Design and Simulation of a Stage-Single Operational Amplifier

Julia Gomes juliatb.gomes@gmail.com

I. Introduction

O amplificador operacional pode ser usado como filtro, comparador, conversor, amplificador, gerador de sinais. A arquitetura interna do amplificador operacioanl geralmente é composta por uma carga ativa, par diferencial, fonte de corrente, estágio de amplificação e estágio de saída [Fig. 6].

Fig. 1. Internal Architecture of the Operational Amplifier

A equação geral do amplificador operacioanal é dada por 1.

$$V_o = [V_{offset} + V_1 - V_2]A_v + \left[\frac{V_1 + V_2}{2}A_{CM}\right]$$
 (1)

em que V_o é a tensão de saída, V_{offset} é a tensão de offset, V_1 é a entrada não inversora, V_2 é a entrada inversora, A_v é o ganho diferencial e A_{CM} é o ganho em modo comum.

Idealmente, o amplificador operacional amplifica a diferença entre suas entradas. Entretanto, também há um indesejado ganho de modo comum que acaba amplificando o sinal de da soma das entradas. Ele ocorre devido a pequenas assimetrias ou imperfeições nos transistores do circuito.

Um alto valor de razão de rejeição em modo comum (CMRR) minimiza o fenômeno de ganho de modo comum pois garante que o amplificador rejeite sinais comuns às duas entradas. CMRR em dB é dado pela relação entre o ganho diferencial em malha aberta e o ganho em modo comum do amplificador $(20log \, |A_v/A_{CM}|)$.

A tensão de offset é uma tensão que aparece na saída mesmo com a entrada nula. Ela é causada devido as diferenças físicas nos componentes que compõem o circuito.

O objetivo deste relatório é documentar o projeto de um amplificador operacional de estágio único que atenda as especificações detalhadas na Tabela I. A tecnologia que será utilizada é a ONC18: $0.18\mu m$ CMOS Process Technology - 18V / 18V.

TABLE I. OPERATIONAL AMPLIFIER SPECIFICATIONS

vdda	1.8	V	Power Supply
OCMR	0.5	V	Output Common-Mode Range
ICMR	0.5	V	Input Common-Mode Range
Av_db	50	dB	Gain in dB
Vcm	0.9	V	Common-Mode Voltage
GBW	10	MHz	Gain-Bandwidth
SR	10	V/us	Slew Rate
C_L	1	pF	Load

II. DESIGN

O design e as simulações do circuito amplificador operacional de estágio único [Fig. 2] foram desenvolvidas na ferramenta Cadence Virtuoso.

A. Espelho de corrente

Inicialmente, a corrente de referência do espelho de corrente foi especificada a partir do produto do Slew Rate e da carga, resultando em $10\mu A$. Entretanto, uma corrente de $20\mu A$ foi necessária para atender as specs de ganho e slew rate exigidas.

Em um espelho é possível espelhar tanto para baixo quanto para cima. Transistores tipo N foram escolhidos para que a corrente do espelho descesse.

O diode-connect do espelho garante que V_{GS} seja igual a V_{DS} , colocando o transistor na região de saturação. A fonte de corrente do espelho tem a premissa de não ter variação de corrente independente da tensão aplicada a ela.

O diode-connected foi organizado em série. Isso possibilitou que o comprimento do transistor de $28\mu m$ se transformasse em 4 transistores em série com $L=7\mu m$ cada um.

A fonte de corrente foi configurada em paralelo. Isso possibilitou que a largura do transistor $(5.75 \mu m)$ fosse dividida em 5 transistores com $W=1.15 \mu m$ cada um.

Os gates da fonte de corrente e do diode-connect são conectados para que a fonte espelhe a corrente inserida no dreno do transistor diode em uma relação $I_B = I_A \frac{W_B/L_B}{W_A/L_A} = I_A \frac{W/4L}{5W/L} = \frac{I_A}{20}$. Portanto, a fonte estará espelhando $1\mu A$ da corrente de referência $20\mu A$.

O nível de inversão forte está relacionado ao NMOS obedecer a $V_{GB}>V_{TH}$ e $V_{GS}-V_{TH}>>0$. A carga ativa e

Fig. 2. Stage-Single Operational Amplifier Schematic

o espelho de corrente do opamp devem estar na inversão forte assim como o par diferencial na inversão fraca.

A seguinte aproximação foi realizada para alcançar as inversões: strong inversion - $V_{Dsat} > 250mV$, moderate inversion - $150mV < V_{Dsat} > 250mV$, week inversion - $V_{Dsat} < 150mV$ and triode of week inversion: $V_{Dsat} < 50mV$.

B. Par diferencial e carga ativa

O dimensionamento dos transistores [Tab. II] foi definido buscando um alto g_m para o par diferencial e um baixo g_{ds} tanto para o transistor da entrada inversora do par quanto para o transistor da carga ativa, seguindo a relação do ganho $(A_v = g m_{G1A}/(g d s_{G1B} + g d s_{G2B})$.

TABLE II. TRANSISTOR SIZE

	W [um]	L [um]
Load	8	4
Pair	16.6	5.2
Mirror	5.75	7

Para deixar g_{ds} pequeno, W/L deve ser pequeno ao mesmo tempo que para g_m aumentar, W/L deve ser grande. É necessário lidar com esse tradeoff para alcançar o valor de ganho especificado.

O polo dominante deste sistema fica na saída. Ele é dado por $p_1=\frac{1}{RC}=1/[(rds_{G1B}+rds_{G2B})C_L]$ e fica mais dominante com o aumento da resistência.

Gain-bandwidth (GBW) é definido pelo polo no primeiro estágio e o ganho, ou seja, $GBW=A_vP_1=gm_{G1A}/C_{parasitic}$. Essa capacitância parasita pode ser aproximada pela carga de saída.

Input Common-Mode Rejection Ratio (ICMRR) define se a entrada será PMOS ou NMOS. ICMRR fica mais proximo do vdd na entrada p e mais proximo do 0 na entrada n. Para esse circuito, o par diferencial é constituído de transistores tipo n.

III. SIMULATION RESULTS

Quatro testbenchs foram utilizados para as simulações. O primeiro analisou slew rate, GBW, ganho em malha aberta, input common-mode range (ICMR) e Power. O segundo simulou output common-mode range (OCMR) e setling time. O terceiro analisou Power Supply Rejection Ratio (PSRR) e noise e o quarto simulou a capacidade de rejeição do opamp.

A. Test case 1

O primeiro testbench [Fig. 3] é constituído do opamp, uma carga capacitiva de 1pF, corrente de referência de $20\mu A$ e power supply de 1.8V. A entrada não inversora está conectada a um pulso com valor zero igual a -0.25 e valor um de 0.25V, com período de $0.1\mu s$ e rise e fall time de 1ns, que está associada em série com uma fonte de caracterizada como tensão de commom-mode, de 0.9V.

Fig. 3. Test case 1

O dispositivo IPRB0 está conectado entre a entrada inversora e a saída do amplificador. Esse dispositivo serve para avaliar o ganho e a fase do loop

Fig. 4. Open-loop Gain and Phase

A resposta em frequência do amplificador é dada na Figura 4. O ganho alcançado foi 50.66dB, a frequência de corte, que é visualizada analisando a frequência em que o ganho cai em

3dB, é aproximadamente 36.25kHz, e o ganho em banda é 10.71MHz, que pode ser aproximado pela frequência quando a amplitude está em 0dB.

Para simulação de slew rate e power é utilizada análise transiente. O power foi obtido a partir do produto entre power supply e corrente do circuito e slew rate foi calculado a partir da ferramenta Calculator, do Cadence Virtuoso.

O slew rate rise que analisa a variação de volts que a saída alcança com relação ao tempo de subida resultou em $12.07V/\mu s$ e o slew rise fall que segue o mesmo racioncínio, mas com relação ao tempo de descida, resultou em $-8.636V/\mu s$.

ICMR foi analisado a partir de simulação de, variando vem de 0 a vdd. A expressão utilizada foi a razão da derivada da saída do amplifeador com o ponto máximo dessa derivada em falling menos a razão da derivada da saída do amplifeador com o ponto máximo dessa derivada em rising. A região de cada razão utilizada para a subtração foi onde a forma de onda estava em alto, utilizando a função cross. O resultado obtido foi ICMR=1.152.

B. Test case 2

Fig. 5. Test case 2

No segundo testbench [Fig. 5] há um feedback negativo com dois resistores interligando a saída e a entrada inversora. A entrada não inversora está conectada a um fonte de de 0.25V associada em série com a tensão de modo-comum.

Fig. 6. Resposta no tempo do sistema

O settling time é associado ao tempo que a resposta da função de transferência demora para estabilizar. O opamp apresentou um settling time de $1.013\mu s$ e foi simulado na ferramenta Calculator.

O OCMR resultou em 831.9mV e foi obtido seguindo a mesma expressão de ICMRR, na simulação dc, variando a tensão da fonte dc da entrada inversora de -vdd/2 a vdd/2.

Fig. 7. Test case 3

C. Test case 3

O terceiro testbench [Fig. 7] apresenta a entrada não inversora do opamp similar ao testcase 2 e a entrada inversora similar ao testcase 1. A carga de saída é nula. A alimentação está associada em série a uma fonte de 0V e AC magnitude de 1V.

A simulação de noise foi feita com noise analyses configurada de 1Hz a 10MHz, Positive Output Node na net VOUT, Negative Output Node na net ground e Input Voltage Source na fonte da entrada não inversora. A forma de onda do ruído foi gerada a partir do quadrado da saída do opamp em dB, e seu valor resultante foi obtido da raíz quadrada do valor absoluto da integral de sua forma de onda, resultando em 89.96udB.

Fig. 8. PSRR

A simulação PSRR [Fig. 8] utilizou análise ac variando de 1GHz a 10GHz. PSRR foi encontrado a partir de - dB da função vfreq() do sinal de saída, retornando um valor de tensão na frequência em dB.

D. Test case 4

Fig. 9. Test case 4

O quarto testbench [Fig. 9] apresenta o componente diffstbprobe entre a entrada inversora e a saída do opamp e entre a entrada não inversora e a associação em série de componente de de 0.25V com vem, assim como no testease 1. Esa configuração foi utilizada para simulação de CMRR utilizando a análise stb de 1Hz a 10GHz, com Probe Instance/terminal no componente diffstbprobe e Local Ground Name na net ground.

Fig. 10. Opamp CMRR

A rejeição [Fig. 10] foi obtida de menos o dB da magnitude do ganho em malha aberta em baixa frequência, resultando em 5.46dB.

IV. CONCLUSION

TABLE III. OPERATIONAL AMPLIFIER PARAMETERS RESULTS CONSIDERING T=27°C AND PROCESS TYPIC TYPIC

Aol	50.66	dB	Open-loop gain
GBW	10.71	MHz	Gain-bandwidth
Selew rate rise	12.07	$V/\mu s$	
Selew rate fall	-8.636	$V/\mu s$	
ICMR	1.152	V	Input common-mode range
OCMR	831.9	mV	Output Common-Mode Range
Settling time	1.013	μs	
$Noise_{rms}$	89.96	μdB	
PSRR	6.77	dB	Power Supply Rejection Ratio