## Week 8

## Alcohols, Ethers, and Epoxides

## 8.1 Office Hours (Salinas)

2/28: • Does H<sub>2</sub> + Pd/C hydrogenate ketones or not? Conflict between Lecture 11 and 2020 Exam 2A Q1e.

- Either way.
- H<sub>2</sub> + Pd/C hydrogenates *benzylic* ketones only; it will leave ketones that are farther away from the benzene ring alone.
- Zn(Hg) + HCl hydrogenates all ketones, but nothing else.
- When do alkenes in PAHs get hydrogenated?
  - Ones that are added onto the Rocks of Gibraltar molecules.
- Do we have to know that aryl amines present a problem in F-C alkyl/arylations? It seems like there's a lot of content on this exam that BCD never went over.
  - Things like this probably won't show up on the exam.
- Can we use HCN + NaCN to substitute CN?
  - This would work, but Sandmeyer is the go-to.
- How do you indicate you want to do something twice (e.g., bromination on 2020 Exam 2A Q3a)?
  - Write (2x): For example, "Br<sub>2</sub> / FeBr<sub>3</sub> (2x)".
- Is it KMnO<sub>4</sub> (2020 Exam 2A answer key), KMnO<sub>4</sub> / H<sub>2</sub>O (class), KMnO<sub>4</sub> / NaOH +  $\Delta$  (PSet 4 key), or KMnO<sub>4</sub> / NaOH +  $\Delta$  followed by H<sub>3</sub>O<sup>+</sup> (PSet 4 key) for benzoic acid formation?
  - $KMnO_4 + H_2O$  is pretty solid.
- 2020 Exam 2A Q3c: Is it preferable to use S<sub>N</sub>Ar or a novel Sandmeyer reaction? What are the limits
  of the Sandmeyer reaction?
  - Note that we can achieve meta addition of an amine when an o/p-director is present by brominating para and then using the benzyne intermediate.
- 2020 Exam 2A Q3d: Is SnCl<sub>2</sub> / H<sub>2</sub>O selective reduction of nitro groups?
  - Perhaps, Omar will get back to me on whether to use SnCl<sub>2</sub> / H<sub>2</sub>O or H<sub>2</sub> + Pd/C.
- When adding an alkane via F-C alkylation to later be transformed into a benzoic acid, is it preferable to use 2-chloropropane for some reason?

- Anything's fine.
- PSet 4 2021 1f/h:

$$\begin{array}{c|c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Figure 8.1: Major and minor synthesis products.

- When asked to determine major/minor when it could be kind of ambiguous, assume equimolar concentrations of reactants after the step before the last step.
- In the example above, notice how the two products on the bottom are identical, so they constitute
  the major product.