Nº 4584

54 X 465

RNMNX

Сборник индивидуальных заданий

НОВОСИБИРСК 2016

Министерство образования и науки Российской Федерации НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

54 № 4584 X 465

RNMNX

Сборник индивидуальных заданий для самостоятельной работы студентов, обучающихся по технических направлениям и специальностям, дневной формы обучения

НОВОСИБИРСК 2016 Составители: A.И. Anaphee, канд. хим. наук, доцент P.E. Cинчурина, ассистент

Рецензент Т.П. Александрова, канд. хим. наук, доцент

Работа подготовлена на кафедре химии и химической технологии

ОГЛАВЛЕНИЕ

Предисловие	4
Тема 1. Закон эквивалентов Окислительно-восстановительные реакции	5
Тема 2. Электронное строение атома и периодическая система элементов Д.И. Менделеева	8
Тема 3. Основные закономерности протекания химических процессов	10
Тема 4. Кинетика химических процессов и химическое равновесие	11
Тема 5. Растворы электролитов	14
Тема 6. Общие свойства растворов	19
Тема 7. Коллоидные растворы	21
Тема 8. Комплексные соединения	25
Тема 9. Электрохимические процессы	27
Список литературы	34
Приложения	35

ПРЕДИСЛОВИЕ

Выполнение индивидуальных заданий дает возможность проверить уровень усвоения основных разделов курса химии. Предлагаемые задания являются составной частью учебно-методического комплекса по дисциплине «Химия». Необходимые справочные данные приведены в приложении. Студенту выдается определенное число заданий по темам, номер варианта соответствует номеру в журнале группы. Задания выполняются в письменной форме в отдельной тетради (или на отдельных листах) и сдаются преподавателю в сроки, указанные в календарном плане учебного процесса.

ЗАКОН ЭКВИВАЛЕНТОВ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ

3aдание 1. Даны массы двухвалентного металла $(m_{\rm Me})$, его оксида $(m_{\rm o})$ и сульфида $(m_{\rm c})$ (см. вариант в табл. 1).

Таблица 1

р	38	адание	1	Задан	ние 2	р	38	адание	1	Задан	ние 2
Номер варианта	$m_{ m Me},$ Γ	т _о ,	<i>m</i> _c ,	$m_{ m Me},$ Γ	V_{O_2} ,	Номер варианта	<i>m</i> _{Me} , Γ	т _о ,	т _с ,	$m_{ m Me},$ Γ	V_{O_2} ,
1	3,01	3,56	4,11	17,9	1,46	16	2,98	4,17	5,36	5,44	1,52
2	3,22	4,01	4,80	9,4	1,61	17	3,22	3,93	4,64	16,56	1,65
3	2,58	3,23	3,88	6,6	3,04	18	3,99	4,59	5,19	4,4	5,47
4	3,07	3,95	4,83	7,9	1,01	19	3,65	4,29	4,93	3,3	1,52
5	4,07	5,18	6,29	9,8	1,87	20	3,72	4,25	4,78	10,36	0,56
6	3,88	5,01	6,14	11,4	2,01	21	3,94	4,66	5,38	4,98	0,95
7	2,98	3,21	3,44	6,6	3,04	22	2,86	3,56	4,26	21,85	1,22
8	3,34	3,79	4,24	5,8	1,62	23	4,41	5,52	6,63	10,64	1,12
9	2,74	3,13	3,52	11,4	0,93	24	2,27	2,92	3,57	8,18	3,77
10	2,51	2,71	2,91	4,9	0,84	25	2,31	2,94	3,57	15,88	2,03
11	3,17	3,43	3,69	10,84	1,08	26	2,14	2,66	3,19	7,3	2,04
12	3,35	3,74	4,13	15,8	2,02	27	3,24	4,53	5,82	3,46	0,81
13	4,59	5,28	5,97	9,15	1,47	28	3,28	3,72	4,16	10,91	3,03
14	3,74	4,99	6,24	7,42	1,41	29	4,28	4,89	5,5	9,92	0,79
15	3,66	6,07	8,48	5,05	0,89	30	4,61	6,05	7,49	5,02	0,41

Рассчитайте молярные массы эквивалентов металла, серы, оксида и сульфида металла. Установите и запишите химические формулы веществ.

 $\it 3adaниe 2$. Даны масса двухвалентного металла ($\it m_{\rm Me}$) и объем кислорода ($\it V_{
m O_2}$), затраченного на его окисление при н.у. (см. вариант в табл. 1).

Рассчитайте молярную массу эквивалентов металла, молярную массу металла и назовите металл.

Задание 3. Дана схема реакции (см. вариант в табл. 2):

- 1) определите степень окисления атомов элементов, меняющих ее в процессе реакции;
- 2) составьте электронный баланс с учетом принципа равенства числа отдаваемых и принимаемых электронов, укажите процессы окисления и восстановления;
- 3) запишите множители в уравнение окислительно-восстановительной реакции как основные стехиометрические коэффициенты;
- 4) подберите стехиометрические коэффициенты остальных участников реакции;
- 5) выпишите формулы вещества окислителя и восстановителя, рассчитайте их молярные массы эквивалентов.

Таблина 2

Номер варианта	Схема реакции
1	$Cr_2(SO_4)_3 + Br_2 + NaOH \rightarrow Na_2CrO_4 + NaBr + Na_2SO_4 + H_2O$
2	$KMnO_4 + HNO_2 \rightarrow Mn(NO_3)_2 + HNO_3 + H_2O$
3	$K_2Cr_2O_7 + H_2O_2 + H_2SO_4 \rightarrow O_2 + Cr_2(SO_4)_3 + H_2O + K_2SO_4$
4	$HNO_3 + CaI_2 \rightarrow Ca(NO_3)_2 + I_2 + NO + H_2O$
5	$FeSO_4 + KClO_3 + H_2SO_4 \rightarrow Fe_2(SO_4)_3 + KCl + H_2O$
6	$CrCl_3 + H_2O_2 + NaOH \rightarrow Na_2CrO_4 + NaCl + H_2O$
7	$CuS + HNO_3 \rightarrow Cu(NO_3)_2 + NO_2 + H_2SO_4 + H_2O$
8	$K_2Cr_2O_7 + KI + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + I_2 + K_2SO_4 + H_2O$
9	$HNO_3 + H_3PO_3 \rightarrow NO + H_3PO_4 + H_2O$
10	$SnSO_4 + KIO_3 + H_2SO_4 \rightarrow Sn(SO_4)_2 + I_2 + K_2SO_4 + H_2O$
11	$K_2CrO_4 + NaI + H_2O \rightarrow Cr(OH)_3 + I_2 + NaOH + KOH$

Окончание табл. 2

Номер варианта	Схема реакции
12	$HNO_2 + KMnO_4 + HCl \rightarrow KNO_3 + Mn(NO_3)_2 + KCl + H_2O$
13	$CaH_2 + KClO_3 \rightarrow CaO + KCl + H_2O$
14	$KBr + KMnO_4 + H_2SO_4 \rightarrow Br_2 + MnSO_4 + K_2SO_4 + H_2O$
15	$I_2 + HNO_3 \rightarrow HIO_3 + NO + H_2O$
16	$Cr(NO_3)_3 + H_2O_2 + NaOH \rightarrow Na_2CrO_4 + NaNO_3 + H_2O$
17	$FeCl_2 + HNO_3 + HCl \rightarrow FeCl_3 + NO + H_2O$
18	$K_2Cr_2O_7 + Na_2S + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + Na_2SO_4 + K_2SO_4 + H_2O$
19	$HCl + K_2CrO_4 \rightarrow Cl_2 + CrCr_3 + KCl + H_2O$
20	$NaNO_2 + K_2Cr_2O_7 + H_2SO_4 \rightarrow NaNO_3 + Cr_2(SO_4)_3 + K_2SO_4 + H_2O$
21	$HI + HNO_3 \rightarrow HIO_3 + NO_2 + H_2O$
22	$SnCl_2 + K_2Cr_2O_7 + HCl \rightarrow SnCl_4 + CrCl_3 + KCl + H_2O$
23	$H_2S + KMnO_4 \rightarrow MnO_2 + S + KOH + H_2O$
24	$KI + H_2SO_4 \rightarrow I_2 + H_2S + K_2SO_4 + H_2O$
25	$Cl_2 + Br_2 + KOH \rightarrow KCl + KBrO_3 + H_2O$
26	$K_2Cr_2O_7 + H_2S + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + S + K_2SO_4 + H_2O$
27	$Na_2SO_3 + KIO_3 + H_2SO_4 \rightarrow Na_2SO_4 + I_2 + K_2SO_4 + H_2O$
28	$Cr_2(SO_4)_3 + KMnO_4 + KOH \rightarrow K_2CrO_4 + MnO_2 + K_2SO_4 + H_2O$
29	$KI + KBrO_3 + HCl \rightarrow I_2 + KBr + KCl + H_2O$
30	$H_2SO_3 + HNO_3 \rightarrow H_2SO_4 + NO + H_2O$

ЭЛЕКТРОННОЕ СТРОЕНИЕ АТОМА И ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ Д.И. МЕНДЕЛЕЕВА

Задание. Для подчеркнутого элемента, атом которого образует молекулу (см. вариант в табл. 3):

- 1) напишите электронную формулу, подчеркните валентные электроны и определите семейство;
- 2) распределите валентные электроны по энергетическим ячейкам для атома, находящегося в основном и возбужденном состояниях; определите возможную валентность атома в каждом состоянии;
- 3) укажите значения квантовых чисел для валентных электронов атома, находящегося в основном состоянии;
- 4) объясните связь электронного строения атома элемента с его положением в периодической системе (период, группа, подгруппа);
 - 5) определите степени окисления элементов в молекуле;
- 6) составьте электронную формулу для центрального атома в молекуле, находящегося в соответствующей степени окисления;
- 7) охарактеризуйте окислительно-восстановительную способность атома элемента с заланной степенью окисления.

Таблица 3

Номер	Формула	Номер	Формула	Номер	Формула
варианта	молекулы	варианта	молекулы	варианта	молекулы
1	<u>I</u> ₂ O ₅	11	<u>Se</u> F ₆	21	<u>Ge</u> O ₂
2	<u>In</u> I ₃	12	<u>Si</u> Br ₄	22	<u>Cl</u> F ₃
3	SnCl ₂	13	SbBr ₃	23	BCl ₃
4	<u>Si</u> Cl ₄	14	<u>Br</u> F ₅	24	<u>Ca</u> H ₂

Окончание табл. 3

Номер	Формула	Номер	Формула	Номер	Формула
варианта	молекулы	варианта	молекулы	варианта	молекулы
5	<u>Br</u> F ₃	15	PBr ₃	25	<u>Si</u> F ₄
6	AsCl ₃	16	<u>I</u> F ₅	26	<u>Ga</u> Cl ₃
7	PCl ₅	17	PbCl ₂	27	<u>P</u> H ₃
8	<u>Al</u> N	18	ZrCl ₄	28	$\underline{\mathrm{V}}\mathrm{Cl}_2$
9	K <u>Br</u>	19	<u>Y</u> ₂ O ₃	29	<u>P</u> I ₃
10	<u>I</u> Cl ₃	20	$\underline{Zn}Br_2$	30	<u>Al</u> Cl ₃

ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ ПРОТЕКАНИЯ ХИМИЧЕСКИХ ПРОЦЕССОВ

Задание. Дано уравнение реакции (см. вариант в табл. 4).

- 1. Для всех веществ, участвующих в реакции, выпишите из приложения 1 значения стандартных термодинамических величин $\Delta_f H_{298}^0$ и S_{298}^0 .
- 2. Вычислите изменение энтальпии реакции $\Delta_r H_{298}^0$ и определите, является ли данная реакция экзо- или эндотермической. Запишите термохимическое уравнение реакции.
- 3. По виду уравнения реакции, не прибегая к расчетам, определите знак изменения энтропии реакции $\Delta_r S_{298}^0$. Вычислив изменение энтропии реакции в стандартных условиях, объясните знак $\Delta_r S_{298}^0$.
- 4. Вычислите энергию Гиббса прямой реакции в стандартных условиях $\Delta_r G_{298}^0$ и установите возможность самопроизвольного протекания реакции.
- 5. Определите температуру, при которой реакция находится в равновесии ($T_{\rm D}$).
 - 6. Рассчитайте $\Delta_r G$ при $T_1 = T_p 100$, $T_2 = T_p + 100$.
- 7. Постройте график зависимости $\Delta_r G$ от T и обозначьте на графике область температур самопроизвольного протекания реакции.
- 8. Вычислите значения константы равновесия K_c при температурах T_p , T_1 и T_2 . Сделайте вывод о влиянии температуры на величину K_c и на смещение химического равновесия.

КИНЕТИКА ХИМИЧЕСКИХ ПРОЦЕССОВ И ХИМИЧЕСКОЕ РАВНОВЕСИЕ

Задание 1. Дано уравнение реакции (см. вариант в табл. 4).

- 1. Запишите кинетические уравнения скоростей прямой \vec{v} и обратной \vec{v} реакций. Гомо- или гетерогенной является данная реакция?
- 2. Рассчитайте скорость прямой реакции \vec{v}_0 в начальный момент времени при начальных концентрациях c_0 реагентов. Рассчитайте, как изменится скорость прямой реакции к моменту времени \vec{v}_t , когда прореагирует 20 % вещества B.
- 3. Рассчитайте изменение скорости прямой реакции $\vec{v}_{\rm p}$ при одновременном повышении давления в системе в два раза и температуры \vec{v}_T на 20 °C при γ = 2.

Задание 2. Даны уравнение реакции и исходные концентрации веществ (см. вариант табл. 4).

- 1. Запишите выражение для константы равновесия $K_{\rm c}$ химической реакции через концентрации веществ.
- 2. Рассчитайте равновесные концентрации всех веществ к моменту времени, когда прореагирует 30 % вещества A и вычислите константу равновесия.
- 3. Укажите направление смещения равновесия при изменении каждого из факторов (c, p, V и T).

Габлица 4

Номер	Задание 1, 2			BH	Изменение пешних услов	Изменение внешних условий	zc
варианта	$aA + bB \Leftrightarrow cC + dD$	$c_0(A)$, моль/л	$c_0(\mathbf{B}),$ моль/л	Сисх	d	Λ	T
1	$CH_{4(r)} + H_2O_{(r)} = CO_{(r)} + 3 H_{2(r)}$	-	2	←	\rightarrow	\rightarrow	\rightarrow
2	$CH_{4(r)} + 2 H_2S_{(r)} = CS_{2(r)} + 4 H_{2(r)}$	2	3	←	←	←	\rightarrow
3	$CO_{2(r)} + 2 H_{2(r)} = C_{(r)} + 2 H_2O_{(r)}$	1	3	\rightarrow	\rightarrow	←	←
4	$2 \text{ NF}_{3(r)} + O_{2(r)} = 2 \text{ NOF}_{3(r)}$	2	2	←	←	\rightarrow	\rightarrow
5	$CO_{2(r)} + 4 H_{2(r)} = CH_{4(r)} + 2 H_2O_{(r)}$	1	2	←	←	\rightarrow	\rightarrow
9	2 $PCI_{5(r)} + O_2 = 2 POCI_{3(r)} + 2 CI_{2(r)}$	3	1	\rightarrow	\rightarrow	←	←
7	$CS_{2(r)} + 2 H_2S_{(r)} = 4 S_{(r)} + CH_{4(r)}$	2	3	←	←	\rightarrow	\rightarrow
8	$SO_{2(r)} + 3 H_{2(r)} = H_2S_{(r)} + 2 H_2O_{(r)}$	3	3	\rightarrow	\rightarrow	←	←
6	$2 \text{ NO}_{2(r)} + F_{2(r)} = 2 \text{ (NO}_2)F_{(r)}$	3	2	\rightarrow	\rightarrow	←	←
10	$2 \text{ NO}_{(r)} + Br_{2(r)} = 2 \text{ NOBr}_{(r)}$	3	3	←	←	\rightarrow	\rightarrow
11	$2 NO_{(r)} + H_{2(r)} = N_2O_{(r)} + H_2O_{(r)}$	4	2	\rightarrow	\rightarrow	←	←
12	$S_{2(r)} + 4 CO_{2(r)} = 2 SO_{2(r)} + 4 CO_{(r)}$	1	2		←	\rightarrow	\rightarrow
13	$S_{2(r)} + 2 H_{2(r)} = 2 H_2 S_{(r)}$	2	3	←	←	←	←
14	$2 CO_{(r)} + 2 H_{2(r)} = CH_{4(r)} + CO_{2(r)}$	3	2	\rightarrow	\rightarrow	←	←
15	$2\ H_2S_{(r)} + SO_{2(r)} = 3\ S_{(r)} + 2\ H_2O_{(r)}$	2	1	\rightarrow	\rightarrow	\rightarrow	\rightarrow

16	$2 \text{ PCI}_{3(r)} + O_{2(r)} = 2 \text{ PCI}_3 O_{(r)}$	3	1	←	←	←	←
17	$SiCl_{4(r)} + 2 H_{2(r)} = Si_{(r)} + 4 HCl_{(r)}$	2	3	\rightarrow	\uparrow	1	\rightarrow
18	$2 \text{ NO}_{(r)} + \text{CI}_{2(r)} = 2 \text{ NOCI}_{(r)}$	3	2	1	1	\downarrow	\rightarrow
19	$CH_{4(r)} + 3 CO_{2(r)} = 4 CO_{(r)} + 2 H_2O_{(r)}$	2	4	\rightarrow	1	\downarrow	\rightarrow
20	$2 CO_{(r)} + 4 H_{2(r)} = C_2 H_5 OH_{(r)} + H_2 O_{(r)}$	1	3	\uparrow	\uparrow	\downarrow	←
21	$2 H_2O_{(r)} + 2 CI_{2(r)} = 4 HCI_{(r)} + O_{2(r)}$	3	2		\rightarrow	↑	←
22	$N_{2(r)} + 2 SO_{3(r)} = 2 NO_{(r)} + 2 SO_{2(r)}$	3	3	\rightarrow	1	↑	←
23	$CS_{2(r)} + 2 CI_{2(r)} = CCI_{4(r)} + 2 S_{(r)}$	1	1	\downarrow	\uparrow	\downarrow	←
24	$2 \text{ NO}_{(r)} + 2 \text{ SO}_{2(r)} = N_{2(r)} + 2 \text{ SO}_{3(r)}$	3	4	1	1	↑	←
25	$SiF_{4(r)} + 2 H_2O_{(r)} = 4 HF_{(r)} + SiO_{2(r)}$	2	3	\rightarrow	1	\downarrow	\rightarrow
26	$H_2S_{(r)} + 2 H_2O_{(r)} = SO_{2(r)} + 3 H_{2(r)}$	1	3	\rightarrow	\uparrow	\downarrow	←
27	$CH_{4(\Gamma)} + 2 H_2O_{(\Gamma)} = CO_{2(\Gamma)} + 4 H_{2(\Gamma)}$	2	2	\uparrow	\uparrow	1	←
28	2 $SO_{2(r)} + O_{2(r)} = 2 SO_{3(r)}$	2	3	\rightarrow	\uparrow	1	\rightarrow
29	$SO_{2(r)} + 2 CO_{(r)} = S_{(r)} + 2 CO_{2(r)}$	3	3	\downarrow	\uparrow	1	\rightarrow
30	$CO_{(r)} + 2 H_{2(r)} = CH_3OH_{(r)}$	3	3	\uparrow	\rightarrow	\rightarrow	←

РАСТВОРЫ ЭЛЕКТРОЛИТОВ

Задание 1. Имеется раствор вещества данной концентрации и плотности (см. вариант в табл. 5).

Определите молярную концентрацию вещества (c), молярную концентрацию эквивалентов вещества (c_{3k}) , массовую долю растворенного вещества (ω) , (ω) в растворе и титр раствора (T).

Таблипа 5

Цомор			К	онцентраг	ция
Номер варианта	Вещество	ρ, г/мл	$\mathcal{C}_{\scriptscriptstyle \mathfrak{I}K}, \ _{МОЛЬ/Л}$	ω, %	с, моль/л
1	AlCl ₃	1,016		2	
2	ZnCl ₂	1,035		4	
3	CaCl ₂	1,032		4	
4	Cu(NO ₃) ₂	1,036			0,22
5	$Fe_2(SO_4)_3$	1,181		20	
6	MnCl ₂	1,068		8	
7	$Zn(NO_3)_2$	1,067	0,9		
8	NiSO ₄	1,21	2,8		
9	ZnSO ₄	1,084	1,3		
10	H ₂ SO ₄	1,038		6	
11	$(NH_4)_2SO_4$	1,115		20	
12	$Al_2(SO_4)_3$	1,105	1,3		
13	Na ₂ CO ₃	1,05		5	
14	K ₂ SO ₄	1,056		7	
15	H ₃ PO ₄	1,150			3,0
16	Co(NO ₃) ₂	1,015			0,11

Окончание табл. 5

Цомор		0	Концентрация			
Номер варианта	Вещество	ρ, г/мл	${\cal C}_{{\scriptscriptstyle { m 9K}}}, \ $ МОЛЬ $/$ Л	ω, %	с, моль/л	
17	$Mg(NO_3)_2$	1,044		6		
18	Na ₂ SO ₄	1,053		6		
19	Ba(NO ₃) ₂	1,015	0,5			
20	FeCl ₃	1,032		4		
21	MnSO ₄	1,059		6		
22	Na ₂ CO ₃	1,013		2		
23	ZnCl ₂	1,035	0,6			
24	MgSO ₄	1,27			2,54	
25	CoSO ₄	1,08		8		
26	$Al_2(SO_4)_3$	1,105	0,32			
27	Na ₂ SO ₄	1,091			3,07	
28	$(NH_4)_2SO_4$	1,022	0,62			
29	CaCl ₂	1,032			0,37	
30	Na ₂ SO ₄	1,141		16		

Задание 2. Сколько миллилитров раствора A с заданной массовой долей ω (%) и плотностью ρ (г/мл) потребуется для нейтрализации раствора B, содержащего определенную массу m растворенного вещества (см. табл. 6).

Таблица 6

Номер		Раствор A		Раствор <i>В</i>		
варианта	Формула вещества	ω, %	р, г/мл	Формула вещества	т, г	
1	H ₂ SO ₄	4	1,025	КОН	1,4	
2	HCl	1,36	1,005	Ba(OH) ₂	1,71	
3	HNO_3	4	1,02	Ca(OH) ₂	0,74	
4	H_3PO_4	6	1,031	КОН	0,7	
5	HCl	2	1,008	Sr(OH) ₂	0,61	

Окончание табл. 6

Harran		Раствор А		Раствор) B
Номер варианта	Формула вещества	ω, %	р, г/мл	Формула вещества	т, г
6	H ₃ AsO ₄	2	1,0124	NaOH	0,8
7	H ₂ SO ₄	5,5	1,034	NaOH	0,4
8	NaOH	4,2	1,045	H ₂ SO ₄	0,98
9	КОН	8,9	1,079	H ₂ SO ₄	0,98
10	H ₃ PO ₄	6	1,031	NaOH	0,8
11	КОН	7,8	1,068	H ₃ PO ₄	0,33
12	NaOH	6	1,065	H ₃ PO ₄	0,98
13	NH ₄ OH	10,4	0,956	H ₂ SO ₄	1,47
14	NaOH	11	1,12	H ₂ SO ₄	2,94
15	H_3AsO_4	6	1,04	КОН	0,7
16	H_2SO_4	2,5	1,016	NaOH	0,4
17	H_3PO_4	2,15	1,01	NaOH	0,2
18	HNO_3	4	1,02	Ba(OH) ₂	5,13
19	H_3PO_4	4	1,02	LiOH	4,8
20	H_2SO_4	2,5	1,016	Ca(OH) ₂	0,37
21	HCl	4,4	1,02	Sr(OH) ₂	0,61
22	H ₂ SO ₄	4	1,025	Ba(OH) ₂	0,71
23	H ₃ PO ₄	4	1,02	Ca(OH) ₂	1,11
24	H_2SO_4	5,5	1,034	LiOH	0,24
25	H ₃ PO ₄	4	1,02	КОН	1,68
26	NH ₄ OH	10	0,958	H ₃ PO ₄	0,98
27	HI	4	1,0277	Ba(OH) ₂	0,355
28	HBr	4	1,027	Ca(OH) ₂	0,74
29	H ₃ PO ₄	6	1,031	NH ₄ OH	0,7
30	КОН	1,3	1,01	H ₂ SO ₄	0,49

Задание 3. Имеется раствор слабого электролита или электролита средней силы (см. вариант в табл. 7).

- 1. Запишите уравнения диссоциации и выражения для констант диссоциации ($K_{\rm d}$) по всем возможным ступеням, укажите их величины (см. приложение 2).
- 2. Рассчитайте степень диссоциации слабого электролита, концентрацию ионов H^+ в растворе и рН данного раствора с заданной концентрацией электролита.

Задание 4. Имеется насыщенный раствор труднорастворимого электролита (см. вариант в табл. 7). Вычислите растворимость данного электролита (в моль/л и г/л) в одном литре воды, используя значение произведения растворимости (см. приложение 3).

Задание 5. Имеется раствор соли (см. вариант в табл. 7).

- 1. Напишите ионно-молекулярное и молекулярное уравнения реакции гидролиза и выражение для константы гидролиза данной соли по первой ступени ($K_{\rm rl}$).
- 2. Рассчитайте степень гидролиза (α_r) и рН раствора соли с заданной концентрацией, учитывая только 1-ю ступень гидролиза.
- 3. Какой цвет будет иметь индикатор метиловый оранжевый или фенолфталеин в растворе данной соли?
- 4. Как изменяться рН раствора соли и окраска индикатора при нагревании и почему?

Таблипа 7

Номер	Задание	2 3	Задание 4	Задание	5
варианта	Вещество	<i>с</i> , моль/л	Вещество	Вещество	<i>с</i> , моль/л
1	H_2S	0,05	$Mg(OH)_2$	CdSO ₄	0,2
2	H_2Se	0,02	Fe(OH) ₂	$Al(NO_3)_3$	0,02
3	H_3BO_3	0,001	Be(OH) ₂	K_2Se	0,03
4	H_2CO_3	0,03	Bi(OH) ₃	ZnSO ₄	0,04
5	H_2S	0,02	Ga(OH) ₃	CoCl ₂	0,5
6	H_2Se	0,05	Cd(OH) ₂	Li ₂ Te	0,02
7	H_3AsO_4	0,02	Co(OH) ₂	Na ₃ BO ₃	0,01
8	H_2TeO_3	0,5	Cr(OH) ₂	$Na_2C_2O_4$	0,02

Окончание табл. 7

Номер	Задание	e 3	Задание 4	Задани	e 5
варианта	Вещество	с, моль/л	Вещество	Вещество	с, моль/л
9	$H_2C_2O_4$	0,05	Cu(OH) ₂	FeCl ₂	0,05
10	H_2SeO_3	0,02	Ni(OH) ₂	FeBr ₃	0,01
11	H_2TeO_3	0,01	Pb(OH) ₂	NiSO ₄	0,05
12	HOC1	0,05	Sc(OH) ₃	Na ₂ Te	0,01
13	HCN	0,005	Mn(OH) ₂	K ₂ SiO ₃	0,01
14	HNO_2	0,05	Pd(OH) ₂	MnSO ₄	0,02
15	H_3PO_4	0,06	La(OH) ₃	Na ₃ AsO ₄	0,05
16	H_2SO_3	0,01	Sn(OH) ₂	$Pb(NO_3)_2$	0,05
17	HNO ₂	0,02	Fe(OH) ₃	Cr(NO ₃) ₃	0,02
18	H ₂ TeO ₄	0,01	Au(OH) ₃	ZnBr ₂	0,05
19	HCN	0,02	In(OH) ₃	SnCl ₂	0,02
20	HNO ₂	0,1	Bi(OH) ₃	Na ₃ PO ₃	0,01
21	H ₂ MoO ₄	0,03	Cr(OH) ₂	Na ₂ Se	0,01
22	HF	0,04	Sc(OH) ₃	Na ₂ SeO ₃	0,05
23	HOBr	0,05	Zn(OH) ₂	CrCl ₂	0,02
24	HOI	0,1	Al(OH) ₃	Li ₂ S	0,04
25	НСООН	0,01	Co(OH) ₃	$Ca_3(VO_4)_2$	0,01
26	H ₂ CO ₃	0,05	Sn(OH) ₄	Ba(NO ₂) ₂	0,04
27	NH ₄ OH	0,05	Ni(OH) ₂	K ₂ TeO ₄	0,01
28	H ₂ GeO ₃	0,02	Pb(OH) ₂	Ca(NO ₂) ₂	0,02
29	H ₂ CrO ₄	1	Cr(OH) ₃	K ₂ GeO ₃	0,01
30	H ₂ SiO ₃	$8 \cdot 10^{-3}$	Ga(OH) ₃	K ₂ TeO ₃	0,01

ОБЩИЕ СВОЙСТВА РАСТВОРОВ

Задание. Рассчитайте температуру кипения и замерзания раствора, состав которого представлен в табл. 8.

Температуры кипения и кристаллизации, криоскопическая и эбуллиоскопическая постоянные чистых растворителей приведены в приложении 4.

Таблипа 8

Номер	Растворите	ель	Растворенное веш	ество
варианта	Вещество	Масса, г	Вещество	Масса, г
1	Этанол С ₂ H ₅ OH	500	Сахароза С ₁₂ Н ₂₂ О ₁₁	30
2	Вода Н ₂ О	500	Мочевина (NH ₂) ₂ CO	20
3	Уксусная кислота СН ₃ СООН	100	Антрацен С ₁₄ Н ₁₀	4,25
4	X лороформ $CHCl_3$	500	Пропеновая кислота $C_3H_4O_2$	7,2
5	Этанол С ₂ Н ₅ ОН	200	Антраниловая кислота NH ₂ C ₆ H ₄ COOH	4,0
6	Бензол С ₆ Н ₆ 250		Камфора С ₁₀ H ₁₆ O 7,5:	
7	X лороформ $CHCl_3$	250	Нафталин $C_{10} H_8$	2,35
8	Вода Н ₂ О	200	Глицерин С ₃ H ₅ (OH) ₃	
9	Этанол С ₂ H ₅ OH	250	Салициловая кислота $C_7H_6O_3$	11

Продолжение табл. 8

Номер	Растворите	ель	Растворенное вещество		
варианта	Вещество	Масса, г	Вещество	Масса, г	
10	Сероуглерод CS ₂	100	Бензойная кислота С ₆ Н ₅ СООН	2,5	
11	Вода H ₂ O	250	Этиленгликоль $(CH_2)_2(OH)_2$	12,5	
12	Циклогексан C_6H_{12}	50	Пиррол C_4H_5N	0,25	
13	Бензол $C_6 H_6$	150	Cepa S	0,75	
14	Диэтиловый эфир $(C_2H_5)_2O$	50	Анилин ${ m C_6H_5NH_2}$	0,7	
15	Вода Н ₂ О	250	Глюкоза $C_6 H_{12} O_6$	20	
16	Бензол $C_6 H_6$	50	Фенол С ₆ Н ₆ О	0,9	
17	Вода H ₂ O	500	Метанол СН₃ОН	16	
18	Вода H ₂ O	100	Сахароза С ₁₂ Н ₂₂ О ₁₁	17,1	
19	Бензол $\mathrm{C_6H_6}$	200	Трихлоруксусная кислота ССІ₃СООН	4,95	
20	Уксусная кислота СН ₃ СООН	200	Ацетон (CH ₃) ₂ CO	2,8	
21	Ацетон (CH ₃) ₂ CO	400	Глицерин $C_3H_5(OH)_3$	9,2	
22	Вода Н ₂ О	100	Глюкоза $C_6H_{12}O_6$	4,84	
23	Четыреххлористый углерод CCl ₄	100	Аспирин С ₉ Н ₈ О ₄	1,45	
24	Уксусная кислота СН ₃ СООН	50	Антрацен С ₁₄ Н ₁₀	1,8	

Номер	Растворите	ель	Растворенное веш	ество
варианта	Вещество	Масса, г	Вещество	Масса, г
25	Этанол C_2H_5OH	50	Мочевина (NH ₂) ₂ CO	1,25
26	Вода Н ₂ О	500	Сульфат натрия $\mathrm{Na_2SO_4}$	14,2
27	Пиридин $C_6 H_5 N$	250	Хлорид лития LiCl	0,84
28	Вода Н ₂ О	50	Тиомочевина $\mathrm{CH_4N_2S}$	1,52
29	Вода H ₂ O 100		Пероксид водорода H_2O_2 1,	
30	Этанол С ₂ Н ₅ ОН	50	Ацетилсалициловая кислота $C_9H_8O_4$	18

КОЛЛОИДНЫЕ РАСТВОРЫ

Задание. Даны растворы двух реагентов (см. вариант в табл. 9).

- 1. Напишите молекулярное уравнение химической реакции образования коллоидной частицы при смешивании двух растворов.
 - 2. Определите, какой реагент взят в избытке.
- 3. Составьте формулу мицеллы, обозначьте и назовите ее составные части.
- 4. Определите заряд коллоидной частицы и укажите, к какому электроду будут перемещаться частицы золя в постоянном электрическом поле.
- 5. Какой из указанных электролитов будет обладать наилучшим коагулирующим действием. Объясните, почему?

Таблица 9

Электролиты,	вызывающие коагуляцию	KCl, ZnSO ₄ , Na ₃ PO ₄	K_3PO_4 , $CaCl_2$, $Al_2(SO_4)_3$	Na_3PO_4 , $Ca(NO_3)_2$, $Fe_2(SO_4)_3$	Na_3PO_4 , $Ca(NO_3)_2$, $Fe_2(SO_4)_3$	K_3PO_4 , $CaCl_2$, $Al_2(SO_4)_3$	K_3PO_4 , CaCl ₂ , Fe ₂ (SO ₄) ₃	AlCl ₃ , FeSO ₄ , K ₃ PO ₄	FeCl ₃ , ZnSO ₄ , Na ₃ PO ₄	ZnCl ₂ , K ₃ PO ₄ , Fe ₂ (SO ₄) ₃	AlCl ₃ , CuSO ₄ , K ₃ PO ₄	
	V, мл	20	200	50	100	50	50	50	20	50	25	
Раствор II	c, моль/л	0,01	0,1	0,002	0,02	0,1	0,01	0,02	0,1	0,05	0,1	
	Вещество	$\mathrm{Na}_2\mathrm{SO}_4$	KCI	Na_2S	K_3PO_4	Ni(NO ₃) ₂	КОН	K_2S	NaF	K_3PO_4	K_2CO_3	
	V, мл	20	100	50	100	50	50	100	20	50	25	
Раствор I	c, моль/л	0,05	0,1	0,001	0,01	0,5	0,02	0,02	6,5	0,01	0,2	
	Вещество	Sr(NO ₃) ₂	$Pb(NO_3)_2$	FeCl_2	BaCl_2	Na_2CO_3	$CdCl_2$	$Ni(NO_3)_2$	$Mg(NO_3)_2$	AlCl ₃	$Ca(NO_3)_2$	
Номер	варианта	1	2	3	4	5	9	7	8	6	10	

K_3PO_4 , $CaCl_2$, $Al_2(SO_4)_3$	$Bi(NO_3)_3$, $CuSO_4$, K_3PO_4	Na ₃ PO ₄ , ZnCl ₂ , Al ₂ (SO ₄) ₃	K ₃ PO ₄ , CaCl ₂ , Al ₂ (SO ₄) ₃	KI, Na_3PO_4 , $Al_2(SO_4)_3$	$CaBr_2, K_3PO_4,$ $Al_2(SO_4)_3$	NiSO ₄ , K ₃ PO ₄ , Al(NO ₃) ₃	K_3PO_4 , Na_2HPO_4 , $ZnSO_4$	FeSO ₄ , Na ₃ PO ₄ , Al(NO ₃) ₃	$Fe_2(SO_4)_3$, Li_3PO_4 , $Cu(NO_3)_2$	NaCl, ZnSO ₄ , Na ₃ PO ₄	K_3PO_4 , $CaCl_2$, $Al_2(SO_4)_3$
 5	100	20	5	20	50	10	50	50	20	20	100
0,01	0,01	0,002	0,05	0,01	0,01	0,05	0,1	6,5	0,25	0,1	0,01
КОН	K_2SiO_3	K_2S	NaOH	${ m AgNO_3}$	K_2S	$\mathrm{K}_{3}\mathrm{PO}_{4}$	K_2S	Na_2CO_3	$\mathrm{K}_{3}\mathrm{PO}_{4}$	Na ₂ SO ₄	KCl
50	100	20	50	20	90	10	250	90	20	20	100
0,05	0,001	0,02	0,05	0,05	0,02	0,005	0,05	0,1	0,025	0,01	0,1
$SnCl_2$	ZnSO_4	Bi(NO ₃) ₃	MnCl ₂	(NH ₄) ₂ SO ₄	CuSO ₄	$\mathrm{Hg}(\mathrm{NO}_3)_2$	C_0Cl_2	$Fe(NO_3)_2$	CrCl ₃	$Sr(NO_3)_2$	Pb(NO ₃) ₂
11	12	13	14	15	16	11	18	61	20	21	22

Окончание табл. 9

Howen		Раствор I			Раствор II		Электролиты,
варианта	Вещество	с, моль/л	V, мл	Вещество	с, моль/л	V, MJI	вызывающие коагуляцию
23	FeCl_2	0,02	250	$\mathrm{Na}_2\mathrm{S}$	0,01	250	$Na_3PO_4, Zn(NO_3)_2, Fe_2(SO_4)_3$
24	BaCl_2	0,02	100	$\mathrm{K}_{3}\mathrm{PO}_{4}$	0,01	100	Na_3PO_4 , $Ca(NO_3)_2$, $Fe_2(SO_4)_3$
25	Na_2CO_3	0,01	50	Ni(NO ₃) ₂	0,05	50	K_3PO_4 , $CaCl_2$, $Al_2(SO_4)_3$
26	MnCl_2	0,01	50	Na_2S	0,05	50	K_3PO_4 , $CaCl_2$, $Al_2(SO_4)_3$
27	$Ni(NO_3)_2$	0,01	20	K_2S	0,02	20	FeCl ₃ , CuSO ₄ , K ₃ PO ₄
28	$Mg(NO_3)_2$	0,01	20	NaF	0,05	20	$Al_2(SO_4)_3$, $ZnCl_2$, Na_3PO_4
29	AlCl ₃	50,0	200	$\mathrm{K}_{3}\mathrm{PO}_{4}$	0,01	200	ZnCl ₂ , K_3PO_4 , Fe ₂ (SO ₄) ₃
30	Ca(NO ₃) ₂	0,01	50	K_2CO_3	0,02	50	AlCl ₃ , CuSO ₄ , K ₃ PO ₄

КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ

Задание 1. Дано комплексное соединение (см. вариант в табл. 10).

- 1. Укажите: а) внутреннюю и внешнюю сферы, их заряды; б) комплексообразователь, его координационное число и заряд; в) лиганды и их заряд.
- 2. Для атома и одноименного иона комплексообразователя напишите электронную формулу валентных электронов.
- 3. Напишите уравнения диссоциации комплексного соединения в водном растворе и выражение константы нестойкости комплексного иона.

Таблица 10

Номер варианта	Вещество	Номер варианта	Вещество
1	[Cr(NH3)2(H2O)4]Cl3	16	Mg[Be(OH)F ₃]
2	$K_2[Pt(NH_3)_2(NO_2)_4]$	17	[Fe(NH ₃) ₅ Cl]SO ₄
3	$Na[Co(NO_2)_4(NH_3)_2]$	18	$Na_2[Sb(H_2O)Cl_5]$
4	$H_2[Ti(SO_4)_3]$	19	$[Zn(NH_3)_3H_2O](NO_3)_2$
5	Ba[MnCl ₆]	20	K ₄ [Ni(CN) ₄ Cl ₂]
6	$[Ni(NH_3)_6]Br_2$	21	$Na_2[Pb(OH)_6]$
7	[Hg(NH3)4](NO3)2	22	Ba[Cu(CN) ₂ Cl ₂]
8	Na[Co(NH ₃) ₂ (CN) ₄]	23	[Sn(OH) ₂ (H ₂ O) ₄]Cl ₂
9	$(NH_4)_2[Ni(CN)_4]$	24	$K_2[Cd(CN)_2SO_4]$
10	Ba[Fe(CN) ₅ (H ₂ O)]	25	$Ca_2[Fe(CN)_4(OH)_2]$
11	[Co(NH ₃) ₄ SO ₄]NO ₃	26	[Co(NH ₃) ₅ Br]Br ₂
12	(NH ₄) ₂ [Pt(OH) ₂ Cl ₄]	27	K ₂ [Hg(CNS) ₄]
13	Ba[Cr(NH ₃) ₂ Cl ₄]	28	K[Co(NH ₃) ₂ (NO ₂) ₄]

Номер варианта	Вещество	Номер варианта	Вещество
14	$[Co(NH_3)_5Br]SO_4$		Na[Pt(NH ₃)Cl ₃]
15	[Pt(NH ₃) ₃ Cl]Cl	30	$K_2[Pt(OH)_3Cl]$

Задание 2. Дано комплексное соединение (см. вариант в табл. 11).

- 1. Запишите первичную и вторичную диссоциацию комплексного соединения в водном растворе, выражение константы нестойкости комплексного иона и ее численное значение (см. приложение 5).
- 2. Вычислите концентрации ионов комплексообразователя, лигандов и ионов внешней сферы в растворе комплексной соли с заданной концентрацией (c).

Численные значения констант нестойкости комплексных ионов приведены в приложении 5.

Таблица 11

Номер варианта	Вещество	с, моль/л	Номер варианта	Вещество	<i>С</i> , моль/л
1	K ₂ [HgI ₄]	0,03	16	[Zn(NH ₃) ₄]SO ₄	0,01
2	[Cd(NH ₃) ₄]SO ₄	0,02	17	K ₂ [Cu(CN) ₄]	0,1
3	3 K2[Cu(OH)4]		18	Na[AuCl ₄]	0,01
4	$K_3[AgI_4]$	0,01	19	$[\mathrm{Hg}(\mathrm{NH_3})_4](\mathrm{NO_3})_2$	0,5
5	5 $K_2[Be(OH)_4]$		20	Li ₃ [Cr(SCN) ₆]	0,02
6	6 Na ₂ [HgBr ₄]		21	$Na[Ag(NO_2)_2]$	0,01
7	Na ₂ [PtCl ₄]	0,01	22	$K_2[CdI_4]$	0,3
8	8 K[Sb(OH) ₄]		23	$K_2[BeF_4]$	0,1
9	$K_2[Cu(SCN)_4]$	0,5	24	$(NH_4)_3[Ag(SCN)_4]$	0,03
10	$Na_2[Hg(NO_2)_4]$	0,02	25	$(NH_4)_2[PdBr_4]$	0,05
11	Na[In(OH) ₄]	0,01	26	[Cu(NH ₃) ₂]Cl	0,05
12	12 K ₂ [PtBr ₄]		27	[Co(NH ₃) ₄]SO ₄	0,01
13	13 Na ₂ [Cd(CN) ₄]		28	$Na_2[Zn(OH)_4]$	0,05
14	$(NH_4)_2[Ni(CN)_4]$	0,02	29	K[ScF ₄]	0,02
15	$K_2[Zn(CN)_4]$	0,2	30	Na ₂ [SnCl ₄]	0,5

ЭЛЕКТРОХИМИЧЕСКИЕ ПРОЦЕССЫ

Гальванический элемент

Задание 1. Даны два электрода (см. вариант в табл. 12).

- 1. Запишите уравнение Нернста для расчета электродного потенциала и вычислите его значение для каждого электрода в растворе электролита при заданных условиях и T = 298 K.
 - 2. Определите природу катода и анода.
- 3. Запишите уравнения электродных реакций (на катоде и аноде), суммарной (токообразующей) реакции, определяющих работу этого элемента.
- 4. Запишите схему (электрохимическую систему) гальванического элемента.
- 5. Рассчитайте равновесное напряжение составленного гальванического элемента.

Стандартные электродные потенциалы электродов приведены в приложении 6.

Таблица 12

Номер	Электрод I		Электрод II				
вари-	схема электрода	$a_{{ m Me}^{n+}}$, моль/л	схема электрода	рН раствора	$P_{\mathrm{H}_2}\left(P_{\mathrm{O}_2}\right),$ мм рт. ст.		
1	$Ag^{+} \mid Ag$	0,01	H_2O , $OH^- O_2 Pt$	8	0,5		
2	Fe ²⁺ Fe	0,05	H_2O , $OH^- O_2 Pt$	7	0,5		
3	Cu ²⁺ Cu	0,02	$H^+ H_2 Pt$	4	0,5		
4	Co ²⁺ Co	0,01	H ₂ O, OH ⁻ O ₂ Pt	9	0,2		
5	Ni ²⁺ Ni	0,03	H_2O , $OH^- O_2 Pt$	8	0,7		

Окончание табл. 12

Номер	Электрод І		Электрод II			
вари-	схема электрода	$a_{\mathrm{Me}^{n+}}$, моль/л	схема электрода	рН раствора	$P_{\mathrm{H}_2}\left(P_{\mathrm{O}_2}\right),$ мм рт. ст.	
6	Fe ²⁺ Fe	0,05	$H^+ H_2 Pt$	3	0,5	
7	Pb ²⁺ Pb	0,02	$H^+ H_2 Pt$	2	0,5	
8	Bi ³⁺ Bi	0,03	$H^+ H_2 Pt$	4	0,2	
9	Sn ²⁺ Sn	0,04	H_2O , $OH^- O_2 Pt$	9	0,2	
10	Cr ²⁺ Cr	0,02	H_2O , $OH^- O_2 Pt$	10	0,4	
11	Cr ³⁺ Cr	0,01	$H^+ \mid H_2 \mid Pt$	1	0,4	
12	$V^{2+} \mid V$	0,01	$H^+ \mid H_2 \mid Pt$	5	0,9	
13	In ³⁺ In	0,01	$OH^- O_2 Pt$	8	0,2	
14	Cu ⁺ Cu	0,02	$OH^- O_2 Pt$	7	0,7	
15	Mn ²⁺ Mn	0,01	$H^+ \mid H_2 \mid Pt$	2	0,3	
16	Ti ²⁺ Ti	0,04	$H^+ \mid H_2 \mid Pt$	5	0,5	
17	$\operatorname{Cd}^{2+} \operatorname{Cd}$	0,05	$H^+ \mid H_2 \mid Pt$	4	0,5	
18	$Zn^{2+} \mid Zn$	0,5	$OH^- O_2 Pt$	9	0,7	
19	$Mg^{2+} \mid Mg$	0,02	$H^+ \mid H_2 \mid Pt$	4	1,2	
20	Al ³⁺ Al	0,03	$OH^- O_2 Pt$	9	0,5	
21	$Ag^{+} Ag$	0,05	$H^+ \mid H_2 \mid Pt$	3	0,5	
22	Fe ²⁺ Fe	0,01	$OH^- O_2 Pt$	8	0,5	
23	Pd ²⁺ Pd	0,001	$H^+ \mid H_2 \mid Pt$	7	0,8	
24	W ³⁺ W	0,01	OH ⁻ O ₂ Pt	10	0,1	
25	Mo ³⁺ Mo	0,03	$H^+ \mid H_2 \mid Pt$	6	0,4	
26	$Mg^{2+} \mid Mg$	0,1	$OH^- O_2 Pt$	2	0,3	
27	Al ³⁺ Al	0,02	$H^+ H_2 Pt$	3	0,3	
28	Cd ²⁺ Cd	0,01	OH ⁻ O ₂ Pt	7	0,7	
29	Au ³⁺ Au	0,0001	$H^+ \mid H_2 \mid Pt$	2	0,2	
30	Ge ³⁺ Ge	0,0002	$H^+ \mid H_2 \mid Pt$	3	0,3	

Задание 2. Гальванический элемент составлен из двух металлических электродов (см. вариант в табл. 13).

- 1. Определите природу катода и анода.
- 2. Подберите электролиты (см. приложение 7) и запишите схему (электрохимическую систему) гальванического элемента.
- 3. Запишите уравнения электродных реакций (на катоде и аноде) и суммарной реакции, определяющие работу гальванического элемента.
- 4. Рассчитайте равновесное напряжение гальванического элемента, составленного из указанных электродов с учетом активности потенциалопределяющих ионов a при T=298 K, p=1 атм.
- 5. Рассчитайте энергию Гиббса токообразующего процесса $\Delta_r G_{298}^0$ и равновесное напряжение гальванического элемента $E_{\Gamma 3}^0$ при стандартных условиях.

Таблица 13

Номер варианта	Электрод I	Электрод II	Активность потенциалопределяющих ионов в растворе a , моль/л		
			электрод I	электрод II	
1	$V^{2+} V$	$Ag^+ Ag$	0,01	0,001	
2	$Cd^{2+} Cd$	Cr ³⁺ Cr	0,02	0,05	
3	Pb ²⁺ Pb	$H^+ \mid H_2 \mid Pt$	0,5	0,001	
4	Sn ²⁺ Sn	Ag ⁺ Ag	0,2	0,001	
5	Al ³⁺ Al	Sn ²⁺ Sn	0,005	0,5	
6	Ag ⁺ Ag	Mg ²⁺ Mg	0,002	0,5	
7	Mn ²⁺ Mn	$H^+ \mid H_2 \mid Pt$	0,05	0,002	
8	Fe ³⁺ Fe	Co ²⁺ Co	0,003	0,02	
9	Ni ²⁺ Ni	Al ³⁺ Al	0,05	1,3	
10	Mg ²⁺ Mg	OH ⁻ O ₂ Pt	0,25	0,001	
11	Ag ⁺ Ag	$OH^- O_2 Pt$	0,005	0,005	
12	Cr ³⁺ Cr	Cu ²⁺ Cu	0,3	0,2	
13	Zn ²⁺ Zn	Cl ⁻ Cl ₂ Pt	0,02	0,03	
14	Fe ²⁺ Fe	$OH^- O_2 Pt$	0,01	0,005	

Номер варианта	Электрод I	Электрод II	Активность потенциалопределяющих ионов в растворе a , моль/л		
			электрод I	электрод II	
15	Fe ²⁺ Fe	$Cl^- Cl_2 Pt$	0,02	0,2	
16	Ti ²⁺ Ti	Fe ³⁺ Fe	0,05	0,5	
17	Al ³⁺ Al	$Ag^+ Ag$	0,5	0,001	
18	Cr ²⁺ Cr	Ag ⁺ Ag	0,2	0,01	
19	Al ³⁺ Al	$H^+ \mid H_2 \mid Pt$	0,5	0,02	
20	Cu ²⁺ Cu	OH ⁻ O ₂ Pt	2,0	0,3	
21	$Zn^{2+} Zn$	$OH^- O_2 Pt$	0,5	0,05	
22	Cd ²⁺ Cd	$Ag^{+} Ag$	0,03	0,002	
23	$OH^- O_2 Pt$	Cl ⁻ Cl ₂ Pt	0,01	0,02	
24	Pd ²⁺ Pd	OH ⁻ O ₂ Pt	0,00005	0,01	
25	Pt ²⁺ Pt	$H^+ \mid H_2 \mid Pt$	0,00001	0,03	
26	Bi ³⁺ Bi	F- F ₂ Pt	0,03	0,01	
27	Co ²⁺ Co	$H^+ \mid H_2 \mid Pt$	0,02	0,003	
28	Ca ²⁺ Ca	$H^+ \mid H_2 \mid Pt$	0,1	0,02	
29	Cu ⁺ Cu	Sn ²⁺ Sn	0,5	0,01	
30	Mn ²⁺ Mn	Bi ³⁺ Bi	0,04	0,03	

Электролиз водных растворов электролитов

Задание 3. Дан водный раствор электролита (см. вариант в табл. 14).

- 1. Укажите рН раствора электролита до электролиза (кислая, нейтральная, щелочная).
- 2. Запишите уравнения электродных реакций электролиза с графитовыми электродами.
- 3. Как изменяется рН раствора у электродов в процессе электролиза (увеличится, уменьшится, не изменится)?
- 4. Рассчитайте, сколько и каких веществ выделится на электродах при электролизе при заданных условиях (см. табл. 14). Анодный выход по току во всех случаях равен 100 %.

5. Как изменится анодный процесс, если анод заменить на другой металл, указанный в таблице? Запишите соответствующие электродные реакции.

Таблица 14

Номер варианта	Раствор электролита	Катодный выход по току $B_{ m Me}, \%$	Сила тока <i>I</i> , А	Время <i>t</i> , ч	Замена материала анода
1	CoCl ₂	70	2	3	Co
2	NiSO ₄	80	10	2	Ni
3	SnSO ₄	90	3	5	Sn
4	$Zn(NO_3)_2$	70	4	12	Zn
5	GaCl ₃	70	12	4	Cu
6	$Cr_2(SO_4)_3$	25	3	3	Cu
7	Bi(NO ₃) ₃	97	5	12	Bi
8	Pb(NO ₃) ₂	80	3	2	Pb
9	FeCl ₃	90	5	7	Fe
10	CdSO ₄	90	1	0,5	Cd
11	Pd(NO ₃) ₂	100	4	1,5	Cu
12	CoSO ₄	75	5	5	Co
13	Li ₂ SO ₄	0	2	1	Fe
14	Ca(NO ₃) ₂	0	3	5	Fe
15	SnCl ₂	95	3	3	Sn
16	MgBr ₂	0	5	6	Ni
17	SbCl ₃	97	4	3	Sb
18	LiNO ₃	0	2,5	4	Sn
19	MnCl ₂	60	2	6	Sn
20	PdCl ₂	100	2,5	4	Fe
21	SnSO ₄	70	3	5	Sn
22	BaI_2	0	5	0,25	Fe
23	NiCl ₂	90	15	1	Ni
24	$In_2(SO_4)_3$	90	10	3	In

Номер варианта	Раствор электролита	Катодный выход по току $B_{ m Me},\%$	Сила тока <i>I</i> , A	Время <i>t</i> , ч	Замена материала анода
25	CdCl ₂	70	12	3	Cd
26	ZnSO ₄	50	4	6	Zn
27	$Mo(NO_3)_3$	80	3	0,5	Mo
28	MnI_2	65	15	6	Fe
29	BeSO ₄	0	3	7	Fe
30	KCl	0	3	7	Cd

Коррозия металлов

Задание 4. Даны пара металлов и значения рН водной среды (см. вариант в табл. 15).

- 1. Рассчитайте равновесные потенциалы водородного и кислородного электродов и оцените возможность коррозии металла в данной электрохимической системе на основании сравнения рассчитанных потенциалов со стандартными значениями равновесных потенциалов металлических электродов. Укажите, какой металл будет подвергаться коррозии (окислению)?
- 2. Запишите коррозионную электрохимическую систему, уравнения электродных реакций при коррозии металла из данной пары в водной среде с заданным значением рН при контакте с воздухом.
- 3. Предложите для окисляемого (разрушаемого) металла данной пары катодное и анодное металлическое покрытие и запишите:
- а) электрохимическую схему коррозионных элементов, образующихся при нарушении целостности покрытий;
 - б) уравнения электродных реакций при коррозии данного металла.
- 4. Предложите протекторную защиту для данной пары металлов. Запишите электрохимическую систему, уравнения электродных реакций при протекторной защите.
- 5. Запишите электрохимическую систему электрозащиты (катодной) данной пары металлов, уравнения электродных реакций при работе электрозащиты.

Таблица 15

Номер варианта	Пары металлов	рН	Номер варианта	Пары металлов	pН
1	Cu – Co	5	16	Zn – Ni	5
2	Cu – Fe	4	17	In - Sn	6
3	Cu – Ni	1	18	Cd – Pb	1
4	Pb – Sn	4	19	Zn – Cu	2
5	Cu – Cd	7	20	Al – Zn	2
6	Sn – Cd	4	21	Pt – Ni	2
7	Fe – Co	3	22	Fe – Ni	5
8	Ag – Sn	4	23	Sn – Cd	4
9	Cu – Sn	5	24	Mn – Fe	3
10	Cd – Ni	4	25	Zn – Ag	7
11	Ni – Cr	2	26	Fe – Pb	3
12	Fe – Cd	2	27	Ni – Ti	1
13	Zn – Cd	7	28	Mo – V	3
14	Cu – Pb	7	29	Sn – Bi	3
15	Fe – In	4	30	Fe – Cr	2

СПИСОК ЛИТЕРАТУРЫ

- 1. *Коровин Н.В.* Общая химия: учебник для вузов по техническим направлениям и специальностям / Н.В. Коровин. Изд. 13-е, перераб. и доп. М.: Академия, 2011.
- 2. Химия: [учебник для вузов по техническим направлениям и специальностям] / A.A. Гуров [и др.]. Изд. 3-е, испр. М.: Изд-во МГТУ им. Н.Э. Баумана, 2008.
- 3. Общая химия: [учеб. пособие для вузов] / *Н.Л. Глинка*; под ред. А.И. Ермакова. Изд. 30-е, испр. М.: Интеграл-Пресс, 2007.
- 4. *Глинка Н.Л.* Задачи и упражнения по общей химии: [учебное пособие для нехимических специальностей вузов] / Н.Л. Глинка; под ред. В.А. Рабиновича, Х.М. Рубиной. Изд. стереотип. М.: Интеграл-Пресс, 2008.
- 5. Задачи и упражнения по общей химии: учеб. пособие / под ред. Н.В. Коровина. – М.: Высшая школа, 2004.
- 6. Зайцев О.С. Химия. Современный краткий курс. М.: Изд-во НЦ ЭНАС, 2001.
- 7. Суворов А.В., Никольский А.Б. Вопросы и упражнения по общей химии. СПб: Химиздат, 2002.

приложения

Приложение 1 Термодинамические характеристики некоторых веществ при 298 К

Разилатра	$\Delta_f H^0$,	S^0 ,	$\Delta_{\!f}G^0,$
Вещество	кДж/моль	Дж/(моль·К)	кДж/моль
$Al_2O_{3(T)}$	-1675,7	50,92	-1582,27
$As_{(r)}$	288,7	174,1	247,4
$AsH_{3(r)}$	66,4	222,96	68,91
$AsCl_{3(r)}$	-271,1	326,8	-258,1
$B_{(\kappa)}$	0	5,86	0
$BCl_{3(r)}$	-403,8	289,5	-388,7
BCl _{3(ж)}	-427,1	206	-387,1
$BaO_{(\kappa)}$	-557,9	70,29	-528,4
BaCl _{2(κ)}	-860,1	126	-810,9
$\mathrm{BeO}_{(\kappa)}$	-598,7	14,1	-581,6
$BeCl_{2(\kappa)}$	-494	63	-468
Br _{2(ж)}	0	152,2	0
$\mathrm{Br}_{2(\Gamma)}$	30,92	245,35	3,14
$C_{\text{графит}}$	0	5,74	0
Салмаз	1,83	2,38	2,85
$CO_{(\Gamma)}$	-110,5	197,54	-137,14
$CO_{2(r)}$	-393,51	213,68	-394,38
$CF_{4(\Gamma)}$	-933	261,37	-888,4
$CCl_{4(\Gamma)}$	-102,9	309,9	-60,7
$CCl_{4(m)}$	-135,4	214,4	-64,6
$CH_{4(\Gamma)}$	-74,81	186,31	-50,82
$C_2H_{2(\Gamma)}$	226,75	200,82	209,21
$C_2H_{4(r)}$	52,3	219,45	68,14
$C_2H_{6(r)}$	-84,68	229,5	-32,89
$C_6H_{6(r)}$	82,93	269,2	129,68
$CH_3OH_{(\Gamma)}$	-202	239,7	-163,3
СН ₃ ОН _(ж)	-239,45	126,6	-167,1
$C_2H_5OH_{(\Gamma)}$	-235,3	278,0	-167,4

Продолжение таблицы П1

_		-	
Вещество	$\Delta_f H^0$,	S^0 ,	$\Delta_{f}G^{0}$,
	кДж/моль	Дж/(моль·К)	кДж/моль
$CS_{2(r)}$	110,7	237,77	66,55
CS _{2(ж)}	88,7	151,04	64,41
$CaO_{(\kappa)}$	-635,5	39,7	-605,2
$Ca(OH)_{2(\kappa)}$	-986,2	83,4	-898,5
CaCO _{3(K)}	-1207,1	92,88	-1128,76
$\text{Cl}_{2(r)}$	0	222,96	0
CuO _(K)	-162	42,63	-134,3
$Cu_2O_{(\kappa)}$	-173,2	92,9	-150,6
$F_{2(r)}$	0	202,7	0
FeO _(K)	-263,8	58,8	-244,3
Fe ₂ O _{3(K)}	-822,16	89,96	-740,98
$H_{2(\Gamma)}$	0	130,52	0
$HBr_{(r)}$	-35,98	198,59	-53,3
$HCl_{(\Gamma)}$	-92,31	186,79	-95,27
HF _(r)	-268,61	173,51	-270,7
$HI_{(r)}$	26,57	206,48	1,78
$H_2O_{(\Gamma)}$	-241,82	188,72	-228,61
Н ₂ О _(ж)	-285,84	70,08	-237,2
$H_2S_{(r)}$	-20,9	205,69	-33,8
H ₂ SO _{4(ж)}	-814,2	156,9	-690,3
$I_{2(\Gamma)}$	62,43	260,58	19,37
N _{2(Γ)}	0	191,5	0
$NH_{3(\Gamma)}$	-46,19	192,66	-16,66
$NF_{3(r)}$	-131,7	260,7	-84
$N_2F_{4(r)}$	-22	317	79
$N_2O_{(\Gamma)}$	82,01	219,83	104,12
$N_2O_{3(r)}$	90,22	307,1	110,5
$N_2O_{4(\Gamma)}$	9,6	303,8	98,4
$NO_{(\Gamma)}$	90,25	210,62	86,58
$NO_{2(\Gamma)}$	33,5	240,2	51,55
$NOCl_{(r)}$	52,59	263,5	66,37
$NOF_{(r)}$	65	248	-51
$NOF_{3(r)}$	-187	277,6	_
5(1)	1	, -	I.

Окончание таблицы П1

	A 7.70	S^0 ,	A C ⁰
Вещество	$\Delta_f H^0,$ кДж/моль	З , Дж/(моль·К)	$\Delta_{\!f}G^0,$ к $\mathcal{f K}$ ж/моль
$(NO_2)F_{(\Gamma)}$	-109	259,3	37
NOBr _(r)	79,5	273,55	79,74
(NH ₂) ₂ CO	-333,17	104,6	-197,15
$\text{Cl}_{2(\Gamma)}$	0	222,98	0
$O_{2(r)}$	0	205,04	0
$O_{3(\Gamma)}$	142,26	238,82	162,76
PH _{3(Γ)}	5,44	210,2	13,39
$P_2O_{5(\kappa)}$	-1507,2	140,3	-1371,7
$PCl_{3(\Gamma)}$	-279,5	311,71	-260,45
$PCl_{5(r)}$	-374,89	364,47	-297,14
POCl _{3 (r)}	-306	323,84	-512,92
$PF_{3(\Gamma)}$	-956,5	272,6	-935,66
$POF_{3(\Gamma)}$	-1252,27	284,93	-1203,75
$S_{(\kappa)}$	0	31,88	0
$S_{(r)}$	287,81	167,75	238,91
$S_{2(\Gamma)}$	127,52	228,03	78,55
$\mathrm{SO}_{2(\Gamma)}$	-296,9	248,1	-300,2
$SO_{3(r)}$	-395,8	256,7	-372,2
$SO_2Cl_{2(\Gamma)}$	-363,17	311,3	-318,85
Si _(T)	0	18,83	0
$SiO_{2(T)}$	-905,88	40,38	-851,17
SiF _{4(r)}	-1614,95	282,0	-1572,53
SiCl _{4(r)}	-657,52	330,95	-617,6
SiH _{4(r)}	34,73	204,55	57,19
SiO _{2(к, стекл)}	-903,5	46,86	-850,7

 $\label{eq:1.1} \mbox{Приложение 2}$ Значения констант диссоциации $K_{\mbox{\tiny A}}$ некоторых кислот и оснований

Кислота										
Название и формула	$K_{\scriptscriptstyle m I\!\!I}$		Название и формула		$K_{\scriptscriptstyle m I\!\!I}$					
Азотистая HNO ₂		$5,13\cdot10^{-4}$	Сероводородная $\mathbf{H}_2\mathbf{S}$	K_1 K_2	$1,05 \cdot 10^{-7} \\ 1,3 \cdot 10^{-13}$					
Алюминиевая- мета HAlO ₂		$6 \cdot 10^{-13}$	Сернистая H₂SO₃	K_1 K_2	$1,4\cdot10^{-2} \\ 6,3\cdot10^{-8}$					
Борная H₃BO₃	K_1 K_2 K_3	$5,8\cdot10^{-10} \\ 1,8\cdot10^{-13} \\ 1,6\cdot10^{-14}$	Теллуроводород- ная $\mathbf{H}_2\mathbf{Te}$	K_1 K_2	$2,3\cdot10^{-3} \\ 10^{-11}$					
Бромноватистая HOBr		$2,5\cdot10^{-9}$	Теллуристая H_2TeO_3	K_1 K_2	$2,7 \cdot 10^{-3} \\ 1,8 \cdot 10^{-8}$					
Ванадиевая H₃VO₄	K_2 K_3	$1,1\cdot10^{-9} \\ 4\cdot10^{-15}$	Теллуровая H_2TeO_4	K_1 K_2	$2,5 \cdot 10^{-9} \\ 4,1 \cdot 10^{-11}$					
Водорода пероксид H_2O_2	K_1	$2 \cdot 10^{-12}$	Угольная H ₂ CO ₃	K_1 K_2	$4,5 \cdot 10^{-7} $ $4,8 \cdot 10^{-11}$					
Германиевая- мета H₂GeO ₃	$K_1 K_2$	$1,7 \cdot 10^{-9} \\ 2,0 \cdot 10^{-13}$	Уксусная СН ₃ СООН		$1,8\cdot 10^{-5}$					
Иодноватистая НОІ		2,3·10 ⁻¹¹	Фосфористая H₃PO ₃	K_1 K_2	$1,6\cdot10^{-2} \\ 2\cdot10^{-7}$					
Кремневая- мета H ₂ SiO ₃	K_1 K_2	$2,2 \cdot 10^{-10} \\ 1,6 \cdot 10^{-12}$	Фосфорная H ₃ PO ₄	K_1 K_2 K_3	$7.1 \cdot 10^{-3} $ $6.2 \cdot 10^{-8} $ $4.2 \cdot 10^{-13} $					
Марганцови- стая H₂MnO ₄	$K_1 K_2$	$10^{-1} \\ 7,1 \cdot 10^{-11}$	Φ осфорноватистая H_3PO_2		$5,9 \cdot 10^{-2}$					
Молибденовая H₂MoO₄	$K_1 K_2$	$2.9 \cdot 10^{-3} \\ 1.4 \cdot 10^{-4}$	Фтороводородная HF		6,8·10 ⁻⁴					
Муравьиная НСООН		1,8·10 ⁻⁴	Хлорноватистая HClO		5.10 ⁻⁸					
Мышьяковая H ₃ AsO ₄	K_1 K_2 K_3	$5,6\cdot10^{-3} 1,7\cdot10^{-7} 3\cdot10^{-12}$	Хромовая H ₂ CrO ₄	K_1 K_2	$1,1\cdot10^{-1} \\ 3,2\cdot10^{-7}$					
Селенистая H₂SeO₃	$K_1 K_2$	$2,4\cdot10^{-3} \\ 4,8\cdot10^{-9}$	Циановодородная (синильная) HCN		$6,2\cdot10^{-10}$					
Селеноводородная H ₂ Se	$K_1 K_2$	1,3·10 ⁻⁴ 10 ⁻¹¹	Щавелевая H ₂ C ₂ O ₄	K_1 K_2	$5,6\cdot10^{-2}$ $5,4\cdot10^{-5}$					

Окончание таблицы П2

		Осн	ование		
Алюминия гидроксид Al(OH) ₃	K_1 K_2 K_3	$7,4\cdot10^{-9} 2,1\cdot10^{-9} 1,1\cdot10^{-9}$	Марганца(II) гидроксид Mn(OH) ₂	K_2	3,9·10 ⁻⁴
Аммония гидроксид NH₄OH		$1,8 \cdot 10^{-5}$	Меди(II) гидроксид Cu(OH) ₂	K_2	$3,4\cdot10^{-7}$
Бария гидрок- сид Ва(ОН) ₂	K_2	$2,3\cdot 10^{-1}$	Никеля(II) гидроксид Ni(OH) ₂	K_2	8,32·10 ⁻⁴
Железа(II) гидроксид Fe(OH) ₂	K_1 K_2	$1,2 \cdot 10^{-2} \\ 1,3 \cdot 10^{-4}$	Олова (II) гидроксид Sn(OH) ₂	K_2	10^{-12}
Железа(III) гидроксид Fe(OH) ₃	K_2 K_3	$1,82 \cdot 10^{-11} \\ 1,35 \cdot 10^{-12}$	Ртути(II) гидроксид Hg(OH) ₂	K_1 K_2	$4.10^{-12} \\ 5.10^{-11}$
Кадмия гидроксид Cd(OH) ₂	K_1 K_2	$8,1\cdot10^{-4} \\ 4,2\cdot10^{-7}$	Свинца(II) гидроксид Pb(OH) ₂	K_1 K_2	$5.10^{-4} \\ 1,4.10^{-8}$
Кобальта(II) гидроксид Со(ОН) ₂	K_1 K_2	$7,9 \cdot 10^{-5} \\ 8,9 \cdot 10^{-6}$	Хрома(II) гидроксид Cr(OH) ₂	K_2	4.10 ⁻⁸
Кальция гидроксид Са(ОН) ₂	K_2	5,8·10 ⁻²	Хрома(III) гидроксид Cr(OH) ₃	K_3	$\sim \! 10^{-10}$
Магния гидроксид Mg(OH) 2	K_2	$2,63\cdot10^{-3}$	Цинка гидроксид Zn(OH) ₂	$K_1 K_2$	$1,32 \cdot 10^{-5} \\ 2,0 \cdot 10^{-9}$

Приложение 3 Произведение растворимости ПР некоторых малорастворимых электролитов при 298 К

Вещество	ПР	Вещество	ПР	Вещество	ПР
Be(OH) ₂	$2,09 \cdot 10^{-19}$	$Zn(OH)_2$	$3,69 \cdot 10^{-17}$	Fe(OH) ₂	4.10^{-16}
Mg(OH) ₂	$6,76 \cdot 10^{-12}$	Sc(OH) ₃	$2 \cdot 10^{-30}$	Fe(OH) ₃	$2,51\cdot10^{-39}$
Ga(OH) ₃	$1,58 \cdot 10^{-37}$	Sn(OH) ₂	$6,3\cdot 10^{-27}$	Al(OH) ₃	$1,1\cdot 10^{-34}$
Bi(OH) ₃	$3,2\cdot 10^{-36}$	Sn(OH) ₄	1.10^{-57}	Co(OH) ₂	$2 \cdot 10^{-16}$
Pd(OH) ₂	10^{-30}	Pb(OH) ₂	$1,2\cdot 10^{-20}$	Co(OH) ₃	4.10^{-45}
Cd(OH) ₂	$2,2\cdot 10^{-14}$	Cr(OH) ₂	10^{-17}	Ni(OH) ₂	$6,31\cdot10^{-18}$
Cu(OH) ₂	$2 \cdot 10^{-20}$	Cr(OH) ₃	$6,3\cdot 10^{-31}$	In(OH) ₃	1,29.10 ⁻³⁷
Au(OH) ₃	$5,5\cdot 10^{-46}$	Mn(OH) ₂	$1,9 \cdot 10^{-13}$	La(OH) ₃	$6,5\cdot 10^{-20}$

Приложение 4

Температуры кипения $T_{\text{кип}}$, кристаллизации $T_{\text{зам}}$, криоскопическая $K_{\text{кр}}$ и эбуллиоскопическая K_{36} постоянные некоторых чистых растворителей

Растворитель	$T_{\scriptscriptstyle{3aM}},\ ^{\circ}\mathrm{C}$	<i>Т</i> _{кип} , °С	$K_{ ext{кр}}, \frac{ ext{кг} \cdot ext{К}}{ ext{моль}}$	$K_{ ext{96}}, \ rac{ ext{k}\Gamma \cdot ext{K}}{ ext{моль}}$
Ацетон	-95,35	56,24	2,4	1,48
Бензол	5,53	80,1	5,12	2,57
Вода	0	100	1,86	0,52
Диэтиловый эфир	-116	34,5	1,79	2,12
Пиридин	-45	115,8	4,97	2,687
Сероуглерод	-111,6	46,2	3,8	2,29
Уксусная кислота	16,75	118,1	3,9	3,07
Циклогексан	6,6	80,75	20,2	2,75
Хлороформ	-63,5	61,2	4,9	3,61
Четыреххлористый углерод	-22,96	76,75	29,8	5,25
Этанол	-114,5	78,3	1,99	1,22

 $\label{eq:1.1} \mbox{Приложение 5}$ Константы нестойкости $K_{\mbox{\scriptsize Hect}}$ некоторых комплексных ионов

Формула иона	$K_{ ext{\tiny HeCT}}$	Формула иона	$K_{ ext{\tiny HeCT}}$	Формула иона	$K_{ ext{ ext{Hect}}}$	
Аммиг	Аммиакаты		комплексы	Галогенидные комплексы		
$[Zn(NH_3)_4]^{2+}$	$3,46\cdot10^{-10}$	$\left[Cu(CN)_4\right]^{2-}$	5.10^{-28}	[AuCl ₄]	5.10-22	
$[Cu(NH_3)_4]^{2+}$	$2,14\cdot10^{-13}$	$[Zn(CN)_4]^{2-}$	$1,3 \cdot 10^{-17}$	$[AgI_4]^{3-}$	$7,94 \cdot 10^{-14}$	
$\left[Cu(NH_3)_2\right]^+$	1,4·10 ⁻¹¹	$[Cd(CN)_4]^{2-}$	$7,76\cdot10^{18-}$	$[\mathrm{BeF_4}]^{2-}$	$4,17\cdot 10^{-17}$	
$[Cd(NH_3)_4]^{2+}$	$2,5\cdot 10^{-7}$	$[Ni(CN)_4]^{2-}$	$3 \cdot 10^{-16}$	$[BiBr_6]^{3-}$	$3 \cdot 10^{-10}$	
$[Co(NH_3)_2]^{2+}$	$2,8\cdot10^{-6}$	D		$[CdI_4]^{2-}$	$7,94 \cdot 10^{-7}$	
$[Hg(NH_3)_4]^{2+}$	5,2.10 ⁻²⁰	Роданидные	комплексы	[ScF ₄]	1,55.10 ⁻²¹	
Гидроксок	омплексы	$[Ag(SCN)_4]^3$	$2,14\cdot10^{-10}$	$[PdBr_4]^{2-}$	7,94.10 ⁻¹⁴	
[In(OH) ₄]	2.10 ⁻²⁹	[Cu(SCN) ₄] ²	3.10^{-7}	$[PtBr_4]^{2-}$	3,16.10 ⁻²¹	
$[Be(OH)_4]^{2-}$	10^{-15}	$[Cr(SCN)_6]^{3-}$	$1,58 \cdot 10^{-4}$	$[PtCl_4]^{2-}$	10^{-16}	
$\left[\mathrm{Cu}(\mathrm{OH})_4\right]^{2-}$	$3,16\cdot10^{-19}$	Нитритные	комплексы	$[HgI_4]^{2-}$	$1,48 \cdot 10^{-30}$	
$[Zn(OH)_4]^{2-}$	$2,2\cdot 10^{-15}$	$[AgNO_2)_2]^-$	$1,58 \cdot 10^{-3}$	$[SnCl_4]^{2-}$	$3,3\cdot 10^{-2}$	
[Sb(OH) ₄] ⁻	5.10^{-39}	$[\mathrm{Hg}(\mathrm{NO_2})_4]^{2-}$	$2,88 \cdot 10^{-14}$	$[HgBr_4]^{2-}$	10^{-21}	

Приложение 6 Стандартные электродные потенциалы электродов ${\it E}^0$ при 298 К

Электрод	Электродная реакция	E^0 , B
	Металлические электроды	
Li ⁺ Li	$Li^+ + e \Leftrightarrow Li$	-3,045
$K^+ K$	$K^+ + e \Leftrightarrow K$	-2,925
Cs ⁺ Cs	$Cs^+ + e \Leftrightarrow Cs$	-2,92
Ba ²⁺ Ba	$Ba^{2+} + 2e \Leftrightarrow Ba$	-2,906
Ca ²⁺ Ca	$Ca^{2+} + 2e \Leftrightarrow Ca$	-2,866
Na ⁺ Na	$Na^+ + e \Leftrightarrow Na$	-2,714
La ³⁺ La	$La^{3+} + 3e \Leftrightarrow La$	-2,522
$Mg^{2+} Mg$	$Mg^{2+} + 2e \Leftrightarrow Mg$	-2,363
Be ²⁺ Be	$Be^{2+} + 2e \Leftrightarrow Be$	-1,847
Al ³⁺ Al	$Al^{3+} + 3e \Leftrightarrow Al$	-1,662
Ti ²⁺ Ti	$Ti^{2+} + 2e \Leftrightarrow Ti$	-1,628
Ti ³⁺ Ti	$Ti^{3+} + 3e \Leftrightarrow Ti$	-1,21
$V^{2+} V$	$V^{2+} + 2e \Leftrightarrow V$	-1,186
Mn ²⁺ Mn	$Mn^{2+} + 2e \Leftrightarrow Mn$	-1,180
Cr ²⁺ Cr	$Cr^{2+} + 2e \Leftrightarrow Cr$	-0,913
Zn ²⁺ Zn	$Zn^{2+} + 2e \Leftrightarrow Zn$	-0,763
Cr ³⁺ Cr	$Cr^{3+} + 3e \Leftrightarrow Cr$	-0,744
Ga ³⁺ Ga	$Ga^{3+} + 3e \Leftrightarrow Ga$	-0,529
Fe ²⁺ Fe	$Fe^{2+} + 2e \Leftrightarrow Fe$	-0,44
Cd ²⁺ Cd	$Cd^{2+} + 2e \Leftrightarrow Cd$	-0,403
In ³⁺ In	$In^{3+} + 3e \Leftrightarrow In$	-0,34
TI ⁺ T1	$Tl^+ + e \Leftrightarrow Tl$	-0,336
Co ²⁺ Co	Co ^{2 +} + 2e ⇔ Co	-0,277
Ni ²⁺ Ni	$Ni^{2+} + 2e \Leftrightarrow Ni$	-0,25
Mo ³⁺ Mo	$Mo^{3+} + 3e \Leftrightarrow Mo$	-0,2
Sn ²⁺ Sn	$\operatorname{Sn}^{2+} + 2e \Leftrightarrow \operatorname{Sn}$	-0,136

Продолжение таблицы П6

~		50 5
Электрод	Электродная реакция	E^0 , B
Pb ²⁺ Pb	$Pb^{2+} + 2e \Leftrightarrow Pb$	-0,126
$W^{3+} W$	$W^{3+} + 3e \Leftrightarrow W$	-0,05
Fe ³⁺ Fe	$Fe^{3+} + 3e \Leftrightarrow Fe$	-0,036
$Sn^{4+} Sn$	$\operatorname{Sn}^{4+} + 4e \Leftrightarrow \operatorname{Sn}$	+0,007
Ge ²⁺ Ge	$Ge^{2+} + 2e \Leftrightarrow Ge$	+0,01
Sb ³⁺ Sb	$\mathrm{Sb}^{3+} + 3e \Leftrightarrow \mathrm{Sb}$	+0,2
Bi ³⁺ Bi	Bi ³⁺ + 3 <i>e</i> ⇔ Bi	+0,215
Cu ²⁺ Cu	$Cu^{2+} + 2e \Leftrightarrow Cu$	+0,337
Cu ⁺ Cu	$Cu^+ + e \Leftrightarrow Cu$	+0,521
Ag ⁺ Ag	$Ag^+ + e \Leftrightarrow Ag$	+0,8
Os ²⁺ Os	$Os^{2+} + 2e \Leftrightarrow Os$	+0,85
Hg ²⁺ Hg	$Hg^{2+} + 2e \Leftrightarrow Hg$	+0,854
Pd ²⁺ Pd	$Pd^{2+} + 2e \Leftrightarrow Pd$	+0,987
Pt ²⁺ Pt	$Pt^{2+} + 2e \Leftrightarrow Pt$	+1,200
Au ³⁺ Au	$Au^{3+} + 3 e \Leftrightarrow Au$	+1,498
Au ⁺ Au	$Au^+ + e \Leftrightarrow Au$	+1,691
	Газовые электроды	
$Pt H_2 H^+$	$2H^+ + 2e \Leftrightarrow H_2$	0,00
Pt H ₂ OH ⁻ , H ₂ O	$2H_2O + 2e \Leftrightarrow H_2 + 2 OH^-$	-0,828
Pt Cl ₂ Cl ⁻	$Cl_2 + 2e \Leftrightarrow 2Cl^-$	+1,36
Pt F ₂ F	$F_2 + 2e \Leftrightarrow 2F^-$	+2,87
Pt O ₂ OH ⁻ , H ₂ O	$O_2 + 2H_2O + 4e \Leftrightarrow 4OH^-$	+0,401
Pt O ₂ H ⁺ , H ₂ O	$O_2 + 4H^+ + 4e \Leftrightarrow 2H_2O$	+1,229
	Электроды второго рода	
Ag AgCl, Cl ⁻	$AgCl + e \Leftrightarrow Ag + Cl^-$	+0,222
Hg Hg ₂ Cl ₂ , Cl ⁻	$Hg_2Cl_2 + 2e \Leftrightarrow 2Hg + 2Cl^-$	+0,268
AlO ₂ Al	$AlO_2^- + 2 H_2O + 3e \Leftrightarrow Al + 4 OH^-$	-2,35
Al(OH) ₃ Al	$Al(OH)_3 + 3e \Leftrightarrow Al + 3 OH^-$	-2,31

Окончание таблицы П6

Электрод	Электродная реакция	E^0 , B
Ag ₂ O Ag	$Ag_2O + H_2O + 2e \Leftrightarrow 2Ag + 2OH^-$	+0,345
Be(OH) ₂ Be	$Be(OH)_2 + 2e \Leftrightarrow Be + 2 OH^-$	-2,6
Bi ₂ O ₃ Bi	$Bi_2O_3 + 3 H_2O + 6e \Leftrightarrow 2 Bi + 6 OH^-$	-0,46
Cd(OH) ₂ Cd	$Cd(OH)_2 + 2e \Leftrightarrow Cd + 2 OH^-$	-0,824
Co(OH) ₂ Co	$Co(OH)_2 + 2e \Leftrightarrow Co + 2 OH^-$	-0,73
Cr(OH) ₂ Cr	$Cr(OH)_2 + 2e \Leftrightarrow Cr + 2 OH^-$	-1,355
Cu(OH) ₂ Cu	$Cu(OH)_2 + 2e \Leftrightarrow Cu + 2 OH^-$	-0,224
Fe(OH) ₂ Fe	$Fe(OH)_2 + 2e \Leftrightarrow Fe + 2 OH^-$	-0,877
Ga(OH) ₃ Ga	$Ga(OH)_3 + 3e \Leftrightarrow Ga + 3 OH^-$	-1,26
HGeO ₃ Ge	$HGeO_3^- + 2 H_2O + 4e \Leftrightarrow Ge + 5OH^-$	-1,0
In(OH) ₃ In	$In(OH)_3 + 3e \Leftrightarrow In + 3 OH^-$	-1,0
Mg(OH) ₂ Mg	$Mg(OH)_2 + 2e \Leftrightarrow Mg + 2 OH^-$	-2,694
Ni(OH) ₂ Ni	$Ni(OH)_2 + 2e \Leftrightarrow Ni + 2 OH^-$	-0,729
Mn(OH) ₂ Mn	$Mn(OH)_2 + 2e \Leftrightarrow Mn + 2 OH^-$	-1,56
PbO Pb	$PbO + H_2O + 2e \Leftrightarrow Pb + 2 OH^-$	-0,578
Pb(OH) ₂ Pb	$Pb(OH)_2 + 2e \Leftrightarrow Pb + 2 OH^-$	-0,714
Pd(OH) ₂ Pd	$Pd(OH)_2 + 2e \Leftrightarrow Pd + 2 OH^-$	+0,07
SbO ₂ Sb	$SbO_2^- + 2 H_2O + 3e \Leftrightarrow Sb + 4 OH^-$	-0,675
HSnO ₂ Sn	$HSnO_2^- + H_2O + 2e \Leftrightarrow Sn + 3 OH^-$	-0,91
TIOH TI	$TIOH + e \Leftrightarrow TI + OH^-$	-0,344
Zn(OH) ₂ Zn	$Zn(OH)_2 + 2e \Leftrightarrow Zn + 2 OH^-$	-1,245

Ион	$\Delta_{\!f}G^0,$ кДж/моль	Ион	$\Delta_{\!f}G^0,$ кДж/моль	Ион	$\Delta_{\!f}G^0,$ кДж/моль
Ag^+	77,1	Cu ⁺	50,2	Ni ²⁺	-45,56
Al^{3+}	-481,2	Cu ²⁺	65,56	OH ⁻	-157,35
Ba ²⁺	-547,5	F ⁻	-280,2	Pb ²⁺	-24,3
Bi ³⁺	91,9	Fe ²⁺	-84,88	Pd^{2+}	176,7
Ca ²⁺	-553,08	Fe ³⁺	-10,54	Pt ²⁺	231,6
Cl ⁻	-131,17	$\mathrm{H}^{^{+}}$	0	Sn ²⁺	-26,4
Cd^{2+}	-77,65	Hg ²⁺	164,68	Ti ²⁺	-314,2
Co ²⁺	-53,64	I_	-51,76	Tl^+	-32,43
Cr ²⁺	-176,8	$\mathrm{Mg}^{2^{+}}$	-456	V^{2+}	-228,8
Cr ³⁺	-223,1	Mn ²⁺	-229,9	Zn^{2+}	-147,16

Растворимость веществ в воде

Αu³÷	Н	J	Ь	Ь	Ь	М		И		Н		Ь	Ь	J	Ь	M	J	
+ Ag	Σ	d	Н	d	d	Ŧ	W	Н		Ŧ	W		W	W	d	Н	Н	
Cu²⁺	Н	Ь	Ь	Ь	Ь	Р	Ь	Д		Н	Ь	Н	Ь	Ь	Ь	Н	н	
Νi²+	Н	Ь	Ь	И	Ь	Р	Ь	Ь		Н	Ь	Н	Ь	Ь	Ь	н	н	
Co²⁺	Ŧ	Ŧ	Ь	Ь	Ь	Ъ	Ь	Ь		Ŧ	Ь	н	Ь	Ь	Ь	H	Ŧ	
Fe³+	Н	Н	Р	Ь	Р	Р		Д		Д	Ь	Д	Ь	٦	Р	Ν	٦	
Fe^{2+}	Н	Н	Ь	Ь	Ь	Ь		Ь		Н	Ь	М	Р	Ь	Ь	Н	Н	
Mn ²⁺ Fe ²⁺	Н	Ь	Ь	Ь	Ь	Р		Ь		Н	Ь	Н	Ь	Ь	Ь	н	н	
\mathbf{Cr}^3	Ŧ	Ь	Ь	Ь	Ь	۵		Ь		ᆫ	Ь	┙	Ь	┕	Ь	H	∟	
Bi³÷	Ŧ	Н	Ь	Ь	Ь	Ъ		Н		Ŧ	Ь	Н	Ь	١	Ь	Н	н	
Sb³+	Ŧ	Ь	Ь	Ь	Ь	Д		Ь		Ŧ	Ь		Ь	J	Ь	Н	١	
Pb²₊	Ŧ	М	M	Ь	Ь	Σ	Ь	M		Ŧ	Σ	н	Ŧ	Ь	Ь	H	Ŧ	
$\mathbf{S}\mathbf{n}^{2+}$	Ŧ	Ь	Ь	Ь	Ь	Ъ	Ь	M		Ŧ	Ь	┙	Ь	┕	Ь	H	∟	
Ga³⁺	Ŧ	Ŧ	Ь	Ь	Ь	Ъ		Ь	Σ	_		Н	Ь	┙	Ь	Ŧ	٦	
\ln^{3+}	Ŧ	М	Ь	Ь	Ь	Ъ		Ь		Ŧ	Ь		Ь		Ь	H	∟	
ΑI³÷	Ŧ	М	Ь	Ь	Ь	Ъ	Ь	Ь	Ν	ᆫ	Ь	┙	Ь	┕	Ь	H	∟	
Pd^{2^+}	Ŧ	М	Ь		Ь	Ŧ		н		Ŧ			Ь	┙	Ь			
Hg²⁺	::	٦	Ь	Ь	Ь	М	Μ	Н		Н	Ь	Н	Ь	Ь	Ь	Н	н	
	Ŧ	Ь	Ь		Ь	Ъ	Ь	Ь	Ь	Ŧ	Ь	М	Ь	Ь	Ь	H	Ŧ	
Zn²⁺ Cd²⁺	Н	M	Р	Ь	Р	Р	Ь	Ь	M	Н	Ь	М	Ь	Ь	Р	Н	н	
Ba²⁺	Ь	W	d	Ь	Ь	Ь	W	d	W	Ь	W	M	Н	Ь	Ь	Н	Н	
Sr ² +	W	Н	d	Ь	Ь	Ь	Ь	d	Н	Ь	Ь	н	W	Ь	Ь	Н	н	
Mg²+Ca²⁺	W	Н	d	Ь	Ь	Ь	Ь	d	Н	W	Ь	н	W	Ь	Ь	Н	н	
Mg²⁺	Н	М	d	Ь	Ь	Ь	Ь	d	Ь	Σ	Ь	Σ	Ь	Ь	Ь	Н	M	
Be^{2+}	Н	Ь	Ь	Ь	Ь	Ь		Ь		J	Ь	Σ	Ь	٦	Ь	н	Σ	
¥	Ь	Ь	d	Ь	W	Ь	Ь	d	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	Ь	
Na⁺	Ъ	Ь	Ь	Ь	Ь	Ъ	Ь	Ь	Ь	Ъ	Ь	Ь	Ь	Ь	Ь	Ь	Ь	
÷	Ъ	W	Ь	Ь	Ь	Ъ	Ь	Ь	Ь	Ъ	Ь	Ь	Ь	Ь	Ь	Σ	Σ	
Ионы	용	ட்	- 5	CIO3	CIO 7	Br	$\text{BrO}_{\overline{3}}$	_	105	8	$S_2O_3^{2-}$	SO_{3}^{2}	SO_4^{2-}	$NO_{\overline{2}}$	$NO_{\overline{3}}$	PO_4^{3-}	co_{3}^{2}	

	:				Ь		Γ	Н		_	M	Н		
	М	Н	н	Н		М	Н	Н	Ь	Σ	Ŧ	Ŧ	H	Н
	Ь	Ŧ	Ŧ	Ŧ	Ь	Д	Σ	Ŧ	Ь	Ь	Ŧ	Ŧ	Ŧ	Ŧ
Ь	Ŧ	Ŧ	Ŧ	Ŧ	Д	Ь	Ŧ	Ŧ	Ь	Ь	Ŧ	Ъ	Ŧ	Ŧ
Ь	Н	н	H	н	Ь	Ь	н	н	Ь	Ь	H	Ь	Н	н
:	н	Ŧ	Ŧ	Ŧ	Ь	Ь		н	Ь	Ь	H	Ь		Н
 ۵	I	Ŧ	Ŧ	Ŧ	Ъ	۵		≥	۵	Ь	Ŧ	۵	Ŧ	Ŧ
 ۵	ェ	Ŧ	Ŧ	Ŧ	Ъ	۵	Ŧ	×	۵	Ь	Ŧ	۵	I	Ŧ
 :	I	Ŧ	ᆫ	Ŧ	Ъ	۵		M	Δ.	Д	ェ	Δ.	ᆫ	┙
 :	I	_	Ŧ	M	Ъ		Ŧ	Ŧ	Δ.	ᆫ	ᆫ	ᆫ	I	Ŧ
 :	_	┙	_	Ŧ	Ъ	۵				_	_	Δ.		
 ۵	I	I	Ŧ	M	Ŧ	۵	I	I	۵	۵	Σ	Ŧ	Σ	Ŧ
 :	I	_	Ŧ	Ŧ	Ь	۵		Ŧ	۵		ᆫ	۵	I	Ŧ
 :	I	Ŧ	ᆫ	Ŧ	Ъ	۵		Ŧ	Δ.	Д	ᆫ	Δ.		
 :	ェ	Ŧ		Ŧ	Ъ	۵		Ŧ	۵	Ь	Ŧ	۵		
 :	ェ	Ŧ	Ŧ	Ŧ	Ъ	۵		Ŧ	۵	Σ	_	۵	ᆫ	_
 :		Ŧ			Ъ						Ŧ	Σ		
 :		Ŧ	Ŧ	Σ		۵	Σ	Σ	۵	Ь	۵	Σ	Ŧ	П
 ۵	۵	×	Ŧ	Ŧ	Ъ	۵	×	Ŧ	۵	Ь	Ŧ	۵		Ŧ
 ۵	Ξ	Ŧ	Ŧ	Ŧ	Ъ	۵	Σ	Ŧ	Δ.	Д	ェ	Δ.	Ξ	н
 Ь	Ξ	Ŧ	Ŧ	×	M	۵	Ŧ	M	Ъ	Ь	Σ	۵	Ь	Σ
 Ь	۵	Ŧ	Ŧ	×	M	Ъ	Ь	Ŧ	Ь	Ь	۵	۵	Ь	Ъ
 ۵	Σ	Ŧ	Ŧ	M		۵	Ъ	Ŧ	Δ.	Д	凸	Δ.	۵	Ь
 Ь	Σ	Ŧ	۵	Ŧ	Σ	Ъ	Ь	Σ	Ь	Ь	┕	۵	Σ	Ъ
 :	Ξ	Ŧ		Ŧ	Ь	Ъ			Ь	Σ	_	۵		
 Ь	۵	Ь	۵	Ь	Ь	Ъ	Ь	Ь	Ь	Ь	۵	۵	Ь	Ъ
 Ь	۵	Ь	۵	Ь	Ь	Ъ	Ь	Ь	Ь	Ь	۵	۵	Ь	Ъ
 Ь	Σ	Ь	۵	Ŧ	Ь	Ъ	Ь	Ь	Ь	Ь	۵	۵	Ь	Ъ
 HCO 3	$BO_{\overline{2}}$	SiO_3^{2-}	AsO_3^{3-}	AsO_4^{3-}	SeO_4^{2-}	MnO ₄	CrO_4^{2-}	$C_2O_4^{2-}$	-000H	CH3C00-	S	-NOS	[Fe(CN) ₆] ³⁻	[Fe(CN) ₆] ⁴⁻

Обозначение: Р - вещество растворимо в воде (> 1 г/100 г раствора); М - вещество мало растворимо в воде (0,01-1 г/100 г раствора); Н - вещество не растворимо в воде (< 0,01 г/100 г раствора); Г - вещество необратимо гидролизуется; Д – вещество диспропорционирует при контакте с водой; -- - вещество не существует. Не заполненная клетка – нет данных.

химия

Сборник индивидуальных заданий

Редактор Л.Н. Ветчакова Выпускающий редактор И.П. Брованова Компьютерная верстка Л.А. Веселовская

Налоговая льгота – Общероссийский классификатор продукции Издание соответствует коду 95 3000 ОК 005-93 (ОКП)

Подписано в печать 04.04.2016. Формат 60 × 84 1/16. Бумага офсетная. Тираж 200 экз. Уч.-изд. л. 2,79. Печ. л. 3,0. Изд. № 61. Заказ № Цена договорная

Отпечатано в типографии Новосибирского государственного технического университета 630073, г. Новосибирск, пр. К. Маркса, 20