Cornection du partial du 13 mars 2013

(2.1) Détection de symboles

a) Pour chaque symbol Si, Rj = detection d'un des 3 plus proches voisins de Si

Comme les irrinements R; 15; sont disjoints, P(R; 15;) = p + p + p = 3p

 $\ell = \frac{8}{124} \left\{ (S_i, \overline{R_i}) \right\}$

 $P_{e} = \sum_{i=1}^{8} P(S_{i}, R_{i}) \text{ can be eivernment}$ $= \sum_{i=1}^{8} P(R_{i}|S_{i}) P(S_{i})$ $= \sum_{i=1}^{8} P(R_{i}|S_{i}) P(S_{i})$

 $= \frac{8}{2} \cdot 3 \cdot \times \frac{1}{8}$

= 3p

2.2) Godag- de canal

a)
$$G = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

b) $00 \rightarrow 00000$
 $01 \rightarrow 01011$

Pan un transmission sans codage, P(transmission correcte) = (1-p)2

Avec codage, P (transmission correcte)

Sans codage,
$$P_{e} = 1 - (1-p)^{2} \approx 2p$$

Arric codage, $P_{e} = 1 - (1-5p+10p^{2}+\cdots)$
 $= 5p(1-4p+6p^{2}+\cdots)$
 $\approx 10p^{2} \ll 2p$ si $p \ll 1$

2.3) Codage de source

A: 0000 E: 01

13:0001 F: 10

c: 0010 G: 11

D: DOAN

b) Pour A,B,C,D:
$$I = -\log_2\left(\frac{1}{16}\right) = 4 = longueun$$
Pour E,F,G: $I = -\log_2\left(\frac{1}{4}\right) = 2 = longueun$

c) Longuen moyenne: $L = \sum_{i=1}^{2} n_i P(oc_i) = 4 \times 4 \times \frac{1}{16} + 3 \times 2 \times \frac{1}{44}$

Emborse: H(x) = L can $m_i = I(x_i) \forall i$

-> efficacte = 100%

d) Pour N grand, $H(x) \simeq \frac{L}{N}$

Ce qui maximise l'efficacité du codage. Ici, é'est inutile puisqu'on a dejà 100% d'efficacité