United States Environmental Protection Agency

Office of Solid Waste And Emergency Response (5102W)

EPA 542-R-94-005 Number 6 September 1994

Innovative Treatment Technologies: **Annual Status Report**

(Sixth Edition)

Approved for public releases

Approved for public releases

Approved for public releases

DITIS QUALITY IMSPECTED 5

19950728 053

EPA-542-R-94-005 Number 6 September 1994

INNOVATIVE TREATMENT TECHNOLOGIES: ANNUAL STATUS REPORT

(Sixth Edition)

U.S. Environmental Protection Agency
Office of Solid Waste and Emergency Response
Technology Innovation Office
Washington, DC 20460

Accesi	Accesion For	
NTIS	CRA&I	2
0110	TAB	
Unann	Unannounced	
Justification	cation	***************************************
By		
Distribution /	ution/	
A	vailabilit	Availability Codes
Dist	Avail and/or Special	ınd / or cial
A-J		

NOTICE

This material has been funded wholly or in part by the United States Environmental Protection Agency under contract number 68-C0-0047. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. To obtain a copy of this report, fill out the request form on the next page and mail or fax it to:

U.S. EPA/NCEPI P.O. Box 42419

Cincinnati, OH 45242

Fax Number: 513-891-6685

INNOVATIVE TREATMENT TECHNOLOGIES: ANNUAL STATUS REPORT

Request to be on Mailing List

like your name added to or deleted from the mailing list for future reports or would like a copy of the 6th edition, please complete the following states, EPA libraries, and representatives of other federal agencies. All project contacts listed in the report also receive a copy. If you would This report is distributed once a year to Superfund management in U.S. EPA Headquarters and regional offices, pertinent EPA laboratories, form and send or fax it to:

U.S. EPA/NCEPI P.O. Box 42419 Cincinnati, OH 45242-0419 Fax number: 513-891-6685	☐ I already have a copy of the 6th Edition, EPA-542-R-94-005.	Please remove my name and address from the mailing list.				State Zip	nge the name and address.		
U.S. E P.O. B Cincin Fax nu	☐ Please send me a copy of the 6th Edition, EPA-542-R-94-005.	Please add my name and address to the mailing list:	Name	Company	Street or P.O. Box	City	My name is already on the mailing list. Please change the name and address.	FROM:	

FOREWORD

contaminated waste sites, soils and ground water. One of TIO's goals is the removal of regulatory and institutional barriers to the established the Technology Innovative Office (TIO) to promote the use of innovative treatment technologies for contaminated site cleanup. TIO's mission is to encourage government and industry to increase the use of innovative treatment technology to mitigate development and use of innovative technologies. Another is the provision of richer technology and market information to target audiences, including federal agencies, states, consulting engineering firms, responsible parties, technology developers, technology In April 1990, the U.S. Environmental Protection Agency's (EPA) Office of Solid Waste and Emergency Response (OSWER) vendors and the investment community. This report documents the status of innovative treatment technology use in the Superfund program. To a lesser extent, the report presents information on innovative treatment projects at non-Superfund sites under the jurisdiction of the Department of Defense and the Department of Energy. We have expanded the report to include many new innovative projects selected by EPA in fiscal year 1993 and numerous graphics and tables to assist the reader in understanding the data. We hope that this information will allow better communication between experienced technology users and those who are considering innovative technologies to clean up contaminated sites, as well as enabling technology vendors to evaluate the market for innovative treatment technologies in Superfund for the next several years. The use of innovative treatment technologies in Superfund and other EPA waste programs is addressed by a directive, Furthering the efforts such as the directive and this document will increase the reliance on new, less costly, or more effective technologies to address Use of Innovative Treatment Technologies in OSWER Programs (OSWER Directive 9380.0-17, June 10, 1991). This directive sets corrective action under the Resource Conservation and Recovery Act (RCRA), and underground storage tank cleanups. It is hoped that forth seven initiatives to remove impediments from and create incentives for the use of innovative treatment technologies for Superfund, the problems associated with Superfund and other hazardous waste sites, and petroleum contamination.

Walter W. Kovalick, Jr. Ph.D. Director, Technology Innovation Office

ACKNOWLEDGEMENTS

This document was prepared under the direction of Ms. Linda Fiedler, work assignment manager for the U.S. Environmental Protection Agency's Technology Innovation Office. Special acknowledgement is due the Regional and state staff listed as contacts for individual sites. They provided the detailed information in this document. Their cooperation and willingness to share their knowledge and expertise on innovative treatment technologies encourages the application of those technologies at other sites.

ABSTRACT

This yearly report (formerly published twice a year) documents and analyzes the selection and use of innovative treatment technologies Energy (DOE). The status of most projects have been updated, and projects selected in fiscal year 1993 Superfund Records of Decision (ROD) are included. The information will allow better communication between experienced technology users and those who are considering innovative technologies to clean up contaminated sites. In addition, the information will enable technology vendors to in the U.S. EPA Superfund Program and at some non-Superfund sites under the jurisdiction of the Departments of Defense (DoD) and evaluate the market for innovative technologies in Superfund for the next several years. It also will be used by EPA's Technology Innovation Office to track progress in the application of innovative treatment technologies.

technologies the use of which at Superfund and similar sites is inhibited by lack of data on cost and performance. This report documents Alternative treatment technologies are alternatives to land disposal. Innovative treatment technologies are alternative treatment the use of the following innovative treatment technologies to treat ground water (in situ), soils, sediments, sludge, and solid-matrix

Bioremediation (Ex Situ) Bioremediation (In Situ)

Chemical treatment

In situ flushing Dechlorination

- Soil vapor extraction In situ vitrification
 - Solvent extraction Soil washing
- Thermal desorption

contained recovery of oil wastes, Other technologies (air sparging, limestone barriers and fuming gasification) The document includes information on 290 applications of innovative treatment technologies for remedial actions, 31 applications for remedial, removal and other Federal program sites, at which innovative treatment has been selected or used. Appendices A, B, and removal actions, and 28 applications under other federal programs. Sections 1, 2, and 3 contain summary information for Superfund C contain site-specific information for Superfund remedial, removal and other federal program sites respectively. The information for these sections was collected through analyses of RODs, review of OSWER tracking systems, and interviews with EPA regional, DoD, and DOE staff. Appendix E also contains performance and operating data on the 25 remedial, 20 removal, and 7 non-Superfund innovative prejects that have been completed.

CONTENTS

Notice Document Request Form Foreword Acknowledgements Abstract List of Figures List of Tables List of Abbreviations OVERVIEW			Page iii iii iv iii iii x x x x x x x x x x x
Introduction What are Alternative and Innovative Treatment Technologies? Sources of Information for this Report Definitions for Specific Innovative Treatment Technologies			0V-1 0V-1 0V-2 0V-2
SECTION 1: INNOVATIVE SUPERFUND REMEDIAL ACTIONS Frequency of Technology Selection Status of Innovative Technology Implementation Contaminants of Addressed by Innovative Treatment Technologies Quantity of Soil Addressed Treatment Trains			1000
SECTION 2: INNOVATIVE SUPERFUND REMOVAL ACTIONS Frequency of Technology Selection Status of Innovative Technology Implementation Contaminants Addressed by Innovative Treatment Technologies Treatment Trains			8 8 9 10 10
SECTION 3: INNOVATIVE ACTIONS UNDER OTHER FEDERAL PROGRAMS	U S		11
Site Status and Technology Summary Matrix			13

Apendices		Page
Appendix A:)
Table A-1:		A-1
Lable A-2: Annendiy B.	ċ	A-68
Table B-1:	Simerfund Removal Actions: Site Checific Information by Incomment Transmitted Information by Incommentation and Incommentation by Incommentation Incommentat	ţ
Appendix (ن	B-1
Table C-1:		ن
Appendix D:		D-1
Appendix E:	_	E-1
Table E-1:	Superfund Removal Actions: Performance Data on Completed Projects	표;
Table E-3:		E-11
Table E-4:	Superfund Rea	E-22
Table E-5:	Superfund Rea	E-25
	LIST OF FIGURES	
Number		Page
I Sul	Actions:	
inc 7	Superfund Kemedial Actions: Source Control RODs by Fiscal Year	
3 Sur	Superfund Remedial Actions: Overview of Source Control RODs Through Fiscal Year 1993	2
4 Sug	Superfund Remedial Actions: Treatment and Disposal Decisions for Source Control	1 0
5 Sup	Actions:	1
,		3
ins 9	Actions:	4
7 Suț	Superfund Remedial Actions: Number of Innovative Treatment Technologies Versus	4
	Corresponding RODs	•
8 Sup	Superfund Remedial Actions: Innovative Treatment Technologies by Year	3
	Actions:	v
10 Sup	Actions:	9
11 Sur	Actions:	9
12 Sup	Superfund Remedial Actions: Quantities of Soil to be Treated by Innovative Technologies	12

LIST OF FIGURES (Continued)

13	Superfund Removal Actions: Summary of Innovative Technologies Selected/Used as of June 1994	∞
14	Superfund Removal Actions: Project Status of Innovative Treatment Technologies as of June 1994	9
15	Superfund Removal Actions: Application of Innovative Treatment Technologies	10
16	Sample of Projects Under Other Federal Programs: Summary of Treatment Technologies as of June 1994	11
17	Sample of Projects Under Other Federal Programs: Status of Innovative Treatment Technologies	12
	as of June 1994	
E-1	Superfund Remedial Actions: Treatment Trains with Innovative Treatment Technologies	E-23

LIST OF ABREVIATIONS

AM	Action Memorandum	NPL	National Priorities List
APC	Air pollution control	OERR	Office of Emergency and Remedial Response
APEG	Alkaline metal hydroxide/polyethylene glycol	OSC	On-scene coordinator
ARCS	Alternative remedial contracts strategy	OSWER	Office of Solid Waste and Emergency Response
ATTIC	Alternative Treatment Technology Information	no	Operable unit
	Center	PAH	Polynuclear aromatic hydrocarbon
BCD	Base catalyzed dechlorination	PCB	Polychlorinated biphenyl
BTEX	Benzene, toluene, ethylbenzene, and xylene	PCE	Perchloroethylene (tetrachloroethylene)
BTX	Benzene, toluene, and xylene	PCP	Pentachlorophenol
cy	Cubic yards	PRP	Potentially responsible party
DCA	Dichloroethane	RA	Remedial action
DCE	Dichloroethylene	RCRA	Resource Conservation and Recovery Act
DEHP	Di(2-ethylhexyl phthalate)	RD	Remedial design
DLA	Defense Logistics Agency	ROD	Record of Decision
DNT	Dinitrotoluene	RPM	Remedial project manager
EECA	Engineering Evaluation/Cost Analysis	RSKERL	RSKERL Robert S. Kerr Environmental Research Laboratory.
ESD	Explanation of significant differences		Ada, Oklahoma (EPA)
FAA	Federal Aviation Administration	SARA	Superfund Amendment and Reauthorization Act
=	Feet		of 1986
FUDS	Formerly used defense sites	SACM	Superfund Accelerated Cleanup Model
FY	Fiscal year	SVOC	Semivolatile organic compound
MS.	Ground water	S/S	Solidification and stabilization
IRP	Installation Restoration Program	TCA	Trichloroethane
KPEG	Potassium hydroxide/polyethylene glycol	TCE	Trichloroethylene
MEK		TIO	Technology Innovation Office
MBOCA		USACE	U.S. Army Corps of Engineers
NAPL	Nonaqueous phase liquids	USDA	U.S. Department of Agriculture
NFEC	Navy Facilities Engineering Command	NOC	Volatile organic compound

OVERVIEW

Introduction

The Technology Innovation Office (TIO) of the U.S. Environmental Protection Agency's (EPA) Office of Solid Waste and Emergency Response (OSWER) has prepared this Innovative Treatment Technologies: Annual Status Report todocument the use of innovative treatment technologies to remediate both Superfund and non-Superfund sites. The report contains site-specific information on Superfund sites (both remedial and removal actions) and non-Superfund sites (sites addressed under other federal programs) at which innovative treatment technologies are being used. Site managers can use this report in evaluating cleanup alternatives. Innovative technology vendors can use it in identifying potential markets. TIO also uses the information to track progress in the application of innovative treatment technologies.

The report is updated annually. This September 1994 issue of the report updates and expands information provided in the September 1993 report. Information added to this update includes 60 innovative treatment technologies selected for remedial actions in fiscal year (FY) 1993 Superfund records of decision (ROD)—a ROD is the decision document used to specify the way a site, or part of a site, will be remediated—and information on 11 additional completed projects.

What Are Alternative and Innovative Treatment Technologies?

Alternative treatment technologies are alternatives to land disposal. The most frequently used alternative technologies are incineration and solidification/stabilization. Innovative treatment technologies are alternative treatment technologies for which applications at Superfund and similar sites are inhibited by lack of data on performance and cost. In general, a treatment technology is considered innovative if it has had limited full-scale application. Often, it is the application of a technology or process to soils, sediments, sludge, and solid-

matrix waste (such as mining slag) that is innovative. Groundwater treatment after the water has been pumped to the surface often resembles traditional water treatment technologies; thus, in general, pump-and-treat or ex situ groundwater remedies are considered established. In situ bioremediation and other in situ treatment of groundwater, however, are considered innovative technologies.

This report documents the use of the following innovative treatment technologies to treat soils, sediments, sludge, and solid-matrix waste:

- Bioremediation (Ex Situ)
 - Bioremediation (In Situ)

Thermal desorption

Solvent extraction

- Chemical treatment
 - Dechlorination
- In situ flushing
- In situ vitrification
- Soil vapor extractionSoil washing
- Other technologies (e.g., air sparging, contained recovery of oily wastes, limestone

barriers, and fuming

gasification)

In addition, the remedial sites that are using in-situ bioremediation for groundwater remediation are included with the in situ bioremediation projects.

Sources of Information for This Report

EPA initially used RODs from individual sites to compile information on remedial actions and pollution reports, on-scene coordinators' reports, and the OSWER Removal Tracking System to compile data on emergency response actions. The U.S. Army Corps of Engineers Hazardous, Toxic, Radioactive Waste (HTRW) Mandatory Center of Expertise (Omaha, Nebraska) and the Synopses of Federal

Demonstrations of Innovative Site Remediation Technologies, Third Edition (EPA/542/B-93/009) were consulted to compile information on projects under other federal programs. EPA then verified and updated the draft information through interviews with remedial project managers (RPM) and on-scene coordinators (OSC) and other contacts for each site. The data concerning project status do not duplicate data in CERCLIS, EPA's Superfund tracking system. This report provides more detailed information specifically on the portion of the remedy pertaining to an innovative technology. In addition, information about technologies and sites identified here might differ from information found in the ROD annual reports and the RODs database. These differences are the result of design changes in the treatment trains used at sites that may or may not require official documentation (that is, a ROD amendment or an explanation of significant differences (ESD)).

Definitions of Specific Innovative Treatment Technologies

The innovative treatment technologies reported in the following chapters treat hazardous wastes in very different ways. The following paragraphs define the technologies as they are represented in this document and provide summary statistics on some of the technologies.

EX SITU BIOREMEDIATION uses microorganisms to degrade organic contaminants on excavated soil, sludge, and solids. The microorganisms break down the contaminants by using them as a food source. The end products are typically CO₂ and H₂O. Ex situ bioremediation includes slurry-phase bioremediation, in which the soils are mixed in water to form a slurry, and solid phase bioremediation, in which the soils are placed in a tank or building and tilled with water, and nutrients. Variations of the latter process are called land farming or composting.

In applications of IN SITU BIOREMEDIATION, nutrients and an oxygen source are pumped under pressure into the soil or aquifer

through wells, or they are spread on the surface for infiltration to the contaminated material.

In CHEMICAL TREATMENT the contaminants are converted to less hazardous compounds through chemical reactions. The technology is most often used to reduce a contaminant (hexavalent chromium to the trivalent form) or oxidize a contaminant (cyanide, for example). Neutralization is considered an available technology and is not included in this report.

DECHLORINATION (another type of chemical treatment) results in the removal or replacement of chlorine atoms bonded to hazardous compounds.

For IN SITU FLUSHING, large volumes of water, at times supplemented with treatment compounds, are introduced to soil, waste, or groundwater to flush hazardous contaminants from a site. This technology is predicated on the assumption that the injected water can be isolated effectively within the aquifer and recovered.

IN SITU VITRIFICATION treats contaminated soil in place at temperatures of approximately 3000°F (1600°C). Metals are encapsulated in the glass-like structure of the melted silicate compounds. Organics may be treated by combustion.

SOIL WASHING is used for two purposes. First, the mechanical action and water (sometimes with additives) physically remove the contaminants from the soil particles. Second, agitation of the soil particles allows the smaller diameter, more highly contaminated fines to separate from the larger soil particles, thus reducing the volume of material requiring further treatment.

SOLVENT EXTRACTION operates on the principle that organic contaminants can be solubilized preferentially and removed from the

waste in the correct solvent. The solvent used will vary, depending on the waste to be treated.

For THERMAL DESORPTION, the waste is heated in a controlled environment to cause organic compounds to volatilize from the waste. The operating temperature for thermal desorption is usually less than 1000°F (550°C). The volatilized contaminants usually require further control or treatment.

SOIL VAPOR EXTRACTION removes volatile organic constituents from the soil in place through the use of vapor extraction wells, sometimes combined with air injection wells, to strip and flush the contaminants into the air stream for further treatment.

OTHER TECHNOLOGIES include air sparging and the contained recovery of oily wastes (CROW), limestone barriers, and fuming gasification technologies. Air sparging involves injecting air into the aquifer to strip or flush volatile contaminants as the air percolates up through the groundwater and is captured by a vapor extraction system. The CROW process displaces oil wastes with steam and hot

water. The contaminated oils and groundwater are swept into a more permeable area and are pumped out of the aquifer. Limestone barriers act like chemical slurry walls. Contaminated groundwater comes into contact with the barrier and pH increases. The increase in pH effectively immobilizes dissolved metals and neutralizes the soil. Fuming gasification is a thermal treatment process that purges contaminants from solids and soils as metal fumes and organic vapors. The organic vapors can be burned as fuel and the metal fumes can be recovered and recycled.

The following sections contain summary information and analysis on sites at which innovative treatment technologies are being or have been applied. Section 1 covers all Superfund sites implementing an innovative treatment technology under a remedial action. These actions are usually documented in a ROD. Section 2 provides information on Superfund removal action sites. Removals are conducted in response to an immediate threat caused by a release of hazardous substances.* Section 3 covers non-Superfund sites or sites being addressed under other federal programs.

^{*} Historically, remedial and removal actions operate under different procedural guidelines. The EPA currently is revising the Superfund process under the Superfund Accelerated Cleanup Model (SACM). Under SACM, EPA will adopt a continuous process for assessing site specific conditions and the need for action. Risks will be reduced quickly through early remedial or removal action.

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 1: SUPERFUND REMEDIAL ACTIONS

Frequency of Technology Selection

ROD Statistics As of April, 1994, there are 1,287 sites on the National Priorities List (NPL), excluding 58 sites deleted from the NPL. 1,207 RODs (including ROD Amendments) had been signed. Most RODs for remedial actions address the source of contamination, such as soil, sludge, sediments, solid-type wastes, and nonaqueous phase liquids (NAPL). These RODs are referred to as "source control" RODs. Other RODs address ground water only or specify that no action is necessary. Figure 1 shows the number of source control RODs compared with the total number of RODs for each fiscal year.

SUPERFUND REMEDIAL ACTIONS: RODS SIGNED The difference between the total number of RODs and the number of source control RODs is the number of "groundwater remedy only" or "no action needed" RODs. Source: USEPA Office of Emergency and Remedial Response. 8 8 Total Number of RODs = 1,117) BY FISCAL YEAR Fiscal Year FIGURE 1 8 Source Control RODs Total RODs 흅 育 ξ 혍 ş Number RODs

An analysis of source control RODs allows a comparison of the frequency of selection of treatment with that of selection of containment or disposal to remedy contamination at sites. Source control RODs are classified by the general type of technology selected: (1) RODs specifying some alternative treatment, (2) RODs specifying containment or disposal only, and (3) RODs specifying other action (such as land use restrictions, monitoring, or relocation). Figure 1 shows the number of source control RODs that fall under each category. RODs in which some treatment is selected may include containment of treatment residuals or of waste from another part of the site.

Overall, 64 percent of source control RODs have selected at least one treatment technology for source control (Figure 3). The Superfund Amendments and Reauthorization Act of 1986 (SARA) required that EPA favor permanent remedies (that is, alternative treatment) over containment or disposal to remediate Superfund sites. In each of the past six years at least 70 percent of source control RODs contained provisions for the treatment of wastes. The increase is most dramatic

in FY1988. Fifty percent of RODs in FY 1987 selected some treatment for source control, whereas 69 percent of RODs in FY 1988 selected some treatment (Figure 4). The percentage was 72 percent in FY 1993. Figure 4 also illustrates the percentage of RODs selecting at least one *innovative technology*, as updated by current project status information. Out of a total of 914 source control RODs signed through FY 1993, innovative technologies were selected and are still being considered or used for approximately 29 percent of source control RODs. Overall, 22 percent of all RODs have included innovative technologies.

FIGURE 4 SUPERFUND REMEDIAL ACTIONS: TREATMENT AND DISPOSAL DECISIONS FOR SOURCE CONTROL

Technology Statistics Another way of illustrating the greater use of treatment is by quantifying the number and kinds of treatment technologies selected and used. Most of the remainder of the information contained in this chapter focuses on technologies, rather than RODs. In each ROD in which treatment was specified, several alternative treatment technologies may have been selected.

Through FY 1993, 642 treatment technologies have been selected in 588 source control RODs specifying some treatment. In addition, EPA has selected in situ treatment of ground water for 24 remedial sites for a total 666 treatment technologies. EPA selected in situ

reatment of groundwater for three remedial sites in FY 1993. The selection of multiple technologies results from the use of treatment trains or from the treatment of different wastes or areas of the site. For the 588 RODs specifying treatment for source control, Figure 5 lists each type of treatment technology selected and how often it has been selected or used for source control. Figure 5 illustrates that, through FY 1993, 44 percent of the 666 treatment technologies selected were innovative and

56 percent were established. Table A-1, appearing in Appendix A, contains summary information on the innovative treatment technology projects at remedial sites. Table A-2 lists sites using established technologies. Information on the established treatment technologies is based on a review by the Office of Emergency and Remedial Response (OERR) rather than interviews of Regional or State staff.

SUPERFUND REMEDIAL ACTIONS: SUMMARY OF ALTERNATIVE TREATMENT TECHNOLOGIES In Situ Vitrification (2) < 1% Chemical Treatment (1) < 1% In Situ Bioremediation (30) 5% Soil Vapor Extraction (121) 18% In Situ Flushing (18) 3% Thermal Desorption (41) 6% Dechlorination (5) < 1% Innovative Technologies # (290) 44% Ex Situ Bioremediation (38) 6% Other Innovative (15) 2% Solvent Extraction (4) < 1% SELECTED THROUGH FISCAL YEAR 1993 Soil Washing (15) 2% (Total Number of Technologies = 666) FIGURE 5 Other Established (11) 2% Established Technologies (376) 56% Off-Site Incineration (102) 15% Solidification/Stabilization (190) 29% (73) 11% On-Site Incineration

Data are derived from 1982 – 1993 Records of Decision (RODs) for fiscal years and anticipated design and construction activities as of July 1994. More than one technology per site may be used. Note:

- () Number of times this technology was selected or used.
- "Other" established technologies are soil aeration, in situ flaming, and chemical neutralization. "Other" innovative technologies are air sparging, contained recovery of oily wastes, imestone barriers, and fuming gasification.
- Includes 24 in situ groundwater treatment remedies.

Figure 6 compares the numbers of established and innovative

for each innovative technology by fiscal year. Figure 9 shows the frequency of selection for the four most frequently selected innovative indicates that the ratio of innovative technologies to sites has increased every year since FY 1986. Figure 8 gives the frequency of selection reatment technologies, including soil vapor extraction by fiscal year. technologies by fiscal year. The figure indicates that more innovative RODs in fiscal years 1991 and 1993. Figure 7 compares the number of innovative technologies selected with the number of sites. This graph illustrates that some sites are using more than one innovative technology, often together in "treatment trains." The figure also technologies than established technologies have been selected in

SUPERFUND REMEDIAL ACTIONS: NUMBER OF INNOVATIVE TREATMENT TECHNOLOGIES FIGURE 7

Data derived from 1982 – 1993 Records of Decision (ROD) and anticipated design and construction activities as of June 1994. Number of RODs in a fiscal year usually equals the number of sites.

SUPERFUND REMEDIAL ACTIONS: INNOVATIVE TREATMENT TECHNOLOGIES BY YEAR FIGURE 8

Flaced Year

Technology	1964	1985	1966	1967	1968	1989	1990	1991	1992	1983	TOTAL
Soil Vapor Extraction	0	2	2	-	8	19	18	æ	œ	19	121
Bioremediation (Ex Situ) Thermal Desoration	- 0	۰ -		۰ ۳	4 4	8 2	,	* 2	o 1	1 0	8 4
Bioremediation (in Situ) Soil Washing		. <u></u> .		, et c	2 1	e	. e. c	• -	9 2		8 5
th Situ Flushing		, – c			N C		, , ,	• •	•	. 2	. 8 . 7.
Dechiorhation Solvent Extraction		> = c	, a c	9 0		- G 6	, , ,	. 2 -	, 0 0	0	. o 4
Chemical Treatment Virilization	• •				00	0 -		0 -			- 2
TOTAL	-	۰	S	•	8	42	9	2	8	8	280

NOTE: Data derived from Fiscal Year 1982 - 1993 Records of Decision (RODs) and anticipated design and construction activities as of June 1994

SUPERFUND REMEDIAL ACTIONS: TRENDS IN THE SELECTION OF FOUR INNOVATIVE TREATMENT TECHNOLOGIES FIGURE 9

Also includes in situ groundwater treatment.

NOTE: Data derived from Fiscal Year 1982 - 1993 Records of Decision (RODs) and anticipated design and construction activities as of June 1994

Status of Innovative Technology Implementation

Many of the innovative technologies documented in this report have been selected in the last several years. The design of such projects typically takes one to three years; therefore, relatively few innovative technologies have been contracted for and installed, and even fewer have been completed (Figure 10). In the next several years, though, many projects now in design should become operational. The summary matrix presents remedial action sites using innovative treatment technologies by status and specific technology. Table E-1 in Appendix E presents detailed information on remedial projects that have been completed.

FIGURE 10 SUPERFUND REMEDIAL ACTIONS: PROJECT STATUS OF INNOVATIVE TREATMENT TECHNOLOGIES AS OF SEPTEMBER 1994

Technology	Predesign/ In Design	Design Complete/ Being Installed/ Operational	Project Completed	Total
Soil Vapor Extraction	69	42	10	121
Thermal Desorption	26	7	60	41
Ex Situ Bioremediation	24	12	8	38
In Situ Bioremediation	14	14	7	30
Soil Washing	11	က	-	15
In Situ Flushing	14	က	-	18
Dechlorination	ო		-	2
Solvent Extraction	ო	-	0	4
In Situ Vitrification	-	-	0	8
Chemical Treatment	-	0	0	-
Other Innovative Treatment	ent 12	က	0	15
Total	178 (61%)	87 (30%)	25 (9%)	230

Note: Data are derived from 1982 – 1993 Records of Decision (RODs) and anticipated design and construction activities as of June 1994.

Contaminants Addressed by Innovative Treatment Technologies

The data collected for this report form the basis for an analysis of the classes of contaminants treated by each technology type at remedial action sites. Figure 1-11 provides this information, by technology, for three major contaminant groups: volatile organic compounds (VOC), semivolatile organic compounds (SVOC), and metals. For this report, compounds are categorized as VOCs or SVOCs, according to the lists provided in EPA's SW-846 Test Methods 8240 and 8270, respectively.

FIGURE 11 SUPERFUND REMEDIAL ACTIONS: APPLICATION OF INNOVATIVE TREATMENT TECHNOLOGIES

Quantity of Soil Addressed

EPA analyzed the quantity of soil treated at 209 sites using innovative treatment technologies, and for which quantity data were available (Figure 12). This analysis provides an indication of the scale of the projects involved.

Treatment Trains

Innovative treatment technologies in this report may be used with established or other innovative treatment technologies in treatment trains. Technologies may be combined to reduce the volume of material

requiring further treatment, to prevent the emission of volatile contaminants during excavation and mixing, or to address multiple contaminants in a single medium. Appendix E presents the data on treatment trains contained within this report. Tables E-4 and E-5 lists the sites at which treatment trains are being used.

SUPERFUND REMEDIAL ACTIONS: QUANTITIES OF SOIL TO BE TREATED BY INNOVATIVE TECHNOLOGIES FIGURE 12

	Number Of Sites With Data	Quantit	Quantity (Cubic Yards)	
Technology	(Total Number Of Sites)	Range	Average	Total
In Situ Flushing	11 (18)	5,200 - 650,000	000'06	990,100
Soil vapor extraction	86 (121)	60 - 2,000,000	85,000	7,346,745
Bioremediation (in situ)	12 (30)	5,000 - 250,000	54,000	653,450
Soil washing	15 (15)	1,800 - 200,000	35,100	526,500
Sovent extraction	4 (4)	9,000 - 85,000	42,000	167,500
Bioremediation (ex situ)	32 (38)	1,000 - 208,000	42,000	1,304,195
Thermal desorption	38 (41)	1,800 - 130,000	21,000	808,200
Dechlorination	3(5)	700 - 48,000	22,000	66,500
Vitrification	2 (2)	1,500 - 5,000	3,250	6,500
Chemical treatment	1(1)	3,000	3,000	3,000
Other	5 (15)	1,000 - 45,000	200	87,259
TOTAL	209 (290)	1	ı	11,960,049

SECTION 2: SUPERFUND REMOVAL ACTIONS

Superfund removal actions are conducted in response to an immediate threat caused by a release of hazardous substances. Removal action decisions are documented in an action memorandum. To date, innovative times in 26 removal actions (Figure 13). In addition, infrared incineration, rreatment technologies have been used in relatively few removal actions. The innovative technologies addressed in this report have been used 31 no longer considered innovative, was first used at two removal actions.

requiring quick action to alleviate the hazard. Often, such activities do Many removals involve small quantities of waste or immediate threats does not prescribe the same preference for innovative treatment for not lend themselves to on-site treatment approaches. In addition, SARA removals that it does for remedial actions.

EPA directive described in the foreword concerns removal actions. It is EPA would like to increase the use of innovative treatment methods to address removal problems. One of the seven initiatives set forth in the expected that innovative treatment technologies will be used more often

in the future, for larger, and less time-critical removal actions.

presents summaries by EPA Region and status for all applications of tion of an innovative technology at a removal site. The summary matrix Table B-1 in Appendix B provides detailed information for each applicainnovative technologies at removal sites.

Frequency of Technology Selection

actions. Figure 13 illustrates that chemical treatment was selected most Figure 13 lists each type of innovative treatment technology and indicates how often that technology has been selected as a remedy for removal often and represented 23 percent of all applications of innovative treatment technologies at removal sites. Bioremediation (ex situ) was chosen six times and represented 19 percent of all applications of innovative reatment technologies at removal sites.

Note: Data from a survey of EPA Regional Removal Branch chiefs and On-Scene Coordinators.

Status of Innovative Technology Implementation

Figure 14 indicates the status of innovative treatment technologies that are being applied at removal action sites. Since removals are responses to an immediate threat and often involve smaller quantities of hazardous wastes than remedials, the implementation of the technology may progress faster at a removal site than at a remedial site. The figure indicates that a large percentage, 58 percent, of removal

projects involving innovative treatment technologies have been completed. The Summary Matrix provides information on removal action sites using innovative treatment technologies by status and specific technology. Table E-2 in Appendix E provides detailed information on removal projects that have been completed.

PROJECT STATUS OF INNOVATIVE TREATMENT TECHNOLOGIES AS OF SEPTEMBER 1994* SUPERFUND REMOVAL ACTIONS: FIGURE 14

Technology	Predesign/ In Design	Design Complete/ Being Installed/Operational	Project Completed	Total
Soil Vapor Extraction	0	-	က	4
Thermal Desorption	0	-	—	8
Ex Situ Bioremediation	-	2	က	9
In Situ Bioremediation #	0	-	ო	4
Soil Washing	0		-	8
In Situ Flushing	0	0	0	0
Dechlorination	0	0	8	Q 1
Solvent Extraction	0	0	Ŋ	2
In Situ Vitrification	0		0	
Other Innovative Treatment	0	-	0	₩,
Chemical Treatment	0	-	9	7
TOTAL	1 (3%)	9 (29%)	21 (68%)	31

Data derived from a survey of EPA Superfund Removal Branch Chiefs and On-Scene Coordinators for each Region.

[#] Includes one in situ groundwater treatment.

Contaminants Addressed by Innovative Treatment Technologies

Figure 15 provides information, by technology, for three major contaminant groups treated at removal action sites: volatile organic compounds (VOC), semivolatile organic compounds (SVOC), and metals. For this report, compounds are categorized as VOCs or SVOCs, using the lists provided in EPA's SW-846 Test Methods 8240 and 8270, respectively.

Treatment Trains

Innovative treatment technologies in this report may be used together with established or other innovative treatment technologies in treatment trains. Technologies may be combined to reduce the volume of material requiring further treatment, to prevent the emission of volatile contaminants during excavation and mixing, or to address multiple contaminants in a single medium. Table E-5 in Appendix E lists the sites at which such treatment trains are being used.

SECTION 3: ACTIONS UNDER OTHER FEDERAL PROGRAMS

This chapter contains available information on projects conducted under other federal programs that are not part of the Superfund program (non-Superfund sites). Many of these projects take place at DoD and DOE facilities. Many of the DoD projects are funded by the Defense Environmental Restoration Program (DERP), which includes the installation restoration program (IRP) and the formerly used defense sites (FUDS) program in DoD. These sites were identified through various sources of information, including discussions with DoD and DOE personnel. However, this list of sites should not be considered comprehensive.

This chapter contains information on the application of innovative technologies at 28 non-Superfund sites. Figure 16 lists each type of innovative treatment technology and the number of times it has been selected as a remedy at a non-Superfund site. Figure 17 indicates the status of innovative technologies being applied at non-Superfund sites. The Summary Matrix provides information on each application by status and EPA Region. Table C-1 in Appendix C provides detailed information on each application. Table E-3 in Appendix E lists details on completed applications.

- Data are derived from a survey of U.S. Army Corps of Engineers sites and projects listed in the Synopses of Federal Demonstrations of Innovative Site Remediation Technologies, Second Edition EPA/542B-92/003. More than one technology per site may be used. Note:
-) Number of times this technology was selected or used.
- "Other" innovative technologies are air sparging and contained recovery of oily wastes.
- Inclusion in situ groundwater treatment remedies.

SAMPLE OF PROJECTS UNDER OTHER FEDERAL PROGRAMS: STATUS OF INNOVATIVE TREATMENT TECHNOLOGIES AS OF SEPTEMBER 1994* FIGURE 17

Technology	Predesign/ In Design	Design Complete/ Being Installed/Operational	Project Completed	Total
Soil Vapor Extraction	2	5	-	=
Thermal Desorption	0	0	0	0
Ex Situ Bioremediation	0	2	က	2
In Situ Bioremediation#	0	9	2	∞
Soil Washing	0	-	-	2
In Situ Flushing	0	0	0	0
Dechlorination	0	-	0	₩
Solvent Extraction	0	0	0	0
In Situ Vitrification	0	0	0	0
Other Innovative Treatment	0	· •	0	
Chemical Treatment	0	0	0	0
TOTAL	5 (18%)	16 (57%)	7 (25%)	28

Also includes in situ groundwater treatment. Data derived from a survey of EPA Superfund Removal Branch Chiefs and On-Scene Coordinators for each Region.

12

		Olini.																							
		ONITION SALVE	ALILIS.	6														T	e •						•
Type	•	•	~<.	▼ 1					•		•						•				•				
Technology Type	<i>\</i>	By.	71/2							•						•									
Tech		Strike Strike	TE 7 17																						
		Surger	TOUS		•	•	•					•	•		•		_	•	•	•		•	•	•	
	\ \			\				_	_			_				_		.							
	Cays	HOREUS AS AS HOREUS	O/I/O	>								_												\dashv	
	(1)											_					\dashv	_							
		S FOREST	O O O O O O O O O O O O O O O O O O O	27.50				•																	
			No.											•		_									
				Action	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial
	\			Status	D	PD	I	0	0	D	၁	0	0	I	D	Q	၁	0	1	D	၁	PD	PD	PD	ω
	Region 1			Site Name, State	Kellogg-Deering Well Field, CT	Linemaster Switch Corporation, CT	Silresim, MA	Iron Horse Park, MA	Re-Solve, MA	Norwood PCBs, MA	Cannon Engineering/Bridgewater, MA	Groveland Wells, MA	Wells G&H OU 1, MA	Hocomonco Pond, ESD, MA	Union Chemical Co., OU 1, ME	O'Connor, ME	McKin, ME	Mottolo Pig Farm, NH	South Municipal Water Supply Well, NH	Tinkham Garage (OU 1), NH	Ottati & Goss, NH	Tibbetts Road, NH	Stamina Mills, RI	Picillo Farm Site, RI	Peterson/Puritan Inc. (OU 1), RI
				Region	1	-	-	1	1	1	1	-	-	1	1	-	1	1	1	1	_	1	1	1	_

Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; d = Fuming gasification e = insitu oxidation

Technology Type			Action Remedial Removal Remedial	Remedial
-----------------	--	--	--	--

Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Fuming gasification

																						\		
		HORAGE	Sections of																					
Type	ı 1		1 '%						•	•	•			•	•						•			
Technology Type		/ Est	1 7 A	2																				
Te		THE	ELL S	105	•							•	•						•				•	•
	•	\ 0																						
	(A)							•											•					_
		18 th	ONE IDANIA ONE IDANIA				_																	
			OREDONE	O.A.													•	•		•				
				Ž												•								
				Action	Remedial	Removai	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Removal	Remedial	Remedial	Remedial	Remedial
		١.		Status	Q	၁	၁	GA	0	D	Q	၁	D	D	PD	I	Q	D	D	D	D	D	၁	I
	Region 2			on Site Name, State	Genzale Plating Company, OU 1, NY	Signo Trading/Mt. Vernon, NY	Wide Beach Development, NY	Byron Barrel & Drum, NY	American Thermostat, NY	Fulton Terminals, Soil Treatment, NY	Samey Farm, NY	SMS Instruments (Deer Park), NY	Vestal Water Supply 1-1, NY	Claremont Polychemical - Soil Remedy, NY	Solvent Savers, NY	Applied Environmental Services (Groundwater), NY	General Motors/Central Foundry Div., OU 2, NY	General Motors/Central Foundry Div., OU 1, NY	Pasley Solvents and Chemicals, Inc., NY	GCL Tie and Treating, NY	Reynolds Metals Co. Study Area Site, (RMC), NY	GE Wiring Devices, PR	Upjohn Manufacturing Co., PR	Janssen Inc., PR
			V	Region	2	2	2	2	2	7	7	2	2	2	7	2	2	2	2	2	2	2	2	2

Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Furning gasification

100																					
Political later of the state of	SIRC	Υ-	Г	Π	Π		Π	Π	°	19.	Π	p'q	В								
ogy Type foliate folia	CORT.	-	_	\vdash				-			_		-	•		•				•	_
echnology Ty	ON OS	╀	_	-			_		\vdash	<u> </u>							<u> </u>				_
Technology Type	1105	_		<u> </u>	_					\vdash	_	_		-						H	
1 / 34	1103	-	•	_		•	•	•			•		•	-	•			•	•		-
Sept.	SH												_								-
								<u> </u>						_							
800000		\vdash														•					
City to to the light																	•				
N State	Day.			•																	•
	14	•																			
	Action	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Removal	Remedial	Other	Remedial	Remedial
	Status	PD	Q	D	0	O.	DΛ	0	I	O.	0	PD	D	PD	PD	D	၁	၁	1	D	D
Region 3	Site Name, State	Delaware Sand and Gravel, DE	Cryochem, OU 3, PA	Whitmoyer Laboratories, OU 3, PA	U.S.A. Letterkenny SE Area, OU1, PA	Bendix, PA	Lord-Shope Landfill, PA	Tyson's Dump, PA	Brodhead Creek, OU 1, PA	Tonolli Corporation, PA	Raymark, PA	Brown's Battery Breaking Site, OU 2, PA	Saegertown Industrial Area Site, PA	William Dick Lagoons, OU 3, PA	Arrowhead Associates/Scovill, OU 1, VA	Saunders Supply Co, OU 1, VA	Avtex Fibers, VA	Defense General Supply Center, OU 5, VA	Langley AFB, IRP Site 28, VA	Rentokil, VA	Ordnance Works Disposal Areas, WV
	Region	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	6	3	3	3

Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Fuming gasification

	LE SA TE	Sa 19	200																						_
	45,173	C Petities																							
	,	C		•									•								•				Н
	1 30	7						•	•								•					•			
		TOP OF	ios I							•		•		•				•		•					
	1 4	/ %																							
				•	•						•									•					
	1 7 3. 7	Y Y Y	•					:								•									Ц
	18 th	The Thomas	OIA																						
		Sep.	OIA			•	•	•	•						•		•					•	•		Н
								•)		_												Н
			Action	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Removal	Removal	Remedia	Remedia	Removal	Remedia	Remedia	Remedia	Remedia	Remedia	Remedia	Remedia	Remedial
			Status	PD	PD	၁	0	D	Q	၁	PD	PD	၁	၁	D	0	၁	D	PD	D	D	DΛ	Q	Q	D
Danion 1	+ wegion +		Region Site Name, State	Ciba-Geigy (MacIntosh Plant) OU 2, AL	Ciba-Geigy (MacIntosh Plant) OU 4, AL	Brown Wood Preserving, FL	Dubose Oil Products, FL	Cabot Carbon/Koppers, FL	Whitehouse Waste Oil Pits (amended ROD), FL	Hollingsworth Solderless, FL	Peak Oil/Bay Drums OU 1, FL	Robins AFB, Landfill / Sludge Lagoon, OU 1, GA	General Refining, GA	Basket Creek Surface Impoundment, GA	Mathis Brothers - S. Marble Top Road Landfill, GA	Smith's Farm Brooks, OU 1, KY	Southeastern Wood Preserving, MS	Charles Macon Lagoon, Lagoon #7, OU 1, NC	Aberdeen Pesticide Dumps, (OU 1 & OU 4), NC	JADCO-Hughes, NC	Carolina Transformer, NC	Cape Fear Wood Preserving, NC	Benfield Industries, NC	Potter's Septic Tank Service Pits, NC	JFD Electronics/Channel Master, NC
		TOTO TOTO TOTO TOTO TOTO TOTO TOTO TOT	A SOLUTION STATE OF THE STATE O	Site Name, State State States States	Site Name, State Status Site Name, State Status PD Remedial	Site Name, State Site Name, S	Site Name, State Site Name, State Site Name, State Ciba-Geigy (MacIntosh Plant) OU 2, AL Brown Wood Preserving, FL Ciba-Geigy (MacIntosh Plant) OU 4, AL Ciba-Geigy (Mac	Site Name, State Site Name, State Site Name, State Status Site Name, State Status Action Action Action Status Action Action Status Action Action	Site Name, State Status Site Name, State Status Site Name, State Status Action Remedial Brown Wood Preserving, FL Cabot Carbon/Koppers, FL	Status Action C. Remedial O. R	1	1.4	Status	Region 4 Site Name, State Status Action Action	Status	Stafus	Status	Status	Status	Status	Status	Status	Status	Site Nume, State Site Nume, S	Status

Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Furning gasification

						l								
									Ţ	Technology Type	y Type			
	Region 4					Q	(1)	•			•			
		1			S ROTE		No to Holls		A STATE		•	HORATIOS C. HORIZENIA	Iond:	
					Double to		No Books	196	7/10	7/2	-02	RIDIO		
Kegion	Site Name, State	Status	Action	2	2			\		\				
4	FCX-Washington Site, NC	I	Removal								•			
4	USMC Camp Lejeune Military Base, OU 2, NC	D	Remedial						•					
4	Hinson Chemical, SC	၁	Removal						•					
4	SCRDI Bluff Road, SC	D	Remedial						•					
4	Medley Farm, OU 1, SC	DΛΙ	Remedial						•					
4	Wamchem, SC	၁	Remedial								•			
4	Sangamo/Twelve-Mile/Hartwell PCB, OU 1, SC	Q	Remedial								•			
4	Savannah River DOE, M Area Settling Basin, SC	0	Other	•					•			в •		
4	CSX McCormick Derailment Site, SC	၁	Removal	•					•					\
4	Rochester Property, SC	Οd	Remedial									в •		
4	Helena Chemical, SC	Q	Remedial		•	•								
4	Para-Chem Southern, Inc., SC	GA	Remedial		•									
4	Arlington Blending & Packaging Co., OU 1, TN	Q	Remedial								•		\	
4	Carrier Air Conditioning, TN	IΛα	Remedial						•				\	

Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Fuming gasification

			Hona	ioso	١																						
	уре		10,	Cook I Cook I Suns	E LIVE			•	•									•		•		•	_		_		•
	Technology Type		\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		T/																						
	Tech		135	32.10	7/	3																					
			1	HISTOR	N. S.	4			•	•	•	•	•	•	•		•	•					•	•	•	•	
	:													_							•	_					
ļ		(a)	4.5		~ ·	•																					
			8 99	tonen.	Patrick St.	No.	•												•								
					YO!	No.						•				•											
						Action	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Removal	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial
			`			Status	D	င	D	D	D	၁	D	PD	DΛ	0	PD	PD	0	PD	၁	D	PD	D	D	0	၁
		Region 5				Site Name, State	Galesburg/Koppers, IL	Outboard Marine/Waukegan Harbor, OU 3, IL	Acme Solvent Reclaiming, Inc. OU 3 & OU 6, IL	Enviro. Cons. and Chem. (ROD Amend), IN	Main Street Well Field, IN	Seymour Recycling, IN	Fisher Calo Chem, IN	MIDCO I, IN	Wayne Waste Reclamation, IN	Seymour Recycling (Ground water), IN	MIDCO II, IN	American Chemical Services, IN	Indiana Wood Treating, IN	Reilly Tar and Chemical, IN	Ninth Avenue Dump, IN	Carter Industries, MI	Sturgis Municipal Well Field, MI	Chem Central, MI	ThermoChem, Inc. OU 1, MI	Verona Well Field, OU 2, MI	Anderson Development (ROD Amendment), MI
						Region	2	5	5	2	5	5	5	2	2	2	5	5	3	5	\$	2	5	2	2	5	5

Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Fuming gasification

X																					\	\				
			HORAGE ST.	0																		•			\	\
			HORIZE!	Billie	o v																			•		
	y Type			-04	•													•	•						_	
	Technology Type	,	1 28 1	A	/3				_				_									_			_	
	Τœ		THE SELLY	7/	ig/						_	_		•				_				•	_	_		_
			Stiffson	7 Dig	P. A.			_		•	•	•		_	•	•	•		L	_			•			•
				10/5		_		•	•								_			_	_					_
		(A)						L		_	L	_	•		_					_		_				
		(a	10 10 16 18 19 19 19 19 19 19 19 19 19 19 19 19 19	TUS	8		•	_	_				_			_				_	-	_	-			
			S to logg	Sept.	O _I	•							_							•	•		-	•		_
				No.	O.A.																			•		
					Action	Remedial	Removal	Remedial	Removal	Remedial	Remedial	Remedial	Remedial	Other	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial
			,		Status	Q	၁	D	၁	D	Q	၁	D	၁	PD	PD	D	PD	D	0	0	0	DΛ	D	PD	Δ
		Region 5			Site Name, State	Cliffs/Dow Dump, MI	PBM Enterprises (Van Dusen Airport Service), MI	Ionia City Landfill, MI	Parsons Chemical (ETM Enterprise), MI	Kysor of Cadillac Industrial, MI	Springfield Township Dump, MI	Verona Well Field (T. Solv/Raymond Rd), MI	Rasmussen Dump, MI	Saginaw Bay Confined Disposal Facility, MI	Electro-Voice, OU 1, MI	Clare Water Supply, MI	Peerless Plating, MI	Duell-Gardner Landfill, MI	Ott/Story/Cordova Chemical, MI	Burlington Northern RR Tie Treating Plant, MN	Joslyn Manufacturing and Supply Co., MN	Twin Cities Army Ammunition Plant, MN	Long Prairie Groundwater Contamination, MN	Allied Chem & Ironton Coke, OU 2, OH	Zanesville Well Field, OH	Zanesville Well Field, OH
					Region	2	5	જ	8	2	2	\$	2	2	8	2	~	S	S	~	2	2	~	\$	~	2

Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Fuming gasification

Site Status and Technology Summary Matrix

	10		8												
Fechnology Type		- 'A			•										
Techno		State of the state		•		•	•	•	•		•		•		•
	1	tone st	4												
	COLOR														
			O A									•		•	
			Action	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial
			Status	1	C	D	PD	DΛ	0	PD	PD	D	0	0	PD
	Region 5		Site Name, State	Pristine (ROD Ammendment), OH	Pristine (ROD Ammendment), OH	Miami County Incinerator, OH	Skinner Landfill, (002), OH	Muskago Sanitary Landfill, WI	Wausau Groundwater Contamination	Moss American, WI	Moss American, WI	Hagen Farm Site, Ground water, WI	Hagen Farm Source Control OU, WI	Onalaska Municipal Landfill, WI	City Disposal Corporation Landfill, WI
			Region	5	5	\$	2	2	5	5	5	5	5	5	2

Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Fuming gasification

		iondo sali	·sg.																					
		tonoen.	PARTE					L			8					B								_
y Type			'C. \																	_	_	L	_	_
Fechnology		(1832)	7/2	VI.	_		_		-	_				•		_					_	• -	_	_
Te		TROUGH !	\$7.17gs	Ļ	+	_	_		-	_	<u> </u>	_	L	_						-	•	H		_
		THE STATE OF THE S	OS E	+		-	_	\vdash	-	\vdash	•		•		_		_	_	_			_		
					-	 		-	_				\vdash					_		•	•			
	(4)				_	-								<u> </u>										
	(a)	S topicy s dy topicy	BURRE												<u> </u>									
			Strate.		•	•	•	•			•				•		•	•						•
						•			•	•					•				•		L		•	
			Action	Remedial	Removal	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Other	Other	Removal	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Other	Other
		,	Status	Ω	_	E	0	€ E	М	0	£	Ω	۵	၁	Q	GA	a	αd	ວ	Ωď	Q	DЛ	0	၁
	Region 6		Site Name. State	Arkwood, AF	MacMillan Ring Free Oil Company, AR	Popile, AR	Old Inger Oil Refinery, LA	Pab Oil & Chemical Services, LA	American Creosote Works, Inc. (Winnfield), LA	Atchison/Santa Fe/Clovis, NM	Prewitt Abandoned Refinery, NM	Holloman AFB, Main POL Area, NM	Holloman AFB, BX Service Station, NM	Traband Warehouse, OK	Oklahoma Refining Co., OK	Petro-Chemical Systems, Inc., OU 2, TX	North Cavalcade Street, TX	Sheridan Disposal Services, TX	French Limited, TX	South Cavalcade Street, TX	Koppers/Texarkana, TX	United Creosoting, TX	Kelly AFB, Site 1100, TX	Matagorda Island AF Range, TX
			Region	1		П								9										

Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Fuming gasification

		2746.00 - 234																_
2				1				$\frac{1}{1}$		_	1	1	1	$\frac{1}{1}$	$\frac{1}{1}$	+		
Technology Type		1 -65 '	\	+	+	1					1	+		1		1	1	
Techno		PORTO TORS IN																
		OTHER ST.	*/			•	•	•	_				•	•	•	•	•	4
		to to January		_			_	-	•	\dashv	1	•			_	1	-	\dashv
Ļ	(A)										•							
		TOP TO TOP TOP TOP TOP TOP TOP TOP TOP T	214							•								
			10	•	•				•									
	N		Action	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Removal	Removal	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial
	_		Status	0	DΛ	PD	PD	PD	PD	၁	၁	0	D	D	၁	D	0	PD
	Region 7		Site Name, State	Vogel Paint & Wax, IA	People's Natural Gas, IA	Chemplex (OU 2), IA	McGraw Edison, IA	Coleman Operable Unit 29th and Mead, KS	Pester Refinery Co., KS	Scott Lumber, MO	Crown Plating, MO	Lee Chemical, MO	Hastings GW Contamination (Colorado Ave), NE	Hastings GW Contamination (Far-Mar Co.), NE	Hastings GW Contamination, Well No. 3, NE	Lindsay Manufacturing, NE	Waverly Groundwater Contamination, NE	Sherwood Medical, NE
			Region	1	7	7	7	7	7	7	7	7	7	7	7	7	1	7

Status: PD = Predesign; D = Design; DI = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Furning gasification

		HORR	Sent Peter		Τ	Π																• a
gy Type	•		V 45		•			•														
Technology Type		∕ 🕉	2 7				_															
		18	Tode of the state	ios is is		•	•	•	•	•	•										•	•
				13	_															•		
	(3)	To to	BALL ROST	Set.	_					_	_			_	_	•			_			
	(a	15 15	Pari Peliti		_												•				<u> </u>	
			Ne pour	LOIG .								•	•	•	•	•		•		•		
					_				_	•		•	•	•	_	•		•	•			
				Action	Remedial	Remedial	Remedial	Remedial	Remedial	Other	Remedial	Remedial	Remedial	Remedial	Other	Remedial	Removal	Remedial	Remedial	Remedial	Remedial	Removal
		١		Status	0	0	Ω	Ω	၁	0	0	0	0	0	I	a	0	PD	PD	၁	PD	0
	/ Region 8			on Site Name, State	Sand Creek Industrial, OU 5, CO	Sand Creek Industrial OU 1, CO	Chemical Sales Company, OU 1, CO	Martin Marietta (Denver Aerospace), CO	Rocky Mtn Arsenal OU 18, interim resp., CO	Ft. Carson, CO	Rocky Flats OU 2, Interim Remedial Action, CO	Broderick Wood Products OU 2, CO	Burlington Northern (Somers Plant), MT	Libby Ground Water Contamination, MT	Former Glasgow AFB, MT	Idaho Pole Company, MT	Mouat Industries, MT	Montana Pole and Treating Plant, MT	Montana Pole/Treating (Ground water), MT	Wasatch Chemical, UT	Utah Power and Light/American Barrel, UT	Mystery Bridge Road/Highway 20, OU 2, WY
			V	Region	8	8	8	8	8	8	8	8	8	∞	8	8	∞	∞	∞	∞	8	∞

Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Removal + Superfund Removal + Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Fuming gasification

		Addes & C.	Since																	\ 		\ 	\ 	\ 		>
Technology Type	10	Joe D. T.	Set II	2																•						
	Cans	Striken!	ONS TABLES OF BOTH OF			•			•	•	•	•	•	•	•	•	•	•				•	•	•	•	
	(d)	to to to the land	Dollaro Dollaro		•		•	•				•	•			•			•	•	•					
	_			s Action	Other	Remedial	Removal	Removal	Remedial	Remedial	Other	Other	Other	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	I Remedial	Removal		Remedial	T Remedial		Remedial
	Region 9			Site Name, State	Aua Fuel Farm, Aua Village, American Samoa, O	Indian Bend Wash, South Area, OU 1, AZ	Gila River Indian Reservation, AZ	Stanford Pesticide #1, AZ	Motorola 52nd Street, AZ	Phoenix-Goodyear Airport Area (N. & S. Fac), AZ O	Luke AFB, AZ	Davis Monthan AFB, Site 35, AZ	Davis Monthan AFB, AZ	Hassayampa Landfill, AZ	Indian Bend Wash, AZ	Williams AFB, (OU2), AZ 0	National Semiconductor (Monolith Memories), CA 0	Spectra Physics, OU 1, CA O	J.H. Baxter, CA	Koppers Company, Inc. (Oroville Plant), CA D/I	Roseville Drums, CA	Solvent Service, CA 0	Fairchild Semiconductor (San Jose), CA	Fairchild Semiconductor/MTV-I, CA D/I	Fairchild Semiconductor/MTV-II, CA D/I	IBM (San Jose), CA
		V		Region	٦	6	٥	٦	٥	۵	6	6	٥	م	٥	6	٥	6	6	6	٥	م	6	م	0	٥

Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Furning gasification

																								•	
		TOROTOR A	SAR	_	Т	Т	Т	Т	T	Т	Т	Т	Т	Т	Т	T	T	ı	Т	T		В	T		
١		HORDERY STRING	THOU!	\downarrow	+	╀	╀	+	+	-	ig	\downarrow	-	\downarrow	╁	-	-	-	╀	╀	╀	•	-	\vdash	\mathbb{H}
Technology Tyne	ור ור		'		+	+	1	+	+	╀	+	+	+	+	╁	╀	╁	╁	╀	+	-	-	╀	╀	\mathbb{H}
Grhno		TON PARTY OF THE PROPERTY OF T	W Tigs	+	+	-		+	╁	1	+	$\frac{1}{1}$	╁	+	+	+	_	-	<u> </u>	-	-	\perp	-	1	
		HORE STIRIL	7 Mgs	1.			•	•		•	•	+	•		+		\vdash	•	•		-	•		╁	H
		Strigging to Marin	W. S. I.	+	1					-	-	+	\dagger	+	+-			-		-	\vdash	+		\vdash	Н
		HODRALL R	34			\downarrow	\vdash	t	L					\dagger	L						-	T			H
	1	13.	A .						T														-	•	
		TOP BOTH TO	Halos		T																				П
		1 200	Hoot									•			•		•								•
													•									•			
			Action	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Other	Other	Other	Other	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Other	Removal
			Status	Ω	0	Ω	-	0	0	Ω	ပ	ပ	۵	0	ပ	PD	Q	0	Δ	0	PD	8	၁	0	၁
	Region 9		on Site Name, State	Intel, Mountain View, CA	Intersil/Siemens, CA	Raytheon, Mountain View, CA	Watkins-Johnson, CA	Monolithic Memories/AMD - Arques, SU 2, CA	ᅱ	Pacific Coast Pipeline, CA	Sacramento Army Depot, Tank 2 OU, CA	USMC, Mtn. Warfare Center, Bridgeport, CA		McClellan AFB OUD, CA	Ft. Ord Marina, Fritzche AAF Fire Drill Area, CA	Purity Oil Sales OU 2, CA	Jasco Chemical Co., CA	Signetics (AMD 901) (TRW), Signetics OU, CA	Lawrence Livermore National Laboratory, CA	Sacramento Army Depot (Burn Pits OU), CA	Lorentz Barrel and Drum (OU 1), CA	Нехсеј, СА	Intersil, CA	\dashv	Poly-Carb, NV
			Region	6	٥	^	٩	٥	٥	٩	^	6	6	٥	^	<u>^</u>	^	^	٥	^	٥	٥	٥	<u>^</u>	

Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Fuming gasification

															\	\		
ype		RIGIS RIGIS													Ф я	a		
Technology Type	<i>\</i>	CIPE TO TO	tios los					•			•							
		SUPPLIE OF	Car		•	•				•				•		•		
	Cais Cais																	
		N FOLKING I	O.A.	•	•				•						•		•	•
			Action	Other	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial	Removal	Remedial	Remedial	Remedial	Remedial	Remedial	Remedial
			Status	°	0	PD	0	0	DΛΙ	0	I	C	PD	D	D	o D	I	၁
	/ Region 10		Site Name, State	Ft. Wainwright, AK	Eielson Air Force Base, AK	Union Pacific Railroad Sludge Pit, ID	United Chrome Products, OR	Gould, Inc., OR	Umatilla Army Depot Activity, Soil Op Unit, OR	Commencement Bay/S. Tacoma Well 12A, WA	Naval Submarine Base, Bangor Site A, OU 1, WA	Drexler - RAMCOR, WA	Harbor Island, WA	Fairchild AFB OU 1 Craig Rd LF., WA	Fairchild AFB, Priority 1 OU's (OU 2) FT-1, WA	Fort Lewis Mil Res. Lf 4 & Sol. Refined Coal, WA	Bonneville Power Administration, OU A, WA	Naval Communication Station, Scottland
	•		Region					Ĺ					لنا					

Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Fuming gasification

^{*} Naval Communication Station is located in Scottland, not in Region 10.

Appendix A Innovative Technologies at Superfund Remedial Actions

TABLE A-1

REMEDIAL ACTIONS: SITE-SPECIFIC INFORMATION BY INNOVATIVE TREATMENT TECHNOLOGY

Table A-1 is the principal part of this chapter. It contains the most detailed, site-specific information for remedial sites for which an innovative treatment has been selected. The columns of Table A-1 present the following information:

Region

This column indicates the EPA Region in which the site is located.

Site Name, State, ROD Date

This column identifies the site and the operable unit for which an innovative treatment technology was selected.

A Record of Decision (ROD) documents the selection of remedy in the remedial program. The date shown in this column is the date on which a ROD was signed by an EPA official.

An asterisk (*) in this column indicates that a treatability study has been completed for this technology at the particular site.

Specific Technology

The second column describes the specific technology selected within a general category of innovative treatment. For example, within the general category of bioremediation, the specific technologies of land treatment or slurry-phase bioremediation may be chosen.

Site Description

This column provides information on the industrial source of the contamination at the site and allows analysis of the selection of innovative technologies by site type. For example, by using the information in this column, one may determine the most frequently selected innovative technology for wood preserving sites.

Media (quantity)

This column provides information on the media and quantity of material to be treated. If a treatment is used in situ, an effort has been made to include the maximum depth of the treatment to provide the reader with another parameter significant to the application.

TABLE A-1 (Continued)

Key Contaminants Treated

also be listed that may be treated. Other contaminants that may be present, but that are not to be addressed by the listed technology, are The major contaminants or contaminant groups targeted by the treatment technology are shown in this column. Other contaminants may not included.

Status

signed but design has not begun. During predesign, EPA may be negotiating with the potentially responsible parties, procuring the services of a design firm, or collecting information (such as conducting a treatability study) needed in the design stage. If a project is in design, the engineering documents needed to contract for and build the remedy are being prepared. If a remedy is being installed, the installed and it is now being operated as a treatment system; the remedy is completed if the goals of the ROD or decision document for This column indicates the status of the application of the innovative treatment technology. Predesign indicates that the ROD has been lead agency has signed a contract for the construction work needed to set up the remedy. The remedy is operational if it is completely that treatment technology have been met and treatment has ceased. One purpose of this column is to identify opportunities for vendors to become involved in the next phase of the project. Whenever possible, the season and year in which the current phase will end is given. The information is identified as the "completion planned" date.

Lead Agency, Treatment Contractor

act for EPA to manage the design or construction. No matter what agency or organization is responsible for managing the remedy, the contractor responsible for the actual installation and operation of the innovative technology also is identified, if the lead organization has The "lead" indicates whether federal dollars are to be used to implement the remedy (Fund lead) or the potentially responsible parties will conduct the remedy with oversight by EPA or the State (PRP lead). If a remedy is Fund lead, EPA may manage the design/construction through its contractors, the state may manage the project with Superfund dollars, or the U.S. Army Corps of Engineers (USACE) may selected a contractor.

Contacts/Phone

This final column provides the names and telephone numbers of useful contacts for the site or technology. The first name listed is usually the EPA remedial project manager (RPM) responsible for the site. If a remedy is being managed by the state, the name and phone number of the state RPM also is provided. Information on other useful contacts may also be provided.

Bioremediation (Ex situ)

Contacts/Phone	Elroy 3-5571	Lisa Carson 212-264-6857	Lisa Carson 212-264-6857
Contac	Don McElroy 617-223-5571	Lisa C 212-26	Lisa C 212-26
Lead Agency and Treatment Contractor (if available)	PRP lead/Federal oversight; ENSR Consulting	PRP Lead/Federal oversight	PRP Lead/Federal oversight
Status#	Operational; Completion planned Summer 1995	In design; Design completion planned Summer 1995; Remedy being reconsidered; thermal desorption and solvent extraction also being evaluated	In design; Design completion planned Summer 1995; Remedy being reconsidered; thermal desorption and solvent extraction also being evaluated
Key Contaminants Treated	PAHS	PCBs	PCBs
Media (Quantity)	Sludge (25,000 cy)	Soil (100,000 cy), Sludge (91,000 cy) from lagoon, Sediments (62,000 cy)	Soil (59,000 cy)
Site Description	Industrial and railyard waste	Machine shops, Engine casting facility	Aluminum casting plant
Specific Technology	Land treatment	Slurry phase	Slurry phase
Site Name, State, (ROD Date)	Iron Horse Park*, MA (09/15/88)	General Motors/Central Foundry Division, OU 1, NY (12/17/90)	General Motors/Central Foundry Division, OU 2, NY (03/31/92)
Region	- -	2	2

Remedial Actions: Site-specific Information By Technology Through FY 1993 Table A-1

Contacts/Phone	Chris Corbett 215-597-8186	Melissa Whittington 215-597-1286	Ann Marie Gallespie 404-347-6255	Patsy Goldberg 404-347-6265	Mark Fite 404-347-6263 George Linder (FL) 904-488-0190
Lead Agency and Treatment Contractor (if available)	PRP lead/Federal oversight; Environ	PRP lead/Federal oversight; ABB Environmental (Design)	PRP lead/Federal oversight; Remediation Technology, Inc.	PRP lead/Federal oversight	PRP lead/Federal oversight; Wastech
Status#	In design; Design completion planned Fall	In design; Design completion planned Summer 1998; Treatability study underway	Completed; Operational from 1/89 to 7/90	In design; Design completion planned Fall 1994	Operational; Completion planned December 1994; Operation began 11/93
Key Contaminants Treated	VOCs (TCE), SVOCs (Aniline)	PAHs (Carcinogenic PAHs)	PAHs (Creosote)	SVOCs (PCP), PAHs	VOCs (TCE, DCE, Benzenes, Xylenes), SVOCs (PCP), PAHs
Media (Quantity)	Soil and sediment combined (5,600 cy)	Soil (13,500 cy)	Soil (8,100 cy)	Soil fines from approximately 6,400 cy	Soil (30,000 cy)
Site Description	Other organic chemical manufacturing	Other organic chemical manufacturing, Other inorganic chemical manufacturing	Wood preserving, Drum storage/ disposal	Wood preserving, Pine tar and turpentine manufacturing	Petroleum refining and reuse
Specific Technology	Bioremediation (Ex Situ)	Land treatment	Land treatment	Slurry phase (preceded by soil washing)	Solid phase Windrowing with aeration and irrigation in a barn
Site Name, State, (ROD Date)	Whitmoyer Laboratories, OU 3, PA (12/31/90)	Ordnance Works Disposal Areas, WV (09/29/89)	Brown Wood Preserving*, FL (04/08/88)	Cabot Carbon/Koppers, FL (09/27/90) See also Bioremediation (In Situ), Soil Washing	Dubose Oil Products*, FL (03/29/90)
Region	M	м	7	4	7

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Site Name, State, Specific Site Description Media (Quantity) Key Contaminants (ROD Date) Technology Treated Treated Waste oil recycler Soil (quantity VOCs, PCBs, PAHs	Site Description Media (Quantity) Waste oil recycler Soil (quantity	Media (Quantity)	\$	Key Contamina Treated WOCS, PCBS, PA	nts Hs	Status# In design;	Lead Agency and Treatment Contractor (if available) Federal	Contacts/Phone
preceded by unknown) soil washing Residuals from soil washing	unknown) Residuals from Soil Washing	unknown) Residuals from soil washing				Remedy being reconsidered; further site characterizati on underway	Financed	404-347-6259
Nathis Brothers - Bioremediation Landfill operation Soil (97,700 cy) VOCs, SVOCs, South Marble Top Road (Ex Situ) Landfill, GA (03/24/93)	Landfill operation Soil (97,700 cy)	Soil (97,700 cy)		VOCs, SVOCs Biocides		In design; Operation planned to start Spring 1995	PRP Lead/Federal oversight; Engineering Science	Charles King 404-347-6262
Benfield Industries, Land treatment Bulk chemical Soil (4,300 cy) SVOCs (Creosote) NC (07/31/92) repackaging plant. washing	Bulk chemical Soil (4,300 cy) mixing and fines from soil repackaging plant. washing	Soil (4,300 cy) fines from soil washing		SVOCs (Crec	sote)	In design; Design completion planned early 1995	Federal Lead/Fund Financed	Jon Bornholm 404-347-7791
Cape Fear Wood Slurry phase; Wood preserving Soil (2,400 cy); VOCs, PAHs Preserving, NC may be followed (06/30/89) by s/s See also Soil Washing	Wood preserving Soil (2,400 cy); Also fines from soil washing	Soil (2,400 cy); Also fines from soil washing	(2,400 cy); fines from Washing	VOCs, PAHS		Design completed but not installed; will be installed no earlier than Summer 1995	Federal Lead/Fund Financed	Jon Bornholm 404-347-7791
Helena Chemical, SCBioremediationRetail salesSoil quantityVOCS (Diesel fuel), Biocides(09/08/93)(Ex Situ)outlet for unknown(DT, Aldrin, Diedrin, Diedrin, Diedrin, Chemicals	Retail sales Soil quantity outlet for unknown agricultural chemicals	Soil quantity unknown		VOCS (Diesel fuel), Bioci (DDT, Aldrir Dieldrin, Chlordane,	des	In design; Design completion planned Winter 1994	PRP lead/Federal oversight; Ensafe	Bernie Hayes 404-347-7791 Adrian Felder (SC) 803-734-5390

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

ec e			_	×
Contacts/Phone	Terry Tanner 404-347-7791 ext (4117) Mike Klender (SC) 803-734-5471	Brad Bradley 312-886-4742 Fred Nika (IL) 217-782-6760	Ken Glatz 312-886-1434	Tony Rutter 312-886-8961 Fred Jenness (MN) 612-297-8470 Richard Truax (RETEC) 303-493-3700
Lead Agency and Treatment Contractor (if available)	State lead/Fund Financed; The Fletcher Group (prime), RMT (subcontractor)	PRP lead/State oversight; Remediation Technologies, Inc.	PRP lead/Federal oversight; ENSR (Design)	PRP lead/State-Fede ral oversight; Remediation Technologies, Inc.
Status#	Predesign; Currently conducting a treatability study	In design; Design completion planned Spring 1997	In design; Design completion planned Fall 1994; Reconsidering which material	Operational; Completion planned Fall 1994
Key Contaminants Treated	VOCs (1,1,1-TCA, DCA, PCE), SVOCs	SVOCs (PCP, Phenols), PAHs (Creosote)	VOCs (TCE, BTEX), SVOCs (Phenol), PAHs (Naphthalene)	SVOCs (Phenols, Creosote), PAHs
Media (Quantity)	Sludge(200 cy)	Soil (15,200 cy)	Soil (9,500 cy)	Soil (9,500 cy), Sludge(9,500 cy)
Site Description	Manufacturing Plant - products include polymers, latex, coatings, adhesives	Wood preserving	Waste disposal for charcoal manufacturing plant	Wood preserving
Specific Technology	Slurry phase	Land treatment	Bioremediation (Ex Situ)	Land treatment
Site Name, State, (ROD Date)	Para-Chem Southern, Inc., SC (09/27/93)	Galesburg/Koppers, IL (06/30/89)	Cliffs/Dом Dump*, MI (09/27/89)	Burlington Northern Railroad Tie Treating Plant*, MN (06/04/86)
Region	4	i.	ın	ın

Table A-1
Remedial Actions: Site-specific Information By Technology Through FY 1993

Contacts/Phone	Kevin Turner 312-886-4444 Ann Bidwell (MN) 612-296-7827	Tom Alcamo 312-886-7278	Russ Hart 312-886-4844	Paul Sieminski 214-655-8503	Paul Sieminski 214-655-8503 Tom Stafford (LA) 504-765-0487
Lead Agency and Treatment Contractor (if available)	PRP lead/State oversight; BARR Engineering/GL Contracting, Inc.	PRP Lead/Federal oversight; IT Corporation (prime contractor, design)	PRP lead/Federal oversight; Weston, Inc.(prime contractor)/IT Corporation(sub	Federal lead/Fund Financed	State lead/Fund Financed; Westinghouse Haztech (installation), Operation to
Status#	Operational; Completion planned Fall 1994	In design; Design completion planned early 1995	Predesign; PD completion planned 1995; Bench-scale study is underway	Predesign; RFP for design to be issued Fall 1994	Operational; Completion planned Fall 2001
Key Contaminants Treated	SVOCS (PCP, PAHS)	PAHS	PAHS	SVOCs (PAHs, Phenols)	VOCs (Benzene, Ethylbenzene), PAHs (Petroleum hydrocarbons)
Media (Quantity)	Soil (75,000 cy)	Soil (30,000 cy)	Soil (quantity unknown); fines from soil washing	Soil and Sludge combined (156,000 cy)	Soil and Sludge combined (120,000 cy)
Site Description	Wood preserving	Coke manufacturing	Wood preserving	Inactive wood preserving operation	Petroleum refining and reuse
Specific Technology	Land treatment Unlined treatment unit With irrigation and tilling	Land treatment	Slurry phase preceded by soil washing	Land treatment	Land treatment
Site Name, State, (ROD Date)	Joslyn Manufacturing and Supply Co., MN	Allied Chem & Ironton Coke, OU 2*, OH (12/28/90) See also Bioremediation (In Situ), Other Technologies	Moss-American*, WI (09/27/90) See also Soil Washing	Popile, AR (02/01/93) See also Bioremediation (In Situ)	old Inger Oil Refinery*, LA (09/25/84)
Region	ľ	ľ.	ت	vo	9

Remedial Actions: Site-specific Information By Technology Through FY 1993 Table A-1

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if	Contacts/Phone
	Pab Oil & Chemical Services, LA (09/22/93)	Bioremediation (Ex Situ) followed by s/s for inorganics	Disposal site for oily drilling mud	Soil (10,900 cy), Sludge (15,500 cy), Sediments (520 cy)	PAHs (Carcinogenic and Non-carcinogenic)	Predesign; Design to begin October 1994; A treatability study will determine the type of	PRP ead/Federal oversight	James Van Buskirk 214-665-6767
	Prewitt Abandoned Refinery, NM (09/30/92) See also Soil vapor extraction, Other Technologies	Bioremediation (Ex Situ)	Crude oil refinery	Soil (1,500 cy), Sludge (1,200 cy)	VOCs (BTEX), PAHS	Predesign	PRP Lead/Federal oversight	Monica Chapa-Smith 214-655-6780
	Oklahoma Refining Co., OK (06/09/92) See also Bioremediation (In Situ)	Bioremediation (Ex Situ) followed by s/s	Petroleum refining and reuse	Soil and sludge combined (56,000 cy), Sediments (quantity unknown)	VOCs, Organics (LNAPLs)	In design; Phase 1 to be completed 4/95; Phase 2 to be completed completed completed 5/96	State lead/Fund Financed	Philip Allen 214-665-8516
	North Cavalcade Street*, TX (06/28/88)	Land treatment	Wood preserving	Soil (5,500 cy)	PAHs (Creosote)	In design; Design completion planned Summer 1994	State lead/Fund Financed	Glenn Celerier 214-655-8523 Stephen Chong (TX) 512-239-2441

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
٥	Sheridan Disposal Services*, TX (12/29/88)	Slurry phase	Industrial Landfill	Soil (13,000 cy) effected soils, Sludge (30,000 cy) of oils and sludge	VOCs (Benzene, Toluene), SVOCs (Phenols), PCBs	Predesign; Pilot study conducted in 1991; Awaiting entry of consent decrees by court to begin	PRP lead/State oversight	Gary Baumgarten 214-655-6749
7	Vogel Paint & Wax, IA (09/20/89)	Land treatment using four cells	Paint/ink formation	Soil (40,000 cy)	VOCs (Methyl Ethyl Ketone, BTX)	Operational; Completion planned 1997	PRP Lead/State oversight; Vogel	Jack Generaux 913-551-7690 Bob Drustrup (IA) 515-281-8900
60	Broderick Wood Products OU 2, CO (03/24/92) See also Bioremediation (In	Land treatment	Wood preserving	Soil (85,000 cy), Sediments (120 cy)	SVOCs (PCP), PAHs	Operational; Operation started August 1994; Completion planned 2001	Federal lead/Fund Financed; CH2M Hill	Armando Saenz 303-293-1532
ω	Situ) Burlington Northern (Somers Plant)*, MI (09/27/89). See also Bioremediation (In	Land treatment; using 12-acre unit	Wood preserving	Soil (54,000 cy) excavated soil	PAHs (Creosote)	Operational; Operation began 9/93; Completion planned 1999 - 2002	PRP lead/Federal oversight; Remediation Technologies, Inc.	Jim Harris 406-449-5414 (ext. 260)
ω	Situ) Idaho Pole Company*, MT (09/28/92) See also Bioremediation (In Situ), In situ	Land treatment	Wood preserving	Soil (19,000 cy), Sediments (2,683 cy)	SVOCS (PCP, PAHS)	In design; Design completion planned Fall 1994	PRP lead/Federal oversight	Jim Harris 406-449-5414 (ext. 260)

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
80	Libby Ground Water Contamination*, MT (12/30/88) See also Bioremediation (In Situ)	Land treatment using two 1-acre cells, soil is excavated & mixed	Wood preserving	Soil (45,000 cy)	VOCs (Benzene), SVOCs (PCP), PAHs (Creosote)	Operational; Completion planned 1999	PRP lead/Federal oversight; Woodward-Clyde	Jim Harris 406-449-5414 (ext. 260) Bert Bledsoe (RSKERL) 405-332-2313
εo	Montana Pole and Treating Plant, MT (09/21/93) See also Bioremediation (In Situ), In situ	Land treatment	Wood preserving	Soil (208,000 cy)	SVOCs (PCP, Dioxins, PAHs)	Predesign; In negotiation	In negotiation	Sara Weinstock 406-782-7415
60	Wasatch Chemical*, UT (03/29/91) See also In situ Vitrification	Land treatment on an asphalt pad	Pesticide manufacturing/use/ storage, Other organic chemical manufacturing, Other inorganic chemical	Soil (1,100 cy)	VOCs (Toluene, Xylene)	Completed; Operational from 10/92 to 12/93	PRP ead/Federal oversight; Harding/Lawson	Bert Garcia 303-293-1537
6	J.H. Baxter*, CA (09/27/90)	Land treatment followed by fixation for metals	Wood preserving	Soil (30,000 cy)	SVOCs (PCP, Dioxins, PAHs)	In design; Design completion planned Winter	PRP Lead/Federal oversight	Kathy Setian 415-744-2254
6	Jasco Chemical Co., CA (09/30/92)	Bioremediation (Ex Situ) may combine aerobic and anaerobic	Chemical blending and repacking	Soil (1,095 cy)	VOCs (DCA, Methylene chloride, Acetone, Xylene)	In design; Pilot-scale treatability study planned	PRP ead/Federal oversight	Rosemarie Carroway 415-744-2235

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
10	Umatilla Army Depot Activity, Soil Operable Unit*, OR (09/30/92)	Composting	Explosives washout	Soil (7,000 cy)	Explosives (TNT, RDX)	Design completed but not installed; Contract awarded; Operation scheduled for mid-Fall 1994	Army lead/EPA and State oversight; Bioremediation Services, Inc.	Harry Craig 503-326-3689 Mark Daugherty (US Army) 503-564-5294 Mike Nelson (USACE Seattle) 206-764-3458
10	Bonneville Power Administration, OU A, WA (05/06/93)	Solid phase	Research and Testing Facility	Soil (500 cy)	PAHS (PCP)	Being installed; Installation completion planned Fall 1994; Operation to be completed by Winter 1994	Federal facility/EPA and State oversight	Nancy Harney 206-553-6635

Table A-1 REMEDIAL ACTIONS: SITE-SPECIFIC INFORMATION BY TECHNOLOGY THROUGH FY 1993

Bioremediation (In situ)

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if	Contacts/Phone
1	Hocomonco Pond, ESD, MA (09/30/85)	In situ groundwater	⊌ood preserving	Groundwater	PAHs (Creosote), Organics (DNAPLs)	Being installed; Installation completion planned Fall	PRP Lead/Federal oversight	Bob Leger 617-573-5734
2	FAA Technical Center*, NJ (09/26/89) See also Soil vapor extraction	In situ groundwater Pump & treat followed by H202 addition and reinjection through infiltration galleries	Jet fuel tank farm	Groundwater	VOCs (JP-4)	Being installed	Federal Facility, FAA lead; R.E. Wright	Carla Struble 212-264-4595 Keith Buch (FAA) 609-485-6644
2	Applied Environmental Services (Groundwater), NY (06/24/91)	In situ groundwater, in conjunction W/air sparging & nutrient addition	Bulk petroleum and hazardous waste storage facility	Groundwater	VOCs (BTEX)	Being installed; Remedial action to start in Fall	PRP lead/State oversight; Remediation Technologies, Inc.	Mel Haupton 212-264-7681 John Grathwol 518-457-9280
N	Applied Environmental Services, OU 1, NY (06/24/91) See also Soil vapor extraction, Other Technologies	In situ soil; Bioventing	Bulk petroleum and hazardous waste storage facility, fuel blending	Soil (quantity unknown), Groundwater depth to gw avg. 8 feet	VOCs (BTEX), SVOCs (Naphthalene, Bis(2-ethylhexyl) phthalate)	Being installed; Operation to start September 1994	PRP lead/State oversight; Remediation Technologies, Inc. (Design)	Mel Hauptman 212-264-7681 John Grathwol (NY) 518-457-9280
м	Delaware Sand and Gravel, DE (09/30/93) See also Soil vapor extraction	In situ soil	Landfill site drum disposal area	Soil (14,050 cy)	VOCs (Benzene, TCE, PCE, Methylene	Predesign; In negotiation	PRP Lead/Federal oversight	Eric Newman 215-597-0910

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Contacts/Phone	Patsy Goldberg 404-347-6265	David Abbot 404-257-2643	Jeff Gore 312-886-6552	Jeff Gore 312-886-6552	Tom Alcamo 312-886-7278
Lead Agency and Treatment Contractor (if available)	PRP lead/Federal oversight; McLaren-Hart (Design contractor)	Federal lead/Fund Financed	PRP lead/Federal oversight; ABB Environmental Services	PRP lead/Federal oversight; Geraghty Miller	PRP lead/Federal oversight; IT Corporation (prime contractor), Black & Veetch (subcontractor)
Status#	In design; Design completion planned Fall 1994	Predesign; PD completion planned Fall 1994	Completed; Operational from 1/87 to 6/90	Operational; Gw treatment Was not designed but appears to be occuring as a result of in situ soil treatment	In design; Design completion planned Fall 1994; Operation planned to begin Spring
Key Contaminants Treated	SVOCs (PCP), PAHs	VOCs (PCE, Ethylbenzene), SVOCs (PAHS), PCBs	VOCs (TCA, Carbon Tetrachloride, TCE)	VOCs, SVOCs, PAHS	PAHS
Media (Quantity)	Soil (5,000 cy)	Soil (quantity unknown)	Soil (190,000 cy) 12 acres to a depth of 10 feet	Groundwater under 12 acres	Sediments (457,000 cy) from a lagoon
Site Description	Wood preserving, Pine tar and turpentine manufacturing	Waste oil re-refinery	Chemical waste management and incineration	Chemical waste management and incineration	Coke manufacturing
Specific Technology	In situ soil; Treating above/below gw table by nutrient addition	In situ soil	In situ soil Nutrients plowed into soil	In situ groundwater; Gw treatment incidental to soil treatment	Bioremediation (In Situ) of Lagoon sediments
Site Name, State, (ROD Date)	Cabot Carbon/Koppers, FL (09/27/90) See also Bioremediation (Ex Situ), Soil Washing	Peak Oil/Bay Drums OU 1, FL (06/21/93) See also In situ Flushing	Seymour Recycling, IN (09/30/87) See also Soil vapor extraction	Seymour Recycling (Groundwater), IN (09/30/87)	Allied Chem & Ironton Coke, OU 2*, OH (12/28/90) See also Bioremediation (Ex Situ), Other Technologies
Region	4	4	75	ın	ın

Site Name, State, Specific Site Description (ROD Date) Technology	99	Site Descri	ption	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
Hagen Farm Site, In situ Independent Control groundwater land OU, WI (09/30/92)		T I I	Industrial landfill, Municipal landfill	Groundwater	VOCs (Vinyl Chloride, MEK, Xylene)	In design; Design completion planned Spring 1995	PRP lead/Federal oversight; Warzyn (prime contractor)	Steve Padovani 312-353-6755
Onalaska Municipal In situ soil; Mun Landfill*, WI air injection (08/14/90) but no nutrient or microbe addition		M.	Municipal landfill	Soil (16,000 cy) to a depth 11 -15 feet	PAHs (Naphthalene)	Operational; Completion sometime between 1996 and 2000.	Federal lead/Fund Financed; CHZM Hill (prime contractor)	Kevin Adler 312-886-7078
Popile, AR (02/01/93) In situ inac See also groundwater pres Bioremediation (Ex oper	ater.	Inac pres oper	Inactive wood preserving operation	Groundwater	NAPLS	Predesign; RFP for design to be issued Fall 1994	Féderal lead/Fund Financed	Paul Sieminski 214-655-8503
American Creosote In situ soil Wood Works, Inc. (Winnfield Plant), LA (04/28/93)		Poo _A	Wood preserving	Soil (250,000 cy)	SVOCs (PCP, Creosote), PAHs	Design completed but not installed; Completion planned Fall 1994	Federal lead/Fund Financed; CDM Federal Programs (design contractor)	Bert Griswold 214-655-8502
Atchison/Santa In situ soil Rail Fe/Clovis, NM (09/23/88)		Rail (die	Railyard wastes (diesel spills)	Soil (28,600 cy), Sludge combined, 6 feet deep	PAHs (petroleum hydrocarbons, diesel fuel)	Operational; Completion planned end of 1996; Operation began 6/92	PRP lead/Federal oversight; Radian Corporation	Ky Nichols 214-665-6783
Oklahoma Refining Co., In situ soil Petr OK (06/09/92) See also Bioremediation (Ex Situ)		Petr	Petroleum refining and reuse	Soil (43,300 cy)	VOCs, Organics (LNAPLs)	In design; Phase 1 to be completed 4/95; Phase 2 to be completed completed	State lead/Fund Financed	Phillip Allen 214-665-8516

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

			· 1	
Contacts/Phone	Judith Black 214-655-6735	Bill Burn 913-551-7792	Cathy Barret 913-551-7704 Rachel Willer 913-296-1676	Armando Saenz 303-293-1532
Lead Agency and Treatment Contractor (if available)	PRP lead/Federal oversight	PRP lead/Federal oversight; BARR Engineering	PRP lead/State oversight	Federal Lead/Fund Financed; CHZM (prime contractor)
Status#	Completed; Operational 1/92 - 12/93	Design completed but not installed; pilot study underway; decision to expand the system will be made in Fall 1994,	Predesign	In design; Design completion planned Fall 1994
Key Contaminants Treated	VOCs, PAHs	VOCs (BTEX), PAHS	PANS (Benzo(a)anthrace ne, Chrysene)	SVOCs (PCP), PAHS
Media (Quantity)	Soil and Sludge combined (300,000 cy)	Soil (18,500 cy)	Soil (70,000 cy)	Soil 20 acres; 10 feet to rock
Site Description	Petrochemical	Coal gasification	Refinery operation	Wood preserving
Specific Technology	Bioremediation (In Situ) In Situ Lagoon	In situ soil; injection of nutrients and oxygenated water to treat both saturated and unsaturated soil	In situ soil preceeded by in situ soil flushing	In situ soil and in situ gw bioventing of soil & aquifer; solids following free product recovery and dewatering
Site Name, State, (ROD Date)	French Limited, TX (03/24/88)	People's Natural Gas, IA (09/16/91)	Pester Refinery Co., KS (09/30/92) See also In situ Flushing	Broderick Wood Products OU 2, CO (03/24/92) See also Bioremediation (Ex Situ)
Region	9	~	2	∞

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Ireated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
œ	Burlington Northern (Somers Plant)*, MT (09/27/89) See also Bioremediation (Ex Situ)	In situ groundwater Carbon treatment aboveground; treatment followed by nutrient and pure oxygen addition prior	Wood preserving	Groundwater 2 areas, 20 ft deep and 30 ft deep	SVOCs (Phenols), PAHs (Creosote)	Operational; Operational since May 1994; completion date unknown	PRP lead/Federal oversight; Remediation Technologies, Inc.	Jim Harris 406-449-5414 (ext. 260)
©	Idaho Pole Company*, MT (09/28/92) See also Bioremediation (Ex Situ), In situ	In situ groundwater; injection of oxygen and nutrients	Wood preserving	Groundwater down to 30 feet deep	SVOCs (PCP, PAHs)	Predesign	PRP lead/Federal oversight	Jim Harris 406-449-5414 (ext. 260)
œ	Libby Groundwater Contamination*, MT (12/30/88) See also Bioremediation (Ex Situ)	In situ groundwater; Injection of H2O2 and Potassium tripolyphosphate	Wood preserving	Groundwater (40 - 80 ft deep)	VOCs (Benzene), SVOCs (PCP), PAHs (Creosote)	Operational; Completion planned 2001; Operation began in Spetember 1991	PRP lead/Federal oversight; Woodward-Clyde	Jim Harris 406-449-5414 (ext. 260) Bert Bledsoe (RSKER) 405-332-2313
œ	Montana Pole and Treating Plant, MT (09/21/93) See also Bioremediation (Ex Situ), In situ	In situ soil	Wood preserving	Soil (44,000 cy)	SVOCs (PCP, Dioxins, PAHs)	Predesign; In negotiation	In negotiation	Sara Weinstock 406-782-7415
. ∞	Montana Pole and Treating Plant (Groundwater), MT (09/21/93)	In situ groundwater	Wood preserving	Groundwater	SVOCs (PCP, Dioxins, PAHs)	Predesign; In negotiation	In negotiation	Sara Weinstock 406-782-7415

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
٥	Williams AFB, (OU2), AZ (12/30/92) See also Soil vapor extraction	Bioremediation In Situ; Bioventing	AFB, Flight Training Base	Soil (54,000 cy) down to 25 feet deep	VOCs (Dichlorobenzene, 1,2-DCA, Methylene Chloride), PAHs (TPH)	Being installed; Full-scale operation to start 1/95	USAF - IRP/ EPA and State Oversight; Earth Technologies	R. Mendoza 415-744-2407 William Harris (USAF) 602-988-6486
0	Hexcel, CA (09/21/93) See also Soil vapor extraction, Other Technologies	In situ soil	Manufacturing	Soil (quantity unknown), Groundwater	VOCs (PCE, Acetone, MEK, Benzene)	Predesign; PD completion planned Fall 1994	PRP lead/State oversight	Mark Johnson 510-286-0305
٥	Koppers Company, Inc. (Oroville Plant), CA (O4/O4/90) See also Soil Washing	In situ soil	Wood preserving	Soil (110,000 cy) to a depth of 10 ft	SVOCs (PCPs), PAHs	Design completed but not installed; installation postponed until completion of removal action	PRP lead/Federal oversight; SBP Technologies	Fred Schauffler 415-744-2359
5	Eielson Air Force Base*, AK (09/29/92) See also Soil vapor extraction	In situ soil; Bioventing	Tactical air support installation Airplane fueling and maintenance	Soil (quantity unknown) down to 10 ft deep	VOCs (JP-4), SVOCs, PAHs (Petroleum Hydrocarbons, Diesel)	Operational	Federal Facility/EPA and State oversight; DERA; EA Engineering (Design)	Mary Jane Nearman 206-553-6642 Rielle Markey (AK) 907-451-2117 Capt. Max Gandy (Eielson AFB)
01	Fairchild AFB, Priority 1 CU's (CU 2) FT-1, UA (07/14/93) See also Other Technologies	Bioremediation; In Situ Bioventing	Fire training area	Soil (quantity unknown)	VOCs (Benzene)	In design; Pilot test starting 5/94	USAF/Federal oversight; E.S. Inc.	Cami Grandinetti 206-553-8696

Chemical Treatment

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
4	JFD Electronics/Channel Master, NC (09/10/92)	Oxidation of cyanides followed by on-site s/s for metals	Solvent recovery	Soil and Sludge combined, (3,000 cy)	Inorganic cyanides	In design; Design completion planned Summer 1995	PRP lead/Federal oversight	McKenzie Mallary 404-347-7791

Dechlorination

State, S	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
٥	Dechlorination	Pesticide manufacturing/use/ storage	Soil (48,000 cy), Sediments (500 cy)	SVOCs (Chlorobenzene), Biocides (DDT, DDE, DDD), Dioxins	In design; Design completion planned Spring 1996; Design concurrent with treatability studies	PRP Lead/Federal oversight; Metcalf & Eddy	John Prince 212-264-1213
CIBED	Dechlorination With APEG using an anaerobic thermal process unit	Contaminated road dust, driveways, ditches	Soil (40,000 cy)	PCBs	Completed; Operational from 9/90 to 9/91	Federal lead/Fund Financed; SoilTech Inc. (subonctractor to Kimmins)	Herb King 212-264-1129
٥	Dechlorination	Wood preserving	Sludge (700 cy) KDO1 RCRA Waste from a lagoon	SVOCs (PCP), Dioxins	In design; Design completion planned Spring 1995	Federal Lead/Fund Financed	Andy Palestini 215-597-1286
44000	Dechlorination (part of anaerobic thermal treatment)	Drum storage/ disposal	Soil (18,500 cy)	PCBs	Operational; Operation began in April 1994; completion planned October 1994	PRP Lead/Federal oversight; Canonie (prime contractor), SoilTech (subcontractor)	Tony DeAngelo 404-347-7791
۵	Dechlorination	Retail sales outlet for agricultural chemicals	Soil (quantity unknown)	VOCs (Diesel fuel), Biocides (DDT, Aldrin, Dieldrin, Chlordane, Toxaphene)	In design; Design completion planned Winter 1994	PRP lead/Federal oversight; Ensafe	Bernie Hayes 404-347-7791 Adrian Felder (SC) 803-734-5390

In situ Flushing

Site Name, State, (ROD Date)		Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if	Contacts/Phone
		Industrie		Soil (650,000 cy)	VOCs	Operational;	available) Federal	Fred Cataneo
Flushing of area within the slurry wall, including soil and wastes.	r area soil	Nunicipe Municipe	landfill, Municipal landfill	16 acres to a depth of 15 feet	(Bis-2-chloroethy lether, DCA, Dichloromethane), SVOCS (Phenol), Metals (Chromium, Lead, Nickel,	Completion planned 1999	lead/Fund Financed; AWD, Inc.	212-264-9542
Vineland Chemical, OU Soil flushing Pesticide 1 and OU 2, NJ Flushing Lagoons manufactus (09/29/89) using treated gw storage See also Soil Washing	Suc 346	Pestici manufac storage	Pesticide manufacturing/use/ storage	Soil (126,000 cy) to a depth of 15 feet in sandy soil	Metals (Arsenic)	In design; Design completion planned Winter 1995	Federal lead/Fund Financed; Malcolm Pirnie (Design)	Matthew Westgate 212-264-3406 Steve Hadel (USACE-Kansas City) 816-426-5221
Byron Barrel & Drum, Soil flushing Drum storage/ NY (09/29/89) disposal		Drum sto disposal	rage/	Soil (5,200 cy), Groundwater	VOCs (TCE, DCE, TCA, Methyl Ethyl Ketone), Metals (Chromium, Lead)	Predesign; PD completion planned Fall 1994	PRP lead/Federal oversight	Eduardo Gonzales 212-264-5714
Pasley Solvents and Soil flushing Tank farm and Chemicals, Inc., NY (02/24/92) distribution See also Soil Vapor extraction		Tank fa chemica distrib facilit	rm and l ution y	Soil (13,000 cy) down to 30 feet deep	SVOCs (Naphthalene)	In design; Negotiation with PRP is going on for new design.	Federal lead/Fund Financed; Ebasco (design)	Sherrel Henry 212-264-8675

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Contacts/Phone	Charles King 404-347-6262	Charles King 404-347-6262	David Abbot 404-347-2643
Lead Agency and Treatment Contractor (if	PRP lead/Federal oversight; CDM/FPC (Demolition/Des ign contractors)	PRP lead/Federal oversight	Federal lead/Fund Financed
Status#	Predesign; PD completion planned Winter 1995; Treatability studies ongoing; final decision on technology will be made late 1994	Predesign; Treatability studies ongoing; final decision on technologies will be made late 1994	Predesign; PD completion planned Fall 1994
Key Contaminants Treated	VDCs (Benzene, Chloroform, Toluene), Biocides (DDD, DDT, DDE, BHCs, Diazinon, Chlorobenzilate), Metals (Lead)	VOCS (Chloroform, Toluene, Xylenes), Biocides (Atrazine, Diazinon, Prometryn, Simazine), Metals (Copper, Lead, Arsenic, Chromium, Iron slurry)	VOCs (PCE, Ethylbenzene), SVOCs (PAHS), Metals (Lead, Zinc, Chromium)
Media (Quantity)	Soil (quantity unknown)	Soil (quantity unknown)	Soil (quantity unknown)
Site Description	Agriculture applications, Pesticide manufacturing/use/ storage, Other organic chemical manufacturing	Agriculture applications, Pesticide manufacturing/use/ storage, Other organic chemical manufacturing	Waste oil re-refinery
Specific Technology	Soil flushing	Soil flushing	Soil flushing
Site Name, State, (ROD Date)	Ciba-Geigy (MacIntosh Plant) OU 2, AL (09/30/91) See also Thermal Desorption	Ciba-Geigy (MacIntosh Plant) OU 4, AL (07/14/92) See also Thermal Desorption	Peak Oil/Bay Drums OU 1, FL (06/21/93) See also Bioremediation (In Situ)
Region	7	4	7

Contacts/Phone	Michael Townsend 404-347-7791 Bruce Nicholson (NC) 919-733-2801	Bernard Schorle 312-886-4746	Ken Glatz 312-886-1434	Ursula Lennox 214-655-6743	Glenn Celerier 214-655-8523
Lead Agency and Treatment Contractor (if available)	PRP lead/Federal oversight; Conestoga-Rover s & Associates (prime contractor)	PRP lead/Federal oversight; Fluor-Daniel	PRP lead/Federal oversight; Woodward Clyde (prime contractor)	PRP lead/Federal oversight; ENSR (RD/RA contractor)	PRP lead/Federal oversight
Status#	In design; Design completion planned December 1994	Completed	In design; Design completion planned Fall 1994	In design	Predesign; Technology on hold pending remediation of groundwater
Key Contaminants Treated	VOCs (TCE, Vinyl Chloride,Carbon Tetrachloride,Chl orofor, BTX), SVOCs (Dichlorobenzene, Trichlorobenzene)	VOCs (TCE, BTEX)	VOCs (Vinyl Chloride, Benzene)	PAHs (Benzo(a)pyrene, Creosote), Metals (Arsenic)	PAHs (Benzo(a)pyrene, Benzo(a)anthracen e, Chrysene)
Media (Quantity)	Soil (6,000 cy)	Soil (64,000 cy), Groundwater	Soil seepage (basin size unknown)	Soil (19,400 cy) below 1 ft, treated by reinjected water	Soil (20,000 cy)
Site Description	Plastics manufacturing, Other organic chemical manufacturing, Other inorganic chemical manufacturing, Drum storage/ disposal, Municipal water	Industrial landfill	Industrial landfill, Paint/ink formation	Wood preserving	Wood preserving
Specific Technology	Soil flushing Preceded by vacuum extraction using the same horizontal wells	In situ Flushing of area inside slurry Wall	Soil flushing (flushing part of recycle of treated gw)	Soil flushing with reinjection of treated water to 1 ft below surface	Soil flushing with the same surfactants used for the soils treated with
Site Name, State, (ROD Date)	JADCO-Hughes, NC (09/27/90) See also Soil vapor extraction	Ninth Avenue Dump, IN (06/30/89)	Rasmussen Dump, MI (03/28/91)	Koppers/Texarkana*, TX (09/23/88) See also Soil Washing	South Cavalcade Street*, TX (09/26/88) See also Soil Washing
Region	4	īV	ĸ	9	vo

Table A-1
Remedial Actions: Site-specific Information By Technology Through FY 1993

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
2	Pester Refinery Co., KS (09/30/92) See also Bioremediation (In Situ)	Soil flushing followed by in situ bioremediation	Refinery operation	Soil (70,000 cy), Sludge (30,000 cy)	PAHs (Benzo(a)anthrace ne, Chrysene)	Predesign	PRP lead/State oversight	Cathy Barrett 913-551-7704 Marvin Glotzbach (KS) 913-296-2783
7	Lee Chemical, MO (03/21/91)	Soil flushing With 3 infiltration galleries; 10 ft x 50 ft each	Solvent recovery	Soil (30,000 cy) 20 ft to gw	VOCs (TCE)	Operational; Completion planned 1999; Operation began 5/94	PRP lead/State oversight; (no treatment contractor)	Steven Kinser 913-551-7728 Ron Redden (MD) 314-751-8393
æ	Idaho Pole Company*, MT (09/28/92) See also Bioremediation (Ex Situ), Bioremediation (In Situ)	Soil flushing	Wood preserving	Soil (6,500 cy)	SVOCs (PCP, PAHs)	In design; Design completion planned Fall 1994	PRP lead/Federal oversight	Jim Harris 406-449-5414 (ext. 260)
80	Montana Pole and Treating Plant, MT (09/21/93) See also Bioremediation (Ex Situ), Bioremediation (In Situ)	Soil flushing	Wood preserving	Soil (44,000 cy)	SVOCs (PCP), Dioxins, PAHs	Predesign; In negotiation	In negotiation	Sara Weinstock 406-782-7415
10	Union Pacific Railroad Sludge Pit, 1D (09/10/91)	Soil flushing	Railroad operations, cleaning and fueling	Soil (quantity unknown)	VOCs (PCE,TCE), PAHs (Petroleum hydrocarbons), Metals (Arsenic,Cadmium)	Predesign; Remedy being reconsidered	PRP lead/Federal oversight	Ann Williamson 206-553-2739 Clyde Cody (ID) 208-334-0556

Remedial Actions: Site-specific Information By Technology Through FY 1993 Table A-1

].
Contacts/Phone	Alan Goodhan 503-326-3685
Lead Agency and Treatment Contractor (if available)	PRP lead/Federal oversight; CHZMHill & subcontractors
Status#	Operational; Operations began during Summer 1988 and will continue until
Key Contaminants Treated	Metals (Chromium VI)
Media (Quantity)	Soil (quantity unknown)
Site Description	Chrome plating facility
Specific Technology	Soil flushing
Site Name, State, (ROD Date)	United Chrome Products*, OR (09/12/86)
Region	9

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

In situ Vitrification

Contacts/Phone nt (if	Michael Gifford 1 312-886-7257	Bert Garcia 303-293-1537
Lead Agency and Treatment Contractor (if available)	PRP lead/Federal oversight; Geosafe	PRP Lead/Federal oversight; GeoSafe
Status#	In design; Design completion planned Summer 1995	Design completed but not installed; Installation planned Fall 1994: Project completion planned Spring 1995; awaiting vendor
Key Contaminants Treated	VOCs (Methylene Chloride, TCA, Styrene, Toluene), Metals (Lead)	VOCs, SVOCs (Hexachloro- benzene, PCP), Biocides, Dioxins
Media (Quantity)	Soil (5,000 cy) With debris, to a depth of 15 feet	Soil, sludge, and solids combined to 5 feet deep (1,500 cy)
Site Description	Municipal landfill	Pesticide manufacturing/use/ storage, Other organic chemical manufacturing, Other inorganic chemical manufacturing
Specific Technology	In situ Vitrification	In situ Vitrification consolidation of soil & waste in pond prior to treatment
Site Name, State, (ROD Date) Ionia City Landfill*, MI (09/29/89)		Wasatch Chemical*, UT (03/29/91) See also Bioremediation (Ex Situ)
Region	S	ω

Soil Vapor Extraction

ne Pre	kar	azy			
Contacts/Phone	Leslie McVickar 617-573-9689	Elise Jakabhazy 617-573-5760	Bob Leger 617-573-5734	Mark Otis 617-573-5797	Mary Garren 617-573-9613 Paula Fitzsimmons (MA) 617-223-5572
			80 61	Ma 61.	Mary 617-9 Paul Fitze (MA) 617-6
Lead Agency and Treatment Contractor (if	PRP lead/Federal oversight; GZA Geoenviron- mental (Design)	Federal lead/Fund Financed	PRP lead/Federal oversight; Terra Vac	Federal lead/Fund Financed	PRP lead/Federal oversight; Several contractors working on the site
Status#	In design; Design completion planned Fall 1994	Predesign	Operational	Being installed; Installation completion planned Winter 1994	Operational; OU 1 consists of 5 properties, the technolgy has become operational on some of the
Key Contaminants Treated	VOCs (TCE, PCE, DCE, TCA, DCA, Vinyl Chloride)	VOCs (TCE)	VOCs (TCE, Methylene Chloride, DCE)	VOCs (TCE, TCA, Carbon Tetrachloride, Chloroform, Styrene)	VOCs (PCE, TCE)
Media (Quantity)	Soil (quantity unknown)	Soil (quantity unknown)	Soil (19,000 cy) to a depth of 25-30 feet	Soil (137,000 cy)	Soil (7,400 cy) to a depth of 3 feet
Site Description	Solvent recovery, Industrial complex, illegal dumping of solvent	Electrical power switches manu. facility	Manufacturing	Chemical waste reclamation	Drum storage/ disposal, Leaking UST and midnight dumping
Specific Technology	Soil vapor extraction	Soil vapor extraction	Soil vapor extraction (carbon absorption for air emissions)	Soil vapor extraction	Soil vapor extraction with air flushing
Site Name, State, (ROD Date)	Kellogg-Deering Well Field, CT (09/29/89)	Linemaster Switch Corporation, CT (07/21/93)	Groveland Wells*, MA (09/30/88)	Silresim, MA (09/19/91)	Wells G&H OU 1, MA (09/14/89)
Region	-	-	-	-	-

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Soil Vapor Extraction (continued)

Contacts/Phone	Terrance Connelly 617-573-9638 Christopher Rushton (ME) 207-287-2651	Roger Duwart 617-573-9628 Joe Donovan (NH) 603-271-2911	Roger Duwart 617-573-9628 Tom Andrews (NH) 603-271-2910	Darryl Luce 617-573-5767 Tom Andrew (NH) 603-271-2010	Jim DiLorenzo 617-223-5510
Lead Agency and Treatment Contractor (if available)	PRP lead/Federal oversight; Balsam Environmental/ VAPEX	Federal lead/Fund Financed; Metcalf & Eddy (prime contractor) OH Materials (subcontractor)	PRP lead/Federal oversight	In negotiation	PRP lead/Federal oversight; Terra Vac
Status#	In design; Design completion planned Fall 1994	Operational; Completion planned Spring 1995; Operation started October 1993	Installed but not operational; Operation begins October 1994: Completion planned 2011	Predesign	In design; Operation scheduled to begin summer 1994
Key Contaminants Treated	VOCS (TCE,DCE,PCE,Xyle ne)	VOCS (TCE, TCA, Vinyl Chloride, DCA, DCE, Toluene, Ethylbenzene)	VOCS (PCE, TCA, TCE)	VOCS (PCE, TCE)	VOCs (TCE, Chloroform, DCE, Vinyl chloride, Benzene)
Media (Quantity)	Soil (10,000 cy)	Soil (3,400 cy)	Soil (7,500 cy), Groundwater	Soil (50,000 cy) down to 20 feet	Soil (9,000 cy)
Site Description	Solvent recovery, Paint stripping	Uncontrolled waste site	Ball bearing manufacturing	illegal dumping site, primarily painting wastes and solvents	Illegal dumping site
Specific Technology	Soil vapor extraction	Soil vapor extraction	Soil vapor extraction ; Air sparging of gw	Soil vapor extraction	Soil vapor extraction (carbon absorption for
Site Name, State, (ROD Date)	Union Chemical Co., OU 1, ME (12/27/90)	Mottolo Pig Farm, NH (03/29/91)	South Municipal Water Supply Well*, NH (09/27/89) See also Other Technologies	Tibbetts Road*, NH (09/29/92)	Tinkham Garage (OU 1)*, NH (09/30/86)
Region	-	-	-	-	-

Soil Vapor Extraction (continued)

/Phone	on 612 sted 797	ko 749	ler 636 en 797	get 836	100 mple 295 mple 244
Contacts/Phone	Dave Newton 617-573-9612 Leo Hellested (RI) 401-277-2797	Anna Krasko 617-573-5749	Neil Handler 617-573-9636 Mark Dennen (RI) 401-277-2797	Rich Puvogel 212-264-9836	Carla Struble 212-264-4595 Keith Buch (FAA) 609-485-6644
Lead Agency and Treatment Contractor (if available)	State Lead/Fund Financed	Federal Lead/Fund Financed	PRP lead/Federal oversight; Environmental & Safety Design Inc.	PRP Lead/Federal oversight; Harding-Lawson	Federal Facility, FAA lead; R.E. Wright (prime contractor)
Status#	Predesign; EPA negotiating with PRP	Predesign; EPA negotiating with PRP	Predesign; PD completion planned January 1995	In design; Remedial construction will be completed Fall	Being installed; Operation scheduked 1/95; completion scheduled for 2000 or later
Key Contaminants Treated	VOCS (1,1,1 - TCA, PCE, TCE)	VOCs, SVOCs, Biocides, PCBs	VOCs (DCE, TCE)	VOCs (TCE, TCA, Irichlorofluorome thane, Toluene, Ethylbenzene), SVOCs (Naphthalene, 4-methylphenol)	VOCs (BTEX), SVOCs (Chlorophenol, Phenol)
Media (Quantity)	Soil (quantity unknown)	Soil (131,000 cy)	Soil (6,000 cy) to a depth of 12 feet	Soil (7,500 cy) to a depth of 30 feet	Soil (33,000 cy)
Site Description	Custom manufacturing facility Industrial and commercial area	Disposal area	Textile manufacturing	Polymer manufacturing	Jet fuel tank farm
Specific Technology	Soil vapor extraction	Soil vapor extraction	Soil vapor extraction	Soil vapor extraction (carbon adsorption for air emissions)	Soil vapor extraction
Site Name, State, (ROD Date)	Peterson/Puritan Inc. (OU 1), RI (09/30/93) See also Other Technologies	Picillo Farm Site, RI (09/27/93)	Stamina Mills, RI (09/28/90)	A O Polymer, Soil treatment phase, NJ (06/28/91)	FAA Technical Center*, NJ (09/26/89) See also Bioremediation (In Situ)
Region	-		-	2	N

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Soil Vapor Extraction (continued)

	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
G 22	Garden State Cleaners, NJ (09/26/91)	Soil Vapor extraction	Dry cleaners	Soil (300 cy) 25 ft deep; 3 feet by 10 feet	VOCS (PCE)	Operational; Operation began in June 1994	Federal Lead/Fund Financed	Sharon Atkinson 212-264-1217
1	Naval Air Engineering Center, OU 23, NJ (09/27/93)	Soil vapor extraction	Fuel storage farm	Soil (3,500 cy)	VOCs, PAHS (TPH, Naphthalene)	In design; Design completion planned Fall 1994	Federal Facility/ Federal Oversight	Jeff Gratz 212-264-6667
	South Jersey Clothing, NJ (09/26/91)	Soil vapor extraction	Dry cleaners, Clothing manufacturer	Soil (1,400 cy) to a depth of 25 feet	VOCs (TCE)	In design; Design completion planned Winter 1995	Federal lead/Fund Financed; USACE (design)	Sharon Atkinson 212-264-1217
	Swope Oil & Chem Co., OU 2, NJ (09/27/91)	Soil vapor extraction Vacuum extraction.Biove nting (Not planned yet)	Chemical reclamation	Soil (253,000 cy) 2 acres, to a depth of 80 feet	VOCs (TCE, PCE, Toluene, Ethylbenzene, Xylene)	In design; Design completion planned Spring 1995	PRP lead/Federal oversight; Geraghty & Miller (design)	Joseph Gowers 212-264-5386
	Applied Environmental Services, OU 1, NY (06/24/91) See also Bioremediation (In Situ), Other Technologies	Soil vapor extraction with air flushing with air sparging; area will be covered	Bulk petroleum and hazardous waste storage facility, fuel blending	Soil depth to gw averages 8 ft	VOCS (BTEX)	Design completed but not installed; Design completed in 3/94; construction to start in Summer of 1994	PRP lead/State oversight; Remediation Technologies, Inc.	Mel Hauptman 212-264-7681 John Grathwol (NY) 518-457-9280

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Site Description Media (Quantity) or Electroplating Soil (900 cy) to a depth of 30 ft on for Electroplating Soil (275 cy) to a depth of 30 ft	Site Description Media (Quantity) Electroplating Soil (900 cy) to a depth of 30 ft 1 Electroplating Soil (275 cy) to a depth of 30 ft	Soil (900 cy) to a depth of 30 ft seed to a de		Key Contamin Treated VOCS (TCA, PC TCE, DCA)	inants PCE, TCA)	Status# In design; Design completion planned Fall 1994 In design; Design completion planned Fall	Lead Agency and Treatment Contractor (if available) Federal Lead/Fund Financed; ICF (design contractor) Federal Lead/Fund Federal Eead/Fund Financed;	Contacts/Phone Miko Fayon 212-264-4706 Miko Fayon 212-264-4706
Soil vapor Electroplating Soil (275 cy) to extraction precedes excavation for off-site solidification	Electroplating Soil (275 cy) to a depth of 30 ft	Soil (275 cy) to a depth of 30 ft			VOCs (TCE, TCA)	In design; Design completion planned Fall 1994	Federal lead/Fund Financed; Ebasco	212.
Mattiace Soil vapor Organic chemicals Soil (17,000 cy) Petrochemicals extraction blending to a depth of 40 (06/27/91)	Organic chemicals Soil (17,000 cy) blending to a depth of 40 feet	Soil (17,000 cy) to a depth of 40 feet	(17,000 cy) depth of 40	1	VOCs (PCE, TCE,, Benzene, Xylene)	Predesign; PD completion planned Fall 1994	Federal lead/Fund Financed	Edward Als 212-264-0522
Pasley Solvents and Soil vapor Tank farm and Soil (13,000 cy) Chemicals, Inc., NY extraction chemical down to 30 feet (02/24/92) See also In situ facility	Tank farm and chemical distribution facility	T	Soil (13,000 cy) down to 30 feet deep		VOCs (TCE, PCE, Benzene)	In design; Negotiation with PRP is going on for new design.	Federal lead/Fund Financed; Ebasco (design contractor)	Sherrel Henry 212-264-8675 Jim Bologna (NY) 518-459-3976
SMS Instruments (Deer Soil vapor Military aircraft Soil (1,250 cy) Park), NY (09/29/89) extraction with component to a depth of 25 catalytic combustor for vapors	Military aircraft with component overhauler for		Soil (1,250 cy) to a depth of 25 feet		VOCs (TCE, Dichlorobenzene)	Completed; Operational from 4/92 to 12/93	Federal lead/Fund Financed; Four Seasons	Miko Fayon 212-264-4706
Vestal Water Supply Soil vapor Industrial park Soil (25,000 cy) 1-1, NY (09/27/90) extraction 25,000 cy, to 28 ft depth	Industrial park		Soil (25,000 cy) Both areas = 25,000 cy, to 28 ft depth		VOCS (DCA, TCA, TCE, DCE)	In design; Design completion planned Summer 1994	Area 2 - Fund lead; Area 4 - PRP lead S.V.E	Ed Als 212-264-0522

Table A-1
Remedial Actions: Site-specific Information By Technology Through FY 1993

Contacts/Phone	Adalberto Bosque 809-729-6951	Alison Hess 212-264-6040	Eric Newman 215-597-0910	Jim Harper 215-597-6906	Joe McDowell 215-597-8240	Dave Turner 215-597-3218
Lead Agency and Treatment Contractor (if available)	Federal lead/Fund Financed	PRP lead/Federal oversight; Terra Vac	PRP lead/Federal oversight	PRP lead/Federal oversight; ERM, Inc.	Federal lead/Fund Financed; CH2M Hill	PRP lead/Federal oversight; Eckenfelder
Status#	Being installed; Installation completion planned Fall 1994	Completed; Operational 1/83 - 3/88	Predesign; In negotiaton	Predesign; Treatability study completed and being reviewed	In design; Design completion planned Summer 1995	Design completed but not installed
Key Contaminants Treated	VOCs (Chloroform)	VOCs (Carbon Tetrachloride, Acetonitrile)	VOCs (Benzene, TCE, PCE, Methylene Chloride)	VOCs (PCE, TCE, Vinyl Chloride)	VOCs (TCA, TCE, PCE, DCA, DCE)	VOCs (PCE, TCE, Vinyl Chloride, Alcohols, n-butanol), SVOCs (Ketones)
Media (Quantity)	Soil (quantity unknown)	Soil (quantity unknown)	Soil (50,000 cy)	Soil (33,000 cy) to a depth fo 10 feet	Soil (70 cy) up to 4 ft deep	Soil (270,000 cy) to a depth of 30 feet
Site Description	Pharmaceutical Manufacturing	Industrial facility, chemical leak	Landfill site drum disposal area	Aircraft instrumentation manufacturing	Machine shops, Metal fabrication	Industrial landfill
Specific Technology	Soil vapor extraction	Soil vapor extraction	Soil vapor extraction	Soil vapor extraction with air flushing	Soil vapor extraction	Soil vapor extraction (method to be determined in design)
Site Name, State, (ROD Date)	Janssen Inc., PR (09/30/93)	Upjohn Manufacturing Co., PR (09/30/88)	Delaware Sand and Gravel, DE (09/30/93) See also Bioremediation (In Situ)	Bendix, PA (09/30/88)	Cryochem, OU 3, PA (09/30/91)	Lord-Shope Landfill*, PA (06/29/90)
Region	2	2	м	м	m	м

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Contacts/Phone	Harry Harbold 215-597-1101	Steve Donohue 215-597-3166 Bob Kimball 814-332-6075	Eugene Dennis 215-597-3153	Ron Davis 215-597-1727	Jack Potosnak 215-597-2317 Bill Sadington (DGSC) 804-279-3781	John Zimmerman 404-347-2643
Lead Agency and Treatment Contractor (if	Federal lead/Fund Financed	PRP lead/Federal oversight	PRP lead/Federal oversight; Terra Vac	PRP lead/Federal oversight; ICF Kaier	Federal Facility DLA Lead/Federal oversight; Engineering-Sci ence	Federal lead/Fund Financed; Ebasco
Status#	Operational; since May 1994	In design; Design completion planned Fall	Operational; since 11/88; completion date unknown	Predesign; In negotiation with PRP	Completed; Consisted of pilot study 12/1/92-12/11/ 92; after which soil samples showed no further contamination	Completed; Operational from 1/91 to 7/91
Key Contaminants Treated	VOCs (TCE, PCE, 1,2-DCE)	VOCs (TCE, TCA)	VOCs (Benzene, Toluene, Xylene), SVOCs (Trichloro- propane)	VOCs (TCE, PCE)	VOCs (PCE, TCE)	VOCs (TCE, Vinyl chloride)
Media (Quantity)	Soil (quantity unknown), Solids bedrock	Soil (quantity unknown)	Soil (30,000 cy) With some DNAPL, to a depth of 30 feet	Soil (1,000 cy) depth unknown	Soil (1,000 cy)	Soil (60 cy)
Site Description	Multi-source metal fabrication facility	Industrial park (Lord Corp. property)	Abandoned septic and chemical waste disposal site	Electroplating	Cleaning and repainting of combat helmets and gas cylinders	Electroplating
Specific Technology	Soil vapor extraction	Soil vapor extraction	Soil vapor extraction with air flushing (The system has been modified during operations)	Soil vapor extraction with air flushing	Soil vapor extraction (one extraction well)	Soil vapor extraction
Site Name, State, (ROD Date)	Raymark*, PA (12/30/91)	Saegertown Industrial Area Site, PA (01/29/93) See also Other Technologies	Tyson's Dump*, PA (03/31/88)	Arrowhead Associates/Scovill, OU 1, VA (09/30/91)	Defense General Supply Center, OU 5*, VA (03/25/92)	Hollingsworth Solderless, FL (04/10/86)
Region	m	M	M	м	M	4

Table A-1
Remedial Actions: Site-specific Information By Technology Through FY 1993

Site Name, State, (ROD Date)		Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
Robins AFB, Landfill Soil vapor and Sludge Lagoon, OU extraction 1, GA (06/28/91)			Federal facility, sludge from an industrial waste water treatment plant	Soil (15,000 cy) combined, to a depth of 8 feet, Sludge (quantity unknown)	VOCs (TCE, PCE, Vinyl Chloride, Carbon Tetrachloride)	Predesign; PD completion planned Summer 1994	Federal Facility, USAF Lead/Federal Oves	Liz Wilde 404-347-3016
Charles Macon Lagoon, Soil vapor F Lagoon #7, OU 1, NC extraction with s air flushing by 30/91)		E 10 10 35	Petroleum refining and reuse, Drum storage/disposal, Waste oil recycler	Soil (1,300 cy) combined	VOCs (PCE)	In design; Design completion planned Summer 1994	PRP lead/Federal oversight; RMT	Giezelle Bennett 404-347-7791 David Lown (NC) 919-733-2801
JADCO-Hughes, NC Soil vapor PI (09/27/90) extraction with me See also In situ horizontal wells Of Followed by in situ flushing me situ flushing me mith same ports che did did me situ flushing me mith same ports che did did did me situ flushing me mith same ports che did did did did me situ flushing me mith same ports che did did did did did did did did did di	V		Plastics manufacturing, Other organic chemical Other inorganic chemical manufacturing, Drum storage/ disposal, Municipal water	Soil (6,000 cy)	VOCs (Carbon tetrachloride, Chloroform, Vinyl chloride, BTX), SVOCs (Dichlorobenzene, Trichlorobenzene)	In design; Design completion planned December 1994	PRP lead/Federal oversight; Conestoga-Rover s & Associates (prime contractors)	Micheal Townsend 404-347-7791 Bruce Nicholson (NC) 919-733-2801
USMC Camp Lejeune Soil vapor Dr Military Base, OU 2, extraction di NC (09/24/93)		<u> </u>	Drum storage/ disposal	Soil (16,500 cy)	VOCs (DCE, PCE, TCA, Vinyl Chloride)	In design; Design completion planned Fall 1994	USMC Lead/Federal Oversight	Gena Townsend 404-347-3016
Medley Farm, OU 1, SC Soil vapor O (05/29/91) extraction m m m m R			Other organic chemical manufacturing, Rubber manufacturing, Drum storage/ disposal	Soil (50,000 cy) maximum depth 60ft	VOCs (DCA, DCE, TCA, TCE, PCE, Methylene Chloride), SVOCs (Phthalates)	Design completed but not installed; Installation completion planned for January 1995	PRP lead/Federal oversight; RMT, Inc.	Ralph Howard 404-347-7791 Richard Haynes (SC) 803-734-5487

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Site Name, State, (ROD Date)		Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
SCRDI Bluff Road, SC Soil vapor (09/12/90) extraction with air flushing	Soil vapor extraction with air flushing		Drum storage/ disposal, Solvent recovery	Soil (45,000 cy) to a depth of 12 feet	VOCS (TCA, TCE, PCA, PCE, DCA, DCE, MEK, Chlorobenzene, BIEX)	In design; Design completion planned Summer 1994	PRP lead/Federal oversight; ERM DeMaximus to organize all PRPs contractors	Steve Sandler 404-347-7791
Carrier Air Soil vapor M Conditioning*, TN extraction with h (09/03/92) air flushing c		ΣCΟ	Manufacturer of heating and air conditioning units	Soil (76,500 cy)	VOCs (TCE)	Design completed but not installed; Design-completion planned Fall 1994	PRP lead/Federal oversight; Environmental Safety & Designs, Inc.	Beth Brown 404-347-7791
Acme Solvent Reclaiming, Inc. OU 3 extraction with la & OU 6, IL (12/31/90) air flushing for Mu See also Thermal OU 6	vapor nction with lushing for	ra B B s	Industrial landfill, Municipal water supply	Soil (quantity unknown)	VOCS (DCA, TCA, DCE, TCE, PCE, Vinyl Chloride, Benzene)	In design; Design completion planned Summer 1994	PRP lead/Federal oversight; Harding/Lawson	Deborah Orr 312-886-7576
American Chemical Soil vapor Ott Services*, IN extraction with che (09/30/92) air flushing man See also Thermal bioenhancement Sol Desorption flushing w/vertica wells		Sol	Other organic chemical manufacturing, Solvent recovery	Soil (100,000 cy) 15 to 20 ft deep	VOCS, PCBs	Predesign; Schedule pending completion of negotiation	In negotiation	Bill Bolen 312-353-6316
Enviro. Conservation Soil vapor Chandral (ROD extraction With (se Amendment), IN air flushing (06/07/91)	a rith	S, S,	Chemical recycler (solvents)	Soil (quantity unknown)	VOCs (Toluene, Ethylbenzene, Xylene), SVOCs (Dichlorobenzene, Phenol), Organics (BNAs)	In design; Design completion planned for Fall 1995	PRP lead/Federal oversight	Karen Vendl 312-886-4739

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Contacts/Phone	Jeff Gore 312-886-6552	81chard Boice 312-886-4740	Rich Boice 312-886-4740	312-886-7576
Lead Agency and Treatment Contractor (if available)	PRP lead/Federal oversight; Connestoga Rovers - Prime	PRP lead/Federal oversight; ERM Northcentral-pr ime	PRP lead/Federal oversight; ERM Northwest-prime	PRP lead/Federal oversight; Geraghty & Miller
Status#	In design; Design completion planned Summer 1995	Predesign; PD completion planned Winter 1994; Implementation planned for 1996	Predesign; PD completion planned Winter 1996; Bench-scale treatability study is underway	In design; East site (60% design completion by June 1, 1993)/ West site (95 % design in progress)
Key Contaminants Treated	VOCS (PCE, DCA, TCA)	VOCs (TCE, Dichloromethane, Chlorobenzene, 2-Butanone, BIX), SVOCs (Phenols), PAHs	VOCs (Methylene chloride, TCE, 2-Butanone, Toluene)	VOCs (TCE)
Media (Quantity)	Soil (29,500 cy)	Soil (10,000 cy) to a depth of 4 - 8 feet	Soil (12,200 cy)	Soil (22,000 cy) to a depth of 10 feet
Site Description	Municipal water supply	Industrial landfill	Drum storage/ disposal	Solvent recovery, Water supply contamination from many sources
Specific Technology	Soil vapor extraction	Soil vapor extraction	Soil vapor extraction	Soil vapor extraction with horizontal wells
Site Name, State, (ROD Date)	Fisher Calo Chem, IN (08/07/90)	MIDCO I, IN (06/30/89)	MIDCO II, IN (06/30/89)	Main Street Well Field, IN (03/29/91)
Region	īv	70	5	۲۰

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Contacts/Phone	Jeff Gore 312-886-6552	Duane Heaton 312-886-6399	Colleen Hart 312-353-8752	Jon Peterson 312-353-1264	Eugenia Сһоы 312-353-3156
Lead Agency and Treatment Contractor (if available)	PRP lead/Federal oversight; Canonie Engineering (installation), Geraghty & Miller (operation)	PRP lead/Federal oversight; Warzyn, Inc.	PRP Lead/Federat oversight; WW Engineering & Science	Federal Lead/ PRP Funded; Seacore Environmental Engineering	PRP lead/Federal oversight; Fishbeck, Thompson, Carr, & Huber
Status#	Operational; Completion planned Spring 1995	Design completed but not installed; Design completed Feb 2/94	In design; Design completion planned Summer 1994	Predesign; Design planned to begin Spring 1994	Predesign; PD completion planned Spring 1994
Key Contaminants Treated	VOCs (TCA, Carbon tetrachloride, PCE, TCE, Vinyl chlorie, Benzene)	VOCs (TCE, DCE, Vinyl chloride, BTEX)	VOCs (DCE, TCE, TCA, BTEX), SVOCs (Waphthalene, 2-methyl naphthalene)	VOCs (TCE, DCE, Vinyl chloride, BTEX)	VOCs (TCE, PCE, Vinyl chloride), PAHs
Media (Quantity)	Soil (200,000 cy) 12 acres to a depth of 10 feet	Soil (300,000 cy) 10 acres to a depth of 20 feet	Soil (6,200 cy) to 8 ft deep	Soil (54,800 cy) vadose zone & dewatered area to 25 ft deep	Soil (2,100 cy) down to 50 feet
Site Description	Chemical waste management and incineration	Municipal Landfill, Oil reclamation	Chemical packaging and distribution	Industrial area with above/below ground tanks multisource groundwater site	Audio equipment manufacturer
Specific Technology	Soil vapor extraction (No need for emissions treatment)	Soil vapor extraction with air flushing	Soil vapor extraction (vapor treatment through carbon)	Soil vapor extraction with horizontal wells air flushing with vertical	Soil vapor extraction
Site Name, State, (ROD Date)	Seymour Recycling, IN (09/30/87) See also Bioremediation (In Situ)	Wayne Waste Reclamation, IN (03/30/90)	Chem Central, MI (09/30/91)	Clare Water Supply, MI (09/16/92)	Electro-Voice, OU 1, MI (06/23/92)
Region	ī.	īv	۲	۲.	ın

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Contacts/Phone	Leah Evison 312-886-4696	Tom Pay 312-886-5991	Mary Lou Martin 312-353-9660	Terese Van Donsel 312-333-6564 Steve Padovani 312-353-6755	Jim Hahnenberg 312-353-4213
Lead Agency and Treatment Contractor (if available)	PRP lead/Federal 31 oversight; Fishbeck,Thomps on,Carr,& Huber	Federal To lead/Fund 31 Financed; PRC Environmental Management,	PRP Lead/Federal 31 oversight	State Lead/Fund Te Financed 31 31 31	Federal Salead/Fund Financed; ACOE (Design)
Status# L	In design; Pl Design Lo completion or planned Fall F	In design; Frompletion Lucompletion Frompletion Element December 1994 M.	In design; Pl negotiating Lu with PRP o	Predesign; PD S completion F planned Fall 1994	In design
Key Contaminants Treated	VOCs (TCE, Xylene, Toluene, Ethylbenzene)	VOCs (1,2-DCE, TCE, Benzene, Ethylbenzene)	VOCs (TCE, TCA, Chlorobenzene, Toluene)	VOCs (TCE, PCE, TCA)	VOCs (PCE, TCE, Ethylbenzene, Xylene)
Media (Quantity)	Soil (13,200 cy)	Soil (6,500 cy) depth to 7 feet	Soil (28,000 cy)	Soil Area and depth unknown, < 200 ft. deep	Soil (50,000 cy) to a depth of 17 - 32 feet
Site Description	Machine shops, Truck parts manufacturing	Electroplating	Industrial landfill	Solvent recovery	Recycling facility for organic solvents.
Specific Technology	Soil vapor extraction	Soil vapor extraction with horizontal wells	Soil vapor extraction	Soil vapor extraction	Soil vapor extraction with air flushing; May include biological enhancement
Site Name, State, (ROD Date)	Kysor of Cadillac Industrial*, MI (09/29/89)	Peerless Plating, MI (09/21/92)	Springfield Township Dump, MI (09/29/90)	Sturgis Municipal Well Field, MI (09/30/91)	ThermoChem, Inc. OU 1, MI (09/30/91)
Region	5	in.	2	ī	70

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if	Contacts/Phone
5	Verona Well Field (Thomas Solvent/Raymond Road)*, MI (08/12/85)	Soil vapor extraction (with Nitrogen sparging during part of operation)	Municipal water supply	Soil (35,000 cy) one half acre to a depth of 18 feet	VOCs (Dichloromethane, Chloroform, Carbon Tetrachloride, BTEX, Vinyl Chloride), SVOCs	Completed; Operational from 3/88 to 5/92	available) Federal Lead/Fund Financed; Terra Vac (subcontractor to CHZM Hill)	Margaret Guerriero 312-886-0399
ın	Verona Well Field, OU 2, MI (06/28/91)	Soil vapor extraction Augmentation with air flushing is being considered	Machine shops, Municipal water supply	Soil (30,000 cy)	VOCs (PCE, TCA,	Operational	PRP lead/Federal oversight; Geraghty & Miller (Prime), Maumee Bay (Remedial	Margaret Guerriero 312-886-0399
رم د	Long Prairie Groundwater Contamination, MN (06/27/88)	Soil vapor extraction with air flushing followed by GAC for off-gas	Dry cleaners	Soil (3,600 cy) to a depth of 15 feet	VOCS (DCE, PCE, TCE, Vinyl chloride)	Design completed but not installed; Installation to begin Spring 1995	State lead/Fund Financed	Jan Bartlett 312-886-5438 Maureen Johnson (MN) 612-296-7353
5	Miami County Incinerator, OH (06/30/89)	Soil vapor extraction with air flushing Treatment of off-gas determined in design	Municipal Landfill, Surface impoundment	Soil and solids combined (98,000 cy)	VOCs (TCE, PCE, Toluene)	In design; Design completion planned Spring 1995	PRP lead/Federal oversight; Connestogo Roveis-Prime	Anthony Rutter 312-886-8961

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Contacts/Phone	Thomas Alcamo 312-886-7278	Bruce Sypniewski 312-886-6189	Dave Wilson 312-886-1476 FTS-886-1476	Russ Hart 312-886-4844 Mike Schmoller (WI) 608-275-3303	Steve Padovani 312-353-6755
Lead Agency and Treatment Contractor (if available)	PRP lead/Federal oversight; Canonie (installation)	PRP lead/Federal oversight	PRP lead/Federal oversight	PRP lead/Federal oversight; Rust Environmental (prime contractor)	PRP lead/Federal oversight; Warzyn-Prime
Status#	Being installed; installation to be completed late 1994; will operate 7-10	Predesign; PD completion planned Summer 1995; evaluating technical feasibility	In design; Design completion planned Fall 1994	Predesign; PD completion planned Fall 1994	Operational; Completion planned Summer 1996
Key Contaminants Treated	VOCs (Chloroform, DCA, PCE, TCE, Benzene), SVOCs (Phenol)	VOCS (Toluene,Xylene, TCA)	VOCS (TCE, DCE)	VOCS (Tetrahydrofuran)	VOCs (Vinyl chloride, 2-Butanone, BTEX), Organics (Tetrahydrofuran)
Media (Quantity)	Soil (19,400 cy) 3 acres and 15 feet deep	Soil (quantity unknown)	Soil (36,000 cy)	Soil (quantity unknown) quantity	Soil (67,000 cy)
Site Description	Industrial waste treatment facility	Sanitary landfill and buried industrial waste Lagoon	Solvent recovery, Auto parts manufacturing	Industrial landfill, Municipal landfill	Industrial and municipal waste disposal
Specific Technology	Soil vapor extraction with horizontal trenches down to 15 feet	Soil vapor extraction	Soil vapor extraction with horizontal wells followed by excavation and soil washing for metals	Soil vapor extraction	Soil vapor extraction
Site Name, State, (ROD Date)	Pristine (ROD Amendment)*, OH (03/30/90) See also Thermal Desorption	Skinner Landfill (OU2), OH (O6/04/93)	Zanesville Well Field, OH (09/30/91) See also Soil Washing	City Disposal Corporation Landfill, WI (09/28/92)	Hagen Farm Source Control OU, WI (09/17/90)
Region	5	٤	5	ī	72

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
2	Muskego Sanitary Landfill, Interim Action OU 1, WI (06/12/92)	Soil vapor extraction	Industrial landfill, Municipal landfill	Soil (300 cy) approximately 1 acre down to 15 ft deep	VOCs (Vinyl Chloride, 1,2-DCA, Methylene Chloride, BTEX)	Design completed but not installed; Installation planned Summer 1994	PRP lead/Federal oversight; Rust Design	Bill Haubold 312-353-6261
5	Wausau Groundwater Contamination, WI (09/29/89)	Soil vapor extraction Off-Gas Treatment	Machine shops, Bulk chemical distribution	Soil (1,300 cy) to a depth of 30 feet	VOCS (TCE, DCE, PCE)	Operational; Completion planned Summer 1995	PRP lead/Federal oversight; Hydrogeo-Chem (sub to Conestoga-Rover s & Associates)	Margaret Guerriero 312-886-0399
9	Prewitt Abandoned Refinery, NM (09/30/92) See also Bioremediation (Ex Situ), Other Technologies	Soil vapor extraction with Air Sparging	Crude oil refinery	Soil (quantity unknown)	Organics (NAPLs)	Predesign	PRP lead/Federal oversight	Monica Chapa-Smith 214-655-6780
vo	Petro-Chemical Systems, Inc., OU 2, TX (09/06/91) See also Other Technologies	Soil vapor extraction with air flushing and air sparging of groundwater	Petroleum refining and reuse	Soil (300,000 cy) to a depth of 30 feet	VOCs (BTEX), SVOCs (Naphthalene)	Predesign; PD completion planned Summer 1995	PRP ead/Federal oversight	Chris Villareal 214-655-6758
۷	Chemplex (OU 2), IA (05/12/93)	Soil vapor extraction	Landfill	Soil (350,000 cy)	VOCs (Benzene, TCE)	Predesign; Negotiations With PRPs ongoing	Federal Lead/Fund Financed	Nancy Johnson 913-551-7703

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

State, Spe	i i i	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
McGraw Edison, IA Soil vapor Former (09/24/93) extraction manufacturing		Former manufactur	ing unit	Soil (quantity unknown)	VOCs (TCE)	Predesign; Unilateral Order for RD/RA is prepared	Federal Lead/Fund Financed	Pauletta France 913-551-7701
Coleman Operable Unit Soil vapor Formerly vehicle 29th and Mead, KS extraction manufacturing, currently heating air conditioning equipment manufacturing		Formerly manufactucurrently currently air condiment equipment manufactu	Formerly vehicle manufacturing, currently heating, air conditioning equipment manufacturing	soil (2,000,000 cy)	VOCs (TCE, 1,1,1-TCA, DCE, Vinyl chloride, Toluene)	Predesign; PD completion planned Fall 1994; Soil vapor system already in place. ROD calls for expansion of the system	PRP lead/Federal oversight; Groundwater Technologies, Inc.	Ken Rapplean 913-551-7769
Hastings GW Soil vapor Industrial metal Contamination extraction finishing/cleani (Colorado Ave)*, NE (09/28/88)		Industria	Industrial metal finishing/cleaning	Soil (42,700 cy)	VOCs (PCE, TCE, DCE, TCA)	In design; Design completion planned Fall 1994	PRP lead/Federal oversight; ENSR (design contractor)	Darrel Sommerhauser 913-551-7711 Richard Schlenker (NE) 402-471-3388
Hastings GW Soil vapor Former grain Contamination (Far-Mar extraction storage area Co.)*, NE (09/30/88)		Former (storage (fumigar	grain area nts)	Soil targeting layers at 35 ft and 110 ft	VOCs (Carbon tetrachloride, Ethylene dibromide)	In design; Design completion planned Fall	PRP Lead/Federal oversight; Burns & McDonald	Susan Hoff 913-551-7786
Hastings GW Soil vapor Former grain contamination, Well extraction storage area No. 3*, NE (09/26/89)		Former storage (fumiga	grain area nts)	Soil 1 acre down to 120 feet deep	VOCs (Carbon tetrachloride)	Completed; Operational from 7/92 to 5/93	Federal lead/Fund Financed; Morrison Knudsen	Diane Easley 913-551-7797

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Lead Agency Contacts/Phone and Treatment	Contractor (if available)	PRP Lead/Federal 913-551-7733 oversight;	USDA Jeff Lead/Federal Weatherford Oversight 913-551-7695 Mary Hansen (Argonne National Lab) 708-972-4938	PRP Jim Berkley lead/Federal 303-293-1817 oversight; ENSR	PRP/State George Dancik oversite under 303-293-1506 RCRA; Geraghty Charles Johnson & Miller 303-692-3348	DOE Lead/Federal 303-294-1081 Oversight DOE Scott Grace ERP; Woodward (Rocky Flats) Clyde, Roy F. 303-966-7199 Weston, Layne
Status#		In design; Design completion oplanned Summer	ntional; etion ed 2001; utional	In design; PF Design (completion ov planned Summer 1994	In design; PR Design ov completion RC planned Summer & 1994	Operational; DOE Completion Lear planned Summer Over 1995 Cly Cly
Key Contaminants Treated		VOCs (DCA, DCE, TCE, PCE)	VOCs (Carbon tetrachloride, Chloroform)	VOCs (PCE, TCE)	VOCs (TCE)	VOCs (TCE, PCE, Carbon tetrachloride)
Media (Quantity)		Soil targeting a depth of 25 - 40 feet	Soil (160,000 cy) up to 240,000 cy(5 acres, 20-30 ft deep)	Soil (360,000 cy) to 35 ft deep	Soil Less than one acre, depth unknown	Soil (25,000 cy)
Site Description		Electroplating, Galvanized pipes for irrigation Systems	Grain storage (fumigants)	Chemical sales and distribution, spillage at tank farm	Aerospace equipment manufacturer - bulk storage facility	Former nuclear weapons research and development, production, and plutonium reprocessing
Specific Technology		Soil vapor extraction with air flushing will address hot spots only	Soil vapor extraction	Soil vapor extraction with air flushing will recirculate treated emissions	Soil vapor extraction	Soil vapor extraction
Site Name, State, (ROD Date)		Lindsay Manufacturing, NE (09/28/90)	Waverly Groundwater Contamination, NE (09/26/90)	Chemical Sales Company, OU 1*, CO (06/27/91)	Martin Marietta (Denver Aerospace), CO (09/24/90) See also Thermal Desorption	Rocky Flats OU 2, Interim Remedial Action Plan, CO (08/10/92)
Region		2	~	œ	ω	œ

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

sy Contacts/Phone nent (if	Stacey Eriksen 503-294-1083 basco, James Smith Wson, (Rocky Mtn Arsenal) 503-289-0249	Erna Acheson 303-294-1971 OHM	David Ostrander 303-293-1530	Robert Riccio ral 415-744-2369 ; -Rover L. y &	Emily Roth 415-744-2367 Jeff Dhont 415-744-2363 Winifred Au (AZ) 510-251-2888 (Ext.2126)
Lead Agency and Treatment Contractor (if available)	U. S. Army lead; Roy F. Weston, Ebasco, Harding Lawson, Woodward Clyde	Federal lead/Fund Financed; OHM	PRP Lead/Federal oversight	PRP lead/Federal oversight; Conestoga-Rover s, Errol L. Montgomery & Ass., Inc.	Federal lead/Fund Financed; CHZM HILL
Status#	Completed; Operational from 7/91 to 12/91	Operational; Completion planned Fall 1994; Removed 70 tons to date	Predesign; PD completion planned Spring 1995	In design; Design completion planned Spring 1995; Pilot-scale study completed	In design
Key Contaminants Treated	VOCs (TCE, Ethylbenzene, Toluene)	VOCs (TCE, PCE, Methylene chloride, Chloroform)	VOCs (Styrene), PAHs (Naphthalene)	vocs (1,1-DCE, 1,1,1-TCA, 1,2-DCE, 1,1-DCA, TCE, 1,2-DCB)	VOCS (TCE, PCE, DCE, 1,1,1-TCA)
Media (Quantity)	Soil (70,000 cy) 100 feet radius and 60 feet deep	Soil (38,000 cy)	Soil (15,000 cy)	Soil Approximately 10 acres	Soil (quantity unknown)
Site Description	Motor pool area	Pesticide manufacturing/use/ storage, Refinery	Coal gasification	Industrial Landfill	Dry cleaners, Eletroplating, Industrial Landfill
Specific Technology	Soil vapor extraction with air flushing	Soil vapor extraction	Soil vapor extraction	Soil vapor extraction	Soil vapor extraction
Site Name, State, (ROD Date)	Rocky Mountain Arsenal OU 18, interim response, CO (02/26/90)	Sand Creek Industrial OU 1*, CO (09/29/89)	Utah Power and Light/American Barrel, UT (07/07/93)	Hassayampa Landfill*, AZ (08/15/92)	Indian Bend Wash Area, AZ (09/27/93)
Region	ω	œ	ω	٥	0.

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Contacts/Phone	ont -2363	Fred Schauffler 415-744-2359 Jeff Kulon (AZ) 602-207-4181 Hotline 602-207-4360	.2370	2407 2407 am L. (USAF) 6486
Contact	Jeff Dhont 415-744-2363	Fred Schauffi 415-744-2359 Jeff Kulon (A 602-207-4181 Hotline 602-207-4360	Craig Cooper 415-744-2370	Raman Mendoza 415-744-2407 Dr.William L. Harris (USAF) 602-988-6486
Lead Agency and Treatment Contractor (if	PRP lead/Federal oversight; mixed funding	PRP lead/State oversight; Dames and Moore	PRP lead/Federal oversight; Metcalf & Eddy - South Area, Malcome Pirnie	USAF (EPA Oversite); Earth Technologies
Status#	In design; Pilot project under the Superfund Accelerated Cleanup Model initiative, schedules may	In design; Design completion planned 1995; Pilot system operational but full scale technology still being evaluated	Operational	Operational; Operation began 3/94
Key Contaminants Treated	VOCs (PCE, TCE, TCA)	VOCs (TCA, TCE, DCE, PCE,, Ethylbenzene)	VOCs (DCE, TCE, MEK, Acetone)	VOCs (Benzene 4, Dichlorobenzene, 1,2-DCA Ethyl Benzene), SVOCs
Media (Quantity)	Soil maximum depth - 90 ft	Soil 60 ft radius to a depth of 25 feet	Soil (271,200 cy) North: 1,200 cy; South: 270,000 cy, 60 ft deep	Soil (54,000 cy)
Site Description	Dry cleaners, Electroplating, Industrial Iandfill, Municipal landfill	Manufacturing facility	Defense related manufacturing	AFB, Flight Training Base
Specific Technology	Soil vapor extraction May vary technology at different facilities	Soil vapor extraction	Soil vapor extraction	Soil vapor extraction Bioenhancement
Site Name, State, (ROD Date)	Indian Bend Wash, South Area, OU 1, AZ (09/12/91)	Motorola 52nd Street, AZ (09/30/88)	Phoenix-Goodyear Airport Area (North & South Fac), AZ (09/26/89)	Williams AFB, (OU2), AZ (12/30/92) See also Bioremediation (In Situ)
Region	٥	0-	0.	٥

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Contacts/Phone	Helen McKinley 510-744-1889 Steve Hill (CA) 510-286-0433	Elizabeth Adams 415-744-2235 James Boarer (Canonie) 415-744-2231 Thomas Jones (Fairchild) 415-960-0822	Elizabeth Adams 415-744-2235 James Boarer (Canonie) 415-960-1640 Thomas Jones (Fairchild) 415-960-0822	Mark Johnson 510-286-0305	Steve Hill (CA) 510-286-0433
Lead Agency and Treatment Contractor (if available)	PRP lead/State oversight; Canonie Engineering	PRP Lead/Federal oversight; Canonie Engineering	PRP lead/Federal oversight; Canonie Engineering	PRP lead/State oversight	PRP lead/State oversight; Terra Vac
Status#	Completed; operational from 1/89 to 5/90	Design completed but not installed; Installation planned October 1994	Design completed but not installed; Installation planned October 1994	Predesign; PD completion planned Fall 1994	Operational; Completion planned Spring 2001
Key Contaminants Treated	VOCs (TCA, 1,1-DCE, Freon-113, Isopropyl alcohol, PCE), Xylene)	VOCs (TCE, PCE, Vinyl Chloride, DCA, DCE, Freon), SVOCs (Phenol)	VOCs (TCE, PCE, Vinyl Chloride, DCA, DCE, Freon), SVOCs (Phenol)	VOCS (PCE, Acetone, MEK, Benzene)	VOCs (TCA, Acetone, Freon, Isopropyl Alcohol, Xylenes)
Media (Quantity)	Soil (42,000 cy)	Soil (quantity unknown)	Soil (50,000 cy)	Soil (quantity unknown)	Soil (24,000 cy)
Site Description	Semiconductor manufacturing	Semiconductor manufacture and metal finisher	Semiconductor manufacturing, Metal finishing facility	Manufacturing	Computer manufacture
Specific Technology	Soil vapor extraction with air flushing	Soil vapor extraction	Soil vapor extraction	Soil vapor extraction with air flushing	Soil vapor extraction
Site Name, State, (ROD Date)	Fairchild Semiconductor (San Jose)*, CA (03/20/89)	Fairchild Semiconductor/MTV-1*, CA (06/09/89)	Fairchild Semiconductor/MTV-11*, CA (06/30/89)	Hexcel, CA (09/21/93) See also Bioremediation (In Situ), Other	Iechnotogies IBM (San Jose)*, CA (12/15/88)
Region	٥	٥	٥	٥	٥

Remedial Actions: Site-specific Information By Technology Through FY 1993 Table A-1

Contacts/Phone	Elizabeth Adams 415-744-2235 Eric Madera 408-522-7048 Michael Maley (CA) 510-450-6159	Marie Lacey 415-744-2234 Roshy Mozafar (CA) 510-286-1041	Marie Lacey 415-744-2234 Steve Morse (CA) 510-286-0304 Roshy Mozafar 510-286-1041	Mike Gill 415-744-2383	Darrin Swartz-Larson 415-744-2233
Lead Agency and Treatment Contractor (if	PRP lead/Federal oversight; Weiss Associates	State lead/Fund Financed	State lead/Fund Financed; Levine-Fricke (Siemens)	DOE lead/Federal	Federal lead/Fund Financed; URS
Status#	In design; Operation planned Spring 1995	Completed	Operational; Ongoing at Siemens, completed at Intersil Fall	In design	Predesign; Design to Degin Summer
Key Contaminants Treated	VOCS (TCE, PCE, Vinyl chloride, DCA, DCE, Freon), SVOCS (Xylene)	VOCs (TCE, 1,1,1-TCA, Xylene)	VOCs (TCE, 1,1,1-TCA, Xylene)	VOCs (Fuel hydrocarbons)	VOCs
Media (Quantity)	Soil (3,000 cy)	Soil (quantity unknown)	Soil (quantity unknown)	Soil (quantity unknown)	Soil (50,000 cy)
Site Description	Semiconductor manufacturing	Semi conductor manufacturing	Semiconductor manufacturing	Research and development facility	Drum recycling business
Specific Technology	Soil vapor extraction	Soil vapor extraction	Soil vapor extraction	Soil vapor extraction	Soil vapor extraction
Site Name, State, (ROD Date)	Intel, Mountain View*, CA (06/09/89)	Intersil, CA (09/27/90)	Intersil/Siemens, CA (09/27/90)	Lawrence Livermore National Laboratory, CA (07/15/92)	Lorentz Barrel and Drum (OU 1), CA (08/26/93)
Region	٥	6	6	6	6

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Contacts/Phone	Cecil Felix (CA) 510-286-1249	Cecil Felix (CA) 510-286-1249	Cathy Mooremery 415-744-2243	Joanne Cola 415-744-2238	Elizabeth Adams 415-744-2235 Eric Madera (PRP) 415-966-7772	Marlin Mezquita 415-744-2393 Dan Osburn (SAD) 916-388-4344
Lead Agency and Treatment Contractor (if available)	State lead/Fund Financed; Pacific Environmental Group	State lead/Fund Financed; Harding Lawson & Associates	PRP lead/Federal oversight	PRP lead/Federal oversight; Canonie	PRP lead/Federal oversight; Groundwater Technology Inc.	U.S.Army (IRP)/EPA Oversite; OHM
Status#	Operational; Completion planned Fall 1996; Started operation in Spring 1993	Operational; Completion planned Fall 1996	In design	Predesign; PD completion planned Winter 1994	In design; Installation planned to start January 1996	Operational; Completion planned Fall 1994; operational since Spring
Key Contaminants Treated	VOCS (PCE, TCE, TCA), PAHS	VOCS (PCE, DCE, Toluene, Ethylbenzene, Xylene), SVOCS	VOCs (Methlyene chloride, DCA, Benzene, Toluene, Ethylbenzene)	VOCs (TCE, PCE, Chlorobenzene, BTEX)	VOCS (TCE, TCA, DCE), SVOCS (Phenol)	VOCs, SVOCs
Media (Quantity)	Soil (3,400 cy)	Soil (quantity unknown)	Soil (quantity unknown)	Soil (64,000 cy)	Soil (15,000 cy)	Soil (16,900 cy)
Site Description	Semiconductor manufacturing	Semiconductor manufacturing	Petroleum refining and reuse, ; petroleum pumping station	Petroleum refining and reuse	Semiconductor manufacturing, Metal refinishing and aircraft maintenance	Electro-Optics equipment repair, metal plating & Treatment painting
Specific Technology	Soil vapor extraction	Soil vapor extraction	Soil vapor extraction	Soil vapor extraction	Soil vapor extraction	Soil vapor extraction
Site Name, State, (ROD Date)	Monolithic Memories/AMD - Arques, Subunit 2, CA (09/11/91)	National Semiconductor (Monolithic Memories), CA (09/11/91)	Pacific Coast Pipeline, CA (03/31/92)	Purity Oil Sales OU 2, CA (09/30/92)	Raytheon, Mountain View*, CA (06/09/89)	Sacramento Army Depot (Burn Pits OU), CA (03/29/93)
Region	0	6	٥	6	6	٥

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Contacts/Phone	Paul Townsend (USACE Sacramento) 916-557-6947 Dan Oburn (Sacramento Army Depot) 916-388-4344 Marlin Mezquita	Darrin Swartz-Larson 415-744-2233 Kevin Graves (CA) 510-286-0435	Marie Lacey 415-744-2234 Steve Morse (CA) 510-286-0304 Kevin Graves (CA)	Sean Hogan 415-744-2236 Steve Hill (CA) 510-286-4833
lead Agency and Treatment Contractor (if available)	Army (USACE)/DoD Financed - IRP Program; Terra Vac	PRP lead/State oversight; Weiss & Associates	RWQCB; David Keith Todd Engineers	PRP lead/State oversight; Levine - Fricke
Status#	Completed; Operational from 8/92 to 1/93	Operational; Although ROD was signed in FY91, PRP has operated the remedy for several years	Operational	Operational; Completion planned Winter 1997
Key Contaminants Ireated	VOCs (PCE, Ethylbenzene and Total Xylenes)	VOCs (TCE, DCE, DCA)	VOCs (TCA, Acetone, Ethylbenzene, Xylene), SVOCs (Dichlorobenzene)	VOCs (TCE)
Media (Quantity)	Soil (150 cy)	Soil (32,000 cy) approximately 1/4 acre down to 20 feet	Soil (quantity unknown)	Soil (7,200 cy)
Site Description	Solvent storage tank at an Army Depot	Semiconductor manufacturing	Solvent recycling facility	Semiconductor manufacturing, Laser manufacturing
Specific Technology	Soil vapor extraction with air flushing	Soil vapor extraction	Soil vapor extraction with heat enhancement	Soil vapor extraction with horizontal wells
Site Name, State, (ROD Date)	Sacramento Army Depot, Tank 2 OU, CA (12/09/91)	Signetics (AWD 901) (TRW), Signetics OU, CA (09/11/91)	Solvent Service, CA (09/27/90)	Spectra Physics, OU 1, CA (03/22/91)
Region	٥	٥	٥	٥

Remedial Actions: Site-specific Information By Technology Through FY 1993 Table A-1

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
6	Van Waters and Rogers, CA (09/30/91)	Soil vapor extraction	Chemical packaging facility	Soil (quantity unknown)	VOCS (PCE, TCE, TCA)	Operational; since Fall 1993	PRP lead/State oversight; Van Waters and Rogers	Marie Lacey 415-744-2234 Susan Gladstone (CA) 510-286-0840
6	Watkins-Johnson*, CA (06/29/90)	Soil vapor extraction	Semiconductor manufacturing	Soil (quantity unknown)	VOCS (DCE, TCA, TCE)	Being installed; operation planned Fall 1994	PRP lead/Federal oversight; Watkins	Кау Lawrence 415-744-2289
01	Eielson Air Force Base*, AK (09/29/92) See also Bioremediation (In Situ)	Soil vapor extraction	Tactical air support installation Airplane fueling and maintenance	Soil (quantity unknokm)	VOCs (JP-4), SVOCs (petroleum hydrocarbons, diesel fuel)	Operational	Federal Facility Lead/DERA Funded; EA Engineering	Mary Jane Nearman 206-553-6642 Rielle Markey (AK) 907-451-2117 Capt. Max Gandy
10	Commencement Bay/S. Tacoma Charnel/Well 12A*, LM (05/03/85)	Soil vapor extraction	Solvent recycler/ paint manufacturer	Soil (100,000 cy) to 35 ft deep	VOCS (PCE, TCE, TCA)	Operational; Completion planned Fall 1999	Federal Lead/Fund Financed; AND Technologies, Inc.	Kevin Rochlin 206-553-2106
5	Fairchild AFB Priority 1 cu/s (cu 1) Craig Rd LF., vA (02/13/93)	Soil vapor extraction	Landfill	Soil (945,700 cy)	VOCS (TCE)	In design; 60% design completed. Anticipate construction to start by 10/94	Federal Facility, Air Force Lead/Federal Oversite; Engineering-Sci ence, Inc.	Cami Grandinetti 206-553-8696

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if	Contacts/Phone
							available)	
10	Fort Lewis Military Res. Lf 4 & Sol. Refined Coal, WA (09/24/93) See also Soil Washing, Other Technologies	Soil vapor extraction with Air Sparging	Military municipal landfill	Soil (quantity unknown)	VOCS (PCE, TCE, DCE, Vinyl Chloride)	In design; Pilot study in design	Federal Facility, Army lead/Federal Oversight; USACE	Rob Kiveit 206-753-9014

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Soil Washing

Site Name, State, Specific Site (ROD Date) Technology	Á	Site	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
King of Prussia, NJ Soil washing Waste processing (09/28/90) using water with facility washing agents as an additive		Waste proce facility	ssing	Soil, Sludge, and Sediments combined (19,200 cy)	Metals (Chromium, Copper, Nickel)	Completed; operational 6/93-10/93	PRP Lead/Federal oversight; Alternative Remedial Technologies, Inc.	Kim O'Connell (temporary contact) 212-264-8127
Myers Property, NJ Soil washing Pesticide (09/28/90) coupled with manufacturing/ See also dechlorination storage Dechlorination	5	Pesticide manufactur storage	ing/use/	Soil (48,000 cy), Sediments (500 cy)	Metals (Cadmium, Lead, Arsenic, Copper)	In design; Design completion planned Spring 1996	PRP Lead/Federal oversight; Metcalf & Eddy (Design)	John Prince 212-264-1213
Vineland Chemical, OU Soil Washing Pesticide 1 and OU 2, NJ manufacturing/ (09/29/89) storage See also In situ Flushing		Pesticide manufactur storage	ing/use/	Soil (62,000 cy)	Metals (Arsenic)	In design; Design completion planned January 1995	Federal lead/Fund Financed; Ebasco (Design)	Matthew Westgate 212-264-3406 Steve Hadel (USACE - Kansas City) 816-426-5221
GE Wiring Devices, PR Soil washing Wiring services (09/30/88) using water with facility KI2 solution as an additive,		Wiring ser facility	rvices	Soil and sludge combined (5,500 cy)	Metals (Mercury)	In design; Design completion planned Spring 1995	PRP Lead/Federal oversight; Morrison Knudsen Corporation (Design)	Caroline Kwan 212-264-0151
Cabot Carbon/Koppers, Soil washing Wood preserving, FL (09/27/90) followed by Pine tar and See also bioremediation (Ex of fines manufacturing Situ), Bioremediation (In Situ)		Wood prese Pine tar turpentine manufactu	erving, and e ing	Soil (6,400 cy)	SVOCs (PCP), PAHs, Metals (Arsenic, Chromium)	In design; Design completion planned Fall 1994	PRP lead/Federal oversight	Patsy Goldberg 404-347-6265

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Soil Washing (continued)

ī ī					
Contacts/Phone	Tony Best 404-347-6259	Jon Bornholm 404-347-7791	Dave Wilson 312-886-1476 FTS-886-1476	Russ Hart 312-886-4844	Cynthia Kaleri 214-655-6772
Lead Agency and Treatment Contractor (if available)	Federal Lead/Fund Financed	Federal lead/Fund Financed	PRP Lead/Federal oversight; Seacore Science & Engineering (Design)	PRP lead/Federal oversight; Weston, Inc.(prime contractor), Bergmann USA (subcontractor)	PRP lead/Federal oversight; McLaren/Hart (Design)
Status#	In design; Remedy being reconsidered; further site characterizati on is underway	Design completed but not installed; Construction to begin Summer 1995	Predesign; PD completion planned Spring 1995	Predesign; PD completion planned 1995; Bench-scale study underway	In design; Design completion planned Fall 1995
Key Contaminants Treated	VOCS, PCBs, PAHs, Metals (lead)	PAHs (Creosote), Metals (Copper, Chromium, Arsenic)	Metals (Lead, Mercury)	PAHS	SVOCs (PCP), Dioxins, PAHs
Media (Quantity)	Soil and Sludge combined (57,000 cy)	Soil (24,000 cy) up to 26,000 cy	Soil (1,800 cy)	Soil (80,000 cy)	Soil (20,400 cy), Sludge (425 cy)
Site Description	Waste oil recycler	Wood preserving	Solvent recovery, Auto parts manufacturing	Wood preserving	Wood preserving
Specific Technology	Soil washing followed by bioremediation of fines	Soil washing using water only may be followed by s/s	Soil washing ex situ preceded by vacuum extraction (in situ)	Soil washing followed by bioremediation of fines	Soil washing followed by incineration of residuals
Site Name, State, (ROD Date)	Whitehouse Waste Oil Pits (amended ROD)*, FL (06/16/92) See also Bioremediation (Ex Situ)	Cape Fear Wood Preserving, NC (06/30/89) See also Bioremediation (Ex Situ)	Zanesville Well Field, OH (09/30/91) See also Soil vapor extraction	Moss-American*, WI (09/27/90) See also Bioremediation (Ex Situ)	Arkwood, AR (09/28/90)
Region	7	, ,	ر. د	ī.	٧

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Soil Washing (continued)

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
9	Koppers/Texarkana*, TX (09/23/88) See also In situ Flushing	Soil washing using water with a surfactant as an additive,	Wood preserving	Soil (19,400 cy)	PAHs (Benzo(a)pyrene, Creosote), Organics (NAPLs), Metals (Arsenic)	In design	PRP lead/Federal oversight; ENSR (Design)	Ursula Lennox 214-655-6743
9	South Cavalcade Street*, TX (09/26/88) See also In situ Flushing	Soil Washing	Wood preserving	Soil (11,000 cy)	PAHs (Benzo(a)pyrene, Benzo(a)anthracen e, Chrysene)	In design; Design completion planned Summer 1994	PRP Lead/Federal oversight	Glenn Celerier 214-655-8523
6	Koppers Company, Inc. (Groville Plant), CA (04/04/90) See also Bioremediation (In Situ)	Soil Washing	Wood preserving	Soil (200,000 cy)	SVOCs (PCPs), Dioxins, PAHs	In design; Remedy being reconsidered	PRP Lead/Federal oversight	Fred Schauffler 415-744-2359
10	Gould, Inc.*, OR (03/31/88)	Soil washing followed by s/s of solid residuals	Battery recycling/ disposal	Soil (11,000 cy), Solids (90,000 cy) Battery casings	Metals (Lead)	Operational; Completion planned Summer 1995; Operation started Fall 1993	PRP lead/Federal oversight; Canonie Environmental	Chip Humphries (EPA Oregon operat.) 503-326-2678 Mike Moran (Portland USACE) 503-326-4192
10	Naval Submarine Base, Bangor Site A, OU 1, WA (12/06/91)	Soil Washing	Federal facility, ordnance detonation	Soil (7,100 cy)	Ordnance compounds (TNT, RDX, DNT)	Being installed; operation planned to begin 9/94	Federal Facility, Navy Lead/Federal Oversite; OHM Remediation Services Corp.	Jeff Rodin 206-553-4497 Chris Drury (Navy) 206-396-5984

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Solvent Extraction

11								
Site Name, State, (ROD Date)		Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
Norwood PCBs, MA (09/29/89)	A	Solvent extraction	PCB capacitor manufacturing/ testing	Soil (50,000 cy), Sediments (2,000 cy)	PCBs, PAHs	In design; Design completion planned Summer 1994	Federal lead/Fund Financed	Bob Cianciarulo 617-573-5778
0'Connor*, ME (09/27/89)		Solvent extraction (may be followed by s/s for lead)	Salvage and electrical transformer recycling	Soil and Sediments combined (23,500 cy)	PCBs, PAHs	In design; Design completion planned September 1995	PRP lead/Federal oversight	Ross Gilleland 617-573-5766
Carolina Transformer, NC (08/29/91)	sformer,	Solvent extraction (may be followed by s/s)	Transformer repair	Soil (9,000 cy)	PCBs	In design; Design completion planned Spring 1995	Federal lead/Fund Financed	Luis Flores 404-347-7791
United Creos((09/29/89)	United Creosoting*, TX (09/29/89)	Solvent extraction (Critical fluid extraction followed by funcineration of	Wood preserving	Soil (85,000 cy) With "tar mats" combined	SVOCs (PCP, trace dioxins/furans), PAHs	Design completed but not installed; Installation scheduled for Summer 1995	State lead/Fund Financed; C.F. Systems	Earl Hendrick 214-655-8519 LaReine Pound (TX) 512-239-2437

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Thermal Desorption

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
-	Cannon Engineering/Bridgewate r, MA (03/31/88)	Thermal aeration (vapors captured on carbon)	Chemical waste storage and incineration facility	Soil (11,000 cy)	VOCs (TCE, Vinyl Chloride, Benzene, Toluene)	Completed; Operational from 5/90 to 10/90	PRP lead/Federal oversight; Canonie Engineering	Richard Goehlert 617-573-5742
-	Re-Solve*, MA (09/24/87)	Low temperature thermal treatment	Chemical reclamation facility	Soil (22,500 cy)	VOCS, PCBs	Operational; Completion planned Fall 1994	PRP lead/Federal oversight; Chemical Waste Management, Inc.	Joe Lemay 617-573-9622
-	McKin*, ME (07/22/85)	Thermal aeration (vapors captured on carbon)	Waste storage/Transfer & recycle facility.	Soil (11,500 cy)	VOCS (TCE, BTX)	Completed; Operational from 7/86 - 2/87	PRP lead/Federal oversight; Canonie Engineering	Sheila Eckman 617-573-5784
-	Ottati & Goss, NH (01/16/87)	Thermal aeration	Drum storage/ disposal	Soil (16,000 cy)	VOCs (TCE, PCE, DCA, Benzene)	Completed; Operational from 6/89 to 9/89	PRP lead/Federal oversight; Canonie Engineering	Stephen Calder 617-573-9626
2	Industrial Latex, OU 1, NJ (09/30/92)	Low temperature thermal treatment	Manufacturing of chemical adhesives and natural and synthetic rubber compounds	Soil and Sediments combined (34,700 cy)	PCBs	Predesign; PD completion planned Fall 1994	Federal lead/Fund Financed	Romona Pezzella 212-264-8216

Remedial Actions: Site-specific Information By Technology Through FY 1993 Table A-1

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if	Contacts/Phone
N	Lipari Landfill Marsh Sediment*, NJ (07/11/88)	Low temperature thermal treatment	Industrial landfill, Municipal landfill	Soil (57,000 cy) marsh soil	VOCs (Chlorinated hydrocarbons, BTEX), SVOCs (Bis-2-chloroethy lether)	Being installed; Operation to begin Summer 1994; completion scheduled for late 1994/early	PRP lead/Federal oversight; Sevenson Environmental Services (prime contractor), Williams Environmental (subcontractor)	Fred Cataneo 212-264-9542
2	Metaltec/Aerosystems, OU 1 - Soil Treatment*, NJ (06/30/86)	Low temperature thermal treatment (vapors captured on carbon)	Metal manufacturing	Soil (9,000 cy)	VOCs (TCE)	Operational; Completion planned December 1994	Federal Lead/Fund Financed; USACE conducting design	Courtney McEnery 212-264-1251 Mark Keast (USACE, Kansas City) 816-426-5832
2	Reich Farms*, NJ (09/30/88)	Thermal desorption (vapors will be captured on carbon)	Drum storage/ disposal	Soil (8,600 cy)	VOCS (TCE, PCE, TCA), SVOCS (Phthalates)	In design; Design completion planned Summer 1994	PRP lead/Federal oversight	Kim O'Connell (temporary contact) 212-264-8127
Ν	Universal Oil Products, NJ (09/30/93)	Thermal Desorption	Chemical processing plant	Soil (23,000 cy)	VOCs, PCBs, PAHs	In design; Design completion planned Summer 1995	State lead/Fund Financed	Rich Puvogel 212-264-9836 Gwen Barunus (NJ) 609-633-1455

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Thermal Desorption (continued)

one	, m 0	Σ <u>i</u>	n 19	13	57 57
Contacts/Phone	John Prince 212-264-1213 George Buc (USACE-NY District) 908-389-3040	Christos Tsiamis 212-264-5713	Dick Kaplin 212-264-3819	Christos Tsiamis 212-264-5713	Lisa Carson 212-264-6857
Lead Agency and Treatment Contractor (if available)	Federal lead/Fund Financed; Rust Remedial Services, Inc.	Federal lead/Fund Financed; EBASCO (prime contractor), Williams Environmental Services (subcontractor)	Federal Lead/Fund Financed; USACE conducting design	PRP Lead/Federal oversight	PRP lead/Federal oversight
Status#	Completed; Operational from 5/93 to 10/93	Operational; Completion planned December 1994	In design; Design completion planned Summer 1994	In design; Design completion planned January 1995	In design; Design completion planned December 1995
Key Contaminants Treated	VOCs (TCE, PCE)	VOCs (PCE, TCE)	VOCs (PCE)	VOCs (TCE, DCE, Benzene, Xylene)	PCBs
Media (Quantity)	Soil (4,000 cy)	Soil (20,000 cy)	Soil (3,000 cy)	Soil (8,000 cy) (Depth varies from 12 to 15 feet).	Sediments (14,500 cy)
Site Description	Manufacture/ electroplating of plane parts	Thermostat manufacturing	Paint∕ink formation	Former hazardous waste storage facility	Active aluminum production plant
Specific Technology	Low temperature thermal treatment (followed by offsite s/s and disposal)	Low temperature thermal treatment	Low temperature thermal treatment	Low temperature thermal treatment	Thermal Desorption
Site Name, State, (ROD Date)	Waldick Aerospace Devices (QU 1)*, NJ (09/29/87)	American Thermostat, NY (06/29/90)	Claremont Polychemical - Soil Remedy, NY (09/28/90)	Fulton Terminals, Soil Treatment, NY (09/29/89)	Reynolds Metals Company Stucy Area Site, (RMC), NY (09/27/93)
Region	2	2	2	~	2

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

i					
	Contacts/Phone	Kevin Willis 212-264-8777	Lisa Wong 212-264-9348	Dennis Orenshaw 215-597-7858 Brian Hoke (Letterkenny) 717-267-8483	Patrick McManus 215-597-8257
	Lead Agency and Treatment Contractor (if	Federal lead/Fund Financed; CDM (Design)	PRP Lead/Federal oversight	Federal lead/Fund Financed; McLaren Hart	PRP ead/Federal oversight
	Status#	In design; Design completion planned early	Predesign; PD completion planned Fall	Operational; Completion planned November 1994; Site work began 7/93; full-scale clean up 12/93; start up again in	Predesign; PD completion planned Fall 1994; Negotiating Consent Decree. PRP conducting a treatability study for SVE
	Key Contaminants Treated	VOCs (Chloroform, TCE, PCE, Toluene), SVOCs (Phthalates)	VOCS (DCE, TCE), PCBs	VOCs (TCE, DCE, Ethylbenzene, Xylene)	VOCS (TCE, PCE, MEK), SVOCS
	Media (Quantity)	Soil (2,400 cy) 2,000 - 8,000 cy	Soil (60,000 cy)	Soil (15,000 cy)	Soil (24,000 cy)
	Site Description	Industrial landfil, Municipal landfill	Solvent recovery, Chemical reclamation	Munitions manufacturing/ storage, Drum storage	Wastewater disposal lagoons
	Specific Technology	Thermal Desorption	Low temperature thermal treatment	Low temperature thermal treatment (may need s/s for metals after thermal desorption)	Thermal Desorption
Site Name State	(ROD Date)	Sarney Farm, NY (09/27/90)	Solvent Savers, NY (09/30/90)	U.S.A. Letterkenny SE Area, OU1*, PA (06/28/91)	William Dick Lagoons, OU 3, PA (03/31/93)
Region		2	رم.	M	M

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Spe	Specific Sit	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
Thermal Desorption		Wood preserving	Soil (13,000 cy)	SVOCs (PCP), Dioxins, PAHs	In design; Design completion planned late 1995	PRP Lead/Federal oversight	Andy Palestini 215-597-1286
Low temperature thermal treatment		Wood preserving	Soil (25,000 cy)	SVOCs (PCP)	In design; Design completion planned Spring 1995; Treatability studies planned	Federal Lead/Fund Financed	Andy Palestini 215-597-1286
Low temperature thermal treatment		Agriculture applications, Pesticide manufacturing/use/ storage, Other organic chemical manufacturing	Soil and sludge combined (130,000 cy) to 20 ft depth	VOCs, Biocides	Predesign; PD completion planned summer 1996; Treatability studies ongoing; final decision on technology will be made late 1994	PRP Lead/Federal oversight	Charles King 404-347-6262
Thermal		Agriculture applications, Pesticide manufacturing/use/ storage, Other organic chemical	Soil and other waste combined (17,000 cy)	VOCs (Chloroform, Toluene, Xylene), Biocides (Atrazine, Diazinon, Prometryn, Simazine)	Predesign; Treatability studies ongoing; final decision on technology will be made late 1994	PRP Lead/Federal oversight	Charles King 404-347-6262

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if	Contacts/Phone
4	Smith's Farm Brooks, OU 1*, KY (09/30/91) See also Dechlorination	Thermal desorption Anaerobic low temperature thermal treatment	Drum storage/ disposal	Soil (18,500 cy)	PCBs, PAHs (Carcinogenic PAHs)	Operational; Completion planned October 1994; Began operation in	PRP Lead/Federal oversight; Canonie (prime contractor), SoilTech	Tony DeAngelo 404-347-7791
4	Aberdeen Pesticide Dumps, (OU 1 & OU 4), NC (09/30/91)	Thermal Desorption	Pesticide manufacturing/use/ storage	Soil (124,000 cy)	Biocides (DDT, Toxaphene, Benzene Hexachloride)	April 1994 Predesign; PD completion planned Spring 1995	(subcontractor) PRP lead/Federal oversight	Kay Crane 404-347-7791 Randy McElven (NC) 919-733-2801
4	Potter's Septic Tank Service Pits, NC (08/05/92)	Low temperature thermal treatment	Waste petroleum and septic tank sludge disposal pit	Soil (10,100 cy), Sludge (quantity unknown)	VOCs (BTEX), PAHS (Carcinogenic PAHs, Naphthalene)	In design; Design completion planned Summer	Federal Lead/Fund Financed	Beverly Hudson 404-347-7791
4	Sangamo/Twelve-Mile/Ha rtwell PCB, OU 1, SC (12/19/90)	Thermal desorption (vapors captured on carbon)	Capacitor manufacturer	Soil and Sludge combined	PCBs	In design; Design completion planned late	PRP Lead/Federal oversight	Bernie Hayes 404-347-7791 Richard Haynes (SC) 803-734-5487
4	Wamchem*, sc (06/30/88)	Thermal desorption using catalytic oxidation of	Former dye manufacturing plant	Soil (2,200 cy)	VOCs (BTX)	Completed; operational during 8/93	PRP Lead/Federal oversight; Four Seasons	Terry Tanner 404-347-7791

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Contacts/Phone	Derek Matory 404-347-7791	Deborah Orr 312-886-7576	Bill Bolen 312-353-6316	Bill Bolen 312-353-6316	Dion Novak 312-886-4737	Jim Hahnenberg 312-353-4213
Lead Agency and Treatment Contractor (if available)	PRP lead/Federal oversight	PRP lead/Federal oversight; Harding Lawson	PRP lead/Federal oversight; Soiltech	In negotiation	PRP lead/Federal oversight	PRP lead/Federal oversight; Weston Services, Inc
Status#	In design; Design completion planned Fall 1994	In design; Design completion planned Summer 1994	Completed; Operational from 1/92 to 7/92	Predesign; Schedule pending completion of negotiation with PRPs	Predesign; Scheduled to end Summer 1994	Completed; Operational from 9/92 to 6/93
Key Contaminants Treated	VOCs, SVOCs (PCP), Biocides (Chlordane, Heptachlor)	VOCs (TCA, DCE, DCA, TCE, PCE, Vinyl chloride, Benzene, 4-methyl 2 pentanone), SVOCs (Naphthalene), PCBs	PCBs	VOCs, PCBs	VOCs, SVOCs (PAHs,Pyridine)	Organics (MBOCAs, 4, 4'- Methylene, Bis-2-chloroanili ne)
Media (Quantity)	Soil (5,000 cy)	Soil (6,000 cy)	Soil and sediments combined (16,000 cy)	Soil (quantity unknown)	Soil (10,000 cy)	Soil and sludge combined (5,100 cy)
Site Description	Pesticide manufacturing/use/ storage, Other organic chemical manufacturing	Industrial landfill, Municipal water supply	Marine products manufacturing	Other organic chemical manufacturing, Solvent recovery	Wood preserving, Coal tar refinery and synthethic chemical plant	Other organic chemical manufacturing
Specific Technology	Thermal desorption, residual soil and vapor to be dechlorinated	Low temperature thermal treatment followed by s/s for lead	Low temperature thermal treatment	Low temperature thermal treatment	Thermal Desorption	Low temperature thermal treatment With off-site disposal of residuals
Site Name, State, (ROD Date)	Arlington Blending & Packaging Co., OU 1*, TN (06/28/91)	Acme Solvent Reclaiming, Inc. OU 3 & OU 6, IL (12/31/90) See also Soil vapor extraction	Outboard Marine/Waukegan Harbor, OU 3*, IL (03/31/89)	American Chemical Services*, IN (09/30/92) See also Soil vapor extraction	Reilly Tar and Chemical, IN (09/30/93)	Arderson Development (ROD Amendment)*, MI (09/30/91)
Region	7		ľ	រេ	5	ю

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if	Contacts/Phone
ī.	Carter Industries*, MI (09/18/91)	low temperature thermal treatment (followed by s/s of soils and incin. of PCB oil)	Scrap metal salvager	Soil (20,000 cy)	PCBs	In design; Design completion planned Summer 1994; Installation planned to begin Fall	PRP Lead/Federal oversight; Connestoga-Rove rs Associates	Jon Peterson 312-353-1264
ī,	Duell-Gardner Landfill, MI (09/07/93)	Low temperature thermal treatment	Industrial landfill, Municipal landfill	Soil (1,800 cy)	SVOCs (Bis(2-ethyl hexyl)Phthalate), Biocides, PCBs	Predesign	State lead/Fund Financed	Karla Johnson 312-886-5993
5	Ott/Story/Cordova Chemical, MI (09/27/93)	Thermal Desorption	Other inorganic chemical manufacturing	Soil (7,800 cy), Sediments (quantity unknown)	VOCs, Biocides	In design; Design; completion planned Summer 1995	Federal Lead/Fund Financed; USACE (design)	Betty Lavis 312-886-4784
۲۵	Pristine (ROD Amendment)*, OH (03/30/90) See also Soil vapor extraction	Thermal desorption Anaerobic thermal treatment	Industrial waste treatment facility	Soil (13,000 cy)	SVOCs (Pesticides, PAHs)	Completed; Operational from 9/93 to 3/94	PRP lead/Federal oversight	Thomas Alcama 312-886-7278
۷	Sherwood Medical, NE (09/28/93)	Thermal Desorption	Operating industrial facility	Soil (quantity unknown)	VOCs (TCE, TCA, DCA, Vinyl Chloride)	Predesign	Federal lead/Fund Financed	Steve Auchterlonie 913-551-7778

Table A-1
Remedial Actions: Site-specific Information By Technology Through FY 1993

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
ω	Martin Marietta (Denver Aerospace), CO (09/24/90) See also Soil vapor extraction	Low temperature thermal treatment (followed by s/s of soils and incin. of vapors)	Aerospace equipment manufacturer - bulk storage facility	Soil (2,300 cy)	VOCs (TCE), PCBs	In design; Design completion planned Fall 1994	PRP lead/State oversight; under RCRA; Geraghty & Miller	George Dancik 303-293-1506 Charles Johnson (CD) 303-692-3348
8	Sand Creek Industrial, OU 5*, CO (09/28/90)	Lом temperature thermal treatment	Pesticide manufacturing/use/ storage	Soil (9,500 cy)	Organics (Pesticides)	Operational; Completion planned Fall 1994	Federal lead/Fund Financed; Rust Remedial Services	Erna Acheson 303-294-1971
10	Harbor Island, WA (09/30/93)	Thermal Desorption	General industrial area	Soil (91,000 cy)	VOCs (TPH)	Predesign; Negotiating consent decree agreement with PRP	Federal lead/Fund Financed	Keith Rose 206-553-7721

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Other

Contacts/Phone	Roger Duwart 617-573-9628 Tom Andrews (NH) 603-271-2910	Dave Newton 617-573-9612 Leo Hellested (RI) 401-277-2797	Mel Hauptman 212-264-7681 John Grathwol (NY) 518-457-9280	John Banks 215-597-8555	Richard Watman 215-597-8996
Lead Agency and Treatment Contractor (if available)	PRP lead/Federal oversight	PRP lead/Federal oversight	PRP lead/State oversight	PRP lead/Federal oversight; Remediation Technologies, Western Research Institute	PRP lead/Federal oversight
Status#	Installed but not operational; operation to begin October 1994; completion planned 2011	Predesign; EPA negotiating With PRP	Design completed but not installed	Being installed; planned to be operational August 1994; completion planned January 1995	Predesign; in negotiation
Key Contaminants Treated	VOCs. (PCE, TCA, TCE)	Metals (Arsenic)	VOCs (BTEX), SVOCs, PAHs	PAHs	Metals (Lead)
Media (Quantity)	Groundwater	Soil (1,000 cy)	Groundwater	Soil (9,000 cy) 25-35 ft deep, 100 ft by 80 ft	Groundwater
Site Description	Ball bearing manufacturing	Custom manufacturing facility Industrial and commercial area	Bulk petroleum and hazardous waste storage facility, fuel blending	Coal gasification	Battery recycling/ disposal
Specific Technology	Air sparging	In situ Oxidation	Air sparging	CROW technology using hot water injection to mobilize coal tar	Limestone barrier
Site Name, State, (ROD Date)	South Municipal Water Supply Well*, NH (09/27/89) See also Soil vapor extraction	Peterson/Puritan Inc. (OU 1), RI (09/30/93) See also Soil vapor extraction	Applied Environmental Services, OU 1, NY (06/24/91) See also Bioremediation (In Situ), Soil vapor extraction	Brodhead Creek, OU 1, PA (03/29/91)	Brown's Battery Breaking Site, OU 2, PA (07/02/92) See also Other Technolgoies
Region	-	-	2	м	M

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Other (continued)

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency ard Treatment Contractor (if available)	Contacts/Phone
æ	Brown's Battery Breaking Site, OU 2, PA (07/02/92) See also Chemical Treatment	Fuming gasification	Battery recycling/ disposal	Soil and solids combined (45,000 cy)	Metals (Lead)	Predesign	PRP lead/Federal oversight; negotiations underway	Richard Watman 215-597-8996
м	Saegertown Industrial Area Site, PA (01/29/93) See also Soil vapor extraction	Air sparging	Industrial park (Lord Corp. property)	Groundwater	VOCS (PCE, TCA)	In design; Design completion planned Fall 1995	PRP lead/Federal oversight	Steve Donohue 215-597-3166 Bob Kimball (PA) 814-332-6075
M	Tonolli Corporation, PA (09/30/92)	Limestone barrier	Battery recycling/ disposal	Groundwater	Metals (Lead)	Predesign; PD completion planned Summer 1994	PRP lead/Federal oversight	Linda Dietz 215-597-6906
4	Rochester Property, SC (08/31/93)	Air sparging	Disposal site	Groundwater	VOCs (TCE, bis (2-ethylhexyl phthalate))	Predesign; Design to be completed Winter 1994	PRP lead/Federal oversight	Sheri Panabaker 404-347-7791
In .	Allied them & Ironton Coke, OU 2*, OH (12/28/90) See also Bioremediation (Ex Situ), Bioremediation (In Situ)	Land farming magnetically enhanced	Coke manufacturing	Soil (23,000 cy)	PAHS	In design; Operations to begin Spring 1995	PRP lead/Federal oversight; IT Corporation (Design), Black & Veetch (subcontractor)	Tom Alcamo 312-886-7278
v 0	Prewitt Abandoned Refinery, NM (09/30/92) See also Bioremediation (Ex Situ), Soil vapor extraction	Air sparging	Crude oil refinery	Groundwater	Organics (NAPLs)	Predesign	PRP lead/Federal oversight	Monica Chapa-Smith 214-655-6780

Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993

Other (continued)

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
vo	Petro-Chemical Systems, Inc., OU 2, TX (09/06/91) See also Soil vapor extraction	Air sparging	Petroleum refining and reuse	Groundwater to a depth of 30 feet	VOCs (BTEX), SVOCs (Naphthalene)	Predesign; PD completion planned Summer 1995; pilot study planned Fall 1994	PRP lead/Federal oversight	Chris Villareal 214-655-6758
٥	Hexcel, CA (09/21/93) See also Bioremediation (In Situ), Soil vapor extraction	Air sparging	Manufacturing	Groundwater	VOCs (PCE, Acetone, MEK, Benzene)	Predesign; PD completion planned Fall 1994	PRP lead/State oversight	Mark Johnson 510-286-0305
10	Fairchild AFB, Priority 1 OU's (OU 2) FT-1, WA (07/14/93) See also Bioremediation (In Situ)	Air sparging	Fire training area	Groundwater	VOCs (Benzene)	In design; Treatability studies/pilot test 5/94	Federal Facility, Air Force lead/Federal oversight	Carmela Grandinetti 206-553-8696
10	Fort Lewis Military Res. Lf 4 & Sol. Refined Coal, WA (09/24/93) See also Soil Washing,	Air sparging	Military municipal Landfill	Groundwater	VOCs (PCE, TCE, DCE, Vinyl chloride)	In design; Pilot study in design	Federal facility, U.S. Army lead/Federal oversight	Bob Kievit 206-753-9014

TABLE A-2

REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR

Table A-2 shows NPL sites at which established treatment technologies have been selected as part of the remedy. Established treatment technologies include: incineration, solidification/stabilization, and others. The sites are ordered by fiscal year to give some initial information on the status of implementation: in general, earlier RODs have progressed furthest in design and construction.

TABLE A-2
REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR

	STATE	пО	5 5	AK	ΥŢ	MO	CO		7.6	MA	MA	Z :	Zi	F.A	KY	S	,	SC	N.	Z	X	HO	OH	•	MA	NY	PA	Ĭ,	}	2	į W	Į.	HO	N. N.	ΔA	A P	۷ <u>.</u>	OTAT
On-Site Incineration (continued)	SITE NAME	Summit National Limited Diences	Old Midland Desday	Old Mildfally Floducts Drie Defining	Dilo Relining	I mes Beach	Broderick Wood Products		Baird and McGnira	Wells Corr	Des Carls Described	bog Creek Farm	De Rewal Chemical*	Consider of the Disposal	Afterday Brooks*	Aberdeen Festicide Dumps/	Fairway	Celanese*	American Creosote Works	Ninth Avenue Dump	New Brighton/Arden Hills	Big D Campground	Laskin/Poplar Oil		New Bedford*	Sarney Farm	M.W. Manufacturing*	Sangamo/Crab Orchard*	National Wildlife Refuge	Fisher Calo	Bofors Nobel	Springfield Township Dump*	Pristine (Amendment)	University of Minnesota	Vertac	Teverbens Wood Descerting	Missouri Flectric Works	IALISSOULL LAVOLLIV VY ULAS
-uO	REGION	v	, ч	o v) t	_	∞		-		٦ ,	۱ (7 6	۰ د	4 <	†	•	4	4	5	5	S	5		-	2	3	5		S	S	S	ς,	. 5	۷	· v	, r	
	FY	×) O	0 00 00 00	000	99	∞ ∞		68	8	8	60	608	6 8	60	6	Ġ	89	68	88	68	68	68		8	8	8	8		96	8	8	8	8	06	8 6	8 8	;
	-			1.4.5.00																																		
	STATE	Ź	Z	£ =	1 2	۷,		MA	AL] =	Z	NIII.	Į ž	477		IN	T d	Z 1	王 :	သူ	MI	НО	ΓA	ΓY		MA	Z	NY	DE	MD		PA	WV	臣	П	<u>Z</u>	W	НО
On-Site Incineration	SITE NAME	Bog Creek Farm	Bridgenort Rental & Oil	ACME Solvent	MOTCO	001011		Baird & McGuire	Mowbray Engineering	LaSalle Electrical Utilities	Arrowhead Refinery	Fields Brook	Sikes Disnosal Pit			Ottati & Goss	Davis I jourd Woote	Table Liquid Waste	I ower Chemical	Geiger/C&M Oil	Rose Township Dump	Laskin/Poplar Oil	Bayou Bonfouca	Cleve Reber		Rose Disposal Pit	Lipari Landfill	Love Canal	Delaware Sand & Gravel	Southern Maryland Wood	Treating	Drake Chemical/Phase III	Ordnance Works Disposal	Zellwood Groundwater	LaSalle Electrical Utilities	Fort Wayne Reduction	Forest Waste Products	Pristine
	REGION	2	2	5	. \	•		Н	4	5	٠	v	· ·			_	٠.		4 -	4	5	S	9	9	•	 (5	7	က	က		e	က	4	5	5	5	2
	FY	85	85	85	8	}		98	98	98	98	9	98			87	. X	0 0) t	87	87	87	87	81	Č	∞ (× (œ	8	88		88	88	88	88	88	88	80

ì

* Residuals to be treated with soldification/stabilization.

TABLE A-2 (continued)
REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR

	STATE	E E	X S	PA	A 2	II W	MO	íN	S	5	MA	Z	Z	NY	DE	Y ?	PA W	님	ΤX	MO		MO		MA	ME
Off-Site Incineration (continued)	SITE NAME	Swope Oil & Chemical Byron/Johnson Salvage Yard	Triangle Chemical Woodbury Chemical	Drake Chemical/Phase II	Westline	Spiegelberg Landfill	Ellisville Area/Bliss	Williams Property	Sodyeco	Complex	Cannon Engineering/Plymouth	Ewan Property	Reich Farms	Brewster Well Field	Wildcat Landfill	Berks Sand Pit	Douglassville Disposal Fike Chemical	Belvidere Municipal	S. Calvacade St.	Minker/Stout/Romaine Creek	(R&S)	Syntex		W.R. Grace (Acton Plant)	O'Connor Pinette's Salvage Yard
Off-S	REGION	2 %	9 &	en e	n v	יא ני	7	2	4 v	>		7	2	2	m	m (m m	5	9	7	:	7		П	
	FY	85 85	85 85	98	0 0 0 0	8 8	98	87	% %	ò	88	8	88	88	8	æ 8	× ×	88	88	88	;	88		68	68
	_																								
	STATE	NE	WA	,	PA PA	AL.	НО	AL	Ħ	ı Y		PA	СА		MN	•	ΓA	AR			STATE	ţ	M	НО	WA
-Site Incineration (continued)	SITE NAME STATE	Hastings Groundwater Contamination (East Industrial Park)	Yakima Pit		Whitmoyer Labs, Inc. OU3 FA		onton Coke	mmunition Plant	(Operable Unit 1)	ervices		Seagertown Industrial PA	ĮĮII	(South Marble Top Road)	lis&Gibbs Bell Lumber		American Cresote Works LA (Winnfield Plant)		Off Site Incineration		SITE NAME STATE		Berlin & Farro Liquid Incineration	ar Oil	ng Phase I
On-Site Incineration (continued)		ngs Groundwater unination (East Industrial	Yakima Pit	CIAC T E A		Ciba Geigy Corp.	onton Coke	mmunition Plant	(Operable Unit 1)	seo		Seagertown Industrial		(South Marble Top Road)	mber	& Pole			Off Site Incineration				rro Lıquıd	Laskin/Poplar Oil	ng Phase I

^{*} Residuals to be treated with soldification/stabilization.

Off-Site Incineration (continued)

TABLE A-2 (continued)
REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR

Off-Site Incineration (continued)

ъ	>	• >		• •	• •	1	τ.) '	<u>.</u>	, .	. –	. –	l	H	5	۔ ا	C	. 0	C) C	· F-	· •	1	Į.	: .<	(_	, _{>}		. [-	•	đ	_	
STATE	2	Ź	PA	70	; >	:	Ž) Z	; =	2	Σ.	W		ō	1	Y	Ž	WO	Ž	Ŭ	<u> </u>) Č	_	WA					Z	A A	Z	I.	ξ		E	1
SITE NAME	Circuitron	Mattiace Petrochemical	Brodhead Creek	Fastern Diversified Metals	Dixie Cavern County I andfill	Aberdeen Pesticide Dumps	(Amendment)	Wrigley Charcoal	Acme Solvent Reclaiming Inc	Main Street Wellfield	Thermo Chem	Carter Industries	Summit National Liquid Disposal	Service (Amendment)	Petrochemical (Turtle-Bayou)	Peoples Natural Gas	Ellisville Area Site	Ellisville Area (Amendment)	Kem-Pest Laboratories	Broderick Wood Products	Hill AFB	Advanced Micro Devices Inc.	Commencement Bay - Nearshore/	Tideflats	Northwest Transformer - Mission	Pole			Ellis Property	Fike Chemical	American Chemical Services	Ogden Defense Depot (Operable	Ullit 3) Westinghouse Electric (Sugaring)	Westinghouse Liceuse (Sumity Vale	Pacific Hide & Fur Recycling	(Amendment)
REGION	7	7	ო	m	m	4		4	. د	٧.	\$	5	5		9	7	7	7	7	∞	∞	6	10		10				7	ю	ν.	∞	o	`	10	}
FY	91	91	91	91	91	91		91	91	91	91	91	91		91	91	91	91	91	91	91	91	91		91				35	26	25	35	ક	1	92	
STATE	NY	PA	PA	MS	П	11	Z	MI	НО	TX	8			ರ	HN	Z	Ż	Ż	NY	NY	VA	AR	AR	AR	OK	- VI		MO	8	-	UT		M.	2	- IX	ľ
SITE NAME	Claremont Polychemical	M.W. Manufacturing	Whitmoyer Laboratories	Newsom Brothers Old Reichold	Cross Brothers Pail	Outboard Marine/Waukegan Harbor	Wedzeb	Cliff/Dow Dump	Alsco Anaconda	United Creosoting	Woodbury Chemical			Beacon Heights Landfill	Kearsarge Metallurgical	FAA Technical Center	Hooker Chemical-Ruco Polymer	Sayreville landfill	Mattiace Petrochemicals	Sealand Restoration	Greenwood Chemical*	Arkwood	Jacksonville Municipal Landfill	Rogers Road Municipal Landfill	Hardage/Criner (Amendment)	Fairfield Coal Gasification	Plant	Shenandoah Stables	Martin Marietta (Denver Aerospace)	Sand Creek Industrial	Ogden Defense Depot		Union Chemical	Curcio Scrap Metal	Swope Oil	Waldick Aerospace Devices, Inc.
REGION	2	3	9	4	\$	S	S	5	S	9	œ			1	1	2	2	2	2	2	m	9	9	9	9	7		7	∞	∞	∞			2	2	2
FY	68	68	68	68	6 8	68	68	68	68	68	68		;	8	8	8	8	8	8	8	8	8	8	8	8	8		8	8	8	8		91	91	91	91

^{*} Residuals to be treated with soldification/stabilization.

Off-Site Incineration (continued)

TABLE A-2 (continued) REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR

Off-Site Incineration (continued)

SITE NAME														
SITE	4													
REGION														
FY														
-		 												
TATE	А	R		ME	PA	VA	NC	AR	MT	8		T	WA	WA
SITE NAME STATE	U.S. DOE Idaho National Engineering Lab (Operable Unit 23)	Davisville Naval Construction RI	Battalion Center	Pinettes Salvage Yard ME	Hunterstown Road PA	Pentokil Virginia Wood Preserving VA	Koppers (Morrisville Plant) NC	Vertac	Montana Pole and Treating MT	Rocky Mountain Arsenal (OU29) CO	Utah Power and Light/American	Barrel	Hanford 1100-Area (DOE) WA	Harbor Island-Lead WA
	10 U.S. DOE Idaho National ID Engineering Lab (Operable Unit 23)	ction	Battalion Center			Preserving				(OU29)	8 Utah Power and Light/American			

^{*} Residuals to be treated with soldification/stabilization.

REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR TABLE A-2 (continued)

W WA WA ME N N N A STATE S E S FL Pacific Hide & Fur Recycling Solidification/Stabilization (continued) Cape Fear Wood Preserving Hebelka Auto Salvage Yard Mid-State Disposal Landfill Kassouf-Kimerling Battery Commencement Bay/NTF W.R. Grace (Acton Plant) Ordnance Works Disposal Brown Wood Preserving Midwest Manufacturing/ Selma Pressure Treating Industrial Waste Control Frontier Hard Chrome Douglassville Disposal Bailey Waste Disposal SITE NAME Smith Farm Brooks DeRewal Chemical Velsicol Chemical Marathon Battery Marathon Battery Sullivan's Ledge Amnicola Dump French Limited Alladin Plating Fike Chemical **Brio Refining** Chemtronics North Farm Craig Farm ove Canal O'Connor York Oil Celanese Flowood Gould REGION 6 2 2 2 2 9 9 9 7 2 2 8 8 8 8 4 888888 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 \mathbf{F} STATE WA MA Ϋ́ GA **压压阻** SK A A A A PA H PA PA MASSCHER Charles George Land Reclamation Western Processing/Phase II Palmetto Wood Preserving Sand Spring Petrochemical Solidification/Stabilization Pepper's Steel & Alloy Forest Waste Products Sapp Battery Salvage Northern Engraving Davis Liquid Waste **Bioecology Systems** Waldick Aerospace **Burrows Sanitation** SITE NAME Marathon Battery Chemical Control Mid-South Wood General Refining Geiger/C&M Oil independent Nail Myers Property Liquid Disposal Bruin Lagoon Davie Landfill Bruin Lagoon Cleve Reber Gold Coast Gurley Pit Complex REGION 4 5 9 9 n 9 44 8 FY 82 8 85 85 85

TABLE A-2 (continued)
REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR

Solidification/Stabilization (continued)

Solidification/Stabilization (continued)

STATE	CO	CA	CA)OR		***	MA	WY:	MA	Z	Ż	Z	Z	Z ;	Z i	an,	OW S	P.A	PA	PA S	PA P.	PA	V	۲ ×	AF.	Y 5	KX) (2 (2 (3 (4)	Z C	;	S I S	Z		Z	Z	IL	MI	Z
SITE NAME	Rocky Mountain Arsenal (OU 17)	J.H. Baxter	Teledyne Wah Chang Albany (TWCA) OR			Silresin Chemical	Sullivan's Ledge	Union Chemical	Asbestos Dump	Nascolite Corp.	NL Industries	Roebling Steel	Waldick Aerospace Services Inc.	White Chemical Corp.	Halby Chemical	Mid-Atlantic Wood Preservers	Eastern Diversified Metals	Hebelka Auto Salvage Yard	Whitmoyer Lab (OU3)	Whitmoyer Lab (002)	U.S.A. Letterkenny SE	First Piedmont Quarry 719	Saunders Supply	Interstate Lead Co.	USAF Robins Air Force Base	Maxey Flats Nuclear Disposal	Golden Strip Septic Tank	Aberdeen Pesticide Dump	(Amendment)	Carolina Transformer	Arlington Blending and	Packaging Co.	Oak Ridge OU3	Wrigley Charcoal	Acme Solvents	Carter Industries	Cimarron Mining Corp.
REGION	∞	6	10		,		-	—	2	2	7	7	2	7	ო	ς.	m	က	က	m ·	က	m	m	4	4	4	4	4		4	4		4	4	٠	5	9
FY	8	8	8		,	91	91	91	91	91	91	91	91	91	91	91	91	91	91	91	91	91	91	91	91	91	91	91		91	91		91	91	91	91	91
STATE	 Z	Z	MI	TX	XI	ΥI	CA	CA			MA	Z	PA	VA	VA	FL	王	王		田		H	Æ	五		П		Z	MI	WI	AR	AR	MO			8	
SITE NAME STATE	MIDCO I		Chemicals		ervices	Vogel Paint & Wax	lant)				New Bedford MA	75	cturing		Greenwood Chemical		Cabot/Koppers FL	s Wood Preserving		Kassourf-Kimerling Battery FL	Disposal	Schuylkill Metal	ad	Zellwood Groundwater FL	Contamination (Amendment)		ę,		Springfield Township Dump MI		fill	Ifil		ter Contamination		ver	Aerospace)
			Chemicals	Pesses Chemical				Purity Oil Sales					M.W. Manufacturing		Greenwood Chemical	62nd Street Dump	ı				Disposal		ad		Contamination (Amendment)						Jacksonville Municipal Landfill	Rogers Road Municipal Landfill	Shenandoah Stables	ter Contamination	Coot Industrial Dark)	ver	` `

TABLE A-2 (continued)
REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR

Solidification/Stabilization (continued)

																				i																		
	STATE		LA		OK	C	8 8	#3)UT	20)	MT	CA					А	_			MA	Z	N	PA	VA	用	NC		NC		СА	SC	G G	SC	1)FL	3)FL	FL	
Solidification/Stabilization (continued)	SITE NAME		Gulf Coast Vacuum Services	(Operable Unit 1)	Oklahoma Refining	Broderick Wood Products	Denver Radium (Operable Unit 8)	Portland Cement (Kiln Dust #2 & #3) []T	Rocky Flats (USDOE) (Operable	Unit 4)	Silver Bow CreekButte Area	Khone-Poulenc/Zoecon	Bunker Hill Mining and	Metallurgical Complex	Pacific Hide & Fur Recycling	(Amendment)	U.S. DOE Idaho National	Engineering Lab (Operable Unit 22)			Salem Acres	American Cyanamid	FMC-Dublin Road	Hunterstown Road	Rentokil Virginia Wood Preserving	Anodyne	Bypass 601 Groundwater	Contamination	Bypass 601 Groundwater	Contamination (Amendment)	Cedartown Industries	Geiger (C&M Oil) (Amendment)	Hercules 009 Landfill	Kalama Specialty	Peak Oil/Bay Drum (Operable Unit 1)FL	Peak Oil/Bay Drum (Operable Unit 3)FL	Reeves Southeastern Galvanizing	(Operable Out 1)
Solidif	REGION	,	9	•	9 (∞	∞	∞	∞	Ć	x 0 (م	10	;	10	;	10			-	٦ ,	7 (7 (7 •	m ·	4 .	4	•	4	,	4	4	4	4	4 -	4 .	4	
	FY	8	76	8	2 8	76	92	6	35	8	3 8	3 8	76	8	76		75			8	5	ç, ç	£ 5	S 8	£ 8	£ 8	દ	2	Ç	8	£ 8	93	S 8	93	£ 5	દ્ર ક	5	
																					_																	
	STATE	AI.		I.A.	Į.		5 5	5		MA	i z	Ž	Ż	ΛV	ρΑ	NW.	^ ~	VA	PA	且	Į.	Ē	Ž) ه ۲ ت	5)	Ē	1	Ā	Į.	T IV	1411 TI		I M	NN NN	OK	OK OK	
Solidification/Stabilization (continued)	SITE NAME	IE Dupont de Nemours & Co Inc		Shaw Avenue Dump	Anaconda Co. Smelter	FMC (Fresno Plant)	Valley Wood Preserving	Sim viscos i mos i de la companya de		PSC Resources	Cosden Chemical Coatings	Facet Enterprises	Preferred Plating	Abex	C & D Recycling	Fike Chemical	Paoli Rail Yard	Rhinehart Tire Fire Dumo	Tonolli	Agrico Chemical	Ciba-Geigy (McIntosh Plant)	Florida Steel	JFD Electronics/Channel Masters	Marine Corps Logistics Base	Savannah River (USDOF)	(Operable Unit 1)	Whitehouse Waste Oil Pits	(Amendment)	Electrovoice	H. Brown Company	Peerless Plating	Savanna Army Denot	Spickler Landfill	Tar Lake	Cal West Metals	Double Eagle Refinery	Fourth Street Abandoned Refinery	
Solid	REGION	7	7	7	œ	6	6			1	2	2	2	m	т	ო	m	ю	m	4	4	4	4	4	4		4		'n	S	5	5	S	5	9	9	9	
	Ŧ	91	91	91	91	91	91			35	35	22	23	23	25	23	23	35	25	25	25	32	25	32	25		35	;	25	35	35	26	35	25	35	35	35	

TABLE A-2 (continued) REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR

	STATE											
Solidification/Stabilization (continued)	SITE NAME											
Solidifica	REGION											
	FY											
	-								ı			
	STATE		s LA Pits MO	(Operable CO	an Barrel UT	<u> </u>	uit WA	able Unit 1)OR		ETECHNOLOGY	Soil Aeration In situ Flamming Soil Aeration Chemical Soil Aeration Soil Aeration Neutralization Neutralization Neutralization	Soil Aeration
(continued)		mical	cal Services uarry/Plant	Arsenal (Op	ight/Americ	v Denot	rm & Cond	epot (Opera		STATETE	TX CA CA C	SC
Solidification/Stabilization (continued)	SITE NAME	Reilly Tar & Chemical (Indianapolis Plant)	Pab Oil & Chemical Services Weldon Spring Quarry/Plant/Pits (USDOE)	Rocky Mountain Arsenal Unit 28)	Utah Power & Light/American Barrel UT	McColl Sacramento Arm	American Crossa	Umatilla Army Depot (Operable Unit 1)OR	Other	SITE NAME	Triangle Chemical West Virginia Ordnance Bendix Flight System Arkansas City Dump Intel, Mountain View Raytheon, Mountain View Howe Valley Landfill Fike Chemical Double Eagle Refinery Fourth Street Abandoned Refinery	Kalama Specialty
Soli	REGION	S	9 9	∞	∞	∞ 0	10	10		REGION SIT	3 Wee 3 Wee 3 Wee 4 Ark 4 Hor 6 Doo 6 For	
	FY	93	93	93	93	8 8	g 8	93		FY RE		33 25

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix B Innovative Technologies at Superfund Removal Actions

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE B-1

REMOVAL ACTIONS: SITE-SPECIFIC INFORMATION BY INNOVATIVE TREATMENT TECHNOLOGY

Table B-1 is the principal part of this chapter. It contains the most detailed, site-specific information for removal sites for which innovative treatment technology has been selected. The columns of Table B-1 present the following information:

Region

This column indicates the EPA Region in which the site is located.

Site Name, State, Action Memo Date

This column identifies the site and the operable unit for which an innovative treatment technology was selected.

An action memorandum documents the selection of remedy in the removal program. The date shown in this column is the date on which an action memorandum was signed by an EPA official.

An asterisk (*) in this column indicates that a treatability study has been completed for this technology at the particular site.

Specific Technology

The second column describes the specific technology selected within a general category of innovative treatment. For example, within the general category of bioremediation, the specific technologies of land treatment or slurry-phase bioremediation may be chosen.

Site Description

This column provides information on the industrial source of the contamination at the site and allows analysis of the selection of innovative technologies by site type. For example, by using the information in this column, one may determine the most frequently selected innovative technology for wood preserving sites.

Media (quantity)

This column provides information on the media and quantity of material to be treated. If a treatment is used in situ, an effort has been made to include the maximum depth of the treatment to provide the reader with another parameter significant to the application.

TABLE B-1 (Continued)

Key Contaminants Treated

The major contaminants or contaminant groups targeted by the treatment technology are shown in this column. There may be other contaminants as well that will be treated. Other contaminants that may be present, but that are not being addressed by the listed technology, are not included.

Status

signed but design has not begun. During predesign, EPA may be negotiating with the potentially responsible parties, procuring the services of a design firm, or collecting information (such as conducting a treatability study) needed in the design stage. If a project is This column indicates the status of the application of the innovative treatment technology. Predesign indicates that the ROD has been in design, the engineering documents needed to contract for and build the remedy are being prepared. If a remedy is being installed, the lead agency has signed a contract for the construction work needed to set up the remedy. The remedy is operational if it is completely installed and it is now being operated as a treatment system; the remedy is completed if the goals of the ROD or decision document for that treatment technology have been met and treatment has ceased.

One purpose of this column is to identify opportunities for vendors to become involved in the next phase of the projects. Whenever possible, the season and year that the current phase will end is given. This information is identified as the "completion planned" date.

Lead Agency, Treatment Contractor

to manage the design or construction. Whichever agency or organization is responsible for managing the remedy, the contractor responsible for the actual installation and operation of the innovative technology also is identified, if the lead agency has selected a The "lead" indicates whether federal dollars are to be used to implement the remedy (Fund lead) or the potentially responsible parties will conduct the remedy with EPA/State oversight (PRP lead). If a remedy is Fund lead, EPA may manage the design/construction through its contractors, the state may manage the project with Superfund dollars, or the U.S. Army Corps of Engineers (USACE) may act for EPA contractor.

Contacts/Phone

This final column provides the names and telephone numbers of useful contacts for the site or technology. The first name listed is usually the EPA on-scene coordinator (OSC) responsible for the site. If a remedy is being managed by the state, the name and phone number of the state RPM also is provided. Information on any other useful contacts is provided.

Table B-1 Removal Actions: Site-specific Information By Technology Through FY 1993

Bioremediation (Ex situ)

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
2	GCL Tie and Treating, NY Emergency Response	Composting	Wood preserving	Soil (4,800 cy)	PAHs (Creosote)	In design; Pilot study completed in Jan 1994	Federal Lead/Fund Financed; ERT/REAC	Joe Cosentino 908-906-6983 Carlos Ramos 212-264-5636
4	Southeastern Wood Preserving, MS Emergency Response (Action Memo signed 09/30/90) See also Soil Washing	Slurry phase (preceded by soil washing)	Wood preserving	Soil (12,000 cy)	PAHs (Creosote)	Completed; September 1994	Federal Lead/Fund Financed; OHM Remediation Services Corp	Don Rigger 404-347-3931
ľ	Indiana Wood Treating, IN Emergency Response (Action Memo signed 10/11/92)	Composting	Wood preserving	Soil (18,000 cy)	PAHs (Creosote)	Operational; Completion planned Fall 1994; After 6 months 8 of 9 compost piles below treatment target levels.	Federal lead/Fund Financed; IT Corporation, CMC, Inc subcontractor	Steve Faryan 312-353-9351
•	MacMillan Ring Free Oil Company*, AR Emergency Response (Action Memo signed 11/09/92)	Solid phase	Petroleum refining	Sediments (38,000 cy)	VOCs (BTEX), PAHS (DAF Float)	Being installed; project completion date planned Falt 1995	Federal lead/Fund Financed; Reidel Environmental Services	Charles Fisher 214-655-2224
7	Scott Lumber, MO Emergency Response (Action Memo signed 07/10/87)	land treatment	Wood preserving	Soil (16,000 cy)	SVOCs (Phenols, PAHs Benzo(a)pyrene)	Completed; Operational from 1987 to Fall 1991	Federal lead/Fund Financed; Remediation Technologies	Bruce Morrison 913-551-5014

Removal Actions: Site-specific Information By Technology Through FY 1993 Table B-1

Bioremediation (Ex situ) (continued)

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
0	Poly-Carb, NV Emergency Response (Action Memo signed 05/14/87) See also Soil Washing	Land treatment	Commercial waste management	Soil (1,500 cy)	SVOCs (Phenols), PAHs (Cresol)	Completed; Operational from 7/87 to 8/88	Federal Lead/Fund Financed; Reidel Environmental Services	Bob Mandel 415-744-2290

Table B-1
Removal Actions: Site-specific Information By Technology Through FY 1993

Bioremediation (In situ)

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Ireated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
4	CSX McCormick Derailment Site, SC Emergency Response See also Soil Vapor Extraction	In situ groundwater	Derailment (30,000 gallon spill)	Groundwater down to 40 feet deep	VOCS (BETX)	Operational	PRP lead/Federal oversight; Kemron	Steve Spurlin 404-347-3931
٥	Baldwin Waste Oil, TX Emergency Response (Action Memo signed 07/01/92)	In situ soil	Waste oil recycler	Soil (550 cy) down to 1 foot	VOCS (BTEX), PAHS (TPH)	Completed; September 1994	Federal lead/Fund Financed; Ecology & Environment, RSKERL (EPA), Reidel	Gary Guerra 214-665-6608
٥	Gila River Indian Reservation, AZ Emergency Response (Action Memo signed 07/31/84) See also Chemical Treatment	In situ soil Preceded by chemical treatment	Orum storage/ disposal	Soil (3,200 cy)	Biocides (Toxaphene, Ethyl and Methyl Parathion)	Completed; Operational from 6/85 to 10/85	PRP lead/Federal oversight	Richard Martin 414-744-2288
٥	Roseville Drums, CA Emergency Response (Action Memo signed 03/03/88)	In situ soil	Midnight dump on dirt road	Soil (14 cy)	SVOCs (Dichlorobenzene, Phenols)	Completed; Fall 1988; Operational from 2/88 to 11/88	Federal lead/Fund Financed	Brad Shipley 415-744-2287

Table B-1 Removal Actions: Site-specific Information By Technology Through FY 1993

Chemical Treatment

	Contacts/Phone	Don Graham 908-321-4345 Steve Brawley (Ensco) 706-278-1195	Dilshad Perera 908-321-4356 Steve Brawley (Ensco) 706-278-1195	Vincent Zenone 215-597-3038 Bonnie Gross 215-597-0491	Ross Powers 313-692-7661
	Lead Agency and Treatment Contractor (if available)	Federal Lead/Fund Financed; Ensco	Federal Lead/Fund Financed; Ensco	Federal lead/Fund Financed; OH Materials	Federal lead/Fund Financed; American Environmental
	Status#	Completed; December 1992; This portion of the site is completed. Remedial action for the whole site will be done by April 1994		6	Completed; Operational from 5/85 to 10/85
	Key Contaminants Treated	Metals (Mercury)	Metals (Mercury)	Organics (Carbon disulfide)	Organic cyanides
	Media (Quantity)	Solids (100 lb)	Solids (100 lb)	Sludge (39,000 gl)	Solids Cyanide tainted X-ray chips
	Site Description	Pesticide manufacturing/use/ storage	Precious metal recovery	Rayon manufacturing facility/ wastewater treatment	Silver recovery facility
	Specific Technology	Chemical Treatment	Chemical Treatment	Chemical Treatment	Oxidation Sodium Hypochlorite
A Particular Control of the Control	Site Name, State, (ROD Date)	Vineland Chemical, NJ Emergency Response (Action Memo signed 09/28/92)	Zschiegner Refining Company, NJ Emergency Response	Avtex Fibers, VA Emergency Response (Action Memo signed 11/14/89)	PBM Enterprises (Van Dusen Airport Service), MI Emergency Response (Action Memo signed 04/10/88)
	Region	2	~	м	ín.

Table B-1 Removal Actions: Site-specific Information By Technology Through FY 1993

Chemical Treatment (continued)

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
60	Mouat Industries*, MT Emergency Response (Action Memo signed 09/20/91)	Reduction using sulfuric acid and ferrous sulfate	Metal ore mining and smelting	Soil (47,000 cy)	Metals (Chromium IV)	Operational; Completion planned Spring 1994; Operation started June 1993	PRP lead/Federal oversight; Baker Environmental	Ron Bertran 406-449-5720
6	Gila River Indian Reservation, AZ Emergency Response (Action Memo signed 07/31/84) See also Bioremediation (In Situ)	Reduction using sodium hydroxide	Drum storage/ disposal	Soil (3,200 cy)	Biocides (Toxaphene, Ethyl and Methyl Parathion)	Completed; Operational from 4/85 to 10/85	Federal lead/Fund Financed	Richard Martin 414-744-2288
6	Stanford Pesticide #1, AZ Emergency Response (Action Memo signed (04/20/87)	In situ	Pesticide manufacturing/use/ storage, Farm equipment storage	Soil (200 cy)	Biocides (Methyl Parathion)	Completed; Operational from 7/87 to 9/87	Federal lead/Fund Financed; Crosby and Overton	Dan Shane 415-744-2286

Table B-1 Removal Actions: Site-specific Information By Technology Through FY 1993

Dechlorination

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if	Contacts/Phone
8	Signo Trading/Mt. Vernon, NY Emergency Response (Action Memo signed 12/19/86)	Dechlorination	Waste management facility warehouse	Sludge (15 gl)	Dioxins (2,3,7,8 TCDD-laden herbicides)	Completed; Completed in 1987	Federal lead/Fund Financed; Galson Research Corp (subcontractor	Charles Fitzsimmons 908-321-6608
_	Crown Plating, MO Emergency Response (Action Memo signed 08/29/89)	Dechlorination	Electroplating	Liquid (55 gl.)	Biocides (silvex; 2,4,5 TP)	Completed; Operational from 10/89 to	Federal lead/Fund Financed	Mark Roberts 913-236-3881

Table B-1 Removal Actions: Site-specific Information By Technology Through FY 1993

In situ Vitrification

Contacts/Phone	Len Zintak 312-886-4246
Lead Agency and Treatment Contractor (if available)	Federal lead/Fund Financed; Geosafe Corp.
Status#	Completed; First full-scale application of in situ vitrification at a hazardous waste site
Key Contaminants Treated	Biocides, Dioxins, Metals (Mercury)
Media (Quantity)	Soil (3,000 cy)
Site Description	Agricultural chemical facility
Specific Technology	In situ Vitrification
Site Name, State, (ROD Date)	Parsons Chemical (ETM Enterprise), MI Emergency Response (Action Memo signed 09/21/90)
Region	īv

Table B-1 Removal Actions: Site-specific Information By Technology Through FY 1993

Soil Vapor Extraction

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
4	Basket Creek Surface Impoundment*, GA Emergency Response (Action Memo signed 04/11/91)	Soil vapor extraction ex situ, used on a soil pile	Surface impoundment used for disposal of solvents	Soil (2,000 cy)	VOCS (TCE, PCE, MEK, MIBK, Toluene, Xylene, Benzene)	Completed	Federal lead/Fund Financed; OHM	Don Rigger 404-347-3931 Extn-6140
4	CSX McCormick Derailment Site, SC Emergency Response See also Bioremediation (In	Soil vapor extraction with air flushing	Derailment (30,000 gallon spill)	Soil (200,000 cy) down to 8 feet deep	VOCs (BETX)	Completed; Operation completed Winter 1993	PRP lead/Federal oversight; Midwest Research Institute	Steve Spurlin 404-347-3931
7	Hinson Chemical, SC Emergency Response (Action Memo signed 11/28/88)	Soil vapor extraction with air flushing	Waste reclaiming facility	Soil (60,000 cy) to a depth of 50 feet	VOCs	Completed; March 1992; Operational from 12/88 to 3/92	Federal lead/Fund Financed; OH Materials	Fred Stroud 404-347-3136
œ	Mystery Bridge Road/Highway 20, OU 2*, WY Emergency Response (Action Memo signed See also Other Technologies	Soil vapor Extraction	Natural gas compressor station	Soil (160,000 cy) approximately 5 acres down to 20 feet	VOCs (Benzene)	Operational	PRP lead/Federal oversight; Adrian Brown Consultants	Lisa Reed 303-293-1515

Table B-1 Removal Actions: Site-specific Information By Technology Through FY 1993

Soil Washing

Contacts/Phone	Don Rigger 404-347-3931	Bob Mandel 415-744-2290
Lead Agency and Treatment Contractor (if available)	Federal lead/Fund Financed; OHM Remediation Services Corp.	Federal lead/Fund Financed; Reidel Environmental Services
Status#	Operational; Completion planned Spring 1994	Completed; Operational 7/87 to 8/88
Key Contaminants Treated	SVOCs, PAHs (Creosote)	SVOCs (Phenols), PAHs (Cresol)
Media (Quantity)	Sludge (quantity unknown), Solids (1,000 cy)	Soil (1,500 cy)
Site Description	Wood preserving	Commercial waste management
Specific Technology	Soil washing (sand removal, followed by bioremediation of fines	Soil Washing
Site Name, State, (ROD Date)	Southeastern Wood Preserving, MS Emergency Response (Action Memo signed 09/30/90) See also Bioremediation (Ex	Poly-Carb, NV Emergency Response (Action Memo signed 05/14/87) See also Bioremediation (Ex Situ)
Region	4	٥

Table B-1 Removal Actions: Site-specific Information By Technology Through FY 1993

Thermal Desorption

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if	Contacts/Phone
							available)	
4	FCX-Washington Site, NC Emergency Response (Action Nemo signed	Thermal Desorption	Pesticide manufacturing/use/ storage	Soil (15,000 cy)	Biocides (Chlordane, Methoxyclor, DDT,	Being installed	Federal lead/Fund Financed	Paul Peronard 404-347-6121
10	Drexler - RAMCOR*, WA Emergency Response (Action Memo signed 09/30/91)	Thermal Desorption	Waste oil recycler	Soil (3,000 cy)	VOCs (BTEX), PAHS (Petroleum hydrocarbons)	Completed; Operational from 7/92 to	Federal lead/Fund Financed; Four	Chris Field 206-553-1674
						8/92	Seasons	•

Table B-1 Removal Actions: Site-specific Information By Technology Through FY 1993

Other

au e	
Contacts/Phone	Lisa Reed 303-293-1515
Lead Agency and Treatment Contractor (if available)	PRP lead/Federal oversight; Adrian Brown Consultants
Status#	Operational
Key Contaminants Treated	VOCs (Benzene)
Media (Quantity)	Soil (160,000 cy)
Site Description	Natural gas compressor station
Specific Technology	Air sparging
Site Name, State, (ROD Date)	Mystery Bridge Road/Highway 20, OU 2*, WY Emergency Response See also Soil Vapor
Region	ထ

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix C Innovative Technologies at Actions Under Other Federal Programs

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE C-1

OTHER FEDERAL PROGRAMS: SITE-SPECIFIC INFORMATION BY INNOVATIVE TREATMENT TECHNOLOGY

Table C-1 is the principal part of this chapter. It contains the most detailed, site-specific information for removal sites for which an innovative treatment technology has been selected. The columns of Table C-1 present the following information:

Region

This column indicates the EPA Region in which the site is located.

Site Name, State

This column identifies the site and the operable unit for which an innovative treatment technology was selected.

An asterisk (*) in this column indicates that a treatability study has been completed for this technology at the particular site.

Specific Technology

within the general category of bioremediation, the specific technologies of land treatment or slurry-phase bioremediation may be The second column describes the specific technology selected within a general category of innovative treatment. For example, chosen.

Site Description

innovative technologies by site type. For example, by using the information in this column, one may determine the most frequently This column provides information on the industrial source of the contamination at the site and allows analysis of the selection of selected innovative technology for wood preserving sites.

Media (quantity)

This column provides information on the media and quantity of material to be treated. If a treatment is used in situ, an effort has been made to include the maximum depth of the treatment to provide the reader with another important parameter regarding the application.

TABLE C-1 (Continued)

Key Contaminants Treated

The major contaminants or contaminant groups targeted by the treatment technology are shown in this column. There may be other contaminants as well that will be treated. Other contaminants that may be present, but that are not being addressed by the listed technology, are not included.

Status

services of a design firm, or collecting information (such as conducting a treatability study) needed in the design stage. If a project is the lead agency has signed a contract for the construction work needed to set up the remedy. The remedy is **operational** if it is complete and it is now being operated as a treatment system; the remedy is **completed** if the goals of the ROD or decision document in design, the engineering documents needed to contract for and build the remedy are being prepared. If a remedy is being installed, This column gives the status of the application of the innovative treatment technology. Predesign indicates that the ROD has been signed but design has not begun. During predesign, EPA may be negotiating with the potentially responsible parties, procuring the for that treatment technology have been met and treatment has ceased.

One purpose of this column is to identify opportunities for vendors to become involved in the next phase of the projects. Whenever possible, the season and year that the current phase will end is given. This information is identified as the "completion planned"

Lead Agency, Treatment Contractor

construction through its contractors, the state may manage the project with Superfund dollars, or the U.S. Army Corps of Engineers (USACE) may act for EPA to manage the design or construction. Whichever agency or organization is responsible for managing the remedy, the contractor responsible for the actual installation and operation of the innovative technology also is identified, if the lead The "lead" indicates whether federal dollars are to be used to implement the remedy (Fund lead) or the potentially responsible parties will conduct the remedy with EPA/State oversight (PRP lead). If a remedy is Fund lead, EPA may manage the design/ agency has selected a contractor.

Contacts/Phone

usually the project manager or point of confact responsible for the site. If a remedy is being managed by the state, the name and This final column gives the names and telephone numbers of useful contacts for the site or technology. The first name listed is

Table C-1 Other Federal Program Actions: Site-specific Information By Technology Through FY 1993

Bioremediation (Ex situ)

Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
	Solid phase	Federal facility	Soil (500 cy)	VOCs (BTEX), PAHS (TPH, Tar)	Completed; Operational from 10/92 to 3/93	Army (USACE)/DoD Financed - IRP Program; CCC, Inc.	Jack Otis 409-766-3161 Domingo Galindo (USACE) 512-884-3385
Former Glasgow AFB, MT	Land treatment	UST removal site	Soil (2,000 cy)	VOCS, PAHs (Petroleum hydrocarbons)	Being installed; Installation completion planned Fall 1994; Design Completed. Expected construction completion date Fall 1994	ARMY (USACE)/DoD Financed FUDS Program	Martin Rasmussen (USACE, Omaha) 402-221-3827 Steve Ott (USACE, Omaha) 402-221-7670
	Land treatment	Fire drill area	Soil (4,000 cy)	VDCs (TCE, MEK), PAHs (Petroleum hydrocarbons)	Completed; Winter 1991	Army (USACE)/DoD Financed - IRP Program	Gail Youngblood 408-242-8017
СA	Bioremediation (Ex Situ) Heap pile bioreactor with aeration and irrigation	Federal facility	Soil (7,000 cy)	PAHs (Petroleum hydrocarbons, Diesel)	Completed; 1989; Pilot-scale project	State Lead/Western Division of NFEC; ENSR	Bill Major 805-982-1808
Ft. Wainwright*, AK	Land treatment Biopile	Federal facility, fuel pipeline, aboveground storage tank	Soil (4,500 cy)	PAHs (Diesel)	Operational	Army (USACE)/DoD Financed - IRP Program; Laidlaw	Diane Soderland 907-271-5083 David Williams (USACE) 907-753-5657

Table C-1
Other Federal Program Actions: Site-specific Information By Technology Through FY 1993

Bioremediation (In situ)

Contacts/Phone	Nate Ellis (DDE) 803-952-4846 Brian Lowry (WSC) 803-725-5181	Steve Escude 210-925-1812	John Cloonan (USACE) 719-526-8004	Helene Takemoto (USACE, pac div) 808-438-6931/ 1776	Mike Steffansmeyer (USACE, Omaha) 402-221-7163
Lead Agency and Treatment Contractor (if available)	DOE Lead/DOE funding; Westinghouse Savannah River Company	Kelly AFB/Air Force Funded; SAIC	Army (USACE)/DoD Financed - IRP; Woodward Clyde	Army (USACE)/DoD Financed - FUDS Program	USACE/Air Force
Status#	Operational; Operation began in 1990	Operational; Completion planned 1994; full scale since 1993; completion in 2 years	Operational; completion date unknown	Operational; Completion expected for Spring 1996	Completed; Operational from 7/91 to 3/92
Key Contaminants Treated	VOCS (TCE, PCE), PAHS ((DNAPLS))	VOCs (JP-4)	VOCs (gasoline)	PAHs (Diesel fuel)	PAHs (Petroleum hydrocarbons)
Media (Quantity)	Groundwater	Soil (8,900 cy)	Soil down to 80 feet	Soil (quantity unknown)	Soil (440 cy) 400 ft by 15 ft down to 2 ft deep
Site Description	Leaking solvent line	Federal facility (hazardous waste facility)	UST remediation	Fuel farm	Federal facility JP-4 Pump House
Specific Technology	In situ ground⊭ater	In situ soil Bioventing	In situ soil Bioventing	Bioremediation (In Situ)	In situ soil
Site Name, State, (ROD Date)	Savannah River DOE, M Area Settling Basin, SC See also Soil Vapor Extraction, Other Technologies	Kelly AFB, Site 1100*, TX See also Soil Vapor Extraction	Ft. Carson*, CO See also Soil Vapor Extraction	Aua Fuel Farm, Aua Village, American Samoa,	Davis Monthan AFB, AZ See also Soil Vapor Extraction
Region	7	۰۵	ω	6	٥

Table C-1 Other Federal Program Actions: Site-specific Information By Technology Through FY 1993

Bioremediation (In situ) (continued)

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
6	Davis Monthan AFB, Site 35, AZ See also Soil Vapor Extraction	In situ soil Bioventing	JP-4 pump house	Soil (63,000 cy)	VOCs (JP-4), PAHS	Being installed; Pilot test Winter 1994	USACE/ Air Force Funded (State Oversite); Engineering Science	Mike Steffanmeyer (USACE, Omaha) 402-221-7163 Karen Odom (USAF) 602-750-5595 Doug Dowrey (ES) 303-831-8100
٥	Seal Beach Navy Weapons Station IR Site 14, CA See also Soil Vapor Extraction	Anaerobic	Federal facility Naval weapons station	Soil (1,700 cy) 100 yd diameter down to 6 feet deep	VOCs (BTEX), PAHs (Petroleum hydrocarbons)	Operational; Operations started in 1989	Navy/DoD Financed - IRP Program; Naval Facility Engineering Center (Stanford	Laura Duchnak (Navy RPM) 619-532-3152 Steve McDonald (Navy) 310-594-7655
11	Naval Communication Station, Scotland,	In situ soil	Diesel fuel storage tanks and piping	Soil apprx.8,608 square feet (800 sq meters)	SVOCs (No.2 Diesel)	Completed; Fall 1985	Naval Civil Engineering Lab/DoD Federal; Polybac	Deh Bin Chan 805-982-4191

Other Federal Program Actions: Site-specific Information By Technology Through FY 1993 Table C-1

Dechlorination

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
6	U. S. Public Works Center, Guam, GU	Dechlorination	Federal facility	Soil (5,500 cy) tons	PCBs	Operational; Completion planned Summer 1995	Navy; Guam EPA D. B. Chan Oversite; IT (Navy) Corp 805-982-419	D. B. Chan (Navy) 805-982-4191

Table C-1 Other Federal Program Actions: Site-specific Information By Technology Through FY 1993

Soil Vapor Extraction

Contacts/Phone	John Farhat (USACE, Omaha) 402-221-7654 Dan Musel (Langley AFB) 804-764-3987	Nate Ellis (DOE) 803-952-4846 Brian Looney (WSRC) 803-725-5181	Ron Stirling (USACE) 402-221-7664	Ron Stirling (USACE) 402-221-7664
Lead Agency and Treatment Contractor (if available)	USACE/Air Force Funded	DOE Lead/DOE Funding; Westinghouse Savannah River Company	USACE/Air Force IRP Program; Ensearch Environmental, Walk Haydel & Associates - Sub	USACE/Air Force IRP Program; IT
Status#	Being installed; Installation completion planned Summer 1994	Operational; Operation of the SVE system began in 1990	In design; Design completion planned Winter 1993; Currently conducting pilot test.	In design; Design completed; Installation and remedation to start in Spring 1994.
Key Contaminants Treated	VOCs (Gasoline)	VOCs (TCE, PCE)	VOCs (Benzene), PAHs (Petroleum Hydrocarbons)	VOCs (Benzene), PAHs (Petroleum Hydrocarbons)
Media (Quantity)	Soil 1.5 acres down to 5feet deep	Soil (450,000 lb), Groundwater down to 200 feet	Soil 2 to 3 acres down to 10 feet	Soil (quantity unknown)
Site Description	Federal facility	Leaking solvent line	Service station (SS - 17)	Former above ground fuel storage tank area (JP-4 and AV Gas spill) (SS-02/05)
Specific Technology	Soil vapor extraction with air flushing	Soil vapor extraction with air flushing with groundwater sparging	Soil vapor extraction may supplement with air injection	Soil vapor extraction Using passive vent and extraction wells.
Site Name, State, (ROD Date)	Langley AFB, IRP Site 28, VA	Savannah River DOE, M Area Settling Basin, SC See also Bioremediation (In Situ), Other Technologies	Holloman AFB, BX Service Station, NM	Holloman AFB, Main POL Area, NM
Region	м	4	•	٥

Other Federal Program Actions: Site-specific Information By Technology Through FY 1993 Table C-1

Soil Vapor Extraction (continued)

-	Site Name State	Specific	Site Door	No. of the state o		1		
(ROD Date)	, state,	Specific Technology	site Description	Media (Wuantity)	key contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
Kelly AFI TX See also Bioremed Situ)	Kelly AFB, Site 1100*, TX See also Bioremediation (In Situ)	Soil Vapor Extraction	Federal facility (hazardous waste facility)	Soil (8,900 cy)	VOCs (JP-4)	Operational; Vacuum extraction done before with bioventing, information the same. Completion in 2 years.	Kelly AFB/Air Force Funded; SAIC	Steve Escude 210-925-1812
Ft. Carse See also Bioremed Situ)	Ft. Carson*, CO See also Bioremediation (In Situ)	Soil Vapor Extraction	UST remediation	Soil down to 80 feet	VOCs (gasoline)	Operational; completion date unknown	Army (USACE)/DoD Financed - IRP; Woodward Clyde	John Cloonan 719-526-8004
Davis Mos See also Bioremed Situ)	Davis Monthan AFB, AZ See also Bioremediation (In Situ)	Soil vapor extraction with bioventing	Federal facility JP-4 Pump House	Soil (63,000 cy)	VOCs (JP-4, Benzene)	In design; Design completion planned Fall 1993; Completion delayed because awaiting funding	USACE/Air Force Funded; Montgomery Watson - Design Contractor	Mike Steffansmeier, USACE Omaha 402-221-7163 Karen Odom Air Force 602-750-5595
Davis Month Site 35, AZ See also Bioremediat	Davis Monthan AFB, Site 35, AZ See also Bioremediation (In Situ)	Soil vapor extraction with bioventing	JP-4 pump house	Soil (63,000 cy)	VOCs (JP-4, Benzene)	In design; Design; completion planned Fall	USACE/Air Force Funded; Montgomery Watson - Design Contractor	Mike Steffansmeier (USACE, Omaha) 402-221-7163

Other Federal Program Actions: Site-specific Information By Technology Through FY 1993 Table C-1

Soil Vapor Extraction (continued)

Contacts/Phone	Jerome Stolinsky (USACE) 402-221-7170 Dan McCafferty (Envirocon) 406-523-1150	Steve Hodge (McClellan AFB) 916-643-0830 Elaine Anderson (McClellan AFB) 916-643-0830 Joseph Danko (CH2M Hill) 503-752-4271	Jeff Kidwell (Navy) 619-532-2058 Steve McDonald (Navy) 310-594-7655
Lead Agency and Treatment Contractor (if available)	USACE Lead/State Oversight; Envirocon	Air Force; CH2M Hill	Navy/DoD Financed - IRP Program; Jacobs Engineering
Status#	Completed; Operational from 11/91 to 5/92. Will conduct long-term monitoring	Operational; Completion planned Winter 1994; 5 years to complete.	In design; Operation to start in 1994
Key Contaminants Treated	VOCs (2-hexanone, 2-butanone, 4-methyl 2-pentanone, BTEX)	VOCS (TCA, TCE, 1-1-DCE)	VOCs (BTEX)
Media (Quantity)	Soil (35,000 cy)	Soil (12,000 cy)	Soil (quantity unknown)
Site Description	Air Force fire training pits	Former fuel and solvent disposal site	Federal facility Naval weapons station
Specific Technology	Soil vapor extraction with air flushing and thermal oxidation of off gases	Soil Vapor Extraction	Soil vapor extraction with combustion of air emissions
Site Name, State, (ROD Date)	Luke AFB, AZ	McClellan AFB OUD, CA	Seal Beach Navy Weapons Station IR Site 14, CA See also Bioremediation (In Situ)
Region	٥	٥	٥

Table C-1 Other Federal Program Actions: Site-specific Information By Technology Through FY 1993

Soil Washing

Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	Contacts/Phone
ľ	Saginaw Bay Confined Disposal Facility, MI	Soil Washing	Confined disposal island	Sediments (150 cy)	PCBs	Completed; Summer 92	COE lead/Federal Oversite; Bergmann, USA	Jim Galloway (COE) 313-226-6760 Rick Traver (Bergmann) 203-684-6844
In	Twin Cities Army Ammunition Plant, MN	Soil Washing	Munitions manufacturing/ storage	Soil (quantity unknown)	Metals (Lead, Mercury)	Operational; Completion planned Summer 1994	Federal Facility/State oversight; Wenck Associates, Inc.	Peter Rissel (US Army Env. Center) 410-671-1504 Martin McCleery (Twin Cities

Other Federal Program Actions: Site-specific Information By Technology Through FY 1993 Table C-1

Other

						:		Contacts/Phone
Region	Site Name, State, (ROD Date)	Specific Technology	Site Description	Media (Quantity)	Key Contaminants Treated	Status#	Lead Agency and Treatment Contractor (if available)	
							!	0:11
7	Savannah River DOE, M	air sparging	Leaking solvent	Groundwater	VOCs (TCE, PCE)	Operational; Operational	DOE lead/DOE funding;	Nate Ellis (DOE) 907-062-4844
t	Area Settling Basin,		line				Westinghouse Savannah River	Brian Lowry
	SC						Company	(WSRC)
	Bioremediation (In	-						803-725-81
	Situ), Soil Vapor							
	Extraction							

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix D
Summary of Status Report Updates, Changes, Deletions

Summary of Updates/Changes/Deletions

first edition of the report published in January 1991 through this 5th edition) is described below to allow tracking of specific projects from edition to Each edition of this report has added new information on the applications of innovative technologies at Superfund sites and has updated the status of existing innovative projects. The information added from ROD's from previous fiscal years that was deleted, or changed in each edition (from the edition.

Additions, Changes, and Deletions from the 1st edition report (January 1991) to the 2nd edition report (September 1991).

Region	Site Name, State (ROD Date)	Technology (Listed in 1st Edition)	Added	2nd Edition Deleted	Changed to	Comments	Contacts/Phone
3	Lectown Pesticides, WV (03/31/86)	Bioremediation		Yes		No further action. Risk re- evaluated and was determined that risk was not sufficient for remedial action.	Andy Palestini 215-597-1286 Philip Rotstein 215-597-9023
м	Harvey-Knott Drum, DE (09/30/85)	In Situ Soil Flushing		Yes		During remedial design, sampling indicated VOCs were no longer present in the soils. Heavy metals remained at the surface. An ESD was issued on 12/92. Remedy will consist of capping the site.	Kate Lose 215-597-0910
2	SMS Instruments (Deer Park), NY (09/29/89)	Thermal Desorption	× 3 6 6	Yes (changed to soil vapor extraction in 3rd edition)		Misinterpretation of ROD during ROD analysis	Miko Fayon 212-264-4706
	Re-Solve, MA (09/24/87)	Chemical Treatment			Dechlorination	Dechlorination Reclassified technology	Lorenzo Thantu 617-223-5500
2	GE Wiring Services, PR (09/30/88)	Chemical Extraction			Soil Washing	Reclassified technology	Caroline Kwan 212-264-0151
. 9	Sol Lynn/Industrial Transformers, TX (03/25/88)	Chemical Treatment			Dechlorination	Reclassified technology	John Meyer 214-655-6735
10	Northwest Transformer, WA (09/15/89)	In Situ Vitrification		Yes		Technology dropped because commercial availability was delayed	Christine Psyk 206-553-6519

The 2nd edition report also added information on 45 innovative treatment technologies selected for remedial actions in FY 1990 RODs and 18 innovative treatment technologies used in removal actions. Note:

Additions, Changes, and Deletions from the 2nd edition report (September 1991) to the 3rd edition report (April 1992).

						•	
		Technology (Tisted		3rd Edition			
Region	Site Name, State (ROD Date)	in 2nd Edition)	Added	Deleted	Changed to	Comments	Contacts/Phone
2	Marathon Battery, NY (09/30/88)	Thermal Desorption		Yes		During design soil gas concentration at hot spots was below NY state standards. GW monitoring will continue.	Pam Tames 212-264-1036
2	Goose Farm, NJ (09/27/85)	In Situ Soil Flushing		Yes		Incorrectly classified. Actually conducting pump and treat with treated water being reinjected	Laura Lombardo 212-264-6989
2	GE Wiring Services, PR (09/30/88)	Soil Washing			Thermal Desorption	Possible pre-wash of debris with surfactants	Caroline Kwan 212-264-0151
4	Coleman-Evans Wood Preserving, FL (09/26/90)	Soil Washing		Yes		Problems due to the presence of furans. Incineration likely	Tony Best 404-347-2643
2	Sangamo/Crab Orchard National Wildlife Refuge, IL (08/01/90)	In Situ Vitrification		Yes	Incineration	ROD specified the remedy as in situ vitrification or incineration. Incineration was chosen	Nan Gowda 312-353-9236
s	Anderson Development, MI (09/28/90)	In Situ Vitrification			Thermal Desorption	Because of concern by the community the remedy was changed. ROD amendment signed 9/30/91, and ESD was signed 10/2/92	Jim Hahnenberg 312-353-4213
8	U.S. Aviex, MI (09/07/88)	In Situ Flushing		Yes		Cleanup levels reached by natural attenuation	Robert Whippo 312-886-4759
9	Atchison/Santa Fe/Clovis, NM (09/23/88)	Bioremediation (ex situ)		Yes			Ky Nichols 214-655-6783
9	Crystal Chemical, TX (09/27/90)	In Situ Vitrification		Yes		Remedy reconsidered after delay in commercial availability of technology. Vitrification considered for hot spots only. Revised remedy will consist of capping and off-site disposal/consolidation of soils.	Lisa Price 214-655-6735
6	Solvent Service, CA (09/27/90)	Bioremediation (in situ)		Yes		ROD was misinterpreted during ROD analysis	Kevin Graves 510-286-0435 Steve Morse (CA) 570-286-0304

Note: The 3rd edition report also added information on 70 innovative treatment technologies selected for remedial actions in FY 1991 RODs.

Contacts/Phone Bob Mandel 415-744-2290	
Changed to Comments ioremediation Reclassified technology (in situ)	
 H	
Deleted	3rd Edition
Added	
Technology (Liste in 2nd Edition) Bioremediation (ex situ)	
egion Site Name, State (ROB Date) 9 Poly Carb, NV (Removal)	
Region 9	

Additions, Changes, and Deletions from the 3rd edition report (April 1992) to the 4th edition report (October 1992).

		Touteston (Cha.)		4th Edition			
Region	Site Name, State (ROD Date)	in 3rd Edition)	Added	Deleted	Changed to	Comments	Contacts/Phone
2	Lipari Landfill Marsh Sediment, NJ (07/11/88)	None	Thermal Desorption			Missed during original ROD analysis	Tom Graff 816-426-2296
2	GE Wiring Services PR (09/30/88)	Thermal Desorption			Soil Washing		Caroline Kwan 212-264-0151
'n	University of Minnesota, MN (06/11/90)	Thermal Desorption		Yes	Incineration in 5th edition	Issued an ESD in August 1991 to change remedy to Thermal Desorption or Incineration. Incineration was chosen because it was less expensive	Darrel Owens 312-886-7089
9	Sol Lynn/Industrial Dechlorination Transformers, TX (03/25/88)	Dechlorination		Yes		Discontinued due to implementation difficulties	John Meyer 214-655-6735
9	Koppers/Texarkana, TX (09/23/88)	Soil Washing	In Situ Flushing			Remedy added by ROD amendment	Ursula Lennox 214-655-6735
0	Poly Carb, NV (Removal)	Bioremediation (in situ)			Bioremediation (ex situ)	Reclassified technology	Bob Mandel 415-744-2290
6	Teledyne Semiconductors, CA (03/22/91)	Soil Vapor Extraction		Yes		Mistakenly deleted from report	Sean Hogan 415-744-2233
10	Gould Battery (03/31/88)	Soil Washing	Soil Washing			Missed during original ROD analysis	Chip Humphries 503-326-2678

Note: The 4th edition report also added information on 10 innovative treatment technologies selected for remedial action in FY 1992 RODs, and 21 innovative treatment technologies at non-Superfund sites.

Additions, Changes, and Deletions from the 4th edition report (October 1992) to the 5th edition report (September 1993).

Region	Site Name, State (ROD Date)	Technology Listed in 4th Edition	Added	5th Edition Deleted	Changed to	Comments	Contacts/Phone
1	Re-Solve, MA (09/24/87)	Dechlorination		Yes		Pilot study showed that dechlorination increased the volume and that the waste still needed to be incinerated. An ESD to incinerate residuals off-site is in peer review.	Joe Lemay 617-573-9622
1	Pinette's Salvage Yard, ME (05/30/89)	Solvent Extraction		Yes		Will incinerate off-site	Ross Gilleland 617-573-5766
2	Naval Air Warfare Center, OU 1, NJ (02/04/91)	In Situ Flushing		Yes		Remedy involves pump and treat with on-site discharge. Soil is not being targeted.	Jeff Gratz 212-264-6667
2	Naval Air Warfare Center, OU 2, NJ (02/04/91)	In Situ Flushing		Yes		Remedy involves pump and treat with on-site discharge. Soil is not being targeted.	Jeff Gratz 212-264-6667
2	Naval Air Warfare Center, OU 4, NJ (02/04/91)	In Situ Flushing		Yes		Remedy involves pump and treat with on-site discharge. Soil is not being targeted.	Jeff Gratz 212-264-6667
2	Caldwell Trucking, NJ (09/25/86)	Thermal Desorption		Yes		Thermal desorption not needed because highly contaminated soil will be incinerated off-site instead. Remainder will be stabilized. ESD issued.	Ed Finnerty 212-264-3555
т	Tobylanna Army Depot, PA (Non-Superfund project)	Bioremediation (in situ)		Yes		Will conduct ex situ passive volatilization	Drew Lausch 215-597-3161 Ross Mantione (Tobyhanna) 717-894-6494

The 5th edition report also adds information on 49 innovative treatment technologies selected for remedial actions in FY 1992 RODs, and 15 innovative treatment technologies used in removal actions. Note:

Additions, Changes, and Deletions from the 4th edition report (October 1992) to the 5th edition report (September 1993). (continued)

Site Name, State (ROD Date) in 4th	Techno in 4th	Technology Listed in 4th Edition	Added	5th Edition Deleted	Changed to	Comments	Contacts/Phone
Smith's Farm Brooks Dechlorination Thermal (09/30/91)		Ther Deso	Thermal Desorption			Will alter chemistry to achieve dechlorination during thermal desorption.	Tony DeAngelo 404-347-7791
American Creosote Works, FL Soil Washing (09/28/89)	Soil Washing			Yes		Bench-scale study of soil washing showed that the concentrations of carcinogenic PAHs were not adequately reduced. Also discovered dioxins at much higher concentrations	Mark Fite 404-347-2643
American Creosote Works, FL Bioremediation (Ex (09/28/89) Situ)	rmediation			Yes		Bench-scale study of bioremediation (ex situ) showed that the concentrations of carcinogenic PAHs were not adequately reduced. Also discovered dioxins at much higher concentrations	Mark Fite 404-347-2643
Hollingsworth Solderless, FL None Soil Vapor (04/10/86)		Soil Var Extraction	oor			Listed as soil aeration in 3rd edition	John Zimmerman 404-347-2643
Cliffs/Dow Dump, MI (09/27/89) Bioremediation (In Situ)	mediation			Yes		Bioremediation (in situ) was a misinterpretation of the ROD. All soil will be excavated and treated by bioremediation (ex situ).	Ken Glatz 312-886-1434
Tenth Street Dump/Junkyard, OK Dechlorination (09/27/90)	Dechlorination			Yes		Remedy has been suspended because of implementation difficulties and escalating cost. Cost doubled from cost projected in ROD. Issuing ROD amendment to cap in place.	Mike Overbay 214-655-8512
Fairfield Coal & Gas, IA (09/21/90) Bioremediation (in situ)	Bioremediation (in situ)			Yes		Pilot study showed in situ bioremediation was too costly. It appears that the present pump and treat system will be able to achieve cleanup levels.	Bruce Morrison 913-551-7755

Additions, Changes, and Deletions from the 4th edition report (October 1992) to the 5th edition report (September 1993). (continued)

Region	Site Name, State (ROD Date)	Technology Listed in 4th Edition	Added	5th Edition Deleted	Changed to	Comments	Contacts/Phone
8	Sand Creek Industrial OU 5, CO (09/28/90)	Soil Washing			Thermal Desorption	Soil washing did not meet performance standards and was expensive. ROD amendment issued early September 1993.	Erna Acheson 303-294-1971
6	Koppers Company (Oroville), CA (04/04/90)	Bioremediation (Ex Situ)		Yes		Misinterpretation of ROD during ROD analysis	Fred Schlauffler 415-744-2365
6	Signetics (AMD 901) TRW OU, CA (09/11/91)	None	Soil Vapor Extraction			Remedy added	Joe Healy 415-744-2331 Kevin Graves (CA) 510-286-0435
6	Teledyne Semiconductors, CA (09/30/91)	None	Soil Vapor Extraction			Dropped by mistake from 4th edition	Sean Hogan 415-744-2233
10	DEL Warm Waste Pond, ID (12/05/91)	Acid Extraction		Yes		Treatability study of acid extraction did not achieve good extraction rates. Did not reduce the volume of waste. Will excavate, consolidate and cap.	Linda Meyer 206-553-6636 Nolan Jenson (DOE) 208-526-0436
10	DEL Warm Waste Pond, ID (12/05/93)	Soil Washing		Yes		Treatability study of soil washing did not achieve results. Did not reduce the volume of waste. Will excavate, consolidate and cap.	Linda Meyer 206-553-6636 Nolan Jenson (DOE) 208-526-0436

Additions, Changes, and Deletions from the 5th edition report (September 1993) to the 6th edition report (September 1994).

		6 77 E 17 E	ē	6th Edition			
Region	Site Name, State (ROD Date)	in 5th Edition	Added	Deleted	Changed to	Comments	Contacts/Phone
-	Union Chemical Co., OU 1, ME (12/27/90)	Thermal Desorption			Soil Vapor Extraction	Determined that SVE would be more cost effective. ESD signed March/April 1994.	Terry Connelly 617-573-9638 Christopher Rushton (ME DEP) 207-287-2651
П	Tibbetts Road, NH (09/29/92)	In Situ Soil Flushing		Yes		Misinterpretation of ROD during ROD analysis. Soil was not targeted for treatment.	Darryl Luce 617-573-5767 Mike Robinette (NH) 603-271-2014
7	Ewan Property, OU2, NJ (09/29/89)	Soil Washing, Solvent Extraction		Yes		Re-evaluation of site found significantly less contaminated soil than original estimates. Soil will be disposed off site. ESD signed July 1994.	Kim O'Connell 212-264-8127 (temporary)
2	Naval Air Engineering Center, OU 7, Interim Action, NJ (03/16/92)	In Situ Flushing		Yes		Misinterpretation of the ROD during ROD analysis.	Jeff Gratz 212-264-6667 Robert Wing 212-264-8670
2	Solvent Savers, NY (09/30/90)	Soil Vapor Extraction		Yes		SVE is a secondary remedy which may be used instead of thermal desorption, the primary remedy, if treatability studies show to be effective.	Lisa Wong 212-264-9348
ъ	U.S. Titanium, VA (11/21/89)	In Situ Flushing	ļ		Neutralization with lime (Ex Situ)	Treatability studies indicated that the technology was not feasible. ESD under preparation.	Vance Evans 215-597-8485 Jeff Howard (VA) 804-762-4203
E	L.A. Clarke & Sons, OU 1 (Soils), VA (03/31/88)	Bioremediation (In Situ)		Yes		Facility no longer in operation. Can now excavate. Remedies being considered include thermal desorption.	Andy Palestini 215-597-1286

Additions, Changes, and Deletions from the 5th edition report (September 1993) to the 6th edition report (September 1994). (continued)

		Technology Listed	STATE OF THE STATE	6th Edition			
Region 3	Site Name, State (ROD Date) L.A. Clarke & Sons, OU 1 (Soils), VA (03/31/88)	in Sth Edition In Situ Flushing	Added	Yes	Changed to	Example 1. Connection Facility no longer in operation. Can now excavate. Remedies	Andy Palestini 215-597-1286
						being considered include thermal desorption.	
æ	L.A. Clarke & Sons, Lagoon Sludge OU, VA (03/31/88)	Bioremediation (Ex Situ)			Re-use as fuel off-site	Technology changed because of uncertainty about the ability of bioremediation to reach treatment goals. ESD signed 3/94.	Andy Palestini 215-597-1286
ဇ	Henderson Road, PA (06/30/88)	Soil Vapor Extraction		Yes		Only conducted air injection to facilitate pump and treat. Vapors were not extracted. Further investigation revealed that the Vadose Zone was not an area of concern.	Joe McDowell 215-597-8240
4	Cabot Carbon/Koppers (Groundwater), FL (09/27/90)	Bioremediation (In Situ Groundwater)		Yes		Groundwater not being treated. Only soil is being treated.	Patsy Goldberg 404-347-6265
4	Benfield Industries, NC (07/31/92)	Soil Washing Bioremediation Slurry phase			Land Treatment	Land treatment determined to be more cost effective.	Jon Bornholm 404-347-7791
4	Charles Macon Lagoon, Lagoon #10, NC (09/31/91)	Bioremediation (Ex Situ)		Yes		Treatability study indicated that the technology could not treat the contaminants of concern because of materials problems. Will excavate and dispose off-site. ROD Amendment signed 3/94.	Geizelle Bennett 404-347-7791 David Lown (NC) 919-733-2801
4	Palmetto Wood Preserving, SC (09/30/87)	Chemical Treatment		Yes		Waste will be disposed off-site more cost effectively	Al Cherry (404) 342-7791
4	Arlington Blending & Packaging Co., OU1, TN (06/28/91)	Dechlorination		Yes		Another disposal method likely to be used.	Derek Matory 404-347-7791

Additions, Changes, and Deletions from the 5th edition report (September 1993) to the 6th edition report (September 1994). (continued)

		Tachnology I total	_	6th Edition			
Region	Site Name, State (ROD Date)	in 5th Edition	Added	Deleted	Changed to	Comments	Contacts/Phone
\$.	South Andover Salvage Yard, OU 2, MN (12/24/91)	Bioremediation (Ex Situ)		Yes	Thermal	Technology changed to off-site thermal treatment (either thermal desorption or incineration) because of reduced volume of contamination found during RD investigations. ROD amendment signed 5/31/94.	Bruce Sypniewski 312-886-6189
٧.	Allied Chem & Ironton Coke, OU 2, OH (12/28/90)	Bioremediation (In Situ)	Bioremediation (Ex Situ) (Land Farming)			Adding technology to treat more highly contaminated soil.	Tom Alcamo 312-886-7278
5	Allied Chem & Ironton Coke, OU 2, OH (12/28/90)	Bioremediation (In Situ)	Bioremediation (Ex Situ) Magnetically Enhanced Land Farming	·		Adding technology to treat more highly contaminated soil.	Tom Alcamo 312-886-7278
'n	United Scrap Lead/SIA, OH (09/30/88)	Soil Washing		Yes		Determined to be too expensive. Other alternatives being evaluated. ROD Amendment planned.	Ania Boseman 312-886-6941 Timothy Hull (OH) 513-285-6357
'n	MacGillis and Gibbs Co./Bell Lumber and Pole Co., MN (12/31/92)	Soil Washing and Bioremediation (ex situ) of fines		Yes	Incineration on-site	Incineration was contingency remedy in ROD. State had concerns about effective means of soil washing and cost of incineration has decreased; ESD will be signed Fall 1994.	Daryl Owens 312-886-7089
9	Fruitland Drum, NM (09/08/90)	Dechlorination			Incineration (Off-site)	Dechlorination not being pursued because of cost considerations.	Gregory Fife 214-655-6773
9	Holloman AFB, Main POL Area, NM	Bioremediation (In Situ) (Groundwater)		Yes		Groundwater remediation not planned for this area.	Ron Stirling (USACE) 402-221-7664

Additions, Changes, and Deletions from the 5th edition report (September 1993) to the 6th edition report (September 1994). (continued)

Contacts/Phone	Ron Stirling (USACE) 402-221-7664	Bert Gorrod 214-655-6779	Susan Webster 214-655-6784 Major Richard Ashworth (USAF) 405-734-3058	Connally Mears 303-293-1528	Mike McCeney 303 293-1526	Maurice Chait 602-962-2187 Richard Oln 602-207-4176	David Roberts 415-744-1487 Brad Hicks (USAF) 209-726-4841	Sean Hogan 415-744-2233 Carla Dube 510-286-1041
Comments	Groundwater remediation not (I) (Replanned for this area.	Determined there was 21 insignificant concentration to 21 warrant remediation. No further action.	Determined that SVE was not Viable. No alternative selected at 21 M this point. As	Remedy cancelled due to problems with contractor. New 30 ROD being negotiated.	Not considered innovative M 30	Removed from NPL, deferred to M 60 the State Ri	Bench-scale test indicated that the Disternology did not work. No 41 ESD or ROD amendment being Bissued.	Sea Misintrepretation of the ROD. SVE intended only for Spectra Physics, the adjacent site. Contact the sea sea sea sea sea sea sea sea sea se
dition							Pump and Treat with Air Stripping	
6th Edition Deleted	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Added								
Technology Listed in 5th Edition	Air Sparging	Soil Vapor Extraction	Soil Vapor Extraction	In Situ Vitrification	Chemical Treatment	Soil Vapor Extraction	Bioremediation (In Situ Groundwater)	Soil Vapor Extraction
Site Name, State (ROD Date)	Holloman AFB, Main POL Area, NM	South Valley, NM (09/30/88)	Tinker AFB (Soldier Creek Bldg. 3001), OK (08/16/90)	Rocky Mountain Arsenal, M-1 Basins (OU 16), CO (02/26/90)	Portland Cement Co. (Kiln Dust No. 2 and No. 3) OU2, UT (03/31/92)	Mesa Area Ground Water Contamination, AZ (09/27/91)	Castle Air Force Base, OU 1, CA (09/30/91)	Teledyne Semi Conductors, CA (03/22/91)
Region	9	9	9	∞	∞	6	6	6

Additions, Changes, and Deletions from the 5th edition report (September 1993) to the 6th edition report (September 1994). (continued)

Region	Site Name, State (ROD Date)	Technology Listed in 5th Edition	Added	6th Edition Deleted	Changed to	Comments	Contacts/Phone
6	FMC (Fresno), CA (06/28/91)	Soil Washing		Yes		Soil washing did not work	Tom Dunkelman
						because the soil had too many fines. Looking at thermal desorption and solidification/ stabilization as possible remedies.	415-744-2287 Mike Pfister (CA) 209-297-3934
6	Signetics (Advanced Micro Devices 901), CA (09/11/91)	Soil Vapor Extraction		Yes		Combined ROD for Signetics, AMD 901/902 and TRW Microwave site. SVE is not being done at the TRW OU. Misinterpretation of ROD.	Darrin Swartz-Larson 415-744-2233 Kevin Graves (CA) 510-286-0435
0	Sacramento Army Depot, Oxidation Lagoons OU, CA (09/30/92)	Soil Washing		Yes		Technology canceled due to cost. Looking at solidification as an alternative.	Marlin Mezquita 415-744-2393 George Siller (USACE) 916-557-7418 Dan Oburn (Sacramento Army Depot) 916-388-4344
10	McChord AFB Washrack Treatment Area, AK (09/28/92)	Bioremediation (Ex Situ)		Yes		Additional studies showed treatment not needed.	Marie Jennings 206-553-1173

Appendix E Completed Innovative Projects and Treatment Trains

TABLE E-1

REMEDIAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS

Table E-1 provides summary information on the performance and operating parameters for applications of innovative treatment technologies that have been completed at remedial sites. It is intended to supplement, not replace, the information included in table

Comments	The waste feed size limitation for the equipment, 1.875 inches, was an important consideration. More information is available in the RA report available from Region 1.	
Residuals Management	Exhaust gas treated with baghouse, scrubber, and carbon adsorption Scrubber water was treated with carbon adsorption	Exhaust gas treated with baghouse, scrubber, and carbon adsorption Scrubber water was treated with carbon adsorption Residual solids deposited onsite. HEPA filters, baghouse bags, and PPE incinerated
Materials Handling Required	Excavation Screening Mixing Dewatering	Excavation Screening Mixing
Operating Parameters	Continuous operation 40 tons/hr 450 - 500° F Woisture content before treatment - 5% - 25% moisture Additives - dry soil (to reduce moisture content)	Batch process: 8-9 cy/batch Residence time: 2 minutes/pass, 3 passes per batch 250-400 F soil exit temperature
Key Contaminants Ireated	TCE, DCE, PCE, BTEX, vinyl chloride, chlorobenzene, SVOCs Criteria: 0.1 ppm - TCE, DCE, PCE, chlorobenzene 0.2 ppm - Toluene, Total Xylenes 0.05 ppm - Vinyl chloride SVOCs - 3 ppm Benzene - 0.1 ppm Imput 500 - 3,000 ppm (Total VOCs) Output - <0.025 ppm	Criteria: Criteria: 0.1 ppm TCE averaged over batch treatment volume 1.0 ppm per individual aromatic organic compound, and PAHs 10.0 ppm for total PAH constituents Input: Up to 3,310 ppm TCE Output: Less than 0.1 ppm TCE
Media Treated (Quantity)	Soil (11,300 tons)	Soil (11,500 cy to a depth of 10 ft.)
Technology/ Vendor	Thermal desorption/ Canonie Environmental Services Corp., Porter, IN	Thermal desorption/ Canonie Env. Services Corp., Porter, IN
Site Name, State, Dates of Operation	S/90 to 10/90	McKin, ME 7/86 to 4/87
Region	-	-

١								
Region	Site Name, State, Dates of Operation	Technology/ Vendor	Media Treated (Quantity)	Key Contaminants Treated	Operating Parameters	Materials Handling Required	Residuals Management	Comments
	Ottati & Goss, NH 6/89 to 9/89	Thermal desorption/ Canonie Environmental Services Corp., Porter, IN	Soil (5,100 cy)	TCE, PCE, DCA, BTEX, TCA Criteria: 1 ppm - Total VOCs 0.1 ppm DCA, benzene, TCE, PCE Input: Up to 460 ppm TCE, 1200 ppm PCE Output: Less than 0.025 ppm TCE, PCE	Batch process 300-400° F soil exit temperature	Screening Screening	Exhaust gas treated with baghouse, scrubber, and carbon adsorption Scrubber water treated with carbon adsorption adsorption redeposited on- site	For more information on this project, see the close out report available from Region 1.
 *	King of Prussia, NJ 6/93 - 10/93	Soil Washing using water and proprietary additive Alternative Remedial Technologies,	Soil, sludge, and sediments (19,200 tons)	Metals (Chromium, Copper, Nickel) Criteria: 11 metal-specific cleanup levels based on risk of exposure	Continuous process Feed rate: 25 tons/hr Addition of polymer and surfactants	Excavation Screening	Residual sludges disposed off- site as non- hazardous waste	X-ray fluorescene (XRF) used on-site for selective excavation
*	SMS Instruments/ Deer Park, NY 4/92 to 12/93	Soil Vapor Extraction/ Four Seasons Environmental, Inc. Greensboro, NC	Soil (1,250 cy)	VOCs, SVOCs Criteria: Levels specified for nine VOCs and nine SVOCs, ranging from 500 to 4,500 μg/kg Input: >1,000 ppm total VOCs Output: All soil samples met criteria	Two horizontal vapor extraction wells Vacuum of 378-406 w.c. inches (absolute) Depth to groundwater: 16-24 feet	None (in situ)	Exhaust gases Were treated With a catalytic incinerator and scubber	
#	Waldick Aerospace Devices (OU 1), NJ 5/93 to 10/93	Low temperature thermal treatment Rust Remedial Services, Inc., SC	Soil (4,000 cy)	Criteria: Total VOCs: 1 ppm Total petroleum hydrocarbons: 100 ppm	20 tons/hr, 450 - 500°F	Screening	Vapors treated in secondary thermal treatment unit; off-site s/s of treated soils	First use of full- scale unit; actual design capacity of unit is approximately 35 tons/hr.

			
Comments For further information on this	dechlorination project, see the Demonstration Test Report produced by EPA, Region 2.	For further information on this application, see the Applications Analysis Report for the Terra Vac In situ Vacum Extraction System (EPA/540/A5-89/003).	Pilot study conducted 12/1/92 - 12/11/92 Soil samples revealed the soil showed no
Residuals Management Exhaust gas treated with	cyclone, baghouse, acid gas scrubber, and activated carbon adsorption Treated solids were intended to be redeposited; however, they were determined to be unstable for backfilling	Discharge of soil vapors through 30-ft stack No other offgas treatment	
Materials Handling Required Excavation Shredding,	Magnetic Screening	None	
Operating Parameters Continuous process	Freneat/retort Zone residence time: 30-40 minutes Retort zone temperature: 1,160° F Combustion zone temperature: 1,293° F Additives: Alkaline polyethylene glycol (APEG)	19 vacuum extraction wells Depth of primary extraction well: 75 feet Operational inlet vacuum: 12 inches Hg	In situ using one extraction well
Key Contaminants Treated PCBs	Soils >10 ppm PCBs to be excavated and chemically treated 2 ppm PCBs established as remedial action contract cleanup level Input: 11-68 ppm PCBs Output: ≤2 ppm PCBs; one sample contained 21 ppm PCBs	Carbon tetrachloride (CC14) Criteria: 50 µg/liter CC14 (drinking Water Limit); calculated to correspond to "non-detectable" concentration of CC14 in exhaust gas for three consecutive months Input: Up to 2,200 ppm CC14 (initial concentration) Output: Less than 2 ppb (final concentration)	VOCs (PCE, TCE)
Media Treated (Quantity) Soil (42,000 tons)		Soil (16,000 sq ft to approximately 100 ft deep) Approximately 17,800 gallons of CCL, was removed from the soil	Soil (1,000 cy)
Technology/ Vendor Thermat desorption With	dechlorination/ SoilTech ATP Systems, Inc. Porter, IN	Soil Vapor Extraction Terra Vac, Corp. Costa Mesa, CA	Soil Vapor Extraction Engineering- Science
Site Name, State, Dates of Operation Wide Beach Development, NY 9/90 to 9/91		Upjohn Manufacturing Company, PR 1/83 to 3/88	Defense General Supply Center, QU5, VA December 1-11, 1992
Region 2		~	#

Region	Site Name, State, Dates of Operation	Technology/ Vendor	Media Treated (Quantity)	Key Contaminants Treated	Operating Parameters	Materials Handling Required	Residuals Management	Comments
4	Brown Wood Preserving, FL 10/88 to 12/91	Land treatment/ Remediation Technologies, Inc. Seattle, Washington	Soil/pond sediment (7,500 cy)	PAHS, defined in terms of total carcinogenic indicator chemicals (TCICs) Criteria: 100 ppm TCICs sampled on 8 subplots Input: Up to 208 ppm TCICs Output: Less than 92 ppm TCICs	Soil treated in 3 lifts Retention time: 4 to 15 months Additives: water and nutrients Mixing rate: tilled once every two weeks	Site preparation (land clearing) Excavation Screening Tilling	Treated material vegetated with grass (no cap) Retention pond constructed for runoff	Further information on this project is available from the Remedial Action Close Out Report.
4	Hollingsworth Solderless, FL 1/91 to 7/91	Soil vapor extraction EBASCO (ARCS contractor)	Soil 60 cy (down to 7 feet deep)	TCE, vinyl chloride Target: total VOCs 1 ppm	In situ	None required	Air emissions vented to atmosphere	Design specifications were very critical. Need to pay close attention to design specifications
#5	Wamchem, SC During 8/93	Thermal desorption Four Seasons Greensboro, NC	Soil (2,200 cy)	Criteria: Acetone - 97 ppm Benzene - 2.43 ppm 1,2-Dichlorobenzene 33.43 ppm 1,4-Dichlorobenzene 38.06 ppm 2,4-Dinitrotoluene - 3.62 ppm Naphthalene - 74.6 ppm 1,2,4- Trichlorobenzene - 4.23 ppm Total Xylenes - 67.6 ppm	Continuous feed 5-7 tons/hr		Catalytic oxidation of off-gas	

Comments		The soil became saturated quickly during this project, creating surface pools. The specially-designed tractor got stuck.	Reduced PCB levels much more than expected.
Residuals Management	Recovered oil sent off-site for incineration, water recovered sent through oil/water, iron removal, and biological treatment prior to reinjection	Capping in place	Exhaust gas treated with cyclone, baghouse, acid gas scrubber, and activated carbon adsorption Condensed water discharged to sanitary sewer after triple filtration, UV oxidation, and carbon
Materials Handling Required		Tilling	Excavation Mixing Dewatering
Operating Parameters	14 extraction Wells, unknown number of trenches 6,300 gallons of oil recovered	Additives - nitrogen, phosphorus, potassium, sulfur as fertilizer (200,000 gallons of nutrients	Continuous process Residence time: 15 minutes Throughput: 8 tons/hr Preheat zone temperature: 850° F Retort zone temperature: 1200° F Combustion zone temperature: 1300° F
Key Contaminants Treated	VOCs (TCE, BTEX) PAHs Pumped until no more oil recovered Inside slurry wall treated water 90% reduction in COD	54 contaminants present, including ICE, ICA, and Carbon Tetrachloride No standards or criteria for this OU in ROD	PCBs Criteria: 97% removal of PCBs Initial: 23,000 ppm PCBs Final: Achieved >97% removal, <9 ppm PCBs in treated soil
Media Treated (Quantity)	Soil (64,000 cy)	Soil (12 acres to 10 ft deep, approximately 43,500 cy)	Soil/Sediments (12,800 tons)
Technology/ Vendor	In situ Flushing Fluor Daniel Chicago, IL	In situ soil bioremediation ABB Environmental Services	Thermal Desorption SoilTech ATP Systems, inc. Porter, IN
Site Name, State, Dates of Operation	Ninth Avenue Dump, IN 2/92 to 3/94	Seymour Recycling, IN Summer - 1990 August-October, 1986 January-February, 1987	Outboard Marine Corp./Waukegan Harbor (OU #3), IL 1/92 to 7/92
Region	## 10	īv	ıл

Region	Site Name, State, Dates of Operation	Technology/ Vendor	Media Treated (Quantity)	Key Contaminants Treated	Operating Parameters	Materials Handling Required	Residuals Management	Comments
# 50	Anderson Development (ROD Amendment), MI 11/92 to 6/93	Thermal desorption Weston Services, Inc.	Soil (5,100 tons)	SVOCs (MBOCA) Input: 660 ppm (maximum) MBOCA Criteria: 1.684 ppm MBOCA Output: <1.684 ppm MBOCA Greater than 99% removal	Continuous with a retention time of 1 hour and throughput of 50-60 tons per day. Temperature 500 - 600°F. Moisture content 40-50% Most of waste was treated twice because 1 hour retention time was not enough.	Excavation screening dewatering Stockpiling	Wastewater discharged to treatment facility. Treated soils and fly ash sent to Type II Landfill. Carbon sent to RCRA disposal facility	Site reports available.
ľ	Verona Well Field (Thomas Solvent/Raymond Road) (OU1), MI 3/88 to 5/92	Soil vapor extraction (attempted nitrogen sparging) Terra Vac, Inc. Costa Mesa, CA	Soil (26,700 cy, 36,000 ft² to a depth of 20 ft.)	Initial soil concentration TCE 550,000 ppb; PCE 1.8 million ppb; Toluene 730,000 ppb; Xylene 420,000 ppb; Xylene 420,000 ppb; Xylenes 6,000 ppb; Toluene 16,000 ppb; Toluene 16,000 ppb; Toluene 16,000 ppb; Toluene 20 ppb; Ethylbenzene 14,000 ppb; 1,1-DCE 2,000 ppb; 1,1-DCE 2,000 ppb; 1,1-DCA 20 ppb; TCE 60 pppc ppp ppp ppp ppp ppp ppp ppp ppp p	1,400-1,600 cu ft/ min of air Started >1,000 lbs/day removed Total removed 45,000 lbs of VOCs 23 extraction wells	No materials handling; required installing extraction wells vapors initially treated with carbon; then with CATOX; and then returned to carbon	Spent carbon Was regenerated (and eventually incinerated)	Initial estimate of product too low. Ireatment equipment undersized. Needed better quantification of VOCs in soils to design appropriate size. Plan for enhancing system to deal with saturated soils and free product. Public information available includes performance report, and technical memo.

Comments		First use of bioremediation technology at a Superfund site Cleanup of contaminated groundwater to be completed in 1996	Soil Vapor extraction system exceeded predictions by the model due to sand and gravel present at the site. Cleanup occurred much quicker than predicted by the model.	Sampling indicated the presence of TCE mainly in the soil gas samples and not the soil samples
Residuals Management Co		In situ Fi treatment bi te te su	Carbon sent So off-site for sy regeneration programme grant site for sy months and site for site for the formal site for the site for the formal s	Vapors captured Sa on carbon pr in in Sa So
Materials Handling Required		Air sparging Pumping Dredging	Vapors treated With granular activated carbon (GAC)	No materials handling; required installing extraction wells
Operating Parameters	-	In situ treatment	In situ cyclic operation, operated for a total of 4,325 hours	145-335 cu. ft./min. of air Total removed 70 lbs. 2 extraction wells
Key Contaminants Treated	Criteria: aldrin - 15 µg/kg benzene - 116 µg/kg chloroform - 2,043 µg/kg DDI - 487 µg/kg 1,2-DCA - 19 µg/kg 1,1-DCE - 285 µg/kg dieldrin - 6 µg/kg AHS - 14 µg/kg dioxin - 0 µg/kg PAE - 3,244 µg/kg	Volatile organic compounds; PCBs; phenols, heavy metals Clearup Goals: Benzo(a)pyrene - 9 ppm Volatile organic compounds - 43 ppm Arsenic - 7 ppm Benzene - 14 ppm	Carbon tetrachloride Initial: 100 ppm Final: <0.2 ppm Target removal rate achieved was 0.001 lb/hr, removed in excess of 500 lbs	TCE Initial extracted gas concentration 60 ppm Final extracted gas concentration 2 to 3 ppm
Media Treated (Quantity)	Soil (19,400 cy)	Soil/sludge (150,000 cy)	Soil 1 acre down to 120 feet deep (approximately 194,000 cy)	Soil (100 ft radius down to 60 ft; approximately 70,000 cy)
Technology/ Vendor	Thermal desorption	Bioremediation (slurry phase) ENSR Houston, TX	Soil vapor extraction Morrison Knudsen	Soil vapor extraction Vapor phase carbon adsorption to capture vapors Woodward Clyde Denver, CO
Site Name, State, Dates of Operation	Pristine, OH 9/93 to 3/94	French Ltd. Grosby, TX 1/92 to 12/93	Hastings GW Contamination, Well No. 3, NE 6/92 to 7/93	Rocky Mountain Arsenal (OU 18) Interim Response, CO 6/91 to 12/91
Region	## 55	*	*	∞ .

Site Name, State, Dates Technology/ Media Treated of Operation (Quantity)	logy/	Media Treat (Quantity)	7 8	Key Contaminants Treated	Operating Parameters	Materials Handling Required	Residuals Management	Comments	
cal, UT Bioremediation Soil (1,100 cy) (Ex situ) Land treatment on an asphalt pad Harding/Lawson	Soil (1,100 cy)		ğχ	VOCs (Toluene, Xylene)	Tilled, addition of nutrients and Water		Soil redeposited on site	Air emission standards not exceeded	
Fairchild Soil vapor Soil (42,000 cy) TC/Semiconductor (San extraction, in Jose), CA situ flushing From 1/89 to 6/90 groundwater states are groundwater states are st	Soil (42,000 cy)		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	TCA, DCE, IPA, xylenes, acetone, Freon-113, PCE RCD originally stated cleanup target of 1 ppm Amended cleanup goals required SVE operation until VOC removal rate was ≤10% of initial rate, or VCC removal rate was <1% per day for 10 consecutive days	39 extraction Wells; 28-144 scfm air flow rate; 15 inches of Hg operating vacuum	None	In situ treatment; carbon adsorption of off-gases	Groundwater pump and treat was conducted in conjunction with SVE; slury wall was constructed to limit contaminant migration	
Intersil/Siemens, CA Soil Vapor Soil VOCS Extraction Intersil portion of the site completed Fall 93 Francisco, CA	Soil , San CA		XAL(VOCs (TCE 1,1,1-TCA, XyLene)					

TABLE E-1
REMEDIAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS (continued)

TABLE E-2

REMOVAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS

Table E-2 provides summary information on the performance and operating parameters for applications of innovative treatment technologies that have been completed at removal sites. It is intended to supplement, not replace, the information included in table B-2.

TABLE E-2 REMOVAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS

		T	
Comments		First known Superfund site where this process has been applied	No comments
Residuals Management	Incineration of residuals (Without dioxin contamination) at treatment, storage, and disposal	Residual salts containing less than 260 pm mercury were incinerated off-site	Residual salts containing less than 260 pm mercury were incinerated off-site
Materials Handling Required	None	None	None
Operating Parameters	Temperature: 150°C Time: Overnight	Added salt to precipitate the mercury	Added salt to precipitate the mercury
Key Contaminants Treated	Dioxin Input - 135 ppb Output - 1 ppb	Mercury initial concentration >10% mercury Final concentration of mercury in recyclable precipitate was greater than 80%. Less than 260 ppm if mercury in thatn nonrecycled salt.	Mercury initial concentration >10% mercury Final concentration of mercury in recyclable precipitate was greater than 80%. Less than 260 ppm if mercury in thatn nonrecycled salt.
Media Treated (Quantity)	Sludge (15 gallons)	Solid 100 lbs	Solid 100 lbs
Technology/ Vendor	KPEG dechlorination/ Galson Remediation, Syracuse, NY	Mercury prefreatment precipiated mercury salts into mercury sulfide so that the mercury can be recovered and recycled. ENSCO	Mercury pretreatment precipiated mercury salts into mercury sulfide so that the mercury can be recovered and recycled. ENSCO
Site Name, State, Dates of Operation	Signo Trading International, Inc., NY 10/20/87 to 10/21/87 (Removal)	Vineland Chemical Company, NJ 12/92 (Removal)	Zhiegner Refining Company (Removal) 2/93 - 6/93
Region	N	~	~

Region	Site Name, State, Dates of Operation	Technology/ Vendor	Media Treated (Quantity)	Key Contaminants Treated	Operating Parameters	Materials Handling Required	Residuals Management	Comments
м	Avtex Fibers, VA 4/90 to 8/91 (Removal)	Chemical treatment (oxidation using NaClO) OH Materials, Findlay, OH (ERCS Contractor)	Sludge/water from storage unit (2 million gallons)	Carbon disulfide Criteria: <10 ppm - Carbon disulfide in the effluent Input: 50-200,000 ppm Carbon disulfide Output: <10 ppm Carbon disulfide	Batch operation time - 1 hour pH - 10 Additives: Sodium hypochloride. The retention time and reagent feed rates increased with increasing concentration of sludge in the contaminated water.	Pumping	Salts from the reaction were removed with flocculation and clarification at existing treatment plant, pH adjustment	Carbon disulfide is unstable and will be found with other contaminants in aqueous waste stream. For additional information on this project, see the Removal Close Out Report available from EPA - Region III or OH Materials.
4	General Refining Company, GA August-October, 1986 January-February, 1987 (Removal)	Solvent extraction Resource Conservation Technology Company, Bellevue, WA	Sludge (3,448 tons)	Input: PCB - 5.0 ppm Lead - 10,000 ppm Output: PCB - insignificant Lead - concentrated in solids	Continuous operation Time: 2 hours pH: 10 Temp: 20°C Rate: 27 tons/day Moisture content - 60% Additives: Sodium hydroxide Triethylamine	Excavation Screening Neutralization Size Reduction Mixing	fuel for kiln Water - treated, discharged off site Solids - solidified and disposed of on site	the oil recovered from the extractions process could not be sold because of an elevated metals content. The solvent could not be recovered due to leaks in system seals. The unit required a relatively uniform material so materials handling of the sludges proved difficult in the beginning of the project. The leadbearing solids produced by the dryer also required special handling. Finally, detergents in the sludge hindered

		a
Comments		System was successful in decreasing concentration to cleanup goals. Had difficulties due to fluctuation of shallow ground water. Did not anticipate the change in ground water to be as drastic as it was. It decreased the efficiency, less vapors and more water. Now need to address ground water. Could have used the soil vapor extraction in a more limited area.
Residuals Management	Air emissions captured on vapor phase carbon No cap needed	Residual wastewater sent off-site for treatment
Materials Handling Required		Brought in clay to cover the area, to prevent air from infiltrating
Operating Parameters	In situ; continuous operation (except for occasional shut downs to allow soil gas to reach equilibrium in the pore spaces)	Used a system of extraction and injection wells. 1,000 separate PVC wells. Injection wells. To 8 feet deep. Extraction Wells 2-3 feet deep. Vapors captured and put through a knock out pot and incinerated.
Key Contaminants Treated	Benzene, TCE, PCE, DCA, MEK At completion: <10 ppm Total VOCs (In all samples); average <1 ppm Total VOCs	Benzene-toluene- ethylbenzene-xylene (BIEX) 130,000 gallon spill
Media Treated (Quantity)	Soil (60,000 cy, up to 50 ft deep)	Soil (200,000 cy)
Technology/ Vendor	Soil vapor extraction OH Materials Atlanta, GA	Soil vapor extraction with air flushing MWRI
Site Name, State, Dates of Operation	Hinson Chemical, SC 12/88 to 3/92 (Removal)	CSX McCormick Derailment Site, S.C. (Removal)
Region	4	7

TABLE E-2 REMOVAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS (continued)

Bedion	Site Name, State, Dates of Oberation	Technology/	Media Treated (Quantity)	Key Contaminants Treated	Operating Parameters	Materials Handling Required	Residuals Management	Comments
.][Basket Greek Surface Impoundment, GA 11/92 - 2/93 (Removal)	Vacuum extraction of soil pile with horizontal wells (ex-situ) OHM	(,0)	VOCS TCE, PCE, MEK, MIBK, BTEX High 33% VOCS Average 1-5% Criteria: TCE - 0.5 mg/L TCLP PCE - 0.7 mg/L TCLP All VOCs met TCLP limits	Vacuum pressure monitored. 1,300 CFM/Manifold 3-7 wells/manifold	Surface im- poundment used for disposal of waste solvents. Built an enclosure over the site. Excavated the soil and screened it with a power screen. Stacked on PVC extraction wells. Recovered VOCs with duct work and fan. Vapors	Residual soils and rejects from screening met TCLP limits and were disposed as nonhazardous as on RCRA Subtitle D landfill. Incinerated 70,000 lbs of VOCs	\$2,000,000 total costs. Permeability in-situ soil was not good at first. Excavation and ex-situ treatment improved permeability. Shouldn't rule out if you can't do in situ.
 #	TH Agriculture and Nutrition Albany, GA	Thermal desorption/ Focus and Williams Environmental Services, Inc.	Soil (4,318 tons)	Pesticides Criteria: Reduction of 90% in concentration of alpha and beta BHC; 4,4'-DDT; and toxaphene Less than 100 mg/kg total OCL pesticides in treated soil	Continuous operation 7.8 tons/hr 250 - 510° F exit gas temperature 15 minutes residence time	Excavation Screening	Soils: quenched Off-gasses: baghouse, water quench, reheaters, and carbon adsorption water: carbon	
# # # # # # # # # # # # # # # # # # # #	Parson Chemical, MI	In situ vitrification	Soil (3,000 cy)					Confirmatory sampling to occur after melt cools (approximately Summer 1995)

TABLE E-2 REMOVAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS (continued)

June 1994

	on the latest of										
Residuals	∥ 9	inspectionite - treated off site Treated chips - landfilled	Cd applications	Built an on- site vacuum for	control Contaminated	incinerated off-site			None		
Materials Handling Required	╬~~~								Tilling Removal of rocks and	debris	1784
Operating Parameters	Time: 2-3 hours Additives: sodium			Batch operation Retention time -	36 hours (including time of equipment breakdown)	Temperature - 72°C pH - 13	Moisture content - 100%		Additives: Water phosphates	Soil treated in 2 lifts 1st lift - 9 inches 2nd lift - 7 inches	Cultivated approximately 1 to 2 times per week
Key Contaminants Treated		Output: 20 ppm	PCBs Initial: 7,500 ppm	Criteria: Dioxin - <1 ppb	Input: Silvex - 10,000 ppm	Dioxin equivalents - 24.18 ppb	Silvex - 32 ppb	Dioxin equivalents - 0.068 ppb	Input: 1500 - 1000 ppm - Total PAH 23 ppm -	Delizotajpyrene Criteria: 500 ppm - Total PAH 14 ppm - Benzo(a)pyrene	Output: 130 ppm Total PAH 8 ppm - Benzo(a)byrene
Media Treated (Quantity)	Film chips (464 tons or 1,280 cy)		Sol ids	Liquid (5 gallons)					Soil (15,961 tons)		
Technology/ Vendor	Neutralization with hypochlorite process	Mid-American Environmental Service, Riverdale, IL	Solvent Extraction/ Terra Kleen	Dechlorination using the KPEG process	EPA removal contractor				Land Treatment RETEC Billings, MT		
Site Name, State, Dates of Operation	PBM Enterprises, MI 3/25/85 to 10/28/85 (Removal)		Traband Warehouse PCBs, OK (Removal) 2/90 to 9/90	Crown Plating, MO 10/1/89 to 12/31/89 (Removal)					Scott Lumber, MO 12/89 to 9/91 (Removal)		
Region	r		9	_					_		

TABLE E-2 REMOVAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS (continued)

Comments		treatment would have been more successful if the neutralization after the chemical treatment had been more complete. The tearing of the plastic sheets covering the soils allowed air in and prevented anaerobic activity.	
Residuals Management	Bioremediation	Capped in place	
Materials Handling Required		Tilling	Tilling
Operating Parameters	pH: 10.2 to 11.8 Moisture: wet Additives to soil: Sodium hydroxide, Water	pH: 8.3 to 9.8 Additives to soil: Sulfuric acid, manure, sludge	Additives to soil: manure, water
Key Contaminants Treated	Input: Toxaphene - 1,470 ppm Ethyl parathion - 86 ppm Methyl parathion - 24 ppm Output: Toxaphene - 470 ppm Ethyl parathion - 56 ppm Methyl parathion - 3	Toxaphene Input: 470 ppm Output: 180 ppm	Input: Dichlorobenzene - 4,000 ppm Phenol - 12,000 ppm Output:
Media Treated (Quantity)	Soil (3,220 cy)	Soil (3,220 cy)	Soil (14 cy)
Technology/ Vendor	In situ chemical treatment (followed by anaerobic bio- remediation) EPA removal contractor	In situ anaerobic biological treatment (preceded by chemical treatment) EPA removal contractor	In situ Bioremediation EPA removal contractor
Site Name, State, Dates of Operation	Gila River Indian Reservation, AZ 3/28/85 to 6/24/85 (Removal)	Gila River Indian Reservation, AZ 6/24/85 to 10/23/85 (Removal)	Roseville Drums, CA 2/12/88 to 11/9/88 (Removal)
Region	٥	0	٥

r		 		
	Coments		This treatment used both bioremediation and soil flushing in one step.	Total cost approximately \$250,000.
	Residuals Management		Leachate collection and treatment with granular activated carbon	Treated soil was backfilled back into the excavated areas on-site. Soil that did not meet the targets was re- treated. Wastewater was treated on-site through carbon filters.
	Materials Handling Required	Tilling (in situ, 3 times per week)	Excavation Placement in double-lined pit Irrigation Tilling	Excavation screening Removed material greater than 2 inches. Rock washing station for particles greater than 2 inches. Steam cleaned large rocks. Added water after treatment for dust
	Operating Parameters	pH: 9.0 Moisture: wet Additives to soil: soda ash, water, activated carbon	Additives: water	16 hours/day 12 to 15 tons/hr Operating temperature up to 700°F Vapors treated by catalytic oxidation
	Key Contaminants Ireated	Methyl parathion Input: 24.2 ppm Output: 0.05 ppm	Input: Phenol 1,020 ppm o-cresol - 100 ppm m- and p-cresol - 409 ppm Output: Phenol - 1 ppm o-cresol - 1 ppm m- and p-Cresol - 0.92 ppm	Petroleum hydrocarbons Polynuclear Aromatics, BIEX (Benzene, Toluene, Ethylbenzene, Xylene 200 ppm TPH was target. Initial TPH was 70,000 ppm - (high) 15,000 - 20,000 ppm (average). Treated soil TPH was 100 - 200 ppm
	Media Treated (Quantity)	Soil (200 cy)	Soil (1,500 cy)	Soil 3,000 tons (approximately 3,000 cy)
	Technology/ Vendor	Chemical treatment - alkaline hydrolysis EPA removal	Land treatment and soil washing EPA removal contractor	Low temperature thermal desorption treatment. Thermally treat 3,000 tons of soil on-site up to 700°F.
	Site Name, State, Dates of Operation	Stanford Pesticide Site #1, A2 3/20/87 to 11/4/87 (Removal)	Poly-Carb, Inc., NV 7/22/87 to 8/16/88 (Removal)	Drexler-RAMCOR, WA 7/92 to 8/92 (removal)
	Region	6	٥	10

TABLE E-3

OTHER FEDERAL PROGRAMS: PERFORMANCE DATA ON COMPLETED PROJECTS

Table E-3 provides summary information on the performance and operating parameters for applications of innovative treatment technologies that have been completed at non-Superfund sites. It is intended to supplement, not replace the information included in table C-1.

TABLE E-3 OTHER FEDERAL PROGRAMS: PERFORMANCE DATA ON COMPLETED PROJECTS

				
Comments	Forced cold-weather shut down is a limitation	island is now a wildlife refuge, has an endangered species.	Gail Youngblood 408-242-8017	Temperature, pressure and moisture content are monitored Bill Major (DoD) 805-982-1808
Residuals Management	Residuals were left at the facility Wastewater discharged to confined disposal	Backfilled the soil into the excavation	None	
Materials Handling Required	Dredging Screening Size Reduction	Excavated approximately 40 by 60 ft area. Constructed on poly barrier and clean sand base. Did some mixing.	None	Excavation
Operating Parameters	30 cy of sediment treated per day	Batch process Retention time: 3 months 9 inch layers treated. Ambient temperature bacterial added to	Initial concentration > 1,000 ppm End concentration < 200 ppm < 200 ppm	
Key Contaminants Treated	PCBs Input Sediment = 1.6 mg/kg Output Sand = 0.20 mg/kg Output Organics = 11 mg/kg Output Fines = 4.4 mg/kg	PPH, PAHS benzene-toluene- ethylbenzene-xylene (BIEX) TPH - 3,400 ppm BIEX - 41.3 ppm Criteria: Criteria: Crites water commission standards 100 ppm for TPH 30 ppm for Combined BIEX	TCE, MEK, TPH, BTEX	PAHS (petroleum hydrocarbons, diesel), Metals (Lead) After 2 months of operation the TPH evels uses 120 page
Media Treated (Quantity)	Sediment (150 cy)	Soil (500 cy)	Soil (4,000 cy)	Soil (7,000 cy)
Technology/ Vendor	Soil washing; Water with flocculant and surfactant as an additive Bermann USA Stafford Springs, CT	Ex situ bioremdiation; solid phase All constructed on abandoned runway. Bacteria added and mechanically mixed. Four USTs found contamination under one UST. CCC, Inc.	Land farming	Bioremediation (ex situ); heap pile bioreactor
Site Name, State, Dates of Operation	Saginaw Bay Confined Disposal Facility, MI October 1991 to June 4, 1992 (Army)	Matagorda Island Af Range, TX 10/92 to 2/28/93	Ft. Ord Marina, Fritzche AAF Fire Drill Area, CA Winter 1991 (Army)	Marine Corps. Mountain Warfare Center Bridgeport, CA 8/89 to 11/89 (Navy)
Region	۲.	#	٥	٥

TABLE 3-4 OTHER FEDERAL PROGRAMS: PERFORMANCE DATA ON COMPLETED PROJECTS (continued)

Region	Site Name, State, Dates of Operation	Technology/ Vendor	Media Treated (Quantity)	Key Contaminants Treated	Operating Parameters	Materials Handling Required	Residuals Management	Comments
*	Luke AFB, AZ 11/92 to 5/9	Soil vapor extraction with air flushing and thermal oxidation of off-gases Jacobs Engineering	Soil (35,000 cy)	VOCs (2-hexanone, 2-butanone, 4-methyl 2 pentanone, BTEX) Removed approximately 11,000 lbs of vapors and 4,000 lbs of condensate	In situ down to 100 feet	None	Vaports were thermally oxidized	Total petroleum hydrocarbons were present but were too heavy to volatilize. Would recommend combining SVE with in situ bioremediation to treat contaminants that could not be extracted with the SVE.
٥	Davis Monthan AFB, AZ July 1991 to March 1992	Bioremediation (In situ soil)	Soil (440 cy)	PAHs (Petroleum Hydrocarbones)				
	Naval Communication Station, Scotland February to October 1985 (Navy)	Bioremediation In situ soil, in situ ground water	Soil, Groundwater Soil quantity approximately 800 m² in area, depth unknown	TPH (No. 2 diesel fuel)	Microorganisms function best between 20°C and 35°C.	Run-off water collected in a trench	None	The contaminated area had considerable slope, and the contaminated soil was a thin layer over a relatively impermeable rock substrate.

TABLE E-4

REMEDIAL ACTIONS: TREATMENT TRAINS WITH INNOVATIVE TREATMENT TECHNOLOGIES

technologies in treatment "trains." Technologies may be combined to reduce the volume of material requiring further treatment, to prevent the emission of volatile contaminants during excavation and mixing, or to address multiple contaminants in a single medium. Table E-4 lists the sites at which innovative treatment technologies are used together with established or other innovative treatment

SUPERFUND REMEDIAL ACTIONS: TREATMENT TRAINS WITH INNOVATIVE TREATMENT TECHNOLOGIES TOTAL TREATMENT TRAINS = 38 FIGURE E-1

Dechlorination Followed by			Soil Washing Followed by (continued)	ntinued)	
Soil Washing	Myers Property	ÍŽ	Incineration Incineration Solidification/Stabilization	Arkwood South Cavalcade Street Gould, Inc	AR XX QR
Ex Situ Bioremediation Followed by	wed by				
Solidification/Stabilization Solidification/Stabilization Solidification/Stabilization Solidification/Stabilization Solidification/Stabilization	Whitmoyer Laboratories, OU 3 J. H. Baxter Cape Fear Wood Preserving Oklahoma Refining Co. PAB Oil	PA CA OK CA LA	Solvent Extraction Followed by Incineration Solidification/Stabilization	United Cresoting O'Connor	TX
In Situ Flushing Followed by			Thermal Desorption Followed by	l by	
In Situ Bioremediation	Peak Oil/Ray Drums OII	ū	Dechlorination	Arlington Blending & Packaging	NT
In Situ Bioremediation In Situ Bioremediation In Situ Bioremediation In Situ Bioremediation	_ =	KS MT	Dechlorination Incineration of Organic Vapors Incineration of Organic Vapors		K K K K
Soil Vapor Extraction Followed by	ed by		Incineration of Organic Vapors Incineration of Organic Vapors		₩8;
In Sim Bioremediation In Sim Flushing In Sim Flushing Solidification/Stabilization Soil Washing	Swope Oil & Chemical Co. JADCO - Hughes Pasley Solvents and Chemicals, Inc. Genzale Plating Company, OU 1 Zanesville Well Field	NJ NY NY OH	Solidification/Stabilization Solidification/Stabilization Solidification/Stabilization Solidification/Stabilization Solidification/Stabilization	Waldick Aerospace Devices USA Letterkenny (SE Area, OU 1) Acme Solvent Reclaiming, Inc., OU 2 Carter Industries Martin Marietta (Denver Aerospace)	CO WIE BY
Soil Washing Followed by					
Bioremediation Bioremediation Bioremediation Bioremediation Bioremediation	Cabot Carbon/Koppers Whitehouse Waste Oil Pits Cape Fear Wood Preserving Moss-American Koppers (Oroville)	FL NC WI CA			

TABLE E-5

REMOVAL ACTIONS: TREATMENT TRAINS WITH INNOVATIVE TREATMENT TECHNOLOGIES

technologies in treatment "trains." Technologies may be combined to reduce the volume of material requiring further treatment, to Table E-5 lists the at which innovative treatment technologies are used together with established or other innovative treatment prevent the emission of volatile contaminants during excavation and mixing, or to address multiple contaminants in a single medium.

by
ollowed
Treatment F
Chemical

In Situ Bioremediation	Gila River Indian Reservation	AZ
In Situ Flushing Followed by In Situ Bioremediation	Polycarb	N
Soil Washing Followed by Bioremediation	Southeastern Wood Preserving	MS
Solvent Extraction Followed by Solidification/Stabilization	ىع General Refining	V S