CS/SE 4X03 — Assignment 1

21 September, 2021

Due date: 1 October

Instructions

- If you write your solutions by hand, please ensure your handwriting is legible. We may subtract marks for hard-to-read solutions.
- Submit to Avenue a **PDF** file containing your solutions and the **required** MATLAB files.

Assignments in other formats, e.g. IMG, PNG, will not be marked.

Name your MATLAB files **exactly** as specified.

- Name your PDF file Lastname-Firstname-studentnumber.pdf.
- Submit only what is required.
- Do not submit zipped files. We will **ignore any compressed file** containing your files.

Problem 1 [2 points]

Solution.

• a+b+c, (a+b)+c

a+b+c evaluates to (a+b)+c, as the evaluation is from left to right. a+b evaluates to a. This can be checked by a+b==a, which gives true.

```
(a+b)+c is the same as a+c.
```

In decimal, a+c = -1.10714946411818e+17+1.107149464118181e+17 = 100, but MATLAB gives 96.

If we output a and c to say 18 digits, e.g.

```
>> fprintf("%.18e\n",a)
-1.107149464118180000e+17
>> fprintf("%.18e\n",c)
1.107149464118180960e+17
```

it appears a is the same after the conversion decimal to binary to decimal, while c is not. So a has roundoff in the conversion to binary. Then

-1.107149464118180000e+17+1.10714946411<mark>81809</mark>60e+17 gives 96

• a+(b+c)

b+c is the same as c. Then this expression evaluates to a+c, which is 96 as above.

• (a+c)+b (a+c)+b evaluates to 96+b = 95.196036565001179

• a+(c+b) is the same as a+c.

Which is the most accurate result from abve (not required for this problem)? The exact a+c is 100. From it we subtract 0.839634349988262, which gives 99.160365650011738, so 96 is the more accurate one.

Problem 2 [7 points]

Solution.

a. Take e.g. a = 5.001 and b = 5.002. a + b = 5.001 + 5.002 = 10.003 which after rounding is 1.000×10^{1} . Then $1.000 \times 10^{1}/2$ is 5.000.

b. $a = 1.234 \times 10^{10}, b = 5.555, c = 1.002 \times 10^{-5}.$

Then

 $a*b=6.8487\times 10^{10}$ rounds to 6.849×10^{10} , and $(a*b)*c=6.849\times 10^{10}\times 1.002\times 10^{-5}=6.862\,698\times 10^{5}$ rounds to 6.863×10^{5} .

 $b*c = 5.566\,11 \times 10^{-5}$ rounds to 5.566×10^{-5} and $a*(b*c) = 1.234 \times 10^{10} \times 5.566 \times 10^{-5} = 6.868\,444 \times 10^{5}$ rounds to 6.868×10^{5}

c.
$$a = 1, b = 2.000 \times 10^{-4}, c = 4.000 \times 10^{-4}$$

Then

a+b=1.0002, which rounds to 1, and $(a+b)+c=1+4.000\times 10^{-5}$ rounds to 1. $b+c=6.000\times 10^{-4}$ and $a+(b+c)=1.0000+6.000\times 10^{-4}=1.0006$ rounds to 1.001

d. If no overflow occurs

$$2a \le a + b \le 2b$$

$$2a = \text{fl}(2a) \le \text{fl}(a+b) \le \text{fl}(2b) = 2b$$

$$a \le \text{fl}(a+b)/2 = \text{fl}((a+b)/2) \le b$$

Problem 3 [8 points]

Solution.

expsum1

1				
X	accurate	approx.	abs. error	rel. error
-20.0	2.061153622439e-09	5.621884472130e-09	3.56e-09	1.73e+00
-15.0	3.059023205018e-07	3.059094197302e-07	7.10e-12	2.32e-05
-10.0	4.539992976248e-05	4.539992962303e-05	1.39e-13	3.07e-09
-5.0	6.737946999085e-03	6.737946999084e-03	1.43e-15	2.13e-13
-1.0	3.678794411714e-01	3.678794411714e-01	1.11e-16	3.02e-16
1.0	2.718281828459e+00	2.718281828459e+00	0.00e+00	0.00e+00
5.0	1.4841 <mark>31591026</mark> e+02	1.484131591026e+02	5.68e-14	3.83e-16
10.0	2.202646579481e+04	2.202646579481e+04	7.28e-12	3.30e-16
15.0	3.269017372472e+06	3.269017372472e+06	9.31e-10	2.85e-16
20.0	4.851651954098e+08	4.851651954098e+08	5.96e-08	1.23e-16

expsum2

X	accurate	approx.	abs. error	rel. error
-20.0	2.061153622439e-09	2.061153622439e-09	4.14e-25	2.01e-16
-15.0	3.059023205018e-07	3.059023205018e-07	1.06e-22	3.46e-16
-10.0	4.539992976248e-05	4.539992976248e-05	1.36e-20	2.99e-16
-5.0	6.737946999085e-03	6.737946999085e-03	2.60e-18	3.86e-16

-1.0	3.678794411714e-01	3.678794411714e-01	5.55e-17	1.51e-16
1.0	2.718281828459e+00	2.718281828459e+00	0.00e+00	0.00e+00
5.0	1.484131591026e+02	1.484131591026e+02	5.68e-14	3.83e-16
10.0	2.202646579481e+04	2.202646579481e+04	7.28e-12	3.30e-16
15.0	3.269017372472e+06	3.269017372472e+06	9.31e-10	2.85e-16
20.0	4.851651954098e+08	4.851651954098e+08	5.96e-08	1.23e-16
expsum3				
Х	accurate	approx.	abs. error	rel. error
-20.0	2.061153622439e-09	8.940696716309e-08	8.73e-08	4.24e+01
-15.0	3.059023205018e-07	3.057066351175e-07	1.96e-10	6.40e-04
-10.0	4.539992976248e-05	4.539992369246e-05	6.07e-12	1.34e-07
-5.0	6.737946999085e-03	6.737946999081e-03	4.32e-15	6.41e-13
-1.0	3.678794411714e-01	3.678794411714e-01	0.00e+00	0.00e+00
1.0	2.718281828459e+00	2.718281828459e+00	0.00e+00	0.00e+00
5.0	1.484131591026e+02	1.484131591026e+02	5.68e-14	3.83e-16
10.0	2.202646579481e+04	2.202646579481e+04	7.28e-12	3.30e-16
15.0	3.269017372472e+06	3.269017372472e+06	9.31e-10	2.85e-16
20.0	4.851651954098e+08	4.851651954098e+08	5.96e-08	1.23e-16

I will explain this output in class.

Problem 4 [6 points] 2.2 GHz Quad-Core Intel Core i7

Memory required: 3914K.

LINPACK benchmark Single precision

Digits: 6

Array size 1000 X 1000.

Average rolled and unrolled performance:

Reps	Time(s)	DGEFA	DGESL	OVERHEAD	MFLOPS	GFLOPS
 16	0.55	 93.53%	0.77%	 5.70%	5200.599	5.201
32		93.50%	0.85%		5119.632	5.120
64	2.35	93.64%	0.83%	5.53%	4837.643	4.838
128	4.76	93.56%	0.82%	5.62%	4779.691	4.780
256	9.15	93.56%	0.79%	5.65%	4971.453	4.971
512	19.06	93.63%	0.76%	5.61%	4771.622	4.772

Memory required: 7824K.

LINPACK benchmark

Double precision

Digits: 15

Array size 1000 X 1000.

Average rolled and unrolled performance:

Reps	Time(s)	DGEFA	DGESL	OVERHEAD	MFLOPS	GFLOPS
 16	0.98	 95.69%	0.84%	3.47%	 2827.190	2.827
32	1.97	95.66%	0.86%	3.48%	2824.665	2.825
64	4.24	95.68%	0.88%	3.44%	2622.924	2.623
128	8.85	95.67%	0.92%	3.42%	2511.276	2.511
256	15.95	95.69%	0.82%	3.49%	2788.855	2.789

Memory required: 15645K.

LINPACK benchmark

long double precision

Digits: 18

Array size 1000 X 1000.

Average rolled and unrolled performance:

Reps	Time(s)	DGEFA	DGESL	OVERHEAD	MFLOPS	GFLOPS
2	0.58	97.73%	0.68%	1.60%	589.918	0.590
4	1.23	97.96%	0.60%	1.45%	554.509	0.555
8	2.47	97.89%	0.61%	1.51%	552.373	0.552
16	4.69	97.87%	0.62%	1.51%	580.605	0.581
32	9.25	97.89%	0.61%	1.49%	589.104	0.589
64	18.97	97.88%	0.62%	1.50%	574.174	0.574

Memory required: 15645K.

LINPACK benchmark

__float128 precision

Digits: 33

Array size 1000 X 1000.

Average rolled and unrolled performance:

Reps	Time(s)	DGEFA	DGESL	OVERHEAD	MFLOPS	GFLOPS
 1	5.41	98.99%	0.54%	0.47%	31.157	0.031
2	10.05	98.97%	0.57%	0.45%	33.509	0.034

Problem 5 [10 points] I will comment in class on this one

Problem 6 [6 points] Compute an accurate sum using vpa See the code.