Proposition of Appendix shows that a sufficient condition for the identifiability in the case of Gaussian and Boltzmann linear policies is that the second moment matrix of the feature vector $\mathbb{E}_{s \sim d_{\mu}^{\pi}^*} \left[\phi(s) \phi(s)^T \right]$ is non–singular along with the fact that the policy π_{θ} plays each action with positive probability for the Boltzmann policy.

Concentration Result We are now ready to present a concentration result, of independent interest, for the parameters and the negative log–likelihood that represents the central tool of our analysis (details and derivation in Appendix).

Under Assumption and Assumption, let $\mathcal{D}=\{(s_i,a_i)\}_{i=1}^n$ be a dataset of n>0 independent samples, where $s_i\sim d_\mu^{\pi_\theta*}$ and $a_i\sim \pi_{\theta*}(\cdot|s_i)$. Let $\hat{\theta}=arg\min_{\theta\in\Theta}\hat{\ell}(\theta)$ and $\theta^*=arg\min_{\theta\in\Theta}\ell(\theta)$. If the empirical FIM:

$$\widehat{\mathcal{F}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{a \sim \pi_{\theta}(\cdot | s)} \left[\overline{\mathbf{t}}(s, a, \theta) \overline{\mathbf{t}}(s, a, \theta)^{T} \right]$$
 (1)

has a positive minimum eigenvalue $\widehat{\lambda}_{\min} > 0$ for all $\theta \in \Theta$, then, for any $\delta \in [0,1]$, with probability at least $1-\delta$:

$$\|\widehat{\theta} - \theta^*\|_2 \le \frac{\sigma}{\widehat{\lambda}_{\min}} \sqrt{\frac{2d}{n} \log \frac{2d}{\delta}}.$$

Furthermore, with probability at least $1 - \delta$, individually:

$$\ell(\widehat{\theta}) - \ell(\theta^*) \leqslant \frac{d^2 \sigma^4}{\widehat{\lambda}_{\min}^2 n} \log \frac{2d}{\delta}$$
$$\widehat{\ell}(\theta^*) - \widehat{\ell}(\widehat{\theta}) \leqslant \frac{d^2 \sigma^4}{\widehat{\lambda}_{\min}^2 n} \log \frac{2d}{\delta}.$$

The theorem shows that the L^2 -norm of the difference between the maximum likelihood parameter $\hat{\theta}$ and the true parameter θ^* concentrates with rate $\mathcal{O}(n^{-1/2})$ while the likelihood $\hat{\ell}$ and its expectation ℓ concentrate with faster rate $\mathcal{O}(n^{-1})$. Note that the result assumes that the empirical FIM $\hat{\mathcal{F}}(\theta)$ has a strictly positive eigenvalue $\hat{\lambda}_{\min} > 0$. This condition can be enforced as long as the true Fisher matrix $\mathcal{F}(\theta)$ has a positive minimum eigenvalue λ_{\min} , i.e. under identifiability assumption (Lemma) and given a sufficiently large number of samples. Proposition of Appendix provides the minimum number of samples such that with probability at least $1-\delta$ it holds that $\hat{\lambda}_{\min}>0$.

Identification Rule Analysis The goal of the analysis of the identification rule is to find the critical value c(1) so that the following probabilistic requirement is enforced.

Let $\delta \in [0,1]$. An identification rule producing \hat{I} is δ -correct if: $\Pr(\hat{I} \neq I^*) \leq \delta$.

We denote with $\alpha=\frac{1}{d-d*}\mathbb{E}\big[\big|\big\{i\notin I^*:i\in \widehat{I}_c\big\}\big|\big]$ the expected fraction of parameters that the agent does not control selected by the identification rule and with $\beta=\frac{1}{d*}\mathbb{E}\big[\big|\big\{i\in I^*:i\notin \widehat{I}_c\big\}\big|\big]$ the expected fraction of parameters that the agent does control not selected by the identification rule. We

now provide a result that bounds α and β and employs them to derive δ -correctness.

Let $\widehat{I_c}$ be the set of parameter indexes selected by the Identification Rule obtained using n>0 i.i.d. samples collected with π_{θ^*} , with $\theta^*\in\Theta$. Then, under Assumption and Assumption, let $\theta_i^*=arg\min_{\theta\in\Theta_i}\ell(\theta)$ for all $i\in\{1,...,d\}$ and $\nu=\min\left\{1,\frac{\lambda_{\min}}{\sigma^2}\right\}$. If $\widehat{\lambda}_{\min}\geqslant\frac{\lambda_{\min}}{2\sqrt{2}}$ and $\ell(\theta_i^*)-l(\theta^*)\geqslant c(1)$, it holds that:

$$\begin{split} &\alpha \leqslant 2d \exp\left\{-\frac{c(1)\lambda_{\min}^2 n}{16d^2\sigma^4}\right\} \\ &\beta \leqslant \frac{2d-1}{d^*} \sum_{i \in I^*} \exp\left\{-\frac{\left(l(\theta_i^*) - l(\theta^*) - c(1)\right)\lambda_{\min} \nu n}{16(d-1)^2\sigma^2}\right\}. \end{split}$$

Furthermore, the Identification Rule is $((d-d^*)\alpha+d^*\beta)$ – correct.

Since α and β are functions of c(1), we could, in principle, employ Theorem to enforce a value δ , as in Definition, and derive c(1). However, Theorem is not very attractive in practice as it holds under an assumption regarding the minimum eigenvalue of the FIM and the corresponding estimate, i.e. $\widehat{\lambda}_{\min} \geqslant \frac{\lambda_{\min}}{2\sqrt{2}}$, that cannot be verified in practice since λ_{\min} is unknown. Similarly, the constants d^* , $l(\theta_i^*)$ and $l(\theta^*)$ are typically unknown. We will provide in Section a heuristic for setting c(1).

Policy Space Identification in a Configurable Environment

The identification rules presented so far are unable to distinguish between a parameter set to zero because the agent cannot control it, or because zero is its optimal value. To overcome this issue, we employ the Conf–MDP properties to select a configuration in which the parameters we want to examine have an optimal value other than zero. Intuitively, if we want to test whether the agent can control parameter θ_i , we should place the agent in an environment $\omega_i \in \Omega$ where θ_i is maximally important for the optimal policy. This intuition is justified by Theorem, since to maximize the *power* of the test $(1-\beta)$, all other things being equal, we should maximize the log–likelihood gap $l(\theta_i^*) - l(\theta^*)$, i.e. parameter θ_i should be essential to justify the agent's behavior. Let $I \in \{1,...,d\}$ be a set of parameter indexes we want to test, our ideal goal is to find the environment ω_I such that:

$$\omega_I \in arg \max_{\omega \in \Omega} \left\{ l(\theta_I^*(\omega)) - l(\theta^*(\omega)) \right\},$$
 (2)

where $\theta^*(\omega) \in arg \max_{\theta \in \Theta} J_{\mathcal{M}_{\omega}}(\theta)$ and $\theta_I^*(\omega) \in arg \max_{\theta \in \Theta_I} J_{\mathcal{M}_{\omega}}(\theta)$ are the parameters of the optimal policies in the environment \mathcal{M}_{ω} in Π_{Θ} and Π_{Θ_I} respectively. Clearly, given the samples \mathcal{D} collected with a single optimal policy $\pi^*(\omega_0)$ in a single environment \mathcal{M}_{ω_0} , solving problem (2) is hard as it requires performing an off-distribution optimization both on the space of policy parameters and configurations. For these reasons, we consider a surrogate objective that assumes that the optimal parameter in the new configuration can be reached by performing a single gradient step

Let $I \in \{1, ..., d\}$ and $\overline{I} = \{1, ..., d\} \setminus I$. For a vector \mathbf{v} , we denote with $\mathbf{v}|_I$ the vector obtained by setting to zero the