Assignment 14

Gautam Singh (CS21BTECH11018)

June 14, 2022

Outline

Problem

- 2 Hypothesis Testing
- Solution

Problem Statement

(Papoulis/Pillai, Exercise 8-25) We are given a random variable X with mean η and standard deviation $\sigma=2$, and we wish to test the hypothesis $\eta_0=8$ against $\eta=8.7$ with $\alpha=0.01$ using as the test statistic the sample mean \bar{x} of n samples.

- **1** Find the critical region R_c of the test and the resulting β if n = 64.
- 2 Find *n* and R_c if $\beta = 0.05$.

Definitions

Random Variable Used

When using the test statistic as the mean (\bar{X}) , we consider the random variable

$$Y = \frac{\bar{X} - \eta_0}{\frac{\sigma}{\sqrt{n}}} \tag{1}$$

We assume $\bar{X} \sim N(\eta_0; \frac{\sigma}{\sqrt{n}})$. Hence, $Y \sim N(\eta_y; 1)$, where η is the new parameter of \bar{X}

$$\eta_{y} = \frac{\eta - \eta_{0}}{\frac{\sigma}{\sqrt{n}}} \tag{2}$$

Observe that for the null hypothesis $H_0: \eta = \eta_0$, we have $Y \sim N(0;1)$ so we can use the standard normal percentiles.

Solution

1 For $H_1: \eta > \eta_0$, the critical region is the half-line y > c, where $c = Q^{-1}(\alpha) = 2.326$. In terms of \bar{X} , the critical region is the half-line $\bar{x} > C$, where from (2),

$$C = \eta_0 + Q^{-1}(\alpha) \frac{\sigma}{\sqrt{n}} = 8 + 2.326 \times \frac{2}{8} = 8.58$$
 (3)

Hence, R_c is given by $\bar{x} > 8.58$ (refer Figure (1)). Now, if $H_1: \eta > \eta_0$, then

$$\eta_q = \frac{8.7 - 8}{\frac{2}{8}} = 2.8 \tag{4}$$

Figure 1: Critical region where null hypothesis is not accepted. Here, $\eta_0=0$ and $\eta=3$.

1 (Cont'd...) β is a function of η given by

$$\beta(\eta) = H_1 : \Pr(Y \notin R_c) = \Pr(Y < c) \tag{5}$$

$$= Q(Q^{-1}(\alpha) - \eta_y) = 0.32 \tag{6}$$

2 Proceeding in reverse from (6), we have from the definition of β ,

$$Q^{-1}(\alpha) - \eta_y = Q^{-1}(1 - \beta) \tag{7}$$

$$\Rightarrow \eta_y = Q^{-1}(\alpha) - Q^{-1}(1-\beta)$$
 (8)

$$= Q^{-1}(0.01) - Q^{-1}(0.95) = 4.97 (9)$$

Given that $\beta(\eta=8.7)=0.05$, we can also use (2) to get

$$n = \left(\frac{\sigma \eta_q}{\eta - \eta_0}\right)^2 = 201\tag{10}$$

Thus, using (3), we get

$$C = 8 + Q^{-1}(0.99)\frac{2}{\sqrt{201}} = 8.33$$
 (11)