Inferenza Statistica

Esame del 13 febbraio 2014

Tempo a disposizione 2 ore.

Tra parentesi quadre i punteggi massimi attribuibili per ciascun quesito (Totale: 35).

- 1. I pacchi di pasta secca sono riempiti mediante una macchina che dovrebbe garantire che il peso netto del prodotto è pari a 500 grammi. In realtà il peso del prodotto in una scatola è una variabile aleatoria che ha media 480 grammi e varianza 1600 grammi.
 - a. [3] Qual è la probabilità approssimativa che una confezione di 50 pacchi contenga complessivamente più di 25 chili di pasta?
 - b. [4] Si assuma ora la normalità del peso del prodotto in ogni pacco. Quante scatole devo aprire prima affinché sia superiore a 0.95 la probabilità che almeno una scatola aperta abbia peso superiore a 500 grammi?
 - c. [4] Un'associazione di consumatori non conosce il peso del prodotto per le scatole ma insospettita vuole dimostrare che il peso medio del prodotto nelle scatole è inferiore a 500 grammi. A tal fine apre 10 scatole e calcola il peso medio del prodotto per scatola. L'associazione decide di fare causa in quanto il peso medio è risultato inferiore a 485 grammi. Il giudice da ragione alla azienda che produce la pasta sostenendo che il valore ottenuto è comptibile con l'ipotesi che le scatole abbiano peso medio di 500 grammi. Cosa potreste dire al giudice per aiutare l'associazione a vincere la causa in appello?
- **2.** Si disponga di 2 determinazioni i.i.d. y_1 e y_2 da una variabile discreta Y che assume i valori $y = \{0, 1, 2, \dots 6\}$. Si vuole verificare l'ipotesi $H_0: Y \sim Bin(6, 0.5)$ contro $H_1: Pr(Y = y) = 1/7$. Si propone di usare la statistica $T = y_1 + y_2$ e di accettare H_0 se 2 < T < 10.
 - a. [5] Calcolare livello di significatività e potenza del test.
 - **b.** [3] Si supponga ora che il campione dato sopra provenga da una Bin(6, p). Si propone per p lo stimatore aT, dove a è un valore reale. Quanto vale a se è noto che lo stimatore proposto è non distorto?
- 3. Sia S^2 la varianza campionaria stimata a partire da un campione i.i.d. di 10 unità da una gaussiana di media μ e varianza σ^2 . Si determini:
 - a. [4] la probabilità che l'intervallo $(S^2/1.9, S^2/0.27)$ abbia al suo interno il valore σ^2 ;
 - **b.** [4] il valore atteso della lunghezza di questo intervallo.
- 4. Un giocatore dispone di due dadi con 4 facce contrassegnate con i valori da una a 4 ma i dadi sono truccati e la probabilità che lanciando ciascun dado esso poggi su una data faccia è pari a 0.4 per la faccia 4 mentre è 0.2 per le restanti. Lancia quindi la coppia di dadi 100 volte su un piano e ottiene i seguenti risultati relativi alla somma dei valori delle due facce che poggiano sul piano.

somma valori	meno di 5	5	6	7	8
frequenza	25	20	12	18	25

- a. [5] A partire dai dati ottenuti è possibile verificare l'ipotesi che i due dadi siano truccati come descritto sopra (si ponga $\alpha = .05$)?
- b. [3] Cosa si può dire circa il livello di significatività osservato per il test costruito sopra?