

Notation

Ensemble d'entraînement: $D = \{(\vec{x}_1, t_1), (\vec{x}_2, t_2), ..., (\vec{x}_N, t_N)\}$

 $\vec{x}_n \in \Re^d$ vecteur de données du n-ème élement $t_n \in \{c_1, c_2, ..., c_K\}$ étiquette de classe du i-ème élément

Fonctions: avec D, on doit apprendre une fonction de classification

$$y_{\bar{w}}(\vec{x}): \mathfrak{R}^d \rightarrow \{c_1, c_1, \dots, c_k\}$$

qui nous informe à quelle classe appartient le vecteur \vec{x} .

Au menu: 5 méthodes

Régression Modèles génératifs

Discriminant de Fisher

Solution de type « closed form » (inversion de matrice)

Perceptron Régression logistique

Aucune hypothèse quant à la distribution des données

6

Introduction à la classification linéaire

Au tableau !!!

Séparation linéaire

(2D et 2 classes)

$$y_{\vec{w}}(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2$$

$$= w_0 + \vec{w}^T \vec{x}$$

$$= \vec{w}'^T \vec{x}'$$

$$y_{\vec{w}}(\vec{x}) = \vec{w}^T \vec{x}$$

Régression Modèles génératifs Discriminant de Fisher	Émettent l'hypothèque que les données sont gaussiennes Solution de type « <i>closed form</i> » (inversion de matrice)
Perceptron Régression logistique	Émettent aucune hypothèse quant à la distribution des données Solution obtenue grâce à une descente de gradient.
	11

Régression par les moindres carrés (section 4.1.3, Bishop)

12

12

Régression par les moindres carrés

Cas 2 classes

On peut classifier des données en utilisant une approche de régression comme celle vue au chapitre précédent.

- On pourrait **prédire directement** la valeur de la cible (t=1.0 vs t=-1.0)
- Si $y_{\bar{w}}(\vec{x}) \ge 0$ on classifie dans *Classe1* sinon dans *Classe2*

Régression par les moindres carrés

Cas K>2 classes

On va traiter le cas K classes comme une régression multiple

- Cible : vecteur à K dim. indiquant a quelle classe appartient l'entrée
- Exemple : Pour K=5 classes et une entrée associée à la classe 2

$$t_n = \begin{pmatrix} -1 & 1 & -1 & -1 \end{pmatrix}^{\mathsf{T}}$$

• Classification: On classifie dans la classe k une donnée dont la valeur de $\mathcal{Y}_{\vec{u},k}(\vec{x})$ est la plus élevée.

17

17

Régression par les moindres carrés

Cas K>2 classes

Le modèle doit maintenant prédire un vecteur

$$y_{\mathbf{W}}(\vec{x}) = \mathbf{W}^{\mathrm{T}} \vec{x}$$

où W est une matrice K x d

Chaque ligne de W peut être vue comme un vecteur $\vec{\mathbf{w}}_k$ du modèle $y_{\vec{\mathbf{w}}_k}(\vec{x}) = \vec{\mathbf{w}}_k^T \vec{x}$ pour la k^T cible

18

18

20	
20	
	1
Régression Émptot l'hymothème que les demées cont gaussiennes	
Modèles génératifs	
Discriminant de Fisher Solution de type « closed form » (inversion de matrice)	
Perceptron Émettent aucune hypothèse quant à la distribution des données	
Régression logistique Solution obtenue grâce à une descente de gradient.	
21	
21	
Modèles probabilistes génératifs	
(section 4.2, Bishop)	
22	

Prenons le cas 1D, 2 Classes

Ex: examen de statistiques avec des étudiants en math et en informatique

T est le seuil qui minimise l'erreur de classification

$$P(\inf O)P(x = T \mid \inf O) = P(\operatorname{math})P(x = T \mid \operatorname{math})$$

$$P(\inf O)P(x \mid \inf O) \underset{\text{math}}{\overset{\text{info}}{\gtrless}} P(\operatorname{math})P(x \mid \operatorname{math})$$

23

$$P(\text{info})P(x | \text{info}) \underset{\text{math}}{\gtrless} P(\text{math})P(x | \text{math})$$

est équivalent à un maximum a posteriori

Inconnue
$$t = \arg \max_{t} P(t \mid x) \quad \text{où } t \in \{\text{math,info}\}$$

$$= (\cdots)$$

$$= \arg \max_{t} P(t)P(x \mid t)$$

24

Prenons le cas 1D, 2 Classes

Ex: examen de math avec étudiant en math et en informatique

$$P(\inf O)P(x \mid \inf O) \underset{\text{math}}{\overset{\text{info}}{\geq}} P(\operatorname{math})P(x \mid \operatorname{math})$$

Si on suppose que la vraisemblance de chaque classe est gaussienne:

$$\begin{split} P(x \mid \text{info}) &= \frac{1}{\sqrt{2\pi}\sigma_{\text{info}}} \exp\left(-\frac{\left(x - \mu_{\text{info}}\right)^2}{2\sigma_{\text{info}}^2}\right) \\ P(x \mid \text{math}) &= \frac{1}{\sqrt{2\pi}\sigma_{\text{muth}}} \exp\left(-\frac{\left(x - \mu_{\text{math}}\right)^2}{2\sigma_{\text{muth}}^2}\right) \\ \text{où} \end{split}$$

 μ_{math} : moyenne des étudiants de math . $\sigma_{\mbox{\tiny math}}$: écart - type des étudiants de math.

Prenons le cas 1D, 2 Classes

Ex: examen de math avec étudiant en math et en informatique

$$P(\inf O)P(x \mid \inf O) \underset{\text{math}}{\overset{\text{info}}{\gtrless}} P(\operatorname{math})P(x \mid \operatorname{math})$$

Si on suppose que la vraisemblance de chaque classe est gaussienne:

$$\begin{split} P(x \mid \text{info}) &= \frac{1}{\sqrt{2\pi}\sigma_{\text{info}}} \exp\left(-\frac{\left(x - \mu_{\text{info}}\right)^2}{2\sigma_{\text{info}}^2}\right) \\ P(x \mid \text{math}) &= \frac{1}{\sqrt{2\pi}\sigma_{\text{math}}} \exp\left(-\frac{\left(x - \mu_{\text{math}}\right)^2}{2\sigma_{\text{math}}^2}\right) \end{split}$$

et que

 $P(info) = \frac{nb \text{ \'etudiants info}}{nb \text{ tot \'etudiants}}$

(Proportion des étudiants en info)

 $P(\text{math}) = \frac{\text{nb \'etudiants math}}{\text{nb tot \'etudiants}}$ (Proportion des \'etudiants en math)

26

Modèle probabiliste génératif

$$\begin{split} & \mu_{\text{ntfo}} = \frac{1}{N_{\text{info}}} \sum_{x_i = \text{info}} x_i, \ \mu_{\text{nuth}} = \frac{1}{N_{\text{nuth}}} \sum_{x_i = \text{outh}} x_i \\ & \sigma_{\text{info}}^2 = \frac{1}{N_{\text{info}}} \sum_{x_i = \text{info}} (x_i - \mu_{\text{ntfo}})^2, \ \sigma_{\text{outh}}^2 = \frac{1}{N_{\text{nuth}}} \sum_{x_i = \text{info}} (x_i - \mu_{\text{nuth}})^2 \\ & P(\text{math}) = \frac{N_{\text{nuth}}}{N_{\text{info}} + N_{\text{nuth}}}, P(\text{info}) = \frac{N_{\text{nuth}}}{N_{\text{info}} + N_{\text{nuth}}} \end{split}$$

POUR CHAQUE note x FAIRE

$$\begin{split} P_{\scriptscriptstyle i} &= \frac{P(\mathrm{info})}{\sqrt{2\pi}\sigma_{\mathrm{info}}} \mathrm{exp} \bigg(-\frac{\left(x - \mu_{\mathrm{info}}\right)^2}{2\sigma_{\mathrm{info}}^2} \bigg) \\ P_{\scriptscriptstyle m} &= \frac{P(\mathrm{math})}{\sqrt{2\pi}\sigma_{\mathrm{muth}}} \mathrm{exp} \bigg(-\frac{\left(x - \mu_{\mathrm{math}}\right)^2}{2\sigma_{\mathrm{muth}}^2} \bigg) \end{split}$$

 $SI P_i > P_m ALORS$

$$t = 1$$
 /* étudiant « info » */
SINON

/* étudiant « math » */

27

L'algorithme de la page précédente revient à un classificateur quadratique

$$y_{\bar{\mathbf{w}}}(x) = w_2 x^2 + w_1 x + w_0 = 0$$

Modèle probabiliste génératif

Classificateur quadratique, cas 1D, 2 Classes

$$\begin{split} &P(\text{info})P(x|\text{ info}) = P(\text{math})P(x|\text{ math}) \\ &\frac{P(\text{info})}{\sqrt{2\pi}\sigma_{\text{mfo}}} \exp\left(-\frac{\left(x-\mu_{\text{mish}}\right)^2}{2\sigma_{\text{info}}^2}\right) = \frac{P(\text{math})}{\sqrt{2\pi}\sigma_{\text{mash}}} \exp\left(-\frac{\left(x-\mu_{\text{math}}\right)^2}{2\sigma_{\text{math}}^2}\right) \end{split}$$

On peut facilement démontrer que

$$y_{\vec{w}}(x) = w_2 x^2 + w_1 x + w_0 = 0$$

$$w_2 = \frac{\sigma_{\text{math}}^2 - \sigma_{\text{info}}^2}{2}$$

$$w_1 = \mu_{\text{math}} \sigma_{\text{info}}^2 - \mu_{\text{info}} \sigma_{\text{math}}^2$$

$$w_{0} = \frac{\mu_{\mathrm{info}}^{2} \sigma_{\mathrm{math}}^{2}}{2} - \frac{\mu_{\mathrm{math}}^{2} \sigma_{\mathrm{info}}^{2}}{2} - \sigma_{\mathrm{info}}^{2} \sigma_{\mathrm{math}}^{2} \ln \! \left(\frac{\sigma_{\mathrm{math}} P(\mathrm{info})}{\sigma_{\mathrm{info}} P(\mathrm{math})} \right)$$

29

Modèle probabiliste génératif

Classificateur linéaire, cas 1D, 2 Classes

Si on suppose que $\sigma_{\text{info}} = \sigma_{\text{math}} = \sigma$

P(info)P(x | info) = P(math)P(x | math)

$$\frac{P(\text{info})}{\sqrt{2\pi}\sigma} \exp\!\left(-\frac{\left(x - \mu_{\text{info}}\right)^2}{2\sigma^2}\right) = \frac{P(\text{math})}{\sqrt{2\pi}\sigma} \exp\!\left(-\frac{\left(x - \mu_{\text{math}}\right)^2}{2\sigma^2}\right)$$

$$y_{\vec{w}}(x) = w_1 x + w_0 = 0$$

$$w_1 = \frac{\left(\mu_{\text{math}} - \mu_{\text{info}}\right)}{\sigma^2}$$

$$w_0 = \frac{\mu_{\text{info}}^2}{2\sigma^2} - \frac{\mu_{\text{math}}^2}{2\sigma^2} - \ln\left(\frac{P(\text{info})}{P(\text{math})}\right)$$

30

30

Modèle probabiliste génératif

Classificateur linéaire, cas d-D, 2 Classes

$$y_{\vec{\mathbf{w}}}(\vec{x}) = \vec{\mathbf{w}}^{\mathrm{T}} \vec{x} + w_0 = 0$$

$$\vec{\mathbf{w}} = \Sigma^{-1} \left(\vec{\mu}_1 - \vec{\mu}_2 \right)$$

$$w_0 = \frac{\vec{\mu}_2^{\mathsf{T}} \Sigma^{-1} \vec{\mu}_2}{2} - \frac{\vec{\mu}_1^{\mathsf{T}} \Sigma^{-1} \vec{\mu}_1}{2} - \ln \left(\frac{P(\mathsf{C}_2)}{P(\mathsf{C}_1)} \right)$$

Tel que mentionné au chapitre 4.2.2, lorsque les 2 classes n'ont pas la même variance-covariance, on peut utiliser le modèle linéaire mais avec la matrice

$$\Sigma = P(C_1)\Sigma_1 + P(C_2)\Sigma_2$$

32

Modèle probabiliste génératif Classificateur linéaire, cas 1D, 2 Classes

Si on suppose que P(info) = P(math)

 $P(\inf_{x \in \mathcal{X}})P(x \mid \inf_{x \in \mathcal{X}}) = P(\inf_{x \in \mathcal{X}})P(x \mid \inf_{x \in \mathcal{X}})$

$$y_{\vec{\mathbf{w}}}(x) = w_1 x + w_0 = 0$$

$$w_1 = \frac{\left(\mu_{\text{math}} - \mu_{\text{info}}\right)}{\sigma^2}$$

$$w_0 = \frac{\mu_{\text{info}}^2}{2\sigma^2} - \frac{\mu_{\text{math}}^2}{2\sigma^2} - \ln \left(\frac{P(\text{info})}{P(\text{math})} \right)$$

33

Modèle probabiliste génératif

Classificateur linéaire, cas d-D, K Classes

On peut généraliser au cas à plusieurs classes

➤ Voir fin des sections 4.2 et 4.2.1

35	
35	
Régression Modèles génératifs Émettent l'hypothèque que les données sont gaussiennes	
Discriminant de Fisher Solution de type « closed form » (inversion de matrice)	
Perceptron Émettent aucune hypothèse quant à la distribution des	
Régression logistique	
Solution obtenue grâce à une descente de gradient.	
36	
36	
Discriminant linéaire de Fisher	
(section 4.1.4, Bishop)	
(Section 4.1.4, Dishop)	
37	
15	

Classification linéaire = Projection 1D

(2D et 2 classes)

 $y_{\vec{w}}(\vec{x}) = w_0 + \vec{w}^{\mathrm{T}} \vec{x}$

$$\vec{w} = \arg\max_{\vec{w}} \left| \vec{w}^{\mathrm{T}} (\vec{\mu}_1 - \vec{\mu}_2) \right|$$

Ce **problème est mal posé** car il suffit d'augmenter **W** infiniment pour maximiser cette fonction.

41

41

Classification linéaire = Projection 1D

(2D et 2 classes)

 $y_{\vec{w}}(\vec{x}) = w_0 + \vec{w}^{\mathrm{T}} \vec{x}$

$$\vec{w} = \arg\max_{\vec{w}} \left| \vec{w}^{\mathrm{T}} (\vec{\mu}_1 - \vec{\mu}_2) \right|$$

Par contre si on impose que la **norme de** w = 1 on obtient que

$$\vec{w} \propto (\vec{\mu}_1 - \vec{\mu}_2)$$

(preuve au tableau)

42

42

Discriminant linéaire

Une fois w calculé, il faut trouver le biais w_0

> Un choix fréquent lorsque les classes sont balancées

$$w_0 = -\frac{\vec{w}^{\mathrm{T}} \vec{\mu}_1 + \vec{w}^{\mathrm{T}} \vec{\mu}_2}{2}$$

Sinon

$$w_0 = -\vec{w}^{\text{T}} \left(\frac{N_1}{N_1 + N_2} \vec{\mu}_1 + \frac{N_2}{N_1 + N_2} \vec{\mu}_2 \right)$$

où N1 et N2 sont le nombre d'éléments dans chaque classe.

$\begin{array}{|c|c|c|}\hline \textbf{Discriminant lin\'eaire de Fisher}\\ \hline \\ \textbf{Algorithme 2-Classes, entraînement}\\ \hline \\ \textbf{Calculer } \vec{\mu}_1, \vec{\mu}_2\\ \hline \\ \textbf{$\mathcal{F}_{\vec{w}} = \sum_{i_* \in C_1} (\vec{x}_n - \vec{\mu}_1)(\vec{x}_n - \vec{\mu}_1)^T + \sum_{i_* \in C_2} (\vec{x}_n - \vec{\mu}_2)(\vec{x}_n - \vec{\mu}_2)^T$}\\ \hline \\ \vec{w} = \sum_{i_*}^{-1} (\vec{\mu}_1 - \vec{\mu}_2)\\ \hline \\ w_0 = -\frac{\vec{w}^T \vec{\mu}_1 + \vec{w}^T \vec{\mu}_2}{2} & \left(\text{ou } w_0 = -\vec{w}^T \bigg(\frac{N_1}{N_1 + N_2} \vec{\mu}_1 + \frac{N_2}{N_1 + N_2} \vec{\mu}_2\bigg) \right) \\ \hline \\ \textbf{Algorithme 2-Classes, généralisation}\\ \hline \\ \textbf{POUR CHAQUE donnée test \vec{x} FAIRE}\\ \hline \\ t = y_w(\vec{x}) = \vec{w}^T \vec{x} + w_0\\ \hline \\ \text{SI} t < 0 \text{ ALORS}\\ t = 1\\ \hline \\ \text{SINON}\\ t = 2\\ \hline \\ \end{bmatrix}$

Discriminant linéaire de Fisher	
On peut voir l'analyse discriminante linéaire comme un cas particulier des moindres carrés	
➤ voir section 4.1.5	
• Il est possible de généraliser au cas à plus de 2 classes > voir section 4.1.6	
50	
50	
	1
51	
51	
Régression	
Modèles génératifs Discriminant de Fisher Émettent l'hypothèque que les données sont gaussiennes Solution de type « closed form » (inversion de matrice)	
Perceptron Émettent aucune hypothèse quant à la distribution des	
Régression logistique données Solution obtenue grâce à une descente de gradient.	
52	

Perceptron (section 4.1.7, Bishop)

53

53

Perceptron (2 classes)

Contrairement aux approches précédentes, le perceptron ${\bf n'\acute{e}met}$ ${\bf pas}$ l'hypothèse que les données sont ${\bf gaussiennes}$

Le perceptron part de la definition brute de la classification binaire par hyperplan

$$y_{\bar{w}}(\bar{x}) = sign(\bar{w}^T \bar{x})$$

$$= sign(w_0 + w_1 x_1 + w_2 x_2 + ... + w_d x_d)$$
biais
poids

54

Nouvelle fonction de coût pour **apprendre** W

<u>Le but</u>: avec des données d'entraı̂nement $D = \{(\vec{x}_1, t_1), (\vec{x}_2, t_2), ..., (\vec{x}_N, t_N)\}$, estimer \vec{w} afin que:

$$y_{\vec{w}}(\vec{x}_n) = t_n \quad \forall n$$

En d'autres mots, minimiser l'erreur d'entraînement

$$E_D(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} l(y_{\vec{w}}(\vec{x}_n), t_n)$$

où l(...) est une fonction de perte (loss function en anglais).

Trouver la bonne fonction de perte et le bon algorithme **d'optimisation** est un sujet central en $apprentissage\ machine$.

59

59

Régression et classification

RAPPEL

Vous vous souvenez de la régression?

Maximum de vraisemblance

$$\vec{w} = \arg\min_{\vec{w}} \sum_{n=1}^{N} \frac{\left(t_n - y_{\vec{w}}(\vec{x}_n)\right)^2}{2}$$

$$E_{n}(\vec{w})$$

 $E_D(\vec{w})$

Maximum a posteriori

$$\vec{w} = \arg\min_{\vec{w}} \sum_{n=1}^{N} (t_n - y_{\vec{w}}(\vec{x}_n))^2 + \lambda \vec{w}^{\mathrm{T}} \vec{w}$$

C'est un peu la même idée pour le Perceptron mais avec une <u>nouvelle fonction de coût</u>.

60

Gradient descent

Question: how to find the best solution? $\nabla E_D(y_{\bar{w}}(\vec{x})) = 0$

$$\vec{w}^{[k+1]} = \vec{w}^{[k]} - \eta \nabla E_D \left(y_{\vec{w}^{[k]}} (\vec{x}) \right)$$

Gradient de la perto

Taux d'apprentissage
(Learning rate)

65

65

Critère du perceptron (perte)

Observation

Une donnée mal classée survient lorsque

$$\vec{w}^{\mathrm{T}}\vec{x}_{n} > 0 \text{ et } t_{n} = -1$$

ou

$$\vec{w}^{\mathrm{T}}\vec{x}_{n}<0\ \mathrm{et}\ t_{n}=+1.$$

DONC $-\vec{w}^{\mathrm{T}}\vec{x}_{n}t_{n}$ est TOUJOURS positif pour des données mal classés

66

66

Critère du perceptron

Le critère du perception est une function qui pénalise les données mal classées

 $E_D(\vec{w}) = \sum_{n} -\vec{w}^T \vec{x}_n t_n$ où M est l'ensemble des données mal classées

Perceptron Question: comment trouver la meilleure solution \vec{w} avec cette function de perte? Réponse: une solution frequente est la descente de gradient. $\vec{w}^{Jk+1J} = \vec{w}^{JkJ} - \eta \nabla E_D(\vec{w}^{JkJ})$ $\longrightarrow \text{Gradient de la function de coût}$ $\longrightarrow \text{Taux d'apprentissage (learning rate)}.$ Descente de gradient de base Initialiser \vec{w}' k=0 FAIRE k=k+1 $\vec{w} = \vec{w} - \eta \nabla E_D(\vec{w})$ JUSQU'À ce que toutes les données soient bien classées

Perceptron Une autre version de l'algorithme consiste à analyser <u>une donnée par itération</u>. Descente de gradient stochastique Initialiser \vec{W} k=0DO k=k+1FOR n=1 to NIF $\vec{W}^T\vec{x}_sf_n<0$ THEN /* donnée mal classée */ $\vec{W}=\vec{W}+\eta f_s\vec{x}_n$ UNTIL toutes les données sont bien classées.

Perceptron Multiclasse Exemple d'entraînement $(\eta = I)$ $\vec{x}_n = (0.4, -1.0), t_n = 0$ $\vec{w}_0 \leftarrow \vec{w}_0 + \vec{x}_n$ $\begin{bmatrix} -2.0 \\ 3.6 \\ 0.5 \end{bmatrix} + \begin{bmatrix} 1 \\ 0.4 \\ -1 \end{bmatrix} = \begin{bmatrix} -1.0 \\ 4.0 \\ -0.5 \end{bmatrix}$ $\vec{w}_2 \leftarrow \vec{w}_2 - \vec{x}_n$ $\begin{bmatrix} -6.0 \\ 4.0 \\ -4.9 \end{bmatrix} - \begin{bmatrix} 1 \\ 0.4 \\ -1 \end{bmatrix} = \begin{bmatrix} -7.0 \\ 3.6 \\ -3.9 \end{bmatrix}$

2 classes

$$\begin{split} E_D(\vec{w}) &= \sum_{\vec{x}_n \in M} -t_n \vec{w}^T \vec{x}_n & \text{où } M \text{ est l'ensemble des données mal classées} \\ E_D(\vec{w}) &= \sum_{n=1}^N \max \Bigl(0_i - t_n \vec{w}^T \vec{x}_n \Bigr) \end{split}$$

$$E_D(\vec{w}) = \sum_{n=1}^{N} \max(0.1 - t_n \vec{w}^T \vec{x}_n)$$
 "Hinge Loss" or "SVM" Loss

K classes

$$\begin{split} E_{\scriptscriptstyle D}(W) &= \sum_{\vec{x}_a \in M} (\vec{w}_{\scriptscriptstyle I}^T \vec{x}_a - \vec{w}_{\scriptscriptstyle I_c}^T \vec{x}_a) \quad \text{où } M \text{ est l'ensemble des données mal classées} \\ E_{\scriptscriptstyle D}(W) &= \sum_{n=1}^{N} \sum_{j} \max(0, \vec{w}_{\scriptscriptstyle I}^T \vec{x}_n - \vec{w}_{\scriptscriptstyle I_a}^T \vec{x}_n) \end{split}$$

$$E_D(W) = \sum_{n=1}^{N} \sum_{j} \max \left(0.1 + \vec{w}_j^T \vec{x}_n - \vec{w}_{t_n}^T \vec{x}_n \right) \qquad \text{"Hinge Loss" or "SVM" Loss}$$

Amélioration du Perceptron (N-D, 2 classes)

Exemple

$$\vec{x}_n = (0.4, -1.0), \vec{w} = [2.0, -3.6, 0.5]$$

Puisque 0.125 est inférieur à 0.5, \vec{x}_n est <u>derrière</u> le plan.

93

93

Amélioration du Perceptron (N-D, 2 classes)

Avec une sigmoïde, on peut simuler une probabilité conditionnelle sur cı étant donné \vec{x}

$$y_{\vec{w}}(\vec{x}) = \sigma(\vec{w}^T \vec{x}) \Longrightarrow P(c_1 \mid \vec{x})$$

Preuve:

$$P(c_{1} | \vec{x}) = \frac{P(\vec{x} | c_{1})P(c_{1})}{P(\vec{x} | c_{0})P(c_{0}) + P(\vec{x} | c_{1})P(c_{1})}$$
(Bayes)
$$= \frac{1}{1 + \frac{P(\vec{x} | c_{0})P(c_{0})}{P(\vec{x} | c_{1})P(c_{1})}}$$

$$= \frac{1}{1 + e^{-a}} \quad \text{où } a = \ln \left[\frac{P(\vec{x} | c_{0})P(c_{0})}{P(\vec{x} | c_{1})P(c_{1})} \right]$$

Amélioration du Perceptron (N-D, 2 classes)

En d'autres mots, si on entraîne correctement un réseau logistique, on finit par apprendre la probabilité conditionnelle de la classe ci.

Quelle est la function de coût d'un réseau logistique?

95

Fonction de coût d'un réseau logistique?

(2 classes)

Dans le cas d'un réseau logistique nous avons

Ensemble d'entraı̂nement : $D = \{(\vec{x}_1, t_1), (\vec{x}_2, t_2), ..., (\vec{x}_n, t_n)\}$ Sortie du réseau: $y_{\vec{w}}(\vec{x}) = \sigma(\vec{w}^T \vec{x}) = P(c_1 \mid \vec{w}, \vec{x})$

$$\begin{split} P(D \mid \overrightarrow{w}) &= \prod_{n=1}^{N} P(c_1 \mid \overrightarrow{w}, \overrightarrow{x}_n)^{t_n} \big(1 - P(c_1 \mid \overrightarrow{w}, \overrightarrow{x}_n)\big)^{1-t_n} \\ &= \prod_{n=1}^{N} \mathcal{Y}_{\overrightarrow{w}} \big(\overrightarrow{x}_n\big)^{t_n} \big(1 - \mathcal{Y}_{\overrightarrow{w}} \big(\overrightarrow{x}_n\big)\big)^{1-t_n} \end{split}$$

101

Fonction de coût d'un réseau logistique?

(2 classes)

$$P(D \mid \vec{w}) = \prod_{n=1}^{N} y_{\vec{w}} (\vec{x}_n)^{t_n} (1 - y_{\vec{w}} (\vec{x}_n))^{1-t_n}$$

Solution: Maximum de vraisemblance

$$W = \arg \max_{W} P(D | W)$$

$$= \arg \max_{W} \prod_{n=1}^{N} y_{W} (\vec{x}_{n})^{t_{n}} (1 - y_{W} (\vec{x}_{n}))^{1 - t_{n}}$$

$$= \arg \min_{W} \sum_{n=1}^{N} -\ln \left[y_{W} (\vec{x}_{n})^{t_{n}} (1 - y_{W} (\vec{x}_{n}))^{1 - t_{n}} \right]$$

$$= \arg \min_{W} -\sum_{n=1}^{N} t_{n} \ln (y_{W} (\vec{x}_{n})) + (1 - t_{n}) \ln (1 - y_{W} (\vec{x}_{n}))$$

Et pour K>2 classes?

$$P(D | W) = \prod_{n=1}^{N} \prod_{k=1}^{K} (P(t_n | W, \vec{x}_n))^{t_{nk}}$$

Entropie croisée (cross entropy)

$$E_{D}(\mathbf{W}) = -\ln(P(D|W)) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{kn} \ln P(t_{n}|W,\vec{x}_{n})$$

Puisqu'on veut que la sortie du réseau $y_w(\vec{x}_n)$ soit égale à $P(t_n|W,\vec{x}_n)$

$$E_{D}(\mathbf{W}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{kn} \ln y_{W_{k}}(\vec{x}_{n})$$

110

110

Et pour K>2 classes?

En general, on ajoute 1/N pour normaliser le calcul de la loss

$$E_D(\mathbf{W}) = -\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} t_{kn} \ln y_W(\vec{x}_n)$$

On peut montrer que

$$\nabla_{W} E_{D}(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} \vec{x}_{n} (y_{W}(\vec{x}_{n}) - t_{kn})$$

Wow! Beaucoup d'information...

Résumons...

Fonctions de coûts

2 classes

$$\begin{split} E_D(\vec{w}) &= \sum_{\vec{x}_n \in M} -t_n \vec{w}^\mathsf{T} \vec{x}_n \qquad \text{où } M \text{ est l'ensembledes données mal classées} \\ E_D(\vec{w}) &= \sum_{n=1}^N \max(0, -t_n \vec{w}^\mathsf{T} \vec{x}_n) \end{split}$$

 $E_D(\vec{w}) = \sum_{n=1}^{N} \max(0, 1 - t_n \vec{w}^T \vec{x}_n)$ "Hinge Loss" ou "SVM" Loss

 $E_D(\vec{w}) = -\sum_{n=1}^N t_n \ln(y_{\vec{w}}(\vec{x}_n)) + (1 - t_n) \ln(1 - y_{\vec{w}}(\vec{x}_n)) \qquad \qquad \text{Entropie croisée}$ (ou cross entropy)

116

116

Fonctions de coûts

K classes

 $E_{\scriptscriptstyle D}\big(\mathbf{W}\big) = \sum_{\vec{\mathbf{x}}_a \in M} \Big(\mathbf{W}_j^{\mathsf{T}} \vec{\mathbf{x}}_a - \mathbf{W}_{t_a}^{\mathsf{T}} \vec{\mathbf{x}}_a\Big) \qquad \text{où } M \text{ est } \mathsf{l}' \text{ensemble des données mal classées}$

 $E_D(\mathbf{W}) = \sum_{n=1}^{M} \sum_{j} \max(0, \mathbf{W}_{j}^{\mathrm{T}} \vec{x}_{n} - \mathbf{W}_{t_{n}}^{\mathrm{T}} \vec{x}_{n})$

 $E_D(\mathbf{W}) = \sum_{n=1}^{N} \sum_{j} \max \left(0.1 + \mathbf{W}_{j}^{\mathsf{T}} \vec{\mathbf{x}}_{n} - \mathbf{W}_{t_{n}}^{\mathsf{T}} \vec{\mathbf{x}}_{n} \right) \qquad \text{"Hinge Loss" ou "SVM" Loss}$

 $E_D(\mathbf{W}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{kn} \ln y_{W,k}(\vec{x}_n)$

Entropie croisée avec « one hot vector » (ou cross entropy)

Régularisation

Note:

il est fréquent de combiner différentes fonctions de coût avec différentes fonctions de régularisation

123

123

Maximum a posteriori

Exemple: *Hinge loss* + régularisation L2

$$E(\mathbf{w}) = \sum_{n=1}^{N} \max(0, 1 - t_n \mathbf{w}^T \vec{x}_n) + \lambda \|\mathbf{w}\|^2$$

$$\nabla_{\mathbf{W}} E(\mathbf{w}) = \sum_{\vec{x}_n \in \mathcal{M}} -t_n \vec{x}_n + 2\lambda \sum_{d=0}^{D} w_d$$

125

125

Maximum a posteriori

 ${\color{red} \textbf{Exemple}: entropie\ crois\'ee+r\'egularisation\ L2}$

$$\begin{split} & \underset{\boldsymbol{W}}{\text{arg min}} - \ln(P(D \mid \boldsymbol{W})) + \lambda \big\| \boldsymbol{W} \big\|^2 \\ & \underset{\boldsymbol{W}}{\text{arg min}} - \sum_{n=0}^{N} t_n \ln(y_{\boldsymbol{W}}(\vec{\boldsymbol{x}}_n)) + (1 - t_n) \ln(1 - y_{\boldsymbol{W}}(\vec{\boldsymbol{x}}_n)) + \lambda \sum_{i=1}^{d} (w_i)^2 \end{split}$$

$$\nabla_{W} E(\mathbf{w}) = \sum_{n=1}^{N} (y_{W}(\vec{x}_{n}) - t_{n}) \vec{x}_{n} + 2\lambda \sum_{d=0}^{D} w_{d}$$

126

126

Exemples

from sklearn.linear_model import SGDClassifier

Mieux comprendre

Entropie croisée vs Hinge loss

