MAS Data Science and Engineering Machine Learning

Natasha Balac, Ph.D. April, 2016

WELCOME

- Logistics
 - Check-in from 8:15am 9:00am
 - Parking
 - Restrooms
 - Lunch 12:30-1:30 (MPR1)
- Agenda
 - Technical Sessions
 - Hands-on Sessions
 - Interactive format
 - Assignments & Final
 - TA Hours; Communication; Piazza

Team

- Madhavi Yenugula <u>myenugul@eng.ucsd.edu</u>
- Natasha Balac

nbalac@eng.ucsd.edu

Background

- Over 25 Years of Experience in Data mining
- Ph.D. in Machine Learning with emphasis on Big Data and Mobile Robots
- Director of Predictive Analytics center of Excellence at the Supercomputer Center at UCSD
- Lecturer UCSD MAS in Data Science and Engineering and UCSD Extension Data Mining Certificate

University of California, San Diego UCSD

Student-centered, research-focused, service-oriented public institution

Recognized as one of the top 15 research universities worldwide

Culture of collaboration sparks discoveries that advance society and drive economic impact

UC San Diego's rich academic portfolio includes six undergraduate colleges, five academic divisions and five graduate and professional schools

CallT2 – Qualcomm Institute

66 Calit2 represents a new mechanism to address large-scale societal issues by bringing together multidisciplinary teams of the best minds. 33 Larry Smarr, Director, Calit2

Spitzer Space Telescope (Infrared)

Hubble Space Telescope (Optical)

PACE – Predictive Analytics Center of Excellence Closing the gap between Government, Industry and Academia

PACE is a non-profit, public educational organization

- To promote, educate and innovate in the area of Predictive Analytics
- To leverage predictive analytics to improve the education and well being of the global population and economy
- To develop and promote a new, multilevel curriculum to broaden participation in the field of predictive analytics

Research and Collaboration

- Fraud Detection
- Modeling user behaviors
- Smart Grid Analytics
- Solar powered system modeling
- Microgrid anomaly detection
- Battery Storage Analytics
- Sport Analytics
- Transporter interaction
- Population Health
- IoT
- Nano-engineering

CMS Fraud, Waste and Abuse Detection and Prediction

- Descriptive Statistics
 - Claims summary information
 - History and trends
 - Distributions across periods, transactions, etc.
- Exploratory Analysis
 - Profiles of provider transactions
 - Provider similarity according to profiles
 - Visual summaries of large amounts of data
 - Eligibility data link to provider billing
- Predictive analytics
 - Adjustments
 - Equipment, Service Codes
 - Long term vs. short term hospital stay
 - Provider profiles

Drug Transporter Analysis

Figure 1. Overall strategy

Predictive Analytics In Action

UCSD Smart Grid

- UCSD Smart Grid sensor network data set
 - 45MW peak micro grid; daily population of over 54,000 people
- Smart Grid data over 100,000 measurements/sec
 - Sensor and environmental/weather data
 - Large amount of complex data streaming from sensor networks

Predictive Analytics throughout the Microgrid

Predictive Analytics for Discovering Energy Consumption Patterns

- The utility and the consumer both benefit from consumption analytics
- Forecasting the energy consumption patterns in the UCSD campus microgrid
- Different spatial and temporal granularities
- Novel Feature Engineering
- Machine learning for demand response optimization

PMU Data Analysis

- Frequency, Magnitude, and Angle data for one month for two PMU's
- Collected 30 times a second
- Very sensitive and noisy measurements
- Goal: detect and predict event

Event

Data Mining for PMU Anomaly Detection

 Detection of <u>outliers</u> at distant coordinates

Cluster FFT slides on the direction of the "#Observations" - axis

Sustainable San Diego Partnership

- Clean Tech San Diego, OSIsoft, SDG&E and UC San Diego Common data infrastructure connects physical assets: electrical, gas, water, waste, buildings, transportation &traffic
- Platform to securely transfer high volumes of Big Data from multiple, distributed measurement units
- Crowd-sourced Big Data in a cyber-secure, private cloud
- Predictive analytics on real-time time-series data

Big Data

- Complexities introduced by the large amount of multivariate and heterogeneous data streaming from complex sensor networks
- Extremely large, complex sensor networks, enabling a novel feature reduction method that scales well

4 V's of Big Data

The New York Stock Exchange captures

1 TB OF TRADE INFORMATION

during each trading session

Velocity ANALYSIS OF STREAMING DATA

Modern cars have close to

that monitor items such as

fuel level and tire pressure

100 SENSORS

By 2016, it is projected there will be

18.9 BILLION NETWORK CONNECTIONS

- almost 2.5 connections per person on earth

The FOUR V's of Big **Data**

break big data into four dimensions: Volume,

4.4 MILLION IT JOBS

As of 2011, the global size of data in healthcare was estimated to be

150 EXABYTES

[161 BILLION GIGABYTES]

30 BILLION PIECES OF CONTENT are shared on Facebook every month

Variety

DIFFERENT **FORMS OF DATA**

are watched on

YouTube each month

By 2014, it's anticipated

WEARABLE, WIRELESS

4 BILLION+ HOURS OF VIDEO

HEALTH MONITORS

there will be

420 MILLION

400 MILLION TWEETS

are sent per day by about 200 million monthly active users

1 IN 3 BUSINESS

don't trust the information they use to make decisions

Poor data quality costs the US economy around

\$3.1 TRILLION A YEAR

27% OF

in one survey were unsure of how much of their data was inaccurate

Veracity UNCERTAINTY

OF DATA

Big Data — Big Training

- "Data Scientist"
 - The "Hot new gig in town"
 - O'Reilly report
 - Data Scientist: The Sexiest Job of the 21st Century
 - Harvard Business Review, October 2012
 - The next sexy job in next 10 years will be statistician" Hal Varian, Google Chief Economist
 - Geek Chic Wall Street Journal new cool kids on campus
 - The future belongs to the companies and people that turn data into products
- "The human expertise to capture and analyze big data is both the most expensive and the most constraining factor for most organizations pursuing big data initiatives" – Thomas Davenport
- New curriculum Boot camps, Certificates, Data Science Institute, '14 MAS

Big Data – Big Data Science

- "Data Scientist"
 - The "Hot new gig in town"
 - O'Reilly report
 - Data Scientist: The Sexiest Job of the 21st Century
 - Harvard Business Review, October 2012
 - The next sexy job in next 10 years will be statistician" Hal Varian, Google Chief Economist
 - Geek Chic Wall Street Journal new cool kids on campus
 - The future belongs to the companies and people that turn data into products
- "The human expertise to capture and analyze big data is both the most expensive and the most constraining factor for most organizations pursuing big data initiatives" — Thomas Davenport

Data scientist: The hot new gig in tech

- Article in Fortune
 - "The unemployment rate in the U.S. continues to be abysmal (9.1% in July), but the tech world has spawned a new kind of highly skilled, nerdy-cool job that companies are scrambling to fill: data scientist"
- McKinsey Global Institute "Big data Report"
 - By 2018, the United States alone could face a shortage of 140,000 to 190,000 people with deep analytical skills as well as 1.5 million managers and analysts with the know-how to use the analysis of big data to make effective decisions

Data Science Job Growth

By 2018 shortage of 140-190,000 predictive analysts and 1.5M managers / analysts in the US

Data Miners: Past and Present

- Traditional approaches have been for DM experts:
 "White-coat PhD statisticians"
 - DM tools also fairly expensive
- Today: approach is designed for those with some Database/Analytics skills
 - DM built into DB, easy to use GUI, Workflows
 - Many jobs available from Statistical analyst to Data Scientist!
- Data Science: The Art of mathematically sophisticated data engineers delivering insights from data into business decisions and systems

Data Science Is Multidisciplinary

Successful Data Scientist Characteristics

- Intellectual curiosity, Intuition
 - Find needle in a haystack
 - Ask the right questions value to the business
- Communication and engagements
- Presentation skills
 - Let the data speak but tell a story
 - Story teller drive business value not just data insights
- Creativity
 - Guide further investigation
- Business Savvy
 - Discovering patterns that identify risks and opportunities
 - Measure

To Ph.D or NOT Ph.D? That is the Question!

• LinkedIn Poll:

Do You Need a PhD to Analyze Big Data?

YES	NO
301 (12%)	2476 votes (87%)

Data Scientist Self-ID

Data Developer	Developer	Engineer	
Data Researcher	Researcher	Scientist	Statistician
Data Creative	Jack of All Trades	Artist	Hacker
Data Businessperson	Leader	Businessperson	Entrepeneur

O'Reilly Strata Survey suggested Self-ID Group, along with the self-ID categories most strongly associated with each Group

Strata Survey Skills

Business	ML/Big Data	Math/OR	Programming	Statistics
Product Developement Business	Unstructured Data Structured Data Machine Learning Big and Distributed Data	Optimization Math Graphical Models Bayesian / Monte Carlo Statistics Algorithms Simulation	Systems Administration Back End Programming Front End Programming	Visualization Temporal Statistics Surveys and Marketing Spatial Statistics Science Data Manipulation
				Classical Statistics

Learning and Training Opportunities

- Many MS, MAS, Courses, Training, Workshops, Certificates, Boot camps, etc.
- Introduction to Data Science Example
 - Part 1: Data Manipulation at scale
 - Databases and the relational algebra
 - Parallel databases, parallel query processing, in-database analytics, MapReduce, Hadoop, relationship to databases, algorithms, extensions, languages
 - Key-value stores and NoSQL; Entity resolution, record linkage
 - Part 2: Analytics, Predictive Analytics, Text mining
 - Part 3: Communicating Results
 - Visualization, data products, visual data analytics
 - Provenance, privacy, ethics, governance

How long does it take for a beginner to become a good data scientist per Region?

Region (Count)	Avg Years to become a good data scientist
AU/NZ (9)	6.9 years
E. Europe (19)	5.9 years
US/Canada (143)	4.9 years
W. Europe (60)	4.9 years
Asia (25)	4.9 years
Africa/Middle East (9)	4.4 years
Latin America (12)	3.9 years

Intro to Machine learning

Data mining
Predictive analytics
Data Science

Necessity is the Mother of Invention

Data explosion

Automated data collection tools and mature database technology lead to tremendous amounts of data stored in databases, data warehouses and other information repositories

"We are drowning in data, but starving for knowledge!" (John Naisbitt,
 1982)

Necessity is the Mother of Invention

Solution

Predictive Analytics or Data Mining

- Extraction or "mining" of interesting knowledge (rules, regularities,
 patterns, constraints) from data in large databases
- Data -driven discovery and modeling of hidden patterns in large volumes of data
- Extraction of implicit, previously unknown and unexpected, potentially extremely useful information from data

Predictive Analytics

Query Reporting	BI	Data Mining
Extraction of data; detailed and/or summarized	Analysis, summaries, Trends	Discovery of hidden patterns, information, predicting future trends
Information	Analysis	Insight knowledge and prediction
Who purchased the product in the last 2 quarters?	What is an average income of the buyers per quarter by district?	Which customers are likely to buy a similar product in the future and why?

DM Enables Predictive Analytics

What Is Data Mining?

- Combination of AI and statistical analysis to discover information that is "hidden" in the data
 - associations (e.g. linking purchase of pizza with beer)
 - sequences (e.g. tying events together: marriage and purchase of furniture)
 - classifications (e.g. recognizing patterns such as the attributes of employees that are most likely to quit)
 - forecasting (e.g. predicting buying habits of customers based on past patterns)

Data Mining is NOT...

- Data Warehousing
- (Deductive) query processing
 - SQL/ Reporting
- Software Agents
- Expert Systems
- Online Analytical Processing (OLAP)
- Statistical Analysis Tool
- Data visualization
- BI Business Intelligence

Multidisciplinary Field

Data Mining is...

- Multidisciplinary Field
 - Database technology
 - Artificial Intelligence
 - Machine Learning including Neural Networks
 - Statistics
 - Pattern recognition
 - Knowledge-based systems/acquisition
 - High-performance computing
 - Data visualization
 - Other Disciplines

History of Data Mining

History

- Emerged late 1980s
- Flourished –1990s
- Roots traced back along three family lines
 - Classical Statistics
 - Artificial Intelligence
 - Machine Learning

Statistics

- Foundation of most DM technologies
 - Regression analysis, standard distribution/deviation/variance, cluster analysis, confidence intervals
- Building blocks
- Significant role in today's data mining but alone is not powerful enough

Artificial Intelligence

- Heuristics vs. Statistics
- Human-thought-like processing
- Requires vast computer processing power
- Supercomputers

Machine Learning

- Union of statistics and Al
 - Blends AI heuristics with advanced statistical analysis
- Machine Learning let computer programs
 - learn about data they study make different decisions based on the quality of studied data
 - using statistics for fundamental concepts and adding more advanced AI heuristics and algorithms

Terminology

- Gold Mining
- Knowledge mining from databases
- Knowledge extraction
- Data/pattern analysis
- Knowledge Discovery Databases or KDD
- Information harvesting
- Business intelligence
- Predictive Analytics
- Data Science

TAXONOMY

Predictive Methods

• Use some variables to predict some unknown or future values of other variables

Descriptive Methods

• Find human -interpretable patterns that describe the data

Supervised vs. Unsupervised

What does Data Mining Do?

Explores Your Data

Finds Patterns

Performs Predictions

What can we do with Data Mining?

- Exploratory Data Analysis
- Predictive Modeling: Classification and Regression
- Descriptive Modeling
 - Cluster analysis/segmentation
- Discovering Patterns and Rules
 - Association/Dependency rules
 - Sequential patterns
 - Temporal sequences
- Deviation detection

Data Mining Applications

Science: Chemistry, Physics, Medicine, Energy

Biochemical analysis, remote sensors on a satellite, medical image analysis

Bioscience

Sequence-based analysis, protein structure and function prediction, protein family classification, microarray gene expression

• Pharmaceutical, Insurance, Health care, Medicine

Drug development, medical therapies, claims analysis, fraudulent behavior, medical diagnostics

Financial Industry, Banks, Businesses, E-commerce

Stock and investment analysis, identify loyal customers vs. risky customer, predict customer spending, risk management, sales forecasting

Market analysis and management

Target marketing, CRM, market basket analysis, cross selling, market segmentation

Risk analysis and management

Forecasting, customer retention, improved underwriting, quality control, competitive analysis

Sports and Entertainment

IBM Advanced Scout analyzed NBA game statistics (shots blocked, assists, and fouls) to gain competitive advantage for New York Knicks and Miami Heat

Data Mining Tasks

- Concept/Class description: Characterization and discrimination
 - Generalize, summarize, and contrast data characteristics, e.g., dry vs. wet regions; "normal" vs. fraudulent behavior
- Association (correlation and causality)
 - Multi-dimensional interactions and associations

```
age(X, "20-29") ^ income(X, "60-90K") à buys(X, "TV")
```

Hospital(area code) ^ procedure(X) ->claim (type) ^ claim(cost)

Data Mining Tasks

Classification and Prediction

- Finding models (functions) that describe and distinguish classes or concepts for future prediction
- Example: classify countries based on climate, or classify cars based on gas mileage, fraud based on claims information, energy usage based on sensor data
- Presentation:
 - If-THEN rules, decision-tree, classification rule, neural network
- Prediction: Predict some unknown or missing numerical values

Data Mining Tasks

Cluster analysis

- Class label is unknown: Group data to form new classes
- Clustering based on the principle: maximizing the intra-class similarity and minimizing the interclass similarity

Outlier analysis

- Data object that does not comply with the general behavior of the data
- Mostly considered as noise or exception, but is quite useful in fraud detection, rare events analysis

Trend and evolution analysis

- Trend and deviation: regression analysis
- Sequential pattern mining, periodicity analysis

KDD Process

KDD Process Steps

- Learning the application domain:
 - relevant prior knowledge and goals of application
- Creating a target data set: data selection
- Data cleaning and preprocessing: (may take 60% of effort!)
- Data reduction and transformation.
 - Find useful features, dimensionality/variable reduction, representation
- Choosing functions of data mining
 - summarization, classification, regression, association, clustering

KDD Process Steps (2)

- Choosing functions of data mining
 - summarization, classification, regression, association, clustering
- Choosing the mining algorithm(s)
- Data mining: search for patterns of interest
- Pattern evaluation and knowledge presentation
 - visualization, transformation, removing redundant patterns, etc.
- Use and integration of discovered knowledge

CRISP-DM - Cross Industry Standard Process for Data Mining

CRISP-DM Process Model

Learning and Modeling Methods

- Decision Tree Induction (C4.5, J48)
- Regression Tree Induction (CART, MP5)
- Multivariate Regression Tree (MARS)
- Clustering (K-means, EM, Cobweb)
- Artificial Neural Networks (Backpropagation, Recurrent)
- Support Vector Machines (SVM)
- Various other models

Decision Tree Induction

- Method for approximating discrete-valued functions
 - robust to noisy/missing data
 - can learn non-linear relationships
 - inductive bias towards shorter trees

Decision Tree Induction

Applications:

- medical diagnosis ex. heart disease
- analysis of complex chemical compounds
- classifying equipment malfunction
- risk of loan applicants
- Boston housing project price prediction
- fraud detection

Decision Tree Example

Regression Tree Induction

- Why Regression tree?
 - Ability to:
 - Predict continuous variable
 - Model conditional effects
 - Model uncertainty

Regression Trees

- Continuous goal variables
- Induction by means of an efficient recursive partitioning algorithm
- Uses linear regression to select internal nodes

Quinlan, 1992

Clustering

- Basic idea: Group similar things together
- Unsupervised Learning Useful when no other info is available
- K-means
 - Partitioning instances into <u>k</u> disjoint clusters
 - Measure of similarity

Clustering

Kmeans Results from 10 million NYTimes articles

Artificial Neural Networks (ANNs)

- Network of many simple units
- Main Components
 - Inputs
 - Hidden layers
 - Outputs
- Adjusting weights of connections
- Backpropagation

Evaluation

- Error on the training data vs. performance on future/unseen data
- Simple solution
 - Split data into training and test set
 - Re-substitution error
 - error rate obtained from the training data
- Three sets
 - training data, validation data, and test data

Training and Testing

- Test set
 - set of independent instances that have not been used in formation of classifier in any way
 - Assumption
 - data contains representative samples of the underlying problem
- Example: classifiers built using customer data from two different towns A and B
 - To estimate performance of classifier from town in completely new town, test it on data from B

Error Estimation Methods

- Holdout
 - ½ training and ½ testing (2/3&1/3)
- Repeated Holdout Method
 - Random sampling repeated holdout
- Cross-validation
 - Partition in K disjoint clusters
 - Train k-1, test on remaining
- Leave-one-out Method
- Bootstrap
 - Sampling with replacement

Data Mining Challenges

- Computationally expensive to investigate all possibilities
- Dealing with noise/missing information and errors in data
- Mining methodology and user interaction
 - Mining different kinds of knowledge in databases
 - Incorporation of background knowledge
 - Handling noise and incomplete data
 - Pattern evaluation: the interestingness problem
 - Expression and visualization of data mining results

Data Mining Heuristics and Guide

- Choosing appropriate attributes/input representation
- Finding the minimal attribute space
- Finding adequate evaluation function(s)
- Extracting meaningful information
- Not overfitting

Available Data Mining Tools cots:

- ■IBM Intelligent Miner
- ■SAS Enterprise Miner
- ■Oracle ODM
- Microstrategy
- ■Microsoft DBMiner
- ■Pentaho
- Matlab
- ■Teradata

Open Source:

- **■**Python
- \blacksquare R
- **■**WEKA
- **■**KNIME
- **■**Orange
- Rapid Miner
- **■**Rattle
- ■Mahout
- **■**MlLib

Data mining applications at SDSC

Summary

- Discovering interesting patterns from large amounts of data
- CRISP-DM Industry standard
- Learn from the past
 - High quality, evidence based decisions
- Predict for the future
 - Prevent future instances of fraud, waste & abuse
- React to changing circumstances
 - Current models, continuous learning

Thank you!

Questions?

For further information, contact Natasha Balac (nbalac@eng.ucsd.edu)