Functions Final Exam

February 3, 2021

1 Preamble

This final exam covers everything we have learned in this course, with emphasize towards material after test 2. Student's **must show all work** to receive full marks.

2 Allowed Aids

The following aids are allowed on the Test

- Pencil, Pen, Eraser, Highlighter, Ruler, Protractor, Spare sheets of blank paper.
- Reference sheet (Double sided paper preprepared by student)

3 Restrictions:

• NO calculator's.

4 Remarks:

- $\sqrt{xy} = \sqrt{x}\sqrt{y}$.
- $\sqrt{x}\sqrt{y} = \sqrt{xy}$.

_	TN. T	1	
5	Name	and	Date:

Name	Date

Part A - Multiple Choice

Question 1. Answer the following True/False questions,

- 1. Let $S = \{1, 2, 3\}$, then S + S = S + S + S. Circle the correct answer: **True False**
- 2. $(\sqrt{4} + \sqrt{64}) \notin \mathbb{N}$. Circle the correct answer: **True False**
- 3. The number 29 is a prime number.

 Circle the correct answer: **True False**
- 4. Let $T = \{x \in \mathbb{Z} \mid |x| = -1\}$, then T is **not** empty. Circle the correct answer: **True False**
- 5. The vertex of

$$g(x) = 3(x + \sqrt{4})^2 - 4^2$$

is (-4, -4).

Circle the correct answer: True False

6. The vertex of,

$$H(x) = -(x+2)^2 + 1.$$

represents a minimum.

Circle the correct answer: True False

- 7. Let $f(x) = \sqrt{x}$. Suppose we apply the following transformations to f,
 - Reflection across the x-axis.
 - Vertical stretch by a factor of 2.
 - Horizontal compression by a factor of 2.
 - Horizontal shift, right by 2 units.
 - Vertical shift, down by 4 units.

Then the corresponding transformation equation is h(x) = -2f(2x - 4) - 4.

Circle the correct answer: True False

8. Let f(x) = |x|, and let h(x) = -f(2x+4)-5 be a transformation of f(x), then the corresponding coordinate transformation of f is,

$$(x, f(x)) \longrightarrow \left(\frac{x+4}{2}, -f(x) - 5\right).$$

Circle the correct answer: True False

9. Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2\sqrt{x} + 1$ be a function. Then f is not invertible.

Hint: Try using the Horizontal line test.

Circle the correct answer: True False

10. Let $\mathcal{X} = \{45^{\circ}, 60^{\circ}, 240^{\circ}\}$ and $\mathcal{Y} = \{0, 1, \sqrt{3}\}$ be sets, define the following function,

- $\omega \colon \mathcal{X} \to \mathcal{Y}$.
- $\omega(x) = \tan(x)$.

Then ω is an invertible function.

Circle the correct answer: True False

11. Let $\triangle PQR$ be a **right triangle** with angle $\angle PQR = 60^{\circ}$ and hypotenuse PQ = 8. Then QR = 4.

Circle the correct answer: True False

12. The exact value of

$$\sin 150^{\circ} \cdot \sec 240^{\circ} + \tan 240^{\circ} \tan 30^{\circ} = 0$$

Circle the correct answer: True False

13. Let $\triangle PQR$ be a **right triangle** with PQ=6 and $QR=3\sqrt{3}$. Then, $\angle PQR=60^{\circ}$.

Circle the correct answer: True False

14. $\sin 330^{\circ} = -0.5$.

Circle the correct answer: True False

15. Suppose we have the standard coordinates $\mathbf{P}(2, -\sqrt{12})$, then the corresponding polar coordinates are $\mathbf{P}(4, 60^{\circ})$.

Circle the correct answer: True False

16. $\sqrt{4^4 \cdot 3^2 \cdot 2} = 48\sqrt{2}$.

Circle the correct answer: True False

Part B

Question 3. Given a function $f: A \to B$, explain in your own words, what is the definition of the range of f, \mathcal{R}_f , what does it contain? Is it necessarily true that $\mathcal{R}_f = B$?

Question 4. Given a function $f: A \to B$, explain in your own words, what do we mean when we say that f is invertible?

Question 5. Explain what the horizontal line test is as well as the vertical line test.

Part C

Question 6. Let $F(x) = x^3 + 1$, and $G(x) = 2x^2 + x - 1$ be functions, (a) Compute F(-1).

(b) Compute G(2).

(c) Compute F(G(1)).

(d) Compute G(F(F(0))).

Question 7. Let $g(x) = 2x^2 - 4x + 4$,

(a) How many solutions will g(x) have?

(b) Convert g(x) into vertex form by completing the square.

(c) Does the vertex of g(x) represent a minimum or maximum, justify your answer.

Question 8. Determine the inverse function for the following functions,

(a)
$$F(x) = -8x + 16$$
.

(b)
$$G(x) = 2\sqrt{x+8} - 4$$
.

Question 9. Simplify the following exponential expression, leave your answer with positive exponents.

$$\frac{\left(2x^2x^4y^{-3}z^{-4}\right)^2}{\left(8x^{-2}y^{-5}z^2\right)^2}$$

Question 10. Evaluate the following,

$$\left(16^{\frac{4}{4}}\right)\left(9^{\frac{3}{2}}\right)\left(4^{\frac{1}{2}}\right)\left(2^{-3}\right)$$

Question 11. Simply the following radical expressions.

(a)
$$2\sqrt{27} + 3\sqrt{3} - 2\sqrt{12} + \sqrt{48}$$

(b)
$$\left(2\sqrt{2} + \sqrt{3}\right) \left(5\sqrt{3} + 3\sqrt{2}\right)$$

Question 12. Simplify the following,

(a)
$$\frac{2x^2 - 8x}{x^2 - 11x + 18} \times \frac{2x^2 - 7x + 6}{x^2 - 5x + 4}$$

(b)
$$\frac{x}{x^2 - 5x + 6} - \frac{3}{x^2 - 4x + 4}$$

Question 13. For each of the following, you are given a trigonometric ratio, solve for θ . Assume that each angle θ lies in the fourth quadrant. (You can use the circle below if it helps).

(a)

(b)

Part D - Solve one of the two problems

Question 14. Suppose we have two standard coordinates $P(x_1, y_1)$ and $Q(x_2, y_2)$. Recall that the distance between these two points is given by the following formula,

dist =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
.

Given polar coordinates $\mathbf{R}(2,150^{\circ})$ and $\mathbf{T}(2,330^{\circ})$, compute the distance between them.

Question 15. The figure below is composed of a kite and a circle. The radius of the circle is 4 and the point M represents the midpoint of the circle. $\angle ADM = 30^{\circ}$ and MC = 20. If the area of the circle is $A_c = 48$, then determine the area of the shaded region in exact form.

(**Hint:** A kite has unquie symmetric relationships which assert that $\angle ADM = \angle ABM$, $\angle MDC = \angle MBC$, DM = MB, AD = AB, BC = DC).

CHOOSE AND SOLVE ON NEXT PAGE

Question _____.

(You can use the circle below if it helps)

