Přednáška #1: Analýza složitosti a škálovatelnosti paralelních algoritmů

Typy paralelních počítačů

Definice 1. (Almasi, Gottlieb 89) Paralelní počítač je skupina **výpočetních prvků** (processing elements, (PEs)) (nebo **výpočetních uzlů** (computing nodes, CNs)), které komunikují a spolupracují, aby rychle vyřešily velké a náročné problémy (úlohy).

- Multicore processors: jednotky až desítky procesorových jader na 1 čipu.
- GPU clusters: desítky a stovky GPU (Graphical PU) připojených k CPU.
- **Desktop** multiprocessors: jednotky CPU v PC nebo pracovní stanici.
- **SMP** (Symmetric Multi-Processors) **servers**: desítky CPU se sdílenou pamětí (HP SuperDome, Sun SunFire, IBM Regatta, SGI Altix)
- **Distributed shared memory multiprocessors**: desítky CPU s virtuálně sdílenou ale fyzicky distribuovanou pamětí.
- Clusters of workstations (COW): svazky stovek až tisíců výpočetních uzlů (Linux svazky).
- Tightly coupled **massively parallel multiprocessors**: stovky až desetitisíce CPU se speciální propojovací sítí (IBM BlueWaters, IBM BlueGene).

Příklad náročné aplikace: předpověď počasí

- Uvažujme předpověď počasí v **oblasti** o velikosti $3000 \times 3000 \times 11 \ km^3$ na dobu **2 dnů**.
- Tato oblast je rozdělena na **segmenty** (např. metodou konečných prvků) o velikosti $0.1 \times 0.1 \times 0.1 \ km^3 \implies$ počet segmentů je řádově 10^{11} .
- Parametry modelu (teplota, rychlost větru) jsou počítány s časovým krokem 30 minut.
- **Nové** hodnoty parametrů jednoho segmentu jsou počítány z **předchozích** hodnot parametrů tohoto segmentu a segmentů sousedních.
- Předpokládejme, že výpočet parametrů 1 segmentu spotřebuje 100 instrukcí.
- Pak 1 iterace = aktualizace hodnot všech parametrů v celé oblasti vyžaduje cca $10^{11} \times 100 \times 96 \doteq 10^{15}$ operací.
- Sekvenční počítač s 1Gflop bude potřebovat 10^6 sekund $\doteq 280$ hodin = 11 dní.
- To je ale pozdě, protože modelujeme počasí pro příští 2 dny.
- Paměťový problém (data se nevejdou do hlavní paměti sekv. počítače a musí být odkládána na disk) může řešení ještě mnohonásobně zhoršit!
- Pro výpočet spolehlivého modelu počasí je třeba mnoho iterací!!!!!
- \implies rozdělení dat do pamětí mnoha PE a // zpracování s pravidelnou výměnou dat je jediné schůdné řešení.

Zdroje na Internetu

www.top500.org

IBM Blue Gene

IBM Blue Gene (pokr.)

Simulátor Země

Vyhodnocování složitosti algoritmů

Je-li dán problém a algoritmus pro jeho řešení, pak vzniká důležitá otázka:

Roste-li velikost problému, jak se mění chování/časová/paměťová složitost algoritmu?

⇒ nutnost znát/odvozovat asymptotické spodní a dolní meze složitostí.

Asymptotika - definice

Definice 2. Nechť $\mathcal{N}^+ = množina$ přirozených čísel a $R^+ = množina$ kladných reálných čísel. Nechť $f, g: \mathcal{N}^+ \to \Re^+$ jsou 2 funkce. Pak

- f(n) je <u>řádu nejméně</u> g(n), psáno $f(n) = \Omega(g(n))$, jestliže $\exists c \in \Re^+ \quad \exists n_0 \in \mathcal{N}^+ \quad \forall n \geq n_0 : \quad f(n) \geq c.g(n)$.

- f(n) je striktně vyššího řádu než g(n), psáno $f(n) = \omega(g(n))$, jestliže $\forall c \in \Re^+ \quad \exists n_0 \in \mathcal{N}^+ \quad \forall n \geq n_0 : \quad f(n) > c.g(n)$.

Příklad 3. \blacksquare Základní vztahy: $1 = o(\log n)$, $\log n = o(\sqrt{n})$, $\sqrt{n} = o(n)$.

- Odvozené vztahy: $n/\log n = \omega(\sqrt{n}), n = o(n \log n), n \log n = o(n^2).$
- Jelikož $\log n = o(n)$, platí $\log \log n = o(\log n)$. Ale: $\log n^2 = \Theta(\log n)$.
- $n = O(n + \log n)$ a taky $n + 1000 \log n = O(n)$, a tudíž $n = \Theta(n + \log n)$.
- Stirlingova formule $n! \doteq \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$ implikuje $\log(n!) = \sum_{k=1}^n \log k = \Theta(n \log n)$.
- Jelikož $\sum_{k=2}^{n} \frac{1}{k} < \int_{1}^{n} \frac{1}{x} dx < \sum_{k=1}^{n-1} \frac{1}{k}$, dostaneme $\ln n + \frac{1}{n} < \sum_{k=1}^{n} \frac{1}{k} < \ln n + 1$. A proto, $\sum_{k=1}^{n} \frac{1}{k} = \Theta(\log n)$.
- Je-li p konstanta, pak $\frac{n}{2} \left(\frac{n}{2} \right)^p = \frac{n^{p+1}}{2^{p+1}} < \sum_{k=1}^n k^p < n.n^p$, a proto $\sum_{k=1}^n k^p = \Theta(n^{p+1})$.

- (a) $f(n) = \Theta(g(n))$.
- (b) f(n) = o(g(n)).
- (c) $n + 1000 \log n = \Theta(n)$.

Zákony asymptotiky

Transitivita:	$f(n) = O(g(n)) \land g(n) = O(h(n)) \Rightarrow f(n) = O(h(n)).$
	Podobně pro $\Omega,\Theta,o,\omega.$
Reflexivita:	$f(n) = O(f(n))$. Podobně pro Ω, Θ .
Symetrie:	$f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n)).$
Transpoziční symetrie:	
	$f(n) = o(g(n)) \Leftrightarrow g(n) = \omega(f(n)).$
Inkluze:	$f(n) = o(g(n)) \Rightarrow f(n) = O(g(n)),$
	$f(n) = \omega(g(n)) \Rightarrow f(n) = \Omega(g(n)).$

Zapamatujte si následující analogie:

f(n) = O(g(n))	$f(n) = \Omega(g(n))$	$f(n) = \Theta(g(n))$	f(n) = o(g(n))	$f(n) = \omega(g(n))$
\approx				
$a \le b$	$a \ge b$	a = b	a < b	a > b

Definice 4. 1. Neznámá konstanta se zapisuje O(1).

- 2. f(n) je polynomiální funkce, jestliže platí $f(n) = \Theta(n^{O(1)})$.
- 4. f(n) je polylogaritmická funkce, jestliže platí $f(n) = \Theta(\log^{O(1)}(n))$.
- 3. f(n) je sublineární funkce, jestliže platí f(n) = o(n).

Měřítka výkonnosti sekvenčních algoritmů

Definice 5.

$T_A^K(n)$	<u>časová složitost/doba výpočtu</u> sekv. algoritmu A , který řeší problém K na	
	vstupních datech velikosti n (měří se <u>čítáním výpočetních kroků/instrukcí</u>).	
$\int SL^K(n)$	spodní mez časové složitosti jakéhokoli sekv. algoritmu pro řešení problému K	
	=nejhorší časová složitost <u>nejlepšího možného</u> sekv. algoritmu pro řešení K .	
	Triviální spodní mez je dána velikostí množiny vstupních (výstupních) dat n .	
$SU^K(n)$	<u>horní mez</u> časové složitosti pro řešení problému K	
	(=nejhorší časová složitost nejrychlejšího známého sekv. algoritmu pro K . $)$	

Optimální sekvenční algoritmy

Definice 6. \blacksquare A je (<u>asymptoticky</u>) <u>optimální</u> sekv. alg. pro řešení problému K, jestliže platí

$$T_A^K(n) = \Theta(SU^K(n)) = \Theta(SL^K(n)).$$

lacksquare A je nejlepší známý sekv. alg. pro řešení K, jestliže platí

$$T_A^K(n) = \Theta(SU^K(n)) = \omega(SL^K(n)).$$

Příklad 7. Nechť $K_1 =$ problém <u>třídění</u> posloupnosti n čísel pomocí binární operace porovnání. Pak

$$SL^{K_1}(n) = \Omega(n \log n)$$
 (minimální hloubka binárního stromu s $n! = \Theta(n^n)$ listy)

$$SU^{K_1}(n) = O(n \log n)$$
 (MergeSort, HeapSort, QuickSort)

Příklad 8. Nechť K_2 = problém <u>násobení matic</u> $A_{n,n} \times B_{n,n}$. Pak

$$SL^{K_2}(n) = \Omega(n^2)$$
 (triviální spodní mez)

$$SU^{K_2}(n) = O(n^q), \ 2 < q < 3$$
 (Strassen $q = 2.81$, Coppersmith-Winograd $q = 2.376$)

Měřítka výkonnosti paralelních algoritmů

V porovnání se **sekvenčními** algoritmy zde ∃ navíc 1 parametr/dimenze:

počet procesorů
$$p$$
.

Přirozeným cílem při paralelním řešení úloh je dosáhnout

Jestliže stoupne počet procesorů k krát, chceme, aby výpočetní čas klesnul k krát.

- Tento cíl je obecně velmi obtížně splnitelný.
- Pro dosažení potřebné rychlosti/efektivnosti/zrnitosti je nutno mezi p a n udržovat určitou závislost, např.
 - $p = n^x$, kde 0 < x < 1,
 - $p = \frac{n}{\log n}$,
 - $p = \log^2 n$.

Definice 9. T(n,p) je čas, který uplynul od začátku paralelního výpočtu do okamžiku, kdy poslední (nejpomalejší) procesor skončil výpočet.

Diskuze

- T(n,p) závisí na architektuře paralelního počítače \implies hodnocení výkonnosti paralelního algoritmu musí vždy brát v úvahu architekturu počítače.
- T(n,p) je měřen <u>čítáním</u>:
 - 1. <u>výpočetních</u> kroků: aritmetické, logické, paměťové operace +
 - 2. komunikačních kroků: přenos a výměna dat mezi procesory.

Paralelní čas - příklad

Příklad 10. Paralelní vyhledávání položky x pomocí p procesorů v neseřazeném vstupním souboru n různých položek uložených v sdílené paměti. Předpokládáme, že v daném okamžiku smí k dané buňce sdílené paměti přistupovat nejvýše 1 procesor.

Definice 11.

$$S(n,p) = \frac{SU(n)}{T(n,p)} \le p.$$

*

Lineární zrychlení

Definice 12.

$$S(n,p) = \Theta(p)$$
.

Superlineární zrychlení

- Způsobeno určitými charakteristikami HW, které staví sekvenční algoritmy do nevýhody.
 - Typická situace: algoritmus je paměťově náročnější, než je kapacita paměti na
 1-procesorovém systému, kdežto souhrnná kapacita pamětí paralelního systému stačí.
- Vzniká díky anomáliím při paralelním prohledávání kombinatorického stavového prostoru (podrobněji příští přednáška).

Definice 13.

$$L(n,p) = \frac{SL(n)}{p}.$$

Příklad 14. Spodní mez na čas paralelního třídění n čísel sp=n procesory je

$$L(n,n) = \frac{\Omega(n \log n)}{n} = \Omega(\log n).$$

Definice 15.

$$C(n,p) = p \times T(n,p).$$

*

C(n,p) se také nazývá součin procesory x čas.

Lemma 16.

$$C(n,p) = \Omega(SU(n)).$$

*

Cenově optimální algoritmus

Definice 17.

$$C(n,p) = O(SU(n)).$$

Z Lemmatu 15 pak plyne:

$$C(n,p) = \Theta(SU(n)).$$

Paralelní práce W(n,p)

Definice 18. (Práce synchronního systému) Nechť $\tau = T(n,p)$ a $p_i = \#$ procesorů aktivních (pracujících) v kroku $i \in \{1, \ldots, \tau\}$ paralelního výpočtu. Pak

$$W(n,p) = p_1 + p_2 + \dots + p_{\tau}.$$

Definice 19. (Práce asynchronního systému) Nechť $T_i \leq T(n,p) = \#$ kroků provedených procesorem $i \in \{1,\ldots,p\}$ během paralelního výpočtu. Pak

$$W(n,p) = T_1 + T_2 + \cdots + T_p.$$

Lemma 20.

$$SU(n) \le W(n,p) \le C(n,p).$$

Pracovně optimální algoritmus

Definice 21.

$$W(n,p) = O(SU(n)).$$

- lacksquare C(n,p) zahrnuje nečinnost procesorů, kterou W(n,p) nezapočítává.
- V praxi je užitečný spíše parametr C(n,p), protože nečinné procesory ve většině systémů není možné před dokončením celého výpočtu uvolnit pro jiný výpočet.

Paralelní efektivnost E(n, p)

Definice 22.

$$E(n,p) = \frac{SU(n)}{C(n,p)}.$$

Lemma 23. E(n,p) = zrychlení na procesor:

$$E(n,p) = \frac{SU(n)}{C(n,p)} = \frac{S(n,p) \times T(n,p)}{p \times T(n,p)} = \frac{S(n,p)}{p}.$$

Lemma 24. Algoritmus je (asymptoticky)

má <u>konstantní</u> efektivnost.

Příklad: paralelní binární redukce

Příklad 25. (Paralelní Σ). Vypočtěte $\Sigma_{i=1}^n a_i$ čísel a_1, \ldots, a_n na paralelním počítači s úplně propojenými n procesory P_1, \ldots, P_n . Předpokládejte:

- jednotkový-časový model:
 čili sečíst 2 čísla na 1 procesoru a poslat číslo z 1 procesoru na druhý trvá čas 1;
- \blacksquare na počátku má procesor P_i číslo a_i ve svém registru.

Algoritmus PARADD:

Analýza složitosti algoritmu Paradd.

$$\blacksquare SU(n) = SL(n) = \Theta(n)$$

$$\blacksquare W(n,n) = \Theta(n)$$

$$\blacksquare T(n,n) = \Theta(\log n)$$

$$\blacksquare S(n,n) = \Theta(n/\log n)$$

$$lacksquare C(n,n) = \Theta(n \log n)$$

$$\blacksquare$$
 $E(n,n) = \Theta(1/\log n)$

Diskuze výsledků:

- \blacksquare Parado n čísel na n procesorech je pracovně optimální, ale není cenově optimální.
- Intuitivní vysvětlení: <u>velmi malé</u> využití procesorů. Počet procesorů, které vykonávají užitečnou práci, klesá exponenciálně rychle.

Zdroje neefektivnosti obecně

- 1. Nedostatek užitečné práce (příliš procesorů na málo práce).
- 2. Velké komunikační zpoždění v porovnání s výpočetní rychlostí

 některá data by bylo lepší počítat lokálně, než o ně žádat a čekat, až dorazí.
- 3. Příliš velká režie synchronizace (slabá koordinace).
- 4. Špatná distribuce práce (nerovnoměrné rozdělení práce).

Řešení?

1. Technologické:

- rychlejší komunikační HW,
- zmenšení SW komunikační režie,
- překrývání výpočetních a komunikačních kroků.

2. Algoritmické:

- optimální mapování algoritmu na paralelní architekturu (statické),
- vyvažování zátěže (dynamické),
- respektování <u>škálovatelnosti problému</u>, tzn.: <u>Škálovat</u> p s \overline{n} tak, aby \forall procesory byly vytíženy užitečnými výpočty <u>většinu</u> času

 \Longrightarrow

Řešení problému škálovatelnosti = hledání vhodné závislosti

$$p \stackrel{?}{=} f(n)$$

Simulace s méně procesory: Brentovo plánování

Simulace algoritmu na méně procesorech, než je stupeň paralelismu algoritmu.

RowSimParAdd: Simulace n-procesorové paralelní redukce na p procesorech, p|n.

- $\log p$ fází o 4n/p krocích.
- Na konci zbývá 1 procesor, který provede poslední fázi v $4\frac{n}{p}$ krocích.
- Proto $T(n,p) \doteq 4\frac{n}{p} \log p + 4\frac{n}{p} = \Theta(\frac{n}{p} \log p)$.

Simulace s méně procesory: Brentovo plánování II

ColSimParado: Alternativní simulace n-procesorové paralelní redukce na p procesorech, p|n, pomocí Brentova plánování.

■
$$T(n,p) = 4(\frac{n}{p} - 1) + 2\log p = \Theta(\frac{n}{p} + \log p).$$

 $\uparrow n$, jestliže $\uparrow p$

Škálovatelnost a izoefektivnost paralelních algoritmů

<u>Škálovatelnost</u> = schopnost efektivně využít rostoucí počet procesorů.

= schopnost udržet <u>efektivnost</u> či <u>dobrý čas</u> při $\uparrow n$, jestliže $\downarrow p$ $\uparrow p$, jestliže $\uparrow n$ $\downarrow p$, jestliže $\downarrow n$

Pozorování

- Jestliže p=1, efektivnost je nejlepší, ale čas je nejhorší.
- Jestliže p roste, čas klesá, ale jen do určité meze \implies začne klesat efektivnost.

Cenová škálovatelnost a izoefektivní funkce ψ_1,ψ_2

Definice 26. Je-li dána konstanta $0 < E_0 < 1$, pak izoefektivní funkce

- $\psi_1(p)$ je asymptoticky minimální funkce taková, že $\forall n_p = \Omega(\psi_1(p)) : E(n_p, p) \geq E_0$.
- lacksquare $\psi_2(n)$ je asymptoticky maximální funkce taková, že $\forall p_n = O(\psi_2(n)) : E(n,p_n) \geq E_0$.

Diskuze

- Funkce $\psi_1(p)$ a $\psi_2(n)$ jsou vzájemně inverzní.
- \blacksquare Číselně vyjadřují, jak n musí růst s p, aby se efektivnost neměnila.
- Odrážejí schopnost paralelního algoritmu udržet konstantní efektivnost (a tudíž lineární zrychlení).
- Pomalu rostoucí $\psi_1(p)$ svědčí o dobré škálovatelnosti (pro účelné využití nově přidaných procesorů stačí zvětšit velikost problému o malý přírůstek).
- Strmě rostoucí $\psi_1(p)$ svědčí o špatné škálovatelnosti.

Příklad: paralelní binární redukce

Příklad 27. (<u>Paralelní Σ </u>). Vypočtěte $\Sigma_{i=1}^n a_i$ čísel a_1, \ldots, a_n na plně propojeném paralelním počítači s p < n procesory P_1, \ldots, P_p . Předpokládáme model jednotkového času.

Řešení:

- 1. Každý procesor má přiděleno $\lceil n/p \rceil$ vstupních čísel.
- 2. Každý procesor čte čísla z paměti a přičítá je k registru: $2 \lceil n/p \rceil 1$ kroků.
- 3. p procesorů sečte pomocí paralelní binární redukce p částečných součtů v $\lceil \log p \rceil$ iteracích, 1 iterace = 2 kroky.

Tudíž,

$$T(n,p) = 2 \lceil n/p \rceil - 1 + 2 \lceil \log p \rceil \doteq 2n/p + 2 \log p$$

a protože SU(n) = 2n, je

$$C(n,p) = 2n + 2p\log p \quad \text{a} \quad S(n,p) = \frac{np}{n+p\log p} \quad \text{a} \quad E(n,p) = \frac{n}{n+p\log p}.$$

$$\psi_1(p) = p \log p$$
 a $\psi_2(n) = rac{n}{\log eta n},$ kde $eta = rac{1 - E_0}{E_0}.$

Absolutně minimální paralelní čas T_{\min}

Definice 28. Je-li dáno n, pak $p_{\rm t}$ je <u>nejmenší</u> počet procesorů, pro které $T(n,p_{\rm t})=$ <u>absolutně minimální čas</u> $T_{\rm min}$.

Varianta (a)
$$\implies$$
 $p_{\mathrm{t}} = p_{\mathrm{max}}$

Varianta (b)
$$\Longrightarrow \frac{\mathsf{d}T(n,p)}{\mathsf{d}p}\Big|_{p=p_{\mathrm{t}}} = 0$$

Příklad 25. (pokračování) V případě algoritmu PARADD se jedná o případ (b).

Pro

má rovnice

řešení:

čili

Proto

Protože

volíme

$$T(n,p) = \frac{2n}{p} + 2\log p = \frac{2n}{p} + \frac{2\ln p}{\ln 2}$$

$$\frac{dT(n,p)}{dp} = -\frac{2n}{p^2} + \frac{2}{p \ln 2} = 0$$

$$p_{\rm t} = n \ln 2 \doteq 0.6n,$$

$$n/2 < p_{\rm t} < n.$$

$$T_{\min} \doteq 2 \log n + 1.8.$$

$$T(n, n/2) = T(n, n) = \lceil T_{\min} \rceil,$$

$$p_{\rm t} = n/2$$
.

Realističtější příklad na minimální čas

Příklad 26. Paralelní redukce na plně propojeném počítači, kde

- aritmetické a paměťové operace trvají čas 1,
- \blacksquare kdežto přenos 1 čísla mezi 2 sousedními procesory trvá čas $k \gg 1$.

Pak

$$T(n,p) = 2n/p + (k+1)\log p,$$

a proto

$$p_{\rm t} = \frac{2\ln 2}{k+1}n.$$

Například: pro k = 100 je $p_t = n/73$.

Kompromisy mezi rychlostí a efektivností

- Nejrychlejší algoritmus je obecně neefektivní.
- Otázka 1: Dokáže daný algoritmus řešit úlohu současně rychle a efektivně?
- Otázka 2: Jaký počet procesorů stačí pro dosažení řádově optimálního času?

Spodní mez počtu procesorů pro dosažení časové optimality $\psi_3(n)$

 $\psi_3(n)$ je asymptoticky minimální funkce taková, že

$$\forall p = \Omega(\psi_3(n))$$
 & $p = O(p_t) : T(n, p) = O(T_{\min})$

Příklad 25. (pokračování) Protože

$$T(n,p) = \frac{2n}{p} + 2\log p,$$

dostáváme

$$\psi_3(n) = \frac{n}{\log n}.$$

Nyní ale vidíme, že

$$\psi_2(n) \doteq \psi_3(n)$$
.

To ale znamená, že

pro $p = \Theta(n/\log n)$ je asymptoticky optimální čas i efektivnost.

- Nestárnoucí postřeh z počátků éry paralelních počítačů.
- Speciální aplikace obecné zákonnitosti.
- Každý výpočet se skládá z přirozeně sekvenční části (kterou může provádět pouze 1 procesor) a z přirozeně paralelní části.
- lacktriangle Předpokládejme, že sekvenční výpočet trvá normovaný čas $1=f_{
 m s}+f_{
 m p}$, kde $f_{
 m s}=$ přirozeně sekvenční a $f_p=$ přirozeně paralelní část.
- lacksquare Pak $T(n,p) \geq f_{
 m s} + rac{f_{
 m p}}{p}$, a proto

$$S(n,p) \le \frac{1}{f_{\mathrm{s}} + \frac{1 - f_{\mathrm{s}}}{p}}.$$

- Je zřejmé, že $\lim_{p\to\infty} S(n,p) \leq \frac{1}{f_s}$.
- Např., jestliže $f_s = 10\%$, pak $S(n, p) \le 10$.
- Obecně: Pokud se nezvětšuje velikost úlohy, přidávání dalších procesorů nemá smysl, protože se saturuje paralelismus úlohy.

- Když se masivně paralelní počítače staly široce dostupné, ukázalo se, že existují paralelní algoritmy, mající přirozeně sekvenční část konstantní (V/V operace, inicializace), kdežto přirozeně paralelní část může <u>lineárně škálovat</u> s počtem procesorů.
- Pak doba výpočtu paralelní části zůstává nezměněná, a stejně tak celkový paralelní čas.
- lacktriangle Můžeme bez ztráty obecnosti předpokládat jednotkový paralelní čas: $T(n,p)=f_{
 m s}+f_{
 m p}=1.$
- Jestliže takový algoritmus provedeme sekvenčně, bude trvat $T(n,1) = f_s + pf_p$ (jeden procesor simuluje práci p procesorů).
- Pak je zrychlení

$$S(n,p) = f_s + pf_p = f_s + p(1 - f_s) = p(1 - f_s + f_s/p).$$

■ Tudíž $\lim_{p\to\infty} S(n,p) = p(1-f_s)$.

Závěr

Masivně paralelní počítače mohou být optimálně využity pro lineárně škálovatelné problémy.