§12. Обозначения в структурных схемах. Передаточные функции типовых соединений звеньев

В ТАУ при анализе САУ самое широкое применение получили так называемые структурные схемы. При этом под структурной схемой САУ подразумевается условное графическое изображение математической модели системы в виде совокупности отдельных звеньев с указанием связей между пими.

Эта схема в сущности представляет собой графическое изображение системы уравнений, описывающих поведение элементов и устройств САУ.

Структурная схема может также рассматриваться как схема прохождения и преобразования сигналов в САУ. Поэтому ее иногда называют также алгоритмической схемой.

Рассмотрим правила изображения элементов САУ на структурных схемах. 1. Звено обозначается в виде прямоугольника с указанием входных и выходных величин

Рис. 2.9. Изображения звеньев

Внутри прямоугольника указывается передаточная функция (рис.2.9,а). Допускается вместо W(s) указывать уравнение или характеристику звена (рис.2.9,б). Обозначения входных и выходных величин записывают в виде изображений или оригиналов в зависимости от обозначения в прямоугольнике. Допускается также звенья нумеровать, а их передаточные функции, уравнения или характеристики представлять вне схемы.

- Цепь передачи сигнала изображается прямой линией на которой стрелкой указывается направление прохождения сигнала, а также приводится буквенное обозначение этого сигнала.
- 3. Элемент сравнения изображается в виде, приведенном на рис. 2.10.

Рис. 2.10. Изображения элементов сравнения при реализации функций:

a)
$$y = x_1 + x_2$$
; 6) $y = x_1 - x_2$

Передаточные функции типовых соединений звеньев

Структурная схема реальной САУ обычно может быть представлена в виде комбинации трех типов соединений звеньев: последовательного, параллельного и встречно-параллельного. Каждое из этих соединений может быть заменено по определенным правилам одним звеном, свойства которого будут эквивалентными свойствам соединения. Установим эти правила.

Последовательное соединение. При таком соединении выходная величина предыдущего звена является входной величиной последующего звена (см. рис.2.11,а).

$$X = W_1(s)$$
 $X_1 = W_2(s)$ $X_2 = \cdots = X_N = W_N(s)$ $Y = X = W_3(s)$ $Y = X$

Рис. 2.11. Структурная схема последовательного соединения звеньев:

а) исходная; б) эквивалентная

Запишем уравнения звеньев в операционной форме:

$$X_1(s) = W_1(s)X(s)$$
; $X_2(s) = W_2(s)X_1(s)$; ...; $Y(s) = W_N(s)X_{N-1}(s)$.

Исключив промежуточные переменные $X_1(s), X_2(s), \dots, X_{N-1}(s)$ получим:

$$Y(s) = W_1(s)W_2(s) \dots W_N(s)X(s)$$
.

Откуда можно получить выражение для определения эквивалентной передаточной функции соединения $W_{\Im}(s)$ по каналу $X(s) \to Y(s)$ - (см. рис.2.11,б):

$$W_{\mathfrak{I}}(s) = \frac{Y(s)}{X(s)} = \prod_{i=1}^{N} W_{i}(s)$$
 (2.54)

Параллельное соединение. При таком соединении на вход всех звеньев подается одна и та же величина, а выходная величина равна сумме выходных величин отдельных звеньев (см. рис. 2.12,а).

Рис. 2.12. Структурная схема параллельного соединения звеньев: а) исходная; б) эквивалентная

Запишем уравнения звеньев:

$$Y_1(s) = W_1(s)X(s)$$
; $Y_2(s) = W_2(s)X(s)$; ...; $Y_N(s) = W_N(s)X(s)$.

Просуммировав эти уравнения, получим:

$$\sum_{i=1}^{N} Y(s) = Y(s) = [W_1(s) + W_2(s) + \dots + W_N(s)]X(s).$$

Откуда:

$$W_{9}(s) = \frac{Y(s)}{X(s)} = \sum_{i=1}^{N} W_{i}(s)$$
 (2.55)

Встречно-параллельное соединение (охват звена обратной связью).

В этом случае структурная схема имеет вид, приведенный на рис. 2.13,а, где обратная связь может быть как отрицательной, так и положительной.

Рис. 2.13. Структурная схема встречно-параллельного соединения звеньев:

а) исходная; б) эквивалентная

Запишем уравнения звеньев и уравнение замыкания контура:

$$\left. \begin{array}{l} Y(s) = W_1(s) \Delta U(s); \\ U_{\rm oc}(s) = W_2(s) Y(s); \\ \Delta U(s) = U_3(s) \mp U_{\rm oc}(s) \end{array} \right\}_{\square}$$

Решив эту систему относительно $U_3(s)$ и Y(s), получим:

$$Y(s) = W_1(s) \big[U_3(s) \mp U_{\rm oc}(s) \big] = W_1(s) \big[U_3(s) \mp W_2(s) Y(s) \big] = W_1(s) U_3(s) \mp W_1(s) W_2(s) Y(s) \; .$$

Последнее уравнение можно записать в виде:

$$Y(s)[1\pm W_1(s)W_2(s)] = W_1(s)U_3(s)$$
.

Откуда окончательно имеем:

$$W_{3}(s) = \frac{Y(s)}{U_{3}(s)} = \frac{W_{1}(s)}{1 \pm W_{1}(s)W_{2}(s)}.$$
 (2.56)

Знак "+" в последней формуле ставится в случае отрицательной обратной связи, а "-" – положительной.

Пример 2.6.

Найдем эквивалентную передаточную функцию системы, структурная схема которой приведена на рис. 2.14.

Рис. 2.14

Решение.

Воспользовавшись формулами (2.55) и (2.54) для параллельного и последовательного и параллельного соединений звеньев, запишем

$$W_{_{9}}(s) = W_{1}(s)W_{2}(s)\big[W_{3}(s) - W_{4}(s)\big]W_{5}(s)$$