: \mathcal{C} \to \mathcal{C}$ is strong if $\forall X, Y. \exists F_{X,Y}: Y^X \to FY^{FX} \text{ s.t. } \forall f: X \to Y. F_{X,Y} \circ \llbracket f \rrbracket = \llbracket Ff \rrbracket^5.$

⁵ $\llbracket f \rrbracket : 1 \to Y^X$ is the curried version of $f : X \to Y$.

Recall that an endofunctor $F: \mathcal{C} \to \mathcal{C}$ is strong if $\forall X, Y. \exists F_{X,Y}: Y^X \to FY^{FX} \text{ s.t. } \forall f: X \to Y. F_{X,Y} \circ \llbracket f \rrbracket = \llbracket Ff \rrbracket^5.$

A strong endofunctor on \mathcal{E} is *locally contractive* if each $F_{X,Y}$ is contractive, i.e. $\exists G_{X,Y}$ s.t. $G_{X,Y} \circ n_{X^Y} = F_{X,Y}$ and the following diagrams commute:

 $^{^{5} \}llbracket f \rrbracket : 1 \to Y^X$ is the curried version of $f : X \to Y$.

The general reference here is [BMSS11]

Proposition If $\mathcal E$ is cartesian closed $+ \bullet$, then \blacktriangleright is strong.

The general reference here is [BMSS11]

Proposition

If $\mathcal E$ is cartesian closed $+ \bullet$, then \blacktriangleright is strong.

Theorem

If $\mathcal E$ is LCC + ullet, then so is each of its slices.

The general reference here is [BMSS11]

Proposition

If $\mathcal E$ is cartesian closed $+ \bullet$, then \blacktriangleright is strong.

Theorem

If \mathcal{E} is LCC + •, then so is each of its slices.

Theorem

If $\mathcal E$ is LCC + ullet, then llet is fibred over the codomain fibration.

Proposition

If \mathcal{E} is \bullet , let $F: \mathcal{E} \to \mathcal{E}$ be lc. If $X \cong F(X)$, then the two directions of the isomorphism give an initial algebra and a final coalgebra structure.

 $^{{}^{6}\}underline{F}(\vec{X},\vec{Y}) = \langle F(\vec{Y},\vec{X}), F(\vec{X},\vec{Y}) \rangle$ is the symmetrization of F.

Proposition

If \mathcal{E} is \bullet , let $F: \mathcal{E} \to \mathcal{E}$ be lc. If $X \cong F(X)$, then the two directions of the isomorphism give an initial algebra and a final coalgebra structure.

Theorem

If \mathcal{E} is \bullet , let $F: (\mathcal{E}^{op} \times \mathcal{E})^{n+1} \to \mathcal{E}$ be lc in the (n+1)th variable pair. Then $\exists ! F^{\dagger}: (\mathcal{E}^{op} \times \mathcal{E})^{n} \to \mathcal{E}$ s.t. $F \circ \langle id, \underline{F^{\dagger}} \rangle \cong F^{\dagger 6}$. Moreover, if F is lc in all variables, then so is F^{\dagger} .

 $^{{}^{6}\}underline{F}(\vec{X},\vec{Y}) = \langle F(\vec{Y},\vec{X}), F(\vec{X},\vec{Y}) \rangle$ is the symmetrization of F.

• Taking $\triangleright = id_{\mathcal{E}}$ and $n = id_{\triangleright}$, categories with an ordinary fixpoint operator are •. For a concrete example: the category of pointed DCPOs with its usual least fixpoint operator.

- Taking $\triangleright = id_{\mathcal{E}}$ and $n = id_{\triangleright}$, categories with an ordinary fixpoint operator are •. For a concrete example: the category of pointed DCPOs with its usual least fixpoint operator.
- If \triangleright X = 1 and $n_X = !_X$, a trivial guarded fixpoint operator is given by the identity map on the hom-sets.

- Taking $\triangleright = id_{\mathcal{E}}$ and $n = id_{\triangleright}$, categories with an ordinary fixpoint operator are •. For a concrete example: the category of pointed DCPOs with its usual least fixpoint operator.
- If \triangleright X = 1 and $n_X = !_X$, a trivial guarded fixpoint operator is given by the identity map on the hom-sets.
- Take $\mathcal{E} = \operatorname{BiCUlt}$, $\blacktriangleright = \frac{1}{2} \cdot -$ and n as the obvious "contracted identity" mapping. Note that a n.e. $f : \blacktriangleright X \to X$ is the same as a contractive endomap. Therefore Banach's fixpoint theorem yields a guarded fixpoint operator and BiCUlt is •.

A morphism $f: X \to Y$ is contractive if $\exists g : \blacktriangleright X \to Y$ s.t. $f = g \circ n_X$. A morphism $f: X \times Y \to Z$ is contractive in the first variable if $\exists g$ s.t. $f = g \circ (n_X \times id_Y)$.

Theorem

All $f: X \times Y \rightarrow X$ cont. in the first variable have unique fixpoints.

- Taking $ightharpoonup = id_{\mathcal{E}}$ and $n = id_{\mathbf{p}}$, categories with an ordinary fixpoint operator are •. For a concrete example: the category of pointed DCPOs with its usual least fixpoint operator.
- If \triangleright X = 1 and $n_X = !_X$, a trivial guarded fixpoint operator is given by the identity map on the hom-sets.
- Take $\mathcal{E} = \operatorname{BiCUlt}$, $\blacktriangleright = \frac{1}{2} \cdot -$ and n as the obvious "contracted identity" mapping. Note that a n.e. $f : \blacktriangleright X \to X$ is the same as a contractive endomap. Therefore Banach's fixpoint theorem yields a guarded fixpoint operator and BiCUlt is •.

- Taking $ightharpoonup = id_{\mathcal{E}}$ and $n = id_{\mathbf{p}}$, categories with an ordinary fixpoint operator are •. For a concrete example: the category of pointed DCPOs with its usual least fixpoint operator.
- If \triangleright X = 1 and $n_X = !_X$, a trivial guarded fixpoint operator is given by the identity map on the hom-sets.
- Take $\mathcal{E} = \text{BiCUlt}$, $\blacktriangleright = \frac{1}{2} \cdot -$ and n as the obvious "contracted identity" mapping. Note that a n.e. $f : \blacktriangleright X \to X$ is the same as a contractive endomap. Therefore Banach's fixpoint theorem yields a guarded fixpoint operator and BiCUlt is •.
- Dulcis in fundo...

A poset *A* is *well-founded* if there are no infinite descending sequences $a_0 > a_1 > a_2 > ...$

⁷i.e. a poset with \top , \bot , all \rightarrow , meets and joins. Also known as *frames*.

A poset *A* is *well-founded* if there are no infinite descending sequences $a_0 > a_1 > a_2 > ...$

Let A be a poset and let $K \subseteq A$. Then K is a basis for A if $\forall a \in A.a = \bigvee \{k \in K \mid k \leq a\}.$

⁷i.e. a poset with \top , \bot , all \rightarrow , meets and joins. Also known as *frames*.

A poset *A* is *well-founded* if there are no infinite descending sequences $a_0 > a_1 > a_2 > ...$

Let *A* be a poset and let $K \subseteq A$. Then *K* is a *basis* for *A* if $\forall a \in A.a = \bigvee \{k \in K \mid k \leq a\}.$

Theorem

Let A be a complete Heyting algebra 7 with a well-founded base. Then Sh(A) is \bullet .

⁷i.e. a poset with \top , \bot , all \rightarrow , meets and joins. Also known as *frames*.

Let A be a well-founded poset. Then its *ideal completion* $\operatorname{Idl}(A)$ consisting of downward-closed subsets of A is a complete Heyting algebra with a well-founded basis $K = \{ \downarrow \alpha \mid \alpha \in A \}$ where $\downarrow \alpha = \{ \alpha' \in A \mid \alpha' \leq \alpha \}$.

Let A be a well-founded poset. Then its *ideal completion* Idl(A) consisting of downward-closed subsets of A is a complete Heyting algebra with a well-founded basis $K = \{ \downarrow \alpha \mid \alpha \in A \}$ where $\downarrow \alpha = \{ \alpha' \in A \mid \alpha' \leq \alpha \}$.

Proposition

If A is a poset, then $Sh(Idl(A)) \simeq Psh(A)$.

Take:

$$S := Psh(\omega)$$

Take:

$$S := Psh(\omega)$$

Its objects are of the form:

$$X_1 \leftarrow \stackrel{r_1}{\longleftarrow} X_2 \leftarrow \stackrel{r_2}{\longleftarrow} X_3 \leftarrow \stackrel{r_3}{\longleftarrow} \dots$$

Take:

$$S := Psh(\omega)$$

Its objects are of the form:

$$X_1 \xleftarrow{r_1} X_2 \xleftarrow{r_2} X_3 \xleftarrow{r_3} \dots$$

Its morphisms:

$$X_{1} \xleftarrow{r_{1}} X_{2} \xleftarrow{r_{2}} X_{3} \xleftarrow{r_{3}} \dots$$

$$f_{1} \downarrow \qquad \qquad f_{2} \downarrow \qquad \qquad f_{3} \downarrow \qquad \qquad f_{1} \downarrow \qquad \qquad f_{2} \downarrow \qquad \qquad f_{3} \downarrow \qquad \qquad f_{2} \downarrow \qquad \qquad f_{3} \downarrow \qquad \qquad f_{2} \downarrow \qquad \qquad f_{3} \downarrow \qquad \qquad f_{3} \downarrow \qquad \qquad f_{2} \downarrow \qquad \qquad f_{3} \downarrow \qquad f_{3} \downarrow \qquad \qquad f_{4} \downarrow \qquad \qquad f_{5} \downarrow \qquad f_{5} \downarrow \qquad f_{5} \downarrow \qquad f_{5} \downarrow \qquad \qquad f_{5} \downarrow \qquad \qquad f_{5} \downarrow \qquad f$$

The ▶ modality:

$$X X_1 \leftarrow \stackrel{r_1}{\longleftarrow} X_2 \leftarrow \stackrel{r_2}{\longleftarrow} X_3 \leftarrow \stackrel{r_3}{\longleftarrow} X_4 \leftarrow \stackrel{r_4}{\longleftarrow} \dots$$

$$\blacktriangleright X \qquad \{*\} \xleftarrow{} X_1 \xleftarrow{} X_2 \xleftarrow{} X_2 \xleftarrow{} X_3 \xleftarrow{} \dots$$

The ▶ modality:

$$X$$
 $X_1 \leftarrow \stackrel{r_1}{\longleftarrow} X_2 \leftarrow \stackrel{r_2}{\longleftarrow} X_3 \leftarrow \stackrel{r_3}{\longleftarrow} X_4 \leftarrow \stackrel{r_4}{\longleftarrow} \dots$

$$\blacktriangleright X \qquad \{*\} \xleftarrow{} X_1 \xleftarrow{} X_2 \xleftarrow{} X_2 \xleftarrow{} X_3 \xleftarrow{} \dots$$

And its point, n_X :

$$X_{1} \xleftarrow{r_{1}} X_{2} \xleftarrow{r_{2}} X_{3} \xleftarrow{r_{3}} X_{4} \xleftarrow{r_{4}} \dots$$

$$\downarrow \downarrow \qquad \qquad r_{1} \downarrow \qquad \qquad r_{2} \downarrow \qquad \qquad r_{3} \downarrow$$

$$\{*\} \xleftarrow{!} X_{1} \xleftarrow{r_{1}} X_{2} \xleftarrow{r_{2}} X_{3} \xleftarrow{r_{3}} \dots$$

The NNO:

$$N$$
 $\mathbb{N} \xleftarrow{id_{\mathbb{N}}} \mathbb{N} \xleftarrow{id_{\mathbb{N}}} \mathbb{N} \xleftarrow{id_{\mathbb{N}}} \dots$

The subobject classifier:

$$\Omega \hspace{1cm} \{0,1\} \longleftarrow \{0,1,2\} \longleftarrow \{0,1,2,3\} \longleftarrow \dots$$

The type of streams:

$$S\cong \mathbb{N}\times S \hspace{1cm} \mathbb{N}^{\omega} \xleftarrow{id_{\mathbb{N}^{\omega}}} \mathbb{N}^{\omega} \xleftarrow{id_{\mathbb{N}^{\omega}}} \mathbb{N}^{\omega} \xleftarrow{id_{\mathbb{N}^{\omega}}} \dots$$

The type of guarded streams:

$$S_{\blacktriangleright} \cong \mathbb{N} \times \blacktriangleright S_{\blacktriangleright}$$
 $\mathbb{N} \xleftarrow{\pi_1} \mathbb{N}^2 \xleftarrow{\pi_{1,2}} \mathbb{N}^3 \xleftarrow{\pi_{1,2,3}} \dots$

A presheaf is *flabby* if all its restriction maps are surjective.

A presheaf is *flabby* if all its restriction maps are surjective.

Theorem

There is an equivalence between BiCUlt and flab(S), the full subcategory of flabby objects of the topos of trees.

Proposition

A morphism in BiCUlt is contractive in the metric sense iff it's contractive in S.

A presheaf is *flabby* if all its restriction maps are surjective.

Theorem

There is an equivalence between BiCUlt and flab(S), the full subcategory of flabby objects of the topos of trees.

Proposition

A morphism in BiCUlt is contractive in the metric sense iff it's contractive in S.

There should be some geometry sneaking around!

For every topos \mathcal{E} , there exists a geometric morphism to Set called the *global sections* geometric morphism:

$$\Gamma: \mathcal{E} \, \xrightarrow{\,\,\,\bot\,\,\,} \, \mathsf{Set}: \Delta$$

For every topos \mathcal{E} , there exists a geometric morphism to Set called the *global sections* geometric morphism:

$$\Gamma: \mathcal{E} \, \stackrel{\longleftarrow}{\,\,\,\bot\,\,} \, \mathsf{Set}: \Delta$$

$$\Gamma(X) = \operatorname{Set}(1, X)$$
 $\Delta(S) = \coprod_{|S|} 1$

A geometric morphism f is essential if it has an additional left adjoint $f_!$

$$E \xrightarrow{f^* \xrightarrow{\bot}} T$$

A geometric morphism f is essential if it has an additional left adjoint $f_!$

$$\mathcal{E} \xrightarrow{f!} \xrightarrow{f} \mathcal{T}$$

A topos is *locally connected* if Γ is essential.

A geometric morphism f is essential if it has an additional left adjoint $f_!$

$$\mathcal{E} \xrightarrow{f_!} \xrightarrow{f_!} \mathcal{T}$$

A topos is *locally connected* if Γ is essential.

Pretty common for models of SGDT!

A geometric morphism f is local if it has an additional fully faithful right adjoint f!

$$\mathcal{E} \xleftarrow{f^*} \mathcal{T}$$

A geometric morphism f is local if it has an additional fully faithful right adjoint f!

$$\mathcal{E} \xleftarrow{f^*} f \xrightarrow{f} \mathcal{T}$$

A topos is local if Γ is a local geometric morphism.

A geometric morphism f is local if it has an additional fully faithful right adjoint $f^!$

$$\mathcal{E} \xleftarrow{f^*} \mathcal{T}$$

A topos is *local* if Γ is a local geometric morphism.

Is there any known local model of SGDT?

A quadruple of adjoint functors:

$$\mathcal{E} \xrightarrow{\begin{array}{c} \Pi \\ \longleftarrow \Delta \xrightarrow{\perp} \\ \longleftarrow K \end{array}} Se$$

A quadruple of adjoint functors:

$$\mathcal{E} \xrightarrow{\frac{\Pi}{\longleftarrow \Delta} \xrightarrow{\bot}} \operatorname{Set}$$

Exhibits the cohesion of \mathcal{E} over Set if:

- Δ and **K** are fully faithful.
- Π preserves finite products.

Fact: A quadruple of adjoints induces a triple of adjoints.

Fact: A quadruple of adjoints induces a triple of adjoints.

There is an adjoint triple of idempotent (co)Monads on \mathcal{E} :

$$\mathcal{E} \xrightarrow[\Gamma]{\Pi} \operatorname{Set} \xrightarrow[\kappa]{\Delta} \mathcal{E}$$

- The shape monad $\int = \Delta \circ \Pi$
- The *flat* comonad $\flat = \Delta \circ \Gamma$
- The sharp monad $\sharp = \mathbf{K} \circ \Gamma$

The topos $Psh(\{0 \rightarrow 1\})^8$ exhibits cohesion over Set.

⁸Also known as the *Sierpinski topos*.

The topos $Psh(\{0 \rightarrow 1\})^8$ exhibits cohesion over Set.

- Γ sends $X \to Y$ to its domain X.
- Π sends $X \to Y$ to its codomain Y.
- Δ sends a set X to the identity $X \stackrel{id}{\longrightarrow} X$.
- **K** sends a set *X* into its terminal morphism $X \stackrel{!}{\rightarrow} 1$.

⁸Also known as the *Sierpinski topos*.

The topos $Psh(\{0 \rightarrow 1\})^8$ exhibits cohesion over Set.

- Γ sends $X \to Y$ to its domain X.
- Π sends $X \to Y$ to its codomain Y.
- Δ sends a set X to the identity $X \stackrel{id}{\longrightarrow} X$.
- **K** sends a set *X* into its terminal morphism $X \stackrel{!}{\rightarrow} 1$.

Theorem

If C has both an initial and a terminal object, then Psh(C) exhibits cohesion over Set with:

lim ⊢ const ⊢ colim ⊢ coconst

⁸Also known as the *Sierpinski topos*.

The topos $Psh(\omega + 1)$ exhibits cohesion over Set.

The topos $Psh(\omega + 1)$ exhibits cohesion over Set.

Let
$$X = X_1 \leftarrow X_2 \leftarrow \cdots \leftarrow X_{\omega}$$

The topos $Psh(\omega + 1)$ exhibits cohesion over Set.

Let
$$X = X_1 \leftarrow X_2 \leftarrow \cdots \leftarrow X_{\omega}$$

- Γ sends X to its domain X_{ω} .
- Π sends X to its codomain X_1 .
- Δ sends a set *X* to the constant object on *X*.
- **K** sends a set *X* to the object $1 \stackrel{id}{\leftarrow} 1 \stackrel{id}{\leftarrow} \dots \stackrel{!}{\leftarrow} X$.

The topos $Psh(\omega + 1)$ exhibits cohesion over Set.

Let
$$X = X_1 \leftarrow X_2 \leftarrow \cdots \leftarrow X_{\omega}$$

- Γ sends X to its domain X_{ω} .
- Π sends X to its codomain X_1 .
- Δ sends a set X to the constant object on X.
- **K** sends a set *X* to the object $1 \stackrel{id}{\leftarrow} 1 \stackrel{id}{\leftarrow} \dots \stackrel{!}{\leftarrow} X$.

In general this works for every successor ordinal

Languages like Idris and Agda use a (quite conservative) syntactic approximation to productivity for recursive functions on coinductive types: each recursive call **must** be "guarded" by a constructor.

Languages like Idris and Agda use a (quite conservative) syntactic approximation to productivity for recursive functions on coinductive types: each recursive call **must** be "guarded" by a constructor.

```
-- The type of streams of naturals
-- in pseudo-haskell/idris/agda

data S : Type where
    (::) : N → S → S

-- This one is recognized as productive, phew!
onOff : S
onOff = 1 :: 0 :: onOff
```

These requirements are a bit too restrictive and often confusing.

These requirements are a bit too restrictive and often confusing.

```
interleave : S → S → S
interleave (x :: xs) ys = x :: interleave ys xs

-- Non-productive, gets rejected
dragon' : S
dragon' = interleave dragon' onOff

-- Productive, gets rejected anyways
dragon : S
dragon = interleave onOff dragon
```

Another example:

```
-- Not always non-productive mergeBy : (\mathbb{N} \to \mathbb{N} \to S \to S) \to S \to S mergeBy f (x :: xs) (y :: ys) = f x y (mergeBy f xs ys)
```

Another example:

```
-- Not always non-productive mergeBy : (\mathbb{N} \to \mathbb{N} \to \mathbb{S} \to \mathbb{S}) \to \mathbb{S} \to \mathbb{S} \to \mathbb{S} mergeBy f (x :: xs) (y :: ys) = f x y (mergeBy f xs ys)
```

Can we at least save something?

Let's switch to guarded streams:

```
data S_{\blacktriangleright}: Type where

(::) : \mathbb{N} \to \blacktriangleright S_{\blacktriangleright} \to S_{\blacktriangleright}

-- Remember that \blacktriangleright is an applicative

-- and has a (guarded) fixpoint operator:

fix : (\blacktriangleright X \to X) \to X

pure : X \to \blacktriangleright X -- a.k.a. n_X

<*> : \blacktriangleright (X \to Y) \to \blacktriangleright X \to \blacktriangleright Y
```

We can now fix our function:

```
mergeBy : (\mathbb{N} \to \mathbb{N} \to \mathbb{N} \to \mathbb{S}_{\blacktriangleright} \to \mathbb{S}_{\blacktriangleright}) \to \mathbb{S}_{\blacktriangleright} \to \mathbb{S}_{\blacktriangleright} \to \mathbb{S}_{\blacktriangleright} mergeBy f (x :: xs) (y :: ys) = fix (\lambda g \to f x y (g <*> xs <*> ys))
```

We can now fix our function:

```
mergeBy : (\mathbb{N} \to \mathbb{N} \to \mathbb{N} \to \mathbb{S}_{\blacktriangleright} \to \mathbb{S}_{\blacktriangleright}) \to \mathbb{S}_{\blacktriangleright} \to \mathbb{S}_{\blacktriangleright} \to \mathbb{S}_{\blacktriangleright}

mergeBy f (x :: xs) (y :: ys) =

fix (\lambda \ g \to f \ x \ y \ (g <*> xs <*> ys))
```

Cool! But something's off...

Adding ▶ alone is too rigid for productivity, for example:

dropSnd (x :: y :: xs) = x :: dropSnd xs

Violates causality⁹, and cannot be typed using S_{\triangleright} .

⁹"For each write, the program is permitted to perform at most one read" ¹⁰The most polished one, see also [SH18]

Adding ▶ alone is too rigid for productivity, for example:

dropSnd (x :: y :: xs) = x :: dropSnd xs

Violates causality⁹, and cannot be typed using S_{\triangleright} .

Possible solutions: [AM13]¹⁰ [BBM14] [Gua18]

⁹ "For each write, the program is permitted to perform at most one read" ¹⁰The most polished one, see also [SH18]

Fortunately, we have the right "modality" for our problem:

$$\flat(\triangleright X)\cong \flat X$$

Fortunately, we have the right "modality" for our problem:

$$\flat(\triangleright X)\cong \flat X$$

With the fortunate consequence:

$$\flat S_{\blacktriangleright} \cong \flat (\mathbb{N} \times \blacktriangleright S_{\blacktriangleright}) \cong \flat \mathbb{N} \times \flat (\blacktriangleright S_{\blacktriangleright}) \cong \mathbb{N} \times \flat S_{\blacktriangleright} \cong S$$

Fortunately, we have the right "modality" for our problem:

$$\flat(\triangleright X)\cong \flat X$$

With the fortunate consequence:

$$\flat S_{\blacktriangleright} \cong \flat (\mathbb{N} \times \blacktriangleright S_{\blacktriangleright}) \cong \flat \mathbb{N} \times \flat (\blacktriangleright S_{\blacktriangleright}) \cong \mathbb{N} \times \flat S_{\blacktriangleright} \cong S$$

Sadly, ♭ is not a type constructor.

Formal fact: In a topos, all the idempotent comonads fibred over the codomain fibration are of the form $\Box_U(A) = A \times U$ for a subterminal object U.

Formal fact: In a topos, all the idempotent comonads fibred over the codomain fibration are of the form $\Box_U(A) = A \times U$ for a subterminal object U.

Clearly, b doesn't have this form

Formal fact: In a topos, all the idempotent comonads fibred over the codomain fibration are of the form $\Box_U(A) = A \times U$ for a subterminal object U.

Clearly, \flat doesn't have this form \Rightarrow We cannot have \flat as an operation Type \rightarrow Type.

Possible solution: In presence of a \sharp modality, we can describe \flat as an operation $\sharp \mathsf{Type} \to \sharp \mathsf{Type}.$

Possible solution: In presence of a \sharp modality, we can describe \flat as an operation $\sharp \mathsf{Type} \to \sharp \mathsf{Type}.$

Pros:

• Easily formalizable in an existing proof assistant [Shu11].

Possible solution: In presence of a \sharp modality, we can describe \flat as an operation $\sharp \mathsf{Type} \to \sharp \mathsf{Type}.$

Pros:

• Easily formalizable in an existing proof assistant [Shu11].

Cons:

- Requires a lot of work on the theory of #Type.
- It's hard to "escape" from #Type [Shu11, Shu18].

 SGDT is both a generalization of step indexing in categories of metric spaces [BST10] and Nakano-style guarded recursion [Nak00].

- SGDT is both a generalization of step indexing in categories of metric spaces [BST10] and Nakano-style guarded recursion [Nak00].
- Models of SGDT are pretty easy to come by and (often)
 have simple descriptions in terms of very simple presheaf
 categories.

- SGDT is both a generalization of step indexing in categories of metric spaces [BST10] and Nakano-style guarded recursion [Nak00].
- Models of SGDT are pretty easy to come by and (often)
 have simple descriptions in terms of very simple presheaf
 categories.
- Although there are many signs of geometry hiding in plain sight in SGDT this aspect of the theory has been pretty much ignored as of now.

- SGDT is both a generalization of step indexing in categories of metric spaces [BST10] and Nakano-style guarded recursion [Nak00].
- Models of SGDT are pretty easy to come by and (often)
 have simple descriptions in terms of very simple presheaf
 categories.
- Although there are many signs of geometry hiding in plain sight in SGDT this aspect of the theory has been pretty much ignored as of now.
- The ➤ modality saves us from coding around syntactic productivity checks but it's too rigid when considered alone, b and # help us with that.

See you ▶, ଈs!

- Robert Atkey and Conor McBride, <u>Productive</u> coprogramming with guarded recursion, ACM SIGPLAN Notices **48** (2013), no. 9, 197–208.
- Aleš Bizjak, Lars Birkedal, and Marino Miculan, <u>A model of countable nondeterminism in guarded type theory</u>, Rewriting and Typed Lambda Calculi, Springer, 2014, pp. 108–123.
- Lars Birkedal, Rasmus Ejlers Mogelberg, Jan Schwinghammer, and Kristian Stovring, First steps in synthetic guarded domain theory: step-indexing in the topos of trees, 2011 IEEE 26th Annual Symposium on Logic in Computer Science, IEEE, 2011, pp. 55–64.

- Lars Birkedal, Kristian Støvring, and Jacob Thamsborg, <u>The category-theoretic solution of recursive metric-space equations</u>, Theoretical Computer Science **411** (2010), no. 47, 4102–4122.
- Adrien Guatto, <u>A generalized modality for recursion</u>, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, 2018, pp. 482–491.
- Hiroshi Nakano, <u>A modality for recursion</u>, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No. 99CB36332), IEEE, 2000, pp. 255–266.

- Jonathan Sterling and Robert Harper, <u>Guarded</u> <u>computational type theory</u>, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, 2018, pp. 879–888.
- Michael Shulman, <u>Internalizing the external</u>, or the joys of <u>codiscreteness</u>, 2011, Blog Post available at https://golem.ph.utexas.edu/category/2011/11/internalizing_the_external_or.html.
- homotopy type theory, Mathematical Structures in Computer Science **28** (2018), no. 6, 856–941.