1. Problem

A farm produces 4 types of fruit: A, B, C, and D. The fruits' masses follow normal distributions, with parameters dependent on the type of fruit.

Type of fruit	Mean mass (g)	Standard deviation of mass (g)
Α	76	14
В	69	8
C	137	7
D	130	4

One specimen of each type is weighed. The results are shown below.

Type of fruit	Mass of specimen (g)	
Α	84.12	
В	65.32	
C	125.2	
D	126.6	

Which specimen is the most unusually far from average (relative to others of its type)?

2. Problem

A normal random variable X has a mean μ = 25.6 and standard deviation σ = 6.4. Please label the density curve with:

- (a) The appropriate values of x.
- (b) The areas of the sections.

Let *X* be normally distributed with mean 81 and standard deviation 13. Please calculate the probabilities shown below and also shade a corresponding region under the density curve.

(a)
$$P(X < 69.3)$$

(b) P(X > 94)

(c) P(|X - 81| < 11.7)

(d) P(|X - 81| > 7.8)

Let *X* be normally distributed with mean 112 and standard deviation 36.9. Please calculate the probabilities shown below and also shade a corresponding region under the density curve.

(a) What's the probability that X is less than 101? **Draw a sketch**.

(b) What's the probability that *X* is more than 122? **Draw a sketch**.

(c) What's the probability that *X* is between 101 and 122? **Draw a sketch**.

5. Problem

Let random variable W have mean $\mu_W = 15$ and standard deviation $\sigma_W = 2$. Let random variable X represent the **average** of n = 36 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 15.68).
- (d) Using normal approximation, determine P(X > 15.07).

A very large population has a mean of 113.9 and a standard deviation of 28.8. When a random sample of size 81 is taken, what is the probability that the **sample mean** (\bar{x}) is between 114 and 116?

(a) Determine the mean and standard deviation of the sampling distribution.

(b) Determine $P(114 < \overline{X} < 116)$. Draw a sketch

Let random variable W have the probability distribution shown below.

W	P(w)
0	0.58
1	0.42

Let random variable \hat{p} (sample proportion) represent the average of n = 49 instances of W.

(a) Determine the mean and standard deviation of the \hat{p} .

(b) Determine $P(\hat{p} < 0.53)$. Do NOT use a continuity correction. **Draw a sketch**

A very large population has a population proportion p = 0.28. When a random sample of size 64 is taken, what is the probability that the **sample proportion** (\hat{p}) is less than 0.25? Do NOT use a continuity correction.

(a) Determine the mean and standard deviation of the sampling distribution.

(b) Determine $P(\hat{p} < 0.25)$. Draw a sketch

9. Problem

Let random variable W have mean $\mu_w = 42$ and standard deviation $\sigma_w = 5$. Let random variable X represent the **sum** of n = 64 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 2672.4).
- (d) Using normal approximation, determine P(X > 2638.8).

10. **Problem**

Let random variable W have the probability distribution shown below.

W	P(w)
0	0.45
1	0.55

Let random variable X represent the sum of n = 46 instances of W. (Thus X is the sample total, or number of successes.)

What is the probability that X is at least 18 but at most 32? Use a normal approximation with continuity corrections.

11. Problem

Let each trial have a chance of success p = 0.72. If 41 trials occur, what is the probability of getting more than 22 but at most 33 successes?

In other words, let $X \sim \text{Bin}(n = 41, p = 0.72)$ and find $P(22 < X \le 33)$.

Use a normal approximation along with the continuity correction.

1. We compare the absolute *z*-scores. The largest absolute *z*-score corresponds to the specimen that is most unusually far from average.

Type of fruit	formula	absolute z-score
Α	$ Z = \frac{ 84.12 - 76 }{14}$	0.58
В	$ Z = \frac{ 65.32 - 69 }{8}$	0.46
С	$ Z = \frac{ 125.2 - 137 }{7}$	1.68
D	$ Z = \frac{ 126.6 - 130 }{4}$	0.86

Thus, the specimen of type C is the most unusually far from average.

2. The filled in areas and *x* values are shown below.

3. (a) $P(X < 69.3) = P(Z < -0.9) = \boxed{0.1841}$

(b) $P(X > 94) = P(Z > 1) = \boxed{0.1587}$

(c) $P(|X - 81| < 11.7) = P(|Z| < 0.9) = \boxed{0.6318}$

(d) P(|X - 81| > 7.8) = P(|Z| > 0.6) = 0.5486

4. Notice the three probabilities will add up to 1.

(a)
$$P(X < 101) = P(Z < -0.31) = \boxed{0.3783}$$

(b)
$$P(X > 122) = P(Z > 0.27) = \boxed{0.3936}$$

(c)
$$P(101 < X < 122) = P(-0.31 < Z < 0.27) = 0.2281$$

5. We use the Central Limit Theorem for **sample average** sampling (\bar{x} sampling). We recognize that in this problem X is an AVERAGE of 36 instances of W.

(a)
$$\mu_X = \mu_W = 15$$

(b)
$$\sigma_X = \frac{\sigma_W}{\sqrt{n}} = 0.33333333$$

- (c) 0.9793
- (d) 0.4168
- 6. (a) Central limit of average formulas: $\mu_{\bar{x}} = 113.9$ and $\sigma_{\bar{x}} = \frac{28.8}{\sqrt{81}} = 3.2$.

(b)
$$P(114 < \overline{X} < 116) = P(0.03 < Z < 0.66) = 0.2334$$

7. (a) We can recognize W is a Bernoulli variable with p = 0.42 and q = 0.58. Thus,

$$\mu_{W} = p = 0.42$$

and

$$\sigma_W = \sqrt{pq} = \sqrt{(0.42)(0.58)} = 0.4935585$$

Then, we use the central limit of average formulas:

$$\mu_{\hat{D}} = \mu_{W} = 0.42$$

and

$$\sigma_{\hat{p}} = \frac{\sigma_W}{\sqrt{n}} = \frac{0.4935585}{\sqrt{49}} = 0.0705084$$

But, if we recognized \hat{p} follows the formulas of a \hat{p} **sampling distribution**:

$$\mu_{\hat{p}} = p$$

$$\sigma_{\hat{p}} = \frac{\sqrt{pq}}{\sqrt{n}} = \sqrt{\frac{pq}{n}}$$

we could have just used those instead.

(b)
$$P(\hat{p} < 0.53) = P(Z < 1.56) = 0.9406$$

- 8. (a) Use \hat{p} sampling formulas: $\mu_{\hat{p}} = 0.28$ and $\sigma_{\hat{p}} = \frac{\sqrt{(0.28)(0.72)}}{\sqrt{64}} = 0.0561249$.
 - (b) $P(\hat{p} < 0.25) = P(Z < -0.53) = 0.2981$

- 9. (a) 2688
 - (b) 40
 - (c) 0.3483
 - (d) 0.8907

10. We recognize W is a Bernoulli variable with p = 0.55 and q = 0.45. Thus,

$$\mu_{W} = p = 0.55$$

and

$$\sigma_W = \sqrt{pq} = \sqrt{(0.55)(0.45)} = 0.4974937$$

.

We use the Central Limit Formulas (for a sum).

$$\mu_X = n\mu_W = (46)(0.55) = 25.3$$

$$\sigma_X = \sqrt{n}\sigma_W = \sqrt{46}(0.4974937) = 3.3742$$

It should be mentioned that you could have also just recognized *X* is binomial:

$$\mu = np = (46)(0.55) = 25.3$$

$$\sigma = \sqrt{np(1-p)} = \sqrt{(46)(0.55)(1-0.55)} = 3.3742$$

Make a sketch, specifically try to picture whether you need to add or subtract 0.5 for the continuity correction.

Find the z scores.

$$z_1 = \frac{17.5 - 25.3}{3.3742} = -2.31$$

$$Z_2 = \frac{32.5 - 25.3}{3.3742} = 2.13$$

Find the percentiles (from z-table).

$$\ell_1 = 0.0104$$

$$\ell_2 = 0.9834$$

Calculate the probability.

$$P(18 \le X \le 32) = 0.9834 - 0.0104 = 0.973$$

11. Find the mean.

$$\mu = np = (41)(0.72) = 29.52$$

Find the standard deviation.

$$\sigma = \sqrt{np(1-p)} = \sqrt{(41)(0.72)(1-0.72)} = 2.875$$

Make a sketch, specifically try to picture whether you need to add or subtract 0.5 for the continuity correction.

Find the z scores.

$$z_1 = \frac{22.5 - 29.52}{2.875} = -2.44$$

$$Z_2 = \frac{33.5 - 29.52}{2.875} = 1.38$$

Find the percentiles (from z-table).

$$\ell_1 = 0.0073$$

$$\ell_2 = 0.9162$$

Calculate the probability.

$$P(22 < X \le 33) = 0.9162 - 0.0073 = 0.909$$

Normal Distributions

$$Z = \frac{x - \mu}{\sigma}$$
$$X = \mu + Z\sigma$$

Central Limit Theorem

Let random variable W have mean μ_w and standard deviation σ_w . Let random variable X represent the sum of n instances of W. Let random variable Y represent the average of n instances of W. Then:

$$\mu_{X} = (n)(\mu_{W}) \qquad \qquad \mu_{Y} = \mu_{W}$$

$$\sigma_{X} = (\sigma_{W})(\sqrt{n}) \qquad \qquad \sigma_{Y} = \frac{\sigma_{W}}{\sqrt{n}}$$

and X and Y are both approximately normal.

Bernoulli Random Variable

$$\mu = \mathbf{p}$$

$$\sigma = \sqrt{\mathbf{pq}}$$

Binomial Random Variable (sum of Bernoullis)

$$\mu = np$$
 $\sigma = \sqrt{npq}$

Proportion Sampling Random Variable (average of Bernoullis)

$$\mu = p$$

$$\sigma = \sqrt{\frac{pq}{n}}$$

Continuity Correction

- If:
 - X is a discrete variable with a support of consecutive integers
 - we are approximating X with a normal distribution
- Then we can apply a continuity correction:

$$P(X \le x_0) = P\left(Z < \frac{x_0 + 0.5 - \mu_X}{\sigma_X}\right) \qquad P(X < x_0) = P\left(Z < \frac{x_0 - 0.5 - \mu_X}{\sigma_X}\right)$$

$$P(X \ge x_0) = P\left(Z > \frac{x_0 - 0.5 - \mu_X}{\sigma_X}\right) \qquad P(X > x_0) = P\left(Z > \frac{x_0 + 0.5 - \mu_X}{\sigma_X}\right)$$