In which of the displayed cases a voltage is induced in the conductor loop and how do you termin this kind of induction? φ = ∫ B (r, t) dà
A(t) $\vec{B}(\vec{r},t) = B_0 \vec{e}_z$ D Yes, Uind =7 \$ is decreasing (2) ho, ϕ Const. 3) Ves, \$ is decreasing 4 Yes, because A = ACE) is increasing ⇒ \$ is increasing Ø = A(t) · B => Vind Θ New = SEING OF = S(VXB) OF Θ induction (1), (3) (4): motional $\vec{B}(\vec{r},t) = B_0 e^{i\omega t} \vec{e}_z$ 3 Yes, since B is varying with time 0 $\Rightarrow \phi = \phi(t) \Rightarrow U_{ind} \neq 0$ **© 5** motionless induction $\vec{B}(\vec{r},t) = B_0 x \vec{e}_x$ 6 Yes, Uind & O 0 Since B-field Changes in X-direction (increase) => \$ is increasing

NO, Uind=0; B-field Changes only in Y-direction; ϕ is constant

Generation of induced voltage in rotating conductor loop

$$\vec{n}$$
 1 \vec{B} \vec{B} = \vec{B}_0
 \vec{n} = $\vec{E}_{\vec{z}}$
 \vec{n} = $\vec{E}_{\vec{z}}$
 \vec{n} = $\vec{E}_{\vec{z}}$

Motional induction

 \vec{A} = \vec{C} . \vec{A}

Potational frequency $\vec{\omega}$ = $2\pi\vec{F}$

O(t) = A · B. Coscut = d.l · B. · Coscut T= duration of on oscillation period

$$U_{ind} = (-A. Bo \cup sin \omega t) = -\frac{d\phi}{dt} = A. Bo \cdot \omega sin \omega t$$

