

RBF Neural Net

Dr. Goutam Chakraborty

Outline

- Discuss how to improve default Neural Network model performance
- Describe RBF (Radial Basis Function) Neural model
- Demonstrate RBF

How to Improve the Default Neural Net (NN) model?

- A default NN model can be improved in multiple ways:
 - Changing the architecture of the network: number of neurons in a hidden layer, changing the number of hidden layers, changing type of NN from MLP to RBF
 - Changing input variables
 - Perhaps we are putting in too many redundant variables may be we should use variable selection before NN (based on either statistical reasoning or data/business understanding or both)
 - Perhaps we should create combinations of existing variables or create indices
 - Perhaps, recode/combine categories of class variables
 - If for input numeric fields, the data distribution are **very skewed** then some modelers will apply a transformation that will make the skewed distribution appear more flat (uniform) or normal-like.
- Remember, "the proof of the pudding is in the eating" that is, it is only worth doing all these if the performance of the model improves in the validation data

Types of Neural Networks

- MLP (Multi-layered Perceptron)
- RBF (Radial Basis Function)
- So far, we have dealt with MLP only
- Let's understand the difference between the two we will consider a prediction problem (outcome variable: Flag type class A or B and only two input variables Input1 and Input 2)

Decision Surface in MLP

Using a non-linear combination of the inputs, the MLP fits an open curve between the two classes.

RBF Network Architecture

RBF Network Architecture

Operation of a RBF

RBF models place radial basis (circles) functions at different locations in the data space

RBF (Radial Basis Functions)

- Instead of Combination and Transfer function of MLPs, RBF nodes contain a distance function and a transfer function.
- The nodes output is a non-linear function of how close the input is to the target.
- Radial means all inputs that are the same distance from the node's position produce the same output.
 - These points form a circle in 2D, sphere in 3D
- Transfer function in RBF is typically <u>Gaussian (bell-shaped)</u>
 - Generalizations of familiar Normal curve
- Unlike MLP, there are usually no weights between input and hidden layer. Instead this layer has RBF node's position, width and height.

RBF (Radial Basis Functions)

- As with MLP, the connections between hidden layers and the output layer has weights that are optimized during the training process.
- As more nodes or inputs are added, the response surface can get very complicated and <u>approximate any shape</u>.
- Since the output of RBF node is a function of how close it is to an input record, placement of nodes is important.
 - One strategy is to choose <u>locations evenly</u> making no assumptions about patterns in the data.
 - Another strategy is to first run a clusters and then place the RBF nodes at the center of those clusters.
 - This may produce <u>uneven coverage</u> of the input space

RBF in SAS EM

- You get seven different choices of RBF depending on whether you want equal/unequal width/heights etc.
- Add another Neural Network node and connect to regression(optimal) node.
 - Click on Network ellipsis button and then use Architecture drop-down. Select RBF with unequal Width run and take a look at the model fit statistics.
 - You should try running each of these RBFs (perhaps change number of nodes etc.) on your own in this data and see for yourself how they perform
- Read the help file in SAS EM about RBF for more details

Performance of Neural Network

- All Variables (No selection):
 - Number of Parameters = 253, ASE (V) = 0.2429, Misclassification (V) = 0.4301
- With variable Selection:
 - Number of Parameters = 19, ASE (V) = 0.2404, Misclassification (V) = 0.4216
- With variable Selection and 6 neurons:
 - Number of Parameters = 37, ASE (V) = 0.2398, Misclassification (V) = 0.4228
- AutoNeural:
 - Number of Parameters = 7, ASE (V) = 0.2411, Misclassification (V) = 0.4175
- RBF
 - Number of Parameters = 19, ASE (V) = 0.2409, Misclassification (V) = 0.4253