Pyramids and their Applications

Contents

- Gaussian and Laplacian Pyramids
 - Reduce
 - Expand
- Applications of Laplacian pyramids
 - Image compression
 - Optical flow using Pyramids

Pyramids

- Very useful for representing images at different scales.
- Pyramid is built by using multiple copies of image at different levels.
- Each level in the pyramid is 1/4 of the size of previous level.
- The lowest level is of the highest resolution.
- The highest level is of the lowest resolution.

Pyramid

Gaussian Pyramids (reduce)

$$g_{l}(i,j) = \sum_{m=-2}^{2} \sum_{n=-2}^{2} w(m,n) g_{l-1}(2i+m,2j+n)$$

Level l

$$g_{l} = REDUCE[g_{l-1}]$$

Reduce (1D)

$$g_{l}(i) = \sum_{m=-2}^{2} \hat{w}(m)g_{l-1}(2i+m)$$

$$g_{l}(2) = \hat{w}(-2)g_{l-1}(4-2) + \hat{w}(-1)g_{l-1}(4-1) + \hat{w}(0)g_{l-1}(4) + \hat{w}(1)g_{l-1}(4+1) + \hat{w}(2)g_{l-1}(4+2)$$

$$g_{l}(2) = \hat{w}(-2)g_{l-1}(2) + \hat{w}(-1)g_{l-1}\hat{w}(3) + \hat{w}(0)g_{l-1}(4) + \hat{w}(1)g_{l-1}(5) + \hat{w}(2)g_{l-1}(6)$$

Gaussian Pyramids (expand)

$$g_{l,n}(i,j) = \sum_{p=-2q=-2}^{2} \sum_{q=-2}^{2} w(p,q) g_{l,n-1}(\frac{i-p}{2}, \frac{j-q}{2})$$

$$g_{l,n} = EXPAND[g_{l,n-1}]$$

Expand (1D)

$$g_{l,n}(i) = \sum_{p=-2}^{2} \hat{w}(p)g_{l,n-1}(\frac{i-p}{2})$$

$$g_{l,n}(4) = \hat{w}(-2)g_{l,n-1}(\frac{4+2}{2}) + \hat{w}(-1)g_{l,n-1}(\frac{4+1}{2}) +$$

$$\hat{w}(0)g_{l,n-1}(\frac{4}{2}) + \hat{w}(1)g_{l,n-1}(\frac{4-1}{2}) + \hat{w}(2)g_{l,n-1}(\frac{4-2}{2})$$

$$g_{l,n}(4) = \hat{w}(-2)g_{l,n-1}(3) + \hat{w}(0)g_{l,n-1}(2) + \hat{w}(2)g_{l,n-1}(1)$$

Expand (1D)

$$g_{l,n}(i) = \sum_{p=-2}^{2} \hat{w}(p)g_{l,n-1}(\frac{i-p}{2})$$

$$g_{l,n}(3) = \hat{w}(-2)g_{l,n-1}(\frac{3+2}{2}) + \hat{w}(-1)g_{l,n-1}(\frac{3+1}{2}) +$$

$$\hat{w}(0)g_{l,n-1}(\frac{3}{2}) + \hat{w}(1)g_{l,n-1}(\frac{3-1}{1}) + \hat{w}(2)g_{l,n-1}(\frac{3-2}{2})$$

$$g_{l,n}(3) = \hat{w}(-1)g_{l,n-1}(2) + \hat{w}(1)g_{l,n-1}(1)$$

Convolution Mask

$$[w(-2), w(-1), w(0), w(1), w(2)]$$

Approximate Gaussian

Gaussian

$$g(x) = e^{\frac{-x^2}{2o^2}}$$

Normalize g(x)

Gaussian Pyramid

Laplacian Pyramids

WKT, LOG=DOG

$$L_1 = g_1 - EXPAND[g_2]$$

$$L_2 = g_2 - EXPAND[g_3]$$

$$L_3 = g_3 - EXPAND[g_4]$$

- L₁ is similar to edge image
- Most pixels are zero in L_i.
- Can be used for image compression

Fig. 5. First tour levels of the Gaussian and Laplacian pyramid. Gaussian images, upper row, were obtained by expanding pyramid arrays (Fig. 4) through Gaussian interpolation. Each level of the Laplacian pyramid is the difference between the corresponding and near higher levels of the Gaussian pyramid.

Coding using Laplacian Pyramid

Compute Gaussian pyramid

$$g_1, g_2, g_3, g_4$$

Compute Laplacian pyramid

$$L_{1} = g_{1} - EXPAND[g_{2}]$$

$$L_{2} = g_{2} - EXPAND[g_{3}]$$

$$L_{3} = g_{3} - EXPAND[g_{4}]$$

$$L_{4} = g_{4}$$

•Image Compression:

Code of Laplacian pyramid: L_{1} , L_{2} , L_{3} , L_{4}

Decoding using Laplacian pyramid

- Decode code of Laplacian pyramid.
- •Compute Gaussian pyramid from Laplacian pyramid.

$$g_4 = L_4$$

$$g_3 = EXPAND[g_4] + L_3$$

$$g_2 = EXPAND[g_3] + L_2$$

$$g_1 = EXPAND[g_2] + L_1$$

• g_1 is reconstructed image.

Laplacian

Fig. 5. First four levels of the Gaussian and Laplacian pyramid. Gaussian images, upper cow, were obtained by expanding pyramid acrays (Fig. 4) through Gaussian interpolation. Each level of the Laplacian pyramid is the difference between the corresponding and next higher levels of the Gaussian pyramid.

Image Compression (Entropy)

Bits per pixel

7.6

Image

Compression

1.58

(21)

(b)

.73

(d)

Combining Apple & Orange

Combining Apple & Orange

Algorithm

- Generate Laplacian pyramid Lo of orange image.
- Generate Laplacian pyramid La of apple image.
- Generate Laplacian pyramid Lc by
 - copying left half of nodes at each level from apple and
 - right half of nodes from orange pyramids.
- Reconstruct combined image from Lc.

Reading Material

- Material
 http://ww-bcs.mit.edu/people/adelson/papers.html
 - The Laplacian Pyramid as a compact code, Burt and Adelson, IEEE Trans on Communication, 1983.
- Fundamental of Computer Vision,
 Section 4.5. _
 http://www.cs.ucf.edu/courses/cap641
 http://www.cs.ucf.edu/cap641
 http://www.cs.ucf.edu/cap64

Lucas Kanade with Pyramids

- Compute 'simple' LK optical flow at highest level
- At level i
 - Take flow u_{i-1} , v_{i-1} from level i-1
 - bilinear interpolate it to create u_i*, v_i*
 matrices of twice resolution for level i
 - multiply u_i^* , v_i^* by 2
 - compute f_t from a block displaced by $u_i^*(x,y)$, $v_i^*(x,y)$
 - Apply LK to get u_i'(x, y), v_i'(x, y) (the correction in flow)
 - Add corrections $u_i' v_i'$, i.e. $u_i = u_i^* + u_i'$, $v_i = v_i^* + v_i'$.

Pyramids

Interpolation

```
0 \quad \bullet \quad \bullet \quad \bullet
0 \quad \bullet \quad \bullet \quad \bullet
u = 1 \quad \bullet \quad \bullet \quad \bullet
2 \quad \bullet \quad \bullet \quad \bullet
3 \quad \bullet \quad \bullet \quad \bullet
```

```
0 \ 1 \ 2 \ 3
0 \ \bullet \ \bullet \ \bullet
v = 1 \ \bullet \ \bullet \ \bullet
2 \ \bullet \ \bullet \ \bullet
3 \ \bullet \ \bullet \ \bullet
```

1-D Interpolation

$$y = mx + c$$
$$f(x) = mx + c$$

Bilinear Interpolation

$$f(x, y) = a_1 + a_2 x + a_3 y + a_4 xy$$

Find the values of unknowns using the pixel values of neighbours of (x,y)

