傅立叶变换(Ⅱ)

计算机科学的及膝裙陆

大学博士

浙江大学

图像表示

PRIORI依据自然图像

连续时间傅立叶级数

- 假设 X(t)的 是一个连续时间 定期 一个信号:x(吨)=X(Ť+KTo)
 - 基本信号

$$\ddot{E}^{JK}_{\bullet}^{0}$$
 ($K=0$, •1, •2, •) (•0=2•/ \check{T}_{0})

• 分析

$$- \stackrel{\uparrow}{\nearrow} \frac{1}{\check{T}_0} \cdot X \stackrel{\uparrow}{\nearrow} DT$$

- 系数{ 一个_份通常被称为傅立叶级数系数或频谱系数 X(t)的

合成

- 如果 X(t) 的 是实数信号,然后 $- \uparrow \kappa = - \uparrow \cdot \kappa$

狄利克雷条件

- 一个 定期 信号 X(t)的,有傅立叶级数只有当它满足以下条件
 - 1) X(t)的超过任何时期绝对可积,即

$$\bullet \overset{\cdot \cdot \top ()}{\stackrel{\cdot}{\times}} XTD T \quad \bullet \quad \bullet \quad PR$$

- 2) X(t)的有在任何周期的最大和最小值的仅有限数量的

- 3) X(t)的有超过任何时期不连续性只有有限数量的

一个周期性的方波

离散时间傅立叶级数

- 怎么样 X [n]的 是 离散 时间 定期 信号?
 - X[η] = X[ñ + N] 要么 X [η] = X[ñ + 千牛] (ķ Z)

ķ•{1,2,•, N}, 等等。(K=<N>)

- $-\frac{\mathcal{K}_1}{\mathcal{K}_1} \times \mathbb{K}$ 和 $\mathcal{K}_2 \times \mathbb{K}_2 \times \mathbb{K}$ 是彼此正交的,每当 \mathcal{K}_1
 - *k*₂ 和 *k*₁, *k*₂• < *N>* (所述一组N个连续整数号码)
- 一个重要的区别 在离散时间设定谐波相关信号的和连续时间之间是
 - 有 只要 \tilde{n} 不同的信号

$$\ddot{E}^{JK} \frac{2^{\bullet}}{N}^{N\Xi}$$
 在集 $K = 0$, • 1 , • 2 ,

离散时间傅立叶级数

- 假设 X [n]的 是在离散时间域中的周期信号
 - 请记住,我们只有 \tilde{n} 在该组不同的信号 K=0, •1, •2, •

• 合成

离散时间傅里叶变换

- 现在假设 *X [n]的* 是一个 **非周期性** 在信号 **离**散 时域
 - 分析

合成

$$XN \cdot \frac{1}{\cdot} \cdot X \cdot \cdot ED^{(N)}$$

• 连续周期性在频域中

基准信号的总结

• 连续时间

- 傅里叶级数周期信号•

 $\ddot{E}^{\hat{j}_{k}}$

- 傅里叶变换非周期信号•

Ë•^{JT}

• 离散时间

- 离散傅里叶级数周期信号•

- 离散傅立叶变换的非周期信号
 - Ë^{JN}

参考

• [1] AV奥本海姆,AS Willsky和IT青年,信号与系统,普伦蒂斯霍尔,1983年。

谢谢!

锡群Lu博士

xqlu@zju.edu.cn