设 A 是拓扑空间 X 的(强)形变收缩核, $H:X\times I\to X$ 是相应的(强)形变收缩。记 ~ 是商映射 $p:X\to X/\sim$ 确定的等价关系,若 $\forall x,y$ 使 p(x)=p(y) ,都有 $p(H(x,t))=p(H(y,t)), \forall t\in I$,则 A/\sim 是 X/\sim 的(强)形变收缩核,相应的(强)形变收缩 $H':X/\sim xI\to X/\sim$ 构造为 $H'(x,t)=p\circ H(p^{-1}(x),t)$.

(强)形变收缩核的三条性质容易验证,值得注意的是其中只有 $\forall x' \in X/\sim, H'(x',1)\in A/\sim$ 需要用到 $\forall x,y$ 使 p(x)=p(y) ,都有 $p(H(x,t))=p(H(y,t)), \forall t\in I$ 的条件,这是为了保证 H' 的良定义性.

下面来验证 H' 的连续性. $\forall U \in \tau_{X/\sim}$, $H'^{-1}(U) = \{(x',t) \in X/\sim X : H'(p^{-1}(x'),t) \in V = p^{-1}(U)\} = \{(p(x),t) : (x,t) \in W = H^{-1}(V)\}$

定义 $P: X \times I \to X/ \sim \times I$ 为 P(x,t) = (p(x),t) ,把 P 看作商映射,在 $X/ \sim \times I$ 上定义拓扑 $\tau_1 = \{U \times V: P^{-1}(U \times V) \in \tau_{X \times I}\}$,则 $H'^{-1}(U) = P(W)$,可以证明它是这个拓扑下的开集. 只需要证明 $P^{-1}(P(W)) = W$ (因为 W 是开集). 若这不成立,则 $\exists (x,t_0) \in (X \times I) \backslash W, (y,t_0) \in W$ 使得 p(x) = p(y). 按照条件应有 $p \circ H(x,t_0) = p \circ H(y,t_0)$,但 $p \circ H(x,t_0) \notin U$ 而 $p \circ H(y,t_0) \in U$,矛盾.

接下来就只需要证明 $X/\sim \times I$ 作为乘积空间确定的拓扑 τ_2 比 $\tau_1=\left\{U\times V: P^{-1}(U\times V)=\bigcup_{U_\lambda\in\tau_X,V_\lambda\in\tau_I}(U_\lambda\times V_\lambda)\in\tau_{X\times I}\right\}$ 大. 可以证明, $\forall U\times V\in\tau_1$, U 是开集. 只需证明 $p^{-1}(U)$ 是开集,而这是因为 $P^{-1}(U\times V)=p^{-1}(U)\times V=\bigcup_{U_\lambda\in\tau_X,V_\lambda\in\tau_I}(U_\lambda\times V_\lambda)$, $\forall x\in p^{-1}(U)$, $\exists U_{\lambda_0}$ 使 $x\in U_{\lambda_0}\subset p^{-1}(U)$,从而 $p^{-1}(U)$ 每一点都是内点. 同理可以证明 V 中每一点都是内点,进而 $U\times V$ 是 τ_2 中的开集. 这就证明了整个命题.

事实上,我们还能证明 $\tau_2 \subset \tau_1$. $\forall \bigcup_{\substack{p^{-1}(U_\lambda) \in \tau_X, V_\lambda \in \tau_I \\ p^{-1}(U_\lambda) \in \tau_X, V_\lambda \in \tau_I}} (U_\lambda \times V_\lambda) \in \tau_2, \ P^{-1}(\bigcup_{\substack{p^{-1}(U_\lambda) \in \tau_X, V_\lambda \in \tau_I \\ p^{-1}(U_\lambda) \in \tau_X, V_\lambda \in \tau_I}} (U_\lambda \times V_\lambda) = \bigcup_{\substack{p^{-1}(U_\lambda) \in \tau_X, V_\lambda \in \tau_I \\ p^{-1}(U_\lambda) \in \tau_X, V_\lambda \in \tau_I}} (p^{-1}(U_\lambda) \times V_\lambda) \in \tau_{X \times I}, \text{ 故也在 } \tau_1 \text{ 中.}$