PHYS 111 1ST semester 1439-1440 Dr. Nadyah Alanazi

Lecture 3

Problem (Electric Force)

• Three point charges are located at the corners of an equilateral triangle as shown in the Figure. Calculate the resultant electric force on the 7.00µC charge.

- an **electric field** is said to exist in the region of space around a charged object—the **source charge**. When another charged object—the **test charge**—enters this electric field, an electric force acts on it.
- The electric field vector \mathbf{E} at a point in space is defined as the electric force \mathbf{F}_e acting on a positive test charge q_0 placed at that point divided by the test charge:

$$\mathbf{E} \equiv \frac{\mathbf{F}_{e}}{q_{0}}$$

The force on a charged particle placed in an electric field.

$$\mathbf{F}_{e} = q\mathbf{E}$$

 If q is positive, the force is in the same direction as the field. If q is negative, the force and the field are in opposite directions.

 According to Coulomb's law, the force exerted by q on the test charge is

$$\mathbf{F}_e = k_e \frac{qq_0}{r^2} \,\hat{\mathbf{r}}$$

- where \hat{r} is a unit vector directed from q toward q_0 .
- The electric field created by q at P is

$$\mathbf{E} = k_e \frac{q}{r^2} \,\hat{\mathbf{r}}$$

 at any point P, the total electric field due to a group of source charges equals the vector sum of the electric fields of all the charges.

$$\mathbf{E} = k_e \sum_{i} \frac{q_i}{r_i^2} \, \hat{\mathbf{r}}_i$$

• where r_i is the distance from the i th source charge q_i to the point P and $\mathbf{\hat{r}}_i$ is a unit vector directed from q_i toward P.

Example 23.5 Electric Field Due to Two Charges

A charge $q_1 = 7.0 \mu C$ is located at the origin, and a second charge $q_2 = -5.0 \mu C$ is located on the x axis, 0.30 m from the origin (Fig. 23.14). Find the electric field at the point P, which has coordinates (0, 0.40) m.

Example 1

 Calculate the magnitude and direction of an electric field at a point 30 cm from a source charge of Q = -3.0 X 10⁻⁶ C.

Example 2

• Two point charges are separated by a distance of 10.0 cm. What is the magnitude and direction of the electric field at point P, 2.0 cm from the negative charge?