

Seminar 13

1. Consider a (63, 56)-code.

(i) What is the number of digits in the message before coding?

(ii) What is the number of check digits?

(iii) What is the information rate?

(iv) How many different syndromes are there?

2. Using the parity check matrix

$$H = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

and the syndromes and coset leaders

Syndrome	000	001	010	011
Coset leader	000000	001000	010000	000010

	Syndrome	100	101	110	111
ĺ	Coset leader	100000	000110	000100	000001

decode the following words: 101110, 011000, 001011, 111111, 110011.

3. A (7,4)-code is defined by the equations $u_1 = u_4 + u_5 + u_7$, $u_2 = u_4 + u_6 + u_7$, $u_3 = u_4 + u_5 + u_6$, where u_4 , u_5 , u_6 , u_7 are the message digits and u_1 , u_2 , u_3 are the check digits. Write its generator matrix and parity check matrix. Decode the received words 0000111 and 0001111.

4. Find the syndromes of all the received words in the (3,2)-parity check code and in the (3,1)-repeating code.

 ${f 5.}$ Construct a table of coset leaders and syndromes for the (7,4)-code with parity check matrix

$$H = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}.$$

6. Determine the parity check matrix and all syndromes and coset leaders of the (5,3)-code with generator matrix $G = \left(\frac{P}{I_3}\right) \in M_{5,3}(\mathbb{Z}_2)$, where:

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

7. Construct a table of coset leaders and syndromes for the (3,1)-code generated by $p = 1 + X + X^2 \in \mathbb{Z}_2[X]$.

8. Construct a table of coset leaders and syndromes for the (7,3)-code generated by $p = 1 + X^2 + X^3 + X^4 \in \mathbb{Z}_2[X]$.

k - laugth of message n - ?

and the syndromes and coset leaders

Syndrome	900	001	010	011
Coset leader	000000	001000	010000	000010

Syndrome	100	101	110	111
Coset leader	100000	000110	000100	000001

decode the following words: 101110, 011000, 001011, 111111, 110011.

Decoding steps:

- to get the syndrome coset leader 'e' associated to 5 1) Multiply the vector IvJ by H 2) Use the table to identify

3-syndrome is what you obtain

most likely over pattern

when multiplying a vector with

- 3) Correct & wring e 6) Extract the message from

9+e=0

From Hedhik => n=6 6=3 >

011000

$$\frac{\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}}{\begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

G+Q=001101 => m=101

$$\frac{111111}{\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}} \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

Syndrome	000	001	010	011
Coset leader	000 000	00000	010000	000010

how do we get them? 1) weight (no. of 1) 2) the closest the bits are

of grades is the table

with the 1s, but will have 101 to fell => we go to 2 bits glipped

=> they should be as close together as possible
go first next to each other, next 1 spot away, 2 and

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 & | & 1 & 0 \\ 0 & 1 & 0 & 0 & | & 1 & 1 \\ 0 & 0 & 1 & 0 & | & 0 & 1 \\ 0 & 0 & 0 & 1 & | & 1 & 0 \end{pmatrix}$$

6	CL			*	. e	KOL.	u		
0000	00000			•					
0001	000100					٠			
0010	001000								
0011	001100	C 2+	Ch						
0 00	010000								
0101	010100								
0110	000001								
0111	000101								
1000	100,000								
001	(00,10,0								
1010	101000								
0 (000011								
1100	110000 ₇ (000	10	. (C1+	C ₂ ,	cu+	C5)	
[] [•]	000010								
11.19	100001								
((.1).	001010								

8. Construct a table of coset leaders and syndromes for the (7,3)-code generated by $p = 1 + X^2 + X^3 + X^4 \in \mathbb{Z}_2[X]$.

$$\begin{cases}
S_{m} = S \cdot x_{m} = x_{m} \\
X_{m} + X_{3} + X_{4} = X_{m}
\end{cases}$$

$$\begin{cases}
S_{m} = X_{3} + X_{4} \\
X_{3} + X_{4} = X_{m}
\end{cases}$$

$$\begin{cases}
S_{m} = X_{4} \cdot X_{3} + X_{4} \\
X_{m} + X_{3} + X_{4} = X_{m}
\end{cases}$$

$$\begin{cases}
S_{m} = X_{4} \cdot X_{3} + X_{4} \\
X_{m} + X_{3} + X_{4} = X_{m}
\end{cases}$$

$$\begin{cases}
S_{m} = X_{4} \cdot X_{3} + X_{4} \\
X_{m} + X_{3} + X_{4} = X_{m}
\end{cases}$$

$$\frac{1}{2} = \frac{10}{2} = \frac{1}{2} = \frac{1$$

•
$$w = 001$$
 => $g = x^{6}$
 g

•
CL
000000
0001000
001000
0011000
010000
0000110
0110000
0000001
1000000
0000011
001100
0000100
1100000
1101000
0000000
0001010