# El Estimador de Regresión en R.

### Muestreo II

### 12 de septiembre de 2017

Se presenta un ejemplo para la implementación del estimador de regresión en R. Se trabaja con la población MU281 del Apéndice B del "Libro Amarillo". Se ensayan algunos de los resultados presentados en el apartado 7.9.1. de dicho libro.

## 1. Introducción

Para empezar, se inicia la sesión en R, luego se carga la libreria **survey** y se leen los datos, que deben estar grabados en en un archivo MU281.txt, en el directorio desde donde se abre el R:

```
> library(survey)
> MU281 <- read.table("MU281.txt", header = TRUE)</pre>
```

Los datos:

> MU281[1:5, ]

|   | LABEL | P85 | P75 | RMT85 | CS82 | SS82 | S82 | ME84 | REV84 | REG | CL |
|---|-------|-----|-----|-------|------|------|-----|------|-------|-----|----|
| 1 | 1     | 33  | 27  | 288   | 13   | 24   | 49  | 2135 | 2836  | 1   | 1  |
| 2 | 2     | 19  | 15  | 139   | 14   | 12   | 41  | 957  | 2035  | 1   | 1  |
| 3 | 3     | 26  | 20  | 196   | 12   | 14   | 41  | 1530 | 6030  | 1   | 1  |
| 4 | 4     | 19  | 15  | 159   | 12   | 19   | 41  | 1059 | 4704  | 1   | 1  |
| 5 | 5     | 56  | 52  | 536   | 20   | 27   | 61  | 3951 | 5183  | 1   | 1  |

de dimensión

> dim(MU281)

[1] 281 11

En este ejemplo, solamente se usan las siguientes variables:

LABEL: las etiquetas,

RMT85: la recaudación por impuestos municipales en 1985 (en millones de coronas),

CS82: el número de bancas del partido conservador en el legislativo municipal y

SS82: el número de bancas del partido social-demócrata en el legislativo municipal.

Construcción de datos poblacionales:

Cálculo de los totales poblacionales:

```
> t.y.U <- sum(U$y)
> t.x1.U <- sum(U$x.1)
> t.x2.U <- sum(U$x.2)
> t.x.U <- t(t(c(N, t.x1.U, t.x2.U)))
> t.y.U

[1] 53151
> t.x.U

       [,1]
[1,] 281
[2,] 2508
[3,] 6193
```

# 2. Resultados para una muestra SI de tamaño n = 100.

Se construye una muestra SI de tamaño n=100:

```
> n <- 100
> pw \leftarrow rep(n/N, N)
> set.seed(48182)
> s <- sample(seq(1, N), n, replace = FALSE, prob = pw)
Con la función svydesign se espesifica el diseño muestral a usar:
> datos <- U[s, ]
> ps <- svydesign(id = ~1, data = datos, fpc = ~N)
> summary(ps)
Independent Sampling design
svydesign(id = ~1, data = datos, fpc = ~N)
Probabilities:
   Min. 1st Qu. Median
                               Mean 3rd Qu.
 0.3559 0.3559 0.3559 0.3559 0.3559
Population size (PSUs): 281
Data variables:
           "v"
                  "x.1" "x.2" "N"
[1] "k"
Se está en condiciones de estimar el total y el desvío del estimador:
> svytotal(~y, ps)
  total
              SE
y 55110 4538.3
Donde:
\hat{t}_1 = \hat{t}_{y\pi} = 55110 = N \sum_s \frac{y_k}{n} = N \bar{y}_s \text{ (Ver (7.9.2))}
У
\hat{V}(\hat{t}_{y\pi}) = 4538,3^2 = N^2 (1-f) \frac{S_{ys}^2}{n}.
Si se quiere utilizar el estimador de razón con la variable auxiliar x.1 se
debe especificar:
> ra1 <- svyratio(~y, ~x.1, ps)
> pop \leftarrow data.frame(x.1 = t.x1.U)
> predict(ra1, pop$x.1)
```

\$total

y 55578.41

x.1

```
$se
```

x.1 y 3534.81

y para la variable x.2

### \$total

x.2

y 54270.38

\$se

x.2

y 3686.643

Se puede verificar, por ejemplo, para x.2:

$$\hat{t}_3 = \hat{t}_{yra}(x,2) = \sum_U x_{2k} \frac{\sum_s \check{y}_k}{\sum_s \check{x}_{2k}} \text{ (Ver (7.9.4))}$$

У

$$\hat{V}(\hat{t}_2) = \hat{V}(\hat{t}_{yra}(x,2)) = N^2 \frac{1-f}{n} \frac{\sum_s g_{ks}^2 e_{ks}^2}{n-1} \text{ (Ver (7.9.8))}$$

con 
$$g_{ks} = \frac{\sum_{U} x_k}{\sum_{s} \check{x}_{2k}}, e_{ks} = y_k - \hat{B}x_{2k} \text{ y } \hat{B} = \frac{\sum_{s} \check{y}_k}{\sum_{s} \check{x}_{2k}}.$$

El estimador de regresión tiene la misma lógica pero con la función svglm, con los siguientes comandos se realizan las estimaciones puntales y las de los desvíos para los estimadores  $\hat{t}_4 = \hat{t}_{yreg}(x1)$ ,  $\hat{t}_5 = \hat{t}_{yreg}(x2)$  y  $\hat{t}_6 = \hat{t}_{yreg}(x1, x2)$  de la sección 7.9.1.

#### Call:

svyglm(formula = y ~ x.1, ps)

Survey design:

svydesign(id = ~1, data = datos, fpc = ~N)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

```
(Intercept) -54.838
                         27.212 -2.015
                                           0.0466 *
x.1
              28.357
                          3.863 7.341 6.28e-11 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
(Dispersion parameter for gaussian family taken to be 23334.76)
Number of Fisher Scoring iterations: 2
> pop <- data.frame(x.1 = t.x1.U)
> predict(reg1, newdata = pop, total = N)
   link
            SE
1 55710 3501.9
> reg2 <- svyglm(y ~ x.2, ps)
> summary(reg2)
Call:
svyglm(formula = y ~ x.2, ps)
Survey design:
svydesign(id = ~1, data = datos, fpc = ~N)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                         37.443 -5.279 7.82e-07 ***
(Intercept) -197.659
x.2
              17.595
                          1.994 8.824 4.31e-14 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 23197.1)
Number of Fisher Scoring iterations: 2
> pop <- data.frame(x.2 = t.x2.U)
> predict(reg2, newdata = pop, total = N)
   link
1 53425 3308.5
> reg12 \leftarrow svyglm(y \sim x.1 + x.2, ps)
> summary(reg12)
Call:
svyglm(formula = y ~ x.1 + x.2, ps)
```

```
Survey design:
svydesign(id = ~1, data = datos, fpc = ~N)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -334.438
                       35.676 -9.374 3.01e-15 ***
                          2.621
                                  8.891 3.32e-14 ***
x.1
              23.304
x.2
              14.491
                          1.521
                                  9.528 1.41e-15 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 12145.86)
Number of Fisher Scoring iterations: 2
> pop <- data.frame(x.1 = t.x1.U, x.2 = t.x2.U)
> predict(reg12, newdata = pop, total = N)
   link
            SE
1 54215 2440.3
```

# 3. El cálculo del estimador de regresión

En esta sección se verifican algunos de los cálculos anteriores.

Los resultados para el estimador  $\hat{t}_1 = \hat{t}_{y\pi}$ :

```
> y.s < -as.matrix(datos\$y)

> tpi < -(N/n) * sum(y.s)

> tpi

[1] 55109.72

> vpi < -N^2 * (1 - n/N) * (1/n) * var(y.s)

> sqrt(vpi)

[,1]

[1,] 4538.307

Para el estimador de regresión, \hat{t}_6 = \hat{t}_{yreg}(x1, x2):

> x.s < -as.matrix(rbind(1, datos\$x.1, datos\$x.2))

> t < -(N/n) * x.s %*% t(x.s)

> t < -(N/n) * x.s %*% y.s
```

```
> b <- solve(T) %*% t
> treg <- t(t.x.U) %*% b
> treg
          [,1]
[1,] 54214.6
> e.k.s <- y.s - t(x.s) %*% b
> vreg1 <- N^2 * (1 - n/N) * (1/n) * var(e.k.s)
> sqrt(vreg1)
           [,1]
[1,] 2485.458
Donde
   vreg1 = 2485,46^2 = N^2 \frac{1-f}{n} \frac{\sum_s e_{ks}^2}{n-1} \text{ (Ver (7.9.9))}.
> t.x.s <- as.matrix(apply((N/n) * x.s, 1, sum))
> g.k.s \leftarrow t(1 + t((t.x.U - t.x.s)) %*% solve(T) %*% x.s)
> (N/n) * sum(y.s * g.k.s)
[1] 54214.6
> (N/n) * apply(x.s %*% g.k.s, 1, sum)
[1] 281 2508 6193
> vreg2 <- N^2 * (1 - n/N) * (1/n) * (n - 1)^(-1) * sum(c((e.k.s)^2) *
       (g.k.s^2)
> sqrt(vreg2)
[1] 2440.281
Donde
\mathrm{vreg2} = 2440,\!28^2 = N^2 \frac{1-f}{n} \frac{\sum_s g_{ks}^2 e_{ks}^2}{n\!-\!1} \; (\mathrm{Ver} \; (7.9.8)).
```

# 4. Resultados simulados

Se simulan 5000 muestras SI y se analizan los resultados para los distintos estimadores utilizados:

```
> R <- 5000
> tpi <- rep(0, R)
> vtpi <- rep(0, R)
> treg <- rep(0, R)
> vreg1 <- rep(0, R)
> vreg2 <- rep(0, R)
> set.seed(987654321)
> for (i in 1:R) {
                       s \leftarrow sample(seq(1, N), n, replace = FALSE, prob = pw)
                       y.s <- as.matrix(U[s, "y"])</pre>
                       tpi[i] \leftarrow (N/n) * sum(y.s)
                       vtpi[i] \leftarrow N^2 * (1 - n/N) * (1/n) * var(y.s)
                       x.s <- as.matrix(rbind(1, U[s, "x.1"], U[s, "x.2"]))
                       T \leftarrow (N/n) * x.s %*% t(x.s)
                       t \leftarrow (N/n) * x.s %*% y.s
                       b <- solve(T) %*% t
                       treg[i] <- t(t.x.U) %*% b
                       e.k.s \leftarrow y.s - t(x.s) %*% b
                       vreg1[i] \leftarrow N^2 * (1 - n/N) * (1/n) * var(e.k.s)
                       t.x.s \leftarrow as.matrix(apply((N/n) * x.s, 1, sum))
                       g.k.s \leftarrow t(1 + t((t.x.U - t.x.s)) %*% solve(T) %*% x.s)
                       vreg2[i] \leftarrow N^2 * (1 - n/N) * (1/n) * (n - 1)^(-1) * sum(c((e.k.s)^2) * (1/n) * (1/n)
                                        (g.k.s^2)
+ }
```

Algunos de los resultados para las 5000 simulaciones se presentan en el siguiente cuadro que es similar al cuadro 7.2. de la pág 280 del "Libro Amarillo".

| Estimador   | $ar{\hat{t}}$ | $S^2_{\hat{t}}$ | $ar{\hat{V}}_g$ | $ar{\hat{V}}_{sim}$ | AV |
|-------------|---------------|-----------------|-----------------|---------------------|----|
| $\hat{t}_1$ | 5,32          | 0,205           |                 | 0,204               |    |
| $\hat{t}_6$ | 5,31          | 0,056           | 0,052           | 0,05                |    |

Por último, se presentan los histogramas de las 5000 réplicas de  $\hat{t}_1$  y  $\hat{t}_6$ .



Figura 1: 5000 muestras  $S\!I$  de tamaño n=100