1. Koncepce a architektura číslicových počítačů

Pro koncepce číslicových počítačů se používají historicky dvě.

- Hardwardská koncepce
- Von Neumannova koncepce

Základní principy počítače Von Neumanova

A)

- ALU (Aritmeticko-logická jednotka)
- Řadič
- vstupní a výstupní jednotky
- paměť

B)

Algoritmus je převeden do programu (posloupnost instrukcí) => Technické prostředky jsou nezavíslé na řešené úloze.

C)

Všechny data, instrukce a také adresy jsou vyjádřeny dvojkovými číslicemi.

Data a instrukce se uchovávají ve společné paměti na místech označených adresami. Přístup k datům v paměti trvá stejnou dobu pro různá paměťová místa.

E)

Zpracování dat řízené programem probíhá automaticky.

Druhá základní koncepce je Harvardská

Ta se liší od von Neumanovy v bodu d:

počítač má dvě oddělené paměti - jednu jen pro uložení programu, druhou jen pro data.

(Paměťové místo není tedy jednoznačně určeno jen adresou - na stejné adrese jsou dvě, případně i více než dvě, různá paměťová místa.)

Základní pojmy

Procesor

Procesor neboli CPU je elektrický obvod, který zpracovává instrukce a tím vykonává počítačový program.

CPU vykonává základní aritmetické, logické, kontrolní, a I/O operace specifikované v instrukci programu.

Toto vykonává za pomocí hlavní paměti a I/O řadiče a také speciální grafické procesní jednotky.

Toto zařízení na základní desce osobního počítače tvoří základ počítače tak jak ho známe.

Mikroprocesor

Mikroprocesor je obvod obvykle složen na jednom čipu, který dělá stále stejnou činnost.

Jedná se o více účelové, signálem hodin řízené, registrově založené zařízení,

které přijme data ve formě binárního kódu a náležitě zpracuje dle instrukcí ve své paměti.

Odlišnosti od procesoru:

- Většinou daleko nižší takt
- Není to část osobního počítače
- Mnohem nižší bitová architektura

Mikrokontrolér

Mikrokontrolér má v sobě mikroprocesor.

Na čipu Mikrokontroléru najdeme:

- Mikroprocesor
- operační pamět
- pamět programu
- A/D převodník
- I/O řadič
- většinou rozhraní pro sériovou komunikaci
- obvod pro hodinový signál

Mikrokontrolér tedy tvoří kompletní zařízení, které je možné naprogramovat s nějakým programem a ono to bude vykonávát neustále svůj program na základě vstupů/výstupů.

Embedded systém

Jedná se jednoúčelový počítač, ve kterém je řídící systém zcela zabudován do zařízení, které ovládá. Tvůrci těchto zařízení mohou při návrhu myslet jen na jednu úlohu a tím optimalizovat výkon a odebrat nepotřebné části. Jelikož tyto zařízení většinou musí být levné a prodávat se po sériích je kladen důraz na levnost a zvládání primarních úkolů. Může se kupříkladu jednat o herní konzole, bankomaty, digitální kamery atd.

Architektury procesorů

Podle vnitřního uspořádaní dělíme procesory na RISC a CISC

CISC (Complex instruction set computer)

Označení complex vyjadřuje skutečnost, že strojové instrukce pokrývají velmi široký okruh funkcí, které by jinak šly naprogramovat pomocí jednodušších již obsažených strojových instrukcí(například násobení je možné nahradit sčítaním a bitovými posuny).

RISC (Reduced instruction set computer)

RISC udává procesory s redukovanou instrukční sadou, jejichž návrh je zaměřen na jednoduchou, vysoce optimalizovanou sadu strojových instrukcí, která je v protikladu s množstvím specializovaných instrukcí ostatních architektur.Registry bývají víceúčelové, což zjednodušuje návrh překldačů.