Machine Learning in Finance - Homework 4 - Due 10.01.2024

Textbook reading:

Chapters 5 to page 129

- start from 'max depth DecisionTreeExample.ipynb' in colab
- read in the load_wine database from https://scikit-learn.org/stable/datasets/toy dataset.html
- create decision tree, random forest, and gradient boost trees of depth 3

• Display a pandas data frame containing the feature importances with columns the 3 tree types and rows for the features

Feature	Decision Tree	Random Forest	Gradient Boosting
alcohol	0	0.065064	0.012358
malic_acid	0	0.030743	0.000018
ash	0.025425	0.00847	0.013945
alcalinity_of_ash	0	0.034946	0.002866
magnesium	0	0.019937	0.015946
total_phenols	0	0.080241	0.000005
flavanoids	0.427903	0.173944	0.103352
nonflavanoid_ph enols	0	0.01535	0.000012
proanthocyanins	0	0.040104	0.000397
color_intensity	0.410289	0.206067	0.28147
hue	0	0.017922	0.030519
od280/od315_of_ diluted_wines	0	0.084512	0.253884
proline	0.136383	0.222701	0.285227

• What are the 3 most important features for each of 3 different tree methods?

Decision Tree: flavonoids, color intensity, proline

Random Forest: proline, color intensity, flavonoids

Grandient Boosting: proline, color intensity, od280/od315 of diluted wines

• Compute the accuracy for the 3 methods as you go from a depth of 1 up to a depth of 9 and display in a graph? (hint: save the outputs for each depth to a pickle file and write code to read the back in once you have created all the pickle files)

• Given this information (since you don't have a test set), argue that there is a best max depth

We do have a test set (?). Max depth on Gradient Boosting Classifier, surprisingly, has a maximum accuracy at 1. For the other two models, a max depth of 3 seems to be the most optimal choice as accuracy score not longer improves.