The first three of these terms depend solely on the magnitude of the c_{\pm} coefficients, whereas the remainder of the terms depend upon the phases of the coefficients as well. The latter are clearly contributions to S that rely upon quantum interference between the spin states.

Note, for comparison later below, that S=1 denotes a pure state. If the state is completely decohered in the spin basis then $(\rho_s)_{kl} = \frac{1}{2}\delta_{kl}$ so that the purity, by Eq. (7), is $S=2(1/2)^2=1/2$.

With the P, Q, R, T matrices known, one can optimize S with respect to c_+ and c_- to determine the state with maximum purity S at a fixed time. In particular, the relative phase of c_+ and c_- is important if either Q_{kl} or R_{kl} is non-zero, and P_{kl} is non-zero. Although not evident from Eq. (8), numerical results below clearly demonstrate a reliance on this relative phase to maximize S.

IV. OVERLAPPING RESONANCES AND SYSTEM PURITY

A. Overlapping Resonances

As noted above, the bare states $|\pm,n\rangle$ are not eigenstates of H, and will evolve in the presence of the system-environment coupling. Insight into the nature of this time evolution is afforded by expanding the zeroth order state in the exact eigenstates $|\gamma\rangle$. For example, a bare state such as $|+,j\rangle$ expands as

$$|+,j\rangle = \sum_{\gamma} |\gamma\rangle\langle\gamma|+,j\rangle,$$
 (9)

and evolves as

$$|+,j\rangle_t = \sum_{\gamma} |\gamma\rangle\langle\gamma|+,j\rangle e^{-iE_{\gamma}t/\hbar}$$
 (10)

The E_{γ} dependence of the square of the expansion coefficient, i.e. $|D_{\gamma}|^2 \equiv |\langle \gamma|+,j\rangle|^2$ provides the energy width over which the zeroth order state $|+,j\rangle$ is spread due to the system-environment interaction. In the simplest cases the inverse of this width provides a qualitative measure of the time scale for the evolution of $|+,j\rangle$. Hence, the zero order states are indeed resonances with a characteristic width $|D_{\gamma}|^2$. This is the analog, in a bound state spectrum, of the well known resonance in the continuum.

Similarly, by analogy to the continuum case, we can define *overlapping resonances*, as resonances that overlap in energy space, i.e. resonances that share a common $|\gamma\rangle$ in their