

- Properties of the muon
- Muon production and facilities
- Muon-matter interactions
- Applications in solid-state science
 - Magnetism
 - Superconductivity
 - Charge transport
 - Semiconductor defects
- Complementarity with neutrons

Muons: origins and properties

- Generated in upper atmosphere as H⁺ in cosmic rays hits molecules
 - Muons survive to sea level (1 cm⁻² min⁻¹) identified in 1936

Muons: origin and properties

- Fundamental (indivisible) particle
 - charge +1 (μ^+) or -1 (μ^-)
 - mass ≈ 200 electron, 1/9 proton
 - Spin ½
 - − Spontaneous decay: $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$ $\tau_{\mu^+} \approx 2.2 \, \mu s$

 $\mu^- \to e^- + \overline{\nu}_e + \nu_{_{1\!\!1}}$ shorter due to nuclear capture

— In practical terms it is the positive form that is important (lifetime) – but why?

	charge	spin	mass	moment	$\gamma / 2\pi$ (MHz $ extsf{T}^{-1}$)	lifetime (μs)
е	±е	1/2	m _e = 0.51 MeV	657 μ _p	28×10 ³	∞
μ	±е	1/2	207 m _e = 105.7 MeV	$3.18 \mu_{ m p}$	135.5	2.19
p	±е	1/2	1836 m _e = 938 MeV	μ_{p}	42.6	∞

Muon production and polarisation

- Cosmic sources too feeble to be practical use artificial sources
- Create from pions (π^+) , in turn produced by firing high-energy protons (> 500 MeV) at target containing nuclei of intermediate mass (C,Be)

$$p + p \rightarrow \pi^+ + p + n$$

$$\pi^+ \to \mu^+ + \nu_\mu$$

- Most of π^+ that lead to useable μ^+ are at rest in the *surface* of target
- Conservation of spin (s) and momentum (p) for decay of π^+ at rest (s=0, p=0) leads to 100% polarisation of μ^+ spin opposite to momentum (parity violation means that mirror-image process doesn't occur and neutrino has spin antiparallel to its momentum)
 - Kinetic energy μ⁺ ≈ 4.1 MeV
 - Half-life π⁺ 26 ns

So why is this useful?

Muon implantation (not scattering!)

- μ⁺ behaves like a light proton in terms of implantation in solids
 - 4.1 MeV kinetic energy rapidly lost by ionisation and e⁻ scattering → keV (ns)
 - Final stages of energy loss involve e⁻ loss and capture → 100s eV (ps)
 - Can end up in state with e- captured (muonium μ+ e-)
 - If ends up positive, comes to rest at site favoured by charge e.g. near O (c.f. O-H)
 - Thermalisation does not degrade spin polarisation appreciably

7

Muon decay

- The muon never emerges from solid decays, $\tau_{\mu +} \approx 2.2~\mu s$
 - Of the decay products, it is the positrons (e+) that can be detected directly
 - Angular distribution of positrons reflects muon spin polarisation at point of decay (parity violation again, plus momentum distribution of decay products)

- So...?

Muon as local probe of internal fields

- Implanted μ⁺ (Larmor) precesses about any component of field (B) transverse to the direction of implantation
 - Angular frequency $\omega_{\parallel} = \gamma_{\parallel} B (\gamma_{\parallel} = ge/2 m_{\parallel})$ between e- (esr) and H+ (nmr)
 - Typically falls in μs region (MHz)
 - $-\mu^+$ polarisation rotates between forwards and backwards direction (relative to direction of implantation) and distribution of detected positrons will reflect this

9

Muon as local probe of internal fields

- Implanted μ⁺ (Larmor) precesses about any component of field (B) transverse to the direction of implantation
 - Angular frequency ω_μ = γ_μ B (γ_μ = ge/2 m_μ) between e- (esr) and H+ (nmr)
 - Typically falls in μs region (MHz)
 - μ^+ polarisation rotates between forwards and backwards direction (relative to direction of implantation) and distribution of detected positrons will reflect this

The muon experiment: facilities

- Principal distinction: continuous or pulsed source
 - Continuous sources at the Paul Scherrer Institute (PSI) (Villigen, Switzerland) and the TRIUMF Meson Facility (Vancouver, Canada)
 - Pulsed sources at the KEK Meson Science Laboratory (Japan), and the ISIS Facility of the Rutherford Appleton Laboratory (UK)
- Most common instrument configuration: longitudinal
 - Detectors forward and backward with respect to initial muon polarisation
 - Any magnetic field applied along the same direction

NEUTRONS FOR SCIENCE

The muon experiment: facilities

- Continuous sources
 - Each incoming muon detected and clock started
 - Stop clock when corresponding positron detected (meanwhile reject other $\mu^{\!\scriptscriptstyle +}$)
 - Repeat to accumulate statistics: A(t), G(t)
 - Advantages:
 - Can detect events at very short time (~ 100 ps)
 - Disadvantages
 - Relatively low intensities/weak signal
 - Often not extended to long times

The muon experiment: facilities

Pulsed sources

- Pulsed proton beam from synchrotron or linac directed on target
- Pulses of muons produced with width set by proton pulse (\sim 10ns) and π^+ lifetime
- Repetition period must be much longer than muon lifetime (typically 20 ms)
- Accumulate statistics over many pulses: A(t), G(t)

13

The muon experiment: facilities

Pulsed sources

- Pulsed proton beam from synchrotron or linac directed on target
- Pulses of muons produced with width set by proton pulse (\sim 10ns) and π^+ lifetime
- Repetition period must be much longer than muon lifetime (typically 20 ms)
- Accumulate statistics over many pulses: A(t), G(t)
- Advantages:
 - Use all of muons in pulse relatively intense
 - Background very low
- Disadvantages
 - Cannot observe at shorter times than the pulse width

Science with implanted muons

- Muons implanted as μ⁺ or muonium (μ⁺ e⁻) after electron capture
- Muons highly sensitive to static and dynamic magnetic fields
 - Particular applications to systems with very small or dilute moments
 - Local probe particularly good at sensing short-range effects
 - Works well in zero field less perturbation of the system
 - ─ Time-window 10⁴ − 10¹² Hz complements other techniques
 - Not element specific (nmr nuclei, neutron absorbers)
 - No spatial information applicable to crystals, powders, films

Average picture provided by susceptibility – can be misleading

Muons more likely to reveal nature of *local* magnetic environment and tell these two apart

15

Probing magnetism with muons

- Start with case of 'simple' ordered magnet
- Implanted muons 'feel' static internal field component and precess
 - This is μ SR muon spin *rotation*
 - ω₀= γ₀ B; γ₀/2π = 135 MHz T⁻¹
 - With longitudinal geometry and no applied field, G(t) oscillates
 - Frequency gets smaller as magnet warmed to ordering temperature
 - Typically able to measure to 10-5 T; moment unknown unless muon site known

Blundell *et al, Europhys. Lett.* **31** (1995) 573

Probing magnetism with muons

- Muons particularly good at detecting weak moments (c.f. neutrons)
 - Detection of spin-freezing in high- T_c materials $La_{1-x}Sr_xCuO_4$ (s = $\frac{1}{2}$)
 - Budnick et al, Europhys. Lett. 5 (1988) 651

17

Probing magnetism with muons

- Exploration of effects of lower-dimensionality in cuprates
 - huge activity on cuprate chain and ladder materials e.g. Sr₂CuO₃ and Ca₂CuO₃
 - -Cu-O-Cu-O-Cu-O- chains well separated J'/J small
 - Moment below T_N scales with J'/J does it disappear as $J'/J \rightarrow 0$?
 - Kojima et al, PRL 78 (1997) 1787
 - See what happens when chains pushed further apart

Probing magnetism with muons

- Attempt to make LaSrCoO₃ by reduction of LaSrCoO₄ with CaH₂
 - Obtain target material with Sr₂CuO₃ structure and chains are further apart.
 - However, internal field and ordering T very high (>300 K rather than 5 -10 K)
 - Closer analysis reveals LaSrCoO₃H_{0.7} H between chains J' very strong
 - Hayward et al, Science 295 (200) 1882

μSR with less than perfect order

- What happens when the field is not entirely uniform?
 - e.g. array of frozen, randomly oriented nuclear moments (in materials that have nuclear moments)
 - e.g. array of frozen, randomly oriented *electronic* moments in spin glass
 - Uemura et al, PRB 31 (1985) 546

- For one component of the field:
- $G(t) = \cos^2 \theta + \sin^2 \theta \cos(\gamma_u B t)$
- Average over completely random orientations: $G(t) = \frac{1}{3} + \frac{2}{3}\cos(\gamma_{\mu}Bt)$

NEUTRONS FOR SCIENCE

Adding up all the components

• Add up the contributions from different field strengths: 1...

0.5 0.5 -1.0 0 1 2 3 4 5

individual component

sum

21

Adding up all the components

• Add up the contributions from different field strengths: 1,2...

individual component

sum

NEUTRONS FOR SCIENCE

Adding up all the components

• Add up the contributions from different field strengths: 1,2,3...

individual component

sum

23

NEUTRONS FOR SCIENCE

Adding up all the components

• Add up the contributions from different field strengths: 1,2,3...many

individual component

sum

- Add up the contributions from different field strengths: 1,2,3...many
 - introduce a continuous Gaussian* distribution of width Δ / γ_{u} .

individual component

sum

* appropriate for *concentrated* collection of dipolar fields – for *dilute* systems *e.g.* some spin-glasses, this is Lorentzian: Walstedt and Walker, *PRB* **9** (1974) 4857; Crook and Cywinski, *JPCM* **9** (1997) 1149

25

Adding up all the components

- Add up the contributions from different field strengths: 1,2,3...many
 - introduce a continuous Gaussian* distribution of width Δ / γ_n :

^{*} appropriate for *concentrated* collection of dipolar fields – for *dilute* systems *e.g.* some spin-glasses, this is Lorentzian: Walstedt and Walker, *PRB* **9** (1974) 4857; Crook and Cywinski, *JPCM* **9** (1997) 1149

t/a.u.

NEUTRONS FOR SCIENCE

'R' is also for 'Relaxation'

Kubo-Toyabe relaxation function for frozen static moments in zero field and longitudinal geometry

i.e. a form of muon spin relaxation

- At long times, G(t) recovers to 1/3 initial value reflects 1/3 net component of random moments along longitudinal direction – no contribution to relaxation
- An applied field increases the value of this field and hence the '1/3 tail'

Fluctuating moments

- The muon spin often experiences fluctuations in the field either because the field moves (e.g. in a paramagnet) or the muon hops
 - Hayano et al, PRB 20 (1979) 850
 - Assume rate of change of direction p(t)=exp(-vt)
 - Field orientation moves randomly at this rate within distribution P(B_i)
 - For *fast* relaxation rates: G(t) = exp($-\lambda_z t$); $\lambda_z = 2\Delta^2/v$ ('nmr' motional narrowing v)
 - For slow relaxation rates: $G(t) = \frac{1}{3} \exp(-\frac{2}{3} vt) \text{recover } \frac{1}{3} \text{ tail}$
 - Full behaviour can either be simulated or approximated by analytic function (dynamical KT function) - Keren PRB 50 (1994) 10039
 - Applied field doesn't make much difference to signal from paramagnet

Probing the energy landscape

- Spin-glasses provide insights into glassy dynamics in general
 - Range of environments leads to distribution of relaxation times
 - No longer simple exponential decay for G(t) (implies one relaxation time)
 - Observe stretched exponential for many SGs (universal?): $G(t) \approx \exp(-\lambda_{||}t)^{\beta}$
 - e.g. 0.5 at% Mn in Ag (Ag has weak nuclear moment passive matrix)
 - Campbell et al, PRL 72 (1994) 1291; Keren et al PRL 77 (1996) 1386

NEUTRONS FOR SCIENCE

Opening a very old can of worms

Conventional (Néel) ground state may not be correct

- = RVB (resonating valence bond) or spin fluid ground state
- Similarly for layered magnets

- Classical model works well most of the time Néel order on cooling
- Quantum fluctuations more significant for
 - Small spin (S= ½)
 - Fewer neighbours chains and planes
 - Frustrated interactions
- S= ½ kagome antiferromagnet brings all these together
 - Any good examples out there?

31

Herbertsmithite - a perfect S = ½ kagome afm?

- Parent compound: γ-Cu₄(OH)₆Cl₂ dope with Zn: Zn_xCu_{4-x}(OH)₆Cl₂
 - Parent compound has pyrochlore structure
 - Zn selects sites between kagome layers (no JT distortion)
 - For Cu₃Zn compound, yields undistorted kagome layers separated by Zn
 - Zn severs weak FM component of Cu-Cu exchange (|θ|↑as %Zn ↑)
 - Intra-plane Cu-O-Cu 119°; inter-plane Cu-O-Cu 97°
 - Shores et al, JACS 127 (2005) 13462

Neutron probe of correlations....

- No long-range order to 20 mK in x = 1 (pure kagome)
- Traces of excitation around 7 meV (but only for some of the spins)
 - Short-range correlation visible at 2 K but not 60 K
 - Scan along Q for data in energy range 7 8 meV; T = 2 to 60 K
 - Is this the energy required to break up spin singlets?

NEUTRONS FOR SCIENCE

Spin freezing in paratacamite series - Cu_{4-x}Zn_x

- Track magnetic behaviour with x using μSR (Mendels *et al*, PRL **98** (2007)
 - For $x \le 0.15$ distinct oscillations plus paramagnetic term
 - For x = 0.33, x = 0.5 freezing transition broader and at lower T
 - Higher values of x only dynamic down to lowest T (50 mK cf 300 K for θ)

- Superconductors why the fuss?
 - 'superconductivity is perhaps the most remarkable physical property in the universe' David Pines
 - It's also one of the most useful really and potentially

Superconductors Superconductors

Striking leaps in T_c in the past decades – but why?

- Tremendous range of materials that are now known to superconduct
 - metals and alloys
 - oxides, especially cuprates
 - fullerenes
 - molecular solids
 - where next?

- What to look for? What provides clues about the underlying physics?
- Two characteristic length scales:
 - Coherence length (ξ) scale for variation of sc wavefunction
 - Penetration depth (λ) controls ability of sc to screen magnetic fields

- If λ is much greater than ξ ($\lambda > \xi/\sqrt{2}$) flux can penetrate entire sample
 - Does so as quantized flux lines (h/2e) called vortices which may form lattice
 - Behaviour of flux lattice a good test for theories of superconductivity
 - How to study?

NEUTRONS FOR SCIENCE

- Flux lines can scatter neutrons just as moments do
- Typical spacing between vortices puts scattering in SANS territory
 - E.g. MgB₂ (note 98 mg Xtal 0.75 mm² x 30 mm, 95% ¹¹B enriched
 - Cubitt and Dewhurst, Phys. Rev. Lett. 91 (2003) 47002

Muons and superconductors

- Muons can probe internal field distribution
 - apply transverse B to sample
 - In normal (non-sc) state, uniform field and simple muon precession signal
 - If vortices form, field felt by muon depends on implantation site relative to vortex
 - For larger λ , internal field variation less so relaxation rate (σ) less: $\sigma \approx 1 / \lambda^2$
 - Generally difficult to get bulk measure of λ (don't need good x'tals as with SANS)

39

Muons and superconductors

- λ for clean sample at T= 0 can provide estimate for Fermi temperature (T_F)
- Plot T_c against T_F to provide clear distinction between ordinary and 'exotic' sc
- Common physics for exotic superconductors? But what?
 - Uemura et al, PRL 66 (1991) 2665

Probe of diffusion in solids

- Transport in solids ions, atoms, electrons in key technologies
 - Batteries, fuel cells, sensors, catalysts, conducting polymers
- Muons can probe such motion in several ways
 - relaxation of mobile μ^+ to study motion of light particles e.g. mimic of H⁺
 - relaxation of static μ^+ to study motion of other species

Illustrative figs of technologies etc

41

NEUTRONS FOR SCIENCE

Relaxation of diffusing muons

- μ* implanted in inorganic solid causes local lattice distortion
 - Muon spin senses local nuclear moments KT relaxation
 - Hopping leads to relaxation of KT function (relaxation of '1/3 tail')
 - Thermal assistance of motion includes phonons: overall $v = v_0 \exp(-E_a/kT)$
 - Quantum diffusion (tunnelling) at very low temperature
 - Storchak and Prokof'ev, Rev. Mod. Phys. 70 (1998) 929

Relaxation by diffusing ions

- Li_vx[Mn_{2-v}Li_v]O₄ could be a key component (cathode) for Li batteries
 - Function depends on Li⁺ flow in the spinel structure optimise wrt x,y
 - $-\mu$ + implants near O; observe dynamic KT form
 - Width of field (∆) decreases above 230 K with x=1, y=0.04 Li⁺ motion
 - Li⁺ motion only becomes significant above 300 K for x=0.2, y=0.04
 - Kaiser et al, PRB 62 (2000) R9236

Electron motion in polymers

- μ^+ implanted in conducting polymer generally forms muonium (μ^+e^-) which reacts with the polymer to produce mobile spin (soliton)
 - Soliton moves up and down chain but cannot pass defect
 - Muon polarisation relaxes with each visit (μ^+ e-hyperfine coupling)
 - Hence probe mechanism of charge transport
 - Nagamine et al, PRL 53 (1984) 1763; Pratt et al PRL 79 (1997) 2855; Pratt et al, Syn. Met. 101 (1999) 323; Blundell et al, Syn Met. 119 (2001)

Semiconductor defects

- Defects dominate much of the useful physics of semiconductors
 - H is a particularly important defect; mimic with muonium $(H,H^+,H^-;\mu^+,\mu^+e^-,\mu^+2e^-)$
 - Muonium studies most insightful for *individual* H defects *very* sensitive
 - In low magnetic field see precession transitions within the triplet
 - In higher field, measurement of precession signal yields A sensitive to site
 - Patterson, Rev. Mod. Phys. 60 (1998) 69

Si: most tightly bound site for µ+e-

Breit-Rabi diagram for µ+e-(isotropic A; A_{vac}=4.463..GHz)

Summary

- What muons can do
 - Very sensitive probe of internal magnetic fields
 - Ordering temperature
 - Type of order 'regular' or glassy
 - Fluctuations in paramagnets and glassy systems
 - Complements other techniques in dynamics — time range 10⁴ – 10¹² Hz
 - Superconductors
 - · Characterisation of flux lattices measure of penetration depth
 - Diffusion in solids
 - Mimic of light particles and diffusion mechanisms
 - Probe of diffusion of ions in solids, electrons in conducting polymers
 - Defects in semiconductors
 - Probe of nature of defect sites (H) in semiconductors

Books and reviews

- J. Chappert in ;Muons and Pions in materials research', eds J.Chappert and R.I. Grynszpan...
- A. Schenck, 'Muon spin rotation spectroscopy' (1985) (Bristol, Hilger)
- S.F.J. Cox, 'Implanted muon studies in condensed matter science', J.Phys.C:Solid State Phys. 20 (1987) 3187
- S.J. Blundell, 'Spin polarised muons in condensed matter physics', Contemp. Phys (arXiv:cond-mat/0207699v)
- P. Dalmas de Roetier and A. Yaouanc, 'Muon spin rotation and relaxation in magnetic materials', J.Phys.: Cond. Mat. 9 (1997) 9113
- Patterson, Semiconductor defects, Rev. Mod. Phys. 60 (1998) 69
- Storchak and Prokof'ev, Quantum diffusion, Rev. Mod. Phys. **70** (1998) 929

Web resources

- ISIS web site esp. http://www.isis.rl.ac.uk/muons/trainingcourse/index.htm
- TRIUMF web site: http://www.triumf.ca
- PSI web site: http://www.psi.ch