

Mikrocomputertechnik

1. Kapitel: Einführung und Motivation

Martin Versen / Franz Perschl

Brainstorming

ein bisschen Eldhrobehuik Auslenery von Senseren Vouannihabbers-schni HSkellen Projekt-anforderugen Tilvo computélectuit) Hodwere Signalverarsity Unger, wit IDES Architelhren "Controlles. Programmier Furthon von Registern

Grundstruktur eines mechatronischen Systems nach Roddeck

hier geht es noch immer um eine Sorte Digitaltechnik

Optionen für die Realisierung von Schaltwerken oder Schaltnetzen

- Integration von Standard ICs auf einem PCB (Leiterplatte)
 - z.B. Digitaltechnik Praktikumsversuche
 - Vorteil: hohe Flexibilität bzgl. Entwurf, aber keine Umverdrahtung
 - Nachteile: Stückkosten, Stromverbrauch, hoher
 Montage- und Testaufwand
- Anwenderspezifische Software (d.h. Verwendung eines Mikroprozessors) -> hier
- ◆ Anwenderspezifische Hardware (Application Specific Integrated Circuit = ASIC) → andere Veranstaltung

Mikroprozessor vs. Mikrocontroller (1)

- Mikroprozessor
 - definiert sich hauptsächlich durch seine Rechenleistung (d.h. Takt, Cache-Speicher)
- Mikrocontroller
 - Mikroprozessor mit weiteren integrierten Funktionen
 - Speicher
 - Clock-Generatoren, Timer
 - Unterschiedliche Kommunikationsschnittstellen
 - Analoge Funktionen (ADC)
 - Verwendung für sequentielle Kontrolle statt reine Rechenleistung

"kleine" Mikrocontroller: 8-16 bit Daten und 16 bit Adressen: 2¹⁶ = 65536 = 64 KB (Kilo Byte) statt vieler MB (Mega Byte)

Mikroprozessor vs. Mikrocontroller (2)

- Mikroprozessor
 - □ Verwendung eines Betriebssystems (engl. operating system –
 OS): DiskOS, Windows oder MacOS, bis hin zu iOS, Android
- Mikrocontroller
 - Nicht zwingend ein "OS", Software kann direkt verwendet werden.
 - □ Verwendung in "Echtzeitsystemen", d.h. die Reaktion des Controllers muss in einer definierten Zeit erfolgen.
 - Verwendung in "embedded electronic systems" (engl. embedded = "eingebettet")

Gliederung zur Mikrocomputertechnik

- 1. Einleitung und Motivation
- 2. Aufbau und Entwicklung mit Mikrocontrollern
- 3. Ausgewählte Kapitel der Architektur, Funktion und Peripherie des MSP430

Vorlesungsbegleitende Verwendung des MSP430 LaunchPad

Quelle: Texas Instruments, SLAU318, Juli 2010.

Eigenschaften des MSP430

- 16bit Mikroprozessor
- Von-Neumann-Architektur
- für Low-Power -Applikationen
- Hat einen RISC-Befehlssatz (Reduced Instruction Set Computer)
 (im Gegensatz zu CISC=Complete...)
- Adress- und Datenbus jeweils 16bit breit
- ◆ CPU-Register auch 16bit → Einsatz für Daten und Adressen möglich (8-bit Prozessoren brauchen spezielle, breite Register oder müssen Register paarweise einsetzen.)

Vergleich der Prozessorarchitekturen

Quelle: https://vivadifferences.com/5-major-difference-between-von-neumann-and-harvard-architecture/

- Einordnung zwischen traditionellen 8bit und 16bit Mikroprozessoren
 - MSP hat 16bit (Vergleich mit 16bit Prozessoren liegt nahe)
 - □ "Nur" 2¹⁶ = 64KB adressierbarer Speicher
 - Vergleichbarer 16bit Prozessor (Freescale HCS12) kann mit "Paging" 8MB Speicher adressieren
- 16 16bit-Registers, davon 12 "general purpose registers" für eine reduzierte Ausführungszeit pro Befehl bzw. Instruktion.
 (Berechungen mit diesen Registern benötigen nur einen Taktzyklus)
- Hier: Arithmetik kann direkt im Hauptspeicher laufen

Einordnung der Leistungsfähigkeit des MSP430 (2)

- Einfachster Mikrocontroller von Texas Instruments
- Einführung in späten 1990er Jahren
- Herstellung bei Texas Instruments in Freising (!)
- Leistungsfähigere Alternativen: MSP432 (ARM® Cortex®-M4 core)
 bzw. C2000 (enthält einen DSP = digital signal processor)
- Warum hier der MSP430?
 - Klein, effizient und preiswert
 - □ Einfacher "low power"-Modus steuerbar durch einen Interrupt
 - Verschiedene "low power"-Modi (verschiedene Tiefschlafphasen)
 - Mehrere Clocks
 - Verschiedene Peripheriegeräte
 - MSP430 kann LCD (liquid crystal display) direkt treiben

Beispiel: Waage

Aus: Lutz Bierl, MSP430 Family Mixed-Signal Microcontroller Application Reports, Texas Instruments, 2000 (slaa024_Application_reports.pdf).

Zu empfehlende Literatur

- (1) Davies, John H., MSP430 Microcontroller Basics, Newnes, 2008. Lehrbuch zum MSP430 → Ebook über OPAC
- (2) Matthias Sturm, Mikrocontrollertechnik, Hanser, 2014 (auch E-book) Deutschsprach. Lehrbuch → Ebook über OPAC
- (3) M. Walter, S. Tappertzhofen, Das MSP430 Mikrocontroller Buch, Elektor, 2011. **Deutschsprach. Lehrbuch** → **Ebook als Online-Version**
- (4) Lutz Bierl, Das große MSP430 Praxisbuch, Franzis, 2004. Eine gute deutsche "Sekundärliteratur", Erläuterungen zum Datenblatt
- (5) Datenblatt MSP430G2x31, SLAS694J, Texas Instruments, 2013. Datenblatt zum MSP430G2x31 → LC-Kurs
- (6) Datenblatt MSP430G2x53, SLAS735J, Texas Instruments, 2013. Datenblatt zum MSP430G2x53 → LC-Kurs
- (7) MSP430x2xx Family User's Guide, SLAU144J, Texas Instruments, 2013. Datenblatt MSP430, wichtig und ein wenig prüfungsrelevant → LC-Kurs
- (8) MSP-EXP430G2 LaunchPad Development Kit, SLAU318G, Texas Instruments, 2016.
 - Beschreibung des LaunchPad-Boards → LC-Kurs
- (9) Warwick A. Smith, ARM Microcontroller Interfacing, Elector, 2010. Referenzprojekte am Beispiel eines ARM