Décomposition de Dunford par la méthode de Newton

Leçons: 153, 155, 157

Théorème 1

Soit \mathbb{K} sous-corps de \mathbb{C} et $A \in \mathcal{M}_n(\mathbb{K})$. Il existe un unique couple $(D,N) \in \mathcal{M}_n(\mathbb{K})^2$ tel que A = D + N, DN = ND, avec D diagonalisable sur \mathbb{C} et N nilpotent. De plus, D et N sont des éléments de $\mathbb{K}[A]$.

Lemme 2

Si U est une matrice inversible et N une matrice nilpotente commutant avec U alors U-N est inversible.

Démonstration. Soit m tel que $N^m = 0$. Comme U et N commutent, $(U^{-1}N)^m = 0$, on peut donc supposer, quitte à multiplier par U^{-1} que $U = I_n$. Alors

$$\left(\sum_{k=0}^{m-1} N^k\right) (I_n - N) = (I_n - N) \left(\sum_{k=0}^{m-1} N^k\right) = I_n - N^m = I_n.$$

Démonstration (du théorème). Notons χ_A le polynôme caractéristique de A. Il est scindé sur \mathbb{C} algébriquement clos donc peut s'écrire $\chi_A = \prod_i (X - \lambda_i)^{n_i}$. Introduisons $P = \prod_i (X - \lambda_i)$.

On remarque que $P = \frac{\chi_A}{\chi_A \wedge \chi_A'}$ donc $P \in \mathbb{K}[X]$. De plus, il existe $r = \max_i(n_i)$ tel que $\chi_A | P^r$ de sorte que $P^r(A) = 0$ (Cayley-Hamilton).

Introduisons la suite suivante :

$$\begin{cases} A_0 = A \\ A_{n+1} = A_n - P(A_n)P'(A_n)^{-1} \end{cases}.$$

Soit H le prédicat défini sur \mathbb{N} par H_n : « A_n est bien définie et dans K[A], $P(A_n) = P(A)^{2^n}B_n$ où $B_n \in K[A]$ et $P'(A_n)$ est inversible. »

- Pour montrer H_0 , il suffit de vérifier que P'(A) est inversible. Comme P et P' sont premiers entre eux, on peut fixer U, V tels que UP + VP' = 1. En évaluant en A, on a $V(A)P'(A) = I_n U(A)P(A)$. Comme P(A) est nilpotent, selon le lemme, P'(A) est inversible.
- Soit $n \in \mathbb{N}$, supposons H_n . Il est immédiat que A_{n+1} est bien définie et est un polynôme en A.

Remarquons que si $Q \in \mathbb{K}[X]$, il existe $\tilde{Q} \in \mathbb{K}[X,Y]$ tel que $Q(X+Y) = Q(X)+YQ'(X)+Y^2\tilde{Q}(X,Y)$. Il suffit, par linéarité, de le vérifier sur $Q(X)=X^m$. On a alors :

$$(X+Y)^{m} = \sum_{k=0}^{m} {m \choose k} X^{k} Y^{m-k} = X^{m} + mYX^{m-1} + Y^{2} \left(\sum_{k=0}^{m-2} {m \choose k} X^{k} Y^{m-k-2} \right),$$

ce qui donne le résultat voulu.

Appliquons cela à $P: P(X+Y) = P(X) + YP'(X) + Y^2\tilde{P}(X,Y)$, et évaluons dans la \mathbb{K} -algèbre commutative $\mathbb{K}[A]$. On peut trouver $\tilde{B}_n \in \mathbb{K}[A]$ tel que $P(A_{n+1}) = P(A_n) - P(A_n)(P'(A_n))^{-1}P'(A_n) + P(A_n)^2\tilde{B}_n = P(A)^{2^{n+1}}B_n^2\tilde{B}_n = P(A)^{2^{n+1}}B_{n+1}$ où $B_{n+1} \in \mathbb{K}[A]$ par hypothèse de récurrence.

Enfin, pour montrer que $P'(A_{n+1})$ est inversible, on peut utiliser le même argument que dans l'initialisation; ou bien écrire un développement P'(X+Y)=P'(X)+YQ(X,Y) de P' et l'évaluer pour obtenir $P'(A_{n+1})=P'(A_n)+P(A_n)C_n$ avec $C_n\in\mathbb{K}[A]$ donc comme $P(A_n)$ est nilpotent, le lemme fournit l'inversibilité de $P'(A_{n+1})$. Cela conclut la récurrence

• Conclusion : Soit $r \in \mathbb{N}$ tel que $P(A)^r = 0$. Alors si $n \ge n_0 = E(\log_2(r)) + 1$, $P(A_n) = 0$ donc $A_{n+1} = A_n$: la suite est stationnaire. Comme P est scindé à racines simples dans \mathbb{C} et annule A_{n_0} , cette dernière matrice est diagonalisable sur \mathbb{C} .

De plus, $A_{n_0} - A = \sum_{k=0}^{n_0-1} A_{k+1} - A_k$ et $A_{k+1} - A_k = P(A_k)(P'(A_k))^{-1} \in \mathbb{K}[A]$ est nilpotent donc $A_{n_0} - A$ est nilpotent comme somme de nilpotents commutant deux à deux. Ainsi $D = A_{n_0}$ et $N = A - A_{n_0}$ conviennent (ils commutent entre eux comme polynômes en A).

Prouvons pour finir l'unicité : soit (D', N') tel que A = D' + N', D'N' = N'D' et N' est nilpotent, D' est diagonalisable.

Alors N' commute avec A donc avec N élément de $\mathbb{K}[A]$. De plus, N-N'=D'-D est diagonalisable, et nilpotent comme somme de deux nilpotents commutant entre eux. Donc N-N'=0 et D=D' ce qui prouve l'unicité.

Remarque. • L'algorithme reprend le principe de la méthode de Newton. Comme dans le cas « ordinaire » , la convergence est quadratique : si $P^r(A) = 0$, il faut $\log_2(r)$ étapes pour obtenir (D, N).

• Voici la démonstration du petit résultat cité dans la preuve du théorème : si x, y sont deux nilpotents d'un anneau A tels que xy = yx, prenons n tel que $x^n = y^n = 0$. Alors par le binôme de Newton, $(x + y)^n = \sum_{k=0}^{2n} \binom{2n}{k} x^k y^{2n-k}$ et si $k \in [0, 2n]$, alors $k \in [n+1, 2n]$ ou $2n-k \in [n+1, 2n]$ donc $x^k = 0$ ou $y^{2n-k} = 0$. In fine, $(x + y)^n = 0$.

Références:

- Jean-Jacques RISLER et Pascal BOYER (2006). *Algèbre pour la licence 3. Groupes, anneaux, corps.* Dunod, p. 62.
- Xavier GOURDON (2009). Les maths en tête : algèbre. 2^e éd. Ellipses, p. 193 (unicité, avec un raccourci)