

DRAGONFLY

Sensing Your Opportunities in Space

#BringMeARock

ASTEROID MINING

Team Dragonfly **2016 NASA SpaceApps Challenge**

Laimis Belzinskas, Miranda Caudill, Daniel Dudley, Muz Hasan, Jessica Ice, Eugene Malinskiy, Andy Mitofsky, Brad Roskoph, Lauren Roskoph, Beck Strauss

Problems

- Need a lot of resources to survive in space
- Very expensive to bring materials from Earth (\$770 \$10,000 per POUND to Low Earth Orbit)
- Increasingly expensive to retrieve materials on Earth
- Some asteroids are also potentially headed towards Earth (Angry Asteroids ARE COMING!)

Scenario

- 20-30 years in the future
- Active Moon Colony with manufacturing and refining capacities
- Ongoing mission to Mars

Mission

Our Mission:

Identify key resources from near earth/moon objects (NEMOs) to sustain human life and continue exploration by using exploratory cube satellites called *Dragonflies*.

How will we find our target?

- Use infrared and optical telescopes with radar, Doppler, and infrared spectroscopy capabilities
- Located on the dark side of the moon to avoid glare
- Combine data to identify size, location, speed, rotation, and composition of NEMOs

Which NEMOs will we target?

- Composition: Carbonaceous (C-type) asteroids
 - Have many of the important minerals, require least energy to mine, and are the most abundant in space
- Speed: Slow
 - Ideally 5 to 10k per hour
- Rotation: Slow
 - Much easier to land on
- Size: Large or multiple clustered together
 - Most cost effective
- Location: Near to the moons orbit
 - More frequent mission potential

Sample Target – 2001 SN₂₆₃

- Composition C-type
- Size: One of only two known NEMOs that are a triple asteroid cluster
 - Alpha diameter of 2.8km
 - Beta 1.1 km in diameter
 - Gamma 0.4 km in diameter
- Orbit near Earth and Moon
- Low Delta V and Spin

How we get there

- Launcher system
 - Modular
 - Easy Construction
 - 4 Dragonflies
 - Core Javelin Miniature satellite
- Dragonflies are let loose in cluster formation
- As the rocket separates the Javelin telescopes
- Remaining launcher assembly is retrieved for re-use

Dragonfly

- Dragonfly Cluster send out set of modular, mediumproduction satellites
- Each dragonfly contains a modular sensor package to analyze a potential mining target
- Communication possible between satellites using a built in mesh-net with interferometry, location, and navigational aspects

Dragonfly – Sensor Package

- Dragonfly Telescopic Imaging System (DT-IS)
- Dragonfly 3D Imaging System (D3D-IS)
- Dragonfly IR/Thermal/UV System (DIRecT-US)
- Dragonfly Gamma+Neutron+X-Ray Spectrometer Complex (DGNX-SC)
- Dragonfly Laser Spectrometer (DLS)
- Dragonfly High+Low Frequency Radar Multi-Sat System (DHLR-MSS)

Sample Dragonfly Sensor Board

Gyroscope, Accelerometer, Light Sensor, Hall Effect, Force Sensor

Dragonfly - Sensor System (modularized)

Dragonfly - Javelin

Dragonfly – Javelin Specification

- Javelin Magnetometer System (JMS)
- Javelin GC/MS System (J-GCMS)
- Javelin IR/UV/Vis (J-Spectrum)
- Javelin Ground
 Penetrating Radar (JGPR)

Mining and Refining

- Once a key target has been identified a drilling rig will be sent to the asteroid to secure, drill, and potentially refine the materials
- One option for mining and drilling was proposed in the Star-Whals Project
- It is also possible to attach multiple Javelins to solar sails in order to manipulate orbit of the asteroid or relocate it to near moon location

Economic Impact

Opportunity to turn threats into profit centers.

- 1) Preventing disaster to Earth
 - Mining Asteroids can prevent future asteroid collisions with Earth
- 2) Dramatically reduce the cost of space mining
- Weight of mining rig expected to be around 9000kg, weight of the Dragonfly 15kg
- Able to accurately predict composition 90 percent of the time

 huge cost savings to deploy mining rigs to only most valuable sites.

Economic Impact

Opportunity to turn threats into profit centers.

- 3) Dramatically Reduce the Cost of Living In Space
- Cost of transporting one pound of cargo into low earth orbit ranges from \$770 to \$10,000
- One 75 meter diameter C-type asteroid potentially has enough water to run all of the Space Missions to date.
- Resources in two similar sized C-type asteroids were valued by Asterank at 2.62 trillion and 168.20 billion

Thank you!

Find *extensive* information on asteroid mining, and our solution to it + Renders + Circuit Diagrams on our page Project and GitHub page

- https://2016.spaceappschallenge.org/challenges/solar-system/asteroidmining/projects/the-dragonfly-sensing-your-opportunities-in-space
- https://github.com/DragonID/NASAAsteroidMiningChallenge2016

Sources:

- 1. Information on Asteroid Types and Composition: http://www.astronomysource.com/tag/m-type-asteroid...
- 2. Review of Asteroid Compositions: http://www.uapress.arizona.edu/onlinebks/Resources...
- 3. Asteroid Density, Porosity, and Structure: http://www.lpi.usra.edu/books/AsteroidsIII/pdf/302...
- 4. Asteroids as Source of Precious Metals: http://www.outofthecradle.net/WordPress/wp-content...
- 5. Database of NEOs: http://www.asterank.com/3d/
- 6. Information on Asteroid Mining: http://www.planetaryresources.com/asteroids/#asteroids-market-opportunity
- 7. Information on Picking Asteroid Mining Targets: http://www.planetaryresources.com/2015/08/how-we-c...
- 8. Information on 2001 SN263: http://www.lpi.usra.edu/meetings/lpsc2011/pdf/2695.pdf
- 9. Information on identifying asteroids from Earth/Moon: http://www.permanent.com/asteroids-discovering.htm...
- 10. Information on identifying asteroids from Earth/Moon: http://www.planetary.org/multimedia/space-images/c...
- 11. Information on identifying asteroids from Earth/Moon: http://smass.mit.edu/

Sources:

- https://www.nasa.gov/content/goddard/new-nasa-mission-to-help-us-learn-how-to-mine-asteroids
- 2. http://www.jpl.nasa.gov/cubesat/missions/neascout.php
- 3. http://www.lpi.usra.edu/meetings/lpsc2011/pdf/2695.pdf
- 4. http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=153591;orb=1;old=0;cov=0;log=0;cad=1#cad
- 5. https://www.nasa.gov/mission_pages/newhorizons/spacecraft/index.html
- 6. http://www.esa.int/Our_Activities/Space_Engineering_Technology/Asteroid_Impact_ Mission/Instruments
- 7. http://microdevices.jpl.nasa.gov/capabilities/semiconductor-lasers/tunable-laser-spectrometers.php
- 8. http://www.messenger-education.org/instruments/grns.php
- 9. http://deepspace.jpl.nasa.gov/

Picture Sources:

- NEO gif: http://www.asterank.com/3d/
- Moon Base Photo: https://www.youtube.com/watch?v=g0yCgFvCZco
- http://www.planetaryresources.com/asteroids/#asteroids-market-opportunity
- Hubble Telescope Picture: https://upload.wikimedia.org/wikipedia/commons/3/3f/HST-SM4.jpeg
- Infrared Telescope Picture: http://voices.nationalgeographic.com/files/2014/06/eso1225a.jpg
- Info on 2001 SN263: http://www.lpi.usra.edu/meetings/lpsc2011/pdf/2695.pdf
- Moon Telescope http://cdn.phys.org/newman/gfx/news/hires/2014/3construction.jpg

