

Код Рида-Маллера

Илья Коннов

Факультет компьютерных наук Высшая Школа Экономики

11 февраля 2022 г.

Код Рида-Маллера

2022-02-11

1. Если вы смотрите презентацию, то на сером фоне справа иногда видны некоторые ценные комментарии, для которых поля слайда оказались слишком узки. Если вы читаете pdf-ку, то эти комментарии уже находятся в самом подходящем для них месте в тексте (а в правых полях видны заголовки слайдов). Если вы смотрите мой доклад и видите этот текст, то что-то пошло серьёзно не так. Да, у этого одного файла есть три разные версии.

Введение

Описаны Дэвидом Маллером (автор идеи) и Ирвингом Ридом (автор метода декодирования) в сентябре 1954 года. Обозначаются как $\mathrm{RM}(r,m)$, где r — ранг, а 2^m — длина кода. Кодирует сообщения длиной $k=\sum_{i=0}^r C^i_m$ при помощи 2^m бит.

Традиционно, считается что коды бинарные и работают над битами, т.е. \mathbb{Z}_2 .

Соглашение: сложение векторов $u,v\in\mathbb{Z}_2^n$ будем обозначать как $u\oplus v=(u_1+v_1,u_2+v_2,...,u_n+v_n).$

Булевы функции и многочлен Жегалкина

Всякую булеву функцию можно записать при помощи таблицы истинности

$$\begin{array}{c|ccc} x & y & f(x,y) \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$$

И при помощи многочлена Жегалкина:

$$f(x,y) = xy + x + y + 1$$

Многочлены Жегалкина

В общем случае, многочлены будут иметь следующий вид:

$$f(x_1,x_2,...,x_m) = \sum_{S \subseteq \{1,\dots,m\}} c_S \prod_{i \in S} x_i$$

Например, для m=2:

$$f(x_1,x_2) = c_1 \cdot x_1 x_2 + c_2 \cdot x_1 + c_3 \cdot x_2 + c_4 \cdot 1$$

Всего $n=2^m$ коэффициентов для описания каждой функции.

Функции небольшой степени

Рассмотрим функции, степень многочленов которых не больше r:

$$\{f(x_1,x_2,...,x_m)\mid \deg f\leq r\}$$

Каждую можно записать следующим образом:

$$f(x_1, x_2, ..., x_m) = \sum_{\substack{S \subseteq \{1, ..., m\} \\ |S| < r}} c_S \prod_{i \in S} x_i$$

В каждом произведении используется не больше rпеременных.

Сколько тогда всего коэффициентов используется?
$$k = C_m^0 + C_m^2 + \ldots + C_m^r = \sum_{i=0}^r C_m^i$$

Код Рида-Маллера ∟_{Введение} 2022-02-11

—Функции небольшой степени

- 1. Замечу, что при $S=\varnothing$, мы считаем, что $\prod_{i\in S}x_i=1$, таким образом всегда появляется свободный член.
- 2. Если говорить несколько проще, то для составления многочленов мы сложим сначала одночлены (x+y+z), затем произведения одночленов $\left(xy+yz+xz\right)$ и т.д. вплоть до r множителей. Тогда легко видеть, почему k именно такое: мы складываем все возможные перестановки сначала для 0 переменных, потом для одной, двух, и так до всех r

Идея кодирования

Тогда мы можем его представить при помощи 2^n бит,

Пусть каждое сообщение (длины k) — коэффициенты

подставив все возможные комбинации переменных (ведь рассматриваем многочлены над \mathbb{Z}_2).

некоторого многочлена от m переменных степени не больше

Таким образом получим таблицу истинности, из которой позднее сможем восстановить исходный многочлен, а вместе с ним и сообщение.

Пример

- ightharpoonup r = 1 (степень многочлена), m = 2 (переменных). Это RM(1, 2).
- Тогда наш многочлен: $f(x,y) = c_1 x + c_2 y + c_3$.
- lacktriangle Сообщение: 101, тогда f(x,y) = x + 0 + 1.
- Подставим всевозможные комбинации:

\boldsymbol{x}	y	f(x,y)
0	0	1
0	1	1
1	0	0
1	1	0

■ Получили код: 1100.

Декодирование когда потерь нет

■ Мы получили код: 1100

■ Представим таблицу истинности.

 $x y \mid f(x,y)$ 0 0 1 0 1 1 1 0 0 1 1

■ Подстановками в $f(x,y) = c_1 x + c_2 y + c_3$ получим СЛАУ.

$$\begin{cases} & c_3 = 1 \\ & c_2 + c_3 = 1 \\ c_1 + & c_3 = 0 \\ c_1 + c_2 + c_3 = 0 \end{cases}$$

lacktriangledown $c_1=1, c_2=0, c_3=1$, исходное сообщение: 101.

Код Рида-Маллера 2022-02-11

Декодирование когда потерь нет

1. Или как можно декодировать код, в самых простых ситуациях. Этот пример — продолжение предыдущего.

Доказательство линейности

Пусть C(x) кодирует сообщение $x \in \mathbb{Z}_2^k$ в код $C(x) \in \mathbb{Z}_2^m$.

$$C(x) = (p_x(a_i) \mid a_i \in \mathbb{Z}_2^m)$$

где $p_x(a_i)$ — соответствующий сообщению a_i многочлен. Перебирая все a_i получаем упорядоченный набор его значений. Это и будет кодом.

Причём p_x берёт в качестве своих коэффициентов биты из x. Поскольку многочлены степени не выше r образуют линейное пространство, то $p_{(x \oplus y)} = p_x + p_y$.

$$C(x\oplus y)_i=p_{(x\oplus y)}(a_i)=p_x(a_i)+p_y(a_i)=C(x)_i+C(y)_i$$

т.е.
$$\forall x,y \quad C(x\oplus y) = C(x) + C(y)$$
, ч.т.д.

—Доказательство линейности

1. Хотим показать, что этот код является линейным, т.е. что его кодовые слова образуют линейное пространство, и у нас есть изоморфизм из пространства сообщений (\mathbb{Z}_2^k) в пространство слов (\mathbb{Z}_2^m) .

Для этого необходимо немного формализовать всё описанное раньше.

- 2. Напомню, что базис пространства многочленов выглядит примерно так: $1,x_1,x_2,x_1x_2$ (для двух переменных, степени не выше 2). Поскольку мы работает в поле \mathbb{Z}_2 , здесь нету x_1^2 и x_2^2 ($a^2=a$). Чтобы преобразовать сообщение в многочлен, мы берём каждый бит сообщения и умножаем его на соответствующий базисный вектор. Очевидно, такое преобразование будет изоморфизмом. Именно поэтому Обратите внимание, что x это не просто число (\mathbb{Z}_{2^k}) и мы
 - рассматриваем его биты, а реально вектор битов (\mathbb{Z}_2^k) . У него операция сложения побитовая (⊕).
- 3. Для краткости, я использую запись $C(x)_i$ для i-го элемента вектора C(x). Поскольку i произвольное, то и весь вектор получился равен. Таким образом этот код действительно линейный и к нему применимы уже известные теоремы!

Последствия линейности

 \blacksquare Существует порождающая матрица G.

$$C(x) = x_{1 \times k} G_{k \times n} = c_{1 \times n}$$

2 Минимальное растояние будет равно минимальному весу Хемминга среди всех кодов.

$$d = \min_{\substack{c \in C \\ c \neq 0}} w(c)$$

Корректирующая способность:

$$t = \left| \frac{d-1}{2} \right|$$

2022-02-11

Код Рида-Маллера -Свойства и параметры кода

□Последствия линейности

- 1. Так можно кодировать сообщения x в коды c. Но искать её мы не будем, обойдёмся одними многочленами, это интереснее.
- 2. Вес Хэмминга вектора количество в нём ненулевых элементов.
- 3. Доказательство очень просто: минимальное расстояние вес разности каких-то двух различных кодов, но разность двух кодов тоже будет кодом, т.к. мы в линейном пространстве. Значит достаточно найти минимальный вес, но не учитывая нулевой вектор, т.к. разность равна нулю тогда и только тогда, когда коды равны.
- 4. Однако мы ещё не знаем как выглядят наши коды (как выглядят таблицы истинности функций степени не больше r?). А значит не можем ничего сказать про минимальное расстояние.

Конструкция Плоткина: многочлены

Хотим понять как выглядят кодовые слова. ■ Код — таблица истинности функции $f(x_1,...,x_m)\in \mathrm{RM}(r,m)$, причём $\deg f\leq r.$

■ Разделим функцию по x_1 : $f(x_1,...,x_m) = g(x_2,...,x_m) + x_1 h(x_2,...,x_m). \label{eq:force_force}$

lacksquare Заметим, что $\deg f \leq r$, а значит $\deg g \leq r$ и $\deg h \le r - 1.$

Код Рида-Маллера

2022-02-11

Свойства и параметры кода

└─Конструкция Плоткина

Конструкция Плоткина: многочлены

- 1. Порядок очевидно не больше r, потому что это условие для включения в пространство кодов $\mathrm{RM}(r,m)$.
- 2. Теперь у нас есть две функции от меньшего числа аргументов. Очевидно, так можно сделать всегда, когда m > 1

Конструкция Плоткина: таблица истинности

Panee: $f(x_1,...,x_m) = g(x_2,...,x_m) + x_1h(x_2,...,x_m)$.

 \blacksquare Заметим, что таблица истинности f состоит из двух частей: при $x_1 = 0$ и при $x_1 = 1$.

$$\operatorname{Eval}(f) = \left(\frac{\operatorname{Eval}^{[x_1=0]}(f)}{\operatorname{Eval}^{[x_1=1]}(f)}\right)$$

- \blacksquare Причём $\mathrm{Eval}^{[x_1=0]}(f)=\mathrm{Eval}(g),$ а $\mathrm{Eval}^{[x_1=0]}(f)\oplus\mathrm{Eval}^{[x_1=1]}(f)=\mathrm{Eval}(h).$
- Таким образом, $\operatorname{Eval}(f) = (\operatorname{Eval}(g) \mid \operatorname{Eval}(g) \oplus \operatorname{Eval}(h))$

Код Рида-Маллера 2022-02-11 -Свойства и параметры кода

—Конструкция Плоткина

Конструкция Плоткина: таблица истинности

 $\operatorname{Eval}(f) = \left(\frac{\operatorname{Eval}^{\sigma_1 - \operatorname{id}}(f)}{\operatorname{Eval}^{\sigma_2 + \operatorname{id}}(f)}\right)$

- 1. Теперь рассмотрим те же функции, но со стороны их таблиц истинности. Нам же интересны именно коды, а они как раз очень тесно связаны с этими таблицами.
- 2. Здесь я очень резко ввожу обозначения для таблицы истинности, но они больше не пригодятся. Вообще-то говоря, это не матрица, а вектор длины 2^m (число аргументов), поскольку порядок аргументов всегда фиксирован и нам его хранить не нужно. В любом случае, $\mathrm{Eval}(f)$ — таблица для всей функции, $\mathrm{Eval}^{[x_1=0]}(f)$ — кусок таблицы при $x_1=0$, $\mathrm{Eval}^{[x_1=1]}(f)$ — кусок таблицы при $x_1=1.$
- 3. Это всё следует из ранее полученного утверждения. Если мы подставим $x_1=0$, то останется только g — первое равенство очевидно. Если же мы рассмотрим $\operatorname{Eval}^[x_1=1](f)$, то получим $\operatorname{Eval}(g+h)$, но если туда прибавить ещё раз $\mathrm{Eval}(g)$, то останется только $\mathrm{Eval}(h)$ (поскольку 1+1=0 в \mathbb{Z}_2) — получили второе равенство.

Конструкция Плоткина: вывод

Если дана $f(x_1,...,x_m)$, причём $\deg f \leq r$, то можно её разделить:

$$f(x_1,...,x_m) = g(x_2,...,x_m) + x_1 h(x_2,...,x_m)$$

Также известно, что $\text{Eval}(f) = (\text{Eval}(g) \mid \text{Eval}(g) \oplus \text{Eval}(h)).$

Заметим, что $\operatorname{Eval}(f)$ – кодовое слово (как и для g,h).

$$\begin{array}{ll} c = \operatorname{Eval}(f) \in \operatorname{RM}(r,m) & (\text{т.к.} \, \deg f \leq r) \\ u = \operatorname{Eval}(g) \in \operatorname{RM}(r,m-1) & (\text{т.к.} \, \deg g \leq r) \\ v = \operatorname{Eval}(h) \in \operatorname{RM}(r-1,m-1) & (\text{т.к.} \, \deg h \leq r-1) \end{array}$$

Утверждение: Для всякого кодового слова $c\in \mathrm{RM}(r,m)$ можно найти $u \in \mathrm{RM}(r,m-1)$ и $v \in \mathrm{RM}(r-1,m-1)$, такие что $c = (u \mid u + v)$.

2022-02-11

Код Рида-Маллера

-Свойства и параметры кода

Конструкция Плоткина

└─Конструкция Плоткина: вывод

$$\label{eq:local_control_control} \begin{split} & \operatorname{Torgat}: \\ & \operatorname{Torgat}: \\ & \varepsilon = \operatorname{End}(f) \in \operatorname{RM}(r, m) & (r.s. \deg f \leq r) \\ & = \operatorname{End}(g) \in \operatorname{RM}(r, m-1) & (r.s. \deg g \leq r) \\ & - \operatorname{Feak}(h) \in \operatorname{RM}(r-1, m-1) & (r.s. \deg h \leq r-1) \end{split}$$

- 1. Теперь собираем всё это в одно важное утверждение.
- 2. Причём мы уже знаем, что $\deg g \leq r$ и $\deg h \leq r-1$, если $\deg f \leq r$
- 3. Напомню, что $\mathrm{RM}(r,m)$ включает в себя все функции (их таблицы истинности, если точнее) от m аргументов и степени не выше r.Очевидно, наши годятся.
- 4. Что здесь важно отметить оба наших новых кодовых слова u,vполучились «меньше», чем исходное c. \Im то позволяет, во-первых, устраивать индукцию по m, чем мы скоро и займёмся. Во-вторых, это позволяет легко строить большие порождающие матрицы, но мы этим не будем заниматься.

Минимальное расстояние

Хотим найти минимальное расстояние для кода $\mathrm{RM}(r,m)$

 $d = \min_{c \in C, c \neq 0} w(c)$ Предположим, что $d=2^{m-r}$ и докажем по индукции.

База: $\mathrm{RM}(0,m)$ — единственный бит потворён 2^m раз. Очевидно, $w(\underbrace{{\bf 11}...{\bf 1}})=2^m=2^{m-0}\geq 2^{m-r}.$

Гипотеза: Если $v \in \mathrm{RM}(r-1,m-1)$, то $w(v) \geq 2^{m-r}$. **Шаг:** Хотим доказать для $c \in \mathrm{RM}(r,m)$.

$$\begin{split} w(c) &= w((u \mid u \oplus v)) \stackrel{(1)}{=} w(u) + w(u \oplus v) \geq \\ &\stackrel{(2)}{\geq} w(u) + (w(v) - w(u)) = w(v) \stackrel{IH}{\geq} 2^{m-r} \blacksquare \end{split}$$

Код Рида-Маллера

2022-02-11

-Свойства и параметры кода

└─Минимальное расстояние

└─Минимальное расстояние

- 1. Случай $\mathrm{RM}(0,m)$ очень скучный. Здесь длина сообщения равна $k=\sum_{i=0}^r C_m^i=C_m^0=1$, а длина кода $n=2^m$. Причём мы просто берём один бит (соответсвует функции $f(x_1,...,x_m)=0$ или $f(x_1,...,x_m)=1$) и повторяем его 2^m раз (в таблице истинности). Замечу, что не рассматриваю второй случай w(00...0), поскольку он нам не нужен для расчёта минимального расстояния. Вариант с нулевым вектором явно выкидывается, см. определение d выше.
- 2. Теперь немного объяснений.
 - Переход (1): $w((x \mid y)) = w(x) + w(y)$. Вес это всего лишь число ненулевых элементов, поэтому нет разницы как мы будем группировать
 - Переход (2): $w(u\oplus v)\geq w(v)-w(u).$ Если у нас в v стоит w(v) бит, то прибавив к нему u, мы сможем изменить (обнулить) не больше w(u)бит. Возможно появится больше единиц, но нас интересует нижняя
 - . Переход (IH): предположение индукции в чистом виде.

Свойства и параметры

- Для бинарного кода RM(r, m):
 - r < m
 - \blacksquare Длина кода: 2^m
 - lacksquare Длина сообщения: $k = \sum_{i=0}^r C_m^i$
 - Минимальное расстояние: $d=2^{m-r}$
 - Корректирующая способность: $t = 2^{m-r-1} 1$
 - lacktriangle Существует порождающая матрица G для кодирования

Для быхорього нара $\mathrm{RM}(r,m)$: $\mathbf{z} \, r \leq m$ $\mathbf{z} \, \mathrm{Rank} \, \mathrm{saga} \, 2m$ $\mathbf{z} \, \mathrm{Rank} \, \mathrm{Rank} \, 2m$ $\mathbf{z} \, \mathrm{Rank} \, 2$

1. поскольку
$$t=\left\lfloor \frac{d-1}{2} \right\rfloor=\left\lfloor \frac{2^{m-r}}{2}-\frac{1}{2} \right\rfloor=\left\lfloor 2^{m-r-1}-0.5 \right\rfloor=2^{m-r-1}-0.5$$

Если потери есть

Код Рида-Маллев

Введение

...

Свойства и параметры кода

Поможиванам

Этот код является линейным, к нему применимы все обычные (и неэффективные методы):