Name:	Student Number:
Signature:	
Instructor:	Section:

Instructions: Answer all questions and show all of your work. The use of books, notes or calculators is not permitted.

Problem	Points	Student's Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	25	
7	25	
Total:	100	

Name:	Student Number:	
1. (10 points) Evaluate the integral	$\int \frac{1}{x^2 \sqrt{x^2 - 16}} dx.$	

Name:	Student Number:	
2. (10 points) Evaluate the integral:	$\int \frac{1}{x^2\sqrt{4x+1}} dx$	

Name:	Student Number:
1 (41110)	Stadent Itaniser =

3. (10 points) Find the exact area of the surface obtained by rotating the curve

$$y = \frac{x^3}{6} + \frac{1}{2x}, \qquad \frac{1}{2} \le x \le 1$$

about the x-axis.

Name:	Student Number:
Name.	Student Number.

4. (10 points) Find the exact length of the curve

$$y = \frac{x^4}{8} + \frac{1}{4x^2}, \qquad 1 \le x \le 2.$$

Name:	Student Number:
5. (a) (5 points) Evaluate the integral:	$\int \sec^3(x) dx.$

Name:	Student Number:	
(b) (5 points) Evaluate the integral:		
	$\int \sin^4(x)\cos^3(x)dx.$	

Name:			Stude	ent Numb	oer:			
()	(5 points) evaluate its	if the inte		convergent $\frac{e^x}{e^{2x} + 1} dx$	or divergent,	, and if it	is conve	rgent,

Name:	Student Number:										
()	(5 points) evaluate it		if the	c _C	convergent $\frac{1}{x^2 + 2x - 3}$		9 ,	and	if it is	s conve	rgent

Name:	Student Number:
()	5 points) Determine if the integral is convergent or divergent, and if it is convergent valuate it: $\int_{1}^{\infty} \frac{e^{-x}}{2+x^{2}} dx.$

Name:	: Student Number:						
` '	(5 points) evaluate it		f the integral	is convergent of $\int_{1}^{\infty} \frac{1}{x^4} dx.$	or divergent,	and if it is	s convergent,

Name:		Student Number:	
(e)	(5 points) Evaluate the integral:	$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx.$	

Name:	Student Number:
(/	(5 points) Determine if the sequence is convergent or divergent, and if it is convergent, find its limit : $\left\{\frac{\ln(n)}{\ln(2n)}\right\}.$

(b) (5 points) Determine if the sequence is convergent or divergent, and if it is convergent	Name:	Student Number:
find its limit : $\left\{\frac{\tan^{-1}(n)}{n}\right\}.$	\ /	find its limit :

Name:		Student Number:
` '	(5 points) its sum:	Determine if the series is convergent or divergent, and if it is convergent, find $\sum_{n=1}^{\infty}\frac{k(k+2)}{(k+3)^2}.$

Name:		Student Number:
(/	(5 points) its sum:	Determine if the series is convergent or divergent, and if it is convergent, find $\sum_{n=1}^{\infty}\frac{e^n}{n^2}.$
		$\iota\iota$

Name:		Student Number:
(c)	(5 points) its sum:	Determine if the series is convergent or divergent, and if it is convergent, find $\sum_{n=1}^{\infty}\frac{1}{n^3-n}.$
		70 ±