1. About $\mathbb{P}(\hat{\mu_1} > \hat{\mu_2})$

Setting:

Best arm $a_1 \sim \mathcal{N}(\mu_1, \sigma^2)$. Pulled m times.

Second best arm $a_2 \sim \mathcal{N}(\mu_2, \sigma^2)$. Pulled *n* times.

So,

Estimation $\hat{\mu_1} \sim \mathcal{N}(\mu_1, \frac{\sigma^2}{m})$. Estimation $\hat{\mu_2} \sim \mathcal{N}(\mu_2, \frac{\sigma^2}{n})$

Set
$$\Delta = \mu_1 - \mu_2 > 0$$
,
 $s^2 = \frac{1}{m} + \frac{1}{n}$,

$$s^2 = \frac{1}{m} + \frac{1}{n}$$

$$X = \hat{\mu_1} - \hat{\mu_2} \sim \mathcal{N}(\mu_1 - \mu_2, \frac{\sigma^2}{m} + \frac{\sigma^2}{n}) = \mathcal{N}(\Delta, (\sigma s)^2),$$

 $\Phi(x)$ as the CDF for standard Gaussian distribution.

So.

$$\begin{split} \mathbb{P}(\hat{\mu_1} > \hat{\mu_2}) &= \mathbb{P}(X > 0) \\ &= 1 - \mathbb{P}(X \le 0) \\ &= 1 - \mathbb{P}(\frac{X - \Delta}{\sigma s} \le -\frac{\Delta}{\sigma s}) \qquad \text{where } \frac{X - \Delta}{\sigma s} \sim \mathcal{N}(0, 1) \\ &= 1 - \Phi(-\frac{\Delta}{\sigma s}) \end{split}$$

$$n \nearrow \Rightarrow s \searrow \Rightarrow -\frac{\Delta}{\sigma s} \searrow \Rightarrow \Phi(-\frac{\Delta}{\sigma s}) \searrow \Rightarrow \mathbb{P}(\hat{\mu_1} > \hat{\mu_2}) \nearrow$$

When *n* increases, $\mathbb{P}(\hat{\mu_1} > \hat{\mu_2})$ increases monotonously.

2. Thought

Although more singular increase the probability to choose the best arm at certain round, the events of $\hat{\mu}_1 < \hat{\mu}_2$ are more serious. It's harder to recover just by pulling a_2 more.

Instead we should consider how long it will take to achieve $\hat{\mu}_1 > \hat{\mu}_2$. For example, given $\hat{\mu}_1$ and $\hat{\mu}_2$. Denote $Y_n(\hat{\mu}_1)$ as the estimation of a_2 's mean after n rounds. The rounds it takes to recover might be

3. Formulation attempt

Set estimation of $\hat{\mu}_1$ $\hat{\mu}_2$ after t rounds as $\hat{\mu}_1^t$ and $\hat{\mu}_2^t$. They are pulled m^t and n^t times.

$$\mathbb{P}(\hat{\mu}_1^t > \hat{\mu}_2^t) = \mathbb{P}(\hat{\mu}_1^t > \hat{\mu}_2^t | \hat{\mu}_1^{t-1} > \hat{\mu}_2^{t-1}) \mathbb{P}(\hat{\mu}_1^{t-1} > \hat{\mu}_2^{t-1}) + \mathbb{P}(\hat{\mu}_1^t > \hat{\mu}_2^t | \hat{\mu}_1^{t-1} \leq \hat{\mu}_2^{t-1}) \mathbb{P}(\hat{\mu}_1^{t-1} \leq \hat{\mu}_2^{t-1})$$

If $\hat{\mu}_1^{t-1} > \hat{\mu}_2^{t-1}$, arm a_1 is chosen last round. Then $m = m^{t-1} + 1$ in computing $\mathbb{P}(\hat{\mu}_1^t > \hat{\mu}_2^t | \hat{\mu}_1^{t-1} > \hat{\mu}_2^{t-1})$. Similarly, $n = n^{t-1} + 1$ in computing the other condition.

For easier computation, $m^t = \mathbb{E}(m^t) = m^{t-1} + \mathbb{P}(\hat{\mu}_1^t > \hat{\mu}_2^t)$