On the nature of seizure dynamics, Jirsa (2014), BRAIN

2019年10月11日 15:

- Two major seizure onset patterns: Fast discharges, spike and wave events(SWEs)
- Hypo:
 - o dynamic properties invariant in most spontaneous and evoked seizures across brain regions & species
 - Invariant-->bifurcation(i.e. transition of states)
- Two building blocks('ensemble'):
 - Fast discharges: state variables(x1,y1)
 - SWEs: state variables(x2,y2)
 - O Slow permittivity variable z: very low time scale, likely includes extracellular processes, influences the likelihood of seiz ure occurrence
- Note: Fast charges≠HFO!
- Taxonomy of SLEs
 - o Mathematical basic: bursting
 - o four types of bifurcations of equilibria (onset), four types of bifurcations of oscillations (offset)-->totally 16 classes
 - o Predominant class: saddle-node(fold) bifurcation at onset and homoclinic bifurcation at offset -->fold/homoclinic class(square wave burster)
- The Epileptor Model
 - o Hindmarsh and Rose (1984) for (x1,y1); Roy et al. (2011) for (x2,y2)
 - o Some modifications
 - o x1+x2 resembles field potential
- · Dynamics: bistability
 - o Separatrix: barrier between the two states
 - Stable fixed point<-->full circle
 - Unstable fixed point<-->empty circle
 - o Towards seizure onset: separatrix collides with stable fixed point
- Predictions:
 - o DC shift at seizure onset
 - o Logarithmic scaling of interspike intervals approaching seizure offset
- · Provoke seizures
 - o External electrical stimulation
 - Timely internal noise