ECS289: Scalable Machine Learning

Cho-Jui Hsieh UC Davis

Oct 15, 2015

Outline

- Matrix Completion (Background)
- Alternating Least Squares (ALS)
- Stochastic Gradient method (SG)
- Coordinate Descent (CD)

Recommender Systems

Matrix Factorization Approach $A \approx WH^T$

 H^{T}

-0.07	-0.11	-0.53	-0.46	-0.06	-0.05	-0.53	-0.07	-0.35	-0.19	-0.14
0.13	-0.42	0.45	0.17	-0.25	-0.17	-0.18	0.27	-0.59	0.05	0.14
-0.21	-0.43	-0.23	0.16	0.08	0.17	0.57	-0.39	-0.37	-0.08	-0.15

W

-8.72	0.03	-1.03
-7.56	-0.79	0.62
-4.07	-3.95	2.55
-3.52	3.73	-3.32
-7.78	2.34	2.33
-2.44	-5.29	-3.92
-1.78	1.90	-1.68

1			5			3		5		2
	2		3			5		2	5	
				3		5		3		
2		5			3		4		2	
			5			5				1
	5			1				5		
1			1				2			4

Matrix Factorization Approach $A \approx WH^T$

 H^{T}

-0.07	-0.11	-0.53	-0.46	-0.06	-0.05	-0.53	-0.07	-0.35	-0.19	-0.14
0.13	-0.42	0.45	0.17	-0.25	-0.17	-0.18	0.27	-0.59	0.05	0.14
-0.21	-0.43	-0.23	0.16	0.08	0.17	0.57	-0.39	-0.37	-0.08	-0.15

W

-8.72	0.03	-1.03
-7.56	-0.79	0.62
-4.07	-3.95	2.55
-3.52	3.73	-3.32
-7.78	2.34	2.33
-2.44	-5.29	-3.92
-1.78	1.90	-1.68

1			5			3		5		2
	2		3			5		2	5	
				3	?	5		3		
2		5			3		4		2	
			5			5				1
	5			1				5		
1			1				2			4

Matrix Factorization Approach

$$\min_{\substack{W \in \mathbb{R}^{m \times k} \\ H \in \mathbb{R}^{n \times k}}} \sum_{(i,j) \in \Omega} (A_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2 + \lambda \left(\|W\|_F^2 + \|H\|_F^2 \right),$$

- $\Omega = \{(i,j) \mid A_{ij} \text{ is observed}\}$
- Regularized terms to avoid over-fitting

Matrix factorization maps users/items to latent feature space \mathbb{R}^k

- the i^{th} user $\Rightarrow i^{\text{th}}$ row of W, \boldsymbol{w}_i^T ,
- the j^{th} item $\Rightarrow j^{\text{th}}$ row of H, \mathbf{h}_{j}^{T} .
- $\mathbf{w}_i^T \mathbf{h}_j$: measures the interaction between i^{th} user and j^{th} item.

Latent Feature Space

Latent Feature Space

Other Factorizations

Nonnegative Matrix Factorization

$$\min_{W > 0, H > 0} \|A - WH^T\|_F^2 + \lambda \|W\|_F^2 + \lambda \|H\|_F^2$$

- Each entry is positive
- A is either fully or partially observed
- Goal: find nonnegative latent factors

NMF vs PCA

Optimization for Matrix Completion: Alternating Least Squares

Properties of the Objective Function

- Nonconvex problem (why?)
- Example: $f(x,y) = \frac{1}{2}(xy-1)^2$ $\nabla f(0,0) = \mathbf{0}$, but clearly [0,0] is not a global optimum

Objective function:

$$\min_{W,H} \left\{ \frac{1}{2} \sum_{i,j \in \Omega} (A_{ij} - (WH^T)_{ij})^2 + \frac{\lambda}{2} \|W\|_F^2 + \frac{\lambda}{2} \|H\|_F^2 \right\} := f(W,H)$$

Iteratively fix either H or W and optimize the other:

Input: partially observed matrix A, initial values of W, HFor $t = 1, 2, \ldots$ Fix W and update H: $H \leftarrow \operatorname{argmin}_H f(W, H)$ Fix H and update W: $W \leftarrow \operatorname{argmin}_W f(W, H)$

- Define: $\Omega_j := \{i \mid (i,j) \in \Omega\}$
- w_i : the *i*-th row of W; h_j : the *j*-th row of H
- The subproblem:

$$\underset{\boldsymbol{H}}{\operatorname{argmin}} \frac{1}{2} \sum_{i,j \in \Omega} (A_{ij} - (WH^T)_{ij})^2 + \frac{\lambda}{2} \|H\|_F^2$$

$$= \sum_{j=1}^n \left(\frac{1}{2} \sum_{i \in \Omega_j} (A_{ij} - \boldsymbol{w}_i^T \boldsymbol{h}_j)^2 + \frac{\lambda}{2} \|\boldsymbol{h}_j\|^2 \right)$$
ridge regression problem

- Define: $\Omega_j := \{i \mid (i,j) \in \Omega\}$
- w_i : the *i*-th row of W; h_j : the *j*-th row of H
- The subproblem:

$$\underset{\boldsymbol{H}}{\operatorname{argmin}} \frac{1}{2} \sum_{i,j \in \Omega} (A_{ij} - (WH^T)_{ij})^2 + \frac{\lambda}{2} \|H\|_F^2$$

$$= \sum_{j=1}^n \left(\frac{1}{2} \sum_{i \in \Omega_j} (A_{ij} - \boldsymbol{w}_i^T \boldsymbol{h}_j)^2 + \frac{\lambda}{2} \|\boldsymbol{h}_j\|^2 \right)$$
ridge regression problem

- *n* ridge regression problems, each with *k* variables $\Rightarrow O(|\Omega|k^2 + nk^3)$
- Easy to parallelize (n independent ridge regression subproblems)

Optimization for Matrix Completion: Stochastic Gradient Method

- n_i^W: number of nonzeroes in the *i*-th row of A
 n_i^H: number of nonzeroes in the *j*-th column of A
- Decompose the problem into Ω components:

$$f(W, H) = \frac{1}{2} \sum_{i,j \in \Omega} (A_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2 + \frac{\lambda}{2} \|W\|_F^2 + \frac{\lambda}{2} \|H\|_F^2$$

$$= \frac{1}{|\Omega|} \sum_{i,j \in \Omega} \left(\underbrace{\frac{|\Omega|}{2} (A_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2 + \frac{\lambda |\Omega|}{2n_i^W} \|\mathbf{w}_i\|^2 + \frac{\lambda |\Omega|}{2n_j^H} \|\mathbf{h}_j\|^2}_{f_{i,j}(W, H)} \right)$$

- n_i^W: number of nonzeroes in the *i*-th row of A
 n_i^H: number of nonzeroes in the *j*-th column of A
- Decompose the problem into Ω components:

$$f(W, H) = \frac{1}{2} \sum_{i,j \in \Omega} (A_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2 + \frac{\lambda}{2} \|W\|_F^2 + \frac{\lambda}{2} \|H\|_F^2$$

$$= \frac{1}{|\Omega|} \sum_{i,j \in \Omega} \left(\underbrace{\frac{|\Omega|}{2} (A_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2 + \frac{\lambda |\Omega|}{2n_i^W} \|\mathbf{w}_i\|^2 + \frac{\lambda |\Omega|}{2n_j^H} \|\mathbf{h}_j\|^2}_{f_{i,j}(W, H)} \right)$$

• The gradient of each component:

$$\nabla_{\mathbf{w}_{i}} f_{i,j}(W, H) = |\Omega| (\mathbf{w}_{i}^{T} \mathbf{h}_{j} - A_{ij}) \mathbf{h}_{j} + \frac{\lambda |\Omega|}{n_{i}^{W}} \mathbf{w}_{i}$$
$$\nabla_{\mathbf{h}_{j}} f_{i,j}(W, H) = |\Omega| (\mathbf{w}_{i}^{T} \mathbf{h}_{j} - A_{ij}) \mathbf{w}_{i} + \frac{\lambda |\Omega|}{n_{i}^{H}} \mathbf{h}_{j}$$

SG algorithm:

Input; partially observed matrix A, initial values of W, H For $t=1,2,\ldots$ Randomly pick a pair $(i,j)\in\Omega$ $\mathbf{w}_i \leftarrow (1-\frac{\eta_t\lambda}{n_i^W})\mathbf{w}_i - \eta_t(\mathbf{w}_i^T\mathbf{h}_j - A_{ij})\mathbf{h}_j$ $\mathbf{h}_j \leftarrow (1-\frac{\eta_t\lambda}{n_i^H})\mathbf{h}_j - \eta_t(\mathbf{w}_i^T\mathbf{h}_j - A_{ij})\mathbf{w}_i$

SG algorithm:

Input; partially observed matrix A, initial values of W, H

For
$$t = 1, 2, ...$$

Randomly pick a pair $(i, j) \in \Omega$
 $\mathbf{w}_i \leftarrow (1 - \frac{\eta_t \lambda}{\eta_t^W}) \mathbf{w}_i - \eta_t (\mathbf{w}_i^T \mathbf{h}_j - A_{ij}) \mathbf{h}_j$
 $\mathbf{h}_j \leftarrow (1 - \frac{\eta_t \lambda}{\eta_i^H}) \mathbf{h}_j - \eta_t (\mathbf{w}_i^T \mathbf{h}_j - A_{ij}) \mathbf{w}_i$

• Time complexity: O(k) per iteration; $O(|\Omega|k)$ for one pass of all observed entries.

$$\begin{pmatrix} \mathbf{h}_{1} & \mathbf{h}_{2} & \mathbf{h}_{3} \end{pmatrix} \qquad \begin{pmatrix} \mathbf{h}_{1} & \mathbf{h}_{2}; & \mathbf{h}_{3} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{w}_{1}^{T} \\ \mathbf{w}_{2}^{T} \\ \mathbf{w}_{3}^{T} \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} \qquad \begin{pmatrix} \mathbf{w}_{1}^{T} \\ \mathbf{w}_{2}^{T} \\ \mathbf{w}_{3}^{T} \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix}$$

Optimization for Matrix Completion:

Distributed Stochastic Gradient Descent (DSGD)

How to parallelize SG?

- Two SG updates on (i_1, j_1) and (i_2, j_2) in the same time:
 - ullet (i_1,j_1) : Update $oldsymbol{w}_{i_1}$ and $oldsymbol{h}_{j_1}$
 - \bullet (i_2,j_2) : Update \mathbf{w}_{i_2} and \mathbf{h}_{j_2}
- Confliction happens when $i_1 = i_2$ or $j_1 = j_2$
- How to avoid confliction?

Gemulla et al., "Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent". In KDD 2011.

DSGD: Distributed SGD [Gemulla et al, 2011]

DSGD: Distributed SGD

DSGD: Distributed SGD

Optimization for Matrix Completion: Coordinate Descent

Coordinate Descent

Update a variable at a time:

$$w_{it} \leftarrow \frac{\sum_{j \in \Omega_i} (A_{ij} - \boldsymbol{w}_i^T \boldsymbol{h}_j + w_{it} h_{jt}) h_{jt}}{\lambda + \sum_{j \in \Omega_i} h_{jt}^2}.$$

- Subproblem is just a univariate quadratic problem
- $\Omega_i = \{j : (i,j) \in \Omega\}$
- Can be done in $O(|\Omega_i|)$

Update Sequence:

- Item/user-wise update:
 - \bullet pick a user i or an item j
 - update the i-th row of W or the j-th column of H
- Feature-wise update:
 - pick a feature index $t \in \{1, \dots, k\}$
 - update t-column of W and H alternatively

• Cycle through *k* feature dimensions

Coming up

• Next class: other matrix completion topics

Questions?