EXHIBIT I

Docket No.: 0425-1218PUS1 (PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of: Tetsuya OKANO et al.

Application No.: 10/551,654

Confirmation No.: 5662

Filed: July 10, 2006

Art Unit: 1616

For: A COMPOSITION FOR PRODUCTION OF A STERILIZER AND A PROCESS FOR

PRODUCING ORGANIC PERACID

Examiner: A. L. Fisher

DECLARATION UNDER 37 C.F.R. § 1.132

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

- I, Noboru Matsuo, hereby declare as follows:
- I am one of the co-inventors of the invention as described and claimed in the aboveidentified patent application.
- I have carried out additional examples myself or under my direct supervision. Test procedures and results are shown below.

Side-by-Side Comparison between the Present Invention and the Primary Reference

The Examiner has cited U.S. Patent No. 5,827,447 to Tamura et al. (hereinafter, "Tamura '447") as the primary reference in a rejection under 35 U.S.C. § 103(a). I consider Example 11 of Tamura '447 to be the closest example to the present invention.

Enclosed herewith is Table A, which shows inventive Example 3-3 and Tests 1 and 2 as comparative examples. Test 1 was carried out using the same materials and methods as disclosed for Example 11 of Tamura '447. Test 2 was carried out using the same materials and methods as disclosed for Example 11 of Tamura '447, except triacetine was used in place of NOBS.

The obtained products were evaluated in the same way as Example 3-3 of the present specification. The results of all three examples are shown in Table A.

As shown in Table A, the number of remaining microorganisms with the inventive example is much less than the number with the comparative examples. As such, the present invention provides unexpectedly superior results.

Side-by-Side Comparison between the Present Invention and the Secondary Reference

The Examiner has cited U.S. Patent No. 5,869,440 to Kobayashi et al. (hereinafter, "Kobayashi '440") as the secondary reference in a rejection under 35 U.S.C. § 103(a). I consider Comparative Example 4 of Kobayashi '440 to be relative to the present invention.

Enclosed herewith is Table B, which shows inventive Example 3-3 and continued Example 3-3 with changed reaction temperatures and reaction times and Test 3 and continued Test 3 with changed storage temperatures and storage terms as comparative examples.

Test 3 was carried out using the same materials and methods as disclosed for Comparative Example 4 of Kobayashi '440, except changed storage temperatures and storage terms.

The obtained products were evaluated in the same way as Example 3-3 of the present specification. The results are shown in Table B.

As shown in Table B, the number of remaining microorganisms with the inventive example is much less than the number with the comparative examples. As such, the present invention provides unexpectedly superior results. The undersigned declares further that all statements made herein of his own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements are made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S. Code 1001 and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.

By: <u>Noboru matsu</u> Date: <u>August 29,2010</u>.

Noboru Matsuo

Table A

C

C Olon				
components	used materials	Example 3-3 of USSN 10/551654	Test 1 Example 11 of Tamura et al.	Test 2
Betain surfactant*			10.0	10.0
(4)	Triacetín	2.0		2.0
3	NOBS	-	2.0	1
(B)	H2O2	1.5	5.0	5.0
Organic phophonic	HEDP**	0.1		1
acid (Purity)	EDTMP***		1'0	0.1
Alkaline pH adjusting agent	NaOH	2.0	-	
Aoldio pH adjusting	Phosphoric acid(85%)	5.0		
agent	Sulfurio acid	-	very small amount	very small amount
Total		110.0	100.0	100.0
(A)/(B) molar ratio		0.52	0.04	0.06
Organio peracid cono	Organic peracid concentration(ppm) after preparation	27000	200	200
pH of ageous solution	pH of aqeous solution for sterilization (25°C)	3.7	2.0	2.0
Number of remaining	Baoillus cereus IFO13494	<50	1.8×107	1.5×10 ⁷
mioroorganisms	Bacillus subtilis var. niger	<50	26×107	2.4 × 107

Note: * is softazoline LSB. ** is Dequest 2010. *** is Dequest 2046 "1 5" as the amount of HOTO of Framula 3-3 is equivalent to "4.3

"15" as the amount of H202 of Example 3-3 is equivalent to "4.3 g of Table 10 of the instant application. "4.3 g of Table 10 is the amount of the 35 wt. aqueous solution of H202. 4.3 g x 0.35% is equal to 1.5.

a com.										
		USSN 1	USSN 10/551654				Koba	Kobayashi et al.	ï	
						Test 3,				
components	Example 3-3					Compa- rative				
						Example 4				
(A) Triacetin	5.0					2.00 **				
(B) H2O2	7.5					2.75 **				
Organic										
phosphonic acid HEDP*										
Alkali pH NaOH	2.0							the same	the same components	
adjusting agent sodium ortho-silicate		the same components as Example 3-3	пенедшес	ts as Exam	S e e e	1.5 **		as	as Test 3	
adjusting agent 85% phosphoric acid	5.0									
	110.0					100.00				
(A) / (B) molar ratio	0.52					0.11				
at the Reaction temperature	25°C~33°C	î	1	1	50°C					
first step		QZ.	1 4	E days	E done					1
Reaction time	10 minutes	minutes	day	o days	o days					
Storage of each solution temperature						25°C	1	t	1	50°C
Condition of Kobayashi			1	İ			120			
term						Just after	minutes	1 day	5 days	5 days
Concentration of persoid after preparation (ppm)	27000	11000	1500	150	0≐	13000	190	0≐	0÷	0
DH of gaugous soluton for sterilization (25°C)	3.7	3.7	3.1	3.0	3.0	10.5	9.5	9.1	8.9	8.9
Number of remaining Boareus JFO13494	<50 <50	(50	1	9.8×10 ⁶	1.0×10 ⁷	1.5×107	8.4×10 ⁶	1	1.2×10 ⁷	9.2×10 ⁶
(CEU/ml.) Baubtilis var.niger	< 20	\$20	1	2.9×107	3.3×107	4.0×107	3.1×107	1	3.8×107	2.6×10'
)
	sterilizing test with a diluted	t with a dilut	eq	sterilizing test	test	sterilizing test	g test		sterilizing test	test
	aqueous solution having	tion having		with a st	arting aque	with a starting aqueous with a starting aqueous	arting aquec	sno	with a starting	rting

sterilizing test sterilizing test
with a starting aqueous with a starting aqueous
solution. sterilizing test with a diluted concentration of 3000 ppm. aqueous solution having an organic peracid's

aqueous solution.

*: is Dequest 2010

** the amounts of (A), (B) and Alkali pH adjusting agent are recited for 100 parts by weigh of the total of (A) and (B). — means the same as the left-sided tarm

EXHIBIT II

Docket No.:0425-1218PUS1 (PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of: Tetsuya OKANO et al.

Application No.: 10/551,654

Filed: July 10, 2006

Confirmation No.: 5662

Art Unit: 1616

For: A COMPOSITION FOR PRODUCTION OF A

STERILIZER AND A PROCESS FOR PRODUCING ORGANIC PERACID

Examiner: A. L. Fisher

DECLARATION UNDER 37 C.ER. § 1.132

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

I, Noboru Matsuo, hereby declare as follows:

I am one of the co-inventors of the invention as described and claimed in the above-identified patent application.

I have carried out additional examples myself or under my direct supervision. Test procedures and results are shown below.

Example 5-9-a and Example 5-10-a

Example 5-9 and Example 5-10 were experimentally followed. Test conditions and test results are described in Table C, including additional conditions, hereto attached. An alkali agent and an acid agent were the alkaline pH adjusting agent and the acidic pH adjusting agent used in Example 1 of the instant application. The glycerin fatty acid ester had a fatty acid group having 8

carbon atoms and was the same as used in Example 1 of the instant application...

It is noted that Example 5-9-a is superior to Example 5-10-a by about 18 % in view of the reaction efficiency of production of the organic peracid.

The undersigned declares further that all statements made herein of his own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements are made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S. Code 1001 and that such willful false statements may jeopardize the validity of this application or any patent issuing thereon.

By: Nobern Metsus Date: August 29, 20(0.

Attachment: Table C

(g) 0.0030 (mol) 0.29 (g) (g) (hom) (nol) 0.29 (g) (g) (hom) (nol) 0.29 (g) (g) (hom) (nol) 0.030 (mol) 0.09 (g) (hom) (hom) 0.00198 (mol) 0.4308 (g) 0.0863
Ex5-10 8 (x) 0.29 (g) 0.0 (g) 10 (g) 10 (g) 7829 (g) 5500 (ppm) 0.4506 (g)

!												
1						Proc	Products of the invention	ne invent	ion			
			Ξ	1-2	1-3	4	1-5	1-6	1-7	1-8	1-6	1-10
	Ethylene g	Ethylene glycol monoacetate	2g (0.0192)							3g (0.0288)		
	Ethylene g	Ethylene glycol diacetate		2g (0.0137)							3g (0.0205)	
	Diacetin				2g (0.0114)							3g (0.0170)
- ₹	(A) Triacetin					2g (0.0092)						
	Pentaeryt	Pentaerythritol tetraacetate					2g (0.0066)					
	Pentaace	Pentaacetyl- β -D-glucose						2g (0.0051)				
	Glycerine	Glycerine fatty acid ester							2g (0.0092)			
1	Aqueous hy	Aqueous hydrogen peroxide (35 wt96)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)
æ	Sodium p	(B) Sodium percarbonate										
	Sodium perborate	erborate										
1	3	(A)/(B) molar ratio	0.65	0.47	0.39	0.31	0.22	0.17	0.31	0.98	0.70	0.58
1		pH(25°C)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.9	4.9	4.9
1		Just after pH adjustment	0069	17000	10000	22900	4500	25800	2700	9800	21500	16100
ਕ	Organic peracid		6800	17000	9600	20300	4500	24100	2700	0096	21000	15700
5,	concentration (onm)	60 minutes after pH adjustment	0099	16800	9100	18600	4300	22000	2500	9300	19800	14200
-		120 minutes after pH adjustment	6200	15200	8200	17500	3900	19800	2000	9000	18400	12300
1 8	ree of rema	Degree of remaining organic peracid (%)	89.9	89.4	82.0	76.4	86.7	76.7	74.1	91.8	85.6	76.4
1	H,0,/es	H ₂ O ₂ /ester group molar ratio	1.53	1.07	1.28	1.07	1.11	1.15	3.20	1.02	0.717	0.865
1												

(0.0071) 36 (0.0024) (0.00294) (0.00229) (0.00294) (0.00164) (0.0017) 36 (0.0018) (0.00294) (0.0	=
(0.0545) (0.0542) (0.0542) (0.0254) (0.0254) (0.0254) (0.0254) (0.0254) (0.0254) (0.0254) (0.0254) (0.0254) (0.0254) (0.0254) (0.0254) (0.0254) (0.0254)	Г
(0.0342) (0.0284)	
36 (0.0284)	
36 36 (0.00.38) (0.00.38) (0.00.38) (0.00.294) (
36 C(0.0136) 2.86g 2.86g 2.86g 2.86g C(0.0294) (0.0294) (0.0294) (0.0294) (0.0294) (0.0294) (0.0294) (0.0294) (0.0294) (0.0294) (0.0294) (0.0294)	3g (0.0138)
36 (0.0138) (0.0234) (0.0234) (0.0234) (0.0234) (0.0234) (0.0234) (0.0234) (0.0234) (0.0234) (0.0234) (0.0234) (0.0234)	
(0.0734) 2.86g 2.86g 2.86g 2.86g (0.0294) (0.0294) (0.0294) (0.0294) (0.0294) (0.0294) (0.0294) (0.0294)	
2.86g 2.86g 2.86g 2.86g 2.86g 0.00294) (0.0029	
0.07 1.16 0.97 0.78	2.86g (0.0294)
0.47 1.64 1.16 0.97 0.78	
0.47 1.64 1.16 0.97 0.78	
40 90 98	0.47
3.0 3.0 3.0	4.9
28700 4100 12300 22000 23200 31700 9300	25400
27400 3800 11700 20500 22200 29900 8600	24300
21000	23600
20300	20500
86.8 85.4 81.3 80.9 87.5 81.4	80.7
0.764 2.13 0.611 0.430 0.518 0.428 0.448	0.710

Product of the invention	4 1-25 1-26 1-27 1-28 1-29 1-30		3g (0.0205)		2g 3g (0.0032) (0.00138)	2g (0.0066)	2g 3g (0.0051) (0.0071)	2g (0.0092)		4.55g 4.55g 4.55g 4.55g 0.0294) (0.0294) (0.0294)		0.31 0.22 0.17 0.31 0.70 0.47 0.26	4.2 4.2 4.2 4.5 4.5 4.5	23100 4600 26200 2900 23000 23600 26700	21500 4400 25100 2800 21600 21500 24300	19800 4300 22500 2600 20100 19700 23900	18600 3800 20000 2200 19200 18300 21300	80.5 82.6 76.3 75.9 83.5 77.5 79.8	
	1-23 1-24		9	2g (0.0114)						4.55g		0.39	4.2	11500	9800	9300	8500	73.9	
	1-21 1-22	2g (0.0192)	2g (0.0137)							4.55g 4.55g		0.65 0.47	4.2 4.2	7000 17500	6900 17000	6800 16200	6200 15000	88.6 85.7	
		Ethylene glycol monoacetate	Ethylene glycol diacetate	Diacetin	(A) Triacetin	Pentaerythritol tetraacetate	Pentaacetyl- & -D-glucose	Glycerine fatty acid ester	Aqueous hydrogen peroxide (35 wt%	(B) Sodium hydrogen percarbonate	Sodium perborate	(A)/(B) molar ratio	nH(25°C)	Just after pH adjustment	Organic peracid 30 minutes after pH adjustment	concentration 60 minutes after pH adjustment	(ppm)	Degree of remaining organic peracid (%)	

1						Proc	Product of the invention	e inventi	uo.			
		1	2-1	2-2	23	54	2-5	5-6	2-7	2-8	2-9	2-10
_	Ethyl	Ethylene glycol monoacetate	2g (0.0192)							3g (0.0288)		
	Ethyl	Ethylene glycol diacetate		2g (0.0137)								
	Diacetin			-	2g (0.0114)							
dients	A) Triacetin					2g (0.0092)					5g (0.0229)	
0	Pent	Pentaerythritol tetraacetate					5g (0.0164)					
0	Pent	Pentaacetyl-β-D-glucose						2g (0.0051)				5g (0.0128)
no di u	Glyc	Glycerine fatty acid ester							5g (0.0229)			
	Aque	Aqueous hydrogen peracid (35 wt%	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g 2.86g (0.0294) (0.0294)	2.86g (0.0294)
-	B) Sodi	(B) Sodium percarbonate										
	Sodi	Sodium perborate										
┪	-	(A)/(B) molar ratio	0.65	0.47	0.39	0.31	0.56	0.17	0.78	0.98	0.78	0.44
1		pH(25°C)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.9	3.8	3.8
ľ	Organic	Organic peracid concentration (ppm)	2000	2000	4000	4000	4000	4000	4000	4000	4000	4000
1 2	Manhara	Racillus subtilis	\$20	\$	<50	(20	<50	09>	150	<50	90	£50
₹ €	remaining		¢20	\$20	¢20	¢20	650	(20	200	< 20	2 00	\$20
ğ S	microorganisms (CFU/mL)		\$	\$50	0ç>	(50	<50	<50	150	20	¢20	20
1	H CH	H.O./ester group molar ratio	1.53	1.07	1.28	1,065	0.448	1.15	1.28	1.02	0.428	0.459

Tab	Table 7											
L						Proc	Product of the invention	e invent	uo			
		!	2-11	2-12	2-13	2-14	2-15	2-16	2-17	2-18	2-19	2-20
		Ethylene glycol monoacetate	2g (0.0192)							3g (0.0288)	Ì	
		Ethylene glycol diacetate		2g (0.0137)								
		Diacetin			2g (0.0114)							
etneil		(A) Triacetin				2g (0.0092)					5g (0.0229)	
ingrec		Pentaerythritom tetraacetate					5g (0.0164)					
gnibr		Pentaacetyl – β –D–glucose						2g (0.0051)				5g (0.0128)
nodw		Glycerine fatty acid ester							5g (0.0229)			
° О		Aqueous hydrogen peroxide (35 wt%)										
	9	(B) Sodium percarbonate	4.55g (0.0294)	4.55g (0.0294)	4.55g (0.0294)	4.55g (0.0294)	4.55g (0.0294)	4.55g (0.0294)	4.55g 4.55g (0.0294) (0.0294)			
										5.00g (0.0294)	5.00g 5.00g 5.00g (0.0294) (0.0294)	5.00g (0.0294)
L	1	(A)/(B) molar ratio	0.65	0.47	0.39	0.31	0.56	0.17	0.78	0.98	0.78	0.44
1		pH(25°C)	4.2	4.2	4.2	4.2	3.9	4.2	3.9	4.5	3.9	3.9
L	6	Organic peracid concentration (ppm)	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000
Ľ	dran's	Number of Bacillus subtilis	\$	05>	05>	<50	200	<50	200	Ç20	¢20	20
Ë	rema	remaining Baciflus circulans	\$20	(20	<50	Ç 20	(20	<50	200	Ç20	\$20	²⁰
_	DE)		(20	<50	<50	<50	¢30	20	250	<50	<50	420
1 2	rcal	percarbonate/ester group molar ratio	1.53	1.07	1.28	1.065	0.448	1.15	1.28	1.02	0.428	0.459

												I
						P.	Product of the invention	ne inventi	6			
			3-1	3-5	3-3	3-4	3-5	3-6	3-7	3-8	3-9	3-10
		Ethylene glycol diaceatate	5g (0.0342)	5g (0.0342)								
	3	Triacetin			5g (0.0229)	5g (0.0229)	5g 5g (0.0229) (0.0229)		5g (0.0229)	5g (0.0229)		
stnano		Pentaacetyl– eta –D–glucose									5g (0.0128)	5g (0.0128)
e comp	(B)	Aqueous hydrogen peroxide (35 vr96)	4.3g (0.0443)	4.3g (0.0443)	4.3g (0.0443)	4.3g (0.0443)		4.3g 4.3g (0.0443) (0.0443)	4.3g (0.0443)	4.3g (0.0443)	4.3g (0.0443)	4.3g (0.0443)
ibnuod	Chelating agent (net content)	Organic phosphonic acid	0.1g	0.1g	0.1g	0.1g	0.1g	0.1g	0.1g	0.1g	0.1g	0.1g
lwc		Soium hydroxide	28		2g			2g			2g	
0		Sodium carbonate				gg			99			
	agent (net	Trisodim phosobate		48			4g			4g		48
_	Acidic pH	Sufficio acid (ourity 98%)	2.1g	2.1g	ı	1	1	2.1g	2.1g	2.1g	2.1g	2.ig
	adjusting	Phosphorio acid (purity 85%)	0.5g	0.5g	5.0g	5.0g	5.0g	0.5g	0.5g	0.5g	0.5g	0.5g
3	(A)/(B) molar ratio	atio	77.0	0.77	0.52	0.52	0.52	0.52	0.52	0.52	0.29	0.29
ő	ganic peracid co	Organic peracid concentration (ppm) just after preparation	25,000	24,000	27,000	22,000	26,000	27,000	22,000	26,000	30,000	29,500
Ž 5	tydrogen peroxide co	-tydrogen peroxide concentration(ppm) ust after preparation	1,500	1,650	1,050	1,900	1,350	1,050	1,850	1,300	900	950
품	of aqueous sol	pH of aqueous solution for sterilization (25°C)	3.5	2.8	3.7	1.5	3.0	3.5	1.2	2.8	3.5	2.8
Ž	Number of remaining	Bacillus cereus IFO13494	2 20	¢20	<20	<50	<50	Ç20	\$ 5	89	Ç20	<u>8</u>
_	microorganisms (CFU/mL)	Bacillus subtilis var. niger	¢20	\$50	² 20	<50	(50	(20	420	<50	¢20	\$30
L	P,O,H	H,O,/ester group molar ratio	0.648	0.648	0.645	0.645	0.645	0.645	0.645	0.645	0.692	0.692

Manuraerunnig condition (A) (B) (A) (B) (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	Ethylens glycol diacetate (0) Triacetin Tr	2.286g (0.02294)) (0.02294)) (0.02294)) (0.047 0.063 3.7 113300 115000	5-2 3g 3g 0.02005) 2.286g 0.0294) 48g 0.70 0.70 0.70 2.22100 2.1300 19800		5-4 2g (0.0092) (0.0294	Example 5-5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5g 5.6 5.0.0229) 2.86g (0.0294) 0.0294 (0.0294) 0.078 (0.099 3.3700 3.0200 28700	Example 5-5 5-6 5-7 5-8 5-9	5-8 38 (0.0077) (0.0284) (0.0284) (0.0284) 55g 0.073 3.7 29900 27900 25800	5-9 (0.0022) (0.0030) (5-10 8 8 8 8 (0.00367) 0.0236 (0.0030) 6 0g 12.23 0.135 3.7 5500 5100 4800
J = 1.	Degree of remaining organic peracid (%)	1.88	89.6	86.9	86.5	93.1	85.2	91.4	86.3	88.9	19.9
F 1 70	Degree of remaining hydrogen peroxide (%) H ₂ O ₂ /ester group molar ratio	1.07	41.8	39.9	1.07	0.710	0.428	1.15	0.764	0.131	0.082

							Fyample	al a				
								2				Ī
			5-11	5-12	5-13	5-14	5-15	5-16	5-17	5-18	5-19	5-20
	_	Ethylene glycol diacetate	2g (0.0137)	3g (0.0205)	5g (0.0342)							
		Triacetin				2g (0.0092)	3g (0.0138)	5g (0.0229)				
	€	Pentaacetyl-β-D-glucose							2g (0.0051)	3g (0.0077)		
	_	Grycerin fatty acid ester									5g 8g (0.0229) (0.0367)	8g 0.0367)
onoo g		Aqueous hydrogen peroxide (35 wt%)	2.86g (0.0294)	2.86g 0.0294)	2.86g 2.86g 2.86g (0.0294) (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g 2.86g 2.86g (0.0294) (0.0294)	2.86g (0.0294)	0.29g (0.0030)	0.29g (0.0030)
	(B)	**										
sejnue		Sodium perborate										
₃M	9	Water	48g	48g	55g	48g	48g	3 <u>5</u> 5	48g	55g	55g	60g
	 3	(A)/(B) molar ratio	0.47	0.70	1.16	0.31	0.47	0.78	0.17	0.26	7.63	12.23
	3	[(A)+(B)]/(C) ratio by weight	0.063	0.083	0.109	0.063	0.083	0.109	0.063	0.073	0.093	0.135
吾	in seco	pH in second step (25°C)	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9
		Just after second step	18300	22100	23600	22300	26100	33700	26900	29900	4500	5500
Organic peracid	peracid Tration		16900	20700	20700	20500	23300	29500	23800	26700	4000	5100
(mdd)	E		15800	18600	19200	18400	20100	27200	22400	23900	3800	4600
Degree of	Fremain	Degree of remaining organic peracid (%)	86.9	84.2	81.4	82.5	77.0	80.7	83.3	79.9	84.4	86.3
Degree of	Fremai	Degree of remaining hydrogen peroxide (%)	47.2	40.9	39.2	40.3	23.4	7.5	32.8	23.1	27.7	18,3
0	H,0,/	H ₂ O ₂ /ester group molar ratio	1.07	0.717	0.430	1.07	0.710	0.428	1.15	0.764	0.131	0.082
	•											

								Example	ple				
				5-21	5-22	5-23	5-24	5-25	92-9	5-27	5-28	5-29	5-30
			Ethylene glycol diacetate	2g (0.0137)	3g 5g (0,0205) (0.0342)	5g (0.0342)							
			Triacetin				2g 3g (0.0092) (0.0138)	3g (0.0138)	5g (0.0229)				
	21	3	Pentaacetyl-β-0-glucose							2g (0.0051)	3g (0.0077)		
snoiti	пош		Glycerin fatty acid ester									5g (0.0229)	8g (0.0367)
ouoo ;	guig.		Aqueous hydrogen peroxide (35 wt%6)										
guinut	Char	@	Sodium percarbonate	4.55g (0.0294)	4.55g 4.55g	4.55g (0.0294)	4.55g (0.0294)	4.55g (0.0294)	4.55g (0.0294)				
oeiune			Sodium perborate								5.00g 5.00g 0.5g (0.0294) (0.0294) (0.0029)	0.5g (0.0029)	0.5g (0.0029)
³W		9	Water	55g	55g	55g	55g	55g	55g	55g	55g	55g	55g
		A)/(B	(A)/(B) molar ratio	0.47	0.70	1.16	0.31	0.47	0.78	0.17	0.26	7.90	12.66
		(A)	[(A)+(B)]/(C) weight ratio	0.055	0.073	0.109	0.055	0.073	0.109	0.055	0.073	0.093	0.147
	Ę.	seco	nH in second step(25°C)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
L		:	Just after second step	18500	22000	23000	22100	27300	33500	26400	30100	4500	5300
0 2	Irganio peracid	sracid	30 minutes after second step	17200	21000	22300	21600	25400	30800	24100	28300	4300	5300
-	(mdd)	_		15800	19900	21500	20900	23200	29600	22500	25100	4100	2000
او	Ju en	remain	Degree of remaining organic peracid (%)	85.4	90.5	93.5	94.6	85.0	88.4	85.2	83.4	91.1	94.3
ءً ا	Jo ee.	remai	Degree of remaining hydrogen peracid (%)	46.2	38.6	35.6	37.2	20.8	6.9	30.9	21.1	25.9	17.4
8	3	H202/	H ₂ O ₂ /ester group molar ratio	1.07	717.0	0.430	1.07	0.710	0.428	1.15	0.764	0.127	0.079

L							Example	aldi				
			6-1	2-9	6-3	6-4	6-5	9-9	6-7	8-9	6-9	6-10
		Ethylene glycol diacetate	5g (0.0342)									
	3	Triacetin			5g (0.0229)		5g 5g 5g 5g 5g (0.0229) (0.0229)	5g (0,0229)	5g (0.0229)	5g (0.0229)		
streibs		Pentaacetyl- β -D-glucose									5g 5g (0.0128)	5g (0.0128)
อ.เสินเ ฮิเ	(8)	Aqueous hydrogen peroxide (35 vt96)	4.3g (0.0443)	4.3g (0.0443)	$\frac{4.3g}{(0.0943)} \left(\frac{4.3g}{(0.0943)} \left(\frac{4.3g}{(0.0943)} \left(\frac{4.3g}{(0.0943)} \right) \left(\frac{4.3g}{(0.0943)} \left(\frac{4.3g}{(0.0943)} \right) \left(\frac{4.3g}{(0.0943)} \right) \left(\frac{4.3g}{(0.0943)} $	4.3g (0.0443)	4.3g (0.0443)	4.3g (0.0443)	4.3g (0.0443)	4.3g (0.0443)	4.3g (0.0443)	4.3g (0.0443)
ijpunod	Chelating agent (net content)	Organic phosphonic acid	0.1g	0.1g	0.1g	0.1g	0.1g	0.1g	0.1g	0.1g	0.1g	0.1g
iwo		Sodium hydroxide	2g		2g			2g			2g	
ာ	adjusting agent	Akaline ph adjusting agent Sodium carbonate		:	_	gg			6g			
	(net content)	Trisodium phosphoate		48			4g			4g		4g
	Acidio pH	Sulfurio acid (purity 98%)	2.1g	2.1g	1	_	1	2.1g	2.1g	2.1g	2.1g	2.1g
	adjusting	Phosphorio acid (purity 85%)	0.5g	0.5g	5.0g	5.0g	5.0g	0.5g	0.5g	0.5g	0.5g	0.5g
ŝ	A)/(B) molar ratio	Itio	77.0	77.0	0.52	0.52	0.52	0.52	0.52	0.52	0.29	0.29
		Just after preparation	25,000	24,000	27,000	22,000	26,000	27,000	22,000	26,000	30,000	29,500
ő	Organic peracid	30 minutes later	25,000	-	26,500	20,000	25,500	26,000	20,000	25,500	_	28,000
ŏ	concentration	60 minutes later	24,500	23,000	26,500	19,000	25,000	25,500	19,000		27,000	27,000
		120 minutes later	24,000	22,000	25,000	18,000	24,000	25,000	18,000	23,500	25,500	25,500
P t	dydrogen peroxide co	dydrogen peroxide concentration (ppm)	1,500	1,650	1,050	1,900	1,350	1,050	1,850	1,300	06	920
퓜	of aqueous solu	ph of aqueous solution for sterilization (25°C)	3.5	2.8	3.7	1.5	3.0	3.5	1.2	2.8	3.5	5.8
Nem	Number of remaining	Bacillus cereus 1F013494	\$20	\$20	¢20	<50	200	20	\$30	Ş	\$20	²⁰
Е	microorganisms (CFU/mL)		\$50	99	\$	<50	<50	20	(20	20	<20	20
	H ₂ O ₂ /es	H ₂ O ₂ /ester group molar ratio	0.648	0.648	0.645	0.645	0.645	0.645	0.645	0.645	0.692	0.692