Solutions to Problem 1.

a. Let λ_0 be the arrival rate for urgent patients. Let $Y_{0,t}$ be the number of urgent patients that arrive by time t. By the decomposition property, $Y_{0,t}$ follows a Poisson process with arrival rate $\lambda_0 = 0.14(2) = 0.28$ patients per hour.

$$\Pr\{Y_{0,12} > 6\} = 1 - \Pr\{Y_{0,12} \le 6\}$$

$$= 1 - \sum_{k=0}^{6} \frac{e^{-0.28(12)} (0.28(12)^k}{k!}$$

$$\approx 0.055$$

b. Let λ_2 be the overall arrival rate. Let $Y_{2,t}$ be the number of patients overall that arrive by time t. By the superposition property, $Y_{2,t}$ follows a Poisson process with arrival rate $\lambda_2 = 2 + 4 = 6$ pateints per hour.

$$\Pr\{Y_{2,6} > 30\} = 1 - \Pr\{Y_{2,6} \le 30\}$$
$$= 1 - \sum_{k=0}^{30} \frac{e^{-6(6)} (6(6))^k}{k!}$$
$$\approx 0.819$$

Solutions to Problem 2. Let $\lambda_0 = 8$ surges per hour, $\lambda_1 = 1/18$ surges per hour, and $\lambda_2 = 1/46$ surges per hour. In addition, let $p_1 = 0.005$, and $p_2 = 0.08$.

- a. Let Y_t be the number of all surges by time t. By the superposition property, Y_t follows a Poisson process with rate $\lambda = \lambda_0 + \lambda_1 + \lambda_2 \approx 8.077$ surges per hour. Therefore, $E[Y_8] \approx \lambda \cdot 8 \approx 64.6$.
- b. Let $Y_{10,t}$ be the number of small surges that are computer-damaging by time t, and let $Y_{20,t}$ be the number of moderate surges that are computer-damaging by time t. By the decomposition property, $Y_{10,t}$ and $Y_{20,t}$ follow Poisson processes with rates $\lambda_{10} = p_1\lambda_1 = 1/3600$ and $\lambda_{20} = p_2\lambda_2 = 1/575$ surges per hour, respectively. Let $Y_{3,t}$ be the number of computer-damaging surges by time t. By the superposition property, $Y_{3,t}$ is a Poisson

process with rate $\lambda_3 = \lambda_{10} + \lambda_{20} \approx 0.0020$. Therefore, $E[Y_{3,8}] = \lambda_3 \cdot 8 \approx 0.016$.

c.
$$\Pr\{Y_{3,8} = 0\} = \frac{e^{-\lambda_3(8)}(\lambda_3(8))^0}{0!} \approx 0.98$$

Solutions to Problem 3.

a. Let $\{Y_{0,t}: t \ge 0\}$ be a Poisson process with rate $\lambda_0 = 400$, representing the arrival of requests for the chatbot. Let $\{Y_{1,t}: t \ge 0\}$ be a Poisson process with rate $\lambda_1 = 1000$, representing the arrival of requests for the image generator. Therefore, $Y_t = Y_{0,t} + Y_{1,t}$ follows a Poisson process with rate $\lambda = \lambda_0 + \lambda_1 = 1400$.

$$\Pr\{Y_{1,5} > 2000\} = 1 - \Pr\{Y_{1,5} \le 2000\} = 1 - \sum_{k=0}^{2000} \frac{e^{-1400(1.5)}(1400(1.5))^k}{k!} \approx 0.985$$

b. Let $Y_{A,t}$ and $Y_{B,t}$ be the number of arrivals to servers A and B, respectively. By the decomposition property, $Y_{A,t}$ and $Y_{B,t}$ follow a Poisson process with rate $\lambda_A = (1/2)\lambda = 700$ and $\lambda_B = (1/2)\lambda = 700$, respectively. Moreover, these two Poisson processes are independent. Therefore,

$$\Pr\{Y_{A,1.5} > 1000 \text{ and } Y_{B,1.5} > 1000\} = \Pr\{Y_{A,1.5} > 1000\} \Pr\{Y_{B,1.5} > 1000\}$$

$$= \left(1 - \Pr\{Y_{A,1.5} \le 1000\}\right) \left(1 - \Pr\{Y_{B,1.5} \le 1000\}\right)$$

$$= \left(1 - \sum_{k=0}^{1000} \frac{e^{-700(1.5)} (700(1.5))^k}{k!}\right) \left(1 - \sum_{k=0}^{1000} \frac{e^{-700(1.5)} (700(1.5))^k}{k!}\right)$$

$$\approx 0.877$$

Solutions to Problem 4. Let $Y_{0,t}$ be the number of trucks by time t, which by the decomposition property, follows a Poisson process with rate $\lambda_0 = 0.05(1) = 0.05$. Similarly, let $Y_{1,t}$ be the number of all other automobiles by time t, which follows a Poisson process with rate $\lambda_1 = 0.95(1) = 0.95$.

a.
$$\Pr\{Y_{0,60} \ge 1 = 1 - \Pr\{Y_{0,60} = 0\}$$

= $1 - \frac{e^{-(0.05)(60)}((0.05)(60)^k}{k!}$
 ≈ 0.95

b. Since $\{Y_{0,t}: t \ge 0\}$ is independent of $\{Y_{1,t}: t \ge 0\}$, what happened to $Y_{0,t}$ is irrelevant. Therefore, $E[Y_{1,60}] = 60(0.95) = 57$, and the expected total number of automobiles that have passed by in that hour is 10 + 57 = 67.

Solutions to Problem 5.

- a. In this situation, time-stationary means that demand is not time-dependent (i.e., no seasonal demand), and the market for A, B, C is not time-dependent (i.e., not increasing or decreasing).
- b. Let Y_t = total sales up to week t. Y_t follows a Poisson process with arrival rate 10 + 10 = 20.

$$\Pr\{Y_1 > 30\} = 1 - \Pr\{Y_1 \le 30\}$$
$$= 1 - \sum_{k=0}^{30} \frac{e^{-20(1)} (20(1))^k}{k!} \approx 0.013$$

c. Let $Y_{A,t}$ = total sales of A up to week t, $Y_{B,t}$ = total sales of B up to week t, and $Y_{C,t}$ = total sales of C up to week t. $Y_{A,t}$ follows a Poisson process with arrival rate 20(0.2) = 4, $Y_{B,t}$ follows a Poisson process with arrival rate 20(0.7) = 14, and $Y_{C,t}$ follows a Poisson process with arrival rate 20(0.1) = 2.

Expected sales in 1 month:

$$E[Y_{A.4}] = 4(4) = 16$$
 $E[Y_{B.4}] = 14(4) = 56$ $E[Y_{C.4}] = 2(4) = 8$

Expected person-hours for 1 month:

$$25E[Y_{A,4}] + 15E[Y_{B,4}] + 40E[Y_{C,4}] = 25(16) + 15(56) + 40(8) = 1560$$

d. Let $Y_{B,t}^L$ = Louise's total sales of B up to week t. $Y_{B,t}^L$ follows a Poisson process with rate 10(0.7) = 7.

$$\begin{split} \Pr\{Y_{B,2}^L - Y_{B,1}^L > 5 \text{ and } Y_{B,1}^L > 5\} &= \Pr\{Y_{B,2}^L - Y_{B,1}^L > 5\} \Pr\{Y_{B,1}^L > 5\} \text{ (independent increments)} \\ &= \Pr\{Y_{B,1}^L > 5\} \Pr\{Y_{B,1}^L > 5\} \text{ (stationary increments)} \\ &= \left(1 - \sum_{k=0}^5 \frac{e^{-7(1)}(7(1))^k}{k!}\right)^2 \approx 0.4890 \end{split}$$