Assignment 10: Data Scraping

Jiahuan Li

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics on data scraping.

Directions

- 1. Rename this file <FirstLast>_A10_DataScraping.Rmd (replacing <FirstLast> with your first and last name).
- 2. Change "Student Name" on line 3 (above) with your name.
- 3. Work through the steps, **creating code and output** that fulfill each instruction.
- 4. Be sure your code is tidy; use line breaks to ensure your code fits in the knitted output.
- 5. Be sure to **answer the questions** in this assignment document.
- 6. When you have completed the assignment, **Knit** the text and code into a single PDF file.

Set up

- 1. Set up your session:
- Load the packages tidyverse, rvest, and any others you end up using.
- Check your working directory

```
#1
library(tidyverse)
library(rvest)
library(lubridate)
library(xml2)
library(ggplot2)

library(here)
here()
```

[1] "D:/Users/Lijh/Desktop/872 R & data analytics/ENVIR872"

- 2. We will be scraping data from the NC DEQs Local Water Supply Planning website, specifically the Durham's 2022 Municipal Local Water Supply Plan (LWSP):
- Navigate to https://www.ncwater.org/WUDC/app/LWSP/search.php
- Scroll down and select the LWSP link next to Durham Municipality.
- Note the web address: https://www.ncwater.org/WUDC/app/LWSP/report.php?pwsid=03-32-010& year=2022

Indicate this website as the as the URL to be scraped. (In other words, read the contents into an rvest webpage object.)

```
#2
url <- "https://www.ncwater.org/WUDC/app/LWSP/report.php?pwsid=03-32-010&year=2022"
webpage <- read_html(url)</pre>
```

- 3. The data we want to collect are listed below:
- From the "1. System Information" section:
- Water system name
- PWSID
- Ownership
- From the "3. Water Supply Sources" section:
- Maximum Day Use (MGD) for each month

In the code chunk below scrape these values, assigning them to four separate variables.

HINT: The first value should be "Durham", the second "03-32-010", the third "Municipality", and the last should be a vector of 12 numeric values (represented as strings), with the first value being "27.6400".

```
system_info_table <- webpage %>%
 html nodes("table:nth-child(7) td") %>%
 html text()
system_info_table
##
    [1] "Water System Name:"
##
    [2] "Durham"
   [3] " "
##
##
   [4] "PWSID:"
##
    [5] "03-32-010"
   [6] "Mailing Address:"
##
##
   [7] "101 City Hall PlazaDurham, NC 27701"
    [8] "Ownership:"
##
##
   [9]
        "Municipality"
## [10]
## [11] "Contact Person:"
## [12] "Sydney Miller"
## [13] "Title:"
## [14] "Water Resources Manager"
## [15] "Phone:"
## [16] "919-560-4381"
## [17] "Cell/Mobile:"
## [18] "--"
## [19] " "
## [20] "Secondary Contact:"
       "Mary Tiger, Asst. Dir."
## [21]
## [22]
## [23] "Phone:"
## [24] "919-560-4381"
## [25] "Mailing Address:"
## [26] "1600 Mist Lake DriveDurham, NC 27704"
## [27] "Cell/Mobile:"
```

```
## [28] "--"
water.system.name <- webpage %>%
 html_nodes("table:nth-child(7) tr:nth-child(1) td:nth-child(2)") %>%
  html text()
water.system.name
## [1] "Durham"
PWSID <- webpage %>%
 html_nodes("td tr:nth-child(1) td:nth-child(5)") %>%
 html_text()
PWSID
## [1] "03-32-010"
ownership <- webpage %>%
 html nodes("table:nth-child(7) tr:nth-child(2) td:nth-child(4)") %>%
 html text()
ownership
## [1] "Municipality"
max.withdrawals.mgd <- webpage %>%
 html_nodes("th~ td+ td") %>%
 html_text()
max.withdrawals.mgd
   [1] "36.1000" "43.4200" "52.4900" "30.5000" "42.5900" "34.8800" "39.9100"
   [8] "43.3200" "32.5300" "34.6600" "41.8000" "37.5300"
```

4. Convert your scraped data into a dataframe. This dataframe should have a column for each of the 4 variables scraped and a row for the month corresponding to the withdrawal data. Also add a Date column that includes your month and year in data format. (Feel free to add a Year column too, if you wish.)

TIP: Use rep() to repeat a value when creating a dataframe.

NOTE: It's likely you won't be able to scrape the monthly widthrawal data in chronological order. You can overcome this by creating a month column manually assigning values in the order the data are scraped: "Jan", "May", "Sept", "Feb", etc... Or, you could scrape month values from the web page...

5. Create a line plot of the max daily withdrawals across the months for 2022

```
#4
df <- data.frame(
    "water.system.name" = rep(water.system.name, 12),
    "PWSID" = rep(PWSID, 12),
    "ownership" = rep(ownership, 12),
    "Month" = c("Jan", "May", "Sep", "Feb", "Jun", "Oct", "Mar", "Jul", "Nov", "Apr", "Aug", "Dec"),
    "max.day.use" = as.numeric(max.withdrawals.mgd)
)

df$Date <- my(paste(df$Month,"-",2022))</pre>
#5
df <- arrange(df, Date)
```

Maximum Daily Withdrawals by Month (2022)

6. Note that the PWSID and the year appear in the web address for the page we scraped. Construct a function using your code above that can scrape data for any PWSID and year for which the NC DEQ has data. Be sure to modify the code to reflect the year and site (pwsid) scraped.

```
#6.
fun <- function(the_year, the_PWSID){

#Retrieve the website contents
url1 <- pasteO('https://www.ncwater.org/WUDC/app/LWSP/report.php?pwsid=',the_PWSID,'&year=',the_year)
the_website <- read_html(url1)

water.system.name1 <- "table:nth-child(7) tr:nth-child(1) td:nth-child(2)"
ownership1 <- "table:nth-child(7) tr:nth-child(2) td:nth-child(4)"
max.withdrawals.mgd1 <- "th~ td+ td"

#Scrape the data items
the_system_name <- the_website %>% html_nodes(water.system.name1) %>% html_text()
the_ownership <- the_website %>% html_nodes(ownership1) %>% html_text()
the_mgd <- the_website %>% html_nodes(max.withdrawals.mgd1) %>% html_text()
```

```
df_mgd <- data.frame(
  "water.system.name" = rep(the_system_name, 12),
  "PWSID" = rep(the_PWSID, 12),
  "Year" = rep(the_year, 12),
  "ownership" = rep(the_ownership, 12),
  "Month" = c("Jan", "May", "Sep", "Feb", "Jun", "Oct", "Mar", "Jul", "Nov", "Apr", "Aug", "Dec"),
  "max.day.use" = as.numeric(the_mgd)
)

df_mgd <- df_mgd %>%
  mutate(Date = my(paste(Month,"-",the_year))) %>%
  arrange(df_mgd, Date)

#Return the dataframe
  return(df_mgd)
}
```

7. Use the function above to extract and plot max daily with drawals for Durham (PWSID='03-32-010') for each month in 2015

```
#7
df_2015 <- fun(2015, '03-32-010')

ggplot(df_2015, aes(x = Date, y = max.day.use)) +
   geom_line() +
   labs(title = "Maximum Daily Withdrawals by Month (2015)",
        x = "Month",
        y = "Maximum Daily Withdrawals (MGD)")</pre>
```

Maximum Daily Withdrawals by Month (2015)

8. Use the function above to extract data for Asheville (PWSID = 01-11-010) in 2015. Combine this data with the Durham data collected above and create a plot that compares Asheville's to Durham's water withdrawals.

```
#8

df.ash <- fun(2015, '01-11-010')

df_combined <- rbind(df_2015, df.ash)

df_combined
```

```
##
      water.system.name
                             PWSID Year
                                           ownership Month max.day.use
                                                                               Date
## 1
                 Durham 03-32-010 2015 Municipality
                                                                   49.68 2015-04-01
                                                        Apr
## 2
                 Durham 03-32-010 2015 Municipality
                                                                  44.70 2015-08-01
                                                        Aug
##
  3
                 Durham 03-32-010 2015 Municipality
                                                        Dec
                                                                  48.75 2015-12-01
##
  4
                 Durham 03-32-010 2015 Municipality
                                                        Feb
                                                                  43.50 2015-02-01
##
   5
                 Durham 03-32-010 2015 Municipality
                                                        Jan
                                                                  40.25 2015-01-01
##
  6
                 Durham 03-32-010 2015 Municipality
                                                        Jul
                                                                  41.65 2015-07-01
  7
                 Durham 03-32-010 2015 Municipality
                                                                  57.02 2015-06-01
##
                                                        Jun
## 8
                 Durham 03-32-010 2015 Municipality
                                                        Mar
                                                                  43.10 2015-03-01
  9
                 Durham 03-32-010 2015 Municipality
                                                                  53.17 2015-05-01
##
                                                        May
## 10
                 Durham 03-32-010 2015 Municipality
                                                                  43.55 2015-11-01
                                                        Nov
##
  11
                 Durham 03-32-010 2015 Municipality
                                                        Oct
                                                                  38.72 2015-10-01
##
  12
                 Durham 03-32-010 2015 Municipality
                                                        Sep
                                                                  40.03 2015-09-01
##
   13
              Asheville 01-11-010 2015 Municipality
                                                                  21.60 2015-04-01
                                                        Apr
   14
##
              Asheville 01-11-010 2015 Municipality
                                                                  24.11 2015-08-01
                                                        Aug
## 15
              Asheville 01-11-010 2015 Municipality
                                                                   19.88 2015-12-01
                                                        Dec
## 16
              Asheville 01-11-010 2015 Municipality
                                                        Feb
                                                                  24.54 2015-02-01
```

```
## 17
              Asheville 01-11-010 2015 Municipality
                                                       Jan
                                                                  20.81 2015-01-01
##
  18
              Asheville 01-11-010 2015 Municipality
                                                                  23.68 2015-07-01
                                                       Jul
              Asheville 01-11-010 2015 Municipality
                                                                  23.53 2015-06-01
##
  19
                                                       Jun
  20
              Asheville 01-11-010 2015 Municipality
                                                                  21.42 2015-03-01
##
                                                       Mar
## 21
              Asheville 01-11-010 2015 Municipality
                                                       May
                                                                  23.95 2015-05-01
## 22
              Asheville 01-11-010 2015 Municipality
                                                       Nov
                                                                  20.45 2015-11-01
## 23
              Asheville 01-11-010 2015 Municipality
                                                                  21.32 2015-10-01
                                                       Oct
## 24
              Asheville 01-11-010 2015 Municipality
                                                                  22.97 2015-09-01
                                                       Sep
# Create plot
ggplot(df\_combined, aes(x = Date, y = max.day.use, color = water.system.name)) +
  geom_line() +
  labs(title = "Comparison of 2015 Maximum Daily Withdrawals, Durham Vs. Asheville",
       x = "Month",
       y = "Maximum Daily Withdrawals (MGD)",
       color = "Water System") +
  scale_color_manual(values = c("red", "blue"))
```

Comparison of 2015 Maximum Daily Withdrawals, Durham Vs. Asheville

9. Use the code & function you created above to plot Asheville's max daily withdrawal by months for the years 2010 thru 2021.Add a smoothed line to the plot (method = 'loess').

TIP: See Section 3.2 in the "09_Data_Scraping.Rmd" where we apply "map2()" to iteratively run a function over two inputs. Pipe the output of the map2() function to bindrows() to combine the dataframes into a single one.

```
#9
years <- 2010:2021
PWSIDs <- rep('01-11-010',length(years))
```

`geom_smooth()` using formula = 'y ~ x'

Question: Just by looking at the plot (i.e. not running statistics), does Asheville have a trend in water usage over time?

Yes, the maximum water usage trend shows a decrease from 2010 to 2015, followed by an increase from 2015 to 2020, with the usage ultimately surpassing the initial levels of 2010.