SEMCOG-UrbanSim Bi-weekly

Effect of calibration- HLCM1 in Oakland County

income quartile ==1 & persons <=2 & age of head >= 65

pre-calibration

Validation metrics for HLCM1 growth, 2016 - 2025 MSE is 0.000296343783352 RMSE is 0.0172146386355 Prediction R2 is 0.603724680394 Correlation is 0.782805462924

<matplotlib.axes._subplots.AxesSubplot at 0x7f6cf3c1fdd0>

post-calibration

Validation metrics for HLCM1 growth, 2016 - 2025 MSE is 3.89766105225e-05 RMSE is 0.00624312506062 Prediction R2 is 0.947879896054 Correlation is 0.98313355284

<matplotlib.axes._subplots.AxesSubplot at 0x7f326f03ad90>

Effect of calibration- HLCM7 in Oakland County

income quartile in [2,3] & persons <=2 & age_of_head >= 65

pre-calibration

Validation metrics for HLCM7 growth, 2016 - 2025 MSE is 0.000108252547977 RMSE is 0.0104044484706 Prediction R2 is 0.538121651989 Correlation is 0.827181100854

<matplotlib.axes._subplots.AxesSubplot at 0x7f6cf19c7e50>

post-calibration

Validation metrics for HLCM7 growth, 2016 - 2025 MSE is 2.79974853339e-05 RMSE is 0.00529126500318 Prediction R2 is 0.928159600977 Correlation is 0.975864977478

<matplotlib.axes. subplots.AxesSubplot at 0x7f326f0e4a10>

Effect of calibration- HLCM13 in Oakland County

income quartile ==4 & persons <=2 & age of head >= 65

pre-calibration

Validation metrics for HLCM13 growth, 2016 - 2025 MSE is 0.000269301390916 RMSE is 0.0164104049589 Prediction R2 is 0.452686843286 Correlation is 0.707322604764

<matplotlib.axes._subplots.AxesSubplot at 0x7f6cf3d3cd50>

post-calibration

Validation metrics for HLCM13 growth, 2016 - 2025 MSE is 4.19986669712e-05 RMSE is 0.00648063785219 Prediction R2 is 0.914644247029 Correlation is 0.956560034508

<matplotlib.axes._subplots.AxesSubplot at 0x7f326ea649d0>

Effect of calibration- HLCM16 in Oakland County

income quartile ==4 & persons > 2 & age of head >= 65

pre-calibration Validation metrics for HLCM16 growth, 2016 - 2025 MSE is 0.000211545986026 RMSE is 0.0145446205184 Prediction R2 is 0.387157592517 Correlation is 0.753201952982

<matplotlib.axes._subplots.AxesSubplot at 0x7f6cf3174cd0>

post-calibration

Validation metrics for HLCM16 growth, 2016 - 2025 MSE is 7.71586219941e-05 RMSE is 0.00878399806433 Prediction R2 is 0.776473775044 Correlation is 0.927769553947

<matplotlib.axes._subplots.AxesSubplot at 0x7f326e824950>

Benefits of a calibration approach that utilizes auto-differentiation + gradient descent

- 1. Don't need to run an actual simulation, so calibration can be faster and less influenced by randomness
- 2. Multi-geographic levels possible- e.g. some iterations with zone-level loss function, and then some iterations with city-level loss function. Or a loss function that accounts for both.
- Can fine tune estimated parameter values with small step sizes, using estimated parameters as the starting values, to preserve some of the information from the cross-sectional data
- 4. Tune behavioral variables jointly along with spatial dummies

Building vs unit alternatives in estimation

BUILDING-LEVEL ESTIMATION

Segment: household type = 1 Null Log-liklihood: -13815.511

Log-liklihood at convergence: -11289.880

Log-liklihood Ratio: 0.183

+	+	+	++
Component	Coefficient	Std. Error	T-Score
+	+	+	++
st_b_ln_residential_units	0.448	0.006	80.731
st_b_ln_sqft_per_unit	-0.468	0.086	-5.441
st_zones_population	0.046	0.027	1.695
st_zones_prop_income_1	0.367	0.032	11.454
st_zones_mean_age_of_head	0.345	0.026	13.424
st_zones_mean_hh_size	-0.111	0.026	-4.261
st zones prop race 1	0.237	0.031	7.593

UNIT-LEVEL ESTIMATION

Segment: household type = 1 Null Log-liklihood: -13815.511

Log-liklihood at convergence: -13377.959

Log-liklihood Ratio: 0.032

Component	Coefficient	Std. Error	T-Score
st_b_ln_residential_units	0.075	0.005	15.481
st_b_ln_sqft_per_unit	-0.592	0.091	-6.510
st_zones_population	0.014	0.026	0.526
st_zones_prop_income_1	0.325	0.031	10.426
st_zones_mean_age_of_head	0.404	0.026	15.723
st_zones_mean_hh_size	-0.024	0.025	-0.946
st zones prop race 1	0.173	0.030	5.796

Building vs unit alternatives in estimation

3- RUN SIMPLIFIED WITH REGIONAL SPECS CLUSTERING VARS

	Overall MSE	
zones	3,522,233	
arge_areas	36,552	
cities	495,160	
counties	40,603	

3 B- RUN SIMPLIFIED WITH REGIONAL SPECS UNIT LEVEL HLCMS - CLUSTERING VARS

	Mean MSE
zones	1,317,909
arge_areas	32,943
cities	495,681
counties	36,500

Moving beyond test cases- next steps:

- 1. Job-space level estimation of the ELCM (job spaces as the alts in estimation)
- 2. Unit-level estimation of location choice models, simulated by large area
- 3. Calibrate proforma
- Tune estimated parameter values (plus city dummies) with the calibrator- for each large area and each submodel
- 5. Run full simulation with large area controls + calibrated coefficients

Potentially:

Test joint calibration of all components together, over the forecast horizon