許 公 報(B2) $\Psi 1 - 49202$ ⑫特

@Int. Cl. 4

識別記号

庁内整理番号

四四公告 平成1年(1989)10月24日

H 01 P 1/161

8626-5 J

発明の数 1 (全4頁)

偏分波器 図発明の名称

> 顧 昭59-31772 ②特

码公 開 昭60-176303

御出 顧 昭59(1984)2月22日 ❷昭60(1985) 9月10日

神奈川県鎌倉市上町屋325番地 三菱電機株式会社鎌倉製 盛 雄 個発 明 奢 比 嘉

作所内

神奈川県鎌倉市上町屋325番地 三菱電機株式会社鎌倉製 部 @発明 者 呵 久

作所内

東京都千代田区丸の内2丁目2番3号 三菱電機株式会社 か 類 人

弁理士 大岩 増雄 外2名 個代 理 人

1

審査官 清水 康 志

2

御特許請求の範囲

1 正方形導波管の断面を面積の等しい2つの長 方形断面に分割するように設けられたテーパ状の 金属板を有し、右旋と左旋の2つの円偏波をそれ ぞれ上記2つの長方形断面に直線偏波として分離 5 くなるという欠点があつた。 する隔壁偏波器と、この隔壁偏波器より分波され た直線偏波を取り出す変換器と、円形導波管内に おいて2つの直交する直線偏波を右旋と左旋の2 つの円偏波に変換する円偏波発生器と、上記隔壁 導波管をつなぐ変換導波管とを備え、空間で互い に直交する2つの直線偏波を円偏波発生器、変換 導波管、偏壁偏波器により、上記正方形導波管の 管軸方向に分波することを特徴とする偏分波器。

発明の詳細な説明

〔発明の技術分野〕

この発明は、マイクロ波帯およびミリ波帯で使 用され、2つの直交する直線遍液信号を分離また は合成する偏分波器に関するものである。

〔従来技術〕

従来のこの種偏分波器としては、第1図に示す ように円形主導波管 1、直交副導波管 2、共軸副 導波管3、結合窓4、短絡棒5で構成されるもの があつた。また、他の従来例としては、第2図に 2a、2b、結合窓4、短絡棒5で構成されるも

のがあつた。

しかし、いずれの偏分波器も少なくとも1つの 副導波管は主導波管軸に直交するように配置する 必要があり、このため偏分波器の断面寸法が大き

特に、マルチピームアンテナ等においては、第 3 図に示すように複数のホーンアンテナ 8 と偏分 波器 7 を並べて使用する必要があり、ホーンアン テナ8の開口より偏分波器7の断面寸法が大きい 偏波器の正方形導波管と上記円偏波発生器の円形 10 場合には、ホーンアンテナの配列位置が制限さ れ、所望の方向にピームを放射することが出来な い等の欠点があつた。

(発明の概要)

この発明は、このような欠点を除去するために 15 円偏波発生器と隔壁偏波器とを組み合わせること によつて、断面寸法の小さい2つの直交する直線 偏波信号を分離または合成する偏分波器を実現す るものであり、以下、図を用いて詳細に説明す る。

20 〔発明の実施例〕

第4図は、この発明に用いる隔壁偏波器の構造 を示す図であり、8は円偏波を伝ばんし得る正方 形導波管、8は上記正方形導波管8の断面を面積 の等しい長方形断面に分割するように設けられた 示すように円形主導波管1、2つの直交副導波管 25 テーパ状の金属板、10,11は上記金属板9を 共通の H面壁面とする長方形導波管、12は正方

形導波管8の閉口、13,14は長方形導波管1 0.11の閉口である。

次に、この隔壁偏波器の動作について簡単に説 明する。正方形導波管8の開口12に入射する右 旋および左旋の入射円偏波は、それぞれの振幅が 5 等しく位相が90°異なる直線偏波AとBの合成と して表わされる。

まず、右旋偏波の場合には、第5図aの偏波A と偏波Aに対して90°位相の遅れた第8図aの偏 波Bの合成として表わされる。そして偏波Aは第 10 5 図 b の状態に進むと、金属板 9 の効果によつて 位相遅れが生じる。そこで金属板8の形状を適当 に選び、ここでの偏波Aの偏波Bに対する位相遅 れを90°にすることができれば、第4図の長方形 第5回cと第6回cの電界を同相で重ね合せたも のとなり、第7図に示すように右側の長方形導波 管に全電力が分波される。

また、左旋偏波の場合には、第5図aの偏波A 波Bの合成として表わされる。そして、右旋偏波 の場合と同様に、第5図bの状態での偏波Aの偏 波Bに対する位相遅れを90°にすることができれ ば、第4図の長方形導波管10,11に分割され 逆相で重ね合せたものとなり、第8図に示すよう に左側の長方形導波管に全電力が分波される。

以上は、正方形導波管8の開口12に円偏波が 入射した場合の動作について説明したが、逆に長 方形導波管10の開口13に直線偏波が入射すれ 30 実用的効果が極めて大きい。 ば、正方形導波管8に右旋偏波が発生し、長方形 導波管11の開口14に直線偏波が入射すれば正 方形導波管 8 に左旋偏波が発生する。

このように、隔壁偏波器を用いれば、右旋と左 行方向に分離することができるため、偏分波器を 正方形主導波管の開口寸法より断面寸法を大きく しないで構成できる。

この発明は、2つの直交する直線偏波信号を分 の小さいものを実現するものであり、第9図に一 実施例を示す。

第9図において、15は円偏波発生器であり、 円形導波管1と、直交する2つの直線偏波と45° の傾きをもたせて上記円形導波管1に装置させた 1/4波長板 1 8 とから構成されている。1/4波長板 としては誘電体板または容量性金属棒等があり、 第3図には誘電体板を使用した場合を示してい る。17は隔壁偏波器、15は隔壁偏波器17の 正方形導波管と円形導波管 1 をつなぐテーパ導波 管、1gは隔壁偏波器17の長方形導波管の開口 に取り付けられた導波管軸とプローブ軸とを平行 に出来るインライン型同軸導波管変換器である。

以上のように偏分波器を構成することにより、 円形導波質1の開口に入射した2つの直交する直 線偏波信号は、円偏波発生器15により1度、そ れぞれ右旋と左旋の円偏波信号に変換されて隔壁 偏波器 17の正方形導波管の開口に入射し、再び 遊波管 10, 11に分割される右旋偏波の電界は 15 2つの直線偏波信号に変換されて2つの長方形導 波管に分離される。逆に、同軸導波管変換器 19 を介して長方形導波管に給電された信号は隔壁偏 波器 17により 1度それぞれ右旋と左旋の 2つの 円偏波信号に変換されて円偏波発生器15に入射 と偏波Aに対して90°位相が進んだ第6図aの偏 20 し、ここで再び2つの直交する直線偏波信号に変 換される。

〔発明の効果〕

以上説明したように、この発明の偏分波器は主 導波管軸に直交する副導波管が無いので、偏分波 る左旋偏波の電界は第5図 c と第6図 c の電界を 25 器の断面寸法を主導波管の断面寸法と同等に小さ くでき、特にマルチビームアンテナ等の一次放射 器として複数の偏分波器を並べて使用する場合に はその配列位置の自由度が増すので電気特性を向 上させることができ、かつ給電も容易となるので

図面の簡単な説明

第1図、第2図は従来の偏分波器の概略構造 図、第3図は偏分波器の使用例を示す図、第4図 は隔壁偏波器の概略構造図、第5図~第8図は、 旋の円偏波信号を2つの直線偏波信号に電波の進 35 隔壁偏波器の動作を示す図、第9図はこの発明の 実施例を示す図であり、1は円形導波管、2は直 交副導波管、3は共軸副導波管、4は結合窓、5 は短絡棒、6はホーンアンテナ、7は偏分波器、 8は正方形導波管、9は金属板、10,11は長 離または合成する偏分波器においても、断面寸法 40 方形導波管、12は正方形導波管の開口、13, 14は長方形導波管の開口、15は円偏波発生 器、16は1/4波長板、17は隔壁偏波器、18 はテーパ導波管、19は同軸導波管変換器であ る。なお、図中同一あるいは相当部分には同一符

5

号を付して示してある。

第1図

