STAT/MA 41600

Practice Problems: December 5, 2014 Solutions by Mark Daniel Ward

1. a. For $0 \le x_1 \le 20$, we have $f_{X_{(1)}}(x_1) = \binom{4}{0,1,3} \left(\frac{1}{20}\right) \left(\frac{x_1}{20}\right)^0 \left(1 - \frac{x_1}{20}\right)^3 = (4) \left(\frac{1}{20}\right)^4 (20 - x_1)^3$. Otherwise, $f_{X_{(1)}}(x_1) = 0$.

b. For $0 \le x_2 \le 20$, we have $f_{X_{(2)}}(x_2) = \binom{4}{1,1,2} \left(\frac{1}{20}\right) \left(\frac{x_2}{20}\right)^1 \left(1 - \frac{x_2}{20}\right)^2 = (12) \left(\frac{1}{20}\right)^4 (x_2)(20 - x_2)^2$. Otherwise, $f_{X_{(2)}}(x_2) = 0$.

- **2. a.** We integrate using **1a** and get $\mathbb{E}(X_{(1)}) = \int_0^{20} (x_1)(4) \left(\frac{1}{20}\right)^4 (20 x_1)^3 dx_1 = 4$.
- **b.** We integrate using **1b** and get $\mathbb{E}(X_{(2)}) = \int_0^{20} (x_2)(12) \left(\frac{1}{20}\right)^4 (x_2)(20 x_2)^2 dx_2 = 8$.
- **3. a.** For $0 < x_1$, we have $f_{X_{(1)}}(x_1) = \binom{2}{0,1,1} \frac{1}{10} e^{-x_1/10} \left(1 e^{-x_1/10}\right)^0 \left(e^{-x_1/10}\right)^1 = \frac{2}{10} (e^{-x_1/10})^2$. Otherwise, $f_{X_{(1)}}(x_1) = 0$.

b. For $0 < x_2$, we have $f_{X_{(2)}}(x_2) = \binom{2}{1,1,0} \frac{1}{10} e^{-x_2/10} \left(1 - e^{-x_2/10}\right)^1 \left(e^{-x_2/10}\right)^0 = \frac{2}{10} (e^{-x_2/10}) (1 - e^{-x_2/10})$. Otherwise, $f_{X_{(2)}}(x_2) = 0$.

- **4. a.** We integrate using **3a** and get $\mathbb{E}(X_{(1)}) = \int_0^\infty (x_1)(\frac{2}{10})(e^{-x_1/10})^2 dx_1 = 5$.
- **b.** We integrate using **3b** and get $\mathbb{E}(X_{(2)}) = \int_0^\infty (x_2)(\frac{2}{10})(e^{-x_2/10})(1 e^{-x_2/10}) dx_2 = 15$.
- **5. a.** The CDF of each of the random variables is, for 0 < a < 1,

$$F_X(a) = P(X \le a) = \int_0^a 6(x - x^2) dx = -2a^3 + 3a^2.$$

Thus for $0 < x_1 < 1$,

$$f_{X_{(1)}}(x_1) = {2 \choose 0, 1, 1} f_X(x_1) (1 - F_X(x_1))$$

$$= {2 \choose 0, 1, 1} (6(x_1 - x_1^2)) (1 + 2x_1^3 - 3x_1^2)$$

$$= 12x_1 - 12x_1^2 - 36x_1^3 + 60x_1^4 - 24x_1^5$$

Otherwise, $f_{X_{(1)}}(x_1) = 0$.

b. We integrate using **5a** and get $\mathbb{E}(X_{(1)}) = \int_0^1 (x_1)(12x_1 - 12x_1^2 - 36x_1^3 + 60x_1^4 - 24x_1^5)dx_1 = 13/35$.

1