Ch. 1 - Model comaprisons

Wade VanderWright

2022 - 02 - 25

Contents

Hypothesis summaries	2
No Phylogeny	
With Phylogeny	
Model Comparisons	;
No Phylogeny	
With phylogeny	19

Hypothesis summaries

No Phylogeny

Model	Hypothesis
$Log10CFAR \sim Log10GSH$	Activity only varies with gill slit height
$Log10CFAR \sim Log10GSH * MaxSize$	Activity varies with gill slit height and maximum
	size and the effect of gill slit height varies with
$Log10CFAR \sim Log10GSH + MaxSize$	maximum size Activity varies with gill slit height and maximum
${\rm Log10CFAR} \sim {\rm Log10GSH} + {\rm PrimaryHabitat}$	size Activity varies with gill slit height and primary
${\rm Log10CFAR} \sim {\rm Log10GSH} \ * \ {\rm Primary Habitat}$	habitat Activity varies with gill slit height and primary
	habitat and the effect of gill slit height varies with
	primary habitat

With Phylogeny

Model	Hypothesis
$Log10CFAR \sim Log10GSH + Phylogeny$	Activity only varies with gill slit height and is
$\label{eq:log10CFAR} \text{Log10GSH * MaxSize} + \text{Phylogeny}$	conserved across evolutionary history Activity varies with gill slit height and maximum size and the effect of gill slit height varies with maximum size and is conserved across evolutionary history
$\label{eq:log10CFAR} \text{Log10GSH} + \text{MaxSize} + \text{Phylogeny}$	Activity varies with gill slit height and maximum size and is conserved across evolutionary history
$\begin{array}{l} {\rm Log10CFAR} \sim {\rm Log10GSH} + {\rm PrimaryHabitat} + \\ {\rm Phylogeny} \end{array}$	Activity varies with gill slit height and primary habitat and is conserved across evolutionary
$\label{eq:log10CFAR} \ \ Log10GSH \ \ ^* \ Primary Habitat \ + \\ Phylogeny$	history Activity varies with gill slit height and primary habitat and the effect of gill slit height varies with primary habitat and is conserved across
$\label{eq:log10CFAR} \begin{tabular}{l} $\operatorname{Log10CFAR} \sim \operatorname{Log10GSH} * \operatorname{MaxSize} + \\ \operatorname{PrimaryHabitat} + \operatorname{Phylogeny} \end{tabular}$	evolutionary history Activity varies with gill slit height, maximum size, and primary habitat, and the effect of gill slit height varies with maximum size and is conserved across evolutionary history

Model Comparisons

No Phylogeny

$Model~1 - CFAR \sim GSH$

1. brms model

Table 1: brms model summary

	Estimate	Est.Error	Q2.5	Q97.5
Intercept	0.0186040	0.0114242	-0.003649	0.0401433
${\bf Log 10 Mean GSH_centered}$	0.7884163	0.0697968	0.651545	0.9267644

Correlation= 0.471640472505464

2. STAN model

Data considered

```
data {
   int <lower=1> N;
   vector[N] x;
   vector[N] y;
}

The parameters accepted by the model

parameters {
   real alpha;
   real beta;
   real<lower=0> sigma;
}

Model form:

model {
   sigma ~ student_t(3, 0, 10);
   y ~ normal(alpha + x * beta , sigma);
}
```

Table 2: STAN model summary

			9		- J		
	mean	se_mean	sd	2.5%	97.5%	n_eff	Rhat
alpha	0.0189506	0.0000841	0.0111648	-0.0026424	0.0408163	17615.82	0.9999231
beta	0.7883361	0.0005644	0.0695872	0.6515938	0.9243961	15201.24	1.0000195
$_{ m sigma}$	0.2359767	0.0000613	0.0079081	0.2209879	0.2520731	16623.76	0.9999651

Model 2 - CFAR \sim GSH * Max Size

1. brms model

Table 3: brms model 2 summary

	Estimate	Est.Error	Q2.5	Q97.5
Intercept	0.0108613	0.0116288	-0.0116655	0.0338328
Log10MeanGSH_centered	0.3870415	0.0813134	0.2282266	0.5479091
Log10MaxSize_centered	0.3052711	0.0431941	0.2182414	0.3891395
$Log10MeanGSH_centered:Log10MeanGSH_centere$	og 0.216B375i6 e_	centered 0.1662728	-0.0681492	0.5881496

Correlation= 0.471640472505464

2. STAN model

Data considered

data {

```
int <lower=0> N; // number of data points
int <lower=0> K; // number of predictors
matrix[N,K] x; // predictor matrix
vector[N] y; // CFAR
}
```

The parameters accepted by the model.

```
parameters {
  real alpha;
  vector[K] beta;
  real<lower=0> sigma;
}
```

The model to be estimated. We model the output 'y' to be normally distributed with mean 'mu' and standard deviation 'sigma'.

```
model {
   sigma ~ student_t(3, 0, 10);

   y ~ normal(alpha + x * beta , sigma);
}
```

Table 4: STAN model summary

					V		
	mean	se_mean	sd	2.5%	97.5%	n_eff	Rhat
alpha	0.0110269	0.0000920	0.0115361	-0.0113001	0.0335334	15731.13	0.9999386
beta	0.3880005	0.0006566	0.0819559	0.2280443	0.5475787	15577.48	1.0000483
beta2 (size)	0.3045951	0.0003623	0.0435066	0.2209701	0.3905040	14421.90	1.0000831
GSH:Size sigma	$\begin{array}{c} 0.2626225 \\ 0.2211292 \end{array}$	$\begin{array}{c} 0.0013903 \\ 0.0000583 \end{array}$	$\begin{array}{c} 0.1648556 \\ 0.0073257 \end{array}$	$\begin{array}{c} -0.0604101 \\ 0.2074078 \end{array}$	$\begin{array}{c} 0.5849597 \\ 0.2362670 \end{array}$	$14060.55 \\ 15764.83$	$1.0001111 \\ 1.0001402$

Model 3 - CFAR ~ GSH + Max Size (No interaction)

1. brms model

Table 5: brms model 3 summary

	Estimate	Est.Error	Q2.5	Q97.5
Intercept	0.0191592	0.0105502	-0.0012029	0.0391889
Log10MeanGSH_centered	0.3933932	0.0813047	0.2321998	0.5565847
$Log10MaxSize_centered$	0.3256492	0.0409817	0.2463013	0.4055545

Correlation= 0.471640472505464

2. STAN model

Data considered

```
data { int <lower=0> N; // number of data points
```

```
int <lower=0> K; // number of predictors
matrix[N,K] x; // predictor matrix
vector[N] y; // CFAR
}
```

The parameters accepted by the model.

```
parameters {
  real alpha;
  vector[K] beta;
  real<lower=0> sigma;
}
```

The model to be estimated. We model the output 'y' to be normally distributed with mean 'mu' and standard deviation 'sigma'.

```
model {
   sigma ~ student_t(3, 0, 10);
   y ~ normal(alpha + x * beta , sigma);
}
```

Table 6: STAN model summary

					J		
	mean	se_mean	sd	2.5%	97.5%	n_eff	Rhat
alpha	0.0191617	0.0000906	0.0105192	-0.0013327	0.0400324	13478.94	0.9999506
beta	0.3927275	0.0007432	0.0817446	0.2336588	0.5511781	12096.35	1.0000262
beta2 (size)	0.3254458	0.0003768	0.0411819	0.2450405	0.4056256	11947.87	1.0000978
sigma	0.2214230	0.0000601	0.0073302	0.2075638	0.2363629	14864.18	0.9999069

Model 4 - CFAR ~ GSH + PrimaryHabitat (No interaction)

1. brms model

Table 7: brms model 4 summary

	Estimate	Est.Error	Q2.5	Q97.5
Intercept	0.0094310	0.0162116	-0.0213733	0.0416329
Log10MeanGSH_centered	0.6817737	0.0715856	0.5417254	0.8220336
PrimaryHabitatDeepwater	-0.0090850	0.0229203	-0.0534812	0.0359128
${\bf Primary Habitat Pelagic}$	0.2506187	0.0496865	0.1519708	0.3509502

Correlation= 0.471640472505464

2. STAN model

Data considered

data {

```
int <lower=0> N; // number of data points
int <lower=0> K; // number of predictors
matrix[N,K] x; // predictor matrix
vector[N] y; // CFAR
}
```

The parameters accepted by the model.

```
parameters {
  real alpha;
  vector[K] beta;
  real<lower=0> sigma;
}
```

The model to be estimated. We model the output 'y' to be normally distributed with mean 'mu' and standard deviation 'sigma'.

```
model {
   sigma ~ student_t(3, 0, 10);
   y ~ normal(alpha + x * beta , sigma);
}
```

Table 8: STAN model summary

					J		
	mean	se_mean	sd	2.5%	97.5%	$n_{\rm eff}$	Rhat
alpha	0.0097769	0.0001614	0.0163755	-0.0223144	0.0417903	10298.56	0.9999514
beta	0.6820382	0.0006386	0.0740327	0.5372126	0.8296146	13438.32	0.9999372
deepwater	-0.0099067	0.0002293	0.0230925	-0.0550870	0.0354064	10144.70	0.9999298
pelagic	0.2490748	0.0004065	0.0487259	0.1533813	0.3426777	14365.85	0.9999028
$_{ m sigma}$	0.2294194	0.0000637	0.0076547	0.2151361	0.2450414	14462.87	1.0000201

Model 5 - CFAR \sim GSH * PrimaryHabitat

1. brms model

Table 9: brms model 5 summary

	Estimate	Est.Error	Q2.5	Q97.5
Intercept	-0.0085535	0.0168304	-0.0417676	0.0251176
$Log10MeanGSH_centered$	1.1067339	0.1325830	0.8451767	1.3691526
${\bf Primary Habit at Deepwater}$	-0.0034605	0.0231775	-0.0491468	0.0425060
Primary Habitat Pelagic	0.2917904	0.0565341	0.1835352	0.4041409
Log10MeanGSH_centered:F	Pri 101.6642H565 tatD	Deepwat@:1661818	-0.9654556	-0.3042642
$Log10MeanGSH_centered:F$	Pr i:0.56/416885 tatP	Pelagic 0.2255462	-1.0076427	-0.1251787

Correlation= 0.471640472505464

2. STAN model

Data considered

```
data {
  int <lower=0> N; // number of data points
  int <lower=0> K; // number of predictors
  matrix[N,K] x; // predictor matrix
  vector[N] y; // CFAR
}

The parameters accepted by the model.

parameters {
  real alpha;
  vector[K] beta;
  real<lower=0> sigma;
}
```

The model to be estimated. We model the output 'y' to be normally distributed with mean 'mu' and standard deviation 'sigma'.

```
model {
   sigma ~ student_t(3, 0, 10);
   y ~ normal(alpha + x * beta , sigma);
}
```

Table 10: STAN model summary

	mean	se_mean	sd	2.5%	97.5%	n_eff	Rhat
alpha	-0.0086716	0.0001626	0.0169351	-0.0418434	0.0252055	10846.907	1.0004082
beta	1.1064165	0.0012963	0.1275497	0.8589251	1.3624717	9681.178	1.0000406
deepwater	-0.0031396	0.0002169	0.0231841	-0.0483342	0.0423330	11421.254	1.0001209
pelagic	0.2909246	0.0005196	0.0567046	0.1782580	0.4013676	11911.013	1.0002852
GSH:deepwa	ate 0 .6386898	0.0015781	0.1613494	-0.9593101	-0.3311171	10453.536	0.9999643
GSH:pelagio	e -0.5625077	0.0022335	0.2226852	-0.9989797	-0.1223004	9940.345	0.9999787
sigma	0.2258792	0.0000638	0.0076499	0.2114378	0.2412959	14384.468	1.0001323

	elpd_diff	se_diff	elpd_loo	se_elpd_loo	p_loo	se_p_loo	looic	se_looic
Model_size	0.0000000	0.000000	39.42096	13.07853	4.763323	0.4957700	-78.84191	26.15706
$Model_size_2$	-0.2180412	1.620030	39.20292	13.30920	3.710303	0.3352244	-78.40583	26.61840
$habitat_model_2$	-10.2608587	7.934863	29.16010	13.58205	5.628635	0.4769462	-58.32020	27.16410
habitat_model	-16.4485437	7.444745	22.97241	13.51326	4.094816	0.3453095	-45.94483	27.02652
$Model_plain$	-28.6190606	7.164067	10.80190	13.35951	2.835150	0.2725939	-21.60379	26.71903

BRMS LOO analysis

LOO compare

```
fit1_loo <- loo(Model_plain)
fit2_loo <- loo(Model_size)
fit3_loo <- loo(Model_size_2)
fit4_loo <- loo(habitat_model)
fit5_loo <- loo(habitat_model_2)

brms_loo_nonphylo_list <- list(fit1_loo, fit2_loo, fit3_loo, fit4_loo, fit5_loo)
brms_loo_nonphylo <- loo_compare(brms_loo_nonphylo_list)

kbl(brms_loo_nonphylo, booktabs = T, linesep = "") %>%
    kable_styling(latex_options = c("scale_down", "hold_postion"))
```

LOO model weights

loo_model_weights(brms_loo_nonphylo_list)

```
## Method: stacking
## -----
## weight
## model1 0.000
## model2 0.022
## model3 0.675
## model4 0.000
## model5 0.303
```

Table 11: PGLS summary

	Value	Std.Error	t-value	p-value	2.5 %	97.5 %
(Intercept)	-0.0224754	0.0628286	-0.3577261	0.7207146	-0.1456172	0.1006663
Log10MeanGSH_centered	0.3728837	0.0595042	6.2665128	0.0000000	0.2562576	0.4895097

With phylogeny

Model 6 - CFAR \sim GSH + Phylogeny

1. PGLS model

Correlation= 0.471640472505464

2. brms model

Table 12: brms model 6 summary

	Estimate	Est.Error	Q2.5	Q97.5
Intercept Log10MeanGSH_centered	-0.0214910 0.3721942	$\begin{array}{c} 0.0635787 \\ 0.0612686 \end{array}$	$-0.1460351 \\ 0.2520485$	$0.1025128 \\ 0.4937324$

3. STAN model

Data considered

```
data {
  int <lower=0> N; // number of data points
  int <lower=0> K; // number of predictors
  matrix[N,K] x; // predictor matrix
  vector[N] y; // outcome (CFAR)
  matrix[N, N] d_mat; // sigma matrix
  matrix[N, N] A; // vcov matrix
  }
```

The parameters accepted by the model.

```
parameters {
```

Table 13: STAN model 6 summary

	mean	se_mean	sd	2.5%	97.5%	n_eff	Rhat		
alpha	-0.0224102	0.0005257	0.0629641	-0.1461487	0.1014901	14346.624	0.9998965		
beta	0.3729818	0.0005293	0.0610750	0.2560190	0.4946870	13312.186	1.0000800		
$_{ m sigma}$	0.0474255	0.0000571	0.0052967	0.0382611	0.0589428	8611.627	1.0001556		
lambda	0.7049128	0.0004727	0.0440888	0.6143114	0.7865885	8698.670	1.0001259		

```
real alpha;
vector[K] beta; // coefficients
real<lower=0> sigma; // error
real<lower=0,upper=1> lambda; // phylogenetic signal
}

transformed parameters {
  matrix[N, N] sigma_mat;
  matrix[N, N] sigma_total;
  vector[N] mu_y;

  sigma_mat = (1-lambda)*d_mat + lambda*A;
  sigma_total = sigma*sigma_mat;
}
```

The model to be estimated. We model the output 'y' to be normally distributed with mean 'mu' and standard deviation 'sigma'.

```
model {
  beta ~ student_t(3, 0, 10);
  lambda ~ uniform(0,1);
  sigma ~ student_t(3, 0, 2.5);

  y ~ multi_normal(alpha + x * beta, sigma_total);
}
```


Table 14: PGLS summary

	Value	Std.Error	t-value	p-value	2.5 %	9
(Intercept)	-0.0575841	0.0576548	-0.998773	0.3184390	-0.1705854	0.05
Log10MeanGSH_centered	0.3102797	0.0596610	5.200711	0.0000003	0.1933462	0.42
Log10MaxSize_centered	0.1272174	0.0352490	3.609111	0.0003416	0.0581307	0.19
Log10MeanGSH_centered:Log10MaxSize_centered	0.4334147	0.1232626	3.516191	0.0004820	0.1918245	0.67

Model 7 - CFAR \sim GSH * Max Size + Phylogeny

1. PGLS model

pglsMod2 <- gls(Log10CFAR ~ Log10MeanGSH_centered * Log10MaxSize_centered, correlation = corPagel(phy =

Correlation= 0.471640472505464

2. brms model

Table 15: brms model 7 summary

	Estimate	Est.Error	Q2.5	Q97.5
Intercept	-0.0568821	0.0579540	-0.1725123	0.0580787
$Log10MeanGSH_centered$	0.3100289	0.0602294	0.1866072	0.4273601
Log10MaxSize_centered	0.1267622	0.0351696	0.0576869	0.1957255
$Log10MeanGSH_centered:I$		centered 0.1237383	0.1928571	0.6781341

3. STAN model

Data considered

```
data {
  int <lower=0> N; // number of data points
  int <lower=0> K; // number of predictors
  matrix[N,K] x; // predictor matrix
  vector[N] y; // outcome (CFAR)
  matrix[N, N] d_mat; // sigma matrix
  matrix[N, N] A; // vcov matrix
  }
```

The parameters accepted by the model.

Table 16: STAN model 7 summary

					<i>J</i>		
	mean	se_mean	sd	2.5%	97.5%	n_eff	Rhat
alpha	-0.0576060	0.0012582	0.0567142	-0.1748269	0.0517834	2031.745	0.9993214
beta	0.3119275	0.0013463	0.0594781	0.1937403	0.4318569	1951.703	1.0003062
beta2	0.1273933	0.0008116	0.0352748	0.0598826	0.1959810	1889.054	0.9994723
(size)							
GSH:Max	Size 0.4296080	0.0028943	0.1292687	0.1804127	0.6753124	1994.770	0.9993773
$_{ m sigma}$	0.0413515	0.0001330	0.0044842	0.0335414	0.0512851	1136.097	0.9987187
lambda	0.6693168	0.0014095	0.0471767	0.5708993	0.7571727	1120.349	0.9996346

```
parameters {
    real alpha;
    vector[K] beta; // coefficients
    real<lower=0> sigma; // error
    real<lower=0,upper=1> lambda; // phylogenetic signal
}

transformed parameters {
    matrix[N, N] sigma_mat;
    matrix[N, N] sigma_total;

    vector[N] mu_y;

    sigma_mat = (1-lambda)*d_mat + lambda*A;
    sigma_total = sigma*sigma_mat;
}
```

The model to be estimated. We model the output 'y' to be normally distributed with mean 'mu' and standard deviation 'sigma'.

```
model {
  beta ~ student_t(3, 0, 10);
  lambda ~ uniform(0,1);
  sigma ~ student_t(3, 0, 2.5);

  y ~ multi_normal(alpha + x * beta, sigma_total);
}
```


Table 17: PGLS summary

	Value	Std.Error	t-value	p-value	2.5 %	97.5 %
(Intercept)	-0.0382795	0.0591546	-0.6471096	0.5178888	-0.1542204	0.0776614
Log10MeanGSH_centered	0.3022271	0.0603415	5.0086129	0.0000008	0.1839600	0.4204942
Log10MaxSize_centered	0.1626095	0.0341242	4.7652331	0.0000025	0.0957274	0.2294917

Model 8 - CFAR \sim GSH + Max Size + Phylogeny

1. PGLS model

pglsMod3 <- gls(Log10CFAR ~ Log10MeanGSH_centered + Log10MaxSize_centered, correlation = corPagel(phy =

Correlation= 0.471640472505464

2. brms model

Table 18: brms model 8 summary

	Estimate	Est.Error	Q2.5	Q97.5
Intercept	-0.0389619	0.0603196	-0.1579793	0.0801359
$Log10MeanGSH_centered$	0.3016207	0.0592575	0.1873177	0.4200445
${\tt Log10MaxSize_centered}$	0.1619811	0.0340442	0.0964249	0.2283516

3. STAN model

Data considered

```
data {
  int <lower=0> N; // number of data points
  int <lower=0> K; // number of predictors
  matrix[N,K] x; // predictor matrix
  vector[N] y; // outcome (CFAR)
  matrix[N, N] d_mat; // sigma matrix
  matrix[N, N] A; // vcov matrix
  }
```

The parameters accepted by the model.

```
parameters {
```

Table 19: STAN model 8 summary

	mean	se_mean	sd	2.5%	97.5%	n_eff	Rhat
alpha	-0.0378307	0.0015482	0.0639088	-0.1601034	0.0888579	1703.918	0.9990736
beta	0.3024532	0.0014609	0.0609542	0.1826927	0.4261175	1740.966	1.0011061
beta2	0.1624285	0.0007494	0.0332792	0.0980794	0.2285594	1971.954	0.9993628
(size)							
$_{ m sigma}$	0.0434596	0.0001544	0.0048400	0.0348521	0.0542975	982.300	1.0019873
lambda	0.6821638	0.0014381	0.0464156	0.5919477	0.7694996	1041.699	1.0033275

```
real alpha;
vector[K] beta; // coefficients
real<lower=0> sigma; // error
real<lower=0,upper=1> lambda; // phylogenetic signal
}

transformed parameters {
  matrix[N, N] sigma_mat;
  matrix[N, N] sigma_total;
  vector[N] mu_y;

  sigma_mat = (1-lambda)*d_mat + lambda*A;
  sigma_total = sigma*sigma_mat;
}
```

The model to be estimated. We model the output 'y' to be normally distributed with mean 'mu' and standard deviation 'sigma'.

```
model {
  beta ~ student_t(3, 0, 10);
  lambda ~ uniform(0,1);
  sigma ~ student_t(3, 0, 2.5);

  y ~ multi_normal(alpha + x * beta, sigma_total);
}
```


Table 20: PGLS summary

	Value	Std.Error	t-value	p-value	2.5 %	97.5 %
(Intercept)	-0.0426521	0.0610948	-0.6981305	0.4854546	-0.1623957	0.0770914
Log10MeanGSH_centered	0.3729626	0.0587488	6.3484281	0.0000000	0.2578170	0.4881081
PrimaryHabitatDeepwater	0.0139319	0.0264094	0.5275378	0.5980790	-0.0378295	0.0656934
PrimaryHabitatPelagic	0.1500620	0.0390274	3.8450405	0.0001378	0.0735697	0.2265543

$Model \ 9 \textbf{ - CFAR} \sim GSH + Primary Habitat + Phylogeny$

1. PGLS model

Correlation = 0.471640472505464

2. brms model

Table 21: brms model 9 summary

	Estimate	Est.Error	Q2.5	Q97.5
Intercept	-0.0433191	0.0623802	-0.1642391	0.0811959
$Log10MeanGSH_centered$	0.3706046	0.0604604	0.2538407	0.4864557
${\bf Primary Habit at Deepwater}$	0.0134363	0.0266982	-0.0361910	0.0659098
${\bf Primary Habitat Pelagic}$	0.1495636	0.0396811	0.0750472	0.2276969

Table 22: STAN model 8 summary

	mean	se_mean	sd	2.5%	97.5%	n_eff	Rhat
alpha	-0.0432051	0.0013669	0.0639528	-0.1698045	0.0849299	2189.068	1.0006248
beta	0.3719482	0.0013547	0.0609737	0.2505965	0.4928009	2025.682	1.0011433
deepwater	0.0152370	0.0005615	0.0262145	-0.0367034	0.0678131	2179.493	0.9997415
pelagic	0.1505860	0.0008176	0.0394523	0.0719386	0.2262333	2328.220	1.0006759
$_{ m sigma}$	0.0438643	0.0001305	0.0049446	0.0354849	0.0542555	1436.673	0.9985969
lambda	0.6791834	0.0012515	0.0478577	0.5819305	0.7682589	1462.287	0.9989043

3. STAN Model

Table 23: PGLS summary

	Value	Std.Error	t-value	p-value	2.5 %	
(Intercept)	-0.0380642	0.0600813	-0.6335439	0.5267004	-0.1558215	0
Log10MeanGSH_centered	0.3942985	0.1149440	3.4303530	0.0006584	0.1690124	0
PrimaryHabitatDeepwater	-0.0012632	0.0270931	-0.0466234	0.9628340	-0.0543646	0
PrimaryHabitatPelagic	0.1089660	0.0431700	2.5241114	0.0119421	0.0243543	0
Log10MeanGSH_centered:PrimaryHabitatDeepwater	-0.0946536	0.1297042	-0.7297649	0.4659136	-0.3488692	0
Log10MeanGSH_centered:PrimaryHabitatPelagic	0.3197980	0.1808652	1.7681563	0.0777123	-0.0346913	(

$Model~10~\textbf{-}~CFAR \sim GSH~\textbf{*}~Primary Habitat~+~Phylogeny$

1. PGLS model

Correlation= 0.471640472505464

2. BRMS Model

Table 24: brms model 10 summary

	Estimate	Est.Error	Q2.5	Q97.5
Intercept	-0.0370099	0.0629477	-0.1631366	0.0823122
$Log10MeanGSH_centered$	0.3930570	0.1194236	0.1502121	0.6230306
${\bf Primary Habit at Deepwater}$	-0.0009378	0.0274507	-0.0539797	0.0527488
PrimaryHabitatPelagic	0.1086930	0.0431179	0.0264042	0.1928199
Log10MeanGSH_centered:F	Pri 0.093H295 tatD	eepwat@:1334098	-0.3523780	0.1707157
Log10MeanGSH_centered:F	Pri OLSHyH&b3 tatP	elagic 0.1831236	-0.0368259	0.6889472

```
family = gaussian(),
  data2 = list(A = A),
  prior = HabitatPhylo_prior2,
sample_prior = TRUE, chains = 4, cores = 4)
```


3. STAN Model

Table 25: STAN model 8 summary

					J		
	mean	se_mean	sd	2.5%	97.5%	n_eff	Rhat
alpha	-0.0353942	0.0013946	0.0606516	-0.1567340	0.0809660	1891.374	0.9990718
beta	0.3923793	0.0028290	0.1121529	0.1746769	0.6117809	1571.697	1.0023520
deepwater	-0.0025071	0.0006547	0.0278236	-0.0572648	0.0497482	1806.228	0.9988779
pelagic	0.1061112	0.0010039	0.0434120	0.0235064	0.1933592	1870.157	1.0003583
GSH:deepwa	ate0.0921483	0.0031392	0.1246842	-0.3383413	0.1490137	1577.579	1.0035480
GSH:pelagio	e 0.3230165	0.0043783	0.1768289	-0.0299055	0.6558215	1631.154	1.0027676
$_{ m sigma}$	0.0432303	0.0001250	0.0048897	0.0344387	0.0537310	1531.313	1.0005741
lambda	0.6748741	0.0011765	0.0480115	0.5765192	0.7619337	1665.233	1.0001277

Table 26: PGLS summary

	Value	Std.Error	t-value	p-value	2.5 %	
(Intercept)	-0.0646193	0.0577730	-1.1185034	0.2639488	-0.1778522	0.0
Log10MeanGSH_centered	0.3111825	0.0594286	5.2362390	0.0000003	0.1947045	0.4
Log10MaxSize_centered	0.1234860	0.0351974	3.5083817	0.0004962	0.0545003	0.1
PrimaryHabitatDeepwater	0.0069539	0.0258660	0.2688422	0.7881743	-0.0437425	0.0
PrimaryHabitatPelagic	0.0990615	0.0399968	2.4767337	0.0136256	0.0206692	0.1
Log10MeanGSH_centered:Log10MaxSize_centered	0.3443064	0.1284790	2.6798657	0.0076353	0.0924922	0.5

${\bf Model~11 - CFAR \sim GSH~*~MaxSize + PrimaryHabitat + Phylogeny}$

1. PGLS model

Correlation= 0.471640472505464

2. BRMS Model

SizeHabitatModel <- brm(Log10CFAR ~ Log10MeanGSH_centered * Log10MaxSize_centered + PrimaryHabitat + (1 data = GSH_df_pgls,

Table 27: brms model 11 summary

	Estimate	Est.Error	Q2.5	Q97.5
Intercept	-0.0641073	0.0581580	-0.1799243	0.0481271
$Log10MeanGSH_centered$	0.3107214	0.0595552	0.1927469	0.4271668
Log10MaxSize_centered	0.1234986	0.0356178	0.0534569	0.1925711
PrimaryHabitatDeepwater	0.0070842	0.0268180	-0.0460209	0.0592925
PrimaryHabitatPelagic	0.0991838	0.0418159	0.0166001	0.1807377
Log10MeanGSH_centered:I	.og 0.GMla7x7Si4 e_	_centered 0.1270241	0.0906405	0.5860575

```
family = gaussian(),
  data2 = list(A = A),
  prior = SizeHabitatMod_prior,
sample_prior = TRUE, chains = 4, cores = 4)
```


3. STAN Model

Table 28: STAN model 8 summary

	mean	se_mean	sd	2.5%	97.5%	n_{eff}	Rhat
alpha	-0.0665577	0.0023477	0.0596609	-0.1803131	0.0444530	645.8081	1.0027281
beta	0.3106144	0.0022482	0.0571246	0.2034375	0.4171056	645.5966	0.9997237
beta2	0.1221065	0.0014753	0.0360779	0.0525489	0.1910845	597.9881	0.9991238
(size)							
deepwater	0.0085882	0.0011085	0.0253557	-0.0396565	0.0574381	523.2269	1.0042187
pelagic	0.1010546	0.0016374	0.0373201	0.0266434	0.1804577	519.4994	1.0036065
GSH:MaxSi	ze 0.3419927	0.0047183	0.1251360	0.0907834	0.5877307	703.3822	0.9988565
$_{ m sigma}$	0.0405081	0.0001881	0.0045690	0.0325699	0.0507079	590.0525	1.0019658
lambda	0.6622346	0.0019413	0.0501537	0.5575898	0.7547391	667.4532	1.0045633

BRMS LOO analysis

LOO compare

- ## Warning: Found 13 observations with a pareto_k > 0.7 in model 'Model_simple'. It ## is recommended to set 'moment_match = TRUE' in order to perform moment matching ## for problematic observations.
- ## Warning: Found 9 observations with a pareto_k > 0.7 in model 'Model_BS'. It is ## recommended to set 'moment_match = TRUE' in order to perform moment matching for

problematic observations.

```
## Warning: Found 12 observations with a pareto_k > 0.7 in model 'Model_BS2'. It is
## recommended to set 'moment_match = TRUE' in order to perform moment matching for
## problematic observations.
```

```
## Warning: Found 7 observations with a pareto_k > 0.7 in model 'HabitatPhylo'. It ## is recommended to set 'moment_match = TRUE' in order to perform moment matching ## for problematic observations.
```

```
## Warning: Found 11 observations with a pareto_k > 0.7 in model 'HabitatPhylo2'.
## It is recommended to set 'moment_match = TRUE' in order to perform moment
## matching for problematic observations.
```

Warning: Found 8 observations with a pareto_k > 0.7 in model 'SizeHabitatModel'. ## It is recommended to set 'moment_match = TRUE' in order to perform moment ## matching for problematic observations.

elpd diff	se_diff	1 1 1					
01P 4_4111	sc_um	elpd_loo	se_elpd_loc	o p_loo	se_p_loo	looic	se_looic
SizeHabitat Model 000 0.	000000	264.9064	14.69849	112.2488	6.201853	-	29.39698
	606531	263.5209	14.65287	114.7254	6.257732	529.8129	29.30574
	653521	260.3270	15.27443	117.3638	6.964097	527.0418	30.54885
J .	657275	255.1556	15.08340	117.7633	7.086189	520.6539	30.16680
J -	341777	254.8301	14.28666	117.5718	6.447159	510.3111	28.57331
— 1	250782	252.6024	15.81492	122.6211	7.758200	509.6602	31.62985
12.304013						505.2048	

LOO model weights

loo_model_weights(brms_loo_phylo_list)

Method: stacking
----## weight
model1 0.224
model2 0.000
model3 0.119
model4 0.000
model5 0.000
model6 0.657