Mobile Robots

Student evaluation

Evaluation

- Oral examination (15', 60% of the final mark)
 - 1 application
 - 2 specific questions
 - No preparation time, personal material not allowed
- Miniproject presentation (40% of the final mark)
 - Presentation & demo (~10' per team)
 - Evaluated by the assistants

Miniproject objectives

- Backup your creativity with sound theoretical background
- Work in a team
- Communicate/demonstrate the result of your work
- Create an opportunity to interact with researchers

Miniproject organization

- Teams of max. 4 people
- 3 different project contents are proposed by the assistants and is linked to a topic covered in the course
- Deadline for registration is indicated on Moodle

Miniprojects - examples

- Sensor characterization and probabilistic model
- Depth from defocus
- Color blob tracking
- Low-level motion control for a differential-wheel robot
- Comparing two approaches to obstacle avoidance with an e-puck
- Vision-based navigation (e.g. using the Hough transform)
- Place recognition using visual features (fingerprints)
- Markov localization (using vision or proximity sensors)
- Waypoint navigation for aerial robots
- Comparing two motion models for localization
- Evaluation and correction of odometry errors
- Line extraction from distance sensor scans (Hokuyo)

Miniprojects - references

- How to search for literature:
 - look at the handouts, look at the references in the slides, books & papers
 - http://scholar.google.com (being connected at EPFL or through VPN helps quite a bit!)
 - http://www.isiknowledge.com (ISI Web of Science)
 - http://www.nebis.ch (needs to know the book/ proceedings title since article titles are not in the database)
 - Ask your assistant

Miniproject evaluation criteria

- Oral presentation (quality of slides, timing, speech clarity, eye contact with the audience)
- Structure of the presentation
 - Introduction (problem description & motivation)
 - Method (and link to theoretical background)
 - Implementation
 - Demonstration & results
 - Conclusion
- Adequacy of the theoretical background with the implementation (is the presented theoretical background well adapted to the problem?)
- Demonstration & results (are they convincing?)

Miniproject evaluation criteria (assistants only)

Teamwork

- Is the workload well spread among the team members?
- Is the group well organized?

Autonomy

 Did they propose a nice and feasible project with sound theoretical background by themselves?

Creativity

- Is the project more than a slight improvement over an existing exercise from the course?
- Quantity of work prior to the presentation

Oral examination objectives

Application:

- Evaluate your ability to tackle a complex, integrative problem (there is no unique solution)
- Evaluate your ability to convince experts by providing educated arguments and by comparing methods

Specific questions:

- Evaluate your knowledge about 2 specific topics that have been covered in the course
- Test your capability to reason about these techniques (applicability, extensions, comparison, etc.)

Oral examination – example questions

Applications:

- Automatic transportation of heavy goods in hospitals.
- Automatic anti-pest dispenser in vineyards.
- Inspection of ventilation system.
- Home surveillance.
- Rescue robot for natural disaster.
- Car for autonomous operation on highways.
- Autonomous window cleaner.
- Autonomous dog walker.
- Specific: have a look at the end of each chapter...

Oral examination - hints

- It's a bit like if you were at a job interview...
- Make sure you understand the question
- Use the proposed application to demonstrate how the course content can be applied
- Do not hesitate to change your mind, but explain why!
- Keep in mind that there is no unique solution
 - you may explore two methods and compare them
 - you should at least motivate your solution (why do you propose this?)