Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	P3215	К работе допущен	
Студент	Федоров Е.В.	Работа выполнена	
Преподаватель	Хвастунов Н.Н.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №1.10 Исследование вынужденных крутильных колебаний с регулируемым затуханием с помощью маятника Поля

1 Цель работы

1. Изучение характеристик свободных и вынужденных колебаний на примере маятника Поля

2 Задачи

- 1. Опредление периода колебаний маятника.
- 2. Исследование свободных затухающих колебаний.
- 3. Исследование вынужденных колебаний

3 Объект исследования

Объект исследования - маятник поля.

4 Метод экспериментального исследования

Многократное измерение промежутка времени при разных значения силы тока

5 Рабочие формулы и исходные данные

- 1. Циклическая частота маятника $\omega = \frac{2\pi}{r}$
- 2. Логарифмический декремент затухания $\lambda = \ln \left(\frac{A_n}{A_{n+1}} \right)$
- 3. Добротность $Q = \frac{\omega_0}{2\beta} = \frac{\omega_0}{\Delta\omega}$
- 4. Амплитудно-частотная характеристика: $a(\omega) = \frac{\omega_0^2 \theta_0}{\sqrt{(\omega_0^2 \omega^2)^2 + 4\beta^2 \omega^2}}$

6 Измерительные приборы

$N_{ar{o}}\Pi/\Pi$	Наименование	Тип прибора	Погрешность
1	Угловая шкала	_	0.1 деления
2	Цифровой секундомер	Цифровой	0.005 с

Таблица 1: Измерительные приборы

7 Схема установки

Рис. 1: Схема установки

8 Результаты прямых измерений и их обработки

#	t, c	$t_{\rm cp},{ m c}$	T, c
1	17.55		
2	17.65	17.6567	1.7657
3	17.77		

Таблица 2: Измерение периода T свободных колебаний маятника, t – время N=10 полных колебаний

•
$$t_{\rm cp} = \frac{1}{3} \sum_{i=1}^{3} t_i \approx 17.6567 \text{ c};$$

- $T = t_{\rm cp}/N \approx 17.6567/10 \approx 1.7657$ c;
- $\omega_0 = 2\pi/T \approx \frac{2\pi}{1.7657} \approx 3.5585 \text{ c}^{-1};$

I_T		t											λ	β	Q
	k	0	1	2	3	4	5	6	7	8	9	10			
0	A_k														
	$\ln(A/A_k)$														
200	A_k														
	$\ln(A/A_k)$														
400	A_k														
	$\ln(A/A_k)$														

Таблица 3: Зависимость амплитуды A колебаний маятника от номера колебания k при свободных колебаниях с разным затуханием

$\bigcup U$	7.5	8.0	8.5	9.0
N	5	5	5	5
t	16.35	14.87	13.32	12.36
T				
ω				

Таблица 4: Зависимость частоты возбуждения вынужденных колебаний от напряжения на моторе

U	ω	ω/ω_0	1	T	0	200	400
0.0							
7.0				a	0.8	0.8	0.6
7.1					0.9	0.8	0.6
7.2					1	0.8	0.65
7.3					1	0.8	0.65
7.4					1	0.8	0.75
7.5					1	0.8	0.8
7.6					1.1	0.9	0.8
7.7					1	0.9	0.8
7.8					1	0.8	0.8
7.9					1	0.9	0.9
8.0					1	0.9	0.9
8.1					1	0.9	0.9
8.2					1.1	1	0.95
8.3					1.2	1.1	0.95
8.4					1	1	0.95
8.5					1.2	1	1.1
8.6					1.1	1	1.1
8.7					1	1.1	1.2
8.8					1.2	1.4	1.2
8.9					1.4	1.3	1.2
9.0					1.4	1.4	1.2
$a_{\rm max}$							
Q'							
Q''	O D I						

Таблица 5: Зависимость амплитуды вынужденных колебаний от частоты возбуждения

- 9 Расчет результатов косвенных измерений
- 10 Расчет погрешности измерений
- 11 Графики
- 12 Окончательные результаты
- 13 Вывод и анализ результатов работы