Docket: JA999-232

Listing of the Claims:

The following is a complete listing of all the claims in the application, with an indication of the status of each:

1 (Currently Amended). An A cryptographic apparatus for computing the sum
of a divisor D_1 =g.c.d. (($a_1(x)$), (y - $b_1(x)$)) and a divisor D_2 =g.c.d. (($a_2(x)$),
$(y-b_2(x))$) on Jacobian of a hyperelliptic curve $y^2+y=f(x)$ defined over $GF(2^n)$,
said apparatus comprising:
a storage for storing $a_1(x)$, $a_2(x)$, $b_1(x)$ and $b_2(x)$; and
means for calculating $q(x)=\{s_1(x) (b_1(x)+b_2(x))\} \mod a_2(x)$ or
$q(x)=\{s_2(x) (b_1(x)+b_2(x))\} \text{ mod } a_1(x) \text{ by using } s_1(x) \text{ or } s_2(x) \text{ in}$
$s_1(x)a_1(x)+s_2(x)a_2(x)=1$ in case of $GCD(a_1(x))$, $a_2(x)=1$ where GCD denotes a
greatest common divisor of two polynomials; and
means responsive to said means for calculating for permitting or
denying access to a secure environment.
2 (Currently Amended). An A cryptographic apparatus for calculating a'(x)
and $b'(x)$ of a reduced divisor $D'=g.c.d.$ (($a'(x)$), ($y-b'(x)$)) which is a linearly
equivalent to D_1+D_2 for a divisor $D_1=g.c.d.$ (($a_1(x)$), ($y-b_1(x)$)) and a divisor
D_2 =g.c.d. ((a ₂ (x)), (y-b ₂ (x))) on Jacobian of a hyperelliptic curve $y^2+y=f(x)$
defined over GF(2 ⁿ), said appratus comprising:
means for calculating $q(x)=s_1(x)$ $(b_1(x)+b_2(x))$ mod $a_2(x)$ by using $s_1(x)$
in $s_1(x)a_1(x)+s_2(x)a_2(x)=1$ in case of $GCD(a_1(x), a_2(x))=1$ where GCD denotes
a greatest common divisor of two polynomials;
means for calculating $\alpha(x)=Q(q_2(x)a_1(x), a_2(x))+Q(f(x), a_1(x)a_2(x))$
which is rendered a monic polynomial where Q(A,B) is a quotient of A/B;
means for calculating $\beta(x)=(q(x)a_1(x)+b_1(x)+1 \mod \alpha(x);$
means for calculating $a'(x)=Q(f(x)+\beta_2(x), \alpha(x))$; and
means for calculating $b'(x)=(\beta(x)+1) \mod a'(x)$; and

Docket: JA999-232

14	means responsive to said last mentioned means for calculating for
15	permitting or denying access to a secure environment.
1	3 (Currently Amended). An A cryptographic apparatus for computing the sum
2	of a divisor D_1 =g.c.d. (($a_1(x)$), ($y-b_1(x)$)) on Jacobian of a hyperelliptic curve
3	$y^2+y=f(x)$ defined over GF(2 ⁿ), said apparatus comprising:
4	a storage for storing $a_1(x)$, and $b_1(x)$; and
5	means for calculating $q(x)=Q(b_1^2(x)+f(x) \mod a_1^2(x), a_1(x))$ where
6	Q(A,B) is a quotient of A/B; and
7	means responsive to said means for calculating for permitting or
8	denying access to a secure environment.
1	4 (Currently Amended). An A cryptographic apparatus for calculating $a'(x)$
2	and $b'(x)$ of a reduced divisor D'=g.c.d. ((a'(x)), (y-b'(x))) which is a linearly
3	equivalent to D_1+D_1 for a divisor $D_1=g.c.d.$ ((a ₁ (x)), y-b ₁ (x))) on Jacobian of a
4	hyperelliptic curve y²+y=f(x) defined over GF(2n), said apparatus comprising:
5	means for calculating $q(x)=Q(b_1^2(x)+f(x) \mod a_1^2(x), a_1(x))$ where
6	Q(A,B) is a quotient of A/B;
7	means for calculating $\alpha(x)=q_2(x)+Q(f(x),a_1^2(x))$ which is rendered a
8	monic polynomial;
9	means for calculating $\beta(x)=b_1^2(x)+f(x) \mod a_1^2(x)+1 \mod \alpha(x)$;
10	means for calculating $a'(x)Q(f(x)+\beta_2(x), \alpha(x))$; and
11	means for calculating $b'(x)=(\beta(x)+1 \mod a'(x); and$
12	means responsive to said last mentioned means for calculating for
13	permitting or denying access to a secure environment.
1	5 (Currently Amended). A computer implemented cryptographic method for
2	calculating $a'(x)$ and $b'(x)$ of a reduced divisor $D'=g.c.d.$ $((a'(x)), (y-b'(x)))$
3	which is a linearly equivalent to D_1+D_2 for a divisor $D_1=g.c.d.$ (($a_1(x)$),
	• • • • • • • • • • • • • • • • • • • •

4 $(y-b_1(x))$) and a divisor $D_2=g.c.d.$ $((a_2(x)), y-b_2(x))$) on Jacobian of a 5 hyperelliptic curve $y^2+y=f(x)$ defined over $GF(2^n)$, said method comprising the 6 steps of: 7 calculating and storing in a storage $q(x) = \{s_1(x) (b_1(x) + b_2(x))\}$ 8 mod $a_2(x)$ by using $s_1(x)$ in $s_1(x)a_1(x)+s_2(x)a_2(x)=1$ in case of 9 $GCD(a_1(x), a_2(x))=1$ where GCD denotes a greatest common divisor of two 10 polynomials; 11 calculating and storing in a storage $\alpha(x) = Q(q^2(x)a_1(x), a_2(x)) + Q(f(x),$ 12 $a_1(x)a_2(x)$) which is rendered a monic polynomial where Q(A,B) is a quotient 13 of A/B; 14 calculating and storing in a storage $\beta(x)=(q(x)a_1(x)+b_1(x)+1) \mod$ 15 $\alpha(x)$; 16 calculating and storing in a storage $a'(x)=Q(f(x)+\beta^2(x), \alpha(x))$; and 17 calculating and storing in a storage $b'(x)=(\beta(x)+1) \mod a'(x)$; and 18 permitting or denying access to a secure environment depending on an 19 outcome of said calculating steps. 6 (Currently Amended). A computer implemented cryptographic method for 1 2 calculating a'(x) and b'(x) of a reduced divisor D'=g.c.d. ((a'(x)), y-b'(x))) which is a linearly equivalent to D_1+D_1 for a divisor $D_1D_1=g.c.d.$ ((a₁(x)), 3 $(y-b_1(x))$) on Jacobian of a hyperelliptic curve $y^2+y=f(x)$ defined over GF(2ⁿ). 4 5 said method comprising the steps of: calculating and storing in a storage $q(x)=Q(b_1^2(x)+f(x) \mod a_1^2(x), a_1)$ 6 7 where Q(A,B) is a quotient of A/B; 8 calculating and storing in a storage $\alpha(x)=q^2(x)+Q(f(x),a_1^2(x))$ which is 9 rendered a monic polynomial: calculating and storing in a storage $\beta(x)=(b_1^2(x)+f(x) \mod a_1^2(x)+1)$ 10 11 $mod \alpha(x)$; 12 calculating and storing in a storage $a'(x)=Q(f(x)+\beta^2(x), \alpha(x))$; and

Docket: JA999-232

calculating and storing in a storage $b'(x)=(\beta(x)+1) \mod a'(x)$; and
permitting or denying access to a secure environment depending on an
outcome of said calculating steps.
7 (Currently Amended). A computer implemented cryptographic method for
computing the sum of a divisor D_1 =g.c.d. (($a_1(x)$), (y - $b_1(x)$)) and a divisor
D_2 =g.c.d. (($a_2(x)$), ($y-b_2(x)$)) on Jacobian of a hyperelliptic curve $y^2+y=f(x)$
defined over GF(2 ⁿ), said method comprising the steps of:
storing $a_1(x)$, $a_2(x)$, $b_1(x)$ and $b_2(x)$; and
calculating and storing in a storage $q(x)=\{s_1(x) (b_1(x)+b_2(x))\}$ mod
$a_2(x)$ or $q(x)=\{s_2(x) (b_1(x)+b_2(x))\} \text{ mod } a_1(x) \text{ by using } s_1(x) \text{ or } s_2(x) \text{ in }$
$s_1(x)a_1(x)+s_2(x)a_2(x)=1$ in case of GCD($a_1(x)$, $a_2(x)$)=1; and
permitting or denying access to a secure environment depending on an
outcome of said calculating step.
8 (Currently Amended). A computer implemented cryptographic method for
computing the sum of a divisor D_1 =g.c.d. (($a_1(x)$), ($y-b_1(x)$)) on Jacobian of a
hyperelliptic curve y ² +y=f(x) defined over GF(2 ⁿ), said method comprising the
steps of:
storing $a_1(x)$, and $b_1(x)$; and
calculating and storing in a storage $q(x)=Q(b_1^2(x)+f(x) \mod a_1^2(x),$
$a_1(x)$) where Q(A,B) is a quotient of A/B; and
permitting or denying access to a secure environment depending on an
outcome of said calculating step.