Comenzado en	Monday, 19 de December de 2022, 08:35
Estado	Terminados
Finalizado en	Monday, 19 de December de 2022, 09:00
Tiempo empleado	24 mins 33 segundos
Puntos	0.00/50.00
Calificación	0.00 de un total de 100.00

Completada

Puntua 0.00 sobre 50.00

Determine el volumen del sólido acotado por los planos y=0:, z=0 y z=7-x+y y el cilindro parabólico $y=7-(x^2/7)$ Utilice dos cifras decimales.

Respuesta: 444.26

La respuesta correcta es: 640.27

Pregunta 2

Completada

No calificada

Dada la siguiente integral, escriba una integral equivalente en coordenadas polares:

$$\int_{\frac{a}{\sqrt{2}}}^{a} \int_{-\sqrt{a^2 - x^2}}^{\sqrt{a^2 - x^2}} (x^2 + y^2)^3 dy dx + \int_{0}^{\frac{a}{\sqrt{2}}} \int_{-x}^{x} (x^2 + y^2)^3 dy dx$$

Comenzado en	Tuesday, 20 de December de 2022, 08:29
Estado	Terminados
Finalizado en	Tuesday, 20 de December de 2022, 09:00
Tiempo	30 mins 5 segundos
empleado	
Calificación	100.00 de un total de 100.00

Completada

Puntúa 100.00 sobre 100.00

Dada la integral que calcula el volumen coordenadas rectangulares, Plantee el mismo volumen con integración triple el orden dydzdx:

integración triple el orden
$$dydzdx$$
:
$$\int_{-2}^2 \int_{x^2}^4 \int_0^{2-\frac{y}{2}} dz dy dx$$
 a)
$$\int_{-2}^2 \int_0^{2-\frac{x^2}{2}} \int_{x^2}^{4-2z} dy dz dx$$

b)
$$\int_0^2 \int_0^{2-rac{x^2}{2}} \int_{x^2}^{4-2z} dy dz dx$$

c)
$$\int_{-2}^2 \int_0^{2-rac{x^2}{2}} \int_0^{4-2z} dy dz dx$$

d) ninguna de las anteriores

a)

→ HT10 MI2 B

Ir a...

Procedimiento Hoja de trabajo 11 ►

Comenzado en	Wednesday, 21 de December de 2022, 08:31
Estado	Terminados
Finalizado en	Wednesday, 21 de December de 2022, 08:59
Tiempo	27 mins 34 segundos
empleado	
Calificación	0.00 de un total de 100.00

Incorrecta

Puntúa 0.00 sobre 100.00

Determine el volumen del sólido interior a la esfera

$$x^2 + y^2 + z^2 = 3^2$$

y a al cilindro

$$\left(x-\frac{3}{2}\right)^2+y^2=\left(\frac{3}{2}\right)^2$$

Nota: utilice dos cifras decimales y utilice $\pi=3.1416$

Respuesta: 56.55

La respuesta correcta es: 32.55

◄ HT11 MI2 B

Ir a...

procedimiento hoja 12 ►

Comenzado en Monday, 26 de December de 2022, 08:23

Estado Terminados

Finalizado en Monday, 26 de December de 2022, 08:36

Tiempo 13 mins empleado

Calificación 100.00 de un total de 100.00

Pregunta 1

Correcta

Puntúa 100.00 sobre 100.00

Evalué la integral de linea dada por

$$\int xydx + x^2dy$$

 $\text{donde C esta dada por } y = x^3 \quad -1 \leq x \leq 2$

Utilice dos cifras decimales para el resultado.

26.4

~

→ HT12 MI2 B

Ir a...

procedimiento hoja 13 ►

27/12/22, 08:51 Hoja 14

Tiempo restante 0:08:25

Pregunta 1

Sin responder aún

Puntaje de 100.00

Evaluar $\int_C F \cdot dr$ si $F(x,y) = 2cos(2x)cos(2y)\vec{i} - 2sin(2x)sin(2y)\vec{j}$, donde C:

- O-0.491059
- **ONinguna es Correcta**
- **0.230076**
- 0.679185
- **0.866025**

◄ HT13 MI2 B

Ir a...

Procedimiento Hoja 14 ►

27/12/22, 08:51 Hoja 14

Tiempo restante 0:16:42

Pregunta 1

Sin responder aún

Puntaje de 100.00

Evalúe la integral $\int_C {(sin(x^2) - 16y)} dx + (4e^y + 3x^2) dy$, donde C :

 $\bigcirc 8\pi$

ONinguna es Correcta

 \bigcirc -4 π

 $\bigcirc 4\pi$

 $\bigcirc 12\pi$

→ Procedimiento Hoja 14

Ir a...

Procedimiento hoja 15 ►

Sin responder aún

Puntaje de 100.00

Señaiar con bandera la pregunta Utiliza el teorema de green para calcular la integral de linea del campo F sobre la curva C. $\int_c F.\,dr$ con orientación contraria a las manecillas del reloj.

plot of chunk grafica

a.
$$F = < sin(x) + y^2/2 + 2xy - 9y, cos(y) + xy + x^2 + 3x >$$