Fondamenti Logici dell'Informatica

Corso di Laurea Magistrale in Informatica

Logica e Basi di Dati

Fabio Zanasi

Anno Accademico 2022-2023

Il Modello Relazionale

- ▶ È il modello logico di gran lunga più comune tra quelli utilizzati per organizzare le basi di dati.
- ▶ Nonostante esistano indizi già negli anni Sessanta, la sua vera e propria introduzione si deve a Codd, in un celebre articolo del 1970.
- Nel modello relazionale, come in tutti i modelli logici, un concetto centrale è quello di *interrogazione*, o *query*.
- ▶ In questa parte, ci prefiggiamo di studiare le varie tecniche per definire interrogazioni, e di indagare il loro potere espressivo.
- ▶ Particolare attenzione verrà data agli aspetti di natura logica.

Relazione Ordinate

- ▶ Supponiamo di lavorare con dei **domini** come i seguenti:
 - ▶ L'insieme dei numeri naturali, N;
 - ightharpoonup L'insieme delle stringhe in un alfabeto Σ , ovvero Σ^* ;
 - ▶ L'insieme dei valori booleani $\mathbb{T} = \{0, 1\}.$

Indichiamo un generico dominio con D.

Relazione Ordinate

- ▶ Supponiamo di lavorare con dei domini come i seguenti:
 - ▶ L'insieme dei numeri naturali, N;
 - ightharpoonup L'insieme delle stringhe in un alfabeto Σ , ovvero Σ^* ;
 - L'insieme dei valori booleani $\mathbb{T} = \{0, 1\}.$

Indichiamo un generico dominio con D.

- ▶ Una **relazione** può prima di tutto essere vista come un sottoinsieme *finito* \mathcal{R} di $D_1 \times \ldots \times D_n$ dove i D_i sono domini.
 - \triangleright \mathcal{R} , in altre parole, *vive* nell'insieme delle parti finite di $D_1 \times \ldots \times D_n$:

$$\mathbf{P}_{fin}(\prod_{1 \le i \le n} D_i) = \mathbf{P}_{fin}(D_1 \times \ldots \times D_n)$$

- ▶ Una relazione, in altre parole, è un insieme finito di n-uple nella forma (d_1, \ldots, d_n) dove $d_i \in D_i$ per ogni $1 \le i \le n$.
- Per quello che diremo in questa parte del corso possiamo tranquillamente supporre che esista un unico E tale che $E = D_i$ per ogni $1 \le i \le n$.

Relazioni Ordinate — Esempio

ASCII*	$ASCII^*$	\mathbb{N}	\mathbb{T}
Rossi	Mario	1973	0
Verdi	Carlo	1978	1
Gialli	Luca	1980	1
Bianchi	Andrea	1971	0

Relazioni Ordinate — Esempio

E	E	E	E
Rossi	Mario	1973	0
Verdi	Carlo	1978	1
Gialli	Luca	1980	1
Bianchi	Andrea	1971	0

 $E = ASCII^* \uplus \mathbb{N} \uplus \mathbb{T}.$

Relazioni Non Ordinate

- Spesso conviene dare alle "colonne" di una relazione un *nome*, e non solo una *posizione*.
- ▶ Una relazione diventerebbe quindi:
 - ▶ Un insieme finito $\{f_1, \ldots, f_n\}$;
 - ightharpoonup dove $f_i: C \to D$;
 - ightharpoonup e C è un insieme finito di campi.

Relazioni Non Ordinate

- Spesso conviene dare alle "colonne" di una relazione un *nome*, e non solo una *posizione*.
- ▶ Una relazione diventerebbe quindi:
 - ▶ Un insieme finito $\{f_1, \ldots, f_n\}$;
 - ightharpoonup dove $f_i: C \to D$;
 - ightharpoonup e C è un insieme finito di campi.
- La nostra relazione d'esempio diventerebbe $\{f_1, f_2, f_3, f_4\}$ dove l'insieme C è, per esempio, $\{COGNOME, NOME, ANNO, SOCIO\}$ e il valore delle quattro funzioni f_1, \ldots, f_4 è descritto dalla seguente tabella:

	COGNOME	NOME	ANNO	SOCIO
$f_1(\cdot)$	Rossi	Mario	1973	0
$f_2(\cdot)$	Verdi	Carlo	1978	1
$f_3(\cdot)$	Gialli	Luca	1980	1
$f_4(\cdot)$	Bianchi	Andrea	1971	0

- Ogni relazione ordinata può essere trasformata in una relazione non ordinata.
 - ▶ Data $\mathcal{R} \subseteq D^n = D \times ... \times D$, è sufficiente dare un nome a ciascun intero compreso tra 1 ed n.

- Ogni relazione ordinata può essere trasformata in una relazione non ordinata.
 - ▶ Data $\mathcal{R} \subseteq D^n = D \times ... \times D$, è sufficiente dare un nome a ciascun intero compreso tra 1 ed n.
- Ogni relazione non ordinata può essere trasformata in una relazione ordinata.
 - ▶ Data una relazione non ordinata su un insieme finito di campi C, basterà fissare un *ordine totale* su C.

- Ogni relazione ordinata può essere trasformata in una relazione non ordinata.
 - ▶ Data $\mathcal{R} \subseteq D^n = D \times ... \times D$, è sufficiente dare un nome a ciascun intero compreso tra 1 ed n.
- Ogni relazione non ordinata può essere trasformata in una relazione ordinata.
 - ▶ Data una relazione non ordinata su un insieme finito di campi C, basterà fissare un *ordine totale* su C.
- ▶ I dettagli sono un piacevole *esercizio*.

- Ogni relazione ordinata può essere trasformata in una relazione non ordinata.
 - ▶ Data $\mathcal{R} \subseteq D^n = D \times ... \times D$, è sufficiente dare un nome a ciascun intero compreso tra 1 ed n.
- Ogni relazione non ordinata può essere trasformata in una relazione ordinata.
 - ▶ Data una relazione non ordinata su un insieme finito di campi C, basterà fissare un *ordine totale* su C.
- ▶ I dettagli sono un piacevole *esercizio*.
- ▶ Passeremo da una rappresentazione all'altra molto liberamente, sapendo che sono assolutamente equivalenti.

► Che funzione *calcola* una query?

- ► Che funzione *calcola* una query?
- ▶ Idea
 - La base di dati su cui la query opera è vista come una sequenza di relazioni.
 - ▶ Il risultato della query deve essere anch'esso una relazione.

- ► Che funzione *calcola* una query?
- ▶ Idea
 - La base di dati su cui la query opera è vista come una sequenza di relazioni.
 - ▶ Il risultato della query deve essere anch'esso una relazione.
- ▶ In altre parole, la funzione [Q] calcolata da una query Q dovrebbe avere la forma seguente:

$$\llbracket \mathbb{Q} \rrbracket : \mathbf{P}_{fin}(D^{n_1}) \times \ldots \times \mathbf{P}_{fin}(D^{n_k}) \to \mathbf{P}_{fin}(D^m)$$

- ► Che funzione *calcola* una query?
- ▶ Idea
 - La base di dati su cui la query opera è vista come una sequenza di relazioni.
 - ▶ Il risultato della query deve essere anch'esso una relazione.
- ▶ In altre parole, la funzione [Q] calcolata da una query Q dovrebbe avere la forma seguente:

$$[\![\mathbb{Q}]\!]: \mathbf{P}_{fin}(D^{n_1}) \times \ldots \times \mathbf{P}_{fin}(D^{n_k}) \to \mathbf{P}_{fin}(D^m)$$

▶ Nel momento in cui progettiamo un linguaggio per scrivere query, quindi, dovremmo essere sicuri che, almeno, le query possano avere questa semantica.

- ► Che funzione *calcola* una query?
- Idea
 - La base di dati su cui la query opera è vista come una sequenza di relazioni.
 - ▶ Il risultato della query deve essere anch'esso una relazione.
- ▶ In altre parole, la funzione [Q] calcolata da una query Q dovrebbe avere la forma seguente:

$$[\![\mathbb{Q}]\!]: \mathbf{P}_{fin}(D^{n_1}) \times \ldots \times \mathbf{P}_{fin}(D^{n_k}) \to \mathbf{P}_{fin}(D^m)$$

- Nel momento in cui progettiamo un linguaggio per scrivere query, quindi, dovremmo essere sicuri che, almeno, le query possano avere questa semantica.
- ▶ Domanda importante: *che funzioni vogliamo* che il nostro linguaggio per interrogazioni calcoli? In altre parole, che *espressività* dovrebbe avere tale linguaggio?

Algebra Relazionale — Sintassi

La sintassi dell'algebra relazionale sull'insieme di simboli relazionali $\{R_1, \ldots, R_k\}$ è la seguente:

$$\begin{split} \mathbf{Q} &::= R_i \quad \mid \ \mathbf{Q} \cup \mathbf{P} \quad \mid \ \mathbf{Q} - \mathbf{P} \quad \mid \ \mathbf{Q} \times \mathbf{P} \quad \mid \ \pi_\ell(\mathbf{Q}) \quad \mid \ \sigma_{\mathbf{c}}(\mathbf{Q}) \\ \mathbf{c} &::= i \leq j \quad \mid \ i = j \quad \mid \ \neg \mathbf{c} \quad \mid \ \mathbf{c} \wedge \mathbf{d} \quad \mid \ \mathbf{c} \vee \mathbf{d} \end{split}$$

dove:

- ightharpoonup i e j sono numeri naturali positivi.
- ℓ è una sequenza di numeri naturali positivi, ossia un elemento di \mathbb{N}_{+}^{*} .

Algebra Relazionale — Sintassi

La sintassi dell'algebra relazionale sull'insieme di simboli relazionali $\{R_1,\ldots,R_k\}$ è la seguente:

dove:

- ightharpoonup i e j sono numeri naturali positivi.
- ℓ è una sequenza di numeri naturali positivi, ossia un elemento di \mathbb{N}_{+}^{*} .
- ▶ Un'interrograzione Q soddisfa i vincoli di integrità se i numeri interi che occorrono in essa sono coerenti con la relazioni cui si riferiscono. Ad esempio:
 - Nella query $\pi_{\ell}(\mathbb{Q})$, tutti i numeri in ℓ devono essere in accordo con'arietà di \mathbb{Q} .
 - ightharpoonup Nella query $Q \cup P$, le arietà di Q e P devono essere identiche.
- ▶ Nel seguito, si supporrà che tutte le interrogazioni con cui lavoreremo soddisfino i vincoli di integrità.

▶ Data una query Q su $\{R_1, \ldots, R_k\}$, vogliamo definire la sua semantica:

$$[\![\mathbb{Q}]\!]: \mathbf{P}_{fin}(D^{n_1}) \times \ldots \times \mathbf{P}_{fin}(D^{n_k}) \to \mathbf{P}_{fin}(D^m)$$

dove n_1, \ldots, n_k sono le arietà di R_1, \ldots, R_k e m è l'arietà di \mathbb{Q} .

▶ Data una query Q su $\{R_1, \ldots, R_k\}$, vogliamo definire la sua semantica:

$$[\![\mathbb{Q}]\!]: \mathbf{P}_{fin}(D^{n_1}) \times \ldots \times \mathbf{P}_{fin}(D^{n_k}) \to \mathbf{P}_{fin}(D^m)$$

dove n_1, \ldots, n_k sono le arietà di R_1, \ldots, R_k e m è l'arietà di \mathbb{Q} .

- ▶ La funzione [Q] è definita per induzione sulla struttura di Q.
- ▶ Se Q è R_i , allora $[\![Q]\!](\mathcal{R}_1,\ldots,\mathcal{R}_k)$ è semplicemente \mathcal{R}_i .
- ▶ Gli operatori \cup , e \times hanno un'interpretazione insiemistica naturale. Ad esempio:

$$[\![\mathbb{Q} \cup \mathbb{P}]\!](\mathcal{R}_1, \dots, \mathcal{R}_k) = [\![\mathbb{Q}]\!](\mathcal{R}_1, \dots, \mathcal{R}_k) \cup [\![\mathbb{P}]\!](\mathcal{R}_1, \dots, \mathcal{R}_k)$$

Rimane solo da vedere cosa succede per proiezione e selezione.

- Nell'operatore di proiezione, interviene una lista di interi ℓ , che indica semplicemente quali campi considerare nella proiezione.
- ▶ Formalmente: $\llbracket \pi_{i_1,...,i_s}(\mathsf{Q}) \rrbracket (\mathcal{R}_1,...,\mathcal{R}_k)$ sarà l'insieme

$$\{(d_{i_1},\ldots,d_{i_s})\mid (d_1,\ldots,d_n)\in \llbracket \mathtt{Q} \rrbracket(\mathcal{R}_1,\ldots,\mathcal{R}_k)\}$$

▶ Da osservare come i vincoli di integrità risultino in questa fase assolutamente cruciali.

- Nell'operatore di selezione, interviene invece una condizione
 c, che indica quali tuple considerare nella selezione.
- Data una tupla di valori $t = (d_1, \ldots, d_n)$ e una condizione c, possiamo definire quando quest'ultima è soddisfatta in (d_1, \ldots, d_n) , per induzione. Ad esempio:
 - $(d_1, \ldots, d_n) \vdash i = j \text{ sse } d_i = d_j;$
 - $ightharpoonup t \vdash c \land d \text{ sse } t \vdash c \text{ e } t \vdash d.$
- ▶ A questo punto definire la semantica dell'operatore di selezione è semplice. La relazione $\llbracket \sigma_{\mathbf{c}}(\mathbf{Q}) \rrbracket (\mathcal{R}_1, \dots, \mathcal{R}_k)$ sarà

$$\{t \mid t \in [\mathbb{Q}](\mathcal{R}_1, \dots, \mathcal{R}_k) \land t \vdash \mathsf{c}\}$$

Di nuovo, i vincoli di integrità risultano in questa fase importanti.

 \mathcal{R}_1

0012	Rossi	Mario	1973	0
1492	Verdi	Carlo	1978	1
9834	Gialli	Luca	1980	1
7511	Bianchi	Andrea	1971	0

 \mathcal{R}_1

0012	Rossi	Mario	1973	0
1492	Verdi	Carlo	1978	1
9834	Gialli	Luca	1980	1
7511	Bianchi	Andrea	1971	0

 \mathcal{R}_2

0012	1492	3	2
1492	7511	1	3
9834	7511	0	3
-			

0012	Rossi	Mario	1973	0
1492	Verdi	Carlo	1978	1
9834	Gialli	Luca	1980	1
7511	Bianchi	Andrea	1971	0

 \mathcal{R}_1

	, 02		
0012	1492	3	2
1492	7511	1	3
9834	7511	0	3

 \mathcal{R}_{2}

- ▶ Le relazioni di cui sopra sono la base di dati di una società di tennis. La prima tiene traccia dei soci, la seconda dei risultati delle partite.
- ▶ Vogliamo costruire una query che determini gli anni di nascita dei *soci* che hanno vinto almeno una partita.

0012	Rossi	Mario	1973	0
1492	Verdi	Carlo	1978	1
9834	Gialli	Luca	1980	1
7511	Bianchi	Andrea	1971	0

 \mathcal{R}_1

	702		
0012	1492	3	2
1492	7511	1	3
9834	7511	0	3

 \mathcal{R}_{\circ}

- Le relazioni di cui sopra sono la base di dati di una società di tennis. La prima tiene traccia dei soci, la seconda dei risultati delle partite.
- ▶ Vogliamo costruire una query che determini gli anni di nascita dei *soci* che hanno vinto almeno una partita.
- ▶ Basta la query:

$$\pi_4(\sigma_{(1=6)\land(8>9)}(R_1\times R_2))\cup\pi_4(\sigma_{(1=7)\land(9>8)}(R_1\times R_2))$$

▶ Osserviamo come, ad esempio, la condizione 8 > 9 non sia esprimibile direttamente, ma debba essere scritta nella forma $8 \ge 9 \land \neg (8 = 9)$.

▶ Possiamo a questo punto definire l'insieme delle funzioni che l'algebra relazionale ci permette di catturare:

 $\mathcal{AR} = \{ \llbracket Q \rrbracket \mid Q \text{ è una query ben formata} \}$

▶ Possiamo a questo punto definire l'insieme delle funzioni che l'algebra relazionale ci permette di catturare:

$$\mathcal{AR} = \{ [\![\mathbf{Q}]\!] \mid \mathbf{Q} \text{ è una query ben formata} \}$$

► Ci chiediamo: quanto grande è AR? Corrisponde magari all'insieme delle funzioni calcolabili con certi limitazioni di tempo o spazio?

▶ Possiamo a questo punto definire l'insieme delle funzioni che l'algebra relazionale ci permette di catturare:

$$\mathcal{AR} = \{[\![\mathbb{Q}]\!] \mid \mathbb{Q} \text{ è una query ben formata}\}$$

- ► Ci chiediamo: quanto grande è AR? Corrisponde magari all'insieme delle funzioni calcolabili con certi limitazioni di tempo o spazio?
- ▶ Ma ci interessa catturare una classe di complessità ampia?

▶ Possiamo a questo punto definire l'insieme delle funzioni che l'algebra relazionale ci permette di catturare:

$$\mathcal{AR} = \{ [\![\mathbf{Q}]\!] \mid \mathbf{Q} \text{ è una query ben formata} \}$$

- ► Ci chiediamo: quanto grande è AR? Corrisponde magari all'insieme delle funzioni calcolabili con certi limitazioni di tempo o spazio?
- ▶ Ma ci interessa catturare una classe di complessità ampia?
- ▶ Vogliamo veramente fare in modo che le query possano, anche solo ipoteticamente, richiedere, per esempio, spazio lineare? O tempo più che lineare?

Calcolo Relazionale — Sintassi

- Un modo naturale per lavorare con le relazioni è certamente la *logica predicativa*, che conosciamo bene.
- Supponiamo di voler:
 - ▶ interrogare una base di dati che consti delle relazioni $\mathcal{R}_1, \ldots, \mathcal{R}_k$ aventi arietà n_1, \ldots, n_k .
 - ightharpoonup ottenenedo come **risultato** una relazione $\mathcal Q$ di arietà m.

Calcolo Relazionale — Sintassi

- Un modo naturale per lavorare con le relazioni è certamente la *logica predicativa*, che conosciamo bene.
- Supponiamo di voler:
 - ▶ interrogare una base di dati che consti delle relazioni $\mathcal{R}_1, \ldots, \mathcal{R}_k$ aventi arietà n_1, \ldots, n_k .
 - ightharpoonup ottenenedo come **risultato** una relazione $\mathcal Q$ di arietà m.
- ightharpoonup Basterà costruire una formula predicativa F nel modo seguente:
 - ▶ Gli unici simboli funzionali sono delle *costanti* che indicano gli elementi di D, mentre i simboli predicativi saranno R_1, \ldots, R_k , più i simboli $\leq e =$, questi ultimi preinterpretati.
 - Le variabili che occorrono libere in F dovranno essere incluse nell'insieme $\{f_1, \ldots, f_m\}$ e corrispondere ciascuna ad un campo della relazione Q.

Calcolo Relazionale — Sintassi

- Un modo naturale per lavorare con le relazioni è certamente la *logica predicativa*, che conosciamo bene.
- Supponiamo di voler:
 - ▶ interrogare una base di dati che consti delle relazioni $\mathcal{R}_1, \ldots, \mathcal{R}_k$ aventi arietà n_1, \ldots, n_k .
 - ightharpoonup ottenenedo come **risultato** una relazione $\mathcal Q$ di arietà m.
- ightharpoonup Basterà costruire una formula predicativa F nel modo seguente:
 - ▶ Gli unici simboli funzionali sono delle *costanti* che indicano gli elementi di D, mentre i simboli predicativi saranno R_1, \ldots, R_k , più i simboli $\leq e =$, questi ultimi preinterpretati.
 - Le variabili che occorrono libere in F dovranno essere incluse nell'insieme $\{f_1, \ldots, f_m\}$ e corrispondere ciascuna ad un campo della relazione Q.
- ▶ Abbiamo appena definito il **calcolo relazionale**, ossia un frammento della logica predicativa.

Calcolo Relazionale — Un Esempio

\mathcal{R}_1

0012	Rossi	Mario	1973	0
1492	Verdi	Carlo	1978	1
9834	Gialli	Luca	1980	1
7511	Bianchi	Andrea	1971	0

Calcolo Relazionale — Un Esempio

\mathcal{R}_1

0012	Rossi	Mario	1973	0
1492	Verdi	Carlo	1978	1
9834	Gialli	Luca	1980	1
7511	Bianchi	Andrea	1971	0

\mathcal{R}_2

0012	1492	3	2
1492	7511	1	3
9834	7511	0	3

Calcolo Relazionale — Un Esempio

1	Ł	1

0012	Rossi	Mario	1973	0
1492	Verdi	Carlo	1978	1
9834	Gialli	Luca	1980	1
7511	Bianchi	Andrea	1971	0

\mathcal{R}_2

0012	1492	3	2
1492	7511	1	3
9834	7511	0	3

▶ Vogliamo costruire una formula del calcolo relazionale che catturi gli anni di nascita dei vincitori.

Calcolo Relazionale — Un Esempio

0012	Rossi	Mario	1973	0
1492	Verdi	Carlo	1978	1
9834	Gialli	Luca	1980	1
7511	Bianchi	Andrea	1971	0

\mathcal{R}_2

0012	1492	3	2
1492	7511	1	3
9834	7511	0	3

- ▶ Vogliamo costruire una formula del calcolo relazionale che catturi gli anni di nascita dei vincitori.
- ▶ Un esempio potrebbe essere:

$$\exists p. \exists s. \exists c. \exists n. \exists o. \exists pp. \exists ps. R_1(p,c,n,f,o) \land R_2(p,s,pp,ps) \land (pp > ps) \\ \lor \\ \exists p. \exists s. \exists c. \exists n. \exists o. \exists pp. \exists ps. R_1(s,c,n,f,o) \land R_2(p,s,pp,ps) \land (ps > pp) \\$$

- ► Osserviamo che:
 - L'universo in cui interpretare una formula F del calcolo relazionale è D.

- Osserviamo che:
 - L'universo in cui *interpretare* una formula F del calcolo relazionale è D.
 - ▶ Gli unici simboli che occorre *interpretare* per dare un semantica a F sono R_1, \ldots, R_k . È quindi naturale vedere la base di dati $\{\mathcal{R}_1, \ldots, \mathcal{R}_k\}$ come una tale interpretazione.

- Osserviamo che:
 - L'universo in cui *interpretare* una formula F del calcolo relazionale è D.
 - ▶ Gli unici simboli che occorre *interpretare* per dare un semantica a F sono R_1, \ldots, R_k . È quindi naturale vedere la base di dati $\{\mathcal{R}_1, \ldots, \mathcal{R}_k\}$ come una tale interpretazione.
 - Se vale che

$$(D, \{\mathcal{R}_1, \ldots, \mathcal{R}_k\}), \xi \models F,$$

ciò significa che $(\xi(f_1), \ldots, \xi(f_m))$ deve stare nella relazione Q.

- Osserviamo che:
 - L'universo in cui interpretare una formula F del calcolo relazionale è D.
 - Gli unici simboli che occorre interpretare per dare un semantica a F sono R_1, \ldots, R_k . È quindi naturale vedere la base di dati $\{\mathcal{R}_1, \ldots, \mathcal{R}_k\}$ come una tale interpretazione.
 - Se vale che

$$(D, \{\mathcal{R}_1, \ldots, \mathcal{R}_k\}), \xi \models F,$$

ciò significa che $(\xi(f_1), \dots, \xi(f_m))$ deve stare nella relazione Q.

▶ Di conseguenza, possiamo porre $\llbracket F \rrbracket (\mathcal{R}_1, \dots, \mathcal{R}_k)$ pari a

$$\{(\xi(f_1),\ldots,\xi(f_m))\mid (D,\{\mathcal{R}_1,\ldots,\mathcal{R}_k\}),\xi\models F\}.$$

- Osserviamo che:
 - L'universo in cui interpretare una formula F del calcolo relazionale è D.
 - ▶ Gli unici simboli che occorre *interpretare* per dare un semantica a F sono R_1, \ldots, R_k . È quindi naturale vedere la base di dati $\{\mathcal{R}_1, \ldots, \mathcal{R}_k\}$ come una tale interpretazione.
 - ► Se vale che

$$(D, \{\mathcal{R}_1, \dots, \mathcal{R}_k\}), \xi \models F,$$

ciò significa che $(\xi(f_1), \dots, \xi(f_m))$ deve stare nella relazione Q.

▶ Di conseguenza, possiamo porre $\llbracket F \rrbracket (\mathcal{R}_1, \dots, \mathcal{R}_k)$ pari a

$$\{(\xi(f_1),\ldots,\xi(f_m))\mid (D,\{\mathcal{R}_1,\ldots,\mathcal{R}_k\}),\xi\models F\}.$$

- ▶ In questo modo, $\llbracket F \rrbracket \subseteq D^m$, ma non è detto che $\llbracket F \rrbracket$ sia finita!
 - Basti considerare la formula $F = (f_1 = f_1)$.

Occorre quindi isolare un sottoinsieme delle formule del calcolo relazionale, che chiameremo **formule sicure**.

- Occorre quindi isolare un sottoinsieme delle formule del calcolo relazionale, che chiameremo formule sicure.
- Le formule sicure, descritte nella prossima trasparenza, hanno la proprietà che se F è sicura, allora ogni tupla in $\llbracket F \rrbracket$ contiene valori tra quelli che occorrono in F e quelli che troviamo nelle tuple in $\mathcal{R}_1, \ldots, \mathcal{R}_k$.

- Occorre quindi isolare un sottoinsieme delle formule del calcolo relazionale, che chiameremo formule sicure.
- Le formule sicure, descritte nella prossima trasparenza, hanno la proprietà che se F è sicura, allora ogni tupla in $\llbracket F \rrbracket$ contiene valori tra quelli che occorrono in F e quelli che troviamo nelle tuple in $\mathcal{R}_1, \ldots, \mathcal{R}_k$.
- ▶ Di conseguenza, $\llbracket F \rrbracket$ è sempre finita.
- Nel definire il calcolo relazionale sicuro, si utilizza spesso l'insieme delle variabili che occorrono libere in una formula F, che scriveremo FV(F).

- 1. L'uso del quantificatore *universale* non è permesso.
- 2. Ogniqualvolta si utilizza l'operatore \vee per formare $F \vee G$, deve valere che FV(F) = FV(G).
- 3. Se una sottoformula della formula data si può scrivere come $F_1 \wedge \ldots \wedge F_m$, (dove $m \geq 1$ è massimale), allora ogni $x \in \bigcup_{1 \leq i \leq m} FV(F_i)$ deve essere limitata, ossia deve esistere $almeno\ una$ formula F_i tale che:
 - 3.1 $x \in FV(F_j)$ e F_j non è un predicato aritmetico e non è nella forma $\neg G$.
 - 3.2 F_j è nella forma x=c oppure c=x , dove c è una costante.
 - 3.3 F_j è nella forma x = y dove y è anch'essa limitata.
- 4. L'unico uso permesso dell'operatore di negazione è in una delle formule $F_j = \neg G$ di una congiunzione $F_1 \wedge \ldots \wedge F_m$ in cui vi sia almeno una delle F_p che non sia essa stessa negata.

Calcolo Relazionale Sicuro — Potere Espressivo

➤ Siamo finalmente in grado di definire l'insieme delle funzioni che il calcolo relazionale sicuro cattura:

 $\mathcal{CR} = \{ \llbracket F \rrbracket \mid F \text{ è una formula sicura del calcolo relazionale} \}.$

Calcolo Relazionale Sicuro — Potere Espressivo

➤ Siamo finalmente in grado di definire l'insieme delle funzioni che il calcolo relazionale sicuro cattura:

$$\mathcal{CR} = \{ \llbracket F \rrbracket \mid F \text{ è una formula sicura del calcolo relazionale} \}.$$

Teorema

AR = CR.