Vehicle Routing Heuristics: A Quick Tour d'Horizon

Thibaut Vidal

CIRRELT & SCALE-AI Chair in Data-Driven Supply Chains Department of Mathematics and Industrial Engineering, Polytechnique Montréal

EURO Meets NeurIPS 2022 Vehicle Routing Competition December 7^{th} , 2022

Capacitated Vehicle Routing Problem (CVRP)

- Capacitated Vehicle Routing Problem (CVRP)
 - ► INPUT: n customers, with locations and demand quantity. All-pair distances. Homogeneous fleet of m vehicles with capacity Q located at a central depot.
 - ► OUTPUT: Least-cost delivery routes (at most one route per vehicle) to service all customers.

- NP-Hard problem
 - ▶ Recent exact methods can reliably solve problems of moderate size with 200-300 customers.
 - ► Extensive research on (meta-)heuristics for several decades
 - ▶ Long stream of comparisons on common benchmark instances permitting to gauge the strengths of proposed methods: Uchoa et al. (2017) and Queiroga et al. (2021)

> Problem References 2/45

Multi-attribute vehicle routing problems (MAVRPs)

- VRP "attributes": Supplementary decisions, constraints and objectives combined with the classic VRP (Vidal et al., 2013)
 - ▶ Practical objectives: Profitability, equity, service Levels, persistence, compactness, robustness, externalities
 - ► Integrated problems: Multiple periods, depots, echelons, fleet mix, location routing, inventory-routing, production-routing, synchronization...
 - ▶ Fine-grained modeling: <u>Time windows</u> (can even be soft or multiple), loading constraints (2D,3D), driver skills, time-dependent travel times, charging stations, engine modes, drones etc...

> Problem References 3/45

Multi-attribute vehicle routing problems (MAVRPs)

- Vehicle routing problem attributes generally impact different decisions and tasks:
- ASSIGNMENT (assignment of customers and routes to time-periods or depots)
 - ► multi-period, multi-depot, heter. fleet, location routing...
- **SEQUENCING** (choice of the sequence of visits)
 - ► P&D, Backhauls, 2-echelon...
- ROUTE EVALUATIONS (route feasibility/cost & other decisions)
 - ► Time windows, time-dep travel time, loading constraints, HOS regulations, lunch breaks, load-dependent costs...

Multi-attribute vehicle routing problems (MAVRPs)

- Challenges: **VARIETY** and **COMBINATION** of attributes
- Over 200 attributes have been proposed to date...

 ...also combined together $\Rightarrow 2^{200}$ problems... 2^{200} methods... 2^{200} papers ?!!!
- **Combinatorial explosion**: Combinatorial optimization problem + combinatorial family of problems
- ⇒ Need for unified solution concepts and methods (i.e., generalization capabilities)
- ⇒ Solution methods that can address a wide range of problems without need for extensive adaptation or user expertise.
- ⇒ Necessary for faster application to industrial settings.

> Problem References 5/45

Constructive Algorithms

- Constructive methods: mostly between 1960s and 1980s.
 - ▶ Step-by-step definitive decisions which cannot be revoked afterward
 - ▶ Performance ranging typically around 8-15% error gap on common benchmark instances
- Savings method (Clarke and Wright 1964)
 - ► Merge routes step by step based on a savings measure s_{ij} $s_{ij} = c_{i0} + c_{0j} c_{ij}$
 - ► Refinements by Gaskell (1967), Yellow (1970), and Solomon (1987).

> Problem References 6/45

Constructive Algorithms

- Sweep algorithm (Gillett and Miller, 1974)
 - ► Sweep the deliveries in circular order to create routes.
 - ▶ A new route is initiated each time the capacity is exceeded.

- Route first cluster second (see, e.g., Beasley, 1983)
 - constructs a giant circuit (TSP tour) that visits all customers.
 - ▶ Segment this tour into several routes. An optimal segmentation (Split) can be found by solving a shortest path problem in an auxiliary directed acyclic graph

▶ Possible to model and solve the Split problem in $\mathcal{O}(n)$ for the CVRP (Vidal, 2016)

> Problem References 7/45

• Local-improvement procedures :

- From an incumbent solution s define a neighborhood N(s) of solutions obtained by applying some changes.
- ► The set of solutions, linked by neighborhood relationships = search space.
- ► LS-improvement method progress from one solution to another in this search space as long at the cost improves.

• Performance of multi-start LS ranging typically around 4-8% error gap on common benchmark instances

> Problem References 8/45

- For optimizing a single route (TSP tour);
 - ▶ in the terminology of Lin (1965), λ -OPT neighborhood = subset of moves obtained by deleting and reinserting λ arcs.
 - ▶ 2-OPT and 3-OPT are commonly used,
 - ▶ OR-OPT: relocates a sequence of visits, is a subset of 3-OPT.

> Problem References 9/45

- For optimizing multiple routes together,
 - ► Relocate neighborhood (relocate a delivery)
 - ► SWAP neighborhoods (swap two deliveries from different routes)
 - ► CROSS (exchanges two sequences of visits)
 - ► I-CROSS (exchange and reverse two sequences)
 - ► 2-OPT* exchange two route tails (special case of CROSS)

Problem References 10/45

- These neighborhoods contain a polynomial number of moves.
 - For all moves except CROSS and I-CROSS, the number of neighbors is $O(n^2)$
 - ▶ CROSS and I-CROSS are often limited to sequences of a few customers (e.g., up to k) and explored in $O(k^2n^2)$.
- Non-enumerative large-scale neighborhoods:
 - ► Heuristic of Lin and Kernighan (1973) efficient implementation from Helsgaun (2000) generalized into LKH3 for constrained vehicle routing problems (Helsgaun, 2017);
 - ► Ruin-and-recreate (Shaw, 1998; Schrimpf et al., 2000);
 - ► Ejection chains (Glover, 1996)

 Pattern mining can also be used to identify useful higher-order moves (Arnold et al., 2021)

> Problem References 11/45

- Efficient move evaluations and pruning procedures are critical to efficiently solve large-scale problem instances
 - ▶ Neighborhood restrictions, granular search (Johnson and Mcgeoch, 1997; Toth and Vigo, 2003): restrain the subset of moves to spatially related customer (but so far, limited success in our experience when trying to use a learned sparsified graph in this context Santana et al. 2022)
 - ▶ Sequential search (Christofides and Eilon, 1972; Irnich and Villeneuve, 2003): any profitable move can be broken down into a list of arc exchanges $(a_1, \ldots, a_{\lambda})$ with gains $(g_1, \ldots, g_{\lambda})$ such that for any $k \in \{1, \ldots, \lambda\}$, $g_1 + \cdots + g_k \geq 0$.
 - \Rightarrow This condition allows the pruning of many non-promising moves.

> Problem References 12/45

Metaheuristics

- Local-improvement methods lead to local optima \Rightarrow "Metaheuristics" are various general principles that permit to escape and guide the search towards better solutions
- We can separate two groups of methods:
 - ► Individual-trajectory search: Iterative improvements on one incumbent solution Tabu search, Simulated annealing, ILS, VNS...
 - ▶ **Population-based** search: Improving a population of solutions Hybrid GA, evolutionary algorithms, ACO, path relinking...

 Hybrid methods mixing different search principles are also very common.

> Problem References 13/45

Unified Tabu Search – Cordeau et al. (1997, 2001)

- Tabu search usually chooses the **best move** at each step (possibly non-improving).
- Neighborhood: Relocate
- Short-term tabu memories to avoid cycling:
 - ▶ Moving Client *i* from route R_1 to $R_2 \Rightarrow$ Not allowed to insert *i* back into route R_1 for *X* iterations.
- Longer term diversification strategies:
 - ▶ Penalizing recurrent solution attributes in the objective function
 - ▶ Penalized infeasible solutions (excess load or duration)

> Problem References 14/45

TS with adaptive memory – Rochat and Taillard (1995)

• Early study from 1995, already contained many key strategies:

Diversification

- ► Tabu search based on SWAP and RELOCATE moves
- ► *Probabilistic* selection of moves driven by measures of attractiveness

and Intensification:

- ▶ Detection of good fragments of solutions that consistently appear in elite solutions and creation of new solutions from these fragments to obtain new starting points
- ▶ Decomposition phases based on spatial proximity
- ► Exact solution of the TSPs at regular intervals

> Problem References 15/45

ALNS – Pisinger and Ropke (2007)

- Large neighborhoods based on the *ruin-and-recreate* principle (Shaw, 1998; Schrimpf et al., 2000).
- Variety of operators to partially destroy the solutions
 - ► Based on randomness, cost metrics, relatedness, history...
 - ► Adaptive probabilities for operator selection
- Variety of operators to reconstruct the solutions
- Deteriorating solutions are accepted with some probability, as in a simulated annealing

> Problem References 16/45

HILS – Subramanian et al. (2013)

- Iterated local search: local search until a local optimum is encountered, perturbation and local search again etc...
- Several neighborhoods are used
 - ► RELOCATE and SWAP of one to three customers in different routes, 2-OPT, 2-OPT*, empty-route, swap depot...
 - ► Several perturbation operations: multi-swap, multi-shift, double-bridge ...
 - ► Set covering model to create new solutions out of a set of high-quality routes.

> Problem References 17/45

Knowledge-Guided LS – Arnold and Sörensen (2019)

- Based on a "guided local search"
 - ▶ Detect and temporarily penalize bad edges
 - ► Characterization of bad edges result from a prior study on features of good (and bad) solutions
- Three types of neighborhoods encompassing most of the classic moves
 - ► CROSS-exchanges (includes Relocate and Swap)
 - ► Ejection chains
 - ► Heuristic of Lin and Kernighan (1973)

> Problem References 18/45

SISRs – Christiaens and Vanden Berghe (2020)

- Ruin-and-recreate principle revisited
- Single ruin operator (adjacent string removals) aiming to introduce "capacity and spatial slack"
- Single recreate method (a randomized greedy insertion)

• Good performance on classical CVRP instances (Uchoa et al., 2017) as well as for other problem variants: VRPTW, PDPTW...

> Problem References 19/45

Hybrid GA – Prins (2004)

- First Genetic Algorithm (GA) to achieve competitive results on some VRP variants.
- Genetic algorithms mimic natural evolution
 - ► Population of solutions
 - ► Selection
 - ► Crossover
 - ► Mutation (replaced by a local search)

> Problem References 20/45

Hybrid GA – Prins (2004)

- The algorithm of Prins (2004) includes key design choices that made GA a practical approach at that time:
- Giant-tour solution representation
 - ▶ As there is a polynomial dynamic-programming *Split* algorithm to obtain a complete solution from it
 - ▶ Permits the use of a simple Ordered Crossover (OX)
- Local search on the offspring
- Population management (spacing constraint)

> Problem References 21/45

- Hybrid genetic search (HGS) is still based on a giant-tour solution representation, and:
 - ► Efficient local search using neighborhood restrictions (granular search)
 - ► Adaptive management of penalized infeasible solutions
 - ► Active promotion of diversity in the population through a biased fitness measure

> Problem References 22/45

Fitness considering ranks in terms of solution cost C(I) and contribution to the population diversity D(I), measured as a distance to other individuals:

$$BF(I) = C(I) + \left(1 - \frac{nbElite}{popSize - 1}\right)D(I)$$

- Used for parents selection
 - ⇒ Balancing quality with innovation to promote a more thorough exploration of the search space.
- Used during selection of survivors
 - \Rightarrow Removing individuals with worst BF(I) still guarantees elitism

> Problem References 23/45

- The HGS approach was "unified" in (Vidal et al., 2014) to solve a wide family of routing problem variants
- Exploiting a generic design with assignment, sequencing & route evaluation operators that are selected and combined by the method based on the problem structure

> Problem References 24/45

> Problem References 25/45

- UHGS was tested on more than 2000 benchmark instances, and 50 different problems from the vehicle routing literature
- The method has been compared to over 240 previous algorithms
 - ▶ State-of-the-art (SOTA) results in the literature on all considered problems: VRP with capacity constraints, duration, backhauls, asymmetry, cumulative costs, simultaneous and mix pickup and deliveries, fleet mix, load dependency, multiple periods, depots, generalized deliveries, open routes, time windows, time-dependent travel time and costs, soft and multiple TW, truck driver scheduling regulations, many other problems and their combinations...
 - ► First method that efficiently addressed so many routing problems and their combinations, equaling or outperforming SOTA in each case.

> Problem References 26/45

Variant	Bench.	n	Obj.	State-of-the-art methods				
variant				Author	Avg.%	$\mathrm{Best}\%$	$T(\min)$	CPU
				GG11:	_	+0.03%	8×2.38	$8 \times \text{Xe } 2.3\text{G}$
CVRP	CMT79	[50,199]	\mathbf{C}	MB07:	+0.03%	_	2.80	P-IV 2.8G
				UHGS*:	+0.02%	+0.00%	11.90	$\mathrm{Opt}\ 2.4\mathrm{G}$
				GG11:	_	+0.29%	8×5	$8 \times \text{Xe } 2.3\text{G}$
CVRP	GWKC98	[200,483]	C	NB09:	+0.27%	+0.16%	21.51	Opt 2.4G
				UHGS*:	+0.15%	+0.02%	71.41	Opt $2.4G$
				ZK12:	+0.38%	+0.00%	1.09	T5500 1.67G
VRPB	GJ89	[25,200]	\mathbf{C}	GA09:	+0.09%	+0.00%	1.13	Xe 2.4G
				UHGS:	+0.01%	+0.00%	0.99	$\mathrm{Opt}\ 2.4\mathrm{G}$
	CMT79	[50,199]	C	NPW10:	+0.74%	+0.28%	5.20	Core2 2G
CCVRP				RL12:	+0.37%	+0.07%	2.69	Core2 2G
				UHGS:	+0.01%	-0.01%	1.42	${ m Opt}\ 2.2{ m G}$
				NPW10:	+2.03%	+1.38%	94.13	Core2 2G
CCVRP	GWKC98	[200,483]	\mathbf{C}	RL12:	+0.34%	+0.07%	21.11	Core2 2G
				UHGS:	-0.14%	-0.23%	17.16	$\mathrm{Opt}\ 2.2\mathrm{G}$
				SDBOF10:	+0.16%	+0.00%	256×0.37	$256{ imes}Xe~2.67G$
VRPSDP	SN99	[50,199]	\mathbf{C}	ZTK10:	_	+0.11%	_	$T5500 \ 1.66G$
				UHGS:	+0.01%	+0.00%	2.79	$\mathrm{Opt}\ 2.4\mathrm{G}$
VRPSDP	MG06	[100,400]	C	SDBOF10:	+0.30%	+0.17%	256×3.11	$256{ imes}Xe~2.67G$
				UHGS:	+0.20%	+0.07%	12.00	$\mathrm{Opt}\ 2.4\mathrm{G}$
				S12:	+0.08%	+0.00%	7.23	I7 2.93G

> Problem References 27/45

3 7	Bench.	n	Obj.	State-of-the-art methods				
Variant				Author	Avg.%	Best%	$T(\min)$	CPU
				ISW09:	_	+0.07%	8.34	P-M 1.7G
VFMP-F	G84	[20,100]	C	SPUO12:	+0.12%	+0.01%	0.15	I7 2.93G
				UHGS:	+0.04%	+0.01%	1.13	Opt 2.4G
				ISW09:	_	+0.02%	8.85	P-M 1.7G
VFMP-V	G84	[20,100]	C	SPUO12:	+0.17%	+0.00%	0.06	I7 2.93G
				UHGS:	+0.03%	+0.00%	0.85	Opt 2.4G
		[20,100]	С	P09:	_	+0.02%	0.39	P4M 1.8G
VFMP-FV	G84			UHGS:	+0.01%	+0.00%	0.99	Opt 2.4G
				SPUO12:	+0.01%	+0.00%	0.13	I7 2.93G
LDVRP	CMT79	[50,199]	C	XZKX12:	+0.48%	+0.00%	1.3	NC 1.6G
LDVIL				UHGS:	-0.28%	-0.33%	2.34	Opt 2.2G
LDVRP	GWKC98	[200,483]	С	XZKX12:	+0.66%	+0.00%	3.3	NC 1.6G
LDVIL				UHGS:	-1.38%	-1.52%	23.81	Opt 2.2G
				HDH09:	+1.69%	+0.28%	3.09	P-IV 3.2G
PVRP	CGL97	[50,417]	C	UHGS*:	+0.43%	+0.02%	6.78	Opt 2.4G
				CM12:	+0.24%	+0.06%	64×3.55	$64 \times \text{Xe } 3\text{G}$
	CGL97	[50,288]	C	CM12:	+0.09%	+0.03%	64×3.28	$64 \times \text{Xe } 3\text{G}$
MDVRP				S12:	+0.07%	+0.02%	11.81	I7 2.93G
				UHGS*:	+0.08%	+0.00%	5.17	Opt 2.4G
	B11	[16,262]	C	BER11:	+0.06%	_	0.01	Opt 2.4G
GVRP				MCR12:	+0.11%	_	0.34	Duo 1.83G
				UHGS:	+0.00%	-0.01%	1.53	Opt 2.4G

> Problem References 28/45

Variant	Bench.	n	Obj.	State-of-the-art methods						
variant	bench.			Author	Avg.%	Best%	T(min)	CPU		
	CMT79	[50,199]	F/C	RTBI10:	0%/+0.32%	_	9.54	P-IV 2.8G		
OVRP	&F94			S12:	/+0.16%	0%/+0.00%	2.39	I7 2.93G		
	&F 94			UHGS:	0%/+0.11%	0%/+0.00%	1.97	Opt 2.4G		
				ZK10:	0%/+0.39%	0%/+0.21%	14.79	T5500 1.66G		
OVRP	GWKC98	[200,480]	F/C	S12:	0%/+0.13%	0%/+0.00%	64.07	I7 2.93G		
				UHGS:	0%/-0.11%	0%/-0.19%	16.82	Opt 2.4G		
				RTI09:	0%/+0.11%	0%/+0.04%	17.9	Opt 2.3G		
VRPTW	SD88	100	F/C	UHGS*:	0%/+0.04%	0%/+0.01%	2.68	Xe 2.93G		
				NBD10:	0%/+0.02%	0%/+0.00%	5.0	$\mathrm{Opt}\ 2.4\mathrm{G}$		
	HG99	[200,1000]	F/C	RTI09b:	_	+0.16%/+3.36%	270	Opt 2.3G		
VRPTW				NBD10:	+0.20%/+0.42%	+0.10%/+0.27%	21,7	Opt 2.4G		
				UHGS*:	+0.18%/+0.11%	+0.08%/-0.10%	141	Xe 2.93G		
				RTI09a:	+0.89%/+0.42%	0%/+0.24%	10.0	P-IV 3.0G		
OVRPTW	SD88	100	F/C	KTDHS12:	0%/+0.79%	0%/+0.18%	10.0	Xe~2.67G		
				UHGS:	+0.09%/-0.10%	0%/-0.10%	5.27	Opt 2.2G		
TDVRPTW	SD88	100	F/C	KTDHS12:	+2.25%	0%	10.0	Xe~2.67G		
IDVKFIW				UHGS:	-3.31%	-3.68%	21.94	Opt 2.2G		
				BDHMG08:	_	+0.59%	10.15	Ath 2.6G		
VFMPTW	LS99	100	D	RT10:	+0.22%	_	16.67	P-IV 3.4G		
				UHGS:	-0.15%	-0.24%	4.58	Opt 2.2G		
				BDHMG08:	_	+0.25%	3.55	Ath 2.6G		
VFMPTW	LS99	100	C	BPDRT09:	_	+0.17%	0.06	Duo 2.4G		
				UHGS:	-0.38%	-0.49%	4.82	Opt 2.2G		

> Problem References 29/45

Variant	Bench.	n	Obj.	State-of-the-art methods				
variant				Author	Avg.%	$\mathrm{Best}\%$	$T(\min)$	CPU
				GG11:	_	+0.03%	8×2.38	$8 \times \text{Xe } 2.3\text{G}$
CVRP	CMT79	[50,199]	\mathbf{C}	MB07:	+0.03%	_	2.80	P-IV 2.8G
				UHGS*:	+0.02%	+0.00%	11.90	Opt 2.4G
				GG11:	_	+0.29%	8×5	$8 \times \text{Xe } 2.3\text{G}$
CVRP	GWKC98	[200,483]	\mathbf{C}	NB09:	+0.27%	+0.16%	21.51	Opt 2.4G
				UHGS*:	+0.15%	+0.02%	71.41	Opt 2.4G
				ZK12:	+0.38%	+0.00%	1.09	T5500 1.67G
VRPB	GJ89	[25,200]	\mathbf{C}	GA09:	+0.09%	+0.00%	1.13	Xe 2.4G
				UHGS:	+0.01%	+0.00%	0.99	Opt 2.4G
				NPW10:	+0.74%	+0.28%	5.20	Core2 2G
CCVRP	CMT79	[50,199]	\mathbf{C}	RL12:	+0.37%	+0.07%	2.69	Core2 2G
				UHGS:	+0.01%	-0.01%	1.42	Opt 2.2G
				NPW10:	+2.03%	+1.38%	94.13	Core2 2G
CCVRP	GWKC98	[200,483]	\mathbf{C}	RL12:	+0.34%	+0.07%	21.11	Core2 2G
				UHGS:	-0.14%	-0.23%	17.16	Opt 2.2G
				SDBOF10:	+0.16%	+0.00%	256×0.37	$256 \times \text{Xe} \ 2.67\text{G}$
VRPSDP	SN99	[50,199]	\mathbf{C}	ZTK10:	_	+0.11%	_	$T5500 \ 1.66G$
				UHGS:	+0.01%	+0.00%	2.79	Opt 2.4G
				SDBOF10:	+0.30%	+0.17%	256×3.11	$256 \times \text{Xe} \ 2.67\text{G}$
VRPSDP	MG06	[100,400]	\mathbf{C}	UHGS:	+0.20%	+0.07%	12.00	Opt 2.4G
				S12:	+0.08%	+0.00%	7.23	I7 2.93G

> Problem References 30/45

HGS-CVRP - Vidal (2022)

- An open-source implementation of UHGS dedicated to the CVRP: https://github.com/vidalt/HGS-CVRP
- Goal: find the best possible trade-off between conceptual simplicity and performance
- Simple structures due to the code specialization to CVRP
- Additional LS operator (SWAP*)
- Using the $\mathcal{O}(n)$ -time Split algorithm of Vidal (2016)

> Problem References 31/45

HGS-CVRP - Vidal (2022)

- No need for any external library \Rightarrow easy to set up
- The complete C++ code fits on ≈ 20 pages \Rightarrow easier learning curve permitting extensions to different applications
 - ▶ Python/Julia/C APIs contributed by the community: thanks Changhyun Kwon (*chkwon*), and more recently Niels Wouda (*N-Wouda*) in the scope of the challenge
- State-of-the-art results on the CVRP
 - \Rightarrow The starter code of the EURO-NeurIPS challenge is an optimized variant of this algorithm adapted to the static VRPTW (Kool et al., 2022)

> Problem References 32/45

What to expect regarding heuristics on vehicle routing problems?

- Some research continues on better solution methods (despite smaller and smaller error gaps).
 - ⇒ Thanks to a long tradition of systematic benchmarking on common instances, vehicle routing problem variants remain a good testing ground to experiment with new search strategies.

> Problem References 33/45

 Several metaheuristics (Christiaens and Vanden Berghe, 2020; Accorsi and Vigo, 2021; Máximo and Nascimento, 2021; Vidal, 2022) achieve < 0.2% average error gap on difficult instances

Error gap of various solution methods on the instances of Uchoa et al. (2017).

Termination criterion set to $T_{\text{MAX}} = n \times 240/100$

Problem References 34/45

- Some earlier ML papers did not benchmark against the current state-of-the-art regarding heuristics (e.g., OR-Tools, despite its flexibility and ease of use, is far from SOTA).
- To evaluate the benefits of new (e.g., machine learning) search methodologies, it is essential to:
 - 1) Compare with / build upon the best-known methods (otherwise, we run the risk of running in loops)
 - 2) Adopt the same conventions and benchmark instances as other studies:
 - http://vrp.galgos.inf.puc-rio.br/index.php/en/
 - ▶ Uchoa et al. (2017) instances are popular (and still challenging) for heuristics and exact algorithms
 - ▶ Queiroga et al. (2021) (XML set) can help establish a standardized CVRP benchmark (with 10,000 known optimums and a generator) for learning-based algorithms

> Problem References 35/45

• Many search components can contribute to increase performance

- ⇒ One can always improve a method by "adding more"...
- ⇒ Success comes from a good tradeoff between performance and simplicity.
- ⇒ To gain methodological insights, need to trim off all unnecessary components and avoid complex methodologies with only marginal contributions to performance.
- \Rightarrow Computational experiments to assess the impact of each separate component

> Problem References 36/45

- Some recent studies have been oriented towards heuristics for very-large instances with dozens of thousands of customers (see, e.g., Arnold et al., 2019; Accorsi and Vigo, 2021).
- Many vehicle problem variants of importance still pose great challenges (Vidal et al., 2020, see, e.g.), notably those:
 - ...involving **complex interactions** between routes (e.g., synchronization between vehicles)
 - ...involving **strategic decisions** (e.g., inventory, localization, or districting)
 - ... considering ${\bf competitive\ behavior\ }$ or user choices (Ganster er and Hartl, 2018)
 - ...considering partially revealed or uncertain information (dynamic and stochastic problems see, e.g., Soeffker et al. 2022 for a review)

> Problem References 37/45

Design of the EURO-NeurIPS challenge

Given all of this, we aimed for a problem variant that would be

- 1) Canonical and relevant for practice
 - \Rightarrow VRP with time windows
- 2) Challenging and a promising ground for learning-based algorithms ⇒ Requests revealed dynamically (dynamic problem)
- 3) Simple to define and evaluate
 - \Rightarrow Routes are final upon dispatch
 - \Rightarrow Fleet is unlimited but everyone must be serviced

> Problem References 38/45

Design of the EURO-NeurIPS challenge

- Given the significant score differences between finalist teams on the dynamic variant, it seems the problem of the challenge has lived to its expectations.
- Looking forward to learning more about the winning strategies directly from the finalist teams
- Thanks for all the energy you have dedicated to this challenge (especially Wouter Kool), and congratulations!

Problem References 39/45

Thanks!

THANK YOU FOR YOUR ATTENTION!

Contact me:

thibaut.vidal@polymtl.ca

Open-source codes:

https://github.com/vidalthi/

Regular updates and announcements:

https://twitter.com/vidalthi

https://mas.to/@vidalthi

> Problem References 40/45

Further reading I

- Accorsi, L., D. Vigo. 2021. A fast and scalable heuristic for the solution of large-scale capacitated vehicle routing problems. Transportation Science 55(4) 832–856.
- Arnold, F., M. Gendreau, K. Sörensen. 2019. Efficiently solving very large scale routing problems. Computers & Operations Research 107(1) 32–42.
- Arnold, F., Í.G. Santana, K. Sörensen, T. Vidal. 2021. PILS: Exploring high-order neighborhoods by pattern mining and injection. Pattern Recognition 116 107957.
- Arnold, F., K. Sörensen. 2019. Knowledge-guided local search for the vehicle routing problem. Computers & Operations Research 105 32-46.
- Beasley, J.E. 1983. Route first-cluster second methods for vehicle routing. Omega 11(4) 403 - 408.
- Christiaens, J., G. Vanden Berghe. 2020. Slack induction by string removals for vehicle routing problems. Transportation Science 54(2) 299–564.
- Christofides, N., S. Eilon. 1972. Algorithms for Large-Scale Travelling Salesman Problems. Operational Research Quarterly 23(4) 511.
- Cordeau, J.-F., M. Gendreau, G. Laporte. 1997. A tabu search heuristic for periodic and multi-depot vehicle routing problems. Networks **30**(2) 105–119.
- Cordeau, J.-F., G. Laporte, A. Mercier. 2001. A unified tabu search heuristic for vehicle routing problems with time windows. Journal of the Operational Research Society 52(8) 928 - 936.

Problem References 41/45

Further reading II

- Gansterer, M., R.F. Hartl. 2018. Collaborative vehicle routing: A survey. European Journal of Operational Research 268(1) 1–12.
- Gaskell, T.J. 1967. Bases for vehicle fleet scheduling. Operational Research Quarterly 18(3) 281-295.
- Gillett, B.E., L.R. Miller. 1974. A heuristic algorithm for the vehicle-dispatch problem. Operations Research 22(2) 340–349.
- Glover, Fred. 1996. Ejection chains, reference structures and alternating path methods for traveling salesman problems. Discrete Applied Mathematics 65(1-3) 223–253.
- Helsgaun, K. 2000. An effective implementation of the Lin-Kernighan traveling salesman heuristic. European Journal of Operational Research 126(1) 106–130.
- Helsgaun, K. 2017. An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained traveling salesman and vehicle routing problems. Tech. rep., Roskilde University.
- Irnich, Stefan, Daniel Villeneuve. 2003. The Shortest-Path Problem with Resource Constraints and k-Cycle Elimination for k >= 3, vol. 18. Groupe d'études et de recherche en analyse des décisions, HEC Montréal.
- Johnson, D., L. Mcgeoch. 1997. The traveling salesman problem: A case study in local optimization. E. Aarts, J.K. Lenstra, eds., Local Search in Combinatorial Optimization. Princeton University Press, 215–310.

Problem References 42/45

Further reading III

- Kool, W., J.O. Juninck, E. Roos, K. Cornelissen, P. Agterberg, J. Van Hoorn, T. Visser. 2022. Hybrid genetic Search for the vehicle routing problem with time windows: A high-performance implementation. Tech. rep.
- Lin, S., B.W. Kernighan. 1973. An effective heuristic algorithm for the traveling-salesman problem. Operations Research 21(2) 498–516.
- Máximo, V., M.C.V. Nascimento. 2021. A hybrid adaptive iterated local search with diversification control to the capacitated vehicle routing problem. European Journal of Operational Research 294(3) 1108–1119.
- Pisinger, D., S. Ropke. 2007. A general heuristic for vehicle routing problems. Computers & Operations Research 34(8) 2403–2435.
- Prins, C. 2004. A simple and effective evolutionary algorithm for the vehicle routing problem. Computers & Operations Research 31(12) 1985–2002.
- Queiroga, E., R. Sadykov, E. Uchoa, T. Vidal. 2021. 10,000 optimal CVRP solutions for testing machine learning based heuristics. Tech. rep.
- Rochat, Y., E.D. Taillard, 1995. Probabilistic diversification and intensification in local search for vehicle routing. Journal of Heuristics 1(1) 147–167.
- Santana, Í., A. Lodi, T. Vidal. 2022. Neural networks for local search and crossover in vehicle routing: A possible overkill? Tech. rep., arXiv:2210.12075.

Problem References 43/45

Further reading IV

- Schrimpf, G., J. Schneider, H. Stamm-Wilbrandt, G. Dueck. 2000. Record Breaking Optimization Results Using the Ruin and Recreate Principle. *Journal of Computational Physics* 159(2) 139–171.
- Shaw, P. 1998. Using constraint programming and local search methods to solve vehicle routing problems. M. Maher, J.-F. Puget, eds., *Principles and Practice of Constraint Programming CP98*, *LNCS*, vol. 1520. Springer Berlin Heidelberg, 417–431.
- Soeffker, Ninja, Marlin W. Ulmer, Dirk C. Mattfeld. 2022. Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review. European Journal of Operational Research 298(3) 801–820.
- Solomon, M.M. 1987. Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research 35(2) 254–265.
- Subramanian, A., E. Uchoa, L.S. Ochi. 2013. A hybrid algorithm for a class of vehicle routing problems. *Computers & Operations Research* 40(10) 2519–2531.
- Toth, P., D. Vigo. 2003. The granular tabu search and its application to the vehicle-routing problem. *INFORMS Journal on Computing* **15**(4) 333–346.
- Uchoa, E., D. Pecin, A. Pessoa, M. Poggi, A. Subramanian, T. Vidal. 2017. New benchmark instances for the capacitated vehicle routing problem. European Journal of Operational Research 257(3) 845–858.
- Vidal, T. 2016. Technical note: Split algorithm in O(n) for the capacitated vehicle routing problem. Computers & Operations Research 69 40–47.

> Problem References 44/45

Further reading V

- Vidal, T. 2022. Hybrid genetic search for the CVRP: Open-source implementation and SWAP* neighborhood. Computers and Operations Research 140 105643.
- Vidal, T., T.G. Crainic, M. Gendreau, N. Lahrichi, W. Rei. 2012. A hybrid genetic algorithm for multidepot and periodic vehicle routing problems. *Operations Research* 60(3) 611–624.
- Vidal, T., T.G. Crainic, M. Gendreau, C. Prins. 2013. Heuristics for multi-attribute vehicle routing problems: A survey and synthesis. European Journal of Operational Research 231(1) 1–21.
- Vidal, T., T.G. Crainic, M. Gendreau, C. Prins. 2014. A unified solution framework for multi-attribute vehicle routing problems. European Journal of Operational Research 234(3) 658-673.
- Vidal, T., G. Laporte, P. Matl. 2020. A concise guide to existing and emerging vehicle routing problem variants. European Journal of Operational Research 286 401–416.
- Yellow, P.C. 1970. A Computational Modification to the Savings Method of Vehicle Scheduling. Operational Research Quarterly 21(2) 281–283.

> Problem References 45/45