Introduction to Version Control

- Source-code control: motivation
- Basic Concepts: Repository
- Basic Concepts: Working Copy
- Intro to git
- Some git workflow
- The "commit" concept
- Pushing, pulling, fetching and merging
- Conflict resolution

Basic Concepts: Repository

- A repository remembers every committed change to every controlled file
 - Even remembers additions and deletions to directory trees
- Clients reading from the repository normally sees latest version of file structure
 - Clients, however, can also choose to view previous states of the file structure
- Examples of previous states:
 - "What did this directory contain last Wednesday?"
 - "Who was the last person to change this file?"
 - "What changes did Pat make to this file?"
 - "Give me the version for release 3 of the code."

What we do not expect/want...

One approach around problem...

Some downsides to "locking"

- Can cause some administration problems
 - User with lock on holidays? sick?
 - Is it appropriate for all changes?
- Awkward in distributed environments
 - Absence of locking is attractive for open-source projects
 - Such projects have developers located around the globe
 - Locked files would be very inconvenient (if not disastrous)
- Locking gives a false sense of security.
- But how do we manage without locking?

"Copy-modify-merge" solution

scenario: conflict is introduced

SENG265: Software Development Methods Introduction to Subversion: Slide 6

"Copy-modify-merge" solution

scenario: conflict is resolved

Observations

- Copy-modify-merge allows users to work in parallel
 - Most concurrent changes do not overlap
 - Consistency amongst files is explicitly managed (i.e., no false sense of security)
- This model assumes files are line-based text files
 - Assumes changes can (usually) be merged

More observations

- For binary files, very difficult (if not impossible) to merge conflicting changes
 - JPEG files
 - Object files and executable images
- However, we may still want to keep such items in the repository
 - Also: there exist "text" versions of some image formats (PNG, SVG)
- git does not support the notion of "release numbering"
 - As there may not be a global shared repo, no global number is possible
 - git instead associates a hash with each commit...
 - ... which is actually a SHA-1 checksum of the git object created by the commit)

What is git?

- A framework for version-control system workflows
- Tracks changes to files and directories over time
 - These files/directories are usually associated with some software development project
- Resembles some features of a file system yet:
 - remembers changes to all files and directories managed by the repository
 - sometimes behaves like a time machine for files and directories
- Permits concurrent access to a repository over a network
 - This facilitates work on shared projects, herefore also enhances collaboration
 - Some technologists use services such as GitHub as a onestop data repository

Some git history

- Proprietary distributed VCS (BitKeeper) had been used by the Linux kernel dev team
- When this was no longer available (2005), Linus Torvalds started work on a replacement
- Idea:
 - git is a "lower-level" VCS
 - front-ends can be created to provide different VCS workflows
- GitHub (2008) made git widely known by combining repository hosting with a simple git workflow

Basic Concepts: Repository

- A VCS repository is a store of data
- Repositories may be stored on remote repository servers
- Data could be visualized as stored as something resembling a filesystem tree
- Any number of clients can connect to the repository
 - These clients can then read and write files in the repository
- By writing (e.g., committing) files, client makes files available to other clients
- By reading (e.g., updating) files, client is receiving information from other clients

SENG265: So ftware Development Methods Introduction to Subversion: Slide 12

The git twist

- Git combines together the local repo with a working copy
- Git is often used assuming a shared repository....
- In "git-lish":
 - Writing to remote repo ==push
 - Reading from remoterepo == pull

The git twist

- ... and git be used in a more distributed manner
- This means:
 - Developers have read/write (i.e., full push/pull) access on their repo
 - They can have read (i.e., pull) access on repos from other team members
- One level of links shown here...

The git twist

- ... and an additional level of links is shown here
- With distributed repos, there is no longer necessarily a single repo with all of the code
 - In practice, one team member becomes the "repository of record" (maybe it should be Stewie?

git for UVic's seng265

- Each student has their own repository on git.seng.uvic.ca/seng265
- Each student can both push and pull (read and write) on their **remote**
- Students cannot push or pull other student's repos
- Teaching team able to pull from (but not push to!) student repos
- Note that students could have multiple local copies of the same repo.

SENG265: Software Development Methods Introduction to Subversion: Slide 16

Outline and Class Announcements

- More in-class exercises
- Quiz 1 next Wed (Sep 20), bring your laptop and don't be late
- Mattermost online communication
- More on GIT

Mattermost- purpose and guidelines

- Purpose: Q&A style, our own StackOverflow (use the power of crowds)
- One channel for entire class for lecture material clarifications: COURSE
 CENTRAL
- Each TA/lab will have a Lab channel
- Off-topic channel: we will not monitor

GUIDELINES

- Do not post assignment code;
- But could give general example suggestions to questions
- Use the Reply option to localize answers
- We will monitor professionalism and effectiveness (will turn it off if it gets out of hand)
- Everything you post is visible so you decide what you wish others to know about you

SENG265: Software Development Methods Introduction to Subversion: Slide 18

A great resource on Git

Online (or eBook)

Basic general git cycle (assuming shared repo)

1. Either:

- perform a clone to make a working copy of some remote repo's branch, or
- perform a init plus other actions to connect this new local repo with a (possibly empty) remote repo branch
- 2. In your working copy of the project (which is a directory):
 - edit files or
 - create files the project or
 - do both
- 3. If needed, update our local copy with a pull (and perhaps also a merge)
 - this picks up changes made by team members / project participants since your last update
- 4. build / run / test / view / render / read / <fill-in-verb> your work
- **3. add** the name of changed files that are ready to be committed in your local repo ("staging")
- 6. commit your changes to your local repo
- 7. if changes are not yet ready to be sent on the remote repo, go to 2
- 8. push committed changes to the remote repo
- 9. go to step 2

SENG265: Software Development Methods Introduction to Subversion: Slide 20

Basic Concepts: Working Copy

- A working copy is an ordinary directory on your local system
- These are the files you edit
- When changes are in at a suitable stage, add & commit your changes in your local repo
 - In practice, this usually means metadata files in the .git directory within the working copy are added or changed (.git directory not shown)
- You may even decide to push committed changes to the remote repo
- Challenges:
 - Files already changed? must merge!
 - May need to maintain .gitignore
 - Can get confusing with branches

SENG265: Software Development Methods Introduction to Subversion: Slide 21

Basic Concepts: Working Copy

- Obtaining a working copy means either cloning an existing repository or performing init in some existing directory
 - This is normally done only once per working copy
- Repository access methods differ:
 - via ssh:// (we'll use ssh in the labs and for assignments)
 - http or https (as used by GitHub and GitLab)
 - original access method for working copy / local repo is stored as metadata in a .git directory in that working copy)

Basic Concept: Working Copy

 Example: get working copy of the "calc" project from git.example.com

```
$ git clone ssh://stewie@git.example.com/repos/calc
Cloning into 'calc'...
<password for stewie>
remote: Counting objects: 37, done.
remote: Compressing objects: 100% (31/31), done.
remote: Total 37 (delta 5), reused 0 (delta 0)
Receiving objects: 100% (37/37), done.
Resolving deltas: 100% (5/5), done.
Checking connectivity... done.
$ cd calc
$ git 1s-files
Makefile.
button.c
integer.c
$
```

- Suppose you wish to make a change to button.c
 - You edit the file using your normal workflow
 - Time and date on edited file will be more recent than time and date of file in repository
 - Changes are published by committing your changed file to the repository
- We first stage our changes (add)...
- ... and then make a "permanent" record of the change (commit)

```
$ pwd
calc

$ git add button.c
$ git commit -m "Fixed the geometry of button for v3 of library"
[master 12788ce] Fixed the geometry of button for v3 of library
1 file changed, 1 deletion(-)
$
```

- Note that commits always to our local repo
 - i.e., take place within our working copy
- We can have many such commits as we work through sets of changes
- To have such changes available to others, we must push them to a remote repository
- Observations:
 - Commits can be quite frequent (if needed by our workflow)
 - Pushes are much rarer (perhaps reflecting that our work has reach some suitable state and is ready for others to pull).
 - Example: writing each assignment will require several commits
 - Example: submitting an assignment will require a push

- Each commit results in a new snapshot of the code in our working copy
- Snapshots are kept in chronological order
 - git log" produces a list of the snapshots
 - Default log output order is reverse chronological (i.e., most recent commit/snapshot is listed first)
- "git status" reports the relationship amongst files in our working directory with what within git's local repository
 - More precisely, "status" tells us what has changed in our working directory...
 - and therefore what may need to be "add"ed and "commit"ed to the local repository

initial commit

commit after adding
"calc" with its files

commit after adding
"a2" with its files
 and subdirectory

University of Victoria
Department of Computer Science

SENG265: Software Development Methods Introduction to Subversion: Slide 27

(steps lead to third commit)

```
bwg 2
/home/stewie/project
$ git add * # Let git know what files are to be committed; recursive on directories
$ git status
On branch master
Your branch is ahead of 'origin/master' by 1 commit.
  (use "git push" to publish your local commits)
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)
    new file: a2/block.py
   new file: a2/tester.py
   new file: a2/tests/README.txt
   new file: a2/tests/in01.txt
    new file: a2/tests/out01.txt
$ git commit -m "Now the A#2 directory (a2) is in place" # Note message
[master 85687aa] Now the A#2 directory (a2) is in place
 5 files changed, 6 insertions(+)
 create mode 100644 a2/block.py
 create mode 100644 a2/tester.py
 create mode 100644 a2/tests/README.txt
 create mode 100644 a2/tests/in01.txt
 create mode 100644 a2/tests/out01.txt
```

```
$ git log
commit 85687aa056e299897153a3125c1826f64581bdc5
Author: Stewie Griffin <stewie@uvic.ca>
Date: Thu Sep 15 10:05:54 2016 -0700
    Now the A#2 directory (a2) is in place
commit 3da5a353956c320fbe8e585cd692b173e44b06c1
Author: Stewie Griffin <stewie@uvic.ca>
Date: Thu Sep 15 10:01:57 2016 -0700
    Added calc and some files
commit 18431a0b85f0645c98e4cceb311074594a19a38d
Author: Stewie Griffin <stewie@uvic.ca>
Date: Thu Sep 15 09:38:34 2016 -0700
    Initial commit (just .gitignore for now)
```


SENG265: So ftware Development Methods Introduction to Subversion: Slide 29

The branch and its commits would like this:

SENG265: Software Development Methods Introduction to Subversion: Slide 30

```
$ git status
On branch master
Your branch is ahead of 'origin/master' by 2 commits.
  (use "git push" to publish your local commits)
nothing to commit, working directory clean
$ git push
<verbiage>
<password for stewie>
Counting objects: 13, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (10/10), done.
Writing objects: 100\% (12/12), 1.11 KiB | 0 bytes/s, done.
Total 12 (delta 0), reused 0 (delta 0)
To ssh://stewie@git.example.com/project
   18431a0..85687aa master -> master
$ ait status
On branch master
Your branch is up-to-date with 'origin/master'.
nothing to commit, working directory clean
$
```

commit != push

- git is different from many other kinds of VCSes
 - commits are made to the local repo, **not the** remote
 - making these changes available to others means transferring data from the local repo to the remote repo (i.e., a push)
- git separates the tracking of file/directory changes from their storage on remote servers/repositories
 - this is very different from Subversion, Perforce, etc.
 - can seem a bit confusing at first sight

commit != push

Basic Concepts: Update

- What if Meg starts working on the project after someone else's commit?
 - Assume she made a working copy of Stewie's repo some time ago
 - (Also assume here she has read & write privileges on Stewie's remote.)
 - Let's also assume she was not working on button.c in calc
- She can ask git to bring her working copy "up to date"
 - git will only update files for which there are changes on the remote
 - Principle: Make sure to update often if working with a group on a project that uses a repository!

```
$ pwd
/home/meg/calc

$ git pull
<password for meg>
remote: Counting objects: 7, done.
remote: Compressing objects: 100% (4/4), done.
<... snip ...>
Fast-forward
calc/button.c | 1 +
1 file changed, 1 insertion(+)
$
```

Basic Concepts: Update

- git pull" is actually two commands together:
 - "git fetch" followed by "git merge"

```
$ pwd
/home/meg/calc
$ git fetch
<password for meg>
remote: Counting objects: 7, done.
<snip>
$ git log --name-status
commit eb6c8a6ffb2e2a70a89e4a89db8d62b5a22eccd4
Author: Stewie Griffin <stewie@uvic.ca>
Date: Thu Sep 15 10:27:23 2016 -0700
    Added headers so buttons can be beveled
        calc/button.c
М
```

Basic Concepts: Update

```
$ pwd
/home/meg/calc

$ git merge origin/master
Updating 85687aa..eb6c8a6
Fast-forward
  calc/button.c | 3 +++
  1 file changed, 3 insertions(+)
$
```

- Therefore "git pull" is the same as the following two commands in succession
 - git fetch
 - git merge origin/master
- We used "git log --name-status" to obtain the names of files that are different from our working copy and the remote repo

What is with "origin"? "master"?

- A working copy / local repo may be associated with:
 - No remote repo, or
 - One remote repo (UVic SENG 265) or
 - Several remote repos.
- A working copy / local repo may have:
 - No code branches tracked by git, or
 - One code branch (UVic SENG 265) tracked by git, or
 - Several code branches tracked by git.
- By git convention, the default remote repo is named origin.
- By convention, the main branch of code development is named **master** (i.e., it is the "master" or "main branch" of code development)

What is with "origin"? "master"?

```
$ pwd
/home/stewie/calc

$ git remote -v
origin ssh://stewie@git.example.com/repo/calc (fetch)
origin ssh://stewie@git.example.com/repo/calc (push)

$ git branch -v
* master b5b22e2 Bevels now in place
```

- When using "git pull" and "git push" for repos already cloned:
 - origin & master are **usually** default values
 - "git pull" == "git pull origin master"
 - "git push" == "git push origin master"
- Note: We'll discuss branching workflows later in the term

Quiz 1 Administrativia

- Sign your name on the sheet
 - No name on your sheet, no assigned grade
- Phone users come to front row(s)
- No laptop? Use pen and paper
 - Include:
 - » V#
 - » Name
 - » Q# and Answer
- Lower brightness on your laptop; phones face down in front of you
- When done, close laptops and phone
- Quiz duration: 6 min ©

What is with "origin"? "master"?

- This diagram we saw earlier of our commits / snapshot is an example of a **branch**
- The git convention is that every repo has at least one branch which is the main branch
 - Usually referred to as the master branch.
- Above is shown master branch from slide 24 (i.e., project with "calc", "a2" directories and their subdirectories/files).

Adding gotcha

- This is a bit more subtle in git
- add results in a file or directory being staged for commit
- When commit is performed, changes to staged files are stored into the local repo
- Note, however:
 - Every file or directory in the project that is to be tracked by git needs to be added at least once in the project's lifetime
 - Also: add gives us fine-grained control as to what needs to be in a commit's snapshot
 - Sometimes, though, we just want all of the changed files to be staged and committed without having to use add
 - git commit -a -m "message"

Never store generated files in the repository.

For example, if your project includes C source code, you would store the .c and .h files. You would not store the .o or executables.

If your project includes Java source code, you would store the .java file, but you wouldn't store the generated .class or .jar files.

Use .gitignore

- This text file needs to be committed to the project
- Normally stored in the top-level of the working directory
- Each line in the file is used as a pattern
- Possible entries:
 - *.pyc
 - *.0
 - DS_STORE
 - *.class

Example of .gitignore file

```
# Compiled source
*.com
*.class
*.dll
*.exe
*.0
*.so
# Packages
# it's better to unpack these files and commit the raw source
# git has its own built in compression methods
*.7z
*.dmg
*.gz
*.iso
*.jar
*.rar
*.tar
*.zip
# Logs and databases
*.log
*.sql
*.sqlite
# OS generated files
.DS Store
.DS Store?
```


- Suppose you've fetched changes and merged them into your master branch
- Normally we see a clean report of git's work
 - Downloading objects from remote
 - Merging changes into our working copy (i.e., new files, removed files, edits to existing files)

```
$ git pull
<password>
remote: Counting objects: 19, done.
remote: Compressing objects: 100% (14/14), done.
remote: Total 18 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (18/18), done.
From ssh://git.example.com/repo/calc
   b5b22e2..4955e13 master
                                -> origin/master
Updating b5b22e2..4955e13
Fast-forward
calc/README.md
                     1 4 ++++
calc/main_init.py
                     3 +++
calc/quiframe.py
3 files changed, 8 insertions(+)
create mode 100644 calc/README.md
create mode 100644 calc/main_init.py
create mode 100644 calc/guiframe.py
```


 However, sometimes we don't see a clean report

- However, sometimes we don't see a clean report
- Scenario:
 - Meg has pulled the remote. Both she and Stevie have the first version of button.c shown here.

```
/* button.c */
#include <stdio.h>
#include <gui.h>
```


- However, sometimes we don't see a clean report
- Scenario:
 - Meg has pulled the remote. Both she and Stevie have the first version of button.c shown here.
 - Stevie makes a change to calc/button.c, but doesn't commit

```
/* button.c */
#include <stdio.h>
#include <gui.h>
```

- However, sometimes we don't see a clean report
- Scenario:
 - Meg has pulled the remote. Both she and Stevie have the first version of button.c shown here.
 - Stevie makes a change to calc/button.c, but doesn't commit
 - Meg makes a change to calc/button.c, then commits and pushes it.

```
/* button.c */
#include <stdio.h>
#include <gui.h>
```


- However, sometimes we don't see a clean report
- Scenario:
 - Meg has pulled the remote. Both she and Stevie have the first version of button.c shown here.
 - Stevie makes a change to calc/button.c, but doesn't commit
 - Meg makes a change to calc/button.c, then commits and pushes it.
 - Afterwards Stevie tries to commit and then push

```
/* button.c */
#include <stdio.h>
#include <gui.h>
```

```
stewie$ $ git pull
<password>
remote: Counting objects: 7, done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 4 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (4/4), done.
From ssh://git.example.com/repo/calc
   15c486a..bda4b22 master -> origin/master
Auto-merging calc/button.c
CONFLICT (content): Merge conflict in calc/button.c
Automatic merge failed; fix conflicts and then commit the result.
stewie$ git status
-On branch master
Your branch and 'origin/master' have diverged,
and have 1 and 1 different commit each, respectively.
  (use "git pull" to merge the remote branch into yours)
You have unmerged paths.
  (fix conflicts and run "git commit")
Unmerged paths:
  (use "git add <file>..." to mark resolution)
        both modified: button.c
no changes added to commit (use "git add" and/or "git commit -a")
```

Resolving a merge conflict (what Stewie sees)

- git indicates the conflict with a bit of markup
 - "<<<<< HEAD" to "======": Stevie's original code</p>
 - "======" to ">>>>> bda4b22...": What Meg pushed

Resolving a merge conflict

- Before Stewie can successfully commit and push his work to the remote, he must resolve the conflict
- There are two parts to this:
 - The human part (harder)
 - The technical part (easy)
- The human part is to decide what should code in button.c should be kept
- The technical part is editing the file in a way reflecting that decision, then committing (and possibly pushing)

Resolving a merge conflict

before

after


```
meg$ git pull
<password>
<... snip ...>
Unpacking objects: 100% (8/8), done.
From ssh://git.example.com/repo/calc
    bda4b22..8d0c566 master -> origin/master
Updating bda4b22..8d0c566
Fast-forward
    calc/button.c | 5 ++---
    1 file changed, 2 insertions(+), 3 deletions(-)
```

A slight detour... The Pull Request process in Github

A slight detour... Who gets their PRs accepted?

RQ3: The decision to merge a pull request is mainly influenced by whether the pull request modifies recently modified code. The time to merge is influenced by the developer's previous track record, the size of the project and its test coverage and the project's openness to external contributions.

Using git

- You need a git client
- In this course we use a command-line client
 - git (usually /usr/bin/git)
 - provide git with commands and arguments
- Note other client possibilities:
 - Git functionality might be built into IDE
 - Git functionality built into tool
 - Some web interfaces for using git (especially needed for GitHub)

Using git

- For UVic SENG265, you need a repository
- Need access to that repository
- UVic Software Engineering hosts a repository for you:
 - this is on a per-course basis
 - ssh://yourlogin@git.seng.uvic.ca/seng265/yourlo gin
 - replace "yourlogin" with your Netlink ID
- Other possibilities you might encounter:
 - gibhub-like services
 - BitKeeper
 - administering your own server (careful!!)

(a wee word...)

- For this course, use the seng265 repository
 - Do not use github!
- Each of your assignments and labs ...
 - ... will be subdirectories within your respository
 - ... which are accessible to the lab instructors and administrators for help when debugging (but accessible to no one else!)
 - and can be accessed remotely by you

git commands

- Note:
 - We've already referred to git "commands"
 - Yet git itself is a UNIX command
- A git command is how we specify an action from the git client
- Syntax
 - git command [option] [arguments]
- The number of git commands and options is very large
 - We'll be focusing on a much smaller subset of these.
 - (Beware of Google and StackOverflow as answers there can lead you astray...)

Previously seen

æ		
\$	git clone	ssh://stewie@git.example.com/repo/calc
\$	git add	button.c
đ	ait fotch	
→	git fetch	

Git command

argument

A few more examples

\$ git remote	add origin https://git.420.com/fubar
	, , , , , ,
\$ git commit	-a -m "Fixed typo in label"
\$ git diff	name-status HEAD

Git command

options & arguments

Some useful commands

- · clone
- \cdot add
- · commit
- · status
- · log
- · diff
- · pull
- · push
- · fetch
- merge
- · rm
- · init

make a local copy of a remote repo

stage files/directories so they'll be ready to be committed

store into local repo a snapshot of working-copy changes

list working copy files/dirs differing from local repo

output commit messages with their snapshot SHA-1 hashes

show differences of working-dir contents with local repo

fetch and merge into local repo any remote repo changes

transfer local repo snapshots to remote repo

download data for remote changes to local repo (but no more!)

combine new remote changes with files in local repo

remove file from working copy / working tree

convert working directory into git local repo (caution!)

If you need help...

- For a specific command:
 - git <command> --help
 - Provides list of arguments and options
- For info on repository access
 - speak to the provider, or
 - read the provided documentation
 - follow the instructions given in the lab and on the assignments!

