

Week 10: K-Means and Hierarchical Clustering

Lecturer: Dr. Sharu Theresa Jose

Learning Outcomes

- Understand principles of K-means and Hierarchical Clustering algorithms
- Learn to apply the algorithms to clustering problems
- Understand the challenges

Overview of Lecture

- Recap: Partitional Clustering as Optimization Problem
- K-Means Algorithm
 - Introduction and Examples
 - Challenges and Solutions
 - Application Vector Quantization
- Hierarchical Clustering
 - Agglomerative Hierarchical Clustering
 - Inter-Cluster Dissimilarity Metrics
 - Characteristics of Hierarchical Clustering

Partitional Clustering

- Goal: assign N observations into K (K<N) clusters to ensure high intracluster similarity and low inter-cluster similarity
- Can be formulated as a combinatorial optimization problem.
- Notation:
 - C denotes a clustering structure with K clusters
 - C ∈ C denotes a component cluster
 - n_C denotes the number of examples in cluster C
 - $e \in C$ denotes an example in cluster
 - $c_k \in C_k$ denotes the centroid of the kth cluster

Measure of intra-cluster similarity

Variability (or Inertia) of a cluster *C*:

$$variability(C) = \sum_{e \in C} d(e, centroid(C)).$$

- Commonly used distance measure: squared Euclidean distance, i.e., $d(\mathbf{a}, \mathbf{b}) = d_{Euc}(\mathbf{a}, \mathbf{b})^2$.
- Centroid of a cluster is usually taken as the average of all examples in the cluster i.e.,

$$centroid(C) = \frac{attribute-wise \ sum \ of \ examples \ in \ the \ cluster}{number \ of \ examples \ in \ the \ cluster}$$

Example: If (a, b) and (c, d) are two examples in a cluster, the cluster centroid is ((a+c)/2, (b+d)/2).

Variability determines how compact the cluster is.

 Dissimilarity or Within Cluster Sum of Squares (WCSS) of a clustering structure C:

$$dissimilarity(\mathbf{C}) = \sum_{C \in \mathbf{C}} variability(C)$$

 Optimization problem: Find a clustering structure C of K<N clusters that minimizes the following objective:

$\min_{\boldsymbol{c}} dissimilarity(\boldsymbol{c})$

- Larger clusters with high variability are penalized more than smaller clusters with high variability.
- Under squared Euclidean distance, minimizing dissimilarity(C) is equivalent to maximizing overall inter-cluster dissimilarity.

Minimizing WCSS or dissimilarity of a clustering structure is equivalent to maximizing the inter-cluster dissimilarity.

$$\sum_{e} d_{Euc}(e, centroid(data))^{2} =$$
Total Sum of Squares (TSS)

$$\sum_{C \in \mathcal{C}} \sum_{e \in \mathcal{C}} d_{Euc} \big(e, centroid(\mathcal{C}) \big)^2 + \sum_{C \in \mathcal{C}} n_C d_{Euc} \big(centroid(\mathcal{C}), centroid(data) \big)^2$$

$$\text{Between Cluster Sum of Squares}$$

$$\text{(BCSS)}$$

- TSS does not depend on the clustering structure, and is thus a constant.
- BCSS: accounts for inter-cluster dissimilarity
- WCSS and BCSS depend on the clustering structure.
- Since WCSS+BCSS = a constant, minimizing WCSS is equivalent to maximizing BCSS.

- Finding exact solution of the optimization problem is prohibitively hard.
 - Infeasible when large number of examples present
- Solution: Iterative Greedy Algorithms
 - Provide a sub-optimal approximate solution
 - Includes K-means, K-medoids

K-means

Iterative greedy descent algorithm that finds a sub-optimal solution to

$$\min_{\mathbf{C}} dissimilarity(\mathbf{C}) = \min_{\mathbf{C}} \sum_{C \in \mathbf{C}} \sum_{e \in C} d_{Euc}(e, centroid(C))^{2}$$

- K-means iteratively alternates between the following two steps:
 - **Assignment step**: For given set of K cluster centroids, K-means assigns each example to the cluster with closest centroid.
 - fix centroids and optimize cluster assignments (optimizes the red highlighted part).
 - Refitting step: Re-evaluate and update the cluster centroids, i.e., for fixed cluster assignment, optimize the centroids

K-Means Algorithm

Input: Number K of clusters and N examples $x^{(1)}, ..., x^{(N)}$

- 1. Select K examples as centroids $c_1, ..., c_K$
- 2. Repeat until cluster centroids do not change:
 - 3. (assignment step) Form K clusters by assigning each observation to its closest cluster centroid, i.e.,

Cluster(i) =
$$\underset{k=1}{\operatorname{arg}} \min_{k} d_{Euc}(\boldsymbol{x}^{(i)}, c_k)^2$$
 for $i = 1, ..., N$

4. (refitting step) Compute the centroid of the obtained K clusters as

$$c_k = \frac{1}{n_k} \sum_{i:Cluster(i)=k} \mathbf{x}^{(i)}, \quad for \ k=1, ... K$$

where n_k is the total number of examples in the k^{th} cluster.

Illustration

Observations:

1. Cluster centroids need not be examples in later iterations.

Example 1: Clustering of Medicines (K=2)

	Weight index	РН
Med A	1	1
Med B	2	1
Med C	4	3
Med D	5	4

Iteration 0: Initial centroids be Med A and Med B i.e, $c_1 = (1,1)$ and $c_2 = (2,1)$

Iteration 1:

1. Calculate (Euclidean) distance of each point to cluster centroids to form an Object-Centroid Distance Matrix:

	Med A	Med B	Med C	Med D
c_1	0		13	25
c_2		0	8	18

$$\begin{aligned} d_{Euc}(Med\ C,c_1)^2 &= (4-1)^2 + (3-1)^2 = 13 \\ d_{Euc}(Med\ C,c_2)^2 &= (4-2)^2 + (3-1)^2 = 8 \\ d_{Euc}(Med\ D,c_1)^2 &= (5-1)^2 + (4-1)^2 = 25 \\ d_{Euc}(Med\ D,c_2)^2 &= (5-2)^2 + (4-1)^2 = 18 \end{aligned}$$

Thus, Medicines B, C and D assigned to Cluster 2.

2. Update the centroids of the cluster.

$$c_1 = c_1$$
, $c_2 = \frac{Med\ B + Med\ C + Med\ D}{3}$
= $\left(\frac{2+4+5}{3}, \frac{1+3+4}{3}\right) = (3.67, 2.67)$

Iteration 2:

1. Calculate distance of each point to new cluster centroids.

	Med A	Med B	Med C	Med D
c_1	0	1	13	25
c_2	9.92	5.56	0.22	3.53

Med B is thus moved to cluster 1.

2. Update the centroids of the cluster.

$$c_{1} = \frac{Med \ A + Med \ B}{2} = \left(\frac{1+2}{2}, \frac{1+1}{2}\right) = (1.5,1)$$

$$c_{2} = \frac{Med \ C + Med \ D}{2} = \left(\frac{4+5}{2}, \frac{3+4}{2}\right) = (4.5,3.5)$$

- Repeat the same steps in iteration 3
- Note that cluster assignments do not change
- Algorithm converge.

Space and Time Complexity of K-Means

- Space requirement for K-means is modest because only data observations and centroids are stored
- Storage complexity is of the order O((N + K)m), where m is the number of feature attributes
- Time complexity of K-means: O(I * K * N * m) where I is the number of iterations required for convergence
- Importantly, time complexity of K-means is linear in N.

Challenges and Issues in K-Means

K-Means Questions?

- Does the K-means algorithm always converge?
- Can it always find optimal clustering?
- How should we start the algorithm?
- How should we choose the number of clusters?

Convergence of K-Means

- At each iteration, the assignment and refitting steps ensure that the objective function (1) monotonically decreases.
- Also, K-means work with finite partitions of the data.
- The above two conditions ensure that the K-Means algorithm always converge (i.e., cluster assignments do not change)
- However, the objective function (1) is non-convex. As such, K-Means algorithm may converge to a local minimum and not global minimum.

A local optimum:

Escaping local minima: multiple random restarts and choose the best clustering result (i.e., the clustering that yields lowest dissimilarity)

Choice of Initial Cluster Centroids

- Choosing initial cluster centroids is crucial for Kmeans algorithm.
- Different initializations may lead to convergence to different local optima.
- K-means is a nondeterministic algorithm.

Solutions:

- Run multiple K-means algorithm starting from randomly chosen cluster centroids. Choose the cluster assignment that has the minimum dissimilarity.
- Specialized initialization strategies: K-means++
 - Choose first centroid at random.
 - For each data point x, compute its distance dist(x) from the nearest centroid.
 - Choose a data point x randomly with probability proportional to dist $(x)^2$ as the next centroid.
 - Continue until K cluster centroids are obtained.
 - Use the obtained K centroids as initial centroids for the K-means algorithm

Choice of the Number of Clusters K

- Conventional approach: use prior domain knowledge
 Example: data segmentation a company determines the number of clusters into which its employees must be segmented
- A data-based approach for estimating the optimal number K* of clusters: Elbow method
 - Apply K-means algorithm multiple times with different number of clusters.
 - \circ Evaluate the quality of the obtained clustering structure in each run of the algorithm using the metric $dissimilarity(\mathbf{C})$.
 - As the number of clusters increases, dissimilarity(C) tends to decrease.
 - Plot dissimilarity(C) as a function of the number K of clusters.
 - Optimal K* lies at the elbow of the plot.

Elbow criterion:

- Marginal gain in the objective may decrease at true/natural value of K
- Not always ambiguously defined.

Application in Image Compression

Vector Quantization

(Left Photo): 1024 x 1024 pixels each pixel is a greyscale value ranging from 0 to 255 Storage: 8bits per pixel, 1 megabyte of storage

Vector quantization: break image into small blocks of 2x2 to get 512 x 512 blocks of 4 numbers in R⁴

- K-means clustering algorithm is run on the space of 4-dimensional real numbers. The algorithm returns the collection of cluster centroids called the codebook. The clustering process is called encoding.
- Now, each of the 512 x 512 pixel blocks is approximated by its closest cluster centroid.
- The process of constructing an approximate image from the centroids
 decoding
- Center figure: K=200 and Right figure: K=4
- Storage for compressed images= log₂(K)/4 bits per pixel

Summary of K-means

Properties:

- Optimizes a global objective function
- Squared Euclidean distance based
- Non-deterministic

Challenges:

- Requires as input: number of clusters and an initial choice of centroids
- Convergence to local minima implies multiple restarts

Hierarchical Clustering

Introduction

 Input to K-means algorithm: Number K of clusters and an initial choice of cluster centroids

- Hierarchical clustering requires no such specifications
- Instead, user specifies a measure of similarity (or dissimilarity)
 between a pair of clusters

What is hierarchical clustering?

 Create a hierarchical decomposition of the set of examples using a user-specified criterion

Dendrogram

- Highly interpretable complete description of the hierarchical clustering in a graphical format
- Representation of hierarchical clustering as a rooted binary tree
- Nodes of the trees represent clusters

Strategies for Hierarchical Clustering

Agglomerative Clustering

- Bottom-up approach
- Starts at the bottom with each cluster containing a single observation
- At each level up, recursively merge pair of clusters with the smallest inter-cluster dissimilarity into a single cluster.
- A single cluster at the top level

Divisive Clustering

- Top-down approach
- Starts at the top with a single cluster of all observations
- At each level down, recursively split one of the existing clusters into two new clusters with the largest inter-cluster dissimilarity.
- At the bottom, each cluster contains single observation

Agglomerative Hierarchical Clustering

Agglomerative Clustering Algorithm

- 1. Start with all data points in their own clusters.
- 2. Repeat until only one cluster remains:
 - Find 2 clusters C_1 , C_2 that are most similar (i.e., that have the smallest inter-cluster dissimilarity $d(C_1, C_2)$)
 - Merge C_1 , C_2 into one cluster

Output: a dendrogram

Reply on: an inter-cluster dissimilarity metric

Agglomerative clustering illustration

Measures of Inter-Cluster Dissimilarity

Single linkage

Shortest distance from any member of the cluster to any member of the other cluster

$$d_{SL}(C_1, C_2) = \min_{i \in C_1, j \in C_2} d(i, j)$$

Complete linkage

Largest distance from any member of the cluster to any member of the other cluster

$$d_{CL}(C_1, C_2) = \max_{i \in C_1, j \in C_2} d(i, j)$$

Group average

Average of distances between members of the two clusters

$$d_{GA}(C_1, C_2) = \frac{1}{n_{C_1} n_{C_2}} \sum_{i \in C_1, j \in C_2} d(i, j),$$

where n_{C_1} , n_{C_2} are the number of examples in cluster C_1 , C_2 respectively.

More details....

- Does the choice of inter-cluster dissimilarity measure matter?
 - Yes !!!
 - Yields similar results when the (natural) clusters are compact and well-separated

Single linkage:

- Determined by the pair of examples in the two clusters that are the closest; other dissimilarities between examples in the groups do not matter
- Chaining effect = tendency to combine examples linked by a series of close intermediate examples
- Sensitive to outliers
- Results in clusters that are not compact: single linkage can produce clusters with large diameter, i.e., $diam(C_1) = \max_{i,j \in C_1} d(i,j)$ is large

Complete Linkage

- Requires all examples in the two clusters to be relatively similar
- Produces compact clusters with small diameters
- Robust to outliers
- However, members can be closer to other clusters than they are to members of their own clusters

Group Average Linkage

- Attempts to produce relatively compact clusters that are relatively far apart
- Depends on the numerical scale on which the distances are measured

Example 1: Clustering of European cities based on air distance

	Lond	Paris	Berlin	Praha	Zurich	Milan
Lond	0	393	932	1027	776	958
Paris		0	878	883	489	641
Berlin			0	279	650	795
Praha				0	528	401
Zurich					0	204
Milan						0

Given the distance matrix, obtain a dendrogram using single-linkage as intra-cluster dissimilarity metric.

Level-0:

Clusters: {(Lond), (Paris), (Ber), (Praha), (Zurich), (Milan)} (6 clusters)

Level -1:

- Clusters {Milan} and {Zurich} have the smallest inter-cluster dissimilarity based on single-linkage.
- Clusters: {(Lond), (Paris), (Ber), (Praha), (Zurich, Milan)}. (5 clusters)

	Lond	Paris	Berlin	Praha	Zurich	Milan
Lond	0	393	932	1027	776	958
Paris		0	878	883	489	641
Berlin			0	279	650	795
Praha				0	528	401
Zurich					0	204
Milan						0

Height at which two clusters merge corresponds to their inter-cluster dissimilarity distance.

Level-2: Update distance matrix

	Lond	Paris	Berlin	Praha	{Zur, Milan}
Lond	0	393	932	1027	
Paris		0	878	883	
Berlin			0	279	
Praha				0	
{Zur, Milan}					0

```
d_{SL}(Lon, \{Zur, Milan\})
  = \min\{d(Lon, Zur), d(Lon, Milan)\}\
  = \min\{776,958\} = 776.
 d_{SL}(Paris, \{Zur, Milan\})
  = \min\{d(Paris, Zur), d(Paris, Milan)\}\
  = \min\{489,641\} = 489.
 d_{SL}(Berlin, \{Zur, Milan\})
 = \min\{d(Berlin, Zur), d(Berlin, Milan)\}\
 = \min\{650,795\} = 650.
d_{SI}(Praha, \{Zur, Milan\})
= \min\{d(Praha, Zur), d(Praha, Milan)\}
= \min\{528,401\} = 401.
```


Level-2: Update distance matrix

	Lond	Paris	Berlin	Praha	{Zur, Milan}
Lond	0	393	932	1027	776
Paris		0	878	883	489
Berlin			0	279	650
Praha				0	401
{Zur, Milan}					0

Clusters: {(Lond), (Paris), (Berlin, Praha), (Zur, Milan)} (4 clusters)

Level 3: Update distance matrix

	Lond	Paris	{Berlin, Praha}	{Zur, Milan}
Lond	0	393	932	776
Paris		0	878	489
{Berlin, Praha}			0	401
{Zur,Mila n}				0

Clusters: {(Lond, Paris), (Berlin, Praha), (Zur, Milan)} (3 clusters)

Level-4 : Update distance matrix

	{Lond,Paris}	{Berlin, Praha}	{Zur, Milan}
{Lond,Paris}	0	878	489
{Berlin, Praha}		0	401
{Zur,Milan}			0

Clusters: {(Lond, Paris),

(Berlin, Praha, Zur, Milan)} (2 clusters)

Reading a Dendrogram

- Height at which two clusters merge corresponds to their intercluster dissimilarity distance.
- Possesses a monotonicity property, i.e., inter-cluster dissimilarity between merged clusters is monotone increasing with the level of the merger.
- Horizontally cutting dendrogram at a particular height partitions observations into disjoint clusters

Space and Time Complexity

- Storage complexity: $O(N^2)$
 - Computation of distance matrix = requires storage of $\frac{N^2-N}{2}$ entries
 - Space needed to keep track of the clusters = total number of clusters = N-1
 - Total = $O(N^2)$
- Time complexity: naively O(N³)
 - Depends on the choice of inter-cluster dissimilarity measures adopted
 - By using clever sorting algorithms, complexity can be brought down to $O(N^2 \log N)$
- Space and time complexity severely limits the size of data sets that can be processed

Characteristics of Hierarchical Clustering

- Lack of a global objective function
 - Need not solve hard combinatorial optimization problem as in K-means
 - No issues with local minima or choosing initial points
- Deterministic algorithm
- Merging decisions are final
- May impose a hierarchical structure on an otherwise unhierarchical data

References:

- Elements of Statistical Learning by Hastie, Trevor and Tibshirani, Robert and Friedman, Jerome - Section 14.3
- Introduction to Data Mining, by Tan, Steinbach and Kumar -Chapter 8
- Algorithms for Clustering Data, Jane and Dubes Chapter 3
- Introduction to Computation and Programming using Python with Application to Computational Modeling and Understanding Data (3rd edition) by John. V. Guttag - Chapter 25

