

Traitement et Analyse d'Images

Modèles génératifs Auto-encodeur variationnel

Quel est l'intérêt des modèles génératifs ?

Comment générer des visages synthétiques ?

En modélisant la distribution correspondante $p_{\theta}(\cdot)$!

→ Est ce que des distributions classiques restent pertinentes

Quel est l'intérêt des modèles génératifs ?

Comment modéliser des distributions complexes ?

Quel est l'intérêt des modèles génératifs ?

► Pour quel but ?

Une obsession : maîtriser l'espace latent !!!

Espace latent $\ z_i \in \mathbb{R}^K$

► Pour quel but ?

Une obsession : maîtriser l'espace latent !!!

Espace latent $z_i \in \mathbb{R}^K$

Auto-encodeurs

Comment apprendre une distribution?

Projection dans un espace de représentation plus simple et de dimension inférieure

Espace d'entée $\ x_i \in \mathbb{R}^{N imes M}$

Comment apprendre une distribution?

Comment disposer d'un espace de représentation pertinent ?

Le formalisme des auto-encodeurs

Architectures standards

► Fonction de perte en apprentissage profond

$$\mathrm{loss} = \|x - \hat{x}\|^2$$

Implémentation par apprentissage profond

Encodeur / Décodeur modélisé par des réseaux neuronaux (convolutionnels)

$$\mathrm{loss} = \|x - d(e(x))\|^2$$

Intérêt des auto-encodeurs

Auto-encodeur ? Pour quoi faire ?

Intérêt des auto-encodeurs

Représentation de données

Intérêt des auto-encodeurs

Modèles génératifs

Limitations

Nécessité de mieux contrôler la structure de l'espace latent

Intérêts des auto-encodeurs

Modèle génératif avec de meilleures propriétés grâce au cadre variationnel

Intérêts des auto-encodeurs

Modèle génératif avec cadre variationnel

Interpolation linéaire dans l'espace latent

$$t\cdot z_0 + (1-t)\cdot z_7, \qquad 0\leq t\leq 1$$

Les auto-encodeurs variationnels

L'ensemble des mathématiques sont décrites dans le blog suivant

https://creatis-myriad.github.io/tutorials/2022-09-12-tutorial-vae.html

- Renforcement d'un espace latent structuré
 - → Au travers d'un cadre probabiliste
 - → En imposant des contraintes de continuité
 - → En imposant des contraintes de complétude

- Cadre probabiliste: continuité
 - → Introduction de régularisations locales de l'espace latent
 - Thaque donnée d'entrée x est encodée sous forme d'une distribution gaussienne $q_x(z) = N(\mu_x, diag(\sigma_x))$

- Cadre probabiliste: continuité
 - → L'échantillonnage d'une région locale de l'espace latent produit des résultats proches

- Cadre probabiliste: complétude
 - → Favoriser que tout point reconstruit dans l'espace latent donne des résultats cohérents

- Cadre probabiliste: complétude
 - \rightarrow Imposer que toutes les distributions $q_x(z)$ soient proches d'une distribution normal standard N(0,I)
 - → Variances proches de 1 => limite la génération de distributions ponctuelles
 - → Moyennes proches de 0 => favorise des distributions proches les unes des autres

- Cadre probabiliste: continuité & complétude
 - → Architecture des VAE

Formulation mathématique

Approximation de p(z|x) par une technique d'inférence variationnelle

Hypothèses

ightharpoonup q(z|x) est modélisée par une distribution gaussienne alignée sur les axes

$$ightarrow q(z|x) = \mathcal{N}\left(\mu_x, \sigma_x
ight) = \mathcal{N}\left(g(x), diag(h(x))
ight)$$

$$(g^*,h^*) = rg\min_{(g,h)} \; D_{KL} \left(q(z|x) \parallel p(z|x)
ight)$$

 $D_{KL}\left(\cdot\parallel\cdot
ight)$ fonction de divergence de Kullback-Liebler

- Processus d'optimisation
 - Maximisation de la limite inférieure de l'évidence (ELBO)

$$\mathcal{L} = \mathbb{E}_{z \sim q_x} \left[log \left(p(x|z)
ight)
ight] - D_{KL} \left(q(z|x) \parallel p(z)
ight)$$

→ En exploitant l'hypothèse gaussienne suivante

$$p(x|z) = \mathcal{N}\left(f(z), cI\right)$$

$$\mathcal{L} \propto \mathbb{E}_{z \sim q_x} \left[-lpha \|x - f(z)\|^2
ight] - D_{KL} \left(q(z|x) \parallel p(z)
ight)$$

Processus d'optimisation

$$(f^*,g^*,h^*) = rg\min_{(f,g,h)} \; \left(\mathbb{E}_{z\sim q_x} \left[lpha \|x-f(z)\|^2
ight] + D_{KL} \left(q(z|x) \parallel p(z)
ight)
ight)$$

Fonction de perte en apprentissage profond

$$\delta = lpha \|x - f(z)\|^2 \, + \, D_{KL} \left(\mathcal{N} \left(g(x), diag \left(h(x)
ight)
ight), \mathcal{N} \left(0, I
ight)
ight)$$

q(z|x)encodeur

- $\rightarrow g(\cdot)$ et $h(\cdot)$ sont modélisés par un encodeur
- $\rightarrow f(\cdot)$ est modélisée par un décodeur

p(x|z)

Interprétation de la fonction de perte

$$ext{loss} = D_{\mathit{KL}}\left(\mathcal{N}\left(g(x), diag\left(h(x)
ight)
ight), \mathcal{N}\left(0, I
ight)
ight) \, + \, lpha \|x - f(z)\|^2$$

Interprétation de la fonction de perte

$$ext{loss} = D_{KL}\left(\mathcal{N}\left(g(x), diag\left(h(x)
ight)
ight), \mathcal{N}\left(0, I
ight)
ight) \, + \, lpha \|x - f(z)\|^2$$

- $\rightarrow \mathcal{N}(g(x), h(x))$ impose une contrainte de *continuité* locale
- \rightarrow $\mathcal{N}(\cdot, \mathcal{N}(0, I))$ impose une contrainte de *complétude* globale

Implémentation par apprentissage profond

Astuce de reparamétrage

Application pratique

L'obsession est de maîtriser l'espace latent!!!

Besoin d'une segmentation précise et robuste des structures cardiaques

Quantification d'indices cliniques à partir d'images échocardiographiques

Besoin d'une segmentation précise et robuste des structures cardiaques

Indices cliniques anatomiques

Comment garantir une cohérence temporelle des scores cliniques ?

Besoin d'une segmentation précise et robuste des structures cardiaques

Quantification d'indices cliniques à partir d'images échocardiographiques

- AR-VAE : régularisation de l'espace latent des VAE basée sur les attributs
 - Génération d'un espace latent structuré
 - → Les attributs spécifiques à valeur continue doivent être codés selon des dimensions spécifiques
 - \rightarrow Loss = VAE loss + Attribute Regularisation Loss

- ► AR-VAE : régularisation de l'espace latent des VAE basée sur les attributs
 - Echantillonnage de l'espace latent structuré

- AR-VAE : régularisation de l'espace latent des VAE basée sur les attributs
 - Echantillonnage de l'espace latent structuré
 - → Attribut spécifique: surface, longueur, épaisseur, inclinaison, largeur, hauteur
 - → Chaque colonne correspond à une traversée le long d'une dimension régularisée

- Application à la description des formes cardiaques
 - Génération d'un espace latent structuré en fonction des attributs suivants
 - → Cavité du ventricule gauche (VG) : surface, longueur, largeur basale, orientation
 - → Surface du myocarde
 - → Centre de la paroi épicardique

Chaine de traitement développée

Besoin d'une segmentation précise et robuste des structures cardiaques

Quelques exemples de résultats

Besoin d'une segmentation précise et robuste des structures cardiaques

Quelques exemples de résultats

That's all folks