Soleil

Advanced power and sleep control board for Raspberry Pi

Dec. 1 2024

Version v0.1-DEV

Table of Contents

Overview	1
Block Diagram	2
Architecture	
Battery Input	4
DC Input	5
Battery Charger	
Load Switch	7
Boost Converter	8
Wakeup Sources	9
Raspberry Pi	10

A power management system for Nerves, featuring low-power sleep mode, USB and solar battery charging, manual wake-from-sleep and support for NervesHub

Designed by Gus Workman

Sheet: /

File: soleil.kicad_sch

Title: Soleil

Size: A4 Date: 2024-08-01 KiCad E.D.A. 8.0.6

ld: 1/10

Battery Connector Battery Fuel Gauge U9 PWR_FLAG BQ27427 BATT_RAW BATT_RAW —□BATT 10k R16 I2C_SDA♦ GPOUT -C21 A3 SCL B1 BIN 52B-PH-SM4 2 I2C_SCL♦ — ⊳BATT_LOW 1u = ESD5Z6.0 1V8 B3 C23 10k = 2u2 R19 GND \rightarrow GND GND GND GND Design Note: Design Notes: The polarity and type of connector was chosen to support Adafruit lithium polymer batteries 12C address is 0x55
 GPOUT must not be left left floating, 10k pullup recommended
 Do not let the 12C lines float when device is in sleep mode
 Iq is 50uA, 9uA in sleep mode
 Auto sleep when low current (< 10 mA) The value of GPOUT depends on the OpConfig[BATLOWEN] bit:

- OpConfig[BATLOWEN] == 0, SOC_INT function is selected (default)

- OpConfig[BATLOWEN] == 1, BAT_LOW function is selected Sheet: /Architecture/Battery Input/ File: battery_input.kicad_sch Title: Size: A4 Date: KiCad E.D.A. 8.0.6 ld: 4/10

DC/Solar Connector

DC_IN supports solar panels up to 16V

DC/Solar 6V LDO

Design Note:

The TLV76701 LDO is used to lower voltages greater than 6V to the maximum voltage supported by the power multiplexer. For DC_IN < 6V, the output voltage tracks the input

- V_DC regulates to 5.6V
 V_dropout is 0.4V @ 500mA
 I_out up to 1A
 Iq is 50uA, 1.5 uA in shutdown

USB Connector

Design Note:

5k1 resistors on CC1 and CC2 to negotiate up to 1.5A @ 5V with USB power delivery sources

DC Power Multiplexer

Design Note:

LM66200 performs power multiplexing, acting as two ideal diodes with cathodes tied together.

- Input voltages between 1.6V 6.0V
 Up to 2.5A per channel
 Iq is 1.3uA when powered from VIN1

Date:			Rev:	
.6			ld: 5/10	
	cad_sch	Date:	ad_sch Date:	Date: Rev: .6 Id: 5/10

Battery Charger U7 V_CHARGED BQ25185 D5 6 TS/MR LAW RED 7 ILIM/VSET
8 ISET
CE Q R11 10k + 10° STAT2 GND GND GND GND GND Design Notes: The BQ25185 is a lithium battery charger with dynamic power path management which makes it suitable for use with solar panels. SYS output is regulated and will be between 3.8V-4.5V- Input current limit of 1A (for both charging and powering system)
- Charge voltage set to 4.2V
- Disabled battery temperature monitoring (future version can connect TS/MR pin to NTC)
- Fast charge current set to 500mA
- Iq is 4uA in battery-only mode
- STAT2 open drain, low when charging. LED will light up while charging from USB Sheet: /Architecture/Battery Charger/ File: battery_charger.kicad_sch Title: Size: A4 Date: KiCad E.D.A. 8.0.6 ld: 6/10

Hall Switch Real Time Clock Pushbutton U1 € U5 DRV5032FC C1 +3V3 MCP7940N-xMNY 6р I2C_SCL♦ I2C_SDA♦ C3 100n Y1 C2 . C11 + —⊳WAKE_UP 32.768kHz 100n → GND GND GND GND 6р C4 GND Design Note: Design Notes: Open drain output20 Hz refresh rateIq is 1.3uA 12C address is 0x6F
 Iq is 0.925uA on battery backup
 Alarm output on MFP enabled in battery backup mode Sheet: /Architecture/Wakeup Sources/ File: wakeup_sources.kicad_sch Title: Size: A4 Date: Rev: KiCad E.D.A. 8.0.6 ld: 9/10

Raspberry Pi

Design Notes:

- Raspberry Pi is powered by 5V, onboard regulator supplies 3.3V to board
 I2C pull up to 3.3V only when Pi is powered
 Weak pull-downs on I2C to prevent floating when sleeping
 GPI026 is used for gpio-poweroff device tree overlay

NervesKey

Mounting Holes

Sheet: /Architecture/Raspberry Pi/ File: raspberry_pi.kicad_sch

Title:

Size: A4 Date: Rev: KiCad E.D.A. 8.0.6 ld: 10/10