UNIVERSIDADES DE CASTILLA-LEÓN – EBAU – JULIO 2018 /ENUNCIADOS OPCIÓN A

CUESTIÓN 1.-Para los átomos neutros de S, C, Na, Cl y Ba:

- a) Escribe las configuraciones electrónicas ordenadas.
- b) Indica y justifica cuántos electrones desapareados tiene cada uno de ellos.
- c) Indica y justifica qué tipo de enlace se formará entre los elementos Na y Cl.
- d) Indica tres características propias de un compuesto iónico.

PROBLEMA 1.- El yoduro de amonio sólido (NH₄I) se descompone en amoniaco gaseoso (NH₃) y yoduro de hidrógeno gaseoso (HI). A 673K la constante de equilibrio K_P es 0,215. En un matraz de 5 litros se introducen 15 g de NH₄I sólido y se calienta hasta 673K.

- a) Escribe la reacción ajustada indicando también los estados de agregación.
- b) Calcula el valor de K_c.
- c) Calcula la presión total dentro del matraz en el equilibrio.
- d) Calcula la masa de reactivo que queda sin descomponer.

Resultado: b)
$$K_c = 7.06 \cdot 10^{-5}$$
; c) $P_t = 0.86$ atm; d) 9.28 g.

PROBLEMA 2.- La constante del producto de solubilidad del CaF₂ es $2.7 \cdot 10^{-8}$.

- a) Calcula la máxima cantidad de dicha sal, en gramos, que podría estar contenida en 150 mL de disolución.
- b) Calcula la concentración del ión Ca²⁺ que permanecería en disolución si a la disolución saturada anterior se le añade NaF sólido hasta una concentración de 0,2 M. Deberá justificarse cualquier aproximación que se haga.

Resultado: a)
$$2,22 \cdot 10^{-3}$$
 g; b) $[Ca^{2+}] = 6,75 \cdot 10^{-7}$ M.

CUESTIÓN 2.- Ajusta las siguientes reacciones moleculares por el método del ión-electrón.

- a) El oxalato sódico $(Na_2C_2O_4)$ reacciona con el permanganato de potasio $(KMnO_4)$, en disolución acidificada con ácido sulfúrico, para dar, entre otros compuestos, dióxido de carbono (CO_2) y sulfato de manganeso (II) $(MnSO_4)$.
- b) En presencia de hidróxido sódico, el clorato sódico ($NaClO_3$) reacciona con el cloruro de cromo (III) ($CrCl_3$) para dar cloruro sódico y cromato sódico (Na_2CrO_4).

CUESTIÓN 3.- Responde razonadamente a las siguientes cuestiones.

- a) ¿Cuándo dos compuestos son isómeros estructurales?
- b) Pon un ejemplo para cada uno de los tipos de isomería estructural y nombra los compuestos elegidos para dichos ejemplos.

OPCIÓN B

CUESTIÓN 1.- Para las moléculas CO₂, NH₃ y CH₄:

- a) Indica y justifica cuáles son sus estructuras de Lewis.
- b) Indica y justifica la geometría que presentan.
- c) Indica y justifica si son o no polares.
- d) Entre el NH₃ y el CH₄ justifica cuál de los dos tendrá menores ángulos de enlace.

PROBLEMA 1.- El NO (g) reacciona con H₂ (g) para formar N₂O (g) y H₂O (g). Para dicha reacción se determinaron las siguientes velocidades iniciales de reacción para las concentraciones iniciales de reactivos que se indican en la tabla:

Experimento	$[NO]_0(M)$	$[H_2]_0$ (M)	$V_0 (M \cdot s^{-1})$
1	0,064	0,022	$2,6 \cdot 10^{-2}$
2	0,064	0,044	$5,2 \cdot 10^{-2}$
3	0,128	0,022	$1,04 \cdot 10^{-1}$

Calcula numéricamente:

- a) El orden total de la reacción y los órdenes parciales.
- b) La constante de velocidad de la reacción.
- c) La velocidad inicial de la reacción para una concentración inicial de los reactivos 0,08 M.

Resultado: a) Ordenes $H_2 = 1$; NO = 2; b) $k = 288,53 L^2 \cdot mol^{-2} \cdot s^{-1}$; c) $v = 1,48 \cdot 10^{-1} M \cdot s^{-1}$.

PROBLEMA 2.- Responde razonadamente a las siguientes cuestiones, justificando cualquier aproximación que se haga.

- a) El ácido cítrico es un ácido orgánico tricarboxílico (con tres grupos –COOH). Para neutralizar el ácido cítrico de 2 mL de zumo de naranja se necesitaron 10,5 mL de una disolución de NaOH de concentración 0,102 M. ¿Cuál es la concentración de ácido cítrico en el zumo?
- b) El ácido acético ($C_2H_4O_2$) es un ácido orgánico monocarboxílico (con un solo grupo –COOH) cuya constante de acidez es $1.8 \cdot 10^{-5}$. Calcula el pH de un vinagre que contiene 6 gramos de ácido acético por cada 100 mL de vinagre.

Resultado: a) [ácido cítrico] = 0,18 M; b) pH = 2,32.

PROBLEMA 3.- En una cuba electrolítica se hace pasar una corriente de 0,7 amperios a través de una disolución ácida que contiene CuSO₄, durante 3 horas.

- a) Escribe la reacción que tiene lugar en el cátodo.
- b) Escribe la reacción de oxidación del agua que se producirá en el ánodo.
- c) Calcula la masa de cobre metálico que se depositará en el proceso.

Resultado: c) 2,49 g Cu.

CUESTIÓN 2.- Indica y razona el tipo de reacción en los siguientes casos:

- a) Etanal + Agua \rightarrow 1,1-etanodiol (etan-1,1-diol)
- b) CH_3 -CHOH- CH_2 - CH_3 + H_2SO_4 + $calor \rightarrow CH_2$ =CH- CH_2 - CH_3 + CH_3 -CH=CH- CH_3
- c) 2-propanol (propan-2-ol) + bromuro de hidrógeno → 2-bromopropano + agua