Can Past Experience Accelerate LLM Reasoning?

Bo Pan and Liang Zhao

Department of Computer Science, Emory University {bo.pan, liang.zhao}@emory.edu

Abstract Allocating more compute to large language models (LLMs) reasoning has generally been demonstrated to improve their effectiveness, but also results in increased inference time. In contrast, humans can perform tasks faster and better with increased experience and exposure. Hence, this paper aims to investigate the question: Can LLMs also become faster at reasoning through recurrent exposure on relevant tasks, and if so, how can it be achieved? To address these questions, we first formalize the problem setting of LLM reasoning speedup systematically in the dimensions of task relevancy and compute budget calculation. We then propose SpeedupLLM, a theoretically guaranteed framework to implement and benchmark such reasoning speedup behaviour based on adaptive compute allocation and memory mechanisms. We further conduct comprehensive experiments to benchmark such behaviour across different question similarity levels, memory methods, and reasoning methods. Results show that LLMs can generally reason faster with past experience, achieving up to a 56% reduction in compute cost when equipped with appropriate memory and reasoning methods.

1. Introduction

Large Language Models (LLMs) have demonstrated reasoning capabilities to solve problems through step-by-step logical thinking (Brown et al., 2020; Wei et al., 2022), which is crucial for applying LLMs to complex tasks in fields such as math and science (Achiam et al., 2023). Recently, research shows LLMs can better solve complex problems when allocated more compute at test time (Snell et al., 2025), and such techniques are referred to as *test-time scaling* (Snell et al., 2025; Liu et al., 2025). However, increased compute also brings substantial computational overhead and increased reasoning time (Sui et al., 2025), and this stimulates existing research on efficient reasoning algorithms (Sun et al., 2024; Wang et al., 2025; Ding et al., 2025), efficiency-oriented model fine-tuning (Luo et al., 2025; Yu et al.; Kang et al., 2025; Munkhbat et al., 2025), model compression and distillation (Sun et al., 2025; Zhang et al., 2025a).

For humans, repeated exposure on a specific task can lead to a significant reduction in the cognitive effort and time for execution (Shiffrin and Schneider, 1977; Logan, 1988), which is fundamental for humans to become proficient and efficient in various activities, from reading, motor skills, to complex problem-solving (Anderson, 1982). However, it remains unknown whether LLM reasoning also has this merit. To fill this gap, this paper focuses on the question: Can LLM reasoning be faster after past experience, and how can this be achieved? In the remaining of this paper, we refer to LLMs' such potential behaviour as *reasoning speedup*.

There are two main reasons limiting LLM systems from achieving reasoning speedup: 1) **Independent Question Processing**: Regular LLM systems simply process each query independently. However, nowadays, public LLM services accept millions of questions every hour, many of which are related or near-duplicate (Dammu and Alonso, 2024), which are not fully leveraged to reduce redundant compute or accumulate useful experience. 2) **Static Compute Budget Allocation**: Existing test-time scaling methods do not adaptively allocate compute based on an LLM's proficiency to a question, thus hindering the model from becoming faster when meeting familiar questions. For example, Best-of-N

sampling uses a fixed hyperparameter N, while tree-search methods, such as Tree-of-Thought, rely on a predefined maximum number of nodes to expand (Yao et al., 2023).

Therefore, to explore whether LLM can achieve reasoning speedup and how to achieve it, we propose SpeedupLLM, a unified framework to formulate, unify, and benchmark the behaviour of "reasoning speedup over experiences" across various LLM reasoning settings. Specifically, we first systematically formulate this question as a problem to explore the decreasing trend of reasoning cost across different question similarity levels and reasoning paradigms. SpeedupLLM implements LLM reasoning speedup based on two key elements: 1) Adaptive Compute Budget Allocation, which extends various existing test-time scaling methods by early stopping with a threshold. 2) Memory Mechanism, which appends memory of previous questions and answers after processing each question. We conduct a theoretical analysis to prove that SpeedupLLM can enable reasoning speedup.

We further conduct comprehensive experiments to benchmark different memory methods, testtime scaling methods on achieving LLM reasoning speedup at varying question similarity levels. Experiments show that the LLM reasoning speedup behaviour generally exists across different memory and reasoning settings. For similar questions, the reasoning compute budget can be **reduced by up to 56%** with the help of memory mechanisms.

The contribution of this work includes:

- **New Problem**. We identify and systematically formulate the problem of reasoning speedup as the exploration of decreasing compute budget trends across varying question similarity levels and different reasoning methods.
- **Unified Framework**. We propose a unified and theoretically guaranteed framework, SpeedupLLM, to implement and benchmark LLM reasoning speedup based on memory mechanisms and adaptive compute allocation strategies, and it generally supports various reasoning methods.
- Extensive Experiments. We conduct benchmarking experiments across four test-time scaling methods, five memory methods, and four levels of question similarity.
- **Findings and Insights**. Our findings demonstrate that LLMs can achieve faster reasoning after experience. Such behaviour generally exists across different settings, and the reasoning compute budget can be reduced by up to 56%.

2. Related Work

2.1. LLM Test-Time Scaling

Test-Time Scaling is the technique to improve LLMs' reasoning ability on complex questions by allocating more compute at the test time (Snell et al., 2025), and it has received increasing attention from the research community (Parashar et al., 2025; Wu et al., 2025; Ji et al., 2025; Li et al., 2025; Liu et al., 2025). Current representative test-time scaling methods include 1) parallel scaling methods, e.g., Best-of-N sampling (Stiennon et al., 2020), which samples multiple complete answers and selects the highest-scoring one as the final output, and Self Consistency (Wang et al., 2022), which generates multiple answers and select the most common one; 2) Sequential Scaling methods, e.g. Self-Refine (Madaan et al., 2023; Gou et al., 2023), which gradually refine the answer based on internal or external feedback; 3) Tree Search methods (Yao et al., 2023; Feng et al., 2023; Guan et al., 2025), which usually form each reasoning step as a node, and conduct tree search algorithms to search for optimal reasoning chains; 4) Long Chain-of-Thought methods, e.g., the reasoning of OpenAI GPT-4o (Jaech et al., 2024) and DeepSeek-R1 (Guo et al., 2025), which conduct implicit searching in the text space by generating long reasoning chains.

2.2. LLM Memory

Memory mechanisms enable LLMs to retain and use information to generate responses (Zhang et al., 2024c), and such information can be from past experience or an external knowledge base (Zeng et al., 2024). There are two main forms of memory: parametric form and textual form (Zhang et al., 2024c). Parametric-form memory stores the memory in model weights, with representative methods including supervised fine-tuning (SFT) (Hu et al., 2022; Shao et al., 2023), which finetunes the LLMs with past inputs and outputs; and knowledge editing (De Cao et al., 2021; Mitchell et al., 2021; Fang et al., 2024), which mainly focuses on injecting factual knowledge. Textual-form memory saves textual information as memory; the content can be original past interactions (Li et al., 2023; Huang et al., 2023b; Liu et al., 2023; Zhong et al., 2024; Zheng et al., 2023b), reflection (insights extracted from past interactions) (Shinn et al., 2023; Renze and Guven, 2024; Yang et al., 2023b; Hui and Tu, 2024), and atomic facts (Anokhin et al., 2024; Li et al., 2024). In this work, we focus on leveraging past experience to enhance efficiency, so we consider past experience-based memory, including SFT, textual-form past experiences, and reflection on past experiences. We exclude fact-oriented memory structures (e.g., atomic fact databases), as they are primarily designed for knowledge recall rather than past experience.

2.3. LLM Efficient Reasoning

Although test-time scaling significantly boosts LLMs' reasoning ability, it also results in substantial computational overhead and increased reasoning time (Sui et al., 2025). Therefore, various types of LLM efficient reasoning methods have been developed. Existing methods can be categorized into RL-optimization with length reward (Luo et al., 2025; Aggarwal and Welleck, 2025; Team et al., 2025), SFT with shorter CoT (Yu et al.; Kang et al., 2025; Liu et al., 2025), latent representation compression (Hao et al., 2024; Cheng and Van Durme, 2024; Xu et al., 2025b), dynamic reasoning algorithms (Sun et al., 2024; Wang et al., 2025; Ding et al., 2025), prompt-guided efficient reasoning (Han et al., 2024; Lee et al., 2025; Xu et al., 2025a), training data efficiency methods (Ye et al., 2025; Muennighoff et al., 2025), model compression and distillation (Sun et al., 2025; Zhang et al., 2025a). To our best knowledge, no existing research has focused on exploring the efficiency brought by memory or exposure to similar questions.

3. Methodology

3.1. Problem Formulation

In this work, our central question is whether it is possible that, an LLM can gradually become faster when answering multiple similar questions. Formally, let f be an LLM, and let $\mathcal{Q} = \left(q^{(1)}, q^{(2)}, \ldots, q^{(N)}\right)$ be a set of N test questions, where each $q^{(n)}$ is a natural language question. We study how the similarity among questions in \mathcal{Q} affects the model's reasoning efficiency.

To this end, we define four levels of *similarity* of a group of questions from most similar to least similar, as shown in Table 1.

To measure the reasoning efficiency, we define *compute budget*, $cost(f(q^{(n)}))$ for answering $q^{(n)}$, as the number of conducted operations in each test-time scaling method's dominant scaling dimension, e.g., the number of sampled answers in Best-of-N, and the number of nodes expanded in tree search-based methods.

Our primary objective is to investigate the trend of compute budgets $\{cost(f(q^{(1)})), cost(f(q^{(2)})), ..., cost(f(q^{(N)}))\}$ given the question set Q, and identify conditions under which there can be a

Table 1: Definition of question similarity levels, from most similar (S1) to least similar (S4).

Level	Description	Example
S1	Exactly the same questions.	"What is 3+4?" vs "What is 3+4?"
S2	Same numbers, different wording	"What is 3+4?" vs "What is the sum of 3 and 4?"
S3	Same structure, different numbers	"What is 3+4?" vs "What is 5+6?"
S4	Same underlying knowledge, different structure and numbers	"What is 3+4?" vs "If John has 2 apples and Mary has 3, how many do they have together?"

decreasing trend, considering varying levels of question similarity, different test-time scaling strategies, and memory mechanisms.

3.2. SpeedupLLM: A Unified Framework for Implementing and Benchmarking LLM Reasoning Speedup

To implement and benchmark LLM reasoning speedup, we propose SpeedupLLM, a theoretically guaranteed framework that can give a decreasing trend on reasoning cost for relevant questions, based on adaptive compute budget allocation and memory mechanism.

3.2.1. Framework Design

Preliminary. We first give a general form of existing test-time scaling methods. Let $\mathcal S$ be the set of *test-time scaling methods*. When the model process the question $q^{(t)} \in \mathcal Q$ using a test-time scaling method $s \in \mathcal S$, it generates multiple candidate answers in the reasoning process as $\mathcal R_s^{(t)} = f_s(q^{(t)})$, where f_s means generating using test-time scaling method s with model f, $\mathcal R_s^{(t)} = \{r_{1;s}^{(t)}, r_{2;s}^{(t)}, \dots, r_{n_t;s}^{(t)}\}$, and each $r_{k;s}^{(t)} \in \mathcal R_s^{(t)}$ is a candidate answer. An evaluation function $\mathtt{score}(\cdot)$ estimates the quality of each candidate, and the final answer is selected via $\mathtt{argmax}_{r \in \mathcal R_s^{(t)}}$ $\mathtt{score}(r)$.

In Appendix B, we show how various existing test-time scaling methods can be unified into this form.

Adaptive Compute Budget Allocation. To extend existing test-time scaling methods to adaptively allocate compute budget based on the model's proficiency, we aim at strategies to early-stop the generation once a satisfying answer has been generated. This allows a smaller candidate set to achieve the same maximum score as the full set. Formally, we use s' to denote the adaptive extension of method s. Then $f_{s'}$ is attained by:

$$\min_{f_{s'}(q^{(t)})} \texttt{cost}(\mathcal{R}_{s'}^{(t)}) \quad \text{s.t.} \ \max_{r \in \mathcal{R}_{s'}^{(t)}} (\texttt{score}(r)) \geq \tau, \ \text{where} \ \mathcal{R}_{s'}^{(t)} \coloneqq f_{s'}(q^{(t)}) \subseteq \mathcal{R}_{s}^{(t)} \tag{1}$$

where τ is the threshold that a score is considered as satisfying, and $\mathcal{R}_{s'}^{(t)} = f_{s'}(q^{(t)})$ is the reduced generated candidate set. In Section 3.3, we show how various existing test-time scaling methods can be extended to adaptively allocate compute budget under this formulation.

Reasoning with Memory Mechanism. Next, we incorporate the memory mechanism into the reasoning process. Let \mathcal{M} be the set of *memory methods*. During inference, the model processes each question $q^{(t)} \in \mathcal{Q}$ sequentially, leveraging the current memory state $\mathbf{M}^{(t)}$ as

$$\mathcal{R}_{s':m}^{(t)} = f_{s'}(q^{(t)}; \mathbf{M}^{(t)}),$$
 (2)

where $m \in \mathcal{M}$ is the employed memory method. The maintained memory $\mathbf{M}^{(t)}$ is constructed from

prior question-answer pairs by

$$\mathbf{M}^{(t)} = g_m(\{(q^{(i)}, \mathcal{R}_{s':m}^{(i)})\}_{i=1}^{t-1}) \quad \forall t > 1.$$
(3)

where g_m is the function to save memory with the memory method m.

3.2.2. Theoretical Analysis

Here, we prove that SpeedupLLM can reduce reasoning cost as the model experiences more relevant questions. We begin by showing that, under adaptive compute budget allocation, if the answer quality improves over time, then the compute budget decreases accordingly, as shown in Theorem 1.

Theorem 1 (Non-Increasing Compute Budget with Non-Decreasing Answer Quality). If under the test-time scaling method s, the probability that the best response exceeds the quality threshold, i.e. $\mathbb{P}(\max_{r \in \mathcal{R}_s^{(t)}} \mathtt{score}(r) \geq \tau)$, is non-decreasing with t, then the expected compute budget $\mathbb{E}[\mathtt{cost}(\mathcal{R}_{s'}^{(t)})]$ when using s' should be non-increasing with t.

Proof. Detailed proof is elaborated in Appendix A.1.

Next, we show that the memory mechanism can help improve answer quality.

Theorem 2 (Non-Decreasing Answer Quality with Accumulating Relevant Memory). *If additional correct memory from relevant questions does not degrade model performance, i.e., if*

$$\mathbb{E}_{r \in f_{s_j}(q^{(t)};\mathcal{M})}\big[\mathtt{score}(r)\big] \geq \mathbb{E}_{r' \in f_{s_j}(q^{(t)};\mathcal{M}')}\big[\mathtt{score}(r')\big],$$

for $\mathcal{M}' \subseteq \mathcal{M}$, then for any k, the probability of a satisfying answer appears in the first k candidates, i.e., $\mathbb{P}\left(\max_{1 \leq i \leq k} \mathtt{score}(r_{i;s}^{(t)}) \geq \tau\right)$, is non-decreasing by t.

Proof. Detailed proof is elaborated in Appendix A.2.

Combining Theorem 1 and Theorem 2, we have

Corollary 1. Under the conditions in Theorem 1 and 2, SpeedupLLM achieves a non-increasing expected compute budget while maintaining the probability of producing a satisfying answer.

It shows that, by integrating adaptive compute allocation and memory-augmented reasoning, SpeedupLLM can yield a decreasing trend in the compute budget of reasoning.

3.3. Specification to Different Test-Time Scaling Methods

Next, we show how SpeedupLLM can be specified for different test-time scaling strategies. We explore four representative streams of test-time scaling methods: Best-of-N, Tree-of-Thoughts (Yao et al., 2023), Self-Refine (Madaan et al., 2023), and Long Chain-of-Thought (Long CoT) (Chen et al., 2025; Guo et al., 2025). These modifications make each scaling strategy adaptive, allowing them to allocate compute budget based on the LLM's familiarity with the questions.

Best-of-N. In this method, the minimal unit of generation after which a complete answer can be evaluated is a whole answer. Thus, $cost(\cdot)$ is measured by the number of generated and evaluated answers. $score(\cdot)$ is provided by an LLM Judge (Zheng et al., 2023a) or a Process Reward Model

(Lightman et al., 2023; Zhang et al., 2025b). Optimizing Eq. 1 is practically performed by sequentially (or in batches) generating and scoring each answer. The generation stops once an acceptable answer is produced.

Tree-of-Thoughts. In this method, the minimal unit of generation after which a complete answer can be evaluated is a node in the search tree (often representing a reasoning step). Thus, $cost(\cdot)$ is evaluated as the number of generated and evaluated nodes. Similar to Best-of-N, $score(\cdot)$ is given by an LLM Judge (Zheng et al., 2023a) or a Process Reward Model (Lightman et al., 2023; Zhang et al., 2025b). To practically optimize Eq. 1, when expanding each node in the tree search, we sequentially evaluate each node; once we encounter a node with an above-threshold score, we prune the following nodes and expand the current node. Note that this approach also unifies DFS and BFS.

Self-Refine. This method is intrinsically compute adaptive. In this method, the minimal unit is one whole refined answer. Thus, $cost(\cdot)$ is evaluated as the number of generated and evaluated answers. $score(\cdot)$ is given by the model itself or an external LLM. Since this method automatically stops when a satisfying answer appears, there is no specific modification required to optimize Eq. 1.

Long CoT. Long CoT reasoning conducts free-form reasoning processes that implicitly incorporate self-refinement and tree-search strategies within the text generation space (Chen et al., 2025). This approach allows the model to continue generating content until it determines that a satisfactory answer has been reached, eliminating the need for predefined stopping tokens such as "wait" (Sui et al., 2025); thus, it is also an inherently adaptive method. Since this is a text-space reasoning method, the $cost(\cdot)$ is evaluated as the total number of generated tokens, and $score(\cdot)$ is assessed by the model's own estimation of the next-token probability, i.e., to generate another "wait" to continue thinking or stop with the current answer. This method also does not require specific modification to be compute budget-adaptive.

4. Experimental Setup

Benchmarking Dimensions. To explore the LLM reasoning speedup behaviour, we conduct experiments along three dimensions: 1) Question Similarity, 2) Memory Method, and 3) Scaling Method. The details are introduced as follows.

Data. In this study, we create a dataset covering four levels of similarity as defined in Section 3.1. We sample 10 questions from the MATH dataset to serve as the backbone to create similar questions. For each of these four similarity levels, these backbone questions are extended into a set of 20 questions per backbone through a combination of large language models (LLM) and programming-based calculations of the results, to ensure the correctness of the answer. Examples of questions with different similarities are given in Appendix C.

Memory Methods. In this study, we explore both parametric-form and textual-form memory (Zhang et al., 2024c). In addition to the baseline of no memory mechanism, we conduct experiments to evaluate five memory methods: one parametric method (SFT) and four text-based memory methods.

- No Memory (Baseline): Questions are processed individually without memory mechanism.
- **SFT** (Supervised Fine-Tuning) as memory (Shao et al., 2023; Wang et al., 2023b; Yang et al., 2023a): The past question and generated answer pairs are used as data to perform supervised fine-tuning on the model.
- In-Context (Zhao et al., 2024; Huang et al., 2023a; Wang et al., 2023a): The past questions and generated answers are used as in-context examples to guide the reasoning.
- Reflection: LLMs self-summarize past experiences and summarize rules to guide the reasoning.

Figure 1: Changes in compute budget and accuracy relative to the baseline without memory mechanisms, across each memory method, test-time scaling method, and question similarity level. Values represent the relative compute budget and accuracy, averaged over all question backbones and variations.

We test three variants: 1) **Reflect** (individually) (Zhong et al., 2024; Packer et al., 2023): The LLM individually reflects on each previous question and answer pair and summarizes experience from each one. 2) **Multi-Case Reflect** (Zhao et al., 2024; Tack et al., 2024): The LLM is asked to summarize experience from multiple previous question and answer pairs. 3) **Reflect-Update** (Hu et al., 2023; Shinn et al., 2023): The LLM maintains a reflection by updating it with each new question and answer pair.

Metrics. We evaluate 1) allocated *compute budget* and 2) *accuracy* on each question. For each single question, these two metrics are averaged over four runs.

Implementation Details. See Appendix D.

5. Results

We first present the compute budget trends across different levels of question similarity, reasoning strategies, and memory methods Fig. 2. For a clearer comparison, we aggregate the compute budget over question indices within each question set, as shown in Fig. 1. The following sections provide detailed analyses along each experimental dimension. We first answer the central question of the possibility of LLM reasoning speedup in Section 5.1, then we explore the question similarity's effect in Section 5.2, the memory method's effects in Section 5.3, and finally the test-time scaling method's effects in Section 5.4.

5.1. Possibility of LLM Reasoning Speedup

Finding 1: LLMs can achieve reasoning speedup through past experience.

Figure 2: Changes in (a) compute budget and (b) accuracy relative to the baseline (no memory), across different memory methods, test-time scaling methods, and question similarity levels. In each subplot, the x-axis denotes the question index within a sequence of questions, while the y-axis shows the percentage change in compute budget or accuracy compared to the baseline. Each curve presents values averaged over multiple question sets at each question index. Gray dashed lines represent baseline (no memory) performance.

As shown in Fig. 1, the left panel demonstrates significant reductions in compute budget, with up to a 56% reduction when using the combination of *In-Context* memory and *DFS* reasoning in the similarity level S3, and there is at least a 10% reduction in 47.5% settings. Additionally, such reasoning speedup behaviour consistently occurs across 64 out of 80 settings (cool cells in left panel), demonstrating that reasoning speedup is a general behaviour for LLMs when equipped with memory and adaptive compute allocation.

Finding 2. Response speed and accuracy are strongly correlated; faster responses tend to be more accurate.

Fig. 1 shows a clear correlation between reasoning efficiency (compute budget) and accuracy. Specifically, regions with deeper blue in the left panel (more reductions in compute cost) often correspond to regions with deeper red in the right panel (more accuracy improvements). Upon examination, the relative compute budget and accuracy have a Pearson correlation of -0.41 with p=0.0002, suggesting a moderate and statistically significant negative correlation. These observations suggest that enhancing reasoning speed does not sacrifice, but instead improves answer correctness. This is because test-time scaling methods suffer from the gap between the estimated answer quality score and actual correctness, but with correct memory, this issue can be alleviated, leading to improved accuracy.

5.2. Question Similarity: The Boundary of Reasoning Speedup

Finding 3. Reasoning efficiency gains increase with question similarity.

We also find that reasoning speedup is more pronounced when questions are more similar. To highlight this effect, we present Fig. 3, where all results from Fig. 1 are grouped and averaged by their similarity levels. As shown, the reductions in compute budget are most significant in more similar question groups (S1: 16.0%, and S2: 15.4%). As more details are shown in Fig. 1 (left), such pattern is consistent across most memory methods, especially *SFT*, *In-Context*, and *Reflect-Update*. This pattern is largely expected, since it aligns with patterns observed in human cognition, where efficiency improves larger for more similar tasks.

Figure 3: Compute budget changes grouped and averaged by question similarity levels.

Finding 4. When question similarity is low, memory mechanisms can cause a performance drop.

While memory mechanisms generally reduce compute costs for similar questions, Fig. 1 shows that under low similarity, some methods can increase compute costs and degrade accuracy, as indicated by warm cells in the left panel and cool cells in the right panel, such patterns mostly appears in low similarity question groups (S4). This is because when the questions and answers in memory differ substantially from the current query, the model can overfit to irrelevant examples from memory (Zhang et al., 2024b), and repeated reliance on a narrow set of memories can trigger catastrophic forgetting, reducing the model's ability to generalize (Luo et al., 2023).

5.3. The Effects of Memory Methods

Finding 5. Episodic memory methods generally outperform semantic memory methods in LLM reasoning speedup.

In Fig. 4, we show the relative compute budget values of each memory method, averaged across different similarity levels and test-time scaling methods. Generally, we find that episodic memory methods (SFT: 10.8%, In-Context 27.4%) reduce compute budgets more effectively than semantic (reflection-based) methods (3.6%, 5.5%, 8.8%). This aligns with previous studies showing that comprehensive recall of past experience is important for benefiting LLMs in problem solving (Renze and Guven, 2024). Similarly, psychological research indicates that human proficiency initially relies on episodic memory, which allows for instance-based retrieval (Logan, 1988). This suggests that episodic memory may play a critical role in initial LLM reasoning efficiency improvements.

Figure 4: Compute budget changes grouped and averaged by memory methods.

Finding 6. In-context learning yields greater improvements in both efficiency and accuracy than supervised fine-tuning.

Comparing the *in context* and *SFT* rows in Fig. 4 (also in Fig. 1), we find that *In-Context* memory consistently gives greater reductions in compute budget and improvements in accuracy across all scaling methods and similarity levels. Similarly, in Fig. 2 (a), the curves also show more consistent trends of reducing compute budget for *In-Context* compared to *SFT*, indicating that in-context memory adapts more efficiently in LLM reasoning speedup. This relates to a comparison of SFT and ICL (In-Context Learning) when the data is very few (1 to 3-shot), where SFT faces either insufficient data for adaptation (Luo et al., 2023) or is prone to overfitting (Zhang et al., 2024a), and ICL has better generalizability (Yin et al., 2024).

Finding 7. Text-based memory methods plateau when the context window is full, whereas parametric memory continues to achieve reasoning speedup.

In Fig. 5, we show the relative compute budget averaged across different similarity levels and test-time scaling methods. The results reveal that memory methods relying on in-context textual memory, including *In-Context*, *Reflect*, and *Multi-Case Reflect*, exhibit diminishing efficiency gains once the context window becomes full (index=3). In contrast, *SFT*, which saves memory into the model parameters, shows more consistent efficiency gains across the entire sequence, as it is not limited by the context window size.

Figure 5: Compute budget change in each question index, grouped and averaged by memory methods.

Finding 8. Generalizable reflections can better help reasoning speedup.

Among reflection-based methods, Reflect-Update achieves noticeably stronger and more stable im-

provements than *Reflect* and *Multi-Case Reflect* in both efficiency and accuracy, as shown in Fig. 4 and Fig. 1. Upon examining the model-generated reflections, we found that the reflections generated by *Reflect* and *Multi-Case Reflect* often contain specific numbers or calculations (some examples are shown in Appendix E), which may not be generalizable across different questions, while *Reflect-Update* tends to generate more general reflections, reducing the risk of using unrelated calculations to mislead the answering of the current question. This also implies that a tradeoff between generalizability and informativeness needs to be considered in future work when trying to design better reflection-based methods for LLM reasoning speedup.

5.4. The Effects of Test-Time Scaling Methods

Finding 9. The effect of different test-time scaling methods is correlated with memory methods.

Based on our results, there is no single best test-time scaling method for enabling LLM reasoning speedup. As shown in Fig. 1, the effectiveness of scaling methods is closely related to the type of memory method used. When using episodic memory methods such as *SFT* and *In-Context*, *DFS* appears to be the most effective in reducing compute budgets. In contrast, when using reflection-based memory methods, *Self-Refine* and *Long CoT* yield better efficiency gains. Given the strong influence of the scaling method on the overall LLM performance, which is also evidenced by the fact that many state-of-the-art models such as OpenAI o1 (Jaech et al., 2024) and DeepSeek-R1 (Guo et al., 2025) adopt *Long CoT*, it is important to recognize that the choice of scaling methods should not be the first consideration. However, for *Long CoT*, we do observe that different memory methods show similar efficiency improvements, with *In-Context* performing slightly better. For the exploration of strategies that better combine memory methods with test-time scaling methods, particularly under *Long CoT* settings, we leave it to future work.

6. Conclusion, Limitations, and Future Work

In this study, we raised and formally defined the question of whether large language models (LLMs) can achieve reasoning speedup through repeated exposure. To address this, we proposed SpeedupLLM, a unified framework for implementing and benchmarking reasoning speedup behaviors in LLMs. Through extensive experiments, we observed that reasoning speedup generally emerges across different memory mechanisms and test-time scaling methods, particularly when the questions exhibit higher similarity. Additionally, we provided several insights into the factors that influence such behaviors.

This work has several limitations. First, our exploration of memory mechanisms focused on widely used methods, but it cannot cover all recent advances, e.g., compact episodic memory formats. For Long-CoT reasoning, we did not identify memory methods that significantly reduce the compute budget. Future work should explore more effective approaches for reasoning speedup in Long-CoT reasoning models. Exploring how to leverage in-context episodic memory while overcoming the limitations of context window length also represents a promising direction.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

- Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with reinforcement learning. *arXiv* preprint *arXiv*:2503.04697, 2025.
- John R Anderson. Acquisition of cognitive skill. Psychological review, 89(4):369, 1982.
- Petr Anokhin, Nikita Semenov, Artyom Sorokin, Dmitry Evseev, Mikhail Burtsev, and Evgeny Burnaev. Arigraph: Learning knowledge graph world models with episodic memory for llm agents. *arXiv* preprint arXiv:2407.04363, 2024.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu, Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-thought for reasoning large language models. *arXiv* preprint arXiv:2503.09567, 2025.
- Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning through dense representations. *arXiv* preprint *arXiv*:2412.13171, 2024.
- Preetam Prabhu Srikar Dammu and Omar Alonso. Near-duplicate question detection. In *Companion Proceedings of the ACM Web Conference 2024*, pages 493–496, 2024.
- Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. *arXiv* preprint arXiv:2104.08164, 2021.
- Yifu Ding, Wentao Jiang, Shunyu Liu, Yongcheng Jing, Jinyang Guo, Yingjie Wang, Jing Zhang, Zengmao Wang, Ziwei Liu, Bo Du, et al. Dynamic parallel tree search for efficient llm reasoning. arXiv preprint arXiv:2502.16235, 2025.
- Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Shi Jie, Xiang Wang, Xiangnan He, and Tat-Seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. *arXiv* preprint arXiv:2410.02355, 2024.
- Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun Wang. Alphazero-like tree-search can guide large language model decoding and training. *arXiv* preprint arXiv:2309.17179, 2023.
- Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen. Critic: Large language models can self-correct with tool-interactive critiquing. *arXiv* preprint *arXiv*:2305.11738, 2023.
- Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang. rstar-math: Small llms can master math reasoning with self-evolved deep thinking. *arXiv* preprint *arXiv*:2501.04519, 2025.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-budget-aware llm reasoning. *arXiv preprint arXiv:2412.18547*, 2024.
- Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. Training large language models to reason in a continuous latent space. *arXiv preprint arXiv:2412.06769*, 2024.

- Chenxu Hu, Jie Fu, Chenzhuang Du, Simian Luo, Junbo Zhao, and Hang Zhao. Chatdb: Augmenting llms with databases as their symbolic memory. *arXiv preprint arXiv:2306.03901*, 2023.
- Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
- Xu Huang, Jianxun Lian, Yuxuan Lei, Jing Yao, Defu Lian, and Xing Xie. Recommender ai agent: Integrating large language models for interactive recommendations. *arXiv preprint arXiv:2308.16505*, 2023a.
- Ziheng Huang, Sebastian Gutierrez, Hemanth Kamana, and Stephen MacNeil. Memory sandbox: Transparent and interactive memory management for conversational agents. In *Adjunct Proceedings* of the 36th Annual ACM Symposium on User Interface Software and Technology, pages 1–3, 2023b.
- Wenyang Hui and Kewei Tu. Rot: Enhancing large language models with reflection on search trees. *arXiv preprint arXiv:2404.05449*, 2024.
- Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint arXiv:2412.16720*, 2024.
- Yixin Ji, Juntao Li, Hai Ye, Kaixin Wu, Jia Xu, Linjian Mo, and Min Zhang. Test-time computing: from system-1 thinking to system-2 thinking. *arXiv preprint arXiv:2501.02497*, 2025.
- Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought without compromising effectiveness. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 24312–24320, 2025.
- Ayeong Lee, Ethan Che, and Tianyi Peng. How well do llms compress their own chain-of-thought? a token complexity approach. *arXiv preprint arXiv:2503.01141*, 2025.
- Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph Gonzalez, Ion Stoica, Xuezhe Ma, and Hao Zhang. How long can context length of open-source llms truly promise? In *NeurIPS* 2023 Workshop on Instruction Tuning and Instruction Following, 2023.
- Shilong Li, Yancheng He, Hangyu Guo, Xingyuan Bu, Ge Bai, Jie Liu, Jiaheng Liu, Xingwei Qu, Yangguang Li, Wanli Ouyang, et al. Graphreader: Building graph-based agent to enhance long-context abilities of large language models. *arXiv* preprint arXiv:2406.14550, 2024.
- Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of reasoning large language models. *arXiv preprint arXiv:2502.17419*, 2025.
- Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth International Conference on Learning Representations*, 2023.
- Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy Liang. Lost in the middle: How language models use long contexts. *arXiv preprint arXiv:2307.03172*, 2023.
- Runze Liu, Junqi Gao, Jian Zhao, Kaiyan Zhang, Xiu Li, Biqing Qi, Wanli Ouyang, and Bowen Zhou. Can 1b llm surpass 405b llm? rethinking compute-optimal test-time scaling. *arXiv* preprint *arXiv*:2502.06703, 2025.

- Gordon D Logan. Toward an instance theory of automatization. *Psychological review*, 95(4):492, 1988.
- Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao, and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning. *arXiv* preprint arXiv:2501.12570, 2025.
- Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of catastrophic forgetting in large language models during continual fine-tuning. *arXiv* preprint *arXiv*:2308.08747, 2023.
- Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.
- Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model editing at scale. *arXiv preprint arXiv:2110.11309*, 2021.
- Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time scaling. arXiv preprint arXiv:2501.19393, 2025.
- Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-training elicits concise reasoning in large language models. *arXiv preprint arXiv:2502.20122*, 2025.
- Charles Packer, Vivian Fang, Shishir_G Patil, Kevin Lin, Sarah Wooders, and Joseph_E Gonzalez. Memgpt: Towards llms as operating systems. 2023.
- Shubham Parashar, Blake Olson, Sambhav Khurana, Eric Li, Hongyi Ling, James Caverlee, and Shuiwang Ji. Inference-time computations for llm reasoning and planning: A benchmark and insights. *arXiv preprint arXiv:2502.12521*, 2025.
- Matthew Renze and Erhan Guven. Self-reflection in llm agents: Effects on problem-solving performance. *arXiv preprint arXiv:2405.06682*, 2024.
- Yunfan Shao, Linyang Li, Junqi Dai, and Xipeng Qiu. Character-llm: A trainable agent for role-playing. *arXiv preprint arXiv:2310.10158*, 2023.
- Richard M Shiffrin and Walter Schneider. Controlled and automatic human information processing: Ii. perceptual learning, automatic attending and a general theory. *Psychological review*, 84(2):127, 1977.
- Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. *Advances in Neural Information Processing Systems*, 36:8634–8652, 2023.
- Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can be more effective than scaling parameters for reasoning. In *The Thirteenth International Conference on Learning Representations*, volume 2, page 7, 2025.
- Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. *Advances in neural information processing systems*, 33:3008–3021, 2020.

- Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient reasoning for large language models. *arXiv preprint arXiv:2503.16419*, 2025.
- Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. *arXiv* preprint *arXiv*:2410.20290, 2024.
- Lin Sun, Guangxiang Zhao, Xiaoqi Jian, Yuhan Wu, Weihong Lin, Yongfu Zhu, Linglin Zhang, Jinzhu Wu, Junfeng Ran, Sai-er Hu, et al. Tinyr1-32b-preview: Boosting accuracy with branch-merge distillation. *arXiv preprint arXiv:2503.04872*, 2025.
- Jihoon Tack, Jaehyung Kim, Eric Mitchell, Jinwoo Shin, Yee Whye Teh, and Jonathan Richard Schwarz. Online adaptation of language models with a memory of amortized contexts. *arXiv* preprint arXiv:2403.04317, 2024.
- Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with llms. *arXiv preprint arXiv:2501.12599*, 2025.
- Bing Wang, Xinnian Liang, Jian Yang, Hui Huang, Shuangzhi Wu, Peihao Wu, Lu Lu, Zejun Ma, and Zhoujun Li. Enhancing large language model with self-controlled memory framework. *arXiv* preprint arXiv:2304.13343, 2023a.
- Haochun Wang, Chi Liu, Nuwa Xi, Zewen Qiang, Sendong Zhao, Bing Qin, and Ting Liu. Huatuo: Tuning llama model with chinese medical knowledge. *arXiv preprint arXiv:2304.06975*, 2023b.
- Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. *arXiv* preprint arXiv:2203.11171, 2022.
- Yiming Wang, Pei Zhang, Siyuan Huang, Baosong Yang, Zhuosheng Zhang, Fei Huang, and Rui Wang. Sampling-efficient test-time scaling: Self-estimating the best-of-n sampling in early decoding. *arXiv* preprint arXiv:2503.01422, 2025.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
- Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An empirical analysis of compute-optimal inference for llm problem-solving. In *The Thirteenth International Conference on Learning Representations*, 2025.
- Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing less. *arXiv preprint arXiv:2502.18600*, 2025a.
- Yige Xu, Xu Guo, Zhiwei Zeng, and Chunyan Miao. Softcot: Soft chain-of-thought for efficient reasoning with llms. *arXiv preprint arXiv:2502.12134*, 2025b.
- Yi Yang, Yixuan Tang, and Kar Yan Tam. Investlm: A large language model for investment using financial domain instruction tuning. *arXiv* preprint arXiv:2309.13064, 2023a.
- Zeyuan Yang, Peng Li, and Yang Liu. Failures pave the way: Enhancing large language models through tuning-free rule accumulation. *arXiv preprint arXiv:2310.15746*, 2023b.

- Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Advances in neural information processing systems*, 36:11809–11822, 2023.
- Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for reasoning. *arXiv preprint arXiv:2502.03387*, 2025.
- Qingyu Yin, Xuzheng He, Luoao Deng, Chak Tou Leong, Fan Wang, Yanzhao Yan, Xiaoyu Shen, and Qiang Zhang. Deeper insights without updates: The power of in-context learning over fine-tuning. arXiv preprint arXiv:2410.04691, 2024.
- Ping Yu, Jing Xu, Jason E Weston, and Ilia Kulikov. Distilling system 2 into system 1. In *The First Workshop on System-2 Reasoning at Scale, NeurIPS'24*.
- Ruihong Zeng, Jinyuan Fang, Siwei Liu, and Zaiqiao Meng. On the structural memory of llm agents. *arXiv preprint arXiv:2412.15266*, 2024.
- Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets llm finetuning: The effect of data, model and finetuning method. *arXiv preprint arXiv:2402.17193*, 2024a.
- Mengqi Zhang, Xiaotian Ye, Qiang Liu, Pengjie Ren, Shu Wu, and Zhumin Chen. Uncovering overfitting in large language model editing. *arXiv preprint arXiv:2410.07819*, 2024b.
- Nan Zhang, Yusen Zhang, Prasenjit Mitra, and Rui Zhang. When reasoning meets compression: Benchmarking compressed large reasoning models on complex reasoning tasks. *arXiv preprint arXiv:2504.02010*, 2025a.
- Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua Dong, and Ji-Rong Wen. A survey on the memory mechanism of large language model based agents. *arXiv* preprint arXiv:2404.13501, 2024c.
- Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical reasoning. *arXiv preprint arXiv:2501.07301*, 2025b.
- Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm agents are experiential learners. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 19632–19642, 2024.
- Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023a.
- Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar prompting with memory for computer control. *arXiv preprint arXiv:2306.07863*, 2023b.
- Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large language models with long-term memory. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 19724–19731, 2024.

A. Proof of Theorems and Corollary

A.1. Proof of Theorem 1

Proof. From the assumptions we have:

$$\mathbb{P}\left(\max_{1\leq j\leq k} \mathtt{score}(r_j^{(t+1)}) \geq \tau\right) \geq \mathbb{P}\left(\max_{1\leq j\leq k} \mathtt{score}(r_j^{(t)}) \geq \tau\right).$$

So the cumulative distribution of $|\mathcal{R}^{(t)}|$ satisfies:

$$\mathbb{P}\big(|\mathcal{R}^{(t)}| \leq k\big) = \mathbb{P}\left(\max_{1 \leq j \leq k} \mathtt{score}(r_j^{(t)}) \geq \tau\right).$$

Since cost(R) is non-decreasing with |R|, the expected cost satisfies

$$\mathbb{E} \big[\texttt{cost}(|\mathcal{R}^{(t+1)}|) \big] \leq \mathbb{E} \big[\texttt{cost}(|\mathcal{R}^{(t)}|) \big].$$

A.2. Proof of Theorem 2

We first consider a simplified setting, where we assume the independence of each $r \in \mathcal{R}_s^{(t)}$. Note this is valid without simplification for independent sampling test-time scaling methods, e.g. Best-of-N.

Proof. Let $p_t := \mathbb{P}(\mathtt{score}(r_1^{(t)}) \geq \tau)$. Because memory grows monotonically with t, we have $p_{t+1} \geq p_t$. Under the independence assumption,

$$\mathbb{P}\left(\max_{1\leq j\leq k} \mathtt{score}(r_j^{(t)}) \geq \tau\right) = 1 - (1-p_t)^k,$$

As this function is monotonically increasing in p_t , we conclude

$$1 - (1 - p_{t+1})^k \ge 1 - (1 - p_t)^k,$$

which proves the claim

$$\mathbb{P}\left(\max_{1\leq j\leq k} \mathtt{score}(r_j^{(t+1)}) \geq \tau\right) > \mathbb{P}\left(\max_{1\leq j\leq k} \mathtt{score}(r_j^{(t)}) \geq \tau\right).$$

Next, we generalize the proof by removing the independence assumption and considering the case where candidates $r_j^{(t)} \in \mathcal{R}_s^{(t)}$ are dependent, but satisfy a natural topological generation structure. We further assume:

(A1) There exists a directed acyclic graph (DAG) $\mathcal{G} = (V, E)$ on the index set $V = \{1, \dots, k\}$ that is identical for t and t+1. We write $r_i^{(t)} \leadsto r_j^{(t)}$ if $(i,j) \in E$, i.e. candidate $r_j^{(t)}$ relies on $r_i^{(t)}$. For each j let $\mathcal{P}(j) = \{i: (i,j) \in E\}$ be its (possibly empty) parent set.

(A2) For any non-root node j the conditional distribution of $score(r_j^{(t)})$ is monotone in its parents' scores: if $s \geq s'$ coordinate-wise then

$$\mathtt{score}\big(r_j^{(t)} \mid \mathtt{score}(\mathcal{P}(j)) = \mathbf{s}\big) \ \geq_{\mathtt{st}} \ \mathtt{score}\big(r_j^{(t)} \mid \mathtt{score}(\mathcal{P}(j)) = \mathbf{s}'\big).$$

Consequently, whenever every parent's score distribution stochastically improves, so does the child's.

Proof. We first convert the mean-improvement assumption

$$\mathbb{E}[\mathsf{score}(r_i^{(t+1)})] \ge \mathbb{E}[\mathsf{score}(r_i^{(t)})] \tag{B0}$$

into a tail-probability guarantee for every *root* node j (nodes with $\mathcal{P}(j) = \emptyset$). When scores are normalized to the unit interval, the following elementary bound holds.

Lemma 1. *Let* $S \in [0, 1]$ *and* $\tau \in (0, 1)$. *Then*

$$\mathbb{P}(S \ge \tau) \ge \frac{\mathbb{E}[S] - \tau}{1 - \tau}.$$

Proof of Lemma 1. Write $\mathbb{E}[S] = \mathbb{E}[S \mid S \geq \tau] \mathbb{P}(S \geq \tau) + \mathbb{E}[S \mid S < \tau] (1 - \mathbb{P}(S \geq \tau))$. Because $S \leq 1$ and $S < \tau$ on the second event, $\mathbb{E}[S \mid S < \tau] \leq \tau$. Hence $\mathbb{E}[S] \leq \mathbb{P}(S \geq \tau) + \tau (1 - \mathbb{P}(S \geq \tau)) = \tau + (1 - \tau) \mathbb{P}(S \geq \tau)$,.

Applying Lemma 1 to (B0) gives, for every root j,

$$\mathbb{P}\big(\mathtt{score}(r_j^{(t+1)}) \geq \tau\big) \; \geq \; \mathbb{P}\big(\mathtt{score}(r_j^{(t)}) \geq \tau\big) \quad \forall j \text{ s.t. } \mathcal{P}(j) = \varnothing,$$

i.e. $\operatorname{score}(r_i^{(t+1)}) \ge_{\operatorname{st}} \operatorname{score}(r_i^{(t)})$.

Then, we traverse the fixed dependency DAG $\mathcal G$ in a topological order. Assume for every parent $i \in \mathcal P(j)$ of the current node j that $\mathtt{score}(r_i^{(t+1)}) \ge_{\mathtt{st}} \mathtt{score}(r_i^{(t)})$. By construction the joint parent-score vector at t+1 stochastically dominates the one at t. Under the *monotone-reliance* assumption (B3), this dominance propagates to the child:

$$\operatorname{score}(r_j^{(t+1)}) \ge_{\operatorname{st}} \operatorname{score}(r_j^{(t)}).$$

Thus the induction hypothesis extends to every successor node. Proceeding through the whole order yields

$$score(r_i^{(t+1)}) \ge_{st} score(r_i^{(t)}) \quad \forall j.$$

Thus, the mapping $g(\mathbf{x}) = \max_{1 \le j \le k} x_j$ is monotone, i.e.

$$\max_{j} \mathtt{score}(r_{j}^{(t+1)}) \ge_{\mathtt{st}} \max_{j} \mathtt{score}(r_{j}^{(t)}).$$

So for every threshold τ , we have

$$\mathbb{P}\Big(\max_{1 \leq i \leq k} \mathtt{score}(r_j^{(t+1)}) \geq \tau\Big) \geq \mathbb{P}\Big(\max_{1 \leq i \leq k} \mathtt{score}(r_j^{(t)}) \geq \tau\Big).$$

B. Test-time Scaling Methods

In this appendix, we elaborate how several widely-used test-time scaling methods can be expressed within the unified framework introduced in Section X. Let $f_s(q^{(t)})$ denote the set of candidate answers $\mathcal{R}_s^{(t)}$ generated by applying test-time scaling method $s \in \mathcal{S}$ to question $q^{(t)}$. Each method defines a minimal unit of computation, a corresponding cost function $\mathtt{cost}(\cdot)$, and a score function $\mathtt{score}(\cdot)$ to evaluate answer quality.

Best-of-N. This method generates N complete candidate answers. Each $r_{k;s}^{(t)} \in \mathcal{R}s^{(t)}$ is an independently sampled answer.

- *Unit of computation:* full answer.
- *Cost*: number of generated answers, i.e., $|\mathcal{R}s^{(t)}|$.
- Score: LLM Judge or Process Reward Model assigns score(r) for each candidate r.
- Final answer: $\operatorname{argmax} r \in \mathcal{R}s^{(t)}\operatorname{score}(r)$.

This method directly aligns with our unified formulation, with f_s sequentially or in batches generating $r1, r2, \ldots, r_N$ until an answer satisfying the threshold is found.

Tree-of-Thoughts. This method performs structured reasoning by expanding nodes in a search tree.

- *Unit of computation:* tree node.
- Cost: number of generated and scored nodes.
- Score: each node is scored via LLM Judge or reward model.
- Final answer: the highest-scoring reasoning path.

Our formulation covers this by letting f_s denote the expansion of search tree nodes, with $\mathcal{R}_s^{(t)}$ representing partial reasoning paths. Both DFS and BFS are special cases, differing in node expansion order.

Self-Refine. This method iteratively generates improved answers based on previous attempts.

- *Unit of computation:* full refined answer.
- *Cost:* number of refinement steps (full answers).
- Score: internally assessed (e.g., by the model itself) or by an external judge.
- Final answer: the most refined answer exceeding the threshold.

Self-Refine is inherently adaptive: f_s produces a sequence of revised answers until $\mathtt{score}(r) \geq \tau$. No explicit compute optimization is required.

Long CoT (Chain-of-Thought). This method enables free-form, unbounded reasoning over long text segments.

- *Unit of computation:* token.
- Cost: number of generated tokens.
- *Score*: assessed implicitly by the model (e.g., via stopping probabilities).
- Final answer: the whole generated sequence.

This method integrates self-refinement and tree-search behavior into token-level generation. $\mathcal{R}_s^{(t)}$ here can be seen as the full text trace, and $\mathtt{score}(\cdot)$ may correspond to internal confidence or the model's own stop criterion (e.g., omitting "wait" tokens).

C. Data Examples

Question Backbone:

```
Let $\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$
and $\mathbf{b} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}
}.$ Find the vector $\mathbf{v}$ that satisfies $\mathbf{v}$
} \times \mathbf{a} = \mathbf{b} \times \mathbf{a}$ and $\\
mathbf{v} \times \mathbf{b} = \mathbf{a} \times \mathbf{b}.
$
```

- **S1**: (Exactly the same with the question backbone.)
- **S2** (Same numbers, different wording):

```
Given the vectors $\\mathbf{a} = \\begin{pmatrix} 1 \\\\ 1 \\\\ 0 \\end{pmatrix}$ and $\\mathbf{b} = \\begin{pmatrix} 2 \\\\ 0 \\\\ -1 \\end{pmatrix}$, determine the vector $\\\ mathbf{v}$ that meets the conditions $\\mathbf{v} \\times \\\mathbf{a} = \\mathbf{b} \\times \\\mathbf{a}$ and $\\\\ mathbf{v} \\times \\\mathbf{b}$.
```

S3 (Same structure, different numbers):

```
Let $\\mathbf{a} = \\begin{pmatrix} 0 \\\ -2 \\end{
    pmatrix}$ and $\\mathbf{b} = \\begin{pmatrix} -1 \\\ -3
    \\\ 0 \\end{pmatrix}.$ Find the vector $\\mathbf{v}$ that
    satisfies $\\mathbf{v} \\times \\mathbf{a} = \\mathbf{b}
    \\times \\mathbf{a}$ and $\\mathbf{v} \\times \\mathbf{b} =
    \\mathbf{a} \\times \\mathbf{b}.
```

S4 (Same underlying knowledge, different structure and numbers):

```
Find the scalar k such that the points (1, k), (k, 2), and (3, 4) are collinear.
```

D. Implementation Details

We develop a unified test-time reasoning framework in Python, using PyTorch and Hugging Face's Transformers. Our experiments are conducted on machines with NVIDIA A100, H100, H200, L40S and L4 GPUs.

Base Model. Experiments on Best-of-N, DFS and Self-Refine are conducted on the Llama-3.1-8B model, and experiments on Long CoT are conducted on the DeepSeek-R1-Distill-Qwen-7B model. For value estimation, we optionally use a separate lightweight LLM, gpt-4o-mini. For all generation, we use temperature of 0.7 and top p of 0.9.

Test-Time Scaling Methods. Below, we detail their core mechanisms, configurable parameters, and termination criteria:

- **Best-of-N**: Generates N candidates (set via -n_generate_sample, default = 5). Each is scored using a value model or PRM (-method_evaluate), and a candidate is selected based on value and correctness. *Termination*: stops early if a candidate meets both the score threshold (value thresh = 0.9) and correctness; otherwise, completes all N evaluations.
- **Self-Refine**: Begins with a generated candidate and iteratively improves it using feedback and refinement prompts. num_iteration (default = 15) sets the max refinement steps. *Termination*: stops early if the feedback indicates "No error"; otherwise continues until the max iteration count is reached.
- Long CoT: A single long-form reasoning trace is generated, typically prefixed with a <think> tag. The model self-determines when to stop generating, often marked by the token </think>. *Termination:* when the model stops generating or produces an explicit termination tag. We set a max token number of each answer as 3500 tokens.
- Depth-First Search (DFS): A search tree is constructed over reasoning steps, where nodes represent partial reasoning segments. Child nodes are generated up to max_depth (default = 15), and evaluation is guided by value thresholds (value_thresh) and pruning ratio (0.4). *Termination:* when either a termination node (the content has "End of Answer" with perfect value (1.0) is found, or the search exceeds max_node (default = 50) expansions, or all candidates are exhausted.

Memory Methods. We implement the following memory mechanisms.

- No Memory: The baseline configuration with no carry-over between rounds.
- Supervised Fine-Tuning (SFT): The model is updated after each question using a single-step gradient descent. For reasoning models (e.g., DeepSeek-R1), we generate a compressed representation of the reasoning trace using a summarization prompt. The fine-tuning is performed using the following hyperparameters: learning_rate = 5e-4, Single-step update with LoRA enabled. The SFT method is only applied if a correct and high-quality answer is found.
- **In-Context**: A memory buffer maintains the last *n* successful examples. For each new prompt, we prepend these examples as demonstrations. We set the maximum number of in-context examples to 3.
- **Reflection**: After a correct response, a language model is prompted to reflect on the reasoning process. The resulting reflection is stored and used in future prompts under the "Consider:" section. Only one reflection is stored per example.
- Multi-Case Reflection: Instead of prompting reflection on a single instance, this method generates a joint reflection across multiple past successful cases. All stored examples are included in a joint input to generate an abstracted reflection. We limit the context by a maximum of 3 examples.
- **Reflect-Update**: This method iteratively refines a single running reflection. After each correct answer, the previous reflection and the new case are used to generate an updated reflection. The updated reflection replaces the old one, maintaining a compact and evolving summary of reasoning strategies.

Memory Update Policy. Memory is updated only if a qualifying answer is found during the current question's rounds (i.e., correct and exceeds score threshold). In SFT-based methods, this data is also used to update the parametric weights of the inference or reward model.

Evaluation Configuration. We run the evaluation over 10 question sets, with 4 repetitions for each question, to report the mean value.

E. Additional Results

E.1. Examples of Different Reflection Methods

Here we show the reflection generated from the same question backbone.

Reflect (individually): (This is an unrelated reflection derived from a less-similar question in the same set with Similarity \$4.)

- Identify the principal amount (\$1,000), the interest rate (5%), and the time period (3 years).
- Use the formula for simple interest: Interest = Principal × Rate × Time.
- Substitute the known values into the formula: Interest = $$1,000 \times 0.05 \times 3$.
- Calculate the interest: Interest = \$150. End of answer.

Multi-Case Reflect:

- Define the initial positions of the train and car as (0, 0).
- Let the speed of the train be v_t and the speed of the car be v_c .
- After time t, the position of the train will be $(0, v_t \cdot t)$ and the position of the car will be $(v_c \cdot t, 0)$.
- Use the distance formula $d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ to express the distance D between the train and car as:

$$D = \sqrt{(v_c \cdot t - 0)^2 + (0 - v_t \cdot t)^2} = \sqrt{(v_c \cdot t)^2 + (v_t \cdot t)^2}$$

- Simplify the equation to:

$$D = t \cdot \sqrt{v_c^2 + v_t^2}$$

- Substitute the known values of t, v_c , and v_t to find the distance D after the specified time. End of answer.

Reflect-Update:

- Reaffirmed the use of the centripetal acceleration formula $\ (a_c = \frac{v^2}{r} \)$ as a fundamental principle in circular motion.
- Clarified the substitution of values, ensuring each step is transparent and logically follows from the previous one, which aids in comprehension.\\
- Highlighted the importance of checking calculations at each stage, particularly in deriving (a_c) and converting to terms of (g).
- Emphasized the need for consistent units throughout the calculation to avoid errors, reinforcing unit conversion practices.\\
- Improved the rounding approach to maintain precision in the final result, ensuring it aligns with significant figures based on input values.\\

- Incorporated a systematic verification step to cross-check the final answer against physical principles, ensuring it is reasonable and accurate.\\
- Continued to prioritize expressing results in terms of \(g \), fostering a deeper understanding of the practical implications of centripetal acceleration in real-world scenarios.\\

End of answer.