Facoltà di Ingegneria di Milano-Leonardo

Fisica tecnica a.a. 2018-2019, docenti A.Salioni G. Guedon 24 giugno 2019

Tisica tecinica a.a. 2010-2017, aoce		
Cognome e nome	Matr	Bonus Quiz 1 2 3
Note: Il tempo a disposizione dell'allievo per la ver consultati appunti e testi. Lo svolgimento dei proble dovrà essere riportata sul foglio con il testo. LO SV CHIARO E ORDINATO E I PASSAGGI DEVONO L'allievo, al termine della prova o in caso di ritiro, soluzione degli esercizi. Qualora fosse presente sol dell'esercizio questo sarà ritenuto non svolto. NB (Tutte le trasformazioni devono essere disegnate in un of unità del Sistema Internazionale).	emi dovrà essere riportato su VOLGIMENTO DEGLI ESERO ESSERE CIRCOSTANZIATI. è tenuto a consegnare il testo o la soluzione sul foglio di tes	fogli allegati e la soluzione CIZI DEVE ESSERE o dell'esame e i fogli con la to e non lo svolgimento
Esercizio 1. (9 punti)		
Una portata G=2,5 kg/s di vapore saturo ad una velocità un compressore non ideale all'interrifinale p ₂ =3 bar;		
il vapore attraversa quindi un ugello dove si vapore saturo ad una pressione p ₃ =p ₁ =1 bar ed Determinare la potenza meccanica richiesta d una potenza termica pari a 150 kW. Potenza compressore:	esce dall'ugello con una al compressore, sapendo	velocità di 600 m/s.
-		
Esercizio 2. (10 punti) Un impianto caratterizzato da una potenza fri inverso con una portata di aria pari a 7200 kg. dalle seguenti trasformazioni:		
• compressione adiabatica con temperatura di isoentropico di compressione pari a 0.88;		
 raffreddamento isobaro con cessione all'am pari a 0.3 MW; 	ibiente, a temperatura T	_a =30 °C, di potenza termica
• espansione adiabatica in turbina;		
 riscaldamento isobaro fino alla temperatura d Supponendo l'ambiente freddo a temperatura compressore, caratterizzare il ciclo e calcolare 	ura T ₁ , pari alla temp	peratura di aspirazione del
Esercizio 3. (11 punti)		
In un tubo di acciaio (k _{acc} =54 W/mK) scorre 47 °C (ν=0.478x10 ⁻⁶ m ² /s cp=4.1843 kJ/kgK ρ media (w) di 0.4 m/s.; il tubo ha un diametro ir Se l'ambiente esterno si trova alla temperatura convettivo (h est) sulla superficie esterna vale 5	=985.46 kg/m ³ , α=1.554; nterno D pari a 3.5 cm ed a (T _{est}) di 20 °C ed il coo	x10 ^{^-7} m2/s) con una velocità I uno spessore s pari a 2 mm.
1) la potenza termica \dot{Q}_1 scambiata con l'am verificare che la temperatura dell'acqua rii \dot{Q}_1 =		è lungo 5 m (condizione 1);
2) la riduzione della potenza scambiata (a=Quina guaina di isolante di spessore (sis) 0.03 W/mK (condizione 2) a =		
3) stimare la velocità dell'aria che lambisce e	 sternamente la tubazione	nella condizione 2