PROIECT

Previziuni Economice

Baza de date: principalele agregate ale PIB-ului din Finlanda, date trimestriale pentru anii 1990Q1-2021Q3.

Sursa: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=namq_10_gdp&lang=en

Variabile folosite: Gross domestic product at market prices, Exports of goods and services, Imports of goods and services

Cronograma

*prelucrări realizate în Eviews

PIB

Gross domestic product at market prices

Evoluția trimestrială a PIB-ului din Finlanda din perioada 1990 trimestrul I – 2021 trimestrul III este redată în figura alăturată. Au fost incluse 127 de observații. Graficul indică prezența unei tendințe de creștere, a unei sezonalități pronunțate și a unei componente aleatoare. Se observă că punctele de minim se ating în trimestrele I și III, iar cele de maxim în trimestrele II și IV.

Export

Exports of goods and services

Evoluția trimestrială a exporturilor de produse și servicii din Finlanda din perioada 1990 trimestrul I – 2021 trimestrul III este redată în figura alăturată. Graficul indică prezența unei tendințe de creștere, a unei sezonalități pronunțate și a unei componente aleatoare. Se observă că punctele de minim se ating în trimestrele I și III, iar cele de maxim în trimestrele II si IV.

Import

Imports of goods and services

Evoluția trimestrială a importurilor de produse și servicii din Finlanda din perioada 1990 trimestrul I – 2021 trimestrul III este redată în figura alăturată. Graficul indică prezența unei tendințe de creștere, a unei sezonalități pronunțate și a unei componente aleatoare. Se observă că punctele de minim se ating în trimestrele I și III, iar cele de maxim în trimestrele II și IV.

Statistici descriptive

*prelucrări realizate în Eviews

Series: PIB			
Sample 1990	Q1 2021Q3		
Observations	127		
Mean	41084.21		
Median	42579.00		
Maximum	62857.00		
Minimum	17569.20		
Std. Dev.	12631.85		
Skewness	-0.099210		
Kurtosis	1.801292		
Jarque-Bera	7.811936		
Probability	0.020121		

Media produsului intern brut din Finlanda este 41084.21, iar valoarea care împarte distribuția în jumătate, mediana, este 42579.00 (adică în jumătate din numărul trimestrelor, Finlanda a avut un PIB mai mic de 42579.00 milioane euro, iar în cealaltă jumătate s-au înregistrat valori mai mari). Abaterea standard arată că valorile se abat, în medie, de la medie cu 12631.85. Distribuția prezintă o asimetrie negativă/la stânga, adică există mai multe valori mai mici ca media decât valori mai mari ca media. Boltirea este 1.801 < 3, adică avem o serie platicurtică, variația valorilor

PIB-ului este mai mare decât în mod normal. Testul de normalitate Jarque-Bera studiază normalitatea distribuției.

Se formulează ipotezele:

H₀: seria urmează o lege normală.

H₁: seria nu urmează o lege normală.

$$JB = n\left(\frac{s^2}{6} + \frac{(k-3)^2}{24}\right) = 127\left(\frac{0.099210^2}{6} + \frac{(1.801292-3)^2}{24}\right) = 7.81193597$$

$$\hat{I}_{12} = \frac{1}{2} \left(\frac{1}{6} + \frac{(k-3)^2}{24}\right) = \frac{1}{2} \left(\frac{1}{6} + \frac{(k-3)^2}{24}\right) = \frac{1}{2} \left(\frac{(k-3)^2}{6} + \frac{(k-3)^2}{24}\right) = \frac{1}{2}$$

În acest caz, ipoteza nulă se respinge pentru un prag de semnificație de 5% (Prob=0.020121<0.05) deci distribuția nu urmează o lege normală.

Export

Series: EXPO	Series: EXPORT				
Sample 19900	Q1 2021Q3				
Observations	127				
Mean	15385.68				
Median	16088.00				
Maximum	Maximum 25308.00				
Minimum	Minimum 5277.600				
Std. Dev.	5620.906				
Skewness	-0.364596				
Kurtosis	1.988165				
Jarque-Bera	8.231355				
Probability	0.016315				

Media exporturilor de produse și servicii din Finlanda este 15385.68, iar valoarea care împarte distribuția în jumătate, mediana, este 16088.00. Abaterea standard arată că valorile se abat, în medie, de la medie cu 5620.906. Distribuția prezintă asimetrie negativă/la stânga, adică există mai multe valori mai mici ca media decât valori mai mari ca media. Boltirea este 1.988 < 3, adică avem o serie platicurtică, variația exporturilor este mai mare decât în mod normal. Testul de normalitate Jarque-Bera studiază normalitatea distribuției.

Se formulează ipotezele:

H₀: seria urmează o lege normală.

H₁: seria nu urmează o lege normală.

Având în vedere probabilitatea 0.0163 < 0.05, ipoteza nulă se respinge, deci distribuția nu urmează o lege normală.

Import

Series: IMPORT Sample 1990Q1 2021Q3					
Observations	127				
Mean	14361.51				
Median	14988.00				
Maximum	24709.00				
Minimum	Minimum 4900.900				
Std. Dev.	6075.357				
Skewness	-0.067448				
Kurtosis	1.584902				
Jarque-Bera	10.69286				
Probability	0.004765				

Media importurilor de produse și servicii din Finlanda este 14361.51, iar valoarea care împarte distribuția în jumătate, mediana, este 14988.00. Abaterea standard arată că valorile se abat, în medie, de la medie cu 6075.357. Distribuția prezintă asimetrie negativă/la stânga, adică există mai multe valori mai mici ca media decât valori mai mari ca media. Boltirea este 1.584 < 3, adică avem o serie platicurtică, variația exporturilor este mai mare decât în mod normal. Testul de normalitate Jarque-Bera studiază normalitatea distribuției.

Se formulează ipotezele:

H₀: seria urmează o lege normală.

 H_1 : seria nu urmează o lege normală.

Având în vedere probabilitatea 0.0047 < 0.05, ipoteza nulă se respinge, deci distribuția nu urmează o lege normală.

Studierea sezonalității

 Seria se va desezonaliza cu ajutorul mediilor mobile. Se obțin astfel coeficienții sezonalității pentru variabila PIB.

Original Series: PIB Adjusted Series: PIBSA

Scaling Factors:	
1	0.954373
2	1.007484
3	0.991636
4	1.048796

Urmare a caracterului sezonier, în trimestrul I PIB-ul din Finlanda a fost mai mic, în medie, cu 0.05% decât media, iar în trimestrul IV s-au înregistrat valori mai mari de 1.0488 decât media.

Seria ajustată sezonier (desezonalizată) este redată în figura alăturată. În trimestrele I și III PIB-ul înregistrează valori mai mici decât media, iar în trimestrele II și IV valorile observate sunt peste tendință.

Coeficienții sezonalității pentru variabila Export

Original Series: EXPORT Adjusted Series: EXPORTSA

Scaling Factors:	
1	0.958595
2	1.008042
3	0.980554
4	1.055394

Urmare a caracterului sezonier, în trimestrul I exportul din Finlanda a fost mai mic, în medie, cu 0.05% decât media, iar în trimestrul IV s-au înregistrat valori mai mari de 1.055 decât media.

Seria ajustată sezonier (desezonalizată) este redată în figura alăturată. În trimestrele I și III exportul înregistrează valori mai mici decât media, iar în trimestrele II și IV valorile observate sunt peste tendință.

• Coeficienții sezonalității pentru variabila Import

Original Series: IMPORT Adjusted Series: IMPORTSA

Scaling Factors:	
1	0.982655
2	1.003077
3	0.972802
4	1.042894

Urmare a caracterului sezonier, în trimestrul I importul din Finlanda a fost mai mic, în medie, cu 0.02% decât media, iar în trimestrul IV s-au înregistrat valori mai mari de 1.048 decât media.

Seria ajustată sezonier (desezonalizată) este redată în figura alăturată. În trimestrele I și III importul înregistrează valori mai mici decât media, iar în trimestrele II și IV valorile observate sunt peste tendință.

Corelația și staționaritatea seriei

1. Testarea autocorelației

Semnificativitatea coeficienților de autocorelație se poate face cu ajutorul corelogramei.

Corelograma pentru seria PIB nestaționară, d=0.

Sample: 1990Q1 2021Q3 Included observations: 127

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1 2 3 4 5	0.985 0.968 0.950 0.931	0.985 -0.067 -0.029 -0.044	126.10 248.87 368.14 483.67 594.70	0.000 0.000 0.000 0.000 0.000
		6 7	0.888 0.864	0.030	701.50 803.46	0.000
		8 9	0.0.0	-0.014 -0.078	900.56 992.35	0.000
	1 1	10 11	000	-0.007	1079.0 1160.5	0.000
		12	0.732	-0.048	1236.8	0.000

Corelograma pentru seria staționară, cu diferențele de ordin 1 (d=0).

Sample: 1990Q1 2021Q3 Included observations: 126

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1 1	0.359	0.359	16.604	0.000
🔚	<u> </u>	2	0.232	0.118	23.600	0.000
· 🗀		3	0.244	0.149	31.397	0.000
· 🗀		4	0.310	0.199	44.087	0.000
ı þ i i		5	0.069	-0.149	44.720	0.000
1 二 1		6	-0.101	-0.215	46.104	0.000
· II ·		7	-0.128	-0.147	48.307	0.000
[[8	-0.036	0.027	48.484	0.000
-		9	-0.146	-0.045	51.402	0.000
· = -		10	-0.108	0.105	53.035	0.000
-		11	-0.150	-0.048	56.174	0.000
1 (1		12	-0.031	0.039	56.310	0.000

Se formulează ipoteza nulă:

H₀: Coeficienții de autocorelație nu sunt semnificativi (nu există autocorelație în variabilă).

Prob=0.000 deci există autocorelație între valorile PIB-ului.

Coef. AC = 0.310 – pentru valoarea nr.4 – indică faptul că din ultimele 4 perioade precedente (4 trimestre) influențează valoarea din trimestrul curent într-o manieră directă cu o intensitate medie. Arată influența cumulată a tuturor celor 4 valori trecute.

2. Testarea corelației

Included observations: 126

Correlations are asymptotically consistent approximations

DLPIBSA,DLEXPORTS	DLPIBSA,DLEXPORTS	i	lag	lead
DLPIBSA,DLEXPORTS		0 1 2 3 4	0.3683 0.1409 0.2605 0.0998 0.1355 -0.0445 0.0957	0.3683 0.1760 0.0557 0.0189 -0.0370
		8 9 10 11 12	-0.0260	-0.0150 0.0295

Coeficientul de rang 0 este coeficientul de corelație dintre cele 2 variabile, acesta având și cea mai mare valoare în modul. Deci orice modificare în PIB-ul Finlandei va fi resimțită cu intensitate maximă tot în perioada respectivă. Legătura dintre cele 2 este directă (o creștere a PIB-ului va determina, în aceeași perioadă, o creștere a exporturilor în Finlanda) și este de intensitate medie.

3. Analiza staționarității

PIB

Testul ADF se aplică cu varianta Trend and Intercept deoarece seria are vizibil tendință.

H₀: Variabila Ipibsa are rădăcină unitate (seria este nestaționară).

H₁: Variabila lpibsa nu are rădăcină unitate.

		t-Statistic	Prob
Augmented Dickey-Fulle	r test statistic	-2.306672	0.4269
Test critical values:	1% level	-4.032498	
	5% level	-3.445877	
	10% level	-3.147878	

Ipoteza nulă se acceptă (Prob=0.4269>0.05), deci seria este nestaționară/are rădăcină unitate.

H₀: Seria d(Ipibsa) are rădăcină unitate

Testul ADF a fost făcut cu opțiunile:

Exogenous: None

- Lag Length: 1 (Automatic - based on SIC, maxlag=12)

		t-Statistic	Prob
Augmented Dickey-Fulle	r test statistic	-5.177174	0.000
Test critical values:	1% level	-2.583744	
	5% level	-1.943427	
	10% level	-1.615011	

După o diferențiere seria devine staționară, adică ipoteza nulă se respinge (Prob=0.000 < 0.05). Prin urmare d=1.

Extragerea componentelor seriei

Pentru estimarea și separarea tendinței și a ciclului, din componenta tendință-ciclu, s-a utilizat filtrul Hodrick-Prescott.

Analiza nivelului de convergență

Se aplică testul de cauzalitate Granger pe grupul format din variabilele PIB și Exporturi, ambele serii find staționare și diferențiate de ordin 1.

Lags: 2			
Null Hypothesis:	Obs	F-Statistic	Prob.
DLEXPORTSA does not Granger Cause DLPIBSA	124	2.73070	0.0693
DLPIBSA does not Granger Cause DLEXPORTSA		2.59439	0.0789

Testul F indică faptul că nu există cauzalitate între cele două variabile, deci se acceptă ambele ipoteze nule luând în considerare un prag de semnificație de 5%.

Previziunea microeconomică

*prelucrări realizate în Excel

1. Previziunea naivă

- Metoda cea mai simplă de previzionare presupune ca perioada următoare să înregistreze valoarea curentă

Valorile previzionate pentru anul 2021, trimestrul IV sunt:

Pentru PIB: 62857Pentru Export: 24802Pentru Import: 24619

Pentru acuratețea previziunii s-au calculat erorile absolute și relative doar pentru variabila PIB:

- Eroarea medie (MAE – mean absolute value): 2.269,803175

- Eroarea pătratică medie (MSE mean squared error): 6.826.575,221
- Eroarea relativă absolută medie (MAPE mean absolute percentage error): 5,75466052

2. Previziunea pe baza mediei valorilor trecute

Această metodă se bazează pe faptul că previziunea pentru următoarea perioadă este media tuturor valorilor sale trecute.

Previziunea pe baza mediei valorilor trecute pentru anul 2021, trimestrul IV indică valorile:

Pentru PIB: 44.779,5Pentru Export: 15.403,0Pentru Import: 15.501,8

Pentru acuratețea previziunii s-au calculat erorile absolute și relative doar pentru variabila PIB:

- Eroarea medie (MAE mean absolute value): 8.179,5
- Eroarea pătratică medie (MSE mean squared error): 98.020.193,0
- Eroarea relativă absolută medie (MAPE mean absolute percentage error): 22,3

Se observă că valorile erorilor sunt mai mici în cazul previziunii naive, deci această metodă este mai eficientă pentru aceste date decât previziunea pe baza mediei valorilor trecute.

Metode de netezire

*doar pentru variabila PIB

1. Netezire prin media mobilă

Această metodă previzionează valoarea din perioada următoare pe baza celor mai recente k valori.

Pentru k=2 valorile estimate deviază puțin de valorile reale.

Pentru procesul de netezire prin media mobilă cu k=2 sau calculat erorile absolute si relative:

MAE: 1134,901587MSE: 1706643,805MAPE: 2,87733026

Pentru k=4 valorile seria prezintă desezonalizare perfectă.

Pentru procesul de netezire prin media mobilă cu k=4 s-au calculat erorile absolute și relative:

MAE: 1325,047984MSE: 2687006,712MAPE: 3,452931506

2. Netezire exponențială

Ecuația utilizată este de tipul unei formule de recurență:

$$F_{t+1} = \alpha^* y_t + (1-\alpha)^* F_t$$

 α reprezintă constanta de netezire cu valori între 0 și 1.

Eroarea relativă absolută medie (MAPE – mean absolute percentage error) calculată pentru α =0.75 este 4,88515731, iar pentru α =0.9 MAPE este 5,356108053.

Comparând valorile MAPE de la cele 2 metode de netezire ajungem la concluzia că metoda de netezire prin medii mobile folosind k=2 este cea mai eficientă.

Previziune pe baza trendului crescător folosind variabile dummy

Pentru această metodă am ales ca bază de comparație trimestrul I, deci am construit 3 variabile dummy aferente celorlalte trimestre. Le-am denumit D2, D3 și D4 la care am adăugat și variabila trend. Am folosit opțiunea Regression din meniul Data Analysis.

Regression Statistics		
Multiple R	0,981300576	
R Square	0,96295082	
Adjusted R Square	0,961736093	
Standard Error	2470,936168	
Observations	127	

Putem observa că raportul de determinație, $R^2 \left(\frac{V.exp}{V.tot} * 100 \right)$, este mare, ceea ce înseamnă că 96% din variația PIB-ului este explicată de sezonalitate și trend.

R² ajustat (ține cont de numărul observațiilor și variabilelor care permite comparații în termeni de eficiență a modelelor) este pozitiv, ceea ce înseamnă că avem un model semnificativ.

ANOVA					
	df	SS	MS	F	Significance F
Regression	4	19360135591	4,84E+09	792,7301	2,96319E-86
Residual	122	744874116,5	6105525,5		
Total	126	20105009708			

Tabelul ANOVA arată evaluarea globală a semnificativității modelului utilizând regula de adunare a varianțelor. Formulăm ipoteza nulă: Modelul nu este semnificativ statistic/nu e valid.

Tabelul ANOVA indică un significance F mult mai mic de 5%, deci avem un model valid din punct de vedere statistic.

						1	l .	
	Coefficients	Standard	t Stat	P-value	Lower 95%	Upper	Lower	Upper
		Error				95%	95,0%	95,0%
Intercept	17970,38279	576,9076382	31,149497	0,0000	16828,3365	19112,429	16828,3365	19112,4291
D2	2046,098338	617,7630048	3,3121089	0,001219	823,1747686	3269,0219	823,174769	3269,02191
D3	1278,152926	617,8498852	2,0687111	0,040686	55,05736809	2501,2485	55,0573681	2501,24848
D4	3477,804386	622,7245729	5,5848196	0,0000	2245,058897	4710,5499	2245,0589	4710,54988
Trend	334,8016621	5,98193193	55,968818	0,00000	322,9598304	346,64349	322,95983	346,643494

În acest tabel testăm semnificația coeficienților. Formulăm ipoteza nulă pentru fiecare coeficient în parte: Coeficientul nu este semnificativ pentru model. Toate probabilitățile coeficienților sunt mai mici de 5%, deci coeficienții D2, D3, D4 și trendul sunt semnificativi în model.

Ecuația obținută este:

PIB = 17970,38 + 2046,09*D2 + 1278,15*D3 + 3477,8*D4 +334,8*trend

De la un trimestru la altul, PIB-ul ar crește, în medie, cu 334,8 unități dacă nu ar exista influențe sezoniere.

Previziunile pe urma ecuației sunt:

Timp	Trend	Previziuni
2021Q4	128	64302,79992
2022Q1	129	61159,7972
2022Q2	130	63540,6972
2022Q3	131	63107,55345