

General information

Designation

355.0 (Aluminum Association)	
Condition	T6 (Solution heat-treated and artificially
UNS number	A03550
EN number	EN AC-45300 / EN AC-AI

Typical uses

High strength alloy: engine cooling fans, clutch housings, high-speed rotating parts, structural aerospace components, compressor cases, machine parts

Composition overview

Compositional summary

Al90-94 / Si4.5-5.5 / Cu1-1.5 / Mg0.4-0.6 (impurities: Fe<0.6, Mn<0.5, Zn<0.35, Cr<0.25, Ti<0.25,

Material family	Metal
Base material	Al (Aluminum)

Composition detail (metals, ceramics and glasses)

Al (aluminum)	* 90.3	-	94.1	%
Cr (chromium)	0	-	0.25	%
Cu (copper)	1	-	1.5	%
Fe (iron)	0	-	0.6	%
Mg (magnesium)	0.4	-	0.6	%
Mn (manganese)	0	-	0.5	%
Si (silicon)	4.5	-	5.5	%
Ti (titanium)	0	-	0.25	%
Zn (zinc)	0	-	0.35	%
Other	0	-	0.15	%

Price

Price	* 1.73	-	1.85	EUR/kg
Price per unit volume	* 4.63e3	-	5.07e3	EUR/m^3

Physical properties

Density	2.68e3	-	2.74e3	kg/m^3		

Mechanical properties

Young's modulus	68.6	-	71.4	GPa
Specific stiffness	25.3	-	26.4	MN.m/kg
Yield strength (elastic limit)	165	-	182	MPa
Tensile strength	259	-	286	MPa
Specific strength	60.9	-	67.3	kN.m/kg
Elongation	2.2	-	2.6	% strain
Compressive strength	109	-	121	MPa

Flexural modulus	* 68.6	-	71.4	GPa
Flexural strength (modulus of rupture)	* 165	-	182	MPa
Shear modulus	* 25.6	-	27	GPa
Bulk modulus	* 64.2	-	73.5	GPa
Poisson's ratio	0.322	-	0.338	
Shape factor	33			
Hardness - Vickers	100	-	110	HV
Elastic stored energy (springs)	195	-	237	kJ/m^3
Fatigue strength at 10^7 cycles	63	-	77	MPa
Fatigue strength model (stress range)	60.8	-	79.9	MPa

Parameters: Stress Ratio = -1, Number of Cycles = 1e7cycles

Impact 8	R frac	fiira nro	nartiae
IIIIDaci (x IIac	luie bio	ทยเ แยว

Fracture toughness	* 21.2	-	24.4	MPa.m^0.5
Toughness (G)	6.44	-	8.48	kJ/m^2

Thermal properties

Melting point	587	-	653	°C
Maximum service temperature	150	-	170	°C
Minimum service temperature	-273			°C
Thermal conductivity	146	-	164	W/m.°C
Specific heat capacity	944	-	982	J/kg.°C
Thermal expansion coefficient	21.9	-	22.9	µstrain/°C
Thermal shock resistance	104	-	117	°C
Thermal distortion resistance	* 6.49	-	7.36	MW/m
Latent heat of fusion	* 384	-	393	kJ/kg

Electrical properties

Electrical resistivity	4.2	-	4.9	µohm.cm	
------------------------	-----	---	-----	---------	--

Aluminum, 355.0, permanent mold cast, T6

Electrical conductivity	35.2	-	41.1	%IACS
Galvanic potential	* -0.76	-	-0.68	V

Magnetic properties

Optical, aesthetic and acoustic properties

Transparency	Opaque			
Acoustic velocity	5.03e3	-	5.14e3	m/s
Mechanical loss coefficient (tan delta)	* 0.0246	-	0.0394	

Critical materials risk

Contains >5wt% critical elements?	Yes
-----------------------------------	-----

Processing properties

Metal casting	Excellent		
Metal cold forming	Unsuitable		
Metal hot forming	Unsuitable		
Metal press forming	Unsuitable		
Metal deep drawing	Unsuitable		
Machining speed	101 m/min		
Weldability	Excellent		
Notes	Preheating is not required, post weld heat treatment is required		

Durability

Water (fresh)	Excellent
Water (salt)	Acceptable
Weak acids	Excellent
Strong acids	Excellent
Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Excellent
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Excellent
Galling resistance (adhesive wear)	Limited use

Notes

Aluminum alloys perform poorly when self-mated but can be processed without galling when mated with steels.

Flammability	Non-flammable
riammability	

Corrosion resistance of metals

Stress corrosion cracking	Slightly susceptible			
Note	Rated in chloride; Other susceptible environments: Halide, water			

Primary production energy, CO2 and water

Embodied energy, primary production	* 184	- 203	3 MJ/kg	
-------------------------------------	-------	-------	---------	--

CO2 footprint, primary production	* 11.9	-	13.1	kg/kg
Water usage	* 1.06e3	-	1.17e3	l/kg

Processing energy, CO2 footprint & water

Casting energy	* 10.9	-	12	MJ/kg
Casting CO2	* 0.652	-	0.721	kg/kg
Casting water	* 20.6	-	30.9	l/kg
Vaporization energy	* 1.55e4	-	1.71e4	MJ/kg
Vaporization CO2	* 930	-	1.03e3	kg/kg
Vaporization water	* 6.45e3	-	9.68e3	l/kg
Coarse machining energy (per unit wt removed)	* 0.878	-	0.97	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.0527	-	0.0582	kg/kg
Fine machining energy (per unit wt removed)	* 4.5	-	4.97	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.27	-	0.298	kg/kg
Grinding energy (per unit wt removed)	* 8.53	-	9.42	MJ/kg
Grinding CO2 (per unit wt removed)	* 0.512	-	0.565	kg/kg
Non-conventional machining energy (per unit wt removed)	* 155	-	171	MJ/kg
Non-conventional machining CO2 (per unit wt removed)	* 9.3	-	10.3	kg/kg

Recycling and end of life

Recycle	✓
Embodied energy, recycling	* 31.6 - 34.9 MJ/kg
CO2 footprint, recycling	* 2.48 - 2.74 kg/kg
Recycle fraction in current supply	40.5 - 44.7 %
Downcycle	✓
Combust for energy recovery	×
Landfill	✓
Biodegrade	×

Notes

Standards with similar compositions

• Canada:

SC51N to CSA HA.10, SG51N to CSA HA.9

• Europe:

EN AB-45300 to CEN EN 1676, EN AC-45300 to CEN EN 1706

• International:

AlSi5Cu1Mg to ISO 3522

• Japan:

AC4D to JIS H5202, AC4D.1 to JIS H2211

Spain:

L-2571 to UNE 38-203, L-2571 to UNE 38-266

• UK:

LM16 to BS 1490

• USA:

355, 355 to ASTM B108, 355 to ASTM B26/B26M, 355 to ASTM B618, 355.1, 355.1 to ASTM B179, A03550 to SAE J452, UNS A03550, UNS A03551

• Tradenames:

USCO 5-W

Links	
ProcessUniverse	
Producers	
Reference	
Shape	