로지스틱 회귀 (Logistic Regression) 모델

수치예측 데이터

인자 (변수) 관측치	X,		X_{i}		X_p
N,	x 11	•••	x _{Ii}	•••	x_{lp}
N ₂	x ₂₁	•••	x _{2i}	•••	<i>x</i> _{2p}
N _{n-1}	X _{n-11}		X _{n-li}		<i>x</i> _{n-1 p}
N_n	X _{n l}	•••	X _{ni}	•••	x _{np}

Υ
20.5
22.2
72.3
82.8

범주예측 데이터

인자 (변수) 관측치	X,		X_{i}		X_p
N ₁	x ₁₁	···	x _{li}	:	x _{Ip}
N ₂	x ₂₁	•••	x _{2i}	•••	x _{2p}
	•••	•••	•••	•••	
N _{n-1}	Х _{п-1 I}	•••	X _{n-li}	•••	X _{n-Ip}
N_n	X _{n I}	•••	X _{ni}	•••	X _{np}

Υ
0 (정상)
0 (정상)
I(불량)
I(불량)

수치예측 모델링 개요

수치예측 예제 – 중고차 가격 예측

		Х		Y
모델	주행거리	마력	용량 (CC)	가격
TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3-Doors	46986	90	2000	13500
TOYOTA Corolla 1800 T SPORT VVT I 2/3-Doors	19700	192	1800	21500
TOYOTA Corolla 1.9 D HATCHB TERRA 2/3-Doors	71138	69	1900	12950
TOYOTA Corolla 1.8 VVTL-i T-Sport 3-Drs 2/3-Doors	31461	192	1800	20950
TOYOTA Corolla 1.8 16V VVTLI 3DR T SPORT BNS 2/3-Doors	43610	192	1800	19950
TOYOTA Corolla 1.6 VVTI Linea Terra Comfort 2/3-Doors	21716	110	1600	17950
TOYOTA Corolla 1.6 16v L.SOL 2/3-Doors	25563	110	1600	16750
TOYOTA Corolla 1.6 16V VVT I 3DR TERRA 2/3-Doors	64359	110	1600	16950
TOYOTA Corolla 1.6 16V VVT I 3DR SOL AUT4 2/3-Doors	43905	110	1600	16950
TOYOTA Corolla 1.6 16V VVT I 3DR SOL 2/3-Doors	56349	110	1600	15950
TOYOTA Corolla 1.4 VVTI Linea Terra 2/3-Doors	9750	97	1400	12950
TOYOTA Corolla 1.4 16V VVT I 3DR 2/3-Doors	27500	97	1400	14750
TOYOTA Corolla 1.4 16V VVT I 3DR 2/3-Doors	49059	97	1400	13950
TOYOTA Corolla 1.4 16V VVT I 3DR 2/3-Doors	44068	97	1400	16750
TOYOTA Corolla 1.4 16V VVT I 3DR 2/3-Doors	46961	97	1400	13950
TOYOTA Corolla 2.0 D4D 90 5DR TERRA COMFORT 4/5-Doors	110404	90	2000	16950
TOYOTA Corolla 2.0 D4D 90 5DR TERRA COMFORT 4/5-Doors	100250	90	2000	16950
TOYOTA Corolla 2.0 D4D 90 5DR SOL 4/5-Doors	84000	90	2000	19000
TOYOTA Corolla 2.0 D4D 90 5DR TERRA 4/5-Doors	79375	90	2000	17950
TOYOTA Corolla 1.4 16V VVT I 5DR TERRA COMFORT 4/5-Doors	75048	97	1490	15800
TOYOTA Corolla 1.4 16V VVT I 5DR TERRA COMFORT 4/5-Doors	132151	110	1600	??????

수치예측 / 범주예측 (분류)

범주예측 모델링 개요

- 불량범주
- 양품범주

범주예측 예제 – 불량 예측

배터리 공정에서 설비 파라미터 측정값들을 이용하여,
 배터리가 양품인지 불량품인지 여부를 예측

배터리 공정 데이터

모델구축

불량 배터리 예측

What machine learning models are the most common in industries?

로지스틱 회귀모델 배경

• 33명의 나이와 혈압 사이의 관계

나이	혈압	나이	혈압	나이	혈압
22	131	41	139	52	128
23	128	41	171	54	105
24	116	46	137	56	145
27	106	47	111	57	141
28	114	48	115	58	153
29	123	49	133	59	157
30	117	49	128	63	155
32	122	50	183	67	176
33	99	51	130	71	172
35	121	51	133	77	178
40	147	51	144	81	217

로지스틱 회귀모델 배경

로지스틱 회귀모델 필요성

• 범주형 출력변수

- 이진변수 (출력변수 값: 0 or I)
- 멀티변수 (출력변수 값: I or 2 or 3 or 3 이상)
- 선형회귀모델과는 다른 방식으로 접근해야 될 필요성

로지스틱 회귀모델 필요성

로지스틱 회귀모델 사용

• 새로운 관측치가 왔을 때 이를 기존 범주 중 하나로 예측 (범주예측)

응용예제

- 제품이 <u>불량</u>인지 <u>양품</u>인지 분류
- 고객이 <u>이탈고객인지 잔류고객</u>인지 분류
- 카드 거래가 <u>정상</u>인지 <u>사기</u>인지 분류
- 내원 고객이 질병이 <u>있는지</u> <u>없는지</u> 분류
- 특정인의 유전자 정보를 보고 <u>백혈병의 유무</u>
- 이메일이 <u>스팸</u>인지 <u>정상메일</u>인지
- 페이스북 피드에서 <u>보이게 할지 숨길지</u>

로지스틱 회귀모델 이론 배경

$$Y_i=eta_0+eta_1X_i+arepsilon_i$$
 선형회귀모델 $E(arepsilon_i)=0$ $E(Y_i)=eta_0+eta_1X_i$ $Y_i=0 \ ext{or} \ 1$

Consider Y_i to be a Bernoulli random variable

$$P(Y_i=1)=\pi_i$$
 ×값이 주어졌을 때 출력변수 Y가 I의 값을 가질 확률 $P(Y_i=0)=1-\pi_i$ $E(Y_i)=1\cdot\pi_i+0\cdot(1-\pi_i)=\pi_i$

$$E(Y_i) = \pi_i$$

$$E(Y_i) = f(X) ??$$

• 출력변수가 연속형이 아닌 이진범주형 질병유무

나이	질병유무	나이	질병유무		나이	질병유무
22	0	40	0	-	54	0
23	0	41	I		55	1
24	0	46	0		58	1
27	0	47	0		60	1
28	0	48	0		60	0
30	0	49	1		62	1
30	0	49	0		65	1
32	0	50	1		67	1
33	0	51	0		71	1
35	1	51	1		77	1
38	0	52	0		81	1

• 두 변수 사이의 관계식은 선형??

		질병		
나이 그룹	그룹내 수	질병보유자 수	%	
20 - 29	5	0	0	
30 - 39	6	I	17	
40 - 49	7	2	29	
50 - 59	7	4	57	
60 - 69	5	4	80	
70 - 79	2	2	100	
80 - 89	l	I	100	

로지스틱 회귀분석 알고리즘

로지스틱 회귀분석 알고리즘 – 로지스틱 함수

로지스틱 회귀분석 알고리즘 – 로지스틱 함수

- Logistic function, Sigmoid function, Squashing function (Large input \rightarrow Small output)
- 아웃풋 범위: 0~I
- 인풋값에 대해 단조증가 (혹은 단조감소) 함수
- 미분결과를 아웃풋의 함수로 표현 가능 (Gradient learning method에 유용하게 사용)

$$\frac{d\phi(z)}{dz} = \frac{1}{1+e^{-z}} (1 - \frac{1}{1+e^{-z}}) = \phi(z)(1 - \phi(z))$$

로지스틱 회귀분석 알고리즘 – 로지스틱 함수

$$E(y) = \pi(X = x) = P(Y = 1|X = x) = 1 - P(Y = 0|X = x)$$

단순로지스틱 회귀모델: 입력변수 X가 1개인 로지스틱 회귀모델

$$E(y) = \pi(X = x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

관측치 x가 범주 I에 속할 확률

(Probability that an observation x belongs to class 1)

로지스틱 회귀모델 - β_1 의 해석

$$E(y) = \pi(X = x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

 β_1 의 해석 \rightarrow 직관적이지 못함

- 승산 (Odds)
 - 성공 확률을 p 로 정의할 때, 실패 대비 성공 확률 비율

$$Odd = \frac{p}{1 - p}$$

$$p = 1 \rightarrow odd = \infty$$

$$p = 0 \rightarrow odd = 0$$

2018 FIFA WORLD CUP June 14th - July 15th, 2018 Various Locations throughout Russia

	OPENING	CURRENT		OPENING	CURRENT
ODDS TO WIN:	ODDS	ODDS	ODDS TO WIN:	ODDS	ODDS
	7/14/2014	2/12/2018		7/14/2014	2/12/2018
96101 GERMANY	5/1	4/1	96117 SWEDEN	80/1	100/1
96102 BRAZIL	8/1	5/1	96118 SERBIA	100/1	150/1
96103 FRANCE	10/1	11/2	96119 SENEGAL	500/1	150/1
96104 SPAIN	8/1	13/2	96120 EGYPT	500/1	200/1
96105 ARGENTINA	8/1	7/1	96121 ICELAND	1000/1	200/1
96106 BELGIUM	15/1	10/1	96122 PERU	500/1	200/1
96107 ENGLAND	25/1	15/1	96123 NIGERIA	150/1	200/1
96108 PORTUGAL	30/1	20/1	96124 JAPAN	150/1	300/1
96109 URUGUAY	50/1	30/1	96125 COSTA RICA	200/1	250/1
96110 COLOMBIA	20/1	40/1	96126 AUSTRALIA	300/1	300/1
96111 RUSSIA	20/1	40/1	96127 MOROCCO	500/1	500/1
96112 CROATIA	60/1	40/1	96128 IRAN	2000/1	500/1
96113 POLAND	100/1	40/1	96129 SOUTH KOREA	200/1	500/1
96114 MEXICO	50/1	60/1	96130 TUNISIA	500/1	1000/1
96115 DENMARK	100/1	100/1	96131 PANAMA	1000/1	1000/1
96116 SWITZERLAND	80/1	100/1	96132 SAUDI ARABIA	1000/1	1000/1

Odds current as of 1/22/18

11:2

프랑스의 우승 odds는 2/11

프랑스의 우승 확률은 2/I3 = 0.I5 (I5%)

500:I

대한민국의 우승 odds는 I/500

대한민국의 우승확률은 I/50I ≒ 0.001996 (0.1996%)

$$\pi(X = x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}} \qquad 0 \le \pi(X = x) \le 1$$

$$Odds = \frac{\pi(X = x)}{1 - \pi(X = x)}$$

Odds: 범주 0에 속할 확률 대비 범주 I에 속할 확률

(The ratio of the probability of belonging to class I to the probability of belonging to class 0)

$$log(Odds) = log\left(\frac{\pi(X=x)}{1-\pi(X=x)}\right) = log\left(\frac{\frac{1}{1+e^{-(\beta_0+\beta_1x)}}}{1-\frac{1}{1+e^{-(\beta_0+\beta_1x)}}}\right) = \beta_0 + \beta_1x$$
Logit Transform (로짓 변환)

$$\log\left(\frac{\pi(X=x)}{1-\pi(X=x)}\right) = \beta_0 + \beta_1 x$$

β₁의 의미: x가 한단위 증가 했을 때 log(odds)의 증가량

로지스틱 회귀모델 - Odds

• 성공 확률 π(X) 에 따른 log(Odds)의 그래프

$$\pi(X) \to 1, \log(\mathsf{Odds}) \to \infty$$

- X변수를 로지스틱 함수형태 (비선형결합)로 표현
- 관측치가 특정 범주에 속할 확률로 계산
- 확률값이 정한 기준값 보다 크면 범주 1 아니면 범주 2 (이진범주 분류 문제의 경우)

다중 로지스틱 회귀모델

• 다중로지스틱 회귀모델 (입력변수 X가 2개 이상)

$$\pi(X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p)}}$$

$$Odds = \frac{\pi(X)}{1 - \pi(X)} = e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p}$$

$$log(Odds) = log\left(\frac{\pi(X)}{1 - \pi(X)}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

다중 로지스틱 회귀모델

- Maximum likelihood estimation
- Find the parameters such that the likelihood function is maximized

Data		Data	PDF (확률	물밀도함수)
(X)		(X)	$\mu = 1$ $\sigma = 1$	$\mu = 0$ $\sigma = 1$
-1 -0.5	7	-1	0.0540	0.2420
I	,	-0.5	0.1295	0.3521
		I	0.3989	0.2418

$$f(x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Likelihood $\mu = 1 & \mu = 0 \\ \sigma = 1 & \sigma = 1 \\ 0.0028 < 0.0206$

• 로지스틱 회귀모델 학습: 최대 우도 추정법 (Maximum Likelihood Estimation)

$$f_{i}(y_{i}) = \pi(x_{i})^{y_{i}}(1 - \pi(x_{i}))^{1-y_{i}}, i = 1, 2, \cdots, n \qquad P(y_{i} = 1) = \pi_{i}$$

$$L = \prod_{i} f_{i}(y_{i}) = \prod_{i} \pi(x_{i})^{y_{i}}(1 - \pi(x_{i}))^{1-y_{i}}$$

$$\ln L = \ln \left[\prod_{i} \pi(x_{i})^{y_{i}}(1 - \pi(x_{i}))^{1-y_{i}} \right]$$

$$= \ln \prod_{i} \left[\frac{\pi(x_{i})}{1 - \pi(x_{i})} \right]^{y_{i}} + \sum_{i} \ln(1 - \pi(x_{i}))$$

$$= \sum_{i} y_{i} \ln \left[\frac{\pi(x_{i})}{1 - \pi(x_{i})} \right] + \sum_{i} \ln(1 - \pi(x_{i}))$$

$$= \sum_{i} y_{i} (\beta_{0} + \beta_{1}X_{1} + \dots + \beta_{p}X_{p}) - \sum_{i} \ln(1 + e^{\beta_{0} + \beta_{1}X_{1} + \dots + \beta_{p}X_{p}})$$

• 로지스틱 회귀모델 학습: 최대 우도 추정법 (Maximum Likelihood Estimation)

$$\ln L = \sum_{i} y_{i} (\beta_{0} + \beta_{1} X_{1} + \dots + \beta_{p} X_{p}) - \sum_{i} \ln(1 + e^{\beta_{0} + \beta_{1} X_{1} + \dots + \beta_{p} X_{p}})$$

- 위로그-우도함수 (\log likelihood function)가 최대가 되는 파라미터 β 결정
- 로그-우도함수 (log likelihood function)는 파라미터 β에 대해 비선형이므로 선형회귀 모델과 같이 명시적인 해가 존재하지 않음 (No closed-form solution exists)
- Iterative reweight least square, Conjugate gradient, Newton's method 등의 수치 최적화 알고리즘을 이용하여 해를 구함

Cross entropy

$$C(\pi(x), y) = \begin{cases} -\log \pi(x), & y = 1\\ -\log(1 - \pi(x)), & y = 0 \end{cases}$$

$$C(\pi(x), y) = -y \log \pi(x) - (1 - y) \log(1 - \pi(x))$$

$$\min_{\beta} C(\pi(x), y)$$

- Cross entropy: 두 확률분포 (p(x), q(x))의 차이 $(p(x) = 0 \ or \ 1, q(x) = \pi(x) \ or \ 1 \pi(x))$ Cross entropy = $-\sum p(x) \log q(x)$
- Cross entropy: 음의 log likelihood function의 기대값
- Log likelihood function을 최대 = 입력 분포p(x)와 파라미터가 주어졌을 때, 출력 분포q(x)의 확률을 최대
- Cross entropy를 최소 = 입력 분포 p(x)와 출력분포 q(x)의 차이를 최소
- Log likelihood function을 최대 = cross entropy를 최소

❖ 파라미터가 추정되고 난 이후 최종모델

$$\pi(X) = f(X) = \frac{1}{1 + e^{-(\widehat{\beta_0} + \widehat{\beta_1}X_1 + \dots + \widehat{\beta_p}X_p)}} = \frac{1}{1 + e^{-\widehat{\beta}X}}$$

- 이진 분류를 위한 기준값(threshold) 설정
 - 일반적으로 0.5 사용

• 승산 비율: Odds Ratio

$$\frac{odds(x_1+1,x_2,\cdots,x_n)}{odds(x_1,x_2,\cdots,x_n)} = \frac{e^{\widehat{\beta_0}+\widehat{\beta_1}(X_1+1)+\cdots+\widehat{\beta_p}X_p}}{e^{\widehat{\beta_0}+\widehat{\beta_1}X_1+\cdots+\widehat{\beta_p}X_p}} = e^{\beta_1}$$

- 나머지 입력변수는 모두 고정시킨 상태에서 한 변수를 I단위 증가시 켰을 때 변화하는 Odds의 비율
- \mathbf{x}_1 이 I단위 증가하면 성공에 대한 승산 비율이 e^{β_1} 만큼 변화함
- 회귀 계수가 양수 → 성공확률 증가 (성공확률 ≥ 1)
- 회귀 계수가 음수 → 성공확률 감소 (0 ≤ 성공확률 < 1)

로지스틱 회귀모델 - 예제

• 로지스틱 회귀분석 결과 및 해석 (대출 여부를 예측하는 데이터)

$$f(X) = \frac{1}{1 + e^{-(\widehat{\beta_0} + \widehat{\beta_1} X_1 + \dots + \widehat{\beta_{12}} X_{12})}}$$

Input variables	Coefficient	Std. Error	p-value	Odds
Constant term	-13.20165825	2.46772742	0.00000009	*
Age	-0.04453737	0.09096102	0.62439483	0.95643985
Experience	0.05657264	0.09005365	0.5298661	1.05820346
Income	0.0657607	0.00422134	0	1.06797111
Family	0.57155931	0.10119002	0.00000002	1.77102649
CCAvg	0.18724874	0.06153848	0.00234395	1.20592725
Mortgage	0.00175308	0.00080375	0.02917421	1.00175464
Securities Account	-0.85484785	0.41863668	0.04115349	0.42534789
CD Account	3.46900773	0.44893095	0	32.10486984
Online	-0.84355801	0.22832377	0.00022026	0.43017724
CreditCard	-0.96406376	0.28254223	0.00064463	0.38134006
EducGrad	4.58909273	0.38708162	0	98.40509796
EducProf	4.52272701	0.38425466	0	92.08635712

- Coefficient (로지스틱 회귀계수, 추정된 파라미터 값)
 - 해당 변수가 1단위 증가할 때 로그아드의 변화량
 - 양수이면 성공확률과 양의 상관관계, 음수이면 성공 확률과 음의 상관관계

Input variables	Coefficient	Std. Error	p-value	Odds
Constant term	-13.20165825	2.46772742	0.00000009	*
Age	-0.04453737	0.09096102	0.62439483	0.95643985
Experience	0.05657264	0.09005365	0.5298661	1.05820346
Income	0.0657607	0.00422134	0	1.06797111
Family	0.57155931	0.10119002	0.00000002	1.77102649
CCAvg	0.18724874	0.06153848	0.00234395	1.20592725
Mortgage	0.00175308	0.00080375	0.02917421	1.00175464
Securities Account	-0.85484785	0.41863668	0.04115349	0.42534789
CD Account	3.46900773	0.44893095	0	32.10486984
Online	-0.84355801	0.22832377	0.00022026	0.43017724
CreditCard	-0.96406376	0.28254223	0.00064463	0.38134006
EducGrad	4.58909273	0.38708162	0	98.40509796
EducProf	4.52272701	0.38425466	0	92.08635712

- Std. Error (추정 파라미터의 표준편차)
 - 추정 파라미터의 신뢰구간 (구간추정)을 구축할 때 사용

Input variables	Coefficien	Std. Error	p-value	Odds
Constant term	-13.20165825	2.46772742	0.00000009	*
Age	-0.04453737	0.09096102	0.62439483	0.95643985
Experience	0.05657264	0.09005365	0.5298661	1.05820346
Income	0.0657607	0.00422134	0	1.06797111
Family	0.57155931	0.10119002	0.00000002	1.77102649
CCAvg	0.18724874	0.06153848	0.00234395	1.20592725
Mortgage	0.00175308	0.00080375	0.02917421	1.00175464
Securities Account	-0.85484785	0.41863668	0.04115349	0.42534789
CD Account	3.46900773	0.44893095	0	32.10486984
Online	-0.84355801	0.22832377	0.00022026	0.43017724
CreditCard	-0.96406376	0.28254223	0.00064463	0.38134006
EducGrad	4.58909273	0.38708162	0	98.40509796
EducProf	4.52272701	0.38425466	0	92.08635712

- p-value
 - 해당 변수가 통계적으로 유의미한지 여부를 알려주는 지표
 - 해당 파라미터 값이 0인지 여부를 통계적으로 판단 (가설검정)

Input variables	Coefficient	Std. Erro	p-value	Odds
Constant term	-13.20165825	2.46772742	0.00000009	*
Age	-0.04453737	0.09096102	0.62439483	0.95643985
Experience	0.05657264	0.09005365	0.5298661	1.05820346
Income	0.0657607	0.00422134	0	1.06797111
Family	0.57155931	0.10119002	0.00000002	1.77102649
CCAvg	0.18724874	0.06153848	0.00234395	1.20592725
Mortgage	0.00175308	0.00080375	0.02917421	1.00175464
Securities Account	-0.85484785	0.41863668	0.04115349	0.42534789
CD Account	3.46900773	0.44893095	0	32.10486984
Online	-0.84355801	0.22832377	0.00022026	0.43017724
CreditCard	-0.96406376	0.28254223	0.00064463	0.38134006
EducGrad	4.58909273	0.38708162	0	98.40509796
EducProf	4.52272701	0.38425466	0	92.08635712

- Odds (Odds Ratio)
 - 나머지 입력변수는 모두 고정시킨 상태에서 한 변수를 I단위 증가시켰을 때 변화하는 Odds (성공확률)의 비율
 - Experience = 1.058 → 경험이 I년 더 많으면 대출 확률이 1.058배 증가

Input variables	Coefficient	Std. Error	p-value	Odds
Constant term	-13.20165825	2.46772742	0.00000009	*
Age	-0.04453737	0.09096102	0.62439483	0.95643985
Experience	0.05657264	0.09005365	0.5298661	1.05820346
Income	0.0657607	0.00422134	d	1.06797111
Family	0.57155931	0.10119002	0.00000002	1.77102649
CCAvg	0.18724874	0.06153848	0.00234395	1.20592725
Mortgage	0.00175308	0.00080375	0.02917421	1.00175464
Securities Account	-0.85484785	0.41863668	0.04115349	0.42534789
CD Account	3.46900773	0.44893095	d	32.10486984
Online	-0.84355801	0.22832377	0.00022026	0.43017724
CreditCard	-0.96406376	0.28254223	0.00064463	0.38134006
EducGrad	4.58909273	0.38708162	d	98.40509796
EducProf	4.52272701	0.38425466	0	92.08635712

로지스틱 회귀모델 예제

- 나이, 사회적 지위, 거주지역과 질병유무와의 관계
- 사회적 지위는 원래 3개의 범주 (上, 中, 下)를 갖는 변수
 → 2개의 이진변수 (X₁, X₂)로 표현 (上→(0,0), 中→(1,0), 下→(0,1))
- 거주지역은 2개 범주 (지역 I→0, 지역2→I)

	Age	Socioeconomic Status		City Sector	Disease Status
	X_{I}	X_2	X_3	X_4	Υ
I	33	0	0	0	0
2	35	0	0	0	0
3	6	0	0	0	0
4	60	0	0	I	0
5	18	0	1	1	I
6	26	0	1	0	0
•••	•••	•••	•••	•••	•••
98	35	0	0	0	I

로지스틱 회귀모델 예제

$$f(X) = \frac{1}{1 + e^{-(-2.31 + 0.03X_1 + 0.41X_2 - 0.31X_3 + 1.57X_4)}}$$

	Age	Socioeconomic Status		City Sector	Disease Status
	Xı	X_2	X_3	X_4	Y
I	33	0	0	0	0
2	35	0	0	0	0
3	6	0	0	0	0
4	60	0	0	Ĭ	0
5	18	0	I	I	I
6	26	0	Ī	0	0
•••	•••	•••	•••	•••	•••
98	35	0	0	0	I
99	46	1	0	1	1

로지스틱 회귀모델 예제

Regression Coefficient	Odds Ratio
eta_1	1.030
eta_2	1.505
eta_3	0.737
eta_4	4.829

- β_1 의 odds ratio = $1.030 \rightarrow \text{나이가 I}$ 살 증가하면 질병 걸릴 확률 1.03배 증가
- β_2 의 odds ratio = $1.505 \rightarrow$ 사회적 지위 \perp 대비 中일 경우 질병 걸릴 확률 1.505배 증가
- eta_3 의 odds ratio = 0.737
 ightarrow 사회적 지위 oxdot 대비 下일 경우 질병 걸릴 확률 0.737배 증가
- β_4 의 odds ratio = 4.829 \rightarrow 거주지역이 2이면 질병 걸릴 확률 4.829배 증가

사회적 지위: 上→(0,0), 中→(1,0), 下→(0,1)

거주지역: 지역**I→0**, 지역**2→I**

EOD