EGZAMIN MATURALNY Z MATEMATYKI

WZORY

SPIS TREŚCI

1.	Wartość bezwzględna liczby	1
2.	Potęgi i pierwiastki	1
3.	Silnia. Symbol Newtona	2
4.	Dwumian Newtona	3
5.	Wzory skróconego mnożenia	
	Ciągi	
7.	Funkcja kwadratowa	
8.	Logarytmy	5
9.	Pochodna funkcji	5
10.	Geometria analityczna	6
	Planimetria	
12.	Stereometria	11
13.	Trygonometria	13
	Kombinatoryka	
	Rachunek prawdopodobieństwa	
	Parametry danych statystycznych	
	Tablica wartości funkcji trygonometrycznych	

1. WARTOŚĆ BEZWZGLĘDNA LICZBY

Wartość bezwzględną liczby rzeczywistej *x* definiujemy wzorem:

$$|x| = \begin{cases} x, & \text{dla } x \ge 0 \\ -x & \text{dla } x < 0 \end{cases}$$

Liczba |x| jest to odległość na osi liczbowej punktu x od punktu 0. W szczególności:

$$|x| \ge 0 \qquad \qquad |-x| = |x|$$

Dla dowolnych liczb *x*, *y* mamy:

wolnych ficzo
$$x$$
, y mamy:
 $|x+y| \le |x| + |y|$ $|x-y| \le |x| + |y|$ $|x \cdot y| = |x| \cdot |y|$

Ponadto, jeśli $y \neq 0$, to $\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$

Dla dowolnych liczb a oraz r, gdzie $r \ge 0$, mamy warunki równoważne:

$$|x-a| \le r \iff a-r \le x \le a+r$$

 $|x-a| \ge r \iff x \le a-r \text{ lub } x \ge a+r$

2. POTĘGI I PIERWIASTKI

Niech n będzie liczbą całkowitą dodatnią. Dla dowolnej liczby a definiujemy jej n—tą potęgę:

$$a^n = \underbrace{a \cdot \dots \cdot a}_{n \cdot n \cdot n}$$

Pierwiastkiem arytmetycznym $\sqrt[n]{a}$ stopnia n z liczby $a \ge 0$ nazywamy liczbę $b \ge 0$ taką, że $b^n = a$.

W szczególności, dla dowolnej liczby a zachodzi równość: $\sqrt{a^2} = |a|$.

Jeżeli a < 0 oraz liczba n jest nieparzysta, to $\sqrt[n]{a}$ oznacza liczbę b < 0 taką, że $b^n = a$. Pierwiastki stopni parzystych z liczb ujemnych nie istnieją.

Niech *m*, *n* będą liczbami całkowitymi dodatnimi. Definiujemy:

- dla
$$a \neq 0$$
:
$$a^{-n} = \frac{1}{a^n} \quad \text{oraz} \quad a^0 = 1$$
- dla $a \geq 0$:
$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

- dla
$$a > 0$$
: $a^{-\frac{m}{n}} = \frac{1}{\sqrt[n]{a^m}}$

Niech r, s będą dowolnymi liczbami rzeczywistymi. Jeśli a > 0 i b > 0, to zachodzą równości:

$$a^r \cdot a^s = a^{r+s}$$

$$\left(a^r\right)^s = a^{r \cdot s}$$

$$\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$$

$$\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$$

Jeżeli wykładniki r, s są liczbami całkowitymi, to powyższe wzory obowiązują dla wszystkich liczb $a \neq 0$, $b \neq 0$.

3. SILNIA. SYMBOL NEWTONA

Silnią liczby całkowitej dodatniej n nazywamy iloczyn kolejnych liczb całkowitych:

$$n! = 1 \cdot 2 \cdot ... \cdot n$$

Ponadto przyjmujemy umowę, że 0!=1.

Dla dowolnej liczby całkowitej $n \ge 0$ zachodzi związek:

$$(n+1)! = n! \cdot (n+1)$$

Dla liczb całkowitych n, k spełniających warunki $0 \le k \le n$ definiujemy symbol Newtona:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Zachodzą równości:

$$\binom{n}{k} = \frac{n(n-1)(n-2) \cdot \dots \cdot (n-k+1)}{1 \cdot 2 \cdot 3 \cdot \dots \cdot k}$$
$$\binom{n}{k} = \binom{n}{n-k} \qquad \binom{n}{0} = 1$$
$$\binom{n}{n} = 1$$

Dla $0 \le k < n$ mamy:

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$$

$$\binom{n}{k+1} = \binom{n}{k} \cdot \frac{n-k}{k+1}$$

4. DWUMIAN NEWTONA

Dla dowolnej liczby całkowitej dodatniej n oraz dla dowolnych liczb a, b mamy:

$$(a+b)^{n} = \binom{n}{0}a^{n} + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^{k} + \dots + \binom{n}{n-1}ab^{n-1} + \binom{n}{n}b^{n}$$

5. WZORY SKRÓCONEGO MNOŻENIA

Z dwumianu Newtona dla n = 2 oraz n = 3 otrzymujemy dla dowolnych liczb a, b:

Dla dowolnej liczby całkowitej dodatniej n oraz dowolnych liczb a, b zachodzi wzór:

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + ... + a^{n-k}b^{k-1} + ... + ab^{n-2} + b^{n-1})$$

W szczególności:

$$a^{2}-b^{2} = (a-b)(a+b)$$

$$a^{3}-b^{3} = (a-b)(a^{2}+ab+b^{2})$$

$$a^{3}+b^{3} = (a+b)(a^{2}-ab+b^{2})$$

6. CIĄGI

Ciąg arytmetyczny

Wzór na n-ty wyraz ciągu arytmetycznego o danym pierwszym wyrazie a_1 i różnicy r:

$$a_n = a_1 + (n-1)r$$

Wzór na sumę $S_n = a_1 + a_2 + ... + a_n$ początkowych n wyrazów ciągu arytmetycznego:

$$S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)r}{2} \cdot n$$

Między sąsiednimi wyrazami ciągu arytmetycznego zachodzi związek:

$$a_n = \frac{a_{n-1} + a_{n+1}}{2} \quad \text{dla} \quad n \ge 2$$

Ciąg geometryczny

Wzór na n-ty wyraz ciągu geometrycznego o danym pierwszym wyrazie a_1 i ilorazie q:

$$a_n = a_1 \cdot q^{n-1}$$

Wzór na sumę $S_n = a_1 + a_2 + ... + a_n$ początkowych n wyrazów ciągu geometrycznego:

3

$$S_n = \begin{cases} a_1 \frac{1 - q^n}{1 - q} & \text{dla} \quad q \neq 1 \\ n \cdot a_1 & \text{dla} \quad q = 1 \end{cases}$$

Między sąsiednimi wyrazami ciągu geometrycznego zachodzi związek:

$$a_n^2 = a_{n-1} \cdot a_{n+1}$$
 dla $n \ge 2$

• Procent składany

Jeżeli kapitał początkowy K złożymy na n lat w banku, w którym oprocentowanie lokat wynosi p% w skali rocznej, to kapitał końcowy K_n wyraża się wzorem:

$$K_n = K \cdot \left(1 + \frac{p}{100}\right)^n$$

Granica ciagu

Jeżeli $\lim_{n\to\infty} a_n = g$ oraz $\lim_{n\to\infty} b_n = h$, to

$$\lim_{n\to\infty} (a_n + b_n) = g + h \qquad \lim_{n\to\infty} (a_n - b_n) = g - h \qquad \lim_{n\to\infty} (a_n \cdot b_n) = g \cdot h$$

Jeżeli ponadto $b_n \neq 0$ dla $n \geq 1$ oraz $h \neq 0$, to

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{g}{h}$$

Jeżeli (a_n) , $n \ge 1$, jest nieskończonym ciągiem geometrycznym o ilorazie |q| < 1, to ciąg sum jego początkowych wyrazów $S_n = a_1 + a_2 + ... + a_n$ ma granicę:

$$\lim_{n\to\infty} S_n = \frac{a_1}{1-q}$$

7. FUNKCJA KWADRATOWA

Postać ogólna funkcji kwadratowej: $f(x) = ax^2 + bx + c$, $a \ne 0$.

Wzór każdej funkcji kwadratowej można doprowadzić do postaci kanonicznej:

$$f(x) = a \cdot \left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a}$$
, gdzie $\Delta = b^2 - 4ac$

pomocnej przy sporządzaniu wykresu.

Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie o współrzędnych $\left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right)$. Ramiona paraboli skierowane są do góry, gdy a>0, do dołu, gdy a<0.

Liczba miejsc zerowych funkcji kwadratowej, czyli liczba pierwiastków równania

$$ax^2 + bx + c = 0$$

zależy od wyróżnika $\Delta = b^2 - 4ac$:

- jeżeli $\Delta < 0$, to funkcja kwadratowa nie ma miejsc zerowych (równanie kwadratowe nie ma pierwiastków rzeczywistych),
- jeżeli $\Delta = 0$, to funkcja kwadratowa ma jedno miejsce zerowe (równanie kwadratowe ma jeden podwójny pierwiastek):

$$x_1 = x_2 = -\frac{b}{2a}$$

– jeżeli $\Delta > 0$, to funkcja kwadratowa ma dwa miejsca zerowe (równanie kwadratowe ma dwa pierwiastki):

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} \qquad x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

Jeśli $\Delta \ge 0$, to wzór funkcji kwadratowej można doprowadzić do postaci iloczynowej:

$$f(x) = a(x-x_1)(x-x_2)$$

Wzory Viéte'a:

$$x_1 + x_2 = \frac{-b}{a} \qquad x_1 \cdot x_2 = \frac{c}{a}$$

8. LOGARYTMY

Niech a > 0 i $a \ne 1$. Logarytmem $\log_a c$ liczby c > 0 przy podstawie a nazywamy wykładnik b potęgi, do której należy podnieść podstawę a, aby otrzymać liczbę c:

$$b = \log_a c \Leftrightarrow a^b = c$$

Równoważnie:

$$a^{\log_a c} = c$$

Dla dowolnych liczb x > 0, y > 0 oraz r zachodzą wzory:

$$\log_a(x \cdot y) = \log_a x + \log_a y \qquad \qquad \log_a x^r = r \cdot \log_a x \qquad \qquad \log_a \frac{x}{y} = \log_a x - \log_a y$$

Wzór na zamianę podstawy logarytmu:

jeżeli a > 0, $a \ne 1$, b > 0, $b \ne 1$ oraz c > 0, to

$$\log_b c = \frac{\log_a c}{\log_a b}$$

9. POCHODNA FUNKCJI

$$\begin{aligned} & \left[c \cdot f(x) \right]' = c \cdot f'(x) & \text{dla } c \in R \\ & \left[f(x) + g(x) \right]' = f'(x) + g'(x) \\ & \left[f(x) - g(x) \right]' = f'(x) - g'(x) \\ & \left[f(x) \cdot g(x) \right]' = f'(x) \cdot g(x) + f(x) \cdot g'(x) \\ & \left[\frac{f(x)}{g(x)} \right]' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{\left[g(x) \right]^2}, & \text{gdy } g(x) \neq 0 \end{aligned}$$

Pochodne niektórych funkcji:

$$f(x) = c \implies f'(x) = 0$$

$$f(x) = ax + b \implies f'(x) = a$$

$$f(x) = ax^{2} + bx + c \implies f'(x) = 2ax + b$$

$$f(x) = \frac{a}{x} \implies f'(x) = \frac{-a}{x^{2}}$$

$$f(x) = x^{r} \implies f'(x) = rx^{r-1}$$

gdzie $r \neq 0$, zaś a, b, c – dowolne liczby rzeczywiste.

Równanie stycznej

Jeżeli funkcja f ma pochodną w punkcie x_0 , to równanie stycznej do wykresu funkcji fw punkcie $(x_0, f(x_0))$ dane jest wzorem:

$$y - f(x_0) = f'(x_0) \cdot (x - x_0)$$

10. GEOMETRIA ANALITYCZNA

Odcinek

Długość odcinka o końcach w punktach $A = (x_A, y_A), B = (x_B, y_B)$ dana jest wzorem:

$$|AB| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Współrzedne środka odcinka AB:

$$\left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}\right)$$

Wektory

Współrzędne wektora \overrightarrow{AB} , który przesuwa punkt A na punkt B:

$$\overrightarrow{AB} = [x_B - x_A, y_B - y_A]$$

Jeżeli $\vec{u} = [u_1, u_2]$, $\vec{v} = [v_1, v_2]$ są wektorami, zaś a jest liczbą, to

$$\vec{u} + \vec{v} = [u_1 + v_1, u_2 + v_2]$$
 $a \cdot \vec{u} = [a \cdot u_1, a \cdot u_2]$

$$\vec{a} \cdot \vec{u} = [\vec{a} \cdot u_1, \vec{a} \cdot u_2]$$

Prosta

Równanie ogólne prostej:

$$Ax + By + C = 0$$
,

gdzie $A^2 + B^2 \neq 0$ (tj. współczynniki A, B nie są równocześnie równe 0).

Jeżeli A = 0, prosta jest równoległa do osi Ox; jeżeli B = 0, prosta jest równoległa do osi Oy; jeżeli C = 0, to prosta przechodzi przez początek układu współrzędnych.

Jeżeli prosta nie jest równoległa do osi Oy, to ma ona równanie kierunkowe:

$$y = ax + b$$

Liczba a to współczynnik kierunkowy prostej:

$$a = tg\alpha$$

Współczynnik b wyznacza na osi Oy punkt, w którym dana prosta ją przecina.

Równanie prostej, przechodzącej przez dwa dane punkty $A = (x_A, y_A)$, $B = (x_B, y_B)$:

$$(y-y_A)(x_B-x_A)-(y_B-y_A)(x-x_A)=0$$

• Prosta i punkt

Odległość punktu $P = (x_0, y_0)$ od prostej o równaniu Ax + By + C = 0 dana jest wzorem:

$$\frac{\left|Ax_0 + By_0 + C\right|}{\sqrt{A^2 + B^2}}$$

Para prostych

Dwie proste, o równaniach kierunkowych

$$y = a_1 x + b_1$$

$$y = a_2 x + b_2$$

spełniają jeden z następujących warunków:

- są równoległe, gdy $a_1 = a_2$,
- są prostopadłe, gdy $a_1 a_2 = -1$,
- tworzą kąt φ taki, że: $0^{\circ} < \varphi < 90^{\circ}$ i $tg\varphi = \left| \frac{a_1 a_2}{1 + a_1 a_2} \right|$.

Jeżeli proste dane są równaniami w postaci ogólnej:

$$A_1x + B_1y + C_1 = 0$$

$$A_{2}x + B_{2}y + C_{2} = 0$$

to odpowiednio:

- są równoległe, gdy $A_1B_2 A_2B_1 = 0$,
- są prostopadłe, gdy $A_1A_2 + B_1B_2 = 0$,
- tworzą kąt φ taki, że: $0^{\circ} < \varphi < 90^{\circ}$ i $tg\varphi = \left| \frac{A_1 B_2 A_2 B_1}{A_1 A_2 + B_1 B_2} \right|$.

Trójkat

Pole trójkąta ABC o wierzchołkach $A = (x_A, y_A)$, $B = (x_B, y_B)$, $C = (x_C, y_C)$, dane jest wzorem:

$$P_{\Delta ABC} = \frac{1}{2} |(x_B - x_A)(y_C - y_A) - (y_B - y_A)(x_C - x_A)|$$

Środek ciężkości trójkąta ABC, czyli punkt przecięcia jego środkowych, ma współrzędne:

$$\left(\frac{x_A + x_B + x_C}{3}, \frac{y_A + y_B + y_C}{3}\right)$$

• Przekształcenia geometryczne

- przesunięcie o wektor $\vec{u} = [a,b]$ przekształca punkt (x,y) na punkt (x+a,y+b);
- symetria względem osi Oy przekształca punkt (x, y) na punkt (-x, y);
- symetria względem punktu (a,b) przekształca punkt (x,y) na punkt (2a-x,2b-y);
- jednokładność o środku w punkcie (0,0) i skali $s \neq 0$ przekształca punkt (x,y) na punkt (sx,sy).

• Równanie okręgu

Równanie okręgu o środku w punkcie (a,b) i promieniu r:

$$(x-a)^{2} + (y-b)^{2} = r^{2}$$

$$x^{2} + y^{2} - 2ax - 2by + c = 0 gdzie r^{2} = a^{2} + b^{2} - c > 0$$

11. PLANIMETRIA

Oznaczenia

lub

 a, b, c – długości boków, leżących odpowiednio naprzeciwko wierzchołków A, B, C;

2p = a + b + c – obwód trójkąta;

 α , β , γ – miary kątów przy wierzchołkach A, B, C;

 h_a , h_b , h_c – wysokości, opuszczone z wierzchołków A, B, C;

R, r – promienie okręgów opisanego i wpisanego.

• Wzory na pole trójkąta

$$\begin{split} P_{\Delta ABC} &= \frac{1}{2} \cdot a \cdot h_a = \frac{1}{2} \cdot b \cdot h_b = \frac{1}{2} \cdot c \cdot h_c \\ P_{\Delta ABC} &= \frac{1}{2} a \cdot b \cdot \sin \gamma = \frac{1}{2} a^2 \frac{\sin \beta \cdot \sin \gamma}{\sin \alpha} = 2R^2 \cdot \sin \alpha \cdot \sin \beta \cdot \sin \gamma \\ P_{\Delta ABC} &= \frac{abc}{4R} = rp = \sqrt{p(p-a)(p-b)(p-c)} \end{split}$$

• Twierdzenie sinusów

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$$

• Twierdzenie cosinusów

$$a^{2} = b^{2} + c^{2} - 2bc \cos \alpha$$

 $b^{2} = a^{2} + c^{2} - 2ac \cos \beta$
 $c^{2} = a^{2} + b^{2} - 2ab \cos \gamma$

• Twierdzenie Pitagorasa (wraz z twierdzeniem odwrotnym do niego)

W trójkącie ABC kąt γ jest prosty wtedy i tylko wtedy, gdy $a^2 + b^2 = c^2$.

Związki miarowe w trójkącie prostokątnym

Załóżmy, że kat γ jest prosty. Wówczas:

$$h_c^2 = |AD| \cdot |DB|$$

$$h_c = \frac{ab}{c}$$

$$a = c \cdot \sin \alpha = c \cdot \cos \alpha$$

$$a = c \cdot \sin \alpha = c \cdot \cos \beta$$

$$a = b \cdot \operatorname{tg}\alpha = b \cdot \operatorname{ctg}\beta$$

$$R = \frac{1}{2}c$$

<u>Twierdzenie Talesa</u> (wraz z twierdzeniem odwrotnym do niego)

Proste AA', BB', CC' są parami równoległe wtedy i tylko wtedy, gdy zachodzi równość:

$$\frac{|OA|}{|OA'|} = \frac{|OB|}{|OB'|} = \frac{|OC|}{|OC'|}$$

Czworokaty

Trapez

Czworokąt, który ma co najmniej jedną parę boków równoległych.

Wzór na pole trapezu:

$$P = \frac{a+b}{2} \cdot h$$

Równoległobok

Czworokat, który ma dwie pary boków równoległych.

Wzory na pole równoległoboku:

$$P = ah = a \cdot b \cdot \sin \alpha = \frac{1}{2} \cdot |AC| \cdot |BD| \cdot \sin \varphi$$

Romb

9

Czworokat, który ma dwie pary boków równoległych jednakowej długości. Wzory na pole rombu:

$$P = ah = a^{2} \cdot \sin \alpha = \frac{1}{2} \cdot |AC| \cdot |BD|$$

• Koło

• Wycinek koła

• Katy w okręgu

Deltoid

Czworokąt, który ma oś symetrii, zawierającą jedną z przekątnych.

Wzór na pole deltoidu:

$$P = \frac{1}{2} \cdot |AC| \cdot |BD|$$

Wzór na pole koła o promieniu *r*:

$$P = \pi r^2$$

Obwód koła o promieniu r:

$$Ob = 2\pi r$$

Wzór na pole wycinka koła o promieniu r i kącie środkowym α °:

$$P = \pi r^2 \cdot \frac{\alpha^{\circ}}{360^{\circ}}$$

Długość łuku wycinka koła o promieniu r i kącie środkowym α °:

$$l = 2\pi r \cdot \frac{\alpha^{\circ}}{360^{\circ}}$$

Miara kata wpisanego w okrąg jest równa połowie miary kata środkowego, opartego na tym samym łuku.

Miary kątów wpisanych w okrąg, opartych na tych samych łukach, są równe.

• Okrąg opisany na czworokącie

Na czworokącie można opisać okrąg wtedy i tylko wtedy, gdy sumy miar jego przeciwległych kątów wewnętrznych są równe 180°:

$$\alpha + \gamma = \beta + \delta = 180^{\circ}$$

• Okrąg wpisany w czworokąt

W czworokąt wypukły można wpisać okrąg wtedy i tylko wtedy, gdy sumy długości jego przeciwległych boków są równe:

$$a+c=b+d$$

12. STEREOMETRIA

• Oznaczenia

P – pole powierzchni całkowitej

 P_p – pole powierzchni podstawy

 P_b – pole powierzchni bocznej

V – objętość

Prostopadłościan

$$P = 2(ab + bc + ac)$$

$$V = abc$$

gdzie *a*, *b*, *c* są długościami krawędzi prostopadłościanu.

• Graniastosłup prosty

$$P_b = 2p \cdot h$$
$$V = P_p \cdot h$$

gdzie 2p jest obwodem podstawy graniastosłupa.

• Ostrosłup

$$V = \frac{1}{3} P_p \cdot h$$

gdzie h jest wysokością ostrosłupa.

• Walec

$$P_b = 2\pi rh$$

$$P = 2\pi r (r+h)$$

$$V = \pi r^2 h$$

gdzie *r* jest promieniem podstawy, *h* wysokością walca.

• Stożek

$$P_b = \pi r l$$

$$P = \pi r (r + l)$$

$$V = \frac{1}{3} \pi r^2 h$$

gdzie r jest promieniem podstawy, h – wysokością, l –długością tworzącej stożka.

• Kula

$$P = 4\pi r^2$$

$$V = \frac{4}{3}\pi r^3$$

gdzie r jest promieniem kuli.

13. TRYGONOMETRIA

• <u>Definicje funkcji trygonometrycznych</u>

$$\sin \alpha = \frac{y}{r} \qquad \cos \alpha = \frac{x}{r}$$

$$tg\alpha = \frac{y}{x} \qquad (x \neq 0)$$

$$ctg\alpha = \frac{x}{y} \qquad (y \neq 0)$$

$$gdzie \quad r = \sqrt{x^2 + y^2}$$

• Wykresy funkcji trygonometrycznych

Związki między funkcjami tego samego kąta

$$\sin^2\alpha + \cos^2\alpha = 1$$

$$tg\alpha = \frac{\sin\alpha}{\cos\alpha}$$

dla $\alpha \neq \frac{\pi}{2} + k\pi$ k – całkowite

$$ctg\alpha = \frac{\cos\alpha}{\sin\alpha} \qquad dla \qquad \alpha \neq k\pi \qquad k - całkowite$$

$$ctg\alpha = \frac{1}{tg\alpha}$$

dla $\alpha \neq \frac{k\pi}{2}$

k – całkowite

Niektóre wartości funkcji trygonometrycznych

α	0 (0°)	$\frac{\pi}{6}$ (30°)	$\frac{\pi}{4}$ (45°)	$\frac{\pi}{3} (60^{\circ})$	$\frac{\pi}{2} (90^{\circ})$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosa	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tgα	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	nie istnieje
ctgα	nie istnieje	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

Wzory redukcyjne

φ =	-α	α	π –α	$\pi + \alpha$	$\frac{\pi}{2}$ $-\alpha$	$\frac{\pi}{2} + \alpha$	$\frac{3\pi}{2}$ $-\alpha$	$\frac{3\pi}{2} + \alpha$	2 π −α
sinφ	- sinα	$\sin \alpha$	$\sin \alpha$	- sinα	cosα	cosα	$-\cos\alpha$	-cosα	$-\sin\alpha$
cosφ	cosα	$\cos \alpha$	-cosα	-cosα	$sin \alpha$	- sinα	$-\sin\alpha$	$\sin \alpha$	cosα
tgφ	- tga	tgα	-tgα	tgα	ctgα	- ctga	ctgα	- ctga	-tga
ctgφ	- ctga	ctgα	- ctga	ctgα	tgα	-tgα	tgα	-tgα	$-ctg\alpha$

• Funkcje sumy i różnicy katów

Dla dowolnych kątów α, β zachodzą równości:

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$

$$\sin(\alpha - \beta) = \sin\alpha \cos\beta - \cos\alpha \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

Ponadto mamy równości:

$$tg(\alpha + \beta) = \frac{tg\alpha + tg\beta}{1 - tg\alpha \cdot tg\beta}$$

$$tg(\alpha - \beta) = \frac{tg\alpha - tg\beta}{1 + tg\alpha \cdot tg\beta}$$

$$ctg(\alpha + \beta) = \frac{ctg\alpha \cdot ctg\beta - 1}{ctg\alpha + ctg\beta}$$

$$ctg(\alpha - \beta) = \frac{ctg\alpha \cdot ctg\beta + 1}{ctg\beta - ctg\alpha}$$

które zachodzą zawsze, gdy są określone i mianownik prawej strony nie jest zerem.

• Funkcje podwojonego kata

$$\sin 2\alpha = 2\sin\alpha\cos\alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

Ponadto, dla tych kątów, dla których prawe strony są określone, mamy równości:

$$\sin 2\alpha = \frac{2tg\alpha}{1 + tg^2\alpha}$$

$$\cos 2\alpha = \frac{1 - tg^2\alpha}{1 + tg^2\alpha}$$

$$tg2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha}$$

• Funkcje potrojonego kata

$$\sin 3\alpha = \sin \alpha \left(3\cos^2 \alpha - \sin^2 \alpha\right) = \sin \alpha \left(3 - 4\sin^2 \alpha\right)$$
$$\cos 3\alpha = \cos \alpha \left(\cos^2 \alpha - 3\sin^2 \alpha\right) = \cos \alpha \left(4\cos^2 \alpha - 3\right)$$

• Sumy i różnice funkcji trygonometrycznych

$$\sin\alpha + \sin\beta = 2\sin\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}$$
$$\sin\alpha - \sin\beta = 2\sin\frac{\alpha - \beta}{2}\cos\frac{\alpha + \beta}{2}$$
$$\cos\alpha + \cos\beta = 2\cos\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}$$
$$\cos\alpha - \cos\beta = -2\sin\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}$$

14. KOMBINATORYKA

Permutacje

Liczba sposobów, w jaki $n \ge 1$ elementów można ustawić w ciąg, jest równa n!

• Wariacje bez powtórzeń

Liczba sposobów, w jaki z n elementów można utworzyć ciąg, składający się z k ($1 \le k \le n$) różnych wyrazów, jest równa

$$n \cdot (n-1) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

• Wariacje z powtórzeniami

Liczba sposobów, w jaki z n elementów można utworzyć ciąg, składający się z k niekoniecznie różnych wyrazów, jest równa n^k .

• Kombinacje

Liczba sposobów, w jaki spośród n elementów można wybrać k $(0 \le k \le n)$ elementów, jest równa $\binom{n}{k}$.

15. RACHUNEK PRAWDOPODOBIEŃSTWA

• Klasyczna definicja prawdopodobieństwa

Niech Ω będzie skończonym zbiorem wszystkich zdarzeń elementarnych. Jeżeli zajście każdego zdarzenia elementarnego jest jednakowo prawdopodobne, to prawdopodobieństwo zajścia zdarzenia $A \subset \Omega$ jest równe

$$P(A) = \frac{|A|}{|\Omega|}$$

gdzie |A| oznacza liczbę elementów zbioru A, zaś $|\Omega|$ – liczbę elementów zbioru Ω .

• Własności prawdopodobieństwa

$$0 \le P(A) \le 1$$
 dla każdego zdarzenia $A \subset \Omega$

$$P(\Omega) = 1$$
 Ω – zdarzenie pewne

$$P(\emptyset) = 0$$
 \emptyset – zdarzenie niemożliwe (pusty podzbiór Ω)

$$P(A) \le P(B)$$
 gdy $A \subset B \subset \Omega$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
, dla dowolnych zdarzeń $A, B \subset \Omega$,

zatem $P(A \cup B) \le P(A) + P(B)$, dla dowolnych zdarzeń $A, B \subset \Omega$.

• Zdarzenia niezależne

Zdarzenia
$$A \subset \Omega$$
 i $B \subset \Omega$ są niezależne, gdy

$$P(A \cap B) = P(A) \cdot P(B)$$

• Prawdopodobieństwo warunkowe

Niech $A, B \subset \Omega$ będą zdarzeniami, przy czym P(B) > 0.

Prawdopodobieństwem warunkowym P(A|B) zajścia zdarzenia A pod warunkiem, że zaszło zdarzenie B, nazywamy liczbę:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

• Twierdzenie o prawdopodobieństwie całkowitym

Jeżeli zdarzenia $B_1, B_2, ..., B_n \subset \Omega$ spełniają warunki:

1.
$$B_i \cap B_j = \emptyset$$
 dla $1 \le i \le n$, $1 \le j \le n$, $i \ne j$,

2.
$$B_1 \cup B_2 \cup ... \cup B_n = \Omega$$
,

3.
$$P(B_i) > 0$$
 dla $1 \le i \le n$

to dla każdego zdarzenia $A \subset \Omega$ zachodzi równość:

$$P(A) = P(A | B_1) \cdot P(B_1) + P(A | B_2) \cdot P(B_2) + ... + P(A | B_n) \cdot P(B_n)$$

• Schemat Bernoulliego

Prawdopodobieństwo uzyskania dokładnie k sukcesów w schemacie n prób Bernoulliego wyraża się wzorem:

$$\binom{n}{k} \cdot p^k \cdot q^{n-k} \qquad p+q=1$$

gdzie:

p – prawdopodobieństwo sukcesu w pojedynczej próbie,

q – prawdopodobieństwo porażki w pojedynczej próbie.

16. PARAMETRY DANYCH STATYSTYCZNYCH

Średnia arytmetyczna

Średnia arytmetyczna n liczb $a_1, a_2, ..., a_n$ jest równa:

$$\frac{a_1 + a_2 + \dots + a_n}{n}$$

Średnia ważona

Średnia ważona n liczb $a_1, a_2, ..., a_n$ którym przypisano odpowiednio dodatnie wagi $w_1, w_2, ..., w_n$ jest równa:

$$\frac{w_1 \cdot a_1 + w_2 \cdot a_2 + \ldots + w_n \cdot a_n}{w_1 + w_2 + \ldots + w_n}$$

Średnia geometryczna

Średnia geometryczna n nieujemnych liczb $a_1, a_2, ..., a_n$ jest równa:

$$\sqrt[n]{a_1 \cdot a_2 \cdot \dots \cdot a_n}$$

• Średnia harmoniczna

Średnia harmoniczna n dodatnich liczb $a_1, a_2, ..., a_n$ jest równa:

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}$$

• Mediana

Medianą uporządkowanego w kolejności niemalejącej ciągu n danych liczbowych $a_1 \le a_2 \le a_3 \le ... \le a_n$ jest:

- dla *n* nieparzystych: $a_{\frac{n+1}{2}}$ (środkowy wyraz ciągu),
- dla *n* parzystych: $\frac{1}{2} \left(a_{\frac{n}{2}} + a_{\frac{n}{2}+1} \right)$ (średnia arytmetyczna środkowych wyrazów ciągu).

• Wariancja i odchylenie standardowe

Wariancją n danych liczbowych $a_1, a_2, ..., a_n$ o średniej arytmetycznej \overline{a} jest liczba:

$$\sigma^{2} = \frac{\left(a_{1} - \overline{a}\right)^{2} + \left(a_{2} - \overline{a}\right)^{2} + \left(a_{3} - \overline{a}\right)^{2} + \dots + \left(a_{n} - \overline{a}\right)^{2}}{n}$$

Odchylenie standardowe σ jest pierwiastkiem kwadratowym z wariancji: $\sigma = \sqrt{\sigma^2}$.

17. TABLICA WARTOŚCI FUNKCJI TRYGONOMETRYCZNYCH

o. [°]	$\sin \alpha$	tgα	0 [0]	
α[°]	$\cos \beta$	$ctg\beta$	β[°]	
0	0,0000	0,0000	90	
1	0,0175	0,0175	89	
2	0,0349	0,0349	88	
3	0,0523	0,0524	87	
4	0,0698	0,0699	86	
5	0,0872	0,0875	85	
6	0,1045	0,1051	84	
7	0,1219	0,1228	83	
8	0,1392	0,1405	82	
9	0,1564	0,1584	81	
10	0,1736	0,1763	80	
11	0,1908	0,1944	79	
12	0,2079	0,2126	78	
13	0,2250	0,2309	77	
14	0,2419	0,2493	76	
15	0,2588	0,2679	75	
16	0,2756	0,2867	74	
17	0,2924	0,3057	73	
18	0,3090	0,3249	72	
19	0,3256	0,3443	71	
20	0,3420	0,3640	70	
21	0,3584	0,3839	69	
22	0,3746	0,4040	68	
23	0,3907	0,4245	67	
24	0,4067	0,4452	66	
25	0,4226	0,4663	65	
26	0,4384	0,4877	64	
27	0,4540	0,5095	63	
28	0,4695	0,5317	62	
29	0,4848	0,5543	61	
30	0,5000	0,5774	60	
31	0,5150	0,6009	59	
32	0,5299	0,6249	58	
33	0,5446	0,6494	57	
34	0,5592	0,6745	56	
35	0,5736	0,7002	55	
36	0,5878	0,7265	54	
37	0,6018	0,7536	53	
38	0,6157	0,7813	52	
39	0,6293	0,8098	51	
40	0,6428	0,8391	50	
41	0,6561	0,8693	49	
42	0,6691	0,9004	48	
43	0,6820	0,9325	47	
44	0,6947	0,9657	46	
45	0,7071	1,0000	45	

F°]	$\sin \alpha$	tgα	0 [0]
α [°]	$\cos \beta$	$\mathbf{ctg}\beta$	β[°]
46	0,7193	1,0355	44
47	0,7314	1,0724	43
48	0,7431	1,1106	42
49	0,7547	1,1504	41
50	0,7660	1,1918	40
51	0,7771	1,2349	39
52	0,7880	1,2799	38
53	0,7986	1,3270	37
54	0,8090	1,3764	36
55	0,8192	1,4281	35
56	0,8290	1,4826	34
57	0,8387	1,5399	33
58	0,8480	1,6003	32
59	0,8572	1,6643	31
60	0,8660	1,7321	30
61	0,8746	1,8040	29
62	0,8829	1,8807	28
63	0,8910	1,9626	27
64	0,8988	2,0503	26
65	0,9063	2,1445	25
66	0,9135	2,2460	24
67	0,9205	2,3559	23
68	0,9272	2,4751	22
69	0,9336	2,6051	21
70	0,9397	2,7475	20
71	0,9455	2,9042	19
72	0,9511	3,0777	18
73	0,9563	3,2709	17
74	0,9613	3,4874	16
75	0,9659	3,7321	15
76	0,9703	4,0108	14
77	0,9744	4,3315	13
78	0,9781	4,7046	12
79	0,9816	5,1446	11
80	0,9848	5,6713	10
81	0,9877	6,3138	9
82	0,9903	7,1154	8
83	0,9925	8,1443	7
84	0,9945	9,5144	6
85	0,9962	11,4301	5
86	0,9976	14,3007	4
87	0,9986	19,0811	3
88	0,9994	28,6363	2
89	0,9998	57,2900	1
90	1,0000	_	0