

2D Alignment: Linear Least Squares

16-385 Computer Vision (Kris Kitani)
Carnegie Mellon University

Extract features from an image ...

what do we do next?

Feature matching

(object recognition, 3D reconstruction, augmented reality, image stitching)

How do we estimate the transformation?

Given a set of matched feature points

$$\{oldsymbol{x}_i,oldsymbol{x}_i'\}$$

point in one image

point in the other image

and a transformation

$$x' = f(x; p)$$

transformation function

parameters

Find the best estimate of

Model fitting

Recover the transformation

Given f and g, how would you recover the transform T? (user will provide correspondences)

How many do we need?

Translation

f(x,y)

g(x,y)

- How many Degrees of Freedom?
- How many correspondences needed?
- What is the transformation matrix?

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & p'_x - p_x \\ 0 & 1 & p'_y - p_y \\ 0 & 0 & 1 \end{bmatrix}$$

Euclidean

- How many Degrees of Freedom?
- How many correspondences needed for translation+rotation?
- What is the transformation matrix?

Affine

- How many Degrees of Freedom?
- How many correspondences needed for affine?
- What is the transformation matrix?

Projective

- How many Degrees of Freedom?
- How many correspondences needed for projective?
- What is the transformation matrix?

Suppose we have two triangles: ABC and DEF.

What transformation will map A to D, B to E, and C to F?

How can we get the parameters?

Estimate transformation parameters using

Linear least squares

Given a set of matched feature points

$$\{oldsymbol{x}_i,oldsymbol{x}_i'\}$$

point in one image

point in the other image

and a transformation

$$x' = f(x; p)$$

transformation function

parameters

Find the best estimate of

Given point correspondences

Given point correspondences

How can you solve for the transformation?

$$E_{LS} = \sum_{i} || \boldsymbol{f}(\boldsymbol{x}_i; \boldsymbol{p}) - \boldsymbol{x}_i'||^2$$

$$E_{\mathrm{LS}} = \sum_{i} \| \boldsymbol{f}(\boldsymbol{x}_i; \boldsymbol{p}) - \boldsymbol{x}_i' \|^2$$

What is this? What is this?

$$E_{\mathrm{LS}} = \sum_{i} \| \boldsymbol{f}(\boldsymbol{x}_i; \boldsymbol{p}) - \boldsymbol{x}_i' \|^2$$
Residual (projection error)

$$E_{\mathrm{LS}} = \sum_{i} \|\boldsymbol{f}(\boldsymbol{x}_i; \boldsymbol{p}) - \boldsymbol{x}_i'\|^2$$

What is the free variable? What do we want to optimize?

Find parameters that minimize squared error

$$\hat{oldsymbol{p}} = rgmin_{oldsymbol{p}} \sum_i \|oldsymbol{f}(oldsymbol{x}_i; oldsymbol{p}) - oldsymbol{x}_i'\|^2$$

General form of linear least squares

(Warning: change of notation. x is a vector of parameters!)

$$E_{\mathrm{LLS}} = \sum_{i} |\boldsymbol{a}_{i}\boldsymbol{x} - \boldsymbol{b}_{i}|^{2}$$

$$= \|\mathbf{A}\boldsymbol{x} - \boldsymbol{b}\|^{2} \qquad \text{(matrix form)}$$

This function is quadratic. How do you find the root of a quadratic?

General form of linear least squares

(Warning: change of notation. x is a vector of parameters!)

$$E_{\mathrm{LLS}} = \sum_{i} |\boldsymbol{a}_{i}\boldsymbol{x} - \boldsymbol{b}_{i}|^{2}$$

$$= \|\mathbf{A}\boldsymbol{x} - \boldsymbol{b}\|^{2} \qquad \text{(matrix form)}$$

Minimize the error:

Expand

$$E_{\text{LLS}} = \boldsymbol{x}^{\top} (\mathbf{A}^{\top} \mathbf{A}) \boldsymbol{x} - 2 \boldsymbol{x}^{\top} (\mathbf{A}^{\top} \boldsymbol{b}) + \|\boldsymbol{b}\|^{2}$$

Take derivative, set to zero

$$(\mathbf{A}^{ op}\mathbf{A})oldsymbol{x} = \mathbf{A}^{ op}oldsymbol{b}$$

(normal equation)

$$| \boldsymbol{x} = (\mathbf{A}^{\top} \mathbf{A})^{-1} \mathbf{A}^{\top} \boldsymbol{b} |$$

For the Affine transformation

$$oldsymbol{x}' = oldsymbol{f}(oldsymbol{x}; oldsymbol{p})$$

$$x' = \mathbf{M}x$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 \\ p_4 & p_5 & p_6 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Vectorize transformation parameters

Notation in general form

Linear

least squares

estimation

only works

when the

transform function

is

Linear

least squares

estimation

only works

when the

transform function

is

linear!

Also

doesn't

deal well

with

outliers