Pumping-Lemma für reguläre Sprachen

Es sei L eine reguläre Sprache. Dann gibt es eine Zahl j, sodass für alle Wörter $\omega \in L$ mit $|\omega| \ge j$ (jedes Wort ω in L mit Mindestlänge j) jeweils eine Zerlegung $\omega = uvw$ existiert, sodass die folgenden Eigenschaften erfüllt sind:

- (a) $|v| \ge 1$ (Das Wort v ist nicht leer.)
- (b) $|uv| \leq j$ (Die beiden Wörter u und v haben zusammen höchstens die Länge j.)
- (c) Für alle $i=0,1,2,\ldots$ gilt $uv^iw\in L$ (Für jede natürliche Zahl (mit 0) i ist das Wort uv^iw in der Sprache L)

Die kleinste Zahl j, die diese Eigenschaften erfüllt, wird Pumping-Zahl der Sprache L genannt.¹

Die einzelnen Bestandteile der Zerlegung des Wortes ω heißen Anfangsteil u, Endteil w und Schleifenteil v. 2

Das Pumping-Lemma wird verwendet, um zu zeigen, dass eine Sprache nicht regulär ist (Widerspruchsbeweis).³

Beispiel
$$L = \{a^n b^n | n \in \mathbb{N}\}$$

Ich behaupte, L sei regulär.

- (a) Also gibt es eine Pumpzahl. Sie sei j.
- (b) (Wähle geschickt ein "langes" Wort…) a^jb^j ist ein Wort aus L, das sicher länger als j ist.
- (c) Da *L* regulär ist, muss es nach dem Pumping-Lemma auch für dieses Wort eine Zerlegung geben:

$$a^j b^j = uvw \text{ mit } |v| \ge 1 \text{ und } |uv| \le j$$

Weil uv höchstens j lang ist, kann es im Fall von a^jb^j nur aus a's bestehen. Da v mindestens ein Zeichen enthält, ist das mindestens ein a. Pumpen führt nun zu mehr a's als b's und also zu einem Wort, das nicht in der Sprache ist. (Widerspruch!) 4

- ⇒ Die Behauptung war falsch!
- \Rightarrow L ist nicht regulär!⁵

hier ausführlich beschrieben https://www.informatik.hu-berlin.de/de/forschung/gebiete/algorithmenII/Lehre/ws13/einftheo/einftheo-skript.pdf

¹wiki:pumping-lemma.

²https://studyflix.de/informatik/pumping-lemma-1445

³Theoretische Informatik – Reguläre Sprachen, Seite 63.

⁴Wikipedia-Artikel "Pumping-Lemma".

⁵Theoretische Informatik – Reguläre Sprachen, Seite 63-64.

Literatur

- $[1] \quad \textit{Theoretische Informatik} \textit{Regul\"{a}re Sprachen}.$
- [2] Wikipedia-Artikel "Pumping-Lemma". https://de.wikipedia.org/wiki/Pumping-Lemma.