Electronic Materials and Devices

5 Semiconductor

QQ Group:

陈晓龙 Chen, Xiaolong 电子与电气工程系

5.1 Schottky junction

Q: What will happen at the metal-semiconductor interface?

Vacuum level $E_{\rm c} + \chi$ $\boldsymbol{\Phi}_{m}$ $E_{\rm Fm}$ $E_{\mathbf{v}}$ → X ion \oplus **((+) (** Free electron \oplus \oplus \oplus **(** \oplus Metal Semiconductor

Q: Why depletion region is in semiconductor? (in other words, why there is a width of depletion region?)

Build-in electric field E_0 and potential V_0

Depletion region 耗尽区

- If there is no current flow, the Fermi levels of different materials should be the same.
- Lower free carrier density, larger band bending.
- ◆ The vacuum level at interface point must be continuous.
- Far away from interface, the relative position of E_F , Φ_n , and χ does not change.

- Treat electrons as water.
- Treat energy band as a cup.
- ◆ Treat vacuum level as the upper rim 上缘 of a cup.
- Treat Fermi energy as the water surface.

Water molecule: charge neutral

Electron: charged particle

Current flow in Schottky junction

Current from metal to CB of semiconductor: $J_1 = C_1 \exp(-\frac{\Phi_B}{kT})$

Current from CB of semiconductor to metal: $J_2 = C_2 \exp(-\frac{eV_0}{kT})$

For open circuit: $J = J_2 - J_1 = 0$

(2) Forward bias

Internal electric field E_0 decreases

Depletion region is thinner

Current increases!

Current from CB of semiconductor to metal:

$$J_2^{\text{for}} = C_2 \exp\left[-\frac{e(V_0 - V)}{kT}\right]$$

Current from metal to CB of semiconductor:

$$J_1 = C_1 \exp\left(-\frac{\Phi_{\rm B}}{kT}\right) = C_2 \exp\left(-\frac{eV_{\rm o}}{kT}\right)$$

◆ The net current:

$$J = J_2 - J_1$$

$$= C_2 \exp(-\frac{eV_0}{kT}) \left[\exp\left(\frac{eV}{kT}\right) - 1 \right]$$

$$= J_0 \left[\exp\left(\frac{eV}{kT}\right) - 1 \right]$$

Forward bias

$$J = J_{\rm o} \left[\exp \left(\frac{eV}{kT} \right) - 1 \right]$$

When $V \gg kT$:

$$J \approx J_{\rm o} \exp\left(\frac{eV}{kT}\right)$$

(3) Reverse bias

Internal electric field E_0 increases

Depletion region is thicker

Current decreases!

Current from CB of semiconductor to metal:

$$J_2^{\text{rev}} = C_2 \exp\left[-\frac{e(V_0 + V)}{kT}\right]$$

Current from metal to CB of semiconductor:

$$J_1 = C_1 \exp\left(-\frac{\Phi_{\rm B}}{kT}\right) = C_2 \exp\left(-\frac{eV_{\rm o}}{kT}\right)$$

lacktriangle When $J_1 \gg J_2$

The net current: $J \approx J_1 = J_0$

5.2 Schottky junction solar cell and photodiode

Electron-hole pair separation by internal electric field

Schottky junction photodiode

Without light: *I*_o

With light: $I_0 + i_{photo}$

5.3 Ohmic contacts and thermoelectric coolers

Q: What will happen at the metal-semiconductor interface?

Accumulation Bulk region semiconductor $\Phi_{\mathbf{m}}$ $E_{\rm Fm}$ $E_{\rm Fn}$ $E_{\mathbf{v}}$

Ohmic contact in accumulation region:

- No Schottky barrier between metal and semiconductor.
- > Low resistance at metal-semiconductor interface.
- Total resistance is dominated by the resistance of bulk region.

Peltier effect 珀尔帖效应

 $E_{\rm Fn}$

Electron energy increase.

Absorb thermal energy from junction area.

Junction area is cooled.

Electron energy decrease.

Release thermal energy to junction area.

Junction area is heated.

Peltier effect 珀尔帖效应

Homework 1-3: For p-type semiconductor, please draw the band diagram and describe the working principles of Peltier effect.

A typical thermoelectric cooler

A typical thermoelectric cooler

The Peltier coefficient 珀尔帖系数

Electron average energy in CB of semiconductor:

$$E_{\rm c} + \frac{3}{2}kT$$

Electron average energy in metal: $E_{\rm Fn}$

$$\begin{cases} Q = N(E_{\rm c} + \frac{3}{2}kT - E_{\rm Fn})/\Delta t \\ I = Ne/\Delta t \end{cases}$$

$$\Pi = \frac{1}{e} (E_{\rm c} + \frac{3}{2}kT - E_{\rm Fn})$$

5.4 Ideal PN junction

P-type semiconductor

N-type semiconductor

N-type semiconductor

Schematic for N-type semiconductor

P-type semiconductor

Major carriers: holes

Minor carriers: electrons

Schematic for P-type semiconductor

PN junction

P-type semiconductor

N-type semiconductor

Electrons diffusive from N-type region to P-type region Holes diffusive from P-type region to N-type region

P-type semiconductor

N-type semiconductor

Electrons and holes recombine near the P and N region interface. When the system is equilibrium, only positive and negative ions left near the interface.

Space charge region/ Depletion region 空间电荷区/耗尽层

PN junction

Internal electric field 内电场

Block the diffusion of major carriers, accelerate the drift of minor carriers.阻碍多数载流子的扩散,加速少数载流子的漂移。

Block the diffusion of major carriers. Accelerate the drift of minor carriers.

PN junction

Internal electric field

Asymmetric PN junction

Q: if they are in contact, whose space charge region is thicker?

Slightly doped P-type

Ion and free hole concentration is low

Heavily doped N-type

Ion and free electron concentration is high

Asymmetric PN junction

Space charge region is thick Space charge region is thin

Slightly doped P-type

Ion and free hole concentration is low

Heavily doped N-type

Ion and free electron concentration is high

Q: What's the distribution of electron and hole concentrations (n and p), net space charge density (ρ_{net}), internal electric field (E), potential (V), potential energy (PE)?

Question: What's the relation between W_p , W_n , N_a , and N_d ?

 N_a , and N_d : the concentration of acceptors and donors

$$N_{\rm a}W_{\rm p}=N_{\rm d}W_{\rm n}$$

Q: What's the width of depletion region?

$$W_{\rm o} = W_{\rm p} + W_{\rm n}$$

$$E(x) - W_{p} = 0 W_{n}$$

$$E_{0}$$

Let's start from
$$\frac{\mathrm{d}E(x)}{\mathrm{d}x} = \frac{\rho_{\mathrm{net}}}{\varepsilon}$$

$$E(x) = \frac{1}{\varepsilon} \int_{-W_{\rm p}}^{x} \rho_{\rm net}(x) dx$$

$$E_{\rm o} = -\frac{eN_{\rm a}W_{\rm p}}{\varepsilon} = -\frac{eN_{\rm d}W_{\rm n}}{\varepsilon}$$

In most situations, PE >> kT

FD distribution \rightarrow Boltzmann distribution

$$\frac{n_2}{n_1} = \exp\left[-\frac{(E_2 - E_1)}{kT}\right]$$

$$\begin{cases} \frac{n_{\text{p0}}}{n_{\text{n0}}} = \exp\left[-\frac{eV_0}{kT}\right] \\ \frac{p_{\text{n0}}}{p_{\text{p0}}} = \exp\left[-\frac{eV_0}{kT}\right] \end{cases}$$

$$\frac{p_{\rm n0}}{p_{\rm p0}} = \exp\left[-\frac{eV_0}{kT}\right]$$

$$V_0 = \frac{kT}{e} \ln \left[\frac{n_{\text{n0}}}{n_{\text{p0}}} \right] = \frac{kT}{e} \ln \left[\frac{p_{\text{p0}}}{p_{\text{n0}}} \right]$$

$$V_0 = \frac{kT}{e} \ln \left[\frac{n_{\text{n0}}}{n_{\text{p0}}} \right] = \frac{kT}{e} \ln \left[\frac{p_{\text{p0}}}{p_{\text{n0}}} \right]$$

If we assume $p_{p0} = N_a$, $n_{n0} = N_d$:

$$p_{\rm n0} = \frac{n_{\rm i}^2}{n_{\rm n0}} = \frac{n_{\rm i}^2}{N_{\rm d}}$$

$$V_0 = \frac{kT}{e} \ln \left[\frac{N_a N_d}{n_i^2} \right]$$

$$W_0 = \left[\frac{2\varepsilon(N_{\rm a} + N_{\rm d})V_0}{eN_{\rm a}N_{\rm d}}\right]^{1/2}$$

$$V_0 = \frac{kT}{e} \ln \left[\frac{N_a N_d}{n_i^2} \right]$$

Another way to get:
$$V_0 = \frac{kT}{e} \ln \left[\frac{n_{\text{n0}}}{n_{\text{p0}}} \right] = \frac{kT}{e} \ln \left[\frac{p_{\text{p0}}}{p_{\text{n0}}} \right]$$

PN junction

V = 0 $V = V_0$

$$p = p_{p0}$$
 $p = p_{n0}$

Considering holes alone:

$$J_{\rm h} = ep\mu_{\rm h}E_{\rm x} - eD_{\rm h}\frac{\mathrm{d}p}{\mathrm{d}x} = 0$$

$$-ep\mu_{h}\frac{dV}{dx} - eD_{h}\frac{dp}{dx} = 0$$

$$-epdV - kTdp = 0$$

$$V_{0} = \frac{kT}{e}\ln\left[\frac{p_{p0}}{p_{n0}}\right]$$

Band diagram of PN junction

 E_{Fp} E_{Fp} E_{Fp} E_{Fp}

P-type N-type semiconductor

P-type N-type semiconductor

Block the diffusion of major carriers. Accelerate the drift of minor carriers.

5.5 The electrical properties of PN junction

Forward bias 正向偏置电压

PN-junction is on with low resistance

Band diagram at forward bias

A forward bias: V

Space charge layer (SCL): high resistance

Almost all voltage are dropped on SCL.

Current is due to diffusion of minor carriers and drift of major carriers.

$$p_{n}(0) = p_{p0} \exp\left[-\frac{e(V_{0} - V)}{kT}\right] = p_{n0} \exp\left[\frac{eV}{kT}\right]$$
$$n_{p}(0) = n_{n0} \exp\left[-\frac{e(V_{0} - V)}{kT}\right] = n_{p0} \exp\left[\frac{eV}{kT}\right]$$

This is called the law of the junction.

At
$$x' = 0$$
, Excess hole: $\Delta p_n(0) = p_n(0) - p_{n0}$

At
$$x'$$
, Excess hole: $\Delta p_{\rm n}(x') = p_{\rm n}(x') - p_{\rm n0}$

$$\Delta p_{\rm n}(x') = \Delta p_{\rm n}(0) \exp\left(-\frac{x'}{L_{\rm h}}\right)$$

Hole diffusion length: $L_{\rm h} = \sqrt{D_{\rm h} \tau_{\rm h}}$

$$J_{\text{D,hole}} = -eD_{\text{h}} \frac{dp_{\text{n}}(x')}{dx'} = -eD_{\text{h}} \frac{d\Delta p_{\text{n}}(x')}{dx'}$$
$$= \frac{eD_{\text{h}}}{L_{\text{h}}} \Delta p_{\text{n}}(0) \exp\left(-\frac{x'}{L_{\text{h}}}\right)$$

$$=\frac{eD_{\rm h}p_{\rm n0}}{L_{\rm h}}\left[\exp\left(\frac{eV}{kT}\right)-1\right]\exp\left(-\frac{x'}{L_{\rm h}}\right)=\frac{eD_{\rm h}n_{\rm i}^2}{L_{\rm h}N_{\rm d}}\left[\exp\left(\frac{eV}{kT}\right)-1\right]\exp\left(-\frac{x'}{L_{\rm h}}\right)$$

At SCL-N interface:
$$J_{\text{D,hole}}(0) = \frac{eD_{\text{h}}n_{\text{i}}^2}{L_{\text{h}}N_{\text{d}}} \left[\exp\left(\frac{eV}{kT}\right) - 1 \right]$$

At SCL-P interface:
$$J_{\text{D,elec}}(0) = \frac{eD_{\text{e}}n_{\text{i}}^2}{L_{\text{e}}N_{\text{a}}} \left[\exp\left(\frac{eV}{kT}\right) - 1 \right]$$

Forward bias 正向偏置电压

Total current: $J = J_{D,hole}(0) + J_{D,elec}(0)$

$$= \left(\frac{eD_{\rm h}}{L_{\rm h}N_{\rm d}} + \frac{eD_{\rm e}}{L_{\rm e}N_{\rm a}}\right)n_{\rm i}^2 \left[\exp\left(\frac{eV}{kT}\right) - 1\right] = J_{\rm so}\left[\exp\left(\frac{eV}{kT}\right) - 1\right]$$

 J_{so} : Reverse saturation current density

Forward bias 正向偏置电压

Total current:
$$J = J_{so} \left[\exp \left(\frac{eV}{kT} \right) - 1 \right]$$

Reverse saturation current density:
$$J_{so} = \left(\frac{eD_{h}}{L_{h}N_{d}} + \frac{eD_{e}}{L_{e}N_{a}}\right)n_{i}^{2}$$

Q: The IV curves for GaAs (E_g =1.42 eV), Si (1.12 eV) and Ge (0.66 eV) PN junctions?

Q: The IV curves for GaAs ($E_g = 1.12 \text{ eV}$), Si (1.12 eV) and Ge (0.66 eV) semiconductors?

$$J = J_{so} \left[\exp \left(\frac{eV}{kT} \right) - 1 \right] = \left(\frac{eD_{h}}{L_{h}N_{d}} + \frac{eD_{e}}{L_{e}N_{a}} \right) N_{c}N_{v} \exp \left(-\frac{E_{g}}{kT} \right) \left[\exp \left(\frac{eV}{kT} \right) - 1 \right]$$

$$pprox \left(\frac{eD_{\rm h}}{L_{\rm h}N_{\rm d}} + \frac{eD_{\rm e}}{L_{\rm e}N_{\rm a}}\right)N_{\rm c}N_{\rm v}\exp\left(\frac{eV - E_{\rm g}}{kT}\right)$$

$$J = \left(\frac{eD_{\rm h}}{L_{\rm h}N_{\rm d}} + \frac{eD_{\rm e}}{L_{\rm e}N_{\rm a}}\right)N_{\rm c}N_{\rm v}\exp\left(\frac{eV - E_{\rm g}}{kT}\right)$$

Diode	Working voltage <i>U</i> (~0.1 mA)
GaAs	~0.9 V
Si	~0.6 V
Ge	~0.2 V