Predict prostate cancer risk using SNPs:

— Promising but complex

Jianfeng Xu, M.D., Dr.PH

Professor of Epidemiology and Cancer Biology Director, Center for Cancer Genomics Wake Forest University School of Medicine

Two important points

- Risk prediction using genetic variants is promising
- It is complex, and much more research is needed

GWAS of prostate cancer

Differences: 2004 - 2008

Risk factors 2004

- Age
- Race
- Family history

Risk factors 2008

- Age
- Race
- Family history
- Locus 1
- Locus 2
-
-
- Locus 16

Consistently replicated

Prostate cancer risk associated variants identified from GWAS

	Allele frequency							
SNPs	Chr	Position	Cases	Controls	OR (95% CI)	Р		
rs2660753	3p12	87,193,364	0.10	0.08	1.32 (1.13-1.54)	3.4E-04		
rs9364554	6q25	160,804,075	0.33	0.31	1.12 (1.02-1.22)	0.02		
rs10486567	7p15	27,749,803	0.78	0.76	1.12 (1.01-1.24)	0.03		
rs6465657	7q21	97,654,263	0.51	0.47	1.16 (1.06-1.26)	6.7E-04		
rs16901979	8q24 (2)	128,194,098	0.06	0.03	1.66 (1.34-2.07)	3.1E-06		
rs6983267	8q24 (3)	128,482,487	0.56	0.51	1.22 (1.12-1.33)	3.6E-06		
rs1447295	8q24 (1)	128,554,220	0.17	0.14	1.21 (1.08-1.36)	1.6E-03		
rs10993994	10q11	51,219,502	0.43	0.39	1.15 (1.05-1.25)	1.6E-03		
rs10896449	11q13	68,751,243	0.49	0.46	1.14 (1.05-1.25)	2.1E-03		
rs4430796	17q12	33,172,153	0.61	0.56	1.24 (1.14-1.35)	8.5E-07		
rs1859962	17q24.3	66,620,348	0.54	0.50	1.17 (1.08-1.28)	2.0E-04		
rs5945619	Xp11	51,074,708	0.42	0.38	1.20 (1.06-1.36)	3.5E-03		

Frequent in populations

Prostate cancer risk associated variants identified from GWAS

			Allele frequency			
SNPs	Chr	Position	Cases	Controls	OR (95% CI)	P
rs2660753	3p12	87,193,364	0.10	0.08	1.32 (1.13-1.54)	3.4E-04
rs9364554	6q25	160,804,075	0.33	0.31	1.12 (1.02-1.22)	0.02
rs10486567	7p15	27,749,803	0.78	0.76	1.12 (1.01-1.24)	0.03
rs6465657	7q21	97,654,263	0.51	0.47	1.16 (1.06-1.26)	6.7E-04
rs16901979	8q24 (2)	128,194,098	0.06	0.03	1.66 (1.34-2.07)	3.1E-06
rs6983267	8q24 (3)	128,482,487	0.56	0.51	1.22 (1.12-1.33)	3.6E-06
rs1447295	8q24 (1)	128,554,220	0.17	0.14	1.21 (1.08-1.36)	1.6E-03
rs10993994	10q11	51,219,502	0.43	0.39	1.15 (1.05-1.25)	1.6E-03
rs10896449	11q13	68,751,243	0.49	0.46	1.14 (1.05-1.25)	2.1E-03
rs4430796	17q12	33,172,153	0.61	0.56	1.24 (1.14-1.35)	8.5E-07
rs1859962	17q24.3	66,620,348	0.54	0.50	1.17 (1.08-1.28)	2.0E-04
rs5945619	Xp11	51,074,708	0.42	0.38	1.20 (1.06-1.36)	3.5E-03

Moderate individual effect

Prostate cancer risk associated variants identified from GWAS

SNPs Chr Position Cases Controls OR (95% CI) rs2660753 3p12 87,193,364 0.10 0.08 1.32 (1.13-1.54) rs9364554 6q25 160,804,075 0.33 0.31 1.12 (1.02-1.22)	P 3.4E-04
· · · · · · · · · · · · · · · · · · ·	3.4E-04
rs9364554 6q25 160,804,075 0.33 0.31 1.12 (1.02-1.22)	
	0.02
rs10486567 7p15 27,749,803 0.78 0.76 1.12 (1.01-1.24)	0.03
rs6465657 7q21 97,654,263 0.51 0.47 1.16 (1.06-1.26)	6.7E-04
rs16901979 8q24 (2) 128,194,098 0.06 0.03 1.66 (1.34-2.07)	3.1E-06
rs6983267 8q24 (3) 128,482,487 0.56 0.51 1.22 (1.12-1.33)	3.6E-06
rs1447295 8q24 (1) 128,554,220 0.17 0.14 1.21 (1.08-1.36)	1.6E-03
rs10993994 10q11 51,219,502 0.43 0.39 1.15 (1.05-1.25)	1.6E-03
rs10896449 11q13 68,751,243 0.49 0.46 1.14 (1.05-1.25)	2.1E-03
rs4430796 17q12 33,172,153 0.61 0.56 1.24 (1.14-1.35)	8.5E-07
rs1859962 17q24.3 66,620,348 0.54 0.50 1.17 (1.08-1.28)	2.0E-04
rs5945619 Xp11 51,074,708 0.42 0.38 1.20 (1.06-1.36)	3.5E-03

Cumulative effect of 5 SNPs

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Cumulative Association of Five Genetic Variants with Prostate Cancer

S. Lilly Zheng, M.D., Jielin Sun, Ph.D., Fredrik Wiklund, Ph.D., Shelly Smith, M.S., Pär Stattin, M.D., Ph.D., Ge Li, M.D., Hans-Olov Adami, M.D., Ph.D., Fang-Chi Hsu, Ph.D., Yi Zhu, B.S., Katarina Bälter, Ph.D., A. Karim Kader, M.D., Ph.D., Aubrey R. Turner, M.S., Wennuan Liu, Ph.D., Eugene R. Bleecker, M.D., Deborah A. Meyers, Ph.D., David Duggan, Ph.D., John D. Carpten, Ph.D., Bao-Li Chang, Ph.D., William B. Isaacs, Ph.D., Jianfeng Xu, M.D., D.P.H., and Henrik Grönberg, M.D., Ph.D.

Cumulative effect of five risk variants and family history on prostate cancer risk

Stronger cumulative effect

Figure 1. Absolute risk for prostate cancer at age 55-74 years by number of risk alleles and family history 0.45 Absolute risk for prostate cancer at age 55-74 years → All men 0.40 P-trend = 10^{-28} 0.35 0.34 0.30 0.25 0.20 0.15 0.10 0.05 12 0-6 7 10 11 13 ≥ 15

Number of risk alleles inherited

14

Even stronger with positive family history

Can we use it to predict prostate cancer risk?

Not that fast!

More researched is needed

- Larger sample size and prospective studies
- Issues of PSA detection bias
- Aggressive vs. non-aggressive disease
- Race-specific effects
- Supplement PSA in predicting positive biopsy
- Targeted chemoprevention (e.g. finasteride)

Larger cohort studies are needed

To obtain more stable and unbiased estimates of RR

Table 2. Associations prostate cancer risk with number of risk alleles of 14 SNPs in CAPS

# of risk	No. of subj	ects (%)	All prostate cancer		Family	Family history (yes)		Family history (no)	
alleles	Controls	Cases	OR	95% CI	OR	95% CI	OR	95% CI	
0-6	89 (5.17)	92 (3.17)	0.73	(0.52-1.01)	0.66	(0.23-1.87)	0.75	(0.53-1.07)	
7	99 (5.75)	102 (3.52)	0.68	(0.50-0.94)	0.65	(0.26-1.60)	0.69	(0.49 - 0.97)	
8	183 (10.63)	211 (7.28)	0.78	(0.61-1.01)	0.88	(0.42-1.86)	0.77	(0.59-1.01)	
9	214 (12.43)	307 (10.59)	0.97	(0.76-1.22)	0.90	(0.46-1.75)	0.97	(0.75-1.24)	
10	270 (15.69)	399 (13.77)	0.98	(0.79-1.22)	1.24	(0.63-2.47)	0.97	(0.77-1.22)	
11	285 (16.56)	417 (14.39)	1.00		1.00		1.00		
12	254 (14.76)	441 (15.22)	1.15	(0.93-1.43)	0.99	(0.54-1.84)	1.16	(0.92-1.47)	
13	163 (9.47)	363 (12.53)	1.44	(1.13-1.83)	1.70	(0.84-3.46)	1.37	(1.06-1.78)	
14	93 (5.40)	281 (9.70)	2.04	(1.54-2.70)	2.37	(1.02-5.47)	1.95	(1.45-2.64)	
≥15	71 (4.13)	285 (9.83)	2.66	(1.96-3.60)	3.55	(1.36-9.26)	2.52	(1.82-3.47)	

Based on number of risk alleles from the 14 prostate cancer risk associated SNPs (0-21 observed in CAPS from 27 possible alleles

PSA detection bias

Association of SNPs with PSA levels in controls

TABLE II. Multivariate Analysis of PSA Levels Among Meno Without a Diagnosis of Prostate Cancer

	Region	Position ^a	Regression coefficient	P-value ^b
Age (year)			0.04	4.0E-21
Geographic region (2 vs. 1)			0.11	0.1
rs10486567	7p15	27,749,803	0.14	3.0E - 04
rs10993994	10q11	51,219,502	0.12	4.0E - 04
rs4962416	10q26	126,686,862	0.10	9.0E - 03
rs4430796	17q12	33,172,153	0.13	8.0E - 05
rs2735839	19q13	56,056,435	0.11	0.03
rs5945619	Xp11	51,074,708	0.11	0.02

^aBuild35.

^bTest were based on log-transformed PSA levels and assuming an additive model for each SNP.

No differences between aggressive and non-aggressive disease

GW	ΙΔς	rick	SNE	c in	IHH	cases

			Fı			
CHR	SNP	Note	Cont	Agg	Nonagg	
			N=482	N=3,027	N=2,666	P
2	rs721048	2p15	0.20	0.21	0.22	0.23
3	rs2660753	3p12	0.12	0.13	0.14	0.18
6	rs9364554	6q25	0.27	0.30	0.28	0.076
7	rs10486567	7p15	0.80	0.78	0.80	0.26
7	rs6465657	7q21	0.54	0.52	0.52	0.97
8	rs16901979	8q24 (2)	0.04	0.05	0.05	0.85
8	rs6983267	8q24 (3)	0.50	0.56	0.56	0.43
8	rs1447295	8q24 (1)	0.08	0.13	0.13	0.74
9	rs1571801	GASP1	0.23	0.25	0.25	0.63
10	rs10993994	10q11	0.43	0.47	0.49	0.14
10	rs4962416	10q26	0.28	0.31	0.32	0.61
11	rs10896449	11q13 (1)	0.52	0.58	0.57	0.47
17	rs11649743	17q12 (2)	0.82	0.83	0.84	0.055
17	rs4430796	17q12 (1)	0.51	0.57	0.57	0.70
17	rs1859962	17q24.3	0.52	0.49	0.47	0.36
19	rs2735839	19q13 (KLK3)	0.86	0.86	0.88	0.001
23	rs5945619	Xp11	0.33	0.40	0.39	0.45

PSA gene SNP with pathologic variables

"European" GWAS SNPs in African Americans

Table 1. Summary results of prostate cancer association in African Americans

		Allele fr	equency		Allelic test	
CHR	SNP	Case	Cont	OR	95% CI	P -ajusted
2p15	rs721048	0.06	0.05	1.24	0.91-1.71	0.1758
3p12	rs2660753	0.49	0.47	1.15	1.00-1.32	0.05477
6q25	rs9364554	0.07	0.07	0.88	0.66-1.17	0.3838
7p15 (JAZF1)	rs10486567	0.74	0.72	0.91	0.78-1.07	0.2551
7q21 (LMTK2)	rs6465657	0.85	0.86	0.96	0.78-1.18	0.6773
8q24 (2)	rs16901979	0.48	0.42	1.38	1.18-1.60	3.10E-05
8q24 (3)	rs6983267	0.90	0.89	0.82	0.65-1.04	0.1043
8q24 (1)	rs1447295	0.32	0.32	1.04	0.89-1.21	0.6277
10q11 (MSMB)	rs10993994	0.61	0.60	0.92	0.80-1.06	0.2371
10q26 (CTBP2)	rs4962416	0.18	0.18	1.06	0.88-1.27	0.5192
11q13 (2)	rs12418451	0.13	0.13	0.90	0.73-1.11	0.3148
11q13 (1)	rs10896449	0.69	0.68	0.96	0.82-1.11	0.5612
17q12 (2) (HNF1B)	rs11649743	0.94	0.93	0.86	0.65-1.15	0.3113
17q12 (1) (HNF1B)	rs4430796	0.36	0.33	1.13	0.97-1.31	0.109
19q13 (KLK3)	rs2735839	0.68	0.70	1.11	0.95-1.29	0.1771
Xp11	rs5945619*	0.40	0.37	1.10	0.90-1.35	0.3531

Can genetic variants complement PSA?

- Improve predictive value of positive biopsy
- Reduce need for multiple biopsies
- Clinical trials needed

Which subset of men are the best candidates for targeted chemoprevention?

- Finasteride reduces PCa diagnosis by 25% (PCPT)
- Finasteride also reduces aggressive PCa diagnosis by 27%
- Men at increased risk to PCa may benefit more from chemoprevention, under a multi-factorial model

Summary

- Promising but complex
- Genetic testing is more important for prostate cancer because few risk factors are known
- Complexity is the norm rather than the exception
 - Therefore, responsible implementation will require the input of many viewpoints, including geneticists, clinicians, epidemiologists, and genetic counselors
 - A single test of the whole genome for all diseases is difficult
- No need to be afraid, but clearly more research is needed

Acknowledgements

Wake Forest University School of Medicine

S. Lilly Zheng, MD Bao-Li Chang, PhD Wennuan Liu, PhD Jin-Woo Kim, PhD Jielin Sun, PhD A. Karim Kader, MD, PhD Fang-Chi Hsu, PhD Jishan Sun, PhD Tao Li, MD, PhD Ge Li, MD Aubrey R. Turner, MS Tamara S. Adams, MS Yi Zhu, MS Scott Zhang, MS Seong-Tae Kim, PhD

Zhengrong Gao, BS Shelly Smith, MS Lina D. Purcell, BS Latchezar Dimitrov, MS Kristen Pruett

Johns Hopkins Hospital

William B. Isaacs, PhD Patrick C. Walsh, MD Alan W. Partin, MD Bruce J. Trock, PhD Elizabeth Platz, PhD Sarah D. Isaacs, MS Kathleen E. Wiley, MS Marta Gielzak, MS, MS

Guifang Yan, MS Jurga Sauvageot, MS

Swedish collaborators

Henrik Grönberg, MD, PhD Fredrik Wiklund, PhD Hans-Olov Adami, MD, PhD Hans Lilja, MD, PhD Pär Stattin, MD, PhD Jan Adolfsson, MD, PhD

Translational Genomics (TGen)

John D. Carpten, PhD

David Duggan, PhD