Homework 7

Due date: May.26th , 2021 Turn in your homework in class

Rules:

- Please work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism!
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.

1. [10%] In the phasor-domain circuit, ${\it V}=30\,\angle\,60^\circ$ V (rms), ${\rm R}_1=5\,\Omega$, ${\rm R}_2=20\,\Omega$, ${\rm R}_3=10\,\Omega$, ${\it Z}_C=-{\rm j}4\,\Omega$, and ${\it Z}_L={\rm j}6\,\Omega$. Choose the load impedance ${\it Z}_{load}$ so that the average power dissipated in it is a maximum value. Find the values of load impedance ${\it Z}_{load}$ and the maximum average power on ${\it Z}_{load}$.

Fig. 1

- 2. [12%] Given the circuit below, find
 - a) The line current.
 - b) The total complex power absorbed by the load.
 - c) The total complex power dissipated on the line.

Fig. 2

- **3.** [16%] The circuit is shown below, find
 - a) The average power absorbed by the $\,20\Omega\,$ resistor.
 - b) The current $oldsymbol{I_0}.$

Fig. 3.

4. [10%] For the network circuit in Fig. 4, assume that 4Ω is the AC source resistor. Find out the input impedance Z_{ab} and the input current I_o .

Fig. 4

5. [10%] For the circuit shown below, determine the transform function $\mathbf{H}(\boldsymbol{\omega}) = \mathbf{V_0}/\mathbf{V_i}$, and determine the frequency $\boldsymbol{\omega}$ at which $\mathbf{H}(\boldsymbol{\omega})$ is purely real.

Fig. 5

6. [18%] Determine the voltage transfer function $\mathbf{H}(\boldsymbol{\omega})$ corresponding to the Bode magnitude plot shown in the Fig. 6

- a) The phase of $\mathbf{H}(\boldsymbol{\omega})$ is 90° at $\omega=0$.
- b) The phase of $\mathbf{H}(\boldsymbol{\omega})$ is -90° at $\omega = 0$.
- c) The phase of $\mathbf{H}(\boldsymbol{\omega})$ is 0° at $\omega = 0$.

Fig. 6a

Fig. 6b

Fig. 6c

7. [12%] Determine the center frequency and bandwidth of the band-pass filters in Fig.7.

Fig. 7

- **8.** For the op-amp circuit of Fig. 8:
 - a) Obtain an expression for $H(\omega) = V_o/V_s$ in standard form.
 - b) Generate Bode Plots for the magnitude and phase of $\mathbf{H}(\boldsymbol{\omega})$, given that $R_1 = R_2 = 100\Omega$, and $C_1 = 10\mu F$, $C_2 = 0.4\mu F$.
 - c) What type of filter is it? What is its maximum gain?

Fig. 8