

Programação Genética baseada em Gramáticas Parte 1/2

Gisele L. Pappa

Introdução

- Em GP, existem 3 propriedades que devem ser respeitadas ao criar um conjunto de funções de um PG, incluindo *fechamento*
- As dificuldades impostas pelo fechamento levaram a criação de novas vertentes dentro da GP:
 - GP restrito a sintaxe
 - GPs baseados em gramáticas

Programação Genética

DCC

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

GP Restrito a Sintaxe

- Para cada função do conjunto de funções, especificar o tipo de dados de seus argumentos e o tipo de dados retornado
- Cada terminal é também associado a um tipo de dados
- Cruzamento e mutação são modificados com respeito a restrições nos tipos de dados

GP Restrito a Sintaxe

Função	Tipo de dados dos	Tipo de dado	
	argumentos	retornado	
+, -, *, /	(real, real)	real	
>, <	(real, real)	boolean	
AND, OR	(boolean, boolean)	boolean	

GP baseada em gramática

- Além de garantir a propriedade de fechamento, permite incorporar ao espaço de busca domínio sobre o problema
- GP baseada em gramática podem ser divididas em 2 grandes classes de acordo com:
 - Tipo de representação utilizado
 - Tipo da gramática utilizada
 - Livre de contexto, lógica, etc

PG baseada em gramática

• Classificação de acordo com a representação

PG baseada em Gramáticas (Tipo 1)

PG Tradicional

Gramática

PG baseada em Gramáticas

Exemplo de Gramática

```
CFG Grammar
                                            Derivation Tree for
<expr> ::= <expr> <op> <expr> |
                                  (1)
                                             expression x+2
          <numb> |
                                  (2)
          <var>
                                                 <expr>
                                  (3)
<op> ::= +
                                  (4)
                                          <expr> <op> <expr>
                                  (5)
<var> ::= x
                                  (6)
                                          <var>
                                                        <numb>
                                  (7)
<numb> ::= 2 |
                                  (8)
```

Derivation Steps followed to produce x+2

Diferenças em relação a PG convencional

• Indivíduos criados através de mutação e crossover devem respeitar as regras de produção da gramática

• Crossover não tem um poder destrutivo

PG baseada em Gramáticas (Tipo 2)

- Indivíduos são normalmente representados por um vetor binário
- Existe um mapeamento do genótipo para o fenótipo baseado em processos biológicos

Mapeamento inspirado na biologia

Código Genético

C	ódonu	C	A	\mathbf{G}	
U	UUU) Phe	UCU - Ser	UAU - Tyr	UGU - Cys	U
	UUC - Phe	UCC - Ser	UAC - Tyr	UGC - Cys	\mathbf{C}
	UUA - Leu	UCA - Ser	UAA - Stop	UGA - Stop	A
	UUG - Leu	UCG - Ser	UAG - Stop	UGG - Trp	\mathbf{G}
C	CUU - Leu	CCU - Pro	CAU - His	CGU - Arg	U
	CUC - Leu	CCC - Pro	CAC - His	CGC - Arg	\mathbf{C}
	CUA - Leu	CCA - Pro	CAA - Gln	CGA - Arg	A
	CUG - Leu	CCG - Pro	CAG - Gln	CGG - Arg	\mathbf{G}
A	AUU - Ile	ACU - Thr	AAU - Asn	AGU - Ser	U
	AUC - Ile	ACC - Thr	AAC - Asn	AGC - Ser	\mathbf{C}
	AUA - Ile	ACA - Thr	AAA - Lys	AGA - Arg	A
	AUG - Met	ACG - Thr	AAG - Lys	AGG - Arg	\mathbf{G}
G	GUU - Val	GCU - Ala	GAU - Asp	GGU - Gly	U
	GUC - Val	GCC - Ala	GAC - Asp	GGC - Gly	\mathbf{C}
	GUA - Val	GCA - Ala	GAA - Glu	GGA - Gly	A
	GUG - Val	GCG - Ala	GAG - Glu	GGG - Gly	G

• Degeneração de código genético (diferentes códons mapeiam o mesmo aminoácido)

Code	Name	Code	Name
Phe	Phenylalanine	Leu	Leucine
\mathbf{Tyr}	Tyrosine	Cys	Cysteine
\mathbf{Trp}	Tryptophan	Pro	Proline
$_{ m His}$	Histidine	Gln	Glutamine
\mathbf{Arg}	Arginine	Ile	Isoleucine
Met	Methionine	Thr	Threonine
\mathbf{Asn}	Asparagine	Lys	Lysine
\mathbf{Ser}	Serine	Val	Valine
\mathbf{A} la	Alanine	Asp	Aspartic Acid
\mathbf{Glu}	Glutamic Acid	Gly	Glycine

Código Genético

GENETIC CODE PARTIAL PHENOTYPE **GE Codon** Regra GE (8 bits) Codon Amino Acid (Protein Component) (A group of 3 Nucleotides) 0000010 GGCGGA 00010010 line> Glycine GGG00100010

- Valor do códon de um GE mod número de regras determina o número da regra

Exemplo de Mapeamento

001010110110110100101100010001 Indivíduo

Gramática

$$A < seq > ::= < vowel > (0)$$

$$| < seq > < vowel > (1)$$

Processo de Decodificação

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

Mapeamento

- O que acontece se eu termino de ler o genótipo e meu indivíduo ainda apresenta não-terminais?
 - Uso o conceito de "wrapping"
 - Reaproveitamento de material genético (inspirado na sobreposição de genes, comum em bactérias)

Implicações da Degeneração de Código Genético

- Aparecimento de mutações neutras
- Variações no genótipo não tem efeito no fenótipo

\sim					
	U	\mathbf{C}	\mathbf{A}	\mathbf{G}	
\mathbf{U}	UUU - Phe	UCU - Ser	UAU - Tyr	UGU - Cys	U
	UUC - Phe	UCC - Ser	UAC - Tyr	UGC - Cys	\mathbf{C}
	UUA - Leu	UCA - Ser	UAA - Stop	UGA - Stop	A
	UUG - Leu	UCG - Ser	UAG - Stop	UGG - Trp	G
\mathbf{C}	CUU - Leu	CCU - Pro	CAU - His	CGU - Arg	U
	CUC - Leu	CCC - Pro	CAC - His	CGC - Arg	\mathbf{C}
	CUA - Leu	CCA - Pro	CAA - Gln	CGA - Arg	A
	CUG - Leu	CCG - Pro	CAG - Gln	CGG - Arg	\mathbf{G}
A	AUU - Ile	ACU - Thr	AAU - Asn	AGU - Ser	U
	AUC - Ile	ACC - Thr	AAC - Asn	AGC - Ser	\mathbf{C}
	AUA - Ile	ACA - Thr	AAA - Lys	AGA - Arg	A
	AUG - Met	ACG - Thr	AAG - Lys	AGG - Arg	G
\mathbf{G}	GUU - Val	GCU - Ala	GAU - Asp	GGU - Gly	U
	GUC - Val	GCC - Ala	GAC - Asp	GGC - Gly	\mathbf{C}
	GUA - Val	GCA - Ala	GAA - Glu	GGA - Gly	A
	GUG - Val	GCG - Ala	GAG - Glu	GGG - Gly	\mathbf{G}

Representação

- Trabalha com vetores de bits de tamanho variável
- Ao gerar a população inicial, determina um número máximo de códons que cada indivíduo pode ter

Operadores Genéticos

- Mutação de um ponto
- Crossover de um ponto
- Duplicação de códons
 - Selecionados aleatoriamente e inseridos antes do último códon

Principais características de Evolução Gramatical

- Separa o genótipo do fenótipo
- Degeneração de código genético
 - Ajuda a manter a diversidade da população
 - Ajuda a preservar a funcionalidade dos programas através de mutações neutras
- Operador wrapping
 - Reusar código genético

Críticas (Problemas)

- Como no GP, não existe semântica
- Cruzamento não faz muito sentido
 - Estaremos trocando bits que não fazem referência alguma a gramática
 - Operador *wrap* também faz com que o efeito do cruzamento seja amplificado
- Não existe localidade nos operadores, característica importante em EAs

Leitura Recomendada

- O'Neil M., Ryan C. *Automatic Generation of Programs with Grammatical Evolution*. In Proceedings of AICS 1999, pages 72-78.
- P. A. Whigham, Grammatically-based Genetic Programming, Proc. of the Workshop on Genetic Programming: From Theory to Real-World Applications, 1995, pages 33-41.

Mais informações

http://www.grammatical-evolution.org/

Programação Genética baseada em Gramáticas Parte 1/2

Gisele L. Pappa

