Suites numériques : corrigés des ex 28 à 37

Exercice 28

La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=4$ et la relation de récurrence

$$\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n),$$

où
$$f: x \mapsto \frac{3x-1}{x+1}$$
.

1. On utilise la formule pour la dérivée d'un quotient : $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$, avec :

$$u(x) = 3x - 1$$
 $v(x) = x + 1$
 $u'(x) = 3$ $v'(x) = 1$

Pour tout $x \in [1,4]$:

$$f'(x) = \frac{3 \times (x+1) - (3x-1) \times 1}{(x+1)^2} = \frac{3x+3-3x+1}{(x+1)^2} = \frac{4}{(x+1)^2}.$$

f' est clairement strictement positive sur l'intervalle [1,4] ; on a donc le tableau :

x	1	4
f'(x)	+	
f(x)	1	2.2

2. Pour tout $n \in \mathbb{N}$, on note $P_n : 1 \le u_{n+1} \le u_n \le 4$.

Initialisation.
$$u_1 = \frac{3 \times u_0 - 1}{u_0 + 1} = \frac{3 \times 1 - 1}{1 + 1} = 2, 2$$
, donc $1 \le \underbrace{u_1}_{=2,2} \le \underbrace{u_0}_{=4} \le 4$. La propriété P_0 est donc vraie.

Hérédité. Soit $k \in \mathbb{N}$ tel que P_k soit vraie, on a donc

$$1 \leq u_{k+1} \leq u_k \leq 4.$$

La fonction f est strictement croissante sur [1,4], donc

$$f(1) \le f(u_{k+1}) \le f(u_k) \le 4$$

$$1 \le u_{k+2} \le u_{k+1} \le 2, 2$$

(cf tableau de variations ci-contre)

La propriété P_{k+1} est donc vraie.

Conclusion. P_0 est vraie et P_n est héréditaire, donc P_n est vraie pour tout $n \in \mathbb{N}$.

- 3. D'après la question précédente :
 - $u_{n+1} \le u_n$ pour tout $n \in \mathbb{N}$, donc $(u_n)_{n \in \mathbb{N}}$ est décroissante.
 - $1 \le u_n$ pour tout $n \in \mathbb{N}$, donc $(u_n)_{n \in \mathbb{N}}$ est minorée par 1.

Or toute suite décroissante minorée converge, donc $(u_n)_{n\in\mathbb{N}}$ converge.

4. On note ℓ la limite de $(u_n)_{n\in\mathbb{N}}$ et « on passe à la limite » dans la formule de récurrence :

$$u_{n+1} = \frac{3 \times u_n - 1}{u_n + 1}$$
 pour tout $n \in \mathbb{N}$,

donc

$$\ell = \frac{3 \times \ell - 1}{\ell + 1}.$$

On résout cette équation :

$$\ell = \frac{3 \times \ell - 1}{\ell + 1} \iff \ell(\ell + 1) = 3\ell - 1 \iff \ell^2 + \ell - 3\ell + 1 = 0 \iff \ell^2 - 2\ell + 1 = 0 \iff (\ell - 1)^2 = 0 \iff \ell - 1 = 0 \iff \ell = 1.$$

Conclusion : $\lim u_n = 1$.

Exercice 29

Pour tout entier $n \ge 1$, on pose

$$T_n = \sum_{k=1}^n \frac{1}{k^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}.$$

On rappelle également que le terme général de la suite de l'exercice 16 est défini pour $n \ge 2$ par

$$S_n = \sum_{k=2}^n \frac{1}{k(k-1)} = \frac{1}{2(2-1)} + \frac{1}{3(3-1)} + \frac{1}{4(4-1)} + \dots + \frac{1}{n(n-1)}.$$

1. Pour tout entier $k \ge 2$, $k(k-1) \le k^2$, donc $\frac{1}{k(k-1)} \ge \frac{1}{k^2}$ (car deux nombres strictement positifs sont rangés en sens contraire de leurs inverses). On a donc

$$\frac{1}{2^2} \le \frac{1}{2(2-1)} \qquad , \qquad \frac{1}{3^2} \le \frac{1}{3(3-1)} \qquad , \qquad \frac{1}{4^2} \le \frac{1}{4(4-1)} \qquad , \qquad \cdots \qquad , \qquad \frac{1}{n^2} \le \frac{1}{n(n-1)},$$

et en additionnant:

$$\frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \le \frac{1}{2(2-1)} + \frac{1}{3(3-1)} + \frac{1}{4(4-1)} + \dots + \frac{1}{n(n-1)}.$$

On ajoute $1 = \frac{1}{1^2}$ dans chaque membre :

$$\underbrace{\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}}_{T_n} \le 1 + \underbrace{\frac{1}{2(2-1)} + \frac{1}{3(3-1)} + \frac{1}{4(4-1)} + \dots + \frac{1}{n(n-1)}}_{S_n}.$$

Conclusion : $T_n \le 1 + S_n$.

La suite (T_n)_{n≥1} est clairement croissante, car on ajoute des nombres positifs.
 N.B. Si ce n'est pas clair, écrivez

$$T_{n+1} - T_n = \sum_{k=1}^{n+1} \frac{1}{k^2} - \sum_{k=1}^{n} \frac{1}{k^2}$$

$$= \left(\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} + \frac{1}{(n+1)^2}\right) - \left(\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2}\right)$$

$$= \frac{1}{(n+1)^2} \text{ (positif)}.$$

• On a vu dans l'ex 16 que $S_n \le 1 - \frac{1}{n}$ pour tout entier $n \ge 2$, donc $S_n \le 1$ et

$$T_n \le 1 + S_n \le 1 + 1 = 2$$
.

Ainsi la suite $(T_n)_{n\geq 1}$ est-elle majorée par 2.

On vient de voir que (T_n)_{n≥1} était croissante et majorée par 2. Or toute suite croissante majorée converge, donc (T_n)_{n≥1} converge.

Exercice 30

On définit une suite $(w_n)_{n\in\mathbb{N}}$ par $w_0 = 2$ et

$$w_{n+1} = w_n + \frac{1}{w_n}$$

pour tout $n \in \mathbb{N}$. On admet que cette suite est à termes positifs.

1. Pour tout entier $n \ge 0$, $w_{n+1} = w_n + \frac{1}{w_n}$, donc $w_{n+1} - w_n = \frac{1}{w_n}$.

Or $(w_n)_{n\in\mathbb{N}}$ est à termes positifs, donc $w_{n+1}-w_n\geq 0$. La suite $(w_n)_{n\in\mathbb{N}}$ est donc croissante.

- 2. La suite $(w_n)_{n\in\mathbb{N}}$ est croissante, donc d'après le théorème 3 du cours, il y a deux alternatives :
 - (1) ou bien elle est majorée, et dans ce cas elle converge;
 - 2) ou bien elle n'est pas majorée, et dans ce cas elle a pour limite $+\infty$.

Supposons que nous soyons dans la situation ①. Dans ce cas, $(w_n)_{n\in\mathbb{N}}$ converge vers une limite ℓ . De plus $\ell \geq 2$, car $(w_n)_{n\in\mathbb{N}}$ est croissante, donc elle est minorée par $w_0 = 2$.

On peut donc « passer à la limite » dans la formule de récurrence :

$$w_{n+1} = w_n + \frac{1}{w_n}$$
 pour tout $n \in \mathbb{N}$,

donc

$$\ell = \ell + \frac{1}{\ell}.$$

On en déduit $0 = \frac{1}{\ell}$, et donc $0 \times \ell = 1$, soit 0 = 1, ce qui est absurde.

Conclusion : nous sommes donc dans la situation ②, c'est-à-dire que $\lim w_n = +\infty$.

Exercice 31

Pour tout entier $n \ge 1$, on pose

$$H_n = \sum_{k=1}^n \frac{1}{k} = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}.$$

1. Pour tout entier $n \ge 1$:

$$H_{2n} - H_n = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$

$$= \left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}\right) - \left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}\right)$$

$$= \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}.$$

La somme que nous obtenons à la dernière étape contient n termes, et le plus petit d'entre eux est $\frac{1}{2n}$. On en déduit

$$H_{2n} - H_n \ge \underbrace{\frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n}}_{n \text{ termes}}.$$

Autrement dit:

$$H_{2n}-H_n\geq n\times\frac{1}{2n},$$

soit

$$H_{2n} - H_n \ge \frac{1}{2}.$$

2. La suite $(H_n)_{n \in \mathbb{N}^*}$ est croissante, car on ajoute des nombres positifs. Si elle convergeait vers une limite ℓ , alors on aurait aussi $H_{2n} \longrightarrow \ell$ (suite extraite), donc en « passant à la limite » dans l'inégalité

$$H_{2n} - H_n \ge \frac{1}{2},$$

on obtiendrait

$$\ell-\ell\geq \frac{1}{2}$$
,

soit

$$0 \ge \frac{1}{2}$$
.

C'est absurde; et donc $(H_n)_{n \in \mathbb{N}^*}$ ne converge pas. Comme elle est croissante, on en déduit $H_n \longrightarrow +\infty$ (théorème 3 du cours).

Exercice 32

On pose $u_n = \sum_{k=1}^n \frac{1}{k^2}$ et $v_n = u_n + \frac{1}{n}$ pour tout entier $n \ge 1$.

- La suite $(u_n)_{n\in\mathbb{N}^*}$ est croissante, car on ajoute des nombres positifs.
- Pour tout entier $n \ge 1$:

$$v_{n+1} - v_n = \left(u_{n+1} + \frac{1}{n+1}\right) - \left(u_n + \frac{1}{n}\right)$$
$$= \sum_{k=1}^{n+1} \frac{1}{k^2} + \frac{1}{n+1} - \sum_{k=1}^{n} \frac{1}{k^2} - \frac{1}{n}.$$

Or

$$\sum_{k=1}^{n+1} \frac{1}{k^2} - \sum_{k=1}^{n} \frac{1}{k^2} = \left(\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} + \frac{1}{(n+1)^2}\right) - \left(\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2}\right)$$
$$= \frac{1}{(n+1)^2},$$

donc

$$v_{n+1} - v_n = \frac{1}{(n+1)^2} + \frac{1}{n+1} - \frac{1}{n}.$$

On réduit au même dénominateur :

$$v_{n+1} - v_n = \frac{n}{n(n+1)^2} + \frac{n(n+1)}{n(n+1)^2} - \frac{(n+1)^2}{n(n+1)^2} = \frac{n+n^2+n-n^2-2n-1}{n(n+1)^2} = \frac{-1}{n(n+1)^2}.$$

Conclusion : pour tout entier $n \ge 1$, $v_{n+1} - v_n \le 0$, donc $(v_n)_{n \in \mathbb{N}^*}$ est décroissante.

• Pour tout entier $n \ge 1$, $v_n = u_n + \frac{1}{n}$, donc

$$v_n - u_n = \frac{1}{n}$$
.

On en déduit

$$\lim (\nu_n - u_n) = \lim \frac{1}{n} = 0.$$

• On conclut : on a prouvé que $(u_n)_{n \in \mathbb{N}^*}$ était croissante, $(v_n)_{n \in \mathbb{N}^*}$ décroissante, et que $\lim (v_n - u_n) = 0$, donc $(u_n)_{n \in \mathbb{N}^*}$ et $(v_n)_{n \in \mathbb{N}^*}$ sont adjacentes.

N.B. On en déduit que $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ convergent la même limite ℓ . Cela fournit une $2^{\rm e}$ preuve de la convergence de $(u_n)_{n\in\mathbb{N}^*}$, que nous avions déjà rencontrée dans l'exercice 29 – sous le nom T_n .

Exercice 33

On pose $u_n = \sum_{k=0}^n \frac{(-1)^k}{k+1}$ pour tout entier $n \ge 0$.

1. On rappelle que $(-1)^k = \begin{cases} 1 & \text{si } k \text{ est pair,} \\ -1 & \text{si } k \text{ est impair.} \end{cases}$

On écrit en extension:

$$u_{0} = \frac{(-1)^{0}}{1} = \frac{1}{1}$$

$$u_{1} = \frac{(-1)^{0}}{1} + \frac{(-1)^{1}}{2} = \frac{1}{1} - \frac{1}{2}$$

$$u_{2} = \frac{(-1)^{0}}{1} + \frac{(-1)^{1}}{2} + \frac{(-1)^{2}}{3} = \frac{1}{1} - \frac{1}{2} + \frac{1}{3}$$

$$u_{3} = \frac{(-1)^{0}}{1} + \frac{(-1)^{1}}{2} + \frac{(-1)^{2}}{3} + \frac{(-1)^{3}}{4} = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}$$

$$u_{4} = \frac{(-1)^{0}}{1} + \frac{(-1)^{1}}{2} + \frac{(-1)^{2}}{3} + \frac{(-1)^{3}}{4} + \frac{(-1)^{4}}{5} = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5}$$

$$u_{5} = \frac{(-1)^{0}}{1} + \frac{(-1)^{1}}{2} + \frac{(-1)^{2}}{3} + \frac{(-1)^{3}}{4} + \frac{(-1)^{4}}{5} + \frac{(-1)^{5}}{6} = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6}$$

2. Les termes successifs de la suite $(u_{2n})_{n\in\mathbb{N}}$ sont

$$u_0$$
; u_2 ; u_4 ; u_6 ; ...,

donc deux termes consécutifs sont de la forme u_{2n} et u_{2n+2} , avec n entier naturel. Pour étudier les variations de $(u_{2n})_{n\in\mathbb{N}}$, on calcule donc et on étudie le signe de $u_{2n+2} - u_{2n}$.

Pour tout entier $n \ge 0$:

$$u_{2n+2} - u_{2n} = \sum_{k=0}^{2n+2} \frac{(-1)^k}{k+1} - \sum_{k=0}^{2n} \frac{(-1)^k}{k+1}$$

$$\left(\frac{(-1)^0}{1} + \frac{(-1)^1}{2} + \dots + \frac{(-1)^{2n}}{2n+1} + \frac{(-1)^{2n+1}}{2n+2} + \frac{(-1)^{2n+2}}{2n+3}\right) - \left(\frac{(-1)^0}{1} + \frac{(-1)^1}{2} + \dots + \frac{(-1)^{2n}}{2n+1}\right)$$

$$= \frac{(-1)^{2n+1}}{2n+2} + \frac{(-1)^{2n+2}}{2n+3}$$

$$= \frac{-1}{2n+2} + \frac{1}{2n+3}$$

$$= \frac{-(2n+3)}{(2n+2)(2n+3)} + \frac{2n+2}{(2n+2)(2n+3)}$$

$$= \frac{-1}{(2n+2)(2n+3)}$$

Conclusion : pour tout entier $n \ge 0$, $u_{2n+2} - u_{2n} \le 0$, donc $(u_{2n})_{n \in \mathbb{N}}$ est décroissante.

3. On sait que $(u_{2n+1})_{n\in\mathbb{N}}$ est croissante (admis dans l'énoncé) et que $(u_{2n})_{n\in\mathbb{N}}$ est décroissante (prouvé dans la question précédente). Par ailleurs, pour tout entier $n \ge 0$:

$$u_{2n+1} - u_{2n} = \sum_{k=0}^{2n+1} \frac{(-1)^k}{k+1} - \sum_{k=0}^{2n} \frac{(-1)^k}{k+1}$$

$$\left(\frac{(-1)^0}{1} + \frac{(-1)^1}{2} + \dots + \frac{(-1)^{2n}}{2n+1} + \frac{(-1)^{2n+1}}{2n+2}\right) - \left(\frac{(-1)^0}{1} + \frac{(-1)^1}{2} + \dots + \frac{(-1)^{2n}}{2n+1}\right)$$

$$= \frac{-1}{2n+2},$$

donc $\lim (u_{2n+1} - u_{2n}) = 0$.

On en déduit que $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes. Elles convergent donc vers une même limite ℓ .

D'après la proposition 12 du cours, cela suffit à prouver que $(u_n)_{n\in\mathbb{N}}$ converge (vers ℓ également).

Exercice 34

1. $n = o(e^n)$.

VRAI En effet, $\frac{n}{e^n} \longrightarrow 0$ par croissance comparée.

2. $n = O(e^n)$.

VRAI En effet, $\frac{n}{e^n} \to 0$ par croissance comparée. Or toute suite convergente est bornée (proposition 6 du cours), donc $\left(\frac{n}{e^n}\right)_{n\in\mathbb{N}}$ est bornée.

N.B. D'une manière générale :

$$u_n = o(v_n) \implies \frac{u_n}{v_n} \longrightarrow 0 \implies \left(\frac{u_n}{v_n}\right)_{n \in \mathbb{N}} \text{ bornée} \implies u_n = O(v_n)$$

(cf point 1 de la proposition 18 du cours).

3. $n = o(n^2)$.

VRAI En effet,
$$\frac{n}{n^2} = \frac{1}{n} \longrightarrow 0$$
.

4. $n^2 \sim n^2 + n$. VRAI

N.B. Remarquons pour commencer les équivalences :

$$u_n \sim v_n \iff \frac{u_n}{v_n} \longrightarrow 1 \iff \frac{v_n}{u_n} \longrightarrow \frac{1}{1} = 1 \iff v_n \sim u_n.$$

Donc prouver que $u_n \sim v_n$ revient à prouver que $v_n \sim u_n$ – c'est la proposition 16 du cours (symétrie de l'équivalence).

Cela étant dit, on calcule : $\frac{n^2+n}{n^2}=1+\frac{1}{n}\longrightarrow 1$, donc $n^2\sim n^2+n$.

5. $e^n \sim e^{2n}$.

FAUX En effet,
$$\frac{e^n}{e^{2n}} = e^{-n} \longrightarrow 0$$
.

6. $\ln(2n) = O(\ln n)$.

VRAI En effet, $\frac{\ln(2n)}{\ln n} = \frac{\ln 2 + \ln n}{\ln n} = \frac{\ln 2}{\ln n} + 1 \longrightarrow 1$. Or toute suite convergente est bornée, donc $\left(\frac{\ln(2n)}{\ln n}\right)_{n \in \mathbb{N}}$ est bornée, et donc $\ln(2n) = O(\ln n)$.

N.B. Notons que nous avons prouvé un résultat plus fort : $\ln(2n) \sim \ln n$.

Exercice 35

- 1. Si $u_n = o(1)$, alors $\frac{u_n}{1} \longrightarrow 1$, c'est-à-dire que $u_n \longrightarrow 1$. C'est le point 1 de la proposition 19 du cours.
- 2. Si $u_n = O(1)$, alors $\left(\frac{u_n}{1}\right)_{n \in \mathbb{N}}$ est bornée, c'est-à-dire que $(u_n)_{n \in \mathbb{N}}$ est bornée.

Exercice 36

1. Si $u_n \sim v_n$ et $v_n \sim w_n$, alors

$$\frac{u_n}{v_n} \longrightarrow 1$$
 et $\frac{v_n}{w_n} \longrightarrow 1$,

donc par produit

$$\frac{u_n}{w_n} = \frac{u_n}{v_n} \times \frac{v_n}{w_n} \longrightarrow 1 \times 1 = 1.$$

Autrement dit, $u_n \sim w_n$ – c'est le point 3 de la proposition 16 du cours (transitivité de l'équivalence).

2. Si $u_n \to \ell$ et $v_n \sim u_n$, alors $\frac{v_n}{u_n} \longrightarrow 1$, donc par produit

$$v_n = \frac{v_n}{u_n} \times u_n \longrightarrow 1 \times \ell = \ell.$$

C'est le point 3 de la proposition 19 du cours.

3. On a les équivalences:

$$u_n \sim v_n \Longleftrightarrow \frac{v_n}{u_n} \longrightarrow 1 \Longleftrightarrow \frac{v_n}{u_n} - 1 \longrightarrow 0 \Longleftrightarrow \frac{v_n - u_n}{u_n} \longrightarrow 0 \Longleftrightarrow u_n - v_n = o(v_n).$$

C'est le point 2 de la proposition 19 du cours.

Exercice 37 (qu°1 et 2)

1. On commence par le calcul:

$$\forall n \in \mathbb{N}^*, \ \frac{1}{n} - \frac{1}{n+1} = \frac{n+1}{n(n+1)} - \frac{n}{n(n+1)} = \frac{1}{n(n+1)} = \frac{1}{n^2 + n}.$$

On a donc

$$\frac{\frac{1}{n^2}}{\frac{1}{n} - \frac{1}{n+1}} = \frac{\frac{1}{n^2}}{\frac{1}{n^2 + n}} = \frac{1}{n^2} \times \frac{n^2 + n}{1} = \frac{n^2 + n}{n^2} = 1 + \frac{1}{n} \longrightarrow 1.$$

On en déduit

$$\frac{1}{n} - \frac{1}{n+1} \sim \frac{1}{n^2}.$$

2. D'une part $\frac{n+1}{n}=1+\frac{1}{n}\longrightarrow 1$; d'autre part, $\ln(2n)\sim \ln n$ (cf fin de l'ex 34), donc $\frac{\ln n}{\ln(2n)}\longrightarrow 1$. On en déduit, par produit :

$$\frac{(n+1)\ln n}{n\ln(2n)} = \frac{n+1}{n} \times \frac{\ln n}{\ln(2n)} \longrightarrow 1 \times 1 = 1.$$