RBE550 Motion Planning Introduction

Constantinos Chamzas www.cchamzas.com www.elpislab.org

Today's Overview

- Instructor/Lab Introduction
- Introduction to Motion Planning
- Examples of Motion Planning in Real Robots
- Course Logistics

Prof. Constantinos Chamzas

Assistant Professor, WPI

- Joined WPI Fall2023!
- RBE Faculty, CS&EE background
- Ph.D. in CS at Rice University
- Teaching RBE550 Motion Planning
- Teaching RBE577 ML for Robotics

Constantinos Chamzas

Office: Unity Hall 271

Office Hours: Mondays 4:00-5:00 p.m.

Email: cchamzas@wpi.edu

Website: cchamzas.com
Lab Website: elpsilab.org

ELPIS Lab

Efficient Learning and Planning for Intelligent Systems

Research Directions/Projects

Leaning For Planning Efficiency

Planning Robustly with uncertainty

Vision-Based Planning

Available Hardware

Universal Robotics UR-10 6-Dof Industrial Manipulator

Deep Learning Workstation: 4xA6000 Nvidia GPU, 28-core Intel Xeon

Iron Ox Grover
Wheeled robot with
1000-pound lift

How you can join

- Take RBE550 (Motion Planning) and perform well
- We are looking for:
 - Proficiently in algorithms and coding (Python/C++) is desirable
 - At least 2 semester commitment
- Ways to learn more and get involved:
 - Submit your application at elpislab.org/join
 - Drop by my office UH271

What operating system are you using

Linux Windows MacOs

What operating system are you using

Linux	
	0%
Windows	
	0%
MacOs	
	0%

What operating system are you using

Linux	
	0%
Windows	
	0%
MacOs	
	0%

Motion Planning Introduction

Disclaimer and Acknowledgments

The slides are a compilation of work based on notes and slides from Constantinos Chamzas, Lydia Kavraki, Jane Li, Zak Kingston, Howie Choset, David Hsu, Greg Hager, Mark Moll, G. Ayorkor Mills-Tetty, Hyungpil Moon, Zack Dodds, Nancy Amato, Steven Lavalle, Seth Hutchinson, George Kantor, Dieter Fox, Vincent Lee-Shue Jr., Prasad Narendra Atkar, Kevin Tantiseviand, Bernice Ma, David Conner, Morteza Lahijanian, Erion Plaku, students taking comp450/comp550 at Rice University, and students Taking RB550 at Worcester Polytechnic Institute.

A Simple Robotic Task

Task: Place all objects on top shelf

Fetch Robot

A Simple Robotic Task

World Model

Task: Place all objects on top shelf

Perception

Controller

Real World

14

This Class

our class mostly on this

Real World

This Class

What is the difference between Planning and Control

- In a nutshell: The planner designs the path and the controller follows it
 - Planner finds reference motion (plan) from current robot pose to goal pose path finding, trajectory optimization, or trivial interpolation/PD
 - Controller reactively (policy) sends motor commands to follow the reference motion inverse dynamics, PD control, Riccati (RBE 502)

^{*}Planning is not strictly required e.g., (OSC, Model-Free DRL), e.g., control directly to the goal **For some methods/applications the boundary between planning and control is blurry e.g., MPC

What is Motion Planning?

Research field that <u>computes</u> the <u>trajectories</u> for a robot to follow

What is Motion Planning?

Research field that <u>computes</u> the <u>trajectories</u> for a robot to follow

Formally: The General Motion Planning

- ullet Let $x \in \mathcal{X}$ denote the state and state-space
- Let $u \in \mathcal{U}$ denote the control and control-space of a robot
- Let f denote the forward dynamics of the robot such that:

$$x(\mathcal{T}) = x(0) + \int_0^{\mathcal{T}} f(x(t), u(t))dt \tag{1}$$

- Let $\mathcal{X}_{obs} \subset \mathcal{X}$ denote the invalid state space, e.g., validating kinematic constraints, collisions, etc.
- Then the valid state space is denoted as $\mathcal{X}_{\text{free}} = \mathcal{X} \setminus \mathcal{X}_{\text{obs}}$
- The start state as $x_{\text{start}} \in \mathcal{X}_{\text{free}}$
- The goal region as: $X_{\mathrm{goal}} \subseteq \mathcal{X}_{\mathrm{free}}$

The Motion planning problem:

Find a time $\mathcal T$ and a set of controls $u:[0,\mathcal T]\to\mathcal U$ such that the motion described by (1) satisfies

$$x(0) = x_{\text{start}}$$

$$x(\mathcal{T}) \in \mathcal{X}_G$$

$$x(t) \in \mathcal{X}_{\text{free}}$$
.

Geometric Motion Planning or Path Planning

- If the quasi-static assumption holds (geometric position of the robot fully specifies its state) the motion planning problem simplifies to:
 - Let $x \in \mathcal{X}$ denote the configuration and C-space of the robot
 - Let $\mathcal{X}_{obs} \subset \mathcal{X}$ denote the obstacle c-space (collisions, and violated joint limits)
 - Then the free C-space is denoted as $\mathcal{X}_{ ext{free}} = \mathcal{X} \setminus \mathcal{X}_{ ext{obs}}$
 - \cdot The start state as $x_{ ext{start}} \in \mathcal{X}_{ ext{free}}$
 - The goal state as: $\mathbf{x}_{\mathbf{goal}} \subseteq \mathcal{X}_{\mathbf{free}}$

The geometric motion planning problem is defined as, finding a path σ such that:

$$\sigma(0) = \mathbf{x}_{\text{start}}, \ \sigma(1) \in \mathbf{x}_{\text{goal}}, \ \ \sigma(t) \in X_{\text{free}} \quad \forall t \in [0, 1]$$

Motion Planning Historically- The Piano's Movers Problem

Motion Planning is Hard

Problem	Complexity		
Sofa Mover (3 DOF)	O(n ^{2+ε}) not implemented		
Piano Mover (6 DOF)	Polynomial – no practical algorithm known		
n Disks in the Plane	NP-hard		
n Link Planar Chain	PSPACE-Complete		
Generalized Mover	PSPACE-Complete		
Shortest Path for a Point in 3D	NP-hard		
Curvature Constrained Point in 2D	NP-hard		
Simplified Coulomb Friction	Undecidable		

Computational Complexity

PSPACE

EXPSPACE

 $P \subset EXP$

PSPACE = NPSPACE

 $P \subseteq NP \subseteq PSPACE$

P =? NP

Computational Tractability

Polynomial in terms of N (size of the input)

Functions

Function N	10	50	100	300	1000
5N	50	250	500	1500	5000
N ²	100	2500	10000	90000	1 million (7 digits)
N ³	1000	125000	1 million (7 digits)	27 million (8 digits)	1 billion (10 digits)
2 ^N	1024	a 16-digit number	a 31-digit number	a 91-digit number	a 302-digit number
N ^N	10 billion (11 digits)	an 85-digit number	a 201-digit number	a 744-digit number	unimaginably large

[The number of microseconds since the 'Big Bang' has 24 digits]

Growth Rates

Some extensions/variations of the basic problem

- Optimal Planning
- Non-Holonomic Constraints
- Anytime Planning
- Multiple robots
- Movable objects
- Kinodynamic constraints
- Stability constraints
- Constrained-Based Motion Planning

- Dynamical unknown environments
- Integration of planning and control
- Integration with higher-level planning
- Planning under Uncertainty

Examples of Motion Planning in Real Robots

Roomba: vacuum cleaning robot

Amazon warehouse robots

Industrial Automation

Waymo Autonomous Car

Planning to Pick up an Object is still Hard!

Such problems can take up to 15 seconds to compute

Failures are common in robotics (even in 2024)

- Check these spectacular videos: https://www.youtube.com/user/bostondynamics
- Check these spectacular failures: https://www.cnn.com/videos/business/business/video/playlists/business-news/

Have you seen a robot helping with household chores?

Motion Planning is still a very active research area!

Course Logistics

Teaching Assistant

- Name: Mr. Zhuoyun Zhong
- Email: zzhong3@wpi.edu,
- Office Hours: 11am-12pm Fridays
- Zoom link: https://wpi.zoom.us/my/zhuoyunzhong
- Office Location: 200A Unity Hall

The Open Motion Planning Library

OMPL In Industry

PickNik (Moveit Maintainers)

Realtime Robotics

Prerequisites

- Be familiar with the following:
 - Undergraduate Linear Algebra
 - Kinematics in Robotics
 - Basic Algorithms
 - Proficiency in C++ and Python, or have the ability to pick up quickly!
- Project 0/1 aims to test your preparedness for this class, by covering these topics

Logistics of the Class

- CANVAS we will make heavy use of this tool
- Piazza use Piazza if you want your questions answered promptly.
 Signup Link: https://piazza.com/wpi/fall2024/rbe550
- Read "Course Information" in Canvas: It contains details for the grading, the policy for late assignments or projects, the cut-off date for all work to be graded in this class, and what you are expected and not expected to do. Also, a lot of information about the class in general.

Projects and grading (RBE550)

Grade Policies

Category	Percentage of Final Grade
Project0	4%
Project1	6%
Project2	10%
Project3	10%
Project4	10%
Midterm Exam	20%
Final Exam	20%
Final Project	20%

Table 2: Grade Policies

Category	Final Grade	
A	≥ 90%	
В	$\geq 80\%$	
C	$\geq 70\%$	
D	$\geq 50\%$	
F	< 50%	

Table 3: Letter Grade Percentages

Projects (40%)

- Constituted of two parts:
 - Theoretical Questions that aim to test different concepts taught in class
 - Programming Component in C++/Python3 that will usually include implementations of planning algorithms, or critical components of planners
- All projects(except Project0) can be completed in pairs of two or individually
- All the written components must be in LaTeX, handwritten or Word documents will not be accepted and will be graded with zero (An Overleaf template Is provided in "Course Information" document in Canvas)

Midterm (20%)- Final (20%)

- Midterm scheduled for March 7 and will be in-class
- Finals scheduled for April 22 and will also be in-class

Final Project (20%)

- Will be released in the second half of the semester
- It will be a big project than can be:
 - One of the instructors' proposed projects
 - A research paper reproduction
 - Part of your research

Tentative Schedule

This schedule is subject to change but we will try to keep as close as possible to the schedule below.

Date	Topic	Instructor	Projects
1/17	Introduction	C.Chamzas	Project0 & Project1 out
1/21	Bug Algorithms, Potential Fields	C.Chamzas	
1/24	Roadmaps and Discrete Search	C.Chamzas	Project0 due
1/28	Configuration Space	C. Chamzas	
1/31	Tree-Based Planners and OMPL	C. Chamzas	Project1 due, Project2 out
2/4	Configuration Space Obstacles	C. Chamzas	
2/7	Probabilistic Roadmap Planners	C. Chamzas	
2/11	Theoretical Issues	C. Chamzas	
2/14	Welness Day (No Class)		
2/18	Asymptotically Optimal Planning	C. Chamzas	Project2 due, Project3 out
2/21	Collision Checking	C. Chamzas	
2/25	SPARS/Dynamic Roadmaps	C. Chamzas	
2/28	Kinodynamic Planning I	C. Chamzas	
3/4	Kinodynamic Planning II	C. Chamzas	Project3 due, Project4 out
3/7	Midterm (In Class)	C. Chamzas	
3/11	Spring Break (No Class)		
3/14	Spring Break (No Class)		
3/18	Learning and Planning I	C. Chamzas	
3/21	Learning and Planning II	C. Chamzas	Final-Project out
3/25	Midterm & Final Projects Discussion	C. Chamzas	Project 4 due
3/28	Task and Motion Planning	C. Chamzas	Declare Final-Project
4/1	Monday Schedule (No Class)	C. Chamzas	
4/4	Task and Motion Planning II	C. Chamzas	
4/8	Planning under Uncertainty	C. Chamzas	
4/11	Class Overview	C. Chamzas	
4/15	Mid-Report Presentation	Students	Mid Report due
4/18	TBD	TBD	
4/22	Final Exams (In Class)	C. Chamzas	
4/25	UG Research Show Day (No Class)		
4/29	Guest Lecture	TBD	
5/2	Guest Lecture	TBD	
5/6	Final-Project Pres.		
5/7	Final-Project Pres. (Friday Schedule)	Students	Final Report due

Relevant books

Principles of Robot Motion: Theory, Algorithms, and Implementations

H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E. Kavraki and S. Thrun, MIT Press

Planning Algorithms, Steven Lavalle, Cambridge University Press, 2006

Free download: http://planning.cs.uiuc.edu/

Robot Motion Planning, Jean-Claude Latombe, Kluwer, 1991.

Probabilistic Robotics
S. Thrun, W. Burgard, D. Fox
MIT Press, 2006

Handbook of Robotics
B. Siciliano et al
MIT Press, 2018

Project 0 is already posted in Canvas

Due at 11:59 PM on Jan24

• This project should be done individually not in pairs

It will test your preparedness for the class

Project 1 released today

Due at 11:59 PM on Jan 31st

• This project can be done in pairs

It will also test your preparedness for the class

Welcome to RBE550!