Find thermal radiation intensity:

Relate W(f) to $I(\theta, \phi, f)$ = "radiation intensity"

i.e.,
$$\int_{VOL}^{\bullet}$$
 to $\int_{SURFACE}^{\bullet}$

Consider slab of blackbody radiation:

Let slab radiate without replacement:

$$W_{\delta} = \int_{V} W(f) dV = \int_{I}^{\uparrow} I(f) dt dA d\Omega [J Hz^{-1}]$$

$$W_{\delta} = \delta \frac{8\pi}{c^3} \text{ hf}^3 / \left[e^{\text{hf/kT}} - 1 \right] = \int I_o \cos \theta \cdot \delta / (c \cdot \cos \theta) \cdot 1 \cdot d\Omega = \frac{4\pi I_o \delta}{c}$$

$$I_o(f,\theta,\phi) = 2hf^3/c^2(e^{hf/kT}-1)$$
 Wm⁻² Hz⁻¹ ster⁻¹

Planck's radiation law

 $I_o(f,\theta,\phi)\cong \frac{2kT}{\lambda^2}$ in the limit hf <<kT Rayleigh-Jeans Law

Paradox:

Two polarizations
$$\rightarrow 2kT$$

Number of modes/Hz•m²•ster $\rightarrow \lambda^2$

Note: In the radio limit: hf_i...

$$hf_j \bullet n_j = hf \frac{1}{e^{hf/kT} - 1} \cong kT \left[J \text{ mode}^{-1} \right] \text{[TEM line cavity]}$$

Recall: kT/2 J/degree of freedom • m mechanical systems

$$\begin{cases} \sin \omega t \\ \cos \omega t \end{cases}$$
 orthogonal degrees of freedom, 2 per mode

Therefore we also obtain kT/2 J/degree of freedom for thermal radiation

Thermal radiation from lossy lines:

:. Emission =
$$kT(1 - e^{-\alpha dz}) \cong kT(1 - [1 - \alpha dz]) = kT\alpha dz$$

What is thermal emission when not in equilibrium?

Answer: same, recall linearity of Maxwell's equations

$$kT_{out} = kT_{in} e^{-\int_{-\infty}^{L} dz} + k\int_{0}^{L} T(z)\alpha(z)e^{-\int_{-\infty}^{L} dz} dz$$

$$T_{in} \xrightarrow{\bullet} T_{out}$$
 T_{line}

$$T_{out} = T_{in}e \underbrace{\begin{array}{c} L \\ -\int \alpha dz \\ \tau_{max} \end{array}}_{\tau_{MAX}} \tau_{max} T(\tau)e^{-\tau}d\tau$$

Equation of radiative transfer

$$T_{out} = T_{in}e^{-\tau} + T_{line}(1 - e^{-\tau})$$

Definition of a decibel:

dB gain \triangleq 10log₁₀ P₂/P₁

```
e.g.:

0 dB if P_2 = P_1

10 dB if P_2 = 10P_1

20 dB if P_2 = 100P_1
```

Example of thermal noise from lossy line:

Case 1:
$$\tau = 0 \Rightarrow T_{out} = 3K$$

Case 2: 2 dB loss
$$\Rightarrow$$
 T_{out} = 3 × 0.63 + 300(1 - 0.63) \cong 113K

Case 3:
$$\tau = \infty \Rightarrow T_{out} = 300K$$

Thermal noise voltage (Johnson noise) in circuits

Watts dissipated in load R: $kTB = (e_{rms}/2)^2/R$

$$e_{rms}$$
 (thermal noise) = $\sqrt{4kTBR}$ volts (in B Hz)

Example: Amplifier, 50Ω input, B = 100 MHz, T = 300K

$$e_{rms} = \sqrt{4 \cdot 1.38 \times 10^{-23} \times 300 \times 10^8 \times 50} = 9.1 \mu v$$
 (9.1 mv if R = 50M Ω)

Shot Noise

For example, occurs in diodes:

If each charge moves independently, arrivals are poisson distributed:

For example, let
$$i = 1$$
 ma, $B = 10^8$ Hz

We later show
$$i_{AC}^{2} = 2eiB = 2 \times 1.6 \cdot 10^{-19} \times 10^{-3} \times 10^{8}$$

Then
$$i_{AC_{rms}} \times 50\Omega \cong 9\mu V$$
 shot noise

Approximate derivation of shot noise

Sounds like falling shot

i = ne
 n <u>∆</u> avg. # electrons/sec
 n >> B, by assumption

Approximate derivation of shot noise

$$\bar{n} = \bar{n}e$$

 $\bar{n} \triangleq \text{avg. # electrons/sec}$
 $\bar{n} >> B$, by assumption

$$\left(\frac{e}{\delta} \bullet \frac{\delta}{\overline{\Delta}}\right)^2 = \overline{i}^2 = (\overline{n}e)^2$$

$$\phi_{\mathbf{i}}(\tau) \triangleq \mathsf{E}[\mathsf{i}(\mathsf{t})\mathsf{i}(\mathsf{t}-\tau)]$$

Approximate derivation of shot noise

∴ in B Hz :
$$\sigma_{iAC}^2 = 2Bei[Amp^2]$$

Shot noise example

$$R = 5K\Omega$$

 $B = 10^6 Hz$
 $i = 1 ma$

$$\bar{v} = i R = 10^{-3} \bullet 5K = 5 \text{ volts}$$

$$\sigma_{i~AC}^{2}=2Bei$$

$$v_{rms}(shot) = \sqrt{\sigma_{i~AC}^2}R = \sqrt{2 \bullet 10^6 \bullet 1.6 \times 10^{-19} \times 10^{-3}}5000 \cong 0.1 mv$$

$$\begin{bmatrix} v_{rms}(thermal) = \sqrt{4kTBR} \\ \cong \sqrt{4 \times 1.38 \times 10^{-23} \times 300 \times 10^6 \times 5000} \cong 0.01 \text{mv} \end{bmatrix}$$

Receiver Architecture

Professor David H. Staelin

Graphics: Scott Bressler

Uses of receivers

- Power measurement
- II. Finite set of transmitted signals is possible; which is it?
- III. Infinite set possible; estimate one or more parameters, e.g. arrival time, amplitude, Doppler, etc., e.g. —

Design of waveform sets is part of our problem

Measurement of noise power in B Hz

Simply compute average output power over τ sec: $\propto \left\langle v^2(t) \right\rangle$

Total power radiometer

Total power radiometer

