Midterm 2

John Hynes CMPS 130 Spring — Tantalo

May 19, 2016

These are problems include some of the examples and exercises stated in class. Homework problems from hw4 through hw6 should also be considered good review problems.

Problem 1. Let $L \subseteq \{a, b\}^*$ correspond to the regular expression $(a + b)^*aa(a + b)^*$.

- a. Give a verbal description of L.

 All strings containing the substring aa.
- b. Draw an NFA with no λ -transitions accepting L.

c. Use the subset construction to obtain a DFA accepting L. Label the states in your DFA so as to make its relation to the NFA clear.

d. Show that $\{\lambda, a, aa\}$ is a pairwise L-distinguishable set. Explain why no DFA with fewer than three states will accept L.

Proof.

Two strings are L-distinguishable if there is a string z that can be concatenated to make one included in the language and the other not. For the pair $\{\lambda, a\}$, let z = a, then $\lambda z = \lambda a \notin L$ and $az = aa \in L$, therefore the pair is L-distinguishable. For the pair $\{\lambda, aa\}$, let $z = \lambda$, then $\lambda z = \lambda \lambda \notin L$ and $aaz = aa\lambda \in L$, therefore the pair is L-distinguishable. For the pair $\{a, aa\}$, let $z = \lambda$, then $az = a\lambda \notin L$ and $aaz = aa\lambda \in L$, therefore the pair is L-distinguishable. Since all three strings are L-distinguishable, we have shown that L has 3 equivalences classes. We claim that the equivalence classes of I_L are the set $\{\lambda, a, aa\}$. The class of $[\lambda]$ includes all strings not ending in a and not containing aa. The class of [a] contains all strings ending in a that do not contain aa. The class of [aa] contains all the strings that are accepted by the language. Each equivalence classes, there must be at least as many states.

No 2 of these strings can go to the same state by the function

$$\delta^*(q_0,\cdot): \{a,b\}^* \to Q$$

Suppose: $\delta^*(q_0, \lambda) = \delta^*(q_0, a)$

 $\delta^*(\delta^*(q_0,\lambda),a) = \delta^*(\delta^*(q_0,a),a)$

 $\therefore \delta^*(q_0, a) = \delta^*(q_0, aa)$

which is a contradiction because the LHS $\notin A$ and RHS $\in A$. $\therefore \delta^*(q_0, \lambda) \neq \delta^*(q_0, a)$.

e. Show that λ and b are L-indistinguishable.

Proof. Let z = aa. $\lambda z = aa \in L$. $bz = baa \in L$. Since there exists a substring which allows both strings to be accepted, they are indistinguishable in L.

f. Draw a DFA with only three states accepting L. (Either run the state minimization algorithm on your DFA in (c), or just eyeball it.)

Problem 2. Let L_1 and L_2 be regular languages over Σ . Show that $L_1 \cap L_2$ is also regular. (Hint: This is hard to prove directly from the definition of regular language. Instead use some of the theorems we have proved in chapters 2 and 3.)

Proof. Kleene's Theorem says that every every regular language can be accepted by an FA. By Theorem 2.15, suppose $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$ and $M_2 = (Q_2, \Sigma, q_2, A_2, \delta_2)$ are finite automata accepting L_1 and L_2 , respectively. For every $p \in Q_1$, every $q \in Q_2$, if $A = \{(p,q)|p \in A_1 \land q \in A_2\}$, then there is an FA that accepts $L_1 \cap L_2$, and if a language is accepted by an FA, then it is regular, by Kleene's Theorem.

Problem 3. Let $M = (Q, \Sigma, q_0, A, \delta)$ be an NFA, and let $S_1 \subseteq S_2 \subseteq Q$.

- a. Write the recursive definitions of $\lambda(S_1)$ and $\lambda(S_1)$.
 - 1. $S_1 \subseteq \lambda(S_1)$.
 - 2. For every $q \in \lambda(S_1)$, $\delta(q, \lambda) \subseteq \lambda(S_1)$.
 - 1. $S_2 \subseteq \lambda(S_2)$.
 - 2. For every $q \in \lambda(S_2)$, $\delta(q, \lambda) \subseteq \lambda(S_2)$.
- b. Show that $\lambda(S_1) \subseteq \lambda(S_2)$ using structural induction.

Proof.
$$\lambda(S_1) \subseteq \lambda(S_2)$$

- I. If there are no λ -transitions, $S_1 = \lambda(S_1), S_2 = \lambda(S_2)$
- II. For every $q \in S_1$, $\delta(q, \lambda) \subseteq S_1$. For every $p \in S_2$, $\delta(p, \lambda) \subseteq S_2$.

Therefore, $\lambda(S_1) \subseteq \lambda(S_2)$.

Problem 5. State the Pumping Lemma and use it to prove that $L = \{x \in \{a, b\}^* | n_a(x) = n_b(x)\}$ is not accepted by any DFA.

Suppose L is a language over the alphabet Σ . If L is accepted by a finite automaton $M = (Q, \Sigma, q_0, A, \delta)$, and if n is the number of states of M, then for every $x \in L$ satisfying $|x| \geq n$, there are three strings u, v, and w such that x = uvw and the following three conditions are true:

- 1. $|uv| \leq n$.
- 2. |v| > 0 (i.e., $v \neq \Lambda$).
- 3. For every $i \geq 0$, the string uv^iw also belongs to L.

Proof. AeqB is not accepted by an FA.

Let $x = a^n b^n$. Assume for sake of contradiction that $x \in L$ is accepted by a DFA. Since $|uv| \le n$, there are only a's in uv, and all b's are in w. Because |v| > 0, v must contain at least 1 a and no b's. Therefore, if i = 0, then uv^0w removes at least one a and no b's, in which case $n_a(x) < n_b(x)$. If i > 1, then uv^iw adds a's and no b's, in which case $n_a(x) > n_b(x)$. This is a contradiction. Therefore, $L = \{x \in \{a,b\}^* | n_a(x) = n_b(x)\}$ is not accepted by any DFA.

Problem 6. (This is problem 3.31 with the typo in the last sentence fixed.) Let $M = (Q, \Sigma, q_0, A, \delta)$ be a DFA and let $M_1 = (Q, \Sigma, q_0, A, \delta_1)$ be the NFA with no λ -transitions for which $\delta_1(q,\sigma) = \{\delta(q,\sigma)\}$ for every $q \in Q$ and $\sigma \in \Sigma$. Show for all $x \in \Sigma^*$ and $q \in Q$ that $\delta_1^*(q,x) = \{\delta^*(q,x)\}$. In addition also show that $L(M) = L(M_1)$.

Proof.
$$\delta_1^*(q, x) = \{\delta^*(q, x)\}$$

Let $x = y\sigma$. Since there are no λ -transitions, $\delta_1^*(q, \lambda) = \{q\}$ and $\delta_1^*(q, x) = \delta_1^*(q, y\sigma)$ $= \lambda(\cup\{\delta_1(p, \sigma)|p \in \delta_1^*(q, y)\}) \qquad \text{(by definition of } \delta_1^*)$ $= \cup\{\delta_1(p, \sigma)|p \in \delta_1^*(q, y)\}$ $= \{\delta^*(q, x)\}$ Therefore for every $q \in Q$ and $x \in \Sigma^*$, $\delta_1^*(q, x) = {\delta^*(q, x)}.$

Proof. $L(M) = L(M_1)$

$$x \in L(M)$$
 iff $\delta^*(q_0, x) \in A$
iff $\{\delta^*(q_0, x)\} \cap A \neq \emptyset$
iff $\delta_1^*(q_0, x) \cap A \neq \emptyset$
iff $x \in L(M_1)$

Therefore, $L(M) = L(M_1)$.

Problem 7. (This is problem 3.53 on p. 127). Let Σ_1 and Σ_2 be finite alphabets. A function $f: \Sigma_1^* \to \Sigma_2^*$ is called a *homomorphism* if f(xy) = f(x)f(y) for all $x, y \in \Sigma_1^*$. Let f be such a function.

a. Show that $f(\lambda) = \lambda$

Proof.
$$f(\lambda) = \lambda$$

 $f(x) = f(x\lambda) = f(x)f(\lambda)$ for any $x \in \Sigma^*$
 $\therefore |f(x)| = |f(x)f(\lambda)| = |f(x)| + |f(\lambda)|$
 $\therefore |f(\lambda)| = 0$
 $\therefore f(\lambda) = \lambda$

b. The image of $L_1 \subseteq \Sigma_1^*$ under f is the set $f(L_1) = \{f(x) | x \in L_1\} \subseteq \Sigma_2^*$. Show that if L_1 is regular, then $f(L_1)$ is regular. (Hint: use structural induction and the recursive definition of the set of regular languages over Σ_1 .)

```
Proof. b) Show L_1 \in \mathcal{R}_{\Sigma_1} \Rightarrow f(L_1) \in \mathcal{R}_{\Sigma_2}

I. Base lang in \mathcal{R}_{\Sigma_1} are: \emptyset and \{\sigma\} for \sigma \in \Sigma

f(\emptyset) = \emptyset \in \mathcal{R}_{\Sigma_2}

f(\{\sigma\}) = \{f(\sigma)\} is a finite lang. \therefore f(\{\sigma\}) \in \mathcal{R}_{\Sigma_2}

II. Let L_1, L_2, L \in \mathcal{R}_{\Sigma_1}. Assume f(L_1), f(L_2), f(L) \in \mathcal{R}_{\Sigma_2}

We must show f(L_1 \cup L_2), f(L_1L_2), f(L^*) \in \mathcal{R}_{\Sigma_2}

Lemma f(L_1 \cup L_2) = f(L_1) \cup f(L_2) \therefore f(L_1 \cup L_2) \in \mathcal{R}_{\Sigma_2} by ind. hyp.

Lemma f(L_1^*) = f(L_1)^* \therefore f(L_1^*) \in \mathcal{R}_{\Sigma_2} by ind. hyp.
```

c. The preimage of $L_2 \subseteq \Sigma_2^*$ under f is the set $f^{-1}(L_2) = \{x \in L_1 | f(x) \in L_2\} \subseteq \Sigma_1^*$. Show that if L_2 is regular, then $f^{-1}(L_2)$ is regular. (Hint: start with a DFA accepting L_2 then show how to construct from it a DFA accepting $f^{-1}(L_2)$.)

Proof. Show $L_2 \in \mathcal{R}_{\Sigma_2} \Rightarrow f^{-1}(L_2) \in \mathcal{R}_{\Sigma_2}$ By Kleene's Theorem it is sufficient to show that L_2 is accepted by a DFA $\Rightarrow f^{-1}(L_2)$ accepted by DFA Let $M_2 = (Q_2, \Sigma_2, q_2, A_2, \delta_2)$ accept L_2

```
Define M_1=(Q_1,\Sigma_1,q_1,A_1,\delta_1) where Q_1=Q_2,\ q_1=q_2,\ A_1=A_2,\ \delta_1(q,\sigma)=\delta_2^*(q,f(\sigma)) Show: M_1 accepts f^{-1}(L_2) Proof: x\in L(M_1) iff \delta_1^*(q,x)\in A_1 (definition of accept) iff \delta_2^*(q,f(x))\in A_2 (lemma & definition of accept) iff f(x)\in L(M_2)=L_2 (definition of accept) iff x\in f^{-1}(L_2)
```

Problem 8. Let $L \subseteq \Sigma$ and $x, y \in \Sigma$. Write the definitions of xI_Ly and L/x. Prove that xI_Ly if and only if L/x = L/y.

```
Proof. xI_Ly iff L/x = L/y
xI_Ly \text{ iff } \forall z \in \Sigma^* : xz \in L \leftrightarrow yz \in L
\text{iff } \forall z \in \Sigma^* : z \in L/x \leftrightarrow z \in L/y
\text{iff } L/x = L/y
\therefore xI_Ly \text{ if and only if } L/x = L/y
```

Problem 9. Draw an NFA corresponding to the regular expression $(ba)^*(bab + aa)^*$. Draw the computation trees corresponding to the strings babaa, babaaa and babaaabab. Which of these strings are accepted?

All the strings are accepted.

Problem 10. Problem 3.49ab. Note this material will be covered Tuesday before the midterm. You can find it in the proof of Theorem 3.25, and following examples (page 111-114 in the text). It will be included in hw7, which will be due the Tuesday after the midterm.

Figure 3.39 shows FAs M_1 and M_2 accepting languages L_1 and L_2 , respectively. Draw NFAs accepting each of the following languages, using the constructions in the proof of Theorem 3.25.

Figure 3.39

a. $L_2^* \cup L_1$

b. $L_2L_1^*$

