СОГЛАСОВАНО	УТВЕРЖДАЮ								
Сторона ЗАКАЗЧИКА	Сторона ИСПОЛНИТЕЛЯ								
	<u>Профессор кафедры</u> <u>ИАНИ ННГУ, д.т.н.</u>								
	<u>Н.В. Старостин</u> «»								
	Е ДЛЯ РЕШЕНИЯ ЗАДАЧИ РЕДУКЦИИ НОГОМЕРНЫХ ФУНКЦИЙ								
Руководство оператора Этап 2.3 Разработка программной документации «Разработка нейронной сети специального вида (автоэнкодера) для решения задачи редукции пространства многомерных функций» (Шифр ПО «Епс»)									
									Ответственный исполнитель
									В.А. Куликов
	«»2021 г.								

АННОТАЦИЯ

В данном руководстве описана структура, принципы работы, базовые понятия и интерфейс программного обеспечения «Епс», а также определены условия, необходимые для эффективного функционирования программного обеспечения и указана последовательность действий оператора при запуске и выполнении программы.

СОДЕРЖАНИЕ

1.	.]	НАЗНАЧЕНИЕ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ	[4
2.	,	ТРЕБОВАНИЯ К ПРОГРАММНОМУ И	АППАРАТНОМУ
0	БЕ	СПЕЧЕНИЮ	4
	2.1	Минимальный состав аппаратных средств	4
	2.2	2 Минимальный состав программных средств	4
3.	.]	ВЫПОЛНЕНИЕ ПРОГРАММЫ	4
	3.1	Загрузка и запуск программы	4
	3.2	2 Запуск программы отрисовки	5
	3.3	В Этапы работы программы	6
	3.4	Проверка корректности исходных данных	8
4.	. (СООБЩЕНИЯ ОПЕРАТОРУ	8

1. НАЗНАЧЕНИЕ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

ПО «Епс» предназначен для решения задачи редукции пространства многомерных функций.

2. ТРЕБОВАНИЯ К ПРОГРАММНОМУ И АППАРАТНОМУ ОБЕСПЕЧЕНИЮ

2.1 Минимальный состав аппаратных средств

Для функционирования ПО «Enc» ПЭВМ должны удовлетворять следующим требованиям: процессор Ryzen 5 или Intel i5, видеокарта GTX 1050Ti, оперативная память не менее 8 ГБ DDR4, HDD не менее 124 GB, клавиатура, мышь, интернетдоступ.

2.2 Минимальный состав программных средств

ПО «Enc» должно быть разработано с использованием языка программирования Python.

ПО «Епс» должно быть работоспособно под управлением следующих операционных систем: Windows 10.

ПО «Enc» должно быть работоспособно при установленном python3, numpy, smt, tensorflow, sobol_seq, keras.

3. ВЫПОЛНЕНИЕ ПРОГРАММЫ

- 3.1 Загрузка и запуск программы тренировки нейронной сети Для запуска программы необходимо:
- открыть командную строку ОС;
- перейти в директорию с исполняемым файлом программы командой:

>cd C:\Users\{*IMM*_ΠΟΠЬ3ΟΒΑΤΕΠЯ}\encoderProject\Code\Scripts

– прописать команду:

> python training_models.py [-h] [-f {func_1, func_2, func_3, func_4, all}] [-a {dense, deep, vae, all}] [-i {iter}}

где:

сначала вызывается скрипт training_models.py, затем прописываются возможные аргументы:

- -h на консоль выводится все возможные аргументы
- -f выбор функции нейронной сети
 - func_1, где $F(X) = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 + x_7^2 + x_8^2$, размерность пространства 8, параметров ф-ции 8
 - func_2, где $F(X) = (x_1 + x_2)^4 = x_1^4 + 4 x_1^3 x_2 + 6 x_1^2 x_2^2 + 4 x_1 x_2^3 + x_2^4$, размерность пространства 4, параметров ф-ции 2 спектр
 - func_3, где $F(X) = (x_1 100)^2 + (x_2 + 3)^3 + 5(x_3 + 10)^2$, размерность пространства 6, параметров ф-ции 3 сдвинутый спектр
 - func_4, где $F(X) = (x_1 1)^2 + x_2^2 + x_3 + 2x_4 + x_5^3 + x_6$, размерность пространства 10, параметров ф-ции 6 сдвинутый спектр
 - all использование всех функций для обучения
- -а выбор автоэнкодера для нейронной сети, где
 - dense сжимающий автоэнкодер
 - deep глубокий автоэнкодер
 - vae вариационный автоэнкодер
 - all использование всех автоэнкодеров для обучения
- -i количество эпох подбора гиперпараметров автоэнкодера (по умолчанию 25)
- 3.2 Запуск нейронный сети для получения результатов

Для запуска программы необходимо:

- произвести тренировку нейронный сети для нужной функции и автоэнкодера
 - открыть командную строку ОС;
 - перейти в директорию с исполняемым файлом программы командой:

– прописать команду:

> python calculate_error.py [-h] [-f {func_1, func_2, func_3, func_4, all}] [-a {dense, deep, vae, all}] ГДе:

сначала вызывается скрипт calculate_error.py,

затем прописываются возможные аргументы:

- -h на консоль выводится все возможные аргументы
- -f выбор функции нейронной сети
 - func_1, где $F(X) = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 + x_7^2 + x_8^2$, размерность пространства 8, параметров ф-ции 8
 - func_2, где $F(X) = (x_1 + x_2)^4 = x_1^4 + 4 x_1^3 x_2 + 6 x_1^2 x_2^2 + 4 x_1 x_2^3 + x_2^4$, размерность пространства 4, параметров ф-ции 2 спектр
 - func_3, где $F(X) = (x_1 100)^2 + (x_2 + 3)^3 + 5(x_3 + 10)^2$, размерность пространства 6, параметров ф-ции 3 сдвинутый спектр
 - func_4, где $F(X) = (x_1 1)^2 + x_2^2 + x_3 + 2x_4 + x_5^3 + x_6$, размерность пространства 10, параметров ф-ции 6 сдвинутый спектр
 - all использование всех функций для получения результатов
- -а выбор автоэнкодера для нейронной сети, где
 - dense сжимающий автоэнкодер
 - deep глубокий автоэнкодер
 - vae вариационный автоэнкодер
 - all использование всех автоэнкодеров для получения результатов

3.3 Этапы работы программы

В случае успешного завершения работы программы по тренировке нейронной сети консоль выведет сообщение с результатами тестирования нейронной сети (Рис. 1).

```
func_3 dense training

Opt params:
epochs = 34
batch = 16
encoded dim = 2
sample split = 83.89 % : 16.11 %

Opt mean Y error: [1114.40602335]
```

Рисунок 1.

После этого в папке encoderProject-master\Saved models\Params и encoderProject-master\Saved models\Weights будут сохранены гиперпараметры и веса для данной нейронной сети соответственно (рис. 2 и 3).

func_1_ego_deep_8_7	25.12.2021 13:02	Текстовый докум	1 K5
func_1_ego_dense_8_7	25.12.2021 22:33	Текстовый докум	1 K5
func_3_ego_dense_6_1	28.12.2021 0:15	Текстовый докум	1 KE
func_3_ego_dense_6_2	26.12.2021 18:00	Текстовый докум	1 KB
readme	24.12.2021 15:07	Текстовый докум	1 KE
/////////////////////////////////////	равка		
Файл Правка Формат Вид Сп func name: func_1 epochs: 60 batch: 16 encoded dim: 7	равка		

Рисунок 2.

а → 2 курс → энкодер → encoderPr	oject > saved models > weig	ghts 🗸 🖔	Я Поиск: Weight
Лмя	Дата изменения	Тип	Размер
func_1_ego_deep_8_4.h5	25.12.2021 13:01	Файл "Н5"	17 КБ
func_1_ego_deep_8_5.h5	25.12.2021 12:15	Файл "Н5"	17 КБ
func_1_ego_deep_8_6.h5	25.12.2021 13:02	Файл "Н5"	17 KB
func_1_ego_deep_8_7.h5	25.12.2021 13:00	Файл "Н5"	17 KB
func_1_ego_dense_8_4.h5	25.12.2021 22:32	Файл "Н5"	14 KB
func_1_ego_dense_8_5.h5	25.12.2021 22:22	Файл "Н5"	14 KB
func_1_ego_dense_8_6.h5	25.12.2021 22:32	Файл "Н5"	14 KB
func_1_ego_dense_8_7.h5	25.12.2021 22:28	Файл "Н5"	14 KB
func_2_ego_deep_4_1.h5	29.12.2021 16:44	Файл "Н5"	17 KB
func_2_ego_dense_4_1.h5	26.12.2021 16:27	Файл "Н5"	14 KB
func_3_ego_dense_6_1.h5	28.12.2021 0:15	Файл "Н5"	14 KБ
func_3_ego_dense_6_2.h5	27.12.2021 23:22	Файл "Н5"	14 KБ
readme readme	24.12.2021 15:07	Текстовый докум	1 KB

Рисунок 3.

При успешном запуске обученной сети на консоль выведется следующее сообщение (рис. 4):

```
K:\Moя папка\II КУРС Магистра\Autoencoder project\Code\Scripts>python calculate_error.py -f func_1 -a dense
Mean Y error func_1 dense: 3340.654
```

Рисунок 4.

Найти полученный график можно в папке encoderProject-master\Saved models\Graphs. Выглядит он следующим образом (рис. 5):

Рисунок 5.

3.4 Проверка корректности исходных данных

В случае возникновения ошибки система выводит на консоль сообщение об этом. В сообщении указывается информация о характере нарушения и местоположение ошибки. Пример обнаружения ошибки (рис. 6).

```
File "C:\Павлуша\учеба\Магистратура\2 курс\энкодер\encoderProject\Code\Scripts\generator_class.py", line 23, in __init__assert dim == len(val_range), 'Размерность входных диапазонов не равна входной размерности!'

AssertionError: Размерность входных диапазонов не равна входной размерности!

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
   File "training_models.py", line 57, in <module>
        func = TestFunctions.get_func(f_name)
        File "C:\Tasnywa\yчeбa\Marucrparypa\2 курс\энкодер\encoderProject\Code\Scripts\function_class.py", line 63, in get_func
        return self.functions[name](self)
   File "C:\Tasnywa\yчeбa\Marucrparypa\2 курс\энкодер\encoderProject\Code\Scripts\function_class.py", line 94, in func_4
        func = Function(f, 'func_4', 6, 4, data_range)
   File "C:\Tasnywa\yчeбa\Marucrparypa\2 курс\энкодер\encoderProject\Code\Scripts\function_class.py", line 31, in __init__
        self.generator = DataGenerator(self.dim, self.data_range)
   File "C:\Tasnywa\yчeбa\Marucrparypa\2 курс\энкодер\encoderProject\Code\Scripts\generator_class.py", line 28, in __init__
        self.generator = DataGenerator(self.dim, self.data_range)
   File "C:\Tasnywa\yчeбa\Marucrparypa\2 курс\энкодер\encoderProject\Code\Scripts\generator_class.py", line 28, in __init__
        raise AssertionError(e.args[0])
        AssertionError: Размерность входных диапазонов не равна входной размерности!
```

Рисунок 6. Запись об ошибке

4. СООБЩЕНИЯ ОПЕРАТОРУ

Протокол работы системы содержит:

- сообщения об ошибке в работе программы (рис. 6)
- сообщения о результатах работы программы по тренировке нейронной сети (рис. 1)
- сообщения о результатах работы программы по запуску нейронной сети (рис. 4)