CA R Documentation

Correspondence analysis

Description

A simple function for correspondence analysis, following the algorithm described in Section 9.4 of Legendre and Legendre (1998).

Usage

```
CA(Y, use.svd=TRUE, color.sites="black", color.sp="red")

# Write total inertia, eigenvalues, relative eigenvalues, cumulative rel. eigenvalues to R window 
name_of_output_object or print(name_of_output_object, ...)

# Either two biplots, scaling type 1 and type 2, or a single scaling type 3 biplot, are plotted in a 
window
biplot(name_of_output_object, scaling=12, cex=2, ...)
```

Arguments

Υ	Data matrix
use.svd	TRUE: the decomposition is done by <u>svd</u> (default).
	FALSE: the decomposition is done by <u>eigen</u> .
	The signs of the coefficients along any one axis may differ between the two methods.
color	Color of the site and species symbols and labels in the biplots.
	Defaults: color.sites="black", color.sp="red".
scaling	scaling=12 to obtain scaling 1 and 2 biplots in a single window,
	scaling=3 to obtain the scaling 3 biplot alone
cex	A numerical value giving the amount by which plotting text and symbols should be
	magnified relative to the default.
	Other parameters passed to the print or biplot functions.

Details

Correspondence analysis (CA) of a table of frequencies producing scaling 1 and scaling 2 biplots. The variables must be frequency-like; they must all be expressed in the same physoical dimensions. Negative values are not allowed in CA.

Scaling type 1 biplot: uses F for sites, V for species (notation as in Legendre and Legendre 1998, Section 9.4). The sites are at the centroids (barycentres) of the species. This projection preserves the chi-square distance among the sites

Scaling type 2 biplot: uses Vhat for sites, Fhat for species. The species are at the centroids (barycentres) of the sites. This projection preserves the chi-square distance among the species.

Scaling type 3 biplot: use this scaling only when analyzing a contingency table, where the rows and columns are equivalent in nature. In this hybrid scaling, the positions of the rows are as in scaling 1 whereas the positions of the columns are as in scaling 2. This is not the same as scaling 3 in Canoco.

Algorithmic notes – The data matrix is transformed into matrix Qbar of the contributions to chisquare, following equations 9.31 and 9.32 of Legendre and Legendre (1998). Then the matrix (t(Qbar) %*% Qbar) is decomposed by <u>svd</u>. Users can choose to decompose it by <u>eigen</u> instead.

Value

Function CA returns a list containing the following results and matrices:

total.inertia Total inertia in matrix Qbar.

eigevalues CA eigenvalues. rel.eigen Relative eigenvalues.

cum.rel.eigen Cumulative sum of the relative eigenvalues.

U, Uhat, F, Fhat, V, Vhat: matrices required to produce the biplots.

site.names, sp.names, color: additional information needed to produce the biplots.

References

Aart, P. J. M. (van der) and N. Smeenk-Enserink. 1975. Correlations between distributions of hunting spiders (Lycosidae, Ctenidae) and environmental characteristics in a dune area. *Neth. J. Zool.* 25: 1-45.

Legendre, P. and Legendre, L. 1998. *Numerical Ecology*. 2nd English ed. Elsevier, Amsterdam.

Author

Pierre Legendre, Departement de Sciences Biologiques, Universite de Montreal.

Examples

```
# Example: data from Table 9.11 of Legendre and Legendre (1998) table = matrix(c(10,10,15,10,15,5,20,10,5),3,3) rownames(table) = c("Site1", "Site2", "Site3") colnames(table) = c("Sp.1", "Sp.2", "Sp.3") res = CA(table) res  # Print out the summary results biplot(res)  # Produce two biplots in the graphics window summary(res)  # Print the structure of the output object res$U  # Print out the matrix of eigenvectors of t(Qbar) %*% t(Qbar) res$Uhat  # Print out the matrix of eigenvectors of t(Qbar) %*% t(Qbar)
```

Example: the spider data of Aart and Smeenk-Enserink (1975), available in library <u>mvpart</u>.

The spider data frame has 28 rows and 18 columns. The first 12 columns are abundances of different species of spiders and the next 6 are environmental data.

library(mvpart)

data(spider) # Note: this file does not contain site names

res = CA(spider[,1:12], color.sites="blue")

res # Print out the summary results

biplot(res) # Produce two biplots in the graphics window summary(res) # Print the structure of the output object

res\$F # Print out the matrix of site scores for the scaling 1 biplot