

insight science for global

Spatial data and analysis in R

ESM – CDAT course series

Martin Jung, PhD (jung@iiasa.ac.at)

Course plan

Introduction talk (14 - 15pm, 22th October 2020)

Self study tutorials (online self paced, link at end of slides)

All slides and materials online

What is GIS?

A geographic information system (GIS) is a system designed to capture, store, manipulate, analyze, manage, and present types of geographical data.

Types of spatial data

Format:

*.shp, *.gpkg, *.gpx, *.kml, ...

Format:

*.tif, *.vrt, *.hdr, *.asc, ...

Vector

Advantage: Accuracy, more visually pleasing

Disadvantage: Space-inefficient. Every vertex needs to be stored. Algorithms computational intensive.

Raster

Advantage: Geogr. Position associated with data, easier for analysis

Disadvantage: Resolution dependent on cellsize. Lack of attributes, MAUP

Spatial databases

PostgreSQL & PostGIS

Stop using shapefiles!


```
Multifile system (.shp,.shx,.dbf,.prj, ...)
                 http://switchfromshapefile.org/
Limited to 2GB (4GB)
```

Attribute names limitation

Etc...

Solution → OGC Geopackages

Why use R for spatial analyses?

- ✓ Open source
- Efficiency ('Don't repeat yourself')
- ✓ Cross system availability (Win,*Nix, MacO\$)
- Extendable and rich functionality
- Clean coding (also for 'tidy' data concept)
- Parallel computing support
- ✓ Integration of C, C++ code for speed

Many spatial packages

Environmental Modelling & Software

Volume 133, November 2020, 104799

Position Paper

Harmonise and integrate heterogeneous areal data with the R package arealDB

Steffen Ehrmann ^{a, d} $\stackrel{\triangle}{\sim}$ $\stackrel{\boxtimes}{\sim}$, Ralf Seppelt ^{b, c}, Carsten Meyer ^{a, c, d} $\stackrel{\triangle}{\sim}$ $\stackrel{\boxtimes}{\sim}$

Source: https://doi.org/10.1016/j.envsoft.2020.104799

geemap: A Python package for interactive mapping with Google Earth Engine

Qiusheng Wu¹

1 Department of Geography, University of Tennessee, Knoxville, TN 37996, United States

DOI: 10.21105/joss.02305

One comprehensive list of spatial packages

https://cran.rproject.org/web/views/Spatial.html

Why/When not to use R for spatial analyses?

- R can be slow
- Many (sp) packages not memory efficient
- Often little support
- ❖ No GUI
- Greater proficiency in other languages

(Personal opinion)

The diversity of open source GIS solutions is both its greatest strength and weakness

The backbone of most open-source GIS

OGG®
Making location count.

Standards like WMS, KML, GML, SFC

C/C++ libraries

R as a GIS

Main packages: 'Sp', 'raster' and 'rgdal' still go-to functions to use

Problem: Each have their own object-based model, often inefficient code

Tidy data and simple features

Simple Features are a set of OGC standards how spatial (vector) data is to be stored

Source: https://r-spatial.github.io/sf/articles/sf1.html

Simple feature collection with 100 features and 6 fields

geometry type: MULTIPOLYGON

dimension: XY

bbox: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965

epsg (SRID): 4267

proj4string: +proj=longlat +datum=NAD27 +no defs

precision: double (default; no precision model)

First 3 features:

$\pi\pi$	١.	TISC 3	reacui	C3.					
##		BIR74	SID74	NWBIR74	BIR79	SID79	NWB	IR79	geom
##	1	1091	1	10	1364	0		19	MULTIPOLYGON(((-81.47275543
##	2	487	0	10	542	3	1	12	MULTIPOLYGON(((-81.23989105
##	3	3188	5	208	3616	6	/	260	MULTIPOLYGON(((-80.45634460
						Simple fea	ture	Simp	Simple feature geometry (sfg)

Common spatial tasks I do in R

Aligning raster input data

Extracting zonal statistics

Joining spatial and non-spatial data

What to do if things don't work

Too slow

→ Check memory requirements, consider tiling

No Function

→ Check external tools. Is there a wrapper?

Visualization

→ Use QGIS for quick queries

Free online books and materials

Welcome

This is the online home of *Geocomputation with R*, a book on geographic data analysis, visualization and modeling.

Note: This book has now been published by CRC Press in the R Series. You can buy the book from CRC Press, Wordery, or Amazon.

Inspired by **bookdown** and the Free and Open Source Software for Geospatial (FOSS4G) movement, this book is open source. This ensures its contents are reproducible and publicly accessible for people worldwide.

The online version of the book is hosted at geocompr.robinlovelace.net and kept up-to-date by GitHub Actions, which provides information on its 'build status' as follows:

Render-Book-from-master passing

This version of the book was built on GH Actions on 2020-10-06.

Online course materials

Spatial data and analysis in R

Starting page

Lecture

Contents -

Resources

Code ▼

Spatial data and analysis in R

Installing packages

Martin Jung

Ecosystems Services and Management

International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

Apart from the lecture slides this online self-learning course aims to provide you with basic knowledge about spatial datasets in R, how to load and analyse them. In many instances R might not be the fastest tool one can use for these kinds of analyses, but it certainly is the fastest in terms of time spent in code development. Here we will use R as a wrapper to load in external tools. This course assumes that users already have basic knowledge of R.

I generally tried to avoid replicating things that are already openly available online through other resources. Thus, if you are interested in more or other training materials regarding spatial data and analyses in R, check out the resources link at the top with more examples and free self-learning tutorials.

Thank you for your attention.

Good success with your spatial data!

