

LICENCIATURA EM ENGENHARIA INFORMÁTICA

FUNDAMENTOS DE PROGRAMAÇÃO

CADERNO DE EXERCÍCIOS 6

Python

- ESTRUTURAS DE DECISÃO -

SELEÇÃO SIMPLES E COMPOSTA

SE...ENTAO...SENAO

Fluxograma	Python
Yes print('x is positive')	<pre>if cond: # Instruções a executar se a condição for verdadeira</pre>
	<pre>if name == 'Alice': print('Hi, Alice.')</pre>

- 1. Ler um número e escrever se o número é par ou ímpar.
- 2. Ler dois números A, B e calcular a soma dos números pares e o produto dos números ímpares. No caso de não serem os dois da mesma natureza (par ou impar) deve aparecer ao utilizador a mensagem.
- 3. Ler um número e calcular o seu módulo.

$$|z| = -z \text{ se } z < 0$$

0 se z = 0
z se z > 0

- **4.** Ler a unidade (Esc ou Euros) e um valor expresso na unidade, calcular o valor convertido na outra unidade.
- **5.** Pretende-se determinar se dois namorados são ou não compatíveis. Deve considerar-se o seguinte:
 - 1. O rapaz tem de ser mais velho que a rapariga, sem ultrapassar 20 anos.
 - 2. A distância entre as localidades tem de ser inferior a 10 km.
 - 3. Não podem ser irmãos.
- **6.** Uma companhia de seguros pretende saber de forma automática qual o contrato que um determinado cliente deve ter, após um conjunto de perguntas o programa deve concluir qual o contrato a propor ao cliente.

A seguradora adoptou a seguinte política para um seguro de vida:

● goza de boa saúde e não sofreu acidentes — contrato A

• goza de boa saúde e já teve um acidente – contrato B

não goza de boa saúde – exame médico

• já teve mais do que um acidente – contrato recusado

7. Desenvolva um algoritmo que:

Leia um número representando um determinado ano. Descobrir se esse número (ano) representa um ano bissexto. Um ano é bissexto se cumprir a seguintes condições:

- (1) se for divisível por 4,
- (2) se não for divisível por 100.

Há uma excepção a esta última regra:

(3) no caso de ser divisível por 100, será bissexto se for divisível por 400.

Exemplos:

```
1980 – bissexto — regras 1 e 2

1900 – não bissexto — regras 1 e 2

2000 – bissexto — regras 1 e 3

2002 – não bissexto — regra 1
```

- **8.** Ler um número e, se for positivo, escrever o seu inverso, caso contrário, escrever o valor absoluto do número.
- **9.** Segundo uma tabela médica, o peso ideal está relacionado com a altura e sexo. Criar um programa que receba a altura e o sexo de uma pessoa, calcular e apresentar o peso ideal, utilizado as seguinte formulas:
 - Homens: (72.7 * Altura) 58
 - Mulheres: (62.1 * Altura) 44.7

10.Escreva um programa para calcular o IMC – Índice de Massa Corporal. O IMC é calculado através da seguinte formula:

$$IMC = \frac{peso}{altura^2}$$

Onde:

- peso é dado em Kg;
- altura é dada em metros.

Seguidamente deve ser dado um diagnostico ao utilizador de acordo com a seguinte tabela:

IMC	Diagnostico
< 20	Baixo Peso
>= 20 até 25	Normal
>= 25 até 30	Excesso de Peso
>= 30 até 35	Obesidade
>= 35	Obesidade Mórbida

11. Criar um programa que peça ao utilizador o destino para uma determinada viagem e se a viagem é só de Ida ou inclui Volta e calcule e apresente o preço do bilhete de acordo com a seguinte tabela:

Destino	Ida	Ida e Volta
Região Norte	25,00€	45,00€
Região Centro	35,00€	65,00€
Região Sul	45,00€	85,00€

12. Ler o cumprimento dos três lados de um triângulo, apresentar a classificação para esse triângulo, de acordo com o seguinte:

Três lados iguais - equilátero
 Dois lados iguais - isósceles
 Três lados diferentes - escaleno

13.Escrever um algoritmo que leia um valor representando um terminado peso na Terra e o número de um planeta da lista anexa e calcule e apresente o valor equivalente desse peso no planeta escolhido.

#	Gravidade	Planeta
1	0.37	Mercúrio
2	0.88	Vénus
3	0.38	Marte
4	2.64	Júpiter
5	1.15	Saturno
6	1.17	Urano

Para calcular o peso no planeta usamos a formula:

PesoNoPlaneta = PesoNaTerra*Gravidade

14.Programa para converter um número literal representando um mês no seu correspondente mês por extenso. Portanto, ler um número inteiro entre 1 e 12 e escrever o mês respectivo por extenso. Caso o utilizador digite um número fora desse intervalo, deverá aparecer uma mensagem informando que não existe mês com esse número.

Exemplo: Mês: 11

Resposta: Novembro