ANALISI DEL DATASET DELLE VACCINAZIONI ANTI COVID-19

TIZIANA MANNUCCI (0285727)

STRUTTURA

- Introduzione
- Architettura del sistema
- Analisi del Dataset
- Query 1
- Analisi Risultati Query 1
- Query 2
- Analisi Risultati Query 2
- Analisi Tempi di Esecuzione

INTRODUZIONE

- Processamento Batch
- Distribuito ed in-memory
- Programmazione basata su Trasformazioni e Azioni

ARCHITETTURA DEL SISTEMA

- \$ \$SPARK_HOME/sbin/startmaster.sh
- \$ \$SPARK_HOME/sbin/startslave.sh <master-spark-URL>
- Usare il docker-compose.yml fornito per creare i Container per l'HDFS

ANALISI DEL DATASET

punti-somministrazione-tipologia.csv

CAL	OSPEDALE DI SOVERIA MANNELLI	Ospedaliero ITF	ITF6	18 Calabria	
CAL	OSPEDALE DI SOVERIA MANNELLI	Territoriale ITF	ITF6	18 Calabria	
CAL	OSPEDALE GUDO CHIDICHIMO TREBISACCE	Ospedaliero ITF	ITF6	18 Calabria	
CAL	OSPEDALE PAOLA	Ospedaliero ITF	ITF6	18 Calabria	
CAL	OSPEDALE PUGLIESE	Ospedaliero ITF	ITF6	18 Calabria	
CAL	OSPEDALE T.EVOLI MELITO P.S.	Territoriale ITF	ITF6	18 Calabria	
CAL	P.O. 'GIOVANNI XXIII'	Ospedaliero ITF	ITF6	18 Calabria	
CAL	P.O. 'GIOVANNI XXIII'	Territoriale ITF	ITF6	18 Calabria	

Tali **centri duplicati** vengono considerati come un'istanza singola.

TUTTI I FILE UTILIZZATI

SONO AGGIORNATI AL

1/06/2021

ANALISI DEL DATASET

punti-somministrazione-tipologia.csv

CAL	OSPEDALE DI SOVERIA MANNELLI	Ospedaliero ITF	ITF6	18 Calabria
CAL	OSPEDALE DI SOVERIA MANNELLI	Territoriale ITF	ITF6	18 Calabria
CAL	OSPEDALE GUDO CHIDICHIMO TREBISACCE	Ospedaliero ITF	ITF6	18 Calabria
CAL	OSPEDALE PAOLA	Ospedaliero ITF	ITF6	18 Calabria
CAL	OSPEDALE PUGLIESE	Ospedaliero ITF	ITF6	18 Calabria
CAL	OSPEDALE T.EVOLI MELITO P.S.	Territoriale ITF	ITF6	18 Calabria
CAL	P.O. 'GIOVANNI XXIII'	Ospedaliero ITF	ITF6	18 Calabria
CAL	P.O. 'GIOVANNI XXIII'	Territoriale ITF	ITF6	18 Calabria

Tali **centri duplicati** vengono considerati come un'istanza singola.

- somministrazioni-vaccini-latest.csv
- somministrazioni-vaccini-summary-latest.csv

TUTTI I FILE UTILIZZATI

SONO AGGIORNATI AL

1/06/2021

$$avg_{wz} = \frac{1}{y_{wz}} \sum_{i} \frac{d_i}{x_w}$$
 $\forall w \equiv regione, z \equiv mese, i \equiv giorni vaccinazione$

 x_w centri vaccinali nella regione w d_i sono le vaccinazioni effettuate in un giorno i fissate la regione ed il mese

$$avg_{wz} = \frac{1}{y_{wz}} \sum_{i} \frac{d_i}{x_w}$$
 $\forall w \equiv regione, z \equiv mese, i \equiv giorni vaccinazione$

$$avg_{wz} = \frac{1}{y_{wz} * x_w} \sum_{i} d_i \quad \forall \quad w \equiv regione, z \equiv mese, i \equiv giorni \ vaccinazione$$

 x_w centri vaccinali nella regione w d_i sono le vaccinazioni effettuate in un giorno i fissate la regione ed il mese

$$avg_{wz} = \frac{1}{y_{wz}} \sum_{i} \frac{d_i}{x_w}$$
 $\forall w \equiv regione, z \equiv mese, i \equiv giorni vaccinazione$

$$avg_{wz} = \frac{1}{y_{wz} * x_w} \sum_{i} d_i \quad \forall \quad w \equiv regione, z \equiv mese, i \equiv giorni \ vaccinazione$$

$$tot_{wz} = \sum_{i} d_i$$

$$avg_{wz} = \frac{tot_{wz}}{y_{wz} * x_w}$$

 x_w centri vaccinali nella regione w d_i sono le vaccinazioni effettuate in un giorno i fissate la regione ed il mese

Somministrazione Vaccini Summary QUERY 1 Stage 1 Stage 2 Stage 5 Stage 0 Stage 3 Stage 4 sortByKey reduceByKey reduceByKey textFile textFile distinct map join map map map map map distinct WholeStageCodegen (1) map map Coalesce

((Codice Regione: w, mese: z), (totale giornaliero: d_i , 1))

mese	regione	media_giornaliera_per_centro
	01/01/2021 Abruzzo	17,157
	01/01/2021 Basilicata	17,847
	01/01/2021 Calabria	13,41
	01/01/2021 Campania	104,247
	01/01/2021 Emilia-Romagna	41,961
	01/01/2021 Friuli-Venezia Giulia	26,736
	01/01/2021 Lazio	33,469
	01/01/2021 Liguria	11,673

ANALISI RISULTATI QUERY 1

org.apache.commons.math3.stat.regression.SimpleRegression

QUERY 2: AVOID GROUPBYKEY

- Da una serie di puti (key, val) \rightarrow (key, [val₁, val₂, ..., val_n])
- Map $(f:(key, val_i) \rightarrow (key, [val_i])$
- ReduceByKey $(f: (\text{key, val}_i), (\text{key, val}_i) \rightarrow (\text{key, } [\text{val}_i, \text{val}_i])$
- Per i test sotto riportati si usa un Oggetto Custom (src/main/java/utils/MyIterable.java) serializzabile e contenente una lista.

Performance GroupByKey

Metric	Min	25th percentile	Median
Duration	0.1 s	0.1s	0.1s
GC Time	0.0	0.0	0.0
Shuffle Size/Record	371.5Kib/18650	371.5Kib/18650	371.5Kib/18650

Performance map & reduceByKey

Metric	Min	25th percentile	Median
Duration	0.1 s	0.1s	0.1s
GC Time	6.0 ms	6.0 ms	6.0 ms
Shuffle Size/Record	169.6 Kib/755	169.6 Kib/755	169.6 Kib/755

Aggregare dati relativi a tipologie di vaccini differenti facendo la somma.

MapToPair

f:((data, regione, età), vaccinazioni)

ReduceByKey:

 $f:((mese, regione, età), MyIterable\{(data, vaccinazioni)\})$

 \rightarrow (mese, regione, età), MyIterable{(data₁, vaccinazioni₁), ..., (data_n, vaccinazioni_n)}

Predittore: implementa funzione applicata dalla MapValues.

 $f:(x,y) \rightarrow (data_normalizzata, valore predetto), x: data, y: vaccinazioni$

((04-2021, Abruzzo, 16-19), (1-05-2021, valore predetto))

MapToPair

 $f: (04/2021, \text{Abruzzo}, 16-19), (1/05/2021, \text{valore predetto}) \rightarrow ((1/05/2021, 16-19), \text{MyIterable}\{[\text{Abruzzo}, \text{valore predetto}]\})$

ReduceByKey:

 $f: ((1/05/2021, 16-19), MyIterable{[Abruzzo, valore predetto]}) \rightarrow ((1/05/2021, 16-19), MyIterable{(Abruzzo, vaccinazioni_{ABR}), ..., (Lazio, vaccinazioni_{Laz})})$

Dati sono stati aggrgati in base al primo giorno del mese e alla fascia anagrafica. Tutte le liste ottenute hanno una lunghezza limitata (< 22) al numero delle regioni d'Italia.

01/03/202120-29	Lombardia	271,873
01/03/202120-29	Piemonte	283,746
01/03/202120-29	Veneto	334,484
01/03/202120-29	Puglia	363,063
01/03/202120-29	Toscana	444,738
01/03/202130-39	Lombardia	387,81
01/03/202130-39	Piemonte	394,119
01/03/202130-39	Puglia	545,508
01/03/202130-39	Campania	564,786
01/03/202130-39	Toscana	911,492

ANALISI RISULTATI QUERY 2

VALORI PREDETTI

VS

CLASSIFICA UFFICIALE

ANALISI TEMPI DI ESECUZIONE

• Tempi di esecuzione query 1

Stage	0	1	2	3	4	5
Durata	79ms	0.2 s	43ms	41ms	27ms	0.2 s

• Tempi di esecuzione query 2

Stage	0	1	2	3	4
Durata	0.6 s	0.2 s	0.2 s	31ms	0.2s

Tempi esecuzione programma

Programma	query1	query2	query1&2
Durata Media	2.83 s	3.55 s	3.76 s
Query1	2.83 s	-	2.84 s
Query2	-	3.55 s	0.92 s

Processore Intel(R) Core(TM) i7-9700K

CPU @ 3.60GHz 3.60 GHz

RAM installata 16,0 GB

Tipo sistema Sistema operativo a 64 bit,

processore basato su x64

GRAZIE PER L'ATTENZIONE

