LES DROITES

Dans tout ce chapitre, on se place dans un plan muni un repère orthonormé $(O; \vec{i}; \vec{j})$

I Différentes façons de décrire une droite

I.1 Avec un point et un vecteur

Propriété n°1.

Soit \vec{u} un vecteur non nul et A un point.

L'ensemble des points M tels que \overline{AM} et \vec{u} sont colinéaires est une droite.

preuve:

Fixons un point N tel que \overline{AN} et \vec{u} sont colinéaires et considérons la droite (AN) .

• Si un point M est tel que \overline{AM} et \overline{u} sont colinéaires alors \overline{AN} et \overline{AM} sont aussi colinéaires.

On en déduit que (AN)//(AM) (au sens large)

et comme $A \in (AN)$ et $A \in (AM)$, ces droites sont confondues.

Ainsi $M \in (AN)$

• Si un point M appartient à (AN) alors (AN)//(AM) (au sens large) et donc \overline{AN} et \overline{AM} sont colinéaires.

Ainsi \overline{AM} et \vec{u} sont colinéaires.

cqfd

Remarque n°1. (sur la preuve précédente)

• Le deuxième point nous dit que tous les points de la droite (AN) répondent à la condition et le premier point nous dit qu'il n'y en a pas d'autre.

• Le point N existe il suffit de prendre l'image de A par la translation de vecteur \vec{u} .

Définition n°1. Vecteur directeur

 \vec{u} est appelé un vecteur directeur de cette droite.

Remarque n°2.

Pour définir une droite, il nous suffit donc d'un vecteur non nul ET d'un point.

Remarque n°3.

Une fois le point A choisi, le vecteur \vec{u} n'est pas unique : tout autre vecteur non nul qui lui est colinéaire engendrera la même droite.

preuve:

Remplacer \vec{u} par l'autre vecteur en question dans la preuve de la propriété $n^{\circ}1...$

Propriété n°2.

Soient A et B deux points et \vec{u} et \vec{v} deux vecteurs non nuls. Soient d la droite de vecteur directeur \vec{u} et passant par A ainsi que d' la droite de vecteur directeur \vec{v} et passant par B . d et d' sont parallèles si et seulement si \vec{u} et \vec{v} sont colinéaires.

preuve:

Notons N et N' les images respectives de A et B par les translations de vecteurs \vec{u} et \vec{v} . On sait, grâce à la remarque n°1 et la preuve de la propriété n°1 que : d et (AN) sont confondues et que d' et (BN') le sont aussi.

 $d /\!/ d' \Leftrightarrow (AN)/\!/ (BN') \Leftrightarrow \overrightarrow{AN}$ et $\overrightarrow{BN'}$ colinéaires $\Leftrightarrow \vec{u}$ et \vec{v} colinéaires

I.2 Avec une équation cartésienne

Propriété n°3.

Soient a, b et c trois nombres réels tels au moins l'un des nombres a et b est non nul.

L'ensemble des points M(x; y) dont les coordonnées vérifient l'équation ax+by+c=0 est une droite d de vecteur directeur $\vec{u}\begin{pmatrix} -b\\ a \end{pmatrix}$ et passant par $A(x_A; y_A)$ où A est un point tel que $ax_A+by_A+c=0$.

preuve:

Les préparatifs

Soient a, b et c trois nombres réels tels au moins l'un des nombres a et b est non nul.

Notons (C) l'ensemble des points M(x; y) dont les coordonnées vérifient l'équation ax+by+c=0 et fixons $A(x_A; y_A)$ appartenant à (C) c'est à dire que : $ax_A+by_A+c=0$ ou encore : $c=-ax_A-by_A$

Notons d la droite de vecteur directeur $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ et passant par A.

Le plan

- Nous allons montrer dans un premier temps que tous les points dont les coordonnées vérifient l'équation ax+by+c=0 appartiennent à une droite
 - d de vecteur directeur $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$. Nous aurons alors $(C) \subset d$
- Puis dans un second temps nous allons montrer que d ⊂(C) , c'est à dire que si M(x; y) appartient à la droite d alors ses coordonnées vérifient a x+b y+c=0

La preuve

Dans ce premier temps, notre but est de démontrer que :

Si
$$M(x; y) \in (C)$$
 alors $\overline{AM} \begin{pmatrix} x - x_A \\ y - y_A \end{pmatrix}$ et \vec{u} sont colinéaires.

$$det(\overline{AM}; \vec{u}) = (x - x_A) \times a - (y - y_A) \times (-b)$$

$$= ax - ax_A + by - by_A$$

$$= ax + by + (-ax_A - by_A)$$

$$= ax + by + c$$

$$= 0$$

Ainsi \overrightarrow{AM} et \overrightarrow{u} sont bien colinéaires, ce qui signifie que M appartient à la droite d de vecteur directeur \overrightarrow{u} et passant par A

• Dans ce second temps, notre but est de démontrer que :

Si
$$M(x; y) \in d$$
 alors $ax+by+c=0$ où $c=-ax_A-by_A$

$$M(x; y) \in d \Leftrightarrow \overline{AM} \begin{pmatrix} x-x_A \\ y-y_A \end{pmatrix} \text{ et } \overline{u} \begin{pmatrix} -b \\ a \end{pmatrix} \text{ sont colinéaires}$$

$$\Leftrightarrow \det(\overline{AM}, \overline{u}) = 0$$

$$\Leftrightarrow (x-x_A) \times a - (y-y_A) \times (-b) = 0$$

$$\Leftrightarrow ax-ax_A+by-by_A = 0$$

$$\Leftrightarrow ax+by+(-ax_A-by_A)$$

$$\Leftrightarrow ax+by+c=0 \quad \text{, où } c=-ax_A-by_A$$

Ainsi les coordonnées de M vérifient bien ax+by+c=0

Équation cartésienne Définition n°2.

On dit alors que ax+by+c=0 est une équation cartésienne de la droite d

Remarque n°4.

La droite d de vecteur directeur \vec{u} passe par le point : $A\left(\frac{-c}{a};0\right)$ si b=0, sinon par $A\left(0;\frac{-c}{b}\right)$

Exemple n°1.

De l'équation cartésienne vers un vecteur directeur On se donne une droite D d'équation cartésienne : 3x-2y-1=0.

On peut alors déterminer un vecteur directeur de D : $\vec{u} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$

et un point appartenant à
$$D$$
 : $A\left(0; -\frac{1}{2}\right)$

Ici on a utilisé la remarque n°4, mais on peut bien sûr trouver d'autres points : le point de coordonnées (1;1) est aussi un point de D

Du vecteur directeur vers une équation cartésienne

On se donne une droite D de vecteur directeur $\vec{u} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ passant par le point E(-1;-2) . On identifie: a=3, b=-2

(relire la propriété n°3 pour comprendre le « - »devant le « 2 »)

On calcule alors $c = -ax_E - by_E = -3 \times (-1) - (-2) \times (-2) = -1$

On peut alors écrire une équation cartésienne de D: 3x-2y-1=0

Remarque n°5.

D possède une infinité d'équations cartésiennes, par exemple : 6x-4y-2=0 , -6x+4y+2=0 , 30x-20y-10=0

Avec une équation réduite *I.3*

Propriété n°4.

Soit d une droite parallèle à l'axe des ordonnées.

Une équation cartésienne de la droite d peut s'écrire sous la forme x = k avec $k \in \mathbb{R}$

preuve:

L'axe des ordonnées est une droite qui est dirigée par le vecteur

$$\vec{i} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

La droite d lui étant parallèle elle est aussi dirigée par

Une équation cartésienne est alors $1 \times x + 0 \times y + c = 0$ que l'on jnote bien sûr

En posant k=-c, on obtient bien x=k.

Remarque n°6.

La droite étant parallèle à l'axe des ordonnées, tous ses points ont la même abscisse: k

Définition n°3.

Équation réduite d'une droite parallèle à l'axe des ordonnées.

L'équation |x=k| est appelée : équation réduite de d.

Propriété n°5.

Équation réduite d'une droite non parallèle à l'axe des ordonnées

Soit d une droite non parallèle à l'axe des ordonnées.

L'équation réduite de d peut s'écrire |y=mx+p|avec m et p des nombres réels.

preuve:

Puisque d n'est pas parallèle à l'axe des ordonnées, on peut trouver deux réels a et b avec $b \neq 0$ tels que le vecteur $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ dirige d.

(si on avait b=0 alors d serait parallèle à l'axe des ordonnées, ce qui n'est pas le cas)

On sait alors qu'une équation cartésienne de d est :

$$ax + by + c = 0$$
 avec $c \in \mathbb{R}$

On peut réduire cette équation en isolant y:

$$y = \frac{-a}{b}x + \frac{-c}{b}$$

(c'est possible car $b \neq 0$, d'où l'importance de ne pas être parallèle à l'axe des ordonnées)

Il suffit alors de poser: $m = \frac{-a}{b}$ et $p = \frac{-c}{b}$ pour obtenir: y = mx + p

Définition n°4.

(petit rappel)

m est la pente ou le coefficient directeur de d et

p est l'ordonnée à l'origine de d

Remarque n°7.

une fonction affine telle que f(x)=mx+preprésentation graphique a pour équation y=mx+p et nous savons à présent que c'est bien une droite non parallèle à l'axe des ordonnées. (Souvenez-vous de la propriété n°1 du cours <u>fonctions</u> affines et <u>équations</u>)

Remarque n°8.

Si une droite d admet comme équation réduite y=mx+p alors on peut écrire: mx-y+p=0 et en déduire qu'un vecteur directeur de d est :

La propriété suivante est alors évidente.

Propriété n°6.

Soient d et d' d'équations réduites respectives :

$$y = mx + p$$
 et $y = m'x + p'$

Alors: $d // d' \Leftrightarrow m = m'$

Propriété n°7.

Soit d d'équation réduite y = mx + p

Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points appartenant à d, alors:

$$m = \frac{y_B - y_A}{x_B - x_A}$$

preuve:

On sait que $\vec{u} \begin{pmatrix} 1 \\ m \end{pmatrix}$ est un coefficient directeur de d et on remarque aussi que $\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$ en est un autre. Par conséquent ces vecteurs sont

colinéaires et on peut écrire :

$$det(\overline{AB}; \vec{u})=0 \Leftrightarrow (x_B - x_A) \times m - (y_B - y_A) \times 1 = 0$$

$$\Leftrightarrow (x_B - x_A) \times m = y_B - y_A$$

$$\Leftrightarrow m = \frac{y_B - y_A}{x_B - x_A}$$

II Systèmes d'équations

II.1 Système linéaire de deux équations à deux inconnues

Définition n°5. Qu'est-ce qu'un système?

Un système linéaire de deux équations à deux inconnues x et y peut s'écrire sous la forme $\begin{cases} ax+by=k \\ a'x+b'y=k' \end{cases}$ où a,b,k,a',b' et k' sont des nombres réels.

Exemple n°3.

$$\begin{cases}
-x+y=7 \\
2x+3y=11
\end{cases}$$
 est un système d'inconnues x et y

Définition n°6. Qu'est-ce qu'une solution d'un système?

Une solution d'un système de deux équations à deux inconnues est un couple de valeurs (x; y) qui vérifient simultanément les deux équations.

Exemple n°4.

Pour
$$\begin{cases} -x+y=7\\ 2x+3y=11 \end{cases}$$
,

Le couple (-2; 5) est une solution de ce système. En effet :

$$-(-2)+5=7$$
 ET $2\times(-2)+3\times5=11$

Par contre le couple (2; 9) n'est pas une solution de ce système. En effet :

$$-2+9=7$$
 mais $2\times 2+3\times 9\neq 11$

Dès que l'une, au moins, des deux équations n'est pas vérifiée, le couple n'est pas solution.

Définition n°7. Qu'est-ce-que résoudre un système ?

Résoudre un système c'est trouver TOUTES les solutions.

II.2 Systèmes et droites quel rapport?

Remarque n°9.

Dans le système
$$\begin{cases} ax+by=k\\ a'x+b'y=k' \end{cases}$$
 en posant $c=-k$ et $c'=-k'$, on peut écrire :
$$\begin{cases} ax+by+c=0\\ a'x+b'y+c'=0 \end{cases}$$

On peut alors considérer que :

ax+by+c=0 est une équation cartésienne d'une droite d et que a'x+b'y+c'=0 est une équation cartésienne d'une droite d'

Une solution du système représente alors les coordonnées d'un point commun aux deux droites et par conséquent résoudre le système revient à trouver TOUS les points commun à d et d'.

Il y a donc trois cas de figure possibles :

• Les **droites sont sécantes**, elles n'ont qu'un seul point commun et donc le système possède **une est une seule solution**: Les coordonnées $(x_0; y_0)$ du point d'intersection des deux droites.

L'ensemble des solutions est : $\{(x_0; y_0)\}$

• Les **droites sont** (strictement) **parallèles**, elles n'ont aucun point commun et donc le système n'a **aucune solution**.

L'ensemble des solutions est : Ø

Les **droites sont confondues** (les deux équations définissent la même droite), il y a une **infinité de solutions** qui est l'ensemble des couples (x; y) vérifiant ax+by+c=0 (ou a'x+b'y+c'=0 puisque c'est pareil...)

L'ensemble des solutions est : $\{(x; y) \mid ax+bx+c=0\}$

Comment résoudre un système ? 11.3

La méthode par substitution Méthode n°1.

Résoudre le système :
$$\begin{cases} 3x+2y=-5 \\ -2x+y=8 \end{cases}$$

$$\begin{cases} 3x+2y=-5 \\ -2x+y=8 \end{cases} \Leftrightarrow \begin{cases} 3x+2y=-5 \\ y=8+2x \end{cases} & \text{On exprime une inconnue en fonction de l'autre dans l'une des équations} \\ \Leftrightarrow \begin{cases} 3x+2(8+2x)=-5 \\ y=8+2x \end{cases} & \text{On substitue à } y \text{ sa valeur en fonction de } x \end{cases} \\ \Leftrightarrow \begin{cases} 7x+16=-5 \\ y=8+2x \end{cases} & \text{On résout l'équation d'inconnue } x \end{cases} \\ \Leftrightarrow \begin{cases} x=-\frac{21}{7} \\ y=8+2x \end{cases} & \text{On remplace } x \text{ par sa valeur dans l'autre équation} \\ \Leftrightarrow \begin{cases} x=-3 \\ y=2 \end{cases} & \text{On détermine } y \end{cases}$$

L'ensemble des solutions de ce système est donc : $\{(-3; 2)\}$

Méthode n°2. La méthode par combinaison

L'ensemble des solutions de ce système est donc : $\{(-1; 2)\}$

Le résumé du cours III

On peut définir une droite à l'aide d'un vecteur directeur et d'un point $A(x_A; y_A)$.

M(x; y) est sur la droite $\Leftrightarrow \overline{AM}$ et \vec{u} sont colinéaires $\Leftrightarrow det(\overline{AM}; \vec{u}) = 0$

équation cartésienne

On peut définir une droite à l'aide d'une équation cartésienne : ax+by+c=0

Un vecteur directeur est alors $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ et la droite passe par le point :

$$A\left(\frac{-c}{a};0\right)$$
 si $b=0$, sinon par $A\left(0;\frac{-c}{b}\right)$

Chaque droite possède une infinité d'équations cartésiennes (il suffit de multiplier a, b et c par un même nombre non nul)

équation réduite

On peut réduire une équation cartésienne afin d'obtenir une équation réduite.

Si la droite est PARALLÈLE à l'axe des Si la droite est NON PARALLÈLE à l'axe des ordonnées alors son équation réduite est de la ordonnées alors son équation réduite est de la forme:

$$x = k$$

forme:

$$y = m x + p$$

m est la pente ou le coefficient directeur p est l'ordonnée à l'origine

 $\vec{u} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Vecteur directeur:

Systèmes linéaires de deux équations à deux inconnues

Chercher les points communs à deux droites revient à résoudre un système linéaire de deux $\begin{cases} a x+b y=k \\ a' x+b' y=k' \end{cases}$ une équation cartésienne de d équations à deux inconnues : une équation cartésienne de d'

- Si les droites sont sécantes l'ensemble des solutions est $\{(x_0; y_0)\}$ où $(x_0; y_0)$ représente les coordonnées du point d'intersection de d et d' (il y a donc une solution unique)
- Si les droites sont confondues, l'ensemble des solutions est $\{(x;y) \mid ax+bx=k\}$ donc une infinité de solutions).
- Si les droites sont parallèles, l'ensemble des solutions est vide . (il n'y a aucune solution)

Il faut savoir résoudre un système de deux équations à deux inconnues, pour cela il faut être capable de reproduire les deux méthodes de la page 6.