Momentum Practice

1 Fill in the blanks in these sentences.

Use the words N, momentum, velocity, resultant force, second, multiply.

measures how hard it is to start or stop something moving.

If a trolley has $100\,\mathrm{kg}$ m/s of momentum, then it will need a $100\,\mathrm{to}$ stop it in one

To calculate the momentum, you the mass by the

2 Calculate the momentum of a 0.15 kg tennis ball served at 40 m/s.

- 3 Calculate the momentum of a $150\,000$ kg whale swimming at 6 m/s.
- 4 Calculate the momentum of
 - (a) a 75 kg jogger running at 2.5 m/s,
 - (b) a 25 kg child running at 2.5 m/s,
 - (c) a 75 kg cyclist riding at 7.0 m/s.
- Look at your answers to question 4 and complete these sentences. Use the words mass, velocity, harder, easier, higher and lower.
 - (a) The cyclist is _____ to stop than the jogger because they have a _____
 - (b) The child is _____ to stop than the jogger because they have a _____.
- 6 For each pair, work out which one is harder to stop in terms of force.
 - (a) A $250~{\rm kg}$ tiger running at $20~{\rm m/s}$ or an $3000~{\rm kg}$ elephant walking at $0.6~{\rm m/s}$.
 - (b) A 3000 kg jet at 500 m/s or a 20 000 000 kg ship at 11 m/s.
 - (c) A $300 \, \mathrm{kg}$ horse at $15 \, \mathrm{m/s}$ or a $90 \, \mathrm{kg}$ ski jumper at $25 \, \mathrm{m/s}$.

7	A loaded supermarket trolley requires a 45 N force to stop it in one second.
	(a) Write down the momentum of the trolley when it was moving.

- 8 A rising fish has 18 kg m/s of momentum.
 - (a) If its mass is 12 kg, how fast is it going?
 - (b) How much resultant force was needed to start the motion in one second?
- 9 A loaded supermarket trolley requires a 60 N force to stop it in one second.
 - (a) Write down the momentum of the trolley when it was moving.
 - (b) The velocity was 0.8 m/s. Work out the mass of the trolley using an equation momentum (kg m/s) = mass (kg) \times velocity (m/s) = 60 = \times 0.8
- 10 Complete the word equations using **momentum**, **mass** and **velocity**.

 (a) momentum=
 (b) velocity =
 (c) mass =
- 11 Complete the equation for working out the force needed to stop a moving object.

$$\mathsf{force} = igsquare$$

- 12 A 75 kg passenger is riding in a tram at 6 m/s.
 - (a) How much force is needed to stop them in one second?
 - (b) How much force would be needed to stop them in two seconds?

