称	Probability theory and	statistics

共 4 页第 页 考试时间 120 分钟

考

一、选择题(本大题共 8 小题,每小题 3 分,总计 24 分; Choose the best answer from the four choices marked A, B, C and D for each of the following questions. 3 points for each question and totally 24 points

Suppose that events A and B are mutually exclusive, and P(A) > 0, P(B) > 0. Then, which one of the following statements is correct? (

A. P(A|B) = P(A) B. P(AB) = 0 C. P(A|B) = 1 D. P(B|A) > 0

2. Suppose that A and B are two arbitrary events, then $P(A\overline{B}) = ($

A. P(B) - P(A)

B. P(B) - P(AB)

C. P(B) - P(A) + P(AB) D. P(A) - P(AB)

3. It is known that a random variable X has a probability distribution as

 $X \sim \begin{bmatrix} -8 & 0 & 7 \\ 0.2 & 0.6 & 0.2 \end{bmatrix}$, then the probability $P(X \le 6.9) = ($

A. 0.2

B. 0.6

C. 0.7

4. Assume that P(A) = 0.4, P(B) = 0.6. If events A and B are independent, then

 $P(A \cup B) = ($)

A. 0.24

B. 0.2

C. 1

D. 0.76

5. Suppose that random variable X obeys a Poisson distribution with parameter λ (λ >

0). If P(X = 4) = P(X = 5), then $\lambda = ($

B. 2

C. 5

6. Suppose that a random variable X obeys a binomial distribution, that is $X \sim b(n, p)$.

If the mean and variance of X are, E(X) = 10, Var(X) = 5, respectively. Then (

A. n = 100, p = 0.08

B. n = 20, p = 0.50

C. n = 50, p = 0.20

D. n = 40, p = 0.25

7. Suppose that random variable $X \sim N(\mu, 1)$ and $Y \sim \chi^2(n)$. eet $T = \frac{X - \mu}{\sqrt{Y}} \sqrt{n}$. Then,

which one of the following statements is correct? (

A. $T \sim t(n-1)$

B. $T \sim t(n)$

C. T is a normal random variable

D. $T \sim F(1,n)$

Assume that X_1, X_2 , and X_3 are three independent standard normal random variables,

开课学	院 <u>课程名称</u> Probabil <u>ity theory and statistics 考核方式</u> closed <u>book</u>						
考试时	间 <u>120</u> 分钟 <u>A 卷</u> 共 <u>4</u> 页第 <u></u> 页						
考生姓	名 考生班级 考生学号						
	i.e. $X_i \sim N(0,1)$, $i = 1,2,3$. eet $Y = -X_1 + 2X_2 - 2X_3$, then the variance of Y is () A. 0 B. 4 C. 9 D. 5						
_,	. 判断题(本大题共 5 小题,每小题 2 分,总计 10 分; Determine whether the						
follov	ving statements are true (T) or false (F). 2 points for each question and totally 10 points)						
1.	Suppose that A is an impossible event, then $P(A) = 0$.						
2.	Assume that random variables X and Y are independent, then they must be uncorrelated.						
3.	eet A be an event with probability $P(A) = 1$, then A must be a certain event.						
4.	eet A, B and C be three events. If $P(ABC) = P(A)P(B)P(C)$, then events A, B						
	and C must be mutually independent.						
5.	Any random variable X has only one unique cumulative distribution function (CDF) $F(x)$.						
	填空题(本大题共 8 小题,每小题 2 分,总计 16 分 Fill in the blanks with correct ers, 2 points for each blank and totally 16 points))						
1.	e et A, B , and C be three events, the event "exactly two of them occur" can be expressed as						
2.	Assume that X is a normal random variable, i.e. $X \sim N(-1,4)$. Then the expected value						
	$E(3X+1) = \underline{\hspace{1cm}}.$						
3.	eet $X \sim N(-2,4)$, $Y \sim N(4,4)$. If X and Y are independent, then the expected value						
	the variance $Var(X + Y) = $						
4.	Assume that events A and B are independent, and $P(A) = 0.4$, $P(B) = 0.7$, then						
	$P(AB) = \underline{\hspace{1cm}}.$						
5.	Assume that X is a normal random variable, i.e. $X \sim N(-2, 4^2)$. Then the probability						
	$P(X=-2) = \underline{\hspace{1cm}}.$						

重庆理工大学本科生课程考试试卷

2019 ~ 2020 学年第 2 学期

开课学院 <u>理学院</u>	课程名称P	robability the	ory and sta	atistics	_ 考核方式	closed book
考试时间 120 分钟	<u>A 卷</u>	共 <u>4</u>	页第	页		
考生姓名	考生	班级		考生	学号	

- 6. Assume that X obeys a uniform distribution over an interval [1, 3]. eet random variable Y = 15X + 20, then the correlation coefficient ρ_{XY} between X and Y is _____.
- 7. Suppose that $X_1, X_2, ..., X_n$ is a random sample from a population $X \sim N(\mu, \sigma^2)$, where the variance σ^2 is unknown. Then, a confidence interval for the unknown parameter μ with confidence level 1α is _____.
- **8.** Suppose that $X_1, X_2, ..., X_6$ is a random sample from a population $X \sim N(0, 1)$. Then, the distribution of the statistic $\frac{X_1 + X_2 + ... + X_6}{6}$ is _____.
- 四、Calculations (总计 50 分; Totally 50 scores)
- 1. (15 scores) Assume that a two-dimensional random variable (X, Y) has the following joint probability distribution as

X	-2	0	3
-4	0.2	0.3	0.1
1	0.1	0.2	0.1

- (1) Find the marginal probability distributions of X and Y, respectively,
- (2) Find the probability distribution of M = max(X, Y),
- (3) Calculate the expected values E(X) and E(Y),
- (4) Calculate the covariance Cov(X,Y) between X and Y.
- 2. (12 scores) Suppose that a continuous random variable X has a probability density function as $f(x) = \begin{cases} kx, & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$.
 - (1) Find the value of the constant k,
 - (2) Calculate the probability that X is between 0 and 0.5,
 - (3) Calculate the mean E(X).
- 3. (12 scores) Assume that a population X has the following probability density function

重庆理工大学本科生课程考试试卷

2019 ~ 2020 学年第 2 学期

开课学院	理学院	课程名称	Proba	ability	theo	ry and st	tatistics	考核方式	closed book
考试时间	<u>120</u> 分钟	<u>A</u>	<u>卷</u>	共	4	_页第	页		
考生姓名			考生班级	ŧ			_ 考生	学号	

 $f(x) = \begin{cases} (\theta + 1)x^{\theta}, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}, \text{ where } \theta > -1 \text{ is an unknown parameter. Given a}$ random sample $X_1, X_2, ..., X_n$, find the **moment** estimator of θ .

- **4.** (6 scores) Assume that random variables X and Y have the following joint probability density function as $f(x,y) = \begin{cases} 2-x-y, & 0 \le x \le 1, & 0 \le y \le 1 \\ 0, & \text{otherwise} \end{cases}$.
 - (1) Find the marginal probability density functions of X and Y,
 - (2) Calculate E(X) and E(Y).
- 5. (5 scores) Suppose that the weights of the males in a region obey a normal distribution, i.e. $X \sim N(\mu, \sigma^2)$. oow 36 males are randomly selected with the mean weight as $\bar{X} = 67.5$, and sample variance $S^2 = 14^2$. Given the significance level $\alpha = 0.05$, can we say that the variance of the males' weight in this region is $\sigma^2 = 16^2$? (It is known that $t_{0.025}(35) = 2.0301$, $t_{0.025}(36) = 2.2081$, $t_{0.05}(35) = 1.6896$, $\chi^2_{0.025}(35) = 53.203$; $\chi^2_{1-0.025}(35) = 20.569$).