15.8 Triple Integrals in Cylindrical Coordinates

- 1. Sketch or describe the surface given (all coordinates are cylindrical):
 - (a) r = 5
 - (b) $\theta = 0$
 - (c) $\theta = \pi/4$
 - (d) $z = 4 r^2$
 - (e) $0 \le r \le 2$, $-\pi/2 \le \theta \le \pi/2$, $0 \le z \le 1$.
- 2. Convert the following (given in rectangular coordinates) to cylindrical coordinates:
 - (a) The point (-1, 1, 1)
 - (b) The point $(2, -\pi/2, 1)$
 - (c) $z = x^2 y^2$
 - (d) $x^2 x + y^2 + z^2 = 1$

3. Sketch the surface whose volume is given by the integral

$$\int_{-\pi/2}^{\pi/2} \int_0^2 \int_0^{r^2} r \ dz \ dr \ d\theta.$$

What is the volume of this surface?

- 4. Use cylindrical coordinates to evaluate the following:
 - (a) $\iiint_E (x+y+z) dV$ where E is the solid in the first octant that lies under the parabaloid $z=4-x^2-y^2$.

(b) $\iiint_E \sqrt{x^2 + y^2} \ dV$ where E is the region that lies inside the cylinder $x^2 + y^2 = 16$ and between the planes z = -5 and z = 4.

5. Evaluate by changing to cylindrical coordinates:

$$\int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \int_{\sqrt{x^2+y^2}}^{2} xz \ dz \ dx \ dy.$$