SOFT MARGIN CLASSIFICATION

For soft margin classifier, we need to allow some missclassifications so that we have a tradeff between the margin width and the 'correctness' of our classifier. This indicates that we need to have some 'slack' or 'dheel' (am) in classifying all the data points correctly so that our margin width does not suffer because of noise in our dataset.

Eg: It is unlikely that any real world data will be linearly separable, even if it is, it might look somewhat like:

A soft margin SVM will/can allow some slackness in the process which will give us a wider margin at the cost of a few misclassifications.

So we aim at minimizing the total amounts of slacks while maximizing the margin width. Let's introduce a slack variable &: for every training example i=1,....m.

Where & quantifies the 'error' or deviation of a + sample x. from the + margin: w.x + b = +1. For a SV, Esv > 1 means that it has been misclassified as it lies on the other side of the hyperplane. If Esv < 1, then it lies inside that margin yet correctly classified.

OPTIMIZATION:

 $\min_{\omega,b} \frac{1}{2} \|\omega\|^2 + C \sum_{i=1}^{m} \varepsilon_i$

subject to ① $y:(\omega \cdot x: +b) \ge (1-\varepsilon_i)$ $\forall i=1,2,...,m$

The amount of slack for the ith sample.

(2) $E_i > 0$ $\forall i = 1, 2, ..., m$

If C is large, then even a very little slack will increase the cost. If C is kept small, then relatively more slack can be allowed.

Thus, reducing C helps in increasing the no. of SVs inside and on the margin which results in decreasing the variance and reducing over-fitting because our model will generalize better.

New Primal Problem:

New Primal Problem:
$\mathcal{L}(\omega,b,\varepsilon,\alpha,u) = \frac{1}{2}\omega.\omega + C\sum_{i=1}^{m} \varepsilon_{i} - \sum_{i=1}^{m} \alpha_{i}[y_{i}(\omega.x_{i}+b) - (1-\varepsilon_{i})] - \sum_{i=1}^{m} u_{i}\varepsilon_{i}$
$\alpha_{i} \geqslant 0$ $\forall i = 1, 2, \ldots, m$ $\alpha_{i} \geqslant 0$
min $\max_{\omega,b,\epsilon} \chi(\omega,b,\epsilon,\alpha,\mu)$ ω,b,ϵ α,μ
NOTE: $y_i(\omega, x_i + b) \ge 1 - E_i$ if $E_i = 0$, then this ith sample is correctly classified.
if $y_i(w.x; +b) = 1-0$ then it's a correctly classified S.V.
else if \mathcal{E} ; > 0, then this sample might be misclassified. if $y_i(\omega.x_i + b) = 1 - \mathcal{E}_i$ and $\mathcal{E}_i > 1$
then this is a misclassified data point.
else if $y_i(\omega.x; +b) > 1- E_i$ is smaller than 1, then it's misclassified.
Partially differentiating the Primal Lagrangian wrt the Primal Variables w, b and & gives us:
$\frac{\partial \mathcal{L}}{\partial \omega} = \omega - \sum_{i=1}^{m} \alpha_i y_i x_i$ $\frac{\partial \mathcal{L}}{\partial b} = -\sum_{i=1}^{m} \alpha_i y_i$
$\frac{\partial \mathcal{L}}{\partial \xi_{i}} = C - \alpha_{i} - \mu_{i}$
Equating them to zero gives:

	$\omega = \sum_{i=1}^{n} \alpha_{i} y_{i} \times i$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\frac{1}{1} = \frac{1}{1} = \frac{1}$
	ubstituting ①,② and ③ after simplifying our rimal Problem:
L	$\sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) - \sum_{i=1}^{m} \alpha_{i} y_{i} (\{\sum_{j=1}^{m} \alpha_{j} y_{j} \times y_{j}\} \cdot x_{i}) - \sum_{i=1}^{m} \alpha_{i}^{i} y_{i}$
	$+\sum_{i=1}^{N}\alpha_{i}^{2}-\sum_{i=1}^{N}\alpha_{i}^{2}\xi_{i}^{2}-\sum_{i=1}^{N}\mu_{i}\xi_{i}^{2}+C\sum_{i=1}^{N}\xi_{i}^{2}$
\mathcal{L}_{1}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
, L	$\mathcal{C}(\alpha) = \sum_{i=1}^{m} \alpha_{i} - \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{j} (x_{i} \cdot x_{j}) $
a	learly, α ; > 0 and μ ; > 0 \forall $i = 1, 2,, m$ as they are Langrangian Multipliers. Niven that α ; $= C - \mu$; (from 3)
	$0 \leq \infty; \leq C$
	All data points for which O<0; <c are="" exactly="" holds="" lie="" margin.<="" on="" our="" support="" td="" that="" true,="" vectors=""></c>
	This is explained by Karush - Kuhn Tucker conditions.
	Now, solving the Dual Problem shown above, we will get our Lagrangian Multipliers back. This enables us
	to get back our Primal Variables w and b which parametrize our separating hyperplane.

parametrize our separating hyperplane.	
$\omega^* = \sum_{i=1}^{m} \alpha_i y_i x_i \qquad (From 1)$	
i=1	
Once we get w, we can plug in that in	ito:
$\omega^* \times_{sv} + b^* = y_{sv} - \Phi$	
for some SV lying exactly on our marg	in.
$\Rightarrow b^* = y_{sv} - \omega_{\bullet} \times_{sv}$	
41 avacuts as was bundent door we	co door at
If everything was hunky-dory, we we	(E MOTTE AL
this point. BUT	
It is possible that none of the SVs	lie exactly
on the margin i.e. all SVs violate the	_
Then we can't use (4) as our assumption	
By some more math, we can say that	
a case we can find b* as follows:	
$b^* = Median (y_s - \omega^* \times_s) \forall s \in SV_s.$	1