Identification

Nom:	Prénom:	
Numéro d'identification (NI):		
SECTION:		

MAT-1910: Mathématiques de l'ingénieur II Examen 2 (40%) Vendredi 23 avril 2021 de 18h30 à 21h00

Enseignants:

Hugo Chapdelaine (NRC 16327) Rachid Kandri-Rody (NRC 16326) Solutions

Directives

- Identifiez immédiatement votre cahier d'examen.
- Assurez-vous que cet examen comporte oquestions réparties sur 12 pages.
- Assurez-vous que les sonneries de vos appareils électroniques sont désactivées et rangez-les hors de portée.
- Vous avez droit à une feuille aide-mémoire manuscrite et recto-verso $8\frac{1}{2}$ " par 11".
- Sauf indication contraire, vous devez rédiger des solutions complètes et justifiées.
- Vous avez droit à une calculatrice autorisée par la faculté des sciences et génie.
- Dans tous les cas où c'est possible, vous devez écrire la valeur exacte et non une valeur numérique approchée (p.ex. si $x^2 = 2$ et x > 0 vous devriez écrire $x = \sqrt{2}$ plutôt que $x \approx 1,414$).

Résultats

							1	
Questions	1	2	3	4	5	6	\ Y /	Total
Points	15	15	20	20	20	20	2X	110
Note 110].	/ /	

 ${\bf Question~1}~(15~{\rm pts})$ On considère une particule se déplaçant sur une trajectoire donnée par la paramétrisation

$$\vec{r}(t) = (\cos^2 t - 1, \sin^2 t - 2) \quad \text{pour } t \in [0, \pi]$$

Quelle est la distance totale parcourue par cette particule?

$$ds = |r'(t)| dt \qquad r'(t) = (-\sin t \cdot \lambda \cos t), \quad \cos t \quad a \sin t) + \epsilon [\sigma, \tau'(t)] = \int_{\mathcal{B}} \cos^3 t \sin^2 t$$

$$= \sqrt{8} |\cos t| \sin t$$

$$= \sqrt{8} |\cos t| \sin t$$
Airni la diotance l paracourue par la particule est

$$\lambda := \int_{0}^{\pi} \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque} \quad \text{particule}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque}$$

$$\lambda := \int_{0}^{\pi} |\cos t| \sin t |dt \quad \text{on remanque}$$

$$\lambda := \int_{0}^{\pi} |\cos t|$$

et $y(t) = sin^2 t - 2$ si on pose $x(t) = (os^2 t - 1)$

on port oursi remorques que

(1,-1) (0,-2)

$$x(t) + y(t) = -2$$
 et

et
$$(x(0), y(0)) = (0, -2)$$

$$\left(\times\left(\frac{\pi}{2}\right),y\left(\frac{\pi}{2}\right)\right)$$
 $\left(-1,-1\right)$

totale par course par Ainsi la distance 25. la particule est

Question 2 (15 pts) Pour chacun des deux champs vectoriels sur \mathbb{R}^3 suivants, dire si il est conservatif, et, le cas échéant, calculez le potentiel associé:

(1)
$$\vec{F}_1 = (xy^2z^2 - y, x^2yz^2 - y, x^2y^2z - z)$$
,

(2) $\vec{F}_2 = (xy^2z^2 - y, x^2yz^2 - x, x^2y^2z - z)$

1) $P_3 = 2 \times y = -1$ $Q_1 = 2 \times y = -1$ $Q_2 = 2 \times y = -1$

Conne $P_3 + Q_2 + Q_3 + Q_4 +$

$$(E_1)_{z} = \chi^2 y^2 z + \frac{\partial C}{\partial z}$$

$$R = \chi^2 y^2 z - z$$

$$\Rightarrow C(z) = -z^2 + D$$
Locte

Donc
$$E(x_1y_1z):=\frac{x^2}{2}y^2z^2-yx-\frac{z^2}{2}+D$$
 ext un potential

Question 3 (20 pts) On considère la coquille mince S donnée par les équations

$$x^2 + y^2 + z^2 = 1$$
 et $-1 \le z \le \frac{1}{\sqrt{2}}$.

On supposera que la densité surfacique σ de S est constante et égal à 1. Soit m la masse de S et $c_m = (\overline{x}, \overline{y}, \overline{z})$ son centre de masse.

(1) Soit (ρ, θ, ϕ) les coordonnées sphériques. Montrer que $|\vec{dS}| = \sin \phi d\phi d\theta$.

- (2) Montrer que $m = 2\pi(1 + \frac{1}{\sqrt{2}})$
- (3) Calculer les coordonnées de c_m .

de volume en ephérique est prime de de de de Done comme p=1 out constant sur S on trouve que

125/ = 3/ = sind 2400

On aviait avisi pui prendre la paramétrisation de S $\vec{F}(\theta,\phi) = \left(\sin\phi \cos\theta, \sin\phi \sin\theta, \cos\phi \right)$

remarquer que to I top et donc

 $|d\vec{s}| = |\vec{r}_{\theta} \times \vec{r}_{\phi}|d\theta d\phi = |\vec{r}_{\theta}| \cdot |\vec{r}_{\phi}| d\theta d\phi$

calcular directement (To x Fo)

(ce qui est laborioux)

S:
$$\neq (\theta, \phi) := (sin \phi cos \theta, sin \phi sin \theta, cos \phi)$$

Done
$$A(S) = \int_0^{2\pi} \int_{\pi/4}^{\pi} \sin \phi \, d\phi \, d\theta$$

$$= 2\pi \left(-\cos \phi\right) \Big|_{\pi/4}^{\pi} = 2\pi \left[1 + \frac{1}{\sqrt{2}}\right]$$

3)
$$\overline{x} = \overline{y} = 0$$
 por symétrie

 $\overline{z} = \frac{1}{A(S)} \cdot M_{\overline{z}} = 0$ $M_{\overline{z}} = 0$ $M_{\overline{z}}$

$$= \pi \left\{ \frac{\pi}{\pi/4} \sin 2\phi \, d\phi \right\} = \pi \left(\frac{-\cos 2\phi}{2} \right) \left\{ \frac{\pi}{\pi/4} \right\} = \pi \left[-1 + 0 \right]$$

$$= -\pi/2$$

Aimi
$$\overline{z} = \frac{-\frac{\pi}{3}}{2\pi \left(1+\frac{1}{\sqrt{3}}\right)} = \frac{6}{4\left(1+\frac{1}{\sqrt{3}}\right)}$$

 Question 4 (20 pts) Une surface S est constituée d'une surface cylindrique

$$S_1 = \{(x, y, z) : x^2 + y^2 = 1, 0 \le z \le 1\}$$

surmontée de la demi-sphère S_2 centrée au point (0,0,1) et de rayon 1. On considère le champ vectoriel $\overrightarrow{v}=(z,\ x,\ x^2+y^2)$.

- (1) Donnez une paramétrisation de S_1 en n'oubliant pas d'indiquer le domaine de paramétrisation de S_1 .
- (2) Calculez le flux de \overrightarrow{v} à travers la surface S_1 , orientée positivement.
- (3) En utilisant le théorème de Gauss, calculez le flux de \overrightarrow{v} à travers la surface S_2 .

$$\int_{S_3}^{S_3} \nabla \cdot d\vec{S}_1 + \int_{S_3}^{S_3} \nabla \cdot d\vec{S}_3 = \int_{S_3}^{S_3} \int_{S_3}^{S_3}$$

$$\left(\int_{0}^{1} \sqrt{3} dS_{3} \right) = \int_{0}^{1} \left(0, x_{3} x_{3}^{2} + y_{3}^{2} \right) \cdot \left(0, 0, -1 \right) dx dy$$

$$S_{3}$$

$$= - \int_{0}^{2\pi} \int_{0}^{1} r^{2} r dr = -2\pi \cdot \frac{r^{4}}{4} \Big|_{0}^{1}$$

Ainsi on doit avon que St. dS2 = \tag{7}

Sr

Question \S (20 pts) Soient deux arcs de cercle C_1 et C_2 de représentation paramétriques:

$$C_1: \vec{r}_1(\theta) = (\cos \theta, \sin \theta, 0) \text{ pour } \theta \in [0, \frac{\pi}{2}]$$

$$C_2: \vec{r}_2(\theta) = (0, \sin \theta, \cos \theta) \text{ pour } \theta \in [0, \frac{\pi}{2}]$$

Soit S la surface de représentation paramétrique:

$$S: \vec{r}(t,\theta) = t\vec{r}_1(\theta) + (1-t)\vec{r}_2(\theta) \text{ pour } t \in [0,1] \text{ et } \theta \in [0,\frac{\pi}{2}].$$

Soit le champ vectoriel $\vec{W} = (z, x, y)$.

- (1) Calculer $rot(\vec{W})$.
- (2) Calculer le vecteur normal $\vec{N} = \vec{r}_t \times \vec{r}_\theta$ à la surface S.
- (3) Calculer le travail T du champ vectoriel \vec{W} le long de la frontière de S orientée positivement par rapport à la normale dont la troisième composante est positive.

1) rot
$$(\vec{w}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \vec{\partial_x} & \vec{\partial_y} & \vec{\partial_z} \end{vmatrix} = (1, -(-1), 1) = (1, 1, 1)$$

a)
$$\vec{r}(t,\theta) = (t\cos\theta, t\sin\theta + (1-t)\sin\theta, (1-t)\cos\theta)$$

 $= (t\cos\theta, s\sin\theta, (1-t)\cos\theta)$
 $\vec{r}_{t} = (\cos\theta, 0, -\cos\theta)$ $\vec{r}_{\theta} = (-t\sin\theta, \cos\theta, -(1-t)\sin\theta)$
 $\vec{r}_{t} \times \vec{r}_{\theta} = \begin{vmatrix} i & i & i \\ \cos\theta & 0 & -\cos\theta \\ -t\sin\theta & \cos\theta, (t-1)\sin\theta \end{vmatrix} = (\cos^{2}\theta, -(1-t)\sin\theta\cos\theta, \cos^{2}\theta)$
 $= (\cos^{2}\theta, \sin\theta\cos\theta, \cos\theta, \cos\theta)$

Question (20 pts) Pour cette question, vous devez uniquement encercler la bonne réponse selon la question (la justification n'est pas nécessaire).

(1) (5 pts) Soit C le cercle unité orienté positivement et \vec{n} le vecteur normal unitaire au cercle unité qui pointe vers l'exérieur. Soit \vec{F} le champ vectoriel planaire $\vec{F} = (x \cos y + x, -\sin y + 2y)$. Que vaut l'intégrale suivante:

$$I = \int_C \vec{F} \cdot \vec{n} ds,$$

où ds correspond à l'élement de longeur d'arc?

- (a) $I = \pi$,
- (b) $I = 2\pi$,
- $(c)I = 3\pi,$
- (d) $I = 4\pi$,
- (e) Aucun des choix précédents.
 - (2) On considère le champ vectoriel et la courbe représentée par l'image ci-bas:

Que peut-on dire du travail $W:=\int_C \vec{F} \cdot \vec{dr}$, si C est parcourue dans le sens anti-horaire?

(a)
$$W < 0$$

(b)
$$W = 0$$

$$(c)$$
 $W > 0$

(3) Soit $\vec{r}=(x,y,z)$ vecteur position basé à l'origine du plan \mathbb{R}^3 et $r=||\vec{r}||$ sa longeur. Soit

$$\vec{F}(x,y,z) = -\frac{1}{r^2} \frac{\vec{r}}{r}$$

un champ vectoriel gravitationnel. On notera par \mathcal{O} l'origine de \mathbb{R}^3 . Lequel des énoncés suivants est faux:

- (a) $rot(\vec{F}) = \vec{0}$.
- (b) $\operatorname{div}(\vec{F}) = 0$.
- $\vec{(c)}\vec{F}$ n'admet pas de potentiel sur $\mathbb{R}^3\setminus\{\mathcal{O}\}$.
- (d) \vec{F} admet une singularité au point \mathcal{O} .
- (e) \vec{F} est conservatif sur $\mathbb{R}^3 \setminus \{\mathcal{O}\}$.

(4) Pour lequel des 5 champs vectoriels \vec{F} suivants existe-t-il un champ vectoriel \vec{G} tel que rot $(\vec{G}) = \vec{F}$?

- (a) $\vec{F} = (x^3, z^3, y^3)$
- (b) $\vec{F} = (x^3, y^3, z^3)$
- (c) $\vec{F} = (z^3, y^3, x^3)$
- (d) $\vec{F} = (y^3, x^3, z^3)$
- $(e)\vec{F} = (y^3, z^3, x^3).$