Q 1. Find the average rate of change of the function over the given intervals.

 $g(t) = 2 + \cos t$

- **a)** $[0, \pi]$
- **b**) $[-\pi, \pi]$

Q 2. Use the method in example 3 to find

a) The slope of the curve at the given point P, and

b) an equation of the tangent line at P.

$$y = x^2 - 2x - 3$$
, $P(2, -3)$

Q 3. For the function f(t) graphed below,

find the following limits or explain why they do not exist. $\lim_{t \to -2} f(t) \qquad \mathbf{b}) \lim_{t \to -1} f(t) \qquad \mathbf{c}) \lim_{t \to 0} f(t) \qquad \mathbf{d}) \lim_{t \to -0.5} f(t)$

- \mathbf{a} $\lim_{t\to-2} f(t)$

Q 4. Find the following limits

- a) $\lim_{t\to -1} \frac{t^2 + 3t + 2}{t^2 t 2}$
- **b)** $\lim_{v \to 1} \frac{\sqrt[3]{v} 1}{v 1}$
- c) $\lim_{x\to 4} \frac{4-x}{5-\sqrt{x^2+9}}$
- **d**) $\lim_{x\to 0} \frac{1+x+\sin x}{3\cos x}$

Q 5. If $2 - x^2 \le g(x) \le 2 \cos x$ for all x, find $\lim_{x\to 0} g(x)$

Q 6. Suppose that $g(x) \leq f(x) \leq h(x)$ for all $x \neq 2$ and assume that

$$\lim_{x \to 2} g(x) = \lim_{x \to 2} h(x) = -5$$

Can we conclude anything about the values of f, g and h at x = 2? Could f(2) = 0? Could $\lim_{x\to 2} f(x) = 0$? Give reasons for your answers.

Q 7. If $\lim_{x\to 0} \frac{f(x)}{x^2} = 1$, find

- $\mathbf{a}) \lim_{x \to 0} f(x)$
- $\mathbf{b}) \lim_{x \to 0} \frac{f(x)}{x}.$

Q 8. For the limit

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4,$$

find a $\delta > 0$ that works for $\varepsilon = 0.5$ That is, find a $\delta > 0$ such that

$$\left| \frac{x^2 - 4}{x - 2} - 4 \right| < 0.5$$
 whenever $0 < |x - 2| < \delta$

Q 9. Prove the limit statements below:

a)
$$\lim_{x\to 3} (3x-7) = 2$$

b)
$$\lim_{x\to 2} f(x) = 4 \ if$$

$$f(x) = \begin{cases} x^2, & x \neq 2\\ 1, & x = 2 \end{cases}$$