

_

/

Regularization

- ▶ Trades increased bias for reduced variance
- ► Goal is to minimize generalization error despite using large model family

13

Let X = (X, y) denote the dataset and w the model parameters. We can **limit the** $oxed{model capacity}$ by adding a parameter norm penalty $oldsymbol{\it R}$ to the loss $oldsymbol{\it L}$ $\tilde{\mathcal{L}}(\mathcal{X}, \mathbf{w}) = \mathcal{L}(\mathcal{X}, \mathbf{w}) + \alpha \mathcal{R}(\mathbf{w})$ Parameter Total Loss Original Loss Regularizer **Penalties** where $\alpha \ \in$ [0, ∞) controls the strength of the regularizer. ightharpoonup quantifies the size of the parameters / model capacity ightharpoonup Minimizing \tilde{L} will decrease both L and Rightharpoonup Typically, $m extit{\it R}$ is applied only to the weights (not the bias) of the affine layers ▶ Often, R drives weights closer to the origin (in absence of prior knowledge)

Parameter Penalties

Why do we want the weights/inputs to be small?

► Suppose x_1 and x_2 are nearly identical. The following two networks make nearly the **same predictions**:

▶ But the second network might predict wrongly if the test distribution is slightly different (x_1 and x_2 match less closely) \Rightarrow Worse generalization

17

L2 Regularization

• Weight Decay

Cost function = Loss +
$$\frac{\lambda}{2m}$$
 * $\sum ||w||^2$

L1 Regularization

$$Cost function = Loss + \frac{\lambda}{2m} * \sum ||w||$$

19

Early Stopping

- ▶ While training error decreases over time, validation error starts increasing again
- ► Thus: train for some time and return parameters with lowest validation error

23

Early Stopping

Early Stopping:

- ► Most commonly used form of regularization in deep learning
- ► Effective, simple and computationally efficient form of regularization
- ➤ Training time can be viewed as hyperparameter ⇒ model selection problem
- ► Efficient as a single training run tests all hyperparameters (unlike weight decay)
- ▶ Only cost: periodically evaluate validation error on validation set
- ► Validation set can be small, and evaluation less frequently

Remark: If little training data is available, one can perform a second training phase where the model is retrained from scratch on all training data using the same number of training iterations determined by the early stopping procedure

Ensemble Methods

25

Traditionally ensemble method

- Refer to combining models using different algorithms.
- Ensemble model often outperform other classification method.

• Bias refers to the prediction error due to the wrong modeling assumption. • The variance on the other hand, refers to the error from the sensitivity to small fluctuation **BAIS Vs Variance** in the training data set. • Ideally, we want a model to have both low variance and low bias.

BAGGING VS. BOOSTING QUIZ		
	BAGGING	BOOSTING
COMBINING METHOD	Simple average Weighted average	O Simple average Ø Weighted average
PARALLEL COMPUTING	○ Hard S Easy	Ø Hard ○ Easy
SENSITIVE TO NOISE	⊗ Less ○ More	O Less & More
4001104014	of Good in all cases	O Good in all cases
ACCURACY	O Better in most cases	O Better in most cases
	O Better in most cases AGGING VS. BOOSTI	
	AGGING VS. BOOSTI	NG QUIZ
BA	BAGGING Simple average	NG QUIZ BOOSTING Simple average
COMBINING METHOD PARALLEL	BAGGING Simple average Weighted average Hard	NG QUIZ BOOSTING Simple average Weighted average Hard