CHOMSKY CLASSIFICATION

Of Languages

Topic of Discussion:

- Introduction.
- ☐ Chomsky Hierarchy Of Languages.
- ☐ Types Of Languages:
 - ☐ Type 0
 - □ Type 1
 - □ Type 2
 - □ Type 3

Introduction:

- Noam Chomsky, is an American linguist, philosopher, scientist and social activist.
- Chomsky hierarchy of grammars was described by Noam Chomsky in 1956.
- ☐ Grammar Definition: It is defined by four tuples: G = {V,T,P,S} where
 - □ V = Non Terminals
 - \Box T = Terminals
 - □ P= Production Rule
 - ☐ S= Start Symbol

Production Rule:

$$S \rightarrow AB$$

$$|A \rightarrow a|$$

$$|B\rightarrow b|$$

Chomsky Hierarchy Of Languages:

Venn Diagram of Grammar Types:

Types Of Languages:

- □ Recursively enumerable Language(Type-0)
- ☐ *Context-sensitive* Language(*Type-1*)
- □ Context-free Language(Type-2)
- Regular Language (Type-3)

Type-

<u>0:</u>

- ☐ Type-0 Languages (unrestricted grammars) include all formal grammars.
- They generate exactly all languages that can be recognized by a Turing machine.
- ☐ These languages are also known as the **recursively enumerable** languages.
- Type-0 grammars are too general to describe the syntax of programming languages and natural languages.
- □ This grammar has rules of the form $\alpha \rightarrow \beta$ (where a contains non-terminal and β contains terminals or non-terminals).
- Example:

$$\alpha$$
 = alpha β = Beta

Type-

<u>1:</u>

- Type-1 grammar generate the context-sensitive languages.
- The languages described by these grammars are exactly all languages that can be recognized by a linear bounded automaton.
- □ These grammars have rules of the form $\alpha \rightarrow \beta$ with a restriction that length of $|a| \le |\beta|$.
- Example:
 - \square aAb \rightarrow bbb

 \Box aA \rightarrow bbb

 \square aAb \rightarrow bb

- Type-2 Languages generate the context-free languages.
- These languages are exactly all languages that can be recognized by a nondeterministic pushdown automaton.
- Context-free languages are the theoretical basis for the syntax of most programming languages.
- These are defined by rules of the form $A \rightarrow \alpha$ where A is a nonterminal and α is a string of terminals and nonterminal(there will be no context on the left and right of nonterminal).
- Example:
 - \square A \rightarrow BCD

- Type-3 Languages generate the regular languages.
- These languages are exactly all languages that can be decided by a finite state automaton
- ☐ Regular languages are commonly used to define search patterns of programming languages.
- ☐ It can be classified into two types (1)Right Linear (2)Left Linear.
- ☐ If we have repetition of non terminals on right side[$A \rightarrow xB|x$] then it is known as Right Linear.
- If we have repetition of non terminals on left side[A \rightarrow Bx|x] then it is known as Left Linear.(A,B ε non terminals and x ε Σ^*)
- Example:
- \square S \rightarrow aS|b
- \square S \rightarrow aS|c
- \square S \rightarrow Sa|b
- □ A →ba

Reference:

- https://www.tutorialspoint.com/automata_theory/chomsky_classification_of_gram mars.htm
- https://www.geeksforgeeks.org/toc-chomsky-hierarchy/
- □ https://www.youtube.com/watch?v=AISB2_CehbM
- https://en.wikipedia.org/wiki/Chomsky_hierarchy

THANK YOU