Subject Index

100% cosine data taper, 189	aliases, 82
	aliasing, 83, 108, 113, 122–3, 569
	and averaging, 161
absolute deviations sinusoidal amplitude estimator	antialiasing filter, 57, 224
(Laplace method), 529	different sampling intervals example, 131
absolutely continuous, 120	discrete time/continuous frequency, 81 sea level residuals, 522
summable, 165	
acausal	amplitude spectrum, 54 analytic series, 114, 561, 578–9
	imaginary part of, 579
autoregressive (AR) process, 446, 506 filter, 147–8, 152, 155	Willamette River data, 578, 592
purely	angular frequency, 8
autoregressive (AR) process, 447–8	angular frequency, 6 antialiasing filter, 57, 224
ACF (see autocorrelation function)	applications of spectral analysis, 16–7
acoustic properties of human speech	approximate conditional least squares (ACLS)
AR model, 447	conditions needed for ACLS to become ECLS
ACLS (see approximate conditional least squares)	complex-valued case, 517
ACS (see autocorrelation sequence)	real-valued case, 517
ACVF (see autocovariance function)	sinusoidal amplitude estimator, 515, 525, 549,
ACVS (see autocovariance sequence)	569–70, 572–3, 585, 589
adaptive multitaper spectral estimator, 389	white noise variance estimator, 549, 570, 589
ACVS issue, 615	approximate least squares, 516, 585
distribution of, 390	approximate least squares sinusoidal amplitude
EDOFs, 390	estimator
ocean wave data, 427–8	expected value of, 516, 585
Parseval's theorem in expectation, 390, 439	AR (autoregressive) process (see autoregressive
aggregated processes, 42	(AR) process)
AIC (see Akaike's information criterion)	AR(1) process
AICC (see Akaike's information criterion cor-	asymptotic stationarity and causality, 448-9
rected for bias)	autocovariance sequence, 44
Akaike's information criterion, 494	backward least squares autoregressive parame-
corrected for bias (AICC), 495	ter estimator, 510
order selection, 494	Burg autoregressive spectral estimator, 510
centered time series, 495	forward least squares autoregressive parameter
Akaike's information criterion corrected for bias	estimator, 510
(AICC), 495	from sampling a continuous parameter/time
order selection, 495	process, 507
centered time series, 495	infinite-order moving average form, 44
Willamette River data, 575–6	maximum likelihood estimator, 482

model for colored noise, 335	multitaper spectral estimator, 358–9, 364–5,
parameter estimation from estimated ACVS,	398–9, 400, 419
335–6	multitaper versus WOSA spectral estimation,
simulation of Gaussian	418–9
via circulant embedding, 639–40	nonunimodality of spectrum and bandwidth of
via Gaussian spectral synthesis method	time series, 300–1
(GSSM), 639–40	numerical examples
via Kay's method, 639	Burg's algorithm, 468–9, 509
Yule–Walker autoregressive parameter estima-	periodogram, 172–3
tor, 510	Yule–Walker estimator, 458–9, 461–2, 509
AR(2) process, 34, 168, 172–3	prewhitening, 198–201
alternative models, 440	SDF and expectation of direct spectral estima
asymptotic time series bandwidth, 347	tor, 193
bias in periodogram, 177	simulated examples, 34
Burg autoregressive spectral estimator, 509	direct spectral estimator properties, 242
cumulative periodogram test, 216	periodogram properties, 242
direct spectral estimator, 186	simulation of Gaussian
and variability, 208	via circulant embedding, 640–1
discretely smoothed periodogram, 309-10,	via Gaussian spectral synthesis method
348–9	(GSSM), 606, 641
form of FBLS parameter estimator, 510	via Kay's method, 638–9
innovation variance estimators, 406-7	smoothing window
lag window spectral estimator, 294, 348-9	leakage, 289
log SDF estimator, 304–5	parameter choice, 292
maximum likelihood autoregressive spectral	tapering, 185
estimator, 489	WOSA estimator, 417–8
numerical examples	Yule–Walker autoregressive spectral estimator,
Burg's algorithm, 509	458–9, 461–2, 509
periodogram, 172–3, 510	Yule–Walker versus periodogram spectral esti-
Yule–Walker estimator, 507–8	mators, 508
simulated examples, 34	ARIMA (autoregressive, integrated, moving aver
direct spectral estimator properties, 242	age) process, 16
periodogram properties, 242	ARMA (see autoregressive moving average
simulation of Gaussian	(ARMA) process)
via circulant embedding, 602–3	ARMA(1,1) process, 44
via Gaussian spectral synthesis method	autocovariance sequence (ACVS), 44
(GSSM), 608–9	infinite-order moving average form, 44
via Kay's method, 597	kurtosis, 632
tapering, 195	skewness, 632
unimodality of spectrum and bandwidth of	inequality, 633, 641
time series, 300	variance, 632
WOSA estimator, 416–7	asymptotic equivalence of autoregressive estima-
Yule-Walker autoregressive spectral estimator,	tors, 484
509	asymptotic relative efficiency, 165
AR(4) process, 35, 168, 172–3	asymptotic stationarity and causality, 448-9
and end-point matching, 239	asymptotically efficient estimator, 166, 522–3
asymptotic time series bandwidth, 347	atmospheric CO ₂ data, 332–3
bias in periodogram, 178	atomic clock data, 1–2
Burg autoregressive spectral estimator, 468–9,	ACS for
509	sample, 4
DCT-based periodograms, 218	theoretical, 10
direct spectral estimator, 186	lag 1 scatter plot for, 3
discretely smoothed direct spectral estimator,	simulation of, 11
310–11, 348–9	spectrum for
eigenspectra, 361, 363, 368, 395, 397, 437	estimated, 12, 14
FBLS autoregressive spectral estimator, 478,	theoretical, 10, 12, 14
509	atomic clock fractional frequency deviates, 326,
innovation variance estimators, 406-7	430
lag window spectral estimator, 295, 301, 349	associated time differences, 325-6
log SDF estimator, 305–6	direct spectral estimator, 327
low-rank weighted multitaper spectral estima-	periodogram, 327
tor, 422–3	Burg autoregressive spectral estimator, 501
maximum likelihood autoregressive spectral	innovation variance
estimator, 482–3, 490	estimation, 431-2, 499-500

simulation, 628–9	versus spectral density function, 124
lag window spectral estimator, 328, 501	white noise, 31, 117
multitaper spectral estimator, 501	Wold's theorem, 117, 126
periodogram 328	autoregressive (AR) process, 33, 445-6
atomic clock timekeeping, 162, 593	acausal, 446, 506
augmented Yule-Walker equations, 452	acoustic properties of human speech, 447
autocorrelated cosine lag window, 284, 345	* *
	ACVS, 460, 508
autocorrelation, 72, 96–8, 100, 102, 112	asymptotic stationarity and causality, 448–9
autocorrelation function (ACF), 27	causality, 446, 448, 506, 618, 638
autocorrelation method, 480	and parameter estimators, 448, 617
autocorrelation sequence (ACS), 4, 9, 27	assessment, 463
conjugate symmetry, 30	conditions for, 34, 446
estimation, 5, 19–20	characterization, 509
MA(2) process, 159	order, 446
sample, 3	
white noise, 19	order selection (see order selection for autor
autocorrelation width, 73, 97–8, 100, 102	gressive process)
	plus white noise is an ARMA process, 554,
smoothing window, 251	591
spectral window, 191–2, 194	pseudo-, 553
autocovariance function (ACVF), 27, 38	purely acausal, 447
and the integrated spectrum, 114	simulation, 595
and the SDF, 114	zero initial conditions, 595
conjugate symmetry, 30	simulation of Gaussian
Gaussian-shaped, 131	
positive semidefinite, 30	stationary initial conditions, 595, 599, 624,
symmetry, 27	637
autocovariance sequence (ACVS), 27, 29	via Kay's method, 595–7
and integrated spectrum, 111	via McLeod and Hipel's method, 599
	sinusoidal variations, 447
ARMA process, 44, 600	spectral density function (SDF), 144–5, 446,
AR process, 44, 460, 508	485, 609, 617–8
band-limited white noise, 379, 604	stationarity condition, 34, 145, 446, 448, 557
biased estimator of, 2-7, 166, 168–9, 232, 295,	autoregressive estimator
505, 561, 591	and prewhitening, 491, 506
for complex-valued process, 231, 562	
positive definite, 451	asymptotic equivalences, 484
classification examples, 121	Burg's algorithm, 466, 505
complex-valued process, 29, 42	complex-valued process, 502
corresponding to	least squares estimators, 475, 478, 505
direct spectral estimator, 188, 611–12	maximum entropy method, 471
lag window spectral estimator, 248, 612	maximum likelihood estimators, 480, 506
• .	pure parametric approach, 506
multitaper estimator, 433	variability assessment
periodogram, 170–1	via large-sample theory, 485
WOSA estimator, 420, 435	via simulation, 626
Yule–Walker autoregressive spectral estimator,	
504, 508	Yule–Walker method, 449–51, 505
decay to zero, 120	complex-valued process, 502
estimation of, 166, 231	autoregressive moving average (ARMA) process
for process squared, 43	35, 492, 597–8
fractionally differenced (FD) process, 440	ACVS, 600
GSSM-based approximation, 606–7, 640	AR process plus white noise, 159, 554, 591
harmonic process, 36–7, 117, 591	causal, 600, 631
	maximum entropy, 473–4
complex-valued, 519, 562	pseudo-AR process plus white noise, 554
inverse Fourier transform of SDF, 111, 126	
moving average process, 32	SDF, 145, 159
MA(2), 159	simulation of Gaussian, 593–4, 597–8
piecewise-constant SDF, 348	stationary initial conditions, 599-600, 637,
positive semidefinite, 28, 30, 43	639
power-law process, 391, 605	via Kay's method, 598, 639
randomly phased sinusoid, 35, 511, 553, 598	via McLeod and Hipel's method, 600, 639
subsampling, 130	simulation of non-Gaussian, 631, 638
symmetry and conjugate symmetry, 27, 29	simulation via step-down scheme, 461
unbiased estimator of, 166, 168–9, 236–7,	with distinct AR and MA coefficients, 554,
271	591
for complex-valued process, 562	with identical AR and MA coefficients, 554

autoregressive moving average (ARMA) spectral	Bartlett–Priestley
estimator, 492, 504	design window, 273–4, 344
autorelation sequence, 29, 31	lag window, 268, 274, 281, 320, 344
average value of a function, 71	smoothing window, 274–5
	spectral window, 274–5
	basic multitaper spectral estimator, 352-5, 432-4
background continuum, 511, 513, 523, 544, 547,	611, 613
549, 551, 553, 583, 588	ACVS estimator for, 433
backward least squares (BLS)	and Gaussian white noise, 370-4, 402-3
autoregressive parameter estimator, 477, 484	and improved estimation of
AR(1) example, 510	innovation variance, 403–7
backward linear prediction, 455	exponent of power-law process, 407-12, 440
complex-valued process, 502, 564	log SDF, 412
backward linear prediction error, 455	and periodicity testing, 544–8
band-limited function, 57-8, 93, 139	approximated by WOSA spectral estimator,
extrapolation of, 66	424
recovering the continuous from the sampled,	AR(4) data, 358-65, 368-70, 393-400, 405-7
84	419
band-limited white noise, 128, 131, 379, 604	atomic clock fractional frequency deviates,
band-pass filter, 146	430–2, 501, 628–30
band-pass process, 299, 347	bias of, 359, 392
bandwidth	distribution of, 354, 356–7, 381–2, 409, 434
of AR(2) and AR(4) time series, 347	energy preservation of, 366–7
of spectrum, 292, 296, 346	equivalent degrees of freedom (EDOFs) of,
estimation of, 297	354–5, 434
of time series, 300-1, 321-2, 347	equivalent width, 355
estimation of, 300	expected value of, 353, 433
regularization, 357, 377, 425, 428, 434	in circulant embedding simulation method,
smoothing window, 245, 251, 268, 281, 292,	611
296, 300–1, 318, 322, 341, 346–7	
Bartlett-Priestley design, 344	jackknifing of, 356–7, 369–70 ocean wave data, 425–9
choice of, 252	spectral window for, 353, 433
finer frequency grid, 255	bandwidth of, 353, 359, 433
for sea level residuals, 522	
Grenander, 251, 268, 279, 281	approximation (sinusoidal), 400–1, 434 sinusoidal, 398–400
lag window spectral estimator, 279	
Parzen, 251	Slepian, 358–9, 364–5
repeated lag window estimator, 349-50	variance of, 353–4, 359
spectral window, 206, 226-7, 229, 235, 268,	Gaussian white noise, 372–4, 402–3
294, 296, 317–8, 323, 325, 328, 331, 335,	via quadratic spectral estimator, 374
341, 347, 568, 623–4, 628	basis for the class of band-limited functions, 66
approximation for sinusoidal multitaper spec-	Bessel function, 196, 234
tral estimator, 400, 409	best (backward) linear predictor, 455
basic multitaper spectral estimator, 437, 575	complex-valued process, 502, 564
definition for basic multitaper spectral estima-	best (forward) linear predictor, 452–3
tor, 353	complex-valued process, 502, 564
definition for direct spectral estimator, 194	best linear predictor, 404, 455, 460–1, 463, 472
definition for eigenspectrum, 353	best predictor, 463
definition for lag window estimator, 256	bias
definition for weighted multitaper spectral	and dynamic range, 177
estimator, 353	broad-band, 359, 380-2, 387-8, 390
definition for WOSA, 414–5	defined, 378
for sea level residuals, 521-2	indicator, 379–81, 439
frequency range for statistical results, 213,	minimizing indicator of, 380
244	due to leakage, 185, 192, 351
versus equivalent width, 214, 355, 369, 402	due to smoothing window, 256, 290
versus regularization bandwidth, 402	indicator for minimum-bias multitaper spectral
WOSA, 429	estimator, 392, 441
spectral window versus smoothing window,	local, 290, 359, 381-2
257	defined, 378
Bartlett	magnitude indicator, 378-9, 381
lag window, 268-9, 281, 344, 412	of direct spectral estimator, 192
smoothing window, 269-70	of multitaper spectral estimator, 359
spectral window, 269-70	of periodogram, 163

of weighted multitaper spectral estimator, 391,	and periodogram, 184, 213, 240
441	and simulations, 619, 627
bivariate standard Gaussian PDF, 634	and tapering of a time series, 195
Mehler's expansion, 635	and WOSA spectral estimator, 419–20
Blackman–Tukey estimator, 252 block averaging, 270–1, 412–14	of data for harmonic analysis, 583
Bluestein's substitution, 94	central peak (lobe), 175 cepstrum, 301, 473, 503
blurring function, 93	estimator, 302–3
bootstrapping, 593, 611, 618, 631, 638	Cesàro summability and sums, 78, 165
confidence intervals for innovation variance,	chaotic beam data, 228
630	direct spectral estimator, 228–30
second approach in AR case, 630	periodogram, 228–9
confidence intervals for log of SDF, 623–5	Chebyshev's inequality, 164
second approach in AR case, 626	chi-square distribution, 37, 204, 209–10, 539
boundary conditions (<i>see</i> circular or reflecting)	noncentral, 542, 552
Brent's method, 528, 558	chi-square RV, 37, 203, 209–10, 235, 408, 539,
broad-band bias, 359, 380-2, 387-8, 390	546
defined, 378	and confidence intervals, 438, 486, 490
indicator, 379-81, 439	logarithm of, 209, 412
minimizing indicator of, 380	expected value and variance, 302
Burg autoregressive estimator, 466–8, 505	scaled, 264, 298, 343
AR(1) process, 510	sum of chi-square RVs, 299
AR(2) data, 509–10	weighted sum of chi-square RVs, 264
AR(4) data, 468–9, 509	chirp transform algorithm, 94, 216
assessing variability (SDF), 485, 624-6	Cholesky decomposition, 599, 604, 637, 639
atomic clock fractional frequency deviates,	modified, 464, 480, 599
501	circulant embedding simulation method, 440,
causality, 466, 505	601–4, 611, 620, 627, 629, 631
complex-valued process, 502, 562	ACVS properties, 602, 640
FPE criterion, 494	and direct SDF estimator, 611
ocean wave data, 496–9	and lag window SDF estimator, 611-12
order selection via PACS, 498–9	and multitaper SDF estimator, 611, 613
of innovation variance, 629	and periodogram, 615, 641
peak in SDF	and WOSA SDF estimator, 611, 613
height, 576	compared to method of surrogate time series
shifting and splitting, 560, 562, 576, 591	(MSTS), 616
width, 576	computational efficiency, 603
Willamette River data, 575–7	issues with ACVS, 615
Burg's algorithm, 466, 468, 470, 473, 478, 482,	overcoming negative weights, 604, 637, 640
491, 493, 505, 560, 575–6	weights, 601–2, 605, 611, 629, 637, 640
analytic series, 562	AR(1) process, 640–1
and Yule–Walker method, 471	direct SDF estimator, 612
AR(2) numerical examples, 509–10, 556	lag window SDF estimator, 612
observed prediction error, 466	multitaper SDF estimator, 613
two-step, 560	WOSA SDF estimator, 613
	circular boundary conditions, 424
	circularized sequence, 601–2, 640
carbon dioxide and global temperature, 366	classification of spectra, 120–2
cascaded filter, 145	CO ₂ data, 332
Cauchy inequality, 257, 262, 371, 442	lag window spectral estimator for filtered, 335
causal process	periodogram for filtered, 335
autoregressive (AR), 34, 446, 448, 506, 618, 638	coefficient of determination, 570, 572, 621 colored noise, 120, 126, 219, 241, 377–8, 381,
autoregressive moving average (ARMA), 600,	389, 511, 513, 518, 520, 523, 539, 544,
631	550, 574, 584
causal filter, 147, 161	proper complex-valued, 519, 585
causality, 446, 448, 506, 618, 638	complementary covariance, 31
and parameter estimators, 448, 617	complete stationarity, 215
assessment, 463	complex demodulation, 160, 232, 592
conditions for, 34, 446	complex exponentials, 17, 48, 134
centering	linear combinations of, 132, 137
AIC and AICC, 494–5	complex-valued colored noise (proper), 519, 585
and direct spectral estimator, 195, 241, 244,	complex-valued stochastic process
548	continuous parameter/time, 23

discrete parameter/time, 23	correlation distortion due to zero-memory nonlin-
complex-valued Gaussian or normal RV (proper),	earity (ZMNL), 635-6
30, 546–7	correlation length, 131
complex-valued process	correlation of direct spectral estimator, 212, 243
by complex demodulation, 160, 374	correlation time, 214
resulting ACVS, 160	correlogram method power spectral density estim-
resulting SDF, 160, 374	ator, 252
example of, 127	cosine data taper, 189–90, 260
	cosine lag window, 290
complex-valued roots, 566–7, 580, 592	covariance
complex-valued stationary process, 29, 231, 374,	complex-valued case, 25, 41
501–2, 519, 585	*
time reverse of conjugate, 502	real-valued case, 24
complex-valued white noise (proper), 517–8, 564	covariance matrix, 28, 42, 44, 184, 376, 379,
compound periodicity, 540–1	382, 391, 440, 450, 457, 465, 485
computational pathways, 221, 224, 315	Cholesky decomposition, 599, 604, 637, 639
concentration measure	modified, 464, 480, 599
continuous time/continuous frequency, 62, 65	condition number, 185
discrete time/continuous frequency, 85, 105,	covariance method, 480
155, 386	covariances of
discrete time/discrete frequency, 94	direct spectral estimator, 205, 209-13, 243
for eigenspectrum spectral window, 368	in WOSA blocks, 415, 442
condition number of covariance matrix, 185	eigenspectra, 354, 372, 436, 438
and dynamic range, 185	lag window spectral estimator, 260-1, 342
confidence interval for	periodogram, 203-4, 235
innovation variance, 629	subtle issues, 214–5
bootstrapping, 630	weighted multitaper spectral estimator, 437
11 0	weighted sums of time series values, 242
via simulation, 630	CPDF (see cumulative probability distribution
jump in the integrated spectrum, 590	function)
log of SDF, 205, 227, 229, 266–7, 323, 328,	cross-correlation (complex), 72, 96, 98–9, 101–2
331, 335, 342, 354, 359, 425, 521	cumulant, 215, 632
bootstrapping, 623–5	inequality for fourth, 632-3
SDF, 205, 265, 267, 342, 357, 485, 488–90	cumulative periodogram test, 215-6
chi-square versus jackknifing, 438	examples
conjugate symmetry, 29–30, 48, 54, 75, 92	AR(2) data, 216
consistent estimator of	ocean noise, 230–1
mean, 164	Willamette River data, 550, 573–4
SDF	cumulative probability distribution function
discretely smoothed direct spectral estimator,	(CPDF), 23
246	
lag window spectral estimator, 260, 342	N-dimensional, 23
constructed multitaper spectral estimator, 355,	cyclic
376	autocorrelation, 220
continuous parameter deterministic sinusoid, 558	convolution, 220, 273
continuous parameter white noise, 38	convolution theorem, 101, 106
continuous parameter/time stochastic process, 22,	convolutions via FFTs, 106
38, 113–4, 131, 507	cyclical frequency, 8
sampling and aliasing, 122–3	
sampling and averaging, 161	Daniell
convergence	design window, 272
factors, 80, 152–3, 157, 579, 592	lag window, 268, 273, 281, 290
in mean square, 49, 53	smoothing window, 250, 272-3, 320
pointwise, 50, 53, 84	spectral window, 272–3
convolution, 67, 96, 98-9, 101	data taper (see taper)
as an LTI filter, 137, 157	data window, 186
continuous parameter, 142, 247	DC (direct current), 518
discrete parameter, 143, 247	DCT-based periodogram, 217, 244
as smoothing operation, 69–70, 247, 385	AR(4) process, 218
cyclic, 101, 106	asymptotic unbiasedness of, 218
Fourier transform of, 67, 96, 98-9, 101	bias of, 218–9
illustration of, 68–9, 104	statistical properties, 219
in frequency domain, 96, 98–9, 101, 105	decay
of periodic functions, 96, 105	of envelope of sidelobes, 269
copper wires, 57	rate of sidelobes
copper wires, 37	Take of sideloues

Bartlett smoothing window, 269, 276	corresponding ACVS estimator, 188, 452, 611
Bartlett-Priestley smoothing window, 275	covariances, 205, 209–13, 243
Daniell smoothing window, 273	discretely smoothed, 246-7
Gaussian smoothing window, 277	equivalent degrees of freedom (EDOFs), 347
Papoulis smoothing window, 278	spectral window bandwidth, 347
Parzen smoothing window, 276	distribution of, 204, 235
spectral windows, 281, 328	for complex-valued process, 232
decibel (dB) scale, 13, 209, 225-7, 266	eigenspectrum, 352
deconstructed multitaper spectral estimator, 355,	expected value of, 186, 234
376, 420–3	for real-valued harmonic process, 535, 585
decorrelation time, 214	exponential averaging, 444
default data taper, 188, 190	for blocks in WOSA, 414
degenerate kernel, 86	harmonic process examples, 536, 588
degrees of freedom	in circulant embedding simulation method,
for chi-square RV, 37, 202	611–12, 627–8
one, 13, 203	inconsistent estimator of SDF, 207, 235
two, 13, 203	linear combination of independent, 441–2
zero, 542	ocean wave data, 225–6, 496
equivalent (EDOFs), 264, 266	relationship to quadratic spectral estimator,
discretely smoothed direct spectral estimator,	376
343	
	ship altitude data, 330–1
discretely smoothed periodogram, 347	simulating properties of, 242
lag window spectral estimator, 264, 279, 342	smoothing of, 245
multitaper spectral estimator, 354–5, 390,	spectrum of, 213
434	use with AR order selection, 493
WOSA spectral estimator, 415–6, 442–3	use with Yule–Walker autoregressive estimator,
in a time series, 298, 507	452, 461–2, 505
of order 2, 298	variability, 208
derivative as an LTI filter, 157	variance of, 204, 235, 624
design window, 247	for complex-valued process, 232
for Bartlett–Priestley, 273–4, 319, 344	white noise, 189, 371
for Daniell, 272, 319	Dirichlet's kernel, 17–8, 76–7, 80, 85, 93, 106,
determinant of a matrix, 480	127, 233, 383, 537,
deterministic	discrete cosine transform, 184, 217
function, 48	discrete Fourier transform (DFT), 74–5, 92, 219,
sequence, 48	594, 602, 608
sinusoid, 553	as a convolution, 93–4
detrending (see trend removal and quadratic	chirp algorithm, 94
trend removal)	conjugate symmetry, 75, 92
deviance, 308	discrete parameter/time stochastic process, 22
generalized cross-validated (GCV), 309, 313,	discrete power spectrum, 50, 139-40
324, 339	discrete prolate spheroidal sequence (DPSS), 87,
DFT (see discrete Fourier transform)	155, 189, 357
diagonal matrix, 464, 565-6, 599	discrete prolate spheroidal wave function (DP-
differencing	SWF), 87, 105–6, 383–5, 439
for linear trend removal, 40	discrete spectrum, 120, 511-13, 518, 538, 584-6
for seasonality/periodicity removal, 40, 42,	discrete time sequence, 74
333	autocorrelation width, 100
higher-order, 340	convolution theorem, 99
to achieve stationarity, 340, 431	equivalent width, 100
digamma function, 210, 296, 302, 345, 405, 409	Fourier representation, 75, 99
Dirac delta function, 74, 113, 120, 157, 250, 524	Parseval's theorem, 75, 99
direct current (DC), 518	segment of, 91
direct spectral estimator, 164, 186, 201, 233, 340,	autocorrelation width, 102
375, 535–6, 545, 611	convolution theorem, 101
and centering a time series, 195–6, 241, 244,	equivalent width, 102
548	Fourier representation, 92, 100
atomic clock data, 327–9	Parseval's theorem, 92, 101
atomic clock data, 327–9 average value of, 241	spectral properties, 101
averaging of uncorrelated, 443	spectral properties, 101 spectral properties, 99
2 2	discretely smoothed direct spectral estimator,
bias, 192 chaotic beam data, 228–9	,
computation of, 219–24	246–7 computation of, 316
correlations, 212, 243	consistent estimator of SDF, 246
COITCIAUOIIS, 212, 245	consistent estimator of SDF, 240

equivalence to lag window spectral estimator,	ensemble, 21–2
249–50	entire function, 57
finer frequency grid, 253	entropy, 471–3
discretely smoothed periodogram, 307	envelope of sidelobes, 269, 273
bias/variance trade-off, 309	Epanechnikov lag window (see Bartlett–Priestley
computational scheme, 347	lag window)
corresponding ACVS estimator, 312–13, 348,	equal
615	by definition, 8, 23
equivalent degrees of freedom (EDOFs), 347	in distribution, 203, 485, 599
evaluating SDF estimates, 349	in the mean square sense, 49, 53
ice profile data, 324	equivalence of time and frequency domains, 55
parameter choice, 307, 309–10, 312, 324, 339, 348	equivalent degrees of freedom (EDOFs), 264, 266 adaptive multitaper spectral estimator, 390
spectral window bandwidth, 347	example (ocean wave data), 427–8
distribution of	basic multitaper spectral estimator, 354–5, 434
adaptive multitaper spectral estimator, 390	example (ocean wave data), 427
direct spectral estimator, 204, 235	discretely smoothed direct spectral estimator,
complex-valued process, 232	343
lag window spectral estimator, 264, 342, 490 maximum likelihood AR parameter estimator, 483	discretely smoothed periodogram, 347 lag window spectral estimator, 264, 279, 342 example (ocean wave data), 318–20
other AR parameter estimators, 484	via eigenvalues, 423–4
multitaper spectral estimator, 354, 356, 381, 409, 434	weighted multitaper spectral estimator, 354 WOSA spectral estimator, 415–6, 442–3
periodogram, 203, 235, 408	example (ocean wave data), 429–30
WOSA spectral estimator, 436	equivalent width, 58-60, 73, 97-8, 100, 102,
Doppler measurements of blood flow, 131	213–4
double orthogonality	multitaper spectral estimator, 355, 437
of eigenfunctions, 65, 87	sinusoidal multitaper spectral estimator, 401,
of Slepian sequences (DPSSs), 106	441
double-sided verus single-sided SDF, 118	smoothing window, 251
DPSS (see discrete prolate spheroidal sequence) DPSWF (see discrete prolate spheroidal wave	versus spectral window bandwidth, 214, 355, 369
function)	sinusoidal multitapers, 402
duration–bandwidth product, 66, 357	Slepian multitapers, 369
dynamic range, 177, 184, 197, 492, 641	ergodic theorems, 165
and condition number, 185	Euler relationship, 17
	Euler's constant, 210, 302, 404, 408
1 007	exact conditional least squares (ECLS)
echoes, 227	including mean, 552
ECLS (see exact conditional least squares)	sinusoidal amplitude estimator, 549, 569–70,
EDOFs (see equivalent degrees of freedom)	572, 589–90
effective bandwidth (see spectral window bandwidth)	white noise variance estimator, 549, 552, 570, 589–90
eigenfunction, 64 double orthogonality, 65, 87	exact unconditional least squares (EULS)
for a linear filter, 135	including mean, 552 sinusoidal amplitude estimator, 549, 569–70,
	572
eigenspectra, 352, 385, 432, 545	sinusoidal frequency estimator, 549
bandwidth of spectral windows, 353, 358 covariances of, 354, 372, 436, 438	white noise variance estimator, 550, 552, 570
plots of for AR(4) data, 361, 363, 368, 395,	expected value (expectation), 4
397	expected value of
regularization bandwidth, 357	direct spectral estimator, 186, 234
weights associated with, 352, 388–9	real-valued harmonic process, 535, 585
eigenvalue, 64, 86–7, 95, 185, 375, 380, 392,	lag window spectral estimator, 255, 341, 343
565, 567, 580, 591	multitaper spectral estimator
for a linear filter, 135	adaptive, 389–90, 439
eigenvector, 87, 95, 380, 392, 591	basic, 353, 433
left and right, 565, 567	weighted, 352
end-point mismatch, 181, 183	periodogram, 174, 233, 240
energy	complex-valued harmonic process, 524, 586
of a nonperiodic function, 54–5	real-valued harmonic process, 524, 585
of a periodic function, 49	conditional on phase value, 537-8
energy spectral density function, 55, 97, 99, 132	quadratic spectral estimator, 376–7, 439
•	

sinusoidal frequency estimator using peri-	FIR (see finite impulse response)
odogram maximum, 526	first difference filter, 40, 333
WOSA spectral estimator, 414, 435	effect of filter on SDF, 158, 326
exponential averaging, 444	Fisher's test for simple periodicity, 539-40, 550,
exponential distribution, 202, 209, 215, 598	586
exponential RV, 209	critical value, 581
extrapolation of a band-limited function, 66	approximation, 540, 589
•	ocean noise data, 581
	Willamette River data residuals, 571, 573
fader, 186	flicker frequency noise, 431
fast Fourier transform (FFT), 92, 94, 237, 602,	folding frequency (Nyquist frequency), 82
608	forward and backward least squares (FBLS)
FBLS (see forward and backward least squares)	and SVD approach, 565
F-distribution, 547, 574, 582, 587	autoregressive parameter estimator, 477, 484
non-central, 552	AR(2) examples, 510, 555–6
percentage points (special case), 544	autoregressive spectral estimator
Fejér's kernel, 80, 174–6, 180, 233, 240, 524,	AR(4) example, 478, 482
	Willamette River data, 592
532, 534, 537 different symmetries for 236	
different expressions for, 236	same as modified covariance method, 480
sampling of, 524	forward least squares (FLS)
sidelobes, 178–80, 328, 527, 532, 535–6	autoregressive parameter estimator, 477, 484
FFT (see fast Fourier transform)	AR(1) example, 510
filter	same as covariance method, 480
acausal, 147–8, 152, 155	forward linear prediction, 452–3
analog, 133	complex-valued process, 502, 564
antialias, 57, 224	forward linear prediction error, 453, 596
band-pass, 146	Fourier coefficient, 49
cascaded, 145	Fourier frequencies, 8, 91, 171, 515, 523–4
causal, 147	fundamental, 357
demodulation, 160	grid of, 171
digital, 140	alternative grid for uncorrelated SDF estima-
effect on integrated spectrum (filtering theo-	tors, 206, 208, 212
rem)	Fourier integral representation, 54
analog, 136, 157	Fourier representation of a periodic function, 49,
digital, 141	95
example of an LTI digital, 148	Fourier synthesis, 54
finite impulse response (FIR), 147–8, 152, 155,	Fourier theory
161, 503	continuous time/continuous frequency, 53, 97
first difference, 333	continuous time/discrete frequency, 48, 95
for pilot analysis, 160	discrete time/continuous frequency, 74, 99
high-pass, 146	discrete time/discrete frequency, 91, 100
as trend remover, 151	Fourier transform pair, 54, 96–7, 99–100
formed by subtracting output of low-pass	examples of, 171, 181, 188, 212, 220–2, 237,
filter from its input, 149	247–8, 301–2
infinite impulse response (IIR), 147, 503	for convolution of two functions, 67
Kalman, 482	for derivative of a function, 61
	FPE (see final prediction error)
kurtosis norm of, 632	
linear time-invariant (LTI), 132, 631, 633	fractionally differenced (FD) process, 166, 407–8
analog, 133	440
and convolution, 137	autocovariance sequence (ACVS), 440
digital, 140	SDF, 407–8
low-pass, 146, 592	simulation by circulant embedding, 440
cutoff frequency, 151	Fredholm integral equation
design by least squares, 152	of the first kind, 383
design using Slepian sequences, 155	of the second kind, 63, 86
prediction error, 198	frequency grid, 171, 527, 531, 558, 578, 605
prewhitening, 197, 234, 241, 447, 482, 491-3,	for circulant embedding, 601
496, 510, 615	for uncorrelated SDF estimators, 206, 208,
seasonal differencing, 333	212
transfer function, 136, 141	frequency response function, 136
transformation or operator, 133	Hilbert transform, 579
final prediction error (FPE), 493	function, special type of
finite impulse response (FIR) filter, 147–8, 152,	blurring, 93
155, 161, 503	digamma, 210
7 - 7	- G

Dirac delta, 74	half-power width of function, 191–2, 288
gamma, 440	Hamming lag window, 343
modified Bessel, 196	Hanning
periodic, 48	data taper, 189–90, 222, 230, 234, 260, 305,
positive-part, 541	327, 331, 345, 415–8, 535
trigamma, 296	alternative form, 240, 285
function width	lag window, 343, 579
autocorrelation, 73, 97-8, 105, 191, 194, 288	harmonic analysis, 511
equivalent, 58, 73, 97-8, 105, 213	ocean noise data, 581
half-power, 191–2, 288	ocean wave data, 582
variance, 60, 73, 105, 191–2, 194, 288	parametric approach, 553
fundamental Fourier frequency, 357	AR examples, 555–6
fundamental frequency, 569	problems with, 558
Tundamental frequency, 507	singular value decomposition (SVD) approach, 563
	summary, 584
gain function, 136	Willamette River data, 567
squared	centering of time series, 583
for differencing, 334	harmonic process, 35, 108, 511
for Hilbert transform approximation, 592	ACVS for, 36–7, 117
for ideal low-pass, high-pass and band-pass	expected value of, 36
filters, 146	periodicity, 603–4
gamma function, 297, 345, 440, 542, 633	random phase, 37, 45
Gaussian distribution, 265	simulation, 593-4, 598-9, 616, 637, 641
generalized, 633	examples, 36
Gaussian kernel, 69	variance of, 36, 108, 110
Gaussian lag window, 268, 276, 278, 281, 320,	variance spectrum of, 108
330, 430	harmonic process with additive noise
Gaussian or normal process, 29, 445, 463, 480,	complex-valued, 519, 585-6
490, 544	ACVS for, 519, 562, 585-7
autoregressive, 34, 445, 595	expected value of, 519, 585-6
complex-valued, 30	known frequencies, 517, 586
entropy, 472	unknown frequencies, 586
moving average, 33, 595	variance of, 519, 585–6
white noise, 31, 201, 210, 539, 594	real-valued, 512, 544, 584-5
Gaussian or normal RV	ACVS for, 519, 584, 591
complex-valued, 30, 210	expected value of, 516, 584
PDF and its Fourier transform, 55	known frequencies, 513, 515, 585
Gaussian smoothing window, 276–8	random phase, 516
Gaussian spectral synthesis method (GSSM),	signal-to-noise ratio, 526, 532
605–8, 637, 640–1	tapered, 535–6, 588
ACVS approximation, 607	unknown frequencies, 523, 585
**	variance of, 519, 526, 532, 584
adjustment for power-law process, 610	harmonic tidal prediction, 512
and adaptive multitaper spectral estimator, 615	at Southampton, England, 513
and prewhitening, 615	harmonics
role of sampling interval, 609	in tidal prediction, 522
weights for AR(1) process, 640–1	of fundamental frequency, 569
Gaussian spectral window, 278	Heisenberg's uncertainty principle, 61–2, 104
Gaussian white noise, 31, 201, 210, 539, 594	Hermite polynomials, 634–5
multitaper spectral estimator, 370	Hermitian Toeplitz matrix, 30
Gaussian-shaped ACVF and SDF, 131	high-cut frequency, 57
Gegenbauer process, 610	high-pass
generalized cross-validated (GCV) deviance, 309,	filter, 146
313, 324, 339	process, 299, 347
generalized Gaussian (GG) distribution, 633	creation of from a low-pass filter, 160
generalized inverse, 566	Hilbert transform, 114, 562, 579
generalized least squares, 412, 522	frequency response function of, 579, 592
Gibbs phenomenon, 77, 79, 81, 152	impulse response sequence of, 579, 592
goodness-of-fit test	transfer function of, 579, 592
Kolmogorov, 215	
grid size, 179, 527, 531, 558, 568, 578, 605	ice profile data, 321
group delay, 136	lag window spectral estimator, 322–3
GSSM (see Gaussian spectral synthesis method)	periodogram, 321, 323
(1

plot of, 322	intrinsically stationary process
IID (independent and identically distributed)	order d , 340
noise, 32, 631	order unity, 431
process, 32	inverse Fourier transform (see Fourier transform
IIR (see infinite impulse response)	pair)
imaginary part of	invertibility of moving average process, 43
analytic series, 579	irregularly sampled observations, 355, 528, 543
complex-valued number, 551	Isserlis theorem, 30, 43, 210, 236, 241, 298, 371
complex-valued process, 602, 606, 640	
impulse response	
function, 142	jackknifing
sequence, 143	and multitaper spectral estimator, 356, 369–70
for Hilbert transform, 579, 592	for confidence interval calculation, 438
normalization of, 150	Johnson system of distributions, 633
inconsistency of	joint moment, 27
direct spectral estimator, 235	joint stationarity, 29
periodogram, 163–4, 207–8	jump process, 109
index-limited sequence, 85	jumps in the integrated spectrum, 120, 511, 549,
indirect nonparametric estimator, 252	551, 589–90
infinite impulse response (IIR) filter, 147, 503	confidence interval for, 590
initial conditions	distribution of estimator, 552, 590
AR process simulation, 595	Willamette River example, 570, 572, 575
Gaussian AR process simulation, 595, 599	•
Gaussian ARMA process simulation, 593, 599 Gaussian ARMA process simulation, 600, 639	
*	Kalman filter, 482
inner product, 470	kernel
innovation process, 446	degenerate, 86
estimation of, 17	Dirichlet's, 17-8, 76, 93
innovation variance, 403–4, 446, 449, 455, 468,	Fejér's, 80, 174–5
471–2, 510	Gaussian, 69, 290
Burg autoregressive estimator, 499–500, 629	of an integral equation, 63, 86
confidence interval for, 629	rectangular, 71, 290
different estimators compared, 406, 440	Kolmogorov goodness-of-fit test, 215
direct spectral estimator, 405	Kronecker's delta function, 44
mean square linear prediction error for $AR(p)$,	kth-order Slepian data taper, 357, 382, 384
455	plots of, 360, 362
multitaper spectral estimator, 405, 432, 629	Kullback-Leibler (KL) discrepancy, 297, 312,
variability assessment via simulation, 630	346, 349
periodogram-based estimator, 404	expected value, 297
simulation, 628–9	for scaled chi-square RVs, 345
variability assessment via, 629	symmetrized form, 345-6, 349
smoothed periodogram estimator, 404	with swapped arguments, 345–6, 349
Yule–Walker autoregressive estimator, 499–	kurtosis, 631
500	ARMA(1,1) process, 632
integrable (in square sense), 49, 53–4	norm of a filter, 632
integral equation, 63, 86	
integral time scale, 131, 214	
integrated magnitude square error, 52, 76	lag, 2, 27
integrated spectrum (spectral distribution func-	lag 1 scatter plot, 2
tion), 110, 117, 163, 511	lag p differencing, 40
absolutely continuous, 120	lag τ scatter plot, 2
and AR SDF (parametric sinusoidal power	lag window, 248, 341
estimation), 578	choice of, 287
and LTI filters, 135-6, 141	compared to data taper, 282-3, 285
cascade of filters, 146	constructed from data taper, 283, 344-5
basic properties, 116	parameter m (controls smoothing), 247, 287
classification examples, 121	choice of, 291, 304, 313-4
continuous parameter stationary process, 114	examples of, 318, 322, 328, 330, 339
continuous singular function, 120	properties of, 250
differentiability, 120	reshaped, 257, 281–2, 375
discrete parameter stationary process, 110	type
jumps (steps), 120, 511, 549, 551, 589-90	autocorrelated 100% cosine, 283-5, 344-5
confidence interval for, 590	Bartlett, 268-9, 281, 344, 412
distribution of estimator, 552, 590	Bartlett-Priestley, 268, 273, 281, 320, 344
Willamette River example, 570, 572, 575	cosine (100%), 283-4, 290
. , , ,	* * * * * * * * * * * * * * * * * * * *

Daniell, 268, 271, 281, 290, 320	generalized (GLS), 412, 522
Gaussian, 268, 276, 278, 281, 320, 331, 430	ordinary (OLS), 409, 430, 440, 522
Hamming, 343	least squares (LS) autoregressive estimators, 475-
Hanning, 343, 579	9, 505–6
Papoulis, 268, 278–9, 281, 345	AR(1) process, 510
Parzen, 248, 268, 275, 281, 301, 320–1, 323,	assessing variability (SDF), 485
331, 344, 346, 496, 521–2	backward, 477, 484, 510
Slepian, 285, 345	causality not guaranteed, 479, 506, 510, 617
lag window spectral estimator, 245, 248, 340–1,	forward, 475–7, 484, 510
492, 612	forward and backward, 477–8, 484, 509, 555–
alterative names for, 252	6, 565
as a quadratic spectral estimator, 375	relation to Yule–Walker scheme, 479–80
as deconstructed multitaper estimator, 420-2	Lebesgue decomposition theorem, 120, 518
asymptotic distribution of, 264-5, 297, 342,	Levinson–Durbin recursions, 452, 456–7, 461–2,
490	464–6, 509, 556, 604, 639
asymptotic unbiasedness of, 256, 341	for complex-valued time series, 502
asymptotic variance of, 258–9, 262, 265, 279,	linear algebra derivation, 463–4
341	step-down scheme, 460–1, 507–8, 597
verification of validity by simulation, 622-3	causality assessment, 461, 463, 509
atomic clock data, 328–9, 501	generation of ACVS for an AR process, 460,
computation of, 314–7	508
consistent estimator of SDF, 260, 342	simulation of ARMA process, 461, 595–8
corresponding ACVS estimator, 248, 341, 612	likelihood function, 308, 480
covariances, 260, 342	and order selection criteria, 494–5
equivalence to discretely smoothed direct spec-	log of, 480–1
tral estimator, 249–50	
	reduced (profile), 482–4
equivalent degrees of freedom (EDOFs), 264,	Whittle, 307
279, 342	line spectrum, 120, 511, 522
expected value of, 255, 341, 343	linear and log scales for SDFs, 336–9
filtered CO ₂ data, 335	linear model, 2, 39, 46, 621
gamma PDF, 297	linear regression, 151, 408–10, 412, 440, 446,
ice profile data, 321–4	501
in circulant embedding simulation method,	complex-valued, 517, 545
611–12, 619–20, 627	real-valued, 513–5, 529
ocean wave data, 316-9, 349-50, 430, 496	robust, 530
parameter m (controls smoothing), 247, 287	linear taper, 186
choice of, 291, 304, 313–4	linear time-invariant (LTI) filter, 132
examples of, 318, 322, 328, 330, 339	analog, 133
repeated, 349–50	digital, 140
sea level residuals, 521–2	linearity of, 133, 140
ship altitude data, 330–2	linear trend removal
smoothing window bandwidth B_W , 251, 279	by differencing, 40
alternative measure β_W , 251, 279	by linear least squares estimation, 40
use in prewhitening, 491	linear window, 186
Laplace periodogram, 529–30	local bias, 290, 359, 381–2
law of total expectation, 588	defined, 378
leakage, 77-8, 178, 180, 196, 233, 287, 358,	indicator, 378-9, 381
532, 592	minimizing indicator of, 381
	log and linear scales for SDFs, 336–9
and end-point mismatch, 181, 239	
bias in spectra due to, 225, 227, 233, 351	log spectral density function, 301
reduction of, 78, 185	estimation of
smoothing window, 268, 287-9, 294-5, 316,	log direct spectral estimator, 301–2
318–9, 498	with smoothing, 303–6, 324
least squares (LS), 40, 50, 332, 409, 430–1, 475–	Lomb–Scargle periodogram, 528–9, 543–4, 588
8, 513–6	long memory process, 407
approximate, 516, 585	long-range dependence, 407–8, 411
approximate conditional (see approximate	Lorenzian SDF, 131, 507
conditional least squares)	loss of resolution, 76, 78, 271, 290, 357, 359,
complex-valued, 517, 546, 565	400, 434, 535
exact conditional (see exact conditional least	low-cut frequency, 57
squares)	low-pass
exact unconditional (see exact unconditional	filter, 146, 592
least squares)	process, 299, 347
filter design, 152, 155	use of to create a high-pass filter, 160
	paos m.c., 100

low-rank approximation to SDF estimator, 420–3	mean square prediction error, 463
lower triangular matrix, 464, 484, 509, 599, 639	Mehler's expansion, 635
LTI (see linear time-invariant)	method of surrogate time series (MSTS), 615-6,
	641
	and harmonic processes, 641
MA (moving average) process (see moving aver-	compared to circulant embedding, 616
age (MA) process)	minimum-bias multitapers, 392–3, 441
male speech, 57	bias indicator of, 392, 441
Mann-Wald theorem, 486	plots of, 393
marginal distribution, 45, 631, 634	relationship to sinusoidal multitapers, 392-3
matching condition, 135–6, 141–3	mixed spectrum, 120-1, 359, 511, 513, 518-9,
matrix	521–2, 539, 584–5
Cholesky decomposition of, 599, 604, 637,	modified
639	Cholesky decomposition, 464, 480, 599
modified, 464, 480, 599	covariance method, 480
covariance, 28, 42, 44, 184, 376, 379, 382,	Bessel function, 196
391, 440, 450, 457, 465, 485	Daniell spectral estimator and windows, 280
determinant of, 480	periodogram, 186
diagonal, 464, 565–6, 599	moment
•	coefficient of kurtosis, 631
generalized inverse of, 566	
lower triangular, 464, 484, 509, 599, 639	coefficient of skewness, 631
rank of, 375–6, 380–1, 420, 422–3, 490, 565–	first and second, 27
6	joint, 27
Schur, 484	moving average (MA) process, 32, 43, 503–4,
singular value decomposition (SVD) of, 425,	594–5
564–5	autocovariance sequence (ACVS), 32, 128
and short time series, 567	invertibility, 43
approach to harmonic analysis, 563	noninvertibility, 474
Willamette River data, 578–80, 592	MA(1)
singular value, 565	ACVS, 504
singular vector, 565	as infinite-order AR process, 43
Toeplitz, 29, 156, 457, 462, 480, 484	simulated examples, 33
Hermitian, 30	MA(2), 159–60
trace of, 376, 378, 439	simulation of, 594–5, 637, 639
tridiagonal, 88, 95	spectral density function (SDF), 130, 144,
maximum confusion spectral analysis, 473	503
maximum entropy	textile slivers, 503
principle of, 471, 473	moving average (MA) spectral estimator, 503
for ARMA process, 473–4	and truncated periodogram, 504
spectral analysis (MESA), 194, 447, 466, 471–	MSTS (see method of surrogate time series)
4, 503	multitaper spectral estimator, 351–5, 432–4
example for MA processes, 475–6	adaptive, 389–90
maximum likelihood autoregressive estimator	ACVS (issue of being ill-defined), 615
(MLE), 480–4, 506	distribution of, 390
approximations to, 484, 510	versus weighted multitaper estimator, 390
AR(1) process, 482	and improved estimation of
AR(2) data, 489	innovation variance, 403–7
AR(4) data, 482–3, 490	exponent of power-law process, 407–12, 440
assessing variability (SDF), 485	log SDF, 412
distribution of, 483	and periodicity testing, 544-8
recursive, 485	approximated by WOSA spectral estimator,
mean, 4, 24	424
complex-valued case, 25	AR(4) data, 358–65, 368–70, 393–400, 405–7,
estimation of, 3, 164–6, 184, 195–6, 213, 548	419
mean correction (see centering)	
	atomic clock fractional frequency deviates,
mean integrated square error (MISE), 303	430–2, 501, 628–30 hasia 252 5, 422 4, 611, 612
mean square convergence, 49, 52–3	basic, 352–5, 432–4, 611, 613
mean square error (MSE), 167, 236, 293, 346,	ACVS estimator for, 433
349, 386–8, 404, 463, 526, 537	and Gaussian white noise, 370–4, 402–3
normalized (NMSE), 296, 314, 346, 349	bias of, 359, 392
mean square linear prediction error, 453–5, 457,	distribution of, 354, 356–7, 381–2, 409, 434
460, 468, 493, 509	energy preservation of, 366–7
same as $AR(p)$ innovation variance, 455	EDOFs of, 354–5, 434
mean square log error (MSLE), 296, 346, 349	equivalent width, 355

expected value of, 353, 433	chi-square distribution, 542, 552
jackknifing of, 356–7, 369–70	nonergodic stationary process, 128
spectral window for, 353, 433	non-Gaussian (non-normal) process, 36, 210, 412
bandwidth of, 353, 359, 433	463, 530, 631–6
approximation (sinusoidal), 400-1, 434	plots with examples of, 31
sinusoidal, 398–400	nonindependent but uncorrelated random vari-
Slepian, 358–9, 364–5	ables, 45–6, 108
variance of, 353-4, 359	nonlinear lag relationship, 5–6
Gaussian white noise, 372-4, 402-3	nonnegative definite (see positive semi-definite)
constructed, 355, 376	nonperiodic function, 53–4, 107, 143
deconstructed, 355, 376	nonstationary process
eigenspectra (see basic entry for eigenspec-	complex-valued, 42
tra)	differencing for stationarity, 333, 340, 431
in circulant embedding simulation method,	examples of, 39-41, 44-6, 332
611–13	nonwhite noise (see colored noise)
information recovery, 195, 366, 372	normal equations, 514, 517
minimum-bias, 391–3	normal process (see Gaussian process)
ocean wave data, 425–9	normalized mean square error (NMSE), 296, 314
peak-matched multitapers, 382	346, 349, 607
sinusoidal multitapers, 355, 391–4, 396, 434	normalized observed prediction error
*	backward, 618
Slepian multitapers, 355, 357–8, 360, 362,	forward, 618, 624, 626, 630, 638
368, 434	normalized root mean-square error, 406, 440
versus prewhitening, 424 versus WOSA spectral estimator, 414, 417–9,	Nyquist
*	frequency, 82, 84, 108, 122–3, 142
424	rate, 84, 123
via quadratic spectral estimator, 374	1atc, 64, 123
via regularization, 382	
weighted, 352–4, 388, 433, 611–13	observed prediction error
and quadratic spectral estimator, 376	backward, 466, 492, 618
bias of, 391	normalized, 618
covariances of, 437	forward, 466, 491, 496, 617–8
distribution of, 354–5	normalized, 618, 624, 626, 630, 638
EDOFs of, 354–5	ocean noise data, 1–2
equivalent width, 355, 437	ACS for
expected value of, 352, 389	sample, 4
low-rank approximation, 422–3	theoretical, 10
Parseval's theorem in expectation, 390	lag 1 scatter plot for, 3
spectral window for, 352–3, 391	periodogram for, 231
bandwidth of, 353	simulation of, 11
variance of, 354	spectrum for
multitaper-based test for periodicity, 544-8	estimated, 12, 14
sinusoidal amplitude estimator (complex-	theoretical, 10, 12, 14
valued), 546, 551, 590	testing for white noise, 11, 230-1, 581-2
Willamette River data, 574–5	ocean tide prediction, 512
white noise variance estimator, 546, 551, 590	ocean wave data, 224-8, 316-21, 425-30, 496-9
multivariate Gaussian (normal), 4, 29-30, 483,	582-3, 619-26
485, 510	adaptive multitaper spectral estimator, 428
mutually (pairwise) uncorrelated random vari-	equivalent degrees of freedom (EDOFs), 427-
ables, 8, 13, 108, 203-4, 206, 235, 246,	8
258, 302, 306, 381, 410, 443, 465, 546,	Burg autoregressive spectral estimator, 496,
595–6	500, 625
	direct spectral estimator, 226
	estimated PACS, 498–9
Newton-Raphson method, 528, 558	harmonic analysis of, 582–3
noise	lag window spectral estimator, 318-9, 349-50,
colored, (see entry for colored noise)	430, 496, 500, 623
flicker frequency, 431	multitaper spectral estimator, 426, 582
IID, 32, 631	periodogram, 226–7
in signal-to-noise ratio, 526	plot of, 225, 620
random walk frequency, 431	prewhitening, 496–7
white, (see entry for white noise)	reshaped spectrum, 582
with heavy-tailed distribution, 530	simulated series, 620
noncentral	uses for, 626
F-distribution, 552	Thomson's F-test for periodicity, 582
1 distribution, 332	monison's 1 test for periodicity, 302

WOSA spectral estimator, 430	adaptive multitaper spectral estimator, 390,
Yule-Walker autoregressive spectral estimator,	439
496	weighted multitaper spectral estimator, 390
octave, 269, 273, 276–7, 282, 288–9	one discrete time sequence, 99
one-sided versus two-sided SDF, 118	example of usage, 85, 111, 115, 188, 194,
orchestral music, 57	251, 260, 303, 385, 390
order	one nonperiodic function, 97
of autoregressive process, 33, 446	example of usage, 61
of autoregressive moving average process, 35	one periodic function, 96
of autoregressive spectral estimator, 458	example of usage, 49, 52, 137–8
of linear predictor, 452–3, 455	one segment of discrete time sequence, 101
of moving average process, 32, 503	two discrete time sequences, 99
of taper in multitapering scheme, 357, 392-3	two nonperiodic functions, 97
order selection for autoregressive process, 492-5	two periodic functions, 96
AIC method, 494	two segments of discrete time sequences, 101
centered time series, 495	partial autocorrelation
AICC method, 495	coefficient, 457, 466, 469, 509
centered time series, 495, 575-6	sequence (PACS), 462–3
direct spectral estimator criterion, 493	complex-valued process, 502
examples of use of, 496, 498–500	estimated for ocean wave data, 498–9
FPE method, 493	for AR order selection, 493, 498
PACS method, 493, 498	Parzen
ordinary least squares (OLS), 409, 430, 440,	lag window, 248, 268, 275–6, 281–2, 292,
522	316, 320–1, 331, 344, 346, 496, 521–2
orthogonal	smoothing window, 275, 280–1, 344
data tapers, 354	spectral window, 275
increments, 109	PDF (see probability density function)
process, 109	peak-matched multitapering, 382
orthogonality	peak shifting, 559–60, 576
of Hermite polynomials, 635	and splitting, 560
principle, 454	analytic series, 561
corollary to, 508	multiple sinusoids, 562
relationships (trigonometric), 19, 202, 516	with Burg's algorithm, 560, 562, 591
orthonormality	with Yule–Walker approach, 560–2, 591
basis exhibiting, 138, 384	peak width, 576
nonuniqueness of, 138	Pearson product moment correlation coefficient,
of data tapers, 432	3
of eigenvectors, 565	percentage of block overlap in WOSA, 415
oscilloscope, 21–2	periodic extension, 54, 92
outliers, 196, 227	periodic function, 48–52, 74, 95–7
oversmoothing, 71	convolution theorems, 96–7
oxygen isotope ratios, 366	Fourier representation, 49, 95–6
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Parseval's theorem, 49, 96
	spectral properties, 50, 96
PACS (see partial autocorrelation sequence)	periodicity
pairwise uncorrelated random variables (see mu-	compound, 540–1, 587
tually (pairwise) uncorrelated random vari-	elimination by differencing, 40
ables)	simple, 540–1, 586
Papoulis	testing with white noise, 538–44, 586–7
lag window, 268, 278–9, 281, 290, 345	Fisher's test for (simple periodicity), 539,
smoothing window, 278–9	586
spectral window, 279	example of use, 571, 573, 581
parametric approach to harmonic analysis, 553–8	irregular sampling (Lomb–Scargle), 543–4
AR(2) example, 555–6	Schuster's test for (simple periodicity), 539
AR(2) example, 555–6 AR(16) example, 556–7	Siegel's test for (compound periodicity), 541,
problems with, 558–62	587
Willamette River data, 575–8	example of use, 581
parametric spectral estimation, 14, 445, 482,	Thomson's F -test for (colored noise), 544–8,
491–2, 503, 506	587 example of use, 574–5, 582–3, 592
AR versus MA, 503	periodogram, 170–185, 232–3
summary, 505	and DFT of time series, 116, 171
Parseval's theorem, 49, 55, 75, 92	and real-valued harmonic process plus white
in expectation	noise, 523
opocuatori	110100, 525

average value of, 241	spurious peaks, 527
averaging of independent, 441	sum over
bias, 163, 176-7, 218	Fourier frequencies, 237, 540
AR(2) process (low dynamic range), 177	non-Fourier frequencies, 233, 237
AR(4) process (high dynamic range), 178–80	symmetry, 170
asymptotic (unbiasedness), 175	three-point example to verify properties, 238
average value of, 239	truncated, 343, 504
due to use of log periodogram, 304–5, 307	utility compared to multitaper spectral estima-
bootstrapping and, 615-6, 631	tor, 403–12
computation of, 219–24	variance of, 203, 235, 241
covariances, 203–4, 235	for AR(1) process, 243
verification via simulation, 242	verification via simulation, 242
subtle issues, 214	phase function (phase shift function), 136
DCT-based, 217–9, 244	phase-shifted Fourier transform, 383
deficiency of power after removal of lines,	phases (see random phases)
550–1 definition 170, 232	pilot analysis (filters for), 160
definition, 170, 232	pointwise convergence, 50, 53, 84
for complex-valued time series, 231 discretely smoothed (see discretely smoothed	Poisson's formula, 84
periodogram)	polynomial regression model, 522 positive
distribution of, 203, 235, 307–8, 408	definite, 28, 170, 375, 380, 422, 450–2, 454,
verification via simulation, 242	457, 461, 464, 480
effect on periodogram of	semidefinite, 28, 30, 167, 170, 374–5, 457
centering of time series, 184, 213, 240	positive-part function, 541, 636, 640
at nonzero Fourier frequencies, 184	postcoloring, 198–201, 234, 496, 615
at zero frequency, 184	AR model approach, 491–2, 510
circular shifting of time series, 238–9	atomic clock data, 329, 339–40
scaling of time series, 238	ocean wave data, 497–500
time indexing of time series, 184	power
examples of	of a nonperiodic function, 55
AR(2) data, 172–3, 182, 208, 216, 246, 249,	of a periodic function, 50
294, 305, 310	power spectral density function (PSDF), 113,
AR(4) data, 172-3, 182, 199, 508	116
atmospheric CO ₂ data, 335	power-law exponent, 403, 407-12
atomic clock data, 327–8	estimation using linear regression and
chaotic beam data, 228	multitaper estimator, 409
ice profile data, 323	atomic clock data, 430
ocean noise data, 231	periodogram, 408
ocean wave data, 226-7, 497	periodogram versus multitaper estimation, 410-
rotation of earth data, 224	11
harmonic process plus white noise, 533–4,	power-law process, 327–30, 336–7, 403, 407,
536, 551	430–1
ship altitude data, 331	ACVS, 391, 434, 605
three sinusoids (Kay and Marple), 531	spectral density function (SDF), 391, 434, 605,
white noise data, 207, 210	610
Willamette River data, 568, 571, 573	predictability of a time series, 17, 403–4, 471–2
expected value of, 174–5, 203, 233, 240	prediction error
complex-valued harmonic process plus white	backward, 455
noise, 524, 586	forward, 453, 596
real-valued harmonic process plus white noise, 524, 536, 585	prediction error filter, 198 prewhitening, 179, 197–201, 447, 491–2, 503,
	506, 615
conditional on phase value, 537–8 verification via simulation, 242	versus multitaper spectral estimator, 424
in circulant embedding simulation method,	ocean wave data, 496–8, 510
615	prewhitening filter, 197, 234, 241, 447, 482, 491-
inconsistent estimator of SDF, 163–4, 207,	3, 496, 510, 615
235	principle of maximum entropy, 447, 471, 473
Laplace, 529	probability density function (PDF), 24
log likelihood, 308	bivariate standard Gaussian, 634–5
Lomb–Scargle, 528–9, 543–4, 588	chi-square with two degrees of freedom, 37
modified, 186	exponential (scaled chi-square with two de-
power-law exponent estimation, 408	grees of freedom), 37, 209
reflecting boundary conditions, 244	gamma (scaled chi-square with arbitrary de-
rescaled, 541, 581	grees of freedom), 297

generalized Gaussian (GG), 633	regularization bandwidth, 377
Gaussian (normal) with zero mean, 55	variance of, 380
modeling, 631	quadratic taper, 248
spectral window as an example of, 192	quadratic trend removal
uniform	by ordinary least squares (OLS), 332, 443
over interval $(-\pi, \pi]$, 37, 45, 598	by differencing, 46, 333–4
over interval $(-\sqrt{3}, \sqrt{3}]$, 634	quadratic window, 248
probability integral transform, 634	estimator, 252
probability of an event, 23	
process 25	1 1 101
band-pass, 299, 347	radar clutter, 131
high-pass, 299, 347	random amplitudes, 35–7, 111
• 1	random phases, 37–8, 111
low-pass, 299, 347	nonuniformly distributed, 38, 45
residual, 550	uniformly distributed, 37, 511, 553, 598, 61
with stationary differences of order d, 340	random variable, 3, 21–3
profile likelihood, 482–4	complex-valued, 21, 23
projections, 384, 439	vector-valued, 21–2
prolate spheroidal wave functions (PSWFs), 64	random walk, 43
proper	frequency noise, 431
complex-valued Gaussian or normal RV, 546–	randomly phased sinusoid, 35, 511, 553, 598
7	ACVS for, 553, 591
complex-valued white noise, 517–8, 564	plus white noise, 554
process, 30, 32	rank of matrix, 375-6, 380-1, 420, 422-3, 490
PSDF (see power spectral density function)	565–6
pseudo-AR process, 553	Rayleigh
complex-valued, 563	distribution, 37, 598
finding the coefficients, 591	quotient, 89, 105
plus white noise is an ARMA process, 554	theorem, 49
solution to defining equation, 554, 591	real part of complex-valued
stationarity condition, 557	process, 602, 606, 640
SVD	variable, 61, 486
parameter estimator, 566	real-valued stochastic process
sinusoidal frequency estimator, 567	continuous parameter/time, 22
purely	stationary, 26
acausal, 447–8	discrete parameter/time, 22
continuous spectrum, 120, 163, 165, 167, 511	stationary, 26
continuous stationary process, 457, 532	realizations, 3, 21–2
discrete spectrum, 120, 511, 513	reciprocity relationships, 58–62
nondeterministic process, 404, 471	equivalent width, 58–9
F,,	fundamental uncertainty relationship, 60–2
	similarity theorem, 58–60
QQ plot	rectangular
Gaussian stationary process assumption, 621–	•
2	data taper, 188–90, 535
IID Gaussian assumption, 621	kernel, 71, 290
	recursive maximum likelihood autoregressive
quadratic lag window (see Bartlett–Priestley lag	parameter estimator (RMLE), 485
window)	reduced (profile) likelihood, 482–4
quadratic spectral estimator, 374–82, 439 bias of	reflecting boundary conditions, 181, 183, 216,
	219, 244, 424
broad-band, 378	reflection coefficient (see partial autocorrelation
indicator, 379–81	coefficient)
minimizing indicator of, 380	regularization, 377, 386
for white noise, 377–8	bandwidth, 357, 377, 425, 428, 434
local, 378	versus spectral window bandwidth, 402
magnitude indicator, 378-9, 381	rejection filtration, 201
deconstructed multitaper spectral estimator,	relation function, 31
376	relative efficiency, 165
examples of	remodulated filtered series, 592
direct spectral estimator, 375	repeated lag window spectral estimator, 349-50
lag window spectral estimator, 375	rescaled periodogram, 541, 581
weighted multitaper spectral estimator, 376	reshaped
justification for, 351	lag window, 257, 281-2, 375
WOSA spectral estimator, 423	spectrum, 547, 551, 575, 582, 592
expected value of, 376-7, 439	Willamette River data, 575

residual process (EULS), 550	seismic trace of earthquake, 58
periodogram of	semiperiodogram, 217
harmonic process plus white noise, 551	semivariance, 32, 546–7
Willamette River data, 570	sequency (Walsh functions), 138
resistor, 21, 40–1	sequency-limited and time-limited, 140
resolution	shading sequence, 186
loss of, 76, 78, 271, 290, 357, 359, 400, 434,	Shannon number, 66-7, 90, 357, 372-4, 381
535	ship altitude data, 330-2, 626-8
restoration of power, 195	analysis of longer series, 350
Riemann integral, 24, 26, 112–13, 258, 261	direct spectral estimator, 331
approximation by a Riemann sum, 174, 254,	lag window spectral estimator, 331
258–9, 404, 605–6	periodogram, 331
Riemann sum, 174, 254, 258–9, 404, 605–6	plot of, 330, 627
Riemann–Lebesgue lemma, 120, 167	simulation of, 626–8
Riemann–Stieltjes integral	sidelobe leakage, 77, 185, 386, 388, 390
ordinary, 24–6, 109, 112, 127	sidelobes
stochastic, 110, 112, 127	of smoothing windows, 268–9, 273, 275–8
ringing, 196, 225, 227, 277, 320, 331	of spectral windows, 281–2
ripples, 72, 77, 79, 152–3, 189, 253, 275, 290,	Fejér's kernel, 178–80, 328, 527, 532, 535–
294	Siegel's test for compound periodicity, 540–3,
robust estimation of SDF via WOSA, 419	581, 587
rotation of the earth, 148, 222, 366, 407	asymptotic critical value, 542–3, 581
rule of thumb for significance levels, 548, 574,	exact critical value, 541, 581
582	interpolated critical value, 542, 581
	sign of i convention, 55
	signal-to-noise ratio, 526, 532, 543, 552, 560-1
sample autocorrelation, 3	567, 578, 587
sample autocorrelation sequence (sample ACS),	signal in, 526
3	similarity theorem, 58–60
examples, 4	simple periodicity, 540–1, 586
correlation of, 4	simulation of
variance of, 4	atomic clock data, 628-30
sample mean, 3, 164-6, 184, 195-6, 213	autoregressive (AR) process, 595
variance for AR(1) process, 507	zero initial conditions, 595
sampled function, 74	fractionally differenced (FD) process, 440
sampling and aliasing, 122–3, 569	Gaussian AR(1) process
sampling interval, 84–5, 113, 119, 122–5, 142–	via Kay's method, 639
3, 163, 207, 232, 352, 374, 432, 445, 505,	Gaussian AR(2) process, 597, 602
511	via circulant embedding, 603
computational details, 220-4, 314-5	via Gaussian spectral synthesis method
irregular, 382, 528–9, 543	(GSSM), 608
jitter, 124	via Kay's method, 597
effect on oxygen isotope time series, 124	examples, 34
oversampling, 123	Gaussian AR(4) process, 597
role in simulation of time series, 594, 601,	via circulant embedding, 640–1
609, 613	via Gaussian spectral synthesis method
subsampling, 124	(GSSM), 606, 641
example, 130–1	via Kay's method, 597, 638
scale preservation (LTI filters), 133, 140	examples, 34
scatter plot	Gaussian ARMA process, 593–4
lag 1 and four examples, 2–3	via Kay's method, 598, 639
$lag \tau, 2, 5$	via McLeod and Hipel's method, 600, 639
τ = 6 and 9 examples, 6	Gaussian autoregressive (AR) process
locations of peak frequencies from estimated	stationary initial conditions, 595, 599, 624,
spectra, 537–8, 556–7, 589, 591	637
Schur matrix, 484	via Kay's method, 597
Schuster's test for simple periodicity, 539	via McLeod and Hipel's method, 599
Schwarz inequality, 55, 57, 61, 104, 257	harmonic process, 593–4, 637
SDF (see spectral density function)	moving average (MA) process, 594, 637, 639
sea levels, 520	MA(1) examples, 33
seasonality/periodicity, 40, 332	non-Gaussian time series
removal by differencing, 40, 42, 333	ARMA, 631, 636, 638
second differencing for quadratic trend removal,	with specified ACVS and PDF, 631, 633,
46	638

ocean wave data, 619–26 uses, 626	Lomb-Scargle method, 528 multitaper (complex-valued), 546, 551, 574
reduced-length time series based on nonparametric SDF estimate, 614	sinusoidal frequency estimator exact unconditional least squares (EULS), 549
ship altitude data, 626–8	569–70, 572
time series, 593	including mean, 552
based on	location of maximum (global or local) of
nonparametric SDF estimate, 611, 619-20,	AR SDF, 556–8, 591
627, 629, 637	forward and backward least squares, 556
with non-unity sampling interval, 613, 638	direct spectral estimator, 537-8, 556-7, 585,
method of surrogate time series (MSTS),	589
615–6	rationale for tapering, 535-7
parametric SDF estimate, 617, 638	periodogram, 526-8, 537-8, 589
periodogram, 615	at Fourier frequencies, 523-4, 585-6
centering, 619, 627-8	at general frequencies, 524-5, 585
Gaussianity testing, 621	expected value of estimator, 526
given a portion of its ACVS, 593, 601, 637	convergence of estimator, 527
given its fully specified SDF, 593, 604, 637	MSE of estimator, 526, 537
role of sampling interval, 594, 609, 613	variance of estimator, 526, 534
summary, 637–8	Thomson's F -test, 574, 582–3
white noise, 594, 637	parametric approach, 553-8
examples, 31	problems with, 558–63
simulation via	three-sinusoids example
circulant embedding, 601-4, 619-20, 627, 629,	noise-free (Kay and Marple), 530
631	effect of grid size, 530–2
ACVS properties, 602, 640	with noise, 532
computational efficiency, 603	effect of noise variance, 533-4
issues with ACVS, 615	effect of series length, 532, 534
overcoming negative weights, 604, 640	sinusoidal multitapers, 355, 372, 391, 393-4,
weights, 601-2, 605, 629, 640-1	396, 434, 544, 574, 583, 590, 592
Gaussian spectral synthesis method (GSSM),	compared to Slepian multitapers, 393
605–6, 608	defined, 392
adjustment for power-law process, 610	equivalent width, 401, 441
and adaptive multitaper spectral estimator,	versus spectral window bandwidth, 402
615	relationship to minimum-bias multitapers, 392
and prewhitening, 615	sinusoidal power estimation (AR SDF), 578
role of sampling interval, 609	sinusoidal variations
weights, 640–1	deterministic, 553-4, 558, 590
method of surrogate time series (MSTS), 615,	expressible as AR model, 447
641	inexpressible as MA model, 503
relation of simulated process to harmonic	randomly phased, 35, 511, 553, 561
process, 641	ACVS for, 37, 553, 591
sinc function, 63, 559	examples of realizations, 36
single-sided versus double-sided SDF, 118	plus white noise, 512, 554
singular value decomposition (SVD), 425, 564–5	as ARMA process, 554
and short time series, 567	sum of, 6–7
approach to harmonic analysis, 563	skewness, 631
Willamette River data, 578–80, 592	ARMA(1,1) process, 632
singular value, 565	inequality, 633, 641
singular vector, 565	Slepian
sinusoidal amplitude estimator	data taper, 190-1, 206, 208, 225, 228, 234,
approximate conditional least squares (ACLS),	260, 263, 282, 287, 416, 461, 496, 535–6,
515, 525, 549, 569–70, 572–3, 585, 589	569, 591
approximate least squares, 516, 585	approximation of zeroth-order, 196
exact conditional least squares (ECLS), 549,	lag window, 285, 345
569–70, 572, 589–90	multitapers, 355, 360, 362, 372, 391, 434, 54
including mean, 552	574, 582, 590, 592
exact least squares	compared to sinusoidal, 393
complex-valued, 517, 586	decomposition of energy, 367
real-valued, 515, 525, 585	equivalent width versus spectral window
exact unconditional least squares (EULS), 549,	bandwidth, 369
569–70, 572	sequence, 87, 105, 145, 189, 357
including mean, 552	double orthogonality, 106
Laplace method, 529	zeroth-order as a low-pass filter, 155

smoothing of	linear and log scales, 336–8
direct spectral estimator, 245	log of, 301
log direct spectral estimator, 303	one-sided versus two-sided, 118
periodogram estimator, 246, 307	nonparametric estimators of
smoothing window, 245, 248, 341	direct spectral estimator, 186
autocorrelation width of, 251	discretely smoothed, 246–7
bandwidth, 245, 251, 268, 281, 292, 296, 300-	lag window estimator, 248
1, 318, 322, 341, 346–7	multitaper, 352
Bartlett–Priestley design, 344	periodogram, 170
choice of, 252	discretely smoothed, 307
finer frequency grid, 255	WOSA, 414
for sea level residuals, 522	robust estimation via, 419
Grenander, 251, 268, 279, 281	parametric estimators of
lag window spectral estimator, 279	AR, 446–7
Parzen, 251	Burg, 466
repeated lag window estimator, 349–50	least squares, 475
bias due to, 256, 290	maximum likelihood, 480
equivalent width of, 251	Yule–Walker, 451
leakage, 268, 287–9, 294, 316, 318, 331, 498	MA, 503
parameter m (controls smoothing), 247, 287	single-sided versus double-sided, 118
choice of, 291, 304, 313-4	symmetry for real-valued process, 111-12,
examples of, 318, 322, 328, 330, 339	118, 126
properties of, 250	two-sided versus one-sided, 118
type	type
Bartlett, 269–70	Gaussian-shaped, 131
Bartlett-Priestley, 274-5	Lorenzian, 131
Daniell (rectangular), 250, 272–3	piecewise constant, 348
Gaussian, 277–8	rectangular, 128
modified Daniell, 280	triangular, 128
Papoulis, 278–9	unimodal, 297
Parzen, 275–6, 280–2, 344	units of (physically meaningful), 374
rectangular, 271	variance-preserving, 337–9
spectral bandwidth, 292, 296, 346	
spectral density function (SDF), 111	versus autocovariance sequence, 124–5 weighted sum of uncorrelated processes with
after first difference and seasonal filtering,	SDFs, 130
333-4	spectral distribution function, 117
aliasing effect, 122–3	spectral estimator of the Grenander–Rosenblatt
alternative definitions, 114–6	type, 252
and LTI digital filters, 143	spectral factorization, 636
and subsampling, 130	spectral lines, 518, 538–40, 543–4, 548–9
asymmetry for complex-valued process, 118	splitting of, 558, 560
basic properties, 116–7	spectral representation
classification examples, 121	interpretation, 110–11
confidence interval for, 205, 265-7, 342	of stationary process, 108
for log of, 205, 227, 229, 266-7, 342	complex-valued, 114
double-sided versus single-sided, 118	continuous parameter, 113-4, 135
dynamic range, 177, 184, 197, 492, 641	discrete parameter, 110, 125
for first difference of a process, 158, 326	nonzero mean, 113
for particular stationary processes	with discrete spectra, 518–9
AR, 145, 446, 485, 609, 617–8	with mixed spectra, 518–9
AR(1), 336	theorem, 7, 108–10, 382, 518–9
AR(2), 172–3, 609	uniqueness, 110
AR(4), 172–3	spectral reshaping, 547, 551, 575, 582
computation using zero padding, 449	spectral window, 175, 186–8, 255, 353, 414
ARMA, 145, 159	bandwidth, 192, 194, 213–4, 355
band-limited white noise, 379	definitions of
fractionally differenced (FD), 166, 407–8	autocorrelation width (standard), 194
MA, 130, 144	correlation time, 213–4, 355
MA(1), 130	half-power width, 192
MA(2), 159	standard (autocorrelation width), 194
power-law, 605, 610	variance width, 192, 194
white noise, 117	definitions (standard) for spectral estimators
Fourier transform of ACVS, 111, 114, 126	direct, 194, 235
imputed from noise model, 336	discretely smoothed periodogram, 347

lag window, 256, 341	purely
multitaper, 353	continuous, 120, 165, 167
WOSA, 415	discrete, 120, 511
frequency range for statistical results, 206,	spectrum analyzers, 419, 444
213, 244, 268	spinning rotor, 39
standard measure of, 194	spontaneous line splitting (see spectral lines)
examples of use, 226-7, 229, 294, 317-8,	spurious peaks in
323, 325, 328, 331, 335, 568, 623-4	FBLS pseudo-AR sinusoidal frequency estima-
versus regularization bandwidth, 358, 402	tor, 567
versus smoothing window bandwidth, 296	periodogram, 527
versus correlation time, 214, 368-9, 401-2	square integrable, 48, 53–4, 75
bias, 192, 391	squared norm, 470
and minimum-bias multitapers, 391-2	St. Paul temperature data, 5–6
due to central lobe (spectral window bias),	standard frequencies (Fourier frequencies), 8, 91,
194, 535	515
due to sidelobes (leakage), 194, 535	stationarity
decay rate, 281, 328	conditions for
definitions of for spectral estimators	autoregressive (AR) process, 145, 446-9,
direct, 186–8, 234	557
lag window, 255, 341	pseudo-AR process, 557
multitaper, 353	second-order/weak/covariance, 26–7
periodogram, 175	strict/complete/strong, 26, 631, 634
WOSA, 414	stationary differences of order d
type	process with, 340
autocorrelated 100% cosine lag window, 285	stationary process, 4, 7, 21, 26–31, 107
Bartlett lag window, 268, 270	and modeling data, 38–41, 45
Bartlett-Priestley lag window, 268, 274	examples of
Bartlett-Priestley taper, 288	autoregressive (AR), 33
Daniell (rectangular) lag window, 268, 272	autoregressive moving average (ARMA), 35
Daniell taper, 288	bandlimited white noise, 379
Gaussian lag window, 268, 278	harmonic, 35
Gaussian taper, 288	fractionally differenced, 166
Hanning taper, 191	moving average (MA), 32
modified Daniell window, 280	white noise, 31
100% cosine lag window, 284	intrinsically of order d , 340
Papoulis lag window, 268, 279	nonergodic, 128 reverse of conjugate of complex-valued pro-
Papoulis taper, 288	cess, 502
Parzen lag window, 268, 276	reverse of real-valued process, 455, 477, 484
$p \times 100\%$ taper, 191	step function, 24, 26, 120
periodogram, 176	step-down Levinson–Durbin recursions, 460–1
Slepian lag window, 286	and causality assessment, 453, 509
Slepian multitapers, 358, 364–5	and generation of ACVS for an AR process,
kth-order taper, 361, 363, 368	460–1, 508
Slepian taper (zeroth-order), 191, 288	and simulation of ARMA process, 594–8
sinusoidal multitapers, 398–401 kth-order taper, 395, 397	stochastic continuity, 114, 118
standard bandwidth approximation, 400–1	stochastic process, 21–2, 23–5
spectrograph estimator, 252	jump, 109
spectrum, 107–8	orthogonal, 109
classification of, 120–2	storm surges, 522
discrete, 120, 511, 513, 518, 538, 584, 586	strict stationarity, 26, 631, 634
for simple time series model, 5–11	sum of squares (SS), 467, 476, 514
constant, 11	summability
estimated	absolute, 165
nonparametric, 11–13	Cesàro, 78, 165
parametric, 14–5	superposition (LTI filters), 133, 140
high frequency, 9–10	SVD (see singular value decomposition)
low frequency, 9–10	symmetry, 27
theoretical, 9–11	conjugate, 29–30, 48, 54
integrated, 120	Szegő-Kolmogorov theorem, 404
interpretation via band-pass filtering, 147–8	
line, 120, 511, 522	tables
mixed, 120, 511, 513, 518, 521-2, 539, 584-	AR-based estimates of innovation variance,
5	500

Burg's algorithm and sinusoidal frequency	minimum-bias multitapers, 392–3
estimation, 559	$p \times 100\%$ cosine, 189–90, 260
characteristics of AR SDFs and periodogram	Papoulis, 287
for Willamette River data, 578	Parzen, 287
comparison of	rectangular, 188–90, 535–6
spectral bandwidth measures for direct spec-	sinusoidal multitapers, 355, 392–3, 402–3
tral estimator, 214	Slepian, 190, 196, 212, 225, 228, 230, 234,
spectral bandwidth measures for sinusoidal	260, 263, 287, 416, 461, 496, 535–6
multitaper spectral estimator, 402	Slepian multitapers, 355, 357, 372–3
spectral bandwidth measures for Slepian mul-	variance inflation factor, 260, 262, 342, 417
titaper spectral estimator, 369	temporal window, 186
window bandwidth measures for discretely	terrestrial free oscillations, 359, 366
smoothed direct spectral estimator, 255	test for
Yule-Walker AR(4) and AR(8) coefficient	periodicity
estimates, 459	Fisher's, 540–1, 586–7
exact and approximate critical values for	in colored noise, 544, 587
Siegel's test, 542	
harmonic analysis and centering for Willamette	in white noise, 538, 586–7
River data, 583	Schuster's, 539
horizontal and vertical components of criss-	Siegel's, 541, 587
crosses (ice profile data), 325	Thomson's F -test (multitaper approach), 228
multitaper-based estimates of innovation vari-	359, 544–8, 574–5, 582–3, 587, 592
ance, 432	with irregular sampling, 543–4
NMSE criteria for GSSM-based approxima-	white noise (cumulative periodogram), 215-6,
tions for AR(4) process, 607	230–1, 573–4
	textile slivers, 33, 503
parameter estimates in harmonic analysis for	Thomson's F -test for periodicity, 228, 359, 544-
Willamette River data, 570	8, 574–5, 582–3, 587, 592
properties of lag windows, 279	tidal
ratio of variances for estimators of power-law	analysis, 40, 520–3
exponent, 411	frequencies, 521
reduced likelihoods for estimated AR(4) coeffi-	time indexing of a series
cients, 483	and periodogram, 184
true and estimated sinusoidal frequencies, 533	time invariance (LTI filters), 133, 140
variance inflation factor for tapers, 260	time series simulation, 593
taper, 186	based on
compared to lag window, 282–3	nonparametric SDF estimate, 611, 619–20,
advantages/disadvantages in use of	627, 629, 637
better performance of Yule-Walker autore-	with non-unity sampling interval, 613, 638
gressive spectral estimator, 452, 461	method of surrogate time series (MSTS),
decrease in bias due to sidelobes, 179, 185,	615–6
189, 234, 535–6	parametric SDF estimate, 617, 638
decrease in effective sample size, 194-5	*
decrease in pairwise correlation, 207	periodogram, 615
increase in bias due to central lobe, 192, 535	centering, 619, 627–8
converting	examples of,
taper into lag window, 283	atomic clock data, 628–30
lag window into taper, 285	ocean wave data, 619–26
linear, 186	uses, 626
normalization	ship altitude data, 626–8
unit energy, 188	for testing of Gaussianity, 621
data-dependent, 195	given a portion of its ACVS, 593, 601, 637
orthogonality, 354, 357, 392, 432	given its fully specified SDF, 593, 604, 637
plethora of types, 196–7	non-Gaussian
quadratic, 248	ARMA process, 631, 636, 638
type	with specified ACVS and PDF, 631, 633,
Bartlett–Priestley, 287	638
Daniell, 287	reduced-length
default, 188, 190	based on nonparametric SDF estimate, 614
Gaussian, 287	role of sampling interval, 594, 609, 613
Hanning, 189–90, 230, 234, 327, 331, 415–7	summary, 637–8
Hanning (alternative definition), 240	time-limited function, 58
kth-order minimum-bias, 392–3	time reverse of
kth-order sinusoidal, 392–4, 396	conjugate of complex-valued stationary proces
kth-order Slepian, 357, 360, 362, 368	
kui-order Siepian, 557, 500, 502, 508	is stationary with same ACVS, 502

```
real-valued stationary process is stationary with
                                                                sample mean for AR(1) process, 507
    same ACVS, 455, 477, 484
                                                               sinusoidal frequency estimator using peri-
time-reversibility, 484
                                                                  odogram maximum, 526-7, 534, 592
                                                                spectral estimators
Toeplitz
  matrix, 29, 156, 457, 462, 480, 484
                                                                 basic multitaper, 353-4, 359
                                                                  for Gaussian white noise, 372-4, 402-3
   Hermitian, 30
                                                                 direct, 204, 235, 624
  system of equations, 452, 461
trace of a matrix, 376, 378, 439
                                                                  for complex-valued process, 232
trade-off
                                                                  verification via simulation, 242
  between bias and variance, 80, 296, 309
                                                                 lag window, 258-9, 262, 265, 279, 341
                                                                 periodogram, 203, 235, 241
  between fidelity and resolution, 80
                                                                  for AR(1) process, 243
transfer function, 136, 142-3, 290
                                                                  verification via simulation, 242
  and
   gain function, 136
                                                                 quadratic, 380
                                                                 weighted multitaper, 354
   phase function, 136
                                                                 WOSA, 415, 435
  as Fourier transform of impulse response se-
    quence, 143
                                                                stationary process, 27-8
  for
                                                                 bias in estimator (unknown mean), 168, 237
    AR filter, 144-5, 487
                                                             variance-preserving SDF, 337-9
                                                             variance spectrum for
   Hilbert transform, 579, 592
                                                                harmonic process, 108
   MA filter, 144
                                                                simple time series model, 8, 47
transpose of vector, 28
                                                             variance-stabilizing transform, 13, 209
trend, 40, 151, 332
                                                             variance width of function, 60, 73, 105, 191-2,
  removal, 39, 334, 443
                                                                  194, 288
   as high-pass filtering, 151
                                                             vector transposition, 28
tridiagonal matrix, 88, 95
trigamma function, 296, 302, 405, 410
truncated periodogram, 343, 504
                                                             Walsh functions, 138-40
twin peaks, 76-8, 178-9, 192, 200-1, 218-9,
                                                             weighted covariance estimator, 252
    291, 294, 300-1, 306, 337, 382, 458-9, 489
                                                             weighted multitaper spectral estimator, 352-4,
two-sided versus one-sided SDF, 118
                                                                  388, 433, 611–13
                                                                and quadratic spectral estimator, 376
                                                               bias of, 391
uncorrelated random variables
                                                               covariances of, 437
  definition, 31
                                                               distribution of, 354-5
  relationship to independent random variables,
                                                               equivalent degrees of freedom (EDOFs) of,
    31 - 2
                                                                 354-5
undersmoothing, 71
                                                               equivalent width, 355, 437
uniform distribution
                                                               expected value of, 352, 389
   over interval (-\pi, \pi], 37, 45, 598 over interval (-\sqrt{3}, \sqrt{3}], 634
                                                               in circulant embedding simulation method,
                                                                  611 - 13
uniqueness of
                                                                low-rank approximation, 422-3
  Fourier transform, 55, 82
                                                               Parseval's theorem in expectation, 390
  integrated spectrum, 135
                                                               spectral window for, 352-3, 391
  spectral representation, 110
                                                                 bandwidth of, 353
  stationary solution to AR equation, 144-5,
                                                                variance of, 354
    446-8
                                                               via regularization, 382
unit circle, 446, 448-9, 463, 553, 557-8, 566-7,
                                                             weighted overlapped segment averaging (see
    580, 591–2, 600, 618
                                                                  WOSA spectral estimator)
                                                             weights for circulant embedding simulation
                                                                  method (see circulant embedding simula-
variability of SDF estimators
                                                                  tion method)
  assessment via
                                                             Welch's overlapped segment averaging spectral
   asymptotic theory, 204-5, 265-7, 342, 354,
                                                                  estimator (see WOSA spectral estimator)
    485-91
                                                             white noise, 31-2, 120, 169, 184, 197, 236, 381,
    simulation, 622-6
                                                                  386-8, 446, 450, 511, 513, 524, 532, 534,
variance
  definition of
                                                               and direct spectral estimator, 189, 371
   complex-valued case, 25
                                                               and periodogram, 177, 207, 371
   real-valued case, 24
                                                               and quadratic spectral estimator, 377
variance inflation factor due to tapering, 260,
                                                               and tapering, 195
    262, 342, 417
                                                               autocovariance sequence (ACVS), 31
variance of
                                                               band-limited, 379
  linear combination of random variables, 41
                                                               complex-valued, 32
```

and proper, 517-8, 564	ACS for
continuous parameter, 38	sample, 4
examples of, 31	theoretical, 10
Gaussian, 201, 539	lag 1 scatter plot for, 3
spectral density function (SDF), 117	sample ACVS for, 169
simulation of, 594, 637	simulation of, 11
test for (cumulative periodogram), 215, 230-1	spectrum for
versus colored noise, 120, 126, 241, 372	estimated, 12, 14
white noise variance estimator (harmonic analy-	theoretical, 10, 12, 14
sis)	window
approximate conditional least squares (ACLS),	data, 186
549, 570	design, 247
exact conditional least squares (ECLS), 549, 552, 570	for Bartlett–Priestley, 273–4, 319, 344 for Daniell, 272, 319
exact least squares	lag (see entry for lag window)
complex-valued, 518	linear, 186
real-valued, 516	quadratic, 248
exact unconditional least squares (EULS), 550,	smoothing (see entry for smoothing window
552, 570	spectral (see entry for spectral window)
multitaper, 551	temporal, 186
Whittle likelihood, 307	window closing, 293
Wiener–Khintchine theorem, 118	and WOSA, 416
Willamette River data, 1–2, 567–8	examples, 293–5
AICC order selection, 575–6	windowed periodogram estimator, 252
analytic series version, 578–81, 592	windows and convergence factors, 80
Burg autoregressive spectral estimator, 575–7	Wold's decomposition theorem, 404, 471
cumulative periodogram test of residuals, 573–	Wold's theorem, 117–8, 126, 185
4	WOSA spectral estimator, 351, 412–19, 432,
direct spectral estimator, 569, 591–2	434–6 ACVS estimator for, 420, 435
FBLS autoregressive spectral estimator, 592	
fitted values, 571–2	AR(2) data, 416–7 AR(4) data, 417–8
harmonic analysis of, 567–81	at zero frequency, 420
effect of centering, 583	boundary conditions
integrated autoregressive spectrum, 577	circular, 424
multitaper spectral estimator, 575	reflecting, 424
parametric approach to harmonic analysis of,	centering for unknown mean, 419–20
575–8	computational efficiency, 419
periodogram, 568	connection to Bartlett lag window spectral
of residuals, 570–1, 573	estimator, 270
plot of complex roots for, 580	deconstructed multitaper spectral estimator,
fitted model, 571–2	420–1, 423
residuals, 571–2	EDOFs of, 415-6, 423-4, 442-3
remodulated filtered series, 592	expected value of, 414, 435
reshaped spectrum, 575, 592	for approximating a multitaper spectral estima
residuals, 571–2	tor, 424–5
small portion of, 1–2	in circulant embedding simulation method,
ACS for	611, 613
sample, 4	ocean wave data, 425, 429-30
theoretical, 10	robust SDF estimation, 419
lag 1 scatter plot for, 3	shift factor restriction, 420
sample ACVS for, 169	variance of, 415, 435
simulation of, 11	versus multitaper spectral estimator, 414, 417-
spectrum for	9, 424
estimated, 12, 14	
theoretical, 10, 12, 14	Yule-Walker autoregressive estimator, 449-52,
SVD approach to harmonic analysis of, 578,	505
592	and ACVS for direct spectral estimator, 452,
table of characteristics of AR SDFs and peri-	461–2, 505
odogram, 578	AR(1) process, 510
Thomson's F -test for periodicity, 575, 592	AR(2) numerical example, 507–8
Yule–Walker autoregressive spectral estimator,	AR(4) data, 458–9, 461–2, 508–9
592	assessing variability (SDF), 485
wind speed data, 1–2	causality, 448, 505
	24404111,, 202

complex-valued process, 502 corresponding ACVS, 451, 504, 508 FPE criterion, 494 ocean wave data, 496-9 order selection via PACS, 498-9 order of, 458-9 peak shifting and splitting, 560-2, 591 relation to autocorrelation method, 480 Burg's algorithm, 471 forward least squares, 479 Willamette River data, 592 Yule-Walker equations, 450, 561 arising from two related problems, 454-5 augmented, 452 Levinson-Durbin recursions and, 457

zero padding, 93–4 use in computing AR SDF, 449 finer frequency grid, 179, 527, 558, 568 for noncyclic convolutions, 106, 169–70, 220 zero-memory nonlinearity (ZMNL), 634 correlation distortion, 635–6