Predicted

Negative Neutral Positive

การคำนวณค่าประเมินประสิทธิภาพ สำหรับปัญหา Classification 3 คลาส

Actual ขั้นตอนการคำนวณ Accuracy, Precision, Recall, F1-score และ AUC/ROC Neutral 200 8300 100

Accuracy Precision 5 Recall F1-score ~ AUC/ROC

Positive 0 100 300

บทน้ำ: การประเมินประสิทธิภาพโมเดล Classification

เมตริกการประเมินประสิทธิภาพ

- 🗸 Accuracy ความถูกต้องโดยรวมของโมเดล
- 陀 Precision ความแม่นย้ำของการทำนายคลาสบวก
- 5 Recall ความสามารถในการตรวจจับคลาสบวก
- 📶 F1-score ค่าเฉลี่ยเชิงฮาร์มอนิกของ Precision และ Recall
- ✓ AUC/ROC พื้นที่ใต้เส้นโค้งลักษณะการทำงานของตัวรับ

ความสำคัญของการประเมินประสิทธิภาพ

- วัดประสิทธิภาพของโมเดลอย่างเป็นระบบ
- เปรียบเทียบโมเดลต่างๆ ได้อย่างเป็นธรรม
- ช่วยเลือกเมตริกที่เหมาะสมกับปัญหา
- สำหรับ 3 คลาส ต้องคำนวณแต่ละคลาสและรวมกัน

Confusion Matrix สำหรับ 3 คลาส

การทำความเข้าใจ Confusion Matrix

- ่ แมทริกซ์ 3x3 ที่แสดงการทำนายเทียบกับค่าจริง
- แถว = คลาสจริง (Actual)
- คอลัมน์ = คลาสที่ทำนาย (Predicted)
- เส้นทแยงมุม = การทำนายถูกต้อง (TP)
- 👪 เป็นฐานในการคำนวณเมตริกอื่นๆ

การคำนวณค่าต่างๆ

- TP (True Positive): ค่าบนเส้นทแยงมุม
- FP (False Positive): ผลรวมของคอลัมน์ (ยกเว้น TP)
- FN (False Negative): ผลรวมของแถว (ยกเว้น TP)
- TN (True Negative): ผลรวมของเซลล์ที่ไม่ใช่แถวหรือคอลัมน์ของ คลาสนั้น

Accuracy จาก Confusion Matrix

Accuracy = $(TP_1 + TP_2 + TP_3)$ / ผลรวมทั้งหมด

การคำนวณ Accuracy สำหรับ 3 คลาส

สูตรการคำนวณ Accuracy

ฐตร Accuracy

Accuracy = (จำนวนการทำนายถูก) / (จำนวนการ ทำนายทั้งหมด)

Accuracy =
$$(TP_1 + TP_2 + TP_3) / N$$

- 1 หาผลรวมของค่าบนเส้นทแยงมุมของ confusion matrix (TP₁, TP₂, TP₃)
- 2 หาผลรวมของค่าทั้งหมดใน confusion matrix (N)
- 3 นำผลรวมจากข้อ 1 หารด้วยผลรวมจากข้อ 2
- 4 แปลงเป็นร้อยละหรือเลขทศนิยมตามต้องการ

Accuracy วัดความถูกต้องโดยรวมของโมเดล แต่อาจไม่เหมาะกับข้อมูลที่ ไม่สมดุล

🛱 ตัวอย่างการคำนวณ

	А	В	С
А	15	3	2
В	1	20	4
С	2	5	18

 $TP_A = 15$

สูตรการคำนวณ Precision

Precision = TP / (TP + FP)

- 1 สำหรับแต่ละคลาส หาค่า TP (True Positive) จากค่าบนเส้น ทแยงมุม
- 2 หาค่า FP (False Positive) จากผลรวมของคอลัมน์ (ยกเว้น ค่าบนเส้นทแยงมุม)
- 3 คำนวณ Precision สำหรับแต่ละคลาส: Precision_i = TP_i / (TP_i + FP_i)
- 4 คำนวณค่าเฉลี่ยโดยใช้ Macro หรือ Micro averaging

ตัวอย่างการคำนวณ

คลาส A:

 $TP_{A} = 15$

 $FP_A = 1 + 2 = 3$

 $Precision_A = 15 / (15 + 3) =$

0.833

	Α	В	С
Α	15	3	2
В	1	20	4
С	2	5	18

คลาส B:

 $TP_B = 20$

 $FP_B = 3 + 5 = 8$

 $Precision_B = 20 / (20 + 8) =$

0.714

คลาส C:

 $TP_C = 18$

 $FP_C = 2 + 4 = 6$

 $Precision_C = 18 / (18 + 6)$

= 0.750

→ วิธีการคำนวณค่าเฉลี่ย

Macro Averaging

- คำนวณค่าเฉลี่ยของ Precision ทุกคลาส
- ให้น้ำหนักเท่ากันทุกคลาส
- เหมาะกับข้อมูลไม่สมดุล

Micro Averaging

- รวม TP และ FP ของทุก คลาส
- คำนวณ Precision โดย รวม
- ได้รับอิทธิพลจากคลาส
 ใหญ่

Σ การคำนวณค่าเฉลี่ย

Macro Precision = (0.833 + 0.714 + 0.750) / 3 = 0.766

Micro Precision = (15 + 20 + 18) / (15+20+18 + 3+8+6) = 0.757

Precision วัดความแม่นย้ำของการทำนายคลาสบวก

การคำนวณ Recall สำหรับ 3 คลาส

สูตรการคำนวณ Recall

ฐตร Recall

Recall =
$$TP / (TP + FN)$$

- 1 สำหรับแต่ละคลาส หาค่า TP (True Positive) จากค่าบนเส้น ทแยงมุม
- 2 หาค่า FN (False Negative) จากผลรวมของแถว (ยกเว้นค่า บนเส้นทแยงมุม)
- 3 คำนวณ Recall สำหรับแต่ละคลาส: Recall_i = TP_i / (TP_i + FN_i)
- 4 คำนวณค่าเฉลี่ยโดยใช้ Macro หรือ Micro averaging

ตัวอย่างการคำนวณ

คลาส A:

$$TP_A = 15$$

 $FN_A = 3 + 2 = 5$

$$Recall_A = 15 / (15 + 5) =$$

0.750

	А	В	С
Α	15	3	2
В	1	20	4
С	2	5	18

คลาส B:

$$TP_B = 20$$

$$FN_B = 1 + 4 = 5$$

$$Recall_B = 20 / (20 + 5) =$$

0.800

คลาส C:

$$TP_C = 18$$

$$FN_C = 2 + 5 = 7$$

$$Recall_C = 18 / (18 + 7) =$$

0.720

→ วิธีการคำนวณค่าเฉลี่ย

Macro Averaging

- คำนวณค่าเฉลี่ยของ Recall ทุกคลาส
- ให้น้ำหนักเท่ากันทุกคลาส
- เหมาะกับข้อมูลไม่สมดุล

Micro Averaging

- รวม TP และ FN ของทุก คลาส
- คำนวณ Recall โดยรวม
- ได้รับอิทธิพลจากคลาส ใหญ่

Σ การคำนวณค่าเฉลี่ย

Macro Recall =
$$(0.750 + 0.800 + 0.720) / 3 = 0.757$$

Micro Recall =
$$(15 + 20 + 18) / (15+20+18 + 5+5+7) = 0.757$$

Recall วัดความสามารถในการตรวจจับคลาสบวกทั้งหมด

การคำนวณ F1-score สำหรับ 3 คลาส

สูตรการคำนวณ F1-score

สูตร F1-score

 $F1 = 2 \times (Precision \times Recall) / (Precision + Recall)$

- 1 คำนวณ Precision สำหรับแต่ละคลาส
- 2 คำนวณ Recall สำหรับแต่ละคลาส
- 3 คำนวณ F1-score สำหรับแต่ละคลาส
- 4 คำนวณค่าเฉลี่ย (Macro/Micro/Weighted)

🖩 ตัวอย่างการคำนวณ

คลาส A

Precision = 0.833 Recall = 0.750 F1 = 0.789

คลาส B

Precision = 0.714 Recall = 0.800 F1 = 0.755

คลาส C

Precision = 0.750Recall = 0.720F1 = 0.735

₫ඁ วิธีการคำนวณค่าเฉลี่ย

Macro

- ค่าเฉลี่ยเท่ากันทุก
 คลาส
- เหมาะข้อมูลไม่สมดุล

Micro

- รวม TP, FP, FN ทั้งหมด
- คำนวณโดยรวม

Weighted

- ถ่วงน้ำหนักตาม
 ขนาดคลาส
- คลาสใหญ่มีน้ำ
 หนักมากกว่า

🗷 ผลลัพธ์การคำนวณค่าเฉลี่ย

Macro F1

0.760

Micro F1

0.757

Weighted F1

0.759

F1-score เป็นค่าเฉลี่ยเชิงฮาร์มอนิกของ Precision และ Recall

One-vs-Rest (OvR)

เปรียบเทียบแต่ละคลาสกับคลาสอื่นๆ รวมกัน

- ✓ กำหนด 1 คลาสเป็น Positive และคลาสที่เหลือเป็น Negative
- คำนวณ ROC AUC สำหรับแต่ละคลาส (3 ครั้งสำหรับ 3 คลาส)
- 🗸 ค่าเฉลี่ย ROC AUC ทั้งหมดเป็นผลลัพธ์สุดท้าย

② One-vs-One (OvO)

เปรียบเทียบคู่ของคลาสทุกคู่ที่เป็นไปได้

- 🗸 สร้างคู่ของคลาสทั้งหมดที่เป็นไปได้ (6 คู่สำหรับ 3 คลาส)
- ✓ สำหรับแต่ละคู่ กำหนดคลาสแรกเป็น Positive และคลาสที่สอง เป็น Negative
- 🗸 คำนวณ ROC AUC สำหรับแต่ละคู่ แล้วหาค่าเฉลี่ย

ลักษณะ	OvR	OvO
จำนวนการคำนวณ	3 ครั้ง	6 ครั้ง
ความซับซ้อน	น้อยกว่า	มากกว่า
เหมาะกับ	ข้อมูลขนาดใหญ่	ข้อมูลขนาดเล็ก

ค่าเฉลี่ย ROC AUC = (AUC $_1$ + AUC $_2$ + ... + AUC $_n$) / n

AUC/ROC วัดความสามารถในการแยกแยะคลาส ค่าใกล้ 1 แสดงถึง ประสิทธิภาพสูง

สรุปเมตริกการประเมินสำหรับ 3 คลาส

Accuracy

 $(TP_1 + TP_2 + TP_3) / N$

🕩 ข้อดี

- เข้าใจง่าย
- คำนวณง่าย

🜗 ข้อเสีย

• ไม่เหมาะกับข้อมูลไม่สมดุล

🔾 เหมาะกับ

- ข้อมูลสมดุล
- การประเมินเบื้องต้น

Zc

Precision

TP/(TP + FP)

🕩 ข้อดี

- วัดความแม่นย้ำของการทำนาย
- เหมาะกับการลด False Positive

📲 ข้อเสีย

• ไม่สนใจ False Negative

🔾 เหมาะกับ

- การวินิจฉัยโรค
- การตรวจจับสแปม

5

Recall

TP/(TP + FN)

🕩 ข้อดี

- วัดความสามารถในการตรวจจับ
- เหมาะกับการลด False Negative

🕊 ข้อเสีย

• ไม่สนใจ False Positive

🔾 เหมาะกับ

- การคัดกรองโรค
- การตรวจจับภัย

F1-score

2 × (Precision × Recall) / (Precision + Recall)

🕩 ข้อดี

- ค่าเฉลี่ยเชิงฮาร์มอนิก
- สมดุลระหว่าง Precision และ Recall

🜗 ข้อเสีย

• ไม่สามารถแยกค่า Precision และ Recall

🔾 เหมาะกับ

- ข้อมูลไม่สมดุล
- การเปรียบเทียบโมเดล

AUC/ROC

พื้นที่ใต้เส้นโค้ง ROC

ข้อดี

- ไม่ขึ้นกับ threshold
- วัดความสามารถในการแยกแยะ

🜗 ข้อเสีย

- คำนวณซับซ้อน
- ใช้เวลานาน

🔾 เหมาะกับ

- การเปรียบเทียบโมเดล
- การประเมินประสิทธิภาพโดยรวม

👤 แนวทางการเลือกใช้เมตริก

✓ ข้อมูลสมดุล: Accuracy, F1-score

🔡 ข้อมูลไม่สมดุล: Precision, Recall, F1-score, Macro averaging

🤡 ต้องการลด False Positive: Precision

❷ ต้องการลด False Negative: Recall

🗸 การประเมินโดยรวม: AUC/ROC

🗸 การเปรียบเทียบโมเดล: ใช้หลายเมตริคร่วมกัน