Are Transformers Effective for Time Series Forecasting?

Введение: о чем вообще статья

- О том как предсказывают временные ряды
- Какую роль играют здесь трансформеры
- Насколько они эффективны
- Сравнение их с новым методом
- Ответ на вопрос "Эффективны ли трансформеры для временных рядов?"

План доклада

- Какие есть способы предсказания временных рядов
- Проблемы трансформеров для временных рядов
- Как сейчас трансформеры работают с временными рядами
- Новой подход от авторов статьи
- Эксперименты
- Выводы

Как предсказывают временные ряды:

- Статистические методы
- Классический ML
- Трансформеры

Трансформеры: сила и слабость

Механизм внимания:

Отличные результаты в NLP и CV

- Инвариантность к перестановкам

С этим пытаются бороться через positional encoding Но все равно часть информации теряется

К чему пришли

Трансформеры хоть и крутые, но не учитывают порядок

А порядок нам важен

Существующие методы трансформеров для ВР

LTSF linear

Figure 2. Illustration of the basic linear model.

$$\hat{X}_i = WX_i$$
, where $W \in \mathbb{R}^{T imes L}$

- DLinear

С декомпозицей на тренд и сезонность в начале

- NLinear

С нормализацией в начале

9 датасетов

- Транспорт
- Электричество
- Погода
- Финансы и другие

Метрики: MAE и MSE

Сравниваемые модели

- FEDformer
- Autoformer
- Informer
- Pyraformer
- LogTrans
- Closet Repeat
- DLinear
- NLinear

Met	hods	IMP.	Lin	ear*	NLin	ear*	DLir	near*	FED	former	Autof	ormer	Info	rmer	Pyrafo	rmer*	Log	Trans	Rep	eat*
Me	etric	MSE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
È	96	27.40%	0.140	0.237	0.141	0.237	0.140	0.237	0.193	0.308	0.201	0.317	0.274	0.368	0.386	0.449	0.258	0.357	1.588	0.946
Electricity	192	23.88%	0.153	0.250	0.154	0.248	0.153	0.249	0.201	0.315	0.222	0.334	0.296	0.386	0.386	0.443	0.266	0.368	1.595	0.950
SC.	336	21.02%	0.169	0.268	0.171	0.265	0.169	0.267	0.214	0.329	0.231	0.338	0.300	0.394	0.378	0.443	0.280	0.380	1.617	0.961
面	720	17.47%	0.203	0.301	0.210	0.297	0.203	0.301	0.246	0.355	0.254	0.361	0.373	0.439	0.376	0.445	0.283	0.376	1.647	0.975
- se	96	45.27%	0.082	0.207	0.089	0.208	0.081	0.203	0.148	0.278	0.197	0.323	0.847	0.752	0.376	1.105	0.968	0.812	0.081	0.196
æ	192	42.06%	0.167	0.304	0.180	0.300	0.157	0.293	0.271	0.380	0.300	0.369	1.204	0.895	1.748	1.151	1.040	0.851	0.167	0.289
Exchange	336	33.69%	0.328	0.432	0.331	0.415	0.305	0.414	0.460	0.500	0.509	0.524	1.672	1.036	1.874	1.172	1.659	1.081	0.305	0.396
田	720	46.19%	0.964	0.750	1.033	0.780	0.643	0.601	1.195	0.841	1.447	0.941	2.478	1.310	1.943	1.206	1.941	1.127	0.823	0.681
	96	30.15%	0.410	0.282	0.410	0.279	0.410	0.282	0.587	0.366	0.613	0.388	0.719	0.391	2.085	0.468	0.684	0.384	2.723	1.079
ξĘ	192	29.96%	0.423	0.287	0.423	0.284	0.423	0.287	0.604	0.373	0.616	0.382	0.696	0.379	0.867	0.467	0.685	0.390	2.756	1.087
Traffic	336	29.95%	0.436	0.295	0.435	0.290	0.436	0.296	0.621	0.383	0.622	0.337	0.777	0.420	0.869	0.469	0.734	0.408	2.791	1.095
	720	25.87%	0.466	0.315	0.464	0.307	0.466	0.315	0.626	0.382	0.660	0.408	0.864	0.472	0.881	0.473	0.717	0.396	2.811	1.097
н.	96	18.89%	0.176	0.236	0.182	0.232	0.176	0.237	0.217	0.296	0.266	0.336	0.300	0.384	0.896	0.556	0.458	0.490	0.259	0.254
the	192	21.01%	0.218	0.276	0.225	0.269	0.220	0.282	0.276	0.336	0.307	0.367	0.598	0.544	0.622	0.624	0.658	0.589	0.309	0.292
Weather	336	22.71%	0.262	0.312	0.271	0.301	0.265	0.319	0.339	0.380	0.359	0.395	0.578	0.523	0.739	0.753	0.797	0.652	0.377	0.338
	720	19.85%	0.326	0.365	0.338	0.348	0.323	0.362	0.403	0.428	0.419	0.428	1.059	0.741	1.004	0.934	0.869	0.675	0.465	0.394
	24	47.86%	1.947	0.985	1.683	0.858	2.215	1.081	3.228	1.260	3.483	1.287	5.764	1.677	1.420	2.012	4.480	1.444	6.587	1.701
Ξ	36	36.43%	2.182	1.036	1.703	0.859	1.963	0.963	2.679	1.080	3.103	1.148	4.755	1.467	7.394	2.031	4.799	1.467	7.130	1.884
н	48	34.43%	2.256	1.060	1.719	0.884	2.130	1.024	2.622	1.078	2.669	1.085	4.763	1.469	7.551	2.057	4.800	1.468	6.575	1.798
	60	34.33%	2.390	1.104	1.819	0.917	2.368	1.096	2.857	1.157	2.770	1.125	5.264	1.564	7.662	2.100	5.278	1.560	5.893	1.677
_	96	0.80%	0.375	0.397	0.374	0.394	0.375	0.399	0.376	0.419	0.449	0.459	0.865	0.713	0.664	0.612	0.878	0.740	1.295	0.713
ETTh1	192	3.57%	0.418	0.429	0.408	0.415	0.405	0.416	0.420	0.448	0.500	0.482	1.008	0.792	0.790	0.681	1.037	0.824	1.325	0.733
E	336	6.54%	0.479	0.476	0.429	0.427	0.439	0.443	0.459	0.465	0.521	0.496	1.107	0.809	0.891	0.738	1.238	0.932	1.323	0.744
1000	720	13.04%	0.624	0.592	0.440	0.453	0.472	0.490	0.506	0.507	0.514	0.512	1.181	0.865	0.963	0.782	1.135	0.852	1.339	0.756
2	96	19.94%	0.288	0.352	0.277	0.338	0.289	0.353	0.346	0.388	0.358	0.397	3.755	1.525	0.645	0.597	2.116	1.197	0.432	0.422
ETTh2	192	19.81%	0.377	0.413	0.344	0.381	0.383	0.418	0.429	0.439	0.456	0.452	5.602	1.931	0.788	0.683	4.315	1.635	0.534	0.473
H	336	25.93%	0.452	0.461	0.357	0.400	0.448	0.465	0.496	0.487	0.482	0.486	4.721	1.835	0.907	0.747	1.124	1.604	0.591	0.508
2	720	14.25%	0.698	0.595	0.394	0.436	0.605	0.551	0.463	0.474	0.515	0.511	3.647	1.625	0.963	0.783	3.188	1.540	0.588	0.517
-	96	21.10%	0.308	0.352	0.306	0.348	0.299	0.343	0.379	0.419	0.505	0.475	0.672	0.571	0.543	0.510	0.600	0.546	1.214	0.665
ETTm1	192	21.36%	0.340	0.369	0.349	0.375	0.335	0.365	0.426	0.441	0.553	0.496	0.795	0.669	0.557	0.537	0.837	0.700	1.261	0.690
H	336	17.07%	0.376	0.393	0.375	0.388	0.369	0.386	0.445	0.459	0.621	0.537	1.212	0.871	0.754	0.655	1.124	0.832	1.283	0.707
	720	21.73%	0.440	0.435	0.433	0.422	0.425	0.421	0.543	0.490	0.671	0.561	1.166	0.823	0.908	0.724	1.153	0.820	1.319	0.729
2	96	17.73%	0.168	0.262	0.167	0.255	0.167	0.260	0.203	0.287	0.255	0.339	0.365	0.453	0.435	0.507	0.768	0.642	0.266	0.328
ETTm2	192	17.84%	0.232	0.308	0.221	0.293	0.224	0.303	0.269	0.328	0.281	0.340	0.533	0.563	0.730	0.673	0.989	0.757	0.340	0.371
ET	336	15.69%	0.320	0.373	0.274	0.327	0.281	0.342	0.325	0.366	0.339	0.372	1.363	0.887	1.201	0.845	1.334	0.872	0.412	0.410
62.0	720	12.58%	0.413	0.435	0.368	0.384	0.397	0.421	0.421	0.415	0.433	0.432	3.379	1.338	3.625	1.451	3.048	1.328	0.521	0.465

Me	thods	IMP.	Lin	ear*	NLir	near*	DLi	near*	FED	former	Autof	ormer	Info	rmer	Pyrafo	ormer*	Log	Trans	Rep	eat*
M	etric	MSE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
-5	96	27.40%	0.140	0.237	0.141	0.237	0.140	0.237	0.193	0.308	0.201	0.317	0.274	0.368	0.386	0.449	0.258	0.357	1.588	0.946
Electricity	192	23.88%	0.153	0.250	0.154	0.248	0.153	0.249	0.201	0.315	0.222	0.334	0.296	0.386	0.386	0.443	0.266	0.368	1.595	0.950
cc	336	21.02%	0.169	0.268	0.171	0.265	0.169	0.267	0.214	0.329	0.231	0.338	0.300	0.394	0.378	0.443	0.280	0.380	1.617	0.961
Ξ	720	17.47%	0.203	0.301	0.210	0.297	0.203	0.301	0.246	0.355	0.254	0.361	0.373	0.439	0.376	0.445	0.283	0.376	1.647	0.975
- Se	96	45.27%	0.082	0.207	0.089	0.208	0.081	0.203	0.148	0.278	0.197	0.323	0.847	0.752	0.376	1.105	0.968	0.812	0.081	0.196
ang	192	42.06%	0.167	0.304	0.180	0.300	0.157	0.293	0.271	0.380	0.300	0.369	1.204	0.895	1.748	1.151	1.040	0.851	0.167	0.289
Exchange	336	33.69%	0.328	0.432	0.331	0.415	0.305	0.414	0.460	0.500	0.509	0.524	1.672	1.036	1.874	1.172	1.659	1.081	0.305	0.396
Щ	720	46.19%	0.964	0.750	1.033	0.780	0.643	0.601	1.195	0.841	1.447	0.941	2.478	1.310	1.943	1.206	1.941	1.127	0.823	0.681
	96	30.15%	0.410	0.282	0.410	0.279	0.410	0.282	0.587	0.366	0.613	0.388	0.719	0.391	2.085	0.468	0.684	0.384	2.723	1.079
Traffic	192	29.96%	0.423	0.287	0.423	0.284	0.423	0.287	0.604	0.373	0.616	0.382	0.696	0.379	0.867	0.467	0.685	0.390	2.756	1.087
Tra	336	29.95%	0.436	0.295	0.435	0.290	0.436	0.296	0.621	0.383	0.622	0.337	0.777	0.420	0.869	0.469	0.734	0.408	2.791	1.095
	720	25.87%	0.466	0.315	0.464	0.307	0.466	0.315	0.626	0.382	0.660	0.408	0.864	0.472	0.881	0.473	0.717	0.396	2.811	1.097
7	96	18.89%	0.176	0.236	0.182	0.232	0.176	0.237	0.217	0.296	0.266	0.336	0.300	0.384	0.896	0.556	0.458	0.490	0.259	0.254
Weather	192	21.01%	0.218	0.276	0.225	0.269	0.220	0.282	0.276	0.336	0.307	0.367	0.598	0.544	0.622	0.624	0.658	0.589	0.309	0.292
Š	336	22.71%	0.262	0.312	0.271	0.301	0.265	0.319	0.339	0.380	0.359	0.395	0.578	0.523	0.739	0.753	0.797	0.652	0.377	0.338
	720	19.85%	0.326	0.365	0.338	0.348	0.323	0.362	0.403	0.428	0.419	0.428	1.059	0.741	1.004	0.934	0.869	0.675	0.465	0.394
	24	47.86%	1.947	0.985	1.683	0.858	2.215	1.081	3.228	1.260	3.483	1.287	5.764	1.677	1.420	2.012	4.480	1.444	6.587	1.701
ILI	36	36.43%	2.182	1.036	1.703	0.859	1.963	0.963	2.679	1.080	3.103	1.148	4.755	1.467	7.394	2.031	4.799	1.467	7.130	1.884
_	48	34.43%	2.256	1.060	1.719	0.884	2.130	1.024	2.622	1.078	2.669	1.085	4.763	1.469	7.551	2.057	4.800	1.468	6.575	1.798
	60	34.33%	2.390	1.104	1.819	0.917	2.368	1.096	2.857	1.157	2.770	1.125	5.264	1.564	7.662	2.100	5.278	1.560	5.893	1.677
_	96	0.80%	0.375	0.397	0.374	0.394	0.375	0.399	0.376	0.419	0.449	0.459	0.865	0.713	0.664	0.612	0.878	0.740	1.295	0.713
ETTh1	192	3.57%	0.418	0.429	0.408	0.415	0.405	0.416	0.420	0.448	0.500	0.482	1.008	0.792	0.790	0.681	1.037	0.824	1.325	0.733
EI	336	6.54%	0.479	0.476	0.429	0.427	0.439	0.443	0.459	0.465	0.521	0.496	1.107	0.809	0.891	0.738	1.238	0.932	1.323	0.744
100000	720	13.04%	0.624	0.592	0.440	0.453	0.472	0.490	0.506	0.507	0.514	0.512	1.181	0.865	0.963	0.782	1.135	0.852	1.339	0.756
7	96	19.94%	0.288	0.352	0.277	0.338	0.289	0.353	0.346	0.388	0.358	0.397	3.755	1.525	0.645	0.597	2.116	1.197	0.432	0.422
ETTh2	192	19.81%	0.377	0.413	0.344	0.381	0.383	0.418	0.429	0.439	0.456	0.452	5.602	1.931	0.788	0.683	4.315	1.635	0.534	0.473
Ξ	336	25.93%	0.452	0.461	0.357	0.400	0.448	0.465	0.496	0.487	0.482	0.486	4.721	1.835	0.907	0.747	1.124	1.604	0.591	0.508
	720	14.25%	0.698	0.595	0.394	0.436	0.605	0.551	0.463	0.474	0.515	0.511	3.647	1.625	0.963	0.783	3.188	1.540	0.588	0.517
=	96	21.10%	0.308	0.352	0.306	0.348	0.299	0.343	0.379	0.419	0.505	0.475	0.672	0.571	0.543	0.510	0.600	0.546	1.214	0.665
ETTm1	192	21.36%	0.340	0.369	0.349	0.375	0.335	0.365	0.426	0.441	0.553	0.496	0.795	0.669	0.557	0.537	0.837	0.700	1.261	0.690
ET	336	17.07%	0.376	0.393	0.375	0.388	0.369	0.386	0.445	0.459	0.621	0.537	1.212	0.871	0.754	0.655	1.124	0.832	1.283	0.707
-	720	21.73%	0.440	0.435	0.433	0.422	0.425	0.421	0.543	0.490	0.671	0.561	1.166	0.823	0.908	0.724	1.153	0.820	1.319	0.729
12	96	17.73%	0.168	0.262	0.167	0.255	0.167	0.260	0.203	0.287	0.255	0.339	0.365	0.453	0.435	0.507	0.768	0.642	0.266	0.328
ETTm2	192	17.84%	0.232	0.308	0.221	0.293	0.224	0.303	0.269	0.328	0.281	0.340	0.533	0.563	0.730	0.673	0.989	0.757	0.340	0.371
ET	336	15.69%	0.320	0.373	0.274	0.327	0.281	0.342	0.325	0.366	0.339	0.372	1.363	0.887	1.201	0.845	1.334	0.872	0.412	0.410
_	720	12.58%	0.413	0.435	0.368	0.384	0.397	0.421	0.421	0.415	0.433	0.432	3.379	1.338	3.625	1.451	3.048	1.328	0.521	0.465

К чему пришли

Простые линейные методы во многих случая достаточно хорошо обыгрывают трансформеры

Почему так происходит

Дальше попытаемся понять почему трансформеры проигрывает и что на это влияет

Обсудим

- Attention
- Порядок переменных во входных данных
- Насколько эффективны различные embeddings
- Может дело в малом количестве данных

Эксперименты с вниманием

Met	thods	Informer	AttLinear	Embed + Linear	Linear
ge	96	0.847	1.003	0.173	0.084
lan	192	1.204	0.979	0.443	0.155
Exchange	336	1.672	1.498	1.288	0.301
田	720	2.478	2.102	2.026	0.763
	96	0.865	0.613	0.454	0.400
ľĥ	192	1.008	0.759	0.686	0.438
ET	336	1.107	0.921	0.821	0.479
	720	1.181	0.902	1.051	0.515

Table 4. The MSE comparisons of gradually transforming Informer to a Linear from the left to right columns. *Att.-Linear* is a structure that replaces each attention layer with a linear layer. *Embed* + *Linear* is to drop other designs and only keeps embedding layers and a linear layer. The look-back window size is 96.

Эксперименты с перемешиванием

8	Methods		Linear			FEDformer			Autoform	er	Informer		
P	Predict Length		Shuf.	Half-Ex.	Ori.	Shuf.	Half-Ex.	Ori.	Shuf.	Half-Ex.	Ori.	Shuf.	Half-Ex.
ge	96	0.080	0.133	0.169	0.161	0.160	0.162	0.152	0.158	0.160	0.952	1.004	0.959
xchange	192	0.162	0.208	0.243	0.274	0.275	0.275	0.278	0.271	0.277	1.012	1.023	1.014
xch	336	0.286	0.320	0.345	0.439	0.439	0.439	0.435	0.430	0.435	1.177	1.181	1.177
田	720	0.806	0.819	0.836	1.122	1.122	1.122	1.113	1.113	1.113	1.198	1.210	1.196
	Average Drop	N/A	27.26%	46.81%	N/A	-0.09%	0.20%	N/A	0.09%	1.12%	N/A	-0.12%	-0.18%
	96	0.395	0.824	0.431	0.376	0.753	0.405	0.455	0.838	0.458	0.974	0.971	0.971
Th1	192	0.447	0.824	0.471	0.419	0.730	0.436	0.486	0.774	0.491	1.233	1.232	1.231
EŢ	336	0.490	0.825	0.505	0.447	0.736	0.453	0.496	0.752	0.497	1.693	1.693	1.691
	720	0.520	0.846	0.528	0.468	0.720	0.470	0.525	0.696	0.524	2.720	2.716	2.715
	Average Drop	N/A	81.06%	4.78%	N/A	73.28%	3.44%	N/A	56.91%	0.46%	N/A	1.98%	0.18%

Table 5. The MSE comparisons of models when shuffling the raw input sequence. *Shuf.* randomly shuffles the input sequence. *Half-EX*. randomly exchanges the first half of the input sequences with the second half. Average Drop is the average performance drop under all forecasting lengths after shuffling. All results are the average test MSE of five runs.

Эксперименты с embeddings

Methods	Embaddina	Traffic						
Methods	Embedding	96	192	336	720			
J	All	0.597	0.606	0.627	0.649			
FEDformer	wo/Pos.	0.587	0.604	0.621	0.626			
reprofile	wo/Temp.	0.613	0.623	0.650	0.677			
	wo/PosTemp.	0.613	0.622	0.648	0.663			
	All	0.629	0.647	0.676	0.638			
Autoformer	wo/Pos.	0.613	0.616	0.622	0.660			
Autorornier	wo/Temp.	0.681	0.665	0.908	0.769			
	wo/PosTemp.	0.672	0.811	1.133	1.300			
	All	0.719	0.696	0.777	0.864			
Informer	wo/Pos.	1.035	1.186	1.307	1.472			
momen	wo/Temp.	0.754	0.780	0.903	1.259			
	wo/PosTemp.	1.038	1.351	1.491	1.512			

Table 6. The MSE comparisons of different embedding strategies on Transformer-based methods with look-back window size 96 and forecasting lengths {96, 192, 336, 720}.

Эксперименты с количеством данных

Methods	FEDf	ormer	Autoformer			
Dataset	Ori.	Short	Ori.	Short		
96	0.587	0.568	0.613	0.594		
192	0.604	0.584	0.616	0.621		
336	0.621	0.601	0.622	0.621		
720	0.626	0.608	0.660	0.650		

Table 7. The MSE comparison of two training data sizes.

Выводы

- Механизм внимания мало полезен в данной задаче
- Трансформеры действительно не учитывают порядок
- Эмбэдинги не помогают решить это
- Количество данных не является ограничивающим фактором

Что сегодня обсудили

- Почему важен порядок элементов и посмотрели на енота
- Как трансформеры работают с временными рядами
- Новый линейный метод предсказания
- Сравнили его с трансформерами
- Сложный механизм внимания только мешает в этой задче
- Посмотрели, что трансформеры действительно не учитывают порядок
- Эмбэдинги не помогают с этим
- Количество данных не является основной причиной

Выводы

Главная цель стать не в новом методе, а том чтобы показать что трансформеры неэффективны для предсказания временных рядов

Выводы

Ответ на вопрос

"Are Transformers Effective for Time Series Forecasting?"

Не очень, так как они

- Не учитывают порядок в данных и это нельзя исправить
- Они слишком сложные