贝叶斯统计学基础作业3

毛沛炫 3220102692

- 1. 假定对于二项分布参数 p, 我们采用 beta(2,2) 作为先验分布, 并且进行了 10 次伯努利试验, 得到了 7 次正性结果。现采用格点近似法, 并使用 5 个格点、
 - (a) 计算先验分布的离散近似解(3分)
 - (b) 计算后验分布的离散近似解(3分)
 - (c) 计算P(D) 的近似解(3分)
 - (d) 将格点数增加到11个, 重新计算以上三个结果(4分)
 - (e) 计算格点数分别为 5 和 11 时,P(D) 近似解的相对误差(4 分)

解答:

首先, 先验概率质量分布正比于 beta(2,2):

$$Prior(p) \propto p^{\alpha - 1} \times (1 - p)^{\beta - 1} = p \times (1 - p)$$

后验分布:

$$Posterior(p) \propto Likelihood(p) \times Prior(p) \propto [p^7 \times (1-p)^3] \times [p \times (1-p)] = p^8 \times (1-p)^4$$

(a) 先验分布的离散近似解 令五个格点的值分别为 θ = [0.1, 0.3, 0.5, 0.7, 0.9], 归一化之前:

$$\theta = 0.1 : p = 0.1 \times (1 - 0.1) = 0.09$$

$$\theta = 0.3 : p = 0.3 \times (1 - 0.3) = 0.21$$

$$\theta = 0.5 : p = 0.5 \times (1 - 0.5) = 0.25$$

$$\theta = 0.7 : p = 0.7 \times (1 - 0.7) = 0.21$$

$$\theta = 0.9 : p = 0.9 \times (1 - 0.9) = 0.09$$

由于总和为0.85, 归一化之后

$$\theta = 0.1 : p = 0.1 \times (1 - 0.1)/0.85 \approx 0.106$$

 $\theta = 0.3 : p = 0.3 \times (1 - 0.3)/0.85 \approx 0.247$
 $\theta = 0.5 : p = 0.5 \times (1 - 0.5)/0.85 \approx 0.294$
 $\theta = 0.7 : p = 0.7 \times (1 - 0.7)/0.85 \approx 0.247$
 $\theta = 0.9 : p = 0.9 \times (1 - 0.9)/0.85 \approx 0.106$

上述即为先验概率分布的离散近似解

(b) 后验分布的离散近似解

$$\theta = 0.1 : p = (0.1)^8 \times (0.9)^4 \approx 6.56e - 9$$

$$\theta = 0.3 : p = (0.3)^8 \times (0.7)^4 \approx 1.58e - 5$$

$$\theta = 0.5 : p = (0.5)^8 \times (0.5)^4 \approx 2.44e - 4$$

$$\theta = 0.7 : p = (0.7)^8 \times (0.3)^4 \approx 4.67e - 4$$

$$\theta = 0.9 : p = (0.9)^8 \times (0.1)^4 \approx 4.30e - 5$$

归一化之后

$$p(\theta = 0.1) \approx 8.52e - 06$$
$$p(\theta = 0.3) \approx 0.020$$
$$p(\theta = 0.5) \approx 0.317$$
$$p(\theta = 0.7) \approx 0.606$$
$$p(\theta = 0.9) \approx 0.056$$

(c) 计算 P(D) 的近似解

$$P(D) \approx \sum_{i=1}^{5} P(\theta_i) P(D|\theta_i)$$
$$= \sum_{i=1}^{5} P(\theta_i) \theta_i^7 (1 - \theta_i)^3$$
$$\approx 9.058e - 4$$

(d) 将格点数增加到 11 个,重新计算以上三个结果 θ 取值为: $\theta_0 = 0.045$, $\theta_1 = 0.136$, $\theta_2 = 0.227$, $\theta_3 = 0.318$, $\theta_4 = 0.409$, $\theta_5 = 0.500$, $\theta_6 = 0.591$, $\theta_7 = 0.682$, $\theta_8 = 0.773$, $\theta_9 = 0.864$, $\theta_{10} = 0.955$

先验概率分布的离散近似解为 (python 计算给出):

$$p(\theta = 0.045) \approx 0.024$$

$$p(\theta = 0.136) \approx 0.064$$

$$p(\theta = 0.227) \approx 0.095$$

$$p(\theta = 0.318) \approx 0.118$$

$$p(\theta = 0.409) \approx 0.131$$

$$p(\theta = 0.500) \approx 0.136$$

$$p(\theta = 0.591) \approx 0.131$$

$$p(\theta = 0.682) \approx 0.118$$

$$p(\theta = 0.773) \approx 0.095$$

$$p(\theta = 0.864) \approx 0.064$$

$$p(\theta = 0.955) \approx 0.024$$

后验分布的离散近似解为

$$p(\theta = 0.045) \approx 8.85e - 9$$

$$p(\theta = 0.136) \approx 3.89e - 5$$

$$p(\theta = 0.227) \approx 0.001$$

$$p(\theta = 0.318) \approx 0.013$$

$$p(\theta = 0.409) \approx 0.056$$

$$p(\theta = 0.500) \approx 0.143$$

$$p(\theta=0.591)\approx 0.244$$

$$p(\theta = 0.682) \approx 0.280$$

$$p(\theta = 0.773) \approx 0.198$$

$$p(\theta=0.864)\approx 0.063$$

$$p(\theta = 0.955) \approx 0.002$$

P(D) 的近似解为 $P(D) \approx 9.285e - 4$

(e) 计算格点数分别为 5 和 11 时,P(D) 近似解的相对误差 P(D) 的精确值为

$$P(D) = \int_0^1 p(\theta)p(D|\theta)d\theta$$

$$= \int_0^1 \frac{\Gamma(4)}{\Gamma(2)\Gamma(2)}\theta(1-\theta)\theta^7(1-\theta)^3d\theta$$

$$= \int_0^1 6\theta^8(1-\theta)^4d\theta$$

$$= \frac{2}{2145}$$

所以5个格点的相对误差是

$$\frac{\left|P_{N=5}(D) - \frac{2}{2145}\right|}{\frac{2}{2145}} = 2.587\%$$

所以11个格点的相对误差是

$$\frac{\left| P_{N=11}(D) - \frac{2}{2145} \right|}{\frac{2}{2145}} = 0.422\%$$

2. 使用 JASP 中名为 Heart Rate 的数据集,进行贝叶斯方差分析,考察各个因素是否存在主效应,以及是否存在交互效应。根据贝叶斯因子选取和报告最优模型,并且报告针对各种效应的贝叶斯因子和相应的统计推断。(6分)解答:

Table 1 模型比较

Models	P(M)	P(M data)	BF_M	BF ₁₀	error %
Gender + Group + Gender * Group	0.200	0.794	15.388	1.000	
Gender + Group	0.200	0.206	1.040	0.260	2.560
Group	0.200	6.696×10^{-36}	2.678×10^{-35}	8.436×10^{-36}	2.320
Gender	0.200	1.809×10^{-107}	7.234×10^{-107}	2.279×10^{-107}	2.320
Null model	0.200	2.296×10^{-126}	9.185×10^{-126}	2.893×10^{-126}	2.320

全因子模型的贝叶斯因子 BF_{10} 远大于 100 (见 Table 1), 说明数据有极强的证据支持全因子模型而非空模型。且和其他模型相比,全因子模型的 $BF_{M\bar{M}}$ 与小于 3, 说明数据有较强的证据支撑全因子模型而非其他模型。

Table 2 效应分析

Effects	P(incl)	P(excl)	P(incl data)	P(excl data)	BF_{incl}
Gender	0.400	0.400	0.206	6.696×10^{-36}	$3.081 \times 10^{+34}$
Group	0.400	0.400	0.206	1.809×10^{-107}	$1.141 \times 10^{+106}$
Gender * Group	0.200	0.200	0.794	0.206	3.847

选择 JASP 的默认参数,并和最佳模型进行比较。效应分析中,Gender 和 Group 的 BF_{incl} 都远大于 100(见 Table 2),根据 Wagenmakers, Love 等人提出的分类标准,说明数据有极强的证据支持了不同 Gender 的人在心率上具有差异,不同 Group 的人在心率上具有差异,Gender 和 Group 的主效应显著。而 Group*Gender 的贝叶斯因子为 $BF_{incl}=3.847$,说明在 (假定有效应的) 备择假设下出现当前数据的可能性是在 (假定没有效应的) 零假设下可能性的 3.847 倍。根据分类标准,这是中等程度的证据支持了备择假设,Gender 和 Group 之间存在交互作用。

3. 使用 JASP 中名为 Auction 的数据集,进行贝叶斯回归分析。具体要求如下:以 Age 和 Bidders 为自变量, Price 为因变量,考虑所有可能模型(包括含交互项的模型,且 各模型的先验概率应当相等),并根据贝叶斯因子选取和报告最优模型,以及各回归系数的后验 90% 可信区间

使用 jasp 默认参数(各模型的先验概率相等。最优模型(见 Table3)为包含交互项的模型(Age + Bidders + Age × Bidders)。贝叶斯因子 BF_M = 38784.660,表明该模型比其他模型有极强的证据支持(BF > 100); R^2 = 0.954,说明模型对数据的解释力极高。Age + Bidders 模型的 BF_{10} = 1.031×10²,和最优模型相比,数据对该模型的支持证据极弱。

Table 3 模型比较

Models	P(M)	P(M data)	BF_M	BF ₁₀	R ²
Age + Bidders + Age * Bidders	0.200	1.000	38784.660	1.000	0.954
Age + Bidders	0.200	1.031×10^{-4}	4.125×10^{-4}	1.031×10^{-4}	0.893
Age	0.200	1.105×10^{-12}	4.420×10^{-12}	1.105×10^{-12}	0.533
Bidders	0.200	4.528×10^{-16}	1.811×10^{-15}	4.529×10^{-16}	0.156
Null model	0.200	1.782×10^{-16}	7.127×10^{-16}	1.782×10^{-16}	0.000

Table 4 根据后验分布的系数估计

								90% Credible Interval	
Coefficient	P(incl)	P(excl)	P(incl data)	P(excl data)	$\mathrm{BF}_{inclusion}$	Mean	SD	Lower	Upper
Intercept	1.000	0.000	1.000	0.000	1.000	1327.156	15.621	1298.693	1352.459
Age	0.400	0.400	1.031×10^{-4}	6.310×10^{-16}	$1.634 \times 10^{+11}$	0.867	2.012	-2.799	4.125
Bidders	0.400	0.400	1.031×10^{-4}	1.105×10^{-12}	$9.330 \times 10^{+7}$	-92.697	29.594	-146.621	-44.762
Age * Bidders	0.200	0.200	1.000	1.031×10^{-4}	9696.165	1.288	0.210	0.905	1.628

模型中各个因子的回归系数和后验 90% 可信区间(见 Table4):

交互项 Age × Bidders:

回归系数为1.288,90%可信区间为(0.905,1.628)。

Bidders:

回归系数为-92.697,90%可信区间为(-146.62,-44.76)

Age:

回归系数为 0.867, 90% 可信区间为 (-2.799, 4.125)

截距:

回归系数为 1327.156, 90% 可信区间为 (1298.69, 1352.46)

4. 使用 JASP 中名为 Emily Rosa 的数据集,进行贝叶斯二项检验。具体要求如下:以 correct 比例为 0.46, incorrect 比例为 0.54 作为零假设,以 correct 比例满足 beta(2.3,2.7) 为被择假设的先验分布,进行统计检验,并报告相应的贝叶斯因子,correct 比例的后验 95% 可信区间,以及统计推断结果

Table 5 贝叶斯二项分布检验

	Level	Counts	Total	Proportion	BF ₁₀
Outcome	Correct	70	150	0.467	0.173
	Incorrect	80	150	0.533	0.817

Note. Proportions tested against value: 0.46. The shape of the prior distribution under the alternative hypothesis is specified by Beta(2.3, 2.7).

设置 correct 比例为 0.46, incorrect 比例为 0.54 作为零假设,以 correct 比例满足 beta(2.3,2.7)为被择假设的先验分布,检验方向为≠Test value,其他参数按照 JASP 默认值,进行分析,结果见 Table5和 Figure1

Figure 1. (a) correct 比例的先验分布和后验分布; (b) incorrect 比例的先验和后验分布

根据分析结果,贝叶斯因子 $BF_{10}=0.173$,表示当前数据支持零假设(correct 比例为 0.46)的证据比支持被择假设的证据强约 5.774 倍。这表明有中等程度的证据支持零 假设,即有中等强度的证据支持 correct 比例为 0.46。correct 比例的后验 95% 可信区间 为 (0.389,0.545)