IoTSafe: Enforcing Safety and Security Policy with Real IoT Physical Interaction Discovery

Wenbo Ding¹ Hongxin Hu² Long Cheng¹

NDSS 2021

Background

- Market size is huge
- Devices are fast-growing
- Provided functions are more complicated

Smart home platforms

Physical Interaction

Motivation

- Current policy enforcement systems cannot capture <u>real</u> physical interactions between IoT devices.
- Safety/Security Policy
 - "Do not open the window if no one is at home."

Motivation

- Safety/Security Policy
 - "Turn off the heater when the infant room temperature is above 85F."

Challenges

- Identifying Real Physical Interactions
 - Spatial Context

- Joint Effect

IoTSafe Overview

Testing Case Generation

Dynamic Testing

Thermostat.heating

Thermostat.heating

s3

s2

Single tests;

wait

Sensor Report Time

Sensor Report Time

Heater.on

s1

AC.heating

AC.heating

Room 2 seq1-cross tests

s2

s1 _II

wait

s3

Bu

Time

Runtime Prediction

Initialize devices' model based on testing data

Safety & Security Policy

- Policy for Instant Interactions
 - "All electrical appliances cannot be turned on when smoke is detected."
- Policy for Temporal Interactions
 - "Turn off the heater and send a warning when the temperature is above 85F."

More devices?

```
If (device_id =="Smoke_sensor1") &&
(Smoke_sensor1.value == "detected"):
    deny(appliances.on);
```

Example of Instant Interaction
Control Policy

```
If (device_id =="Temp_sensor1") &&
(Temp_sensor1.value > 85 ):
    implement(heater.off);
    implement(push(temperature warning));
```

Example of Temporal Interaction Control Policy

Evaluation Setup

Apps

21 SmartThings official applications

Datasets

- Two real user routine datasets[1][2]
- 7 groups

Device

- Sensors
- Lock
- Switches
- Toaster
- Heater, AC, Thermostat

– ...

Testbed for group 4

Real Physical Interaction Discovery

Static Analysis

- 21 applications in total
- Seven groups
- Three groups of real user data

Group ID	Potential Interaction[1]	Real Interaction	FP of Static Analysis	FN of Static Analysis
1	17	12	5	6
2	13	5	8	1
3	41	19	22	9
4	130	39	91	17
5	32	14	18	4
6	46	17	29	8
7	42	22	20	6

Physical Interaction Discovery Results

Implicit Interactions

From 33 devices

- Y represents real interactions identified by IoTSafe
- O represents implicit interactions identified by IoTSafe
- X represents unreal interactions results

Devices	Temperature	Humidity	Smoke	Motion
Thermostat	Υ	0		
Radiator	Υ	0	X	
Coffee Machine		0		
Kettle		Υ		0
Robot				0
Stove	0			
Air Fryer	0	0		

Physical Model

- Channel Specific
 - 3 Physical channels
 - Based on different sensor intervals

Physical Channel	Prediction Lead Time(minute)	Average Error	Error Percentage
	45	3.3F 🛉	4.6%
Temperature	30	1.5F	2.1%
	15	1.0F	1.4%
	45	7.1% 🕇	11.8%
Humidity	30	3.4%	5.7%
	15	1.3%	2.2%

Average Errors For Two Channels

Runtime Prediction

- Temperature
 - 80F as threshold
 - Detected 15 (93%) risky situations based on group 1
- Multiple Channels
 - 12 predefined risky situations
 - Detected 53 (96%) risky situations based on group 4

Effectiveness of Temperature Prediction

Case Study

- Safety/Security Policy
 - Do not open the window if no one is at home.

Related Work

System	App Analysis	Real Physical Interaction	Runtime Policy Enforcement	Condition Prediction	Policy Correction
<u>IoTSafe</u>	*	*	✓	✓	4
IoTGuard[NDSS,19]					
Peeves[CCS,19]	*	*			
Helion[S&P 20]	*		✓		
iRuler[SIGSAC,19]	*				4
IoTMon[CCS,18]					
HomeGuard[DSN 20]	*				✓
Menshen[TCPS,18]	*				✓

Conclusion

- IoTSafe: Enforcing Safety and Security Policy with Real IoT Physical Interaction Discovery
 - Real physical interaction discovery
 - Runtime modeling and prediction
 - Runtime policy enforcement
- Implementation and Evaluation
 - 7 testbeds;
 - 96% enforcement accuracy
- Future Work:
 - Other prediction/modeling methods
 - Consider human interactions
 - Cross-platform access control

Q & A

Thank you!

Email: wding@clemson.edu

Threat Model

- Vulnerable or Malicious Applications
 - Design/implementation flaws
 - Code with hidden intentions
- Vulnerable Devices
 - Design flaws

Design Goal

- A system can capture all potential physical interactions and enable policy enforcement
 - -capture real physical interactions on the platform
 - -Build physical **models** for temporal interactions
 - -Predict physical conditions based on models
 - Enforce policies properly

Performance

- Dynamic Testing
 - 40 to 135 minutes
- Runtime Latency
 - Around 230ms
- New Device Initialization
 - 3 related sensor reports

Time consumption of new device initialization

Application Analysis

