E3-4 Analog Elektronik (AEL)

Komponenter, Kredsløb og Analyse

Jan Hvolgaard Mikkelsen, Ole Kiel Jensen, og Sofus Birkedal Nielsen {jhm, okj, sbn}@es.aau.dk

Kursusoversigt

Kursusgang	Emne	Forelæser
AEL1	AEL opstart	JHM
AEL2	Dioden	OKJ
AEL3	Diodeanvendelser	OKJ
AEL4	BJT - I	OKJ
AEL5	BJT - II	OKJ
AEL6	BJT grundkoblinger - I	JHM
AEL7	BJT grundkoblinger - II	JHM
AEL8	FET	JHM
AEL9	FET grundkoblinger	JHM
AEL10	Lavfrekvens respons	SBN

Agenda

- Status og lidt opsamling fra AEL6
 - Status mht. universalkoblingen og CE samt CE-Re forstærkerene
 - \circ En opsamler på R_i for CE-Re topologien
- Beregning af R_o for CE-Re inklusiv r_o
- BJT'en som forstærker
 - Universalkoblingen
 - **Common-Emitter (CE) forstærkeren**
 - Common-Emitter med uafkoblet Re (CE-Re) forstærkeren
 - **▷** Common-Base (CB) forstærkeren
 - **▷** Common-Collector (CC) forstærkeren

- Et par eksempler hvor forskellige af disse "opkoblinger" kombineres
- Lidt til opgaverne

Universalkoblingen

Frekvens	DC	Lav	Middel	Høj
$\mathbf{C}_{ydre} \left[\mu F \right]$	Afbrydelse	f_L	Kortslutning	Kortslutning
$\mathbf{C}_{indre} \left[pF \right]$	Afbrydelse	Afbrydelse	Afbrydelse	f_H

Analyseværktøjer

- Når vi skal analysere en forstærkerkobling griber vi straks til vores værktøjskasse
 - DC analysen .. for at fastligge arbejdspunktet for transistoren
 - AC analysen .. for at finde kredsløbets signalbehandlings karakteristikker

Analyseværktøjer

- I DC analysen afbrydes alle kapaciteterne
- Ved at benytte Thevenin kan kredsløbet reduceres yderligere

Analyseværktøjer

• I AC analysen kortsluttes "alle" kapaciteterne

- HUSK at DC analysen bruges til at fastlægge det arbejdspunkt som AC parametrene bestemmes ud fra
- AC modellen (hybrid- π) er en lineariseret beskrivelse af transistorens egenskaber

Nøgleparametre for CE og CE-Re

Parameter	CE	CE-Re
R_{ib}	r_{π}	$r_{\pi}(1+g_mR'_e)$
R_i	$R_B R_{ib}$	$R_B R_{ib}$
R_{oc}	$r_o \Rightarrow \infty$	$r_o + R'_e \Rightarrow \infty$
R_o	$R_C r_o\Rightarrow R_C$	$R_C r_o\Rightarrow R_C$
A_v	$-g_m R_L'$	$-rac{R_L'}{R_e'}$
(A_i)	$g_m \frac{r_\pi \cdot r_o}{r_o + R_L'} \Rightarrow g_m \cdot r_\pi$	$g_m \cdot r_\pi$

- R_{oc} og R_o for CE-Re gjorde vi ikke det store nummer ud af idet vi blot betragtede r_o som ∞ stor
- De markerede udtryk findes under "grove" antagelser

R_i for en CE-Re kobling

• Vi så at en lille R_e gjorde en ganske forskel på egenskaberne for CE og CE-Re konfigurationerne

R_i for en CE-Re kobling

$$V_{i} = V_{\pi} + V_{Re'}$$

$$= V_{\pi} + i_{e} \cdot Re' \approx V_{\pi} + i_{c} \cdot Re'$$

$$= V_{\pi} + g_{m} \cdot V_{\pi} \cdot Re' = V_{\pi}(1 + g_{m} \cdot Re')$$

$$V_{\pi} = r_{\pi} \cdot i_{i} \Rightarrow V_{i} = i_{i} \cdot r_{\pi} \cdot (1 + g_{m} \cdot Re')$$

$$\Rightarrow R_{i} = \frac{V_{i}}{i_{i}} = r_{\pi} \cdot (1 + g_{m} \cdot Re')$$

R_o for en CE-Re kobling .. uden "snyd"

- Som de rigtige (dovne?) ingeniører vi er, så løste vi opgaven ved at gøre et par velovervejede antagelser .. så som $r_o >> R_C || R_L$
- Det er nu alligevel <u>lidt</u> snyd.
- Kan vi løse opgaven uden at gå til i beregninger??
- Eventuelt ved hjælp af spænding/strøm målingsprincippet ...
- Stømgeneratoren og r_o er det der gør det "svært" ...

R_o for en CE-Re kobling .. uden "snyd"

• Thevenin er (atter) vores ven ..

• På baggrund af dette kan vi reducere vores problem til følgende

R_o for en CE-Re kobling .. uden "snyd"

$$v_x = i_x \cdot r_o - g_m \cdot r_o \cdot v_\pi + i_x \cdot R'_e$$

$$v_\pi = -i_x \cdot R'_e \cdot \frac{r_\pi}{r_\pi + R_s ||R_B|}$$

$$\Rightarrow v_x = i_x \cdot \left(r_o + R'_e + g_m \cdot r_o \cdot \frac{R'_e \cdot r_\pi}{r_\pi + R_s || R_B} \right)$$

$$\Rightarrow R_{oc} = \frac{v_x}{i_x} = r_o + R'_e + \frac{g_m \cdot r_\pi}{r_\pi \cdot r_o} \cdot \frac{R'_e}{r_\pi + R_s || R_B} \ge r_o$$

Opfrisker af proceduren

- 1. Opdel kredsløbet i et DC-eksemplar og et AC-eksemplar
- 2. Fastlig DC-arbejdspunktet og foretag en grafisk DC/AC-analyse
- 3. Reducer AC kredsløbet ved fx. at kombinere komponenter hvor muligt

$$R_e' = R_E || R_e$$

$$R_L' = R_C || R_L$$

4. Find udtryk for spændinger/strømme som funktion af v_π

$$v_o = f(v_\pi)$$

$$v_i = f(v_\pi)$$

$$i_b = f(v_\pi)$$

Opfrisker af proceduren

1. Bestem R_{ib}, R_i, A_v , samt A_{vs} som

$$R_{ib} = \frac{v_i}{i_b}$$

$$R_i = \frac{v_i}{i_i} = R_B || R_{ib}$$

$$A_v = \frac{v_o}{v_i}$$

$$A_{vs} = \frac{v_o}{v_s} = A_v \cdot R_i R_i + R_s$$

• Med den procedure i bagagen er vi klar til at kigge på de sidste to konfigurationer

Common-Collector Forstærker

$$v_o = f(v_\pi) = ??$$

Common-Collector Forstærker

• Hvorledes bestemmes R_{oe} ??

$$i_x = ??$$

$$v_x = ??$$

Common-Collector Forstærker

Nøgleparametre for CC

Parameter	CC	Bemærkning
R_{ib}	$r_{\pi} \left(1 + g_m \cdot R_L' \right)$	Stor (+)
R_i	$R_B R_{ib}$	Stor (+)
R_{oe}	$\frac{1}{g_m} + \frac{R_S R_B}{\beta}$	Lav (+)
R_o	$R_E R_{oe}$	Lav (+)
A_v	≈ 1	Lav (-)
A_i	$-g_m \cdot r_\pi = \beta$	Stor (+)

- CC koblingen har intet spændingsgain men et godt strømgain
- Desuden har den en stor indgangsimpedans og en lille udgangsimpedans hvilket jo er ønskeligt

Common-Base Forstærker

$$v_o = f(v_\pi) = ??$$

Hvad med i_b ?

Common-Base Forstærker

Nøgleparametre for CB

Parameter	СВ	Bemærkning
R_{ie}	$\frac{1}{g_m}$	Lav (-)
R_i	$R_B R_{ib}$	Lav (-)
R_{oc}	$\geq r_o$	Stor (-)
R_o	$\approx r_o + R_E R_s $	Stor (-)
A_v	$g_m \cdot R_L'$	Stor (+)
A_i	$\alpha = \frac{\beta}{\beta + 1} \approx 1$	Lav (-)

- CB koblingen har en stor spændingsforstærkning mens strømforstærkningen er på 1
- Indgangsimpedansen er lav og udgangsimpedansen høj .. hvilket (som oftest) ikke er ønskeligt

Nøgleparametre for BJT Forstærkere

Parameter	CE	CE-Re	CC	СВ
R_{ix}	r_{π}	$r_{\pi}(1+g_mR_e')$	$r_{\pi} \left(1 + g_m \cdot R_L' \right)$	$\frac{1}{g_m}$
R_i	$R_B R_{ix}$	$R_B R_{ix}$	$R_B R_{ix}$	$R_B R_{ix}$
R_{ox}	r_o	$r_o + R'_e$	$\frac{1}{g_m} + \frac{R_S R_B}{\beta}$	$\geq r_o$
R_o	$R_C r_o$	$R_C r_o$	$R_E R_{ox}$	$\approx r_o + R_E R_s $
A_v	$-g_m R_L'$	$-rac{R_L'}{R_e'}$	≈ 1	$g_m \cdot R_L'$
A_i	$g_m \cdot r_\pi$	$g_m \cdot r_\pi$	$-g_m \cdot r_\pi = \beta$	≈ 1

Kredsløbseksempel CC-CE

- Vi ønsker at koble en højimpedant transducer på indgangen til en forstærker .. hvorledes griber vi det an ??
- En stor R_i er nødvendig .. så CE-Re eller CC.
- CE-Re
 - \circ Moderat/Stor R_i (+/-)
 - \circ Moderat R_o hvilket kræver en stor R_i på et efterfølgende trin (-)
 - Stort gain (A_v) så en ok A_{vs} er mulig
- CC
 - \circ Større R_i (+)
 - \circ Moderat/Lav R_o letter kaskadekobling (+)
 - Spændingsgain på 1 (-)
- Istedet er en kombination en mulighed ...

Kredsløbseksempel CC-CE

Spændingsforstærkning:

$$A_v = A_{v1} \cdot A_{v2} = 1 \cdot A_{v2}$$

Strømforstærkning:

$$i_{c2} = \beta_2 \cdot i_{b2} = \beta_2 \cdot i_{c1}$$

$$\Rightarrow i_{c2} \in \beta_2 \cdot \beta_1 \cdot j_{b1}$$

I princippet har vi altså med en "super"-transistor at gøre

• Darlington transistoren og supertransistoren (den rigtige) er designet specifikt efter stor strømforstærkning og lav udgangsmodstand

Kredsløbseksempel Darlington/Super

$$\beta_{eff} = \beta_1 \cdot \beta_2$$

$$V_{BE,eff} = V_{BE,1} + V_{BE,2}$$

$$\beta_{eff} = \beta_1 \cdot \beta_2$$

$$V_{BE,eff} = V_{BE,1}$$

Opgaver

- Her har jeg ikke så meget på hjertet
- Samme historie som med AEL6 men nu blot med CC og CB som udgangspunkt
- Igen gælder at frekvensen skal sættes til 1 kHz hvor det måtte være aktuelt