TASK 1: PREDICTION USING SUPERVISED MACHINE LEARNING

```
AUTHOR: Abarna
```

```
In [7]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
In [8]:
#reading the data
data=pd.read csv("https://raw.githubusercontent.com/AdiPersonalWorks/Random/master/student scores%2
%20student_scores.csv")
In [9]:
#return the first 5 rows by default
data.head()
Out[9]:
   Hours Scores
     2.5
1
     5.1
            47
2
    3.2
            27
3
     8.5
            75
     3.5
            30
In [10]:
data.tail()
Out[10]:
   Hours Scores
20
      2.7
             30
21
      4.8
             54
22
      3.8
             35
23
      6.9
             76
      7.8
             86
In [11]:
data.columns
Out[11]:
Index(['Hours', 'Scores'], dtype='object')
In [12]:
#returns all the element
data
Out[12]:
```

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30
5	1.5	20
6	9.2	88
7	5.5	60
8	8.3	81
9	2.7	25
10	7.7	85
11	5.9	62
12	4.5	41
13	3.3	42
14	1.1	17
15	8.9	95
16	2.5	30
17	1.9	24
18	6.1	67
19	7.4	69
20	2.7	30
21	4.8	54
22	3.8	35
23	6.9	76
24	7.8	86

In [13]:

data.describe()

Out[13]:

	Hours	Scores
count	25.000000	25.000000
mean	5.012000	51.480000
std	2.525094	25.286887
min	1.100000	17.000000
25%	2.700000	30.000000
50%	4.800000	47.000000
75%	7.400000	75.000000
max	9.200000	95.000000

In [14]:

data.corr()

Out[14]:

	Hours	Scores
Hours	1.000000	0.976191
Scores	0.976191	1.000000

```
In [15]:
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25 entries, 0 to 24
Data columns (total 2 columns):
         25 non-null float64
Hours
Scores
         25 non-null int64
dtypes: float64(1), int64(1)
memory usage: 528.0 bytes
In [16]:
data.plot(kind='scatter', x='Hours', y='Scores');
plt.show()
   90
   80
   70
S 60
50
50
   40
   30
   20
                                6
                          Hours
In [17]:
data.shape
Out[17]:
(25, 2)
visualizing the data
In [18]:
x=data.iloc[0:,:-1].values
Х
Out[18]:
array([[2.5],
        [5.1],
        [3.2],
        [8.5],
        [3.5],
        [1.5],
        [9.2],
        [5.5],
        [8.3],
        [2.7],
        [7.7],
        [5.9],
        [4.5],
        [3.3],
        [1.1],
        [8.9],
        [2.5],
        [1.9],
        ſ6.11.
```

```
[7.4],
       [2.7],
       [4.8],
       [3.8],
       [6.9],
       [7.8]])
In [19]:
y=data.iloc[:,1].values
Out[19]:
array([21, 47, 27, 75, 30, 20, 88, 60, 81, 25, 85, 62, 41, 42, 17, 95, 30,
       24, 67, 69, 30, 54, 35, 76, 86], dtype=int64)
In [20]:
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
In [21]:
x train,x test,y train,y test=train test split(x,y,test size=0.2,random state=50)
In [22]:
reg=LinearRegression()
reg.fit(x_train,y_train)
Out[22]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
In [23]:
a=reg.coef
b=reg.intercept_
line=a*x+b
plt.scatter(x,y)
plt.plot(x,line)
plt.show()
 90
 80
 70
 60
 50
 40
 30
 20
In [24]:
pred_y=reg.predict(x_test)
In [25]:
```

 $\texttt{print} \, (\texttt{np.concatenate} \, (\, (\texttt{pred_y.reshape} \, (\texttt{len} \, (\texttt{pred_y}) \, , 1) \, , \, \texttt{y_test.reshape} \, (\texttt{len} \, (\texttt{y_test}) \, , 1) \,) \, , \, 1) \,)$

```
[[88.21139357 95.
                          ]
                        ]
 [28.71845267 30.
 [69.02012231 76.
                          ]
 [39.27365186 35.
                          1
                   ]]
 [13.36543566 17.
In [26]:
hr=[9.25]
result=reg.predict([hr])
print("The predicted score of a student who studies for 9.25hr/day = {}\}".format(result[0],2))
The predicted score of a student who studies for 9.25hr/day = 91.56986604454477
Evaluation
In [27]:
from sklearn import metrics
from sklearn.metrics import r2_score
In [28]:
print("Mean Absolure error: ",metrics.mean_absolute_error(y_test,pred_y))
print("Mean Squared error: ", metrics.mean_squared_error(y_test,pred_y))
print("R2 Score: ",r2_score(y_test,pred_y))
Mean Absolure error: 4.5916495300630285
Mean Squared error: 25.58407829653998
R2 Score: 0.971014141329942
In [ ]:
```