Soit A la matrice suivante : $\begin{pmatrix} 3 & 0 & -1 \\ 2 & 4 & 2 \\ 1 & 0 & 2 \end{pmatrix}$.

- 1. Déterminer les réels $\lambda \in \mathbb{R}$ pour lesquels la matrice $A \lambda \operatorname{Id}$ n'est pas inversible. On appelle ces réels les valeurs propres de A.
- 2. Soit $\lambda \in \mathbb{R}$, Montrer que l'espace $E_{\lambda} = \{X \in \mathcal{M}_{3,1}(\mathbb{R}) \mid AX = \lambda X\}$ est un sev de $\mathcal{M}_{3,1}(\mathbb{R}).$
- 3. Pour chaque valeur propre de A (les réels obtenus à la question 1), déterminez une base de E_{λ} . Vérifier qu'on obtien au total 3 vecteurs que vous noterez u_1, u_2, u_3 .
- 4. La famille (u_1, u_2, u_3) est elle une base de $\mathcal{M}_{3,1}(\mathbb{R})$?
- (a) Soit P la matrice de $\mathcal{M}_3(\mathbb{R})$ dont la première colonne est constitutée des coordonnées de u_1 , la seconde des coordonnées de u_2 et la dernière des coordonnées de u_3 . Déterminez explicitement P.
 - (b) Montrer que P est inversible et calculer son inverse.
 - (c) Déterminez mla matrice $D = P^{-1}AP$.
 - (d) Déterminez une expression de la matrice A^n pour tout entier naturel n.