## PHYS 1511 Discussion Section: Week 9

Connor Feltman

University of Iowa

23 January 2020

#### Chapter 9: Rotational Dynamics

- -Force and Torque
- -Equilibrium of Torque (statics)
- -Rotational motion about an axis
- -Rotational Work and Energy
- -Angular Momentum
- -Conservation of Angular Momentum

### Chapter 10: Simple Harmonic Motion (SHM) and Elasticity

- -Ideal Spring and SHM
- -Frequency, Period, acceleration in SHM
- -Energy in SHM
- -The Pendulum (concepts: Damped and driven motion)
- -Elastic Deformation
- -Stress, Strain and Hooke's Law

 $\vec{\alpha}$ ,  $\vec{\omega}$ ,  $\vec{L}$  are vectors so that means that they a positive and negative direction.

- (+) counterclockwise  $\vec{\alpha}, \vec{\omega}, \vec{L}$
- (-) clockwise  $\vec{\alpha}, \vec{\omega}, \vec{L}$

## Relevant Equations

Chapter 9:

$$\vec{\tau} = |r||F|\sin(\theta) \qquad \text{(Torque)} \tag{1}$$

$$\Sigma \overrightarrow{\tau} = 0$$
 (Rotational Statics) (2)

$$\Sigma \vec{\tau} = I \vec{\alpha}_{net}$$
 (Rotational "Newton's 2nd law") (3)

$$x_{\text{cg}} = \frac{W_1 x_1 + W_2 x_2 + \dots}{W_1 + W_2 + \dots} \qquad \text{(Center of Gravity)} \tag{4}$$

\*\*\* Won't cover today

$$KE_R = \frac{1}{2}I\omega^2$$
 (Rotational Kinetic Energy) (5)

$$\vec{L} = I\vec{\omega} \qquad \text{(Angular Momentum)} \tag{6}$$

# Relevant Equations





Thin ring or hollow cylinder about its axis  $I = MR^2$ 

Solid sphere about diameter  $I = \frac{2}{5}MR^2$ 



Flat plate about perpendicular axis  $I = \frac{1}{12}M(a^2 + b^2)$ 







Disk or solid cylinder about its axis  $I = \frac{1}{2}MR^2$ 

Hollow spherical shell about diameter  $I = \frac{2}{3} MR^2$ 



Flat plate about central axis  $I = \frac{1}{12} Ma^2$ 



Point mass:  $I = MR^2$ 

# Relevant Equations

#### Chapter 10:

$$\overrightarrow{F} = -kx \qquad \text{(Spring Resorting Force)} \tag{7}$$

$$\omega = \sqrt{\frac{k}{m}} \text{ or } k = \omega^2 m$$
 (spring constant) (8)

$$W = \Delta PE = \frac{1}{2}kx^2$$
 (Work/Potential Energy done by spring) (9)

$$2\pi f = \sqrt{\frac{g}{L}} = \sqrt{\frac{mgL}{I}}$$
 (Pendulum frequency) (10)

$$F = Y\left(\frac{\Delta L}{L_o}\right) A \qquad \text{(Stretch)} \tag{11}$$

$$F = S\left(\frac{\Delta X}{L_o}\right) A \qquad \text{(Sheer Force)} \tag{12}$$

$$\vec{P} = \frac{\vec{F}}{A} \qquad \text{(Pressure Definition)} \tag{13}$$

$$\Delta P = -B\left(\frac{\Delta V}{V_0}\right) \qquad \text{(Volume change by a pressure)} \tag{14}$$

\*\*\* Y,S & B are all constants that depend on the material





## Torque Snapshot

Two children are playing on the seesaw at the park. The seesaw (L = 3m) acts as a board balancing around a fulcrum point that's at the center of the seesaw. Consider the moment the children are level with one another and let child 1 be on the left  $(m_1 = 20kg)$  and child 2 on right  $(m_2 = 30kg)$ .

- (a) What is the radius to the children from the fulcrum point?
- **(b)** What are the magnitudes and direction of the torques acting on the seesaw? (careful of signs)
- (c) Given your answer for (b) which way will the seesaw move assuming no prior movement/forces? (clockwise/counterclockwise)

**Challenge Q:** At what point would I have to place the fulcrum so that the seesaw doesn't rotate when these children sit on it? (measured from the left side of seesaw)

## Physics Gambling

Your friends (who haven't taken physics) are betting money on which objects will roll from rest down an incline plane first. They roll a solid sphere and solid cylinder of equal mass and radius down the same incline plane. Set h=0 at the bottom of the incline and answer:

- (a) How do the energies of the two objects compare at the top of the plane?
- **(b)** What is the expression for the total energy of the solid sphere at the bottom of the incline?
- (c) Repeat (b) for the solid cylinder
- (d) Using the expression,  $\omega=\frac{v}{R}$  in rotational kinetic energy, determine the ratio of the two linear velocities i.e.  $\frac{v_{cyl}}{v_{sph}}=$ ? using your expressions in (b) and (c)
- (e) Which object should you bet on to win?
- (f) Is what you're doing to your friends ethical?

### Angular Momentum and memories

A merry-go-round is approximately a large disk spinning around its central axis. Consider a merry-go-round of  $m=120,000\mathrm{g}$  and radius 180cm where a child of mass 30kg suddenly jumps on. If the merry-go-round was initially spinning clockwise at  $0.5~\mathrm{rad/s}$  answer the following:

- (a) What is the initial **angular momentum** of the merry-go-round system (be care of signs)
- (b) If the child runs at the same angular velocity and jumps on the outer edge, what is the new angular **velocity** of the Merry-go-round? (treat the child as a point mass and the final moment of inertia as just a disk with a new mass)
- (c) Repeat (b) if the child had run in the other way then jumped on

#### Bored in Class

While bored in class, you compulsively start clicking your ballpoint pen, when suddenly you realize it functions upon a spring mechanism. Quickly taking out your phone (and force gauge) you measure that when you apply -1.2N of force the pen compresses 12mm.

(1) What is this spring's spring constant?

Suppose you took out the spring to play with it, and then attached another pen (m=42g) and let it hang from the spring.

- (2) How much would the spring stretch? (let downward acceleration be negative)
- (3) How much work was done to stretch the spring this far?

#### Tow Troubles

A tow truck is pulling a car out of a ditch by means of a steel cable that is 9.1m long and has a radius of 0.50cm. When the car just begins to move, the tension in the cable is 890N. How much has the cable stretched?