Method of Undetermined Coefficients:

$$ay'' + by' + cy = h(t)$$
$$y(t) = y_p(t) + y_h(t)$$

Form of function $h(t)$	Geuss for $y_p(t)$
$\sum_{j=0}^{N} B_j t^j$	$\sum_{j=0}^{N} A_j t^j$
$e^{\lambda t}$	$Ae^{\lambda t}$
$\sin \omega t$ or $\cos \omega t$	$A\sin\omega t+B\cos\omega t$
$e^{\lambda t}\sin\omega t$ or $e^{\lambda t}\cos\omega t$	$e^{\lambda t}A\sin\omega t+e^{\lambda t}B\cos\omega t$
Additive combinations of above	Additive combinations of above
Multiplicative combinations of above	Multiplicative combinations of above
Part of the homogeneous solution Note 1	$Ath(t)$ or $At^2h(t)$ or
Anything else	You are out of luck

¹Note: This corresponds to resonance.

²Note: b_j , c_j , b, c, A, and B are all constants in the above table