⑩ 日本国特許庁(JP)

① 特許出願公開

@ 公開特許公報(A) 平3-89509

@Int. Cl. 5

庁内整理番号

60公開 平成3年(1991)4月15日

9/08

7924-5E Z

H 01 G 3/00

審査請求 未請求 請求項の数 1 (全4頁)

固体電解コンデンサ の発明の名称・

②特 顧 平1-225800

Ħ

和

識別記号

②出 類 平1(1989)8月31日

@発 明 浩 @発 安

福島県田村郡三春町大字能耳大平16 介 宏

勿発 佐 @発

福島県田村郡三春町大字熊耳大平16 福島県田村郡三春町大字熊耳大平16 福島県田村郡三春町大字熊耳大平16

個発 明 者 飯 Œ の発 明 者 武 EFF.

福島県田村郡三春町大字熊耳大平16 福島県田村郡三春町大字熊耳大平16 信う

日立エーアイシー株式 勿出 頭 人

東京都品川区西五反田1丁目31番1号

会社

1. 雅明の名称

因体電解コンデンサ

2. 特許請求の範囲

(1) 外装の一部に、弾性率が0.6×10⁴ kg / ml以上、 熱伝過率が 0.0025 cal/ca・

s・で以上の絶縁基板を設けることを特徴と

する固体電解コンデンサ。

3. 発明の計順な説明 (産業上の利用分野)

本発明は倒体電解コンデンサに関する。

(従来の技術)

タンタル等のチップ型の固体電解コンデンサは、 例えば、第9国に示す通りの構造を有し、アリン ト配股板の表面に半田付けされて用いられている。

ところで、プリント配船板の実装密度を向上す るために、根体器解コンデンサも、小型化が要求

されている.

固体電解コンデンサ50を小型化するには、外

装51を薄くしたり、コンデンサ素子52から引 を出されているリード報53や外部に引き出され ている粒子54を短かくしている。

(発明が解決しようとする課題)

しかし、外装51を除くしたり、リード線53 や帽子54を短かくすると、個体電解コンデンサ

5 0 チブリント配輪板にリフロー状やディップは

で半田付けする際に加熱するが、その熱が外装5

1の内部やコンデンサ業子52に伝達され易くな

る。そのために、外装51やコンデンサ業子52

が加熱収縮する際の歪によって劣化したり、コン テンサ素子52が直接熱によって劣化したりして、

割れ電板(以下しCという)が増加したり tanð

が増加したりする欠点がある。 本発明は、以上の欠点を改良し、LC特性等を

肉上しうる固体常常コンデンサを収集することを

目的とするものである。 (課題を解決するための手段)

本発明は、上記の目的を達成するために、外装

無伝導率がり、0025cal/ca・s・で以上の絶、 森基板を設けることを特徴とする固体電解コンデ ンサを登引するものである。

(作用)

(実施例)

以下、本兄明を閔示の実施例に基づいて説明する。

新1団に示すあり、1はガラスや石叉等の絶縁 基板である。2はこの絶縁基板1の表面に載すさ れたタンタルのコンデンサ来子である。3はコン デンサ東子2の一幅から引き出されている影像リ ナリ東子3の一幅から引き出されている影像リ ちれたアン乗倒あった。1は関係リード解3の根本に設け られたアン乗倒あシートである。5は、一幅が既 板リード3に 京後され、 他端が触程は板1の場所を挟んでいるリードフレーム状の関係 類子である。 6 は、一ながコンデンサ来子2の側面に 繋ベーストで接続され、 他端が絶縁 尾板1の端路を挟んでいる リードフレーム状の 技権場子である。 7 は ランデンサ系子2を被覆するエポキシ刺動からなる

また、第2回~第8回は、本発明の他の実施例を示す。

第2 関の実施制は、2 枚の絶縁基板8及び9に よりコンデンリ素子10を挟んでいる以外は、第 1 囲と刷じとする。

第3回の実施例は、場階外裂11をコンデンリ 第412の媒権リード13が引き出されている例 にのみ設ける以外は、第1回とは同じとする。 制筋外裂11が少なく熱収組跡に与える影響を付 能できる。

第4回の実施別は、絶縁早板14の両端の呼さ を厚くする以外は第3回の実施例と同じとする。 コンテンサ素子15の位置状めを有為に行なえる。

第5回の実施的は、コンデンサ素子16の一個から開催リード17を引き出し、これに関係属子18を閉接し、先端に単田編19を設けるとともに、コンデンサ素子16の他に対して、立の形を対して、コンサ素子16を制造して、コンチンサ素子16を制造が表生して、この影響が表生して、この影響が表生して、この影響が表生して、この影響が表生して、この影響が表生して、この影響が表生して、この影響が表生して、この影響が表生している。

第6回の実施的は、コンデンサ素子23の一場から開催リード24を引き出しこれにリードフレーム状の原作場子25を形像し、その先端で貼る 延暫26の一場を取む。そしてコンデンサネース の成態に個ペーストを介してリードフレーなの の機能学27を振移し、先端で電を致んでいる。 研系第28はコンデンサネ子23全体を である。この場合には、コンデンサ素子23と技術 ボテ27の混合版の財性分別となると できる。なが、影響の一次のとなる。

き法等の原膜法で形成してもよい。

第7回の実施的は、コンデンサ素子29をその 明価を総格及を30に接触して軽調し、影像療子 31と影像機プ30とを互いに反対方向から能称 対概30と平行に引き出し、制備外表3.3でコン デンサネ子29を被覆する。

 て、温度260℃の平用液小に10秒間提前して 取り出す処理を3回機り落し、縁れ端数及び tan 5を測定した。以料は、第1回~第9回の場立の 定格35V、1.5以Fのタンタル開体電解コン デンツを各々1000少用いる。

製品外路はヤング車 0.14×10⁴ 加ノ mi、 熱伝海車は0.0016cal/cm·s でとする。 また、能容基板の大きさは、第2回~第4回の第 造の実施例が幅3.2 mi、長さ2.6 mi、第5回 実施例が幅2.6 mi、長さ2.6 mi、第6回の 実施例が幅2.8 mi、長さ2.6 mi、第7回の実 施例が幅3.2 mi、長さ1.8 mi、第8回の実施 例が幅3.2 mi、長さ1.8 mi、第8回の実施 例が幅3.4 mi、長さ2.4 miとする。触線基板 の材質、弾性車及び熱伝導率は表1の適りとする

æ 1

証板のお別	列 性 事 (×10 ⁴ Kg/ani)	然 伝 等 字 (cal/car·s·C)
ガ ラ ス	0.67	0.0025
石 英	0.75	0.003
ジルコニア	1. 5	0.004
アルミナ	3.1	0.05
マクネシア	3.5	0.1
空化アルミニウム	3.5	0.2
炭化ケイ素	4.5	0.65
エポキシ制度	0.14	0.0016

なお、各実施例、比較例及び提来例とも、LC 及び、landの初期額は各々の、005~0、1 μ ハ、0、9~1、3%とする。制定拡張は表2に示した。

NEAG

34

Ð	類	例 遊	製板の材料	LC (µA)	lanð (%
实施贸	1	第1國	ガラス	0.005~0.012	0.9~1.4
•	2	"	石英	0.005~0.012	0.9~1.4
	3	. "	ジルコニア	0.005~0.012	0.9~1.4
	4		アルミナ	0.005~0.01	0.9~1.3
,	5	*	マグネシア・	0.005~0.01	0.9~1.3
•	6	-	空化アルミニウム	0.005~0.01	0.9~1.3
	7	-	炭化ケイ素	0.005~0.01	0.9~1.3
	8	第2因	ガラス	0.005~0.011	0.9~1.3
,	9	P	石英	0.005~0.011	0.9~1.3
,	10		ジルコニア	0.005~0.012	0.9~1.4
,,	11	,	アルミナ	0.005~0.008	0.9~1.25
•	12		マグネシア	0.005~0.01	0.9~1.3
	13	"	変化アルミニウム	0.005~0.01	0.9~1.3
,	14		炭化ケイ素	0.005~0.01	0.9~1.3
,	15	353 €	ガラス	0.005~0.012	0.9~1.4
-	16	~	石英 .	0.005~0.012	0.9~1.4
•	17	"	アルミナ	0.005~0.01	0.9~1.3
	18	"	変化アルミニウム	0.005~0.01	0.9~1.3
	19	25 4 53	アルミナ	0.005~0.01	0.9~1.3
	20	第5团	ガラス	0.005~0.012	0.9~1.4

		1.5			
16	M	4 2	単版の利用	LC (µA)	tanð (%
实施!	121	第5國	石英	0.005~0.012	0.9~1.4
	22		ジルコニア	0.005~0.012	0.9~1.4
•	23		アルミナ	0.005~0.01	0.9~1.3
•	24		マクネシア	0.005~0.01	0.9~1.3
•	25		際化アルミニウム	0.005~0.01	0.9~1.3
7	26	•	炭化ケイ素	0.005~0.01	0.9~1.3
	27	第6国	ガラス	0.005~0.012	0.9~1.4
•	28		石英	0.005~0.012	0.9~1.4
•	29		ジルコニア	0.005~0.012	0.9~1.4
•	30		アルミナ	0.005~0.01	0.9~1.3
	31	1,41	マグネシア	0.005~0.01	0.9~1.3
•	3.5	-	望化アルミニウム	0.005~0.01	0.9~1.3
•	33	•	製化ケイ素	0.005~-0.01	0.9~1.3
	34	第7回	石英	0.007~0.018	0.9~1.4
	35	•	アルミナ	0.007~0.015	0.9~1.3
	36	第8回	ガラス	0.005~4.01	0.9~1.3
•	37	•	石英	0.005~0.01	0.9~1.3
	38	•	ジルコニア	0.005~0.01	0.9~0.3
	39	-	アルミナ	0,005~0.01	0.9~1.3
	10		マグネシア	0.005~0.01	0.9~0.3

使 類	得 亞	正板の材料	LC (µA)	tanő (%
实施房41	第8國	変化アルミニウム	0.005~0.01	0.9~1.3
*. 42		以化ケイ集	0.005~0.01	0.9~0.3
比较例 1	第1回	エポキン例版	0.007~0.02	1.0~1.8
. 2	M2	,	0.007~0.02	1.0~1.6
. 3	第3國		0.01 ~0.025	1.2~1.8
. 4	第4因	*	0.007~0.02	1.0~1.6
• 5	第5团	"	0.01 ~0.03	1.2~2.0
• 6	第6國	"	0.07 ~0.02	1.0~1.6
• 7	第7回		0.07 ~0.02	1.0~1.6
• 8	第8团	-	0.01 ~0.025	1.2~1.8
花米例	第1図	7	0.007~0.02	1.0~1.6

表2から明らかな適り、木見明によれば、使来 例に比べてしては最小的か 5/71、最大的か 3/ 3となり、 tan 8 は最小的か 9/10、最大的か 7/ 8 となり、いずれも減少している。また、本見 明を比較粉と比べると、前名の方がしこ及び 0 とも改良されている。実って、絶縁更嫉は、ガ ラス程度以上の弾性単及び熱伝導準を有するもの である必要がある。

また、本見明によれば、第 8 回に示す構造の実 施例3 6 ~実施例4 2 が他の実施例に比べてじて 及び tan 5 ともより特性が向上する。

(発明の効果)

以上の適り、本見明によれば、加熱収縮の限の 財債外数及びコンテンサ素子に生じる正を他様感、 低により吸収し、均一に分散できるために、LC で tan 5の劣化を軽減し、特在を向上しうる関係 電解コンテンサが対られる。

4. 図面の簡単な説明

第1 図は木見明の実施例の新面向、第2 図~第 8 図は木見明の他の実施例の新面回、第9 図は従 米の個体電解コンテンサの新面回を示す。

1.8,9,14.22,26,30,34.4 総辞基板、2.10.12.15,16,23 29,39…コンデンリ系子、7.11,21 28.33.44…制衛外表。

特許出順人 日立コンデンサ株式会社

-56-