Measurement Incompatibility, Quantum Steering, and High-dimensional Generalisations

Benjamin Jones¹, Roope Uola², Marie Ioannou², Pavel Sekatski², Sébastien Designolle², Thomas Cope³, Nicolas Brunner²

¹University of Bristol, UK.

²University of Geneva, Switzerland.

³Leibniz Universität Hannover, Germany.

Bristol QIT Seminar, Wednesday 29th June 2022

Overview

- Measurement Incompatibility
- Quantum Steering
- 3 Channel-state duality and the Heisenberg picture
- Our Contribution
- Conclusions and Future work

Table of Contents

- Measurement Incompatibility
- Quantum Steering
- 3 Channel-state duality and the Heisenberg picture
- 4 Our Contribution
- 5 Conclusions and Future work

Consider an observable $A = \sum_{a} \lambda_{a} |\psi_{a}\rangle\langle\psi_{a}|$.

Consider an observable $A = \sum_{a} \lambda_{a} |\psi_{a}\rangle\langle\psi_{a}|$.

Probability of seeing outcome λ_a on state ρ is given by

$$Tr(|\psi_{a}\rangle\langle\psi_{a}|\rho) = \langle\psi_{a}|\rho|\psi_{a}\rangle \tag{1}$$

Consider an observable $A = \sum_{a} \lambda_{a} |\psi_{a}\rangle\langle\psi_{a}|$.

Probability of seeing outcome λ_a on state ρ is given by

$$Tr(|\psi_{a}\rangle\langle\psi_{a}|\rho) = \langle\psi_{a}|\rho|\psi_{a}\rangle \tag{1}$$

Two observables A and B are simulaneously measurable if they have a common eigenbasis.

Consider an observable $A = \sum_{a} \lambda_{a} |\psi_{a}\rangle\langle\psi_{a}|$.

Probability of seeing outcome λ_a on state ρ is given by

$$Tr(|\psi_{a}\rangle\langle\psi_{a}|\rho) = \langle\psi_{a}|\rho|\psi_{a}\rangle \tag{1}$$

Two observables A and B are simulaneously measurable if they have a common eigenbasis.

This occurs if and only if they commute:

$$[A, B] = AB - BA = 0. \tag{2}$$

Projective measurements are not the only measurements possible:

Projective measurements are not the only measurements possible:

• Flipping a coin to decide whether to measure X or Z.

Projective measurements are not the only measurements possible:

- Flipping a coin to decide whether to measure X or Z.
- Measuring on a larger system and tracing out (Naimark dilation).

Projective measurements are not the only measurements possible:

- Flipping a coin to decide whether to measure X or Z.
- Measuring on a larger system and tracing out (Naimark dilation).
- Adding noise to perfect measurements

Projective measurements are not the only measurements possible:

- Flipping a coin to decide whether to measure X or Z.
- Measuring on a larger system and tracing out (Naimark dilation).
- Adding noise to perfect measurements

Definition

- $M_a \ge 0$ $\forall a$
- $\sum_a M_a = 1$

Projective measurements are not the only measurements possible:

- Flipping a coin to decide whether to measure X or Z.
- Measuring on a larger system and tracing out (Naimark dilation).
- Adding noise to perfect measurements

Definition

- $M_a \ge 0$ $\forall a$
- $\sum_a M_a = 1$
- Probability of outcome a on state ρ is $p(a) := \text{Tr}(M_a \rho)$

Projective measurements are not the only measurements possible:

- Flipping a coin to decide whether to measure X or Z.
- Measuring on a larger system and tracing out (Naimark dilation).
- Adding noise to perfect measurements

Definition

- $M_a \ge 0$ $\forall a$
- $\sum_a M_a = 1$
- Probability of outcome a on state ρ is $p(a) := \text{Tr}(M_a \rho)$
- Analagous to probability distribution.

Projective measurements are not the only measurements possible:

- Flipping a coin to decide whether to measure X or Z.
- Measuring on a larger system and tracing out (Naimark dilation).
- Adding noise to perfect measurements

Definition

- $M_a \ge 0$ $\forall a$
- $\sum_a M_a = 1$
- Probability of outcome a on state ρ is $p(a) := \text{Tr}(M_a \rho)$
- Analagous to probability distribution.
- Observables correspond to M_a all being projectors.

Projective measurements are not the only measurements possible:

- Flipping a coin to decide whether to measure *X* or *Z*.
- Measuring on a larger system and tracing out (Naimark dilation).
- Adding noise to perfect measurements

Definition

- $M_a \ge 0$ $\forall a$
- $\sum_a M_a = 1$
- Probability of outcome a on state ρ is $p(a) := \text{Tr}(M_a \rho)$
- Analagous to probability distribution.
- Observables correspond to M_a all being projectors.
- Doesn't say anything about post-measured state.

Sets of POVMs

We denote a collection of POVMs as

$$\{M_{a|x}\}_{a,x} \equiv M_{a|x}$$
 : $M_{a|x} \ge 0$ $\forall a, x,$ $\sum_{a} M_{a|x} = 1$ $\forall x$

Sets of POVMs

We denote a collection of POVMs as

$$\{M_{a|x}\}_{a,x} \equiv M_{a|x} \quad : \quad M_{a|x} \geq 0 \quad \forall a,x, \qquad \sum_a M_{a|x} = \mathbb{1} \quad \forall x$$

• Number of outcomes is the same for each measurement.

Sets of POVMs

We denote a collection of POVMs as

$$\{M_{a|x}\}_{a,x} \equiv M_{a|x} \quad : \quad M_{a|x} \geq 0 \quad \forall a,x, \qquad \sum_a M_{a|x} = \mathbb{1} \quad \forall x$$

- Number of outcomes is the same for each measurement.
- Probability of outcome a on state ρ given measurement x is

$$p(a|x) := \operatorname{Tr}(M_{a|x}\rho)$$

Sets of POVMs

We denote a collection of POVMs as

$$\{M_{a|x}\}_{a,x} \equiv M_{a|x}$$
 : $M_{a|x} \ge 0$ $\forall a, x,$ $\sum_a M_{a|x} = 1$ $\forall x$

- Number of outcomes is the same for each measurement.
- Probability of outcome a on state ρ given measurement x is

$$p(a|x) := \operatorname{Tr}(M_{a|x}\rho)$$

Example

$$M_{+1|0} = |0\rangle\langle 0|$$

$$M_{+1|1} = |+\rangle\langle +|$$

$$M_{-1|0} = |1\rangle\langle 1|$$

$$M_{-1|1} = |-\rangle\langle -|$$

• Given a set of POVM measurements $M_{a|x}$, when can they be simultaneously measured?

- Given a set of POVM measurements $M_{a|x}$, when can they be simultaneously measured?
 - This concept becomes more subtle ...

- Given a set of POVM measurements $M_{a|x}$, when can they be simultaneously measured?
 - This concept becomes more subtle . . .
- Main idea: there exists a 'parent' measurement, such that we can process the outcome to give the outcome of all measurements.

- Given a set of POVM measurements $M_{a|x}$, when can they be simultaneously measured?
 - This concept becomes more subtle . . .
- Main idea: there exists a 'parent' measurement, such that we can process the outcome to give the outcome of all measurements.

Definition

A set of n POVMs $M_{a|x}$ is jointly-measurable or compatible if there exists a POVM $G_{a}=G_{a_1...a_n}$ such that

$$M_{a|x} = \sum_{\boldsymbol{a}: a_x = a} G_{a_1...a_n}$$

- Given a set of POVM measurements $M_{a|x}$, when can they be simultaneously measured?
 - This concept becomes more subtle . . .
- Main idea: there exists a 'parent' measurement, such that we can process the outcome to give the outcome of all measurements.

Definition

A set of n POVMs $M_{a|x}$ is jointly-measurable or compatible if there exists a POVM $G_{a}=G_{a_{1}...a_{n}}$ such that

$$M_{a|x} = \sum_{\mathbf{a}: a_{x}=a} G_{a_{1}...a_{n}}$$

This is also equivalent to there existing Naimark dilations in which the projective measurements commute.

Definition

 $M_{a|x}$ is compatible if $\exists \mathsf{POVM}\ G_a = G_{a_1...a_n}$ such that

$$M_{a|x} = \sum_{\mathbf{a} : a_x = a} G_{a_1 \dots a_n}$$

Definition

 $M_{a|x}$ is compatible if $\exists \mathsf{POVM}\ G_a = G_{a_1...a_n}$ such that

$$M_{a|x} = \sum_{\boldsymbol{a}: a_x = a} G_{a_1...a_n}$$

This definition is equivalent to the following:

Definition

 $M_{a|x}$ is compatible if $\exists \mathsf{POVM}\ G_{\pmb{a}} = G_{a_1...a_n}$ such that

$$M_{a|x} = \sum_{\boldsymbol{a} \; : \; a_x = a} G_{a_1 \dots a_n}$$

This definition is equivalent to the following:

Proposition

 $M_{a|x}$ is compatible if \exists POVM G_{λ} and probabilities $p(a|x,\lambda)$ s.t.

$$M_{a|x} = \sum_{\lambda} p(a|x,\lambda)G_{\lambda}$$

Definition

 $M_{a|x}$ is compatible if $\exists \mathsf{POVM}\ G_{\pmb{a}} = G_{a_1...a_n}$ such that

$$M_{a|x} = \sum_{\mathbf{a}: a_x = a} G_{a_1 \dots a_n}$$

This definition is equivalent to the following:

Proposition

 $M_{a|x}$ is compatible if \exists POVM G_{λ} and probabilities $p(a|x,\lambda)$ s.t.

$$M_{a|x} = \sum_{\lambda} p(a|x,\lambda)G_{\lambda}$$

 \Longrightarrow : Take $\lambda = \boldsymbol{a}$, $p(\boldsymbol{a}|x,\boldsymbol{a}) = \delta_{\boldsymbol{a},\boldsymbol{a}_{\boldsymbol{a}}}$

Define $G_{a_1,...,a_n} = \sum_{\lambda} \prod_{x} p(a_x|x,\lambda) G_{\lambda}$

Consider the Bell scenario:

Consider the Bell scenario:

The resulting data is

$$p(a, b|x, y) = \text{Tr}\bigg(M_{a|x} \otimes N_{b|y} \ \rho_{AB}\bigg)$$

$$p(a,b|x,y) = \operatorname{Tr}\left(M_{a|x} \otimes N_{b|y} \ \rho_{AB}\right)$$

$$p(a,b|x,y) = \operatorname{Tr}\left(M_{a|x} \otimes N_{b|y} \rho_{AB}\right)$$

This data has a local hidden variable (LHV) model if it can be written as

$$p(a, b|x, y) = \sum_{\lambda} p(\lambda) p(a|x, \lambda) p(b|y, \lambda)$$

$$p(a,b|x,y) = \operatorname{Tr}\left(M_{a|x} \otimes N_{b|y} \rho_{AB}\right)$$

This data has a local hidden variable (LHV) model if it can be written as

$$p(a, b|x, y) = \sum_{\lambda} p(\lambda) p(a|x, \lambda) p(b|y, \lambda)$$

$$Q: p(a,b|x,y) = Tr\bigg(M_{a|x} \otimes N_{b|y} \rho_{AB}\bigg)$$

$$Q: p(a,b|x,y) = \mathsf{Tr}igg(M_{a|x} \otimes N_{b|y} \
ho_{AB}igg)$$

LHV:
$$p(a, b|x, y) = \sum_{\lambda} p(\lambda) p(a|x, \lambda) p(b|y, \lambda)$$

If the state ρ_{AB} is separable: $\rho_{AB} = \sum_{\lambda} p(\lambda) \; \rho_{A}^{\lambda} \otimes \rho_{B}^{\lambda}$

$$Q: p(a,b|x,y) = \mathsf{Tr}igg(M_{a|x} \otimes N_{b|y} \;
ho_{AB}igg)$$

LHV:
$$p(a, b|x, y) = \sum_{\lambda} p(\lambda) p(a|x, \lambda) p(b|y, \lambda)$$

If the state ρ_{AB} is separable: $\rho_{AB} = \sum_{\lambda} p(\lambda) \; \rho_{A}^{\lambda} \otimes \rho_{B}^{\lambda}$

$$\Longrightarrow p(a,b|x,y) = \sum_{\lambda} p(\lambda) \operatorname{Tr} \left(M_{a|x} \otimes N_{b|y} \ \rho_A^{\lambda} \otimes \rho_B^{\lambda} \right) \tag{5}$$

(6)

(7)

If the state ρ_{AB} is separable: $\rho_{AB} = \sum_{\lambda} p(\lambda) \ \rho_A^{\lambda} \otimes \rho_B^{\lambda}$

$$\Longrightarrow p(a,b|x,y) = \sum_{\lambda} p(\lambda) \operatorname{Tr} \left(M_{a|x} \otimes N_{b|y} \ \rho_A^{\lambda} \otimes \rho_B^{\lambda} \right) \tag{5}$$

$$= \sum_{\lambda} p(\lambda) \operatorname{Tr}\left(M_{a|x} \rho_A^{\lambda}\right) \operatorname{Tr}\left(N_{b|y} \rho_B^{\lambda}\right)$$
 (6)

(7)

If the state ρ_{AB} is separable: $\rho_{AB} = \sum_{\lambda} p(\lambda) \ \rho_A^{\lambda} \otimes \rho_B^{\lambda}$

$$\Longrightarrow p(a,b|x,y) = \sum_{\lambda} p(\lambda) \operatorname{Tr} \left(M_{a|x} \otimes N_{b|y} \ \rho_A^{\lambda} \otimes \rho_B^{\lambda} \right) \tag{5}$$

$$= \sum_{\lambda} p(\lambda) \operatorname{Tr}\left(M_{a|x} \rho_A^{\lambda}\right) \operatorname{Tr}\left(N_{b|y} \rho_B^{\lambda}\right)$$
 (6)

$$\equiv \sum_{\lambda} p(\lambda) \ p(a|x,\lambda) \ p(b|y,\lambda) \tag{7}$$

If the state ρ_{AB} is separable: $\rho_{AB} = \sum_{\lambda} p(\lambda) \ \rho_A^{\lambda} \otimes \rho_B^{\lambda}$

$$\Longrightarrow p(a,b|x,y) = \sum_{\lambda} p(\lambda) \operatorname{Tr} \left(M_{a|x} \otimes N_{b|y} \ \rho_A^{\lambda} \otimes \rho_B^{\lambda} \right) \tag{5}$$

$$= \sum_{\lambda} p(\lambda) \operatorname{Tr}\left(M_{a|x} \rho_A^{\lambda}\right) \operatorname{Tr}\left(N_{b|y} \rho_B^{\lambda}\right)$$
 (6)

$$\equiv \sum_{\lambda} p(\lambda) \ p(a|x,\lambda) \ p(b|y,\lambda) \tag{7}$$

Hence entanglement is necessary for nonlocal correlations!

$$Q: p(a,b|x,y) = Tr \left(M_{a|x} \otimes N_{b|y} \rho_{AB}\right)$$

$$LHV: p(a, b|x, y) = \sum_{\lambda} p(\lambda) \ p(a|x, \lambda) \ p(b|y, \lambda)$$

If the one parties measurements are compatible : $M_{a|x} = \sum_{\lambda} p(a|x,\lambda)G_{\lambda}$.

$$Q: p(a,b|x,y) = \operatorname{Tr}\left(M_{a|x} \otimes N_{b|y} \rho_{AB}\right)$$

LHV:
$$p(a, b|x, y) = \sum_{\lambda} p(\lambda) p(a|x, \lambda) p(b|y, \lambda)$$

If the one parties measurements are compatible : $M_{a|x} = \sum_{\lambda} p(a|x,\lambda) G_{\lambda}$.

$$\Longrightarrow p(a,b|x,y) = \sum_{\lambda} p(a|x,\lambda) \operatorname{Tr} \left(G_{\lambda} \otimes N_{b|y} \rho_{AB} \right)$$
 (8)

LHV: $p(a, b|x, y) = \sum_{\lambda} p(\lambda) p(a|x, \lambda) p(b|y, \lambda)$

Incompatible measurements in Quantum Information

$$Q: p(a,b|x,y) = \operatorname{Tr}\left(M_{a|x} \otimes N_{b|y} \rho_{AB}\right)$$

If the one parties measurements are compatible : $M_{a|x} = \sum_{\lambda} p(a|x,\lambda) G_{\lambda}$.

$$\Longrightarrow p(a,b|x,y) = \sum_{\lambda} p(a|x,\lambda) \operatorname{Tr} \left(G_{\lambda} \otimes N_{b|y} \rho_{AB} \right)$$
 (8)

$$= \sum_{\lambda} p(a|x,\lambda) \operatorname{Tr} \left(N_{b|y} \operatorname{Tr}_{A} \left[G_{\lambda} \otimes \mathbb{1} \rho_{AB} \right] \right)$$
 (9)

(10)

(11)

If the one parties measurements are compatible : $M_{a|x} = \sum_{\lambda} p(a|x,\lambda)G_{\lambda}$.

$$\Longrightarrow p(a,b|x,y) = \sum_{\lambda} p(a|x,\lambda) \operatorname{Tr} \left(G_{\lambda} \otimes N_{b|y} \rho_{AB} \right)$$
 (8)

$$= \sum_{\lambda} p(a|x,\lambda) \operatorname{Tr} \left(N_{b|y} \operatorname{Tr}_{A} \left[G_{\lambda} \otimes \mathbb{1} \rho_{AB} \right] \right)$$
 (9)

$$= \sum_{\lambda} p(\lambda) p(a|x,\lambda) \operatorname{Tr} \left(N_{b|y} \ \sigma_{\lambda} \right)$$
 (10)

(11)

$$Q: p(a,b|x,y) = \operatorname{Tr}\left(M_{a|x} \otimes N_{b|y} \ \rho_{AB}\right)$$

$$LHV: p(a,b|x,y) = \sum_{\lambda} p(\lambda) \ p(a|x,\lambda) \ p(b|y,\lambda)$$

If the one parties measurements are compatible : $M_{a|x} = \sum_{\lambda} p(a|x,\lambda)G_{\lambda}$.

$$\Longrightarrow p(a,b|x,y) = \sum_{\lambda} p(a|x,\lambda) \operatorname{Tr} \left(G_{\lambda} \otimes N_{b|y} \rho_{AB} \right)$$
 (8)

$$= \sum_{\lambda} p(a|x,\lambda) \operatorname{Tr} \left(N_{b|y} \operatorname{Tr}_{A} \left[G_{\lambda} \otimes \mathbb{1} \rho_{AB} \right] \right)$$
 (9)

$$= \sum_{\lambda} p(\lambda)p(a|x,\lambda)\operatorname{Tr}\left(N_{b|y} \sigma_{\lambda}\right) \tag{10}$$

$$= \sum_{\lambda} p(\lambda) \ p(a|x,\lambda) \ p(b|y,\lambda) \tag{11}$$

$$Q: p(a,b|x,y) = \operatorname{Tr}\left(M_{a|x} \otimes N_{b|y} \ \rho_{AB}\right)$$

$$LHV: p(a,b|x,y) = \sum_{\lambda} p(\lambda) \ p(a|x,\lambda) \ p(b|y,\lambda)$$

If the one parties measurements are compatible : $M_{a|x} = \sum_{\lambda} p(a|x,\lambda)G_{\lambda}$.

$$\Longrightarrow p(a,b|x,y) = \sum_{\lambda} p(a|x,\lambda) \operatorname{Tr} \left(G_{\lambda} \otimes N_{b|y} \rho_{AB} \right)$$
 (8)

$$= \sum_{\lambda} p(a|x,\lambda) \operatorname{Tr} \left(N_{b|y} \operatorname{Tr}_{A} \left[G_{\lambda} \otimes \mathbb{1} \rho_{AB} \right] \right)$$
 (9)

$$= \sum_{\lambda} p(\lambda)p(a|x,\lambda)\operatorname{Tr}\left(N_{b|y} \sigma_{\lambda}\right) \tag{10}$$

$$= \sum_{\lambda} p(\lambda) \ p(a|x,\lambda) \ p(b|y,\lambda) \tag{11}$$

So incompatibility in both measurements is also necessary for nonlocality!

• Incompatibility is an interesting, subtle concept for POVMs.

• Incompatibility is an interesting, subtle concept for POVMs.

• Measurements are compatible if $M_{a|x} = \sum_{\lambda} p(a|x,\lambda)G_{\lambda}$.

• Incompatibility is an interesting, subtle concept for POVMs.

• Measurements are compatible if $M_{a|x} = \sum_{\lambda} p(a|x,\lambda)G_{\lambda}$.

Incompatibility is needed for nonlocality: can be viewed as a resource.

• Incompatibility is an interesting, subtle concept for POVMs.

• Measurements are compatible if $M_{a|x} = \sum_{\lambda} p(a|x,\lambda)G_{\lambda}$.

Incompatibility is needed for nonlocality: can be viewed as a resource.

 One can think of incompatibility (of a set of measurements) as the 'dual' of entanglement (of a state).

- This can be made precise, more on this later!

Table of Contents

- Measurement Incompatibility
- Quantum Steering
- 3 Channel-state duality and the Heisenberg picture
- Our Contribution
- 5 Conclusions and Future work

Nonlocality vs Entanglement

Again recall the Bell scenario

Here the data associated is a probability distribution p(a, b|x, y) – neither party is *trusted*.

Nonlocality vs Entanglement

Again recall the Bell scenario

Here the data associated is a probability distribution p(a, b|x, y) – neither party is *trusted*.

If both parties are trusted, the associated data is the full density matrix ρ_{AB} .

Quantum Steering is an intermediate case in which one part is trusted, and the other is untrusted.

Initially considered by Schrödinger.

- Initially considered by Schrödinger.
- Also called semi-device independent (SDI) scenario.

- Initially considered by Schrödinger.
- Also called semi-device independent (SDI) scenario.
- Could be relevant for communication protocols.

- Initially considered by Schrödinger.
- Also called semi-device independent (SDI) scenario.
- Could be relevant for communication protocols.
- Enables one-sided entanglement detection.

We can write the data from this scenario as:

$$\sigma_{\mathsf{a}|\mathsf{x}} := \mathsf{Tr}_{\mathsf{A}}igg(\mathsf{M}_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \
ho_{\mathsf{A}\mathsf{B}} igg)$$

We can write the data from this scenario as:

$$\sigma_{\mathsf{a}|\mathsf{x}} := \mathsf{Tr}_{\mathsf{A}}igg(\mathsf{M}_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \
ho_{\mathsf{A}\mathsf{B}} igg)$$

ullet This is a subnormalised collection of states, with ${\rm Tr}(\sigma_{a|x})={\rm Tr}(M_{a|x}\;
ho_A)=p(a|x)$

We can write the data from this scenario as:

$$\sigma_{\mathsf{a}|\mathsf{x}} := \mathsf{Tr}_{\mathsf{A}}igg(\mathsf{M}_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \
ho_{\mathsf{A}\mathsf{B}} igg)$$

- This is a subnormalised collection of states, with $\text{Tr}(\sigma_{a|x}) = \text{Tr}(M_{a|x} \rho_A) = p(a|x)$
- We have that $\sum_a \sigma_{a|x} = \operatorname{Tr}_A(\rho_{AB}) = \rho_B$ for all x.

We can write the data from this scenario as:

$$\sigma_{\mathsf{a}|\mathsf{x}} := \mathsf{Tr}_{\mathsf{A}}igg(\mathsf{M}_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \
ho_{\mathsf{A}\mathsf{B}} igg)$$

- This is a subnormalised collection of states, with $\text{Tr}(\sigma_{a|x}) = \text{Tr}(M_{a|x} \rho_A) = p(a|x)$
- We have that $\sum_{a} \sigma_{a|x} = \text{Tr}_{A}(\rho_{AB}) = \rho_{B}$ for all x.
- The data $\sigma_{a|x}$ is referred to as a (steering) assemblage.

The quantum data is
$$\sigma_{\mathsf{a}|\mathsf{x}} = \mathsf{Tr}\bigg(\mathit{M}_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \ \rho_{\mathsf{A}\mathsf{B}} \bigg)$$
 .

The quantum data is $\sigma_{a|x}=\operatorname{Tr}igg(M_{a|x}\otimes \mathbb{1}\
ho_{AB}igg)$.

This data has a local hidden state (LHS) model if we can write it as

$$\sigma_{\mathsf{a}|x} = \sum_{\lambda} p(\lambda) \ p(\mathsf{a}|x,\lambda) \ \sigma_{\mathsf{B}}^{\lambda}$$

The quantum data is $\sigma_{a|x}=\operatorname{Tr}igg(M_{a|x}\otimes \mathbb{1}\
ho_{AB}igg)$.

This data has a local hidden state (LHS) model if we can write it as

$$\sigma_{\mathsf{a}|\mathsf{x}} = \sum_{\lambda} p(\lambda) \ p(\mathsf{a}|\mathsf{x},\lambda) \ \sigma_{\mathsf{B}}^{\lambda}$$

The quantum data is $\sigma_{a|x}=\operatorname{Tr}igg(M_{a|x}\otimes \mathbb{1}\
ho_{AB}igg)$.

This data has a local hidden state (LHS) model if we can write it as

$$\sigma_{\mathsf{a}|\mathsf{x}} = \sum_{\lambda} p(\lambda) \ p(\mathsf{a}|\mathsf{x},\lambda) \ \sigma_{\mathsf{B}}^{\lambda}$$

If there is no LHS model, we say the data demonstrates steering.

The same arguments go through as before, we have for an assemblage

$$\sigma_{\mathsf{a}|\mathsf{x}} = \mathsf{Tr}igg(M_{\mathsf{a}|\mathsf{x}}\otimes \mathbb{1} \
ho_{\mathsf{A}\mathsf{B}}igg)$$

The same arguments go through as before, we have for an assemblage

$$\sigma_{\mathsf{a}|x} = \mathsf{Tr}igg(M_{\mathsf{a}|x} \otimes \mathbb{1} \
ho_{\mathsf{AB}} igg)$$

• ρ_{AB} separable $\implies \sigma_{a|x}$ is LHS.

The same arguments go through as before, we have for an assemblage

$$\sigma_{\mathsf{a}|x} = \mathsf{Tr}igg(M_{\mathsf{a}|x} \otimes \mathbb{1} \
ho_{\mathsf{AB}} igg)$$

- ρ_{AB} separable $\implies \sigma_{a|x}$ is LHS.
- $M_{a|x}$ compatible $\implies \sigma_{a|x}$ is LHS.

The same arguments go through as before, we have for an assemblage

$$\sigma_{\mathsf{a}|\mathsf{x}} = \mathsf{Tr}igg(M_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \
ho_{\mathsf{AB}} igg)$$

- ρ_{AB} separable $\implies \sigma_{a|x}$ is LHS.
- $M_{a|x}$ compatible $\implies \sigma_{a|x}$ is LHS.

In fact we have the implications:

nonlocality
$$\Longrightarrow$$
 steering \Longrightarrow entanglement

The same arguments go through as before, we have for an assemblage

$$\sigma_{\mathsf{a}|\mathsf{x}} = \mathsf{Tr}igg(M_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \
ho_{\mathsf{A}\mathsf{B}} igg)$$

- ρ_{AB} separable $\implies \sigma_{a|x}$ is LHS.
- $M_{a|x}$ compatible $\implies \sigma_{a|x}$ is LHS.

In fact we have the implications:

However the reverse directions do not hold: there exist entangled-yet-unsteerable states and steerable-yet-local states!

Entanglement and Incompatibility in Steering

The same arguments go through as before, we have for an assemblage

$$\sigma_{\mathsf{a}|\mathsf{x}} = \mathsf{Tr}igg(M_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \;
ho_{\mathsf{A}\mathsf{B}} igg)$$

- ρ_{AB} separable $\implies \sigma_{a|x}$ is LHS.
- $M_{a|x}$ compatible $\implies \sigma_{a|x}$ is LHS.

In fact we have the implications:

However the reverse directions do not hold:

there exist entangled-yet-unsteerable states and steerable-yet-local states!

It is also true that any LHS assemblage can be prepared with a separable state and compatible measurements.

Nonlocality vs Steering vs Entanglement

Scenario:

Nonlocality

Data:

Local model:

$$p(a, b|x, y) =$$

 $\sum_{\lambda} p(\lambda) p(a|x, \lambda) p(b|y, \lambda)$

Steering

$$\sigma_{a|x}$$

$$\sigma_{a|x} = \sum_{\lambda} p(\lambda) \ p(a|x,\lambda) \ \sigma_{B}^{\lambda}$$

Entanglement

$$\rho_{AB} = \left(\begin{array}{c} \\ \end{array} \right)$$

$$\rho_{AB} = \sum_{\lambda} p(\lambda) \; \rho_A^{\lambda} \otimes \rho_B^{\lambda}$$

We already saw one connection between incompatibility and steering.

¹Roope Uola et al. "One-to-one mapping between steering and joint measurability problems". In: *Physical review letters* 115.23 (2015), p. 230402.

We already saw one connection between incompatibility and steering. Observe that a collection of measurements $M_{a|x}$ and steering assemblage $\sigma_{a|x}$ are very similar types of data:

¹Roope Uola et al. "One-to-one mapping between steering and joint measurability problems". In: *Physical review letters* 115.23 (2015), p. 230402.

We already saw one connection between incompatibility and steering. Observe that a collection of measurements $M_{a|x}$ and steering assemblage $\sigma_{a|x}$ are very similar types of data:

$$\underline{\text{Measurements}} \quad M_{\mathsf{a}|x} \qquad \qquad \underline{\text{Assemblage}} \quad \sigma_{\mathsf{a}|x} \qquad \qquad (12)$$

$$M_{a|x} \ge 0 \quad \forall a, x$$
 $\sigma_{a|x} \ge 0 \quad \forall a, x$ (13)

$$\sum_{a} M_{a|x} = 1 \quad \forall a \qquad \qquad \sum_{a} \sigma_{a|x} = \rho_{B} \quad \forall a \qquad (14)$$

¹Roope Uola et al. "One-to-one mapping between steering and joint measurability problems". In: Physical review letters 115.23 (2015), p. 230402.

We already saw one connection between incompatibility and steering. Observe that a collection of measurements $M_{a|x}$ and steering assemblage $\sigma_{a|x}$ are very similar types of data:

$$\underline{\text{Measurements}} \quad M_{a|x} \qquad \underline{\text{Assemblage}} \quad \sigma_{a|x} \qquad (12)$$

$$M_{a|x} \ge 0 \quad \forall a, x$$
 $\sigma_{a|x} \ge 0 \quad \forall a, x$ (13)

$$\sum_{a} M_{a|x} = 1 \quad \forall a \qquad \qquad \sum_{a} \sigma_{a|x} = \rho_{B} \quad \forall a \qquad (14)$$

There is the following connection¹:

Theorem

An assemblage $\sigma_{a|x}$ admits an LHS model if and only if the measurements $M_{a|x} := \rho_B^{-\frac{1}{2}} \ \sigma_{a|x} \ \rho_B^{-\frac{1}{2}}$ are compatible.

¹Roope Uola et al. "One-to-one mapping between steering and joint measurability problems". In: *Physical review letters* 115.23 (2015), p. 230402.

Recall the steering scenario

Recall the steering scenario

We can certify that the shared state is entangled.

We may want to certify more: that the state involves high-dimensional entanglement.

Recall the steering scenario

We can certify that the shared state is entangled.

We may want to certify more: that the state involves high-dimensional entanglement.

How can we quantify this?

Recall the steering scenario

We can certify that the shared state is entangled.

We may want to certify more: that the state involves high-dimensional entanglement.

How can we quantify this?

- The Schmidt number is one way . . .

Consider a bipartite pure state vector $|\psi\rangle_{AB}\in\mathbb{C}^d\otimes\mathbb{C}^d.$

Consider a bipartite pure state vector $|\psi\rangle_{AB}\in\mathbb{C}^d\otimes\mathbb{C}^d.$

Definition

The Schmidt rank is defined as

$$\mathsf{SR}(\ket{\psi}) := \mathsf{min}\, k \quad \mathsf{s.t} \quad \ket{\psi} = \sum_{i=1}^k \lambda_i \ket{a_i} \otimes \ket{b_i}$$

• This is a restatement of the singular value decomposition.

Consider a bipartite pure state vector $|\psi\rangle_{AB}\in\mathbb{C}^d\otimes\mathbb{C}^d.$

Definition

The Schmidt rank is defined as

$$\mathsf{SR}(\ket{\psi}) := \mathsf{min}\, k \quad \mathsf{s.t} \quad \ket{\psi} = \sum_{i=1}^{\kappa} \lambda_i \ket{\mathsf{a}_i} \otimes \ket{b_i}$$

- This is a restatement of the singular value decomposition.
- This is also equivalent to $SR(|\psi\rangle) = rank(Tr_A(|\psi\rangle\langle\psi|))$

Consider a bipartite pure state vector $|\psi\rangle_{AB}\in\mathbb{C}^d\otimes\mathbb{C}^d.$

Definition

The Schmidt rank is defined as

$$\mathsf{SR}(\ket{\psi}) := \mathsf{min}\, k \quad \mathsf{s.t} \quad \ket{\psi} = \sum_{i=1}^k \lambda_i \ket{\mathsf{a}_i} \otimes \ket{b_i}$$

- This is a restatement of the singular value decomposition.
- This is also equivalent to $SR(|\psi\rangle) = rank(Tr_A(|\psi\rangle\langle\psi|))$
- $SR(|\psi\rangle) \in \{1, \dots, d\}$, which quantifies the number of degrees of freedom that are entangled.

Consider a bipartite pure state vector $|\psi\rangle_{AB}\in\mathbb{C}^d\otimes\mathbb{C}^d.$

Definition

The Schmidt rank is defined as

$$\mathsf{SR}(\ket{\psi}) := \mathsf{min}\, k \quad \mathsf{s.t} \quad \ket{\psi} = \sum_{i=1}^k \lambda_i \ket{\mathsf{a}_i} \otimes \ket{\mathsf{b}_i}$$

- This is a restatement of the singular value decomposition.
- This is also equivalent to $SR(|\psi\rangle) = rank(Tr_A(|\psi\rangle\langle\psi|))$
- $SR(|\psi\rangle) \in \{1, ..., d\}$, which quantifies the number of degrees of freedom that are entangled.

Note that

$$\mathsf{SR}(|\psi
angle) = 1 \quad \Longleftrightarrow \quad |\psi
angle = |\phi
angle \otimes | au
angle \quad \mathsf{product} \ \mathsf{state}$$

The Schmidt rank is just for pure states. A general quantum state $\rho_{AB} = \sum_k p_k |\psi_k\rangle\langle\psi_k|$ will have many decompositions.

The Schmidt rank is just for pure states. A general quantum state $\rho_{AB} = \sum_k p_k |\psi_k\rangle\langle\psi_k|$ will have many decompositions.

Definition

The Schmidt Number of a bipartite density matrix ρ is defined as

$$SN(\rho) := \min_{\{p_k, |\psi_k\rangle\}} \max_{k} SR(|\psi_k\rangle)$$
s.t
$$\rho = \sum_{k} p_k |\psi_k\rangle\langle\psi_k|.$$
(15)

The Schmidt rank is just for pure states. A general quantum state $\rho_{AB} = \sum_k p_k |\psi_k\rangle\langle\psi_k|$ will have many decompositions.

Definition

The Schmidt Number of a bipartite density matrix ρ is defined as

$$SN(\rho) := \min_{\{\rho_k, |\psi_k\rangle\}} \max_{k} SR(|\psi_k\rangle)$$
s.t
$$\rho = \sum_{k} p_k |\psi_k\rangle\langle\psi_k|.$$
(15)

The Schmidt rank is just for pure states. A general quantum state $\rho_{AB} = \sum_k p_k |\psi_k\rangle\langle\psi_k|$ will have many decompositions.

Definition

The Schmidt Number of a bipartite density matrix ρ is defined as

$$SN(\rho) := \min_{\{p_k, |\psi_k\rangle\}} \max_{k} SR(|\psi_k\rangle)$$
s.t
$$\rho = \sum_{k} p_k |\psi_k\rangle\langle\psi_k|.$$
(15)

Again we have $\mathsf{SN}(\rho) \in \{1,\ldots,d\}$, and

$$\mathsf{SN}(
ho) = 1$$
 $\iff
ho = \sum_k p_k \; |\phi_k\rangle\!\langle\phi_k| \otimes | au_k\rangle\!\langle au_k|$ separable state.

A previous paper² considered how to provide guarantees on the dimension of the underlying state.

²Sébastien Designolle et al. "Genuine high-dimensional quantum steering". In: Physical Review Letters 126.20 (2021), p. 200404.

A previous paper² considered how to provide guarantees on the dimension of the underlying state.

Definition

An assemblage $\sigma_{a|x}$ is *n*-preparable if it can be written as

$$\sigma_{\mathsf{a}|\mathsf{x}} = \mathsf{Tr}_{\mathsf{A}} \big(\mathsf{M}_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \ \rho \big)$$

with ρ having Schmidt number at most n.

²Sébastien Designolle et al. "Genuine high-dimensional quantum steering". In: *Physical Review Letters* 126.20 (2021), p. 200404.

A previous paper² considered how to provide guarantees on the dimension of the underlying state.

Definition

An assemblage $\sigma_{a|x}$ is *n*-preparable if it can be written as

$$\sigma_{\mathsf{a}|\mathsf{x}} = \mathsf{Tr}_{\mathsf{A}} \big(M_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \ \rho \big)$$

with ρ having Schmidt number at most n.

²Sébastien Designolle et al. "Genuine high-dimensional quantum steering". In: *Physical Review Letters* 126.20 (2021), p. 200404.

A previous paper² considered how to provide guarantees on the dimension of the underlying state.

Definition

An assemblage $\sigma_{a|x}$ is *n*-preparable if it can be written as

$$\sigma_{\mathsf{a}|\mathsf{x}} = \mathsf{Tr}_{\mathsf{A}} \big(M_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \ \rho \big)$$

with ρ having Schmidt number at most n.

- Not n-preparable ⇒ Genuine HD steering

²Sébastien Designolle et al. "Genuine high-dimensional quantum steering". In: *Physical Review Letters* 126.20 (2021), p. 200404.

A previous paper² considered how to provide guarantees on the dimension of the underlying state.

Definition

An assemblage $\sigma_{a|x}$ is *n*-preparable if it can be written as

$$\sigma_{\mathsf{a}|\mathsf{x}} = \mathsf{Tr}_{\mathsf{A}} \big(\mathsf{M}_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \ \rho \big)$$

with ρ having Schmidt number at most n.

- Not n-preparable ⇒ Genuine HD steering
- They provided practical bounds for doing this in the lab.

²Sébastien Designolle et al. "Genuine high-dimensional quantum steering". In: *Physical Review Letters* 126.20 (2021), p. 200404.

Questions at this stage

 We know separable states and compatible measurements lead to LHS assemblages.

Questions at this stage

 We know separable states and compatible measurements lead to LHS assemblages.

What are the requirements on the measurements to witness high-dimensional steering?

Questions at this stage

 We know separable states and compatible measurements lead to LHS assemblages.

What are the requirements on the measurements to witness high-dimensional steering?

 We know compatibility and LHS models are equivalent: does this generalise in terms of dimension?

Table of Contents

- Measurement Incompatibility
- Quantum Steering
- 3 Channel-state duality and the Heisenberg picture
- Our Contribution
- 5 Conclusions and Future work

The Heisenberg picture

Under the Hilbert-Schmidt inner product $\langle A, B \rangle := \text{Tr}(A^{\dagger}B)$, recall the definition of the dual map $\mathcal{F} \longleftrightarrow \mathcal{F}^*$:

$$\langle \mathcal{F}(A), B \rangle = \langle A, \mathcal{F}^*(B) \rangle \tag{16}$$

$$Tr(\mathcal{F}(A)^{\dagger}B) = Tr(A^{\dagger}\mathcal{F}^{*}(B))$$
(17)

The Heisenberg picture

Under the Hilbert-Schmidt inner product $\langle A, B \rangle := \text{Tr}(A^{\dagger}B)$, recall the definition of the dual map $\mathcal{F} \longleftrightarrow \mathcal{F}^*$:

$$\langle \mathcal{F}(A), B \rangle = \langle A, \mathcal{F}^*(B) \rangle \tag{16}$$

$$Tr(\mathcal{F}(A)^{\dagger}B) = Tr(A^{\dagger}\mathcal{F}^{*}(B))$$
(17)

In quantum mechanics we think about this as the Heisenberg picture:

$$\operatorname{Tr}(M_a \Lambda(\rho)) \equiv p(a) = \equiv \operatorname{Tr}(\Lambda^*(M_a) \rho)$$

The Heisenberg picture

Under the Hilbert-Schmidt inner product $\langle A, B \rangle := \text{Tr}(A^{\dagger}B)$, recall the definition of the dual map $\mathcal{F} \longleftrightarrow \mathcal{F}^*$:

$$\langle \mathcal{F}(A), B \rangle = \langle A, \mathcal{F}^*(B) \rangle$$
 (16)

$$Tr(\mathcal{F}(A)^{\dagger}B) = Tr(A^{\dagger}\mathcal{F}^{*}(B))$$
(17)

In quantum mechanics we think about this as the Heisenberg picture:

$$\operatorname{Tr}(M_a \Lambda(\rho)) \equiv p(a) = \equiv \operatorname{Tr}(\Lambda^*(M_a) \rho)$$

Let $\mathcal{L}(\mathcal{H})$ denote the linear maps from a Hilbert space $\mathcal{H}\cong\mathbb{C}^d$ to itself.

Let $\mathcal{L}(\mathcal{H})$ denote the linear maps from a Hilbert space $\mathcal{H}\cong\mathbb{C}^d$ to itself.

There is a connection between:

$$\rho \in \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B) \qquad \qquad \Lambda : \mathcal{L}(\mathcal{H}_B) \longrightarrow \mathcal{L}(\mathcal{H}_A) \qquad (19)$$

$$\rho_{\Lambda} := \Lambda \otimes \mathbb{1} |\phi_{+}\rangle\langle\phi_{+}| \quad \longleftrightarrow \qquad \Lambda_{\rho}(X) = \operatorname{Tr}_{B}(\mathbb{1} \otimes X^{T} \rho) \qquad (20)$$

Let $\mathcal{L}(\mathcal{H})$ denote the linear maps from a Hilbert space $\mathcal{H}\cong\mathbb{C}^d$ to itself.

There is a connection between:

$$\rho \in \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B) \qquad \qquad \Lambda : \mathcal{L}(\mathcal{H}_B) \longrightarrow \mathcal{L}(\mathcal{H}_A) \qquad (19)$$

$$\rho_{\Lambda} := \Lambda \otimes \mathbb{1} |\phi_{+}\rangle\langle\phi_{+}| \quad \longleftrightarrow \quad \Lambda_{\rho}(X) = \operatorname{Tr}_{B}(\mathbb{1} \otimes X^{T} \rho) \quad (20)$$

•
$$|\phi_{+}\rangle = \frac{1}{\sqrt{d}} \sum_{i} |ii\rangle$$
.

Let $\mathcal{L}(\mathcal{H})$ denote the linear maps from a Hilbert space $\mathcal{H} \cong \mathbb{C}^d$ to itself.

There is a connection between:

$$\rho \in \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B) \qquad \qquad \Lambda : \mathcal{L}(\mathcal{H}_B) \longrightarrow \mathcal{L}(\mathcal{H}_A) \qquad (19)$$

$$\rho_{\Lambda} := \Lambda \otimes \mathbb{1} |\phi_{+}\rangle\langle\phi_{+}| \quad \longleftrightarrow \qquad \Lambda_{\rho}(X) = \operatorname{Tr}_{B}(\mathbb{1} \otimes X^{T} \rho) \qquad (20)$$

•
$$|\phi_{+}\rangle = \frac{1}{\sqrt{d}} \sum_{i} |ii\rangle$$
.

• $\rho_{\Lambda_{\rho}} = \rho$ and $\Lambda_{\rho_{\Lambda}} = \Lambda$.

Let $\mathcal{L}(\mathcal{H})$ denote the linear maps from a Hilbert space $\mathcal{H}\cong\mathbb{C}^d$ to itself.

There is a connection between:

$$\rho \in \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B) \qquad \qquad \Lambda : \mathcal{L}(\mathcal{H}_B) \longrightarrow \mathcal{L}(\mathcal{H}_A) \qquad (19)$$

$$\rho_{\Lambda} := \Lambda \otimes \mathbb{1} |\phi_{+}\rangle\langle\phi_{+}| \quad \longleftrightarrow \qquad \Lambda_{\rho}(X) = \operatorname{Tr}_{B}(\mathbb{1} \otimes X^{T} \rho) \qquad (20)$$

- $\bullet |\phi_{+}\rangle = \frac{1}{\sqrt{d}} \sum_{i} |ii\rangle.$
- $\rho_{\Lambda_{\rho}} = \rho$ and $\Lambda_{\rho_{\Lambda}} = \Lambda$.

This is also referred to as the *Choi–Jamiołkowski* isomorphism, and ρ_{Λ} is often called the *Choi state* of the channel.

<u>States</u> <u>Channels</u>

$$\rho_{\Lambda} := \Lambda \otimes \mathbb{1} |\phi_{+}\rangle \langle \phi_{+}| \quad \longleftrightarrow \quad \Lambda_{\rho}(X) = \operatorname{Tr}_{B}(\mathbb{1} \otimes X^{T} \rho) \quad (21)$$

³ Jukka Kiukas et al. "Continuous-variable steering and incompatibility via state-channel duality". In: Physical Review A 96.4 (2017), p. 042331.

$$\frac{\text{States}}{\rho_{\Lambda} := \Lambda \otimes \mathbb{1} |\phi_{+}\rangle\langle\phi_{+}|} \longleftrightarrow \Lambda_{\rho}(X) = \text{Tr}_{\mathcal{B}}(\mathbb{1} \otimes X^{T} \rho) \tag{21}$$

• This is not completely general: note that $\operatorname{Tr}_A(\rho_{\Lambda}) = \frac{1}{d} \quad \forall \ \Lambda$.

³ Jukka Kiukas et al. "Continuous-variable steering and incompatibility via state-channel duality". In: Physical Review A 96.4 (2017), p. 042331.

$\frac{\text{States}}{\rho_{\Lambda} := \Lambda \otimes \mathbb{1} |\phi_{+}\rangle \langle \phi_{+}|} \longleftrightarrow \Lambda_{\rho}(X) = \text{Tr}_{\mathcal{B}}(\mathbb{1} \otimes X^{T} \rho) \tag{21}$

- This is not completely general: note that ${\sf Tr}_{\cal A}(
 ho_{\sf \Lambda})=rac{1}{d} \quad orall \; \Lambda$
- There is a more general correspondence³ for a fixed marginal $\operatorname{Tr}_A(\rho_\Lambda) \equiv \sigma \equiv \sum_n s_n |n\rangle\langle n|$ of full rank.

³ Jukka Kiukas et al. "Continuous-variable steering and incompatibility via state-channel duality". In: Physical Review A 96.4 (2017), p. 042331.

$\frac{\text{States}}{\rho_{\Lambda} := \Lambda \otimes \mathbb{1} |\phi_{+}\rangle \langle \phi_{+}|} \longleftrightarrow \Lambda_{\rho}(X) = \text{Tr}_{B}(\mathbb{1} \otimes X^{T} \rho) \tag{21}$

- This is not completely general: note that $\operatorname{Tr}_A(\rho_{\Lambda}) = \frac{1}{d} \quad \forall \ \Lambda$.
- There is a more general correspondence³ for a fixed marginal $\operatorname{Tr}_A(\rho_\Lambda) \equiv \sigma \equiv \sum_n s_n |n\rangle\langle n|$ of full rank. Let $|\Omega\rangle = \sum_n \sqrt{s_n} |n\rangle\langle n|$ be a purification of σ , and $(\cdot)^T$ denote transpose in the $|n\rangle$ basis. Then we have :

³ Jukka Kiukas et al. "Continuous-variable steering and incompatibility via state-channel duality". In: Physical Review A 96.4 (2017), p. 042331.

$\frac{\text{States}}{\rho_{\Lambda} := \Lambda \otimes \mathbb{1} |\phi_{+}\rangle\langle\phi_{+}|} \longleftrightarrow \Lambda_{\rho}(X) = \text{Tr}_{\mathcal{B}}(\mathbb{1} \otimes X^{T} \rho) \tag{21}$

- This is not completely general: note that $\operatorname{Tr}_A(\rho_{\Lambda}) = \frac{1}{d} \quad \forall \ \Lambda$.
- There is a more general correspondence³ for a fixed marginal $\operatorname{Tr}_A(\rho_\Lambda) \equiv \sigma \equiv \sum_n s_n |n\rangle\langle n|$ of full rank. Let $|\Omega\rangle = \sum_n \sqrt{s_n} |n\rangle\langle n|$ be a purification of σ , and $(\cdot)^T$ denote transpose in the $|n\rangle$ basis. Then we have :

$$\rho_{\Lambda} := \Lambda \otimes \mathbb{1} |\Omega\rangle\!\langle\Omega| \tag{22}$$

$$\Lambda_{\rho}^{*}(X) := \sigma^{-\frac{1}{2}} \operatorname{Tr}_{A}(X \otimes \mathbb{1}\rho)^{T} \sigma^{-\frac{1}{2}}$$
(23)

$$\iff \Lambda_{\rho}(Y) = \operatorname{Tr}_{B}(\mathbb{1} \otimes (\sigma^{-\frac{1}{2}} Y \sigma^{-\frac{1}{2}})^{T} \rho) \tag{24}$$

³ Jukka Kiukas et al. "Continuous-variable steering and incompatibility via state-channel duality". In: *Physical Review A* 96.4 (2017), p. 042331.

Recap

Dual Channels $\Lambda^* \colon \mathcal{L}(\mathcal{H}_A) \to \mathcal{L}(\mathcal{H}_B)$

"map measurements to measurements"

Quantum states $\rho \in \mathcal{L}(\mathcal{H}_{A}) \otimes \mathcal{L}(\mathcal{H}_{B})$

"bipartite state"

Comparing the pictures

It can be often helpful conceptually to use these connections:

Given some property of a channel, can also consider the associated dual and Choi state.

٨	۸*	$ ho_{\Lambda}$
Trace-preserving	Unital	Unit trace
Completely-positive	Completely-positive	Positive semi-definite
Unitary	Unitary	Pure state
??	??	Separable
??	??	Schmidt number <i>n</i>

Definition

A channel Λ is entanglement breaking if

$$\Lambda \otimes \mathbb{1} \left[\rho_{AB} \right]$$
 is separable $\forall \rho_{AB}$

⁴Michael Horodecki, Peter W Shor, and Mary Beth Ruskai. "Entanglement breaking channels". In: Reviews in Mathematical Physics 15,06 (2003), pp. 629-641.

Definition

A channel Λ is entanglement breaking if

$$\Lambda \otimes \mathbb{1} \left[\rho_{AB} \right]$$
 is separable $\forall \ \rho_{AB}$

It was shown⁴ that these are exactly measure-and-prepare channels

$$\Lambda(\rho) = \sum_{\lambda} \mathsf{Tr}(\mathcal{G}_{\lambda} \rho) \,\, \sigma_{\lambda}$$

⁴Michael Horodecki, Peter W Shor, and Mary Beth Ruskai. "Entanglement breaking channels". In: Reviews in Mathematical Physics 15.06 (2003), pp. 629-641.

Definition

A channel Λ is entanglement breaking if

$$\Lambda \otimes \mathbb{1} \left[\rho_{AB} \right]$$
 is separable $\forall \rho_{AB}$

It was shown⁴ that these are exactly measure-and-prepare channels

$$\Lambda(\rho) = \sum_{\lambda} \mathsf{Tr}(\mathcal{G}_{\lambda}\rho) \,\, \sigma_{\lambda}$$

One can show that the Choi states of these channels are separable:

 Λ entanglement breaking \iff ho_{Λ} separable

⁴Michael Horodecki, Peter W Shor, and Mary Beth Ruskai. "Entanglement breaking channels". In: Reviews in Mathematical Physics 15.06 (2003), pp. 629–641.

 Λ entanglement breaking if: $\Lambda \otimes \mathbb{1} \left[\rho_{AB} \right]$ is separable $\forall \rho_{AB}$. There is a natural generalisation of this⁵:

⁵Dariusz Chruściński and Andrzej Kossakowski. "On partially entanglement breaking channels". In: *Open Systems & Information Dynamics* 13.1 (2006), pp. 17–26.

 Λ entanglement breaking if: $\Lambda \otimes \mathbb{1} \left[\rho_{AB} \right]$ is separable $\forall \rho_{AB}$. There is a natural generalisation of this⁵:

Definition

A channel Λ is *n*-partially entanglement breaking (*n*-PEB) if

$$\mathsf{SN}\Big(\mathsf{\Lambda}\otimes\mathbb{1}\ [\rho_{\mathsf{A}\mathsf{B}}]\Big)\leq\mathsf{n}\quad\forall\ \rho_{\mathsf{A}\mathsf{B}}$$

⁵Dariusz Chruściński and Andrzej Kossakowski. "On partially entanglement breaking channels". In: Open Systems & Information Dynamics 13.1 (2006), pp. 17-26. 4 D F 4 P F F F F F F

 Λ entanglement breaking if: $\Lambda \otimes \mathbb{1} \left[\rho_{AB} \right]$ is separable $\forall \rho_{AB}$. There is a natural generalisation of this⁵:

Definition

A channel Λ is *n*-partially entanglement breaking (*n*-PEB) if

$$\mathsf{SN}\Big(\mathsf{\Lambda}\otimes\mathbb{1}\ [\rho_{\mathsf{A}\mathsf{B}}]\Big)\leq \mathsf{n}\quad\forall\ \rho_{\mathsf{A}\mathsf{B}}$$

One can then show

$$\Lambda$$
 n-PEB \iff $SN(\rho_{\Lambda}) = n$

⁵Dariusz Chruściński and Andrzej Kossakowski. "On partially entanglement breaking channels". In: *Open Systems & Information Dynamics* 13.1 (2006), pp. 17–26.

 Λ entanglement breaking if: $\Lambda \otimes \mathbb{1} \left[\rho_{AB} \right]$ is separable $\forall \rho_{AB}$. There is a natural generalisation of this⁵:

Definition

A channel Λ is *n*-partially entanglement breaking (*n*-PEB) if

$$\mathsf{SN}\Big(\mathsf{\Lambda}\otimes\mathbb{1}\ [\rho_{\mathsf{A}\mathsf{B}}]\Big)\leq\mathsf{n}\quad\forall\ \rho_{\mathsf{A}\mathsf{B}}$$

One can then show

$$\Lambda$$
 n-PEB \iff $SN(\rho_{\Lambda}) = n$

This is also equivalent to there existing a Kraus decomposition

$$\Lambda(\cdot) = \sum_{\lambda} K_{\lambda}(\cdot) K_{\lambda}^{\dagger}$$
 such that: $\operatorname{rank}(K_{\lambda}) \leq n \quad \forall \lambda$

⁵Dariusz Chruściński and Andrzej Kossakowski. "On partially entanglement breaking channels". In: *Open Systems & Information Dynamics* 13.1 (2006), pp. 17–26.

We can use this to shift the consideration from the state to the measurements.

We can use this to shift the consideration from the state to the measurements.

Suppose that
$$\sigma_{a|x}=\operatorname{Tr}_{A}\bigg(M_{a|x}\otimes \mathbb{1}\ \rho\bigg)$$
 is *n*-preparable.

We can use this to shift the consideration from the state to the measurements.

Suppose that
$$\sigma_{a|x}=\operatorname{Tr}_{A}\bigg(M_{a|x}\otimes\mathbb{1}\ \rho\bigg)$$
 is *n*-preparable.

Then as ρ has Schmidt number at most n, it can be written as $\rho = \Lambda \otimes \mathbb{1}[\sigma]$ for Λ a n-PEB channel (using generalised channel state duality).

We can use this to shift the consideration from the state to the measurements.

Suppose that
$$\sigma_{a|x}=\operatorname{Tr}_{A}\bigg(\mathit{M}_{a|x}\otimes\mathbb{1}\ \rho\bigg)$$
 is *n*-preparable.

Then as ρ has Schmidt number at most n, it can be written as $\rho = \Lambda \otimes \mathbb{1}[\sigma]$ for Λ a n-PEB channel (using generalised channel state duality).

Then consider

$$\sigma_{\mathsf{a}|\mathsf{x}} = \mathsf{Tr}_{\mathsf{A}} \bigg(M_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \ \rho \bigg) \tag{25}$$

(26)

(27)

We can use this to shift the consideration from the state to the measurements.

Suppose that
$$\sigma_{a|x}=\operatorname{Tr}_{A}\bigg(M_{a|x}\otimes \mathbb{1}\ \rho\bigg)$$
 is *n*-preparable.

Then as ρ has Schmidt number at most n, it can be written as $\rho = \Lambda \otimes \mathbb{1}[\sigma]$ for Λ a n-PEB channel (using generalised channel state duality).

Then consider

$$\sigma_{\mathsf{a}|\mathsf{x}} = \mathsf{Tr}_{\mathsf{A}} \bigg(M_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \ \rho \bigg) \tag{25}$$

$$= \operatorname{Tr}_{A} \left(\left(M_{\mathsf{a}|x} \otimes \mathbb{1} \right) \, \left(\Lambda \otimes \mathbb{1} \right) [\sigma] \right) \tag{26}$$

(27)

We can use this to shift the consideration from the state to the measurements.

Suppose that
$$\sigma_{a|x}=\operatorname{Tr}_{A}\bigg(M_{a|x}\otimes \mathbb{1}\ \rho\bigg)$$
 is *n*-preparable.

Then as ρ has Schmidt number at most n, it can be written as $\rho = \Lambda \otimes \mathbb{1}[\sigma]$ for Λ a n-PEB channel (using generalised channel state duality).

Then consider

$$\sigma_{\mathsf{a}|\mathsf{x}} = \mathsf{Tr}_{\mathsf{A}} \bigg(M_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \ \rho \bigg) \tag{25}$$

$$= \operatorname{Tr}_{A} \left(\left(M_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \right) \, \left(\Lambda \otimes \mathbb{1} \right) [\sigma] \right) \tag{26}$$

$$= \operatorname{Tr}_{A} \left(\Lambda^{*}(M_{\mathsf{a}|x}) \otimes \mathbb{1} \ \sigma \right) \tag{27}$$

We can use this to shift the consideration from the state to the measurements.

Suppose that
$$\sigma_{a|x}=\operatorname{Tr}_{A}\bigg(M_{a|x}\otimes \mathbb{1}\ \rho\bigg)$$
 is *n*-preparable.

Then as ρ has Schmidt number at most n, it can be written as $\rho = \Lambda \otimes \mathbb{1}[\sigma]$ for Λ a n-PEB channel (using generalised channel state duality).

Then consider

$$\sigma_{\mathsf{a}|\mathsf{x}} = \mathsf{Tr}_{\mathsf{A}}\bigg(M_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \ \rho\bigg) \tag{25}$$

$$= \operatorname{Tr}_{A} \left(\left(M_{a|x} \otimes \mathbb{1} \right) \left(\Lambda \otimes \mathbb{1} \right) [\sigma] \right) \tag{26}$$

$$= \operatorname{Tr}_{A} \left(\Lambda^{*}(M_{\mathsf{a}|x}) \otimes \mathbb{1} \ \sigma \right) \tag{27}$$

So if the measurements can be written as $\Lambda^*(M_{a|x})$ for some n-PEB channel Λ , then the assemblage will also be n-preparable.

Table of Contents

- Measurement Incompatibility
- Quantum Steering
- 3 Channel-state duality and the Heisenberg picture
- Our Contribution
- 5 Conclusions and Future work

A new definition

Definition

A set of measurements $M_{a|x}$ is n-simulable if there exists an n-PEB channel Λ and arbitrary measurements $N_{a|x}$ such that

$$M_{a|x} = \Lambda^*(N_{a|x}).$$

A new definition

Definition

A set of measurements $M_{a|x}$ is n-simulable if there exists an n-PEB channel Λ and arbitrary measurements $N_{a|x}$ such that

$$M_{a|x} = \Lambda^*(N_{a|x}).$$

 $M_{a|x}$ is 1-simulable \iff jointly measurable.

A new definition

Definition

A set of measurements $M_{a|x}$ is n-simulable if there exists an n-PEB channel Λ and arbitrary measurements $N_{a|x}$ such that

$$M_{a|x} = \Lambda^*(N_{a|x}).$$

 $M_{a|x}$ is 1-simulable \iff jointly measurable.

This can be viewed as a form of compression

• If $M_{a|x}$ are *n*-simulable, the assemblage $\sigma_{a|x} = \operatorname{Tr}_A(M_{a|x} \otimes \mathbb{1} \rho)$ is *n*-preparable.

⁶Marie Ioannou et al. "Simulability of high-dimensional quantum measurements". In: arXiv preprint arXiv:2202.12980 (2022), Benjamin D. M. Jones et al. "Equivalence between simulability of high-dimensional measurements and high-dimensional steering". In: arXiv preprint arXiv:2207.04080 (2022). 4 D F 4 P F F F F F F

• If $M_{a|x}$ are *n*-simulable, the assemblage $\sigma_{a|x} = \operatorname{Tr}_{\mathcal{A}}(M_{a|x} \otimes \mathbb{1} \rho)$ is *n*-preparable.

• $\sigma_{a|x}$ is *n*-preparable if and only if $\rho_B^{-\frac{1}{2}}$ $\sigma_{a|x}$ $\rho_B^{-\frac{1}{2}}$ is *n*-simulable.

⁶Marie loannou et al. "Simulability of high-dimensional quantum measurements". In: arXiv preprint arXiv:2202.12980 (2022), Benjamin D. M. Jones et al. "Equivalence between simulability of high-dimensional measurements and high-dimensional steering". In: arXiv preprint arXiv:2207.04080 (2022). 4 D F 4 P F F F F F F

- If $M_{a|x}$ are *n*-simulable, the assemblage $\sigma_{a|x}=\operatorname{Tr}_{\mathcal{A}}\big(M_{a|x}\otimes\mathbb{1}\ \rho\big)$ is *n*-preparable.
- $\sigma_{a|x}$ is *n*-preparable if and only if $\rho_B^{-\frac{1}{2}}$ $\sigma_{a|x}$ $\rho_B^{-\frac{1}{2}}$ is *n*-simulable.
- We define *n*-partially incompatibility breaking channels, and characterise the Choi states.

⁶Marie Ioannou et al. "Simulability of high-dimensional quantum measurements". In: arXiv preprint arXiv:2202.12980 (2022), Benjamin D. M. Jones et al. "Equivalence between simulability of high-dimensional measurements and high-dimensional steering". In: arXiv preprint arXiv:2207.04080 (2022).

- If $M_{a|x}$ are *n*-simulable, the assemblage $\sigma_{a|x}=\operatorname{Tr}_{\mathcal{A}}\big(M_{a|x}\otimes\mathbb{1}\ \rho\big)$ is *n*-preparable.
- $\sigma_{\mathsf{a}|\mathsf{x}}$ is *n*-preparable if and only if $\rho_B^{-\frac{1}{2}}$ $\sigma_{\mathsf{a}|\mathsf{x}}$ $\rho_B^{-\frac{1}{2}}$ is *n*-simulable.
- We define *n*-partially incompatibility breaking channels, and characterise the Choi states.
- Analytical and numerical results on when noisy MUBs and the set of all projective measurements become n-simulable

⁶Marie Ioannou et al. "Simulability of high-dimensional quantum measurements". In: arXiv preprint arXiv:2202.12980 (2022), Benjamin D. M. Jones et al. "Equivalence between simulability of high-dimensional measurements and high-dimensional steering". In: arXiv preprint arXiv:2207.04080 (2022).

Theorem

If $SN(\rho) \leq n$ or $M_{a|x}$ is n-simulable, then

$$\sigma_{\mathsf{a}|\mathsf{x}} = \mathit{Tr}_{\mathsf{A}}\bigg(\mathit{M}_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \ \rho\bigg)$$

is n-preparable.

Theorem

If $SN(\rho) \leq n$ or $M_{a|x}$ is n-simulable, then

$$\sigma_{\mathsf{a}|\mathsf{x}} = \mathit{Tr}_{\mathsf{A}}\bigg(\mathit{M}_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \ \rho \bigg)$$

is n-preparable.

Implication: high-dimensional measurement incompatibility is necessary for high-dimensional steering.

Theorem

If $SN(\rho) \leq n$ or $M_{a|x}$ is n-simulable, then

$$\sigma_{\mathsf{a}|x} = \mathit{Tr}_{\mathsf{A}} \bigg(\mathit{M}_{\mathsf{a}|x} \otimes \mathbb{1} \ \rho \bigg)$$

is n-preparable.

Implication: high-dimensional measurement incompatibility is necessary for high-dimensional steering.

This generalises the previous result that if either the underlying state is separable (has Schmidt number 1) or the measurements are compatible (1-simulable) then the resulting assemblage is LHS (is 1-preparable).

$\mathsf{Theorem}$

If $SN(\rho) \leq n$ or $M_{a|x}$ is n-simulable, then

$$\sigma_{\mathsf{a}|x} = \mathit{Tr}_{\mathsf{A}} \bigg(\mathit{M}_{\mathsf{a}|x} \otimes \mathbb{1} \ \rho \bigg)$$

is n-preparable.

Implication: high-dimensional measurement incompatibility is necessary for high-dimensional steering.

This generalises the previous result that if either the underlying state is separable (has Schmidt number 1) or the measurements are compatible (1-simulable) then the resulting assemblage is LHS (is 1-preparable).

We also have a quantative version of this result using the convex weight.

Theorem

Consider a steering assemblage $\sigma_{a|x}$ and measurements $M_{a|x}$ such that $M_{a|x} = \rho_B^{-\frac{1}{2}} \ \sigma_{a|x} \ \rho_B^{-\frac{1}{2}}$, where $\rho_B := \sum_a \sigma_{a|x}$ is of full rank. Then $M_{a|x}$ is n-simulable if and only if $\sigma_{a|x}$ is n-preparable.

Theorem

Consider a steering assemblage $\sigma_{a|x}$ and measurements $M_{a|x}$ such that $M_{a|x} = \rho_B^{-\frac{1}{2}} \ \sigma_{a|x} \ \rho_B^{-\frac{1}{2}}$, where $\rho_B := \sum_a \sigma_{a|x}$ is of full rank. Then $M_{a|x}$ is n-simulable if and only if $\sigma_{a|x}$ is n-preparable.

Proof sketch:

Theorem

Consider a steering assemblage $\sigma_{a|x}$ and measurements $M_{a|x}$ such that $M_{a|x} = \rho_B^{-\frac{1}{2}} \ \sigma_{a|x} \ \rho_B^{-\frac{1}{2}}$, where $\rho_B := \sum_a \sigma_{a|x}$ is of full rank. Then $M_{a|x}$ is

Proof sketch: We have the following equivalences:

n-simulable if and only if $\sigma_{a|x}$ is n-preparable.

$$\sigma_{\mathsf{a}|_{\mathsf{X}}} = \mathsf{Tr}_{\mathsf{A}}(N_{\mathsf{a}|_{\mathsf{X}}} \otimes \mathbb{1} \ \rho_{\mathsf{A}\mathsf{B}}) \tag{28}$$

- (29)
- ()
 - (30)
 - (31)

$\mathsf{Theorem}$

Consider a steering assemblage $\sigma_{a|x}$ and measurements $M_{a|x}$ such that $M_{\mathsf{a}|_{\mathsf{X}}} = \rho_{\mathsf{B}}^{-\frac{1}{2}} \ \sigma_{\mathsf{a}|_{\mathsf{X}}} \ \rho_{\mathsf{B}}^{-\frac{1}{2}}$, where $\rho_{\mathsf{B}} := \sum_{\mathsf{a}} \sigma_{\mathsf{a}|_{\mathsf{X}}}$ is of full rank. Then $M_{\mathsf{a}|_{\mathsf{X}}}$ is n-simulable if and only if $\sigma_{a|x}$ is n-preparable.

Proof sketch: We have the following equivalences:

$$\sigma_{\mathsf{a}|\mathsf{x}} = \mathsf{Tr}_{\mathsf{A}}(\mathsf{N}_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \ \rho_{\mathsf{A}\mathsf{B}}) \tag{28}$$

$$\iff M_{\mathsf{a}|_X} = \ \rho_B^{-\frac{1}{2}} \ \mathsf{Tr}_A(N_{\mathsf{a}|_X} \otimes \mathbb{1} \ \rho_{AB}) \ \rho_B^{-\frac{1}{2}} \qquad \qquad \mathsf{by \ defn} \qquad \qquad (29)$$

(30)

(31)

Theorem

Consider a steering assemblage $\sigma_{a|x}$ and measurements $M_{a|x}$ such that $M_{a|x} = \rho_B^{-\frac{1}{2}} \ \sigma_{a|x} \ \rho_B^{-\frac{1}{2}}$, where $\rho_B := \sum_a \sigma_{a|x}$ is of full rank. Then $M_{a|x}$ is n-simulable if and only if $\sigma_{a|x}$ is n-preparable.

Proof sketch: We have the following equivalences:

$$\sigma_{\mathsf{a}|_{\mathsf{X}}} = \mathsf{Tr}_{\mathsf{A}}(N_{\mathsf{a}|_{\mathsf{X}}} \otimes \mathbb{1} \ \rho_{\mathsf{A}\mathsf{B}}) \tag{28}$$

$$\iff M_{a|x} = \rho_B^{-\frac{1}{2}} \operatorname{Tr}_A(N_{a|x} \otimes \mathbb{1} \rho_{AB}) \rho_B^{-\frac{1}{2}}$$
 by defin (29)

$$\iff M_{\mathsf{a}|\mathsf{x}}^{\mathsf{T}} = \rho_{\mathsf{B}}^{-\frac{1}{2}} \operatorname{\mathsf{Tr}}_{\mathsf{A}} (N_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \ \rho_{\mathsf{A}\mathsf{B}})^{\mathsf{T}} \ \rho_{\mathsf{B}}^{-\frac{1}{2}} \tag{30}$$

(31)

Theorem

Consider a steering assemblage $\sigma_{a|x}$ and measurements $M_{a|x}$ such that $M_{a|x} = \rho_B^{-\frac{1}{2}} \ \sigma_{a|x} \ \rho_B^{-\frac{1}{2}}$, where $\rho_B := \sum_a \sigma_{a|x}$ is of full rank. Then $M_{a|x}$ is n-simulable if and only if $\sigma_{a|x}$ is n-preparable.

Proof sketch: We have the following equivalences:

$$\sigma_{a|x} = \operatorname{Tr}_{A}(N_{a|x} \otimes \mathbb{1} \ \rho_{AB}) \tag{28}$$

$$\iff M_{\mathsf{a}|_X} = \ \rho_B^{-\frac{1}{2}} \ \mathsf{Tr}_{\mathsf{A}}(N_{\mathsf{a}|_X} \otimes \mathbb{1} \ \rho_{\mathsf{AB}}) \ \rho_B^{-\frac{1}{2}} \qquad \qquad \mathsf{by defn}$$

$$\iff M_{\mathsf{a}|\mathsf{x}}^{\mathsf{T}} = \rho_{\mathsf{B}}^{-\frac{1}{2}} \operatorname{Tr}_{\mathsf{A}} (N_{\mathsf{a}|\mathsf{x}} \otimes \mathbb{1} \ \rho_{\mathsf{A}\mathsf{B}})^{\mathsf{T}} \ \rho_{\mathsf{B}}^{-\frac{1}{2}} \tag{30}$$

$$\iff M_{a|x}^T = \Lambda_{\rho_{AB}}^* \left(N_{a|x} \right).$$
 by CS duality (31)

Incompatibility breaking channels

Incompatibility breaking channels

Definition

A channel Λ is *n*-partially incompatibility breaking (*n*-PIB) if for any measurement assemblage $M_{a|x}$ the resulting measurement assemblage $\Lambda^*(M_{a|x})$ is *n*-simulable.

Incompatibility breaking channels

Definition

A channel Λ is *n*-partially incompatibility breaking (*n*-PIB) if for any measurement assemblage $M_{a|x}$ the resulting measurement assemblage $\Lambda^*(M_{a|x})$ is *n*-simulable.

i.e. for all $M_{a|x}$ there exists $N_{a|x}$ and a n-PEB channel Ω such that

$$\Lambda^*(M_{a|x}) = \Omega^*(N_{a|x}). \tag{32}$$

Definition

 Λ *n*-PIB if $\Lambda^*(M_{a|x})$ is *n*-simulable \forall $M_{a|x}$.

Theorem

The Choi states of n-PIB channels are exactly those states for whom a Schmidt number of n can be verified in a steering scenario.

Definition

 Λ *n*-PIB if $\Lambda^*(M_{a|x})$ is *n*-simulable \forall $M_{a|x}$.

Theorem

The Choi states of n-PIB channels are exactly those states for whom a Schmidt number of n can be verified in a steering scenario.

Definition

 Λ *n*-PIB if $\Lambda^*(M_{a|x})$ is *n*-simulable \forall $M_{a|x}$.

Theorem

The Choi states of n-PIB channels are exactly those states for whom a Schmidt number of n can be verified in a steering scenario.

This is analogous to the existence of entangled yet unsteerable states: There exist states with Schmidt number n, but one can only verify a Schmidt number of n' < n.

Table of Contents

- Measurement Incompatibility
- Quantum Steering
- 3 Channel-state duality and the Heisenberg picture
- Our Contribution
- Conclusions and Future work

 We gave an introduction to measurement incompatibility and quantum steering: allows for a rich transfer of ideas!

 We gave an introduction to measurement incompatibility and quantum steering: allows for a rich transfer of ideas!

 We reviewed channel-state duality, the Heisenberg picture, the Schmidt number and partially entanglement breaking channels.

 We gave an introduction to measurement incompatibility and quantum steering: allows for a rich transfer of ideas!

 We reviewed channel-state duality, the Heisenberg picture, the Schmidt number and partially entanglement breaking channels.

 I discussed recent results on high-dimensional steering and incompatibility.

• Testing the dimension of a channel in the lab – work to follow!

- Testing the dimension of a channel in the lab work to follow!
- Consider other quantifiers: e.g. Schmidt measure?

- Testing the dimension of a channel in the lab work to follow!
- Consider other quantifiers: e.g. Schmidt measure?
- Analogues for nonlocality: which channels have a Choi state for whom a Schmidt number of at most n can be verified in a fully-device independent scenario?

- Testing the dimension of a channel in the lab work to follow!
- Consider other quantifiers: e.g. Schmidt measure?
- Analogues for nonlocality: which channels have a Choi state for whom a Schmidt number of at most n can be verified in a fully-device independent scenario?
- Extension to infinite dimensional systems (rank of Kraus operators breaks down).

- Testing the dimension of a channel in the lab work to follow!
- Consider other quantifiers: e.g. Schmidt measure?
- Analogues for nonlocality: which channels have a Choi state for whom a Schmidt number of at most n can be verified in a fully-device independent scenario?
- Extension to infinite dimensional systems (rank of Kraus operators breaks down).
- Better bounds on how much noise before certain measurements/assemblages become n-simulable/n-preparable.

- [1] Roope Uola et al. "One-to-one mapping between steering and joint measurability problems". In: Physical review letters 115.23 (2015), p. 230402.
- Sébastien Designolle et al. "Genuine high-dimensional quantum steering". In: Physical Review Letters 126.20 (2021), p. 200404.
- [3] Jukka Kiukas et al. "Continuous-variable steering and incompatibility via state-channel duality". In: Physical Review A 96.4 (2017), p. 042331.
 - Michael Horodecki, Peter W Shor, and Mary Beth Ruskai. "Entanglement breaking channels". In: Reviews in Mathematical Physics 15.06 (2003), pp. 629-641.
- Dariusz Chruściński and Andrzej Kossakowski. "On partially entanglement breaking channels". In: Open Systems & Information Dynamics 13.1 (2006), pp. 17–26.
- [6] Marie loannou et al. "Simulability of high-dimensional quantum measurements". In: arXiv preprint arXiv:2202.12980 (2022).
- [7] Benjamin D. M. Jones et al. "Equivalence between simulability of high-dimensional measurements and high-dimensional steering" in: arXiv preprint arXiv:2207.04080 (2022),