Name:

KEY

Question 1

In terms of α and β , express all the lengths and other angle measures (θ and ϕ).

Variable	Algebraic expression
p =	cos (3)
q =	Din (B)
r =	$lor(\alpha)\cdot lor(\beta)$
s =	sin (a). cor (B)
$\theta =$	
t =	cor(a) · sin(z)
u =	sis(d). sis (B)
$\phi =$	$\alpha + \beta$
v =	$Cor(\alpha+\beta)$
w =	Sis (a+B)

Question 2

You know the following:

$$\sin(60^\circ) = \frac{\sqrt{3}}{2}$$

$$\sin(45^\circ) = \frac{\sqrt{2}}{2}$$

$$\cos(60^\circ) = \frac{1}{2} \qquad \qquad \cos(45^\circ) = \frac{\sqrt{2}}{2}$$

Determine $\cos(105^{\circ})$ exactly.

$$cor(60^{\circ} + 45^{\circ}) = cor(60^{\circ}) cor(45^{\circ}) - pi(60^{\circ}) sin(45^{\circ})$$

$$= \frac{1}{2} \cdot \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}$$

$$= \frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{4}$$

$$= \frac{\sqrt{2} - \sqrt{6}}{4}$$

Question 3

Prove that $\sin(2x) = 2\sin(x)\cos(x)$ for any x.

(Hint: start with an angle-sum formula from Question 2.)

$$Aim(\alpha + \beta) = sin(\alpha) \cdot con(\beta) + con(\alpha) \cdot din(\beta)$$

$$Jet \alpha = x \text{ and } \beta = x.$$

$$Jin(x+x) = din(x) \cdot con(x) + con(x) \cdot din(x)$$

$$Ain(2x) = 2 Ain(x) \cdot Rar(x)$$

Question 4

Prove that $cos(2x) = 2cos^2(x) - 1$ for any x.

2p9

NOT NECESSARY

(Hint: start with an angle-sum formula from Question 2. Also, you will need to use the Pythagorean Identity $\{\sin^2(x) + \cos^2(x) = 1\}$ $ca(\alpha+\beta) = ca(\alpha)ca(\beta) - \betai(\alpha)\betai(\beta)$ Lot a = x and B=x. An(x+x) = Rn(x) cos(x) - Sin(x) A

$$Ror(x+x) = Ror(x) cos(x) - Au(x) Au(x)$$

$$cor(2x) = cor(x) - sin^2(x)$$

$$gin^2(x) = \left(1 - con^2(x)\right)^2$$

$$cer(2x) = cer^2(x) - (1 - cer^2(x))$$

$$\sqrt{\cos(2x)} = \cos^2(x) - 1 + \cos^2(x)$$

$$\sqrt{\cos(2x)} = 2 \cos^2(x) - 1$$

Page 3 of 4

Question 5

Prove that $\cos\left(\frac{y}{2}\right) = \sqrt{\frac{1+\cos(y)}{2}}$. (Technically this assumes $\cos(y/2) > 0$, but let's not worry about that here.)

(Hint: use the identity proved in Question 4.)

$$cor(2x) = 2 cor^2(x) - 1$$

Let
$$2x = y$$
, so $x = \frac{y}{2}$.

$$cer(y) = 2 cer(\frac{y}{3}) - 1$$

Question 6
$$con(y)+1 = con^{2}(\frac{y}{2})$$

$$con(\frac{y}{2}) = \sqrt{\frac{con(y)+1}{2}}$$

If you knew that $\cos(100^\circ) \approx -0.17$, then what is $\cos(50^\circ)$? Please set up an expression, but do **not** try to simplify or evaluate a decimal approximation.

(Hint: 100/2 = 50.)

$$cor\left(\frac{100^{\circ}}{2}\right) = \sqrt{\frac{cor\left(100^{\circ}\right) + 1}{2}}$$

$$cor\left(\frac{100^{\circ}}{2}\right) = \sqrt{\frac{-0.17 + 1}{2}}$$