On Evaluation Of Personalized Intervention Algorithms

Drafted by Haoda Fu, Ph.D.

Eli Lilly and Company

November 11, 2018

Advanced Analytics and Data Sciences (AADS)
Eli Lilly and Company

Liley Outline

- 1 Examples of personalized intervention
- Optimal rules
- Training data
- 4 Testing data
- 5 Evaluation process and criteria
- **6** Example

Lilly Where is the value from

Context: Digital technology will enable us to collect more individual patient data.

Liley Where is the value from

Context: Digital technology will enable us to collect more individual

patient data.

Decision: The purpose of collecting these data is to generate

actionable insights.

Lilly Where is the value from

Context: Digital technology will enable us to collect more individual patient data.

Decision: The purpose of collecting these data is to generate

actionable insights.

Reward: The goal of these actionable insights is to maximize

individual patient's outcomes.

Learning - from data to knowledge

Human beings, mammals learn from experiences. Experiences are data containing Context, Decision, and Reward .

What we have: Collect Context, Decision, Reward from previous cases.

What we want to do: Develop *algorithms* to figure out optimal decisions on existing data.

How we apply it: Apply the algorithms to recommend the optimal decision for a new context.

Learning - from data to knowledge

Human beings, mammals learn from experiences. Experiences are data containing Context, Decision, and Reward .

What we have: Collect Context, Decision, Reward from previous cases.

What we want to do: Develop *algorithms* to figure out optimal decisions on existing data.

How we apply it: Apply the algorithms to recommend the optimal decision for a new context.

This topic is important because it is *the* framework to make optimal decision based on data.

Lilly Illustration Data

Table: An illustration dataset

ID	Y	Α	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	
1	1.5	1	F	26	7.8	
2	1.2	2	М	28	8.2	
3	2.3	3	М	31	8.9	
4	0.9	2	F	35	9.4	
5	1.7	1	М	22	7.3	
:	:	:	:	:	:	٠

Research Question

Based on these data, how can we treat a new patient? In other words, how can we learn a treatment assignment rule that, if followed by the entire population of certain patients, would lead to the best outcome on average?

Liley Other Examples: Car Purchase

Table: My Friends' Rating of Their First Cars

ID	Satisfaction	Car Type	Gender	Age	Mileage per Day	
1	90%	Focus	F	26	7.8	• • • •
2	85%	Corolla	М	28	8.2	
3	70%	Civic	М	31	8.9	
4	75%	Corolla	F	35	9.4	
5	60%	Civic	М	22	7.3	
<u>:</u>	:	:	:	:	:	··.

Learning from these data, what car should I purchase?

Liley Other Examples: Connected Care Device

Table: Sending Out a Reminder at Right Time for Right Patients

ID	Cost	Send Reminder	FBG	3 Нуро	SU	
1	\$875	0	159	Υ	Υ	• • •
2	\$475	0	170	Υ	Ν	
3	\$150	1	160	N	Ν	
4	\$375	1	182	Υ	Υ	
5	\$525	1	110	N	Υ	
<u>:</u>	:	:	:	:	:	٠

Learning from these data, how can we develop a smart reminder to recommend patients to see their doctor within the next 3 weeks?

Lilly Other Examples: Choice of Digital Biomarkers

Table: Choose Right Digital Biomarker for Alzheimer's Disease

ID	Accuracy	Digital Biomarker	State	Age	Gender	• • • •
1	70%	App No.1	Mild	63	F	• • •
2	83%	App No.2	Moderate	72	F	
3	77%	App No.1	Mild	65	М	
4	62%	App No.3	Severe	86	М	
5	53%	App No.2	Moderate	77	F	
<u>:</u>	:	:	:	:	:	٠

Learning from these data, which is the most accurate digital biomarker that we need to choose for a new patient based on this subject's characteristics? If we can only choose one digital biomarker for patients with mild Alzheimer's Disease which one we need to utilize?

Liley Other Examples: Business Investment

Table: Previous Commercial Investments and Returns

Case ID	Return	Туре	Month	Location	Share of Market	
1	1.2	TV	Jan	MW	12.5	
2	0.9	Radio	Oct	NE	18.2	
3	1.4	Web	Nov	WE	12.9	
4	1.3	Web	Dec	MW	10.4	
5	1.2	Radio	Feb	SE	11.3	
<u>:</u>	:	:	:	÷	:	٠

Learning from these data, what is our best way to invest in New England area if our product has 12% market share in this March?

Lilly The following problems have a common theme

- Individualized treatment recommendation
- Reminder system
- Clinical decision system
- Recommender system
- Intelligent assistant
- Multichannel marketing
- Subgroup identification

Lilly Outline

- Examples of personalized intervention
- 2 Optimal rules
- 3 Training data
- 4 Testing data
- Evaluation process and criteria
- 6 Example

Lilly Notation

- $Y \in \mathbb{R}$: a response.
- $X \in \mathbb{R}^p$: a vector of covariates.
- $A \in \mathbb{Z}$: an action.
- \mathcal{X} : population space, i.e. $\mathcal{X} = \{X | X \in \mathbb{R}^p\} \subseteq \mathbb{R}^p$.
- A: an action space, i.e. $A = \{A | A \in \mathbb{Z}\} \subseteq \mathbb{Z}$.
- Lower case of a is an realization of A.
- E: expectation.

Gilly Optimal rule and the Fisher's Consistency

Optimal Rule

$$\mathcal{D}^*(X) = \operatorname*{argmax}_{a \in \mathcal{A}} E\{Y|X, A = a\}$$

Liley Optimal rule and the Fisher's Consistency

Optimal Rule

$$\mathcal{D}^*(X) = \operatorname*{argmax}_{a \in \mathcal{A}} E\{Y|X, A = a\}$$

The Fisher's Consistency

$$\widehat{\mathcal{D}}(X) \stackrel{\mathcal{P}}{\to} \mathcal{D}^*(X), \quad \forall X \in \mathcal{X}.$$

Lilly Data generation models

Generalized Linear Model:

$$\ell\{E(Y|X)\} = \beta_0 + g(X) + t(A) + d(X,A),$$

where $\ell(\cdot)$ is a monotone link function.

Transformed Response Model:

$$\tau(Y) = \beta_0 + g(X) + t(A) + d(X,A) + \epsilon,$$

where τ is a monotone transformation function, and $\epsilon \sim (0, \sigma^2)$ which can be nonparametric.

Intensity Function Model:

$$\lambda_i(t) = \lambda_0(t)\gamma_i \exp\{g(X_i) + t(A) + d(X_i, A)\},$$

where $\lambda_0(t)$ is a baseline hazard or intensity function, and γ_i is a frailty term, e.g. $\gamma_i \sim \text{Gamma}(1, \sigma^2)$.

Lilly Outline

- Examples of personalized intervention
- Optimal rules
- Training data
- 4 Testing data
- Evaluation process and criteria
- 6 Example

Lilly Training data

Table: An illustration training dataset

ID	Y	Α	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	
1	1.5	1	0	26	7.8	
2	1.2	2	1	28	8.2	
3	0.3	3	1	31	8.9	
4	0.9	2	0	35	9.4	
:	:	:	:	:	:	٠
n	1.6	2	0	29	8.1	

Research Question

Based on these data, how can we treat a new patient? In other words, how can we learn a treatment assignment rule that, if followed by the entire population of certain patients, would lead to the best outcome on average?

Lilly Outline

- Examples of personalized intervention
- Optimal rules
- 3 Training data
- 4 Testing data
- Evaluation process and criteria
- 6 Example

Liley Testing data set: Context

Table: An illustration testing dataset: context data (testing)

X_1	X_2	<i>X</i> ₃	
0	26	7.8	
1	28	8.2	
1	31	8.9	
0	35	9.4	
1	22	7.3	
:	:	:	٠
0	29	8.1	• • •
	0 1 1 0 1	0 26 1 28 1 31 0 35 1 22	0 26 7.8 1 28 8.2 1 31 8.9 0 35 9.4 1 22 7.3 : : :

Liley Testing data set: Potential outcomes

Table: An illustration testing dataset: potential outcome data(testing). Y(a) is the potential outcome taking action a, A is the observed treatment assignment, and A^o is the theoretical optimal treatment assignment.

ID	<i>Y</i> (1)	Y(2)		Y(k)	Α	Aº
1	1.2	1.5		1.3	3	2
2	1.3	1.1		1.4	2	3
3	0.9	8.0		1.7	1	3
4	1.8	1.6		1.2	1	1
5	1.4	1.4	• • •	1.5	2	2
:	:	:	٠	:	:	:
N	1.7	1.4	• • •	1.1	3	1

Lilly Evaluation Process

We (simulator) have access to all potential outcomes for each patient (in real data only one outcome is observed). Suppose, we would like to evaluate a $\mathcal{D}(\cdot): \mathcal{X} \mapsto \mathcal{A}$.

- Step 1: We send training data to the modelers, and they train a decision rule $\widehat{\mathcal{D}}(\cdot)$.
- Step 2: We send the context data (testing) to the modelers, and they apply $\widehat{\mathcal{D}}(\cdot)$ on the context data (testing), and they send us a vector \widehat{A} with action for each subject.
- Step 3: We use their \widehat{A} and potential outcome (testing) data to calculate scores based on different evaluation criteria.

Lilly Evaluation criteria

Primary criteria: The average benefit $N^{-1} \sum_{i=1}^{N} \sum_{a=1}^{k} Y_i(a) I\{a = \widehat{A}_i\}$.

Secondary criteria 1: Proportion of misclassification $N^{-1} \sum_{i=1}^{N} I\{A_i^o \neq \widehat{A}_i\}.$

Secondary criteria 2: Average of proportion of misclassification

$$k^{-1}\sum_{a=1}^{k}\left\{\sum_{i=1}^{N}I(A_{i}^{o}=a)\right\}^{-1}\sum_{i=1}^{N}I\{A_{i}^{o}\neq\widehat{A}_{i},A_{i}^{o}=a\}.$$

Lilly Outline

- Examples of personalized intervention
- Optimal rules
- 3 Training data
- 4 Testing data
- Evaluation process and criteria
- **6** Example

Lilly Example

Table: An illustration of using the potential outcome data (testing) to evaluate solution.

ID	Y(1)	Y(2)	Α	A°	Â
1	1.2	1.5	1	2	2
2	1.3	1.1	2	1	1
3	0.9	8.0	1	2	1
4	1.8	1.6	2	1	2
5	1.4	1.4	2	2	2
:	:	:	:	:	:
N	1.7	1.4	2	1	1
	±.,	±.·'			

The observed benefit is $V = \frac{1}{N} \sum (1.2 + 1.1 + 0.9 + 1.6 + 1.4 + \cdots + 1.4)$, and theoretical optimal value is

$$V^o=rac{1}{N}\sum(1.5+1.3+0.8+1.8+1.4+\cdots+1.7)$$
, and the estimated value is $\widehat{V}=rac{1}{N}\sum(1.5+1.3+0.9+1.6+1.4+\cdots+1.7)$.