

Engineering High-Performance Community Detection Heuristics for Massive Graphs

Christian L. Staudt and Henning Meyerhenke

Introduction | Motivation

Big Network Data

- proliferation of large networks and high data rates
 - e.g. WWW (> 30 billion pages),
 online social networks (> 600 million active users),...
- analysts need information from these piles of data
- complex networks are computationally challenging
 - lacktriangle scale-free topology ightarrow load balancing issues
 - **small-world** network \rightarrow cache performance issues

Introduction | Motivation

Big Network Data

- proliferation of large networks and high data rates
 - e.g. WWW (> 30 billion pages),
 online social networks (> 600 million active users),...
- analysts need information from these piles of data
- complex networks are computationally challenging
 - lacktriangle scale-free topology ightarrow load balancing issues
 - **small-world** network \rightarrow cache performance issues

Community Detection

- find internally dense, externally sparse subgraphs (formalized: e.g. modularity)
- goals: uncover community structure, prepartition network

[survey: Schaeffer 07, Fortunato 10]

Related Work | State of the Art

Challenge

10th DIMACS Implementation Challenge

- Graph Partitioning and Clustering
 - criteria: time and quality (modularity)
 - high-quality solutions
 - RG, a randomized greedy agglomerative algorithm
 - CGGC, an ensemble using RG [Ovelgönne & Geyer-Schulz 13]
 - large variance in running time among contestants
 - few relied on parallelism
 - CLU_TBB, a parallel agglomerative algorithm [Fagginger Auer, Bisseling 13]
 - few could handle largest graphs (billions of edges)

- 10th DIMACS Implementation Challenge - Graph Partitioning and Graph Clustering -

Related Work | State of the Art

Challenge

10th DIMACS Implementation Challenge

- Graph Partitioning and Clustering
 - criteria: time and quality (modularity)
 - high-quality solutions
 - RG, a randomized greedy agglomerative algorithm
 - CGGC, an ensemble using RG [Ovelgönne & Geyer-Schulz 13]
 - large variance in running time among contestants
 - few relied on parallelism
 - CLU_TBB, a parallel agglomerative algorithm [Fagginger Auer, Bisseling 13]
 - few could handle largest graphs (billions of edges)

Others

- original label propagation algorithm [Raghavan et al. 07]
- distributed parallel label propagation on Hadoop [Ovelgönne 12]

— 10th DIMACS Implementation Challenge - Graph Partitioning and Graph Clustering -

Contribution | Methods & Capabilities

Requirements

- only nearly linear time algorithms are practical
- we need to take advantage of parallelism

Our Approach

- algorithm engineering
- a framework of shared-memory parallel heuristics
 - PLP: a label propagation algorithm
 - PLM: a parallelization of a locally greedy modularity maximizer
 - PLMR: PLM with additional refinement
 - EPP: an ensemble technique

Contribution | Methods & Capabilities

Requirements

- only nearly linear time algorithms are practical
- we need to take advantage of parallelism

Our Approach

- algorithm engineering
- a framework of shared-memory parallel heuristics
 - PLP: a label propagation algorithm
 - PLM: a parallelization of a locally greedy modularity maximizer
 - PLMR: PLM with additional refinement
 - EPP: an ensemble technique

Capabilities

- PLM first parallel variant of Louvain method, optional refinement phase
- data rates approach 50M edges/sec, depending on algorithm
- NetworKit: a framework for high-performance network analysis

Basics | Modularity

Objective function modularity:

$$q(\mathcal{C}) = \sum_{C \in \mathcal{C}} \left(\frac{|E(C)|}{m} - \left(\frac{\sum_{v \in C} deg(v)}{2m} \right)^2 \right)$$

- Expected deviation from random graph with the same degree sequence
- NP-hard to optimize for modularity [Brandes et al., IEEE TKDE 2008] and most other (interesting) objective functions
- Modularity has some known issues (resolution limit, ...), some can be circumvented
- Still the most popular clustering metric in network analysis

- 1. Introduction
- 2. Algorithms
- 3. Experiments
- 4. NetworKit
- 5. Conclusions

Algorithms | Parallel Label Propagation PLP


```
initialize nodes with unique labels

while labels not stable do

parallel for v \in V
adopt dominant label in N(v)
endfor

end

return communities from labels
```


- communities from labelling of node set
- dense subgraphs agree on common label
 - → stable distribution emerges
- a local coverage maximizer
 - getting stuck in local optima of coverage is desired
 - → modularity implicitly maximized
- O(m) time per iteration, few iterations
- lacktriangle purely local updates o high degree of parallelism

[original, sequential algorithm: Raghavan et al. 07]

Algorithms | PLP Implementation

- adapted to weighted graphs
- optimizations
 - active nodes: evaluate v only if labels in N(v) change
 - truncated iterations: stop if only few nodes undecided
- OpenMP parallelization
 - better load balancing with parallel for schedule(guided) (high-degree nodes)

Figure: Number of active and updated nodes per iteration of **PLP** on a large web graph

Algorithms | Parallel Louvain Method PLM

- a locally greedy modularity maximizer
 - repeatedly move nodes to neighbor communities
 - coarsen the graph and repeat
- sequential algorithm: well known method for efficiently achieving high modularity values [Blondel et al. 08]
- our parallel design

```
initialize to singletons

move nodes for modularity gain

if communities changed then

coarsen graph
recursively apply PLM
prolong communities

end
```

return communities

Algorithms | PLM Implementation

- challenge: evaluate and perform node moves in parallel
 - store and update some interim values for Δmod
 - updates need to be protected by locks
- parallel moves may be based on stale values, but self-correction possible

Algorithms | PLMR: Additional Refinement

add a refinement phase on every level

end

return communities

ullet additional opportunities for modularity improvement at the cost of more iterations

11

Algorithms | Ensemble Preprocessing EPP

- ensemble learning: combine multiple weak classifiers to form a strong one
- generic scheme with exchangeable base and final algorithm
 [e.g. Ovelgönne & Geyer-Schulz 13]
 - 1. ensemble of base algorithms operate on input graph independently
 - 2. consensus solution is formed and graph coarsened accordingly
 - 3. final algorithm operates on coarsened graph

```
\begin{array}{c} \textbf{parallel for Base} \ in \ ensemble \\ | \ \zeta_i \leftarrow \textbf{Base}_i(G) \\ \textbf{endfor} \\ \bar{\zeta} \leftarrow \textbf{consensus}(\zeta_1, \ldots, \zeta_b) \\ G^1 \leftarrow \textbf{coarsen}(G, \bar{\zeta}) \\ \zeta^1 \leftarrow \textbf{Final}(G^1) \\ \zeta \leftarrow \textbf{prolong}(\zeta^1, G) \\ \textbf{return } \zeta \end{array}
```

Algorithms | EPP Implementation

- nested parallelism in the ensemble
- efficiently calculate consensus communities through k-way hashing of community IDs
- base algorithm: focus on speed
- final algorithm: focus on quality optimization

consensus communities image: Ovelgönne & Geyer-Schulz 13

Algorithms | EPP Implementation

- nested parallelism in the ensemble
- efficiently calculate consensus communities through
 k-way hashing of community IDs
- **b** base algorithm: focus on speed \rightarrow **PLP**
- final algorithm: focus on quality optimization → PLM

consensus communities image: Ovelgönne & Geyer-Schulz 13

Algorithms | EPP

- 1. Introduction
- 2. Algorithms
- 3. Experiments
- 4. NetworKit
- 5. Conclusions

Experimental Setup | Networks

- variety of real-world and synthetic data sets
- complex networks: web graphs, internet topology, online social network, scientific collaboration, . . .
- Stochastic Kronecker Graphs (SKG) for scaling experiments

Figure: size comparison of test graphs

$\textbf{Experimental Setup} \mid Settings$

	phipute1.iti.kit.edu
compiler	gcc 4.7.1
CPU	2 x 8 Cores: Intel(R) Xeon(R)
	E5-2680 0 @ 2.70GHz, 32 threads
RAM	256 GB
OS	SUSE 12.2-64

Results | PLP

- handles large graphs easily
 - 3.3 billion edge web graph in 60 s with 32 threads
- reasonable modularity values (but room for improvement)

Figure: running time [s] for various networks

Results | PLP

- handles large graphs easily
 - 3.3 billion edge web graph in 60 s with 32 threads
- reasonable modularity values (but room for improvement)

Figure: running time [s] for various networks

 Considering the complex input, PLP scales well from 2 to 32 threads

Figure: strong scaling of **PLP** on 250M edge web graph

Results | PLM

- only minor differences in solution quality between sequential and parallel versions
 - PLM able to correct undesirable decisions due to stale data
- better modularity than PLP (ca. 0.1)
- but slower (ca. factor 10)
- scaling: worse than PLP mainly because of sequential coarsening

Figure: modularity for PLM

Figure: time for PLM

Results | PLMR

refinement phase gives small quality boost at the cost of a few more iterations

Figure: modularity improvement of **PLMR** compared to **PLM**

Figure: relative difference in running time of **PLMR** compared to **PLM**

Results | EPP

- improved solution quality compared to PLP
- small ensembles work best (here: 4-piece ensemble)
- ca. factor 10 slower than PLP alone
- modularity improvement ca. 0.05
- slightly faster (and with smaller memory footprint) than PLM and PLMR

Figure: modularity improvement of **EPP** compared to single **PLP**

Figure: relative running time of **EPP** compared to single **PLP**

Results | Pareto Evaluation

- modularity score: arithmetic mean over all networks of modularity differences
- time score: geometric mean over all networks of relative time differences
- baseline: PLM at (0, 1)

- 1. Introduction
- 2. Algorithms
- 3. Experiments
- 4. NetworKit
- 5. Conclusions

Software | NetworKit

- a toolkit of high-performance network analysis algorithms
 - high-performance kernel in C++11 and OpenMP
 - Python shell for interactive data analysis (via Cython)
- free software (MIT License)
 - 1.0 (spring 2013): community detection algorithms, data structures
 - 2.0 (November 2013): interactive Python shell
 - 2.1 (TBA): adds various network analysis kernels

Software | NetworKit: An Example

Read Network from File

```
In [4]: G = readGraph("pgp.graph")
```

```
In [12]: xscale("log")
    yscale("log")
    plot(properties.degreeDistribution(G))
```

Out[12]: [<matplotlib.lines.Line2D at 0x107c5e090>]

Network Properties Overview

In [5]: properties.showProperties(G)

Banda Busansasia	===		
Basic Propertie			
nodes (n)			
edges (m)	24316		
min. degree			
max. degree			
avg. degree			
isolated nodes			
self-loops	0		
density	0.000426		
Path Structure			
size of largest diameter avg. eccentrici	-		
diameter avg. eccentrici Miscellaneous	ty		
diameter avg. eccentrici Miscellaneous	ty		
diameter avg. eccentrici Miscellaneous degree assortat	ty		
diameter avg. eccentrici Miscellaneous degree assortat cliques	ty	L	
diameter avg. eccentrici Miscellaneous degree assortat cliques	ivity 0.238211	L	
diameter avg. eccentrici	ivity 0.238211		
diameter avg. eccentrici Miscellaneous degree assortat cliques Community Structure	ty ivity 0.238211 13814 ture tering coefficient	· 	0.265945
diameter avg. eccentrici Miscellaneous degree assortat cliques Community Structure avg. local clus	ty ivity 0.238211 13814 ture tering coefficient	· 	0.265945
diameter avg. eccentrici Miscellaneous degree assortat cliques Community Structure avg. local clus	ty ivity 0.238211 13814 ture tering coefficient		0.265945 985
diameter avg. eccentrici	ivity 0.238211 13814 	communities modularity	0.265945 985 0.795751
diameter avg. eccentrici Miscellaneous degree assortat cliques Community Struc	ivity 0.238211 13814 	communities modularity	0.265945 985 0.795751 108
diameter avg. eccentrici	ivity 0.238211 13814 	communities modularity	0.265945 985 0.795751 108

Software | NetworKit: An Example

Community Detection

- growing collection of network analysis kernels, graph generators, basic graph algorithms etc.
- integration with Python tools for data analysis and visualization
- users and contributors welcome

In [8]: viztasks.drawCommunityGraph(G, communities)

[http://parco.iti.kit.edu/software/networkit.shtml]

- 1. Introduction
- 2. Algorithms
- 3. Experiments
- 4. NetworKit
- 5. Conclusions

Conclusion | Summary & Future

Summary

- developed, implemented and evaluated scalabe heuristics for community detection
 - PLP extremely fast, but quality may not be high enough
 - PLM yields high quality
 - PLMR increases quality at the expense of more iterations
 - EPP combines their strengths

Ongoing and Future Work

- improve global community detection methods
 - e.g. parallel coarsening
- algorithms for related scenarios
 - selective and dynamic community detection
 [presented at ECDA2013 Luxembourg]

Conclusion | End

Thank you for your attention

Further Reading

C.L. Staudt, H. Meyerhenke:

Engineering High-Performance Community Detection Heuristics for Massive Graphs. In Proc. 42nd International Conference on Parallel Processing (ICPP 2013).

Acknowledgements

This work was partially funded through the project *Parallel Analysis of Dynamic Networks - Algorithm Engineering of Efficient Combinatorial and Numerical Methods* by the *Ministry of Science, Research and Arts Baden-Württemberg*