Part IA - Vectors and Matrices Theorems

Lectured by N. Peake

Michaelmas 2014

Complex numbers

Review of complex numbers, including complex conjugate, inverse, modulus, argument and Argand diagram. Informal treatment of complex logarithm, *n*-th roots and complex powers. de Moivre's theorem. [2]

Vectors

Review of elementary algebra of vectors in \mathbb{R}^3 , including scalar product. Brief discussion of vectors in \mathbb{R}^n and \mathbb{C}^n ; scalar product and the CauchySchwarz inequality. Concepts of linear span, linear independence, subspaces, basis and dimension.

Suffix notation: including summation convention, δ_{ij} and ϵ_{ijk} . Vector product and triple product: definition and geometrical interpretation. Solution of linear vector equations. Applications of vectors to geometry, including equations of lines, planes and spheres. [5]

Matrices

Elementary algebra of 3×3 matrices, including determinants. Extension to $n \times n$ complex matrices. Trace, determinant, non-singular matrices and inverses. Matrices as linear transformations; examples of geometrical actions including rotations, reflections, dilations, shears; kernel and image. [4]

Simultaneous linear equations: matrix formulation; existence and uniqueness of solutions, geometric interpretation; Gaussian elimination. [3]

Symmetric, anti-symmetric, orthogonal, hermitian and unitary matrices. Decomposition of a general matrix into isotropic, symmetric trace-free and antisymmetric parts. [1]

Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors; geometric significance.

Proof that eigenvalues of hermitian matrix are real, and that distinct eigenvalues give an orthogonal basis of eigenvectors. The effect of a general change of basis (similarity transformations). Diagonalization of general matrices: sufficient conditions; examples of matrices that cannot be diagonalized. Canonical forms for 2×2 matrices. [5]

[2]

Discussion of quadratic forms, including change of basis. Classification of conics, cartesian and polar forms. [1]

Rotation matrices and Lorentz transformations as transformation groups. [1]

Contents

1	Con	nplex numbers	3
	1.1	Basic properties	3
	1.2	Complex exponential function	3
	1.3		3
	1.4		3
	1.5	1 0	3
	1.6		3
2	Vec	tors	4
	2.1		4
	2.2		4
		•	4
			4
	2.3	<u> </u>	4
	$\frac{2.5}{2.4}$		4
	2.5		4
	$\frac{2.6}{2.6}$	· ·	т 4
	2.0	1 0	т 4
			4
		- · · · · · · · · · · · · · · · · · · ·	ъ 5
		±	5
	2.7		5
	2.8	±	5
	2.0		5
	2.9	1 0 0	5 5
	2.9	V	5
			5
	2.10		5 5
	2.10	Vector equations	J
3	$\operatorname{Lin}\epsilon$	1	6
	3.1		6
			6
			6
	3.2		6
	3.3	V	6
	3.4	Matrices	6
		3.4.1 Examples	6
		3.4.2 Matrix Algebra	6
		3.4.3 Decomposition of an $n \times n$ matrix	6
		3.4.4 Matrix inverse	6
	3.5	Determinants	6
			6
			7
			7

4	Matrices and linear equations			
	4.1	Simple example, 2×2	8	
	4.2	Inverse of an $n \times n$ matrix	8	
	4.3	Homogeneous and inhomogeneous equations	8	
		4.3.1 Gaussian elimination	8	
	4.4	Matrix rank	8	
	4.5	Homogeneous problem $A\mathbf{x} = 0$	8	
		4.5.1 Geometrical interpretation	8	
		4.5.2 Linear mapping view of $A\mathbf{x} = 0 \dots \dots \dots \dots$	8	
	4.6	General solution of $A\mathbf{x} = \mathbf{d}$	8	
5	Eig	envalues and eigenvectors	9	
	5.1	Preliminaries and definitions	9	
	5.2	Linearly independent eigenvectors	9	
	5.3	Transformation matrices	9	
		5.3.1 Transformation law for vectors	9	
		5.3.2 Transformation law for matrix	9	
	5.4	Similar matrices	9	
	5.5	Diagonalizable matrices	9	
	5.6		10	
	5.7	,	10	
	5.8		10	
			10	
		,	10	
		· ·	10	
			10	
6	Qua	adratic forms and conics	11	
	6.1	Quadrics and conics	11	
			11	
	6.2	Focus-directrix property	11	
7	Tra	nsformation groups	12	
	7.1	Groups of orthogonal matrices	12	
	7.2		12	
	7.3		12	

1 Complex numbers

1.1 Basic properties

Proposition. $z\bar{z} = a^2 + b^2 = |z|^2$.

Proposition. $z^{-1} = \bar{z}/|z|^2$.

Theorem (Triangle inequality). For all $z_1, z_2 \in \mathbb{C}$, we have

$$|z_1 + z_2| \le |z_1| + |z_2|.$$

Alternatively, we have $|z_1 - z_2| \ge ||z_1| - |z_2||$.

1.2 Complex exponential function

Lemma.

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{mn} = \sum_{r=0}^{\infty} \sum_{m=0}^{r} a_{r-m,m}$$

Theorem. $\exp(z_1) \exp(z_2) = \exp(z_1 + z_2)$

Theorem. $e^{iz} = \cos z + i \sin z$

1.3 Roots of unity

Proposition. If $\omega = \exp\left(\frac{2\pi i}{n}\right)$, then $1 + \omega + \omega^2 + \cdots + \omega^{n-1} = 0$

1.4 Complex logarithm and power

1.5 De Moivre's theorem

Theorem (De Moivre's theorem).

$$\cos n\theta + i\sin n\theta = (\cos \theta + i\sin \theta)^n.$$

1.6 Lines and circles in \mathbb{C}

Theorem. The general equation of a straight line through $z_0 \in \mathbb{C}$ parallel to $w \in \mathbb{C}$ can be given by $z = z_0 + \lambda w$ for $\lambda \in \mathbb{R}$. This can be rearranged to $\lambda = \frac{z-z_0}{w}$. Taking the complex conjugate, we have $\bar{\lambda} = \frac{\bar{z}-\bar{z_0}}{\bar{w}}$. However, since λ is real, we have $\lambda = \bar{\lambda}$. Thus we have

$$\begin{split} \frac{z-z_0}{w} &= \frac{\bar{z}-\bar{z_0}}{\bar{w}} \\ z\bar{w} - \bar{z}w &= z_0\bar{w} - \bar{z}_0w \end{split}$$

The general equation of a circle with center $c \in \mathbb{C}$ and radius $\rho \in \mathbb{R}^+$ can be given by

$$|z - c| = \rho$$
$$|z - c|^2 = \rho^2$$
$$(z - c)(\bar{z} - \bar{c}) = \rho^2$$
$$z\bar{z} - \bar{c}z - c\bar{z} = \rho^2 - c\bar{c}$$

2 Vectors

2.1 Definition and basic properties

2.2 Scalar product

- 2.2.1 Geometric picture (\mathbb{R}^2 and \mathbb{R}^3 only)
- 2.2.2 General algebraic definition

2.3 Cauchy-Schwarz inequality

Theorem (Cauchy-Schwarz inequality). For all $\mathbf{x}, \mathbf{y} \in \mathbb{R}$,

$$\mathbf{x} \cdot \mathbf{y} \le |\mathbf{x}||\mathbf{y}|$$

Corollary (Triangle inequality).

$$|\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|$$

2.4 Vector product

Proposition.

$$\mathbf{a} \times \mathbf{b} = (a_1 \hat{\mathbf{i}} + a_2 \hat{\mathbf{j}} + a_3 \hat{\mathbf{k}}) \times (b_1 \hat{\mathbf{i}} + b_2 \hat{\mathbf{j}} + b_3 \hat{\mathbf{k}})$$

$$= (a_2 b_3 - a_3 b_2) \hat{\mathbf{i}} + \cdots$$

$$= \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

2.5 Scalar triple product

Proposition. If a parallelopiped has sides represented by vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ that form a right-handed system, then the volume of the parallelopiped is given by $[\mathbf{a}, \mathbf{b}, \mathbf{c}]$.

Theorem. $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$.

2.6 Spanning sets and bases

2.6.1 2D space

Theorem. The coefficients λ, μ are unique.

2.6.2 3D space

Theorem. If $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3$ are non-coplanar, i.e. $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \neq 0$, then they form a basis of \mathbb{R}^3 .

2.6.3 \mathbb{R}^n space

2.6.4 \mathbb{C}^n space

2.7 Vector subspaces

2.8 Suffix notation

Proposition. $(\mathbf{a} + \mathbf{b})_i = \epsilon_{ijk} a_j b_k$

Theorem. $\epsilon_{ijk}\epsilon_{ipq} = \delta_{jp}\delta_{kq} - \delta_{jq}\delta_{kp}$

Proposition.

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a})$$

Theorem (Vector triple product).

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$

2.8.1 Spherical trigonometry

 $\textbf{Proposition.} \ \ (\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{a})(\mathbf{b} \cdot \mathbf{c}) - (\mathbf{a} \cdot \mathbf{b})(\mathbf{a} \cdot \mathbf{c}).$

2.9 Geometry

2.9.1 Lines

Theorem. The equation of a straight line through a and parallel to t is

$$(\mathbf{x} - \mathbf{a}) \times \mathbf{t} = \mathbf{0} \text{ or } \mathbf{x} \times \mathbf{t} = \mathbf{a} \times \mathbf{t}.$$

2.9.2 Plane

Theorem. The equation of a plane through b with normal n is given by

$$\mathbf{x}\cdot\mathbf{n}=\mathbf{b}\cdot\mathbf{n}.$$

2.10 Vector equations

3 Linear maps

- 3.1 Examples
- 3.1.1 Rotation in \mathbb{R}^3
- 3.1.2 Reflection in \mathbb{R}^3
- 3.2 Linear Maps

Theorem. Consider a linear map $f: U \to V$, where U, V are vector spaces. Then Im(f) is a subspace of V, and ker(f) is a subspace of U.

3.3 Rank and nullity

Theorem (Rank-nullity theorem). For a linear map $f: U \to V$,

$$r(f) + n(f) = \dim(U).$$

- 3.4 Matrices
- 3.4.1 Examples
- 3.4.2 Matrix Algebra

Proposition.

- (i) $(A^T)^T = A$.
- (ii) If \mathbf{x} is a column vector $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$, \mathbf{x}^T is a row vector $(x_1 \ x_2 \cdots x_n)$.
- (iii) $(AB)^T = B^T A^T$ since $(AB)_{ij}^T = (AB)_{ji} = A_{jk} B_{kj} = B_{ki} A_{jk}$ = $(B^T)_{ik} (A^T)_{kj} = (B^T A^T)_{ij}$.

Proposition. tr(BC) = tr(CB)

Proposition. The columns of a matrix are the images of the standard basis vectors under the mapping α .

3.4.3 Decomposition of an $n \times n$ matrix

3.4.4 Matrix inverse

Proposition. $(AB)^{-1} = B^{-1}A^{-1}$

3.5 Determinants

3.5.1 Permutations

Proposition. Any q-cycle can be written as a product of 2-cycles.

Proposition.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

3.5.2 Properties of determinants

Proposition. $det(A) = det(A^T)$.

Proposition. If matrix B is formed by multiplying every element in a single row of A by a scalar λ , then $\det(B) = \lambda \det(A)$. Consequently, $\det(\lambda A) = \lambda^n \det(A)$.

Proposition. If 2 rows (or 2 columns) of A are identical, the determinant is 0.

Proposition. If 2 rows or 2 columns are linearly dependent, then the determinant is zero.

Proposition. det(AB) = det(A) det(B).

Corollary. If A is orthogonal, $\det A = \pm 1$.

Corollary. If U is unitary, $|\det U| = 1$

Proposition. In \mathbb{R}^3 , orthogonal matrices represent either a rotation (det = -1) or a reflection (det = 1).

3.5.3 Minors and Cofactors

Theorem (Laplace expansion formula). For any particular fixed i,

$$\det A = \sum_{j_i=1}^n A_{j_i i} \Delta_{j_i i}.$$

4 Matrices and linear equations

- 4.1 Simple example, 2×2
- 4.2 Inverse of an $n \times n$ matrix

Lemma. $\sum A_{ik} \Delta_{jk} = \delta_{ij} \det A$

Theorem. If det $A \neq 0$, then A^{-1} exists and is given by

$$(A^{-1})_{ij} = \frac{\Delta_{ji}}{\det A}$$

- 4.3 Homogeneous and inhomogeneous equations
- 4.3.1 Gaussian elimination
- 4.4 Matrix rank

Theorem. The column rank and row rank are equal for any $m \times n$ matrix.

- 4.5 Homogeneous problem Ax = 0
- 4.5.1 Geometrical interpretation
- 4.5.2 Linear mapping view of Ax = 0
- 4.6 General solution of Ax = d

5 Eigenvalues and eigenvectors

5.1 Preliminaries and definitions

Theorem (Fundamental theorem of algebra). Consider polynomial p(z) of degree $m \ge 1$, i.e.

$$p(z) = \sum_{j=0}^{m} c_j z^j,$$

where $c_j \in \mathbb{C}$ and $c_m \neq 0$.

Then p(z) = 0 has precisely m (not necessarily distinct) roots in the complex plane, accounting for multiplicity.

Theorem. λ is an eigenvalue of λ iff

$$\det(A - \lambda I) = 0.$$

5.2 Linearly independent eigenvectors

Theorem. Suppose $n \times n$ matrix A has distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$. Then the corresponding eigenvectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ are linearly independent.

5.3 Transformation matrices

5.3.1 Transformation law for vectors

Theorem. Denote vector as \mathbf{u} with respect to $\{\mathbf{e}_i\}$ and $\tilde{\mathbf{u}}$ with respect to $\{\tilde{\mathbf{e}_i}\}$. Then

$$\mathbf{u} = P\tilde{\mathbf{u}}$$
 and $\tilde{\mathbf{u}} = P^{-1}\mathbf{u}$

5.3.2 Transformation law for matrix

Theorem.

$$\tilde{A} = P^{-1}AP.$$

5.4 Similar matrices

Proposition. Similar matrices have the following properties:

- (i) Similar matrices have the same determinant.
- (ii) Similar matrices have the same trace.
- (iii) Similar matrices have the same characteristic polynomial.

5.5 Diagonalizable matrices

Theorem. Let $\lambda_1, \lambda_2, \dots, \lambda_r$, with $r \leq n$ be the distinct eigenvalues of A. Let $B_1, B_2, \dots B_r$ be the bases of the eigenspaces $E_{\lambda_1}, E_{\lambda_2}, \dots, E_{\lambda_r}$ correspondingly.

Then the set $B = \bigcup_{i=1}^{n} B_i$ is linearly independent.

Proposition. A is diagonalizable iff all its eigenvalues have non-zero defect.

5.6 Canonical (Jordan normal) form

Theorem. Any 2×2 complex matrix A is similar to exactly one of

$$\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}, \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$

Proposition. (Without proof) The canonical form, or Jordan normal form, exists for any $n \times n$ matrix A. i.e. Specifically, there exists a similarity transform such that A is similar to a matrix to \tilde{A} that satisfies the following properties:

- (i) $\tilde{A}_{\alpha\alpha} = \lambda_{\alpha}$, i.e. the diagonal composes of the eigenvalues.
- (ii) $\tilde{A}_{\alpha,\alpha+1} = 0$ or 1.
- (iii) $\tilde{A}_{ij} = 0$ otherwise.

5.7 Cayley-Hamilton Theorem

Theorem (Cayley-Hamilton theorem). Every $n \times n$ complex matrix satisfies its own characteristic equation.

5.8 Eigenvalues and eigenvectors of a Hermitian matrix

Theorem. The eigenvalues of a Hermitian matrix H are real.

Theorem. The eigenvectors of a Hermitian matrix H corresponding to distinct eigenvalues are orthogonal.

5.8.1 Gram-Schmidt orthogonalization (non-examinable)

5.8.2 Unitary transformation

5.8.3 Diagonalization of $n \times n$ Hermitian matrices

Theorem. An $n \times n$ Hermitian matrix has precisely n orthogonal eigenvectors.

5.8.4 Normal matrices

Proposition. It can be shown that:

- (i) If λ is an eigenvalue of N, then so is λ^* .
- (ii) The eigenvectors of distinct eigenvalues are orthogonal.
- (iii) A normal matrix can always be diagonalized with an orthonormal basis of eigenvectors.

6 Quadratic forms and conics

Theorem. Hermitian forms are real.

- 6.1 Quadrics and conics
- **6.1.1** Conic sections (n=2)
- 6.2 Focus-directrix property

7 Transformation groups

7.1 Groups of orthogonal matrices

Proposition. The set of all $n \times n$ orthogonal matrices P forms a group under matrix multiplication:

- 0. If P,Q are orthogonal, then consider R=PQ. $RR^T=(PQ)(PQ)^T=P(QQ^T)P^T=PP^T=I$. So R is orthogonal.
- 1. I satisfies $II^T = I$. So I is orthogonal and in the group.
- 2. Inverse: if P is orthogonal, then $P^{-1} = P^T$ by definition, which is also orthogonal.
- 3. We shown previously that matrix multiplication is associative

7.2 Length preserving matrices

Theorem. Let $P \in O(n)$. Then the following are equivalent:

- (i) P is orthogonal
- (ii) $|P\mathbf{x}| = |\mathbf{x}|$
- (iii) $(P\mathbf{x})^T(P\mathbf{y}) = \mathbf{x}^T\mathbf{y}$, i.e. $(P\mathbf{x}) \cdot (P\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$.
- (iv) If $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ are orthonormal, so are $(P\mathbf{v}_1, P\mathbf{v}_2, \dots, P\mathbf{v}_n)$
- (v) The columns of P are orthonormal.

7.3 Lorentz transformations