## Protocolo IP. Nivel de red



IES Gonzalo Nazareno
CONSEJERÍA DE EDUCACIÓN

Alberto Molina Coballes



2 de noviembre de 2015

Esta presentación está basada en el trabajo previo de Jesús Moreno León y Raúl Ruiz Padilla "Planificación y Administración de Redes: El nivel de red"

### Nivel de red

- Se encarga de que los paquetes que salen del emisor lleguen a su destino final, aunque emisor y receptor no estén "adyacentes".
- Esto normalmente requiere pasar a través de nodos intermedios denominados encaminadores (routers).
- Hay diferentes protocolos de nivel de red. Nosotros nos centraremos en el más utilizado: IP (Internet Protocol)
- En IP, los paquetes reciben el nombre de datagramas

#### Nivel de red

#### Funciones principales

- Encaminamiento de paquetes
- Asignación de direcciones únicas a todas las máquinas de la red, independientes de la tecnología de los niveles de enlace.
- Interconexión en una misma red de subredes con distinto nivel de enlace
- Control de congestión

# Encapsulamiento



#### Cabecera IP



https://en.wikipedia.org/wiki/IPv4#Header

#### Encaminamiento estático

- Más adelante veremos mecanimos de encaminamiento dinámico
- Las entradas de la tabla de encaminamiento se definen "manualmente" y son estáticas
- Cualquier máquina IP puede estar o no configurada como encaminador:
  - Si NO lo está, los datagramas IP que recibe que no son para ella, se descartan
  - Si SÍ lo está, se tratan de encaminar (es decir, se intenta reenviarlos para que progresen hacia su destino final)

#### Encaminamiento

- Cuando una máquina quiere enviar un datagrama IP a un destino, consulta su tabla de encaminamiento.
- En la tabla se busca si encaja la IP destino en la primera columna de alguna entrada (buscando en este orden):
  - 1. Una entrada con una dirección IP de máquina igual a la IP destino
  - Una entrada con una dirección IP de red igual a la parte de red de la IP destino
  - 3. Una entrada por defecto (0.0.0.0, default o \* en la primera columna)
- Si no existe ninguna entrada adecuada, el datagrama se descarta

#### Tabla de encaminamiento

# ip route default via 78.59.1.2 dev eth0 78.59.1.0/24 dev eth0 proto kernel scope link src 78.59.1.152 192.168.0.0/24 via 78.59.1.3 dev eth0 192.168.1.0/24 dev eth1 proto kernel scope link src 192.168.1.1

# # route -n Kernel IP routing table

| Destination | Gateway   | Genmask       | Flags | ${\tt Metric}$ | Ref | Use | Iface |
|-------------|-----------|---------------|-------|----------------|-----|-----|-------|
| 0.0.0.0     | 78.59.1.2 | 0.0.0.0       | UG    | 0              | 0   | 0   | eth0  |
| 78.59.1.0   | 0.0.0.0   | 255.255.255.0 | U     | 0              | 0   | 0   | eth0  |
| 192.168.0.0 | 78.59.1.3 | 255.255.255.0 | UG    | 0              | 0   | 0   | eth0  |
| 192.168.1.0 | 0.0.0.0   | 255.255.255.0 | U     | 0              | 0   | 0   | eth1  |

## ICMP: Internet Control Message Protocol

- Se utiliza principalmente para comunicar errores o para hacer algún tipo de interrogación entre nodos de una red
- Los mensajes ICMP se transmiten encapsulados en datagramas IP:



 $https://en.wikipedia.org/wiki/Internet\_Control\_Message\_Protocol \# Header$ 

 $https://en.wikipedia.org/wiki/Internet\_Control\_Message\_Protocol\#Control\_messages$