AutoRec: Autoencoders Meet

Collaborative Filtering

Introduction

Problem: Given U users and their preferences (star ratings) about some of the given I items. The task is to find preferences about the remaining items.

This can also be viewed as a problem of recommendation where we want to recommend items to users depending on the preferences which they have given.

Collaborative Filtering

Collaborative Filtering (Main Idea) - If a person A has the same opinion as a person B on an issue, A is more likely to have B's opinion on a different issue than that of a randomly chosen person.

where $\bar{r_u}$ is average rating given by user u and k is defined as $k = 1/\sum_{u' \in U} |\operatorname{simil}(u, u')|$ where simil(u,v) is similarity measure which can be cosine similarity or any other

similarity measure. This is basic collaborative filtering approach.

Problem setting

- Rating-based collaborative filtering:
 - o m users
 - o n items
 - Partially observed rating matrix R
 - \circ Each item partially observed vector $\mathbf{r}^{(i)} = (R_{1i}, \dots R_{mi})$
- Task: Design an item-based autoencoder which can:
 - take as input each partially observed r(i)
 - o project it into a low-dimensional latent space
 - o and then reconstruct r(i) in the output space

Formulation

$$\min_{\theta} \sum_{\mathbf{r} \in \mathbf{S}} ||\mathbf{r} - h(\mathbf{r}; \theta)||_2^2,$$

where $h(\mathbf{r}; \theta)$ is the reconstruction of input $\mathbf{r} \in \mathbb{R}^d$,

$$h(\mathbf{r}; \theta) = f(\mathbf{W} \cdot g(\mathbf{V}\mathbf{r} + \boldsymbol{\mu}) + \mathbf{b})$$

Model

of parameters: 2mk + m + k

Objection function with regularization:

$$\min_{\theta} \sum_{i=1}^{n} ||\mathbf{r}^{(i)} - h(\mathbf{r}^{(i)}; \theta))||_{\mathcal{O}}^{2} + \frac{\lambda}{2} \cdot (||\mathbf{W}||_{F}^{2} + ||\mathbf{V}||_{F}^{2})$$

Using the model:

$$\hat{R}_{ui} = (h(\mathbf{r}^{(i)}; \hat{\theta}))_u$$

Experimental Results

- 1. The dataset used for experimentation was movielens dataset which consisted of movie ratings of 1 million users.
- 2. The RMSE values obtained for different methods are given below.

Performance steadily increases with the number of hidden units, but with diminishing returns.

	ML-1M	ML-10M
U-RBM	0.881	0.823
I-RBM	0.854	0.825
U-AutoRec	0.874	0.867
I-AutoRec	0.831	0.782

Second order optimization methods:

A very brief overview

Newton's method

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma [\mathbf{H} f(\mathbf{x}_n)]^{-1} \nabla f(\mathbf{x}_n)$$

- Computing the inverse when the data is high dimensional could be very expensive
 - Alternative 1: Pose the problem of finding updates as a system of linear equations
 - Alternative 2: Compute the Hessian (or its inverse directly) from changes in the gradient (Quasi-Newton methods).

BFGS

- Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
- Among the most popular Quasi Newton methods
- It stores the approximation to the Hessian matrix.
- If the dimension of the x vector in n, that takes O(n^2) memory.

L-BFGS

- Limited-memory (L) Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
- L-BFGS is a BFGS version that does not require to explicitly store the approximation to the Hessian
 - So, it needs less memory