Feedback — Chapter 4 Quiz: Applications

Thank you. Your submission for this exam was received.

You submitted this exam on Wed 20 Mar 2013 11:49 PM EDT -0400. You got a score of 8.00 out of 10.00.

Question 1

Compute the expectation ${\mathbb E}$ of the probability density function

$$\rho(x) = \frac{3}{2} \sqrt{x}$$

on $0 \leq x \leq 1$.

Your Answer		Score	Explanation
$\bigcirc \frac{2}{3}$			
\bigcirc $\frac{3}{5}$	1	1.00	
$\bigcirc \frac{5}{3}$			
$\bigcirc \frac{1}{2}$			
$\bigcirc \frac{4}{15}$			
$\bigcirc \frac{2}{5}$			
Total		1.00 / 1.00	

Question 2

An aerosol spray releases spherical droplets whose radii are distributed randomly by a uniform distribution between 1 and 3 micrometers. What is the average *volume* of such an aerosol droplet (in units of cubic micrometers)?

Your Answer		Score	Explanation
\circ $\frac{26}{3}$ π			
$\circ \frac{40}{3} \pi$			
\circ $\frac{80}{9}$ π			
\bigcirc 9π			
\odot $\frac{80}{3}$ π	x	0.00	
\circ $\frac{13}{3}$ π			
Total		0.00 / 1.00	

Question 3

Find the y-coordinate of the center of mass of a thin sheet of metal of constant density of a shape bounded by the x-axis and the parabola

$$y = 1 - \frac{x^2}{25}$$

Your Answer Score Explanation

$\frac{4}{5}$	
\bigcirc $\frac{2}{5}$	√ 1.00
\circ $\frac{8}{5}$	
$\bigcirc \frac{8}{3}$	
$\frac{4}{3}$	
0	
Total	1.00 / 1.00

Question 4

A drink of (weight-)density 1/16 pound-per-cubic-inch fills a (martini) glass in the shape of an upside-down cone whose height is 4 inches, and whose top is a circular disc of radius 2 inches. How much work is required to suck the liquid up a straw to a height 6 inches from the bottom tip of the cone?

Your Answer Score Explanation $\frac{4\pi}{3}$ π $\frac{\pi}{3}$ 4π 2π $\frac{27\pi}{16}$				
3 $ \pi $	Your Answer		Score	Explanation
$\frac{\pi}{3}$ 4π 2π $\frac{27\pi}{3}$				
3 4π 2π 27π	π	✓	1.00	
2π 27π	$\circ \frac{\pi}{3}$			
\circ 27π	\bigcirc 4π			
<u> </u>	$\bigcirc 2\pi$			

Total 1.00 / 1.00

Question 5

Consider a solid ball of radius R and mass M distributed with uniform density. What is the moment of inertia of this ball about an axis which passes through the center?

Your Answer		Score	Explanation
$\bigcirc \frac{2}{3} MR^2$			
\bigcirc $\frac{2}{5} MR^2$	✓	1.00	
$\bigcirc \frac{1}{5} MR^2$			
$\bigcirc \frac{3}{2} MR^2$			
$\bigcirc \frac{3}{4} MR^2$			
$\bigcirc rac{1}{3} MR^2$			
Total		1.00 / 1.00	

Question 6

Find the volume of the body obtained by rotating about the x-axis the region between the $\it cuspidal\ cubic\ x^2=y^3$, the $\it x$ -axis and the line $\it x=1$.

Your Answer	Score	Explanation

1.00 Total 1.00 / 1.00

Question 7

What is the area in the plane enclosed by the graph of the function $r(heta) = \cos heta + \sin heta$ (defined using polar coordinates) for heta between 0 and $3\pi/4$?

Your Answer		Score	Explanation
$\bigcirc \frac{3\pi}{4} + \frac{1}{2}$			
\bigcirc $\frac{3\pi}{8} + \frac{1}{4}$	✓	1.00	
\bigcirc 1 + $\sqrt{2}$			
$\bigcirc \frac{1+\sqrt{2}}{2}$			
$\bigcirc \frac{1}{4}$			
\bigcirc π			

4/17/13

Total

1.00 / 1.00

Question 8

Which one of the following integrals computes the surface area of the surface obtained by rotating a quarter-circle

$$x^2 + y^2 = 4, \qquad x, y \ge 0$$

about the line x = -1?

Hint 1: slice into horizontal strips.

Hint 2: don't integrate this! (though you could if you had to...)

Your Answer Score Explanation

$$\int_{x=0}^{2} \sqrt{\frac{4}{4-x^2}} \, dx$$

$$\int_{x=0}^{2} 2\pi (x+1) \sqrt{\frac{4}{4-x^2}} \, dx$$

$$\int_{x=-1}^{2} 2\pi x \sqrt{\frac{4}{4-x^2}} \, dx$$

$$\int_{x=0}^{2} 2\pi(x+1)\sqrt{1+4x^2} \, dx$$

$$\int_{x=-1}^{1} 2\pi x \sqrt{\frac{4}{4-x^2}} \, dx$$

$$\int_{x=0}^{2} 2\pi x \sqrt{\frac{4}{4-x^2}} \, dx$$

Total 0.00 / 1.00

0.00

Question 9

Find the arc length of the curve $y=rac{x^2}{4}-rac{\ln x}{2}$ between x=1 and x=e.

Hint: if you compute the length element correctly, a miraculous simplification should occur, making the integral doable.

Your Answer		Score	Explanation
$\bigcirc \frac{e^2-2}{4}$			
	✓	1.00	
$\bigcirc \ \frac{e^2+2}{4}$			
$\bigcirc \frac{2\pi e}{3}$			
$\bigcirc \frac{e^2}{4}$			
$\bigcirc \frac{e^2-1}{4}$			
Total		1.00 / 1.00	

Question 10

Compute the present value PV of the following income stream I(t), assuming an continuously-compounding interest rate of 5 per cent (r=0.05). The income stream is the following: for the first 10 years, you get nothing: I(t)=0 for $0 \le t \le 10$. Then, you get income at a constant rate of ten-thousand (10,000) dollars-per-year in perpetuity (that is, you get money at that rate for all future time).

Your Answer	Score	Explanation
\bigcirc $PV=200,\!000$		
$^{ extstyle 0}$ $PV=rac{200,000}{\sqrt{e}}$	√ 1.00	
\bigcirc $PV=100,\!000e^2$		
$^{\bigcirc} PV = \frac{200,000}{e}$		
\bigcirc $PV=5{,}000e$		
$^{igodot} PV = rac{500}{\sqrt{e}}$		
Total	1.00 / 1.00	