

HEXFET® Power MOSFET

| V <sub>DSS</sub> | R <sub>DS(on)</sub> max                       | Qg    |
|------------------|-----------------------------------------------|-------|
| 30V              | $15.5 \text{m} \Omega @ V_{GS} = 10 \text{V}$ | 6.0nC |

# IOR Rectifier

## **Applications**

- Load Switch
- DC/DC Conversion

### **Benefits**

- Low Gate Charge and Low R<sub>DS(on)</sub>
- Fully Characterized Avalanche Voltage and Current
- 20V V<sub>GS</sub> Max. Gate Rating
- 100% Tested for R<sub>G</sub>
- Lead-Free (Qualified to 260°C Reflow)
- RoHS Compliant (Halogen Free)





## **Description**

The IRF8313PbF incorporates the latest HEXFET Power MOSFET Silicon Technology into the industry standard SO-8 package. The IRF8313PbF has been optimized for parameters that are critical in synchronous buck operation including Rds(on) and gate charge to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors for notebook and Netcom applications.

**Absolute Maximum Ratings** 

|                                        | Parameter                                       | Max.         | Units |  |
|----------------------------------------|-------------------------------------------------|--------------|-------|--|
| V <sub>DS</sub>                        | Drain-to-Source Voltage                         | 30           | V     |  |
| V <sub>GS</sub>                        | Gate-to-Source Voltage                          | ±20          |       |  |
| I <sub>D</sub> @ T <sub>A</sub> = 25°C | Continuous Drain Current, V <sub>GS</sub> @ 10V | 9.7          |       |  |
| I <sub>D</sub> @ T <sub>A</sub> = 70°C | Continuous Drain Current, V <sub>GS</sub> @ 10V | 8.1          | Α     |  |
| I <sub>DM</sub>                        | Pulsed Drain Current ①                          | 81           |       |  |
| P <sub>D</sub> @T <sub>A</sub> = 25°C  | Power Dissipation                               | 2.0          | w     |  |
| P <sub>D</sub> @T <sub>A</sub> = 70°C  | Power Dissipation                               | 1.3          | ] vv  |  |
|                                        | Linear Derating Factor                          | 0.016        | W/°C  |  |
| T <sub>J</sub>                         | Operating Junction and                          | -55 to + 175 | °C    |  |
| T <sub>STG</sub>                       | Storage Temperature Range                       |              |       |  |

### **Thermal Resistance**

|                 | Parameter                | Тур. | Max. | Units |
|-----------------|--------------------------|------|------|-------|
| $R_{\theta JL}$ | Junction-to-Drain Lead ® |      | 42   | °C/W  |
| $R_{\theta JA}$ | Junction-to-Ambient @ S  |      | 62.5 | C/VV  |

Notes ① through ⑤ are on page 9

ORDERING INFORMATION:

See detailed ordering and shipping information on the last page of this data sheet.



# Static @ T<sub>J</sub> = 25°C (unless otherwise specified)

|                                                                    | Parameter                                           | Min. | Тур.  | Max. | Units | Conditions                                        |
|--------------------------------------------------------------------|-----------------------------------------------------|------|-------|------|-------|---------------------------------------------------|
| BV <sub>DSS</sub>                                                  | Drain-to-Source Breakdown Voltage                   | 30   |       |      | ٧     | $V_{GS} = 0V, I_D = 250\mu A$                     |
| $\Delta \mathrm{BV}_{\mathrm{DSS}}/\Delta \mathrm{T}_{\mathrm{J}}$ | Breakdown Voltage Temp. Coefficient                 |      | 0.021 |      | V/°C  | Reference to 25°C, I <sub>D</sub> = 1mA           |
| R <sub>DS(on)</sub>                                                | Static Drain-to-Source On-Resistance                |      | 12.5  | 15.5 | mΩ    | $V_{GS} = 10V, I_D = 9.7A$ 3                      |
|                                                                    |                                                     |      | 18.6  | 21.6 | 11177 | $V_{GS} = 4.5V, I_D = 8.0A$ ③                     |
| $V_{GS(th)}$                                                       | Gate Threshold Voltage                              | 1.35 | 1.80  | 2.35 | ٧     | $V_{DS} = V_{GS}$ , $I_D = 25\mu A$               |
| $\Delta V_{GS(th)}$                                                | Gate Threshold Voltage Coefficient                  |      | -6.0  |      | mV/°C |                                                   |
| I <sub>DSS</sub>                                                   | Drain-to-Source Leakage Current                     |      | _     | 1.0  | μA    | $V_{DS} = 24V, V_{GS} = 0V$                       |
|                                                                    |                                                     |      |       | 150  | μΑ    | $V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$ |
| I <sub>GSS</sub>                                                   | Gate-to-Source Forward Leakage                      |      | _     | 100  | nA    | $V_{GS} = 20V$                                    |
|                                                                    | Gate-to-Source Reverse Leakage                      |      |       | -100 | IIA   | V <sub>GS</sub> = -20V                            |
| gfs                                                                | Forward Transconductance                            | 23   | _     |      | S     | $V_{DS} = 15V, I_{D} = 8.0A$                      |
| $Q_g$                                                              | Total Gate Charge                                   |      | 6.0   | 9.0  |       |                                                   |
| $Q_{gs1}$                                                          | Pre-Vth Gate-to-Source Charge                       |      | 1.5   |      |       | V <sub>DS</sub> = 15V                             |
| $Q_{gs2}$                                                          | Post-Vth Gate-to-Source Charge                      |      | 0.9   |      | nC    | $V_{GS} = 4.5V$                                   |
| $Q_{gd}$                                                           | Gate-to-Drain Charge                                |      | 2.2   |      | liC   | $I_{D} = 8.0A$                                    |
| $Q_{godr}$                                                         | Gate Charge Overdrive                               |      | 1.4   |      |       | See Figs. 17a & 17b                               |
| $Q_{sw}$                                                           | Switch Charge (Q <sub>gs2</sub> + Q <sub>gd</sub> ) |      | 2.9   |      |       |                                                   |
| Q <sub>oss</sub>                                                   | Output Charge                                       |      | 3.8   |      | nC    | $V_{DS} = 16V, V_{GS} = 0V$                       |
| $R_g$                                                              | Gate Resistance                                     |      | 2.2   | 3.6  | Ω     |                                                   |
| t <sub>d(on)</sub>                                                 | Turn-On Delay Time                                  |      | 8.3   |      |       | $V_{DD} = 15V, V_{GS} = 4.5V$                     |
| t <sub>r</sub>                                                     | Rise Time                                           |      | 9.9   |      |       | $I_{D} = 8.0A$                                    |
| t <sub>d(off)</sub>                                                | Turn-Off Delay Time                                 |      | 8.5   |      | ns    | $R_G = 1.8\Omega$                                 |
| t <sub>f</sub>                                                     | Fall Time                                           |      | 4.2   |      |       | See Fig. 15a & 15b                                |
| C <sub>iss</sub>                                                   | Input Capacitance                                   |      | 760   |      |       | $V_{GS} = 0V$                                     |
| C <sub>oss</sub>                                                   | Output Capacitance                                  |      | 172   |      | pF    | V <sub>DS</sub> = 15V                             |
| C <sub>rss</sub>                                                   | Reverse Transfer Capacitance                        |      | 87    |      |       | f = 1.0 MHz                                       |

## **Avalanche Characteristics**

|                 | Parameter                       | Тур. | Max. | Units |
|-----------------|---------------------------------|------|------|-------|
| E <sub>AS</sub> | Single Pulse Avalanche Energy ② |      | 46   | mJ    |
| I <sub>AR</sub> | Avalanche Current ①             |      | 8.0  | Α     |

## **Diode Characteristics**

|                 | Parameter                 | Min.      | Тур.                                                                 | Max. | Units | Conditions                                           |
|-----------------|---------------------------|-----------|----------------------------------------------------------------------|------|-------|------------------------------------------------------|
| Is              | Continuous Source Current | _         |                                                                      | 3.1  | Α     | MOSFET symbol                                        |
|                 | (Body Diode)              |           |                                                                      | 3.1  |       | showing the                                          |
| I <sub>SM</sub> | Pulsed Source Current     |           |                                                                      | 82   | Α     | integral reverse                                     |
|                 | (Body Diode) ①            |           |                                                                      | 02   | ^     | p-n junction diode.                                  |
| $V_{SD}$        | Diode Forward Voltage     |           |                                                                      | 1.0  | V     | $T_J = 25^{\circ}C$ , $I_S = 8.0A$ , $V_{GS} = 0V$ ③ |
| t <sub>rr</sub> | Reverse Recovery Time     |           | 20                                                                   | 30   | ns    | $T_J = 25^{\circ}C, I_F = 8.0A, V_{DD} = 15V$        |
| $Q_{rr}$        | Reverse Recovery Charge   |           | 10                                                                   | 15   | nC    | di/dt = 100A/µs ③                                    |
| t <sub>on</sub> | Forward Turn-On Time      | Intrinsio | Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) |      |       |                                                      |

# International TOR Rectifier

# IRF8313PbF



 $\begin{array}{c} 100 \\ \text{W} \\ \text{true_Ind_O} \\ \text{Operator} \\ \text{Outer_Ind_O} \\ \text{ToP} \\ 10V \\ \text{S.0V} \\ 4.5V \\ 3.5V \\ 3.5V \\ 2.7V \\ 2.5V \\ 2$ 

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics





Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

International

Rectifier



16 I<sub>D</sub>= 8.0A V<sub>GS</sub>, Gate-to-Source Voltage (V) V<sub>DS</sub>= 24V V<sub>DS</sub>= 15V-12 8 4 0 0 2 4 6 8 10 12 14 Q<sub>g</sub>, Total Gate Charge (nC)

**Fig 5.** Typical Capacitance vs. Drain-to-Source Voltage

**Fig 6.** Typical Gate Charge vs. Gate-to-Source Voltage





**Fig 7.** Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area



**Fig 9.** Maximum Drain Current vs. Ambient Temperature

Fig 10. Threshold Voltage vs. Temperature



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International

TOR Rectifier



200  $\mathsf{E}_{\mathsf{AS},}$  Single Pulse Avalanche Energy (mJ)  $I_D$ TOP 3.0A 160 5.0A воттом 8.0А 120 80 40 25 50 100 125 150 175 Starting T<sub>J</sub>, Junction Temperature (°C)

Fig 12. On-Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current





Fig 14a. Unclamped Inductive Test Circuit

Fig 14b. Unclamped Inductive Waveforms





Fig 15a. Switching Time Test Circuit

**Fig 15b.** Switching Time Waveforms www.irf.com



Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs



Fig 17a. Gate Charge Test Circuit

Fig 17b. Gate Charge Waveform

## **SO-8 Package Outline**

Dimensions are shown in milimeters (inches)

International

TOR Rectifier





| DIM   | INC        | HES   | MILLIMETER: |       |  |
|-------|------------|-------|-------------|-------|--|
| DIIVI | MIN        | MAX   | MIN         | MAX   |  |
| Α     | .0532      | .0688 | 1.35        | 1.75  |  |
| Al    | .0040      | .0098 | 0.10        | 0.25  |  |
| b     | .013       | .020  | 0.33        | 0.51  |  |
| С     | .0075      | .0098 | 0.19        | 0.25  |  |
| D     | .189       | .1968 | 4.80        | 5.00  |  |
| Е     | .1497      | .1574 | 3.80        | 4.00  |  |
| е     | .050 BASIC |       | 1.27 BASIC  |       |  |
| e 1   | .025 B     | AS IC | 0.635 E     | BASIC |  |
| Н     | .2284      | .2440 | 5.80        | 6.20  |  |
| K     | .0099      | .0196 | 0.25        | 0.50  |  |
| L     | .016       | .050  | 0.40        | 1.27  |  |
| У     | 0°         | 8°    | 0°          | 8°    |  |



#### NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
  MOLD PROTRUSIONS NOT TO EXCEED 0.15 (.006).
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.010).
- (7) DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.



# **SO-8 Part Marking Information**



Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

## **SO-8 Tape and Reel**

Dimensions are shown in milimeters (inches)



- NOTES:
  1. CONTROLLING DIMENSION: MILLIMETER.
- ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
  OUTLINE CONFORMS TO EIA-481 & EIA-541.



- 1. CONTROLLING DIMENSION : MILLIMETER.
  2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

#### Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting  $T_J = 25$ °C, L = 1.43mH,  $R_G = 25\Omega$ ,  $I_{AS} = 8.0$ A.
- $\center{3}$  Pulse width  $\le 400 \mu s$ ; duty cycle  $\le 2\%$ .
- When mounted on 1 inch square copper board.
- $\$  R<sub> $\theta$ </sub> is measured at T<sub>J</sub> of approximately 90°C.

Note: For the most current drawing please refer to IR website at <a href="http://www.irf.com/package/">http://www.irf.com/package/</a>

| Orderable Part number | Package Type | Standard      | Note     |  |
|-----------------------|--------------|---------------|----------|--|
| Orderable Part Humber | rackage Type | Form          | Quantity |  |
| IRF8313PbF            | SO-8         | Tube/Bulk     | 95       |  |
| IRF8313TRPbF          | SO-8         | Tape and Reel | 4000     |  |

## Qualification Information<sup>†</sup>

| Qualification Level        | Consumer ††                                   |                                        |  |  |
|----------------------------|-----------------------------------------------|----------------------------------------|--|--|
|                            | (per JEDEC JESD47F <sup>†††</sup> guidelines) |                                        |  |  |
| Moisture Sensitivity Level | SO-8 MSL1                                     |                                        |  |  |
|                            |                                               | (per JEDEC J-STD-020D <sup>†††</sup> ) |  |  |
| RoHS Compliant             | Yes                                           |                                        |  |  |

- † Qualification standards can be found at International Rectifier's web site: <a href="http://www.irf.com/">http://www.irf.com/</a>
- †† Higher qualification ratings may be available should the user have such requirements.

  Please contact your International Rectifier sales representative for further information:

  <a href="http://www.irf.com/whoto-call/salesrep/">http://www.irf.com/whoto-call/salesrep/</a>
- ††† Applicable version of JEDEC standard at the time of product release.

Data and specifications subject to change without notice.



IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.11/08