Confidence Intervals

Chapter 8 (8.1, 8.2, 8.4)

Learning Objectives

In this chapter, you learn:

- To construct and interpret confidence interval estimates for population means
- How to determine the sample size necessary to develop a confidence interval of a desired length

Chapter Outline

Content of this chapter

- Confidence Intervals for the Population Mean, µ
 - when Population Standard Deviation σ is Known
 - when Population Standard Deviation σ is Unknown
- Determining the Required Sample Size

Point and Interval Estimates

A point estimate is a single number.

Examples: sample mean, sample variance, sample proportion.

 A confidence interval provides additional information about the variability of the estimate

Definition

[a,b] is a $(1-\alpha)100\%$ confidence interval for a parameter, if it contains this parameter with probability $(1-\alpha)$.

$$P(a \le parameter \le b) = 1-\alpha$$

For example, **[a,b]** is a 95% confidence interval for the population mean μ if $P(a \le \mu \le b) = 0.95$

Confidence level $(1-\alpha)$

$$P(a \le parameter \le b) = 1-\alpha$$

Parameter is not random! The interval [a,b] is:

Confidence Interval Estimate

- An interval gives a range of values:
 - Takes into consideration variation in sample statistics from sample to sample
 - Based on observations from 1 sample
 - Gives information about closeness to unknown population parameters
 - Stated in terms of level of confidence
 Such as 95% confident, 99% confident

Estimation Process

General Formula

The general formula for all symmetric confidence intervals is:

Point Estimate ± (Critical Value)(Standard Error)

Where:

- Point Estimate is the sample statistic estimating the population parameter of interest
- Critical Value is a table value based on the sampling distribution of the point estimate and the desired confidence level
- Standard Error is the standard deviation of the point estimate

Confidence Intervals

Confidence Interval for μ (σ Known)

- Assumptions
 - Population standard deviation σ is known
 - Population is normally distributed
 - If population is not normal, use large sample
- Confidence interval estimate:

$$\frac{1}{X} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

where \overline{X} is the point estimate

 $Z_{\alpha/2}$ is the normal distribution critical value for a probability of $\alpha/2$ in each tail α/\sqrt{n} is the standard error

Example: $X_1,...,X_n$ from Normal (μ,σ) with unknown μ , known σ

- 1. Estimate $\theta = \mu$ by its estimator $\bar{X} = \frac{1}{n} \sum X_i$.
- 2. Find its distribution: Normal with

$$E(\bar{X}) = \mu$$

$$Var(\bar{X}) = \frac{1}{n^2} \sum_{1}^{n} Var(X_i) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

Therefore,

$$Z = rac{ar{X} - \mu}{\sigma / \sqrt{n}}$$
 is Normal(0,1)

3. Find *critical values* $\pm z_{\alpha/2}$ such that

$$P\left\{-z_{\alpha/2} < Z < z_{\alpha/2}\right\}$$

for $Z \sim \text{Normal}(0.1)$.

4. Then we have

$$P\left\{-z_{\alpha/2} < rac{ar{X} - \mu}{\sigma/\sqrt{n}} < z_{\alpha/2}
ight\} = 1 - lpha$$

Solve for μ :

$$P\left\{\bar{X} - \frac{z_{\alpha/2}\sigma}{\sqrt{n}} < \mu < \bar{X} + \frac{z_{\alpha/2}\sigma}{\sqrt{n}}\right\} = 1 - \alpha$$

Hence,

$$\bar{X} \pm \frac{z_{\alpha/2}\sigma}{\sqrt{n}} = \left[\bar{X} - \frac{z_{\alpha/2}\sigma}{\sqrt{n}} , \ \bar{X} + \frac{z_{\alpha/2}\sigma}{\sqrt{n}} \right]$$

is a $(1-\alpha)100\%$ confidence interval for μ .

Finding the Critical Value, $Z_{\alpha/2}$

For a 95% confidence interval:

$$Z_{\alpha/2} = \pm 1.96$$

Common Levels of Confidence

 Commonly used confidence levels are 90%, 95%, and 99%

Confidence Level	Confidence Coefficient, $1-\alpha$	Z _{α/2} value
80%	0.80	1.28
90%	0.90	1.645
95%	0.95	1.96
98%	0.98	2.33
99%	0.99	2.58
99.8%	0.998	3.08
99.9%	0.999	3.27

Intervals

extend from

 $\overline{X} - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

 $\overline{X} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

Intervals and Level of Confidence

Sampling Distribution of the Mean

Confidence Intervals

 $(1-\alpha)100\%$ of intervals constructed contain μ ; $(\alpha)100\%$ do not.

Example

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms.
- Determine a 95% confidence interval for the true mean resistance of the population.

Example

(continued)

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms.
- Solution:

$$\overline{X} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
= 2.20 \pm 1.96 (0.35/\sqrt{11})
= 2.20 \pm 0.2068

$$1.9932 \le \mu \le 2.4068$$

Interpretation

- We are 95% confident that the true mean resistance is between 1.9932 and 2.4068 ohms
- Although the true mean may or may not be in this interval, 95% of intervals formed in this manner will contain the true mean

Example

Page 276, # 8.9

Determining Sample Size

Sampling Error

- The required sample size can be found to reach a desired margin of error (e) with a specified level of confidence (1 - α)
- The margin of error is also called sampling error
 - amount of imprecision in the estimate of the population parameter, due to using a random sample
 - amount added and subtracted to the point estimate to form the confidence interval

Determining Sample Size

Determining Sample Size

(continued)

$$e = Z_{\alpha/2} \xrightarrow{\sigma} \xrightarrow{\text{Now solve for n to get}} \longrightarrow n = \frac{Z_{\alpha/2}^2 \sigma^2}{e^2}$$

Required Sample Size Example

If σ = 45, what sample size is needed to estimate the mean within ± 5 with 90% confidence?

$$n = \frac{Z^2 \sigma^2}{e^2} = \frac{(1.645)^2 (45)^2}{5^2} = 219.19$$

So the required sample size is n = 220

(Always round up)

Confidence Intervals

Do You Ever Truly Know σ?

- Probably not!
- In virtually all real world business situations, σ is not known.
- If there is a situation where σ is known then μ is often also known (since to calculate σ you need to know μ.)
- If you truly know µ there would be no need to gather a sample to estimate it.

Confidence Interval for μ (σ Unknown)

- If the population standard deviation σ is unknown, we can substitute the sample standard deviation, S
- This introduces extra uncertainty, since
 S is variable from sample to sample
- So we use the Student's t distribution instead of the normal distribution

When σ is unknown

Data $X_1,...,X_n$ from Normal (μ,σ) with unknown μ , unknown σ

1. Estimate
$$\sigma$$
 by $S = \sqrt{\frac{1}{n-1}\sum_{1}^{n}\left(X_{i} - \bar{X}\right)^{2}}$

2. Use t-distribution with (n-1) degrees of freedom instead of Normal.

For large n, use Normal approximation.

Result:

$$\bar{X} \pm \frac{t_{\alpha/2,n-1}S}{\sqrt{n}}$$

Confidence Interval for μ (σ Unknown)

(continued)

- Assumptions
 - Population standard deviation is unknown
 - Population is normally distributed
 - If population is not normal, use large sample
- Use Student's t Distribution
- Confidence Interval Estimate:

$$\overline{X} \pm t_{\alpha/2} \frac{S}{\sqrt{n}}$$

(where $t_{\alpha/2}$ is the critical value of the t distribution with n -1 degrees of freedom and an area of $\alpha/2$ in each tail)

Student's t Distribution

- The t is a family of distributions
- The t_{α/2} value depends on degrees of freedom (d.f.)
 - Number of observations that are free to vary after sample mean has been calculated

$$d.f. = n - 1$$

Degrees of Freedom (df)

What are degrees of freedom?

This is dimension of the space, the number of freely varying quantities used to estimate the standard deviation.

$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$

is based on *n* quantities, but only *(n-1)* vary freely.

Student's t Distribution

t converges to Z as n increases

Student's t Table

	Upper Tail Area				
df	.10	.05	.025		
1	3.078	6.314	12.706		
2	1.886	2.920	4.303		
3	1.638	2.353	3.182		

The body of the table contains t values, not probabilities

Let: n = 3 df = n - 1 = 2 α = 0.10 $\alpha/2$ = 0.05

Selected t distribution values

With comparison to the Z value

Confidence Level	t (10 d.f.)	t (20 d.f.)	t (30 d.f.)	Z (<u>∞ d.f.)</u>
0.80	1.372	1.325	1.310	1.28
0.90	1.812	1.725	1.697	1.645
0.95	2.228	2.086	2.042	1.96
0.99	3.169	2.845	2.750	2.58

Note: $t \rightarrow Z$ as n increases

t-values are higher than Z-values (price for unknown σ)

A random sample of n=25 has X=50 and S=8. Form a 95% confidence interval for μ

• d.f. = n - 1 = 24, so
$$t_{\alpha/2} = t_{0.025} = 2.0639$$

The confidence interval is

$$\overline{X} \pm t_{\alpha/2} \frac{S}{\sqrt{n}} = 50 \pm (2.0639) \frac{8}{\sqrt{25}}$$

$$46.698 \le \mu \le 53.302$$

Excel commands

= tinv (a, degrees of freedom)

Returns the <u>two-tailed</u> inverse of the Student's t-distribution.

= confidence.t (\alpha, standard deviation, sample size)

gives the margin of a $(1-\alpha)100\%$ confidence interval.

Examples

- Page 283, #8.16 manually
- Page 283, #8.20 use Excel

How to determine the sample size when σ is unknown?

- If unknown, σ can be estimated when using the required sample size formula
 - Use a value for σ that is expected to be at least as large as the true σ
 - Select a pilot sample and estimate σ with the sample standard deviation, S

Ethical Issues (usual practice)

- A confidence interval estimate (reflecting sampling error) should always be included when reporting a point estimate
- The level of confidence should always be reported
- The sample size should be reported
- An interpretation of the confidence interval estimate should also be provided
 - Examples: USA Today survey polls

Examples

- Page 292, # 8.43ab
- Page 292, # 8.45abc

Chapter Summary

In this chapter we discussed

- The concept of confidence intervals
- Point estimates & confidence interval estimates
- Confidence interval for the mean (σ known)
- Confidence interval for the mean (σ unknown)
- Determining required sample size
- Ethical issues in confidence interval estimation