APRESENTAÇÃO DA DISCIPLINA 2020/1

GSI512 - Estrutura de Dados II

Prof. Dr. Rafael D. Araújo rafael.araujo@ufu.br

http://www.facom.ufu.br/~rafaelaraujo

Objetivo da disciplina

- Fornecer uma visão geral da análise de algoritmos afim de fornecer subsídios para a construção e/ou utilização de algoritmos e estrutura de dados adequados à solução eficiente de problemas.
- Carga horária total: 60h (30h teóricas e 30h práticas)

Conteúdo Programático

1^a parte

- Revisão estruturas de dados lineares
- Tipo Abstrato de Dados
- Princípios de Análise de Algoritmos
- Algoritmos de Busca
- Hashing

2ª parte

- Algoritmos recursivos
- Programação Dinâmica
- Heap
- Algoritmo de Huffman
- Grafos

Bibliografia Básica

■ CELES, W. et al. Introdução a Estruturas de Dados. Rio de Janeiro: Campus. (1ª e 2ª edição).

■ CORMEN, T.H. et al. Algoritmos: teoria e prática. 2. ed. Rio de Janeiro: Campus, 2002.

■ TENENBAUM, A. M. et al. Estrutura de Dados usando C. São Paulo: Pearson, 1995.

Bibliografia Complementar

■ ASCENCIO, A. F. G.; ARAÚJO, G. S. Estruturas de Dados: algoritmos, análise de implementações em JAVA e C/C++. São Paulo: Pearson, 2011.

■ ZIVIANI, N. Projeto de Algoritmos: com implementações em PASCAL e C. 3.ed. São Paulo: Cengage Leaming, 2011.

Material de apoio online

- FEOFILOFF, P. Minicurso de Análise de Algoritmos. In: CARVALHO, A. P. L. F.; KOWALTOWSKI, T. (org.) Jornadas de Atualização em Informática 2009. Edição atualizada. Bento Gonçalves, RS: SBC, 2009. Disponível em: https://www.ime.usp.br/~pf/livrinho-AA/AA-BOOKLET.pdf
- LINTZMAYER, C. N.; MOTA, G. O. Análise de Algoritmos e Estruturas de Dados. CMCC Universidade Federal do ABC, 2020. Disponível em: http://professor.ufabc.edu.br/~carla.negri/cursos/materiais/Livro-Analise.de.Algoritmos.pdf

Metodologia

Encontro
síncrono para
discussão do
conteúdo da
semana

Estudo
 assíncrono dos
 materiais da
 semana

Encontro
 síncrono para
 dúvidas e
 resolução de
 exercícios

Testes

 Resolução de exercícios da semana (individual/ em equipe)

Icons made by Freepik.

Avaliação A + E + P + Q + O = 100pts

• A = Apresentação de trabalho em vídeo: 10pts

- E = Exercícios de implementação (individual/equipe): 25pts
- P = Avaliação por pares: 10pts

- Q = 3 testes: **15pts** (5pts cada)
 - 22/03/2021, 10/05/2021, 09/06/2021

- 0 = 2 avaliações individuais: **40pts** (20pts cada)
 - 07/04/2021 e 26/05/2021

Câmeras ligadas

Icons made by Freepik.

Avaliação A + E + P + Q + O = 100pts

NÃO haverá avaliação substitutiva!

• A = Apresentação de trabalho em vídeo: 10pts

- E = Exercícios de implementação (individual/equipe): 25pts
- P = Avaliação por pares: 10pts

- Q = 3 testes: **15pts** (5pts cada)
 - 22/03/2021, 10/05/2021, 09/06/2021

- 0 = 2 avaliações individuais: **40pts** (20pts cada)
 - 07/04/2021 e 26/05/2021

Icons made by Freepik.

Assiduidade

Presenças nas atividades síncronas + porcentagem de atividades entregues

■ É necessário um mínimo de 75% de frequência para aprovação na disciplina

Atendimento

- Mensagens diretas ao professor dentro da plataforma Microsoft Teams. Tempo de resposta: até 48h.
- Agendamento síncrono (via mensagem direta no Microsoft Teams), preferencialmente nos horários:
 - Segunda-feira 16h00-17h00
 - Quarta-feira 16h00-17h00
- Agendar os atendimentos via chat do Microsoft Teams
- Equipe Microsoft Teams: "[2020/1] ED2 BSIMC"
 - ATENÇÃO: os slides são <u>apenas</u> notas de aula e não devem ser utilizados como fonte única de referência!!!

Visão geral da disciplina

Como os computadores resolvem problemas?

- Como duas compras efetuadas no mesmo momento pela internet chega nos endereços corretamente?
 - Como o número do seu cartão de crédito é protegido contra alguém que o intercepta?
- Como você consegue jogar um jogo com outras pessoas pela Internet em tempo real?
- Como o GPS consegue encontrar, entre uma infinidade de possíveis rotas, o caminho mais rápido para o seu destino e fazer isso em poucos segundos?

O que é um algoritmo?

- Um algoritmo é um conjunto finito de passos que devem ser seguidos com um conjunto de dados de entrada para se chegar à solução de um problema.
 - Um problema, geralmente, pode ser resolvido por muitos algoritmos diferentes.

- A existência de um algoritmo não implica necessariamente que este problema possa realmente ser resolvido na prática.
 - Há restrições de tempo e de espaço de memória.

Exemplo: como fazer um bolo?

Exemplo: como fazer um bolo?

Exemplo: como fazer um bolo?

O que distingue um algoritmo executado em um computador de um algoritmo que as pessoas executam?

- No exemplo anterior, o açúcar acabou, o que fazer?
- Outro exemplo:
 - Se você vai de carro para o trabalho, o seu algoritmo poderia dizer "se o tráfego estiver ruim, pegue uma rota alternativa".
 - O que significa "tráfego ruim"?

Algoritmo vs Programa

Algoritmo vs Programa

- Um algoritmo é uma ideia abstrata de como resolver um determinado problema.
 - A princípio, é independente do computador que o executará e de suas características.
- Um programa é uma implementação de um algoritmo em uma linguagem particular.
 - Executado em um computador particular.
- Um programa está sujeito às limitações físicas da máquina onde será executado
 - memória, processador, periféricos etc.

Problema vs Instância

Problema vs Instância

- Um problema computacional é um problema formulado em termos da descrição das possíveis entradas e suas respectivas saídas.
- Uma instância é uma materialização do problema.
- Exemplo: problema de ordenação crescente de números

Problema de ordenação crescente de números:

Entrada: uma sequência de n números a_1 , a_2 , a_3 , . . . , a_n Saída: uma sequência de n números a_1 , a_2 , a_3 , . . . , a_n , tal que a_i < a_i se i < j

Instância:

Entrada: 3, 1, 2, 4

Saída: 1, 2, 3, 4

Estratégias de projeto de algoritmos

 Existem diferentes estratégias para se projetar um algoritmo, ou seja, diferentes formas de pensamento (paradigmas)

- Força bruta
- Divisão e conquista
- Programação dinâmica
- Estratégia gulosa
- Algoritmos aproximados

Cada estratégia pode utilizar diferentes estruturas de dados!

– ...

Eficiência de algoritmos

- Qual é o custo de usar um dado algoritmo para resolver um problema específico?
 - análise do número de vezes que cada parte do algoritmo deve ser executada
 - estudo da quantidade de memória necessária
 - consumo de energia, ...
- Como saber se um algoritmo é eficiente?
- É possível fazer um algoritmo mais eficiente para resolver o mesmo problema?

Corretude de algoritmos

- Um algoritmo **resolve** um problema (ou seja, é correto) quando, para qualquer entrada, produz uma resposta correta, se forem concedidos tempo e memória suficientes para sua execução.
 - Dada qualquer entrada, o algoritmo termina sua execução retornando saídas corretas
- Note que um algoritmo estar correto não significa que a entrada de dados está!
 - No exemplo do GPS, imagine que o trânsito esteja congestionado na rota de menor distância. O resultado não deixa de estar correto.

Algoritmos incorretos

- Não para quando um dado caso de entrada é introduzido
- Para com uma saída incorreta
- O fato de um algoritmo resolver um problema na teoria,
 não significa que seja aceitável na prática
 - Pode ser que o gasto de memória e tempo seja inviável
- Em alguns casos, uma solução aproximada pode ser suficiente para o objetivo almejado

Problemas que não podem ser resolvidos

- Por que alguns problemas parecem ser (computacionalmente) mais difíceis do que outros?
- Exemplo:
 - Entrada: um programa de computador e uma entrada qualquer (arbitrária) para este programa
 - Problema: este programa irá parar quando alimentado com a entrada dada?

Áreas da Ciência da Computação

- Análise de Algoritmos: estuda a eficiência de algoritmos (para saber se são viáveis)
 - Quantidade de recursos computacionais necessários
 - Diferentes estratégias para construção de algoritmos

- Teoria da Computação: estuda a solubilidade computacional (computabilidade) de problemas
 - Capacidades e limitações dos computadores
 - Modelos formais

Nessa disciplina...

■ Análise de Algoritmos x Estruturas de Dados

- O que preciso fazer para ser aprovado(a) na disciplina?
 - Comprometimento
 - Interação
 - Fazer as atividades