Math 2603, Fall 2015, Quiz 1 Solutions

September 11, 2015

1 Problem 1. (40 points)

a. Let a be an integer. Show that either a or a+1 is even.

Proof: Breaking into cases, either a is odd or it is even.

case 1: Suppose a is odd. Then a=2k+1 for some $k\in\mathbb{Z}$, in which case a+1=2k+2=2(k+1) is even by definition.

case 2: Suppose a is even. Then a=2k for some $k\in\mathbb{Z}$, in which case a+1=2k+1 is odd and therefore not even by definition. \square

(note: the problem asked "either a is even or a + 1 is even", so we need to also show or remind the reader that it cannot be both simultaneously)

b. Show that $n^2 + n$ is even for any integer n

Proof: From the first part, we know that either n or n+1 is even.

case 1: Suppose n is even. So n=2k for some $k\in\mathbb{Z}$. We have then that $n^2+n=n(n+1)=2k(n+1)=2(kn+k)$ is even.

case 2: Suppose that n+1 is even. So n+1=2k for some $k\in\mathbb{Z}$. We have then that $n^2+n=n(2k)=2(kn)$ is even. \square

2 Problem 2. (60 points)

Which of the following conditions imply that B=C? In each case, either prove or give a counter example:

a.: $A \cup B = A \cup C$

(note: the problem, reworded, is asking us to prove or disprove the implication "If $A \cup B = A \cup C$, then B = C")

This is false. There are several counterexamples. Here are two: $A = \{1\}, B =$

 $\emptyset, C = \{1\}$. You have then $A \cup B = \{1\} = A \cup C$ but $B \neq C$.

 $A = \{1,2\}, B = \{1,3,4\}, C = \{2,3,4\}.$ You have that $A \cup B = \{1,2,3,4\} = A \cup C$ but $B \neq C.$

b.: $A \cap B = A \cap C$

This also is false. Again, there are several counterexamples. Here are two: $A = \emptyset, B = \emptyset, C = \{1\}$. You have then $A \cap B = \emptyset = A \cap C$ but $B \neq C$.

 $A = \{1, 2, 3\}, B = \{1, 4, 5\}, C = \{1, 6, 7\}.$ You have then that $A \cap B = \{1\} = A \cap C$ but $B \neq C$.

 $\mathbf{c} \cdot : A \times B = A \times C$

note: In this problem, the intended interpretation is that A, B, C are still sets, and the \times operation is for the Cartesian product. $A \times B = \{(a, b) \mid a \in A, b \in B\}$

This is technically false as well. In the case that $A = \emptyset$, you have $A \times B = \emptyset = A \times C$ for any choice of B and C, in particular when B and C are nonequal.

If you were however to add the condition that $A \neq \emptyset$ then this implication is in fact true.

Proof: Let A be nonempty. If B is empty, then $A \times B = \emptyset$ implying that $A \times C = \emptyset$, which could only happen if and only if C was also empty.

Suppose then that A, B, C are all nonempty.

Let $x \in B$. Then for every $a \in A$, you have $(a,x) \in A \times B$, implying that since $A \times B = A \times C$ you have $(a,x) \in A \times C = \{(a,c) \mid a \in A, c \in C\}$ which then implies that $x \in C$. Therefore $B \subseteq C$.

Similarly, letting $x \in C$, the same logic will imply that $x \in B$ and therefore $C \subseteq B$. Therefore B = C.