微机原理与接口技术

存储控制器

华中科技大学 左冬红

存储控制器

EMC存储控制器

SRAM, Flash

MIG存储控制器

DRAM

AXI EMC存储控制器

存储器类型

同步/异步SRAM存储器

行/页访问模式Flash存储器

PSRAM (pseudo static random access memory) 伪随机静态存储器

一个EMC可连接四种不同类型存储器,每种类型存储器 为一个存储模块

EMC存储控制器引脚

其余信号根据存储芯片 类型确定是否有意义

示例

异步SRAM存储芯片62256设计一个64K×32b的AXI总线接口存储器,可支持8位、16位、32位不同位宽的数据访问,试设计存储器接口电路。

MIG存储器接口生成器

DDR3、DDR2 SDRAM、QDR II+ SRAM、RLDRAM II、 RLDRAM III, 以及LPDDR2 SDRAM等存储芯片的存储器接口

最多支持8个存储器接口

MIG逻辑结构

示例

DDR2 SDRAM存储芯片MT47H64M16引脚结构如图所示,它的容量为128MB,存储结构为8M×16b×8,即8个存储模块,16位数据宽度,每个存储模块8M个数据。共13位行地址,10位列地址,对外地址线13根。试设计MIG与该存储器之间的接口电路。

示例

DDR2 SDRAM存储芯片MT47H64M16引脚结构如图所示,它的容量为128MB,存储结构为8M×16b×8,即8个存储模块,16位数据宽度,每个存储模块8M个数据。共13位行地址,10位列地址,对外地址线13根。试设计MIG与该存储器之间的接口电路。

AXI总线地址	A _{26~24}	A _{23~11}	A _{10~1}	A_0
MT47H64M16存	块地址(BA _{9~0})	行地址(A _{12~0})	列地址(A _{9~0})	$dqs_{1\sim0}$
储芯片接口地址		,_ ,		

小结

- •EMC、MIG IP核设计存储器接口电路
 - •基于用户接口配置时序参数
 - •逻辑设计

下一讲:IO接口技术基础