

PU-Transformer: Point Cloud Upsampling Transformer

Shi Qiu ^{1,2}, Saeed Anwar ^{1,2}, Nick Barnes ¹
¹ The Australian National University; ² DATA61-CSIRO, Australia

BACKGROUND

Point Cloud Upsampling:

- ♦ The aim is to generate dense point clouds from sparse input, where the generated data should recover the fine-grained structures at a higher resolution.
- Raw point cloud data has inherent properties of irregularity and sparsity, posing enormous challenges for further processings.
- ♦ The upsampled points are expected to lie on the underlying surfaces in a uniform distribution, benefiting downstream tasks for both 3D data visualization and visual analysis.
- ♦ Transformer has theoretic plausibility, practical feasibility and applicable adaptability in point cloud upsampling.

Contributions:

- ♦ We are the first to introduce a transformer-based model for point cloud upsampling.
- ♦ We quantitatively validate the effectiveness of the PU-Transformer by significantly outperforming the results of state-of-the-art point cloud upsampling networks on two benchmarks using three metrics.
- ♦ The upsampled visualizations demonstrate the superiority of PU-Transformer for diverse point clouds.

Overall Architecture

The details of PU-Transformer:

Components:

- ♦ **PU-Transformer Head:** To encode a preliminary feature map for the following operations. In practice, we only use a single layer MLP.
- ♦ **PU-Transformer Body:** To learn comprehensive feature representations of input point cloud using a cascaded set of Transformer Encoders. The detailed structure is shown in the lower chart.
- ♦ **PU-Transformer Tail:** To construct a dense resolution feature map by reforming the body's output via a channel-wise periodic shuffling operation.

POSITIONAL FUSION BLOCK

- \diamond Geometric context: original 3D coordinates $\mathcal{P} \in \mathbb{R}^{N \times 3}$ Feature context: a learned feature map $\mathcal{F} \in \mathbb{R}^{N \times C}$
- \diamond K-nearest-neighbors: $\mathcal{P}_i \in \mathbb{R}^{N \times k \times 3}$
- \diamond Relative positions: $\Delta \mathcal{P} = \mathcal{P}_j \mathcal{P} \in \mathbb{R}^{N \times k \times 3}$ Relative features: $\Delta \mathcal{F} = \mathcal{F}_j - \mathcal{F} \in \mathbb{R}^{N \times k \times C}$
- $\diamond \textbf{Local geometric context: } \mathcal{G}_{geo} = \operatorname{concat}\left[\operatorname{dup}(\mathcal{P}); \Delta \mathcal{P}\right] \in \mathbb{R}^{N \times k \times 6}$ $\textbf{Local feature context: } \mathcal{G}_{feat} = \operatorname{concat}\left[\operatorname{dup}(\mathcal{F}); \Delta \mathcal{F}\right] \in \mathbb{R}^{N \times k \times 2C}$
- \diamond Output point feature: encoded by two MLPs (\mathcal{M})

$$\mathcal{G} = \max_{k} \left(\operatorname{concat} \left[\mathcal{M}_{\Phi}(\mathcal{G}_{geo}); \mathcal{M}_{\Theta}(\mathcal{G}_{feat}) \right] \right) \in \mathbb{R}^{N \times C'}$$

SC-MSA BLOCK

Shifted Channel Multi-head Self-Attention:

Algorithm 1: Shifted Channel Multi-head Self-Attention

input: a point cloud feature map: $\mathcal{I} \in \mathbb{R}^{N \times C'}$ output: the refined feature map: $\mathcal{O} \in \mathbb{R}^{N \times C'}$ others: channel-wise split width: wchannel-wise shift interval: d, d < wthe number of heads: M

- 1 $\mathcal{Q} = \operatorname{Linear}(\mathcal{I})$ # Query Mat $\mathcal{Q} \in \mathbb{R}^{N \times C'}$ 2 $\mathcal{K} = \operatorname{Linear}(\mathcal{I})$ # Key Mat $\mathcal{K} \in \mathbb{R}^{N \times C'}$
- 3 $\mathcal{V} = \operatorname{Linear}(\mathcal{I})$ # Value Mat $\mathcal{V} \in \mathbb{R}^{N \times C'}$
- 4 for $m \in \{1, 2, ..., M\}$ do
- 5 $Q_m = Q[:, (m-1)d: (m-1)d+w];$
- 6 $\mathcal{K}_m = \mathcal{K}[:, (m-1)d: (m-1)d + w];$
- $\mathcal{V}_m = \mathcal{V}[:, (m-1)d : (m-1)d + w];$ $\mathcal{A}_m = \operatorname{softmax}(\mathcal{Q}_m \mathcal{K}_m^T);$
- 9 $\mathcal{A}_m \text{Softmax}$ $\mathcal{O}_m = \mathcal{A}_m \mathcal{V}_m;$
- 10 end for
- 11 **obtain:** $\{\mathcal{O}_1, \mathcal{O}_2, ..., \mathcal{O}_M\}$
- 12 $\mathcal{O} = \operatorname{Linear} \left(\operatorname{concat} \left[\left\{ \mathcal{O}_1, \mathcal{O}_2, ..., \mathcal{O}_M \right\} \right] \right)$

Comparisons to Multi-head Self-Attention:

- ♦ It is easier to integrate the information between the *connected* multihead outputs, compared to using the *independent* multi-head results of regular MSA.
- ♦ SC-MSA can further enhance the channel-wise relations in the final output, better fulfilling an efficient and effective shuffling-based upsampling strategy than only using regular MSA's point-wise information.

EXPERIMENT

PU1K Dataset:

	Methods	Model	Time	Param.	Results $(\times 10^{-3})$			
		(MB)	$(\times 10^{-3} \mathrm{s})$	$(\times 10^3)$	$\mathbf{CD}\downarrow$	$ ext{HD}\downarrow$	P2F ↓	
	PU-Net	10.1	8.4	812.0	1.155	15.170	4.834	
	MPU	6.2	8.3	76.2	0.935	13.327	3.551	
	PU-GACNet	_	_	50.7	0.665	9.053	2.429	
	PU-GCN	1.8	8.0	76.0	0.585	7.577	2.499	
	Dis-PU	13.2	10.8	1047.0	0.485	6.145	1.802	
	Ours	18.4	9.9	969.9	0.451	3.843	1.277	

PUGAN's Dataset:

	1	4 TT 1°			1.C II 1'			
Methods	$ $ $4\times$	$4 \times \text{Upsampling}$			$16 \times \text{Upsampling}$			
Wiethous	$\mathbf{CD}\downarrow$	$ ext{HD} \downarrow$	P2F ↓	$\mathbf{CD}\downarrow$	$ extbf{HD} \downarrow$	P2F		
PU-Net	0.844	7.061	9.431	0.699	8.594	11.61		
MPU	0.632	6.998	6.199	0.348	7.187	6.822		
PU-GAN	0.483	5.323	5.053	0.269	7.127	6.306		
PU-GCN	0.357	5.229	3.628	0.256	5.938	3.945		
Dis-PU	0.315	4.201	4.149	0.199	4.716	4.249		
Ours	0.273	2.605	1.836	0.241	2.310	1.687		

Ablation Study:

models	PU-Transfor	rmer Body	PU-Transformer Tail	Results $(\times 10^{-3})$		
moders	Positional Fusion	Attention Type		$\mathbf{CD}\downarrow$	$HD \downarrow$	P2F ↓
$\overline{A_1}$	None	SC-MSA	Shuffle	0.605	6.477	2.038
A_2	${\cal G}_{geo}$	SC-MSA	Shuffle	0.558	5.713	1.751
A_3	${\cal G}_{feat}$	SC-MSA	Shuffle	0.497	4.164	1.511
$\overline{B_1}$	$\mathcal{G}_{geo}~\&~\mathcal{G}_{feat}$	SA	Shuffle	0.526	4.689	1.492
B_2	$igg \mathcal{G}_{geo} \ \& \ \mathcal{G}_{feat}$	OSA	Shuffle	0.509	4.823	1.586
B_3	$\mathcal{G}_{geo}~\&~\mathcal{G}_{feat}$	MSA	Shuffle	0.498	4.218	1.427
$\overline{C_1}$	$\mathcal{G}_{geo}~\&~\mathcal{G}_{feat}$	SC-MSA	MLPs	1.070	8.732	2.467
C_2	$igg \mathcal{G}_{geo} \ \& \ \mathcal{G}_{feat}$	SC-MSA	DupGrid	0.485	3.966	1.380
C_3	$\mathcal{G}_{geo}~\&~\mathcal{G}_{feat}$	SC-MSA	NodeShuffle	0.505	4.157	1.404
Full	$\mathcal{G}_{geo}~\&~\mathcal{G}_{feat}$	SC-MSA	Shuffle	0.451	3.843	1.277

VISUALIZATION

Upsampling Synthetic Point Clouds:

Upsampling Real-world Point Clouds:

(collected from the ScanObjectNN and SemanticKITTI datasets)