Qn	
1(i)	Let the number of units of sand, stone and brick required by the company be x , y and z respectively.
	15x + 10.5y + 8.1z = 205.2
	11x + 17.3y + 7z = 229.4
	12x + 13y + 10z = 208
	From GC,
	x = 7, y = 8, z = 2.
	The number of units of sand, stone and brick required is 7, 8 and 2 units respectively.
1(ii)	Total amount that the company must pay
	= \$0.9 [11(7) + 10.5(8) + 7(2)]
	=\$157.50
2(ii)	$\frac{d^2y}{dx^2} = x\sin x$
	$\frac{dy}{dx} = x(-\cos x) - \int -\cos x dx$
	$= -x\cos x + \sin x + C$
	$= -x\cos x + \sin x + C$
	$y = -x\sin x - \int (-1)(\sin x) dx - \cos x + Cx + D$
	$y = -x\sin x - 2\cos x + Cx + D$
	Given $f(0) = 0$, $f'(0) = 3$
	$y = f(x)$ passes through the origin $\Rightarrow f(0) = 0 \Rightarrow D = 2$ $f'(0) = 3$; $C = 3$
	$y = -x\sin x - 2\cos x + 3x + 2$
3	Let P_n be the statement $\sum_{r=1}^n r^3 = \frac{1}{4} n^2 (n+1)^2$ for $n \in \mathbb{Z}^+$.
	Prove that P_1 is true, i.e.
	LHS: $\sum_{r=1}^{1} r^3 = (1)^3 = 1 \text{ RHS}$: $\frac{1}{4} (1)^2 (1+1)^2 = 1$
	P_1 is true.
	Assume P_k is true, i.e. $\sum_{r=1}^k r^3 = \frac{1}{4}k^2(k+1)^2$ for $k \in \mathbb{Z}^+$.
	Prove that P_{k+1} is true, i.e. $\sum_{r=1}^{k+1} r^3 = \frac{1}{4} (k+1)^2 (k+2)^2$ for $k \in \mathbb{Z}^+$.
	LHS: $\sum_{r=1}^{k+1} r^3 = \sum_{r=1}^{k} r^3 + (k+1)^3$

$$= \frac{1}{4}k^{2}(k+1)^{2} + (k+1)^{3}$$

$$= \frac{1}{4}(k+1)^{2} \left[k^{2} + 4(k+1)\right]$$

$$= \frac{1}{4}(k+1)^{2} \left[k^{2} + 4k + 4\right]$$

$$= \frac{1}{4}(k+1)^{2}(k+2)^{2}$$

$$= RHS$$

Thus, P_k is true $\Rightarrow P_{k+1}$ is true

Since P_1 is true and P_k is true $\Rightarrow P_{k+1}$ is true, by mathematical induction, P_n is true for all $n \in \mathbb{Z}^+$. (Shown)

$$v_r = \ln(2a^{r^3}) = \ln 2 + r^3 \ln a$$

$$S_n = \sum_{r=1}^n v_r$$

$$= \sum_{r=1}^n \left(\ln 2 + r^3 \ln a \right)$$

$$= n \ln 2 + (\ln a)(1^3 + 2^3 + 3^3 + \dots + 4^3)$$

$$= \frac{n}{4} \ln 2^4 + (\ln a) \left(\frac{1}{4} n^2 (n+1)^2 \right)$$

$$= \frac{n}{4} \left(\ln 16 + \ln(a^{n(n+1)^2}) \right)$$

$$= \frac{n}{4} \left(\ln 16 a^{n(n+1)^2} \right) (proven)$$

4(i)
$$\frac{d}{dx}(xy-2y^2+4x^2) = \frac{d}{dx}66$$
$$x\frac{dy}{dx} + y - 4y\frac{dy}{dx} + 8x = 0$$
$$\frac{dy}{dx}(x-4y) = -8x - y$$
$$\frac{dy}{dx} = \frac{8x + y}{4y - x}$$

For tangent parallel to y-axis, 4y-x=0x=4y Substitute x = 4y into equation of curve,

$$(4y)y-2y^2+4(4y)^2=66$$

$$66y^2 = 66$$

$$y^2 = 1$$

$$y = \pm 1$$
.

When y = 1, x = 4

When
$$y = -1$$
, $x = -4$

Coordinates are (4,1), (-4,1)

4(ii) Substitute y = k into equation of the curve,

$$kx - 2k^2 + 4x^2 = 66$$

$$4x^2 + kx + \left(-2k^2 - 66\right) = 0$$

Considering the discriminant,

$$k^2 - 4(4)(-2k^2 - 66)$$

$$=33k^2+1056$$

> 0 for all real values of k

The line y = k cuts the curve for all real values of k.

5

From the GC,

$$y = \ln(2x+9)$$
 intersects $y = \sqrt{10-x^2}$ at $x = -2.9539$, 1.8760

Hence for $ln(2x+9) \ge \sqrt{10-x^2}$,

$$-\sqrt{10} \le x \le -2.9539$$
 or $1.8760 \le x \le \sqrt{10}$

$$-3.16 \le x \le -2.95$$
 or $1.88 \le x \le 3.16$

Using previous result to solve for $ln(2|x|+9) = \sqrt{10-x^2}$,

$$-\sqrt{10} \le |x| \le -2.9539 (rej)$$
 or $1.8760 \le |x| \le \sqrt{10}$

$$-3.16 \le x \le -1.88$$
 or $1.88 \le x \le 3.16$

6(i)	Since a and b are the radiuses of a circle, $ a = b = 2$
	$a \cdot b = a b \cos 120^{\circ} = r^{2}\left(-\frac{1}{2}\right)$
	Let $AN:NB = k:(1-k)$, hence $\overrightarrow{ON} = k\mathbf{a} + (1-k)\mathbf{b}$
	Since ON is perpendicular to OB ,
	$ON.OB = 0$ $b_1(b_1 + b_2) = 0$
	$\mathbf{b} \cdot (k\mathbf{a} + (1-k)\mathbf{b}) = 0$
	$ \mathbf{kab} + (1-k) \mathbf{b} ^2 = 0$
	$kr^{2}\left(-\frac{1}{2}\right) + (1-k)r^{2} = 0$
	$-\frac{1}{2}k + (1-k) = 0$
	$k = \frac{2}{3}$
	Hence, $\overrightarrow{ON} = \frac{1}{3}(2a+b)$
	Alternatively. Use of geometry (various method)
	Area of $\triangle OAN$
	$ = \frac{1}{3} \left \boldsymbol{a} \times \frac{1}{3} (2\boldsymbol{a} + \boldsymbol{b}) \right $
	$= \frac{1}{6} 2a \times a + a \times b $
	$=\frac{1}{6} a\times b $
6(ii)	$\tan 30^{\circ} = \frac{ON}{r}$
	$ON = \frac{r}{\sqrt{3}}$ $\overrightarrow{OC} = -\frac{\overrightarrow{ON}}{\left(\frac{r}{\sqrt{3}}\right)}r$ $= -\frac{\sqrt{3}}{3}(2a+b)$
	$\overrightarrow{OC} = -\frac{\overrightarrow{ON}}{r}$
	$\binom{r}{\sqrt{2}}$
	$\sqrt{3}$
	$=-\frac{\sqrt{3}}{3}(2a+b)$

	4 ² 4
	$(1-2x)\frac{d^2y}{dx^2} = 2\frac{dy}{dx} + 4e^{-x} + (3-2x)y \text{ (shown)}$
8(ii)	Differentiating with respect to <i>x</i> ,
	$\left(1 - 2x\right)\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} = 2\frac{d^2y}{dx^2} - 4e^{-x} + (3 - 2x)\frac{dy}{dx} - 2y$
	When
	$x = 0$, $y = 0$, $\frac{dy}{dx} = -2$, $\frac{d^2y}{dx^2} = 0$, $\frac{d^3y}{dx^3} = -10$.
	$\therefore y = -2x - \frac{5}{3}x^3 + \dots$
8(iii)	$y = \left(1 - x + \frac{x^2}{2} - \frac{x^3}{6} + \dots\right) \left(-2x - 2x^2 - \frac{8x^3}{3} + \dots\right)$
	$y = -2x - 2x^2 - \frac{8}{3}x^3 + 2x^2 + 2x^3 - x^3 + \dots$
	$y = -2x - \frac{5}{3}x^3 + \dots$ (verified).
9 (i)	y ♣
	(1,1)
	- 1 3 →x
	(1,-1)
(ii)	$\pi \int_{-1}^{3} y^2 dx = -2\pi \int_{\pi}^{0} \sin^3 t dt$
	= 8.38 (3 s.f.)
(iii)	$\frac{x-1}{2} = \cos t$
	$\left \begin{array}{ccc} z & (x-1)^2 & z & z \end{array} \right $
	$\cos^2 t = \frac{(x-1)^2}{2^2}, \qquad \sin^2 t = y^2$
	Since $\sin^2 t + \cos^2 t = 1$
	$\frac{(x-1)^2}{2^2} + y^2 = 1$
(iv)	Stretch parallel to the <i>y</i> axis with stretch factor 2. Translate -1 unit in the direction of the <i>x</i> axis.
10	Translate -1 unit in the direction of the x axis. $R_h = (a, \infty) \qquad D_g = [a, \infty)$
(a)(i)	Since $R_h \subseteq D_g$, gh exists.

(**)	T
(ii)	$gh(x) = \sqrt{x^2 + a - a}$
	$gh(x) = \sqrt{x^2}$
	gh(x) = x
	gh(x) = -x since x < 0
	$gh: x \mapsto -x \qquad x < 0$
10(b)	
(i)	$f(x) = \frac{1}{1 + 2\sin x}, \frac{\pi}{2} < x < \pi$
	$f'(x) = \frac{-2\cos x}{-2\cos x}$
	$f'(x) = \frac{-2\cos x}{\left(1 + 2\sin x\right)^2}$
	Since $(1+2\sin x)^2 > 0$ and
	$0 < -2\cos x < 2 \text{for } \frac{\pi}{2} < x < \pi$
	$f'(x) = \frac{-2\cos x}{(1+2\sin x)^2} > 0$ for $\frac{\pi}{2} < x < \pi$
	$\int_{0}^{1} \frac{1}{(1+2\sin x)^2} \int_{0}^{2} \int_{0}^{1} \frac{1}{2} \int_{0}^{1}$
	Thus $f(x)$ is an increasing function. (Shown)
(ii)	$y = \frac{1}{1 + 2\sin x}$
	1
	$1 + 2\sin x = \frac{1}{y}$
	$x = \sin^{-1}\left(\frac{1}{2}\left(\frac{1}{y} - 1\right)\right)$
	$f^{-1}(x) = \sin^{-1}\left(\frac{1}{2}\left(\frac{1}{x} - 1\right)\right)$
	<u>.</u>
	, f ,
	$D_{f^{-1}} = R_f = \left(\frac{1}{3}, 1\right)$ $\frac{\frac{1}{3}}{\pi}$
	2
11(a)	$M_1 = \{5\}, M_2 = \{10, 15\} \text{ and } M_3 = \{20, 25, 30\}$
(i)	M_n has n elements
	Hence, the number of elements in each set up to and including M_n is an AP with $a = 1$, $d = 1$ and n number of terms
	$S_n = \frac{n}{2} [2(1) + (n-1)(1)] = \frac{n}{2} (n+1)$
	As the elements of the sets are multiples of 5,
	Last element of $M_n = 5 \times \frac{n}{2}(n+1) = \frac{5}{2}n(n+1)$ (Proven)

(a)(ii)	The elements in M_{n+1} follow an AP with
---------	---

first term =
$$\frac{5}{2}n(n+1)+5$$
,

common difference = 5, and n+1 number of terms.

Hence, sum of all the elements in M_{n+1}

Hence, sum of an the elements in
$$M_{n+1}$$

$$= \frac{n+1}{2} \left(\frac{5n(n+1)}{2} + 5 + \frac{5(n+1)(n+2)}{2} \right)$$

$$= \frac{n+1}{2} \left(\frac{5(n+1)}{2} (2n+2) + 5 \right)$$

$$= \frac{5}{2} (n+1)(n^2 + 2n + 2) \text{ or } \frac{5}{2} (n+1) \left[(n+1)^2 + 1 \right]$$

(b)(i) It is a GP with
$$r = 1.15$$

$$a(1.15)^3 = 150$$

$$a = \frac{150}{1.15^3} = 98.627$$

$$S_6 = \frac{98.627(1.15^6 - 1)}{1.15 - 1} = 863.35$$

Hence, David will take 863s (or14 mins 23s) to run 2.4km.

(b)(ii) The time taken for Tommy to run each round is equivalent to a GP with
$$a = 100$$
, $r = 1.1$ and $n = 6$.

Time taken for Tommy to run 2.4km

$$=\frac{110(1.1^6-1)}{1.1-1}=848.72$$

Since 848.72 + 60 > 863.35,

Tommy will not complete the 2.4km run before David.

$$|12(i)|$$
 $|iz-1-12i|=5$

$$|i||z-12+i|=5$$
 $\Rightarrow |z-(12-i)|=5$

$$\tan \theta = \frac{5}{12}, \implies \theta = 0.39491$$

$$BC = 12\sin(0.39491) \qquad \Rightarrow BC = 4.6167$$

$$AC = 12\cos(0.39491)$$
 $\Rightarrow AC = 11.0764$

$$z_1 = (12 - BC) + i(12 - AC)$$

$$z_1 = 7.38 + 0.924i$$

$$z_2 = (12 + BC) + i(12 - AC)$$

$$z_2 = 16.6 + 0.924i$$

Alternatively,

$$(x-12)^2 + (y-12)^2 = 12^2 --(1)$$

$$(x-12)^2 + (y+1)^2 = 5^2$$
 --(2)

$$(1)-(2)$$

$$(y-12)^2 - (y+1)^2 = 144-25$$

$$y = \frac{12}{13}$$

subst
$$y = \frac{12}{13}$$
 into (1):

$$x = \frac{96}{13}$$
 or $\frac{216}{13}$

$$z_1 = \frac{96}{13} + \frac{12}{13}i$$
 and $z_2 = \frac{216}{13} + \frac{12}{13}i$

(iii)
$$a = 12, b = -10.2$$

(iv) min arg
$$(w-30-12i) = -[\pi - \tan^{-1}(12/18)]$$

= -2.55rad