Po-An Tsai July 2022

CONTACT INFORMATION

poant@nvidia.com

https://research.nvidia.com/person/po-an-tsai

RESEARCH INTERESTS

Computer system and architecture. Domain-specific (ML/DL) architecture. Accelerator modeling and prototyping. Memory hierarchy design. SW/HW co-optimization.

EDUCATION

Ph.D. in Computer Science, June 2015 - June 2019

Massachusetts Institute of Technology

- Advisor: Professor Daniel Sanchez
- Thesis: Redesigning the Memory Hierarchy to Exploit Static and Dynamic Application Information
- Minor: Optimization Methods

S.M. in Computer Science, June 2015

Massachusetts Institute of Technology

- Advisor: Professor Daniel Sanchez
- Thesis: Reducing Data Movement in Multicore Chips with Computation and Data Co-scheduling

B.S. in Electrical Engineering, June 2012

National Taiwan University (NTU), Taiwan

HONORS AND AWARDS

IEEE Micro Top Picks Award, 2021

Best Paper Nominee, HPCA-21, 2015

Best Poster Award, MIT Industry-Academia Partnership Workshop - MIT, 2014

Jacobs Presidential Fellowship – MIT, 2013

Valedictorian – NTUEE, 2012

Presidential Award – NTU, 2010, 2011, 2012

Second Prize, NTUEE Undergraduate Research Award – NTU, 2012

Star Futures Award, Altera International FPGA Design Contest - China, 2011

WORK EXPERIENCE

Sr. Research Scientist, July 2022 – Current **Research Scientist**, July 2019 – June 2022

Architecture Research Group, NVIDIA

- Contribute to multiple generations of the hardware and software design for NVIDIA Tensor Cores
- · Co-lead research activities on hardware acceleration for autonomous machines
- Worked on a flexible tensor accelerator that leverages a hierarchical and configurable data delivery network to adapt to a variety of GEMM and CNN workloads (US Patent 17/343582, 17/343597).
- Contributed to an open-sourced tool (Timeloop+Accelergy) for rapid evaluation of DNN accelerators.
- Worked on analytical modeling methodology for sparse tensor accelerators (MICRO-55).
- Worked on DARPA SDH program Developing Software-Defined Hardware that enables near ASIC performance with high programmability for data-intensive algorithms.

Research Assistant, September 2013 – May 2019 Computation Structure Group, MIT, Cambridge MA

Object-based memory hierarchies:

- Hotpads (MICRO-51): designed an object-based memory hierarchy designed from the ground up for modern, memory-safe languages. Hotpads reduces memory hierarchy energy by 2.6×.
- Zippads (**ASPLOS-24**): designed a compressed memory hierarchy for object-based programs. Zippads reduces main memory footprint by 2× while improving performance by 30%.

Software-defined memory hierarchies:

- Jenga (ISCA-44): designed a software-defined, heterogeneous memory hierarchy that adapts to the need of applications. Jenga improves full-system EDP by 23% on average and by up to 85%.
- AMS (MICRO-51): proposed an analytical model and scheduling algorithms for systems with near-data processing (NDP) capabilities. AMS improves performance by up to 37%.
- Nexus (**PACT-26**): developed an asymptotically better data replication policy for distributed shared caches. Nexus improves performance by 23% on average for replication-sensitive workloads.

Ph.D. Intern, Summer 2015

Distributed Resource Management Team, VMware, Palo Alto CA

- Manager: Lan Gao Mentor: Rean Griffith and Sahan Gamage
- Developed and prototyped a VM scheduler that performs multi-dimensional resource balancing and traffic engineering which reduces the runtime overhead by 10× while improving utilization by 5%.
- The proposed algorithm is implemented in the 2016 release and filed as a US patent (US 15283274).

PUBLICATIONS

Sparseloop: An Analytical Approach To Sparse Tensor Accelerator Modeling

Yannan Nellie Wu, Po-An Tsai, Angshuman Parashar, Vivienne Sze, Joel S Emer

The 55th IEEE/ACM International Symposium on Microarchitecture (MICRO-55), October 2022.

SIMD²: A Generalized Matrix Instruction Set for Accelerating Tensor Computation beyond GEMM Yunan Zhang, Po-An Tsai, Hung-Wei Tseng

The 49th Annual International Symposium on Computer Architecture (ISCA'22), June 2022.

Ruby: Improving Hardware Efficiency for Tensor Algebra Accelerators Through Imperfect Factorization

Mark Horeni, Pooria Taheri, Po-An Tsai, Angshuman Parashar, Joel Emer, Siddharth Joshi

IEEE International Symposium on Performance Analysis of Systems and Software, May 2022.

Union: A Unified HW-SW Co-Design Ecosystem in MLIR for Evaluating Tensor Operations on Spatial Accelerators

Geonhwa Jeong, Gokcen Kestor, Prasanth Chatarasi, Angshuman Parashar, **Po-An Tsai**, Sivasankaran Rajamanickam, Roberto Gioiosa, and Tushar Krishna

The 30th International Conference on Parallel Architectures and Compilation Techniques (PACT-30), September 2021.

Leaking Secrets through Compressed Caches

Po-An Tsai, Andres Sanchez, Christopher W. Fletcher, and Daniel Sanchez.

IEEE Micro's Top Picks from the Computer Architecture Conferences, May/June 2021.

Mind Mappings: Enabling Efficient Algorithm-Accelerator Mapping Space Search

Kartik Hegde, **Po-An Tsai**, Sitao Huang, Vikas Chandram, Angshuman Parashar, and Christopher W. Fletcher.

The 25th International Conference on Architectural Support for Programming Languages and Operating Systems, (ASPLOS-26), April 2021.

Sparseloop: An Analytical, Energy-Focused Design Space Exploration Methodology for Sparse Tensor Accelerators

Yannan Nellie Wu, **Po-An Tsai**, Angshuman Parashar, Vivienne Sze, Joel S. Emer

IEEE International Symposium on Performance Analysis of Systems and Software, March 2021

Hardware Abstractions for Targeting EDDO Architectures with the Polyhedral Model

Angshuman Parashar, Prasanth Chatarasi, and Po-An Tsai.

International Workshop on Polyhedral Compilation Techniques (IMPACT), January 2021.

Safecracker: Leaking Secrets through Compressed Caches

Po-An Tsai, Andres Sanchez, Christopher W. Fletcher, and Daniel Sanchez.

The 25th International Conference on Architectural Support for Programming Languages and Operating Systems, (ASPLOS-25), March 2020.

Compress Objects, Not Cache Lines: An Object-Based Compressed Memory Hierarchy

Po-An Tsai and Daniel Sanchez.

The 24th International Conference on Architectural Support for Programming Languages and Operating Systems, (ASPLOS-24), April 2019.

Rethinking the Memory Hierarchy for Modern Languages

Po-An Tsai, Yee Ling Gan, and Daniel Sanchez.

The 51st International Symposium on Microarchitecture (MICRO-51), October 2018.

Adaptive Scheduling for Systems with Asymmetric Memory Hierarchies

Po-An Tsai, Changping Chen, and Daniel Sanchez.

The 51st International Symposium on Microarchitecture (MICRO-51), October 2018.

KPart: A Hybrid Cache Partitioning-Sharing Technique for Commodity Multicores

Nosayba El-Sayed, Anurag Mukkara, **Po-An Tsai**, Harshad Kasture, Xiaosong Ma, and Daniel Sanchez. The 24th Intl. Symposium on High Performance Computer Architecture (HPCA-24), February 2018.

Nexus: A New Approach to Replication in Distributed Shared Caches

Po-An Tsai, Nathan Beckmann, and Daniel Sanchez.

The 26th International Conference on Parallel Architectures and Compilation Techniques (PACT-26), September 2017.

Jenga: Software-Defined Cache Hierarchies

Po-An Tsai, Nathan Beckmann, and Daniel Sanchez.

The 44th International Symposium on Computer Architecture (ISCA-44), June 2017.

Scaling Distributed Cache Hierarchies with Computation and Data Co-Scheduling

Nathan Beckmann, Po-An Tsai, and Daniel Sanchez.

The 21st International Symposium on High Performance Computer Architecture (HPCA-21), February 2015. Nominated for the best paper award

Hybrid Path-Diversity-Aware Adaptive Routing with Latency Prediction Model in Network-on-Chip Systems

Po-An Tsai, Yu-Hsin Kuo, En-Jui Chang, and An-Yeu Wu.

International Symposium on VLSI Design, Automation & Test, (VLSI-DAT), March 2013.

Path-Diversity-Aware Adaptive Routing in Network-on-Chip Systems

Yu-Hsin Kuo, **Po-An Tsai**, Hao-Ping Ho, En-Jui Chang, Hsien-Kai Hsin, and An-Yeu Wu. The 6th International Symposium on Embedded Multicore SoCs (MCSoC), September 2012.

PATENT

Resource-Based Virtual Computing Instance Scheduling

US Patent 15283274

Po-An Tsai, Sahan Gamage, and Rean Griffith.

Flexible Accelerator for a Tensor Workload

US Patent 17343597,17343582

Po-An Tsai, Neal Crago, Angshuman Parashar, Joel Springer Emer, Stephen William Keckler

SKILLS AND TOOLS

Programming languages and projects:

- C, C++: Analytical modeling tool for DNN accelerators (Timeloop), Event-driven multicore-processor simulator (Zsim), Linux kernel extension
- Verilog: FPGA-accelerated augmented-reality system, FPGA-accelerated medical image processing
- CUDA, OpenCL: GPGPU-assisted ultra-sonic array imaging system
- Java: Extending Maxine VM, a meta-circular JVM implementation for research
- Python, Matlab: Data analysis for predicting earning potential on an adult dataset
- Python, HTML, Javascript: Searchable and encrypted remote file system
- Others: Python, Matlab, Shell script, SQL

Libraries: CUDA, OpenCL, matplotlib, Pytorch, TensorFlow

Tools: Git, Intel Pin, Timeloop, Zsim, ModelSim, Altera Quantus II, IC Encounter

SERVICE

- Program Committee Member, ISMM'20, HPCA'21, MICRO'22.
- External Review Committee Member, PACT'20, MICRO'20, ASPLOS'21, MICRO'21, ISCA'22.
- Workshop/Tutorial Co-Chair, HPCA'21.
- Tutorial Organizer for Timeloop/Accelergy Tutorial: Tools for Evaluating Deep Neural Network Accelerator Designs, MICRO'19, ISCA'20, ISPASS'20.
- Submissions Co-Chair, MICRO-50, 2017
- President, 2014-2015, Taiwanese student association at MIT.