Opgaven week 2 – Fysische Chemie A1 voor Technische Natuurkunde

Opdracht 1 – σ en π bindingen

- (a) Schets hoe twee p-orbitalen van twee verschillende atomen samen een σ-bond kunnen vormen.
- (b) Schets hoe een π -bond is gevormd uit p-orbitalen.
- (c) Welke is normaal gesproken sterker, een σ of π bond? Leg uit.
- (d) Kunnen twee s-orbitalen samen een π -bond vormen? Leg uit.

*Opdracht 2 - Water molecuul H2O (10 pt)

- (a) Geef de elektronenconfiguratie van H (Z=1) en O (Z=8) (2pt)
- (b) Schets de orbitalen van de valentie elektronen van de twee H's en (ongehybridiseerd) O in H₂O. Schets hoe deze zouden overlappen met elkaar om een H₂O molecuul te vormen (2pt)
- (c) Wat zou de H-O-H bindingshoek zijn in deze eerste valence bond theory benadering? (1pt)

In werkelijkheid hybridiseert het 2s orbitaal van zuurstof met de 2p orbitalen tot 2sp³ orbitalen.

- (d) Schets voor deze situatie hoe de orbitaal overlap tussen de twee H's en de (sp³ gehybridiseerde) O er uit ziet. (2pt)
- (e) Hoe heet deze moleculaire geometrie van een sp3 hybridisatie, en wat is nu H-O-H bindingshoek in deze situatie? (2pt)
- (f) In werkelijkheid is deze hoek 104.5°. Leg uit waarom "lone pairs" een mogelijke fysische verklaring kunnen geven tussen het verschil met antwoord 1e. (1pt)

Opdracht 3 - C₂H₂ molecuul

- (a) Welke hybridisatie hebben de C's in een C₂H₂ molecuul?
- (b) Schets de (gehybridiseerde?) atoom orbitalen en hoe deze overlappen om de geometrische structuur te achterhalen. Geef daarna m.b.v. een structuurformule de molecuulstructuur weer.
- (c) Geef voor elke chemische binding in dit molecuul aan wat voor type binding het is.

Opdracht 4 - Benzeen molecuul

Benzeen is een cyclisch molecuul met formule C_6H_6 . De C's vormen een zeshoek, en elke C is een covalente binding met een H. Beantwoord alle vragen van opdracht 3 voor dit molecuul

Opdracht 5 - BF₃

- (a) Geef de elektronconfiguratie voor een B (Z=5) atoom en voor een B- ion
- (b) Beantwoord vragen (b) en (c) van opdracht 3 voor een BF3 molecuul
- (c) Beantwoord vragen (b) en (c) van opdracht 3 voor een BF₄- anion

Opdracht 6

Voor elk van de onderstaande contour representaties van molecuulorbitalen, indentificeer:

- (a) de atoom orbitalen (s of p) die het MO construeren,
- (b) het type MO (σ of π),
- (c) of het MO bonding of antibonding is.

Opdracht 7 - Hybridisatie

Identificeer de hybridisatie van het centrale atoom in (a) C₂H₂, (b) All₃, en in O en P in (c) P(OH)₃,

Opdracht 8 - Hybridisatie

- (a) Geef de structuurformule voor Chloormethaan (CH_3CI), Chlooretheen (C_2H_3CI) en Chloorethyne (C_2HCI).
- (b) Wat is de hybridisatie van de koolstof atomen in elk molecuul?
- (c) Voorspel welke van bovenstaande moleculen planair zijn
- (d) Hoeveel σ en π bonden zijn er in elk molecuul?