ODR: Cvičné příklady-metoda variace

1. Pro rovnici $y' = \frac{2}{r^3} - \frac{3y}{r}$ najděte řešení Cauchyho úloh

a)
$$y(-1) = 3$$
; b) $y(1) = 1$; c) $y(0) = 3$.

Vyřešte následující Cauchyho úlohy:

2.
$$y' = 2y + \frac{1}{\sqrt{x}}e^{2x}$$
, $y(1) = e^2$; **3.** $y' = \frac{2}{x}y + x^2\sin(x)$, $y(\pi) = 2\pi^2$;

4.
$$y' + y = 13x$$
, $y(0) = 10$; **5.** $x' = \frac{x}{t+1} + 1$, $x(0) = -2$;

6.
$$y' = 3x^2y - e^{x^3}$$
, $y(0) = 13$; $y' + \frac{2xy}{x^2 - 4} = \frac{2x}{(x^2 - 4)^2}$, $y(1) = -\frac{\ln(3)}{3}$;

8.
$$x' = 2t^3 - 2tx$$
, $x(0) = 2$; **9.** $y' + \frac{2}{x+1} = \frac{y}{x-1}$, $y(2) = \ln(3)$;

10.
$$y' + y + x = 0$$
, $y(0) = 0$; **11.** $y' + \frac{y}{x - 1} = 6x$, $y(0) = -4$;

12.
$$xy' + y = \frac{1}{x}$$
, $y(-1) = 0$; **13.** $\dot{x} = x \cot(t) + 2t \sin^2(t)$, $x(\frac{7\pi}{2}) = 1$.

14. Najděte obecné řešení rovnice
$$y' = \frac{x(y-1)}{x^2+1} + \sqrt{x^2+1}$$
.

15. Vyřešte Cauchyho úlohu
$$y' = \frac{y(x+1)}{x} - \frac{x+1}{x}, \quad y(-1) = 1 - \frac{3}{e}.$$

16. Uvažujte rovnici
$$y'' - \frac{2x}{1+x^2}y' + \frac{2}{1+x^2}y = 1+x^2$$
.

- a) Dokažte, že $\{x, x^2 1\}$ je její fundamentální system.
- b) Najděte obecné řešení přidružené homogenní rovnice.
- c) Najděte obecné řešení dané rovnice.

Vyřešte následující Cauchyho úlohy:

17.
$$\ddot{x} + x = \frac{1}{\cos^3(t)}, \qquad x(\pi) = \dot{x}(\pi) = \frac{1}{2};$$

18.
$$y'' + 4y' + 4y = \frac{-e^{-2x}}{x^2 - 1}$$
, $y(0) = 1$, $y'(0) = -2$.

Najděte obecné řešení následujících rovnic:

19.
$$x'' + 9x = \frac{9}{\sin(3t)}$$
; **20.** $y'' + 2y' + y = 15e^{-x}\sqrt{x}$;

21.
$$\ddot{x} + 4x = 8\sin^2(2t)$$
; **22.** $\ddot{x} + 4x = -8\cot(2t)$.

Řešení

1. Podmínky: $x \neq 0$. Metoda: nejde separovat, je to ale nehomogenní linearní, tedy variace konstanty.

Nejprve homogenní, $y' = -\frac{3y}{x}$, tedy $\int \frac{dy}{y} = -3 \int \frac{dx}{x}$, $\ln|y| = -3 \ln|x| + c = \ln\left(\frac{1}{|x^3|}\right) + c$, $y=\pm e^{c}\frac{1}{x^{3}}$, obecné řešení homogenní je $y_{h}(x)=\frac{C}{x^{3}},\,x\neq0.$

Variace: $y(x) = \frac{C(x)}{x^3}$, pak $\frac{C'(x)}{x^3} = \frac{2}{x^3}$, C'(x) = 2. Odtud C(x) = 2x nebo C(x) = 2x + C, obecné řešení je $y(x) = \frac{2x+C}{x^3}$, $x \in (-\infty,0)$ nebo $x \in (0,\infty)$.

Poznámka: Metoda odhadu nepomůže, rovnice nemá konstantní koeficienty a navíc $\frac{2}{x^3}$ neumíme odhadnout.

Počáteční podmínky: a) C = -1, tedy $y_a(x) = \frac{2x-1}{x^3}$, $x \in (-\infty, 0)$; b) C = -1, tedy $y_b(x) = \frac{2x-1}{x^3}$, $x \in (0, \infty)$; c) $y_c(x)$ neex.

- **2.** Podmínky: x > 0. Metoda: nejde separovat, je to ale nehomogenní linearní, tedy variace konstanty.

Nejprve homogenní, y'=2y, převod y'-2y=0, konstantní koeficienty, proto lze použít $\lambda-2=0,$ pak $\lambda=2,$ obecné řešení homogenní je $y_h(x)=Ce^{2x},\,x\in I\!\!R.$

Šla by i separace: $\int \frac{dy}{y} = \int 2dx$, $\ln |y| = 2x + c$, $y = \pm e^c e^{2x}$, $y_h(x) = Ce^{2x}$.

Variace: $y(x) = C(x)e^{2x}$, pak $C'(x)e^{2x} = \frac{1}{\sqrt{x}}e^{2x}$, $C'(x) = \frac{1}{\sqrt{x}}$. Odtud $C(x) = 2\sqrt{x}$ nebo $C(x) = 2\sqrt{x} + C$, obecné řešení je $y(x) = 2\sqrt{x}e^{2x} + Ce^{2x}, x \in (0, \infty, 0)$.

Poznámka: Metoda odhadu nepomůže, rovnice sice má konstantní koeficienty, ale $\frac{1}{\sqrt{x}}e^{2x}$ neumíme odhadnout.

Počáteční podmínka: C=-1, tedy $y(x)=2\sqrt{x}e^{2x}-e^{2x}$, $x\in(0,\infty,0)$.

3. Podmínky: $x \neq 0$. Metoda: nejde separovat, je to ale nehomogenní linearní, tedy variace

Nejprve homogenní, $y'=\frac{2}{x}y$, tedy $\int \frac{dy}{y}=2\int \frac{dx}{x}$, $\ln|y|=2\ln|x|+c=\ln(|x^2|)+c$, $y=\pm e^cx^2$, obecné řešení homogenní je $y_h(x)=Cx^2$, $x\neq 0$.

Variace: $y(x) = C(x)x^2$, pak $C'(x)x^2 = x^2\sin(x)$, $C'(x) = \sin(x)$. Odtud $C(x) = -\cos(x)$ nebo $C(x) = C - \cos(x)$, obecné řešení je $y(x) = Cx^2 - x^2 \cos(x)$, $x \in (-\infty, 0)$ nebo $x \in (0, \infty)$.

Poznámka: Metoda odhadu nepomůže, rovnice nemá konstantní koeficienty.

Počáteční podmínka: C=1, tedy $y(x)=x^2(1-\cos(x)), x\in(0,\infty)$.

4. Podmínky: nejsou. Metoda: nejde separovat, je to ale nehomogenní lineární, tedy variace konstanty.

Nejprve homogenní, y'+y=0, konstantní koeficienty, proto lze použít $\lambda+1=0$, pak $\lambda=-1$, obecné řešení homogenní je $y_h(x)=Ce^{-x},\,x\in{I\!\!R}.$

Šla by i separace: $\int \frac{dy}{y} = -\int 1 dx$, $\ln |y| = -x + c$, $y = \pm e^c e^{-x}$, $y_h(x) = Ce^{-x}$.

Variace: $y(x) = C(x)e^{-x}$, pak $C'(x)e^{-x} = 13x$, $C'(x) = 13x e^{x}$. Odtud $C(x) = 13x e^{x} - 13e^{x}$ nebo $C(x) = 13x e^x - 13e^x + C$, obecné řešení je $y(x) = 13x - 13 + Ce^{-x}$, $x \in \mathbb{R}$.

Poznámka: Tuto rovnici by šlo řešit i metodou odhadu. Odhad $y_p = Ax + B$ vede na A = 13, B = -13.

Počáteční podmínka: C = 23, tedy $y(x) = 13x - 13 + 23e^{-x}$, $x \in \mathbb{R}$.

5. Podmínky: $t \neq -1$. Metoda: nejde separovat, je to ale nehomogenní linearní, tedy variace konstanty.

Nejprve homogenní, $x' = \frac{x}{t+1}$, tedy $\int \frac{dx}{x} = \int \frac{dt}{t+1}$, $\ln|x| = \ln|t+1| + c$, $x = \pm e^c(t+1)$, obecné řešení homogenní je $x_h(t) = C(t+1)$, $t \neq -1$.

Variace: x(t) = C(t)(t+1), pak C'(t)(t+1) = 1, $C'(t) = \frac{1}{t+1}$. Odtud $C(t) = \ln|t+1|$ nebo $C(t) = \ln|t+1| + C$, obecné řešení je $x(t) = C(t+1) + \ln|t+1| + C$, obecné řešení je $x(t) = C(t+1) + \ln|t+1| + C$, obecné řešení je $x(t) = C(t+1) + \ln|t+1| + C$, obecné řešení je $x(t) = C(t+1) + \ln|t+1| + C$, obecné řešení je $x(t) = C(t+1) + \ln|t+1| + C$, obecné řešení je $x(t) = C(t+1) + \ln|t+1| + C$, obecné řešení je $x(t) = C(t+1) + \ln|t+1| + C$, obecné řešení je $x(t) = C(t+1) + \ln|t+1| + C$, obecné řešení je $x(t) = C(t+1) + \ln|t+1| + C$, obecné řešení je $x(t) = C(t+1) + \ln|t+1| + C$, obecné řešení je $x(t) = C(t+1) + \ln|t+1| + C$, obecné řešení je $x(t) = C(t+1) + \ln|t+1| + C$, obecné řešení je $x(t) = C(t+1) + \ln|t+1| + C$, obecné řešení je $x(t) = C(t+1) + \ln|t+1| + C$, obecné řešení je x(t) = C(t+1) + C $t \in (-1, \infty)$.

Poznámka: Metoda odhadu nepomůže, rovnice nemá konstantní koeficienty.

Počáteční podmínka: C = -2, tedy $x(t) = \ln|t+1|(t+1) - 2(t+1)$, $t \in (-1, \infty)$.

6. Podmínky: nejsou. Metoda: nejde separovat, je to ale nehomogenní linearní, tedy variace konstanty.

Nejprve homogenní, $y'=3x^2y$, tedy $\int \frac{dy}{y}=3\int x^2\,dx$, $\ln|y|=x^3+c$, $y=\pm e^ce^{x^3}$, obecné řešení homogenní je $y_h(x) = Ce^{x^3}, x \in \mathbb{R}.$

Variace: $y(x)=C(x)e^{x^3}$, pak $C'(x)e^{x^3}=-e^{x^3}$, C'(x)=-1. Odtud C(x)=-x nebo C(x)=C-x, obecné řešení je $y(x)=Ce^{x^3}-x\,e^{x^3}$, $x\in \mathbb{R}$.

Poznámka: Metoda odhadu nepomůže, rovnice nemá konstantní koeficienty a navíc e^{x^3} neumíme odhadnout.

Počáteční podmínka: C = 13, tedy $y(x) = (13 - x)e^{x^3}$, $x \in \mathbb{R}$.

7. Podmínky: $x \neq \pm 2$. Metoda: nejde separovat, je to ale nehomogenní linearní, tedy variace konstanty.

Nejprve homogenní, $y' + \frac{2xy}{x^2 - 4} = 0$, tedy $\int \frac{dy}{y} = -\int \frac{2x}{x^2 - 4} dx$, $\ln|y| = -\ln|x^2 - 4| + c = -\frac{1}{2}$ $\ln |(x^2-4)^{-1}| + c$, $y = \pm e^{c} \frac{1}{x^2-4}$, obecné řešení homogenní je $y_h(x) = C \frac{1}{x^2-4}$, $x \neq \pm 2$.

Variace: $y(x) = C(x) \frac{1}{x^2 - 4}$, pak $C'(x) \frac{1}{x^2 - 4} = \frac{2x}{(x^2 - 4)^2}$, $C'(x) = \frac{2x}{x^2 - 4}$. Odtud $C(x) = \ln|x^2 - 4|$ nebo $C(x) = \ln|x^2 - 4| + C$, obecné řešení je $y(x) = \frac{C}{x^2 - 4} + \frac{\ln|x^2 - 4|}{x^2 - 4}, x \neq \pm 2$.

Poznámka: Metoda odhadu nepomůže, rovnice nemá konstantní koeficienty a navíc $\frac{2x}{(x^2-4)^2}$ neumíme odhadnout.

Počáteční podmínka: C = 0, tedy $y(x) = \frac{\ln|x^2 - 4|}{x^2 - 4} = \frac{\ln(4 - x^2)}{x^2 - 4}$, $x \in (-2, 2)$.

8. Podmínky: nejsou. Metoda: nejde separovat, je to ale nehomogenní linearní, tedy variace konstanty.

Nejprve homogenní, x'=-2tx, tedy $\int \frac{dx}{x}=-\int 2t\,dt$, $\ln|x|=-t^2+c$, $x=\pm e^c e^{-t^2}$, obecné řešení homogenní je $x_h(t) = Ce^{-t^2}, t \in \mathbb{R}.$

Variace: $y(x) = C(t)e^{-t^2}$, pak $C'(t)e^{-t^2} = 2t^3$, $C'(t) = 2t^3e^{t^2}$. Odtud $C(x) = t^2e^{t^2} - e^{t^2}$ nebo $C(x) = t^2 e^{t^2} - e^{t^2} + C$, obecné řešení je $y(x) = t^2 - 1 + Ce^{-t^2}$, $t \in \mathbb{R}$.

Poznámka: Metoda odhadu nepomůže, rovnice nemá konstantní koeficienty.

Počáteční podmínka: C = 3, tedy $x(t) = t^2 - 1 + 3e^{-t^2}$, $t \in \mathbb{R}$.

9. Podmínky: $x \neq \pm 1$. Metoda: nejde separovat, je to ale nehomogenní linearní, tedy variace konstanty.

Nejprve homogenní, $y' = \frac{y}{x-1}$, tedy $\int \frac{dy}{y} = \int \frac{dx}{x-1}$, $\ln|y| = \ln|x-1| + c$, $y = \pm e^c(x-1)$,

obecné řešení homogenní je $y_h(x) = C(x-1), x \neq 1$. Variace: y(x) = C(x)(x-1), pak $C'(x)(x-1) = -\frac{2}{x+1}$, $C'(x) = -\frac{2}{(x-1)(x+1)} = \frac{1}{x+1} - \frac{1}{x-1}$. Odtud $C(x) = \ln|x+1| - \ln|x-1| = \ln\left|\frac{x+1}{x-1}\right|$ nebo $C(x) = \ln\left|\frac{x+1}{x-1}\right| + C$, obecné řešení je $y(x) = \ln \left| \frac{x+1}{x-1} \right| (x-1) + C(x-1), x \neq \pm 1.$

Poznámka: Metoda odhadu nepomůže, rovnice nemá konstantní koeficienty a navíc $\frac{2}{x+1}$ neumíme odhadnout.

Počáteční podmínka: C=0, tedy $y(x)=\ln\left|\frac{x+1}{x-1}\right|(x-1), x\in(1,\infty)$.

10. Podmínky: nejsou. Metoda: nejde separovat, je to ale nehomogenní linearní, tedy variace konstanty. Pozor, tvar je y' + y = -x, tedy b(x) = -x.

Nejprve homogenní, y'=-y, tedy $\int \frac{dy}{y}=-\int dx$, $\ln |y|=-x+c$, $y=\pm e^c e^{-x}$, obecné řešení homogenní je $y_h(x) = Ce^{-x}, x \in \mathbb{R}$.

Variace: $y(x) = C(x)e^{-x}$, pak $C'(x)e^{-x} = b(x) = -x$, $C'(x) = -xe^{x}$. Odtud integrací per partes $C(x) = -x e^x + e^x$ nebo $C(x) = -x e^x + e^x + C$, obecné řešení je

 $y(x) = (e^x - x e^x + C)e^{-x} = 1 - x + Ce^{-x}, x \in \mathbb{R}.$

Poznámka: Tuto rovnici by šlo řešit i metodou odhadu. Odhad $y_p = Ax + B$ vede na A = -1, B = 1.

Počáteční podmínka: C = -1, tedy $y(x) = 1 - x - e^{-x}$, $x \in \mathbb{R}$.

11. Podmínky: $x \neq 1$. Metoda: nejde separovat, je to ale nehomogenní linearní, tedy variace

Nejprve homogenní, $y' = -\frac{y}{x-1}$, tedy $\int \frac{dy}{y} = -\int \frac{dx}{x-1}$, $\ln|y| = -\ln|x-1| + c$, $y = \pm e^c \frac{1}{x-1}$, obecné řešení homogenní je $y_h(x) = \frac{C}{x-1}$, $x \neq 1$.

Variace: $y(x) = \frac{C(x)}{x-1}$, pak $\frac{C'(x)}{x-1} = 6x$, $C'(x) = 6x^2 - 6x$. Odtud $C(x) = 2x^3 - 3x^2$ nebo $C(x)=2x^3-3x^2+C$, obecné řešení je $y(x)=\frac{2x^3-3x^2+C}{x-1}, \ x\neq 1$. Poznámka: Metoda odhadu nepomůže, rovnice nemá konstantní koeficienty. Počáteční podmínka: C=4, tedy $y(x)=\frac{2x^3-3x^2+4}{x-1}, \ x\in (\infty,1)$.

12. Podmínky: $x \neq 0$. Metoda: nejde separovat, ale lze ji upravit na nehomogenní linearní $y' + \frac{1}{x}y = \frac{1}{x^2}$, tedy variace konstanty.

Nejprve homogenní, $y' = -\frac{y}{x}$, tedy $\int \frac{dy}{y} = -\int \frac{dx}{x}$, $\ln|y| = -\ln|x| + c = \ln\left(\frac{1}{|x|}\right) + c$, $y = \pm e^c \frac{1}{x}$, obecné řešení homogenní je $y_h(x) = \frac{C}{x}, x \neq 0.$

Variace: $y(x) = \frac{C(x)}{x}$, pak $\frac{C'(x)}{x} = \frac{1}{x^2}$, $C'(x) = \frac{1}{x}$. Odtud $C(x) = \ln|x|$ nebo $C(x) = \ln|x| + C$, obecné řešení je $y(x) = \frac{C}{x} + \frac{\ln|x|}{x}$, $x \in (-\infty, 0)$ nebo $x \in (0, \infty)$. Poznámka: Metoda odhadu nepomůže, rovnice nemá konstantní koeficienty a navíc $\frac{1}{x^2}$ neu-

míme odhadnout.

Počáteční podmínka: C=0, tedy $y(x)=\frac{\ln|x|}{x}=\frac{\ln(-x)}{x},$ $x\in(-\infty,0).$

13. Podmínky: $t \neq k\pi$. Metoda: nejde separovat, je to ale nehomogenní linearní, tedy variace konstanty.

Nejprve homogenní, $\dot{x} = x \cot(t)$, tedy $\int \frac{dx}{x} = \int \frac{\cos(t)dt}{\sin(t)}$, substituce $z = \sin(t)$, $\ln|x| = 1$ $\ln|\sin(t)| + c$, $y = \pm e^c \sin(t)$, obecné řešení homogenní je $x_h(t) = C \sin(t)$, $t \neq k\pi$.

Variace: $x(t) = C(t)\sin(t)$, pak $C'(t)\sin(t) = 2t\sin^2(t)$, $C'(t) = 2t\sin(t)$. Odtud pomocí perpartes $C(x) = -2t\cos(t) + 2\sin(t)$ nebo $C(x) = -2t\cos(t) + 2\sin(t) + C$, obecné řešení je $x(t) = 2\sin^2(t) - 2t\sin(t)\cos(t) + C\sin(t) = 2\sin^2(t) - t\sin(2t) + C\sin(t), t \in (k\pi, (k+1)\pi)$ pro $k \in \mathbb{Z}$.

Poznámka: Metoda odhadu nepomůže, rovnice nemá konstantní koeficienty a navíc $2t \sin^2(t)$ neumíme odhadnout.

Počáteční podmínka: C = 1, tedy $y(x) = 2\sin^2(t) - t\sin(2t) + \sin(t)$, $t \in (3\pi, 4\pi)$.

14. Podmínky: nejsou. Metoda: nejde separovat, není to ani formálně lineární, ale jde na ni upravit:

$$y' = \frac{x}{x^2 + 1}y - \frac{x}{x^2 + 1} + \sqrt{x^2 + 1}.$$

Homogenní rovnice $y' = \frac{x}{x^2+1}y$: $\int \frac{dy}{y} = \int \frac{x}{x^2+1}$, substituce $z = x^2+1$, $\ln|y| = \frac{1}{2}\ln|x^2+1|+c = \ln\sqrt{x^2+1}+c$, $y = \pm e^c\sqrt{x^2+1}$, obecné řešení homogenní je $y_h(x) = C\sqrt{x^2+1}$, $x \in \mathbb{R}$. Variace: $y(x) = C(x)\sqrt{x^2+1}$, pak $C(x)'\sqrt{x^2+1} = -\frac{x}{x^2+1} + \sqrt{x^2+1}$, proto

$$C(x) = \int -\frac{x}{(x^2+1)\sqrt{x^2+1}} + 1 \, dx = -\int \frac{x}{(x^2+1)\sqrt{x^2+1}} \, dx + x = \begin{vmatrix} z = \sqrt{x^2+1} \\ dz = \frac{x}{\sqrt{x^2+1}} \, dx \end{vmatrix}$$
$$= x - \int \frac{dz}{z^2} = x + \frac{1}{z} + C = x + \frac{1}{\sqrt{x^2+1}} + C,$$

takže obecné řešení je $y(x) = x\sqrt{x^2 + 1} + 1 + C\sqrt{x^2 + 1}, x \in \mathbb{R}$.

Poznámka: Metoda odhadu nepomůže, rovnice nemá konstantní koeficienty a navíc pravou stranu neumíme odhadnout.

Alternativa: Metoda variace konstant funguje i na typ y' + a(x)(Ay + B) = b(x), takže je možno také řešit rovnou: Všude spojité, takže řešení na \mathbb{R} . Z homogenní rovnice y'= $\frac{x}{x^2+1}(y-1)$ se separací dostane $y_h(x)=C\sqrt{x^2+1}+1,\ x\in I\!\!R$ (zahrnuje i stacionární y(x) = 1). Variace: $y(x) = C(x)\sqrt{x^2 + 1} + 1$, potom $y'(x) = C'(x)\sqrt{x^2 + 1} + C(x)\frac{x}{\sqrt{x^2 + 1}}$, dosazení do rovnice a pak zkrácení vede na rovnici C'(x) = 1, tedy C(x) = x + C. Obecné řešení $y(x) = (x+C)\sqrt{x^2+1} + 1, x \in \mathbb{R}$.

Pozor! Kvůli tomu Ay + B se tentokráte opravdu musí zderivovat, dosadit do rovnice a pak zkrátit, nefunguje trik $C'(x)\sqrt{x^2+1}+1=\sqrt{x^2+1}$.

15. Podmínky: $x \neq 0$. Metoda: je to nehomogenní lineární, tedy variace konstanty.

Homogenní rovnice $y' = \frac{y(x+1)}{x}$: $\int \frac{dy}{y} = \int \frac{x+1}{x} dx = \int 1 + \frac{1}{x} dx$, $\ln |y| = x + \ln |x| + c$, $y = \pm e^c x e^x$, obecné řešení homogenní je $y_h(x) = Cx e^x$, $x \neq 0$.

Variace: $y(x) = C(x)x e^x$, pak $C'(x)x e^x = \frac{x+1}{x}$, $C(x) = \int \frac{x+1}{x^2} e^{-x} dx$. Tohle neumíme inte-

Jiná metoda? Dát původní dohromady, separovat: $y' = (y-1)\frac{(x+1)}{x}$, podmínka $x \neq 0$. Rozdělíme, integrujeme:

$$\int \frac{dy}{y-1} = \int \frac{x+1}{x} dx = \int 1 + \frac{1}{x} dx,$$

 $\int \frac{dy}{y-1} = \int \frac{x+1}{x} dx = \int 1 + \frac{1}{x} dx,$ tedy $\ln|y-1| = x + \ln|x| + c$, $y-1 = \pm e^c x e^x$, proto obecné řešení $y(x) = Cx e^x + 1$, $x \neq 0$; volba C=0 dá stacionární řešení.

Počáteční podmínka: C = 3, tedy $y(x) = 3x e^x + 1$, $x \in (-\infty, 0)$.

16. a) Dosazením do přidružené homogenní rovnice ověříme, že obě funkce jsou její řešení na IR. Pro libovolné $x \in IR$ totiž platí:

$$y'' - \frac{2x}{1+x^2}y' + \frac{2}{1+x^2}y = [x]'' - \frac{2x}{1+x^2}[x]' + \frac{2}{1+x^2}x = 0 - \frac{2x}{1+x^2} + \frac{2x}{1+x^2} = 0.$$

$$y'' - \frac{2x}{1+x^2}y' + \frac{2}{1+x^2}y = [x^2 - 1]'' - \frac{2x}{1+x^2}[x^2 - 1]' + \frac{2}{1+x^2}[x^2 - 1] = 2 - \frac{4x^2}{1+x^2} + \frac{2x^2 - 2}{1+x^2} = 0.$$
 Máme tedy dvě řešení a prostor řešení homogenní ODR řádu 2 má dimenzi 2. Stačí tedy

ukázat, že tyto funkce jsou lineárně nezávislé, aby tvořily bázi. K tomu použijeme Wronskián.

tyto funkce jsou innearne nezavisie, aby tvorny bazi. K tomu pouzijeme v
$$W(x) = \begin{vmatrix} x & x^2 - 1 \\ [x]' & [x^2 - 1]' \end{vmatrix} = \begin{vmatrix} x & x^2 - 1 \\ 1 & 2x \end{vmatrix} = 2x^2 - (x^2 - 1) = x^2 + 1 \neq 0.$$

Protože $\{x, x^2 - 1\}$ je báze prostoru řešení přidružené homogenní rovnice, je to i fundamentální systém dané rovnice.

- b) $y_h(x) = ax + b(x^2 1), x \in \mathbb{R}$.
- c) Rovnice je lineární, pravá strana je dokonce speciální, ale rovnice nemá konstantní koeficienty, proto nelze použít metodu odhadu. Zbývá jen metoda variace konstant, uvažujeme $y(x) = a(x)x + b(x)(x^2 - 1)$ a sestavíme rovnice:

$$a'(x)x + b'(x)(x^{2} - 1) = 0$$

$$a'(x)[x]' + b'(x)[x^{2} - 1]' = 1 + x^{2} \implies a'(x)x + b'(x)(x^{2} - 1) = 0$$

$$a'(x) + b'(x)(x^{2} - 1) = 0$$

$$a'(x) + b'(x)(x^{2} - 1) = 0$$

$$a'(x)[x]' + b'(x)[x^2 - 1]' = 1 + x^2 \implies a'(x) + b'(x)2x = 1 + x^2$$

Např. Kramerovým pravidlem $D = x^2 + 1$, $D_{a'} = -(x^2 - 1)(1 + x^2)$, $D_{b'} = x(1 + x^2)$, proto

$$a'(x) = 1 - x^{2}$$

$$b'(x) = x$$

$$\Rightarrow a(x) = x - \frac{1}{3}x^{3}$$

$$b(x) = \frac{1}{2}x^{2}$$

$$b'(x) = x \qquad b(x) = \frac{1}{2}x^2$$

Dostali jsme partikulární řešení dané rovnice $y_p(x) = \left(x - \frac{1}{3}x^3\right)x + \frac{1}{2}x^2(x^2 - 1) = \frac{1}{2}x^2 + \frac{1}{6}x^4$, obecné řešení se dostane vzorcem $y_p + y_h$, proto je obecné řešení dané rovnice rovno $y(x) = \frac{1}{2}x^2 + \frac{1}{6}x^4 + ax + b(x^2 - 1), x \in \mathbb{R}.$

Poznámka: Obecné řešení se dalo i najít přímo výpoctem $a(x) = x - \frac{1}{3}x^3 + a$, $b(x) = \frac{1}{2}x^2 + b$.

17. Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^2 + 1$, char. čísla $\lambda =$ $\pm j$; fund. syst. $\{\sin(t),\cos(t)\}$; obecné řešení homogenní rovnice je $x_h(t)=a\sin(t)+b\cos(t)$, $t \in I\!\!R$.

Pravá strana není speciální, proto variace konstanty:
$$x(t) = a(t)\sin(t) + b(t)\cos(t)$$
, rovnice
$$a'(t)\sin(t) + b'(t)\cos(t) = 0 \Rightarrow a'(t) = \frac{1}{\cos^2(t)} \Rightarrow a'(t) = \frac{1}{\cos^2(t)} \Rightarrow b'(t) = \frac{-\sin(t)}{\cos^3(t)} \Rightarrow b(t) = -\frac{1}{2}\frac{1}{\cos^2(t)}$$

 $(b(t) \text{ se dělá substitucí } z = \cos(t)).$

Proto $x_p(t) = \operatorname{tg}(t)\sin(t) - \frac{1}{2}\frac{1}{\cos^2(t)}\cos(t)$ a $x = x_p + x_h$. Obecné řešení je

$$x(t) = \frac{\sin(t)}{\cos^2(t)} - \frac{1}{2} \frac{1}{\cos(t)} + a \sin(t) + b \cos(t), \ t \neq \frac{\pi}{2} + k\pi.$$

Poč. podmínky:
$$x(t) = \frac{\sin(t)}{\cos^2(t)} - \frac{1}{2} \frac{1}{\cos(t)} - \sin(t), t \in (\frac{\pi}{2}, \frac{3\pi}{2}).$$

18. Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^2 + 4\lambda + 4$, char. číslo $\lambda = -2$ (2×); fund. syst. $\{e^{-2x}, xe^{-2x}\}$; obecné řešení homogenní rovnice je $y_h(x) = ae^{-2x} + bx e^{-2x}, x \in \mathbb{R}.$

Pravá strana není speciální, proto variace konstanty: $y(x) = a(x)e^{-2x} + b(x)xe^{-2x}$, rovnice $a'(x)e^{-2x} + b'(x)xe^{-2x} = 0$ $-2a'(x)e^{-2x} + b'(x)(1 - 2x)e^{-2x} = \frac{e^{-2x}}{x^2 - 1} \implies a'(x) = \frac{x}{x^2 - 1} \implies a(x) = \frac{1}{2}\ln|x^2 - 1|$ $b'(x) = \frac{-1}{x^2 - 1} \implies b(x) = -\frac{1}{2}\ln|\frac{x - 1}{x + 1}|$

 $(a(x) \text{ se dělá substitucí } z = x^2 - 1, b(x) \text{ pomocí parciálních zlomků}).$ Proto $y_p(x) = \frac{1}{2} \ln |x^2 - 1| e^{-2x} - \frac{1}{2} \ln \left| \frac{x-1}{x+1} \right| x e^{-2x} \text{ a } y = y_p + y_h.$ Obecné řešení je $y(x) = \frac{1}{2} \ln |x^2 - 1| e^{-2x} - \frac{1}{2} \ln \left| \frac{x-1}{x+1} \right| x e^{-2x} + ae^{-2x} + bx e^{-2x}, x \neq \pm 1.$ Poč. podmínky: $y(x) = \frac{1}{2} \ln |x^2 - 1| e^{-2x} - \frac{1}{2} \ln \left| \frac{x-1}{x+1} \right| x e^{-2x} + e^{-2x}, x \in (-1,1).$

19. Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^2 + 9$, char. čísla $\lambda = \pm 3j$; fund. syst. $\{\sin(3t), \cos(3t)\}$; obecné řešení homogenní rovnice je $x_h(t) = a\sin(3t) + b\cos(3t), t \in \mathbb{R}.$

Pravá strana není speciální, proto variace konstanty: $x(t) = a(t)\sin(3t) + b(t)\cos(3t)$, rovnice

$$a'(t)\sin(3t) + b'(t)\cos(3t) = 0 3a'(t)\cos(3t) - 3b'(t)\sin(3t) = \frac{9}{\sin(3t)} \implies a'(t) = \frac{3\cos(3t)}{\sin(3t)} \implies a(t) = \ln|\sin(3t)| b'(t) = -3$$

 $(a(t) \text{ se dělá substitucí } z = \sin(3t)).$

Proto $x_p(t) = \ln|\sin(3t)|\sin(3t) - 3t\cos(3t)$ a $x = x_p + x_h$. Obecné řešení je $x(t) = \ln|\sin(3t)|\sin(3t) - 3t\cos(3t) + a\sin(3t) + b\cos(3t), \ t \neq k\pi.$

20. Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^2 + 2\lambda + 1$, char. číslo $\lambda = -1$ (2×); fund. syst. $\{e^{-x}, x e^{-x}\}$; obecné řešení homogenní rovnice je $y_h(x) = ae^{-x} + bx e^{-x}, x \in \mathbb{R}.$

Pravá strana není speciální, proto variace konstanty: $y(x) = a(x)e^{-x} + b(x)x e^{-x}$, rovnice $a'(x)e^{-x} + b'(x)x e^{-x} = 0$ $\Rightarrow a'(x) = -x\sqrt{x} = -15x^{3/2} \Rightarrow a(x) = -6x^{5/2}$ Proto $y_p(x) = -6\sqrt{x^5}e^{-x} + 10\sqrt{x^3}x e^{-x}$ a $y = y_p + y_h$. Obecné řešení je

 $y(x) = 4\sqrt{x^5}e^{-x} + ae^{-x} + bx e^{-x}, x \in (0, \infty).$

21. Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^2 + 4$, char. čísla $\lambda = \pm 2j$; fund. syst. $\{\sin(2t), \cos(2t)\}$; obecné řešení homogenní rovnice je $x_h(t) = a\sin(2t) + b\cos(2t), t \in \mathbb{R}.$

Pravá strana není speciální, proto variace konstanty: $x(t) = a(t)\sin(2t) + b(t)\cos(2t)$, rovnice

na neni specialni, proto variace konstanty:
$$x(t) = a(t) \sin(2t) + b(t) \cos(2t)$$

$$a'(t) \sin(2t) + b'(t) \cos(2t) = 0 \qquad \Rightarrow a'(t) = 2 \sin^2(2t) \cos(2t)$$

$$2a'(t) \cos(2t) - 2b'(t) \sin(2t) = 8 \sin^2(2t) \qquad \Rightarrow b'(t) = -2 \sin^3(2t)$$

$$\Rightarrow a(t) = \frac{1}{3} \sin^3(2t)$$

$$\Rightarrow b(t) = \cos(2t) - \frac{1}{3} \cos^3(2t)$$
lá $\int (\cos^2(2t) - 1) 2 \sin(2t) dt$ a substitucí $z = \cos(2t)$.

$$\Rightarrow \begin{array}{l} a(t) = \frac{1}{3}\sin^{2}(2t) \\ b(t) = \cos(2t) - \frac{1}{2}\cos^{3}(2t) \end{array}$$

 $(b(t) \text{ se dělá } \int (\cos^2(2t) - 1) 2\sin(2t) dt$ a substitucí $z = \cos(2t)$).

Proto $x_p(t) = \frac{1}{3}\sin^3(2t)\sin(2t) + (\cos(2t) - \frac{1}{3}\cos^3(2t))\cos(2t)$ a $x = x_p + x_h$. Obecné řešení

 $x(t) = \frac{1}{3} \left(\sin^4(2t) - \cos^4(2t) \right) + \cos^2(2t) + a \sin(3t) + b \cos(3t)$ $= \frac{1}{3} \left(\sin^2(2t) + \cos^2(2t) \right) \left(\sin^2(2t) - \cos^2(2t) \right) + \cos^2(2t) + a \sin(3t) + b \cos(3t)$ $= \frac{1}{3} \left(1 - 2 \cos^2(2t) \right) + \cos^2(2t) + a \sin(3t) + b \cos(3t) = \frac{1}{3} + \frac{1}{3} \cos^2(2t) + a \sin(3t) + b \cos(3t),$ $t \in \mathbb{R}$.

Alternativa: Přepis: $\ddot{x} + 4x = 4(1 - \cos(4t))$, pravá strana je speciální, přesněji kombinace dvou speciálních pravých stran.

- 1) 4: d=0; $\alpha=0$ a $\beta=0$, násobnost $\alpha+\beta j=0$ jako char. č. je m=0; proto $x_1(t)=A$.
- 2) $-4\cos(4t) = e^{0.t}[0\sin(4\cdot t) + (-4)\cos(4\cdot t)]$: d = 0; $\alpha = 0$ a $\beta = 4$, násobnost $\alpha + \beta j = 4j$ jako char. č. je m = 0; proto $x_2(t) = t^0 e^0 [B \sin(4t) + C \cos(4t)].$

Odhad partikulárního řešení $x_p(t) = x_1(t) + x_2(t) = A + B\sin(4t) + C\cos(4t)$, dosadíme do dané rovnice a dostaneme

$$4A - 12B\sin(4t) - 13C\cos(4t) = 4 - 4\cos(4t)$$
, odtud $A = 1$, $B = 0$, $C = \frac{1}{3}$, obecné řešení je $x(t) = x_p(t) + x_h(t) = \frac{1}{3} + \frac{1}{3}\cos^2(2t) + a\sin(3t) + b\cos(3t)$, $t \in \mathbb{R}$.

22. Levá strana je lineární s konstantními koeficienty. Char. pol. $p(\lambda) = \lambda^2 + 4$, char. čísla $\lambda = \pm 2j$; fund. syst. $\{\sin(2t), \cos(2t)\}$; obecné řešení homogenní rovnice je $x_h(t) = a\sin(2t) + b\cos(2t), t \in \mathbb{R}.$

Pravá strana není speciální, proto variace konstanty: $x(t) = a(t)\sin(2t) + b(t)\cos(2t)$, rovnice

Pravá strana není speciální, proto variace konstanty:
$$x(t) = a(t)\sin(2t) + b(t)\cos(2t)$$
, $a'(t)\sin(2t) + b'(t)\cos(2t) = 0$ $\Rightarrow a'(t) = -2\cot(2t)\cos(2t)$ $2a'(t)\cos(2t) - 2b'(t)\sin(2t) = -8\cot(2t)$ $\Rightarrow b'(t) = 2\cos(2t)$ $\Rightarrow b'(t) = 2\cos(2t)$ $\Rightarrow a(t) = \frac{1}{2}\ln\left|\frac{\cos(2t) - 1}{\cos(2t) + 1}\right|$ $\Rightarrow b(t) = \sin(2t)$ $a(t) \text{ se dělá } \int -2\frac{\cos^2(2t)}{\sin(2t)} dt = \int -\frac{\cos^2(2t)}{\sin^2(2t)} 2\sin(2t) dt = \int \frac{\cos^2(2t)}{\cos^2(2t) - 1} 2\sin(2t) dt$, subst. $z = \cos(2t), \int \frac{dz}{z^2 - 1} = \frac{1}{2} \int \frac{1}{z - 1} - \frac{1}{z + 1} dz = \frac{1}{2}\ln\left|\frac{z - 1}{z + 1}\right|$. Proto $x_p(t) = \frac{1}{2}\ln\left|\frac{\cos(2t) - 1}{\cos(2t) + 1}\right|\sin(2t) + \sin(2t)\cos(2t)$ a $x = x_p + x_h$. Obecné řešení je $x(t) = \frac{1}{2}\ln\left|\frac{\cos(2t) - 1}{\cos(2t) + 1}\right|\sin(2t) + \sin(2t)\cos(2t) + a\sin(3t) + b\cos(3t), t \neq \frac{\pi}{2}k$.

$$b(t) = \sin(2t)$$