The Lambda Calculus

The lambda calculus

Powerful computation mechanism

3 simple formation rules

2 simple operations

extremely expressive

Lecture 3 — Tim Sheard — Tim Sh

Syntax

A term in the calculus has one of the following three forms.

Let t be a term, and v be a variable

Then

```
v is a term t t is a term \ v . t is a term
```

Tim Sheard —

```
\ X . X
```

\z.\s.sz

 $f. (\ x. f(x x)) (\ x. f(x x))$

Variables

The variables in a term can be computed using the following algorithm

```
varsOf v = {v}
varsOf (x y) = varsOf x `union` varsOf y
varsOf (\ x . e) = {x} `union` varsOf e
```

Examples

```
varsOf (\ x . x) = \{x\}
varsOf (\ z . \ s . s z) = \{s,z\}
varsOf
 (\ n . snd (n (pair zero zero)
            (\ x . pair (succ (fst x)) (fst x))))
  = {n,snd,pair,zero,x,succ,fst}
```

Free Variables

The free variables can be computed using the following algorithm

```
freeOf v = {v}
freeOf (x y) = freeOf x `union` freeOf y
freeOf (\ x . e) = freeOf e - {x}
```

Examples

Alpha renaming

Terms that differ only in the name of their bound variables are considered equal.

$$(\ \ z \ . \ \ s \ . \ s \ z) = (\ \ a \ . \ \ b \ . \ b \ a)$$

Substitution

We can think of substituting a term for a variable in a lambda-term

sub x (\ y . y) (f x z)
$$\rightarrow$$
 (f (\ y . y) z)

We must be careful if the term we are substituting into has a lambda inside

sub x (g y) (\ y. f x y)
$$\rightarrow$$
 (\ y. f (g y) y)
$$|| \qquad \qquad ||$$

sub x (g y) (\ w. f x w) \rightarrow (\ w. f (g y) w)

ecture 3 — Tim Sheard — Tim Sheard

Algorithm

```
sub v_1 new (v) = if v_1 = v then new else v sub v_1 new (x, y) = (sub \ v_1 \ new \ x) \ (sub \ v_1 \ new \ y) sub v_1 new (v) = v sub v new (v) = v sub v new (v) sub (v)
```

Where v' is a new variable not in the free variables of new

Example

sub x (g y) (\ y. f x y)
$$\rightarrow$$

sub v1 new (v) = if v1 = n then new else v sub v1 new (x y) = (sub v1 new x) (sub v1 new y) sub v1 new (\ v . e) =

Beta - reduction

If we have a term with the form

(\ x . e) v

then we can take a step to get

sub x v e

Example

$$(\ n . \ z . \ s . n (s z) s) (\ z . \ s . z)$$

13

What good is this?

How can we possible compute with this? We have no data to manipulate

- 1. no numbers
- 2. no data-structures
- 3. no control structures (if-then-else, loops)

Answer

Use what we have to build these from scratch!

The church numerals

We can encode the natural numbers

What is the pattern here?

Can we use this.

The succ function

$$succ (\ z . \ s . s z) \rightarrow (\ z . \ s . s (s z))$$

Can we write this? Lets try

$$succ = \ n . ???$$

Succ

$$succ = \ n . \ z . \ s . n (s z) s$$

succ one

 $(\ n . \ z . \ s . n (s z) s)$ one

 \z . \s . one (s z) s

\z.\s.(\z.\s.sz)(sz)s

\z.\s.(\s0.s0(sz))s

rd —————1

Can we write the Add function?

add =
$$\x . \y . \z . \x (y z s) s$$

what about multiply?

Can we build the booleans

We'll need

true:: Bool

false:: Bool

if:: Bool -> x -> x -> x

true =
$$\t$$
 . \t f . t

$$false = \t . \t . \f . f$$

if = \ b . \ then . \ else . b then else

Automata and Formal Languages =

Lets try it out

if false two one

What about pairs?

we'll need

fst:: Pair a b -> a

snd:: Pair a b -> b

Tim Sheard — 2

pair =
$$\x . \y . \k . \k x y$$

$$fst = \ p \cdot p (\ x \cdot \ y \cdot x)$$

$$snd = \ p \cdot p (\ x \cdot \ y \cdot y)$$

Can we write the pred function

How does this work?

Think about this

Lecture 3 — Tim Sheard — Tim Sheard

The Y combinator

$$y = \ 10 . (\ x . fo (x x)) (\ x . fo (x x))$$

what happens if we apply? y f