Q: Prove that:
IF: $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ (1) Then: $f(n) \in O(h(n))$
Answer:
From (1):
] c1, c2>0, No, No, No, 70 s.t.
f(n) { C, g(n), Y n7, No, 3)
g(n) < (2 h(n), y n >nor 4
multiply (4) * <1=>
c1g(n) < C1. (2. M(n), 4 n > Noz (5)
From (3) and (5):
f(n) < c1 j(n) < c1. (2. h(n), ∀n >, Nog
where No3 = Max (No, 1 No2)
S6 f(n) < C1. C2. h(n), y n7, No3
C n_0

Prove that $n^2 \in \mathcal{O}(2^n)$: Using Mathematical Induction: Base Case: ase case: For n=5, $n^2 \leqslant 2^N$ because $5 \leqslant 2^5$ Induction Step: Induction Hypothesis: $n^2 \leq 2^n$ Let's Check for (n+1): $(N+1)^2$ = 1/2+2/1+2 We know from the Induction Hypothesis that n2 < 2 1 We also know that for 175: So, 2n+1 < 2 2 as well 1-+2: n2+2n+1 < 2"+2" i.e., $(n+1)^2 \leqslant 2^{(n+1)}$