

Adaptive Construction for Surrogate-based Inference

POLETTE Nadège, CEA DAM DIF/Mines Paris PSL

Supervisors:

SOCHALA Pierre, CEA DAM DIF

GESRET Alexandrine, Mines Paris PSL

LE MAÎTRE Olivier, CMAP, CNRS

Table of contents

- 1. Context
- 2. Initial surrogate
- 3. Adaptive surrogate construction
 - **3.1** Adaptive training set
 - 3.2 Adaptive polynomial order
 - 3.3 Other state-of-the-art methods

1. Context: Detection and analysis of seismic events

Global scale

1. Context

- International treaties (CTBT, NTP)
- Environment monitoring (IMS)

Regional scale

- Tsunami and earthquake alerts
- Risk prevention

Local scale

- Subsurface knowledge
- Exploitation

1. Context: Detection and analysis of seismic events

Global scale

- International treaties (CTBT, NTP)
- Environment monitoring (IMS)

Regional scale

- Tsunami and earthquake alerts
- Risk prevention

Local scale

- Subsurface knowledge
- Exploitation

$$F(S) = d$$

F: forward model

S: source parameters

d: data

Objective: retrieve *S* from *d*

- fast
- with accuracy
- with uncertainties

1. Context: Inverse problem

Uncertainty sources: observations, physical model, model parameters, ...

Objective: improve uncertainty quantification of model parameters

A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM 2005

1. Context: Inverse problem

Objective: to characterize the velocity field m and its uncertainty from indirect observations d

 \Rightarrow to find the probability distribution of the field knowing the observations $P(m|d_{mes})$

A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM 2005

1. Context: Bayesian inference

2. Initial surrogate construction

1. Context: Bayesian inference

1. Context: Bayesian inference

- D. Sivia, J. Skilling, Data Analysis: A Bayesian Tutorial, Oxford, sc. Pub. 2006
- A. Doucet et al., Sequential Monte Carlo Methods in Practice, ISS 2013
- N. Polette, O. Le Maître, P. Sochala, A. Gesret, Change of Measure for Bayesian Field Inversion with Hierarchical Hyperparameters Sampling, In Rev

m

2. Initial surrogate construction: Polynomials

Surrogate model

Polynomial chaos
$$\tilde{F}(\eta) = \sum_{a \in A} f_a \psi_a(\eta) = d$$

- *A*: set of multi-indices {(0,1,0); (2,0,0); (1,0,1)}
- Ψ_a : product of orthonormal univariate polynomials:

$$\Psi_{a=(a_1,...,a_r)}(\eta) = \prod_{i=1}^r \psi_{a_i}^i(\eta_i)$$

• f_a : coefficients to compute

Example with Hermite polynomials and a = (1,1,0)

2. Initial surrogate construction: Coefficients

Surrogate model

Polynomial chaos
$$\tilde{F}(\eta) = \sum_{a \in A} f_a \psi_a(\eta) = d$$

Non-intrusive ordinary least squares approach

- $\{\eta^{(n)}\}_{1 \le n \le N} \sim P(\eta)$, training set $N \gg K = |\mathcal{A}|$
- $U = (F(\eta^{(1)}), ..., F(\eta^{(N)})^T$, training evaluations
- $\Psi \in \mathbb{R}^{N \times K}$, polynomial evaluations at training points $\Psi_{i,i} = \psi_i(\eta^{(i)})$
- $\mathbf{f} = (f_1, \dots, f_K)^T$, vector of coefficients

$$\mathbf{f} = (\mathbf{\Psi}^T \mathbf{\Psi})^{-1} \mathbf{\Psi}^T \mathbf{U}$$

Number of polynomials according to surrogate degree n_o (r=10)

Full tensorization: $\max(n_{o,i}) \leq n_o$ Partial tensorisation: $\sum n_{o,i} \leq n_o$

■ 2. Initial surrogate construction: Illustration

2. Initial surrogate construction: Illustration

- Initial training set $\{ \boldsymbol{\eta}^{(n)} \}_{1 \le n \le N} \sim P(\boldsymbol{\eta})$
- Initial surrogate $\tilde{F}(\eta)$
- Monte-Carlo sampling $P(\eta | d_{mes}) \propto \tilde{L}(d_{mes} | \eta) P(\eta)$
- Validation

$$RMSRE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\frac{\tilde{L}(\boldsymbol{d}_{mes} | \boldsymbol{\eta}^{(i)}) - L(\boldsymbol{d}_{mes} | \boldsymbol{\eta}^{(i)})}{L(\boldsymbol{d}_{mes} | \boldsymbol{\eta}^{(i)})} \right)^{2}}$$

Case	Valid. set	$n_o = 1$	$n_o = 2$	$n_o = 3$
Probable	Prior	47.4	10.3	2.57
	Posterior	97.9	84.6	3.80
Nonprobable	Prior	26.2	7.00	2.11
	Posterior	99.8	81.0	95.5

Surrogate error RMSRE (%)

This construction does not ensure that the error on the posterior subspace is bounded.

Objective: to improve the surrogate by *minimizing the error on the final quantity of interest* $E_{P(\cdot|d_{mes})}\left(\left\|L(\eta)-\tilde{L}(\eta)\right\|^2\right)$

Adaptive workflow

- Initial surrogate $\tilde{L}^{(0)}$ with $X^{(0)} = \{ \boldsymbol{\eta}^{(n)} \}_{1 \le n \le N} \sim P(\boldsymbol{\eta})$
- While general convergence not achieved
 - MCMC with $\tilde{P}^{(i)}(\cdot | \boldsymbol{d}_{mes})$
 - $i \leftarrow i + 1$
 - Update training set and surrogate:

$$X^{(i)} = X^{(i-1)} \setminus X_{1 \le k \le n_r}^{(i-1)} \cup \left\{ \boldsymbol{\eta}^{(n)} \right\}_{1 \le n \le n_a} \sim \tilde{P}^{(i-1)}(\cdot | \boldsymbol{d}_{mes})$$

General convergence: surrogate quality

STOP if
$$R^2(\tilde{L}^{(i-1)}, L|X^{(i)}) > R_{target}^2$$

with
$$R^{2}(u, v|X) = 1 - \frac{\sum_{k=1}^{n} (u(X_{k}) - v(X_{k}))^{2}}{\sum_{k=1}^{n} (v(X_{k}) - \frac{1}{n} \sum_{j=1}^{n} v(X_{j}))^{2}}$$

Training set on prior pdf (initialization)

9993.

3. Adaptive construction: Training set

Adaptive workflow

- Initial surrogate $\tilde{L}^{(0)}$ with $X^{(0)} = \{ \boldsymbol{\eta}^{(n)} \}_{1 \le n \le N} \sim P(\boldsymbol{\eta})$
- While general convergence not achieved
 - MCMC with $\tilde{P}^{(i)}(\cdot | \boldsymbol{d}_{mes})$
 - $i \leftarrow i + 1$
 - Update training set and surrogate:

$$X^{(i)} = X^{(i-1)} \setminus X_{1 \le k \le n_r}^{(i-1)} \cup \left\{ \boldsymbol{\eta}^{(n)} \right\}_{1 \le n \le n_a} \sim \tilde{P}^{(i-1)}(\cdot | \boldsymbol{d}_{mes})$$

General convergence: surrogate quality

STOP if
$$R^2(\tilde{L}^{(i-1)}, L|X^{(i)}) > R_{target}^2$$

with
$$R^{2}(u, v|X) = 1 - \frac{\sum_{k=1}^{n} (u(X_{k}) - v(X_{k}))^{2}}{\sum_{k=1}^{n} (v(X_{k}) - \frac{1}{n} \sum_{j=1}^{n} v(X_{j}))^{2}}$$

Training set (adaptation nb. 1)

Adaptive workflow

- Initial surrogate $\tilde{L}^{(0)}$ with $X^{(0)} = \{ \boldsymbol{\eta}^{(n)} \}_{1 \le n \le N} \sim P(\boldsymbol{\eta})$
- While general convergence not achieved
 - MCMC with $\tilde{P}^{(i)}(\cdot | \boldsymbol{d}_{mes})$
 - $i \leftarrow i + 1$
 - Update training set and surrogate:

$$X^{(i)} = X^{(i-1)} \setminus X_{1 \le k \le n_r}^{(i-1)} \cup \left\{ \boldsymbol{\eta}^{(n)} \right\}_{1 \le n \le n_a} \sim \tilde{P}^{(i-1)}(\cdot | \boldsymbol{d}_{mes})$$

General convergence: surrogate quality

STOP if
$$R^2(\tilde{L}^{(i-1)}, L|X^{(i)}) > R_{target}^2$$

with
$$R^{2}(u, v|X) = 1 - \frac{\sum_{k=1}^{n} (u(X_{k}) - v(X_{k}))^{2}}{\sum_{k=1}^{n} (v(X_{k}) - \frac{1}{n} \sum_{j=1}^{n} v(X_{j}))^{2}}$$

Training set (adaptation nb. 6)

Adaptive workflow

- Initial surrogate $\tilde{L}^{(0)}$ with $X^{(0)} = \{ \boldsymbol{\eta}^{(n)} \}_{1 \le n \le N} \sim P(\boldsymbol{\eta})$
- While general convergence not achieved
 - MCMC with $\tilde{P}^{(i)}(\cdot | \boldsymbol{d}_{mes})$
 - $i \leftarrow i + 1$
 - Update training set and surrogate:

$$X^{(i)} = X^{(i-1)} \setminus X_{1 \le k \le n_r}^{(i-1)} \cup \left\{ \boldsymbol{\eta}^{(n)} \right\}_{1 \le n \le n_a} \sim \tilde{P}^{(i-1)}(\cdot | \boldsymbol{d}_{mes})$$

General convergence: surrogate quality

STOP if
$$R^2(\tilde{L}^{(i-1)}, L|X^{(i)}) > R_{target}^2$$

with
$$R^{2}(u, v|X) = 1 - \frac{\sum_{k=1}^{n} (u(X_{k}) - v(X_{k}))^{2}}{\sum_{k=1}^{n} (v(X_{k}) - \frac{1}{n} \sum_{j=1}^{n} v(X_{j}))^{2}}$$

Training set (adaptation nb. 13)

Adaptive workflow

- Initial surrogate $\tilde{L}^{(0)}$ with $X^{(0)} = \{ \boldsymbol{\eta}^{(n)} \}_{1 \le n \le N} \sim P(\boldsymbol{\eta})$
- While general convergence not achieved
 - MCMC with $\tilde{P}^{(i)}(\cdot | \boldsymbol{d}_{mes})$
 - $i \leftarrow i + 1$
 - Update training set and surrogate:

$$X^{(i)} = X^{(i-1)} \setminus X_{1 \le k \le n_r}^{(i-1)} \cup \left\{ \boldsymbol{\eta}^{(n)} \right\}_{1 \le n \le n_a} \sim \tilde{P}^{(i-1)}(\cdot | \boldsymbol{d}_{mes})$$

General convergence: surrogate quality

STOP if
$$R^2(\tilde{L}^{(i-1)}, L|X^{(i)}) > R_{target}^2$$

with
$$R^{2}(u, v|X) = 1 - \frac{\sum_{k=1}^{n} (u(X_{k}) - v(X_{k}))^{2}}{\sum_{k=1}^{n} (v(X_{k}) - \frac{1}{n} \sum_{j=1}^{n} v(X_{j}))^{2}}$$

Training set on posterior pdf (final adaptation)

- Initial surrogate $\tilde{L}^{(0)}$ with $X^{(0)} = \{ \boldsymbol{\eta}^{(n)} \}_{1 \le n \le N} \sim P(\boldsymbol{\eta})$
- While general convergence not achieved
 - MCMC with $\tilde{P}^{(i)}(\cdot | \boldsymbol{d}_{mes})$
 - $i \leftarrow i + 1$
 - Update training set and surrogate:

$$X^{(i)} = X^{(i-1)} \setminus X_{1 \le k \le n_r}^{(i-1)} \cup \{ \boldsymbol{\eta}^{(n)} \}_{1 \le n \le n_a} \sim \tilde{P}^{(i-1)}(\cdot | \boldsymbol{d}_{mes})$$

All the training points are concentrated on a small **subspace** of the prior density → surrogate not pertinent

Surrogate approximation

Adaptive workflow

- Initial surrogate $\tilde{L}^{(0)}$ with $X^{(0)} = \{ \boldsymbol{\eta}^{(n)} \}_{1 \le n \le N} \sim P(\boldsymbol{\eta})$
- While general convergence not achieved
 - MCMC with $\tilde{P}^{(i)}(\cdot | \boldsymbol{d}_{mes})$
 - $i \leftarrow i + 1$
 - Update training set and surrogate:

$$X^{(i)} = X^{(i-1)} \setminus X_{1 \le k \le n_r}^{(i-1)} \cup \left\{ \boldsymbol{\eta}^{(n)} \right\}_{1 \le n \le n_q} \sim \tilde{P}^{(i-1)}(\cdot | \boldsymbol{d}_{mes})$$

All the training points **are concentrated on a small subspace** of the prior density → surrogate not pertinent

Rescaling: using mean $\overline{\eta}$ and C the mean and covariance matrix of $X^{(i)}$

$$\tilde{F}^{(i)}(\boldsymbol{\eta}) = \sum_{a \in A} f_a \psi_a(\boldsymbol{C}^{-\frac{1}{2}}(\boldsymbol{\eta} - \overline{\boldsymbol{\eta}}))$$

Surrogate approximation

3. Adaptive construction: Polynomial order

Adaptive workflow

- Initial surrogate $\tilde{L}^{(0)}$ with $X^{(0)} = \{ \boldsymbol{\eta}^{(n)} \}_{1 \le n \le N} \sim P(\boldsymbol{\eta})$
- While general convergence not achieved
 - MCMC with $\tilde{P}^{(i)}(\cdot | \boldsymbol{d}_{mes})$
 - $i \leftarrow i + 1$
 - Update training set and surrogate:

$$X^{(i)} = X^{(i-1)} \setminus X_{1 \le k \le n_r}^{(i-1)} \cup \left\{ \boldsymbol{\eta}^{(n)} \right\}_{1 \le n \le n_n} \sim \tilde{P}^{(i-1)}(\cdot \mid \boldsymbol{d}_{mes})$$

• If
$$|X^{(i)}| > 5 \times N_{PC}(n_o + 1)$$
: $n_o \leftarrow n_o + 1$

Posterior field distribution (nonprobable case)

■ 3. Adaptive construction: State-of-the-art

Review (ED enrichment, sparse constructions)

→ Teixeira R. et al, Adaptive Approaches in Metamodel-based Reliability Analysis: A Review, Structural Safety, 2021

Adaptive training sets

- → Li, J. and Marzouk Y., Adaptive Construction of Surrogates for the Bayesian Solution of Inverse Problems, SIAM Journal on Scientific Computing, 2014
- → Fu S. et al., An Adaptive Kriging Method for Solving Nonlinear Inverse Statistical Problems, Environmetrics, 2017
- → Lucor D., Le Maître O., Cardiovascular Modeling With Adapted Parametric Inference, ESAIM Proceedings, 2018

Adaptive polynomial basis (PCE)

- → **Blatman G. and Sudret B.**, An Adaptive Algorithm to build up Sparse Polynomial Chaos Expansions for Stochastic Finite Element Analysis, Probabilistic Engineering Mechanics, 2010
- → Blatman G. and Sudret B., Adaptive Sparse Polynomial Chaos Expansion Based on Least Angle Regression, JCP, 2011
- → Poëtte G., Lucor D., Non Intrusive Iterative Stochastic Spectral Representation with Application to Compressible Gas Dynamics, JCP, 2012
- → **Zhou Y. and al.**, Adaboost-based Ensemble of Polynomial Chaos Expansion with Adaptive Sampling, CMAME, 2022

Dimension reduction with surrogate models

- → **Lieberman C. and al.**, *Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems*, SIAM Journal on Scientific Computing, 2010
- → **Vohra M. and al.**, Fast Surrogate Modeling using Dimensionality Reduction in Model Inputs and Field Output: Application to Additive Manufacturing, Reliability Engineering & System Safety, 2020

Conclusion

- Surrogate models require a training set
- The prior space can be very different from the posterior space
- Adaptive construction allow to improve surrogate on the space of interest while mitigating costs

Thank you!

nadege.polette@cea.fr

Keywords: inverse problem, (hierarchical) Bayesian inference, surrogate models (polynomial chaos), Markov Chain Monte Carlo, Dimension reduction, Karhunen-Loève decomposition

- N. Polette, O. Le Maître, P. Sochala, A. Gesret, Change of Measure for Bayesian Field Inversion with Hierarchical Hyperparameters Sampling, In Rev
- A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM 2005
- D. Sivia, J. Skilling, Data Analysis: A Bayesian Tutorial, Oxford, sc. Pub. 2006
- A. Doucet et al., Sequential Monte Carlo Methods in Practice, ISS 2013
- Lucor D., Le Maître O., Cardiovascular Modeling With Adapted Parametric Inference, ESAIM Proceedings, 2018