II - Dénombrement

Définition 1 - Ensembles disjoints

E et F sont des ensembles disjoints si $E \cap F = \emptyset$.

Définition 2 - Complémentaire

Si E est un ensemble et F est une partie de E, le complémentaire de F, noté \overline{F} , est l'ensemble des éléments de E qui ne sont pas dans $F: \overline{F} = E \backslash F = \{x \in E \; ; \; x \notin F\}$.

Dans la suite, E désigne un ensemble de cardinal n et F un ensemble de cardinal p au sens des définitions suivantes.

I - Ensembles finis

I.1 - Définitions

Définition 3 - Ensemble fini

L'ensemble E est un ensemble fini si $E = \emptyset$ ou s'il existe un entier $n \in \mathbb{N}^*$ et une application bijective $f : [1, n] \to E$. Sinon, E est un ensemble infini.

Exemple 1

- [1, 5] est en bijection avec [1, 5] donc c'est un ensemble fini.
- $f: [1,8] \to [0,7], x \mapsto x-1$ est bijective. Ainsi, [0,7] est un ensemble fini.
- Plus généralement, soient n, m deux entiers tels que $n \le m$. Les ensembles [1, n] et [n, m] sont des ensembles finis.
- Comme la composée de deux bijections est une bijection,

si E est un ensemble fini et F est en bijection avec E, alors F est un ensemble fini.

Lemme 1

Soient $p, q \in \mathbb{N}^*$. Il existe une bijection de [1, p] dans [1, q] si et seulement si p = q.

Définition 4 - Cardinal

Soient E un ensemble non vide et $p, q \in \mathbb{N}^*$. On suppose que E est en bijection avec $[\![1,p]\!]$ et $[\![1,q]\!]$. Alors, p=q. Cette valeur commune est le *cardinal* de E et est notée |E|. Par convention, $|\emptyset|=0$.

Exemple 2

- On peut associer à chaque lettre de l'alphabet latin $\mathscr{A} = \{a, b, \dots, z\}$ son rang dans l'alphabet. Ainsi, $|\mathscr{A}| = 26$.
- Soient $n, m \in \mathbb{N}^*$ tels que n < m. Alors, l'application $\varphi : x \mapsto x n + 1$ réalise une bijection de $[\![n, m]\!]$ dans $[\![1, m n + 1]\!]$. Ainsi, $|\![[\![n, m]\!]| = m n + 1$.

I.2 - Sous-ensembles et cardinaux

Lemme 2

Si $x \in E$, alors $E \setminus \{x\}$ est un ensemble fini et $|E \setminus \{x\}| = |E| - 1$.

Exemple 3

Si $\mathscr{A}=\{a,\ldots,z\}$ est l'ensemble des lettres de l'alphabet, alors $|\mathscr{A}\setminus\{z\}|=25.$

Théorème 1 - Sous-ensemble

Si $F \subset E$, alors F est un ensemble fini et $|F| \leq |E|$. De plus, |F| = |E| si et seulement si F = E.

Exemple 4

Supposons par l'absurde que $\mathbb N$ soit de cardinal fini. Comme l'application $\varphi: \mathbb N \to 2\mathbb N, \ x \mapsto 2x$ est une bijection, alors $\mathbb N$ et $2\mathbb N$ sont de même cardinal.

Or, $2\mathbb{N} \subset \mathbb{N}$ et $2\mathbb{N} \neq \mathbb{N}$. On obtient ainsi une contradiction. Finalement, \mathbb{N} est un ensemble infini.

II - Dénombrement

II.1 - Produits cartésiens

Proposition 1 - Produit cartésien

 $E \times F$ est un ensemble fini et $|E \times F| = |E| \cdot |F|$. Plus généralement, si E_1, \ldots, E_n sont des ensembles finis, alors

$$|E_1 \times \cdots \times E_n| = |E_1| \times \cdots \times |E_n|$$
.

Exemple 5

- On souhaite dénombrer l'ensemble M des mots de 4 lettres construits avec les 26 lettres de l'alphabet latin.
 Un mot de 4 lettres est un élément de l'ensemble M = A × A × A × A. Ainsi, le nombre de mots de 4 lettres est égal à |M| = 26⁴.
- Soit U une urne contenant des boules numérotées de 1 à n.

On tire, successivement et avec remise, p boules dans l'urne et on note successivement les numéros obtenus.

Un tirage correspond ainsi à une suite (a_1, \ldots, a_p) de numéros dont chacun appartient à [1, n]. Il y a donc n^p tirages distincts pouvant être obtenus.

II.2 - Réunions

Proposition 2 - Union disjointe

Si E et F sont deux ensembles disjoints, alors $E \cup F$ est fini et $|E \cup F| = |E| + |F|$.

Corollaire 2 - Cardinal du complémentaire

Si A est une partie de E, alors $|\overline{A}| = |E| - |A|$.

Exemple 6

On souhaite dénombrer l'ensemble $\mathcal{M}_{q,z}$ des mots de 4 lettres construits avec les 26 lettres de l'alphabet latin et qui contiennent une des lettres q ou z.

On s'intéresse au complémentaire $\overline{\mathcal{M}_{q,z}}$ de cet ensemble qui est constitué des mots qui ne contiennent ni la lettre q ni la lettre z. En notant $\mathscr{B} = \mathscr{A} \setminus \{q,z\}$, alors $\overline{\mathcal{M}_{q,z}} = \mathscr{B}^4$. Ainsi, $|\overline{\mathcal{M}_{q,z}}| = 24^4$. Finalement, $|\mathcal{M}_{q,z}| = 26^4 - 24^4$.

Définition 5 - Partition

Soient $n \in \mathbb{N}^*$ et $(A_k)_{k \in [\![1,n]\!]}$ une famille d'ensembles de E. La famille $(A_k)_{k \in [\![1,n]\!]}$ est une partition de E si

- $\bullet \bigcup_{k=1}^{n} A_k = E,$
- $\forall 1 \leqslant i \neq j \leqslant n, A_i \cap A_j = \emptyset.$

Proposition 3

Soient $n \in \mathbb{N}^*$ et $(A_k)_{k \in [\![1,n]\!]}$ des ensembles deux à deux disjoints.

Alors,
$$\left| \bigcup_{k=1}^{n} A_k \right| = \sum_{k=1}^{n} |A_k|$$
.

Exemple 7

On note \mathscr{R} l'ensemble des mots de \mathscr{M} qui contiennent exactement une fois la lettre a. Notons \mathscr{R}_i l'ensemble des mots de \mathscr{R} où le a est en i^{e} position. Alors, $(\mathscr{R}_1, \mathscr{R}_2, \mathscr{R}_3, \mathscr{R}_4)$ forme une partition de \mathscr{R} . De plus, $\mathscr{R}_1 = \{a\} \times (\mathscr{A} \setminus \{a\})^3$. Ainsi, $|\mathscr{R}_1| = 25^3$. On calcule de même $|\mathscr{R}_2| = |\mathscr{R}_3| = |\mathscr{R}_4| = 25^3$. Finalement, $|\mathscr{R}| = 4 \times 25^3$.

On peut également utiliser une méthode plus descriptive :

- soit la lettre a est située en première position. Il y a 1×25^3 tels mots :
- soit la lettre a est située en deuxième position. Il y a $25 \times 1 \times 25^2$ tels mots;
- soit la lettre a est située troisième position. Il y a $25^2 \times 1 \times 25$ tels mots;
- soit la lettre a est située en quatrième position. Il y a $25^3 \times 1$ tels mots.

Finalement, l'ensemble des mots recherché est égal à 4×25^3 .

Proposition 4 - Réunion

Soient $A, B \subset E$. Alors, $A \cup B$ est un ensemble fini et

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Exemple 8

On souhaite dénombrer l'ensemble \mathcal{M}_a des mots de 2 lettres contenant la lettre a.

On note A_1 l'ensemble des mots contenant la lettre a en première position et A_2 l'ensemble des mots contenant la lettre a en seconde position.

Alors,
$$A_1 \cap A_2 = \{aa\}$$
. Ainsi,

$$|\mathcal{M}_a| = |A_1 \cup A_2|$$

$$= |A_1| + |A_2| - |A_1 \cap A_2|$$

$$= 1 \times 26 + 26 \times 1 - 1$$

$$= 51.$$

Proposition 5 - Formule du crible / de Poincaré (H.P.)

Soient $n \in \mathbb{N}^*$ et $(A_i)_{i \in [\![1,n]\!]}$ une famille de parties de E. Généraliser la formule précédente pour calculer $|A_1 \cup A_2 \cup A_3|$ puis $|A_1 \cup A_2 \cup A_3 \cup A_4|$.

Plus généralement, on peut montrer que

$$\left| \bigcup_{k=1}^{n} A_k \right| = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \le i_1 < \dots < i_k \le n} \left| \bigcap_{j=1}^{k} A_{i_j} \right|.$$

II.3 - Compter les applications

Proposition 6 - Applications

L'ensemble des applications de E dans F est un ensemble fini de cardinal $|F|^{|E|}$.

Applications & Tirages

- Soit U une urne contenant des boules numérotées de 1 à n. On tire, **successivement et avec remise**, p boules dans l'urne et on note successivement les numéros obtenus. Combien de résultats peut-on ainsi obtenir?
 - \star au premier tirage, on associe le numéro n_1 de la première boule tirée;
 - \star au deuxième tirage, on associe le numéro n_2 de la deuxième boule tirée;

***** ...;

 \star au $p^{\rm e}$ tirage, on associe le numéro n_p de la $p^{\rm e}$ boule tirée.

Ainsi, un tirage correspond à une application de $[\![1,p]\!]$ dans $[\![1,n]\!]$ et il y a donc p^n tirages possibles.

• En particulier, le nombre d'applications de $[\![1,n]\!]$ dans $[\![1,n]\!]$ vaut n^n .

Corollaire 3

À chaque partie F de E correspond de manière unique une application de F dans $\{0,1\}$, appelée fonction indicatrice de F, définie par

$$1_F: F \to \{0,1\}
x \mapsto \begin{cases}
1 & \text{si } x \in F \\
0 & \text{sinon}
\end{cases}$$

Ainsi, le nombre de parties de E est un ensemble fini de cardinal $2^{|E|}$.

II.4 - Arrangements

Définition 6 - Arrangements

Un arrangement de longueur p d'éléments de E est une liste de longueur p constituée d'éléments de E deux à deux distincts. On note A_p^p le nombre d'arrangements de E de longueur p.

Proposition 7

Pour tous $n, p \in \mathbb{N}$,

$$A_n^p = \begin{cases} \frac{n!}{(n-p)!} & \text{si } p \leqslant n \\ 0 & \text{sinon.} \end{cases}$$

Arrangements & Tirages

Soit U une urne contenant des boules numérotées de 1 à n. On tire, **successivement et sans remise**, p boules dans l'urne et on note successivement les numéros obtenus. Combien de résultats peut-on ainsi obtenir?

Si p > n, comme les tirages s'effectuent sans remise, on ne peut pas tirer successivement p boules et il y a donc 0 résultat. Si $p \le n$.

- Au premier tirage, on obtient un numéro $n_1 \in [1, n]$;
- au deuxième tirage, on obtient un numéro $n_2 \in [1, n] \setminus \{n_1\};$
- ...;
- au p^e tirage, on associe un numéro $n_p \in [1, n] \setminus \{n_1, \dots, n_{p-1}\}.$

Comme les tirages s'effectuent sans remise, les numéros n_1, \ldots, n_p sont deux à deux distincts. Ainsi, à chaque résultat, on associe un p-arrangement (n_1, \ldots, n_p) .

Le nombre de résultats possibles est donc égal à $n(n-1)\dots(n-p+1)$.

Théorème 4 - Arrangements & Injections

Soient E un ensemble de cardinal p et F un ensemble de cardinal n.

- (i). Il y a A_n^p injections de E dans F.
- (ii). Si p = n, il y a n! bijections de E dans F. Les bijections de E sont appelées des permutations.

Exemple 9 - Anagrammes

Un anagramme est un mot obtenu en permuttant les lettres d'un mot de départ. Ainsi, le nombre d'anagrammes de MATHS est égal à 5!.

II.5 - Combinaisons

Théorème 5 - Lemme des bergers

Soient p un entier naturel non nul, E et F deux ensembles finis et $f: E \to F$. On suppose que pour tout $y \in F$, $|f^{-1}(\{y\})| = p$. Alors, |E| = p|F|.

Définition 7 - Combinaisons

Soient E un ensemble fini de cardinal n et p un entier naturel. Une combinaison de p éléments de E est une partie de E de cardinal p. On note $\binom{n}{p}$ le nombre de combinaisons de p éléments de E.

Proposition 8

Pour tous $n, p \in \mathbb{N}, \binom{n}{p} = \frac{A_n^p}{p!}$.

Combinaisons & Tirages

Soit U une urne contenant des boules numérotées de 1 à n. On tire **simultanément** p boules dans l'urne et on note les numéros obtenus. Combien de résultats peut-on ainsi obtenir?

Tout tirage contient au plus n boules. Ainsi, si p > n, le nombre de résultats possible est 0.

Si $p \leq n$, un tirage revient à obtenir une partie $\{n_1, \ldots, n_p\}$ à p éléments de l'ensemble [1, n] des numéros des boules. Ainsi, il y a $\binom{n}{p}$ résultats possibles.

Exemple 10 - Anagrammes

Déterminons le nombre d'anagrammes du mot BISONRAVI. Le mot BISONRAVI contient 9 lettres. On constate que les lettres sont deux à deux distinctes, à l'exception du I qui est présent 2 fois. On choisit :

• la position des 2 lettres $I:\binom{9}{2}$ choix;

- la position de la lettre B parmi les positions libres : 7 choix ;
- la position de la lettre S parmi les positions libres : 6 choix ;
- la position de la lettre O parmi les positions libres : 5 choix ;
- la position de la lettre N parmi les positions libres : 4 choix :
- la position de la lettre R parmi les positions libres : 3 choix ;
- la position de la lettre A parmi les positions libres : 2 choix ;
- la position de la lettre V parmi les positions libres : 1 choix.

Finalement, il y $\binom{9}{2}$ 7! = $\frac{9!}{2}$ anagrammes possibles.

Théorème 6 - Relations sur les coefficients binomiaux

- $(i). \ \forall \ n, p \in \mathbb{N}, \binom{n}{p} = \binom{n}{n-p}.$
- (ii). Formule du capitaine. $\forall n, p \in \mathbb{N}^*, p \binom{n}{n} = n \binom{n-1}{n-1}$.
- (iii). $\forall n \in \mathbb{N}, \sum_{k=0}^{n} {n \choose k} = 2^n$.
- (iv). Triangle de Pascal. $\forall n, p \in \mathbb{N}^{\star}, \binom{n}{p} = \binom{n-1}{p-1} + \binom{n-1}{p}$.
- (v). Binôme de Newton.

$$\forall x, y \in \mathbb{R}, n \in \mathbb{N}^*, (x+y)^n = \sum_{p=0}^n \binom{n}{p} x^p y^{n-p}.$$