INTRODUCTION TO RANDOM FIELDS

CARSON JAMES

Contents

1.	Random Fields	1
1.1.	. Introduction	1
1.2.	2. Differentiability	1

1. Random Fields

1.1. Introduction.

Definition 1.1.1. Let (Ω, \mathcal{F}, P) be a probability space, (X, \mathcal{A}) a measureable space, Y a Banach space and $f: X \to L_Y^2(\Omega, \mathcal{F})$. Then f is said to be a **random field** if for each $\omega \in \Omega$, $f(\cdot)(\omega) \in L_Y^0(X, \mathcal{A})$. We define

$$F_Y(X) = \{ f : X \to L_Y^2(\Omega, \mathcal{F}, P) : f \text{ is a random field} \}$$

Definition 1.1.2. Let (Ω, \mathcal{F}, P) be a probability space, (X, \mathcal{A}) a measureable space, Y a Banach space and $f \in F_Y(X)$. For $\omega \in \Omega$, we define the **sample of** f **at** ω , denoted $f_{\omega} \in L^0_Y(X, \mathcal{A})$, by

$$f_{\omega}(x) = f(x)(\omega)$$

We define $f_{\Omega} = \{f_{\omega} : \omega \in \Omega\} \subset L_Y^0(X, \mathcal{A})$. Let p be a property on $L_Y^0(X, \mathcal{A})$. Then f is said to have **samples with property** p if for each $\omega \in \Omega$, f_{ω} has property p.

Definition 1.1.3. Let (Ω, \mathcal{F}, P) be a probability space, (X, \mathcal{A}) a measureable space, Y a Banach space and $f \in F_Y(X)$. We define the **mean of** f, denoted $\mu_f : X \to Y$, by

$$\mu_f(x) = E(f(x))$$

Definition 1.1.4. Let (Ω, \mathcal{F}, P) be a probability space, (X, \mathcal{A}) a measureable space, Y a Hilbert space and $f \in F_Y(X)$. We define the **covariance of** f, denoted $c_f : X \times X \to Y$, by

$$c_f(x,y) = E[\langle f(x) - \mu(x), f(y) - \mu(y) \rangle]$$

1.2. Differentiability.

Note 1.2.1. Let (Ω, \mathcal{F}, P) be a probability space, a X a Banach space, Y a Banach space and $f \in F_Y(X)$. Let $x_0 \in X$. Many sources define mean square differentiability of f. However, this is just the Frechet derivative of f.

Exercise 1.2.2. Let (Ω, \mathcal{F}, P) be a probability space, a X a Banach space, Y a separable Banach space, $f \in F_Y(X)$ and $x_0 \in X$. If f is Frechet differentiable at x_0 , then μ_f is Frechet differentiable at x_0 and $E(Df(x)) = D\mu_f(x)$.

Proof. Suppose that f is Frechet differentiable at x_0 . Then

$$f(x_0 + h) = f(x_0) + Df(x_0)(h) + o(||h||)$$
 as $h \to 0$