Nº Teste: ◀

Departamento de Engenharia Informática Faculdade de Ciências e Tecnologia Universidade de Coimbra

Sistemas Operativos – 2020/2021 Teste Teórico

9 de junho de 2021 - 90 minutos

Nome: Tiago Jorge Coimbra da Silva

N° aluno: 2022216219

- Qualquer tentativa de fraude conduzirá à anulação da prova para todos os intervenientes.
- Consulta apenas em papel. Durante o exame todos os dispositivos eletrónicos têm que permanecer desligados, com exceção de calculadoras simples.
- Todas as respostas devem ser diretas, objetivas e obrigatoriamente efetuadas na folha fornecida.

1. Diga o que entende por espera ativa quando usada numa solução para o problema da secção crítica. Esta solução pode resolver o problema? Se sim, deve ser usada?

Espera ativa é a consequência de programor com recurso a estruturos de controlo que promovem o uno excessivo de covo. Não devem ser usados uma vez que existem formas mais inteligentes, reguros e eficientes de relobor o mesmos problema sem esgotor os recursos do computados.

2. Explique em que consiste o *copy-on-write* e de que forma pode otimizar a criação de processos. No Linux, a vantagem do *copy-on-write* mantém-se mesmo que após o fork() o utilizador faz logo um exec()?

O copy-on-write é uma técnica que consiste em autros a cópia de recuros do processo poi para os filhos até que seja obsolutamente necessario. No linum a extrução exect) imediatamente a requir ao fork() implica a substituição do espoço de memoria do filho com em novo programo. Contudo, existem ainda algumas rarroy feles quais de justifica usan COW: janela de tenpo ketre o porke) e o exect); otiminação intrinsea do forke) diminimido o extreado na cração de sociedos.

3. Que vantagens e desvantagens existem no uso de uma tabela de páginas invertida?

Neste modo de paginação ha ejenos 1 tabella de paginos comum a todos os processos do SO. Desse firma diminir o espaço de memorra necessária para a tabella de paginas porêm amenta o tempo necessário para ver a tabella quando esma pagina é referenciada. Para alem disso, deta forma a promovida a unificação da informação. Contido, as editors no has ling e a confexidade de implementação são algimos dessantagens dette modo

4. Acha que é possível existir Thrashing num sistema operativo que tenha poucos processos a executar? lustifiana

Justinque.
Sim, é possonel a ocurrinera de Marashing num sistema oferativo aon
Layer Inolation a literator. Ito ocorre le:
I DI basalah Avasam sum sum liking Alt Tab Granou of Utillangy
La mannieria l'iste distroni rel 9 ocobello millios par fouchs.
I A milmosio Mila kal muito jugueno.
-> Acesso a memoria aleatoria que não resperte os frincipios
de localidade temporal.

5. Considere que tem um sistema de memória paginada hierárquico, com 2 níveis, com um espaço de endereçamento virtual de 4GByte (232 bytes). Sabendo que cada página de memória ocupa 8KBytes e que cada PTE ocupa 64 bits, responda as seguintes questões: $2^{9}/5^{2} = 2^{3}$ by + pM

5.1. Se cada tabela de páginas de 2.0 nível tiver de caber numa única página de memória, qual a divisão

de bits no endereço lógico? Apresente os cálculos que realizar.

5.2. Qual o tamanho ocupado pela tabela de páginas de 1.0 nível?

5.3. No total, quantas páginas de 8KB são ocupadas por todas as tabelas de páginas (1.0 e 2.0 nível)?

6. Considere um sistema com 5 processos em execução (P1 a P5) e 3 tipos de recursos (R1 a R3). O número máximo de recursos de cada tipo existentes no sistema é: R1=9, R2=2, R3=9 (NOTA: este não é o número dos que estão disponíveis nesse momento, mas sim os que o sistema tem!). Num determinado momento o sistema está no seguinte estado:

		ursos em		Recursos máximos que					
	Pel	os proces	sos	os pro	cessos pr	ecisam			
	R1	R2	R3	R1	R2	R3			
P1	0	1	0	2	2	2			
P2	2	0	0	3	2	6			
Р3	3	0	3	9	0	4			
P4	2	1	1	2	1	2			
P5	2	0	3	4	2	4			

6.1. Prove que o sistema está num estado seguro (safe state).

VEEP: R2 R3	2 miling: [9,2,97	
P1 2 1 2	V avoilable:	
P2 4 2 6	$\sqrt{(50,0,1)} \rightarrow [2,1,3] \rightarrow [2]$,2,3]
P3 6 0 1	, > [4,2,6] > [6,2,6]	
Pu 0 1	J - 27-703 - 2-17-92	
P3 2 2 1	V R: Ry, P1, P3, P2, P3	

6.2. O processo P4 fez o seguinte pedido (R1=0, R2=0, R3=1). Qual será a decisão do gestor de recursos se aplicar o algoritmo do banqueiro (*Banker's Algorithm*)? Apresente o processo que usou para dar a resposta.

	a resposta.						
	Ra	Ro	Ral	NEED: -	R1	R2	R3
P1	\mathcal{O}	1		avoilble	P1 2	1	2
P2	<u> </u>	0	0	[0,0,1]	P2 1	2	b
ρ3	<u>ک</u>	0	3	[5,1,3]	P3 6	0	1
P4),	1	<u>ر</u>	75[4,2,5]	P4 6	0	6
Ps)	0	<u>ئ</u>	[15,6]	P5 2	2	1
	\vdash \smile \vdash		1	. ,	<u> </u>	0.6) Do 10-

7. Considere um sistema onde existem 8 páginas de processos (1 a 8) e 4 page frames em RAM. Vão ser feitos acessos à memória usando a string de referência seguinte:

W(1); W(3); R(2); R(3); R(8); W(5); R(3); R(8); R(1); W(6)

Supondo que inicialmente todas as *frames* estão vazias, que R(...) é uma operação de leitura, que W(...) é uma operação de escrita e que o sistema faz uso do *modify-bit*, preencha a tabela abaixo considerando os algoritmos pedidos:

	FIFO	LRU	CLOCK
Page-faults	7		
Swap-outs	B		
Estado final das frames (indique a frame, a página que cada frame contém e o estado do modify bit)			

Nota: no início, com as *frames* vazias, as páginas ocupam primeiro a *frame* 0, depois a 1 e assim sucessivamente.

W(2) R(1) W(1) W(3) R(4) R(2) W(1) W(3) W(2) R(4)

NOTA: Esta folha não é para entregar R(1) W(1)

Potência de 2

		uc _							
2 ⁶	2 ⁷	28	2 ¹⁰	2 ¹²	214	2 ¹⁶	218	2 ²⁰	2 ³⁰
64	128	256	1024	4096	16384	65536	262144	1048576	1073741824

3 Page Frames

Grelha para	algoritmos	de subs	tituição d	de páginas.

LRU W		W1 2M 1M	W3 2H 1H 3M	R4 4 171 3M	14 2 3M	W1 4 1 1 1	W3 3M 2 1M		R4 3M 2M 4	R1 1 2 1 4	W ₂ 1	R1 1 2m	
Page Faults 1 Swap- outs		2	3	4 1	5 2	8	73	3	3 U	9 5	5	9 5	
(164 W	L R1	W1	W3(Ry	(R ₂)	W ₂)(W3)((W ₂)	&y	(K1)	(W)	(R1)	
Page Faults Swap- outs			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ULE	517	:0	bu	l bi-	9	<u> </u>			
					Ura	<u></u>	1.	1					
Page Faults Swap- outs	1	1											