Лабораторная работа №6 Поиск подстрок.

Задача А. Наивный поиск подстроки в строке (!) (1 балл)

Имя входного файла: search1.in Имя выходного файла: search1.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Даны строки p и t. Требуется найти все вхождения строки p в строку t в качестве подстроки.

Формат входного файла

Первая строка входного файла содержит p, вторая — t ($1 \le |p|, |t| \le 10^4$). Строки состоят из букв латинского алфавита.

Формат выходного файла

В первой строке выведите количество вхождений строки p в строку t. Во второй строке выведите в возрастающем порядке номера символов строки t, с которых начинаются вхождения p. Символы нумеруются с единицы.

Примеры

search1.in	search1.out
aba	2
abaCaba	1 5

Лабораторная работа №6 Поиск подстрок.

Задача В. Быстрый поиск подстроки в строке (2 балла)

Имя входного файла: search2.in Имя выходного файла: search2.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Даны строки p и t. Требуется найти все вхождения строки p в строку t в качестве подстроки.

Формат входного файла

Первая строка входного файла содержит p, вторая — t ($1 \le |p|, |t| \le 10^6$). Строки состоят из букв латинского алфавита.

Формат выходного файла

В первой строке выведите количество вхождений строки p в строку t. Во второй строке выведите в возрастающем порядке номера символов строки t, с которых начинаются вхождения p. Символы нумеруются с единицы.

Примеры

search2.in	search2.out
aba	2
abaCaba	1 5

Задача С. Префикс-функция (2 балла)

Имя входного файла: prefix.in Имя выходного файла: prefix.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Постройте префикс-функцию для заданной строки s.

Формат входного файла

Первая строка входного файла содержит s ($1 \le |s| \le 10^6$). Строка состоит из букв латинского алфавита.

Формат выходного файла

Выведите значения префикс-функции строки s для всех индексов $1, 2, \ldots, |s|$.

Примеры

prefix.in	prefix.out
aaaAAA	0 1 2 0 0 0
abacaba	0 0 1 0 1 2 3

Задача D. Автомат Кнута-Морриса-Пратта (3 балла)

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Постройте автомат Кнута-Морриса-Пратта для заданной мощности алфавита n и строки s.

Формат входного файла

В первой строке находится число n ($1 \le n \le 26$) — мощность алфавита. Во второй строке находится строка, состоящая из строчных латинских букв ($s \le 10^5$). Гарантируется, что в данной строке не встречается символ, номер в алфавите которого больше n.

Формат выходного файла

Выведите |s|+1 строк, где j-я строка состоит из n чисел, разделенных пробелом — i-е число в строке обозначает, в какое состояние автомата мы перейдем по i-му символу из j-го состояния автомата. Состояния автомата нумеруются с 0. Если мы передадим в качестве слова автомату префикс данного слова длины k, то мы должны оказаться в состоянии с номером k.

Примеры

стандартный ввод	стандартный вывод
3	1 0 0
abacaba	1 2 0
	3 0 0
	1 2 4
	5 0 0
	1 6 0
	7 0 0
	1 2 4
2	1 0
abaab	1 2
	3 0
	4 2
	1 5
	3 0

Примечание

Пример построенного автомата для последнего примера.

