CS 188: Artificial Intelligence Markov Models

Instructors: Stuart Russell and Dawn Song
University of California, Berkeley

Uncertainty and Time

- Often, we want to reason about a sequence of observations
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring
- Need to introduce time into our models

Markov Models (aka Markov chain/process)

Value of X at a given time is called the state (usually discrete, finite)

- The transition model $P(X_t \mid X_{t-1})$ specifies how the state evolves over time
- Stationarity assumption: transition probabilities are the same at all times
- Markov assumption: "future is independent of the past given the present"
 - X_{t+1} is independent of X_0, \ldots, X_{t-1} given X_t
 - This is a *first-order* Markov model (a *k*th-order model allows dependencies on *k* earlier steps)
- Joint distribution $P(X_0, \dots, X_T) = P(X_0) \prod_t P(X_t \mid X_{t-1})$

Quiz: are Markov models a special case of Bayes nets?

- Yes and no!
- Yes:
 - Directed acyclic graph, joint = product of conditionals
- No:
 - Infinitely many variables (unless we truncate)
 - Repetition of transition model not part of standard Bayes net syntax

Example: Random walk in one dimension

- State: location on the unbounded integer line
- Initial probability: starts at 0
- Transition model: $P(X_t = k | X_{t-1} = k \pm 1) = 0.5$
- Applications: particle motion in crystals, stock prices, gambling, genetics, etc.
- Questions:
 - How far does it get as a function of t?
 - Expected distance is $O(\sqrt{t})$
 - Does it get back to 0 or can it go off for ever and not come back?
 - In 1D and 2D, returns w.p. 1; in 3D, returns w.p. 0.34053733

Example: n-gram models

We call ourselves *Homo sapiens*—man the wise—because our **intelligence** is so important to us. For thousands of years, we have tried to understand *how we think*; that is, how a mere handful of matter can perceive, understand, predict, and manipulate a world far larger and more complicated than itself.

- State: word at position t in text (can also build letter n-grams)
- Transition model (probabilities come from empirical frequencies):
 - Unigram (zero-order): $P(Word_t = i)$
 - "logical are as are confusion a may right tries agent goal the was . . ."
 - Bigram (first-order): $P(Word_t = i \mid Word_{t-1} = j)$
 - "systems are very similar computational approach would be represented . . ."
 - Trigram (second-order): $P(Word_t = i \mid Word_{t-1} = j, Word_{t-2} = k)$
 - "planning and scheduling are integrated the success of naive bayes model is . . ."
- Applications: text classification, spam detection, author identification, language classification, speech recognition

Example: Web browsing

- State: URL visited at step t
- Transition model:
 - With probability p, choose an outgoing link at random
 - With probability (1-p), choose an arbitrary new page
- Question: What is the *stationary distribution* over pages?
 - I.e., if the process runs forever, what fraction of time does it spend in any given page?
- Application: Google page rank

Example: Weather

States {rain, sun}

• Initial distribution $P(X_0)$

P(X ₀)		
sun	rain	
0.5	0.5	

• Transition model $P(X_t \mid X_{t-1})$

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

Two new ways of representing the same CPT

Weather prediction

■ Time 0: <0.5,0.5>

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$$P(X_1) = \sum_{X^0} P(X_1, X_0 = X_0)$$

$$= \sum_{x_0} P(X_0 = X_0) P(X_1 \mid X_0 = X_0)$$

Weather prediction, contd.

■ Time 1: <0.6,0.4>

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$$P(X_2) = \sum_{X_1} P(X_2, X_1 = X_1)$$

$$= \sum_{x_1} P(X_1 = X_1) P(X_2 \mid X_1 = X_1)$$

$$= 0.6 < 0.9, 0.1 > + 0.4 < 0.3, 0.7 > = < 0.66, 0.34 >$$

Weather prediction, contd.

■ Time 2: <0.66,0.34>

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$$P(X_3) = \sum_{x^2} P(X_{3'}X_2 = X_2)$$

$$= \sum_{x^2} P(X_2 = X_2) P(X_3 \mid X_2 = X_2)$$

$$= 0.66 < 0.9, 0.1 > + 0.34 < 0.3, 0.7 > = < 0.696, 0.304 >$$

Forward algorithm (simple form)

Probability from previous iteration

What is the state at time.

$$P(X_t) = \sum_{x_{t-1}} P(X_{t'} X_{t-1} = X_{t-1})$$

$$= \sum_{X_{t-1}} P(X_{t-1} = X_{t-1}) P(X_t | X_{t-1} = X_{t-1})$$

• Iterate this update starting at t=0

Transition model

And the same thing in linear algebra

• What is the weather like at time 2?

$$P(X_2) = 0.6 < 0.9, 0.1 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 > 0.1 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 > 0.1 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 > 0.1 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 > 0.1 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 > 0.1 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 > 0.1 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 > 0.1 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 > 0.1 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 > 0.1 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 > 0.1 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 > 0.1 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 > 0.1 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 > 0.1 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 > 0.1 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 > 0.1 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 > 0.1 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > = < 0.66, 0.34 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.7 > +0.4 < 0.3, 0.$$

In matrix-vector form:

$$P(X_2) = \begin{pmatrix} 0.9 & 0.3 \\ 0.1 & 0.7 \end{pmatrix} \begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} = \begin{pmatrix} 0.66 \\ 0.34 \end{pmatrix}$$

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

• I.e., multiply by T^T , transpose of transition matrix

Stationary Distributions

- The limiting distribution is called the *stationary distribution* P_{∞} of the chain
- It satisfies $P_{\infty} = P_{\infty+1} = T^{\mathsf{T}} P_{\infty}$
- Solving for P_{∞} in the example:

$$\begin{pmatrix} 0.9 & 0.3 \\ 0.1 & 0.7 \end{pmatrix} \begin{pmatrix} p \\ 1-p \end{pmatrix} = \begin{pmatrix} p \\ 1-p \end{pmatrix}$$
$$0.9p + 0.3(1-p) = p$$
$$p = 0.75$$

Stationary distribution is <0.75,0.25> *regardless of starting distribution*

Hidden Markov Models

Hidden Markov Models

- Usually the true state is not observed directly
- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You observe evidence *E* at each time step
 - X_t is a single discrete variable; E_t may be continuous and may consist of several variables

Example: Weather HMM

• An HMM is defined by:

• Initial distribution: $P(X_0)$

• Transition model: $P(X_t | X_{t-1})$

• Sensor model: $P(E_t | X_t)$

HMM as probability model

- Joint distribution for Markov model: $P(X_0, \dots, X_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1})$
- Joint distribution for hidden Markov model:

$$P(X_0, X_1, \dots, X_T, E_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1}) P(E_t \mid X_t)$$

- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Are evidence variables independent of each other?

Useful notation:

$$X_{a:b} = X_{a}, X_{a+1}, ..., X_{b}$$

Real HMM Examples

Speech recognition HMMs:

- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:

- Observations are words (tens of thousands)
- States are translation options

Robot tracking:

- Observations are range readings (continuous)
- States are positions on a map (continuous)

Molecular biology:

- Observations are nucleotides ACGT
- States are coding/non-coding/start/stop/splice-site etc.

Inference tasks

- Filtering: $P(X_t | e_{1:t})$
 - belief state—input to the decision process of a rational agent
- **Prediction**: $P(X_{t+k}|e_{1:t})$ for k > 0
 - evaluation of possible action sequences; like filtering without the evidence
- Smoothing: $P(X_k | e_{1:t})$ for $0 \le k < t$
 - better estimate of past states, essential for learning
- Most likely explanation: arg $\max_{x_{1:t}} P(x_{1:t} \mid e_{1:t})$
 - speech recognition, decoding with a noisy channel

Filtering / Monitoring

- Filtering, or monitoring, or state estimation, is the task of maintaining the distribution $f_{1:t} = P(X_t | e_{1:t})$ over time
- We start with f_0 in an initial setting, usually uniform
- Filtering is a fundamental task in engineering and science
- The Kalman filter (continuous variables, linear dynamics, Gaussian noise) was invented in 1960 and used for trajectory estimation in the Apollo program; core ideas used by Gauss for planetary observations

Example from Michael Pfeiffer

Sensor model: four bits for wall/no-wall in each direction, never more than 1 mistake

Transition model: action may fail with small prob.

but *less likely* (required 1 mistake)

Prob 0 1

Prob 0 1

Prob

t=4

Filtering algorithm

Aim: devise a recursive filtering algorithm of the form

$$P(X_{t+1} | e_{1:t+1}) = g(e_{t+1}, P(X_t | e_{1:t}))$$

$$P(X_{t+1} | e_{1:t+1}) =$$

Filtering algorithm

Aim: devise a recursive filtering algorithm of the form

$$P(X_{t+1} | e_{1:t+1}) = g(e_{t+1}, P(X_t | e_{1:t}))$$
 Apply Bayes' rule
$$P(X_{t+1} | e_{1:t+1}) = P(X_{t+1} | e_{1:t}, e_{t+1})$$
 Apply conditional independence
$$= \alpha P(e_{t+1} | X_{t+1}, e_{1:t}) P(X_{t+1} | e_{1:t})$$
 Condition on X_t Apply conditional independence
$$= \alpha P(e_{t+1} | X_{t+1}) P(X_{t+1} | e_{1:t})$$
 Apply conditional independence
$$= P(e_{t+1} | X_{t+1}) P(X_{t+1} | e_{1:t}) P(X_{t+1} | X_{t}, e_{1:t})$$
 Normalize
$$(e_{t+1} | Y_{t+1}) P(X_{t+1} | Y_{t+1}) P(X_{t+1} | Y_{t})$$

Filtering algorithm

$$P(X_{t+1} | e_{1:t+1}) = \alpha P(e_{t+1} | X_{t+1}) \sum_{xt} P(x_t | e_{1:t}) P(X_{t+1} | x_t)$$
Normalize Update Predict

$$\mathbf{f}_{1:t+1} = FORWARD(\mathbf{f}_{1:t}, e_{t+1})$$

- Cost per time step: $O(|X|^2)$ where |X| is the number of states
- Time and space costs are constant, independent of t
- $O(|X|^2)$ is infeasible for models with many state variables
- We get to invent really cool approximate filtering algorithms

And the same thing in linear algebra

- Transition matrix T, observation matrix O_t
 - ullet Observation matrix has state likelihoods for $ullet_t$ along diagonal

• E.g., for
$$U_1 = \text{true}$$
, $O_1 = \begin{pmatrix} 0.2 & 0 \\ 0 & 0.9 \end{pmatrix}$

Filtering algorithm becomes

$$\bullet \boldsymbol{f}_{1:t+1} = \alpha \, O_{t+1} T^{\mathsf{T}} \boldsymbol{f}_{1:t}$$

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Example: Weather HMM

W _{t-1}	P(W _t W _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Pacman – Hunting Invisible Ghosts with Sonar

Video of Demo Pacman – Sonar

