$\int f(x) \mathrm{d}x \qquad \leftarrow$	\rightarrow $f(x)$ \leftarrow	$ ightarrow rac{\mathrm{d}}{\mathrm{d}x}f(x)$
$\frac{a}{2}x^2$	ax	a
$\frac{1}{n+1}x^{n+1}$	x^n	nx^{n-1}
$\frac{1}{a}e^{ax}$	e^{ax}	$a \cdot e^{ax}$
$rac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$
$x \ln x - x$	$\ln x $	$\frac{1}{x}$
$\log_a(x) - \frac{x}{\ln(a)}$	$\log_a(x)$	$\frac{1}{x \ln(a)}$
$-\cos(x)$	$\sin(x)$	$\cos(x)$
$\sin(x)$	$\cos(x)$	$-\sin(x)$
$-\ln\left \cos(x)\right = \ln\left \sec x\right $	$\tan(x)$	$\sec^2(x)$
$\ln \left \csc(x) - \cot(x) \right $	$\csc(x)$	$-\csc(x)\cot(x)$
$\ln \left \sec(x) + \tan(x) \right $	$\sec(x)$	$\sec(x)\tan(x)$
$\ln \left \sin(x) \right = -\ln \left \csc(x) \right $	$\cot(x)$	$-\csc^2(x)$
$x\sin^{-1}(x/a) + \sqrt{a^2 - x^2}$	$\sin^{-1}\left(x/a\right)$	$\frac{1}{\sqrt{a^2 - x^2}}$
$x\cos^{-1}(x/a) - \sqrt{a^2 - x^2}$	$\cos^{-1}\left(x/a\right)$	$-\frac{1}{\sqrt{a^2-x^2}}$
$x \tan^{-1}(x/a) - a \frac{1}{2} \ln x^2 + a^2 $	$\tan^{-1}\left(x/a\right)$	$\frac{1}{a^2 + x^2}$
$x \csc^{-1}(x/a) + a \ln \left \frac{x + \sqrt{x^2 - a^2}}{a} \right $	$\csc^{-1}\left(x/a\right)$	$-\frac{a}{ x \sqrt{x^2-a^2}}$
$x \sec^{-1}(x/a) - a \ln \left \frac{x + \sqrt{x^2 - a^2}}{a} \right $	$\sec^{-1}\left(x/a\right)$	$\frac{a}{ x \sqrt{x^2 - a^2}}$
$x \cot^{-1}(x/a) + a \frac{1}{2} \ln a^2 + x^2 $	$\cot^{-1}\left(x/a\right)$	$-\frac{a}{x^2 + a^2}$