

Seminarausarbeitungskonzept On the Power of Color Refinement

Florian Lüdiger

1. Dezember 2017

im Rahmen des Seminars

Algorithm Engineering

von Prof. Dr. Petra Mutzel Wintersemester 2017/18

Betreuer:

Christopher Morris

Basierend auf:

V. Arvind, Johannes Köbler, Gaurav Rattan und Oleg Verbitsky
On the Power of Color Refinement
https://link.springer.com/chapter/10.1007/978-3-319-22177-9_26

Fakultät für Informatik Algorithm Engineering (Ls11) Technische Universität Dortmund 2 Inhaltsverzeichnis

Inhaltsverzeichnis

1	Einführung	4
2	Graph-Isomorphie und Color Refinement 2.1 Graph-Isomorphie	4
3	Lokale Struktur zugänglicher Graphen	4
4	Globale Struktur zugänglicher Graphen	5
5	Laufzeitanalyse	5
6	Fazit	5
Li	Literaturverzeichnis	

Glossar 3

Glossar

bipartiter Graph

Ein Graph heißt bipartit, wenn sich seine Knoten in zwei Teilmengen aufteilen lassen, sodass Kanten nur zwischen den beiden Mengen aber nicht innerhalb existieren. G[X,Y] ist der bipartite Graph, welcher durch die beiden disjunkten Teilmengen $X,Y\subseteq V(G)$ und allen Kanten, die Knoten aus X und Y verbinden, gebildet wird. 3

bipartites Komplement

Das bipartite Komplement eines Graphen G mit Knotenklassen X und Y stellt der bipartite Graph G' dar, welcher die selben Knotenklassen enthält, allerdings das Komplement der Kanten zwischen den beiden Knotenklassen. 3

biregulärer Graph

Ein bipartiter Graph G mit Knotenklassen X und Y ist biregulär, wenn alle Knoten in X und Y den gleichen Grad besitzen. 3

disjunkte Vereinigung

Die knotendisjunkte Vereinigung von G und H wird G+H genannt. Die disjunkte Vereinigung von m Kopien des Graphen G wird als mG geschrieben.

Hypergraph

Ein Hypergraph ist ein Graph, in dem eine Kante, auch Hyperkante genannt, mehr als zwei Knoten verbinden kann. 3

matching Graph

Ein matching Graph ist ein Graph, bei dem kein Knoten mehr als eine inzidente Kante besitzt. Somit gibt es nur Zusammenhangskomponenten mit maximal einer Kante und zwei Knoten. 3

Multimenge

Eine Multimenge unterscheidet eine Menge dadurch, dass Elemente mehrfach vorkommen können. Multimengen werden hier durch doppelte geschweifte Klammern dargestellt. 3

Nachbarschaft

Die Nachbarschaft N(u) bildet die Menge der Knoten, die adjazent zu $u \in V(G)$ sind. 3

regulärer Graph

Ein Graph ist regulär wenn alle seine Knoten den gleichen Grad besitzen. 3

Subgraph

Der Subgraph G[X] ist ein Teilgraph von G, der durch die Knotenmenge $X \subseteq V(G)$ und deren inzidenten Kanten gebildet wird. 3

Unigraph

Die Isomorphieeigenschaften eines Unigraphen sind durch die Sequenz der Knotengrade genau definiert. Dies bedeutet, dass allein anhand der Knotengrade zweier Unigraphen bestimmt werden kann, ob diese isomorph sind. 3

vollständiger Graph

In einem vollständigen Graphen K_n mit n Knoten, ist jeder Knoten mit jedem anderen Knoten verbunden und besitzt somit den Grad n-1. 3

Zyklus

Ein geschlossener Pfad eines Graphen über n Knoten wird Zyklus C_n genannt. 3

1 Einführung

- Allgemeine Informationen zum Paper
- Was ist das Ziel der Forschung und inwiefern wurde dieses erreicht?
- Überblick über die Kapitelstruktur

2 Graph-Isomorphie und Color Refinement

- Basierend auf den Vorlesungsfolien von Prof. Mutzel im Fach Algorithmen und Datenstrukturen
- Was ist Graph-Isomorphie?
- Was erreicht Color Refinement?
- Laufzeitkomplexität von Color-Refinement im Gegensatz zum vollständigen Isomorphie Test [7,4] im Paper
- Wofür kann Color-Refinement noch eingesetzt werden? [9,12,17] im Paper

3 Lokale Struktur zugänglicher Graphen

- Erklärung der lokalen Struktur zugänglicher Graphen (A,B)
- jeweils gegebenenfalls mit ausführlicher Erklärung der Bedeutung und Beispielen

- Fokussierung auf die Beweisidee für die jeweiligen Lemmata
- Ausführlichere und leichter verständliche Aufbereitung einiger oder aller Beweise aus dem Paper

4 Globale Struktur zugänglicher Graphen

- Erklärung der globalen Struktur zugänglicher Graphen (C,D,E,F,G,H)
- Ansonten wie Kapitel 3

5 Laufzeitanalyse

• Beweis der Laufzeit von $O((n+m)\log n)$

6 Fazit

- Zusammenfassung der Ergebnisse
- Bezugnehmen auf die Einleitung und ob die Ziele erreicht wurden
- Abschluss der Arbeit

Literatur