初中部分

第六单元 碳及碳的氧化物

注:本单元的课题按照物质分类,和课本上的略有不同

课题1 碳单质

- 一、物理性质和用途
- 性质决定用途

物质	物理性质	用途
金刚石	自然界最硬、熔点高	切割
石墨	有滑腻感, 能导电	做润滑剂、做电极
木炭、活性炭	有吸附性	净化、吸附
炭黑		做墨
C_{60}		超导、润滑等

• 性质不同的原因: 原子的排列方式不同 (结构决定性质)

二、化学性质

- 常温下,碳的化学性质稳定
- 高温下,碳具有可燃性

。 完全燃烧: $C+O_2 \stackrel{\text{\tiny f.k.}}{\longrightarrow} CO_2$ (红光, 放热)

。 不完全燃烧: $2 \, \mathrm{C} + \mathrm{O}_2 \stackrel{\text{点燃}}{\longrightarrow} 2 \, \mathrm{CO}$

- 高温下,碳具有还原性
 - 。 $\mathrm{C} + 2\,\mathrm{CuO} \xrightarrow{\mathrm{All}} 2\,\mathrm{Cu} + \mathrm{CO}_2 \uparrow$ (黑色固体变为红色固体)

课题2 一氧化碳

一、物理性质

- 无色、无味的气体
- 密度略小于空气
- 难溶于水

二、化学性质

- 毒性 (⇒需有尾气处理)
 - 。 CO 极易与血红蛋白结合,导致缺氧
- 可燃性

$$\circ$$
 2 CO + O₂ $\stackrel{\text{i.m.}}{\longrightarrow}$ 2 CO₂ (蓝色火焰,放热)

- 还原性
 - \circ CO + CuO $\stackrel{\Delta}{\longrightarrow}$ Cu + CO $_2$ (黑色固体变为红色固体)
 - \circ 3 CO + Fe₂O₃ $\xrightarrow{\text{$\tilde{\mathsf{A}}$}}$ 2 Fe + 3 CO₂ (红色固体变为黑色固体)

课题3 二氧化碳

二氧化碳不能供给呼吸,在进入久未开启的菜窖或干涸的深井前,要先做灯火实验

一、物理性质

- 无色、无味的气体
- 密度大于空气
- 能溶于水

二、化学性质

- 不可燃、不助燃
- 能与水反应
 - \circ CO₂ + H₂O \longrightarrow H₂CO₃
 - 。 碳酸能使干燥石蕊试纸变红
 - \circ 碳酸不稳定,易分解为 H_2O 和 CO_2
- 能与石灰水反应
 - \circ CO₂ + Ca(OH)₂ \longrightarrow CaCO₃ ↓ + H₂O (澄清石灰水变浑浊)

三、用途

用途	所用性质
灭火	不可燃不助燃,密度大于空气
人工降雨	固体 CO_2 (干冰) 升华吸热
碳酸饮料	能溶于水,且能与水反应
气体肥料	CO_2 参加光合作用

四、制取

1. 工业制取

$${
m CaCO_3} \stackrel{{
m \ddot{a}}{
m \ddot{a}}}{\longrightarrow} {
m CaO} + {
m CO_2} \uparrow$$

2. 实验室制取

1. 原理: $CaCO_3 + 2HCl \longrightarrow CaCl_2 + H_2O + CO_2 \uparrow$

2. 药品: 大理石、稀盐酸

3. 装置

发生装置:长颈漏斗(添加液体)、锥形瓶 收集装置:集气瓶、玻璃片(向上排空气)

第七单元 燃料及其应用

课题1 燃烧与灭火

一、燃烧

- 1. 燃烧
 - 通常情况下,可燃物与助燃物 (通常为氧气) 发生的一种发光、放热的剧烈氧化反应
- 2. 燃烧的条件
 - 可燃物
 - 与氧气接触
 - 达到燃烧所需的最低温度 (着火点)

二、灭火

原理	方法
清除可燃物	关闭燃气阀门、隔离带等
隔绝氧气	盖上锅盖、灭火器等
降温至着火点下	用水扑灭

三、易燃物和易爆物

- 1. 爆炸
- 短时间内聚积大量的热,使气体的体积迅速膨胀而引起爆炸
- 2. 化学爆炸的条件
 - 有限空间
 - 急剧燃烧
- 3. 安全措施、有关图标

当心易燃物

当心爆炸物

当心氧化物

禁止烟火

禁止燃放鞭炮

禁止吸烟

禁止放易燃物

课题2 燃料的合理利用与开发

一、化学反应中的能量变化

- 放热反应
 - 。 燃烧、CO2与 H2 反应、金属与酸反应、缓慢氧化等
- 吸热反应
 - \circ C与 CO $_2$ 反应、氯化铵与氢氧化钡反应等

二、化石燃料

- 1. 概念
 - 由古代生物的遗骸经一系列变化形成的不可再生能源
- 2. 煤
 - 1. 主要成分: C
 - 2. 综合利用
 - 方式: 干馏 (化学变化) ——隔绝空气加强热
 - 产物: 焦炭、煤焦油、煤气
- 3. 石油
 - 1. 主要成分: C、H
 - 2. 综合利用
 - 。 方式: 分馏 (物理变化) ——利用石油中各成分的沸点不同
 - o 产物: 沥青、石蜡、润滑油、柴油、煤油、航空煤油、汽油、溶剂油
- 4. 天然气
 - 1. 主要成分: CH₄ (甲烷)
 - 2. 物理性质
 - 。 无色、无味的气体
 - 。 密度比空气小
 - 。 极难溶于水
 - 3. 化学性质
 - 可燃性 (燃烧前需验纯)
 - $CH_4 + 2O_2 \xrightarrow{\text{a.m.}} CO_2 + 2H_2O$ (淡蓝色火焰,放热)

三、燃料的充分燃烧

- 1. 条件
 - 有足够的空气
 - 燃料与空气有足够大的接触面
- 2. 不充分燃烧的危害
 - 降低燃料的利用率, 浪费资源
 - 污染空气

四、使用燃料对环境的影响

- 燃料中的杂质燃烧产生污染物
 - 。 煤燃烧排出的 SO_2 、 NO_2 导致酸雨
- 燃料燃烧不充分产生污染物
 - 。 C 不充分燃烧产生 CO

• 未燃烧的碳氢化合物及炭粒、尘粒等形成浮沉

五、能源的利用与开发

- 1. 乙醇
 - 1. 成分: C₂H₅OH
 - 2. 物理性质
 - 。 无色、特殊香味的液体
 - 。 密度比水小
 - 。 与水以任意比例互溶
 - 3. 化学性质
 - o 可燃性
 - $C_2H_5OH + 3O_2 \stackrel{\text{点燃}}{\longrightarrow} 3H_2O + 2CO_2$ (淡蓝色火焰,放热)
- 2. 氢气
 - 1. 物理性质
 - 。 无色、无味的气体
 - 。 相同状况下密度最小的气体
 - 。 难溶于水
 - 2. 化学性质
 - o 可燃性
 - $2\,\mathrm{H}_2 + \mathrm{O}_2 \stackrel{\mathrm{f.M.}}{\longrightarrow} 2\,\mathrm{H}_2\mathrm{O}$ (淡蓝色火焰,放热)
 - 。 还原性
 - $CuO + H_2 \xrightarrow{\Delta} Cu + H_2O$ (黑色固体变为红色固体)
 - 3. 制取
 - 。 原理: $Zn + H_2SO_4 \longrightarrow H_2 \uparrow + ZnSO_4$
 - o 药品: 锌粒、稀硫酸
 - o 装置
 - 发生装置: 启普发生器
 - 收集装置:集气瓶、玻璃片(向下排空气)/水槽、集气瓶(排水法)
- 3. 其他新能源
 - 太阳能、核能、风能、地热能、生物质能、水能等

第八单元 金属材料

课题1 金属材料

- 一、金属材料的发展史
- 商朝,开始使用青铜器
- 春秋时期,铁
- 100 多年前, 铝
- 现在年产量:铁>铝>铜

二、金属的物理性质

1. 金属的物理性质

共性 (通常情况下)	特例
常温下为固体	汞为液态
银白色,有金属光泽	铜为紫红色,金为黄色
熔沸点较高	
密度和硬度较大	
良好的导电、导热性	
良好的延展性	

2. "金属之最"

• 地壳中含量最高:铝(Al)

• 人体中含量最高: 钙 (Ca)

• 世界年产量最高:铁 (Fe)

• 导电导热性最好:银(Ag)

• 密度最大: 锇 (Os) 密度最小: 锂 (Li)

• 熔点最高:钨(W)熔点最低:汞(Hg)

• 硬度最大: 铬 (Cr)

三、合金

1. 合金

- 在金属中加热熔合金属或非金属,形成的具有金属特性的物质
- 合金是混合物,各物质以单质形式存在
- 2. 性质(相较于原来的金属)
 - 熔点低
 - 强度、硬度大
 - 抗腐蚀性能强
- 3. 常见的合金
 - 生铁: 含碳 $2\%\sim4.3\%$; 机械性能硬而脆、无韧性、可铸不可锻
 - 钢: 含碳 $0.03\% \sim 2\%$; 坚硬、强度高、韧性好、易加工
 - 铝合金:密度小、硬度大、抗腐蚀性强
 - 钛合金:熔点高、密度小、可塑性好、易于加工、强度大、抗腐蚀性能非常好

课题2 金属的化学性质

一、与氧气反应

- 镁、铝在常温下就能与氧气反应
 - $\circ 2 \operatorname{Mg} + \operatorname{O}_2 \longrightarrow 2 \operatorname{MgO}$
 - \circ 4 Al + 3 O₂ \longrightarrow 2 Al₂O₃
 - 氧化铝为一层致密的薄膜, 防止铝被进一步氧化
- 铁、铜在常温下几乎不与氧气反应,但在高温时能与氧气反应
 - $\circ \ \ 3\operatorname{Fe} + 2\operatorname{O}_2 \xrightarrow{\text{\not h. M.}} \operatorname{Fe}_3\operatorname{O}_4$
 - $\circ \ 2\operatorname{Cu} + \operatorname{O}_2 \xrightarrow{\Delta} 2\operatorname{CuO}$

• 金即使在高温时也不与氧气反应

二、与酸(盐酸/稀硫酸)反应

与酸反应的物质	反应的化学方程式	反应现象
镁	$egin{aligned} \operatorname{Mg} + 2 \operatorname{HCl} &\longrightarrow \operatorname{MgCl}_2 + \operatorname{H}_2 \uparrow \\ \operatorname{Mg} + \operatorname{H}_2 \operatorname{SO}_4 &\longrightarrow \operatorname{MgSO}_4 + \operatorname{H}_2 \uparrow \end{aligned}$	固体变少,迅速产生大量气泡,放热
锌	$ ext{Zn} + 2 ext{HCl} \longrightarrow ext{ZnCl}_2 + ext{H}_2 \uparrow \\ ext{Zn} + ext{H}_2 ext{SO}_4 \longrightarrow ext{ZnSO}_4 + ext{H}_2 \uparrow$	固体变少,产生大量气泡
铁	$\mathrm{Fe} + 2\mathrm{HCl} \longrightarrow \mathrm{FeCl}_2 + \mathrm{H}_2 \uparrow \ \mathrm{Fe} + \mathrm{H}_2\mathrm{SO}_4 \longrightarrow \mathrm{FeSO}_4 + \mathrm{H}_2 \uparrow$	固体变少,产生少量气泡, 溶液逐渐由无色变为浅绿色
铜	不发生反应	无明显现象

• 结论: Mg、Zn、Fe 能置换出盐酸里的氢,Cu 不能; 金属活动性: Mg > Zn > Fe > Cu 三、与 盐溶液 反应

1. 常见反应

反应的化学方程式	反应现象
$\mathrm{Fe} + \mathrm{CuSO}_4 \longrightarrow \mathrm{Cu} + \mathrm{FeSO}_4$	铁丝表面有红色固体析出,溶液由蓝色变为浅绿色
$\mathrm{Cu} + 2\mathrm{AgNO_3} \longrightarrow \mathrm{Cu(NO_3)_2} + 2\mathrm{Ag}$	铜丝表面有银白色固体析出,溶液由无色变为蓝色
$2\mathrm{Al} + 3\mathrm{CuSO_4} \longrightarrow 3\mathrm{Cu} + \mathrm{Al_2(SO_4)_3}$	铝丝表面有红色固体析出,溶液由蓝色变为无色
不发生反应	无明显现象

2. 特殊颜色

物质	颜色
$\overset{+2}{ ext{Cu}}$ 盐溶液	蓝色
+2 Fe 盐溶液	浅绿色
+3 Fe 盐溶液	黄色

四、金属活动性

钾	钙	钠	镁	铝	锌	铁	锡	铅	氢	铜	汞	银	铂	金
K	Ca	Na	Mg	Al	Zn	Fe	Sn	Pb	Н	Cu	Hg	Ag	Pt	Au

- 金属的位置越靠前,它的活动性就越强
- 位于氢前面的金属能置换出盐酸、稀硫酸中的氢(反应剧烈程度不同,活动性强的剧烈)
- 位于前面的金属能把位于后面的金属从它们的盐溶液中置换出来(反应剧烈程度相同)
- 当一种金属单质同时与多种金属的盐溶液发生反应时,推断盐溶液中金属活动性最弱的先发生反应

五、置换反应

• 由一种单质与一种化合物反应, 生成另一种单质和另一种化合物的反应

课题3 金属资源的利用与保护

一、金属的存在形式

• 单质 (游离态): 极少数很不活泼的金属, 如金、银

• 化合物 (化合态): 大多数金属

。 赤铁矿: ${\rm Fe_2O_3}$; 磁铁矿: ${\rm Fe_3O_4}$; 菱铁矿: ${\rm FeCO_3}$; 铝土矿: ${\rm Al_2O_3}$; 黄铜矿:

CuFeS₂; 辉铜矿: Cu₂S

二、铁的冶炼

1. 实验室还原铁

图 8-20 一氧化碳还原氧化铁

1. 原理: $\operatorname{Fe_2O_3} + 3\operatorname{CO} \xrightarrow{\operatorname{\overline{\mathsf{a}}}} 2\operatorname{Fe} + 3\operatorname{CO}_2$

2. 装置:玻璃管 (放 ${\rm Fe_2O_3}$) 、导管 (通 ${\rm CO}$,导出 ${\rm CO_2}$) ,澄清石灰水(验证是否有 ${\rm CO_2}$ 生

成)、酒精喷灯(加热)、酒精灯(点燃 CO, 尾气处理)

3. 步骤

- 1. 先通 CO,再点燃尾气处理的酒精灯(防止爆炸)、再点燃酒精喷灯(防止爆炸)
- 2. 先熄灭酒精喷灯,再停止通 CO (防止石灰水倒吸、铁粉再次被氧化)
- 4. 现象:红色固体变黑,澄清石灰水变浑浊

2. 工业炼铁

图 8-21 炼铁高炉及炉内化学反应过程示意图

1. 原料:铁矿石、焦炭、石灰石、空气

。 焦炭: 提供 CO 和热量

。 石灰石:将矿石中的 SiO_2 转化为炉渣

2. 设备: 高炉

3. 原理

$$\circ \ CO_2 + C \xrightarrow{\bar{\textbf{a}} \underline{\textbf{a}}} 2 \, CO$$

$$\circ \ \operatorname{Fe}_2\operatorname{O}_3 + 3\operatorname{CO} \xrightarrow{\operatorname{\underline{\mathsf{R}}} \operatorname{\underline{\mathsf{H}}}} 2\operatorname{Fe} + 3\operatorname{CO}_2$$

三、金属的腐蚀与防护

- 1. 铁制品生锈的条件——实验
 - 控制变量,对比试验

实验编号	有无 〇 ₂	有无 H ₂ O	现象
1	有	有	生锈
2	无	有	不生锈
3	有	无	不生锈

- n 个变量, n+1次实验
 - \circ 1,2 ⇒ 需要 O_2
 - \circ 1,3 \Rightarrow 需要 H_2O

- 2. 金属锈蚀的条件
 - 有能发生反应的物质,反应物互相接触
 - 生成物不会对反应起阻碍作用
- 3. 防止金属锈蚀的方法
 - 保持表面干燥、清洁
 - 在表面覆盖保护层(如刷漆、涂油、镀耐腐蚀的金属)
 - 改变其内部结构 (如制成合金)

四、金属资源保护

- 1. 必要性
 - 金属资源储量有限,且不能再生
 - 废弃金属的随意丢弃不仅会浪费金属,还会污染环境
- 2. 方法
 - 防止金属的腐蚀
 - 回收利用金属
 - 合理开采矿物
 - 寻找金属的代用品

第九单元 溶液

课题1 溶液的形成

一、溶液

- 1. 概念
 - 一种或几种物质分散到另一种物质里,形成均一的、稳定的混合物
- 2. 组成
 - 溶质:被溶解的物质 —— 气体、液体、固体
 - 溶剂: 能溶解其他物质的物质 —— 通常是水, 一般还有酒精、汽油
- 3. 溶液、溶质、溶剂的关系
 - $m_{\hat{R}\hat{n}} = m_{\hat{R}\hat{n}} + m_{\hat{R}\hat{n}}$
 - $V_{\mbox{\scriptsize Pa}\mbox{\scriptsize κ}} < V_{\mbox{\scriptsize Pa}\mbox{\scriptsize δ}} + V_{\mbox{\scriptsize Pa}\mbox{\scriptsize δ}}$
- 4. 溶质与溶剂的判断

体系	溶剂
固/气+液	液体
液+液(有水)	水
液+液 (无水)	量多的液体

5. 形成

• 在溶剂分子的作用下,溶质的分子(或离子)均匀分散到溶剂分子之间

二、溶解时的温度变化

1. 例子

• 无明显现象: NaCl

• 吸热: NH₄NO₃ (硝酸铵)

• 放热: NaOH

2. 原因(拓展)

• 吸热:维持晶体结构的作用力被打断,分子或离子向溶液中扩散,这个过程消耗能量(解离能)

• 放热:溶质中的分子或离子跟溶剂分子结合,这个过程放出能量(溶剂化能)

三、乳化现象

类别	分散质	特征
溶液	分子或离子	均一、稳定
乳浊液	不溶性的小液滴	不均一、不稳定
悬浊液	不溶性的固体小颗粒	不均一、不稳定

• 乳化作用:将不溶性大油珠分散成细小的液滴,而不聚集成油珠,乳油液稳定性增强

• 乳化剂:能防止小液滴聚集的物质,具有乳化作用

课题2 溶解度

一、饱和溶液与不饱和溶液

1. 定义

- 饱和溶液:在一定的温度下,向一定量的溶剂中加入某种物质,当溶质不能继续溶解时,所得到的溶液叫做该溶质的饱和溶液
- 不饱和溶液:在一定的温度下,向一定量的溶剂中加入某种物质,当溶质还能继续溶解时,所得到的溶液叫做该溶质的不饱和溶液

2. 判断

- 看有无不溶溶质
- 继续加少量该溶质,看是否能溶解

3. 溶液的互相转化

- 不饱和溶液 → 饱和溶液:蒸发溶剂、改变温度 (一般降温)、增加溶质
- 饱和溶液 → 不饱和溶液:增加溶剂、改变温度(一般升温)
- 例外: Ca(OH)₂ 温度越高,溶解越少

4. 结晶

• 结晶:溶液中的溶质以晶体形式析出的过程

方式

蒸发结晶:海水晒盐降温结晶: KNO₃

5. 溶解性

• 物质溶解在溶剂中的能力

• 内因:溶质的种类

• 外因:溶剂的种类、温度

二、固体溶解度

- 1. 定义
 - 在一定温度下,某固态物质在 100g 溶剂里达到<mark>饱和</mark>状态时所溶解的质量(单位: g)
- 2. 溶解度与溶解性的关系

溶解性	易溶	可溶	微溶	难溶
溶解度/g (20℃)	> 10g	> 1g	< 1g	< 0.01g

3. 受温度的影响

- 大多数固体物质的溶解度随温度的升高而增大,如 KNO₃
- 少数固体物质的溶解度受温度的影响较小,如 NaCl
- 极少数固体物质的溶解度随温度的升高而减小,如 ${
 m Ca}({
 m OH})_2$

4. 应用

• 判断选用什么方式进行结晶

降温结晶: 先加热溶液,蒸发溶剂成饱和溶液,再降低热饱和溶液的温度

。 蒸发结晶: 持续蒸发溶剂

5. 溶解度曲线包含的信息

• 曲线: 曲线越陡, 溶解度受温度影响越大

• 点:某物质在该温度下的溶解度

• 交点: 两种物质在该温度下的溶解度相同

• 平移:溶液的转化

三、气体的溶解度

- 1. 定义
 - 在压强为 101KPa 和一定温度时,气体溶解度在 1体积水里达到饱和状态时的气体体积
- 2. 影响气体溶解性的因素
 - 温度↑,溶解性↓
 - 压强↑,溶解性↑

课题3 溶液的浓度

- 一、溶质的质量分数
- 1. 感知溶液的浓与稀

【无色 {溶剂质量相同,溶质越多,溶液越浓(未饱和时) 溶剂质量相同,溶剂越少,溶液越浓(未饱和时) 有色 颜色越深,溶液越浓 2. 溶质的质量分数

$$ullet c\% = rac{\mathrm{m}_{\mathrm{lpha}\mathrm{ff}}}{\mathrm{m}_{\mathrm{lpha}\mathrm{ft}}} imes 100\% = rac{\mathrm{m}_{\mathrm{lpha}\mathrm{ff}}}{\mathrm{m}_{\mathrm{lpha}\mathrm{ft}} + \mathrm{m}_{\mathrm{lpha}\mathrm{fl}}} imes 100\%$$

3. 饱和溶液中的溶质的质量分数

$$\bullet \ \ c\% = \frac{S}{S + 100 \mathrm{g}} \times 100\%$$

二、配置溶液

1. 实验原理

$$ullet c\% = rac{\mathrm{m}_{\mathrm{lpha}_{\mathrm{f f eta}}}}{\mathrm{m}_{\mathrm{lpha}_{\mathrm{f f eta}}}} imes 100\% = rac{\mathrm{m}_{\mathrm{lpha}_{\mathrm{f eta}}}}{\mathrm{m}_{\mathrm{lpha}_{\mathrm{f eta}}} + \mathrm{m}_{\mathrm{lpha}_{\mathrm{f eta}}}} imes 100\%$$

2. 实验步骤

1. 计算:想要的 $c\%, \mathrm{m}_{\mathrm{RR}} \Rightarrow \mathrm{m}_{\mathrm{RR}}, \mathrm{m}_{\mathrm{RR}}$

2. 称量,量取:用天平称量溶质,量筒量取溶剂,加入烧杯中(先固后液)

3. 溶解:用玻璃棒不断搅拌,加快溶解

4. 装瓶贴标签

3. 误差分析

• $\mathrm{m}_{\mathrm{ar{R}}}\downarrow \;\Rightarrow\; c\downarrow$

• $\mathbf{m}_{\mathrm{RM}} \downarrow \Rightarrow c \uparrow$

第十单元 酸和碱

课题1 常见的酸和碱

一、酸和碱

1. 酸

• 常见: 盐酸 HCl, 硫酸 H₂SO₄, 硝酸 HNO₃, 碳酸 H₂CO₃, 醋酸 CH₃COOH

● 组成: H⁺ + 酸根 (阳离子只有 H⁺)

9 福

• 常见: 氢氧化钠 NaOH,氢氧化钙 Ca(OH)2,氢氧化钙 KOH、氢氧化钡 Ba(OH)2、二水合 氨 NH $_3$ · H $_2$ O

• 组成: 金属/铵根离子 + OH-

二、酸碱指示剂

1. 概念

• 能跟酸或碱的溶液起作用而显示不同颜色的物质

2. 常见指示剂及其变色规律

指示剂	酸性溶液	中性溶液	碱性溶液
紫色石蕊溶液	红色	紫色	蓝色
无色酚酞溶液	无色	无色	红色

三、溶液的导电性

• 酸和碱溶液均可导电,因为有带电微粒(阴、阳离子)

四、常见的酸

- 1. 浓盐酸 (HCl)
 - 1. 成分
 - 。 氯化氢 (HCl) 气体的水溶液
 - 2. 物理性质
 - 。 无色、有刺激性气味的液体
 - 具有挥发性 (稀盐酸没有)
 - 敞口放置在空气中,会挥发出 HCl 气体,与水蒸气结合结合成盐酸小液滴,瓶口出现白霉
 - 溶液的质量下降,溶质的质量分数下降
 - 需密闭保存
 - 3. 用途
 - 。 用于金属表面除锈等
 - 用于制造药物等
 - 人体胃液中含有盐酸,可以帮助消化
- 2. 浓硫酸 (H₂SO₄)
 - 1. 成分
 - 浓度为 98% 的 H_2SO_4 溶液
 - 2. 物理性质
 - 。 无色的粘稠油状液体
 - 具有吸水性(稀硫酸没有)
 - 敞口放置在空气中,会吸收空气中的水蒸气
 - 溶液的质量上升,溶质的质量分数下降
 - 需密封保存
 - 3. 化学性质
 - 具有脱水性 (腐蚀性)
 - 能使纸、布、木材、皮肤等有机物脱水炭化
 - 若不慎将浓硫酸沾到皮肤或衣服上,应立即用大量水冲洗,然后再涂上 $3\%\sim5\%$ 的 ${
 m NaHCO_3}$ 溶液
 - 4. 用途
 - 用于生产化肥、农药、火药、染料以及冶炼金属、精炼石油、金属除锈等
 - 。 常用做干燥剂
 - 不能干燥碱性碱性气体
 - 5. 稀释
 - o 现象: 稀释时会放大量热
 - 操作:应将浓硫酸沿着烧杯的内壁慢慢注入水中,并用玻璃棒不断搅拌,在烧杯中进行

五、酸的化学性质

- 1. 与酸碱指示剂作用
 - 。 紫色石蕊遇酸变红
 - 。 无色酚酞遇酸不变色
- 2. 与氢前金属反应生成盐和氧气(反应条件:金属活动性顺序表中氢前的金属与盐酸、稀硫酸)
 - \circ Fe + 2 HCl \longrightarrow FeCl₂ + H₂ \uparrow

- $\circ \ Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2 \uparrow$
- 3. 与金属氧化物反应生成盐和水
 - 。 $Fe_2O_3+6HCl\longrightarrow 2FeCl_3+3H_2O$ (铁钉逐渐溶解,溶液由无色变黄)
 - $\circ \ \mathrm{CuO} + 2\,\mathrm{HCl} \longrightarrow \mathrm{CuCl}_2 + \mathrm{H}_2\mathrm{O}$
 - $\circ \ \mathrm{CuO} + \mathrm{H_2SO_4} \longrightarrow \mathrm{CuSO_4} + \mathrm{H_2O}$
- 4. 与碳酸盐反应生成盐、水和二氧化碳
 - \circ CaCO₃ + 2 HCl \longrightarrow CaCl₂ + H₂O + CO₂ \uparrow
 - $\circ \ \operatorname{Na_2CO_3} + 2\operatorname{HCl} \longrightarrow 2\operatorname{NaCl} + \operatorname{H_2O} + \operatorname{CO_2} \uparrow$
 - \circ CaCO₃ + H₂SO₄ \longrightarrow CaSO₄ + H₂O + CO₂ \uparrow
 - $\circ \operatorname{Na_2CO_3} + \operatorname{H_2SO_4} \longrightarrow \operatorname{Na_2SO_4} + \operatorname{H_2O} + \operatorname{CO_2} \uparrow$

六、常见的碱

- 1. 氢氧化钠 (NaOH)
 - 1. 俗名
 - 烧碱、火碱、苛性钠
 - 2. 物理性质
 - 。 白色片状固体
 - 。 易溶于水,溶于水放热
 - 。 易吸收空气中的水分而潮解
 - 3. 化学性质
 - 。 具有很强的腐蚀性
 - 称量时需盛放在玻璃器皿中
 - 如果不慎将氢氧化钠沾到皮肤上,要立即用大量水冲洗,再涂上硼酸 (H₂BO₃) 溶液
 - 4. 用途
 - 广泛应用于肥皂、石油、造纸、纺织、印染等工业
 - 。 去除油污
 - 。 常用作干燥剂
 - 不能干燥酸性气体
- 2. 氢氧化钙 (Ca(OH)₂)
 - 1. 俗名
 - 。 消石灰、熟石灰
 - 。 (其水溶液是澄清石灰水、 当石灰水中存在较多未溶解的固体时, 称为石灰乳、石灰浆)
 - 2. 物理性质
 - 。 白色粉末状固体
 - 。 微溶于水,溶解度随温度的升高而降低
 - 3. 用途
 - 。 配置农药波尔多液
 - 。 树木防冻防虫
 - 。 改良酸性土壤
 - 。 用作建筑材料
 - 4. 制取
 - \circ CaO + H₂O \longrightarrow Ca(OH)₂ (放热)

七、碱的化学性质

- 1. 与酸碱指示剂作用
 - 。 紫色石蕊遇碱变蓝
 - 。 无色酚酞遇碱变红
- 2. 与非金属氧化物反应生成盐和水
 - \circ CO₂ + Ca(OH)₂ \longrightarrow CaCO₃ ↓ + H₂O (澄清石灰水变浑浊)
 - 用于检验 CO₂
 - 氢氧化钙能与空气中的 ${
 m CO}_2$ 反应而变质,所以氢氧化钙要密封保存
 - \circ CO₂ + 2NaOH \longrightarrow Na₂CO₃ + H₂O (无明显现象)
 - 检验反应发生: $Na_2CO_3 + 2HCl \longrightarrow 2NaCl + H_2O + CO_2 \uparrow$ (产生气泡)
 - 用于吸收 CO₂
 - 氢氧化钠固体不仅易吸收空气中的水分,还可以吸收空气中的 CO_2 而变质,所以氢氧化 钠必须密封保存
 - $\circ \operatorname{SO}_2 + \operatorname{Ca}(\operatorname{OH})_2 \longrightarrow \operatorname{CaSO}_3 + \operatorname{H}_2\operatorname{O}$
 - $\circ \ \operatorname{SO}_2 + 2\operatorname{NaOH} \longrightarrow \operatorname{Na}_2\operatorname{SO}_3 + \operatorname{H}_2\operatorname{O}$
 - $\circ \ \operatorname{SO}_3 + 2\operatorname{NaOH} \longrightarrow \operatorname{Na_2SO_4} + \operatorname{H_2O}$

课题2 酸碱中和反应

一、酸碱中和反应

- 1. 实验
 - 酸滴碱,验证 NaOH 的消耗
 - NaOH → 数
 → 変红 → 透滴加盐酸
 → 恰好由红色变为无色
- 2. 定义
 - 酸和碱反应生成盐和水
- 3. 微观实质
 - $H^+ + OH^- \longrightarrow H_2O$
- 4. 能量变化
 - 放热
- 5. 应用
 - 农业: 用熟石灰改良酸性土壤
 - 工业: 处理酸性或碱性的工业废水
 - 医药:用含碱性药物 (氢氧化铝)治疗胃酸过多
 - 生活:蚊虫叮咬涂稀氨水或肥皂水
- 6. 举例
 - $NaOH + HCl \longrightarrow NaCl + H_2O$
 - $\bullet \ \ 2\,NaOH + H_2SO_4 \longrightarrow Na_2SO_4 + 2\,H_2O$
 - $Ca(OH)_2 + 2HCl \longrightarrow CaCl_2 + 2H_2O$
 - $Ca(OH)_2 + H_2SO_4 \longrightarrow CaSO_4 + 2H_2O$

二、溶液酸碱度的表示法——pH

- 1. pH 值与酸碱度对应
 - 范围: 通常 0 ~ 14
 - 酸性溶液: < 7 (越小酸性越强)
 - 中性溶液: = 7
 - 碱性溶液: > 7 (越大碱性越强)
- 2. 测定方法
 - 1. pH 试纸测定法
 - 不润湿, 不伸入待测液
 - 。 玻璃棒蘸取试液到试纸
 - 2. pH 计

第十一单元 盐 化肥

课题1 生活中常见的盐

- 一、盐
- 一类组成里含有金属离子和酸根离子的化合物
- 二、常见的盐
- 1. 氯化钠 (NaCl)
 - 俗名: 食盐
 - 物理性质: 白色固体, 易溶于水, 有咸味
 - 化学性质: 水溶液呈中性
 - 用途: 调味品、生理盐水、融雪剂等
 - 粗盐的精制:溶解、过滤、蒸发
 - 溶解:玻璃棒搅拌,加快溶解
 - 过滤:玻璃棒引流,防止飞溅
 - 蒸发:蒸发皿;玻璃棒搅拌,均匀受热,防止飞溅;较多固体析出时,停止加热,余热烘干,防止飞溅
- 2. 碳酸钠 (Na₂CO₃)
 - 俗名: 纯碱、苏打
 - 物理性质: 白色晶体, 风化成粉末, 易溶于水
 - 化学性质: 水溶液呈碱性
 - 用途:玻璃、造纸、纺织、洗涤、印染
- 3. 碳酸氢钠(NaHCO₃)
 - 俗名: 小苏打
 - 物理性质: 白色粉末, 能溶于水
 - 化学性质: 水溶液有弱碱性, 受热易分解
 - $\circ \ \ 2\,\mathrm{NaHCO_3} \xrightarrow{\Delta} \mathrm{Na_2CO_3} + \mathrm{H_2O} + \mathrm{CO_2} \uparrow$
 - 用途:治疗胃酸过多、做发酵粉

4. 碳酸钙 (CaCO₃)

- 大理石、石灰石的主要成分
- 物理性质: 多为灰白色矿物, 纯净物为白色矿物; 不溶于水, 能溶于酸
- 用途: 建筑材料、补钙剂

三、碳酸盐的化学性质

- 1. 与盐酸反应
 - 。 $Na_2CO_3+2HCl\longrightarrow 2NaCl+H_2O+CO_2$ ↑ (产生大量气泡,固体很快溶解,澄清石灰水变浑浊)
 - $NaHCO_3 + HCl \longrightarrow NaCl + H_2O + CO_2 ↑$ (现象同上)
- 2. 与澄清石灰水反应
 - 。 $Na_2CO_3 + Ca(OH)_2$ → $CaCO_3 \downarrow + 2 NaOH$ (澄清石灰水变浑浊)
 - 纯碱制烧碱

四、复分解反应

- 1. 定义
 - 两种化合物互相交换成分,生成另外两种化合物的反应
- 2. 表达式
 - $AB + CD \rightarrow AD + CB$
- 3. 性质
 - 化合价不变
- 4. 条件
 - 两种化合物互相交换成分,有沉淀、气体或水生成

部分酸、碱和盐的溶解性表(室温)

阳离子	OH-	NO ₃	Cl ⁻	SO ₄ ²⁻	CO ₃ ²⁻
H^{+}		溶、挥	溶、挥	溶	溶、挥
NH ₄ ⁺	溶、挥	溶	溶	溶	溶
\mathbf{K}^{+}	溶	溶	溶	溶	溶
Na ⁺	溶	溶	溶	溶	溶
Ba ²⁺	溶	溶	溶	不	不
Ca ²⁺	微	溶	溶	微	不
Mg ²⁺	不	溶	溶	溶	微
Al³+	不	溶	溶	溶	_
Mn ²⁺	不	溶	溶	溶	不
Zn ²⁺	不	溶	溶	溶	不
Fe ²⁺	不	溶	溶	溶	不
Fe ³⁺	不	溶	溶	溶	_
Cu ²⁺	不	溶	溶	溶	_
Ag^+	_	溶	不	微	不

说明:"溶"表示那种物质可溶于水,"不"表示不溶于水,"微"表示微溶于水, "挥"表示挥发性,"一"表示那种物质不存在或遇到水就分解了。

(附表: 部分酸、碱和盐的溶解性表 (室温), 人教版化学书 P114)

常见沉淀

- 五白: CaCO₃, BaSO₄, BaCO₃, AgCl, Mg(OH)₂
 AgCl, BaSO₄ 不溶于硝酸
- 一红: Fe(OH)₃
 一蓝: Cu(OH)₂
- 5. 实质
 - 离子相互结合成水、气体或沉淀等物质的过程

五、实验:粗盐的精制

1. 粗盐成分及其转化

粗盐
$$\begin{cases} \text{杂质} \left\{ \begin{matrix} \text{难溶性} \\ \text{可溶性: } CaCl_2, MgCl_2, Na_2SO_4 \end{matrix} \right. \end{cases}$$

- $CaCl_2 + Na_2CO_3 \longrightarrow CaCO_3 \downarrow + 2 NaCl$
- $MgCl_2 + 2 NaOH \longrightarrow Mg(OH)_2 \downarrow + 2 NaCl$
- $Na_2SO_4 + BaCl_2 \longrightarrow BaSO_4 \downarrow + 2 NaCl$
- $BaCl_2 + Na_2CO_3 \longrightarrow BaCO_3 \downarrow + 2 NaCl$
- $Na_2CO_3 + 2HCl \longrightarrow H_2O + CO_2 \uparrow + 2NaCl$
- $NaOH + HCl \longrightarrow H_2O + NaCl$

2. 完整过程

后面过滤可以合并

课题2 化学肥料

一、化肥

1. 分类

氮肥: 含N, 如 CO(NH₂)₂
磷肥: 含P, 如 Ca₃(PO₄)₂
钾肥: 含K, 如 K₂SO₄

• 复合肥:同时含有两种及以上营养元素

2. 各类肥料的主要作用

♀ Tip

排除氮肥、钾肥,剩下的都是磷肥,主要记氮肥、钾肥的作用部位

肥料类型	主要作用部位	主要作用	缺乏症
氮肥	p +	促进植物茎、叶生长茂盛,叶色浓绿	叶片发黄
磷肥	果、根	促进植物根系发达、穗粒增多,饱满	生长迟缓,产量降低,根系不发达
钾肥	茎	促使作物生长健壮、茎秆粗硬, 抗 倒伏	叶尖发黄,易倒伏

3. 合理施用农药、化肥

二、化肥的鉴别

- $Ca(OH)_2 + 2NH_4Cl \longrightarrow CaCl + 2NH_3 \uparrow + 2H_2O$
- 铵态氮肥不能和碱性物质混用

第十二单元 化学与生活

课题1 人类重要的营养物质

六大基本营养素:蛋白质、糖类、油脂、维生素、无机盐、水

一、能源物质

化学好像没这么分类,从生物那抄过来的 (bushi

1. 蛋白质

功能:

- 构成细胞的基本物质, 机体生长及修补受损组织的主要原料
- 重要的营养物质,成人每天需摄取 $60\sim70\mathrm{g}$

构成: 由多种氨基酸(如甘氨酸、丙氨酸等)构成的极为复杂的化合物

存在:

- 动物肌肉、皮肤、毛发、蹄、角、蛋清等的主要成分
- 植物种子(如大豆、花生)

代谢: (渲染问题在其它编辑器应该可以解决)

变性(不可逆):破坏蛋白质的结构,使其变质

• 物理因素: 高温、紫外线等

• 化学因素: 强酸、强碱、甲醛、重金属盐等

• 应用:用甲醛水溶液(福尔马林)制作动物标本,使标本长期保存

常见蛋白质:

• 血红蛋白

构成: 血红素 (含 Fe²⁺)、蛋白质

○ 作用: O₂, CO₂ 的载体

 \circ 中毒:血红蛋白与 CO 结合能力比与 O_2 结合能力强 $200\sim300$ 倍,导致人体缺氧窒息而死

• 酶:生物催化剂,具有高效性、选择性、专一性

2. 糖类

功能:生命活动的主要供能物质 $(60\% \sim 70\%)$

组成:由 C, H, O 三种元素组成(又叫做碳水化合物)

常见糖类:

• 淀粉: (C₆H₁₀O₅)_n

存在:植物种子或块茎中(如稻、麦、玉米、马铃薯等)

$$\circ$$
 $(C_6H_{10}O_5)n \xrightarrow{m} C_6H_{12}O_6 \xrightarrow{\begin{subarray}{c} \begin{subarray}{c} \be$

• 葡萄糖: C₆H₁₂O₆

。 呼吸作用: $C_6H_{12}O_6+6\,O_2\stackrel{\text{fi}}{\longrightarrow}6\,CO_2+6\,H_2O$,放出能量,供机体活动和维持体温需要

。 光合作用:
$$6\,\mathrm{CO}_2 + 6\,\mathrm{H}_2\mathrm{O} \xrightarrow{\text{叶绿素}} \mathrm{C}_6\mathrm{H}_{12}\mathrm{O}_6 + 6\,\mathrm{O}_2$$

• 蔗糖: C₁₂H₂₂O₁₁

· 存在:某些植物 (如甘蔗、甜菜)

○ 白糖、红糖、冰糖中的主要成分

3. 油脂

功能: 重要的营养物质,提供大量能量 $(20\% \sim 25\%)$,每日摄入 $50\mathrm{g} \sim 60\mathrm{g}$

• 人体内储存约占质量 $10\%\sim 20\%$ 的脂肪,是维持生命活动的备用能源

存在: 花生油、豆油、菜子油、牛油、奶油

分类:

植物油脂:油动物油脂:脂肪

二、非能源物质

1. 维生素

功能:调节新陈代谢、预防疾病、维持身体健康

缺 V_A: 夜盲症; 缺 V_C: 坏血病

存在(多数在人体内不能直接合成,需从食物摄取):蔬菜、水果、鱼类、种子食物、动物肝脏、蛋类、牛奶、鱼肝油

课题2 化学元素与人体健康

一、常量元素

1. 钙

分布: 99% 在骨骼、牙齿中,成人体内约含钙 1.2 kg

功能: 使得骨骼和牙齿具有坚硬的结构支架

来源:奶、奶制品、绿色蔬菜、水产品、肉类、豆类

摄入量异常:

• 过多:结石、骨骼变粗

• 过少: 青少年佝偻病、发育不良; 老年人骨质疏松, 容易骨折

2. 纳和钾

分布:

• $\mathrm{Na^+}$ 存在于细胞外液,人体内含钠 $\mathrm{80g} \sim 120\mathrm{g}$

• K⁺ 存在于细胞内液,成人每千克含钾约 2g

功能: 维持人体内的水分、维持体液恒定的 pH

二、微量元素

1. 必需元素

元素	对人体的作用	摄入量过高、过低对人体健康的影响
铁	血红蛋白的成分,帮助氧气的运 输	少: 贫血
锌	影响人体发育	少: 食欲不振、生长迟缓、发育不良
硒	有防癌、抗癌作用	少:表皮角质化、癌症 多:中毒

元素	对人体的作用	摄入量过高、过低对人体健康的影响
碘	甲状腺激素的中药成分	少:甲状腺肿大;幼儿会影响生长发育,造成思维迟钝 9:甲状腺肿大
氟	能防治龋齿	少: 龋齿 多: 氟斑牙、氟骨病

2. 有害元素

• 汞 (Hg)、铅 (Pb)、镉 (Cd)等

课题3 有机合成材料

一、有机化合物

- 1. 化合物的分类
 - 无机化合物:不含碳的化合物
 - 有机化合物 (有机物) : 含碳的化合物 (不包括 ${
 m CO,CO_2}$ 和一些碳酸盐)
- 2. 有机物数目庞大的原因
 - 原子的排列方式不同
- 3. 有机物的分类
 - 根据相对分子质量
 - 有机小分子化合物: CH₄, C₂H₅OH, CH₃COOH, C₆H₁₂O₆ 等
 - 有机高分子化合物 (聚合物): 淀粉、蛋白质等

二、 有机合成材料

- 1. 有机高分子材料
 - 概念:用有机高分子化合物制成的材料
 - 分类:
 - 。 天然有机高分子材料:棉花、羊毛、蚕丝、天然橡胶等
 - 。 合成有机高分子材料 (合成材料) : 塑料、合成纤维 (涤纶、绵纶、晴纶) 、合成橡胶

2. 不同结构高分子材料的性质

- 链状: 热塑性, 如聚乙烯塑料
 - 。 加热时熔化,冷却后变成固体,加热后又可以熔化
- 网状: 热固性, 如酚醛塑料、脲醛塑料
 - 。 一经加工成型, 受热也不再熔化

3. 鉴别

- 聚乙烯塑料与聚氯乙烯塑料塑料: 点燃, 有刺激性气味的为聚氯乙烯塑料
- 羊毛线与合成纤维线
 - 。 物理方法: 用力拉, 易断的为羊毛线
 - 化学方法:点燃,产生焦羽毛气味,不易结球的为羊毛线

三、白色污染

1. 塑料的危害

- 大部分塑料在自然环境中很难降解,长期堆积会破坏土壤,污染地下水,危害海洋生物的生存
- 如果焚烧含氯塑料会产生有刺激性气味的氯化氢等气体,从而对空气造成污染

2. 解决措施

- 减少使用不必要的塑料制品,如用布袋代替塑料袋等
- 重复使用某些塑料制品,如塑料袋、塑料盒等
- 使用一些新型的、可降解的塑料,如微生物降解塑料和光降解塑料等
- 回收各种废弃塑料
 - 不仅可以减少废弃塑料的数量,而且节约资源
 - 。 塑料的分类是回收和再利用的一大障碍
 - 不同种类的塑料,其再利用的途径是不同的

高中部分

第二章 元素与物质世界

第1节 元素与物质分类

1.1.1 物质的分类

一、复习

• 纯净物:同种物质组成

。 有化学式,有固定熔沸点

• 混合物:不同种物质组成

。 无化学式, 无固定熔沸点

• 单质:同种元素组成的纯净物

• 化合物:不同种元素组成的纯净物

二、同素异形体

• 概念:由同种元素组成的性质不同的单质

• 产生原因:原子排列方式不同、构成一个分子的原子数目不同

三、氧化物、酸、碱、盐的分类

1. 氧化物:两种元素且一种是氧的化合物

1. 根据组成元素:

。 金属氧化物

。 非金属氧化物

2. 根据性质:

酸性氧化物:能与碱反应只生成盐和水的氧化物碱性氧化物:能与酸反应只生成盐和水的氧化物

- 。 两性氧化物
- 。 不成盐氧化物
- 。 特殊氧化物

(!) Caution

非金属氧化物不一定是酸性氧化物:如CO 金属氧化物不一定是碱性氧化物:如 Mn_2O_7

- 2. 酸: 阳离子全部是 H+ 的化合物
 - 1. 按是否含氧:
 - 含氧酸: H₂SO₄, HNO₃, H₃PO₄
 - 无氧酸: HCl, H₂S
 - 2. 按电离产生的氢离子数目:
 - 一元酸: HNO₃, HCl
 - 二元酸: H₂SO₄, H₂S
 - 。 三元酸: H₃PO₄
 - 3. 按酸性强弱:
 - 强酸 (完全电离) : HCl, H₂SO₄, HNO₃
 - 弱酸 (部分电离): H₂CO₃, CH₃COOH
 - 4. 按挥发性强弱:
 - 。 易挥发性酸: 浓盐酸、浓硝酸、醋酸
 - 难挥发性酸: H₂SO₄, H₃PO₄
 - 5. 按稳定性强弱:
 - 稳定性酸: H₂SO₄, HCl, H₃PO₄
 - 不稳定性酸: HNO₃, H₂CO₃
 - 6. 按氧化性强弱:
 - 。 强氧化性酸(化学反应中通常体现为**非氢**元素化合价改变):浓硫酸、 HNO_3
 - 。 非氧化性酸(化学反应中通常体现为氢元素化合价改变):稀硫酸、 $\mathrm{HCl},\mathrm{H}_2\mathrm{CO}_3,\mathrm{CH}_3\mathrm{COOH},\mathrm{H}_3\mathrm{PO}_4$
- 3. 碱: 阴离子全部是 OH- 的化合物
 - 1. 按碱性强弱:
 - 。 强碱:NaOH, KOH, Ba(OH)₂, Ca(OH)₂
 - \circ 弱碱: $Cu(OH)_2$, $Fe(OH)_3$, $NH_3 \cdot H_2O$
 - 2. 按溶解性:
 - 可溶性碱: NaOH, KOH, Ba(OH)₂
 - 难溶性碱: Cu(OH)₂, Fe(OH)₃
 - 微溶性碱: Ca(OH)₂
- 4. 盐:由金属阳离子(或铵根离子)和酸根离子构成的化合物
 - 1. 按组成离子
 - 2. 按溶解性:
 - 可溶性盐: NaCl, AgNO₃, CuSO₄, NH₄Cl
 - 难溶性盐: CaCO₃, BaCO₃, BaSO₄
 - 3. 按电离后组成
 - 。 正盐 (电离后不含 H⁺, OH[−]) : NaCl, NH₄Cl, BaSO₄
 - 酸式盐 (电离后含 H⁺) : NaHSO₄, NaHSO₃
 - 。 碱式盐 (电离后含 OH^-) : $Cu_2(OH)_2CO_3$

1.1.2 分散系及其分类

一、分散系

1. 概念

• 把一种(或多种)物质以粒子形式分散到另一种(或多种)物质中所形成的混合物

2. 组成

• 分散质: 分散系中被分散成粒子的物质

• 分散剂:分散系中的另一种物质

3. 分类

• 根据分散质与分散剂的状态

4. 分散剂为液体时的分类

• 溶液: 分散质粒子直径小于 1nm 的分散系

• 胶体:分散质离子直径在 $1\sim 100\mathrm{nm}$ 之间的分散系

• 浊液:分散质离子直径大于 100nm 的分散系

分散 系	分散质粒子直 径	分散质粒子种类	外部特征	鉴别方 法	能通过	例子
溶液	< 1nm	分子、离子	均一、透明、 稳定		滤纸、半 透膜 [*]	CuSO_4 溶液
胶体	$1\sim 100 \mathrm{nm}$	分子的集合、大 分子	多数均一、透 明、稳定	丁达尔	滤纸	血浆
浊液	> 100nm	分子的集合体/ 离子的集合体	不均一、不透 明、不稳定	静置有 沉淀		泥沙水

^{*}丁达尔效应:胶体粒子对光线的散射形成明亮的通路 (在照射光的垂直方向上)

二、实验: Fe(OH)3 胶体的制备

1. 实验步骤

- 在小烧杯中加入 40mL 蒸馏水, 加热至沸腾
- 向沸水中慢慢滴入 $5\sim6$ 滴 $FeCl_3$ 溶液
- 继续煮沸至溶液呈红褐色,停止加热。即可得到 Fe(OH)3 胶体

2. 化学方程式

 $\operatorname{FeCl}_3 + 3\operatorname{H}_2\operatorname{O} \xrightarrow{\Delta} \operatorname{Fe}(\operatorname{OH})_3$ (胶体) $+ 3\operatorname{HCl}$

① Caution

方程式一定要写 胶体 两个字

3. 注意事项

- 不能加热过长时间
- 不能将水换成 NaOH 溶液

^{*}半透膜透析:半透膜另一侧为流动的水,以形成浓度差

1.2 物质的转化(TODO)

1.3.1 电解质的电离

一、电解质与电离

1. 电解质与非电解质

• 电解质:在水溶液里或熔融状态下能够导电的化合物

• 非电解质: 在水溶液里和熔融状态下都不能导电的化合物

导电的原理: 存在能自由移动、带电的离子

2. 电离

• 定义: 物质溶于水或受热熔化时, 解离成能够自由移动的离子的过程

• 表示方法: 电离方程式

3. 酸碱盐

• 酸: 电离时生成的阳离子全部是 H⁺ 的化合物

• 碱: 电离时生成的阴离子全部是 OH- 的化合物

• 盐: 典礼时生成金属阳离子 (或铵根离子) 和酸根离子的化合物

(!) Caution

"酸和碱中都含有阳离子和阴离子"是错误的(酸是共价化合物, 电离后才有离子)

4. 强电解质与弱电解质

• 强电解质: 在水溶液中能完全电离的电解质, 以离子的形式存在

○ 强酸: HCl, H₂SO₄, HNO₃, HClO₄, HBr, HI

○ 强碱: NaOH, KOH, Ca(OH)₂, Ba(OH)₂

o 大部分盐 (钾钠铵硝均可溶,碳酸盐除银、亚汞,硫酸盐除钡、铅,碳酸盐只溶钾钠铵)

• 弱电解质:在水溶液中部分电离的电解质,以离子和分子的形式存在

○ 弱酸: H₂CO₃, CH₃COOH, HClO, HF, H₂S, H₂SO₃

○ 弱碱: NH₃·H₂O, Al(OH)₃, Cu(OH)₂, Fe(OH)₃

○ 少数盐: (CH₃COO)₂Pb, HgCl₂, HgBr₂等

○ 水、单质、氧化物、气体、沉淀

二、电离方程式

- 定义: 用化学式和离子符号表示电解质的电离过程的式子
- 弱电解质在水中不能完全电离,只发生部分电离,故不用 = , 而用 ==
- 多元弱酸分布电离,且电离程度逐步减弱,酸性由第一步电离决定
 - \circ H₂CO₃ \rightleftharpoons H⁺ + HCO₃⁻, HCO₃⁻ \rightleftharpoons H⁺ + CO₃²⁻
- 多元弱碱分布电离,但一步写出
 - \circ Fe(OH)₃ \rightleftharpoons Fe³⁺ + 3 OH⁻
- 酸式盐的电离:强酸的酸式酸根且溶于水中拆
 - NaHSO₄ 溶于水中: NaHSO₄ = Na⁺ + H⁺ + SO₄²⁻
 - 。 NaHSO₄ 在熔融状态下: NaHSO₄ = Na⁺ + HSO₄[−]
 - 。 NaHCO₃ 溶于水中: NaHCO₃ \rightleftharpoons Na⁺ + HCO₃⁻

一、离子反应

高中

4 物质的量

物理量	符号	单位	值
物质的量	n	mol	任意值
阿伏伽德罗常数	N_A	mol^{-1}	설 $56.02 imes10^{23}\mathrm{mol}^{-1}$
粒子个数	N	-	任意值
质量	m	g	任意值
摩尔质量	M	$g \cdot mol^{-1}$	数值上等于相对分子质量
相对原子质量	Mr(Ar)	-	质量与 $rac{m(^{12}\mathrm{C})}{12}$ 的比值
气体体积	V	L	任意值
气体摩尔体积	V_m	$\mathrm{L}\cdot\mathrm{mol}^{-1}$	约 22.4L·mol ⁻¹ (标况, 0℃, 101kPa
物质的量浓度	c	$\mathrm{mol}\cdot\mathrm{L}^{-1}$	任意值

一、各种量的相互转化

- $N = n \times N_A$
- $m = n \times M$
- $V(g) = n \times V_m$
- $V(ag) = \frac{n}{c}$

二、气体体积

- 1. 影响物质体积的因素
 - 固体/液体
 - 。 粒子本身大小
 - 。 粒子个数
 - 气体
 - 粒子间距 (温度、压强影响)
 - 。 粒子个数
- 2. 阿伏伽德罗定律

同温同压下,同体积的任何气体,都具有相同的分子数

① Caution

标况下不是气体: H_2O , 乙醇, H_2SO_4 , SO_3 , Br_2 , CCl_3 , $CHCl_3$, 苯, 己烷

3. 理想气体状态方程

$$pV = nRT$$
$$pM = \rho RT$$

- T,p 相同时, $\frac{n_1}{n_2} = \frac{V_1}{V_2}$ T,V 相同时, $\frac{n_1}{n_2} = \frac{p_1}{p_2}$ T,p 相同时, $\frac{\rho_1}{\rho_2} = \frac{M_1}{M_2}$

三、物质的量浓度

单位体积溶液中所含溶质的物质的量来表示溶液组成的物理量

- 溶液浓度均一(取出一部分, c 不变)
- 稀释前后, $c_1V_1 = c_2V_2$

四、实验——一定物质的量的浓度溶液的配制

- 1. 容量瓶
 - 瓶上标识: 温度、容积、刻度线
 - 常见规格: 50mL, 100mL, 250mL, 500mL, 1000mL
 - 注意事项
 - 。 先检验是否漏水
 - 。 使用前可以不烘干, 但不能用配置液洗
 - 。 不能用于溶解固体、稀释溶液,不能作反应容器,不能长期储存溶液

2. 实验仪器

100mL 容量瓶、烧杯、玻璃棒、胶头滴管、天平/量筒

- 3. 实验步骤
 - 1. 计算:溶液的质量(从固体配)/溶液的体积(从溶液配)

 - 3. 溶解: 在烧杯中进行, 玻璃棒作用为搅拌加快溶解
 - 4. 冷却
 - 5. 转移: 用玻璃棒引流至容量瓶刻度线下
 - 6. 洗涤: $2 \sim 3$ 次,洗涤烧杯、玻璃棒,洗涤液全部转移至容量瓶中
 - 7. 定容:加水至刻度线下方 $1 \sim 2 {
 m cm}$ 处,滴加水至凹液面最低处与刻度线相切
 - 8. 摇匀(摇匀后低于刻度线也不要加水)
 - 9. 装瓶保存

4. 误差分析

操作	对 的影响
称量前小烧杯有水	无
配置之前用一定浓度的待配溶液润洗容量瓶	偏大
向容量瓶注液时,有少量液体溅出	偏小
未洗烧杯和玻璃棒	偏小
未冷却至室温就转移、定容	偏大
定容时加水过多,用滴管吸出	偏小
定容摇匀时液面下降,再加水	偏小
定容后经振荡、摇匀、静置,液面下降	无

操作	对 c 的影响
定容时俯视读数	偏大
定容时仰视读数	偏小
配好的溶液转入干净的试剂瓶时,不慎溅出部分溶液	无

5 钠及其化合物 |

5.1 钠单质

一、物理性质

- 银白色固体,有金属光泽
- 质地柔软
- 密度比水小, 比煤油大
- 熔沸点低
- 热和电的良导体

二、原子结构

- 电子数: 2,8,1
- 容易失去一个电子,形成八电子稳定结构 ⇒ 有强还原性

三、化学性质

- 1. 与非金属单质反应
 - 与O₂
 - $\circ~4\,\mathrm{Na} + \mathrm{O}_2 \ o 2\,\mathrm{Na}_2\mathrm{O}$ (银白色金属光泽变暗)
 - $\qquad 2 \operatorname{Na_2O} + \operatorname{O_2} \xrightarrow{\Delta} 2 \operatorname{Na_2O_2}$
 - \circ $2\,\mathrm{Na} + \mathrm{O}_2 \stackrel{\mathrm{f.M.}}{\longrightarrow} \mathrm{Na}_2\mathrm{O}_2$ (先熔成小球,后剧烈燃烧,有黄色火焰,生成黄色固体)
 - 与 $\operatorname{Cl}_2\colon \operatorname{2Na} + \operatorname{Cl}_2 \xrightarrow{\operatorname{glm}} \operatorname{2NaCl}$ (先熔成小球,后剧烈燃烧,有黄色火焰,生成大量白烟)
 - \ni S: $2 \text{Na} + \text{S} \xrightarrow{\Delta} \text{Na}_2 \text{S}$
- 2. 与 H₂O 反应

 $2\,\mathrm{Na} + 2\,\mathrm{H}_2\mathrm{O} \longrightarrow 2\,\mathrm{NaOH} + \mathrm{H}_2\uparrow$

实验现象	解释
浮于水面上	钠的密度小于水
熔成一个小球	反应放热,钠的熔点低
四处游动	生成气体
发出嘶嘶响声	反应放热, 热的钠使水蒸发
酚酞溶液变红	生成碱性物质

(后文"浮熔游响"即指前四条现象)

3. 与 HCl 反应

 $2 \text{ Na} + 2 \text{ HCl} \longrightarrow 2 \text{ NaCl} + \text{H}_2 \uparrow$ (浮熔游响,轻微爆炸)

- 4. 与盐溶液反应
 - 与 $CuSO_4$: $2 Na + 2 H_2 O + CuSO_4 \longrightarrow Cu(OH)_2 \downarrow + Na_2 SO_4 + H_2 \uparrow$ (浮熔游响, 轻微爆炸, 生成黑色沉淀)
 - $\circ 2 \text{Na} + 2 \text{H}_2 \text{O} \longrightarrow 2 \text{NaOH} + \text{H}_2 \uparrow$
 - $\circ 2 \text{NaOH} + \text{CuSO}_4 \longrightarrow \text{Cu(OH)}_2 \downarrow + \text{Na}_2 \text{SO}_4$
 - $\exists \operatorname{FeCl}_3 : 6 \operatorname{Na} + 6 \operatorname{H}_2 \operatorname{O} + 2 \operatorname{FeCl}_3 \longrightarrow 2 \operatorname{Fe}(\operatorname{OH})_3 \downarrow + 3 \operatorname{NaCl} + 3 \operatorname{H}_2 \uparrow$
- 5. 与熔融盐反应

 $4\,Na + TiCl_4 \xrightarrow{\text{\tiny \mbox{\it fails}}} Ti + 4\,NaCl$

四、单质钠的保存

- 钠的存在形态: 自然界中都以化合态存在 (NaCl, Na₂CO₃, Na₂SO₄)
- 钠的保存方式:保存在煤油或者石蜡油中(使用时用镊子取出,滤纸吸干)

五、制备及用途

- 制备: $2 \operatorname{NaCl}($ 熔融 $) \xrightarrow{\operatorname{e} \operatorname{\textit{pl}}} 2 \operatorname{Na} + \operatorname{Cl}_2 \uparrow$
- 用途
 - 。 制取钠的重要化合物
 - 。 制取钠钾合金作原子反应堆的导热剂
 - 。 作还原剂冶炼某些不易制备的金属
 - 。 用在发出黄色光的电光源上 (钠蒸汽灯)

六、检验钠元素——焰色反应

- 定义:金属或他们的化合物在灼烧时,光焰呈现出来特殊颜色的性质
 - 属物理变化,与元素存在状态(单质/化合物)、物质的聚集状态(气/液/固)等无关
- 步骤
 - 1. 将铂丝(或干净的铁丝,原因:无焰色反应)用盐酸洗净,在酒精灯上灼烧至颜色无变化
 - 2. 蘸取待测溶液, 在火焰上灼烧, 观察火焰颜色
 - 钾需要透过蓝色钴玻璃观察 (过滤掉钾中杂质钠产生的黄色)
- 常见: Na 黄色, K 紫色

5.2 钠的氧化物

一、氧化纳

1. 类别

碱性氧化物

- 2. 物理性质
 - 白色固体
 - 由 Na⁺ 和 O^{2−} 构成
- 3. 化学性质
 - 与 H₂O 反应: Na₂O + H₂O → 2 NaOH
 - 与 CO_2 反应: $Na_2O + CO_2 \longrightarrow Na_2CO_3$
 - 与 HCl 反应: $Na_2O + 2HCl \longrightarrow 2NaCl + H_2O$

二、过氧化钠

1. 类别

复杂氧化物/过氧化物

- 2. 物理性质
 - 淡黄色固体
 - 由 Na⁺ 和 O₂²⁻ 构成
- 3. 化学性质
 - 1. 与 H_2O 反应: $2 \operatorname{Na}_2O_2 + 2 \operatorname{H}_2O \longrightarrow 4 \operatorname{NaOH} + O_2 \uparrow$ (有气体生成,放热)
 - 。 反应历程: $Na_2O_2 + 2H_2O \longrightarrow 2NaOH + H_2O_2$; $2H_2O_2 \longrightarrow 2H_2O + O_2 \uparrow$
 - H_2O_2 可使酚酞溶液褪色 \Rightarrow 酚酞先变红(NaOH)后变无色(H_2O_2)
 - 1mol Na₂O₂ 参与反应转移 1mol 电子
 - 2. 与 CO_2 反应: $2Na_2O_2 + 2CO_2 \longrightarrow 2Na_2CO_3 + O_2$ (放热)
 - 1mol Na₂O₂ 参与反应转移 1mol 电子
 - 3. 与HCl 反应: $2 Na_2 O_2 + 4 HCl \longrightarrow 4 NaCl + 2 H_2 O + O_2 \uparrow$
 - 。 反应历程: $Na_2O_2 + 2HCl \longrightarrow 2NaCl + H_2O_2$; $2H_2O_2 \longrightarrow 2H_2O + O_2 \uparrow$
- 4. 用途
 - 供氧
 - 作漂白剂、杀菌剂
 - 作氧化剂
- 5. 保存

隔绝空气,密封保存,远离可燃物

5.3 钠的碳酸盐

一、碳酸钠

俗称: 苏打、纯碱

- 1. 物理性质
 - 白色粉末
 - 可溶于水 (溶解度比 NaHCO3 大) , 溶于水放热
- 2. 化学性质
 - 1. 与指示剂反应: 水溶液中加入酚酞变红
 - 2. 与 H+ 反应
 - 。 向 Na_2CO_3 溶液中逐滴滴加盐酸:先 $CO_3^{2-} + H^+ \longrightarrow HCO^-$,后 $HCO_3^- + H^+ \longrightarrow H_2O + CO_2$ (开始无气体生成,后有气体生成)
 - 。 向盐酸中滴加碳酸钠: $CO_3^{2-} + H^+ \longrightarrow H_2O + CO_2$ ↑ (有气体生成)
 - 本质原因: 量不同, 产物不同
 - 盐酸与碳酸钠可互相鉴别
 - 3. 与 $Ca(OH)_2/CaCl_2$ 反应: $Ca^{2+} + CO_3^{2-} \longrightarrow CaCO_3 \downarrow$
 - 4. 与 CO_2 反应: $Na_2CO_3 + H_2O + CO_2 \longrightarrow 2NaHCO_3$

3. 用途

去油污(洗涤灵)、制玻璃、制肥皂、造纸、纺织

二、碳酸氢钠

俗称: 小苏打 1. 物理性质

- 白色细小晶体
- 可溶于水 (溶解度比 $\mathrm{Na_2CO_3}$ 小) ,溶解时吸热

2. 化学性质

- 1. 与指示剂反应: 水溶液中加入酚酞略成粉色
- 2. 与 H^+ 反应: $HCO_3^- + H^+ \longrightarrow H_2O + CO_2$
- 3. 与 NaOH 反应: $HCO_3^- + OH^- \longrightarrow CO_3^{2-} + H_2O$
- 4. 与 Ca(OH)₂ 反应
 - 。 $Ca(OH)_2$ 少量: $Ca^{2+} + 2OH^- + 2HCO_3^- \longrightarrow 2H_2O + CO_3^{2-} + CaCO_3 \downarrow$
 - NaHCO₃ 少量: $Ca^{2+} + OH^{-} + HCO_{3}^{-} \longrightarrow H_{2}O + CaCO_{3}$ ↓
- 5. 热分解: $2 \text{ NaHCO}_3 \xrightarrow{\Delta} \text{Na}_2 \text{CO}_3 + \text{H}_2 \text{O} + \text{CO}_2 \uparrow$

3. 用途

- 治疗胃酸过多
- 作发酵剂、灭火剂

三、总结

1. 鉴别

- 溶解度:同时溶解等质量的固体,快的为 Na_2CO_3
- 溶解时温度变化:溶解,温度升高的为 Na_2CO_3
- 热稳定性:加热,生成的气体通入澄清石灰水,有沉淀的为 ${
 m NaHCO_3}$
- 碱性: 向同浓度的溶液中滴加酚酞, 更红的为 Na_2CO_3
- 滴加盐酸,开始就生成气体的为 NaHCO₃
- 加入 CaCl₂/BaCl₂,有沉淀的为 Na₂CO₃

不能鉴别: $Ca(OH)_2$, $Ba(OH)_2$ (只能定量) , NaOH (无现象)

2. 定量分析

 Na_2CO_3 , $NaHCO_3$ 混合物 ag, 加足量 $Ca(OH)_2$, 生成沉淀 bg

设
$$n(\mathrm{Na_2CO_3}) = x\mathrm{mol}, n(\mathrm{NaHCO_3}) = y\mathrm{mol}$$
则有 $\begin{cases} 106x + 84y = a \\ x + y = \frac{b}{100} \end{cases}$

3. 互相转化

- $Na_2CO_3 \longrightarrow NaHCO_3$: mH_2O, CO_2
- NaHCO₃ → Na₂CO₃: 加热/加适量 NaOH

5.4 钠和钙氢氧化物

一、性质

1. 氢氧化钠

俗称: 烧碱、火碱、苛性钠

- 白色固体
- 易吸水潮解
- 溶于水时放热

2. 氢氧化钙

俗称:消石灰、熟石灰

水溶液称为石灰水, 悬浊液称为石灰浆/石灰乳

- 白色固体
- 易吸水潮解
- 溶于水时放热

二、化学性质

- 1. 有腐蚀性 (NaOH 有强烈的腐蚀性 $, Ca(OH)_2$ 腐蚀性较弱)
- 2. 与多元弱酸反应,都存在量不同产物不同的问题 (以 NaOH 与 CO_2 反应为例)
 - \circ CO₂ 少量: 2 OH⁻ + CO₂ \longrightarrow CO₃²⁻ + H₂O
 - NaOH 少量: OH $^-$ + CO $_2$ → HCO $_3$ $^-$
- 3. ${
 m CO_2}$ 和 ${
 m SO_2}$ 都可以使澄清石灰水先浑浊再澄清,加热后再浑浊(以 ${
 m Ca(OH_2)}$ 与 ${
 m SO_2}$ 反应为例)
 - \circ Ca(OH)₂ + SO₂ \longrightarrow CaSO₃ \downarrow + H₂O
 - \circ CaSO₃ + H₂O + SO₂ \longrightarrow Ca(HSO₃)₂
 - \circ Ca(HSO₃)₂ $\xrightarrow{\Delta}$ CaSO₃ \downarrow + SO₂ \uparrow + H₂O

| 6 氯及其化合物 |

6.1 氯气

一、物理性质

- 黄绿色、有刺激性气味的气体
- 可溶于水,溶解度 $1:2 \Rightarrow$ 不能用排水法收集
- 在饱和食盐水中的溶解度很小 ⇒ 可用来收集
- 熔沸点较高(相较于其他气体), 易液化 ⇒ 可以作制冷剂
- 密度比空气大
- 溶于水之后俗称氯水,氯水也呈黄绿色

二、化学性质

Note

燃烧的新定义: 发光发热的剧烈氧化还原反应

原子结构:最外层电子数为 7,很容易得到一个电子,形成 8 电子稳定结构 \Rightarrow 化学性质非常活泼,是强氧化剂

- 1. 有一定的毒性
- 2. 与金属单质反应
 - $\circ \ \ 2\,Na + Cl_2 \stackrel{\text{{\tiny \underline{A}}}\xspace{-1mm}{\xspace{-1mm}{$\stackrel{}{\longrightarrow}$}}}{\longrightarrow} 2\,NaCl$
 - \circ 2 Fe + 3 Cl₂ $\xrightarrow{\Delta}$ 2 FeCl₃ (产生棕色的烟)
 - \circ $\operatorname{Cu} + \operatorname{Cl}_2 \xrightarrow{\Delta} \operatorname{CuCl}_2$ (产生棕黄色的烟)

- 3. 与非金属单质反应
 - $\mathrm{H}_2 + \mathrm{Cl}_2 \xrightarrow{\mathrm{点燃或光照}} 2\,\mathrm{HCl}$
 - 现象:安静的燃烧,放出大量热,有苍白色火焰
 - 与 HCl 相关的现象的几种表述:
 - 生成的气体在集气瓶口与空气中的水蒸气结合,形成白雾(盐酸酸雾/盐酸小液滴)
 - 生成刺激性气味的气体
 - 生成使蓝色石蕊试纸 (预先用碱性物质处理过) 变红的气体
 - 工业上利用此反应制取氯化氢,氯化氢溶于水后得到盐酸
 - 工业盐酸呈黄色的原因:管道里的 $Fe ext{ } ext{$
 - H₂和 Cl₂混合见光发生爆炸
 - $\circ \ 2\,\mathrm{P} + 3\,\mathrm{Cl}_2 \xrightarrow{\text{\verb!a.m.}} 2\,\mathrm{PCl}_3; \quad 2\,\mathrm{P} + 5\,\mathrm{Cl}_2 \xrightarrow{\text{\verb!a.m.}} 2\,\mathrm{PCl}_5$
 - 这两个反应不可避免同时发生
 - 现象: 生成白色烟(PCl₅)雾(PCl₃)
 - \circ 不能与 O_2 直接化合
- 4. 与 H₂O 反应
 - \circ Cl₂ + H₂O \rightleftharpoons HCl + HClO
 - 这个反应是可逆反应(同一条件下能同时向正逆两个方向进行的反应)
 - 次氯酸有较强的氧化性,能杀死水中的细菌(自来水用氯气消毒的原理)
 - 干燥的氯气没有漂白性,真正起漂白作用的是次氯酸
 - 实验: 氯气依次通过干燥、湿润布条, 最后用 NaOH 溶液做尾气处理
 - 。 次氯酸见光分解: $2 \operatorname{HClO} \xrightarrow{\mathcal{H}} 2 \operatorname{HCl} + \operatorname{O}_2 \uparrow$
 - 储存在棕色细口瓶中
- 5. 与碱反应
 - $\circ 2 \text{NaOH} + \text{Cl}_2 \longrightarrow \text{NaCl} + \text{NaClO} + \text{H}_2 \text{O}$
 - NaCl 和 NaClO 都是漂白液 (84消毒液) 的主要成分
 - 有效成分: NaClO
 - 不能提纯,提纯时 NaClO 会分解
 - 漂白液的见效: $NaClO + H_2O + CO_2 \longrightarrow NaHCO_3 + HClO$
 - $\circ 2 \operatorname{Ca}(OH)_2 + 2 \operatorname{Cl}_{22} \longrightarrow \operatorname{CaCl}_2 + \operatorname{Ca}(ClO)_2 + 2 \operatorname{H}_2O$
 - 这里的 Ca(OH)₂ 是石灰乳,写离子方程式时不能拆
 - CaCl 和 CaClO 都是漂白粉的主要成分
 - 漂白粉的见效: $Ca(ClO)_2 + H_2O + CO_2 \longrightarrow CaCO_3 \downarrow + 2HClO$
 - ∘ $6 \text{ KOH}(x) + 3 \text{ Cl}_2 \xrightarrow{\Delta} 5 \text{ KCl} + \text{KClO}_3 + 3 \text{ H}_2\text{O}$

6.2 氯水

6.3 氯气的制备

- 一、实验室制备
- 1. 原理

$$\mathrm{MnO}_2 + 4\,\mathrm{HCl}(\mathbbm{x}) \overset{\Delta}{\longrightarrow} \mathrm{MnCl}_2 + 2\,\mathrm{H}_2\mathrm{O} + \mathrm{Cl}_2\uparrow$$

- 反应必须加热
- 写离子方程式时浓盐酸可拆
- 浓盐酸质量分数约为 37%

2. 药品

浓盐酸、氧化锰

3. 装置

烧瓶、分液漏斗、加热装置——固液反应加热生成气体通用

4. 净化

- 饱和 NaCl 溶液
 - 。 HCl 极易溶于水,不受到水中已有 Cl^- 的影响,可以继续溶于饱和 NaCl 溶液
 - 。 Cl_2 在水中溶解度为 1:2,在水中发生可逆反应;增加水中氯离子浓度,可以使平衡左移,抑制 Cl_2 在水中的溶解,减少 Cl_2 的损失
- 浓硫酸:除水

5. 收集

向上排空气/排饱和食盐水

6. 检验

- 湿润的淀粉碘化钾试纸变蓝
- 湿润的蓝色石蕊试纸(即预先使用碱处理过)变红再褪色(答题不能写,选项里可能有)
- 通常通过颜色判断是否集满

7. 尾气处理

 $NaOH/Na_2CO_3$

二、其它制备方法

原理:将HCl中-1价的Cl氧化成 Cl_2

- 使用酸性 $\mathrm{KMnO_4}$: $2\,\mathrm{MnO_4}^- + 10\,\mathrm{Cl}^- + 16\,\mathrm{H}^+ \longrightarrow 2\,\mathrm{Mn}^{2+} + 5\,\mathrm{Cl}_2 \uparrow + 8\,\mathrm{H}_2\mathrm{O}$
- 使用酸性 $K_2Cr_2O_7$: $Cr_2O_7^{2-} + 6Cl^- + 14H^+ \longrightarrow 2Cr^{3+} + 3Cl_2 \uparrow + 7H_2O$
- 使用 $KClO_3$: $ClO_3^- + 5 Cl^- + 6 H^+ \longrightarrow 3 Cl_2 \uparrow + 3 H_2 O$
- 使用 NaClO: ClO⁻ + Cl⁻ + 2 H⁺ → Cl₂ ↑ + H₂O
 - 84 消毒液和洁厕灵不能一起使用的原因

其它

侯氏制碱法

- 方程式: $NH_3 + CO_2 + NaCl + H_2O \longrightarrow NaHCO_3 \downarrow + NH_4Cl$
- 实质:酸碱中和+复分解反应
 - 。 $NH_3+CO_2+H_2O\longrightarrow NH_4HCO_3$ (一水合氨 $NH_3\cdot H_2O$ 和碳酸 H_2CO_3 中和)
 - 。 $NH_4HCO_3+NaCl\longrightarrow NaHCO_3 \downarrow +NH_4Cl$ (碳酸氢钠溶解度最低,先饱和,再析出) (注意溶液中也是有饱和 $NaHCO_3$ 溶液的)
- 先通 NH_3 ,再通 CO_2 的原因: NH_3 溶解度远大于 CO_2 ,等体积水进行的反应更多

常见化合价表

化学式	常见化学价
Н	+1
Na	+1
K	+1
Cu	+1, +2
Ag	+1
Mg	+2
Ca	+2
Ba	+2
Zn	+2
Al	+3
Mn	+2, +4, +6, +7
Fe	+2, +3
F	-1
Cl	-1, +1, +5, +7
Br	-1
0	-2
S	-2, +4, +6
N	-3, +2, +3, +4, +5
P	-3, +3, +5
С	+2, +4
Si	+4
OH 根	-1
NO ₃ 根	-1

化学式	常见化学价
CO ₃ 根	-2
SO ₄ 根	-2
NH ₄ 根	+1

物质的构成

- 原子构成的物质: 可以形成空间无限的网络结构
 - 。 金属单质: K, Ca, Na, Mg, Al, Zn, Fe, Sn, Pb, Cu, Hg, Ag, Pt, Au
 - 。 极少数非金属单质: 金刚石、石墨、Si
 - \circ 极少数非金属化合物: SiO_2 , SiC, Si_3N_4
- 分子构成的物质:有限个原子组成分子,分子构成物质
 - 。 绝大多数非金属单质
 - 单原子分子: He, Ne, Ar, Kr, Xe, Rn, Og (惰性气体)
 - 双原子分子: H₂, O₂, Na, Cl₂, Br₂, I₂, F₂ · · ·
 - 多原子分子: O₃, P, S····
 - 绝大多数非金属氧化物: H₂O, CO, CO₂, NO, NO₂, SO₂, SO₃, ClO₂, P₂O₅ · · ·
 - 。 全部的酸
 - 绝大多数有机物: CH₄, CH₃CH₂OH, C₆H₆(苯), CCl₄···
- 离子构成的物质
 - 。 活泼金属 (K, Ca, Na, Mg, Al, Ba) 氧化物
 - 活泼金属氢氧化物: KOH, NaOH, Ba(OH)₂, Ca(OH)₂
 - 。 活泼金属盐: NaCl, KNO₃, BaSO₄, CaCO₃ · · ·
 - 。 NH₄⁺ 盐

其它

- 碱性氧化物能否与水反应看对应的碱能不能溶解
- 弱酸的正盐与弱酸反应生成弱酸的酸式盐,如
 - \circ Na₂CO₃ + H₂O + CO₂ \longrightarrow 2 NaHCO₃
 - \circ Na₂SO₃ + H₂O + SO₂ \longrightarrow 2 NaHSO₃
 - \circ Na₂S + H₂S \longrightarrow 2 NaHS
- 多元弱酸的酸式盐不和 H⁺/OH⁻ 大量共存