W2 – 4.4 Compound Angle Formulas

MHF4I

1) Use an appropriate compound angle formula to express as a single trig function, and then determine an exact value for each

a)
$$\sin\frac{\pi}{4}\cos\frac{\pi}{12} + \cos\frac{\pi}{4}\sin\frac{\pi}{12}$$

b)
$$\sin\frac{\pi}{4}\cos\frac{\pi}{12} - \cos\frac{\pi}{4}\sin\frac{\pi}{12}$$

c)
$$\cos\frac{\pi}{4}\cos\frac{\pi}{12} - \sin\frac{\pi}{4}\sin\frac{\pi}{12}$$

d)
$$\cos\frac{\pi}{4}\cos\frac{\pi}{12} + \sin\frac{\pi}{4}\sin\frac{\pi}{12}$$

e)
$$\cos \frac{2\pi}{9} \cos \frac{5\pi}{18} - \sin \frac{2\pi}{9} \sin \frac{5\pi}{18}$$

f)
$$\cos \frac{10\pi}{9} \cos \frac{5\pi}{18} + \sin \frac{10\pi}{9} \sin \frac{5\pi}{18}$$

3) Apply a compound angle formula, and then determine an exact value for each.

a)
$$\sin\left(\frac{\pi}{3} + \frac{\pi}{4}\right)$$

b)
$$\cos\left(\frac{\pi}{3} + \frac{\pi}{4}\right)$$

c)
$$\cos\left(\frac{2\pi}{3} - \frac{\pi}{4}\right)$$

d)
$$\sin\left(\frac{2\pi}{3} - \frac{\pi}{4}\right)$$

e)
$$\tan\left(\frac{\pi}{4} + \pi\right)$$

f) $\tan\left(\frac{\pi}{3} - \frac{\pi}{6}\right)$

4) Use an appropriate compound angle formula to determine an exact value for each.

a)
$$\sin \frac{7\pi}{12}$$

b)
$$\sin \frac{5\pi}{12}$$

c)
$$\cos \frac{11\pi}{12}$$

d)
$$\cos \frac{5\pi}{12}$$

e)
$$\sin \frac{13\pi}{12}$$

f)
$$\cos \frac{17\pi}{12}$$

g)
$$\sin\frac{19\pi}{12}$$

h) $\cos \frac{23\pi}{12}$

5) Angles x and y are located in the first quadrant such that $\sin x = \frac{3}{5}$ and $\cos y = \frac{5}{13}$. Determine exact values for $\cos x$ and $\sin y$.

6) Refer to the previous question. Determine an exact value for each of the following.

a)
$$\sin(x + y)$$

b)
$$\sin(x-y)$$

c)
$$cos(x + y)$$

d)
$$\cos(x-y)$$

7) Use a compound angle formula to show that $cos(2x) = cos^2 x - sin^2 x$