Linear Regression & Gradient Descent With Quick Review of Math involved

Ramendra Kumar

Reference: http://cs229.stanford.edu

Equations of Straight line

Slope Intercept Form

$$y = mx + c$$
 $y = m(x - d)$

Point Slope Form

$$m = \frac{y - y_0}{x - x_0}$$
, i.e., $y - y_0 = m(x - x_0)$

Intercept Form

$$\frac{x}{a} + \frac{y}{b} = 1.$$

Straight line equations of different forms

$$y = mx + c$$
 Gradient-intercept form

$$y - y_1 = m(x - x_1)$$
 *Given gradient and 1 point

$$\frac{x}{a} + \frac{y}{b} = 1$$
 — Double-intercept form

$$ax + by + c = 0$$
 General form

$$\Rightarrow a_1 x + b_1 y + c_1 = 0$$

$$or, a_1 x + b_1 y = -c_1$$

$$or, \left(\frac{a_1}{-c_1}\right) x + \left(\frac{b_1}{-c_1}\right) y = 1$$

or,
$$\left(\frac{x}{\frac{-c_1}{a_1}}\right) + \left(\frac{y}{\frac{-c_1}{b_1}}\right) = 1$$

or,
$$\left(\frac{x}{\frac{-c_1}{a_1}}\right) + \left(\frac{y}{\frac{-c_1}{b_1}}\right) = 1$$

$$\Rightarrow a = \frac{-\overline{c_1}}{a_1} \text{ and } b = \left(-\frac{c_1}{b_1}\right)$$

$$\Rightarrow ax + by + c_1 = 0 \longrightarrow 3x+4y+8=0$$
or, $by = -ax + (-c_1)$
or, $y = \left(-\frac{a}{b}\right)x + \left(-\frac{c_1}{b}\right)$

$$\Rightarrow m = \left(-\frac{a}{b}\right) and c = \left(-\frac{c_1}{b}\right)$$

Draw the graph of y = 3x + 1 for values of x from -3 to 3.

Single Variable Regression

Locations	Population of the city (in ten tho)	Profit (\$ in ten thou)
0	6.1101	17.592
1	5.5277	9.1302
2	8.5186	13.662
3	7.0032	11.854
4	5.8598	6.8233
5	8.3829	11.886
6	7.4764	4.3483
7	8.5781	12
8	6.4862	6.5987
9	5.0546	3.8166
10	5.7107	3.2522
11	14.164	15.505
12	5.734	3.1551
13	8.4084	7.2258

Snippet of Data, there may be 13K or more rows.

Multiple lines can be fit to approximate linear relationship between Population and Profit. Say red one is the best fit line.

- For Every, x (Population) We can calculate a profit (y) using the approximated eqn, y=mx+c . The profit is predicted and we can call it $\rightarrow y_p$.
- For each population there is already a profit given in table, we call it $\rightarrow y_o$.
- There is a difference between predicted profit and given profit as = $(y_p y_o)$, which is error 'e'

					\			
25					\top			•
000′20	e2							
01 ii 5	•						•	•
ma T	e1	. :						
Profit of Appolo Pharmacy in 10,000 0 5 0 50 05								
	5.0	7.5	10.0	12.5	15.0	17.5	20.0	22.5
				tion of the		0,000		

e1 =	$(y_p -$	y_o
e2=		
e3=		

em

For 'm' data points There will be 'm' error.

* Only e1 and e2 are shown in Image.

T	Population of the	70.00
Locations	city	Profit
	(in ten tho)	(\$ in ten thou)
0	6.1101	17.592
1	5.5277	9.1302
2	8.5186	13.662
3	7.0032	11.854
4	5.8598	6.8233
5	8.3829	11.886
6	7.4764	4.3483
7	8.5781	12
8	6.4862	6.5987
9	5.0546	3.8166
10	5.7107	3.2522
11	14.164	15.505
12	5.734	3.1551
13	8.4084	7.2258

Mean of the sum of the squares of all the Errors (MSE). Here written as Cost (function). →

Cost =
$$\frac{1}{2m} \sum_{i=1}^{m} (y_p - y_o)^2$$

The line with least Cost, is the best fit line.

We have to find that.

Writing, y=mx+c in Matrix Form

Matrix Multiplication

$$\begin{bmatrix} 3 & 4 \\ 2 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 5 \\ 3 & 7 \end{bmatrix} = \begin{bmatrix} 3+12 & 15+28 \\ 2+3 & 10+7 \end{bmatrix}$$

Matrix 1 Matrix 2
$$= \begin{bmatrix} 15 & 43 \\ 5 & 17 \end{bmatrix}$$

Resultant Matrix

Dot product of

$$\vec{a} = (a_1, a_2) = a_1 i + a_2 j$$

$$\vec{b} = (b_1, b_2) = b_1 i + b_2 j$$

 $\vec{a} \cdot \vec{b} = a_1 \cdot b_1 + a_2 \cdot b_2$

Substituting in Cost Fn.

Cost =
$$\frac{1}{2m} \sum_{i=1}^{m} (y_p - y_o)^2$$

= $\frac{1}{2m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x - y_o)^2$

Ramendra Kumar

$$y_p = mx + c$$

Changing notation $C \rightarrow \theta_0 \& m \rightarrow \theta_1$

$$or, y_p = \theta_1 x + \theta_0$$

$$or, y_p = \theta_0 + \theta_1 x$$

$$\operatorname{or}, y_p = \theta_0.1 + \theta_1.x$$

$$y_p = \begin{bmatrix} 1 & x \end{bmatrix} * \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$

 $\vec{x} = (1, x)$ And as a matrix [1 x]

$$\vec{\theta} = (\theta_0, \theta_1)$$
 And as a matrix $[\theta_0 \theta_1]$

Vector dot product: \overrightarrow{x} . $\overrightarrow{\theta}$

Matrix product: $x\theta^T$

Cost =
$$\frac{1}{2m} \sum_{i=1}^{m} (y_p - y_o)^2$$

= $\frac{1}{2m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x - y_o)^2$

$$C = \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x - y_0)^2$$

 $x \& y_o$ both known (given data in table). So Cost 'C' is the function of θ_1 only and being Quadratic eqn, plot between C and θ_1 is parabolic as given below:

For time being, Assume approximated line passes through Origin, then $y_p = \max + c \Rightarrow$ reduces to $y_p = \max$, according to changed notation, $y_p = \theta_1 x$

	Population of the	Profit
Locations	city	(\$ in ten
	(in ten tho)	thou)
0	6.1101	17.592
1	5.5277	9.1302
2	8.5186	13.662
3	7.0032	11.854
4	5.8598	6.8233
5	8.3829	11.886
6	7.4764	4.3483
7	8.5781	12
8	6.4862	6.5987
9	5.0546	3.8166
10	5.7107	3.2522
11	14.164	15.505
12	5.734	3.1551
13	8.4084	7.2258

Ramendra Kumar

Plotting Cost Function, taking both θ_0 and θ_1

Cost =
$$\frac{1}{2m} \sum_{i=1}^{m} (y_p - y_o)^2$$

= $\frac{1}{2m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x - y_o)^2$

Equation of 3D Paraboloid

Basic Differentiation Formulas

$$\frac{dk}{dx} = 0$$
 where $k = constant$

$$\frac{d(x)}{dx} = 1$$

$$\frac{d(kx)}{dx} = k$$
 where $k = constant$

$$\frac{d(x^n)}{dx} = nx^{n-1}$$

Partial Derivative Example

Given \rightarrow x=1, y=2

$$z = 3x^{2} + 2xy - y^{2}$$
$$= 3(1)^{2} + 2(1)(2) - (2)^{2}$$
$$= 3$$

$$\frac{\partial z}{\partial x} = 6x + 2y = 6(1) + 2(2) = 10$$

$$\frac{\partial z}{\partial x} = 2x + 2y = 2(1) + 2(2) = 6$$

This should be differential with respect to y . And following calculation is also wrong try yourself.

Cost =
$$\frac{1}{2m} \sum_{i=1}^{m} (y_p - y_o)^2$$

$$C = \frac{1}{2m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x - y_o)^2$$

When $\theta_0 = 0$

$$C = \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x - y_0)^2$$

Defining Gradient and Calculating it.

$$C = \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x - y_o)^2$$

$$\frac{dC}{d\theta_1} = \frac{1}{2m} \sum_{i=1}^{m} \frac{d(\theta_1 x - y_o)^2}{d(\theta_1 x - y_o)} \cdot \frac{d(\theta_1 x - y_o)}{d(\theta_1)}$$

$$\frac{dC}{d\theta_1} = 2 \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x - y_0) \cdot x$$
$$= \frac{1}{m} \sum_{i=1}^{m} (\theta_1 x - y_0) \cdot x$$

Gradient \rightarrow Slope of Tangent at any given point θ_1 on the curve

Gradient Calculation of Full fledge Equation w.r.t θ_0 and θ_1

Cost =
$$\frac{1}{2m} \sum_{i=1}^{m} (y_p - y_o)^2 = \frac{1}{2m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x - y_o)^2$$

$$\frac{\partial C}{\partial \theta_0} = \frac{1}{2m} \sum_{i=1}^m \frac{\partial (\theta_0 + \theta_1 x - y_0)^2}{\partial (\theta_0 + \theta_1 x - y_0)} \cdot \frac{\partial (\theta_0 + \theta_1 x - y_0)}{\partial (\theta_0)}$$

$$\frac{\partial c}{\partial \theta_0} = 2 \frac{1}{2m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x - y_0) \cdot 1 = \frac{1}{m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x - y_0)$$

$$\frac{\partial C}{\partial \theta_0} = \frac{1}{m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x - y_0)$$

$$\frac{\partial C}{\partial \theta_1} = \frac{1}{2m} \sum_{i=1}^m \frac{\partial (\theta_0 + \theta_1 x - y_o)^2}{\partial (\theta_0 + \theta_1 x - y_o)} \cdot \frac{\partial (\theta_0 + \theta_1 x - y_o)}{\partial (\theta_1)}$$

$$\frac{\partial c}{\partial \theta_1} = 2 \frac{1}{2m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x - y_0) \cdot x = \frac{1}{m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x - y_0) \cdot x$$

$$\frac{\partial C}{\partial \theta_1} = \frac{1}{m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x - y_o).x$$

Formal Definition

Our goal is, given a training set, to learn a function $h: X \to Y$ so that h(x) is a "good" predictor for the corresponding value of y. For historical reasons, this function h is called a hypothesis.

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

 $y_p = mx + c$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Goal: $\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$

Cost =
$$\frac{1}{2m} \sum_{i=1}^{m} (y_p - y_o)^2$$

= $\frac{1}{2m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x - y_o)^2$

Ramendra Kumar

Understanding Gradient Descent

When
$$\theta_0 = 0$$

$$C = \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x - y_o)^2$$

Cost =
$$\frac{1}{2m} \sum_{i=1}^{m} (y_p - y_o)^2$$

$$= \frac{1}{2m} \sum_{i=1}^{m} (\theta_0 + \theta_1 x - y_o)^2$$

$$\frac{dC}{d\theta_{1}} = \frac{1}{2m} \sum_{i=1}^{m} \frac{d(\theta_{1}x - y_{o})^{2}}{d(\theta_{1}x - y_{o})} \cdot \frac{d(\theta_{1}x - y_{o})}{d(\theta_{1})}$$

$$\frac{dC}{d\theta_1} = 2 \frac{1}{2m} \sum_{i=1}^{m} (\theta_1 x - y_0).x$$

$$= \frac{1}{m} \sum_{i=1}^{m} (\theta_{1} x - y_{o}).x$$

$$\theta_1 := \theta_1 - \alpha \frac{dJ(\theta_1)}{d\theta_1}$$

 α =Learning Rate

Ramendra Kumar

Full Fledge Gradient Descent Algorithm

Have some function $J(\theta_0, \theta_1)$

Want
$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

Outline:

- Start with some $heta_0, heta_1$
- Keep changing $heta_0, heta_1$ to reduce $J(heta_0, heta_1)$ until we hopefully end up at a minimum

$$\theta_0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(for } j = 0 \text{ and } j = 1\text{)}$$
 } Ramendra Kumar

 Mean Absolute Error (MAE) is the mean of the absolute value of the errors. It is calculated as:

$$\mathsf{MAE} = \frac{1}{n} \sum_{j=1}^{n} |y_j - y_j|$$

Mean Absolute Error

2. Mean Squared Error (MSE) is the mean of the squared errors and is calculated as:

Error Calculation

$$MSE = \frac{1}{N} \sum_{i}^{n} (Y_i - y_i)^2$$

Mean Squared Error

3. Root Mean Squared Error (RMSE) is the square root of the mean of the squared errors:

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

Root Mean Squared Error

Concept of Learning Rate

$$\theta_1 := \theta_1 - \alpha \frac{dJ(\theta_1)}{d\theta_1}$$

First Try , $\alpha = 0.0001$

- > 0.0001 X 3=0.0003 (2nd Try)
- \triangleright 0.0003 X 3 ~ 0.001 (3rd Try, & so on)
- \triangleright 0.001 X 3= 0.003
- > 0.003 X 3 ~ 0.01

Multivariable Regression

$$Yp = M_1 X_1 + M_2 X_2 + + M_n X_n + C$$

$$Yp = \theta_0.1 + \theta_1 X_1 + \theta_2 X_2 + \theta_3 X_3.... + \theta_n X_n$$

Up to n feature
$$y = \begin{bmatrix} 1 & X_1 & X_2 & X_3 & ... & ... & X_n \end{bmatrix} \times \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & X_1 & X_2 & X_3 & ... & ... & X_n \end{bmatrix} \times \begin{bmatrix} 1 & X_1 & X_2 & X_3 & ... & ... & X_n \end{bmatrix} \times \begin{bmatrix} 1 & X_1 & X_2 & X_3 & ... & ... & X_n \end{bmatrix} \times \begin{bmatrix} 1 & X_1 & X_2 & X_3 & ... & ... & X_n \end{bmatrix} \times \begin{bmatrix} 1 & X_1 & X_2 & X_3 & ... & ... & X_n \end{bmatrix} \times \begin{bmatrix} 1 & X_1 & X_2 & X_3 & ... & ... & X_n \end{bmatrix} \times \begin{bmatrix} 1 & X_1 & X_2 & X_3 & ... & ... & X_n \end{bmatrix} \times \begin{bmatrix} 1 & X_1 & X_2 & X_3 & ... & ... & ... & X_n \end{bmatrix} \times \begin{bmatrix} 1 & X_1 & X_2 & X_3 & ... & ... & ... & ... & ... & ... & ... & ... & ... \end{bmatrix}$$
Up to m dataset **M X (n+1)**

theta=np.random.randn(2,1)

#np.random.seed(0)

·

```
1  n_iterations=10000
2  alpha=0.01
3  for iteration in range(n_iterations):
4    grad=(1/m)*X.T.dot((X.dot(theta)-Y))
5    theta=theta-alpha*grad ## Gradient descent
6  print(theta)
```

Yp = mx + c or, $Yp = \theta_1 x + \theta_0$ $or, Yp = \theta_0 + \theta_1 x$ or, $Yp = \theta_0 \cdot 1 + \theta_1 \cdot x$ $Yp = \begin{bmatrix} 1 & x \end{bmatrix} * \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$

Locations	Size of Flat(feet2)	Number of Bedrooms	Price (\$)
0	2104	3	399900
1	1600	3	329900
2	2400	3	369000
3	1416	2	232000
4	3000	4	539900
5	1985	4	299900
6	1534	3	314900
7	1427	3	198999
8	1380	3	212000
9	1494	3	242500
10	1940	4	239999
11	2000	3	347000
12	1890	3	329999

Price Size of Flat Number of Bedrooms $Yp = M_1 \ X_1 + M_2 \ X_2 + C$

$$Yp = M_1 X_1 + M_2 X_2 + + M_n X_n + C$$

(n+1,1)

PREDICTION > MULTIVARIABLE REGRESSION

Locations	Size of Flat(feet2)	Number of Bedrooms	Price (\$)
0	2104	3	399900
1	1600	3	329900
2	2400	3	369000
3	1416	2	232000
4	3000	4	539900
5	1985	4	299900
6	1534	3	314900
7	1427	3	198999
8	1380	3	212000
9	1494	3	242500
10	1940	4	239999
11	2000	3	347000
12	1890	3	329999

$$Yp = M_1 X_1 + M_2 X_2 + + M_n X_n + C$$

Polynomial Regression

Third Degree Polynomial Feature Transformation

Second Degree Polynomial Feature Transformation

X	Y		
-7	311		
-6.85859	335.524		
-6.71717	328.288		
-6.57576	275.292		
-6.43434	296.536		
-6.29293	297.0199		
-6.15152	292.7438		
-6.0101	222.7077		
-5.86869	225.9115		
-5.72727	254.3554		
-5.58586	264.0392		
-5.44444	201.963		
-5.30303	186.1267		
-5.16162	173.5305		
-5.0202	203.1742		
-4.87879	214.0579		
-4.73737	182.1815		
-4.59596	190.5451		
-4.45455	196.1488		
-4.31313	179.9923		
-4.17172	160.0759		
-4.0303	170.3994		
-3.88889	101.963		

From the plot, it is seen that there is no linear relationship between X and Y.

-		-	-				_	
(1	L+X) ² =1+2x-	+X ² = (1,X,)	(²)	(1+X) ³ =1+3X	$(+3X^2+X^3) =$	(1, X, X ² , X	³)
f1	f2	f3	Y	f1	f2	f3	f4	Y
1	-7	49	311	1	-7	49	-343	311
1	-6.85859	47.0402	335.524	1	-6.85859	47.0402	-322.629	335.524
1	-6.71717	45.1204	328.288	1	-6.71717	45.1204	-303.081	328.288
1	-6.57576	43.24059	275.292	1	-6.57576	43.24059	-284.34	275.292
1	-6.43434	41.40078	296.536	1	-6.43434	41.40078	-266.387	296.536
1	-6.29293	39.60096	297.0199	1	-6.29293	39.60096	-249.206	297.0199
1	-6.15152	37.84114	292.7438	1	-6.15152	37.84114	-232.78	292.7438
1	-6.0101	36.12131	222.7077	1	-6.0101	36.12131	-217.093	222.7077
1	-5.86869	34.44149	225.9115	1	-5.86869	34.44149	-202.126	225.9115
1	-5.72727	32.80165	254.3554	1	-5.72727	32.80165	-187.864	254.3554
1	-5.58586	31.20182	264.0392	1	-5.58586	31.20182	-174.289	264.0392
1	-5.44444	29.64198	201.963	1	-5.44444	29.64198	-161.384	201.963
1	-5.30303	28.12213	186.1267	1	-5.30303	28.12213	-149.133	186.1267
1	-5.16162	26.64228	173.5305	1	-5.16162	26.64228	-137.517	173.5305
1	-5.0202	25.20243	203.1742	1	-5.0202	25.20243	-126.521	203.1742
1	-4.87879	23.80257	214.0579	1	-4.87879	23.80257	-116.128	214.0579
1	-4.73737	22.44271	182.1815	1	-4.73737	22.44271	-106.32	182.1815
1	-4.59596	21.12284	190.5451	1	-4.59596	21.12284	-97.0797	190.5451
1	-4.45455	19.84298	196.1488	1	-4.45455	19.84298	-88.3914	196.1488

Now, instead of using 'X' as input features, We will use f1,f2,f3,... as features for modeling. So it becomes simply a multivariable regression problem.

THANK YOU!!

Reference: http://cs229.stanford.edu/

www.linkedin.com/in/ramendra-kumar-57334478