Einführung in Computational Engineering

Grundlagen der Modellierung und Simulation

8. Vorlesung: Zeitkontinuierliche Modellierung und Simulation

2. Dezember 2013

Prof. Dr. Jan Peters

Meisenantworten

- Bitte Kommentare bei Moodlefragen nach Vorlesen vermeiden! SCHWEIGEN!
 OK!
- Bitte "Matrix" nicht "Matrize" sagen. Von mir aus...
- Keine Pause da "mein Bus um 16:05 geht und ich lieber früher aufhören möchte" ... Umfrage: https://moodle.informatik.tu-darmstadt.de/mod/choice/view.php?id=19383
- Früheres Ende für Wiederholungen nutzen! *Umfrage:*https://moodle.informatik.tu-darmstadt.de/mod/choice/view.php?id=19382
- Downloadversion der Aufzeichnung in höhrer Auflösung? Geht technisch leider nicht ...
- Überblicksfolie vor jeder Vorlesung. Ja, mache ich in Robot Learning auch, werde ich ab nächster Vorlesung auch hier einführen.

Meisenantworten

Umfrage-Ergebnisse (Meise ergab 422 (1 : 2)

Stimmabgaben

Abstimmoptionen	Teilnehmerzahl	Prozent der Teilnehmer/innen	Grafische Darst	
Noch nicht abgestimmt	343	80,7%		
Ja, bitte lies die Fragen nicht mehr vor.	23	5,4%		
Nee, is' ok. Weitervorlesen!	59	13,9%		

Neue Umfrage zu Übung und Vorlesung: https://moodle.informatik.tu-darmstadt.de/mod/choice/view.php?id=19381

Überblick der Vorlesungsinhalte

- 1. Einführung
- 2. Diskrete Modellierung und Simulation
- 3. Zeitkontinuierliche Modellierung und Simulation
- 4. Teilschritte einer Simulationsstudie
- 5. Interpretation und Validierung
- 6. Modulare und objektorientierte Modellierung und Simulation
- 7. Parameteridentifikation von Modellen

MOODLE FRAGE

Bitte jetzt auf Moodle eine Frage beantworten!

Grundlagen der Modellierung und Simulation

3. ZEITKONTINUIERLICHE MODELLIERUNG UND SIMULATION

Wiederholung: Newton-Verfahren

- Gesucht: x_s mit $f(x_s) = 0$ $f: \mathbb{R}^n \to \mathbb{R}^n$
- Beginn mit einem Startvektor x_0

- Iterationsschritt $(i \rightarrow i + 1)$
 - Berechnung von Funktion $f(x_i)$ und Jacobi-Matrix $\frac{\partial f}{\partial x}(x_i)$
 - Berechnung der Korrektur Δx_i durch Lösung des linearen Gleichungssystems (LGS): $A \Delta X = \frac{1}{2}$ \Rightarrow $X = A^{-1} \Delta X$

$$\left(\frac{\partial f}{\partial x}(x_i)\right) \Delta x_i = -f(x_i)$$

ullet Berechnung der neuen Näherung (evtl. mit Schrittweitensteuerung α_i)

$$x_{i+1} = x_i + \alpha_i \Delta x_i$$

Wiederholung: Newton-Verfahren

- Terminierung, falls "nahe genug" an der Lösung also "kein Fortschritt" mehr gemacht wird
- Sonst wird der nächste Iterationsschritt ausgeführt

3.5.11 Jacobi-Matrix

 In der Praxis ist es häufig schwierig, die Jacobi-Matrix mit vertretbaren Aufwand explizit (d.h. in Formeln) zu ermitteln

- Alkrahve holig ?

Sobald ein Element der Jacobi-Matrix falsch ist, nur noch (max.) lineare statt quadratische Konvergenz

Beste Fallo

falsdes Vorreiber

 Darum in der Praxis häufig Vorwärtsdifferenzen-Approximation der Jacobi-Matrix

3.5.11 Vorwärtsdifferenzen-Approximation

Approximation der j-ten Spalte der Jacobi-Matrix mittels
 Vorwärtsdifferenzenquotient

$$\frac{\partial f}{\partial x_j} \approx \frac{1}{\delta_j} \Big(f \big(x + e_j \delta_j \big) - f(x) \Big)$$

- j-ter Einheitsvektor e_j
- Schrittweite δ_j , z.B. $\delta_j = \varepsilon \cdot (1 + |x_j|)$
- Toleranz ε
- Approximation erfordert n + 1 Auswertungen von f

3.5.11 Vorwärtsdifferenzen-Approximation

Man betrachte | exakter Wert — Approximation |

$$\left| \frac{\partial f_i(x)}{\partial x_j} - \frac{1}{\delta_j} \left(f_i(x + e_j \delta_j) - f_i(x) \right) \right| \le \left| \delta_j \right| \cdot \left| \frac{\partial^2 f_i(\hat{x})}{\partial x_j^2} \right|$$

 Vorwärtsdifferenzenapproximation liefert in der Regel maximal die Hälfte der gültigen Dezimalstellen von f

 Wird <u>δ</u> immer kleiner, nimmt der Einfluss von Rundungsfehlern zu

3.5.11 Jacobi-Matrix: Numerische Genauigkeit

3.5.11 Jacobi-Matrix: Besetztheitsstruktur

- Besetztheitsstruktur gibt die Struktur der Kopplung in den Differentialgleichungen wieder
- Sehr wichtig für die Simulation größerer Systeme!
 - Ausnutzung von dünner Besetztheitsstruktur zur optimalen effizienten numerischen Simulation

3.5.11 Jacobi-Matrix: Besetztheitsstruktur Beispiel

■ Beispiel für $J_f \in \mathbb{R}^{n \times n}$ mit n = 3:

$$\frac{\partial f}{\partial x} = \begin{pmatrix} \bigotimes & 0 & \bigotimes & f_1 \\ 0 & \bigotimes & 0 & f_2 \\ 0 & \bigotimes & \bigotimes & f_3 \end{pmatrix} \begin{pmatrix} f_1 & f_2 \\ f_2 & f_3 \end{pmatrix}$$

• Hier hängt z.B. $f_1(x)$ nur von x_1 und x_3 ab

3.5.11 Jacobi-Matrix: Optimierung

- Untersuchung der Jacobi-Matrix auf Dünnbesetztheit
 - Effizientere Speicherung der Jacobi-Matrix mithilfe von Sparse Matrizen
 - Approximation der von Null verschiedenen Einträge
- Berechnung einer konstante Jacobi-Matrix (z.B. $J_f(x_0)$)
 - Verfahren ist nicht mehr quadratisch, sondern höchsten linear konvergent!
 - Falls konvergent, dann dennoch als "normales" Newton-Verfahren

Folie 15

TH2 Hier kann man noch ein echt tolles Beispiel für Sparse Matrizen mit reinnehmen und evtl. auch einfach mal die Matlab Befehle dafür vorstellen!

Beispiel: http://www.andreas-schreiber.net/diplomarbeit/node13.html

Matlab: http://www.mathworks.de/de/help/matlab/ref/sparse.html

Und hier ist noch ein echt nices paper zu dem Thema!

http://www.hpl.hp.com/personal/Robert_Schreiber/papers/Sparse%20Matrices%20in%20Matlab/simax.pdf Thomas Hesse; 30.11.2013

3.5.11 Jacobi-Matrix: Optimierung

- Approximation durch schrittweise Addierung mittels Update
 - Approximatives Verfahren, wird auch Quasi-Newton Verfahren genannt
 - Im Allgemeinem ein Rang-1 Verfahren (z.B. nach Broyden)
 - Bei symmetrischer Jacobi-Matrix ein Rang-2 Verfahren

3.5.12 Jacobi-Matrix Approximation

- Allgemeines Rang-1, bzw. Rang-2 Vorgehen für $J_{f,i} \approx \frac{\partial f}{\partial x}(x_i)$ bei gegebener Funktion $f: \mathbb{R}^n \to \mathbb{R}^n$
- Schrittweise Addierung mittels Update $J_{f,i} = J_{f,(i-1)} + U_i$ mit einer Matrix U_i vom Rang 1 oder 2
 - Sekanten-Bedingung (Quasi-Newton-Bedingung) muss erfüllt sein

$$J_{f,i} \cdot (x_i - x_{(i-1)}) = f(x_i) - f(x_{(i-1)})$$

3.5.12 Jacobi-Matrix: (Quasi-)Newton Verfahren

- Gegeben ist eine Funktion $f: \mathbb{R}^n \to \mathbb{R}^n$ und gesucht ist ein x_s womit dann gilt $f(x_s) = 0$
 - Das Verfahren beginnt bei einem x_i (wobei i = 0), also x_0
 - Iterationsschritt von i nach i + 1 ist wie folgt:
 - Berechnung von $J_{f,i} \cdot \Delta x_i = -f(x_i)$ und auflösen nach Δx_i

mit
$$J_{f,i} \approx \frac{\partial f}{\partial x}(x_i)$$
 und $x_{i+1} = \Delta x_i + x_i$

$$\dot{x} = \underline{f}(x, u, t)$$

$$\dot{y} = \underline{g}(x, u, t)$$

System im Allgemeinen nichtlinear und zeitvariant (und explizit)

$$\dot{x} = f(x, u, t)$$

 $y = g(x, u, t)$

f, g hängen nicht explizit von t ab

$$\dot{x} = f(x, u)$$

$$y = g(x, u)$$

System zeitinvariant (autonom) und i.Allg. nichtlinear

f, g hängen linear von x, u ab

$$\dot{x} = \underbrace{A(t) \cdot x}_{} + \underbrace{B(t) \cdot u}_{}$$

$$y = C(t) \cdot x + D(t) \cdot u$$

System linear und i.Allg. zeitvariant

 $\dot{x} = A \cdot x + B \cdot u$ $y = C \cdot x + D \cdot u$

System linear und zeitinvariant

$$\dot{x} = f(x, u, t)$$

$$y = g(x, u, t)$$

$$\dot{x} = f(x, u)$$
$$y = g(x, u)$$

Für diese Fälle ist im Allg. keine explizite, formelmäßige, nur numerische Lösung möglich!

MOODLE FRAGE

$$\dot{x} = A(x, t)$$

$$\dot{t} = 1$$

$$\frac{1}{2}$$

Bitte jetzt auf Moodle eine Frage

h-ter Order

beantworten!

$$X = A(X)$$

$$X = A(X)$$

$$A = A(X)$$

$$\dot{x} = f(x)$$

$$x(t) = \int_{0}^{t} f(x) dt$$

Man betrachte die skalare (Zustands-)DGL:

■ Aufstellen der Lösung zu diskreten Zeitpunkten $t_{i+1} = t_i + h_i$

Integration der (Zustands-)DGL tiefert:

$$\int_{0}^{t} \dot{x}(\tau)d\tau = x(t) - x(0) = \int_{0}^{t} f(x(\tau))d\tau$$

Und daraus folgt:

$$x(t_{i+1}) = x(0) + \int_{0}^{t_{i}} f(x(\tau))d\tau + \int_{t_{i}}^{t_{i+1}} f(x(\tau))d\tau = x(t_{i}) + \int_{t_{i}}^{t_{i+1}} f(x(\tau))d\tau$$

Ausgangsgleichung:

$$x(t_{i+1}) = x(t_i) + \int_{t_i}^{t_{i+1}} f(x(\tau)) d\tau$$
Approximate

- Ansatz für numerische Integrationsverfahren
 - Durch diskretisieren und summieren von Teillösungen ergibt sich die Ausgangsgleichung:

$$x(t_{i+1}) = x(t_i) + h_i \cdot (f_i)$$
 $f_i := f(x(t_i))$

Ausgangsgleichung:

$$x(t_{i+1}) = x(t_i) + h_i \cdot f_i, \quad f_i := f(x(t_i))$$
"Un-tessare"

Rechteck Approximation als Ansatz
 die Fläche unter der Funktion zu bestimmen

Lässt sich auch mit dem Vorwärtsdifferenzenquotient formulieren als:

$$\frac{\left(x(t_{i+1}) - x(t_i)\right)}{h_i} \approx \dot{x}(t_i) = f\left(x(t_i)\right)$$

3.6.1 Numerische Integration: Übersicht

- Unterscheidung in der Art der Approximation der Fläche unter der Funktion f und/oder des Gradienten dieser
 - Einschrittverfahren (ESV), z.B. $\int_{t_i}^{t_{i+1}} f(x(\tau)) d\tau \approx hf(x(t_i))$
 - Mehrschrittverfahren (MSV), z.B. $\int_{t_i}^{t_{i+1}} f(x(\tau)) d\tau \approx \frac{h}{2} (f(x(t_i)) + f(x(t_{i+1})))$
 - Extrapolationsverfahren
- Diese Verfahrensklassen können weiter unterteilt werden:

 - Explizites Verfahren $\int_{t_i}^{t_{i+1}} f(x(\tau)) d\tau \approx hf(x(t_i)) \Delta$ Implizites Verfahren $\int_{t_i}^{t_{i+1}} f(x(\tau)) d\tau \approx hf(x(t_{i+1})) \Delta$ Double of the second of the s

MOODLE FRAGE

Bitte jetzt auf Moodle eine Frage beantworten!

3.6.2 Einschrittverfahren: Allgemein

- Gegeben sei ein $x_i \approx x(t_i)$, oft mit i = 0
- Gesucht ist $x_{i+1} \approx x(t_{i+1})$

Allgemeiner Ansatz gegeben durch:

$$x_{i+1} = x_i + h_i \cdot \Phi(t_i, x_i, x_{i+1}, h; f)$$

$$= x_i + h_i \cdot \lambda(x_i)$$

Konsistenzbedingung (muss immer gelten):

$$\lim_{h \to 0} \Phi(t_i, x_i, x_{i+1}, h; f) = f(x_i)$$

3.6.2 Einschrittverfahren: Allgemein

3.6.2 Einschrittverfahren: Allgemein

- Diskrete Zeitachse
 - $t_i = i \cdot \Delta t$
- Diskrete Zustände
 - $x(i \cdot \Delta t)$
- Approximation
 - $x_i \approx x(t_i)$

Globaler Fehler

•
$$\varepsilon_i = |x_i - x(i \cdot \Delta t)|$$

Verfahrensschritt

$$x_{i+1} \approx x_i + h \cdot \Phi_i$$

$$T_{\Lambda f}$$

- Beispiel: Euler-Verfahrer
 - $\bullet \quad \Phi_i = f(x_i)$

3.6.3 Einzelschritt- und Fortpflanzungsfehler

3.6.3 Einzelschritt- und Fortpflanzungsfehler: Rundungsfehler

- Beispiel: $\dot{x} = 10^{-5} \cdot x$, $x_0 = 1$
- Schrittweite: $\Delta t = 10^{-5}$
- Rechengenauigkeit 10 Dezimalstellen

3.6.3 Verlauf des Gesamtfehlers

3.6.3 Verlauf des Gesamtfehlers

- Fazit: Notwendigkeit für adaptive Schrittweitensteuerung gegeben
- Vermeidung von unnötig kleinen Zeitschritten zur Steigerung der Recheneffizienz
- Vermeidung von großem Gesamtfehler durch angepasste und hinreichend kleine Zeitschritte
 - Gesamtfehler liegt dabei i.d.R. unter selbstgewählter
 Toleranzgrenze, welche Genauigkeitsgrad der Approximation angibt

3.6.4 Einschrittverfahren: Euler-Verfahren

- Explizites Euler-Verfahren für skalar $x(t_i)$
- Verfahrensvorschrift gegeben durch $X(t_i)$ $x(t_{i+1}) = x(t_i) + h_i \cdot f(x(t_i))$

mit Verfahrensfunktion $\Phi \coloneqq f$

 Formulierung der Verfahrensvorschrift aus dem Vorwärtsdifferenzenquotienten

3.6.4 Explizites Euler-Verfahren: Beispiel

- Beispiel-DGL: $\dot{x} = -x(t)$, mit x(0) = 1
- Gesucht: x(t), mit $0 \le t \le 5$
- Anwendung des Euler-Verfahrens $(x(t_i) = x_i)$

$$x(t_{i+1}) = x(t_i) + h_i \cdot f(x(t_i)), \quad \text{mit } h_i = h = 0.5$$

$$x_{0} = x(0) = 1$$

$$x_{1} = x(0.5) = x_{0} + 0.5 \cdot (-1) = 0.5$$

$$x_{2} = x(1) = x_{1} + 0.5 \cdot (-0.5) = 0.25$$

$$x_{3} = x(1.5) = x_{2} + 0.5 \cdot (-0.25) = 0.125$$

$$\vdots$$

3.6.4 Explizites Euler-Verfahren: Beispiel

h = 0.5			
t	x (Euler)	x (exact)	error (%)
0.5	0.500000	0.606531	17.56
1.0	0.250000	0.367879	32.04
1.5	0.125000	0.223130	43.98
2.0	0.062500	0.135335	53.82
2.5	0.031250	0.082085	61.93
3.0	0.015625	0.049787	68.62
3.5	0.007813	0.030197	74.13
4.0	0.003906	0.018316	78.67
4.5	0.001953	0.011109	82.42
5.0	0.000977	0.006738	<u>85</u> .51
h = 0.1			
t	x (Euler)	x (exact)	error (%)
0.5	0.590490	0.606531	2.64
1.0	0.348678	0.367879	5.22
1.5	0.205891	0.223130	7.73
2.0	0.121577	0.135335	10.17
2.5	0.071790	0.082085	12.54
3.0	0.042391	0.049787	14.86
3.5	0.025032	0.030197	17.11
4.0	0.014781	0.018316	19.30
4.5	0.008728	0.011109	21.43
5.0			

3.6.4 Einschrittverfahren: Euler-Verfahren

- Implizites Euler-Verfahren für skalar $x(t_i)$
- Verfahrensvorschrift gegeben durch

$$x(t_{i+1}) = x(t_i) + h_i \cdot f(x(t_{i+1}))$$

mit Verfahrensfunktion $\Phi \coloneqq f$

Auflösen der rechten Seite, anstatt der linken Seite

3.6.4 Einschrittverfahren: Euler-Verfahren

- Implizites Euler-Verfahren für skalar $x(t_i)$
- (Näherungsweises) Lösen einer nicht-lineare Gleichung (z.B mit Newton-Verfahren) pro Iterationsschritt:

$$0 = x(t_{i+1}) - x(t_i) - h_i \cdot f(x(t_{i+1}))$$

Verknüpft mit erhöhtem Rechenaufwand relativ zum expliziten
 Euler-Verfahren

Inplization two

X(0) = X0

tox (...)

>NEWION

3.6.4 Allgemeine Formulierung: Euler-Verfahren

- Gegeben sei die Näherungslösung $x(t_i)$ zum Zeitpunkt t_i
- Gesucht ist die Näherungslösung $x(t_{i+1})$ zum Zeitpunkt t_{i+1}
- Explizites Euler-Verfahren für Vektor $x(t_i)$
 - Verfahrensvorschrift: $x(t_{i+1}) = x(t_i) + h_i \cdot f(x(t_i))$
- Implizites Euler-Verfahren für Vektor $x(t_i)$
 - Verfahrensvorschrift: $x(t_{i+1}) = x(t_i) + h_i \cdot f(x(t_{i+1}))$

MOODLE FRAGE

Bitte jetzt auf Moodle eine Frage beantworten!

