

"Ciencia de datos aplicada al estudio de la Obesidad y otras enfermedades crónicas en Córdoba"

Por:

Basmadjian, Osvaldo Martín Fernández, María Emilia Romero, Fernando

Mentoras:

Laura Aballay Eugenia Haluszka

DESCRIPCIÓN DEL PROBLEMA: obesidad

PREVALENCIA DE LA PATOLOGÍA

ETIOLOGÍA Y PATOFISIOLOGÍA

¿Cómo abordar estos factores de manera integral?

PRÁCTICO 1: Análisis y visualización de datos (1/4)

Objetivo general y alcances:

- Conocer las principales características de nuestra población, y su distribución entre subgrupos.
- Plantear posibles relaciones entre variables a través de visualizaciones adecuadas.

Población de estudio Adultxs del Gran Córdoba

PRÁCTICO 1: Características generales de la población estudiada (2/4)

Barplot para el conteo de la variable categórica "sexo"

Hubo más mujeres encuestadas

Histograma de probabilidad de la variable discreta "edad"

Adultxs entre 18 y 93 años La mayoría de los encuestadxs tiene entre 20-25 años

PRÁCTICO 1: Análisis univariado (3/4)

¡Hubiera sido mejor construir los barplots en porcentaje para facilitar la comparación entre sexos!

PRÁCTICO: Análisis bivariado (4/4)

Heatmap para la relación entre dos variables categóricas

edad vs índice de masa corporal

Scatterplot para la relación entre dos variables continuas

Boxplot entre una variable

↓ Correlación en mujeres

(†riesgo cardiovascular a == cc similares a los hombres)

PRÁCTICO 2: Curación de datos (1/3)

Objetivos y alcances:

Generar un set de datos apto para ser utilizado para el entrenamiento y aprendizaje de modelos en las materias siguientes.

PRÁCTICO 2: Curación de datos (2/3)

Análisis e imputación de variables

Análisis de integridad de los datos

normalización de observaciones inconsistentes la variable "cancer"

- Valor en variables de tumor benigno o maligno
- Tipo de cáncer

PRÁCTICO 2: Curación de datos (3/3)

IMC
mets (actividad física)
fgrs2 (grasas insaturadas)

Eliminamos valores extremos de obesidad

Normalización de los tipos de datos

Verificación de tipo de datos correcto para variables continuas, categóricas y de tiempo.

Reducción al tipo de dato que ocupe el menor tamaño posible

Optimizamos e tamaño del dataset

PRÁCTICO 3: Aprendizaje Supervisado(1/4)

Objetivos:

- Definir la variable target, en este caso IMC (Índice de masa corporal).
- Determinar los factores que puedan ayudar a predecir la presencia de obesidad en la población.
- Predecir de forma automática la presencia de obesidad en todo el dataset completo, como así discriminando por sexos.

Para llevar a cabo el objetivo, determinamos la Target como:

- Presencia de obesidad = IMC > 29.9 kg/m2
- Ausencia de obesidad = IMC < 29.9 kg/m2

PRÁCTICO 3: Aprendizaje Supervisado(2/4)

Selección de features:

- Del total de 239 features, seleccionamos un total de entre 15 y 20 features para realizar el análisis y predicción.
- Las features seleccionadas mostraron alguna relación con la variable target.
- Seleccionamos diferentes features dependiendo sobre qué dataset se quería trabajar, sea el completo, la población de mujeres o de hombres.
- En general las features seleccionadas tienen que ver con:
 - Los niveles de actividad física.
 - La alimentación.
 - Enfermedades previas presentes en la persona.

PRÁCTICO 3: Aprendizaje Supervisado(3/4)

Modelos de Clasificación:

- Los modelos que consideramos para realizar el entrenamiento del dataset fueron:
 - Descenso de Gradiente Estocástico.
 - Naive Bayes.
 - Regresión Logística.
 - Árboles de decisión.
 - K Vecinos más cercanos.
- En base a todos esos modelos, se realizó el entrenamiento y el ajuste de hiperparámetros, tomando siempre como objetivo la métrica "Accuracy"

PRÁCTICO 3: Aprendizaje Supervisado(4/4)

Resultados:

	D	escenso de Gra	Arbol de Desicion Poblacion Hombres			
	Poblacion Total				Poblacion Mujeres	
	Train	Test	Train	Test	Train	Test
Accuracy	0.82	0.91	0.82	0.91	0.90	0.90
Precision	0.34	0.73	0.34	0.73	0.70	0.67
Recall	0.20	0.60	0.20	0.60	0.66	0.73
F1 Score	0.25	0.66	0.25	0.66	0.68	0.70
True Negatives	1438	370	1438	370	965	237
False Negatives	214	27	214	27	66	13
True Positives	53	40	53	40	129	36
False Positives	103	15	103	15	55	18

- Tanto para la población completa como para las mujeres, se observó una mejora significativa en la accuracy del modelo.
- Mientras que para hombres, no fue así, llevándonos a pensar que accuracy no haya sido la mejor métrica para este conjunto de datos.

PRÁCTICO 4: Aprendizaje Supervisado(1/4)

Objetivos:

- Definir la variable target, en este caso HTA (Presencia de Hipertensión Arterial).
- Determinar los factores que puedan ayudar a predecir la presencia de hipertensión en la población.
- Predecir de forma automática la presencia de hipertensión en todo el dataset completo, y además sólo en mujeres.

La variable target ya se encontraba clasificada en:

- Presencia de hipertensión. HTA = 1.
- Ausencia de hipertensión. HTA = 0.

PRÁCTICO 4: Aprendizaje Supervisado(2/4)

Selección de features:

- Del total de 239 features, seleccionamos 27 para este análisis.
- Las features seleccionadas mostraron alguna relación directa con la variable target.
- Para este análisis decimos seleccionar las mismas features para el análisis de la población entera como de mujeres.
- En general las features seleccionadas tienen que ver con:
 - Alimentación.
 - Estrés.
 - Niveles de actividad física.

PRÁCTICO 4: Aprendizaje Supervisado(3/4)

Modelos de Clasificación:

- Los modelos que consideramos para realizar el entrenamiento del dataset fueron:
 - Descenso de Gradiente Estocástico.
 - Multinomial Naive Bayes.
 - Perceptron.
 - Árboles de decisión.
 - K Vecinos más cercanos.
 - Dummy Classifier
- Además utilizamos los siguientes meta-modelos:
 - Random Forest.
 - Voting Classifier.
- En base a todos esos modelos, se realizó el entrenamiento y el ajuste de hiperparámetros, tomando siempre como objetivo la métrica "Accuracy"

PRÁCTICO 4: Aprendizaje Supervisado(4/4)

Resultados:

	Random Forest						
	Poblacio	n Mujeres	Poblacion Todos				
	Train	Test	Train	Test			
Accuracy	0.77	0.77	0.71	0.72			
Precision	0.82	0.81	0.76	0.77			
Recall	0.87	0.87	0.83	0.84			
F1 Score	0.84	0.84	0.79	0.80			
True Negatives	288	289	439	447			
False Negatives	41	40	88	80			
True Positives	63	66	139	134			
False Positives	76	73	119	124			

- Cometimos un error en seleccionar accuracy como métrica
- F1 score sería una mejor elección, considerando la distribución desigual de la variable target.

GRACIAS POR SU ATENCIÓN!!!