

Modelación computacional de Sistemas Electromagnéticos

### Reto: Frenado Magnético

#### Mango Eléctrico

Samuel Sánchez García | A00831772 Juan Pablo Sada San José | A01722098 Daniel Noé Salinas Sánchez | A01704062 Roberto González Reyes | A00833852





#### Problema y Solución



#### "Freefall ride" o "Drop tower"

 Los frenos se activan para detener la góndola con forme se aproxima al fondo del recorrido.

#### Calculo y Simulación

- Simular el campo magnético de la espira circular
- Calcular el comportamiento de posición, velocidad y aceleración en gráfica.

# FASE 1 INVESTIGACIÓN/ SIMULACIÓN

#### Conceptos

- Frenado magnético
- Dipolo magnético
- Energía potencial de un dipolo magnético
- Dipolo magnético en un campo magnético no uniforme
- Ley de Biot-Savart
- Ley de Faraday
- Ley de Lenz
- Ley de Ampere

$$ec{B} = rac{\mu_0 I a^2}{2(a^2 + b^2)^{3/2}}$$



#### Ley de Biot-Savart

Campo magnético en un punto



$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{I \ d\vec{\ell} \times \hat{r}}{r^2} \qquad dB = \frac{\mu_0}{4\pi} \frac{I \ d\ell \sin \phi}{r^2}$$

#### Ley de Faraday

Fem inducida es igual al negativo de la variación en el tiempo de un campo o flujo magnético



$$\varepsilon = -\frac{d\Phi_B}{dt}$$

#### Ley de Lenz

Dirección de la corriente, opuesta al cambio de flujo



#### Ley de Ampere

Suma de elementos de longitud multiplicado por campo magnético es igual a permeabilidad por la corriente encerrada





$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$$

# FASE 2 GRÁFICAS

### Corrientes Parásitas (corrientes Eddy)

Producidas cuando un campo magnético variable atraviesa un conductor eléctrico.

Crean campos magnéticos que se oponen al campo magnético aplicado por los imanes de la góndola en caída libre.

La energía cinética de la góndola se transfiere a estas corrientes, disminuyendo la velocidad sin necesidad de fricción



#### Conceptos

- Corrrientes de Eddy
- Momento dipolar magnético
- Inducción electromagnética
- Runge-Kutta
- Ecuaciones diferenciales de segundo orden



## CONCLUSIONES

#### Referencias

Moebs, W., Ling, S., & Sanny, J. (2021). Física universitaria volumen 3. Houston, Texas: OpenStax. Recuperado el 19 de mayo de 2022, de https://openstax.org/books/f%C3%ADsica-universitaria-volumen-3/pages/1-introduccion

Freno Magnético Aprende Todo Facil. (s. f.). Area Tecnología. <a href="https://www.areatecnologia.com/mecanismos/freno-magnetico.html">https://www.areatecnologia.com/mecanismos/freno-magnetico.html</a>

Universidad Complutense Madrid. (2013). Freno magnético. <a href="https://www.ucm.es/data/cont/docs/76-2013-07-11-25\_Magnetic\_brake.pdf">https://www.ucm.es/data/cont/docs/76-2013-07-11-25\_Magnetic\_brake.pdf</a>

#### Video

https://www.youtube.com/watch?v=ZZWTbsBwBok