



# FIXED INCOME SECURITIES

Kamyar Neshvadian

Yield Curve Modeling

NYU Tandon School of Engineering 2017



# **Topics**

## Static Modeling:

- Spline Fitting
- Nelson-Siegel Parameterization

#### Dynamics:

- Macroeconomic Factors
- Principal Components
- Hedging
- Affine models



- We define the yield curve as the relationship between zerocoupon yields and time to maturity.
- Non-parametric methods: We use the Spline method to fit market data with a curve composed of many segments.
   Constraints are imposed to ensure that the overall curve is "smooth".
- Parametric methods: We choose a parameterized family of functions that spans the space of yield curves. The parameters are then optimized to fit the data.

# Static Yield Curve Modeling: Cubic Splines

Each polynomial has its own parameters. The set of splines, form a continuous curve. We have n points (xi, yi), and we are going to find (n-1) cubic polynomials:

$$S(x) = \begin{cases} s_1(x) & \text{if} \quad x_1 \le x < x_2 \\ s_2(x) & \text{if} \quad x_2 \le x < x_3 \\ \vdots & \vdots \\ s_{n-1}(x) & \text{if} \quad x_{n-1} \le x < x_n \end{cases}$$

$$s_i(x) = a_i(x - x_i)^3 + b_i(x - x_i)^2 + c_i(x - x_i) + d_i$$

$$s_i'(x) = 3a_i(x - x_i)^2 + 2b_i(x - x_i) + c_i$$

$$s_i''(x) = 6a_i(x - x_i) + 2b_i$$



#### Smoothness Conditions

- 1. The piecewise function S(x) will interpolate all data points.
- 2. S(x) will be continuous on the interval  $[x_1, x_n]$
- 3. S'(x) will be continuous on the interval  $[x_1, x_n]$
- 4. S''(x) will be continuous on the interval  $[x_1, x_n]$

For condition 1: 
$$S(x_i) = y_i$$
  
 $y_i = s_i(x_i)$   
 $y_i = a_i(x_i - x_i)^3 + b_i(x_i - x_i)^2 + c_i(x_i - x_i) + d_i$   
 $y_i = d_i$   
 $i = 1, 2, ..., n - 1$ .

## **Cubic Spline**

For condition 2: 
$$s_i(x_i) = s_{i-1}(x_i)$$

$$s_i(x_i) = d_i$$

$$s_{i-1}(x_i) = a_{i-1}(x_i - x_{i-1})^3 + b_{i-1}(x_i - x_{i-1})^2 + c_{i-1}(x_i - x_{i-1}) + d_{i-1}$$

So:

$$h = x_i - x_{i-1}$$

$$d_i = a_{i-1}h^3 + b_{i-1}h^2 + c_{i-1}h + d_{i-1}$$

For condition 3: 
$$s'_i(x_i) = s'_{i-1}(x_i)$$
  
 $s'_i(x_i) = c_i$   
 $s'_{i-1}(x_i) = 3a_{i-1}(x_i - x_{i-1})^2 + 2b_{i-1}(x_i - x_{i-1}) + c_{i-1}$   
 $c_i = 3a_{i-1}h^2 + 2b_{i-1}h + c_{i-1}$ 

# Cubic Spline

For condition 4:

$$s''_{i+1}(x_{i+1}) = 6a_i(x_{i+1} - x_i) + 2b_i$$
$$2b_{i+1} = 6a_ih + 2b_i$$

The system of linear equations defined is underdetermined. A unique solution can be obtained by imposing additional constraints such as requiring the second derivatives at the end points  $\{s_i''(x_i), \text{ for } i=1,n\}$  to equal zero.



### In conclusion:

#### Pros:

- The yield curve is guaranteed to pass through every data point.
- Construction delivers a smooth (differentiable) yield curve.

#### Cons:

- Too many variables need to be specified.
- Splines are not well behaved outside interval may diverge.
- Sensitive to the location of the knot points between different segments.
- Overfitting.

# Parametric Modeling: Nelson-Siegel

Second Order Differential Equation(2<sup>nd</sup> ODE):

$$f''(t) - 2\lambda f'(t) + \lambda^2 f(t) = 0$$

Has a Characteristic Equation :

$$r^2 - 2\lambda r + \lambda^2 = 0$$

$$r = \lambda$$

Solution of :

$$f(t) = B_1 + B_2 e^{\lambda t} + B_3 \lambda e^{\lambda t}$$

• Assume the forward curve follows the above 2<sup>nd</sup> ODE, with solution:

$$f(t) = \beta_1 + \beta_2 e^{\lambda t} + \beta_3 \lambda e^{\lambda t}$$



- Yield curves are typically "monotonic", "humped" or "S-shaped". The family of solutions to second order differential equations contain these shapes.
- Suppose the instantaneous forward rates were given by

$$f(t) = \beta_1 + \beta_2 e^{\lambda t} + \beta_3 \lambda e^{\lambda t}$$

• Then, since the yield is related to the forward rate by :

$$y_t(\tau) = \frac{1}{\tau} \int_0^{\tau} f_t(u) du$$

The yield curve is then given by

$$y(\tau) = \beta_1 + \beta_2 \left( \frac{1 - e^{-\lambda \tau}}{\lambda \tau} \right) + \beta_3 \left( \frac{1 - e^{-\lambda \tau}}{\lambda \tau} - e^{-\lambda \tau} \right)$$



- The entire Forward and Yield curve can now be described by only 4 parameters.
- Let us take a closer look at these parameters:
  - Level :  $\lim_{t\to\infty} f(t) = \beta_1$  . Asymptomatic value of the forward curve
  - Slope:  $\lim_{t\to 0} f(t) = \beta_1 + \beta_2$  initial value of the forward curve or the instantaneous spot rate.  $(\beta_2 > 0)$  will produce downward and vs. versa.
  - Curvature :  $\beta_3 \lambda e^{\lambda t}$  will produce a hump ( $\beta_3 > 0$ ) or trough ( $\beta_3 < 0$ )
  - Constant  $\lambda$  control both the decay factor of the slope and the maximum of the curvature

# Nelson-Siegel (cont.)

## **Factor Loadings in the Nelson-Siegel Model**





# Family of yield curves generated by the Nelson-Siegel Model





- The N-S model is not just a local approximation. It captures the basic shape of the yield curve.
- Estimation
  - Given a set of bond prices on a given day estimate the parameters  $(\lambda, \beta_1, \beta_2, \beta_3)$  To minimize MSE between the actual price and fitted price.
  - Given a set of zero coupon yield estimate  $(\lambda, \beta_1, \beta_2, \beta_3)$  to minimize MSE the actual yield and fitted yield.
  - Given a set of zero coupon yield fix  $\lambda$  and then estimate  $(\beta_1, \beta_2, \beta_3)$  to minimize MSE the actual yield and fitted yield.

# **Estimation Static Nelson-Siegel**

- Assume we have i = 1, ..., m US government T-bonds and T-note each paying semi-annual coupon  $C_i/2$
- For Bond j assume :

$$P_j^{t_0}(y_j) = \sum_{i=1}^N \frac{c_j}{2} \left[ \frac{1}{1+y_{T_i}} \right]^{\frac{T_i - t_0}{365}} + 100 \left[ \frac{1}{1+y_{T_N}} \right]^{\frac{T_N - t_0}{365}}$$

- $C_i/2$  is the coupon payment and  $y_i$  is YTM for Bond j
- *N* is the number of coupons in the life of the bond
- $t_0$  and  $T_i$  are todays date and date the  $i^{th}$  coupon
- $T_i t_0$  is the number of calendar days between today  $t_0$  and  $T_i$
- $y_{T_i}$  is unobservable rate for  $T_i$

# **Estimation Static Nelson-Siegel**

For Bond j assume :

$$P_j^{t_0}(y_j) = \sum_{i=1}^N \frac{c_j}{2} \left[ \frac{1}{1+y_{T_i}} \right]^{\frac{T_i - t_0}{365}} + 100 \left[ \frac{1}{1+y_{T_N}} \right]^{\frac{T_N - t_0}{365}}$$

$$y_{T_i} \approx y(y_{T_i}; \lambda, \beta_1, \beta_2, \beta_3) = \beta_1 + \beta_2 \left(\frac{1 - e^{-\lambda T_i}}{\lambda T_i}\right) + \beta_3 \left(\frac{1 - e^{-\lambda T_i}}{\lambda T_i} - e^{-\lambda T_i}\right)$$

$$\tilde{P}_{j}^{t_{0}}(\tilde{y}_{j}) = \sum_{i=1}^{N} \frac{c_{j}}{2} \left[ \frac{1}{1 + y(y_{T_{i}}; \lambda, \beta_{1}, \beta_{2}, \beta_{3})} \right]^{\frac{T_{i} - t_{0}}{365}} + 100 \left[ \frac{1}{1 + y(y_{T_{N}}; \lambda, \beta_{1}, \beta_{2}, \beta_{3})} \right]^{\frac{T_{N} - t_{0}}{365}}$$

 This is best estimation but difficult and may get unstable answer and possible local rather than global min

# **Estimation Static Nelson-Siegel**

- Assume we have a set of zero coupon  $y_{T_i}$  for i = 1, ..., m
  - $y_{T_i} = y(y_{T_i}; \lambda, \beta_1, \beta_2, \beta_3) + \varepsilon_{T_i} = \beta_1 + \beta_2 \left(\frac{1 e^{-\lambda T_i}}{\lambda T_i}\right) + \beta_3 \left(\frac{1 e^{-\lambda T_i}}{\lambda T_i} e^{-\lambda T_i}\right) + \varepsilon_{T_i}$
  - $y_{T_i} = \beta_1 + \beta_2 x_1(\lambda, T_i) + \beta_3 x_2(\lambda, T_i) + \varepsilon_{T_i}$
- Method 1 : use a non-linear optimization and simultaneously minimize the MSE
  - $\min_{\lambda,\beta_1,\beta_2,\beta_3} \sum_{i=1}^m \left[ y_{T_i} \beta_1 + \beta_2 x_1(\lambda, T_i) + \beta_3 x_2(\lambda, T_i) \right]^2 = \min_{\lambda,\beta_1,\beta_2,\beta_3} \sum_{i=1}^m \varepsilon_{T_i}^2$
- Method 2 : Fix  $\lambda = \bar{\lambda}$  and then run a OLS or GLS regression and then solve for optimal  $\lambda$  by minimizing the MSE
  - $\min_{\beta_1,\beta_2,\beta_3} \sum_{i=1}^m \varepsilon_{T_i}^2 = MSE(\bar{\lambda})$
  - $\hat{\lambda} = \min_{\bar{\lambda}} MSE(\bar{\lambda})$
  - $\hat{\lambda}, \hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3 = \min_{\bar{\lambda}} \{ \min_{\beta_1, \beta_2, \beta_3} \sum_{i=1}^m \varepsilon(\bar{\lambda})_{T_i}^2 \}$

## **Factor Evolution - Level**





# **Factor Evolution - Slope**



# **Factor Evolution - Curvature**





#### **Observable vs. Latent Factors**

#### Macroeconomic Factors:

- Level and inflation (see Rudebusch and Wu)
  - Fisher Equation
  - Unit Root Process
- Slope and the business cycle (see Diebold, Aruoba and Rudebusch)
  - Capacity Utilization
  - Cyclical dynamics at the business cycle frequency
- Curvature and interest rate volatility (see Litterman, Scheinkman and Weiss)
  - Implied volatilities from options on treasury bond futures

# Principal Component Analysis (see Tsay)

- Reduction in Dimensionality: Orthogonal Factors
- K assets with log-returns given by  $\mathbf{r} = (r_1, \dots, r_k)'$  and covariance matrix  $\Sigma_r$ .
- A portfolio  $c_i$  has return given by  $y_i = c'_i r = \sum_{i=1}^{\kappa} c_{ij} r_j$
- Construct a sequence of portfolios :
  - 1. the first principal component of r is the linear combination  $y_1 = c'_1 r$  that maximizes  $Var(y_1)$  subject to the constraint  $c'_1 c_1 = 1$ ,
  - 2. the second principal component of r is the linear combination  $y_2 = c_2'r$  that maximizes  $Var(y_2)$  subject to the constraints  $c_2'c_2 = 1$  and  $Cov(y_2, y_1) = 0$ , and
  - 3. the *i*th principal component of r is the linear combination  $y_i = c'_i r$  that maximizes  $Var(y_i)$  subject to the constraints  $c'_i c_i = 1$  and  $Cov(y_i, y_j) = 0$  for j = 1, ..., i 1.

## **Principal Component Analysis**

#### Main Result:

- Let  $(\lambda_1, e_1), \dots, (\lambda_k, e_k)$  represent the eigenvalue –eigenvector pairs of  $\Sigma_r$  such that  $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_k \ge 0$ .
- Then, the *i*-th principal component of r is

$$y_i = e'_i r = \sum_{j=1}^k e_{ij} r_j$$

And,

$$\frac{\operatorname{Var}(y_i)}{\sum_{i=1}^k \operatorname{Var}(r_i)} = \frac{\lambda_i}{\lambda_1 + \dots + \lambda_k}.$$



- Perform PCA on the excess returns of the zero coupon bonds of varying maturities.
- The three most significant factors explain 96% of the variance of excess returns of any bond.

The impact of these factors on yields at different maturities is shown

below:



#### Yield curves - Fits



Fig. 5. Selected fitted (model-based) yield curves. We plot fitted yield curves for selected dates, together with actual yields. See text for details.

#### Yield curves – Descriptive statistics

Descriptive statistics, yield curves

| Maturity (Months) | Mean   | Std. dev. | Minimum | Maximum | $\hat{ ho}(1)$ | $\hat{\rho}(12)$ | $\hat{\rho}(30)$ |
|-------------------|--------|-----------|---------|---------|----------------|------------------|------------------|
| 3                 | 5.630  | 1.488     | 2.732   | 9.131   | 0.978          | 0.569            | -0.079           |
| 6                 | 5.785  | 1.482     | 2.891   | 9.324   | 0.976          | 0.555            | -0.042           |
| 9                 | 5.907  | 1.492     | 2.984   | 9.343   | 0.973          | 0.545            | -0.005           |
| 12                | 6.067  | 1.501     | 3.107   | 9.683   | 0.969          | 0.539            | 0.021            |
| 15                | 6.225  | 1.504     | 3.288   | 9.988   | 0.968          | 0.527            | 0.060            |
| 18                | 6.308  | 1.496     | 3.482   | 10.188  | 0.965          | 0.513            | 0.089            |
| 21                | 6.375  | 1.484     | 3.638   | 10.274  | 0.963          | 0.502            | 0.115            |
| 24                | 6.401  | 1.464     | 3.777   | 10.413  | 0.960          | 0.481            | 0.133            |
| 30                | 6.550  | 1.462     | 4.043   | 10.748  | 0.957          | 0.479            | 0.190            |
| 36                | 6.644  | 1.439     | 4.204   | 10.787  | 0.956          | 0.471            | 0.226            |
| 48                | 6.838  | 1.439     | 4.308   | 11.269  | 0.951          | 0.457            | 0.294            |
| 60                | 6.928  | 1.430     | 4.347   | 11.313  | 0.951          | 0.464            | 0.336            |
| 72                | 7.082  | 1.457     | 4.384   | 11.653  | 0.953          | 0.454            | 0.372            |
| 84                | 7.142  | 1.425     | 4.352   | 11.841  | 0.948          | 0.448            | 0.391            |
| 96                | 7.226  | 1.413     | 4.433   | 11.512  | 0.954          | 0.468            | 0.417            |
| 108               | 7.270  | 1.428     | 4.429   | 11.664  | 0.953          | 0.475            | 0.426            |
| 120 (level)       | 7.254  | 1.432     | 4.443   | 11.663  | 0.953          | 0.467            | 0.428            |
| Slope             | 1.624  | 1.213     | -0.752  | 4.060   | 0.961          | 0.405            | -0.049           |
| Curvature         | -0.081 | 0.648     | -1.837  | 1.602   | 0.896          | 0.337            | -0.015           |

*Note*: We present descriptive statistics for monthly yields at different maturities, and for the yield curve level, slope and curvature, where we define the level as the 10-year yield, the slope as the difference between the 10-year and 3-month yields, and the curvature as the twice the 2-year yield minus the sum of the 3-month and 10-year yields. The last three columns contain sample autocorrelations at displacements of 1, 12, and 30 months. The sample period is 1985:01–2000:12.



#### Estimated Factors— Descriptive statistics

#### Descriptive statistics, estimated factors

| Factor             | Mean   | Std. Dev. | Minimum | Maximum | $\hat{ ho}(1)$ | $\hat{\rho}(12)$ | $\hat{\rho}(30)$ | ADF    |
|--------------------|--------|-----------|---------|---------|----------------|------------------|------------------|--------|
| $\hat{\beta}_{1t}$ | 7.579  | 1.524     | 4.427   | 12.088  | 0.957          | 0.511            | 0.454            | -2.410 |
| $\hat{\beta}_{2t}$ | -2.098 | 1.608     | -5.616  | 0.919   | 0.969          | 0.452            | -0.082           | -1.205 |
| $\hat{\beta}_{3t}$ | -0.162 | 1.687     | -5.249  | 4.234   | 0.901          | 0.353            | -0.006           | -3.516 |

Note: We fit the three-factor Nelson–Siegel model using monthly yield data 1985:01–2000:12, with  $\lambda_t$  fixed at 0.0609, and we present descriptive statistics for the three estimated factors  $\hat{\beta}_{1t}$ ,  $\hat{\beta}_{2t}$ , and  $\hat{\beta}_{3t}$ . The last column contains augmented Dickey–Fuller (ADF) unit root test statistics, and the three columns to its left contain sample autocorrelations at displacements of 1, 12, and 30 months.



#### Stylized facts of the yield curve

- The average yield curve is increasing and concave
- Yield dynamics are persistent, and spread dynamics are much less persistent.
- Persistent yield dynamics would correspond to strong persistence of level factor, and less persistent spread dynamics would correspond to weaker persistence of slope factor.
- The short end of the yield curve is more volatile than the long end.
- Long rates are more persistent than short rates.

### Downloading Benchmark bonds

Once selected the country go to "Member Weightings"

YCGT0007 Canada

YCGT0001 Australia

YCGT0025 USA

YCGT0016 Germany





### **Affine Term Structure Models**

• Short Rate Process:

$$r = R(x) = \delta_0 + \delta_1^{\top} x.$$

• Evolution of Factors:

$$dx_t = \kappa(\overline{x} - x_t)dt + \Sigma dz_t.$$

• Bond Pricing:

$$P_t^{(\tau)} = E_t^* \left[ \exp\left(-\int_t^{t+\tau} r_u \, du\right) \right].$$

$$P_t^{(\tau)} = F(x_t, \tau). \quad F(x, \tau) = \exp\left(a \, (\tau) + b \, (\tau)^\top x\right)$$

• Yield Curve:

$$y_t^{(\tau)} = -\frac{\log F(x_t, \tau)}{\tau} = A(\tau) + B(\tau)^{\top} x_t$$

# Affine Models: Returning to Nelson-Siegel:

$$y_t^{(\tau)} = -\frac{\log F\left(x_t, \tau\right)}{\tau} = A\left(\tau\right) + B\left(\tau\right)^{\top} x_t$$

$$y_t(\tau) = L_t + S_t \left( \frac{1 - e^{-\lambda \tau}}{\lambda \tau} \right) + C_t \left( \frac{1 - e^{-\lambda \tau}}{\lambda \tau} - e^{-\lambda \tau} \right),$$

$$\begin{pmatrix} y_t(\tau_1) \\ y_t(\tau_2) \\ \vdots \\ y_t(\tau_N) \end{pmatrix} = \begin{pmatrix} 1 & \frac{1 - e^{-\tau_1 \lambda}}{\tau_1 \lambda} & \frac{1 - e^{-\tau_1 \lambda}}{\tau_1 \lambda} - e^{-\tau_1 \lambda} \\ 1 & \frac{1 - e^{-\tau_2 \lambda}}{\tau_2 \lambda} & \frac{1 - e^{-\tau_2 \lambda}}{\tau_2 \lambda} - e^{-\tau_2 \lambda} \\ \vdots & \vdots & \vdots \\ 1 & \frac{1 - e^{-\tau_N \lambda}}{\tau_N \lambda} & \frac{1 - e^{-\tau_N \lambda}}{\tau_N \lambda} - e^{-\tau_N \lambda} \end{pmatrix} \begin{pmatrix} L_t \\ S_t \\ C_t \end{pmatrix}$$



#### **Affine Models:**

- Can one construct an affine term structure model for which the yields are related to the factors by the Nelson-Siegel factor loadings?
- Indeed, one can approximate the Nelson-Siegel yield curve structure by an Affine Term structure model by imposing additional constraints on
  - the structure of the evolution process of the underlying factors and
  - the relationship between the short rate and the underlying factors
  - (For more details, see Christensen et al.)
- The Nelson Siegel yield structure does NOT by itself rule out the possibility of arbitrage.
- However, Christensen *et. al* make the necessary modifications to the Nelson-Siegel model to make it arbitrage-free.

## References

- Nelson and Seigel, "Parsimonious Modeling of Yield Curves". *Journal of Business*, 1987.
- Litterman and Scheinkman, "Common Factors Affecting Bond Returns", *Journal of Fixed Income*, June 1991.
- Piazessi, "Affine Term Structure Models", *Handbook of Financial Econometrics*, 2003.
- Diebold and Li, "Forecasting the Term Structure of Government Bond Yields", *Journal of Econometrics*, 2006.
- Diebold, Aruoba, and Rudebusch, "The Macroeconomy and the Yield Curve: A Dynamic Latent Factor Approach". *Journal of Econometrics*, 2006.