移位寄存器实验报告

1. 实验目的

- 1. 1. 进一步掌握时序逻辑电路的设计步骤和方法:
- 1. 2. 了解和熟悉移位寄存器的工作原理功能及应用方法;
- 1. 3. 熟悉中规模 4 位双向移位寄存器的逻辑功能。

2. 实验原理

2. 1. 寄存器

具有寄存数据功能的逻辑电路,一般由触发器组成。

由于一个触发器能储存1位二值代码,因此用N个触发器组成的寄存 器能储存一组N位的二值代码。

对于寄存器中的触发器只要求它们具有置"1"和置"0"的功能,因 而各种结构的触发器都可以组成寄存器。

2. 2. 移位寄存器

既能存储代码, 又能在时钟脉冲的作用下使代码依次左移或右移。

移位寄存器的分类:

按存取信息的方式:

1号台(周三晚1组) 2025年4月9日

3. 实验内容

3.1. 用四个D触发器(2块74LS74)接成4位输出的移位寄存器

从 D_0 端串行输入,寄存器的初态分别置成 Q_0-Q_3 : 1000, 0110, 1010, 1110, 在每种初态下,把 D_0 接 Q_3 ,记录在CP作用下 LED 的工作状态。

从 D_0 端串行输入,寄存器的初态分别置成 Q_0-Q_3 : 0000 和 1010,把 D_0 接 Q_3 ′,记录在CP作用下 LED 的工作状态。

自启动: $D_0 = ((Q_1Q_2')'Q_3)'$,记录在CP作用下 LED 工作状态(全状态转换图)。

$$\begin{array}{c} (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (4) \\ (4) \\ (4) \\ (5) \\ (6) \\ (7) \\ (8) \\$$

3.2. 测试双向移位寄存器74LS/HC194的逻辑功能

清零端CR'接"1", D_0 、 D_1 、 D_2 、 D_3 、 S_1 、 S_0 分别接 6 个逻辑电平,CP接 1Hz 脉冲信号, Q_0-Q_3 分别接 4 个 LED 指示灯。

16	15	14	13	12	11	10	9
Vcc	Q_0	Q_1	Q_2	Q_3	CP	S_1	So
74LS/HC194							
CR'	D_{SR}	D_{0}	D_1	D_2	D_3	Dsl	GND 8
1	2	3	4	5	6	7	8

74LS/HC194功能表

CR'	$S_1 S_0$	工作状态
0	××	置零
1	0 0	保 持
1	0 1	右 移
1	10	左 移
1	11	置数(并行输入)

1. $S_1S_0 = 11$, $D_0D_1D_2D_3$ 分别取 0110 和 1001, 记录 $Q_0 - Q_3$ 的工作状态。

$$D_0D_1D_2D_3 = 0110$$
 时, $Q_0Q_1Q_2Q_3 = 0110$;

$$D_0D_1D_2D_3 = 1001$$
时, $Q_0Q_1Q_2Q_3 = 1001$.

2. $S_1S_0 = 00$,观察并记录 $Q_0 - Q_3$ 的状态。

$$Q_0 - Q_3$$
均不变。

3. $S_1S_0 = 01$,取初态 $Q_0 - Q_3$: 1000,使 D_{SR} 与 Q_3 相连,记录 $Q_0 - Q_3$ 的工作状态。

4. $S_1S_0 = 10$,取初态 $Q_0 - Q_3$: 0001,使 D_{SL} 与 Q_0 相连,记录 $Q_0 - Q_3$ 的工作状态。

- 3.3. 用74LS194组成包含启动开关的3位并一串转换电路。
 - 1、启动前,启动开关置"0",194 处于置数状态($S_1S_0=11$)
 - 2、启动开关置"1",194 进入右移状态($S_1S_0=01$),输出端 Q_3 依次输出 $N_2N_1N_00$
 - 3、标志位的"0"到达输出端后,194 再次进入置数状态($S_1S_0 = 11$)
 - 4、从 Q_3 循环输出: $N_2N_1N_00N_2N_1N_00$...

 $Q_0Q_1Q_2Q_3$

3.4. 用74*LS*194及74*LS*151实现能自启动的左移环形计数器实验电路图如下:

设有效循环状态为:

得到全状态转换图 $(Q_0 - Q_3)$ 如下:

 $Q_0Q_1Q_2Q_3$

4. 思考题

4.1. 在N位移位寄存器中,串行输入N位二进制数需要多少个CP? 送数的次序应从高位至低位,还是低位至高位?

所需的时钟脉冲(CP)数:N个。原因是:每接收一位数据,都需要一个时钟脉冲将其"移入"寄存器中。

送数的次序:应当从高位到低位,这样最后低位进入最低位,数据顺序刚好正确。

4.2. 用74LS194及逻辑门或74LS151芯片,设计一个按 7→14→13→11循环计数的自启动四位 环形计数器,写出设计过程,画出逻辑电路图。

 $Q_0Q_1Q_2Q_3$