CS 70 Discrete Mathematics and Probability Theory Spring 2015 Vazirani Discussion 2M

1. Distributing the quantifiers

Let P(x) and Q(x) denote some propositions involving x. For each statement below, prove that the statement is correct or provide a counterexample.

- (a) $\forall x (P(x) \lor Q(x))$ is equivalent to $(\forall x, P(x)) \lor (\forall x, Q(x))$.
- (b) $\forall x (P(x) \land Q(x))$ is equivalent to $(\forall x, P(x)) \land (\forall x, Q(x))$.
- (c) $\exists x (P(x) \lor Q(x))$ is equivalent to $(\exists x, P(x)) \lor (\exists x, Q(x))$.
- (d) $\exists x (P(x) \land Q(x))$ is equivalent to $(\exists x, P(x)) \land (\exists x, Q(x))$.

2. Pigeonhole principle

Prove that if you put n + 1 apples into n boxes in any way you like, then at least one box must contain at least 2 apples.

3.	Proof by contraposition
	Let x be a positive real number. Prove that if x is irrational (i.e., not a rational number), then \sqrt{x} is also irrational.
4	D. 61
4.	Proof by cases A <i>perfect square</i> is an integer n of the form $n = m^2$ for some integer m . Prove that every odd perfect square is of the form $8k + 1$ for some integer k .
_	
5.	Numbers of friends
	Prove that if there are $n \ge 2$ people at a party, then at least 2 of them have the same number of friends at the party.