Adaptive Signal Recovery by Convex Optimization

Dmitrii Ostrovskii

CWI, Amsterdam 19 April 2018

Signal denoising problem

Recover complex **signal** $x = (x_\tau), \tau = -n, ..., n$, from noisy observations

$$y_{\tau} = x_{\tau} + \sigma \xi_{\tau}, \quad \tau = -n, ..., n,$$

where ξ_{τ} are i.i.d. standard complex Gaussian random variables.

• Assumption: signal has unknown shift-invariant structure.

Preliminaries

- Finite-dimensional spaces and norms:
 - $\mathbb{C}_n(\mathbb{Z}) = \{x = (x_\tau)_{\tau \in \mathbb{Z}} : x_\tau = 0 \text{ whenever } |\tau| > n \}$;
 - ℓ_p -norms restricted to $\mathbb{C}_n(\mathbb{Z})$:

$$||x||_p = \left(\sum_{|\tau| \leq n} |x_\tau|^p\right)^{\frac{1}{p}};$$

• Scaled ℓ_p -norms:

$$||x||_{n,p} = \frac{1}{(2n+1)^{1/p}} ||x||_p.$$

- Loss:
 - $\ell(\widehat{x},x) = |\widehat{x}_0 x_0|$ pointwise loss;
 - $\ell(\widehat{x}, x) = \|\widehat{x} x\|_{n,2} \ell_2$ -loss.
- Risk:
 - $R(\hat{x}, x) = [\mathbf{E}\ell(\hat{x}, x)^2]^{\frac{1}{2}};$
 - $R_{\delta}(\widehat{x}, x) = \min\{r \geq 0 : \ell(\widehat{x}, x) \leq r \text{ with probability } \geq 1 \delta\}.$

Adaptive estimation: disclaimer

Classical approach

Given a set \mathcal{X} containing x, look for a **near-minimax**, over \mathcal{X} , estimator \widehat{x}^o . One can often assume that \widehat{x}^o is linear in y (e.g. for pointwise loss)*.

If \mathcal{X} is **unknown**, $\hat{\chi}^o$ becomes an unavailable **linear oracle**. Mimic it!

Oracle approach

Knowing that there exists a linear oracle \hat{x}^o with small risk $R(\hat{x}^o, x)$, construct an adaptive estimator $\hat{x} = \hat{x}(y)$ satisfying an **oracle inequality**:

$$R(\widehat{x},x) \leq P \cdot R(\widehat{x}^o,x) + \mathtt{Rem}, \quad \mathtt{Rem} \ll R(\widehat{x}^o,x).$$

x, \widehat{x}^o can change but P and Rem must be uniformly bounded over (\widehat{x}^o, x) .

• P = "price of adaptation". Inequalities with P = 1 are called **sharp***.

^{*[}Ibragimov and Khasminskii, 1984; Donoho et al., 1990], *[Tsybakov, 2008]

Classical example: unknown smoothness

Let *x* be a regularly sampled function:

$$x_t = f(t/N), \quad t = -N, ..., N,$$

where $f:[-1,1]\to\mathbb{R}$ has weak derivative D^sf of order $s\geq 1$ on [-1,1], and belongs to a Sobolev (q=2) or Hölder $(q=\infty)$ smoothness class:*

$$\mathcal{F}_{s,L} = \{ f(\cdot) : \|D^s f\|_{\mathcal{L}_q} \le L \}.$$

• **Linear oracle:** kernel estimator with properly chosen bandwidth *h*:

$$\widehat{f}(t/N) = \frac{1}{2hN+1} \sum_{|\tau| \le hN} K\left(\frac{\tau}{hN}\right) y_{t-\tau}, \quad |t| \le N - hN.$$

Adaptive bandwidth selection*: Lepski's method, Stein's method,

^{*[}Adams and Fournier, 2003; Brown et al., 1996; Watson, 1964; Nadaraya, 1964; Tsybakov, 2008; Johnstone, 2011], *[Lepski, 1991; Lepski et al., 1997, 2015; Goldenshluger et al., 2011]

Recoverable signals

We consider convolution-type (or time-invariant) estimators

$$\widehat{x}_t = [\varphi * y]_t := \sum_{\tau \in \mathbb{Z}} \varphi_\tau y_{t-\tau},$$

where * is discrete **convolution**, and $\varphi \in \mathbb{C}_n(\mathbb{Z})$ is called **a filter**.

Definition*

A signal x is (n, ρ) -recoverable if there exists $\phi^o \in \mathbb{C}_n(\mathbb{Z})$ which satisfies

$$\left(\mathbf{E} | x_t - [\phi^o * y]_t|^2 \right)^{1/2} \le \frac{\sigma \rho}{\sqrt{2n+1}}, \quad |t| \le 3n.$$

• Consequence: small ℓ_2 -risk: $[\mathbf{E} \| x - \phi^o * y \|_{3n,2}^2]^{1/2} \le \frac{\sigma \rho}{\sqrt{2n+1}}$.

*[Juditsky and Nemirovski, 2009; Nemirovski, 1991; Goldenshluger and Nemirovski, 1997]

Adaptive signal recovery: main questions

Goal

Assuming that x is (n, ρ) -recoverable, construct an **adaptive filter** $\widehat{\varphi} = \widehat{\varphi}(y)$ such that the pointwise or ℓ_2 -risk of $\widehat{\mathbf{x}} = \widehat{\varphi} * y$ is close to $\frac{\sigma \rho}{\sqrt{2n+1}}$.

Main questions:

- Can we adapt to the oracle?
 - **Yes**, but we must pay the price polynomial in ρ ;
- Can $\widehat{\varphi}$ be efficiently computed?
 - Yes, by solving a well-structured convex optimization problem.
- Do recoverable signals with small ρ exist?
 - Yes: when the signal belongs to shift-invariant subspace $S \subset \mathbb{C}(\mathbb{Z})$, dim(S) = s, we have "nice" bounds on $\rho = \rho(s)$.

Adaptive estimators and their analysis

Main idea

"Bias-variance decomposition"

$$\underbrace{x_t - [\phi^o * y]_t}_{\text{total error}} = \underbrace{x_t - [\phi^o * x]_t}_{\text{bias}} + \underbrace{\sigma[\phi^o * \xi]_t}_{\text{stochastic error}} \ .$$

• (n, ρ) -recoverability implies

$$|x_t - [\phi^o * x]_t| \leq \frac{\sigma \rho}{\sqrt{2n+1}}, \ |t| \leq 3n, \quad \text{and} \quad \|\phi^o\|_2 \leq \frac{\rho}{\sqrt{2n+1}}.$$

• Unitary **Discrete Fourier transform** operator $\mathcal{F}_n:\mathbb{C}_n(\mathbb{Z}) \to \mathbb{C}_n(\mathbb{Z})$.

Look at the Fourier transforms

Estimate x via $\widehat{x} = \widehat{\varphi} * y$, where $\widehat{\varphi} = \widehat{\varphi}(y) \in \mathbb{C}_{2n}(\mathbb{Z})$ minimizes the Fourier-domain residual $\|\mathcal{F}_{2n}[y - \varphi * y]\|_p$ while keeping $\|\mathcal{F}_{2n}[\varphi]\|_1$ small.

Motivation: new oracle

Oracle with small ℓ_1 -norm of DFT*

If x is (n, ρ) -recoverable, then there exists a $\varphi^o \in \mathbb{C}_{2n}(\mathbb{Z})$ s.t. for $R = 2\rho^2$,

$$|x_t - [\varphi^o * x]_t| \le \frac{C\sigma \frac{R}{N}}{\sqrt{4n+1}}, \ |t| \le 2n, \quad \|\mathcal{F}_{2n}[\varphi^o]\|_1 \le \frac{R}{\sqrt{4n+1}}.$$

Proof. 1°. Consider $\varphi^o = \phi^o * \phi^o \in \mathbb{C}_{2n}(\mathbb{Z})$. On one hand, for $|t| \leq 2n$,

$$\begin{aligned} |x_t - [\varphi^o * x]_t| &= |x_t - [\phi^o * x]_t| + |[\phi^o * (x - \phi^o * x)]_t| \\ &\leq (1 + ||\phi^o||_1) \max_{|\tau| \leq 3n} |x_\tau - [\phi^o * x]_\tau| \leq \frac{\sigma \rho (1 + \rho)}{\sqrt{2n + 1}}. \end{aligned}$$

2º. On the other hand, we get

$$\|\mathcal{F}_{2n}[\varphi^o]\|_1 = \frac{4n+1}{\sqrt{4n+1}} \|\mathcal{F}_{2n}[\phi^o]\|_2^2 = \sqrt{4n+1} \|\mathcal{F}_n[\phi^o]\|_2^2 \leq \frac{2\rho^2}{\sqrt{4n+1}}.$$

*[Juditsky and Nemirovski, 2009]

Uniform-fit estimators

Constrained uniform-fit estimator*:

$$\widehat{\varphi} \in \underset{\varphi \in \mathbb{C}_n(\mathbb{Z})}{\operatorname{Argmin}} \left\{ \|\mathcal{F}_n[y - \varphi * y]\|_{\infty} : \|\mathcal{F}_n[\varphi]\|_1 \le \frac{\overline{R}}{\sqrt{2n+1}} \right\}. \text{ (CUF)}$$

• **Penalized estimator**: for some $\lambda \geq 0$,

$$\widehat{\varphi} \in \underset{\varphi \in \mathbb{C}_n(\mathbb{Z})}{\operatorname{Argmin}} \left\{ \|\mathcal{F}_n[y - \varphi * y]\|_{\infty} + \sigma \lambda \sqrt{2n + 1} \|\mathcal{F}_n[\varphi]\|_1 \right\}. \quad (\mathsf{PUF})$$

Pointwise upper bound for uniform-fit estimators

Let x be $(\lceil \frac{n}{2} \rceil, \rho)$ -recoverable. Let $\overline{R} = 2\rho^2$ for the constrained estimator, and $\lambda = 2\sqrt{\log[(2n+1)/\delta]}$ for the penalized one, then w.p. $\geq 1 - \delta$,

$$|x_0 - [\widehat{\varphi} * y]_0| \le \frac{C\sigma\rho^4\sqrt{\log[(2n+1)/\delta]}}{\sqrt{2n+1}}.$$

High price of adaptation: $O(\rho^3 \sqrt{\log n})$.

*[Juditsky and Nemirovski, 2009]

Analysis of uniform-fit estimators

Let $\widehat{\varphi}$ be an optimal solution to (CUF) with $\overline{R} = R$, and let

$$\Theta_n(\zeta) = \|\mathcal{F}_n[\zeta]\|_{\infty} = O(\sqrt{\log n})$$
 w.h.p.

1°. Already in the first step, we see why the new oracle is useful:

$$\begin{split} |[x-\widehat{\varphi}*y]_{0}| &\leq \sigma |[\widehat{\varphi}*\zeta]_{0}| + |[x-\widehat{\varphi}*x]_{0}| \\ &\leq \sigma \|\mathcal{F}_{n}[\widehat{\varphi}]\|_{1} \|\mathcal{F}_{n}[\zeta]\|_{\infty} + |[x-\widehat{\varphi}*x]_{0}| \quad \text{[Young's ineq.]} \\ &\leq \frac{\sigma \Theta_{n}(\zeta)R}{\sqrt{2n+1}} + |[x-\widehat{\varphi}*x]_{0}|. \quad \text{[Feasibility of } \widehat{\varphi}] \end{split}$$

2°. To control $|[x - \widehat{\varphi} * x]_0|$, we can add & subtract convolution with φ^o :

$$\begin{split} |x_{0} - [\widehat{\varphi} * x]_{0}| &\leq |[\varphi^{o} * (x - \widehat{\varphi} * x)]_{0}| + |[(1 - \widehat{\varphi}) * (x - \varphi^{o} * x)]_{0}| \\ &\leq \|\mathcal{F}_{n}[\varphi^{o}]\|_{1} \|\mathcal{F}_{n}[x - \widehat{\varphi} * x]\|_{\infty} + (1 + \|\widehat{\varphi}\|_{1}) \|[x - \varphi^{o} * x]\|_{\infty} \\ &\leq \frac{R}{\sqrt{2n + 1}} \|\mathcal{F}_{n}[x - \widehat{\varphi} * x]\|_{\infty} + \frac{CR(1 + R)}{\sqrt{2n + 1}}. \end{split}$$

Analysis of uniform-fit estimators, cont.

3°. It remains to control $\|\mathcal{F}_n[x-\widehat{\varphi}*x]\|_{\infty}$ which can be done as follows:

$$\begin{split} \|\mathcal{F}_{n}[\mathbf{x} - \widehat{\varphi} * \mathbf{x}]\|_{\infty} &\leq \|\mathcal{F}_{n}[\mathbf{y} - \widehat{\varphi} * \mathbf{y}]\|_{\infty} + \sigma \|\mathcal{F}_{n}[\zeta - \widehat{\varphi} * \zeta]\|_{\infty} \\ &\leq \|\mathcal{F}_{n}[\mathbf{y} - \widehat{\varphi} * \mathbf{y}]\|_{\infty} + \sigma (1 + \|\widehat{\varphi}\|_{1})\Theta_{n}(\zeta) \\ &\leq \|\mathcal{F}_{n}[\mathbf{y} - \varphi^{o} * \mathbf{y}]\|_{\infty} + \sigma (1 + \|\widehat{\varphi}\|_{1})\Theta_{n}(\zeta) \\ &\qquad \qquad [\text{Feas. of } \varphi^{o}] \\ &\leq \|\mathcal{F}_{n}[\mathbf{x} - \varphi^{o} * \mathbf{x}]\|_{\infty} + 2\sigma (1 + R)\Theta_{n}(\zeta). \end{split}$$

4°. Finally, note that

$$\begin{split} \left\| \mathcal{F}_{n}[x - \varphi^{o} * x] \right\|_{\infty} &\leq \left\| \mathcal{F}_{n}[x - \varphi^{o} * x] \right\|_{2} \\ &= \left\| \left[x - \varphi^{o} * x \right] \right\|_{2} \qquad \text{[Parseval's identity]} \\ &\leq \sqrt{2n+1} \left\| x - \varphi^{o} * x \right\|_{\infty} \leq \sigma \mathit{CR}. \end{split}$$

Collecting the above, we obtain a bound dominated by $\frac{\sigma CR(1+R)\Theta_n(\zeta)}{\sqrt{2n+1}}$.

Limit of performance

Proposition: pointwise lower bound

For any integer $n \geq 2$, $\alpha < 1/4$, and ρ satisfying $1 \leq \rho \leq n^{\alpha}$, one can point out a family of signals $\mathcal{X}_{n,\rho} \in \mathbb{C}_{2n}(\mathbb{Z})$ such that

- any signal in $\mathcal{X}_{n,\rho}$ is (n,ρ) -recoverable;
- for any estimate \widehat{x}_0 of x_0 from observations $y \in \mathbb{C}_{2n}(\mathbb{Z})$, one can find $x \in \mathcal{X}_{n,\rho}$ satisfying

$$\mathbb{P}\left\{|x_0-\widehat{x}_0|\geq \frac{c\sigma\rho^2\sqrt{(1-4\alpha)\log n}}{\sqrt{2n+1}}\right\}\geq 1/8.$$

Conclusion: there is a gap ρ^2 between upper and lower bounds.

• To bridge it (and encompass ℓ_2 -loss), we introduce new estimators.

Least-squares estimators

Constrained formulation:

$$\widehat{\varphi} \in \underset{\varphi \in \mathbb{C}_n(\mathbb{Z})}{\operatorname{Argmin}} \left\{ \|\mathcal{F}_n[y - \varphi * y]\|_2 : \|\mathcal{F}_n[\varphi]\|_1 \le \frac{\overline{R}}{\sqrt{2n+1}} \right\}; \quad (\mathsf{CLS})$$

• Penalized formulations: \langle ... \rangle.

For the analysis, we have to restrict the set of signals, introducing **shift-invariant subspaces** (s.-i.s.)

Definition. A linear subspace $S \subseteq \mathbb{C}_{\infty}(\mathbb{Z})$ is called **shift-invariant** if it is an invariant subspace of the unit lag operator $[\Delta x]_t = x_{t-1}$.

Oracle inequality for ℓ_2 -loss

Theorem: sharp ℓ_2 -oracle inequality for least-squares estimators

Suppose that x belongs to some s.-i.s. S, and let φ^o be feasible in (CLS):

$$\|\mathcal{F}_n[\varphi^o]\|_1 \leq \frac{\overline{R}}{\sqrt{2n+1}}.$$

For any $\delta \in (0,1]$, an optimal solution $\widehat{\varphi}$ to (CLS) w.p. $\geq 1-\delta$ satisfies

$$\|x - \widehat{\varphi} * y\|_{n,2} \le \|x - \varphi^o * y\|_{n,2} + \frac{C\sigma}{\sqrt{2n+1}} \sqrt{\overline{R} \log\left(\frac{2n+1}{\delta}\right)} + \dim(S).$$

Consequence. Suppose that x is $(\lceil \frac{n}{2} \rceil, \rho)$ -recoverable, and let $\overline{R} = 2\rho^2$.

Then, $\varphi^o = \phi^o * \phi^o$ satisfies $\|x - \varphi^o * y\|_{n,2} = O\left(\frac{\sigma \rho^2}{\sqrt{2n+1}}\right)$, whence

$$\|x - \widehat{\varphi} * y\|_{n,2} = O\left(\frac{\sigma(\rho^2 + \rho\sqrt{\log n} + \sqrt{\dim(S)})}{\sqrt{2n+1}}\right).$$

Sketch of the proof of ℓ_2 -oracle inequality

Control of the cross-term

$$\widehat{\varphi} \in \underset{\varphi \in \mathbb{C}_n(\mathbb{Z})}{\operatorname{Argmin}} \left\{ \|y - \varphi * y\|_2^2 : \| \mathcal{F}_n[\varphi] \|_1 \le \frac{\overline{R}}{\sqrt{2n+1}} \right\}.$$

- φ^o is **feasible**, so that $\|y \widehat{\varphi} * y\|_2^2 \le \|y \varphi^o * y\|_2^2$.
- Expand the squares:

$$\|x - \widehat{\varphi} * y\|_2^2 = \|x - \varphi^o * y\|_2^2 + 2\sigma^2 \operatorname{Re}\langle \xi, \widehat{\varphi} * \xi \rangle + [\dots]$$

• **Heuristic:** replace convolution in $\langle \xi, \widehat{\varphi} * \xi \rangle_n$ with the cyclic one \circledast :

$$\begin{split} \langle \xi, \widehat{\varphi} \circledast \xi \rangle &= \langle \mathcal{F}_n[\xi], \mathcal{F}_n[\widehat{\varphi} \circledast \xi] \rangle & \text{[Parseval]} \\ &= \sqrt{2n+1} \langle \mathcal{F}_n[\xi], \mathcal{F}_n[\widehat{\varphi}] \odot \mathcal{F}_n[\xi] \rangle & \text{[Diagonalization]} \\ &\leq \sqrt{2n+1} \|\mathcal{F}_n[\xi]\|_{\infty}^2 \|\mathcal{F}_n[\widehat{\varphi}]\|_1 & \text{[Young]} \\ &\leq C \overline{R} \log \left(\frac{2n+1}{\delta}\right) & \text{with probability at least } 1-\delta. \end{split}$$

• Rigorous argument: represent $\langle \xi, \varphi * \xi \rangle_n$ as a random process indexed by φ , and control its maximum on ℓ_1 -ball.

Error decomposition

$$||x - \widehat{\varphi} * y||_2^2 \le ||x - \varphi^o * y||_2^2 + 2\sigma \operatorname{Re} \langle \xi, x - \varphi^o * y \rangle - 2\sigma \operatorname{Re} \langle \xi, x - \widehat{\varphi} * y \rangle.$$

 $\widehat{\varphi}$ -cross-term poses the main difficulty. It can be decomposed as:

$$\begin{split} &\langle \xi, x - \widehat{\varphi} * y \rangle = \langle \Pi_{\mathcal{S}} \xi, x - \widehat{\varphi} * y \rangle + \sigma \langle \Pi_{\mathcal{S}}^{\perp} \xi, \widehat{\varphi} * \xi \rangle + \langle \xi, \Pi_{\mathcal{S}}^{\perp} [x - \widehat{\varphi} * x] \rangle, \\ \text{where } \Pi_{\mathcal{S}} \text{ is the projector onto } \mathcal{S}. \end{split}$$

• For the first term, we use Cauchy-Schwarz + χ^2 -deviation bound:

$$\operatorname{Re} \left\langle \Pi_{\mathcal{S}} \xi, x - \widehat{\varphi} * y \right\rangle \leq \|x - \widehat{\varphi} * y\|_{2} \left[\sqrt{2 \operatorname{dim}(\mathcal{S})} + \sqrt{2 \log \left(\frac{1}{\delta}\right)} \right].$$

- The second term $\langle \Pi_{\mathcal{S}}^{\perp} \xi, \widehat{\varphi} * \xi \rangle$ is bounded similarly to $\langle \xi, \widehat{\varphi} * \xi \rangle$.
- The third term vanishes due to the shift-invariance of S:

$$\Pi_{\mathcal{S}}^{\perp}[x-\widehat{\varphi}*x] \equiv [\Pi_{\mathcal{S}}^{\perp}x] - \widehat{\varphi}*[\Pi_{\mathcal{S}}^{\perp}x] \equiv 0.$$

Summary

We summarize the risk multiplier for $\frac{\sigma}{\sqrt{2n+1}}$ (up to a constant factor):

	Pointwise loss	ℓ_2 -loss
Oracle	ho	ρ
(Adaptive) lower bound	$\rho^2 \sqrt{\log n}$	$ ho\sqrt{\log n}^*$
(Adaptive) upper bound	$\rho^4 \sqrt{\log n}$	$\rho^2 + \rho \sqrt{\log n} + \sqrt{\dim(\mathcal{S})}$

In fact, one can also control the pointwise loss for least-squares estimators, so that $\rho^4 \sqrt{\log n}$ can be replaced with $\rho^3 + \rho^2 \sqrt{\log n} + \rho \sqrt{\dim(\mathcal{S})}$.

^{*}Obtained via a simple argument from the corresponding pointwise bound.

Application:

Recovery from an unknown shift-invariant subspace

Shift-invariant subspaces

Assume that $x \in \mathcal{S} \subset \mathbb{C}_{\infty}(\mathbb{Z})$, a shift-invariant subspace with $\dim(\mathcal{S}) = s$.

Equivalent formulations:

• x satisfies a homogeneous **difference equation** of order $s = \dim(S)$,

$$[P(\Delta)x]_t \equiv 0, \quad t \in \mathbb{Z},$$

where $\Delta : [\Delta x]_t = x_{t-1}$ is the lag operator, and P(z) is a polynomial with deg(P) = s.

• x is an **exponential polynomial** of order s: for some $r \leq s$,

$$x_t = \sum_{k=1}^r q_k(t) e^{\lambda_k t}, \quad \lambda_k \in \mathbb{C},$$

where $\deg(q_k) - 1$ is the multiplicity of the root $z_k = e^{\lambda_k}$ of P(z).

Unknown shift-invariant structure of x is encoded by S, or equivalently, P.

Recoverability for shift-invariant subspaces

Signals from shift-invariant subspaces admit oracle filters with $\rho = \rho(s)$.

Theorem

Let $x \in \mathcal{S}$ where \mathcal{S} is a shift-invariant subspace, $\dim(\mathcal{S}) = s$. Then, for any $n \geq s$ there exists a filter $\phi^o \in \mathbb{C}_n(\mathbb{Z})$ which satisfies

$$x_t - [\phi^o * x]_t \equiv 0$$
 and $\|\phi^o\|_2 \le \sqrt{\frac{s}{2n+1}}$.

- Lower bound $\rho(s) = \Omega(\sqrt{s})$ for $\phi^o = \phi^o(\mathcal{S})$ from parametric theory.
- The result can be extended to signals close to S in $\|\cdot\|_p$ -norm, encompassing **general differential inequalities***:

$$\|P(D)f\|_{\mathcal{L}_p} \leq L$$
, $deg(P) \leq s$.

^{*[}Juditsky and Nemirovski, 2010]

Recoverability for shift-invariant subspaces (cont.)

One-sided filters: $\phi^o \in \mathbb{C}_n^+(\mathbb{Z}) = \{ \varphi \in \mathbb{C}_n(\mathbb{Z}) : \varphi_\tau = 0 \text{ for } \tau < 0 \}.$

• In this case, we consider "generalized harmonic oscillations":

$$x_t = \sum_{k=1}^{r \le s} q_k(t) e^{i\omega_k t}, \quad \omega_k \in [0, 2\pi).$$

We improve over the state-of-the art bound*

$$\|\phi^o\|_2 \le \sqrt{\frac{C\mathsf{s}^3\log(s+1)}{n+1}}:$$

Theorem

Under the premise of the previous theorem, there exists $\phi^o \in \mathbb{C}_n^+(\mathbb{Z})$:

$$x_t - [\phi^o * x]_t \equiv 0$$
 and $\|\phi^o\|_2 \le \sqrt{\frac{C \mathbf{s^2} \log(ns+1)}{n+1}}$.

^{*[}Juditsky and Nemirovski, 2013]

Recovery in ℓ_2 -loss on the whole domain

Goal: recover an ordinary harmonic oscillation on the whole [-n, n]:

$$x_{\tau} = \sum_{k=1}^{s} C_k e^{i\omega_k \tau}, \quad \omega_k \in [0, 2\pi).$$

- Atomic Soft Thresholding*: requires frequency separation by $\frac{2\pi}{2n+1}$.
- One-sided recovery: ℓ_2 -oracle inequality + one-sided oracles.
- Two-zone recovery: ℓ_2 -oracle inequality + two-sided oracle in the center + one-sided oracles in the border zones of size $n/(s \log n)$.

	Arbitrary frequencies	Separated frequencies
AST	$O(n^{-1/4})$ – slow rate	$\frac{\sigma}{\sqrt{n}} \cdot (s \log n)^{1/2} - \text{optimal}$
One-sided recovery	$\frac{\sigma}{\sqrt{n}} \cdot s^2 \log n$	$\frac{\sigma}{\sqrt{n}} \cdot [s + (s \log n)^{1/2}]$
Two-zone recovery	$\frac{\sigma}{\sqrt{n}} \cdot s^{3/2} \log n$	$\frac{\sigma}{\sqrt{n}} \cdot [s + (s \log n)^{1/2}]$

^{*[}Bhaskar et al., 2013; Tang et al., 2013]

Algorithmic implementation

Optimization problem

$$\min_{\varphi \in \Phi(r)} \left\{ F(\varphi) + \mathsf{Pen}(\varphi) \right\},$$

where
$$F(\varphi) = \begin{cases} \|\mathcal{F}_n[y - y * \varphi]\|_{\infty} & \text{for uniform-fit recovery,} \\ \|\mathcal{F}_n[y - y * \varphi]\|_2^2 & \text{for least-squares recovery,} \end{cases}$$

$$\mathsf{Pen}(\varphi) := \mu \| \mathcal{F}_{n}[\varphi] \|_{1}, \quad \mathsf{and} \quad \Phi(r) := \{ \varphi \in \mathbb{C}_{n}(\mathbb{Z}) : \| \mathcal{F}_{n}[\varphi] \|_{1} \le r \} \,.$$

- Simple constraint / penalization after changing variables to $\mathcal{F}_n[\varphi]$.
- Large scale: n up to 10^4 in signal processing and 10^6 - 10^9 in imaging.
- (Sub-)gradient of $F(\varphi)$ in $\mathcal{O}(n \log n)$ via FFT and elementwise ops.
- Low accuracy: approximate solutions with medium accuracy in the objective are sufficient (more precisely later).

First-order proximal methods

Strategies

Least-squares recovery

$$\min_{\varphi \in \Phi(r)} \left\{ \|\mathcal{F}_n[y - y * \varphi]\|_2^2 + \mathsf{Pen}(\varphi) \right\}.$$

- Composite objective with Lipschitz continuous gradient $\nabla F(\varphi)$;
 - Nesterov's Fast Gradient Method, $O(1/k^2)$ convergence.

Uniform-fit recovery

$$\begin{split} & \min_{\varphi \in \Phi(r)} \left\{ \|\mathcal{F}_n[y - y * \varphi]\|_{\infty} + \mathsf{Pen}(\varphi) \right\} \\ & = \min_{\varphi \in \Phi(r)} \max_{\psi \in \Phi(1)} \left\{ \left\langle \psi, y - y * \varphi \right\rangle + \mathsf{Pen}(\varphi) \right\}. \end{split}$$

- Convex-concave saddle-point problem, smooth part is bilinear;
 - Composite Mirror Prox, O(1/k) convergence.
- ullet Non-Euclidean prox $(\ell_1/\ell_2\text{-norm})$, accuracy certificates, adaptive stepsize.

[Nesterov and Nemirovski, 2013; Juditsky and Nemirovski, 2011a,b; Nemirovski et al., 2010]

Convergence

Convergence of the residual (95% upper confidence bound) for harmonic oscillations with s=4 random frequencies, observed with SNR = 4.

Dashed: online accuracy bounds via the accuracy certificate technique.

Statistical accuracy: theoretical results

• Recalling the statistical analysis of the adaptive estimators, we get:

Theorem

Approximate solutions $\tilde{\varphi}$ with objective accuracy $\varepsilon_* = \sigma \rho^2$ for uniform fit, or $\varepsilon_* = \sigma^2 \rho^4$ for least-squares fit, admit the same statistical guarantees as the exact solutions (up to a constant).

 \bullet Combining this with the usual guarantees for CMP and FGM, $\langle ... \rangle$

Corollary

To reach the threshold accuracy ε_* , in each case it is sufficient to perform

$$T_* = O(\|\mathcal{F}_n[y]\|_{\infty}/\sigma)$$

iterations of the suitable first-order algorithm (CMP or FGM).

Statistical accuracy: early stopping experiment

Figure. Comparison of (CLS) with an $\sigma \rho^2$ -accurate solution (Coarse), $0.01\sigma \rho^2$ -accurate solution (Fine), and the oversampled Lasso estimator*.

Two signal generation scenarios are compared: 4 random frequencies on $[0,2\pi]$ (left) and 2 random pairs of $\frac{0.2\pi}{n}$ -close frequencies (right).

Bhaskar et al. [2013]

Statistical accuracy: T_* experiment

Figure. Iteration at which accuracy ε_* is attained *experimentally* for (CUF), left, and (CLS), right (signal with 4 random frequencies).

Constrained least-squares: phase transition

Constrained least-squares can be recast as (non-squared) ℓ_2 -minimization:

$$\min_{\varphi \in \Phi(r)} \mathsf{Res}_2(\varphi) := \|\mathcal{F}_n[y - y * \varphi]\|_2.$$

Objective is non-smooth but can be minimized at rate $O(1/k^2)$ by FGM:

• Indeed, after k iterations of FGM applied to the "squared" problem,

$$\operatorname{\mathsf{Res}}_2^2(\varphi^k) - \operatorname{\mathsf{Res}}_2^2(\tilde{\varphi}^*) \le \frac{Q}{k^2},$$

where φ^* is any minimizer of $\operatorname{Res}_2^2(\cdot)$ on $\Phi(r)$, and Q is a constant.

- Since $t \to t^2$ is monotone on $t \ge 0$, φ_* also minimizes $\mathrm{Res}_2(\cdot)$.
- By the difference-of-squares formula,

$$\mathsf{Res}_2(\tilde{\varphi}^k) - \mathsf{Res}_2(\varphi^*) \leq \frac{Q}{(\mathsf{Res}_2(\tilde{\varphi}_k) + \mathsf{Res}_2(\varphi^*))k^2} \leq \frac{Q}{2\mathsf{Res}_2(\varphi^*)k^2}$$

(Note that this requires the "non-ideal" fit: $Res_2(\varphi^*) > 0$.)

Constrained least-squares: phase transition (cont.)

• We also have the usual O(1/k) rate as in "Nesterov's smoothing":

$$\operatorname{Res}_2(\tilde{\varphi}^k) \leq \sqrt{\operatorname{Res}_2^2(\varphi^*) + \frac{Q}{k^2}} \leq \operatorname{Res}_2(\varphi^*) + \frac{\sqrt{Q}}{k}.$$

• To summarize,

$$\operatorname{\mathsf{Res}}_2(\tilde{\varphi}^k) - \operatorname{\mathsf{Res}}_2(\varphi^*) \le \min\left(\frac{\sqrt{Q}}{k}, \frac{Q}{2\operatorname{\mathsf{Res}}_2(\varphi^*)k^2}\right),$$

i.e. there is an "elbow" at $k pprox \frac{\sqrt{Q}}{2\mathsf{Res}_2(\varphi_*)}$. Confirmed empirically:

Figure. Relative accuracy vs. iteration for (CLS) with non-squared residual solved with Mirror Prox and FGM (2 pairs of close frequencies, SNR = 4).

Conclusions and perspectives

Conclusions

- We construct adaptive estimators for signals with unknown shift-invariant structure;
- We prove statistical bounds on the pointwise and ℓ_2 -loss of the new estimators, and compare them with lower bounds.
- We provide efficient algorithmic implementation for the estimators.
- As an application, we address the problem of signal recovery from a shift-invariant subspace without frequency separation assumptions.

Perspectives

- GPU implementation: gradient computations are reduced to FFT.
- Generalization to indirect observations:

$$y_{\tau} = [\mathbf{a} * \mathbf{x}]_{\tau} + \sigma \xi_{\tau},$$

where $a \in \mathbb{C}_m(\mathbb{Z})$ is a known filter.

- **Applications:** inverse PDEs¹, fluorescence microscopy², exoplanet detection³, ...
- Challenge: adaptation to the "mutual coherency" of a and x.
- Signal recovery on graphs⁴: other domains than \mathbb{Z} .
 - Applications: social network analysis, sensor networks,...
 - Challenge: no FFT, difficult to work in the Fourier domain.

 $^{^{1}}$ [Cavalier et al., 2002], 2 [Waters, 2009; Bissantz et al., 2015], 3 [Fischer et al., 2015; Kim et al., 2017], 4 [Sandryhaila and Moura, 2013]

Thank you for your attention!

Publications and preprints:

- Z. Harchaoui, A. Juditsky, A. Nemirovski, D.O.
 Adaptive Signal Recovery by Convex Optimization. COLT 2015.
- D.O., Z. Harchaoui, A. Juditsky, A. Nemirovski. Structure-Blind Signal Recovery. NIPS 2016. extended version: arXiv:1607.05712.
- D.O, Z. Harchaoui.
 Efficient First-Order Algorithms for Adaptive Signal Denoising.
 Submitted to ICMI 2018.
- D.O, Z. Harchaoui, A. Juditsky, A. Nemirovski.
 Adaptive Signal Recovery: an Overview. In preparation.
- D.O, Z. Harchaoui, A. Juditsky, A. Nemirovski.
 Adaptive Signal Deconvolution by Convex Optimization. *In preparation*.

References I

- Adams, R. A. and Fournier, J. J. (2003). *Sobolev spaces*, volume 140. Academic press.
- Bhaskar, B., Tang, G., and Recht, B. (2013). Atomic norm denoising with applications to line spectral estimation. *IEEE Trans. Signal Processing*, 61(23):5987–5999.
- Bickel, P., Ritov, Y., and Tsybakov, A. (2009). Simultaneous analysis of Lasso and Dantzig selector. *Ann. Statist.*, 37(4):1705–1732.
- Bissantz, K., Bissantz, N., and Proksch, K. (2015). Monitoring of Significant Changes Over Time in Fluorescence Microscopy Imaging of Living Cells. Universitätsbibliothek Dortmund.
- Brown, L. D., Low, M. G., et al. (1996). Asymptotic equivalence of nonparametric regression and white noise. *The Annals of Statistics*, 24(6):2384–2398.
- Bühlmann, P. and Van De Geer, S. (2011). Statistics for high-dimensional data: methods, theory and applications. Springer Science & Business Media.

References II

- Cavalier, L., Golubev, G., Picard, D., Tsybakov, A., et al. (2002). Oracle inequalities for inverse problems. *The Annals of Statistics*, 30(3):843–874.
- Donoho, D. L., Liu, R. C., and MacGibbon, B. (1990). Minimax risk over hyperrectangles, and implications. *The Annals of Statistics*, pages 1416–1437.
- Fischer, D. A., Howard, A. W., Laughlin, G. P., Macintosh, B., Mahadevan, S., Sahlmann, J., and Yee, J. C. (2015). Exoplanet detection techniques. *arXiv* preprint arXiv:1505.06869.
- Goldenshluger, A., Lepski, O., et al. (2011). Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality. *The Annals of Statistics*, 39(3):1608–1632.
- Goldenshluger, A. and Nemirovski, A. (1997). Adaptive de-noising of signals satisfying differential inequalities. *IEEE Transactions on Information Theory*, 43(3):872–889.
- Ibragimov, I. and Khasminskii, R. (1984). Nonparametric estimation of the value of a linear functional in gaussian white noise. *Theor. Probab. & Appl.*, 29:1–32.
- Johnstone, I. (2011). Gaussian estimation: sequence and multiresolution models.

References III

- Juditsky, A. and Nemirovski, A. (2009). Nonparametric denoising of signals with unknown local structure, I: Oracle inequalities. *Appl. & Comput. Harmon. Anal.*, 27(2):157–179.
- Juditsky, A. and Nemirovski, A. (2010). Nonparametric denoising signals of unknown local structure, II: Nonparametric function recovery. *Appl. & Comput. Harmon. Anal.*, 29(3):354–367.
- Juditsky, A. and Nemirovski, A. (2011a). First-order methods for nonsmooth convex large-scale optimization, I: general purpose methods. *Optimization for Machine Learning*, pages 121–148.
- Juditsky, A. and Nemirovski, A. (2011b). First-order methods for nonsmooth convex large-scale optimization, II: utilizing problem structure. *Optimization* for Machine Learning, pages 149–183.
- Juditsky, A. and Nemirovski, A. (2013). On detecting harmonic oscillations. *Bernoulli*, 23(2):1134–1165.
- Juditsky, A. and Nemirovski, A. (2017). Near-optimality of linear recovery from indirect observations. *arXiv preprint arXiv:1704.00835*.

References IV

- Kim, T. H., Lee, K. M., Schölkopf, B., and Hirsch, M. (2017). Online video deblurring via dynamic temporal blending network. In *IEEE International Conference on Computer Vision (ICCV 2017)*.
- Laurent, B. and Massart, P. (2000). Adaptive estimation of a quadratic functional by model selection. *Ann. Statist.*, 28(5):1302–1338.
- Lepski, O. (1991). On a problem of adaptive estimation in Gaussian white noise. *Theory of Probability & Its Applications*, 35(3):454–466.
- Lepski, O. et al. (2015). Adaptive estimation over anisotropic functional classes via oracle approach. *The Annals of Statistics*, 43(3):1178–1242.
- Lepski, O., Mammen, E., and Spokoiny, V. (1997). Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors. *The Annals of Statistics*, pages 929–947.
- Nadaraya, E. A. (1964). On estimating regression. *Theory of Probability & Its Applications*, 9(1):141–142.
- Nemirovski, A. (1991). On non-parametric estimation of functions satisfying differential inequalities.

References V

- Nemirovski, A., Onn, S., and Rothblum, U. (2010). Accuracy certificates for computational problems with convex structure. *Mathematics of Operations Research*, 35(1):52–78.
- Nesterov, Y. and Nemirovski, A. (2013). On first-order algorithms for ℓ_1 /nuclear norm minimization. *Acta Numerica*, 22:509–575.
- Sandryhaila, A. and Moura, J. M. (2013). Discrete signal processing on graphs. *IEEE transactions on signal processing*, 61(7):1644–1656.
- Tang, G., Bhaskar, B., and Recht, B. (2013). Near minimax line spectral estimation. In *Information Sciences and Systems (CISS), 2013 47th Annual Conference on*, pages 1–6. IEEE.
- Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. *J. R. Stat. Soc. Ser. B. Stat. Methodol.*, 58(1):267–288.
- Tsybakov, A. (2008). Introduction to Nonparametric Estimation. Springer.
- Waters, J. C. (2009). Accuracy and precision in quantitative fluorescence microscopy. *The Journal of Cell Biology*, 185(7):1135–1148.
- Watson, G. S. (1964). Smooth regression analysis. *Sankhyā: The Indian Journal of Statistics, Series A*, pages 359–372.