Exercice: Traduire sous forme de fbf les expressions suivantes:

- Tout humain est mortel
- Ali est un humain
- Ali est mortel

On propose

- les prédicats :

Humain(x) pour exprimer x est humain Mortel(x) pour exprimer x est mortel

- La constante : Ali

On obtient:

 $(\forall x) \text{ humain}(x) \Rightarrow \text{mortel}(x)$

Humain(Ali)

Mortel(Ali)

- Tout nombre rationnel est un nombre réel
- Il existe un nombre qui est premier
- Pour tout nombre x, il existe un nombre y tel x < y

Soient les prédicats :

- Rationnel (x) pour exprimer que x est un nombre rationnel
- Reel(x) pour x est un nombre reel
- Premier(x) pour x est nombre premier
- Inf(x,y) pour exprimer x < y

On obtient:

 $(\forall x) \text{ rationnel}(x) \Rightarrow \text{reel}(x)$

 $(\exists x) premier(x)$

 $(\forall x) (\exists y) inf(x,y)$

- Pour tout nombre, il existe un **seul** successeur
- il n'existe pas de nombres pour lequel 0 est un successeur immédiat
- Pour tout nombre autre que 0 il existe un seul nombre qui est son prédécesseur

Soient les fonctions:

- f(x) pour exprimer le successeur(x)
- g(x) pour exprimer predecesseur(x)

Soit la constante : 0

Soit le prédicat E(x,y) pour exprimer egal ou (non egal) de x avec y

Y successeur(x) unicite
$$(\forall \ x) \ (\exists \ y) \ [\ E(y,f(x)) \land (\forall \ z) \ [E(z,f(x)) \Rightarrow E(y,z)]]$$

$$\neg \ [\ (\exists \ x) \ E(0,f(x))] \ \cong \ (\forall \ x) \ \neg \ E(0,f(x))$$

$$(\forall \ x) \ [\ \neg E(x,0) \Rightarrow [(\exists \ y) \ [E(y,g(x)) \land (\forall \ z) \ [E(z,g(x)) \Rightarrow E(y,z)]]]$$

$$X = = 0 \qquad y \ predecesseur \ de \ x \qquad unicité$$

- il y a des patients et qui aiment tous les docteurs
- Aucun patient n'aime les charlatans
- Aucun docteur n'est un charlatan

Montrer que la 3eme expression est une conséquence logique des 2 premières

On utilise les prédicats suivants :

- P(x) pour x patient
- D(x) pour x docteur
- Q(x) pour x charlatan
- L(x,y) pour x aime y
 - 1) $(\exists x) [P(x) \land (\forall y)(D(y) \Rightarrow L(x,y))]$
 - 2) $(\forall x) [P(x) \Rightarrow (\forall y)(Q(y) \Rightarrow \neg L(x,y))]$
 - 3) $(\forall x)(D(x) \Rightarrow \neg Q(x))$

Montrer que 3 est conséquence logique de 1 et 2.

Def CL: On part de $(1) \land (2)$ vraie et on doit arriver à (3) vraie.

Soit une interprétation quelconque dans laquelle $(1) \land (2)$ vraie.

(1)
$$\wedge$$
 (2) vraie \cong (1) vraie et (2) vraie \cong

(1) vraie
$$\cong$$
 $(\exists x) [P(x) \land (\forall y)(D(y) \Rightarrow L(x,y))]$ vraie \cong il existe une certaine valeur pour x (soit e) pour laquelle (1) vraie $\cong (P(x) \land (\forall y)(D(y) \Rightarrow L(x,y))]$ vraie

$$\cong [P(e) \land (\forall y)(D(y) \Rightarrow L(e,y))] \text{ vraie}
\cong \underline{P(e) \text{ vraie}} \text{ et } (\forall y)(\neg D(y) \lor L(e,y)) \text{ vraie}$$
(*)

(2) vraie
$$\cong (\forall x) [P(x) \Rightarrow (\forall y)(Q(y) \Rightarrow \neg L(x,y))]$$
 vraie \cong elle est vraie pour x=e car elle Est vraie pour $(\forall x)$

$$\cong [P(e) \Rightarrow (\forall y)(Q(y) \Rightarrow \neg L(e,y))] \text{ vraie}$$

$$\cong [\neg P(e) \lor (\forall y)(\neg Q(y) \lor \neg L(e,y))] \text{ vraie}$$

Or de (*) on a P(e) vraie donc ¬P(e) faux et donc il faut que

$$(\forall y)(\neg Q(y) \lor \neg L(e,y))$$
 soit vraie (**)

Raisonner maintenant sur D(y) et en utilisant (*) et (**). La valeur de vérité de D(y) peut etre:

Arriver à (3) vraie