第6章 计算机的运算方法

- 6.1 无符号数和有符号数
- 6.2 数的定点表示和浮点表示
- 6.3 定点运算
- 6.4 浮点四则运算
- 6.5 算术逻辑单元

6.1 无符号数和有符号数

一、无符号数

寄存器的位数

反映无符号数的表示范围

8位

 $0 \sim 255$

16位

 $0 \sim 65535$

n位无符号数表示范围0~2n-1

寄存器和存储器

- 算数运算指令使用寄存器,复杂数据 (数组、结构体等)使用存储器
- ●寄存器比存储器访问速度快
- 对存储器数据的操作需要加载(load) 和存储(store)
 - 需要执行更多的指令
- ●编译器必须对变量尽可能使用寄存器
 - 只有对最近使用少的变量才放到存储器中
 - 寄存器的优化很重要!

二、有符号数

6.1

1. 机器数与真值

真值

带符号的数

+0.1011

-0.1011

+ 1100

-1100

机器数

符号数字化的数

0 1011

小数点的位置

1 1011

小数点的位置

0 1100

小数点的位置

1 1100

小数点的位置

2. 原码表示法

(1) 定义

整数
$$[x]_{\mathbb{R}} = \begin{cases} 0, & x & 2^n > x \ge 0 \\ 2^n - x & 0 \ge x > -2^n \end{cases}$$

x 为真值 n 为整数的位数

如
$$x = +1110$$
 $[x]_{\mathbb{F}} = 0$, 1110 用逗号将符号位和数值部分隔开 $x = -1110$ $[x]_{\mathbb{F}} = 2^4 + 1110 = 1$, 1110 带符号的绝对值表示

6.1

小数

$$[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \ge 0 \\ 1 - x & 0 \ge x > -1 \end{cases}$$

x 为真值

如
$$x = +0.1101$$

$$[x]_{\mathbb{R}} = 0$$
, 1101

用小数点将符号位和数值部分隔开

$$x = -0.1101$$

$$[x]_{\text{\tiny \mathbb{R}}} = 1 - (-0.1101) = 1.1101$$

$$x = +0.1000000$$

$$[x]_{\mathbb{R}} = 0 + 1000000$$

用 小数点 将符号 位和数值部分隔开

$$x = -0.1000000$$

$$[x]_{\mathbb{R}} = 1 - (-0.1000000) = 1.1000000$$

(2) 举例

6.1

例 6.1 已知 $[x]_{\mathbb{R}} = 1.0011$ 求 x - 0.0011

解: 由定义得

 $x = 1 - [x]_{\text{if}} = 1 - 1.0011 = -0.0011$

例 6.2 已知 $[x]_{\mathbb{R}} = 1,1100$ 求 x - 1100

解:由定义得

 $x = 2^4 - [x]_{\text{ff}} = 100000 - 1,1100 = -11000$

例 6.3 已知 $[x]_{\mathbb{R}} = 0.1101$ 求 x

6.1

解: 根据 定义 : $[x]_{g} = 0.1101$

x = +0.1101

例 6.4 求 x=0 的原码

解: 设x = +0.0000

 $[+0.0000]_{\text{\tiny \bar{\tiny |}}} = 0.0000$

x = -0.0000

 $[-0.0000]_{\text{@}} = 1.0000$

同理,对于整数

 $[+0]_{\text{\tiny \mathbb{R}}} = 0,0000$

 $[-0]_{\text{\tiny \mathbb{R}}} = 1,000$

 $\vdots \quad [+0]_{\mathbb{R}} \neq [\quad \boxed{0}]_{\mathbb{R}}$

原码的特点:简单、直观 6.1 但是用原码作加法时,会出现如下问题:

要求	数1	数2	实际操作	结果符号
加法	正	正	加	正
加法	正	负	减	可正可负
加法	负	正	减	可正可负
加法	负	负	加	负

能否 只作加法? 找到一个与负数等价的正数 来代替这个负数 就可使 减 —— 加

3. 补码表示法

(1) 补的概念

• 时钟

逆时针

顺时针

可见-3可用+9代替 减法-

称 + 9 是 - 3 以 12 为模的 补数

记作
$$-3 \equiv +9 \pmod{12}$$

$$-5 \equiv +7 \pmod{12}$$

时钟以 12为模 结论 6.1

- 一个负数加上"模"即得该负数的补数
- ▶ 一个正数和一个负数互为补数时 它们绝对值之和即为 模 数
 - 计数器(模 16) 1011 ── 0000?

$$\begin{array}{r}
 1011 \\
 -1011 \\
 \hline
 0000
 \end{array}$$

1011 + 0101 10000

可见-1011 可用 + 0101 代替

 $\pmod{2^4}$

同理
$$-011 \equiv +101$$
 (mod 2^3)

$$-0.1001 = +1.0111 \tag{}$$

(mod 2)

自然去掉

(2) 正数的补数即为其本身

6.1

```
+ 0101 \pmod{2^4}
两个互为补数的数
分别加上模
                 + 10000
                               + 10000
                 + 0101
结果仍互为补数
                             (\text{mod}2^4)
       \therefore + 0101 \equiv + 0101
                                           丢掉
        +0101 \rightarrow +0101
      ? 0,0101 \rightarrow + 0101
         1,0101 \rightarrow -1011
          -1011 = 100000
                                      (mod
                    -1011
                                  用 逗号 将符号位
                                  和数值部分隔开
```

(3) 补码定义

整数

$$[x]_{\nmid h} = \begin{cases} 0, & x \\ 2^{n} > x \ge 0 \\ 2^{n+1} + x & 0 > x \ge -2^{n} \pmod{2^{n+1}} \end{cases}$$

x 为真值

如

n 为整数的位数

x = +1010

$$[x]_{\dagger \ } = 2^{7+1} + (-1011000)$$

$$= 100000000$$

$$- 1011000$$

$$1,0101000$$

x = -1011000

小数

$$[x]_{\nmid h} = \begin{cases} x & 1 > x \ge 0 \\ 2 + x & 0 > x \ge -1 \pmod{2} \end{cases}$$

x 为真值

如
$$x = +0.1110$$

$$x = -0.1100000$$

$$[x]_{\not \nmid h} = 0.1110$$

$$[x]_{\begin{subarray}{l} [x]_{\begin{subarray}{l} \begin{subarray}{l} \begin{subarra$$

1.0100000

用小数点将符号位

和数值部分隔开

(4) 求补码的快捷方式

设x = -1010时

又[
$$x$$
]_原 = 1,1010

当真值为负时,补码可用原码除符号位外每位取反,末位加1求得

```
(5) 举例
```

6.1

例 6.5 已知 $[x]_{\dot{\gamma}} = 0.0001$ 求 x

解: 由定义得 x = +0.0001

例 6.6 已知 $[x]_{\stackrel{}{\uparrow}} = 1.0001$ 求 x

解:由定义得

$$x = [x]_{\frac{1}{7}} - 2$$

$$= 1.0001 - 10.0000$$

$$= -0.1111$$

 $[x]_{\uparrow h} \xrightarrow{?} [x]_{\bar{\mathbb{R}}}$

 $[x]_{\mathbb{R}} = 1.1111$

x = -0.1111

例 6.7 已知 $[x]_{\uparrow i} = 1,1110$

求x

解: 由定义得

$$x = [x]_{n} - 2^{4+1}$$

= 1,1110 - 100000

= -0010

$$[x]_{\stackrel{\wedge}{\mathbb{N}}} \stackrel{?}{\longrightarrow} [x]_{\mathbb{R}}$$

$$[x]_{\mathbb{R}} = 1,0010$$

$$\therefore x = -0010$$

当真值为负时,原码可用补码除符号位外

每位取反,末位加1求得

真值	$[x]_{\uparrow h}$	[x] _原
x = +70 = 1000110	0, 1000110	0,1000110
x = -70 = -1000110	1, 0111010	1,1000110
x = 0.1110	0.1110	0.1110
x = -0.1110	1.0010	1.1110
$x = \boxed{0.0000} [+0]_{\nmid \mid} = [-1]_{\mid \mid}$	- 0] _≱ 0.0000	0.0000
x = -0.0000	0.0000	1.0000
x = -1.0000	1.0000	不能表示
由小数补码定义 [x]*	$_{1}=\langle$	$c \ge 0$ $c \ge -1 \pmod{2}$

 $[-1]_{3} = 2 + x = 10.0000 - 1.0000 = 1.0000$

4. 反码表示法

(1) 定义

整数

如
$$x = +1101$$
 $[x]_{\overline{\mathbb{Q}}} = 0,1101$ 用 逗号 将符号位

用 逗号 将符号位 和数值部分隔开

$$x = -1101$$
 $[x]_{\overline{\mathbb{R}}} = (2^{4+1} - 1) - 1101$
 $= 11111 - 1101$
 $= 1,0010$

小数 6.1

$$[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \ge 0 \\ (2 - 2^{-n}) + x & 0 \ge x > -1 \pmod{2 - 2^{-n}} \end{cases}$$

x 为真值 n 为小数的位数

如

$$x = +0.1101$$
 $x = -0.1010$
$$[x]_{\overline{\mathbb{Q}}} = 0.1101 \qquad [x]_{\overline{\mathbb{Q}}} = (2-2^{-4}) - 0.1010$$

$$= 1.1111 - 0.1010$$

$$= 1.0101$$
 和数值部分隔开

```
例6.8
          已知 [x]_{\overline{\aleph}} = 0.1110 求 x
          由定义得 x = +1110
  解:
          已知 [x]_{\mathbb{R}} = 1,1110 求 x
例6.9
          由定义得 x = [x]_{\mathbb{R}} - (2^{4+1} - 1)
  解:
                           = 1,1110 -11111
                           = -0001
例 6.10 求 0 的反码
  解:  设  x = +0.0000   [+0.0000]_{\Xi} = 0.0000 
             x = -0.0000 [-0.0000]_{\text{F}} = 1.1111
同理,对于整数 [+0]_{\mathbb{Z}} = 0,0000 [-0]_{\mathbb{Z}} = 1,1111
              [+0]_{\bowtie} \neq [-0]_{\bowtie}
```

三种机器数的小结

- ▶最高位为符号位,书写上用","(整数)或"."(小数)将数值部分和符号位隔开
- ▶ 对于正数,原码 = 补码 = 反码
- ▶ 对于负数,符号位为1,其数值部分原码除符号位外每位取反末位加1→补码原码除符号位外每位取反一反码

例6.11 设机器数字长为8位(其中1位为符号位)6.1 对于整数,当其分别代表无符号数、原码、补码和 反码时,对应的真值范围各为多少?

二进制代码	无符号数 对应的真值	原码对应 的真值	补码对应 的真值	反码对应 的真值
0000000	0	+0	±0	+0
00000001	1	+1	+1	+1
00000010	$\overline{2}$	+2	+2	+2
00000010		T <i>2</i>	<i>⊤4</i>	TZ
0444444			405	
01111111	127	+127	+127	+127
10000000	128	-0	-128	-127
10000001	129	-1	-127	-126
:	•	•	:	:
•	•	•		
11111101	253	-125	-3	-2
11111110	254	-126	-2	-1
11111111	255	-127	-1	-0

例6.12 已知 [y]_补 求 [-y]_补

解: 设 $[y]_{\uparrow} = y_0 \cdot y_1 y_2 \cdot \cdot \cdot y_n$

 $[y]_{\nmid k} = 0. y_1 y_2 \dots y_n$

[y]**连同符号位在内, 每位取反, 末位加1 即得[-y]**

$$[-y]_{\nmid h} = 1.\overline{y_1} \overline{y_2} ... \overline{y_n} + 2^{-n}$$

<<u>||</u>> $[y]_{\not \Vdash} = 1. y_1 y_2 \cdots y_n$

> [y]**连同符号位在内, 每位取反, 末位加1 即得[-y]**

$$[-y]_{\nmid h} = 0.\overline{y_1}\overline{y_2}\cdots\overline{y_n} + 2^{-n}$$

6.1

5. 移码表示法

6.1

补码表示很难直接判断其真值大小

11 12/2/1/10/10/10/10/10/10/10/10/10/10/10/10/1					
如 十进制	一边	性制	补码		
x = +2	21 +10	101	0,10101		
x = -2	-10	101	1,01011		
x = +3	31 +11	111	0,11111		
x = -3	31 −11	111	1,00001		
$x + 2^5$					
+10101 + 1000000 = 110101 大 正确					
-10101 + 1000000 = 001011					
+11	111 + 100000	= 111111	大工程		

-11111 + 100000 = 000001

正确

(1) 移码定义

6.1

$$[x]_{8} = 2^{n} + x \quad (2^{n} > x \ge -2^{n})$$

x 为真值, n 为 整数的位数

移码在数轴上的表示

如 x = 10100

$$[x]_{38} = 2^5 + 10100 = 1,10100$$

 $x = -10100$

$$[x]_{38} = 2^5 - 10100 = 0,01100$$

用 <mark>逗号</mark> 将符号位 和数值部分隔开

(2) 移码和补码的比较

设
$$x = +1100100$$
 $[x]_{8} = 2^{7} + 1100100 = 1,1100100$ $[x]_{1} = 0,1100100$ 设 $x = -1100100$ $[x]_{1} = 2^{7} - 1100100 = 0,0011100$ $[x]_{1} = 1,0011100$ 补码与移码只差一个符号位

(3) 真值、补码和移码的对照表

6	_1

真值 x (n=5)	$[x]_{ eta}$	[x] _移	[x] _移 对应的 十进制整数
-100000 -11111 -11110 : -00001 ±00000 +00001 +00010 : +11110	100000 100001 100010 :: 111111 000000 000001 000010 :: 011110	000000 000001 000010 :: 011111 100000 100001 100010 :: 111110	0 1 2 31 32 33 34 62
+ 11111	011111	111111	63

当
$$x = 0$$
 时 $[+0]_{8} = 2^{5} + 0 = 1,00000$

$$[-0]_{8} = 2^{5} - 0 = 1,00000$$

$$[+0]_{8} = [-0]_{8}$$

 \rightarrow 当 n=5 时 最小的真值为 $-2^5=-100000$ $[-100000]_{8}=2^5-100000=0000000$

可见,最小真值的移码为全0

用移码表示浮点数的阶码能方便地判断浮点数的阶码大小

作业

● 习题: 6.3, 6.6, 6.10

6.2 数的定点表示和浮点表示

小数点按约定方式标出,不占用专门硬件

一、定点表示

或

小数点位置

定点机

小数定点机

整数定点机

$$-(1-2^{-n}) \sim +(1-2^{-n})$$

$$-(2^n-1) \sim +(2^n-1)$$

$$-1 \sim +(1-2^{-n})$$

$$-2^n \sim +(2^n-1)$$

$$-(1-2^{-n}) \sim +(1-2^{-n})$$

$$-(2^n-1) \sim +(2^n-1)$$

二、浮点表示

```
N = S \times r^{j} 浮点数的一般形式
S 尾数 j 阶码 r 基数 (基值)
计算机中 r 取 2、4、8、16等
                                二进制表示
当 r=2 N=11.0101
            ✓=0.110101×2<sup>10</sup> 规格化数
              =1.10101\times2^{1}
              = 1101.01 \times 2^{-10}
            \checkmark = 0.00110101 \times 2^{100}
```

计算机中 S 小数、可正可负 j 整数、可正可负

1. 浮点数的表示形式

 $S_{\rm f}$ 代表浮点数的符号

n 其位数反映浮点数的精度

m 其位数反映浮点数的表示范围

j_f和 m 共同表示小数点的实际位置

2. 浮点数的表示范围

6.2

上溢 阶码 > 最大阶码

下溢 阶码 < 最小阶码 按 机器零 处理

 $-2^{-(2^{m}-1)}\times 2^{-n}$

$$-2^{-15} \times 2^{-10}$$

设 m=4 n=10

设机器数字长为 24 位, 欲表示±3万的十进制数, 试问在保证数的最大精度的前提下, 除阶符、数符各取1 位外, 阶码、尾数各取几位?

解:
$$2^{14} = 16384$$
 $2^{15} = 32768$

∴ 15 位二进制数可反映 ±3 万之间的十进制数

$$2^{15}$$
 × $0.$ × × × ··· × × × ··· × × × $m = 4$, 5 , 6 , ···

满足 最大精度 可取 m=4, n=18

3. 浮点数的规格化形式

```
r=2 尾数最高位为 1
```

r=4 尾数最高 2 位不全为 0

r=8 尾数最高 3 位不全为 0

基数不同,浮点数的 规格化形式不同

4. 浮点数的规格化

r=2 左规 尾数左移 1 位,阶码减 1

右规 尾数右移1位,阶码加1

r=4 左规 尾数左移 2 位,阶码减 1

右规 尾数右移 2 位, 阶码加 1

r=8 左规 尾数左移 3 位,阶码减 1

右规 尾数右移 3 位, 阶码加 1

基数r越大,可表示的浮点数的范围越大基数r越大,浮点数的精度降低

例如: 设m=4, n=10, r=2

尾数规格化后的浮点数表示范围

最大负数
$$2^{-1111} \times (-0.1000000000) = -2^{-15} \times 2^{-1} = -2^{-16}$$

最小负数
$$2^{+1111} \times (-0.1111111111)$$
 $= -2^{15} \times (1-2^{-10})$ $10 \uparrow 1$

三、举例

6.2

例 6.13 将 + 19 写成二进制定点数、浮点数及在定点机和浮点机中的机器数形式。其中数值部分均取 10 位,数符取 1 位,浮点数阶码取 5 位(含1位阶符)。

解: 设 $x = + \frac{19}{128}$

二进制形式 x = 0.0010011

定点表示 x = 0.0010011000

浮点规格化形式 $x = 0.1001100000 \times 2^{-10}$

定点机中 $[x]_{\mathbb{R}} = [x]_{\mathbb{A}} = [x]_{\mathbb{R}} = 0.0010011000$

浮点机中 $[x]_{\mathbb{R}} = 1,0010; 0.1001100000$

 $[x]_{3} = 1, 1110; 0.1001100000$

 $[x]_{\mathbb{R}} = 1, 1101; 0.1001100000$

例 6.14 将 -58 表示成二进制定点数和浮点数, 6.2 并写出它在定点机和浮点机中的三种机器数及阶码为移码、尾数为补码的形式(其他要求同上例)。

二进制形式

定点表示

x = -111010

x = -0000111010

浮点规格化形式 $x = -(0.1110100000) \times 2^{110}$

定点机中

 $[x]_{\text{ff}} = 1,0000111010$

 $[x]_{3} = 1,1111000110$

 $[x]_{\mathbb{R}} = 1,1111000101$

浮点机中

 $[x]_{\text{ff}} = 0,0110; 1.1110100000$

 $[x]_{3} = 0,0110; 1.0001100000$

 $[x]_{\mathbf{x}} = 0,0110; 1.0001011111$

 $[x]_{\text{mb}}$ [x] [x

例 6.15 写出对应下图所示的浮点数的补码 6.2 形式。设 n=10, m=4, 阶符、数符各取 1位。

机器零 6.2

- 当浮点数尾数为0时,不论其阶码为何值 按机器零处理
- 当浮点数阶码等于或小于它所表示的最小数时,不论尾数为何值,按机器零处理

如 m=4 n=10

当阶码和尾数都用补码表示时,机器零为

 $\times, \times \times \times \times; \quad 0.00 \quad \cdots \quad 0$

(阶码 = -16) 1, 0 0 0 0; ×.×× ··· ×

当阶码用移码,尾数用补码表示时,机器零为 0,0000; 0.00 ··· 0

有利于机器中"判0" 电路的实现

	S	阶码	马(含阶	符)		尾	数		
	数符	•		小数	点位置				
	戽	三数用	原码表示	5,规构	各化表	示			
非	"0"	的有	效位最高	高位为	"1"	(第一	位总为1	,隐含	
			符号位	S	阶码	尾	数	总位数	
	短乡	 英	1		8	2	23	32	
	长多	 火数	1		11	5	52	64	
	临时	寸实数	1		15	6	54	80	

6.3 定点运算

- 一、移位运算
 - 1. 移位的意义

15 m = 1500 cm

小数点右移 2 位

机器用语 15 相对于小数点 左移 2 位

(小数点不动)

左移 绝对值扩大

右移 绝对值缩小

在计算机中,移位与加减配合,能够实现乘除运算

2. 算术移位规则

符号位不变

真值	码制	添补代码
正数	原码、补码、反码	0
	原码	0
负数	补 码	左移添0
火蚁	小小和母	右移添1
	反 码	1

例6.16 6.3

设机器数字长为8位(含1位符号位),写出 A=+26时,三种机器数左、右移一位和两位后的表 示形式及对应的真值,并分析结果的正确性。

解: A = +26 = +11010 则 $[A]_{\mathbb{R}} = [A]_{\mathbb{A}} = [A]_{\mathbb{L}} = 0,0011010$

移位操作	机 器 数 [A] _原 =[A] _补 =[A] _反	对应的真值
移位前	0,0011010	+26
左移一位	0,0110100	+52
左移两位	0,1101000	+104
右移一位	0,0001101	+13
右移两位	0,0000110	+6

例6.17

设机器数字长为8位(含1位符号位),写出 A=-26时,三种机器数左、右移一位和两位后的表 示形式及对应的真值,并分析结果的正确性。

A = -26 = -11010

原码

移位操作	机器数	对应的真值
移位前	1,0011010	-26
左移一位	1,011010 <mark>0</mark>	- 52
左移两位	1,1101000	-104
右移一位	1,0001101	-13
右移两位	1,0000110	-6

6.3

补码

移位操作	机器数	对应的真值
移位前	1,1100110	-26
左移一位	1,1001100	- 52
左移两位	1,0011000	-104
右移一位	1, <mark>1</mark> 110011	-13
右移两位	1,1111001	-7

反码

移位操作	机器数	对应的真值
移位前	1,1100101	-26
左移一位	1,1001011	-52
左移两位	1,0010111	-104
右移一位	1, <mark>1</mark> 110010	- 13
右移两位	1,1111001	-6

3. 算术移位的硬件实现

6.3

负数的反码

正确

(d)

(a) 真值为正 (b) 负数的原码 (c) 负数的补码
 ←丢1 出错 出错 正确
 →丢1 影响特度 影响特度 影响特度

ightharpoons ightharpoo

4. 算术移位和逻辑移位的区别

6.3

算术移位 有符号数的移位

逻辑移位 无符号数的移位

逻辑左移 低位添 0, 高位移丢

逻辑右移 高位添 0, 低位移丢

例如 01010011

逻辑左移 10100110

算术左移 00100110

高位1移丢

 $C_y \leftarrow 0 1 0 1 0 0 1 1$

0 10110010

01011001

11011001 (补码)

10100110

0

逻辑右移

算术右移

作业

● 习题: 6.15, 6.16, 6.17

二、加减法运算

1. 补码加减运算公式

(1) 加法

整数
$$[A]_{\stackrel{.}{\uparrow}_{1}} + [B]_{\stackrel{.}{\uparrow}_{1}} = [A+B]_{\stackrel{.}{\uparrow}_{1}} \pmod{2^{n+1}}$$

小数 $[A]_{\stackrel{.}{\uparrow}_{1}} + [B]_{\stackrel{.}{\uparrow}_{1}} = [A+B]_{\stackrel{.}{\uparrow}_{1}} \pmod{2}$

(2) 减法

$$A-B = A+(-B)$$

整数 $[A-B]_{\stackrel{}{\mathcal{N}}} = [A+(-B)]_{\stackrel{}{\mathcal{N}}} = [A]_{\stackrel{}{\mathcal{N}}} + [-B]_{\stackrel{}{\mathcal{N}}} \pmod{2^{n+1}}$ 小数 $[A-B]_{\stackrel{}{\mathcal{N}}} = [A+(-B)]_{\stackrel{}{\mathcal{N}}} = [A]_{\stackrel{}{\mathcal{N}}} + [-B]_{\stackrel{}{\mathcal{N}}} \pmod{2}$ 连同符号位一起相加,符号位产生的进位自然丢掉

```
2. 举例
                                                         6.3
  例 6.18 设 A = 0.1011, B = -0.0101
              求 [A+B]_{\lambda k}
                                                验证
        解: [A]_{\stackrel{?}{\land}} = 0.1011
                                                        0.1011
              +[B]_{\lambda} = 1.1011
                                                      -0.0101
                                                        0.0110
        [A]_{\nmid h} + [B]_{\nmid h} = 10.0110 = [A + B]_{\nmid h}
             A + B = 0.0110
  例 6.19 设 A = -9, B = -5
              求 [A+B]_{\lambda h}
                                                验证
        解: [A]_{\stackrel{?}{\bowtie}} = 1,01111
                                                       -1001
              +[B]_{2k} = 1, 1011
                                                     +-0101
        [A]_{\nmid h} + [B]_{\nmid h} = 11, 0010 = [A + B]_{\nmid h}
                                                      -1110
             A + B = -1110
```

例 6.20 设机器数字长为 8 位(含 1 位符号位) 6.3 且 A=15, B=24,用补码求 A-B

解:
$$A = 15 = 0001111$$
 $B = 24 = 0011000$
 $[A]_{\dag} = 0,0001111$
 $[B]_{\dag} = 0,0011000$
 $+ [-B]_{\dag} = 1,1101000$

$$[A]_{\stackrel{?}{\nmid h}} + [-B]_{\stackrel{?}{\nmid h}} = 1,11101111 = [A-B]_{\stackrel{?}{\nmid h}}$$

 $\therefore A - B = -1001 = -9$

练习1 设
$$x = \frac{9}{16}y = \frac{11}{16}$$
,用补码求 $x+y$
$$x+y=-0.1100=-\frac{12}{16}$$
错

练习2 设机器数字长为8位(含1位符号位) 且A=-97, B=+41, 用补码求A-BA-B=+1110110=+118 错 3. 溢出判断

6.3

(1) 一位符号位判溢出

参加操作的两个数(减法时即为被减数和"求补"以后的减数)符号相同,其结果的符号与原操作数的符号不同,即为溢出

硬件实现

最高有效位的进位 田 符号位的进位 = 1 溢出

如 1 ⊕ 0 = 1 } 有 溢出 0 ⊕ 1 = 1 } 有 溢出 0 ⊕ 0 = 0 } 无 溢出 1 ⊕ 1 = 0 } 无 溢出

(2) 两位符号位判溢出

6.3

$$[x]_{\nmid h'} = \begin{cases} x & 1 > x \ge 0 \\ 4 + x & 0 > x \ge -1 \pmod{4} \end{cases}$$

$$[x]_{\lambda} + [y]_{\lambda} = [x + y]_{\lambda}$$
 (mod 4)

$$[x-y]_{\lambda | \cdot} = [x]_{\lambda | \cdot} + [-y]_{\lambda | \cdot} \pmod{4}$$

结果的双符号位 相同

未溢出

00, ×××××

11, XXXXX

结果的双符号位 不同

溢出

10, ×××××

 $01, \times \times \times \times \times$

最高符号位 代表其 真正的符号

4. 补码加减法的硬件配置

A、X均n+1位 用减法标记 G_S 控制求补逻辑

作业

● 习题: 6.19

三、乘法运算

1. 分析笔算乘法

$$A = -0.1101$$
 $B = 0.1011$

$$A \times B = -0.10001111$$
 乘积的符号心算求得

```
0.1101

×0.1011

1101

1101

0000
```

- ✓ 符号位单独处理
- ✓ 乘数的某一位决定是否加被乘数
- ? 4个位积一起相加
- ✓ 乘积的位数扩大一倍

1101

2. 笔算乘法改进

6.3

$$A \cdot B = A \cdot 0.1011$$

$$= 0.1A + 0.00A + 0.001A + 0.0001A$$

$$= 0.1A + 0.00A + 0.001(A + 0.1A)$$

$$= 0.1A + 0.01[0 \cdot A + 0.1(A + 0.1A)]$$

右移一位 =
$$0.1\{A + 0.1[\ 0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 2^{-1} \{ A + 2^{-1} [0 \cdot A + 2^{-1} (A + 2^{-1} (A + 0))] \}$$

第一步 被乘数A+0

第二步 右移一位,得新的部分积

第三步 部分积 + 被乘数

2

3

第八步 右移一位,得结果

8

3. 改进后的笔算乘法过程(竖式) 6.3

部分积	乘数	说明
0.0000	1011	初态,部分积 = 0
+0.1101	_	乘数为1,加被乘数
0.1101		
0.0110	1101	→1,形成新的部分积
+0.1101	=	乘数为1,加被乘数
1.0011	1	
0.1001	1110	→1,形成新的部分积
+ 0.0000	=	乘数为0,加0
0.1001	11	
0.0100	1111	→ 1,形成新的部分积
+ 0.1101	_	乘数为1,加被乘数
1.0001	111	
0.1000	1111	→1,得结果

小结 6.3

- p 乘法 运算可用 加和移位实现 n=4,加 4 次,移 4 次
- ▶ 由乘数的末位决定被乘数是否与原部分积相加,然后→1位形成新的部分积,同时乘数 1位(末位移丢),空出高位存放部分积的低位。
- > 被乘数只与部分积的高位相加
 - 硬件 3个寄存器,具有移位功能
 - 1个全加器

4. 原码乘法

(1) 原码一位乘运算规则以小数为例

设
$$[x]_{\mathbb{R}} = x_0. x_1 x_2 \cdots x_n$$

$$[y]_{\mathbb{R}} = y_0. y_1 y_2 \cdots y_n$$

$$[x \cdot y]_{\mathbb{R}} = (x_0 \oplus y_0).(0. x_1 x_2 \cdots x_n)(0. y_1 y_2 \cdots y_n)$$

$$= (x_0 \oplus y_0). x^* y^*$$
式中 $x^* = 0. x_1 x_2 \cdots x_n \quad \text{为 } x \text{ 的绝对值}$

$$y^* = 0. y_1 y_2 \cdots y_n \quad \text{为 } y \text{ 的绝对值}$$
乘积的符号位单独处理 $x_0 \oplus y_0$

数值部分为绝对值相乘 $x^* \cdot y^*$

(2) 原码一位乘递推公式

$$x^* \cdot y^* = x^* (0.y_1 y_2 \dots y_n)$$

$$= x^* (y_1 2^{-1} + y_2 2^{-2} + \dots + y_n 2^{-n})$$

$$= 2^{-1} (y_1 x^* + 2^{-1} (y_2 x^* + \dots 2^{-1} (y_n x^* + 0) \dots))$$

$$= z_n - 0$$

$$z_{0} = 0$$

$$z_{1} = 2^{-1}(y_{n}x^{*}+z_{0})$$

$$z_{2} = 2^{-1}(y_{n-1}x^{*}+z_{1})$$

$$\vdots$$

$$z_{n} = 2^{-1}(y_{1}x^{*}+z_{n-1})$$

例 6.21 已知 x = -0.1110 y = 0.1101 求 $[x \cdot y]_{\mathbb{R}}$ 6.3

解	, 数值部分	的运算		
/41	: 数值部分	乘数	说 明	
•	0.0000	1101	部分积 初态 z_0 =	0
	+ 0.1110	_	+x*	
\Ш <i>\</i> Н. — 1	0.1110			
逻辑右移	0.0111	0 1 1 0	→1 ,得 z ₁	
_	+ 0.0000	-	+ 0	
\ <u>\\</u>	0.0111	0		
逻辑右移	0.0011	1011	→1, 得 z ₂ + x*	
_	+ 0.1110	_	$+x^*$	
	1.0001	10		
逻辑右移	0.1000	1101	→1, 得 z ₃ + x*	
-	+ 0.1110	=	+ x*	
\m_4g	1.0110	110		
逻辑右移	0.1011	0110	→1,得 <i>z</i> ₄	

6.3

- ① 乘积的符号位 $x_0 \oplus y_0 = 1 \oplus 0 = 1$
- ② 数值部分按绝对值相乘

$$x^* \cdot y^* = 0.10110110$$

则 $[x \cdot y]_{\mathbb{R}} = 1.10110110$

特点 绝对值运算

用移位的次数判断乘法是否结束

逻辑移位

(3) 原码一位乘的硬件配置

6.3

A、X、Q均n+1位

移位和加受末位乘数控制

(4) 原码两位乘

6.3

原码乘

符号位和 数值位 部分 分开运算

两位乘

每次用乘数的 2 位判断 原部分积 是否加和如何加被乘数

乘数y _{n-1} y _n	新的部分积
0 0	加 "0" — 2
0 1	加1倍的被乘数 → 2
10	加 2 倍的被乘数 → 2
11	加 3 倍的被乘数 → 2

先 减 1 倍 的被乘数 再 加 4 倍 的被乘数

(5) 原码两位乘运算规则

乘数判断位 $y_{n-1}y_n$	标志位 \mathbf{C}_j	操作内容
0 0	0	$z\rightarrow 2, y^*\rightarrow 2, C_j$ 保持 "0"
0 1	0	$z+x^*\rightarrow 2, y^*\rightarrow 2, C_j$ 保持 "0"
10	0	$z+2x^*\rightarrow 2, y^*\rightarrow 2, C_j$ 保持 "0"
11	0	$z-x^*\rightarrow 2, y^*\rightarrow 2, C_j$ 置"1"
0 0	1	$z+x^* \rightarrow 2, y^* \rightarrow 2, C_j$ 置"0"
0 1	1	$z+2x^*\rightarrow 2, y^*\rightarrow 2, C_j$ 置 "0"
10	1	$z-x^*\rightarrow 2, y^*\rightarrow 2, C_j$ 保持 "1"
11	1	$z \rightarrow 2, y^* \rightarrow 2, C_j$ 保持 "1"

共有操作 $+x^*$ $+2x^*$ $-x^*$ $\longrightarrow 2$ 实际操作 $+[x^*]_{\stackrel{}{h}}$ $+[2x^*]_{\stackrel{}{h}}$ $+[-x^*]_{\stackrel{}{h}}$ $\longrightarrow 2$ 补码移

例 6.22 已知 x = 0.1111111 y = -0.111001 求 $[x \cdot y]_{原}$ 6.3

解:数值部份	乘数	C_j	说明
补 000.000000	00.111001	0	初态 $z_0 = 0$
码 +000.111111			$+x^*$, $C_j=0$
右 移 000.111111			
000.001111	11 001110	0	→ 2
* + 0 0 1 . 1 1 1 1 1 0			$+2x^*, \mathbf{C}_j=0$
码 010.001101	11		
右 移 2000.100011	$0111 \ 0011$	0	→ 2
+111.00001			$-x^*, \mathbf{C}_j = 1$
补 111.100100	0111		
码 111.111001	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		→ 2
右 + 0 0 0 . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			$+x^*$, $C_j=0$
000.111000	000111		

- ① 乘积的符号位 $x_0 \oplus y_0 = 0 \oplus 1 = 1$
- ②数值部分的运算

 $x^* \cdot y^* = 0.1110000001111$

则 $[x \cdot y]_{\mathbb{R}} = 1.1110000001111$

特点 绝对值的补码运算

用移位的次数判断乘法是否结束

算术移位

(6) 原码两位乘和原码一位乘比较 6.3

	原码一位乘	原码两位乘
符号位	$x_0 \oplus y_0$	$x_0 \oplus y_0$
操作数	绝对值	绝对值的补码
移位	逻辑右移	算术右移
移位次数	n	$\frac{n}{2}(n$ 为偶数)
最多加法次数	n	$\frac{n}{2}+1$ (n为偶数)

思考 n 为奇数时,原码两位乘 移?次最多加?次

作业

● 习题: 6.19, 6.20

(1) 补码一位乘运算规则

以小数为例 设被乘数 $[x]_{\uparrow i} = x_0 \cdot x_1 x_2 \cdot \cdots \cdot x_n$ 乘数 $[y]_{\uparrow i} = y_0 \cdot y_1 y_2 \cdot \cdots \cdot y_n$

- ① 被乘数任意,乘数为正同原码乘 但加和移位按补码规则运算乘积的符号自然形成
- ② 被乘数任意,乘数为负 乘数[y]_补,去掉符号位,操作同① 最后加[-x]_补,校正

③ Booth 算法(被乘数、乘数符号任意) 6.3

设[x]
$$_{\dagger \uparrow} = x_0 x_1 x_2 \cdots x_n$$
 [y] $_{\dagger \uparrow} = y_0 y_1 y_2 \cdots y_n$ [x · y] $_{\dagger \uparrow}$ [v] $_{\dagger \downarrow}$ [v] $_{\dagger \downarrow$

④ Booth 算法递推公式

$$\begin{split} &[z_0]_{\not \uparrow \downarrow} = 0 \\ &[z_1]_{\not \uparrow \downarrow} = 2^{-1} \{ (y_{n+1} - y_n)[x]_{\not \uparrow \downarrow} + [z_0]_{\not \uparrow \downarrow} \} \qquad y_{n+1} = 0 \\ &\vdots \\ &[z_n]_{\not \uparrow \downarrow} = 2^{-1} \{ (y_2 - y_1)[x]_{\not \uparrow \downarrow} + [z_{n-1}]_{\not \uparrow \downarrow} \} \end{split}$$

$$[x \cdot y]_{\nmid \mid} = [z_n]_{\nmid \mid} + (y_1 - y_0)[x]_{\nmid \mid}$$

最后一步不移位

如何实现 $y_{i+1}-y_i$?

$y_i y_{i+1}$	y_{i+1} $-y_i$	操作
0 0	0	$\rightarrow 1$
0 1	1	$+[x]_{\nmid h} \rightarrow 1$
1 0	-1	$+[-x]_{\uparrow \uparrow} \rightarrow 1$
1 1	0	→1

例6.23 已知 x = +0.0011 y = -0.1011 求 $[x \cdot y]_{*}$ 6.3

```
解: 00.0000 1.0101 0
                                             [x]_{3} = 0.0011
                                  +[-x]_{*}
    + 11.1101
                                             [y]_{k} = 1.0101
补码
                                           [-x]_{36} = 1.1101
右移
                                  +[x]_{i}
    +00.0011
       0.000
补码
       0.0000
右移
                                  +[-x]_{\lambda}
       1.1101
                                           \therefore [x \cdot y]_{\gtrless h}
补码
右移
                                             =1.11011111
                                  +[x]_{\lambda}
    +00.0011
       0.000
补码
       0.0000
右移
                                  +[-x]
    +11.1101
                 |1111
         .1101
                                  最后一步不移位
```

(2) Booth 算法的硬件配置

6.3

A、X、Q 均 n+2 位 移位和加受末两位乘数控制

乘法小结

- 整数乘法与小数乘法完全相同可用 逗号 代替小数点
- ▶ 原码乘 符号位 单独处理 补码乘 符号位 自然形成
- > 原码乘去掉符号位运算 即为无符号数乘法
- > 不同的乘法运算需有不同的硬件支持

四、除法运算

1. 分析笔算除法

$$x = -0.1011$$
 $y = 0.1101$ $R x \div y$

$$\begin{array}{c} 0.1101 \\ \hline 0.1101 \\ \hline 0.10110 \\ \hline 0.01101 \\ \hline 0.010010 \\ \hline 0.001101 \\ \hline 0.0001101 \\ \hline 0.00001101 \\ \hline 0.00001111 \\ \hline \end{array}$$

- ✓商符单独处理
- ?心算上商
- ? 余数不动低位补 "0" 减右移一位的除数
- ? 上商位置不固定

 $x \div y = -0.1101$ 商符心算求得 余数 0.00000111

2. 笔算除法和机器除法的比较

6.3

笔算除法

商符单独处理 心算上商

余数不动低位补"0" 减右移一位的除数

2 倍字长加法器 上商位置 不固定

机器除法

符号位异或形成

|x|-|y|>0上商1

|x|-|y|<0上商0

余数 左移一位 低位补 "0" 减 除数

1倍字长加法器

在寄存器 最末位上商原部分商左移一位

3. 原码除法

以小数为例

$$[x]_{\mathbb{R}} = x_0. x_1 x_2 \dots x_n$$

$$[y]_{\mathbb{R}} = y_0. y_1 y_2 \dots y_n$$

$$[\frac{x}{y}]_{\mathbb{R}} = (x_0 \oplus y_0). \frac{x^*}{y^*}$$

式中
$$x^* = 0.x_1x_2 \cdots x_n$$
 为 x 的绝对值 $y^* = 0.y_1y_2 \cdots y_n$ 为 y 的绝对值

商的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相除 $\frac{x^*}{y^*}$

约定 小数定点除法 $x^* < y^*$ 整数定点除法 $x^* > y^*$ 被除数不等于 0 除数不能为 0

(1)恢复余数法(余数为负,需加上除数)6.3

例 6.24 x = -0.1011 y = -0.1101 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$

解: $[x]_{\mathbb{F}} = 1.1011$ $[y]_{\mathbb{F}} = 1.1101$ $[y^*]_{\mathbb{F}} = 0.1101$ $[-y^*]_{\mathbb{F}} = 1.0011$

(1)
$$x_0 \oplus y_0 = 1 \oplus 1 = 0$$

② 被除数(余数)	商	说明
0.1011	0.0000	
+ 1.0011		+[-y*] _*
1.1110	0	余数为负,上商 0
+0.1101		恢复余数 +[y*] _补
0.1011	0	恢复后的余数
逻辑左移 1.0110	0	←1
+ 1.0011		+[—y*] _{ネト}
0.1001	0 1	余数为正,上商1
逻辑左移 1.0010	0 1	←1
+ 1.0011		+[-y*] _{*\}

被除数(余数)	商	说 明	6.3
0.0101	011	余数为正,上商1	
逻辑左移 0.1010	011	←1	
+ 1.0011		+[- <i>y</i> *] _{≱⊦}	
1.1101	0110	余数为负,上商 0	
+ 0.1101		恢复余数 +[y*] _补	
$\boxed{0.1010}$	0110	恢复后的余数	
逻辑左移 1.0100	0110	←1	
+ 1.0011		+[-y*] _{*\}	
0.0111	01101	余数为正,上商1	
$\frac{x^*}{y^*} = 0.1101$ $\therefore \left[\frac{x}{y}\right]_{\mathbb{R}} = 0.1101$		上商 5 次第一次上商判溢出	
余数为正 上商	1 #	多 4 次	

余数为负 上商 0,恢复余数

(2) 不恢复余数法(加减交替法)

6.3

• 恢复余数法运算规则

余数
$$R_i > 0$$
 上商 "1", $2R_i - y^*$ 余数 $R_i < 0$ 上商 "0", $R_i + y^*$ 恢复余数 $2(R_i + y^*) - y^* = 2R_i + y^*$

• 不恢复余数法运算规则

上商"1"
$$2R_i-y^*$$

$$2R_i + y^*$$

加减交替

例6.25 x = -0.1011 y = -0.1101 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$ 6.3

解: 0.1011	0.0000	
+1.0011		+[-y*] _*
逻辑 1.1110	0	余数为负,上商0
上 1.1100	0	←1
+0.1101		+[y*] _*
逻辑 0.1001	0 1	余数为正,上商1
上	0 1	←1
+1.0011		+[- <i>y</i> *] _补
逻辑 0.0101	011	余数为正,上商1
左移 0.1010	011	←1
+1.0011		+[-y*] _补
逻辑 1.1101	0110	余数为负,上商 0
上 1.1010	0110	←1
+0.1101		+[<i>y</i> *] _{ネト}
0.0111	01101	余数为正,上商1

 $[x]_{\text{g}} = 1.1011$

 $[y]_{\text{g}} = 1.1101$

 $[x^*]_{n} = 0.1011$

 $[y^*]_{\mbox{$\frac{1}{2}$}} = 0.1101$

 $[-y^*]_{*} = 1.0011$

例6.25 结果

- $\textcircled{1} x_0 \oplus y_0 = 1 \oplus 1 = 0$
- ② $\frac{x^*}{y^*} = 0.1101$
- $\therefore \left[\frac{x}{y}\right]_{\mathbb{R}} = 0.1101$

特点 上商 n+1 次

第一次上商判溢出

移 n 次,加 n+1 次

用移位的次数判断除法是否结束

(3) 原码加减交替除法硬件配置

A、X、Q均n+1位用 Q_n控制加减交替

(1) 商值的确定

① 比较被除数和除数绝对值的大小 x 与 y 同号

$$x = 0.1011$$
 $[x]_{\mbox{$\stackrel{\perp}{\to}$}} = 0.1011$ $[R_i]_{\mbox{$\stackrel{\perp}{\to}$}} = 0.1000$ "够减"

$$x = -0.0011$$
 $[x]_{\mbox{\tiny h}} = 1.1101$ $[x]_{\mbox{\tiny h}} = 1.1101$ $x^* < y^*$ $y = -0.1011$ $[y]_{\mbox{\tiny h}} = 1.0101$ $+[-y]_{\mbox{\tiny h}} = 0.1011$ $[R_i]_{\mbox{\tiny h}} = [y]_{\mbox{\tiny h}} = 0.1000$ "不够减"

x与y 异号

$$x = 0.1011$$
 $[x]_{\frac{1}{7}} = 0.1011$ $y = -0.0011$ $[y]_{\frac{1}{7}} = 1.1101$

$$x = -0.0011$$
 $[x]_{3/2} = 1.1101$
 $y = 0.1011$ $[y]_{3/2} = 0.1011$

$$[x]_{\uparrow \uparrow} = 0.1011$$
 $+ [y]_{\uparrow \uparrow} = 1.1101$
 $[R_i]_{\uparrow \uparrow} = 0.1000$

$$[x]_{\frac{1}{2}} = 1.1101$$
 $+ [y]_{\frac{1}{2}} = 0.1011$
 $[R_i]_{\frac{1}{2}} = 0.1000$

$$x^*>y^*$$
 $[R_i]_{\stackrel{}{h}}$ 与 $[y]_{\stackrel{}{h}}$ 异号
"够减"
 $x^*< y^*$
 $[R_i]_{\stackrel{}{h}}$ 与 $[y]_{\stackrel{}{h}}$ 同号

"不够减"

小结

$[x]_{\dagger}$ 和 $[y]_{\dagger}$	求 $[R_i]$ 补	$[R_i]_{i}$ 与 $[y]_{i}$
同号	$[x]_{ egh} - [y]_{ egh}$	同号,"够减"
异号	$[x]_{ eqh} + [y]_{ eqh}$	异号,"够减"

② 商值的确定 末位恒置"1"法

X.XXXXX1

6.3

 $[x]_{\lambda}$ 与 $[y]_{\lambda}$ 同号 正商

 $0.\times\times\times\times$ 原码

按原码上商

"够减"上"1" "不够减"上"0"

 $[x]_{\lambda}$ 与 $[y]_{\lambda}$ 异号 负商

1.X X X X X 1 反码

按反码上商

"够减"上"0"

"不够减"上"1"

小结

[x] _补 与[y] _补	商	$[R_i]_{{ ext{$ heta$}}}$ 与 $[y]_{{ ext{$ heta$}}}$		商值
同号	正	够减 (同号) 不够减(异号)	1 0	原码上商
异号	负	够减 (异号) 不够减(同号)	0 1	反码上商

简化为

$[R_i]_{{ ext{$\lambda$}}}$ 与 $[y]_{{ ext{$\lambda$}}}$	商值
同号	1
异 号	0

(2) 商符的形成

6.3

除法过程中自然形成

(3) 新余数的获得

加减交替

$[R_i]_{{\mathbb{A}}}$ 和 $[y]_{{\mathbb{A}}}$	商	新余数
同号	1	$2[R_i]_{\nmid h} + [-y]_{\nmid h}$
异 号	0	$2[R_i]_{\nmid h} + [y]_{\nmid h}$

例 6.26 设 x = -0.1011 y = 0.1101求[宁]补并还原成真值

6.3

 $[x]_{3/2} = 1.0101$ $[y]_{3/2} = 0.1101$ $[-y]_{3/2} = 1.0011$ 解: $1.0101 \mid 0.0000$ 异号做加法 +0.1101 0.0010 同号上"1" 逻辑 左移 > 0.0100+[-y]_补 +1.0011 10 异号上"0" 逻辑 左移 10 > 0.1110**←**1 +[*y*]_{ネト} +0.11011.1011 100 异号上"0" 逻辑 $\therefore \left[\frac{x}{y}\right]_{\not=\downarrow} = 1.0011$ 左移 **>1.0110 ←1** 100 $+[y]_{\nmid \mid}$ +0.1101则 $\frac{x}{v} = -0.1101$ 0.00111001 同号上"1" 逻辑 左移 0.0110 1001

←1 末位恒置 "1"

(4) 小结

6.3

- ▶ 补码除法共上商 n +1 次 (末位恒置 1) 第一次为商符
- > 第一次商可判溢出
- ►加n次 移n次
- > 用移位的次数判断除法是否结束
- ▶精度误差最大为 2⁻n

(5) 补码除和原码除(加减交替法)比较 6.3

	原码除	补码除
商符	$x_0 \oplus y_0$	自然形成
操作数	绝对值补码	补码
上商原则	余数的正负	比较余数和除数的符号
上商次数	n+1	n+1
加法次数	n+1	n (恒置1)
移位	逻辑左移	逻辑左移
移位次数	n	n
第一步操作	$[x^*]_{ ext{?}} - [y^*]_{ ext{?}}$	同号 $[x]_{\lambda}$ - $[y]_{\lambda}$
		异号 $[x]_{\lambda}$ + $[y]_{\lambda}$

作业

● 习题: 6.21, 6.23

6.4 浮点四则运算

一、浮点加减运算

$$x = S_x \cdot 2^{j_x} \qquad y = S_y \cdot 2^{j_y}$$

1. 对阶

(1) 求阶差

(1) 求阶差
$$\Delta j = j_x - j_y = \begin{cases} = 0 & j_x = j_y & \text{已对齐} \\ > 0 & j_x > j_y & \text{long for } S_x \leftarrow 1, j_x - 1 \\ y & \text{向 } x \text{ 看齐} & \checkmark S_y \rightarrow 1, j_y + 1 \\ < 0 & j_x < j_y & \begin{cases} x & \text{向 } y \text{ 看齐} & \checkmark S_y \rightarrow 1, j_y + 1 \\ y & \text{向 } x \text{ 看齐} & \checkmark S_y \leftarrow 1, j_y - 1 \end{cases}$$

(2) 对阶原则

小阶向大阶看齐

例如 $x = 0.1101 \times 2^{01}$ $y = (-0.1010) \times 2^{11}$ 6.4 求 x + y

解: $[x]_{\uparrow\uparrow} = 00,01;00.1101$ $[y]_{\uparrow\uparrow} = 00,11;11.0110$

1. 对阶

① 求阶差
$$[\Delta j]_{\hat{A}} = [j_x]_{\hat{A}} - [j_y]_{\hat{A}} = 00,01$$

$$+ 11,01$$

$$11,10$$

阶差为负 (-2) $: S_x \rightarrow 2$ $j_x + 2$

② 对阶 $[x]_{*|} = 00, 11; 00.0011$

2. 尾数求和

3. 规格化

6.4

(1) 规格化数的定义

$$r=2 \qquad \frac{1}{2} \leq |S| < 1$$

(2) 规格化数的判断

S>0	规格化形式	S < 0	规格化形式
真值	$0.1 \times \times \cdots \times$	真值	$-0.1 \times \times \cdots \times$
原码	$0.1 \times \times \cdots \times$	原码	$1.1 \times \times \cdots \times$
补码	$0.1 \times \times \cdots \times$	补码	$1.0 \times \times \cdots \times$
反码	$0.1 \times \times \cdots \times$	反码	$1.0 \times \times \cdots \times$

原码 不论正数、负数,第一数位为1

补码 符号位和第一数位不同

$$S = -\frac{1}{2} = -0.100 \cdots 0$$

$$[S]_{\text{ff}} = 1.100 \cdots 0$$

$$[S]_{3/2} = [1.1] 0 0 \cdots 0$$

 $\therefore \left[-\frac{1}{2}\right]_{\uparrow}$ 不是规格化的数

$$S = -1$$

$$[S]_{\nmid h} = [1.0] 0 0 \cdots 0$$

∴ [-1] → 是规格化的数

(3) 左规

尾数左移一位,阶码减1,直到数符和第一数位不同为止

上例 $[x+y]_{\stackrel{}{\mathbb{A}}} = 00, 11; 11.1001$ 左规后 $[x+y]_{\stackrel{}{\mathbb{A}}} = 00, 10; 11.0010$

$$x + y = (-0.1110) \times 2^{10}$$

(4) 右规

当尾数溢出(>1)时,需右规

即尾数出现 01. ×× ···×或 10. ×× ···×时

尾数右移一位,阶码加1

例6.27 $x = 0.1101 \times 2^{10}$ $y = 0.1011 \times 2^{01}$ 6.4

x+y (除阶符、数符外, 阶码取 3 位, 尾数取 6 位)

解:
$$[x]_{\stackrel{*}{\uparrow}} = 00, 010; 00. 110100$$
 $[y]_{\stackrel{*}{\uparrow}} = 00, 001; 00. 101100$

① 对阶

$$[\Delta j]_{\stackrel{?}{\Rightarrow}} = [j_x]_{\stackrel{?}{\Rightarrow}} - [j_y]_{\stackrel{?}{\Rightarrow}} = 00,010 \\ + 11,111 \\ \hline 100,001$$
阶差为 +1 $\therefore S_y \rightarrow 1, j_y + 1$

$$\therefore [y]_{\stackrel{?}{\Rightarrow}} = 00,010;00.010110$$

②尾数求和

$$[S_x]_{\stackrel{}{ ext{λ}}} = 00.\ 110100 \ + [S_y]_{\stackrel{}{ ext{λ}}} = 00.\ 010110 \$$
 对阶后的 $[S_y]_{\stackrel{}{ ext{$\lambda$}}}$ 足数溢出需右规

③ 右规 6.4

 $[x+y]_{3} = 00,010;01.001010$

右规后

 $[x+y]_{36} = 00, 011; 00. 100101$

 $\therefore x+y=0.100101\times 2^{11}$

4. 舍入

在对阶和右规过程中,可能出现尾数末位丢失引起误差,需考虑舍入

- (1) 0 舍 1 入法
- (2) 恒置"1"法

例 6.28
$$x = (-\frac{5}{8}) \times 2^{-5}$$
 $y = (\frac{7}{8}) \times 2^{-4}$

 x_{x-y} (除阶符、数符外,阶码取 3 位,尾数取 6 位)

解:

$$x = (-0.101000) \times 2^{-101}$$
 $y = (0.111000) \times 2^{-100}$

$$y = (0.111000) \times 2^{-100}$$

$$[x]_{3} = 11,011;11.011000$$

$$[y]_{3} = 11, 100; 00. 111000$$

① 对阶

$$[\Delta j]_{\uparrow \uparrow} = [j_x]_{\uparrow \uparrow} - [j_y]_{\uparrow \uparrow} = 11,011 + 00,100 11,111$$

阶差为
$$-1$$
 $\therefore S_x \longrightarrow 1, j_x+1$

 \therefore [x]_{\$\frac{1}{2}\$|, = 11, 100; 11. 101100}

② 尾数求和

③右规

$$[x-y]_{3} = 11, 100; 10. 110100$$

右规后

$$[x-y]_{\nmid k} = 11, 101; 11.011010$$

$$\therefore x - y = (-0.100110) \times 2^{-11}$$
$$= (-\frac{19}{32}) \times 2^{-3}$$

设机器数为补码, 尾数为规格化形式, 并假设阶符取 2 位, 阶码的数值部分取 7 位, 数符取 2 位, 尾数取 n 位,则该补码在数轴上的表示为

二、浮点乘除运算

$$x = S_x \cdot 2^{j_x} \qquad y = S_y \cdot 2^{j_y}$$

1. 乘法

$$x \cdot y = (S_x \cdot S_y) \times 2^{j_x + j_y}$$

2. 除法

$$\frac{x}{y} = \frac{S_x}{S_y} \times 2^{j_x - j_y}$$

- 3. 步骤
 - (1) 阶码采用补码定点加(乘法)减(除法)运算
 - (2) 尾数乘除同 定点 运算
 - (3) 规格化
- 4. 浮点运算部件 阶码运算部件, 尾数运算部件

6.5 算术逻辑单元

一、ALU 电路

组合逻辑电路

 K_i 不同取值

 F_i 不同

四位ALU 74181

M=0 算术运算

M=1 逻辑运算

 $S_3 \sim S_0$ 不同取值,可做不同运算

快速进位链

1. 并行加法器

$$S_i = \overline{A}_i \ \overline{B}_i \ C_{i-1} + \overline{A}_i \ B_i \ \overline{C}_{i-1} + A_i \ \overline{B}_i \ \overline{C}_{i-1} + A_i \ B_i \ C_{i-1}$$

$$C_i = \overline{A_i} B_i C_{i-1} + A_i \overline{B_i} C_{i-1} + A_i B_i \overline{C_{i-1}} + A_i B_i C_{i-1}$$

$$= A_i B_i + (A_i + B_i) C_{i-1}$$

$$d_i = A_i B_i$$
 本地进位

$$t_i = A_i + B_i$$
 传送条件

则
$$C_i = d_i + t_i C_{i-1}$$

进位链

传送进位的电路

串行进位链

进位串行传送

以 4 位全加器为例,每一位的进位表达式为

$$C_0 = d_0 + t_0 C_{-1} = \overline{d_0 \cdot t_0 C_{-1}}$$

$$C_1 = d_1 + t_1 C_0$$

$$C_2 = d_2 + t_2 C_1$$

设与非门的级延迟时间为t。

$$C_3 = d_3 + t_3 C_2$$

4位全加器产生进位的全部时间为8t,

n 位全加器产生进位的全部时间为 2nt,

3. 并行进位链(先行进位,跳跃进位)

6.5

n 位加法器的进位同时产生 以 4 位加法器为例

(1) 单重分组跳跃进位链

6.5

n 位全加器分若干小组,小组内的进位同时产生,小组与小组之间采用串行进位 以 n = 16 为例

(2) 双重分组跳跃进位链

6.5

n 位全加器分若干大组,大组中又包含若干小组。每个大组中小组的最高位进位同时产生。 大组与大组之间采用串行进位。

以 n=32 为例

(3) 双重分组跳跃进位链 大组进位分析

6.5

以第8小组为例

$$C_{3} = d_{3} + t_{3}C_{2} = d_{3} + t_{3}d_{2} + t_{3}t_{2}d_{1} + t_{3}t_{2}t_{1}d_{0} + t_{3}t_{2}t_{1}t_{0}C_{-1}$$

$$= D_{8} + T_{8}C_{-1}$$

D₈ 小组的本地进位 与外来进位无关

T₈ 小组的传送条件 与外来进位无关 传递外来进位

同理 第 7 小组
$$C_7 = D_7 + T_7 C_3$$

第 6 小组
$$C_{11} = D_6 + T_6 C_7$$

第 5 小组
$$C_{15} = D_5 + T_5 C_{11}$$

进一步展开得

$$C_3 = D_8 + T_8 C_{-1}$$

$$C_7 = D_7 + T_7 C_3 = D_7 + T_7 D_8 + T_7 T_8 C_{-1}$$

$$C_{11} = D_6 + T_6 C_7 = D_6 + T_6 D_7 + T_6 T_7 D_8 + T_6 T_7 T_8 C_{-1}$$

$$C_{15} = D_5 + T_5 C_{11} = D_5 + T_5 D_6 + T_5 T_6 D_7 + T_5 T_6 T_7 D_8 + T_5 T_6 T_7 T_8 C_{-1}$$

(4) 双重分组跳跃进位链的 大组 进位线路 6.5

(5) 双重分组跳跃进位链的 小组 进位线路 6.5

以第8小组为例 只产生低3位的进位和本小组的 D_8T_8 D_8 ≥1 ≥1 ≥1 & & & & &

6.5

当 $d_i t_i$ 和 C_{-1} 形成后 经 $2.5 t_y$ 产生 C_2 、 C_1 、 C_0 、 D_5 D_8 、 T_5 T_8 经 $5 t_y$ 产生 C_{15} 、 C_{11} 、 C_7 、 C_3 经 $7.5 t_y$ 产生 C_{14} C_{12} 、 C_{10} C_8 、 C_6 C_4

串行进位链 经32tv 产生 全部进位

单重分组跳跃进位链 经10t, 产生 全部进位

(7) n=32 双重分组跳跃进位链

当
$$d_i t_i$$
形成后 经 2.5 t_y 产生 C_2 、 C_1 、 C_0 、 $D_1 \sim D_8$ 、 $T_1 \sim T_8$
5 t_y 产生 C_{15} 、 C_{11} 、 C_7 、 C_3
7.5 t_y 产生 $C_{18} \sim C_{16}$ 、 $C_{14} \sim C_{12}$ 、 $C_{10} \sim C_8$ 、 $C_6 \sim C_4$
 C_{31} 、 C_{27} 、 C_{23} 、 C_{19}

作业

● 习题: 6.27, 6.31