# Sample solution of the written examination in Computer Networks

February 19th 2020

| Last name:                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| First name:                                                                                                                                                                                                                                                                                |
| Student number:                                                                                                                                                                                                                                                                            |
| I confirm with my signature that I will process the written examination alone and that I feel healthy and capable to participate this examination.  I am aware, that from the moment, when I receive the written examination, I am a participant of this examination and I will be graded. |
| Signature:                                                                                                                                                                                                                                                                                 |

- Use the provided sheets. Own paper must not be used.
- You are allowed to use a *self prepared*, *single sided DIN-A4 sheet* in the exam. Only *handwritten originals* are allowed, but no copies.
- You are allowed to use a non-programmable calculator.
- Do *not* use a red pen.
- The time limit ist 90 minutes.
- Turn off your mobile phones!

#### **Result:**

| Question:        | 1  | 2  | 3 | 4 | 5  | 6 | 7 | 8 | 9 | Σ  | Grade |
|------------------|----|----|---|---|----|---|---|---|---|----|-------|
| Maximum points:  | 17 | 13 | 8 | 7 | 14 | 9 | 8 | 9 | 5 | 90 |       |
| Achieved points: |    |    |   |   |    |   |   |   |   |    |       |

**1.0**: 90.0-85.5, **1.3**: 85.0-81.0, **1.7**: 80.5-76.5, **2.0**: 76.0-72.0, **2.3**: 71.5-67.5,

**2.7**: 67.0-63.0, **3.0**: 62.5-58.5, **3.3**: 58.0-54.0, **3.7**: 53.5-49.5, **4.0**: 49.0-45.0, **5.0**: <45

|  | Last name: | First name: | Student number: |
|--|------------|-------------|-----------------|
|--|------------|-------------|-----------------|

#### Question 1)

Maximum points: 12.5+0.5+4=17

a) Fill out all empty fields. (Only <u>one</u> correct answer per field!)

#### **Hybrid Reference Model**

|   | Layer                | Protocol                          | Device                      | Sort of Data (data unit) | Addresses           |
|---|----------------------|-----------------------------------|-----------------------------|--------------------------|---------------------|
| 7 | Application<br>Layer | SMTP, HTTP,<br>POP3, SSH          | none<br>(evtl. Appliance)   | Message                  | none<br>(evtl. DNS) |
| 4 | Transport<br>Layer   | TCP, UDP                          | (VPN-)Gateway               | Segment                  | Port nummber        |
| 3 | Network<br>Layer     | IP, ICMP                          | Router, L3-Switch           | Packet                   | IP address          |
| 2 | Data Link<br>Layer   | Ethernet, Wifi,<br>Bluetooth, PPP | Bridge, L2-Switch,<br>Modem | Frame                    | MAC address         |
| 1 | Physical<br>Layer    | Ethernet, Wifi,<br>Bluetooth      | Repeater, Hub               | Signal                   | none                |

- b) Do computer networks usually implement parallel or serial data transmission? Serial data transmission.
- c) Calculate the first and last host addresses, the network address and the broadcast address of the subnet.

IP Address: 153.213.11.213 10011001.11010101.00001011.11010101 255.255.255.224 Subnet mask: 11111111.11111111.11111111.11100000 Part for host IDs: XXXXX 153.213.11.192 10011001.11010101.00001011.11000000 Network address? First host address? 153.213.11.193 10011001.11010101.00001011.11000001 Last host address? 153.213.11.222 10011001.11010101.00001011.11011110 Broadcast address? 153.213.11.223 10011001.11010101.00001011.11011111

| binary representation | decimal representation | binary representation | decimal representation |
|-----------------------|------------------------|-----------------------|------------------------|
| 10000000              | 128                    | 11111000              | 248                    |
| 11000000              | 192                    | 11111100              | 252                    |
| 11100000              | 224                    | 11111110              | 254                    |
| 11110000              | 240                    | 11111111              | 255                    |

#### Question 2)

Points: .....

Maximum points: 2+2+2+5=13

a) Simplify this IPv6 address:

21da:00d3:0000:0000:02aa:00ff:fe28:9c5a

Solution: 21da:d3::2aa:ff:fe28:9c5a

b) Simplify this IPv6 address:

2001:0db8:0000:0000:5a6b:0000:0001:678a

Solution: 2001:db8::5a6b:0:1:678a

c) Provide all positions of this simplified IPv6 address:

2001:db8:84a2::8a2e:70:4

Solution: 2001:0db8:84a2:0000:0000:8a2e:0070:0004

d) Provide all positions of this simplified IPv6 address:

2001:cdba::18:2

Solution: 2001:cdba:0000:0000:0000:0000:0018:0002

e) This signal curve is encoded with NRZI and 4B5B. Decode the data.



| Label | 4B   | 5B    | Function      |
|-------|------|-------|---------------|
| 0     | 0000 | 11110 | 0 hexadecimal |
| 1     | 0001 | 01001 | 1 hexadecimal |
| 2     | 0010 | 10100 | 2 hexadecimal |
| 3     | 0011 | 10101 | 3 hexadecimal |
| 4     | 0100 | 01010 | 4 hexadecimal |
| 5     | 0101 | 01011 | 5 hexadecimal |
| 6     | 0110 | 01110 | 6 hexadecimal |
| 7     | 0111 | 01111 | 7 hexadecimal |

| Label | 4B   | $5\mathrm{B}$ | Function      |
|-------|------|---------------|---------------|
| 8     | 1000 | 10010         | 8 hexadecimal |
| 9     | 1001 | 10011         | 9 hexadecimal |
| A     | 1010 | 10110         | A hexadecimal |
| В     | 1011 | 10111         | B hexadecimal |
| С     | 1100 | 11010         | C hexadecimal |
| D     | 1101 | 11011         | D hexadecimal |
| Е     | 1110 | 11100         | E hexadecimal |
| F     | 1111 | 11101         | F hexadecimal |

#### Question 3)

Points: .....

Maximum points: 4+4=8

a) Error detection via CRC: Calculate the frame to be transferred.

Generator polynomial: 100101

Payload: 110100110110

The generator polynomial has 6 digits  $\implies$  five 0 bits are appended

Frame with appended 0 bits: 11010011011000000

```
11010011011000000
100101||||||||
----v||||||||
100011||||||||
100101||||||||
 ----vvv||||||
   110101||||||
   100101||||||
   ----v|||||
    100001|||||
    100101|||||
     ----vvv|||
       100000111
       100101|||
       ----vvv
         101000
          100101
           1101 = Remainder
```

Remainder: 1101

Transferred frame: 11010011011001101

b) Error detection via CRC: Check, if the received frame was transmitted correctly.

Transferred frame: 1011010110100 Generator polynomial: 100101

```
1011010110100
100101||||||
-----vv||||
100001||||
100101|||
-----vvv||
100101||
100101||
-----vv
```

00 => Transmission was error-free

Last name: Student number:

|    |      | •           |         | 4  |
|----|------|-------------|---------|----|
| W. | uest | ն <b>1Օ</b> | ${f n}$ | 4) |

Points: .....

Maximum points: 3+4=7

a) Error Correction via simplified Hamming Distance (Hamming ECC method). Calculate the message, that will be transmitted (payload inclusive parity bits).

```
Payload: 10111110
```

Step 1: Determine parity bit positions:

Step 2: Calculate parity bit values:

```
0011 Position 3
0110 Position 6
0111 Position 7
1001 Position 9
1010 Position 10
XOR 1011 Position 11
```

Step 3: Insert parity bit values into the transmission:

b) Error Correction via simplified Hamming Distance (Hamming ECC method). Verify, if the received message was transmitted correctly.

Received message: 101110100010

#### Question 5)

Maximum points: 4+5+5=14

a) The diagram shows the establishment of a TCP connection. Complete the table.

| Message | ACK  | SYN  | FIN  | Payload | Seq    | Ack    |
|---------|------|------|------|---------|--------|--------|
|         | flag | flag | flag | length  | number | number |
| 1       | 0    | 1    | 0    | 0       | 30     | ?      |
| 2       | 1    | 1    | 0    | 0       | 150    | 31     |
| 3       | 1    | 0    | 0    | 0       | 31     | 151    |

b) The diagram shows an excerpt of the transmission phase of a TCP connection. Complete the table.

| Message | ACK  | SYN  | FIN  | Payload | Seq    | Ack    |
|---------|------|------|------|---------|--------|--------|
|         | flag | flag | flag | length  | number | number |
| 4       | 0    | 0    | 0    | 250     | 2200   | 850    |
| 5       | 1    | 0    | 0    | 150     | 850    | 2450   |
| 6       | 1    | 0    | 0    | 450     | 2450   | 1000   |
| 7       | 1    | 0    | 0    | 10      | 1000   | 2900   |

c) The diagram shows the termination of a TCP connection. Complete the table.

| Message | ACK  | SYN  | FIN  | Payload | Seq    | Ack    |
|---------|------|------|------|---------|--------|--------|
|         | flag | flag | flag | length  | number | number |
| 8       | 0    | 0    | 1    | 0       | 2800   | 4200   |
| 9       | 1    | 0    | 0    | 0       | 4200   | 2801   |
| 10      | 0    | 0    | 1    | 0       | 4200   | 2801   |
| 11      | 1    | 0    | 0    | 0       | 2801   | 4201   |



Points: .....



#### Question 6)

Points: .....

Maximum points: 9

6500 bytes payload need to be transmitted via the IP protocol.



The payload must be fragmented, because it is transmitted over multiple physical networks, whose MTU is < 6500 bytes.

|                      | LAN A | LAN B    | LAN C |
|----------------------|-------|----------|-------|
| Network technology   | WLAN  | Ethernet | PPPoE |
| MTU [bytes]          | 2312  | 1500     | 1492  |
| IP header [bytes]    | 20    | 20       | 20    |
| max. payload [bytes] | 2292  | 1480     | 1472  |

Hint: In practice, the fragment offset is counted in 8-byte increments; therefore, the payload in a fragment must be a multiple of 8. However, for the sake of simplicity, you can also create fragments that are not multiples of 8 in this task.

Display graphically the way, the payload is fragmented, and how many bytes of payload each fragment contains.



#### Question 7)

Points: .....

Maximum points: 8

a) Fill the missing IP addresses and port numbers into the figure that describes a NAT scenario where device E sends a request for an email to an email server process that runs on device X and can be accessed on device X via port number 25.



(Message 1) 172.16.0.6:48731 --> 193.104.220.6:25

(Message 2) 46.183.103.17:54782 --> 193.104.220.6:25

(Message 3) 193.104.220.6:25 --> 46.183.103.17:54782

(Message 4) 193.104.220.6:25 --> 172.16.0.6:48731

## Question 8)

Points: .....

Maximum points: 9

a) Sketch in the diagram of the network topology all collision domains.



b) Sketch in the diagram of the network topology all broadcast domains.



### Question 9)

Points: .....

Maximum points: 5

Encode the bit sequence with 5B6B and NRZ and draw the signal curve.

Bit sequence: 11010 11110 01001 00010 01110



| $_{ m 5B}$ | 6B      | 6B       | 6B       |
|------------|---------|----------|----------|
|            | neutral | positive | negative |
| 00000      |         | 001100   | 110011   |
| 00001      | 101100  |          |          |
| 00010      |         | 100010   | 101110   |
| 00011      | 001101  |          |          |
| 00100      |         | 001010   | 110101   |
| 00101      | 010101  |          |          |
| 00110      | 001110  |          |          |
| 00111      | 001011  |          |          |
| 01000      | 000111  |          |          |
| 01001      | 100011  |          |          |
| 01010      | 100110  |          |          |
| 01011      |         | 000110   | 111001   |
| 01100      |         | 101000   | 010111   |
| 01101      | 011010  |          |          |
| 01110      |         | 100100   | 011011   |
| 01111      | 101001  |          |          |

| 5B    | 6B      | 6B       | 6B       |
|-------|---------|----------|----------|
|       | neutral | positive | negative |
| 10000 |         | 000101   | 111010   |
| 10001 | 100101  |          |          |
| 10010 |         | 001001   | 110110   |
| 10011 | 010110  |          |          |
| 10100 | 111000  |          |          |
| 10101 |         | 011000   | 100111   |
| 10110 | 011001  |          |          |
| 10111 |         | 100001   | 011110   |
| 11000 | 110001  |          |          |
| 11001 | 101010  |          |          |
| 11010 |         | 010100   | 101011   |
| 11011 | 110100  |          |          |
| 11100 | 011100  |          |          |
| 11101 | 010011  |          |          |
| 11110 |         | 010010   | 101101   |
| 11111 | 110010  |          |          |