

Introduction to Audio Content Analysis

Module 9.5: Tempo Detection

alexander lerch

 overview
 intro
 oscillator approach
 filterbank approach
 template approach
 challenges
 eval
 summargen

 •
 000
 000
 0
 0
 0
 0
 0

introduction overview

Georgia Center for Music Tech Technology

corresponding textbook section

section 9.5

lecture content

- introduction to tempo detection and beat tracking
- overview over basic approaches
- typical challenges

■ learning objectives

- discuss advantages and disadvantages for different approaches to tempo detection and beat tracking
- summarize the typical challenges of beat tracking systems

introduction overview

corresponding textbook section

section 9.5

lecture content

- introduction to tempo detection and beat tracking
- overview over basic approaches
- typical challenges

learning objectives

- discuss advantages and disadvantages for different approaches to tempo detection and beat tracking
- summarize the typical challenges of beat tracking systems

tempo detection & beat tracking problem statement

tempo detection

• detect speed of regular pulse (foot-tapping rate)

beat tracking

• detect the time instances the tempo pulses occur (beat phase)

tempo detection & beat tracking introduction

objectives

- find the tempo from the novelty function/onsets
- 2 find the beat locations

systematic problems:

- 1 distinguish hierarchical levels
 - meter
 - ▶ beat
 - ► subbeat/tatum
- 2 detect beats without onsets
- 3 recognize onsets without beats

tempo detection & beat tracking typical beat tracking system

Beat tracking with an oscillator¹

- initialize pulse generator (tempo estimate, beat position estimate)
- predict next beat location with pulse
- 3 adapt acc. to distance (predicted vs. real onset position)
 - beat period
 - beat phase
- 4 predict with adapted settings
- 5 adapt ...

Module 9.5: Tempo Detection 5 / 12

¹E. W. Large, "Beat Tracking with a Nonlinear Oscillator," in *Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI)*, Montreal, Aug. 1995.

Georgia Center for Music Tech (Technology

Beat tracking with an oscillator¹

- initialize pulse generator (tempo estimate, beat position estimate)
- 2 predict next beat location with pulse
- 3 adapt acc. to distance (predicted vs. real onset position
 - beat period
 - beat phase
- 4 predict with adapted settings
- 5 adapt ...

Module 9.5: Tempo Detection 5 / 12

¹E. W. Large, "Beat Tracking with a Nonlinear Oscillator," in *Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI)*. Montreal, Aug. 1995.

Beat tracking with an oscillator¹

- initialize pulse generator (tempo estimate, beat position estimate)
- 2 predict next beat location with pulse
- 3 adapt acc. to distance (predicted vs. real onset position)
 - beat period
 - beat phase
- 4 predict with adapted settings
- 5 adapt ...

Module 9.5: Tempo Detection 5 / 12

¹E. W. Large, "Beat Tracking with a Nonlinear Oscillator," in *Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI)*. Montreal, Aug. 1995.

Beat tracking with an oscillator¹

- initialize pulse generator (tempo estimate, beat position estimate)
- 2 predict next beat location with pulse
- 3 adapt acc. to distance (predicted vs. real onset position)
 - beat period
 - beat phase
- 4 predict with adapted settings
- 5 adapt ...

Module 9.5; Tempo Detection 5 / 3

¹E. W. Large, "Beat Tracking with a Nonlinear Oscillator," in *Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI)*. Montreal, Aug. 1995.

tempo detection & beat tracking oscillator approach: initialization

How to estimate the initial tempo

tempo detection & beat tracking oscillator approach: initialization

Georgia Center for Music Tech Technology

0

How to estimate the initial tempo

- location of maximum of ACF of novelty function
- maximum of **IOI histogram**

- maximum of **beat spectrum/histogram**
-

tempo detection & beat tracking multi-agent approach

1 run multiple beat trackers with different parameters

- initial tempo
- initial beat phase
- adaptation speed
- compute reliability/confidence criteria:
 - match beat and onset times
 - tempo stability
 - majority of different agents
 - . .
- 3 choose most reliable agent (or path between agents)

- 1 run multiple beat trackers with different parameters
 - initial tempo
 - initial beat phase
 - adaptation speed
- **2** compute reliability/**confidence** criteria:
 - match beat and onset times
 - tempo stability
 - majority of different agents
 - ...
- 3 choose most reliable agent (or path between agents)

- 1 run multiple beat trackers with different parameters
 - initial tempo
 - initial beat phase
 - adaptation speed
- **2** compute reliability/**confidence** criteria:
 - match beat and onset times
 - tempo stability
 - majority of different agents
 - ...
- 3 choose most reliable agent (or path between agents)

- 1 run multiple beat trackers with different parameters
 - initial tempo
 - initial beat phase
 - adaptation speed
- **2** compute reliability/**confidence** criteria:
 - match beat and onset times
 - tempo stability
 - majority of different agents
 - ..
- 3 choose most reliable agent (or path between agents)

- 1 run multiple beat trackers with different parameters
 - initial tempo
 - initial beat phase
 - adaptation speed
- **2** compute reliability/**confidence** criteria:
 - match beat and onset times
 - tempo stability
 - majority of different agents
 - ...
- 3 choose most reliable agent (or path between agents)

tempo detection & beat tracking filterbank approach

Georgia Center for Music Tech Technology

- design **filterbank** (e.g. comb resonators spaced 1 beat)
- 2 compute filter output energy
- 3 pick maximum

plots by Scheirer²

Module 9.5: Tempo Detection 8 / 12

²E. D. Scheirer, "Tempo and beat analysis of acoustic musical signals," *Journal of the Acoustical Society of America (JASA)*, vol. 103, no. 1, pp. 588–601. 1998.

tempo detection & beat tracking filterbank approach

Georgia Center for Music Tech Market Technology

- design **filterbank** (e.g. comb resonators spaced 1 beat)
- 2 compute filter output energy
- 3 pick maximum

plots by Scheirer²

Module 9.5: Tempo Detection 8 / 12

²E. D. Scheirer, "Tempo and beat analysis of acoustic musical signals," *Journal of the Acoustical Society of America (JASA)*, vol. 103, no. 1, pp. 588–601. 1998.

tempo detection & beat tracking filterbank approach

Georgia Center for Music Tech Technology

- design **filterbank** (e.g. comb resonators spaced 1 beat)
- 2 compute filter output energy
- 3 pick maximum

plots by Scheirer²

Module 9.5: Tempo Detection 8 / 3

²E. D. Scheirer, "Tempo and beat analysis of acoustic musical signals," *Journal of the Acoustical Society of America (JASA)*, vol. 103, no. 1, pp. 588–601. 1998.

tempo detection & beat tracking template-based approach

- define set of **template pulses** in all tempi
- 2 compute CCF between novelty function (or its ACF) and all templates
- 3 choose template with highest correlation as tempo
- 4 choose lag with highest correlation as beat phase

tempo detection & beat tracking typical problems

- **1** tempo: detection of **double/half tempo** (triple, ...)
- 2 phase: detection of off-beats
- 3 tempo & phase: strongly depends on initialization values
- tempo & phase: only slow adaptation no sudden tempo changes

example: challenges with adaptation speed

tempo detection & beat tracking

evaluation of constant tempo

- match within tempo range ⇒ classification metrics
- evaluation of beat tracking
 - ground truth can be subjective (double/half tempo, deviations)
 - each beat matched against ground truth
 - challenge 1: tolerance window definition (tempo dependent or not?)
 - challenge 2: slightly different tempo might lead to gap between metrics and perceptual severity
- typical errors
 - double/half tempo (sometimes also 3/2 relationships)
 - off-beat
 - problems with abrupt tempo changes

tempo detection & beat tracking

- evaluation of constant tempo
 - match within tempo range ⇒ classification metrics
- evaluation of beat tracking
 - ground truth can be subjective (double/half tempo, deviations)
 - each beat matched against ground truth
 - ► challenge 1: tolerance window definition (tempo dependent or not?)
 - challenge 2: slightly different tempo might lead to gap between metrics and perceptual severity
- typical errors
 - double/half tempo (sometimes also 3/2 relationships)
 - off-beat
 - problems with abrupt tempo changes

tempo detection & beat tracking

- evaluation of constant tempo
 - match within tempo range ⇒ classification metrics
- evaluation of beat tracking
 - ground truth can be subjective (double/half tempo, deviations)
 - each beat matched against ground truth
 - ▶ challenge 1: tolerance window definition (tempo dependent or not?)
 - challenge 2: slightly different tempo might lead to gap between metrics and perceptual severity

typical errors

- double/half tempo (sometimes also 3/2 relationships)
- off-beat
- problems with abrupt tempo changes

summary lecture content

■ tempo analysis

- similar to pitch detection on a different scale
 - periodicity analysis of novelty function
 - time or spectral domain

typical approaches

- oscillator
- histogram/beat spectrum
- template correlation

■ main challenges

- double/half tempo
- adaptation to sudden tempo changes

