Lecture 5: Support Vector Machine

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/VE445/index.html

Outline

- Linear classifiers and the margins
- Objective of the SVM
- Lagrangian method in convex optimization
- Solve SVM by Lagrangian duality
- Regularization
- Kernel method
- SMO algorithm to solve the Lagrangian multipliers

References: http://cs229.stanford.edu/notes/cs229-notes3.pdf

Review: Label decision of logistic regression

Logistic regression provides the probability

$$p_{\theta}(y=1|x) = \sigma(\theta^{\top}x) = \frac{1}{1+e^{-\theta^{\top}x}}$$
 $p_{\theta}(y=0|x) = \frac{e^{-\theta^{\top}x}}{1+e^{-\theta^{\top}x}}$

ullet The final label of an instance is decided by setting a threshold h

$$\hat{y} = \begin{cases} 1, & p_{\theta}(y = 1|x) > h \\ 0, & \text{otherwise} \end{cases}$$

Scores of logistic regression

• Let $s(x)=\theta_0+\theta_1x_2+\theta_2x_2$, so the probability in logistic regression is defined as $p_{\theta}(y=1|x)=\frac{1}{1+e^{-s(x)}}$

- Positive prediction means positive scores
- Negative prediction means negative scores

• The absolute value of the score s(x) is proportional to the distance x to the decision boundary $\theta_0 + \theta_1 x_2 + \theta_2 x_2 = 0$

Illustration of logistic regression

• The higher score, the larger distance to the decision boundary, the higher confidence. E.g.

Intuition

Positive when

$$p_{\theta}(y=1|x) = h_{\theta}(x) = \sigma(\theta^{\top}x) \geq 0.5$$
 or
$$\theta^{\top}x \geq 0$$

- Point A
 - Far from decision boundary
 - More confident to predict the label 1
- Point C
 - Near decision boundary
 - A small change to the decision boundary could cause prediction to be y=0

Example

• Given a dataset of two classes, how to find a line to separate them?

Example (cont.)

• Both the two solutions can separate the data perfectly, but we prefer the one on the right, why?

Example (cont.)

• It makes us feel safe because it provides the most margin!

 These are the support vectors, and the model is called support vector machine.

Notations for SVM

- Feature vector x
- Class label $y \in \{-1, 1\}$
 - Instead of {0,1}
- Parameters
 - Intercept *b*
 - We also drop the convention we had previously of letting $x_0=1$ be an extra coordinate in the input feature vector
 - Feature weight vector w
- Label prediction
 - $h_{w,b}(x) = g(w^\mathsf{T} x + b)$
 - $g(z) = \begin{cases} +1 & z \ge 0 \\ -1 & \text{otherwise} \end{cases}$
 - Directly output the label
 - Without estimating probability first (compared with logistic regression)

Hyperplane and margin

• Idea of using $y \in \{-1, 1\}$

Functional margin

- Functional margin of (w, b) with respect to (x, y) is $\gamma = y(w^{T}x + b)$
 - $w^{T}x + b$ is the score of x
 - When y = 1, large positive $w^Tx + b$ value would give a high confidence
 - When y = -1, large negative $w^T x + b$ value would give a high confidence
 - $y(w^{T}x + b) > 0$ means the prediction is correct
 - But changing (w, b) to (2w, 2b) would increase the functional margin
 - Without changing the decision boundary $w^Tx + b = 0$

- w vector is orthogonal to the decision boundary
- Geometric margin is the distance of the point to the decision boundary
 - For positive prediction points
 - $x \gamma \frac{w}{\|w\|}$ lies on the decision boundary

•
$$w^{\mathsf{T}}\left(x - \gamma \frac{w}{\|w\|}\right) + b = 0$$

• Solve it, get

$$\gamma = \frac{w^{\mathsf{T}}x + b}{\|w\|}$$

• In general, $\gamma = y(w^{T}x + b)$ with ||w|| = 1

Objective of an SVM

Given a training set

$$S = \{(x_i, y_i)\}, i = 1, ..., N$$

margin is the smallest geometric margin

$$\gamma = \min_{i=1,\dots,n} \gamma^i$$

• Objective: maximize the margin

$$\max_{\gamma,w,b} \gamma$$
s.t. $y^{i}(w^{T}x^{i} + b) \ge \gamma$, $i = 1,...,N$

$$||w|| = 1$$
Non-convex constraint
$$||w|| \le 1 \text{ is convex}$$

which is equivalent to

 $\max_{\gamma,w,b} \frac{\gamma}{\|w\|}$ Non-convex objective

s.t. $y^{i}(w^{T}x^{i}+b) \geq \gamma$, i = 1, ..., N

Scaling (γ, w) as $(c\gamma, cw)$ doesn't change the problem

Objective of an SVM (cont.)

- Functional margin scales w.r.t. (w,b) without changing the decision boundary
- Fix the functional margin as 1, that is let $\frac{1}{2}$

• Then the objective is
$$\max_{\substack{w,b\\ s.t.}} \frac{1}{\|w\|}$$
 s. $t.$ $y^i(w^Tx^i+b) \geq 1$, $i=1,...,N$ or equivalently
$$\min_{\substack{w,b\\ w,b\\ s.t.}} \frac{1}{2}\|w\|^2$$
 Can be efficiently solved by quadratic programming (QP)
$$\sup_{\substack{w,b\\ s.t.}} \frac{1}{2}\|w\|^2$$
 $y^i(w^Tx^i+b) \geq 1$, $i=1,...,N$

Lagrange Duality

Lagrangian for convex optimization

Given a convex optimization problem

$$\min_{w} \ f(w)$$
s.t. $h_i(w) = 0, \ i = 1, \dots, l$

The Lagranigan of this problem is defined as

$$\mathcal{L}(w,eta) = f(w) + \sum_{i=1}^l eta_i h_i(w)$$
Lagrangian multipliers

Solving

$$rac{\partial \mathcal{L}(w,eta)}{\partial w} = 0 \qquad \qquad rac{\partial \mathcal{L}(w,eta)}{\partial eta} = 0$$

yields the solution of the original optimization problem

Geometric interpretation

With only one constraint

$$\mathcal{L}(w,\beta) = f(w) + \beta h(w)$$

$$\frac{\partial \mathcal{L}(w,\beta)}{\partial w} = \frac{\partial f(w)}{\partial w} + \beta \frac{\partial h(w)}{\partial w} = 0$$

The two gradients are on the same line but with different direction

With inequality constraints

What if there are inequality constraint?

$$\min_{w} f(w)$$
s.t. $g_i(w) \le 0, \quad i = 1, \dots, k$

$$h_i(w) = 0, \quad i = 1, \dots, l$$

The Lagrangian of this problem is defined as:

$$\mathcal{L}(w, \alpha, \beta) = f(w) + \sum_{i=1}^k \alpha_i g_i(w) + \sum_{i=1}^l \beta_i h_i(w)$$
Lagrangian multipliers

More on primal problem

Primal problem

$$\min_{w} f(w)$$
s.t. $g_i(w) \le 0, \quad i = 1, \dots, k$

$$h_i(w) = 0, \quad i = 1, \dots, l$$

Generalized Lagrangian

$$\mathcal{L}(w,\alpha,\beta) = f(w) + \sum_{i=1}^{k} \alpha_i g_i(w) + \sum_{i=1}^{l} \beta_i h_i(w)$$

Consider quantity

primal
$$heta_{\mathcal{P}}(w) = \max_{lpha, eta: lpha_i \geq 0} \mathcal{L}(w, lpha, eta)$$

- If a given w violates any constraints, i.e. $g_i(w)>0$ or $h_i(w)\neq 0$, then $\theta_{\mathcal{P}}(w)=+\infty$
- If all constraints are satisfied for w, then

$$\theta_{\mathcal{P}}(w) = f(w)$$

More on primal problem (cont.)

Primal problem

$$\min_{w} f(w)$$
s.t. $g_i(w) \leq 0, \quad i = 1, \dots, k$

$$h_i(w) = 0, \quad i = 1, \dots, l$$

Generalized Lagrangian

$$\mathcal{L}(w,\alpha,\beta) = f(w) + \sum_{i=1}^{k} \alpha_i g_i(w) + \sum_{i=1}^{l} \beta_i h_i(w)$$

Consider quantity

primal
$$heta_{\mathcal{P}}(w) = \max_{lpha,eta:lpha_i\geq 0} \mathcal{L}(w,lpha,eta)$$

$$\theta_{\mathcal{P}}(w) = \begin{cases} f(w) & \text{if } w \text{ satisfies primal constraints} \\ +\infty & \text{otherwise} \end{cases}$$

More on primal problem (cont.)

The minimization problem

$$\min_{w} \theta_{\mathcal{P}}(w) = \min_{w} \max_{\alpha, \beta: \alpha_i > 0} \mathcal{L}(w, \alpha, \beta)$$

is the same with the original problem

$$\min_{w} f(w)$$
s.t. $g_{i}(w) \leq 0, \quad i = 1, \dots, k$
 $h_{i}(w) = 0, \quad i = 1, \dots, l$

The value of the primal problem

$$p^* = \min_{w} \theta_{\mathcal{P}}(w)$$

Dual problem

- $\min_{w} \theta_{\mathcal{P}}(w) = \min_{w} \max_{\alpha, \beta: \alpha_i > 0} \mathcal{L}(w, \alpha, \beta)$
- Define $\theta_{\mathcal{D}}(\alpha,\beta) = \min_{w} \mathcal{L}(w,\alpha,\beta)$
- Dual optimization problem

$$\max_{\alpha,\beta:\alpha_i \ge 0} \theta_{\mathcal{D}}(\alpha,\beta) = \max_{\alpha,\beta:\alpha_i \ge 0} \min_{w} \mathcal{L}(w,\alpha,\beta)$$

with the value

$$d^* = \max_{lpha,eta:lpha_i\geq 0} \min_w \mathcal{L}(w,lpha,eta)$$

Primal problem vs. dual problem

$$d^* = \max_{\alpha,\beta:\alpha_i \ge 0} \min_{w} \mathcal{L}(w,\alpha,\beta) \le \min_{w} \max_{\alpha,\beta:\alpha_i \ge 0} \mathcal{L}(w,\alpha,\beta) = p^*$$

Proof

$$\min_{w} \mathcal{L}(w, \alpha, \beta) \leq \mathcal{L}(w, \alpha, \beta), \forall w, \alpha \geq 0, \beta$$

$$\Rightarrow \max_{\alpha, \beta: \alpha \geq 0} \min_{w} \mathcal{L}(w, \alpha, \beta) \leq \max_{\alpha, \beta: \alpha \geq 0} \mathcal{L}(w, \alpha, \beta), \forall w$$

$$\Rightarrow \max_{\alpha, \beta: \alpha \geq 0} \min_{w} \mathcal{L}(w, \alpha, \beta) \leq \min_{w} \max_{\alpha, \beta: \alpha \geq 0} \mathcal{L}(w, \alpha, \beta)$$

• But under certain condition $d^* = p^*$

Karush-Kuhn-Tucker (KKT) Conditions

Suppose

- f and g_i 's are convex
- h_i 's are affine
- g_i 's are all strictly feasible
 - There exists w such that $g_i(w) < 0$ for all i
- Then there must exist w^* , α^* , β^*
 - w* is the solution of the primal problem
 - α^* , β^* are the solution of the dual problem
 - And the values of the two problems are equal

$$p^* = d^* = \mathcal{L}(w^*, \alpha^*, \beta^*)$$

• w^* , α^* , β^* satisfy the KKT conditions:

$$\frac{\partial}{\partial w_i}\mathcal{L}(w^*,\alpha^*,\beta^*)=0,\ i=1,\dots,n$$

$$\frac{\partial}{\partial \beta_i}\mathcal{L}(w^*,\alpha^*,\beta^*)=0,\ i=1,\dots,l$$
 KKT dual complementarity $\longrightarrow \alpha_i^*g_i(w^*)=0,\ i=1,\dots,k$ condition
$$g_i(w^*)\leq 0,\ i=1,\dots,k$$

$$\alpha^*\geq 0,\ i=1,\dots,k$$

- If $\alpha_i^* > 0$, then $g_i(w^*) = 0$
- The converse is also true
 - If some w, a, b satisfy the KKT conditions, then it is also a solution to the primal and dual problems
 - More details can be found in Boyd's book "Convex optimization"

Back to SVM

Rewrite the SVM objective

The objective of SVM is

$$\min_{\substack{w,b \ w,b}} \frac{1}{2} ||w||^2 \\ s.t. \quad y^i (w^T x^i + b) \ge 1, \qquad i = 1, ..., N$$

Rewrite the constraints as

$$g_i(w) = -y^i(w^{\mathsf{T}}x^i + b) + 1 \le 0$$

- It is equivalent to solve the dual problem
- Note that from the KKT dual complementarity condition, $\alpha_i > 0$ is only possible for training samples with $g_i(w) = 0$

Support vectors

The points with smallest margins

•
$$g_i(w) = 0$$

•
$$-y^i(w^Tx^i + b) + 1 = 0$$

Positive support vectors

•
$$w^{\mathsf{T}}x + b = 1$$

Negative support vectors

•
$$w^{\mathsf{T}}x + b = -1$$

- Only support vectors decide the decision boundary
 - Moving or deleting non-support points doesn't change the decision boundary

Lagrangian of SVM

• SVM objective:

$$\min_{\substack{w,b \ y,b}} \frac{1}{2} ||w||^2$$

$$g_i(w) = -y^i (w^T x^i + b) + 1 \le 0, i = 1, ..., N$$

Lagrangian

$$L(w,b,\alpha) = \frac{1}{2} ||w||^2 + \sum_{i=1}^{N} \alpha_i [1 - y^i (w^{\mathsf{T}} x^i + b)]$$

Solve the dual

•
$$L(w,b,\alpha) = \frac{1}{2} ||w||^2 + \sum_{i=1}^{N} \alpha_i [1 - y^i (w^T x^i + b)]$$

• Let the partial derivative to be zero:

•
$$\frac{\partial L(w,b;\alpha)}{\partial w} = w - \sum_{i=1}^{N} \alpha_i y^i x^i = 0$$

•
$$\frac{\partial L(w,b;\alpha)}{\partial b} = -\sum_{i=1}^{N} \alpha_i y^i = 0$$

• Then substitute them back to L:

•
$$L(w, b, \alpha)$$

$$= \frac{1}{2} \left\| \sum_{i=1}^{N} \alpha_i y^i x^i \right\|_{N}^{2} + \sum_{i=1}^{N} \alpha_i - \sum_{i=1}^{N} \alpha_i y^i \left(\sum_{j=1}^{N} \alpha_j y^j x^j \right)^{\mathsf{T}} x^i + b \sum_{i=1}^{N} \alpha_i y^i$$

$$= \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^i y^j x^j^{\mathsf{T}} x^i$$

Solve the dual (cont.)

- $\max_{\alpha \ge 0} \theta_{\mathcal{D}}(\alpha) = \max_{\alpha \ge 0} \min_{w,b} L(w,b,\alpha)$
- Dual problem

$$\max_{\alpha} \quad W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^i y^j x^{j \top} x^i$$

$$\text{Can check the KKT}$$

$$\text{s. t.} \quad \alpha_i \geq 0, i = 1, \dots, N$$

$$\text{conditions hold}$$

$$\frac{\partial}{\partial w_i} \mathcal{L}(w^*, \alpha^*, \beta^*) = 0, i = 1, \dots, n$$

• Then solve α^* by SMO

KKT dual complementarity
$$\longrightarrow lpha_i^* g_i(w^*,lpha^*,eta^*) = 0, \ i=1,\dots,k$$
 condition $g_i(w^*) \leq 0, \ i=1,\dots,k$ $lpha^* \geq 0, \ i=1,\dots,k$

Solve w^* and b^*

• With α^*

$$w = \sum_{i=1}^{N} \alpha_i y^i x^i$$

• $\alpha_i > 0$ only holds on support vectors

• Then

Predicting values

•
$$w^{\mathsf{T}}x + b = \left(\sum_{i=1}^{N} \alpha_i y^i x^i\right)_{N}^{\mathsf{T}} x + b$$

$$= \sum_{i=1}^{N} \alpha_i y^i \langle x^i, x \rangle + b$$

• Only need to calculate the inner product of x with support vectors

Prediction is

$$y = \text{Sign}(w^{\mathsf{T}}x + b)$$

Regularization and the Non-Separable Case

Motivation

- SVM assumes data is linearly separable
 - But some data is linearly non-separable
 - SVM is susceptible to outliers

Solution – Soft margin

 To make the algorithm work for non-linearly separable datasets as well as be less sensitive to outliers

Add slack variables

$$\min_{\substack{w,b}} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{N} \xi_i$$
s.t. $y^i (w^T x^i + b) \ge 1 - \xi_i$, $i = 1, ..., N$
 $\xi_i \ge 0$, $i = 1, ..., N$

Example

- Correctly classified points beyond the support line with $\xi=0$
- Correctly classified points on the support line (support vectors) with $\xi=0$
- Correctly classified points inside the margin with $0<\xi<1$
- The misclassified points inside the margin with slack $1 < \xi < 2$
- The misclassified points outside the margin with slack $\xi>2$

Solve the Lagrangian dual problem

• Lagrangian
$$L(w,b,\xi,\alpha,r) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{N} \xi_i + \sum_{i=1}^{N} \alpha_i \left[1 - \xi_i - y^i \left(w^\top x^i + b\right)\right] - \sum_{i=1}^{N} r_i \xi_i$$

- Let the partial derivative to be zero:
 - $\frac{\partial L(w,b,\xi;\alpha,r)}{\partial w} = w \sum_{i=1}^{N} \alpha_i y^i x^i = 0$
 - $\frac{\partial L(w,b,\xi;\alpha,r)}{\partial b} = -\sum_{i=1}^{N} \alpha_i y^i = 0$
 - $\frac{\partial L(w,b,\xi;\alpha,r)}{\partial \xi_i} = C \alpha_i r_i = 0$ Make ξ term disappear

- Then substitute them back to *L*:
 - $L(w,b,\alpha)$ $= \frac{1}{2} \left\| \sum_{i=1}^{N} \alpha_{i} y^{i} x^{i} \right\|^{2} + \sum_{i=1}^{N} \alpha_{i} - \sum_{i=1}^{N} \alpha_{i} y^{i} \left(\sum_{j=1}^{N} \alpha_{j} y^{j} x^{j} \right)^{2} x^{i} + b \sum_{i=1}^{N} \alpha_{i} y^{i} \right\|^{2}$ $= \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{i} y^{j} x^{j}^{\mathsf{T}} x^{i}$ Same as before

Dual problem

- $\max_{\alpha \ge 0, r \ge 0} \theta_{\mathcal{D}}(\alpha) = \max_{\alpha \ge 0, r \ge 0} \min_{w, b} L(w, b, \alpha)$
- Dual problem

$$\max_{\alpha,r} W(\alpha) = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{i} y^{j} x^{j} x^{i}$$
s. t. $\alpha_{i} \geq 0, r_{i} \geq 0, \quad i = 1, ..., N$

$$\sum_{i=1}^{N} \alpha_{i} y^{i} = 0$$

$$C - \alpha_{i} - r_{i} = 0, \quad i = 1, ..., N$$

Dual problem (cont.)

•
$$\max_{\alpha} W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^i y^j x^{j^\top} x^i$$

$$s.t. \quad 0 \le \alpha_i \le C, \qquad i = 1, ..., N$$

$$\sum_{i=1}^{N} \alpha_i y^i = 0 \qquad \text{Surprisingly, this is the only change}$$

Efficiently solved by SMO algorithm

• When α is solved, w and b can be solved

Revisit the regularized objective

•
$$\min_{w,b} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{N} \xi_i$$

s.t. $y^i (w^\top x^i + b) \ge 1 - \xi_i$, $i = 1, ..., N$
 $\xi_i \ge 0$, $i = 1, ..., N$

•
$$\min_{w,b} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{N} \max\{0, 1 - y^i(w^\top x^i + b)\}$$

SVM hinge loss vs. logistic loss

- SVM hinge loss
 - $L(y, f(x)) = \max\{0, 1 yf(x)\}$ L(y, f(x)) =
- For y = 1

Logistic loss

The effect of penalty coefficient

•
$$\min_{w,b} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{N} \xi_i$$

• Large *C* will result in narrow margin

Kernels

Non-linearly separable case

Feature mapping

From inner product to kernel function

SVM

$$W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^i y^j x^{j^{\top}} x^i$$

Kernel

$$W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^i y^j K(x^i, x^j)$$

- $K(x^i, x^j) = \langle \Phi(x^i), \Phi(x^j) \rangle$
- Kernel trick:
 - For many cases, only $K(x^i, x^j)$ are needed, so we can only define these K_{ij} without explicitly defining Φ

Property

- If K is a valid kernel (that is, is defined by some feature mapping Φ), then the kernel matrix $K = (K_{ij})_{ij} \in \mathbb{R}^{N \times N}$ is symmetric positive semidefinite
- Symmetric
 - $K_{ij} = K(x^i, x^j) = \langle \Phi(x^i), \Phi(x^j) \rangle = \langle \Phi(x^j), \Phi(x^i) \rangle = K(x^j, x^i) = K_{ji}$

Positive semi-definite

$$z^{T}Kz = \sum_{i} \sum_{j} z_{i}K_{ij}z_{j}$$

$$= \sum_{i} \sum_{j} z_{i}\phi(x^{(i)})^{T}\phi(x^{(j)})z_{j}$$

$$= \sum_{i} \sum_{j} z_{i} \sum_{k} \phi_{k}(x^{(i)})\phi_{k}(x^{(j)})z_{j}$$

$$= \sum_{k} \sum_{i} \sum_{j} z_{i}\phi_{k}(x^{(i)})\phi_{k}(x^{(j)})z_{j}$$

$$= \sum_{k} \left(\sum_{i} z_{i}\phi_{k}(x^{(i)})\right)^{2}$$

$$> 0.$$

Examples on kernels

Gaussian kernel

$$K(x,z) = \exp\left(-\frac{||x-z||^2}{2\sigma^2}\right)$$

- Radial basis function (RBF) kernel
- What is the feature mapping Φ ? (Hint: by using Taylor series)
- Simple polynomial kernel $K(x,z) = (x^{T}z)^{d}$
- Cosine similarity kernel $K(x,z) = \frac{x^{\top}z}{\|x\| \cdot \|z\|}$
- Sigmoid kernel

$$K(x,z) = \tanh(\alpha x^{\mathsf{T}}z + c)$$

$$\tanh(b) = \frac{1 - e^{-2b}}{1 + e^{-2b}}$$

Which kernel to select?

- RBF, polynomial, or others?
- For beginners, use RBF first
- Linear kernel: special case of RBF
 Accuracy of linear the same as RBF under certain parameters (Keerthi and Lin, 2003)
- Polynomial kernel:

$$(\mathbf{x}_i^T\mathbf{x}_j/a+b)^d$$

Numerical difficulties: $(<1)^d \to 0, (>1)^d \to \infty$ More parameters than RBF

- Commonly used kernels are Gaussian (RBF), polynomial, and linear
- But in different areas, special kernels have been developed. Examples
 - 1. χ^2 kernel is popular in computer vision
 - 2. String kernel is useful in some domains

Examples

Demo time

 Before we learn how to solve the optimization problem, let's have some relax and see the online demo of SVM

https://cs.stanford.edu/~karpath
y/svmjs/demo/

Support Vector Machine in Javascript

Uses SMO algorithm. Find code on <u>Github</u> Find me on Twitter <u>@karpathy</u>

mouse click: add red data point shift + mouse click: add green data point 'k': toggle between Linear and Rbf kernel 'r': reset

C = 1.0

RBF Kernel sigma = 1.0

SMO Algorithm

Solve α^*

Dual problem

$$\max_{\alpha} W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^i y^j x^{j \top} x^i$$

$$s.t. \quad 0 \le \alpha_i \le C, \qquad i = 1, ..., N$$

$$\sum_{i=1}^{N} \alpha_i y^i = 0$$

• With α^* solved, w and b are solved

Coordinate Ascent (Descent)

For the optimization problem

$$\max_{\alpha} W(\alpha_1, \alpha_2, ..., \alpha_N)$$

Coordinate ascent algorithm

```
Loop until convergence: \{
For i=1,\ldots,N \{
\alpha_i:=rg\max_{\hat{\alpha}_i}W(\alpha_1,\ldots,\alpha_{i-1},\hat{\alpha}_i,\alpha_{i+1},\ldots,\alpha_N)
\}
```

Illustration

A two-dimensional coordinate ascent example

Sequential minimal optimization (SMO)

Recall the SVM optimization problem:

$$\max_{\alpha} W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^i y^j x^{j\top} x^i$$
s.t. $0 \le \alpha_i \le C$, $i = 1, ..., N$

$$\sum_{i=1}^{N} \alpha_i y^i = 0$$

The coordinate ascent algorithm cannot be applied directly, because

$$\sum_{i=1}^{N} \alpha_i y^i = 0 \Rightarrow \alpha_i y^i = \sum_{j \neq i} \alpha_j y^j$$

• If we hold other α_i , we can't make any changes to α_i

Solution

```
    Update two variable each time
        Loop until convergence {
                1. Select some pair α<sub>i</sub> and α<sub>j</sub> to update next
                2. Re-optimize W(α) w.r.t. α<sub>i</sub> and α<sub>j</sub>
                }
```

- Convergence test: whether the change of $W(\alpha)$ is smaller than a predefined value (e.g. 0.01)
- Key advantage of SMO algorithm
 - The update of α_i and α_i (step 2) is efficient

SMO (cont.)

•
$$\max_{\alpha} W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^i y^j x^{j^{\mathsf{T}}} x^i$$

s.t. $0 \le \alpha_i \le C$, $i = 1, ..., N$

$$\sum_{i=1}^{N} \alpha_i y^i = 0$$

• Without loss of generality, hold $\alpha_3 \dots \alpha_m$ and optimize $w(\alpha)$ w.r.t α_1 and α_2

$$\alpha_1 y^1 + \alpha_2 y^2 = -\sum_{i=3}^{N} \alpha_i y^i = \zeta$$

$$\Rightarrow \alpha_1 = y^1 (\zeta - \alpha_2 y^2)$$

SMO (cont.)

- With $\alpha_1 = (\zeta \alpha_2 y^2) y^1$, the objective is written as $W(\alpha_1, \alpha_2, ..., \alpha_N) = W((\zeta \alpha_2 y^2) y^1, \alpha_2, ..., \alpha_N)$
- Thus the original optimization problem

$$\max_{\alpha} W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^i y^j x^{j \top} x^i$$
s.t. $0 \le \alpha_i \le C$, $i = 1, ..., N$

$$\sum_{i=1}^{N} \alpha_i y^i = 0$$

is transformed into a quadratic optimization problem w.r.t $\,lpha_2\,$

$$\max_{\alpha_2} W(\alpha_2) = a\alpha_2^2 + b\alpha_2 + c$$
s.t. $0 \le \alpha_2 \le C$

SMO (cont.)

Optimizing a quadratic function is much efficient

$$\max_{\alpha_2} W(\alpha_2) = a\alpha_2^2 + b\alpha_2 + c$$

s.t.
$$0 \le \alpha_2 \le C$$

Pros and cons of SVM

Advantages:

- The solution, which is based on convex optimization, is globally optimal
- Can be applied to both linear/non-linear classification problems
- Can be applied to high-dimensional data
 - since the complexity of the data set mainly depends on the support vectors
- Complete theoretical guarantee
 - Compared with deep learning

• Disadvantages:

- The number of parameters α is number of samples, thus hard to apply to large-scale problems
 - SMO can ease the problem a bit
- Mainly applies to binary classification problems
 - For multi-classification problems, can solve several binary classification problems, but might face the problem of imbalanced data