Devoir surveillé n°1

Durée : 3 heures, calculatrices et documents interdits

I. Calcul d'un cosinus.

Dans cet exercice, on note $\omega = \frac{\pi}{5}$.

- 1) Exprimer, pour tout $\theta \in \mathbb{R}$, $\cos(2\theta)$ en fonction de $\cos(\theta)$. On ne demande pas de justification.
- 2) Exprimer $\cos(3\theta)$ en fonction de $\cos(\theta)$, en détaillant cette fois les étapes du calcul.
- 3) Calculer $\cos(3\omega) + \cos(2\omega)$. En déduire que $\cos(\omega)$ est solution de l'équation :

$$4x^3 + 2x^2 - 3x - 1 = 0$$

- 4) Résoudre l'équation (\mathcal{E}) .
- 5) Calculer explicitement $\cos(\omega)$.

II. Une suite définie par une intégrale.

On considère la suite (I_n) définie par

$$I_n = \int_0^1 \frac{t^n}{1+t^2} \, \mathrm{d}t.$$

On ne cherchera pas à calculer l'intégrale.

1) Justifier que

$$\forall t \in [0,1], \quad \frac{t^n}{2} \leqslant \frac{t^n}{1+t^2} \leqslant t^n$$

- 2) En déduire un encadrement de I_n et la limite de la suite (I_n) .
- **3)** Montrer que

$$\forall n \in \mathbb{N}, \quad I_n + I_{n+2} = \frac{1}{n+1}.$$

- 4) Justifier que la suite (I_n) est décroissante.
- **5)** Montrer que

$$\forall n \geqslant 2, \quad \frac{1}{2(n+1)} \leqslant I_n \leqslant \frac{1}{2(n-1)}.$$

- **6)** Déterminer la limite de la suite (nI_n) .
- 7) Calculer I_1 , puis en déduire I_3 et I_5 .
- 8) On définit

$$S_n = \sum_{k=0}^{n} (-1)^k I_{2k+1}.$$

a) Montrer que

$$S_n = \int_0^1 \frac{t}{(1+t^2)^2} dt + (-1)^n \int_0^1 g_n(t) dt,$$

où g_n est une fonction dont on donnera l'expression réduite.

b) Encadrer pour $t \in [0,1], g_n(t)$ par des quantités dont l'intégrale se calcule facilement.

c) Montrer que

$$\int_0^1 g_n(t) dt \xrightarrow[n \to +\infty]{} 0$$

et en déduire que la suite (S_n) converge vers une limite que l'on explicitera.

III. Une étude de fonction.

Soit $\alpha \in \mathbb{R}$. Soit f_{α} la fonction définie par

$$f_{\alpha}(x) = \frac{\alpha x}{1+x} - \ln(1+x)$$

Partie A : étude du cas $\alpha = 2$

- 1) a) Déterminer le domaine de définition de f_2 .
 - b) Dresser le tableau des variations de f_2 . Déterminer les limites aux bornes du domaine de définition.
 - c) Montrer que l'équation $f_2(x) = 0$, d'inconnue x, admet exactement deux solutions que l'on notera a et b telles que a < b. Que vaut a?
 - d) Sachant que $ln(5) \simeq 1.61$, comparer b et 4.
 - e) Donner l'allure de la courbe de f_2 sur]-1,5].
- 2) a) Dresser le tableau des variations de $g: x \mapsto f_2(x) x$.
 - **b)** Démontrer $\forall x \in]-1, +\infty[, f_2(x) \leq x.$
 - c) Résoudre l'équation $f_2(x) = x$ d'inconnue x.
- 3) On considère la suite u définie par $\begin{cases} u_0 \in [0,1] \\ \forall n \in \mathbb{N}, u_{n+1} = f_2(u_n) \end{cases}$
 - a) Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $u_n \in [0, 1]$.
 - b) Montrer que la suite u est décroissante
 - c) En déduire que u est convergente vers un réel ℓ positif.
 - d) Donner la valeur de ℓ . Justifier.

Partie B : α quelconque

- 1) a) Pour tout α réel, montrer que la fonction f_{α} est dérivable et calculer sa dérivée.
 - b) Résoudre sur] $-1, +\infty$ [, l'équation $f'_{\alpha}(x) = 0$ d'inconnue x (on sera amené à distinguer des cas selon la valeur de α).
 - c) Dresser les différentes formes possibles du tableau de variations.
- 2) a) Déterminer les fonctions f_{α} admettant un extremum local et étudier le signe de f_{α} en ce point.
 - b) Déterminer, selon la valeur de α , le nombre de solutions de l'équation $f_{\alpha}(x) = 0$.

— FIN —