Lecture 27: Missing Data

GU4241/GR5241 Statistical Machine Learning

Linxi Liu April 27, 2017

Missing data is everywhere

- Survey data (nonresponse).
- ► Longitudinal studies and clinical trials (dropout).
- ► Recommendation systems.
- Data integration.

Mechanisms for missing data

- ▶ Missing completely at random: We remove elements from a column X_j of X at random.
 - *Example.* We run a taste study for 20 different drinks. Each subject was asked to rate only 4 drinks chosen at random.
- Missing at random: The pattern of missingness depends on other predictors.
 - *Example.* In a survey, poor subjects were less likely to answer a question about drug use than wealthy subjects.
 - ▶ Missingness is related to observed predictors (income).
 - Missingness is related to unobserved predictors.
- Censoring: The pattern of missingness is closely related to the missing variable.
 - Example. High earners less likely to report their income.

Dealing with missing data

- Some tree-based methods can deal with missing data naturally.
- Single imputation: We replace each missing value with a single number.
 - 1. Replace with the mean or median of the column.
 - Replace with a random sample from the non-missing values in the column.
 - 3. Replace missing values in X_j with a regression estimate from other predictors, X_{-j} .
 - Methods 1 and 2 can give biased coefficients if the data is not missing completely at random. Method 3 does not have bias if the missing variable is predicted well by X_{-j} .
 - ▶ Method 3 yields standard errors that are artificially small.

Dealing with missing data

- Some tree-based methods can deal with missing data naturally.
- Single imputation: We replace each missing value with a single number.
 - 1. Replace with the mean or median of the column.
 - Replace with a random sample from the non-missing values in the column.
 - 3. Replace missing values in X_j with a regression estimate from other predictors, X_{-j} .
 - Methods 1 and 2 can give biased coefficients if the data is not missing completely at random. Method 3 does not have bias if the missing variable is predicted well by X_{-j} .
 - ▶ Method 3 yields standard errors that are artificially small.

Dealing with missing data

- ▶ Multiple imputation: We replace each missing value in X_j with a regression estimate from the other predictors X_{-j} , plus some noise. This is repeated several times.
 - ▶ If the regression fit of X_j onto X_{-j} is good, the standard errors from this method can be unbiased.

Missing data in more than one variable

Problem: What if we have missing data in almost every column X_1, X_2, \dots, X_p ?

- ► Iterative multiple imputation: Start with a simple imputation. Then, iterate the following:
 - 1. Multiple imputation of X_1 from X_{-1} .
 - 2. Multiple imputation of X_2 from X_{-2}
 - 3. Multiple imputation of X_p from X_{-p} .
- Model based imputation: Fit the missing values to a joint statistical model for all the predictors. Rarely worth the trouble.

Missing data in more than one variable

Problem: What if we have missing data in almost every column X_1, X_2, \dots, X_p ?

Matrix completion:

In linear regression, \hat{y} can be understood as a projection of y onto the space spanned by the columns of X. In a sense, what matters is this column space.

Matrix completion algorithms find a matrix X' which is similar to X in its non-missing values, and has a low dimensional column space:

$$\min_{\text{subject to rank}(X')=k} \|X' - X\|_F,$$

where $||X' - X||_F$ is the sum of squared differences of the non-missing entries (Frobenius norm).

Missing data in more than one variable

Problem: What if we have missing data in almost every column X_1, X_2, \dots, X_p ?

Matrix completion:

This problem can be relaxed to a convex optimization:

min
$$\frac{1}{2} ||X' - X||_F + \lambda \sum_{i=1}^p \sigma_p$$
,

where $\sigma_1, \ldots, \sigma_p$ are the singular values of X'. Here, the penalty λ is inversely related to the rank and can be used as a tuning parameter.

Some practical considerations

- It is important to visualize summaries or plots for the pattern of missingness.
- ▶ If the pattern of missingness is informative, include it as a dummy variable.
- ▶ If a variable has too many missing values, it is worth it to include it?
- ▶ If we are using a method that allows it, consider weighting variables according to the rate of missing data.
 - Example. In nearest neighbors, scale each variable and multiply by (100-% missing).
- Some variables are restricted to be positive, or bounded above.
- ▶ Are there any variables that are non-linear functions of others?