Dualité: orthogonalité.

Exercice 1.

Soit F et G deux sous-espaces vectoriels tels que $F \oplus G = E$. Montrer que $F^{\perp} \oplus G^{\perp} = E^*$.

Exercice 2.

Soit E et F deux espaces de dimension finie, et f un morphisme de E dans F.

- 1. Montrer que $Im(^tf) = Ker(f)^{\perp}$ et que $Ker(^tf) = Im(f)^{\perp}$.
- 2. En déduire que f est injective si et seulement si tf est surjective et que f est surjective si et seulement si tf est injective.

Exercice 3.

Soit E, un espace vectoriel, et A et B, deux sous-espaces de E.

- 1. Montrer que $(A \cup B)^o \subset A^o \cup B^o$, $A^o + B^o \subset (A \cap B)^o$ et $A^o \cap B^o \subset (A + B)^o$.
- Si E est de dimension finie, montrer que les deux dernières inclusions sont des égalités.
- 2. Soit E^* , le dual de E, et F et G, deux sous-espaces de E^* . Montrer que ${}^o(F+G)={}^oF\cap {}^oG$, ${}^oF+{}^oG\subset {}^o(F\cap G)$ et ${}^oF\cap {}^oG\subset {}^o(F+G)$.
- 3. On suppose que E est de dimension finie. Montrer que $dim(F) + dim({}^oF) = dim(E) = dim(E^*)$ et que les inclusions de la question 2. sont des égalités.

Exercice 4.

Soit f un endomorphisme d'un espace vectoriel E, et F un sous-espace de E stable par f, i.e.

$$f(F) \subset F$$
.

Montrez que F^{\perp} est stable par ^{t}f .

Exercice 5.

Soient E et F deux espaces vectoriels, V, un sous-espace de E et $f \in \mathcal{L}(E,F)$. Montrer que

$$f(V)^o = ({}^t f)^{-1}(V^o).$$

Exercice 6.

Soient E et F, deux espaces vectoriels et E^* et F^* , leurs duaux respectifs. Soit G, un sous-espace de E, G^o , son orthogonal dans E^* et $f \in \mathcal{L}(E, F)$. On note $A = \{x^* \in F^*, {}^t f(x^*) \in G^o\}$.

- 1. Prouver que A est l'orthogonal de f(G) dans F^* .
- 2. Prouver que l'orthogonal de f(E) dans F^* est le noyau de tf .
- 3. Si F_1 et G_1 sont deux sous-espaces supplémentaires de E, montrer que F_1^o et G_1^o sont supplémentaires dans E^* et que

$$E = F_1 \oplus G_1 \Rightarrow E^* = F_1^o \oplus G_1^o$$
.