Midterm 1 Reference Sheet

Algorithm 1 The Benjamini-Hochberg Procedure

input: FDR level α , set of n p-values P_1, \ldots, P_n

Sort the p-values P_1, \ldots, P_n in non-decreasing order $P_{(1)} \leq P_{(2)} \leq \cdots \leq P_{(n)}$

Find $K = \max\{i \in \{1, \dots, n\} : P_{(i)} \leq \frac{\alpha}{n}i\}$ Reject the null hypotheses (declare discoveries) corresponding to $P_{(1)}, \dots, P_{(K)}$

Useful Distributions:

Distribution	PDF/PMF		Variance	Mode
$X \sim \text{Poisson}(\lambda)$	$P(X=k;\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$	λ	λ	$\lfloor \lambda \rfloor$
$X \sim \operatorname{Gamma}(\alpha, \beta)$	$P(X = x; \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$	$\frac{\alpha-1}{\beta}$
$X \sim \mathcal{N}(\mu, \sigma^2)$	$P(X = x; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right)$	μ	σ^2	μ
$X \sim \text{Exponential}(\lambda)$	$P(X = x; \lambda) = \lambda \exp(-\lambda x)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	0

Conjugate Priors: For observations x_i , i = 1, ..., n:

Likelihood	Prior	Posterior
$x_i \theta \sim \text{Bernoulli}(\theta)$	$\theta \sim \text{Beta}(\alpha, \beta)$	$\theta x_{1:n} \sim \text{Beta} \left(\alpha + \sum_{i} x_i, \beta + \sum_{i} (1 - x_i) \right)$
$x_i \mu \sim \mathcal{N}(\mu, \sigma^2)$	$\mu \sim \mathcal{N}(\mu_0, 1)$	$\mu x_{1:n} \sim \mathcal{N}\left(\frac{\sigma^2}{\sigma^2 + n} \left(\mu_0 + \frac{1}{\sigma^2} \sum_i x_i\right), \frac{\sigma^2}{\sigma^2 + n}\right)$
$x_i \lambda \sim \text{Exponential}(\lambda)$	$\lambda \sim \text{Gamma}(\alpha, \beta)$	$\lambda x_{1:n} \sim \text{Gamma}(\alpha + n, \beta + \sum_{i} x_i)$

Generalized Linear Models

Regression	Inverse link function	Likelihood
Linear	identity	Gaussian
Logistic	sigmoid	Bernoulli
Poisson	exponential	Poisson
Negative binomial	exponential	Negative binomial

Sigmoid function: $\sigma(x) = \frac{1}{1 + e^{-x}}$