

X847/75/01

Mathematics Paper 1 (Non-calculator)

Marking Instructions

Please note that these marking instructions have not been standardised based on candidate responses. You may therefore need to agree within your centre how to consistently mark an item if a candidate response is not covered by the marking instructions.

Marking instructions for each question

Question		Generic scheme	Illustrative scheme	Max mark
1.		•¹ start process	$\bullet^1 1^2 + (-4)^2 + 8^2$	2
		•² solution	•2 9	
2.		•¹ correct common denominator	• $1 5 \frac{\dots}{14} - 1 \frac{\dots}{14} \text{or} \frac{\dots}{14} - \frac{\dots}{14}$	2
		•² answer	\bullet^2 4 $\frac{3}{14}$ or $\frac{59}{14}$	
3.		•¹ start expansion	\bullet^1 6 x^2 +18 x -5 x -15 or 8 x -2 x^2	3
		•² complete expansion	\bullet^2 6 x^2 +18 x -5 x -15 +8 x -2 x^2	
		• ollect like terms which must include a term in x^2	$\bullet^3 4x^2 + 21x - 15$	
4.		•¹ calculate angle POM	•1 76	2
		•² calculate angle ONM	•² 38	
5.		•¹ find quartiles	•¹ 13, 23·5	2
		•² calculate semi-interquartile range	• ² 5·25	
6.		• correct substitution into $y = kx^2$	$\bullet^1 -12 = k \times 2^2$	2
		•² solve	•2 -3	
7.		•¹ correct scaling	•1 for example $\frac{15c + 6d = 12}{8c - 6d = 34}$	3
		$ullet^2$ consistent value for c or d	• $c = 2 \text{ or } d = -3$	
		$ullet^3$ consistent values for c and d	\bullet^3 $c=2$ and $d=-3$	
8.		•¹ calculate discriminant	•¹ 44	2
		•² state nature of roots	•² two real and distinct roots	

Question		n	Generic scheme	Illustrative scheme	Max mark
9.			•1 simplify $\sqrt{50}$	•¹ 5√2	3
			• simplify $\sqrt{45}$	•² 3√5	
			•³ express in simplest form	• $3 4\sqrt{2} + 3\sqrt{5}$	
10.	(a)				3
			•¹ find gradient	•¹ $\frac{60}{1200}$	
			• substitute gradient and a point into $y-b=m(x-a)$	• for example $y-450 = \frac{60}{1200}(x-6000)$	
			$ullet^3$ state equation in simplest form in terms of W and S	• $W = \frac{1}{20}S + 150$ or equivalent	
			Method 2: $y = mx + c$		
			•¹ find gradient	•¹ $\frac{60}{1200}$	
			• 2 substitute gradient and a point into $y = mx + c$	• for example $450 = \frac{60}{1200} \times 6000 + c$	
			$ullet^3$ state equation in simplest form in terms of W and S	• $W = \frac{1}{20}S + 150$ or equivalent	
	(b)		•4 calculate wage	•4 200	1
11.			•¹ expand brackets	$\bullet^1 1-x-4>2x$	3
			•² rearrange	$\bullet^2 -3x > 3$ or $-3 > 3x$	
			\bullet ³ solve for x	• $x < -1$ or $-1 > x$	
12.			•¹ evidence of 75% = 2400	•¹ 75% = 2400	3
			•² begin valid strategy	• $(25\% =) \frac{2400}{3}$ or $(1\% =) \frac{2400}{75}$	
			•³ complete calculation within a valid strategy	•³ 3200	

Question		n	Generic scheme	Illustrative scheme	Max mark
13.			$ullet^1$ state value of a	$\bullet^1 a = 2$	2
			$ullet^2$ state value of b	\bullet^2 $b=3$	
14.	(a)		•¹ state coordinates of B	•1 (3,0,-3)	1
	(b)		•² correct substitution into volume of hemisphere formula	$\bullet^2 \frac{1}{2} \times \frac{4}{3} \times \pi \times 3^3$	2
			$ullet^3$ calculate volume in terms of π	●³ 18π	
15.			•¹ interpret index	$\bullet^1 \sqrt{16^3}$	2
			•² complete evaluation	•² 64	
16.			•¹ correct substitution	\bullet^1 4 sin(3×90)	2
			• evaluate $f(90)$	\bullet^2 -4	
17.			•¹ coordinates of turning point correct	•¹ (1,4)	3
			•² sketch parabola with minimum turning point consistent with •¹	•² parabola with minimum turning point consistent with •¹	
			•³ y-intercept correct	•³ (0,6) or 6	
				0 (1,4)	

Question		n	Generic scheme	Illustrative scheme	Max mark
18.			•1 marshal facts and recognise right angled triangle	6 10	4
			•² consistent Pythagoras statement	$\bullet^2 10^2 - 6^2$	
			•³ calculate third side	•3 8	
			• ⁴ calculate length	● ⁴ 48	
19.			•¹ start to factorise	$\bullet^1 (2x \ 5)(3x \ 1)$	3
			•² complete factorisation	-2 (2x+5)(3x-1)	
			•³ solve equation	$ \bullet^3 - \frac{5}{2} , \frac{1}{3} $	

[END OF MARKING INSTRUCTIONS]