(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 15 November 2001 (15.11.2001)

(10) International Publication Number WO 01/85854 A1

(51) International Patent Classification7: 183/02, 183/04

C09D 5/10,

PCT/EP01/05512 (21) International Application Number:

(22) International Filing Date: 11 May 2001 (11.05.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

0011255.7 11 May 2000 (11.05.2000) 0110627.7 1 May 2001 (01.05.2001)

(71) Applicant (for all designated States except US): DOW CORNING CORPORATION [US/US]; Midland, MI 48611 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): CLERICI, Vittorio [IT/DE]; Am Deutelsberg 9, 65375 Oestrich-Winkel (DE). WILHELMI, Alexandra [DE/DE]; Merowingerstrasse 27, 55218 Ingelheim (DE). YAMASHITA, Jiro [JP/DE]; Steubenstrasse 32, 65189 Wiesbaden (DE).
- (74) Agents: DONLAN, Andrew, M. et al.; Dow Corning Limited, Cardiff Road, Barry CF63 2YL (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG)
- of inventorship (Rule 4.17(iv)) for US only
 - of inventorship (Rule 4.17(iv)) for US only
- of inventorship (Rule 4.17(iv)) for US only

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: COATING COMPOSITION

(57) Abstract: A Chromium VI-free coating composition comprises a binder and a corrosion inhibitor in a solvent, wherein the binder comprises a silicate and an organic titanate, and the corrosion inhibitor comprises aluminium particles and zinc particles preferably flakes. The composition may also comprise an anti-corrosion additive which comprises a metal phosphate, a lubricant which comprises a polyolefin wax, and/or a thickener. The coating composition is useful for coating substrates such as nuts, bolts and other fasteners, door, bonnet and boot lock parts, hinges, door stoppers, window guides, seat belt components, brake rotors and drums, and other transportation industry related parts.

WO 01/85854

10

20

PCT/EP01/05512

COATING COMPOSITION

- 1 -

The present invention relates to [0001] composition, for use in the protection of metal surfaces, which comprises a binder, a corrosion inhibitor, and a solvent.

It is well known to treat metal surfaces such as [0002] iron and steel with some form of corrosion inhibiting Corrosion inhibiting coatings are treatment or coating. well known in the art and generally contain metal particles in particular zinc and/or aluminium particles as active ingredients together with some form of binder.

GB 1380748 describes a coating [0003] particularly, but not exclusively, for a zinc filled coating composition which when applied to a metal surface will 15 provide galvanic protection to the metal. The composition comprises trialkoxysilanes which have been cohydrolysed and cocondensed with a hydrolysable titanium ester. The Silane is selected from RSi(OR')3 and RSi(OR''OR''')3 where R and R' are monovalent aliphatic or aromatic hydrocarbon radicals having up to 10 carbon atoms, R'' is a divalent hydrocarbon radical having from 2 to 6 carbon atoms and R''' are monovalent aliphatic or aromatic hydrocarbon radicals having up to 10 carbon atoms or hydrogen.

GB 1499556 relates to a process for hydrolyzing 25 [0004] ethyl silicate to form a gellable liquid hydrolysate which is used for mixing with powders such as powdered zinc for use in an anti-corrosion paint. The ethyl silicate is acid hydrolysed and the solvent for the hydrolysis is acetone or an alcohol 30

discloses a water-reducible [0005] EP0808883 composition for corrosion protection comprising particulate metal such as aluminium or zinc and a water reducible

- 2 -

organofunctional silane. Epoxy silanes, particularly beta-(3,4-epoxycyclohexyl)ethyltrimethoxysilane and/or glycidoxypropyltrimethoxysilane were preferred. Other constituents included a high boiling point organic liquid, a water soluble cellulose based thickener and a wetting agent. 5 US 5393611 and US 5324545 both relate to a dipcoating method for protecting chromatised or passivated zinc coatings on steel or the like using a composition of a titanic acid ester and a "so-called" organofunctional polysiloxane, preferably having between 2 and 10 siloxane 10 repeating units and epoxy end groups. There is no clear definition of the meaning of the term organofunctional polysiloxane in either of these documents but it would seem to mean a polymer with a siloxane backbone having at least one Si-R bond where R is an unsaturated or functionally 15 substituted hydrocarbon radical. Confusingly however the examples in US 5393611 and US 5324545 both teach that rather organofunctional polysiloxane being used preferred silicon containing compound is an epoxy silane, 20 namely gamma glycidoxypropyltrimethoxysilane.

The present inventors have found an increasing [0007] demand from industry for coatings for metal surfaces which can provide a high level of corrosion protection, cathodic protection, and "for-life" dry lubrication (i.e. the metal surface needs coating only once during its working life) with defined and constant coefficient of friction, whilst Chromium VI-free being and providing an attractive the articles coated with coating. appearance to Commercially available coatings are unable to satisfy all of these demands.

[0008] According to the present invention there is provided a coating composition which comprises a binder and a corrosion inhibitor in a solvent, wherein the binder comprises a silicate and an organic titanate, and the

30

corrosion inhibitor comprises aluminium particles and zinc particles.

The binder used in the composition of the present [0009] invention comprises a silicate and an organic titanate. For the avoidance of doubt, it is to be understood that the term silicate is used to mean a compound which contains substantially no Si-C bonds, i.e. that carbon linkages to silicon in silicates as described in this invention are substantially always via an oxygen atom (i.e. an Si-O-C bond). Most preferably a silicate in accordance with this 10 invention contains no Si-C bonds. Preferably, the binder comprises 20 to 60% by weight (e.g. 30 to 45%) silicate, and 40 to 80% by weight (e.g. 55 to 70%) organic titanate to a total of 100% by weight.

Suitable silicates include colloidal silica and 15 [0010] organic silicates, with the latter being preferred. Suitable organic silicates include silicate esters, for example silicate ester monomers (e.g. ethyl silicate), ester hydrolysate) hydrolysate (e.g. silicic alkoxysilanes, preferably tetraalkoxysilanes, 20 silicate ester polymers are most preferred, (e.g. alkyl polysilicates where the alkyl group has 1 to 6 carbon atoms and is most preferably methyl or ethyl).

include organic titanates [0011] Suitable chelates (e.g. titanium acetylacetonate and triethanolamine titanate) and titanate esters, with the latter being Suitable titanate esters include titanate ester preferred. monomers (e.g. tetraalkyltitanates wherein each alkyl group is the same or different and contains between 1 and 12 tetrabutyltitanate, examples include 30 carbon atoms, tetraisooctyltitanate, and tetraisopropyltitanate), although are preferred polymers titanate ester alkylpolytitanates such as butylpolytitanate).

WO 01/85854

- 4 -

The corrosion inhibitor used in the composition of [0012] the present invention comprises aluminium particles and zinc particles. The aluminium particles may be in the form of powder, paste or flake, with aluminium flake (leafing or The aluminium particles non-leafing) being preferred. preferably have an average particle size of 4 to 20 mm, more preferably $6-15\mu m$. The zinc particles may be in the form of zinc powder, for example zinc spheres or zinc flake, preferably zinc flake. The zinc particles preferably have an average particle size of 6 to $26\mu m$, more preferably 8-10 The corrosion inhibitor preferably comprises 80 to 97% by weight (e.g. 87 to 95%) of zinc particles, and 3 to 20% by weight (e.g. 5 to 13%) of aluminium particles to a total of 100% by weight.

- The composition of the present invention may also 15 [0013] comprise a metal phosphate as an anti-corrosion additive. Preferred metal phosphates are zinc phosphates, including modified zinc orthophosphates (e.g. modified zinc aluminiummodified zinc polyphosphates orthophosphatehydrate) and (e.g. modified zinc aluminium-polyphosphate hydrate), with 20 the latter being most preferred. The metal phosphate may be present in an amount of up to 33% by weight of the solid content of the composition of the present invention (i.e. without the solvent), preferably 5 to 20% by weight.
- 25 [0014] The composition of the present invention may further comprise a thickener, e.g. silica and/or organic modified clay, in an amount of up to 4% by weight of the solid content of the composition, preferably from 1 to 3% by weight.
- The composition of the present invention may still 30 [0015] further comprise a lubricant, for example a wax, including hydrocarbon waxes and polytetrafluoroethylene (PTFE) wax, preferably a polyolefin-containing wax (e.g. micronised

- 5 -

polypropylene hydrocarbon wax), in an amount of up to 8% by weight of the solid content of the composition, preferably from 1.5 to 4.5% by weight.

[0016] Suitable solvents for use in the composition of the present invention are well known in the art. Organic solvents are suitable, including alcohols (e.g. methanol, ethanol, propanol, butanol), ketones (e.g. acetone, methyl ethyl ketone, methyl butyl ketone, cyclohexanone), esters (e.g. butyl acetate), and mixtures thereof. However, preferred solvents for the coating composition are hydrocarbon solvents, in particular white spirits, due to their high evaporation rates and low levels of aromatic compounds. Particularly preferred white spirits are those containing C11-C16 normal, iso- and cycloalkanes.

10

15 [0017] The coating composition of the present invention thus comprises a binder and corrosion inhibitor in a solvent, and preferably a metal phosphate anti-corrosion additive, a lubricant, and a thickener. Preferably, the solid content of the composition comprises 50 to 80%, more preferably 65 to 80%, by weight corrosion inhibitor, 9 to 18%, more preferably 11 to 16%, by weight of binder, up to 33%, more preferably 5 to 20% by weight of metal phosphate, up to 8%, more preferably 1.5 to 4.5% by weight of lubricant, and up to 4%, more preferably 1 to 3% by weight 25 thickener.

[0018] The coating composition of the present invention can be prepared by mixing its components together using conventional apparatus, preferably by first blending some of the solvent and binder, then adding the corrosion inhibitor, and then finally adding the remaining solvent.

[0019] The coating composition of the present invention may be applied to a surface by any conventional application technique, for example brushing, dip-spinning dipping, and

20

30

spraying (e.g. by aerosol can). Other common application methods include spraying drums, centrifuges, electrostatic or automatic spraying, printing and roller coating. chosen method of application will depend upon the shape, weight and quantity of items to size, Preferably, 2, 3 or more coating layers are applied. coating thickness has an influence on the properties of the resulting coating, and should be greater than the roughness of the surface, typically from 5 to $25\mu m$. Once the surface has been coated with the composition, it is dried to evaporate the solvent and cure the coating. coating composition can be cured by, for example, heating at 200°C for 10 minutes.

may be used alone or in combination with other commercially available anti-friction or anti-corrosive coatings. A preferred commercially available anti-friction coating which may be utilised in combination with the composition of the present invention has the following composition (percentages by weight), and is referred to hereinafter as "top-coat A":

20-25% lubricant - mixture of phenolic, epoxy and vinyl butyral resins, and PTFE.

70-75% solvent - mixture of methyl ethyl ketone, methyl 25 isobutyl ketone, and cyclohexanone.

[0021] The coating composition of the present invention may be used in combination with a metal particle free top-coat hereafter referred to as "top-coat B" comprising a silicate as herein before described and an organic titanate as herein before described. The top-coat may optionally include any other components as herein before described for the coating composition of the present invention other than

10

30

- 7 - .

the metal (i.e. zinc and aluminium) particles. The top-coat is described in the applicants co-pending patent application GB 0110627.7.

[0022] Particularly preferred combinations of coating layers include:

- 1) 1, 2 or 3 coating layers of the composition of the present invention.
- 2) 1, 2 or 3 coating layers of the composition of the present invention followed by 1 to 3 coating layers of top-coat B
- 3) 1 or 2 coating layers of the composition of the present invention followed by 1, 2 or 3 coating layers of top-coat A.

Another possibility is the combination of all three coatings, i.e. 1 or 2 coating layers of the composition of the present invention followed by 1, 2 or 3 coating layers of top-coat A and finally followed by 1 to 3 coating layers of top-coat B, although this combination is highly unlikely to be utilised for reasons of cost alone.

20 [0023] Substrates may be pretreated prior to coating with the coating composition of the present invention to improve adhesion and life of the resulting protective coating. Conventional methods of pretreatment include degreasing (for example, using solvents or steam), treatment of corroded surfaces by acid or alkali, phosphating, oxalic acid treatment of stainless steel, sandblasting and anodizing.

[0024] The coating composition according to the present invention can thus be used to provide a protective coating, for metals prone to corrosion, such as iron and steel. The provision of a protective coating on a substrate will result in high corrosion resistance, cathodic protection, and, when a lubricant is utilised, for-life lubrication with a defined and constant coefficient of friction for articles such as

WO 01/85854 PCT/EP01/05512

- 8 -

automotive components is provided, for example nuts, bolts and other fasteners, door, bonnet and boot lock parts, hinges, door stoppers, window guides, seat belt components, brake rotors and drums, and other transportation industry related parts.

[0025] A further embodiment of the present invention relates to a substrate coated with the coating composition as hereinbefore described and to a method of coating such a substrate with a coating composition as hereinbefore described.

[0026] The present invention will now be illustrated by way of example. All percentages are by weight.

Example 1

15

10

[0027] A coating composition according to the present invention was prepared by mixing the following materials:

8% ethyl silicate polymer

20 13% polybutyl titanate

3% aluminium pigment

33% zinc pigment

5% zinc-aluminium phosphate

34% petroleum white spirit

25 2% polypropylene wax

0.6% silica

0.6% organic modified clay

Example 2 - substrate pretreatment

30

[0028] Steel bolts, 10 mm diameter by 60 mm in length, were pretreated by sandblasting.

WO 01/85854 PCT/EP01/05512

Example 3 - substrate coating

[0029] The pretreated bolts of Example 2 above were coated with coating compositions AF1 to AF3 below. Each coating layer was applied by dip spinning in a centrifuge, partial curing for 10 minutes at 200°C, followed by further dip spinning and full cure at 200°C for 10 minutes.

AF1 - 2 coating layers of the coating composition of Example 1 alone.

10 AF2 - 3 coating layers of the coating composition of Example 1 alone.

AF3 - 2 coating layers of the coating composition of Example 1 followed by 2 coating layers of Coating A described hereinabove.

15 [0030] A comparative anti-friction coating (CAF1) was also prepared which consists of 3 coating layers of Coating A described hereinabove.

Example 4 - corrosion resistance

20

25

[0031] Salt spray test DIN 50021 was performed on the AF1 to AF3 bolts prepared according to Example 3 above. The results are shown in Tables 1 to 3 below (average results taken from test results for 10 bolts):

Table 1 - coating AF1					
		% red rust corrosion			
Test	Time (hours)	Thread	Head		
1 .	480	0.0	0.0		
	900	0.0	0.0		
2	480	0.0	0.0		
	900	0.0	0.0		
3	480	0.0	0.0		
	900	0.0	0.0		
4	480	0.0	0.0		
	900	0.0	0.0		

Table 2 - coating AF2					
		% red rus	% red rust corrosion		
Test	Time (hours)	Thread	Head		
1 .	480	0.0	0.0		
	720	0.0	0.0		
	> 900	0.0	0.0		
2	480	0.0	0.0		
	720	0.0	0.0		
	> 900	0.0	0.0		
3	480	0.0	0.0		
	720	0.0	0.0		
	> 900	0.0	0.0		
4	480	0.0	0.0		
	720	0.0	0.0		
	> 900	0.0	0.0		

Table 3 - coating AF3					
		% red rust corrosion			
Test	Time (hours)	Thread	Head		
1	480	0.0	0.0		
	900	0.0	0.0		
2	480	0.0	0.0		
	900	0.0	0.0		
3	480	0.0	0.0		
,	900	0.0	0.0		
4	480	0.0	0.0		
	900	0.0	0.0		

Example 5 - lubrication

5 [0032] The coefficient of friction of the AF1 and AF3 coated bolts prepared according to Example 3 above was determined using an Erichsen AP 541 Bolt Testing Machine. Testing was performed on bolts having been tightened 1 and 3 times and against different surfaces. The results are shown in Table 4 below:

		Table 4		
Coating	Surface	Tightenings	Total	<u>+</u>
			coeff.	variation
			of	
			friction	
None	Steel	1	0.195	0.035
AF1	Steel	1	0.112	0.003
AF1	Steel	1	0.123	0.005
AF1	Painted steel	1	0.129	0.008
AF1	Aluminium	1	0.138	0.003
AF1	Steel	3	0.114	0.003
AF1	Steel	3	0.127	0.007
AF1	Painted steel	3	0.131	0.009
AF1	Aluminium	3	0.140	0.004
AF3	Steel	1	0.114	0.006
AF3	Steel	1	0.100	0.006
AF3	Painted steel	1	0.109	0.008
AF3	Aluminium	1	0.104	0.002
AF3	Steel	3	0.114	0.009
AF3	Steel	3	0.108	0.013
AF3	Painted steel	3	0.114	0.012
AF3	Aluminium	3	0.114	0.007

Example 6 - cathodic protection

5 [0033] Unpretreated iron panels were degreased and coated on one side with the coating composition of Example 1 above and with the anti-friction coating CAF1 using an Erichsen spiral film applicator. The panels were then cured for 10 minutes at 200°C. After cooling, the dry thickness of the cured coatings was measured. Corrosion protection tape was then applied to the untreated surfaces of each panel and an

PCT/EP01/05512

X-cut made in the coated surface of each panel until the metal surface was reached. The panels were then placed into a salt spray tester (DIN 50021) until red rust formation was noticed, and the results are given in Table 5 below:

5

20

Table 5					
AF coating Thickness (µm) red rust form after [hou					
Example 1	4	144			
Example 1	7.5	312			
CAF1	10	24			

Example 7

[0034] Bolts of the type described in example 2 were coated with 2 layers of the coating composition of example 1 and cured as described in Example 3. After curing the coated bolts were provided with two alternate top-coats of the type referred to above as coating B. The top-coat compositions were prepared by mixing the materials identified in Table 6 as follows:-

The polybutyl titanate and ethyl polysilicate were added into a mixing kettle with a dissolver disk for a period of 10 minutes. Simultaneously a slurry of the silica, clay zinc-aluminium phosphate and, when present, polypropylene wax in a proportion of the Petroleum white spirit (about 9% by weight of solvent in sample 2 and about 20 % by weight of solvent in example 1) was prepared in an Ultra turrax homogeniser. The slurry was then added into polybutyl titanate and ethyl polysilicate mixture and the resulting mixture was mixed with the dissolver disk for a period of 30 minutes at which time the residual amount of solvent was added and the final mixture was mixed in the presence of the

WO 01/85854 PCT/EP01/05512

- 14 -

dissolver disk for a further 10 minutes. It will be seen that sample TC1 omits the anti-corrosion additive zincaluminium phosphate.

Table 6					
SECTION COMPANY AND ADMINISTRATION OF THE PROPERTY OF THE PROP	salamine act.				
Petroleum white spirit	47.45	43.61			
Polybutyl titanate	24.34	22.38			
Ethyl polysilicate	24.34	22.38			
Silica	1.15	1.06			
Organic modified clay	1.00	0.91			
zinc-aluminium phosphate	0.00	8.08			
Polypropylene wax	1.72	1.58			
complete:	100.00	100.00			

5

[0035] The top-coat compositions, samples TC1 and TC2 were applied in an identical fashion to the coating composition of the present invention and each layer applied was cured at 200°C for 10 minutes.

10

Example 8 - corrosion resistance

[0036] Salt spray test DIN 50021 was performed on the bolts prepared as discussed in Example 7. The results are shown in Table 7 below (average results taken from test results for 10 bolts). In each test two layers of the coating composition in accordance with the invention were coated on to each bolt but the number of layers of the alternative top-coats was varied as indicated in Table 7:

10

15

Table 7 - Corrosion resistance (with top-coat)					
Coating	Time (hours)	% of red rust on			
		head of bolt			
Coating 8.1	900	0.0			
(no top-coat)					
Coating 8.2	2000	1.7			
(1 layer of TC1)	·				
Coating 8.3	2000	0.0			
(1 layer of TC2)					
Coating 8.4	2000	1.0			
(2 layers of TC1)					
Coating 8.5	2000	0.0			
(2 layers of TC2)					

The above should be compared with the results [0037] provided in Table 7a in which the same test was carried out with a commercially available product which comprises zinc and aluminium particles and a binder comprising a mixture of tetrabutyltitanate and trimethoxyvinylsilane both with and without a top-coat. It is understood that the comparative top-coat is an organic resin comprising phenolic and epoxy components which may in addition comprise up to about 30% by weight of polytetrafluoroethylene (PTFE). It will be noted that the amount of red rust which appears on bolts coated comparative base-coat/comparative the combination is significantly greater than for coatings comprising only the comparative base-coat. Furthermore, sets of comparative results shown in Table 7a are also significantly worse than the results in Tables 1,2 and 3.

7	Table 7a	
Comparative	Time (hours)	% of red rust
Coatings		on head of bolt
Comparative base-coat	240	3.0
(2 layers of base-coat		
only)		
	480	6.0
Comparative base-coat	240	16.0
+ top-coat		
(2 layers of comp.	*	
Base-coat + 1 layer of		
comp top-coat)		

Example 9 - lubrication (with top-coat)

5 [0038] The coefficient of friction of the coated bolts prepared according to Example 8 was analysed as described in Example 5. Testing was performed on bolts having been tightened 1 and 3 times using a steel surface. Coatings 9.1, 9.2 and 9.3 are equivalent to coatings 8.1, 8.4 and 8.5 in example 8. The results are shown in Table 8 below:

Table 8 Lubrication (with top-coat B)					
Coating	Tightenings	Surface	Coeff. of friction	± variation	
9.1	1	Steel	0.117	0.005	
9.1	3	Steel	0.117	0.004	
9.2	1	Steel	0.122	0.003	
9.2	3	Steel	0.124	0.004	
9.3	1	Steel	0.127	0.003	
5.3	3		0.118	0.003	

- 17 ·-

CLAIMS

- A coating composition which comprises a binder and a corrosion inhibitor in a solvent, wherein the binder comprises a silicate and an organic titanate, and the corrosion inhibitor comprises aluminium particles and zinc particles.
- 2. A composition according to Claim 1 wherein the binder comprises 20 to 60% by weight silicate and 40 to 80% by weight organic titanate to a total of 100% by weight.
- 3. A composition according to Claim 1 or 2 wherein the corrosion inhibitor comprises 80 to 97% by weight of zinc particles and 3 to 20% by weight of aluminium particles to a total of 100% by weight.
- 4. A composition according to Claim 1, 2 or 3 which further includes an anti-corrosion additive which comprises a metal phosphate.
- 5. A composition according to any preceding Claim which further includes a lubricant which comprises a hydrocarbon or polytetraethylene wax.
- 6. A composition according to any preceding Claim which further includes a thickener.
- 7. A composition according to any preceding Claim having a solid content which comprises 50 to 80% by weight of corrosion inhibitor, 9 to 18% by weight of binder, 0 to 33% by weight of a metal phosphate, 0 to 8% by weight of a lubricant, and 0 to 4% by weight of a thickener.

WO 01/85854

- 8. A substrate having a coating which is formed from 1, 2 or 3 coating layer(s) of a composition according to any preceding claim.
- 9. A substrate having a coating which is formed from 1, 2 or 3 layer(s) of a composition according to any preceding Claim and a further 1, 2 or 3 coating layers of an additional coating composition which comprises 20-25% by weight of a lubricant mixture of phenolic resin, epoxy resin, vinyl butyral resin, and polytetrafluoroethylene, and 70-75% by weight of a solvent mixture of methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
- 10. A substrate having a coating in accordance with claim 8, wherein there is provided a further 1 to 3 layers of a metal particle free top-coat comprising a silicate and an organic titanate in a solvent.
- 11. A substrate in accordance with any one of claims 8,9 or 10 wherein the substrate is selected from nuts, bolts and other fasteners, door, bonnet and boot lock parts, hinges, door stoppers, window guides, seat belt components, brake rotors and drums, and other transportation industry related parts.
- 12. Use of a coating composition according to any one of Claims 1 to 7 for coating a substrate, wherein the substrate is selected from nuts, bolts and other fasteners, door, bonnet and boot lock parts, hinges, door stoppers, window guides, seat belt components, brake rotors and drums, and other transportation industry related parts.

WO 01/85854 PCT/EP01/05512

- 13. A process for providing a substrate with a protective coating comprising applying a composition in accordance with any one of claims 1 to 7 onto the substrate.
- 14. A process in accordance with claim 13 wherein the coating is formed on the substrate from 1 or 2 coating layer(s) of a composition in accordance with any one of claims 1 to 7, followed by one or both of:-
 - (i) a further 1, 2 or 3 coating layers of an additional coating composition which comprises 20-25% by weight of a lubricant mixture of phenolic resin, epoxy resin, vinyl butyral resin, and polytetrafluoroethylene, and 70-75% by weight of a solvent mixture of methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone and
 - (ii) 1 to 3 layers of a metal particle free top-coat comprising a silicate and an organic titanate.
- 15. A substrate having a protective coating obtainable by the process in accordance with claim 13 or claim 14.

INTERNATIONAL SEARCH REPORT

Inter onal Application No PCT/EP 01/05512

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C0905/10 C090 C090183/02 C09D183/04 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system tollowed by classification symbols) IPC 7 CO9D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category * 1,3,6,8, US 4 209 555 A (STEWART JOE W) 13,15 24 June 1980 (1980-06-24) column 1, line 34-50 column 2, line 13-22; example 1 GB 1 212 424 A (CHANDEN COATINGS INC.) 1,3,6,8, Y 13,15 18 November 1970 (1970-11-18) page 6, line 11-20; claims 1-10 1,3,8, GB 1 380 748 A (STAUFFER CHEMICAL CO) Α 13,15 15 January 1975 (1975-01-15) cited in the application page 1, line 11-15 page 1, line 33-67 page 3, line 112 -page 4, line 6; example Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: 'T' tater document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone *E* earlier document but published on or after the international "L" document which may throw doubts on priority claim(s) or "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled which is cited to establish the publication date of another citation or other special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or *P* document published prior to the international fiting date but later than the priority date claimed *A* document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 02/11/2001 18 October 2001 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016 Girard, Y

INTERNATIONAL SEARCH REPORT

formation on patent family members

Interr 'anal Application No PCT/EP 01/05512

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 4209555	A	24-06-1980	DE	3000731 A1	07-08-1980
			FR	2447394 A1	22-08-1980
			GB	2042575 A ,B	24-09-1980
			JP	55108474 A	20-08-1980
			NL	8000506 A	29-07-1980
GB 1212424	Α	18-11-1970	DE	1770378 A1	06-04-1972
			DE	1795673 A1	08-02-1973
			ES	353798 A1	16-10-1969
		•	FΙ	48749 B	02-09-1974
			FR	1565235 A	25-04-1969
			NL	6806540 A	13-11-1968
			NO	121069 B	11-01-1971
			NO	132280 B	07-07-1975
			SE	357373 B	25-06-1973
			US	3442824 A	06-05-1969
			US	3546155 A	08-12-1970
GB 1380748	_ A	15-01-1975	US	3817905 A	18-06-1974
			AT	331515 B	25-08-1976
			ΑT	765474 A	15-11-1975
			AT	326794 B	29-12-1975
			ΑT	1093872 A	15-03-1975
			AU	470586 B	20-06-1974
			AU	5031672 A	20-06-1974
			BE	793557 A1	29-06-1973
			CA	996292 A1	31-08-1976
			DE	2258010 A1	09-08-1973
			DK	140107 B	18-06-1979
			FR	2166086 A1	10-08-1973
			IT	974359 B	20-06-1974
			JP	48078235 A	20-10-1973
			NL	7217205 A	03-07-1973
		•	NO	140892 B	27-08-1979
			SE	392120 B	14-03 - 1977