

ALGORITMO DE EUCLIDES

Alan Reyes-Figueroa Teoría de Números

(AULA 04) 15.JULIO.2024

Lema de Bézout

Teorema (Lema de Bézout)

Para todo $a, b \in \mathbb{Z}$, existen $M, N \in \mathbb{Z}$ tales que (a, b) = Ma + Nb.

<u>Prueba</u>: Sea $S = \{xa + yb; \ x, y \in \mathbb{Z}, \ xa + yb > 0\}$. Observe que $a = 1 \cdot a + 0 \cdot b, b = 0 \cdot a + 1 \cdot b \in S$, de forma que S es no vacío. Por el principio del buen orden, S posee un elemento mínimo d > 0. En particular, d = Ma + Nb para algunos $M, N \in \mathbb{Z}$. Si aplicamos el algoritmo de la división, con d dividiendo a, existe $q \in \mathbb{Z}$ tal que

$$a = qd + r$$
, $o \le r < d$.

Si r > 0, entonces r = a - qd = a - (Ma + Nb) = (1 - M)a - Nb sería elemento de S, lo que contradice la elección minimal de r en S. De ahí que r = 0. Portanto, $d \mid a$.

Repitiendo el argumento anterior del algoritmo de la división pero ahora con d dividiendo b, se concluye también que $d \mid b$.

Lema de Bézout

Así, d es un divisor común de a y b.

Si c es otro divisor común de a y b, entonces $c \mid a$, $c \mid b \Rightarrow c \mid Ma + Nb = d$. Portanto d = (a, b), y hemos establecido que existen $M, N \in \mathbb{Z}$ tales que

$$d = (a, b) = Ma + Nb.$$

Definición

Dos enteros a y b se llaman **primos relativos** o **coprimos** si no tienen factores en común (aparte de 1). Esto es, si (a, b) = 1.

Corolario

a y b son primos relativos. si y sólo si, existen $M, N \in \mathbb{Z}$ tales que Ma + Nb = 1. \square Prueba: (\Rightarrow) a, b primos relativos, \Rightarrow existen $M, N \in \mathbb{Z}$ con 1 = (a, b) = Ma + Nb. (\Leftarrow) Si $d \mid a$ y $d \mid b$, entonces $d \mid Ma + Nb = 1$. Luego, |d| = 1.

Consecuencias

Mapa de calor del MDC.

Pares de primos relativos en \mathbb{Z}^2 .

Consecuencias

Corolario

- a) Si $a \mid c, b \mid c$ y (a, b) = 1, entonces $ab \mid c$.
- b) (Lema de EUCLIDES) Si $a \mid bc \ y \ (a,b) = 1$, entonces $a \mid c$.

<u>Prueba</u>: (a) Como (a,b)=1, por el Teorema de Bézout, existen $x,y\in\mathbb{Z}$ tales que xa+yb=1. Luego xac+ybc=c.

Ahora $b \mid c \Rightarrow ab \mid ac \mid xac \ y \ a \mid c \Rightarrow ab \mid bc \mid ybc$. De ahí que $ab \mid xac + ybc = c$.

(b) Como (a,b)=1, de nuevo por el Teorema de Bézout, existen $x,y\in\mathbb{Z}$ tales que xa+yb=1. Luego xac+ybc=c.

Como $a \mid xab$ y $a \mid bc \mid ybc$, entonces $a \mid xab + ybc = c$. \Box

Consecuencias

Corolario

Si d = (a, b), entonces $(\frac{a}{d}, \frac{b}{d}) = 1$.

<u>Prueba</u>: Sea d=(a,b). Por el Teorema de Bézout, existen $x,y\in\mathbb{Z}$ tales que xa+yb=d. Dividiendo la ecuación anterior entre d, escribimos

$$X\left(\frac{a}{d}\right) + Y\left(\frac{b}{d}\right) = 1.$$

Como $x,y\in\mathbb{Z}$, por el corolario al Teorema de Bézout a esta última ecuación, entonces $\frac{a}{d}$ y $\frac{b}{d}$ son primos relativos, y $(\frac{a}{d},\frac{b}{d})=1$. \Box

Nota Aclaratoria! El Lema de Bézout **no es** un si y sólo si. De hecho más adelante vamos a probar que los enteros n que admiten representación en la forma n = xa + yb son precisamente los múltiplos de d = (a, b).

Sin embargo, vale un si y sólo si, cuando se tiene xa + yb = 1. La única forma que 1 sea combinación lineal de a y b es cuando son coprimos.

MDC y MMC

Prop: a,b=ab, para $a,b\in\mathbb{N}$.

<u>Prueba</u>: Sea d=(a,b). Por el Teorema de Bézout, existen $M,N\in\mathbb{Z}$ tales que Ma+Nb=d.

Por otro lado, $d \mid ab$. Sea entonces $m = \frac{ab}{d} \in \mathbb{N}$. Como $m = \left(\frac{a}{d}\right)b = a\left(\frac{b}{d}\right)$, sabemos que m es un múltiplo común de a y de b.

Suponga que n es otro múltiplo común de a y de b. Mostramos que $m \mid n$. En efecto,

$$\frac{n}{m} = \frac{n}{ab/d} = \frac{nd}{ab} = \frac{n(Ma + Nb)}{ab} = n\left(\frac{M}{b} + \frac{N}{a}\right) = \frac{n}{b}M + \frac{n}{a}N \in \mathbb{Z}.$$

Portanto, $m \mid n$, y entonces m = [a, b] es el mínimo múltiplo común. Se concluye que ab = md = a, b. \Box .

¿Cómo calcular (a, b)?

Ejemplo: Calcular el MDC y MMC de 360 y 84.

Solución: Factoramos los números 360 y 84 (en factores primos):

360 180	2	84	2
180	2	42	2
90	2	21	3
45	3	7	7
15	3	1	
5	5		
1			

Los divisores coumnes para 360 y 84 son 2, 2, 3. Entonces (360, 84) = $2^2 \cdot 3 = 12$. Por otro lado, [360, 84] = $2^3 \cdot 3^2 \cdot 5 \cdot 7 = 2520$.

¿Cómo calcular (a, b)?

Lema

Para
$$a, b \in \mathbb{Z}$$
, $(a, b) = (a - b, b) = (a, b - a)$.

<u>Prueba</u>: Mostramos (a,b)=(a-b,b). La otra igualdad es análoga. Sean d=(a,b), c=(a-b,b). Entonces $d\mid a,d\mid b\Rightarrow d\mid a-b$. Luego, $d\mid c$. Ahora, $c\mid a-b$, $c\mid b\Rightarrow c\mid (a-b)+b=a$. De ahí, $c\mid d$. Esto muestra que d=c.

Lema

Para todo $a \in \mathbb{Z}$, (a, o) = |a|.

<u>Prueba</u>: $a \mid o \ y \ a \mid a \Rightarrow a \mid (a, o)$. Por otro lado, $(a, o) \mid a$. luego, por antisimetría, (a, o) = |a|.

¿Cómo calcular (a, b)?

Esto ya nos da un primer algoritmo para calcular (a, b):

```
Algoritmo 1: (Cálculo del MDC por restas).
def mdc(a, b):
   if (b > a):
     return mdc(b,a)
if (b == 0):
   return a
else:
   return mdc(a-b.a)
```

Emplea el algoritmo de la división como base. Conocido por los griegos (publicado por EUCLIDES).

Lema (Euclides)

Si
$$a = qb + r$$
, entonces $(a, b) = (b, r)$.

Prueba: Sean d = (a, b) y f = (b, r).

Como $d \mid a \text{ y } d \mid b$, entonces $d \mid a - qb = r$. Luego $d \mid (b, r) = f$.

Como $f \mid b$ y $f \mid r$, entonces $f \mid qb - r = a$. Luego $f \mid (a, b) = d$.

Por antisimetría, $d \mid f \mid d \Rightarrow (a, b) = d = f = (b, r)$.

El Algoritmo de Euclides se basa en el hecho que en la división a = qb + r, podemos descartar el dividendo y calcular (a, b) como (b, r).

El algoritmo euclidiano se puede describir de la siguiente manera: sean $a,b\in\mathbb{Z}$ cuyo máximo común (a,b) divisor se desea calcular. Como (|a|,|b|)=(a,b), podemos suponer que a>b> o. El primer paso es aplicar el Algoritmo de la División, para obtener

$$a = q_1b + r_1$$
, con $0 \le r_1 < b$.

Si $r_1 = 0$, entonces $b \mid a$ y (a, b) = b. Cuando $r_1 \neq 0$, dividimos b por r_1 para producir enteros q_2 , r_2 tales que

$$b = q_2 r_1 + r_2$$
, con $0 \le r_2 < r_1$.

Si $r_2 = 0$, entonces $r_1 \mid b$ y $(b, r_1) = r_1$, y nos detenemos. Caso contrario, $r_2 \neq 0$, continuamos este proceso y dividimos r_1 por r_2 para producir enteros q_3 , r_3 tales que

$$r_1 = q_3 r_2 + r_3,$$
 con o $\leq r_3 < r_2.$

Este proceso de división continúa hasta que aparece un residuo cero, digamos, en el paso n + 1, donde r_{n-1} se divide por r_n .

El resultado es el siguiente sistema de ecuaciones:

$$a = q_{1}b + r_{1}, \quad 0 \le r_{1} < b$$

$$b = q_{2}r_{1} + r_{2}, \quad 0 \le r_{2} < r_{1}$$

$$r_{1} = q_{3}r_{2} + r_{3}, \quad 0 \le r_{3} < r_{2}$$

$$...$$

$$r_{n-2} = q_{n}r_{n-1} + r_{n}, \quad 0 \le r_{n} < r_{n-1}$$

$$r_{n-1} = q_{n+1}r_{n} + 0.$$
(1)

Argumentamos que r_n , el último residuo distinto de cero que aparece de esta manera, es igual a (a,b).

Teorema (Algoritmo de Euclides)

En el sistema de ecuaciones (1), el máximo divisor común de a y b coincide con el último residuo diferente de cero. Esto es, $(a,b) = r_n$.

Prueba:

Por el Lema de Euclides, del sistema de ecuaciones (1), podemos concluir que

$$(a,b)=(b,r_1)=(r_1,r_2)=(r_2,r_3)=\ldots=(r_{n-1},r_n)=(r_n,0)=r_n.$$

Falta nada más garantizar un detalle. Que el sistema de ecuaciones (1) es posible. La construcción de las relaciones $r_{i-1}=q_{i+1}r_i+r_{i+1}$, $i=0,1,\ldots,n$, (aquí $r_{-1}=a,r_0=b$) está garantizada por el Algoritmo de la División.

Ademas, de la relación de los residuos o $\leq r_i < r_{i-1}$, $i = 1, 2, \dots, n$,

se tiene que

$$0 = r_{n+1} < r_n < r_{n-1} < \ldots < r_1 < b.$$

Por lo tanto hay a lo sumo b ecuaciones en el sistema (1). Esto garantiza que el Algoritmo de Euclides consiste a lo sumo de b pasos. En particular, es finito y termina. \Box

Ejemplo: Hallar (12378, 3054).

$$12378 = 4 \cdot 3054 + 162$$

$$3054 = 18 \cdot 162 + 138$$

$$162 = 1 \cdot 138 + 24$$

$$138 = 5 \cdot 24 + 18$$

$$24 = 1 \cdot 18 + 6$$

$$18 = 3 \cdot 6 + 0$$

Luego, (12378, 3054) = 6.

Consecuencias: A partir del algoritmo de Euclides, podemos calcular los coeficientes en el Teorema de Bézout.

$$12378 = 4 \cdot 3054 + 162$$

$$3054 = 18 \cdot 162 + 138$$

$$162 = 1 \cdot 138 + 24$$

$$138 = 5 \cdot 24 + 18$$

$$24 = 1 \cdot 18 + 6$$

$$18 = 3 \cdot 6 + 0$$

$$\begin{aligned} (12378,3054) &= 6 &= 24 - 1(18) = 24 - 1(138 - 5 \cdot 24) = 6(24) - 1(138) \\ &= 6(162 - 138) - 1(138) = 6(162) - 7(138) \\ &= 6(162) - 7(3054 - 18 \cdot 162) = 132(162) - 7(3054) \\ &= 132(12378 - 4 \cdot 3054) - 7(3054) = \textbf{132}(12378) + (-\textbf{535})(3054). \end{aligned}$$

El algoritmo de Euclides puede escribirse en forma matricial. Observe que

$$a = q_1b + r_1 \qquad \Rightarrow \qquad \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b \\ r_1 \end{pmatrix}$$

Luego

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b \\ r_1 \end{pmatrix} = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}$$

$$= \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_3 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} r_2 \\ r_3 \end{pmatrix}$$

$$= \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_3 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} q_n & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} r_n \\ 0 \end{pmatrix}$$

$$= \mathbf{M} \begin{pmatrix} r_n \\ 0 \end{pmatrix}$$

Si
$$\mathbf{M} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$$
, y como det $\mathbf{M} = (-1)^n$, entonces $\mathbf{M}^{-1} = (-1)^n \begin{pmatrix} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{pmatrix}$, y tenemos

$$\begin{pmatrix} r_n \\ o \end{pmatrix} = (-1)^n \begin{pmatrix} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}.$$

En particular $(a,b) = r_n = (-1)^n (m_{22}a - m_{12}b)$, da los coeficientes en el Teorema de Bézout.

La eficiencia computacional del algoritmo de Euclides se ha estudiado a fondo.

- A. A. L. REYNAUD (1811), demostró que el número de pasos de división en la entrada (a, b) está acotado por b.
- Más tarde mejoró esto a $\frac{b}{2} + 2$.
- P. J. E. FINCK (1841), mostró que el número de pasos de división es como máximo $2\log_2 b + 1$.
- ÉMILE LÉGER (1837), estudió el peor caso.
- GABRIEL LAMÉ (1844), refina el análisis de Finck. Mostró que el número de pasos requeridos nunca es más de cinco veces el número h de dígitos en base 10 del número menor b.

Obs! El peor caso corresponde a cuando todo cociente $q_i = 1$ en el sistema (1). Esto ocurre exactamente al tomar dos números de Fibonacci consecutivos.

Comparación de valores en el algoritmo de Euclides. (a) d=(a,b). (b) Número requerido de pasos. (c) Observe las diagonales que requieren más pasos coinciden con números a y b con una relación cercana al valor $\varphi=\frac{1+\sqrt{5}}{2}$, e.g. números de Fibonacci consecutivos.