SOLUTION

MTH210 - SUBMISSION_20220922

TIME: 17.5 minutes

MARKS: 5

No consultation – open notes – books and internet not allowed.

Recall that if X is a non-empty set, then a partition of X is a family of

non-empty subsets of X which are pairwise disjoint and whose union is X. If P and Q are two partitions of X, we say that P is finer than Q if every subset in P is contained in some subset in Q, i.e. for any $A \in P$, there is a $B \in Q$ such that $A \subseteq B$. Let \subseteq denote the is finer than relation and let Σ denote the family (set) of all partitions of X, i.e. $\Sigma = \{P : P \text{ is a partition of X}\}$.

a) Show that \leq is a partial ordering on Σ . (3

(3 marks)

b) Draw the Hasse diagram of $\langle \Sigma, \leq \rangle$ if X = $\{1, 2, 3\}$. (2 marks)

ID:

NAME:

GROUP:

het Zi he the family (set) of all partitions of X, and let the is finer than a) To show that $\langle Z, \langle \rangle$ is a first: (i) Reflessive Broperty: - het he a partition of X, and let AE P, i.e. A E X. Then, A E Hence, P & P, i.e. P is (ii) Anti-Symmetric Broperty: Suppose P = Q and Q EP. het Then, A & B for some B & Q,

Certinued
BEAI for some A' E P,
i.e. $A \subseteq B \subseteq A'$.
But, subsets in a partition are
mutually disjoint, so (1) can hold
only 'of A = A', but then
i.e. every element of Piz on element
l.e. every element of I is an element
Similarly, levery element of Q is an
element of P. 3
From (3) and (3), Pz (9)
Note that a batition is and
The mail were
- Joynmeine
() ransitive Property.
suppose of 5 G and Q < 1 W & are
Partitions of X, and let A E P.
then, there essists BEG D. A. ACR
and there exists CE VIV
A & C and so
P is finer than W, as required.

b) het X= {1,2,3}, and let us consider < X, <> = Z. Observe that 3 € IN has escartly 3 pertitions as follows? 6. These lead 3 = 1+1+1) to the following partitions of X: Px consisting of: {1,2,3} P, consisting of: {13, 92,3} P2 consisting of 1 & 23, & 1,3% P3 consisting of = 236, 51,26 Po consisting of: 217, {27, {3}. The relation < trace spe has the

foll. Hasse Diagram:-

(PTO)

Remark: Clearly, Zi is a lattice; (4) in fact, it is the lattice which was given as an total example in Wednesdays lecture (20220921). This suggests the following: het $X_n = \{1, 2, -, n\}$, $n \ge 1$, and let $(\sum_{n=1}^{\infty} X_n \leq x_n)$ be the corresponding poset with & = "is finer than" Is In always a lattice? Clearly, true for n=3, as shown above, and tricially true for n=1,2. Something for you to think about and answer !!!

ell Hasse but a gramme by it has