DEEP-AGORA

Existant & État de l'art

TABLE DES MATIÈRES

EXPRESSION DES BESOINS

EXISTANT

À FAIRE ÉVOLUER

ETUDE DE FAISABILITÉ

ANALYSE DES LIBRAIRIES

à venir

O1 EXPRESSION DES BESOINS

UTILISATEUR FINAL

Centre d'Etudes Supérieures de la Renaissance

Le CESR

Centre de formation et de recherche situé à Tours.

Propose masters et doctorats en:

- Histoire, Civilisation, Patrimoine.
- Humanités Numériques.

EXPRESSION DE BESOINS

Documents anciens

Scénarios

AGORA

Intéractif

Elements de contenu

EOC

RETRO

OCR sur clusters

QUELQUES EXAMPLES D'EXTRACTIONS

02 EXISTANT

BINARISATION

Choix entre différents algorithmes

AGORA (actuellement)

FICHIERS ALTO (XML)

Extraction des éléments de contenus (EOC) avec leurs étiquettes dans un système de fichier

Présenter le standard ALTO

SCÉNARIOS

Destinés à regrouper et étiqueter les pixels noirs à partir de règles

2 CAS D'UTILISATION

Stockés en base de données ou passés à RETRO (OCR)

03 À FAIRE ÉVOLUER

PROBLÈMES VS SOLUTION

BINARISATION + ÉCRITURE MANUSCRITE + DIFFICILE À MAITRISER

- Binarisation pas suffisamment efficace
- Des caractères et des lignes qui se touchent
- Des interfaces trop complexes

MODULE DE DEEP-LEARNING

- Remplace la binarisation
- Adaptabilité à l'écriture manuscrite
- Adaptabilité à davantage de corpus

04 ETUDE DE FAISABILITÉ

PROCESSUS

EXTRACTION CIBLEE

Extraction de certains EOC seulement (ex: lettrines et bannières)

BASE

Remplacer la binarisation et extraire les EOC <u>Entrée</u>: Image Sortie: Liste d'EOC

SORTIE POUR RETRO

Exportation des résultats vers ALTO avec structure adaptée

Spécifier les livrables avec entrées et sorties

Validation sur jeux de données manuscrits

1 MODULE GÉNÉRIQUE

Sélection de types d'EOC par scénarios à la sortie du modèle

N MODULES SPÉCIALISÉS

À utiliser comme des scénarios

1 MODULE GÉNÉRIQUE

Sélection de types d'EOC par scénarios en sortie du modèle

N MODULES

SPÉCIALISÉS

À utiliser comme des scénarios

Les utilisateurs créent leurs propres modèles

Possibilité d'intégrer des scénarios au modules

05
ANALYSE DES
LIBRAIRIES

Trouver des librairie adaptées

ANCIENT DOCUMENT LAYOUT ANALYSIS

Conçue pour les documents anciens spécifiquement.

OPEN SOURCE

Code source accessible pour pouvoir être modifié.

TRANSFER LEARNING

Un modèle pré-entrainé serait un avantage.

ADAPTABILITÉ

Documentation solide et bonnes pratiques.

Les plus adaptées

Layout Parser	Kraken	dhSegment	
Conçu pour les documents imprimés	Binarise les images et segmente des lignes de texte	Documentation limitée et pas de sortie ALTO	
Communauté active et excellente documentation	Documents imprimé / manuscrits, dans divers languages et sortie en ALTO	Documents imprimés / manuscrits et extrait les images	

Choix d'une librairie

Spécifier les colonnes, les détailler et intégrer les types d'EOC

	DOCUMENTS MANUSCRITS	SANS ALGO DE BINARISATION	SORTIE XML ALTO	EXTRACTION D'IMAGES
LAYOUT PARSER	(3)	((3)	(S)
KRAKEN	(%)	(%)	(A)	(3)
DHSEGMENT	(%)	8	(X)	(%)

06 À VENIR

À RÉALISER TRÈS PROCHAINEMENT

Spécifier les livrables plutôt

Essayer dhSegment avec PyTorch Echanger avec l'équipe RETRO Acquérir des jeux de données Etudier la piste des N modules **Etablir un planning**

MERCI

Avez-vous des questions?

theo.boisseau@etu.univ-tours.fr Polytech Tours

Please keep this slide for attribution

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**

