Prerequisiti di algebra:(

Matrici

Matrice è una tabella di numeri organizzati in righe e colonne.

Una matrice con m righe e n colonne si chiama $matrice m \times n$. Se m=n, la matrice è detta quadrata.

Un vettore riga è una matrice con sola riga.

Un vettore colonna è una matrice con una sola colonna.

La matrice **trasposta** A^T di una matrice A si ottiene *scambiando le righe con le colonne*.

Operazioni con le matrici

- Somma e sottrazioni: solo se hanno le stesse dimensioni, sommando (o sottraendo) gli elementi corrispondenti
- Prodotto: definito solo se il numero di colonne della prima matrice è uguale al numero di righe della seconda
- Moltiplicazione per uno scalare: moltiplicare una matrice per un numero significa moltiplicare ogni singolo elemento della matrice per quel numero

Matrici speciali

- Matrice singolare e non singolare: matrice quadrata è singolare se i suoi vettori riga (o colonna) sono linearmente dipendenti. Se sono linearmente indipendenti, la matrice è non singolare.
- Matrice diagonale: quadrata in cui tutti gli elementi al di fuori della diagonale principale sono zero
- Matrice identità: matrice diagonale in cui tutti gli elementi sulla diagonale principale sono uquali a 1
- Matrice inversa: per ogni matrice non singolare A, esiste una matrice inversa A^-1 tale che il loro prodotto è la matrice identità

Determinante

Matrice quadrata - numero che può essere calcolato con formule specifiche. Determinante è **zero** se e solo se la matrice è singolare.

$$\det(A) = \det(A - 1) = 1.2 - (-1.-1) = 2 - (1) = 1$$

$$\det(A) = \det(A) = 1. \det(A - 1) = 2 - (1) = 1$$

$$\det(A) = \det(A) = 1. \det(A - 1) = 2 - (1) = 1$$

$$\det(A) = \det(A) = 1. \det(A - 1) = 2 - (1) = 1$$

$$= 1. \det(A) = 1. \det(A - 1) = 2 - (1) = 1$$

$$= 1. \det(A) = 1. \det(A - 1) = 2 - (1) = 1$$

$$= 1. \det(A) = 1. \det(A - 1) = 2 - (1) = 1$$

$$= 1. \det(A) = 1. \det(A - 1) = 2 - (1) = 1$$

$$= 1. \det(A) = 1. \det(A - 1) = 2 - (1) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) = 1. \det(A) = 1. \det(A) = 1$$

$$= 1. \det(A) = 1. \det(A) =$$

Indipendenza lineare

- Vettori linearmente indipendenti: se l'unica combinazione lineare di questi vettori che dà
 come risultato il vettore nullo è quella in cui tutti i coefficienti sono zero. Se esiste almeno
 un coefficiente non nullo per cui la combinazione lineare è uguale a zero, i vettori sono
 linearmente dipendenti.
- Base: un insieme di n vettori linearmente indipendenti in uno spazio a n dimensione costituisce una base per quello spazio. Ogni altro vettore in quello spazio è una combinazione lineare dei vettori della base.

Sistema di equazioni

Può essere

- Consistente se almeno una soluzione, altrimenti è inconsistente
- **Determinato** se costituito da un numero di equazioni uguale al numero di incognite m = n. Ha una sola soluzione
- Sovradeterminato se costituito da più equazioni che incognite m > n. Tale sistema è spesso inconsistente
- Sottodeterminato se costituito da meno equazioni che incognite m < n. Tale sistema ha infinite soluzioni

Rango

- Rango di riga: numero massimo di righe linearmente indipendenti
- Rango di colonna: numero massimo di colonne linearmente indipendenti

Se rango di riga = rango di colonna allora $rango(A) \leq min(m,n)$.

Se rango(A) = min(m,n), allora la matrice A viene detta a rango pieno.

Altro metodo: metodo delle sottomatrici

- 1. Scegli una sottomatrice quadrata, partendo da dimensione 1x1, quindi un singolo elemento
- 2. Se il determinante è diverso da zero, passa a una sottomatrice più grande. Se il determinante è zero, prova un'altra sottomatrice della stessa dimensione
- 3. Aumenta le dimensioni della sottomatrice quadrata, finchè non trovi una sottomatrice il cui determinante è non nullo
- 4. Il rango della matrice è la dimensione della più grande sottomatrice quadrata con determinante non nullo. Se tutti i determinanti delle sottomatrici di una certa dimensione sono zero, il rango è la dimensione immediatamente inferiore.

Matrice dei coefficienti A -> matrice aumentata = matrice C=A,b ottenuta dalla matrice A aggiungendo come colonna aggiuntiva il *vettore dei termini noti b*.

- rango(C) > rango(A) = sistema lineare non ammette soluzioni
- Rango(C) = rango(A) = sistema lineare ammette soluzione
 - M > n:
 - Se rango(A) = n il sistema ha soluzione unica
 - Se rango(A) < n il sistema ha infinite soluzioni
 - M < n:</p>
 - Se rango(A) ≤ m il sistema ha infinite soluzioni
 - M = n:
 - Se rango(A) = n il sistema ha soluzione unica
 - Se rango(A) < n il sistema ha infinite soluzioni

Eliminazione di Gauss

- 1. Scegli un pivot non nullo, inizia dalla prima riga e dalla prima colonna
- 2. Applica operazioni elementari sulle righe: scambia due righe tra loro, moltiplica una riga per un numero non nullo, somma una riga moltiplicata per uno scalare a un'altra riga
- 3. Elimina gli elementi: annullare gli elementi al di sotto del primo pivot, per avere una colonna di zeri sotto il primo elemento non nullo
- 4. Procedi per la riga successiva: sposta il pivot sulla riga successiva, e sulla colonna successiva, e ripeti il processo per annullare gli elementi sottostanti
- 5. Una volta che la matrice è nella sua forma a scalini, il rango è il numero di righe che non sono interamente zeri

Funzioni

Relazione tra due insiemi, un dominio (insieme di partenza) ed un codominio (insieme di arrivo), che associa ad ogni elemento del dominio uno e uno solo elemento del codominio.

- Una funzione è crescente se all'aumentare di x anche f(x) aumenta, decrescente se f(x)
 diminuisce
- Una funzione è convessa se il segmento che unisce due punti qualsiasi del suo grafico si trova sempre sopra o sul grafico stesso. Una funzione è concava se il segmento si trova sempre sotto o sul grafico.

Derivate

Derivata prima: misura la sua pendenza

- Positiva --> crescente
- Negativa —> decrescente
- Zero -> punto stazionario, candidato quindi ad essere minimo, massimo o punti di sella

Derivata seconda: classificare i punti stazionari

- Positiva —> minimo relativo
- Negativa —> massimo relativo
- Zero —> non si può dire nulla, punto può essere minimo, massimo o punto di sella

Gradiente: vettore che contiene tutte le derivate parziali prime della funzione. Punta nella direzione di *massima crescita* della funzione.

Matrice Hessiana: matrice quadrata di derivate parziali seconde.

- Punti critici con hessiana. Si pone il gradiente uguale a zero, e per classificare questi punti, si utilizza la matrice hessiana. Un punto critico è un...
 - Minimo relativo se la matrice Hessiana in quel punto è definita positiva
 - Massimo relativo se la matrice Hessiana in quel punto è definita negativa
 - Punto di sella se la matrice Hessiana in quel punto è indefinita
- Minimo (o massimo) locale: valore minimo (o massimo) in una piccola regione attorno al punto
- Minimo (o massimo) globale: valore minimo (o massimo) sull'intero dominio della funzione. Per le funzioni convesse (o concave), ogni minimo locale è un minimo globale.
- Ottimo stretto: unico punto di minimo (o massimo) locale nella sua regione