Tutorial Fundamentals – sets: solutions

Solutions

1.

- a) $A = \{3, 4, 5, 6, 7, 8, 9, 10\}$
- b) $B = \{1, 3, 5, 7, 9\}$
- c) C contains no elements, i.e., $C = \emptyset$, the empty set.

2.

- a) $\varnothing \subset A$ because \varnothing is a subset of every set.
- b) $A \subset B$ because 1 is the only element of A and it belongs to B.
- c) $B \not\subset C$ because 3 is element of B but not of C.
- d) $B \subset E$ because the elements of B are also found in E.
- e) $C \not\subset D$ because 9 is an element of C but not D.
- f) $C \subset E$ because the elements of C are found in E.
- g) $D \not\subset E$ because 2 is an element of D but not E.
- h) $D \subset U$ because the element of D are found in U.

3.

- a) True, because all elements of A are in U (so $A \subset U$ also holds true).
- b) False, because U has some elements (1 and 2) that are not in D.
- c) True, because $B \subseteq C$ and $C \subseteq B$ (N.B. the elements of the set don't have to be listed in the same order).
- d) True, because it is an element of every set by definition.

4.

a) This is simply the intersection of A, B and C, so the areas common to all three sets are shaded.

b) B^C can be simply interpreted as not B. Therefore, the intersection is the area common to A and C but not B. That is, shade the area in which A and C overlap, excluding the contribution from B.

c) This is interpreted as A plus the area common to both B and C (the term in brackets). That is, shade where B and C overlap plus all of A.

d) This is interpreted as C plus the intersection of A with all sets except B (the term in brackets). Therefore, shade where A overlaps with C plus C except for any overlapping B areas.

e) This is a combination of the areas that are not A with the intersection of B and C (the term in brackets). Therefore, shade the areas in which B and C overlap and all other areas except for A.

f) This is the combination of B and C (the term in brackets) minus C. Therefore shade only the region of B, which does not overlap.

5.

a) $U = \{1, 2, 3, 4, 5, 6\}$, i.e., all the possible outcomes.

- b) $A = \{1, 3, 5\}$
- c) $B = \{3, 4, 5, 6\}$
- d) A^C = the set of elements in U not in A, i.e., $A^C = \{2, 4, 6\}$
- e) $B^C = \{1, 2\}$
- f) $\{3,5\}$, i.e., the set of elements in A and also in B
- g) $\{1, 3, 4, 5, 6\}$, the set of elements in either A or B
- h) $\{1\}$, i.e., the set of elements in A but not in B
- i) $\{2\}$, i.e., the set of elements not in A and not in B
- j) $\{2\}$, i.e., the set of elements not in $A \cup B$

6.

- a) For this, we use De Morgan's to get $(A^C \cap (B^C)^C)$. From here, use the involution law on $(B^C)^C$ to get $(A^C \cap B)$.
- b) For both parts of the statement, the absorption law is useful:
- $A \cup (A \cap B^C) = A$

•
$$A \cap (A \cup B)) = A$$

From here, use the idempotent law on $A \cap A$ to get A.

c) Use the distributive law to get $(A \cap B) \cup (A \cap \varnothing)$. Note that the identity law can be used for $A \cap \varnothing$ to obtain $(A \cap B) \cup \varnothing$. The identity law can be used again $(A \cup \varnothing = A)$, noting that $(A \cap B)$ can be substituted into the laws for one variable, so we end up with $(A \cap B)$.

Alternatively, use identity law $(B \cup \emptyset = B)$ to obtain $A \cap (B)$, which is $(A \cap B)$.

7. Where C = houses with cats and D = houses with dogs, the diagram looks like:

- a) 1
- b) 5
- 8.
- a) 10
- b) 25
- c) 9
- d) 15