Breast Cancer Wisconsin Dataset HIMIM Classifier

KATHIA TERAN

```
%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

dataset = pd.read_csv('/Users/kathiateran/Documents/data.csv')
dataset
```

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smc
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	М	20.57	17.77	132.90	1326.0	
2	84300903	М	19.69	21.25	130.00	1203.0	
3	84348301	М	11.42	20.38	77.58	386.1	
4	84358402	М	20.29	14.34	135.10	1297.0	
564	926424	М	21.56	22.39	142.00	1479.0	
565	926682	М	20.13	28.25	131.20	1261.0	
566	926954	М	16.60	28.08	108.30	858.1	
567	927241	М	20.60	29.33	140.10	1265.0	
568	92751	В	7.76	24.54	47.92	181.0	

Importing the data and making sure everything is in order.

569 rows × 33 columns

Splitting the data and using 70% in each class for training, and 30% to test the classifier performance.

```
X = dataset.iloc[:, 2:32].values
y = dataset.iloc[:, 1].values

#Encoding categorical data values
from sklearn.preprocessing import LabelEncoder
labelencoder_y = LabelEncoder()
y = labelencoder_y.fit_transform(y)

# Splitting the dataset:
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.7, random_state=42)
```

```
from sklearn import metrics
from hmmlearn import hmm
from hmmlearn.hmm import GaussianHMM
hmm_clf = GaussianHMM(n_components=3, covariance_type='diag', n_iter=10000).fit(X)
pred_train_hmm = hmm clf.predict(X_train)
pred_test_hmm = hmm_clf.predict(X_test)
print('\nPrediction accuracy for the training dataset')
print('{:.2%}\n'.format(metrics.accuracy_score(y_train, pred_train_hmm)))
print('Prediction accuracy for the test dataset')
print('{:.2%}\n'.format(metrics.accuracy score(y test, pred test hmm)))
print('Confusion Matrix')
print(metrics.confusion matrix(y test, hmm clf.predict(X test)))
```

- Using HMM Gaussian classifier from hmmlearn.
- Please consider the sklearn classifier has been deprecated in Python and hmmlearn has to be installed via terminal separately.

 Results may be affected due to this exception.

RESULTS

Prediction accuracy for the training dataset 82.94%

Prediction accuracy for the test dataset 84.96%

Confusion Matrix
[[234 20 5]
[7 105 28]

	precision	recall	f1-score	support
0	0.97	0.90	0.94	259
1	0.84	0.75	0.79	140
2	0.00	0.00	0.00	0
accuracy			0.85	399
macro avg	0.60	0.55	0.58	399
weighted avg	0.93	0.85	0.89	399

	HMM Classifier in Python
Overall Accuracy	(234+105)/(234+20+5+7+105+28) = 339/399 = 84.96 %
Sensitivity/Recall	55%
Specificity	(234+20+7+105)/(399) = 366/399 = 91.72 %

Thanks!