(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 3 June 2004 (03.06.2004)

PCT

(10) International Publication Number WO 2004/047217 A1

(51) International Patent Classification7:

H01P 1/16

(21) International Application Number:

PCT/SE2003/001768

(22) International Filing Date:

14 November 2003 (14.11.2003)

(25) Filing Language:

Swedish

(26) Publication Language:

English

(30) Priority Data:

0203390-0

18 November 2002 (18.11.2002) SE

- (71) Applicant (for all designated States except US): SAAB AB [SE/SE]; S-581 88 Linköping (SE).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): FORSLUND, Ola [SE/SE]; Vattugatan 23, S-172 73 Sundbyberg (SE).

(74) Agent: FORSBERG, Carl-Goran; Saab Bofors Support AB, patents and Trademarks, S-691 80 Karlskoga (SE).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHOD FOR CONVERSION OF WAVEGUIDE MODES, MODE-CONVERTING ARRANGEMENT AND ANTENNA ARRANGEMENT.

(57) Abstract: The invention relates to a method for conversion of waveguide modes from a mode of type TM_{01} to mode of type TE_{11} for transmission of power within the microwave range. The invention also relates to a mode-converting arrangement and an antenna arrangement with such a mode-converting arrangement. The mode-converting arrangement comprises an incoming waveguide (1) for reception of power of the type TM_{01} , an outgoing waveguide (6) for outputting power of mode type TE_{11} and a waveguide-mode-converting section (2-5) arranged between the incoming and outgoing waveguides. According to the invention, incoming power of mode type TM_{01} is divided in an input section (2) between two or more waveguides with cross-sections in the shape of circle sectors. Thereafter, the divided power is phase-shifted by the waveguides in a subsequent phase-shift section (4) being designed with cross-sections that are essentially in the shape of circle sectors with different radii, after which the waveguides are changed into a common essentially circular waveguide (6) that emits an otugoing power of mode type TE_{11} . By means of the invention, a relatively simple solution is produced, that can cope with high powers.

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2004/047217 PCT/SE2003/001768

Method for conversion of waveguide modes, modeconverting arrangement and antenna arrangement

5

10

The present invention relates to а method conversion of waveguide modes from a mode of type TM_{01} to mode of type TE_{11} for transmission of power within the microwave range. The invention also relates to a mode-converting arrangement for conversion of waveguide modes from a mode of type TM_{01} to mode of type TE_{11} for transmission of power within the microwave comprising an incoming waveguide for reception of power of the type TMo1, an outgoing waveguide for outputting power of the mode type TE11 and a waveguide-modeconverting section arranged between the incoming and outgoing waveguides. In addition, the invention relates to an antenna arrangement with mode converter according to the invention.

20

25

30

35

15

In certain situations, where power is to be transferred from, for example, a microwave generator to an antenna, it is of interest to change from one waveguide mode to one or more other modes. With power generation in certain microwave generators, the power is delivered typically in a so-called TM_{01} mode in a circular waveguide. For a more detailed description of the mode type, refer to "Balanis, Advanced Engineering Electromagnetics, Wiley 1989". This mode is often not suitable for exciting an antenna, for example of the waveguide horn type, due to the fact that it gives a toroidal radiation pattern with a zero depth in the axial direction of the waveguide. In many situations, it is therefore of interest to deliver the power in a circular waveguide in TE_{11} mode. If linear polarization is of interest, the power is delivered accordingly in one TE11 mode. For the generation of circular polarization in an antenna, the power can be delivered

in two orthogonal TE_{11} modes excited 90 degrees out of phase in time.

Conversion of TM₀₁ mode to TE_{11} mode is known connection with the exciting of antennas, 5 see for patent document 4 999 591. The mode converter described in this document has limitations polarization and can be difficult manufacture with precision due to its asymmetrical 10 design.

Mode converters for converting power from the circular so-called TM_{01} mode to one or two TE_{11} modes are difficult to achieve, particularly if they are to cope with high power.

The object of the present invention is to achieve a method for conversion of waveguide modes, a mode-converting arrangement, and an antenna arrangement which can cope with high powers and can handle different types of polarization in different variants and which mode-converting arrangement has an essentially symmetrical shape and is relatively simple in its construction.

25

30

35

15

20

is achieved by means of а method characterized in that incoming power of mode type TM_{01} is divided between two or more waveguides with crosssections that are essentially in the shape of circle sectors, in that the divided power is phase-shifted by the waveguides in a subsequent phase-shift section by means of waveguides with cross-sections essentially in the shape of circle sectors with different radii, after the wavequides are changed into а essentially circular waveguide that emits an outgoing of power mode type TE₁₁, and a mode-converting arrangement characterized in that the waveguide-modeconverting section comprises at least one input section

for dividing the received power into two or more components and a phase-shift section at the output side of the input section with an allocated waveguide for power component, with the waveguides designed with cross-sections that are essentially in 5 shape of circle sectors with different emanating from a common centre and such that the crosssections in the shape of circle sectors together essentially cover 360 degrees. The change is carried out in a plurality of sections where, in particular, 10 the design of the phase-shift section with different radii is of decisive significance for the function. The mode-converting arrangement according to the invention and defined above is relatively narrow-band and can cope with high powers. By placing the mode-converting 15 arrangement in vacuum in association а with microwave generator, the arrangement can cope with even higher powers.

20 According to an advantageous method, the conversion of waveguide mode from mode type TM_{01} to mode type TE_{11} is caused, in an intermediate stage comprising separate waveguides, to assume four modes each of which has a field configuration that constitutes a quarter of 25 so-called TE₂₁ mode in a corresponding circular waveguide. By means of this method, the power in a circular TM_{01} mode can be converted to two TE_{11} modes 90 degrees out of phase, for the generation of circular polarization in an antenna.

30

35

The mode-converting arrangement is advantageously provided mode-mixer with a section included connection with the outgoing waveguide, which modemixer section comprises a change from a plurality of waveguides with cross-sections in the shape of circle sectors to one waveguide with an essentially circular cross-section. In the mode-mixer section, two basic modes of TE_{11} type are propagated first of all. The

change in the mode-mixer section can be designed as an abrupt change. Alternatively, the change is designed to be gradual, by the change having an extent in the transmission direction that corresponds to at least $\lambda_0/4$, where λ_0 denotes the free-space wavelength for the centre frequency in the band that is transmitted by the arrangement. In a proposed embodiment, the output of the mode-mixer section forms the outgoing waveguide of the arrangement. This output can, for example, be connected to a conical-shaped waveguide horn.

According to an advantageous embodiment of the mode-converting arrangement, a balance section is included, connected to the output side of the phase-shift section and comprising waveguides with cross-sections that are essentially in the shape of circle sectors with the same radii in order to balance the field configurations of the waves that leave the different waveguides of the phase-shift section.

20

25

According to yet another advantageous embodiment of the mode-converting arrangement, there is an intermediate section between the input section and the phase-shift section, which intermediate section comprises a plurality of waveguides with cross-sections in the shape of circle sectors and essentially identical radii.

In two suitable embodiments, the input section of the mode-converting arrangement is designed to divide the 30 received power into two or four components respectively. By means of the division into components, conversion can be carried out to one TE_{11} mode, while division into four components is suited for conversion of the power to two $\ensuremath{\text{TE}}_{11}$ modes which are 90 35 degrees out of phase with each other.

According to yet another advantageous embodiment of the invention, the input section comprises thin ridges for dividing the received power, which ridges increase in size in the transmission direction from the periphery of the input section inwards towards the middle of the input section so that they meet at the output side of the input section. The ridges can be designed to increase in size continuously or in steps in the transmission direction.

10

20

The invention will be described below with reference to the attached drawings, in which:

Figure 1 shows an example of a mode-converting arrangement according to the invention with change to two TE_{11} modes excited 90 degrees out of phase.

Figure 2 shows a cross-section through a phase-shift section comprised in the mode converter according to the invention.

Figure 3 shows schematically the transverse E-fields for the waveguide modes TE_{11} , TM_{01} and TE_{21} .

25 Figure 4 shows schematically the transverse E-fields in different parts of the mode-converting arrangement according to Figure 1.

Figure 5 shows schematically the transverse E-fields in different parts of a mode-converting arrangement according to the invention with change to one TE_{11} mode.

Figure 6 shows a cross-section through a simpler phaseshift section comprised in a mode-converting 35 arrangement according to the invention.

Figures 7a and 7b show in side view two different examples of ridge elements that can be included in the mode-converting arrangement according to the invention.

The appearance of the transverse E-fields for the three modes that are principally of relevance for the invention is described schematically, prior to the description below of the mode-converting arrangement. Figures 3a and 3b show the transverse E-fields for two orthogonal TE₁₁ modes. Figure 3c shows the transverse field for the TM₀₁ mode. Figure 3d and Figure 3e show the transverse E-fields for two TE₂₁ modes.

example shown in Figure 1 of a mode-converting arrangement with change to two ${\rm TE}_{11}$ modes comprises an 15 waveguide 1, an input section 2, intermediate section 3, a phase-shift section 4, balance section 5 and a mode-mixer section 6. output of the mode-mixer section is designed to be connected directly or via a separate outgoing waveguide 20 to the exciter unit, typically a waveguide horn, in an antenna. The construction and tasks of the sections involved are described below, step by step, starting with the input side of the mode-converting arrangement.

The incoming waveguide 1 consists here of a circular hollow guide that is assumed to be able to propagate at least five modes, namely two TE_{11} modes, so-called basic modes, the TM_{01} mode and two TE_{21} modes. The only excited

30 mode is, however, the TM_{01} mode.

The incoming waveguide 1 is followed by the input section 2. The input section has a circular cylindrical shape and comprises four thin rounded ridges 2.1-2.4.

The ridges are separated at 90 degrees from each other along the circular cylindrical surface of the input section and run parallel to the axis of rotation for the circular cylindrical surface. The ridges are shaped

to gradually increase in size towards the axis of rotation along the direction of transmission of the mode-converting arrangement so that they meet at the output side of the input section. Figures 4a-4c show 5 schematically the field configuration for the transverse E-fields as the ridges gradually increase in size in the input section 2. Figure 4a shows the field configuration close to the input side of the input section, Figure shows 4b the field configuration 10 further into the input section and Figure 4c shows the field configuration on the output side of the input section where the ridges meet. No high field strengths arise in the input section when the distance between the ridges is made smaller on account of the fact that the transverse electrical field, the E-field, on both 15 sides of the middle of the waveguide has the opposite direction for the TM_{01} mode. This is essential in order for the waveguide change to be able to withstand high power. The input section is suitably given a length longer than or equal to $\lambda_0/4$ and for example λ_0 , where 20 λ_0 denotes the free-space wavelength of the centre frequency in the band. The input section must have a certain length in order that the mode-converting arrangement will not be mismatched and give a high reflection coefficient. Where the ridges 2.1-2.4 meet 25 at the output side of the input section 2, the original circular waveguide has changed to four waveguides with cross-sections that are in the shape of 90 degree circle sectors.

30

35

Figure 7a shows in side view a ridge 2.1 comprised in the input section 2, according to the embodiment described with reference to Figure 1. The ridge has an edge 2.7 that increases in size continuously. Alternatively, it is however possible to introduce an edge 2.8 with a stepped increase as shown in Figure 7b. A suitable step length is $\lambda_0/4$.

15

20

25

30

35

four waveguides 3.1-3.4 form the intermediate section 3. In these waveguides only one mode is now propagated in each waveguide 3.1-3.4. These modes each constitute "one quarter" of a so-called TE_{21} mode for the original waveguide and have the same propagation constant as the TE_{21} modes that can propagate in the original circular waveguide. The extension of the thin ridges 2.1-2.4 into the intermediate section defines a symmetry plane in relation to which the E-field for the TE₂₁ mode is orthogonal in the incoming circular waveguide 1. The introduction of the ridge extensions as walls has not changed anything as far as the TE_{21} is concerned, the edge conditions as in wavequides 3.1 - 3.4of the intermediate section maintain the symmetry and the field configuration.

Via the intermediate section 3, the four waveguide excited further modes are inside the phase-shift section 4. The phase-shift section contains similarly four waveguides 4.1-4.4. The ridge extensions in the intermediate section continue into the phase-shift section and form four walls which together with the outer boundaries of the phase-shift section form the waveguides 4.1-4.4. The four waveguides have cross-sections that are in the shape of circle sectors with four different radii r_1-r_4 . A schematic crosssection through the phase-shift section 4 is shown in 2. The different radii r_1 - r_4 give different propagation constants. During propagation through the phase-shift section, the waves in the different waveguides are therefore given a phase shift relative to each other. Theoretically, a length is required that is longer than $\lambda_0/2$ in order to obtain a phase shift of degrees between two of the waveguides consequently $\lambda_0/4$ in order to obtain a phase shift of 90 degrees. In practice, however, a considerably longer length is required in order to achieve this phase shift, particularly if we want to obtain different

10

phase shifts between different pairs of waveguides. By means of a suitable choice of the length of the phase-shift section 4 and the radii r_1 - r_4 of the individual waveguides 4.1-4.4, a phase shift of 180 degrees is arranged between the waveguides in each pair of diagonally opposite waveguides, that is between 4.1 and 4.3 and between 4.2 and 4.4. In addition, the radii r_1 - r_4 are selected in such a way that a phase shift of 90 degrees is obtained between two adjacent waveguides. A suitable length of the phase-shift section can be $2\lambda_0$.

phase-shift section 4 changes into a balance section 5 by means of the four waveguides 4.1-4.4 in the phase-shift section 4 being given the same radius. In this way, the waveguides 5.1-5.4 are given identical 15 cross-sections that are in the shape of circle sectors. The radius in the waveguides is so small that only one mode can propagate in each waveguide. The length of the balance section is preferably $\geq \lambda_0/4$. The task of the balance section is to balance the field configurations 20 of the different waveguides prior to the change to the subsequent mode-mixer section.

In the mode-mixer section 6, the dividing walls are 25 arranged so as to disappear. The change can be carried out abruptly without affecting significantly matching of the mode-converting arrangement. Alternatively, the change can be carried out gradually. mode-mixer section is essentially a circular waveguide section without dividing walls. 30 The modemixer section is preferably given a radius such that only three modes can propagate, namely two degenerated basic modes (TE11), and one first higher-level mode (TM_{01}) . The latter is not excited significantly. The mode-mixer section 6 is preferably dimensioned to have 35 a length that exceeds $\lambda_0/4$ and can, for example, have a length amounting to $\lambda_0/2$. The task of the mode-mixer section is to excite the required TE11 modes 90 degrees

20

25

30

35

out of phase to obtain a circular polarization. This is carried out in a natural way by means of the phase shifts that are achieved in the phase-shift section 5. The output of the mode-mixer section can, for example, 5 be connected to a horn antenna that is conical shaped and/or has corrugated walls, if required illumination of a reflecting antenna. Figures 4d and 4e show schematically the appearance of the transverse Efields at the input of the mode-mixer section, where 10 the time difference between the field configurations is a quarter of a period.

The example described above concerned conversion from TM_{01} mode to two TE_{11} modes, 90 degrees out of phase. In a somewhat simplified embodiment, the mode-converting arrangement can be designed to convert an incoming TM_{01} mode to one TE11 mode. In such a simplified modeconverting arrangement, the input section 2 has only ridges that increase in size from diametrically-opposite positions on the circular cylindrical surface of the input section. The intermediate section 3 will then consist of wavequides with semicircular cross-section. In the phase-shift section 4, that now consists of two wavequides with semicircular cross-section and different radii, a phase shift of 180 degrees is introduced between the modes propagating waveguides. Figure 6 shows a cross-section through the phase-shift section 4 with the two radii designated by r_5 and r_6 . The balance section 5 and modemixer section 6 are introduced analogously with the description above of the generation of two TE_{11} modes, with, however, the balance section here only comprising two waveguides.

Figure 5 shows schematically the transverse E-fields for the simplified embodiment. Figures 5a to 5c relate to the same cross-section within the input section 2 as

described above for the embodiment shown in Figure 1, that is at the input of the input section, somewhere in the middle of the input section and at the output side of the input section. In the simplified embodiment, there are only two ridges 2.5 and 2.6 that increase in size to become one complete dividing wall. Figure 5d shows the appearance of the field configuration at the input of the mode-mixer section 6.

10 The invention is not limited to the embodiments described in the above as examples, but can be modified within the framework of the following patent claims.

Claims

20

- Method for conversion of waveguide modes from a mode of type TM_{01} to mode of type TE_{11} for transmission of power within the microwave range, characterized in 5 that incoming power of mode type TM_{01} is divided between two or more waveguides with cross-sections essentially in the shape of circle sectors, in that the divided power is phase-shifted by the waveguides subsequent phase-shift section by means of waveguides 10 with cross-sections essentially in the shape of circle being designed with different sectors radii. which the waveguides are changed into а essentially circular waveguide that emits an outgoing 15 power of mode type TE_{11} .
 - 2. Method according to Claim 1, characterized in that the conversion of the waveguide mode from mode type TM_{01} to mode type TE_{11} is caused, in an intermediate stage comprising four separate waveguides, to assume a field configuration for the basic modes of the respective waveguides that constitutes one quarter of a so-called TE_{21} mode in a corresponding circular waveguide.
- 25 Mode-converting arrangement for conversion waveguide modes from a mode of type TM_{01} to mode of type TE_{11} for transmission of power within the microwave range, comprising an incoming waveguide for reception of power of the type TM_{01} , an outgoing waveguide for outputting power of the mode type TE_{11} and a waveguide-30 mode-converting section arranged between the incoming and outgoing waveguides, characterized in that the waveguide-mode-converting section comprises at least one input section for dividing the received power into 35 two or more components and a phase-shift section at the output side of the input section with an allocated waveguide for each power component, with the waveguides being designed with cross-sections that are essentially

in the shape of circle sectors with different radii emanating from a common centre and such that the cross-sections in the shape of circle sectors together essentially cover 360 degrees.

5

10

- 4. Mode-converting arrangement according to Claim 3, characterized in that the phase-shift section is dimensioned to have a length in the transmission direction of at least $\lambda_0/4$ and, for example, of the order of $2\lambda_0$, where λ_0 denotes the free-space wavelength of the centre frequency in the band that is transmitted by the arrangement.
- 5. Mode-converting arrangement according to any one of Claims 3-4, characterized in that a mode-mixer section is included in connection with the outgoing waveguide, which mode-mixer section comprises a change from a plurality of waveguides with cross-sections in the shape of circle sectors to one waveguide with an essentially circular cross-section.
 - 6. Mode-converting arrangement according to Claim 5, characterized in that the change in the mode-mixer section can be designed to be abrupt.

25

30

- 7. Mode-converting arrangement according to Claim 5, characterized in that the change in the mode-mixer section is designed to be gradual, by the change having an extent in the transmission direction that corresponds to at least $\lambda_0/4$, where λ_0 denotes the free-space wavelength for the centre frequency in the band that is transmitted by the arrangement.
- 8. Mode-converting arrangement according to any one of Claims 5-7, characterized in that the output of the mode-mixer section forms the outgoing waveguide of the arrangement.

9. Mode-converting arrangement according to any one of the preceding Claims 3-8, characterized in that a balance section is included, connected to the output side of the phase-shift section and comprising waveguides with cross-sections that are essentially in the shape of circle sectors with the same radii, in order to balance the field configurations of the waves that leave the different waveguides of the phase-shift section.

10

15

- 10. Mode-converting arrangement according to any one of the preceding Claims 3-9, characterized in that an intermediate section is arranged between the input section and the phase-shift section, which intermediate section comprises a plurality of waveguides with cross-sections in the shape of circle sectors and essentially identical radii.
- 11. Mode-converting arrangement according to any one of the preceding Claims 3-10, characterized in that the input section is designed to divide the received power into two components.
- 12. Mode-converting arrangement according to any one of the preceding Claims 3-11, characterized in that the input section is designed to divide the received power into four components.
- 13. Mode-converting arrangement according to any one of the preceding Claims 3-12, characterized in that the input section comprises thin ridges for dividing the received power, which ridges increase in size in the transmission direction from the periphery of the input section inwards towards the middle of the input section so that they meet at the output side of the input section.

14. Mode-converting arrangement according to Claim 13, characterized in that the ridges are designed to increase in size continuously in the transmission direction.

5

15. Mode-converting arrangement according to Claim 13, characterized in that the ridges are designed to increase in size in steps in the transmission direction.

10

16. Antenna arrangement comprising a mode-converting arrangement according to any one of Claims 3-15.

Fig. 1

Fig 2

Fig. 5

Fig. 6

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE 2003/001768

A. CLAS	SSIFICATION OF SUBJECT MATTER			
IPC7: According	H01P 1/16 to International Patent Classification (IPC) or to both	national classification and IPC		
B. FIELI	DS SEARCHED	s industrial classification and IPC		
Minimum	documentation searched (classification system followed	by classification symbols)		
	H01J, H01P, H01Q		•	
	ation searched other than minimum documentation to	the extent that such documents are in	ncluded in the fields searched	
	FI,NO classes as above			
Electronic o	data base consulted during the international search (na	me of data base and, where practical	le, search terms used)	
	TERNAL, WPI DATA, PAJ, INSPEC			
C. DOCL	JMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passag	ges Relevant to claim N	
A	EP 0330539 A1 (THOMSON-CSF), 30 (30.08.1989), the whole doc	August 1989 Cument	1-16	
A	GB 468548 A (WESTERN ELECTRIC (INCORPORATED), 7 July 1937 the whole document	1-3		
A	EISENHART, R.L.: "A novel wideb mode convertor". IEEE MTT-S DIGEST, 1998, Vo AN: 5985784	1,3		
÷		,		
		• •	,	
	·			
	·			
	er documents are listed in the continuation of Bo	x C. X See patent family	annex.	
A" documer to be of	categories of cited documents: at defining the general state of the art which is not considered particular relevance pplication or patent but published on or after the international	the principle or theory underlying the invention		
L" documen	ite nt which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other	2 document of particular relevan	ice: the claimed invention cannot be considered to involve an inventive en alone	
O" documen means	reson (as specified) at referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination		
the prior	at published prior to the international filing date but later than ity date claimed	being obvious to a person skill "&" document member of the same		
	actual completion of the international search	Date of mailing of the internati		
29 January 2004		1 € -02- 2004		
lame and r	mailing address of the ISA/	Authorized officer		
wedish P	atent Office S-102 42 STOCKHOLM			
OX 5055,	6. +46 8 666 02 86	Bo Gustavsson /OGU		

International application No.
PCT/SF 2003/001769

	· · · · · · · · · · · · · · · · · · ·	CT/SE 2003/001768	
	nation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevan	nt passages Relevant to claim	
A	US 4999591 A (KOSLOVER, R.A. ET AL), 12 March 1 (12.03.1991), cited in the application; see whole document	991 1,3 the	
A	YANG, S. et al.: "Optimization of novel high-pomillimeter-wave TM01-TE11 mode converters". IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, April 1997, Vol. 45, No. 4, page 552-554, AN: 5561877		
A	JANZEN, J.: "Mode converters from TEOm to TEmO for high-power applications in the frequency 1 to 30 GHz".	1-16 range	
	INT. J. ELECTRONICS, 1984, Vol. 57, No. 6, p 1219-1224, AN: 2531643	pages	
		·	
ļ	·		
	•		
j			
	·		
	210 (continuation of second sheet) (January 2004)		

24/12/2003

International application No.

PCT/SE 2003/001768

US	4999591	A	12/03/1991	NONE		
GB 	468548	A	07/07/1937	DE FR FR FR GB NL NL NL	738361 C 49564 E 49566 E 818503 A 491196 A 47517 C 49995 C 79472 C 2129669 A	00/00/0000 11/05/1939 11/05/1939 30/09/1937 29/08/1938 00/00/0000 00/00/0000 00/00/0000 13/09/1938
EP	0330539	A1	30/08/1989	FR JP US	2627633 A,B 2009202 A 4973924 A	25/08/1989 12/01/1990 27/11/1990