Computer Engineering Department, S V N I T, Surat. B Tech-II (CO) 3^{rd} semester

Course: Data Structure and Algorithm (CO-203)

Tutorial - 2

1 utoriai - 2	
1.	Given a linked list whose typical node consists of an INFO and LINK field, formulate an algorithm which will count the number of nodes in list.
2.	Formulate an algorithm that will change the INFO field of the kth node to the value
	given by Y.
3.	Formulate an algorithm which will perform an insertion to the immediate left of the kth node in the list.
4.	Formulate an algorithm which concatenates a linear linked list to another linear linked list.
	OR
	Goods train contains different car in each wagon. There are two such train coming
	from different stations to Surat. From Surat management manages only one train to
	make delivery of cars to Mumbai. Find appropriate data structure and formulate an
~	algorithm for final train.
5.	Given a simple linked list whose first node is denoted by the pointer variable FIRST,
	it is required to split this list into two simply linked lists. The node denoted by the
	pointer variable SPLIT is to be the first element in the second linked list. Formulate
	a step-by-step algorithm to perform this task.
	OR
	Goods train contains different car in each bogie. There is one such train coming from
	Mumbai stations to Surat. From Surat management manages two trains to make
	delivery of different cars, one to Rajasthan and other to MP. Find appropriate data
	structure and formulate an algorithm for final train.
6.	Formulate an algorithm which will reverse a singly linked list. Assume a typical node
	consists of an INFO and LINK field. The parameter to the function should be a
	pointer to the original list, and the function should return a pointer to the reversed
	list.
7.	You're given the pointer to the head node of a doubly linked list. Reverse the order
	of the nodes in the list. The head node might be NULL to indicate that the list is
	empty.
8.	You're given the pointer to the head node of a sorted linked list, where the data in the
	nodes is in ascending order. Delete as few nodes as possible so that the list does not
	contain any value more than once. The given head pointer may be null indicating that
	the list is empty.
9.	You're given the pointer to the head node of a sorted doubly linked list and an integer
	to insert into the list. Create a node and insert it into the appropriate position in the
	list. The head node might be NULL to indicate that the list is empty.
10	You're given the pointer to the head nodes of two sorted linked lists. The data in both
10.	lists will be sorted in ascending order. Change the next pointers to obtain a single,
	merged linked list which also has data in ascending order. Either head pointer given
	may be null meaning that the corresponding list is empty.