

Representación de la Información

... en los Computadores

Información e Informática

- Un computador es una máquina que procesa información.
- La ejecución de un programa implica el tratamiento de los datos.
- Para que el computador ejecute un programa es necesario darles dos tipos de información:
 - las instrucciones que forman el programa y
 - los datos con los que debe operar ese programa.
- Los aspectos más importantes de la Informática relacionados con la información son:
 - cómo <representarla> y
 - cómo <materializarla> o <registrarla> físicamente.

Cómo se da la información a un computador?

- Se la da en la forma usual escrita que utilizan los seres humanos;
 - con ayuda de un alfabeto o conjunto de símbolos, denominados caracteres.
- Categorías de los caracteres:
 - Caracteres alfabéticos: son los mayúsculas y minúsculas del abecedario inglés:

Caracteres numéricos: están constituidos por las diez cifras decimales:

 El cero suele marcarse con una raya inclinada (ø) para evitar posibles confusiones con la O mayúscula.

 Caracteres especiales: son los símbolos no incluidos en los grupos anteriores, entre otros los siguientes:

) (, * / ; :
$$\tilde{N}$$
 \tilde{n} = ! ? . \approx " & > # < { G } SP

- Con SP representamos el carácter o espacio en blanco, tal como el que separa dos palabras.
- Carácter de control: representan órdenes de control, como el carácter indicador de fin de línea o el carácter indicador de sincronización de una transmisión de que se emita un pitido en un terminal, etc.
 - Muchos de estos son generados e insertados por el propio computador.
- Caracteres Gráficos: son símbolos o módulos con los que se pueden representar figuras (o iconos) elementales.

Toda comun	Toda comunicación con un computador convencional se ealiza según los caracteres que admitan sus dispositivos		101
de E / S.			101
Toda instrucción o dato se representará por un conjunto de caracteres tomados del alfabeto definido en el			0110
sistema a utilizar.			010
El diseño de un sistema informático resulta mas fácil, su			01
realización menos compleja y su funcionamiento muy fiable, si se utilizan solo dos valores o estados posibles.			0
Estos valores conceptualmente se representan por			0101
cero (0) y	apagada y	0 voltios y	0
uno (1)	encendida	3.5 voltios	0110
- (-)			0110
etc. (BIT)			01

Codificación y Decodificación

 Al tener que <traducir> toda la información suministrada al computador a ceros y unos, es necesario establecer una correspondencia entre el conjunto de todos los caracteres

$$\alpha = \{ A, B, C, D, ..., Z, a, b, ..., z, 0, 1, 2, 3, ..., 9, /, +, (,), ... \}$$

y el conjunto binario

$$\beta = \{ 0, 1 \} n$$

- **Codificación** o representación de los elementos de un conjunto (α) mediante los de otro (β) de forma tal que a cada elemento de α le corresponda un elemento distinto de β (n bits).
- Estos códigos de trasformación se denominan códigos de Entrada / Salida (E/S)
 o códigos externos.
- Las operaciones aritméticas con datos numéricos se suelen realizar en una representación más adecuada para este objetivo que la obtenida con el código de E/S.

DATO: Característica de una información expresada en forma adecuada para su tratamiento.

- Representación de los datos (valores):
 - Valores analógicos.
 - Valores discretos o digitales.
- Necesidad de convertir los valores analógicos a discretos.
 - Sistema digital: Sistema de N estados estables
 - **Dígito**: Variable capaz de asumir un estado.
- Los dígitos se agrupan para representar más estados.

- Código: Ley de correspondencia entre valores de información y combinaciones de dígitos de un sistema digital utilizadas para representarlos.
- Codificación: Información -> Código

```
azul ----> 0 azul ----> 100 verde ----> 1 ó verde ----> 101 rojo ----> 2
```

Decodificación: Código -> Información

```
azul <---- 0 azul <---- 100 verde <---- 1 ó verde <---- 101 rojo <---- 2
```

 Código binario: Cuando el sistema digital utilizado tiene sólo 2 estados (0,1).

Sistemas de numeración usuales en informática

- Los computadores suelen efectuar las operaciones aritméticas utilizando una representación para los datos numéricos basada en el sistema de numeración base dos (sistema binario).
- También se utilizan los sistemas de numeración, preferentemente el octal y hexadecimal, para obtener códigos intermedios.
- Un número expresado en uno de estos dos códigos puede transformarse directa y fácilmente a binario y viceversa.
 - Por lo que a veces se utilizan como paso intermedio en las transformaciones de decimal a binario y viceversa.

Representación posicional de los números

- Un sistema de numeración en base b utiliza para representar los números un alfabeto compuesto por b símbolos o cifras.
- Todo número se expresa por un conjunto de cifras, contribuyendo cada una e ellas con un valor que depende de:
 - a) la cifra en sí, y
 - b) la posición que ocupe dentro del número.
- En el sistema de numeración decimal (sistema en base 10):
 - b = 10 y el alfabeto está constituido por diez símbolos o cifras decimales:

{0,1,2,3,4,5,6,7,8,9}

por ejemplo, el número 3278.52 puede obtenerse como suma de:

se verifica que:

$$3278.52 = 3*10^3 + 2*10^2 + 7*10^1 + 8*10^0 + 5*10^{-1} + 2*10^{-2}$$

Representación de un número en una base b: Forma abreviada:

$$N = ... n_4 n_3 n_2 n_1 n_0 ... n_{-1} n_{-2} n_{-3} ...$$

Valor:

$$N = \dots n_4 * b^4 + n_3 * b^3 + n_2 * b^2 + n_1 * b^1 + n_0 * b^0 + n_{-1} * b^{-1} \dots$$

Para representar un número:

- Resulta más cómodo que los símbolos (cifras) del alfabeto o la base de numeración sean los menos posibles, pero ,
- Cuanto menos es la base, mayor es el número de cifras que se necesitan para representar una cantidad dada.

Sistemas de Numeración

- Binario
- Octal
- Hexadecimal

Binario	Decimal	Octal	Hexadecimal
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	8	10	8
1001	9	11	9
1010	10	12	A
1011	11	13	В
1100	12	14	С
1101	13	15	D
1110	14	16	E
1111	15	17	F

Sistema de numeración binario

- La base es 2 (b=2) sólo
- se necesitan dos símbolos :

{ 0, 1 }

Conversión de Decimal a Binario

- Se aplica el método de las "divisiones y multiplicaciones " sucesivas con la base como divisor y multiplicador (b = 2).
- **Ejemplo:** 26.1875 $_{)10}$ = 11010.0011 $_{)2}$
- Para la parte entera:

Para la parte fraccionaria:

Conversión de Binario a Decimal

- Se desarrolla la representación binaria (con b=2) y se opera el polinomio en decimal.
- Ejemplos:

$$\frac{110100}{}_{)2} = \frac{1 \cdot 2^{5} + 1 \cdot 2^{4} + 0 \cdot 2^{3} + 1 \cdot 2^{2} + 0 \cdot 2^{1} + 0 \cdot 2^{0}}{52}$$

$$10100.001_{)2} = 1.2^{4} + 0.2^{3} + 1.2^{2} + 0.2^{1} + 0.2^{0} + 0.2^{-1} + 0.2^{-2} + 1.2^{-3} = 20.125_{)10}$$

Realmente basta con sumar los pesos (2_i) de las posiciones (i) en las que hay un 1.

Operaciones aritméticas con variables binarias

 Las operaciones aritméticas básicas son la suma, resta, multiplicación y división.

Suma aritmética con varias variables

а	b	a + b
0	0	0
0	1	1
1	0	1
1	1	O y me llevo 1

Resta aritmética con varias variables

a	b	a - b
0	0	0
0	1	1 y me adeudo 1
1	0	1
1	1	0

Multiplicación aritmética con varias variables

a	b	a*b
0	0	0
0	1	0
1	0	0
1	1	1

División aritmética con varias variables

а	b	a/b
0	0	indeterminado
0	1	0
1	0	∞
1	1	1

Ejemplos:

Efectuar las siguientes operaciones aritméticas binarias:

Representación en complementos

- Para representar un número negativo se puede utilizar
 - Complemento a la base
 - Complemento a la base 1
- Las sumas y restas quedan reducidas a sumas.
- Este sistema de representación de sumo interés ya que reduce la complejidad de la unidad aritmético lógica (no son necesarios circuitos específicos para restar).

Complemento a la base menos 1

El complemento a la base menos uno de un número, N, es el número que resulta de restar cada una de las cifras de N a la base menos uno del sistema de numeración que este utilizando.

Podemos restar dos números sumando al minuendo el complemento a la base menos uno del sustraendo. La cifra que se arrastra del resultado se descarta y se suma al resultado así obtenido.

Complemento a la base menos 1

En base 10 (Complemento a 9)

Complemento a la base menos uno (a nueve) de 63 es 36;

Si queremos resta 63 a 77

De manera normal Con Complemento a la base menos 1 (a 9)

Complemento a nueve de 16 es 83;
 99
 16
 83

• Queremos hacer 1100-0016:

En base 2 (Complemento a 1)

 Complemento a la base menos uno (a uno) del número 10010 es:

11111 -10010 01101

Complemento a uno de 101010 es:

111111 -010101 101010

• Queremos Restar 1000111 – 10010:

Con complemento a 1 (de 0010010):

Fácilmente se observa que para transformar un número binario, N, a complemento a 1 basta con cambiar en N los unos por los ceros y los ceros por los unos.

Complemento a la base

El complemento a la base de un número, N, es el número que resulta de restar cada una de las cifras del número N a la base menos uno del sistema que se esté utilizando y, posteriormente, sumar uno a la diferencia obtenida.

Se pueden restar dos números sumando al minuendo el complemento a la base del sustraendo y despreciando, en su caso, el acarreo del resultado.

Complemento a la base En base 10 (Complemento a 10)

Complemento a la base (a diez) de 63 es 37;

Si queremos resta 63 a 77

De manera normal

Con Complemento a la base (a 10)

En base 2 (Complemento a 2)

 Complemento a la base (a dos) del número 10010 es:

Complemento a dos de 101010 es:

• Queremos Restar 1000111 – 10010:

Con complemento a 2 (de 0010010):

Observamos que para transformar un numero binario, N, a complemento a 2 basta con cambiar los 0 por 1 y los 1 por 0 de N y sumar 1 al resultado.

Esto puede también ser visto como:

Recorrer el número desde el bit menos significativo hasta el mas significativo y dejar los bits iguales hasta el primer uno y luego cambiar los ceros por unos y los unos por ceros

Sistema de numeración octal

- La base es 8
- El conjunto de símbolos es:

{ 0, 1, 2, 3, 4, 5, 6, 7 }

Conversión de octal a decimal

Se desarrolla el polinomio con b=8 y se opera en decimal.

Conversión de decimal a octal

Aplicar el método de "divisiones y productos" con divisor y multiplicador 8.

Conversión "rápida" de binario a octal

Agrupar cifras binarias de 3 en 3 y transformar con la tabla 1.

Conversión "rápida" de octal a binario

Convertir cada cifra octal mediante la tabla

- Ejemplo:
 - Haciendo uso de la tabla convertir $10001101100.11010_{(2} = N_{(8)}$

$$10|001|101|100.110|10_{)2} = 2154.64_{)8}$$

- Ejemplo:
 - Haciendo uso de la tabla convertir 537.24 ₎₈ = N ₎₂

$$537.24_{)8} = 101 | 011 | 111.010 | 100_{)2}$$

Sistema de numeración hexadecimal

- La base es 16
- El conjunto de símbolos es:

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F**}**

Conversión de Hexadecimal a decimal

Se desarrolla el polinomio con b=16 y se opera en decimal.

Conversión de Decimal a hexadecimal

 Aplicar el método de "divisiones y productos" con divisor y multiplicador 16.

Conversión "rápida" de binario a hexadecimal

- Agrupar cifras binarias de 4 en 4 y transformar con la tabla
 - Ejemplo: 0010 0101 1101 1111 . 1011 1010 $_{(2}$ = 25DF.BA $_{(16)}$

Conversión "rápida" de hexadecimal a binario

- Convertir cada cifra hexadecimal mediante la tabla
 - Ejemplo: 1ABC.C4 (16 = 0001 1010 1011 1100 . 1100 0100 (2)

Resumen de cambios de base

Ejercicios en clases...

Hacer las operaciones en binario:

■
$$101011101_{)2} + 101001010_{)2} = N_{)8}$$

■
$$1100101011_{)2} + 100101101_{)2} = N_{)10}$$

■
$$101011101_{)2} - 10001010_{)2} = N_{)16}$$

$$110001011_{)2} - 10101101_{)2} = N_{)16}$$

■
$$10101.0101_{)2} * 2_{)10} = N_{)2}$$

$$1101.1010_{)2} * 25_{)10} = N_{)10}$$

$$1010100_{)2} / 2_{)10} = N_{)8}$$

$$\bullet 10101.101_{)2} / 101_{)2} = N_{)2}$$

Representación Numérica

- Para la representación de los datos numéricos se debe tener en cuenta que las operaciones de la ALU están sujetas a las siguientes restricciones:
 - Los registros son de tamaño fijo.
 - Puede existir desbordamiento.
 - Presentan problemas con los números negativos.
- Es necesario, por ello, introducir nuevas formas de numeración basadas, por supuesto, en la representación binaria.
- Al conjunto de estas representaciones y su funcionamiento se le denomina aritmética binaria.
- En aritmética binaria debemos distinguir:
 - Representación para números enteros
 - Representación de números reales.

Números de precision finita

- En la mayoría de las computadoras, la cantidad de memoria disponible para guardar números se fija en el momento de su diseño.
- Con un poco de esfuerzo, el programador puede llegar a representar números 2 o 3 veces más grandes que este tamaño prefijado
- Al hacerlo no termina de cambiar la naturaleza del problema: la cantidad de dígitos disponibles para representar un número siempre será fija.
- Llamamos a estos números de precisión finita.

Representación de números enteros

Enteros sin signo

No hace falta codificación.

Enteros con signo

- Los mas usuales son integer y long
- Complemento a 1, Complemento a 2, representación signo-magnitud y exceso 2n-1
- Todas se basan en tener 1 bit para el signo y el resto de la cifra (n-1 bits) para codificar el número entero a representar.
- Se distingue entre números:
 - **Positivos:** Se almacenan con el bit de signo puesto a 0, y el valor absoluto
 - Negativos: Se almacenan con el bit de signo puesto a 1, y el complemento a 1 ó 2 del valor absoluto.

Permiten almacenar números desde

- -2 ⁽ⁿ⁻¹⁾, hasta + (2⁽ⁿ⁻¹⁾) 1
- Bytes: -128 a +127, words: -32768 a 32767

S M n bits

Signo y magnitud

rango: [-2ⁿ⁻¹+1, +2ⁿ⁻¹-1]

Representación de números reales (IEEE 754)

- Coma fija: La posición está fijada de antemano y es invariante.
 - Cada número se representa por n bits para la parte entera y m bits para la parte fraccionaria.
 - Nos ahorramos el punto
 - Dependerá de n y de m
 - Se puede producir un error de truncamiento.
 - Un mismo número en punto fijo puede representar a muchos números reales.
 - 1.25 (m=2), 1.256 (m=2), 1.2589 (m=2), 1.2596 (m=2), etc
 - El MSB es el signo
 - No todos los números reales pueden representarse con este formato

Cont...

 Coma flotante: La posición de la coma es variable dependiendo del valor del exponente. Es de la forma:

m 10exp (En decimal) m 2exp(En binario)

En decimal en la notación científica podemos escribir:

1.9 x 109 o en forma corta 1.9E9

- Tiene dos campos uno contiene el valor de la mantisa y el otro de valor del exponente.
- El bit más significativo de la mantisa contiene el signo.
- Existen tres formatos:
 - Signo_N Mantisa Exponente → Directo
 - Signo_M Exponente Mantisa → Comparación rápida
 - Signo_E Exponente Signo_N Mantisa \rightarrow Precisión ampliada

 Como un valor puede tener más de una representación, se normaliza la representación haciendo que el primer bit significativo de la mantisa ocupe la posición inmediatamente a continuación del signo.

mantisa normalizada

Sólo una cifra a la izquierda del punto.

0.0011*2⁻⁵ = 1.1000*2⁻⁸

- Trabajando mantisas normalizadas siempre el primer bit de la mantisa es el complemento del bit de signo, por lo que no es necesario incluirlo en la codificación.
- El bit que no se incluye recibe el nombre de bit implícito.
- Las características de los sistemas de representación en coma flotante son:
 - El exponente se representa en exceso a 2ⁿ⁻¹, siendo n el número de bits del exponente.
 - La mantisa es un número real normalizado, sin parte entera.
 - Su representación puede ser en cualquier sistema: módulo y signo, Complemento a 1 o Complemento a 2.
 - La base de exponenciación es una potencia de dos.

Representación en simple precisión: Palabra de 32 bits.

Signo Exponente Mantisa

31 30 23 22 0

1 bit 8 bits 23 bits

Un ejemplo en C es el float

1 bit de signo 8 bits de exponente: [-126, +127] (exceso 127)

23 bits de mantisa *normalizada*, con el primer bit *implícito*

Cont...

Representación en doble precisión: Palabra de 64 bits.

Signo Exponente Mantisa

• 63 62 52 51 0

• 1 bit 11 bits 52 bits

Un ejemplo en C es el Double

bit de signo
 toits de exponente: [-1022, +1023]
 (exceso 1023)
 bits de mantisa normalizada,
 con el primer bit implícito

Cont...

Ejemplo 1:

 $\begin{array}{lll} \bullet & -9.25_{10} \\ \text{Sean m} = 16, \ n_{\text{E}} = 8 \ (\Rightarrow n_{\text{M}} = 7) \ , \\ \text{Pasamos a binario} \Rightarrow 9.25_{10} = 1001.01_{2} \\ \text{Normalizamos} \Rightarrow 1.00101 \ 2^{3} \\ \text{Exponente (exceso a 2}^{7} - 1) \ 3_{10} = (127 \ + 3)_{2} = 10000010 \\ 1 & \underline{1000 \ 0010} & 0010 \ 100 \\ \text{S}_{\text{M}} & \text{E} & \text{M} \\ \end{array}$

Valores especiales

S E M

Cero

Dos representaciones para el cero

Infinito

NaN

x 11111111 xxxxxxxxxxxxxxxxxxxxxxxx

Not a Number

Números en Matlab

Todos los números son reales con precisión doble (64 bits)

eps = 2.2204e-016 = 2^-52

Se pueden *definir* enteros de 8, 16 y 32 bits

Pero no se pueden hacer operaciones!

Se han de convertir en reales para operar

Códigos de Entrada/Salida

 Asocian a cada símbolo una determinada combinación de bits.

$$a = \{0,1,2,...,8,9,A,B,...,Y,Z,a,b,...,y,z,*,",/,...\}$$

 $b = \{0,1\}n$

- Con n bits podemos codificar m=2ⁿ símbolos distintos
- Para codificar m símbolos distintos se necesitan n bits,

$$n \ge \log_2 m = 3.32 \log (m)$$

4

Ejemplo:

Para codificar las cifras decimales {0,1,2,3,4,5,6,7,8,9} se necesitarán :

 $n \ge 3.3221 \log(m) = 3.322 \text{ bits}$

- es decir, 4 bits (para que se cumpla la relación)
- Por lo menos se necesitan 4 bits, pero pueden hacerse codificaciones con más bits de los necesarios. Tabla 2
- Con 4 bits no se usan $2^4 10 = 6$ combinaciones, y con 5 bits $2^5 10 = 22$ combinaciones.

Cont... Tabla 2

Alfabeto	Código I	Código II
0	0000	00000
1	1000	10001
2	0100	01001
3	1100	11000
4	0010	00101
5	1010	10100
6	0110	01100
7	1110	11101
8	0001	00011
9	1001	10010

Ejemplos de Códigos de E/S

Código ASCII

- El código ASCII se utiliza para representar caracteres.
- Formado por 8 bits (cada carácter se expresa por un número entre 0 y 255)
- Es un código estándar, independiente del lenguaje y del ordenador
- Podemos distinguir dos grupos:
 - Los 128 primeros caracteres se denominan código ASCII estándar
 - Representan los caracteres que aparecen en una maquina de escribir convencional
 - Los 128 restantes se denominan código ASCII ampliado
 - Este código asocia un numero a caracteres que no aparecen en la maquina de escribir y que son muy utilizados en el ordenador tales como caracteres gráficos u operadores matemáticos.

Código EBCDIC

- Extended Binary Coded Decimal Interchange Code
 - Código Ampliado de Caracteres Decimales Codificados en Binario para Intercambio de Información
- Es un sistema de codificación de caracteres alfanuméricos.
- Cada carácter queda representado por un grupo de 8 bits.

Código Unicode

- Es de 16 bits, por lo que puede representar 65536 caracteres.
- Es una extensión del ASCII para poder expresar distintos juegos de caracteres (latino, griego, árabe, kanji, cirílico, etc).