TD: Preuve par récurrence inspiré de Marc Chevalier

Exercice 1:

Montrer que le somme des carrés des entiers entre 0 et n est égale à

$$\frac{n(n+1)(2n+1)}{6}$$

Exercice 2:

On note « $p \mid q$ » (prononcé « p divise q ») le fait que p est un diviseur de q, c'est-à-dire que $\exists k \in \mathbb{N}, \ q = kp$.

Montrer que $3 \mid n^3 + 2n$ pour tout $n \in \mathbb{N}$.

Exercice 3:

Soit P(n) le prédicat :

$$\forall x \in \mathbb{N}, \ x \leq n \Rightarrow x = n$$

Vous devriez assez facilement voir que P(n) est faux pour $n \neq 0$. Pourtant, voici une « preuve » par récurrence que P(n) est vrai pour tout entier naturel n:

- Initialisation. On veut prouver $P(0) \equiv \forall x \in \mathbb{N}, \ x \leq 0 \Rightarrow x = 0$. Le seul entier naturel plus petit que 0 est 0, ce d'où P(0).
- Hérédité.
 - 1. Soit $k \in \mathbb{N}$. On suppose vraie l'hypothèse de récurrence P(k). Montrons P(k+1), c'est-à-dire montrons que pour tout naturel b, si $b \le k+1$ alors b=k+1.
 - 2. Soit $b \in \mathbb{N}$ tel que $b \leq k+1$.
 - 3. En soustrayant 1 de chaque côté de l'inéquation, on déduit que $b-1 \le k$.
 - 4. Nous pouvons alors appliquer notre hypothèse de récurrence avec x=b-1 pour obtenir b-1=k.
 - 5. En ajoutant 1 de chaque côté de l'égalité, on obtient ce qu'il fallait démontrer : b=k+1.

Quelles étapes sont incorrectes et pourquoi?

Exercice 4:

Imaginons une monnaie où il n'existe que des pièces de 4 et des pièces de 5. Montrer qu'à partir d'un seuil à déterminer, toute quantité d'argent peut être représentée dans ce système.

Indice 1 : ceci est un TD sur le raisonnement par récurrence.

Indice 2 : à l'étape de l'hérédité, pour prouver P(n+1), distinguez les cas selon que les pièces composant la somme n contiennent des pièces de 4, ou pas.