"525 Rec'd PCT/PTO" 0 5 JAN 2001

ATTORNEY'S DOCKET NUMBER FORM-PTO-1390 U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE (REV 10-2000) **GIN-6718CP5US** TRANSMITTAL LETTER TO THE UNITED STATES U.S. APPILICATION NO. (If known, see 37 CFR 1.5) DESIGNATED/ELECTED OFFICE (DO/EO/US) **CONCERNING A FILING UNDER 35 U.S.C.371** INTERNATIONAL APPLICATION INTERNATIONAL FILING DATE PRIORITY DATE CLAIMED 22 July 1999 (22.07.99) 24 July 1998 (24.07.98) PCT/JP99/03929 TITLE OF INVENTION HUMAN PROTEINS HAVING HYDROPHOBIC DOMAINS AND DNAs ENCODING THESE **PROTEINS** APPLICANT(S) FOR DO/EO/US Seishi KATO and Tomoko KIMURA Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information: 1. This is a **FIRST** submission of items concerning a filing under 35 U.S.C.371. 2. This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371. 3. This is an express request to bromptly begin national examination procedures (35 U.S.C. 371(f)). 4. The US has been elected by the expiration of 19 months from the priority date (PCT Article 31). 5. A copy of the International Application as filed (35 U.S.C. 371(c)(2)) a. \square is attached hereto (required only if not communicated by the International Bureau). b. **E** has been communicated by the International Bureau. c. \square is not required, as the application was filed in the United States Receiving Office (RO/US). 6. An English language translation of the International Application as filed (35 U.S.C 371(c)(2)). 17. Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)) a. \square are attached hereto (required only if not communicated by the International Bureau). b. \square have been communicated by the International Bureau. c. \square have not been made; however, the time limit for making such amendments has NOT expired. d. 🗷 have not been made and will not be made. 8. An English language translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)). 9. An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)). 10. An English language translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)). Items 11. to 16. below concern document(s) or information included: 11. An Information Disclosure Statement under 37 CFR 1.97 and 1.98. 12. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included 13. A FIRST preliminary amendment. ☐ A SECOND or SUBSEQUENT preliminary amendment. 14. A substitute specification. 15. A change of power of attorney and/or address letter. 16. Tother items or information: Transmittal Letter (2 sheets in duplicate); PCT Request and Fee Calculation Sheet (6 sheets); PCT Notification of Receipt of Record Copy (Form PCT/IB/301) (3 sheets); PCT Notification of Receipt of Search Copy (1 sheet); PCT Notification Concerning Submission of Priority Document (JP 10/208820 filed 24 July 1998) (PCT/IB/304) (1 sheet); PCT International Published Application (WO 00/05367) (without International Search Report) (351 sheets); Cover of PCT International Published Application (WO 00/05367) (with International Search Report attached) (12 sheets); PCT Notification of Transmittal of the International Search Report or the Declaration (14 sheets); PCT Notice Informing the Applicant of the Communication of the International Application to the Designated Offices (PCT/IB/308) (1 sheet); PCT Information Concerning Elected Offices Notified of their Election (PCT/IB/332) (1 sheet): PCT Notification of Receipt of Demand by Competent International Preliminary Examining Authority (1 sheet); PCT Written Opinion (NO RESPONSE NECESSARY) (4 sheets); Notification of Transmittal of the International Preliminary Examination Report (6 sheets); Check (#040892) (\$1130) based on large entity; Certificate of Express Mailing (1 sheet); and Return Postcard.

534 Neudruppru û 5 JAN 2001

U.S. APPLICATION NO. (if	known, see 37 CFR 3.5)	R\$0.5) INTERNATIONAL APPLICATION NO. PCT/JP99/03929			ATTORNEY'S DOCKET NO. GIN-6718CP5US			
17. Ex The following fees are submitted:					CULATION	NS PTO USE ONLY		
nor international sea	al preliminary examinat arch fee (37 CFR 1.445							
and International Search Report not prepared by the EPO or JPO								
	ninary examination fee (n fee (37 CFR 1.455(a)(2							
	ninary examination fee potential of the control of							
	ninary examination fee placed provisions of PCT A			****	· .			
	ENTER APPROPE	RIATE BASIC FEE A	MOUNT =		\$860			
Surcharge of \$130.00 fo months from the earliest	t claimed priority date ((37 CFR 1.492(e)).		\$				
CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE					
Total claims	10 -20 =	0	X \$18.00		\$0			
Independent claims	2 -3 =	0	X \$80.00	<u> </u>	\$0			
MULTIPLE DEPEN	NDENT CLAIM(S) (if a		+ 270.00		\$270			
	TOTAL OF ABO	OVE CALCULATION	ONS =	9	\$1130			
Applicant claims si are reduced by 1/2.	small entity status. See			\$				
		SUBTOTA	AL =		\$1130			
Processing fee of \$130.0 months from the earliest		\$						
		OTAL NATIONAL	FEE =	9	\$1130			
Fee for recording the enaccompanied by an appr			\$					
	TOTA	AL FEES ENCLOSE	E D =	5	\$1130			
					unt to be: efunded	\$		
}			į		charged	Ď		
a. A check (#040892) in the amount of \$1130 to cover the above fees is enclosed.								
b. Please charge my Deposit Account No in the amount of \$ to cover the above fees. A duplicate copy of this sheet is enclosed.								
c. The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 12-0980. A duplicate copy of this sheet is enclosed.								
NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.								
SEND ALL CORRESPONDENCE TO: Amy E. Mandragouras, Esq. LAHIVE & COCKFIELD, LLP 28 State Street SIGNATURE Peter C. Lauro NAME								
Boston, Massachusetts 02109 United States of America (617)227-7400 Date: 05 January 2001								

09/743247

WO 00/05367

PCT/JP99/03929

534 Rec'd PCT/PTO 0 5 JAN 2001

DESCRIPTION

1

Human Proteins Having Hydrophobic Domains and DNAs Encoding These Proteins

5

10

15

20

25

30

TECHNICAL FIELD

The present invention relates to human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors for these DNAs as well as eucaryotic cells expressing these DNAs. The proteins of the present invention can be employed as pharmaceuticals or as antigens for preparing antibodies against these proteins. The human cDNAs of the present invention can be utilized as probes for the genetic diagnosis and gene sources for the gene therapy. Furthermore, the cDNAs can be utilized as gene sources for large-scale production of the proteins encoded by these cDNAs. Cells into which these genes are introduced to express secretory proteins and membrane proteins in large amounts can be utilized for detection of the corresponding receptors and ligands, screening of novel low-molecular pharmaceuticals, and so on.

BACKGROUND ART

Cells secrete many proteins outside the cells. These secretory proteins play important roles for the proliferation control, the differentiation induction, the material transportation, the biological protection, etc. in the cells. Different from intracellular proteins, the secretory proteins exert their actions outside the cells, whereby they can be administered in the intracorporeal manner such as the injection or the drip, so that there are

10

15

20

25

30

2

hidden potentialities as medicines. In fact, a number of human secretory proteins such as interferons, interleukins, erythropoietin, thrombolytic agents, etc. have been currently employed as medicines. In addition, secretory proteins other than those described above undergoing clinical trials to develop as pharmaceuticals. Because it has been conceived that the human cells still produce many unknown secretory proteins, availability of these secretory proteins as well as genes coding for them is expected to lead to development of novel pharmaceuticals utilizing these proteins.

On the other hand, membrane proteins play important roles, as signal receptors, ion channels, transporters, etc. the material transportation and the information transmission through the cell membrane. Examples thereof include receptors for a variety of cytokines, ion channels for the sodium ion, the potassium ion, the chloride ion, etc., transporters for saccharides and amino acids, and so on, where the genes for many of them have been cloned already. It has been clarified that abnormalities of these membrane proteins are associated with a number of hithertocryptogenic diseases. Therefore, discovery of a new membrane protein is anticipated to lead to elucidation of the causes of many diseases, so that isolation of a new gene coding for the membrane protein has been desired.

Heretofore, owing to difficulty in the purification from human cells, these secretory proteins and membrane proteins have been isolated by an approach from the gene side. A general method is the so-called expression cloning which comprises introduction of a cDNA library into eucaryotic cells to express cDNAs and then screening of the cells secreting, or expressing on the surface of membrane,

PCT/JP99/03929

WO 00/05367

3

the objective active protein. However, this method is applicable only to cloning of a gene for a protein with a known function.

In general, secretory proteins and membrane proteins possess at least one hydrophobic domain inside the proteins, wherein, after synthesis thereof in the ribosome, domain works as a secretory signal or remains in the phospholipid membrane to be trapped in the membrane. the evidence of this cDNA for encoding a Accordingly, secretory protein and a membrane protein is provided by determination of the whole base sequence of a full-length cDNA followed by detection of highly hydrophobic domain(s) in the amino acid sequence of the protein encoded by this CDNA.

15

20

10

5

OBJECTS OF THE INVENTION

The main object of the present invention is to provide novel human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors for these DNAs as well as transformed eucaryotic cells that are capable of expressing these DNAs. This object as well as other objects and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the accompanying drawings.

25

30

BRIEF DESCRIPTION OF DRAWINGS

- Fig. 1 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01550.
- Fig. 2 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02593.
 - Fig. 3 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10195.

10

15

20

30

4 .

- Fig. 4 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10423.
- Fig. 5 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10506.
- Fig. 6 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10507.
- Fig. 7 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10548.
- Fig. 8 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10566.
- Fig. 9 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10567.
- Fig. 10 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10568.
- Fig. 11 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01426.
 - Fig. 12 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02515.
 - Fig. 13 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02575.
 - Fig. 14 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10357.
 - Fig. 15 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10447.
- 25 Fig. 16 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10477.
 - Fig. 17 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10513.
 - Fig. 18 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10540.
 - Fig. 19 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10557.

5

Fig. 20 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10563.

Fig. 21 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01467.

Fig. 22 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01956.

5

10

15

20

25

30

Fig. 23 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02545.

Fig. 24 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02551.

Fig. 25 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02631.

Fig. 26 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02632.

Fig. 27 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10488.

Fig. 28 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10538.

Fig. 29 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10542.

Fig. 30 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10571.

Fig. 31 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01470.

Fig. 32 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02419.

Fig. 33 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02631.

Fig. 34 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02695.

Fig. 35 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10031.

10

15

20

- Fig. 36 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10530.
- Fig. 37 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10541.
- Fig. 38 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10550.
- Fig. 39 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10590.
- Fig. 40 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10591.
- Fig. 41 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01462.
- Fig. 42 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02485.
- Fig. 43 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02798.
 - Fig. 44 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10041.
 - Fig. 45 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10246.
 - Fig. 46 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10392.
 - Fig. 47 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10489.
- Fig. 48 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10519.
 - Fig. 49 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10531.
- Fig. 50 illustrates the hydrophobicity/hydrophilicity 30 profile of the protein encoded by clone HP10574.

7

intensive studies, the present the result of inventors have been successful in cloning of cDNAs coding for proteins having hydrophobic domains from the human fulllength cDNA bank, thereby completing the present invention. In other words, the present invention provides human proteins hydrophobic having domains, namely proteins comprising any of the amino acid sequences represented by SEQ ID Nos. 1 to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130. Moreover, the present invention provides DNAs coding for the above-mentioned proteins, exemplified by cDNAs comprising any of the base sequences represented by SEO ID Nos. 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140, as well as expression vectors that are capable of expressing any of these DNAs by in vitro translation or in eucaryotic cells and transformed eucaryotic cells that are capable of expressing these DNAs and of producing the abovementioned proteins.

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

The proteins of the present invention can be obtained, for example, by a method for isolation from human organs, cell lines, etc., a method for preparation of peptides by the chemical synthesis, or a method for production with the recombinant DNA technology using the DNAs coding for the hydrophobic domains of the present invention, among which method for production with the recombinant technology is employed preferably. For instance, in vitro expression of the proteins can be achieved by preparation of an RNA by in vitro transcription from a vector having one of the cDNAs of the present invention, followed by in vitro translation using this RNA as a template. Also, introduction of the translated region into a suitable expression vector

8

by the method known in the art leads to expression of a large amount of the encoded protein in prokaryotic cells such as *Escherichia coli*, *Bacillus subtilis*, etc., and eucaryotic cells such as yeasts, insect cells, mammalian cells, etc.

5

10

15

20

25

30

In the case where one of the proteins of the present invention is produced by expressing the DNA by in vitro translation, the protein of the present invention can be produced in vitro, when the translated region of this cDNA introduced into a vector having an RNA polymerase promoter, followed by addition of the vector to an in vitro translation system such as a rabbit reticulocyte lysate or a extract, germ containing an RNA polymerase corresponding to the promoter. RNA polymerase promoters are exemplified by T7, T3, SP6, and the like. The vectors containing these RNA polymerase promoters are exemplified by pKA1, pCDM8, pT3/T7 18, pT7/3 19, pBluescript II, and so on. Furthermore, the protein of the present invention can be expressed as the secreted form or the form incorporated into the microsome membrane, when a canine pancreas microsome or the like is added to the reaction system.

In the case where one of the protein of the present invention is produced by expressing the DNA in a microorganism such as Escherichia coli etc., a recombinant expression vector bearing the translated region of the cDNA of the present invention is constructed in an expression vector having an origin which can be replicated in the microorganism, a promoter, a ribosome-binding site, a cDNA-cloning site, a terminator etc. and, after transformation of the host cells with this expression vector, the resulting transformant is incubated, whereby the protein encoded by said cDNA can be produced on a large scale in the

microorganism. In this case, a protein fragment containing any region can be obtained by carrying out the expression with inserting an initiation codon and a termination codon in front of and behind the selected translated region. Alternatively, a fusion protein with another protein can be expressed. Only the portion of the protein encoded by this cDNA can be obtained by cleavage of this fusion protein with a suitable protease. The expression vector for Escherichia coli is exemplified by the pUC series, pBluescript II, the pET expression system, the pGEX expression system, and so on.

5

10

15

20

25

30

In the case where one of the proteins of the present invention is produced by expressing the DNA in eucaryotic cells, the protein of the present invention can be produced as a secretory protein or as a membrane protein on the cellmembrane surface, when the translated region of this cDNA is introduced into an expression vector for eucaryotic cells that has a promoter, a splicing region, a poly(A) addition site, etc., followed by introduction into the eucaryotic expression vector is exemplified by pKA1, The pED6dpc2, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pYES2, and so on. Examples of eucaryotic cells to be used in general include mammalian cultured cells such as simian kidney cells COS7, Chinese hamster ovary cells CHO, budding yeasts, fission yeasts, silkworm Xenopus oocytes, and so on, but any eucaryotic cells may be used, provided that they are capable of expressing the proteins of the present invention. The expression vector can be introduced into the eucaryotic cells by methods known in the art such as the electroporation method, the calcium phosphate method, the liposome method, the DEAE-dextran method, and so on.

After one of the proteins of the present invention is

10

expressed in prokaryotic cells or eucaryotic cells, the objective protein can be isolated from the culture and purified by a combination of separation procedures known in the art. Such examples include treatment with a denaturing agent such as urea or a detergent, sonication, enzymatic digestion, salting-out or solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion-exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography, and so on.

5

10

15

20

25

30

The proteins of the present invention include peptide fragments (5 amino acid residues or more) containing any partial amino acid sequence in the amino acid sequences represented by SEQ ID Nos. 1. to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130. These peptide fragments can be utilized as antigens for preparation of antibodies. Hereupon, among the proteins of the present invention, those having the signal sequences are secreted in the form of mature proteins, after the signal sequences are removed. Therefore, these mature proteins shall come within the scope of the present invention. The N-terminal amino acid sequences of the mature proteins can be easily determined by using the method for the determination of cleavage site of a signal 8-187100 [JP Furthermore, A]. some proteins undergo the processing on the cell surface to be converted to the secretory forms. Such proteins or peptides in the secretory forms shall come within the scope of the present invention. In the case where sugar chain-binding sites are present in the amino acid sequences, expression in appropriate eucaryotic cells affords proteins to which sugar chains are attached. Accordingly, such proteins or peptides to which sugar chains are attached shall come within the

10

15

20

25

30

11

scope of the present invention.

The DNAs of the present invention include all the DNAs coding for the above-mentioned proteins. These DNAs can be obtained by using a method by chemical synthesis, a method by cDNA cloning, and so on.

The cDNAs of the present invention can be cloned, for example, from cDNA libraries derived from the human cells. These cDNAs are synthesized by using as templates poly(A)* RNAs extracted from human cells. The human cells may be cells delivered from the human body, for example, by the operation or may be the cultured cells. The cDNAs can be synthesized by using any method selected from the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J. Gene 25: 263-269 (1983)], and so on, but it is preferred to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)], as exemplified in Examples, in order to obtain a full-length clone in an effective manner. In addition, commercially available, human cDNA libraries can be utilized. Cloning of the cDNAs of the present invention from the cDNA libraries can be carried out by synthesis of an oligonucleotide on the basis of base sequences of any portion in the cDNA of the present invention, followed by screening using this oligonucleotide as the probe according to the colony or plaque hybridization by a method known in the art. In addition, the cDNA fragments of the present invention can be prepared by synthesis of oligonucleotides which hybridize with both termini of the objective cDNA fragment, followed by the usage of these oligonucleotides as the primers for the RT-PCR method using an mRNA isolated from human cells.

The cDNAs of the present invention are characterized by

WO 00/05367

5

PCT/JP99/03929

12

comprising either of the base sequences represented by SEQ ID Nos. 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140 or the base sequences represented by SEQ ID Nos. 21 to 30, 51 to 60, 81 to 90, 111 to 120, and 141 to 150. Table 1 summarizes the clone number (HP number), the cells from which the cDNA was obtained, the total base number of the cDNA, and the number of the amino acid residues of the encoded protein, for each of the cDNAs.

Table 1								
				Number				
SEQ ID No.	HP	Cells	Base	of amino				
	number		number	acid				
				residues				
1, 11, 21	HP01550	Stomach cancer	510	125				
2, 12, 22	HP02593	Saos-2	697	131				
3, 13, 23	HP10195	HT-1080	1619	242				
4, 14, 24	HP10423	U-2 OS	1066	264				
5, 15, 25	HP10506	Stomach cancer	618	112				
6, 16, 26	HP10507	Stomach cancer	1021	146				
7, 17, 27	HP10548	Stomach cancer	1432	344				
8, 18, 28	HP10566	Stomach cancer	601	97				
9, 19, 29	HP10567	Stomach cancer	585	124				
10, 20, 30	HP10568	Stomach cancer	1100	327				
31, 41, 51	HP01426	Stomach cancer	1065	313				
32, 42, 52	HP02515	Saos-2	937	229				
33, 43, 53	HP02575	Saos-2	1678	467				
34, 44, 54	HP10357	Stomach cancer	467	99				
35, 45, 55	HP10447	Liver	875	189				
36, 46, 56	HP10477	Liver	1256	363				
37, 47, 57	HP10513	Stomach cancer	884	249				
38, 48, 58	HP10540	Saos-2	589	98				
39, 49, 59	HP10557	Stomach cancer	673	172				
40, 50, 60	HP10563	Saos-2	1425	120				
61, 71, 81	HP01467	HT-1080	1436	307				
62, 72, 82	HP01956	Liver	997	183				
63, 73, 83	HP02545	Saos-2	1753	327				
64, 74, 84	HP02551	Saos-2	1117	223				
65, 75, 85	HP02631	Saos-2	1380	48				
66, 76, 86	HP02632	HT-1080	1503	371				
67, 77, 87	HP10488	Liver	733	90				
68, 78, 88	HP10538	Saos-2	3768	499				
69, 79, 89	HP10542	Stomach cancer	770	106				
70, 80, 90	HP10571	Stomach cancer	1229	152				

91, 101, 111	HP01470	Stomach cancer	1619	358
92, 102, 112	HP02419	Stomach cancer	2054	226
93, 103, 113	HP02631	Saos-2	1380	195
94, 104, 114	HP02695	Stomach cancer	1292	339
95, 105, 115	HP10031	Saos-2	2168	487
96, 106, 116	HP10530	Saos-2	1357	393
97, 107, 117	HP10541	Stomach cancer	711	196
98, 108, 118	HP10550	Stomach cancer	651	107
99, 109, 119	HP10590	HT-1080	1310	350
100, 110, 120	HP10591	HT-1080	1400	107
121, 131, 141	HP01462	HT-1080	2050	483
122, 132, 142	HP02485	Stomach cancer	2746	334
123, 133, 143	HP02798	HT-1080	1136	267
124, 134, 144	HP10041	Saos-2	619	106
125, 135, 145	HP10246	КВ	864	224
126, 136, 146	HP10392	U-2 OS	1527	258
127, 137, 147	HP10489	Stomach cancer	659	110
128, 138, 148	HP10519	Stomach cancer	710	91
129, 139, 149	HP10531	Saos-2	2182	344
130, 140, 150	HP10574	Stomach cancer	2773	428

Hereupon, the same clones as the cDNAs of the present invention can be easily obtained by screening of the cDNA libraries constructed from the human cell lines or human tissues utilized in the present invention by the use of an oligonucleotide probe synthesized on the basis of the cDNA base sequence described in any of SEQ ID Nos. 11 to 30, 41 to 60, 71 to 90, 101 to 120, and 131 to 150.

In general, the polymorphism due to the individual difference is frequently observed in human genes. Accordingly, any cDNA in which one or plural nucleotides are inserted, deleted and/or substituted with other nucleotides in SEQ ID Nos. 11 to 30, 41 to 60, 71 to 90, 101 to 120, and

15

131 to 150 shall come within the scope of the present invention.

In a similar manner, any protein in which one or plural amino acids are inserted, deleted and/or substituted with other amino acids shall come within the scope of the present invention, as far as the protein possesses the activity of any protein having the amino acid sequences represented by SEQ ID Nos. 1 to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130.

5

10

15

20

25

The cDNAs of the present invention include cDNA fragments (10 bp or more) containing any partial base sequence in the base sequences represented by SEQ ID Nos. 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140 or in the base sequences represented by SEQ ID Nos. 21 to 30, 51 to 60, 81 to 90, 111 to 120, and 141 to 150. Also, DNA fragments consisting of a sense strand and an anti-sense strand shall come within this scope. These DNA fragments can be utilized as the probes for the genetic diagnosis.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

Research Uses and Utilities

30 The polynucleotides provided by the present invention can be used by the research community for various purposes.

The polynucleotides can be used to express recombinant

5

10

15

20

25

30

16

protein for analysis, characterization or therapeutic use: as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source information to derive PCR primers for fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodiesusing DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, example, that described in Gyuris et al., Cell 75:791-803 to identify polynucleotides encoding the protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine

levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Nutritional Uses

5

10

15

20

25

30

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be

18

administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Cytokine and Cell Proliferation/Differentiation Activity

5

10

15

20

25

30

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular

Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ, Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

5

10

15

20

25

30

Assays for proliferation and differentiation hematopoietic and lymphopoietic cells include, limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1991; Moreau et al., Nature 336:690-692, Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6-Nordan, R. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 -Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 John Wiley and Sons, Toronto. 1991; pp. 6.15.1 Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp.

20

6.13.1, John Wiley and Sons, Toronto. 1991.

5

10

15 .

20

25

30

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, limitation, those described in: Current Protocols Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. 77:6091-6095, 1980; Weinberger et al., Eur. J. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512,

Immune Stimulating or Suppressing Activity

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial orfungal infections, or may result from autoimmune disorders. More specifically, infectious causes by viral, bacterial, fungal or infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp.

21

and various fungal infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

5

10

15

20

25

30

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression desired (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. regulation may be in the form of inhibiting or blocking an already response in progress or may preventing the induction of an immune response. The functions of activated T cells may be inhibited suppressing T cell responses or by inducing tolerance in T cells, or both. Immunosuppression of T cell is responses generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigenspecific and persists after exposure to the tolerizing agent

22

has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

5

10

15

20

25

30

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will useful in situations of tissue, skin and transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding Blocking costimulatory signal. В lymphocyte function in this matter prevents cytokine synthesis immune cells, such as T cells, and thus immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by lymphocyte antigen-blocking reagents may necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or

23

tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

5

10

15

20

25

30

efficacy of particular blocking The in preventing organ transplant rejection or GVHD assessed using animal models that are predictive of efficacy Examples of appropriate systems which can be in humans. include allogeneic cardiac grafts in rats xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Iq fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antiqen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate Administration of reagents which block disease symptoms. costimulation of T cells by disrupting receptor:ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating

24

autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune Examples include murine experimental autoimmune diseases. systemic lupus erythmatosis in MRL/lpr/lpr encephalitis, or NZB hybrid mice, murine autoimmune arthritis, diabetes mellitus in NOD mice and BB rats, and experimental myasthenia gravis (see Paul Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

5

25

30

10 Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting 15 initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the commoncold, and encephalitis might be alleviated by the administration 20 of stimulatory forms of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the

PCT/JP99/03929

5

10

15

20

25

30

25

transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. tumor cells obtained from a example, patient can transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessarv costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I α chain protein and , microglobulin protein or an MHC class

26

chain protein and an MHC class II chain protein to II thereby express MHC class I or MHC class II proteins on the Expression of the appropriate class I or cell surface. class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific Thus, the induction of a T cell mediated immune immunity. response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

5

10

15

20

25

30

The activity of a protein of the invention may, among other means, be measured by the following methods:

thymocyte Suitable assays for or splenocyte cytotoxicity include, without limitation, those described Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Marqulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., 135:1564-1572, 1985; Takai et al., J. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J.

27

Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

5

10

15

20

25

30

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Thl and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Interscience (Chapter 3, In Vitro assays for Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965,

10

15

20

25

30

28

1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to

10

15

20

25

30

29

stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes monocytes/macrophages (i.e., traditional activity) CSF useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting proliferation of growth and megakaryocytes consequently of platelets thereby allowing prevention treatment of various platelet disorders thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the abovementioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo conjunction with (i.e., in bone transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and

PCT/JP99/03929 WO 00/05367

30

Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, 5 described Methylcellulose colony in: forming Freshney, M.G. In Culture of Hematopoietic Cells. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. 10 USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, NY. 1994; Long term bone marrow cultures in presence of stromal cells, Spooncer, E., Dexter, M. Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

15

20

25

30

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is

not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

5

10

15

20

25

30

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of boneforming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or blocking inflammation or processes of destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and

10

15

20

25

30

in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, differentiation of progenitors of tendonligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head

trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

5

20

25

30

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon);

WO 00/05367

5

PCT/JP99/03929

34

International Patent Publication No. W095/05846 (nerve, neuronal); International Patent Publication No. W091/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

10 A protein of the present invention may also exhibit activininhibin-related or activities. Inhibins characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). 15 Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female and decrease spermatogenesis in male mammals. 20 Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- group, may be useful as a fertility inducing therapeutic, based upon the 25 ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, 30 sheep and pigs.

The activity of a protein of the invention may, among

other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

5

10

15

20

25

30

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. example, attraction of lymphocytes, monocytes neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among

WO 00/05367 PCT/JP99/03929

36

other means, be measured by the following methods:

5

10

15

20

25

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. 25: 1744-1748; Gruber et al. J. of 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (includinghereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

30 The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include,

WO 00/05367 PCT/JP99/03929

37

without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Ligand Activity

5

10

15

20

25

30

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their (including without limitation, cellular adhesion molecules as selectins, integrins and their ligands) receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful screening of potential peptide or small inhibitors of the relevant receptor/ligand interaction. protein of the present invention (including, limitation, fragments of receptors and ligands) themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in:Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22),

WO 00/05367

5

10

15

20

25

PCT/JP99/03929

38

Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cellcell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory disease, Crohn's disease or resulting from over production of ytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A

protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth

10 Other Activities

5

15

20

25

30

A protein of the invention may also exhibit one or more following additional activities or inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body size or shape (such as, for example, augmentation or diminution, change in bone form or shape); effecting biorhythms or caricadic cycles or effecting the fertility of male or female subjects: effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of

WO 00/05367 PCT/JP99/03929

40

embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

Examples

5

10

15

20

25

The present invention is specifically illustrated in more detail by the following Examples, but Examples are not intended to restrict the present invention. The basic operations with regard to the recombinant DNA and the enzymatic reactions were carried out according to the literature ["Molecular Cloning. A Laboratory Manual", Cold Spring Harbor Laboratory, 1989]. Unless otherwise stated, restrictive enzymes and a variety of modification enzymes to be used were those available from Takara Shuzo. The buffer compositions and the reaction conditions for each of the enzyme reactions were as described in the manufacturer's instructions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: (1994)1.

(1) Selection of cDNAs Encoding Proteins Having Hydrophobic Domains

The cDNA library of fibrosarcoma cell line HT-1080 (WO98/11217), the cDNA library of osteosarcoma cell line Saos-2 (WO97/33993), the cDNA library of osteosarcoma cell line U-2 OS (WO98/21328), the cDNA library of epidermoid

carcinoma cell line KB (WO98/11217), the cDNA library of tissues of stomach cancer delivered by the (WO98/21328), the cDNA library of liver tissue delivered by the operation (WO98/21328), and were used for the cDNA libraries. Full-length cDNA clones were selected respective libraries and the whole base sequences thereof were determined to construct a homo-protein cDNA consisting full-length of the CDNA hydrophobicity/hydrophilicity profiles were determined for the proteins encoded by the full-length cDNA registered in the homo-protein cDNA bank by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Biol. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic region. Any clone that has a hydrophobic region being putative as a secretory signal or a transmembrane domain in the amino acid sequence of the encoded protein was selected as a clone candidate.

(2) Protein Synthesis by In Vitro Translation

5

10

15

20

25

30

The plasmid vector bearing the cDNA of the present invention was used for in vitro transcription/translation with a T_NT rabbit reticulocyte lysate kit (Promega). In this case, [35]methionine was added to label the expression product with a radioisotope. Each of the reactions was carried out according to the protocols attached to the kit. Two micrograms of the plasmid was subjected to the reaction at 30°C for 90 minutes in the reaction solution of a total volume of 25 μ l containing 12.5 μ l μ of $T_{\nu}T$ reticulocyte lysate, 0.5 μ l of a buffer solution (attached to the kit), 2 μ l of an amino acid mixture (without methionine), 2 μ l of [35S]methionine (Amersham) (0.37 MBq/ μ l), 0.5 μ l of T7 RNA polymerase, and 20 U of RNasin. Also, an experiment in the presence of a membrane system was carried

WO 00/05367 PCT/JP99/03929

42

out by adding to this reaction system 2.5 μ l of a canine pancreas microsome fraction (Promega). To 3 μ l of the resulting reaction solution was added 2 μ l of the SDS sampling buffer (125 mM Tris-hydrochloric acid buffer, pH 6.8, 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue, and 20% glycerol) and the resulting mixture was heated at 95°C for 3 minutes and then subjected to SDS-polyacrylamide gel electrophoresis. The molecular weight of the translation product was determined by carrying out the autoradiography.

(3) Expression by COS7

5

10

15

20

25

30

Escherichia coli cells bearing the expression vector for the protein of the present invention was incubated at 37°C for 2 hours in 2 ml of the 2xYT culture medium containing 100 μ g/ml of ampicillin, the helper phage M13K07 $(50 \mu 1)$ was added, and the incubation was continued at 37°C overnight. A supernatant separated by centrifugation underwent precipitation with polyethylene glycol to obtain single-stranded phage particles. These particles suspended in 100 µl of 1 mM Tris-0.1 mM EDTA, pH 8 (TE).

The cultured cells derived from simian kidney, COS7, were incubated at 37°C in the presence of 5% CO₂ in the Dulbecce's modified Eagle's culture medium (DMEM) containing 10% fetal calf serum. Into a 6-well plate (Nunc, well diameter: 3 cm) were inoculated with 1 x 10^5 COS7 cells and incubation was carried out at 37°C for 22 hours in the presence of 5% CO₂. After the culture medium was removed, the cell surface was washed with a phosphate buffer solution and then washed again with DMEM containing 50 mM Trishydrochloric acid (pH 7.5) (TDMEM). To the resulting cells was added a suspension of 1 μ l of the single-stranded phage suspension, 0.6 ml of the DMEM culture medium, and 3 μ l of

TRANSFECTAM™ (IBF) and the resulting mixture was incubated at 37°C for 3 hours in the presence of 5% CO2. After the sample solution was removed, the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf serum was added, and the incubation was carried out at 37°C for 2 days in the presence of 5% CO2. After the culture medium was replaced by a culture medium [35S]cystine or [35S]methionine, the incubation was carried out for one hour. After the culture medium and the cells were separated by centrifugation, proteins in the culture medium fraction and the cell-membrane fraction were subjected to SDS-PAGE.

(4) Clone Examples <HP01550> (SEQ ID Nos. 1, 11, and 21)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP01550 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 65-bp 5'-untranslated region, a 378-bp ORF, and a 67-bp 3'untranslated region. The ORF codes for a protein consisting of 125 amino acid residues and there existed one putative domain. Figure 1 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 15 kDa that was almost identical with the molecular weight of 13,825 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis elegans hypothetical protein F45G2.c (GenBank Accession No. 293382). Table 2 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C.

elegans hypothetical protein F45G2.c (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 44.5% in the entire region.

Table 2

20

25

5

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA338859) in ESTS, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02593> (SEQ ID Nos. 2, 12, and 22)

30

Determination of the whole base sequence of the cDNA insert of clone HP02593 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 103-bp 5'-untranslated region, a 396-bp ORF,

and a 198-bp 3'-untranslated region. The ORF codes for a protein consisting of 131 amino acid residues and there existed four putative transmembrane domains at the C-terminus. Figure 2 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of a high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to a human OB-R gene-related protein (EMBL Accession No. Y12670). Table 3 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human OB-R gene-related protein (OB). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 67.9% in the entire region.

20

15

5

10

Table 3

30 *..****.**
OB GRGDDFSWEOW

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA306490) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10195> (SEQ ID Nos. 3, 13, and 23)

5

10

15

20

25

30

Determination of the whole base sequence of the CDNA insert of clone HP10195 obtained from cDNA library of human fibrosarcoma HT-1080 revealed the structure consisting of a 286-bp 5'-untranslated region, a 729-bp ORF, and a 604-bp 3'-untranslated region. The ORF codes for a consisting of 242 amino acid residues and there existed one putative transmembrane domain at the C-terminus. Figure 3 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. vitro translation resulted in formation of a translation product of 32 kDa that was somewhat larger than the molecular weight of 27,300 predicted from the ORF. When expressed in COS7 cells, an expression product of about 21 observed in the supernatant fraction and the kDa was membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein has revealed the registration of sequences that were similar to the Aplysia VAP-33 (SWISS-PROT Accession No. P53173). Table 4 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the Aplysia VAP-33 (AP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the

present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 46.5% in the entire region.

5

Table 4

HP MAKHEQILVLDPPTDLKFKGPFTDVVTTNLKLRNPSDRKVCFKVKTTAPRRYCVRPNSGI AP MASHEOALILEPAGELRFKGPFTDVVTADLKLSNPTDRRICFKVKTTAPKRYCVRPNSGI 10 HP IDPGSTVTVSVMLOPFDYDPNEKSKHKFMVQTIFAPPNTSD-MEAVWKEAKPDELMDSKL AP LEPKTSIAVAVMLOPFNYDPNEKNKHKFMVOSMYAPDHVVESQELLWKDAPPESLMDTKL HP RCVFEMPNENDKLNDMEPSK-----AVPLNASKQDGPMPKP-HSVSLNDTE ***** 15 AP RCVFEMPDGSHOAPASDASRATDAGAHFSESALEDPTVASRKTETQSPKRVGAVGSAGED HP TRKLMEECKRLOGEMMKLSEENRHLRDEGLRLRKVAHSD--KPGSTSTASFRDNVTSPLP AP VKKLOHELKKAQSEITSLKGENSQLKDEGIRLRKVAMTDTVSPTPLNPSPAPAAAVRAFP 20 HP SLLVVIAAIFIGFFLGKFIL ... * **** . * . . . *** . * AP PVVYVVAAIILGLIIGKFLL

30

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA447905) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10423> (SEQ ID Nos. 4, 14, and 24)

PCT/JP99/03929

5

10

15

20

25

30

48

Determination of the whole base sequence of the cDNA insert of clone HP10423 obtained from cDNA library of human line U-2 OS revealed the structure osteosarcoma cell consisting of a 64-bp 5'-untranslated region, a 795-bp ORF, and a 207-bp 3'-untranslated region. The ORF codes for a protein consisting of 264 amino acid residues and there existed a secretory signal at the N-terminus and one putative transmembrane domain at the N-terminus. Figure 4 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 30 kDa that was almost identical with the molecular weight of 29,377 predicted from the ORF. When expressed in COS7 cells, an expression product of about 31 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. D80116) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10506> (SEQ ID Nos. 5, 15, and 25)

Determination of the whole base sequence of the cDNA insert of clone HP10506 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 53-bp 5'-untranslated region, a 339-bp ORF, and a 226-bp 3'-untranslated region. The ORF codes for a protein consisting of 112 amino acid residues and there existed one putative transmembrane domain. Figure 5 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-

PCT/JP99/03929

49

Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 12 kDa that was almost identical with the molecular weight of 11,821 predicted from the ORF. When expressed in COS7 cells, an expression product of about 13 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA282544) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

15 <HP10507> (SEQ ID Nos. 6, 16, and 26)

5

10

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10507 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 412-bp 5'-untranslated region, a 441-bp ORF, and a 168-bp 3'untranslated region. The ORF codes for a protein consisting of 146 amino acid residues and there existed a secretory signal at the N-terminus and one putative transmembrane 6 depicts Figure C-terminus. domain at the hydrophobicity/hydrophilicity profile, obtained by the Kytepresent protein. Doolittle method, of the translation resulted in formation of a translation product of 19 kDa that was somewhat larger than the molecular weight of 16,347 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA424759) in ESTs, but, since they

WO 00/05367 PCT/JP99/03929

50

are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

5 <HP10548> (SEQ ID Nos. 7, 17, and 27)

10

15

20

30

Determination of the whole base sequence of the cDNA insert of clone HP10548 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 330-bp 5'-untranslated region, a 1035-bp ORF, and a 67-bp 3'untranslated region. The ORF codes for a protein consisting of 344 amino acid residues and there existed four putative transmembrane domains. Figure 7 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, the present protein. of translation resulted in formation of a translation product of a high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA143152) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

25 <HP10566> (SEQ ID Nos. 8, 18, and 28)

Determination of the whole base sequence of the cDNA insert of clone HP10566 obtained from cDNA library of the human stomach cancer revealed the structure consisting of a 61-bp 5'-untranslated region, a 294-bp ORF, and a 246-bp 3'-untranslated region. The ORF codes for a protein consisting of 97 amino acid residues and there existed one putative transmembrane domain at the C-terminus. Figure 8 depicts the

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 12 kDa that was almost identical with the molecular weight of 11,452 predicted from the ORF. When expressed in COS7 cells, an expression product of about 12 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W79821) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

15

20

25

30

10

5

<HP10567> (SEQ ID Nos. 9, 19, and 29)

Determination of the whole base sequence of the cDNA insert of clone HP10567 obtained from cDNA library of the human stomach cancer revealed the structure consisting of a 77-bp 5'-untranslated region, a 375-bp ORF, and a 133-bp 3'untranslated region. The ORF codes for a protein consisting of 124 amino acid residues and there existed one putative transmembrane domain at the C-terminus. Figure 9 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kytepresent protein. In the Doolittle method, of translation resulted in formation of a translation product of 14 kDa that was almost identical with the molecular weight of 14,484 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA428475) in ESTs, but, since they

are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10568> (SEQ ID Nos. 10, 20, and 30)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10568 obtained from cDNA library of the human stomach cancer revealed the structure consisting of a 56-bp 5'-untranslated region, a 984-bp ORF, and a 60-bp 3'untranslated region. The ORF codes for a protein consisting of 327 amino acid residues and there existed a secretory signal at the N-terminus and one putative transmembrane Figure 10 depicts C-terminus. the hydrophobicity/hydrophilicity profile, obtained by the Kytethe present protein. Doolittle method, of translation resulted in formation of a translation product of 36.5 kDa that was almost identical with the molecular weight of 34,326 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 40 kDa which is considered to have a sugar chain being In addition, there exist in the amino acid attached. sequence of this protein two sites at which N-glycosylation may occur (Asn-Leu-Thr at position 138 and Asn-Leu-Ser at position 206). Application of the (-3,-1) rule, a method for the secretory signal predicting the cleavage site of sequence, allows to expect that the mature protein starts from valine at position 24. When expressed in COS7 cells, an expression product of about 31 kDa was observed in the supernatant fraction and the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein has revealed that the protein was similar to the human cell-surface A33 antigen

(SWISS-PROT Accession No. Q99795). Table 5 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human cell-surface A33 antigen (A3). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 30.0% in the N-terminal region of 243 residues.

10

5

Table 5

HP MAELPGPFLCGALLGFLCLSGLAVEVKVPTEPLSTPLGKTAELTCTYSTSVGDSFAL-EW *..*..* . *... **...*. ** .*... .* .* MVGKMWPVLWTLCAVRVTVDAISVETPQDVLRASQGKSVTLPCTYHTSTSSREGLIOW 15 **A3** HP SFVQPGKPISESHPILYFTNGHLYPTGSKSKRVSLLQNPPTVGVATLKLTDVHPSDTGTY A3 DKLL--LTHTERVVIWPFSNKN-YIHGELYKNRVSISNNAEQSDASITIDQLTMADNGTY HP LCQVNNPPDFYTNGLGLINLTVLVPPSNPLCSQSGQTSVGGSTALRCSSSEGAPKPVYNW 20 A3 ECSVSLMSDLEGNTKSRVRLLVLVPPSKPECGIEGETIIGNNIQLTCQSKEGSPTPQYSW HP VRLGTFPTPSPGSMVQDEVSGQLILTNLSLTSSGTYRCVATNQMGSASCELTLSVTEPS-A3 KRYNILNOEOP--LAOPASGOPVSLKNISTDTSGYYICTSSNEEGTOFCNITVAVRSPSM HP -QGRVAGALIGVLLGVLLLSVAAFCLVRFQKERGKKPKETYGGSDLREDAIAPGISENTC 25 * ** ** A3 NVALYVGIAVGVVAALIIIGIIIYCCCCRGKDDNTEDKEDARPNREAYEEPPEQLRELSR HP MRADSSKGFLERPSSASTVTTTKSKLPMVV 30 A3 EREEEDDYRQEEQRSTGRESPDHLDQ

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration

PCT/JP99/03929

54

of sequences that shared a homology of 90% or more (for example, Accession No. T24595) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP01426> (SEQ ID Nos. 31, 41, and 51)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP01426 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 1-bp 5'-untranslated region, a 942-bp ORF, and a 122-bp 3'untranslated region. The ORF codes for a protein consisting of 313 amino acid residues and there existed a putative depicts Figure 11 signal. hydrophobicity/hydrophilicity profile, obtained by the Kytethe present protein. method, of translation resulted in formation of a translation product of 36 kDa that was almost identical with the molecular weight of 34,955 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 38 kDa which is considered to have a sugar chain being attached after secretion. In addition, there exists in the amino acid sequence of this protein one site at which Nglycosylation may occur (Asn-Ser-Ser at position 163). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from tryptophan at position 17. When expressed in COS7 cells, an expression product of about 39 kDa was observed in the supernatant fraction and the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the

10

55

protein was similar to the Xenopus laevis cortical granule lectin (EMBL Accession No. X82626). Table 6 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the X. laevis cortical granule lectin (XL). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 67.9% in the region other than the N-terminal region.

Table 6

HP MNQLSFLLFLIATTRGWSTDEANTYFKEWTCSSSPSLPRSCKEIKDECPSAFDGLYFLRT ******* . * **.* * . 15 XL MLVHILLLVTGGLSQSCEPVVIVASKNMVKQLDCDKFRSCKEIKDSNEEAQDGIYTLTS HP ENGVIYQTFCDMTSGGGGWTLVASVHENDMRGKCTVGDRWSSQQGSKADYPEGDGNWANY * ******* *********** * **** XL SDGISYQTFCDMTTNGGGWTLVASVHENNMAGKCTIGDRWSSQQGNRADYPEGDGNWANY HP NTFGSAEAATSDDYKNPGYYDIQAKDLGIWHVPNKSPMQHWRNSSLLRYRTDTGFLQTLG 20 XL NTFGSAGGATSDDYKNPGYYDIEAYNLGVWHVPNKTPLSVWRNSSLQRYRTTDGILFKHG HP HNLFGIYQKYPVKYGEGKCWTDNGPVIPVVYDFGDAQKTASYYSPYGQREFTAGFVQFRV XL GNLFSLYRIYPVKYGIGSCSKDSGPTVPVVYDLGSAKLTASFYSPDFRSQFTPGYIQFRP 25 HP FNNERAANALCAGMRVTGCNTEHHCIGGGGYFPEASPQQCGDFSGFDWSGYGTHVGYSSS XL INTEKAALALCPGMKMESCNVEHVCIGGGGYFPEADPRQCGDFAAYDFNGYGTKKFNSAG HP REITEAAVLLFYR ****** 30 XL IEITEAAVLLFYL

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R06009) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02515> (SEQ ID Nos. 32, 42, and 52)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP02515 obtained from cDNA library of human line Saos-2 revealed the cell osteosarcoma consisting of a 176-bp 5'-untranslated region, a 690-bp ORF, and a 71-bp 3'-untranslated region. The ORF codes for a protein consisting of 229 amino acid residues and there existed a putative secretory signal at N-terminus and one putative transmembrane domain at the C-terminus. Figure 12 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation 27 kDa that was almost identical with the molecular weight of 26,000 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 25.5 kDa from which the secretory signal is considered to have been cleaved. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from phenylalanine at position 28.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human T1/ST2 receptor binding protein (GenBank Accession No. U41804). Table 7 shows the

comparison between amino acid sequences of the human protein of the present invention (HP) and the human T1/ST2 receptor binding protein (T1). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 55.8% in the entire region.

10

15

20

5

Table 7

T1 AFEARDRNLOEGNLERVNFWSAVNVAVLLLVAVLQVCTLKRFFQDKRPVPT

25

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA381943) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02575> (SEQ ID Nos. 33, 43, and 53)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP02575 obtained from cDNA library of human osteosarcome cell line Saos-2 revealed the consisting of a 55-bp 5'-untranslated region, a 1404-bp ORF, and a 219-bp 3'-untranslated region. The ORF codes for a protein consisting of 467 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 13 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 52 kDa that was almost identical with the molecular weight of 54,065 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 57 kDa which is considered to have a sugar chain being attached afetr secretion. In addition, there exist in the amino acid sequence of this protein three sites at which N-glycosylation may occur (Asn-Arg-Thr at position 171, Asn-Ser-Thr at position 239 and Asn-Asp-Thr at position rule, a method Application of the (-3,-1)predicting the cleavage site of the secretory sequence, allows to expect that the mature protein starts from histidine at position 29. When expressed in COS7 cells, an expression product of about 55 kDa was observed in the supernatant fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human α -L-fucosidase (SWISS-PROT Accession No. P04066). Table 8 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human α -L-fucosidase (FC). Therein,

59

the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 54.8% in the entire region.

Table 8

	HP	${\tt MRPQELPRLAFPLLLLLLLLPPPPC-PAHSATRFDPTWESLDARQLPAWFDQAKFGIFI}$
10		****** *
	FC	MRSRPAGPALLLLLLFLGAAESVRRAQPPRRYTPDWPSLDSRPLPAWFDEAKFGVFI
	HP	${\tt HWGVFSVPSFGSEWFWWYWQKEKIPKYVEFMKDNYPPSFKYEDFGPLFTAKFFNANQWAD}$
		******** ****** * * * * * * * * * * * *
	FC	${\tt HWGVFSVPAWGSEWFWWHWQGEGRPQYQRFMRDNYPPGFSYADFGPQFTARFFHPEEWAD}$
15	HP	${\tt IFQASGAKYIVLTSKHHEGFTLWGSEYSWNWNAIDEGPKRDIVKELEVAIRNRTDLRFGL}$
		*** *** *** *** *** * * * * *** * * * *
	FC	${\tt LFQAAGAKYVVLTTKHHEGFTNWPSPVSWNWNSKDVGPHRDLVGELGTALRKR-NIRYGL}$
	HP	$\verb"YYSLFEWFHPLFLEDESSSFHKRQFPVSKTLPELYELVNNYQPEVLWSDGDGGAPDQYWN"$
		*.**.****** *** .**.**.**.**.**.*
20	FC	$\verb YHSLLEWFHPLYLLDKKNGFKTQHFVSAKTMPELYDLVNSYKPDLIWSDGEWECPDTYWN $
	HP	${\tt STGFLAWLYNESPVRGTVVTNDRWGAGSICKHGGFYTCSDRYNPGHLLPHKWENCMTIDK}$
		..***.** * * * * * * * * * * * * *
	FC	STNFLSWLYNDSPVKDEVVVNDRWGQNCSCHHGGYYNCEDKFKPQSLPDHKWEMCTSIDK
	HP	LSWGYRREAGISDYLTIEELVKQLVETVSCGGNLLMNIGPTLDGTISVVFEERLRQMGSW
25		****** * * * * . * . *
	FC	FSWGYRRDMALSDVTEESEIISELVQTVSLGGNYLLNIGPTKDGLIVPIFQERLLAVGKW
	HP	LKVNGEAIYETHTWRSQNDTVTPDVWYTSKPKEKLVYAIFLKWPTSGQLFLGHPKAILGA
		********* * ****** ******.** * * *
	FC	LSINGEAIYASKPWRVQWEKNTTSVWYTSKGSAVYAIFLHWPENGVLNLESPITT-ST
30	HP	TEVKLLGHGQPLNWISLEQNGIMVELPQLTIHQMPCKWGWALALTNVI
		*** *.********
	FC	TKITMLGIQGDLKWSTDPDKGLFISLPQLPPSAVPAEFAWTIKLTGVK

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. N28668) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10357> (SEQ ID Nos. 34, 44, and 54)

Determination of the whole base sequence of the cDNA insert of clone HP10357 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 113-bp 5'-untranslated region, a 300-bp ORF, and a 54-bp 3'untranslated region. The ORF codes for a protein consisting of 99 amino acid residues and there existed two putative Figure 14 depicts domains. transmembrare hydrophobicity/hydrophilicity profile, obtained by the Kyteprotein. Doolittle method, of the present translation resulted in formation of a translation product of 11 kDa that was almost identical with the molecular weight of 10,923 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA477156) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

30

5

10

15

20

25

<HP10447> (SEQ ID Nos. 35, 45, and 55)

Determination of the whole base sequence of the cDNA

insert of clone HP10447 obtained from cDNA library of human liver revealed the structure consisting of a 271-bp 5'-570-bp ORF, and a 34-bp untranslated region, a untranslated region. The ORF codes for a protein consisting of 189 amino acid residues and there existed five putative domains. Figure 15 depicts transmembrare hydrophobicity/hydrophilicity profile, obtained by the Kytemethod, of the present protein. translation resulted in formation of a translation product of high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA296976) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10477> (SEQ ID Nos. 36, 46, and 56)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10477 obtained from cDNA library of human liver revealed the structure consisting of a 149-bp 5'-untranslated region, a 1092-bp ORF, and a 15-bp 3'-untranslated region. The ORF codes for a protein consisting of 363 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 16 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 40 kDa that was almost identical with the molecular weight of 39,884 predicted from the ORF.

The search of the protein data base using the amino

acid sequence of the present protein revealed that the protein was similar to the human peptidoglycan recognition protein (GenBank Accession No. AF076483). Table 9 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human peptidoglycan recognition protein (PG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 54.8% in the entire region.

Table 9

HP MVDSLLAVTLAGNLGLTFLRGSQTQSHPDLGTEGCWDQLSAPRTFTLLDPKASLLTKAFL 15 HP NGALDGVILGDYLSRTPEPRPSLSHLLSQYYGAGVARDPGFRSNFRRQNGAALTSASILA HP QOVWGTLVLLORLEPVHLQLOCMSQEQLAQVAANATKEFTEAFLGCPAIHPRCRWGAAPY MSRRSMLLAWALPSLLRLGAAQETEDPACCSPIVPRNEWKALA-PG 20 HP RGRPKLLQLPLGFLYVHHTYVPAPPCTDFTRCAANMRSMQRYHQDTQGWGDIGYSFVVGS PG SECAOHLSLPLRYVVVSHT--AGSSCNTPASCQQQARNVQHYHMKTLGWCDVGYNFLIGE HP DGYVYEGRGWHWVGAHTLGH-NSRGFGVAIVGNYTAALPTEAALRTVRDTLPSCAVRAGL ** ****** PG DGLVYEGRGWNFTGAHSGHLWNPMSIGISFMGNYMDRVPTPQAIRAAQGLL-ACGVAQGA 25 HP LRPDYALLGHRQLVRTDCPGDALFDLLRTWPHFTATVKPRPARSVSKRSRREPPPRTLPA **..*.* ***.. ** .**..*..*** PG LRSNYVLKGHRDVORTLSPGNOLYHLIONWPHYRSP

30

10

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration

of sequences that shared a homology of 90% or more (for example, Accession No. AA424759) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10513> (SEQ ID Nos. 37, 47, and 57)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10513 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 134-bp 5'-untranslated region, a 750-bp ORF, and a 0-bp 3'-untranslated region. The ORF codes for a protein consisting of 249 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 17 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 29 kDa that was almost identical with the molecular weight of 27,373 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human hypothetical protein KIAA0512 (GenBank Accession No. AB011084). Table 10 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human hypothetical protein KIAA0512 (KI). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 31.6% in the C-terminal region of 196 amino acid residues.

WO 00/05367

PCT/JP99/03929

64

Table 10

HP MGGPRGAGWVAAGLLLGAGACYCIYRLTRGRRRG 5 KI RGRGRRPVAMQKRPFPYEIDEILGVRDLRKVLALLQKSDDPFIQQVALLTLSNNANYSCN HP DRELGIRSSKSAEDLTDGSYDDVLNAEQLQKLLYLLESTEDPVIIERALITLGNNAAFSV KI QETIRKLGGLPIIANMINKTDPHIKEKALMAMNNLSENYENQGRLQVYMNKVMDDIMASN 10 HP NQAIIRELGGIPIVANKINHSNQSIKEKALNALNNLSVNVENQIKIKVQVLKLLLNLSEN KI LNSAVQVVGLKFLTNMTITNDYQHLLVNSIANF--FRLLSQGGGKIKVEILKILSNFAEN HP PAMTEGLLRAQVDSSFLSLYDSHVAKEILLRVLTLFQNIKNCLKIEGHLAVQPTFTEGSL *.* . **..** .** ***.*...***. * . *. * 15 KI PDMLKKLLSTQVPASFSSLYNSYVESEILINALTLFEIIYDNLRAE--VFNYREFNKGSL HP FFL-LHGEECAQKIRALVDHHDAEVKEKVVTIIPKI *.* .. *..****..*** ** **... *. KI FYLCTTSGVCVKKIRALANHHDLLVKVKVIKLVNKF

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. N92228) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10540> (SEQ ID Nos. 38, 48, and 58)

30

Determination of the whole base sequence of the cDNA insert of clone HP10540 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure

WO 00/05367

5

10

15

20

PCT/JP99/03929

65

consisting of a 47-bp 5'-untranslated region, a 297-bp ORF, and a 245-bp 3'-untranslated region. The ORF codes for a protein consisting of 98 amino acid residues and there existed two putative transmembrane domains. Figure 18 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein similar was to the Caenorhabditis hypothetical protein CEF49C12.12 (GenBank Accession Z68227). Table 11 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein CEF49C12.12 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 36.1% in the entire region.

Table 11

CE MGKICPLMGPKMSAFCMVMSVWGVIFLGLLGVFFYIQAVTLFPDLHF-EGHGKVPSSVID HP NLYEQVSYNCFIAAGLYLLLGGFSFCQVRLNKRKEYMVR

^{* * ***** * * **}

³⁰ CE AKYNEKATQCWIAAGLYAVTLIAVFWQ---NKYNTAQIF

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA420715) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

10 <HP10557> (SEQ ID Nos. 39, 49, and 59)

5

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10557 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 24-bp 5'-untranslated region, a 519-bp ORF, and a 130-bp 3'untranslated region. The ORF codes for a protein consisting of 172 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 19 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 32 kDa that was larger than the molecular weight of 18,844 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 39 kDa is considered to have been subjected to modification after secretion. In addition, there exist in the amino acid sequence of this protein no site at which Nglycosylation may occur. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glycine at position 32. When expressed in COS7 cells, an expression product of about 20 kDa was observed in the supernatant fraction and the membrane fraction.

10

67

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human progesterone binding protein (EMBL Accession No. AJ002030). Table 12 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human progesterone binding protein (PG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 30.5% in the C-terminal region of 151 amino acid residues.

Table 12

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for

WO 00/05367 PCT/JP99/03929

68

example, Accession No. AA101709) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

5

10

15

20

25

30

<HP10563> (SEQ ID Nos. 40, 50, and 60)

Determination of the whole base sequence of the cDNA insert of clone HP10563 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 126-bp 5'-untranslated region, a 363-bp ORF, and a 936-bp 3'-untranslated region. The ORF codes for a protein consisting of 120 amino acid residues and there existed two putative transmembrane domains. Figure 20 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 18.5 kDa that was larger than the molecular weight of 13,180 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Arabidopsis thaliana hypothetical protein F27F23.15 (GenBank Accession No. AC003058). Table 13 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the A. thaliana hypothetical protein F27F23.15 (AT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 35.5% in the entire region.

PCT/JP99/03929

WO 00/05367

Table 13

69

HP MMPSRTNLATGIPSSKVKYSRLSSTDDGYIDLQFKKTPPKIPYKAIALATVLFLIGAFLI

.. *... * *.*.*. *...*. *

AT MAYVDHAFSISDEDLMIGTSY-TVSNRPPVKEISLAVGLLVFGTLGI

HP IIGSLLLSGYISKGGADRAVPVLIIGILVFLPGFYHLRIAYYASKGYRGYSYDDIPDFDD

AT VLGFFMAYNRVG-GDRGHGIFFIVLGCLLFIPGFYYTRIAYYAYKGYKGFSFSNIPSV

10

15

20

25

30

5

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA083574) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP01467> (SEQ ID Nos. 61, 71, and 81)

Determination of the whole base sequence of the cDNA insert of clone HP01467 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 65-bp 5'-untranslated region, a 924-bp ORF, and a 447-bp 3'-untranslated region. The ORF codes for a protein consisting of 307 amino acid residues and there existed three putative transmembrane domains. Figure 21 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino

acid sequence of the present protein revealed that the protein was similar to the rat Sec22 homologue (GenBank Accession No. U42209). Table 14 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the rat Sec22 homologue (RN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 94.6% in the N-terminal region of 241 amino acid residues. The protein of the present invention was longer by 53 amino acids at the C-terminus than the rat Sec22 homologue.

15

10

5

Table 14

HP MSMILSASVIRVRDGLPLSASTDYEQSTGMQECRKYFKMLSRKLAQLPDRCTLKTGHYNI ********************** RN MSMILSASVVRVRDGLPLSASTDCEQSAGVQECRKYFKMLSRKLAQFPDRCTLKTGRHNI 20 HP NFISSLGVSYMMLCTENYPNVLAFSFLDELQKEFITTYNMMKTNTAVRPYCFIEFDNFIQ *************** RN NFISSLGVSYMMLCTENYPNVLAFSFLDELQKEFITTYNMMKTNTAVRPYCFIEFDNFIO HP RTKQRYNNPRSLSTKINLSDMQTEIKLRPPYQISMCELGSANGVTSAFSVDCKGAGKISS *************** 25 RN RTKQRYNNPRSLSTKINLSDMQMEIKLRPPYQIPMCELGSANGVTSAFSVDCKGAGKISS HP AHQRLEPATLSGIVGFILSLLCGALNLIRGFHAIESLLQSDGDDFNYIIAFFLGTAACLY ********* RN AHQRLEPATLSGIVAFILSLLCGALNLIRGFHAIESLLQSDGEDFSYMIAFFLGTAACLY HP QCYLLVYYTGWRNVKSFLTFGLICLCNMYLYELRNLWQLFFHVTVGAFVTLQIWLRQAQG

30

RN QMICLCLOGRKERT

10

15

20

25

30

71

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA421925) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP01956> (SEQ ID Nos. 62, 72, and 82)

Determination of the whole base sequence of the cDNA insert of clone HP01956 obtained from cDNA library of human liver revealed the structure consisting of a 86-bp region, a 552-bp ORF, and a 359-bp untranslated untranslated region. The ORF codes for a protein consisting of 183 amino acid residues and there existed one putative 22 transmembrane domain. Figure depicts the hydrophobicity/hydrophilicity profile, obtained by the Kytemethod. of the present protein. translation resulted in formation of a translation product of 20.5 kDa that was almost identical with the molecular weight of 20,073 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the yeast hypothetical protein 21.5 kDa (SWISS-PROT Accession No. P53073). Table 15 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the yeast hypothetical protein 21.5 kDa (SC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology

25

30

72

of 34.3% in the C-terminal region of 108 amino acid residues.

Table 15

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA159753) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02545> (SEQ ID Nos. 63, 73, and 83)

Determination of the whole base sequence of the cDNA insert of clone HP02545 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 133-bp 5'-untranslated region, a 984-bp ORF, and a 636-bp 3'-untranslated region. The ORF codes for a

10

15

protein consisting of 327 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain at the C-terminus. Figure 23 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the rat embigin (EMBL Accession No. AJ009698). Table 16 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the rat embigin (RN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 65.4% in the entire region.

PCT/JP99/03929

74

Table 16

HP MRALPGLLEARARTPRLLLLQCLLAAARPSSADGSAPDSPFTSPPLREEIMAN--NFSLE 5 RN MRSHTGLRALVAPGCSLLLL-YLLAATRPDRAVGDPADSAFTSLPVREEMMAKYANLSLE HP SHNISLTEHSSMPVEKNITLERPSNVNLTCQFTTSGDLNAVNVTWKKDGEQLE--NNYLV ..******.... *.*******...*. ..*. ..*. ..*. ..*. ..* RN TYNISLTEQTRVS-EQNITLERPSHLELECTFTATEDVMSMNVTWKKDDALLETTDGFNT HP SATGSTLYTQYRFTIINSKQMGSYSCFFREEKEQRGTFNFKVPELHGKNKPLISYVGDST 10 *.***.****...*****...** RN TKMGDTLYSQYRFTVFNSKQMGKYSCFLGEE--LRGTFNIRVPKVHGKNKPLITYVGDST HP VLTCKCQNCFPLNWTWYSSNGSVKVPVGVQM-NKYVINGTYANETKLKITQLLEEDGESY **.*.******* RN VLKCECQNCLPLNWTWYMSNGTAQVPIDVHVNDKFDINGSYANETKLKVKHLLEEDGGSY 15 HP WCRALFQLGESEEHIELVVLSYLVPLKPFLVIVAEVILLVATILLCEKYTQKKKKHSDEG **** *.***** *.**** ***** *. ****** *. ***** ***** ***** RN WCRAAFPLGESEEHIKLVVLSFMVPLKPFLAIIAEVILLVAIILLCEVYTQKKKNDPDDG HP KEFEQIEQLKSDDSNGIENNVPRHRKNESLGQ ******* 20 RN KEFEQIEQLKSDDSNGIENNVPRYRKTDSGDQ

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA312629) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

30

25

<HP02551> (SEQ ID Nos. 64, 74, and 84)

Determination of the whole base sequence of the cDNA insert of clone HP02551 obtained from cDNA library of human

line Saos-2 revealed the osteosarcoma cell consisting of a 61-bp 5'-untranslated region, a 672-bp ORF, and a 384-bp 3'-untranslated region. The ORF codes for a protein consisting of 223 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 24 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 27 kDa that was somewhat larger than the molecular weight of 24,555 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 26 kDa from which the secretory signal is considered to have been cleaved. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamine at position 20.

5

10

15

20

25

30

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the mouse FGF binding protein (GenBank Accession No. U49641). Table 17 shows comparison between amino acid sequences of the human protein of the present invention (HP) and the mouse FGF binding protein (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 21.2% in the entire region other than the N-terminal region. In particular, all the eight cysteine residues contained in the both proteins were conserved.

Table 17

	HP	MKFVPCLLLVTLSCLGTLGQAPRQKQGST
		••**• • •* • •••
5	MM	MRLHSLILLSFLLLATQAFSEKVRKRAKNAPHSTAEEGVEGSAPSLGKAQNKQRSRTSKS
	HP	GEEFHFQTGGRDSCTMRPSSLGQGAGEVWLRVDCRNTDQTYWCEYRGQPSMCQAFAADPK

	MM	LTHGKFVTKDQATCRWAVTEEEQGISLKVQCTQADQEFSCVFAGDPTDCLKHDKD-Q
	HP	SYWNQALQELRRLHHACQGA-PVLRPSVCREAGPQAHMQQVTSSLKGSPEPNQQPEAGTP
10		**.*** ** .** * * * * *
	MM	IYWKQVARTLRKQKNICRDAKSVLKTRVCRKRFPESNLKLVNPNARGNTKPRKEKAEVSA
	ΗP	SLRPKATVKLTEATQLGKDSMEELGKAKPTTRPTAKPTQPGPRPGGNEEAKKKAWEHCWK
		* * *. * . *. *. * * *
	MM	REHNKVQEAVSTEPNRIKEDI-TLNPAATQTM-TIRDPECLEDPDVLNQ-RKTALEFCGE
15	HP	PFQALCAFLISFFRG
	MM	SWSSICTFFLNMLQATSC

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA317400) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02631> (SEQ ID Nos. 65, 75, and 85)

30

Determination of the whole base sequence of the cDNA insert of clone HP02631 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 42-bp 5'-untranslated region, a 147-bp ORF,

and a 1191-bp 3'-untranslated region. The ORF codes for a protein consisting of 48 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 25 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 10 kDa or less.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA156969) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

15

20

25

30

10

5

<HP02632> (SEQ ID Nos. 66, 76, and 86)

Determination of the whole base sequence of the cDNA insert of clone HP02632 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 50-bp 5'-untranslated region, a 1116-bp ORF, and a 337-bp 3'-untranslated region. The ORF codes for a protein consisting of 371 amino acid residues and there existed eight putative transmembrane domains. Figure 26 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis elegans hypothetical protein CELC2H12 (GenBank Accession No. U23169). Table 18 shows the comparison between amino acid sequences

78

of the human protein of the present invention (HP) and the C. elegans hypothetical protein CELC2H12 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 51.4% in the entire region.

Table 18

10		
	HP	MAWTKYQLFLAGLMLVTGSINTLSAKWADNFMAEGCGGSKEHSFQHPFLQAVGMFLGEFS
		* ***** ** ** ***** ** ** ****
	CE	MVAFAVIISVMMVVTGSLNTICAKWADSIKADGVPFNHPFLQATCMFFGEFL
	HP	CLAAFYLLRCRAAGQSDSSVDPQQPFNPLLFLPPALCDMTGTSL
15		***.*
	CE	CLVVFFLIFGYKRYVWNRANVQGESGSVTEITSEEKPTLPPFNPFLFFPPALCDILGTSI
	HP	MYVALNMTSASSFQMLRGAVIIFTGLFSVAFLGRRLVLSQWLGILATIAGLVVVGLADLL
		****.*.**.**
	CE	MYIGLNLTTASSFQMLRGAVIIFTGLLSVGMLNAQIKPFKWFGMLFVMLGLVIVGVTDIY
20		SKHDSQHKLSEVITGDLLIIMAQIIVAIQMVLEEKFVYKHNVHPLRAVGTEGLFGFVILS
		··*· ·· · · · · · · · · · · · · · · · ·
	CE	YDDDPLDDKNAIITGNLLIVMAQIIVAIQMVYEQKYLTKYDVPALFAVGLEGLFGMVTLS
		LLLVPMYYIPAG-SFSGNPRGTLEDALDAFCQVGQQPLIAVALLGNISSIAFFNFAGISV
		.**.*****.** * ***. *
25	CE	ILMIPFYYIHVPRTFSTNPEGRLEDVFYAWKEITEEPTIALALSGTVVSIAFFNFAGVSV
	HP	TKELSATTRMVLDSLRTVVIWALSLALGWEAFHALQILGFLILLIGTALYNGLHRPLLGR
	i	******************************
	CE	TKELSATTRMVLDSVRTLVIWVVSIPLFHEKFIAIQLSGFAMLILGTLIYNDILIGPWFR
		LSRGRPLAEESEQERLLGGTRTPINDAS
30	112	DSKGKFLAEESEQERULGGTKTPINDAS
o U		
	CE	RNILPNLSSHANCARCWLCICGGDSELIEYEQEDQEHLMEA

79

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. N50907) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10488> (SEQ ID Nos. 67, 77, and 87)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10488 obtained from cDNA library of human liver revealed the structure consisting of a 39-bp 5'-untranslated region, a 273-bp ORF, and a 421-bp 3'-untranslated region. The ORF codes for a protein consisting of 90 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 27 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 10 kDa that was almost identical with the molecular weight of 10,151 predicted from the ORF. When expressed in COS7 cells, an expression product of about 6 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H73534) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

10

15

20

80

Determination of the whole base sequence of the cDNA insert of clone HP10538 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the consisting of a 357-bp 5'-untranslated region, a 1500-bp ORF, and a 1911-bp 3'-untranslated region. The ORF codes for a protein consisting of 499 amino acid residues and there existed at least four putative transmembrane domains. Figure hydrophobicity/hydrophilicity profile, 28 depicts the obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the mouse pore-forming K⁺ channel subunit (GenBank Accession No. AF056492). Table 19 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the mouse pore-forming K⁺ channel subunit (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 32.4% in the N-terminal region of 241 amino acid residues.

Table 19

HP MVDRGPLLTSAIIFYLAIGAAIFEVLEEPHWKEAKKNYYTQKLHLLKEFPCLGQEGLDK ***. ** .*..** ..*.*. . . . * . . * * . . * . . * . . * . . 5 MM MRSTTLLALLALVLLYLVSGALVFQALEQPHEQQAQKKMDHGRDQFLRDHPCVSQKSLED HP ILEVVSDAAGQG-----VAITGNQTFNNWNWPNAMIFAATVITTIGYGNVAPKTPAGRLF ***** MM FIKLLVEALGGGANPETSWTNSSNHSSAWNLGSAFFFSGTIITTIGYGNIVLHTDAGRLF HP CVFYGLFGVPLCLTWISALGKFFGGRAKR----LGQFLTKRGVSLRKAQITCTVIFIVWG 10 *.**.* *.***. .*.. .* *. *. MM CIFYALVGIPLFGMLLAGVGDRLGSSLRRGIGHIEAIFLKWHVPPGLVRSLSAVLFLLIG HP VLVHLVIPPFVFMVTEGWNYIEGLYYSFITISTIGFGDFVAGVNPSANYHALYRYFVELW MM CLLFVLTPTFVFSYMESWSKLEAIYFVIVTLTTVGFGDYVPG-DGTGQNSPAYQPLVWFW 15 HP IYLGLAWLSLFVNWKVSMFVEVHKAIKKRRRRRKESFESSPHSRKALQVKGSTASKDVNI * .***... MM ILFGLAYFASVLTTIGNWLRAVSRRTRAEMGGLTAQAASWTGTVTARVTQRTGPSAPPPE

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R25184) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10542> (SEQ ID Nos. 69, 79, and 89)

Determination of the whole base sequence of the cDNA insert of clone HP10542 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 23-bp 5'-untranslated region, a 321-bp ORF, and a 426-bp 3'-

10

15

82

untranslated region. The ORF codes for a protein consisting of 106 amino acid residues and there existed one putative transmembrane domain. Figure 29 the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 12 kDa that was almost identical with the molecular weight of 11,724 predicted from the ORF. When expressed in COS7 cells, an expression product of about 13 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA029683) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10571> (SEQ ID Nos. 70, 80, and 90)

20 Determination of the whole base sequence of the cDNA insert of clone HP10571 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 95-bp 5'-untranslated region, a 459-bp ORF, and a 675-bp 3'untranslated region. The ORF codes for a protein consisting 25 of 152 amino acid residues and there existed one putative transmembrane domain. Figure 30 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product 30 of 20 kDa that was larger than the molecular weight of 17,062 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 23 kDa

10

15

20

25

30

83

which is considered to have a sugar chain being attached after secretion. In addition, there exists in the amino acid sequence of this protein one site at which N-glycosylation may occur (Asn-Ile-Thr at position 10).

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA105822) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP01470> (SEQ ID Nos. 91, 101, and 111)

Determination of the whole base sequence of the cDNA insert of clone HP01470 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 157-bp 5'-untranslated region, a 1077-bp ORF, and a 385-bp 3'untranslated region. The ORF codes for a protein consisting of 358 amino acid residues and there existed one putative transmembrane domain. Figure 31 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 43 kDa that was somewhat larger than the molecular weight of 40,489 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 40 kDa from which the secretory signal is considered to have been cleaved and a product of 43.5 kDa which is considered to have been subjected to some modification. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glycine at position 23. When

10

15

84

expressed in COS7 cells, an expression product of about 44 kDa was observed in the supernatant fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the was similar to the Caenorhabditis hypothetical protein 39.9 kDa (SWISS-PROT Accession No. Q10005). Table 20 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein 39.9 kDa (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 58.9% in the entire region.

25

PCT/JP99/03929

85

Table 20

HP MAPONLSTFCLLLLYLIGAVIAGRDFYKILGVPRSASIKDIKKAYRKLALQLHPDRNPDD 5 CE MRILNVSLLVLASSLVAFVECGRDFYKILGVAKNANANQIKKAYRKLAKELHPDRNODD HF PQAQEKFQDLGAAYEVLSDSEKRKQYDTYGEEGL--KDGHQSSHGDIFSHFFGDFGFMFG *.*****..****** CE EMANEKFQDLSSAYEVLSDKEKRAMYDRHGEEGVAKMGGGGGGGHDPFSSFFGDF-FG-G HP GTPRQQDRNIPRGSDIIVDLEVTLEEVYAGNFVEVVRNKPVARQAPGKRKCNCRQEMRTT 10 . ..*.*.*. ** *******. *.*.*. *.*. *.*. *.*. *.*. *.*. CE GGGHGGEEGTPKGADVTIDLFVTLEEVYNGHFVEIKRKKAVYKQTSGTRQCNCRHEMRTE HP QLGPGRFQMTQEVVCDECPNVKLVNEERTLEVEIEPGVRDGMEYPFIGEGEPHVDGEPGD CE QMGQGRFQMFQVKVCDECPNVKLVQENKVLEVEVEVGADNGHQQIFHGEGEPHIEGDPGD 15 HP LRFRIKVVKHPIFERRGDDLYTNVTISLVESLVGFEMDITHLDGHKVHISRDKITRPGAK *.*.*. *** ***.******** ... ***** * **** * .. ***.*. CE LKFKIRIQKHPRFERKGDDLYTNVTISLQDALNGFEMEIQHLDGHIVKVQRDKVTWPGAR HP LWKKGEGLPNFDNNNIKGSLIITFDVDFPKEQLTEEAREGIKQLLKQGSVQ-KVYNGLOG 20 CE LRKKDEGMPSLEDNNKKGMLVVTFDVEFPKTELSDEQKAQIIEILQQNTVKPKAYNGL

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA282838) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

30 <HP002419> (SEQ ID Nos. 92, 102, and 112)

Determination of the whole base sequence of the cDNA insert of clone HP02419 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 253-bp

5

10

15

20

PCT/JP99/03929

86

5'-untranslated region, a 681-bp ORF, and a 1120-bp 3'untranslated region. The ORF codes for a protein consisting of 226 amino acid residues and there existed four putative transmembrane domains. Figure 32 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human hypothetical protein KIAA0108 (SWISS-PROT Accession No. Q15012). Table 21 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human hypothetical protein KIAA0108 (KI). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 43.9% in the entire region.

20

25

30

PCT/JP99/03929

87

Table 21

MKMVAPWTRFYSNSCCLCCHVRTGTILLGVWYLIINAVVLLILLSALADPD---OY HP ****..** ************* 5 KI MVSMSFKRNRSDRFYSTRCCGCCHVRTGTIILGTWYMVVNLLMAILLTVEVTHPNSMPAV HP NFSSSELGGDFEF-MDDANMCIAIAISLLMILICAMATYGAYKQRAAWIIPFFCYOIFDF KI NIQYEVIGNYYSSERMADNACVLFAVSVLMFIISSMLVYGAISYQVGWLIPFFCYRLFDF HP ALNMLVAITVLIYPNSIQEYIRQLPPNFPYRDDVMSVNPTCLVLIILLFISIILTFKGYL 10 KI VLSCLVAISSLTYLPRIKEYLDQL-PDFPYKDDLLALDSSCLLFIVLVFFALFIIFKAYL HP ISCVWNCYRYINGRNSSDVLVYVT-SNDTTVLLPPYDDATVNGAAKEPPPPYVSA *.*****.**.** KI INCVWNCYKYINNRNVPEIAVYPAFEAPPQYVLPTY-EMAVKMPEKEPPPPYLPA 15

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA173214) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02631> (SEQ ID Nos. 93, 103, and 113)

Determination of the whole base sequence of the cDNA insert of clone HP02631 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 42-bp 5'-untranslated region, a 588-bp ORF, and a 750-bp 3'-untranslated region. Although the 49th amino acid residue is encoded by a stop codon, it is likely that this codon encodes selenocysteine from the molecular weight

of the translation product and the sequence comparison data with the Caenorhabditis elegans homologue. The ORF codes for a protein consisting of 195 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the intermediate region. Figure 33 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 58 kDa. In this case, the addition of a microsome led to the formation of a product of 56 kDa from which the secretory signal is considered to have been cleaved. Since both of these products are larger than the molecular weight of 22 kDa predicted from the ORF, it is likely that the protein interacts with another protein.

5

10

15

20

25

30

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis elegans hypothetical protein C35C5.3 (EMBL Accession No. Z78417). Table 22 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein C35C5.3 (CE). U at position 49 in the amino acid sequence of the protein of the present invention represents selenocysteine. Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 37.9% in the entire region other than the Nterminal region. Cystein was found in the sequence of the C. elegans protein at the posistion corresponding to position 49 encoded by the stop codon (selenocysteine) of the protein of the present invention.

PCT/JP39/03929

89

Table 22

HP MRLLLL 5 CE MRIHDELQKQDMSRFGVFIIGVLFFMSVCDVLRTEEHSHDENHVHEKDDFEAEFGDETDS HP LLVAASAMVRSEASANLGGVPSKRLKMQYATGPLLKFQICVSUGYRRVFEEYMRVISORY * *.. *** **...* CE QSFSQGTEEDHIEVREQSSFVKPTAVHHAKDLPTLRIFYCVSCGYKQAFDQFTTFAKEKY HP PDIRIEGENYLPQPIYRHIASFLSVFKLVLIGLIIVGKDPFAFFGMQAPSIWQWGQENKV 10 ..* ** *... * .** .** . * * * . . ** CE PNMPIEGANFAPVLWKAYVAQALSFVKMAVLVLVLGGINPFERFGLGYPQILQHAHGNKM HP YACMMVFFLSNMIENQCMSTGAFEITLNDVPVWSKLESGHLPSMQQLVQILDNEMKLNVH *********** CE SSCMLVFMLGNLVEQSLISTGAFEVYLGNEQIWSKIESGRVPSPQEFMQLIDAQLAVLGK 15 HP MDSIPHHRS CE APVNTESFGEFQQTV

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA156969) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02695> (SEQ ID Nos. 94, 104, and 114)

30

Determination of the whole base sequence of the cDNA insert of clone HP02695 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 112-bp 5'-untranslated region, a 1020-bp ORF, and a 160-bp 3'-

5

10

15

20

PCT/JP99/03929

90

untranslated region. The ORF codes for a protein consisting of 339 amino acid residues and there existed three putative transmembrane domains. Figure 34 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 38 kDa that was almost identical with the molecular weight of 38,274 kDa predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the rat hypertension-induced protein S-2 fragment (PIR Accession No. 539959). Table 23 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the rat hypertension-induced protein S-2 fragment (RN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 74.3% in the entire region.

PC173P99/03929

91

Table 23

HP MNWELLLWLLVLCALLLLLVQLLRFLRADGDLTLLWAEWQGRRPEWELTDMVVWVTGASS

RN VKRRSLENGNLKEKDILVLPLDLADTSSHDI

RN ATKTVLQEFGRIDILVNNGGVAHASLVENTNMDIFKVLIEVNYLGTVSLTKCFLPHMMER

HP KQGKIVTVNSILGIISVPLSIGYCASKHALRGFFNGLRTELATYPGIIVSNICPGPVQSN
.*****...*

RN NQGKIVVMKS

15

20

10

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T84331) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10031> (SEQ ID Nos. 95, 105, and 115)

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10031 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 55-bp 5'-untranslated region, a 1464-bp ORF, and a 649-bp 3'-untranslated region. The ORF codes for a protein consisting of 487 amino acid residues and there existed eleven putative transmembrane domains. Figure 35 depicts the hydrophobicity/hydrophilicity profile, obtained

92

by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight. When expressed in COS7 cells, an expression product of about 55 kDa was observed in the membrane fraction.

5

10

15

The search of the protein data base using the amino acid sequence of the present protein revealed that the was protein similar to the Caenorhabditis hypothetical CELK07H8 protein (GenBank Accession AF047659). Table 24 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein CELK07H8 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 44.2% in the entire region.

PCT/JP99/03929

93

Table 24

H	P MDGTETRQRRLDSCGKPGELGLPHPLSTGGLPVI
C	E MKGGGGIGDGKKDYQSAVHEGLTTFDQLGIALEDVGKSMDAETATPGGSLFSRVIFRFF
H	P EDGALRAPESQSVTPKPLETEPSRETAWSIGLQVTVPFMFAGLGLSWAGMLLDYFQHWP
	**
C	E ENSSLKSRTYDHSNDLVNMSVIPAESSYVLFFQVLFPFAVAGLGMVFAGLVLSIVVTW
HI	P FVEVKDLLTLVPPLVGLKGNLEMTLASRLSTAANTGQIDDPQEQHRVISSNLALIQVQ
	* * * * * * * * * * * * * * * * * *
CI	FEEIPEILILVPALLGLKGNLEMTLASRLSTLANLGHMDSSKQRKDVVIANLALVQVQ
H	VVGLLAAVAALLLGVVSREEVDVAKVELLCASSVLTAFLAAFALGVLMVCIVIGARKL
	**** * * * ** * * * **
CI	VVAFLASAFAAALAFIPSGDFDWAHGALMCASSLATACSASLVLSLLMVVVIVTSRKY
HI	NPDNIATPIAASLGDLITLSILALVSSFFYR-HKDSRYLTPLVCLSFAALTPVWVLIA
	**** ******* ** ** ** * * * * * * * * *
CE	NPDNVATPIAASLGDLTTLTVLAFFGSVFLKAHNTESWLNVIVIVLFLLLLPFWIKIAN
HI	SPPIVKILKFGWFPIILAMVISSFGGLILSKTVSKQQYKGMAIFTPVICGVGGNLVAI
CE	NEGTQETLYNGWTPVIMSMLISSAGGFILETAVRRYHSLSTYGPVLNGVGGNLAAV
HP	SRISTYLHMWSAPGVLPLQMKKFWPNPCSTFCTSEINSMSARVLLLLVVPGHLIF-
	.*.* *****
CE	SRLSTYFHKAGTVGVLPNEWTVSRF-TSVQRAFFSKEWDSRSARVLLLLVVPGHICFNF
HP	I-IYLVEGQSVINSQTFVVLYLLAGLIQVTILLYLAEVMVRLTWHQALDPDNHCIPY
	· · · · · · · · · · · · · · · · · · ·
CE	IQLFTLTSKNNVTPHGPLFTSLYMIAAIIQVVILLFVCQLLVALLWKWKIDPDNSVIPY
	TGLGDLLGTGLLALCFFTDWLLKSKAELGGISELASGPP
	*.******
CE	TALGDLLGTGLLFIVFLTTDHFDPKELTSS

Furthermore, the search of the GenBank using the base

sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for

94

example, Accession No. AA334000) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

5

10

15

20

25

30

<HP10530> (SEQ ID Nos. 96, 106, and 116)

Determination of the whole base sequence of the CDNA insert of clone HP10530 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the consisting of a 80-bp 5'-untranslated region, a 1182-bp ORF, and a 95-bp 3'-untranslated region. The ORF codes for a protein consisting of 393 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 36 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 46 kDa that was somewhat larger than the molecular weight of 44,912 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 45.5 kDa from which the secretory signal is considered to have been cleaved. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from lysine at position 23. When expressed in COS7 cells, an expression product of about 43 kDa was observed in the supernatant fraction and the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Arabidopsis thaliana hypothetical protein IG002N01 (GenBank Accession No. AF007269). Table 25 shows the comparison between amino acid sequences of the

PCT/JP99/03929

95

human protein of the present invention (HP) and the A. thaliana hypothetical protein IG002N01 (AT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 27.0% in the N-terminal region of 355 amino acid residues.

30

PCT/JP99/03929

96

Table 25

	HP	MRTLFNLLWL
5	AT	. MELTSFQKSPSSNDVVSFSVSLVRNSMARRRRSSAAESLKRRNDGYESLCQVVQQDSDRR
	HP	ALACSPVHTTLSKSDAKKAASKTLLEKSQFSDKPVQDRGLVVTDLKAESVVLEHRSYCSA
		·····*·* ** ** · · · · · ** · · · · · ·
	ΑT	LITIFVIFFIVIPAVSIAVYKVKFADRVIQTESSIRQKGIVKTDINFQEILTEHSKAS
	HP	KARDRHFAGDVLGYVTPWNSHGYDVTKVFGSKFTQISPVWLQ-LKRRGREMFEVTGLHDV
10		******* ***** *** *** *** *** *********
	AT	ENSTRHYDYPVLAYITPCQGSGLVLEGR-HNADKGWIQELRSRGNALSASKGLPKL
	HP	DQGWMRAVRKHAKGLHIVPRLLFEDWTYDDFRNVLDSEDEIEELSKTVVQVAKNQHFDGF
		* * . ***. *
	AT	YNSCIFHALKRMNFFTLELVNFNTYLVIMFALNS-REMEYNGIVLESWSRWAAYGVL
15	HP	${\tt VVEVWNQLLSQKRVGLIHMLTHLAEALHQARLLALLVIPPAITPGTDQLGMFTHKEFEQL}$
		* . * * . * . * .
	AT	${\tt HDPDLRKMALKFVKQLGDALHSTSSPRNNQQHMQFMYVVGPPRSEKLQMYDFGPEDLQFL}$
	HP	APVLDGFSLMTYDYSTAHQPGPNAPLSWVRACVQ-VLDPKSKWRSKILLGLNFYGM

20	AT	${\tt KDSVDGFSLMTYDFSNPQNPGPNAPVKWIDLTLKLLLGSSNNIDSNIARKVLLGINFYGN}$
	HP	DYATSKDAREPVVGARYIQTLKDHRPRMVWDSQASEHFFEYKKSRSGRHVVFYPTLKSLQ
		** * * . * . * . * . * * . * . * . * . * . * * . *
	ΑT	DFVISGGGGGAITGRDYLALLQKHKPTFRWDKESGEHLFMYRDDKNIKHAVFYPTLMSIL
	HP	VRLELARELGVGVSIWELGQGLDYFYDLL
25		. ** * * * * * * * * * * * * * * * * *
	AT	LRLENARLWGIGISIWEIGQDKGHFGKYAEASLEASSIFSGHTFDMQFRTNPRQLSRNGS

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA302913) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the

5

10

15

20

25

30

PCT/JP99/03929

97

protein of the present invention.

<HP10541> (SEQ ID Nos. 97, 107, and 117)

Determination of the whole base sequence of the cDNA insert of clone HP10541 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 7-bp 5'-untranslated region, a 591-bp ORF, and a 113-bp 3'untranslated region. The ORF codes for a protein consisting of 196 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 37 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kytemethod, of the present protein. translation resulted in formation of a translation product of 23 kDa that was somewhat larger than the molecular weight of 21,553 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 20 kDa from which the secretory signal is considered to have been cleaved and a product of 23 kDa which is considered to have a sugar chain being attached. Application of the (-3,-1)rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glycine at position 41. In addition, there exists in the amino acid sequence of this protein one site at which N-glycosylation may occur (Asn-Leu-Thr at position 185).

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human zymogen membrane protein (GenBank Accession No. AF056492). Table 26 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human zymogen membrane protein (ZM). Therein, the marks of -, *, and . represent a

5

PCT/JP99/03929

98

gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 37.6% in the C-terminal region of 133 amino acid residues.

Table 26

HP MWRVPGTTRRPVTGESPGMHRPEAMLLLLTLALLGGPTWAGKMYGPGGGKYFS-TTEDYD 10 **.*** ** . . . * ZM MLTVALLALLCASASGNAIQARSSSYSGEYGSGGGKRFSHSGNQLD HP HEITGLRVSVGLLLVKSVQVKLGDSWDVKLGALGGNTQEVTLQPGEYITKVFVAFQAFLR ZM GPITALRVRVNTYYIVGLQVRYGKVWSDYVGGRNGDLEEIFLHPGESVIQVSGKYKWYLK 15 HP GMVMYTSKDRYFYFGKLDGQISSAYPSQEGQVLVGIYGQYQLLGIKSIGFEWN-YPLEEP .* * . . ** * *. * *..**..*. ** ZM KLVFVTDKGRYLSFGKDSGTSFNAVPLHPNTVLRFISGRSGSL-IDAIGLHWDVYPTSCS HP TTEPPVNLTYSANSPVGR 20 ZM RC

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA340605) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

30

25

<HP10550> (SEQ ID Nos. 98, 108, and 118)

Determination of the whole base sequence of the cDNA

99

insert of clone HP10550 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 241-bp 5'-untranslated region, a 324-bp ORF, and a 86-bp 3'-untranslated region. The ORF codes for a protein consisting of 107 amino acid residues and there existed one putative transmembrane domain. Figure 38 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA348310) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10590> (SEQ ID Nos. 99, 109, and 119)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10590 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 77-bp 5'-untranslated region, a 1053-bp ORF, and a 180-bp 3'-untranslated region. The ORF codes for a protein consisting of 350 amino acid residues and there existed one putative transmembrane domain. Figure 39 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 40 kDa that was almost identical with the molecular weight of 39,285 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of

100

43 kDa which is considered to have a sugar chain being attached. In addition, there exist in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Asn-Ser at position 144 and Asn-Leu-Thr at position 328).

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA461346) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10591> (SEQ ID Nos. 100, 110, and 120)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10591 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 232-bp 5'-untranslated region, a 324-bp ORF, and a 844-bp 3'-untranslated region. The ORF codes for a protein consisting of 107 amino acid residues and there existed one putative transmembrane domain. Figure 40 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 12 kDa that was almost identical with the molecular weight of 11,328 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H09424) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein

õ

10

15

20

25

30

PCT/JP99/03929

101

of the present invention.

<HP01462> (SEQ ID Nos. 121, 131, and 141)

Determination of the whole base sequence of the CDNA insert of clone HP01462 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 121-bp 5'-untranslated region, a 1452-bp ORF, and a 477-bp 3'-untranslated region. The ORF codes for a protein consisting of 483 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 41 depicts the hydrophobicity/hydrophilicity profile, by the Kyte-Doolittle method, of the present obtained protein. In vitro translation resulted in formation of a translation product of 72 kDa that was larger than the molecular weight of 55,838 predicted from the Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from lysine position 21.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein similar the was to Caenorhabditis hypothetical protein ZK1058.4 (EMBL Accession No. 235604). Table 27 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein ZK1058.4 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 35.6% in the entire region.

102

Table 27

	HP	${\tt MKAFHTFCVVLLVFGSVSEAKFDDFEDEEDIVEYDDNDFAEFEDVMEDSVTESPQRVIIT}$
		* *
5	CE	MKIVWIFLIFFIGFAIST
	HP	EDDE-DETTVELEGQDENQEGDFEDADTQEGDTESEPYDDEEFEGYEDKPD
		.*.* .* . *. *
	CE	DDNEFAEFEDEFVGSSATQAPEIQREGEPPVLKQKDDFEEEDFGVVEEEPEEAEKVREAD
	HP	TSSSKNKDPITIVDVPAHLQNSWESYYLEILMVTGLLAYIMNYIIGKNKNSRLAQAWFNT
10		***** .* .* .* ** **.***.* .* *.
,	CE	${\tt SDDAAPAQPLKFADVPAHFRSNWASYQVEGIVVLIILIYMTNYLIGKTTNASIAQTIFDM}$
	HP	HRELLESNFTLVGDDGTNKEATSTGKLNQENEHIYNLWCSGRVCCEGMLIQLRFLKRQDL
		* ***.***** ** **.***
	CE	${\tt CRPTLEEQFAVVGDDGTTDLDKMIPSLKHDTDSTFSAWCTGRVNVNSLFLQMKMVKRQDV}$
15	HP	$\verb LNVLARMMRPVSDQVQIKVTMN-DEDMDTYVFAVGTRKALVRLQKEMQDLSEFCSDKPKS $
		*. * .* ** * * **** * . *** ** *
	CE	${\tt VSRIMEMFTPSGDKMTIKASLETTNDTDPLIFAVGEKKIASKYFKEMLDLNSFASERKQA}$
	HP	${\tt GAKYGLPDSLAILSEMGEVTDGMMDTKMVHFLTHYADKIESVHFSDQFSGPKIMQEEGQP}$
		.** .* .* .* .*.****.
20	CE	${\tt AQQFNLPASWQVYADQNEVVFSILDPGVVSLLKKHEDAIEFIHISDQFTGPKPAEGESYT}$
	HP	${\tt LKLPDTKRTLLFTFNVPGSGNTYPKDMEALLPLMNMVIYSIDKAKKFRLNREGKQKADKN}$
		.*** *
	CE	$-\mathtt{RLPEAQRYMFVSLNLQYLGQDEESVMEILNLVFYLIDKARKMKLSKDAKVKAERR}$
	HP	${\tt RARVEENFLKLTHVQRQEAAQSRREEKKRAEKERIMNEEDPEKQRRLEEAALRREQKKLE}$
25		मं मं क्षेत्रक प्रेष्ठ प्रेष्ठ प्रेष्ठे प्रे प्रेष्ठे प्रेष्ठे प्रेष्ठे प्रेष्ठे प्रेष्ठे प्रेष्ठे प्रेष्ठे प्र
	CE	RKEFEDAFLKQTHQFRQEAAQARREEKTRERKQKLMDESDPERQKRLEAKELKREAKA
	HP	KKQMKMKQIKVKAM
٠		* *****
	CE	-KSPKMKQLKVK
30		·

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for

103

example, Accession No. AA307793) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

5

10

15

20

25

30

<HP02485> (SEQ ID Nos. 122, 132, and 142)

Determination of the whole base sequence of the cDNA insert of clone HP02485 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 69-bp 5'-untranslated region, a 1005-bp ORF, and a 1672-bp 3'untranslated region. The ORF codes for a protein consisting of 334 amino acid residues and there existed one putative transmembrane domain. Figure 42 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 36 kDa that was almost identical with the molecular weight of 38,171 predicted from the ORF. When expressed in COS7 cells, an expression product of about 23 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis elegans hypothetical protein W01A11.2 (GenBank Accession No. U64852). Table 28 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein W01A11.2 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 45.5% in the entire region.

25

30

PCT/JP99/03929

104

Table 28

HP MVEFAPLFMPWERRLQTLAVLQFVFSFLALAEICT-V 5 CE MRLRLSSISGKAKLPDKEICSSVSRILAPLLVPWKRRLETLAVMGFIFMWVILPIMDLWV HP GFIALLFTRFWLLTVLYAAWWYLDRDKPRQGGRHIQAIRCWTIWKYMKDYFPISLVKTAE CE PFHVLFNTRWWFLVPLYAVWFYYDFDTPKKASRRWNWARRHVAWKYFASYFPLRLIKTAD 10 HP LDPSRNYIAGFHPHGVLAVGAFANLCTESTGFSSIFPGIRPHLMMLTLWFRAPFFRDYIM * ..*** * ****...**...*...*...*...*.. CE LPADRNYIIGSHPHGMFSVGGFTAMSTNATGFEDKFPGIKSHIMTLNGQFYFPFRREFGI HP SAGLVTSEKESAAHILNRKGGGNLLGIIVGGAQEALDARPGSFTLLLRNRKGFVRLALTH * .. .*** ...* * *. .*. *** *** **. * * * * **. ** . ** 15 CE MLGGIEVSKESLEYTLTKCGKGRACAIVIGGASEALEAHPNKNTLTLINRRGFCKYALKF HP GAPLVPIFSFGENDLFDQIPNSSGSWLRYIQNRLQKIMGISLPLFHGRGVF-QYSFGLIP CE GADLVPMYNFGENDLYEQYENPKGSRLREVQEKIKDMFGLCPPLLRGRSLFNQYLIGLLP HP YRRPITTVVGKPIEVQKTLHPSEEEVNQLHQRYIKELCNLFEAHKLKFNIPADQHLEFC 20 **,*.*.**.***.** * .* .*...**..* ..*.**..* CE FRKPVTTVMGRPIRVTQTDEPTVEQIDELHAKYCDALYNLFEEYKHLHSIPPDTHLIFO

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. D25664) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02798> (SEQ ID Nos. 123, 133, and 143)

Determination of the whole base sequence of the cDNA

105

insert of clone HP02798 obtained from cDNA library of human line HT-1080 revealed the structure fibrosarcoma cell consisting of a 31-bp 5'-untranslated region, a 804-bp ORF. and a 301-bp 3'-untranslated region. The ORF codes for a protein consisting of 267 amino acid residues and there existed four putative transmembrane domains. Figure depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 29 kDa that was almost identical with the molecular weight of 30,778 predicted from the ORF. When expressed in COS7 cells, an expression product of about 26 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human DHHC-containing cysteinerich protein (GenBank Accession No. U90653). Table 29 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human DHHCcontaining cysteine-rich protein (DH). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 35.0% in the intermediate region of 100 amino acid residues. The positions of seven cysteines were conserved between the two proteins. The protein of the present invention also had the DHHC (Asp-His-His-Cys) sequence.

5

10

15

20

25

20

30

PCT/JP99/03929

106

Table 29

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. D79050) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

25 <HP10041> (SEQ ID Nos. 124, 134, and 144)

Determination of the whole base sequence of the cDNA insert of clone HP10041 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 12-bp 5'-untranslated region, a 321-bp ORF, and a 286-bp 3'-untranslated region. The ORF codes for a protein consisting of 106 amino acid residues and there existed one putative transmembrane domain. Figure 44 depicts

PCT/4P99 45929

107

the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 12 kDa that was almost identical with the molecular weight of 12,060 predicted from the ORF. When expressed in COS7 cells, an expression product of about 13 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis hypothetical protein K10B2.4 (GenBank Accession No. U28730). Table 30 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein K10B2.4 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 62.1% in the entire region.

20

15

5

10

Table 30

30

Furthermore, the search of the GenBank using the base

108

sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H20098) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10246> (SEQ ID Nos. 125, 135, and 145)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10246 obtained from cDNA library of human epidermoid carcinoma cell line KB revealed the structure consisting of a 110-bp 5'-untranslated region, a 675-bp ORF, and a 79-bp 3'-untranslated region. The ORF codes for a protein consisting of 224 amino acid residues and there existed five putative transmembrane domains. Figure 45 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 23 kDa that was somewhat smaller than the molecular weight of 25,244 predicted from the ORF. When expressed in COS7 cells, an expression product of about 21 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human putative transmembrane domain protein (GenBank Accession No. Y18007). Table 31 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human putative seven transmembrane domain protein (TM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that

PCT/JP99/03929

109

of the protein of the present invention, respectively. The both proteins shared a homology of 93.3% in the entire region.

5

Table 31

20

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA453931) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10392> (SEQ ID Nos. 126, 136, and 146)

30

25

Determination of the whole base sequence of the cDNA insert of clone HP10392 obtained from cDNA library of human osteosarcoma cell line U-2 OS revealed the structure

5

10

15

20

30

PCT/JP99/03929

110

consisting of a 24-bp 5'-untranslated region, a 777-bp ORF, and a 726-bp 3'-untranslated region. The ORF codes for a protein consisting of 258 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 46 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 34 kDa that was somewhat larger than the molecular weight of 29,623 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from leucine at position 49.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H15999) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention. In addition, partial identity with the hypothetical protein KIAA0384 (Accession No. AB002382) was observed, although the hypothetical protein had a different ORF.

25 <HP10489> (SEQ ID Nos. 127, 137, and 147)

Determination of the whole base sequence of the cDNA insert of clone HP10489 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 137-bp 5'-untranslated region, a 333-bp ORF, and a 189-bp 3'-untranslated region. The ORF codes for a protein consisting of 110 amino acid residues and there existed two putative transmembrane domains. Figure 47 depicts the

111

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 19 kDa that was somewhat larger than the molecular weight of 12,010 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA262162) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10519> (SEQ ID Nos. 128, 138, and 148)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10519 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 67-bp 5'-untranslated region, a 276-bp ORF, and a 367-bp 3'untranslated region. The ORF codes for a protein consisting of 91 amino acid residues and there existed one putative transmembrane domain. Figure 48 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method. of the present protein. translation resulted in formation of a translation product of 10 kDa that was almost identical with the molecular weight of 10,275 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W16639) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein

15

20

25

30

PCT/JP99/03929

112

of the present invention.

<HP10531> (SEQ ID Nos. 129, 139, and 149)

Determination of the whole base sequence of the cDNA insert of clone HP10531 obtained from cDNA library of human 5 osteosarcoma cell line Saos-2 revealed the consisting of a 55-bp 5'-untranslated region, a 1035-bp ORF, and a 1092-bp 3'-untranslated region. The ORF codes for a protein consisting of 344 amino acid residues and there 10 existed five putative transmembrane domains. Figure 49 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R50695) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10574> (SEQ ID Nos. 130, 140, and 150)

Determination of the whole base sequence of the cDNA insert of clone HP10574 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 210-bp 5'-untranslated region, a 1287-bp ORF, and a 1276-bp 3'-untranslated region. The ORF codes for a protein consisting of 428 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the intermediate region. Figure 50 depicts the hydrophobicity/hydrophilicity profile, obtained

5

10

15

20

PCT/JP99/03929

113

by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from serine at position 36.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Drosophila melanogaster GOLIATH protein (SWISS-PROT Accession No. Q06003). Table 32 shows the comparison between amino acid sequences of the human of the present invention (HP) and the melanogaster GOLIATH protein (DM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The intermediate region of 169 amino acids of the protein of the present invention shared a homology of 41.4% with the N-terminal region of the D. melanogaster GOLIATH protein.

PCT/JP99/03929

114

Table 32

HP MGPPPGAGVSCRGGCGFSRLLAWCFLLALSPQAPGSRGAEAVWTAYLNVSWRVPHTGVNR HP TVWELSEEGVYGQDSPLEPVAGVLVPPDGPGALNACNPHTNFTVPTVWGSTVQVSWLALI HP QRGGGCTFADKIHLAYERGASGAVIFNFPGTRNEVIPMSHPGAVDIVAIMIGNLKGTKIL 5 DM MQLEKMQIKGKTRNIAAVITYQNIGQDLS HP QSIQRGIQVTMVIEVGKK---HGPWVNHYSIFFVSVSFFIITAATVGYFIFYSARRLRNA . .*. *..*** **.*** .*.* * .**. * *... DM LTLDKGYNVTISIIEGRRGVRTISSLNRTSVLFVSIS-FIV-DDILCWLIFYYIQRFRYM 10 HP RAQSRKQRQLKADAKKAIGRLQLRTLKQGDKEIGPDGDSCAVCIELYKPNDLVRILTCNH DM QAKDQQSRNLCSVTKKAIMKIPTKTGKFSD-EKDLDSDCCAICIEAYKPTDTIRILPCKH HP IFHKTCVDPWLLEHRTCPMCKCDILKALGIEVDVEDGSVSLQVPVSNEISNSASSHEEDN 15 ***.*.******** * * * * DM EFHKNCIDPWLIEHRTCPMCKLDVLKFYGYVVGDQIYQTPSPQHTAPIASIEEVPVIVVA HP RSETASSGYASVQGTDEPPLEEHVQSTNESLQLVNHEANSVAVDVIPHVDNPTFEEDETP DM VPHGPQPLQASNMSSFAPSHYFQSSRSPSSSVQQQLAPLTYQPHPQQAASERGRRNS 20 HP NQETAVREIKS DM APATMPHAITASHQVTDV

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA155685) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

INDUSTRIAL APPLICABILITY

115

The present invention provides human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors for these DNAs as well as eucaryotic cells expressing these DNAs. All of the proteins of the present invention are secreted or exist in the cell membrane. so that they are considered to be proteins controlling the proliferation and/or the differentiation of the cells. Accordingly, the proteins of the present invention can be employed as pharmaceuticals such as carcinostatic agents which act to control the proliferation and/or differentiation of the cells, or as antigens for preparing antibodies against these proteins. The DNAs of the present invention can be utilized as probes for the diagnosis and gene sources for the gene therapy. Furthermore, the DNAs can be utilized for large-scale expression of these proteins. Cells into which these genes are introduced to express these proteins, can be utilized for detection of the corresponding receptors and ligands, screening of novel lowmolecular pharmaceuticals, and so on.

5

10

15

20

25

30

The present invention also provides genes corresponding to polynucleotide sequences disclosed "Corresponding genes" are the regions of the genome that are transcribed to produce the mRNAs from which CDNA polynucleotide sequences are derived and may include contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed Such methods include the preparation of probes or herein.

116

primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. An "isolated gene" is a gene that has been separated from the adjacent coding sequences, if any, present in the genome of the organism from which the gene was isolated.

5

10

15

20

25

30

Organisms that have enhanced, reduced, or modified expression of the gene(s) corresponding to the polynucleotide sequences disclosed herein are provided. The desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave the mRNA transcribed from the gene (Albert and Morris, 1994, Trends Pharmacol. Sci. 15(7): Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 11-22; and Hampel, 1998, Prog. Nucleic Acid Res. Mol. Biol. 58: 1-39; which are incorporated by reference Transgenic animals that have multiple copies of the gene(s) corresponding to the polynucleotide sequences disclosed herein, preferably produced by transformation of cells with genetic constructs that are stably maintained within the transformed cells and their progeny, are provided. Transgenic animals that have modified genetic control regions that increase or reduce gene expression levels, or that change temporal or spatial patterns of gene expression, are also provided (see European Patent No. 0 649 464 Bl, incorporated by reference herein). In addition, organisms are provided in which the gene(s) corresponding to the polynucleotide disclosed sequences herein have partially or completely inactivated, through insertion of extraneous sequences into the corresponding gene(s) or through deletion of all or part of the corresponding gene(s). Partial or complete gene inactivation can be accomplished

5

10

15

20

25

30

117

through insertion, preferably followed by imprecise excision, of transposable elements (Plasterk, 1992, Bioessays 14(9): 629-633; Zwaal et al., 1993, Proc. Natl. Acad. Sci. USA 90(16): 7431-7435; Clark et al., 1994, Proc. Natl. Acad. Sci. USA 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination, preferably detected by positive/negative genetic selection strategies (Mansour et al., 1988, Nature 336: 348-352; U.S. Patent Nos. 5,464,764; 5,487,992; 5,627,059; 5,631,153: 5,614, 396; 5,616,491; and 5,679,523; all of which are incorporated by reference herein). These organisms with altered gene expression are preferably eukaryotes and more preferably are mammals. Such organisms are useful for the development of non-human models for the study of disorders involving the corresponding gene(s), and for the development of assay systems for the identification of molecules that interact with the protein product(s) of the corresponding gene(s). Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. intracellular and transmembrane domains of proteins of the invention can be identified in accordance with known techniques for determination of such domains from sequence information.

Proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at least 25%(more preferably at least 50%, and most preferably at least 75%) of the length of a disclosed protein and have at least 60% sequence identity (more

118

preferably, at least 75% identity; most preferably at least 90% or 95% identity) with that disclosed protein, where sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that shares at least 75% sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.

5

10

15

20

25

30

disclosed polynucleotides Species homologs of the and proteins are also provided by the present invention. As herein, "species homologue" a is а protein polynucleotide with a different species of origin from that of a given protein or polynucleotide, but with significant sequence similarity to the given protein or polynucleotide, as determined by those of skill in the art. homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous, or related to that encoded by the polynucleotides.

The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.

The present invention also includes polynucleotides

PCT/JP99/03929

119

capable of hybridizing under reduced stringency conditions, more preferably stringent conditions, and most preferably highly stringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in the table 33 below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

10

5

120

Table 33

	,		
Polynucleotide	Hybrid		Wash
Hybrid	_	and Buffer [†]	Temperature
	(bp) [‡]		and Buffer†
DNA : DNA	≥50	1	65°C; 0.3×SSC
		42°C; 1×SSC,50% formamide	
DNA : DNA	< 50	T _B *; 1×SSC	T _B *; 1×SSC
DNA: RNA	≥50	67°C; 1×SSC -or-	67°C; 0.3×SSC
li.		45℃; 1×SSC,50% formamide	
DNA: RNA	<50	T _D *; 1×SSC	T _D *; 1×SSC
RNA: RNA	≥50	70°C; 1×SSC -or-	70°C; 0.3×SSC
•		50°C; 1×SSC,50% formamide	
RNA: RNA	<50	T _F *; 1×SSC	T _F *; 1×SSC
DNA : DNA	≥50	65°C; 4×SSC -or-	65°C; 1×SSC
		42°C; 4×SSC,50% formamide	
DNA : DNA	<50	T _H *; 4×SSC	T _H *; 4×SSC
DNA: RNA	≥50	67°C; 4×SSC -or-	67°C; 1×SSC
		45°C; 4×SSC,50% formamide	
DNA: RNA	< 50	T _J *; 4×SSC	T _J *; 4×SSC
RNA: RNA	≥50	70°C; 4×SSC -or-	67°C; 1×SSC
		50°C; 4×SSC,50% formamide	
RNA: RNA	<50	T _L *; 2×SSC	T _L *; 2×SSC
DNA : DNA	≥50	50°C; 4×SSC -or-	50°C; 2×SSC
		40°C; 6×SSC,50% formamide	
DNA : DNA	<50	T _N *; 6×SSC	T _N *; 6×SSC
DNA : RNA	≥50	55°C; 4×SSC -or-	55°C; 2×SSC
		42°C; 6×SSC,50% formamide	
DNA: RNA	<50		T _P *; 6×SSC
RNA: RNA	≥50		60°C; 2×SSC
•		45°C; 6×SSC,50% formamide	
RNA: RNA	<50		T _R *; 4×SSC
	DNA: DNA DNA: RNA DNA: RNA DNA: RNA RNA: RNA RNA: RNA DNA: DNA DNA: DNA DNA: RNA DNA: RNA DNA: RNA DNA: RNA DNA: RNA RNA: RNA DNA: RNA RNA: RNA DNA: RNA DNA: RNA DNA: RNA DNA: RNA DNA: RNA	Hybrid Length (bp)‡ DNA : DNA ≥50 DNA : DNA ≥50 DNA : RNA ≥50 DNA : RNA ≥50 RNA : RNA ≥50 RNA : RNA ≥50 DNA : DNA ≥50 DNA : RNA ≥50 DNA : RNA ≥50 RNA : RNA ≥50 RNA : RNA ≥50 DNA : DNA ≥50 DNA : DNA ≥50 DNA : RNA ≥50 RNA : RNA ≥50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

‡: The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.

 \dagger : SSPE (1×SSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH7.4) can be substituted for SSC (1×SSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.

*T_B - T_R: The hybridization temperature for hybrids anticipated to be less than

5

10

5

10

15

20

25

121

50 base pairs in length should be 5-10°C less than the melting temperature (T_m) of the hybrid, where T_m is determined according to the following equations. For hybrids less than 18 base pairs in length, T_m (°C)=2(#of A + T bases) + 4(# of G + C bases). For hybrids between 18 and 49 base pairs in length, T_m (°C)=81.5 + 16.6(log₁₀[Na*]) + 0.41 (%G+C) - (600/N), where N is the number of bases in the hybrid, and [Na*] is the concentration of sodium ions in the hybridization buffer ([Na*] for 1×SSC=0.165M).

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.

Preferably, each such hybridizing polynucleotide has a length that is at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of the present invention to hybridizes, and has at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with the polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

5

10

PCT/JP99/03929

122

CLAIMS

- 1. A protein comprising any one of an amino acid sequence selected from the group consisting of SEQ ID Nos. 1 to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130.
- 2. An isolated DNA coding for the protein according to Claim 1.
- 3. An isolated cDNA comprising any one of a base sequence selected from the group consisting of SEQ ID Nos. 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140.
- 4. The cDNA according to Claim 3 consisting of any one of a base sequence selected from the group consisting of SEQ ID Nos. 21 to 30, 51 to 60, 81 to 90, 111 to 120, and 141 to 150.
- 5. An expression vector that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 by in vitro translation or in eucaryotic cells.
- 6. A transformed eucaryotic cell that is capable of expressing the DNA according to any one of Claim 2 to Claim 2 and of producing the protein according to Claim 1.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)				
(51) International Patent Classification 7: C12N 15/12, C07K 14/705, C12N 5/10 A	I			
	(43) International Publication Date: 3 February 2000 (03.02.00)			
(21) International Application Number: PCT/JP99/0 (22) International Filing Date: 22 July 1999 (22.0)	IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi,			
(30) Priority Data: 10/208820 24 July 1998 (24.07.98) 10/224105 7 August 1998 (07.08.98) 10/238116 25 August 1998 (25.08.98) 10/254736 9 September 1998 (09.09.98) 10/275505 29 September 1998 (29.09.98) (71) Applicants (for all designated States except US): SAGCHEMICAL RESEARCH CENTER [JP/JP]; Nishi-Ohnuma 4-chome, Sagamihara-shi, Kana 229-0012 (JP). PROTEGENE INC. [JP/JP]; 2-2.0012 (JP).	4-1, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI gawa Datent (BF, BJ, CF, CG, CL, CM, GA, GN, GW, MI, MR			
(72) Inventors; and (75) Inventors/Applicants (for US only); KATO, Seishi [JF 3-46-50, Wakamatsu, Sagabahara-shi, Kana 229-0014 (JP) KIMURA, Tomoko [JP/JP]; 302, 4-Nishiikuta, Tama ku, Kawasaki-shi, Kanagawa 214-(JP).	gawa Before the expiration of the time limit for amending the claims			
	(88) Date of publication of the international search report: 4 May 2000 (04.05.00)			

(54) Title: HUMAN PROTEINS HAVING HYDROPHOBIC DOMAINS AND DNAS ENCODING THESE PROTEINS

(57) Abstract

The present invention provides human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors for these DNAs as well as eucaryotic cells expressing these DNAs.

F1g. 2

PCT/JP99/03929

WO 00/05367

U9/145247 PCT/JP99/03929

6/50

WO 00/05367

Fig. 10

18. I

FIG. 12

PCT/JP99/03929

WO 00/05367

PCT/JP99/03929

-lg.17

1. 1000000

Fig. 18

Fig. ZI

Fig.22

Fig. 23

add frame

FIg. 24

Ig. 25

Fig. 26

Fig.27

PCT/JP99/03929

Fig. 28

Fig. 29

Fig. 30

Fig. 31

Fig.32

WO 00/05367

PCT/JP99/03929

Fig. 34

Fig. 35

Fig. 36

WO 00/05367

Fig. 38

WO 00/05367

39/50

PCT/JP99/03929

Fig. 40

Fig. 41

Fig.42

Fig. 43

⊢lg. 44

PCT/JP99/03929

WO 00/05367

Fig. 48

0 7 ∐

Fig. 50

Atty Docket No.: GIN-6718CP5US

DECLARATION, PETITION AND POWER OF ATTORNEY FOR PATENT APPLICATION

(Check one):

	Decl	aration Submitted with Initial Filing
×	Decl	aration Submitted after Initial Filing
As a b	elow	named inventor, I hereby declare that:
My re	sidenc	e, post office address and citizenship are as stated below next to my name,
origina	al, firs	m the original, first and sole inventor (if only one name is listed below) or an t and joint inventor (if plural names are listed below) of the subject matter which a patent is sought on the invention entitled:
		HUMAN PROTEINS HAVING HYDROPHOBIC DOMAINS AND DNAs ENCODING THESE PROTEINS
the spe	ecifica	tion of which (check one):
	is att	ached hereto.
	OI	3
×	was i	filed on 5 January 2001 as U.S. National Application Serial No. 09/743,247
	(U.S.	National Filing of PCT/JP99/03929 filed on 22 July 1999).
		and was amended by PCT Article 19 Amendment on(if applicable), and was amended by PCT Article 34 Amendment on
·		(if applicable).

I acknowledge the duty to disclose to the Office all information known to me to be material to patentability as defined in Title 37, Code of Federal Regulations, §1.56.

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

PRIORITY CLAIM

(C)	heck	cone):
		no such applications have been filed.
	×	such applications have been filed as follows
1)	FO	REIGN PRIORITY CLAIM: I hereby claim for
Sta	tes (Code, §119(a)-(d) or §365(b) of any foreign appl

1) FOREIGN PRIORITY CLAIM: I hereby claim foreign priority benefits under Title 35, United
States Code, §119(a)-(d) or §365(b) of any foreign application(s) for patent or inventor's certificate or
§365(a) of any PCT international application which designated at least one country other than the
United States of America, listed below and have also identified below, by checking the box, any
foreign application for patent or inventor's certificate or any PCT international application having a
filing date before that of the application on which priority is claimed.
- II

Country	Foreign Filing	Priority	Certifi	ied Copy
	Date	Not Claimed		ached
	(dd/mm/yyyy)		Yes	No
JP	29/09/1998			×
JP	09/09/1998			×
JP	25/08/1998			×
JP	07/08/1998			×
JP	24/07/1998			×
	JP JP JP	Date (dd/mm/yyyy) JP 29/09/1998 JP 09/09/1998 JP 25/08/1998 JP 07/08/1998	Date (dd/mm/yyyy) JP 29/09/1998 □ JP 09/09/1998 □ JP 25/08/1998 □ JP 07/08/1998 □	Date (dd/mm/yyyy) Not Claimed Yes Att. Yes JP 29/09/1998 □ □ JP 09/09/1998 □ □ JP 25/08/1998 □ □ JP 07/08/1998 □ □

	Additional foreign application	numbers are listed on a supplementa	I priority sheet attached hereto.
--	--------------------------------	-------------------------------------	-----------------------------------

2) PROVISIONAL PRIORITY CLAIM: I hereby claim the benefit under Title 35, United States Code §119(e) of any United States provisional application(s) listed below.

Provisional Application Number(s)	Filing Date (dd/mm/yyyy)

☐ Additional provisional application numbers are listed on a supplemental priority sheet attached hereto.

3) <u>U.S./PCT PRIORITY CLAIM</u>: I hereby claim the benefit under Title 35, United States Code, §120 of any United States application or §365(c) of any PCT international application designating the United States of America, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT international application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose information which is known to me to be material to patentability as defined in Title 37, Code of Federal Regulations, §1.56 which became available between the filing date of the prior application and the national or PCT international filing date of this application.

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attorneys and/or agents to prosecute this application and transact all business in the Patent and Trademark Office connected therewith.

Peter C. Lauro DeAnn F. Smith David J. Rikkers Chi Suk Kim Maria Laccotripe Zacharakis Debra J. Milasincic David R. Burns Sean D. Detweiler Peter S. Stecher Adam M. Goodmann Cynthia L. Kanik	Reg. No. 32,360 Reg. No. 36,683 Reg. No. 43,882 Reg. No. 42,728 Limited Recognition Under 37 C.F.R. § 10.9(b) Reg. No. 46,931 Reg. No. 46,590 Reg. No. 42,482 Reg. No. 47,259 Reg. No. 43,640 Reg. No. 37,320
Reg. No. 19,162 Reg. No. 24,798 Reg. No. 29,325 Reg. No. 31,503 Reg. No. 34,858 Reg. No. 33,505 Reg. No. 36,207 Reg. No. 38,220 Reg. No. 38,872 Reg. No. 17,425 Reg. No. 35,470 Reg. No. 41,710 Reg. No. 43,270 Reg. No. 36,397	Reg. No. 24,798 DeAnn F. Smith Reg. No. 29,325 David J. Rikkers Reg. No. 31,503 Chi Suk Kim Reg. No. 34,858 Maria Laccotripe Zacharakis Reg. No. 33,505 Debra J. Milasincic Reg. No. 38,220 David R. Burns Reg. No. 38,872 Sean D. Detweiler Reg. No. 17,425 Peter S. Stecher Reg. No. 35,470 Adam M. Goodmann Reg. No. 41,710 Cynthia L. Kanik Reg. No. 43,270
	DeAnn F. Smith David J. Rikkers Chi Suk Kim Maria Laccotripe Zacharakis Debra J. Milasincic David R. Burns Sean D. Detweiler Peter S. Stecher Adam M. Goodmann

of LAHIVE & COCKFIELD, LLP, 28 State Street, Boston, Massachusetts 02109, United States of America, and

Ellen J. Kapinos Barbara A. Gyure

Reg. No. 32,245 Reg. No. 34,614

M. Andrea Ryan Elizabeth A. Hurley Reg. No. 28,469 Reg. No. 41,859

of GENETICS INSTITUTE, INC., 87 CambridgePark Drive, Cambridge, Massachusetts 02140, United States of America,

Egon E. Berg Gale F. Matthews

Reg. No. 21,117_ Reg. No. 32,269

Elizabeth M. Barnhard

Reg. No. 31,088

Darryl L. Webster

Reg. No. 34,276

Alan M. Gordon

Reg. No. 30,637

of GENETICS INSTITUTE, INC., One Campus Drive, Parsippany, New Jersey 07054, United States of America, and

Rebecca R. Barrett Arnold S. Milowsky

Reg. No. 35,152 Reg. No. 35,288 Steven R. Eck

Reg. No. 36,126

George Tarnowski

Michael R. Nagy

Reg. No. 27,472

Reg. No. 33,432

of GENETICS INSTITUTE, INC., P.O. Box 8299, Philadelphia, Pennsylvania 19101, United States of America.

Send Correspondence to: Amy E. Mandragouras, Esq., Lahive & Cockfield, LLP, 28 State Street, Boston, Massachusetts 02109, United States of America

Direct Telephone Calls to: Amy E. Mandragouras, Esq., (617) 227-7400, Lahive & Cockfield, LLP, 28 State Street, Boston, Massachusetts 02109, United States of America

Wherefore, I petition that letters patent be granted to me for the invention or discovery described and claimed in the attached specification and claims, and hereby subscribe my name to said specification and claims and to the foregoing declaration, power of attorney, and this petition.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Full name of sole or first inventor	
Seishi KATO	
Inventor's signature Date	29. Mar. 2001
Residence	101/
3-46-50, Wakamatsu, Sagamihara-shi, Kanagawa 229-0014, Japan	$() \downarrow \chi$
Citizenship	
Japan	ť
Post Office Address (if different)	

	Full name of sole or fir	st inventor		-
	Tomoko KIMURA	- Andrews - Landers - Land		
$\gamma (\lambda)$	Inventor's signature	Tomoko	Kimura	Date 27, Apr. 200/
1	Residence		Mary and the train of the same	1011
	715, 2-9-1, Kohoku, T	'suchiura-shi, Ibara	ki 300-0032, Japan	
	Citizenship			
	Japan			
	Post Office Address (if	different)		

U.S. Parent Application Number	PCT Parent Number	Parent Filing Date (dd/mm/yyyy)	Parent Patent Number (if applicable)
	PCT/JP99/03929	22 July 1999 (22.07.99)	

 \square Additional U.S. or PCT international application numbers are listed on a supplemental priority sheet attached hereto.

PCTO9

ENTERED

RAW SEQUENCE LISTING

PATENT APPLICATION: US/09/743,247A

DATE: 11/19/2002 PG
TIME: 14:43:12

rinn, id.

Input Set : A:\sequence listing.txt

Output Set: N:\CRF4\11192002\I743247A.raw

```
2 <110> APPLICANT: Sagami Chemical Research Center; Protegene Inc.
W-->
     3 <120> TITLE OF INVENTION: Human Proteins Having Hydrophobic Domains And DNAs Encoding
These
W--> 4
              Proteins
W--> 5 <130> FILE REFERENCE: 1997.13300
      6 <140> CURRENT APPLICATION NUMBER: US/09/743,247A
      7 <141> CURRENT FILING DATE: 1999-07-22
      8 <150> PRIOR APPLICATION NUMBER: JP 10-208820
      9 <151> PRIOR FILING DATE: 1998-07-24
     10 <150> PRIOR APPLICATION NUMBER: JP 10-224105
     11 <151> PRIOR FILING DATE: 1998-08-07
     12 <150> PRIOR APPLICATION NUMBER: JP 10-238116
     13 <151> PRIOR FILING DATE: 1998-08-25
     14 <150> PRIOR APPLICATION NUMBER: JP 10-254736
     15 <151> PRIOR FILING DATE: 1998-09-09
     16 <150> PRIOR APPLICATION NUMBER: JP 10-275505
     17 <151> PRIOR FILING DATE: 1998-09-29
W--> 18 <160> NUMBER OF SEQ ID: 150
     19 <170> SOFTWARE: Windows 95 (Word 98)
W--> 20 <210> SEQ ID NO: 1
     21 <211> LENGTH: 125
     22 <212> TYPE: PRT
     23 <213> ORGANISM: Homo sapiens
W--> 24 <400> SEQUENCE: 1
     25 Met Ala Lys Tyr Leu Ala Gln Ile Ile Val Met Gly Val Gln Val Val
     26 1
                                             10
     27 Gly Arg Ala Phe Ala Arg Ala Leu Arg Gln Glu Phe Ala Ala Ser Arg
                     20
                                         25
     29 Ala Ala Ala Asp Ala Arg Gly Arg Ala Gly His Arg Ser Ala Ala Ala
                35
                                     40
                                                         4.5
     31 Ser Asn Leu Ser Gly Leu Ser Leu Gln Glu Ala Gln Gln Ile Leu Asn
            50.
                                 55
                                                     60
     33 Val Ser Lys Leu Ser Pro Glu Glu Val Gln Lys Asn Tyr Glu His Leu
                             70
     35 Phe Lys Val Asn Asp Lys Ser Val Gly Gly Ser Phe Tyr Leu Gln Ser
                         8.5
                                             90
    37 Lys Val Val Arg Ala Lys Glu Arg Leu Asp Glu Glu Leu Lys Ile Gln
                                        105
    39 Ala Gln Glu Asp Arg Glu Lys Gly Gln Met Pro His Thr
               115
                                    120
    41 <210> SEQ ID NO: 2
    42 <211> LENGTH: 131
    43 <212> TYPE: PRT
    44 <213> ORGANISM: Homo sapiens
```

PATENT APPLICATION: US/09/743,247A

DATE: 11/19/2002 TIME: 14:43:12

Input Set : A:\sequence listing.txt
Output Set: N:\CRF4\11192002\1743247A.raw

```
W--> 45 <400> SEQUENCE: 2
    46 Met Ala Gly Ile Lys Ala Leu Ile Ser Leu Ser Phe Gly Gly Ala Ile
                     5
    48 Gly Leu Met Phe Leu Met Leu Gly Cys Ala Leu Pro Ile Tyr Asn Lys
    49
                  20
                                     25
    50 Tyr Trp Pro Leu Phe Val Leu Phe Phe Tyr Ile Leu Ser Pro Ile Pro
              35
                                  40
    52 Tyr Cys Ile Ala Arg Arg Leu Val Asp Asp Thr Asp Ala Met Ser Asn
    53 50
                              55
                                                 60
    54 Ala Cys Lys Glu Leu Ala Ile Phe Leu Thr Thr Gly Ile Val Val Ser
                          70
                                             7.5
    56 Ala Phe Gly Leu Pro Ile Val Phe Ala Arg Ala His Leu Ile Glu Trp
                      85
                                         90
    58 Gly Ala Cys Ala Leu Val Leu Thr Gly Asn Thr Val Ile Phe Ala Thr
    59 100
                                 105
                                                    110
    60 Ile Leu Gly Phe Phe Leu Val Phe Gly Ser Asn Asp Asp Phe Ser Trp
                              120
    62 Gln Gln Trp
    63 130
    64 <210> SEQ ID NO: 3
    65 <211> LENGTH: 242
    66 <212> TYPE: PRT
    67 <213> ORGANISM: Homo sapiens
  -> 68 <400> SEQUENCE: 3
    69 Met Ala Lys His Glu Gln Ile Leu Val Leu Asp Pro Pro Thr Asp Leu
    70 1
                        5
                                         10
    71 Lys Phe Lys Gly Pro Phe Thr Asp Val Val Thr Thr Asn Leu Lys Leu
                                     25
    73 Arg Asn Pro Ser Asp Arg Lys Val Cys Phe Lys Val Lys Thr Thr Ala
    74 35
    75 Pro Arg Arg Tyr Cys Val Arg Pro Asn Ser Gly Ile Ile Asp Pro Gly
                             55
    77 Ser Thr Val Thr Val Ser Val Met Leu Gln Pro Phe Asp Tyr Asp Pro
                         .70
    79 Asn Glu Lys Ser Lys His Lys Phe Met Val Gln Thr Ile Phe Ala Pro
                      8.5
                                         90
    81 Pro Asn Thr Ser Asp Met Glu Ala Val Trp Lys Glu Ala Lys Pro Asp
    82 100
                                 105
    83 Glu Leu Met Asp Ser Lys Leu Arg Cys Val Phe Glu Met Pro Asn Glu
    84 115
                                 120
                                         . 125
    85 Asn Asp Lys Leu Asn Asp Met Glu Pro Ser Lys Ala Val Pro Leu Asn
    86 130
                            135
                                                140
    87 Ala Ser Lys Gln Asp Gly Pro Met Pro Lys Pro His Ser Val Ser Leu
                         150
                                           .155
    89 Asn Asp Thr Glu Thr Arg Lys Leu Met Glu Glu Cys Lys Arg Leu Gln
                     165
                                        170
    91 Gly Glu Met Met Lys Leu Ser Glu Glu Asn Arg His Leu Arg Asp Glu
    92 180
                                 185
    93 Gly Leu Arg Leu Arg Lys Val Ala His Ser Asp Lys Pro Gly Ser Thr
```

PATENT APPLICATION: US/09/743,247A

DATE: 11/19/2002 TIME: 14:43:12

Input Set : A:\sequence listing.txt
Output Set: N:\CRF4\11192002\I743247A.raw

```
195
                                200
    95 Ser Thr Ala Ser Phe Arg Asp Asn Val Thr Ser Pro Leu Pro Ser Leu
    96 210 215
    97 Leu Val Val Ile Ala Ala Ile Phe Ile Gly Phe Phe Leu Gly Lys Phe
    98 225
            230
                                            235
    99 Ile Leu
    100 <210> SEQ ID NO: 4
    101 <211> LENGTH: 264
    102 <212> TYPE: PRT
    103 <213> ORGANISM: Homo sapiens
W--> 104 <400> SEQUENCE: 4
    105 Met Phe Val Pro Cys Gly Glu Ser Ala Pro Asp Leu Ala Gly Phe Thr
    106 1
                        5
    107 Leu Leu Met Pro Ala Val Ser Val Gly Asn Val Gly Gln Leu Ala Met
    108 20
                                      25
    109 Asp Leu Ile Ile Ser Thr Leu Asn Met Ser Lys Ile Gly Tyr Phe Tyr
    110 35
                                  40
    111 Thr Asp Cys Leu Val Pro Met Val Gly Asn Asn Pro Tyr Ala Thr Thr
                              5.5
    113 Glu Gly Asn Ser Thr Glu Leu Ser Ile Asn Ala Glu Val Tyr Ser Leu
                          70
                                            75
    115 Pro Ser Arg Lys Leu Val Ala Leu Gln Leu Arg Ser Ile Phe Ile Lys
                      85
                                         90
    117 Tyr Lys Ser Lys Pro Phe Cys Glu Lys Leu Leu Ser Trp Val Lys Ser
    118 100
                                    105
    119 Ser Gly Cys Ala Arg Val Ile Val Leu Ser Ser Ser His Ser Tyr Gln
    120 115
                       120
                                           125
    121 Arg Asn Asp Leu Gln Leu Arg Ser Thr Pro Phe Arg Tyr Leu Leu Thr
                             1.35
                                               140
    123 Pro Ser Met Gln Lys Ser Val Gln Asn Lys Ile Lys Ser Leu Asn Trp
                          150
                                            155
    125 Glu Glu Met Glu Lys Ser Arg Cys Ile Pro Glu Ile Asp Asp Ser Glu
                      165
                                         170
    127 Phe Cys Ile Arg Ile Pro Gly Gly Gly Ile Thr Lys Thr Leu Tyr Asp
                  180
                                     185
    129 Glu Ser Cys Ser Lys Glu Ile Gln Met Ala Val Leu Leu Lys Phe Val
    130 195
                                 200
    131 Ser Glu Gly Asp Asn Ile Pro Asp Ala Leu Gly Leu Val Glu Tyr Leu
                              215
                                                220
    133 Asn Glu Trp Leu Gln Ile Leu Lys Pro Leu Ser Asp Pro Thr Val
                         230
                                            235
    135 Ser Ala Ser Arg Trp Lys Ile Pro Ser Ser Trp Arg Leu Leu Phe Gly
                     245
    137 Ser Gly Leu Pro Pro Ala Leu Phe
    138
                  260
    139 <210> SEQ ID NO: 5
    140 <211> LENGTH: 112
    141 <212> TYPE: PRT
    142 <213> ORGANISM: Homo sapiens
```

DATE: 11/19/2002 PATENT APPLICATION: US/09/743,247A TIME: 14:43:12

Input Set : A:\sequence listing.txt Output Set: N:\CRF4\11192002\I743247A.raw

```
W--> 143 <400> SEQUENCE: 5
    144 Met Gly Ser Arg Leu Ser Gln Pro Phe Glu Ser Tyr Ile Thr Ala Pro
    145 1
                      5
                                         10
    146 Pro Gly Thr Ala Ala Ala Pro Ala Lys Pro Ala Pro Pro Ala Thr Pro
    147 20
                                     25
    148 Gly Ala Pro Thr Ser Pro Ala Glu His Arg Leu Leu Lys Thr Cys Trp
    149 35
                                 40
    150 Ser Cys Arg Val Leu Ser Gly Leu Gly Leu Met Gly Ala Gly Gly Tyr
                             55
    151 50
                                                60
    152 Val Tyr Trp Val Ala Arg Lys Pro Met Lys Met Gly Tyr Pro Pro Ser
                           70
    154 Pro Trp Thr Ile Thr Gln Met Val Ile Gly Leu Ser Ile Ala Thr Trp
                                         90
                       85
    156 Gly Ile Val Val Met Ala Asp Pro Lys Gly Lys Ala Tyr Arg Val Val
           100
    157
                              105
    158 <210> SEQ ID NO: 6
    159 <211> LENGTH: 146
    160 <212> TYPE: PRT
    161 <213> ORGANISM: Homo sapiens
W--> 162 <400> SEQUENCE: 6
    163 Met Leu Ala Gly Ala Gly Arg Pro Gly Leu Pro Gln Gly Arg His Leu
    165 Cys Trp Leu Leu Cys Ala Phe Thr Leu Lys Leu Cys Gln Ala Glu Ala
    166 20
    167 Pro Val Glu Glu Glu Lys Leu Ser Ala Ser Thr Ser Asn Leu Pro Cys
    168 35
                                 40
    169 Trp Leu Val Glu Glu Phe Val Val Ala Glu Glu Cys Ser Pro Cys Ser
    170 50
                             55
                                                60
    171 Asn Phe Arg Ala Lys Thr Thr Pro Glu Cys Gly Pro Thr Gly Tyr Val
                          - 70
                                            7.5
    173 Glu Lys Ile Thr Cys Ser Ser Ser Lys Arg Asn Glu Phe Lys Ser Cys
                                         90
    175 Arg Ser Ala Leu Met Glu Gln Arg Leu Phe Trp Lys Phe Glu Gly Ala
    176 100
                                     105
    177 Val Val Cys Val Ala Leu Ile Phe Ala Cys Leu Val Ile Ile Arg Gln
    178 115
                                 120
    179 Arg Gln Leu Asp Arg Lys Ala Leu Glu Lys Val Arg Lys Gln Ile Glu
    180 130
                           135
                                                140
    181 Ser Ile
    182 145
    183 <210> SEQ ID NO: 7
    184 <211> LENGTH: 344
    185 <212> TYPE: PRT
    186 <213> ORGANISM: Homo sapiens
W--> 187 <400> SEQUENCE: 7
    188 Met Asp Phe Leu Val Leu Phe Leu Phe Tyr Leu Ala Ser Val Leu Met
    189 1 5
                                10
    190 Gly Leu Val Leu Ile Cys Val Cys Ser Lys Thr His Ser Leu Lys Gly
                  20
                                     25
```

DATE: 11/19/2002 PATENT APPLICATION: US/09/743,247A TIME: 14:43:12

Input Set : A:\sequence listing.txt

Output Set: N:\CRF4\11192002\I743247A.raw

```
192 Leu Ala Arg Gly Gly Ala Gln Ile Phe Ser Cys Ile Ile Pro Glu Cys
  193 35
                                  40
  194 Leu Gln Arg Ala Val His Gly Leu Leu His Tyr Leu Phe His Thr Arg
                             55
  196 Asn His Thr Phe Ile Val Leu His Leu Val Leu Gln Gly Met Val Tyr
  197 65
                         70
  198 Thr Glu Tyr Thr Trp Glu Val Phe Gly Tyr Cys Gln Glu Leu Glu Leu
                      85
                                         90
  200 Ser Leu His Tyr Leu Leu Leu Pro Tyr Leu Leu Gly Val Asn Leu
                 100
                                    105
  202 Phe Phe Phe Thr Leu Thr Cys Gly Thr Asn Pro Gly Ile Ile Thr Lys
       115
                                 120
                                                    125
  204 Ala Asn Glu Leu Leu Phe Leu His Val Tyr Glu Phe Asp Glu Val Met
  205 130
                             135
  206 Phe Pro Lys Asn Val Arg Cys Ser Thr Cys Asp Leu Arg Lys Pro Ala
                         150
  208 Arg Ser Lys His Cys Ser Val Cys Asn Trp Cys Val His Arg Phe Asp
                  165
                                     170
  210 His His Cys Val Trp Val Asn Asn Cys Ile Gly Ala Trp Asn Ile Arg
                180
                                  185
                                                       190
  212 Tyr Phe Leu Ile Tyr Val Leu Thr Leu Thr Ala Ser Ala Ala Thr Val
  213 195
                                 200
  214 Ala Ile Val Ser Thr Thr Phe Leu Val His Leu Val Val Met Ser Asp
                            215
  216 Leu Tyr Gln Glu Thr Tyr Ile Asp Asp Leu Gly His Leu His Val Met
  217 225
                     230
                                           235
  218 Asp Thr Val Phe Leu Ile Gln Tyr Leu Phe Leu Thr Phe Pro Arg Ile
                     245
                                       250
  220 Val Phe Met Leu Gly Phe Val Val Leu Ser Phe Leu Leu Gly Gly
                                     265
  222 Tyr Leu Leu Phe Val Leu Tyr Leu Ala Ala Thr Asn Gln Thr Thr Asn
  223
                                 280
                                                    285
  224 Glu Trp Tyr Arg Gly Asp Trp Ala Trp Cys Gln Arg Cys Pro Leu Val
                             295
  226 Ala Trp Pro Pro Ser Ala Glu Pro Gln Val His Arg Asn Ile His Ser
                         310
                                            315
  228 His Gly Leu Arg Ser Asn Leu Gln Glu Ile Phe Leu Pro Ala Phe Pro
                     325
                                        330
  230 Cys His Glu Arg Lys Lys Gln Glu
  232 <210> SEQ ID NO: 8
  233 <211> LENGTH: 97
  234 <212> TYPE: PRT
  235 <213> ORGANISM: Homo sapiens
-> 236 <400> SEQUENCE: 8
  237 Met Thr Lys Lys Lys Arg Glu Asn Leu Gly Val Ala Leu Glu Ile Asp
  238 1
                   5
                                         1.0
  239 Gly Leu Glu Glu Lys Leu Ser Gln Cys Arg Arg Asp Leu Glu Ala Val
           20
                                     25
```

RAW SEQUENCE LISTING ERROR SUMMARY PATENT APPLICATION: US/09/743,247A

DATE: 11/19/2002 TIME: 14:43:13

Input Set : A:\sequence listing.txt

Output Set: N:\CRF4\11192002\I743247A.raw

Please Note:

Use of n and/or Xaa have been detected in the Sequence Listing. Please review the Sequence Listing to ensure that a corresponding explanation is presented in the <220> to <223> fields of each sequence which presents at least one n or Xaa.

Seq#:93; Xaa Pos. 49
Seq#:113; Xaa Pos. 49

VERIFICATION SUMMARY

DATE: 11/19/2002 PATENT APPLICATION: US/09/743,247A TIME: 14:43:13

Input Set : A:\sequence listing.txt Output Set: N:\CRF4\11192002\I743247A.raw

```
L:3 M:283 W: Missing Blank Line separator, <120> field identifier
L:5 M:283 W: Missing Blank Line separator, <130> field identifier
L:6 M:283 W: Missing Blank Line separator, <140> field identifier
L:18 M:283 W: Missing Blank Line separator, <160> field identifier
L:20 M:283 W: Missing Blank Line separator, <210> field identifier
L:24 M:283 W: Missing Blank Line separator, <400> field identifier
L:45 \ M:283 \ W: Missing Blank Line separator, <400> field identifier
L:68 M:283 W: Missing Blank Line separator, <400> field identifier
L:104 M:283 W: Missing Blank Line separator, <400> field identifier
L:143 M:283 W: Missing Blank Line separator, <400> field identifier
L:162 M:283 W: Missing Blank Line separator, <400> field identifier
L:187 M:283 W: Missing Blank Line separator, <400> field identifier
L:236 M:283 W: Missing Blank Line separator, <400> field identifier L:254 M:283 W: Missing Blank Line separator, <400> field identifier
L:275 M:283 W: Missing Blank Line separator, <400> field identifier
L:322 M:283 W: Missing Blank Line separator, <400> field identifier
L:334 M:283 W: Missing Blank Line separator, <400> field identifier
L:346 M:283 W: Missing Blank Line separator, <400> field identifier
L:364 M:283 W: Missing Blank Line separator, <400> field identifier
L:383 M:283 W: Missing Blank Line separator, <400> field identifier
L:394 M:283 W: Missing Blank Line separator, <400> field identifier
L:407 M:283 W: Missing Blank Line separator, <400> field identifier
L:430 M:283 W: Missing Blank Line separator, <400> field identifier
L:440 M:283 W: Missing Blank Line separator, <400> field identifier
L:452 M:283 W: Missing Blank Line separator, <400> field identifier
L:474 M:283 W: Missing Blank Line separator, <220> field identifier
L:477 M:283 W: Missing Blank Line separator, <400> field identifier
L:508 M:283 W: Missing Blank Line separator, <220> field identifier
L:511 M:283 W: Missing Blank Line separator, <400> field identifier
L:548 M:283 W: Missing Blank Line separator, <220> field identifier
L:551 M:283 W: Missing Blank Line separator, <400> field identifier L:619 M:283 W: Missing Blank Line separator, <220> field identifier L:622 M:283 W: Missing Blank Line separator, <400> field identifier L:683 M:283 W: Missing Blank Line separator, <220> field identifier L:683 M:283 W: Missing Blank Line separator, <220> field identifier
L:686 M:283 W: Missing Blank Line separator, <400> field identifier
L:719 M:283 W: Missing Blank Line separator, <220> field identifier
L:722 M:283 W: Missing Blank Line separator, <400> field identifier
L:766 M:283 W: Missing Blank Line separator, <220> field identifier
L:769 M:283 W: Missing Blank Line separator, <400> field identifier
L:826 M:112 C: (48) String data converted to lower case,
L:847 M:283 W: Missing Blank Line separator, <220> field identifier
L:850 M:283 W: Missing Blank Line separator, <400> field identifier
L:880 M:283 W: Missing Blank Line separator, <220> field identifier
L:883 M:283 W: Missing Blank Line separator, <400> field identifier
L:917 M:283 W: Missing Blank Line separator, <220> field identifier
L:920 M:283 W: Missing Blank Line separator, <400> field identifier
L:992 M:283 W: Missing Blank Line separator, <400> field identifier
L:1037 M:283 W: Missing Blank Line separator, <400> field identifier
```

VERIFICATION SUMMARY

PATENT APPLICATION: US/09/743,247A

DATE: 11/19/2002 TIME: 14:43:13

Input Set : A:\sequence listing.txt

Output Set: N:\CRF4\11192002\I743247A.raw

L:1072 M:283 W: Missing Blank Line separator, <400> field identifier
L:1137 M:283 W: Missing Blank Line separator, <400> field identifier
L:1155 M:283 W: Missing Blank Line separator, <400> field identifier
L:3363 M:257 W: Feature value mis-spelled or invalid, <221> Name/Key for SEQ ID#:93
L:3373 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:93 after pos.:48

L:4053 M:258 W: Mandatory Feature missing, <223> Tag not found for SEQ ID#:113 L:4053 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:113 after pos.:198

09/743247

WO 00/05367

PCT/JP99/03929

1/177 534 Rec'd PCT/PTO 0 5 JAN 2001

Sequence listing

<110> Sagami Chemical Research Center; Protegene Inc.

5 <120> Human Proteins Having Hydrophobic Domains And DNAs Encoding These Proteins

<130> 661102

10 <150> JP 10-208820

<151> 1998-07-24

<150> JP 10-224105

<151> 1998-08-07

15

<150> JP 10-238116

<151> 1998-08-25

<150> JP 10-254736

20 <151> 1998-09-09

<150> JP 10-275505

<151> 1998-09-29

25 <160> 150

<170> Windows 95 (Word 98)

<210> 1

30 <211> 125

<212> PRT

<213> Homo sapiens

<400> 1

35 Met Ala Lys Tyr Leu Ala Gln Ile Ile Val Met Gly Val Gln Val Val

	1				5					10					15	
	Gly	Arg	Ala	Phe	Ala	Arg	Ala	Leu	Arg	Gln	Glu	Phe	Ala	Ala	Ser	Arg
				. 20					25					30		
	Ala	Ala	Ala	Asp	Ala	Arg	Gly	Arg	Ala	Gly	His	Arg	Ser	Ala	Ala	Ala
5			35					40					45			
	Ser	Asn	Leu	Ser	Gly	Leu	Ser	Leu	Gln	Glu	Ala	Gln	Gln	Ile	Leu	Asn
		50					55					60				
	Val	Ser	Lys	Leu	Ser	Pro	Glu	Glu	Val	Gln	Lys	Asn	Tyr	Glu	His	Leu
	65					70					75					80
10	Phe	Lys	Val	Asn	Asp	Lys	Ser	Val	Gly	Gly	Ser	Phe	Tyr	Leu	Gln	Ser
					85					90					95	
	Lys	Val	Val	Arg	Ala	Lys	Glu	Arg	Leu	Asp	Glu	Glu	Leu	Lys	Ile	Gln
				100					105					110		
	Ala	Gln	Glu	Asp	Arg	Glu	Lys	Gly	Gln	Met	Pro	His	Thr			
15			115					120					125			
	<21	0> 2			*											
	<21	1> 1:	31													
	<21	2> PI	RT													
20	<21	3> H	omo:	sapie	ens											
	<40															
	Met	Ala	Gly	Ile		Ala	Leu	Ile	Ser	Leu	Ser	Phe	Gly	Gly	Ala	Ile
	1				5					10					15	
25	Gly	Leu	Met	Phe	Leu	Met	Leu	Gly	Cys	Ala	Leu	Pro	Ile		Asn	Lys
				20					25					30	_	
	Tyr	Trp	Pro	Leu	Phe	Val	Leu	Phe	Phe	Tyr	Ile	Leu		Pro	Ile	Pro
			35					40					45		_	
	Tyr		Ile	Ala	Arg	Arg	Leu	Val	Asp	Asp	Thr		Ala	Met	Ser	Asn
30		50					55					60		_		
			Lys	Glu	Leu	Ala	Ile	Phe	Leu	Thr		Gly	Ile	Val	Val	
	65					70					75					80
	Ala	Phe	Gly	Leu	Pro	Ile	Val	Phe	Ala		Ala	His	Leu	Ile	Glu	Trp
					85					90					95	
35	Gly	Ala	Cys	Ala	Leu	Val	Leu	Thr	Gly	Asn	Thr	Val	Ile	Phe	Ala	Thr

				100					105					110		
•	Ile	Leu	Gly	Phe	Phe	Leu	Val	Phe	Gly	Ser	Asn	Asp	Asp	Phe	Ser	Trp
			115					120					125			
	Gln	Gln	Trp		٠											
5		130														
	<210	0> 3														
•	<21	1> 2	42													
	<212	2> P	RT													
10	<21	3> H	omo :	sapi	≘ns											
	<400)> 3														
	Met	Ala	Lys	His	Glu	Gln	Ile	Leu	Val	Leu	Asp	Pro	Pro	Thr	Asp	Leu
	1				5					10					15	
15	Lys	Phe	Lys	Gly	Pro	Phe	Thr	Asp	Val	Val	Thr	Thr	Asn	Leu	Lys	Leu
				20					25					30		
	Arg	Asn	Pro	Ser	Asp	Arg	Lys	Val	Cys	Phe	Lys	Val	Lys	Thr	Thr	Ala
			35					40					45			
	Pro	Arg	Arg	Tyr	Cys	Val	Arg	Pro	Asn	Ser	Gly	Ile	Ile	Asp	Pro	Gly
20		50					55					60				
	Ser	Thr	Val	Thr	Val	Ser	Val	Met	Leu	Gln	Pro	Phe	Asp	Tyr	Asp	Pro
	65					70					75					80
	Asn	Glu	Lys	Ser	Lys	His	Lys	Phe	Met	Val	Gln	Thr	Ile	Phe	Ala	Pro
					85					90					95	
25	Pro	Asn	Thr	Ser	Asp	Met	Glu	Ala	Val	Trp	Lys	Glu	Ala	Lys	Pro	Asp
				100			•		105					110		
	Glu	Leu	Met	Asp	Ser	Lys	Leu	Arg	Cys	Val	Phe	Glu	Met	Pro	Asn	Glu
			115					120					125			
	Asn	Asp	Lys	Leu	Asn	Asp	Met	Glu	Pro	Ser	Lys	Ala	Val	Pro	Leu	Asn
30		130					135					140				
	Ala	Ser	Lys	Gln	Asp	Gly	Pro	Met	Pro	Lys	Pro	His	Ser	Val	Ser	Leu
	145					150					155					160
	Asn	Asp	Thr	Glu	Thr	Arg	Lys	Leu	Met	Glu	Glu	Cys	Lys	Arg	Leu	Gln
					165					170					175	
35	Gly	Glu	Met	Met	Lys	Leu	Ser	Glu	Glu	Asn	Arg	His	Leu	Arg	Asp	G1u

				180					185					190		
	Gly	Leu	Arg	Leu	Arg	Lys	Val	Ala	His	Ser	Asp	Lys	Pro	Gly	Ser	Thi
			195					200					205			
	Ser	Thr	Ala	Ser	Phe	Arg	Asp	Asn	Val	Thr	Ser	Pro	Leu	Pro	Ser	Leu
5		210					215					220				
	Leu	٧al	Val	Ile	Ala	Ala	Ile	Phe	Ile	Gly	Phe	Phe	Leu	Gly	Lys	Phe
	225					230					235					240
	Ile	Leu														
10	~ 21	0> 4														
10		1> 26	5.4													
		2> PI														•
		3> Ho		sapie	ens											
				•												
15	<40	0> 4														
	Met	Phe	Val	Pro	Cys	Gly	Glu	Ser	Ala	Pro	Asp	Leu	Ala	Gly	Phe	Thr
	1				5					10					15	
	Leu	Leu	Met	Pro	Ala	Val	Ser	Val	Gly	Asn	Val	Gly	Gln	Leu	Ala	Met
				20					25					30		
20	Asp	Leu	Ile	Ile	Ser	Thr	Leu	Asn	Met	Ser	Lys	Ile	Gly	Tyr	Phe	Tyr
			35					40					45			
	Thr	Asp	Cys	Leu	Val	Pro		Val	Gly	Asn	Asn	Pro	Tyr	Ala	Thr	Thr
		50					55					60				
or.		Gly	Asn	Ser	Thr		Leu	Ser	Ile	Asn		Glu	Val	Tyr	Ser	Leu
25	65	_				70					75					80
	PLO	Ser	Arg	Lys		Val	Ālā	Leu	GIn		Arg	Ser	Ile	Phe		Lys
	Mrr-	T	Cam	T	85	5 1	a	01	•	90	•	0			95 -	_
	ıyı	Lys	Ser	100	PIO	Pne	cys	GIU		Leu	Leu	ser	TIP		ьys	ser
30	Ser	Gly	Cvc		Ara	1721	Tlo	17a 1	105	Sor	Sor	Sor	uic	110	Marr-	Cln
00	001	CLy	115	VIG	ALY	vaı	TTE	120	Ten	SeT	ser	Ser	125	ser	ıyı	GIII
	Ara	Asn		Len	Gln	T.em	Ara		Thr	Dro	Dhe	Δτα		T.e.it	T.ou	Thr
	9	130	P		11	ساند	135	JUL	1111	110	1116	140	* J +	ساتاس	Ten	THE
	Pro	Ser	Met	Gln	Lvs	Ser		Gln	Asn	Lvs	Ile		Ser	Leu	Asn	ጥተጥ
35	145				- -	150				-1-	155	-1-	-			160

	Glu Glu	Met	Glu	Lys	Ser	Arg	Cys	Ile	Pro	Glu	Ile	Asp	Asp	Ser	Glu	
				165					170					175		
	Phe Cys	Ile	Arg	Ile	Pro	Gly	Gly	Gly	Ile	Thr	Lys	Thr	Leu	Tyr	Asp	
			180					185					190			
5	Glu Ser	Cys	Ser	Lys	Glu	Ile	Gln	Met	Ala	Val	Leu	Leu	Lys	Phe	Val	
		195					200					205				
	Ser Glu	Gly	Asp	Asn	Ile	Pro	Asp	Ala	Leu	Gly	Leu	Val	Glu	Tyr	Leu	
	210					215					220					
	Asn Glu	Trp	Leu	Gln	Ile	Leu	Lys	Pro	Leu	Ser	Asp	Asp	Pro	Thr	Val	
10	225				230					235					240	
	Ser Ala	Ser	Arg	Trp	Lys	Ile	Pro	Ser	Ser	Trp	Arg	Leu	Leu	Phe	Gly	
				245					250					255		
	Ser Gly	Leu	Pro	Pro	Ala	Leu	Phe									
			260													
15																
	<210> 5															
	<211> 1	12														
	<212> P	RT														
	<213> H	omo :	sapie	ens												
20																
	<400> 5															
	Met Gly	Ser	Arg	Leu	Ser	Gln	Pro	Phe	Glu	Ser	Tyr	Ile	Thr	Ala	Pro	
	1			5					10					15		
	Pro Gly	Thr	Ala	Ala	Ala	Pro	Ala	Lys	Pro	Ala	Pro	Pro	Ala	Thr	Pro	
25			20					25					30			
	Gly Ala	Pro	Thr _.	Ser	Pro	Ala	Glu	His	Arg	Leu	Leu	Lys	Thr	Суѕ	Trp	
		35					40					45				
	Ser Cys	Arg	Val	Leu	Ser	Gly	Leu	Gly	Leu	Met	Gly	Ala	Gly	Gly	Tyr	
	50					55					60					
30	Val Tyr	Trp	Val	Ala	Arg	Lys	Pro	Met	Lys	Met	Gly	Tyr	Pro	Pro	Ser	
	65				70					75					80	
	Pro Trp	Thr	Ile	Thr	Gln	Met	Val	Ile	Gly	Leu	Ser	Ile	Ala	Thr	Trp	
				85					90					95		
	Gly Ile	Val	Val	Met	Ala	Asp	Pro	Lys	Gly	Lys	Ala	Tyr	Arg	Val	Val	
35			100					105					110			

6/177

<210> 6 <211> 146 <212> PRT : 5 <213> Homo sapiens <400> 6 Met Leu Ala Gly Ala Gly Arg Pro Gly Leu Pro Gln Gly Arg His Leu 15 Cys Trp Leu Leu Cys Ala Phe Thr Leu Lys Leu Cys Gln Ala Glu Ala 10 20 25 Pro Val Glu Glu Lys Leu Ser Ala Ser Thr Ser Asn Leu Pro Cys 40 Trp Leu Val Glu Glu Phe Val Val Ala Glu Glu Cys Ser Pro Cys Ser 15 55 Asn Phe Arg Ala Lys Thr Thr Pro Glu Cys Gly Pro Thr Gly Tyr Val 75 70 Glu Lys Ile Thr Cys Ser Ser Ser Lys Arg Asn Glu Phe Lys Ser Cys 90 85 Arg Ser Ala Leu Met Glu Gln Arg Leu Phe Trp Lys Phe Glu Gly Ala 20 105 Val Val Cys Val Ala Leu Ile Phe Ala Cys Leu Val Ile Ile Arg Gln 125 115 Arg Gln Leu Asp Arg Lys Ala Leu Glu Lys Val Arg Lys Gln Ile Glu 140 **25** 130 135 Ser Ile 145 <210> 7 30 <211> 344 <212> PRT <213> Homo sapiens <400> 7 Met Asp Phe Leu Val Leu Phe Leu Phe Tyr Leu Ala Ser Val Leu Met 35

PCT/JP99/03929

	1				5					10					15	
	Gly	Leu	Val	Leu	Ile	Cys	Val	Cys	Ser	Lys	Thr	His	Ser	Leu	Lys	Gly
		_		20					25					30		
	Leu	Ala	Arg	Gly	Gly	Ala	Gln	Ile	Phe	Ser	Суѕ	Ile	Ile	Pro	Glu	Cys
5			35					40		`			45			
	Leu	Gln	Arg	Ala	Val	His	Gly	Leu	Leu	His	Tyr	Leu	Phe	His	Thr	Arg
		50					55					60	•			
	Asn	His	Thr	Phe	Ile	Val	Leu	His	Leu	Val	Leu	Gln	Gly	Met	Val	Tyr
	65					70					75					80
10	Thr	Glu	Tyr	Thr	Trp	Glu	Val	Phe	Gly	Tyr	Cys	Gln	Glu	Leu	Glu	Leu
					85					. 90					95	
	Ser	Leu	His	Tyr	Leu	Leu	Leu	Pro	Tyr	Leu	Leu	Leu	Gly	Val	Asn	Leu
				100					105					110		
	Phe	Phe	Phe	Thr	Leu	Thr	Cys	Gly	Thr	Asn	Pro	Gly	Ile	Ile	Thr	Lys
15			115					120					125			
	Ala	Asn	Glu	Leu	Leu	Phe	Leu	His	Val	Tyr	Glu	Phe	Asp	Glu	Val	Met
		130					135					140				
	Phe	Pro	Lys	Asn	Val	Arg	Cys	Ser	Thr	Cys	Asp	Leu	Arg	Lys	Pro	Ala
	145					150					155					160
20	Arg	Ser	Lys	His	Cys	Ser	Val	Cys	Asn	Trp	Cys	Val	His	Arg	Phe	Asp
					165					170					175	
	His	His	Cys	Val	Trp	Val	Asn	Asn	Cys	Ile	Gly	Ala	Trp	Asn	Ile	Arg
				180					185					190		
	Tyr	Phe	Leu	Ile	Tyr	Val	Leu	Thr	Leu	Thr	Ala	Ser	Ala	Ala	Thr	Val
25			195					200					205			
	Āla	Ile	Val	Ser	Thr	Thr	Phe	Leu	Val	His	Leu	val	Val	Met	Ser	Asp
		210					215					220				
	Leu	Tyr	Gln	Glu	Thr	Tyr	Ile	Asp	Asp	Leu	Gly	His	Leu	His	Val	Met
	225					230					235					240
30	Asp	Thr	Val	Phe	Leu	Ile	Gln	Tyr	Leu	Phe	Leu	Thr	Phe	Pro	Arg	Ile
					245					250					255	
	Val	Phe	Met	Leu	Gly	Phe	Val	Val	Val	Leu	Ser	Phe	Leu	Leu	Gly	Gly
				260					265					270		
	Tyr	Leu	Leu	Phe	Val	Leu	Tyr	Leu	Ala	Ala	Thr	Asn	Gln	Thr	Thr	Asn
35			275					280					285			

8/177

Glu Trp Tyr Arg Gly Asp Trp Ala Trp Cys Gln Arg Cys Pro Leu Val 295 300 Ala Trp Pro Pro Ser Ala Glu Pro Gln Val His Arg Asn Ile His Ser 310 315 5 His Gly Leu Arg Ser Asn Leu Gln Glu Ile Phe Leu Pro Ala Phe Pro 325 330 335 Cys His Glu Arg Lys Lys Gln Glu 340 10 <210> 8 <211> 97 <212> PRT <213> Homo sapiens 15 Met Thr Lys Lys Lys Arg Glu Asn Leu Gly Val Ala Leu Glu Ile Asp 10 Gly Leu Glu Glu Lys Leu Ser Gln Cys Arg Arg Asp Leu Glu Ala Val 20 25 20 Asn Ser Arg Leu His Ser Arg Glu Leu Ser Pro Glu Ala Arg Arg Ser 40 Leu Glu Lys Glu Lys Asn Ser Leu Met Asn Lys Ala Ser Asn Tyr Glu 50 55 Lys Glu Leu Lys Phe Leu Arg Gln Glu Asn Arg Lys Asn Met Leu Leu 25 70 75 Ser Val Ala Ile Phe Ile Leu Leu Thr Leu Val Tyr Ala Tyr Trp Thr 85 Met 30 <210> 9 <211> 124 <212> PRT <213> Homo sapiens

35

<400> 9

9/177

Met Ala Thr Ser Ser Met Ser Lys Gly Cys Phe Val Phe Lys Pro Asn 10 Ser Lys Lys Arg Lys Ile Ser Leu Pro Ile Glu Asp Tyr Phe Asn Lys 25 5 Gly Lys Asn Glu Pro Glu Asp Ser Lys Leu Arg Phe Glu Thr Tyr Gln 40 Leu Ile Trp Gln Gln Met Lys Ser Glu Asn Glu Arg Leu Gln Glu Glu 55 Leu Asn Lys Asn Leu Phe Asp Asn Leu Ile Glu Phe Leu Gln Lys Ser 10 70 75 65 His Ser Gly Phe Gln Lys Asn Ser Arg Asp Leu Gly Gln Ile Lys 85 90 Leu Arg Glu Ile Pro Thr Ala Ala Leu Val Leu Gly Ile Tyr Ala Tyr 100 110. 105 15 Val Cys Ser Cys Met His Leu Cys Val Phe Arg Phe 115 120 <210> 10 <211> 327 20 <212> PRT <213> Homo sapiens <400> 10 Met Ala Glu Leu Pro Gly Pro Phe Leu Cys Gly Ala Leu Leu Gly Phe 25 10 Leu Cys Leu Ser Gly Leu Ala Val Glu Val Lys Val Pro Thr Glu Pro 20 25 Leu Ser Thr Pro Leu Gly Lys Thr Ala Glu Leu Thr Cys Thr Tyr Ser 40 30 Thr Ser Val Gly Asp Ser Phe Ala Leu Glu Trp Ser Phe Val Gln Pro 55 Gly Lys Pro Ile Ser Glu Ser His Pro Ile Leu Tyr Phe Thr Asn Gly 70 75 His Leu Tyr Pro Thr Gly Ser Lys Ser Lys Arg Val Ser Leu Leu Gln 35 90

	Asn	Pro	Pro	Thr	Val	Gly	Val	Ala	Thr	Leu	Lys	Leu	Thr	Asp	Val	His
				100					105					110		
	Pro	Ser	Asp	Thr	Gly	Thr	Tyr	Leu	Cys	Gln	Val	Asn	Asn	Pro	Pro	Asp
			115					120					125			
5	Phe	Tyr	Thr	Asn	Gly	Leu	Gly	Leu	Ile	Asn	Leu	Thr	Val	Leu	Val	Pro
	•	130					135					140				
	Pro	Ser	Asn	Pro	Leu	Cys	Ser	Gln	Ser	Gly	Gln	Thr	Ser	Val	Gly	Gly
	145					150					155					160
	Ser	Thr	Ala	Leu	Arg	Cys	Ser	Ser	Ser	Glu	Gly	Ala	Pro	Lys	Pro	Val
10					165					170					175	
	Tyr	Asn	Trp	Val	Arg	Leu	Gly	Thr	Phe	Pro	Thr	Pro	Ser	Pro	Gly	Ser
				180					185					190		
	Met	Val	Gln	Asp	Glu	Val	Ser	Gly	Gln	Leu	Ile	Leu	Thr	Asn	Leu	Ser
			195					200					205			
15	Leu	Thr	Ser	Ser	Gly	Thr	Tyr	Arg	Cys	Val	Ala	Thr	Asn	Gln	Met	Gly
		210					215					220				
	Ser	Ala	Ser	Cys	Glu	Leu	Thr	Leu	Ser	Val	Thr	Glu	Pro	Ser	Gln	Gly
	225			•		230					235					240
	Arg	Val	Ala	Gly	Ala	Leu	Ile	Gly	Val	Leu	Leu	Gly	Val	Leu	Leu	Leu
20					245					250					255	
	Ser	Val	Ala		Phe	Cys	Leu	Val	_	Phe	Gln	Lys	Glu		Gly	Lys
				260					265				_	270		
	Lys	Pro		Glu	Thr	Tyr	Gly		Ser	Asp	Leu	Arg		Asp	Ala	Ile
0.5	_		275			_		280			_		285	_	_	
25			Gly	Ile	Ser	Glu		Thr	Cys	Met	Arg		Asp	Ser	Ser	Lys
		290 	_				295			_		300	_,	_,	_,	_
	_	Phe	Leu	Glu	Arg	Pro	Ser	Ser	Ala	Ser		Val	Thr	Thr	Thr	_
	305	_	<u>_</u>	_		310					315					320
20	Ser	Lys	Leu	Pro		Val	Val									
30					325											
)> 11														
		l> 37														
25		?> D1														
35	<713	> HC	omo s	sapie	ens											

	<400> 11						
	atggccaagt	acctggccca	gatcattgtg	atgggcgtgc	aggtggtggg	cagggccttt	6
	gcacgggcct	tgcggcagga	gtttgcagcc	agccgggccg	cagetgatge	ccgaggacgc	12
5	gctggacacc	ggtctgcagc	cgcttccaac	ctctccggcc	tcagcctcca	ggaggcacag	186
	cagattctca	acgtgtccaa	gctgagccct	gaggaggtcc	agaagaacta	tgaacactta	240
	tttaaggtga	atgataaatc	cgtgggtggc	teettetace	tgcagtcaaa	ggtggtccgc	300
	gcaaaggagc	gcctggatga	ggaactcaaa	atccaggccc	aggaggacag	agaaaaaggg	360
	cagatgeece	atacg					37!
10							
	<210> 12			•			
	<211> 393						
	<212> DNA						
	<213> Homo	sapiens					
15							
	<400> 12						
	atggcaggca	tcaaagcttt	gattagtttg	teetttggag	gagcaatcgg	actgatgttt	60
	ttgatgcttg	gatgtgccct	tccaatatac	aacaaatact	ggcccctctt	tgttctattt	120
	ttttacatcc	tttcacctat	tccatactgc	atagcaagaa	gattagtgga	tgatacagat	180
20	gctatgagta	acgcttgtaa	ggaacttgcc	atctttctta	caacgggcat	tgtcgtgtca	240
	gcttttggac	tecetattgt	atttgccaga	gcacatctga	ttgagtgggg	agcttgtgca	300
	cttgttctca	caggaaacac	agtcatcttt	gcaactatac	taggcttttt	cttggtcttt	360
	ggaagcaatg	acgacttcag	ctggcagcag	tgg			39:
25	<210> 13						
	<211> 726						
	<212> DNA						
	<213> Homo	sapiens	,			· enter	
30	<400> 13						
	atggcgaagc	acgagcagat	cctggtcctc	gateegeeca	cagacctcaa	attcaaaggc	60
	cccttcacag	atgtagtcac	tacaaatctt	aaattgcgaa	atccatcgga	tagaaaagtg	120
	tgtttcaaag	tgaagactac	agcacctcgc	cggtactgtg	tgaggcccaa	cagtggaatt	180
	attgacccag	ggtcaactgt	gactgtttca	gtaatgctac	agccctttga	ctatgatccg	240
35	aatgaaaaga	gtaaacacaa	gtttatggta	cagacaattt	ttgctccacc	aaacacttca	300

WO 00/05367

PCT/JP99/03929

	gatatggaag	ctgtgtggaa	agaggcaaaa	cctgatgaat	taatggattc	caaattgaga	360
	tgcgtatttg	aaatgcccaa	tgaaaatgat	aaattgaatg	atatggaacc	tagcaaagct	420
	gttccactga	atgcatctaa	gcaagatgga	cctatgccaa	aaccacacag	tgtttcactt	480
	aatgataccg	aaacaaggaa	actaatggaa	gagtgtaaaa	gacttcaggg	agaaatgatg	540
5	aagctatcag	aagaaaatcg	gcacctgaga	gatgaaggtt	taaggctcag	aaaggtagca	600
	cattcggata	aacctggatc	aacctcaact	gcatccttca	gagataatgt	caccagtect	660
	cttccttcac	ttcttgttgt	aattgcagcc	attttcattg	gattctttct	agggaaattc	720
	atcttg						726
10	<210> 14						
	<211> 792						
	<212> DNA						
	<213> Homo	sapiens					
15	<400> 14						
	atgttcgttc	cctgcgggga	gtcggccccc	gacettgeeg	gcttcaccct	cctaatgcca	60
			tggccagctt				120
			ctataccgat				180
			ttcaacagaa				240
20			tctacagtta				300
			ttcctgggtg				360
	ctttcgagca	gtcattcata	tcagcgtaat	gatetgeage	ttcgtagtac	tecetteegg	420
	tacctactta	caccttccat	gcaaaaaagt	gttcaaaata	aaataaagag	ccttaactgg	480
			gtgcattcct				540
25	attccgggag	gaggtatcac	aaaaacactc	tatgatgaaa	gctgttctaa	agaaatccaa	600
	atggcagttc	tgctgaaatt	tgtttcagaa	ggggacaaca	tcccagatgc	attaggtett	660
	gttgagtatc	ttaatgagtg	gcttcagata	ctcaaaccac	ttagcgatga	ccccacagta	720
	tctgcctcac	ggtggaaaat	accaagttct	tggagattac	tctttggcag	tggtcttccc	780
	cctgcacttt	tc					792
30							•
	<210> 15						
	<211> 336		-				
	<212> DNA						
	<213> Homo	sapiens					

	<400> 15						
	atggggtctc	ggttgtccca	gccttttgag	tcctatatca	ctgcgcctcc	cggtaccgcc	6
	geegegeeeg	ccaaacctgc	gcccccagct	acacccggag	cgccgacctc	cccagcagaa	120
	caccgcctgt	tgaagacctg	ctggagctgt	cgcgtgcttt	ctgggttggg	gctgatgggg	180
5	gcgggcgggt	acgtgtactg	ggtggcacgg	aagcccatga	agatgggata	cccccgagt	240
	ccatggacca	ttacgcagat	ggtcatcggc	ctcagcattg	ccacctgggg	tategttgte	300
	atggcagacc	ccaaagggaa	ggcctaccgc	gttgtt			336
				,			
	<210> 16						
10	<211> 438						
	<212> DNA			•			
	<213> Homo	sapiens					
	<400> 16						
15				ccccagggcc			60
				gaggeteeeg			120
				gtggaagagt			180
	tetecatget	ctaatttccg	ggctaaaact	acccctgagt	gtggtcccac	aggatatgta	240
	gagaaaatca	catgcagctc	atctaagaga	aatgagttca	aaagetgeeg	ctcagctttg	300
20	atggaacaac	gcttattttg	gaagttcgaa	ggggctgtcg	tgtgtgtggc	cctgatcttc	360
	gcttgtcttg	tcatcattcg	tcagcgacaa	ttggacagaa	aggctctgga	aaaggtccgg	420
	aagcaaatcg	agtccata					438
	<210> 17						
25	<211> 1032						
	<212> DNA						
	<213> Homo	sapiens.					
	44005 17					-	
20	<400> 17						
30				ctggcttcgg			60
				aaaggcctgg			120
	_	<u>-</u>	_	agageegtge			180
				ctgcacctgg			240
0.5				tgtcaggagc			300
35	cttcttctgc	cctatctgct	gctaggtgta	aacctgtttt	ttttcaccct	gacttgtgga	360

	accaatcctg	gcattataac	aaaagcaaat	gaattattat	ttcttcatgt	ttatgaattt	420
	gatgaagtga	tgtttccaaa	gaacgtgagg	tgctctactt	gtgatttaag	gaaaccagct	480
	cgatccaagc	actgcagtgt	gtgtaactgg	tgtgtgcacc	gtttcgacca	tcactgtgtt	540
	tgggtgaaca	actgcatcgg	ggcctggaac	atcaggtact	tcctcatcta	cgtcttgacc	600
5	ttgacggcct	cggctgccac	cgtcgccatt	gtgagcacca	cttttctggt	ccacttggtg	660
	gtgatgtcag	atttatacca	ggagacttac	atcgatgacc	ttggacacct	ccatgttatg	720
	gacacggtct	ttcttattca	gtacctgttc	ctgacttttc	cacggattgt	cttcatgctg	780
	ggetttgteg	tggttctgag	cttcctcctg	ggtggctacc	tgttgtttgt	cctgtatctg	840
	geggeeacea	accagactac	taacgagtgg	tacagaggtg	actgggcctg	gtgccagcgt	900
10	tgtccccttg	tggcctggcc	teegteagea	gagececaag	tccaccggaa	cattcactcc	960
	catgggcttc	ggagcaacct	tcaagagatc	tttctacctg	cctttccatg	tcatgagagg	1020
	aagaaacaag	aa				•	1032
	<210> 18						
15	<211> 291						
	<212> DNA						
	<213> Homo	sapiens					
00	<400> 18						
20				gtcgctctag		· -	60
				gccgtgaact			120
				aaggagaaaa			180
				cggcaagaga			240
05	tetgtggeea	tetttateet	cctgacgctc	gtctatgcct	actggaccat	g	291
25							•
	<210> 19			•			
	<211> 372						
	<212> DNA	:				- 	
30	<213> Homo	sapiens					
00	<400> 19						
	atggctacgt	cctcgatqtc	taagggttgc	tttgttttta	agccaaactc	caaaaagaga	60
				aacaaaggga			120
				tggcagcaga			180
35				gacaatctga			240

	cattetggat to	ccagaagaa	ttcaagagac	ttgggcggtc	aaataaaact	cagagaaatt	300
	ccaactgctg c	tcttgttct	tggtatatat	gcgtatgttt	gttcatgcat	gcatctctgt	360
	gtatttcgtt ti	t .					372
5	<210> 20						
	<211> 981						
	<212> DNA						
	<213> Homo sa	apiens					
10	<400> 20						
	atggeegage to	cccggggcc	ctttctctgc	ggggccctgc	taggetteet	gtgcctgagt	60
	gggetggeeg to	ggaggtgaa	ggtacccaca	gagccgctga	gcacgcccct	ggggaagaca	120
	geegagetga ee					-	180
	tttgtgcagc ct	rgggaaacc	catctctgag	tcccatccaa	tcctgtactt	caccaatggc	240
15	catctgtatc ca	aactggttc	taagtcaaag	cgggtcagcc	tgcttcagaa	ccccccaca	300
	gtgggggtgg co	cacactgaa	actgactgac	gtccacccct	cagatactgg	aacctacctc	360
	tgccaagtca ac		_				420
	gtgetggtte ec						480
22	tctactgcac to						540
20	cgtcttggaa ct						600
	cageteatte to						660
	aaccagatgg go	agtgcatc	ctgtgagctg	accetetetg	tgaccgaacc	ctcccaaggc	720
	cgagtggccg ga	agctctgat	tggggtgctc	ctgggcgtgc	tgttgctgtc	agttgctgcg	780
	ttetgeetgg to	aggttcca	gaaagagagg	gggaagaagc	ccaaggagac	atatgggggt	840
25	agtgacette gg	gaggatgc	categeteet	gggatetetg	agcacacttg	tatgagggct	900
	gattetagea ag	•		tegtetgeea	gcaccgtgac	gaccaccaag	960
	tecaagetee et	atggtcgt	g				981
						one,	
00	<210> 21						
30	<211> 510						
	<212> DNA						•
	<213> Homo sa	piens					
	<220>						
	<221> CDS						
35	<222> (66)	(443)					

	<400> 21	
	acgettgate eceggeegeg gggeeaggaa gteggagttt gageeeegga ggeagageg	gg 60
	ctgee atg gee aag tae etg gee eag ate att gtg atg gge gtg eag g	g 110
5	Met Ala Lys Tyr Leu Ala Gln Ile Ile Val Met Gly Val Gln Va	al
	1 5 10	15
	gtg ggc agg gcc ttt gca cgg gcc ttg cgg cag gag ttt gca gcc agc	158
	Val Gly Arg Ala Phe Ala Arg Ala Leu Arg Gln Glu Phe Ala Ala Ser	
	20 25 30	
10	cgg gcc gca gct gat gcc cga gga cgc gct gga cac cgg tct gca gcc	206
	Arg Ala Ala Asp Ala Arg Gly Arg Ala Gly His Arg Ser Ala Ala	
	35 40 45	
	get tee aae ete tee gge ete age ete eag gag gea eag eag att ete	254
	Ala Ser Asn Leu Ser Gly Leu Ser Leu Gln Glu Ala Gln Gln Ile Leu	
15	50 55 60	
	aac gtg tcc aag ctg agc cct gag gag gtc cag aag aac tat gaa cac	302
	Asn Val Ser Lys Leu Ser Pro Glu Glu Val Gln Lys Asn Tyr Glu His	
	65 70 75	
	tta ttt aag gtg aat gat aaa tee gtg ggt gge tee tte tae etg cag	350
20	Leu Phe Lys Val Asn Asp Lys Ser Val Gly Gly Ser Phe Tyr Leu Gln	
	80 85 90 95	
	tea aag gtg gte ege gea aag gag ege etg gat gag gaa ete aaa ate	398
	Ser Lys Val Val Arg Ala Lys Glu Arg Leu Asp Glu Glu Leu Lys Ile	
	100 105 110	
25	cag gee cag gag gae aga gaa aaa ggg cag atg eee cat aeg tgaetget	c 450
	Gln Ala Gln Glu Asp Arg Glu Lys Gly Gln Met Pro His Thr	
	115 120 125	
	gctcccccg cccaccccgc cgcctctaat ttatagcttg gtaataaatt tcttttctg	<u>510</u>
30	<210> 22	
	<211> 697	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
35	<221> CDS	

17/177

<222> (104)...(499)

	<400)> 22	2															
	actt	ccg	ggt	gttg	tctg	ge e	geeg	tago	g cg	tatt	gggt	ctc	ccgg	ctg	ccgc	tgctgc	60	
5	cgcc	egcc	gec 1	tegg	gtcg	tg g	agcc	agga	g cg	acgto	cacc	gcc	atg	gca	ggc	atc	115	
													Met	Ala	Gly	Ile		
								•					1					
	aaa	gct	ttg	att	agt	ttg	tcc	ttt	gga	gga	gca	atc	gga	ctg	atg	ttt	163	
	Lys	Ala	Leu	Ile	Ser	Leu	Ser	Phe	Gly	Gly	Ala	Ile	Gly	Leu	Met	Phe		
10	5					10					15					20		
	ttg	atg	ctt	gga	tgt	gcc	ctt	cca	ata	tac	aac	aaa	tac	tgg	ccc	ctc	211	
	Leu	Met	Leu	Gly	Cys	Ala	Leu	Pro	Ile	Tyr	Asn	Lys	Tyr	Trp	Pro	Leu ·		
					25					30					35			
	ttt	gtt	cta	ttt	ttt	tac	atc	ctt	tca	cct	att	cca	tac	tgc	ata	gca	259	
15	Phe	Val	Leu	Phe	Phe	Tyr	Ile	Leu	Ser	Pro	Ile	Pro	Tyr	Cys	Ile	Ala		
				40					45					50				
	aga	aga	tta	gtg	gat	gat	aca	gat	gct	atg	agt	aac	gct	tgt	aag	gaa	307	
	Arg	Arg	Leu	Val	Asp	Asp	Thr	Asp	Ala	Met	Ser	Asn	Ala	Cys	Lys	Glu		
			55					60					65					
20	ctt	gcc	atc	ttt	ctt	aca	acg	ggc	att	gtc	gtg	tca	gct	ttt	gga	ctc	355	
	Leu	Ala	Ile	Phe	Leu	Thr	Thr	Gly	Ile	Val	Val	Ser	Ala	Phe	Gly	Leu		
		70					75					80						
	cct	att	gta	ttt	gcc	aga	gca	cat	ctg	att	gag	tgg	gga	gct	tgt	gca	403	
	Pro	Ile	Val	Phe	Ala	Arg	Ala	His	Leu	Ile	Glu	Trp	Gly	Ala	Cys	Ala		
25	85					90					95					100		
	ctt	gtt	ctc	aca	gga	aac	aca	gtc	atc	ttt	gca	act	ata	cta	ggc	ttt	451	
	Leu	Val	Leu	Thr	Gly	Asn	Thr	Val	Ile	Phe	Ala	Thr	Ile	Leu	Gly	Phe		
					105					110					115	- 		
	ttc	ttg	gtc	ttt	gga	agc	aat	gac	gac	ttc	agc	tgg	cag	cag	tgg	tgaa	500	
30	Phe	Leu	Val	Phe	Gly	Ser	Asn	Asp	Asp	Phe	Ser	Trp	Gln	Gln	Trp			
				120					125					130				
	aaga	aaatt	cac t	gaad	ctatt	g to	aaat	ggad	tto	ctgt	cat	ttgt	tggo	ca t	tcac	egcaca	560	
	cago	gagat	gg g	ggca	gttaa	at go	ctgaa	atggt	ata	ıgcas	igcc	tctt	gggg	ggt a	attt	taggtg	620	
	ctc	ctto	ete a	actt	ttatt	g ta	aagca	atact	att	ttca	cag	agad	ettgo	tg a	aagga	attaaa	680	
35	agga	atttt	ct o	etttt	tgg												697	

WO 00/05367

PCT/JP99/03929

	<210> 23	
	<211> 1619	
	<212> DNA	
5	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (287)(1015)	
10	<400> 23	
	gcagaggccg tcacgtgggt egcegagget egcaagtgeg egtggccgtg geggetgg	tg 60
	tggggttgag tcagttgtgg gacccggagc tgctgaccca gcgggtggcc caccgaac	eg 120
	gtgacacage ggcaggcgtt agggctcggg agccgcgage ctggcctcgt cctagage	te 180
	ggccgagccg tegeegeegt egteeceege eeceagteag caaacegeeg eegeggge	gc 240
15	geceegete tgegetgtet eteegatgge gteegeetea ggggee atg geg aag	295
	Met Ala Lys	
	1	
	cac gag cag ate etg gte etc gat eeg eee aca gae etc aaa tte aaa	343
	His Glu Gln Ile Leu Val Leu Asp Pro Pro Thr Asp Leu Lys Phe Lys	
20	5 10 15	
	ggc ccc ttc aca gat gta gtc act aca aat ctt aaa ttg cga aat cca	391
	Gly Pro Phe Thr Asp Val Val Thr Thr Asn Leu Lys Leu Arg Asn Pro	
	20 25 30 35	
	tog gat aga aaa gtg tgt tto aaa gtg aag act aca gca cct cgc cgg	439
25	Ser Asp Arg Lys Val Cys Phe Lys Val Lys Thr Thr Ala Pro Arg Arg	
	40 45 50	
	tac tgt gtg agg ccc aac agt gga att att gac cca ggg tca act gtg	487
	Tyr Cys Val Arg Pro Asn Ser Gly Ile Ile Asp Pro Gly Ser Thr Val	· ·
00	55 60 65	
30	act gtt tca gta atg cta cag ccc ttt gac tat gat ccg aat gaa aag	535
	Thr Val Ser Val Met Leu Gln Pro Phe Asp Tyr Asp Pro Asn Glu Lys	
	70 75 80	
	agt ama cac mag ttt atg gta cag aca att ttt get eca eca mae act	583
0.5	Ser Lys His Lys Phe Met Val Gln Thr Ile Phe Ala Pro Pro Asn Thr	
35	85 90 95	

	tca	gat	atg	gaa	gct	gtg	tgg	aaa	gag	gca	aaa	cct	gat	gaa	tta	atg	633
	Ser	Asp	Met	Glu	Ala	Val	Trp	Lys	Glu	Ala	Lys	Pro	Asp	Glu	Leu	Met	
	100					105					110					115	
	gat	tcc	aaa	ttg	aga	tgc	gta	ttt	gaa	atg	ccc	aat	gaa	aat	gat	aaa	679
5	Asp	Ser	Lys	Leu	Arg	Cys	Val	Phe	Glu	Met	Pro	Asn	Glu	Asn	Asp	Lys	
					120					125					130		
	ttg	aat	gat	atg	gaa	cct	agc	aaa	gct	gtt	cca	ctg	aat	gca	tct	aag	727
	Leu	Asn	Asp	Met	Glu	Pro	Ser	Lys	Ala	Val	Pro	Leu	Asn	Ala	Ser	Lys	
				135					140					145			
10	caa	gat	gga	cct	atg	cca	aaa	cca	cac	agt	gtt	tca	ctt	aat	gat	acc	775
	Gln	Asp	Gly	Pro	Met	Pro	Lys	Pro	His	Ser	Val	Ser	Leu	Asn	Asp	Thr	
			150					155					160				
	gaa	aca	agg	aaa	cta	atg	gaa	gag	tgt	aaa	aga	ctt	cag	gga	gaa	atg	823
	Glu	Thr	Arg	Lys	Leu	Met	Glu	Glu	Cys	Lys	Arg	Leu	Gln	Gly	Glu	Met	
15		165			•		170					175					
	atg	aag	cta	tca	gaa	gaa	aat	cgg	cac	ctg	aga	gat	gaa	ggt	tta	agg	871
	Met	Lys	Leu	Ser	Glu	Glu	Asn	Arg	His	Leu	Arg	Asp	Glu	Gly	Leu	Arg	
	180					185					190					195	
	ctc	aga	aag	gta	gca	cat	tcg	gat	aaa	cct	gga	tca	acc	tca	act	gca	919
20	Leu	Arg	Lys	Val	Ala	His	Ser	Asp	Lys	Pro	Gly	Ser	Thr	Ser	Thr	Ala	
					200					205					210		
	tcc	ttc	aga	gat	aat	gtc	acc	agt	cct	ctt	cct	tca	ctt	ctt	gtt	gta	967
	Ser	Phe	Arg	Asp	Asn	Val	Thr	Ser	Pro	Leu	Pro	Ser	Leu	Leu	Val	Val	
				215					220					225			
25	att	gca	gcc	att	ttc	att	gga	ttc	ttt	cta	ggg	aaa	ttc	atc	ttg		1012
	Ile	Ala	Ala	Ile	Phe	Ile	Gly	Phe	Phe	Leu	Gly	Lys	Phe	Ile	Leu		
			230	•				235					240				
	taga	agtga	ag c	atgo	agag	rt go	tgtt	tctt	ttt	tttt	ttt	ttct	ctto	jac c	agaa	aaa	1070
	gatt	tgtt	ta c	ctac	catt	t ca	ttgg	rtagt	atg	geed	acg	gtga	accat	tt t	tttg	tgtgt	1130
30	acag	gegte	at a	tagg	gettt	g cc	ttta	atga	tct	ctta	ıcgg	ttag	jaaaa	ca c	aata	aaaac	1190
	aaac	tgtt	cg ç	ctac	:tgga	ıc ag	gttg	rtata	tta	ccag	jatc	atca	actaç	gca ç	gatgt	cagtt	1250
	gcad	atto	gag t	cctt	tate	ja aa	ttca	taaa	taa	agaa	ittg	ttct	ttct	tt g	gtggt	tttaa	1310
	taag	gagtt	ca a	ıgaat	tgtt	c ag	agto	ttgt	aaa	tgtt	att	ttaa	taat	icc c	ttta	aattt	1370
	tato	tgtt	ge t	gtta	acto	t tg	aaat	atga	ttt	attt	aga	ttgo	taat	cc c	acto	attca	1430
35	ggaa	atgo	ca a	ıgago	jtatt	c ct	tggg	gaaa	tgg	rtgcc	tct	tace	igtgt	aa a	atttt	tectc	1490

	ctt	tacc	ttt	qcta	atat	ca t	ааса	gaat	+ ++	tett	atco	ctt	ataa	aac	agtt	attas		155
				_			7500	9440	~ ~ ~				5 5.	55-		90090	iC.	155
	tga	gttt	ttc	atcc	ttac	aa t	cctg	tece	a tg	gtat	ttaa	cat	aaaa	aaa	aata	aaact	g	161
	tta	acag	at															161
5	<21	0> 2	4															
	<21	1> 1	066															
	<21	2> D	NA															
	<21	3> H	omo i	sapi	ens													
	<22	0>																
10	<22	1> C	DS															
	<22	2> (65).	(8	59)													
	<40	0> 2	4															
	ctt	cttg	ctg (ccct	cgtt	et t	gccg	gggc	e ge	ggtt	agtc	cct	gctg	gcc	accc	cactg	c	60
15	gac	c at	g tt	c gt	t cc	: tg	c gg	g ga	g to	g gc	c cc	c ga	c ct	t gc	c gg	c ttc		109
		Me	t Ph	e Va	l Pro	с Су	s Gl	y Gl	ı Se	r Al	a Pr	o As	p Le	u Al	a Gl	y Phe		
		:	1			!	5				1	0				15		
	acc	ctc	cta	atg	cca	gca	gta	tct	gtt	gga	aat	gtt	gge	cag	ctt	gca		157
	Thr	Leu	Leu	Met	Pro	Ala	Val	Ser	Val	Gly	Asn	Val	Gly	Gln	Leu	Ala		
20					20					25					30		•	
	atg	gat	ctg	att	att	tct	aca	ctg	aat	atg	tct	aag	att	ggt	tac	ttc		205
	Met	Asp	Leu	Ile	Ile	Ser	Thr	Leu	Asn	Met	Ser	Lys	Ile	Gly	Tyr	Phe		
				35					40					45				
	tat	acc	gat	tgt	ctt	gtg	cca	atg	gtt	gga	aac	aat	cca	tat	gcg	acc		253
25	Tyr	Thr	Asp	Cys	Leu	Val	Pro	Met	Val	Gly	Asn	Asn	Pro	Tyr	Ala	Thr		
			50					55					60					
	aca	gaa	gga	aat	tca	aca	gaa	ctt	agc	ata	aat	gct	gaa	gtg	tat	tca		301
	Thr	Glu	Gly	Asn	Ser	Thr	Glu	Leu	Ser	Ile	Asn	Ala	Glu	Val	Tyr	Ser	~ ~~	
		65					70				•	75						•
30	ttg	cct	tca	aga	aag	ctg	gtg	gct	cta	cag	tta	aga	tcc	att	ttt	att		349
	Leu	Pro	Ser	Arg	Lys	Leu	Val	Ala	Leu	Gln	Leu	Arg	Ser	Ile	Phe	Ile		
	80					85					90					95		
	aag	tat	aaa	tca	aag	cca	ttc	tgt	gaa	aaa	ctg	ctt	tcc	tgg	gtg	aaa		397
	Lys	Tyr	Lys	Ser	Lys	Pro	Phe	Cys	Glu	Lys	Leu	Leu	Ser	Trp	Val	Lys		
35					100					105					110			

•																	
	agc	agt	ggc	t gt	gcc	aga	gtc	att	gtt	ctt	tcg	agc	agt	cat	tca	tat	445
	Ser	Ser	Gly	Cys	Ala	Arg	Val	Ile	Val	Leu	Ser	Ser	Ser	His	Ser	Tyr	
			-	115					120					125			
	cag	cgt	aat	gat	ctg	cag	ctt	cgt	agt	act	ccc	ttc	cgg	tac	cta	ctt	493
5	Gln	Arg	Asn	Asp	Leu	Gln	Leu	Arg	Ser	Thr	Pro	Phe	Arg	Tyr	Leu	Leu	
			130					135					140				
	aca	cct	tcc	atg	caa	aaa	agt	gtt	caa	aat	aaa	ata	aag	agc	ctt	aac	541
	Thr	Pro	Ser	Met	Gln	Lys	Ser	Val	Gln	Asn	Lys	Ile	Lys	Ser	Leu	Asn	
		145					150					155					
10					gaa									-	-		589
	Trp	Glu	Glu	Met	Glu	Lys	Ser	Arg	Cys	Ile	Pro	Glu	Ile	Asp	Asp	Ser	
	160					165					170					175	
					cgc												637
	Glu	Phe	Cys	Ile	Arg	Ile	Pro	Gly	Gly	Gly	Ile	Thr	Lys	Thr	Leu	Tyr	
15		•			180					185					190		
					tct					_	_	-	_	_			685
	Asp	Glu	Ser		Ser	Lys	Glu	Ile		Met	Ala	Val	Leu		Lys	Phe	
				195					200					205			
20					gac				_	_				-			733
20	Val	Ser		GIY	Asp	Asn	Ile		Asp	Ala	Leu	Gly		Val	Glu	Tyr	
			210					215					220				
					ctt -									-			781
		225	GIU	Trp	Leu			Leu	Lys	Pro			Asp	Asp	Pro	Thr	
25				.			230					235					
20					cgg					-			_				829
	240	ber	Aid	ser	Arg		ьўs	lie	Pro			Trp	Arg	Leu	Lėü		
		5 cet				245		_4.4.			250		_ 4 _ 4		4-	255	
					ccc					tgat	ctaa	tt t	ctgt	ttta	it ac	ect	880
30	СТУ	ser	стА		Pro	PIO	Ата	Leu	Pne								
,0	+-+-				260												
									-							tgtat	940
												_	_			gtctc	1000
			ge t	נדדם	atca	ı at	gcac	caaa	. tgt	aaat	TTT -	gtac	aata	aa a	tttt	atttc	1060
	ctaa	gt							•								1066

PCT/JP99/03929

	<210> 25	
	<211> 618	
	<212> DNA	
	<213> Homo sapiens	
5	<220>	
	<221> CDS	
	<222> (54)(392)	
	<400> 25	
10	gtttacgcca gtttgaacca aagacgccca aggttgaggc cgagttccag agc atg	56
	Met	
	1	
	ggg tot egg ttg tee eag eet ttt gag tee tat ate act geg eet eee	104
	Gly Ser Arg Leu Ser Gln Pro Phe Glu Ser Tyr Ile Thr Ala Pro Pro	
15	5 10 . 15	
	ggt acc gcc gcg ccc gcc aaa cct gcg ccc cca gct aca ccc gga	152
	Gly Thr Ala Ala Pro Ala Lys Pro Ala Pro Pro Ala Thr Pro Gly	
	20 25 30	
~~	gcg ccg acc tcc cca gca gaa cac cgc ctg ttg aag acc tgc tgg agc	200
20	Ala Pro Thr Ser Pro Ala Glu His Arg Leu Leu Lys Thr Cys Trp Ser	
	35 40 45	
	tgt cgc gtg ctt tct ggg ttg ggg ctg atg ggg gcg ggc ggg tac gtg	248
	Cys Arg Val Leu Ser Gly Leu Gly Leu Met Gly Ala Gly Gly Tyr Val	
o E	50 55 60 65	
25	tac tgg gtg gca cgg aag ccc atg aag atg gga tac ccc ccg agt cca	296
	Tyr Trp Val Ala Arg Lys Pro Met Lys Met Gly Tyr Pro Pro Ser Pro	
	70 75 80	244
	try mar the mar classes were treated and the classes are t	344
30	Trp Thr Ile Thr Gln Met Val Ile Gly Leu Ser Ile Ala Thr Trp Gly 85 90 95	
00		390
	ate gtt gte atg gea gae eee aaa ggg aag gee tae ege gtt gtt t	390
	Ile Val Val Met Ala Asp Pro Lys Gly Lys Ala Tyr Arg Val Val 100 105 110	
	gaaagtacca ccagtgaate tgtettetgt etetgteeet tteecegtga cacacacage	450
35	aggeatggaa tttaatgggt gttetggaea gaeacttgta catggaeaga cateactact	
00	ayyearyyaa cecaaryyyr yrreryyaca yacacriyra caryyacaya catcacracr	510

WO 00/05367

PCT/JP99/03929

	gtggatacta caagactgag aagaaaatcg tatgttgtca ttctctggct atggagtgtt	570
	tgtggcette acagatttca caggaaccaa taaatccete agagaagt	618
	<210> 26	
5	<211> 1021	,
	<212> DNA	
	<213> Homo sapiens	•
	<220>	
	<221> CDS	
10	<222> (413)(853)	
	<400> 26	
	aagactataa gccccagcgg gcgacgaccg aacgcccccg ggaacaccgg gccccgagct	60
	eggteeegeg eeegaggate eteeaegggg etagatgget gegteggggg egggagegga	120
15	ggtgageggg egetagggee gegageeeee geeggeeett eeteeagege eetgeggaee	180
	ccgcagaagg cgctcgcctc cctagcccgc aaaaacatat cgatttttct cgctgtggca	240
	acggggacgt cotgatagat cototgetoc aataggcaac teeggeette cotgecetga	300
	cctggaacet ctgggaggge tgcagagtaa gtgccgcctc tgcgctccga cggaggcacg	360
	aggeetgtgg agtaggteee tetgtteega eaggtgegae acttggeget ee atg ett	418
20	Met Leu	
	gcg ggt gcc ggg agg cct ggc ctc ccc cag ggc cgc cac ctc tgc tgg	466
	Ala Gly Ala Gly Arg Pro Gly Leu Pro Gln Gly Arg His Leu Cys Trp	
o=	5 10 15	
25	ttg ctc tgt gct ttc acc tta aag ctc tgc caa gca gag gct ccc gtg	514
	Leu Leu Cys Ala Phe Thr Leu Lys Leu Cys Gln Ala Glu Ala Pro Val	
	20 25 30	
	cag gaa gag aag ctg tca gca agc acc tca aat ttg cca tgc tgg ctg~	562
	Gln Glu Glu Lys Leu Ser Ala Ser Thr Ser Asn Leu Pro Cys Trp Leu	
30	35 40 45 50	
	gtg gaa gag ttt gtg gta gca gaa gag tgc tct cca tgc tct aat ttc	610
	Val Glu Glu Phe Val Val Ala Glu Glu Cys Ser Pro Cys Ser Asn Phe	
	55 60 65	
	cgg gct aaa act acc cct gag tgt ggt ccc aca gga tat gta gag aaa	658
35	Arg Ala Lys Thr Thr Pro Glu Cys Gly Pro Thr Gly Tyr Val Glu Lys	

	70 75 80	
	atc aca tgc agc tca tct aag aga aat gag ttc aaa agc tgc cgc tca	706
	Ile Thr Cys Ser Ser Ser Lys Arg Asn Glu Phe Lys Ser Cys Arg Ser	
	85 90 95	
5	got ttg atg gaa caa ogo tta ttt tgg aag tto gaa ggg got gto gtg	754
	Ala Leu Met Glu Gln Arg Leu Phe Trp Lys Phe Glu Gly Ala Val Val	
	100 105 110	
	tgt gtg gcc ctg atc ttc gct tgt ctt gtc atc att cgt cag cga caa	802
	Cys Val Ala Leu Ile Phe Ala Cys Leu Val Ile Ile Arg Gln Arg Gln	
10	115 120 125 130	
	ttg gac aga aag gct ctg gaa aag gtc cgg aag caa atc gag tcc ata	850
	Leu Asp Arg Lys Ala Leu Glu Lys Val Arg Lys Gln Ile Glu Ser Ile	
	135 140 145	
	tagetacatt ceaccettgt atcetgggte ttagagacce tateteagae agtgaaagtg	910
15	aaatggactg atttgcactc ttggttcttt ggagccttgt ggtggaatcc ccttttcccc	970
	atcttcttct ttcagatcat taatgagcag aataaaaaga gtaaaatggt t	1021
	<210> 27	
	<211> 1432	
20	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (331)(1365)	
25		
	<400> 27	
	ategegeeeg ggaggegeeg gageeeageg getggeggge egeegteeea ceeeeacete	60
	gecegagtee ggggeggeee eggtgteeee teegageetg etgeacteea egteeeceta	120
	ccagggctcc agcccccagg gaaatctccg accaggcccg cccaggagcc agatccaggc	180
30	tectggaaga accatgteeg geagetactg gteatgeeag geacacactg etgeecaaga	240
	ggagetgetg tttgaattat etgtgaatgt tgggaagagg aatgeeagag etgeeggetg	300
	aaaattaccc aaccaagaga aatctgcagg atg gac ttt ctg gtc ctc ttc ttg	354
	Met Asp Phe Leu Val Leu Phe Leu	
	1 5	
35	tte tae etg get teg gtg etg atg ggt ett gtt ett ate tge gte tge	402

	Phe	_	Leu	Ala	Ser	Val		Met	Gly	Leu	Val		Ile	Cys	Val	Cys		
		10					15					20						
	tcg	aaa	acc	cat	agc	ttg	aaa	ggc	ctg	gcc	agg	gga	gga	gca	cag	ata		450
	Ser	Lys	Thr	His	Ser	Leu	Lys	Gly	Leu	Ala	Arg	Gly	Gly	Ala	Gln	Ile		
5	25					30					35					40		
	ttt	tcc	tgt	ata	att	cca	gaa	tgt	ctt	cag	aga	gcc	gtg	cat	gga	ttg		498
	Phe	Ser	Cys	Ile	Ile	Pro	Glu	Cys	Leu	Gln	Arg	Ala	Val	His	Gly	Leu		
					45					50					55			
	ctt	cat	tac	ctt	ttc	cat	acg	aga	aac	cac	acc	ttc	att	gtc	ctg	cac		546
10	Leu	His	Tyr	Leu	Phe	His	Thr	Arg	Asn	His	Thr	Phe	Ile	Val	Leu	His		
				60					65					70				
	ctg	gtc	ttg	caa	ggg	atg	gtt	tat	act	gag	tac	acc	tgg	gaa	gta	ttt		594
	Leu	Val	Leu	Gln	Gly	Met	Val	Tyr	Thr	Glu	Tyr	Thr	Trp	Glu	Val	Phe		
			75					80					85					
15	ggc	tac	tgt	cag	gag	ctg	gag	ttg	tcc	ttg	cat	tac	ctt	ctt	ctg	ccc		642
	Gly	Tyr	Cys	Gln	Glu	Leu	Glu	Leu	Ser	Leu	His	Tyr	Leu	Leu	Leu	Pro		
		90					95					100						
	tat	ctg	ctg	cta	ggt	gta	aac	ctg	ttt	ttt	ttc	acc	ctg	act	tgt	gga		690
	Tyr	Leu	Leu	Leu	Gly	Val	Asn	Leu	Phe	Phe	Phe	Thr	Leu	Thr	Cys	Gly		
20	105					110					115					120	•	
	acc	aat	cct	ggc	att	ata	aca	aaa	gca	aat	gaa	tta	tta	ttt	ctt	cat		738
	Thr	Asn	Pro	Gly	Ile	Ile	Thr	Lys	Ala	Asn	Glu	Leu	Leu	Phe	Leu	His		
					125					130					135			
	gtt	tat	gaa	ttt	gat	gaa	gtg	atg	ttt	cca	aag	aac	gtg	agg	tgc	tct		786
25	Val	Tyr	Glu	Phe	Asp	Glu	Val	Met	Phe	Pro	Lys	Asn	Val	Arg	Cys	Ser		
				140					145					150				
	act	tgt	gat	tta	agg	aaa	cca	gct	cga	tcc	aag	cac	tgc	agt	gtg	tgt		834
								Ala	-								-	
			155		_	-		160	-		_		165					
30	aac	tgg	tgt	gtg	cac	cqt	ttc.	gac	cat	cac	tgt	gtt	tgg	gtg	aac	aac		882
			_			_		Asp			_	-				*		
		170	•			_	175	•			•	180	•					
	tac	atc	qaa	gee	taa	aac	atc	agg	tac	ttc	ctc	atc	tac	qtc	tta	acc		930
				-				Arg						_				
35	185		1			190		9	-1-		195		- , -			200		
55						100					1))					200		

WO 00/05367

PCT/JP99/03929

	ttg	acg	gcc	tcg	gct	gcc	acc	gtc	gcc	att	gtg	agc	acc	act	ttt	ctg		978
	Leu	Thr	Ala	Ser	Ala	Ala	Thr	Val	Ala	Ile	Val	Ser	Thr	Thr	Phe	Leu		
					205					210					215			
	gtc	cac	ttg	gtg	gtg	atg	tca	gat	tta	tac	cag	gag	act	tac	atc	gat		1026
5	Val	His	Leu	Val	Val	Met	Ser	Asp	Leu	Tyr	Gln	Glu	Thr	Tyr	Ile	Asp		
				220					225					230				
	gac	ctt	gga	cac	ctc	cat	gtt	atg	gac	acg	gtc	ttt	ctt	att	cag	tac		1074
	ĄzĄ	Leu	Gly	His	Leu	His	Val	Met	Asp	Thr	Val	Phe	Leu	Ile	Gln	Tyr		
			235					240					245					
10	ctg	ttc	ctg	act	ttt	cca	cgg	att	gtc	ttc	atg	ctg	ggc	ttt	gtc	gtg		1122
	Leu	Phe	Leu	Thr	Phe	Pro	Arg	Ile	Val	Phe	Met	Leu	Gly	Phe	Val	Val		
		250					255				,	260						
	GTT	CTG	AGC	TTC	CTC	CTG	GGT	GGC	TAC	CTG	TTG	TTT	GTC	CTG	TAT	CTG		1170
	Val	Leu	Ser	Phe	Leu	Leu	Gly	Gly	Tyr	Leu	Leu	Phe	Val	Leu	Tyr	Leu		
15	265					270					275					280		
	gcg	gcc	acc	aac	cag	act	act	aac	gag	tgg	tac	aga	ggt	gac	tgg	gcc		1218
	Ala	Ala	Thr	Asn	Gln	Thr	Thr	Asn	Glu	Trp	Tyr	Arg	Gly	Asp	Trp	Ala		
					285					290					295			
	tgg	tgc	cag	cgt	tgt	ccc	ctt	gtg	gcc	tgg	cct	ccg	tca	gca	gag	ccc		1266
20	Trp	Cys	Gln	Arg	Cys	Pro	Leu	Val	Ala	Trp	Pro	Pro	Ser	Ala	Glu	Pro		
				300					305					310				
	caa	gtc	cac	cgg	aac	att	cac	tcc	cat	9 99	ctt	cgg	agc	aac	ctt	caa		1314
	Gln	Val	His	Arg	Asn	Ile	His	Ser	His	Gly	Leu	Arg	Ser	Asn	Leu	Gln		
			315					320					325					
25	gag	atc	ttt	cta	cct	gcc	ttt	cca	tgt	cat	gag	agg	aag	aaa	caa	gaa		1362
	Glu	Ile	Phe	Leu	Pro	Ala	Phe	Pro	Cys	His	Glu	Arg	Lys	Lys	Gln	Glu		
		330					335					340						
	tga	caag	tgt i	atga	ctgc	et tt	gag	ctgta	a gti	cece	gttt	atti	cacao	at o	gtgga	atcc -	-	1420
	tcg	tttt	cca a	ag														1432
3 0	•				•													
	<21	0> 2	8															
	<21	1> 6	01															
	<21	2> ס	NA															
	<21	3> н	omo :	sapi	ens													
35	<22	0>																

PCT/JP99/03229

460

520 580

601

WO 00/05367

27/177

	<222	2> (6	62).	(3	55)												
			-														
	<400)> 28	8														
5	atgo	egea	cat a	agcg	actt	gg t	gggc	gcgt	c ca	gtga	tgac	tgg	ggga	tee (egge	aagtaa	60
	c at	tg a	ct a	aa aa	ag a	ag c	gg ga	ag a	at c	tg g	gc g	tc g	et e	ta g	ag a	tc gat	109
	Me	et Ti	hr Ly	ys Ly	ys L	ys Ai	rg Ci	lu A	sn L	eu G	ly V	al A	la L	eu G	lu I	le Asp	
		1		•		5				;	10					15	
	ggg	cta	gag	gag	aag	ctg	tcc	cag	tgt	cgg	aga	gac	ctg	gag	gċc	gtg	157
10	Gly	Leu	Glu	Glu	Lys	Leu	Ser	Gln	Cys	Arg	Arg	Asp	Leu	Glu	Ala	Val	
				20					25					30			
	aac	tcc	aga	ctc	cac	agc	cgg	gag	ctg	agc	cca	gag	gcc	agg	agg	tcc	205
	Asn	Ser	Arg	Leu	His	Ser	Arg	Glu	Leu	Ser	Pro	Glu	Ala	Arg	Arg	Ser	
			35					40					45				
15	ctg	gag	aag	gag	aaa	aac	agc	cta	atg	aac	aaa	gcc	tcc	aac	tac	gag	253
	Leu	Glu	Lys	Glu	Lys	Asn	Ser	Leu	Met	Asn	Lys	Ala	Ser	Asn	Tyr	Glu	
		50					55					60					
	aag	gaa	ctg	aag	ttt	ctt	cgg	caa	gag	aac	cgg	aag	aac	atg	ctg	ctc	301
	Lys	Glu	Leu	Lys	Phe	Leu	Arg	Gln	Glu	Asn	Arg	Lys	Asn	Met	Leu	Leu	
20	65					70					75					80	
	tct	gtg	gcc	atc	ttt	atc	ctc	ctg	acg	ctc	gtc	tat	gcc	tac	tgg	acc	349
	Ser	Val	Ala	Ile	Phe	Ile	Leu	Leu	Thr	Leu	Val	Tyr	Ala	Tyr	Trp	Thr	-
					85					90					95		
	atg	tga	geet	gge a	actt	ccca	ac aa	acca	gcac	a ggo	ette	cact	tgg	ccct	t		400
25	Met																

tgatcaggat caagcaggca cttcaagcct caataggacc aaggtgctgg ggtgttcccc

teceaaceta gtgtteaage atggetteet ggeggeecag geettgeete eetggeetge

tggggggttc cgggtctcca gaaggacatg gtgctggtcc ctcccttagc ccaagggaga

<210> 29

30

<221> CDS

<211> 585

<212> DNA

35 <213> Homo sapiens

ggcaataaag acacaaagct g

	<220>	
	<221> CDS	
	<222> (78)(452)	
	•	
5	<400> 29	
	actaacetet geeetgeage egegaggeg egegggaaat eeegagtgea tetggaatae	60
	gcagagtcag taagacc atg gct acg tcc tcg atg tct aag ggt tgc ttt	110
	Met Ala Thr Ser Ser Met Ser Lys Gly Cys Phe	
	1 5 10	
10	gtt ttt aag cca aac tcc aaa aag aga aag atc tct ctg cca ata gag	158
	Val Phe Lys Pro Asn Ser Lys Lys Arg Lys Ile Ser Leu Pro Ile Glu	
	15 20 25	
	gac tat ttt aac aaa ggg aaa aat gag cct gag gac agt aag ctt cga	206
	Asp Tyr Phe Asn Lys Gly Lys Asn Glu Pro Glu Asp Ser Lys Leu Arg	
15	30 35 40	
	ttc gaa act tat cag ttg ata tgg cag cag atg aaa tct gaa aat gag	254
•	Phe Glu Thr Tyr Gln Leu Ile Trp Gln Gln Met Lys Ser Glu Asn Glu	
	45 50 55	
	cga cta caa gag gaa tta aat aaa aac ttg ttt gac aat ctg att gaa	302
20	Arg Leu Gln Glu Glu Leu Asn Lys Asn Leu Phe Asp Asn Leu Ile Glu	
	60 65 70 75	
	ttt ctg caa aaa tca cat tct gga ttc cag aag aat tca aga gac ttg	350
	Phe Leu Gln Lys Ser His Ser Gly Phe Gln Lys Asn Ser Arg Asp Leu	
\~	80 85 90	
25	ggc ggt caa ata aaa ctc aga gaa att cca act gct gct ctt gtt ctt	398
	Gly Gly Gln Ile Lys Leu Arg Glu Ile Pro Thr Ala Ala Leu Val Leu	
	95 100 105	
	ggt ata tat geg tat gtt tgt tea tge atg cat ete tgt gta ttt egt	446
30	Gly Ile Tyr Ala Tyr Val Cys Ser Cys Met His Leu Cys Val Phe Arg	
50	110 115 120	
	ttt taaatttttt tttattgttg agaatagtgg aaggacctgt tttgatgagc c	500
	Phe	
	tattttgtgt gtgttatttg tagaattaaa ggaattaaa tetabatta a	
35	tattttgtct ctcttatttg tacaattaaa ccaactatag tttatattac atattttcaa aaaccaataa aaattcctta tcttt	560
,,,	addocadoda dadocoolda coold	585

	<210)> 30	כ															
	<21	1> 1:	100															
	<212	2> Di	AI															
5	<213	3> Ho	omo s	sapi	ens													
	<220)>																
	<22	l> CI	os															
	<222	2> (5	57).	(10	040)													
10	-10/	ns 20																
10)> 30																
	agad	cegac	ים בי	cgaco	egaad	ca co	ergge	cagg	a gc	agga	cagg	acg	geeg	gac (gegg	ec ato		59
																Met		
	~~~	<b></b>	a+.						<b>.</b>			_+_	-+-				L	107
15			ctc	_					-		_	_				-		107
10	WIG	Giu	Leu	5	GIY	PIO	Pne	rea	_	сту	Ald	neu	neu	15	Pne	ren		
	tac	cta	a crt		ata	500	at a	<b>a</b> 24	10	226	at a	000	202		000	ata		155
			agt Ser				_		-	_								133
	Cys	LCu	20	Gry	Deu	ATG	Vai	25	Val	пуз	Val	FIO	30	GIU	110	nea		
20	age	aca	ccc	cta	aaa	227	878		aaa	cta	BCC.	tac		tac	acc	aca		203
			Pro															200
		35				2,5	40	1114	014	200	****	45		-1-	001			
	tca		gga	gac	agc	ttc		cta	gag	taa	agc		ata	cag	cct	aaa		251
			Gly		_		_	_			_							
25	50		-	-		55					60					65		
	aaa	ccc	atc	tct.	gag	tcc	cat	cca	atc	ctg	tac	ttc	acc	aat	ggc	cat		299
	Lys	Pro	Ile	Ser	Glu	Ser	His	Pro	Ile	Leu	Tyr	Phe	Thr	Asn	Gly	His		
					70					75					80		-	
	ctg	tat	cca	act	ggt	tct	aag	tca	aag	cgg	gtc	agc	ctg	ctt	cag	aac		347
30	Leu	Tyr	Pro	Thr	Gly	Ser	Lys	Ser	Lys	Arg	Val	Ser	Leu	Leu	Gln	Asn		
				85					90					95				
	ccc	ccc	aca	gtg	ggg	gtg	gcc	aca	ctg	aaa	ctg	act	gac	gtc	cac	ccc		395
	Pro	Pro	Thr	Val	Gly	Val	Ala	Thr	Leu	Lys	Leu	Thr	Asp	Val	His	Pro		
			100					105					110					
35	tca	gat	act	gga	acc	tac	ctc	tgc	caa	gtc	aac	aac	cca	cca	gat	ttc		443

WO 00/05367

### PCT/JP99/03929

	Ser	Asp	Thr	Gly	Thr	Туг	Leu	Суз	Gln	[Va]	Asn	Asn	Pro	Pro	As _l	Phe	
		115					120					125					
	tac	acc	aat	<b>9</b> 99	ttg	ggg	cta	ato	aac	ctt	act	gtg	ctg	gtt	cec	ccc	49
	Tyr	Thr	Asn	Gly	Leu	Gly	Leu	Ile	Asn	Leu	Thr	Val	Leu	Val	Pro	Pro	
5	130					135					140					145	
	agt	aat	ccc	tta	tgc	agt	cag	agt	gga	caa	acc	tct	gtg	gga	ggo	tct	539
	Ser	Asn	Pro	Leu	Cys	Ser	Gln	Ser	Gly	Gln	Thr	Ser	Val	Gly	Gly	Ser	
					150					155					160	)	
	act	gca	ctg	aga	tgc	agc	tct	tcc	gag	ggg	gct	cct	aag	cca	gtg	tac	587
10	Thr	Ala	Leu	Arg	Cys	Ser	Ser	Ser	Glu	Gly	Ala	Pro	Lys	Pro	Val	Tyr	
				165					170					175			
	aac	tgg	gtg	cgt	ctt	gga	act	ttt	cct	aca	cct	tct	cct	ggc	age	atg	635
	Asn	Trp	Val	Arg	Leu	Gly	Thr	Phe	Pro	Thr	Pro	Ser	Pro	Gly	Ser	Met	
			180					185					190				
15																ctg	683
	Val		Asp	Glu	Val	Ser	Gly	Gln	Leu	Ile	Leu	Thr	Asn	Leu	Ser	Leu	
		195					200					205					
											acc					-	731
20		Ser	Ser	Gly	Thr		Arg	Cys	Val	Ala	Thr	Asn	Gln	Met	Gly	Ser	
20	210					215					220			•		225	
											gaa					-	779
	Ala	Ser	Cys	Glu		Thr	Leu	Ser	Val		Glu	Pro	Ser	Gln	Gly	Arg	
					230					235					240		
oe .											ggc				_		827
25	Val	ATA				Ile	Gly	Val		Leu	Gly	Val	Leu	Leu	Leu	Ser	
				245.					250					255			
											aaa						875
	val			Phe	Cys	Leu			Phe	Gln	Lys			Gly	Lys	Lys	
30			260					265					270				
JU											cgg						923
			GIU	Thr	Tyr			Ser	Asp	Leu	Arg		Asp .	Ala	Ile	Ala	
		275					280					285					
											get						971
35		стХ	тте	ser			Thr	Cys	Met	Arg	Ala .	Asp	Ser	Ser	Lys	_	
บบ	290					295					300					305	

	tto ctg gaa aga ecc teg tet gee age acc gtg acg acc acc aag tec	1019
	Phe Leu Glu Arg Pro Ser Ser Ala Ser Thr Val Thr Thr Lys Ser	
	310 315 320	
	aag ctc cct atg gtc gtg tgacttctcc cgatccctga gggcggtgag ggg	1070
5	Lys Leu Pro Met Val Val	
	325	
	gaatatcaat aattaaagtc tgtgggtacc	1100
	<210> 31	
10	<211> 313	
	<212> PRT	
	<213> Homo sapiens	
15	<400> 31	
15	Met Asn Gln Leu Ser Phe Leu Leu Phe Leu Ile Ala Thr Thr Arg Gly	
	1 5 10 15  Trp Ser Thr Asp Glu Ala Asn Thr Tyr Phe Lys Glu Trp Thr Cys Ser	
	20 25 30	
	Ser Ser Pro Ser Leu Pro Arg Ser Cys Lys Glu Ile Lys Asp Glu Cys	
20	35 40 45	
	Pro Ser Ala Phe Asp Gly Leu Tyr Phe Leu Arg Thr Glu Asn Gly Val	
	50 55 60	
	Ile Tyr Gln Thr Phe Cys Asp Met Thr Ser Gly Gly Gly Trp Thr	
	65 70 75 80	
25	Leu Val Ala Ser Val His Glu Asn Asp Met Arg Gly Lys Cys Thr Val	
	. 85 90 95	
	Gly Asp Arg Trp Ser Ser Gln Gln Gly Ser Lys Ala Asp Tyr Pro Glu	
	100 105 110 -	
	Gly Asp Gly Asn Trp Ala Asn Tyr Asn Thr Phe Gly Ser Ala Glu Ala	
30	115 120 125	
	Ala Thr Ser Asp Asp Tyr Lys Asn Pro Gly Tyr Tyr Asp Ile Gln Ala	
	130 135 140	
	Lys Asp Leu Gly Ile Trp His Val Pro Asn Lys Ser Pro Met Gln His	
	145 150 155 160	
35	Trp Arg Asn Ser Ser Leu Leu Arg Tyr Arg Thr Asp Thr Gly Phe Leu	

					165					170					175	
	Gln	Thr	Leu	Gly	His	Asn	Leu	Phe	Gly	Ile	Tyr	Gln	Lys	Tyr	Pro	Val
				180					185					190		
•	Lys	Tyr	Gly	Glu	Gly	Lys	Cys	Trp	Thr	Asp	Asn	Gly	Pro	Val	Ile	Pro
5	-	<u>-</u>	195		-	_	-	200					205			
	Val	Val	Tvr	asA	Phe	Glv	Asp	Ala	Gln	Lvs	Thr	Ala	Ser	Tvr	Tyr	Ser
		210	-1-			1	215			- 4		220		-	3 -	
	Pro		Glv	Gln	Ara	Glu		Thr	Δla	Glv	Phe		Gln	Phe	Arg	Val
	225	-1-		V-1	*9	230		****		U_1	235				3	240
10		n an	N ~~	<i>c</i> 1	7		7 l n	7	210	T OIL		ם [ ת	Clar	Mot	7.50	
10	FIIE	WPII	ASII	GIU	-	ATG	ATG	ASII	ATG		Cys	ATG	σ⊥у	MEC	Arg	Vai
	_,	~ 1	_	_	245			•	_	250	_,	<b>~</b> 3	-1	-1	255	
	Thr	GIY	Cys		Thr	Glu	His	His	_	Пе	СТА	GTÄ	GIĀ	_	Tyr	Pne
				260					265		_		_	270		
_	Pro	Glu		Ser	Pro	Gln	Gln	Cys	Gly	Asp	Phe	Ser	_	Phe	Asp	Trp
15			275					280					285			
	Ser	Gly	Tyr	Gly	Thr	His	Val	Gly	Tyr	Ser	Ser	Ser	Arg	Glu	Ile	Thr
		290					295					300				
	Glu	Ala	Ala	Val	Leu	Leu	Phe	Tyr	Arg							
	305					310										
20																
	<21	0> 32	2													
	<21	1> 22	29													
	<21	2> PI	RT													
	<21	3> H	omo s	sapi	ens											
25				-												
	<40	0> 3:	2													
	Met	Gly	asA	Lvs	Ile	Tro	Leu	Pro	Phe	Pro	Val	Leu	Leu	Leu	Ala	Ala
	1		•	•	5	•				10					15	
	Leu	Pro	Pro	Val		T.eu	Pro	Glv	Ala		Glv	Phe	Thr	Pro	Ser	Leu
30				20					25		,			30		
	λen	Sar	) an		mh =	Dho	mh ~	Ton		בות	Clu	Gln.	Twe		Cue	Dhe
	vsh	Ser		Pile	THE	Pile	TIIL		PIO	Ara	GLY	GIII		Giu	Cys	File
	<b></b>	01.	35		_	_	_	40	_	_	-1		45		<b>~</b> 1.	
	туr		Pro	Met	Pro	Leu	_	Ala	ser	гел	GIU		GIU	ryr	Gln	val
0.5	_	50					55					60	_	_		_
35	Leu	Asp	Gly	Ala	Gly	Leu	Asp	Ile	Asp	Phe	His	Leu	Ala	Ser	Pro	Glu

65

### PCT/JP99/03929

80

### 33/177

70

75

Asp Gly Val His Thr 95  Phe Asp Asn Thr Phe 110  Leu Ile Leu Asp Asn 125  Lys Lys Tyr Ile Thr 140  Ile Leu Glu Ser Ile 160  His Ile Gln Ile Leu 175  Gln Glu Ser Asn Phe
Phe Asp Asn Thr Phe 110 Leu Ile Leu Asp Asn 125 Lys Lys Tyr Ile Thr 140 Ile Leu Glu Ser Ile 160 His Ile Gln Ile Leu 175
Leu Ile Leu Asp Asn 125 Lys Lys Tyr Ile Thr 140 Ile Leu Glu Ser Ile 160 His Ile Gln Ile Leu 175
Leu Ile Leu Asp Asn 125 Lys Lys Tyr Ile Thr 140 Ile Leu Glu Ser Ile 160 His Ile Gln Ile Leu 175
125 Lys Lys Tyr Ile Thr 140 Ile Leu Glu Ser Ile 160 His Ile Gln Ile Leu 175
Lys Lys Tyr Ile Thr 140 Ile Leu Glu Ser Ile 160 His Ile Gln Ile Leu 175
140 Ile Leu Glu Ser Ile 160 His Ile Gln Ile Leu 175
Ile Leu Glu Ser Ile 160 His Ile Gln Ile Leu 175
160 His Ile Gln Ile Leu 175
His Ile Gln Ile Leu 175
175
Gln Glu Ser Asn Phe
190
Val Val Met Val Val
205
Leu Phe Glu Asp Lys
220
Pro Leu Leu Leu Leu
15
Ala His Ser Ala Thr
30
Arg Gln Leu Pro Ala
45
His Trp Gly Val Phe
ב ב ב

		50					55					60					
	Ser	Val	Pro	Ser	Phe	Gly	Ser	Glu	Trp	Phe	Trp	Trp	Tyr	Trp	Gln	Lys	
	65		-			70					75					80	
	Glu	Lys	Ile	Pro	Lys	Tyr	Val	Glu	Phe	Met	Lys	Asp	Asn	Tyr	Pro	Pro	
5					85					90					95		
	Ser	Phe	Lys	Tyr	Glu	Asp	Phe	Gly	Pro	Leu	Phe	Thr	Ala	Lys	Phe	Phe	
				100					105					110			
	Asn	Ala	Asn	Gln	Trp	Ala	Asp	Ile	Phe	Gln	Ala	Ser	Gly	Ala	Lys	Tyr	
			115					120					125				
10	Ile	Val	Leu	Thr	Ser	Lys	His	His	Glu	Gly	Phe	Thr	Leu	Trp	Gly	Ser	
		130					135					140					
	Glu	Tyr	Ser	Trp	Asn	Trp	Asn	Ala	Ile	Asp	Glu	Gly	Pro	Lys	Arg	Asp	
	145					150					155					160	
	Ile	Val	Lys	Glu	Leu	Glu	Val	Ala	Ile	Arg	Asn	Arg	Thr	Asp	Leu	Arg	
15					165					170					175		
	Phe	Gly	Leu		Tyr	Ser	Leu	Phe	Glu	Trp	Phe	His	Pro	Leu	Phe	Leu	
				180					185					190			
	Glu	Asp		Ser	Ser	Ser	Phe	His	Lys	Arg	Gln	Phe		Val	Ser	Lys	
			195					200					205				
20	Thr		Pro	Glu	Leu	Tyr		Leu	Val	Asn	Asn		Gln	Pro	Glu	Val	
	_	210					215					220					
		Trp	Ser	Asp	Gly		Gly	Gly	Ala	Pro		Gln	Tyr	Trp	Asn		
	225	-1	_,			230				_	235		_		_	240	
) E	Thr	СТЙ	Phe	Leu		Trp	Leu	Tyr	Asn	Glu	Ser	Pro	Val	Arg	_	Thr	
25	**-1	••. •	_,	_	245					250			_		255		
	vaı	vai	Thr		Asp	Arg	Trp	Gly		Gly	Ser	Ile	Cys	_	His	Gly	
	<b>61</b>	Db -	<b></b>	260	_	_	_		265					270	_		
	СТА			Thr	Cys	Ser	Asp		Tyr	Asn	Pro	Gly		Leu	Leu	Pro	
30	ni.		275	- 1	_	_		280			_		285				
30	HIS		тър	Glu	Asn	Cys		Thr	Ile	Asp	Lys		Ser	Trp	Gly	Tyr	
	N	290	<b>0</b> 1.				295			_		300					
		Arg	GIII	Ala	GIY		Ser	Asp	Tyr	Leu		Ile	GIu	GLu	Leu		
	305	<b>0</b> 1-	<b>.</b>			310		_			315		_	_		320	
35	тÀг	GTU	rea	val		Thr	Val	Ser	Cys	Gly	Gly	Asn	Leu	Leu		Asn	
343					325					330					225		

	Ile	Gly	Pro	Thr 340	Leu	Asp	Gly	Thr	Ile 345	Ser	Val	Val	Phe	Glu 350	Glu	Arg
	T.e.ii	) ra	Gln.		C1	C	Trp	T 011		17-1	) en	Gly	Glu.		Tla	M
	Ten	мц	355	Mec	стх	Ser	TIP	360	гуу	Val	Wali	GIY	365	ATA	TTG	TYF
5	Glu	Thr	His	Thr	Trp	Arq	Ser	Gln	Asn	Asp	Thr	Val	Thr	Pro	Asp	Val
		370			-		375			-		380			•	
	Trp	Tyr	Thr	Ser	Lys	Pro	Lys	Glu	Lys	Leu	Val	Tyr	Ala	Ile	Phe	Leu
	385					390					395					400
	Lys	Trp	Pro	Thr	Ser	Gly	Gln	Leu	Phe	Leu	Gly	His	Pro	Lys	Ala	Ile
10					405					410					415	
	Leu	Gly	Ala	Thr	Glu	Val	Lys	Leu	Leu	Gly	His	Gly	Gln	Pro	Leu	Asn
				420					425					430		
	Trp	Ile	Ser	Leu	Glu	Gln	Asn	Gly	Ile	Met	Val	Glu	Leu	Pro	Gln	Leu
			435					440					445			
15	Thr	Ile	His	Gln	Met	Pro	Cys	Lys	Trp	Gly	Trp	Ala	Leu	Ala	Leu	Thr
		450					455					460				
	Asn	Val	Ile													
	465															
20	-0.34															
20		0> 34 1> 04														
		1> 99														
		2> PI														
	~21.	32 HC	omo s	apıe	ens											
25	<40	0> 34	1													
	Met	Asp	Asn	Val·	Gln	Pro	Lys	Ile	Lys	His	Arg	Pro	Phe	Cys	Phe	Ser
	1				5		-			10					15	
	Val	Lys	Gly	His	Val	Lys	Met	Leu	Arg	Leu	Asp	Ile	Ile	Asn	Ser	Leu
				20					25					30		
30	Val	Thr	Thr	Val	Phe	Met	Leu	Ile	Val	Ser	Val	Leu	Ala	Leu	Ile	Pro
			35			i,		40					45			
	Glu	Thr	Thr	Thr	Leu	Thr	Val	Gly	Gly	Gly	Val	Phe	Ala	Leu	Val	Thr
		50					55					60				
	Ala	Val	Cys	Cys	Leu	Ala	Asp	Gly	Ala	Leu	Ile	Tyr	Arg	Lys	Leu	Leu
35	65					70					75					80

	Phe	Asn	Pro	Ser	Gly 85	Pro	Tyr	Gln	Gln	Lys 90	Pro	Val	His	Glu	Lys 95	
	Glu	Val	Leu		05					,,,					93	
5	<21	0> 3!	5													
	<21	1> 1	89													
	<21	2> PI	RT													
	<21	3> н	omo:	sapi	ens											
10	<40	0> 3!	5													
	Met	Glu	Glu	Gly	Gly	Asn	Leu	Gly	Gly	Leu	Ile	Lys	Met	Val	His	Leu
	1				5					10					15	
	Leu	Val	Leu	Ser	Gly	Ala	Trp	Gly	Met	Gln	Met	Trp	Val	Thr	Phe	Val
				20					25					30		
15	Ser	Gly	Phe	Leu	Leu	Phe	Arg	Ser	Leu	Pro	Arg	His	Thr	Phe	Gly	Leu
			35					40					45			
	Val	Gln	Ser	Lys	Leu	Phe	Pro	Phe	Tyr	Phe	His	Ile	Ser	Met	Gly	Cys
		50					55					60				
	Ala	Phe	Ile	Asn	Leu	Cys	Ile	Leu	Ala	Ser	Gln	His	Ala	Trp	Ala	Gln
20	65					70					75					80
	Leu	Thr	Phe	Trp	Glu	Ala	Ser	Gln	Leu	Tyr	Leu	Leu	Phe	Leu	Ser	Leu
					85					90					95	
	Thr	Leu	Ala	Thr	Val	Asn	Ala	Arg	Trp	Leu	Glu	Pro	Arg	Thr	Thr	Ala
~=				100					105					110		
<b>2</b> 5	Ala	Met	Trp	Ala	Leu	Gln	Thr	Val	Glu	Lys	Glu	Arg	Gly	Leu	Gly	Gly
			115					120					125			
	Glu		Pro	Gly	Ser	His	Gln	Gly	Pro	Asp	Pro	Tyr	Arg	Gln	Leu	Arg
		130					135					140				
00		Lys	Asp	Pro	Lys	Tyr	Ser	Ala	Leu	Arg	Gln	Asn	Phe	Phe	Arg	Tyr
30	145					150					155					160
	His	Gly	Leu	Ser	Ser	Leu	Суѕ	Asn	Leu	Gly	Cys	Val	Leu	Ser	Asn	Gly
					165					170					175	
	Leu	Cys	Leu	Ala	Gly	Leu	Ala	Leu	Glu	Ile	Arg	Ser	Leu			
				180					185							
25																

WO 00/05367

#### PCT/JP99/03929

	<210	0> 3	6													
	<21	1> 3	63													
	<212	2> PI	RT									٠				
	<21	3> H	omc	sapi	ens											
5																
	<400	)> 3(	5													
	Met	Val	qzA	Ser	Leu	Leu	Ala	Val	Thr	Leu	Ala	Glv	Asn	Leu	Glv	Let
	1		•		5					10		•			15	
	Thr	Phe	Leu	Arg	Glv	Ser	Gln	Thr	Gln		His	Pro	Asp	Leu		Th
10				20	2				25					30	1	
	Glu	Glv	Cvs		asa	Gln	Leu	Ser	Ala	Pro	Ara	Thr	Phe		Leu	Lei
		•	35	•				40					45			
	Asp	Pro	Lys	Ala	Ser	Leu	Leu	Thr	Lys	Ala	Phe	Leu	Asn	Gly	Ala	Lei
	_	50	-				55		•			60		•		
15	Asp	Gly	Val	Ile	Leu	Gly	Asp	Tyr	Leu	Ser	Arg	Thr	Pro	Glu	Pro	Arc
	65	-				70	•	•			75					80
	Pro	Ser	Leu	Ser	His	Leu	Leu	Ser	Gln	Tyr	Tyr	Gly	Ala	Gly	Val	Ala
					85					90		-		_	95	
	Arg	Asp	Pro	Gly	Phe	Arg	Ser	Asn	Phe	Arg	Arg	Gln	Asn	Gly	Ala	Ala
20				100		_			105					110		
	Leu	Thr	Ser	Ala	Ser	Ile	Leu	Ala	Gln	Gln	Val	Trp	Gly	Thr	Leu	Va]
			115					120					125			
	Leu	Leu	Gln	Arg	Leu	Glu	Pro	Val	His	Leu	Gln	Leu	Gln	Cys	Met	Ser
		130					135					140				
25	Gln	Glu	Gln	Leu	Ala	Gln	Val	Ala	Ala	Asn	Ala	Thr	Lys	Glu	Phe	Thr
	145					150					155					160
	Glu	Ala	Phe	Leu	Gly	Cys	Pro	Ala	Ile	His	Pro	Arg	Cys	Arg	Trp	Gly
					165					170					175	_
	Ala	Ala	Pro	Tyr	Arg	Gly	Arg	Pro	Lys	Leu	Leu	Gln	Leu	Pro	Leu	Gly
30				180	_	_	_		185					190		_
	Phe	Leu	Tyr	Val	His	His	Thr	Tyr	Val	Pro	Ala	Pro	Pro	Cys	Thr	Asp
			195					200					205	-		^
	Phe	Thr		Cys	Ala	Ala	Asn		Arg	Ser	Met	Gln		Tyr	His	Gln
		210	-	-			215					220	-	-		
35	Asp		Gln	Glv	Tro	Glv		Ile	Glv	Tvr	Ser		Val	Val	Glv	Ser

	225					230					235					240
	Asp	Gly	Tyr	Val	Tyr	Glu	Gly	Arg	Gly	Trp	His	Trp	Val	Gly	Ala	His
					245					250					255	
	Thr	Leu	Gly	His	Asn	Ser	Arg	Gly	Phe	Gly	Val	Ala	Ile	Val	Gly	Asr
5				260					265					270		
	Tyr	Thr	Ala	Ala	Leu	Pro	Thr	Glu	Ala	Ala	Leu	Arg	Thr	Val	Arg	Asp
			275					280					285			
	Thr	Leu	Pro	Ser	Cys	Ala	Val	Arg	Ala	Gly	Leu	Leu	Arg	Pro	Asp	туг
		290					295					300				
10	Ala	Leu	Leu	Gly	His	Arg	Gln	Leu	Val	Arg	Thr	Asp	Cys	Pro	Gly	Asp
	305					310					315					320
	Ala	Leu	Phe	Asp	Leu	Leu	Arg	Thr	Trp	Pro	His	Phe	Thr	Ala	Thr	Val
					325					330					335	
	Lys	Pro	Arg	Pro	Ala	Arg	Ser	Val	Ser	Lys	Arg	Ser	Arg	Arg	Glu	Pro
15				340					345					350		
	Pro	Pro	Arg	Thr	Leu	Pro	Ala	Thr	Asp	Leu	Gln					
			355					360								
		0> 37														
20	<21	1> 24	19													
		2> PI														
	<21	3> Ho	omo	sapie	ens										٠	
	- 4 0 4		_													
or		0> 37				_	_			_	_			_		
25		GIŢ	Gly	Pro	•	Gly	Ala	Gly	Trp		Ala	Ala	Gly	Leu		Leu
	Ì				5					10				_	15	
	GIY	Ala	Gly		Cys	Tyr	Cys	Ile	_	Arg	Leu	Thr	Arg		Arg	Arg
	_			20			_		25					30		
90	Arg	Gly		Arg	Glu	Leu	Gly		Arg	Ser	Ser	Lys		Ala	Glu	Asp
30	_		35					40					45			
	Leu		Asp	Gly	Ser	Tyr	Asp	Asp	Val	Leu	Asn		Glu	Gln	Leu	Gln
		50					55					60				
		Leu	Leu	Tyr	Leu	Leu	Glu	Ser	Thr	Glu	Asp	Pro	Val	Ile	Ile	Glu
~~	65					70					75 ·					80
<b>3</b> 5	Arg	Ala	Leu	Ile	Thr	Leu	Gly	Asn	Asn	Ala	Ala	Phe	Ser	Val	Asn	Gln

					85					90					95	
	Ala 1	Ile	Ile	Arg	Glu	Leu	Gly	Gly	Ile	Pro	Ile	Val	Ala	Asn	Lys	Ile
				100					105					110		
	Asn I	His	Ser	Asn	Gln	Ser	Ile	Lys	Glu	Lys	Ala	Leu	Asn	Ala	Leu	Asn
5			115					120					125			
	Asn I	Leu	Ser	Val	Asn	Val	Glu	Asn	Gln	Ile	Lys	Ile	Lys	Val	Gln	Val
	1	130					135					140				
	Leu I	Lys	Leu	Leu	Leu	Asn	Leu	Ser	Glu	Asn	Pro	Ala	Met	Thr	Glu	Gly
	145					150					155					160
10	Leu I	Leu	Arg	Ala	Gln	Val	Asp	Ser	Ser	Phe	Leu	Ser	Leu	Tyr	Asp	Ser
					165					170					175	
	His V	Jal	Ala	Lys	Glu	Ile	Leu	Leu	Arg	Val	Leu	Thr	Leu	Phe	Gln	Asn
				180					185					190		
	Ile I	Lys	Asn	Cys	Leu	Lys	Ile	Glu	Gly	His	Leu	Ala	Val	Gln	Pro	Thr
15			195					200					205			
	Phe 1	Chr	Glu	Gly	Ser	Leu	Phe	Phe	Leu	Leu	His	Gly	Glu	Glu	Cys	Ala
	2	210					215					220				
	Gln I	Гуs	Ile	Arg	Ala	Leu	Val	Asp	His	His	Asp	Ala	Glu	Val	Lys	Glu
	225					230					235					240
20	Lys V	/al	Val	Thr	Ile	Ile	Pro	Lys	Ile							
					245			•								
	<210>	> 38														
	<211>	> 98														
25	<212>	PR	T													
	<213>	> Ho	mo s	apie	ens											
	<400>	> 38	· .													
	Met A	Ala	Ser	Leu	Leu	Cys	Cys	Gly	Pro	Lys	Leu	Ala	Ala	Cys	Gly	Ile
30	. 1				5					10					15	
	Val I	Leu	Ser	Ala	Trp	Gly	Val	Ile	Met	Leu	Ile	Met	Leu	Gly	Ile	Phe
				20					25					30		
	Phe A	Asn	Val	His	Ser	Ala	Val	Leu	Ile	Glu	Asp	Val	Pro	Phe	Thr	Glu
			35					40					45			
35	Lys A	qzA	Phe	Glu	Asn	Gly	Pro	Gln	Asn	Ile	Tyr	Asn	Leu	Tyr	Glu	Gln

		50					55					60					
	Val	Ser	Tyr	Asn	Cys	Phe	Ile	Ala	Ala	Gly	Leu	Tyr	Leu	Leu	Leu	Gly	
	65					70					75					80	
	Gly	Phe	Ser	Phe	Cys	Gln	Val	Arg	Leu	Asn	Lys	Arg	Lys	Glu	Tyr	Met	
5					85					90					95		
	Val	Arg															
	<210	0> 39	9														
	<21	1> 17	72														
10	<212	2> PI	RT														
	<21	3> H	omo s	sapi	ens												
		0> 39															
	Met	Val	Gly	Pro	Ala	Pro	Arg	Arg	Arg		Arg	Pro	Leu	Ala		Leu	
15	1				5					10			_		15	_	
	Ala	Leu	Val		Ala	Leu	Ala	Pro		Leu	Pro	Thr	Ala		Ala	Gly	
				20	_			_	25			••- 7	<b>3</b>	30	<b>5</b> 1-	m\	
	Gin	Thr		Arg	Pro	Ala	GIU		GTĀ	Pro	Pro	vaı	Arg 45	Leu	Pne	Thr	
20	<b>~</b> 1	Glu	35	T	22-	<b>3</b>	<b></b>	40	C1	C1	C111	Clu		Cln.	Dro	T10	
20	GIU	50	GIU	Leu	Ala	Arg	55	Сту	GIY	GIU	GIU	60	rop	GIII	FIO	116	
	ጥላታታ	Leu	פות	val.	Tue	Clv		Wal.	Dhe	Asn	Val		Ser	Glv	T.vs	Glu	
	65	neu	ALG	Val	шуз	70	Vul	VUI	1110	1100	75			,	2,2	80	
		Tyr	Glv	Ara	Glv		Pro	Tvr	Asn	Ala		Thr	Glv	Lvs	Asp		
25		- 7 -		9	85			-1-		90			2	-4	95		
	Thr	Arg	Glv	Val		Lvs	Met	Ser	Leu	Asp	Pro	Ala	Asp	Leu	Thr	His	
		,		100					105	•			-	110			
	Asp	Thr	Thr		Leu	Thr	Ala	Lys	Glu	Leu	Glu	Ala	Leu	Asp	Glu	Val	
			115	•				120					125				
30	Phe	Thr	Lys	Val	Tyr	Lys	Ala	Lys	Tyr	Pro	Ile	Val	Gly	Tyr	Thr	Ala	
		130			•	•	135					140					
	Arg	Arg	Ile	Leu	Asn	Glu	Asp	Gly	Ser	Pro	Asn	Leu	Asp	Phe	Lys	Pro	
	145					150					155					160	
	Glu	Asp	Gln	Pro	His	Phe	Asp	Ile	Lys	Asp	Glu	Phe					
35					165					170							

	<210> 40	
	<211> 120	
	<212> PRT	
5	<213> Homo sapiens	
	<400> 40	
	Met Met Pro Ser Arg Thr Asn Leu Ala Thr Gly Ile Pro Ser Ser Lys	
	1 5 10 15	
10	Val Lys Tyr Ser Arg Leu Ser Ser Thr Asp Asp Gly Tyr Ile Asp Leu	
	20 25 30	
	Gln Phe Lys Lys Thr Pro Pro Lys Ile Pro Tyr Lys Ala Ile Ala Leu	
	35 40 45	
. =	Ala Thr Val Leu Phe Leu Ile Gly Ala Phe Leu Ile Ile Gly Ser	
15	50 55 60	
	Leu Leu Ser Gly Tyr Ile Ser Lys Gly Gly Ala Asp Arg Ala Val	
	65 70 75 80	
	Pro Val Leu Ile Ile Gly Ile Leu Val Phe Leu Pro Gly Phe Tyr His	
20	85 90 95	
20	Leu Arg Ile Ala Tyr Tyr Ala Ser Lys Gly Tyr Arg Gly Tyr Ser Tyr	
	100 105 110	
	Asp Asp Ile Pro Asp Phe Asp Asp	
	115 120	
25	<210> 41	
	<211> 939	
	<212> DNA	
	<213> Homo sapiens	
		•
30	<400> 41	
	atgaaccaac teagetteet getgtttete atagegacca ceagaggatg gagtacagat	60
	gaggetaata ettaetteaa ggaatggaee tgttettegt etecatetet geeeagaage	120
	tgcaaggaaa tcaaagacga atgtcctagt gcatttgatg gcctgtattt tctccgcact	180
	gagaatggtg ttatctacca gaccttctgt gacatgacct ctggggggtgg cggctggacc	240
<b>3</b> 5	ctggtggcca gcgtgcatga gaatgacatg cgtgggaagt gcacggtggg cgatcgctgg	300

	tccagtcagc	agggcagcaa	agcagactac	ccagaggggg	acggcaactg	ggccaactac	360
	aacacctttg	gatctgcaga	ggcggccacg	agcgatgact	acaagaaccc	tggctactac	420
	gacatccagg	ccaaggacct	gggcatctgg	cacgtgccca	ataagtcccc	catgcagcac	480
	tggagaaaca	gctccctgct	gaggtaccgc	acggacactg	gcttcctcca	gacactggga	540
5	cataatctgt	ttggcatcta	ccagaaatat	ccagtgaaat	atggagaagg	aaagtgttgg	600
	actgacaacg	gcccggtgat	ccctgtggtc	tatgattttg	gcgacgccca	gaaaacagca	660
	tcttattact	caccctatgg	ccagcgggaa	ttcactgcgg	gatttgttca	gttcagggta	720
	tttaataacg	agagagcagc	caacgccttg	tgtgctggaa	tgagggtcac	cggatgtaac	780
	actgagcacc	actgcattgg	tggaggagga	tactttccag	aggccagtcc	ccagcagtgt	840
10	ggagattttt	ctggttttga	ttggagtgga	tatggaactc	atgttggtta	cagcagcagc	900
	cgtgagataa	ctgaggcagc	tgtgcttcta	ttctatcgt			939
	<210> 42						
	<211> 687						
15	<212> DNA						
	<213> Homo	sapiens					
	<400> 42						
	atgggcgaca	agatetgget	gecetteece	gtgctccttc	tggccgctct	geeteeggtg	60
20	ctgctgcctg	gggcggccgg	cttcacacct	tccctcgata	gcgacttcac	ctttaccctt	120
	cccgccggcc	agaaggagtg	cttctaccag	cccatgcccc	tgaaggeete	gctggagatc	180
	gagtaccaag	ttttagatgg	agcaggatta	gatattgatt	tccatcttgc	ctctccagaa	240
	ggcaaaacct	tagtttttga	acaaagaaaa	tcagatggag	ttcacactgt	agagactgaa	300
	gttggtgatt	acatgttctg	ctttgacaat	acattcagca	ccatttctga	gaaggtgatt	360
25	ttctttgaat	taatcctgga	taatatggga	gaacaggcac	aagaacaaga	agattggaag	420
	aaatatatta	ctggcacaga	tatattggat	atgaaactgg	aagacatcct	ggaatccatc	480
	aacagcatca	agtccagact	aagcaaaagt	gggcacatac	aaattctgct	tagagcattt	540
	gaagetegtg	atcgaaacat	acaagaaagc	aactttgata	gagtcaattt	ctggtctatg-	600
	gttaatttag	tggtcatggt	ggtggtgtca	gccattcaag	tttatatgct	gaagagtctg	660
30	tttgaagata	agaggaaaag	tagaact				687
	<210> 43						
	<211> 1401						
	<212> DNA						
35	<213> Homo	sapiens					

WO 00/05367

<400> 43

# PCT/JP99/03929

	<b>~400&gt; 43</b>						
	atgeggeece	aggageteee	caggetegeg	ttcccgttgc	tgctgttgct	gttgctgctg	60
	ctgccgccgc	egcegtgeee	tgcccacage	gccacgcgct	tegaceceae	ctgggagtcc	120
5	ctggacgccc	gccagctgcc	cgcgtggttt	gaccaggcca	agttcggcat	cttcatccac	180
	tggggagtgt	tttccgtgcc	cagetteggt	agcgagtggt	tctggtggta	ttggcaaaag	240
	gaaaagatac	cgaagtatgt	ggaatttatg	aaagataatt	accctcctag	tttcaaatat	300
	gaagattttg	gaccactatt	tacagcaaaa	ttttttaatg	ccaaccagtg	ggcagatatt	360
	tttcaggcct	ctggtgccaa	atacattgtc	ttaacttcca	aacatcatga	aggetttace	420
10	ttgtgggggt	cagaatattc	gtggaactgg	aatgccatag	atgaggggcc	caagagggac	480
	attgtcaagg	aacttgaggt	agecattagg	aacagaactg	acctgcgttt	tggactgtac	540
	tattcccttt	ttgaatggtt	tcatccgctc	ttccttgagg	atgaatccag	ttcattccat	600
	aagcggcaat	ttccagtttc	taagacattg	ccagagctct	atgagttagt	gaacaactat	660
	cageetgagg	ttctgtggtc	ggatggtgac	ggaggagcac	cggatcaata	ctggaacagc	720
15	acaggettet	tggcctggtt	atataatgaa	agcccagttc	ggggcacagt	agtcaccaat	780
	gatcgttggg	gagctggtag	catctgtaag	catggtggct	tctatacctg	cagtgatcgt	840
	tataacccag	gacatctttt	gccacataaa	tgggaaaact	gcatgacaat	agacaaactg	900
	tectgggget	ataggaggga	agctggaatc	tctgactatc	ttacaattga	agaattggtg	960
	aagcaacttg	tagagacagt	ttcatgtgga	ggaaatcttt	tgatgaatat	tgggcccaca	1020
20	ctagatggca	ccatttctgt	agtttttgag	gagogactga	ggcaaatggg	gtcctggcta	1080
	aaagtcaatg	gagaagctat	ttatgaaacc	catacctggc	gatcccagaa	tgacactgtc	1140
	accccagatg	tgtggtacac	atccaagcct	aaagaaaaat	tagtctatgc	catttttctt	1200
	aaatggccca	catcaggaca	gctgttcctt	ggccatccca	aagctattct	gggggcaaca	1260
	gaggtgaaac	tactgggcca	tggacagcca	cttaactgga	tttctttgga	gcaaaatggc	1320
25	attatggtag	aactgccaca	gctaaccatt	catcagatgc	cgtgtaaatg	gggetggget	1380
	ctagccctga	ctaatgtgat	c .				1401
	<210> 44					<del>- Mi</del> n co	÷
	<211> 297						
30	<212> DNA						
	<213> Homo	sapiens					
	<400> 44						
	atggataacg	tgcagccgaa	aataaaacat	cgccccttct	gcttcagtgt	gaaaggccac	60
35	gtgaagatgc	tgcggctgga	tattatcaac	tcactggtaa	caacagtatt	catgctcatc	120

•							
	gtatctgtgt	tggcactgat	accagaaacc	acaacattga	cagttggtgg	aggggtgttt	180
	gcacttgtga	cagcagtatg	ctgtcttgcc	gacggggccc	ttatttaccg	gaagettetg	240
	ttcaatccca	geggteetta	ccagcaaaag	cctgtgcatg	aaaaaaaaga	agttttg	297
				•			
5	<210> 45					. •	
	<211> 567						
	<212> DNA						
	<213> Homo	sapiens					
10	<400> 45						
	atggaggaag	gcgggaacct	aggaggcctg	attaagatgg	tccatctact	ggtcttgtca	60
	ggtgcctggg	gcatgcaaat	gtgggtgacc	ttcgtctcag	getteetget	tttccgaagc	120
	cttccccgac	ataccttcgg	actagtgcag	agcaaactct	teceetteta	cttccacatc	180
	tecatggget	gtgccttcat	caacctctgc	atcttggctt	cacagcatge	ttgggctcag	240
15	ctcacattct	gggaggccag	ccagctttac	ctgctgttcc	tgagccttac	gctggccact	300
	gtcaacgccc	gctggctgga	accccgcacc	acagctgcca	tgtgggccct	gcaaaccgtg	360
	gagaaggagc	gaggcctggg	tggggaggta	ccaggcagcc	accagggtcc	cgatecetae	420
	cgccagetge	gagagaagga	ccccaagtac	agtgctctcc	gccagaattt	cttccgctac	480
	catgggctgt	cctctctttg	caatctgggc	tgcgtcctga	gcaatgggct	ctgtctcgct	540
20	ggccttgccc	tggaaataag	gageete				567
	<210> 46						
	<211> 1089						
	<212> DNA						
<b>2</b> 5	<213> Homo	sapiens					
	<400> 46						
	atggtggaca	gcctcctggc	agtcaccctg	gctggaaacc	tgggcctgac	cttcctccga-	60
	ggttcccaga	cccagagcca	tccagacctg	ggaactgagg	gctgctggga	ccagctctct	120
30	gcccctcgga	cctttacgct	tttggacccc	aaggcatctc	tgttaaccaa	ggccttcctc	180
	aatggcgccc	tggatggggt	catccttgga	gactacctga	gccggactcc	tgagccccgg	240
	ccatccctca	gccacttgct	gagccagtac	tatggggctg	gggtggccag	agacccaggg	300
	ttccgcagca	acttccgacg	gcagaacggt	gctgctctga	cttcagcctc	cateetggee	360
	cagcaggtgt	ggggaaccct	tgtccttcta	cagaggctgg	agccagtaca	cctccagctt	420
35	cagtgcatga	gccaagaaca	gctggcccag	gtggctgcca	atgctaccaa	ggaattcact	480

### 45/177

•							
	gaggccttcc	tgggatgece	ggccatccac	ccccgctgcc	gctggggagc	ggcgccttat	540
	eggggeegee	cgaagctgct	gcagctgccg	ctgggattct	tgtacgtgca	tcacacctac	600
	gtgcctgcac	caccctgcac	ggacttcacg	cgctgcgcag	ccaacatgcg	ctccatgcag	660
	cgctaccacc	aggacacgca	aggctgggga	gacatcggct	acagtttcgt	ggtgggctcg	720
5	gacggctacg	tgtacgaggg	acgcggctgg	cactgggtgg	gegeecacae	geteggeeac	780
	aactcccggg	gcttcggcgt	ggccatagtg	ggcaactaca	ccgcggcgct	gcccaccgag	840
	geegetetge	gcacggtgcg	cgacacgctc	ccgagttgtg	cggtgcgcgc	cggcctcctg	900
	cggccagact	acgcgctgct	gggccaccgc	cagctggtgc	gcaccgactg	ccccggcgac	960
	gegetetteg	acctgctgcg	cacctggccg	cacttcaccg	cgactgttaa	gccaagacct	1020
10	gccaggagtg	tctctaagag	atccaggagg	gagecacece	caaggaccct	gccagccaca	1080
	gacctccaa					-	1089
	<210> 47						
	<211> 747						
15	<212> DNA						
	<213> Homo	sapiens					
	<400> 47	•					
	atgggtggcc	cccggggcgc	gggctgggtg	geggegggee	tgctgctcgg	cgcgggcgcc	60
20	tgctactgca	tttacaggct	gacccggggt	cggcggcggg	gcgaccgcga	gctcgggata	120
	cgctcttcga	agtccgcaga	agacttaact	gatggttcat	atgatgatgt	tctaaatgct	180
	gaacaacttc	agaaactcct	ttacctgctg	gagtcaacgg	aggatcctgt	aattattgaa	240
	agagetttga	ttactttggg	taacaatgca	gccttttcag	ttaaccaagc	tattattcgt	300
	gaattgggtg	gtattccaat	tgttgcaaac	aaaatcaacc	attccaacca	gagtat <b>ta</b> aa	360
25	gagaaagctt	taaatgcact	aaataacctg	agtgtgaatg	ttgaaaatca	aatcaagata	420
	aaggtgcaag	ttttgaaact	gcttttgaat	ttgtctgaaa	atccagccat	gacagaagga	480
	cttctccgtg	cccaagtgga	ttcatcattc	ctttcccttt	atgacagcca	cgtagcaaag	540
	gagattette	ttcgagtact	tacgctattt	cagaatataa	agaactgcct	caaaatagaa	600
	ggccatttag	ctgtgcagcc	tactttcact	gaaggttcat	tgtttttcct	gttacatgga	660
30	gaagaatgtg	cccagaaaat	aagagcttta	gttgatcacc	atgatgcaga	ggtgaaggaa	720
	aaggttgtaa	caataatacc	caaaatc				747
		§					
	<210> 48						
	<211> 294						

<211> 294

35 <212> DNA

180

240

PCT/JP99/03929 WO 00/05367

#### 46/177

<213> Homo sapiens <400> 48 atggcgtcgc tcctgtgctg tgggccgaag ctggccgcct gcggcatcgt cctcagcgcc 60 5 tggggagtga teatgttgat aatgetegga atatttttea atgteeatte egetgttg 120 attgaggacg ttcccttcac ggagaaagat tttgagaatg gcccccagaa catatacaac 180 ctttacgage aagtcagcta caactgtttc atcgctgcag gcctttacct cctcctcqqa 240 ggettetett tetgecaagt teggeteaat aagegeaagg aatacatggt gege 294 10 <210> 49 <211> 516 <212> DNA <213> Homo sapiens 15 <400> 49 atggtgggcc ccgcgccgcg gcggcggctg cggccgctgg cagcgctggc cctggtcctg 60 gegetggeec eggggetgee caeageeegg geegggeaga caeegegeec tgeegagegg 120 gggcccccag tgcggctttt caccaaggag gagctggccc gctatggcgg ggaggaqqaa 180 gatcagecca tetacttgge agtgaaggga gtggtgtttg atgteacete eggaaaggag 240 20 ttttatggac gaggageeec ctacaatqee ttqacqggga aggaeteeac tagaqqqqta 300 gccaagatgt ccttggatcc tgcagacctc acccatgaca ctacgggtct cacggccaaq 360 gaactggagg ccctggatga ggtcttcacc aaagtgtaca aagccaaata ccccatcgtc 420 ggetacactg cccggagaat tetcaatgag gatggcagec etaacetgga ettcaageet 480 gaagaccage cccattttga catcaaggat gagtte 516 25 <210> 50 <211> 360 <212> DNA <213> Homo sapiens 30 <400> 50 atgatgccgt cccgtaccaa cctggctact ggaatcccca gtagtaaagt gaaatattca 60 aggeteteca geacagaega tggetacatt gaeetteagt ttaagaaaac eeeteetaag 120 atecettata aggecatege acttgecaet gtgctgtttt tgattggege ettteteatt

attatagget eceteetget gteaggetae ateageaaag ggggggeaga eegggeegtt

35

	ccagtgctga teattggcat tetggtgtte etacceggat tttaccacet gegeateget	300
	tactatgcat ccaaaggcta ccgtggttac tcctatgatg acattccaga ctttgatgac	360
	<210> 51	
5	<211> 1065	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
10	<222> (2)(943)	
	<400> 51	•
	a atg aac caa ctc agc ttc ctg ctg ttt ctc ata geg acc acc aga gga	49
	Met Asn Gln Leu Ser Phe Leu Leu Phe Leu Ile Ala Thr Thr Arg Gly	
15	1 5 10 15	
	tgg agt aca gat gag gct aat act tac ttc aag gaa tgg acc tgt tct	97
	Trp Ser Thr Asp Glu Ala Asn Thr Tyr Phe Lys Glu Trp Thr Cys Ser	
	20 25 30	
	tog tot oca tot otg oco aga ago tgo aag gaa ato aaa gao gaa tgt	145
20	Ser Ser Pro Ser Leu Pro Arg Ser Cys Lys Glu Ile Lys Asp Glu Cys	
	35 40 45	
	cct agt gca ttt gat ggc ctg tat ttt ctc cgc act gag aat ggt gtt	193
	Pro Ser Ala Phe Asp Gly Leu Tyr Phe Leu Arg Thr Glu Asn Gly Val	
	50 55 60 .	
<b>25</b>	atc tac cag acc ttc tgt gac atg acc tct ggg ggt ggc ggc tgg acc	241
	Ile Tyr Gln Thr Phe Cys Asp Met Thr Ser Gly Gly Gly Trp Thr	
	65 70 75 80	
	ctg gtg gee age gtg cat gag aat gae atg egt ggg aag tge aeg gtg 🗻	289
	Leu Val Ala Ser Val His Glu Asn Asp Met Arg Gly Lys Cys Thr Val	
30	85 90 95	
	gge gat ege tgg tee agt eag eag gge age aaa gea gae tae eea gag	337
	Gly Asp Arg Trp Ser Ser Gln Gln Gly Ser Lys Ala Asp Tyr Pro Glu	
	100 105 110	
	ggg gac ggc aac tgg gcc aac tac aac acc ttt gga tct gca gag gcg	385
35	Gly Asp Gly Asn Trp Ala Asn Tyr Asn Thr Phe Gly Ser Ala Glu Ala	

			115					120					125				
	gcc	acg	agc	gat	gac	tac	aag	aac	cct	ggc	tac	tac	gac	atc	cag	gcc	433
	Ala	Thr	Ser	Asp	Asp	Tyr	Lys	Asn	Pro	Gly	Tyr	Tyr	Asp	Ile	Gln	Ala	
		130					135					140					
5	aag	gac	ctg	ggc	atc	tgg	cac	gtg	ccc	aat	aag	tcc	ccc	atg	cag	cac	481
	Lys	Asp	Leu	Gly	Ile	Trp	His	Val	Pro	Asn	Lys	Ser	Pro	Met	Gln	His	
	145					150					155					160	
	tgg	aga	aac	agc	tcc	ctg	ctg	agg	tac	cgc	acg	gac	act	ggc	ttc	ctc	529
	Trp	Arg	Asn	Ser	Ser	Leu	Leu	Arg	Tyr	Arg	Thr	Asp	Thr	Gly	Phe	Leu	
10					165					170					175		
	cag	aca	ctg	gga	cat	aat	ctg	ttt	ggc	atc	tac	cag	aaa	tat	cca	gtg	577
	Gln	Thr	Leu	Gly	Ħis	Asn	Leu	Phe	Gly	Ile	Tyr	Gln	Lys	Tyr	Pro	Val	
				180					185					190			
	aaa	tat	gga	gaa	gga	aag	tgt	tgg	act	gac	aac	ggc	ccg	gtg	atc	cct	625
15	Lys	Tyr	Gly	Glu	Gly	Lys	Cys	Trp	Thr	Asp	Asn	Gly	Pro	Val	Ile	Pro	
			195					200					205				
	gtg	gtc	tat	gat	ttt	ggc	gac	gcc	cag	aaa	aca	gca	tct	tat	tac	tca	673
	Val	Val	Tyr	Asp	Phe	Gly	Asp	Ala	Gln	Lys	Thr	Ala	Ser	Tyr	Tyr	Ser	
		210					215					220					
20	ccc	tat	ggc	cag	cgg	gaa	ttc	act	gcg	gga	ttt	gtt	cag	ttc	agg	gta	721
	Pro	Tyr	Gly	Gln	Arg	Glu	Phe	Thr	Ala	Gly	Phe	Val	Gln	Phe	Arg	Val	
	225					230					235					240	
	ttt	aat	aac	gag	aga	gca	gcc	aac	gcc	ttg	tgt	gct	gga	atg	agg	gtc	769
	Phe	Asn	Asn	Glu	Arg	Ala	Ala	Asn	Ala	Leu	Cys	Ala	Gly	Met	Arg	Val	
25					245					250					255		
	acc	gga	tgt	aac	act	gag	cac	cac	tgc	att	ggt	gga	gga	gga	tac	ttt	817
	Thr	Gly	Cys	Asn	Thr	Glu	His	His	Cys	Ile	Gly	Gly	Gly	Gly	Tyr	Phe	
				260					265					270		eta.	-
	cca	gag	gcc	agt	ccc	cag	cag	tgt	gga	gat	ttt	tct	ggt	ttt	gat	tgg	865
30	Pro	Glu	Ala	Ser	Pro	Gln	Gln	Cys	Gly	Asp	Phe	Ser	Gly	Phe	Asp	Trp	
			275					280					285				
	agt	gga	tat	gga	act	cat	gtt	ggt	tac	agc	agc	agc	cgt	gag	ata	act	913
	Ser	Gly	Tyr	Gly	Thr	His	Val	Gly	Tyr	Ser	Ser	Ser	Arg	Glu	Ile	Thr	
		290					295					300					
35	gag	gca	gct	gtq	ctt	cta	ttc	tat	cgt	tga	gagti	ttt (	gtgg	gagg	ga		960

	Glu Ala Ala Val Leu Leu Phe Tyr Arg	
	305 310	
	acccagacet etecteceaa ceatgagate ceaaggatgg agaacaactt acccagtage	1020
	tagaatgtta atggcagaag agaaaacaat aaatcatatt gactc	1065
5		
	<210> 52	
	<211> 937	
	<212> DNA	
	<213> Homo sapiens	
10	<220>	
	<221> CDS	
	<222> (177)(866)	
	·	
	<400> 52	
15	cttttggaga actgcgcttc tctttcggag ggagtgttcg ccgccgccgc ggccgccacc	60
	tggagtttet teagaeteea gattteeetg teaaceaega ggagteeaga gaggaaaege	120
	ggageggaga caacagtace tgaegeetet tteageeegg gategeeeca geaggg	176
	atg ggc gac aag atc tgg ctg ccc ttc ccc gtg ctc ctt ctg gcc gct	224
	Met Gly Asp Lys Ile Trp Leu Pro Phe Pro Val Leu Leu Ala Ala	
20	<i>o</i> 1 5 10 15	
	ctg cct ccg gtg ctg ctg cct ggg gcg gcc ggc ttc aca cct tcc ctc	272
	Leu Pro Pro Val Leu Leu Pro Gly Ala Ala Gly Phe Thr Pro Ser Leu	
	20 25 30	
	gat age gae tte ace ttt ace ett eee gee gge eag aag gag tge tte	320
25	Asp Ser Asp Phe Thr Phe Thr Leu Pro Ala Gly Gln Lys Glu Cys Phe	
	35 40 45	
	tac cag eee atg eee etg aag gee teg etg gag ate gag tac caa gtt	368
	Tyr Gln Pro Met Pro Leu Lys Ala Ser Leu Glu Ile Glu Tyr Gln Val	•
•	50 55 60	
30	tta gat gga gga tta gat att gat ttc cat ctt gcc tct cca gaa	416
	Leu Asp Gly Ala Gly Leu Asp Ile Asp Phe His Leu Ala Ser Pro Glu	
	65 70 75 80	
	ggc aaa acc tta gtt ttt gaa caa aga aaa tca gat gga gtt cac act	464
0.5	Gly Lys Thr Leu Val Phe Glu Gln Arg Lys Ser Asp Gly Val His Thr	
35	85 90 95	

	gta	gag	act	gaa	gtt	ggt	gat	tac	atg	ttc	tgc	ttt	gac	aat	aca	ttc	512
	Val	Glu	Thr	Glu	Val	Gly	Asp	Tyr	Met	Phe	Cys	Phe	Asp	Asn	Thr	Phe	
				100	•				105					110			
	agc	acc	att	tct	gag	aag	gtg	att	ttc	ttt	gaa	tta	atc	ctg	gat	aat	560
5	Ser	Thr	Ile	Ser	Glu	Lys	Val	Ile	Phe	Phe	Glu	Leu	Ile	Leu	Asp	Asn	
			115					120					125				
	atg	gga	gaa	cag	gca	caa	gaa	caa	gaa	gat	tgg	aag	aaa	tat	att	act	608
	Met	Gly	Glu	Gln	Ala	Gln	Glu	Gln	Glu	Asp	Trp	Lys	Lys	Tyr	Ile	Thr	
		130					135					140					
10	ggc	aca	gat	ata	ttg	gat	atg	aaa	ctg	gaa	gac	atc	ctg	gaa	tcc	atc	656
	Gly	Thr	Asp	Ile	Leu	Asp	Met	Lys	Leu	Glu	Asp	Ile	Leu	Glu	Ser	Ile	
	145					150					155					160	
	aac	agc	atc	aag	tcc	aga	cta	agc	aaa	agt	ggg	cac	ata	caa	att	ctg	704
	Asn	Ser	Ile	Lys	Ser	Arg	Leu	Ser	Lys	Ser	Gly	His	Ile	Gln	Ile	Leu	
15					165					170					175		
	ctt	aga	gca	ttt	gaa	gct	cgt	gat	cga	aac	ata	caa	gaa	agc	aac	ttt	752
	Leu	Arg	Ala	Phe	Glu	Ala	Arg	Asp	Arg	Asn	Ile	Gln	Glu	Ser	Asn	Phe	
				180					185					190			
	gat	aga	gtc	aat	ttc	tgg	tct	atg	gtt	aat	tta	gtg	gtc	atg	gtg	gtg	800
20	Asp	Arg	Val	Asn	Phe	Trp	Ser	Met	Val	Asn	Leu	Val	Val	Met	Val	Val	
			195					200					205				
	gtg	tca	gcc	att	caa	gtt	tat	atg	ctg	aag	agt	ctg	ttt	gaa	gat	aag	848
	Val	Ser	Ala	Ile	Gln	Val	Tyr	Met	Leu	Lys	Ser	Leu	Phe	Glu	Asp	Lys	
		210					215					220					
25	agg	aaa	agt	aga	act	taaa	acto	ca e	acta	ıgagt	a cç	rtaac	attg	aaa	aato	J	900
	Arg	Lys	Ser	Arg	Thr												
	225																
	aggo	ataa	aa a	itgea	ataa	a ct	gtta	cagt	caa	gaco	:						 937
30	<210	)> 53	3														
	<211	l> 16	578														
	<212	5> DI	ΑI														
	<213	3> Ho	omo s	apie	ens												
	<220																
35	<221	l> ci	os														

### 51/177

<222> (56)...(1459)

	<400	> 53	3														
	agco	jetec	cg a	agged	egeg	gg ag	geet	gcaga	a gag	ggac	agec	gge	etge	gcc (	ggga	2	55
5	atg	cgg	ccc	cag	gag	ctc	ccc	agg	ctc	gcg	ttc	ccg	ttg	ctg	ctg	ttg	103
	Met	Arg	Pro	Gln	Glu	Leu	Pro	Arg	Leu	Ala	Phe	Pro	Leu	Leu	Leu	Leu	
	1				5					10					15		
	ctg	ttg	ctg	ctg	ctg	ccg	ccg	ccg	ccg	tgc	cct	gcc	cac	agc	gcc	acg	151
	Leu	Leu	Leu	Leu	Leu	Pro	Pro	Pro	Pro	Cys	Pro	Ala	His	Ser	Ala	Thr	
10				20					25					30			
	cgc	ttc	gac	ccc	acc	tgg	gag	tcc	ctg	gac	gcc	cgc	cag	ctg	ccc	gcg	199
	Arg	Phe	Asp	Pro	Thr	Trp	Glu	Ser	Leu	Asp	Ala	Arg	Gln	Leu	Pro	Ala	
			35					40					45				
	tgg	ttt	gac	cag	gcc	aag	ttc	ggc	atc	ttc	atc	cac	tgg	gga	gtg	ttt	247
15	Trp	Phe	Asp	Gln	Ala	Lys	Phe	Gly	Ile	Phe	Ile	His	Trp	Gly	Val	Phe	
		50					55					60					
	tec	gtg	ccc	agc	ttc	ggt	agc	gag	tạg	ttc	tgg	tgg	tat	tgg	caa	aag	295
	Ser	Val	Pro	Ser	Phe	Gly	Ser	Glu	Trp	Phe	Trp	Trp	Tyr	Trp	Gln	Lys	
	65					70					75					60	
20	gaa	aag	ata	ccg	aag	tat	gtg	gaa	ttt	atg	aaa	gat	aat	tac	cct	cct	343
	Glu	Lys	Ile	Pro	Lys	Tyr	Val	Glu	Phe	Met	Lys	Asp	Asn	Tyr	Pro	Pro	
					85					90					95		
	agt	ttc	aaa	tat	gaa	gat	ttt	gga	cca	cta	ttt	aca	gca	aaa	ttt	ttt	391
	Ser	Phe	Lys	Tyr	Glu	Asp	Phe	Gly	Pro	Leu	Phe	Thr	Ala	Lys	Phe	Phe	
<b>25</b>				100					105					110			
	aat	gcc	aac	cag	tgg	gca	gat	att	ttt	cag	gcc	tct	ggt	gcc	aaa	tac	439
	Asn	Ala	Asn	Gln	Trp	Ala	Asp	Ile	Phe	Gln	Ala	Ser	Gly	Ala	Lys	Tyr	
			115					120					125				
	att	gtc	tta	act	tcc	aaa	cat	cat	gaa	ggc	ttt	acc	ttg	tgg	ggg	tca	487
30	Ile	Val	Leu	Thr	Ser	Lys	His	His	Glu	Gly	Phe	Thr	Leu	Trp	Gly	Ser	
		130					135					140					
	gaa	tat	tcg	tgg	aac	tgg	aat	gcc	ata	gat	gag	999	ccc	aag	agg	gac	535
	Glu	Tyr	Ser	Trp	Asn	Trp	Asn	Ala	Ile	Asp	Glu	Gly	Pro	Lys	Arg	Asp	
	145					150					155					160	
35	att	gtc	aag	gaa	ctt	gag	gta	gcc	att	agg	aac	aga	act	gac	ctg	cgt	583

PCT/JP99/03929

	Ile	Val	Lys	Glu	Leu	Glu	Val	Ala	Ile	Arg	Asn	Arg	Thr	Asp	Leu	Arg		
					165					170					175			
	ttt	gga	ctg	tac	tat	tcc	ctt	ttt	gaa	tgg	ttt	cat	ccg	ctc	ttc	ctt		631
	Phe	Gly	Leu	Tyr	Tyr	Ser	Leu	Phe	Glu	Trp	Phe	His	Pro	Leu	Phe	Leu		
5				180					185			٠		190				
	gag	gat	gaa	tcc	agt	tca	ttc	cat	aag	cgg	caa	ttt	cca	gtt	tct	aag		679
	Glu	Asp	Glu	Ser	Ser	Ser	Phe	His	Lys	Arg	Gln	Phe	Pro	Val	Ser	Lys		
			195					200					205					
	aca	ttg	cca	gag	ctc	tat	gag	tta	gtg	aac	aac	tat	cag	cct	gag	gtt		727
10	Thr	Leu	Pro	Glu	Leu	Tyr	Glu	Leu	Val	Asn	Asn	Tyr	Gln	Pro	Glu	Val		
		210					215					220						
	ctg	tgg	tcg	gat	ggt	gac	gga	gga	gca	ccg	gat	caa	tac	tgg	aac	agc		775
	Leu	Trp	Ser	Asp	Gly	Asp	Gly	Gly	Ala	Pro	Asp	Gln	Tyr	Trp	Asn	Ser		
	225					230					235					240		
15		-			gcc													823
	Thr	Gly	Phe	Leu	Ala	Trp	Leu	Tyr	Asn	Glu	Ser	Pro	Val	Arg	Gly	Thr		
					245					250					255			
					gat													871
	Val	Val	Thr	Asn	Asp	Arg	Trp	Gly	Ala	Gly	Ser	Ile	Cys	Lys	His	Gly		
20				260					265					270				
					tgc													919
	Gly	Phe	Tyr	Thr	Cys	Ser	Asp	Arg	Tyr	Asn	Pro	Gly	His	Leu	Leu	Pro		
			275					280					285					
					aac													967
25	His	Lys	Trp	Glu	Asn	Cys	Met	Thr	Ile	Asp	Lys	Leu	Ser	Trp	Gly	Tyr		
		290					295					300						
					gga													·1015
	Arg	Arg	Glu	Ala	Gly	Ile	Ser	Asp	Tyr	Leu	Thr	Ile	Glu	Glu	Leu		~	
	305					310					315					320		
30	aag	caa	ctt	gta	gag	aca	gtt	tca	tgt	gga	gga	aat	ctt	ttg	atg	aat		1063
	Lys	Gln	Leu	Val	Glu	Thr	Val	Ser	Cys	Gly	Gly	Asn	Leu	Leu	Met	Asn		
				292110	325					330					335			
	att	999	ccc	aca	cta	gat	ggc	acc	att	tct	gta	gtt	ttt	gag	gag	cga		1111
	Ile	Gly	Pro	Thr	Leu	Asp	Gly	Thr	Ile	Ser	Val	Val	Phe	Glu	Glu	Arg		
35				340					345					350				

WO 00/05367

### PCT/JP99/03929

	ctg agg caa atg ggg tcc tgg cta aaa gtc aat gga gaa gct att tat	1159
	Leu Arg Gln Met Gly Ser Trp Leu Lys Val Asn Gly Glu Ala Ile Tyr	
	355 360 365	
	gaa acc cat acc tgg cga tcc cag aat gac act gtc acc cca gat gtg	1207
5	Glu Thr His Thr Trp Arg Ser Gln Asn Asp Thr Val Thr Pro Asp Val	
	370 375 380	
	tgg tac aca tcc aag cct aaa gaa aaa tta gtc tat gcc att ttt ctt	1255
	Trp Tyr Thr Ser Lys Pro Lys Glu Lys Leu Val Tyr Ala Ile Phe Leu	
	385 390 395 400	
10	asa tgg ccc aca tca gga cag ctg ttc ctt ggc cat ccc aaa gct att	1303
	Lys Trp Pro Thr Ser Gly Gln Leu Phe Leu Gly His Pro Lys Ala Ile	
	405 410 415	
	ctg ggg gca aca gag gtg aaa cta ctg ggc cat gga cag cca ctt aac	1351
	Leu Gly Ala Thr Glu Val Lys Leu Leu Gly His Gly Gln Pro Leu Asn	
15	420 425 430	
	tgg att tot ttg gag caa aat gge att atg gta gaa ctg eea cag cta	1399
	Trp Ile Ser Leu Glu Gln Asn Gly Ile Met Val Glu Leu Pro Gln Leu	
	435 440 445	
00		447
20	Thr Ile His Gln Met Pro Cys Lys Trp Gly Trp Ala Leu Ala Leu Thr	
	450 455 460	
		500
	Asn Val Ile	
or	465	
25		.560
		.620
	accoatgtaa coattttaac totocagtgo actttgocat taaagtotot toacattg 1	678
20	<210> 54	
30	<211> 467	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
25	<221> CDS	
35	<222> (114)(413)	

	730	٠- ٥٠	*															
	agg	ggag	ggc (	ggtgo	ctec	ge e	geggt	tggc	g gti	tgcta	atcg	ctt	cgca	gaa	ccta	ctcaç	<b>1</b> 9	60
	cag	ccago	etg a	agaaq	gagti	tg a	ggga	aagt	gct	gctgo	etgg	gte	tgca	gac	gcg i	atg		116
5													-		1	Met		
																1		
	gat	aac	gtg	cag	ccg	aaa	ata	aaa	cat	cgc	ccc	ttc	tgc	ttc	agt	gtg		164
	Asp	Asn	Val	Gln	Pro	Lys	Ile	Lys	His	Arg	Pro	Phe	Cys	Phe	Ser	Val		
				5				•	10					15				
10	aaa	ggc	cac	gtg	aag	atg	ctg	cgg	ctg	gat	att	atc	aac	tca	ctg	gta		212
	Lys	Gly	His	Val	Lys	Met	Leu	Arg	Leu	Asp	Ile	Ile	Asn	Ser	Leu	Val		
			20					25					30					
	aca	aca	gta	ttc	atg	ctc	atc	gta	tct	gtg	ttg	gca	ctg	ata	cca	gaa		260
	Thr	Thr	Val	Phe	Met	Leu	Ile	Val	Ser	Val	Leu	Ala	Leu	Ile	Pro	Glu		
15		35					40					45						
						-						-		gtg		•		308
		Thr	Thr	Leu	Thr		Gly	Gly	Gly	Val		Ala	Leu	Val	Thr			
	50					55					60					65		
20	_	-	-		•	-		-						ctt	-		•	356
20	Val	Cys	Суѕ	Leu		Asp	Gly	Ala	Leu		Tyr	Arg	Lys	Leu		Pne		
					<b>7</b> 0					75					80			404
							-							aaa				404
	Asn	Pro	ser	-	Pro	Tyr	GIN	GIN	_	Pro	vai	HIS	GTI	Lys 95	тÀг	GIU		
25		++	+	85		<b></b>			90	.+		~+ ^ <b>+</b> 1		33				450
20	-	Leu	taa	tttt	ata 1	LLAC		ca g	LLLY	acacı	- aa	glali	Laaa					420
	vaı	Tien		•														
	cat	attt	cta i	tatto	a++													467
	-		9															•
30	<21	.0> 5	5	•														
		1> 8																
		2> D																
				sapi	ens													
	<22		- '		<del>-</del>													
35		1> C	DS															

724

WO 00/05367 PCT/JP99/03929

#### 55/177

<222> (272)...(841)

35

<400> 55 attggttggg ggaaacccac gaggggacgc ggccgaggag ggtcgctgtc cacccggggg 60 5 cqtqqqaqtq aqqtaccaqa ttcaqcccat ttqqccccqa cqcctctqtt ctcqqaatcc 120 qqqtqctqcq qattqaqqtc ccqqttccta acqaatctct qctqqattqq ccqtaaccct 180 gtccccgagc gggctcacag ggtctgaagg ccacgcatga ggcaaaggta aagttctgag 240 ccacceggtg ceteetteee aggactgeaa g atg gag gaa gge ggg aac eta 292 Met Glu Glu Gly Gly Asn Leu 10 1 5 gga ggc ctg att aag atg gtc cat cta ctg gtc ttg tca ggt gcc tgg 340 Gly Gly Leu Ile Lys Met Val His Leu Leu Val Leu Ser Gly Ala Trp 15 gge atg caa atg tgg gtg acc ttc gtc tca ggc ttc ctg ctt ttc cga 388 15 Gly Met Gln Met Trp Val Thr Phe Val Ser Gly Phe Leu Leu Phe Arg 25 30 35 ago ott occ oga cat acc tto gga ota gtg cag ago aaa oto tto coc 436 Ser Leu Pro Arg His Thr Phe Gly Leu Val Gln Ser Lys Leu Phe Pro 40 45 50 55 20 ttc tac ttc cac atc tcc atg ggc tgt gcc ttc atc aac ctc tgc atc 484 Phe Tyr Phe His Ile Ser Met Gly Cys Ala Phe Ile Asn Leu Cys Ile 65 ttg get tea eag eat get tgg get eag ete aca tte tgg gag gee age 532 Leu Ala Ser Gln His Ala Trp Ala Gln Leu Thr Phe Trp Glu Ala Ser 25 75 80 cag ctt tac ctg ctq ttc ctg agc ctt acg ctg gcc act gtc aac gcc 580 Gln Leu Tyr Leu Leu Phe Leu Ser Leu Thr Leu Ala Thr Val Asn Ala 100 90 95 ege tgg etg gaa eee ege ace aca get gee atg tgg gee etg caa ace 628 30 Arg Trp Leu Glu Pro Arg Thr Thr Ala Ala Met Trp Ala Leu Gln Thr 110 gtg gag aag gag cga ggc ctg ggt ggg gag gta cca ggc agc cac cag 676 Val Glu Lys Glu Arg Gly Leu Gly Glu Val Pro Gly Ser His Gln 120 130 135 125

ggt ecc gat ecc tac ege eag etg ega gag aag gac ecc aag tac agt

	Gly Pro Asp Pro Tyr Arg Gln Leu Arg Glu Lys Asp Pro Lys Tyr Ser	
	140 145 150	
	get etc ege eag aat tte tte ege tae eat ggg etg tee tet ett tge	772
	Ala Leu Arg Gln Asn Phe Phe Arg Tyr His Gly Leu Ser Ser Leu Cys	
5	155 160 165	
	aat ctg ggc tgc gtc ctg agc aat ggg ctc tgt ctc gct ggc ctt gcc	820
	Asn Leu Gly Cys Val Leu Ser Asn Gly Leu Cys Leu Ala Gly Leu Ala	
	170 175 180	
- 0	ctg gaa ata agg age ete tageatggge eetgeatget aataaatget tetteag	875
10	Leu Glu Ile Arg Ser Leu	
	185	
	2210 FC	
	<210> 56 <211> 1256	
15	<211> 1256 <212> DNA	
10	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (150)(1241)	
20	( = = , , , , , , , , , , , , , , , , ,	
	<400> 56	
	atgtaagage caceteetee eeaggaetea gggatggete teeagatgte accaetgeag	60
	atattggage caacacteca gatgetacaa aaggetgtee agatgteeaa getteettge	120
	cagatgecaa agecaagtee ceacegace atg gtg gac age etc etg gea gte	173
25	Met Val Asp Ser Leu Leu Ala Val	
	1 5	
	ace ctg get gga aac ctg gge etg ace tte cte ega ggt tee eag ace	221
	Thr Leu Ala Gly Asn Leu Gly Leu Thr Phe Leu Arg Gly Ser Gln Thr	
	10 15 20	
30	cag age cat eca gae etg gga aet gag gge tge tgg gae cag ete tet	269
	Gln Ser His Pro Asp Leu Gly Thr Glu Gly Cys Trp Asp Gln Leu Ser	
	25 30 35 40	
	gee eet egg ace ttt aeg ett ttg gae eec aag gea tet etg tta ace	317
	Ala Pro Arg Thr Phe Thr Leu Leu Asp Pro Lys Ala Ser Leu Leu Thr	
35	45 50 55	

WO 00/05367

# PCT/JP99/03929

	aag	gcc	ttc	ctc	aat	ggc	gcc	ctg	gat	ggg	gto	ato	ctt	gga	gac	tac		365
	Lys	Ala	Phe	Leu	Asn	Gly	Ala	Leu	Asp	Gly	Val	Ile	Leu	Gly	Asp	Tyr		
				60					65					70	ı			
	ctg	agc	cgg	act	cct	gag	ccc	cgg	cca	tcc	ctc	agc	cac	ttg	ctg	agc		413
5	Leu	Ser	Arg	Thr	Pro	Glu	Pro	Arg	Pro	Ser	Leu	Ser	His	Leu	Leu	Ser		
			75					80					85					
								gcc							_			461
	Gln		Tyr	Gly	Ala	Gly	Val	Ala	Arg	Asp	Pro	Gly	Phe	Arg	Ser	Asn		
- 0		90					95					100						
10								gct							_	-		509
		Arg	Arg	Gln	Asn	Gly	Ala	Ala	Leu	Thr	Ser	Ala	Ser	Ile	Leu	Ala		
	105					110					115					120		
								gtc								_		557
	Gln	Gln	Val	Trp	Gly	Thr	Leu	Val	Leu	Leu	Gln	Arg	Leu	Glu	Pro	Val		
15					125					130					135			
								agc								-		605
	His	Leu	Gln		Gln	Cys	Met	Ser	Gln	Glu	Gln	Leu	Ala	Gln	Val	Ala		
				140					145					150				
00								act			,				_			653
20	ATa	Asn		Thr	Lys	Glu	Phe	Thr	Glu	Ala	Phe	Leu		Cys	Pro	Ala		
			155					160				٠.	165					
								gga								_		701
	TTE		Pro	Arg	Cys	Arg		Gly	Ala	Ala	Pro		Arg	Gly	Arg	Pro		
กร		170					175					180						
25								gga										749
	185	ren	Leu	GIn	Leu		Leu	Gly	Phe	Leu	_	Val	His	His	Thr	-		•
						190					195					200		
								gac									···	797
30	Val	PIO	ATa			Cys	Thr	Asp	Phe		Arg	Cys	Ala	Ala		Met		
บับ		<b>.</b>	_ 4		205					210					215			
								cag										845
	Arg	ser			Arg	Tyr	His	Gln		Thr	Gln	Gly			Asp	Ile		
		<b>.</b>		220					225					230				
25								tcg										893
35	GTA	Tyr	Ser	Phe	Val	Val	Gly	Ser	Asp	Gly	Tyr	Val	Tyr	Glu	Gly	Arg		

			235					240					245					
	ggc	tgg	cac	tgg	gtg	ggc	gcc	cac	acg	ctc	ggc	cac	aac	tcc	cgg	ggc		941
	Gly	Trp	His	Trp	Val	Gly	Ala	His	Thr	Leu	Gly	His	Asn	Ser	Arg	Gly		
		250					255		<b>N</b>			260						
5	ttc	ggc	gtg	gcc	ata	gtg	ggc	aac	tac	acc	gcg	gcg	ctg	ccc	acc	gag		989
	Phe	Gly	Val	Ala	Ile	Val	Gly	Asn	Tyr	Thr	Ala	Ala	Leu	Pro	Thr	Glu		
	265					270					275					280		
	gcc	gct	ctg	cgc	acg	gtg	cgc	gac	acg	ctc	ccg	agt	tgt	gcg	gtg	cgc		1037
	Ala	Ala	Leu	Arg	Thr	Val	Arg	Asp	Thr	Leu	Pro	Ser	Cys	Ala	Val	Arg		
10					285					290					295			
	gcc	ggc	ctc	ctg	cgg	cca	gac	tac	gcg	ctg	ctg	ggc	cac	cgc	cag	ctg		1085
	Ala	Gly	Leu	Leu	Arg	Pro	Asp	Tyr	Ala	Leu	Leu	Gly	His	Arg	Gln	Leu		
				300					305					310				
	gtg	ege	acc	gac	tgc	ccc	ggc	gac	gcg	ctc	ttc	gac	ctg	ctg	cgc	acc		1133
15	Val	Arg	Thr	Asp	Cys	Pro	Gly	Asp	Ala	Leu	Phe	Asp	Leu	Leu	Arg	Thr		
			315					320					325					
	tgg	ccg	cac	ttc	acc	gcg	act	gtt	aag	cca	aga	cct	gcc	agg	agt	gtc		1181
	Trp	Pro	His	Phe	Thr	Ala	Thr	Val	Lys	Pro	Arg	Pro	Ala	Arg	Ser	Val		
		330					335					340						
20	tct	aag	aga	tcc	agg	agg	gag	CCA	CCC	cca	agg	acc	ctg	cca	gcc	aca		1229
	Ser	Lys	Arg	Ser	Arg	Arg	Glu	Pro	Pro	Pro	Arg	Thr	Leu	Pro	Ala	Thr		
	345					350					355					360		
	gac	ctc	caa	taaa	agaca	agc a	atgga	aac										1256
	Asp	Leu	Gln															
25																		
	<210	)> 5	7															
	<21	1> 81	84															
	<212	2> <b>D</b> 1	NA.														-	
	<213	3> H	omc	sapie	ens													
30	<220	>																
	<22	1> C	DS															
	<22	2> (	135)	(8	384)													
	<40	0> 5	7															
35	cat	ttcc	ttt (	ctcc	acato	cc a	ggtea	aggt	g gc	gttt	gctg	tgg	egget	ag g	accc	gegtg	c	60

	gato	gaga	acc t	ceg	eget	gg co	cccc	gegag	g cct	taat	gece	tgg	ccg	gog (	ctgc	ggetet	120
	gaag	gggg	gg d	cagc	atg	ggt	ggc	ccc	cgg	ggc	gcg	ggc	tgg	gtg	gcg	gcg	170
					Met	Gly	Gly	Pro	Arg	Gly	Ala	Gly	Trp	Val	Ala	Ala	
					1				5					10			
5	ggc	ctg	ctg	ctc	ggc	gcg	ggc	gcc	tgc	tac	tgc	att	tac	agg	ctg	acc	218
	Gly	Leu	Leu	Leu	Gly	Ala	Gly	Ala	Cys	Tyr	Cys	Ile	Tyr	Arg	Leu	Thr	
			15					20					25				
	cgg	ggt	cgg	cgg	cgg	ggc	gac	cgc	gag	ctc	ggg	ata	cgc	tct	tcg	aag	266
	Arg	Gly	Arg	Arg	Arg	Gly	Asp	Arg	Glu	Leu	Gly	Ile	Arg	Ser	Ser	Lys	
10		30					35					40					
	tcc	gca	gaa	gac	tta	act	gat	ggt	tca	tat	gat	gat	gtt	cta	aat	get	314
	Ser	Ala	Glu	Asp	Leu	Thr	Asp	Gly	Ser	Tyr	Asp	Asp	Val	Leu	Asn	Ala	
	45					50					55					60	
	gaa	caa	ctt	cag	aaa	ctc	ctt	tac	ctg	ctg	gag	tca	acg	gag	gat	cct	362
15	Glu	Gln	Leu	Gln	Lys	Leu	Leu	Tyr	Leu	Leu	Glu	Ser	Thr	Glu	Asp	Pro	
					65					70					75		
	gta	att	att	gaa	aga	gct	ttg	att	act	ttg	ggt	aac	aat	gca	gcc	ttt	410
	Val	Ile	Ile	Glu	Arg	Ala	Leu	Ile	Thr	Leu	Gly	Asn	Asn	Ala	Ala	Phe	
				80					85					90			
20	tca	gtt	aac	caa	gct	att	att	cgt	gaa	ttg	ggt	ggt	att	cca	att	gtt	458
	Ser	Val	Asn	Gln	Ala	Ile	Ile	Arg	Glu	Leu	Gly	Gly	Ile	Pro	Ile	Val	
			95					100					105				
	gca	aac	aaa	atc	aac	cat	tcc	aac	cag	agt	att	aaa	gag	aaa	gct	tta	506
	Ala	Asn	Lys	Ile	Asn	His	Ser	Asn	Gln	Ser	Ile	Lys	Glu	Lys	Ala	Leu	
25		110					115					120					
						_	-	gtg									554
	Asn	Ala	Leu	Asn	Asn	Leu	Ser	Val	Asn	Val	Glu	Asn	Gln	Ile	Lys	Ile	
	125					130		-			135					140	
	aag	gtg	caa	gtt	ttg	aaa	ctg	ctt	ttg	aat	ttg	tct	gaa	aat	cca	gcc	602
30	Lys	Val	Gln	Val	Leu	Lys	Leu	Leu	Leu	Asn	Leu	Ser	Glu	Asn	Pro	Ala	
					145					150					155		
	atg	aca	gaa	gga	ctt	ctc	cgt	gcc	caa	gtg	gat	tca	tca	ttc	ctt	tcc	650
	Met	Thr	Glu	Gly	Leu	Leu	Arg	Ala	Gln	Val	Asp	Ser	Ser	Phe	Leu	Ser	
				160					165					170			
35	ctt	tat	gac	agc	cac	qta	qca	aag	gag	att	ctt	ctt	cga	gta	ctt	acg	698

	Leu Tyr Asp S	er His Val	Ala Lys Glu	Ile Leu Leu	Arg Val Leu	Thr
	175		180		185	
	cta ttt cag a	at ata aag	aac tgc ctc	aaa ata gaa	ggc cat tta	get 746
	Leu Phe Gln A	sn Ile Lys	Asn Cys Leu	Lys Ile Glu	Gly His Leu	Ala
5	190		195	200		
	gtg cag cct a	ct ttc act	gaa ggt tca	ttg ttt ttc	ctg tta cat	gga 794
	Val Gln Pro T	hr Phe Thr	Glu Gly Ser	Leu Phe Phe	Leu Leu His	Gly
	205	210		215		220
	gaa gaa tgt g	rcc cag aaa	ata aga gct	tta gtt gat	cac cat gat	gca 842
10	Glu Glu Cys A	la Gln Lys	Ile Arg Ala	Leu Val Asp	His His Asp	Ala
		225		230	235	
	gag gtg aag g	aa aag gtt	gta aca ata	ata ccc aaa	atc tga	884
	Glu Val Lys G	lu Lys Val	Val Thr Ile	Ile Pro Lys	Ile	
	2	40	245			
15						
	<210> 58					
	<211> 589					
	<212> DNA					
	<213> Homo sa	piens				
20	<220>					
	<221> CDS	•				
	<222> (48)	(344)				
0.	<400> 58					
<b>25</b>	gettteegag ee	egettgea e	cteggegat ce	eegaetee ette		_
		•			Met Ala	Ser
					1	
	ctc ctg tgc t					
20	Leu Leu Cys C	ys Gly Pro	Lys Leu Ala		Ile Val Leu	Ser
30	5		10	15		
	gcc tgg gga g		•			_
	Ala Trp Gly V	al Ile Met	Leu Ile Met	Leu Gly Ile	Phe Phe Asn	Val
	20	25		30		35
	cat tee get g	tg ttg att	gag gac gtt	ccc ttc acg	gag aaa gat	ttt 200
35	His Ser Ala V	al Leu Ile	Glu Asp Val	Pro Phe Thr	Glu Lys Asp	Phe

WO 00/05367

### PCT/JP99/03929

	40 45 50	
	gag aat ggc ccc cag aac ata tac aac ctt tac gag caa gtc agc tac	248
	Glu Asn Gly Pro Gln Asn Ile Tyr Asn Leu Tyr Glu Gln Val Ser Tyr	
	55 60 65	
5	aac tgt ttc atc gct gca ggc ctt tac ctc ctc ctc gga ggc ttc tct	296
	Asn Cys Phe Ile Ala Ala Gly Leu Tyr Leu Leu Gly Gly Phe Ser	
	70 75 80	
	tte tge caa gtt egg ete aat aag ege aag gaa tae atg gtg ege	341
	Phe Cys Gln Val Arg Leu Asn Lys Arg Lys Glu Tyr Met Val Arg	
10	85 90 95	
	tagggeece ggegegttte ecegeteeag ececteetet atttaaagae teeetgeace	490
	gtgtcaccca ggtcgcgtcc caccettgcc ggcgccctct gtgggactgg gtttcccggg	460
	cgagagactg aatcccttct cccatctctg gcatccggcc cccgtggaga gggctgaggc	520
	tggggggctg ttccgtctct ccacccttcg ctgtgtcccg tatctcaata aagagaatct	580
15	gctctcttc	589
	<210> 59	
	<211> 673	
	<212> DNA	
20	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (25)(543)	
25	<400> 59	
	cttgeettge getgegeget cace atg gtg gge eee geg eeg egg egg	51
	Met Val Gly Pro Ala Pro Arg Arg	
	1 5	-
	ctg egg eeg etg gea geg etg gee etg gte etg geg etg gee eeg ggg	99
30	Leu Arg Pro Leu Ala Ala Leu Ala Leu Val Leu Ala Leu Ala Pro Gly	
	10 15 20 25	
	ctg ecc aca gee egg gee ggg cag aca eeg ege eet gee gag egg ggg	147
	Leu Pro Thr Ala Arg Ala Gly Gln Thr Pro Arg Pro Ala Glu Arg Gly	
	30 35 40	
35	ccc cca gtg egg ett tte acc gag gag gag etg gee ege tat gge ggg	195

			_							_		_					
	Pro	Pro	Val	_	Leu	Phe	Thr	Glu			Leu	Ala	Arg	_	Gly	Gly	
				45					50					55			
			-	_	_	ccc			_	_		-					243
_	Glu	Glu		Asp	Gln	Pro	Ile	-	Leu	Ala	Val	Lys	_	Val	Val	Phe	
5			60					65					70				
		_				aag											291
	Asp		Thr	Ser	Gly	Lys	Glu	Phe	Tyr	Gly	Arg		Ala	Pro	Tyr	Asn	
		75					80					85					
- 0	_	-	_		•	gac			-		-	-	_	_		_	339
10		Leu	Thr	Gly	Lys	Asp	Ser	Thr	Arg	Gly		Ala	Lys	Met	Ser	Leu	
	90					95					100					105	
						acc		_							_	=	387
	Asp	Pro	Ala	Asp		Thr	His	Asp	Thr		Gly	Leu	Thr	Ala		Glu	
					110					115					120		
15					-	gag	-										435
	Leu	Glu	Ala		Asp	Glu	Val	Phe		Lys	Val	Tyr	Lys		Lys	Tyr	
				125					130					135			
			-			act	•		_					-		-	483
20	Pro	Ile		Gly	Tyr	Thr	Ala	-	Arg	Ile	Leu	Asn		Asp	Gly	Ser	
20			140					145					150				
				-		aag		_	_							-	531
	Pro		Leu	Asp	Phe	Lys		Glu	Asp	Gln	Pro		Phe	Asp	Ile	Lys	
		155					160					165					
0.5				tgat	gtto	ecc c	ctgo	cagga	ag ca	aggtt	ctte	g gga	igcgt	gag			580
25	-	Glu	Phe														
	170			•													
					-						ggc	tgcc	tgga	igg c	ccto	gageca	640
	CCC	agato	etg a	aataa	aaca	ag at	gett	acco	: tgg	J							673
20	-07		_														
30		0> 60															
		l> 14															
		2> Di															
			omo s	sapie	ens												
0.5	<220																
35	<22	1> CI	os														

WO 00/05367

# PCT/JP99/03929

# 63/177

<222> (127)...(489)

< A	$\sim$	_	60
< A	( ) ( )	~	A I I

	<400	)> 6	0														
	tecc	gee.	tgg	ggcc	ggct	ga g	rtggc	actt	a ag	cggg	ccat	gcc	atgo	aac	cttg	ggagat	60
5	gcca	acc	gtg	ggcg	agct	ct g	ggtg	tgcg	ig go	ggcc	tggc	gcg	gege	tcc	gctg	tgtcag	120
	cgtg	jtt a	atg	atg	ccg	tcc	cgt	acc	aac	ctg	gct	act	gga	atc	ccc	agt	168
		1	Met 1	Met	Pro	Ser	Arg	Thr	Asn	Leu	Ala	Thr	Gly	Ile	Pro	Ser	
			1				5					10					
	agt	aaa	gtg	aaa	tat	tca	agg	cto	tcc	agc	aca	gac	gat	ggc	tac	att	216
10		Lys	Val	Lys	Tyr	Ser	Arg	Leu	Ser	Ser	Thr	Asp	Asp	Gly	Tyr	Ile	
	15					20					25					30	
											atc			_	_		264
	Asp	Leu	Gln	Phe	Lys	Lys	Thr	Pro	Pro	Lys	Ile	Pro	Tyr	Lys	Ala	Ile	
					35					40					45		
15											gcc						312
	Ala	Leu	Ala		Val	Leu	Phe	Leu	Ile	Gly	Ala	Phe	Leu	Ile	Ile	Ile	
				50					55					60			
											aaa						360
90	GIÀ	Ser		Leu	Leu	Ser	Gly		Ile	Ser	Lys	Gly		Ala	Asp	Arg	
20			65					70					75				
											gtg						408
	Ala		Pro	Val	Leu	Ile		GIY	Ile	Leu	Val		Leu	Pro	Gly	Phe	
	+	80					. 85					90					
25											aaa						456
	1 y 1 9 5	HIS	Leu	Arg	TTE		Tyr	Tyr	Aia	Ser	Lys	GTĀ	Tyr	Arg	Gly	_	
	-	+-+	~~+			100					105					110	
											tago	acco	ac c	cca			500
	Der	TÄT	ASP	Asp		PIO	Asp	rne	Asp								
30	tago	tasa			115			. 4 4		120	<b></b>		44				
30																ctata	560
																tttt	620
																ctatt	680
																agagg	740
35																tcttt	800
	raac	Lagt	CT T	catt	.gcca	aa tt	:tqtt	ctto	ı tac	rcaaa	itgg	aaca	atqt	aa t	atqq	ctaat	860

	ttcttat	tat t	aagt	agtt	t at	ttta	aaaa	a tat	ctga	agta	tat	tatco	ctg	tacad	cttat	c	920
	cctacct	tca t	gtto	cagt	g ga	aagad	ectta	a gta	aaat	caa	aga	tcagt	cga :	gttca	atctg	t	980
	aatattt	ttt t	tact	tget	t to	cttac	etgad	ago	caaco	cagg	aati	tttt	ta	tect	gcaga	g	1040
	caagttt	tca a	aaato	jtaaa	t ac	ettec	etct	g ttt	aaca	agtc	ctt	ggaco	cat ·	tctga	atcca	g	1100
5	ttcacca	gta ç	gtt	ggaca	g ca	atata	attt	ge a	atcat	ttt	gtc	ectt	gta :	aatca	aagat	g	1160
	ttctgca	gat t	atto	cttt	a ac	egged	eggad	ttt	tgg	etgt	ttc	ctaat	tga i	aacat	tgtag	t	1220
	ggttatt	att t	agag	gttta	t ag	geegt	att	gcta	igcad	ectt	gta	gtate	gtc	atcat	ttetg	c	1280
	tcatgat	tcc a	aagga	atcag	c ct	ggat	gcct	aga	aggad	ctag	atc	accti	ag .	tttga	attct	a	1340
	tttttta	get t	gcaa	aaaag	t ga	actta	atatt	cca	aaga	aat	taaa	aatgt	tg	aaato	ccaaa	t	1400
10	cctagaa	ata a	aaato	gagtt	a ac	ette											1425
	<210> 6	1										o					
•	<211> 3	07										i					
	<212> P																
15	<213> H	omo s	sapie	ens													
		_															
	<400> 6			_	_		_	•		•	**- 1	<b>&gt;</b>	١	<b>63</b>	<b>T</b>		
	Met Ser	Met	Ile		Ser	Ala	Ser	Val		Arg	Val	Arg	Asp	15	Leu		
20	1	0		5	<b>-</b> 1	•	<b></b>	03	10	Cor	mh~	C111	Mot		Clu		
20	Pro Leu	ser	20	Ser	THE	Asp	туг	25	GIII	DEL	1111	GIY	30	GIII	GIU		
	Cys Arg	TVC		Dho	T 170	Mot	Lou		Ara	T.vs	T.eu	Ala		Leu	Pro		
	cys Arg	35	TÄT	File	пуз	Mec	40	Der	my	בינם	Dou	45					
	Asp Arg		ጥኮኮ	T.en	T.vs	Thr		His	Tvr	Asn	Ile		Phe	Ile	Ser		
25	50	-	****	Dea	2,2	55			-1-		60						
_0	Ser Lev		Val	Ser	Tvr		Met	Leu	Cvs	Thr	Glu	Asn	Tyr	Pro	Asn		
	65	1			70				-	75			•		80		
	Val Lev	Ala	Phe	Ser		Leu	Asp	Glu	Leu	Gln	Lys	Glu	Phe	Ile	Thr		
				85			•		90		-			95			
30	Thr Tyr	Asn	Met	Met	Lys	Thr	Asn	Thr	Ala	Val	Arg	Pro	Tyr	Cys	Phe		
	_		100		•			105					110				
	Ile Glu	ı Phe			Phe	Ile	Gln		Thr	Lys	Gln	Arg	Tyr	Asn	Asn		
		115	_				120	,		-		125					
	Pro Ar			Ser	Thr	Lys	Ile	Asn	Leu	Ser	Asp	Met	Gln	Thr	Glu		
35	130					135					140						

	Ile	Lys	Leu	Arg	Pro	Pro	Tyr	Gln	Ile	Ser	Met	Cys	Glu	Leu	Gly	Ser
	145					150					155					160
	Ala	Asn	Gly	Val	Thr	Ser	Ala	Phe	Ser	Val	Asp	Cys	Lys	Gly	Ala	Gly
					165					170					175	
5	Lys	Ile	Ser	Ser	Ala	His	Gln	Arg	Leu	Glu	Pro	Ala	Thr	Leu	Ser	Gly
				180					185					190		
	Ile	Val	Gly	Phe	Ile	Leu	Ser	Leu	Leu	Cys	Gly	Ala	Leu	Asn	Leu	Ile
			195					200					205			
	Arg	Gly	Phe	His	Ala	Ile	Glu	Ser	Leu	Leu	Gln	Ser	Asp	Gly	Asp	Asp
10		210					215					220				
	Phe	Asn	Tyr	Ile	Ile	Ala	Phe	Phe	Leu	Gly	Thr	Ala	Ala	Cys	Leu	Tyr
	225					230					235					240
	Gln	Cys	Tyr	Leu	Leu	Val	Tyr	Tyr	Thr	Gly	Trp	Arg	Asn	Val	Lys	Ser
					245					250					255	
15	Phe	Leu	Thr	Phe	Gly	Leu	Ile	Cys	Leu	Cys	Asn	Met	Tyr	Leu	Tyr	Glu
				260					265					270		
	Leu	Arg	Asn	Leu	Trp	Gln	Leu	Phe	Phe	His	Val	Thr	Val	Gly	Ala	Phe
			275					280					285			
	Val	Thr	Leu	Gln	Ile	Trp	Leu	Arg	Gln	Ala	Gln	Gly	Lys	Ala	Pro	Asp
20		290					295					300				
	Tyr	Asp	Val													
	305															
	<210	0> 62	2													
25	<21	1> 18	33													
	<212	2> <b>P</b> I	RT													
	<21	3> Ho	omo s	sapie	ens											
	<400	0> 62	2													
30	Met	Thr	Ala	Gln	Gly	Gly	Leu	Val	Ala	Asn	Arg	Gly	Arg	Arg	Phe	Lys
	1				5					10					15	
	Trp	Ala	Ile	Glu	Leu	Ser	Gly	Pro	Gly	Gly	Gly	Ser	Arg	Gly	Arg	Ser
				20					25					30		
	Asp	Arg	Gly	Ser	Gly	Gln	Gly	Asp	Ser	Leu	Tyr	Pro	Val	Gly	Tyr	Leu
35			35					40		•			45			

	Asp	Lys	Gln	Val	Pro	Asp	Thr	Ser	Val	Gln	Glu	Thr	Asp	Arg	Ile	Leu
		50					55					60				
	Val	Glu	Lys	Arg	Cys	Trp	Asp	Ile	Ala	Leu	Gly	Pro	Leu	Lys	Gln	Ile
	65					70					75					80
5	Pro	Met	Asn	Leu	Phe	Ile	Met	Tyr	Met	Ala	Gly	Asn	Thr	Ile	Ser	Ile
					85					90					95	
	Phe	Pro	Thr	Met	Met	Val	Cys	Met	Met	Ala	Trp	Arg	Pro	Ile	Gln	Ala
				100					105	•				110		
- 0	Leu	Met	Ala	Ile	Ser	Ala	Thr	Phe	Lys	Met	Leu	Glu	Ser	Ser	Ser	Gln
10			115					120					125			
	Lys		Leu	Gln	Gly	Leu		Tyr	Leu	Ile	Gly		Leu	Met	Gly	Leu
		130					135					140				
		Leu	Ala	Val	Tyr	-	Cys	Gln	Ser	Met	_	Leu	Leu	Pro	Thr	
1 5	145		_	_	_	150				_	155		_		· 	160
15	Ala	Ser	Asp	Trp		Ala	Phe	Ile	Glu		Pro	Glu	Arg	Met		Phe
	0	<b>~</b> 1	<b>-</b> 23		165	_	_			170					175	
	ser	GIY	Gly		Leu	Leu	Leu									
				180												
20	<210	)> 63	2													
		l> 32														
		2> PI														
			omo s	anie	ens											
				, up 40												
25	<400	)> 63	3													
	Met	Arg	Ala	Leu	Pro	Gly	Leu	Leu	Glu	Ala	Arq	Ala	Arq	Thr	Pro	Ara
	1	_			5	•				10			,		15	,
	Leu	Leu	Leu	Leu	Gln	Cys	Leu	Leu	Ala	Ala	Ala	Arg	Pro	Ser	Ser	Ala
				20		-			25					30		
30	Asp	Gly	Ser	Ala	Pro	Asp	Ser	Pro	Phe	Thr	Ser	Pro	Pro	Leu	Arg	Glu
			35			-		40					45			
	Glu	Ile	Met	Ala	Asn	Asn	Phe	Ser	Leu	Glu	Ser	His	Asn	Ile	Ser	Leu
		50					55					60				
	Thr	Glu	His	Ser	Ser	Met	Pro	Val	Glu	Lys	Asn	Ile	Thr	Leu	Glu	Arq
35	65					70				-	75					80

<210> 64 <211> 223

35

#### PCT/JP99/03929

	Pro	Ser	Asn	Val	Asn	Leu	Thr	Cys	Gln	Phe	Thr	Thr	Ser	Gly	Asp	Leu
					85					90					95	
	Asn	Ala	Val	Asn	Val	Thr	Trp	Lys	Lys	Asp	Gly	Glu	Gln	Leu	Glu	Asn
				100					105					110		
5	Asn	Tyr	Leu	Val	Ser	Ala	Thr	Gly	Ser	Thr	Leu	Tyr	Thr	Gln	Tyr	Arg
			115					120					125			
	Phe	Thr	Ile	Ile	Asn	Ser	Lys	Gln	Met	Gly	Ser	Tyr	Ser	Cys	Phe	Phe
		130					135					140				
	Arg	Glu	Glu	Lys	Glu	Gln	Arg	Gly	Thr	Phe	Asn	Phe	Lys	Val	Pro	Glu
10	145					150					155					160
	Leu	His	Gly	Lys	Asn	Lys	Pro	Leu	Ile	Ser	Tyr	Val	Gly	Asp	Ser	Thr
					165					170					175	
	Val	Leu	Thr	Cys	Lys	Cys	Gln	Asn	Cys	Phe	Pro	Leu	Asn	Trp	Thr	Trp
				180					185					190		
15	Tyr	Ser	Ser	Asn	Gly	Ser	Val	Lys	Val	Pro	Val	Gly	Val	Gln	Met	Asn
			195					200					205			
	Lys	Tyr	Val	Ile	Asn	Gly	Thr	Tyr	Ala	Asn	Glu	Thr	Lys	Leu	Lys	Ile
		210					215					220				
	Thr	Gln	Leu	Leu	Glu	Glu	Asp	Gly	Glu	Ser	Tyr	Trp	Cys	Arg	Ala	Leu
20	225					230					235					240
	Phe	Gln	T.eu	<b>~1</b>		_									_	Ser
			Ti-ca	GTA	Glu	Ser	Glu	Glu	His	Ile	Glu	Leu	Val	Val	Leu	DCI
			Deu	GIÀ	G1u 245	Ser	Glu	Glu	His	11e 250	Glu	Leu	Val	Val	Leu 255	DEI
	Tyr				245			Glu Phe		250					255	
	Tyr				245					250					255	
25		Leu	Val	Pro 260	245 Leu	Lys	Pro	Phe	Leu 265	250 Val	Ile	Val	Ala	Glu 270	255 Val	Ile
<b>2</b> 5		Leu	Val	Pro 260	245 Leu	Lys	Pro		Leu 265	250 Val	Ile	Val	Ala	Glu 270	255 Val	Ile
<b>2</b> 5	Leu	Leu Leu	Val Val 275	Pro 260 Ala	245 Leu Thr	Lys Ile	Pro Leu	Phe Leu 280	Leu 265 Cys	250 Val Glu	Ile Lys	Val Tyr	Ala Thr 285	Glu 270 Gln	255 Val Lys	Ile Lys
25	Leu	Leu Leu	Val Val 275	Pro 260 Ala	245 Leu Thr	Lys Ile	Pro Leu	Phe Leu	Leu 265 Cys	250 Val Glu	Ile Lys	Val Tyr	Ala Thr 285	Glu 270 Gln	255 Val Lys	Ile Lys
25	Leu Lys	Leu Leu Lys 290	Val Val 275 His	Pro 260 Ala Ser	245 Leu Thr	Lys Ile Glu	Pro Leu Gly 295	Phe Leu 280 Lys	Leu 265 Cys Glu	250 Val Glu Phe	Ile Lys Glu	Val Tyr Gln 300	Ala Thr 285 Ile	Glu 270 Gln Glu	255 Val Lys Gln	Ile Lys Leu
<b>2</b> 5	Leu Lys	Leu Lys 290 Ser	Val Val 275 His	Pro 260 Ala Ser	245 Leu Thr	Lys Ile Glu	Pro Leu Gly 295	Phe Leu 280	Leu 265 Cys Glu	250 Val Glu Phe	Ile Lys Glu	Val Tyr Gln 300	Ala Thr 285 Ile	Glu 270 Gln Glu	255 Val Lys Gln	Ile Lys Leu
	Leu Lys Lys 305	Leu Lys 290 Ser	Val Val 275 His	Pro 260 Ala Ser	245 Leu Thr Asp	Lys Ile Glu Asn 310	Pro Leu Gly 295 Gly	Phe Leu 280 Lys	Leu 265 Cys Glu	250 Val Glu Phe	lle Lys Glu Asn	Val Tyr Gln 300	Ala Thr 285 Ile	Glu 270 Gln Glu	255 Val Lys Gln	Ile Lys Leu Arg

PCT/JP99/03929

WO 00/05367

# 68/177

	<21	2> P.	RT													
	<21	3> н	omo	sapi	ens											
	<40	0> 6	4													
5	Met	Lys.	Phe	Val	Pro	Cys	Leu	Leu	Leu	Val	Thr	Leu	Ser	Cys	Leu	Gly
	1				5					10					15	
	Thr	Leu	Gly	Gln	Ala	Pro	Arg	Gln	Lys	Gln	Gly	Ser	Thr	Gly	Glu	Glu
				20					25					30		
	Phe	His	Phe	Gln	Thr	Gly	Gly	Arg	Asp	Ser	Cys	Thr	Met	Arg	Pro	Ser
10			35					40					45			
	Ser	Leu	Gly	Gln	Gly	Ala	Gly	Glu	Val	Trp	Leu	Arg	Val	Asp	Cys	Arc
		50			•		55					60				
	Asn	Thr	Asp	Gln	Thr	Tyr	Trp	Cys	Glu	Tyr	Arg	Gly	Gln	Pro	Ser	Met
	65					70					75					80
15	Cys	Gln	Ala	Phe	Ala	Ala	Asp	Pro	Lys	Ser	Tyr	Trp	Asn	Gln	Ala	Leu
					85					90					95	
	Gln	Glu	Leu	Arg	Arg	Leu	His	His	Ala	Cys	Gln	Gly	Ala	Pro	Val	Leu
				100					105				i	110		
	Arg	Pro	Ser	Val	Cys	Arg	Glu	Ala	Gly	Pro	Gln	Ala	His	Met	Gln	Gln
20			115					120					125			
	Val	Thr	Ser	Ser	Leu	Lys	Gly	Ser	Pro	Glu	Pro	Asn	Gln	Gln	Pro	Glu
		130					135					140				
	Ala	Gly	Thr	Pro	Ser	Leu	Arg	Pro	Lys	Ala	Thr	Val	Lys	Leu	Thr	Glu
	145					150					155					160
25	Ala	Thr	Gln	Leu	Gly	Lys	Asp	Ser	Met	Glu	Glu	Leu	Gly	Lys	Ala	Lys
					165					170					175	
	Pro	Thr	Thr	Arg	Pro	Thr	Ala	Lys	Pro	Thr	Gln	Pro	Gly	Pro	Arg	Pro
				180					185					190		
	Gly	Gly	Asn	Glu	Glu	Ala	Lys	Lys	Lys	Ala	Trp	Glu	His	Cys	Trp	Lys
30			195					200					205			
	Pro	Phe	Gln	Ala	Leu	Cys	Ala	Phe	Leu	Ile	Ser	Phe	Phe	Arg	Gly	
		210					215					220				
	<210	)> 69														

35

<211> 48

#### 69/177

<212> PRT <213> Homo sapiens <400> 65 5 Met Arg Leu Leu Leu Leu Leu Val Ala Ala Ser Ala Met Val Arg 5 10 15 Ser Glu Ala Ser Ala Asn Leu Gly Gly Val Pro Ser Lys Arg Leu Lys 25 Met Gln Tyr Ala Thr Gly Pro Leu Leu Lys Phe Gln Ile Cys Val Ser 10 35 40 <210> 66 <211> 371 <212> PRT 15 <213> Homo sapiens <400> 66 Met Ala Trp Thr Lys Tyr Gln Leu Phe Leu Ala Gly Leu Met Leu Val 5 10 15 20 Thr Gly Ser Ile Asn Thr Leu Ser Ala Lys Trp Ala Asp Asn Phe Met 25 Ala Glu Gly Cys Gly Gly Ser Lys Glu His Ser Phe Gln His Pro Phe 35 40 45 Leu Gln Ala Val Gly Met Phe Leu Gly Glu Phe Ser Cys Leu Ala Ala 25 Phe Tyr Leu Leu Arg Cys Arg Ala Ala Gly Gln Ser Asp Ser Ser Val 70 75 Asp Pro Gln Gln Pro Phe Asn Pro Leu Leu Phe Leu Pro Pro Ala Leu ~ 90 30 Cys Asp Met Thr Gly Thr Ser Leu Met Tyr Val Ala Leu Asn Met Thr 105 Ser Ala Ser Ser Phe Gln Met Leu Arg Gly Ala Val Ile Ile Phe Thr 115 120 Gly Leu Phe Ser Val Ala Phe Leu Gly Arg Arg Leu Val Leu Ser Gln 35 130 135 140

	Trp	Leu	Gly	Ile	Leu	Ala	Thr	Ile	Ala	Gly	Leu	Val	Val	Val	Gly	Leu	
	145					150					155					160	
	Ala	Asp	Leu	Leu	Ser	Lys	His	Asp	Ser	Gln	His	Lys	Leu	Ser	Glu	Val	
					165					170					175		
5	Ile	Thr	Gly	Asp	Leu	Leu	Ile	Ile	Met	Ala	Gln	Ile	Ile	Val	Ala	Ile	
				180					185					190			
	Gln	Met	Val	Leu	Glu	Glu	Lys	Phe	Val	Tyr	Lys	His	Asn	Val	His	Pro	
			195					200					205				
	Leu	Arg	Ala	Val	Gly	Thr	Glu	Gly	Leu	Phe	Gly	Phe	Val	Ile	Leu	Ser	
10		210					215					220					
	Leu	Leu	Leu	Val	Pro	Met	Tyr	Tyr	Ile	Pro	Ala	Gly	Ser	Phe	Ser	Gly	
	225					230					235					240	
	Asn	Pro	Arg	Gly	Thr	Leu	Glu	Asp	Ala	Leu	Asp	Ala	Phe	Cys	Gln	Val	
					245					250					255		
15	Gly	Gln	Gln	Pro	Leu	Ile	Ala	Val	Ala	Leu	Leu	Gly	Asn	Ile	Ser	Ser	
				260					265					270			
	Ile	Ala	Phe	Phe	Asn	Phe	Ala	Gly	Ile	Ser	Val	Thr	Lys	Glu	Leu	Ser	
			275	-				280					285				
~~	Ala		Thr	Arg	Met	Val	Leu	Asp	Ser	Leu	Arg	Thr	Val	Val	Ile	Trp	
20		290					295					300					
		Leu	Ser	Leu	Ala		Gly	Trp	Glu	Ala		His	Ala	Leu	Gln	Ile	
	305	_				310					315					320	
	Leu	Gly	Phe	Leu		Leu	Leu	Ile	Gly	Thr	Ala	Leu	Tyr	Asn	Gly	Leu	
0.5	•				325					330					335		
25	His	Arg	Pro		Leu	Gly	Arg	Leu		Arg	Gly	Arg	Pro	Leu	Ala	Glu	
		_		340	_				345					350			
	G1u	Ser		Gln	Glu	Arg	Leu	Leu	Gly	Gly	Thr	Arg	Thr	Pro	Ile	Asn	
	•		355					360					365				•
90	Asp	Ala	Ser														
30		370															
	٠٠ ٠٠	)	,														
		0> 67															
		l> 9(															
05		?> PI															
35	<213	s> Ho	omo s	apie	ens												

	<400	0> 6	7													
	Met	Phe	His	Gln	Ile	Trp	Ala	Ala	Leu	Leu	Tyr	Phe	Tyr	Gly	Ile	Ile
	1				5					10					15	
5	Leu	Asn	Ser	Ile	Tyr	Gln	Cys	Pro	Glu	His	Ser	Gln	Leu	Thr	Thr	Leu
				20					25					30		
	Gly	Val	Asp	Gly	Lys	Glu	Phe	Pro	Glu	Val	His	Leu	Gly	Gln	Trp	Tyr
			35					40					45			
	Phe	Ile	Ala	Gly	Ala	Ala	Pro	Thr	Lys	Glu	Glu	Leu	Ala	Thr	Phe	Asp
10		50					55					60				
	Pro	Val	Asp	Asn	Ile	Val	Phe	Asn	Met	Ala	Ala	Gly	Ser	Ala	Pro	Met
	65					70					75					80
	Gln	Leu	His	Leu	Arg	Ala	Thr	Ile	Arg	Met						
					85					90						
15																
		)> 68														
	<21	1> 49	99													
		2> PI														
	<213	3> H	omo s	sapie	ens											
20			_													
		0> 68									_		_			
		Val	Asp	Arg	Gly	Pro	Leu	Leu	Thr		Ala	Ile	Ile	Phe	-	Leu
	1				5					10			_		15	·_
o E	ATE	TTE	GIÀ		Ala	Ile	Phe	Glu		Leu	G1u	GLu	Pro		Trp	Lys
25	<b>6</b> 5	<b>.</b>	<b>7</b>	20		_	_	_,	25	_			<b>-</b>	30	_	
	GIU	WIG		гàг	Asn	туг	Tyr		GIN	ьуѕ	ьеu	HIS		Leu	ьуѕ	GIU
	Dho	Dwa	35	•	<b>a</b> 1	<b>01</b> -	<b></b>	40	T		¥	<b>~1</b> ~	45	<b>63</b>	**- 1	**-7
	FILE	50	Cys	Leu	Gly	GIN	55	GIY	Leu	Asp	ьуѕ	60	Leu	GIU	vaı	val
30	Ser		פות	77-	c1	C1-	-	77-7	71-	т10	mh.∽	• • •	) cn	Cln	mh ~	Dho
00	65	nop	MIG	ита	Gly		GŢĀ	Val	Ата	TTE		Gly	ASII	GIII	THE	80
		Δen	מבנת	N con	m	70 Dra	n on	חות	Mot	Tlo	75 Pho	7 J -	בות	ጥ ኮ ≁	17-1	
	,	non	TTP	WPII	Trp 85	PLO	ASII	ATG	nec	90	riie.	VIG	Aid	1111		116
	ጥከተ	ጥኮ፦	716	G117	Tyr	G3v	y cz	Ual .	e F A		Tare	ጥኮታ	Dro	בומ	95 Gly	hr~
35			**6	100	- y -	Эту	VOII	val	105	110	-Ly S	T117		110	GLY	ALY

	Leu	Phe	Cys	Val	Phe	Tyr	Gly	Leu	Phe	Gly	Val	Pro	Leu	Cys	Leu	Thr
,			115					120					125			
	Trp	Ile	Ser	Ala	Leu	Gly	Lys	Phe	Phe	Gly	Gly	Arg	Ala	Lys	Arg	Leu
		130			•		135					140				
5	Gly	Gln	Phe	Leu	Thr	Lys	Arg	Gly	Val	Ser	Leu	Arg	Lys	Ala	Gln	Ile
	145					150					155					160
	Thr	Cys	Thr	Val	Ile	Phe	Ile	Val	Trp	Gly	Val	Leu	Val	His	Leu	Val
					165					170					175	
	Ile	Pro	Pro	Phe	Val	Phe	Met	Val	Thr	Glu	Gly	Trp	Asn	Tyr	Ile	Glu
10				180					185					190		
	Gly	Leu	Tyr	Tyr	Ser	Phe	Ile	Thr	Ile	Ser	Thr	Ile	Gly	Phe	Gly	Asp
			195					200					205			
	Phe		Ala	Gly	Val	Asn	Pro	Ser	Ala	Asn	Tyr	His	Ala	Leu	Tyr	Arg
. =		210					215					220				
15		Phe	Val	Glu	Leu	Trp	Ile	Tyr	Leu	Gly	Leu	Ala	Trp	Leu	Ser	
	225					230					235					240
	Phe	Val	Asn	Trp	Lys	Val	Ser	Met	Phe		Glu	Val	His	Lys		Ile
	_	_			245					250					255	
20	туs	Lys	Arg		Arg	Arg	Arg	Lys		Ser	Phe	Glu	Ser		Pro	His
20	<b>5</b>	•		260	_			_	265	_	_,	- <b>-</b>	_	270	_	
	Sei	Arg		ATa	Leu	GIN	Val	_	GIŸ	Ser	Tnr	Ата		Lys	Asp	Val
	<b>N</b> = m	77.	275	C	D1 -	<b>.</b>	<b>a</b>	280	<b>-</b>	<b>a</b> 1	<b>a</b> 1	m\	285	•	_	_
	ASII	290	Pne	ser	Phe	ren		Lys	ьys	GIU	GIU		TYE	Asn	Asp	Leu
25	Tle		Cln.	73.	C1	T	295	N 1	<b>W</b> -+	T	mh =	300	c1	<b>~</b> 1	01	<b></b>
20	305	пуъ	GTII	TTE	Gly	_	гĀг	AId	Mec	ьys	315	Ser	СТЙ	сту	GIÀ	
		Glv	Dro	Clar.	Pro	310	Lou	C1	Dro	Cln		C111	C311	Tou	Dro	320
	1111	GIŞ	FIO	GIÀ	325	СТА	теа	СТА	PLO	330	СТА	СТА	GIY	rea	335	WIG
	Leu	Pro	Pro	Sor	Leu	17a7	Dro	T 011	17al		T) T T T	Sor	Lve	Acn		tra l
30		110	110	340	пеа	vai	FLO	Leu	345	VAI	1 7 1.	SEL	Буз	350	ALG	vai
	Pro	Thr	T.en		Glu	Wa]	Ser	Gln		T.em	Ara	Ser	T.ve		uie.	<b>17</b> ⇒7
			355	O_Lu	GIU	vai	Der	360	111L	шец	my	Der	365	GLY	UTO	Vai
	Ser	Ara		Pro	Asp	Glu	Glu		₹7= T	λla	Δνα	λla		Glu	) en	Ser
		370			P	~_u	375	*3#C	- u.	u	9	380	- 10	- <u></u> u	יזיי	OCT
35	Ser		Ala	Pro	Glu	۲ <i>۵</i> ۲۶		Mot	) cn	Gln	T.eu		Δτα	Tle	Se~	Cl.
				110	Jiu	v ar	£ 116	1.1C.L	VOII	2711	⊒-cu	vah	n.y	エエニ	Ser	оти

	385					390					395					400
	Glu	Cys	Glu	Pro	Trp	Asp	Ala	Gln	Asp	туr	His	Pro	Leu	Ile	Phe	Gln
					405					410					415	
	Asp	Ala	Ser	Ile	Thr	Phe	Val	Asn	Thr	Glu	Ala	Gly	Leu	Ser	Asp	Glu
5				420					425					430		
	Glu	Thr	Ser	Lys	Ser	Ser	Leu	Glu	Asp	Asn	Leu	Ala	Gly	Glu	Glu	Ser
			435					440					445			
	Pro	Gln	Gln	Gly	Ala	Glu	Ala	Lys	Ala	Pro	Leu	Asn	Met	Gly	Glu	Phe
		450					455					460				
10	Pro	Ser	Ser	Ser	Glu	Ser	Thr	Phe	Thr	Ser	Thr	Glu	Ser	Glu	Leu	Ser
	465					470					475					480
	Val	Pro	Tyr	Glu	Gln	Leu	Met	Asn	Glu	Tyr	Asn	Lys	Ala	Asn	Ser	Pro
					485			-		490					495	
	Lys	Gly	Thr													
15																
		> 69														
		1> 10														
20		2> PF														
20	<213	3> Ho	omo s	sapie	ens											
	-40															
		0> 69			-1		~7	_	_	_		_		•	<b>0</b> 1	
		Ala	ser	Ser	_	Ala	СТĀ	Asp	Pro		Asp	Ser	Lys	Arg	Gly	GIU
95	1	<b>5</b>			5	_	_,	_	_	10	_			<b>.</b>	15	_
25	Ala	Pro	Pne		GIn	Arg	Ile	Asp		Thr	Arg	GTI	Lys		Thr	Pro
	<b>~</b> 1	<b>03</b>	_	20	_		_		25		_	_ •		30	<b>a</b> 3-	
	GIU	GIN		HIS	ser	Met	_		Ala	GIU	Leu	Ala		Trp	Gln	гÀг
	**- 7	<b>.</b>	35	_	_	_		40	_	_•			45	_	-1	
20	val		Pro	Arg	Arg	Arg		Arg	Asn	Ile	Val		GIÀ	Leu	Gly	He
30		50	_			_	55		_			60				_
		Ala	Leu	Val	Leu		Ile	Tyr	Gly	Tyr		Phe	Tyr	Ser	Ile	
	65					70					75					80
	Gln	Glu	Arg	Phe		Asp	Glu	Leu	Glu	-	Glu	Ala	Lys	Ala	Ala	Arg
0.5					85					90					95	
<b>3</b> 5	Ala	Arg	Ala	Leu	Ala	Arg	Ala	Ser	Gly	Ser						

35

<400> 71

#### PCT/JP99/03929

#### 74/177

100 105 <210> 70 <211> 152 5 <212> PRT <213> Homo sapiens <400> 70 Met Asp Tyr Val Cys Cys Ala Tyr Asn Asn Ile Thr Gly Arg Gln Asp 10 10 Glu Thr His Phe Thr Val Ile Ile Thr Ser Val Gly Leu Glu Lys Leu 25 20 Ala Gln Lys Gly Lys Ser Leu Ser Pro Leu Ala Ser Ile Thr Gly Ile 40 15 Ser Leu Phe Leu Ile Ile Ser Met Cys Leu Leu Phe Leu Trp Lys Lys 50 55 Tyr Gln Pro Tyr Lys Val Ile Lys Gln Lys Leu Glu Gly Arg Pro Glu 75 Thr Glu Tyr Arg Lys Ala Gln Thr Phe Ser Gly His Glu Asp Ala Leu 20 85 Asp Asp Phe Gly Ile Tyr Glu Phe Val Ala Phe Pro Asp Val Ser Gly 100 105 Val Ser Arg Ile Pro Ser Arg Ser Val Pro Ala Ser Asp Cys Val Ser 125 115 120 25 Gly Gln Asp Leu His Ser Thr Val Tyr Glu Val Ile Gln His Ile Pro 140 135 Ala Gln Gln Asp His Pro Glu 145 150 30 <210> 71 <211> 921 <212> DNA <213> Homo sapiens

	atgtctatga	ttttatctgc	ctcagtcatt	cgtgtcagag	atggactgcc	actttctgct	60
	tctactgatt	atgaacaaag	cacaggaatg	caggagtgca	gaaagtattt	taaaatgctt	120
	tcgaggaaac	ttgctcaact	tcctgataga	tgtacactga	aaactggaca	ttataacatt	180
	aattttatta	gctctctggg	agtgagctac	atgatgttgt	gcactgaaaa	ttacccaaat	240
5	gttctcgcct	tctctttcct	ggatgagctt	cagaaggagt	tcattactac	ttataacatg	300
	atgaagacaa	atactgctgt	cagaccatac	tgtttcattg	aatttgataa	cttcattcag	360
	aggaccaagc	agcgatataa	taatcccagg	tctctttcaa	caaagataaa	tctttctgac	420
	atgcagacgg	aaatcaagct	gaggcctcct	tatcaaattt	ccatgtgcga	actggggtca	480
	gccaatggag	tcacatcage	attttctgtt	gactgtaaag	gtgctggtaa	gatttcttct	540
10	gctcaccage	gactggaacc	agcaactctg	tcagggattg	taggatttat	ccttagtctt	600
	ttatgtggag	ctctgaattt	aattcgaggc	tttcatgcta	tagaaagtct	cctgcagagt	660
	gatggtgatg	attttaatta	catcattgca	tttttccttg	gaacagcagc	ctgcctttac	720
	cagtgttatt	tacttgtcta	ctacaccggc	tggcggaatg	tcaaatcttt	tttgactttt	780
	ggcttaatct	gtctatgcaa	catgtatctc	tatgaactgc	gcaacctctg	gcagcttttc	840
15	tttcatgtga	ctgtgggagc	atttgttaca	ctacagatct	ggctaaggca	ageceaggge	900
	aaggctcccg	attatgatgt	С				921
	<210> 72						
	<211> 549						
20	<212> DNA						
	<213> Homo	sapiens				•	
					,		
	<400> 72						
	atgacggccc	aggggggcct	ggtggctaac	egaggeegge	gcttcaagtg	ggccattgag	60
25	ctaageggge	ctggaggagg	cagcaggggt	cgaagtgacc	ggggcagtgg	ccagggagac	120
	tegetetace	cagtcggtta	cttggacaag	caagtgcctg	ataccagegt	gcaagagaca	180
	gaceggatee	tggtggagaa	gegetgetgg	gacategeet	tgggtcccct	caaacagatt	240
	cccatgaatc	tcttcatcat	gtacatggca	ggcaatacta	tctccatctt	ccctactatg	300
	atggtgtgta	tgatggcctg	gcgacccatt	caggcactta	tggccatttc	agccactttc	360
30	aagatgttag	aaagttcaag	ccagaagttt	cttcagggtt	tggtctatct	cattgggaac	420
	ctgatgggtt	tggcattggc	tgtttacaag	tgccagtcca	tgggactgtt	acctacacat	480
	gcatcggatt	ggttagcctt	cattgagccc	cctgagagaa	tggagttcag	tggtggagga	540
	ctgcttttg						549
0.5							

#### 76/177

<211> 981

<212> DNA <213> Homo sapiens 5 <400> 73 atgegegeec teeceggeet getggaggee agggegegta egeceegget getecteete 60 cagtgeette tegetgeege gegeeeaage teggeggaeg geagtgeece agattegeet 120 tttacaagtc cacctctcag agaagaaata atggcaaata acttttcctt ggagagtcat 180 aacatatcac tgactgaaca ttctagtatg ccagtagaaa aaaatatcac tttagaaagg 240 10 cettetaatg taaateteae atgecagtte acaacatetg gggatttgaa tgeagtaaat 300 gtgacttgga aaaaagatgg tgaacaactt gagaataatt atcttgtcag tgcaacagga 360 agcaccttgt atacccaata caggitcacc atcattaata gcaaacaaat gggaagitat 420 tettgtttet ttegagagga aaaggaacaa aggggaacat ttaattteaa agteeetgaa 480 cttcatggga aaaacaagcc attgatctct tacgtagggg attctactgt cttgacatgt 540 15 asatgtcaaa attgttttcc tttaaattgg acctggtaca gtagtaatgg gagtgtaaaq 600 gttcctgttg gtgttcaaat gaataaatat gtgatcaatg gaacatatgc taacgaaaca 660 aagctgaaga taacacaact tttggaggaa gatggggaat cttactggtg ccgtgcacta 720 ttccaattag gegagagtga agaacacatt gagettgtgg tgetgageta tttggtgeee 780 etcaaaccat ttettgtaat agtggetgag gtgattettt tagtggeeac cattetgett 840 20 tgtgaaaagt acacacaaaa gaaaaagaag cactcagatg aggggaaaga atttgagcag 900 attgaacago tgaaatcaga tgatagcaat ggtatagaaa ataatgtooc caggoataga 960 aaaaatgagt ctctgggcca g 981 <210> 74 25 <211> 669 <212> DNA <213> Homo sapiens <400> 74 30 atgaagtteg teeeetgeet eetgetggtg acettgteet geetggggae tttgggteag 60 geceegagge aaaageaagg aageaetggg gaggaattee attteeagae tggagggaga 120 gatteetgea ctatgegtee cageagettg gggeaaggtg etggagaagt etggettege 180 gtcgactgcc gcaacacaga ccagacctac tggtgtgagt acagggggca gcccagcatg 240 tgccaggett tegetgetga ecceaaatet tactggaate aagecetgea ggagetgagg 300 35 egeetteace atgegtgeea gggggeeceg gtgettagge cateegtgtg cagggagget 360

	ggaccccagg	cccatatgca	gcaggtgact	tecageetea	agggcagccc	agageceaac	420
	cagcagcctg	aggetgggae	gccatctctg	aggcccaagg	ccacagtgaa	actcacagaa	480
	gcaacacagc	tgggaaagga	ctcgatggaa	gagctgggaa	aagccaaacc	caccacccga	540
	cccacagcca	aacctaccca	gcctggaccc	aggcccggag	ggaatgagga	agcaaagaag	600
5	aaggeetggg	aacattgttg	gaaacccttc	caggccctgt	gegeetttet	catcagette	660
	tteegaggg						669
	<210> 75						
	<211> 144						
10	<212> DNA						
	<213> Homo	sapiens					
	<400> 75					•	
	atgaggette	tgctgcttct	cctagtggcg	gegtetgega	tggtccggag	cgaggcctcg	60
15	gccaatctgg	geggegtgee	cagcaagaga	ttaaagatgc	agtacgccac	ggggeegetg	120
	ctcaagttcc	agatttgtgt	ttcc				144
	<210> 76						
00	<211> 1113						
20	<212> DNA						
	<213> Homo	sapiens					
	4400> 76						
	<400> 76				+ matt att = 2		60
25		ccaagtacca			•		60
20		cggcaaaatg					120
		tecageatee					180
		ccttctacct					240 300
		agccetteaa					360
30		tcatgtatgt					420
30		tgatcatatt				•	480
		agtggctggg					-
		tgagcaagca					540
		tcatggccca					600
25		acaatgtgca					660
35	gtgatcctct	ccctgctgct	ggtgcccatg	tactacatcc	ccgccggctc	cttcagcgga	720

# 78/177.

	aaccctcgtg	ggacactgga	ggatgcattg	gacgccttct	gccaggtggg	ccagcagccg	780
	ctcattgccg	tggcactgct	gggcaacatc	agcagcattg	ccttcttcaa	cttcgcaggc	840
	atcagcgtca	ccaaggaact	gagcgccacc	accegcatgg	tgttggacag	cttgcgcacc	900
	gttgtcatct	gggcactgag	cctggcactg	ggctgggagg	ccttccatgc	actgcagatc	960
5	cttggcttcc	tcatactcct	tataggcact	gecetetaca	atgggctaca	cegteegetg	1020
	ctgggccgcc	tgtccagggg	ccggcccctg	gcagaggaga	gcgagcagga	gagactgctg	1080
	ggtggcaccc	gcactcccat	caatgatgcc	agc			1113
	<210> 77						
10	<211> 270						
	<212> DNA						
	<213> Homo	sapiens					
	<400> 77						
15	atgttccacc	aaatttgggc	agctctgctc	tacttctatg	gtattatcct	taactccatc	60
	taccagtgcc	ctgagcacag	tcaactgaca	actctgggcg	tggatgggaa	ggagttccca	120
	gaggtccact	tgggccagtg	gtactttatc	gcaggggcag	ctcccaccaa	ggaggagttg	180
	gcaacttttg	accctgtgga	caacattgtc	ttcaatatgg	ctgctggctc	tgccccgatg	240
	cagetecace	ttcgtgctac	catccgcatg				270
20							
	<210> 78				•		
	<211> 1497						
	<212> DNA						
0 <b></b>	<213> Homo	sapiens					
25	16.6						
	<400> 78						
					tctacctggc		60
			•		ccaagaaaaa		120
0.0					aggagggcct		180
30					tcacagggaa		240
					ccgtcattac	٠	300
			-		tctgtgtttt		360
					gcaagttctt		420
			_		gtctgcggaa		480
35	acgtgcacag	tcatcttcat	cgtgtggggc	gtectagtec	acctggtgat	cccacccttc	540

	gtattcatgg	tgactgaggg	gtggaactac	atcgagggcc	tctactactc	cttcatcacc	600
	atctccacca	teggettegg	tgactttgtg	gccggtgtga	accccagege	caactaccac	660
	gccctgtacc	gctacttcgt	ggagctctgg	atctacttgg	ggctggcctg	gctgtccctt	720
	tttgtcaact	ggaaggtgag	catgtttgtg	gaagtccaca	aagccattaa	gaagcggcgg	780
5	cggcgacgga	aggagtcctt	tgagagetee	ccacactccc	ggaaggccct	gcaggtgaag	840
	gggagcacag	cctccaagga	cgtcaacatc	ttcagctttc	tttccaagaa	ggaagagacc	900
	tacaacgacc	tcatcaagca	gatcgggaag	aaggccatga	agacaagcgg	gggtggggag	960
	acgggcccgg	geccaggget	ggggcctcaa	ggcggtgggc	teceageact	gececettee	1020
	ctggtgcccc	tggtagtcta	ctccaagaac	cgggtgccca	ccttggaaga	ggtgtcacag	1080
10	acactgagga	gcaaaggcca	cgtatcaagg	tececagatg	aggaggctgt	ggcacgggcc	1140
	cctgaagaca	gctcccctgc	ccccgaggtg	ttcatgaacc	agctggaccg	catcagcgag	1200
	gaatgcgagc	catgggacgc	ccaggactac	cacccactca	tcttccagga	cgccagcatc	1260
	accttcgtga	acacggaggc	tggcctctca	gacgaggaga	cctccaagtc	ctcgctagag	1320
	gacaacttgg	caggggagga	gagcccccag	cagggggctg	aagccaaggc	gcccctgaac	1380
15	atgggcgagt	tecectecte	ctccgagtcc	accttcacca	gcactgagtc	tgagetetet	1440
	gtgccttacg	aacagctgat	gaatgagtac	aacaaggcta	acagececaa	gggcaca	1497
	<210> 79						
	<211> 318						
20	<212> DNA					4	
	<213> Homo	sapiens					
	<400> 79						
	atggcgtctt	cgggagctgg	tgaccetetg	gattctaagc	gtggagaggc	cccgttcgct	60
25	cagcgtatcg	acccgactcg	ggagaagctg	acacccgagc	aactgcattc	catgcggcag	120
	gcggagcttg	cccagtggca	gaaggtccta	ccacggcggc	gaacccggaa	catcgtgacc	180
	ggcctaggca	teggggeeet	ggtgttggct	atttatggtt	acaccttcta	ctcgatttcc	240
	caggagcgtt	tcctagatga	gctagaagac	gaggccaaag	ctgcccgagc	ccgagctctg	300
	gcaagggcgt	cagggtcc					318
30							
	<210> 80						
	<211> 456						
	<212> DNA						
	<213> Homo	sapiens					
0.5							

	<400> 80	
	atggactatg tgtgctgtgc ttacaacaac ataaccggca ggcaagatga aactcatttc	60
	acagttatca tcacttccgt aggactggag aagcttgcac agaaaggaaa atcattgtca	120
	cctttagcaa gtataactgg aatatcacta tttttgatta tatccatgtg tcttctctc	180
5	ctatggaaaa aatatcaacc ctacaaagtt ataaaacaga aactagaagg caggccagaa	240
	acagaataca ggaaagetea aacattttea ggeeatgaag atgetetgga tgaettegga	300
	atatatgaat ttgttgcttt tccagatgtt tctggtgttt ccaggatccc aagcaggtct	360
	gttccagcct ctgattgtgt atcggggcaa gatttgcaca gtacagtgta tgaagttatt	420
	cagcacatcc etgeccagca gcaagaccat ccagag	456
10		
	<210> 81	
	<211> 1436	
	<212> DNA	
	<213> Homo sapiens	
15	<220>	
	<221> CDS	
	<222> (66)(989)	
	<400> 81	
20	gcactteggg gegegteact eggageggeg ggteeegtet egacaggtet tetetgttgg	60
	ttgaa atg tot atg att tta tot goo toa gto att ogt gto aga gat	107
	Met Ser Met Ile Leu Ser Ala Ser Val Ile Arg Val Arg Asp	
	1 5 10	
	gga ctg cca ctt tet get tet act gat tat gaa caa age aca gga atg	155
25	Gly Leu Pro Leu Ser Ala Ser Thr Asp Tyr Glu Gln Ser Thr Gly Met	
	15 20 25 30	
	cag gag tgc aga aag tat ttt aaa atg ctt tcg agg aaa ctt gct caa	203
	Gln Glu Cys Arg Lys Tyr Phe Lys Met Leu Ser Arg Lys Leu Ala Gln	
	35 40 45	
30	ctt cct gat aga tgt aca ctg aaa act gga cat tat aac att aat ttt	251
	Leu Pro Asp Arg Cys Thr Leu Lys Thr Gly His Tyr Asn Ile Asn Phe	
	50 55 60	
	att age tet etg gga gtg age tae atg atg ttg tge aet gaa aat tae	299
	Ile Ser Ser Leu Gly Val Ser Tyr Met Met Leu Cys Thr Glu Asn Tyr	
35	65 70 75	

•	cca	aat	gtt	ctc	gcc	ttc	tct	ttc	ctg	gat	gag	ctt	cag	aag	gag	ttc	347
	Pro	Asn	Val	Leu	Ala	Phe	Ser	Phe	Leu	Asp	Glu	Leu	Gln	Lys	Glu	Phe	
		80					85					90					
	att	act	act	tat	aac	atg	atg	aag	aca	aat	act	gct	gtc	aga	cca	tac	395
5	Ile	Thr	Thr	Tyr	Asn	Met	Met	Lys	Thr	Asn	Thr	Ala	Val	Arg	Pro	Tyr	
	95					100					105					110	
	tgt	ttc	att	gaa	ttt	gat	aac	ttc	att	cag	agg	acc	aag	cag	cga	tat	443
	Cys	Phe	Ile	Glu	Phe	Asp	Asn	Phe	Ile	Gln	Arg	Thr	Lys	Gln	Arg	Tyr	
					115					120					125		
10	aat	aat	ccc	agg	tct	ctt	tca	aca	aag	ata	aat	ctt	tct	gac	atg	cag	491
	Asn	Asn	Pro	Arg	Ser	Leu	Ser	Thr	Lys	Ile	Asn	Leu	Ser	Asp	Met	Gln	
				130					135					140			
	acg	gaa	atc	aag	ctg	agg	cct	cct	tat	caa	att	tcc	atg	tgc	gaa	ctg	539
	Thr	Glu	Ile	Lys	Leu	Arg	Pro	Pro	Tyr	Gln	Ile	Ser	Met	Cys	Glu	Leu	
15			145					150					155				
	ggg	tca	gcc	aat	gga	gtc	aca	tca	gca	ttt	tct	gtt	gac	tgt	aaa	ggt	587
	Gly	Ser	Ala	Asn	Gly	Val	Thr	Ser	Ala	Phe	Ser	Val	Asp	Суѕ	Lys	Gly	
		160					165					170					
	gat	ggt	aag	att	tct	tct	gct	cac	cag	cga	ctg	gaa	cca	gca	act	ctg	635
20	Ala	Gly	Lys	Ile	Ser	Ser	Ala	His	Gln	Arg	Leu	Glu	Pro	Ala	Thr	Leu	
	175					180					185					190	
	tca	ggg	att	gta	gga	ttt	atc	ctt	agt	ctt	tta	tgt	gga	gct	ctg	aat	683
	Ser	Gly	Ile	Val	Gly	Phe	Ile	Leu	Ser	Leu	Leu	Суѕ	Gly	Ala	Leu	Asn	
					195					200					205		
25	tta	att	cga	ggc	ttt	cat	gct	ata	gaa	agt	ctc	ctg	cag	agt	gat	ggt	731
	Leu	Ile	Arg	Gly	Phe	His	Ala	Ile	Glu	Ser	Leu	Leu	Gln	Ser	Asp	Gly	
				210					215					220			
	gat	gat	ttt	aat	tac	atc	att	gca	ttt	ttc	ctt	gga	aca	gca	gcc	tgc ~	779
	Asp	Asp	Phe	Asn	Tyr	Ile	Ile	Ala	Phe	Phe	Leu	Gly	Thr	Ala	Ala	Cys	
30			225					230					235				
	ctt	tac	cag	tgt	tat	tta	ctt	gtc	tac	tac	acc	ggc	tgg	cgg	aat	gtc	827
	Leu	Tyr	Gln	Cys	Tyr	Leu	Leu	Val	Tyr	Tyr	Thr	Gly	Trp	Arg	Asn	Val	
		240					245					250					
	aaa	tct	ttt	ttg	act	ttt	ggc	tta	atc	tgt	cta	tgc	aac	atg	tat	ctc	875
35	Lys	Ser	Phe	Leu	Thr	Phe	Gly	Leu	Ile	Cys	Leu	Суѕ	Asn	Met	Tyr	Leu	

tat gaa ctg cgc aac ctc tgg cag ctt ttc ttt cat gtg act gtg g  Tyr Glu Leu Arg Asn Leu Trp Gln Leu Phe Phe His Val Thr Val G  275 280 285  5 gca ttt gtt aca cta cag atc tgg cta agg caa gcc cag ggc aag gc Ala Phe Val Thr Leu Gln Ile Trp Leu Arg Gln Ala Gln Gly Lys A  290 295 300  ccc gat tat gat gtc tgacaccatc cttcagatct attgccttgg cttc Pro Asp Tyr Asp Val  305  agggggataa ggagggaaca tatcataact gcactgtgat gaagaagctg ttcccca aggagaagct ctgcttctt tctctccaac tttcctttt taaaatcagc atgatgt tgtgagcatg gaagagtcct ctcagaagaa tgttggccat gagactatca ttcagaa gaggggattt ctctcttcaa ggccataaca gtggaagaac agtcatatgc cattgga  cttggccagc agtcctgaat ccttcctgaa gagttcagaa aatagatgtg gtattgc gaggaccagg caggaggaac tctacaacct gagtttgcct ttgtgaggca ttagtat ccaaataaaa agctgcagaa attggaaagt ttatgttta aataaatgac tgtgat  <210> 82  220 <211> 997  <212> DNA  <213> Homo sapiens <220> <221> CDS  <222> (87)(638)  <400> 82  gagacaaaagc ggagaacgct ggtgggcctg ttgtgggata cgctttggac tgagaag cgaggctata ggacgagct gttgcc atg acg gcc cag ggg ggc ctg gtg	ly et 971
gca ttt gtt aca cta cag atc tgg cta agg caa gcc cag ggc aag gg Ala Phe Val Thr Leu Gln Ile Trp Leu Arg Gln Ala Gln Gly Lys Al 290 295 300 ccc gat tat gat gtc tgacaccatc cttcagatct attgccttgg cttc Pro Asp Tyr Asp Val  305 agggggataa ggagggaaca tatcataact gcactgtgat gaagaagctg ttcccca aggagaagct ctgctttctt tctctccaac tttcctttt taaaatcagc atgatgt tgtgagcatg gaagagtcct ctcagaagaa tgttggccat gagactatca ttcagac gaggggattt ctctcttcaa ggccataaca gtggaagaac agtcatatgc cattgga cttggccagc agtcctgaat ccttcctgaa gagttcagaa aatagatgtg gtattgc gaggaccagg caggaggaac tctaccaacct gagtttgcct ttgtgaggca ttagtat ccaaataaaa agctgcagaa attggaaagt ttatgttta aataaatgac tgtgat  <210> 82  <211> 997 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (87)(638)  <400> 82 gagacaaagc ggagaacgct ggtgggcctg ttgtggagta cgctttggac tgagaag	- et 971
gca ttt gtt aca cta cag atc tgg cta agg caa gcc cag ggc aag gg Ala Phe Val Thr Leu Gln Ile Trp Leu Arg Gln Ala Gln Gly Lys Al 290 295 300 ccc gat tat gat gtc tgacaccatc cttcagatct attgccttgg cttc Pro Asp Tyr Asp Val  305 agggggataa ggagggaaca tatcataact gcactgtgat gaagaagctg ttcccca aggagaagct ctgctttctt tctctccaac tttcctttt taaaatcagc atgatgt tgtgagcatg gaagagtcct ctcagaagaa tgttggccat gagactatca ttcagaa gaggggattt ctctcttcaa ggccataaca gtggaagaac agtcatatgc cattgga cttggccagc agtcctgaat ccttcctgaa gagttcagaa aatagatgtg gtattgc gaggaccagg caggaggaac tctacaacct gagtttgcct ttgtgaggca ttagtat ccaaataaaa agctgcagaa attggaaagt ttatgttta aataaatgac tgtgat  <210> 82  221> DNA <213> Homo sapiens <220> <221> CDS <222> (87)(638)  <400> 82 gagacaaagc ggagaacgct ggtgggcctg ttgtggagta cgctttggac tgagaag	
Ala Phe Val Thr Leu Gln Ile Trp Leu Arg Gln Ala Gln Gly Lys Al 290 295 300 ccc gat tat gat gtc tgacaccatc cttcagatct attgccttgg cttc Pro Asp Tyr Asp Val 305 agggggataa ggagggaaca tatcataact gcactgtgat gaagaagctg ttcccca aggagaagct ctgcttctt tctctccaac tttcctttt taaaatcagc atgatgt tgtgagcatg gaagagtcct ctcagaagaa tgttggccat gagactatca ttcagag gaggggatt ctctcttcaa ggccataaca gtggaagaac agtcatatgc cattgga cttggccagc agtcctgaat ccttcctgaa gagttcagaa aatagatgtg gtattgc gaggaccagg caggaggaac tctacaacct gagtttgcct ttgtgaggca ttagtat ccaaaataaaa agctgcagaa attggaaagt ttatgttta aataaatgac tgtgat <210 82 <211> 997 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (87)(638) <400> 82 gagacaaagc ggagaacgct ggtgggcctg ttgtggagta cgctttggac tgagaaga	
ccc gat tat gat gtc tgacaccate ctteagatet attgeettgg ette Pro Asp Tyr Asp Val  305  agggggataa ggagggaaca tatcataact geactgtgat gaagaagetg tteecea aggagaaget etgetttett tetetecaac ttteetttt taaaatcage atgatgt tgtgageatg gaagagteet etcagaagaa tgttggecat gagactatea tteagag gaggggattt etetetteaa ggecataaca gtggaagaac agteatatge cattgga  cttggecage agteetgaat cetteetgaa gagtteagaa aatagatgtg gtattge gaggaccagg eaggaggaac tetacaacet gagtttgeet ttgtgaggea ttagtat ccaaataaaa agctgcagaa attggaaagt ttatgttta aataaatgac tgtgat  <210> 82  20 <211> 997 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (87)(638)  <400> 82 gagaccaage ggagaaccget ggtgggeetg ttgtggagta egetttggac tgagaag	la
ccc gat tat gat gtc tgacaccate cttcagatct attgccttgg cttc Pro Asp Tyr Asp Val  305  agggggataa ggagggaaca tatcataact gcactgtgat gaagaagctg ttcccca aggagaagct ctgcttctt tctctccaac tttcctttt taaaatcage atgatgt tgtgagcatg gaagagtcct ctcagaagaa tgttggccat gagactatca ttcagag gaggggattt ctctcttcaa ggccataaca gtggaagaac agtcatatge cattgga  cttggccage agtcctgaat ccttcctgaa gagttcagaa aatagatgtg gtattgc gaggaccagg caggaggaac tctacaacct gagtttgcct ttgtgaggca ttagtat ccaaataaaa agctgcagaa attggaaagt ttatgttta aataaatgac tgtgat  <210> 82  20 <211> 997  <212> DNA  <213> Homo sapiens  <220>  <221> CDS  <222> (87)(638)  <400> 82  gagaccaagc ggagaaccgct ggtgggcctg ttgtggagta cgctttggac tgagaag	
Pro Asp Tyr Asp Val  agggggataa ggagggaaca tatcataact gcactgtgat gaagaagctg tteeces aggagaagct etgettett tetetecaac ttteetttt taaaatcage atgatgt tgtgagcatg gaagagteet etcagaagaa tgttggecat gagactatea tteagaa gaaggggattt eteteteaa ggecataaca gtggaagaac agtcatatge cattgga  15 ettggecage agteetgaat eetteetgaa gagtteagaa aatagatgtg gtattge gaggaccagg caggaggaac tetacaacet gagtttgeet ttgtgaggea ttagtat ecaaataaaa agetgeagaa attggaaagt ttatgttta aataaatgac tgtgat  <210> 82  <210> 82  <211> 997  <212> DNA  <213> Homo sapiens  <220>  <221> CDS  <222> (87)(638)  <400> 82  gagacaaage ggagaacget ggtgggeetg ttgtggata egetttggac tgagaaga	
agggggataa ggagggaaca tatcataact gcactgtgat gaagaagctg tteecca aggagaagct ctgctttctt tctctccaac tttcctttt taaaatcagc atgatgt tgtgagcatg gaagagtcct ctcagaagaa tgttggccat gagactatca ttcagag gaggggattt ctctcttcaa ggccataaca gtggaagaac agtcatatgc cattgga cttggccage agtcctgaat ccttcctgaa gagttcagaa aatagatgtg gtattgc gaggaccagg caggaggaac tctacaacct gagtttgcct ttgtgaggca ttagtat ccaaataaaa agctgcagaa attggaaagt ttatgttta aataaatgac tgtgat  <210> 82  <210> 82  <211> 997  <212> DNA  <213> Homo sapiens  <220> <221> CDS  <222> (87)(638)  <400> 82  gagacaaagc ggagaacgct ggtgggcctg ttgtggata cgctttggac tgagaag	1020
agggggataa ggagggaaca tatcataact gcactgtgat gaagaagctg ttcccca aggagaagct ctgctttctt tctctccaac tttcctttt taaaatcagc atgatgd tgtgagcatg gaagagtcct ctcagaagaa tgttggccat gagactatca ttcagaagaagggggattt ctctctcaa ggccataaca gtggaagaac agtcatatgc cattggagaggaccagg caggaggaac tctaccagaa gagttcagaa aatagatgtg gtattgc gaggaccagg caggaggaac tctaccaacct gagtttgcct ttgtgaggca ttagtat ccaaataaaa agctgcagaa attggaaagt ttatgttta aataaatgac tgtgat  <210> 82  <211> 997  <212> DNA  <213> Homo sapiens  <220>  <221> CDS  <222> (87)(638)  <400> 82  gagacaaagc ggagaacgct ggtgggcctg ttgtggagta cgctttggac tgagaag	
aggagaaget etgetttett tetetecaae titteettitt taaaateage atgatgi tgtgageatg gaagagteet eteagaagaa tgttggeeat gagactatea titeagae gaggggattt etetetteaa ggeeataaea gtggaagaae agteatatge eattgga 15 ettggeeage agteetgaat eetteetgaa gagtteagaa aatagatgtg gtattge gaggaceagg eaggaggaae tetacaaeet gagttigeet tigtggagea titagtat ecaaataaaa agetgeagaa attggaaagt titatgitta aataaatgae tgtgat  <210> 82  <211> 997  <212> DNA  <213> Homo sapiens  <220>  <221> CDS  <222> (87)(638)  <400> 82  gagacaaage ggagaaeeget ggtgggeetg tigtggagta egettiggae tgagaaga	
tgtgagcatg gaagagteet eteagaagaa tgttggeeat gagactatea tteagaggaggggattt etetetteaa ggeeataaca gtggaagaac agteatatge eattggagaggaceagg agteetgaat eetteetgaa gagtteagaa aatagatgtg gtattgegaggaggaceagg eaggaggaac tetacaacet gagtttgeet ttgtgaggea ttagtat ecaaataaaa agetgeagaa attggaaagt ttatgttta aataaatgac tgtgat  <210> 82  <210> 82  <211> 997  <212> DNA  <213> Homo sapiens  <220>  <221> CDS  <222> (87)(638)  <400> 82  gagacaaage ggagaacget ggtgggeetg ttgtggagta egetttggac tgagaag	acag 1080
gaggggattt ctctctcaa ggccataaca gtggaagaac agtcatatgc cattgga cttggccagc agtcctgaat ccttcctgaa gagttcagaa aatagatgtg gtattgc gaggaccagg caggaggaac tctacaacct gagtttgcct ttgtgaggca ttagtat ccaaataaaa agctgcagaa attggaaagt ttatgttta aataaatgac tgtgat <210> 82 <211> 997 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (87)(638) <400> 82 gagacaaagc ggagaacgct ggtgggcctg ttgtggagta cgctttggac tgagaag	gcc 1140
cttggccagc agtcctgaat ccttcctgaa gagttcagaa aatagatgtg gtattgc gaggaccagg caggaggaac tctacaacct gagtttgcct ttgtgaggca ttagtat ccaaataaaa agctgcagaa attggaaagt ttatgttta aataaatgac tgtgat  <210> 82  <211> 997  <212> DNA  <213> Homo sapiens  <220>  <221> CDS  <222> (87)(638)  <400> 82  gagacaaagc ggagaacgct ggtgggcctg ttgtggagta cgctttggac tgagaag	ggag 1200
gaggaccagg caggaggaac tetacaacet gagtttgeet ttgtgaggea ttagtat ccaaataaaa agetgeagaa attggaaagt ttatgttta aataaatgac tgtgat  <210> 82  20 <211> 997 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (87)(638)  <400> 82  gagacaaage ggagaacget ggtgggeetg ttgtggagta egetttggac tgagaag	agt 1260
ccaaataaaa agctgcagaa attggaaagt ttatgttta aataaatgac tgtgat  <210> 82  <211> 997  <212> DNA  <213> Homo sapiens  <220>  <221> CDS  <222> (87)(638)  <400> 82  gagacaaagc ggagaacgct ggtgggcctg ttgtggagta cgctttggac tgagaag	tct 1320
<pre> &lt;210&gt; 82  20</pre>	aga 1380
20	1436
20	
<pre>&lt;212&gt; DNA &lt;213&gt; Homo sapiens &lt;220&gt; &lt;221&gt; CDS  &lt;222&gt; (87)(638)  &lt;400&gt; 82 gagacaaagc ggagaacgct ggtgggcctg ttgtggagta cgctttggac tgagaag</pre>	
<213> Homo sapiens <220> <221> CDS <222> (87)(638)  <400> 82 gagacaaage ggagaacget ggtgggeetg ttgtggagta egetttggae tgagaag	
<220> <221> CDS  25 <222> (87)(638)  <400> 82  gagacaaage ggagaaeget ggtgggeetg ttgtggagta egetttggae tgagaag	
<221> CDS  25 <222> (87)(638)  <400> 82  gagacaaage ggagaaeget ggtgggeetg ttgtggagta egetttggae tgagaag	
<pre>25 &lt;222&gt; (87)(638)  &lt;400&gt; 82  gagacaaage ggagaaeget ggtgggeetg ttgtggagta egetttggae tgagaag</pre>	
<400> 82 gagacaaagc ggagaacgct ggtgggcctg ttgtggagta cgctttggac tgagaag	
gagacaaage ggagaaeget ggtgggeetg ttgtggagta egetttggae tgagaag	
gagacaaage ggagaaeget ggtgggeetg ttgtggagta egetttggae tgagaag	
·	
egaggetata ggaegeaget gttgee atg aeg gee eag ggg gge etg qtq	
	cat 60
Met Thr Ala Gln Gly Gly Leu Val	cat 60
1 5	
get aac ega gge egg ege tte aag tgg gee att gag eta age ggg ee	
Ala Asn Arg Gly Arg Arg Phe Lys Trp Ala Ile Glu Leu Ser Gly Pr	110
10 15 20	110 t 158
35 gga gga ggc agc agg ggt cga agt gac cgg ggc agt ggc cag gga ga	110 t 158

	<b>a</b> 3	<b>a</b> 1	~ 7 -	<b>.</b>	_	~ 7	_	_			<b>63</b>	C	<b>01</b>	<b>03</b> -	<b>~</b> 1	•	
		GIY	GIĀ	Ser	Arg		Arg	Ser	Asp	Arg		Ser	GIĀ	GIN	GIŸ		
	25					30					35					40	
	_				_			ttg	•							-	254
	Ser	Leu	Tyr	Pro	Val	Gly	Tyr	Leu	Asp	Lys	Gln	Val	Pro	Asp	Thr	Ser	
5					45	٠				50					55		
	gtg	caa	gag	aca	gac	cgg	atc	ctg	gtg	gag	aag	cgc	tgc	tgg	gac	atc	302
	Val	Gln	Glu	Thr	Asp	Arg	Ile	Leu	Val	Glu	Lys	Arg	Cys	Trp	Asp	Ile	
				60					65					70			
	gcc	ttg	ggt	ccc	ctc	aaa	cag	att	ccc	atg	aat	ctc	ttc	atc	atg	tac	350
10	Ala	Leu	Gly	Pro	Leu	Lys	Gln	Ile	Pro	Met	Asn	Leu	Phe	Ile	Met	Tyr	
			75					80					85				
	atg	gca	ggc	aat	act	atc	tcc	atc	ttc	cct	act	atg	atg	gtg	tgt	atg	398
	Met	Ala	Gly	Asn	Thr	Ile	Ser	Ile	Phe	Pro	Thr	Met	Met	Val	Cys	Met	
		90					95					100					
15	atg	gcc	tgg	cga	ccc	att	cag	gca	ctt	atg	gcc	att	tca	gee	act	ttc	446
	Met	Ala	Trp	Arg	Pro	Ile	Gln	Ala	Leu	Met	Ala	Ile	Ser	Ala	Thr	Phe	
	105					110					115					120	
	aag	atg	tta	gaa	agt	tca	agc	cag	aag	ttt	ctt	cag	ggt	ttg	gtc	tat	494
	Lys	Met	Leu	Glu	Ser	Ser	Ser	Gln	Lys	Phe	Leu	Gln	Gly	Leu	Val	Tyr	
20					125					130					135		
	ctc	att	ggg	aac	ctg	atg	ggt	ttg	gca	ttg	gct	gtt	tac	aag	tgc	cag	542
	Leu	Ile	Gly	Asn	Leu	Met	Gly	Leu	Ala	Leu	Ala	Val	Tyr	Lys	Cys	Gln	
				140					145					150			
	tee	atg	gga	ctg	tta	cct	aca	cat	gca	tcg	gat	tgg	tta	gcc	ttc	att	590
<b>2</b> 5	Ser	Met	Gly	Leu	Leu	Pro	Thr	His	Ala	Ser	Asp	Trp	Leu	Ala	Phe	Ile	
			155					160					165				
	gag	ccc	cct	gag	aga	atg	gag	ttc	agt	ggt	gga	gga	ctg	ctt	ttg	tgaac	640
					_	_		Phe	-								٠
		170			_		175			-	•	180					
30	atg	agaaa	age a	agego	ecta	at co	ctat	tgtat	tto	gggto	tta	ttta	acato	ect 1	cttt	aagcc	700
			-			_		_								gacto	760
				_												acaca	820
								-			-	•		-	_	ttcca	880
								-		_	_				_	getget	940
35		-	_					cttto		_					-		997
			, '	'	, -, -, -, -, -, -, -, -, -, -, -, -,	.,	\	\					, J-	`			221

	<210> 83			
	<211> 1753			
	<212> DNA			
5	<213> Homo sapiens			
	<220>			
	<221> CDS			
	<222> (134)(1117)			
10	<400> 83			
	tetteagegt ectaceegeg geactg	getg egagegeegg	gccacctgcg agtgtgcgca	60
	gggactctgg acacccgcgg cggcga	getg agggageagt	ctccacgagg acccaggegg	120
	accetetgge gee atg ege gee e	te eee gge etg d	ctg gag gcc agg gcg	169
	Met Arg Ala L	eu Pro Gly Leu I	Leu Glu Ala Arg Ala	
15	1	5	10	
	cgt acg ccc cgg ctg ctc ctc	ctc cag tgc ctt	ctc gct gcc gcg cgc	217
	Arg Thr Pro Arg Leu Leu Leu	Leu Gln Cys Leu	Leu Ala Ala Arg	
	15	20	25	
	eca age teg geg gae gge agt	gcc cca gat tcg	cct ttt aca agt cca	265
20	Pro Ser Ser Ala Asp Gly Ser	Ala Pro Asp Ser	Pro Phe Thr Ser Pro	
	30 35		40	
	cct ctc aga gaa gaa ata atg	gca aat aac ttt	tcc ttg gag agt cat	313
	Pro Leu Arg Glu Glu Ile Met	Ala Asn Asn Phe	Ser Leu Glu Ser His	
	45 50	. 55	60	
25	aac ata tca ctg act gaa cat	tct agt atg cca	gta gaa aaa aat atc	361
	Asn Ile Ser Leu Thr Glu His	Ser Ser Met Pro	Val Glu Lys Asn Ile	
	65	70	75	
	act tta gaa agg cct tct aat	gta aat ctc aca	tgc cag ttc aca aca -	409
	Thr Leu Glu Arg Pro Ser Asn	Val Asn Leu Thr	Cys Gln Phe Thr Thr	
30	80	85	90	
	tct ggg gat ttg aat gca gta	aat gtg act tgg	aaa aaa gat ggt gaa	457
	Ser Gly Asp Leu Asn Ala Val	Asn Val Thr Trp	Lys Lys Asp Gly Glu	
	95	100	105	
	caa ctt gag aat aat tat ctt	gtc agt gca aca	gga age ace ttg tat	505
35	Gln Leu Glu Asn Asn Tyr Leu	Val Ser Ala Thr	Gly Ser Thr Leu Tyr	

PCT/3P99/03929

WO 00/05367

		110					115					120					
	acc	caa	tac	agg	ttc	acc	atc	att	aat	agc	aaa	caa	atg	gga	agt	tat	553
	Thr	Gln	Tyr	Arg	Phe	Thr	Ile	Ile	Asn	Ser	Lys	Gln	Met	Gly	Ser	Tyr	
	125					130					135					140	
5	tct	tgt	ttc	ttt	cga	gag	gaa	aag	gaa	caa	agg	gga	aca	ttt	aat	ttc	601
	Ser	Cys	Phe	Phe	Arg	Glu	Glu	Lys	Glu	Gln	Arg	Gly	Thr	Phe	Asn	Phe	
					145					150					155		
	aaa	gtc	cct	gaa	ctt	cat	ggg	aaa	aac	aag	cca	ttg	atc	tct	tac	gta	649
	Lys	Val	Pro	Glu	Leu	His	Gly	Lys	Asn	Lys	Pro	Leu	Ile	Ser	Tyr	Val	
10				160					165					170		•	
	ggg	gat	tct	act	gtc'	ttg	aca	tgt	aaa	tgt	caa	aat	tgt	ttt	cct	tta	697
	Gly	Asp	Ser	Thr	Val	Leu	Thr	Cys	Lys	Cys	Gln	Asn	Cys	Phe	Pro	Leu	
			175					180					185				
	aat	tgg	acc	tgg	tac	agt	agt	aat	ggg	agt	gta	aag	gtt	cct	gtt	ggt	745
15	Asn	Trp	Thr	Trp	Tyr	Ser	Ser	Asn	Gly	Ser	Val	Lys	Val	Pro	Val	Gly	
		190					195					200					
	gtt	caa	atg	aat	aaa	tat	gtg	atc	aat	gga	aca	tat	gct	aac	gaa	aca	793
	Val	Gln	Met	Asn	Lys	Tyr	Val	Ile	Asn	Gly	Thr	Tyr	Ala	Asn	Glu	Thr	٠
	205					210					215					220	
20	aag	ctg	aag	ata	aca	caa	ctt	ttg	gag	gaa	gat	<b>9</b> 99	gaa	tct	tac	tgg	841
	Lys	Leu	Lys	Ile	Thr	Gln	Leu	Leu	Glu	Glu	Asp	Gly	Glu	Ser	Tyr	Trp	
					225					230					235		
	tgc	cgt	gca	cta	ttc	caa	tta	ggc	gag	agt	gaa	gaa	cac	att	gag	ctt	889
	Cys	Arg	Ala	Leu	Phe	Gln	Leu	Gly	Glu	Ser	Glu	Glu	His	Ile	Glu	Leu	
25				240					245					250			
	gtg	gtg	ctg	agc	tat	ttg	gtg	ccc	ctc	aaa	cca	ttt	ctt	gta	ata	gtg	937
	Val	Val	Leu	Ser	Tyr	Leu	Val	Pro	Leu	Lys	Pro	Phe	Leu	Val	Ile	Val	
			255					260					265				
	gct	gag	gtg	att	ctt	tta	gtg	gcc	acc	att	ctg	ctt	tgt	gaa	aag	tac	985
30	Ala	Glu	Val	Ile	Leu	Leu	Val	Ala	Thr	Ile	Leu	Leu	Cys	Glu	Lys	Tyr	
		270					275					280					
	aca	caa	aag	aaa	aag	aag	cac	tca	gat	gag	ggg	aaa	gaa	ttt	gag	cag	1033
	Thr	Gln	Lys	Lys	Lys	Lys	His	Ser	Asp	Glu	Gly	Lys	Glu	Phe	Glu	Gln	
	285					290					295					300	
<b>3</b> 5	att	gaa	cag	ctg	aaa	tca	gat	gat	agc	aat	ggt	ata	gaa	aat	aat	gtc	1081

	Ile Glu Gln Leu Lys Ser Asp Asp Ser Asn Gly Ile Glu Asn Asn Val	
•	305 310 315	
	ccc agg cat aga aaa aat gag tct ctg ggc cag tgaatacaaa acatca	.1130
	Pro Arg His Arg Lys Asn Glu Ser Leu Gly Gln	
5	320 325	
	tgtcgagaat cattggaaga tatacagagt tcgtatttca gctttattta tccttcctgt	1190
	taagageete tgagttttta gttttaaaag gatgaaaage ttatgeaaca tgeteageag	1250
	gagetteate aacgatatat gteagateta aaggtatatt tteattetgt aattatgtta	1310
	cataaaagca atgtaaatca gaataaatat gttagaccag aataaaatta attatattct	1370
10	ggtetteaaa ggacacacag aacagatate agcagaatea ettaataett catagaacaa	1430
	aaatcactca aaacctgttt ataaccaaag aattcatgaa aaagaaagcc tttgccattt	1490
	gtcttagaaa gttattttt taaaaaaaat catacttact attagtatct atggaagtat	1550
	atgtaacaat ttttatgtaa aggtcatctt tctgtgatag tgaaaaaata tgtctttact	1610
	aagttgaaat gaatacttte tgeetttget catgatagtt attetacaat etecacaaga	1670
15	aaaatatacc ttttatccgg aaatattggt ttaaggcaaa taaataaaac tgtgcttgct	1730
	ctaaagctct gcactacaaa agc	1753
	<210> 84	
	<211> 1117	
20	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (62)(733)	
25		
	<400> 84	
	cyteceaett gtyttetete teetgytyca gayttycaay caaytttate gyaytatege	60
	c atg aag tte gte eec tge ete etg etg gtg ace ttg tee tge etg	106
	Met Lys Phe Val Pro Cys Leu Leu Leu Val Thr Leu Ser Cys Leu	
30	1 5 10 15	
	ggg act ttg ggt cag gcc ccg agg caa aag caa gga agc act ggg gag	154
	Gly Thr Leu Gly Gln Ala Pro Arg Gln Lys Gln Gly Ser Thr Gly Glu	
	20 25 30	
	gaa tte cat tte cag act gga ggg aga gat tee tge act atg egt eee	202
35	Glu Phe His Phe Gln Thr Gly Gly Arg Asp Ser Cys Thr Met Arg Pro	

				35					40					45			
	agc	agc	ttg	ggg	caa	ggt	gct	gga	gaa	gtc	tgg	ctt	cgc	gtc	gac	tgc	250
	Ser	Ser	Leu	Gly	Gln	Gly	Ala	Gly	Glu	Val	Trp	Leu	Arg	Val	Asp	Cys	
			50					55					60				
5	cgc	aac	aca	gac	cag	acc	tac	tgg	tgt	gag	tac	agg	ggg	cag	ccc	agc	298
	Arg	Asn	Thr	Asp	Gln	Thr	Tyr	Trp	Cys	Glu	Tyr	Arg	Gly	Gln	Pro	Ser	
		65					70					75					
	atg	tgc	cag	gct	ttc	gct	gct	gac	ccc	aaa	tct	tac	tgg	aat	caa	gcc	346
	Met	Cys	Gln	Ala	Phe	Ala	Ala	Asp	Pro	Lys	Ser	Tyr	Trp	Asn	Gln	Ala	
10	80					85					90					95	
	ctg	cag	gag	ctg	agg	cgc	ctt	cac	cat	gcg	tgc	cag	ggg	gcc	ccg	gtg	394
	Leu	Gln	Glu	Leu	Arg	Arg	Leu	His	His	Ala	Cys	Gln	Gly	Ala	Pro	Val	
					100					105					110		
	ctt	agg	cca	tcc	gtg	tgc	agg	gag	gct	gga	ccc	cag	gcc	cat	atg	cag	442
15	Leu	Arg	Pro	Ser	Val	Cys	Arg	Glu	Ala	Gly	Pro	Gln	Ala	His	Met	Gln	
				115					120					125	•		
	cag	gtg	act	tcc	agc	ctc	aag	ggc	agc	cca	gag	ccc	aac	cag	cag	cct	490
	Gln	Val	Thr	Ser	Ser	Leu	Lys	Gly	Ser	Pro	Glu	Pro	Asn	Gln	Gln	Pro	
			130					135					140				
20	-			-							gcc						538
	Glu	Ala	Gly	Thr	Pro	Ser	Leu	Arg	Pro	Lys	Ala	Thr	Val	Lys	Leu	Thr	
		145					150					155					
											gaa						586
	Glu	Ala	Thr	Gln	Leu	Gly	Lys	Asp	Ser	Met	Glu	Glu	Leu	Gly	Lys	Ala	
25	160					165					170					175	
											acc						634
	Lys	Pro	Thr	Thr	Arg	Pro	Thr	Ala	Lys	Pro	Thr	Gln	Pro	Gly		Arg	
					180					185					190	* o <del>rde</del> nge	
											gcc						682
30	Pro	Gly	Gly	Asn	Glu	Glu	Ala	Lys	Lys	Lys	Ala	Trp	Glu	His	Cys	Trp	
				195					200					205			
											atc						730
	Lys	Pro	Phe	Gln	Ala	Leu	Cys	Ala	Phe	Leu	Ile	Ser	Phe	Phe	Arg	Gly	
			210					215					220				
35	tga	cagg	tga i	aaga	caca.	ta c	agato	ctgad	ct	ctcc	ctga	caga	acaa	cca t	tctc1	tttta	790

	tattatgccg ctttcaatcc aacgttctca cactggaaga agagagtttc taatcagatg	850
	caacggeeca aattettgat etgeagette tetgaagttt ggaaaagaaa cetteettte	910
	tggagtttgc agagttcagc aatatgatag ggaacaggtg ctgatgggcc caagagtgac	970
	aagcatacac aactacttat tatctgtaga agttttgctt tgttgatctg agccttctat	1030
5	gaaagtttaa atatgtaacg cattcatgaa tttccagtgt tcagtaaata gcagctatgt	1090
	gtgtgcaaaa taaaagaatg atttcag	1117
	<210> 85	
	<211> 1380	
10	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (43)(189)	
15		
	<400> 85	
	geagtetgte tgagggegge egaagtgget ggeteattta ag atg agg ett etg	54
	Met Arg Leu Leu	•
	1	
20	ctg ctt ctc cta gtg gcg gcg tct gcg atg gtc cgg agc gag gcc tcg	102
	Leu Leu Leu Val Ala Ala Ser Ala Met Val Arg Ser Glu Ala Ser	
	5 10 15 20	
	gec aat etg gge gge gtg eee age aag aga tta aag atg eag tae gee	150
	Ala Asn Leu Gly Gly Val Pro Ser Lys Arg Leu Lys Met Gln Tyr Ala	
<b>2</b> 5	25 30 35	
	acg ggg ccg ctg ctc aag ttc cag att tgt gtt tcc tgag	190
	Thr Gly Pro Leu Leu Lys Phe Gln Ile Cys Val Ser	
	40 45 ~	
	gttataggeg ggtgtttgag gagtacatge gggttattag ceageggtae ceagacatee	250
30	geattgaagg agagaattac etceetcaac caatatatag acacatagea tettteetgt	310
	cagtetteaa actagtatta ataggettaa taattgttgg caaggateet tttgetttet	370
•	ttggcatgca ageteetage atetggcagt ggggccaaga aaataaggtt tatgcatgta	430
	tgatggtttt cttcttgagc aacatgattg agaaccagtg tatgtcaaca ggtgcatttg	490
	agataacttt aaatgatgta cetgtgtggt ctaagetgga atetggteac ettecateea	550
35	tgcaacaact tgttcaaatt cttgacaatg aaatgaagct caatgtgcat atggattcaa	
	voogacaacy aaacyaayee caacycycae acygactcaa	610

	teccaeacea tegateatag caecaectat cageactgaa aactettttg cattaaggga 6	70
	tcattgcaag agcagegtga etgacattat gaaggeetgt aetgaagaca geaagetgtt 73	30
	agtacagace agatgettte ttggeagget egttgtacet ettggaaaac etcaatgeaa 79	90
	gatagtgttt cagtgctggc atattttgga attctgcaca ttcatggagt gcaataatac 8	50
5	tgtatagett tecceaecte ceaeaaaate acceagttaa tgtgtgtgtg tgtttttttt 9:	10
	tttaaggtaa acattactac ttgtaacttt ttttcttagt catatttgaa aaagtagaaa 97	70
	attgagttac aatttgattt tttttccaaa gatgtctgtt aaatctgttg tgcttttata 103	30
	tgaatatttg ttttttatag tttaaaattg atcctttggg aatccagttg aagttcccaa 109	90
	atactttata agagtttatc agacatetet aatttggeea tgtecagttt atacagttta 115	50
10	caaaatatag cagatgcaag attatggggg aaatcctata ttcagagtac tctataaatt 123	10
	tttgtgtatg tgtgtatgtg cgtgtgatta ccagagaact actaaaaaaa ccaactgctt 127	70
	tttaaateet attgtgtagt taaagtgtea tgeettgaee aatetaatga attgattaat 133	30
	taactgggcc tttatactta actaaataaa aaactaagca gatatgagtt 138	30
15	<210> 86	
	<211> 1503	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
20	<221> CDS	
	<222> (51)(1166)	
	<400> 86	
	gtgaegggge eeggegeege taaetggage gaaeeeeage gteegeegae atg gee	56
25	Met Ala	
	1	
	tgg acc aag tac cag ctg ttc ctg gcc ggg ctc atg ctt gtt acc ggc 10	)4
	Trp Thr Lys Tyr Gln Leu Phe Leu Ala Gly Leu Met Leu Val Thr Gly	
	5 10 15	
30	tcc atc aac acg ctc tcg gca aaa tgg gcg gac aat ttc atg gcc gag 15	52
	Ser Ile Asn Thr Leu Ser Ala Lys Trp Ala Asp Asn Phe Met Ala Glu	
	20 25 30	
	ggc tgt gga ggg agc aag gag cac agc ttc cag cat ccc ttc ctc cag 20	)0
	Gly Cys Gly Gly Ser Lys Glu His Ser Phe Gln His Pro Phe Leu Gln	
35	35 40 45 50	

	gca	gtg	ggc	atg	ttc	ctg	gga	gaa	ttc	tcc	tgc	ctg	gct	gcc	ttc	tac	248
	Ala	Val	Gly	Met	Phe	Leu	Gly	Glu	Phe	Ser	Cys	Leu	Ala	Ala	Phe	Tyr	
		-	-		55					60					65		
	ctc	ctc	cga	tgc	aga	gct	gca	ggg	caa	tca	gac	tcc	agc	gta	gac	ccc	296
5	Leu	Leu	Arg	Cys	Arg	Ala	Ala	Gly	Gln	Ser	Asp	Ser	Ser	Val	Asp	Pro	
				70					75					80			
	cag	cag	ccc	ttc	aac	cct	ctt	ctt	ttc	ctg	ccc	cca	gcg	ctc	tgt	gac	344
	Gln	Gln	Pro	Phe	Asn	Pro	Leu	Leu	Phe	Leu	Pro	Pro	Ala	Leu	Cys	Asp	
			85					90					95				
10	atg	aca	ggg	acc	agc	ctc	atg	tat	gtg	gct	ctg	aac	atg	acc	agt	gcc	392
	Met	Thr	Gly	Thr	Ser	Leu	Met	Tyr	Val	Ala	Leu	Asn	Met	Thr	Ser	Ala	
		100					105					110					
	tcc	agc	ttc	cag	atg	ctg	cgg	ggt	gca	gtg	atc	ata	ttc	act	ggc	ctg	440
	Ser	Ser	Phe	Gln	Met	Leu	Arg	Gly	Ala	Val	Ile	Ile	Phe	Thr	Gly	Leu	
15	115					120					125					130	•
	ttc	tcg	gtg	gcc	ttc	ctg	ggc	cgg	agg	ctg	gtg	ctg	agc	cag	tgg	ctg	488
	Phe	Ser	Val	Ala	Phe	Leu	Gly	Arg	Arg	Leu	Val	Leu	Ser	Gln	Trp	Leu	
					135					140					145		
	ggc	atc	cta	gcc	acc	atc	gcg	ggg	ctg	gtg	gtc	gtg	ggc	ctg	gct	gac	536
20	Gly	Ile	Leu	Ala	Thr	Ile	Ala	Gly	Leu	Val	Val	Val	Gly	Leu	Ala	Asp	
				150					155					160			
	ctc	ctg	agc	aag	cac	gac	agt	cag	cac	aag	ctc	agc	gaa	gtg	atc	aca	584
	Leu	Leu	Ser	Lys	His	Asp	Ser	Gln	His	Lys	Leu	Ser	Glu	Val	Ile	Thr	
			165					170					175				
25	ggg	gac	ctg	ttg	atc	atc	atg	gcc	cag	atc	atc	gtt	gcc	atc	cag	atg	632
	Gly	Asp	Leu	Leu	Ile	Ile	Met	Ala	Gln	Ile	Ile	Val	Ala	Ile	Gln	Met	
		180					185					190					
	gtg	cta	gag	gag	aag	ttc	gtc	tac	aaa	cac	aat	gtg	cac	cca	ctg	cgg ~	680
	Val	Leu	Glu	Glu	Lys	Phe	Val	Tyr	Lys	His	Asn	Val	His	Pro	Leu	Arg	
30	195					200					205					210	
	gca	gtt	ggc	act	gag	ggc	ctc	ttt	ggc	ttt	gtg	atc	ctc	tcc	ctg	ctg	728
	Ala	Val	Gly	Thr	Glu	Gly	Leu	Phe	Ġly	Phe	Val	Ile	Leu	Ser	Leu	Leu	
					215					220					225		
	ctg	gtg	ccc	atg	tac	tac	atc	ccc	gcc	ggc	tcc	ttc	agc	gga	aac	cct	776
35	Leu	Val	Pro	Met	Tyr	Tyr	Ile	Pro	Ala	Gly	Ser	Phe	Ser	Gly	Asn	Pro	

				230					235					240			
	cgt	ggg	aca	ctg	gag	gat	gca	ttg	gac	gcc	ttc	tgc	cag	gtg	ggc	cag	824
	Arg	Gly	Thr	Leu	Glu	Asp	Ala	Leu	Asp	Ala	Phe	Cys	Gln	Val	Gly	Gln	
			245					250					255				
5	cag	ccg	ctc	att	gcc	gtg	gca	ctg	ctg	ggc	aac	atc	agc	agc	att	gcc	872
	Gln	Pro	Leu	Ile	Ala	Val	Ala	Leu	Leu	Gly	Asn	Ile	Ser	Ser	Ile	Ala	
		260					265					270					
	ttc	ttc	aac	ttc	gca	ggc	atc	agc	gtc	acc	aag	gaa	ctg	agc	gcc	acc	920
	Phe	Phe	Asn	Phe	Ala	Gly	Ile	Ser	Val	Thr	Lys	Glu	Leu	Ser	Ala	Thr	
10	275					280					285					290	
	acc	cgc	atg	gtg	ttg	gac	agc	ttg	cgc	acc	gtt	gtc	atc	tgg	gca	ctg	968
	Thr	Arg	Met	Val	Leu	Asp	Ser	Leu	Arg	Thr	Val	Val	Ile	Trp	Ala	Leu	
					295					300					305		
	agc	ctg	gca	ctg	ggc	tgg	gag	gcc	ttc	cat	gca	ctg	cag	atc	ctt	ggc	1016
15	Ser	Leu	Ala	Leu	Gly	Trp	Glu	Ala	Phe	His	Ala	Leu	Gln	Ile	Leu	Gly	
				310					315					320			
	ttc	ctc	ata	ctc	ctt	ata	ggc	act	gcc	ctc	tac	aat	999	cta	cac	egt	1064
	Phe	Leu	Ile	Leu	Leu	Ile	Gly	Thr	Ala	Leu	Tyr	Asn	Gly	Leu	His	Arg	
			325					330					335				
20	ccg	ctg	ctg	ggc	cgc	ctg	tcc	agg	ggc	cgg	ccc	ctg	gca	gag	gag	agc	,1112
	Pro	Leu	Leu	Gly	Arg	Leu	Ser	Arg	Gly	Arg	Pro	Leu	Ala	Glu	Glu	Ser	
		340					345					350					
	gag	cag	gag	aga	ctg	ctg	ggt	ggc	acc	cgc	act	ccc	atc	aat	gat	gcc	1160
	Glu	Gln	Glu	Arg	Leu	Leu	Gly	Gly	Thr	Arg	Thr	Pro	Ile	Asn	Asp	Ala	
25	355					360					365					370	
	agc	tga	ggtto	ecc t	ggag	ggatt	c ta	actgo	caco	c cg	gtgo	tcc	ttct	ccc			1210
	Ser																
																.~	÷
	tga	gact	gag q	gcca	cacaç	gg ct	ggt	gggc	ccc	gaato	gece	tato	ccca	ag g	geete	eaccct	1270
30	gtc	ecct	cae t	tgca	gaaco	ec co	aggg	gcago	tgo	etgeo	aca	gaag	gatas	ca a	caco	caagt	1330
	cct	cttt	ttc 1	cact	acca	ac ct	gcag	ggt	ggt	gttac	cca	gccc	ccac	aa c	ject	gagtgc	1390
	agt	ggca	gac o	ctca	getet	to to	ggaco	ccto	cta	acago	eact	agag	gctaa	at c	atga	agttg	1450
	aat	tgta	gga a	attt	accad	ec gt	cagto	gtato	tga	atca	ataa	acta	igatt	at c	at		1503

	<211> 733	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
5	<221> CDS	
	<222> (40)(312)	
	<400> 87	
	gttaaggcac acagagcacc agctccctcc tgcctgaag atg ttc cac caa att	54
10	Met Phe His Gln Ile	
	1 5	
	tgg gca gct ctg ctc tac ttc tat ggt att atc ctt aac tcc atc tac	102
	Trp Ala Ala Leu Leu Tyr Phe Tyr Gly Ile Ile Leu Asn Ser Ile Tyr	
	10 15 20	
15	cag tgc cct gag cac agt caa ctg aca act ctg ggc gtg gat ggg aag	150
	Gln Cys Pro Glu His Ser Gln Leu Thr Thr Leu Gly Val Asp Gly Lys	
	25 30 35	
	gag ttc cca gag gtc cac ttg ggc cag tgg tac ttt atc gca ggg gca	198
	Glu Phe Pro Glu Val His Leu Gly Gln Trp Tyr Phe Ile Ala Gly Ala	
20	40 45 50	
	get eee ace aag gag gag ttg gea act ttt gae eet gtg gae aac att	246
	Ala Pro Thr Lys Glu Glu Leu Ala Thr Phe Asp Pro Val Asp Asn Ile	
	55 60 65	
	gte tte aat atg get get gge tet gee eeg atg eag etc eac ett egt	294
25	Val Phe Asn Met Ala Ala Gly Ser Ala Pro Met Gln Leu His Leu Arg	
	70 75 80 85	
	get ace ate ege atg tgagtggaaa gatgggetet gtgtgeeeeg g	340
	Ala Thr Ile Arg Met	
	90	
30	aaatggatet accaeetgae tgaagggage acagatetea gaaetgaagg eegeeetgae	400
	atgaagactg agctcttttc cagctcatgc ccaggtggaa tcatgctgaa tgagacaggc	460
	cagggttace agegetttet estetacaat egeteaceae atesteeega aaagtgtgtg	520
	gaggaattca agtccctgac ttcctgcctg gactccaaag ccttcttatt gactcctagg	580
	aatcaagagg cctgtgagct gtccaataac tgacctgtaa cttcatctaa gtccccagat	640
35	gggtacaatg ggagetgagt tgttggaggg agaagetgga gaetteeage teeageteee	700

	actcaag	gata a	ataaag	jataa	tttt	tcaat	:c c1	EC .							733
	<210> 8	8													
	<211> 3	768													
5	<212> D	NA													
	<213> H	omo s	sapien	s											
	<220>		_												
	<221> C	DS					٠							•	
	<222> (	358).	(18	57)											
10															
	<400> 8	8													
	gctagtg	geg e	gegga	ggag d	gacg	ıcgtg	g ag	aagc	ggco	cac	gtgt	ctg	ccca	.gaqtca	60
	agtcctg													_	120
	tggtgtt														180
15	ggccaac														240
	cactgcg	cat g	cggag	ctcc a	aatt	caaa	c ag	ctgt	tttc	aga	ggct	gga	gggc	gggcgg	300
	actggta	gca g	ctggg	gcta ç	gaga	ggcti	t tc	tcta	ggag	geg	geeg	ctc	ggga	gce	357
20	atg gtg	gac	cgg g	ge ect	ctg	ctc	acc	tcg	gcc	atc	atc	ttc	tac	ctg	405
	Met Val	Asp .	Arg G	ly Pro	Leu	Leu	Thr	Ser	Ala	Ile	Ile	Phe	Tyr	Leu	
	1			5				10					15		
	gcc atc	ggg	geg g	eg atc	ttc	gaa	gtg	ctg	gag	gag	cca	cac	tgg	aag	453
	Ala Ile	Gly .	Ala A	la Ile	Phe	Glu	Val	Leu	Glu	Glu	Pro	His	Trp	Lys	
25			20				25					30			
	gag gcc	aag	aaa aa	ic tac	tac	aca	cag	aag	ctg	cat	ctg	ete	aag	gag	501
	Glu Ala	Lys :	Lys As	n Tyr	Tyr	Thr	Gln	Lys	Leu	His	Leu	Leu	Lys	Glu	
		35				40					45				
	ttc ccg	tgc (	ctg gg	rt cag	gag	ggc	ctg	gac	aag	atc	cta	gag	gtg	gta	549
30	Phe Pro	Cys :	Leu Gl	y Gln	Glu	Gly	Leu	Asp	Lys	Ile	Leu	Glu	Val	Val	
	50				55					60					
	tct gat	get (	gca go	na cag	ggt	gtg	gcc	atc	aca	ggg	aac	cag	acc	ttc	597
	Ser Asp	Ala A	Ala Gl	y Gln	Gly	Val	Ala	Ile	Thr	Gly	Asn	Gln	Thr	Phe	
	65			70					75					80	
35	aac aac	tgg a	aac to	g ccc	aat	gca	atg	att	ttt	gca	gcg	acc	gtc	att	645

	Asn	Asn	Trp	Asn	Trp	Pro	Asn	Ala	Met	Ile	Phe	Ala	Ala	Thr	Val	Ile	
					85					90					95		
								gtg						-		•	693
_	Thr	Thr	Ile	_	Tyr	Gly	Asn	Val		Pro	Lys	Thr	Pro	Ala	Gly	Arg	
5				100					105					110			
								ctc						_	_	-	741
	Leu	Phe	_	Val	Phe	Tyr	Gly	Leu	Phe	Gly	Val	Pro		Cys	Leu	Thr	
			115					120					125				
• •			-	_	-		_	ttc				-	_	-	-		789
10	Trp		Ser	Ala	Leu	СТĀ		Phe	Phe	GIA	Gly	_	Ala	Lys	Arg	Leu	
		130					135					140					
								ggt									837
	_	GIN	Pne	ьеи	Thr	_	Arg	Gly	vaı	ser		Arg	Lys	A1a	GIn		
15	145	+ ~~		-+-	ata	150	2+2	~++~	+	~~~	155	_4-				160	005
10								gtg Val									885
	TILL	Cys	1111	vai	165	FILE	116	vai	пр	170	vaı	Tierr	val	urs	175	Val	
	atc	cca	ccc	ttc		ttc	atα	gtg	act		aaa	taa	227	tac		asa.	933
								Val									933
20				180	•••				185		927			190		GIG	
- <b>-</b>	aac	ctc	tac		tcc	ttc	atc	acc		tcc	acc	atc	aac		aat	gac	981
								Thr								_	,,,,
	•		195	_				200					205		1		
	ttt	gtg	gee	ggt	gtg	aac	ccc	agc	gcc	aac	tac	cac	qcc	ctq	tac	ege	1029
25								Ser	-				_	_		•	
		210		_			215				_	220			-		
	tac	ttc	gtg	gag	ctc	tgg	atc	tac	ttg	ggg	ctg	gcc	tgg	ctg	tcc	ctt	1077
	Tyr	Phe	Val	Glu	Leu	Trp	Ile	Tyr	Leu	Gly	Leu	Ala	Trp	Leu	Ser	Leu ~	
	225					230					235					240	
30	ttt	gtc	aac	tgg	aag	gtg	agc	atg	ttt	gtg	gaa	gtc	cac	aaa	gcc	att	1125
	Phe	Val	Asn	Trp	Lys	Val	Ser	Met	Phe	Val	Glu	Val	His	Lys	Ala	Ile	
					245					250					255		
	aag	aag	cgg	cgg	cgg	cga	cgg	aag	gag	tcc	ttt	gag	agc	tcc	cca	cac	1173
	Lys	Lys	Arg	Arg	Arg	Arg	Arg	Lys	Glu	Ser	Phe	Glu	Ser	Ser	Pro	His	
35				260					265					270			

	tcc	cgg	aag	gcc	ctg	cag	gtg	aag	ggg	agc	aca	gee	tcc	aag	gac	gtc	1221
	Ser	Arg	Lys	Ala	Leu	Gln	Val	Lys	Gly	Ser	Thr	Ala	Ser	Lys	Asp	Val	
			275					280					285				
	aac	atc	ttc	agc	ttt	ctt	tcc	aag	aag	gaa	gag	acc	tac	aac	gac	ctc	1269
5	Asn	Ile	Phe	Ser	Phe	Leu	Ser	Lys	Lys	Glu	Glu	Thr	Tyr	Asn	Asp	Leu	
		290					295					300					
	atc	aag	cag	atc	ggg	aag	aag	gcc	atg	aag	aca	agc	ggg	ggt	ggg	gag	1317
	Ile	Lys	Gln	Ile	Gly	Lys	Lys	Ala	Met	Lys	Thr	Ser	Gly	Gly	Gly	Glu	
	305					310					315					320	
10	acg	ggc	ccg	ggc	cca	ggg	ctg	ggg	cct	caa	ggc	ggt	aaa	ctc	cca	gca	1365
	Thr	Gly	Pro	Gly	Pro	Gly	Leu	Gly	Pro	Gln	Gly	Gly	Gly	Leu	Pro	Ala	
					325					330					335		
	ctg	ccc	cct	tcc	ctg	gtg	ccc	ctg	gta	gtc	tac	tcc	aag	aac	cgg	gtg	1413
	Leu	Pro	Pro	Ser	Leu	Val	Pro	Leu	Val	Val	Tyr	Ser	Lys	Asn	Arg	Val	
15				340					345					350			
	ccc	acc	ttg	gaa	gag	gtg	tca	cag	aca	ctg	agg	agc	aaa	ggc	cac	gta	1461
	Pro	Thr	Leu	Glu	Glu	Val	Ser	Gln	Thr	Leu	Arg	Ser	Lys	Gly	His	Val	
			355					360					365				
	tca	agg	tcc	cca	gat	gag	gag	gct	gtg	gca	cgg	gcc	cct	gaa	gac	agc	1509
20	Ser	Arg	Ser	Pro	Asp	Glu	Glu	Ala	Val	Ala	Arg	Ala	Pro	Glu	Asp	Ser	
		370					375					380					
	tcc	cct	gcc	ccc	gag	gtg	ttc	atg	aac	cag	ctg	gac	cgc	atc	agc	gag	1557
	Ser	Pro	Ala	Pro	Glu	Val	Phe	Met	Asn	Gln	Leu	Asp	Arg	Ile	Ser	Glu	
	385					390					395					400	
25	gaa	tgc	gag	cca	tgg	gac	gcc	cag	gac	tac	cac	cca	ctc	atc	ttc	cag	1605
	Glu	Сув	Glu	Pro	$\overline{\mathtt{Trp}}$	Asp	Āla	Gln	Asp	Туг	His	Pro	Leu	īle	Phe	Ğln	
					405					410					415		
	gac	gcc	agc	atc	acc	ttc	gtg	aac	acg	gag	gct	ggc	ctc	tca	gac	gag 🚬	1653
	Asp	Ala	Ser	Ile	Thr	Phe	Val	Asn	Thr	Glu	Ala	Gly	Leu	Ser	Asp	Glu	-
30				420					425					430			
	gag	acc	tcc	aag	tcc	tcg	cta	gag	gac	aac	ttg	gca	ggg	gag	gag	age	1701
	Glu	Thr	Ser	Lys	Ser	Ser	Leu	Glu	Asp	Asn	Leu	Ala	Gly	Glu	Glu	Ser	
			435					440					445				
	ccc	cag	cag	ggg	gct	gaa	gcc	aag	gcg	ccc	ctg	aac	atg	gge	gag	ttc	1749
35	Pro	Gln	Gln	Gly	Ala	Glu	Ala	Lys	Ala	Pro	Leu	Asn	Met	Gly	Glu	Phe	

	450	455	460	
	ccc tcc tcc tcc gag t	cc acc ttc acc agc act	t gag tot gag oto tot	1797
	Pro Ser Ser Ser Glu S	Ser Thr Phe Thr Ser Th	r Glu Ser Glu Leu Ser	
	465 4	70 475	5 480	
5	gtg cct tac gaa cag c	tg atg aat gag tac aad	c aag got aac age coc	1845
	Val Pro Tyr Glu Gln L	eu Met Asn Glu Tyr Asr	n Lys Ala Asn Ser Pro	
	485	490	495	
	aag ggc aca tgaggcagg	g coggotocco accocacct	tt tgatgg	1890
	Lys Gly Thr			
10				
	cetettecee ceteàcceta	gggtgtcccg agatgaccgg	g gaegeetgge ceetggtggg	1950
	ggggcagcct cggaactggg	agtggggggc caggggcctt	cctaaccttc catcatcccc	2010
	agctagatgt atgcccggga	cagggeetet gttetecage	tgaaccatac cctggctgtg	2070
	ggggcatctg teetgagett	ggetggtgta teteacaatg	g caaagacatg ctggctggcg	2130
15	ggacaggtgg gcaggactga	ccctgaggag gccttgcctg	g cagggtettt gteecaccat	2190
	ttggtggagt atcacacggt	tctctgaggt ccggggcctc	agctgtttaa gtttaccggt	2250
	attactgagc teggeatttg	gagagggagc tctgaagtgt	ctggggaggt accgctgtgc	2310
	gtggggtcag gtgtttccgt	accacagcag gagcagggco	e egecegeate ceagetgtgg	2370
	geetgeeggt eaggteggge	acctactaca aaccgtagtg	g gggtggaggc tgctggaggt	2430
20	gggagtgagg agatgagggc	agggteteaa acagteetga	ı ctcacagggc ctggaaacaa	2490
	gtcctatgtg ggcctggggc	ctggggtcct catcctcctt	gttggtctac tcaggcccag	2550
	cccagagetg tgttccctgt	ctcaggtcaa gcagtggcag	g acgcaagget ttetgtggge	2610
	ccccaagtgg taggaggag	agtagcagag catgggttac	tggaageegg gaetgetagg	2670
	getggtggee agggagetge	aagagtgagg ctcagctctg	getggttetg ceettacece	2730
25	tectgecege eggagaactg	cacaccctgc ccgctggccc	caggacetge acteceaate	2790
	etgetgtett eteetteeet	gigoccigaa caaggaccic	actgecegee tteecetece	2850
	accagecece ttgggeeagg	cagggtgagg ccaaattgct	cttggcccac aaatgggtga	2910
	tggtcagata tgtgaatcaa	gctcctttct ctagctagtg	tttgatgtgc acgtgtgtgt	2970
-	gcacagtgcg tgtgtgcaca	cgcacacctg tgcactcgtg	tgtgtttaag aaaggaaagg	3030
30	atttgggctg gggagcaaaa	gataatgtga aactgttggt	ggactctctg gtgaggggtg	3090
	ggcagaactt gctgctacta	gagttettgg gttetecatg	atgttcaccc tggggctggc	3150
	ccactgtgtc ctgaatgttt	ttgttatttt ttgttttatt	ttttaaacaa actgctgttt	3210
	ttatatacct ggaatctgtt	gttggettea gagecagtgg	ttaaagagca gggtcccaag	3270
	gattgggaga tctagtgtct	gecetectge cetgeaacte	aattgggcct ttttcggtga	3330
35	cctcatccaa ggccatgatg	tcaagggcca tgtccccaag	cagaggtgga gaaggggaca	3390

	ctga	aggt	gag	caaa	agca	igg a	aggg	gcat	c ca	ctgo	gggt	gad	tgga	ggc	cggg	cagga	aa	3450
	gcaa	agtc	atc	agag	ccgc	tc a	gcto	egtt	c ac	tctc	tgcc	tto	tgec	cca	ctac	tgtg	<b>3</b> 9	3510
	gcag	gtgg	ggc	caga	gccc	ac c	tccc	caac	a tg	tgaa	gaca	gtg	gatgo	gca	cgtg	ccca	a	3570
	ccc	ccact	ttc	tcta	gccg	tt t	gcag	aggc	c gc	cacc	cage	agg	ladac	tga	aaag	gagca	ag	3630
5	cct	gtai	ttt	ttct	gtga	aa t	gttt	taat	g aa	ccat	gttg	ttg	ctgg	rttg	tect	ggcat	.c	3690
	gcg	cacao	ctg	tatg	taca	ta c	tggc	aacg	a tg	tcaa	atgt	aat	ttat	ttt	aaca	ttttt	a	3750
	caat	aaaa	aca	tgag	gtgg													3768
	<210	)> 89	9															
10	<211	l> 77	70															
	<212	2> Di	AV							•								
	<213	3> Ho	omo :	sapi	ens													
	<220	)>																
	<221	l> CI	os															
15	<222	!> (2	24).	(3	44)													
	<400	> 89	9															
	accg	gcgaa	igg (	gagga	agtg	gc a	ac a	tg g	eg to	et to	eg g	ga g	ct g	gt g	ac c	ct ct	g	53
00							M		la S	er S	er G		la G	ly A	sp P:	ro Le	u	
20								1				5			*		0	-
														gac				101
	Asp	Ser	Lys	Arg		Glu	Ala	Pro	Phe		Gln	Arg	Ile	Asp		Thr		
					15					20					25			
o E														-		gag		149
25	Arg	GIU	гуѕ		Thr	Pro	Glu	Gln		His	Ser	Met	Arg		Ala	Glu		
				30					35					40				
														cgg				197
	Leu	ATG		тър	GIN	гÀг	vai		Pro	Arg	Arg	Arg		Arg	Asn	He	~·.	
30	at a	200	45					50					55			<b>.</b>		245
00														tat				245
	Val	60	сту	Leu	GIY	TTE		Ala	Leu	Val	Leu		TTE	Tyr	GTÅ	Tyr		
			<b>.</b>	<b>.</b>			65				_4_	70						
														cta				293
35	Thr 75	THE	TÀT	ser	тте		GTU	GTII	Arg	rne		Asp	GIU	ьeu	GIU	_		
UU	/5					80					85					90		

WO 00/05367

#### PCT/JP99/03929

	G30 G00 333 G01 G00 G03 G00 G03 G01 G15 G03 300 G03 T03 G07 T0	~
	gag gee aaa get gee ega gee ega get etg gea agg geg tea ggg tee	341
	Glu Ala Lys Ala Ala Arg Ala Arg Ala Leu Ala Arg Ala Ser Gly Ser	
	95 100 105	
_	taatetgga tgggtattga teatgteeaa eetgetggag eecetteaea tggtggatga	400
5	tgececatga ceetgtagaa attgaateet geteacaaca ttgttggeet tettactaac	460
	cttggaccgt gattgagccc aagaaaccag ggacttacgc atttggccaa tgtcaaaaga	520
	acagaacttt geceactgea eacttgetgt gtacaatgae tgageeettt ettgtagttt	580
	gttteettgt ttgagaggtg tgeatgegae egtggetttt eecaaagttt etgaetttgt	640
	ggtttacccc cttcaccttc cagggacgca gttgttacga ggttagacgt ggcagctctg	700
10	tgcagtgttt gagcctacag tgggatacat agggtcaaat tgagaataat aaactgagtc	760
	atteteetgg	770
	<210> 90	
	<211> 1229	
15	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (96)(554)	
20		
	<400> 90	
	cctactcctg gattaggagg actgacaata ctacatatat cattaagcat gggcctcgct	60
	tagaagttgc atctgagaaa gtagcccaga agaca atg gac tat gtg tgc tgt	113
	Met Asp Tyr Val Cys	
25	1 5	
	get tae aac ata acc gge agg caa gat gaa act cat tte aca gtt	161
	Ala Tyr Asn Asn Ile Thr Gly Arg Gln Asp Glu Thr His Phe Thr Val	101
	10 15 20	
		200
30	atc atc act tcc gta gga ctg gag aag ctt gca cag aaa gga aaa tca	209
,,	Ile Ile Thr Ser Val Gly Leu Glu Lys Leu Ala Gln Lys Gly Lys Ser	
	25 30 35	
	ttg tca cct tta gca agt ata act gga ata tca cta ttt ttg att ata	<b>257</b>
	Leu Ser Pro Leu Ala Ser Ile Thr Gly Ile Ser Leu Phe Leu Ile Ile	
	40 45 50	
35	too atg tgt ott oto tto ota tgg aaa aaa tat caa ooc tac aaa gtt	305

	Ser Met Cys Leu Leu Phe Leu Trp Lys Lys Tyr Gln Pro Tyr Lys Val	
	55 60 65 70	
	ata aaa cag aaa cta gaa ggc agg cca gaa aca gaa tac agg aaa gct	353
	Ile Lys Gln Lys Leu Glu Gly Arg Pro Glu Thr Glu Tyr Arg Lys Ala	
5	75 80 85	
	caa aca ttt tca ggc cat gaa gat gct ctg gat gac ttc gga ata tat	401
	Gln Thr Phe Ser Gly His Glu Asp Ala Leu Asp Asp Phe Gly Ile Tyr	
	90 95 100	
	gaa ttt gtt gct ttt cca gat gtt tct ggt gtt tcc agg atc cca agc	449
10	Glu Phe Val Ala Phe Pro Asp Val Ser Gly Val Ser Arg Ile Pro Ser	
	105 110 115	
	agg tet gtt eea gee tet gat tgt gta teg ggg eaa gat ttg eae agt	497
	Arg Ser Val Pro Ala Ser Asp Cys Val Ser Gly Gln Asp Leu His Ser	
	120 125 130	
15	aca gtg tat gaa gtt att cag cac atc cct gcc cag cag caa gac cat	545
	Thr Val Tyr Glu Val Ile Gln His Ile Pro Ala Gln Gln Gln Asp His	
	135 140 145 150	
	cca gag tgaactttca tgggctaaac agtacattcg agtgaaattc tgaagaaac	600
20	Pro Glu	
20		
	attttaagga aaaacagtgg aaaagtatat taatctggaa tcagtgaaga aaccaagacc	660
	aacacctctt actcattatt cctttacatg cagaatagag gcatttatgc aaattgaact	720
	gcaggttttt cagcatatac acaatgtctt gtgcaacaga aaaacatgtt ggggaaatat	780
25	tecteagtgg agagtegtte teatgetgae ggggagaaeg aaagtgaeag gggttteete	840
20	ataagttttg tatgaaatat etetacaaac eteaattagt tetactetae aettteaeta	900
	trategage activities attractive total activities and activities attractive activities at	960
	ttttcagcag actttgtttt attaaatttt tattagtgtt aagaatgcta aagtttcaat tttatttcca aatttctatc ttgttatttg tacaacaaag taataaggat ggttgtcaca	1020 1080
	aaaacaaaac tatgccttct ctttttttc aatcaccagt agtatttttg agaagacttg	1140
30	tgaacactta aggaaatgac tattaaagtc ttatttttat ttttttcaag gaaagatgga	1200
	ttcaaataaa ttattotgtt tttgotttt	1229
		1223
	<210> 91	
	<211> 358	
35	<211> DPT	

# 100/177

<213> Homo sapience

	- 40	a. a														
		0> 9														
	Met	Ala	Pro	Gln	Asn	Leu	Ser	Thr	Phe	Cys	Leu	Leu	Leu	Leu	Tyr	Leu
5	1				5					10					15	
	Ile	Gly	Ala	Val	Ile	Ala	Gly	Arg	Asp	Phe	Tyr	Lys	Ile	Leu	Gly	Val
				20					25					30		
	Pro	Arg	Ser	Ala	Ser	Ile	Lys	Asp	Ile	Lys	Lys	Ala	Tyr	Arg	Lys	Leu
			35					40					45			
10	Ala	Leu	Gln	Leu	His	Pro	Asp	Arg	Asn	Pro	Asp	Asp	Pro	Gln	Ala	Gln
		50					55			-		60				
	Glu	Lys	Phe	Gln	Asp	Leu	Gly	Ala	Ala	Tyr	Glu	Val	Leu	Ser	Asp	Ser
	65					70					75				_	80
	Glu	Lys	Arg	Lys	Gln	Tyr	Asp	Thr	Tyr	Gly	Glu	Glu	Gly	Leu	Lys	Asp
15					85					90			_		- 95	-
	Gly	His	Gln	Ser	Ser	His	Gly	Asp	Ile	Phe	Ser	His	Phe	Phe		Asp
				100			_	-	105					110	•	
	Phe	Gly	Phe	Met	Phe	Gly	Gly	Thr	Pro	Arg	Gln	Gln	Asp	Arg	Asn	Ile
			115			_	_	120		_			125	_		
20	Pro	Arg	Gly	Ser	Asp	Ile	Ile	Val	Asp	Leu	Glu	Val	Thr	Leu	Glu	Glu
		130	_		_		135		_			140				
	Val	Tyr	Ala	Gly	Asn	Phe	Val	Glu	Val	Val	Ara		Lvs	Pro	Val	Ala
	145	-		4		150					155					160
		Gln	Ala	Pro	Glv		Ara	Lvs	Cvs	Asn		Ara	Gln	Glu	Met	
25	-				165	_4 -	5	<b>-1</b> -	-1	170	-1-	5			175	9
	Thr	Thr	Gin	Leu		Pro	Gโv	Ara	Phe		Met	Thr	Gln	Glu		บรา
				180	,		,		185	·				190	var	Val
	Cvs	Asp	Glu		Pro	Δen	t/al	T.ve		Wal	Aen	Glu	Glu			Leu _
	-1-		195	Cys	110	AJI.	VUI	200	Dea	V 44.1	ASII	GIU	205	ALG	1111	Leu -
30	Glu	<b>1</b> a 77		T 3 a	C111	Dra	<b>~1</b>		N	N	<b>~</b> 3	W-+			<b>D</b>	m1 .
00	GIU	Val	GIU	TTE	GIU	PIO		vai	Arg	Asp	GIY		GIU	Tyr	Pro	Phe
	-1.	210				_	215	_			=	220	_			
		Gly	GLU	Gly			His	Val	Asp	Gly		Pro	Gly	Asp	Leu	Arg
	225		_			230					235					240
	Phe	Arg	Ile	Lys	Val	Val	Lys	His	Pro	Ile	Phe	Glu	Arg	Arg	Gly	Asp
35					245					250					255	

	Asp	Leu	Туг	Thr	Asn	Val	. Thr	Ile	Ser	Leu	Va]	Glu	Ser	Let	. Val	Gly
				260					265					270	)	
	Phe	Glu	Met	Asp	Ile	Thr	His	Leu	Asp	Gly	His	Lys	Val	His	Ile	Ser
			275					280					285			
5	Arg	Asp	Lys	Ile	Thr	Arg	Pro	Gly	Ala	Lys	Leu	Trp	Lys	Lys	Gly	Glu
		290					295					300				
			Pro	Asn	Phe	Asp	Asn	Asn	Asn	Ile	Lys	Gly	Ser	Leu	Ile	Ile
	305			_		310					315					320
10	Thr	Phe	Asp	Val		Phe	Pro	Lys	Glu		Leu	Thr	Glu	Glu	Ala	Arg
10	<b>a</b> 1	<b>a</b> 1		_	325	_	_			330		·			335	
	GIU	GIÀ	TTE		Gin	Leu	Leu	Lys		Gly	Ser	Val	Gln	_	Val	Tyr
	Λcn	Gly	Tou	340	<b>63</b>	<b></b>			345					350		
	NSII	GLY	355	GIII	GTÅ	TÄT										
15			223													
	<21	0> 92	2													
		1> 22														
	<21	2> PI	RT													
	<213	3> Ho	omo s	sapie	ence											
20																
	<400	)> 92	2													
	Met	Lys	Met	Val	Ala	Pro	Trp	Thr	Arg	Phe	Tyr	Ser	Asn	Ser	Cys	Cys
	1				5					10					15	
	Leu	Cys	Cys	His	Val	Arg	Thr	Gly	Thr	Ile	Leu	Leu	Gly	Val	Trp	Tyr
25				20					25					30		
	Leu	īle	Ile	Àsn	Ala	Val	Val	Leu	Leu	Ile	Leu	Leu	Ser	Àla	Leu	Ala
			35					40					45			
	Asp		Asp	Gln	Tyr	Asn	Phe	Ser	Ser	Ser	Glu	Leu	Gly	Gly	Asp	Phe
00		50					55					60				
30		Phe	Met	Asp	Asp		Asn	Met	Cys	Ile	Ala	Ile	Ala	Ile	Ser	Leu
	65					70					75					80
	Leu	Met	Ile	Leu		Cys	Ala	Met	Ala		Tyr	Gly .	Ala	Tyr	_	Gln
	<b>1</b>	N 3 -	<b>.</b> 1 -	<b></b>	85 - 3		_			90					95	
25	Arg	А1а	Ala		Ile	Ile	Pro			Cys	Tyr	Gln			Asp	Phe
35				100					105					110		

	Ala	Leu	Asn	Met	Leu	Val	Ala	Ile	Thr	Val	Leu	Ile	Tyr	Pro	Asn	Ser
			115					120					125			
	Ile	Gln	Glu	Tyr	Ile	Arg	Gln	Leu	Pro	Pro	Asn	Phe	Pro	Tyr	Arg	Asp
		130					135					140				
5	Asp	Val	Met	Ser	Val	Asn	Pro	Thr	Суѕ	Leu	Val	Leu	Ile	Ile	Leu	Leu
	145					150					155					160
	Phe	Ile	Ser	Ile	Ile	Leu	Thr	Phe	Lys	Gly	Tyr	Leu	Ile	Ser	Cys	Val
					165					170					175	
- 0	Trp	Asn	Cys	Tyr	Arg	Tyr	Ile	Asn	Gly	Arg	Asn	Ser	Ser	Asp	Val	Leu
10				180					185					190		
	Val	Tyr	Val	Thr	Ser	Asn	Asp	Thr	Thr	Val	Leu	Leu	Pro	Pro	Tyr	Asp
	_		195	_		_		200					205			
	Asp		Thr	Val	Asn	Gly		Ala	Lys	Glu	Pro		Pro	Pro	Tyr	Val
1.5	0	210					215					220				
15		Ala														
	225															
	<210	)> 9:	3													
		l> 19								÷						
20		?> PI														
	<213	3> Ho	omo s	apie	ence											
				_												
	<400	)> 93	3													
	Met	Arg	Leu	Leu	Leu	Leu	Leu	Leu	Val	Ala	Ala	Ser	Ala	Met	Val	Arg
25	1				5					10					15	
	Ser	Glu	ĀÌa	Ser	Ala	Asn	Leu	Gly	Gly	Val	Pro	Ser	Lys	Ārg	Leu	Lys
				20					25				•	30		
	Met	Gln	Tyr	Ala	Thr	Gly	Pro	Leu	Leu	Lys	Phe	Gln	Ile	Cys	Val	Ser
			35					40					45			
30	Xaa	Gly	Tyr	Arg	Arg	Val	Phe	Glu	Glu	Tyr	Met	Arg	Val	Ile	Ser	Gln
	•	50					55					60				
		Tyr	Pro	Asp	Ile	Arg	Ile	Glu	Gly	Glu	Asn	Tyr	Leu	Pro	Gln	Pro
	65					70					75					80
~ <b></b>	Ile	Tyr	Arg	His	Ile	Ala	Ser	Phe	Leu	Ser	Val	Phe	Lys	Leu	Val	Leu
35					85					90					95	

WO 00/05367

# PCT/JP99/03929

	Ile	Gly	Leu			· Val	l Gly	Lys			Phe	Ala	Phe			Met
			_	100					105					110		
	GIn	Ala			Ile	TIT	Gln			7 Glr	Glu	Asn	Lys	: Val	Туг	Ala
_			115					120					125			
5	Cys		Met	Val	Phe	Phe	Leu	Ser	Asn	Met	: Ile	Glu	Asr	Gln	Cys	Met
		130					135					140				
	Ser	Thr	Gly	Ala	Phe	Glu	Ile	Thr	Leu	Asn	Asp	Val	Pro	Val	Trp	Ser
	145					150	•				155					160
	Lys	Leu	Glu	Ser	Gly	His	Leu	Pro	Ser	Met	Gln	Gln	Leu	Val	Gln	Ile
10					165					170					175	
	Leu	Asp	Asn	Glu	Met	Lys	Leu	Asn	Val	His	Met	Asp	Ser	Ile	Pro	His
				180					185					190		
	His	Arg	Ser													
			195													
15																
	<210	)> 94	1													
	<211	l> 33	39													
	<212	?> PF	TS													
	<213	3> Hc	omo s	sapie	ence											
20																
	<400	> 94	ļ													
	Met	Asn	Trp	Glu	Leu	Leu	Leu	Trp	Leu	Leu	Val	Leu	Cys	Ala	Leu	Leu
	1				5					10			-		15	
	Leu	Leu	Leu	Val	Gln	Leu	Leu	Arg	Phe	Leu	Arq	Ala	Asp	Gly	Asp	Leu
25				20				-	25		•		-	30	•	
	Thr	Leu	Leu	Trp	Ala	Glu	Trp	Gln	Gly	Arg	Ara	Pro	Glu		Glu	Leu
			35	_			-	40	-	,	•		45			
	Thr	qzA	Met	Val	Val	Tro	Val		Glv	Ala	Ser	Ser		Tle	Glv	Glu
_		50					55					60	,	110	<b></b> 3	Gra
30	Glu		Ala	ጥህጕ	Gln	T.e.i	Ser	Tare	T.eu	Glv	V=1		Tou	17.53	Τ	C = ==
	65			-1-	<b>U</b> 111	70	Ser	пуъ	Tien	GIY		per	ьеи	Val	Leu	
		7 ~~	N	**- T	TT: _		•	~ 7	_		75 -		_	_	_	80
	A-0	mry .	vrā	vaı		отц	Leu	GIU	Arg		тλг	Arg	Arg	cys		Glu
	N	<b>~</b> 1		_	85 -		_			90	_				95	
0.5	Asn	GTĀ.	ASN		Lys	GLu	Lys	Asp		Leu	Val	Leu	Pro	Leu	Asp	Leu
35				100					105					110		

	Thr	Asp	Thr	Gly	Ser	His	Glu	Ala	Ala	Thr	Lys	Ala	Val	Leu	Gln	Glu
			115					120					125			
	Phe	Gly	Arg	Ile	Asp	Ile	Leu	Val	Asn	Asn	Gly	Gly	Met	Ser	Gln	Arg
		130					135					140				
5	Ser	Leu	Суѕ	Met	Asp	Thr	Ser	Leu	Asp	Val	Tyr	Arg	Lys	Leu	Ile	Glu
	145					150					155					160
	Leu	Asn	Tyr	Leu	Gly	Thr	Val	Ser	Leu	Thr	Lys	Cys	Val	Leu	Pro	His
					165					170					175	
	Met	Ile	Glu	Arg	Lys	Gln	Gly	Lys	Ile	Val	Thr	Val	Asn	Ser	Ile	Leu
10				180					185					190		
	Gly	Ile	Ile	Ser	Val	Pro	Leu	Ser	Ile	Gly	Tyr	Cys	Ala	Ser	Lys	His
			195					200				•	205			
	Ala	Leu	Arg	Gly	Phe	Phe	Asn	Gly	Leu	Arg	Thr	Glu	Leu	Ala	Thr	Tyr
		210					215					220				
15	Pro	Gly	Ile	Ile	Val	Ser	Asn	Ile	Cys	Pro	Gly	Pro	Val	Gln	Ser	Asn
	225					230					235					240
	Ile	Val	Glu	Asn	Ser	Leu	Ala	Gly	Glu	Val	Thr	Lys	Thr	Ile	Gly	Asn
					245					250					255	
	Asn	Gly	Asp	Gln	Ser	His	Lys	Met	Thr	Thr	Ser	Arg	Cys	Val	Arg	Leu
20				260					265					270		
	Met	Leu	Ile	Ser	Met	Ala	Asn	Asp	Leu	Lys	Glu	Val	Trp	Ile	Ser	Glu
			275					280					285			
	Gln	Pro	Phe	Leu	Leu	Val	Thr	Tyr	Leu	Trp	Gln	Tyr	Met	Pro	Thr	Trp
		290					295					300				
25	Ala	Trp	Trp	Ile	Thr	Asn	Lys	Met	Gly	Lys	Lys	Arg	Ile	Glu	Asn	Phe
	305					310					315					320
	Lys	Ser	Gly	Val	Asp	Ala	Asp	Ser	Ser	Tyr	Phe	Lys	Ile	Phe	Lys	Thr
					325					330					335	
	Lys	His	Asp													
30																
	<210	)> 95	,													
	<211	l> 48	37													
	<212	?> PF	T													
	<213	3> Hc	omo s	apie	ence											
35																

WO 00/05367

#### PCT/JP99/03929

	<40	0> 9	5													
	Met	Asp	Gly	Thr	Glu	Thr	Arg	Gln	Arg	Arg	Leu	Asp	Ser	Cys	Gly	Lys
	1				5					10					15	-
	Pro	Gly	Glu	Leu	Gly	Leu	Pro	His	Pro	Leu	Ser	Thr	Gly	Gly	Leu	Pro
5				20					25	ı				30		
	Val	Ala	Ser	Glu	Asp	Gly	Ala	Leu	Arg	Ala	Pro	Glu	Ser	Gln	Ser	Val
			35					40					45			
	Thr	Pro	Lys	Pro	Leu	Glu	Thr	Glu	Pro	Ser	Arg	Glu	Thr	Ala	Trp	Ser
		50					55					60				
10	Ile	Gly	Leu	Gln	Val	Thr	Val	Pro	Phe	Met	Phe	Ala	Gly	Leu	Gly	Leu
	65					70					75					80
	Ser	Trp	Ala	Gly	Met	Leu	Leu	Asp	Tyr	Phe	Gln	His	Trp	Pro	Val	Phe
					85					90					95	
	Val	Glu	Val	Lys	Asp	Leu	Leu	Thr	Leu	Val	Pro	Pro	Leu	Val	Gly	Leu
15				100					105					110		
	Lys	Gly		Leu	Glu	Met	Thr		Ala	Ser	Arg	Leu		Thr	Ala	Ala
	_		115	_				120					125			
	Asn		Gly	Gln	Ile	Asp		Pro	Gln	Glu	Gln		Arg	Val	Ile	Ser
20	0	130	_		_		135					140				
20	145	ASI	ьец	Ala	Leu		Gin	Val	GIN	Ala		Val	Val	Gly	Leu	
		מות	77-7	ת ח	N 7	150	T	T	<b>61</b>	17 m 7	155	C		<b>01</b>	~ 1	160
	VIG	ALG	Val	Ala	165	reu	ren	red	сту	170	vaı	ser	Arg	GIU		Val
	Asn	Val	Δla	Lys		Glu	T.eu	T 611	Crre		Ser	505	17 n 1	Ton	175 mb=	21-
25	·-E			180		O_Lu	nea	Ded	185	AIG	Jer	Der	Val	190	111T	ATG
	Phe	Leu	Ala	Ala	Phe	Àla	Leu	Glv		î.eu	Met	Val	Ċvs		Val	Tle
			195					200					205		• • •	110
	Gly	Ala		Lys	Leu	Glv	Val		Pro	Asp	Asn	Ile		Thr	Pro	Ile
		210	-	-		•	215			•		220				
30	Ala	Ala	Ser	Leu	Gly	Asp	Leu	Ile	Thr	Leu			Leu	Ala	Leu	Val
	225					230					235					240
	Ser	Ser	Phe	Phe	Tyr	Arg	His	Lys	Asp	Ser	Arg	Tyr	Leu	Thr	Pro	Leu
					245	-			_	250	=	-			255	
	Val	Cys	Leu	Ser	Phe	Ala	Ala	Leu	Thr	Pro	Val	Trp	Val	Leu	Ile	Ala
35				260					265					270		

#### 106/177

	Lys	Gln	Ser	Pro	Pro	Ile	Val	Lys	Ile	Leu	Lys	Phe	Gly	Trp	Phe	Pro
			275					280					285			
	Ile	Ile	Leu	Ala	Met	Val	Ile	Ser	Ser	Phe	Gly	Gly	Leu	Ile	Leu	Sei
		290					295					300				
5	Lys	Thr	Val	Ser	Lys	Gln	Gln	Tyr	Lys	Gly	Met	Ala	Ile	Phe	Thr	Pro
	305					310					315					320
	Val	Ile	Cys	Gly	Val	Gly	Gly	Asn	Leu	Val	Ala	Ile	Gln	Thr	Ser	Arc
					325					330					335	
	Ile	Ser	Thr	Tyr	Leu	His	Met	Trp	Ser	Ala	Pro	Gly	Val	Leu	Pro	Leu
10				340					345					350		
	Gln	Met	Lys	Lys	Phe	Trp	Pro	Asn	Pro	Cys	Ser	Thr	Phe	Cys	Thr	Ser
			355					360					365			
	Glu	Ile	Asn	Ser	Met	Ser	Ala	Arg	Val	Leu	Leu	Leu	Leu	Val	Val	Pro
		370					375					380				
15	Gly	His	Leu	Ile	Phe	Phe	Tyr	Ile	Ile	Tyr	Leu	Val	Glu	Gly	Gln	Ser
	385					390					395					400
	Val	Ile	Asn	Ser	Gln	Thr	Phe	Val	Val	Leu	Tyr	Leu	Leu	Ala	Gly	Leu
					405					410					415	
	Ile	Gln	Val	Thr	Ile	Leu	Leu	Tyr	Leu	Ala	Glu	Val	Met	Val	Arg	Leu
20				420					425					430		
	Thr	Trp	His	Gln	Ala	Leu	Asp	Pro	Asp	Asn	His	Cys	Ile	Pro	Tyr	Leu
			435					440					445			
	Thr		Leu	Gly	Asp	Leu	Leu	Gly	Thr	Gly	Leu	Leu	Ala	Leu	Суѕ	Phe
~~		450					455					460				
25		Thr	Asp	Trp	Leu	Leu	Lys	Ser	Lys	Ala	Glu	Leu	Gly	Gly	Ile	Ser
	465					470					475					480
	Glu	Leu	Ala	Ser	Gly	Pro	Pro									
					485											
30	<210	)> 96	:													
		i> 39														
			-													

<212> PRT

<400> 96

35

<213> Homo sapience

WO 00/05367

#### PCT/JP99/03929

	Met	Arg	Thr	Leu	Phe	Asr	Lev	Leu	Tr	Leu	ı Ala	Lev	Ala	Cys	Ser	Pro
	1				5					10	)				15	,
	Val	His	Thr	Thr	Leu	Ser	Lys	Ser	Asp	Ala	Lys	Lys	Ala	Ala	Ser	Lys
				20					25					30	)	
5	Thr	Leu	Leu	Glu	Lys	Ser	Gln	Phe	Ser	Asp	Lys	Pro	Val	Gln	Asp	Arg
			35					40					45			_
	Gly	Leu	Val	Val	Thr	Asp	Leu	Lys	Ala	Glu	Ser	Val	Val	Leu	Glu	His
		50					55					60				
	Arg	Ser	Tyr	Cys	Ser	Ala	Lys	Ala	Arg	Asp	Arg	His	Phe	Ala	Gly	Asp
10	65					70					75					80
	Val	Leu	Gly	Tyr	Val	Thr	Pro	Trp	Asn	Ser	His	Gly	Tyr	Asp	Val	Thr
					85					90					95	
	Lys	Val	Phe	Gly	Ser	Lys	Phe	Thr	Gln	Ile	Ser	Pro	Val	Trp	Leu	Gln
				100					105					110		
15	Leu	Lys	Arg	Arg	Gly	Arg	Glu	Met	Phe	Glu	Val	Thr	Gly	Leu	His	Asp
			115					120					125			
	Val	Asp	Gln	Gly	Trp	Met	Arg	Ala	Val	Arg	Lys	His	Ala	Lys	Gly	Leu
		130					135					140				
	His	Ile	Val	Pro	Arg	Leu	Leu	Phe	Glu	Asp	Trp	Thr	Tyr	Asp	Asp	Phe
20	145					150					155					160
	Arg	Asn	Val	Leu	Asp	Ser	Glu	Asp	Glu	Ile	Glu	Glu	Leu	Ser	Lys	Thr
					165					170					175	
	Val	Val	Gln	Val	Ala	Lys	Asn	Gln	His	Phe	Asp	Gly	Phe	Val	Val	Glu
				180					185					190		
25	Val	Trp	Asn	Gln	Leu	Leu	Ser	Gln	Lys	Arg	Val	Gly	Leu	Ile	His	Met
			195					200					205			
	Leu	Thr	His	Leu	Ala	Glu	Ala	Leu	His	Gln	Ala	Arg	Leu	Leu	Ala	Leu
		210					215					220				
	Leu	Val	Ile	Pro	Pro .	Ala	Ile	Thr	Pro	Gly	Thr	Asp	Gln	Leu	Gly	Met
30	225					230					235					240
	Phe	Thr	His	Lys	Glu :	Phe	Glu	Gln	Leu	Ala	Pro	Val	Leu	Asp	Gly	Phe
					245					250					255	
	Ser	Leu	Met	Thr	Tyr .	Asp	Tyr	Ser	Thr	Ala	His	Gln	Pro	Gly	Pro	Asn
				260					265					270		
35	Ala	Pro	Leu	Ser	Trp '	Val	Arg	Ala	Cys	Val	Gln	Val	Leu .	Asp	Pro	Lys

			275					280	)				285	<b>;</b>		
	Ser	Lys	Trp	Arg	Ser	Lys	Ile	Let	ı Leu	Gly	Let	. Asn	Phe	Tyr	Gly	Met
		290					295	i				300	)			
	Asp	Tyr	Ala	Thr	Ser	Lys	Asp	Ala	Arg	Glu	Pro	Val	. Val	Gly	Ala	Arg
5	305					310	ı				315	,				320
	Tyr	Ile	Gln	Thr	Leu	Lys	Asp	His	Arg	Pro	Arg	Met	Val	Trp	Asp	Ser
					325					330					335	
	Gln	Ala	Ser	Glu	His	Phe	Phe	Glu	Туг	Lys	Lys	Ser	Arg	Ser	Gly	Arg
				340					345					350		
10	His	Val	Val	Phe	Tyr	Pro	Thr	Leu	Lys	Ser	Leu	Gln	Val	Arg	Leu	Glu
			355					360					365			
	Leu	Ala	Arg	Glu	Leu	Gly	Val	Gly	Val	Ser	Ile	Trp	Glu	Leu	Gly	Gln
		370					375					380				
	Gly	Leu	Asp	Tyr	Phe	Tyr	Asp	Leu	Leu							
15	385					390										
	<210	> 97	7													
	<211	i> 19	96													
	<212	?> PF	TS													
20	<213	3> Hc	omo s	apie	ence											
	<400	> 97	7													
	Met	Trp	Arg	Val	Pro	Gly	Thr	Thr	Arg	Arg	Pro	Val	Thr	Gly	Glu	Ser
	1				5					10					15	
<b>2</b> 5	Pro	Gly	Met	His	Arg	Pro	Glu	Ala	Met	Leu	Leu	Leu	Leu	Thr	Leu	Ala
				20					25					30		
	Leu	Leu	Gly	Gly	Pro	Thr	Trp	Ala	Gly	Lys	Met	Tyr	Gly	Pro	Gly	Gly
			35					40					45			•
	Gly	Lys	Tyr	Phe	Ser	Thr	Thr	Glu	Asp	Tyr	Asp	His	Glu	Ile	Thr	Gly
30		50					55					60				
	Leu	Arg	Val	Ser	Val	Gly	Leu	Leu	Leu	Val	Lys	Ser	Val	Gln	Val	Lys
	65					70					75					80
	Leu	Gly	Asp	Ser	Trp	Asp	Val	Lys	Leu	Gly	Ala	Leu	Gly	Gly	Asn	Thr
					85					90					95	
35	Gln	Glu	Val	Thr	Leu	Gln	Pro	Gly	Glu	Tyr	Ile	Thr	Lys	Val	Phe	Val

				10	0				10	5				110	0	
	Ala	a Phe	e Glr	ı Ala	a Phe	e Le	ı Ar	g Gly	/ Me	t Va	l Me	t Ty:	r Th	r Sei	r Lys	Asp
			115					120					12		_	•
	Arg	J Tyr	Phe	ту	r Phe	e Gly	/ Lys	Leu	ı Ası	p G1	y Gl	n Ile	e Sei	Sei	Ala	Tyr
5		130					135	5				140	)			
	Pro	Ser	Gln	Gli	ı Gly	Glr	val	Leu	Va.	l Gl	y Ile	э Туг	Gly	/ Glr	ı Tyr	Gln
	145	•				150	)				155	5				160
	Leu	Leu	Gly	Ile	Lys	Ser	Ile	Gly	Phe	e Glu	ı Tr	) Asn	Туг	Pro	Leu	Glu
					165					170					175	
10	Glu	Pro	Thr			Pro	Pro	Val	Asr	ı Let	1 Thr	Tyr	Ser	Ala	Asn	Ser
		_		180					185					190		
	Pro	Val			İ											
			195													
15	<b>~</b> 21	0> 98	5													
10		0> 30 1> 10														
		2> PF														
		3> но		sapi	ence											
20	<400	)> 98	3													
-	Met	Glu	Gln	Lys	Leu	Val	Glu	Glu	Ile	Leu	Gln	Ala	Ile	Thr	Met	Ser
	1				5					10					15	
	Thr	Asp	Thr	Gly	Val	Ser	Leu	Pro	Ser	Tyr	Glu	Glu	Asp	Gln	Gly	Ser
				20					25					30	_	
25	Lys	Leu	Ile	Arg	Lys	Ala	Lys	Glu	Ala	Pro	Phe	Val	Pro	Val	Gly	Ile
			35					40					45			
	Ala	Gly	Phe	Ala	Ala	Ile	Val	Ala	Tyr	Gly	Leu	Tyr	Lys	Leu	Lys	Ser
		50					55					60				
00		Gly	Asn	Thr	Lys	Met	Ser	Ile	His	Leu	Ile	His	Met	Arg	Val	Ala
30	65					70					75					80
	Ala	Glu	Gly	Phe	Val	Val	Gly	Ala	Met	Thr	Val	Gly	Met	Gly	Tyr	Ser
		_			85					90					95	
	Met	Tyr .			Phe	Trp	Ala	Lys	Pro	Lys	Pro					
				100			,		105							

WO 00/05367

	<21	0> 9	9													
	<21	1> 3	50													
	<21	2> P	RT													
	<21	3> H	omo	sapi	ence											
5																
	<40	0> 9:	9													
	Met	Ser	Glu	Val	Lys	Ser	Arg	Lys	Lys	Ser	Gly	Pro	Lys	Gly	Ala	Pro
	1				5					10					15	•
	Ala	Ala	Glu	Pro	Gly	Lys	Arg	Ser	Glu	Gly	Gly	Lys	Thr	Pro	Val	Ala
10				20					25					30		
	Arg	Ser	Ser	Gly	Gly	Gly	Gly	Trp	Ala	Asp	Pro	Arg	Thr	Cys	Leu	Ser
			35					40					45			
	Leu	Leu	Ser	Leu	Gly	Thr	Cys	Leu	Gly	Leu	Ala	Trp	Phe	Val	Phe	Gln
		50					55					60				
15	Gln	Ser	Glu	Lys	Phe	Ala	Lys	Val	Glu	Asn	Gln	Tyr	Gln	Leu	Leu	Lys
	65					70					75					80
	Leu	Glu	Thr	Asn	Glu	Phe	Gln	Gln	Leu	Gln	Ser	Lys	Ile	Ser	Leu	Ile
					85					90					95	
	Ser	Glu	Lys	Trp	Gln	Lys	Ser	Glu	Ala	Ile	Met	Glu	Gln	Leu	Lys	Ser
20				100					105					110		
	Phe	Gln	Ile	Ile	Ala	His	Leu	Lys	Arg	Leu	Gln	Glu	Glu	Ile	Asn	Glu
			115					120					125			
	Val	Lys	Thr	Trp	Ser	Asn	Arg	Ile	Thr	Glu	Lys	Gln	Asp	Ile	Leu	Asn
		130					135					140				
25	Asn	Ser	Leu	Thr	Thr	Leu	Ser	Gln	Asp	Ile	Thr	Lys	Val	Asp	Gln	Ser
	145					150					155					160
	Thr	Thr	Ser	Met		Lys	Asp	Val	Gly	Leu	Lys	Ile	Thr	Ser	Val	Lys
					165					170					175	
00	Thr	Asp	Ile		Arg	Ile	Ser	Gly		Val	Thr	Asp	Val		Ser	Leu
30				180					185					190		
	Thr	Asp		Val	Gln	Glu	Leu		Asn	Lys	Ile	Glu	Lys	Val	Glu	Lys
			195					200					205			
	Asn		Val	Lys	Asn	Ile		Asp	Leu	Leu	Ser	Ser	Ser	Ile	Asp	Arg
0.5		210					215					220				
35	Thr	Ala	Thr	Leu	Arg	Lys	Thr	Ala	Ser	Glu	Asn	Ser	Gln	Arg	Ile	Asn

#### 111/177

Ser Val Lys Lys Thr Leu Thr Glu Leu Lys Ser Asp Phe Asp Lys His Thr Asp Arg Phe Leu Ser Leu Glu Gly Asp Arg Ala Lys Val Leu Lys Thr Val Thr Phe Ala Asn Asp Leu Lys Pro Lys Val Tyr Asn Leu Lys Lys Asp Phe Ser Arg Leu Glu Pro Leu Val Asn Asp Leu Thr Leu Arg Ile Gly Arg Leu Val Thr Asp Leu Leu Gln Arg Glu Lys Glu Ile Ala Phe Leu Ser Glu Lys Ile Ser Asn Leu Thr Ile Val Gln Ala Glu Ile Lys Asp Ile Lys Asp Glu Ile Ala His Ile Ser Asp Met Asn <210> 100 <211> 107 <212> PRT <213> Homo sapience <400> 100 Met Ser Ser Ala Gly Thr Ala Thr Pro Leu Glu Met Asp His Lys Leu Thr Ser Gln Pro Gly Arg Pro Ser Phe Tyr Cys Asn Ser Arg His Ser Ile Val Gly Ser Ser His Gln Leu Gly Phe Trp Phe Ser His Leu Glu Ser Ser Gly Leu Lys Val Phe Gln Val Ser Leu Pro Cys Glu Cys Val Asn Leu Pro Thr Arg Ile Ala Ser Val Val Leu Ser Leu Met Ser Leu Leu Val Val Gly Gln Ala Pro Ala Trp Glu Gly Ser Leu Leu Arg Gly Arg Pro Ala Gly Gly Ala His Leu Cys Ala Ala

120

WO 00/05367 PCT/JP99/03929

112/177

105 100 <210> 101 <211> 1074 5 <212> DNA <213> Homo Sapience <400> 101 atggeteege agaacetgag eacettttge etgttgetge tataceteat eggggeggtg 60 10 attgccggac gagatttcta taagatcttg ggggtgcctc gaagtgcctc tataaaggat 120 attamamagg cotataggam actagecetg cagetteate eegaceggam ceetgatgat 180 ccacaagece aggagaaatt ecaggatetg ggtgetgett atgaggttet gteagatagt 240 300 gagaaacgga aacagtacga tacttatggt gaagaaggat taaaagatgg tcatcagagc toccatggag acatttttc acacttcttt ggggattttg gtttcatgtt tggaggaacc 360 15 cctcgtcagc aagacagaaa tattccaaga ggaagtgata ttattgtaga tctagaagtc 420 actttggaag aagtatatgc aggaaatttt gtggaagtag ttagaaacaa acctgtggca 480 aggeaggete etggeaaacg gaagtgeaat tgteggeaag agatgeggae eacceagetg 540 ggecetggge gettecaaat gaeecaggag gtggtetgeg acgaatgeee taatgteaaa 600 ctagtgaatg aagaacgaac gctggaagta gaaatagagc ctggggtgag agacggcatg 660 20 720 gagtacccct ttattggaga aggtgagcct cacgtggatg gggagcctgg agatttacgg ttccgaatca aagttgtcaa gcacccaata tttgaaagga gaggagatga tttgtacaca 780 840 aatgtgacaa totoattagt tgagtcactg gttggctttg agatggatat tactcacttg gatggtcaca aggtacatat ttcccgggat aagatcacca ggccaggagc gaagctatgg 900 960 aagaaagggg aagggctccc caactttgac aacaacaata tcaagggctc tttgataatc 25 1020 acttttgatg tggattttcc aaaagaacag ttaacagagg aagcgagaga aggtatcaaa 1074 cagctactga aacaagggtc agtgcagaag gtatacaatg gactgcaagg atat <210> 102 <211> 678 30 <212> DNA <213> Homo Sapience <400> 102 60 atgaagatgg tegegeeetg gaegeggtte tactecaaca getgetgett gtgetgeeat

gtccgcaccg gcaccatcct gctcggcgtc tggtatctga tcatcaatgc tgtggtactg

35

WO 00/05367

#### PCT/JP99/03929

	ttgattttat	tgagtgccct	ggctgatccg	gatcagtata	acttttcaag	ttctgaactg	180
÷	ggaggtgact	ttgagttcat	ggatgatgcc	aacatgtgca	ttgccattgc	gatttctctt	240
	ctcatgatcc	tgatatgtgc	tatggctact	tacggagcgt	acaagcaacg	cgcagcctgg	300
	atcatcccat	tcttctgtta	ccagatctţt	gactttgccc	tgaacatgtt	ggttgcaatc	360
5	actgtgctta	tttatccaaa	ctccattcag	gaatacatac	ggcaactgcc	tcctaatttt	420
	ccctacagag	atgatgtcat	gtcagtgaat	cctacctgtt	tggtccttat	tattcttctg	480
	tttattagca	ttatcttgac	ttttaagggt	tacttgatta	gctgtgtttg	gaactgctac	540
	cgatacatca	atggtaggaa	ctcctctgat	gtcctggttt	atgttaccag	caatgacact	600
	acggtgctgc	tacccccgta	tgatgatgcc	actgtgaatg	gtgctgccaa	ggagccaccg	660
10	ccaccttacg	tgtctgcc					678
		•				•	
	<210> 103						
	<211> 585						
	<212> DNA						
15	<213> Homo	Sapience					
	<400> 103						
			cctagtggcg				60
			cagcaagaga				120
20			ttcctgaggt				180
	-		agacateege				240
			tttcctgtca				300
			tgctttcttt				360
			tgcatgtatg				420
25			tgcatttgag				480
			tccatccatg			tgacaatgaa	540
•	atgaagctca	atgtgcatat	ggattcaatc	ccacaccatc	gatca		585
20	<210> 104		·				
30	<211> 1017						
	<212> DNA						
	<213> Homo	Sapience				•	
	<400> 104						
35	atgaactggg	agctgctgct	gtggctgctg	gtgetgtgeg	egetgeteet	gctcttggtg	60

PCT/JP99/03929

•							
	cagctgctgc	gcttcctgag	ggctgacggc	gacctgacgc	tactatgggc	cgagtggcag	120
	ggacgacgcc	cagaatggga	gctgactgat	atggtggtgt	gggtgactgg	agcctcgagt	180
	ggaattggtg	aggagctggc	ttaccagttg	tctaaactag	gagtttetet	tgtgctgtca	240
	gccagaagag	tgcatgagct	ggaaagggtg	aaaagaagat	gcctagagaa	tggcaattta	300
5	aaagaaaaag	atatacttgt	tttgcccctt	gacctgaccg	acactggttc	ccatgaagcg	360
	gctaccaaag	ctgttctcca	ggagtttggt	agaatcgaca	ttctggtcaa	caatggtgga	420
	atgtcccagc	gttctctgtg	catggatacc	agcttggatg	tctacagaaa	gctaatagag	480
	cttaactact	tagggacggt	gtccttgaca	aaatgtgttc	tgcctcacat	gatcgagagg	540
	aagcaaggaa	agattgttac	tgtgaatagc	atcctgggta	tcatatctgt	acctctttcc	600
10	attggatact	gtgctagcaa	gcatgctctc	cggggttttt	ttaatggcct	tcgaacagaa	660
	cttgccacat	acccaggtat	aatagtttct	aacatttgcc	caggacctgt	gcaatcaaat	720
	attgtggaga	attccctagc	tggagaagtc	acaaagacta	taggcaataa	tggagaccag	780
	tcccacaaga	tgacaaccag	tegttgtgtg	cggctgatgt	taatcagcat	ggccaatgat	840
	ttgaaagaag	tttggatctc	agaacaacct	ttcttgttag	taacatattt	gtggcaatac	900
15	atgccaacct	gggcctggtg	gataaccaac	aagatgggga	agaaaaggat	tgagaacttt	960
	aagagtggtg	tggatgcaga	ctcttcttat	tttaaaatct	ttaagacaaa	acatgac	1017
	<210> 105						
	<211> 1461						
20	<212> DNA						
	<213> Homo	Sapience					
			•		,		
	<400> 105						
			gcagcggagg				60
25	gggcttcctc	accccctcag	cacaggagga	ctccctgtag	cctcagaaga	tggagetete	120
			cgtgaccccc				180
			tcaggtgacc				240
						ggaggtgaaa	300
	gaccttttga	cattggtgcc	geceetggtg	ggcctgaagg	ggaacctgga	gatgacactg	360
30	gcatccagac	tctccacagc	tgccaacact	ggacaaattg	atgaccccca	ggagcagcac	420
	agagtcatca	gcagcaacct	ggccctcatc	caggtgcagg	ccactgtcgt	ggggctcttg	480
	getgetgtgg	ctgcgctgct	gttgggcgtg	gtgtctcgag	aggaagtgga	tgtcgccaag	540
	gtggagttgc	tgtgtgccag	cagtgtcctc	actgccttcc	ttgcagcctt	tgccctgggg	600
	gtgctgatgg	tctgtatagt	gattggtgct	cgaaagctcg	gggtcaaccc	agacaacatt	660
35	gccacgccca	ttgcagccag	cctgggagac	ctcatcacac	tgtccattct	ggetttggtt	720

WO 00/05367

	agcagcttct	tctacagaca	caaagatagt	cggtatctga	cgccgctggt	ctgcctcagc	780
	tttgcggctc	tgaccccagt	gtgggtcctc	attgccaagc	agagcccacc	catcgtgaag	840
•	atcctgaagt	ttggctggtt	cccaatcatc	ctggccatgg	tcatcagcag	tttcggagga	900
	ctcatcttga	gcaaaaccgt	ttctaaacag	cagtacaaag	gcatggcgat	atttaccccc	960
5	gtcatatgtg	gtgttggtgg	caatctggtg	gccattcaga	ccagccgaat	ctcaacctac	1020
	ctgcacatgt	ggagtgcacc	tggcgtcctg	cccctccaga	tgaagaaatt	ctggcccaac	1080
-	ccgtgttcta	ctttctgcac	gtcagaaatc	aattccatgt	cagctcgagt	cctgctcttg	1140
	ctggtggtcc	caggccatct	gattttcttc	tacatcatct	acctggtgga	gggtcagtca	1200
	gtcataaaca	gecagacett	tgtggtgctc	tacctgctgg	caggcctgat	ccaggtgaca	1260
10	atcctgctgt	acctggcaga	agtgatggtt	cggctgactt	ggcaccaggc	cctggatcct	1320
	gacaaccact	gcatccccta	ccttacaggg	ctgggggacc	tgctcggtac	tggcctcctg	1380
	gcactctgct	ttttcactga	ctggctactg	aagagcaagg	cagagctggg	tggcatctca	1440
	gaactggcat	ctggacctcc	C				1461
15	<210> 106						
	<211> 1179						
	<212> DNA						
	<213> Homo	Sapience					
20	<400> 106						
	atgeggaeae	tcttcaacct	cctctggctt	gccctggcct	gcagccctgt	tcacactacc	60
	ctgtcaaagt	cagatgccaa	aaaagccgcc	tcaaagacgc	tgctggagaa	gagtcagttt	120
	tcagataagc	cggtgcaaga	ccggggtttg	gtggtgacgg	acctcaaagc	tgagagtgtg	180
	gttettgage	ategeageta	ctgctcggca	aaggcccggg	acagacactt	tgctggggat	240
25	gtactgggct	atgtcactcc	atggaacagc	catggctacg	atgtcaccaa	ggtctttggg	300
	agcaagttca	cacagatete	acccgtctgg	ctgcagctga	agagacgtgg	ccgtgagatg	360
	tttgaggtca	cgggcctcca	cgacgtggac	caagggtgga	tgcgagctgt	caggaagcat	420
	gccaagggcc	tgcacatagt	gcctcggctc	ctgtttgagg	actggactta	cgatgatttc	480
	cggaacgtct	tagacagtga	ggatgagata	gaggagctga	gcaagaccgt	ggtccaggtg	540
30	gcaaagaacc	agcatttcga	tggcttcgtg	gtggaggtct	ggaaccagct	gctaagccag	600
	aagcgcgtgg	gcctcatcca	catgctcacc	cacttggccg	aggetetgea	ccaggcccgg	660
	ctgctggccc	tcctggtcat	cccgcctgcc	atcacccccg	ggaccgacca	gctgggcatg	720
	ttcacgcaca	aggagtttga	gcagctggcc	cccgtgctgg	atggtttcag	cctcatgacc	780
	tacgactact	ctacagcgca	tcagcctggc	cctaatgcac	ccctgtcctg	ggttegagee	840
35	tgcgtccagg	teetggaeee	gaagtccaag	tggcgaagca	aaatcctcct	ggggctcaac	900

	ttctatggta	tggactacgc	gacctccaag	gatgcccgtg	agcctgttgt	cggggccagg	960
	tacatccaga	cactgaagga	ccacaggccc	cggatggtgt	gggacagcca	ggcctcagag	1020
	cacttcttcg	agtacaagaa	gagccgcagt	gggaggcacg	tegtetteta	cccaaccctg	1080
	aagtccctgc	aggtgcggct	ggagctggcc	cgggagctgg	gcgttggggt	ctctatctgg	1140
5	gagetgggee	agggcctgga	ctacttctac	gacctgctc			1179
	<210> 107						
	<211> 588						
	<212> DNA						
10	<213> Homo	Sapience					
				•			
	<400> 107						
	atgtggaggg	tgcccggcac	aaccagacgc	ccagtcacag	gegagageee	tgggatgeac	60
		ccatgctgct					120
15		atggccctgg					180
		ggctgcgggt					240
		cctgggacgt					300
		gcgaatacat					360
		acaccagcaa					420
20		accccagcca					480
		tcaagagcat				gccgaccact	540
	gagccaccag	ttaatctcac	atactcagca	aactcacccg	tgggtcgc		588
O.W	<210> 108				•		
25	<211> 321						
	<212> DNA						
	<213> Homo	Sapience					
	4400× 100					, <b></b>	
20	<400> 108				atatataaaa	2022220	60
30		agcttgtgga					120
		cttcatatga					180
		tacccgttgg					240
		gcaggggaaa					300
0.5		ttgttgtagg		griggiaigg	gotattocat	gcaccyyyaa	321
35	ttctgggcaa	aacctaagcc	τ				241

WO 00/05367

	<210> 109						
	<211> 1050						
	<212> DNA						
5	<213> Homo	Sapience					
	<400> 109						
	atgtctgagg	tgaagagccg	gaagaagtcg	gggcccaagg	gagecectge	tgcggagccc	60
	gggaagcgga	gcgagggcgg	gaagaccccc	gtggcccgga	gcagcggagg	cgggggctgg	120
10	gcagaccccc	gaacgtgcct	gagcctgctg	tegetgggga	cgtgcctggg	cctggcctgg	180
	tttgtatttc	agcagtcaga	aaaatttgca	aaggtggaaa	accaatacca	gttactgaaa	240
	ctagaaacca	atgaattcca	acaacttcaa	agtaaaatca	gtttaatttc	agaaaagtgg	300
	cagaaatctg	aagctatcat	ggaacaattg	aagtetttte	aaataattgc	tcatctaaag	360
	cgtctacagg	aagaaattaa	tgaggtaaaa	acttggtcca	ataggataac	tgaaaaacag	420
15	gatatactga	acaacagtct	gacgacgctt	tctcaagaca	ttacaaaagt	agaccaaagt	480
	acaacttcca	tggcaaaaga	tgttggtctc	aagattacaa	gtgtaaaaac	agatatacga	540
	cggatttcag	gtttagtaac	tgatgtaata	tcattgacag	attctgtgca	agaactagaa	600
	aataaaatag	agaaagtaga	aaaaaataca	gtaaaaaata	taggtgatct	tetttcaage	660
	agtattgatc	gaacagcaac	gctccgaaag	acagcatctg	aaaattcaca	aagaattaac	720
20	tctgttaaga	agacgctaac	cgaactaaag	agtgacttcg	acaaacatac	agatagattt	780
	ctaagcttag	aaggtgacag	agccaaagtt	ctgaagacag	tgacttttgc	aaatgatcta	840
	aaaccaaagg	tgtataatct	aaagaaggac	ttttcccgtt	tagaaccatt	agtaaatgat	900
	ttaacactac	gcattgggag	attggttacc	gacttactac	aaagagagaa	agaaattgct	960
	ttcttaagtg	aaaaaatatc	taatttaaca	atagtccaag	ctgagattaa	ggatattaaa	1020
25	gatgaaatag	cacacatttc	agatatgaat				1050
	<210> 110						
	<211> 321						
	<212> DNA						
30	<213> Homo	Sapience					
	<400> 110						
					acaaactcac	,	
					teggateate		120
35	ggtttttggt	ttagtcatct	agagtcgtct	ggactaaagg	tettteaggt	ctccttgccc	180

WO 00/05367

#### PCT/JP99/03929

	tgtgagtgcg tgaacctccc cacccgaatt geetcagttg teetgageet catgtetete	240
	ctggtggtgg gccaggcccc tgcatgggaa gggagcctgc tgcggggcag gccagctggg	300
	ggtgctcacc tatgcgcagc a	321
5	<210> 111	
	<211> 1619	
	<212> DNA	
	<213> Homo Sapience	
	<220>	
10	<221> CDS	
	<222> (158)(1234)	
	<400> 111	-
	agaagagggg getagetage tgtetetgeg gaceagggag accecegege ecceceggtg	60
15	tgaggcggcc tcacagggcc gggtgggctg gcgagccgac gcggcggcgg aggaggctgt	120
	gaggagtgtg tggaacagga cccgggacag aggaacc atg gct ccg cag aac ctg	175
	Met Ala Pro Gln Asn Leu	
	1 5	
	age ace ttt tge etg ttg etg eta tac etc atc ggg geg gtg att gee	223
20	Ser Thr Phe Cys Leu Leu Leu Tyr Leu Ile Gly Ala Val Ile Ala	
	10 15 20	
	gga cga gat ttc tat aag atc ttg ggg gtg cct cga agt gcc tct ata	271
	Gly Arg Asp Phe Tyr Lys Ile Leu Gly Val Pro Arg Ser Ala Ser Ile	
	25 30 35	
25	aag gat att aaa aag gee tat agg aaa eta gee etg eag ett eat eee	319
	Lys Asp Ile Lys Lys Ala Tyr Arg Lys Leu Ala Leu Gln Leu His Pro	
	40 45 50	
	gac egg aac eet gat gat eea eaa gee eag gag aaa tte eag gat etg _	367
	Asp Arg Asn Pro Asp Asp Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu	
30	55 60 65 70	
	ggt get get tat gag gtt etg tea gat agt gag aaa egg aaa eag tae	415
	Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr	
	75 80 85	
	gat act tat ggt gaa gaa gga tta aaa gat ggt cat cag agc tcc cat	463
35	Asp Thr Tyr Gly Glu Glu Gly Leu Lys Asp Gly His Gln Ser Ser His	

				90					95					100			
	gga	gac	att	ttt	tca	cac	ttc	ttt	<b>9</b> 99	gat	ttt	ggt	ttc	atg	ttt	gga	511
	Gly	Asp	Ile	Phe	Ser	His	Phe	Phe	Gly	Asp	Phe	Gly	Phe	Met	Phe	Gly	
			105					110					115				
5	gga	acc	cct	cgt	cag	caa	gac	aga	aat	att	cca	aga	gga	agt	gat	att	559
	Gly	Thr	Pro	Arg	Gln	Gln	Asp	Arg	Asn	Ile	Pro	Arg	Gly	Ser	Asp	Ile	
		120					125					130					
	att	gta	gat	cta	gaa	gtc	act	ttg	gaa	gaa	gta	tat	gca	gga	aat	ttt	607
	Ile	Val	Asp	Leu	Glu	Val	Thr	Leu	Glu	Glu	Val	Tyr	Ala	Gly	Asn	Phe	
10	135					140					145					150	
	gtg	gaa	gta	gtt	aga	aac	aaa	cct	gtg	gca	agg	cag	gct	cct	ggc	aaa	655
	Val	Glu	Val	Val	Arg	Asn	Lys	Pro	Val	Ala	Arg	Gln	Ala	Pro	Gly	Lys	
					155					160					165		
	cgg	aag	tgc	aat	tgt	cgg	caa	gag	atg	cgg	acc	acc	cag	ctg	ggc	cct	703
15	Arg	Lys	Cys	Asn	Cys	Arg	Gln	Glu	Met	Arg	Thr	Thr	Gln	Leu	Gly	Pro	
				170					175					180			
												gac					751
	Gly	Arg	Phe	Gln	Met	Thr	Gln	Glu	Val	Val	Cys	Asp	Glu	Суѕ	Pro	Asn	
			185					190					195				
20												gta					799
	Val	Lys	Leu	Val	Asn	Glu	Glu	Arg	Thr	Leu	Glu	Val	Glu	Ile	Glu	Pro	
		200					205					210					
												gga					847
	Gly	Val	Arg	Asp	Gly	Met	Glu	Tyr	Pro	Phe	Ile	Gly	Glu	Gly	Glu	Pro	
25	215					220					225					230	
												cga					895
	His	Val	Asp	Gly	Glu	Pro	Gly	Asp	Leu	Arg	Phe	Arg	Ile	Lys		Val	
					235					240					245		
												ttg					943
30	Lys	His	Pro	Ile	Phe	Glu	Arg	Arg	Gly	Asp	Asp	Leu	Tyr	Thr	Asn	Val	
				250	)				255					260			
												gag					991
	Thr	Ile	Ser	Leu	Val	Glu	Ser	Leu	Val	Gly	Phe	Glu	Met	Asp	Ile	Thr	
			265	•				270					275				
35	cac	ttg	gat	ggt	cac	aag	gta	cat	att	tcc	cgg	gat	aag	atc	acc	agg	1039

	His Leu Asp Gly His Lys Val His Ile Ser Arg Asp Lys Ile Thr Arg	
	280 285 290	
	cca gga gcg aag cta tgg aag aaa ggg gaa ggg ctc ccc aac ttt gac	1087
	Pro Gly Ala Lys Leu Trp Lys Lys Gly Glu Gly Leu Pro Asn Phe Asp	
5	295 300 305 310	
	aac aac aat atc aag ggc tct ttg ata atc act ttt gat gtg gat ttt	1135
	Asn Asn Ile Lys Gly Ser Leu Ile Ile Thr Phe Asp Val Asp Phe	
	315 320 325	
	cca aaa gaa cag tta aca gag gaa gcg aga gaa ggt atc aaa cag cta	1183
10	Pro Lys Glu Gln Leu Thr Glu Glu Ala Arg Glu Gly Ile Lys Gln Leu	•
	330 335 340	
	ctg aaa caa ggg tca gtg cag aag gta tac aat gga ctg caa gga tat	1231
	Leu Lys Gln Gly Ser Val Gln Lys Val Tyr Asn Gly Leu Gln Gly Tyr	
	345 350 355	
15	tgagagtga ataaaattgg actttgttta aaataagtga ataagcgata tttattatct	1290
	gcaaggtttt tttgtgtgtg tttttgtttt tattttcaat atgcaagtta ggcttaattt	1350
	ttttatctaa tgatcatcat gaaatgaata agagggetta agaatttgte catttgcatt	1410
	cggaaaagaa tgaccagcaa aaggtttact aatacctctc cctttgggga tttaatgtct	1470
	ggtgctgccg cctgagtttc aagaattaaa gctgcaagag gactccagga gcaaaagaaa	1530
20	cacaatatag agggttggag ttgttagcaa tttcattcaa aatgccaact ggagaagtct	1590
	gtttttaaat acattttgtt gttattttt	1619
	<210> 112	
	<211> 2054	
25	<212> DNA	
	<213> Homo Sapience	
	<220>	
	<221> CDS	•
	<222> (254)(934)	
30		
	<400> 112	
	cacatggeca agteegeece geeceeteec egteecegee getgeagegg tegeettegg	60
	agegaagggt accgaccegg cagaageteg gagetetegg ggtategagg aggeaggeee	120
	gegggegeae gggegagegg geegggagee ggageggegg aggageegge ageageggeg	180
35	eggegggete eaggegagge ggtegaeget cetgaaaact tgegegegeg etegegecae	240

	tgegeeegga geg atg aag atg gte geg eee tgg aeg egg tte tae tee														289		
	Met Lys Met Val Ala Pro Trp Thr Arg Phe Tyr Ser																
					1				5					10			
															ctg		337
5	Asn	Ser	Cys	Cys	Leu	Cys	Cys	His	Val	Arg	Thr	Gly	Thr	Ile	Leu	Leu	
	•		15					20					25				
		-													tta		385
	Gly	Val	Trp	Tyr	Leu	Ile	Ile	Asn	Ala	Val	Val	Leu	Leu	Ile	Leu	Leu	
		30					35					40					
10	_														gaa		433
	Ser	Ala	Leu	Ala	Asp	Pro	Asp	Gln	Tyr	Asn		Ser	Ser	Ser	Glu		
	45					50					55					60	
															gcc		481
	Gly	Gly	Asp	Phe	Glu	Phe	Met	Asp	Asp		Asn	Met	Cys	Ile	Ala	Ile	
15					65					70					. 75		
															tac		529
	Ala	Ile	Ser		Leu	Met	Ile	Leu		Cys	Ala	Met	АТА		Tyr	GIĀ	
				80					85			++^	++-	90	+	020	577
00															tac		377
20	Ala	Tyr		Gin	Arg	Ата	ATS		116	TTE	PIO	Phe	105	Cys	Tyr	GIII	
			95					100	++~	a++	<i>ac</i> =	atc		ata	ctt	att	625
															Leu		020
	TTE	110	Asp	Pne	Ala	Ten	115	nec	<u> Heu</u>	Vai	1114	120	****				
25	+=+		227	tac	s++	cad		tac	ata	caa	caa		cct	cct	aat	ttt	673
20															Āsņ		
	125	110	11511	501	110	130		-1-		J	135					140	
		tac	ara	gat	gat			tca	ata	aat	cct	acc	tqt	ttg	gte	ctt	 721
															Val		÷
30		-1-	9		145					150			-		155		
	att	att	ctt	cta			agc	att	atc	ttg	act	ttt	aag	ggt	tac	ttg	769
																Leu	
				160					165				-	170			
	att	ago	tat			aac	tge	tac	cga	tac	atc	aat	ggt	agg	aac	tcc	817
35																Ser	
			_		_		-										

173	
	865
Ser Asp Val Leu Val Tyr Val Thr Ser Asn Asp Thr Thr Val Leu Leu	
190 195 200	
	913
Pro Pro Tyr Asp Asp Ala Thr Val Asn Gly Ala Ala Lys Glu Pro Pro	
205 210 215 220	
cca cct tac gtg tct gcc taagcettca agtgggegga getgaggge	960
Pro Pro Tyr Val Ser Ala	
225	
ageagettga etttgeagae atetgageaa tagttetgtt attteaettt tgecatgage	1020
ctctctgage ttgtttgttg ctgaaatget actttttaaa atttagatgt tagattgaaa	1080
actgtagttt tcaacatatg ctttgctgga acactgtgat agattaactg tagaattctt	1140
cctgtacgat tggggatata atgggcttca ctaaccttcc ctaggcattg aaacttcccc	1200
caaatctgat ggacctagaa gtctgctttt gtacctgctg ggccccaaag ttgggcattt	1260
ttctctctgt tccctctctt ttgaaaatgt aaaataaaac caaaaataga caactttttc	1320
ttcagccatt ccagcataga gaacaaaacc ttatggaaac aggaatgtca attgtgtaat	1380
cattgttcta attaggtaaa tagaagtcct tatgtatgtg ttacaagaat ttcccccaca	1440
acatcettta tgactgaagt teaatgaeag tttgtgtttg gtggtaaagg atttteteea	1500
tggcctgaat taagaccatt agaaagcacc aggccgtggg agcagtgacc atctgctgac	1560
tgttettgtg gatettgtgt eeagggaeat ggggtgaeat geetegtatg tgttagaggg	1620
tggaatggat gtgtttggeg etgeatggga tetggtgeee etetteteet ggatteaeat	1680
ccccacccag ggcccgcttt tactaagtgt tctgccctag attggttcaa ggaggtcatc	1740
caactgactt tatcaagtgg aattgggata tatttgatat acttctgcct aacaacatgg	1800
aaaagggttt tetttteeet geaagetaca teetaetget ttgaaettee aagtatgtet	1860
agtoacottt taaaatgtaa acattitoag aaaaatgagg attgoottoo ttgtatgogo	1920
tttttacctt gactacctga attgcaaggg atttttatat attcatatgt tacaaagtca	1980
gcaactetee tgttggttea ttattgaatg tgetgtaaat taagttgttt gcaattaaaa	2040
caaggtttgc ccac	2054
<210> 113	
<211> 1380	
<212> DNA	
<213> Homo Sapience	
<220>	
	ccc ccg tat gat gat gcc act gtg aat ggt gct gcc aag gag cca ccg Pro Pro Tyr Asp Asp Ala Thr Val Asn Gly Ala Ala Lys Glu Pro Pro 205 210 215 220  cca cct tac gtg tct gcc taagecttea agtgggegga getgagggc Pro Pro Tyr Val Ser Ala  225  agcagettga ctttgcagac atctgagcaa tagttctgtt atttcacttt tgccatgagc ctctctgagc ttgttgttg ctgaaatgct acttttaaa atttagatgt tagattgaaa actgtagttt tcaacatatg ctttgctgga acactggat agattaactg tagaattctt cctgtacgat tggggatata atgggcttca ctaaccttcc ctaggcattg agactcccc caaatctgat ggacctagaa gtctgctttt gtacctgctg ggcccaaaag ttgggcattt ttctctctgt tccctcttt ttgaaaatgt aaaataaaac caaaaataga caacttttc ttcagccatt ccagcataga gaacaaaacc ttatggaaac aggaatgca attgtgtaat cattgttcta attaggtaaa tagaagtcct tatgtatgt ttacaagaat ttccccacaa acatccttta tgactgaagt tcaatgacag tttgtgttg gtggtaaagg attttccca tggcctgaat taagaccatt agaaagcacc aggccgtggg agcagtgaca atctgctgac tgttcttgtg gatcttgtg ccagggacat ggggtgacat tggaatggat gtgtttggcg ctgcatgga tctggtcc ctctctct ggatcacat ccaacccaag ggcccgcttt tactaagtgt tctgccctag attggtcaa attggtgac tgaatggat gtgtttggc ctgcatgga tctggtccc ctcttctct ggatcacat ccaaccaccag ggcccgcttt tactaagtgt tctgccctag attggtcaa acttgtcaa caactgactt tatcaagtgg aattgggat tctggccc ctcttctct ggatcacat ccaaccaccag ggcccgcttt tactaagtgt tctgccctag attggtcaa acttgtcca acaagggttt tctttccct gcaagcaca tcctactgct ttgaactcc aacaacatgg aaaagggttt tctttccct gcaagcaca tcctactgct ttgaactcc aacaacatgg aaaagggttt tctttccct gcaagcaca tcctactgct ttgaactcc aacaacatgg ccaacctcc tgttggtca ttattgaatg tgctgtaaat taatcatgt tcacaagtca ccaaccacccag ccac  210> 113  221> DNA  213 Homo Sapience

<221> CDS

#### PCT/JP99/03929

#### 123/177

<222> (43)...(630) <400> 113 geagtetgte tgagggegge egaagtgget ggeteattta ag atg agg ett etg 54 5 Met Arg Leu Leu ctg ctt ctc cta gtg gcg gcg tct gcg atg gtc cgg agc gag gcc tcg 102 Leu Leu Leu Val Ala Ala Ser Ala Met Val Arg Ser Glu Ala Ser 20 15 10 5 10 gee aat etg gge gge gtg eee age aag aga tta aag atg eag tae gee 150 Ala Asn Leu Gly Gly Val Pro Ser Lys Arg Leu Lys Met Gln Tyr Ala 198 acq qqq ccq ctq ctc aag ttc cag att tgt gtt tcc tga ggt tat agg Thr Gly Pro Leu Leu Lys Phe Gln Ile Cys Val Ser Xaa Gly Tyr Arg 15 45 cgg gtg ttt gag gag tac atg cgg gtt att agc cag cgg tac cca gac 246 Arg Val Phe Glu Glu Tyr Met Arg Val Ile Ser Gln Arg Tyr Pro Asp 65 55 atc cgc att gaa gga gag aat tac ctc cct caa cca ata tat aga cac 294 20 Ile Arg Ile Glu Gly Glu Asn Tyr Leu Pro Gln Pro Ile Tyr Arg His 75 70 342 ata gca tct ttc ctg tca gtc ttc aaa cta gta tta ata ggc tta ata Ile Ala Ser Phe Leu Ser Val Phe Lys Leu Val Leu Ile Gly Leu Ile 25 90 390 att gtt ggc aag gat cet tit get tie tit ggc atg caa get eet age Ile Val Gly Lys Asp Pro Phe Ala Phe Phe Gly Met Gln Ala Pro Ser 115 105 110 atc tgg cag tgg ggc caa gaa aat aag gtt tat gca tgt atg atg gtt 438 30 Ile Trp Gln Trp Gly Gln Glu Asn Lys Val Tyr Ala Cys Met Met Val 125 486 ttc ttc ttg agc aac atg att gag aac cag tgt atg tca aca ggt gca Phe Phe Leu Ser Asn Met Ile Glu Asn Gln Cys Met Ser Thr Gly Ala 135 140 ttt gag ata act tta aat gat gta cct gtg tgg tct aag ctg gaa tct 534 35

	Phe Glu Ile Thr Leu Asn Asp Val Pro Val Trp Ser Lys Leu Glu Ser	
	150 155 160	
	ggt cac ctt cca tcc atg caa caa ctt gtt caa att ctt gac aat gaa	582
	Gly His Leu Pro Ser Met Gln Gln Leu Val Gln Ile Leu Asp Asn Glu	
5	165 170 175 180	
	atg aag etc aat gtg cat atg gat tea atc eea cac cat ega tea	627
	Met Lys Leu Asn Val His Met Asp Ser Ile Pro His His Arg Ser	
	185 190 195	
	tag caccacctat cagcactgaa aactettttg cattaaggga teattgeaag	680
10	agcagcgtga ctgacattat gaaggcctgt actgaagaca gcaagctgtt agtacagacc	740
	agatgettte ttggeagget egttgtaeet ettggaaaae etcaatgeaa gatagtgttt	800
	cagtgctggc atattttgga attctgcaca ttcatggagt gcaataatac tgtatagctt	860
	tecceacete ecacaaaate acceagttaa tgtgtgtgtg tgtttttttt tttaaggtaa	920
	acattactac ttgtaacttt ttttcttagt catatttgaa aaagtagaaa attgagttac	980
15	aatttgattt tttttccaaa gatgtctgtt aaatctgttg tgcttttata tgaatatttg	1040
	ttttttatag tttaaaattg atcctttggg aatccagttg aagttcccaa atactttata	1100
	agagtttate agacatetet aatttggeea tgteeagttt atacagttta caaaatatag	1160
	cagatgcaag attatggggg aaatcctata ttcagagtac tctataaatt tttgtgtatg	1220
	tgtgtatgtg cgtgtgatta ccagagaact actaaaaaaa ccaactgctt tttaaatcct	1280
20	attgtgtagt taaagtgtca tgccttgacc aatctaatga attgattaat taactgggcc	1340
	tttatactta actaaataaa aaactaagca gatatgagtt	1380
	<210> 114	
	<211> 1292	•
25	<212> DNA	
	<213> Homo Sapience	
	<220>	
	<221> CDS	
-	<222> (113)(1132)	
30		
	<400> 114	
	aaaagtgegg etetgggetg geegaagggg tggegetgeg ateeegeagg geagegaege	60
	gactotggtg ogggoogtot tottocooco gagotgggog tgogoggoog ca atg aac	118
	Met Asn	

	tgg	gag	ctg	ctg	ctg	tgg	ctg	ctg	gtg	ctg	tgc	gcg	ctg	ctc	ctg	ctc		166
	Trp	Glu	Leu	Leu	Leu	Trp	Leu	Leu	Val	Leu	Cys	Ala	Leu	Leu	Leu	Leu		
			. 5					10					15					
	ttg	gtg	cag	ctg	ctg	cgc	ttc	ctg	agg	gct	gac	ggc	gac	ctg	acg	cta		214
5	Leu	Val	Gln	Leu	Leu	Arg	Phe	Leu	Arg	Ala	Asp	Gly	Asp	Leu	Thr	Leu		
		20					25					30						
	cta	tgg	gcc	gag	tgg	cag	gga	cga	cgc	cca	gaa	tgg	gag	ctg	act	gat		262
	Leu	Trp	Ala	Glu	Trp	Gln	Gly	Arg	Arg	Pro	Glu	Trp	Glu	Leu	Thr	Asp	•	
	35					40					45					50		
10	_							gcc										310
	Met	Val	Val	Trp	Val	Thr	Gly	Ala	Ser	Ser	Gly	Ile	Gly	Glu	Glu	Leu		
					55					60					65			
	-		_	-				gga										358
	Ala	Tyr	Gln	Leu	Ser	Lys	Leu	Gly	Val	Ser	Leu	Val	Leu	Ser	Ala	Arg		
15				70					75					80				
	-	-						gtg										406
	Arg	Val	His	Glu	Leu	Glu	Arg	Val	Lys	Arg	Arg	Cys		Glu	Asn	Gly		
			85					90					95					
								ctt										454
20	Asn	Leu	Lys	Glu	Lys	Asp		Leu	Val	Leu	Pro		Asp	Leu	Thr	Asp		
		100					105					110						
								acc										502
		Gly	Ser	His	Glu		Ala	Thr	Lys	Ala		Leu	Gln	Glu	Phe			
	115					120					125					130		
25								aat										550
	Arg	Ile	Asp	Ile		Val	Asn	Asn	Gly		Met	Ser	GIN	Arg		Leu		
					135					140					145			E00
	_	_	_		-	_	_	_								aac		598
00	Cys	Met	Asp		Ser	Leu	Asp	Val		Arg	Lys	Leu	Ile		Leu	Asn		
30				150					155					160				
				-	-			aca										646
	Tyr	Leu			Val	Ser	Leu	Thr	Lys	Cys	Val	Leu		His	Met	Ile		
			165					170					175					
<u></u>								gtt										694
35	Glu	Arg	Lys	Gln	Gly	Lys	Ile	Val	Thr	Val	Asn	Ser	Ile	Leu	Gly	Ile		

WO 00/05367

		180					185					190					
	ata	tct	gta	cct	ctt	tcc	att	gga	tac	tgt	gct	agc	aag	cat	gct	ctc	742
	Ile	Ser	Val	Pro	Leu	Ser	Ile	Gly	Tyr	Cys	Ala	Ser	Lys	His	Ala	Leu	
	195					200					205					210	
5	cgg	ggt	ttt	ttt	aat	ggc	ctt	cga	aca	gaa	ctt	gcc	aca	tac	cca	ggt	790
	Arg	Ġly	Phe	Phe	Asn	Gly	Leu	Arg	Thr	Glu	Leu	Ala	Thr	Tyr	Pro	Gly	
					215					220					225		
	ata	ata	gtt	tct	aac	att	tgc	cca	gga	cct	gtg	caa	tca	aat	att	gtg	838
	Ile	Ile	Val	Ser	Asn	Ile	Cys	Pro	Gly	Pro	Val	Gln	Ser	Asn	Ile	Val	
10				230			2		235					240			
	gag	aat	tcc	cta	gct	gga	gaa	gtc	aca	aag	act	ata	ggc	aat	aat	gga	886
	Glu	Asn	Ser	Leu	Ala	Gly	Glu	Val	Thr	Lys	Thr	Ile	Gly	Asn	Asn	Gly	
			245					250					255				
	gac	cag	tee	cac	aag	atg	aca	acc	agt	cgt	tgt	gtg	cgg	ctg	atg	tta	934
15	Asp	Gln	Ser	His	Lys	Met	Thr	Thr	Ser	Arg	Cys	Val	Arg	Leu	Met	Leu	
		260					265					270					
												atc					982
	Ile	Ser	Met	Ala	Asn	Asp	Leu	Lys	Glu	Val	Trp	Ile	Ser	Glu	Gln	Pro	
	275					280					285					290	
20												cca					1030
	Phe	Leu	Leu	Val	Thr	Tyr	Leu	Trp	Gln	Tyr	Met	Pro	Thr	Trp	Ala	Trp	
					295					300					305		
												gag					1078
	Trp	Ile	Thr	Asn	Lys	Met	Gly	Lys	Lys	Arg	Ile	Glu	Asn	Phe	Lys	Ser	
<b>25</b>				310					315			•		320			
												ttt					1126
	Gly	Val	Asp	Ala	Asp	Ser	Ser	Tyr	Phe	Lys	Ile	Phe			Lys	His	
			325					330					335			<del>##\$\$*</del> *******	
	gac	tga	aaag	agc	atct	gtac	tt t	tcaa	gcca	c tg	gagg	gaaa	aat	ggaa	aac	a	1180
30	Asp																
																tacttt	1240
	tta	atag	jata	tgac	tttg	ct t	ccaa	catg	g aa	tgaa	ataa	aaa	ataa	gta	at		1292

	<211	> 21	.68														
•	<212	!> DN	IA.														
	<213	8> H⊂	mo S	apie	ence												
	<220	)>															
5	<221	> CI	s	•													
	<222	?> (5	6)	. (15	19)												
	<400	> 11	.5														
	ttto	egge	ge e	gcct	ggga	ag gg	gaco	cggg	gctg	gcca	ggcg	ccca	igct	gtg d	cca	3	55
10	atg	gat	ggg	aca	gag	acc	cgg	cag	cgg	agg	ctg	gac	agc	tgt	ggc	aag	103
	Met	Asp	Gly	Thr	Glu	Thr	Arg	Gln	Arg	Arg	Leu	Asp	Ser	Cys	Gly	Lys	
	1				5					10					15		
	cca	ggg	gag	ctg	ggg	ctt	cct	cac	ccc	ctc	agc	aca	gga	gga	ctc	cct	151
	Pro	Gly	Glu	Leu	Gly	Leu	Pro	His	Pro	Leu	Ser	Thr	Gly	Gly	Leu	Pro	
15				20					25					30			
	gta	gcc	tca	gaa	gat	gga	gct	ctc	agg	gcc	cct	gag	agc	caa	agc	gtg	199
	Val	Ala	Ser	Glu	Asp	Gly	Ala	Leu	Arg	Ala	Pro	Glu	Ser	Gln	Ser	Val	
			35					40					45				
			aag														247
20	Thr	Pro	Lys	Pro	Leu	Glu	Thr	Glu	Pro	Ser	Arg	Glu	Thr	Ala	Trp	Ser	
		50					55					60					
			ctt														295
	Ile	Gly	Leu	Gln	Val	Thr	Val	Pro	Phe	Met		Ala	Gly	Leu	Gly		
	65					70					75					80	
25			gcc														343
	Ser	Trp	Ala	Gly		Leu	Leu	Asp	Tyr		Gln	His	Trp	Pro		Phe	
					85					90					95	_+	201
			gtg														391
0.0	Val	Glu	Val		Asp	Leu	Leu	Thr		Val	Pro	Pro	ren		GIY	Leu	
30				100					105					110			420
			aac														439
	Lys	Gly	Asn	Leu	Glu	Met	Thr		Ala	Ser	Arg	Leu		Thr	ATA	ALA	
			115		. ,			120					125	۔ جانب		•	487
٥٣			gga														40/
35	Asn	Thr	Gly	Gln	Ile	Asp	Asp	Pro	Gln	GIU	GIN	HIS	Arg	val	тте	ser	

		130					135					140					
	agc	aac	ctg	gcc	ctc	atc	cag	gtg	cag	gcc	act	gtc	gtg	ggg	ctc	ttg	535
	Ser	Asn	Leu	Ala	Leu	Ile	Gln	Val	Gln	Ala	Thr	Val	Val	Gly	Leu	Leu	
	145					150					155					160	
5	gct	gct	gtg	gct	gcg	ctg	ctg	ttg	ggc	gtg	gtg	tct	cga	gag	gaa	gtg	583
	Ala	Ala	Val	Ala	Ala	Leu	Leu	Leu	Gly	Val	Val	Ser	Arg	Glu	Glu	Val	
					165					170					175		
	gat	gtc	gcc	aag	gtg	gag	ttg	ctg	tgt	gcc	agc	agt	gtc	ctc	act	gcc	631
	Asp	Val	Ala	Lys	Val	Glu	Leu	Leu	Cys	Ala	Ser	Ser	Val	Leu	Thr	Ala	
10				180					185					190			
	ttc	ctt	gca	gcc	ttt	gcc	ctg	ggg	gtg	ctg	atg	gtc	tgt	ata	gtg	att	679
	Phe	Leu	Ala	Ala	Phe	Ala	Leu	Gly	Val	Leu	Met	Val	Cys	Ile	Val	Ile	
			195					200					205				
	ggt	gct	cga	aag	ctc	ggg	gtc	aac	cca	gac	aac	att	gcc	acg	ccc	att	727
15	Gly	Ala	Arg	Lys	Leu	Gly	Val	Asn	Pro	Asp	Asn	Ile	Ala	Thr	Pro	Ile	
		210					215					220					
	gca	gcc	agc	ctg	gga	gac	ctc	atc	aca	ctg	tcc	att	ctg	gct	ttg	gtt	775
	Ala	Ala	Ser	Leu	Gly	Asp	Leu	Ile	Thr	Leu	Ser	Ile	Leu	Ala	Leu	Val	
	225					230					235					240	
20	agc	agc	ttc	ttc	tac	aga	cac	aaa	gat	agt	cgg	tat	ctg	acg	ccg	ctg	823
	Ser	Ser	Phe	Phe	Tyr	Arg	His	Lys	Asp	Ser	Arg	Tyr	Leu	Thr	Pro	Leu	
					245					250					255		
	gtc	tgc	ctc	agc	ttt	gcg	gct	ctg	acc	cca	gtg	tgg	gtc	ctc	att	gcc	871
	Val	Cys	Leu	Ser	Phe	Ala	Ala	Leu	Thr	Pro	Val	Trp	Val	Leu	Ile	Ala	
25				260					265					270			
	aag	cag	agc	cca	ccc	atc	gtg	aag	atc	ctg	aag	ttt	ggc	tgg	ttc	cca	919
	Lys	Gln	Ser	Pro	Pro	Ile	Val	Lys	Ile	Leu	Lys	Phe	Gly	Trp	Phe	Pro	
			275					280					285				
	atc	atc	ctg	gcc	atg	gtc	atc	agc	agt	ttc	gga	gga	ctc	atc	ttg	agc	967
30	Ile	Ile	Leu	Ala	Met	Val	Ile	Ser	Ser	Phe	Gly	Gly	Leu	Ile	Leu	Ser	
		290					295					300					
	aaa	acc	gtt	tct	aaa	cag	cag	tac	aaa	ggc	atg	gcg	ata	ttt	acc	ccc	1015
	Lys	Thr	Val	Ser	Lys	Gln	Gln	Tyr	Lys	Gly	Met	Ala	Ile	Phe	Thr	Pro	
	305					310					315					320	
35	gtc	ata	tqt	aat	att	aat	age	aat	ctq	gtg	gcc	att	cag	acc	agc	cga	1063

	Val	Ile	Cys	Gly	Val	Gly	Gly	Asn	Leu	Val	Ala	Ile	Gln	Thr	Ser	Arg	
					325					330					335		
	atc	tca	acc	tac	ctg	cac	atg	tgg	agt	gca	cct	ggc	gtc	ctg	ccc	ctc	111
	Ile	Ser	Thr	Tyr	Leu	His	Met	Trp	Ser	Ala	Pro	Gly	Val	Leu	Pro	Leu	
5				340					345					350			
	cag	atg	aag	aaa	ttc	tgg	ccc	aac	ccg	tgt	tct	act	ttc	tgc	acg	tca	1159
	Gln	Met	Lys	Lys	Phe	Trp	Pro	Asn	Pro	Cys	Ser	Thr	Phe	Cys	Thr	Ser	
			355					360					365				
	gaa	atc	aat	tcc	atg	tca	gct	cga	gtc	ctg	ctc	ttg	ctg	gtg	gtc	cca	1207
10	Glu	Ile	Asn	Ser	Met	Ser	Ala	Arg	Val	Leu	Leu	Leu	Leu	Val	Val	Pro	
		370					375			•		380					
	ggc	cat	ctg	att	ttc	ttc	tac	atc	atc	tac	ctg	gtg	gag	ggt	cag	tca	1255
	Gly	His	Leu	Ile	Phe	Phe	Tyr	Ile	Ile	Tyr	Leu	Val	Glu	Gly	Gln	Ser	
	385					390					395					400	
15					cag											_	1303
	Val	Ile	Asn	Ser	Gln	Thr	Phe	Val	Val	Leu	Tyr	Leu	Leu	Ala	Gly	Leu	
					405					410					415		
		_			atc	_	_		_	=	_		_	_		_	1351
20	Ile	Gln	Val		Ile	Leu	Leu	Tyr		Ala	Glu	Val	Met		Arg	Leu	
20				420					425					430			
				_	gcc	_	-		-			_					1399
	Thr	Trp		GIn	Ala	Leu	Asp		Asp	Asn	His	Cys		Pro	Tyr	Leu	
			435			_ •		440					445	<b>L</b> .	4.		
25					gac	_				-		_	_		-		1447
20	THE	450	reu	GIĀ	Asp	Leu		GIY	The	сту	reu		Ald	Leu	Cys	Pue	
	++0		~~~			_+_	455					460				<b>.</b>	1/05
					cta			_	-								1495
	465	1111	nsp	ттЪ	Ten	470	БУЗ	ser	rys	Ата	475	ren	GTÅ	GTÀ	TTE	Ser	
30		cta	CC2	+a+	<b>~</b> ~		666	+ = = 0	+ 000	.aa a	-	aata		+++	ratas	ttag	1550
					Gly			Caac	999	,000	.cgcc	.99	c ca	ceeg	,	ccag	1330
				Ser	485	110	110										
	aatt	teet	ct c	acat		.a. aa	atac	- m	++0	actt	tat	ccct	taca	aa a	taat	tggga	1610
																cacac	1610 1670
35																ggett	1730
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-5 5	ישטיי			3~3~	Jugo	uut	~3~9		-944	u	y u	باحداد	gyett	×120

	gagtgtgtga	atatgat	gtg tgca	catgct	taatgag	egt gea	agtgtgc	acacgtttg	t 1790
	ggagaggagg	gtgttct	ggc ctga	gaagct	aaagaag	agg cat	gtccagt	atgctttgc	a 1850
	gggtgtgttt	getettt	tee atge	ccatgc	aacccag	att ggg	gtggage	aggaaggag	c 1910
	tettttetgt	tcccaag	cct caga	actctt	gagctgt	ggc tta	cttgctg	tcttcacca	g 1970
5	gttcaagctc	cgtgggc	cac actg	ctgctg	tgccaag	aag gtg	tacagee	tecceagga	t 2030
	ggggcctcat	acaaccc	ttc atct	gcactc	aacattt	aat cgt	gtccttg	ctgtcttt	t 2090
	attttccttt	ttgttag	caa aaac	ctctat	ttagatt	tca ata	atcagag	aagtgtaaa	a 2150
	taaaacagat	tatattg	t						2168
10	<210> 116								
	<211> 1357								
	<212> DNA								
	<213> Homo	Sapienc	е						
	<220>								
15	<221> CDS								
	<222> (81)	(1262	)						
	<400> 116								- 60
00	cgtgcgtttg								
20	cctactgtga	cacacct							110
			Met 1	Arg Ini	r Leu Ph	.e Asii 11	su neu 1	10	
	gee etg ge	a taa sa		+ 020 3			aad toa		158
							aag coo	. 900 900	130
05	MIG Dec MI				<b>ኮኮ</b> ተ ጥኮተ	Leu Ser	Lvs Ser	- Asp Ala	
2.3		_		T HTS .		Leu Ser	Lys Ser	Asp Ala	
25	aaa aaa gc	1	5		20			25	203
29	aaa aaa gc	1 c gec te	5 a aag ac	g ctg (	20 etg gag	aag agt	cag ttt	25 tca gat	203
20	aaa aaa gc Lys Lys Al	1 c gcc tc a Ala Se	5 a aag ac	g ctg (	20 etg gag Leu Glu	aag agt	cag ttt	25 tca gat Ser Asp	203
20	Lys Lys Al	1 c gcc tc a Ala Se 30	5 a aag ac r Lys Th	g ctg ( r Leu I	20 etg gag Leu Glu 35	aag agt Lys Ser	cag ttt Gln Phe	25 tca gat Ser Asp	<b>~</b> .
	Lys Lys Al	1 c gcc tc a Ala Se 30 g caa ga	5 a aag ac r Lys Th c egg gg	g ctg o r Leu I t ttg o	20 etg gag Leu Glu 35 gtg gtg	aag agt Lys Ser acg gac	cag ttt Gln Phe 40 ctc aaa	25 tca gat Ser Asp	203 ~ 254
30	Lys Lys Al	c gcc tc a Ala Se 30 g caa ga l Gln As	5 a aag ac r Lys Th c egg gg	g ctg o r Leu I t ttg o	20 etg gag Leu Glu 35 gtg gtg	aag agt Lys Ser acg gac	cag ttt Gln Phe 40 ctc aaa	25 tca gat Ser Asp	<b>~</b> .
	Lys Lys Al  aag ccg gt  Lys Pro Va	1 c gcc tc a Ala Se 30 g caa ga l Gln As	5 a aag ac r Lys Th c egg gg p Arg Gl	g ctg of Leu I t ttg of Leu V	20 ctg gag Leu Glu 35 gtg gtg	aag agt Lys Ser acg gac Thr Asp	cag ttt Gln Phe 40 ctc aaa Leu Lys	25 tca gat Ser Asp get gag Ala Glu	<b>~</b> .
	Lys Lys Al  aag ccg gt Lys Pro Va  4  agt gtg gt	c gcc tc a Ala Se 30 g caa ga l Gln As 5	5 a aag ac r Lys Th c egg gg p Arg Gl	g ctg of Leu I t ttg of y Leu I 50 c agc f	20 ctg gag Leu Glu 35 gtg gtg Val Val	aag agt Lys Ser acg gac Thr Asp tcg gca	cag ttt Gln Phe 40 ctc aaa Leu Lys 55 aag gcc	25 tca gat Ser Asp get gag Ala Glu cgg gac	254
	Lys Lys Al  aag ccg gt  Lys Pro Va	c gcc tc a Ala Se 30 g caa ga l Gln As 5	a aag ac r Lys Th c cgg gg p Arg Gl g cat cg u His Ar	g ctg of Leu I t ttg of y Leu I 50 c agc f	20 ctg gag Leu Glu 35 gtg gtg Val Val	aag agt Lys Ser acg gac Thr Asp tcg gca	cag ttt Gln Phe 40 ctc aaa Leu Lys 55 aag gcc	25 tca gat Ser Asp get gag Ala Glu cgg gac	254
	Lys Lys Al  aag ccg gt Lys Pro Va  4  agt gtg gt Ser Val Va	c gcc tc a Ala Se 30 g caa ga l Gln As 5 t ctt ga l Leu Gl	a aag ac r Lys Th c egg gg p Arg Gl g eat eg u His Ar	g ctg of Leu I t ttg of Social Series	20 ctg gag Leu Glu 35 gtg gtg Val Val tac tgc	aag agt Lys Ser acg gac Thr Asp teg gca Ser Ala	cag titt Gln Phe 40 ctc aaa Leu Lys 55 aag gcc Lys Ala	25 E tca gat E Ser Asp E gct gag E Ala Glu E cgg gac E Arg Asp	254

	Arg	His	Phe	Ala	Gly	Asp	Val	Leu	Gly	Tyr	Val	Thr	Pro	Trp	Asn	Ser		
	75					80					85					90		
	cat	ggc	tac	gat	gtc	acc	aag	gtc	ttt	ggg	agc	aag	ttc	aca	cag	atc		398
	His	Gly	Tyr	Asp	Val	Thr	Lys	Val	Phe	Gly	Ser	Lys	Phe	Thr	Gln	Ile		
5					95					100					105			
	tca	ccc	gtc	tgg	ctg	cag	ctg	aag	aga	cgt	ggc	cgt	gag	atg	ttt	gag		446
	Ser	Pro	Val	Trp	Leu	Gln	Leu	Lys	Arg	Arg	Gly	Arg	Glu	Met	Phe	Glu		
				110					115					120				
	gtc	acg	ggc	ctc	cac	gac	gtg	gac	caa	ggg	tgg	atg	cga	gct	gtc	agg		494
10	Val	Thr	Gly	Leu	His	Asp	Val	Asp	Gln	Gly	Trp	Met	Arg	Ala	Val	Arg		
			125					130					135					
					ggc													542
	Lys		Ala	Lys	Gly	Leu		Ile	Val	Pro	Arg		Leu	Phe	Glu	Asp		
		140					145					150						
15					gat -													590
		Thr	Tyr	Asp	Asp		Arg	Asn	Val	Leu	165	ser	GIU	Asp	GIU	170		
	155	~~~				160	~+~	~+ ^	224	ata		220	227	cac	cet			638
					aag Lys													030
20	GIU	Giu	nea	per	175		Val	vai	GIII	180	, AIG	2,0	11011	· · · ·	185	1110		
20	gat	aac	ttc	ata	gtg	gag	atc	taa	aac		cta	cta	agc	caq		cqc		686
					Val													
	-	•		190				•	195					200	_			
	gtg	ggc	ata	atc	cac	atg	ctc	acc	cac	ttg	gcc	gag	gct	ctg	cac	cag		734
25	Val	Gly	Leu	Ile	His	Met	Leu	Thr	His	Leu	Ala	Glu	Ala	Leu	His	Gln		
			205					210					215					
	gcc	cgg	ctg	ctg	gcc	ctc	ctg	gtc	atc	ccg	cct	gcc	atc	acc	ccc	ggg		782
	Ala	Arg	Leu	Leu	Ala	Leu	Leu	Val	Ile	Pro	Pro	Ala	Ile	Thr	Pro	Gly	~.	
		220					225			•		230						
30	acc	gac	cag	ctg	ggc	atg	ttc	acg	cac	aag	gag	ttt	gag	cag	ctg	gcc		830
	Thr	Asp	Gln	Leu	Gly	Met	Phe	Thr	His	Lys	Glu	Phe	Glu	Gln	Leu	Ala		
	235					240					245					250		
	ccc	gtg	ctg	gat	ggt	ttc	agc	ctc	atg	acc	tac	gac	tac	tct	aca	gcg		878
	Pro	Val	Leu	Asp	Gly	Phe	Ser	Leu	Met	Thr	Tyr	Asp	Tyr	Ser	Thr	Ala		
35					255					260					265			

WO 00/05367

#### PCT/JP99/03929

#### 132/177

	cat	cag	cct	ggc	cct	aat	gca	CCC	ctg	tcc	tgg	gtt	cga	gcc	tgc	gtc	926
	His	Gln	Pro	Gly	Pro	Asn	Ala	Pro	Leu	Ser	Trp	Val	Arg	Ala	Cys	Val	
				270					275					280			
	cag	gtc	ctg	gac	ccg	aag	tcc	aag	tgg	cga	agc	aaa	atc	ctc	ctg	ggg	974
5	Gln	Val	Leu	Asp	Pro	Lys	Ser	Lys	Trp	Arg	Ser	Lys	Ile	Leu	Leu	Gly	
			285					290					295				
	ctc	aac	ttc	tat	ggt	atg	gac	tac	gcg	acc	tcc	aag	gat	gcc	cgt	gag	1022
	Leu	Asn	Phe	Tyr	Gly	Met	Asp	Tyr	Ala	Thr	Ser	Lys	Asp	Ala	Arg	Glu	
		300					305					310					
10	cct	gtt	gtc	aaa	gcc	agg	tac	atc	cag	aca	ctg	aag	gac	cac	agg	ccc	1070
	Pro	Val	Val	Gly	Ala	Arg	Tyr	Ile	Gln	Thr	Leu	Lys	Asp	His	Arg	Pro	
	315					320					325					330	
															tac		1118
	Arg	Met	Val	Trp	Asp	Ser	Gln	Ala	Ser	Glu	His	Phe	Phe	Glu	Tyr	Lys	
15					335					340					345		
															aag		1166
	Lys	Ser	Arg	Ser	Gly	Arg	His	Val	Val	Phe	Tyr	Pro	Thr		Lys	Ser	
				350					355					360			
															gtc		1214
20	Leu	Gln	Val	Arg	Leu	Glu	Leu		Arg	Glu	Leu	Gly		Gly	Val	Ser	
			365					370					375				
															ctc	t	1260
	Ile		Glu	Leu	Gly	Gln		Leu	Asp	Tyr	Phe		Asp	Leu	Leu		
		380					385					390			_		
25												taa	gcca [.]	tgg a	agtga	agtgag	1320
	cag	gtgt	gaa i	atac	aggc	ct c	cacto	cegt	t tg	ctgt	3						1357
		0> 1															
2.0		1> 7															
30		2> D															
			omo	Sapi	ence												
	<22																
		1> C															
	<22	2> (	8)	. (59	8)												

35

	<400	> 11	.7														
	aaag	gcg	atg	tgg	agg	gtg	ccc	ggc	aca	acc	aga	cgc	cca	gtc	aca	ggc	49
			Met	Trp	Arg	Val	Pro	Gly	Thr	Thr	Arg	Arg	Pro	Val	Thr	Gly	
			1				5					10					
5	gag	agc.	cct	ggg	atg	cac	cgg	cca	gag	gcc	atg	ctg	ctg	ctg	ctc	acg	97
	Glu	Ser	Pro	Gly	Met	His	Arg	Pro	Glu	Ala	Met	Leu	Leu	Leu	Leu	Thr	
	15					20					25					30	
	ctt	gcc	ctc	ctg	ggg	ggc	ccc	acc	tgg	gca	ggg	aag	atg	tat	ggc	cct	145
	Leu	Ala	Leu	Leu	Gly	Gly	Pro	Thr	Trp	Ala	Gly	Lys	Met	Tyr	Gly	Pro	
10					35					40					45		
	gga	gga	ggc	aag	tat	ttc	agc	acc	act	gaa	gac	tac	gac	cat	gaa	atc	193
	Gly	Gly	Gly	Lys	Tyr	Phe	Ser	Thr	Thr	Glu	Asp	Tyr	Asp	His	Glu	Ile	
				50					55					60			
	aca	ggg	ctg	cgg	gtg	tct	gta	ggt	ctt	ctc	ctg	gtg	aaa	agt	gtc	cag	241
15	Thr	Gly	Leu	Arg	Val	Ser	Val	Gly	Leu	Leu	Leu	Val	Lys	Ser	Val	Gln	
			65					70					75				
	gtg	aaa	ctt	gga	gac	tcc	tgg	gac	gtg	aaa	ctg	gga	gcc	tta	ggt	<b>9</b> 99	289
	Val	Lys	Leu	Gly	Asp	Ser	Trp	Asp	Val	Lys	Leu	Gly	Ala	Leu	Gly	Gly	
		80					85					90					
20	aat	acc	cag	gaa	gtc	acc	ctg	cag	cca	ggc	gaa	tac	atc	aca	aaa	gtc	337
	Asn	Thr	Gln	Glu	Val	Thr	Leu	Gln	Pro	Gly	Glu	Tyr	Ile	Thr	Lys	Val	
	95					100					105					110	
	ttt	gtc	gcc	ttc	caa	gct	ttc	ctc	cgg	ggt	atg	gtc	atg	tac	acc	agc	385
	Phe	Val	Ala	Phe	Gln	Ala	Phe	Leu	Arg	Gly	Met	Val	Met	Tyr	Thr	Ser	
25					115					120					125		
	aag	gac	cgc	tat	ttc	tat	ttt	ggg	aag	ctt	gat	ggc	cag	atc	tcc	tct	433
	Lys	Asp	Arg	Tyr	Phe	Tyr	Phe	Gly	Lys	Leu	Asp	Gly	Gln	Ile	Ser	Ser	
				130					135					140		- <del></del>	
	gcc	tac	ccc	agc	caa	gag	ggg	cag	gtg	ctg	gtg	ggc	atc	tat	ggc	cag	481
30	Ala	Tyr	Pro	Ser	Gln	Glu	Gly	Gln	Val	Leu	Val	Gly	Ile	Tyr	Gly	Gln	
			145					150					155				
	tat	caa	cto	ctt	ggc	atc	aag	agc	att	ggc	ttt	. gaa	tgg	aat	tat	cca	529
								Ser									
	-	160					165					170					
35	cta	gac	qaq	1 000	acc	act	gaq	cca	cca	gtt	aat	cto	aca	tac	tca	gca	573

Leu Glu Glu Pro Thr Thr Glu Pro Pro Val Asn Leu Thr Tyr Ser Ala	
175 180 185 ,190	
aac toa ooc gtg ggt ogc tagggtgggg tatggggcca toogagetga ggoca	630
Asn Ser Pro Val Gly Arg	
195	
tetgtgtggt ggtggetgat ggtactggag taactgagte gggaegetga atetgaatee	690
accaataaat aaagcttetg c	711
(222> (242)(565)	
<400 119	
	60
· · · · · · · · · · · · · · · · · · ·	120
	180
	240
	286
1 5 10 15	
tca aca gac aca ggt gtt tee ett eet tea tat gag gaa gat eag gga	334
20 25 30	
tea aaa ete att ega aaa get aaa gag gea eea tte gta eee gtt gga	382
	•
35 40 45	
ata gcg ggt ttt gca gca att gtt gca tat gga tta tat aaa ctg aag	430
50 55 60	
age agg gga aat act aaa atg tee att cat etg ate eac atg egt gtg	478
Ser Arg Gly Asn Thr Lys Met Ser Ile His Leu Ile His Met Arg Val	
	ace tea ecc gtg ggt ege tagggtggg tatggggcca tecgagetga ggcca Asn Ser Pro Val Gly Arg  195  tetgtgtggt ggtggctgat ggtactggag taactgagte gggacgctga atctgaatce accaataaat aaagettetg c  <210> 118  <211> 651  <212> DNA  <213> Homo Sapience  <220> <221> CDS  <222> (242)(565)  <400> 118  aaagaaacaa gccgggggac tgcgagecag ggacteggge cgcggggggg gaagaagtgg ggcagcgtt ggccaggccg aaaggacttt gggggtgggg gctgggagte cgtgtetega atgagggagg agaggtggag ttgccgggge teaggggtggg gctgggagte cgtgtetega atgagggagg agaggtggag ttgccgggge teagggtggg gctgggagte cgtgtetega atgagggagtegg gaccgagge ctagggteet tegggtgagg ggagacggag gaagaagtgg gatgggagtegg gaccgagge ctagggteet tegggtgagg ggagacggag ccagcgagga g atg gag cag aag ctt gtg gag gag att ctt caa gca atc act atg  Met Glu Gln Lys Leu Val Glu Glu Ile Leu Gln Ala Ile Thr Met  1

	65		70		75		
	gea gee ea	aa ggc ttt	gtt gta	gga gca	atg act gtt	ggt atg ggc tat	526
	Ala Ala Gl	ln Gly Phe	Val Val	Gly Ala	Met Thr Val	Gly Met Gly Tyr	
	80		85		90	95	
5	tcc atg ta	at egg gaa	ttc tgg	gca aaa	cct aag cct	tagaagaa	570
	Ser Met Ty	yr Arg Glu	Phe Trp	Ala Lys	Pro Lys Pro		
		100			105		
	gagatgctgt	t cttggtct	tg ttggag	gage tte	ctttagt tag	atgtett attattaaag	630
	ttacctatta	a ttgttgga	aa t				651
10							
	<210> 119				•		
	<211> 1310	0					
	<212> DNA						
	<213> Homo	o Sapience		•			
15	<220>						
	<221> CDS						
	<222> (78)	)(1130)					
	<400> 119						
20	cgaacgccaa					etgeeet gggettgteg	60
20	cgaacgccaa	c tccagac	atg tct g	gag gtg a	ag age egg	aag aag tog ggg	60 110
20	cgaacgccaa	c tccagac	atg tct g Met Ser G	gag gtg a	ag agc cgg Lys Ser Arg	aag aag tog ggg Lys Lys Ser Gly	
20	cgaacgccaa tcctagggta	c tccagac	atg tct g Met Ser G	gag gtg a	aag agc cgg Lys Ser Arg	aag aag tog ggg Lys Lys Ser Gly 10	110
	cgaacgccaa tcctagggta ccc aag ga	c tecagae ga gee eet	atg tct g Met Ser G 1 gct gcg	gag gtg a Glu Val I gag ccc	aag agc cgg Lys Ser Arg 5 ggg aag cgg	aag aag tcg ggg Lys Lys Ser Gly 10 agc gag ggc ggg	
20	cgaacgccaa tcctagggta ccc aag ga	c tecagae ga gee eet ly Ala Pro	atg tct g Met Ser G 1 gct gcg	gag gtg a Slu Val I gag ccc Glu Pro	aag agc cgg Lys Ser Arg 5 ggg aag cgg	aag aag tog ggg Lys Lys Ser Gly 10 agc gag ggc ggg Ser Glu Gly Gly	110
	cgaacgccaa tcctagggto ccc aag go Pro Lys G	c tecagae ga gee eet ly Ala Pro	atg tot g Met Ser G 1 get geg Ala Ala	gag gtg a Slu Val I gag ccc Glu Pro 20	aag agc cgg Lys Ser Arg 5 ggg aag cgg Gly Lys Arg	aag aag tcg ggg Lys Lys Ser Gly 10 agc gag ggc ggg Ser Glu Gly Gly 25	110
	cgaacgccaa tcctagggta ccc aag ga Pro Lys G	ga gcc cct ly Ala Pro 15 cc gtg gcc	atg tct of Met Ser G  1 gct gcg Ala Ala	gag gtg a Slu Val I gag ccc Glu Pro 20 agc gga	aag age egg Lys Ser Arg 5 ggg aag egg Gly Lys Arg	aag aag tcg ggg Lys Lys Ser Gly 10 agc gag ggc ggg Ser Glu Gly Gly 25 tgg gca gac ccc	110 158 206
	ccc aag ge Pro Lys G	ga gcc cct ly Ala Pro  15 cc gtg gcc	atg tct of Met Ser G  1 gct gcg Ala Ala	gag gtg a Glu Val I gag ccc Glu Pro 20 agc gga Ser Gly	aag age egg Lys Ser Arg 5 ggg aag egg Gly Lys Arg	aag aag tcg ggg Lys Lys Ser Gly 10 agc gag ggc ggg Ser Glu Gly Gly 25 tgg gca gac ccc	110 158 206
25	cgaacgccaa tcctagggto ccc aag go Pro Lys G aag acc co	ga gee eet ly Ala Pro 15 ee gtg gee ro Val Ala	atg tct g Met Ser G  1 : gct gcg Ala Ala : cgg agc	gag gtg a Slu Val I gag ccc Glu Pro 20 agc gga Ser Gly 35	ag agc cgg  Sys Ser Arg  Gly Lys Arg  ggc ggg ggc  Gly Gly Gly	aag aag tcg ggg Lys Lys Ser Gly 10 agc gag ggc ggg Ser Glu Gly Gly 25 tgg gca gac ccc Trp Ala Asp Pro	110 158 206
	ccc aag ge Pro Lys G  aag acc cc Lys Thr P	ga gcc cct ly Ala Pro  15 cc gtg gcc ro Val Ala 30 gc ctg agc	Met Ser G  1  get geg Ala Ala  cgg age Arg Ser  ctg ctg	gag gtg a Glu Val I  gag ccc Glu Pro 20 agc gga Ser Gly 35 tcg ctg	ag age egg Lys Ser Arg 5 ggg aag egg Gly Lys Arg gge ggg gge Gly Gly Gly	aag aag tcg ggg Lys Lys Ser Gly 10 agc gag ggc ggg Ser Glu Gly Gly 25 tgg gca gac ccc Trp Ala Asp Pro 40 ctg ggc ctg gcc	110 158 206
25	cgaacgccaa tcctagggta ccc aag ga Pro Lys G aag acc ca Lys Thr P	ga gcc cct ly Ala Pro  15 cc gtg gcc ro Val Ala 30 gc ctg agc	Met Ser G  1  1 gct gcg Ala Ala  2 cgg agc Arg Ser  2 ctg ctg	gag gtg a Glu Val I  gag ccc Glu Pro 20 agc gga Ser Gly 35 tcg ctg	ag agc cgg Lys Ser Arg  5 ggg aag cgg Gly Lys Arg  Gly Gly Gly  ggg acg tgc Gly Thr Cys	aag aag tcg ggg Lys Lys Ser Gly 10 agc gag ggc ggg Ser Glu Gly Gly 25 tgg gca gac ccc Trp Ala Asp Pro 40 ctg ggc ctg gcc	110 158 206
25	cgaacgccaa tcctagggta ccc aag ga Pro Lys G aag acc ca Lys Thr P cga acg t Arg Thr C	ga gcc cct ly Ala Pro  15 cc gtg gcc ro Val Ala 30 gc ctg agc	Met Ser G  1  Get geg Ala Ala  Get geg Arg Ser  Get geg Arg Ser  Get geg Arg Ser  Get geg Arg Ser	gag gtg a Slu Val I  gag ccc Glu Pro 20 agc gga Ser Gly 35 tcg ctg Ser Leu	ag agc cgg Lys Ser Arg 5 ggg aag cgg Gly Lys Arg ggc ggg ggc Gly Gly Gly ggg acg tgc Gly Thr Cys	aag aag tcg ggg Lys Lys Ser Gly 10 agc gag ggc ggg Ser Glu Gly Gly 25 tgg gca gac ccc Trp Ala Asp Pro 40 ctg ggc ctg gcc Leu Gly Leu Ala	110 158 206
25	cgaacgccaa tcctagggta ccc aag ga Pro Lys G aag acc ca Lys Thr P cga acg t Arg Thr C	ga gee eet ly Ala Pro  15 ce gtg gee ro Val Ala 30 ge etg age ys Leu Ser	Met Ser G  1  1 gct gcg Ala Ala  2 cgg agc Arg Ser  3 ctg ctg 5 Leu Leu 50 g cag tca	gag gtg a Slu Val I  gag ccc Glu Pro 20 agc gga Ser Gly 35 tcg ctg Ser Leu gaa aaa	ag agc cgg Lys Ser Arg 5 ggg aag cgg Gly Lys Arg Gly Gly Gly ggg acg tgc Gly Thr Cys 55 ttt gca aag	aag aag tcg ggg Lys Lys Ser Gly 10 agc gag ggc ggg Ser Glu Gly Gly 25 tgg gca gac ccc Trp Ala Asp Pro 40 ctg ggc ctg gcc Leu Gly Leu Ala	110 158 206
25	cgaacgccaa tcctagggta ccc aag ga Pro Lys G aag acc ca Lys Thr P cga acg t Arg Thr C	ga gee eet ly Ala Pro  15 ce gtg gee ro Val Ala 30 ge etg age ys Leu Ser	Met Ser G  1  1 gct gcg Ala Ala  2 cgg agc Arg Ser  3 ctg ctg 5 Leu Leu 50 g cag tca	gag gtg a Slu Val I  gag ccc Glu Pro 20 agc gga Ser Gly 35 tcg ctg Ser Leu gaa aaa	ag agc cgg Lys Ser Arg 5 ggg aag cgg Gly Lys Arg Gly Gly Gly ggg acg tgc Gly Thr Cys 55 ttt gca aag	aag aag tcg ggg Lys Lys Ser Gly 10 agc gag ggc ggg Ser Glu Gly Gly 25 tgg gca gac ccc Trp Ala Asp Pro 40 ctg ggc ctg gcc Leu Gly Leu Ala	110 158 206

	tac	cag	tta	ctg	aaa	cta	gaa	acc	aat	gaa	ttc	caa	caa	ctt	caa	agt	350
	Tyr	Gln	Leu	Leu	Lys	Leu	Glu	Thr	Asn	Glu	Phe	Gln	Gln	Leu	Gln	Ser	
					80					85					90		
	aaa	atc	agt	tta	att	tca	gaa	aag	tgg	cag	aaa	tct	gaa	gct	atc	atg	398
5	Lys	Ile	Ser	Leu	Ile	Ser	Glu	Lys	Trp	Gln	Lys	Ser	Glu	Ala	Ile	Met	
				95					100					105			
	gaa	caa	ttg	aag	tct	ttt	caa	ata	att	gct	cat	cta	aag	cgt	cta	cag	446
	Glu	Gln	Leu	Lys	Ser	Phe	Gln	Ile	Ile	Ala	His	Leu	Lys	Arg	Leu	Gln	
			110					115		•			120				
10	gaa	gaa	att	aat	gag	gta	aaa	act	tgg	tcc	aat	agg	ata	act	gaa	aaa	494
	Glu	Glu	Ile	Asn	Glu	Val	Lys	Thr	Trp	Ser	Asn	Arg	Ile	Thr	Glu	Lys	
		125					130					135					
	cag	gat	ata	ctg	aac	aac	agt	ctg	acg	acg	ctt	tct	caa	gac	att	aca	542
	Gln	Asp	Ile	Leu	Asn	Asn	Ser	Leu	Thr	Thr	Leu	Ser	Gln	Asp	Ile	Thr	
15	140					145					150					155	
	aaa	gta	gac	caa	agt	aca	act	tcc	atg	gca	aaa	gat	gtt	ggt	ctc	aag	590
	Lys	Val	Asp	Gln	Ser	Thr	Thr	Ser	Met	Ala	Lys	Asp	Val	Gly	Leu	Lys	
					160					165					170		
	att	aca	agt	gta	aaa	aca	gat	ata	cga	cgg	att	tca	ggt	tta	gta	act	638
20	Ile	Thr	Ser	Val	Lys	Thr	Asp	Ile	Arg	Arg	Ile	Ser	Gly	Leu	Val	Thr	
				175					180		•			185			
	gat	gta	ata	tca	ttg	aca	gat	tct	gtg	caạ	gaa	cta	gaa	aat	aaa	ata	686
	Asp	Val	Ile	Ser	Leu	Thr	Asp	Ser	Val	Gln	Glu	Leu	Glu	Asn	Lys	Ile	
			190					195					200				
25	gag	aaa	gta	gaa	aaa	aat	aca	gta	aaa	aat	ata	ggt	gat	ctt	ctt	tca	734
	Glu	<u>r</u> ys	<u>val</u>	GJ7	Lys	Asn	Thr	Val	Lys	Asn	Ile	Gly	Asp	Leu	Leu	Ser	
		205					210					215				·	
	agc	agt	att	gat	cga	aca	gca	acg	ctc	cga	aag	aca	gca	tct	gaa	aat	782
	Ser	Ser	Ile	Asp	Arg	Thr	Ala	Thr	Leu	Arg	Lys	Thr	Ala	Ser	Glu	Asn	•
30	220					225					230					235	
	tca	caa	aga	att	aac	tct	gtt	aag	aag	acg	cta	acc	gaa	cta	aag	agt	830
	Ser	Gln	Arg	Ile	Asn	Ser	Val	Lys	Lys	Thr	Leu	Thr	Glu	Leu	Lys	Ser	,
					240					245					250		
							gat								-	-	878
35	Asp	Phe	Asp	Lys	His	Thr	Asp	Arg	Phe	Leu	Ser	Leu	Glu	Gly	Asp	Arg	

#### PCT/JP99/03929

	255 260 265	
	gcc aaa gtt ctg aag aca gtg act ttt gca aat gat cta aaa cca aag	926
	Ala Lys Val Leu Lys Thr Val Thr Phe Ala Asn Asp Leu Lys Pro Lys	
	270 275 280	
5	gtg tat aat cta aag aag gac ttt tee egt tta gaa eea tta gta aat	974
	Val Tyr Asn Leu Lys Lys Asp Phe Ser Arg Leu Glu Pro Leu Val Asn	
	285 290 295	
	gat tta aca cta ege att ggg aga ttg gtt ace gae tta eta eaa aga	1022
	Asp Leu Thr Leu Arg Ile Gly Arg Leu Val Thr Asp Leu Leu Gln Arg	
10	300 305 310 315	
	gag aaa gaa att gct ttc tta agt gaa aaa ata tct aat tta aca ata	1070
	Glu Lys Glu Ile Ala Phe Leu Ser Glu Lys Ile Ser Asn Leu Thr Ile	
	320 325 330	
	gte caa get gag att aag gat att aaa gat gaa ata gea eac att tea	1118
15	Val Gln Ala Glu Ile Lys Asp Ile Lys Asp Glu Ile Ala His Ile Ser	
	335 340 345	
	gat atg aat tagtttgaca ttattgagat tagactaagg taatttttt aat	1170
	Asp Met Asn	
20	350	1220
20	gggacctctc atgagaagac tggtaaatca aaaataatga tattttggag caaaagtcat	1230 1290
	tttatattta atcctatttt gtacagtaaa aataaaactt taaaacaggt tgattttcca	1310
	aaataaatat gctaaaacct	1310
	(210) 120	
05	<210> 120	
25	<211> 1400	
	<212> DNA	
	<213> Homo Sapience	
	<220> <221> CDS	
30		
30	<222> (233)(556)	
	<400> 120	
	tggctgtatg ctattggagg gtggaaatca catctcctgt ttatccgtgt gcttgttagg	60
	tgtcagccgc caccccccc ccatatgcag atttactcgg catggtagtg gccagcttct	120
35	aacacagctg gtatttcaag totootggga cotcactcag gaatgatacc coctcagtag	180
30	adcacagety grattically references	

# PCT/JP99/03929

	aagcagcagg tgatcttaac tcctttcaaa gagcaggcct gtctgggaag cc atg	235
	Met	
	1	
	tcc tca gca ggc aca gca acc cct ctg gaa atg gat cac aaa ctc act	283
5	Ser Ser Ala Gly Thr Ala Thr Pro Leu Glu Met Asp His Lys Leu Thr	
	5 10 15	
	tot cag coa ggo agg coa ago tto tat tgt aac agt agg cac agt ata	331
	Ser Gln Pro Gly Arg Pro Ser Phe Tyr Cys Asn Ser Arg His Ser Ile	
	20 25 30	
10	gto gga toa toa cat cag etg ggt ttt tgg ttt agt cat cta gag tog	379
	Val Gly Ser Ser His Gln Leu Gly Phe Trp Phe Ser His Leu Glu Ser	
	35 40 45	
	tet gga eta aag gte ttt eag gte tee ttg eee tgt gag tge gtg aac	427
	Ser Gly Leu Lys Val Phe Gln Val Ser Leu Pro Cys Glu Cys Val Asn	
15	50 55 60 65	
	ctc ccc acc cga att gcc tca gtt gtc ctg agc ctc atg tct ctc ctg	475
	Leu Pro Thr Arg Ile Ala Ser Val Val Leu Ser Leu Met Ser Leu Leu	
	70 75 80	
	gtg gtg ggc cag gcc cct gca tgg gaa ggg agc ctg ctg cgg ggc agg	523
20	Val Val Gly Gln Ala Pro Ala Trp Glu Gly Ser Leu Leu Arg Gly Arg	
	85 90 95	
	cca get ggg ggt get cae eta tge gea gea tgaagttatt gaaggae	570
	Pro Ala Gly Gly Ala His Leu Cys Ala Ala	
	100 105	
25	tggttgttga tgttggtgag cgtatectte atggecageg egaagtegge caggteagee	630
	aggtgetgee agegetetet eteggaettg tetteetgtg eeaggggaee gtggagaaag	690
	tgtcaggggc cgctcactgc agcagcctgc tctgctgcct tccctggcag tgttctgggg	750
	gtggattccc tacacctaga tgttcaaggc cttacttttc ctcccacaaa ggagtcgcag	810
	ccaegetage tetgaettge caetgtgaca aagtteaegt ageaggteta ggeaaagaet	870
30	gggcaattga gcagaggaga cggacctgtg agtctgacca cgaggcggac cccttcacct	930
	tggctgggcc tggtcctggt ccttaggttt tgtcaggttg tccttgtttg gatccctcaa	990
	ctaggtgata agcactggag ggggatgacc cgccttggac gtgtttcttt aacctcatcc	1050
	atataatagg geegtgggat ggttgtagag gtaaageagg atgatggtgt tttaagaeea	1110
	gagettggga ecagggetee tacacetaat ttteteteet ggtagetgaa caaaggteta	1170
35	aattagetta acaaaagaac aggetgeegt cagecagagt tetgaaggee atgettteag	1230

	tttc	cctt	gt t	gaca	att	ge to	eteca	agtto	cta	itgaa	agc	acag	gagco	ett a	<b>ag</b> ggg	geetg	1290
	gcca	caga	ac a	caac	cato	t ta	agged	tgag	gct	gtgaa	acag	cag	ggggt	tg 1	tgtgt	ctgtt	1350
	ctgt	ttct	ct ç	gette	geega	aa ct	ttct	caat	aaa	accct	att	tctt	attt	at			1400
5	<210	> 12	21														
	<211	> 48	33														
	<212	?> PF	TS														
	<213	3> Ho	omo s	sapie	ence												
10	<400	)> 12	21														
	Met	Lys	Ala	Phe	His	Thr	Phe	Cys	Val	Val	Leu	Leu	Val	Phe	Gly	Ser	
	1				5					10					15		
	Val	Ser	Glu	Ala	Lys	Phe	Asp	Asp	Phe	Glu	Asp	Glu	Glu	Asp	Ile	Val	
				20					25					30			
15	Glu	Tyr	Asp	Asp	Asn	Asp	Phe	Ala	Glu	Phe	Glu	Asp	Val	Met	Glu	Asp	
			35					40					45				
	Ser	Val	Thr	Glu	Ser	Pro	Gln	Arg	Val	Ile	Ile	Thr	Glu	Asp	Asp	Glu	
		50					55					60					
	Asp	Glu	Thr	Thr	Val	Glu	Leu	Glu	Gly	Gln	Asp	Glu	Asn	Gln	Glu	Gly	
20	65					70					75					80	
	Asp	Phe	Glu	Asp	Ala	Asp	Thr	Gln	Glu	Gly	Asp	Thr	Glu	Ser	Glu	Pro	
					85					90					95		
	Tyr	Asp	Asp	Glu	Glu	Phe	Glu	Gly	Tyr	Glu	Asp	Lys	Pro		Thr	Ser	
				100					105					110			
25	Ser	Ser	Lys	Asn	Lys	Asp	Pro	Ile	Thr	Ile	Val	Asp		Pro	Ala	His	
			115					120					125				
	Leu	Gln	Asn	Ser	Trp	Glu	Ser	Tyr	Tyr	Leu	Glu	Ile	Leu	Met	Val	Thr	
		130					135					140					
	Gly	Leu	Leu	Ala	Tyr	Ile	Met	Asn	Tyr	Ile		Gly	Lys	Asn	Lys		
30	145					150					155					160	
	Ser	Arg	Leu			Ala	Trp	Phe	Asn		His	Arg	Glu	Leu	Leu	Glu	
					165					170					175		
	Ser	Asn	Phe		Leu	Val	Gly	Asp		Gly	Thr	Asn	Lys		Ala	Thr	
				180					185			_		190			
35	Ser	Thr	Gly	Lys	Leu	Asn	Gln	Glu	Asn	Glu	His	Ile	Tyr	Asn	Leu	Trp	

#### PCT/JP99/03929

			195					200					205			
	Cys	Ser	Gly	Arg	Val	Cys	Cys	Glu	Gly	Met	Leu	Ile	Gln	Leu	Arg	Phe
		210					215					220				
	Leu	Lys	Arg	Gln	Asp	Leu	Leu	Asn	Val	Leu	Ala	Arg	Met	Met	Arg	Pro
5	225					230					235					240
	Val	Ser	Asp	Gln	Val	Gln	Ile	Lys	Val	Thr	Met	Asn	Asp	Glu	Asp	Met
		•			245					250					255	
	Asp	Thr	Tyr	Val	Phe	Ala	Val	Gly	Thr	Arg	Lys	Ala	Leu	Val	Arg	Leu
				260					265					270		
10	Gln	Lys	Glu	Met	Gln	Asp	Leu	Ser	Glu	Phe	Cys	Ser	Asp	Lys	Pro	Lys
			275					280					285			
	Ser	Gly	Ala	Lys	Tyr	Gly	Leu	Pro	Asp	Ser	Leu	Ala	Ile	Leu	Ser	Glu
	,	290					295					300				
	Met	Gly	Glu	Val	Thr	Asp	Gly	Met	Met	Asp	Thr	Lys	Met	Val	His	Phe
15	305					310					315					320
	Leu	Thr	His	Tyr	Ala	Asp	Lys	Ile	Glu	Ser	Val	His	Phe	Ser	Asp	Gln
					325					330					335	
	Phe	Ser	Gly	Pro	Lys	Ile	Met	Gln	Glu	Glu	Gly	Gln	Pro	Leu	Lys	Leu
				340					345					350		
20	Pro	Asp	Thr	Lys	Arg	Thr	Leu	Leu	Phe	Thr	Phe	Asn	Val	Pro	Gly	Ser
			355					360					365			
	Gly	Asn	Thr	Tyr	Pro	Lys	Asp	Met	Glu	Ala	Leu	Leu	Pro	Leu	Met	Asn
		370					375					380				
	Met	Val	Ile	Tyr	Ser	Ile	Asp	Lys	Ala	Lys	Lys	Phe	Arg	Leu	Asn	Arg
25	385					390					395					400
	Glu	Gly	Lys	Gln	Lys	Ala	Asp	Lys	Àsn	Arg	Ala	Arg	Val	Glu	Glu	Asn
					405					410					415	
	Phe	Leu	Lys	Leu	Thr	His	Val	Gln	Arg	Gln	Glu	Ala	Ala		Ser	Arg
				420					425					430		
30	Arg	Glu	Glu	Lys	Lys	Arg	Ala	Glu	Lys	Glu	Arg	Ile	Met	Asn	Glu	Glu
			435					440					445			
	Asp	Pro	Glu	Lys	Gln	Arg	Arg	Leu	Glu	Glu	Ala	Ala	Leu	Arg	Arg	Glu
		450					455					460				
	Gln	Lys	Lys	Leu	Glu	Lys	Lys	Gln	Met	Lys	Met	Lys	Gln	Ile	Lys	Val
35	465					470					475					480

	Lys	Aia	Met													
		-														
	<21	0> 1:	22													
	<21	1> 3:	34													
5	<21	2> PI	RТ													
	<21	3> H	omo s	sapie	ence											
	<40	0> 13	22													
	Met	Val	Glu	Phe	Ala	Pro	Leu	Phe	Met	Pro	Trp	Glu	Arg	Arg	Leu	Gli
10	1				5					10					15	
	Thr	Leu	Ala	Val	Leu	Gln	Phe	Val	Phe	Ser	Phe	Leu	Ala	Leu	Ala	Gl
				20					25					30		
	Ile	Cys	Thr	Val	Gly	Phe	Ile	Ala	Leu	Leu	Phe	Thr	Arg	Phe	Trp	Le
			35					40					45			
15	Leu	Thr	Val	Leu	Tyr	Ala	Ala	Trp	Trp	Tyr	Leu	Asp	Arg	Asp	Lys	Pro
		50					55					60				
	Arg	Gln	Gly	Gly	Arg	His	Ile	Gln	Ala	Ile	Arg	Cys	Trp	Thr	Ile	Tr
	65					70					75					80
	Lys	Tyr	Met	Lys	Asp	Tyr	Phe	Pro	Ile	Ser	Leu	Val	Lys	Thr	Ala	Gl
20					85					90					95	
	Leu	Asp	Pro	Ser	Arg	Asn	Tyr	Ile	Ala	Gly	Phe	His	Pro	His	Gly	Va.
				100					105					110		
	Leu	Ala	Val	Gly	Ala	Phe	Ala	Asn	Leu	Cys	Thr	Glu	Ser	Thr	Gly	Phe
			115					120					125			
25	Ser	Ser	Ile	Phe	Pro	Gly	Ile	Arg	Pro	His	Leu	Met	Met	Leu	Thr	Let
		130					135					140				
	Trp	Phe	Arg	Ala	Pro	Phe	Phe	Arg	Asp	Tyr	Ile	Met	Ser	Ala	Gly	Let
	145					150					155					160
	Val	Thr	Ser	Glu	Lys	Glu	Ser	Ala	Ala	His	Ile	Leu	Asn	Arg	Lys	Gly
30					165					170					175	
	Gly	Gly	Asn	Leu	Leu	Gly	Ile	Ile	Val	Gly	Gly	Ala	Gln	Glu	Ala	Let
		•		180					185					190		
	Asp	Ala	Arg	Pro	Gly	Ser	Phe	Thr	Leu	Leu	Leu	Arg	Asn	Arg	Lys	Gly
			195					200					205			
35	Phe	Val	Arg	Leu	Ala	Leu	Thr	His	Gly	Ala	Pro	Leu	Val	Pro	Ile	Phe

#### 142/177

215 220 210 Ser Phe Gly Glu Asn Asp Leu Phe Asp Gln Ile Pro Asn Ser Ser Gly 230 235 Ser Trp Leu Arg Tyr Ile Gln Asn Arg Leu Gln Lys Ile Met Gly Ile 5 250 245 Ser Leu Pro Leu Phe His Gly Arg Gly Val Phe Gln Tyr Ser Phe Gly 265 Leu Ile Pro Tyr Arg Arg Pro Ile Thr Thr Val Val Gly Lys Pro Ile 280 10 Glu Val Gln Lys Thr Leu His Pro Ser Glu Glu Glu Val Asn Gln Leu 290 295 300 His Gln Arg Tyr Ile Lys Glu Leu Cys Asn Leu Phe Glu Ala His Lys 310 315 Leu Lys Phe Asn Ile Pro Ala Asp Gln His Leu Glu Phe Cys 15 325 330 <210> 123 <211> 267 <212> PRT 20 <213> Homo sapience <400> 123 Met Ala Pro Trp Ala Leu Leu Ser Pro Gly Val Leu Val Arg Thr Gly 10 25 His Thr Val Leu Thr Trp Gly Ile Thr Leu Val Leu Phe Leu His Asp 25 Thr Glu Leu Arg Gln Trp Glu Glu Gln Gly Glu Leu Leu Pro Leu 40 45 Thr Phe Leu Leu Leu Val Leu Gly Ser Leu Leu Leu Tyr Leu Ala Val 30 55 Ser Leu Met Asp Pro Gly Tyr Val Asn Val Gln Pro Gln Pro Gln Glu 70 Glu Leu Lys Glu Glu Gln Thr Ala Met Val Pro Pro Ala Ile Pro Leu 90 35 Arg Arg Cys Arg Tyr Cys Leu Val Leu Gln Pro Leu Arg Ala Arg His

#### 143/177

Cys Arg Glu Cys Arg Arg Cys Val Arg Arg Tyr Asp His His Cys Pro Trp Met Glu Asn Cys Val Gly Glu Arg Asn His Pro Leu Phe Val Val Tyr Leu Ala Leu Gln Leu Val Val Leu Leu Trp Gly Leu Tyr Leu Ala Trp Ser Gly Leu Arg Phe Phe Gln Pro Trp Gly Leu Trp Leu Arg Ser Ser Gly Leu Leu Phe Ala Thr Phe Leu Leu Ser Leu Phe Ser Leu Val Ala Ser Leu Leu Leu Val Ser His Leu Tyr Leu Val Ala Ser Asn Thr Thr Trp Glu Phe Ile Ser Ser His Arg Ile Ala Tyr Leu Arg Gln Arg Pro Ser Asn Pro Phe Asp Arg Gly Leu Thr Arg Asn Leu Ala His Phe Phe Cys Gly Trp Pro Ser Gly Ser Trp Glu Thr Leu Trp Ala Glu Glu Glu Glu Gly Ser Ser Pro Ala Val <210> 124 <211> 106 <212> PRT <213> Homo sapience <400> 124 Met Ser Thr Asn Asn Met Ser Asp Pro Arg Arg Pro Asn Lys Val Leu Arg Tyr Lys Pro Pro Pro Ser Glu Cys Asn Pro Ala Leu Asp Asp Pro Thr Pro Asp Tyr Met Asn Leu Leu Gly Met Ile Phe Ser Met Cys Gly Leu Met Leu Lys Leu Lys Trp Cys Ala Trp Val Ala Val Tyr Cys Sex

# PCT/JP99/03929

		50					55					60				
	Phe	Ile	Ser	Phe	Ala	Asn	Ser	Arg	Ser	Ser	Glu	Asp	Thr	Lys	Gln	Met
	65					70					75					80
	Met	Ser	Ser	Phe	Met	Leu	Ser	Ile	Ser	Ala	Val	Val	Met	Ser	Tyr	Leu
5					85					90					95	
	Gln	Asn	Pro	Gln	Pro	Met	Thr	Pro	Pro	Trp						
	*			100					105							
	<210	)> 12	25													
10	<21	1> 22	24													
	<212	2> PI	RT													
	<213	3> H	omo s	sapi	ence											
		0> 12														
15	Met	Thr	Leu	Phe	His	Phe	Gly	Asn	Cys	Phe	Ala	Leu	Ala	Tyr	Phe	Pro
	1				5					10					15	
	Tyr	Phe	Ile	Thr	Tyr	Lys	Cys	Ser	Gly	Leu	Ser	Glu	Tyr	Asn	Ala	Phe
				20					25					30		
	Trp	Lys	Cys	Val	Gln	Ala	Gly	Val	Thr	Tyr	Leu	Phe		Gln	Leu	Cys
20			35					40					45			
	Lys		Leu	Phe	Leu	Ala		Phe	Phe	Pro	Thr	•	GLu	Gly	GTA	Ile
		50					55			_		60				_
	Tyr	Asp	Phe	Ile	Gly	Glu	Phe	Met	Lys	Ala		Val	Asp	Val	Ala	
	65					70	_				75 -	.,	<b>a</b> 1	•	<b>0</b> 1	80
25	Leu	Ile	Gly	Leu		Leu	Val	Met	Ser		Asn	Ala	GIY	Lys		GIU
			_		85			_		90		mh		<b>63</b>	95	T1.
	Tyr	Lys	Ile		Val	Ala	Ala	Leu		Trp	AIA	THE	Ala	Glu	ьеu	TTE
				100				_	105				01	110	<b>~</b> 2	Dha
00	Met	Ser			Ile	Pro	Leu		Val	GIY	ATA	Arg		Ile	GIU	Pne
30			115					120		_	_	_	125	C	<b>T</b>	**-1
	Asp			Tyr	Ile	Gln		Ser	Ile	Asp	Ser		TTE	Ser	Leu	vai
		130					135		_	_		140	1	<b>.</b>	<b></b>	
			Ile	Val	Ala		Ala	Gln	Val	Trp		Ile	Thr	Arg	туг	
	145					150					155			_,	_	160
35	Leu	Tyr	His	Thr	Phe	Arg	Pro	Ala	Val	Leu	Leu	Leu	Met	Phe	Leu	Ser

					165					170					175	
	Val	Tyr	Lys	Ala	Phe	Val	Met	Glu	Thr	Phe	Val	His	Leu	Cys	Ser	Leu
				180					185					190		
	Gly	Ser	Trp	Ala	Ala	Leu	Leu	Ala	Arg	Ala	Val	Val	Thr	Gly	Leu	Leu
5			195	•				200					205			
	Ala	Leu	Ser	Thr	Leu	Ala	Leu	Tyr	Val	Ala	Val	Val	Asn	Val	His	Ser
	,	210					215					220				
	<210	)> 12	26													
10	<21	L> 25	58													
	<212	2> PF	RT													
	<213	3> H	omo s	sapie	ence											
	<400	)> 12	26													
15	Met	Ala	Val	Leu	Ala	Pro	Leu	Ile	Ala	Leu	Val	Tyr	Ser	Val	Pro	Arg
ė	1				5					10					15	
	Leu	Ser	Arg	Trp	Leu	Ala	Gln	Pro	Tyr	Tyr	Leu	Leu	Ser	Ala	Leu	Leu
				20					25					30		
	Ser	Ala	Ala	Phe	Leu	Leu	Val	Arg	Lys	Leu	Pro	Pro	Leu	Cys	His	Gly
20			35					40					45			
	Leu	Pro	Thr	Gln	Arg	Glu	Asp	Gly	Asn	Pro	Cys	Asp	Phe	Asp	Trp	Arg
		50					55					60				
	Glu	Val	Glu	Ile	Leu	Met	Phe	Leu	Ser	Ala	Ile	Val	Met	Met	Lys	Asn
	65					70					75					80
25	Arg	Arg	Ser	Met	Phe	Leu	Met	Thr	Cys	Lys	Pro	Pro	Leu	Tyr	Met	Gly
					85					90					95	
	Pro	Glu	Tyr	Ile	Lys	Tyr	Phe	Asn	Asp	Lys	Thr	Ile	Asp	Glu	Glu	Leu
				100					105					110		
	Glu	Arg	Asp	Lys	Arg	Val	Thr	Trp	Ile	Val	Glu	Phe	Phe	Ala	Asn	Trp
30			115					120					125			
	Ser	Asn	Asp	Cys	Gln	Ser	Phe	Ala	Pro	Ile	Tyr	Ala	Asp	Leu	Ser	Leu
		130					135					140				
	Lys	Tyr	Asn	Cys	Thr	Gly	Leu	Asn	Phe	Gly		Val	Asp	Val	Gly	Arg
	145					150					155					160
35	Tyr	Thr	Asp	Val	Ser	Thr	Arg	Tyr	Lys	Val	Ser	Thr	Ser	Pro	Leu	Thr

# 146/177

Lys Gln Leu Pro Thr Leu Ile Leu Phe Gln Gly Gly Lys Glu Ala Metala 180	ne In In
Arg Arg Pro Gln Ile Asp Lys Lys Gly Arg Ala Val Ser Trp Thr Ph  5	ln ln lo
5	ln ln lo
Ser Glu Glu Asn Val Ile Arg Glu Phe Asn Leu Asn Glu Leu Tyr Gl 210 215 220  Arg Ala Lys Lys Leu Ser Lys Ala Gly Asp Asn Ile Pro Glu Glu Gl 225 230 235 24  10 Pro Val Ala Ser Thr Pro Thr Thr Val Ser Asp Gly Glu Asn Lys Ly 245 250 255  Asp Lys <pre> <pre> <pre></pre></pre></pre>	Ln 10
210 215 220  Arg Ala Lys Lys Leu Ser Lys Ala Gly Asp Asn Ile Pro Glu Glu Glu 225 230 230 235 235 24  10 Pro Val Ala Ser Thr Pro Thr Thr Val Ser Asp Gly Glu Asn Lys Lys 245 250 250 255  Asp Lys 210> 127  15 <211> 110	Ln 10
Arg Ala Lys Lys Leu Ser Lys Ala Gly Asp Asn Ile Pro Glu Glu Glu 225 230 235 24  10 Pro Val Ala Ser Thr Pro Thr Thr Val Ser Asp Gly Glu Asn Lys Ly 245 250 255  Asp Lys 220 250 255  Asp Lys 210> 127  15 <211> 110	10
225 230 235 24  10 Pro Val Ala Ser Thr Pro Thr Thr Val Ser Asp Gly Glu Asn Lys Ly 245 250 255  Asp Lys <pre> <pre> <pre></pre></pre></pre>	10
10 Pro Val Ala Ser Thr Pro Thr Thr Val Ser Asp Gly Glu Asn Lys Ly 245 250 255  Asp Lys <pre> &lt;210&gt; 127  15 &lt;211&gt; 110</pre>	
245 250 255 Asp Lys  <210> 127  15 <211> 110  <212> PRT  <213> Homo sapience  <400> 127	7S
Asp Lys <pre> &lt;210&gt; 127  15</pre>	
<pre>&lt;210&gt; 127  15      &lt;211&gt; 110       &lt;212&gt; PRT       &lt;213&gt; Homo sapience  &lt;400&gt; 127</pre>	
15 <211> 110 <212> PRT <213> Homo sapience <400> 127	
15 <211> 110 <212> PRT <213> Homo sapience <400> 127	
<212> PRT <213> Homo sapience <400> 127	
<213> Homo sapience <400> 127	
<400> 127	
20 Met Ala Ala Val Val Ala Lus Arg Clu Clu Pro Pro Phe Ile Ser Clu	
	u
1 5 10 15	
Ala Ala Val Arg Gly Asn Ala Ala Val Leu Asp Tyr Cys Arg Thr Sei	r
20 25 30	
Val Ser Ala Leu Ser Gly Ala Thr Ala Gly Ile Leu Gly Leu Thr Gly 25 40 45	У
Leu Tyr Gly Phe Ile Phe Tyr Leu Leu Ala Ser Val Leu Leu Ser Leu 50 55 60	ц
50 55 60  Leu Leu Ile Leu Lys Ala Gly Arg Arg Trp Asn Lys Tyr Phe Lys Sen	
30 Arg Arg Pro Leu Phe Thr Gly Gly Leu Ile Gly Gly Leu Phe Thr Ty	
85 90 95	_
Val Leu Phe Trp Thr Phe Leu Tyr Gly Met Val His Val Tyr	
100 105 110	
100 100 110	

35

<210> 128

35

#### PCT/JP99/03929

#### 147/177

<211> 91 <212> PRT <213> Homo sapience 5 <400> 128 Met Val Tyr Ile Ser Asn Gly Gln Val Leu Asp Ser Arg Ser Gln Ser 5 10 Pro Trp Arg Leu Ser Leu Ile Thr Asp Phe Phe Trp Gly Ile Ala Glu 25 10 Phe Val Val Leu Phe Phe Lys Thr Leu Leu Gln Gln Asp Val Lys Lys 40 Arg Arg Ser Tyr Gly Asn Ser Ser Asp Ser Arg Tyr Asp Asp Gly Arg 55 Gly Pro Pro Gly Asn Pro Pro Arg Arg Met Gly Arg Ile Asn His Leu 15 80 Arg Gly Pro Ser Pro Pro Pro Met Ala Gly Gly 85 90 <210> 129 20 <211> 344 <212> PRT <213> Homo sapience <400> 129 25 Met Phe Thr Ser Thr Gly Ser Ser Gly Leu Tyr Lys Ala Pro Leu Ser 10 Lys Ser Leu Leu Leu Val Pro Ser Ala Leu Ser Leu Leu Leu Ala Leu 20 25 30 Leu Leu Pro His Cys Gln Lys Leu Phe Val Tyr Asp Leu His Ala Val 30 40 Lys Asn Asp Phe Gln Ile Trp Arg Leu Ile Cys Gly Arg Ile Ile Cys 50 55 60 Leu Asp Leu Lys Asp Thr Phe Cys Ser Ser Leu Leu Ile Tyr Asn Phe 70

Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser Phe Leu

					85					90					95	
	Leu	Gly	Ser	Trp	Val	Leu	Ser	Ala	Leu	Phe	Asp	Phe	Leu	Leu	Ile	Glu
				100					105					110		
	Ala	Met	Gln	Tyr	Phe	Phe	Gly	Ile	Thr	Ala	Ala	Ser	Asn	Leu	Pro	Ser
5			115					120					125			
	Gly	Phe	Leu	Ala	Pro	Val	Phe	Ala	Leu	Phe	Val	Pro	Phe	Tyr	Cys	Ser
		130					135					140				
	Ile	Pro	Arg	Val	Gln	Val	Ala	Gln	Ile	Leu	Gly	Pro	Leu	Ser	Ile	Thr
	145					150					155					160
10	Asn	Lys	Thr	Leu	Ile	Tyr	Ile	Leu	Gly	Leu	Gln	Leu	Phe	Thr	Ser	Gly
					165					170					175	
	Ser	Tyr	Ile	Trp	Ile	Val	Ala	Ile	Ser	Gly	Leu	Met	Ser	Gly	Leu	Cys
				180					185					190		
	Tyr	Asp	Ser	Lys	Met	Phe	Gln	Val	His	Gln	Val	Leu	Cys	Ile	Pro	Ser
15			195					200					205			
	Trp	Met	Ala	Lys	Phe	Phe	Ser	Trp	Thr	Leu	Glu	Pro	Ile	Phe	Ser	Ser
		210					215					220				
		Glu	Pro	Thr	Ser		Ala	Arg	Ile	Gly	Met	Gly	Ala	Thr	Leu	Asp
20	225					230					235					240
20	Ile	Gln	Arg	Gln		Arg	Met	Glu	Leu		Asp	Arg	Gln	Leu		Phe
	_			_	245					250			_	_	255	
	Ser	GIn	Phe		Gln	Gly	Arg	Arg		Arg	Gln	Gln	Gln	Gly	Gly	Met
	-1.	•	_	260	_	_	_,	_	265	_			_	270		
25	шe	ASI	_	Asn	Arg	Leu	Pne		Pro	Leu	Arg	GIN	_	Gln	Asn	Val
20	<b>1</b>	Me	275		<b>0</b> 3	•	<b>01</b>	280	<b>01</b>	<b>.</b>			285	_		
	ASN	290	GIN	GTÀ	GIĀ	Arg		ser	GIU	Pro	Ala		Pro	Pro	reu	GIU
	17n l		<b>~1</b>	<b>a</b> 1	<b>~</b> 1~	**- 1	295	•	T	24-6	<b>a</b> 1	300	<b>a</b> 1	DL -	<b>0</b>	<b>.</b>
	305	Ser	GIU	GIU	GIN		Ala	Arg	Leu	Met		Met	сту	Pne	ser	Arg ~
30		A en	<b>7.7</b> m	T 011	C1	310	T 011	2	*1~	Co~	315	N ===	N	T	<b>1</b> - n	320
	сту	roh	wra	neu	325	WIG	ьeu	arg	ATG	330	ASI	ASN	Asp	Leu		val
	Δla	ጥኮኮ	Aen	Dho	Leu	Len	C1=	u:-		330					335	
	, <u></u> u	****	นอบ	340	TICK	TIEU	GIII	UTS								
				240												

# 149/177

<211> 428

	<21.	7> 11	KT.													
	<21	3> Ho	omo s	sapie	ence											
5	<400	0> 13	30													
	Met	Gly	Pro	Pro	Pro	Gly	Ala	Gly	Val	Ser	Cys	Arg	Gly	Gly	Cys	Gly
	1				5					10		,			15	
	Phe	Ser	Arg	Leu	Leu	Ala	Trp	Cys	Phe	Leu	Leu	Ala	Leu	Ser	Pro	Gln
				20					25					30		
10	Ala	Pro	Gly	Ser	Arg	Gly	Ala	Glu	Ala	Val	Trp	Thr	Ala	Tyr	Leu	Asn
			35					40					45			
	Val	Ser	Trp	Arg	Val	Pro	His	Thr	Gly	Val	Asn	Arg	Thr	Val	Trp	Glu
		50					55					60				
	Leu	Ser	Glu	Glu	Gly	Val	Tyr	Gly	Gln	Asp	Ser	Pro	Leu	Glu	Pro	Val
15	65					70					75					80
	Ala	Gly	Val	Leu	Val	Pro	Pro	Asp	Gly	Pro	Gly	Ala	Leu	Asn	Ala	Cys
					85			•		90					95	
	Asn	Pro	His	Thr	Asn	Phe	Thr	Val	Pro	Thr	Val	Trp	Gly	Ser	Thr	Val
				100					105					110		
20	Gln	Val	Ser	Trp	Leu	Ala	Leu	Ile	Gln	Arg	Gly	Gly	Gly	Cys	Thr	Phe
			115					120					125			
	Ala	Asp	Lys	Ile	His	Leu	Ala	Tyr	Glu	Arg	Gly	Ala	Ser	Gly	Ala	Val
		130					135					140				
	Ile	Phe	Asn	Phe	Pro	Gly	Thr	Arg	Asn	Glu	Val	Ile	Pro	Met	Ser	His
25	145					150					155					160
	Pro	Gly	Ala	Val	Asp	Ile	Val	Ala	Ile	Met	Ile	Gly	Asn	Leu	Lys	Gly
					165					170					175	
	Thr	Lys	Ile	Leu	Gln	Ser	Ile	Gln	Arg	Gly	Ile	Gln	Val	Thr	Met	Val ⁻
				180					185					190		
30	Ile	Glu	Val	Gly	Lys	Lys	His	Gly	Pro	$\mathtt{Trp}$	Val	Asn	His	Tyr	Ser	Ile
			195					200					205			
	Phe	Phe	Val	Ser	Val	Ser	Phe	Phe	Ile	Ile	Thr	Ala	Ala	Thr	Val	Gly
		210					215					220				
	Tyr	Phe	Ile	Phe	Tyr	Ser	Ala	Arg	Arg	Leu	Arg	Asn	Ala	Arg	Ala	Gln
35	225					230					235					240

	Ser	Arg	Lys	Gln	Arg	Gln	Leu	Lys	Ala	Asp	Ala	Lys	Lys	Ala	Ile	Gly			
					245					250					255				
	Arg	Leu	Gln	Leu	Arg	Thr	Leu	Lys	Gln	Gly	Asp	Lys	Glu	Ile	Gly	Pro			
				260					265					270					
5	Asp	Gly	Asp	Ser	Cys	Ala	Val	Cys	Ile	Glu	Leu	Tyr	Lys	Pro	Asn	Asp			
			275					280					285						
	Leu	Val	Arg	Ile	Leu	Thr	Cys	Asn	His	Ile	Phe	His	Lys	Thr	Cys	Val			
		290					295					300							
	Asp	Pro	Trp	Leu	Leu	Glu	His	Arg	Thr	Cys	Pro	Met	Cys-	Lys	Cys	Asp			
10	305					310					315					320			
	Ile	Leu	Lys	Ala	Leu	Gly	Ile	Glu	Val	Asp	Val	Glu	Asp	Gly	Ser	Val			
					325					330					335				
	Ser	Leu	Gln	Val	Pro	Val	Ser	Asn	Glu	Ile	Ser	Asn	Ser	Ala	Ser	Ser			
				340					345					350					
15	His	Glu	Glu	Asp	Asn	Arg	Ser	Glu	Thr	Ala	Ser	Ser	Gly	Tyr	Ala	Ser			
			355			٠.		360					365						
	Val	Gln	Gly	Thr	Asp	Glu	Pro	Pro	Leu	Glu	Glu	His	Val	Gln	Ser	Thr			
		370					375					380							
	Asn	Glu	Ser	Leu	Gln	Leu	Val	Asn	His	Glu	Ala	Asn	Ser	Val	Ala	Val			
20	385					390					395					400			
	Asp	Val	Ile	Pro	His	Val	Asp	Asn	Pro	Thr	Phe	Glu	Glu	Asp	Glu	Thr			
					405					410					415				
	Pro	Asn	Gln	Glu	Thr	Ala	Val	Arg	Glu	Ile	Lys	Ser							
				420					425										
25																			
	<21	0> 1:	31																
	<21	1> 1-	449																
	<21	2> <b>D</b> i	NA													enter.			
	<21	3> H	omo :	sapi	ence														
30			*																
	<40	0> 1	31	,															
	atg	aaag	cct ·	tcca	cact	tt ci	tgtg	ttgt	ct	ctg	gtgt	ttg	ggagi	tgt d	ctct	gaagcc		60	
	aag	tttg	atg .	attt	tgag	ga t	gagg	aggad	ata	agtag	gagt	atga	atgai	taa 1	tgac	ttcgct	1	20	
	gaa	tttg	agg .	atgt	catg	ga a	gact	ctgti	t act	tgaat	tete	ctca	aacg	ggt d	cata	atcact	1	.80	
35	gaa	gatg	atg.	aaga	tgag	ac ca	actg	tgga	g tt	ggaag	gggc	agga	atga	aaa d	ccaa	gaagga	2	40	

#### PCT/JP99/03929

	gattttgaag	atgcagatac	ccaggaggga	gatactgaga	gtgaaccata	tgatgatgaa	300
	gaatttgaag	gttatgaaga	caaaccagat	acttcttcta	gcaaaaataa	agacccaata	360
	acgattgttg	atgttcctgc	acacctccag	aacagctggg	agagttatta	tctagaaatt	420
	ttgatggtga	ctggtctgct	tgcttatatc	atgaattaca	tcattgggaa	gaataaaaac	480
5	agtcgccttg	cacaggcctg	gtttaacact	catagggagc	ttttggagag	caactttact	540
	ttagtggggg	atgatggaac	taacaaagaa	gccacaagca	caggaaagtt	gaaccaggag	600
	aatgagcaca	tctataacct	gtggtgttct	ggtcgagtgt	gctgtgaggg	catgcttatc	660
	cagctgaggt	tcctcaagag	acaagactta	ctgaatgtcc	tggcccggat	gatgaggcca	720
	gtgagtgatc	aagtgcaaat	aaaagtaacc	atgaatgatg	aagacatgga	tacctacgta	780
10	tttgctgttg	gcacacggaa	agccttggtg	cgactacaga	aagagatgca	ggatttgagt	840
	gagttttgta	gtgataaacc	taagtctgga	gcaaagtatg	gactgccgga	ctctttggcc	900
	atcctgtcag	agatgggaga	agtcacagac	ggaatgatgg	atacaaagat	ggttcacttt	960
	cttacacact	atgctgacaa	gattgaatct	gttcattttt	cagaccagtt	ctctggtcca	1020
	aaaattatgc	aagaggaagg	tcagccttta	aagctacctg	acactaagag	gacactgttg	1080
15	tttacattta	atgtgcctgg	ctcaggtaac	acttacccaa	aggatatgga	ggcactgcta	1140
	cccctgatga	acatggtgat	ttattctatt	gataaagcca	aaaagttccg	actcaacaga	1200
	gaaggcaaac	aaaaagcaga	taagaaccgt	gcccgagtag	aagagaactt	cttgaaactg	1260
	acacatgtgc	aaagacagga	agcagcacag	tctcggcggg	aggagaaaaa	aagagcagag	1320
	aaggagegaa	tcatgaatga	ggaagatcct	gagaaacagc	gcaggctgga	ggaggctgca	1380
20	ttgaggcgtg	agcaaaagaa	gttggaaaag	aagcaaatga	aaatgaaaca	aatcaaagtg	1440
	aaagccatg				•		1449
	<210> 132						
	<211> 1002						
25	<212> DNA			•			
	<213> Homo	sapience					
	<400> 132					eten,	
	atggtagagt	tegegeeett	gtttatgccg	tgggagcgca	ggctgcagac	acttgctgtc	60
30	ctacagtttg	tetteteett	cttggcactg	gccgagatct	gcactgtggg	cttcatagcc	120
	ctcctgttta	caagattetg	gctcctcact	gtcctgtatg	cggcctggtg	gtatctggac	180
	cgagacaagc	cacggcaggg	gggccggcac	atccaggcca	tcaggtgctg	gactatatgg	240
	aagtacatga	aggactattt	ccccatctcg	ctggtcaaga	ctgctgagct	ggacccctct	300
	cggaactaca	ttgegggett	ccacccccat	ggagtcctgg	cagteggage	ctttgccaac	360
35	ctgtgcactg	agagcacagg	cttctcttcg	atcttccccg	gtateegeee	ccatctgatg	420

PCT/JP99/03929

WO 00/05367

	atgetgacet tgtggtteeg ggeeeeette tteagagatt acateatgte tgeagggttg	480
•	gtcacatcag aaaaggagag tgctgctcac attctgaaca ggaagggtgg cggaaacttg	540
	ctgggcatca ttgtaggggg tgcccaggag gccctggatg ccaggcctgg atccttcacg	600
	ctgttactgc ggaaccgaaa gggcttcgtc aggctcgccc tgacacacgg ggcacccctg	660
5	gtgccaatct teteettegg ggagaatgae etatttgaee agatteecaa etettetgge	720
	teetggttae getatateea gaateggttg eagaagatea tgggeatete ceteceaete	780
	tttcatggcc gtggtgtctt ccagtacagc tttggtttaa taccctaccg ccggcccatc	840
	accactgtgg tggggaagcc catcgaggta cagaagacgc tgcatccctc ggaggaggag	900
	gtgaaccagc tgcaccagcg ttatatcaaa gagctgtgca acctcttcga ggcccacaaa	960
10	cttaagttca acatccctgc tgaccagcac ttggagttct gc	1002
	<210> 133	
	<211> 801	
	<212> DNA	
15	<213> Homo sapience	
	<400> 133	
	atggegeeet gggegeteet cagecetggg gteetggtge ggacegggea cacegtgetg	60
	acetggggaa teacgetggt getetteetg cacgataceg agetgeggea atgggaggag	120
20	cagggggage tgctcctgcc cctcaccttc ctgctcctgg tgctgggctc cctgctgctc	180
	tacetegetg tgtcaeteat ggaecetgge tacgtgaatg tgcagececa geeteaggag	240
	gageteaaag aggageagae ageeatggtt eeteeageea teeetetteg gegetgeaga	300
	tactgeetgg tgetgeagee cetgaggget eggeactgee gtgagtgeeg cegttgegte	360
	egeegetacg accaccaetg eccetggatg gagaactgtg tgggagageg caaccaccca	420
<b>25</b>	ctetttgtgg tetacetgge getgeagetg gtggtgette tgtggggeet gtacetggea	480
	tggtcaggcc tccggttctt ccagccctgg ggtctgtggt tgcggtccag cgggctcctg	540
	ttegecacet teetgetget gtecetette tegttggtgg ceageetget cetegteteg	600
	cacctetace tggtggccag caacaccacc acctgggaat tcatctcctc acaccgcate.	660
	gcctatetec gccagegccc cagcaacccc ttcgaccgag gcctgacccg caacctggcc	720
30	cacttettet gtggatggee eteagggtee tgggagaeee tetgggetga ggaggaggaa	780
	gagggcagca gcccagctgt t	801
	<210> 134	
	<211> 318	
35	<212> DNA	

35

<400> 136

#### PCT/JP99/03929

# 153/177

<213> Homo sapience

	<400> 134						
	atgtccacta	acaatatgtc	ggacccacgg	aggccgaaca	aagtgctgag	gtacaagccc	60
5					cggactacat		120
					agtggtgtgc		180
					cggaggacac	-	240
					cctatctgca	_	300
	cccatgacgc					·	318
10							
	<210> 135						
	<211> 672					·	
	<212> DNA						
	<213> Homo	sapience					
15							
	<400> 135				. •		
	atgaccctgt	ttcacttcgg	gaactgcttc	getettgeet	acttccccta	cttcatcacc	60
	tacaagtgca	geggeetgte	cgagtacaac	gccttctgga	aatgcgtcca	ggctggagtc	120
	acctacctct	ttgtccaact	ctgcaagatg	ctgttcttgg	ccactttctt	tcccacctgg	180
20	gaaggcggca	tctatgactt	cattggggag	ttcatgaagg	ccagcgtgga	tgtggcagac	240
	ctgataggtc	taaaccttgt	catgtcccgg	aatgeeggea	agggagagta	caagatcatg	300
	gttgctgccc	tgggctgggc	cactgctgag	cttattatgt	cccgctgcat	teccetatgg	360
	gtcggagccc	ggggcattga	gtttgactgg	aagtacatcc	agatgagcat	agactccaac	420
	atcagtctgg	tccattacat	cgtcgcgtct	gctcaggtct	ggatgataac	acgctatgat	480
25	ctgtaccaca	ccttccggcc	agctgtcctc	ctgctgatgt	tecteagtgt	ctacaaggcc	540
	tttgttatgg	agaccttcgt	ccacctctgc	tcgctgggca	gttgggcagc	tctactggcc	600
	cgagcagtgg	taacggggct	gctggccctc	agcactttgg	ccctgtatgt	cgccgttgtc	660
	aatgtgcact	cc				***	672
30	<210> 136						
	<211> 774						
	<212> DNA						
	<213> Homo	sapience					

•							
	atggcggtct	tggcacctct	aattgctctc	gtgtattcgg	tgccgcgact	ttcacgatgg	60
	ctcgcccaac	cttactacct	tetgteggee	ctgctctctg	ctgccttcct	actcgtgagg	120
	aaactgccgc	cgctctgcca	cggtctgccc	acccaacgcg	aagacggtaa	cccgtgtgac	180
	tttgactgga	gagaagtgga	gatcctgatg	tttctcagtg	ccattgtgat	gatgaagaac	240
5	cgcagatcca	tgttcctgat	gacgtgcaaa	cccccctat	atatgggccc	tgagtatatc	300
	aagtacttca	atgataaaac	cattgatgag	gaactagaac	gggacaagag	ggtcacttgg	360
	attgtggagt	tctttgccaa	ttggtctaat	gactgccaat	catttgcccc	tatctatgct	420
	gacctctccc	ttaaatacaa	ctgtacaggg	ctaaattttg	ggaaggtgga	tgttggacgc	480
	tatactgatg	ttägtacgcg	gtacaaagtg	agcacatcac	ccctcaccaa	gcaactccct	540
10	accctgatcc	tgttccaagg	tggcaaggag	gcaatgcggc	ggccacagat	tgacaagaaa	600
	ggacgggctg	tctcatggac	cttctctgag	gagaatgtga	tccgagaatt	taacttaaat	660
	gagctatacc	agcgggccaa	gaaactatca	aaggctggag	acaatatccc	tgaggagcag	720
	cctgtggctt	caacccccac	cacagtgtca	gatggggaaa	acaagaagga	taaa	774
15	<210> 137						
	<211> 330						
	<212> DNA						
	<213> Homo	sapience					
20	<400> 137						
		tggtggccaa					60
		ccgtcctgga					120
		teggeeteae					180
		tgctcctcat					240
25	cggagacctc	tctttacagg	aggcctcatc	gggggcctct	tcacctacgt	cctgttctgg	300
	acgttcctct	acggcatggt	gcacgtctac				330
	<210> 138					eng.	
00	<211> 273						
30	<212> DNA						
	<213> Homo	sapience					
	,						
	<400> 138						
0.5		tctcgaacgg					60
35	tctttgataa	cagatttctt	ctggggaata	gctgagtttg	tggttttgtt	tttcaaaact	120

# 155/177

•							
	ctgcttcagc	aagatgtgaa	aaaaagaaga	agctatggaa	actcatctga	. ttccagatat	180
	gatgatggaa	gagggccacc	agçaaaccct	ccccgaagaa	tgggtagaat	caatcatctg	240
	cgtggcccta	gtececetee	aatggctggt	gga			273
5	<210> 139						
	<211> 1032						
	<212> DNA						
	<213> Homo	sapience					
10	<400> 139						
	atgttcacca	geaceggete	cagtgggctc	tacaaggcgc	ctctgtcgaa	gagcettetg	60
	ctggtcccca	gtgccctctc	cètectgete	gccctcctcc	tgcctcactg	ccagaagete	120
	tttgtgtatg	accttcacgc	agtcaagaac	gacttccaga	tttggaggtt	gatatgtgga	180
	agaataattt	gccttgattt	gaaagatact	ttctgcagta	gtctgcttat	ttataatttt	240
15	aggatatttg	aaagaagata	tggaagcaga	aaatttgcat	cctttttgct	gggttcctgg	300
	gttttgtcag	ccttatttga	ctttctcctc	attgaagcta	tgcagtattt	ctttggcatc	360
	actgcagcta	gtaatttgcc	ttctggattc	ctggcacctg	tgtttgctct	gtttgtacca	420
	ttttactgct	ccataccaag	agtccaagtg	gcacaaattc	tgggtccgtt	gtccatcaca	480
	aacaagacat	tgatttatat	attgggactg	cagcttttca	cctctggttc	ctacatctgg	540
20	attgtagcca	taagtggact	tatgtccggt	ctgtgctacg	acagcaaaat	gttccaggtg	600
	catcaggtgc	tctgcatccc	cagctggatg	gcaaaattct	tttcttggac	acttgaaccc	660
	atcttctctt	cttcagaacc	caccagegaa	gccagaattg	ggatgggage	cacgctggac	720
	atccagagac	agcagagaat	ggagctgctg	gaccggcagc	tgatgttctc	tcagtttgca	780
	caagggaggc	gacagagaca	gcagcaggga	ggaatgatca	attggaatcg	tctttttcct	840
25	cctttacgtc	agcgacaaaa	cgtaaactat	cagggcggtc	ggcagtctga	gccagcagcg	900
	ccccctctag	aagtttctga	ggaacaggtc	gcccggctca	tggagatggg	attttccaga	960
	ggtgatgctt	tggaagccct	gagagettea	aacaatgacc	tcaatgtcgc	caccaacttc	1020
	ctgctgcagc	ac				-	1032
30	<210> 140						
	<211> 1284						
	<212> DNA						
	<213> Homo	sapience					
						•	
35	<400> 140						

	atggggcege egeetgggge eggggtetee tgeegeggtg getgeggett tteeagattg	60
	ctggcatggt gcttcctgct ggccctgagt ccgcaggcac ccggttcccg gggggctgaa	120
	gcagtgtgga cegegtacet caacgtgtee tggegggtte egcacaeggg agtgaacegt	180
	acggtgtggg agctgagcga ggagggcgtg tacggccagg actcgccgct ggagcctgtg	240
5	getggggtee tggtacegee egaegggeee ggggegetta aegeetgtaa eeegeacaeg	300
	aatttcacgg tgcccacggt ttggggaagc accgtgcaag tctcttggtt ggccctcatc	360
	caacgcggcg ggggctgcac cttcgcagac aagatccatc tggcttatga gagagggcg	420
	tetggageeg teatetttaa etteeceggg accegeaatg aggteateee catgteteac	480
	ecgggtgeag tagacattgt tgeaateatg ateggeaate tgaaaggeae aaaaattetg	540
10	caatctattc aaagaggcat acaagtgaca atggtcatag aagtagggaa aaaacatggc	600
	ccttgggtga atcactattc aattttttc gtttctgtgt ccttttttat tattacggcg	660
	gcaactgtgg gctattttat cttttattct gctcgaaggc tacggaatgc aagagctcaa	720
	agcaggaagc agaggcaatt aaaggcagat gctaaaaaaag ctattggaag gcttcaacta	780
	cgcacactga aacaaggaga caaggaaatt ggccctgatg gagatagttg tgctgtgtgc	840
15	attgaattgt ataaaccaaa tgatttggta cgcatcttaa cgtgcaacca tattttccat	900
	aagacatgtg ttgacccatg gctgttagaa cacaggactt gccccatgtg caaatgtgac	960
	atactcaaag ctttgggaat tgaggtggat gttgaagatg gatcagtgtc tttacaagtc	1020
	cctgtatcca atgaaatatc taatagtgcc tcctcccatg aagaggataa tcgcagcgag	1080
	accgcatcat ctggatatgc ttcagtacag ggaacagatg aaccgcctct ggaggaacac	1140
20	gtgcagtcaa caaatgaaag tetacagetg gtaaaccatg aagcaaatte tgtggcagtg	1200
	gatgttatte eteatgttga caacecaace tttgaagaag acgaaactee taatcaagag	1260
	actgctgttc gagaaattaa atct	1284
	<210> 141	
25	<211> 2050	
	<212> DNA	
	<213> Homo sapience	
	<220>	
	<221> CDS	
30	<222> (122)(1573)	
	<400> 141	
	aaaaaaccgc tgcgatcgcg gaggcggcgg ccaggccgag aggcaggccg ggcaggggtg	60
	toggacgcag ggogotgggc ogggtttogg ottoggcoac agotttttt otcaaggtgc	120
35	a atg aaa goo tto cac act tto tgt gtt gto ctt ctg gtg ttt ggg	166

	Me	et Ly	ys A	la Pl	he H	is T	hr P	he C	ys V	al V	al L	eu L	eu V	al P	he G	ly	
		1				5					10					15	
	agt	gtc	tct	gaa	gcc	aag	ttt	gat	gat	ttt	gag	gat	gag	gag	gac	ata	214
	Ser	Val	Ser	Glu	Ala	Lys	Phe	Asp	Asp	Phe	Glu	Asp	Glu	Glu	qaA	Ile	
5					20					25					30		
	gta	gag	tat	gat	gat	aat	gac	ttc	gct	gaa	ttt	gag	gat	gtc	atg	gaa	262
	Val	Glu	Tyr	Asp	Asp	Asn	Asp	Phe	Ala	Glu	Phe	Glu	Asp	Val	Met	Glu	
				35					40					45		•	
	gac	tct	gtt	act	gaa	tct	cct	caa	cgg	gtc	ata	atc	act	gaa	gat	gat	310
10	Asp	Ser	Val	Thr	Glu	Ser	Pro	Gln	Arg	Val	Ile	Ile	Thr	Glu	Asp	Asp	
			50					55					60				
	gaa	gat	gag	acc	act	gtg	gag	ttg	gaa	ggg	cag	gat	gaa	aac	caa	gaa	358
	Glu	Asp	Glu	Thr	Thr	Val	Glu	Leu	Glu	Gly	Gln	Asp	Glu	Asn	Gln	Glu	
		65					70					75					
15	gga	gat	ttt	gaa	gat	gca	gat	acc	cag	gag	gga	gat	act	gag	agt	gaa	406
	Gly	Asp	Phe	Glu	Asp	Ala	Asp	Thr	Gln	Glu	Gly	Asp	Thr	Glu	Ser	Glu	
	80					85					90					95	
	cca	tat	gat	gat	gaa	gaa	ttt	gaa	ggt	tat	gaa	gac	aaa	cca	gat	act	454
	Pro	Tyr	Asp	Asp	Glu	Glu	Phe	Glu	Gly	Tyr	Glu	Asp	Lys	Pro	Asp	Thr	
20					100					105					110		
	tct	tct	agc	aaa	aat	aaa	gac	cca	ata	acg	att	gtt	gat	gtt	cct	gca	502
	Ser	Ser	Ser	Lys	Asn	Lys	Asp	Pro	Ile	Thr	Ile	Val	Asp	Val	Pro	Ala	
				115					120					125			
			_		-			_						_	atg		550
25	His	Leu	Gln	Asn	Ser	Trp	Glu	Ser	Tyr	Tyr	Leu	Glu	Ile	Leu	Met	Val	
			130					135					140				
			-		-			_						_	aat		598
	Thr		Leu	Leu	Ala	Tyr	Ile	Met	Asn	Tyr	Ile		Gly	Lys	Asn	Lys.	
20		145			•		150					155					
30			_		_	_	-							_	ctt	=	646
		Ser	Arg	Leu	Ala		Ala	Trp	Phe	Asn		His	Arg	Glu	Leu		
	160					165					170					175	
															gaa		694
	Glu	Ser	Asn	Phe		Leu	Val	Gly	Asp		Gly	Thr	Asn	Lys	Glu	Ala	
35					180					185					190		

	aca	agc	aca	gga	aag	ttg	aac	cag	gag	aat	gag	cac	atc	tat	aac	ctg	742
	Thr	Ser	Thr	Gly	Lys	Leu	Asn	Gln	Glu	Asn	Glu	His	Ile	Tyr	Asn	Leu	
				195					200					205			
	tgg	tgt	tct	ggt	cga	gtg	tgc	tgt	gag	ggc	atg	ctt	atc	cag	ctg	agg	790
5	Trp	Cys	Ser	Gly	Arg	Val	Cys	Cys	Glu	Gly	Met	Leu	Ile	Gln	Leu	Arg	
			210					215					220				
	ttc	ctc	aag	aga	caa	gac	tta	ctg	aat	gtc	ctg	gcc	cgg	atg	atg	agg	838
	Phe	Leu	Lys	Arg	Gln	Asp	Leu	Leu	Asn	Val	Leu	Ala	Arg	Met	Met	Arg	
		225					230					235					
10	cca	gtg	agt	gat	caa	gtg	caa	ata	aaa	gta	acc	atg	aat	gat	gaa	gac	886
	Pro	Val	Ser	Asp	Gln	Val	Gln	Ile	Lys	Val	Thr	Met	Asn	Asp	Glu	Asp	
	240					245					250					255	
	atg	gat	acc	tac	gta	ttt	gct	gtt	ggc	aca	cgg	aaa	gcc	ttg	gtg	cga	934
	Met	Asp	Thr	Tyr	Val	Phe	Ala	Val	Gly	Thr	Arg	Lys	Ala	Leu	Val	Arg	
15					260					265					270		
						cag							_	-			982
	Leu	Gln	Lys	Glu	Met	Gln	Asp	Leu	Ser	Glu	Phe	Cys	Ser	Asp	Lys	Pro	
				275					280					285			
	aag	tct	gga	gca	aag	tat	gga	ctg	ccg	gac	tct	ttg	gcc	atc	ctg	tca	1030
20	Lys	Ser	Gly	Ala	Lys	Tyr	Gly	Leu	Pro	Asp	Ser	Leu	Ala	Ile	Leu	Ser	
			290					295					300				
						aca							-	-	_		1078
	Glu		Gly	Glu	Val	Thr		Gly	Met	Met	Asp		Lys	Met	Val	His	
<b>.</b> .		305					310					315					
25						gct										_	1126
		Leu	Thr	His	Tyr	Ala	Asp	Ľуs	Ile	Glu		Val	Ĥis	Phe	Ser	-	
	320	4. 1				325					330					335	
																aag	1174
30	Gin	Phe	Ser	Gly		Lys	Ile	Met	Gln		Glu	Gly	Gln	Pro		Lys	
50					340					345					350		
						agg											1222
	Leu	Pro	Asp		Lys	Arg	Thr	Leu		Phe	Thr	Phe	Asn		Pro	Gly	
				355		٠			360					365			
) E						cca -										=	1270
35	Ser	GLY	Asn	Thr	Tyr	Pro	Lys	Asp	Met	Glu	Ala	Leu	Leu	Pro	Leu	Met	

		370					375				•	380				
	aac atg	gtg	att	tat	tct	att	gat	aaa	gcc	aaa	aag	ttc	cga	ctc	aac	1318
	Asn Met	Val	Ile	Tyr	Ser	Ile	Asp	Lys	Ala	Lys	Lys	Phe	Arg	Leu	Asn	
	385					390					395					
5	aga gaa	ggc	aaa	caa	aaa	gca	gat	aag	aac	cgt	gcc	cga	gta	gaa	gag	1366
	Arg Glu	Gly	Lys	Gln	Lys	Ala	Asp	Lys	Asn	Arg	Ala	Arg	Val	Glu	Glu	
	400				405					410					415	
	aac ttc	ttg	aaa	ctg	aca	cat	gtg	caa	aga	cag	gaa	gca	gca	cag	tct	1414
	Asn Phe	Leu	Lys	Leu	Thr	His	Val	Gln	Arg	Gln	Glu	Ala	Ala	Gln	Ser	
10				420					425					430		
	egg egg	gag	gag	aaa	aaa	aga	gca	gag	aag	gag	cga	atc	atg	aat	gag	1462
	Arg Arg	Glu	Glu	Lys	Lys	Arg	Ala	Glu	Lys	Glu	Arg	Ile	Met	Asn	Glu	
			435					440					445			
	gaa gat	cct	gag	aaa	cag	cgc	agg	ctg	gag	gag	gct	gca	ttg	agg	cgt	1510
15	Glu Asp	Pro	Glu	Lys	Gln	Arg	Arg	Leu	Glu	Glu	Ala	Ala	Leu	Arg	Arg	
		450					455					460				
	gag caa															1558
	Glu Gln	Lys	Lys	Leu	Glu	Lys	Lys	Gln	Met	Lys	Met	Lys	Gln	Ile	Lys	
	465					470					475					
20	gtg aaa	gcc	atg	taaa	agcca	atc c	caga	agatt	t ga	agtto	ctgat	geo	acci	tgta		1610
	Val Lys	Ala	Met													
	480															
	agctctg															1670
~ <del>=</del>	acagtct															1730
25	tttacag		_	_		-										1790
	atcaaat		_				-									1850
	atatttt															1910
															eagttg	1970
00	aaatggc		-	_		ctaaa	accaa	a gat	tct	gcaa	ataa	atgat	tg	gaatt	igoaca	2030
30	ataaaca	ttg	cttga	atgti	:t											2 <b>05</b> 0
	40.105 1	40														
	<210> 1															
	<211> 2															
25	<212> D															
35	<213> H	omo :	sapı	ence												

#### PCT/JP99/03929

	<220>	
	<221> CDS	
	<222> (70)(1074)	
5	<400> 142	
	aaaacctgtg ggtgeeteag accacagcag ageteacaga acctgeggga gecaggetga	60
	coogcoage atg gta gag tto gog coo ttg ttt atg cog tgg gag ogc	108
	Met Val Glu Phe Ala Pro Leu Phe Met Pro Trp Glu Arg	
	1 5 10	
10	agg ctg cag aca ctt gct gtc cta cag ttt gtc ttc tcc ttc ttg gca	156
	Arg Leu Gln Thr Leu Ala Val Leu Gln Phe Val Phe Ser Phe Leu Ala	
	15 20 25	
	ctg gee gag ate tge act gtg gge tte ata gee ete etg ttt aca aga	204
	Leu Ala Glu Ile Cys Thr Val Gly Phe Ile Ala Leu Leu Phe Thr Arg	
15	30 35 40 45	
	tte tgg ete ete aet gte etg tat geg gee tgg tgg tat etg gae ega	252
	Phe Trp Leu Leu Thr Val Leu Tyr Ala Ala Trp Trp Tyr Leu Asp Arg	
	50 55 60	
20	gac aag cca cgg cag ggg cgg cac atc cag gcc atc agg tgc tgg	300
20	Asp Lys Pro Arg Gln Gly Gly Arg His Ile Gln Ala Ile Arg Cys Trp	
	65 70 75	
	act ata tgg aag tac atg aag gac tat ttc ccc atc tcg ctg gtc aag	348
	Thr Ile Trp Lys Tyr Met Lys Asp Tyr Phe Pro Ile Ser Leu Val Lys  80 85 90	
25	act get gag etg gae eee tet egg aac tac att geg gge tte cac eec	
	Thr Ala Glu Leu Asp Pro Ser Arg Asn Tyr Ile Ala Gly Phe His Pro	396
	95 100 105	
	cat gga gtc ctg gca gtc gga gcc ttt gcc aac ctg tgc act gag age	444
	His Gly Val Leu Ala Val Gly Ala Phe Ala Asn Leu Cys Thr Glu Ser	444
30	110 115 120 125	
	aca gge tte tet teg ate tte eee ggt ate ege eee cat etg atg	492
	Thr Gly Phe Ser Ser Ile Phe Pro Gly Ile Arg Pro His Leu Met Met	472
	130 135 140	
	ctg acc ttg tgg ttc cgg gcc ccc ttc ttc aga gat tac atc atg tct	540
35	Leu Thr Leu Trp Phe Arg Ala Pro Phe Phe Arg Asp Tyr Ile Mot Sen	5.10

				145					150					155				
	gca	ggg	ttg	gtc	aca	tca	gaa	aag	gag	agt	gct	gct	cac	att	ctg	aac		588
	Ala	Gly	Leu	Val	Thr	Ser	Glu	Lys	Glu	Ser	Ala	Ala	His	Ile	Leu	Asn		
			160					165					170					
5	agg	aag	ggt	ggc	gga	aac	ttg	ctg	ggc	atc	att	gta	ggg	ggt	gcc	cag	1	636
	Arg	Lys	Gly	Gly	Gly	Asn	Leu	Leu	Gly	Ile	Ile	Val	Gly	Gly	Ala	Gln		
		175					180					185						
	gag	gcc	ctg	gat	gcc	agg	cct	gga	tcc	ttc	acg	ctg	tta	ctg	cgg	aac	1	684
	Glu	Ala	Leu	Asp	Ala	Arg	Pro	Gly	Ser	Phe	Thr	Leu	Leu	Leu	Arg	Asn	:	
10	190					195					200					205		
	cga	aag	ggc	ttc	gtc	agg	ctc	gcc	ctg	aca	cac	ggg	gca	ccc	ctg	gtg	•	732
	Arg	Lys	Gly	Phe	Val	Arg	Leu	Ala	Leu	Thr	His	Gly	Ala	Pro	Leu	Val		
					210					215					220			
	cca	atc	ttc	tcc	ttc	<b>a</b> aa	gag	aat	gac	cta	ttt	gac	cag	att	ccc	aac	7	780
15	Pro	Ile	Phe	Ser	Phe	Gly	Glu	Asn	Asp	Leu	Phe	Asp	Gln	Ile	Pro	Asn		
				225					230					235				
	tct	tct	ggc	tcc	tgg	tta	cgc	tat	atc	cag	aat	cgg	ttg	cag	aag	atc	ε	328
	Ser	Ser	Gly	Ser	Trp	Leu	Arg	Tyr	Ile	Gln	Asn	Arg	Leu	Gln	Lys	Ile		
			240					245					250					
20	atg	ggc	atc	tcc	ctc	cca	ctc	ttt	cat	ggc	cgt	ggt	gtc	ttc	cag	tac	ε	376
	Met	Gly	Ile	Ser	Leu	Pro	Leu	Phe	His	Gly	Arg	Gly	Val	Phe	Gln	Tyr		
		255					260					265						
	agc	ttt	ggt	tta	ata	ccc	tac	cgc	cgg	CCC	atc	acc	act	gtg	gtg	ggg	9	24
	Ser	Phe	Gly	Leu	Ile	Pro	Tyr	Arg	Arg	Pro	Ile	Thr	Thr	Val	Val	Gly		
25	270					275					280					285		
	aag	ccc	atc	gag	gta	cag	aag	acg	ctg	cat	CCC	tcg	gag	gag	gag	gtg	9	72
	Lys	Pro	Ile	Glu	Val	Gln	Lys	Thr	Leu	His	Pro	Ser	Glu	Glu	Glu	Val		
					290					295					300			
															ttc		10	20
30	Asn	Gln	Leu	His	Gln .	Arg	Tyr	Ile	Lys	Glu	Leu	Cys	Asn	Leu	Phe	Glu		
				305					310					315				
	gcc	cac	aaa	ctt	aag	ttc	aac	atc	cct	gct	gac	cag	cac	ttg	gag	ttc	10	68
	Ala	His	Lys	Leu	Lys	Phe	Asn	Ile	Pro	Ala	Asp	Gln	His	Leu	Glu	Phe		
	•		320					325					330					
35	tgc	tgag	ccca	a ag	ggca	gggc	caa	catt	agg	gage	ccag	ca g	gagg	tgct	g		11	20

	Cys						
	tgctgagaag	acttcctgga	ggtgtttgtt	gaacatatct	gcagagcctt	cccagactcc	1180
	tgcaaatcca	acccatatca	ggctgtaagt	cagagcaggc	aatgcagaag	aggagaccag	1240
	accaaggggt	cagctggggc	taggacagtg	agggctgcta	gaggggctgg	geetetettt	1300
5	gcacatggac	actgggcccc	tctctatatt	gagtggtctg	ttaacattca	ttggtggctg	1360
	attccaaaag	atgagagcca	aagctgcacg	gactcgagtc	ctaggctgca	cacctcacaa	1420
	gcatctcttc	tactgcattc	tgttggtcga	agcaagtcac	aacccagcag	attcaaggag	1480
	taaggaatag	gatececete	tggatgggag	gagcagcaat	gtcatattac	aaaagggtgt	1540
	ggacacatgc	agggattett	actgeegtet	ttgcaaacaa	tccaccaaaa	cttaaaaact	1600
10	aaaagcctga	agcacaagca	ctctccaccc	caggcacaca	caccctggaa	ttccctgtgt	1660
	gaccatggta	ccaccactgt	gtgtcccgag	gateceaget	cagetttgca	tegetgeeet	1720
	atctccctct	cgctctcccc	tgttgatccc	tcatgcacag	ccacagegag	ctgtctaaaa	1780
	cacaaagctg	accgcgccat	ttectactca	gcatcettee	atgaccctcc	attgctccta	1840
	ggatagggtt	tggaccagtc	tgaatccaga	ggatcaggat	ccagcaggaa	ccagaggata	1900
15	atttgaggag	ggtttaaaaa	ggaaccattt	tttgaggtgt	gtgcactgtt	tccaccctga	1960
	ggcctggaag	gatgaatgga	agcagcagtt	cctgaaccag	gaagactcat	gtgtgggggc	2020
	cattgctggt	caaggggcac	gaacaggtct	ggtgaccctg	caagggagga	gccaggagca	2080
	agcattccca	cttcaccttc	ctccattcag	tctgctgcca	agttccccac	tgcctgagcc	2140
	caactagaag	ctggagggaa	ggagggcctg	tggctgcagt	ccaggcatgt	aggeeteetg	2200
20	ggaaagggag	aatggcaaag	acaggcagag	tggatctgga	ggggtcaacg	gaagacggaa	2260
	catgtccact	tecaggeeeg	agetteteag	cctgccgttt	gccactctcc	agcatctggc	2320
	ccagcctgtc	catcctcatc	tetetteete	ccttactccg	tgctcccatc	acteggaace	2380
	atttgcattt	ctttgtctca	gctatattgt	ctcacctctg	agtttttgcc	catgatgttg	2440
	gatgccatgg	aatgccatat	cctccccatt	atctcccct	tgtctggata	attectacte	2500
25	atcctacaat	actgatttta	tctgtgcaaa	gaagtcttcc	ccagtgcctc	tggttgacag	2560
	gggttteete	tggcttctcc	agactttctg	ttcctccacc	acagocotta	gcaccctggg	2620
	gaggaggtgt	tgctgtccag	gtaaatgctg	cgccaatgcc	cctgcctcta	gtgcactccc	2680
	tccagcctac	ccacaaacag	gacctgcatc	ctgtctcaca	aataaaactg	aactcttgaa	2740
	atggtg						2746
30							
	<210> 143						
	<211> 1136						
	<212> DNA						
	<213> Homo	sapience					
35	<220>						

	<22	1> C	DS														
	<22	2> (	32).	(8	35)												
												•					
	<40	0> 1	43														
5	att	cttc	cgg	gtgg	ggcc	cc g	ggcc	gagg	c g	atg	gcg	ccc	tgg	geg	ctc	ctc	52
									1	Met .	Ala	Pro	Trp .	Ala	Leu :	Leu	
										1				5			
	agc	cct	ggg	gtc	ctg	gtg	cgg	acc	ggg	cac	acc	gtg	ctg	acc	tgg	gga	100
	Ser	Pro	Gly	Val	Leu	Val	Arg	Thr	Gly	His	Thr	Val	Leu	Thr	Trp	Gly	
10			10					15					20				
	atc	acg	ctg	gtg	ctc	ttc	ctg	cac	gat	acc	gag	ctg	cgg	caa	tgg	gag	148
	Ile	Thr	Leu	Val	Leu	Phe	Leu	His	Asp	Thr	Glu	Leu	Arg	Gln	Trp	Glu	
		25					30					35					
	gag	cag	ggg	gag	ctg	ctc	ctg	ccc	ctc	acc	ttc	ctg	ctc	ctg	gtg	ctg	196
15	Glu	Gln	Gly	Glu	Leu	Leu	Leu	Pro	Leu	Thr	Phe	Leu	Leu	Leu	Val	Leu	
	40					45					50					55	
	ggc	tcc	ctg	ctg	ctc	tac	ctc	gct	gtg	tca	ctc	atg	gac	cct	ggc	tac	244
	Gly	Ser	Leu	Leu	Leu	Tyr	Leu	Ala	Val	Ser	Leu	Met	Asp	Pro	Gly	Tyr	
					60					65					70		
20	gtg	aat	gtg	cag	ccc	cag	cct	cag	gag	gag	ctc	aaa	gag	gag	cag	aca	292
	Val	Asn	Val	Gln	Pro	Gln	Pro	Gln	Glu	Glu	Leu	Lys	Glu	Glu	Gln	Thr	
				75					80					85			
			gtt													_	340
	Ala	Met	Val	Pro	Pro	Ala	Ile	Pro	Leu	Arg	Arg	Cys	Arg	Tyr	Cys	Leu	
25			90					95					100				
			cág		-		-							-	-	-	388
	Val	Leu	Gln	Pro	Leu	Arg	Ala	Arg	His	Cys	Arg	Glu	Cys	Arg	Arg	Cys	
		105					110					115					
			cgc								*						436
30		Arg	Arg	Tyr	Asp	His	His	Суѕ	Pro	Trp	Met	Glu	Asn	Cys	Val	Gly	
	120					125					130					135	
	gag	cgc	aac	cac	cca	ctc	ttt	gtg	gtc	tac	ctg	gcg	ctg	cag	ctg	gtg	484
	Glu	Arg	Asn	His	Pro	Leu	Phe	Val	Val		Leu	Ala	Leu	Gln	Leu	Val	
					140					145					150		
35	gtg	ctt	ctg	tgg	ggc	ctg	tac	ctg	gca	tgg	tca	ggc	ctc	cgg	ttc	ttc	532

	Val	Leu	Leu	Trp	Gly	Leu	Tyr	Leu	Ala	Trp	Ser	Gly	Leu	Arg	Phe	Phe	
				155					160					165			
	cag	CCC	tgg	ggt	ctg	tgg	ttg	cgg	tcc	agc	999	ctc	ctg	ttc	gcc	acc	580
•	Gln	Pro	Trp	Gly	Leu	Trp	Leu	Arg	Ser	Ser	Gly	Leu	Leu	Phe	Ala	Thr	
5			170					175					180				
	ttc	ctg	ctg	ctg	tcc	ctc	ttc	tcg	ttg	gtg	gcc	agc	ctg	ctc	ctc	gtc	628
	Phe	Leu	Leu	Leu	Ser	Leu	Phe	Ser	Leu	Val	Ala	Ser	Leu	Leu	Leu	Val	
		185					190					195					
_							-	agc									676
10	Ser	His	Leu	Tyr	Leu	Val	Ala	Ser	Asn	Thr	Thr	Thr	Trp	Glu	Phe	Ile	
	200					205					210					215	
	tcc	tca	cac	cgc	atc	gcc	tat	ctc	cgc	cag	cgc	ccc	agc	aac	ccc	ttc	724
	Ser	Ser	His	Arg	Ile	Ala	Tyr	Leu	Arg	Gln	Arg	Pro	Ser	Asn	Pro	Phe	
					220					225					230		
15	gac	cga	ggc	ctg	acc	cgc	aac	ctg	gcc	cac	ttc	ttc	tgt	gga	tgg	ccc	772
	Asp	Arg	Gly	Leu	Thr	Arg	Asn	Leu	Ala	His	Phe	Phe	Cys	Gly	Trp	Pro	
				235					240					245			
	tca	ggg	tcc	tgg	gag	acc	ctc	tgg	gct	gag	gag	gag	gaa	gag	ggc	agc	820
	Ser	Gly	Ser	Trp	Glu	Thr	Leu	Trp	Ala	Glu	Glu	Glu	Glu	Glu	Gly	Ser	
20			250					255					260				
	agc	cca	gct	gtt	tag	gtt	get o	ggagg	gccg	gg ct	acco	rtctt	gtg	ject	ja		870
	Ser		Ala	Val													
		265															
	aaac	cac	1 <b>9</b> 9 9	geet	tccc	c ag	getge	gggtg	gago	gete	aga	gggd	ctgg	igg o	ccto	actcc	930
25	tgcc	cac	jec t	CCC	igaco	c ca	igaac	ggag	, ctt	caag	rtca	gaca	gato	cc t	gcct	tggtg	990
	ggca	igtto	tg o	ctto	caaç	g aa	gaaç	ggga	aga	aaag	gac	ctgt	gggt	gg c	tcac	gccca	1050
	_	_	_				-	-	CCE	igget	gct	gcca	gtgo	ac a	cttt	tacaa	1110
	attt	aata	ıta a	agca	agto	c aç	tctt	:									1136
30		)> 14															
		l> 61															
		?> D!															
			omo s	apie	ence												
	<220																
35	<221	l> CI	S														

# PCT/JP99/03929

# 165/177

<222> (13)...(333)

<400> 144

	<400> 144	
	cttcgactcg ct atg tcc act aac aat atg tcg gac cca cgg agg ccg	48
5	Met Ser Thr Asn Asn Met Ser Asp Pro Arg Pro	
	1 5 10	
	aac aaa gtg ctg agg tac aag ccc ccg ccg agc gaa tgt aac ccg gcc	96
	Asn Lys Val Leu Arg Tyr Lys Pro Pro Pro Ser Glu Cys Asn Pro Ala	
	- 15 20 25	
10	ttg gac gac ccg acg ccg gac tac atg aac ctg ctg ggc atg atc ttc	144
	Leu Asp Asp Pro Thr Pro Asp Tyr Met Asn Leu Leu Gly Met Ile Phe	
	30 35 40	
	age atg tge gge ete atg ett aag etg aag tgg tgt get tgg gte get	192
	Ser Met Cys Gly Leu Met Leu Lys Leu Lys Trp Cys Ala Trp Val Ala	
15	<b>4</b> 5 50 55 60	
	gto tac tgc tcc ttc atc agc ttt gcc aac tct cgg agc tcg gag gac	240
	Val Tyr Cys Ser Phe Ile Ser Phe Ala Asn Ser Arg Ser Ser Glu Asp	
	65 70 75	
	acg aag caa atg atg agt age tte atg etg tee ate tet gee gtg gtg	288
20	Thr Lys Gln Met Met Ser Ser Phe Met Leu Ser Ile Ser Ala Val	
	80 85 90	
	atg tee tat etg eag aat eet eag eee atg aeg eee eea tgg	340
	Met Ser Tyr Leu Gln Asn Pro Gln Pro Met Thr Pro Pro Trp	
05	95 100 105	
25	tgataccage etagaagggt cacattttgg accetgteta tecaetagge etgggetttg	390
	getgetaaae etgetgeett cagetgeeat eetggaette eetgaatgag geegtetegg	450
	tgcccccage tggatagagg gaacetggee ettteetagg gaacaceeta ggettaceee	510
	teetgeetee etteecetge etgetgetgg gggagatget gteeatgttt etaggggtat	570
20	teatttgett tetegttgaa acctgttgtt aataaagttt tteacteag	619
30		
	<210> 145	
	<211> 864	
	<212> DNA	
0.5	<213> Homo sapience	
35	<220>	

# 166/177

<221> CDS <222> (111)...(785)

	-40	a. 1	4.5														
_		0> 1															
5																ctcccg	60
	gag	acgc	ege (	ctcg	cgate	cc c	egeg	cggg	e gg	gacc	gggc	ggc	egge		-		116
														1	Met '	Thr	
															1		
							•		-	ctt	-						164
10	Leu	Phe		Phe	Gly	Asn	Cys		Ala	Leu	Ala	Tyr		Pro	Tyr	Phe	
			5					10					15				
	_									gag			_				212
	Ile		Tyr	Lys	Cys	Ser	_	Leu	Ser	Glu	Tyr		Ala	Phe	Trp	Lys	
		20					25					30					
15										ttt				-	_	•	260
	_	Val	Gln	Ala	Gly		Thr	Tyr	Leu	Phe		Gln	Leu	Суѕ	Lys	Met	
	35					40					45					50	
			_	_						tgg	_					-	308
	Leu	Phe	Leu	Ala		Phe	Phe	Pro	Thr	Trp	Glu	Gly	Gly	Ile	Tyr	Asp	
20					55					60					65		
				-		_	_	-	_	gtg	_		_	_	_		356
	Phe	Ile	Gly	Glu	Phe	Met	Lys	Ala	Ser	Val	Asp	Val	Ala	Asp	Leu	Ile	
				70					75					80			
	ggt	cta	aac	ctt	gtc	atg	tee	cgg	aat	gcc	ggc	aag	gga	gag	tac	aag	404
25	Gly	Leu		Leu	Val	Met	Ser	Arg	Asn	Ala	Gly	Lys	Gly	Glu	Tyr	Lys	
			85					90					95				
	atc	atg	gtt	gct	gcc	ctg	ggc	tgg	gcc	act	gct	gag	ctt	att	atg	tee	452
	Ile	Met	Val	Ala	Ala	Leu	Gly	Trp	Ala	Thr	Ala	Glu	Leu	Ile	Met	Ser	
_		100					105					110					
30	cgc	tgc	att	ccc	cta	tgg	gtc	gga	gcc	cgg	ggc	att	gag	ttt	gac	tgg	500
	Arg	Cys	Ile	Pro	Leu	Trp	Val	Gly	Ala	Arg	Gly	Ile	Glu	Phe	Asp	Trp	
	115					120					125					130	
	aag	tac	atc	cag	atg	agc	ata	gac	tcc	aac	atc	agt	ctg	gtc	cat	tac	548
	Lys	Tyr	Ile	Gln	Met	Ser	Ile	Asp	Ser	Asn	Ile	Ser	Leu	Val	His	Tyr	
35					135					140					145		

	ate gte geg tet get eag gte tgg atg ata aca ege tat gat etg tac	596
	Ile Val Ala Ser Ala Gln Val Trp Met Ile Thr Arg Tyr Asp Leu Tyr	
	150 155 160	
	cac acc ttc cgg cca gct gtc ctc ctg ctg atg ttc ctc agt gtc tac	644
5	His Thr Phe Arg Pro Ala Val Leu Leu Met Phe Leu Ser Val Tyr	
	165 170 175	
	aag gee ttt gtt atg gag ace tte gte cae ete tge teg etg gge agt	692
	Lys Ala Phe Val Met Glu Thr Phe Val His Leu Cys Ser Leu Gly Ser	
	180 185 190	
10	tgg gca gct cta ctg gcc cga gca gtg gta acg ggg ctg ctg gcc ctc	740
	Trp Ala Ala Leu Leu Ala Arg Ala Val Val Thr Gly Leu Leu Ala Leu	
	195 200 205 210	
	age act ttg gee etg tat gte gee gtt gte aat gtg eac tee taggettg	790
	Ser Thr Leu Ala Leu Tyr Val Ala Val Val Asn Val His Ser	
15	215 220	
	gtgtctcaga cattgatgta cettttccct gcctcgctcc aggttttagt gaagtaaaca	850
	gtatttggaa agtt	864
	<210> 146	
20	<211> 1527	
- •	<212> DNA	
	<213> Homo sapience	
	<220>	
	<221> CDS	
25	<222> (25)(801)	
	<400> 146	
	geagtggeeg ttaeggeega aaag atg geg gte ttg gea eet eta att get	51
	Met Ala Val Leu Ala Pro Leu Ile Ala	•
30	1 5	
	ctc gtg tat teg gtg eeg ega ett tea ega tgg ete gee eaa eet tae	99
	Leu Val Tyr Ser Val Pro Arg Leu Ser Arg Trp Leu Ala Gln Pro Tyr	
	10 15 20 25	
	tac ctt ctg teg gee ctg ctc tet get gee tte eta ete gtg agg aaa	147
35	Tyr Leu Leu Ser Ala Leu Leu Ser Ala Ala Phe Leu Leu Val Arg Lys	

					30					35	,				40		
	ctg	ccg	ccg	ctc	tgc	cac	ggt	ctg	ccc	acc	caa	cgc	gaa	gac	ggt	aac	195
	Leu	Pro	Pro	Leu	Cys	His	Gly	Leu	Pro	Thr	Gln	Arg	Glu	Asp	Gly	Asn	
-				45					50					55			
5	ccg	tgt	gac	ttt	gac	tgg	aga	gaa	gtg	gag	atc	ctg	atg	ttt	ctc	agt	243
	Pro	Cys	Asp	Phe	Asp	Trp	Arg	Glu	Val	Glu	Ile	Leu	Met	Phe	Leu	Ser	
			60					65					70				
	gcc	att	gtg	atg	atg	aag	aac	cgc	aga	tcc	atg	ttc	ctg	atg	acg	tge	291
	Ala	Ile	Val	Met	Met	Lys	Asn	Arg	Arg	Ser	Met	Phe	Leu	Met	Thr	Cys	
10		75					80					85					
															aat	-	339
	Lys	Pro	Pro	Leu	Tyr	Met	Gly	Pro	Glu	Tyr	Ile	Lys	Tyr	Phe	Asn	Asp	
	90					95					100					105	
				_		_		_		_	_		_		tgg		387
15	Lys	Thr	Ile	Asp	Glu	Glu	Leu	Glu	Arg	Asp	Lys	Arg	Val	Thr	Trp	Ile	
					110					115					120		
															gcc		435
	Val	Glu	Phe	Phe	Ala	Asn	Trp	Ser	Asn	Asp	Cys	Gln	Ser	Phe	Ala	Pro	
				125					130					135			
20	atc	tat	gct	gac	ctc	tcc	ctt	aaa	tac	aac	tgt	aca	ggg	cta	aat	ttt	483
	Ile	Tyr	Ala	Asp	Leu	Ser	Leu	Lys	Tyr	Asn	Cys	Thr	Gly	Leu	Asn	Phe	
			140					145					150				
	aaa	aag	gtg	gat	gtt	gga	cgc	tat	act	gat	gtt	agt	acg	cgg	tac	aaa	531
	Gly	Lys	Val	Asp	Val	Gly	Arg	Tyr	Thr	Asp	Val	Ser	Thr	Arg	Tyr	Lys	
25		155					160					165					
	gtg	age	āca	tca	CCC	ctc	acc	aag	caa	ctc	cct	acc	ctg	atc	ctg	ttc	579
	Val	Ser	Thr	Ser	Pro	Leu	Thr	Lys	Gln	Leu	Pro	Thr	Leu	Ile	Leu	Phe	
	170					175					180					185	
	caa	ggt	ggc	aag	gag	gca	atg	cgg	cgg	cca	cag	att	gac	aag	aaa	gga	627
30	Gln	Gly	Gly	Lys	Glu	Ala	Met	Arg	Arg	Pro	Gln	Ile	Asp	Lys	Lys	Gly	
					190					195					200		
	cgg	gct	gtc	tca	tgg	acc	ttc	tct	gag	gag	aat	gtg	atc	cga	gaa	ttt	675
	Arg	Ala	Val	Ser	Trp	Thr	Phe	Ser	Glu	Glu	Asn	Val	Ile	Arg	Glu	Phe	
				205					210					215			
35	aac	tta	aat	gag	cta	tac	cag	cgg	gcc	aag	aaa	cta	tca	aag	gct	gga	723

	Asn Leu Asn Glu Leu Tyr Gln Arg Ala Lys Lys Leu Ser Lys Ala Gly	
	220 225 230	
	gac aat atc cct gag gag cag cct gtg gct tca acc ccc acc aca gtg	771
	Asp Asn Ile Pro Glu Glu Gln Pro Val Ala Ser Thr Pro Thr Thr Val	
5	235 240 245	
	tca gat ggg gaa aac aag aag gat aaa taagatcete ac	810
	Ser Asp Gly Glu Asn Lys Lys Asp Lys	
	250 255	
	tttggcagtg cttcctctcc tgtcaattcc aggctctttc cataaccaca agcctgaggc	870
10	tgcagccttt tatttatgtt ttccctttgg ctgtgactgg gtggggcagc atgcagcttc	930
	tgattttaaa gaggcatcta gggaattgtc aggcacccta caggaaggcc tgccatgctg	990
	tggccaactg tttcactgga gcaagaaaga gatetcatag gacggagggg gaaatggttt	1050
	ccctccaagc ttgggtcagt gtgttaactg cttatcagct attcagacat ctccatggtt	1110
	tetecatgaa aetetgtggt tteateatte ettettagtt gaeetgeaca gettggttag	1170
15	acctagattt aaccctaagg taagatgctg gggtatagaa cgctaagaat tttcccccaa	1230
	ggactettge tteettaage eettetgget tegtttatgg tetteattaa aagtataage	1290
	ctaactttgt cgctagtcct aaggagaaac ctttaaccac aaagttttta tcattgaaga	1350
	caatattgaa caacccccta ttttgtgggg attgagaagg ggtgaataga ggcttgagac	1410
	tttcctttgt gtggtaggac ttggaggaga aatcccctgg actttcacta accctctgac	1470
20	atactcccca cacccagttg atggetttcc gtaataaaaa gattgggatt teetttt	1527
	<210> 147	
	<211> 659	
	<212> DNA	
25	<213> Homo sapience	
	<220>	
	<221> CDS	
	<222> (138)(470)	
30	<400> 147	
	agtetteega geaagatgge geegegggea tttetteeae tgeeegtetg agggaacget	60
	aagtagtgtg teeggegeeg tgtteeaget eegegttgtt eegegagaaa gegagaggee	120
	gageceggge tggtgeg atg gee geg gtg gtg gee aag egg gaa ggg eeg	170
	Met Ala Ala Val Val Ala Lys Arg Glu Gly Pro	
35	1 5 10	

	ccg ttc atc agc gag gcg gcc gtg cgg ggc aac gcc gcc gtc ctg gat	218
	Pro Phe Ile Ser Glu Ala Ala Val Arg Gly Asn Ala Ala Val Leu Asp	
	15 20 25	
	tat tgc egg acc teg gtg tea geg etg teg ggg gee aeg gee gge ate	266
5	Tyr Cys Arg Thr Ser Val Ser Ala Leu Ser Gly Ala Thr Ala Gly Ile	
	30 35 40	
	ctc ggc ctc acc ggc ctc tac ggc ttc atc ttc tac ctg ctc gcc tcc	314
	Leu Gly Leu Thr Gly Leu Tyr Gly Phe Ile Phe Tyr Leu Leu Ala Ser	
	45 50 55	
10	gtc ctg ctc tcc ctg ctc ctc att ctc aag gcg gga agg agg tgg aac	362
	Val Leu Leu Ser Leu Leu Lle Leu Lys Ala Gly Arg Arg Trp Asn	
	60 65 70 75	
	aaa tat tto aaa toa ogg aga oot oto ttt aca gga ggo oto ato ggg	410
	Lys Tyr Phe Lys Ser Arg Arg Pro Leu Phe Thr Gly Gly Leu Ile Gly	
15	80 85 90	
	gge etc the ace tac gto etg the tgg acg the etc tac gge atg gtg	458
	Gly Leu Phe Thr Tyr Val Leu Phe Trp Thr Phe Leu Tyr Gly Met Val	
	95 100 105	
00	cac gtc tac tgaaatgggg gcccggggga cttttttaaa aaa	500
20	His Val Tyr	
	110	
	ccagatcggg aggactgtgg ccagcaatta acaccatgta gacttcctta gttcttaagt	560
	ggttgaatte getgettgtt etgtaaegtt ataaataatt tatatetgaa gaeggagage	620
0.5	ctgtaatatt cttcagatta aatgaagcgt gagacactt	659
25	1810	
	<210> 148	
	<211> 710	
	<212> DNA	
20	<213> Homo sapience	
30	<220>	
	<221> CDS	
	<222> (68)(343)	
	1400	
25	<400> 148	
35	agagggagat acagaaaccg acaggggcca ggcgcccggt ggctccgaag cggggaagtg	60

PCT/JP99/03929

WO 00/05367

	ggacaag atg gtt tac atc tcg aac gga caa gtg ttg gac agc cgg agt	109
	Met Val Tyr Ile Ser Asn Gly Gln Val Leu Asp Ser Arg Ser	
	1 5 10	
	cag tot oca tgg aga tta tot ttg ata aca gat tto tto tgg gga ata	157
5	Gln Ser Pro Trp Arg Leu Ser Leu Ile Thr Asp Phe Phe Trp Gly Ile	
	15 20 25 30	
	get gag tit gig git tig tit tie aaa act eig eit eag eaa gat gig	205
	Ala Glu Phe Val Val Leu Phe Phe Lys Thr Leu Leu Gln Gln Asp Val	
	35 40 45	
10	aaa aaa aga aga agc tat gga aac tca tct gat tcc aga tat gat gat	253
	Lys Lys Arg Arg Ser Tyr Gly Asn Ser Ser Asp Ser Arg Tyr Asp Asp	
	50 55 60	
	gga aga ggg cca cca gga aac cct ccc cga aga atg ggt aga atc aat	301
	Gly Arg Gly Pro Pro Gly Asn Pro Pro Arg Arg Met Gly Arg Ile Asn	
15	65 70 75	
	cat ctg cgt ggc cct agt ccc cct cca atg gct ggt gga tgaggaaggt	350
	His Leu Arg Gly Pro Ser Pro Pro Pro Met Ala Gly Gly	
	80 85 90	
20	aaatgtetge tetaagaage agacaacegg acatgegeat teatageaga aggaaaceat	410
20	caagaagtgg aaggctgacc atgatgagca gtagatgaat gtgtatgtct aaacaaggac	470
	tgetetgtgt eeteacagat gaatgaggte atgetgggaa tteeetetge agggaactgg	530
	cctgactgac atgcagttcc ataaatgcag atgtttgtct cattaccttt ttgtatagtt	590
	tattaaagta ttaatatagt tttaataagt aaatattttt aggttgcaga atggactcct	650
0.5	catetttata tteaegaaaa ageaatetga agaaaacaaa taaaageetg tgtatttage	710
25		
	<210> 149	
	<211> 2182	
	<212> DNA	
30	<213> Homo sapience <220>	
80		
	<221> CDS	
	<222> (56)(1090)	
	<400> 149	
35	geactteage tteceeteee eeggegeeet etggggetee gageeeggeg ggaee	58

	atg	ttc	acc	agc	acc	ggc	tee	agt	999	ctc	tac	aag	gcg	cct	ctg	tcg	r	103
	Met	Phe	Thr	Ser	Thr	Gly	Ser	Ser	Gly	Leu	Tyr	Lys	Ala	Pro	Leu	Ser	,	
	1				5					10					15			
	aag	agc	ctt	ctg	ctg	gtc	ccc	agt	gcc	ctc	tcc	ctc	ctg	cto	gcc	ctc		151
5	Lys	Ser	Leu	Leu	Leu	Val	Pro	Ser	Ala	Leu	Ser	Leu	Leu	Leu	Ala	Leu		
				20					25					30				
	ctc	ctg	cct	cac	tgc	cag	aag	ctc	ttt	gtg	tat	gac	ctt	cac	gca	gtc		199
	Leu	Leu	Pro	His	Cys	Gln	Lys	Leu	Phe	Val	Tyr	Asp	Leu	His	Ala	Val		
			35					40					45					
10	aag	aac	gac	ttc	cag	att	tgg	agg	ttg	ata	tgt	gga	aga	ata	att	tgc		247
	Lys	Asn	Asp	Phe	Gln	Ile	Trp	Arg	Leu	Ile	Cys	Gly	Arg	Ile	Ile	Cys		
		50					55					60						
	ctt	gat	ttg	aaa	gat	act	ttc	tgc	agt	agt	ctg	ctt	att	tat	aat	ttt		295
	Leu	Asp	Leu	Lys	Asp	Thr	Phe	Суз	Ser	Ser	Leu	Leu	Ile	Tyr	Asn	Phe		
15	65					70					75				•	80		
									agc				_			_		343
	Arg	Ile	Phe	Glu	Arg	Arg	Tyr	Gly	Ser	Arg	Lys	Phe	Ala	Ser	Phe	Leu		
					85					90	•				95			
00								-	tta		-					-		391
20	Leu	Gly	Ser		Val	Leu	Ser	Ala	Leu	Phe	Asp	Phe	Leu	Leu	Ile	Glu		
				100					105					110				
			-						act	-	-	-		-				439
	Ala	Met		Tyr	Phe	Phe	Gly	Ile	Thr	Ala	Ala	Ser		Leu	Pro	Ser		
0.5			115					120					125					
25								-	ctg						_			487
	GLY		Leu	Ala	Pro	Val		Ala	Leu	Phe	Val	Pro	Phe	Tyr	Cys	Ser		
		130					135					140						
									att								-4-c.	535
20		Pro	Arg	Val	Gln		Ala	Gln	Ile	Leu	Gly	Pro	Leu	Ser	Ile	Thr		
30	145					150					155					160		
									gga									583
	Asn	Ĺys	Thr	Leu		Tyr	Ile	Leu	Gly	Leu	Gln	Leu	Phe	Thr	Ser	Gly		
					165					170					175			
0.5									agt			_			_	-		631
35	Ser	Tyr	Ile	Trp	Ile	Val	Ala	Ile	Ser	Gly	Leu	Met	Ser	Gly	Leu	Cys	*	

#### PCT/JP99/03929

				180	)				185	<b>j</b>				190	•		
	tac	gad	ago	aaa	atg	, ttc	cag	g gtg	cat	cag	gtg	cto	tgc:	ato	ccc	age	679
	Туз	Asp	Ser	Lys	Met	Phe	Gln	val	His	Gln	Val	Leu	Cys	Ile	Pro	Ser	
			195					200					205				
5	tg	, atc	, gca	aaa	ttc	ttt	tct	tgg	aca	ctt	gaa	ccc	atc	ttc	tct	tct	727
	Trp	Met	Ala	Lys	Phe	Phe	Ser	Trp	Thr	Leu	Glu	Pro	Ile	Phe	Ser	Ser	
		210	)				215					220					
	tca	gaa	ccc	acc	agc	gaa	gcc	aga	att	999	atg	gga	gcc	acg	ctg	gac	775
	Ser	Glu	Pro	Thr	Ser	Glu	Ala	Arg	Ile	Gly	Met	Gly	Ala	Thr	Leu	Asp	
10	225					230					235					240	
	atc	cag	aga	cag	cag	aga	atg	gag	ctg	ctg	gac	cgg	cag	ctg	atg	ttc	823
	Ile	Gln	Arg	Gln	Gln	Arg	Met	Glu	Leu	Leu	Asp	Arg	Gln	Leu	Met	Phe	
					245					250					255		
	tet	cag	ttt	gca	caa	ggg	agg	cga	cag	aga	cag	cag	cag	gga	gga	atg	871
15	Ser	Gln	Phe	Ala	Gln	Gly	Arg	Arg	Gln	Arg	Gln	Gln	Gln	Gly	Gly	Met	
				260					265					270			
	atc	aat	tgg	aat	cgt	ctt	ttt	cct	cct	tta	cgt	cag	cga	caa	aac	gta	919
	Ile	Asn	Trp	Asn	Arg	Leu	Phe	Pro	Pro	Leu	Arg	Gln	Arg	Gln	Asn	Val	
			275					280					285				
20	aac	tat	cag	ggc	ggt	cgg	cag	tct	gag	cca	gca	gcg	ccc	cct	cta	gaa	967
	Asn	Tyr	Gln	Gly	Gly	Arg	Gln	Ser	Glu	Pro	Ala	Ala	Pro	Pro	Leu	Glu	
		290					295					300					
								cgg								_	1015
	Val	Ser	Glu	Glu	Gln	Val	Ala	Arg	Leu	Met	Glu	Met	Gly	Phe	Ser	Arg	
25	305					310					315					320	
	ggt	gàt	gct	ttg	gaa	gcc	ctg	aga	gct	tca	aac	aat	gac	ctc .	aat	gtc	1063
	Gly	Asp	Ala	Leu	Glu	Ala :	Leu	Arg .	Ala	Ser .	Asn .	Asn .	Asp :	Leu .	Asn	Val	
					325					330				;	335		
								cac	tgat	agtc	cc a	ggcc	aaca	c tg	3		1110
30	Ala	Thr	Asn	Phe	Leu :	Leu (	Gln	His									
				340													
	gaco	ggac	cg g	cagc	cgag	t gad	cagt	gcgt	ggt	cccc	acc a	atca	gatca	ag co	cgg	ggacc	1170
	gago	atct	ct g	gtgc	tgat	g tto	ettg	tggg	aag	aggg	agg 1	ttcc	accgo	ca co	cct	gecet	1230
٥.																atgta	1290
35	tttt	ctat	ct a	tatt	tttt	a tto	qqq	attt	tac	ctago	att d	ggaga	aatca	ad ca	acto	attt	1350

#### PCT/JP99/03929

	gaatgtgttt aaaatgcatt aaaatggaag atttctgcag gcagttgaat ggcactccag	1410
	atggggaatt getgtaacce tettaetgta acatgteate teetgegteg tgatggggag	1470
	agggtaatgt tacttcacaa aggacatgtc agatcettet teatggactt ttttagttac	1530
	tgttttttct ctcaaacttg ttttcgaatc tcctgggagt gagggagaaa cagggagctg	1590
5	aatcctcccc caagctgttc caggccagag gactctgcag taccttctcc tacatctagt	1650
	aacaaagaat ggtgataacc atgcactggt tcaaggttet ggagttetec atgaaacttg	1710
	ggttaatttt geteagagta teeggagtta geeactagge tgegggtgaa atgggatgga	1770
	gtagaacaac agcaggette etggagecac atgggetgac tagggeacte tgtggetgge	1830
	ctggcacggg ctcagcccag gaagaggaga aacgatccct tgcctgcccc tccctgtggc	1890
10	agggetaaet geetggeeet eetggetege ageeageeag eeceetggea geaggttete	1950
	ctcagggctt gggtcttcaa cctgtggcga caggaggcag ggcagactgt ggaggacagg	2010
	atgcaggtca gggagaggga aggcaggggt ggaccgccat gagcatgaaa agacccgaag	2070
	caagttgact cttgcaatgt gcaactgtta tgttctgcaa aatgagcaac gatgtatcaa	2130
	attgatgcaa atttagatgt tgatacttac aataaagttt ttaatgtgtt tt	2182
15		
	<210> 150	
	<211> 2773	
	<212> DNA	
	<213> Homo sapience	
20	<220>	
	<221> CDS	
	<222> (211)(1497)	
•	<400> 150	
25	gtageggaga agaetggage teegaggage tgeatetgeg geaacetgtg tgetgaeget	60
	acgigocice iggeicogae giageicogea geicoccagi etcaciccai tecticocca	120
	cctggcgcgc acctgctcaa gaccagggtc ctgccaagcg ctaggagggc gcgtgccagg	180
	ggcgctaggg aactgcggag cgcgcgcgcc atg ggg ccg ccg cct ggg gcc	231
	Met Gly Pro Pro Pro Gly Ala	
30	1 5	
	ggg gtc tcc tgc cgc ggt ggc tgc ggc ttt tcc aga ttg ctg gca tgg	279
	Gly Val Ser Cys Arg Gly Gly Cys Gly Phe Ser Arg Leu Leu Ala Trp	
	10 15 20	
	tgc ttc ctg ctg gcc ctg agt ccg cag gca ccc ggt tcc cgg ggg gct	327
35	Cys Phe Leu Leu Ala Leu Ser Pro Gln Ala Pro Gly Ser Arg Gly Ala	•

# PCT/JP99/03929

		25					30					35						
	gaa	gca	gtg	tgg	acc	geg	tac	ctc	aac	gtg	tcc	tgg	cgg	gtt	ceg	cac	<b>:</b>	375
	Glu	Ala	Val	Trp	Thr	Ala	Tyr	Leu	Asn	Val	Ser	Trp	Arg	Val	Pro	His	i	
	40					45					50					55		
5	acg	gga	gtg	aac	cgt	acg	gtg	tgg	gag	ctg	agc	gag	gag	gga	gtg	tac		423
	Thr	Gly	Val	Asn	Arg	Thr	Val	Trp	Glu	Leu	Ser	Glu	Glu	Gly	Val	Tyr	•	
					60					65					70			
	ggc	cag	gac	tcg	ccg	ctg	gag	cct	gtg	gct	ggg	gtc	ctg	gta	ccg	ccc		471
	Gly	Gln	Asp	Ser	Pro	Leu	Glu	Pro	Val	Ala	Gly	Val	Leu	Val	Pro	Pro		
10				75					80					85				
	gac	ggg	ccc	ggg	gcg	ctt	aac	gcc	tgt	aac	ccg	cac	acg	aat	ttc	acg		519
	Asp	Gly	Pro	Gly	Ala	Leu	Asn	Ala	Cys	Asn	Pro	His	Thr	Asn	Phe	Thr		
			90					95					100					
	gtg	ccc	acg	gtt	tgg	gga	agc	acc	gtg	caa	gtc	tct	tgg	ttg	gcc	ctc		567
15	Val	Pro	Thr	Val	Trp	Gly	Ser	Thr	Val	Gln	Val	Ser	Trp	Leu	Ala	Leu		
		105					110					115						
	atc	caa	cgc	ggc	ggg	ggc	tgc	acc	ttc	gca	gac	aag	atc	cat	ctg	gct		615
	Ile	Gln	Arg	Gly	Gly	Gly	Cys	Thr	Phe	Ala	Asp	Lys	Ile	His	Leu	Ala		
	120					125					130					135		
20	tat	gag	aga	<b>9</b> 99	gcg	tct	gga	gcc	gtc	atc	ttt	aac	ttc	ccc	<b>9</b> 99	acc		663
	Tyr	Glu	Arg	Gly	Ala	Ser	Gly	Ala	Val	Ile	Phe	Asn	Phe	Pro	Gly	Thr		
					140					145					150			
										ccg				_		-		711
~=	Arg	Asn	Glu	Val	Ile	Pro	Met	Ser	His	Pro	Gly	Ala	Val	Asp	Ile	Val		
25				155					160					165				
										aca								759
	Ala	Ile	Met	Ile	Gly	Asn	Leu	Lys	Gly	Thr	Lys	Ile	Leu	Gln	Ser	Ile		
			170					175					180				.ete.u.	
0.0										ata								807
30	Gln		Gly	Ile	Gln	Val	Thr	Met	Val	Ile	Glu	Val	Gly	Lys	Lys	His		
		185					190					195						
										ttt		-						855
		Pro	Trp	Val	Asn	His	Tyr	Ser	Ile	Phe	Phe	Val	Ser	Val	Ser	Phe		
	200					205					210					215		
35	ttt	att	att	acg	gcg	gca	act	gtg	ggc	tat	ttt	atc	ttt	tat	tct	act		903

# PCT/JP99/03929

	Phe	e Ile	e Ile	∍ Th:	r Ala	a Ala	Thi	Val	l Gly	ту:	r Phe	∍ Ile	Phe	э Ту:	r Sei	r Ala	
					220	)				225	5				230	)	
	cga	agg	g cta	a egg	g aat	gca	aga	gct	caa	ago	agg	g aac	cas	g ago	J caa	a tta	951
	Arc	Arc	Leu	Arg	y Asr	Ala	Arg	, Ala	Gln	Ser	Arc	, Lys	Glr	ı Arç	g Glr	Leu	
5				235	5				240					245	i		
	aaç	gca	gat	gct	aaa	aaa	gct	att	gga	agg	g ctt	caa	cta	e cgc	aca	ctg	999
	Lys	Ala	Asp	Ala	Lys	Lys	Ala	Ile	Gly	Arg	Leu	Gln	Leu	Arg	Thr	Leu	
			250	)				255					260	)			
	aaa	caa	gga	gac	aag	gaa	att	ggc	cct	gat	gga	gat	agt	tgt	gct	gtg	1047
10	Lys	Gln	Gly	Asp	Lys	Glu	Ile	Gly	Pro	Asp	Gly	Asp	Ser	Cys	Ala	Val	
		265					270			•		275					
	tgc	att	gaa	ttg	tat	aaa	cca	aat	gat	ttg	gta	cgc	atc	tta	acg	tgc	1095
	Cys	Ile	Glu	Leu	Tyr	Lys	Pro	Asn	Asp	Leu	Val	Arg	Ile	Leu	Thr	Cys	
	280					285					290					295	
15	aac	cat	att	ttc	cat	aag	aca	tgt	gtt	gac	cca	tgg	ctg	tta	gaa	cac	1143
	Asn	His	Ile	Phe	His	Lys	Thr	Cys	Val	Asp	Pro	Trp	Leu	Leu	Glu	His	
					300					305					310		
		act												_			1191
00	Arg	Thr	Cys	Pro	Met	Cys	Lys	Cys	Asp	Ile	Leu	Lys	Ala	Leu	Gly	Ile	
20				315					320					325			
		gtg													-		1239
	Glu	Val	Asp	Val	Glu	Asp	Gly	Ser	Val	Ser	Leu	Gln	Val	Pro	Val	Ser	
			330					335					340				
0.5		gaa													-	_	1287
25	Asn	Glu	Ile	Ser	Asn	Ser	Ala	Ser	Ser	His	Glu	Glu	Asp	Asn	Arg	Ser	
		345					350					355					
		acc															1335
		Thr	Ala	Ser	Ser	Gly	Tyr	Ala	Ser	Val	Gln	Gly	Thr	Asp	Glu	Pro 🔔	
00	360					365				•	370					375	
30		ctg															1383
	Pro	Leu	Glu	Glu	His	Val	Gln	Ser	Thr .	Asn	Glu	Ser	Leu	Gln	Leu	Val	
				-	380					385					390		
		cat														_	1431
0.5	Asn	His	Glu	Ala	Asn	Ser '	Val .	Ala	Val .	Asp	Val	Ile :	Pro	His	Val .	Asp	
35				395					400					405			

PCT/JP99/03929

	aac cca acc ttt gaa gaa gac gaa act cct aat caa gag act gct gtt	1479
	Asn Pro Thr Phe Glu Glu Asp Glu Thr Pro Asn Gln Glu Thr Ala Val	
	.410 415 420	
	cga gaa att aaa tct taaaatctgt gtaaatagaa aacttgaacc attagt	1530
5	Arg Glu Ile Lys Ser	
	425	
	aataacagaa etgeeaatea gggeetagtt tetattaata aattggataa atttaataaa	1590
	ataagagtga tactgaaagt gctcagatga ctaatattat gctatagtta aatggcttaa	1650
	aatatttaac ctgttaactt ttttccacaa actcattata atattttca taggcaagtt	1710
10	teeteteagt agtgataaca acatttttag acatteaaaa etgtetteaa gaagteaegt	1770
	ttttcattta taacaatttt cttataaaaa catgttgctt ttaaaatgtg gagtagctgt	1830
	aatcacttta ttttatgata gtatettaat gaaaaataet aettetttag ettgggetae	1890
	atgtgtcagg gtttttctcc aggtgcttat attgatctgg aattgtaatg taaaaagcaa	1950
	tgcaaactta ggcgagtact tcttgaaatg tctatttaag ctgctttaag ttaatagaaa	2010
15	agattaaagc aaaatattca tttttacttt ttcttatttt taaaattagg ctgaatgtac	2070
	ttcatgtgat ttgtcaacca tagtttatca gagattatgg acttaattga ttggtatatt	2130
	agtgacatca acttgacaca agattagaca aaaaatteet tacaaaaata etgtgtaact	2190
	attteteaaa ettgtgggat tttteaaaag eteagtatat gaateateat aetgtttgaa	2250
	attgetaatg acagagtaag taacactaat attggtcatt gatettegtt catgaattag	2310
20	tctacagaaa aaaaatgttc tgtaaaatta gtctgttgaa aatgttttcc aaacaatgtt	2370
	actttgaaaa ttgagtttat gtttgaccta aatgggctaa aattatatta gataaactaa	2430
	aattetgtee gtgtaaetat aaattttgtg aatgeatttt eetggtgttt gaaaaagaag	2490
	ggggggagaa ttccaggtgc cttaatataa agtttgaagc ttcatccacc aaagttaaat	2550
	agagetattt aaaaatgeae tttatttgta etetgtgtgg ettttgtttt agaattttgt	2610
25	tcaaattata gcagaattta ggcaaaaata aaacagacat gtatttttgt ttgctgaatg	2670
	gatgaaacca ttgcattott gtacactgat ttgaaatgct gtaaatatgt cccaatttgt	2730
	attgattctc tttaaatata aaatgtaaat aaaatattcc aat	2773