SALABER, NAOMI RUTH D.

BSIT 2-A

WORKSHEET 5

1. A.

Code: df <- data.frame("course"=c("1st", "2nd", "3rd", "4th"), "sy"= c(80, 75, 70, 60))

ggplot(df) + geom_col(aes(course, sy))

Result:

B.

Curriculum Year

2. A.Code: food <- 60 electricity <- 10 savings <- 5 misc <- 25

expenses <- data.frame(food, electricity, savings,misc) expenses

Expenses

A. Code: mt <- mtcars\$mpg

hist(mt, main = "Histogram for mpg")

Result:

Histogram for mpg

mt

B. Code: hist(mt, breaks=12, col="red")

Result:

C. Result:

Histogram with Normal Curve

4. A. Code:

data("iris")

data_a <- data.frame(iris)

data_a

a_data <- subset(data_a, Species == 'setosa')

a_data

data_b <- data.frame(iris)</pre>

data_b

```
b_data <- subset(data_b, Species == 'versicolor')
b_data

data_c <- data.frame(iris)
data_c
c_data <-subset(data_c, Species == 'virginica')
c_data</pre>
```

B. Code:

setosa <- colMeans(a_data[sapply(a_data,is.numeric)])
setosa</pre>

versicolor <- colMeans(b_data[sapply(b_data,is.numeric)])
versicolor</pre>

virginica <- colMeans(c_data[sapply(c_data,is.numeric)])
virginica</pre>

Result:

C. Result:

```
Sepal.Length Sepal.Width Petal.Length Petal.Width
                  5.006
                                                        0.246
                              3.428
                                            1.462
setosa
versicolor
                  5.936
                                                        1.326
                              2.770
                                            4.260
virginica
                  6.588
                              2.974
                                            5.552
                                                        2.026
```

Result:

Iris Mean Sepal.Length Petal.Length