

GoodLuck	Page No.	
Date	1	

1 11

	17.6 35. 1			1	
)	n(in°)	&Cn)	n(in mad)	J(K) COSH	S(n) sinn.
	30	7.976	416	6.90741	3.988
	60	8.026	11/3	4.013	6.9507
	9090	7.204	11/2	0	7.204
	120	5.676	211/3	-2.838	4.9155
	150	3.674	51/6	-3.1817	1.837
	180	1.764		-1.764	0 0
	210	0.552	1 dl 6	-0.4780	-0.276
	240	0.262	40/3	-0.131	-0.22689
4	270	0.904	3 11/2	O	-0.904
	300	2.492	51/3	1.246	24581
	330	4.736	114/6	1924.1014	-2.368
	360	6.284	27	6.284	6
-		$\Sigma = 49.55$		D=14.15911	5 = 18.96221
		4. y		8 5 5 5	7

2.)

$$\begin{array}{lll}
- & \text{di} = 0 & \text{c} = \text{fi} \\
& \text{in} = 2 \left[\text{mean } \int_{0}^{\infty} \int_{0}^{\infty} (x) & \text{in} \left[O_{1} (2\pi) \right] \right] \\
& \text{di} = 2 \left[\text{mean } \int_{0}^{\infty} \int_{0}^{\infty} (x) & \text{in} \left[O_{2} (2\pi) \right] \right] \\
& \text{bi} = 2 \left[\text{mean } \int_{0}^{\infty} \int_{0}^{\infty} (x) & \text{in} \left[O_{2} (2\pi) \right] \right]
\end{array}$$

$$a_1 = 2 L mean of S(x) in (0,2\pi)$$

$$b_1 = 2 L mean of S(x) in (0,2\pi)$$

$$a_0 = 2 \left[\frac{49.55}{10} \right] = 8.2583$$

$$a_1 = 2 \left[\frac{14.15911}{12} \right] = 2334 2.35985$$

$$00 b = 2 \left[\frac{18.96221}{12} \right] = 3.16036$$

3)

 $\frac{3y+z=z}{8}$ an $\frac{3y=4z}{2}$

Now, 3y = 4z = (41-n-y)7y = 4y 4n or 56n + 4n = 4

 $2 \cdot 10^{-1} \times 10^{-1} \times$

· The fixed votsion, t = (1 8 6)

Therefore, system in long run stays in stable state one, 40% of the time (6 = 2) (i.e. there will be 2 med in A, 40% of time)