Exercises: Advanced Derivatives

1–4 ■ Use the quotient rule to compute f'(x). Simplify your answer.

1.
$$f(x) = \frac{x^3}{x^2 + 1}$$

2.
$$f(x) = \frac{4+x^2}{4-x^2}$$

3.
$$f(x) = \frac{e^{3x}}{1 + e^x}$$

4.
$$f(x) = \frac{2x}{1 + \sqrt{x}}$$

5–6 ■ Differentiate. Look up any derivative formulas that you need.

5.
$$2^x \cot x$$

6.
$$\sec(5x^2)$$

7.
$$tan^{-1}(3x^4)$$

8.
$$\sin^{-1}(e^x)$$

9.
$$\arctan(\sqrt{x})$$

10.
$$3^{\csc x}$$

11–22 ■ Differentiate.

11.
$$e^{\sin(4x)}$$

12.
$$\ln(\sin \sqrt[3]{x})$$

13.
$$\sin^2(e^{-x})$$

14.
$$\sin(\cos(\ln x))$$

$$15. \ \frac{1}{\sqrt{\sin 4x}}$$

16.
$$\frac{1}{(1+e^{2x})^3}$$

18. $\sin\left(\frac{x}{1+x^2}\right)$

17.
$$\sin(x^2 e^x)$$

19.
$$\ln(1+x^3e^x)$$

20.
$$e^{x \sin x}$$

21.
$$xe^{x} \ln x$$

22.
$$x^3 e^{2x} \cos x$$

Answers

1.
$$\frac{x^4 + 3x^2}{(x^2 + 1)^2}$$
 2. $\frac{16x}{(4 - x^2)^2}$ 3. $\frac{3e^{3x} + 2e^{4x}}{(1 + e^x)^2}$ 4. $\frac{2 + \sqrt{x}}{(1 + \sqrt{x})^2}$ 5. $2^x \ln(2) \cot x - 2^x \csc^2 x$ 6. $10x \sec(5x^2) \tan(5x^2)$

7.
$$\frac{12x^3}{1+9x^8}$$
 8. $\frac{e^x}{\sqrt{1-e^{2x}}}$ 9. $\frac{1}{2\sqrt{x}(1+x)}$ 10. $-3^{\csc x} \ln 3 \csc x \cot x$ 11. $4e^{\sin(4x)}\cos(4x)$ 12. $\frac{\cot \sqrt[3]{x}}{3x^{2/3}}$

13.
$$-2e^{-x}\sin(e^{-x})\cos(e^{-x})$$
 14. $-\frac{\cos(\cos(\ln x))\sin(\ln x)}{x}$ **15.** $-\frac{2\cos 4x}{(\sin 4x)^{3/2}}$ **16.** $-\frac{6e^{2x}}{(1+e^{2x})^4}$

17.
$$(x^2 + 2x)e^x \cos(x^2 e^x)$$
 18. $\frac{1 - x^2}{(1 + x^2)^2} \cos\left(\frac{x}{1 + x^2}\right)$ **19.** $\frac{(x^3 + 3x^2)e^x}{1 + x^3 e^x}$ **20.** $e^{x \sin x} (\sin x + x \cos x)$

21.
$$e^x + e^x \ln x + x e^x \ln x$$
 22. $(3x^2 + 2x^3)e^{2x} \cos x - x^3 e^{2x} \sin x$