

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr.IPLCO
 Dt: 02-08-15

 Time: 09:00 AM to 12:00 Noon
 RPTA-1
 Max.Marks: 180

PAPER-1

KEY & SOLUTIONS

PHYSICS

1	D	2	BD	3	ABC	4	ABCD	5	A	6	BCD
7	ABCD	8	ABD	9	ABCD	10	AD	11	3	12	3
13	1	14	5	15	5	16	2	17	6	18	2
19	9	20	5								

CHEMISTRY

21	ABCD	22	ABC	23	AB	24	BCD	25	ABCD	26	ABCD
27	ABC	28	BCD	29	ABC	30	CD	31	5	32	3
33	4	34	9	35	2	36	5	37	5	38	5
39	5	40	4	1 2	Wi						

MATHS

41	AC	42	ABCD	43	BD	44	BCD	45	ABC	46	C
47	ABCD	48	ABC	49	ABD	50	AD	51	5	52	9
53	5	54	3	55	3	56	5	57	6	58	1
59	5	60	4								

02-08-15_Sr.IPLCO_Jee-Adv_2014-P1_Key &Sol's

MATHEMATICS

41.
$$\frac{CP^2 - \lambda^2 = t_1^2}{CP^2 - \mu^2 = t_2^2} \Rightarrow \frac{t_1}{t_2} = \frac{\mu}{\lambda} \Rightarrow \lambda^2 \left(CP^2 - \lambda^2 \right) = \mu^2 \left(CP^2 - \mu^2 \right) \Rightarrow CP^2 = \lambda^2 + \mu^2$$

Concentric circle. Also area = $10\pi \Rightarrow \lambda^2 + \mu^2 = 10$

42. Solving normal Q = (2,5)

$$C: x^2 + y^2 - 4x - 10y + 27 = 0 \Rightarrow a + b + c = 13$$

Circumcentre of $\Delta PAB = \frac{P+Q}{2}(2,4)$ lies inside

43. Tangent at (2,2) is x-3y+4=0 other line x-3y-6=0

Solving normal: 3x + y - 8 = 0

Midway line : x-3y-1=0 $\left(\frac{5}{2},\frac{1}{2}\right)$

Equation of circle $x^2 + y^2 - 5x - y + 4 = 0$

Circle is unique rad = $\frac{\sqrt{10}}{2} = \sqrt{\frac{5}{2}}$

44. Line y = mx + c passes through centroids of $\Delta C_1 C_3 C_4 \& \Delta C_2 C_3 C_5$

i.e., $(1,0),(4,3) \Rightarrow x-y-1=0 \Rightarrow y=x-1$

45. Lines are perpendicular on tangent is $x+y-h=0 \Rightarrow \frac{h}{\sqrt{2}}=4 \Rightarrow h=4\sqrt{2}, r=\frac{\Delta}{s}=\frac{36}{8+2\sqrt{2}}$

 $\therefore P(0,4\sqrt{2}), A(4\sqrt{2},0), B(-4\sqrt{2},0)$

02-08-15_Sr.IPLCO_Jee-Adv_2014-P1_Key &Sol's

Solving with
$$(2) \Rightarrow \left(\frac{16}{5}, \frac{12}{5}\right), \left(\frac{16}{5}, -\frac{12}{5}\right) \left[|\alpha| + |\beta|\right] = \left\lceil \frac{28}{5} \right\rceil = 5$$

47. Chord equation is y = x ...(1)

Distance =
$$\frac{7}{3}\sqrt{2}$$
 \Rightarrow chord length = $7\sqrt{2}$

Mid point =(3,3)

$$\therefore 2^{2} + 1^{2} + c = \left(\frac{7}{\sqrt{2}}\right)^{2} + \left(\frac{1}{\sqrt{2}}\right)^{2} \Rightarrow c = 20$$

48. Solving $S + \lambda L = 0 \Rightarrow y = 0 & x^2 - 2x - 8 = 0 \Rightarrow A(-2,0), B(4,0)$

 \overrightarrow{AB} equation is y = 0 ...(1)

Line of centre x = 1(2) Solving with $x + 2y + 5 = 0 \Rightarrow (1,3)$

$$S_1 = 0 \Rightarrow x(1) + y(-3) - 1(x+1) - \lambda(y-3) - 8 = 0$$

$$\Rightarrow$$
 $-(\lambda + 3)y - a + 3\lambda = 0$ which is same as $y = 0$: $\lambda = 3$

Circle is $x^2 + y^2 - 2x - 6y - 8 = 0$

49.
$$P(x_1, y_1) \Rightarrow \sqrt{(x_1 - 1)^2 + (y_1 - 2)^2} = R - r$$
 ..(1) also $\frac{r}{AB} = \frac{1}{\sqrt{2}} \Rightarrow r = \frac{(R - r)}{\sqrt{2}} \Rightarrow R = 3r$

Locus is
$$(x-1)^2 + (y-2)^2 = (2r)^2 \Rightarrow (x-1)^2 + (y-2)^2 = \frac{8}{9}(2+\sqrt{3})$$

$$r = \frac{R}{3} = \frac{\sqrt{3} + 1}{3}$$

$$R - r = 2r = \frac{2\left(\sqrt{3} + 1\right)}{3}$$

50.
$$x-1=X$$
 $X+2Y+2=X$...(1) $X=0$(3) $Y=0$ $Y=1=Y$ $X=1$ X

$$a_1a_2 = b_1b_2 \Rightarrow (1)(\lambda) = (2)(1) \Rightarrow \lambda = 2$$

Circle
$$(X + 2Y + 2)(2X + Y - 4) - (XY term) = 0$$

$$\Rightarrow 2X^2 + 2Y^2 - 6Y - 8 = 0 \Rightarrow X^2 + Y^2 - 3Y - 4 = 0$$

Sec: Sr.IPLCO space for rough work Page 14

02-08-15_Sr.IPLCO_Jee-Adv_2014-P1_Key &Sol's

Rad =
$$\sqrt{\frac{9}{4} + 4} = \frac{5}{2}$$

51.
$$S - S^1 = 0 \Rightarrow (\lambda + 6) x + (2\lambda - 8) y + 2 = 0$$

$$\Rightarrow (6x - 8y + 2) + \lambda(x + 2y) = 0 \Rightarrow P.C = \left(\frac{-2}{10}, \frac{1}{10}\right)$$

Locus is polar of $\left(\frac{-2}{10}, \frac{1}{10}\right)$ i.e., $S_1 = 0 \Rightarrow x\left(\frac{-2}{10}\right) + y\left(\frac{1}{10}\right) = 1 \Rightarrow 2x - y + 10 = 0$

$$\therefore \frac{C}{m} = 5$$

52. Centre =(5,0)

Rad =
$$2\sqrt{2}$$

$$(x-5)^2 + y^2 = 8$$

$$\alpha = 5 + 2\sqrt{2}\cos\theta$$

$$\beta = 0 + 2\sqrt{2}\sin\theta$$

$$\alpha + \beta = 5 + 2\sqrt{2}\left(\cos\theta + \sin\theta\right)$$

$$\in [1,9] \text{ max}=9$$

53.
$$x^2 + y^2 - 5x + 4 + 2x(y) = 0 \Rightarrow c = f^2 \Rightarrow 4 = \lambda^2 \Rightarrow \lambda = \pm 2$$

Two circles are $x^2 + y^2 - 5x \pm 4y + 4 = 0$

$$C_1 = \left(\frac{5}{2}, 2\right), C_2 = \left(\frac{5}{2}, -2\right), r_1 = \frac{5}{2}, r_2 = \frac{5}{2}$$

$$\cos\theta = \frac{16 - \frac{25}{4} - \frac{25}{4}}{2 \times \frac{5}{2} \times \frac{5}{2}} = \frac{\frac{7}{25}}{\frac{25}{2}} = \frac{7}{25} \Rightarrow 25\cos\theta - 2 = 5$$

Sec: Sr.IPLCO

02-08-15_Sr.IPLCO_Jee-Adv_2014-P1_Key &Sol's

54.
$$\Delta = 4 - 4 \left(\frac{\pi(1)^2}{4} \right) = 4 - \pi$$

$$\Delta - \pi = 4 - 2\pi = -2.28$$

$$\left[\left[\Delta - \pi \right] \right] = \left| -3 \right| = 3$$

55.
$$2\cos\frac{\pi}{2k} + 2\cos\frac{\pi}{k} = \sqrt{3} + 1 \Rightarrow \text{ solving } \cos\frac{\pi}{2k} = \frac{\sqrt{3}}{2} \Rightarrow \frac{\pi}{2k} = \frac{\pi}{6} \Rightarrow k = 3$$

56.
$$AC^2 = AP^2 + PC^2 \Rightarrow 4 = (x_1 - 2)^2 + (y_1 - 3)^2 + (x_1 - 2)^2 + (y_1 - 2)^2$$

$$\Rightarrow$$
 Locus $x^2 + y^2 - 4x - 5y + \frac{17}{2} = 0$

Centre
$$= \left(2, \frac{5}{2}\right) \Rightarrow \alpha\beta = 5$$

57.
$$-\frac{x}{8}$$
 integer $\Rightarrow x = \pm 1, \pm 2, \pm 4, \pm 8$ but $x^2 + y^2 < 125$

$$\therefore x = \pm 1, \pm 2, \pm 4$$

58.
$$S_1 = S_{11} \Rightarrow xx_1 + yy_1 - (x + x_1) - (y + y_1) = 0 \Rightarrow (x_1 - 1)x + (y_1 - 1)y = x_1 + y_1$$

02-08-15_Sr.IPLCO_Jee-Adv_2014-P1_Key &Sol's

$$x^{2} + y^{2} - 2(x+y) \left\{ \frac{(x_{1}-1)x + (y_{1}-1)y}{x_{1} + y_{1}} \right\} = 0$$

Equally inclined to x-axis \rightarrow coefficient of $xy = 0 \Rightarrow \frac{-2}{x_1 + y_1} \{ y_1 - 1 + x_1 - 1 \} = 0$

Locus is $x + y = 2 \Rightarrow a + b = 1$

59.
$$a^2 - 1 = 3(a+1) \Rightarrow a = 4 \Rightarrow \text{radius} = \frac{a^2 - 1}{2} \Rightarrow r = \frac{15}{2}$$

$$L.C = r\sqrt{2} = \frac{15}{\sqrt{2}} \Rightarrow G.E = 5$$

60.

Clearly P = (0,0)

 \overrightarrow{AE} equation: 4x + 3y = 25

 \overrightarrow{AF} equation : x = 5

$$\therefore A = \left(5, \frac{5}{3}\right)$$

 \overrightarrow{AP} slope $=\frac{1}{3}$