Esercizi

Algebra e Geometria Corso di Laurea in Informatica 17 Marzo 2016

Esercizio 1. Si considerino in $\mathbb{R}_2[x]$ i polinomi:

$$p_1(x) = 3 + ax + x^2$$
, $p_2(x) = -a - 3x + x^2$, $p_3(x) = 2 + 2x + ax^2$.

- a) Stabilire per quali valori del parametro reale a i polinomi $p_1(x)$ e $p_2(x)$ generano $\mathbb{R}_2[x]$.
- b) Stabilire per quali valori del parametro reale a i polinomi $p_1(x)$, $p_2(x)$ e $p_3(x)$ generano $\mathbb{R}_2[x]$.

Sia ora $S = \langle p_1(x), p_2(x), p_3(x) \rangle$.

- c) Stabilire per quali valori del parametro reale a il polinomio $p(x) = 3 + 3x + ax^2$ appartiene a S.
- d) Scelto un valore di a per cui $S \neq \mathbb{R}_2[x]$, stabilire se esistono due vettori linearmente indipendenti di $\mathbb{R}_2[x]$ che non appartengono a S.

Esercizio 2. Si considerino i seguenti sottospazi vettoriali di \mathbb{R}^3 :

$$S = \langle (1, 1, 1) \rangle, \quad T = \{(x, y, z) \in \mathbb{R}^3 \mid y + z - 2x = 0\}.$$

- a) Trovare un insieme di generatori per T.
- b) Trovare una base A di S. Tale base è unica?
- c) Verificare che $S \subset T$ e completare la base \mathcal{A} in una base \mathcal{B} di T.
- d) Scrivere le coordinate del vettore (1, 1, 1) rispetto alla base \mathcal{A} e rispetto alla base \mathcal{B} .
- e) Completare la base \mathcal{B} in una base \mathcal{D} di \mathbb{R}^3 .
- f) Scrivere le coordinate del vettore (1,1,0) rispetto alla base \mathcal{D} .

Esercizio 3. Si consideri il seguente sottoinsieme di $M_2(\mathbb{R})$:

$$M = \left\{ \left(\begin{array}{cc} a+b & c-a \\ b+c & -b-c \end{array} \right) \mid a,b,c \in \mathbb{R} \right\}.$$

- a) Verificare che M è un sottospazio vettoriale di $M_2(\mathbb{R})$.
- b) Trovare un insieme di generatori di M.
- c) Trovare due diverse basi \mathcal{A} e \mathcal{B} di M e calcolare la dimensione di M.
- d) Trovare, se possibile, due matrici A e B di $M_2(\mathbb{R})$ non appartenenti a M e linearmente indipendenti, tali che A B appartenga a M.
- e) Trovare, se possibile, due matrici A e B tali che $A \notin M$, $B \in M$ e $A B \in M$.

Esercizio 4. Si consideri il seguente sottoinsieme di $\mathbb{R}^3[x]$:

$$S_k = \{a + bx + cx^2 + dx^3 \in \mathbb{R}_3[x] \mid (k-1)a - b + kc - d = k-2\}.$$

Determinare i valori di $k \in \mathbb{R}$ tali che S_k è un sottospazio vettoriale di $\mathbb{R}_3[x]$. Per i valori di k trovati,

- a) determinare una base \mathcal{B} di S_k e la dimensione di S_k ;
- b) esibire un insieme di generatori di S_k che non sia una base di S_k e in cui i vettori non sono l'uno multiplo dell'altro;
- c) completare \mathcal{B} in una base \mathcal{D} di $\mathbb{R}_3[x]$;
- d) stabilire se i polinomi $p \in q$, tali che $(p)_{\mathcal{B}} = (1, 1, 1) \in (q)_{\mathcal{D}} = (1, 1, 1, 0)$, sono uguali;
- e) determinare, se possibile, 5 vettori non nulli che generano S_k tali che l'ultimo vettore non appartiene al sottospazio generato dai primi 4;
- f) determinare, se possibile, 3 vettori di S_k a due a due linearmente indipendenti che non costituiscano una base di S_k .