CS 228 : Logic in Computer Science

Krishna. S

• Given φ , consider all possible subformulae of φ , their negations

- Given φ , consider all possible subformulae of φ , their negations
- ► Each state *s* of the automaton constructed gives some guarantees about the truth of some subformulae

- ▶ Given φ , consider all possible subformulae of φ , their negations
- ► Each state *s* of the automaton constructed gives some guarantees about the truth of some subformulae
- ightharpoonup The initial states give guarantees about the truth of φ

- ▶ Given φ , consider all possible subformulae of φ , their negations
- ► Each state *s* of the automaton constructed gives some guarantees about the truth of some subformulae
- ightharpoonup The initial states give guarantees about the truth of φ
 - ▶ Identify states of A_{φ} with various sets of subformulae of φ
 - Think of this as some labelling of the states
 - If *B* is a label for state *s*, and if $B = \{\varphi_1, \psi_1, \neg a\}$, then every infinite accepted string *w* starting at state *s* is such that $w \models \varphi_1, \psi_1, \neg a$.
 - ▶ The initial state(s) of A_{φ} must be such that all accepting paths beginning from them satisfy φ

- ▶ Let $\varphi = \bigcirc a$.
- ▶ Subformulae of φ : $\{a, \bigcirc a\}$. Let $B = \{a, \bigcirc a, \neg a, \neg \bigcirc a\}$.
- ▶ Possibilities at each state : some consistent subset of B holds
 - ► {*a*, *Oa*}

 - \triangleright { $a, \neg \bigcirc a$ }
 - ► {¬a,¬ () a}
- ▶ Our initial state(s) must guarantee truth of $\bigcirc a$. Thus, initial states: $\{a, \bigcirc a\}$ and $\{\neg a, \bigcirc a\}$

For a run $B_0A_0B_1A_1...$, we have $B_i = \{\psi \mid A_iA_{i+1}... \models \psi\}$.

- ▶ Let $\varphi = a \cup b$.
- Subformulae of φ : { $a, b, a \cup b$ }. Let $B = \{a, \neg a, b, \neg b, a \cup b, \neg (a \cup b)\}$.
- ▶ Possibilities at each state : some consistent subset of B holds
 - \blacktriangleright {a, $\neg b$, a Ub}
 - \blacktriangleright { $\neg a, b, a \cup b$ }
 - ▶ {*a*, *b*, *a* U*b*}
 - $\blacktriangleright \{a, \neg b, \neg (a \cup b)\}$
- Our initial state(s) must guarantee truth of $a \cup b$. Thus, initial states: $\{a, b, a \cup b\}$ and $\{\neg a, b, a \cup b\}$ and $\{a, \neg b, a \cup b\}$.

$$\rightarrow \{a, b, a \cup b\}$$

 $\{a, \neg b, \neg (a \cup b)\}$

 $\{\neg a, \neg b, \neg (a \cup b)\}$

 $\rightarrow \{a, b, a \cup b\}$

LTL to GNBA : Accepting States

$$\rightarrow [a, b, a \cup b]$$

 $\{a, \neg b, \neg (a \cup b)\}$

 $\{\neg a, \neg b, \neg (a \cup b)\}$

For an accepting run $B_0A_0B_1A_1...$, show that $B_i = \{\psi \mid A_iA_{i+1}... \models \psi\}.$

- ▶ Let $\varphi = a U(\neg a Uc)$. Let $\psi = \neg a Uc$
- Subformulae of φ : $\{a, \neg a, c, \psi, \varphi\}$. Let $B = \{a, \neg a, c, \neg c, \psi, \neg \psi, \varphi, \neg \varphi\}$.
- Possibilities at each state : consistent subsets of B
 - \blacktriangleright { a, c, ψ, φ }
 - $\{\neg a, c, \psi, \varphi\}$
 - $\{a, \neg c, \neg \psi, \varphi\}$
 - $\{a, \neg c, \neg \psi, \neg \varphi\}$
 - $\blacktriangleright \{ \neg a, \neg c, \psi, \varphi \}$
 - $\qquad \qquad \{ \neg a, \neg c, \neg \psi, \neg \varphi \}$

$$\rightarrow \{a, c, \psi, \varphi\}$$

$$\left[\left\{ \neg \mathbf{a}, \neg \mathbf{c}, \psi, \varphi \right\} \right] \longleftarrow$$

$$\rightarrow$$
 $\{\neg a, c, \psi, \varphi\}$

$$\{a, \neg c, \neg \psi, \neg \varphi\}$$

$$\{\neg a, \neg c, \neg \psi, \neg \varphi\}$$

$$\longrightarrow \{a, \neg c, \neg \psi, \varphi\}$$

GNBA Acceptance Condition

- $\psi = \neg a Uc$
- $ightharpoonup \varphi = \mathbf{a} \, \mathsf{U} \psi$
- ▶ $F_1 = \{B \mid \psi \in B \to c \in B\}$
- $F_2 = \{B \mid \varphi \in B \rightarrow \psi \in B\}$
- ▶ $\mathcal{F} = \{F_1, F_2\}$

Final States

$$\{a, \neg c, \neg \psi, \neg \varphi\} \in F_1, F_2$$

$$\{\neg a, \neg c, \neg \psi, \neg \varphi\} \in F_1, F_2$$

$$\rightarrow$$
 $\{a, \neg c, \neg \psi, \varphi\} \in F_2$

▶ Given φ , build $Cl(\varphi)$, the set of all subformulae of φ and their negations

- ▶ Given φ , build $CI(\varphi)$, the set of all subformulae of φ and their negations
- ▶ Consider those $B \subseteq Cl(\varphi)$ which are maximal consistent
 - $\varphi_1 \land \varphi_2 \in B \leftrightarrow \varphi_1 \in B \text{ and } \varphi_2 \in B$

- ▶ Given φ , build $CI(\varphi)$, the set of all subformulae of φ and their negations
- ▶ Consider those $B \subseteq Cl(\varphi)$ which are maximal consistent
 - $\varphi_1 \land \varphi_2 \in B \leftrightarrow \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\psi \in B \rightarrow \neg \psi \notin B$ and $\psi \notin B \rightarrow \neg \psi \in B$

- ▶ Given φ , build $Cl(\varphi)$, the set of all subformulae of φ and their negations
- ▶ Consider those $B \subseteq Cl(\varphi)$ which are maximal consistent
 - $\varphi_1 \land \varphi_2 \in B \leftrightarrow \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\psi \in B \rightarrow \neg \psi \notin B$ and $\psi \notin B \rightarrow \neg \psi \in B$
 - Whenever $\psi_1 \cup \psi_2 \in Cl(\varphi)$,
 - $\psi_2 \in B \rightarrow \psi_1 \cup \psi_2 \in B$
 - $\psi_1 \cup \psi_2 \in B$ and $\psi_2 \notin B \rightarrow \psi_1 \in B$

Given φ over AP, construct $A_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$,

- ▶ $Q = \{B \mid B \subseteq Cl(\varphi) \text{ is consistent } \}$
- ▶ $Q_0 = \{B \mid \varphi \in B\}$
- ▶ $\delta: Q \times 2^{AP} \rightarrow 2^{Q}$ is such that

Given φ over AP, construct $A_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$,

- ▶ $Q = \{B \mid B \subseteq Cl(\varphi) \text{ is consistent } \}$
- ▶ $Q_0 = \{B \mid \varphi \in B\}$
- ▶ $\delta: Q \times 2^{AP} \rightarrow 2^{Q}$ is such that
 - ▶ For $C = B \cap AP$, $\delta(B, C)$ is enabled and is defined as :
 - If $\bigcirc \psi \in Cl(\varphi)$, $\bigcirc \psi \in B$ iff $\psi \in \delta(B, C)$
 - If $\varphi_1 \cup \varphi_2 \in Cl(\varphi)$, $\varphi_1 \cup \varphi_2 \in B \text{ iff } (\varphi_2 \in B \vee (\varphi_1 \in B \wedge \varphi_1 \cup \varphi_2 \in \delta(B, C)))$

```
Given \varphi over AP, construct A_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F}),
```

- ▶ $Q = \{B \mid B \subseteq Cl(\varphi) \text{ is consistent } \}$
- ▶ $Q_0 = \{B \mid \varphi \in B\}$
- ▶ $\delta: Q \times 2^{AP} \rightarrow 2^{Q}$ is such that
 - ▶ For $C = B \cap AP$, $\delta(B, C)$ is enabled and is defined as :
 - If $\bigcirc \psi \in Cl(\varphi)$, $\bigcirc \psi \in B$ iff $\psi \in \delta(B, C)$
 - ▶ If $\varphi_1 \cup \varphi_2 \in Cl(\varphi)$, $\varphi_1 \cup \varphi_2 \in B$ iff $(\varphi_2 \in B \lor (\varphi_1 \in B \land \varphi_1 \cup \varphi_2 \in \delta(B, C)))$
- $\mathcal{F} = \{ F_{\varphi_1 \cup \varphi_2} \mid \varphi_1 \cup \varphi_2 \in Cl(\varphi) \}, \text{ with }$ $F_{\varphi_1 \cup \varphi_2} = \{ B \in Q \mid \varphi_1 \cup \varphi_2 \in B \rightarrow \varphi_2 \in B \}$

```
Given \varphi over AP, construct A_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F}),
```

- ▶ $Q = \{B \mid B \subseteq Cl(\varphi) \text{ is consistent } \}$
- ▶ $Q_0 = \{B \mid \varphi \in B\}$
- ▶ $\delta: Q \times 2^{AP} \rightarrow 2^{Q}$ is such that
 - ▶ For $C = B \cap AP$, $\delta(B, C)$ is enabled and is defined as :
 - If $\bigcirc \psi \in Cl(\varphi)$, $\bigcirc \psi \in B$ iff $\psi \in \delta(B, C)$
 - ▶ If $\varphi_1 \cup \varphi_2 \in Cl(\varphi)$, $\varphi_1 \cup \varphi_2 \in B$ iff $(\varphi_2 \in B \lor (\varphi_1 \in B \land \varphi_1 \cup \varphi_2 \in \delta(B, C)))$
- $\mathcal{F} = \{ F_{\varphi_1 \cup \varphi_2} \mid \varphi_1 \cup \varphi_2 \in Cl(\varphi) \}, \text{ with }$ $F_{\varphi_1 \cup \varphi_2} = \{ B \in Q \mid \varphi_1 \cup \varphi_2 \in B \rightarrow \varphi_2 \in B \}$
- Prove that $L(\varphi) = L(A_{\varphi})$

$$L(\varphi) \subseteq L(\mathcal{A}_{\varphi})$$

Let $\sigma = A_0 A_1 A_2 \cdots \in L(\varphi)$. Show that there is an accepting run $B_0 A_0 B_1 A_1 B_2 A_2 \ldots$ in A_{φ} for σ , B_i are the states, such that $B_i = \{ \psi \mid A_i A_{i+1} \ldots \models \psi \}$.

▶ If $a \in B_i$, every run starting at B_i starts with a. Hence, $A_iA_{i+1}... \models a$

$$L(\varphi) \subseteq L(\mathcal{A}_{\varphi})$$

Let $\sigma = A_0A_1A_2\dots \in L(\varphi)$. Show that there is an accepting run $B_0A_0B_1A_1B_2A_2\dots$ in A_{φ} for σ , B_i are the states, such that $B_i = \{\psi \mid A_iA_{i+1}\dots \models \psi\}$.

▶ If $\bigcirc a \in B_i$, then by construction, $B_{i+1} \in \delta(B_i, -)$ iff $a \in B_{i+1}$. Then $A_{i+1} ... \models a$, and hence $A_i A_{i+1} ... \models \bigcirc a$.

Let $\sigma = A_0A_1A_2 \cdots \in L(\varphi)$. Show that there is an accepting run $B_0A_0B_1A_1B_2A_2 \ldots$ in A_{φ} for σ , B_i are the states, such that $B_i = \{\psi \mid A_iA_{i+1} \ldots \models \psi\}$.

▶ If $\varphi_1 \cup \varphi_2 \in B_i$, then either $\varphi_2 \in B_i$ or $\varphi_1, \varphi_1 \cup \varphi_2 \in B_i$. If $\varphi_2 \in B_i$ then $A_iA_{i+1} \dots \models \varphi_1 \cup \varphi_2$.

Let $\sigma = A_0A_1A_2 \cdots \in L(\varphi)$. Show that there is an accepting run $B_0A_0B_1A_1B_2A_2 \cdots$ in A_{φ} for σ , B_i are the states, such that $B_i = \{\psi \mid A_iA_{i+1} \cdots \models \psi\}$.

- ▶ If $\varphi_1 \cup \varphi_2 \in B_i$, then either $\varphi_2 \in B_i$ or $\varphi_1, \varphi_1 \cup \varphi_2 \in B_i$. If $\varphi_2 \in B_i$ then $A_i A_{i+1} \dots \models \varphi_1 \cup \varphi_2$.
- ▶ If $\varphi_1, \varphi_1 \cup \varphi_2 \in B_i$, then by construction, $B_{i+1} \in \delta(B_i, -)$ iff $\varphi_2 \in B_{i+1}$ or $\varphi_1, \varphi_1 \cup \varphi_2 \in B_{i+1}$.

Let $\sigma = A_0A_1A_2 \cdots \in L(\varphi)$. Show that there is an accepting run $B_0A_0B_1A_1B_2A_2 \cdots$ in A_{φ} for σ , B_i are the states, such that $B_i = \{\psi \mid A_iA_{i+1} \cdots \models \psi\}$.

- ▶ If $\varphi_1 \cup \varphi_2 \in B_i$, then either $\varphi_2 \in B_i$ or $\varphi_1, \varphi_1 \cup \varphi_2 \in B_i$. If $\varphi_2 \in B_i$ then $A_i A_{i+1} \dots \models \varphi_1 \cup \varphi_2$.
- ▶ If $\varphi_1, \varphi_1 \cup \varphi_2 \in B_i$, then by construction, $B_{i+1} \in \delta(B_i, -)$ iff $\varphi_2 \in B_{i+1}$ or $\varphi_1, \varphi_1 \cup \varphi_2 \in B_{i+1}$.
- ▶ When is $B_i B_{i+1} B_{i+2} \dots$ an accepting run?
- ▶ $B_i \in F_{\varphi_1 \cup \varphi_2}$ for infinitely many $j \ge i$.

Let $\sigma = A_0A_1A_2\dots \in L(\varphi)$. Show that there is an accepting run $B_0A_0B_1A_1B_2A_2\dots$ in A_{φ} for σ , B_i are the states, such that $B_i = \{\psi \mid A_iA_{i+1}\dots \models \psi\}$.

- ▶ If $\varphi_1 \cup \varphi_2 \in B_i$, then either $\varphi_2 \in B_i$ or $\varphi_1, \varphi_1 \cup \varphi_2 \in B_i$. If $\varphi_2 \in B_i$ then $A_i A_{i+1} \dots \models \varphi_1 \cup \varphi_2$.
- ▶ If $\varphi_1, \varphi_1 \cup \varphi_2 \in B_i$, then by construction, $B_{i+1} \in \delta(B_i, -)$ iff $\varphi_2 \in B_{i+1}$ or $\varphi_1, \varphi_1 \cup \varphi_2 \in B_{i+1}$.
- ▶ When is $B_i B_{i+1} B_{i+2} \dots$ an accepting run?
- ▶ $B_i \in F_{\varphi_1 \cup \varphi_2}$ for infinitely many $j \geqslant i$.
- $\varphi_2 \notin B_i$ or $\varphi_2, \varphi_1 \cup \varphi_2 \in B_i$ for infinitely many $j \geqslant i$.
- ▶ By construction, there is an accepting run where $\varphi_2 \in B_k$ for some $k \ge i$. Hence, $A_i A_{i+1} ... \models \varphi_1 \cup \varphi_2$.

$$L(\mathcal{A}_{\varphi})\subseteq L(\varphi)$$

For a sequence $B_0B_1B_2...$ of states satisfying

- ▶ $B_{i+1} \in \delta(B_i, A_i)$,
- ▶ $\forall F \in \mathcal{F}, B_i \in F$ for infinitely many j,

we have
$$\psi \in B_0 \leftrightarrow A_0 A_1 \ldots \models \psi$$

- ▶ Structural Induction on ψ . Interesting case : $\psi = \varphi_1 \ U\varphi_2$
- ▶ Assume $A_0A_1... \models \varphi_1 \cup \varphi_2$. Then $\exists j \geqslant 0, A_jA_{j+1}... \models \varphi_2$ and $A_iA_{i+1}... \models \varphi_1$ for all $i \leqslant j$.
- ▶ By induction hypothesis, $\varphi_2 \in B_i$ and $\varphi_1 \in B_i$ for all $i \leq j$
- ▶ By construction, $\varphi_1 \cup \varphi_2 \in B_i, \dots, B_0$.

$L(\mathcal{A}_{\varphi})\subseteq L(\varphi)$

For a sequence $B_0B_1B_2...$ of states satisfying

- (a) $B_{i+1} \in \delta(B_i, A_i)$,
- (b) $\forall F \in \mathcal{F}, B_j \in F$ for infinitely many j,

we have $\psi \in B_0 \leftrightarrow A_0 A_1 \ldots \models \psi$

- ▶ Conversely, assume $\varphi_1 \cup \varphi_2 \in B_0$. Then $\varphi_2 \in B_0$ or $\varphi_1, \varphi_1 \cup \varphi_2 \in B_0$.
- ▶ If $\varphi_2 \in B_0$, by induction hypothesis, $A_0A_1 ... \models \varphi_2$
- ▶ If $\varphi_1, \varphi_1 \cup \varphi_2 \in B_0$. Assume $\varphi_2 \notin B_j$ for all $j \ge 0$. Then $\varphi_1, \varphi_1 \cup \varphi_2 \in B_j$ for all $j \ge 0$.
- ▶ As B_0B_1 ... satisfies (b), $B_j \in F_{\varphi_1 \cup \varphi_2}$ for infinitely many $j \ge 0$, a contradiction.
- ▶ Thus, $\varphi_2 \in B_k$ for some smallest index k. Then by induction hypothesis, $A_iA_{i+1} \dots \models \varphi_1$ and $A_kA_{k+1} \models \varphi_2$ for all i < k
- ▶ Hence, $A_0A_1 ... \models \varphi_1 \cup \varphi_2$.

• States of A_{φ} are subsets of $CI(\varphi)$

- States of A_{φ} are subsets of $CI(\varphi)$
- ▶ Maximum number of states $\leq 2^{|\varphi|}$

- ▶ States of A_{φ} are subsets of $CI(\varphi)$
- ▶ Maximum number of states $\leq 2^{|\varphi|}$
- ▶ Number of sets in $\mathcal{F} = |\varphi|$

- ▶ States of A_{φ} are subsets of $CI(\varphi)$
- ▶ Maximum number of states $\leq 2^{|\varphi|}$
- ▶ Number of sets in $\mathcal{F} = |\varphi|$
- ▶ LTL $\varphi \sim \text{NBA } A_{\varphi}$: Number of states in $A_{\varphi} \leq |\varphi|.2^{|\varphi|}$
- ▶ Lower Bound : Find a family of LTL formulae φ_n such that the state space of $A_{\varphi_n} \geqslant |\varphi|.2^{|\varphi|}$

- ▶ States of A_{φ} are subsets of $CI(\varphi)$
- ▶ Maximum number of states $\leq 2^{|\varphi|}$
- ▶ Number of sets in $\mathcal{F} = |\varphi|$
- ▶ LTL $\varphi \sim \text{NBA } A_{\varphi}$: Number of states in $A_{\varphi} \leqslant |\varphi|.2^{|\varphi|}$
- ▶ Lower Bound : Find a family of LTL formulae φ_n such that the state space of $A_{\varphi_n} \geqslant |\varphi|.2^{|\varphi|}$
- $\varphi_n = \Diamond [a \land \bigcirc^n \Box \phi] \text{ over } AP = \{a\}.$