

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

EE3410E POWER ELECTRONICS

AC/AC CONVERTERS

Dr. Nguyen Kien Trung Dept. of IA, School of EE

Advance Power Electronic Systems Laboratory (APES Lab.)

General introduction

AC source

AC grid, secondary winding of line transformers, secondary side of high freq. isolated converters, Generator outputs

AC/AC inverters

AC chopper, Cycloconverters, Matrix converters,

AC loads

AC motors, AC grids, Fan, pumps, Lighting systems, Heating systems, etc.

5/11/2022

Classification

AC chopper: R-Load

Single phase AC chopper

Typical waveform with R-load

AC chopper: R-Load

Output RMS voltage

$$V_o = \sqrt{\frac{1}{\pi}} \int_{\alpha}^{\pi} 2V_s^2 \sin^2 \theta \ d\theta$$

$$=V_{s}\sqrt{1-\frac{\alpha}{\pi}+\frac{\sin 2\alpha}{2\pi}}$$

where α is the firing angle

RMS current in SCR

$$I_{SCR,rms} = \frac{I_{o,rms}}{\sqrt{2}}$$

Typical waveform with R-load

AC chopper: RL-Load

Output RMS voltage

$$V_o = \sqrt{\frac{1}{\pi}} \int_{\alpha}^{\beta} 2V_s^2 \sin^2 \theta \ d\theta$$

$$=\frac{V_s}{\pi}\sqrt{\beta-\alpha+\frac{\sin 2\alpha}{2}-\frac{\sin 2\beta}{2}}$$

where α is the firing angle, β is the extinction angle, ϕ is the load angle: $\sin(\beta - \alpha)$

$$= \sin(\alpha - \phi) \left[1 - e^{(\alpha - \beta)/\tan \phi} \right]$$

Typical waveform with R-load

AC chopper: L-Load

Thyristor Controlled Reactor – TCR

$$I_L(\alpha) = \frac{V}{\omega L} (1 - \frac{2}{\pi} \alpha - \frac{1}{\pi} \sin 2\alpha)$$

Equivalent inductance:

$$L(\alpha) = \frac{L}{(1 - \frac{2}{\pi}\alpha - \frac{1}{\pi}\sin 2\alpha)}$$

AC chopper: R-Load

Three phase AC chopper

Various types of three phase AC voltage controllers

Typical waveform with R-load

AC chopper: R-Load

• Output voltage depends on α

$$\gg 0 < \alpha < 60^{\circ}$$
:

$$V_o = V_S \sqrt{1 - \frac{3\alpha}{2\pi} + \frac{3}{4\pi}} \sin 2\alpha$$

$$\gg 60^{o} < \alpha < 90^{o}$$

$$V_o = V_s \sqrt{\frac{1}{2} + \frac{3}{4\pi}} \sin 2\alpha + \sin\left(2\alpha + \frac{\pi}{3}\right)$$

$$\gg 90^{o} < \alpha < 150^{o}$$

$$V_o = V_s \sqrt{\frac{5}{4} - \frac{3\alpha}{2\pi} + \frac{3}{4\pi}} \sin\left(2\alpha + \frac{\pi}{3}\right)$$

Typical waveform with R-load

AC chopper: RL-Load

• For L-Load (R = 0Ω)

$$\gg 90^{o} < \alpha < 120^{o}$$

$$V_o = V_s \sqrt{\frac{5}{2} - \frac{3\alpha}{\pi} + \frac{3}{2\pi}} \sin 2\alpha$$

$$\gg 120^o < \alpha < 150^o$$

$$V_o = V_s \sqrt{\frac{5}{2} - \frac{3\alpha}{\pi} + \frac{3}{2\pi}} \sin\left(2\alpha + \frac{\pi}{3}\right)$$

 For RL Load, analysis is complicated

Typical waveform with R-load

AC chopper: RL-Load

Control range of three-phase
 AC chopper

Control range with various types of load

Typical waveform with RL-load

AC chopper: Application

SSR: Solid state relay

Single-phase SSR

5/11/2022

AC chopper: Application

SSR: Solid state relay

Three-phase SSR

14

5/11/2022

AC chopper: Application

Soft-Starter

- Smooth Startup
- Acceleration & Deceleration Control
- No Power Surges

Applications

- Fans
- Conveyer belts
- Motors using belt & pulleys
- Water or liquid Pump

Soft Starter

Cycloconverters

Single phase Cycloconverters

50 Hz to 16 $^2/_3$ Hz conversion

50 Hz to 10 Hz conversion

Structure and equivalent circuit

Cycloconverters

Three phase Cycloconverters

High frequency cycloconverter

- High frequency input from transformer
- SPWM is done in the primary side

Cyclo-inverter

Typical waveforms

Dual-Active-Bridge AC/AC converters

- Bidirectional switches
- High-frequency transformer
- Phase-shift modulation

DAB AC/AC converter

Forward mode

Reverse mode

Matrix converters

- Indirect matrix converters
- There is a "virtual" DC bus
- Capacitor-free

Matrix converters

- Direct matrix converters
- Direct AC/AC conversion
- NO DC-bus at all
- Bidirectional switches
- Complicated switch selection table

THANKS FOR ATTENTIONS