Chapitre 8

Ensemble relations et lois de compo

TABLE DES MATIÈRES

Ι	Théorie naïve des ensembles	2
II	Applications	7
Ш	Relations binaires	15
IV	Lois de composition	24
\mathbf{V}	Divers	29

Première partie

Théorie naïve des ensembles

Définition: Un ensemble est une collection finie ou infinie d'objets de même nature ou non. L'ordre de ces objets n'a pas d'importance.

Exemple: 1. $\{1, x \mapsto x^2, \{1\}\}$ est un ensemble : ses éléments dont l'entier 1, la fonction $x\mapsto x^2$ et un ensemble contenant uniquement 1 (un singleton).

2. \mathbb{N} est un ensemble infini

Remarque (Notation):

Soit E un ensemble et x un objet de E.

On écrit $x \in E$ ou bien $x \ni E$.

Remarque (A Paradoxe):

On note Ω l'ensemble de tous les ensembles. Alors, $\Omega \in \Omega$.

Ce n'est pas le cas de tous les ensembles :

 $\mathbb{N} \not \in \mathbb{N}$ car \mathbb{N} n'est pas un entier

On distingue donc 2 types d'ensembles :

- ceux qui vérifient $E \not\in E$, on dit qu'ils sont <u>ordinaires</u>
- ceux qui vérifient $E \in E$, on dit qu'ils sont <u>extra-ordinaires</u>

On note ${\cal O}$ l'ensemble de tous les ensembles ordinaires.

- Supposons O ordinaire. Alors, $O \notin O$
- Or, O est ordinaire et donc $O \in O$ $\frac{1}{2}$
- Supposons O extra-ordinaire.
- Alors $O \in O$ et donc O ordinaire $\frac{1}{2}$

C'est un paradoxe

Pour éviter ce type de paradoxe, on a donné une définition axiomatique qui explique quelles sont les opérations permettant de combiner des ensembles pour en faire un autre.

Définition: Soit E un ensemble et F un autre ensemble. On dit que E et F sont $\underline{\acute{e}gaux}$ (noté E = F) si E et F contiennent les mêmes objets.

Exemple: 1. $E = \{1, 2, 3\}$ et $F = \{3, 2, 1, 2\}$

On a bien E = F.

2.
$$\mathbb{N} \neq \mathbb{Z} \operatorname{car} \begin{cases} -1 \in \mathbb{Z} \\ -1 \notin \mathbb{N} \end{cases}$$

On a bien
$$E = F$$
.
2. $\mathbb{N} \neq \mathbb{Z}$ car $\begin{cases} -1 \in \mathbb{Z} \\ -1 \notin \mathbb{N} \end{cases}$
3. $E = \{0, \{0\}\} \neq \{0\} = F$
car $\begin{cases} \{0\} \in E \\ \{0\} \notin F \end{cases}$
mais, $F \in E$

Définition: L'ensemble $\underline{\text{vide}}$, noté \emptyset est le seul ensemble à n'avoir aucun élément.

Définition: Soient E et F deux ensembles. On dit que F est <u>inclus</u> dans E, noté $F \subset E$ ou $E \supset F$ si tous les éléments de F sont aussi des éléments de E.

$$\forall x \in F, x \in E$$

Proposition: Pour tout ensemble $E, \varnothing \subset E$

Preuve (par l'absurde): Si $\varnothing \not\subset E$ alors $\exists x \in \varnothing, x \not\in E$: une contradiction \not

Exemple: 1. $E = \{1, 2, 3\}$ et $F = \{1, 3\}$ On a $F \subset E$ mais pas $E \subset F$ car $\begin{cases} 2 \in E \\ 2 \not\in F \end{cases}$

2. $F = \{0\}$ et $E = \{0, \{0\}\}$

$$\begin{array}{ll} - & F \in E \text{ car } \{0\} \in E \\ - & F \subset E \text{ car } 0 \in E \end{array}$$

$$F \subset E \text{ car } 0 \in E$$

3.
$$E = \{\{0\}\}; F = \{0\}$$

$$\begin{array}{ll}
-F \not\subset E & \text{car } 0 \not\in E \\
-F \in E
\end{array}$$

$$-F \in E$$

$$\begin{array}{ll} 4. & E = \{ \{ \{0\} \} \}; F = \{0\} \\ & - & F \not\in E \\ & - & F \not\subset E \end{array}$$

$$-F \not\in E$$

$$-F \not\subset E$$

$$\begin{array}{ccc}
 & \nearrow & - \\
 & \varnothing & \subset F \\
 & - \varnothing & \subset E
\end{array}$$

 Définition: Soit E un ensemble. On peut former $\underline{\mbox{l'ensemble de toutes les parties de}}$ \underline{E} (une partie de E est un ensemble F avec $F \subset E$). On le note $\mathscr{P}(E)$

$$A\in \mathscr{P}(E) \iff A\subset E$$

Exemple: 1. $E = \{42\}$

Les sous-ensembles de E sont \varnothing et $\{42\} = E$ donc

$$\mathscr{P}(E) = \{\varnothing, \{42\}\}\$$

2.
$$\mathscr{P}(\varnothing) = \{\varnothing\}$$

3.
$$E = \{0,1\}$$
 donc $\mathscr{P}(E) = \{\varnothing,\{0\},\{1\},\{0,1\}\}$

4

Définition: Soit E un ensemble et $A, B \in \mathscr{P}(E)$

1. La <u>réunion</u> de A et B est

$$A \cup B = \{ x \in E \mid x \in A \text{ ou } x \in B \}$$

2. L'<u>intersection</u> de A et B est

$$A \cap B = \{ x \in E \mid x \in A \text{ et } x \in B \}$$

3. Le complémentaire de A dans E est

$$E \setminus A = \{x \in E \mid x \not\in A\} = C_E A$$

4. La <u>différence symétrique</u> de A et B est

$$A\Delta B = \{x \in E \mid (x \in A \text{ et } x \notin B) \text{ ou } (x \notin A \text{ et } x \in B)\}$$
$$= (A \cup B) \setminus (A \cap B)$$

Proposition: Soit E un ensemble et $A, B, C \in \mathcal{P}(E)$

```
1. A \cap A = A
                                                                 10. A \cup E = E
2. \ B \cap A = A \cap B
                                                                11. (E \setminus A) \setminus A = E \setminus A
3. A \cap (B \cap C) = (A \cap B) \cap C
                                                                12. E \setminus (E \setminus A) = A
4. A \cap \emptyset = \emptyset
                                                                13. E \setminus \emptyset = E
5. A \cap E = A
                                                                14. E \setminus E = \emptyset
6. A \cup A = A
                                                                15. A \cup (B \cap C) = (A \cup B) \cap (A \cup C)
7. B \cup A = A \cup B
                                                                16. A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
8. A \cup (B \cup C) = (A \cup B) \cup C
                                                               17. E \setminus (A \cup B) = (E \setminus A) \cap (E \setminus B)
9. A \cup \varnothing = A
                                                                18. E \setminus (A \cap B) = (E \setminus A) \cup (E \setminus B)
```

```
Preuve: 16. A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
                Soit x \in A \cap (B \cup C) donc x \in A et x \in B \cup C
                 <u>Cas 1</u> x \in B, alors x \in A \cap B et donc x \in (A \cap B) \cup (A \cap C)
                 Cas 2 x \in C, alors x \in A \cap C et donc x \in (A \cap B) \cup (A \cap C)
                 On a prouvé
                                                    A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)
                Soit x \in (A \cap B) \cup (A \cap C)
                 \underline{\text{Cas 1}} \ \ x \in A \cap B \ \text{donc} \ x \in A \ \text{et} \ x \in B \ \text{donc} \ x \in B \cup C \ \text{et} \ \text{donc} \ x \in A \cap (B \cup C)
                 \underline{\text{Cas 2}} \ \ x \in A \cap C \ \text{donc} \ x \in A \ \text{et} \ x \in C \ \text{donc} \ x \in B \cup C \ \text{et} \ \text{donc} \ x \in A \cap (B \cup C)
                 On a prouvé
                                                    A \cap (B \cup C) \supset (A \cap B) \cup (A \cap C)
   17. E \setminus (A \cup B) = (E \setminus A) \cap (E \setminus B)
                 Montrons que x \in E \setminus (A \cup B) \implies x \in (E \setminus A) \cap (E \setminus B)
                 Soit x \in E \setminus (A \cup B) donc x \notin A \cup B
                 — Si x \in A, alors x \in A \cup B \nleq
                      donc x \notin A i.e. x \in E \setminus A
                 — Si x \in B alors, x \in A \cup B \notin
                Donc x \notin B i.e. x \in E \setminus B
On en déduit que x \in (E \setminus A) \cap (E \setminus B)
                x \in (E \setminus A) \cap (E \setminus B). Montrons que x \in E \setminus (A \cup B)
                On suppose que x \notin E \setminus (A \cup B) donc x \in A \cup B
                — Si x \in A, on a une contradiction car x \in E \setminus A
— Si x \in B, on a une contradiction car x \in E \setminus B
                donc x \in E \setminus (A \cup B)
```

Deuxième partie

Applications

Définition: Une application f est la donnée de

- un ensemble E appelé ensemble de départ
- un ensemble F appelé ensemble d'arrivée
- une fonction qui associe à tout élément x de E un unique élément de F noté f(x) L'application est notée

$$f: E \longrightarrow F$$

 $x \longmapsto f(x)$

Exemple: 1. Soit $\mathscr P$ le plan (affine) et $A\in\mathscr P$. Soit $\mathscr D$ l'ensemble des droites.

$$f: \mathscr{P} \setminus \{A\} \longrightarrow \mathscr{D}$$
$$B \longmapsto (AB)$$

2. $E=\mathscr{C}^1\left([0,1],\mathbb{R}\right)$ l'ensemble des fonctions à valeurs réelles de classe \mathscr{C}^1 sur [0,1] $F=\mathscr{C}^0\left([0,1],\mathbb{R}\right)$

$$\varphi: E \longrightarrow F$$
$$f \longmapsto f'$$

3. $E = \mathcal{C}^1([0,1], \mathbb{R})$ et $F = \mathbb{R}$

$$\varphi: E \longrightarrow F$$

$$f \longmapsto f'\left(\frac{1}{2}\right)$$

4. E = [0, 1] et $F = \mathcal{C}^0([0, 1], \mathbb{R})$

$$\varphi: E \longrightarrow F$$
$$x \longmapsto \int_a^x t^2 \ln(t) \ dt$$

5.

 $\varphi: \mathscr{C} \setminus \{N\} \longrightarrow (d)$ $M \longmapsto M'$

6.

Définition: Soit $f: E \to F$ une application. On dit que f est

- $\underline{\text{injective}}$ si tout élément de F a au plus un antécédent par f $\underline{\text{bijective}}$ si tout élément de F a un unique antécédent par f
- $\underline{\text{surjective}}$ si tout élément de F a au moins un antécédent par f

Exemple (suite des exemples précédents): 1. L'application n'est ni injective ni surjective

 B_1 et B_2 sont deux antécédants de d_1 d_2 n'a pas d'antécédant par f

- 2. L'application n'est pas injective :

 - $-f: x \mapsto x$ est continue $-x \mapsto \frac{x^2}{2} \text{ et } x \mapsto \frac{x^2}{2} + 42 \text{ sont deux antécédants de } f.$ Mais, l'application est surjective d'après le théorème fondamental de l'analyse

- 3. L'application n'est pas injective $(x \mapsto 0 \text{ et } x \mapsto 42 \text{ sont deux antécédants de } 0)$ mais elle est surjective $(\forall x \in \mathbb{R}, x \mapsto ax \text{ est un antécédant de } a)$.
- 4. L'application est injective mais pas surjective (les images sont des primitives de $x\mapsto$ $x^2 \ln(x)$
- 5. et 6. sont bijectives

Définition: Soit $f: E \to F$ et $g: F \to G$. L'application notée $g \circ f$ est définie par

$$g \circ f : E \longrightarrow G$$

 $x \longmapsto g(f(x))$

On dit que c'est la $\underline{\text{compos\'ee}}$ de f et g.

 $\textbf{Proposition:} \quad \text{Soient } f: E \rightarrow F, g: F \rightarrow G, h: G \rightarrow G. \text{ Alors, } h \circ (g \circ f) = (h \circ g) \circ f$

Par définition, $g \circ f : E \to F$ donc $h \circ (g \circ f) : E \to H$

et $h \circ g : F \to H$ donc $(h \circ g) \circ f : E \to H$ Soit $x \in E$.

$$h \circ (g \circ f)(x) = h(g \circ f(x))$$
$$= h(g(f(x)))$$

$$(h \circ g) \circ f(x) = h \circ g(f(x))$$
$$= h(g(f(x)))$$

Donc,
$$h \circ (g \circ f)(x) = (h \circ g) \circ f(x)$$

Remarque (\bigwedge Attention): En général, $g \circ f \neq f \circ g$

Par exemple,
$$f: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R}^+ \\ x & \longmapsto & x^2 \end{array}$$
 et $g: \begin{array}{ccc} \mathbb{R}^+ & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \sqrt{x} \end{array}$

Alors,
$$f \circ g : \begin{array}{ccc} \mathbb{R}^+ & \longrightarrow & \mathbb{R}^+ \\ x & \longmapsto & x \end{array}$$
 et $g \circ f : \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & |x| \end{array}$

donc $f \circ g \neq g \circ f$

Proposition: Soient $f: E \to F$ et $g: F \to G$

- 1. Si $g \circ f$ est injective, alors f est injective
- 2. Si $g \circ f$ est surjective, alors g est surjective
- 3. Si f et g sont surjectives, alors $g \circ f$ est surjective
- 4. Si f et g sont injectives, alors $g \circ f$ est injective

Preuve: 1. On suppose $g\circ f$ injective. On veut montrer que f est injective. Soient $(x,y)\in E^2$. On suppose f(x)=f(y). Montrons que x=y. Comme $f(x)=f(y),\,g(f(x))=g(f(y))$ i.e. $g\circ f(x)=g\circ f(y)$ Or, $g\circ f$ injective donc x=y

On suppose g ∘ f surjective. On veut montrer que g est surjective. Soit y ∈ G.
 On cherche x ∈ F tel que g(x) = y.
 Comme g ∘ f : E → G surjective, y a un antécédant z ∈ E par g ∘ f.

Comme $g \circ f : E \to G$ surjective, y a un antécédant $z \in E$ par $g \circ f$. On pose $x = f(z) \in F$ et on a bien g(x) = y

- 3. On suppose f et g injectives. Montrons que $g \circ f$ injective. Soient $x,y \in E$. On suppose $g \circ f(x) = g \circ f(y)$. Montrons x = yOn sait que g(f(x)) = g(f(y)). Comme g est injective, f(x) = f(y) et comme f
- est injective, x=y4. On suppose f et g surjectives. Soit $g \in G$. On cherche $x \in E$ tel que $g \circ f(x) = g$ Comme g est surjective, g a un antécédant $g \in F$ par gComme g est surjectives, g a un antécédant g est surjectives.

On en déduit $g \circ f(x) = g(f(x)) = g(z) = y$

Remarque: $f: E \longrightarrow F$

$$f \text{ injective } \iff \bigg(\forall (x,y) \in E^2, f(x) = f(y) \implies x = y \bigg)$$

II

Définition: Soit $f: E \to F$ une <u>bijection</u>. L'application $\begin{cases} F & \longrightarrow & E \\ y & \longmapsto & \text{l'unique antécédent de } y \text{ par } f \end{cases}$ est la <u>réciproque</u> de f notée f^{-1}

Proposition: Soient $f: E \to F$ et $g: F \to E$

$$\begin{cases}
f \circ g = \mathrm{id}_F \\
g \circ f = \mathrm{id}_E
\end{cases} \iff \begin{cases}
f \text{ bijective} \\
f^{-1} = g
\end{cases}$$

Preuve (déjà faite):

Définition: Soit $f: E \to F$

1. Soit $A\in \mathscr{P}(E).$ L'<u>image directe</u> de A par f est

2. Soit $B\in \mathscr{P}(F).$ L'image réciproque de B par f est

Remarque:

$$\begin{array}{ll} - & y \in f(A) \iff \exists x \in A, y = f(x), \\ - & x \in f^{-1}(B) \iff f(x) \in B. \end{array}$$

Proposition: Soient $f: E \to F$, $A \in \mathscr{P}(E)$ et $F \in \mathscr{P}(F)$.

- 1. $f^{-1}(f(A)) \supset A$,
- 2. Si f est injective alors $f^{-1}(f(A)) = A$,
- 3. $f(f^{-1}(B)) \subset B$,
- 4. Si f est surjective, alors $f(f^{-1}(B) = B$.

Preuve: 1. Soit $x \in A$. Montrons que $x \in f^{-1}(f(A))$ i.e. montrons que $f(x) \in f(A)$. Comme $x \in A$, $f(x) \in f(A)$.

2. On suppose f injective. Montrons que $f^{-1}\big(f(A)\big)=A$. Soit $x\in f^{-1}\big(f(A)\big)$, montrons que $x\in A$. On sait que $f(x)\in f(A)$. Donc, il existe $a\in A$ tel que f(x)=f(a). Or, f est injective et donc x=a. On en déduit que $x\in A$. D'après 1., on sait que $f^{-1}\big(f(A)\big)\supset A$. On a montré $f^{-1}\big(f(A)\big)\subset A$. Donc

 $f^{-1}(f(A)) = A.$

- 3. Soit $y \in f(f^{-1}(B))$. Montrons $y \in B$. On sait qu'il existe $x \in f^{-1}(B)$ tel que y = f(x). On a donc $f(x) \in B$ et donc $y \in B$.
- 4. On suppose f surjective, montrons $B \subset f(f^{-1}(B))$. Soit $y \in B$, montrons $y \in f(f^{-1}(B))$. On cherche $x \in f^{-1}(B)$ tel que y = f(x). C'est à dire, on cherche $x \in E$ tel que $f(x) \in B$ et y = f(x). On sait que f est surjective donc f a un antécédant f est tel que f est surjective donc f a un antécédant f est el que f est surjective donc f a un antécédant f est el que f est surjective donc f a un antécédant f est el que f est surjective donc f a un antécédant f est el que f est surjective donc f a un antécédant f est el que f est surjective donc f est el que f est surjective donc f est el que f

On vient de montrer $B \subset f(f^{-1}(B))$ et on a montré dans 3. que $B \supset f(f^{-1}(B))$. On en déduit que

$$f(f^{-1}(B)) = B.$$

Proposition: Soit $f: E \to F$ et $(A, B) \in \mathscr{P}(F)^2$. Alors

$$\begin{cases} f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B), & (1) \\ f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B). & (2) \end{cases}$$

Preuve: Soit $x \in E$.

$$\begin{split} x \in f^{-1}(A \cup B) &\iff f(x) \in A \cup B \\ &\iff f(x) \in A \text{ ou } f(x) \in B \\ &\iff x \in f^{-1}(A) \text{ ou } x \in f^{-1}(B) \\ &\iff x \in f^{-1}(A) \cup f^{-1}(B). \end{split}$$

$$\begin{aligned} x \in f^{-1}(A \cap B) &\iff f(x) \in A \cap B \\ &\iff f(x) \in A \text{ et } f(x) \in B \\ &\iff x \in f^{-1}(A) \text{ et } x \in f^{-1}(B) \\ &\iff x \in f^{-1}(A) \cap f^{-1}(B). \end{aligned}$$

Proposition: Soient $f: E \to F$ et $(A, B) \in \mathscr{P}(E)^2$.

- 1. $f(A \cap B) \subset f(A) \cap f(B)$
- 2. Si f est injective, $f(A \cap B) = f(A) \cap f(B)$
- 3. $f(A \cup B) = f(A) \cup f(B)$.

Preuve: 1. Soit $y \in f(A \cap B)$. Soit $x \in A \cap B$ tel que y = f(x). Comme $x \in A$, $f(x) \in f(A)$ et comme $x \in B$, $f(x) \in f(B)$ et donc $y \in f(A) \cap f(B)$

2. On suppose f injective. Soit $y \in f(A) \cap f(B)$. Comme $y \in f(A)$, il existe $a \in A$ tel que y = f(a). Comme $y \in f(B)$, il existe $b \in B$ tel que y = f(b).

Comme f est injective, a=b et donc $a\in A\cap B$. On en déduit que

$$y = f(a) \in f(A \cap B).$$

3. Soit $y \in F$. Alors

$$\begin{split} y \in f(A \cup B) &\iff \exists x \in A \cup B; y = f(x) \\ &\iff (\exists x \in A \text{ ou } \exists x \in B), y = f(x) \\ &\iff y \in f(A) \text{ ou } y \in f(B) \\ &\iff y \in f(A) \cup f(B). \end{split}$$

Remarque (Contre-exemple pour 2.):
Cas d'une application qui n'est pas injective

On pose $A = \mathbb{R}_*^+$, $B = \mathbb{R}_*^-$ et

$$f: \mathbb{R} \longrightarrow \mathbb{R}^+$$

 $x \longmapsto x^2$

On a $A \cap B = \emptyset$ donc $f(A \cap B) = \emptyset$.

Or,
$$\begin{cases} f(A) = \mathbb{R}_*^+ \\ f(B) = \mathbb{R}_*^+ \end{cases} \text{donc } f(A) \cap f(B) = \mathbb{R}_*^+.$$

On a

$$f(A \cap B) \neq f(A) \cap f(B)$$
.

Définition: Soit $f: E \to F$ et $A \in \mathscr{P}(E)$.

La restriction de f à A est

$$f_{|A}:A\longrightarrow F$$

 $x\longmapsto f(x)a$

On dit aussi que f est <u>un prolongement</u> de $f_{|A}$.

Remarque (Notation):

L'ensemble des applications de E dans F est noté F^E .

EXEMPLE:
$$\mathbb{R}^* \longrightarrow \mathbb{R}$$
 On pose $f: x \longmapsto \frac{1}{x}$ et $g: x \longmapsto \begin{cases} \frac{1}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$ un prolongement de f car $g_{|\mathbb{R}^*} = f$.

$$\mathbb{R} \longrightarrow \mathbb{R}$$
 L'applications $h: x \longmapsto \begin{cases} \frac{1}{x} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$ est un autre prolongement de f .

Troisième partie

Relations binaires

Définition: Soit E un ensemble. Un <u>relation (binaire)</u> sur E est un prédicat définit sur E^2 .

Exemple: 1. Avec $E = \mathbb{C}$, = est une relation binaire,

- 2. Avec $E = \mathbb{R}, \leq$ est une relation binaire,
- 3. Avec E l'humanité et la relation binaire \wedge :

 $x \wedge y \iff x \text{ et } y \text{ ont la même mère.}$

Définition: Soit E un ensemble, \diamond une relation sur E. On dit que \diamond est un <u>relation</u> d'équivalence si

1. $\forall x \in E, x \diamond x$,

 $(\underline{\text{r\'eflectivit\'e}})$

 $2. \ \forall x, y, \in E, x \diamond y \implies y \diamond x,$

 $(\underline{\operatorname{sym\acute{e}trie}})$

$$3. \ \forall x,y,z \in E, \quad \left. \begin{array}{c} x \diamond y \\ y \diamond z \end{array} \right\} \implies x \diamond z$$

(transitivité)

Exemple:

Avec $E = \mathbb{Z}$ et

$$x \diamond y \iff x \equiv y$$
 [3]

"♦" est une relation d'équivalence.

Remarque

Le but d'une relation d'équivalence est d'identifier des objets différents.

Définition: Soit E un ensemble et \diamond une relation d'équivalence sur E. Soit $x \in E$. La classe de x (modulo \diamond) est

$$\mathscr{C}\!\ell \diamond (x) = \mathscr{C}\!\ell(x) = \overline{x} = \{y \in E \mid y \diamond x\}.$$

Exemple: 1. Avec $E = \mathbb{C}$ et $\diamond = " = "$,

$$\forall z \in \mathbb{C}, \overline{z} = \mathscr{C}\ell(z) = \{z\}.$$

2. Avec $E = \mathbb{Z}$ et $\diamond =$ congruence modulo 5, on a

$$\begin{split} \overline{0} &= \{5k \mid k \in \mathbb{Z}\} \\ \overline{2} &= \{5k+2 \mid k \in \mathbb{Z}\} \\ \overline{4} &= \{5k+4 \mid k \in \mathbb{Z}\} \end{split} \qquad \qquad \overline{3} = \{5k+3 \mid k \in \mathbb{Z}\}$$

On constate que

$$x \equiv y \ [5] \iff \overline{x} = \overline{y}.$$

III

Proposition: Soit E un ensemble muni d'une relation d'équivalence \diamond . Alors

$$\forall x, y \in E, x \diamond y \iff \overline{x} = \overline{y}.$$

Preuve:

Soient $x, y \in E$.

- On suppose $x\diamond y$. Soit $z\in \overline{x}$. On sait que $z\diamond x$ et $y\diamond x$. Par transitivité, on en déduit que $z\diamond y$ et donc $z\in \overline{y}$.
- Soit $z \in \overline{y}$, donc $y \diamond z$. Or $x \diamond y$. Comme \diamond est symétrique, on a $y \diamond x$ et par transitivité, on a donc $z \diamond x$. Donc $z \in \overline{x}$.
- On suppose $\overline{x}=\overline{y}. \diamond$ réfléctive donc $x\diamond x$ et donc $x\in \overline{x}=\overline{y}$ donc $x\in \overline{y}$ et donc $x\diamond y.$

HORS-PROGRAMME

Définition: Soit E un ensemble et \diamond une relation d'équivalence.

L'ensemble

$$\{\overline{x} \mid x \in E\} = E/\diamond$$

est appelé quotient de E modulo \diamond .

Exemple: 1. $E = \mathbb{Z}$ et $\diamond =$ congruence modulo 5 :

$$E/\diamond = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\} = \mathbb{Z}/5\mathbb{Z}$$

2. Construction de $\mathbb Q$

On suppose avoir déjà construit $\mathbb Z$ mais pas $\mathbb Q$: on veut donc donner un définition de p/q sans parler de division.

On pose

$$E = \mathbb{Z} \times \mathbb{N}^* = \{ (p, q) \mid p \in \mathbb{Z}, q \in \mathbb{N}^* \}.$$

Soit \sim la relation définie par

$$(p,q) \sim (p',q') \iff pq' = p'q$$

Montrons que \sim est une relation d'équivalence.

- Soient $(p,q) \in E$. \sim est réfléctive car $(p,q) \sim (p,q) \iff pq = pq$.
- Soient $(p,q), (p',q') \in E$. On suppose $(p,q) \sim (p',q')$.

$$(p,q) \sim (p',q') \iff pq' = p'q$$

 $\iff p'q = pq'$
 $\iff (p',q') \sim (p,q)$

Donc \sim est symétrique.

— Soient $(p,q), (p',q'), (p'',q'') \in E$. On suppose

$$\begin{cases} (p,q) \sim (p',q') \\ (p',q') \sim (p'',q'') \end{cases}$$

On sait que

$$(p,q) \sim (p'',q'') \iff pq'' = p''q$$

$$\begin{cases} pq' = qp' \\ p'q'' = p''q' \end{cases} \quad \text{donc } pq'p'q'' = p'q'p''q'$$

Donc

$$p'q'(pq'' - p''q) = 0$$

et donc

$$p' = 0$$
 ou $pq'' - p''q = 0$

Si
$$p'=0$$
, alors $\begin{cases} pq'=0\\ p''q'=0 \end{cases}$ et donc $\begin{cases} p=0\\ p''=0 \end{cases}$. On a donc

$$pq'' = 0 = p''q$$

Si $p' \neq 0$, on a pq'' - p''q = 0 et donc

$$pq'' = p''q$$

On a donc $(p,q) \sim (p'',q'')$.

On pose $\mathbb{Q} = E/\sim$ et

$$\forall (p,q) \in E, \ \frac{p}{q} = \mathscr{C}\ell(p,q).$$

Ainsi,

$$\begin{split} \frac{p}{q} &= \frac{p'}{q'} \iff \mathscr{C}\!\ell\left((p,q)\right) = \mathscr{C}\!\ell\left((p',q')\right) \\ &\iff (p,q) \sim (p',q') \\ &\iff pq' = p'q \end{split}$$

3. Construction de $\mathbb Z$ à partir de $\mathbb N$

On pose $E=\mathbb{N}\times\mathbb{N}^*$ et \sim la relation $(p,q)\sim(p',q')\iff p+q'=p'+q.$ \sim est une relation d'équivalence. On pose donc $\mathbb{Z}=\mathbb{N}/\sim$ et pour $n\in\mathbb{N},$ on définit n par $\mathscr{C}\!\!\ell\left((n,0)\right)$ et -n par $\mathscr{C}\!\!\ell\left((0,n)\right)$.

4. Constrution de $\mathbb C$ à partir de $\mathbb R$

On pose E l'ensemble des polynômes à coefficients réels $(E=\mathbb{R}[X])$ et \diamond la relation d'équivalence

$$P \diamond Q \iff P \equiv Q \left[x^2 + 1 \right]$$

On pose $\mathbb{C} = E/\diamond$.

Il manque une partie du cours ici

Définition: Soit E un ensemble et $(A_i)_{i\in I}$ une famille de parties de E.

On dit que $(A_i)_{i\in I}$ est une partition de E si

$$\begin{cases} E = \bigcup_{i \in I} A_i \\ \forall i \neq j, A_i \cap A_j = \varnothing \end{cases}$$

On a donc

$$\forall x \in E, \exists! i \in I, x \in A_i.$$

Proposition: Soit E un ensemble muni d'une relation d'équivalence \diamond . Les classes

d'équivalences de E modulo \diamond forment une partition de E.

Preuve: — Soit $x \in E$. On sait que $x \diamond x$ donc $\overline{x} \ni x$. On a montré $E \subset \bigcup \overline{y}$.

- $\forall y \in E, \overline{y} \subset E \text{ donc } E \supset \left(\bigcup_{y \in E} \overline{y}\right).$
- Soit $x, y \in E$ tel que $\overline{x} \neq \overline{y}$. Montrons que $\overline{x} \cap \overline{y} = \emptyset$. Soit $z \in \overline{x} \cap \overline{y}$. $z \in \overline{x}$ donc $z \diamond x.$ De même, $z \in \overline{y}$ donc $z \diamond y.$ Par transitivité, $x \diamond y$ et donc $\overline{x} = \overline{y}$: une

Proposition: Soit E un ensemble et $(A_i)_{i\in I}$ une partition de E telle que

$$\forall i \in I, A_i \neq \varnothing.$$

Alors il existe une relation d'équivalence \diamond telle que pour tout $i \in I$, A_i est une classe d'équivalence modulo \diamond .

Preuve:

Soit

la relation définie par

$$x \diamond y \iff \exists i \in I, \begin{cases} x \in A_i \\ y \in A_i \end{cases}$$

- Soit $x \in E$. Comme $E = \bigcup_{i \in I} A_i$, il existe $i \in I$ tel que $x \in A_i$ donc $x \diamond x$.
- Soient $x, y \in E$. On suppose $x \diamond y$. Soit $i \in I$ tel que $\begin{cases} x \in A_i \\ y \in A_i \end{cases}$ donc $\begin{cases} y \in A_i \\ x \in A_i \end{cases}$
- Soit $x, y, z \in E$. On suppose $x \diamond y$ et $y \diamond z$.

Soit
$$i \in I$$
 tel que
$$\begin{cases} x \in A_i \\ y \in A_i \end{cases}$$

Soit
$$j \in I$$
 tel que
$$\begin{cases} y \in A_j \\ z \in A_j. \end{cases}$$

Soit $i \in I$ tel que $\begin{cases} x \in A_i \\ y \in A_i. \end{cases}$ Soit $j \in I$ tel que $\begin{cases} y \in A_j \\ z \in A_j. \end{cases}$ On a donc $y \in A_i \cap A_j$. Si $i \neq j$, alors $y \in \emptyset$: une contradiction. Donc i = j et donc $\begin{cases} x \in A_i \\ z \in A_i \end{cases}$. On en déduit que $x \diamond z$.

Ainsi

est une relation d'équivalence.

- Soit $i \in I$ et soit $x \in A_i \neq \emptyset$.

$$\overline{x} = \{y \in E \mid y \diamond x\} = \{y \in E \mid y \in A_i\} = A_i.$$

Définition: Soit E un ensemble et \diamond . On dit que \diamond est une <u>relation d'ordre</u> sur E si 1. \diamond est réfléctive $(\forall x \in E, x \diamond x)$,

19

2. \diamond est <u>anti-symétrique</u>:

$$\forall x, y \in E, \quad \begin{cases} x \diamond y \\ y \diamond x \end{cases} \implies x = y,$$

3. \diamond est transitive $(\forall x, y, z \in E, (x \diamond y \text{ et } y \diamond z) \implies x \diamond z)$.

En général, la relation \diamond est notée \leqslant ou \preccurlyeq . On dit aussi que (E,\diamond) est un ensemble ordonné.

Exemple: 1. (\mathbb{R}, \leq) est un ensemble ordonné.

- 2. $(\mathscr{P}(E), \subset)$ est un ensemble ordonné.
- 3. $(\mathbb{N}, |)$ est un ensemble ordonné.
- 4. $(MP2I, \leq)$ avec

$$x \preccurlyeq y \iff$$
 note de $x \leqslant$ note de y

n'est un ensemble ordonné car \preccurlyeq n'est pas anti symétrique.

5. $E = \mathbb{N}^2$ et \preccurlyeq définie par

$$(x,y) \preccurlyeq (x',y') \iff x < x' \text{ ou } \begin{cases} x = x' \\ y \leqslant y' \end{cases}$$

 (E, \preceq) est un ensemble ordonné.

Définition: Soit (E,\leqslant) un ensemble ordonné. Soient $x,y\in E.$ On dit que x et y sont comparables si

$$x \leqslant y$$
 ou $y \leqslant x$.

On dit que \leqslant est un <u>ordre total</u> si tous les éléments de E sont comparables 2 à 2.

Exemple: — (\mathbb{R}, \leq) est totalement ordonné

- $(\mathscr{P}(E), \subset)$ n'est pas totalement ordonné en général :
- Soient $a, b \in E$ avec $a \neq b$. $\{a\}$ et $\{b\}$ ne sont pas comparables.
- $(\mathbb{N},|)$ n'est pas totalement ordonné :
 - $2 \nmid 5$ et $5 \nmid 2$ donc 2 et 5 ne sont pas comparables.

Définition: Soit (E, \leqslant) un ensemble ordonné, $A \in \mathscr{P}(E)$ et $M \in E$. On dit que \underline{A} est majorée par M, que \underline{M} majore \underline{A} ou que \underline{M} est un majorant de \underline{A} si

$$\forall a \in A, a \leqslant M.$$

Soit $m \in E$. On dit que \underline{A} est minorée par \underline{m} , que \underline{m} minore \underline{A} ou que \underline{m} est un minorant de A si

$$\forall a \in A, m \leqslant a.$$

Il manque une partie du cours ici

Exemple: 1. $E = \mathbb{R}$ muni de \leq et A = [2, 5].

On sait que $\sup A=5$ car

$$\forall x \in A, x \leq 5$$

 et

$$\forall y \leqslant 5, \quad 5 > \frac{y+5}{2} > y$$

donc y ne majore pas A.

2. $E = \mathbb{R}$ avec \leq et A =]2, 5[. $A \not\ni \sup A = 5$ par le même raisonnement.

- 3. $E = \mathbb{N}^*$ avec | et $A = \{p,q\}$ avec $p \neq q \in E$. $\sup A = \text{PPCM}(p,q) = p \vee q$ (c.f. chapitre 10 arithmétique)
- 4. $\mathscr{P}(E)$ avec \subset et $A=\{P,Q\}$ avec $P,Q\in\mathscr{P}(E)$ et $P\neq Q$. sup $A=P\cup Q$.
- 5. $E = \{0,1\} \times \mathbb{Z}$ muni de \leqslant défini par

$$(x_1, y_1) \leqslant (x_2, y_2) \iff x_1 < x_2 \text{ ou } \begin{cases} x_1 = x_2 \\ y_1 \leqslant y_2 \end{cases}$$

et $A=\{0\}\times \mathbb{Z}.\ (x,y)$ majore $A\iff x=1$ donc A est majorée mais n'a pas de borne supérieure.

Proposition: Soit (E, \leq) un ensemble ordonné et $A \in \mathcal{P}(E)$. Si A a une borne supérieure, alors celle-ci est unique. On la note sup A.

Preuve:

Soit M_1 et M_2 deux bornes supérieures de A.

Donc M_2 majore A. Comme M_1 est une borne supérieure de A, on a $M_1 \leq M_2$.

De même, on en déduit que $M_2 \leq M_1$.

Comme \leq est antisymétrique, $M_1 = M_2$.

Proposition – **Définition:** Soit (E, \leq) un ensemble ordonné et $A \in \mathscr{P}(E)$ minorée par $m \in E$. On dit que m est une <u>borne inférieur</u> de A si

$$\begin{cases} \forall a \in A, \ m \leqslant a, \\ \forall x \in E, \ (\forall a \in A, \ x \leqslant a) \implies x \leqslant m. \end{cases}$$

Dans ce cas, m est unique et on la note $\inf(A)$.

Définition: Soit (E, \leq) un ensemble ordonné et $A \in \mathcal{P}(E)$.

1. Soit $M \in E.$ On dit que M est le <u>plus grand élément</u> de A ou que M est le <u>maximum</u> de A si

$$\begin{cases} \forall a \in A, \ a \leqslant M, \\ M \in A. \end{cases}$$

Dans ce cas, on le note $M = \max(A)$.

2. Soit $m \in E$. On dit que m est le <u>plus petit élément</u> de A ou que m est le <u>minimum</u> de A si

$$\forall a \in A, \, a \geqslant mm \in A$$

Dans ce cas, on le note $m = \min(A)$.

Proposition: En cas d'éxistence, il y a unicité du minimum et du maximum.

Preuve:

Soient M_1 et M_2 deux maxima. On a $M_1 \in A$ donc $M_1 \leqslant M_2$. Or, $M_2 \in A$ donc $M_2 \leqslant M_1$. On en déduit que $M_1 = M_2$.

Proposition: Soit (E, \leq) un ensemble ordonné, $A \in \mathcal{P}(E)$ et $M \in E$.

$$M = \max(A) \iff \begin{cases} M = \sup(A), \\ M \in A; \end{cases}$$

 $M = \min(A) \iff \begin{cases} M = \inf(A), M \in A. \end{cases}$

Preuve: " \Longrightarrow " On suppose $M=\max(A).$ On sait déjà que $M\in A$ et que M est un majorant de A.

Soit M' un majorant de A. $M \in A$ donc $M' \geqslant M$. On en déduit que $M = \sup(A)$. " \longleftarrow " On suppose $M = \sup(A) \in A$. Alors M majore A et $M \in A$ donc $M = \max(A)$.

Exemple:

 $E = \mathbb{N}^*$ muni de | et $A = \{3, 5\}$. $\sup(A) = 3 \lor 5 = 15 \not\in A$ donc A n'a pas de maximum.

Définition: Soit (E, \leq) un ensemble ordonné, $A \in \mathcal{P}(E)$ et $M \in A$.

On dit que M est un <u>élément maximal</u> de A si aucun élément de A n'est strictement supérieur à M :

$$\nexists a \in A, \begin{cases} M \leqslant a, \\ M \neq a. \end{cases}$$

On dit que M est un <u>élément minimal</u> de A si aucun élément de A n'est strictement inférieur à M :

$$\nexists a \in A, \begin{cases} M \geqslant a, \\ M \neq a. \end{cases}$$

Exemple:

 $E = \{n \in \mathbb{N} \mid n \geqslant 2\} = \mathbb{N} \setminus \{0,1\}$ muni de \mid et A = E. Les éléments minimaux de E sont les nombres premiers, il y en a une infinité. Il n'y a donc pas d'élément maximal.

Proposition: Avec les notations précédentes, si A a un maximum M alors M est le seul élément maximal de A.

Preune:

Soit $M = \max(A)$. Soit $a \in A$ tel que $M \le a$ et $M \ne a$. Comme $a \in A$ et $M = \max(A)$, on sait que $a \le M$. Par antisymétrie, on en déduit que a = M: une contradiction.

Donc M est un élément maximal de A.

Soit M' un élément maximal de A. $M' \in A$ donc $M' \leq M$ et donc M = M'.

Définition: Soient (E, \leq) et (F, \preceq) deux ensembles ordonnés et $f: E \to F$. On dit que

1. f est <u>croissante</u> si

$$\forall (x,y) \in E^2, x \leqslant y \implies f(x) \preccurlyeq f(y);$$

2. f est <u>décroissante</u> si

$$\forall (x,y) \in E^2, x \leqslant y \implies f(x) \succcurlyeq f(y).$$

Exemple:

$$E = \mathbb{N}^*$$
 muni de $|, F = \mathbb{N}^*$ muni de \leqslant et $f : E \longrightarrow F$
 $x \longmapsto x$.

Soit $(x, y) \in E^2$ tels que $x \mid y$. Alors $x \leq y$ donc f est croissante.

On pose

$$g: F \longrightarrow E$$

$$n \longmapsto n.$$

 $2\leqslant 3$ mais $2\nmid 3$ doncgn'est pas croissante et $2\leqslant 5$ mais $5\nmid 2$ doncgn'est pas décroissante.

Définition: Soit (E, \leqslant) un ensemble ordonné et $A \in \mathscr{P}(E)$. On dit que A est <u>bornée</u> si A est à la fois majorée et minorée.

Définition: Avec les notations précédentes, un $\underline{\text{extremum}}$ de A (sous reserve d'éxistence) est un maximum ou un minimum de A.

Quatrième partie

Lois de composition

IV

Définition: Une <u>loi de composition interne</u> est une application f de $E \times E$ dans E.

On la note x * y au lieu de f(x, y) (on est libre de choisir le symbôle).

Définition: Soit E un ensemble muni d'une loi de composition interne \boxtimes .

On dit que \boxtimes est <u>associative</u> si

$$\forall (x, y, z) \in E^3, (x \boxtimes y) \boxtimes z = x \boxtimes (y \boxtimes z).$$

Dans ce cas, on écrit plutôt $x\boxtimes y\boxtimes z$.

Exemple: -+ et \times dans \mathbb{C} sont associatives;

- o est associative;
- la multiplication matricielle est aussi associative.

Définition: On dit que ⊠ est <u>commutative</u> si

$$\forall (x,y) \in E^2, x \boxtimes y = y \boxtimes x.$$

Exemple: -+ et \times dans \mathbb{C} sont commutatives;

- ∘ n'est pas commutative;
- la multiplication matricielle n'est pas commutative.

Définition: Soit $e \in E$. On dit que e est un

élément neutre à gauche si

$$\forall x \in E, \ e \boxtimes x = x;$$

<u>élément neutre à droite</u> si

$$\forall x \in E, \ x \boxtimes e = x;$$

élément neutre si

$$\forall x \in E, \ e \boxtimes x = x \boxtimes e = x.$$

Proposition: Sous reserve d'existence, il y a unicité de l'élément neutre.

Preuve:

Soient e et e' deux éléments neutre.

- $\begin{array}{cccc} e \boxtimes e' = e' \text{ car } e \text{ est neutre,} \\ e \boxtimes e' = e \text{ car } e' \text{ est neutre.} \\ \text{On a donc } e = e'. \end{array}$

Axiome (axiome du choix): Soit E un ensemble non vide. Il existe $f: \mathscr{P}(E) \setminus \{\emptyset\} \to E$ telle que

$$\forall A \in \mathscr{P}(E) \setminus \{\varnothing\}, \ f(A) \in A.$$

IV

Définition: Soit $f: E \to F$. Le graphe de f est

$$\{(x, f(x)) \mid x \in E\} \subset E \times F.$$

Proposition: Soit $G \subset E \times F$. G est le graphe d'une application si et seulement si

$$\forall x \in E, \exists ! y \in F, (x, y) \in G.$$

Preuve: " \Longrightarrow " par définition d'une application " \leftrightarrows " On pose f(x) le seul élément y de F qui vérifie $(x,y) \in G$. Alors $f \in F^E$ et son graphe vaut G.

Définition: Soit $A \in \mathcal{P}(E)$. L'<u>indicatrice</u> de A est

$$\begin{split} \mathbb{1}_A : E &\longrightarrow \{0,1\} \\ x &\longmapsto \begin{cases} 1 & \text{si } x \in A, \\ 0 & \text{si } x \not\in A. \end{cases} \end{split}$$

EXEMPLE: 1. Dans \mathbb{C} , le neutre de + est 0 et le neutre de \times est 1.

- 2. Dans E^E , le neutre de \circ est id_E .
- 3. Dans $\mathcal{M}_n(\mathbb{C})$ (l'ensemble des matrices carrées $n\times n$ à valeurs dans \mathbb{C}), le neutre de \times est I_n :

$$I_n = \begin{pmatrix} 1 & & & (0) \\ & \ddots & & \\ & & \ddots & \\ (0) & & & 1 \end{pmatrix}$$

Définition: Soit E un ensemble muni d'une loi de composition interne \boxtimes et $x \in E$.

1. On dit que x est simplifiable à gauche si

$$\forall (y, z) \in E^2, (x \boxtimes y = x \boxtimes z) \implies x = z.$$

et que x est simplifiable à droite si

$$\forall (y,z) \in E^2, \, (y \boxtimes x = z \boxtimes y) \implies x = z.$$

- 2. On dit que x est symétrisable à gauche s'il exiiste $y\in E$ tel que $y\boxtimes x=e$ où e est l'élément neutre de \boxtimes .
 - De même, on dit que x est <u>symétrisable à droite</u> s'il existe $y \in E$ tel que $x \boxtimes y = e$. On dit que x est <u>symétrisable</u> s'il est symétrisable à gauche et à droite, donc s'il existe $y \in E$ tel que $x \boxtimes y = y \boxtimes x = e$.

Exemple:

 $E=\mathbb{N}$ muni de la loi +, tous les éléments de E sont simplifiables. 0 est le seuele élément de E symétrisable.

Proposition: Avec les notations précédentes, si \boxtimes est associative, et x est symétrisable, alors x est simplifiable.

Preuve:

Soient $y, z \in E$.

— On suppose $x \boxtimes y = x \boxtimes z$. Soit $a \in E$ tel que $a \in E$ tel que $a \boxtimes x = e$. Alors

$$a \boxtimes (x \boxtimes y) = a \boxtimes (x \boxtimes z).$$

Or,

$$a \boxtimes (x \boxtimes y) = (a \boxtimes x) \boxtimes y$$

= $e \boxtimes y$
= y .

De même, $a \boxtimes (x \boxtimes z) = z$.

Donc y = z.

— De même, si $y\boxtimes x=z\boxtimes x$, on "multiplie" x à droite par a et on obtient y=z.

Proposition – Définition: On suppose \boxtimes associative. Soit $x \in E$ symétrisable. Alors

$$\exists ! y \in E, \ x \boxtimes y = y \boxtimes x = e.$$

On dit que y est le <u>symétrique</u> de x et on le note $y = x^*$.

Preuve:

Soeint $x, y, z \in E$ tels que

$$\begin{cases} x \boxtimes y = y \boxtimes x = e \\ x \boxtimes z = z \boxtimes x = e \end{cases}$$

Alors, $x \boxtimes y = x \boxtimes z$ et, en simplifiant par x, on a y = z.

Exemple:

Les fonctions symétrisables de (E^E, \circ) sont les bijections et le symétrique d'une bijection est sa réciproque.

Remarque: 1. Si la loi est notée +, on parle d'opposé plutôt que de symétrique et on le note -x au lieu de x^* . L'élément neutre est noté 0_E .

2. Si la loi est notée \times , on parle d'élément <u>inversible</u> au lieu de symétrisable, d'<u>inverse</u> au lieu de symétrique et on note x^{-1} au lieu de x^* . On note le neutre 1_E .

EXERCICE:

Soient $x, y \in E = \mathbb{R}_*^+$. On définit la loi de composition interne \oplus :

$$x \oplus y = \frac{1}{\frac{1}{x} \oplus \frac{1}{y}}.$$

Cette loi peut-être utile en physique pour le calcul de résistances équivalentes en parallèles.

— Associativité : soient $x, y, z \in E$.

D'une part, on a

$$x \oplus (y \oplus z) = \frac{1}{\frac{1}{x} + \frac{1}{\frac{1}{\frac{1}{x} + \frac{1}{y}}}} = \frac{1}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}.$$

D'autre part, on a

$$(x \oplus y) \oplus z = \frac{1}{\frac{1}{\frac{1}{x} + \frac{1}{y}} + \frac{1}{z}} = \frac{1}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}.$$

La loi \oplus est associative.

Соммитаті
vité : soient $x,y\in E.$

$$x \oplus y = \frac{1}{\frac{1}{x} + \frac{1}{y}} = \frac{1}{\frac{1}{y} + \frac{1}{x}} = y \oplus x.$$

Donc la loi \oplus est commutative.

ÉLÉMENT NEUTRE : soit e l'élément neutre de \oplus .

$$\forall x \in E, \ x \oplus e = e \oplus x = x.$$

Comme la loi est commutative, seul l'égalité
$$x \oplus e = x$$
 est utile. Soit $x \in E$. On a donc $\frac{1}{\frac{1}{x} + \frac{1}{e}} = x$ donc $\frac{ex}{e + x} = x$ donc $ex = x(e + x)$ et donc

x ' e $y = y + x^2$. On en déduit que $x^2 = 0$, ce qui n'est pas possible car $x \in \mathbb{R}_*^+$. Donc, il n'y a pas d'élément neutre pour \oplus .

Cinquième partie

Divers

V Divers

Définition: Soient E et F deux ensembles. Un couple (x,y) est la donnée d'un élément x de E et d'un élément y de F où

$$\forall x, x' \in E, \forall y, y' \in F, \qquad (x, y) = (x', y') \iff \begin{cases} x = x', \\ y = y'. \end{cases}$$

On note $E \times F$ l'ensemble des couples ; c'est le <u>produit cartésien</u> de E et F.

Exemple:

 $D \times [0,1]$ est un cylindre plein où D est le disque unité fermé i.e.

$$D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leqslant 1\}.$$

 $C \times C$ où $C = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ est un tore (creu).

Définition: Soient E et F deux ensembles. On dit que E et F sont <u>équipotents</u> s'il existe une bijection de E dans F.

Exemple: 1. \mathbb{N} et \mathbb{N}^* sont équipotents car $f: \begin{array}{ccc} \mathbb{N} & \longrightarrow & \mathbb{N}^* \\ k & \longmapsto & k+1 \end{array}$ est bijective.

- 2. $P = \{n \in \mathbb{N} \mid n \text{ pair}\} \text{ et } I = \{n \in \mathbb{N} \mid n \text{ impair}\} \text{ sont \'equipotents car } f: \begin{cases} P & \longrightarrow & I \\ x & \longmapsto & x+1 \end{cases}$ est bijective.
- 3. $\mathbb N$ et P sont équipotents car $f: \begin{picture}(100,0) \put(0,0){\line(1,0){100}} \put(0,0$
- 4. [0,1] et [0,1[sont équipotents car

$$f:[0,1] \longrightarrow [0,1[$$

$$x \longmapsto \begin{cases} \frac{1}{n+1} & \text{si } x = \frac{1}{n} \text{ avec } n \in \mathbb{N}^* \\ x & \text{sinon} \end{cases}$$

est bijective.

5. De même,]0,1[et]0,1[sont équipotents.

V Divers

- 7. $\forall a < b, [a, b]$ et [0, 1] sont équipotents :

$$f: [0,1] \longrightarrow [a,b]$$

 $\alpha \longmapsto \alpha b + (1-\alpha)a$

est bijective (interpolation linéaire).

8. \mathbb{R} et]0,1[sont équipotents :

$$\begin{split} f: \mathbb{R} &\longrightarrow]0,1[\\ x &\longmapsto \frac{1}{2} + \frac{\operatorname{Arctan} x}{\pi} \end{split}$$

est bijective.

9. [0,1[et $\mathbb N$ ne sont pas équipotents (argument de Cantor). Soit $f:\mathbb N\to [0,1[$ une bijection :

On considère le nombre

$$x = 0, (a_0 + 1)(b_1 + 1)(c_2 + 1) \cdots$$

- $f(1) \neq x$ car ils n'ont pas le même chiffre des dizaines.
- $f(2) \neq x$ car ils n'ont pas le même chiffre des centaines.

Par le même raisonement, on en déduit que

$$\forall n \in \mathbb{N}, f(n) \neq x$$

donc x n'a pas d'antécédant : une contradiction.

- 10. On verra en exercice que E et $\mathscr{P}(E)$ ne sont pas équipotents. $\mathbb R$ et $\mathscr{P}(\mathbb R)$ ne sont pas équipotents mais $\mathbb R$ et $\mathscr{P}(\mathbb N)$ le sont (développement dyadique).
- 11. \mathbb{R}^2 et \mathbb{R} sont équipotents; \mathbb{C} et \mathbb{R} sont équipotents.

 $\quad \text{Exercice:} \quad$

Soit ${\cal E}$ un ensemble. L'application

$$f: \mathscr{P}(E) \longrightarrow 0, 1^E$$

$$A \longmapsto \mathbb{1}_A$$

est bijective.

Soit $g: E \to \{0, 1\}$.

Analyse Soit $A \in \mathcal{P}(E)$ tel que f(A) = g. Alors $g = \mathbb{1}_A$. donc

$$\forall x \in E, \ g(x) = \mathbb{1}_A(x)$$

et donc

$$\begin{cases} \forall x \in A, \ g(x) = 1 \\ \forall x \in E \setminus A, \ g(x) = 0 \end{cases}$$

On en déduit que

$$A = \{x \in E \mid g(x) = 1\} = g^{-1}(\{1\}).$$

Synthèse On pose $A = g^{-1}(\{1\})$. Montrons que f(A) = g.

$$\forall x \in E, g(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases} = \mathbb{1}_A$$

donc $g = \mathbb{1}_A$.

V Divers

On aurait aussi pu rédiger de la façon suivante : on pose

$$u: \{0,1\}^E \longrightarrow \mathscr{P}(E)$$

 $g \longmapsto g^{-1}(\{1\}).$

On montre que u est la réciproque de f:

$$\begin{cases} f \circ u = \mathrm{id}_{\{0,1\}^E}, \\ u \circ f = \mathrm{id}_{\mathscr{P}(E)}. \end{cases}$$

Définition: Soit $f: E \to F$. L'<u>image de f</u> est

 $\operatorname{Im}(f) = f(E) = \big\{ f(x) \mid x \in E \big\}.$

Proposition: Soit $f: E \to F$.

f est surjective $\iff f(E) = F$.

Définition: Une suite de E est une application de \mathbb{N} dans E.

Remarque (Notation): Soit $u \in E^{\mathbb{N}}$. Pour $n \in \mathbb{N}$, on écrit u_n à la place de u(n).

Définition: Soient E et I deux ensembles. Une famille de E indéxée par I est une application de I dans E.

À la place de u(i) (avec $i \in I$), on écrit u_i .

Définition: Soit E un ensemble et $(A_i)_{i\in I}$ une famille de parties de E. On suppose $I \neq \emptyset$. On pose

$$\bigcup_{i\in I}A_i=\{x\in E\mid \exists i\in I,\, x\in A_i\}$$

 et

$$\bigcap_{i \in I} A_i = \{ x \in E \mid \forall i \in I, x \in A_i \}.$$

On pose aussi $\bigcup_{i\in \varnothing}A_i=\varnothing$ et $\bigcap_{i\in \varnothing}A_i=E.$

Remarque:

De même que pour les sommes et produits de complexes, on peut intervertir des réunions doubles.

Proposition: Soit E un ensemble, $(A, B) \in \mathcal{P}(E)^2$.

$$A \subset (E \setminus B) \iff A \cap B = \emptyset.$$

V Divers

 $\begin{array}{ll} \textit{Preuve:} & \text{``} \Longrightarrow \text{'`} \; \operatorname{Soit} \; x \in A \cap B. \; \operatorname{Alors} \; x \in A \; \operatorname{et} \; x \in B. \; \operatorname{Comme} \; x \in A \subset (E \setminus B), \; \operatorname{alors} \\ & x \in E \setminus B \; \operatorname{i.e.} \; x \not \in B \; : \; \operatorname{une} \; \operatorname{contradiction.} \; \operatorname{Donc} \; A \cap B = \varnothing. \\ & \text{``} \Longleftrightarrow \text{'`} \; \operatorname{On} \; \operatorname{suppose} \; A \cap B = \varnothing. \; \operatorname{Soit} \; x \in A. \; \operatorname{Si} \; x \in B, \; \operatorname{alors} \; x \in A \cap B = \varnothing \; : \; \operatorname{faux.} \\ & \operatorname{Donc} \; x \not \in B \; \operatorname{et} \; \operatorname{donc} \; x \in E \setminus B. \end{array}$

Proposition: Si $f: E \to F$ et $g: F \to G$ sont bijectives, alors $g \circ f$ est bijective et

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Remarque (\bigwedge Attention): $g\circ f$ peut-être bijective alors que f et g ne le sont pas.