15

Derivative

导数

函数切线斜率,即变化率

微积分是现代数学的第一个成就,它的重要性怎么评价都不为过。我认为它比其他任何东西都更明确地定义了现代数学的起源。而作为其逻辑发展的数学分析系统,仍然是精确思维的最大技术 进步。

The calculus was the first achievement of modern mathematics and it is difficult to overestimate its importance. I think it defines more unequivocally than anything else the inception of modern mathematics; and the system of mathematical analysis, which is its logical development, still constitutes the greatest technical advance in exact thinking.

—— 约翰·冯·诺伊曼 (John von Neumann) | 美国籍数学家 | 1903 ~ 1957

- ✓ sympy.abc import x 定义符号变量 x
- sympy.diff() 求解符号导数和偏导解析式
- ◀ sympy.Eq() 定义符号等式
- ◀ sympy.evalf() 将符号解析式中未知量替换为具体数值
- ◀ sympy.limit() 求解极限
- ◀ sympy.plot implicit()绘制隐函数方程
- ◀ sympy.series() 求解泰勒展开级数符号式
- ◀ sympy.symbols() 定义符号变量

15.1 牛顿小传

"如果说我比别人看得更远,那是因为我站在巨人们的肩上。"

牛顿从伽利略手中接过了智慧火炬; 1642 年年底, 艾萨克·牛顿 (Sir Isaac Newton) 呱呱坠地, 同年年初伽利略驾鹤西征。

艾萨克·牛顿 (Sir Isaac Newton) 英国物理学家、数学家 | 1643年~1727年 提出万有引力定律、牛顿运动定律,与莱布尼茨共同发明微积分

牛顿坐在果园里,思考物理学。苹果熟了,从树上落下,砸到了牛顿的脑门。一个惊世疑 问, 苹果为什么会下落?

是的, 苹果为什么会下落, 而不是飞向更遥远的天际? 对这些问题的系统思考让牛顿提出万 有引力定律。

图 1. 地球引力场作用下的月球和苹果

牛顿的成就不止于此。他提出三大运动定律,并出版《自然哲学的数学原理》(Mathematical Principles of Natural Philosophy), 他利用三棱镜发现七色光谱,发明反射望远镜,并提出光的微

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

粒说,他和莱布尼茨分别独立发明微积分等等。任何人有其中任意一个贡献,就可以留名青史;然而,牛顿一个人完成上述科学进步。

自然和自然规律隐藏在黑暗之中。

上帝说:交给牛顿吧,

于是一切豁然开朗。

Nature and Nature's laws lay hid in night:

God said, Let Newton be! and all was light.

—— 亚历山大·蒲柏 (Alexander Pope) | 英国诗人 | 1688 ~ 1744

图 2. 牛顿时代时间轴

15.2 极限:研究微积分的重要数学工具

微积分 (calculus) 是研究实数域上函数的微分与积分等性质的学科;而极限是微积分最重要数学工具。连续 (continuity)、导数 (derivative) 和积分 (integral) 这些概念都是通过极限来定义。

上一章简单介绍了数列极限、数列和的极限。本节主要介绍函数极限。

函数极限

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

首先聊一下函数极限的定义。设函数 f(x) 在点 a 的某一个去心邻域内有定义,如果存在常数 C, 对于任意给定正数 ε , 不管它多小, 总存在正数 δ , 使得 x 满足如下不等式时,

$$0 < |x - a| < \delta \tag{1}$$

对应函数值 f(x) 都满足,

$$|f(x) - C| < \varepsilon \tag{2}$$

常数 C就是函数 f(x) 当 $x \to a$ 时的极限,记做。

$$\lim_{x \to a} f(x) = C \tag{3}$$

举个例子,给定如下函数。

$$f\left(x\right) = \left(1 + \frac{1}{x}\right)^{x} \tag{4}$$

如图3所示,当x趋向正无穷,函数极限为e。

$$\lim_{x \to \infty} f(x) = e \tag{5}$$

图 3. 当 x 趋向正无穷, 函数 f(x) 极限值

邻域

解释一下邻域这个概念;邻域 (neighbourhood) 实际上就是一个特殊的开区间。如图 4 所示, 点 a 的 h (h > 0) 邻域满足 a - h < x < a + h。a 为邻域的中心,h 为邻域的半径。而去心邻域 (deleted neighborhood 或 punctured neighborhood) 指的是,在 a 的邻域中去掉 a 的集合。

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

图 4. 邻域

以下代码计算极限并绘制图3。


```
# Bk Ch15 01
from sympy import latex, lambdify, limit, log, oo
from sympy.abc import x
import numpy as np
from matplotlib import pyplot as plt
f x = (1 + 1/x)**x
x_array = np.linspace(0.1,1000,1000)
f \times fcn = lambdify(x, f x)
f_x_{array} = f_x_{fcn}(x_{array})
f_x_0o_limit = limit(f_x,x,00)
# visualization
plt.close('all')
fig, ax = plt.subplots()
ax.plot(x_array, f_x_array, linewidth = 1.5)
ax.axhline(y = f_x_{oo}_limit, color = 'r')
ax.grid(linestyle='--', linewidth=0.25, color=[0.5,0.5,0.5])
ax.set_xlim(x_array.min(),x_array.max())
plt.xscale("log")
ax.set_xlabel('$\it{x}$',fontname = 'Times New Roman')
ax.set ylabel('$%s$' % latex(f x), fontname = 'Times New Roman')
plt.grid(True, which="both", ls="-")
```

15.3 左极限、右极限

请注意(1)的绝对值符号;如图5所示,这代表着 x 从左、右两侧趋向 a。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 5. x 从左右两侧趋向 a

右极限

将(1)绝对值符号去掉取正得到,

$$0 < x - a < \delta \tag{6}$$

称之为 x 从右侧趋向 a,记做 $x \rightarrow a^+$ 。

随之,将 (3) 中极限条件改为 (6),C 叫做函数 f(x) 的右极限 (right-hand limit 或 right limit),记 做。

$$\lim_{x \to x^+} f(x) = C \tag{7}$$

图 6. 函数 f(x) 左右极限不同

左极限

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

相反,如果将(1)绝对值符号去掉并取负,

$$-\delta < x - a < 0 \tag{8}$$

称之为 x 从左侧趋向 a, 记做 $x \rightarrow a^{-}$ 。

将 (3) 中极限条件改为 (8), C 叫做函数 f(x) 的左极限 (left-hand limit 或 left limit), 记做。

$$\lim_{x \to a^{-}} f(x) = C \tag{9}$$

当 (7) 和 (9) 都成立时, (3) 才成立。也就是, 当 $x \to a$ 时函数 f(x) 极限存在的充分必要条件是, 左右极限均存在且相等。

极限不存在

请大家格外注意,即便左右极限均存在,如果两者不相等,则极限不存在。

如图 6 所示,函数在 x = 0 的右极限为 1。

$$\lim_{x \to 0^+} \frac{1}{1 + 2^{-1/x}} = 1 \tag{10}$$

而函数在x=0的左极限为0。

$$\lim_{x \to 0^{-}} \frac{1}{1 + 2^{-1/x}} = 0 \tag{11}$$

显然函数在x=0处不存在极限;此外,f(x)在x=0处没有定义。

 $\lim_{x\to a} f(x)$ 不存在可能有三种情况: (a) f(x) 在 x=a 处左右极限不一致; (b) f(x)在 x=a 处趋向无穷; (c) f(x) 在趋向 x=a 时在两个定值之间震荡。

表 1. 极限的英文表达

数学表达	英文表达
$\lim_{\Delta x \to 0} f(x) = b$	As delta x approaches 0, the limit for f of x equals b .
$\Delta x \to 0$	Delta <i>x</i> approaches zero.
$\Delta x \rightarrow 0^+$	Delta x goes to zero from the right. Delta x approaches to zero from the right.
$\Delta x \rightarrow 0^-$	Delta x goes to zero from the left. Delta x approaches to zero from the left.
$\lim_{\Delta x \to 0}$	The limit as delta <i>x</i> approaches zero. The limit as delta <i>x</i> tends to zero.
$\lim_{x \to a^+}$	The limit as x approaches a from the right. The limit as x approaches a from the above.
$\lim_{x \to a^{-}}$	The limit as x approaches a from the left. The limit as x approaches a from the below.
$\lim_{x \to c} f(x) = L$	The limit of $f(x)$ as x approaches c is L .
$\lim_{n\to\infty}a_n=L$	The limit of a sub n as n approaches infinity equals L .
$\lim_{x \to -\infty} f(x) = L_1$	the limit of f of x as x approaches negative infinity is capital L sub one.

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

 $\lim_{x \to \infty} f(x) = L_2$

the limit of f of x as x approaches positive infinity is capital L sub two.

以下代码求函数左右极限,并绘制图6。


```
# Bk Ch15 02
from sympy import latex, lambdify, limit, log, oo
from sympy.abc import x
import numpy as np
from matplotlib import pyplot as plt
f x = 1/(1 + 2**(-1/x))
f_x_{fcn} = lambdify(x, f_x)
# right limit
x array right = np.linspace (0.01, 4, 500)
f x array right = f_x_fcn(x_array_right)
f_x_0 = \lim_{x \to 0} f_x(x, x, 0, '+')
# left limit
x array left = np.linspace(-4, -0.01, 500)
f x array left = f x fcn(x array left)
f \times 0 limit left = limit(f \times x, x, 0, '-')
# visualization
plt.close('all')
fig, ax = plt.subplots()
ax.plot(x_array_right, f_x_array_right, linewidth = 1.5, color = 'b')
ax.axhline(y = f_x_0_limit_right, color = 'r')
ax.plot(x_array_left, f_x_array_left, linewidth = 1.5, color = 'b')
ax.axhline(y = f_x_0_{\text{limit_left}}, color = 'r')
ax.axvline(x = 0, color = 'k')
ax.axhline(y = 0.5, color = 'k')
ax.grid(linestyle='--', linewidth=0.25, color=[0.5,0.5,0.5])
ax.set_xlim(x_array_left.min(),x_array_right.max())
ax.set xlabel('$\it{x}$',fontname = 'Times New Roman')
ax.set ylabel('$%s$' % latex(f x), fontname = 'Times New Roman')
```

15.4 几何视角看导数: 切线斜率

导数 (derivative) 描述函数在某一点处的变化率。几何角度来看,导数可以视作曲线切线斜率。

切线斜率

举个中学物理中的例子,加速度 a 是速度 V 的变化率,速度 V 是距离 S 的变化率。

```
本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。
代码及 PDF 文件下载: https://github.com/Visualize-ML
本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466
欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com
```

如图 7 所示,匀速直线运动中,距离函数 S(t) 对于时间 t 是一个一次函数;从图像角度,S(t) 是一条斜线。S(t) 图像的切线斜率不随时间变化,也就是说速度函数 V(t) 的图像为常数函数。

而 V(t) 的切线斜率为 0,说明加速度 a(t) 图像为取值为 0 的常数函数。

图 7. 匀速直线运动: 加速度、速度、距离图像

再看个例子;如图 8 所示,对于匀加速直线运动,距离函数 S(t) 对于时间 t 是一个二次函数;从图像上看,S(t) 在不同时间 t 位置,切线斜率不同。而二次函数的微分是一次函数,也就是说速度函数 V(t) 的图像为一次函数。

显然,速度函数 V(t) 的切线斜率不随时间变化;因此, a(t) 图像为常数函数,即加速度为定值。

图 8. 匀加速直线运动: 加速度、速度、距离

函数导数定义

下面看一下函数导数的确切定义。

对于函数 y = f(x) 自变量 x 在 a 点处一个微小增量 Δx ,会导致函数值增量 $\Delta y = f(a + \Delta x) - f(a)$ 。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

当 Δx 趋向于 0 时,函数值增量 Δy 和自变量增量 Δx 比值的极限存在,则称 y = f(x) 在 a 处可导 (function f of x is differentiable at a); 这个极限值便是函数 f(x) 在 a 点处一阶导数值。

$$f'(a) = f'(x)\big|_{x=a} = \frac{\mathrm{d}f(x)}{\mathrm{d}x}\big|_{x=a} = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x}$$
 (12)

如图 9 所示, 从几何角度看, 随着 Δx 不断减小, 割线不断接近切线。

图 9. 导数就是变化率

 Δ 和 d 都是"差" (difference) 的含义。但是,代表 Δ 近似值,比如 $\Delta x \rightarrow 0$; 而 d 是精确值,比如 $\Delta x \rightarrow 0$; 而 d 是精确值,比如 $\Delta x \rightarrow 0$ 起前于 0 的精确值。

如果函数 y = f(x) 在 x = a 可导 (differentiable) 则函数在该点处连续 (continuous); 但是, 函数 在某一点处连续并不意味着函数可导, 如图 10 所示两种情况。

图 10. 函数在 x = a 不存在导数的两种情况

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

再次注意,本书用 x_1 、 x_2 、 x_3 等等表达变量,而不是变量 x 取值。如果有必要对自变量取值 进行编号,本书会使用上标记法 $x^{(1)}$ 、 $x^{(2)}$ 、 $x^{(3)}$ 等等。

以下代码绘制图9。


```
# Bk Ch15 03
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm # Colormaps
from sympy import latex, lambdify
def plot_secant(x0, y0, x1, y1, color):
   k = (y1 - y0)/(x1 - x0)
    x = np.linspace(-1,4,100)
   secant y x = k*(x - x0) + y0
    plt.plot(x, secant_y_x, color = color,
             linewidth = 0.25)
delta Xs = np.linspace(0.1, 1, 10)
from sympy.abc import x
f x = x**2
x array = np.linspace(-1,4,100)
f \times fcn = lambdify(x, f x)
y_array = f_x_fcn(x_array)
x0 = 1
y0 = f \times fcn(x0)
fig, ax = plt.subplots(figsize = (8,8))
plt.plot(x array, y array, color = '#00448A',
         linewidth = 1.25)
plt.plot(x0, y0, color = '\#92D050', marker = 'x', markersize = 12)
colors = plt.cm.RdYlBu_r(np.linspace(0,1,len(delta_Xs)))
for i in np.linspace(1,len(delta Xs),len(delta Xs)):
   x1 = x0 + delta_Xs[int(i)-1]
   y1 = f \times fcn(x1)
   plt.plot(x1, y1, color = '#00448A',
            marker = 'x', markersize = 12)
  plot secant(x0, y0, x1, y1, colors[int(i)-1])
plt.xlabel('X'); plt.ylabel('$y = f(x)$')
ax.set_title('$f(x) = $s$' % latex(f_x))
ax.set_xlim(0, 2); ax.set_ylim(-1, 4)
fig, ax = plt.subplots()
plt.plot(x0, y0, color = '#92D050', marker = 'x', markersize = 12)
colors = plt.cm.RdYlBu r(np.linspace(0,1,len(delta Xs)))
```

```
本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。
代码及 PDF 文件下载: https://github.com/Visualize-ML
本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466
欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com
```

15.5 导数也是函数

导数也常被称作导数函数或导函数,因为导数也是函数。

函数 f(x) 对自变量 x 的一阶导数 f'(x) 实际上也是一个函数,它的自变量也是 x 。 f'(x) 可以读作 (f prime of x)。

一阶导数

给定二次函数, $f(x) = x^2$; 下面利用 (12) 推导它的一阶导数。

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{2x\Delta x + \Delta x^2}{\Delta x}$$
$$= \lim_{\Delta x \to 0} 2x + \Delta x = 2x$$
(13)

图 11. 几何角度推导 $f(x) = x^2$ 的一阶导数

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

几何角度来看, $f(x) = x^2$ 相当于边长为 x 的正方形面积。图 11 所示为当 x 增加到 $x + \Delta x$ 时,函数值变化对应正方形面积变化。x 到 $x + \Delta x$,正方形面积增加 $2x\Delta x + \Delta x^2$ 。

根据导数定义,函数导数为比值 $(2x\Delta x + \Delta x^2)/\Delta x = 2x + \Delta x$; 当 $\Delta x \to 0$ 时,可以消去 $\Delta x \to 0$ 项。

举个例子,图12(a)所示函数如下。

$$f(x) = x^2 + 2 \tag{14}$$

根据前文推导,它的一阶导数解析式如下。

$$f'(x) = 2x \tag{15}$$

如图 12 (b) 所示, (14) 这个二次函数的一阶导数图像为一条斜线。

图 12. 二次函数、一阶导数、二阶导数

x < 0 时,x 增大 f(x) 减小,此时函数导数为负;x > 0,x 增大 f(x) 增大,函数导数为正。值得注意的是 x = 0,f(x) 取得最小值 (minimum);此处函数 f(x) 导数为 0。

类似地, 推导 $f(x) = x^n$ 的导数, n 为大于 1 的正整数。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - x^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{x^n + nx^{n-1}\Delta x + \frac{n(n-1)}{2}x^{n-2}\Delta x^2 + \dots + \Delta x^n - x^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} nx^{n-1} + \underbrace{\frac{n(n-1)}{2}x^{n-2}\Delta x + \dots + \Delta x^{n-1}}_{\to 0} = nx^{n-1}$$
(16)

表2总结了常用函数导数及图像,请大家自行绘制这些图像。

表 2. 常用函数导数及图像

函数	函数图像举例	一阶导数	一阶导数图像举例
常数函数 f(x)=C	f(x) = 1	f'(x) = 0	f(x) = 0
一次函数 $f(x) = ax$	f(x) = -x + 1	f'(x) = a	f(x) = -1
二次函数 $f(x) = ax^2 + bx + c$	$f(x) = x^2$	f'(x) = 2ax + b	f(x) = 2x
幂函数 $f(x) = x^p$	$f(x) = x^5$	$f'(x) = px^{p-1}$	$f(x) = 5x^4$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

二阶导数

(14) 这个二次函数的二阶导数是其一阶导数的一阶导数,

$$f''(x) = 2 \tag{17}$$

如图 12 (c) 所示, (14) 这个二次函数的二阶导数图像为一条水平线, 即常数函数。

图 13 所示为,高斯函数以及其一阶导数和二阶导数函数图像。容易发现,函数 f(x) 在 x=0 处取得最大值,对应的一阶导数为 0,二阶导数为负。

图 13. 高斯函数、一阶导数、二阶导数

图 14 所示为,三次函数图像,以及其一阶导数和二阶导数函数图像。容易发现, x = 0 处函数 一阶导数为 0;但是,函数 f(x) 既不是最大值,也不是最小值。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 14. 三次函数、一阶导数、二阶导数

驻点

有了以上分析,我们可以聊一聊驻点这个概念。

对于一元函数 f(x),驻点 (stationary point) 是函数一阶导数为 0 的点;从图像上来看,一元函数 f(x) 在驻点处的切线平行于 x 轴。

驻点可能是一元函数的极大值、极小值,或者是鞍点。注意,这里我们没有用最大值和最小值,这是因为函数可能存在不止一个"山峰"或"山谷"。本书后续将在讲解优化问题时深入探讨这些概念。

和	(f(x)+g(x))'=f'(x)+g'(x)
差	(f(x)-g(x))' = f'(x)-g'(x)
积	$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$
商	$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$
倒数	$\left(\frac{1}{f(x)}\right)' = \frac{-f'(x)}{f^2(x)}$

表 3. 常用导数法则

表 4. 导数相关的英文表达

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

数学表达	英文表达		
d y	d y differential of y		
$\frac{\mathrm{d}y}{\mathrm{d}x}$	the derivative of y with respect to x the derivative with respect to x of y d y by d x d y over d x		
df(x)	The derivative of f of x		
$\frac{\mathrm{d} f(x)}{\mathrm{d} x}$	The derivative of f of x with respect to x		
$\frac{\mathrm{d}f(a)}{\mathrm{d}x}$	the derivative of f with respect to x at a d y by d x at a d y over d x at a		
$\frac{\mathrm{d}x^3}{\mathrm{d}x} = 3x^2$	The derivative of x cubed with respect to x equals three x squared.		
$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$	d two y by d x squared the second derivative of y with respect to x		
$\frac{\mathrm{d}^2 x^3}{\mathrm{d} x^2} = 6x$	The second derivative of x cubed with respect to x equals to $\sin x$.		
$\frac{\mathrm{d}^n y}{\mathrm{d} x^n}$	nth derivative of y with respect to x		
f'(x)	$f \operatorname{dash} x$ $f \operatorname{prime of} x$ the derivative of $f \operatorname{of} x$ with respect to x the first-order derivative of f with respect to x		
f'(a)	f prime of a		
f''(x)	f double-dash x f double prime of x the second derivative of f with respect to x the second-order derivative of f with respect to x		
f'''(x)	f triple prime of x f triple-dash x f treble-dash x the third derivative of f with respect to x the third-order derivative of f with respect to x		
$f^{(4)}(x)$	the fourth derivative of f with respect to x the fourth-order derivative of f with respect to x		
$f^{(n)}(x)$	the <i>n</i> th derivative of <i>f</i> with respect to <i>x</i> the <i>n</i> th-order derivative of <i>f</i> with respect to <i>x f</i> to the <i>n</i> th prime of <i>x</i>		
f'(g(x))	f prime of g of x f prime at g of x		
f'(g(x))g'(x)	the product of f prime of g of x and g prime of x		
(f(x)g(x))'	the quantity of f of x times g of x , that quantity prime		
f'(x)g(x)+f(x)g'(x)	f prime of x times g of x , that product plus f of x times g prime of x		
$\left(\frac{f(x)}{g(x)}\right)'$	the quantity f of x over g of x , that quantity prime		
$\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}$	the fraction, the numerator is f prime of x times g of x , that product minus f of x times g prime of x , the denominator is g squared of x		

以下代码绘制图 12; 请读者修改代码绘制本节其他图像。本节代码采用 sympy.abc import x 定义符号变量,然后利用 sympy.diff() 计算一阶导数函数符号式; 利用 sympy.lambdify() 将符号式转换成函数。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com


```
# Bk Ch15 04
from sympy import latex, lambdify, diff, sin
from sympy.abc import x
import numpy as np
from matplotlib import pyplot as plt
# function
f_x = x**2 - 2
x array = np.linspace(-2,2,100)
f \times fcn = lambdify(x, f x)
f_x_array = f_x_fcn(x_array)
# first order derivative
f_x_1_diff = diff(f_x,x)
print(f_x_1_diff)
f \times 1 \text{ diff fcn} = \text{lambdify}(x, f \times 1 \text{ diff})
f_x_1_diff_array = f_x_1_diff_fcn(x_array)
# second order derivative
f \times 2 \text{ diff} = \text{diff}(f \times x, \times x, 2)
print(f_x_2_diff)
f_x_2_diff_fen = lambdify(x,f_x_2_diff)
f \times 2 \text{ diff array} = f \times 2 \text{ diff fcn}(x \text{ array})
f_x_2_diff_array = f_x_2_diff_array + x_array*0
#%% plot first-, second-order derivatives as functions
fig, ax = plt.subplots(3,1)
# original function
ax[0].plot(x array, f x array, linewidth = 1.5)
ax[0].vlines(x=0, ymin = f_x_array.min(), ymax = f_x_array.max(),
color='r', linestyle='--')
ax[0].set title('$f(x) = %s$' % latex(f x))
ax[0].set_ylabel('$f(x)$')
ax[0].set_xlim((x_array.min(),x_array.max()))
ax[0].spines['right'].set visible(False)
ax[0].spines['top'].set visible(False)
ax[0].set xticklabels([])
ax[0].grid(linestyle='--', linewidth=0.25, color=[0.5,0.5,0.5])
# first-order derivative
ax[1].plot(x_array, f_x_1_diff_array, linewidth = 1.5)
ax[1].hlines(y=0, xmin = x_array.min(), xmax = x_array.max(),
               color='r', linestyle='--'
ax[1].vlines(x=0,
               ymin = f_x_1_diff_array.min(),
               ymax = f_x_1_diff_array.max(),
color='r', linestyle='--')
ax[1].set_xlabel("<math>\\it{x}$")
 \begin{array}{l} \text{ax[1].set\_klabel(}, \forall \land \forall (x), \forall \\ \text{ax[1].set\_title(}, \forall (x) = \$s\$' \$ \text{ latex(}f_x_1_\text{diff))} \\ \text{ax[1].set\_ylabel(}, \forall (x) \notin (x) \notin (x) \\ \end{array} 
ax[1].grid(linestyle='--', linewidth=0.25, color=[0.5,0.5,0.5])
ax[1].set_xlim((x_array.min(),x_array.max()))
ax[1].spines['right'].set_visible(False)
ax[1].spines['top'].set_visible(False)
本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。
版权归清华大学出版社所有,请勿商用,引用请注明出处。
代码及 PDF 文件下载: https://github.com/Visualize-ML
本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466
```

每个天才的诞生都需要时代、社会、思想的土壤,牛顿之所以成为牛顿,是因为一代代巨匠 层层累土。

牛顿开创经典牛顿力学体系,让当时人类思想界的面貌天翻地覆,它是人类文明的划时代的里程碑。但是必须认识到牛顿的力学体系是基于哥白尼、开普勒、伽利略等人知识之上的继承和发展。在牛顿所处的时代,哥白尼的日心说已经深入人心,开普勒提出行星运动三定律,伽利略发现惯性定律和自由落体定律。牛顿之所以能发明微积分,离不开笛卡尔创立的解析几何。

人类知识体系是由一代代学者不断继承发展而丰富壮大的。每一个发现、每一条定理,都是知识体系重要的一环,它们既受深受前辈学者影响,又启迪后世学者。