Matemática Discreta | - 2021/1 Tarea 1

Ejercicio

Demostrar por inducción la siguiente fórmula

$$\sum_{j=1}^{n} (4j - 1) = n(2n + 1), \ n \in \mathbb{N}.$$

Debés hacer una demostración por inducción mostrando detalladamente cada paso.

Solución

Se demostrará la fórmula por inducción sobre n.

Caso base. n=1. En este caso, por la definición recursiva de sumatoria, obtenemos

$$\sum_{j=1}^{1} (4j-1) = 4 \cdot 1 - 1 = 4 - 1 = 3,$$

y por otro lado,

$$1 \cdot (2 \cdot 1 + 1) = 2 + 1 = 3.$$

Es decir, el resultado vale para n=1.

Paso inductivo. Debemos probar que si para algún $k \in \mathbb{N}$ vale

(HI)
$$\sum_{j=1}^{k} (4j-1) = k(2k+1),$$

entonces

(*)
$$\sum_{j=1}^{k+1} (4j-1) = (k+1)(2(k+1)+1) = (k+1)(2k+3).$$

Comenzamos por el lado izquierdo de (*):

$$\sum_{j=1}^{k+1} (4j-1) = \sum_{j=1}^{k} (4j-1) + (4(k+1)-1) \qquad \text{(por definición de sumatoria)}$$

$$= \sum_{j=1}^{k} (4j-1) + (4k+3) \qquad \text{(aritmética)}$$

$$= k(2k+1) + (4k+3) \qquad \text{(por HI)}$$

$$= 2k^2 + k + 4k + 3 = 2k^2 + 5k + 3 \qquad \text{(aritmética)}$$

$$= (2k^2 + 2k) + (3k+3) = 2k(k+1) + 3(k+1) \qquad \text{(factor común)}$$

$$= (k+1)(2k+3) = (k+1)(2(k+1)+1) \qquad \text{(factor común)}$$

Esto prueba (*). Así, por el principio de inducción, podemos concluir que la fórmula vale para todo $n \in \mathbb{N}$.

Observación

En el paso inductivo, lo que se hizo en las dos últimas igualdades fue buscar el factor común apropiado que nos permitiera llegar al lado derecho de la igualdad (*), en este caso se busco el factor (k+1). Otro procedimiento que se puede hacer es factorizar al polinomio $2k^2+5k+3$: por la fórmula de *Bhaskara* sabemos que las raíces son $-1,-\frac{3}{2}$ y obtenemos

$$2k^2 + 5k + 3 = 2(k+1)\left(k + \frac{3}{2}\right) = (k+1)(2k+3).$$

Como una última alternativa, se podría haber desarrollado, por separado, ambos lados de la igualdad (*) y llegar a la misma cuadrática.