

PROTÓTIPO DE UM SISTEMA DE MONITORAMENTO E CONTROLE DE BAIXO CUSTO BASEADO EM IOT PARA AMBIENTES

AVIÁRIOS

Fábio Oliveira Tempesta ⁽¹⁾; Adriano Geraldo ⁽²⁾; Talles Barbosa Portilho ⁽³⁾; Itagildo Edmar Garbazza ⁽⁴⁾

(1, 2, 4) Instituto Federal de Minas Gerais – *Campus* Bambuí

(3) Instituto Federal de Minas Gerais – *Campus* Ipatinga

E-mail do autor de correspondência: fabio.oliveira.tempesta@gmail.com

Introdução

Devido ao crescente consumo da carne de frango, as projeções indicam que, até 2030, a humanidade irá comer mais aves do que qualquer outra proteína animal, ultrapassando a carne suína (BETHÔNICO, 2022).

Diante de um cenário tão propício, para uma criação de frangos obter alta produtividade, é necessário ficar atento a todas as necessidades básicas do animal. Fontes (2020) fomenta que para elevar a produtividade na criação das aves, é necessário que o aviário esteja em condições ideais de temperatura e umidade.

Utilizando a tecnologia a favor da produção e bem-estar das aves, pode-se destacar os sistemas de monitoramento de ambiente em tempo real, acionadores automáticos para homogeneidade de temperatura e economia de energia, e captura de dados para gerar análises (CONNOLLY, 2018). Em contrapartida, um sistema desse porte ainda gera um custo inicial relativamente alto para implantação, devido às suas inúmeras funções

Objetivos

Oferecer um protótipo de sistema embarcado de monitoramento e controle de um ambiente de criação de frangos para auxiliar no desenvolvimento e bem-estar animal, utilizando o conceito Internet das Coisas e, que seja acessível financeiramente ao pequeno avicultor.

Metodologia

A Figura 1 apresentada abaixo, ilustra a representação esquemática do modelo proposto para auxiliar pequenos produtores a ter um maior controle do ambiente dos aviários, tanto na parte de monitoramento quanto no acionamento de equipamentos. Todo o controle e monitoramento do sistema é feito pelo usuário, podendo optar por um controle automático ou manual através de uma página Web hospedada no microcontrolador. O ESP32 armazena uma interface Web que é acessada através do endereço de IP (Internet Protocol - Protocolo de Internet) responsável por identificar o microcontrolador dentro da rede.

Figura 1 - Esquemático da conexão do microcontrolador com a rede local.

Resultados e Discussão

O protótipo do sistema teve suas ligações elétricas confeccionadas em uma placa de circuito impresso, e introduzida em uma caixa de montagem, juntamente aos demais dispositivos, como mostra a Figura 2.

Figura 2 - Caixa do protótipo do sistema. Legenda: (a) Lado interno; (b) Lado externo.

Após o desenvolvimento, o protótipo foi submetido a testes no Aviário de Corte 1, do Instituto Federal de Educação Ciência e Tecnologia de Minas Gerais - Campus Bambuí, na cidade de Bambuí/MG.

O sistema foi capaz de realizar um monitoramento em tempo real da temperatura e umidade do ambiente, da temperatura da água do bebedouro e da caixa. Para controle das condições, o sistema se mostrou apto a acionar dispositivos responsáveis por ventilação, nebulização e troca da água do bebedouro.

Conclusões

O modelo de sistema proposto e desenvolvido neste trabalho representa uma possível solução aos aviários de pequeno porte que ainda adotam a forma tradicional de controle. Após a instalação do sistema no aviário, o avicultor pode esperar uma melhor condição do ambiente aviário, aumento da produção e bem-estar das aves, e menor mão de obra. Para esse intuito, o estudo atingiu as expectativas, visto que o sistema conseguiu visualizar os dados dos sensores por um aparelho eletrônico e acionar os atuadores automaticamente de modo funcional.

Referências Bibliográficas

BETHÔNICO, T. **Religião e inflação abrem caminho para frango dominar o consumo de carne**. Folha de São Paulo, 2022.

CONNOLLY, A. **Era digital: o futuro da tecnologia avícola**. Avicultura Industrial, 2018.

FONTES, H. Sistema que controla clima de aviário pode evitar perdas na produção de frangos. Jornal da USP, 2020.

Agradecimentos

A equipe do projeto agradece ao Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais – campus Bambuí, pelo apoio durante a realização do presente trabalho acadêmico contemplado pelo edital nº 23/2021.