Kew comes last, as the most continental position, with the greatest variability and the highest amount of range. This latter is due to the greater prevalence of high temperatures there than elsewhere.

III. "The Rupture of Steel by Longitudinal Stress." By Chas. A. Carus-Wilson. Communicated by Professor G. H. Darwin, F.R.S. Received March 10, 1890.

(Abstract.)

This paper gives an account of experiments made with a view to determining the nature of the resistance that has to be overcome in order to produce rupture in a steel bar by longitudinal stress.

The stress required to produce rupture is in every case computed by dividing the load on the specimen at the moment of breaking by the contracted area at the fracture measured after rupture; this stress is called the "true tensile strength" of the material.

It is well known that any want of uniformity in the distribution of the stress over the ruptured section causes the bar to break at a lower stress than it would if the stress was uniformly distributed. Hence anything that causes want of uniformity is prejudicial; for instance, a groove turned in a cylindrical steel bar will produce want of uniformity, and will consequently be prejudicial, the stress at rupture being lower according as the angle of the groove is more acute. The most favourable condition of test might appear to be that in which a bar of uniform section throughout its length was allowed to draw out freely before breaking, since in this case the stress must be most uniformly distributed.

Experiment, however, shows that the plain bar is not always the strongest. So long as the want of uniformity of stress is considerable, owing to the groove being cut with a very sharp angle, the plain bar is stronger than the grooved bar; but, if the groove be semicircular instead of angular, the grooved bar is considerably stronger than the plain, in spite of the fact that the stress is more uniformly distributed in the latter.

It would seem, then, that we can strengthen a bar over any given section by adding material above and below it, the change in section being gradual; but such an addition of material cannot strengthen the bar if rupture is caused by a certain intensity of tensile stress over the ruptured section; the added material cannot increase the resistance of the ruptured section to direct tensile stress, but it can increase the resistance to the shearing stress.

The resistance of a given section of a steel bar does not, then, depend on its section at right angles to the axis, but on its section at

45° to the axis, for in that direction the shearing stress is a maximum. From this it would seem that the resistance overcome at rupture is the resistance of the steel to shear.

Experiments were made to see whether the resistance of steel to direct shearing bore to its resistance to direct tension the ratio required by the above theory; since the greatest shearing stress is equal to one-half the longitudinal stress, we should expect to find the resistance to direct shearing equal to one-half of the resistance to direct tension.

A series of experiments were made with the result that the ultimate resistance to direct shearing was within, on the average. 3 per cent. of the half of that to direct tension.

The appearance of the fracture of steel bars is next discussed. It would appear that when the stress is uniformly distributed in the neighbourhood of the ruptured section, the fracture is at 45° to the axis, the bar having sheared along that plane which is a plane of least resistance to shear. The tendency to rupture along a plane of shear may be masked by a non-uniform distribution of stress.

Two plates of photographs are added, showing examples of steel bars broken by shearing under longitudinal stress.

IV. "Measurements of the Amount of Oil necessary in order to check the Motions of Camphor upon Water." By Lord Rayleigh, Sec. R.S. Received March 10, 1890.

The motion upon the surface of water of small camphor scrapings, a phenomenon which had puzzled several generations of inquirers, was satisfactorily explained by Van der Mensbrugghe,* as due to the diminished surface-tension of water impregnated with that body. In order that the rotations may be lively, it is imperative, as was well shown by Mr. Tomlinson, that the utmost cleanliness be observed. It is a good plan to submit the internal surface of the vessel to a preliminary treatment with strong sulphuric acid. A touch of the finger is usually sufficient to arrest the movements by communicating to the surface of the water a film of grease. When the surface-tension is thus lowered, the differences due to varying degrees of dissolved camphor are no longer sufficient to produce the effect.

It is evident at once that the quantity of grease required is excessively small, so small that under the ordinary conditions of experiment it would seem likely to elude our methods of measurement. In view, however, of the great interest which attaches to the determination of molecular magnitudes, the matter seemed well worthy of investigation; and I have found that by sufficiently increasing the water

^{* &#}x27;Mémoires Couronnés' (4to) of the Belgian Academy, vol. 34, 1869.