A.6 Fonction racine carrée

Définition A.5 La fonction racine carrée est la fonction définie sur $[0; +\infty[$ par $f: [0; +\infty[$ $\to \mathbb{R}$

$$x \mapsto y = \sqrt{x}$$

Sa représentation graphique est la courbe « \mathscr{C} : $y = \sqrt{x}$ »

Proposition A.9 — sens de variation. La fonction racine carrée est strictement croissante sur $[0; +\infty[$.

Si
$$0 \le a < b$$
 alors $0 \le \sqrt{a} < \sqrt{b}$

Démonstration. Exigible en fin de seconde

x	$0 + \infty$
$f(x) = \sqrt{x}$	
Signe de $f(x)$	

Figure A.7 – Tableau de variation de la fonction racine carrée

Exercices révision 2nde et automatismes : racine carrée, valeurs absolues

Exercice 1 Complétez.

a) L'expression $\sqrt{-2x}$ est définie pour $x \in \dots$

b) L'expression $\sqrt{x-2}$ est définie pour $x \in \dots$

c) Si $\sqrt{a^2} = a$ alors a; si $\sqrt{a^2} = -a$ alors a

g) Si m < 0 et $n \ge 0$ alors $\sqrt{m^2 n} = \dots$

h) $\sqrt{8} = \dots \sqrt{\frac{16}{25}} = \dots$

i) Si a > 0 et $b \ge 0$ alors $\sqrt{\frac{4b^2}{9a^2}} = \dots$

j) L'égalité $\sqrt{x^2-1}=\sqrt{x-1}\sqrt{x+1}$ est vraie lorsque

k) $5\sqrt{2} - 3\sqrt{2} + \sqrt{3} = \dots$

1) $5\sqrt{21} \times 2\sqrt{3} = \dots$

Exercice 2 Simplifier les expressions.

a=
$$\sqrt{(3.14-\pi)^2}$$
 | b= $-\left(-\sqrt{3^2}\right)^2$ | c= $\sqrt{16a}$ | d= $\sqrt{\frac{81}{196}}$ | e= $\sqrt{\frac{25y^4}{36x^2}}$; $(x > 0)$.

■ Exemple A.9 — Résoudre équations et inéquations en isolant \sqrt{x} .

$$-9\sqrt{x} - 15 = -69$$
 $\sqrt{x} \le 2$ $4\sqrt{x} + 4 \le 16$ $-5\sqrt{x} + 6 \ge 16$

Exercice 3 Résoudre dans \mathbb{R} les équations suivantes en isolant \sqrt{x} .

$$(E_1)$$
 $\sqrt{x} = 11$ (E_2) $\sqrt{x} = -6$ (E_3) $7 - 3\sqrt{x} = -8$ (E_4) $-2\sqrt{x} - 15 = -21$

Exercice 4 Résoudre dans \mathbb{R} les inéquations suivantes en isolant \sqrt{x} .

$$(I_1) \sqrt{x} < -9$$
 $| (I_2) \sqrt{x} \ge 4$ $| (I_3) -5\sqrt{x} - 5 < -25 | (I_4) 3\sqrt{x} - 6 > 0$

Exemple A.10 — Valeur absolue. Résoudre dans \mathbb{R} les équations et inéquations suivantes :

$$|5x + 8| - 4 = 0$$

$$|8x + 5| \leqslant 3$$

$$|-5x + 8| \geqslant 3$$

Exercice 5 Mêmes consignes

$$(I_1) |7+4x|=-3$$

$$|(I_2)||3x+5|=4$$

$$|(I_3)| -2|x| + 6 = 4$$

$$(I_4) \ 7 + 3|x| = 8$$

Exercice 6 Mêmes consignes

$$(I_1) |3+9x| > 2$$

$$|(I_2)| -4 + 5x| > 5$$

$$(I_4) |6x - 3| \geqslant 1$$

■ Exemple A.11 — Utiliser le sens de variation de la fonction valeur absolue. Complétez :

Si
$$3 < x < 5$$

Si
$$-3 < x < 5$$

$$-3 < x \le 0$$
 ou $\ldots \ge x < 5$

$$-3 < x \le 0$$
 ou $\ldots \ge x < 5$ car la fonction valeur absolue est \ldots

Si
$$3 < x < 5$$

Si
$$3 < x < 5$$
 $\cdots < -2x - 5 < \cdots$

$$car la fonction $f: x \mapsto -2x - 5 \text{ est } \cdots$

$$car la fonction valeur absolue est $\cdots$$$$$

Exercice 7 Soit a un nombre réel. Encadrer au mieux |a| dans chaque cas suivant :

a)
$$-5 < a < -3$$

b)
$$1 < a \le 3$$

c)
$$-7 \le a \le 3$$

c)
$$-7 \le a \le 3$$
 d) $-3 < a \le 8$

Exercice 8 — variation de |mx + p|.

a) Si -6 < a < -3, donner l'encadrement le plus précis de |a-1|.

b) Si $-8 \le a < 2$, donner l'encadrement le plus précis de |3a-2|

c) Si $-4 \le a \le 5$, donner l'encadrement le plus précis de |3a-6|

d) Si 5 < a < 7, donner l'encadrement le plus précis de |-2a + 4|

solution de l'exercice 3. $S_1 = \{121\}; S_2 = \{\}; S_3 = \{25\}; S_4 = \{9\};$

solution de l'exercice 4.
$$\mathscr{S}_1 = \emptyset$$
; $\mathscr{S}_2 = [16, \infty[; \mathscr{S}_3 = [0, \infty[; \mathscr{S}_4 =]4, \infty[;$

solution de l'exercice 5.
$$S_1 = \{\}; S_2 = \{-3, -\frac{1}{3}\}; S_3 = \{-1, 1\}; S_4 = \{-\frac{1}{3}, \frac{1}{3}\};$$

$$solution \ de \ l'exercice \ 6. \ \mathscr{S}_1 = \left] - \infty, -\frac{5}{9} \right[\cup \left] -\frac{1}{9}, \infty \right[; \mathscr{S}_2 = \left] - \infty, -\frac{1}{5} \right[\cup \left] \frac{9}{5}, \infty \right[; \mathscr{S}_3 = \left] - \infty, -\frac{11}{3} \right[\cup \left] 2, \infty \left[; \mathscr{S}_4 = \left] - \infty, \frac{1}{3} \right] \cup \left[\frac{2}{3}, \infty \right[; - \infty, -\frac{11}{3}, \infty, \infty, -\frac{11}{3}, \infty, \infty, -\frac{11}{3}, \infty, \infty, -\frac{11}{3}, -\frac{11}{3}, \infty, -\frac{11}{3}, -\frac{11}{3},$$