DTS203TC Design and Analysis of Algorithms

Revision and Final Exam Information

Dr. Qi Chen
School of AI and Advanced Computing

Course Contents

- Efficiency of Algorithms and Complexity Measures
- Algorithms and Data Structures
- Computational Intractability and NP-Completeness

Efficiency of Algorithms and Complexity Measures

- Examples of algorithmic problems and introduction of complexity in terms of various resources
- Asymptotic complexity and notation in conjunction with a discussion on the worst-case versus the average-case complexity

Efficiency of Algorithms and Complexity Measures

 $O(n^3)$

- O-notation
- Ω -notation
- Θ-notation

Exercise:

$$n^3 + 3n^2 + 3$$

-
$$4n^2 \log n + n^3 + 5n^2 + n$$
 $O(n^3)$

•
$$6n^2 + 2^n$$
 $O(2^n)$

Efficiency of Algorithms and Complexity Measures

Solving recurrence

- Substitution method: Guess a bound + Mathematic induction
- Recursion-tree method: covert the recurrence into a tree
- Master method

Exercise:

•
$$T(n) = T(n/2) + \Theta(1)$$

• $T(n) = 2T(n/2) + \Theta(1)$
• $T(n) = 2T(n/2) + \Theta(n)$
• $T(n) = 2T(n/2) + \Theta(n)$
• $O(n\log n)$
• $O(n\log n)$

- Introduction and analysis of basic data structures with their efficient implementation:
 - Stack
 - Queue
 - LinkedList
 - Hash table
 - Heap

Trees:

- Binary Search Trees
- Insertion and Deletion
- Tree Traversal
- AVL Tree
- Red-Black Tree

Binary Search Trees

- Divide and Conquer
 - Merge sort
 - Binary search
- Dynamic Programming
 - Fibonacci numbers
 - Assembly line scheduling problem
 - 0-1 Knapsack problem
 - Longest common subsequence problem
- Greedy Algorithms
 - Activity selection problem
 - Huffman coding problem

- Graph
 - Graph representation
 - Breadth first search
 - Depth first search
- Minimum Spanning Tree
 - Kruskal's algorithm
 - Prim's algorithm
- Shortest Paths
 - Dijkstra's algorithm
 - Bellman-Ford algorithm
- Maximum Flow
 - Ford-Fulkerson Algorithm
 - Bipartite matching

- String Matching
 - Naïve algorithm
 - Rabin-Karp Algorithm
 - Knuth-Morris-Pratt Algorithm

- Number Theory
 - Primes
 - Modular arithmetic
 - Euclid's GCD algorithm
 - Extended Euclid's algorithm
 - Modular Multiplicative Inverse
 - Euler's totient function
 - Powers of an element
 - RSA public-key cryptography

NP-completeness

- The classes P and NP
- Polynomial-time reduction
- Cook-Levin Theorem
- NP Hard and NP Completeness
- NP completeness problems
 - Hamiltonian circuit
 - SAT (satisfiability)
 - 0/1 knapsack
 - 3-Coloring
 - K-Clique
 - Vertex cover
- How to prove NP Completeness

Exam

next Friday (April 12) at M1018 from 14:00 - 16:00.

Exam

- A closed-book examination.
- Total marks available are 100. (60% of final module mark)
- Only the university approved calculator Casio FS82ES/83ES can be used.
- The exam consists of SIX questions.
- NO MCQ
- Only English solutions are accepted.

