PROJETO 2

PREDIÇÃO

Este documento apresenta as premissas do Projeto 2 de Ciência dos Dados.

Objetivo

O principal objetivo do Projeto 2 é **prever uma variável principal em função de demais outras variáveis que podem influenciar em seu comportamento**. Para seu conhecimento, a tabela abaixo mostra como essas variáveis são nomeadas nas áreas de ciência dos dados e estatística.

	Ciencia dos dados	Estatistica
Variával principal	Taract	Variável resposta ou
Variável principal	Target	dependente
Demais variáveis	Features	Variáveis explicativas ou
Demais Vallaveis	reutures	independentes

O tema deverá ser proposto pelo grupo, assim como a busca por uma base de dados que permita responder alguns interesses levantados no tema escolhido.

O tema deve deixar claro uma pergunta e se o objetivo contempla:

- Prever um rótulo (nesse caso, o target é qualitativo e trata-se de uma classificação). Por exemplo, considerando uma playlist de uma pessoa, Spotify deve ou não recomendar uma nova música a essa pessoa.
- Prever uma informação numérica (nesse caso, o target é quantitativo). Por exemplo, considerando as algumas características de imóveis de uma determinada região, uma corretora de imóveis deve prever o valor de um novo imóvel que será lançado nessa região.

Habilidades a serem desenvolvidas no projeto

A condução da análise de dados desse projeto deve mostrar elevado grau de: autonomia dos integrantes do grupo; de liberdade de escolha do tema; e de aprendizado das técnicas mais adequadas.

Algumas técnicas que podem ser utilizadas: regressão linear; regression tree; random forest regression; multinomial naive bayes; regressão logística; decision tree e random forest. Para que este fim possa ser alcançado, os estudantes deverão se aprofundar nas técnicas escolhidas enquanto realizam o projeto.

É importante que o trabalho produza uma conclusão de previsão do target escolhido e vá muito além da análise exploratória.

Grupos

O projeto pode ser realizado em grupos de no máximo 4 alunos (inclusive individual).

Possíveis técnicas a serem aplicadas

Se escolher um tema cujo objetivo seja prever *target* quantitativo, poderá utilizar técnicas descritas em <u>Regressão</u>; caso seja prever *target* qualitativo, então poderá utilizar técnicas descritas em <u>Classificadores</u>. As técnicas a seguir são alguns exemplos, mas outras podem ser encontradas muito bem definidas em bibliotecas do Python.

1. Regressão

As técnicas que se prestam a este tipo de análise, por exemplo: regressão linear, regression tree, random forest regression.

Exemplos de datasets (Estes exemplos não devem ser utilizados):

Predição de preços de casas em King County, Seattle

Predição de por quanto uma casa vai ser vendida

Predição de qual rating alguém vai dar para um filme no Netflix

2. Classificadores – extensão do Naive-Bayes

Baseado em todos os dados existentes, classificar em categorias. Técnicas que fazem classificação: *multinomial naive bayes*, regressão logística, *decision tree* e *random forest*.

Exemplos de datasets (Estes exemplos não devem ser utilizados):

Porto Seguro - cliente vai acionar o seguro?

Deteção de fraude no cartão de crédito

Deteção de fraude financeira

Predição de se funcionário vai deixar empresa ou não

Predição de sucesso de um filme

Datasets interessantes para trabalhar no seu projeto

Lista de todos os datasets do Kaggle

Alguns datasets disponíveis publicamente

INEP

Estrutura do Projeto

É esperado que o seu projeto seja autocontido, ou seja, um leitor que não sabe sobre o que ele se trata deve ser capaz de entender a sua linha de raciocínio. Escreva para um leitor que não possui os mesmos conhecimentos técnicos que você (por exemplo: um aluno do primeiro semestre, que ainda não cursou Ciência dos Dados). Abaixo apresentamos uma sugestão de estrutura para organizar o seu documento. Se quiser seguir uma estrutura diferente, valide-a primeiro com seu professor.

A proposta do Projeto 2 foi inspirada em um trabalho que constrói alguns modelos preditivos de notas de redação do ENEM 2015 baseados em diversos fatores acerca de um candidato. Acesse-o <u>aqui</u>.

IMPORTANTE: Independente da estrutura adotada, a qualidade do texto produzido é tão importante quanto a análise em si e também será avaliada. Não adianta obter resultados excelentes se eles não forem comunicados de maneira clara. Veja <u>este link</u> para estudar mais a importância de modelos preditivos na área de Machine Learning.

A. Introdução

 Detalhar objetivo escolhido para trabalhar neste projeto juntamente com descrição da base de dados. Pesquise trabalhos na literatura que discutam o tema escolhido. Para trabalhos acadêmicos, acesse https://scholar.google.com.br/. Guarde as referências estudadas para citálas no seu projeto.

B. Minerando Dados e Características do Dataset

- Se necessário, faça filtro na base de dados tanto de linhas como de colunas em prol do objetivo traçado anteriormente.
- Descreva as variáveis finais que serão utilizadas a partir deste ponto.
- Faça análise descritiva detalhada das variáveis, norteado pelo objetivo do problema. Aqui, é interessante entender como sua variável target se comporta cruzada com cada feature. Note que ao cruzar duas variáveis, pode obter o cruzamento entre: duas variáveis quantitativas; duas variáveis qualitativas; ou uma de cada tipo. Cada cruzamento irá exigir ferramentas descritivas distintas. A tabela a seguir apresenta algumas ferramentas descritivas vistas no curso:

Ferramentas estatísticas

Duas variáveis qualitativas	Tabela cruzadas (com uso de <i>normalize</i> adequado ao problema); Gráficos de barras (empilhados ou <i>stacked</i>); entre outras
Duas variáveis quantitativas	Medidas de associação; Gráfico de dispersão; entre outras
Uma variável de cada	Medidas-resumo da variável quantitativa segmentando por rótulo da variável qualitativa; Histograma (ou boxplot) da variável quantitativa segmentando por rótulo da variável qualitativa; entre outras

 Storytelling com dados: encontre uma representação gráfica que descreva bem os seus dados e que também favoreça no storytelling que pretende fazer ao explicar sua linha de raciocínio às outras pessoas (seja em formato escrito ou em apresentação). Caso tenham interesse em estudar sobre o assunto, vejam neste link a parte Data Visualization. Um trecho com os links dessa seção:

"O que estudar: aprenda sobre Teoria das Cores (tem esse vídeo sensacional que explica um pouco em 2 minutos); Storytelling with Data, da Cole Nussbaumer (aproveita pra seguir o blog); recomendo também seguir o blog Nightingale e participar da comunidade Dataviz Society."

C. Modelos de Predição

 Descreva e justifique sua escolha de pelo menos DOIS modelos de predição. Exemplos de uso de modelos <u>neste trabalho</u>, mas você pode usar outros que fizerem mais sentido para o seu problema. Nesta etapa, ajuste cada modelo preditivo apenas a uma parte da base de dados chamada de treinamento. A validação do modelo está descrita no próximo subitem.

D. Processo e Estatísticas de Validação

- Para os modelos preditivos que foram desenvolvidos no item anterior, é necessário calcular medidas que informam a performance de cada modelo ajustado. Assim, para cada modelo preditivo, faça:
 - O Divida a base de dados na parte treinamento e na parte teste. Use a parte treinamento para estimar cada modelo preditivo.
 - Estude as medidas que permitem validar que seu modelo de previsão está funcionando bem. Veja alguns exemplos nos links a seguir: link 1, link 2 e link 3 (este apenas se target for quantitativo). Escolha medidas de performance para os modelos de predição feitos em seu projeto e compare-as após calcular tanto predizer a variável usando os dados de treinamento como para a parte dos dados teste (o mais importante).
 - Discuta se essas duas medidas se comportam de forma semelhante para as duas partes de dados. Leia o texto disponível <u>aqui</u> para compreender *overfitting* e *underfitting* e refinar senso crítico para discutir sobre as medidas calculadas.
 - Extra: Faça o processo de Validação Cruzada utilizando também 10 ciclos e calcule a performance média e desvio padrão das duas medidas R2 e RMS tanto para a parte treinamento como para a parte teste. Discuta com riqueza de detalhes.

E. Conclusão

 Faça conclusão final com detalhes levando em consideração todas as interpretações realizadas no decorrer do projeto.

F. Referências Bibliográficas

• Todas as pesquisas feitas e estudadas que foram relevantes para o desenvolvimento devem ser citadas no projeto.

IMPORTANTE:

Neste projeto, pode utilizar bibliotecas prontas disponíveis no Python que façam as modelagens de predição aqui exigidas. Entretanto, é necessário explicar o que cada modelo de predição faz e também explicar como funciona a biblioteca escolhida.

Referências

Além dos materiais da disciplina e dos livros-texto, sugerimos as seguintes obras para uma visão geral de:

[Machine Learning / Classificação em Python]:

DANTAS, D. Comparação Entre Técnicas de Regressão Logística, Árvore de Decisão, Bagging e Random Forest Aplicadas a um Estudo de Concessão de Crédito - Trabalho de Conclusão de Curso. UFPR, Curitiba, 2013 - Capítulo 2

<u>Introduction to Statistical Learning - capítulos 4 e 10</u>

Hands-on Machine Learning - notebooks Python. Temos o livro na biblioteca

Python Data Science Handbook - Capítulo 5

Python Machine Learning

[Features]:

https://paulovasconcellos.com.br/como-selecionar-as-melhores-features-para-seu-modelo-de-machine-learning-2e9df83d062a

https://dataml.com.br/feature-engineering-para-variaveis-categoricas-target-encoding/

DICA:

Encontre um *dataset* primeiro de um assunto do seu agrado, depois formule uma pergunta, e daí busque uma técnica condizente.

Não considerar projetos de semestres anteriores como referência para desenvolver este projeto. Isso também é constituído como plágio.

Dimensões de trabalho em grupo

Serão realizadas reuniões de acompanhamento curtas a cada aula. A presença nas aulas estúdios de cada aluno do grupo (canais por grupo serão criados no Teams) será contada como dedicação ao projeto (veja Figura 1).

Para ter a nota dada no projeto, é preciso ter contribuições relevantes no Github do grupo.

Importante: se não houver contribuições relevantes de algum membro do grupo no Github, o grupo pode incluir um texto no repositório (no arquivo README ou em outro arquivo texto), explicando o que cada um fez.

Atenção: A nota de trabalho em equipe nunca aumenta a nota geral do projeto. Em outras palavras, não adianta ter A em trabalho em equipe e D em projeto. A nota final ainda será D.

Figura 1. Avaliação em participação na construção do projeto nas aulas estúdios.

Cronograma

Na tabela a seguir apresentamos uma lista do que deve ser entregue em cada data. **A partir do dia 10/11, todas as entregas** serão feitas via git. Basta que o git esteja atualizado com entregável definido na data abaixo.

Data	Entregável	Meio de entrega
02/11	Kickoff do projeto Usar atendimentos para discutir: proposta de um tema (técnica e dataset) e deixando claro em cada proposta qual o tipo de variável a ser predita (variável target).	Sem entrega.
06/11	Entregável: preencher o formulário com os membros do grupo, o único tema escolhido e o link do github (não precisa ter nenhum commit na hora que for enviar o formulário, só criar o repositório).	https://forms.gle/Gpr YD5ZoPL2KfwnJ8
10/11	Dataset lido Mínimo esperado: um arquivo do jupyter notebook (.ipynb) com o código que lê o dataset (que também deve ser enviado no git) e realiza limpeza e manipulações necessárias no dataset.	Commit no git até 23:59 do dia 10/11.
13/11	Dataset lido e análise exploratória concluída Mínimo esperado: um arquivo do jupyter notebook (.ipynb) com o código que lê o dataset (que também deve ser enviado no git) e realiza uma análise exploratória inicial.	Commit no git até 23:59 do dia 13/11.
17/11 Aula studio 1	Algoritmo gera alguma resposta (<i>check</i> em aula + <i>commit</i> no git). Mínimo esperado: aplica a técnica escolhida e obtém algum resultado, mesmo que ruim.	Commit no git até 23:59 do dia 17/11.
19/11 Aula studio 2	Entrega dos resultados. Mínimo esperado: resultados prontos (ou no máximo faltando algum ajuste).	Commit no git até 23:59 do dia 19/11.
24/11 Aula studio 3	 Relatório (é a versão final do projeto, ou seja, o próprio notebook) com explicação detalhada da análise, conclusões e referências para fundamentação teórica. Um arquivo README explicando o que são os arquivos contidos no repositório (especialmente qual é o arquivo contendo o relatório final, caso exista mais de um arquivo). 	Commit no git até 23:59 do dia 24/11.

Rubricas

Veja a tabela com a rubrica geral para o projeto e para o trabalho em grupo.

Postada no Blackboard e também no Github.