Aalto University

Problem set 3B

Department of Mathematics and Systems Analysis MS-C1300 — Complex Analysis, 2024-2025/II

K Kytölä & A Vavilov

Exercise sessions: 7.-8.11. Hand-in due: Sun 10.11.2024 at 23:59

Topic: (complex) derivatives, analytic functions

The first two exercises are to be discussed and solved in exercise sessions. The last two exercises are homework (marked with symbol \(\frac{1}{2} \)): written solutions to them are to be returned in MyCourses. Each exercise is graded on a scale 0-3. The deadline for returning solutions to problem set 3B is Sun 10.11.2024 at 23:59.

Exercise (in class) 1.

Let $\gamma: [0,2\pi] \to \mathbb{C}$ be the path given by the formula $\gamma(t) = -2e^{\mathrm{i}t}$. Evaluate the integral

$$\int_{\gamma} \frac{1}{z^2 - 1} \, \mathrm{d}z.$$

Exercise (in class) 2.

Let $\gamma \colon [0, 2\pi] \to \mathbb{C}$ be the path given by the formula $\gamma(t) = e^{\mathrm{i}t}$, and let $a \in \mathbb{R}$ be such that 0 < a < 1.

(a) Show that we have

$$\int_0^{2\pi} \frac{1}{1 + a^2 - 2a\cos(t)} dt = \oint_{\gamma} \frac{i}{(z - a)(az - 1)} dz.$$

(b) Evaluate the real integral

$$\int_0^{2\pi} \frac{1}{1 + a^2 - 2a\cos(t)} \, \mathrm{d}t.$$

Let $a \in \mathbb{R}$ be a real number such that |a| > 1. With the help of the complex integral

$$\int_{\gamma} \frac{1}{z+a} \, \mathrm{d}z$$

along the path $\gamma \colon [0, 2\pi] \to \mathbb{C}$ given by the formula $\gamma(t) = e^{it}$, show that

$$\int_0^{2\pi} \frac{1 + a \cos(t)}{1 + 2a \cos(t) + a^2} dt = 0.$$

Homework exercise 4.

Let $\gamma \colon [0,2\pi] \to \mathbb{C}$ be the path given by the formula $\gamma(t) = e^{\mathrm{i}t}$. Evaluate the following integrals along γ :

(a)
$$\int_{\gamma} \frac{1}{(z-2)^2} \, \mathrm{d}z$$

(b)
$$\int_{\gamma} \frac{1}{z^2 - 4} dz$$
(c)
$$\int_{\gamma} \left(z + \frac{1}{z}\right)^n$$

(c)
$$\int_{\gamma}^{r} \left(z + \frac{1}{z}\right)^{n} dz \quad \text{where } n \in \mathbb{N}.$$