Connection-oriented networks:

SONET/SDH, ATM, MPLS, and Optical Networks

Michael Devetsikiotis

Professor and Chair

Department of Electrical & Computer Engineering

The University of New Mexico

mdevets@unm.edu

1

1

Acknowledgements

• Many thanks to Professor Harry Perros of Computer Science at NC State for preparing the textbook and many of these slides and material.

3

Networking Principles

- Digitization:
 - Nyquist
 - Cheaper and more robust
- Economies of scale:
 - Cost per bandwidth unit becoming cheaper
 - Fixed costs?
 - The intangible " N^2 " factor
- Network externalities:
 - Positive if value to user increases with number of users
- Service integration:
 - Economies of scope
 - Universal network

4

High-Speed Networks: Driving Factors

- *Industry/Technology:*
 - Growth!! (in \$s and numbers)
 - Diversity of traffic: ?
 - Deregulation
 - New technologies: QoS, Broadband, 4G, streaming, VoIP, VoD...
- Society Problems but also opportunities:
 - Geography
 - Democracy
 - Access
 - Social Networking
 - But "searching"? Other?
 - Networks not quite as "neutral" as thought...

5

5

Connection-Oriented Networks:

SONET/SDH, ATM, MPLS, and Optical Networks

Michael Devetsikiotis ECE Department

6

Introduction

TOPICS

- Classification of communication systems
- What is a connection?
- Examples of connections
- Motivation for Quality of Service

7

/

Switched communication networks

- Circuit-switched networks:
 - The telephone network
 - Wavelength routing optical networks
- Packet-switched networks:
 - IP networks
 - ATM
 - Frame Relay
 - MPLS networks
 - 4G and next 5G mobile nets

9

9

Broadcast communication networks

- Examples:
 - packet radio networks
 - satellite networks
 - multi-access Ethernet

Packet-switched networks

- Connection-oriented networks
 - ATM
 - Frame Relay
 - MPLS
- Connectionless networks
 - IP
 - -MPLS?

11

11

Circuit-switched networks

In order for two users to communicate a *circuit* or a *connection* has to be first established by the network. Specifically, the following three phases are involved:

- circuit establishment,
- data transfer,
- circuit disconnect.

Connection-oriented packet-switched networks

- Circuit switching is a good solution for voice, since it involves exchanging a relatively continuous flow of data.
- However, it is not a good solution for the transmission of *bursty* data

13

13

Connection-oriented packet-switched networks imitate circuit-switched network. In order for two users to communicate a *virtual circuit* or a *connection* has to be first established by the network. The following three phases are involved:

- connection establishment,
- data transfer, and
- connection disconnect.

Connectionless packet-switched networks

- In an IP network, a user can send packets to a destination without having to set up a connection first, i.e., without informing the network prior to transmitting them.
- This simplifies the network, as there is no need for a special signaling protocol.

15

15

Routing in IP

The routing of a packet through the network is done on a hop-per-hop basis based on the destination IP address carried in the IP packet's header.

16

During the '90s and early 2000s...

- Technological advances:
 - Fiber optics with multiple wavelengths
 - Wireless
 - Satellites
- Traffic demand
 - Audio and video streaming
 - The web (B2B, B2C, C2C)
 - Private networks
 - Peer-to-peer

17

17

- Dominant Networking Technologies
 - IP networks
 - Asynchronous Transfer Mode (ATM, almost gone)
 - Frame Relay (gone)
- Emerging Networking Technologies
 - Access networks: FTTH, WiMax
 - MPLS for the backbone
 - 3G wireless, 4G, next 5G...
 - Optical WDM networks
 - LEO satellites
 - PON: GPON and other variations

Quality of Service

- What do applications require?
 - Video:
 - Voice:
 - Games:
 - Other?
- How does a network "guarantee" quality?
- Trade-offs

19

19

Quality of Service (QoS) in IP

- Typically, an IP router does not offer QoS.
- It cannot distinguish packets belonging to different service classes based on their destination address.
- IP is almost ubiquitous. There has been a lot of interest in introducing QoS in the IP network, and MPLS seems to be the architecture of choice for introducing QoS.

Example of connections: Telephony Probably the oldest connection-oriented circuit-switched network is the plain old telephone system (POTS) Twisted pair Sone Twisted pair Switch Switch Switch Switch

A bi-directional connection is established using signaling. The connection is associated with a local id number, called a VCI.

23

23

Switching through an ATM switch

- The switching of a cell through an ATM switch is done based on its connection ID number ("VCI").
- A connection is associated with a specific *class of service*.
- An ATM switch can distinguish cells belonging to different service classes, and serve them accordingly in order to provide them with the requested QoS.

24

ATM Characteristics

- Unlike IP networks, it was developed from the beginning with a view to carrying voice, video, and data.
- That is, it supports different types of traffic with different requirements for QoS.

25

25

Deployment of ATM

- ATM is not used to connect workstations and PCs in our work environment, since Ethernet dominates this market...
- It is used, however, in the backbone networks of telephony providers, ISPs, and in ADSL (an ADSL modem has a complete ATM card in it!)

Deployment of ATM

- Backbone of ISPs
- Circuit emulation services
- Video distribution: MPEG2 over ATM
- Residential access networks: ADSL, APONs
- Used in cellular telephony, 3G
- Voice over ATM (trunking and also voice to the user)

27

27

Some market statistics

- ATM equipment in 2000 accounted for 15-20% of the total networking equipment. That is, it accounted for \$7 to \$10 Billion out of a \$50 Billion market.
- This share increased and then slowly reduced in the recent years.

MPLS

• The need to introduce QoS in in the IP network has led to the development of a connection-oriented architecture in the IP network, known as *Multi-protocol label switching* (MPLS)

29

29

An MPLS connection

- The procedure is similar to ATM.
- An MPLS-enabled IP router switches IP packets not on a hop-by-hop basis using the packet's IP address. Rather, it forwards them using a label which identifies the connection that the packet has to follow.

30

GMPLS

- MPLS was extended to *generalized MPLS* (GMPLS) to also include other non-packet oriented networks, such as
 - Wavelength-routed optical networks
 - Time division switching

31

31

A wavelength routing optical network connection Router A OXC 1 OXC 2 OXC 3 Router B A three-node wavelength routing network Router A OXC 1 OXC 2 OXC 3 Router B A lightpath A lightpath

- An important feature of a wavelength routing optical network is that it is a circuit-switched network.
- A connection is an optical path through the optical network (called a *lightpath*) and it is established using a wavelength on each hop along the connection's path.

33

33

Signalling and topology reachability information

- A connection-oriented network requires a signalling protocol for setting up, maintaining, and tearing down connections in real time.
- It also requires a protocol for gathering and distributing topology reachability information.
- Examples:
 - SS7 (telephony)
 - Q.2931 (ATM)
 - OSPF, BGP, RSVP (IP)
 - LDP, CR-LDP, RSVP-TE (MPLS)

34

Standards Committees

- ITU-T
- ISO
- ANSI
- IEEE
- ATM Forum (now gone)
- MPLS and Frame Relay Alliance
- MFA Forum succeeded the ones above
 - OIF
 - IETF

35

35

Connection-oriented networks: The ATM Architecture

Michael Devetsikiotis ECE Department

(slides adapted from Perros and Kurose-Ross)

Network service model

- Q: What *service model* for "channel" transporting packets from sender to receiver?
- guaranteed bandwidth?
- preservation of inter-packet timing (no jitter)?
- loss-free delivery?
- in-order delivery?
- congestion feedback to sender?

The most important abstraction provided by network layer:

virtual circuit or datagram?

37

37

Virtual circuits

"source-to-dest path behaves much like telephone circuit"

- performance-wise
- network actions along source-to-dest path
- call setup, teardown for each call before data can flow
- each packet carries VC identifier (not destination host ID)
- *every* router on source-dest path s maintain "state" for each passing connection
 - transport-layer connection only involved two end systems
- link, router resources (bandwidth, buffers) may be *allocated* to VC
 - to obtain circuit-like performance

Datagram networks: the Internet model • no call setup at network layer • routers: no state about end-to-end connections - no network-level concept of "connection" • packets typically routed using destination host ID packets between same source-dest pair may take different paths application application transport transport network network 1. Send data data link 2. Receive data data link physical physical 40

Datagram or VC network: why?

Internet

- data exchange among computers
 - "elastic" service, no strict timing req.
- "smart" end systems (computers)
 - can adapt, perform control, error recovery
 - simple inside network, complexity at "edge"
- · many link types
 - different characteristics
 - uniform service difficult

ATM

- · evolved from telephony
- human conversation:
 - strict timing, reliability requirements
 - need for guaranteed service
- "dumb" end systems
 - telephones
 - complexity inside network

41

41

ATM Layer: Virtual Circuits

- VC transport: cells carried on VC from source to dest
 - call setup, teardown for each call before data can flow
 - each packet carries VC identifier (not destination ID)
 - every switch on source-dest path maintain "state" for each passing connection
 - link, switch resources (bandwidth, buffers) may be allocated to VC: to get circuit-like perf.
- Permanent VCs (PVCs)
 - long lasting connections
 - typically: "permanent" route between to IP routers
- Switched VCs (SVC):
 - dynamically set up on per-call basis

ATM VCs

- Advantages of ATM VC approach:
 - QoS performance guarantee for connection mapped to VC (bandwidth, delay, delay jitter)
- Drawbacks of ATM VC approach:
 - Inefficient support of datagram traffic
 - one PVC between each source/dest pair) does not scale (N*2 connections needed)
 - SVC introduces call setup latency, processing overhead for short lived connections

43

43

ATM architecture AAL ATM ATM ATM ATM PHY PHY PHY PHY PHY End system ATM switch ATM switch End system

- adaptation layer: only at edge of ATM network
 - data segmentation/reassembly
 - roughly analogous to Internet transport layer
- ATM layer: "network" layer
 - cell switching, routing
- physical layer

44

The ATM Architecture

- Basic features
- Why 53 bytes?
- The header of the cell
- The ATM protocol stack
- ATM interfaces
- The physical layer

45

45

Asynchronous Transfer Mode (ATM)

- The word *Asynchronous* in ATM is in contrast to *Synchronous* Transfer Mode (STM) that was proposed earlier on, which was based on TDM circuit-switching
- *Transfer Mode* refers to a telecommunication technique

46

Asynchronous Transfer Mode: ATM

- 1980s/1990's standard for high-speed (155Mbps to 622 Mbps and higher) *Broadband Integrated*Service Digital Network architecture
- <u>Goal:</u> integrated, end-end transport of carry voice, video, data
 - meeting timing/QoS requirements of voice,
 video (versus Internet best-effort model)
 - "next generation" telephony: technical roots in telephone world
 - packet-switching (fixed length packets, called "cells") using virtual circuits

47

47

ATM was standardized by CCITT in 1988 as the transfer mode of B-ISDN

- It can carry a variety of different types of traffic, such as
 - Voice
 - Video
 - Data
- At speeds varying from fractional T1 to 2.4 and soon 10 Gbps

48

- These different types of traffic have different Quality-of-Service (QoS) requirements, such as:
 - Packet loss
 - End-to-end delay

ATM, unlike IP networks, can provide each traffic connection a different type of quality of service

49

45

Some features of ATM are...

- Packet-switching
- Connection-oriented
- Fixed cell (packet) size of 48+5 bytes
- No error protection on a link-by-link
- No flow control on a link-by-link
- Delivers cells in the order in which they were transmitted

50

51

Various considerations lead to the standardization of the ATM cell

- Delay through the network
 - Transfer delay
 - Packetization delay
- Echo cancellation
- Header conversion
- Fixed vs. variable packet length

52

Delay through the network

- Early ATM switches had small buffers
 - Small packet size meant small queueing delays in ATM buffers
- Packetization delay favors small packets
 - Example: 64 Kbps voice transmitted in ATM cell (i.e., one byte every 125 µsec)
 - Packet size 16 bytes needs 16x 125 μsec=2 msec
 - Packet size 64 bytes needs 64x 125 μsec = 8 msec

53

53

- Echo cancellation
 - Echo cancellers are needed for delays > 24 msec
- Header conversion
 - The longer the packet, the more time the ATM switch has to look up the header in the switching table
- Fixed vs variable packet size
 - Variable-size packets tend to be longer & need extra overhead
 - Easier to construct switches for fixed-size packets

The compromise...

- Europe: fixed size with 32 byte payload
- USA/Japan: fixed size with 64 byte payload
- They compromised in the middle!!

55

55

The structure of the ATM cell

- Connections identifier:
 - VPI/VCI,
 - label swapping,
 - types of connections
- Head error control (HEC)
- Payload type indicator (PTI)
- Cell loss priority cell

56

ATM cell header

- VCI: virtual channel ID
 - will *change* from link to link thru net
- PT: Payload type (e.g., RM cell versus data cell)
- CLP: Cell Loss Priority bit
 - CLP = 1 implies low priority cell, can be discarded if congestion
- **HEC:** Header Error Checksum
 - cyclic redundancy check

59

59

ATM connections

- Identified by the combined fields
 - virtual path identification (VPI), and
 - virtual channel identification (VCI)
- VPI field:
 - 256 virtual paths at the UNI interface, and
 - 4096 virtual paths at the NNI interface.
- VCI field: a maximum of 65,536 VCIs.

60

- VPI/VCI values have local significance. That is, they are only valid for a single hop.
- A connection over many hops, is associated with a different VPI/VCI value on each hop.
- Each switch maintains a switching table. For each connection, it keeps the incoming and outgoing VPI/VCI values and the input and output ports.

61

61

PVCs and SVCs

- Depending how a connection is set-up, it may be
 - Permanent virtual circuit (PVC)
 - Switched Virtual circuit (SVC)
- PVCs are set-up administratively. They remain up for a long time.
- SVCs are set-up in real-time using ATM signaling. Their duration is arbitrary.

63

63

Payload type Indicator

- PTI Meaning
- 000 User data cell, congestion not experienced, SDU type=0
- 001 User data cell, congestion not experienced, SDU type=1
- 010 User data cell, congestion experienced, SDU type=0
- 011 User data cell, congestion experienced, SDU type=1
- 100 Segment OAM flow-related cell
- 101 End-to-end OAM flow-related cell
- 110 RM cell
- 111 Reserved

65

65

The ATM protocol stack

66

ATM: network or link layer?

<u>Vision:</u> end-to-end transport: "ATM from desktop to desktop"

ATM is a network technology

Reality: used to connect IP backbone routers

- "IP over ATM"
- ATM as switched link layer, connecting IP routers

67

67

Layer 1: The physical layer

- The physical layer transports ATM cells between two adjacent ATM layers.
- It is subdivided into
 - transmission convergence (TC) sublayer
 - physical medium-dependent (PMD) sublayer.

68

Layer 2: The ATM layer

- The ATM layer is concerned with the endto-end transfer of information, i.e., from the transmitting end-device to the receiving end-device.
- Below, we summarize its main features.

69

69

Connection-oriented packet switching

The ATM layer is a connection-oriented *point-to point* packet-switched network.

- A connection is identified by a series of VPI/VCI labels, as explained above, and it may be point-to-point or point-to-multipoint.
- Cells are delivered to the destination in the order in which they were transmitted.

70

Cell switching in ATM networks is carried out at the ATM level

71

71

No error and flow control on each hop

- Low probability of a cell getting lost or delivered to the destination end-device in error.
- The recovery of the data carried by lost or corrupted cells is expected to be carried out by a higher-level protocol, such as TCP.
- When TCP/IP runs over ATM, the loss or corruption of the payload of a single cell results in the retransmission of an entire TCP PDU.

72

Addressing

- Each ATM end-device and ATM switch has a unique ATM address.
- Private and public networks use different ATM addresses. Public networks use E.164 addresses and private networks use the OSI NSAP format.
- ATM addresses are different to IP addresses.

73

73

Quality of service

- Each ATM connection is associated with a quality-of-service category.
- Each quality-of-service category is associated with a set of traffic parameters and a set of quality-of-service parameters.
- The ATM network guarantees the negotiated quality-of-service for each connection.

74

Congestion control

- In ATM networks, congestion control permits the network operator to carry as much traffic as possible without affecting the quality of service requested by the users.
- It consists of *call admission control* and a *policing mechanism*.

75

75

Layer 3: The ATM adaptation layer

- The purpose of AAL is to isolate higher layers from the specific characteristics of the ATM layer.
- AAL consists of the
 - convergence sublayer, and the
 - segmentation-and-reassembly sublayer.

76

77

ATM Physical Layer

Two pieces (sublayers) of physical layer:

- Transmission Convergence Sublayer (TCS): adapts ATM layer above to PMD sublayer below
- Physical Medium Dependent: depends on physical medium being used

TCS Functions:

- Header checksum generation: 8 bits CRC
- Cell delineation
- With "unstructured" PMD sublayer, transmission of idle cells when no data cells to send

78

ATM Physical Layer (more)

Physical Medium Dependent (PMD) sublayer

- SONET/SDH: transmission frame structure (like a container carrying bits);
 - bit synchronization;
 - bandwidth partitions (TDM);
 - several speeds: OC1 = 51.84 Mbps; OC3 = 155.52
 Mbps; OC12 = 622.08 Mbps
- TI/T3: transmission frame structure (old telephone hierarchy): 1.5 Mbps/ 45 Mbps
- unstructured: just cells (busy/idle)

79

79

The physical layer

- Transmission convergence (TC) sublayer
 - HEC cell generation and verification
 - Decoupling of cell rate
 - Cell delineation
 - Transmission frame generation and recovery
- Physical medium dependent (PMD)
 - Timing function
 - Encoding/decoding

The transmission convergence (TC) sublayer

- HEC cell generation and verification
 - Implements the HEC state machine
- Decoupling of cell rate
 - Maintains a continuous bit stream by inserting idle cells
- Transmission frame generation and recovery
 - Such as SONET frames

81

81

Cell delineation

is the extraction of cells from the bit stream received from the PMD sublayer.

82

ATM physical layer interfaces

- SONET/SDH
- Plesiochronous digital hierarchy (PDH)
- Nx64 Kbps
- Inverse mulitplexing for ATM (IMA)
- asymmetric digital subscriber line (ADSL)
- TAXI (FDDI)
- ATM 25

83

83

The SONET/SDH hierarchy

•	Optical	SDH	SONET level	Data	Overhead	Payload
•	level	equivalent	(electrical)	rate (Mbps)	rate (Mbps)	rate (Mbps)
•	OC-1	-	STS-1	51.840	1.728	50.112
•	OC-3	STM-1	STS-3	155.520	5.184	150.336
•	OC-9	STM-3	STS-9	466.560	15.552	451.008
•	OC-12	STM-4	STS-12	622.080	20.736	601.344
•	OC-18	STM-6	STS-18	933.120	31.104	902.016
•	OC-24	STM-8	STS-24	1244.160	41.472	1202.688
•	OC-36	STM-12	STS-36	1866.240	62.208	1804.932
•	OC-48	STM-16	STS-48	2488.320	82.944	2405.376
•	OC-96	STM-32	STS-96	4976.640	165.888	4810.752
•	OC-192	STM-64	STS-192	9953.280	331.776	9621.504
•	OC-768	STM-256	STS-768	39813.120	1327.104	38486.016
•	OC-N	STM-N/3	STS-N	N*51.840	N1.728	N*50.112

Products are only available for levels indicated in bold

84