

Creativity & Innovation

Gear System

Balancing System and Concept

Thematic Design

Free Body Diagram

Presented by: Stephanie

Using the Lidar

The concept:

The equation for an eclipse in polar coordinates

$$r(\theta) = \frac{ab}{\sqrt{(b\cos\theta)^2 + (a\sin\theta)^2}}$$

When
$$\theta = 0, r = a$$
, and when $\theta = \frac{\pi}{2}, r = b$

So the formula you're looking for (where d = 2r) is

$$r(\theta) = \frac{2ab}{\sqrt{(b\cos\theta)^2 + (a\sin\theta)^2}}$$

Problems:

- The lidar is not mounted at the center
- Connecting the lidar and the IMU on the same ESP

Gearing Mechanism

- Added a bearing between desk and gear
- Gear ratio is 5:2
 - To get 90 degrees, we have to rotate the motor 225 degrees
- Solutions:
 - Continuous servo
 - Stepper motor
 - o DC motor with limit switch

Presented by: Mohammed

Controls and Electronics

ESP32 drives sensors and main control motor

 Angle inputs: compare average of recent angle measurements to setpoint

 Control: Use proportional controller to set rod angle

Resetting: Theoretically triggers
Raspberry Pi with gear mechanism

One last last last medification hope!

We have added a string from the balancing rod to the shaft. The karate kid will try to rotate the shaft by pulling the strings while trying to balance himself on the boat

Success??

Presented by: Mohammed

Thank you! Questions?

Creativity & Innovation

Gear System

Balancing System and Concept

Thematic Design

Free Body Diagram

Presented by: Stephanie

Using the Lidar

The concept:

The equation for an eclipse in polar coordinates

$$r(\theta) = \frac{ab}{\sqrt{(b\cos\theta)^2 + (a\sin\theta)^2}}$$

When
$$\theta = 0, r = a$$
, and when $\theta = \frac{\pi}{2}, r = b$

So the formula you're looking for (where d = 2r) is

$$r(\theta) = \frac{2ab}{\sqrt{(b\cos\theta)^2 + (a\sin\theta)^2}}$$

Problems:

- The lidar is not mounted at the center
- Connecting the lidar and the IMU on the same ESP

Gearing Mechanism

- Added a bearing between desk and gear
- Gear ratio is 5:2
 - To get 90 degrees, we have to rotate the motor 225 degrees
- Solutions:
 - Continuous servo
 - Stepper motor
 - o DC motor with limit switch

Controls and Electronics

ESP32 drives sensors and main control motor

 Angle inputs: compare average of recent angle measurements to setpoint

 Control: Use proportional controller to set rod angle

Resetting: Theoretically triggers
Raspberry Pi with gear mechanism

One last last last medification hope!

We have added a string from the balancing rod to the shaft. The karate kid will try to rotate the shaft by pulling the strings while trying to balance himself on the boat

Success??

Presented by: Mohammed

Thank you! Questions?

