Indian Institute of Technology Kanpur Department of Mechanical Engineering

ME 231A: FLUID MECHANICS Semester: 2016-17-II

Instructor: Arun K Saha, Mechanical Engg. Dept., Office: SL210, Ph: 7869, Email: aksaha@iitk.ac.in

Office Hours: Appointment via email.

Lectures: Monday, Wednesday and Friday: 10:00 - 11:00 hrs in L4.

Laboratories: Monday and Friday: 15:00 - 17:00 hrs in FM Laboratory, NL-I (3rd Floor).

Course Outline:

- 1. Fluid Statics and Kinematics.
- 2. Control Volume Approach.
- 3. Dimensional Analysis.
- 4. Governing Equations-Mass and Momentum.
- 5. Exact Solutions.
- 6. Potential Theory.
- 7. Boundary layers.
- 8. Turbulent Flow.
- 9. Compressible Flow.

Text Book:

Fluid Mechanics by F. M. White (7th Edition. Tata McGraw-Hill, 2011)

Suggested Reference Books:

Advanced Engineering Fluid Mechanics by K. Muralidhar and G. Biswas (Narosa, 3rd Edition, 2015)

Introduction to Fluid Mechanics by R. W. Fox, Philip J. Pritchard and A. T. McDonald (7th Edition, Wiley India, 2009)

Introduction to Fluid Mechanics and Fluid Machines by S. K. Som and G. Biswas (2nd Edition, Tata McGraw-Hill, 2006)

Fluid Mechanics-Fundamentals and Applications by *Y. A. Cengel and John M. Cimbala* (3rd Edition, Tata McGraw-Hill, 2014)

Introduction to Fluid Mechanics by James A Fay (Prentice Hall India Learning Pvt Ltd, 1996)

Grading:

Mid Semester Examination:25%End Semester Examination:35%Quiz (Announced) (Four nos):15%Laboratory:20%Attendance:5%

Grading will be relative. However for a passing grade, a minimum of absolute performance is necessary.

Students failing to have 80% attendance may be recommended for de-registration. In addition to the announced quizzes, there may be surprise quizzes during the lecture hour.

Make-up Examinations:

The level of the make-up examinations will be tougher than the regular ones.

Missing mid-semester examination/quiz: Make-up examination will be offered only for students who have a valid medical certificate from the institute's health center or leave certificate. The date will be announced in due

course. If a student misses a mid-semester examination, he/she must immediately contact the Instructor and submit the valid medical or leave certificate. *There will be no make-up for quizzes*.

Missing the end-semester examination: Students missing end semester examination will need to apply to DOAA office/instructor with required documents, and the approval for make-up will be decided by DOAA office/instructor. The make-up examination will be conducted as per the timetable announced by DOAA/instructor.

Note:

- Misconduct of any kind (such as proxy in attendance or adopting unfair means during examinations, copying assignments) will be duly reported to institute authorities.
- Mobile phones must be *switched off* during lectures.
- You must arrive at the right time for the lectures.

TAs:

- 1. Ms Swati Singh, Office: Room # SL210, Phone: 7987, email: swatisi@iitk.ac.in
- 2. Mr. Vyas S, Office: Room # SL109, Phone: 6140, email: vyassr@iitk.ac.in
- 3. Mr. Shadab Alam, Office: Room # SL210, Phone: 7987, email: shadab@iitk.ac.in *Office Hours*: Appointment via email.

Lectures may be supplemented by several videos and practice hours. Assignments/Practice problems were selected from the text/reference books but do not carry a grade.

The course is accompanied by the six laboratory experiments that closely relate to the theory. These are selected from the following list:

- Impact of a liquid jet on flat and curved surfaces.
- Measurement of drag on a circular cylinder in high Reynolds number flow.
- Energy loss measurements in subcritical and supercritical open channel flow.
- Measurement of fluid gas and liquid, viscosity.
- Determination of friction factor as a function of Reynolds number in pipe flow.
- Study of laminar-turbulent transition during flow in a tube.
- Boundary layer flow over a flat plate.
- Pressure distribution around a circular cylinder in high Reynolds number flow.