Algèbre linéaire

Table des matières

1.	Premières définitions	1
2.	Noyau et image d'une application linéaire.	1
3.	Quelques applications linéaires classiques.	3
	3.1. Somme directe.	3
	3.2. Projection et symétrie. · · · · · · · · · · · · · · · · · · ·	3
4.	Matrices.	4
	4.1. Premières définitions. · · · · · · · · · · · · · · · · · · ·	4

1. Premières définitions

Définition 1.1. Soit E et F deux \mathbb{K} – espaces vectoriels. On dit que l'application $f: E \to F$ est liénaire si:

- (1) Pour tout $u, v \in E$, on a f(u + v) = f(u) + f(v).
- (2) Pour tout $\lambda \in \mathbb{K}$ et pour tout $u \in E$, on a $f(\lambda u) = \lambda f(u)$.

Proposition 1.2. Une application linéaire est entièrement déterminée par l'image des vecteurs d'une base du domaine de définition.

Démonstration. On pose $f: E \to E$ une application linéaire. Puisque E est un espace vectoriel, il est muni d'une base $\mathcal{B} = (e_1, ..., e_n)$. Soit $x \in E$.

$$\exists (\alpha_1,...,\alpha_n \text{ tel que } x=\alpha_1e_1+...+\alpha_ne_n \text{ on a } f(x)=f(\alpha_1e_1+...+\alpha_ne_n)=\alpha_1f(e_1)+...+\alpha_nf(e_n)$$
 par linéarité.

Proposition 1.3. Soit E, F et G des espaces vectoriels, $f: E \to F$ et $g: F \to G$ des applications linéaires. La fonction composée $g \circ f: E \to G$ est une application linéaire.

2. Noyau et image d'une application linéaire.

Proposition 2.1. Soit $f: E \to F$ une application linéaire.

- (1) Pour tout sous-espace vectoriel E' de E, $f(E') = \{f(v) \mid v \in E'\}$ est un sous-espace vectoriel de F.
- (2) Pour tout sous-espace vectoriel F' de F, $f^{-1}(f(F')) = \{v \in E \mid f(v) \in F'\}$ est un sous-espace vectoriel de E.

Démonstration.

- (1) Soit $x, y \in f(E'), \lambda \in \mathbb{R}$. $f(x + \lambda y) = f(x)_{\in F} + \lambda f(y)_{\in F}$. D'où $f(x + \lambda y) \in F$. De plus, puisque E' est un espace vectoriel, $0 \in E'$ et $f(0) \in f(E') \in F$. Ainsi, f(E') est un sev.
- (2) Soit $x_1, x_2 \in E$ tel que $f(x_i) \in F', \lambda \in \mathbb{R}$. Alors on a $f(x_1 + \lambda x_2) \in F'$ et $f(x_1 + \lambda x_2) = f(x_1) + \lambda f(x_2) \Rightarrow f^{-1}(f(x_1 + \lambda x_2)) = f^{-1}(f(x_1) + \lambda f(x_2))$

Définition 2.2. Soit $f: E \to F$ une application linéaire. On appelle noyau de f noté $\ker(f)$ l'image réciproque de $\{0_F\}$.

Lemme 2.3. Soit $f: E \to F$ une application linéaire. f est injective si et seulement si $\ker(f) = \{0_E\}$.

Démonstration.

 \Rightarrow Soit f une application linéaire injective. On a nécessairement $0_E \in \ker(f)$ or f est injective, donc $\forall x \in E, x \neq 0_E \Rightarrow f(x) \neq 0$ d'où $\ker(f) = \{0_E\}$. \Leftarrow Soit f une application linéaire tel que $\ker(f) = \{0_E\}$. Supposons par absurde f non injective. Alors $\exists u \neq v \in E, f(u) = f(v)$. Donc f(u - v) = f(u) - f(v) = 0 impossible car $u \neq v$.

Définition 2.4. Soit $f: E \to F$ une application linéaire. On appelle rang de f, noté $\operatorname{rg}(f)$, la dimension de l'image de f.

Théorème 2.5 (théorème du rang). Soit $f: E \to F$ une application linéaire. Si E est de dimension finie alors

$$\dim(\ker(f)) + \operatorname{rg}(f) = \dim(E).$$

Démonstration. Notons $p := \dim(\ker(f)), n := \dim(E)$. Soit $(e_1, ..., e_p)$ une base de $\ker(f)$. Par le théorème de la base incomplète, on note $(e_1, ..., e_p, e_{p+1}, ..., e_n)$.

De plus, Une base de $\mathcal{I}m(f)$ est $\mathrm{Vect}(f(e_1),...,f(e_p),f(e_{p+1}),...,f(e_n)) = \mathrm{Vect}(f(e_{p+1}),...,f(e_n))$. Verifions que $(f(e_{p+1}),...,f(e_n))$ est une famille libre. Soit $(\lambda_{p+1},...,\lambda_n) \in \mathbb{R}$

$$\begin{split} \lambda_{p+1}f\big(e_{p+1}\big)+\ldots+\lambda_nf(e_n)&=0 \Leftrightarrow f\big(\lambda_{p+1}e_{p+1}+\ldots+\lambda_ne_n\big)=0\\ &\Leftrightarrow \lambda_{p+1}e_{p+1}+\ldots+\lambda_ne_n\in \ker(f)\\ &\Leftrightarrow \exists \big(\lambda_1,\lambda_p\big)\in\mathbb{R}, \lambda_{p+1}e_{p+1}+\ldots+\lambda_ne_n=\lambda_1e_1+\ldots\lambda_pe_p \end{split}$$

Or $\lambda_1 e_1 + ... \lambda_p e_p \neq 0$ car c'est une famille libre. D'où, $\text{Vect}(f(e_{p+1}), ..., f(e_n))$ est une famille libre. AInsi, on a

$$\dim(\operatorname{Vect}(f(e_{p+1}),...,f(e_n))) = \dim(\mathcal{I}m(f)) = n - p = \dim(E) - \dim(\ker(f))$$
$$\dim(\ker(f)) + \operatorname{rg}(f) = \dim(E).$$

Corollaire 2.6. Soit $f: E \to F$ une application linéaire telle que dim $E = \dim F < +\infty$, alors f est injective si et seulement si f est surjective.

Démonstration.

- \Rightarrow Supposons f injective. Alors $\ker(f) = \{0\} \Rightarrow \dim(\ker(f)) = 0 \Rightarrow \dim(\mathcal{I}m) = \dim(E) = \dim(F)$ d'où f surjective.
- \Leftarrow Supposons f surjective. Alors $\dim(\mathcal{I}m) = \dim(F) \Rightarrow \dim(\ker(f)) = 0$ d'où f injective.

Remarque 2.7. On retiendra que dans le cas où les espaces de départ et d'arrivée sont de même dimension finie, il suffit de montrer l'injectivité pour montrer la bijectivité.

Définition 2.8 (Isomorphisme). On dit que l'application linéaire $f: E \to F$ est un isomorphisme si elle est bijective. On dit alors que les espaces vectoriels E et F sont isomorphes.

Proposition 2.9. Soit $f: E \to F$ une application linéaire.

- (1) Si f est injective, on a dim $E \leq \dim F$.
- (2) Si f est surjective, on a dim $E \ge \dim F$.
- (3) Si f est un isomorphisme, on a dim $E = \dim F$.

Démonstration.

(1) Soit f injective. Alors $\dim(\ker(f)) = 0$ d'où $\dim(F) \ge \dim \operatorname{rg}(f) = \dim(E)$.

- (2) Soit f surjective. Alors $\dim(\operatorname{rg}(f)) = \dim(F)$. Or par le théorème du rang, $\dim(E) = \operatorname{rg}(f) + \dim \ker(f) \ge \operatorname{rg}(f) = \dim(F)$.
- (3) Soit f un isomorphisme. Alors f est bijective par (1) et (2). Par ordre total de \mathbb{R} , dim $E = \dim F$.

3. Quelques applications linéaires classiques.

Définition 3.1 (Endomorphisme). On dit que l'application linéaire $f: E \to E$ est un endomorphisme. L'ensemble des endormophismes de E est noté $\operatorname{End}(E)$.

Définition 3.2 (Automorphisme). On dit que l'application linéaire $f: E \to E$ est un automorphisme si c'est un endomorphisme bijectif.

Définition 3.3 (Homothétie). Soit k un scalaire fixé. L'endomorphisme de E qui à v associe kv est appelé homothétie de rapport k.

Remarque 3.4. On remarque que l'homothétie de rapport k est bijective si et seulement si $k \neq 0$. De plus, la composition de deux homothéties est encore une homothétie.

3.1. Somme directe.

Définition 3.5 (Somme de Minkowski). Soit F, G deux espaces vectoriels. On appelle somme de Minkowski le sous espace vectoriel $F + G := \{v + w \mid v \in F, w \in G\}$.

Définition 3.6 (Somme directe). Soit F, G deux espaces vectoriels. On dit que la somme de F et G est directe si $F \cap G = \{0\}$. On note la somme directe par $F \oplus G$.

Proposition 3.7. Soit F, G deux sous-espaces vectoriels. F et G sont en somme directe si et seulement si tout vecteur de F + G se décompose de manière unique en la somme d'un vetcuer de F et d'un vetcur de G.

Définition 3.8 (Supplémentaires). Soit E un espace vectoriel et F, G deux sous-espaces vectoriels de E. On dit que F et G sont supplémentaires si $F \oplus G = E$.

Proposition 3.9. Soit E un espace vectoriel de dimension finie et F, G deux sous espaces vectoriels de E. F et G sont supplémentaires si et seulement si

$$F \cap G = \{0\} \text{ et } \dim(F) + \dim(G) = \dim(E).$$

3.2. Projection et symétrie.

Définition 3.10 (Projection). Soit $F,G\subset E$ deux sous-espaces vectoriels supplémentaires. La projection de E sur F parallèlement à G est l'endomorphisme $p=p_{F,G}:E\to E;v\mapsto v_F$. où $v=v_F+v_G$ est la décomposition unique de v dans la somme directe de F et G.

Proposition 3.11. Soit $p: E \to E$ un endomorphisme alors p est une projection si et seulement si $p^2 = p$.

Démonstration.

⇒ Soit
$$p_{F,G}$$
 une projection, $u = u_F + u_G$. On a $p(p(u)) = p(u_F) = u_F = p(u)$.
 \Leftarrow Soit p un endomorphisme tel que $p^2 = p$. Posons $\mathcal{E} = e_1, ..., e_n$ une base de E

Proposition 3.12. Soit E un espace vectoriel, $p: E = F \oplus G \rightarrow E$ une projection. $\ker(p) = G$ et $\operatorname{im}(p) = F$.

Définition 3.13 (Symétrie). Soit $F, G \subset E$ deux sous-espaces vectoriels supplémentaires. La symétrie de E par rapport à F et parallèlement à G est l'endomorphisme $s = s_{F,G} : E \to E; v \mapsto v_F - v_G$.

Proposition 3.14. Soit $s: E \to E$ un endomorphisme. s est une symétrie si et seulement si $s^2 = \mathrm{id}_E$.

Démonstration.

 \Rightarrow Si $s = s_{u,v}$ alors,

$$s^{2}(w) = s(s(w)) = s(w_{u} - w_{v}) = s(w_{u}) - s(w_{v}) = w_{u} + w_{v} = w.$$

← □

Proposition 3.15. Soit E un espace vectoriel, $s_{F,G}: E \to E$ une symétrie, et $p_{F,G}: E \to E$ une projection. Alors $s = 2p - \mathrm{id}_E$.

Démonstration. Soit $s: E \to E$ telle que $s^2 = \mathrm{id}_E$. On considère $p = \frac{1}{2}(s + \mathrm{id}_E)$. On a

$$p^{2} = p \circ p = \left(\frac{1}{2}(s + id_{E})\right) \circ \left(\frac{1}{2}(s + id_{E})\right) = \frac{1}{4}(s(s + id_{E}) + id_{E}(s + id_{E}))$$
$$= \frac{1}{4}(s^{2} + 2s + id_{E}) = \frac{1}{2}(s + id_{E}) = p.$$

Exemple 3.16. On prend $E = \mathbb{R}^3$, $B = (e_1, e_2, e_3)$ la base canonique et les sous espaces supplémentaires $F = \text{Vect}(e_1, e_2)$ et $G = \text{Vect}(e_3)$. Alors la projection et symétrie correspondantes sont $p : (x, y, z) \mapsto (x, y, 0)$ et $s : (x, y, z) \mapsto (x, y, -z)$.

Définition 3.17. Soit $\varphi : E \to E$ un endomorphisme. On note Fixe $(\varphi) = \{v \mid \varphi(v) = v\}$.

Exemple 3.18. Fixe $(p_{u,v}) = u$

 $\operatorname{Fixe}(s_{u,v})=u$

 $Fixe(r_{\theta}) = \{0\}.$

4. Matrices.

4.1. Premières définitions.

Remarque 4.1. $M_{m \times n}(\mathbb{K}) := \{M \mid M \text{ soit de taille } m \times n \text{ à coefficient dans } \mathbb{K}\}.$

Définition 4.2 (Rang). Soit M une matrice sur \mathbb{K} un corps. On appelle le rang, la valeur :

rg(M) := dim(Vect(colonnes de M)) = dim(Vect(lignes de M)).

Définition 4.3 (Produit matriciel). Soit $A, B \in M_{m \times n}(\mathbb{K}) \times M_{n \times p}$. Le produit matriciel AB est définit par la matrice $C \in M_{m \times p}$ avec

$$C = (C_{i,k})_{\substack{1 \leq i \leq m \\ 1 \leq k \leq p}} \mid C_{i,k} = a_{i1}b_{1k} + a_{i2}b_{2k} + \dots + a_{in}b_{nk}$$

Théorème 4.4. Soit $A \in M_{m \times n}, X \in M_{n \times 1}, B \in M_{m \times 1}$ Le système linéaire en XAX = B admet une solution si et seulement si $\operatorname{rg}(A) = \operatorname{rg}(A|B)$ et $\operatorname{sol}(A,B) = x_p + \operatorname{sol}(A,0), x_p := \operatorname{solution particulière}$.

Définition 4.5. Si un système linéaire admet des solutions on dit qu'il est compatible.

Proposition 4.6. Soit $A \in M_{m \times n}$. A est inversible si et seulement si rg(A) = n.

Proposition 4.7. Soit $A \in M_{m \times n}$. On a: $\dim(\operatorname{sol}(A,0)) + \operatorname{rg}(A) = n$

Définition 4.8 (Inversible). Soit $A \in M_{n \times n}$. A est dite inversible si il existe $A^{-1} \in M_{n \times n}$ telle que $AA^{-1} = I_n$

Définition 4.9 (Equivalence). Soit $A, B \in M_{m \times n}(\mathbb{K})$. On dit que A et B sont équivalentes s'il existe $P \in M_{m(\mathbb{K})}$, $Q \in M_{n(\mathbb{K})}$ inversibles tels que B = PAQ. On note $A \equiv B$.

Proposition 4.10. Soit $A \in M_{m \times n}$ et r = rg(A), alors A est équivalente a $\begin{pmatrix} I_r & * \\ * & * \end{pmatrix}$.

Définition 4.11 (Semblable). Soit $A, B \in M_n(\mathbb{K})$. On dit que A et B sont semblables s'il existe $P \in M_n(\mathbb{K})$ inversible telle que $B = P^{-1}AP$. On note $A \sim B$.