Academy of Mathematics and Systems Science

Chinese Academy of Sciences

Name: Xiayang Li(李夏洋) UID: 202328000206057

Mar. 28, 2024 Assignment

Combinatorial Optimization(组合最优化)-Homework 1

Question 1

设 S 是 2n 个整数的集合,将 S 划分为两个部分 S_1 和 S_2 ,使得 $|S_1| = |S_2| = n$,并且使 S_1 中数之和与 S_2 中数之和尽可能接近。令 S_1 和 S_2 中两个整数的所有可能的交换定义的领域为 N,那么 N 是精确的吗?

Solution: 不是精确的, 举例如下: 设

$$S = \{2, 2, 2, 2, 4, 4, 4, 4\}, S_1 = \{2, 2, 2, 2\}, S_2 = \{4, 4, 4, 4\}.$$

$$\tag{1}$$

在划分 $S_1 \cup S_2$ 的邻域 N 中,局部最优解为 $S_1^* = \{2,2,2,4\}, S_2^* = \{4,4,4,2\}$,显然不是全局最 优解 $S_1^{**} = \{2,2,4,4\}, S_2^{**} = \{4,4,2,2\}$.

Question 2

在 MST 中,一个重要的邻域是 $N(f) = \{g : g \in F \text{ 且能按下述方式由 } f \text{ 得到: } m一条边到 f 里 产生一个圈,再去掉圈上的一条边 <math>\}$ 。证明: 该邻域是精确的。

Solution: 设 f 是邻域 N(f) 中的局部最优解, 下证, f 必然是全局最优解.

用反证法, 谬设: f^* 是全局最优解, 且 $w(f^*) < w(f)$.

取 $e \in f^*e \notin f$, 将 e 加入 f 中, 产生一个圈 C. 由于 f 在邻域 N 中是精确的, 故必然存在 $e' \in f$, 而 $w(e') \ge w(e)$. 又由于 $w(f^*) < w(f)$, 对每个 $e \in f^*e \notin f$ 执行上述操作后, 不可能 全产生边权一样的圈, 也即, 从可以找到一个圈上的边 $e' \in f$, 而 e(e') < w(e) 严格成立. 这样, $f^* - e + e'$ 得到一棵比 f^* 权值更小的生成树, 矛盾!

Question 3

用一个例子说明 2 交换不能确定 TSP 的精确邻域; 同样 3 交换和 n 交换也不能确定 TSP 的精确邻域, 其中 n 为城市的数目。

Solution:

图 1:2 交换不能定义精确邻域的例子.

如上图所示, 右侧的 TSP 问题的解在其 2 交换邻域中是局部最优解, 但不是全局最优解.(左侧的 Global 例子). 暂时无法快速找到 3-opt 的例子. 但 n 交换是可以确定精确邻域的.

问题: 怎样能够在理论上说明 k-交换算法是一种局部算法? 希望习题课上可以讲解一下.

Question 4

力矩问题是寻求重力 w_i 的一个排列 π , 使得力矩 $\sum_{i=1}^n iw_{\pi(i)}$ 最小. 通过两个相邻重力的所有可能的交换而定义的领域是精确的.

Solution: 首先易证, 最优排列 π^* 满足:

$$w_{\pi^*(1)} \geqslant w_{\pi^*(2)} \geqslant \cdots \geqslant w_{\pi^*(n)}$$
 (2)

否则, 假如存在 $i \in [n-1]$, 使得 $w_{\pi^*(i)} < w_{\pi^*(i+1)}$, 显然 $iw_{\pi^*(i)} + (i+1)w_{\pi^*(i+1)} > (i+1)w_{\pi^*(i)} + iw_{\pi^*(i+1)}$, 矛盾!

同理可验证,

$$w_{\pi^*(1)} \geqslant w_{\pi^*(2)} \geqslant \dots \geqslant w_{\pi^*(n)} \Leftrightarrow \forall i \in [n-1], w_{\pi^*(i)} \geqslant w_{\pi^*(i+1)}$$
 (3)

于是, 记题设所定义的邻域为 N, 若 $\pi \in N$ 是局部最优解, 那它必然也是全局最优解. 于是按照这种方式定义的邻域是精确的.

Question 5

Solution: 设多胞形 P 由

$$P = \{ x \in \mathbb{R}^n : Ax \leqslant b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m \}$$
(4)

决定.

现将
$$A$$
 的每一行进行归一化得 \bar{A} , 即,记 $A=\begin{pmatrix} a_1^T\\a_2^T\\ \vdots\\a_m^T \end{pmatrix}$,则 $\bar{A}=\begin{pmatrix} \bar{a_1}^T\\ \bar{a_2}^T\\ \vdots\\ \bar{a_m}^T \end{pmatrix}$,满足 $\|\bar{a_i}\|_2=1, i\in[n]$,

相应的 b 也调整至 \bar{b} . 于是多胞形 P 也可以表示为

$$P = \{ x \in \mathbb{R}^n : \bar{A}x \leqslant \bar{b}, \bar{A} \in \mathbb{R}^{m \times n}, \bar{b} \in \mathbb{R}^m \}.$$
 (5)

这样, 在多胞形 P 中寻找一个最大球的问题可以表述为如下的线性规划:

max
$$r$$

s.t. $\bar{A}x \leqslant \bar{b}$
 $-\bar{A}x \leqslant r - \bar{b}$ (6)

其中粗体
$$m{r} \in \mathbb{R}^m, \, m{r} = r \cdot egin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

Question 6

设 P 是一个非空多面体,构造图 G(P) = (V, E),其中 V 是 P 的顶点,E 是 P 的一维面. 令 x 是 P 的任一顶点,c 是满足 $c^{\top}x < \max\{c^{\top}z : z \in P\}$ 的向量. 证明:存在 x 在 G(p) 中的邻点 y,使得 $c^{\top}x < c^{\top}y$.

Solution:

为了排除由"多面体无界"情况带来的麻烦, 我们约定, 若多面体沿着某个一维面无限延伸, 那么规定该方向的一维无穷远点为 x 的邻点.

用反证法,谬设对于任意的 x 在 G(p) 中的邻点 y,都有 $c^{\top}x \geq c^{\top}y$,那么有 x 的邻点 $\{y_1,y_2,\cdots,y_n\}$ 可确定 n 个极方向: d_1,d_2,\cdots,d_n ,其中 d_i 是平行于 y_i-x 的单位向量. 则 凸锥 $P'=\{h:h=x+\sum \lambda_i d_i\}$ 显然包含了非空多面体 P.