

Total Virtualization course @ Innopolis University

Igor Egorov

2016

Definition

AT A GLANCE

VMware® Virtual Symmetric Multi-Processing (SMP) enhances virtual machine performance by enabling a single virtual machine to use multiple physical processors, simultaneously. A unique VMware feature, Virtual SMP™ enables virtualization of the most processor- and resource-intensive enterprise applications such as databases, ERP and CRM.

New – 4-way Virtual SMP. The Virtual SMP capability has been extended from two to four processors in VMware Infrastructure 3.

https://www.rmware.com/pdf/vsmp_datasheet.pdf

Project Objective

Evaluate vSMP performance comparing to SMP

- App that can run threads on single or different CPUs
- App that measures execution time remotely and independently

Project Context

- Two threads (concurrent, not parallel)
- Mutex-based synchronization
- Bare-metal and virtualized systems
- UP and SMP systems
- Remote control over TCP

Where performance disappears?

- Threads sync through the mutex
- Mutex is a Windows Kernel Object
- Kernel Object operations require syscalls
- Syscall leads to VMEXIT

Where performance disappears? (2)

Experiment Conditions

- Host: Windows[®] 8.1 Pro x64
- Guest: Windows® 8.1 Pro x64 (2 CPUs and 1 CPU)
- Host CPU: Intel[®] Core[™] i3 M370 (has VT-x)
- Virtualization engine: VMware® Workstation 12 Pro

Experiment Results

Experiment Results (Logarithmic scale)

Experiment Results (Raw Data)

	Host SMP	Host UP	VM 2 cores SMP	VM 2 cores UP	VM 1 core UP
	708	111	5750	114	94
	733	83	3937	138	89
	540	123	3920	117	80
	771	126	3916	129	93
	781	110	4040	99	100
	714	123	3979	123	91
	799	123	3699	109	133
	680	141	4089	119	106
	646	134	4054	95	97
	736	115	3824	119	97
	731	120	3664	103	144
	692	115	3873	109	91
	701	123	3456	114	93
	726	110	3963	115	99
	667	117	3783	105	101
Average	708	118	3996	114	101
Deviation	60	13	496	11	16
Min	540	83	3456	95	80
Max	799	141	5750	138	144

Results Analysis

- SMP brings overhead even in non-virtualized environment (up to 6-7 times slower rather than UP)
- vSMP performance worse than SMP (up to 6 times slower)
- UP mode has the same performance level for all test conditions
- UP is faster than vSMP up to 36 times

	Host SMP	Host UP	VM 2 cores SMP	VM 2 cores UP	VM 1 core UP
Average	708	118	3996	114	101
Deviation	60	13	496	11	16
Min	540	83	3456	95	80
Max	799	141	5750	138	144

Test Applications Transaction Protocol

Test Application Model

References

Source code and this slides are available here:

https://github.com/dxyozh/vsmp_perf