Best Available Copy

METHOD OF MOUNTING SEMICONDUCTOR INTEGRATED CIRCUIT ELEMENT

Patent number:

JP63287026

Publication date:

1988-11-24

Inventor:

SAKUMA KUNIO

Applicant:

SEIKO EPSON CORP

Classification:

- international:

H01L21/60

- european:

Application number:

JP19870121710 19870519

Priority number(s):

JP19870121710 19870519

Abstract of JP63287026

PURPOSE: To omit bumps on an IC chip, by overlapping a resin film including conductive particles on a conductor pattern, compressing and heating the film with a needle shaped tool, and transferring a conductive projection. CONSTITUTION:Ni and Au are plated on Cu on a conductor pattern 2 of a circuit board 1. A thermal transfer film 3 made of a polyester resin including Ni particles is overlapped. A heated transfer pin 6 made of Ni alloy is pushed to the film 3 at a pad position at the end part of the conductor pattern 2. The resin is melted and a resin projection 5 is formed at a pad part. Then, an epoxy based insulating bonding agent 7 is applied so as to cover all the resin projections. The active surface side of an IC chip is made to face the circuit board and aligned. Pressure is applied and an Al pad 9 and the resin projections are brought into contact. The device is heated and the bonding agent is hardened; thus the device is completed.

(1) नगरीगारीगार

est Available Copy

⑩ 公 開 特 許 公 報 (A) 昭63 - 287026

@Int_Cl_4

識別記号

庁内整理番号

❸公開 昭和63年(1988)11月24日

H 01 L 21/60

6918-5F

審査請求 未請求 発明の数 1 (全3頁)

図発明の名称 半導体集積回路素子実装方法

②特 願 昭62-121710

四出 願 昭62(1987)5月19日

佐 久 間 國 雄 長野県諏訪市大和3丁目3番5号 セイコーエプソン株式 四発 明 者

会社内

セイコーエプソン株式 の出 願 人 東京都新宿区西新宿2丁目4番1号

会社

弁理士 段 上 務 外1名 20代 理 人

1. 强明の名称

半導体集積回路素子実設方法

- 2. 特許請求の顧園
 - (1) 半球体集積回路素子と回路延収との接合時 において、次の工程を特徴とする半導体集積回 路条子夹装方法。
 - (a) 国路基板の導体パターン上に、導電 粒子を含有した樹脂フィルムを盛ね合わせ る工程.
 - (b) 次に、前記母胎フィルムの上から、 針状のソールにて、前記回路基板のペッド 部に相当するところの母脂フィルム位置を 加圧・加熱することにより、回路基板のペ ッド部に、雄電粒子を含有した樹脂塊の突 起を熱板写する工程。
 - (c) 次に、前記樹脂フィルムの非転写母 を除去する工程。

- (4) 次に、前記専体パターン上に絶縁性. 接着剤を堕布する工程。
- 次に、前記回路延板のペッド部突起 と、半球体集積回路素子のアルミペッドと を、対向させ位置合わせし、重ね合わせ、 接触させる工程。
- (1) 次に、前紀回路基板と半導体集積回 ・ 路景子との間の接着剤を硬化させることに より、回路基板の突起と、半導体集積回路 君子のアルミペッドとを後触導通させつつ 固定する工程。
- 3. 発明の詳細な説明

(産業上の利用分野)

本発明は、アルミペッドの半導体集積回路素子 (以下1Cチップと呼ぶ) と回路延収との後合方 法に囚する。

(従来の技術)

従来のICチップの実装方法は、その一例を節 2 図に示すように、パンプ11を有するパンプ付 き 1 C チップ 1 0 を用い、回路基板 1 上に母体ベターン 2 が形成された回路基板に対して、ベンプ 1 1 と基板のベッド 4 が重なり合うように位置合わせを行ない、 次にリフロー炉に通すことにより、ベンプ 1 1 を加熱溶験させて、ベッド 4 と 使合きせていた。

(強明が解決しようとする問題点)

しかし、前述の従来技術では、ICチップにベンブが必要なため、高値であること、 及び供給 メーカーが少ないため入手が困難であるという問題点を有する。

そこで本発明はこのような問題点を解決するものであり、その目的とするところは、低コストで

高密度実装が可能なICチップの実践方法を提供
するところにある。

(問題点を解決するための手段)

本発明の半導体集積回路素子実設方法は、半導体集積回路素子と回路基板との接合時において、次の工程を特徴とする。

(a) 回路蒸仮の排体パターン上に、導電

位子を含有した問題フィルムを重ね合わせる工程。

- (b) 次に、前記母脂フィルムの上から、 針状のツールにて、前記回路基板のパッド 部に相当するところの母脂フィルム位置を 加圧・加熱することにより、回路基板のパッド部に、専環位子を含有した母脂塊の突 起を熱転写する工程。
- (c) 次に、前記樹脂フィルムの非転写部を除去する工程。
- (d) 次に、前記専体パターン上に絶縁性 接着剤を臨布する工程。
- (e) 次に、前記の回路基板のパッド部突起と、半導体集積回路需子のアルミパッドとを、対向させ位置合わせし、 重ね合わせ、後触させる工程。
- (f) 次に、前記回路基板と半導体集積回路条子との間の接割剤を硬化させることにより、回路基板の突起と、半導体集積回路 発子のアルミベッドとを接触導通させつつ

固定する工程。

(作用)

本発明の上記の工程によれば、回路基板側に専 電性の突起を容易に形成できるため、1 C チップ としては、ペンプを必要としなくなる。

(実施例)

第1回は本発明の実施例における工程図であって、まず第1回(a)に示すように、回路基板1上に形成された専体ペターン2の上に、準度拉子を含んだ問題により成り立った熱転写フィルム3は、厚みが5~20μであり、ニッケルの環電拉子を含んだポリエステル系樹脂である。また、回路基板1はガラスエポキン基材で構成され、媒体ペターン2は銅上へニッケル及び金メッキを施している。

次に、第1図(b)に示すように、加熱した転写ピン8を、 切体パターン 2 の 熔部の 専体パッド 図4上に位置した熱転写フィルム 3 に押しつけ、その私により、 熱転写フィルム 3 の 役割を溶解させ、 専体パッド ダヘ付着させる ことにより、 役別

突起 5 を 球体 ペット 郊へ 形成 する。 この 転写 ピンは ニッケル 合金 製で あり、 先婦の 直径 が 約 1 0 0 に 加 かった と り に より、 1 5 0 ~ 2 0 0 ℃に 加 然 されて おり、 然 圧 若 時間 は 約 0 . 3 p e c で あり、 加 圧 力 は 約 5 0 g で ある。 また この 転 で で あり、 加 圧 力 は 約 方向の 設定 し た 位置 へ 可 勁 で きる 機構に よ り 支 持 され おり、 繰 り返 し 動作に な 数の 専体 ペット 郎 へ、 後 胎 突起 を 形 成 で きる。

次に、第1図(c)に示すように、熱転写フィルム3の非転写部を分離移動させる。

次に、 第 1 図 (d) に示すように、全ての出版 突起部をおおうように、 絶縁性接着剤 7 を迫布する。この接着剤 7 はエポキシ系である。

次に、第1図(e)に示すように、 ICチップ8の態動面側を回路基板に対向させ、 ICチップ8のアルミペッド9と、 樹脂突起5とを位置合わせし、 ICチップの 裏面を加圧することにより、アルミペッド9と樹脂突起5とを互いに接触させる。この時の加圧力は約5kgである。

To Available Copy

次に第1回(1)に示すように、「Cチップを加圧しつつ、「Cチップと回路基板の間に存在する使行剤を加熱により硬化させることにより、「Cチップ8のアルミバッド9と、回路基板の掛胎突起5とが使触した状態にて固定され、電気的に 連通させることが出来、接合が完了する。この時の加熱温度は150~250である。

以上に述べたように、本発明によれば、転写ととを用いて、 専電粒子を含んだ樹脂フィルムから、 回路基板の 呼体 パッド部に、 専電性樹脂突起を熱転写し、 次にその 突起と 1 C チップのアルミパッドとを接触させた 状態に て 粒線性接替剤に て固定して、 電気的接 をとったことにより、 1 C チップに 5 価で かつ 入手 困難な パンプを必要としないという非常な効果を有する。

4. 図面の簡単な説明

第1図(a)~(f)は本発明の半導体集積回路素子実装方法の一実施例を示す主要工程図。

第2図(a)(b)は従来の半導体集積回路素 子実装方法を示す主要工程図。

- 1 … 回路延板
- 2…母体パターン
- 3 … 熱転写フィルム
- 4…母体パッド部
- 5 … 樹脂突起
- 8 … 転写ピン
- 7 … 後 着 剤
- 8 ... I C + > 7
- 9 … アルミバッド
- 10… パンプ付きICチップ
- 11... 427

DI E

出願人 セイコーエブソン株式会社 代理人 弁理士 最 上 務 億1名

