Lecture 9

Econ 139

February 19, 2019

1 Second Order Stochastic Dominance(SSD)

\tilde{X}	π_A	π_B	$F_{\pi A}$	$F_{\pi B}$	$\int F_{\pi A}(t) - F_{\pi B}(t)$
				0	
4	0	0.25	0.33	0.25	-0.99
5	0	0.5	0.33	0.75	-1.07
6	0.33	0	0.66	0.75	-0.65
8	0.34	0	1	0.75	-0.47
9	0	0.25	1	1	-0.72

Definition: given preamble, we say that $\tilde{X}_{\pi A}$ SSD $\tilde{X}_{\pi B}$ iff $\int_{-\infty}^{t} F_{\pi B}(Z) - F_{\pi A}(Z) dz \leq 0 \forall t$

- Asset B SSD because it is negative at every point.

Theorem: Given preamble, then $\tilde{X}_{\pi B}$ SSD $\tilde{X}_{\pi A}$ iff $E_{\pi B}[U(\tilde{X})] > E_{\pi A}[U(\tilde{X})]$ for all increasing and concave U.

2 Mean Preserving Spread

Y is a mean preserving spread of X
$$Y = X + Z \text{ where } E[Z] = 0$$

$$E[Y] = E[X]$$

$$\theta_y^2 > \theta_x^2$$

Definition: Given preamble, we say that $\tilde{X}_{\pi B}$ is a mean preserving spread (MPS) of $\tilde{X}_{\pi A}$ if there exists a PDF π_Z over \tilde{X} such that $E_{\pi Z}[\tilde{X}] = 0$ and $\tilde{X}_{\pi B} = \tilde{X}_{\pi A} + \tilde{X}_{\pi Z}$

Theorem: Given preamble, if $E_{\pi B}[\tilde{X}] = E_{\pi A}[\tilde{X}]$, the following statements are equivalent:

- (i) $\tilde{X}_{\pi A}$ SSD $\tilde{X}_{\pi B}$
- (ii) $\tilde{X}_{\pi B}$ is a MPS of $\tilde{X}_{\pi A}$

3 Diversification

Consider: A set of n lotteries given $\tilde{x}_1, ..., \tilde{x}_n$ that are assumed to be independent and identically distributed.

feasible strategy: Characterized by a vector, $\mathbf{A} = (\alpha_1, ..., \alpha_n)$, where α_i is one's share in lottery i where $\sum_{i \in I}^n \alpha_i = 1$. This gives a random payoff $\tilde{y} = \sum_{i \in I}^n \alpha_i \tilde{x}_i$

Proposition: The random payoff \tilde{Y}_D generated by the "perfect" diversification strategy D = $(\frac{1}{n}, ..., \frac{1}{n})$ SSD the random payoff generated by any other strategy.

Example: Two lotteries: $\tilde{x}_i = (10, 100)$ with $\pi_i = (0.5, 0.5)$ and i = 1,2

With perfect diversification: D = $(\frac{1}{2}, \frac{1}{2})$

w/ prob. payoff
$$0.25 100 0.25 55 E[\tilde{Y}_D] = 55; \ \theta^2(\tilde{Y}_D) = 101.25, \\ 0.25 55 0.25 10$$

With different strategy: $A = (\frac{1}{3}, \frac{2}{3})$

w/ prob. payoff
$$\begin{array}{lll} 0.25 & 100 \\ 0.25 & 40 \\ 0.25 & 70 \\ 0.25 & 10 \\ \end{array} \qquad E_{\tilde{Y}_D}] = 55; \ \theta^2(\tilde{Y}_D) = 102.5,$$

We see the second strategy has the same mean but a higher variance. Thus, the first strategy of perfect diversification SSD the second strategy.

4 Investment in Risky Asset II

Say we have the following:

- individual:
 - initial wealth w_0
 - utility function u_1 with u' > 0, u'' < 0
- two possible investments:
 - (I) bond that pays $(1 + r_f)$ for every dollar invested
 - (II) risky asset with uncertain return \tilde{r}
- let a represent the number of dollars invested in the risky asset
- future wealth: $\tilde{w}_1 = (w_0 a)(1 + r_f) + a(1 + \tilde{r}) = w_0(1 + r_f) + a(\tilde{r} r_f)$

We will maximize expected utility:

$$\max_a E(u(w_1^2))$$

$$\max_a E[u(w_0(1+r_f)+a(\tilde{r}-r_f))]$$

We will take the FOC (derivative with respect to a):

$$E[u'(w_0(1+r_f) + a * (\tilde{r} - r_f))(\tilde{r} - r_f)] = 0$$

Theorem: Assume u' > 0 and u'' < 0 and $a^* = argmax_a E[u(\tilde{w}_1)]$. Then:

(I) For
$$a*>0 \leftrightarrow E[\tilde{r}]>r_f$$

(II) For
$$a* = 0 \leftrightarrow E[\tilde{r}] = r_f$$

(III) For
$$a* < 0 \leftrightarrow E[\tilde{r}] < r_f$$

Following this theorem, we can make assumptions about our expected return per investment.

Proof:

Let
$$g(a) = E[u(w_0(1+r_f) + a(\tilde{r} - r_f))]$$

Then $g'(a) = E[u'(w_0(1+r_f) + a(\tilde{r} - r_f))(\tilde{r} - r_f)]$ and $g''(a) = E[u''(w_0(1+r_f) + a(\tilde{r} - r_f))(\tilde{r} - r_f)]$
Observe since $u'' < 0$, $g''(a) < 0$ implies $g'(a)$ is strictly decreasing in a

$$g'(0) = E[u'(w_0(1+r_f))(\tilde{r}-r_f)]$$

= $u'(w_0(1+r_f))E[\tilde{r}-r_f]$
= $u'(w_0(1+r_f))(E[\tilde{r}]-r_f)$

We know the first term is positive, so this implies g'(0) has the same sign as $E[\tilde{r}] - r_f$

Summary:

- (I) g'(a) is strictly decreasing
- (II) g'(0) has the sign of $E[\tilde{r}] r_f$
- (III) g'(a*) = 0 because of FOC

Now
$$a* = 0$$
 iff $E[\tilde{r}] = r_f$

To prove forward \rightarrow :

$$g'(a*) = 0 \text{ and } a* = 0$$

$$\rightarrow g'(0) = 0 \text{ since } g'(0) \text{ has the same sign as } E[\tilde{r}] - r_f$$

$$\rightarrow E[\tilde{r}] - r_f = 0$$

$$\rightarrow E[\tilde{r}] = r_f$$

To prove backwards \leftarrow :

Suppose
$$E[\tilde{r}] = r_f$$

 $E[\tilde{r}] - r_f = 0$
 $\rightarrow g'(0) = 0$ since $g'(a)$ is strictly decreasing
 $\rightarrow g'(a*) = 0$ from FOC
 $\rightarrow a* = 0$