α) Η εξίσωση της ευθείας που συνδέει τα δύο εργοστάσια είναι:

$$AB: y - 1 = \frac{3-1}{4-2} \cdot (x-2), \text{ άρα } AB: y - 1 = 1 \cdot (x-2).$$

Επομένως AB: y = x - 1.

β) Το σημείο της ακτής που απέχει εξ ίσου από τα δύο εργοστάσια είναι το σημείο τομής της ευθύγραμμης ακτής με τη μεσοκάθετο της AB.

Βρίσκουμε τις συντεταγμένες του μέσου $M(x_M, y_M)$ της AB.

Είναι
$$x_M = \frac{2+4}{2} = 3$$
 και $y_M = \frac{1+3}{2} = 2$. Άρα $M(3,2)$.

Ο συντελεστής διεύθυνσης της AB είναι $\lambda = 1$.

Η μεσοκάθετος ε' της AB θα έχει συντελεστή διεύθυνσης λ' για τον οποίο θα ισχύει:

$$\lambda \cdot \lambda' = -1$$
. Άρα $\lambda' = -1$.

Η εξίσωση ε' : y-2=-1(x-3), άρα ε' : y=-x+5.

Άρα το ζητούμενο σημείο N(4,1).

γ) Η απόσταση του καθενός από τα δύο εργοστάσια από το σημείο Ν της ακτής είναι:

$$(AN) = (BN) = \sqrt{(2-4)^2 + (1-1)^2} = \sqrt{2^2 + 0^2} = 2.$$