The Finite State Projection Algorithm

Clayton W. Seitz

September 9, 2022

Master equations

- Master equations describe the time-evolution of a discrete state Markov process in continous time
- We define a probability T_{ij} of transitioning to the arbitrary state ω_j from ω_i where $\omega_i, \omega_j \in \Omega$
- These probabilities are efficiently described by a matrix $\mathbf{T} \in \mathbb{R}^{N \times N}$ where $N = |\Omega|$
- ▶ T[(I, t + dt), (j, t)] = Pr((I, t + dt), (j, t)) is a conditional distribution, given that we are in a state j at time t

Initially we assume T is constant in time

The forward equation

The time evolution of $P(\Omega, t) \in \mathbb{R}^{N \times 1}$ is determined by the net probability flux into and out of each state:

$$P(\omega_{i}, t + dt) = \underbrace{T_{ii}P(\omega_{i})dt + \sum_{j \neq i} T_{ij}P(\omega_{j}, t)dt}_{j \rightarrow i} + \underbrace{\sum_{j \neq i} T_{ji}P(\omega_{i}, t)dt}_{i \rightarrow j} + \underbrace{\sum_{j \neq i} T_{ij}P(\omega_{i}, t)dt}_{i \rightarrow j}$$

$$= \underbrace{\sum_{j \neq i} T_{ij}P(\omega_{j}, t)dt}_{j \rightarrow i} + \underbrace{P(\omega_{i}, t) \sum_{j} T_{ji}dt}_{i \rightarrow j}$$

$$= \underbrace{\sum_{j \neq i} T_{ij}P(\omega_{j}, t)dt}_{j \rightarrow i} + \underbrace{P(\omega_{i}, t) \left(1 - \sum_{j} T_{ij}dt\right)}_{i \rightarrow j}$$

$$P(\omega_i, t + dt) = \sum_{j \neq i} T_{ij} P(\omega_j, t) dt + P(\omega_i, t) \left(1 - \sum_j T_{ij} dt\right)$$

$$\lim_{dt\to 0} \frac{P(\omega_i,t+dt)-P(\omega_i,t)}{dt} = \sum_{j\neq i} T_{ij}P(\omega_j,t)-P(\omega_i,t)\sum_j T_{ij}$$

Rearranging, we arrive at the master equation

$$rac{dP(\omega_i)}{dt} = \sum_i T_{ji}P(\omega_j,t) - T_{ij}P(\omega_i,t)$$

Operator formulation

It is common to then define an operator $m{W}$ s.t. $W_{ij}=T_{ij}$ and $W_{ii}=-\sum_j T_{ij}$

$$rac{dP(\omega_i)}{dt} = \sum_j W_{ij} P(\omega_j)
ightarrow rac{dP(\omega)}{dt} = \mathbf{W} P(\omega)$$

We have the following simplified form of a general master equation

$$\frac{dP(\omega)}{dt} = \mathbf{W}P(\omega)$$

The chemical master equation

We transition from a state ω_i to ω_i via reaction $\boldsymbol{\nu}$

Thus states are related by $\omega_i = \omega_j + \nu_j$. Suppose that \boldsymbol{T} varies with the state \boldsymbol{x}

$$\begin{split} \frac{dP(\omega_i)}{dt} &= \sum_j T_{ji} P(\omega_j, t) - T_{ij} P(\omega_i, t) \\ &= \sum_j T_{ji} (\mathbf{x} - \mathbf{\nu}) P_j (\mathbf{x} - \mathbf{\nu}, t) - T_{ij} (\mathbf{x}) P_j (\mathbf{x}, t) \end{split}$$

Or in vector form, we have

$$\frac{dP(\mathbf{x})}{dt} = \sum_{i} T_{j}(\mathbf{x} - \mathbf{\nu})P_{j}(\mathbf{x} - \mathbf{\nu}, t) - T_{j}(\mathbf{x})P_{j}(\mathbf{x}, t)$$

The chemical master equation intuition

We arrived at the following equation

$$\mathcal{J} = \frac{dP(\mathbf{x})}{dt} = \sum_{j} T_{j}(\mathbf{x} - \mathbf{\nu})P_{j}(\mathbf{x} - \mathbf{\nu}, t) - T_{j}(\mathbf{x})P_{j}(\mathbf{x}, t)$$

where ${\cal J}$ is a probability current

 $P(\mathbf{x},t)$ is a density over the state space Ω . This is then a sum over the entire state space

Each term of the above sum is a vector multiplied by a scalar. The current $\mathcal J$ is a vector expressed as a sum of vectors

The chemical master equation intuition

We write it as a matrix multiplication by arranging $T_j(\mathbf{x} - \mathbf{\nu}_j)$ as the columns of a matrix $\mathcal{L}(\mathbf{x} - \mathbf{\nu}_j)$

$$\mathcal{J}(\mathbf{x},t) = \mathcal{L}(\mathbf{x} - \mathbf{\nu}_j, t) P(\mathbf{x} - \mathbf{\nu}_j, t) - \mathcal{L}(\mathbf{x}, t) P(\mathbf{x}, t)$$

But $\nu_i = 0$ so we define $\mathbf{W} = \mathcal{L}(\mathbf{x} - \mathbf{\nu}_j, t) - \mathrm{diag}\left(\mathcal{L}(\mathbf{x}, t)\right)$ which gives

$$\mathcal{J}(\mathbf{x},t) = \mathbf{W}P(\mathbf{x},t)$$