

# Introduction to Embedded System Design using Zynq

Zynq Vivado 2013.3 Version

### **Objectives**

### > After completing this module, you will be able to:

- Define a Zynq All Programmable SoC (AP SoC) processor component
- Enumerate the key aspects of the Zynq AP SoC processing system
- Describe the embedded design flow
- Understand the function of the IP Integrator tool
- Indicate how the hardware design is linked to the software development environment

### **Outline**

- > Embedded Processor Component
- **➤** Overview of Vivado for Embedded System Design
- **➤** Embedded System Development Flow
- **▶** Hardware Platform Creation
- **➤** SDK Software Platform
- **>** Summary

# **Embedded Design Architecture in Zynq**

### > Embedded design with Zynq is based on:

- Processor and peripherals
  - Dual ARM® Cortex™ -A9 processors of Zynq-7000 AP SoC
  - AXI interconnect
  - AXI component peripherals
  - Reset, clocking, debug ports
- Software platform for processing system
  - Bare Metal Applications or OS's (e.g. Linux, FreeRTOS)
  - C language support
  - Processor services
  - C drivers for hardware
- User application
  - Interrupt service routines (optional)

# **Zynq AP SoC PS and PL Block Diagram**



### The PS and the PL

### > The Zynq-7000 AP SoC architecture consists of two major sections

- PS: Processing system
  - Dual ARM Cortex-A9 processor based
  - Multiple peripherals
  - Hard silicon core
- PL: Programmable logic
  - Uses the same 7 series programmable logic
    - Artix<sup>TM</sup>-based devices: Z-7010, Z-7015 and Z-7020 (high-range I/O banks only)
    - Kintex<sup>™</sup>-based devices: Z-7030, Z-7045, and Z-7100 (mix of high-range and high-performance I/O banks)

# **PS Components**

- ➤ The Zynq AP SoC processing system consists of the following blocks
  - Application processing unit (APU)
  - I/O peripherals (IOP)
    - Multiplexed I/O (MIO), extended multiplexed I/O (EMIO)
  - Memory interfaces
  - PS interconnect
  - DMA
  - Timers
    - Public and private
  - General interrupt controller (GIC)
  - On-chip memory (OCM): ROM and RAM
  - Debug controller: CoreSight



# **Zynq Architecture Built-in Peripherals**

- > Two USB 2.0 OTG/Device/Host
- > Two Tri- Mode GigE (10/100/1000)
- > Two SD/SDIO interfaces
  - Memory, I/O and combo cards
- > Two CAN 2.0Bs, SPIs , I2Cs, UARTs
- > Four GPIO 32bit Blocks
  - 54 available through MIO; other available through EMIO
- **➤** Multiplexed Input/Output (MIO)
  - Multiplexed pinout of peripherals and static memories
- > Extended MIO
  - Maps PS peripheral ports to the PL



### **Outline**

- **➤** Embedded Processor Component
- > Overview of Vivado for Embedded Design
- **▶** Embedded System Development Flow
- **▶** Hardware Platform Creation
- **➤** SDK Software Platform
- **>** Summary

### **Vivado**

### > What are Vivado, IP Integrator and SDK?

- Vivado is the tool suite for Xilinx FPGA design and includes capability for embedded system design
  - IP Integrator, is part of Vivado and allows block level design of the hardware part of an Embedded system
  - Integrated into Vivado
  - Vivado includes all the tools, IP, and documentation that are required for designing systems with the Zynq-7000 AP SoC hard core and/or Xilinx MicroBlaze soft core processor
  - Vivado + IPI replaces ISE/EDK
- SDK is an Eclipse-based software design environment
  - Enables the integration of hardware and software components
  - Links from Vivado
- > Vivado is the overall project manager and is used for developing non-embedded hardware and instantiating embedded systems
  - Vivado/IP Integrator flow is recommended for developing Zynq embedded systems using 2013.2 and later

# **Vivado Components**

### ➤ Vivado/IP Integrator

- Design environment for configuration of PS, and hardware design for PL
- Hardware Platform (xml)
- Platform, software, and peripheral simulation
- Vivado logic analyzer integration

### Software Development Kit (SDK)

- Project workspace
- Hardware platform definition
- Board Support Package (BSP)
- Software application
- Software debugging



### **Embedded System Tools: Hardware**

### > Hardware and software development tools

- IP Integrator
- IP Packager
- Hardware netlist generation
- Simulation model generation
- Xilinx Microprocessor Debugger (XMD)
- Hardware debugging using Vivado analyzer

### **Embedded System Tools: Software**

### > Eclipse IDE-based Software Development Kit (SDK)

- Board support package creation
- GNU software development tools
- C/C++ compiler for the MicroBlaze and ARM Cortex-A9 processors (gcc)
- Debugger for the MicroBlaze and ARM Cortex-A9 processors (gdb)
- TCF framework multicore debug

### Board support packages (BSPs)

- Stand-alone BSP
  - Free basic device drivers and utilities from Xilinx
  - NOT an RTOS

### **Vivado View**

- > Customizable panels
- > A: Project Management
- **▶** B: IP Integrator (2013.2)
- > C: FPGA Flow
- ▶ D: Layout Selection
- **▶** E: Project view/Preview Panel
- > F: Console, Messages, Logs



# **Zynq Customization Processing System**

- **▶** Block Configuration
- > PS-PL Interface Configuration
- MIO Configuration/Table View
- > Clock Configuration
- **>** DDR
- **➤** SMC Timing Calculation
- > Interrupt Configuration



# **MIO Configuration**



# **MIO Configuration...**



# **Project Files**

### > Top level Directory

- .xpr Vivado Project File (xml file), log files, journal

#### > .srcs

Project source files, IP Integrator files

#### .data

Vivado database, internal data

#### > .runs

Synthesis, Implementation runs

#### > .sdk

SDK Export directory, Hardware Platform (xml)

#### > .cache

- Temporary Files



### **Outline**

- **➤** Embedded Processor Component
- **➤** Overview of Vivado
- > Embedded System Development Flow
- **▶** Hardware Platform Creation
- **➤** SDK Software Platform
- **>** Summary

# **Embedded System Design Flow for Zynq-7000 AP SoC**



# **Embedded System Design using Vivado**

- > Create a new Vivado project, or open an existing project
- > Invoke IP Integrator
- Construct(modify) the hardware portion of the embedded design
- Create (Update) top level HDL wrapper
- > [optional] Synthesize any non-embedded components and implement in Vivado
- **▶** Export the hardware description, and launch SDK
- ➤ Create a new software board support package and application projects in the SDK
- **▶** Compile the software with the GNU cross-compiler in SDK
- > [optional] Download the programmable logic's completed bitstream using iMPACT
- > [optional] Use SDK to download the program (the ELF file)

# **Embedded System Design using Vivado**



# **Add IP Integrator Block Diagram**

- IP Integrator Block Diagram opens a blank canvas
- > IP can be added from the IP catalog
- Drag and drop interface
- > Intelligent Design environment
  - Design Assistance
  - Connection automation
  - Highlights valid connections
  - Group, create hierarchal blocks
- Can import custom IP using IP Packager



# **Configuring Hardware in IP Integrator**

- Double click blocks to access configuration options
- > Drag pointer to make connections
  - Highlights valid connections
- > Connection Automation
  - Automatically connect recognised interfaces
- ➤ Automatically Redraw system



Re-customize IP.

AXI Ethernet (5.0)

Documentation [ IP Location

# **Exporting to SDK**

- Software development is performed with the Xilinx Software Development Kit tool (SDK)
  - Hardware configuration in Vivado
- ➤ An XML description of the hardware is exported to SDK
  - The hardware platform is built on this description
  - Only one hardware platform for each SDK project
  - (Optionally export bitstream)
- > The SDK tool will then associate user software projects to hardware





### **Software Development Flow**

- Create hardware platform project
  - Automatically performed when SDK tool is launched from Vivado project
- > Create BSP
  - System software, board support package
- Create software application
- > Create linker script
- Build project
  - compile, assemble, link output file <app\_project>.elf



# **Configuring FPGA and Downloading Application**

- > Download the bitstream
  - Only if PL is used
  - Input file <top\_name>.bit
- > The Xilinx iMPACT tool downloads the bitstream to the target
- > The bitstream can be downloaded from both tools
  - Vivado
  - SDK
- > Requires that the download cable is connected

### **Outline**

- **➤** Embedded Processor Component
- **➤** Overview of Vivado
- **➤** Embedded System Development Flow
- > Hardware Platform
- **➤** SDK Software Platform
- **>** Summary

# **Zynq Configuration GUI**

- Provides a graphical view of the PS to configure
  - ARM cores
  - I/O peripherals
  - DDR controller
  - Memory systems
- I/O partitioning between dedicated PS pins and programmable logic I/O
- > Zynq-7000 AP SoC PS is configured via a set of memory-mapped configuration registers



# **Clock configuration**

### > Clock Configuration

- Input frequency can be set
  - Processor, DDR
- All IOP clock frequencies can be set
- Clock to PL configuration
- Set Timers





# **Project Settings**

- **▶** Accessed from flow navigator
- Default settings are typically used
- ➤ Set/change target device
  - Architecture, Device size, Package, Speed grade
- Simulation, Synthesis, Implementation, Bitstream options
- > IP repository directory
  - Provide path to custom IP not present in the current project directory structure



### **Outline**

- **➤** Embedded Processor Component
- **➤** Overview of Vivado
- **➤** Embedded System Development Flow
- **▶** Hardware Platform Creation
- > SDK Software Platform
- **>** Summary

# **Software Development Kit (SDK)**

- > Full-featured software design environment
- > Separate tool from Vivado can install standalone for SW teams
- > Based on popular Eclipse open-source IDE
- > Used for software applications only; hardware design and modifications are done in Vivado
- > Well-integrated environment for seamless debugging of embedded targets
- Sophisticated software design environment with many options and features with support for
  - Multiple processors
  - Multiple software platforms
  - Multiple software applications
- > Fully Featured C/C++ code editor and error navigator



### **SDK Workbench Views**

- C/C++ project outline displays the elements of a project with file decorators (icons) for easy identification
- C/C++ editor for integrated software creation
- 3. Code outline displays elements of the software file under development with file decorators (icons) for easy identification
- 4. Problems, Console, Properties views list output information associated with the software development flow



# **Software Management Settings**



### **Outline**

- **➤** Embedded Processor Component
- **➤** Overview of Vivado
- **➤** Embedded System Development Flow
- **▶** Hardware Platform Creation
- **➤** SDK Software Platform
- Summary

### **Summary**

- Vivado includes all the tools, documentation, and IP necessary for building embedded systems
- > IPI is a System Level design tool that increases productivity, allowing designs to be completed faster
- ➤ The Software Development Kit (SDK) is a comprehensive software development environment for software applications
- An embedded processing system component is built with IP provided in the IP Catalog. Designers can also add their own custom IP to this catalog
- > The PS Configuration wizard permits access to several configurable features of PS