Bienes diferenciados Organización Industrial

Leandro Zipitría

Universidad de Montevideo

Licenciatura en Economía

Objetivos

- Introducir la diferenciación de producto
- 2 Presentar los tipos de diferenciación (vertical y horizontal)
- Vincular la diferenciación de producto con el poder de mercado de las empresas
- Resumir los comportamientos estratégicos de los agentes

Presentación

- En general los productos no son homogéneos
- Puede ser por elementos exógenos (clima, ej. café) o endógenos (publicidad, reputación, etc.)
- <u>Diferenciación horizontal</u>: no existe acuerdo entre los consumidores respecto a la valoración de los bienes: ej. Fiat Palio y Opel Corsa, Game of thrones y Mad Men, helado de chocolate y helado de frutas, pollo o pescado ...
- <u>Diferenciación vertical</u>: existe acuerdo respecto a la valoración de los bienes: Chery y Lamborgini; Blue Ray y DVD; TV 4k de 55 pulgadas y TV de tubo; etc....

Modelos

- Modelos de "no localización": los consumidores obtienen utilidad por consumir una variedad de productos y de marcas (los consumidores son homogéneos y consumen todos los mismos bienes)
- Modelos de "localización", en los que cada consumidores compra una única marca, y los consumidores tienen preferencias distintas sobre cuál es su marca preferida

- Modelo sencillo
 - Características
 - Cournot
 - Bertrand
 - Dinámica
 - Complementos y sustitutos estratégicos
- Competencia monopolística
 - Presentación
 - Modelo
 - Resultados

- 3 Localización
 - Ciudad lineal
 - Elección del precio
 - Costos de transporte
- 4 Diferenciación vertical
 - Modelo
 - Etapa 2: elección del precio

- Modelo sencillo
 - Características
 - Cournot
 - Bertrand
 - Dinámica
 - Complementos y sustitutos estratégicos
- Competencia monopolística
 - Presentación
 - Modelo
 - Resultados

- 3 Localización
 - Ciudad lineal
 - Elección del precio
 - Costos de transporte
- 4 Diferenciación vertical
 - Modelo
 - Etapa 2: elección del precio

Supuestos

- Dos empresas (i = 1,2) producen dos bienes diferenciados, producción tiene costo cero
- Las funciones inversas de demanda son:

$$p_1 = \alpha - \beta q_1 - \gamma q_2$$

$$p_2 = \alpha - \beta q_2 - \gamma q_1$$
(1)

con
$$\alpha, \beta, \gamma > 0$$
; $\beta > \gamma$

- $\gamma > 0$ los bienes son sustitutos¹
- $\beta > \gamma$ el efecto directo del bien es mayor al efecto cruzado (sustitutos imperfectos)

Demandas

Invirtiendo las funciones inversas de demanda

$$q_1 = a - bp_1 + cp_2$$
$$q_2 = a + cp_1 - bp_2$$

• con
$$a = \frac{\alpha(\beta - \gamma)}{\beta^2 - \gamma^2}$$
; $b = \frac{\beta}{\beta^2 - \gamma^2}$; $c = \frac{\gamma}{\beta^2 - \gamma^2}$

Diferenciación de producto

- \bullet Medida de diferenciación de marca es: $\delta = \frac{\gamma}{\beta}$
 - Las marcas son altamente diferenciadas si $\delta \longrightarrow 0 \Leftrightarrow \gamma \longrightarrow 0 \Leftrightarrow c \longrightarrow 0$.
 - Las marcas son casi homogéneas si

$$\delta \longrightarrow 1 \Leftrightarrow \gamma \longrightarrow \beta \Leftrightarrow c \longrightarrow b$$

- Modelo sencillo
 - Características
 - Cournot
 - Bertrand
 - Dinámica
 - Complementos y sustitutos estratégicos
- Competencia monopolística
 - Presentación
 - Modelo
 - Resultados

- 3 Localización
 - Ciudad lineal
 - Elección del precio
 - Costos de transporte
- 4 Diferenciación vertical
 - Modelo
 - Etapa 2: elección del precio

CPO

•
$$\pi_i(q_1, q_2) = (\alpha - \beta q_i - \gamma q_j)q_i$$
 $i, j = 1, 2; i \neq j$

•
$$\max_{q_i} \pi_i(q_1, q_2) \Rightarrow \frac{\partial \pi_i}{\partial q_i} = 0 = \alpha - 2\beta q_i - \gamma q_j$$
 $i, j = 1, 2; i \neq j$

$$R_i(q_j) = \frac{\alpha - \gamma q_j}{2\beta}$$

•
$$q_i^c = \frac{\alpha}{2\beta + \gamma}$$
; $p_i^c = \frac{\alpha\beta}{2\beta + \gamma}$; $\pi_i = \frac{\alpha^2\beta}{(2\beta + \gamma)^2}$

La diferenciación aumenta el poder de mercado

Si $\gamma \uparrow$ (los productos se hacen más similares) $\Rightarrow \downarrow \pi \downarrow p \downarrow q_i \downarrow q$

CPO

•
$$\pi_i(q_1, q_2) = (\alpha - \beta q_i - \gamma q_j)q_i$$
 $i, j = 1, 2; i \neq j$

•
$$\max_{q_i} \pi_i(q_1, q_2) \Rightarrow \frac{\partial \pi_i}{\partial q_i} = 0 = \alpha - 2\beta q_i - \gamma q_j$$
 $i, j = 1, 2; i \neq j$

$$R_i(q_j) = \frac{\alpha - \gamma q_j}{2\beta}$$

•
$$q_i^c = \frac{\alpha}{2\beta + \gamma}$$
; $p_i^c = \frac{\alpha\beta}{2\beta + \gamma}$; $\pi_i = \frac{\alpha^2\beta}{(2\beta + \gamma)^2}$

La diferenciación aumenta el poder de mercado

Si $\gamma \uparrow$ (los productos se hacen más similares) $\Rightarrow \downarrow \pi \downarrow p \downarrow q_i \downarrow q$

CPO gráfico

- Modelo sencillo
 - Características
 - Cournot
 - Bertrand
 - Dinámica
 - Complementos y sustitutos estratégicos
- Competencia monopolística
 - Presentación
 - Modelo
 - Resultados

- 3 Localización
 - Ciudad lineal
 - Elección del precio
 - Costos de transporte
- 4 Diferenciación vertical
 - Modelo
 - Etapa 2: elección del precio
 - Etapa 1: elección de la calidad , (日) (日)

CPO

•
$$\pi_i(p_1, p_2) = (a - bp_i + cp_j)p_i$$
 $i, j = 1, 2; i \neq j$

•
$$\max_{p_i} \pi_i(p_1, p_2) \Rightarrow \frac{\partial \pi_i}{\partial p_i} = 0 = a - 2bp_i + cp_j$$
 $i, j = 1, 2; i \neq j$

$$R_i(p_j) = \frac{a + cp_j}{2b}$$

•
$$p^b = \frac{a}{2b-c} = \frac{\alpha(\beta-\gamma)}{2\beta-\gamma};$$
 $q_i^b = \frac{ab}{2b-c} = \frac{\alpha\beta}{(\beta+\gamma)(2\beta-\gamma)}$
 $\pi_i^b = \frac{a^2b}{(2b-c)^2} = \frac{\alpha^2\beta(\beta-\gamma)}{(\beta+\gamma)(2\beta-\gamma)^2};$ $i = 1, 2$

La diferenciación aumenta el poder de mercado

Si $\gamma \uparrow$ (los productos se hacen más similares) $\Rightarrow \downarrow \pi \downarrow p$

CPO

•
$$\pi_i(p_1, p_2) = (a - bp_i + cp_j)p_i$$
 $i, j = 1, 2; i \neq j$

•
$$\max_{p_i} \pi_i(p_1, p_2) \Rightarrow \frac{\partial \pi_i}{\partial p_i} = 0 = a - 2bp_i + cp_j$$
 $i, j = 1, 2; i \neq j$

$$R_i(p_j) = \frac{a + cp_j}{2b}$$

•
$$p^b = \frac{a}{2b-c} = \frac{\alpha(\beta-\gamma)}{2\beta-\gamma};$$
 $q_i^b = \frac{ab}{2b-c} = \frac{\alpha\beta}{(\beta+\gamma)(2\beta-\gamma)}$
 $\pi_i^b = \frac{a^2b}{(2b-c)^2} = \frac{\alpha^2\beta(\beta-\gamma)}{(\beta+\gamma)(2\beta-\gamma)^2};$ $i = 1, 2$

La diferenciación aumenta el poder de mercado

Si
$$\gamma \uparrow$$
 (los productos se hacen más similares) $\Rightarrow \downarrow \pi \downarrow p$

CPO gráfico

- Modelo sencillo
 - Características
 - Cournot
 - Bertrand
 - Dinámica
 - Complementos y sustitutos estratégicos
- Competencia monopolística
 - Presentación
 - Modelo
 - Resultados

- 3 Localización
 - Ciudad lineal
 - Elección del precio
 - Costos de transporte cuadráticos
- 4 Diferenciación vertical
 - Modelo
 - Etapa 2: elección del precio

Modelo

- ¿Qué pasa si alguna de las empresas es líder en el mercado?
- En t=1 la empresa 1 mueve una variable estratégica, mientras que en t=2 mueve la empresa 2; CT=0
- En t=2 la empresa 2 reacciona a lo que juega la empresa 1 en t=1
- ullet En t=1 la empresa 1 va a tomar en consideración la reacción de la otra empresa
- NOTA: competencia en cantidades en bienes homogéneos; competencia en precios en bienes diferenciados

Competencia en cantidades (I)

• Beneficios de la empresa 1 (líder) en juego secuencial $\pi_1 = p(q_1, q_2(q_1)) q_1 \Rightarrow$

$$\frac{\partial \pi_1}{\partial q_1} = p\left(q_1, q_2\left(q_1\right)\right) + \frac{\partial p\left(q_1, q_2\left(q_1\right)\right)}{\partial q_1}q_1 + \frac{\partial p\left(q_1, q_2\left(q_1\right)\right)}{\partial q_2}\frac{\partial q_2\left(q_1\right)}{\partial q_1}q_1$$

• Equilibrio de Cournot $p\left(q_1^{C},q_2^{C}\right) + \frac{\partial p\left(q_1^{C},q_2^{C}\right)}{\partial q_1}q_1^{C} = 0 \Rightarrow$

$$\left. \frac{\partial \pi_1}{\partial q_1} \right|_{q_1 = q_1^C} = \underbrace{\frac{\partial p(q_1, q_2(q_1))}{\partial q_2} \frac{\partial q_2(q_1)}{\partial q_1}}_{<0} q_1 > 0$$

Competencia en cantidades (II)

- Primer término negativo: todo aumento en la cantidad hace que baje el precio de mercado (no es claro que se cumpla cuando son bienes diferenciados)
- El líder incrementa la cantidad producida respecto al óptimo de Cournot ⇒ el seguidor responde reduciendo la cantidad producida
- $\pi_i^L > \pi_i^C > \pi_i^F \Rightarrow$ Mover primero da ventaja

Competencia en precios (I)

• Beneficios de la empresa 1 (líder) en juego secuencial

$$\pi_1 = p_1 q_1(p_1, p_2(p_1)) \Rightarrow$$

$$\frac{\partial \pi_{1}}{\partial p_{1}} = q_{1}\left(p_{1}, p_{2}\left(p_{1}\right)\right) + p_{1}\frac{\partial q_{1}\left(p_{1}, p_{2}\left(p_{1}\right)\right)}{\partial p_{1}} + p_{1}\frac{\partial q_{1}\left(p_{1}, p_{2}\left(p_{1}\right)\right)}{\partial p_{2}}\frac{\partial p_{2}\left(p_{1}\right)}{\partial p_{1}}$$

• En el equilibrio de Bertrand $q_1\left(p_1^B,p_2^B\right)+p_1^B\frac{\partial q_1\left(p_1^B,p_2^B\right)}{\partial p_1}=0$

$$\Rightarrow \frac{\partial \pi_1^L}{\partial p_1}\bigg|_{p_1=p_1^B} = p_1^B \underbrace{\frac{\partial q_1\left(p_1^B, p_2^B\right)}{\partial p_2}}_{>0} \underbrace{\frac{\partial p_2\left(p_1\right)}{\partial p_1}}_{>0} > 0$$

Competencia en precios (II)

- Primer término: todo aumento en el precio de la empresa rival aumenta la demanda de la empresa 1
- Segundo término: bienes son complementos estratégicos
- Líder:
 \(\tau \) respecto al óptimo de Bertrand para evitar que la rebaja de precios del seguidor le produzca un impacto mayor sobre los beneficios
- El seguidor obtiene beneficios mayores que el líder: si $p_1 > p^B$, se cumple que $p_2 < p_1$: la empresa 2 arbitra a la 1 para ganar mercado
- $\pi_2^F > \pi_1^L \Rightarrow$ mover segundo tiene ventaja (Demostración en los ejercicios)

- Modelo sencillo
 - Características
 - Cournot
 - Bertrand
 - Dinámica
 - Complementos y sustitutos estratégicos
- Competencia monopolística
 - Presentación
 - Modelo
 - Resultados

- 3 Localización
 - Ciudad lineal
 - Elección del precio
 - Costos de transporte cuadráticos
- 4 Diferenciación vertical
 - Modelo
 - Etapa 2: elección del precio

Estrategia

- Juego simultáneo donde las empresas i = 1, 2 eligen sus acciones a_i
- $\pi_i(a_i, a_j)$ la función de beneficios de la empresa i, continua y dos veces diferenciable en a_i y a_j , con $\frac{\partial^2 \pi_i(a_i, a_j)}{(\partial a_i)^2} < 0$ (la función de beneficios es cóncava)
- Función de reacción de la empresa i es $R_i(a_j)$ y se cumple que $\frac{\partial \pi_i(R_i(a_j),a_j)}{\partial a_i}=0$

Desarrollo

Diferenciado:

$$\begin{split} d\left(\frac{\partial \pi_{i}(R_{i}(a_{j}),a_{j})}{\partial a_{i}}\right) &= \frac{\partial \left(\frac{\partial \pi_{i}(R_{i}(a_{j}),a_{j})}{\partial a_{i}}\right)}{\partial R_{i}}dR_{i} + \frac{\partial \left(\frac{\partial \pi_{i}(R_{i}(a_{j}),a_{j})}{\partial a_{i}}\right)}{\partial a_{j}}da_{j} = 0\\ \bullet \ dR_{i} &= \frac{\partial R_{i}}{\partial a_{j}}da_{j} \Rightarrow \frac{\partial \left(\frac{\partial \pi_{i}(R_{i}(a_{j}),a_{j})}{\partial a_{i}}\right)}{\partial R_{i}}\frac{\partial R_{i}}{\partial a_{j}}da_{j} + \frac{\partial \left(\frac{\partial \pi_{i}(R_{i}(a_{j}),a_{j})}{\partial a_{i}}\right)}{\partial a_{j}}da_{j} = 0\\ \bullet \ \text{como}\ a_{i} &= R_{i}(a_{j}) \Rightarrow \frac{\partial^{2} \pi_{i}}{\partial a_{i}^{2}}\frac{\partial R_{i}}{\partial a_{j}} + \frac{\partial^{2} \pi_{i}}{\partial a_{i}\partial a_{j}} = 0\ \text{donde}\ \frac{\partial R_{i}}{\partial a_{j}} \equiv R_{i}'\ \text{es la} \end{split}$$

•
$$dR_i = \frac{\partial R_i}{\partial a_j} da_j \Rightarrow \frac{\partial \left(\frac{\partial \pi_i(\kappa_i(a_j), a_j)}{\partial a_i}\right)}{\partial R_i} \frac{\partial R_i}{\partial a_j} da_j + \frac{\partial \left(\frac{\partial \pi_i(\kappa_i(a_j), a_j)}{\partial a_i}\right)}{\partial a_j} da_j = 0$$

pendiente de la curva de reacción de la empresa $i. \Rightarrow$

$$R_i' = -\frac{\frac{\partial^2 \pi_i(R_i(a_j), a_j)}{\partial a_i \partial a_j}}{\frac{\partial^2 \pi_i(R_i(a_j), a_j)}{\partial a_i^2}}$$

• El signo de R_i' depende de $\frac{\partial^2 \pi_i}{\partial a_i \partial a_i}$, dado que $\frac{\partial^2 \pi_i}{\partial a_i^2} < 0$

Definiciones

- Las acciones son **sustitutos estratégicos** si: $\frac{\partial^2 \pi_i}{\partial a_i \partial a_j} < 0$ Toda decisión agresiva llevada a cabo por una empresa conlleva una reacción menos agresiva (en dirección contraria) del rival.
- Las acciones son **complementos estratégicos** si: $\frac{\partial^2 \pi_i}{\partial a_i \partial a_j} > 0$ Toda decisión agresiva llevada a cabo por una empresa lleva a una reacción más agresiva (en la misma dirección) del rival.

- - Características
 - Cournot
 - Bertrand
 - Dinámica
 - Complementos y sustitutos
- Competencia monopolística
 - Presentación
 - Modelo
 - Resultados

- - Ciudad lineal
 - Elección del precio
 - Costos de transporte
- - Modelo
 - Etapa 2: elección del
 - Etapa 1: elección de la calidad, AA, AB, AB, A

- - Características
 - Cournot
 - Bertrand
 - Dinámica
 - Complementos y sustitutos
- Competencia monopolística
 - Presentación
 - Modelo
 - Resultados

- - Ciudad lineal
 - Elección del precio
 - Costos de transporte
- - Modelo
 - Etapa 2: elección del
 - Etapa 1: elección de la calidad, AA, AB, AB, A

Introducción

- Características:
 - consumidores homogéneos que prefieren consumir una variedad de marcas
 - existe un número ilimitado de potenciales marcas
 - libre entrada de productores al mercado
- Utilidad: explica mercados donde existe variedad de empresas cuyos productos son similares pero no idénticos entre sí: ejlibros, películas, música o los restaurantes
- Distintos autores o películas son en sí mismo un monopolio
- Sin embargo, existe multiplicidad de autores de novelas, o de música clásica o pintores

- - Características
 - Cournot
 - Bertrand
 - Dinámica
 - Complementos y sustitutos
- Competencia monopolística
 - Presentación
 - Modelo
 - Resultados

- - Ciudad lineal
 - Elección del precio
 - Costos de transporte
- - Modelo
 - Etapa 2: elección del
 - Etapa 1: elección de la calidad, AA, AB, AB, A

Consumidores

 Consumidores: función de utilidad con preferencia por la variedad

$$u(q) = \sum_{j=1}^{N} q_j^{1-\frac{1}{\alpha}}; \ \alpha > 1$$

• La utilidad marginal del consumo cuando éste cae a cero es:

$$\frac{\partial u(q)}{\partial q_j} = \frac{\left(1 - \frac{1}{\alpha}\right)}{q_i^{\frac{1}{\alpha}}} \Rightarrow \lim_{q_j \to 0} \frac{\partial u(q)}{\partial q_j} = +\infty$$

 ⇒ el consumidor siempre estará dispuesto a dejar de consumir una unidad de otro bien, para pasar a consumir el bien cuyo consumo era nulo hasta el momento

Empresas

Tecnología con RCE

$$CT_j(q_j) = egin{cases} F + cq_j & ext{si } q_j > 0 \ 0 & ext{en otro caso} \end{cases}$$

• Marcas diferenciadas indexadas por j = 1, ..., N

Equilibrio del consumidor (I)

Consumidor

$$\left. \begin{array}{ll} \max \limits_{q_1, \ldots, q_N} & u(q) \\ \text{s.a} & \sum \limits_{j=1}^N p_j q_j \leq w \end{array} \right\} \Rightarrow \mathcal{L} = \sum \limits_{j=1}^N q_j^{1 - \frac{1}{\alpha}} - \lambda \left(\sum \limits_{j=1}^N p_j q_j - w \right)$$

•
$$\frac{\partial \mathcal{L}}{\partial q_j} = \left(1 - \frac{1}{\alpha}\right) q_j^{-\frac{1}{\alpha}} - \lambda p_j = 0 \Leftrightarrow q_j^{-\frac{1}{\alpha}} = \lambda p_j \left(\frac{\alpha}{\alpha - 1}\right) \Leftrightarrow q_j = \left[\lambda p_j \left(\frac{\alpha}{\alpha - 1}\right)\right]^{-\alpha}; j = 1, \dots, N$$

Equilibrio del consumidor (II)

• Sustituyendo en la restricción presupuestal:

$$\sum_{j=1}^{N} p_{j}q_{j} = w \Leftrightarrow \sum_{j=1}^{N} p_{j} \left[\lambda p_{j} \left(\frac{\alpha}{\alpha - 1} \right) \right]^{-\alpha} = w \Leftrightarrow$$

$$\lambda^{-\alpha} \left(\frac{\alpha}{\alpha - 1} \right)^{-\alpha} \sum_{j=1}^{N} p_{j}^{1 - \alpha} = w \Leftrightarrow \lambda^{-\alpha} = w \left[\left(\frac{\alpha}{\alpha - 1} \right)^{-\alpha} \sum_{j=1}^{N} p_{j}^{1 - \alpha} \right]^{-1}$$

• Sustituimos λ en la ecuación de q_j de las CPO y obtenemos:

$$q_j = w \left[\left(\frac{\alpha}{\alpha - 1} \right)^{-\alpha} \cdot \sum_{j=1}^{N} p_j^{1 - \alpha} \right]^{-1} p_j^{-\alpha} \left(\frac{\alpha}{\alpha - 1} \right)^{-\alpha} \Leftrightarrow q_j = \frac{w p_j^{-\alpha}}{\sum\limits_{j=1}^{N} p_j^{1 - \alpha}};$$

y a $\frac{w}{\sum\limits_{i=1}^{N} \rho_{j}^{1-\alpha}}$ lo llamaremos k

Equilibrio del consumidor (III)

• La demanda de cada bien es:

$$q_j = \frac{k}{p_j^{\alpha}}$$

La elasticidad precio de la demanda:

$$\varepsilon = -\frac{\partial q_j}{\partial p_j} \frac{p_j}{q_j} = -\frac{-\alpha k p_j^{\alpha - 1}}{p_j^{2\alpha}} \frac{p_j}{\frac{k}{p_j \alpha}} = \frac{\alpha k p_j^{\alpha} p_j^{\alpha}}{p_j^{2\alpha} k} = \alpha$$

Equilibrio de las empresas

•
$$\pi_j = p_j q_j - F - cq_j = (p_j - c) \frac{k}{p_j^{\alpha}} - F$$

• CPO
$$\frac{\partial \pi_j}{\partial p_j} = 0 = \frac{k}{p_j^{\alpha}} - (p_j - c) \frac{\alpha p_j^{\alpha - 1} k}{p_j^{2\alpha}} \Leftrightarrow 1 = (p_j - c) \alpha \frac{1}{p_j} \Leftrightarrow \frac{p_j - c}{p_i} = \frac{1}{\alpha}$$

Existe poder de mercado sobre la marca

Equilibrio de competencia monopolística

Definition

El equilibrio de competencia monopolística es un vector de precios $(p_1^{cm}, \dots, p_N^{cm})$ y una asignación $(q_1^{cm}, \dots, q_N^{cm})$ tal que:

- los consumidores maximizan su utilidad sujeto a su restricción presupuestal
- 2 las empresas actúan como un monopolio sobre su marca
- existe libre entrada de marcas, lo que implica que cada empresa hace beneficios iguales a cero:

$$\pi_j(q_i^{cm}) = 0; \forall j = 1, \ldots, N$$

Solución (I)

• **Precio** de equilibrio $\frac{p_j-c}{p_j}=\frac{1}{\alpha}\Leftrightarrow p_j=c\left(\frac{\alpha}{\alpha-1}\right)$. Sea $\beta=1-\frac{1}{\alpha}\Rightarrow p_j^{cm}=\frac{c}{\beta}; \ \forall j=1,\ldots,N$

• La cantidad de equilibrio:
$$q_j^{cm} = \frac{k}{p_j^{\alpha}} = k \left(\frac{\beta}{c}\right)^{\alpha}$$
; $\forall j = 1, \dots, N$

• EN simétrico
$$k = \frac{w}{\sum\limits_{j=1}^{N} p_{j}^{1-\alpha}} = \frac{w}{N\left(\frac{c}{\beta}\right)^{1-\alpha}} = \frac{w}{N}\left(\frac{\beta}{c}\right)^{1-\alpha} \Rightarrow q_{j}^{cm} = k\left(\frac{\beta}{c}\right)^{\alpha} = \frac{w}{N}\left(\frac{\beta}{c}\right)^{1-\alpha}\left(\frac{\beta}{c}\right)^{\alpha} \Rightarrow$$

$$q_j^{cm} = \frac{w}{N} \left(\frac{\beta}{c} \right); \forall j = 1, \dots, N$$

Solución (II)

- **Número** de empresas: $\pi_j(q_j^{cm}) = (p_j^{cm} c)q_j^{cm} F = 0 \Leftrightarrow \left(\frac{c}{\beta} c\right)\frac{w}{N}\left(\frac{\beta}{c}\right) F = 0 \Leftrightarrow F = \frac{w}{N}(1 \beta)$
- Recordemos que $\beta = 1 \frac{1}{\alpha} \Rightarrow (1 \beta) = \frac{1}{\alpha} \Rightarrow F = \frac{w}{\alpha N} \Rightarrow$

$$N^{cm} = \left\lfloor \frac{w}{F\alpha} \right\rfloor$$

- Modelo sencillo
 - Características
 - Cournot
 - Bertrand
 - Dinámica
 - Complementos y sustitutos estratégicos
- 2 Competencia monopolística
 - Presentación
 - Modelo
 - Resultados

- 3 Localización
 - Ciudad lineal
 - Elección del precio
 - Costos de transporte
- 4 Diferenciación vertical
 - Modelo
 - Etapa 2: elección del precio
 - Etapa 1: elección de la calidad.

Resultados

- Sólo un número finito de empresas producen en el mercado
- Si el costo fijo es alto, la variedad de marcas es baja:

$$\frac{\partial N^{cm}}{\partial F} = \frac{-\alpha w}{[F\alpha]^2} < 0$$

- Aumento en la competencia (mayor α) , un menor número de marcas disponibles: $\frac{\partial N^{cm}}{\partial \alpha} = \frac{-Fw}{|F\alpha|^2} < 0$
- Los consumidores sustituyen altos niveles de consumo de cada marca por un bajo nivel de consumo de muchas marcas

Equilibrio

- Modelo sencillo
 - Características
 - Cournot
 - Bertrand
 - Dinámica
 - Complementos y sustitutos estratégicos
- Competencia monopolística
 - Presentación
 - Modelo
 - Resultados

- 3 Localización
 - Ciudad lineal
 - Elección del precio
 - Costos de transporte
- 4 Diferenciación vertical
 - Modelo
 - Etapa 2: elección del precio
 - Etapa 1: elección de la calidad.

- Modelo sencillo
 - Características
 - Cournot
 - Bertrand
 - Dinámica
 - Complementos y sustitutos estratégicos
- Competencia monopolística
 - Presentación
 - Modelo
 - Resultados

- 3 Localización
 - Ciudad lineal
 - Elección del precio
 - Costos de transporte
- 4 Diferenciación vertical
 - Modelo
 - Etapa 2: elección del precio
 - Etapa 1: elección de la calidad.

Presentación

- En este modelo los consumidores son heterogéneos debido a diferencias en gustos o ubicación física: cada consumidor tiene una preferencia distinta sobre la marca vendida en el mercado
- Dos interpretaciones
 - localización física de un consumidor particular
 - 2 localización como distancia entre las características de marca

Consumidores

- L consumidores distribuidos en forma uniforme en una calle de distancia L
- Precio de reserva del consumidor es \bar{u} , costo de transporte de t por unidad de distancia
- t puede ser:
 - desplazamiento físico
 - desutilidad
- Excepto por su ubicación, los consumidores son todos idénticos
- Consumidores indexados por $x \in [0, L]$, en donde x indica la posición en calle

Utilidad y empresas

- Un consumidor ubicado en x deberá pagar costos de transporte t|x-a| para comprar en A o t|x-(L-b)| para comprar en B
- En este marco definimos la utilidad como

$$U_{x} = \begin{cases} \bar{u} - p_{A} - t |x - a| & \text{si compra en A} \\ \bar{u} - p_{B} - t |x - (L - b)| & \text{si compra en B} \\ 0 & \text{si no consume} \end{cases}$$

- Los costos de producción son cero
- No hay costos de instalar las tiendas: instaladas en A y B,
 cada una perteneciente a una empresa diferente

Figura

- - Características
 - Cournot
 - Bertrand
 - Dinámica
 - Complementos y sustitutos
- - Presentación
 - Modelo
 - Resultados

- Cocalización
 - Ciudad lineal
 - Elección del precio
 - Costos de transporte
- - Modelo
 - Etapa 2: elección del
 - Etapa 1: elección de la calidad, AA, AB, AB, A

Demanda

- Si se identifica al indiferente ⇒ los que estén a la izquierda van a preferir comprar en la tienda A y los de la derecha en B
- Si \hat{x} es indiferente

$$|\bar{u} - p_A - t|\hat{x} - a| = |\bar{u} - p_B - t|(L - b - \hat{x})|$$

• Despejando $\hat{x} \Rightarrow$ demanda de la tienda A

$$\hat{x} = \frac{p_B - p_A}{2t} + \frac{L - b + a}{2}$$

• Demanda de la tienda $B \Rightarrow L - \hat{x} = \frac{p_A - p_B}{2t} + \frac{L + b - a}{2}$

Reacción empresas

- Beneficios $A \Rightarrow \pi_A = \left(\frac{p_B p_A}{2t} + \frac{L b + a}{2}\right) p_A$
- CPO: $\max_{p_A} \pi_A \Rightarrow \frac{\partial \pi_A}{\partial p_A} = 0 = \frac{p_B p_A + t(L b + a)}{2t} \frac{p_A}{2t} \Leftrightarrow p_A = \frac{p_B + t(L b + a)}{2}$
- Beneficios $B \Rightarrow \pi_B = \left(\frac{p_A p_B}{2t} + \frac{L + b a}{2}\right) p_B$
- CPO: $\max_{p_B} \pi_B \Rightarrow \frac{\partial \pi_B}{\partial p_B} = 0 = \frac{p_A p_B + t(L + b a)}{2t} \frac{p_B}{2t} \Leftrightarrow p_B = \frac{p_A + t(L + b a)}{2}$

Equilibrio (I)

• Los precios de equilibrio son:

$$p_A = \frac{t(3L - b + a)}{3}$$
 $p_B = \frac{t(3L + b - a)}{3}$

- Los precios son crecientes en t: aumenta la diferenciación de productos
- Las cantidades son

$$\hat{x}^h = \frac{3L - b + a}{6}$$
 $L - \hat{x}^h = \frac{3L + b - a}{6}$

• Beneficios:
$$\pi_A^h = \frac{t(3L-b+a)^2}{18} \text{ y } \pi_B^h = \frac{t(3L+b-a)^2}{18}$$

Equilibrio (II)

Theorem

- 1.- si ambas empresas están ubicadas en el mismo punto (o sea los productos son homogéneos), el único equilibrio es $p_A = p_B = 0$.
- 2.- Existe un único equilibrio $(p_A^h, p_B^h, q_A^h, q_B^h) \Leftrightarrow$ las empresas no están ubicadas muy cerca una de la otra.

Proof.

- 1.- si los productos son homogéneos, entonces es válido el análisis de Bertrand del capítulo de Oligopolio con bienes homogéneos
- 2.- Para esta demostración, pueden consultar las páginas 163-64 de Shy (1996) $\hfill\Box$

Equilibrio (III)

Theorem

En el modelo de Hotelling de ciudad lineal con costos de transporte lineales, no existe equilibrio cuando las empresas compiten tanto en precios como en ubicaciones como estrategias.

Proof.

(informal). Dados los beneficios, se cumple
$$\frac{\partial \pi_A}{\partial a} = \frac{t(3L + (a-b))}{9} > 0$$
 y $\frac{\partial \pi_B}{\partial b} = \frac{t(3L + (b-a))}{9} > 0$

Estas derivadas parciales indican que las empresas incrementan sus beneficios si se mueven hacia el centro del segmento, pero a medida que se acercan al centro, el equilibrio no existe por la Proposición anterior

- Modelo sencillo
 - Características
 - Cournot
 - Bertrand
 - Dinámica
 - Complementos y sustitutos estratégicos
- Competencia monopolística
 - Presentación
 - Modelo
 - Resultados

- 3 Localización
 - Ciudad lineal
 - Elección del precio
 - Costos de transporte cuadráticos
- 4 Diferenciación vertical
 - Modelo
 - Etapa 2: elección del precio
 - Etapa 1: elección de la calidad.

Intuición

La función de utilidad es ahora:

$$U_x = \begin{cases} \bar{u} - p_A - t(x - a)^2 & \text{si compra en A} \\ \bar{u} - p_B - t(x - L + b)^2 & \text{si compra en B} \\ 0 & \text{si no consume} \end{cases}$$

 Ahora las empresas se posicionarán en los extremos del segmento; ie. buscan la máxima diferenciación

- Modelo sencillo
 - Características
 - Cournot
 - Bertrand
 - Dinámica
 - Complementos y sustitutos estratégicos
- Competencia monopolística
 - Presentación
 - Modelo
 - Resultados

- 3 Localización
 - Ciudad lineal
 - Elección del precio
 - Costos de transporte
- 4 Diferenciación vertical
 - Modelo
 - Etapa 2: elección del precio

- Modelo sencillo
 - Características
 - Cournot
 - Bertrand
 - Dinámica
 - Complementos y sustitutos estratégicos
- Competencia monopolística
 - Presentación
 - Modelo
 - Resultados

- 3 Localización
 - Ciudad lineal
 - Elección del precio
 - Costos de transporte
- 4 Diferenciación vertical
 - Modelo
 - Etapa 2: elección del precio
 - Etapa 1: elección de la calidad.

Características

- Ahora existe acuerdo entre los consumidores respecto a la calidad de los productos
- Juego en dos etapas:
 - Etapa 1: las empresas eligen la calidad
 - Etapa 2: las empresas eligen el precio

Consumidores

- Calidad es un número $s_i \in [\underline{s}, \overline{s}] \subset \Re_+$
- Los consumidores acuerdan que es mejor una calidad mejor a una menor calidad
- Son heterogéneos en su evaluación de la calidad: la preferencia por la calidad es $\theta \in \left[\underline{\theta}, \overline{\theta}\right] \subset \Re_+$
- ullet Mayores heta indican mayor valoración de la calidad
- Cada consumidor demanda una unidad del producto, hay una masa $M=\overline{\theta}-\underline{\theta}$ de consumidores

Utilidad / Empresas

• Utilidad indirecta del agente:

$$u_i = \begin{cases} \theta_i s_k - p_k & \text{ si compra el producto de calidad } k \\ 0 & \text{ en otro caso} \end{cases}$$

- El consumidor compra una única unidad del bien
- ullet Dos empresas que producen las calidades s_1 y s_2 con $s_1 < s_2$
- Los precios en equilibrio de las empresas cumplen que $p_1, p_2 < r$ (todos los consumidores compran los bienes)
- El costo del producto es cero

- Modelo sencillo
 - Características
 - Cournot
 - Bertrand
 - Dinámica
 - Complementos y sustitutos estratégicos
- Competencia monopolística
 - Presentación
 - Modelo
 - Resultados

- 3 Localización
 - Ciudad lineal
 - Elección del precio
 - Costos de transporte
- 4 Diferenciación vertical
 - Modelo
 - Etapa 2: elección del precio
 - Etapa 1: elección de la calidad.

Equilibrio (I)

- Dada la calidad de los productos s_1 y s_2 , con $s_1 < s_2$ existe un consumidor indiferente entre las calidades de los bienes $\hat{\theta}$
- Para este consumidor se cumple: $r p_1 + \widehat{\theta s}_1 = r p_2 + \widehat{\theta s}_2$
- Despejando se obtiene $\widehat{\theta} = \frac{p_2 p_1}{s_2 s_1}$ para $\widehat{\theta} \in \left[\underline{\theta}, \overline{\theta}\right]$
- Los consumidores $\theta>\widehat{\theta}$ compran todos el producto de mayor calidad s_2 y a la inversa los $\theta<\widehat{\theta}$

Equilibrio (II)

• Las funciones de beneficio son $\pi_i = p_i q_i$, donde

$$\pi_{1} = \begin{cases} 0 & \text{si } p_{1} > p_{2} - \underline{\theta}\left(s_{2} - s_{1}\right) \\ p_{1}\left(\frac{p_{2} - p_{1}}{s_{2} - s_{1}} - \underline{\theta}\right) & \text{si } p_{2} - \overline{\theta}\left(s_{2} - s_{1}\right) \leq p_{1} \leq p_{2} - \underline{\theta}\left(s_{2} - s_{1}\right) \\ p_{1}\left(\overline{\theta} - \underline{\theta}\right) & \text{si } p_{1} < p_{2} - \overline{\theta}\left(s_{2} - s_{1}\right) \end{cases}$$

• Los beneficios son 0 si nadie compra a la empresa 1 $\theta > \hat{\theta} = \frac{p_2 - p_1}{2}$

• Los beneficios son máximos cuando la otra empresa no vende $\overline{\theta}<\widehat{\theta}=\frac{p_2-p_1}{s_2-s_1}.$

Interpretación

• CPO (suponiendo una solución interior $\left(\overline{\theta}>2\underline{\theta}\right)$ se obtienen los precios de equilibrio:

$$p_1^* = \frac{1}{3} \left(\overline{\theta} - 2\underline{\theta} \right) (s_2 - s_1) \quad p_2^* = \frac{1}{3} \left(2\overline{\theta} - \underline{\theta} \right) (s_2 - s_1)$$

- Los precios de ambas empresas son crecientes con la diferenciación (s_2-s_1)
 - el precio de ambas empresas es creciente con la calidad de la empresa 2, y decrecientes con la de la 1
 - 2 La existencia de una calidad menor impone una presión competitiva a la empresa de mayor calidad, en relación a si no estuviera

- Modelo sencillo
 - Características
 - Cournot
 - Bertrand
 - Dinámica
 - Complementos y sustitutos estratégicos
- Competencia monopolística
 - Presentación
 - Modelo
 - Resultados

- 3 Localización
 - Ciudad lineal
 - Elección del precio
 - Costos de transporte
- 4 Diferenciación vertical
 - Modelo
 - Etapa 2: elección del precio
 - Etapa 1: elección de la calidad

Equilibrio

- Funciones reducidas de beneficio $\pi_1 = p_1 \left(\frac{p_2 p_1}{s_2 s_1} \underline{\theta} \right)$ $= \frac{1}{3} \left(\overline{\theta} 2\underline{\theta} \right) (s_2 s_1) \left[\frac{\frac{1}{3} \left(2\overline{\theta} \underline{\theta} \right) (s_2 s_1) \frac{1}{3} \left(\overline{\theta} 2\underline{\theta} \right) (s_2 s_1)}{s_2 s_1} \underline{\theta} \right]$ $= \frac{1}{3} \left(\overline{\theta} 2\underline{\theta} \right) (s_2 s_1) \left[\frac{1}{3} \left(\overline{\theta} 2\underline{\theta} \right) \right] \Rightarrow$ $\pi_1 = \frac{1}{9} \left(\overline{\theta} 2\underline{\theta} \right)^2 (s_2 s_1)$
- Para la empresa 2, $\pi_2=p_2\left(\overline{\theta}-\frac{p_2-p_1}{s_2-s_1}\right)=\frac{1}{9}\left(2\overline{\theta}-\underline{\theta}\right)^2(s_2-s_1)$
- A la empresa 1 para cualquier s_2 de la empresa 2, le conviene elegir $s_1 = \underline{\theta}$; a la inversa para al empresa 2 $s_2 = \overline{\theta}$

Modelo de diferenciación vertical

Las empresas relajan la competencia aumentando la diferenciación.

Equilibrio

- Funciones reducidas de beneficio $\pi_1 = p_1 \left(\frac{p_2 p_1}{s_2 s_1} \underline{\theta} \right)$ $= \frac{1}{3} \left(\overline{\theta} 2\underline{\theta} \right) (s_2 s_1) \left[\frac{\frac{1}{3} \left(2\overline{\theta} \underline{\theta} \right) (s_2 s_1) \frac{1}{3} \left(\overline{\theta} 2\underline{\theta} \right) (s_2 s_1)}{s_2 s_1} \underline{\theta} \right]$ $= \frac{1}{3} \left(\overline{\theta} 2\underline{\theta} \right) (s_2 s_1) \left[\frac{1}{3} \left(\overline{\theta} 2\underline{\theta} \right) \right] \Rightarrow$ $\pi_1 = \frac{1}{9} \left(\overline{\theta} 2\underline{\theta} \right)^2 (s_2 s_1)$
- Para la empresa 2, $\pi_2=p_2\left(\overline{\theta}-\frac{p_2-p_1}{s_2-s_1}\right)=\frac{1}{9}\left(2\overline{\theta}-\underline{\theta}\right)^2(s_2-s_1)$
- A la empresa 1 para cualquier s_2 de la empresa 2, le conviene elegir $s_1 = \underline{\theta}$; a la inversa para al empresa 2 $s_2 = \overline{\theta}$

Modelo de diferenciación vertical

Las empresas relajan la competencia aumentando la diferenciación.