CORRECTION DU SUJET X-ENS MATHÉMATIQUES C 2017

I. Première partie : préliminaires

- 1) Comme f est continue sur [0,1] et $x \mapsto x \lfloor x \rfloor$ est 1-périodique, continue sur $\mathbb{R} \setminus \mathbb{Z}$ à valeurs dans [0,1[, \tilde{f} est bien définie, 1-périodique et continue sur $\mathbb{R} \setminus \mathbb{Z}$. Enfin si $n \in \mathbb{Z}$, on a $\tilde{f}(n^-) = f(1) = f(0) = \tilde{f}(n^+) = \tilde{f}(n)$ et \tilde{f} est continue en n et donc finalement sur \mathbb{R} .
- 2) Soit $\varepsilon > 0$. La fonction f restreinte à [-1,1] est continue sur un compact donc uniformément continue par le théorème de Heine. On prend $\eta < 1$ un module d'uniforme continuité de cette restriction pour ε . Soit $x,y \in \mathbb{R}$, $|x-y| \le \varepsilon$. Supposons $x \le y$ et $n = \lfloor y \rfloor$. Alors $y' = y n \in [0,1[$ et $x' = x n \in [-\eta,1[\subset [-1,1].$ En particulier x' et y' sont proches à moins d' ε et ils sont dans [-1,1]. Il s'ensuit que

$$|f(x) - f(y)| = |f(x') - f(y')| \le \varepsilon.$$

On en déduit que f est uniformément continue sur $\mathbb R$

3) Ultra classique théorème de Cesaro. On peut le démontrer en une ligne si on utilise le théorème de sommation des $o: |z_N-z|=o(1)$ et 1 est le terme général positif d'une série divergente donc $\sum_{n=0}^N |z_n-z|=o(N+1)...$

II. Deuxième partie : théorème de Fejér et applications

- 1) L'intégrale de e_k sur [0,1] vaut 1 si k=0 et 0 sinon. Par linéarité de l'intégrale, $\int_0^1 K_N = \frac{1}{N+1} \sum_{k=0}^N 1 = 1.$
 - 2) Pour $n \in \mathbb{N}$,

$$\sum_{k=-n}^{n} e_k(x) = e_{-n}(x) \sum_{l=0}^{2n} e_l(x) = e_{-n}(x) \frac{1 - e_{2n+1}(x)}{1 - e_1(x)} = \frac{\sin((2n+1)\pi x)}{\sin \pi x},$$

après factorisation par le demi-angle. K_N est donc la partie imaginaire de

$$\frac{1}{(N+1)\sin\pi x} \sum_{n=0}^{N} e^{(2n+1)i\pi x} = \frac{e^{i\pi x}}{(N+1)\sin\pi x} \sum_{n=0}^{N} \left(e^{2i\pi x}\right)^n = \frac{e^{i\pi x}}{(N+1)\sin\pi x} \frac{1 - e^{2i(N+1)\pi x}}{1 - e^{2i\pi x}}$$

ce qui donne par factorisation par demi-angle

$$\frac{e^{i(N+1)\pi x}}{(N+1)\sin \pi x} \frac{\sin(N+1)\pi x}{\sin \pi x},$$

dont la partie imaginaire est bien $\frac{1}{N+1} \left(\frac{\sin(N+1)\pi x}{\sin \pi x} \right)^2$: c'est le noyau de Fejér.

3) a. Par linéarité de l'intégrale,

$$\sigma_N(f)(x) = \frac{1}{N+1} \sum_{n=0}^N \sum_{k=-n}^n \int_0^1 f(y) e_k(x-y) dy = \int_0^1 f(y) K_N(x-y) dy.$$

b. Comme $f(x) = \int_0^1 f(x) K_N(y) dy$, on a en posant z = x - y

$$\sigma_N(f)(x) - f(x) = -\int_x^{x-1} f(x-z) K_n(z) dz - \int_0^1 f(x) K_N(y) dy = \int_0^1 (f(x-y) - f(x)) K_N(y) dy,$$

car par invariance par translation

$$\int_{x-1}^{x} f(x-$$

 $z)K_n(z)\mathrm{d}z = \int_0^1 f(x-z)K_N(z)\mathrm{d}z$ puisque la fonction $z\longmapsto f(x-z)K_N(z)$ est 1-périodique.

4) a. Soit $\delta^0 < 1/2$ un module d'uniforme continuité de f pour ε . Pour $x \in \mathbb{R}$ et $y \in [0, \delta]$, $|f(x-y)-f(y)| \leq \varepsilon$ et donc comme K_N est positive (I.2), on a

$$\int_0^{\delta} |f(x-y) - f(y)| K_n(y) dy \leqslant \int_0^{\delta} \varepsilon K_n(y) dy \leqslant \varepsilon \int_0^{1} K_n(y) dy = \varepsilon.$$

De même si $y \in [1 - \delta, 1]$, $y - 1 \in [-\delta, 0]$ et par périodicité, $|f(x - y) - f(x)| = |f(x - (y - 1)) - f(x)| \le \delta$ et on obtient de même l'autre inégalité.

b. Pour $\delta \leqslant y \leqslant 1 - \delta$, on a $\sin \pi y \geqslant \sin \pi \delta$ si bien que $K_n(y) \leqslant \frac{1}{(N+1)\sin^2(\pi \delta)}$. Ainsi,

$$\int_{\delta}^{1-\delta} |f(x-y) - f(x)| K_N(y) dy \leqslant \int_{\delta}^{1-\delta} \frac{2\|f\|_{\infty}}{(N+1)\sin^2(\pi\delta)} dy \leqslant \frac{\kappa_{\delta,f}}{N+1},$$

avec $\kappa_{\delta,f} = \frac{2||f||_{\infty}}{\sin^2(\pi\delta)}$

c. On fixe $\varepsilon>0$ et l'on prend δ comme en 4)a. On a par découpage de l'intégrale par la relation de Chasles

$$|\sigma_N(f)(x) - f(x)| \le \int_0^1 |f(x - y) - f(x)| K_N(y) dy \le \varepsilon + \frac{\kappa_{\delta, f}}{N + 1}.$$

Il existe n_0 tel que si $N \ge n_0$, on a $\frac{\kappa_{\delta,f}}{N+1} \le \varepsilon$. Ainsi si $N \ge n_0$, pour tout $x \in \mathbb{R}$, $|\sigma_N(f)(x) - f(x)| \le 2\varepsilon$, ce qui prouve la convergence uniforme de $(\sigma_N(f))_N$ vers f.

5) a. Soit $k \in \mathbb{Z}$. On a par intégration par parties

$$c_k(f') = \int_0^1 f'(y)e^{-2ik\pi y} dy = \left[f(y)e^{-2ik\pi y} \right]_0^1 + 2ik\pi \int_0^1 f(y)e^{-2ik\pi y} dy = 2ik\pi c_k(f).$$

Par récurrence immédiate, $c_k(f^{(n)}) = (2ik\pi)^n c_k(f)$.

b. On a $|c_k(f)| \le \int_0^1 |f(y)| dy \le ||f||_{\infty}$. Avec n = 2 dans l'égalité précédente, on a donc $|c_k(f)| \le \frac{||f''||_{\infty}}{4\pi^2 k^2}$ pour $k \ne 0$ et par comparaison, la famille des $c_k(f)$ est sommable.

c. Posons $g = \lim_{n \to +\infty} S_n(f)$. Les séries de fonctions $\sum c_k(f)e_k$ et $\sum c_{-k}(f)e_{-k}$ converge normalement sur \mathbb{R} (et donc uniformément) puisque $|c_k(f)e_k| \leq |c_k(f)|$ (resp. $|c_{-k}(f)e_{-k}| \leq |c_{-k}(f)|$) qui est le terme général d'une série convergente. Par le théorème de Cesaro (I.3)), la

moyenne des $S_n(f)(x)$ converge donc vers g(x) aussi. Mais aussi vers f par 4). On en déduit que f = g et que la suite de fonction $S_n(f)$ converge uniformément vers f.

III. Troisième partie : équirépartition

Il manque un "si" dans la définition de l'équirépartition.

- 1) La suite $(x_n)_{n\geqslant 1}$ étant supposée fixée, on notera $\gamma_N(Y)$ au lieu de $\gamma(N,(x_n),Y)$: c'est la proportion des termes de la suite parmi les N premiers qui modulo 1 tombent dans la partie Y. Dans cette question on veut montrer qu'on peut remplacer les segments par des intervalles semi-ouverts dans la définition de l'équirépartition.
- Soit a < b < 1. On a alors $\gamma_N([a,b]) = \gamma_N([a,1]) \gamma_N(b,1)$ qui tend par définition vers 1-a-(1-b)=b-a. Pour montrer que cela reste encore vrai dans le cas b=1 il suffit de prouver que $\gamma_N(\{1\})$ tend vers 0. Cela se fait en quantifiant. Soit $\varepsilon > 0$. L'intervalle $[1-\varepsilon,1]$ contient le singleton $\{1\}$. On a alors $\gamma_N(\{1\}) \leq \gamma_N([1-\varepsilon,1])$ pour tout N et le majorant tend vers ε lorsque $N \to +\infty$. Il existe donc un rang N_0 à partir duquel $\gamma_N(\{1\}) \leq 2\varepsilon$. D'où le résultat.
- On fait de même dans l'autre sens en encadrant un segment [a, b] quelconque entre [a, b] et $[a, b + \varepsilon]$ pour $\varepsilon > 0$ petit et en traitant à part le cas b = 1 où il suffit de majorer par 1.
- 2) a. Soit η un module d'uniforme continuité de f pour ε . Il existe $M \in \mathbb{N}^*$ tel que $\frac{1}{M} \leqslant \eta$. Dans ces conditions, pour $x \in \mathbb{R}$, si k est sa partie partière et si $j/M \leqslant x < (j+1)/M$, $\Phi_M(f)(x) = f(k+j/M)$. Comme x et j/M sont proches à moins de $1/M \leqslant \eta$, on a $|f(x) \Phi_M(x)| \leqslant \varepsilon$. Par conséquent, on obtient bien $||f \Phi_M(f)||_{\infty} \leqslant \varepsilon$.

b. On remarque que $\Phi_M(f)$ s'écrit en fait $\sum_{k\in\mathbb{Z}}\sum_{j=0}^{M-1}f(j/M)1_{[j/M,(j+1)/M[}=\sum_{j=0}^{M-1}f(j/M)h_{j,M},$ avec $h_{j,M}=\sum_{k\in\mathbb{Z}}1_{[j/M,(j+1)/M[}$ par périodicité de f.

On va commencer par démontrer (*) pour une fonction $f_0 = \sum_{k \in \mathbb{Z}} \sum_{j=0}^{M-1} 1_{[a,b[}$ où $0 \le a \le b \le 1$. D'une part l'intégrale de f_0 sur [0,1] vaut b-a. D'autre part,

$$\frac{1}{N} \sum_{n=1}^{N} f(x_n) = \gamma(N, (x_n), [a, b[)$$

qui tend bien vers $b-a=\int_0^1 f_0$.

Par linéarité de la moyenne et de l'intégrale, (*) reste vraie pour $\Phi_M(f)$. Passons à f. Soit $\varepsilon > 0$. On considère l'entier M de 2)b. On a alors

$$\left| \int_0^1 f - \int_0^1 \Phi_M(f) \right| \leqslant \int_0^1 |f - \Phi_M(f)| \leqslant \varepsilon \quad \text{et}$$

$$\left| \frac{1}{N} \sum_{n=1}^N f(x_n) - \frac{1}{N} \sum_{n=1}^N \Phi_M(f)(x_n) \right| \leqslant \frac{1}{N} \sum_{n=1}^N |f(x_n) - \Phi_M(f)(x_n)| \leqslant \varepsilon.$$

En écrivant

$$\frac{1}{N}\sum_{n=1}^{N}f(x_n) - \int_0^1 f = \frac{1}{N}\sum_{n=1}^{N}f(x_n) - \frac{1}{N}\sum_{n=1}^{N}\Phi_M(f)(x_n) + \frac{1}{N}\sum_{n=1}^{N}\Phi_M(f)(x_n) - \int_0^1 \Phi_M(f) + \int_0^1 \Phi_M(f) - \int_0^1 f(x_n) - \int_0^1 f(x_n$$

on obtient par l'inégalité triangulaire,

$$\left| \frac{1}{N} \sum_{n=1}^{N} f(x_n) - \int_0^1 f \right| \leqslant \varepsilon + \left| \frac{1}{N} \sum_{n=1}^{N} \Phi_M(f)(x_n) - \int_0^1 \Phi_M(f) \right| + \varepsilon,$$

et pour N assez grand,

$$\left| \frac{1}{N} \sum_{n=1}^{N} f(x_n) - \int_0^1 f \right| \leqslant 3\varepsilon.$$

3) a. Il est facile de construire des fonctions f_{ε}^+ et f_{ε}^- affines par morçeaux vérifiant toutes les conditions.

b. Notons $\mu_N(f)=\frac{1}{N}\sum_{n=1}^N f(x_n)$ pour $f\in\mathcal{C}_{per}$. Soit $\varepsilon>0$. On remarque que $\gamma(N,(x_n),[a,b])=\mu_N(1_{[a,b]})$. On en déduit que

$$\mu_N(f_{\varepsilon}^-) \leqslant \gamma(N,(x_n),[a,b]) \leqslant \mu_N(f_{\varepsilon}^+).$$

Étant donné les limites des membres de droite et de gauche, à partir d'un certain rang,

$$\int_0^1 f_{\varepsilon}^- - \varepsilon \leqslant \gamma(N, (x_n), [a, b]) \leqslant \int_0^1 f_{\varepsilon}^+ + \varepsilon.$$

Or les deux intégrales sont proches de $\int_0^1 1_{[a,b]} = b - a$ à moins de ε par construction. Donc à partir d'un certain rang, on a

$$b-a-2\varepsilon \leqslant \gamma(N,(x_n),[a,b]) \leqslant b-a+2\varepsilon.$$

Au final, $\gamma(N,(x_n),[a,b])$ converge vers $\dot{b}-a$ et (x_n) est bien équirépartie.

4) On va utiliser le critère précédent. L'assertion (*) est vrai pour tout polynôme trigonométrique de période 1 (par linéarité sur l'hypothèse, le cas k=0 étant trivialement vérifié). Or, les polynômes trigonométriques sont denses dans $(C_{per}, || ||_{\infty})$ en vertu de la question II4)c. Soit $f \in C_{per}$ et $\varepsilon > 0$. On se donne P polynôme trigonométrique approchant f à moins de ε de manière uniforme sur \mathbb{R} . On écrit

$$\frac{1}{N}\sum_{n=1}^{N}f(x_n) - \int_0^1 f = \frac{1}{N}\sum_{n=1}^{N}f(x_n) - \frac{1}{N}\sum_{n=1}^{N}P(x_n) + \frac{1}{N}\sum_{n=1}^{N}P(x_n) - \int_0^1 P(f) + \int_0^1 P(f) - \int_0^1 f.$$

Comme

$$\left| \int_0^1 f - \int_0^1 P \right| \leqslant \int_0^1 |f - P| \leqslant \varepsilon \quad \text{et}$$

$$\left| \frac{1}{N} \sum_{n=1}^N f(x_n) - \frac{1}{N} \sum_{n=1}^N P(x_n) \right| \leqslant \frac{1}{N} \sum_{n=1}^N |f(x_n) - P(x_n)| \leqslant \varepsilon,$$

on obtient par l'inégalité triangulaire,

$$\left| \frac{1}{N} \sum_{n=1}^{N} f(x_n) - \int_0^1 f \right| \leqslant \varepsilon + \left| \frac{1}{N} \sum_{n=1}^{N} P(x_n) - \int_0^1 P \right| + \varepsilon,$$

et donc pour N assez grand,

$$\left| \frac{1}{N} \sum_{n=1}^{N} f(x_n) - \int_0^1 f \right| \leqslant 3\varepsilon,$$

et (*) est vraie pour f: la suite (x_n) est bien équirépartie.

5) On va utiliser la question précédente. Soit $k \in \mathbb{Z}^*$ et calculons

$$\frac{1}{N} \sum_{n=1}^{N} \exp(2ik\pi\alpha n + 2ik\pi x) = \frac{\exp(2ik\pi x)}{N} \frac{1 - \exp(2i(N+1)k\pi\alpha)}{1 - \exp(2ik\pi\alpha)},$$

avec $\exp(2ik\pi\alpha) \neq 1$ car $2\pi k\alpha \notin 2\pi\mathbb{Z}$ puisque α est irrationnel. En passant au module, il vient

$$\left| \frac{1}{N} \sum_{n=1}^{N} \exp(2ik\pi\alpha n + 2ik\pi x) \right| \leqslant \frac{2}{|1 - \exp(2ik\pi\alpha)|N} \xrightarrow[N \to +\infty]{} 0.$$

La suite $(\alpha n + x)$ est donc bien équirépartie.

6) On remarque avec la majoration précédente que

$$\left\| \int_0^1 e_k - \frac{1}{N} \sum_{n=1}^N e_k(\alpha n + .) \right\|_{\infty} \leqslant \frac{2}{|1 - \exp(2ik\pi\alpha)|N} \xrightarrow{N \to \infty} 0$$

Si k=0, la norme infinie est nulle. On en déduit par linéarité et inégalité triangulaire que si P est un polynôme trigonométrique et $P_n(x) = P(\alpha n + x)$ pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$,

$$\lim_{N \to +\infty} \left\| \int_0^1 P - \frac{1}{N} \sum_{n=1}^N P_n \right\|_{\infty} = 0.$$

Si P est un polynome trigonométrique approchant f de manière uniforme à ε près,

$$\left\| \int_{0}^{1} f - \frac{1}{N} \sum_{n=1}^{N} F_{n} \right\|_{\infty} \leq \left\| \int_{0}^{1} f - \int_{0}^{1} P \right\|_{\infty} + \left\| \int_{0}^{1} P - \frac{1}{N} \sum_{n=1}^{N} P_{n} \right\|_{\infty} + \left\| \frac{1}{N} \sum_{n=1}^{N} P_{n} - \frac{1}{N} \sum_{n=1}^{N} F_{n} \right\|_{\infty}$$

$$\leq \varepsilon + \left\| \int_{0}^{1} P - \frac{1}{N} \sum_{n=1}^{N} P_{n} \right\|_{\infty} + \varepsilon = 2\varepsilon + \left\| \int_{0}^{1} P - \frac{1}{N} \sum_{n=1}^{N} P_{n} \right\|_{\infty}$$

et donc pour N assez grand,

$$\left\| \int_0^1 f - \frac{1}{N} \sum_{n=1}^N F_n \right\|_{\infty} \leqslant 3\varepsilon.$$

C'est ce qu'on voulait.