SEM TABLES WITH THE SEMTABLE PACKAGE FOR R.

Paul E. Johnson, CRMDA, University of Kansas, pauljohn@ku.edu

Benjamin Kite, CRMDA and H&R Block, bakite@ku.edu

Guide No: 50

Keywords: Structural Equation Models, LaTeX Tables, HTML Tables

See https://crmda.ku.edu/guides for updates.

Apr. 12, 2020

Web: https://crmda.ku.edu

Email: crmda@ku.edu

Phone: 785-864-3353

Abstract

The semTable package features functions for preparing report tables for estimates of structural equation models fitted with lavaan (Rosseel, 2012). This essay discusses the usage of the semTable function and provides a profuse collection of output examples.

Contents

T	semTable	2
2	Important Parameters	2
3	Confirmatory Factor Analysis	3
4	To Float or Not to Float?	7
5	Fine tuning titles	9
6	Two/Multi Group Models	11
7	Two Models Side-by-Side	14
8	Larger Models	20
9	Conclusion	29
R	eferences	29

1 semTable

The semTable function is the featured offering of the semTable package for R (R Core Team, 2019). This function allows authors who estimate structural equation models (SEM) with the lavaan package for R to, more-or-less automatically, generate acceptable tabular summaries for reports and presentations. semTable has been offered as a part of the kutils package in the past, but we believe it is sufficiently well developed that it can stand on its own. As soon as semTable is accepted on CRAN, this function will be removed from kutils. The semTable package also includes a function called modelComparison, which can assemble a standard format for a "diff" test result for structural equation models. That function is considerably less elaborate than semTable.

.

2 Important Parameters

object: A fitted lavaan model object or a list with one or more SEM fitted lavaan model objects.
We suggest providing "pretty names" for inclusion in the final report, as in list("Model A" = obj1, "Model B" = obj2). Results will be side-by-side. Hint: take care to adjust the columns parameter to make the results fit within the space allowed.

paramSets: Each fitted SEM may have many different parameter sections. This argument can include any of the following:

c("loadings", "slopes", "intercepts", "residualvariances", "residualcovariances", "latentmeans", "latentvariances", "latentcovariances", "thresholds", "constructed", "fits") The default is "all", and the setting applies to all of the models in the fitted object list.

paramSetLabels: This should be a named vector of "pretty-printable" labels for the parameter sets. It is not necessary to provide improved labels for all paramSets items, but it is allowed to do so.

columns: choose the desired columns in the output. In the default table in lavaan summaries, the columns are ["Estimate", "Std. Error", "Z", and "p"]. In our opinion, inclusion of both the standard error and the Z is redundant and the p value may not be necessary if significance stars are used. Hence we provide alternatives to "tighten up" the result table. To specify columns, the legal parameter values may be drawn from c("est", "se", "z", "p", "rsquare", "estse", "eststars", "estsestars"). The four new values are the R-square for the item, a compact combined estimate and standard errors (estse: "1.2(0.02)"), with estimates with stars and no standard errors (eststars: "1.2**") or estimates with standard errors in parentheses with "significance stars" (estsestars: "1.2(0.02)**"). Columns can differ between models, so a named list of vectors will be accepted: list("Model A" = c("est", "se"), "Model B" = c("estse", "p")).

columnLabels: names list of "presentable" titles for columns that authors prefer. Provide these
names by parameter, not by model, For example, any of these might be suitable: est = "Estimate", se = "Std. Err.", z = "Z", p = "p", rsquare = "R Square", estse = "Estimate(Std.Err.)".

fits: selection of fit indices to include. The help page has a partial list of these, but the lavaan estimator can generate additional fit indicators for models of different types. This is the one part of the semTable output that is likely to require some hand-editing in order to be truly publication ready.

varLabels: Rather than R variable names, a truly polished table needs presentable variable names. Provide a named vector of names in the format "orig.R.name" = "new.pretty.name". See examples below.

type: Can be "latex", "html" or "csv". If a table object is created with one format in mind, the object can be re-designated to a new format. See examples in "?semTable".

LaTeX specific arguments:

table.float: is an enclosing float table object required, or should we simply make a tabular (or longtable) object.

longtable If longtable is true (probably preferred), use the LaTeX class longtable. Otherwise tabular.

caption: title for the floating table, if table.float=TRUE.

label: label to be used for internal cross-referencing.

centering: One of these c("siunitx", "none").

alpha: The levels of statistical significance to be used for assigning starts (only needed if columns includes eststars or estsestars).

file: This is a convenience function to save the results in a separate file. It will add suffix ".tex",
 ".html", or ".csv", depending on the value of type. This is the same as fitting a model
 with print.results = FALSE, then semTable to produce object.tbl, and then running
 cat(object.tbl, file= "fn") to save the result object in a file.

print.results: If FALSE, the results are not immediately displayed. This is advantageous if an author wants to revise the marked-up table results or control the point at which they are delivered in the documents.

3 Confirmatory Factor Analysis

```
require(lavaan)
library(semTable)
tempdir <- "tmpout"
if(!dir.exists(tempdir)) dir.create(tempdir)</pre>
```

```
## The example from lavaan's docs HS.model <- ' visual =\sim x1 + x2 + x3 textual =\sim x4 + x5 + x6 speed =\sim x7 + x8 + x9
```

Because the SEM estimation can be time consuming, we will save a file with the fitted model and re-use it if it is available when the vignette is recompiled.

The "raw" output from the lavaan summary function is as follows:

summary(fit1)

```
lavaan 0.6-5 ended normally after 20 iterations
     Estimator
                                                       ML
     Optimization method
                                                   NLMINB
     Number of free parameters
                                                       30
5
     Number of observations
                                                      301
   Model Test User Model:
10
     Test statistic
                                                   85.306
     Degrees of freedom
                                                       24
     P-value (Chi-square)
                                                    0.000
   Parameter Estimates:
     Information
                                                 Expected
     Information saturated (h1) model
                                               Structured
     Standard errors
                                                 Standard
20
   Latent Variables:
                      Estimate Std.Err z-value P(>|z|)
     {\tt visual} \ = \sim
                         0.900
                                0.081 11.128
                                                    0.000
       x1
                         0.498
25
       x2
                                  0.077
                                          6.429
                                                    0.000
       xЗ
                         0.656
                                  0.074
                                           8.817
                                                    0.000
     textual =\sim
       x4
                         0.990
                                  0.057 17.474
                                                  0.000
                                        17.576
                                  0.063
                                                   0.000
                         1.102
       x5
                         0.917
                                  0.054
                                          17.082
                                                    0.000
30
       x6
     speed =\sim
                         0.619
                                  0.070
                                        8.903
                                                  0.000
       x7
       x8
                         0.731
                                  0.066
                                        11.090
                                                  0.000
                         0.670
                                  0.065
                                        10.305
                                                   0.000
       x9
   Covariances:
                      Estimate Std.Err z-value P(>|z|)
     visual \sim
       textual
                         0.459
                                  0.064
                                           7.189
                                                    0.000
                         0.471
                                  0.073
                                           6.461
                                                    0.000
       speed
     textual \sim
       speed
                         0.283
                                  0.069
                                           4.117
                                                    0.000
   Intercepts:
45
                      Estimate Std.Err z-value
                                                  P(>|z|)
      . x 1
                        4.936
                                0.067
                                         73.473
                                                  0.000
                         6.088 0.068 89.855
                                                    0.000
      .x2
                         2.250
                                 0.065
                                        34.579
                                                   0.000
      .x3
                         3.061
                               0.067
                                        45.694
                                                  0.000
      .x4
```

```
50
       .x5
                            4.341
                                     0.074
                                              58.452
                                                         0.000
                           2.186
                                     0.063
                                              34.667
                                                         0.000
       .x6
       .x7
                           4.186
                                     0.063
                                              66.766
                                                         0.000
                                     0.058
                                              94.854
                                                         0.000
       .x8
                           5.527
                                                         0.000
       .x9
                           5.374
                                     0.058
                                              92.546
55
        visual
                           0.000
        textual
                           0.000
                            0.000
        speed
    Variances:
60
                        Estimate
                                   Std.Err z-value
                                                       P(>|z|)
                           0.549
                                     0.114
                                              4.833
                                                         0.000
       .x1
       .x2
                           1.134
                                     0.102
                                              11.146
                                                         0.000
       .x3
                           0.844
                                     0.091
                                              9.317
                                                         0.000
                                               7.779
                                                         0.000
       .x4
                           0.371
                                     0.048
                                                         0.000
65
       .x5
                           0.446
                                     0.058
                                               7.642
       .x6
                           0.356
                                     0.043
                                               8.277
                                                         0.000
       .x7
                           0.799
                                     0.081
                                               9.823
                                                         0.000
                           0.488
                                     0.074
                                               6.573
                                                         0.000
       .x8
       .x9
                           0.566
                                     0.071
                                               8.003
                                                         0.000
                           1.000
70
        visual
        textual
                           1.000
                           1.000
        speed
```

It is not necessary to specify a set of "pretty" variable labels, but sometimes this makes for more pleasant tables. In this case, we create a vector of labels first, and then put it to use. To prevent the table from becoming too wide, we ask for two columns in the output, "estse" and "p". The default semTable input would include a larger set of parameters, but we don't need all of them. The default table includes latent intercepts and latent variances, which are restricted to 0 and 1 by the model itself, so it is not necessary to include them. Hence, we ask for a smaller selection of parameter sets:

```
vlabs <- c("x1" = "Vis 1", "x2" = "Vis 2", x3 = "Vis 3", x4 = "Txt
   1", x5 = "Txt 2", x6 = "Txt 3", x7 = "Speed 1", x8 = "Speed 2",
   x9 = "Speed 3")
fit1.t1 <- semTable(fit1, columns = c("estse", "p"), paramSets =
   c("loadings", "intercepts", "residualvariances", "
   latentcovariances"), fits = c("chisq", "rmsea"), file =
   file.path(tempdir, "fit1.t1"), varLabels = vlabs, type = "
   latex", table.float = TRUE, caption = "Holzinger Swineford CFA
   in a longtable Float", label = "tab:HS10", longtable=TRUE)</pre>
```

Table 1: Holzinger Swineford CFA in a longtable Float

	Model	
	Estimate(Std.Err.)	p
	Factor Loadin	gs
$\underline{\text{visual}}$		
Vis 1	0.90(0.08)	0.000
Vis 2	0.50(0.08)	0.000
Vis 3	0.66(0.07)	0.000
$\underline{\text{textual}}$		
Txt 1	0.99(0.06)	0.000
Txt 2	1.10(0.06)	0.000
Txt 3	0.92(0.05)	0.000

speed		
Speed 1	0.62(0.07)	0.000
Speed 2	0.73(0.07)	0.000
Speed 3	0.67(0.07)	0.000
	Intercepts	3
Vis 1	$4.9\overline{4(0.07)}$	0.000
Vis 2	6.09(0.07)	0.000
Vis 3	2.25(0.07)	0.000
Txt 1	3.06(0.07)	0.000
Txt 2	4.34(0.07)	0.000
Txt 3	2.19(0.06)	0.000
Speed 1	4.19(0.06)	0.000
Speed 2	5.53(0.06)	0.000
Speed 3	5.37(0.06)	0.000
	Residual Varia	ances
Vis 1	0.55(0.11)	0.000
Vis 2	1.13(0.10)	0.000
Vis 3	0.84(0.09)	0.000
Txt 1	0.37(0.05)	0.000
Txt 2	0.45(0.06)	0.000
Txt 3	0.36(0.04)	0.000
Speed 1	0.80(0.08)	0.000
Speed 2	0.49(0.07)	0.000
Speed 3	0.57(0.07)	0.000
	Latent Covaria	ances
visual w/textual	0.46(0.06)	0.000
visual w/speed	0.47(0.07)	0.000
textual w/speed	0.28(0.07)	0.000
	Fit Indices	<u>s</u>
$\chi^2(\mathrm{df})$	85.31(24)	0.000
RMSEA	0.09	
+Fired parameter		

⁺Fixed parameter

Because we have longtable set as TRUE, a floating table is created with the indicated caption in Table 1.

In the previous example, we allowed the LaTeX markup to be printed directly into the document. There might be times when we would rather delay the output. We might instead have set "print.results = FALSE" to prevent code display, and then at a time of our choosing we could export the fitted model into the document with the cat function.

```
cat(fit1.t1)
```

Using the cat function, we also can export the table into a file:

```
fn <- file.path(tempdir, "fit1.t12.tex")
cat(fit1.t1, file = fn)</pre>
```

This is the same result obtained by specifying file name in the **semTable** function itself. However, this latter approach leaves the door open for the user to inspect & edit the marked-up table.

Alternative Output Formats

This function was developed primarily for LaTeX output tables. However, we have redesigned so that the output may be requested in either Web code (HTML) or comma separated variable (CSV) files. If HTML output is desired, replace type = "latex" with type = "html".

In an interactive session, the output file can be inspected on the screen.

```
browseURL(file.path(tempdir, "fit1.t1.html"))
```

```
## Go inspect this file with a spread sheet program:
attr(fit1.t1c, "file")
```

```
[1] "tmpout/fit1.t1c.csv"
```

It is possible to change the output format of an semTable object. This is done with the function markupConvert. Here we demonstrate how to re-channel a LaTeX fitted table to a csv object:

```
fit1.t1c2 <- markupConvert(attr(fit1.t1, "markedResults"), type = "
csv")</pre>
```

4 To Float or Not to Float?

In an academic paper, we would seldom/never have a table that prints directly into the middle of the text. Instead, all tables are presented a numbered "floating" table objects. The author has a choice to ask semTable to create the floating table object (with indicated caption and label), or to simply create the tabular object that would be included inside the floated table in a following setup. The quick, easy method of specifying the floating table elements in the semTable command

Table 2: Table Floated (not a longtable)

Model

	Model		
	Estimate	Std. Err.	p
	Factor Loadings		3
$\underline{\text{visual}}$			•
Vis 1	0.90	0.08	0.000
Vis 2	0.50	0.08	0.000
Vis 3	0.66	0.07	0.000
$\underline{\text{textual}}$			
Txt 1	0.99	0.06	0.000
Txt 2	1.10	0.06	0.000
Txt 3	0.92	0.05	0.000
$_{\mathrm{speed}}$			
$\overline{\text{Speed}} 1$	0.62	0.07	0.000
Speed 2	0.73	0.07	0.000
Speed 3	0.67	0.07	0.000
		Fit Indices	
$\chi^2(\mathrm{df})$	85.31(24)		0.000
RMSEA	0.09		
+ D: 1			

⁺Fixed parameter

itself does not allow all of the flexibility that we might want in controlling table output, so we'll illustrate both methods.

First, we have an ordinary table (not a longtable) that is created as a float by the the reference label "tab:hs1939", as seen in Table 2.

In Table 3, we have a similar table produced with the longtable class. We have tested some alternative settings for the columns (just to keep this interesting for the reader). Of course, the benefit of a longtable is that a table that needs to "break" across pages will do so, while an ordinary tabular will run into the bottom margin. In this case, with a loadings-only display, the table stays on the page and the longtable is not strictly necessary. However, the longtable also does not appear to be harmful even for small tables. Hence, we use longtable = TRUE in most of our work.

```
## floating longtable
fit1.t4 <- semTable(fit1, columns = c("est", "estsestars"),
   paramSets = c("loadings"), fits = c("chisq", "rmsea"), file =
   file.path(tempdir, "fit1.t4"), varLabels = vlabs, longtable =
   TRUE, table.float=TRUE, caption = "Table Floated (longtable)",
   label = "tab:fit1.t4")</pre>
```

Table 3: Table Floated (longtable)

		Model		
	Estimate	Estimate(Std.Err.)		
	Fac	tor Loadings		
$\underline{\text{visual}}$				
Vis 1	0.90	$0.90(0.08)^{***}$		
Vis 2	0.50	$0.50(0.08)^{***}$		
Vis 3	0.66	$0.66(0.07)^{***}$		
$\underline{\text{textual}}$				
Txt 1	0.99	$0.99(0.06)^{***}$		
Txt 2	1.10	1.10(0.06)***		
Txt 3	0.92	0.92(0.05)***		
$_{\mathrm{speed}}$				
$\overline{\text{Speed}} \ 1$	0.62	$0.62(0.07)^{***}$		
Speed 2	0.73	$0.73(0.07)^{***}$		
Speed 3	0.67	$0.67(0.07)^{***}$		
	Fit Indices			
$\chi^2(\mathrm{df})$	$85.31(24)^{\circ}$	***		
RMSEA	0.09			
+Fixed p	parameter			
* p<0.0	* p<0.05, ** p<0.01, ***p<0.001			

As an alternative, in the following code we do not request a float to be created. After creating the table in the file named "tmpout/fit1.t5.tex", we use LaTeX commands to manually create the float that appears in Table 4. After creating the floating table, inside it we simply use the LaTeX code.

```
\input{tmpout/fit1.t5.tex}.
```

```
##columnLabels
fit1.t5 <- semTable(fit1, fits = c("chisq", "rmsea"), paramSets =
   c("loadings"), columns = c("est", "se", "p"), columnLabels =
   c(se = "S.E."), file = file.path(tempdir, "fit1.t5"),
   print.results = FALSE)</pre>
```

5 Fine tuning titles

We've already emphasized the ability to customize variable labels. Now we focus on column names as well as parameter sets. The ability to adjust both the column names and parameter section names is emphasized in Table 5.

```
##columnLabels
fit1.t6 <- semTable(list("A Fancy Fitted Model" = fit1), fits =
    c("chisq", "rmsea"), paramSets = c("loadings"), paramSetLabels
    = c("loadings" = "Loading Estimates(ML robust)"), columns =
    c("estsestars"), columnLabels = c("estsestars" = "</pre>
```

Table 4: A Manually Created Floating Table Model

		Model	
	Estimate	S.E.	p
	Fac	tor Loading	$\overline{\mathrm{gs}}$
<u>visual</u>			
x1	0.90	0.08	0.000
x2	0.50	0.08	0.000
x3	0.66	0.07	0.000
$\underline{\text{textual}}$			
x4	0.99	0.06	0.000
x5	1.10	0.06	0.000
x6	0.92	0.05	0.000
speed			
x7	0.62	0.07	0.000
x8	0.73	0.07	0.000
x9	0.67	0.07	0.000
	<u>I</u>	Fit Indices	
$\chi^2(\mathrm{df})$	85.31(24)		0.000
RMSEA	0.09		
+Fived r	narameter		

⁺Fixed parameter

```
Estimates(Std.Errors)"), file = file.path(tempdir, "fit1.t6"),
table.float=TRUE, caption="Demonstrate Flexibility with Column
and Parameter Set Labels", label = "tab:fit1.t6")
```

The names of the latent variables will default to the names used in the lavaan model file. Those names, however, can be replaced in the variable label vector. See Table 6.

Table 6: Variable Labels can include parameter sections

		Mod	el
		$\operatorname{Est}(\operatorname{SE})$	p
		Factor Lo	adings
Seeing			
	Vis 1	0.90^{***}	0.000
	Vis 2	0.50^{***}	0.000
	Vis 3	0.66^{***}	0.000

Thumb Texting				
Txt 1	0.99^{***}	0.000		
Txt 2	1.10***	0.000		
Txt 3	0.92^{***}	0.000		
Speed				
Speed 1	0.62^{***}	0.000		
Speed 2	0.73^{***}	0.000		
Speed 3	0.67^{***}	0.000		
	Intercep	ts		
Vis 1	$4.9\overline{4^{***}}$	0.000		
Vis 2	6.09***	0.000		
Vis 3	2.25***	0.000		
Txt 1	3.06***	0.000		
Txt 2	4.34^{***}	0.000		
Txt 3	2.19***	0.000		
Speed 1	4.19***	0.000		
Speed 2	5.53***	0.000		
Speed 3	5.37***	0.000		
	Fit Indic	<u>es</u>		
$\chi^2(\mathrm{df})$	85.31(24)***	0.000		
RMSEA	0.09			
+Fixed parameter				
* p<0.05, ** p<0.01, ***p<0.001				

The ability to fine-tune the selection and labels for fit values is demonstrated in Table 7.

```
fit4.t2 <- semTable(fit1, paramSets = c("loadings"), fits =</pre>
   c("rmsea", "cfi", "chisq"), fitLabels = c(rmsea = "Root
   M.SQ.E.A", cfi = "CompFitIdx", chisq = "chisq"), type = "
   latex", table.float = TRUE, caption = "Customized Fits and
  Labels", label = "tab:fit1.t8")
```

Two/Multi Group Models 6

5

A model that estimates parameters for a two group model, using school as the grouping model, is obtained with lavaan as follows:

```
if(file.exists("fit1.g.rds")){
   fit1.g <- readRDS("fit1.g.rds")</pre>
} else {
     fit1.g <- cfa(HS.model, data = HolzingerSwineford1939, std.lv
        = TRUE, group = "school", estimator = "MLR")
     saveRDS(fit1.g, "fit1.g.rds")
}
```

A table that displays both groups can be obtained, as illustrated in Table 8. This table runs into the margins unless we specify longtable = TRUE. Also it is worth noting that the table does not fit

Table 5: Demonstrate Flexibility with Column and Parameter Set Labels A Fancy Fitted Model

	Estimates(Std.Errors)
Lo	pading Estimates(ML robust)
visual	
x1	$0.90(0.08)^{***}$
x2	$0.50(0.08)^{***}$
x3	$0.66(0.07)^{***}$
$\underline{\text{textual}}$	
x4	$0.99(0.06)^{***}$
x5	$1.10(0.06)^{***}$
x6	$0.92(0.05)^{***}$
speed	
x7	$0.62(0.07)^{***}$
x8	$0.73(0.07)^{***}$
x9	$0.67(0.07)^{***}$
	Fit Indices
$\chi^2(\mathrm{df})$	85.31(24)***
RMSEA	0.09
+17. 1	

Table 7: Customized Fits and Labels Model

		1,100	101	
	Estimate	Std. Err.	Z	p
		Factor L	oadings	
$\underline{\text{visual}}$				
x1	0.90	0.08	11.13	0.000
x2	0.50	0.08	6.43	0.000
x3	0.66	0.07	8.82	0.000
$\underline{\text{textual}}$				
x4	0.99	0.06	17.47	0.000
x5	1.10	0.06	17.58	0.000
x6	0.92	0.05	17.08	0.000
speed				
x7	0.62	0.07	8.90	0.000
x8	0.73	0.07	11.09	0.000
x9	0.67	0.07	10.30	0.000
		Fit Inc	$\underline{\text{dices}}$	
Root M.SQ.E.A	0.09			
CompFitIdx	0.93			
$\chi^2(\mathrm{df})$	85.31(24)			0.000
+Fixed peremet	or			

⁺Fixed parameter

within the allowed horizontal space if we try to print the 4 standard columns individually. Hence, we use the more compact "Est(Std.Err.)" format.

```
## 2 groups table
fit1.gt1 <- semTable(fit1.g, columns = c("estsestars", "p"),
    columnLabels = c(estsestars = "Est(Std.Err.)", p = "p-value"),
    file = file.path(tempdir, "fit1.gt1"), table.float = TRUE,
    caption = "A Two Group Model", label = "tab:fit1.gt1",
    longtable=TRUE)</pre>
```

Table 8: A Two Group Model

		Pasteur		Grant-Whi	te
		Est(Std.Err.)	p-value	Est(Std.Err.)	p-value
			Factor	Loadings	
$\underline{\text{visual}}$					
	x1	$1.05(0.18)^{***}$	0.000	$0.78(0.13)^{***}$	
	x2	$0.41(0.16)^{**}$	0.008	$0.57(0.10)^{***}$	
	x3	$0.60(0.13)^{***}$	0.000	$0.72(0.10)^{***}$	0.000
$\underline{\text{textual}}$					
	x4	$0.95(0.08)^{***}$	0.000	$0.97(0.08)^{***}$	
	x5	$1.12(0.07)^{***}$	0.000	$0.96(0.08)^{***}$	
	x6	$0.83(0.08)^{***}$	0.000	$0.93(0.08)^{***}$	0.000
speed					
	x7	$0.59(0.12)^{***}$	0.000	$0.68(0.09)^{***}$	
	x8	$0.67(0.10)^{***}$	0.000	$0.83(0.11)^{***}$	
	x9	$0.55(0.11)^{***}$	0.000	$0.72(0.13)^{***}$	0.000
			Inte	rcepts	
	x1	$4.94(0.09)^{***}$	0.000	4.93(0.10)***	
	x2	$5.98(0.10)^{***}$	0.000	$6.20(0.09)^{***}$	
	x3	$2.49(0.09)^{***}$	0.000	$2.00(0.09)^{***}$	0.000
	x4	$2.82(0.09)^{***}$	0.000	$3.32(0.09)^{***}$	0.000
	x5	$4.00(0.10)^{***}$		$4.71(0.10)^{***}$	0.000
	x6	1.92(0.08)***	0.000	$2.47(0.09)^{***}$	0.000
	x7	4.43(0.09)***	0.000	$3.92(0.09)^{***}$	0.000
	x8	$5.56(0.08)^{***}$	0.000	$5.49(0.09)^{***}$	0.000
	x9	5.42(0.08)***	0.000	5.33(0.09)***	
			Residual	Variances	
	x1	0.30(0.34)	0.378	$0.71(0.18)^{***}$	0.000
	x2	1.33(0.18)***	0.000	$0.90(0.14)^{***}$	0.000
	x3	0.99(0.15)***	0.000	0.56(0.12)***	0.000
	x4	$0.43(0.07)^{***}$	0.000	0.32(0.07)***	0.000
	x5	0.46(0.09)***	0.000	0.42(0.07)***	0.000
	x6	0.29(0.06)***	0.000	0.41(0.08)***	0.000
	x7	0.82(0.13)***	0.000	0.60(0.10)***	
	x8	0.51(0.10)***	0.000	$0.40(0.16)^*$	0.012
	x9	0.68(0.13)***	0.000	0.53(0.14)***	0.000
		. ,	Latent 1	Intercepts	

```
visual
                           0.00^{+}
                                                            0.00^{+}
                           0.00^{+}
                                                            0.00^{+}
           textual
                           0.00^{+}
                                                            0.00^{+}
            speed
                                           Latent Variances
                           1.00^{+}
            visual
                                                            1.00^{+}
           textual
                           1.00^{+}
                                                            1.00^{+}
                                                            1.00^{+}
                           1.00^{+}
            speed
                                         Latent Covariances
                                                            0.54(0.10)^{***}
visual w/textual
                           0.48(0.09)^{***}
                                           0.000
                                                            0.52(0.15)^{***} 0.000
 visual w/speed
                           0.30(0.14)^*
                                           0.031
textual w/speed
                           0.33(0.10)**
                                                            0.34(0.14)^*
                                           0.001
                                                                            0.019
                                              Fit Indices
           \chi^2(\mathrm{df})
                        115.85
              CFI
                           0.92
              TLI
                           0.89
         RMSEA
                           0.10
   Scaled \chi^2(df)
                        121.74(48)***
                                           0.000
```

⁺Fixed parameter

It is not necessary to display all of the groups in the table. It is possible to select groups by name, as we see in Table 9.

```
## Now name particular group by name
fit1.gt2 <- semTable(fit1.g, columns = c("estsestars", "p"),
   paramSets = c("loadings", "intercepts", "residualvariances"),
   columnLabels = c(estsestars = "Est w/stars", p = "p-value"),
   file = file.path(tempdir, "fit1.gt2"), groups = "Pasteur",
   table.float = TRUE, caption = "Group 'Pasteur' Group from the 2
   Model", label = "tab:fit1.gt2")</pre>
```

It is also possible to select groups by integer numbers in the group list, rather than by name. The results for group 1 are offered in Table 10.

```
## Name particular group by number
fit1.gt3 <- semTable(fit1.g, columns = c("estsestars", "p"),
   paramSets = c("loadings"), columnLabels = c(estsestars = "Est
   w/stars", p = "p-value"), file = file.path(tempdir, "
   fit1.gt3"), groups = 2, table.float = TRUE, caption = "Group
   '2' from the 2 Model is 'Grant-White'", label = "tab:fit1.gt3")</pre>
```

7 Two Models Side-by-Side

One might wonder if the "standardized" SEM estimates are substantively different from the original estimates. With lavaan, we can refit the original CFA model and specify that we want standardized latent and observed variables, along with estimates of a mean structure.

^{*} p<0.05, ** p<0.01, ***p<0.001

Table 9: Group 'Pasteur' Group from the 2 Model Pasteur

	Pasteur
	Est w/stars p-value
	Factor Loadings
$\underline{\text{visual}}$	
x1	$1.05(0.18)^{***} 0.000$
x2	$0.41(0.16)^{**}$ 0.008
x3	$0.60(0.13)^{***} 0.000$
$\underline{\text{textual}}$	
x4	$0.95(0.08)^{***} 0.000$
x5	$1.12(0.07)^{***} 0.000$
x6	$0.83(0.08)^{***} 0.000$
speed	,
x7	$0.59(0.12)^{***} 0.000$
x8	0.67(0.10)*** 0.000
x9	$0.55(0.11)^{***} 0.000$
	Intercepts
x1	$4.9\overline{4(0.09)^{***}}$ 0.000
x2	5.98(0.10)*** 0.000
x3	2.49(0.09)*** 0.000
x4	2.82(0.09)*** 0.000
x5	4.00(0.10)*** 0.000
x6	1.92(0.08)*** 0.000
x7	4.43(0.09)*** 0.000
x8	5.56(0.08)*** 0.000
x9	5.42(0.08)*** 0.000
	Residual Variances
x1	0.30(0.34) 0.378
x2	$1.33(0.18)^{***} 0.000$
x3	0.99(0.15)*** 0.000
x4	$0.43(0.07)^{***} 0.000$
x5	$0.46(0.09)^{***} 0.000$
x6	$0.29(0.06)^{***} 0.000$
x7	$0.82(0.13)^{***} 0.000$
x8	$0.51(0.10)^{***} 0.000$
x9	$0.68(0.13)^{***} 0.000$
	Fit Indices
$\chi^2(\mathrm{df})$	115.85
CFI	0.92
TLI	0.89
RMSEA	0.10
Scaled $\chi^2(df)$	121.74(48)*** 0.000
+Fired paran	

^{*} p<0.05, ** p<0.01, ***p<0.001

Table 10: Group '2' from the 2 Model is 'Grant-White' $$\operatorname{Grant-White}$$

	Orano- Willios			
	Est w/stars p-value			
	Factor Loadings			
$\underline{\text{visual}}$				
x1	$0.78(0.13)^{***} 0.000$			
x2	$0.57(0.10)^{***} 0.000$			
x3	$0.72(0.10)^{***} 0.000$			
textual				
x4	$0.97(0.08)^{***} 0.000$			
x5	$0.96(0.08)^{***} 0.000$			
x6	$0.93(0.08)^{***} 0.000$			
speed				
x7	$0.68(0.09)^{***} 0.000$			
x8	$0.83(0.11)^{***} 0.000$			
x9	$0.72(0.13)^{***} 0.000$			
	Fit Indices			
$\chi^2(\mathrm{df})$	115.85			
CFI	0.92			
TLI	0.89			
RMSEA	0.10			
Scaled $\chi^2(df)$	$121.74(48)^{***}$ 0.000			

^{*} p<0.05, ** p<0.01, ***p<0.001

```
if(file.exists("fit1.std.rds")){
   fit1.std <- readRDS("fit1.std.rds")
} else {
   fit1.std <- update(fit1, std.lv = TRUE, std.ov = TRUE,
        meanstructure = TRUE)
   saveRDS(fit1.std, "fit1.std.rds")
}</pre>
```

The two models are presented in Table 11. We combine the estimates and standard errors into one column in order to improve the chances that the table stays within the margins. Nevertheless, the right side is well into the margin.

```
# include 2 models in table request
fit1.t2 <- semTable(list("Ordinary" = fit1, "Standardized" =
   fit1.std), columns=c("estse", "z", "p"), file =
   file.path(tempdir, "fit1.2.1"), table.float = TRUE, longtable =
   TRUE, caption = "Ordinary and Standardized CFA Estimates",
   label = "tab:fit1.t2")</pre>
```

Table 11: Ordinary and Standardized CFA Estimates

		Ordinary			Standardized		
		Estimate(Std.Err.)	Z	р	Estimate(Std.Err.)	Z	p
				Factor	Loadings		
$\underline{\text{visual}}$							
	x1	0.90(0.08)	11.13	0.000	0.77(0.07)	11.13	0.000
	x2	0.50(0.08)	6.43	0.000	0.42(0.07)	6.43	0.000
	x3	0.66(0.07)	8.82	0.000	0.58(0.07)	8.82	0.000
$\underline{\text{textual}}$							
	x4	0.99(0.06)	17.47	0.000	0.85(0.05)	17.47	0.000
	x5	1.10(0.06)	17.58	0.000	0.85(0.05)	17.58	0.000
	x6	0.92(0.05)	17.08	0.000	0.84(0.05)	17.08	0.000
speed							
	x7	0.62(0.07)	8.90	0.000	0.57(0.06)	8.90	0.000
	x8	0.73(0.07)	11.09	0.000	0.72(0.07)	11.09	0.000
	x9	0.67(0.07)	10.30	0.000	0.66(0.06)	10.30	0.000
				Inter	rcepts		
	x1	4.94(0.07)	73.47	$0.0\overline{00}$	0.00(0.06)	0.00	1.000
	x2	6.09(0.07)	89.85	0.000	0.00(0.06)	0.00	1.000
	x3	2.25(0.07)	34.58	0.000	0.00(0.06)	0.00	1.000
	x4	3.06(0.07)	45.69	0.000	0.00(0.06)	0.00	1.000
	x5	4.34(0.07)	58.45	0.000	0.00(0.06)	0.00	1.000
	x6	2.19(0.06)	34.67	0.000	0.00(0.06)	0.00	1.000
	x7	4.19(0.06)	66.77	0.000	0.00(0.06)	0.00	1.000
	x8	5.53(0.06)	94.85	0.000	0.00(0.06)	0.00	1.000
	x9	5.37(0.06)	92.55	0.000	0.00(0.06)	0.00	1.000
				Residual	Variances		

17

x1	0.55(0.11)	4.83	0.000	0.40(0.08)	4.83	0.000
x2	1.13(0.10)	11.15	0.000	0.82(0.07)	11.15	0.000
x3	0.84(0.09)	9.32	0.000	0.66(0.07)	9.32	0.000
x4	0.37(0.05)	7.78	0.000	0.27(0.04)	7.78	0.000
x5	0.45(0.06)	7.64	0.000	0.27(0.04)	7.64	0.000
x6	0.36(0.04)	8.28	0.000	0.30(0.04)	8.28	0.000
x7	0.80(0.08)	9.82	0.000	0.67(0.07)	9.82	0.000
x8	0.49(0.07)	6.57	0.000	0.48(0.07)	6.57	0.000
x 9	0.57(0.07)	8.00	0.000	0.56(0.07)	8.00	0.000
			Latent Inte	ercepts		
visual	0.00^{+}			0.00^{+}		
textual	0.00^{+}			0.00^{+}		
speed	0.00^{+}			0.00^{+}		
			Latent Var	riances		
visual	1.00^{+}			1.00^{+}		
textual	1.00^{+}			1.00^{+}		
speed	1.00^{+}			1.00^{+}		
			Latent Cova	ariances		
visual w/textual	0.46(0.06)	7.19	0.000	0.46(0.06)	7.19	0.000
visual w/speed	0.47(0.07)	6.46	0.000	0.47(0.07)	6.46	0.000
textual w/speed	0.28(0.07)	4.12	0.000	0.28(0.07)	4.12	0.000
			Fit Ind	ices		
$\chi^2(\mathrm{df})$	85.31(24)		0.000	85.31(24)		0.000
CFI	0.93			0.93		
TLI	0.90			0.90		
RMSEA	0.09			0.09		

⁺Fixed parameter

In the present case, it is perhaps not needed to display p values on the standardized model estimates, so we might economize on horizontal space by keeping just the estimates from the standardized model. To demonstrate the fact that it is possible to select different columns for the two models, we offer Table 12.

```
fit1.t2.2 <- semTable(list("Ordinary" = fit1, "Standardized" =
  fit1.std), columns = list("Ordinary" = c("estse", "z", "p"), "
  Standardized" = c("estse")), columnLabels = c(estse = "
  Est(S.E.)", z = "Z", se = "SE"), file = file.path(tempdir, "
  fit1.t2.2"), table.float = TRUE, longtable = TRUE, caption = "
  Customizing Column Selections by Model", label = "
  tab:fit1.t2.2")</pre>
```

Table 12: Customizing Column Selections by Model

		Ordinary		Standardized
	Est(S.E.)	Z	p	Est(S.E.)
		Factor	Loadings	
$\underline{\text{visual}}$				

x1	0.90(0.08)	11.13	0.000	0.77(0.07)
x2	0.50(0.08)	6.43	0.000	0.42(0.07)
x3	0.66(0.07)	8.82	0.000	0.58(0.07)
<u>textual</u>	()			()
x4	0.99(0.06)	17.47	0.000	0.85(0.05)
x5	1.10(0.06)	17.58	0.000	0.85(0.05)
x6	0.92(0.05)	17.08	0.000	0.84(0.05)
speed	0.02(0.00)	11.00	0.000	0.01(0.00)
<u>x7</u>	0.62(0.07)	8.90	0.000	0.57(0.06)
x8	0.02(0.07) $0.73(0.07)$	11.09	0.000	0.72(0.07)
x9	0.73(0.07) $0.67(0.07)$	10.30	0.000	0.66(0.06)
X9	0.07(0.07)	10.30		0.00(0.00)
1	4.04(0.07)	79 47	Intercepts	0.00(0.06)
x1	4.94(0.07)	73.47	0.000	0.00(0.06)
x2	6.09(0.07)	89.85	0.000	0.00(0.06)
x3	2.25(0.07)	34.58	0.000	0.00(0.06)
x4	3.06(0.07)	45.69	0.000	0.00(0.06)
x5	4.34(0.07)	58.45	0.000	0.00(0.06)
x6	2.19(0.06)	34.67	0.000	0.00(0.06)
x7	4.19(0.06)	66.77	0.000	0.00(0.06)
x8	5.53(0.06)	94.85	0.000	0.00(0.06)
x9	5.37(0.06)	92.55	0.000	0.00(0.06)
		$\underline{\mathrm{Res}}$	idual Variances	
x1	0.55(0.11)	4.83	0.000	0.40(0.08)
x2	1.13(0.10)	11.15	0.000	0.82(0.07)
x3	0.84(0.09)	9.32	0.000	0.66(0.07)
x4	0.37(0.05)	7.78	0.000	0.27(0.04)
x5	0.45(0.06)	7.64	0.000	0.27(0.04)
x6	0.36(0.04)	8.28	0.000	0.30(0.04)
x7	0.80(0.08)	9.82	0.000	0.67(0.07)
x8	0.49(0.07)	6.57	0.000	0.48(0.07)
x9	0.57(0.07)	8.00	0.000	0.56(0.07)
A.O	0.01(0.01)		tent Intercepts	0.00(0.01)
visual	0.00^{+}	Па	tent intercepts	0.00^{+}
textual	0.00^{+}			0.00^{+}
	0.00^{+}			0.00^{+}
speed	0.00	Т.		0.00
. 1	1.00+	<u>La</u>	tent Variances	1.00+
visual	1.00^{+}			1.00^{+}
textual	1.00+			1.00+
speed	1.00^{+}	.		1.00^{+}
	()		ent Covariances	
visual w/textual	0.46(0.06)	7.19	0.000	0.46(0.06)
visual w/speed	0.47(0.07)	6.46	0.000	0.47(0.07)
textual w/speed	0.28(0.07)	4.12	0.000	0.28(0.07)
_			Fit Indices	
$\chi^2(\mathrm{df})$	85.31(24)		0.000	85.31(24)
CFI	0.93			0.93
TLI	0.90			0.90

RMSEA 0.09 0.09

⁺Fixed parameter

8 Larger Models

The structural equation model (SEM) introduces a regression relationship between the latent variables. In lavaan, the regression relationships are introduced by the same notation as regression in linear models.

```
regmodel1 <- 'visual =\sim x1 + x2 + x3

textual =\sim x4 + x5 + x6

speed =\sim x7 + x8 + x9

visual \sim textual + speed
```

```
if(file.exists("fit2.std.rds")){
   fit2.std <- readRDS("fit2.std.rds")
} else {
   fit2.std <- update(fit2, std.lv = TRUE, std.ov = TRUE,
        meanstructure = TRUE)
   saveRDS(fit2.std, "fit2.std.rds")
}</pre>
```

A table comparing the standardized with the non-standardized models is offered in Table 13.

```
fit2.t <- semTable(list("Ordinary" = fit2, "Standardized" =
  fit2.std), fits = "rmsea", columns = list("Ordinary" = c("est",
  "se", "p"), "Standardized" = c("estsestars")), columnLabels =
  c("est" = "Est", "se" = "Std.Err.", "p" = "p", "estsestars" = "
  Standardized Est."), paramSets = c("loadings", "intercepts", "
  slopes", "latentcovariances"), file = file.path(tempdir, "
  fit2.t1"), type = "latex", table.float = TRUE, longtable =
  TRUE, caption = "SEM, Standardized or Not", label = "
  tab:fit2.t")</pre>
```

Table 13: SEM, Standardized or Not

	Ordinary		Standardized
Est	Std.Err.	p	Standardized Est.

		Fac	ctor Loadings	
$\underline{\text{visual}}$				
x1	1.00^{+}			1.00^{+}
x2	0.55	0.10	0.000	$0.25(0.05)^{***}$
x3	0.73	0.11	0.000	$0.39(0.05)^{***}$
$\underline{\text{textual}}$				
x4	1.00^{+}			1.00^{+}
x5	1.11	0.07	0.000	$0.94(0.04)^{***}$
x6	0.93	0.06	0.000	$0.92(0.04)^{***}$
speed				
x7	1.00^{+}			1.00^{+}
x8	1.18	0.16	0.000	$0.83(0.06)^{***}$
x9	1.08	0.15	0.000	$0.68(0.06)^{***}$
		Reg	ression Slopes	
<u>visual</u>			_	
textual	0.32	0.07	0.000	$0.38(0.06)^{***}$
speed	0.54	0.13	0.000	$0.22(0.07)^{**}$
			Intercepts	
x1	4.94	0.07	0.000	0.00(0.06)
x2	6.09	0.07	0.000	0.00(0.06)
x3	2.25	0.07	0.000	0.00(0.06)
x4	3.06	0.07	0.000	0.00(0.06)
x5	4.34	0.07	0.000	0.00(0.06)
x6	2.19	0.06	0.000	0.00(0.06)
x7	4.19	0.06	0.000	0.00(0.07)
x8	5.53	0.06	0.000	0.00(0.06)
x9	5.37	0.06	0.000	0.00(0.06)
		Late	nt Covariances	. ,
textual w/speed	0.17	0.05	0.000	$0.35(0.06)^{***}$
, -]	Fit Indices	, ,
RMSEA	0.09			0.12

⁺Fixed parameter

```
# Change output format to csv
cat(markupConvert(attr(fit2.t, "markedResults"), type = "csv"),
   file = file.path(tempdir, "fit2.t.converted.csv"))
cat(markupConvert(attr(fit2.t, "markedResults"), type = "html"),
   file = file.path(tempdir, "fit2.t.converted.html"))
```

It is not necessary to have all of the same relationships estimated in every model. To demonstrate that, we estimate a second structural equation with some indicators removed and also we have a different regression relationship.

```
regmodel2 <- 'visual =\sim x1 + x2 + x3

textual =\sim x4 + x6

speed =\sim x8 + x9

visual \sim speed
```

^{*} p<0.05, ** p<0.01, ***p<0.001

```
textual \sim speed
```

See Table 14 for output from the following, which combines four model columns. Note that the result table handles the problem that some estimates are not included in each model.

```
fit3.std.t1 <- semTable(list("Mod 1" = fit2, "Mod 1 std" =
  fit2.std, "Mod 2" = fit3, "Mod 3 std" = fit3.std), paramSets =
  c("loadings", "slopes", "intercepts", "residualvariances", "
  latentvariances", "latentcovariances"), columns =
  c("estsestars"), type = "latex", file = file.path(tempdir, "
  fit3.std.t1"), table.float = TRUE, longtable = TRUE, caption = "
  Several SEMs with Differing Parameters", label = "
  tab:fit3.std.t1")</pre>
```

Table 14: Several SEMs with Differing Parameters

		Mod 1	Mod 1 std	Mod 2	Mod 3 std
		Estimate(Std.Err.)	Estimate(Std.Err.)	Estimate(Std.Err.)	Estimate(Std.Err.)
			Factor I	Loadings	
$\underline{\text{visual}}$					
	x1	1.00^{+}	1.00^{+}	$0.72(0.08)^{***}$	$0.61(0.07)^{***}$
	x2	$0.55(0.10)^{***}$	$0.25(0.05)^{***}$	$0.41(0.07)^{***}$	$0.35(0.06)^{***}$
	x3	$0.73(0.11)^{***}$	$0.39(0.05)^{***}$	$0.54(0.07)^{***}$	$0.48(0.06)^{***}$
$\underline{\text{textual}}$					
	x4	1.00^{+}	1.00^{+}	$0.92(0.08)^{***}$	$0.79(0.06)^{***}$
	x5	$1.11(0.07)^{***}$	$0.94(0.04)^{***}$		
	x6	$0.93(0.06)^{***}$	$0.92(0.04)^{***}$	$0.90(0.07)^{***}$	$0.82(0.07)^{***}$
$_{\mathrm{speed}}$					
	x7	1.00^{+}	1.00^{+}		
	x8	$1.18(0.16)^{***}$	$0.83(0.06)^{***}$	$0.51(0.07)^{***}$	$0.50(0.07)^{***}$
	x9	1.08(0.15)***	$0.68(0.06)^{***}$	$0.90(0.10)^{***}$	$0.89(0.10)^{***}$
			Regression	on Slopes	
$\underline{\text{visual}}$					

textual	$0.32(0.07)^{***}$	$0.38(0.06)^{***}$		
speed	$0.54(0.13)^{***}$	0.22(0.07)**	$0.72(0.14)^{***}$	$0.72(0.14)^{***}$
<u>textual</u>	()	,	()	()
speed			$0.30(0.08)^{***}$	$0.30(0.08)^{***}$
•		Interce	(/	,
x1	$4.94(0.07)^{***}$	$0.00(0.0\overline{6})$	4.94(0.07)***	0.00(0.06)
x2	6.09(0.07)***	0.00(0.06)	6.09(0.07)***	0.00(0.06)
x3	2.25(0.07)***	0.00(0.06)	$2.25(0.07)^{***}$	0.00(0.06)
x4	3.06(0.07)***	0.00(0.06)	3.06(0.07)***	0.00(0.06)
x5	4.34(0.07)***	0.00(0.06)	, ,	, ,
x6	2.19(0.06)***	0.00(0.06)	$2.19(0.06)^{***}$	0.00(0.06)
x7	4.19(0.06)***	0.00(0.07)	, ,	, ,
x8	5.53(0.06)***	0.00(0.06)	$5.53(0.06)^{***}$	0.00(0.06)
x9	5.37(0.06)***	0.00(0.06)	5.37(0.06)***	0.00(0.06)
	, ,	Residual V	ariances	
x1	$0.55(0.11)^{***}$	-0.12(0.07)	$0.58(0.10)^{***}$	$0.42(0.07)^{***}$
x2	1.13(0.10)***	0.93(0.07)***	1.12(0.10)***	0.81(0.07)***
x3	0.84(0.09)***	$0.83(0.07)^{***}$	$0.83(0.09)^{***}$	$0.65(0.07)^{***}$
x4	$0.37(0.05)^{***}$	$0.25(0.03)^{***}$	$0.43(0.11)^{***}$	$0.32(0.08)^{***}$
x5	0.45(0.06)***	$0.27(0.03)^{***}$		
x6	$0.36(0.04)^{***}$	$0.31(0.04)^{***}$	$0.32(0.10)^{**}$	$0.27(0.09)^{**}$
x7	$0.80(0.08)^{***}$	$0.53(0.08)^{***}$		
x8	$0.49(0.07)^{***}$	$0.49(0.06)^{***}$	$0.76(0.08)^{***}$	$0.74(0.08)^{***}$
x9	$0.57(0.07)^{***}$	$0.66(0.07)^{***}$	0.21(0.16)	0.20(0.15)
	, ,	Latent Va		
visual	$0.54(0.12)^{***}$	1.00^{+}	1.00^{+}	1.00^{+}
textual	$0.98(0.11)^{***}$	1.00^{+}	1.00^{+}	1.00^{+}
speed	$0.38(0.09)^{***}$	1.00^{+}	1.00^{+}	1.00^{+}
		<u>Latent Cov</u>	ariances	
textual w/speed	$0.17(0.05)^{***}$	$0.35(0.06)^{***}$		
visual w/textual			$0.44(0.08)^{***}$	$0.44(0.08)^{***}$
		Fit Ind	ices	
$\chi^2(\mathrm{df})$	85.31(24)***	$145.49(27)^{***}$	14.46(11)	14.46(11)
CFI	0.93	0.87	0.99	0.99
TLI	0.90	0.82	0.99	0.99
RMSEA	0.09	0.12	0.03	0.03

⁺Fixed parameter

SEM estimates can also be obtained for the two group model, as illustrated in Table 15:

```
if(file.exists("fit3.g2.rds")){
   fit3.g2 <- readRDS("fit3.g2.rds")
} else {
   fit3.g2 <- sem(regmodel1, data = HolzingerSwineford1939,
        group = "school")
   saveRDS(fit3.g2, "fit3.g2.rds")
}</pre>
```

^{*} p<0.05, ** p<0.01, ***p<0.001

```
fit3.g2.2 <- semTable(fit3.g2, paramSets = c("loadings", "slopes",
    "intercepts"), columns = c("estsestars"), fits = c("chisq", "
    rmsea", "cfi"), type = "latex", file = file.path(tempdir, "
    fit3.g2"), table.float=TRUE, longtable=TRUE, caption = "SEM
    with Two Groups", label = "tab:fit3.g2")</pre>
```

Table 15: SEM with Two Groups

	Pasteur	Grant-White
	Estimate(Std.Err.)	Estimate(Std.Err.)
	Factor I	Loadings
$\underline{\text{visual}}$		
x1	1.00^{+}	1.00^{+}
x2	$0.39(0.12)^{**}$	$0.74(0.15)^{***}$
x3	$0.57(0.14)^{***}$	$0.92(0.17)^{***}$
$\underline{\text{textual}}$		
x4	1.00^{+}	1.00^{+}
x5	1.18(0.10)***	$0.99(0.09)^{***}$
x6	$0.87(0.08)^{***}$	$0.96(0.08)^{***}$
$_{\mathrm{speed}}$		
x7	1.00^{+}	1.00^{+}
x8	$1.12(0.28)^{***}$	$1.23(0.19)^{***}$
x9	$0.92(0.22)^{***}$	$1.06(0.16)^{***}$
	Regressio	
$\underline{\text{visual}}$		
textual	$0.48(0.11)^{***}$	$0.33(0.09)^{***}$
speed	0.28(0.20)	$0.44(0.14)^{**}$
	Inter	
x1	$4.94(0.09)^{***}$	4.93(0.10)***
x2	$5.98(0.10)^{***}$	$6.20(0.09)^{***}$
x3	$2.49(0.09)^{***}$	$2.00(0.09)^{***}$
x4	$2.82(0.09)^{***}$	$3.32(0.09)^{***}$
x5	$4.00(0.10)^{***}$	$4.71(0.10)^{***}$
x6	$1.92(0.08)^{***}$	$2.47(0.09)^{***}$
x7	$4.43(0.09)^{***}$	3.92(0.09)***
x8	$5.56(0.08)^{***}$	$5.49(0.09)^{***}$
x9	$5.42(0.08)^{***}$	5.33(0.09)***
	Fit In	<u>ndices</u>
$\chi^2(\mathrm{df})$	115.85(48)***	
RMSEA	0.10	
CFI	0.92	
+Fixed 1	parameter	

⁺Fixed parameter

^{*} p<0.05, ** p<0.01, ***p<0.001

Mediation Model

There seems to be an unwritten rule in SEM that all tutorials must use, for at least one model, Bollen's famous data set about industrialization and democracy. We'll use that data for a model with mediation. We'll make this interesting by calculating one set of ML estimates for the standard errors and one bootstrapped set.

```
## Model 5 - Mediation model with equality constraints
    model5 <-
          # latent variable definitions
          ind60 =\sim x1 + x2 + x3
5
          dem60 = \sim y1 + e*y2 + d*y3 + y4
          dem65 = \sim y5 + e*y6 + d*y7 + y8
          # regressions
          \texttt{dem60} \, \sim \, \texttt{a*ind60}
          dem65 \sim c*ind60 + b*dem60
          # residual correlations
         y1 \sim y5
         y2 \sim y4 + y6
         y3 ∼ y7
         y4 ~~ y8
15
         y6 ~~ y8
          # indirect effect (a*b)
          ## := operator defines new parameters
          ab := a*b
20
          ## total effect
          total := c + (a*b)
```

Because this model can take a while to estimate, we use the saved copies if they are available.

```
if(file.exists("fit5.rds")){
   fit5 <- readRDS("fit5.rds")
} else {
   fit5 <- sem(model5, data=PoliticalDemocracy)
   saveRDS(fit5, "fit5.rds")
}
if(file.exists("fit5boot.rds")){
   fit5boot <- readRDS("fit5boot.rds")
} else {
   fit5boot <- sem(model5, data=PoliticalDemocracy, se = "
        bootstrap", bootstrap = 500)
   saveRDS(fit5boot, "fit5boot.rds")
}</pre>
```

The ML and bootstrapped estimates are compared in Table 16.

Table 16: Comparing ML and Bootstrapped Estimates

$ \begin{array}{ c c c c c } & Estimate(Std.Err.) & R Square & Estimate(Std.Err.) & R Square \\ \hline $		ML estimates		Bootstrapped SE	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Estimate(Std.Err.)	R Square	Estimate(Std.Err.)	R Square
$\begin{array}{c} x1 \\ x2 \\ 2.18(0.14)^{***} \\ 0.95 \\ 2.18(0.15)^{***} \\ 0.76 \\ 1.82(0.15)^{***} \\ 0.76 \\ \underline{} \\ 0.95 \\ \underline{} \\ 0.76 \\ \underline{} \\ 0.95 \\ \underline{} \\ 0.95 \\ \underline{} \\ 0.95 \\ \underline{} \\ 0.76 \\ \underline{} \\ 0.95 \\ \underline{} \\ 0.76 \\ \underline{} \\ 0.72 \\ 0.72 \\ \underline{} \\ \underline{} \\ 0.72 \\ \underline{} \\ \underline{} \\ 0.72 \\ \underline{} \\ \underline{} \\ $			Factor I	Loadings	
$\begin{array}{c} x2 \\ x3 \\ 1.82(0.15)^{***} \\ 0.76 \\ 1.82(0.15)^{***} \\ 0.76 \\ 1.82(0.15)^{***} \\ 0.76 \\ \frac{\mathrm{dem60}}{\mathrm{dem60}} \\ y1 \\ 1.00^{+} \\ 0.72 \\ 1.19(0.14)^{***} \\ 0.47 \\ 1.19(0.15)^{***} \\ 0.57 \\ 1.17(0.12)^{***} \\ 0.57 \\ 1.17(0.12)^{***} \\ 0.57 \\ 1.26(0.13)^{***} \\ 0.70 \\ \frac{\mathrm{dem65}}{\mathrm{dem65}} \\ y5 \\ 1.00^{+} \\ 0.67 \\ 1.19(0.14)^{***} \\ 0.57 \\ 1.19(0.15)^{***} \\ 0.57 \\ 1.19(0.15)^{***} \\ 0.67 \\ 1.00^{+} \\ 0.67 \\ 0.67 \\ 0.67 \\ 0.67 \\ 0.70 \\ \frac{\mathrm{dem65}}{\mathrm{dem}65} \\ 1.19(0.14)^{***} \\ 0.57 \\ 1.17(0.12)^{***} \\ 0.64 \\ 1.17(0.12)^{***} \\ 0.64 \\ 1.17(0.12)^{***} \\ 0.64 \\ 1.17(0.12)^{***} \\ 0.69 \\ \frac{\mathrm{Regression Slopes}}{\mathrm{Regression Slopes}} \\ \\ \frac{\mathrm{dem60}}{\mathrm{dem60}} \\ \mathrm{ind60} \\ 0.60(0.23)^{**} \\ 0.87(0.08)^{***} \\ 0.87(0.08)^{***} \\ \frac{\mathrm{Residual Variances}}{\mathrm{0.87(0.08)^{***}}} \\ x1 \\ 0.08(0.02)^{***} \\ x2 \\ 0.12(0.07) \\ x3 \\ 0.47(0.09)^{***} \\ 0.47(0.08)^{***} \\ y1 \\ 1.86(0.43)^{***} \\ y2 \\ 7.59(1.37)^{***} \\ 7.59(1.25)^{***} \\ y3 \\ 4.96(0.96)^{***} \\ 4.96(1.08)^{***} \\ y4 \\ 3.22(0.73)^{***} \\ 3.56(0.62)^{***} \\ y5 \\ 2.31(0.48)^{***} \\ 2.31(0.58)^{***} \\ y6 \\ 4.97(0.92)^{***} \\ 3.31(0.71)^{***} \\ 3.56(0.62)^{***} \\ y8 \\ 3.31(0.71)^{***} \\ \frac{\mathrm{Residual Covariances}}{\mathrm{Residual Covariances}} \\ y1 \text{ w/y5} \\ 0.58(0.36) \\ y2 \text{ w/y4} \\ 1.44(0.69)^{*} \\ 1.44(0.72)^{*} \\ \end{aligned}$	$\underline{\text{ind60}}$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x1	1.00^{+}	0.85	1.00^{+}	0.85
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x2	$2.18(0.14)^{***}$	0.95	$2.18(0.15)^{***}$	0.95
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x3	1.82(0.15)***	0.76	1.82(0.15)***	0.76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\underline{\mathrm{dem}60}$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	y1	1.00^{+}	0.72	1.00^{+}	0.72
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	y2	$1.19(0.14)^{***}$	0.47	$1.19(0.15)^{***}$	0.47
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.57		0.57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-				0.70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,		,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.00^{+}	0.67	1.00^{+}	0.67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.57	1.19(0.15)***	0.57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.69		0.69
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	v	,	Regression		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\underline{\text{dem}60}$			<u> </u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ind60	$1.47(0.39)^{***}$		1.47(0.38)***	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\underline{\text{dem}65}$,		,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$0.60(0.23)^{**}$		$0.60(0.25)^*$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	dem60	` ,			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	Residual	Variances	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x1	$0.08(0.02)^{***}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		` ,		` ,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x3				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	y1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	=	7.59(1.37)***		7.59(1.25)***	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.96(0.96)***		4.96(1.08)***	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$3.22(0.73)^{***}$		3.22(0.80)***	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.31(0.48)***		2.31(0.58)***	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	4.97(0.92)***		$4.97(0.94)^{***}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$3.56(0.71)^{***}$		$3.56(0.62)^{***}$	
$\begin{array}{ccc} & & & & & & & \\ & & & & & \\ y1 \text{ w/y5} & & & & \\ y2 \text{ w/y4} & & & & \\ & & & & \\ & & & & \\ & & & & $	=	3.31(0.71)***			
y1 w/y5 0.58(0.36) 0.58(0.46) y2 w/y4 1.44(0.69)* 1.44(0.72)*	J -	,	Residual C	, , , , , , , , , , , , , , , , , , , ,	
y2 w/y4 1.44(0.69)* 1.44(0.72)*	v1 w/v5	0.58(0.36)			
	, ,			` ,	
	y2 w/y6	2.18(0.74)**		2.18(0.83)**	

y3 w/y7	0.71(0.61)		0.71(0.59)	
y4 w/y8	0.36(0.44)		0.36(0.45)	
y6 w/y8	$1.37(0.58)^*$		1.37(0.78)	
		Latent	<u>Variances</u>	
ind60	$0.45(0.09)^{***}$		$0.45(0.07)^{***}$	
dem60	$3.87(0.87)^{***}$	0.20	$3.87(0.81)^{***}$	0.20
dem65	0.16(0.23)	0.96	0.16(0.26)	0.96
		Cons	tructed	
ab	$1.27(0.36)^{***}$		$1.27(0.35)^{***}$	
total	$1.88(0.37)^{***}$		$1.88(0.38)^{***}$	
		$\underline{\text{Fit I}}$	ndices	
$\chi^2(\mathrm{df})$	40.18(37)		40.18(37)	
CFI	1.00		1.00	
TLI	0.99		0.99	
RMSEA	0.03		0.03	

⁺Fixed parameter

5

Now we remove some indicators from the model and re-fit. The results are presented in Table 17.

```
## Model 5b - Revision of Model 5s
   model5b <-
         # Cut some indicators from the measurement model
5
         ind60 =\sim x1 + x2
         dem60 = \sim y1 + e*y2 + d*y3 + y4
         dem65 = \sim y5 + e*y6 + d*y7
         # regressions
         dem60 \sim a*ind60
10
         dem65 \sim c*ind60 + b*dem60
         # cut out the residual correlations
         # indirect effect (a*b)
         ## := operator defines new parameters
         ab := a*b
         ## total effect
         total := c + (a*b)
```

Again, we use the saved fits, or if they are unavailable, we re-calculate.

```
if(file.exists("fit5b.rds")){
   fit5b <- readRDS("fit5.rds")
} else {
   fit5b <- sem(model5b, data=PoliticalDemocracy, se = "
      bootstrap", bootstrap = 500)
   saveRDS(fit5b, "fit5b.rds")
}</pre>
```

^{*} p<0.05, ** p<0.01, ***p<0.001

fit5.5b <- semTable(list("Model 5" = fit5boot, "Model 5b" =
 fit5b), columns = c("estsestars", "rsquare"), file =
 file.path(tempdir, "fit5.5"), type = "latex", longtable = TRUE,
 table.float = TRUE, caption = "Models 5 and 5b", label = "
 tab:fit5.5b")</pre>

Table 17: Models 5 and 5b

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Model 5		Model 5b			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Estimate(Std.Err.)			R Square		
$\begin{array}{c} x1 & 1.00^{+} & 0.85 & 1.00^{+} & 0.85 \\ x2 & 2.18(0.15)^{***} & 0.95 & 2.18(0.14)^{***} & 0.95 \\ x3 & 1.82(0.15)^{***} & 0.76 & 1.82(0.15)^{***} & 0.76 \\ \hline \\ \frac{dem60}{2} & & & & & & & & & & & & & & & & & & &$		Factor Loadings					
$\begin{array}{c} x2 \\ x3 \\ 1.82(0.15)^{***} \\ 0.76 \\ 1.82(0.15)^{***} \\ 0.76 \\ 1.82(0.15)^{***} \\ 0.76 \\ \frac{\text{dem60}}{\text{dem60}} \\ y1 \\ 1.00^{+} \\ 0.72 \\ 1.19(0.15)^{***} \\ 0.47 \\ 1.19(0.14)^{***} \\ 0.47 \\ 1.19(0.14)^{***} \\ 0.47 \\ 0.57 \\ 0.70 \\ 0.47 \\$	$\underline{\mathrm{ind}60}$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x1				0.85		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1.82(0.15)^{***}$	0.76	$1.82(0.15)^{***}$	0.76		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\underline{\mathrm{dem}60}$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	y1		0.72		0.72		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	y2		0.47		0.47		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	y3	$1.17(0.12)^{***}$	0.57		0.57		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	y4	$1.26(0.15)^{***}$	0.70	$1.26(0.13)^{***}$	0.70		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\underline{\mathrm{dem}65}$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	y5	1.00^{+}	0.67	1.00^{+}	0.67		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	y6	$1.19(0.15)^{***}$	0.57	$1.19(0.14)^{***}$	0.57		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	y7	$1.17(0.12)^{***}$	0.64	$1.17(0.12)^{***}$	0.64		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	y8	$1.25(0.16)^{***}$	0.69	$1.25(0.14)^{***}$	0.69		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\underline{\mathrm{dem}60}$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ind60	$1.47(0.38)^{***}$		$1.47(0.39)^{***}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\underline{\mathrm{dem}65}$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ind60	$0.60(0.25)^*$		$0.60(0.23)^{**}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	dem60	$0.87(0.08)^{***}$		$0.87(0.08)^{***}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			` ,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x1	$0.08(0.02)^{***}$		$0.08(0.02)^{***}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x2	0.12(0.08)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x3	$0.47(0.08)^{***}$		$0.47(0.09)^{***}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	y1			$1.86(0.43)^{***}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	y2	$7.59(1.25)^{***}$		$7.59(1.37)^{***}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	y3	$4.96(1.08)^{***}$		$4.96(0.96)^{***}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	y4	$3.22(0.80)^{***}$		$3.22(0.73)^{***}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	y5	2.31(0.58)***		2.31(0.48)***			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	y6	4.97(0.94)***		4.97(0.92)***			
$\begin{array}{ccc} y8 & 3.31(0.92)^{***} & 3.31(0.71)^{***} \\ & & \underline{\text{Residual Covariances}} \\ y1 \text{ w/y5} & 0.58(0.46) & 0.58(0.36) \\ y2 \text{ w/y4} & 1.44(0.72)^{*} & 1.44(0.69)^{*} \\ \end{array}$		$3.56(0.62)^{***}$					
y1 w/y5 0.58(0.46) 0.58(0.36) y2 w/y4 1.44(0.72)* 1.44(0.69)*	y8						
y1 w/y5 0.58(0.46) 0.58(0.36) y2 w/y4 1.44(0.72)* 1.44(0.69)*	-	` ,	Residual Covariances				
y2 w/y4 1.44(0.72)* 1.44(0.69)*	y1 w/y5	0.58(0.46)					
	- , -	, ,					

y3 w/y7	0.71(0.59)		0.71(0.61)			
y4 w/y8	0.36(0.45)		0.36(0.44)			
y6 w/y8	1.37(0.78)		$1.37(0.58)^*$			
		Latent Variances				
ind60	$0.45(0.07)^{***}$		$0.45(0.09)^{***}$			
dem60	3.87(0.81)***	0.20	$3.87(0.87)^{***}$	0.20		
dem65	0.16(0.26)	0.96	0.16(0.23)	0.96		
	$\underline{\text{Constructed}}$					
ab	$1.27(0.35)^{***}$		$1.27(0.36)^{***}$			
total	1.88(0.38)***		$1.88(0.37)^{***}$			
	Fit Indices					
$\chi^2(\mathrm{df})$	40.18(37)		40.18(37)			
CFI	1.00		1.00			
TLI	0.99		0.99			
RMSEA	0.03		0.03			

⁺Fixed parameter

9 Conclusion

The semTable function is, to our knowledge, the first effort successful effort to create a flexible function to present various kinds of lavaan estimates of confirmatory factor analyses and structural equation models. This version includes the ability of authors to select parameter sets, output columns, fit indices, as well as to customize many of the labels.

This document is not intended as a lesson in structural equation modeling. Instead, we offer it as evidence that the semTable function does work, as promised, for a wide variety of contexts.

References

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing.

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. *Journal of Statistical Software*, 48(2), 1–36.

Replication Information

Please leave this next code chunk if you are producing a guide document.

```
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 19.10

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/atlas/libblas.so.3.10.3

LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3
```

^{*} p<0.05, ** p<0.01, ***p<0.001

```
locale:
    [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
                                     LC_COLLATE=C
     [3] LC_TIME=en_US.UTF-8
     [5] LC_MONETARY=en_US.UTF-8
                                       LC_MESSAGES=en_US.UTF-8
                                      LC_NAME=C
    [7] LC_PAPER=en_US.UTF-8
    [9] LC_ADDRESS=C
                                       LC_TELEPHONE=C
   [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
    attached base packages:
    [1] stats graphics grDevices utils
                                                    datasets methods base
   other attached packages:
    [1] semTable_1.7 lavaan_0.6-5
                                                 stationery_0.98.24
   loaded via a namespace (and not attached):
    [1] Rcpp_1.0.4 digest_0.6.25 plyr_1.8.4
                                                              xtable_1.8-4
25
    [5] stats4_3.6.1
                          evaluate_0.14
                                              zip_2.0.4
                                                              rlang_0.4.5
   [9] stringi_1.4.6 pbivnorm_0.6.0 openxlsx_4.1.4 rmarkdown_2.1 [13] tools_3.6.1 foreign_0.8-76 kutils_1.69 xfun_0.12 [17] compiler_3.6.1 mnormt_1.5-6 htmltools_0.4.0 knitr_1.28
```