El espacio dual de L^{∞}

Angel Granado

angel.granado@correo.unimet.edu.ve Universidad Metropolitana.

March 8, 2023

1 Introducción

Sea (Ω, Σ, μ) un espacio de medida y $f: \Omega \to \overline{\mathbb{R}}$ una función $\Sigma - medible$. El supremo esencial de f sobre Ω está definido por

$$||f||_{\infty} := \inf \left\{ c \in \mathbb{R} : \mu(\left\{ \omega \in \Omega : f(\omega) > c \right\}) = 0 \right\}$$

 $\mathcal{L}^{\infty}(\Omega, \Sigma, \mu)$ es un espacio vectorial, pero $(\mathcal{L}^{\infty}(\Omega, \Sigma, \mu), ||\cdot||_{\infty})$ no es un espacio normado. En efecto, sea $\omega_0 \in \Omega$ fijo y consideremos las funciones $g, h : \Omega \to \mathbb{R}$ definidas respectivamente por $g(\omega) = 0$ para toda $\omega \in \Omega$ y $h(\omega) = 0$ para toda $\omega \in \Omega \setminus \{\omega_0\}$ y $h(\omega_0) = 1$. Entonces, $||g - h||_{\infty} = 0$ pero $g \neq h$.

Para solucionar esto, consideremos la siguiente relación sobre $\mathcal{L}^{\infty}(\Omega, \Sigma, \mu)$:

$$f \sim g \quad \Longleftrightarrow \quad \mu(\{\omega \in \Omega : f(\omega) \neq g(\omega)\}) = 0$$

La relación es de equivalencia. Si definimos a $L^{\infty}(\Omega, \Sigma, \mu)$ como $(\mathcal{L}^{\infty}(\Omega, \Sigma, \mu))/\sim$ entonces $(L^{\infty}(\Omega, \Sigma, \mu), ||\cdot||_{\infty})$ sí es un espacio normado. Más aún, $(L^{\infty}(\Omega, \Sigma, \mu), ||\cdot||_{\infty})$ es un espacio de Banach.

En análisis funcional, resulta interesante estudiar el espacio dual de un espacio normado ya que es posible determinar propiedades de los espacios a través de su espacio dual. Para el espacio $L^{\infty}(\Omega, \Sigma, \mu)$, su dual se define como el espacio de todos los funcionales lineales acotados $\phi: L^{\infty}(\Omega, \Sigma, \mu) \to \mathbb{R}$, y se denota por $(L^{\infty}(\Omega, \Sigma, \mu))^*$. Observe que se le puede dotar de una estructura de espacio normado si se define a $||\cdot||: (L^{\infty}(\Omega, \Sigma, \mu))^* \to [0, \mathbb{R}^+)$ como

$$||\phi||:=\inf\left\{k\geq 0:\, |\phi(f)|\leq k\, ||f||_{\infty}\; (\forall f\in L^{\infty}(\Omega,\Sigma,\mu)\setminus\{0\})\right\}$$

Nuestro objetivo será demostrar que $(L^{\infty}(\Omega, \Sigma, \mu))^* \cong ba(\Omega, \Sigma, \mu)$. Para ello, primero estudiaremos algunas definiciones y verificar algunos resultados necesarios para realizar la demostración.

2 Medidas con signo finitamente aditiva

2.1 Definición

Sea Σ una álgebra de subconjuntos de Ω . Una función $\lambda : \Sigma \to \overline{\mathbb{R}}$ es una medida con signo finitamente aditiva si:

- 1. $\lambda(\emptyset) = 0$;
- 2. Dados $A, B \in \Sigma$ tales que $A \cap B$, se verifica que $\lambda(A \cup B) = \lambda(A) + \lambda(B)$.

2.2 Definición

Sea $\lambda: \Sigma \to \overline{\mathbb{R}}$ una medida con signo finitamente aditiva. Entonces, para cada $E \in \Sigma$, la variación total de λ sobre E se denota por $\nu(\lambda, E)$ y se define como

$$\nu(\lambda, E) := \sup \sum_{i=1}^{n} |\lambda(E_i)|$$

donde el supremo se toma sobre todas las colecciones finitas $\{E_i\}_{i=1}^n \subseteq \mathcal{P}(E)$ de conjuntos disjuntos que pertenecen a Σ .

Observación. En general, si λ es una medida con signo finitamente aditiva entonces se verifica que $|\lambda(E)| \leq \nu(\lambda, E)$ para cada $E \in \Sigma$. Si λ es no-negativa y acotada entonces se cumple que $|\lambda(E)| = \nu(\lambda, E)$.

2.3 Proposición

Sea $\lambda: \Sigma \to \overline{\mathbb{R}}$ una medida con signo finitamente aditiva. Entonces, la variación total de λ sobre E define una medida con signo finitamente aditiva $\nu_{\lambda}: \Sigma \to \overline{\mathbb{R}}, \, \nu_{\lambda}(E) := \nu(\lambda, E)$ para $E \in \Sigma$. Además, si λ es acotada entonces ν_{λ} también lo es.

Demostración. Primero demostremos que $\nu_{\lambda}: \Sigma \to \overline{\mathbb{R}}$ es una medida con signo finitamente aditiva:

1. Observe que si $\{E_i\}_{i=1}^n \subseteq \Sigma \cap \mathcal{P}(\emptyset)$ entonces $E_i = \emptyset$ para $i=1,\,2,\,\cdots,\,n$. Así que $\{E_i\}_{i=1}^n = \{\emptyset\},$

y en consecuencia

$$\nu_{\lambda}(\emptyset) = \sup \sum_{i=1}^{n} |\lambda(E_i)|$$
$$= \sup \sum_{i=1}^{n} |\lambda(\emptyset)|$$
$$= \sup 0$$
$$= 0$$

2. Sean $A, B \in \Sigma$ tales que $A \cap B = \emptyset$. Primero verifiquemos que

$$\nu_{\lambda}(A \cup B) \le \nu_{\lambda}(A) + \nu_{\lambda}(B) \tag{1}$$

Sea $\{E_i\}_{i=1}^n \subseteq \Sigma \cap \mathcal{P}(A \cup B)$ una colección finita de conjuntos disjuntos. Observe que $E_i = (E_i \cap A) \cup (E_i \cap B)$, como $(E_i \cap A) \cap (E_i \cap B) = \emptyset$ y λ es una medida con signo finitamente aditiva, se tiene

$$\sum_{i=1}^{n} |\lambda(E_i)| = \sum_{i=1}^{n} |\lambda[(E_i \cap A) \cup (E_i \cap B)]|$$

$$= \sum_{i=1}^{n} |\lambda(E_i \cap A) + \lambda(E_i \cap B)|$$

$$\leq \sum_{i=1}^{n} |\lambda(E_i \cap A)| + \sum_{i=1}^{n} |\lambda(E_i \cap B)|$$

$$\leq \nu_{\lambda}(A) + \nu_{\lambda}(B)$$

Puesto que lo anterior se verifica para cualquier colección $\{E_i\}_{i=1}^n \subseteq \Sigma \cap \mathcal{P}(A \cup B)$ de conjuntos disjuntos, tomando supremo se obtiene

$$\nu_{\lambda}(A \cup B) \le \nu_{\lambda}(A) + \nu_{\lambda}(B)$$

Lo que muestra (1). Ahora, probemos que

$$\nu_{\lambda}(A) + \nu_{\lambda}(B) \le \nu_{\lambda}(A \cup B) \tag{2}$$

Sean $\{\widehat{E}_i\}_{i=1}^n \subseteq \Sigma \cap \mathcal{P}(A)$ y $\{\widetilde{E}_i\}_{i=1}^k \subseteq \Sigma \cap \mathcal{P}(B)$ colecciones finitas de conjuntos disjuntos. Consideremos los conjuntos

$$F_A^+ = \{i \in \mathbb{N} : \lambda(\widehat{E}_i) \ge 0\}; \qquad F_A^- = \{i \in \mathbb{N} : \lambda(\widehat{E}_i) < 0\}$$

$$F_B^+ = \{i \in \mathbb{N} : \lambda(\widetilde{E_i}) \ge 0\}; \qquad F_B^- = \{i \in \mathbb{N} : \lambda(\widetilde{E_i}) < 0\}$$

Como $\widehat{E_i} \cap \widetilde{E_j} = \emptyset$ para $i=1,\,2,\,\cdots,\,n$ y $j=1,\,2,\,\cdots,\,k$;

$$\begin{split} \sum_{i=1}^{n} |\lambda(\widehat{E_i})| + \sum_{j=1}^{k} |\lambda(\widetilde{E_j})| &= \left(\sum_{i \in F_A^+} \lambda(\widehat{E_i}) - \sum_{i \in F_A^-} \lambda(\widehat{E_i})\right) + \left(\sum_{j \in F_B^+} \lambda(\widetilde{E_j}) - \sum_{j \in F_B^-} \lambda(\widetilde{E_j})\right) \\ &= \sum_{i \in F_A^+} \left[\lambda(\widehat{E_i}) + \lambda(\widetilde{E_j})\right] - \sum_{i \in F_A^-} \left[\lambda(\widehat{E_i}) + \lambda(\widetilde{E_j})\right] \\ &= \sum_{i \in F_A^+} \lambda(\widehat{E_i} \cup \widetilde{E_j}) - \sum_{i \in F_A^-} \lambda(\widehat{E_i} \cup \widetilde{E_j}) \\ &= \sum_{i = 1, 2, \cdots, n \atop j \in F_B^+} |\lambda(\widehat{E_i} \cup \widetilde{E_j})| \\ &= \sum_{i = 1, 2, \cdots, n \atop j = 1, 2, \cdots, k} |\lambda(\widehat{E_i} \cup \widetilde{E_j})| \\ &\leq \nu_{\lambda}(A \cup B) \end{split}$$

Puesto que $\{\widehat{E_i} \cup \widetilde{E_j}\} \subseteq \Sigma \cap \mathcal{P}(A \cup B)$ es una colección finita de conjuntos disjuntos.

De lo anterior se obtiene que

$$\sum_{i=1}^{n} |\lambda(\widehat{E_i})| \le \nu_{\lambda}(A \cup B) - \sum_{j=1}^{k} |\lambda(\widetilde{E_j})|$$

Tomando supremo sobre todas las colecciones finitas de conjuntos disjuntos contenidos en A,

$$\nu_{\lambda}(A) \leq \nu_{\lambda}(A \cup B) - \sum_{j=1}^{k} |\lambda(\widetilde{E_j})|$$

Como lo anterior se verifica para toda colección finita de conjuntos disjuntos que pertenecen a $\mathcal{P}(B)$, tomando supremo se tiene que

$$\nu_{\lambda}(B) \le \nu_{\lambda}(A \cup B) - \nu_{\lambda}(A)$$

Lo que implica,

$$\nu_{\lambda}(A) + \nu_{\lambda}(B) \le \nu_{\lambda}(A \cup B)$$

Lo que verifica (2). De (1) y (2) se deduce que

$$\nu_{\lambda}(A \cup B) = \nu_{\lambda}(A) + \nu_{\lambda}(B)$$

Así que ν_{λ} es una medida con signo finitamente aditiva.

Por último, mostremos que si λ es acotada entonces ν_{λ} también lo es. En efecto, supongamos que $|\lambda(A)| \leq M$ para toda $A \in \Sigma$. Sean $A \in \Sigma$ y $\{E_i\}_{i=1}^n \subseteq \Sigma \cap \mathcal{P}(A)$ una colección finita de conjuntos disjuntos. Entonces,

$$\sum_{i=1}^{n} |\lambda(E_i)| = \sum_{i \in F_A^+} \lambda(E_i) - \sum_{j \in F_A^-} \lambda(E_j)$$

$$= \lambda \Big(\bigcup_{i \in F_A^+} E_i\Big) - \lambda \Big(\bigcup_{j \in F_A^-} E_j\Big)$$

$$\leq \Big|\lambda \Big(\bigcup_{i \in F_A^+} E_i\Big)\Big| + \Big|\lambda \Big(\bigcup_{j \in F_A^-} E_j\Big)\Big|$$

$$< 2M$$

Como $\{E_i\}_{i=1}^n \subseteq \Sigma \cap \mathcal{P}(A)$ una colección finita de conjuntos disjuntos arbitraria, lo anterior implica que $\nu_{\lambda}(A) \leq 2M$. lo que muestra que ν_{λ} es acotada.

3 El espacio ba

Sea (Ω, Σ, μ) un espacio de medida, el espacio $ba(\Omega, \Sigma, \mu)$ se define como el conjunto de todas las medidas con signo finitamente aditiva y acotada $\lambda : \Sigma \to \mathbb{R}$ que son absolutamente continuas con respecto a μ (i.e. $\lambda \ll \mu$).

Nota: decimos que $\lambda \in ba(\Omega, \Sigma)$ es absolutamente continua con respecto a la medida μ si para cada $A \in \Sigma$ tal que $\mu(A) = 0$, se cumple $\lambda(A) = 0$.

3.1 Proposición

- 1. Si $\lambda \in ba(\Omega, \Sigma, \mu)$ entonces $\nu_{\lambda} \in (\Omega, \Sigma, \mu)$;
- 2. $ba(\Omega, \Sigma, \mu)$ es un espacio de Banach con la norma $||\lambda|| := \nu_{\lambda}(\Omega)$.

Demostración.

1. Si $\lambda \in ba(\Omega, \Sigma, \mu)$ entonces, por la **proposición 2.4**, ν_{λ} es una medida con signo finitamente aditiva y acotada. Falta verificar que $\nu_{\lambda} \ll \mu$. Procedamos por reduccion al absurdo. Supongamos que existe un $A \in \Sigma$ tal que $\mu(A) = 0$ y $\nu_{\lambda}(A) > 0$, entonces existe una colección $\{E_i\}_{i=1}^n \subseteq \Sigma \cap \mathcal{P}(A)$ de conjuntos disjuntos tal que $\sum_{i=1}^n |\lambda(E_i)| > 0$. Luego, como $E_i \subseteq A$ para $i = 1, \dots, n$ y $\lambda \ll \mu$, tenemos que $\mu(E_i) = 0$ lo que implica que $\lambda(E_i) = 0$. En consecuencia,

$$\sum_{i=1}^{n} |\lambda(E_i)| = 0$$

Pero $\sum_{i=1}^{n} |\lambda(E_i)| > 0$. Contradicción. Por lo tanto, $\nu_{\lambda}(A)$ para $A \in \Sigma$. Es decir, $\nu_{\lambda} \ll \mu$.

2. Sean $\lambda_1, \lambda_2 \in ba(\Omega, \Sigma, \mu)$ y $\alpha \in \mathbb{R}$, si se define las operaciones binarias $+: ba(\Omega, \Sigma, \mu) \times ba(\Omega, \Sigma, \mu) \to b(\Omega, \Sigma, \mu)$ y $\cdot: \mathbb{R} \times ba(\Omega, \Sigma, \mu) \to ba(\Omega, \Sigma, \mu)$ como

$$(\forall A \in \Sigma) : \qquad (\lambda_1 + \lambda_2)(A) := \lambda_1(A) + \lambda_2(A)$$
$$(\forall A \in \Sigma) : \qquad (\alpha \cdot \lambda_1)(A) := \alpha(\lambda_1(A))$$

Se puede verificar que $(ba(\Omega, \Sigma, \mu), +, \cdot)$ es un espacio vectorial sobre el cuerpo de los números reales, donde la identidad con respecto a la suma es la función de conjuntos $\mathbf{0}: \Sigma \to \mathbb{R}$ definida como $\mathbf{0}(A) := 0$ para toda $A \in \Sigma$, la cual es fácil ver que pertenece a $(ba(\Omega, \Sigma, \mu), +, \cdot)$.

Ahora, veamos que $||\lambda|| = \nu_{\lambda}(\Omega)$ es un norma sobre $ba(\Omega, \Sigma, \mu)$. En efecto:

(a) Es claro que $||\lambda|| \ge 0$ para cada $\lambda \in ba(\Omega, \Sigma, \mu)$. Probemos que $||\lambda|| = 0 \iff \lambda = \mathbf{0}$.

(\Leftarrow) Si $\lambda = \mathbf{0}$ entonces $\lambda(A) = 0$ para toda $A \in \Sigma$. En particular, si $\{E_i\}_{i=1}^{\infty} \subseteq \Sigma$ es una colección de conjuntos disjuntos entonces $|\lambda(E_i)| = 0$ para $i = 1, \dots, n$. Lo que implica que $||\lambda|| = \nu_{\lambda}(\Omega) = 0$.

 (\Longrightarrow) Supongamos que $\lambda \in ba(\Omega, \Sigma, \mu)$ y $||\lambda|| = 0$. Sea $A \in \Sigma$, como ν_{λ} es una medida, se tiene

$$|\lambda(A)| \le \nu_{\lambda}(A) \le \nu_{\lambda}(\Omega) = 0$$

de donde $\lambda(A) = 0$. En consecuencia, $\lambda = 0$.

(b) Si $\alpha \in \mathbb{R}$ y $\lambda \in ba(\Omega, \Sigma, \mu)$ entonces

$$\begin{aligned} ||\alpha \cdot \lambda|| &= \nu_{\alpha \cdot \lambda}(\Omega) \\ &= \sup \left\{ \sum_{i=1}^{n} |(\alpha \cdot \lambda)(E_i)| : \{E_i\}_{i=1}^{n} \subseteq \Sigma \quad \& \quad E_i \cap E_j = \emptyset \text{ para } i = 1, \dots, n \right\} \\ &= \sup \left\{ \sum_{i=1}^{n} |\alpha(\lambda(E_i))| : \{E_i\}_{i=1}^{n} \subseteq \Sigma \quad \& \quad E_i \cap E_j = \emptyset \text{ para } i = 1, \dots, n \right\} \\ &= \sup \left\{ |\alpha| \cdot \sum_{i=1}^{n} |\lambda(E_i)| : \{E_i\}_{i=1}^{n} \subseteq \Sigma \quad \& \quad E_i \cap E_j = \emptyset \text{ para } i = 1, \dots, n \right\} \\ &= |\alpha| \cdot \sup \left\{ \sum_{i=1}^{n} |\lambda(E_i)| : \{E_i\}_{i=1}^{n} \subseteq \Sigma \quad \& \quad E_i \cap E_j = \emptyset \text{ para } i = 1, \dots, n \right\} \\ &= |\alpha| \cdot \nu_{\lambda}(\Omega) \\ &= |\alpha| \cdot ||\lambda|| \end{aligned}$$

(c) Si $\lambda_1, \lambda_2 \in ba(\Omega, \Sigma, \mu)$ entonces, como

$$|(\lambda_1 + \lambda_2)(A)| \le |\lambda_1(A)| + |\lambda_2(A)|$$

para $A \in \Sigma$, se verifica lo siguiente:

$$||\lambda_1 + \lambda_2|| = \nu_{\lambda_1 + \lambda_2}(\Omega)$$

$$= \sup \sum_{i=1}^n |(\lambda_1 + \lambda_2)(E_i)|$$

$$= \sup \sum_{i=1}^n |\lambda_1(E_i) + \lambda_2(E_i)|$$

$$\leq \sup \sum_{i=1}^n |\lambda_1(E_i)| + \sup \sum_{i=1}^n |\lambda_2(E_i)|$$

$$= \nu_{\lambda_1}(\Omega) + \nu_{\lambda_2}(\Omega)$$

$$= ||\lambda_1|| + ||\lambda_2||$$

Por lo tanto, $(ba(\Omega, \Sigma, \mu), ||\cdot||)$ es un espacio normado.

Por último, verifiquemos que $(ba(\Omega, \Sigma, \mu), ||\cdot||)$ es completo. Sea $\{\lambda_n\}_{n=1}^{\infty} \subseteq ba(\Omega, \Sigma, \mu)$ una sucesión de Cauchy, construyamos un $\lambda \in ba(\Omega, \Sigma, \mu)$ tal que $\lambda_n \to \lambda$ con respecto a la norma de $ba(\Omega, \Sigma, \mu)$. Sea $\varepsilon > 0$, existe un $N \in \mathbb{N}$ tal que si $n, m \geq N$ entonces

$$||\lambda_n - \lambda_m|| < \frac{\varepsilon}{2}$$

Si $A \in \Sigma$ entonces,

$$|\lambda_n(A) - \lambda_m(A)| = |(\lambda_1 - \lambda_2)(A)|$$

$$\leq \nu_{\lambda_n - \lambda_m}(A)$$

$$\leq \nu_{\lambda_n - \lambda_m}(\Omega)$$

$$= ||\lambda_n - \lambda_m||$$

$$< \frac{\varepsilon}{2} \quad (\forall n, m \ge N)$$

Es decir,

$$(\forall n, m \ge N)(\forall A \in \Sigma) \quad |\lambda_n(A) - \lambda_m(A)| < \frac{\varepsilon}{2}$$
 (3)

Entonces, por (3) podemos definir a $\lambda: \Sigma \to \mathbb{R}$ como $\lambda(A) := \lim_{n \to n} \lambda_n(A)$. Observe que $\lambda \in ba(\Omega, \Sigma, \mu)$, en efecto:

1.

$$\lambda(\emptyset) = \lim_{n \to \infty} \lambda_n(\emptyset) = \lim_{n \to \infty} 0 = 0$$

2. Si $A, B \in \Sigma$ y $A \cap B = \emptyset$ entonces

$$\lambda(A \cup B) = \lim_{n \to \infty} \lambda_n(A \cup B) = \lim_{n \to \infty} [\lambda_n(A) + \lambda_n(B)] = \lim_{n \to \infty} \lambda_n(A) + \lim_{n \to \infty} \lambda_n(B) = \lambda(A) + \lambda(B)$$

3. Como $\{\lambda_n\}_{n=1}^{\infty}$ es una sucesión de Cauchy, existe un $M \geq 0$ tal que $||\lambda_n|| \leq M$ para $n = 1, 2, \cdots$. En particular, si $n \geq N$ entonces para $A \in \Sigma$ se verifica

$$|\lambda(A)| \le |\lambda_n(A) - \lambda(A)| + |\lambda_n(A)| \le \frac{\varepsilon}{2} + \nu_{\lambda_n}(A) \le \frac{\varepsilon}{2} + \nu_{\lambda_n}(\Omega) = \frac{\varepsilon}{2} + ||\lambda_n|| \le \frac{\varepsilon}{2} + M$$

Lo que muestra que λ es acotada.

4. Si $A \in \Sigma$ y $\mu(A) = 0$ entonces, como $\lambda_n \ll \mu$ para $n = 1, 2, \dots$, tenemos que

$$\lambda(A) = \lim_{n \to \infty} \lambda_n(A) = \lim_{n \to \infty} 0 = 0$$

lo que muestra que $\lambda \ll \mu$.

En consecuencia, $\lambda \in ba(\omega, \Sigma, \mu)$. Por ultimo, mostremos que $\lambda_n \to \lambda$. En (3) si $m \to \infty$ entonces

$$(\forall n \ge N)(\forall A \in \Sigma) \quad |\lambda_n(A) - \lambda(A)| \le \frac{\varepsilon}{2}$$
 (4)

Sea $E_{i=1}^n \subseteq \Sigma$ una colección de conjuntos disjuntos, si $n \geq N$ entonces

$$\sum_{i=1}^{n} |\lambda_n(E_i) - \lambda(E_i)| = \sum_{i \in F_{\Omega}^+} [\lambda_n(E_i) - \lambda(E_i)] - \sum_{j \in F_{\Omega}^-} [\lambda_n(E_j) - \lambda(E_i)]$$

$$= (\lambda_n - \lambda) \Big(\bigcup_{i \in F_{\Omega}^+} E_i \Big) - (\lambda_n - \lambda) \Big(\bigcup_{j \in F_{\Omega}^-} E_j \Big)$$

$$\leq \Big| (\lambda_n - \lambda) \Big(\bigcup_{i \in F_{\Omega}^+} E_i \Big) \Big| + \Big| (\lambda_n - \lambda) \Big(\bigcup_{j \in F_{\Omega}^-} E_j \Big) \Big|$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \qquad (Por(4))$$

$$= \varepsilon$$

Lo que implica que $\lim_{n\to\infty} ||\lambda_n - \lambda|| = 0$. Por lo tanto, $(ba(\Omega, \Sigma, \mu), ||\cdot||)$ es un espacio de Banach.

4 Integración

A partir de ahora, usaremos L^{∞} y ba para referirnos a los espacios $L^{\infty}(\Omega, \Sigma, \mu)$ y $ba(\Omega, \Sigma, \mu)$ respectivamente.

4.1 Funciones simples

4.1.1 Definición

Una función $f \in L^{\infty}$ es una función Σ -simple si los elementos de su clase de equivalencia son de la forma

$$f = \sum_{i=1}^{n} x_i \, \chi_{E_i}$$

donde $x_i \in \mathbb{R}$, $E_i = f^{-1}[x_i]$, $i = 1, \dots, n$ son conjuntos disjuntos que pertenecen a Σ y $\bigcup_{i=1}^n E_i = \Omega$. El espacio de todas las funciones Σ -simples se denota por $S(\Omega, \Sigma)$ o simplemente por S.

4.1.2 Definición

Sea $f \in S$ y $\lambda \in ba$. Si $f = \sum_{i=1}^{n} x_i \chi_{E_i}$ donde $E_i = f^{-1}[x_i]$, $i = 1, \dots, n$ son conjuntos disjuntos que pertenecen a Σ y $\bigcup_{i=1}^{n} E_i = \Omega$. Sea $E \in \Sigma$, la integral de f sobre E se define como

$$\int_{E} f \ d\lambda := \sum_{i=1}^{n} x_{i} \lambda(E \cap E_{i}) \in \mathbb{R}$$

4.1.3 Proposición

Sean $f \in S$, $\lambda \in ba$ y $E \in \Sigma$. Se verifica las siguientes proposiciones:

- 1. La integral está bien definida;
- 2. S es denso en L^{∞} ;
- 3. $f \mapsto \int_E f \ d\lambda$ es un trasformación lineal de S en \mathbb{R} ;
- 4. Si f y λ son no-negativas, entonces $\int_E f \ d\lambda$ es no-negativa;
- 5. $\left| \int_E f \ d\lambda \right| \le \int_E |f| \ d\nu_{\lambda}$.
- 6. La función $\xi: \Sigma \to \mathbb{R}, \, \xi(E) := \int_E f \, d\lambda$ pertenece a ba.

Demostración.

1. Supongamos que

$$f = \sum_{i=1}^{k} x_i \chi_{A_i} = \sum_{i=1}^{n} y_i \chi_{B_i}$$

Como $\bigcup_{i=1}^k A_i = \bigcup_{i=1}^n B_i = \Omega$,

$$A_i = \bigcup_{i=1}^n (A_i \cap B_j) \text{ y } B_j = \bigcup_{i=1}^k (A_i \cap B_j)$$

Entonces,

$$\sum_{i=1}^{k} x_i \lambda(A_i \cap E) = \sum_{i=1}^{k} \sum_{j=1}^{n} x_i \lambda(A_i \cap B_j \cap E)$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{k} y_i \lambda(A_i \cap B_j \cap E)$$
$$= \sum_{i=1}^{n} y_i \lambda(B_j \cap E)$$

En consecuencia,

$$\sum_{i=1}^{k} x_i \lambda(A_i \cap E) = \sum_{i=1}^{n} y_i \lambda(B_i \cap E)$$

2. Por el Teorema de Aproximación Simple, podemos tomar una $\{f_n\}_{n=1}^{\infty} \implies f$ casi en todas partes, esto implica que si $\varepsilon > 0$ entonces existe un $N \in \mathbb{N}$ tal que para toda $n \geq N$ se verifica $\mu(\{\omega \in \Omega : |f_n - f| \geq \varepsilon/2\}) = 0$. En consecuencia,

$$(\forall n \ge N) \quad ||f - f_n||_{\infty} < \varepsilon$$

Lo que muestra que S es denso en L^{∞} .

3. Sean $f = \sum_{i=1}^k x_i \chi_{A_i}$, $g = \sum_{i=1}^n y_i \chi_{B_i} \ \text{y} \ \alpha, \beta \in \mathbb{R}$, como $\bigcup_{i=1}^k A_i = \bigcup_{i=1}^n B_i = E$,

$$A_i = \bigcup_{j=1}^n (A_i \cap B_j) \text{ y } B_j = \bigcup_{i=1}^k (A_i \cap B_j)$$

Entonces,

$$f = \sum_{i=1}^{k} \sum_{j=1}^{n} x_i \chi_{A_i \cap B_j} \ y \ g = \sum_{j=1}^{n} \sum_{i=1}^{k} y_i \chi_{A_i \cap B_j}$$

Así que,

$$\int_{E} (\alpha \cdot f + \beta \cdot g) \, d\lambda = \sum_{i=1}^{k} \sum_{j=1}^{n} (\alpha \cdot x_{i} + \beta \cdot y_{i}) \lambda(A_{i} \cap B_{j} \cap E)$$

$$= \alpha \cdot \sum_{i=1}^{k} \sum_{j=1}^{n} x_{i} \lambda(A_{i} \cap B_{j} \cap E) + \beta \cdot \sum_{j=1}^{n} \sum_{i=1}^{k} y_{i} \lambda(A_{i} \cap B_{j} \cap E)$$

$$= \alpha \cdot \sum_{i=1}^{k} x_{i} \lambda(A_{i} \cap E) + \beta \cdot \sum_{j=1}^{n} y_{i} \lambda(B_{j} \cap E)$$

$$= \alpha \cdot \int_{E} f \, d\lambda + \beta \cdot \int_{E} g \, d\lambda$$

Lo que muestra que $f \mapsto \int_E f \ d\lambda$ es una transformación lineal de S en \mathbb{R} .

4. Si f es no-negativa entonces $x_i \ge 0$ para $i = 1, \dots, n$, y si λ es no negativa entonces $\lambda(E \cap E_i)$ para $i = 1, \dots, n$. Esto implica que $x_i \lambda(E \cap E_i) \ge 0$. En consecuencia,

$$\int_{E} f \, d\lambda = \sum_{i=1}^{n} x_i \lambda(E \cap E_i) \ge 0$$

5.

$$\left| \int_{E} f \, d\lambda \right| = \left| \sum_{i=1}^{n} x_{i} \lambda(E \cap E_{i}) \right|$$

$$\leq \sum_{i=1}^{n} |x_{i}| \cdot |\lambda(E \cap E_{i})|$$

$$\leq \sum_{i=1}^{n} |x_{i}| \cdot \nu_{\lambda}(E \cap E_{i})$$

$$= \int_{E} |f| \, d\nu_{\lambda}$$

- 6. Primero vea que $\xi \in ba$.
 - (a) Es claro que $\xi(\emptyset) = 0$.
 - (b) Sean $A, B \in \Sigma$ tales que $A \cap B = \emptyset$. Si $f = \sum_{i=1}^{n} x_i \chi_{E_i}$ entonces, como $(E_i \cap A) \cap (E_i \cap B) = \emptyset$ para $i = 1, \dots, n$ y $\lambda \in ba$,

$$\xi(A \cup B) = \int_{A \cup B} f \, d\lambda$$

$$= \sum_{i=1}^{n} x_i \lambda [E_i \cap (A \cup B)]$$

$$= \sum_{i=1}^{n} x_i \lambda [(E_i \cap A) \cup (E_i \cap B)]$$

$$= \sum_{i=1}^{n} x_i [\lambda(E_i \cap A) + \lambda(E_i \cap B)]$$

$$= \sum_{i=1}^{n} x_i \lambda(E_i \cap A) + \sum_{i=1}^{n} x_i \lambda(E_i \cap A)$$

$$= \int_A f \, d\lambda + \int_B f \, d\lambda$$

$$= \xi(A) + \xi(B)$$

Lo que muestra que es finitamente aditiva.

(c) Ahora veamos que es acotada. Sea $A \in \Sigma$ y sea $M = \max\{x_1, x_2, \dots, x_n\}$. Como $\lambda \in ba$, existe un $K \in \mathbb{R}^+$ tal que $|\lambda(E)| \leq K$ para toda $E \in \Sigma$. Entonces,

$$|\xi(A)| \le \int_{A} |f| \, d\lambda$$

$$= \sum_{i=1}^{n} |x_{i}| \lambda(E_{i} \cap A)$$

$$\le M \sum_{i=1}^{n} \lambda(E_{i} \cap A)$$

$$= M \lambda \left(\bigcup_{i=1}^{n} E_{i} \cap A\right)$$

$$= M \lambda(\Omega \cap A)$$

$$\le MK$$

Puesto que lo anterior se cumple para cualquier $A \in \Sigma$, se tiene que ξ es acotada.

(d) Por último, verifiquemos que $\xi \ll \mu$. Sea $A \in \Sigma$ tal que $\mu(A) = 0$. Como $E_i \cap A \in \Sigma$ y $E_i \cap A \subseteq A$, $\mu(E_i \cap A) = 0$. Lo que implica que $\lambda(E_i \cap A) = 0$ para $i = 1, \dots, n$. En consecuencia,

$$\xi(A) = \int_A f \ d\lambda = \sum_{i=1}^n x_i \lambda(E_i \cap A) = 0$$

Lo que muestra que $\xi \ll \mu$.

Por lo tanto, $\xi \in ba$.

4.2 Interacción en $L^{\infty}(\Omega, \Sigma, \mu)$

4.2.1 Definición

Sean $f \in L^{\infty}$ y $\{f_n\}_{n=1}^{\infty}$ una sucesión de funciones simples que converge a f. Se define la integral de f sobre $E \in \Sigma$ como

$$\int_{E} f \ d\lambda = \lim_{n \to \infty} \int_{E} f_n \ d\lambda$$

4.2.2 Proposición

Dado $f \in L^{\infty}$, $\lambda \in ba$ y $E \in \Sigma$. Se verifica:

- 1. La integral está bien definida;
- 2. $f \mapsto \int_E f \ d\lambda$ es un trasformación lineal;
- 3. Si fy λ son no-negativas, entonces $\int_E f \; d\lambda$ es no-negativa;
- 4. $\left| \int_E f \ d\lambda \right| \le \int_E |f| \ d\nu_{\lambda};$
- 5. La función $\xi: \Sigma \to \mathbb{R}, \ \xi(E) := \int_E f \ d\lambda$ pertenece a ba.
- 6. La función $f\mapsto \int_E f\ d\lambda$ pertenece a $(L^\infty)^*$

Demostración.

1. Sin perdida de generalidad, supongamos que $\nu_{\lambda}(\Omega) > 0$. Sean $\{f_n\}_{n=1}^{\infty}$, $\{g_n\}_{n=1}^{\infty} \in S$ tales que $f_n \to f$ y $g_n \to f$. Sea $\varepsilon > 0$, tomemos un $N \in \mathbb{N}$ tal que

$$||f_n - f||_{\infty} < \frac{\varepsilon}{2\nu_{\lambda}(\Omega)} y ||g_n - f||_{\infty} < \frac{\varepsilon}{2\nu_{\lambda}(\Omega)}$$

para toda $n \geq N$. Entonces,

$$||f_n - g_n||_{\infty} \le ||f_n - f||_{\infty} + ||g_n - f||_{\infty} < \frac{\varepsilon}{\nu_{\lambda}(\Omega)}$$

para $n \geq N$. Así que,

$$\left| \int_{E} f_n \, d\lambda - \int_{E} g_n \, d\lambda \right| = \left| \int_{E} (f_n - g_n) \, d\lambda \right| \le \int_{E} |f_n - g_n| \, d\lambda \le ||f_n - g_n||_{\infty} \nu_{\lambda}(\Omega) < \varepsilon$$

En consecuencia,

$$\lim_{n \to \infty} \int_E f_n \ d\lambda = \lim_{n \to \infty} \int_E g_n \ d\lambda$$

Lo que muestra que la integral está bien definida.

2. Sean $f, g \in L^{\infty}$ y $\alpha, \beta \in \mathbb{R}$. Consideremos las sucesiones $\{f_n\}_{n=1}^{\infty}, \{g_n\}_{n=1}^{\infty} \in S$ tales que $f_n \to f$ y $g_n \to g$. Como $\alpha \cdot f_n + \beta \cdot g_n \to \alpha \cdot f + \beta \cdot g$, se tiene:

$$\int_{E} (\alpha \cdot f + \beta \cdot g) \, d\lambda = \lim_{n \to \infty} \int_{E} (\alpha \cdot f_{n} + \beta \cdot g_{n}) \, d\lambda$$

$$= \lim_{n \to \infty} \left(\alpha \int_{E} f_{n} \, d\lambda + \beta \int_{E} g_{n} \, d\lambda \right)$$

$$= \alpha \left(\lim_{n \to \infty} \int_{E} f_{n} \, d\lambda \right) + \beta \left(\lim_{n \to \infty} \int_{E} g_{n} \, d\lambda \right)$$

$$= \alpha \int_{E} f \, d\lambda + \beta \int_{E} g \, d\lambda$$

Lo que muestra que $f\mapsto \int_E f\ d\lambda$ es una transformación lineal.

3. Si $f \in L^{\infty}$ y es no-negativa, por el *Teorema de la Aproximación Simple*, podemos tomar una sucesión $\{f_n\}_{n=1}^{\infty} \in S^+$ tal que $f_n \uparrow f$. Luego, si λ es no-negativa, por la **proposición 4.1.3.4** se tiene

$$\int_{E} f_n \ d\lambda \ge 0$$

para $n=1,\,2,\,\cdots$ y $E\in\Sigma$. Entonces, si $n\to\infty$

$$\int_{E} f \ d\lambda = \lim_{n \to \infty} \int_{E} f_n \ d\lambda \ge 0$$

Lo que muestra que la integral es no-negativa.

4. Sea $\{f_n\}_{n=1}^{\infty} \in S$ tal que $f_n \to f$. Por la **proposición 4.1.3.5**, se verifica que

$$\left| \int_{E} f_n \ d\lambda \right| \le \int_{E} |f_n| \ d\nu_{\lambda}$$

para $n=1,\,2,\,\cdots$ y $E\in\Sigma$. Luego, por la continuidad del valor absoluto, si $n\to\infty$,

$$\left| \int_{E} f \ d\lambda \right| = \lim_{n \to \infty} \left| \int_{E} f_n \ d\lambda \right| \le \lim_{n \to \infty} \int_{E} |f_n| \ d\nu_{\lambda} = \int_{E} |f| \ d\nu_{\lambda}$$

5. Primero veamos que $\xi \in ba$. Sin pérdida de generalidad, supongamos que f es no negativa. Por el *Teorema de Aproximación Simple*, podemos tomar una sucesión $\{f_n\}_{n=1}^{\infty} \subseteq S$ tal que $f_n \rightrightarrows f$. Entonces,

(a)
$$\xi(\emptyset) = \int_{\emptyset} f \ d\lambda = \lim_{n \to \infty} \int_{\emptyset} f_n \ d\lambda = \lim_{n \to \infty} 0 = 0$$

(b) Si $A, B \in \Sigma$ y $A \cap B = \emptyset$,

$$\xi(A \cup B) = \int_{A \cup B} f \, d\lambda$$

$$= \lim_{n \to \infty} \int_{A \cup B} f_n \, d\lambda$$

$$= \lim_{n \to \infty} \left[\int_A f_n \, d\lambda + \int_B f_n \, d\lambda \right]$$

$$= \lim_{n \to \infty} \int_A f_n \, d\lambda + \lim_{n \to \infty} \int_B f_n \, d\lambda$$

$$= \int_A f \, d\lambda + \int_B f \, d\lambda$$

$$= \xi(A) + \xi(B)$$

(c) Si $A \in \Sigma$, por la **proposición 4.2.2.4**,

$$|\xi(A)| = \left| \int_A f \ d\lambda \right| \le \int_A |f| \ d\nu_\lambda \le ||f||_\infty \cdot \nu_\lambda(A) \le ||f||_\infty \cdot \nu_\lambda(\Omega)$$

Lo que muestra que ξ es acotada.

(d) Si $A \in \Sigma$ y $\mu(A) = 0$ entonces, como $\lambda \ll \mu$,

$$\xi(A) = \int_{A} f \, d\lambda$$

$$= \lim_{n \to \infty} \int_{A} f_n \, d\lambda$$

$$= \lim_{n \to \infty} \left[\sum_{i=1}^{n} x_i^{(n)} \lambda(A \cap E_i^{(n)}) \right]$$

$$= \lim_{n \to \infty} 0$$

$$= 0$$

Así que $\xi \ll \mu$.

6. Por la **proposición 4.2.2.2**, se deduce que $f \to \int_E f \ d\lambda$ es un funcional lineal. Queda probar que es acotada. Por la **proposición 4.2.2.4**,

$$\left| \int_{\Omega} f \ d\lambda \right| \le \int_{\Omega} |f| \ d\nu_{\lambda} \le ||f||_{\infty} \cdot \nu_{\lambda}(\Omega)$$

Como la desigualdad anterior se cumple para toda $f \in (L^{\infty})^*$, tenemos que $f \to \int_E f \ d\lambda$ pertenece al dual de L^{∞} .

5 El dual de $L(\Omega, \Sigma, \mu)$

5.1 Teorema (Dunford-Schwartz)

Existe un isomorfismo isométrico T entre $ba(\Omega, \Sigma, \nu)$ y $(L^{\infty}(\Omega, \Sigma, \nu))^*$, definido por

$$T(\lambda) = T_{\lambda}(f) := \int_{\Omega} f \ d\lambda \quad f \in L^{\infty}(\Omega, \Sigma, \nu)$$

Demostración. Por la **proposición 4.2.2.6**, T_{λ} es un funcional lineal sobre L^{∞} para cada $\lambda \in ba$. Luego, por la **proposición 4.2.2.4**, se tiene:

$$\left| \int_{\Omega} f \ d\lambda \right| \le \int_{\Omega} |f| \ d\nu_{\lambda} \le ||f||_{\infty} \cdot \nu_{\lambda}(\Omega) \tag{5}$$

para toda $f \in L^{\infty}$ y $\lambda \in ba$. Esto implica que cada T_{λ} es un funcional lineal acotado, así que $T_{\lambda} \in (L^{\infty})^*$.

Ahora, probemos que T es una isometría. Sea $\lambda \in ba$, por (5) se tiene que $|T(\lambda)| \leq ||f||_{\infty} \cdot \nu_{\lambda}(\Omega)$. Entonces,

$$||T(\lambda)|| = \inf \left\{ k \ge 0 : \left| \int_{\Omega} f \ d\lambda \right| \le k \cdot ||f||_{\infty} \quad (\forall f \in L^{\infty} \setminus \{\mathbf{0}\}) \right\} \le \nu_{\lambda}(\Omega) = ||\lambda||$$

Así que

$$||T(\lambda)|| \le ||\lambda|| \tag{6}$$

Luego, si $\varepsilon > 0$ entonces tomemos una partición finita de Ω , $\{E_i\}_{i=1}^n \subseteq \Sigma$ tal que

$$\sum_{i=1}^{n} |\lambda(E_i)| > \nu_{\lambda}(\Omega) - \varepsilon$$

Definamos a $f: \Omega \to \mathbb{R}$ como $f:=\sum_{i=1}^n \alpha_i \chi_{E_i}$ donde $\alpha_i=sgn(\lambda(E_i))$. Asi que $f\in L^{\infty}$ y $||f||_{\infty}=1$. Observe que $\alpha_i\lambda(E_i)=|\lambda(E_i)|$, entonces

$$||T(\lambda)|| \ge \left| \int_{\Omega} f \, d\lambda \right| = \left| \sum_{i=1}^{n} \alpha_{i} \lambda(E_{i}) \right| = \left| \sum_{i=1}^{n} |\lambda(E_{i})| \right| = \sum_{i=1}^{n} |\lambda(E_{i})| > \nu_{\lambda}(\Omega) - \varepsilon = ||\lambda|| - \varepsilon$$

como lo anterior se verifica para $\varepsilon > 0$, se obtiene

$$||\lambda|| \le ||T(\lambda)|| \tag{7}$$

por (6) y (7) se deduce que T es una isometría.

Ahora, veamos que T es 1-1. Si $T(\lambda_1) = T(\lambda_2)$ entonces $\int_{\Omega} f \ d\lambda_1 = \int_{\Omega} f \ d\lambda_2$ para toda $f \in L^{\infty}$. Sea $A \in \Sigma$, como $\chi_A \in L^{\infty}$, lo anterior implica:

$$\lambda_1(A) = \int_A \chi_A \ d\lambda_1 = \int_A \chi_A \ d\lambda_2 = \lambda_2(A)$$

Así que $\lambda_1 = \lambda_2$.

Ahora verifiquemos que T es sobreyectiva. Sea $\phi \in (L^{\infty})^*$, construyamos un $\lambda_{\phi} \in ba$ tal que $\phi = T_{\lambda_{\phi}}$. Entonces, definamos a $\lambda_{\phi} : \Sigma \to \mathbb{R}$ como $\lambda_{\phi}(A) := \phi(\chi_A)$. Observe que, en efecto, $\lambda_{\phi} \in ba$:

1.

$$\lambda_{\phi}(\emptyset) = \phi(\chi_{\emptyset}) = \phi(\mathbf{0}) = 0$$

2. Si $A, B \in \Sigma$ y $A \cap B = \emptyset$, entonces $\chi_{A \cup B} = \chi_A + \chi_B$ y en consecuencia:

$$\lambda_{\phi}(A \cup B) = \phi(\chi_{A \cup B}) = \phi(\chi_A + \chi_B) + \phi(\chi_A) + \phi(\chi_B) = \lambda(A) + \lambda(B)$$

3. Si $A \in \Sigma$ entonces:

$$|\lambda_{\phi}(A)| = |\phi(\chi_A)| \le ||\phi|| \cdot ||\chi_A||_{\infty} \le ||\phi||$$

Lo que muestra que λ_{ϕ} es acotada.

4. Por último, si $A \in \Sigma$ y $\mu(A) = 0$ entonces $\phi \in \overline{\mathbf{0}}$. Así que

$$\lambda_{\phi}(A) = \phi(\chi_A) = \phi(\mathbf{0}) = 0$$

Lo que muestra que $\lambda_{\phi} \ll \mu$.

Sea $f \in L^{\infty}$, para probar que $\phi(f) = T_{\lambda_{\phi}}(f)$, distinguimos tres casos:

Caso 1: Si $f = \chi_A$ con $A \in \Sigma$ entonces se deduce de inmediato que

$$T_{\lambda_{\phi}}(f) = \int_{\Omega} f \ d\lambda_{\phi} = \lambda_{\phi}(A) = \phi(f)$$

Caso 2: Si f es una función simple entonces por linealidad y en virtud del caso anterior, se deduce que $T_{\lambda_{\phi}}(f) = \phi(f)$. En efecto,

$$T_{\lambda_{\phi}}(f) = \int_{\Omega} f \ d\lambda_{\phi} = \sum_{i=1}^{n} x_i \lambda_{\phi}(E_i) = \sum_{i=1}^{n} x_i \phi(\chi_{E_i}) = \phi\left(\sum_{i=1}^{n} x_i \chi_{E_i}\right) = \phi(f)$$

Caso 3: Si $f \in L^{\infty}$ y es no-negativa entonces por el *Teorema de la Aproximación Simple*, existe una sucesión $\{f_n\}_{n=1}^{\infty} \subseteq L^{\infty}$ tal que $f_n \uparrow f$ sobre Ω . Luego, en virtud del *Teorema de la Convergencia Monótona*, por el caso 3 y por la continuidad de ϕ ; se obtiene]

$$T_{\lambda_{\phi}}(f) = \int_{\Omega} f \ d\lambda_{\phi} = \lim_{n \to \infty} \int_{\Omega} f_n \ d\lambda_{\phi} = \lim_{n \to \infty} \phi(f_n) = \phi(f)$$

Caso 4: Por último, si $f \in L^{\infty}$ entonces $f = f^+ - f^-$ y por el caso anterior, se deduce que $T_{\lambda_{\phi}}(f) = \phi(f)$.

Por lo tanto, $T_{\lambda_{\phi}} = \phi$. Lo que muestra que T es sobreyectiva.

Por último, que verificar que T es un isomorfismo. Para ello, basta con mostrar

$$T_{\alpha \cdot \lambda_1 + \beta \cdot \lambda_2}(f) = \alpha \cdot T_{\lambda_1}(f) + \beta \cdot T_{\lambda_2}(f)$$

para $\lambda_1, \lambda_2 \in ba$ y $\alpha, \beta \in \mathbb{R}$. Sea $f \in L^{\infty}$. Entonces, por el *Teorema de Aproximación Simple* existe una sucesión $\{f_n\}_{n=1}^{\infty} \in L^{\infty}$ que converge af. Luego, observe que para cada f_n se verifica:

$$T_{\alpha \cdot \lambda_1 + \beta \cdot \lambda_2}(f_n) = \int_{\Omega} f_n \ d(\alpha \cdot \lambda_1 + \beta \cdot \lambda_2)$$

$$= \sum_{i=1}^k x_i^{(n)} (\alpha \cdot \lambda_1 + \beta \cdot \lambda_2) (E_i^{(n)})$$

$$= \sum_{i=1}^k x_i^{(n)} \alpha \cdot \lambda_1 (E_i^{(n)}) + \sum_{i=1}^k x_i^{(n)} \beta \cdot \lambda_2 (E_i^{(n)})$$

$$= \alpha \int_E f_n \ d\lambda_1 + \beta \cdot \int_E f_n \ d\lambda_2$$

$$= \alpha \cdot T_{\lambda_1}(f_n) + \beta \cdot T_{\lambda_2}(f_n)$$

En virtud de la continuidad de T_{λ} , si $n \to \infty$ se obtiene:

$$T_{\alpha \cdot \lambda_1 + \beta \cdot \lambda_2}(f) = \alpha \cdot T_{\lambda_1}(f) + \beta \cdot T_{\lambda_2}(f)$$

Lo que muestra que T es un isomorfismo. Por lo tanto, $ba(\Omega, \Sigma, \nu) \cong (L^{\infty}(\Omega, \Sigma, \mu))^*$.

6 Referencias

- [1] Dunford, N., & Schwart, J. (1958). Linear Operators. Part I. New York: Interscience.
- [2] Iribarren, I. (2006). *Introducción a la Teoría de la Medida*. Caracas: Consejo de Desarrollo Científico y Humanístico (UCV).
- [3] Rao, B. K., & Rao, B. M. (1983). Theory of Charges. A Study of Finitely Additive Measure. Academic Press.
- [4] Royden, H., & Fitzpatrick, P. (2010). Real Analysis, Fourth Edition. Pearson Education Asia Limited.
- [5] Zapata, J. M. (2013). Dual Space of L^{∞}