

NoSQL

목차

WoSQL이란?

● NoSQL 특징

- 1) 스키마 존재 X
- 2) 저렴한 비용
- 3) 분산 시스템

분산 시스템 설계 원칙 1 - CAP 분산 시스템 설계 원칙 2 - PACELC

4) BASE

기본적인 가용성(Basically Available) 소프트 상태(Soft State)

결과적 일관성(Eventually Consistent)

☑ NoSQL 장단점

장점

단점

Key-Value Database

Wide-Column Database

Document Database

Graph Database

🤒 NoSQL이란?

- 데이터가 폭발적으로 증가하면서 단일 서버에 모든 데이터를 넣을 수 없어짐
 - 。 따라서 서버의 확장이 불가피해졌다
- 서버의 확장 방식 : 수직적 확장, 수평적 확장

수직적 확장 수평적 확장

수직적 확장 (Scale up)

- 서버의 스펙(CPU, RAM 등)을 업그레이드
- 재부팅이 필요

수평적 확장 (Scale out)

- 서버를 여러대를 추가해서 옆으로 확장시킴
- 서버 자체의 스펙을 업그레이드 시키는 것이 아니라 서버 갯수를 늘리는 방법
- 무중단 배포가 가능해짐
- 기존의 RDBMS의 성능을 증가시키기 위해선 수직적 확장이 필요한데, 비용이 비싸고 사양 을 무한히 증가시킬 수 없음
- 따라서 데이터 일관성은 포기하되 비용을 고려해 여러 대의 데이터에 분산하여 저장하는 수 평적 확장을 목표로 NoSQL이 등장

≪ NoSQL 특징

1) 스키마 존재 X

- RDBMS와 달리 테이블 스키마가 유동적
- 데이터를 저장하는 컬럼이 각기 다른 이름과 다른 데이터 타입을 갖는 것이 허용됨
- 따라서 데이터를 유연하게 추가, 삭제, 수정 그리고 데이터 모델의 변화에 대한 대응이 용이
- 어플리케이션단에서 데이터 구조에 맞게 매핑할 노력이 필요가 없다

2) 저렴한 비용

- 오픈소스 제품이 많아서 비교적 저렴
- 가용성을 보장하기 위해 노드를 추가할 수 있음
- 수평적 확장이 용이하기 때문에 하드웨어 비용도 상대적으로 낮다

3) 분산 시스템

• 새로운 노드를 추가하는데 용이

- 노드 중 하나가 다운되더라도 시스템 전체가 중단되지 않게 해서 시스템의 가용성을 높임
- 병렬처리가 가능하고 빠른 처리가 가능

분산 시스템 설계 원칙 1 - CAP

- CAP이론의 CAP은 시스템의 세 가지 속성인 일관성, 가용성, 파티션 허용성을 나타낸다
- CAP 이론에 따르면 분산 데이터베이스 시스템은 네트워크 파티션이 발생하였을 때 세 가지속성 중 두 가지만 만족할 수 있다
 - 세 가지 속성 중 두 가지를 만족하는 시스템은 CA, CP, AP 세 종류로 나눌 수 있다

속성	설명
일관성	모든 요청은 최신 데이터 또는 에러를 응답받는다
가용성	모든 요청은 정상 응답을 받는다
파티션 허용성	노드간 통신이 실패하는 경우라도 시스템은 정상 동작 한다

분산 시스템 설계 원칙 2 - PACELC

- CAP 이론의 단점을 바완하기 위해 나온 이론
- CAP 이론에 정상 상황이라는 새로운 성질을 더한다

4) BASE

• ACID와 대조적으로 가용성과 성능을 중요시하는 특성을 가진 분산 시스템의 특성

BASE vs ACID

BASE

- 가용성과 성능을 중요시
- 기본적인 가용성, 소프트 상태, 결과 적 일관성

ACID

- 데이터베이스 트랜잭션이 안전하게 수행된다는 것을 보장하기 위한 성 질
- 원자성, 일관성, 격리성, 영속성

속성	BASE	ACID
적용분야	NoSQL	RDBMS
범위	시스템 전체에 대한 특성	트랜잭션에 한정
일관성측면	약한 일관성	강한 일관성
중점사항	Acailavility	'Commit'에 집중
시스템측면	성능에 초점	엄격한 데이터관리
효율성	쿼리 디자인이 중요	테이블 디자인이 중요

기본적인 가용성(Basically Available)

- 부분적인 고장은 있을 수 있으나 나머지는 사용이 가능
 - 。 주 서버가 작동하지 않더라도 백업 서버는 동작

소프트 상태(Soft State)

- 노드의 상태는 외부에서 전송된 정보를 통해 결정됨
- 분산 노드 간 업데이트는 데이터가 노드에 도달한 시점에 갱신
 - 。 최신 상태의 데이터로 덮어써진다

결과적 일관성(Eventually Consistent)

- 일시적으로 비일관적인 상태가 되어도 최적으로는 일관성이 있는 상태가 되는 성질
 - 시스템 부하, 네트워크 속도 등의 외부 요인으로 인해 일관성이 일시적으로 깨질 수 있음

🥌 NoSQL 장단점

장점

단점

- 1. 스키마가 없기 때문에 유연하다
- 2. 언제든지 저장된 데이터를 조정하고 새로 운 필드를 추가할 수 있다
- 데이터는 애플리케이션이 필요로 하는 형 식으로 저장되기 때문에 데이터를 읽는 속도가 빠르다
- 4. 수직 및 수평적 확장이 가능하다

- 1. 유연성으로 인해 데이터 구조 결정을 미루게 될 수 있다
- 2. 데이터 중복을 계속 업데이트해야 한다
- 3. 데이터가 여러 컬렉션에 중복되어 있기 때문에 수정이 필요한 경우 모든 컬렉션 에서 수행해야 한다

Key-Value Database

Key	Value
K1	AAA,BBB,CCC
K2	AAA,BBB
K3	AAA,DDD
K4	AAA,2,01/01/2015
K5	3,ZZZ,5623

- Key-Value 하나의 묶음으로 저장되는 단순한 구조
- 저장과 조회라는 가장 단순한 원칙에 충실한 데 이터베이스
- 속도가 빠르며 분산 저장 시 용이
- Access 속도는 빠르지만 Scan에는 용이하지 않음

Wide-Column Database

- 행마다 키와, 해당 값을 저장할 때마다 각각 다른 값의 다른 수의 schema를 가질 수 있다
- 대량의 데이터의 압축, 분산처리, 집계 쿼리 및 쿼리 동작속도 그리고 확장성이 뛰어남

Document Database

DOCUMENT STORE

- Key-Value 데이터베이스와 같이 데이터 저장 에 Key-Value 타입을 사용
- 차이점은 Document Database는 값을 문서 로 저장
 - 。 문서: JSON 혹은 XML과 같은 형식
- 값을 저장하기 전에 schema를 별도로 지정하 지 않음
- 문서를 추가하면 그게 바로 schema가 됨

Graph Database

- 데이터를 노드로 표현
- 노드 사이의 관계를 엣지로 표현
- 성능이 좋고 유연하며 유지보수에 용이함

▼ 링크

[10분 테코톡] 스플릿, 애쉬의 SQL과 NoSQL

b 우아한테크코스의 크루들이 진행하는 10분 테크토크입니다. 🙋

'10분 테코톡'이란 우아한테크코스 과정을 진행하며 크루(수강생)들

https://youtu.be/cnPRFqukzek?si=puJXTd3_SR0Zf8Bq

SQL业 NoSQL

스플릿, 애쉬

우아한테크코스

수평적 확장(Scale-Out)과 수직적 확장(Scale-Up)

이용자가 증가하거나 서비스를 확장시키는 등 다양한 이유로 서버를 확장해야 될 때가 있다. 서버를 확장 시키는데에는 크게 두 가지의 방 법이 있다. 수평적 확장(Scale-Out) 수직적 확장(Scale-Up) 클라우

[Database] RDBMS와 NoSQL의 차이점

이번 포스팅에서는 RDBMS와 NoSQL의 차이점을 알아보려고 합니다. 그전에 RDBMS는 무엇이고 왜 사용하며 NoSQL은 무엇이고 왜 사용을 할까요? 그리고 그 두 DB의 차이점은 무엇이며 서로에 대한 장

(1) https://khj93.tistory.com/entry/Database-RDBMS와-NOSQL-차이점

[DB] NoSQL이란?, NoSQL 특징, NoSQL 종류, NoSQL 장점

NoSQL이란? NoSQL은 비관계형 데이터베이스를 지칭한다. 즉, 관계형 데이터 모델을 지양 하며 대량의 분산된 데이터를 저장하고 조회하는데 특화되었으며 스키마 없이 사용 가능하거나 느슨한 스키마를 제공하

A https://code-lab1.tistory.com/53

DB 트랜잭션 (Transaction)의 ACID 속성과 분산시스템 BASE 속성 트랜잭션이란 무엇인가? ACID 특성과 BASE 특성에 대해 알아보자.

▼ https://velog.io/@issac/DB-트랜잭션-Transaction의-ACID-속성과-분산시스템-BASE-속성

