Digitaltechnik

Kapitel 2, Digitale Codierung von Informationen

Prof. Dr.-Ing. M. Winzker

Nutzung nur für Studierende der Hochschule Bonn-Rhein-Sieg gestattet. (Stand: 20.03.2019)

Zahlendarstellungen und Codes

- Mit Digitalschaltungen werden nicht nur 0/1-Informationen verarbeitet, sondern allgemein Daten verschiedenster Art
- Diese Daten werden durch mehrere binäre Signale ("Bits") dargestellt
- Die 0/1-Kombinationen sind Codewörter
- Die Zuordnung zwischen Codewort und Bedeutung ist der Code
 - "Code" im Sinne der Elektronik (Nachrichtentechnik, Kommunikationstechnik) meint normalerweise keine Geheimhaltung
- Einen Code zur Darstellung und **Berechnung** von Zahlen, wird als **Zahlendarstellung** bezeichnet
 - Die Betonung der Berechnung ist nötig, da manche praktisch sinnvollen Codes für Zahlen sich nicht für Berechnungen eignen

Eigenschaften von Codes

Codes existieren mit verschiedenen Eigenschaften für verschiedene Anwendungen:

- Für die **Datenverarbeitung** sollen Codes einfach zu handhaben sein
 - Dies kann unter anderem durch eine feste Codewortlänge erreicht werden
 - Beispiel: ASCII-Zeichen haben eine feste Codewortlänge von 7 Codestellen
- Zur **Datenspeicherung** und **Datenübertragung** sollen Codes wenig Platz (wenige binäre Codestellen) einnehmen
 - Hierzu können Codewörter mit variabler Codewortlänge eingesetzt werden
 - Beispiel: Morse-Code nutzt unterschiedliche Anzahl an Strichen und Punkten zur Darstellung eines Zeichens, je nach Häufigkeit in (englischen) Texten

Z.B.:
$$E' = P \bullet'$$
; $T' = P \bullet'$; $M' = P \bullet P \bullet'$; $Q' = P \bullet P \bullet'$; ...

- Zur **Datenübertragung** sollen Übertragungsfehler erkannt und/oder korrigiert werden
 - Beispiel: Parity-Bit zur einfachen Fehlererkennung
- Zur **Geheimhaltung** soll Information verschlüsselt werden
 - <u>Beispiel:</u> "Ceasar Cypher", d.h. einfaches Vertauschen von Codewörtern

Zweierpotenzen

- Mit 2 Bits können 4 Möglichkeiten dargestellt werden: "00", "01", "10", "11"
 - Mit jedem weiteren Bit verdoppeln sich die Möglichkeiten
- Allgemein gilt: Mit n Stellen können 2ⁿ Codewörter gebildet werden
 - Die Anzahl an Stellen wird auch als Wortbreite bezeichnet
- Die Zweierpotenz für 0 bis 10:

n	0	1	2	3	4	5	6	7	8	9	10
2 ⁿ	1	2	4	8	16	32	64	128	256	512	1024

Die Werte können leicht hergeleitet werden:

- Für n=1 ist 2ⁿ=2, alle weiteren Werte ergeben sich durch verdoppeln
- Häufig verwendet wird:
 - 2⁸=256 (8 Bit sind 1 Byte)
 - $2^{10} \approx 1000$

Für höhere Zweierpotenzen kann der Exponent aufgeteilt werden: 2^{m+n} = 2^m • 2ⁿ

• **Beispiel:** $2^{16} = 2^{10+6} = 2^{10} \cdot 2^6 = 2^m \cdot 2^n \approx 1000 \cdot 64 = 64000$

Zahlendarstellung Dualzahl

- Die Stellen einer Dualzahl haben eine feste **Stellenwertigkeit**:
 - Eine *N*-stellige Zahl hat die Stellen *N-1* bis *0*; die Stelle *0* ist LSB
 - o LSB: "Least Significant Bit" (niedrigstwertiges Bit)
 - o MSB: "Most Significant Bit" (höchstwertiges Bit)
 - Die Stelle n hat die Wertigkeit 2^n
 - Beispiel: 8 bit Dualzahl 0010 0110₂
 - o Stelle 5, 2 und 1 entsprechen den Werten 32, 4 und 2 und ergeben die Dezimalzahl 38₁₀
- Der Wertebereich ist $[0; 2^N-1]$
 - Beispiel: 8 bit Dualzahlen haben den Wertebereich [0;255]
- Umwandlung von Dezimalzahlen ins Dualzahlen:
 - Fortwährende Division des Betrags durch 2
 - Die Divisionsreste ergeben die Binärzahl, angefangen vom LSB

Beispiel: $41_{10} = 101001_2$ 41:2 = 20 Rest 1 (LSB)

20:2 = 10 Rest 0

10:2 = 5 Rest 0

5:2 = 2 Rest 1

2:2 = 1 Rest 0

1:2 = 0 Rest 1

Zahlendarstellung Zweierkomplement

- Darstellung im Zweierkomplement (2C):
 - Repräsentation positiver und negativer Zahlen
- Feste Stellenwertigkeit wie bei Dualzahlen
 - Die Stelle n hat (wie bei Dualzahlen) die Wertigkeit 2^n
 - Ausnahme: Die Stelle N-1 ist das Vorzeichen und hat die Wertigkeit -2^{N-1}
 - Beispiel: 8 bit Zweierkomplementzahl 1010 0110_{2C}
 - o Stelle 7 zeigt an, dass die Zahl negativ ist und hat den Wert -128
 - o Stelle 5, 2 und 1 entsprechen den Werten 32, 4 und 2
 - o Insgesamt ergibt sich die Dezimalzahl -90₁₀
- Der Wertebereich ist $[-2^{N-1}; 2^{N-1}-1]$
 - Der Wertebereich ist unsymmetrisch (wegen der Null)
 - Beispiel: 8 bit Zweierkomplementzahlen haben den Wertebereich [-128;127]

Achtung: In der Digitaltechnik (und Informatik) wird immer ab 0 gezählt

• Aufpassen bei sprachlichen Missverständnissen: Stelle 1 ist die zweite Stelle

Umwandlung zum Zweierkomplement

Für positive Zahl

- Erweiterung um das Vorzeichenbit ,0'
 - → Eine n bit Dualzahl benötigt im Zweierkomplement n+1 bit

Für negative Zahl

- Bestimmung der korrespondierenden positiven Dualzahl
- Invertierung aller Stellen der positiven Dualzahl und Addition von 1
 - Beispiel: Dezimalzahl -38₁₀

o Dualzahl: $0010\ 0110_2\ (+38_{10} = positive\ Dualzahl)$

o Invertierung: 1101 1001

o Addition von 1: 1101 1010_{2C} \leftarrow Ergebnis

Rückwandlung aus dem Zweierkomplement

Wertebestimmung einer Zahl im Zweierkomplement

Auswertung des Vorzeichens

- **,0':** Positive Zahl
 - Wert entsprechend der Dualzahl
- **,1':** Negative Zahl
 - Rückwandlung in Dualzahl:
 - Subtraktion von 1 und Invertierung
 - Wert ist negativer Wert der Dualzahl

Vereinfachte Berechnung für negative Zahl

- Subtraktion von 1 und Invertierung ist "lästig" wegen Subtraktion
- Einfacher: Erst Invertierung, dann wieder Addition
 - Beispiel: Zweierkomplement -38₁₀ (siehe oben)

o Zweierkompl.: 1101 1010_{2C}

o Invertierung: 0010 0101

o Addition von 1: 0010 0110₂ \leftarrow Ergebnis: 38₁₀

Rechenoperationen im Zweierkomplement

- Addition:
 - Stellenweise Addition mit Übertrag in nächste Stelle
 - Bereichsüberschreitung, falls beide Summanden gleiches Vorzeichen haben und die Summe ein anderes Vorzeichen ergibt
 - o Bereichsüberschreitung kann Überlauf ("Overflow") oder Unterlauf ("Underflow") sein
- Subtraktion:
 - Bildung des Komplements und Addition
- Multiplikation und Division:
 - Stellenweise Berechnung, ähnlich der Dezimalrechnung
 - Besondere Behandlung der Vorzeichenstellen
 - Details in Literatur

Achtung: Für alle Rechenoperationen dürfen nur gleiche Zahlendarstellungen miteinander kombiniert werden

Ansonsten Dualzahlen in Zweierkomplement umwandeln

Wertebereiche und Wortbreiten

- Bei Addition zweier Zahlen kann das Ergebnis den Wertebereich der Summanden überschreiten
- Die Summe muss darum normalerweise eine größere Wortbreite haben
 - Beispiel: Zwei 8 bit Zahlen (Wertebereich [0;255]) können den Wertebereich [0;510] ergeben, benötigen also 9 bit
- Alternative: Die Addition hat eine Überlaufbegrenzung
 - Wird in der Signalverarbeitung verwendet, z.B. Multimedia-Befehle einer CPU
- Erweiterung der Wortbreite:
 - Dualzahlen: Vordere Stellen werden mit ,0' aufgefüllt
 - Zweierkomplement: Vordere Stellen werden mit Vorzeichen (MSB) aufgefüllt
- Bei der Addition kann dadurch kein Überlauf entstehen
- Achtung: Bei Zweierkomplement kann ein Übertrag entstehen, der entfällt
 - → Beispiel auf nächster Seite

Beispiel: Überlauf im Zweierkomplement

- Addition zweier 8 bit Zahlen im Zweierkomplement
- Ergebnis muss 9 bit Zahl sein
- Addition von: $-38 (1101 \ 1010_{2C}) + 43 (0010 \ 1011_{2C})$
- Erweiterung der Summanden auf 9 Bit durch Auffüllen mit Vorzeichen (MSB)

$$-38 = 111011010_{20}$$

•
$$43 = 000101011_{20}$$

Der vordere Überlauf entfällt!

Begründung:

- a) Das ist eine Rechenregel ©
- b) Die Summanden könnten theoretisch unendlich fortgesetzt werden

Anwendungen für Dualzahl und Zweierkomplement

Anwendungen der Signalverarbeitung nutzen fast immer Dualzahl und Zweierkomplement

- PC Grafik: Drei Anteile, Rot, Grün, Blau, jeweils 8stellige Dualzahl (8 bit)
- CD Audio: 16stellige Zweierkomplementzahl (16 bit)

Grund

- Der Wertebereich ist beschränkt und vorab bekannt
- Bei Überschreiten des Wertebereichs wird auf den Maximal-, Minimalwert begrenzt

Für Anwendungen mit großem, oft unbekannten Wertebereich ist eine **Gleitkommadarstellung** sinnvoll

- Vorzeichen, Wert, Multiplikationsfaktor schenrechner: 3.4563 E -17 Eine Zahl wird aufgeteilt in
 - Ähnlich der Darstellung im Taschenrechner:
- Anwendung
 - Allgemeine Arithmetik in CPU und Signalprozessor

ASCII-Code

- Ein Beispiel für einen allgemeinen Code ist der **ASCII-Code**
 - Buchstaben, Ziffern, Zeichen und Steuerbefehle werden durch eine 7 bit Dualzahl codiert, z.B.:

```
o A' = 0x41
```

o
$$B' = 0x42$$

o ,a' =
$$0x61$$

$$o_{,='} = 0x3D$$

o
$$,TAB' = 0x09$$

o
$$BEL' = 0x07$$

- Da keine Umlaute und internationalen Sonderzeichen (z.B. ,¿')dargestellt werden können, gibt es verschiedene Erweiterungen auf 8 bit
- Unicode ist ein über die ASCII-Zeichen herausgehender Standard, der nicht nur Symbole die westlichen Sprachen umfasst, sondern für "alle lebenden Sprachen"
 - Es existieren Unicode Symbole u.a. für Arabisch, Chinesisch ("traditionell" und "vereinfacht"), Hindi, Hebräisch, Persisch

BCD-Code

 Im Binary Coded Decimal werden die 10 Ziffern durch einen 4 bit Code dargestellt

Die Codewörter entsprechen der Dualzahl, wobei die Codewörter für die

Zahlenwerte 10 bis 15 nicht verwendet werden

- -0 = 0000
- -1 = 0001
- ...
- 9 = 1001
- BCD wird angewendet, wenn eine Anwendung mit Dezimalwerten arbeiten soll
 - Beispiel: Multimeter mit Dezimalanzeige
- Die Rechnung mit BCD-Werten ist aufwändiger als für Dualzahlen
- Die **Dezimalanzeige** von BCD-codierten Zahlen ist hingegen einfach

Gray-Code

Der Gray-Code ist eine spezielle Darstellung zur Erfassung von Codewörtern

Beispiel für Problem

- Eine Maschine fährt auf einer horizontalen Bahn
- Durch 4 Sensoren soll die Position in 16 Schritten erfasst werden.

- Im Dualcode (Bild) können Ablesefehler an den Übergängen auftreten
- Im Bild soll, 0011" oder "0100" abgelesen werden
 - Aber es wird eventuell "0111" oder "0000" oder ???? erfasst
 - Für "0111" wird im Übergang Bit 2 <u>schon</u>, Bit 0 und 1 <u>noch</u> als ,1' erfasst

Gray-Code (II)

- Im Gray-Code unterscheiden sich benachbarte Codewörter immer nur an einer Stelle
 - Die Anzahl unterschiedlicher Stellen wird als **Hamming-Distanz** bezeichnet
 - Im Gray-Code haben benachbarte Codewörter somit immer die Hamming-Distanz eins

- Die Stellen des Gray-Codes haben keine Wertigkeit
- Für Rechenoperationen kann nach der Erfassung eine Umwandlung in den Dualcode erfolgen

Gray-Code (III)

- Der Gray-Code ist zyklisch, d.h. auch erstes und letztes Codewort haben die Hamming-Distanz Eins
 - Auch für Rotationsmessung geeignet
 - Bild zeigt Beispiel mit 3 bit

Bildung des Gray-Code

• Ein Algorithmus zur Wandlung Dualzahl D(n-1:0) nach Gray-Code G(n-1:0) lautet:

```
G[n-1]=D[n-1]
for i=n-2 to i=0
{ G[i]=D[i+1] xor D[i] }
```

• Ein Algorithmus zur Wandlung Gray-Code G(n-1:0) nach Dualzahl D(n-1:0) lautet:

```
D[n-1]=G[n-1]
for i=n-2 to i=0
{ D[i]=D[i+1] xor G[i] }
```

