Chương 1 - OPAMP

- > 1. Giới thiệu
 - 2. Mô hình OPAMP lý tưởng
 - 3. Các mạch ứng dụng của OPAMP
 - 4. Mạch OPAMP ở trạng thái bão hòa

1. Giới thiệu

- OPAMP: Operational Amplifier
- OPAMP được cấu tạo từ các mạch dùng BJT hoặc FET, trong đó có sử dụng một hoặc nhiều mạch khuếch đại vi sai.
- Sơ đồ một mạch OPAMP đơn giản như hình bên.

1. Giới thiệu

- Hình bên là sơ đồ OPAMP 741, một loại OPAMP thông dụng trên thị trường.

Nguyễn Phước Bảo Duy - HCMUT

1. Giới thiệu

Một OPAMP bao gồm 5 cực chính:

- 1,2 là 2 ngõ vào, gọi là ngõ vào đảo và ngõ vào không đảo (inverting and noninverting input).
- 3 là ngõ ra.
- 4,5 kết nối với nguồn cung cấp V_{CC} và $-V_{EE}$ (hoặc V^+ và V^-)

Đôi lúc trong mạch điện các cực 4,5 không được thể hiện mạch nhìn đơn giản, tuy nhiên phải luôn luôn kết nối nguồn thì OPAMP mới hoạt động được.

Chương 1 - OPAMP

- 1. Giới thiệu
- 2. Mô hình OPAMP lý tưởng
 - 3. Các mạch ứng dụng của OPAMP
 - 4. Mạch OPAMP ở trạng thái bão hòa

2. Mô hình OPAMP lý tưởng

Các đặc tính của OPAMP lý tưởng:

- Trở kháng vào $\rightarrow \infty$.
- Trở kháng ra = o.
- Độ lợi common-mode = 0.
- Độ lợi vi sai $A_{od} \rightarrow \infty$.
- Băng thông $\rightarrow \infty$.

2. Mô hình OPAMP lý tưởng

- Mặc dù A_{od} rất lớn, tuy nhiên ngõ ra bị giới hạn trong khoảng (V+ Δ V; V- + Δ V), gọi là vùng tích cực của OPAMP.
- ΔV có giá trị khoảng vài mV đến khoảng hơn 1V.
- Khi OPAMP hoạt động ở vùng tích cực

$$V_2 - V_1 = \frac{V_0}{A_{od}} \rightarrow 0$$

nên có thể xem $v_2 = v_1$.

Chương 1 - OPAMP

- 1. Giới thiệu
- 2. Mô hình OPAMP lý tưởng
- > 3. Các mạch ứng dụng của OPAMP
 - 4. Mạch OPAMP ở trạng thái bão hòa

Mạch khuếch đại đảo

- Độ lợi áp:

$$A_{v} = \frac{v_{o}}{v_{I}} = -\frac{R_{2}}{R_{1}}$$

- Trở kháng vào - ra:

$$R_{i} = R_{1}; R_{o} = 0$$

Mạch khuếch đại đảo cải tiến

- Độ lợi áp:

$$A_{v} = \frac{v_{o}}{v_{I}} = -\frac{R_{2}}{R_{1}} \left(1 + \frac{R_{3}}{R_{4}} + \frac{R_{3}}{R_{2}} \right)$$

- Trở kháng vào: R_i = R₁.
- Ưu điểm: tạo được mạch khuếch đại với độ lợi áp lớn và trở kháng vào lớn.

 $Vi d\mu$: Thiết kế mạch khuếch đại đảo với A_v = -100, R_i = 50k Ω với các điện trở không quá lớn?

Mạch cộng

$$v_o = -R_F \left(\frac{v_{I1}}{R_1} + \frac{v_{I2}}{R_2} + \frac{v_{I3}}{R_3} \right)$$

Mạch khuếch đại không đảo

- Độ lợi áp:

$$A_{v} = \frac{V_{o}}{V_{I}} = 1 + \frac{R_{2}}{R_{1}}$$

- Trở kháng vào ra: là trở kháng vào ra của OPAMP lý tưởng.
- Ứng dụng làm mạch đệm áp

Ví dụ: Xác định biểu thức v_o của mạch hình bên.

Đáp án:

 $V_0 = 10V_{11} + 5V_{12}$.

Mạch chuyển đổi điện áp - dòng điện

- Tạo dòng điện cố định qua tải:

$$i_2 = i_1 = \frac{V_1}{R_1}$$

- Mạch này không áp dụng được cho trường hợp tải cần nối đất.

Mạch chuyển đổi điện áp - dòng điện cải tiến

- Dòng qua tải:

$$i_{L} = \left(\frac{R_{F}Z_{L}}{R_{1}R_{3}} - 1 - \frac{Z_{L}}{R_{2}}\right) = v_{I}\left(\frac{R_{F}}{R_{1}R_{3}}\right)$$

- Thiết kế chọn:

$$\frac{R_F}{R_1 R_3} = \frac{1}{R_2} \Longrightarrow i_L = -\frac{V_I}{R_2}$$

Mạch khuếch đại vi sai

$$v_{o} = \left(1 + \frac{R_{2}}{R_{1}}\right) \left(\frac{\frac{R_{4}}{R_{3}}}{1 + \frac{R_{4}}{R_{3}}}\right) v_{12} - \left(\frac{R_{2}}{R_{1}}\right) v_{11}$$

- Thiết kế chọn:

$$\frac{R_4}{R_3} = \frac{R_2}{R_1} \Longrightarrow V_o = \frac{R_2}{R_1} (V_{12} - V_{11})$$

Mạch khuếch đại dụng cụ (instrumentation amplifier)

$$v_o = \frac{R_4}{R_3} \left(1 + \frac{2R_2}{R_1} \right) (v_{12} - v_{11})$$

- Ứng dụng: Mạch có hệ số khuếch đại lớn và trở kháng vào lớn.

Mạch tích phân

$$v_{o}(t) = v_{c}(0) - \frac{1}{R_{1}C_{2}} \int_{0}^{t} v_{l}(x) dx$$

- Hàm truyền

$$H(s) = -\frac{1}{R_1 C_2 s}$$

Mạch vi phân

$$v_o(t) = -R_2C_1 \frac{dv_1(t)}{dt}$$

- Hàm truyền

$$H(s) = -R_2C_1s$$

Bài tập 1: Cho mạch OPAMP như hình với: $R_1 = 10k\Omega$, $R_2 = 80k\Omega$, $R_3 = 20k\Omega$, $R_4 = 100k\Omega$ và $v_1 = -0.15V$. Tính v_{01} , v_{0} , i_{1} , i_{2} , i_{3} , i_{4} và cho biết dòng ngố ra của mỗi OPAMP chạy ra ngoài hay chạy vào trong OPAMP.

Bài tập 2: Cho mạch OPAMP như hình. Tính v_o theo v_{l1} và v_{l2} , vẽ dạng v_o khi v_{l1} = 5mV, v_{l2} = -25 - 50sin(ω t)mV.

Bài tập 3: Cho mạch OPAMP như hình. Viết biểu thức v_0 theo v_{11} và v_{12} , tính v_0 khi a) $v_{11} = 0.2V$, $v_{12} = 0.3V$ và b) $v_{11} = 0.25V$, $v_{12} = -0.4V$.

Bài tập 4: Cho mạch OPAMP như hình.

- a) Xác định $A_{v1} = v_{o1}/v_i$; $A_{v2} = v_{o2}/v_i$; Xác định mối liên hệ giữa v_{o1} và v_{o2} .
- b) Với $R_2 = 60k\Omega$, $R_1 = 20k\Omega$, $R = 50k\Omega$, $V_1 = -0.5V$, tính V_{01} và V_{02} .

Bài tập 5: Cho mạch OPAMP như hình (mạch này gọi là mạch lọc tích cực thông thấp bậc 1 - mạch lọc Butterworth thông thấp bậc 1).

- a) Xác định hàm truyền $H(s) = V_o(s)/V_I(s)$.
- b) Vẽ đồ thị Bode của H(s) khi $R_1 = R_2 = 1k\Omega$, $C_2 = 10\mu F$.

Bài tập 6: Cho mạch OPAMP như hình (mạch này gọi là mạch lọc tích cực thông cao bậc 1 - mạch lọc Butterworth thông cao bậc 1).

- a) Xác định hàm truyền $H(s) = V_o(s)/V_I(s)$.
- b) Vẽ đồ thị Bode của H(s) khi $R_1 = 1k\Omega$, $R_2 = 100k\Omega$ $C_2 = 10\mu$ F.

Bài tập 7: Cho mạch OPAMP như hình (mạch lọc Butterworth thông thấp bậc 2).

a) Xác định hàm truyền $H(s) = V_o(s)/V_I(s)$.

b) Vẽ đồ thị Bode của H(s) khi R = 100k Ω , C₃ = 120pF, C₄ = 56pF. Xác định tần số cắt của mạch lọc.

Nguyễn Phước Bảo Duy - HCMUT

Bài tập 8: Cho mạch OPAMP như hình (mạch lọc Butterworth thông cao bậc 2).

a) Xác định hàm truyền $H(s) = V_o(s)/V_I(s)$.

b) Vẽ đồ thị Bode của H(s) khi $R_3 = 56k\Omega$, $R_4 = 120k\Omega$, C = 100pF. Xác định tần số cắt của mạch lọc.

 $V_i \circ \bigcup_{i=1}^{R_3} V_i \circ V_o$ Nguyễn Phước Bảo Duy - HCMUT

27

Mạch lọc Butterworth bậc 3: thông thấp và thông cao

Mạch lọc Butterworth cao: nối tiếp các mạch lọc Butterworth bậc thấp hơn, ví dụ hình dưới là mạch lọc Butterworth bậc 4 thông thấp.

Chương 1 - OPAMP

- 1. Giới thiệu
- 2. Mô hình OPAMP lý tưởng
- 3. Các mạch ứng dụng của OPAMP
- 4. Mạch OPAMP ở trạng thái bão hòa

- OPAMP rơi vào trạng thái bão hòa khi v_o theo tính toán vượt ra ngoài khoảng giới hạn (V+ - Δ V; V- + Δ V). Khi đó:

$$\begin{cases} v_o \ge V^+ - \Delta V \Longrightarrow v_o = V^+ - \Delta V \\ v_o \le V^- + \Delta V \Longrightarrow v_o = V^- + \Delta V \end{cases}$$

- Khi tính toán có thể cho $\Delta V = 0$ nếu đề bài không đề cập chi tiết.

Mạch so sánh

$$v_{o} = \begin{cases} +V_{CC} = V^{+} = 12V, & v_{i} < V_{ref} \\ -V_{EE} = V^{-} = -12V, & v_{i} > V_{ref} \end{cases}$$

(giải thích?)

Ví dụ: cho v_i = 5sin(ωt) V, V_{ref} = 3V, vẽ $v_i(t)$ và $v_o(t)$.

Mach Schmitt Trigger

- Giải thích hoạt động của mạch?

Ví dụ: cho RF = 12kΩ, vẽ $v_i(t)$ và $v_o(t)$ khi:

a. $v_i = 10\sin(\omega t) V$.

b. $v_i = 5\sin(\omega t) V$.

Mạch tạo sóng vuông và sóng tam giác

- Giải thích hoạt động của mạch?
- Đề xuất cách thay đổi tần số của sóng tam giác?

