Intervals, Transformations, and Slope Solution (version 118)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-5,2) \cup (5,8)$
Negative	$(-8, -5) \cup (2, 5)$
Increasing	$(-6, -4) \cup (4, 8)$
Decreasing	$(-8, -6) \cup (-4, 4)$
Domain	(-8,8)
Range	(-6,6)

Intervals, Transformations, and Slope Solution (version 118)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=31$ and $x_2=37$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 10 & 31 \\ 24 & 37 \\ 31 & 24 \\ 37 & 10 \\ \hline \end{array}$$

$$\frac{f(37) - f(31)}{37 - 31} = \frac{10 - 24}{37 - 31} = \frac{-14}{6}$$

The greatest common factor of -14 and 6 is 2. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-7}{3}$$

2