DWDM Submission

Roll Number:	18BCD7143
Student name:	L. Satyajit
Slot (L1/L2/L4):	L2
<u>Title of the Project:</u>	Prediction of Global Sales in Video game sales
Objective of the Project (What exactly the project is about?)	Prediction of Global Sales(Units) in Video game sales using attributes like genre, critic ratings, critic scores, user score and user ratings.

Dataset Link	Number of rows and Columns	About columns
https://www.kaggle.com/rush4ratio/video-game-sales-with-ratings	Rows: 16719 Columns: 16	Number of Categorical columns: 5 Number of Integer/Float Columns: 10
		Unique Values in each Column: Name: 11563 Platform: 31 Year of game: 40 Genre: 12 Publisher: 582

Challenges identified in the project	How did you address that challenge?	References
Missing values	Replacing with mean (basic)	https://www.kaggle.com/arthurtok/ /the-console-wars-ps-vs-xbox-vs-wii
	Dropping rows with NA values	https://www.kaggle.com/arthurtok/ /the-console-wars-ps-vs-xbox-vs-wii
	Replacing with median	https://www.kaggle.com/arthurtok/ /the-console-wars-ps-vs-xbox-vs-wii
	Replacing with mode	https://www.kaggle.com/arthurtok/ /the-console-wars-ps-vs-xbox-vs-wii
Noisy data	Normalization	https://www.kaggle.com/serigne/st acked-regressions-top-4-on-leaderb oard
	Standardization	https://www.kaggle.com/serigne/st acked-regressions-top-4-on-leaderb oard
Abnormal distribution	Log transformation	https://www.kaggle.com/serigne/st acked-regressions-top-4-on-leaderb oard

Outliers	Dropping rows with outliers	https://www.kaggle.com/serigne/st acked-regressions-top-4-on-leaderb oard
Handling Publisher, Genre and Rating columns	One-Hot encoding	https://www.geeksforgeeks.org/mlone-hot-encoding-of-datasets-in-python/

Without Pre-processing- Different Algorithms	Performance(Accuracy/R-Sq uared and RMSE)	Which model worked well on the test data and WHY?		
Linear Regression	R2:0.3671			
	RMSE: 0.3770			
Decision Tree Regression	R2:0.2382			
	RMSE: 0.4136	Random Forest Regressor worked		
Ridge	R2: 0.3672	fairly well with the test data as it		
	RMSE: 0.3769	showed the highest R Squared		
SVR	R2: 0.1563 value of all the	value of all the others. And showed		
	RMSE: 0.4353	the least RMSE value as well.		
K Neighbours	R2: 0.2542			
	RMSE: 0.4092			
ADA Boosting	R2: 0.2271			
	RMSE: 0.4166			
Gradient boosting regressor	R2:0.5486			
	RMSE: 0.3184			
Random Forest Regressor	R2: 0.5645			
	RMSE: 0.3127			

Which Pre-processing technique you applied?	Why you applied that pre-processing Technique?	References
Replacing rows with NA values with mean (basic)	To handle missing values	https://machinelearningmast ery.com/handle-missing-data -python/
Dropping rows with NA values	To handle missing values	https://machinelearningmast ery.com/handle-missing-data -python/
Replacing rows with NA values with median	To handle missing values	https://machinelearningmast ery.com/handle-missing-data -python/
Replacing rows with NA values with mode	To handle missing values	https://machinelearningmast ery.com/handle-missing-data -python/
Min-Max Normalization	To handle noisy data	https://www.analyticsvidhy a.com/blog/2020/04/featur

		e-scaling-machine-learning-n ormalization-standardization /
Standardization	To handle noisy data	https://www.analyticsvidhy a.com/blog/2020/04/featur e-scaling-machine-learning-n ormalization-standardization /
Log transformation (basic)	To handle abnormal distribution	https://www.kaggle.com/jruo ts/forecasting-video-game-sal es/notebook
Dropping rows with outliers	To handle outliers	https://www.kaggle.com/jruo ts/forecasting-video-game-sal es/notebook

Pre-processing technique name?	Data Mining Algorithms you applied?	Performance(Accuracy/other confusion matrix measures) (Before pre-processing) (After		Which model worked well on the test data and WHY?
Replacing rows with NA values with mean (basic)	Linear Regression	pre-processing) R2:0.3671 RMSE:0.3770	R2:0.3671 RMSE:0.3770	Random Forest Regressor showed the
	Decision Tree Regression	R2: 0.2382 RMSE: 0.4136	R2: 0.2382 RMSE: 0.4136	best prediction accuracy out of all algorithms used, the most accuracy
	Ridge	R2: 0.3672 RMSE: 0.3769	R2: 0.3672 RMSE: 0.3769	being the result of removal of outliers with the highest R Squared
	SVR	R2: 0.1563 RMSE: 0.4353	R2: 0.1563 RMSE: 0.4353	value and lowest Root Mean Squared error.
	K Neighbours	R2: 0.2542 RMSE: 0.4092	R2: 0.2542 RMSE: 0.4092	
	ADA Boosting	R2: 0.2271 RMSE: 0.4166	R2: 0.2271 RMSE: 0.4166	
	Gradient boosting regressor	R2:0.5486 RMSE:0.3184	R2 : 0.5486 RMSE : 0.3184	
	Random Forest Regressor	R2: 0.5645 RMSE: 0.3127	R2: 0.5645 RMSE: 0.3127	
Dropping rows with NA values	Linear Regression	R2:0.3671 RMSE:0.3770	R2: 0.4397 RMSE: 0.3919	
	Decision Tree Regression	R2:0.2382 RMSE:0.4136	R2: 0.3163 RMSE: 0.4329	

	Ridge	R2: 0.3672	R2:0.4396
		RMSE: 0.3769	RMSE: 0.3919
	SVR	R2: 0.1563	R2:0.1724
		RMSE: 0.4353	RMSE : 0.4763
	K Neighbours	R2: 0.2542	R2: 0.2154
		RMSE: 0.4092	RMSE: 0.4638
	ADA Boosting	R2: 0.2271	R2: 0.3436
		RMSE: 0.4166	RMSE: 0.4242
	Random Forest	R2: 0.5645	R2:0.5900
	Regressor	RMSE: 0.3127	RMSE: 0.3352
Replacing rows with	Linear Regression	R2:0.3671	R2:0.3780
NA values with		RMSE: 0.3770	RMSE: 0.3737
median			
	Decision Tree	R2:0.2382	R2:0.2433
	Regression	RMSE: 0.4136	RMSE: 0.4122
	Ridge	R2: 0.3672	R2:0.3780
		RMSE: 0.3769	RMSE : 0.3737
	SVR	R2:0.1563	R2:0.2137
		RMSE : 0.4353	RMSE : 0.4202
	K Neighbours	R2: 0.2542	R2: 0.2453
		RMSE : 0.4092	RMSE : 0.4117
	ADA Boosting	R2: 0.2271	R2: 0.2865
	7.57. 50008	RMSE : 0.4166	RMSE : 0.4003
	Random Forest	R2 : 0.5645	R2 : 0.5768
	Regressor	RMSE: 0.3127	RMSE: 0.3083
Replacing rows with	Linear Regression	R2:0.3671	R2:0.4163
NA values with	30. 222.3	RMSE: 0.3770	RMSE : 0.3450
mode			
	Decision Tree	R2:0.2382	R2:0.1376
	Regression	RMSE : 0.4136	RMSE: 0.4194
	Ridge	R2: 0.3672	R2: 0.4166
	, mage	RMSE : 0.3769	RMSE: 0.3449
		111152 . 0.3703	1
	SVR	R2:0.1563	R2:0.2672
	JVII	RMSE: 0.4353	RMSE: 0.3866
		152 . 0.4333	
		R2: 0.2542	R2: 0.2401
	I K Neighhours		1 114 . U.4TUI
	K Neighbours		
		RMSE: 0.4092	RMSE: 0.3937
	ADA Boosting		

	Random Forest	R2 : 0.5645	R2 : 0.5874
	Regressor	RMSE : 0.3127	RMSE: 0.2901
Min-Max	Linear Regression	R2:0.3671	R2:0.3671
Normalization		RMSE: 0.3770	RMSE : 0.3770
	Decision Tree	R2:0.2382	R2:0.1893
	Regression	RMSE : 0.4136	RMSE : 0.4267
	Ridge	R2: 0.3672	R2:0.3667
		RMSE : 0.3769	RMSE : 0.3771
	SVR	R2:0.1563	R2:0.4130
		RMSE: 0.4353	RMSE: 0.3631
	K Neighbours	R2: 0.2542	R2: 0.3310
		RMSE: 0.4092	RMSE: 0.3876
	ADA Boosting	R2: 0.2271	R2: 0.1849
		RMSE: 0.4166	RMSE: 0.4278
	Random Forest	R2:0.5645	R2:0.5703
	Regressor	RMSE : 0.3127	RMSE: 0.3106
Standardization	Linear Regression	R2:0.3671	R2:0.3669
		RMSE: 0.3770	RMSE: 0.3770
	Decision Tree	R2:0.2382	R2:0.2511
	Regression	RMSE: 0.4136	RMSE: 0.4101
	Ridge	R2: 0.3672	R2:0.3671
		RMSE: 0.3769	RMSE: 0.3770
	SVR	R2:0.1563	R2:0.4997
		RMSE: 0.4353	RMSE: 0.3352
	K Neighbours	R2: 0.2542	R2: 0.3940
		RMSE : 0.4092	RMSE : 0.3689
	ADA Boosting	R2: 0.2271	R2: 0.2867
		RMSE : 0.4166	RMSE: 0.4002
	_		
	Random Forest	R2:0.5645	R2:0.5612
	Regressor	RMSE : 0.3127	RMSE : 0.3139
Dropping rows with	Linear Regression	R2:0.3671	R2:0.4308
outliers		RMSE : 0.3770	RMSE : 0.3565
	Decision Tree	R2:0.2382	R2:0.3147
	Regression	RMSE: 0.4136	RMSE: 0.3912
	Ridge	R2: 0.3672	R2:0.4314
		RMSE: 0.3769	RMSE: 0.3563
	SVR	R2:0.1563	R2:0.1948
		RMSE: 0.4353	RMSE: 0.4240

	K Neighbours	R2: 0.2542	R2: 0.3004
		RMSE : 0.4092	RMSE : 0.3953
	ADA Boosting	R2: 0.2271	R2: 0.3401
		RMSE : 0.4166	RMSE: 0.3839
	Dandon Forest	D2 - 0 FC4F	D2 - 0 CC00
	Random Forest Regressor	R2: 0.5645 RMSE: 0.3127	R2 : 0.6689 RMSE : 0.2719
Using suitable	Linear Regression	R2:0.3671	R2:0.4919
combination of		RMSE: 0.3770	RMSE: 0.3610
preprocessing			
techniques			
	Decision Tree	R2:0.2382	R2:0.3978
	Regression	RMSE : 0.4136	RMSE: 0.3931
	Ridge	R2: 0.3672	R2:0.4872
		RMSE: 0.3769	RMSE: 0.3627
	SVR	R2:0.1563	R2:0.5267
		RMSE: 0.4353	RMSE: 0.3484
	K Neighbours	R2: 0.2542	R2: 0.4341
		RMSE: 0.4092	RMSE: 0.3810
	ADA Boosting	R2: 0.2271	R2: 0.4613
		RMSE : 0.4166	RMSE: 0.3718
	Random Forest	R2:0.5645	R2:0.6361
	Regressor	RMSE : 0.3127	RMSE: 0.3056

Summary:

Number of Pre-processing Techniques applied with their names:

Number: 8 Names:

Replacing rows with NA values with mean (basic)

Dropping rows with NA values

Replacing rows with NA values with median

Replacing rows with NA values with mode

Min-Max Normalization

Standardization

Log transformation

Dropping rows with outliers

Number of Data Mining Algorithms applied with their names:

Number: 8 Names:

Linear Regression

Decision Tree Regression

Ridge

SVR

K-Neighbours

ADA Boosting

Gradient boosting regressor

Random Forest Regressor

Which algorithm showed highest performance after "All" pre-processing techniques and WHY?:

Random Forest Regressor showed the best prediction accuracy out of all algorithms used, the most accuracy being the result of **removal of outliers** with the highest R Squared value and lowest Root Mean Squared error.

Conclusion-Write in your own words:

The best model for this dataset is **Random Forest Regressor**, both before and after preprocessing. This can be concluded from the R Squared value and Root mean squared error. The closer the **R Squared value** is to 1 the more accurate the predictions are. Similarly the less the **RMSE** is the better the predictions are.

We have also observed that depending on the preprocessing, each model behaves very differently, for instance, the performance of the **SVR** model when **Normalization** and **Standardization** was applied and not applied differed significantly compared to other models. And we also observed a fairly high increase in accuracy in all the models when appropriate preprocessing techniques were applied.

The most impactful preprocessing technique that we observed for our dataset is **removal of** outliers.

From all the observations, we can conclude that **preprocessing techniques** play a significant role in prediction algorithms and appropriate techniques should be employed for the best results.