$$y = \frac{e^{x}}{x^{2}} = x^{-2}e^{x}$$

a. domain: (-00,0) U(0,00)

b.
$$x \neq 0$$
. no y-intempt
Set $y=0$. $0 = e^{x}$. $e^{x} \neq 0$. No x-intempts

c. none

d.
$$\lim_{x \to 0} \frac{e^{x}}{x^{2}} = \infty$$
. $x = 0$

as $x \to 0$, $e^{x} \to 1$, $x^{2} = 0^{+}$
 $\lim_{x \to \infty} \frac{e^{x}}{x^{2}} = \infty$; $\lim_{x \to -\infty} \frac{e^{x}}{x^{2}} = 0$; $y = 0$

as x-1-no, x2-20,ex-20

ef
$$y = x e^{x}$$

 $y' = -2x^{2}e^{x} + x^{2}e^{x} = e^{x}(-2x^{3} + x^{2}) = e^{x}(x-2)$
 y' undif $x = 0$
 $y' = 0$ when $x = 2$
 $y' = 0$ when $x = 2$

as x-7-no, x2-20,ex-0

 $y' = -2x^{-3}e^{x} + x^{-2}e^{x} = e^{x}(-2x^{-3} + x^{-2}) + e^{x}(x^{-2})$ y'undef x=0 y=0 when x=2

answer: y is increasing on (-00,0) u(2,00) and decreasing on (0,2) 10 cal min et x=2, f(2) = e/4 no local max

(9) $y'' = e^{x}(-2x+x^{2}) + e^{x}(6x^{2}-2x^{3}) = e^{x}(-4x^{3}+x^{2}+6x^{4})$ $= e^{x}(x^{2}-4x+6)$ y" under ot x=0, y"70 forall x 1 ans: y is ccup (-20,0)U(0,20) no inflection pts.

y"under et x=0, y"70 forall x, ans: y is ccup (-20,0) U(0,20) no inflection pts.

