TECHNISCHE UNIVERSITÄT DARMSTADT FACHGEBIET THEORETISCHE INFORMATIK

Prof. Johannes Buchmann Nabil Alkeilani Alkadri Nina Bindel Patrick Struck

Algorithmen und Datenstrukturen

SS 2018

1. Lösungsblatt — 16.04.2018

P1 Korrektheit

Gegeben sind die folgenden Probleme für ein int-Array A[0..n-1]:

- 1. Minimum des Arrays berechnen.
- 2. Mittelwert der Einträge des Arrays berechnen.
- 3. Bestimmung des maximalen Index m, so dass für eine gegebene Schranke x gilt: $\sum_{i=0}^{m} A[i] \le x$. Falls ein solcher Index m zu der gegebenen Schranke x nicht existiert, wird m = -1 gesetzt.

Befolgen Sie für jedes dieser Probleme diese zwei Schritte:

- (a) Formulieren Sie einen Algorithmus, der das Problem löst.
- (b) Bestimmen Sie eine geeignete Schleifeninvariante und benutzen Sie diese, um die Korrektheit Ihres Algorithmus zu beweisen.

L"osung. Im Folgenden bedeutet der Ausdruck "\$i\$-ter Schleifendurchlauf", dass der Wert der Schleifenvariable \$i\$ ist.

1. (a) Der Algorithmus lautet

MINIMUM(A)

1 min=A[0]

2 for i=1 to n-1

3 if A[i] < min

4 min = A[i]

5 return min

- (b) Schleifeninvariante: Vor dem i-ten Schleifendurchlauf ist min das Minimum der Elemente A[0...i-1].
 - Vor dem ersten Schleifendurchlauf (i = 1) gilt min = A[0], also ist die Schleifeninvariante erfüllt.
 - Während des i-ten Schleifendurchlaufs ändert sich min nur, wenn das Element A[i] kleiner als min und damit kleiner als alle Elemente in A[0...i-1] ist. Nach dem i-ten Durchlauf ist min also das Minimum der Elemente A[0...i] und es gilt: Falls die Invariante vor dem i-ten Durchlauf erfüllt ist, so ist sie es auch vor dem i-ten Durchlauf.
 - Die Schleife und der Algorithmus terminieren mit i = n. Durch Einsetzen von n in die Schleifeninvariante erhält man das gewünschte Ergebnis, nämlich dass min das Minimum des Arrays A[0...n-1] ist.
- 2. (a) Der Algorithmus lautet

```
MITTELWERT(A)
1 summe = A[0]
2 for i=1 to n-1
3 summe = summe + A[i]
```

```
4 mittelwert = summe / n
```

5 **return** mittelwert

- (b) Schleifeninvariante: Vor dem i-ten Schleifendurchlauf ist summe die Summe der Elemente A[0...i-1].
 - Vor dem ersten Schleifendurchlauf (i = 1) gilt summe = A[0]. Also ist die Schleifeninvariante erfüllt.
 - Während des i-ten Schleifendurchlaufs wird A[i] zur Summe addiert. summe ist dann die Summe der Elemente A[0...i] und die Invariante ist auch vor dem i + 1-ten Durchlauf erfüllt.
 - Die Schleife und der Algorithmus terminieren mit i = n. Damit ist summe die Summe der Elemente $A[0], \ldots, A[n-1]$. Dieser Wert wird noch durch n geteilt, um den Mittelwert aller Elemente des Arrays zu erhalten.
- 3. (a) Der Algorithmus lautet

```
Max-Index (A)

1 m=-1

2 summe =0

3 for i=0 to n-1

4 summe = summe + A[i]

5 if summe <= x

6 m=i

7 return m
```

- (b) Schleifeninvariante: Vor dem *i*-ten Schleifendurchlauf ist m der maximale Index in $\{0, ..., i-1\}$, so dass $\sum_{i=0}^{m} A[i] \le x$ gilt oder m = -1, falls ein solcher Index nicht existiert.
 - Vor dem ersten Schleifendurchlauf (i = 0) gilt m = -1, also ist die Schleifeninvariante erfüllt.
 - Während des i-ten Schleifendurchlaufs wird m=i genau dann gesetzt, wenn $\sum_{i=0}^m A[i] \leq x$ gilt. Weil die Schleifeninvariante für i gilt, ist m der maximale Index in $\{0,\ldots,i\}$, so dass $\sum_{i=0}^m A[i] \leq x$ gilt oder m=-1, falls ein solcher Index nicht existiert. Die Invariante ist also vor dem nächsten Schleifendurchlauf (i+1) ebenfalls erfüllt.
 - Die Schleife und der Algorithmus terminieren mit i=n. Durch Einsetzen in die Schleifeninvariante sieht man: m ist der maximale Index in $\{0,\ldots,n-1\}$, so dass $\sum_{i=0}^m A[i] \le x$ gilt oder m=-1, falls ein solcher Index nicht existiert.

P2 Rekursion

Es sei der folgende Algorithmus Algo mit Eingabewerten x und $y \in \mathbb{N}$ gegeben.

```
ALGO(x,y)

1 if y>0

2 if y=0 mod 2

3 return ALGO(x<sup>2</sup>,y/2)

4 else

5 return x*ALGO(x,y-1)

6 else

7 return 1
```

(a) Berechnen Sie Algo(2,3) und Algo(5,7).

- (b) Was berechnet der Algorithmus ALGO?
- (c) Geben Sie eine nicht-rekursive Variante des Algortihmus Algo an.

Lösung.

- (a) $A_{LGO}(2,3) = 2 * A_{LGO}(2,2) = 2 * A_{LGO}(4,1) = 2 * 4 * A_{LGO}(4,0) = 2 * 4 = 8$ $A_{LGO}(5,7) = 5 * A_{LGO}(5,6) = 5 * A_{LGO}(25,3) = 5 * 25 * A_{LGO}(25,2) = 5 * 25 * A_{LGO}(625,1) = 5 * 25 * 625 = 78.125$
- (b) Algo(x,y) berechnet den Wert x^y (schnelle Exponentiation).
- (c) Schnelle-Exponentiation(x,y)
 - 1 res = 1
 - 2 while y>0
 - 3 if $y=1 \mod 2$
 - 4 res=res*x
 - 5 y=y div 2
 - 6 $x=x^2$
 - 7 **return** res

P3 Asymptotische Notation

(a) Kreuzen Sie in der Tabelle an, ob f = O(g), $f = \Omega(g)$ und/oder $f = \Theta(g)$ gilt. Dabei ist k > 0 eine Konstante.

1	f(n)	g(n)	0	Ω	Θ	f(n)	g(n)	0	Ω	Θ
	$\log_2(3^n)$	$\log_2(5^n)$				e^n	e^{2n}			
	2^n	$2^{n/2}$				$\log_2 n$	$\log_{10} n$			
	n log n	n^2				2^{n+k}	2^n			

Begründen Sie Ihre Wahl.

(b) Es seien die beiden Funktionen $f(n) = 4n^2 + 3n + 7$ und $g(n) = n^3$ gegeben. Bestimmen Sie eine Funktion $n_0(c)$ so, dass $f(n) \le c \cdot g(n) \ \forall n \ge n_0$. Mit der Existenz einer solchen Funktion ist bewiesen, dass f(n) = o(g(n)) ist.

Lösung.

	f(n)	g(n)	0	Ω	Θ	f(n)	g(n)	0	Ω	Θ
۵)	$\log_2(3^n)$	$\log_2(5^n)$	X	X	X	e^n	e^{2n}	X		
a)	2^n	$2^{n/2}$		X		$\log_2 n$	$\log_{10} n$	X	X	X
	n log n	n^2	X			2^{n+k}	2^n	X	X	X

b) Wir setzen $n_0(c) = \max(5, \frac{5}{c})$. Wir müssen zeigen, dass $\frac{f(n)}{g(n)} \le c$ für alle $n \ge n_0$ gilt.

$$\frac{f(n)}{g(n)} = \frac{4n^2 + 3n + 7}{n^3} \stackrel{n \ge 5}{\le} \frac{5n^2}{n^3} = \frac{5}{n} \stackrel{n \ge \frac{5}{c}}{\le} \frac{5}{\frac{5}{2}} = c.$$

Um eine exakte Lösung des Problems zu finden, müsste man eine Gleichung dritten Grades lösen.

H1 Komplexität

Schätzen Sie die Laufzeit der folgenden Algorithmen in Abhängigkeit von der Eingabe ab. Benutzen Sie die O-Notation.

(a) A ist eine $m \times n$ Matrix, v ein n vector.

```
MULTIPLY (A,v)

1 for i=0 to m-1

2 res[i]=0

3 for j=0 to n-1

4 res[i]=res[i]+A[i][j]*v[j]

5 return res
```

(b) n ist eine natürliche Zahl

```
Sum-Of-Squares(n)

1 if n =0

2 return 0

3 else

4 a=n<sup>2</sup>

5 return a+ Sum-Of-Squares (n-1)
```

Lösung.

$$T(m,n) = (c_3 + c_4)mn + (c_1 + c_2 + c_3)m + c_1 + c_5$$

= $O(mn)$

If m = O(n) we get $T(n) = O(n^2)$.

$$T(n) = \left\{ \begin{array}{ll} c_1 + c_2 & \text{, falls } n = 0 \\ T(n-1) + c_1 + c_3 + c_4 & \text{, sonst} \end{array} \right.$$

Für $n \ge 1$ wird die Rekursion n mal aufgerufen. Also ist $T(n) = n \cdot (c_1 + c_3 + c_4) + c_1 + c_2 = O(n)$.

H2 Asymptotische Notation

Beweise oder widerlege:

- (a) $n^n = O(e^n)$
- (b) $\log_2 n! = \Theta(n \cdot \log_2 n)$

Lösung.

(a) $n^n \neq O(e^n)$. Beweis: $n^n/e^n = \left(\frac{n}{e}\right)^n \stackrel{n \to \infty}{\longrightarrow} \infty$. Der Quotient divergiert also, wenn n gegen unendlich geht. Hieraus folgt, dass es kein c, n_0 geben kann, so dass für alle $n > n_0$ gilt $n^n \leq c \cdot e^n$.

(b) $\log_2 n! = \Theta(n \cdot \log_2 n)$. Beweis:

a) $\log_2 n! = \Theta(n \cdot \log_2 n)$. Bewels.
a) $\log_2 n! \leq \log_2 n^n = n \cdot \log_2 n$. Damit gilt für c = 1 und alle $n \geq 1$: $\log_2 n! \leq c \cdot n \log_2 n$. Also gilt $\log_2 n! = O(n \cdot \log_2 n)$.
b) $\log_2 n! = \sum_{i=1}^n \log_2 i = 0 + \sum_{i=2}^{\lfloor n/2 \rfloor} \log_2 i + \sum_{i=\lfloor n/2 \rfloor+1}^n \log_2 i \geq \lfloor n/2 \rfloor - 1 + \lceil n/2 \rceil \cdot \log_2 \frac{n}{2} \geq \lfloor n/2 \rfloor - 1 + (\lfloor n/2 \rfloor - 1) \cdot (\log_2 n - 1) = (\lfloor n/2 \rfloor - 1) \log_2 n \geq \frac{n}{3} n \cdot \log_2 n$.
Damit gilt $\log_2 n! = \Omega(n \cdot \log_2 n)$, zusammen mit Teil (a) also $\log_2 n! = \Theta(n \cdot \log_2 n)$.