Quality of reconstruction measures

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.

Kamila Zdybał

Université libre de Bruxelles, kamila.zdybal@ulb.ac.be camillejr.github.io/science-docs, kamila.zdybal@gmail.com

Preface

These are notes on measures of the quality of reconstruction. This document is still in preparation. Please feel free to contact me with any suggestions, corrections or comments.

Keywords

principal component analysis, data reduction, dimensionality reduction, linear algebra, MATLAB®, Python

Contents

- 1 Nomenclature 2 Coefficient of determination Root mean squared error (RMSE) 3.1 Normalized root mean squared error (NRMSE)
- A Appendix

Nomenclature 1

is a matrix

denotes a matrix transpose

is a vector formed by the j^{th} column of a matrix A, it is equivalent to A(:, j)

is a vector formed by the i^{th} row of a matrix \boldsymbol{A} , it is equivalent to A(i,:)

is an element from i^{th} row and j^{th} column of a matrix \boldsymbol{A} , it is equivalent to A(i, j)

Coefficient of determination

Root mean squared error (RMSE) 3

$$RMSE_i = \sqrt{\overline{(\boldsymbol{X}_i - \boldsymbol{f}_i)^2}}$$
 (1)

3.1 Normalized root mean squared error (NRMSE)

NRMSE =
$$\sqrt{\frac{\overline{(X-f)^2}}{\overline{X^2}}}$$
 (2)

Figure 1: Covariance matrix S graphical interpretation.

```
Dataset_projected = np.dot(Dataset_proc,
np.transpose(pca.components_[:q,:]))
```

Appendix

References