★☆☆☆ Exercice 1.

Calculer $J = \int_1^2 \frac{2t-1}{t-3} dt$.

★★☆☆ Exercice 2.

On considère la suite (u_n) définie pour tout entier naturel n par :

$$u_n = \int_0^1 (1-t)^n e^t dt.$$

- 1. Vérifier que $u_0 = e 1$.
- 2. (a) Montrer à l'aide d'une intégration par parties que, pour tout entier naturel n,

$$u_{n+1} = (n+1)u_n - 1$$

.

- (b) En déduire la valeur de u_1 et de u_2 .
- 3. (a) Démontrer que la suite (u_n) est minorée par 0.
 - (b) La suite (u_n) est décroissante. Justifier cette assertion.
 - (c) La suite (u_n) est-elle convergente? Justifier.
- 4. (a) Montrer que pour tout réel t de l'intervalle [0; 1] et pour tout entier naturel non nul n

$$(1-t)^n e^t \leqslant e \times (1-t)^n$$
.

- (b) En déduire que pour tout n non nul, $u_n \leqslant \frac{e}{n+1}$.
- 5. Déterminer la limite de la suite (u_n) .

**** Exercice 3. /10

Dans tout le texte, on rappelle que e désigne le nombre réel qui vérifie ln(e) = 1.

On considère la fonction f définie sur]0; $+\infty[$ par :

$$f(x) = \frac{\ln x + xe}{x^2}.$$

On note Γ sa courbe représentative dans un repère orthonormal $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$.

Partie A: Étude d'une fonction auxiliaire

On considère la fonction g définie sur]0; $+\infty[$ par

$$g(x) = -2\ln x - xe + 1.$$

- 1. Calculer les limites de g en 0 et en $+\infty$.
- 2. Étudier le sens de variation de q.
- 3. Démontrer que dans]0; $+\infty[$ l'équation g(x)=0 admet une solution et une seule notée α puis donner un encadrement de α à 0,1 près.
- 4. En déduire le signe de g(x) selon les valeurs de x.

Partie B: Étude de la fonction f

- 1. Déterminer les limites de f aux bornes de son ensemble de définition.
- 2. Soit f' la fonction dérivée de f. Vérifier que $f'(x) = \frac{g(x)}{x^3}$ puis étudier le sens de variation de f sur]0; $+\infty[$.
- 3. Montrer que $f(\alpha) = \frac{1 + \alpha e}{2\alpha^2}$.
- 4. Donner le tableau de variations de f.

Partie C: Intégrale et suite

Soit $I_n = \int_{e^n}^{e^{n+1}} \frac{\ln t}{t^2} dt$ et $A_n = \int_{e^n}^{e^{n+1}} f(t) dt$ pour tout entier naturel n.

1. Montrer à l'aide d'une intégration par parties que :

$$I_n = \frac{n+1}{e^n} - \frac{n+2}{e^{n+1}}.$$

- 2. (a) Montrer que $A_n = I_n + e$.
 - (b) Calculer I_0 et A_0 .
 - (c) Donner une interprétation géométrique de A_0 .
- 3. Montrer que la suite (A_n) converge vers e.