WHAT IS CLAIMED IS:

 An ink, comprising at least one dye represented by formula (1):

Formula (1)

$$A-N=N-B-(X_1)_{01}B'-N=N-A'$$

5

10

wherein, in formula (1), A and A' each independently represent an aryl group or a monovalent heterocyclic group; B and B' each independently represent an arylene group or a divalent heterocyclic group; X₁ represents a divalent linking group; nl is an integer of 0 or 1; and at least one of A, B, A', and B' is a heterocyclic group.

 The ink according to Claim 1, wherein the dye represented by formula (1) is a dye represented by formula
 (2) or (3):

wherein, in formula (2), R^2 represents a monovalent group; R^3 represents a $-0R^6$ group or a $-NHR^7$ group in which R^6 and R^7 each represent a hydrogen atom or a monovalent group; X_2 represents a divalent linking group; R^2 is an integer of 0 or 1; R^2 represents an aryl group or a heterocyclic group; and R^2 represents an alkylene group, an arylene group, or a divalent triazine ring group;

Formula (3)

10

wherein, in formula (3), R4 represents a monovalent

group; R^5 represents a $-0R^6$ group or a $-NHR^7$ group in which R^6 and R^7 each represent a hydrogen atom or a monovalent group; X_3 represents a divalent linking group; n_3 is an integer of 0 or 1; Ar_3 represents an arylene group or a divalent heterocyclic group; and Ar_4 represents an alkyl group, an aryl group, or a monovalent triazine ring group.

- The ink according to Claim 1, wherein, in
 formula (1), A and A' are identical with each other and also B and B' are identical with each other.
 - 4. The ink according to Claim 1, wherein, in formula (1), A and A' each are a 5-aminopyrazole ring, and B and B' each are a thiadiazole ring.
 - 5. An ink-jet-recording method, comprising the step of: forming an image with an ink, on an image-receiving material having an ink-receiving layer containing white inorganic pigment particles on a support,

wherein the ink comprises at least one dye represented by formula (1), (2) or (3):

20

$$A-N=N-B-(X_1)_{n_1}B'-N=N-A'$$

wherein, in formula (1), A and A' each independently represent an aryl group or a monovalent heterocyclic group; B and B' each independently represent an arvlene group or a divalent heterocyclic group; X1 represents a divalent linking group; n1 is an integer of 0 or 1; and at least one of A, B, A', and B' is a heterocyclic group;

Formula (2)

10

wherein, in formula (2), R² represents a monovalent group; R³ represents a -OR⁶ group or a -NHR⁷ group in which R⁶ and R⁷ each represent a hydrogen atom or a monovalent group; X2 represents a divalent linking group; n2 is an integer of 0 or 1; Ar₁ represents an aryl group 15 or a heterocyclic group; and Ar2 represents an alkylene

group, an arylene group, or a divalent triazine ring group;

Formula (3)

wherein, in formula (3), R⁴ represents a monovalent group; R⁵ represents a -OR⁶ group or a -NHR⁷ group in which R⁶ and R⁷ each represent a hydrogen atom or a monovalent group; X₃ represents a divalent linking group; n₃ is an integer of 0 or 1; Ar₃ represents an arylene group or a divalent heterocyclic group; and Ar₄ represents an alkyl group, an aryl group, or a monovalent triazine ring group.

6. An ink sheet, comprising at least one dye represented by formula (1), (2) or (3):

$$A-N=N-B-(X_1)_{n_1}B'-N=N-A'$$

wherein, in formula (1), A and A' each independently represent an aryl group or a monovalent heterocyclic group; B and B' each independently represent an arylene group or a divalent heterocyclic group; X_1 represents a divalent linking group; n1 is an integer of 0 or 1; and at least one of A, B, A', and B' is a heterocyclic group;

Formula (2)

10

15

wherein, in formula (2), R^2 represents a monovalent group; R^3 represents a $-0R^6$ group or a $-NHR^7$ group in which R^6 and R^7 each represent a hydrogen atom or a monovalent group; X_2 represents a divalent linking group; R^2 is an integer of 0 or 1; R^2 represents an aryl group or a heterocyclic group; and R^2 represents an alkylene

group, an arylene group, or a divalent triazine ring group;

Formula (3)

wherein, in formula (3), R^4 represents a monovalent group; R^5 represents a $-0R^6$ group or a $-NHR^7$ group in which R^6 and R^7 each represent a hydrogen atom or a monovalent group; X_3 represents a divalent linking group; R^3 is an integer of 0 or 1; R^3 represents an arylene group or a divalent heterocyclic group; and R^4 represents an alkyl group, an aryl group, or a monovalent triazine ring group.

7. A color toner, comprising at least one dye represented by formula (1), (2) or (3):

$$A-N=N-B-(X_1)_{n_1}B'-N=N-A'$$

wherein, in formula (1), A and A' each independently represent an aryl group or a monovalent heterocyclic group; B and B' each independently represent an arylene group or a divalent heterocyclic group; X₁ represents a divalent linking group; n1 is an integer of 0 or 1; and at least one of A, B, A', and B' is a heterocyclic group;

Formula (2)

5

10

15

wherein, in formula (2), R^2 represents a monovalent group; R^3 represents a $-0R^6$ group or a $-NHR^7$ group in which R^6 and R^7 each represent a hydrogen atom or a monovalent group; X_2 represents a divalent linking group; n_2 is an integer of 0 or 1; Ar_1 represents an aryl group or a heterocyclic group; and Ar_2 represents an alkylene

group, an arylene group, or a divalent triazine ring group;

Formula (3)

wherein, in formula (3), R⁴ represents a monovalent group; R⁵ represents a -OR⁶ group or a -NHR⁷ group in which R⁶ and R⁷ each represent a hydrogen atom or a monovalent group; X₃ represents a divalent linking group; n₃ is an integer of 0 or 1; Ar₃ represents an arylene group or a divalent heterocyclic group; and Ar₄ represents an alkyl group, an aryl group, or a monovalent triazine ring group.

8. A color filter, comprising at least one dye represented by formula (1), (2) or (3):

$$A-N=N-B-(X_1)_{n_1}B'-N=N-A'$$

wherein, in formula (1), A and A' each independently represent an aryl group or a monovalent heterocyclic group; B and B' each independently represent an arylene group or a divalent heterocyclic group; X_1 represents a divalent linking group; n1 is an integer of 0 or 1; and at least one of A, B, A', and B' is a heterocyclic group;

Formula (2)

10

15

wherein, in formula (2), R^2 represents a monovalent group; R^3 represents a $-0R^6$ group or a $-NHR^7$ group in which R^6 and R^7 each represent a hydrogen atom or a monovalent group; X_2 represents a divalent linking group; R^2 is an integer of 0 or 1; R^2 represents an aryl group or a heterocyclic group; and R^2 represents an alkylene

group, an arylene group, or a divalent triazine ring group;

Formula (3)

wherein, in formula (3), R⁴ represents a monovalent group; R⁵ represents a -0R⁶ group or a -NHR⁷ group in which R⁶ and R⁷ each represent a hydrogen atom or a monovalent group; X₃ represents a divalent linking group; n₃ is an integer of 0 or 1; Ar₃ represents an arylene group or a divalent heterocyclic group; and Ar₄ represents an alkyl group, an aryl group, or a monovalent triazine ring group.

9. A bis-azo compound represented by formula (3):

$$R^{4}$$
 $N=N-Ar_{3}-(X_{3})_{n3}Ar_{3}-N=N$ R^{4} $N=N-Ar_{3}-(X_{3})_{n3}Ar_{3}-N=N$ $N=N-Ar_{3}-(X_{3})_{n3}Ar_{3}-N=N$

wherein, in formula (3), R⁴ represents a monovalent group; R⁵ represents a -OR⁶ group or a -NHR⁷ group in

5 which R⁶ and R⁷ each represent a hydrogen atom or a monovalent group; X₃ represents a divalent linking group; n³ is an integer of 0 or 1; Ar₃ represents an arylene group or a divalent heterocyclic group; and Ar₄ represents an alkyl group, an aryl group, or a monovalent triazine

10 ring group.

- 10. The bis-azo compound according to Claim 9, wherein, in formula (3), R^5 is an amino group.