ВЕКТОРЫ В ЛИНЕЙНОМ ПРОСТРАНСТВЕ

Пусть на некоторой прямой заданы две точки A и B.

$$A$$
 \vec{a} B

Можно считать, что точка A - начало отрезка, B - конец. Тогда мы зададим так называемый направленный отрезок, определяемый упорядоченной парой точек.

Направленный отрезок (упорядоченную пару точек) называют *вектором*.

Вектор обозначается \overline{AB} или \vec{a} .

Если точки A и B совпадают, то вектор \overline{AB} нулевой или нуль-вектор $\vec{0}$.

Расстояние между началом и концом вектора называется его *длиной* или *модулем* и обозначается $|\overline{AB}|, |\vec{a}|$.

Векторы называются *коллинеарнымми*, если они лежат на параллельных прямых \vec{a} $\vec{a} \parallel \vec{b} \parallel \vec{c}$ \vec{c}

Два ненулевых коллинеарных вектора \overline{AB} и \overline{CD} называются одинаково ориентированными (сонаправленными) $\overline{AB} \uparrow \uparrow \overline{CD}$, если их концы С и D лежат по одну сторону от прямой, соединяющей их начала A и B , и противоположно ориентированными $\overline{AB} \uparrow \downarrow \overline{CD}$, если их концы лежат поразные стороны от прямой, соединяющей их начала.

Два вектора называются равными, если они коллинеарны, одинаково направлены и равны по длине.

 $\vec{a} \neq \vec{c}$, XOTA $\vec{a} | |\vec{c}| |\vec{a}| = |\vec{c}|$, HO $\vec{a} \uparrow \downarrow \vec{c}$.

Векторы называются **компланарными**, если они параллельны одной и той же плоскости. $\sqrt{\vec{b}}$

Линейные операции над векторами, их свойства.

Суммой двух векторов **a** и **b** называется вектор c ,который получается по следующему правилу (треугольника): от произвольной точки A откладывается вектор **a**; от его конца — точки B откладывается вектор, равный вектору **b**. Вектор c равен вектору **AC** ,соединяющему начало первого отложенного вектора c концом второго.

Правило параллелограмма: сумма двух векторов представляет собой диагональ параллелограмма, построенного на равных им векторах.

Сумма нескольких векторов определяется как вектор, замыкающий ломаную линию, звеньями которой служат векторы-слагаемые, и направленный из начала первого вектора в конец последнего.

Определение: **произведением** вектора \vec{a} на вещественное число λ называется такой вектор \vec{b} , что 1) $|\vec{b}| = \lambda |\vec{a}|$,

- 2) вектор \vec{b} коллинеарен \vec{a} ,
- 3) векторы \vec{a} и \vec{b} направлены одинаково, если $\lambda < 0$:

 $\vec{b} \downarrow \downarrow \vec{a}$, если $\lambda > 0$, $\vec{b} \downarrow \uparrow \vec{a}$, если $\lambda < 0$.

Вектор $(-1)\vec{a}=-\vec{a}$ называется противоположным вектору \vec{a} . Сумма двух противоположных векторов равна нулевому вектору: $\vec{a}+(-\vec{a})=\vec{0}$.

Вычитание векторов - операция, обратная сложению: $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$.

Перечислим свойства введенных нами линейных операций:

- 1) коммутативность сложения: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$;
- 2) ассоциативность сложения: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$;

- 3) существование нуль-вектора: $\vec{a} + \vec{0} = \vec{a}$;
- 4) существование противоположного вектора: $\vec{a} + (-\vec{a}) = \vec{0}$;
- 5) дистрибутивность сложения по отношению к умножению на число: $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b};$

6) дистрибутивность сложения: $(\alpha + \beta)\vec{a} = \alpha \vec{a} + \beta \vec{a}$.

7) ассоциативность умножения: $\alpha(\beta \vec{a}) = (\alpha \beta) \vec{a}$, т.к.

$$|\alpha| \cdot |\beta \vec{a}| = |\alpha| \cdot |\beta| \cdot |\vec{a}| = |\alpha \beta| \cdot |\vec{a}|.$$

8) существование единицы: $1 \cdot \vec{a} = \vec{a}$, это следует из определения операции умножения.

Пространство, для элементов которого вводятся операции сложения и умножения на число, обладающие свойствами (1)-(8), называют *линейным* (векторным) пространством. Элементы линейного пространства обычно называют векторами.

Понятие векторного пространства.

Размерность и базис векторного пространства

Типы векторных пространств:

Векторное пространство V_1 — множество векторов, коллинеарных некоторой прямой (множество векторов, лежащих на прямой).

Векторное пространство V_2 — множество векторов, компланарных заданной плоскости (множество векторов, лежащих на заданной плоскости).

Векторное пространство V_3 – множество векторов пространства.

Определение. Число n называется размерностью векторного пространства V, если в пространстве V можно найти n линейно независимых векторов, а всякие n+1 векторы линейно зависимы.

- 1. Векторное пространство V_1 является одномерным, так как, , всякие два коллинеарные вектора линейно зависимы, и в то же время всякий ненулевой вектор образует линейно независимую систему.
- 2. Векторное пространство V_2 является двумерным, так как, всякие два неколлинеарные вектора линейно независимы, а всякие три компланарные вектора уже линейно зависимы.
- 3. Векторное пространство V_3 является трехмерным, так как, всякие три некомпланарные вектора линейно независимы, а всякие четыре вектора, линейно зависимы.

Определение. Система n линейно независимых векторов $\mathbf{e_1}$, $\mathbf{e_2}$, ..., $\mathbf{e_n}$ векторного пространства $\mathbf{V_n}$ называется базисом, если для всякого вектора $\mathbf{x} \in V_n \mathbf{x}$ найдутся такие числа x_1, x_2, \ldots, x_n , что имеет место равенство

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + ... + x_n \mathbf{e}_n$$
.

Теорема. В векторном пространстве V_n размерности n существует базис из n векторов. Более того, всякая система из n линейно независимых векторов образует базис пространства.

Теорема. Коэффициенты разложения вектора по базису определяются единственным образом.

Рассмотрим на примере V_3 .

Доказательство (от противного). Пусть, для вектора **х** существуют два различных разложения по базису, то есть

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n,$$
 $\mathbf{x} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 + \dots + y_n \mathbf{e}_n.$

где $x_i \neq y_i$ хотя бы для одного *i*, тогда имеем

$$\mathbf{x} - \mathbf{x} = (x_1 - y_i)\mathbf{e}_1 + (x_2 - y_2)\mathbf{e}_2 + ... + (x_n - y_n)\mathbf{e}_n = \mathbf{0}.$$

Т.к. $x_i - y_i \neq 0$, то векторы $\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n$ линейно зависимы, что противоречит их определению как базисных векторов.

Определение. Коэффициенты разложения вектора по базису называются координатами вектора относительно данного базиса.

$$\mathbf{x} = (x_1, x_2, ..., x_n).$$

Теорема. Линейные операции над векторами сводятся к операциям над их координатами.

Рассмотрим на примере V_{3} .

Дано:
$$\mathbf{a} = (x_1, x_2, ..., x_n), \quad \mathbf{b} = (y_1, y_2, ..., y_n), \quad \mathbf{c} = (z_1, z_2, ..., z_n), \quad \mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b}$$

Доказать, что $z_i = \lambda x_i + \mu y_i$.

Доказательство:

$$\mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b} = \lambda (x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n) + \mu (x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n) =$$

$$= (\lambda x_1 + \mu y_1) \mathbf{e}_1 + (\lambda x_2 + \mu y_2) \mathbf{e}_2 + (\lambda x_3 + \mu y_3) \mathbf{e}_3 \text{ то есть } z_i = \lambda x_i + \mu y_i.$$

Условие коллинеарности двух векторов

Теорема. Два ненулевых вектора х и у коллинеарны тогда и только тогда, когда их координаты относительно данного базиса пропорциональны.

Дано:

$$\mathbf{a} = (x_1, x_2, ..., x_n), \mathbf{b} = (y_1, y_2, ..., y_n),$$

Доказать, что
$$\mathbf{a} \parallel \mathbf{b} \Leftrightarrow \frac{x_1}{y_1} = \frac{x_2}{y_2} = \frac{x_3}{y_3}$$
.

Необходимость.

$$\mathbf{a} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n,$$
 $\mathbf{b} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 + \dots + y_n \mathbf{e}_n.$

Если **a** и **b** коллинераны, то $\exists \alpha$, $\mathbf{a} = \alpha \mathbf{b}$, то есть

$$a = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n = \alpha (y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 + \dots + y_n \mathbf{e}_n)$$
. Откуда $y_i = \alpha x_i$. или

$$\frac{x_1}{y_1} = \frac{x_2}{y_2} = \frac{x_3}{y_3} = \frac{1}{\alpha}.$$

Достаточность.

Пусть выполняется условие $\frac{x_1}{y_1} = \frac{x_2}{y_2} = \frac{x_3}{y_3} = k$, тогда $x_i = ky_i$

$$\mathbf{a} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n = k y_1 \mathbf{e}_1 + k y_2 \mathbf{e}_2 + \dots + k y_n \mathbf{e}_n = k (y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 + \dots + y_n \mathbf{e}_n) = k \mathbf{b}$$

Следовательно, $\mathbf{a} \parallel \mathbf{b}$.

Аффинные и декартовы координаты точки Аффинные и декартовы координаты точки на прямой

Определение. Аффинной системой координат на прямой называется совокупность точки <math>O и базисного вектора \mathbf{e} .

Точка O называется началом системы координат, а сама прямая l с заданным базисным вектором e называется координатной осью.

Определение. *Аффинной координатой точки* относительно аффинной системы координат называется координата её радиус-вектора относительно базиса.

Аффинные и декартовы координаты точки на плоскости

Определение. Аффинной системой координат на плоскости называется совокупность точки O — начала системы координат и базиса e_1 , e_2 .

Определение. Аффинными координатами точки плоскости относительно аффинной системы координат называются координаты её радиус-вектора относительно базиса.

Определение. Аффинной системой координат в пространстве называется совокупность точки O – начала системы координат и базиса e_1, e_2e_3

Точка *О* называется *началом координат*,

Ох,Оу,Оz – координатными осями,

Оху,Оуz,Охz – координатными плоскостями

Декартова система координат $R = \{O, \vec{i}, \vec{j}, \vec{k}\}$, базисные векторы которой

взаимно перпендикулярны и имеют единичные длины, называется декартовой прямоугольной системой, а ее базис – ортонормированным.

Координатами точки A в выбранной системе координат называются координаты радиус-вектора \vec{r}_A этой точки в этой системе

координат.

Если заданы координаты точек $A(x_A, y_A, z_A)$ и $B(x_B, y_B, z_B)$, то можно найти выражение для координат вектора $\vec{a} = AB$.

Из рисунка следует, что $o\vec{A} + A\vec{B} + O\vec{B}$, тогда $\vec{a} = A\vec{B} = O\vec{B} - O\vec{A}$. Если $\vec{a} = a_x\vec{i} + a_y\vec{j} + a_z\vec{k}$, то $a_x = x_B - x_A, a_y = y_B - y_A, a_z = z_B - z_A$ - координаты вектора \vec{a} .

Скалярное произведение векторов

Введем понятие угла между векторами. Пусть даны два ненулевых вектора \vec{a} и \vec{b} . После совмещения их начал они образуют на плоскости два угла ϕ_1 и ϕ_2 . Углом между векторами называют тот из углов, который не превосходит π .На рисунке это угол ϕ_I .

Определение. Углом между векторами а и b называется наименьший угол ф на который нужно повернуть один из векторов, для того чтобы их направления совпали.

Определение. Скалярным произведением векторов a и b называется скалярная величина $(a,b) = |a| \cdot |b| \cos a b$

Свойства скалярного произведения:

- 1. Скалярное произведение коммутативно: (a,b)=(b,a);
- 2. Постоянный множитель можно выносить за знак скалярного произведения: $(\lambda \mathbf{a}, \mathbf{b}) = \lambda(\mathbf{a}, \mathbf{b})$;
- 3. Скалярное произведение дистрибутивно относительно сложения векторов: $(\mathbf{a} + \mathbf{c}, \mathbf{b}) = (\mathbf{a}, \mathbf{b}) + (\mathbf{c}, \mathbf{b});$
- 4. Условие перпендикулярности: если $\mathbf{a} \perp \mathbf{b}$ то $(\mathbf{a}, \mathbf{b}) = 0$.

Выражение скалярного произведения через координаты

Пусть задан декартов базис e_1, e_2, e_3 и векторы a и b:

$$\mathbf{a} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3,$$
 $\mathbf{b} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 + y_3 \mathbf{e}_3.$

Рассмотрим скалярное произведение

$$(\mathbf{a}, \mathbf{b}) = (x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 + y_3 \mathbf{e}_3) =$$

$$= x_1 y_1 (\mathbf{e}_1, \mathbf{e}_1) + x_1 y_2 (\mathbf{e}_1, \mathbf{e}_2) + x_1 y_3 (\mathbf{e}_3, \mathbf{e}_3) + x_2 y_2 (\mathbf{e}_2, \mathbf{e}_2) + x_2 y_3 (\mathbf{e}_2, \mathbf{e}_2) + x_3 y_3 (\mathbf{e}_3, \mathbf{e}_3) =$$

$$= x_1 y_1 + x_2 y_2 + x_3 y_3.$$

Так как
$$(\mathbf{e}_i, \mathbf{e}_j) = \begin{cases} 1, & ecnu \ i = j; \\ 0, & ecnu \ i \neq j. \end{cases}$$

Выражение длины вектора через его координаты: $|\mathbf{a}| = \sqrt{{x_1}^2 + {x_2}^2 + {x_3}^2}$

Выражение косинуса угла между векторами:

$$\cos \mathbf{a}^{\wedge} \mathbf{b} = \frac{(\mathbf{a}, \mathbf{b})}{|\mathbf{a}| \cdot |\mathbf{b}|} = \frac{x_1 y_1 + x_2 y_2 + x_3 y_3}{\sqrt{x_1^2 + x_2^2 + x_3^2} \cdot \sqrt{y_1^2 + y_2^2 + y_3^2}}.$$

ВЕКТОРНОЕ И СМЕШАННОЕ ПРОИЗВЕДЕНИЕ

Три некомпланарных вектора в пространстве $\vec{e}_1, \vec{e}_2, \vec{e}_3$ образуют упорядоченную тройку, если принято соглашение, что один из них является первым (\vec{e}_1) , другой - вторым (\vec{e}_2) , а оставшийся - третьим (\vec{e}_3) .

Упорядоченная тройка векторов называется *правой*, если из конца третьего вектора кратчайший поворот от первого вектора ко второму виден против часовой стрелки. В противном случае тройка называется *левой*.

. В дальнейшем рассматриваемые базисы будем считать правыми.

Определение и свойства векторного произведения.

Определение: *векторным произведением* векторов \vec{a} и \vec{b} называется **вектор** $\vec{c} = \vec{a} \times \vec{b} = [\vec{a}, \vec{b}]$, удовлетворяющий следующим условиям:

- 1) $|\vec{c}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin \varphi$;
- 2) $\vec{c} \perp \vec{a}, \vec{c} \perp \vec{b}$;
- 3) векторы $\vec{a}, \vec{b}, \vec{c}$ образуют правую тройку.

Из определения векторного произведения следует, что модуль векторного произведения равен площади параллелограмма, построенного на перемножаемых векторах.

Алгебраические свойства векторного произведения.

Векторное произведение обладает следующими алгебраическими свойствами:

- 1) антикоммутативность: $[\vec{a}, \vec{b}] = -[\vec{b}, \vec{a}];$
- 2) ассоциативность: $\left[(\alpha \vec{a}), \vec{b}\right] = \alpha \left[\vec{a}, \vec{b}\right];$
- 3) дистрибутивность: $[(\vec{a} + \vec{b}), \vec{c}] = [\vec{a}, \vec{c}] + [\vec{b}, \vec{c}];$
- 4) для любого вектора \vec{a} : $[\vec{a}, \vec{a}] = 0$.
- 5) условие коллинеарности двух ненулевых векторов $[\vec{a}, \vec{b}] = \vec{0}$

Пример: найти площадь параллелограмма, построенного на векторах

$$\vec{a} = 10\vec{p} - 3\vec{q}$$
 и $\vec{b} = \vec{p} + 2\vec{q}$,

если
$$|\vec{p}| = 2, |\vec{q}| = 4, (\vec{p}, \vec{q}) = \frac{\pi}{6}.$$

Решение: $S = |\vec{a} \times \vec{b}|$;

$$\vec{a} \times \vec{b} = (10\vec{p} - 3\vec{q}) \times (\vec{p} + 2\vec{q}) = 10\vec{p} \times \vec{p} + 20\vec{p} \times \vec{q} - 3\vec{q} \times \vec{p} - 6\vec{q} \times \vec{q} =$$

$$= 20\vec{p} \times \vec{q} + 3\vec{p} \times \vec{q} = 23\vec{p} \times \vec{q};$$

$$S = |\vec{a} \times \vec{b}| = 23|\vec{p}| \cdot |\vec{q}| \cdot \sin(\vec{p}, \vec{q}) = 23 \cdot 2 \cdot 4 \cdot \frac{1}{2} = 92(e\partial^2).$$

Определение смешанного произведения. Его свойства.

<u>Определение</u>: *смешанным произведением* векторов \vec{a} , \vec{b} и \vec{c} называется число, равное скалярному произведению вектора \vec{a} на векторное произведение векторов \vec{b} и \vec{c} : $(\vec{a}, \vec{b}, \vec{c}) = \vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a}, [\vec{b}, \vec{c}])$.

Смешанное произведение трех некомпланарных векторов равно объему параллелепипеда, построенного на этих векторах. Оно положительно, если тройка векторов $\vec{a}, \vec{b}, \vec{c}$ - правая, и отрицательна, если - левая.

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = |\vec{a}| \cdot (|\vec{b}| \cdot |\vec{c}| \cdot \sin \varphi) \cdot c$$

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = S \cdot |\vec{a}| \cdot \cos \gamma = S \cdot H$$

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = V$$

S - площадь основания, H - высота

Смешанное произведение равно нулю в том и только в том случае, когда векторы сомножители компланарны.

Доказательство:

$$(\vec{a}, \vec{b}, \vec{c}) = |\vec{a}| \cdot |\vec{b}| \cdot \sin \phi \cdot \cos \gamma = 0$$
, если

- 1) один из векторов $\vec{a}, \vec{b}, \vec{c}$ нулевой, но тогда $\vec{a}, \vec{b}, \vec{c}$ компланарны;
- 2) $\sin \varphi = 0 \Rightarrow \vec{b}$ и \vec{c} коллинеарны и $\vec{a}, \vec{b}, \vec{c}$ компланарны;
- 3) $\cos \gamma = 0 \Rightarrow \vec{a} \perp (\vec{b} \times \vec{c})$,тогда $\vec{a}, \vec{b}, \vec{c}$ компланарны (лежат в одной плоскости).

В силу свойств смешанного произведения $\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$, т.к. в левой и правой частях равенства стоят выражения, равные объему одного и того же параллелепипеда.

Иимеет место соотношение:

$$(\vec{a}, \vec{b}, \vec{c}) = (\vec{b}, \vec{c}, \vec{a}) = (\vec{c}, \vec{a}, \vec{b}) = -(\vec{b}, \vec{a}, \vec{c}) = -(\vec{a}, \vec{c}, \vec{b}) = -(\vec{c}, \vec{b}, \vec{a}).$$

Выражение векторного и смешанного произведения в декартовых координатах.

Пусть векторы $\vec{a}, \vec{b}, \vec{c}$ заданы своими координатами в ортонормированном правом базисе $\vec{e}_1, \vec{e}_2, \vec{e}_3$, т.е. имеют место соотношения:

$$\begin{split} \vec{a} &= a_1 \vec{e}_1 + a_2 \vec{e}_2 + a_3 \vec{e}_3, \\ \vec{b} &= b_1 \vec{e}_1 + b_2 \vec{e}_2 + b_3 \vec{e}_3, \\ \vec{c} &= c_1 \vec{e}_1 + c_2 \vec{e}_2 + c_3 \vec{e}_3. \end{split}$$

Для ортонормированного базиса можно записать:

$$\begin{split} & \left[\vec{e}_{1}, \vec{e}_{1} \right] = \vec{0}, \quad \left[\vec{e}_{2}, \vec{e}_{1} \right] = -\vec{e}_{3}, \quad \left[\vec{e}_{3}, \vec{e} \right]_{1} = \vec{e}_{2}, \\ & \left[\vec{e}_{1}, \vec{e}_{2} \right] = \vec{e}_{3}, \quad \vec{e}_{2}, \vec{e}_{2} = 0, \quad \left[\vec{e}_{3}, \vec{e}_{2} \right] = -\vec{e}_{1}, \\ & \left[\vec{e}_{1}, \vec{e}_{3} \right] = -\vec{e}_{2}, \quad \left[\vec{e}_{2}, \vec{e}_{3} \right] = \vec{e}_{1}, \quad \left[\vec{e}_{3}, \vec{e}_{3} \right] = 0. \end{split}$$

Получим выражение для координат вектора $\vec{d} = [\vec{a}, \vec{b}]$.

$$\begin{aligned} \vec{d} &= \left[(a_1 \vec{e}_1 + a_2 \vec{e}_2 + a_3 \vec{e}_3), (b_1 \vec{e}_1 + b_2 \vec{e}_2 + b_3 \vec{e}_3) \right] = \\ &= a_1 b_1 \left[\vec{e}_1, \vec{e}_1 \right] + a_1 b_2 \left[\vec{e}_1, \vec{e}_2 \right] + a_1 b_3 \left[\vec{e}_1, \vec{e}_3 \right] + a_2 b_1 \left[\vec{e}_2, \vec{e}_1 \right] + a_2 b_2 \left[\vec{e}_2, \vec{e}_2 \right] + a_2 b_3 \left[\vec{e}_2, \vec{e}_3 \right] + \\ &+ a_3 b_1 \left[\vec{e}_3, \vec{e}_1 \right] + a_3 b \left[2 \vec{e}_3, \vec{e}_2 \right] + a_3 b_3 \left[\vec{e}_3, \vec{e}_3 \right] = \\ &= (a_1 b_2 - a_2 b_1) \vec{e}_3 + (a_3 b_1 - a_1 b_3) \vec{e}_2 + (a_2 b_3 - a_3 b_2) \vec{e}_1. \end{aligned}$$

Тогда
$$\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Смешанное произведение векторов $\vec{a}, \vec{b}, \vec{c}$ также может быть выражено через координаты этих векторов в ортонормированном базисе

$$(\vec{a}, \vec{b}, \vec{c}) = (\vec{a}, \vec{b}) \cdot \vec{c} = (a_1b_2 - a_2b_1)c_1 + (a_3b_1 - a_1b_3)c_2 + (a_2b_3 - a_3b_2)c_3 = c_1a_2b_3 - c_1a_3b_2 + c_2a_3b_1 - c_2a_1b_3 + c_3a_1b_2 - c_3a_2b_1 = a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2 - a_1b_3c_2 - a_2b_1c_3 - a_3b_2c_1.$$

$$, (\vec{a}, \vec{b}, \vec{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix},$$

т.е. векторное произведение двух векторов может быть представлено как определитель третьего порядка, у которого в первой строке стоят базисные векторы, а во второй и третьей строках — координаты перемножаемых векторов. Смешанное произведение представляется как определитель третьего порядка, строки которого образованы координатами перемножаемых векторов.

<u>Пример</u> . Вычислить объем параллелепипеда, построенного на векторах $\vec{a}(1,1,3), \vec{b}(2,0,3)$ и $\vec{c}(1,1,1),$ и длину высоты, опущенной на основание \vec{b}, \vec{c} .

Решение:

$$V = \left| (\vec{a}, \vec{b}, \vec{c}) \right| = \begin{vmatrix} 1 & 1 & 3 \\ 2 & 0 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -1 - 1 + 6 = 4(e\partial^{3}).$$

$$V = H \cdot S$$
, $H = V/S$, $S = |\vec{b} \times \vec{c}|$.

$$\vec{b} \times \vec{c} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_2 \\ 2 & 0 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -\vec{e}_1 - \vec{e}_2 + 2\vec{e}_3; \quad S = \sqrt{1 + 1 + 4} = \sqrt{6}(e\partial^2).$$

$$H = \frac{4}{\sqrt{6}}(e\partial).$$