MAT 1100

Uoppfille mals/min-problemer

Vi skal se på maks/min-problemer som dukker opp i det vivkelige liv. Hovedutfordringen er å formellere problemet malemalisk

Ehrempel: En falvikk produsen reglinderformed blikkbobser. Walnialet som lvuker
i den krumm sideflalen er dolbelt så
depr som det som lvuker i lapp og
brum. Bobsen skal være 1 dur og
falvikhen ånsker å lage den så billig
som mulig. Hva må hårgden og
radien da være?

Vi lag høyden være halm og radien i den Da er volumet til boksen

1 = V = Tr2h som gir h = 7/2.

Derson makriald i lapp og brum kaster a kroner per dur, er materialkasfradere

K MM = 2 a Tr 2 + 2 a · 2 Tr 2 = 2 mar + 4 Tr 2 hg

burn og sidelælt Lopp

Bruker i al h= Trz, får i 12= 2 Trav + 49 som ger kostnadene som en funksjon av v. Vi deriverer K'W)= 4Mar - 49 Den deriverb er mult man 411ar- 492=0 > r= VII Siden den deriverte skrifter fra negativ til positiv mår ir passerer VTT, er delle el minimumspendet, og det er lett å se al del er glabalt minimum. Den tel-hårende hoverdein er $h = \frac{1}{\pi r^2} = \frac{1}{\pi \cdot \pi^2 / 3} = \frac{1}{\pi^{5/3}}$ Her en appgave fra midfrierelsamer i 2008

Ehrempel Du padler i en kajakk og er på
el punkt A menneste punkt B på strander
ha A fil næmeste punkt B på strander
er 200m. Du önsker å komme lit en
hutte C i strandkanten som ligger i C,

500 meler fra B. Der vil padle med en haslighel sped 100 meler/minuth hil der heefter shanden og så læpe viden mol Metter heette med en fall på 300 meler/minuth Hundan løper der raskest
haslighed sped 100 vieles/minute fil der
treffer shounden og sa læge vider mol
Hundan land en gan pa 300 men mund
A A
200 m $\frac{1}{300 + x^2}$ $\frac{500 - x}{500 \text{ m}}$ $\frac{1}{300 + x^2}$
500
B x 500m C
Total fid: T(x) - \(\frac{1200^2 + \cdot 2}{300}\)
Deriveren: $T'(x) = \frac{1}{200\sqrt{200^2 + x^2}} \cdot 2x - \frac{1}{300}$
* 1
$= \frac{1}{100\sqrt{200^7+x^2}} - \frac{1}{300}$
Seller vi T'(x)=0, får vi
$3 \times = \sqrt{200^2 + x^2}$
Vi bradreur og får
$9x^2 = 200^2 + x^7$
Jus x2= 25.200
som gir X=50 V2 (x ma van positiv)

Forlegus skjemaet viser at delte er et minimum penkt, og dermed har v fermet den mest effektive reisevern Ehsempel: Figurer viser el reklangel innskrevel i en rellvinklet frekant. Hva er det største arealet er slip reklanget Rekfangelels areal en: R= lh Vi må feine log h:

\[\frac{1}{\frac{1}{4}\frac{1}{4}} = \frac{\times \frac{1}{4} \frac{1}{4} \frac{1}{4}}{\frac{1}{4}} = \frac{\times \frac{1}{4} \frac{1}{4} \frac{1}{4}}{\frac{1}{4}} = \frac{1}{4} \frac{1}{4 $\frac{h}{\sqrt{\sqrt{a^2+b^2}}} \Rightarrow h = \frac{a(b-x)}{\sqrt{a^2+b^2}}$ Dermed er: $R(x) = l\cdot l_0 = \frac{a \times (b-x)}{b} = \frac{a}{b} (b \times -x^2)$ Derivasjon gir: R'(x) = & (b-2x) som gir et mahrimum for X = 2.

Koblede harligheter

I disse appgavene han vi to objekler som er hobbet sammen på en eller annen måte. Vi kjenner haslighelm til det ene objeklet og ånsker å finne haslighelm til det andre.

Eksempkel:

General situasjon:

Generall sifuasjon:

5 y' = wkjent
hashighel, x'

Ved Pylagoras: $\chi^{2}(t) + y^{2}(t) = 25$

Deriveren m.h.p E! 2x(t)x(t)+2y(t)y((t)=0 Som giv $y'(t) = -\frac{x(t)}{y(t)}x'(t)$ Vi vet al x(t) - 3, x' = 2. Vi kan request y red Pylagoras $x^2 + y^2 = 25$, $y^2 = 25 - 3^2 = 16$, y = 4. Derued on $y'(t) = -\frac{3}{4} \cdot 2 = -\frac{3}{2}$ m/s.

Eksempel: En Afflikk drage flyr i en konstant høyde 60 meler over bakker, Farten er 2 m/s Hvor fort låper snoret ut var det allerede g 100 meler ute?

100 60

Generall

XIt

600 finne X'(t)

Y(t)

Dythageran: 60°+y(t)=x(t)

Derive: 2y(t)y'(t) = 2x(t)x'(t), x'(t)= y(t) y'(t)

Må finne y: y = \1003-602 = 80.
x'(t) = \frac{80}{100} \cdot 2m/s = 1.6m/s
Ehrsempel (delehramen 2011): En sirkuler skive med radius 5 cm beveger seg langs
shire and radius 5 cm bereger neg lange
en rell linje mot A
Mån auslanden
Dog A L. T. C
TIE 13 Chick
fra A het C en 13 am, okes vinkelen v med 0.5 vadianes
Villellen V
fort normer sirkelen seg A i delle øyellikhed.
fort normer sirkelen seg A
i delle øyeblekkel.
· · · · · · · · · · · · · · · · · · ·
Generall situasjan:
5 cm
v(t)
X (F)
$Dinv(t) = \frac{3}{x(t)}$
X(t)
Deriver: cosu(t) v'(t) = - 5 x(t) x'(t)
som gir x'(t) = - cosu(t) v'(t) x(t)
sam ger Y It)= XITI

Dermed er

$$x'(t) = -\frac{12}{13} \cdot 0.5$$
, $13^2 = -\frac{12 \cdot 13}{10} - 15.1 \text{ cm/o}$