





Inteligentni sistemi

Optimizacija fuzzy sistema

Oblasti primene i primeri iz prakse

#### Primena genetskih algoritama

- 1. Bin-packing problemi (1D, 2D, 3D)
- 2. Optimalne putanje
  - optimalna putanja na terenu za ski stazu, autoput, i sl.
- 3. Optimizacija (*fine tuning*) parametara regulatora (Fuzzy, PID i dr.)
- 4. Odabir tehničkih pokazatelja (feature selection)
- 5. Rutiranje
  - rutiranje automobila GPS navigacija
  - problem trgovačkog putnika, itd.

#### 1D Bin-packing problem

# (sečenje cevi, kablova, greda; raspoređivanje TV reklama u pauzama između emisija)

Operations Research techniques for Industrial Engineers

#### Application O.R. Techniques:

- LINEAR PROGRAMMING...
  - Cutting Stock Problems: Cutting the material in certain shapes and sizes, in order to generate certain desired shapes and sizes, so as to minimize cost etc.
  - One-dimensional, Two-dimensional & Three-dimensional cutting stock problem
  - Example: A stock roll is cut into given sizes so that demand of each product is satisfied.
  - o A solution is specified by
    - Cutting Patterns: a pattern is a set of products whose total length is not more than 'L'
    - Frequency: the number of times each cutting pattern is applied.



#### **2D Bin-packing problem**

## (rezanje građevinskih materijala: iverica, lim, staklo i sl.)





#### **3D Bin-packing problem**



punjenje teretnih vagona, kontejnera, kamiona, raspored robe u skladištima, itd.

# Rešenje jednodimenzionalnog *bin-packing* problema primenom genetskog algoritma



Data je fiksna dužina *bin*-ova *LB* i sekvenca dužina *item*-a:

$$(a_1, a_2, ..., a_n)$$

Treba rasporediti date *item*-e u sekvencu *bin*-ova, tako da broj upotrebljenih *bin*-ova bude minimalan, a pri tome da važi:

$$\sum_{a_i \in B_j} a_i \le LB \qquad 1 \le j \le m$$

#### JEDNODIMENZIONALNI BIN-PACKING PROBLEM – mali sistemi



- ❖ rešenje za male sisteme broj *item*-a je do 40 detaljna pretraga
  - stohastička pretraga
  - permutacioni genetski algoritam

Pronalaženje optimalne putanje za ski stazu upotrebom genetskih algoritama

#### Primer rada programa



#### Primer rada programa na drugom terenu



#### Swarm Intelligence – Inteligencija roja (jata)

- PSO (Particle Swarm optimization) Optimizacija rojem čestica
  - inspirisan jatima ptica
  - $\triangleright$  optimizacioni problemi u  $\mathbb{R}^n$  prostorima
  - npr. optimizacija realnih parametara nekog regulatora (upravljanje brodskom prevodnicom)
- 2. ABC (Artificial Bee Colony) Veštačka kolonija pčela
- 3. ACO (Ant Colony Optimization) Mravlje kolonije
  - Optimizacija u diskretnim prostorima (npr. rutiranje)



Ekspertski sistem za upravljanje brodskom prevodnicom zasnovan na računarskoj inteligenciji



#### Uvod

- Brodske prevodnice omogućuju prelazak plovila sa jednog na drugi nivo vodnog ogledala.
- Razlike u nivoima na unutrašnjim vodnim putevima su najčešće posledica izgradnje brana.
- Organizacija saobraćaja plovila na kanalima u zoni brodske prevodnice predstavlja kompromis između racionalnog korišćenja prevodnice i minimizacije vremena zadržavanja plovila koja čekaju na prevođenje.
- Razvijen je fazi ekspertski sistem (FES) sa namenom da pomogne operaterima u procesu donošenja odluka prilikom operativnog upravljanja brodskom prevodnicom.



#### Uvod

- Korišćeni su globalni numerički algoritmi optimizacije:
  - Genetski algoritam (GA)
  - Algoritam zasnovan na roju čestica (PSO)
  - Algoritam zasnovan na veštačkoj koloniji pčela (ABC)
- Ciljevi optimizacije:
  - Minimizacija broja prevođenja na prazno (promena nivoa vode u komori bez plovila)
  - Minimizacija vremena čekanja (zadržavanja plovila).



## Tehnološki proces prevođenja



- Tehnološki proces prevođenja: jedna komora – jedno plovilo
- Stepen prioriteta: sva plovila imaju jednak prioritet, odnosno prevođenje bez prioriteta





## Tehnološki proces prevođenja



## Brodska prevodnica "Kucura"





## Model brodske prevodnice



Pseudo kod

- Inicijalizacija broja prevođenja na prazno (BPnP), ukupnog vremena čekanja (UVČ) i trenutnog vremena
- Čitanje vremena i smera novog dolaska plovila.
- 3) Da li upravljačka logika sprovodi regularno ili prevođenje na prazno?
- Računanje broja prevođenja na prazno
- 5) Da li plovilo čeka ili ne?
- 6) Računanje ukupnog vremena čekanja

7) Računanje novog trenutnog vremena simulacije



## "Dilema" situacija





## Skup dolazaka plovila

| Mesec     | Ukupan broj<br>plovila | Dolasci sa<br>gornjeg nivoa | Dolasci sa<br>donjeg nivoa | Odnos dolazaka<br>dole/gore |
|-----------|------------------------|-----------------------------|----------------------------|-----------------------------|
| mart      | 106                    | 50                          | 56                         | 1,12                        |
| april     | 311                    | 147                         | 164                        | 1,11                        |
| maj       | 322                    | 167                         | 155                        | 0,93                        |
| jun       | 306                    | 161                         | 145                        | 0,90                        |
| jul       | 289                    | 143                         | 146                        | 1,02                        |
| avgust    | 313                    | 161                         | 152                        | 0,94                        |
| septembar | 297                    | 153                         | 144                        | 0,94                        |
| oktobar   | 294                    | 166                         | 128                        | 0,77                        |
| novembar  | 325                    | 152                         | 173                        | 1,14                        |
| decembar  | 223                    | 118                         | 105                        | 0,89                        |

- Ukupan broj plovila
- Dolasci sa gornje strane
- Dolasci sa donje strane



#### Fazi ekspertski sistem





#### Ulazne fazi varijable

Rastojanje najbližeg plovila od prevodnice sa strane gde je otvorena

kapija (ROK)



Rastojanje najbližeg plovila od prevodnice sa strane gde je zatvorena

kapija (RZK).





#### Izlazna fazi varijabla

 Promena stanja prevodnice (PSP)

$$\mu(x) = \frac{1}{1 + e^{-a(x-c)}}$$

$$\mu(x) = \frac{1}{1 + e^{-a_1(x - c_1)}} - \frac{1}{1 + e^{-a_2(x - c_2)}}$$

| ROK     | RZK       |           |           |
|---------|-----------|-----------|-----------|
|         | Malo      | Srednje   | Veliko    |
| Malo    | Ne menjaj | Ne menjaj | Ne menjaj |
| Srednje | Neodređen | Ne menjaj | Ne menjaj |
| Veliko  | Promeni   | Neodređen | Ne menjaj |



- Mamdani metode
- implikacija: minimizacija
- agregacija: maksimizacija
- defazifikacija: centar mase



## Fazi mehanizam odlučivanja



## Ispitivanje kombinacija metoda

| Implikacija | Agregacija  | Defazifikacija    | Br. prevođenja | Prosečno vreme čekanja |
|-------------|-------------|-------------------|----------------|------------------------|
| mpinkacija  | Agi egacija | Delazilikacija    | na prazno      | [min]                  |
| Minimum     | Maksimum    | Centar mase       | 38             | 69.21                  |
| Minimum     | Maksimum    | Bisekcija površi  | 38             | 77.59                  |
| Minimum     | Maksimum    | Sredina maksimuma | 38             | 83.14                  |
| Minimum     | Maksimum    | Najveći maksimum  | 38             | 83.14                  |
| Minimum     | Maksimum    | Najmanji maksimum | 31             | 788.95                 |
| Minimum     | Suma        | Centar mase       | 38             | 69.21                  |
| Minimum     | Suma        | Bisekcija površi  | 38             | 78.00                  |
| Minimum     | Suma        | Sredina maksimuma | 31             | 788.95                 |
| Minimum     | Suma        | Najmanji maksimum | 31             | 788.95                 |
| Minimum     | PROBOR      | Centar mase       | 38             | 69.21                  |
| Proizvod    | Maksimum    | Centar mase       | 38             | 69.21                  |
| Proizvod    | Maksimum    | Bisekcija površi  | 38             | 74.94                  |
| Proizvod    | Maksimum    | Sredina maksimuma | 38             | 83.14                  |
| Proizvod    | Suma        | Centar mase       | 38             | 69.21                  |
| Proizvod    | Suma        | Bisekcija površi  | 38             | 78.00                  |
| Proizvod    | PROBOR      | Centar mase       | 38             | 69.21                  |
| Proizvod    | PROBOR      | Bisekcija površi  | 38             | 78.00                  |
| Proizvod    | PROBOR      | Sredina maksimuma | 38             | 83.14                  |
| Proizvod    | PROBOR      | Najmanji maksimum | 38             | 83.14 <b>2CS</b>       |

## Optimizacija parametara FES-a

- Kriterijum optimalnosti:  $E = A * BPnP + B * SV\check{C}$ 
  - BPnP ukupan broj prevođenja na prazno u posmatranom vremenskom intervalu;
  - SVČ srednje vreme čekanja po plovilu u minutima u posmatranom vremenskom intervalu.
- Kompromis između smanjenja troškova rada brodske prevodnice i potrošnje vode i interesa brodara za ostvarivanje što kraćih zadržavanja tokom transportnog procesa.



## Struktura jedinke (čestice)

4 koordinate u prostoru rešenja

$$X_{ROK}$$
  $Y_{ROK}$   $X_{RZK}$   $Y_{RZK}$ 

Ograničenja

$$0 \le X_{ROK} \le Y_{ROK} \le 100$$
  
 $0 \le X_{RZK} \le Y_{RZK} \le 100$ 

 X i Y jednoznačno određuju pozicije svih funkcija pripadnosti odgovarajuće ulazne fazi promenljive.

## Struktura jedinke (čestice)





# Procedura optimizacije



## Metode optimizacije

- Genetski algoritam (GA)
  - Evoluciona tehnika bazirana na teoriji evolucije
  - 30 jedinki u generaciji, linearno rangiranje, stohastička univerzalna selekcija, uniformna mutacija i uniformno ukrštanje
- Optimizacija zasnovana na roju čestica (PSO)
  - Algoritam inspirisan socijalnim ponašanjem životinja koje se kreću u velikim grupama (posebno ptica)

$$v(k+1) = w * v(k) + cp * rp(k) * (p(k) - x(k)) + cg * rg(k) * (g(k) - x(k))$$
$$x(k+1) = x(k) + v(k+1)$$

| Naziv parametra                            | Početno istraživanje | Drugi deo istraživanja (poređenje metoda) |
|--------------------------------------------|----------------------|-------------------------------------------|
| Veličina populacije                        | 100                  | 30                                        |
| Maksimalni broj iteracija                  | 10                   | 15                                        |
| Maksimalna brzina čestice v <sub>max</sub> | 0,4                  | 0,4                                       |
| Minimalna brzina čestice v <sub>min</sub>  | 0,05                 | 0,05                                      |
| Faktor ubrzanja cp                         | 1,1                  | 2,5 -> 0,5                                |
| Faktor ubrzanja cg                         | 1,2                  | 0,5 -> 2,5                                |
| Faktor inercije w                          | 0,95 -> 0,4          | 0,95 -> 0,4                               |

## Metode optimizacije

- Optimizacija zasnovana na veštačkoj koloniji pčela (ABC)
  - Relativno novi numerički algoritam optimizacije
  - Zasnovan na simulaciji kretanja roja pčela u potrazi za hranom
  - Pozicija izvora hrane predstavlja moguće rešenje problema optimizacije a količina nektara u izvoru hrane odgovara vrednosti kriterijuma optimalnosti u tom rešenju.
  - Tri grupe pčela: pčele radilice, posmatrači i skauti.

## Rezultati posle optimizacije

|                           | Broj       | Srednje vreme | Ekonomski  |  |
|---------------------------|------------|---------------|------------|--|
| Upravljački algoritam     | prevođenja | čekanja po    | kriterijum |  |
|                           | na prazno  | plovilu [min] | (A=B=1)    |  |
| Originalni FES            | 768        | 138,0         | 906,0      |  |
| FES optimizovan sa PSO    | 744        | 135,6         | 879,6      |  |
| Minimalno vreme čekanja   | 1410       | 4,2           | 1.414,2    |  |
| Minimalni broj prevođenja | 50         | 3.090,9       | 3.140,9    |  |

| Parametar<br>FES-a | Originalni<br>FES | FES11 | FES41 | FES14 |
|--------------------|-------------------|-------|-------|-------|
| $X_{ROK}$          | 40                | 38,89 | 70,11 | 30,87 |
| $Y_{ROK}$          | 60                | 61,94 | 91,03 | 55,53 |
| $X_{RZK}$          | 20                | 22,31 | 8,10  | 71,39 |
| $Y_{RZK}$          | 40                | 44,20 | 24,00 | 87,46 |

FES11 (A:B = 1:1; A=B=1) FES41 (A:B = 4:1; A=2, B=0,5) FES14 (A:B = 1:4; A=0,5, B=2)

## Rezultati posle optimizacije



## Rezultati posle optimizacije

| Fazi ekspertski | Broj prevođenja na prazno u | Srednje vreme       |
|-----------------|-----------------------------|---------------------|
| sistem          | toku godine (BPnP)          | čekanja (SVČ) [min] |
| Originalni      | 768                         | 138,0               |
| FES11           | 744                         | 135,6               |
| FES41           | 670                         | 144,2               |
| FSE14           | 842                         | 112,5               |

| Fazi ekspertski | Broj prevođenja na prazno | Srednje vreme     |
|-----------------|---------------------------|-------------------|
| sistem (FES)    | (BPnP) [%]                | čekanja (SVČ) [%] |
| FES11           | +3.13                     | +1.75             |
| FES41           | +12.76                    | -4.48             |
| FES14           | -9.64                     | +18.49            |

#### Uporedni pregled metoda optimizacije

|       |                      | Upravljačka strategija |         |            |                  |         |         |
|-------|----------------------|------------------------|---------|------------|------------------|---------|---------|
|       |                      | MVČ                    | МВР     | Originalni | Optimizovani FES |         |         |
|       |                      |                        |         | FES        | GA               | PSO     | ABC     |
|       | BPnP                 | 1.410                  | 50      | 746        | 824              | 822     | 802     |
|       | SVČ [min]            | 4,2                    | 3.090,9 | 137,3      | 114,2            | 114,6   | 115,9   |
| FES14 | Vrednost kriterijuma | 713,4                  | 6.206,7 | 647,6      | 640,3            | 640,3   | 632,9   |
|       | BPnP                 | 1.410                  | 50      | 746        | 726              | 720     | 726     |
|       | SVČ [min]            | 4,2                    | 3.090.9 | 137,3      | 137,9            | 140,5   | 137,8   |
| FES11 | Vrednost kriterijuma | 1.414,2                | 3.140,9 | 883,3      | 863,9            | 860,5   | 863,8   |
|       | BPnP                 | 1.410                  | 50      | 746        | 670              | 670     | 676     |
|       | SVČ [min]            | 4,2                    | 3.090,9 | 137,3      | 144,2            | 144,2   | 144,4   |
| FES41 | Vrednost kriterijuma | 2.822,1                | 1.645,4 | 1.560,7    | 1.412,1          | 1.412,1 | 1.424,2 |

#### **KRAJ**