Analisi e Progetto di Algoritmi

Elia Ronchetti @ulerich

2023/2024

Indice

1	Pro	grammazione Dinamica - DP	4			
	1.1	Problemi di ottimizzazione	4			
	1.2	Il processo di sviluppo	4			
	1.3	Esempio - Fibonacci	5			
		1.3.1 Passaggi	5			
	1.4	Osservazioni sui problemi di ottimizzazione	5			
	1.5	LCS - Longest Common Subsequence	6			
		1.5.1 Definizioni di base	6			
		1.5.2 Istanza del problema	7			
	1.6	Procedura LCS	8			
		1.6.1 Definizione dei sottoproblemi	8			
		1.6.2 Equazioni di ricorrenza	8			
2	Kna	apsack Problem 0/1				
3	Pro	blema dei cammini minimi - Floyd-Warshall	10			
	3.1	· · · · · · · · · · · · · · · · · · ·	10			
		3.1.1 Grafo	10			
			11			
		3.1.3 Rappresentazione di un grafo	11			
			12			
			12			
			13			
			13			
			13			
			13			
		3.1.10 Esempio grafo orientato pesato	14			
	3.2	Il problema dei cammini minimi	14			
		3.2.1 L'input	14			
		3.2.2 L'output Matrici D e Π	15			
	3.3		16			

INDICE	Q
INDICE	J

	3.3.1	Diamo un ordine ai vertici del grafo
	3.3.2	Equazioni di ricorrenza
	3.3.3	Equazioni di ricorrenza
3.4	Algori	tmo bottom-up
	3.4.1	Algoritmo bottom-up - Codice

Capitolo 1

Programmazione Dinamica - DP

La programmazione dinamica (DP - Dynamic Programming) è una tecnica che (come il Divide et Impera), risolve i problemi combinando le soluzioni dei sottoproblemi.

Divide et Impera è ottimo quando i sottoproblemi da risolvere sono indipendenti, mentre DP è efficace quando i sottoproblemi non sono indipendenti e quindi hanno in comune dei sottosottoproblemi e le tecniche di risoluzione top-down risultano quindi inefficienti (chiamate ripetute). La programmazione dinamica si applica tipicamente ai **problemi di ottimizzazione**.

1.1 Problemi di ottimizzazione

Sono problemi dove ci sono molte soluzioni possibile. Ogni soluzione ha un valore e e si vuole trovare una solzuione con il valore ottimo. Ci possono essere più soluzioni che raggiungono il valore ottimo.

1.2 Il processo di sviluppo

Il processo di sviluppo è diviso in 4 fasi:

- Caratterizzare la struttura di una soluzione ottima
- Definire in modo ricorsivo il valore di una soluzione ottima
- Calcolare il valore di una soluzione ottima, di solito con uno schema bottom-up (dal basso verso l'alto, risulta spesso più efficiente rispetto a top-down)

• Costruire una soluzione ottima dalle informazioni calcolate

1.3 Esempio - Fibonacci

Classico esempio è l'esecuzione di Fibonacci. Utilizzando la ricorsione pura si effettuano più volte le stesse chiamate (perchè i sotto-numeri sono gli stessi). Se invece utilizziamo la DP, con un approccio Bottom-Up ci dobbiamo chiedere, ma chi è Fibonacci di n? è Fibonacci di (1)+Fibonacci(2)+ ... + Fibonacci(n). In pratica inizio a calcolare le soluzioni dal sottoproblema più piccolo a salire, così facendo possiamo risparmiare molto tempo, al costo però di un maggiore utilizzo di spazio, dato che ho un Array che deve memorizzare i valori. Si tratta di un compromesso accettabile dato che senza usare Array il tempo di esecuzione sarebbe esponenziale.

1.3.1 Passaggi

A livello pratico dobbiamo:

- 1. Scomporre il problem in sottoproblemi di dimensione inferiore
- 2. Formulare la soluzione in maniera ricorsiva Equazioni di Ricorrenza
- 3. Usare una strategia bottom-up (non top-down)
- 4. Memorizzare i risultati in una opportuna struttura dati
- 5. Individuare il "luogo" che contiene la soluzione del problema (nel caso di Fibonacci l'ultima cella a destra)

DP risulta vantaggiosa quando il numero di chiamate distine è polinomiale (il numero totale di chiamate è esponenziale).

1.4 Osservazioni sui problemi di ottimizzazione

Per ogni istanza del problema esiste un insieme di soluzioni posibili (feasible solutions), più soluzioni perchè le soluzioni ottime possono essere diverse. Esiste una funzione obiettivo che associa un valore ad ogni soluzione possibile e restituisce come OUTPUT una soluzione possibile (soluzione ottimale) per cui il valore restituito dalla funzione obiettivo è massimo/minimo (valore ottimo).

1.5 LCS - Longest Common Subsequence

Si tratta di un problema che ha come istanza due sequenze di valori e richiede di trovare la più grande sottosequenza comune fra di esse. Si tratta di un problema di ottimizzazione, per questo usare DP è un'ottima idea.

1.5.1 Definizioni di base

Sequenza Successione di elementi topologicamente ordinati, presi da un insieme \sum .

Per esempio X=<2,4,10,5,9,11>, più in generale:

• $X = \langle x_1, x_2, ..., x_m \rangle \rightarrow$ sequenza di m = |X| elementi

Prefisso di lunghezza i Primi i elementi della sequenza:

 $\bullet~X=< x_1, x_2, ..., x_i> \to$ prefisso di lunghezza i di X

Dato $X = \langle 2, 4, 10, 5, 9, 11 \rangle$ per esempio $X_3 = \langle 2, 4, 10 \rangle$.

i-esimo elemento Indichiamo con X[i] l'i-esimo elemento x_i della sequenza X.

Sottosequenza Una qualsiasi successione di elementi (anche non consecutivi) di una sequenza che però rispettino l'ordine sulla sequenza. Per esempio data una sequenza X = <2,4,10,5,9,11>

- Z = <4,5,9 > è una sottosequenza di X
- $Z = <> = \epsilon$ è una sottosequenza di X
- \bullet < 9, 5, 4 > NON è una sottosequenza di X

Definizione formale di sottosequenza Data $X = \langle x_1, x_2, ..., x_m \rangle$, una sequenza $Z = \langle z_1, z_2, ..., z_k \rangle$ ($k \leq m$) è sottosequenza di X se esiste una successione di k indici interi $i_1 < i_2 < ... < i_k$ tali che $X[i_j] = z_j$ per j compreso tra 1 e k.

Esempio sottosequenza Dato X=<2,4,10,5,9,11>, Z=<4,5,9>è una sottosequenza di X.

Sottosequenza comune di X e Y è una sottosequenza si di X che di Y.

$$X = <1, 13, 5, 3, 1, 12, 8, 11, 6, 10, 10 >$$

$$Y = <1, 5, 5, 2, 3, 1, 12, 8, 8, 10 >$$

$$S = <5, 3, 1, 8, 10 >$$

S è sottosequenza comune di X e Y.

LCS è la più lunga sottosequenza comune Z di X e Y.

Esempio di LCS

$$X = <2, 10, 5, 3, 1, 12, 8, 30, 11, 6, 10, 13 >$$

$$Y = <2, 5, 10, 2, 3, 1, 30, 12, 6, 8, 10 >$$

$$<2, 10, 3, 1, 12, 8, 10 > \text{è LCS di X e Y}$$

La LCS è una soluzione ottimale, mentre la sua lunghezza (7) è il valore ottimo.

1.5.2 Istanza del problema

P: date due sequenze $X = \langle x_1, x_2, ..., x_n \rangle eY = \langle y_1, y_2, ..., y_n \rangle$, trovare la più lunga sottosequenza comune Z di X e Y.

Abbiamo capito che P è un problema di ottimizzazione di massimo, dove:

- $(m,n) \rightarrow \hat{e}$ la dimensione del problema (lunghezza stringhe)
- \bullet Soluzioni possibili \rightarrow tutte le sottosequenze comuni di X e Y
- Funzione obiettivo \rightarrow lunghezza
- |Z| è il valore ottimo del problema
- Z è una soluzione ottimale

1.6 Procedura LCS

Indichiamo con LCS(A,B) la LCS delle sequenze A e B e di conseguenza |LCS(A,B)| la lunghezza della LCS di A e B. Procediamo con le seguenti fasi:

- 1. Individuiamo i sottoproblemi
- 2. Troviamo le equazioni di ricorrenza
- 3. Applichiamo una strategia bottom-up con memorizzazione dei risultati

Nota Bene Si deve individuare la sottostruttura ottima del problema. La strategia bottom-up trova l'ottimo (lunghezza di LCS) e in seguito si deve ricostruire una soluzione ottimale (una delle LCS).

1.6.1 Definizione dei sottoproblemi

Sottoproblema di dimensione (i,j). Trovare la LCS dei prefissi X_i e $Y_j \to LCS(X_i, Y_j)$.

$$i \in \{0, 1, ..., m\}$$

 $j \in \{0, 1, ..., n\}$

Numero totale sottoproblemi: $(m+1) \times (n+1)$

Ricordiamo che $LCS(X_m, Y_n)$ è la soluzione del problema principale.

1.6.2 Equazioni di ricorrenza

Casi base

Tutti i sottoproblemi di dimensione (i,j) tale per cui i = 0 oppure j = 0.

$$i = 0 \implies LCS(X_0, Y_j) = LCS(\epsilon, Y_j) = \epsilon$$

 $j = 0 \implies LCS(X_i, Y_0) = LCS(X_i, \epsilon) = \epsilon$
 $i = 0, j = 0 \implies LCS(X_0, Y_0) = LCS(\epsilon, \epsilon) = \epsilon$

Passo ricorsivo

Tutti i sottoproblemi di dimensione (i, j) tale per cui i > 0 e j > 0. Introduciamo la sottostruttura ottima del problema:

Capitolo 2

Knapsack Problem 0/1

Questione da risolvere: trovare il subset di oggetti di massimo valore complessivo che non superi la capacità C.

Oggetti Ad ogni oggetto viene associato un peso e un valore, quindi il problema consiste nel inserire nello zaino il massimo valore possibile senza superare il peso massimo.

Capitolo 3

Problema dei cammini minimi -Floyd-Warshall

Come al solito diamo qualche definizione per poter lavorare successivamente in maniera agile.

3.1 Definizioni

3.1.1 Grafo

Un Grafo viene definito come G = (V, E) dove:

- $V = \{v_1, v_2, v_3, ..., v_n\}$ insieme di vertici

Dimensione di G \rightarrow (n,m). Arco $e_k \rightarrow$ relazione R tra due vertici v_i e v_j

R può essere

- Simmetrica Grafo NON Orientato cioè $v_i R v_j \Leftrightarrow v_j R v_i$
- Asimmetrica Grafo Orientato (o diretto) cio
è $v_i \, R \, v_j \not\Leftrightarrow v_j \, R \, v_i$

Un grafo orientato è caratterizzato da un verso di percorrenza degli archi unidirezionale. In questo caso E è sottoinsieme di V^2 .

3.1. DEFINIZIONI 11

 $V = \{1, 2, 3, 4, 5\}$

 $E = \{(1,2), (1,5), (2,3), (2,4), (4,3), (5,2), (5,4)\}$

Grafo non orientato

 $V = \{1, 2, 3, 4, 5\}$

 $E = \{(1,2), (1,5), (2,3), (2,4), (4,3), (5,2), (5,4)\}$

3.1.2 Adiacenza

Un vertifica v è adiacente a un vertice u se $(u, v) \in E$.

Per esempio nella rappresentazione del grafo orientato il vertice 1 è adiacante ai vertici $\mathbf{2}$ e $\mathbf{5}$, infatti notiamo che in E è presente (1,2),(1,5).

3.1.3 Rappresentazione di un grafo

Abbiamo 2 rappresentazioni possibili:

- Liste di adiacenza
- Matrice di adiacenza
- 1. Le liste di adiacenza utilizzano un vettore L_v di dimensione |V| tale che V[i] è la lista degli adiacenti del vertice v_i . Ogni vertice del grafo avrà un vettore.

2. La matrice di adiacenza è una Matrice M_v di dimensione $n \times n$ tale che M[i,j]=1 se il vertice j è adiacente del vertice i, altrimenti M[i,j]=0. A differenza delle liste in questo caso ho una sola matrice.

3.1.4 Esempio grafo orientato

 $\mathbf{Dimensione} \quad |V|^2 = n^2$

Numero di celle con 1 |E|

3.1.5 Esempio grafo non orientato

13

Dimensione $|V|^2 = n^2$

Numero di celle con 1 2|E|

3.1.6 Liste VS Matrice (memoria)

Liste di adiacenza Sono ottime dal punto di vista dell'occupazione dello spazio nel caso di Grafi sparsi con |E| molto minore di $|V|^2$.

Matrici di adiacenza Risultano migliori nei grafi densi quindi quando ho |E| che si avvicina a $|V|^2$.

3.1.7 Liste VS Matrice (tempo)

(u,v) Intendiamo se i 2 vertici sono collegati. Come tempo intendiamo il tempo per stabilire se (u,v) appartiene ad E e i tempi sono i seguenti:

- Liste di adiacenza $\rightarrow O(|E|) = O(m)$
- Matrice di adiacenza $\rightarrow O(1)$

3.1.8 Cammino in un grafo orientato

Definizione di cammino Sequenza $P = \langle v_{i_1}, v_{i_2}, ..., v_{i_{k-1}}, v_{i_k} \rangle$ tale che v_{i_k} appartiene a V per $1 \leq j \leq k$ e $(v_{i_j}, v_{i_{j+1}})$ appartiene ad E per $1 \leq j < k$.

Lunghezza del cammino k-1 (numero di archi)

Ciclo Cammino in cui v_{i_1} coincide con v_{i_k}

Cammino semplice Cammino in cui ogni vertice è presente una volta sola (cioè non contiene cicli)

Predecessore di v_{i_k} in P Vertice di $v_{i_{k-1}}$

3.1.9 Grafo orientato pesato

Grafo G = (V, E, W)

- $V = \{v_1, v_2, v_3, ..., v_n\}$ insieme di vertici

• $W: E \to R$ tale che $W(v_i, v_j) = w_{ij}$ è il peso dell'arco (v_i, v_j)

Peso di un cammino Si tratta della somma dei pesi di tutti gli archi, formalmente: $P=< v_{i_1}, v_{i_2}, ..., v_{i_k}> \to \sum_{j=1}^{k-1} w(v_{i_j}, v_{i_{j+1}})$

3.1.10 Esempio grafo orientato pesato

3.2 Il problema dei cammini minimi

Input Grafo G = (V, E, W) (senza cappi) orientato e pesato

Output Per ogni coppia di vertici i e j, trovare il cammino di peso minimo (cammino minimo) che parte da i e finisce in j. Si tratta di un problema di ottimizzazione di minimo, dove

- $(n) \rightarrow \text{dimensione del problema}$
- Soluzioni possibili per una coppia di vertici i e j sono tutti i cammini da i a j
- Funzione obiettivo è il peso del cammino
- Peso del cammino minimo da i a j è il valore ottimi (per i e j)
- Un cammino minimo tra i vertici i e j è la soluzione ottimale

3.2.1 L'input

Funzione peso W $W: E \to R^+$ tale che $W(i,j) = w_{ij} =$ peso dell'arco (i,j).

Funzione peso W - Versione estesa $W: V \times V \to R^+$ tale che $W(i, j) = w_{ij}$ con:

- $w_{ij} = 0 \text{ se } i = j$
- $w_{ij} = \text{peso dell'arco } (i, j), \text{ se } (i, j) \in E$
- $w_{ij} = \infty$, se $i \neq j$ e $(i, j) \notin E$

Matrice $W = [w_{ij}]$ di n righe e n colonne.

3.2.2 L'output Matrici D e Π

- Matrice $D = [d_{ij}]$ di n righe e n colonne, dove $[d_{ij}]$ è il peso del cammino minimo da i e j
- Matrice $\Pi = [\pi_{ij}]$ di n righe e n colonne, dove π_{ij} è il predecessore di j nel cammino minimo da i a j

Matrice D

- $d_{ij} = 0$ se i = j
- d_{ij} = peso del cammino minimo, se esiste un cammino da i a j
- $d_{ij} = \infty$ se non esiste un cammino da i a j

Matrice Π

- $\pi_{ij} = NIL$, se i = j
- $\pi_{ij} = u$ appartenente al cammino minimo da i a j, tale che $(u, j) \in E$, se esiste un cammino da i a j
- $\pi_{ij} = NIL$, se non esisto un cammino da i a j

Dopo aver riempito entrambe le matrici mi rendo conto che:

La riga i d Π fornisce l'albero dei predecessori relativo al vertice i.

Albero dei predecessori del vertice i (riga i di Π)

- $\{j \in V | \pi_{ij} \notin NIL\} \cup \{i\} \rightarrow \text{insieme dei vertici}$
- $(\pi_{ij}, j) | \pi i j \notin NIL$

3.3 Sosttostruttura ottima (primo tentativo)

Consideriamo come P_{ij} il **Cammino minimo da i a j** e p è il predecessore di i.

Sicuramente $P_{ij} = P_{ip} + \langle j \rangle$, con P_{ip} cammino minimo da i a p.

Con P_{ip} cammino minimo da i a p. Come potrei trovare P_{ij} ?

- 1. Considero tutti i vertici p' tali che $(p', j) \in E$
- 2. Per ogni vertice p' determino il cammino dato da: $P_{ip}+ < j >$
- 3. Seleziono il cammino di peso minimo

Attenzione! Non è sicuro che quando si calcola P_{ij} si abbiano già a disposizione i cammini $P_{ip'}$. Si deve parametrizzare rispetto alla lunghezza I del cammino:

- 1. Prima calcolo tutti i cammini minimi a lunghezza $0 \to P^0_{ij}$ $P^0_{ij}=< i>$ se i=j, altrimenti $P^0_{ij}=\infty$
- 2. Poi calcolo tutti i cammini minimi a lunghezza $1\to P^1_{ij}$ =< i,j> se $i\neq j$ e $(i,j)\in E,$ altrimenti $P^1_{ij}=\infty$
- 3. Poi calcolo tutti i cammini minimi a lunghezza $2 \to P_{ij}^2$
- 4. Poi calcolo tutti i cammini minimi a lunghezza $3 \rightarrow P_{ij}^3$
- 5. ...
- 6. Ci si ferma per l = |E| = m (l è lunghezza)
- 7. Per ogni coppia i e j scelgo tra i cammini $P^0_{ij}, P^1_{ij}, \dots, P^m_{ij}$, quello di peso minimo

Friendly Reminder $\langle i, j \rangle$ Significa perorso con i vertici i e j.

Domande Come calcolo P_{ij}^l con $l \geq 2$?

E qual è il tempo nel caso peggiore dell'algoritmo DP che sfrutta questa struttura ottima?

3.3.1 Diamo un ordine ai vertici del grafo

1 viene prima di 2 che viene prima di 3 etc. che viene prima dell'ultimo vertice n.

Parametriziamo rispetto ai vertici intermedi del cammino:

- Trovo $P_{ij}^0 \to \text{cammino minimo senza vertici intermedi}$
- Trovo $P^1_{ij} \to \text{cammino minimo con vertici intermedi} \in \{1\}$
- Trovo $P_{ij}^2 \to \text{cammino minimo con vertici intermedi} \in \{1,2\}$
- Trovo $P_{ij}^3 \to \text{cammino minimo con vertici intermedi} \in \{1, 2, 3\}$
- Trovo $P_{ij}^n \to \text{cammino minimo con vertici intermedi} \in \{1, 2, \dots, n\}$

Analizziamo nel dettaglio i cammini minimi intermedi

 $P_{ij}^0 \to \text{cammino minimo senza vertici intermedi.}$

$$P_{ij}^{0} = \langle i \rangle \quad \text{se } i = j$$

$$P_{ij}^{0} = \langle i, j \rangle \quad \text{se } i \neq j \text{ e } (i, j) \in E$$

$$P_{ij}^{0} = NIL \quad \text{se } i \neq j \text{ e } (i, j) \notin E$$

Per k > 0, $P_{ij}^k \to \text{cammino minimo con vertici intermedi} \in \{1, 2, \dots, k\}$. Per k = n, $P_{ij}^n \to \text{cammino minimo con vertici intermedi} \in \{1, 2, \dots, n\}$. Quindi $P_{ij}^n \to \text{cammino minimo } P_{ik}$.

Sottoproblema di dimensione k Per ogni coppia (i,j), trovare il cammino minimo P_{ij}^k dal vertice i al vertice j che ha vertici intermedi $\in \{1, 2, ..., k\}$ se k > 0, oppure non ha vertici intermedi se k = 0.

$$k \in \{0, 1, \dots, n\}$$

 $i \in \{1, \dots, n\}$
 $j \in \{1, \dots, n\}$

Numero di sottoproblemi $n \times n \times (n+1)$. $k = n \rightarrow P_{ij}^n = P_{ij}$.

3.3.2 Equazioni di ricorrenza

Casi base Sottoproblema di dimensione (0)

$$\begin{aligned} P_{ij}^0 &= \langle i \rangle & \text{se } i = j \\ P_{ij}^0 &= \langle i, j \rangle & \text{se } i \neq j \text{ e } (i, j) \in E \\ P_{ij}^0 &= NIL & \text{se } i \neq j \text{ e } (i, j) \notin E \end{aligned}$$

Passo ricorsivo Tutti i sottoproblemi di dimensione (k) tale che k > 0

$$P_{ij}^k = ?$$

Ricerchiamo la sottostruttura ottima.

Data una soluzione ottimale $P_{ij} = P_{ij}^n$ si possono verificare due casi:

- 1. Il vertice n NON è uno dei vertici intermedi
- 2. Il vertice n è uno dei vertici intermedi

Caso 1 - Il vertice n NON è uno dei vertici intermedi

- P_{ij}^n coincide con P_{ij}^{n-1}
- Predecessore di j in P_{ij}^n coincide con predecesore di j in P_{ij}^{n-1}

Caso 2 - Il vertice n è uno dei vertici intermedi

$$P_{ij}^n = P_1 + P_2$$

$$P_1 = P_{in}^{n-1} \to P_{ij}^n = P_1 + P_2 = P_{in}^{n-1} + P_2$$

Mentre per quanto riguarda P_2 avrò che

$$P_2 = P_{ni}^{n-1}$$

Quindi sostituendo P_2 all'interno dell'equazione avrò che:

$$P_2 = P_{nj}^{n-1} \to P_{ij}^n = P_1 + P_2 = P_{in}^{n-1} + P_{nj}^{n-1}$$

Abbiamo quindi che il predecessore di j in P_{ij}^n coincide con il predecessore di j in P_{nj}^{n-1} .

Passo ricorsivo per P_{ij}^n

La soluzione ottimale $P_{ij}^n = P_{ij}$ è data da:

$$P_{ij}^{n} = min_{p}\{P_{ij}^{n-1}, P_{in}^{n-1} + P_{nj}^{n-1}\}$$

i=n oppure $j=n o P_{ij}^n=P_{ij}^{n-1}.$

Passo ricorsivo per P_{ij}^k

La soluzione ottimale $P_{ij}^k(k>0)$ è data da:

$$P_{ij}^{k} = min_{p}P_{ij}^{k-1}, P^{k-1}ik + P_{kj}^{k-1}$$

i = k oppure $j = k \rightarrow P_{ij}^k = P_{ij}^{k-1}$.

3.3.3 Equazioni di ricorrenza

Riassumendo abbiamo le sequenti equazioni di ricorrenza:

k=0 (CASI BASE)

$$\begin{split} P^0_{ij} &= < i > \quad \text{se } i = j \\ P^0_{ij} &= < i, j > \quad \text{se } i \neq j \text{ e } (i, j) \in E \\ P^0_{ij} &= NIL \quad \text{se } i \neq j \text{ e } (i, j) \notin E \end{split}$$

k > 0 (PASSO RICORSIVO)

$$P_{ij}^{k} = min_{p}P_{ij}^{k-1}, P^{k-1}ik + P_{kj}^{k-1}$$

Definizione dei coefficienti

Coefficienti d_{ij}^k dei sottoproblemi.

 $d_{ij}^k \to \text{peso del cammino } P_{ij}^k$

$$k \in \{0, 1, \dots, n\}$$

 $i \in \{1, \dots, n\}$
 $j \in \{1, \dots, n\}$

Quindi abbiamo **Numero di coefficienti** uguale a $n \times n \times (n+1)$.

 $k = n \rightarrow d_{ij}^n$ è il preso d_{ij} di P_{ij} .

Ricordiamo che la funzione obiettivo è trovare il peso del cammino, definiamo quindi i coefficienti nella seguente maniera:

k=0 (CASI BASE)

$$d_{ij}^{0} = 0 \quad \text{se } i = j$$

$$d_{ij}^{0} = w_{ij} \quad \text{se } i \neq j \text{ e } (i, j) \in E$$

$$d_{ij}^{0} = \infty \quad \text{se } i \neq j \text{ e } (i, j) \notin E$$

k > 0 (PASSO RICORSIVO)

$$d_{ij}^{k} = min_{p}d_{ij}^{k-1}, d^{k-1}ik + d_{kj}^{k-1}$$

Predecessori π_{ij}^k

 $\pi_{ij}^k \to \text{predecessore del vertice j in } P_{ij}^k$

$$k \in \{0, 1, \dots, n\}$$

 $i \in \{1, \dots, n\}$
 $j \in \{1, \dots, n\}$

Numero di predecessori:: $n \times n \times (n+1)$.

 $\pi_{ij}^n \to \text{predecessore } \pi_{ij} \text{ di j in } P_{ij}.$

Aggiungiamo alle equazioni di ricorrenza anche i predecessori.

21

k=0 (CASI BASE)

$$\begin{aligned} d_{ij}^0 &= 0 \quad \pi_{ij}^0 = NIL \quad \text{se } i = j \\ d_{ij}^0 &= w_{ij} \quad \pi_{ij}^0 = i \quad \text{se } i \neq j \text{ e } (i,j) \in E \\ d_{ij}^0 &= \infty \quad \pi_{ij}^0 = NIL \quad \text{se } i \neq j \text{ e } (i,j) \notin E \end{aligned}$$

k > 0 (PASSO RICORSIVO)

$$\begin{aligned} d^k_{ij} &= min_p d^{k-1}_{ij}, d^{k-1}ik + d^{k-1}_{kj} \\ \pi^k_{ij} &= \pi^{k-1}_{ij} \text{ se } d^k_{ij} = d^{k-1}_{ij} \text{ altrimenti } \pi^k_{ij} = \pi^{k-1}_{kj} \end{aligned}$$

3.4 Algoritmo bottom-up

Per ogni valore di k da 0 a n, vengono calcolate due matrici $(n \times n)$:

$$D^k = [d_{ij}^k]$$
$$\Pi^k = [\pi_{ij}^k]$$

Il numero totale di matrici è 2(n+1).

Caso Base Ho che:

$$D^0 = [d^0_{ij}] = W$$
matrice dei pesi input
$$\Pi^0 = [\pi^0_{ij}]$$

Passo Ricorsivo In questo caso ho:

$$D^k=[d^k_{ij}]$$
e $\Pi^k=[\pi^k_{ij}]$ Sono calcolate usando le matrici $D^{k-1}=[d^{k-1}_{ij}]$ e $\Pi^{k-1}=[\pi^{k-1}_{ij}]$

Avrò quindi che le matrici $D^n = [d_{ij}^n]$ e $\Pi^n = [\pi_{ij}^n]$ sono le matrici di output!

3.4.1 Algoritmo bottom-up - Codice

Procedura calcola_valori_ottimi_FW (V,E,W)
$$D^0 = W$$
 $\Pi^0 = (n \times n)$ matrix of NIL values for i = 1 to n do for j = 1 to n do

$$\begin{array}{lll} \textbf{if} & \text{i} & \text{!= j and } w_{ij} \text{!= } \infty & \text{then} \\ & \Pi^0 & [\text{i} \text{ , j} \text{]} = \text{i} \\ \textbf{for k = 1 to n do} \\ & \textbf{for i = 1 to n do} \\ & \textbf{for j = 1 to n do} \\ & D^k[i,j] = D^{k-1}[i,j] \\ & \Pi^k[i,j] = \Pi^{k-1}[i,j] \\ & \textbf{if i != k and j != k then} \\ & \textbf{if } D^k[i,j] > D^{k-1}[i,k] + D^{k-1}[k,j] & \text{then} \\ & D^k[i,j] = D^{k-1}[i,k] + D^{k-1}[k,j] \\ & \Pi^k[i,j] = \Pi^{k-1}[k,j] \end{array}$$

Tempo $\Theta(n^3)$.