

FAD: Fairness through Adversarial Discrimination

Alexandra Henzinger (ahenz), Justin Chen (jyc100)

Motivation

- ML models mirror biases in data: model predicts \hat{y} based on features x, containing protected feature z
- Goal: augment models to induce fair predictions
- Numerous definitions of *fairness*:
 - Demographic parity: ŷ and z independent
 - Equality of opportunity: \hat{y} and z conditionally independent given y = 1
 - Equality of odds: \hat{y} and z conditionally independent given y
- Incongruent: one model can never satisfy all 3 definitions
- Adversarial network to encode fairness into model:

Maximizes accuracy in \hat{y}

Maximizes fairness in z

 Post-training processing: enforce fairness on black-box model by ROC analysis, e.g. equating true positive and false positive rates [Hardt et al. (2016)]

What are the tradeoffs between fairness and accuracy across methods?

Data + Features

- UCI Adult income dataset: predicting income (≤/>\$50K)
 based on demographic census data of individuals (age,
 sex, race, workclass, occupation, investments, education
 degree, marital status, relationship, native country)
- Protected variables z : sex (presented here), race, age
- 32K individuals in train & 16K in test

PROTECTED VARIABLE DISTRIBUTION IN UCI INCOME DATA

Protected Var	Value	Distribution
sex	Male	67%
	Female	33%

Adversarial Model

$$L_P = L_{CE}(y, \hat{y}) - \alpha L_A(z, \hat{z})$$

Predictor loss Predictor logistic loss Adversary logistic loss

- Hyperparam α regulates accuracy/fairness tradeoff
- Input to adversary A depends on choice of fairness metric:
 y for demographic parity; (y, ŷ) for equality of odds/opp.
- 3-layer neural networks for predictor and adversary.

Post-Processing

- Alter class-specific thresholding of logits for predictions to align TP and FP across all classes z [Hardt et al. (2016)]
- True positive (TP) rate: $p(\hat{y} = 1 | y = 1, z)$
- False positive (FP) rate: $p(\hat{y} = 1 | y = 0, z)$
 - → Equivalent TP across all z gives equality of opportunity
 - → Equivalent TP and FP across all z gives equality of odds
 - \rightarrow Equivalent $p(\hat{y} = 1|z)$ across all z gives parity
- **EO** post-processing enforces equality of opportunity; **DP** enforces demographic parity.

Results

Method	Accuracy	Parity-Gap	FP-Gap	TP-Gap
Basic	85.7	0.16	0.06	0.10
Opportunity ($\alpha = 10$)	85.4	0.14	0.47	0.00
Odds ($\alpha = 10$)	85.0	0.11	0.03	0.03
Parity ($\alpha = 10$)	83.9	0.02	0.03	0.29
Beutel [1]	82.3	0.19	0.15	0.07
Zhang [7]	84.5	_	0.01	0.01
Basic + EO	85.5	0.16	0.06	0.02
Opportunity $+ EO$	85.5	0.16	0.07	0.02
Basic + DP	83.6	0.01	0.04	0.29
Parity + <i>DP</i>	83.6	0.00	0.04	0.31

References

- M. Hardt, E. Price, and N. Srebro. Equality of Opportunity in Supervised Learning. ArXiv e-prints, October 2016.
- C. Wadsworth, F. Vera, and C. Piech. Achieving fairness through adversarial learning: an application to recidivism prediction. FAT/ML, 2018.
- B. Zhang, B. Lemoine, and M. Mitchell. Mitigating unwanted biases with adversarial learning. CoRR, abs/1801.07593, 2018.

Discussion

 Fig 1: ROC Curve comparison for basic and opportunity models, with/without post-processing step enforcing EO

• Fig 2: Accuracy comparison for basic and parity models, with/without post-processing step enforcing DP

- Adversarial models show initial gains in fairness with little loss in accuracy.
- Post-processing techniques create predictions that are approximately as fair, using basic model (no adversary).

Future Work

- Expand to more datasets & protected variables
- Test different predictor and adversary architectures
- Incorporate fairness definition directly into differentiable loss function, to train only a predictor without the adversary (e.g. via Lagrange multipliers)