The isometry group of the bounded Urysohn space is simple

Katrin Tent and Martin Ziegler
November 20, 2012

Abstract

We show that the isometry group of the bounded Urysohn space is a simple group.

1 Introduction

The bounded Urysohn space \mathbb{U}_1 of diameter 1 is the (unique) complete homogeneous separable metric space of diameter 1 which embeds every finite metric space of diameter 1. It was shown in [1] that the isometry group of the (general) Urysohn space modulo the subgroup of bounded isometries is a simple group and it was widely conjectured (in particular by M. Rubin and J. Melleray) that the isometry group of the bounded Urysohn space is a simple group. We here prove this conjecture using the approach from [1]:

Theorem 1.1. The isometry group of \mathbb{U}_1 is abstractly simple.

Note that we cannot expect bounded simplicity as in the results in [1] as there are isometries of \mathbb{U}_1 with arbitrarily small displacement.

The proof relies on the properties of an abstract independence relation. We will continue to use the concepts introduced in [1], in particular the following notion of independence:

Definition 1.2. We say that A and C are independent over B, written

$$A \underset{B}{\bigcup} C$$
,

if for all $a \in A, c \in C$ with d(a,c) < 1 there is some $b \in B$ such that d(a,c) = d(a,b) + d(b,c).

We say that an automorphism $g \in \text{Isom}(\mathbb{U}_1)$ moves almost maximally if for all types tp(a/X) with X finite there is a realisation b with

$$b \underset{X}{\bigcup} g(b).$$

Note that this definition of independence makes sense even if $B = \emptyset$ and hence this defines a stationary independence relation in the sense of [1]. The proof here follows the same lines as the proof in [1] and we will continue using notions from that paper. In the next section we will establish the following:

Proposition 1.3. Let $g \in \text{Isom}(\mathbb{U}_1)$. If d(a, g(a)) = 1 for some $a \in \mathbb{U}_1$, then a product of 2^5 conjugates of g moves almost maximally and hence any element of $\text{Isom}(\mathbb{U}_1)$ can be written as the product of 2^9 conjugates of g and g^{-1} .

Using the following observation, this proposition will then imply Theorem 1.1 exactly as in [1].

Lemma 1.4. If $g \in \text{Isom}(\mathbb{U}_1)$ is not the identity, then a product of conjugates of g moves some element by distance 1.

Proof. Let $a \in \mathbb{U}_1$ be such that d(a, g(a)) = k > 0. Pick $b \in U_1$ with d(a, b) = 1 and a sequence of elements $a_0 = a, \dots a_m = b$ with $d(a_{i-1}, a_i) = k, i = 1, \dots m$. By homogeneity of \mathbb{U}_1 there are elements $h_i \in \text{Isom}(\mathbb{U}_1), i = 1, \dots m$ with $h_i(a) = a_{i-1}, h_i(g(a)) = a_i$. Then $g^{h_i}(a_{i-1}) = a_i$ and hence the product of these conjugates moves a to b.

2 Proof of the main result

For any finite set $X \subset \mathbb{U}_1$, $a \in \mathbb{U}_1$ we write $d(a, X) = \min\{d(a, x) : x \in X\}$ for the distance from a to A. We call d(a, X) also the distance of the type $\operatorname{tp}(a/A)$. We put $G = \operatorname{Isom}(\mathbb{U}_1)$.

Lemma 2.1. Let $g \in G$ be such that for some $a \in \mathbb{U}_1$ we have d(a, g(a)) = 1. Then for any finite set A there is some x with d(x, A) = 1 and $d(x, g(x)) \ge 1/2$. Proof. Clearly we may assume that $a \in A$. Put $Y = A \cup g^{-1}(A)$ and choose some b with d(b, a) = 1/2 and independent from Y over a. Then $d(g(b), A) \ge 1/2$ and since d(a, g(a)) = 1 we also have d(g(b), a) = 1. Therefore we have $d(b, g(b)) \ge 1/2$. Choose x with d(x, Ab) = 1 such that d(x, g(b)) is minimal. Since $d(g(b), Ab) \ge 1/2$, we have $d(x, g(b)) \le 1/2$ and hence $d(x, g(x)) \ge 1/2$.

Let $p = \operatorname{tp}(a/X)$ be a type over a finite set X. We say that $g \in G$ moves the type p almost maximally if there is a realisation x of p with $x \downarrow_X g(x)$ and it moves the type p by distance C if there is a realisation x of p with $d(x, g(x)) \geq C$.

Lemma 2.2. Let $g \in G$ and $1 \ge d_0 \ge 0$ be such that g moves any type of distance d_0 almost maximally. Then any type of distance $d \le d_0$ is moved almost maximally or by distance $1 - 2(d_0 - d)$.

Proof. Let $p = \operatorname{tp}(x/X)$ be a type of distance $d \leq d_0$ and x' a realisation of p independent from $g^{-1}(X)$ over X (so $d(x', Xg^{-1}(X)) = d$). Put $p' = \operatorname{tp}(x'/Xg^{-1}(X))$ and let $q = p' + (d_0 - d)$ denote the prolongation of p' by $d_0 - d$.

By assumption on g, there is a realisation z of q which is moved almost maximally over $Xg^{-1}(X)$. Hence

$$z \bigcup_{Xg^{-1}(X)} g(z)$$

and by transitivity

$$z \underset{X}{\bigcup} g(z).$$

If d(z, g(z)) = 1 then for a realisation y of p' with $d(y, z) = d_0 - d$ we clearly have $d(y, g(y)) \ge 1 - 2(d_0 - d)$.

Otherwise we find some $b \in X$ such that

$$d(z, g(z)) = d(z, b) + d(b, g(z)).$$

Let y be a realisation of p' with $d(y, z) = d_0 - d$. Note that by definition of the prolongation we have

$$z \underset{y}{\bigcup} Xg^{-1}(X)$$
 and hence $g(z) \underset{g(y)}{\bigcup} X$.

Therefore

$$d(z, g(z)) = d(z, y) + d(y, b) + d(b, g(y)) + d(g(y), g(z))$$

and in particular

$$y \underset{X}{\bigcup} g(y)$$
.

Lemma 2.3. Let $g \in G$. Then there exists some $h \in G$ such that [g,h] has the following property for all d and C: if g moves all types of distance d almost maximally or by distance C, then [g,h] moves all types of distance d almost maximally or by distance 2C.

Proof. As in [1] we may work in a countable model of the bounded Urysohn space. We build h by a 'back-and-forth' construction as the union of a chain of finite partial automorphisms. It is enough to show the following: let h' be already defined on the finite set U, let p be a type over X of distance d and assume that g moves all such types almost maximally or by distance C. Then h' has an extension h such that [g,h] moves p almost maximally or by distance 2C.

We may assume that X is contained in U. We denote by V the image of U under h'. Consider any realisation a of p independent from

$$Y = Ug^{-1}(U)g^{-1}(X)$$

and a realisation b of $h'(\operatorname{tp}(a/U))$ over V. Then we extend h' to $h: Uac \cong Vbg(b)$ where c is a realisation of $h^{-1}(\operatorname{tp}(g(b)/Vb))$ independent from Xg(a). Then a is moved under [g,h] to $g^{-1}(c)$. Since

$$c \underset{Ua}{\bigcup} g(a)$$
 and $g(a) \underset{g(X)}{\bigcup} UX$

we have $c \downarrow_{g(X)a} g(a)$, which means that

$$c \underset{a}{\bigcup} g(a)$$
 or $c \underset{g(X)}{\bigcup} g(a)$.

The second case implies $g^{-1}(c) \downarrow_X a$, which implies our claim.

Since d(a/Y) = d(a/U) = d, our assumption about d and C implies that one of the following three cases occur:

Case 1. We find a and b as above with $d(a, g(a)) \ge C$ and $d(b, g(b)) \ge C$. By the above we may assume that $c \perp_a g(a)$. If $d(c, g(a)) = d(g^{-1}(c), a) = 1$, then $g^{-1}(c)$ and a are independent over the empty set and hence over X. Otherwise we have

$$d(g^{-1}(c), a) = d(c, g(a)) = d(c, a) + d(a, g(a)) = d(b, g(b)) + d(a, g(a)) \ge 2C.$$

Case 2. $a \downarrow_Y g(a)$: This implies $a \downarrow_X g(a)$. Since $g(a) \downarrow_{g(X)} X$ transitivity yields $a \downarrow_{g(X)} g(a)$. So from $c \downarrow_{ag(X)} g(a)$, then we get $c \downarrow_{g(X)} g(a)$ and hence $g^{-1}(c) \downarrow_X a$ as desired.

Case 3. $b \downarrow_V g(b)$: This implies $a \downarrow_U c$. As above we now get

$$c \underset{g(X)}{\bigcup} g(a)$$
 and hence $g^{-1}(c) \underset{X}{\bigcup} a$.

By the results in [1] we now obtain:

Proposition 2.4. ¹ Let $g \in G$ be such that for some $a \in \mathbb{U}_1$ we have d(a, g(a)) = 1. Then every element of G is the product of 2^9 conjugates of g and g^{-1} .

Proof. An iterated application of Lemma 2.3 to g yields isometries g_1 , g_2 , g_3 , g_4 and g_5 . Note that g_5 is a product of 2^5 conjugates of g and g^{-1} .

By Lemma 2.1 g moves every type with distance 1 by distance $\frac{1}{2}$. So g_1 moves every type of distance 1 almost maximally or by distance $2 \cdot 1/2 = 1$, hence almost maximally. Now Lemma 2.2 (with $d_0 = 1$) implies that g_1 moves every type of distance d almost maximally or by distance 1-2(1-d)=2d-1.

This implies that g_2 moves every type of distance d almost maximally or by distance 4d-2. So types of distance $d \ge \frac{3}{4}$ are moved almost maximally and

¹We thank Adriane Kaïchouh and Isabel Müller for pointing out an error in an earlier version of the proposition.

using Lemma 2.2 with $d_0 = \frac{3}{4}$ we see that types of distance $d \leq \frac{3}{4}$ are moved almost maximally or by distance $1 - 2(\frac{3}{4} - d) = 2d - \frac{1}{2}$.

Now g_3 moves every type of distance d almost maximally or by distance 4d-1. So types of distance $d \ge \frac{1}{2}$ are moved almost maximally and using Lemma 2.2 with $d_0 = \frac{1}{4}$ we see that types of distance $d \le \frac{1}{2}$ are moved almost maximally or by distance $1 - 2(\frac{1}{2} - d) = 2d$.

This implies that g_4 moves every type of distance d almost maximally or by distance 4d. So types of distance $d \ge \frac{1}{4}$ are moved almost maximally and using Lemma 2.2 with $d_0 = \frac{1}{4}$ we see that types of distance $d \le \frac{1}{4}$ are moved almost maximally or by distance $1 - 2(\frac{1}{4} - d) = 2d + \frac{1}{2}$.

So g_5 moves all types almost maximally. By Corollary 5.4 in [1], every element of G is a product of at most 2^4 conjugates of g_5 or its inverse.

Corollary 2.5. Let $g \in G$. If there is $a \in \mathbb{U}_1$ with $d(a,g(a)) \geq 1/n$, then any element of G can be written as a product of at most $n \cdot 2^9$ conjugates of g and g^{-1} .

References

[1] K. Tent and M. Ziegler. On the isometry group of the Urysohn space. J. Lond. Math. Soc. (3), to appear.

Katrin Tent, Mathematisches Institut, Universität Münster, Einsteinstrasse 62, D-48149 Münster, Germany, tent@uni-muenster.de Martin Ziegler,
Mathematisches Institut,
Albert-Ludwigs-Universität Freiburg,
Eckerstr. 1,
D-79104 Freiburg,
Germany,
ziegler@uni-freiburg.de