1330

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»
Лабораторная работа № <u>1</u>
Тема Методы Пикара, Эйлера, Рунге-Кутта
Студент Брянская Е.В.
Группа ИУ7-62Б
Оценка (баллы)
Преподаватель Градов В.М.

Москва. 2021 г.

Цель работы:

Описание задания

Получить решение уравнений (1) и построить таблицу.

$$\begin{cases} u'(x) = x^2 + u^2, \\ u(0) = 0 \end{cases}$$
 (1)

Описание алгоритмов

Задача Коши

Общее решение дифференциального уравнения n-ого порядка зависит от n констант. Требуется задать n дополнительных условий:

$$u(x) = \phi(x, c_1, c_2, ...c_n)$$
(2)

В задаче Коши все дополнительные условия задаются в одной точке ξ :

$$u_k(\xi) = \eta_k, k = 1, \dots n \tag{3}$$

Задачу Коши можно решить с помощью следующих алгоритмов.

Приближённый аналитический метод Пикара

$$\begin{cases} u'(x) = f(x, u), \\ u(\xi) = \eta \end{cases}$$
 (4)

$$u(x) = \eta + \int_{\xi}^{x} f(t, u(t))dt$$
 (5)

Получается, что

$$y^{(s)}(x) = \eta + \int_{\xi}^{x} f(t, y^{(s-1)}(t))dt$$
 (6)

$$y^{(0)} = \eta \tag{7}$$

Найдём 1, 2, 3 и 4 приближение для (1).

$$y^{(1)} = 0 + \int_{0}^{x} t^{2} dt = \frac{t^{3}}{3} \Big|_{0}^{x} = \frac{x^{3}}{3}$$
 (8)

$$y^{(2)} = 0 + \int_{0}^{x} \left[\left(\frac{t^3}{3} \right)^2 + t^2 \right] dt = \frac{t^7}{63} \Big|_{0}^{x} + \frac{t^3}{3} \Big|_{0}^{x} = \frac{x^7}{63} + \frac{x^3}{3}$$
 (9)

$$y^{(3)} = 0 + \int_{0}^{x} \left[\left(\frac{t^3}{3} + \frac{t^7}{63} \right)^2 + t^2 \right] dt = \frac{t^{15}}{15 \cdot 63^2} \Big|_{0}^{x} + \frac{2 \cdot t^{11}}{3 \cdot 63 \cdot 11} \Big|_{0}^{x} + \frac{t^7}{63} \Big|_{0}^{x} + \frac{t^3}{3} \Big|_{0}^{x} =$$

$$= \frac{x^{15}}{59535} + \frac{2 \cdot x^{11}}{2079} + \frac{x^7}{63} + \frac{x^3}{3}$$
(10)

$$y^{(4)} = 0 + \int_{0}^{x} \left[\left(\frac{t^{15}}{59535} + \frac{2 \cdot t^{11}}{2079} + \frac{t^{7}}{63} + \frac{t^{3}}{3} \right)^{2} + t^{2} \right] dt = \frac{x^{31}}{109\ 876\ 902\ 975} + \frac{4 \cdot x^{27}}{3\ 341\ 878\ 155} + \frac{4 \cdot x^{23}}{99\ 411\ 543} + \frac{2 \cdot x^{23}}{86\ 266\ 215} + \frac{2 \cdot x^{19}}{3\ 393\ 495} + \frac{4 \cdot x^{19}}{2\ 488\ 563} + \frac{4 \cdot x^{15}}{93\ 555} + \frac{x^{15}}{59\ 535} + \frac{2 \cdot x^{11}}{2079} + \frac{x^{7}}{63} + \frac{x^{3}}{3}$$

$$(11)$$

Метод Эйлера

Метод Рунге-Кутта

Список литературы

- Иванов, К. К. Принципы разработки параллельных методов / К. К. Иванов, С. А. Раздобудько, Р. И. Ковалев. Текст: непосредственный // Молодой ученый. 2017. № 3 (137). С. 30-32. URL: https://moluch.ru/archive/137/38412/ (дата обращения: 21.10.2020).
- 2. Кормен, Томас X. и др Алгоритмы: построение и анализ, 3-е изд. : Пер. с англ. М. : ООО "И.Д. Вильямс 2018. 1328 с. : ил. Парал. тит. англ. ISBN 978-5-8459-2016-4 (рус.).
- 3. Документация по Стандартной библиотекн языка C++ thread [Электронный ресурс]. Режим доступа: https://docs.microsoft.com/ru-ru/cpp/standard-library/thread?view=vs-2019, свободный (дата обращения 22.10.2020)
- 4. Документация по Стандартной библиотекн языка C++ mutex [Электронный pecypc]. Режим доступа: https://docs.microsoft.com/ru-ru/cpp/standard-library/mutex?view=vs-2019, свободный (дата обращения 22.10.2020)
- 5. Документация по Visual Studio 2019 [Электронный ресурс]. Режим доступа: https://docs.microsoft.com/ru-ru/visualstudio/windows/?view=vs-2019, свободный (дата обращения: 21.10.2020)
- 6. QueryPerformanceCounter function [Электронный ресурс]. Режим доступа: https://docs.microsoft.com/en-us/windows/win32/api/profileapi/nf-profileapi-queryperformancecounter, свободный (дата обращения: 22.10.2020).