PYTHON AROGRAMMING ANDR ASSOLUTE SEGINNERS

Ingo Kleiber

Who's That?

Ingo (Kleiber)

- (Computational) Linguist & teacher educator at Heidelberg University (HSE)
- Interested in a wide range of (often unrelated) things such as (digital) education,
 languages, coffee, photography, artificial intelligence, (political) philosophy,
 economics, ...
- Not a programmer; similarly to the fact that you're not an 'e-mailer'

Today's Aims

You will be able to ...

- describe what programming essentially is about
- name and describe some basic programming terminology
- model simple problems in terms of data structures and simple algorithms
- implement a simple solution to a problem in Python

Programming

"It's difficult not to have a love/hate relationship with computer programming if you have any relationship with it at all."

(Rosenberg 2006)

Code Along!

If you like, you can code and experiment along!

https://github.com/IngoKl/36c3-workshops

(then use *Binder*)

Programming is ...

- instructing machines and computers
- problem solving
- thinking differently (computationally)
- modeling problems and other things
- an art
- fun

— ...

Disclaimer

Everything that follows should be considered a (gross) oversimplification of reality!

Python

Python is one of hundreds of programming languages.

- free, open, and available on almost any platform
- modern and widely used; great community
- relatively easy to learn; hard to master
- legacy Python (2.x) vs. modern Python (3.x)

What does Code Look Like?

Usually, something like this ...

Two lines of code Each line = one command Executed in order

What does Code Look Like?

Usually, something like this ...

Two lines of code Each line = one command Executed in order

Block of code One 'main' line and multiple indented lines A unit of functionality

At Sue's Pizza, you can oder three types of pizza:

Small for 4.80

Large for 5.50

Party for 13.00

At Sue's Pizza, you can oder three types of pizza:

$$A = 11 \times 1^{2} A = a \times 5$$
 $A_{s} = 531 \text{cm}^{2} -> 111/\epsilon$
 $A_{l} = 707 \text{cm}^{2} -> 128/\epsilon$
 $A_{l} = 151s^{2} -> 116/\epsilon$

Small for 4.80

Large for 5.50

Party for 13.00

For every (coding) **problem**, there are various solutions and approaches ...

In **programming**, some common measures for **good solutions** are:

- (1) simplicity (2) reusability (3) testability (4) understandability
- (5) compliance (6) maintainability (7) efficiency (8) robustness

→ We're aiming for a solution which is just good enough!

Back to the pizza problem ...

- 1. Determine sizes, prices, and shapes of n pizzas
- For each pizza, determine its area (A)
- 3. For each pizza, calculate the pizza to Euro ration (PTER)
- Determine the best PTER

Coding/Python Basics

In order to do this, we are going to need **some basics** ...

- Variables = a container to put data in (r = 13)
- Lists = a list of data-things (e.g. variables) (I = [1,2,3])
- Loops = repeating something until some condition is met
- If-Constructions = do something if some condition is met
- Functions = a unit of code that completes a specific task
- Dictionaries

1 & 2 - Variables and Lists

Three variables (containers) of three different types: *integer, string, and float*

A list (named I) containing 4 integers and the variable a.

1 & 2 - Variables and Lists

$$I = [1, 2, 3, 4, a]$$

We always start counting at 0

$$|[0] \rightarrow 1$$

$$|[3] \rightarrow 4$$

1 & 2 - Variables and Lists

$$|o| = [|a, |b|] \rightarrow [[1,2,3], [4,5,6]]$$
 A list of lists

 $lol[0][1] \rightarrow 2$

3 - Loops

```
box = ['i0', 'i1', 'i2']
for item in box:
print(item)
```


3 - Loops

```
box = ['i0', 'i1', 'i2']
for item in box:
print(item)
```


3 - Loops

```
box = ['i0', 'i1', 'i2']
for item in box:
print(item)
```


4 - If-Construction

```
a = 10

if a > 15:
    print ('A is greater than 15')
else:
    print ('A is not greater than 15')
```


5 - Functions

Two parameters which we pass to the function.

def add(a, b): result = a + b

What the function returns

return result

add(5, 10)
$$\rightarrow$$
 15 add(2, 2) \rightarrow 4

Modeling Pizza as a List

Type Size Price Shape

ps = ['small', [26, 0], 4.80, 'circle']

Shape is, implicitly, encoded here as well!

A Very Simple Algorithm

Imagine we wanted to **find the youngest and the oldest person** in the room ...

Bonus Exercises

- 1. How can we find the ideal (i.e. best priced) combination of pizzas for a given area that is being requested?
- 2. What if we were looking to optimize for as much/little crust as possible?
- 3. What about a second/third size dimension (i.e. height)?

What's Next?

A Small Selection of Books

Learn Python the Hard Way (Z. A. Shaw)

Python Crash Course (E. Matthes)

Python 3 for Absolute Beginners (T. Hall and J-P. Stacey)

A Small Selection of Courses

Codecademy

DataCamp

FreeCodeCamp

django girls

Works Cited

- Rosenberg, Scott. 2006. *Dreaming in Code*. New York: Three Rivers Press.

