

Algorithms and Data Structures 2 CS 1501

Fall 2022

Sherif Khattab

ksm73@pitt.edu

(Slides are adapted from Dr. Ramirez's and Dr. Farnan's CS1501 slides.)

Announcements

- Upcoming Deadlines
 - Lab 9 and Homework 9:
 - reopened till this Friday @ 11:59 pm
 - Homework 10: this Friday 12/2 @ 11:59 pm
 - Lab 11: Monday 12/5 @ 11:59 pm
 - Homework 11: Friday 12/9 @ 11:59 pm
 - Assignment 3: Monday 11/28 Friday 12/9 @ 11:59 pm
 - Assignment 4: Friday 12/9 @ 11:59 pm

Previous Lecture

- Dynamic Programming Examples
 - Subset Sum
 - Edit Distance
 - Longest Common Subsequence

This Lecture

- Back to Graph Algorithms
- Network Flow Problem

Muddiest Points

- Q: I would like another example of the edit distance algorithm. I did not quite understand what was going on too well
- Sure!

Muddiest Points

- Q: Subset Sum Problem
- Let's have another example!

Muddiest Points

- Q: LCS
- Let's have another example!

Problem of the Day: Finding Bottlenecks

- Let's assume that we want to send a large file from point A to point B over a computer network as fast as possible over multiple network links if needed
- Input:
 - A computer network
 - Network nodes and links
 - Links are labeled by link capacity in Mbps
 - Starting node and destination node
- Output:
 - The maximum network speed possible for sending a file from source to destination

Defining network flow

- Consider a directed, weighted graph G(V, E)
 - O Weights are applied to edges to state their *capacity*
 - c(u, w) is the capacity of edge (u, w)
 - if there is no edge from u to w, c(u, w) = 0
- Consider two vertices, a source s and a sink t
 - O Let's determine the maximum flow that can run from s to t in the graph G

Flow

- Let the f(u, w) be the amount of flow being carried along the edge (u, w)
- Some rules on the flow running through an edge:
 - \bigcirc $\forall (u, w) \in E f(u, w) <= c(u, w)$
 - \bigcirc $\forall u \in (V \{s,t\}) (\Sigma_{w \in V} f(w, u) \Sigma_{w \in V} f(u, w)) = 0$

Ford Fulkerson

- Let all edges in G have an allocated flow of 0
- While there is path p from s to t in G s.t. all edges in p have some residual capacity (i.e., $\forall (u, w) \in p$ f(u, w) < c(u, w)):
 - (Such a path is called an *augmenting path*)
 - Compute the residual capacity of each edge in p
 - Residual capacity of edge (u, w) is c(u, w) f(u, w)
 - O Find the edge with the minimum residual capacity in p
 - We'll call this residual capacity *new_flow*
 - Increment the flow on all edges in p by new_flow

Ford Fulkerson example

Ford Fulkerson example

Another Ford Fulkerson example

Expanding on residual capacity

- To find the max flow we will have to consider re-routing flow we had previously allocated
 - This means, when finding an augmenting path, we will need to look not only at the edges of G, but also at backwards edges that allow such re-routing
 - For each edge $(u, w) \in E$, a backwards edge (w, u) must be considered during pathfinding if f(u, w) > 0
 - The capacity of a backwards edge (w, u) is equal to f(u, w)

The residual graph

- We will perform searches for an augmenting path not on G, but on a residual graph built using the current state of flow allocation on G
- The residual graph is made up of:
 - OV
 - \bigcirc An edge for each (u, w) \in E where f(u, w) < c(u, w)
 - (u, w)'s mirror in the residual graph will have 0 flow and a capacity of c(u, w) - f(u, w)
 - \bigcirc A backwards edge for each (u, w) \in E where f(u, w) > 0
 - (u, w)'s backwards edge has a capacity of f(u, w)
 - All backwards edges have 0 flow

Residual graph example

Another example

Worst-case runtime of Ford-Fulkerson

Worst-case Runtime of Ford-Fulkerson

(If / x (e+v))

Nat Flow
finding on
anymetry
path

Edmonds Karp

- How the augmenting path is chosen affects the performance of the search for max flow
- Edmonds and Karp proposed a shortest path heuristic for Ford
 Fulkerson
 - O Use BFS to find augmenting paths

Another example

But our flow graph is weighted...

- Edmonds-Karp only uses BFS
 - O Used to find spanning trees and shortest paths for *unweighted* graphs
 - O Why do we not use some measure of priority to find augmenting paths?

Backwards edges

Adding flow to a backwards edge means rerouting flow from the corresponding forward edge

2nd Tophat Question

But our flow graph is weighted...

- Edmonds-Karp only uses BFS
 - O Used to find spanning trees and shortest paths for *unweighted* graphs
 - O Why do we not use some measure of priority to find augmenting paths?

PFS Example 1

PFS Example 2

Flow edge implementation

- For each edge, we need to store:
 - O Start point, the from vertex
 - O End point, the to vertex
 - Capacity
 - O Flow
 - Residual capacities
 - For forwards and backwards edges

FlowEdge.java

```
public class FlowEdge {
   private final int v;
                                     // from
   private final int w;
                                    // to
   private final double capacity; // capacity
   private double flow;
                                    // flow
      public double residualCapacityTo(int vertex) {
              (vertex == v) return flow;
      else if (vertex == w) return capacity - flow;
      else throw new
       IllegalArgumentException("Illegal endpoint");
```

BFS search for an augmenting path (pseudocode)

```
edgeTo = \lceil |V| \rceil
                                     Each FlowEdge object is stored
marked = \lceil |V| \rceil
                                     in the adjacency list twice:
Queue q
                                     Once for its forward edge
q.enqueue(s)
                                     Once for its backward edge
marked[s] = true
while !q.isEmpty():
   v = q.dequeue()
   for each (v, w) in AdjList[v]:
       if residualCapacity(v, w) > 0:
           if !marked[w]:
               edgeTo[w] = v;
               marked[w] = true;
               q.enqueue(w);
```

Value of maxflow

- Add up the flow increments in each iteration of Ford-Fulkerson
- Add up the edge **flows** out of source
- Add up the edge **flows** of the out of source

Follow-up Problem

- So, now we found the bottleneck value, but which edges define the found bottleneck?
 - Why would you want to know those bottleneck edges?

Let's separate the graph

- An st-cut on G is a set of edges in G that, if removed, will partition the vertices of G into two disjoint sets
 - One contains s
 - One contains t
- May be many st-cuts for a given graph
- Let's focus on finding the minimum st-cut
 - The st-cut with the smallest capacity
 - May not be unique

How do we find the min st-cut?

- We could examine residual graphs
 - O Specifically, try and allocate flow in the graph until we get to a residual graph with no existing augmenting paths
 - A set of saturated edges will make a minimum st-cut

Min cut example

Max flow == min cut

- A special case of duality
 - O I.e., you can look at an optimization problem from two angles
 - In this case to find the maximum flow or minimum cut
 - In general, dual problems do not have to have equal solutions
 - The differences in solutions to the two ways of looking at the problem is referred to as the *duality gap*
 - If the duality gap = 0, strong duality holds
 - Max flow/min cut uphold strong duality
 - If the duality gap > 0, weak duality holds

Determining a minimum st-cut

- First, run Ford Fulkerson to produce a residual graph with no further augmenting paths
- The last attempt to find an augmenting path will visit every vertex reachable from s
 - O Edges with only one endpoint in this set comprise a minimum st-cut

Determining the min cut

Max flow / min cut on unweighted graphs

- Is it possible?
- How would we measure the Max flow / min cut?
- What would an algorithm to solve this problem look like?

Min st-cut Example 1

Min st-cut Example 2

Unweighted network flow

