CS Bridge Program Homework 2

by Omar Delarosa - Sep 16, 2017

Question 8

Hypotheses

 $i.A \rightarrow (B \land C)$

 $ii. (B \lor D) \to E$

iii. $A \vee D$

iv. \rightarrow $(B \land C)$

Imply the conclusion: ${\cal E}$

Proof

proposition	reason
$\rightarrow (B \land C)$	iv
$\rightarrow A$	by Modus Tollens, <i>i</i> and <i>iv</i>
$A \lor D$	iii
D	by Disjunctive Syllogism
$B \lor D$	by Addition
$(B \lor D) \to E$	ii
E	by Modus Ponens and ii

Question 9

#	English	Symbolic
a.	Lois has asked Professor Michaels a question.	A(Lois, Professor Michaels)
b.	Every student has asked Professor Gross a question.	$\forall x[S(x) \rightarrow A(x, ProfessorGross)]$
C.	Some student has not asked any faculty member a question.	$\exists x [S(x) \land \forall y (F(y) \to \neg A(x, y))]$
d.	There is a faculty member who has never been asked a question by a student.	$\exists x [F(x) \land \forall y (S(y) \to \neg A(y, x))]$
e.	Some student has asked every faculty member a question.	$\forall y [F(y) \to \exists x (S(x) \land A(x,y))]$
f.	Some student has never been asked a question by a faculty member.	$\exists x [S(x) \land \forall y (F(y) \land \neg A(y, x))]$

Question 10

#	Question	Answer	Reason
а	$\forall x \exists y (x^2 = y)$	Т	any number $\mathbb R$ can be squared to produce another number in $\mathbb R$
b	$\forall x \exists y (x = y^2)$	F	because when $x=-4$ there is no y in $\mathbb R$
С	$\exists x \forall y (xy = 0)$	Т	because when $x=0$ all y in $\mathbb R$ yield a 0 product.
d	$\forall x (x \neq 0 \rightarrow \exists y (xy = 1))$	Т	when y is the reciprocal of x (i.e. $x=10$ and $y=\frac{1}{10}$).
е	$\exists x \forall y (y \neq 0 \to xy = 1)$	Т	when x is the reciprocal of y (i.e. $y = 10$ and $x = \frac{1}{10}$).
f	$\exists x \exists y (x + 2y = 2 \land 2x + 4y = 5)$	F	when rewritten as linear equations $y=1-\frac{1}{2}x$ and $y=\frac{5}{4}-\frac{1}{2}x$ they represent two parallel lines that never intersect and therefore have no common solution for x and y
g	$\forall x \exists y (x + y = 2 \land 2x - y = 1)$	F	when rewritten as linear equations $y=2-x$ and $y=2x-1$ they would need to have the same slope and y -intercept to be true (i.e. be the same line)