

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

BSc in Applied Sciences Second Year - Semester I Examination – May/July 2022

PHY 2103 – ELECTRONICS I

Time: One (01) hour

Answer only two Questions.

1. a) Using the Kirchhoff's rules, determine the current through the 5 Ω resistor in the network shown in the following figure.

(10 marks)

b) Given, for silicon at 300 K temperature, intrinsic carrier concentration (n_i) is 1.5 x 10¹⁰ cm⁻³, electron mobility (μ_e) is 1250 cm²V⁻¹s⁻¹, the hole mobility (μ_h) is 600 cm² V⁻¹s⁻¹ and the number of Silicon atoms per cm³ is 5 x 10²⁷.

Calculate the conductivity of silicon under following conditions.

- i. In intrinsic condition at a room temperature of 300 K.
- ii. With a donor impurity of 1 in 10⁹ Silicon atoms.
- iii. With an acceptor impurity of 1 in 6×10^7 Silicon atoms.
- iv. With both the above impurities present simultaneously.

(10 marks)

Contd.

c) Illustrate the output signal produced by the clipper circuit shown in the figure below, for a 5V (p-p) sinusoidal input signal.

(05 marks)

2. Use the given circuit to perform the following calculations.

- i. Can this circuit be used as a class A amplifier with a 4V collector voltage ($V_C = 4V$)?
- ii. To which class of amplifiers could this circuit belong as it was shown? Explanation should be based on the Q point value ($V_C = 4V$).
- iii. Calculate the resistance R_c and the base current I_B when the collector current is 2mA and current gain (β) is 150.
- iv. Determine a suitable value for R_E to bias the transistor in the active region.
- v. Assuming Q_1 is a silicon transistor, calculate suitable values for the R_1 and R_2 with a low input impedance.

(25 marks)

3. a) Explain why an op-amp needs a feedback loop when it is used in circuits other than in a comparator circuit.

(05 marks)

b) What are the two rules used in Op-amp circuits? Explain how those two differ from actual behaviour.

(05 marks)

c) Explain the functionality of the op-amp peak detector circuit shown below.

(05 marks)

d) Calculate the output voltage (Vout) for the following circuit.

(10 marks)

End.