MAT 473: Intermediate Real Analysis II

Trey Manuszak Arizona State University March 27, 2020 **Problem 29.** Let $f:[a,b] \to \mathbb{R}$ and let $c \in [a,b]$. Recall that the oscillation of f at c is the quantity

$$\operatorname{osc}(f, c) = \lim_{r \to 0^+} \left(\sup_{x, y \in B_r(c) \cap [a, b]} |f(x) - f(y)| \right).$$

Prove that f is continuous at c if and only if osc(f, c) = 0.

Proof. Let $f:[a,b] \to \mathbb{R}$ and $c \in (a,b)$.

 (\Longrightarrow) : Let f be continuous at c. Let $\epsilon > 0$ be arbitrary but fixed. Then, there exists r > 0 such that for $x, y \in B_r(c)$, we have $|f(x) - f(c)| < \frac{\epsilon}{2}$ and $|f(y) - f(c)| < \frac{\epsilon}{2}$, which from the triangle inequality implies

$$|f(x) - f(y)| \le |f(x) - f(c)| + |f(y) - f(c)| < \epsilon.$$

Thus,

$$\lim_{r \to 0^+} \left(\sup_{x, y \in B_h(c) \cap [a, b]} |f(x) - f(y)| \right) \le \epsilon \quad \text{if} \quad h < r.$$

This implies $\operatorname{osc}(f, c) = 0$.

 (\Leftarrow) : Let $\operatorname{osc}(f,c)=0$ and $\epsilon>0$ be arbitrary but fixed. Then,

$$\lim_{r \to 0^+} \left(\sup_{x, y \in B_r(c) \cap [a, b]} |f(x) - f(y)| \right) < \epsilon$$

for some r > 0. So, $|f(x) - f(y)| < \epsilon$ if $x, y \in B_r(c)$. If c = y, then $|f(x) - f(c)| < \epsilon$. Therefore, f is continuous at c.

This argument is similar if c = a or c = d.

Problem 30. Let f be as in the previous problem, and let L > 0. Prove that the set $\{z \in [a,b] : \operatorname{osc}(f,z) \geq L\}$ is a closed set.

Proof. Let $f:[a,b] \to \mathbb{R}$ and L > 0. Define $A = \{z \in [a,b] : \operatorname{osc}(f,z) \ge L\}$. Notice that $A^c = (-\infty,a) \cup \{z \in [a,b] : \operatorname{osc}(f,z) < L\} \cup (b,\infty)$. Then we have the following cases.

Case 1: Let $c \in (-\infty, a) \cup (b, \infty)$. Then, since $(-\infty, a) \cup (b, \infty)$ is open, then there exists $r_0 > 0$ such that $B_{r_0}(c) \subseteq A^c$.

<u>Case 2:</u> Let $c \in \{z \in [a, b] : \operatorname{osc}(f, z) < L\}$. Then, there must exist $\delta > 0$ such that for all $r \in (0, \delta)$, then

$$\sup_{x,y \in B_r(c) \cap [a,b]} |f(x) - f(y)| < L.$$

Let $d \in [a, b]$. Fix $r \in (0, \delta)$. Let $d \in B_{\frac{r}{2}}(c)$. Clearly, if $d \notin [a, b]$, then we have $d \in (-\infty, a) \cup (b, \infty) \subseteq A^c$. Suppose $d \in [a, b]$. Let $x \in B_{\frac{r}{2}}(d) \cap [a, b]$. This gives us

$$|x-c| \le |x-d| + |c-d|$$
 (By triangle inequality)
$$< \frac{r}{2} + \frac{r}{2}$$

So, $x \in B_r(c)$, which implies $B_{\frac{r}{2}}(d) \subseteq B_r(c)$. Thus,

$$\sup_{x,y \in B_{\frac{r}{b}}(d) \cap [a,d]} |f(x) - f(y)| \le \sup_{x,y \in B_r(c) \cap [a,b]} |f(x) - f(y)|. \tag{1}$$

We now have,

$$\operatorname{osc}(f,d) = \lim_{r \to \infty} \left(\sup_{x,y \in B_{\frac{r}{2}}(d) \cap [a,d]} |f(x) - f(y)| \right) \quad \text{(Definition of oscillation of } f \text{ at } d)$$

$$\leq \lim_{r \to \infty} \left(\sup_{x,y \in B_r(c) \cap [a,b]} |f(x) - f(y)| \right) \quad \text{(By (1))}$$

$$= \operatorname{osc}(f,c) \quad \text{(Definition of oscillation of } f \text{ at } c)$$

$$< L.$$

Thus, $d \in A^c$, which implies $B_{\frac{r}{2}}(c) \subseteq A^c$.

Therefore, in both cases, we have that A^c is open, which implies that A is closed.

Problem 31. Let [c,d] be a closed bounded interval, and let $(a_1,b_1),\ldots,(a_n,b_n)$ be open intervals such that $[c,d] \subseteq \bigcup_{i=1}^n (a_i,b_i)$. Prove that $d-c < \sum_{i=1}^n (b_i-a_i)$. (Hints: choose i_1 so that $c \in (a_{i_1},b_{i_1})$. If $b_{i_1} \leq d$ choose i_2 so that $b_{i_1} \in (a_{i_2},b_{i_2})$. Explain why in the continuation of this process there must be $k \leq n$ such that $d \in (a_{i_k},b_{i_k})$.)

Proof. Let C = [c, d] be a closed bounded interval and $A_1 = (a_1, b_1), \ldots, A_n = (a_n, b_n)$ be open intervals such that $[c, d] \subseteq \bigcup_{i=1}^n A_i$. Let $\epsilon > 0$ be arbitrary but fixed. Choose j such that $Q_j = (q_j, p_j) \supseteq A_j$ with $p_j - q_j \le (1 + \epsilon) |b_j - a_j|$. Since $\bigcup_{j=1}^{\infty} Q_j$ is an open cover of the compact set [c, d], there exists a finite subcover $[c, d] \subseteq \bigcup_{i=1}^N Q_j$. By taking the closure of each Q_j , we have $d - c \le \sum_{j=1}^N (p_j - q_j)$. As a result, we have

$$d - c \le (1 + \epsilon) \sum_{j=1}^{N} (b_j - a_j).$$

Since $\epsilon > 0$, then we have the strict inequality $d - c < \sum_{j=1}^{N} (b_j - a_j)$.

Problem 32. For this exercise you must recall the definition and properties of *Lebesgue* outer measure from the notes. Let $A, B \subseteq \mathbb{R}$, and suppose that $m^*(A) = 0$. Prove that $m^*(A \cup B) = m^*(A) + m^*(B)$.

Proof. Let $A, B \subseteq \mathbb{R}$ and $m^*(A) = 0$. By Theorem 15.3 (2), we have $m^*(A \cup B) \le m^*(A) + m^*(B)$. Also,

$$m^*(A) + m^*(B) = 0 + m^*(B)$$
 (By monotonicity of the outer measure)
= $m^*(B)$
 $\leq m^*(A \cup B)$.

So, since $m^*(A) + m^*(B) \le m^*(A \cup B)$ and $m^*(A \cup B) \le m^*(A) + m^*(B)$, then we must have $m^*(A \cup B) = m^*(A) + m^*(B)$.