B-12 (ANSYS)

Формулировка задачи:

Дано:
$$E = 2 \cdot 10^{5} \quad M\Pi a \; ;$$

$$A = 80 \qquad MM^{2} \; ;$$

$$F = 30 \qquad \kappa H \; ;$$

$$l = 1 \qquad M \; ;$$

$$\alpha = 11 \cdot 10^{-6} \; \frac{1}{^{\circ}C} \; ;$$

$$\Delta t = 250 \quad ^{\circ}C \; ;$$

$$\beta = 30^{\circ} \qquad ;$$

$$\gamma = 60^{\circ} \; .$$

Hайти: N_i .

Аналитический расчёт (см. В-12) даёт следующие решения:

$$\begin{split} N_1 &= N_4 = \frac{1}{2+3\cdot\sqrt{3}} \cdot \left[\left(2-\sqrt{3}\right) \cdot F + 2\cdot\sqrt{3}\cdot\alpha \cdot \Delta t \cdot E \cdot A \right] = 22298 \ H \approx 22,3 \ \kappa H \\ N_2 &= \frac{2}{2+3\cdot\sqrt{3}} \cdot \left[\left(2-\sqrt{3}\right) \cdot F + \sqrt{3}\cdot\alpha \cdot \Delta t \cdot E \cdot A \right] = 52298 \ H \approx 52,3 \ \kappa H \\ N_3 &= N_5 = \frac{2}{2+3\cdot\sqrt{3}} \cdot \left[2\cdot F - \alpha \cdot \Delta t \cdot E \cdot A \right] = 4446,8 \ H \approx 4,447 \ \kappa H \end{split}$$

Задача данного примера: при помощи ANSYS Multyphisics получить эти же решения методом конечных элементов.

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню М_М и U_М работают мышью, выбирая нужные опции.

B окно C_P вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый:

U M > PlotCtrls > Style > Colors > Reverse Video

Скрываем пункты меню, не относящиеся к прочностным расчётам:

 ${\tt M_M}$ > Preferences > Отметить "Structural" > OK

При построениях полезно видеть номера узлов и номера конечных элементов (один участок – один конечный элемент):

```
U_M > PlotCtrls > Numbering >
OTMETUTЬ NODE;

Установить Elem на "Element numbers";
Установить [/NUM] на "Colors&numbers"
> OK
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > Установить «Размер» на «22» > ОК
U_M > PlotCtrls > Font Controls > Entity Font > Установить «Размер» на «22» > ОК
```

Предварительные настройки выполнены, можно приступать к решению задачи.

Решение задачи:

№	Действие	Результат		
5	Координаты точек конструкции: Определяемся с координатами точек (узлов фермы). Можно задать их в декартовой систее координат, но в данном случае все точки лежат на прямых, выходящих из C . Проще всего использовать цилиндрическую систему координат с началом в этой точке. Тогда координаты узлов в формате (R , φ , z) будут следующими: $C\left(0,0,0\right)$; $D\left(\sqrt{3}\cdot l,90-\beta,0\right)$; $B\left(l,90,0\right)$; $H\left(\sqrt{3}\cdot l,90+\beta,0\right)$.	$ \begin{array}{c c} & y \\ \hline & D \\ \hline & \sqrt{3} \cdot l \\ \hline & \varphi_B = 90^\circ + \beta \\ \hline & \varphi_D = 90^\circ - \beta \\ \hline & x \end{array} $		
Конечноэлементная модель				
6	Активируем глобальную цилиндрическую систему координат: U_M > WorkPlane > Change Active CS to > Global Cylindrical	real=1 csys=0 secn=1 csys=1 secn=1		

№	Действие	Результат
7	Узлы 1, 2, 3 и 4 в точках C, D, B и H' coomветственно: М_M> Preprocessor> Modeling> Create> Nodes> In Active CS > NODE пишем 1 X, Y, Z пишем 0, 0, 0 > Apply > NODE пишем 2 X, Y, Z пишем sqrt(3)*1,90-Beta, 0 > Apply > NODE пишем 3 X, Y, Z пишем 1,90, 0 > Apply > NODE пишем 4 X, Y, Z пишем 4 X, Y, Z пишем sqrt(3)*1,90+Beta, 0 > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots Справа от рабочего поля нажимаем кнопку Fit	NODES 4 2
8	Активируем глобальную декартову систему координат: U_M > WorkPlane > Change Active CS to > Global Cartesian	real=1 csys=1 secn=1

http://www.tychina.pro

M M > Solution > Solve > Current LS

Синхронно появляются два окна: белое информационное и серое исполнительное. Белое закрываем, на сером нажимаем ОК. Расчёт пошёл. Когда он закончится, появится окно «Solution is done!». Закройте это окно.

Расчёт окончен.

16

No	Действие	Результат
19	Деформированная форма конструкции: M_M > General Postproc > Plot Results >	DISPLACEMENT STEP=1 SUB =1 TIME=1 DMX =.006056

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

U M > File > Exit > Quit - No Save! > OK

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.