1 Point estimation

Context

Our engineering team just landed a consulting contract with a company interested in the electricity consumption of its machines. In a first part, we would like to determine how electricity consumption is evenly distributed across the different machines of the same type. To this end, we use the Gini coefficient. In a nutshell, it is an index ranging from 0 to 1 measuring the inequality featured in a distribution. A value of 0 denotes that all our machines use the same amount of electricity while a value of 1 means that all the electricity is used by a single machine. We assume that all of the n machines operate independently and their daily electricity consumption (in MWh) can be modelled as a random variable X with the following probability density function (PDF),

$$f_{\theta_1,\theta_2}(x) = \begin{cases} \frac{\theta_1 \theta_2^{\theta_1}}{x^{\theta_1 + 1}}, & x \ge \theta_2\\ 0, & \text{otherwise} \end{cases}$$
 (1)

with $\theta_1 > 2$ and $\theta_2 > 0$. This is the PDF of the **Pareto distribution**.

(a) Derive the quantile function of X

We're looking to solve $P(X \leq x_t) = t$ for x_t .

First let's compute the cumulative distribution function (CDFa) $P(X \le x_t)$,

$$P(X \le x_t) = \int_{-\infty}^{x_t} f_{\theta_1, \theta_2}(x) dx$$

$$= \int_{\theta_2}^{x_t} \theta_1 \theta_2^{\theta_1} x^{-(\theta_1 + 1)} dx$$

$$= -\frac{\theta_1 \theta_2^{\theta_1}}{\theta_1} \left[x^{-\theta_1} \right]_{x = \theta_2}^{x = x_t}$$

$$= -\theta_2^{\theta_1} \left(x_t^{-\theta_1} - \theta_2^{-\theta_1} \right)$$

$$= 1 - \left(\frac{\theta_2}{x_t} \right)^{\theta_1}$$

Let's solve $P(X \leq x_t) = t$ for x_t ,

$$1 - \left(\frac{\theta_2}{x_t}\right)^{\theta_1} = t \iff (1 - t)^{1/\theta_1} = \frac{\theta_2}{x_t}$$
$$\iff x_t = \frac{\theta_2}{(1 - t)^{1/\theta_1}}$$

Therefore we have,

$$Q_{\theta_1,\theta_2}(t) = \frac{\theta_2}{(1-t)^{1/\theta_1}} \tag{2}$$

(b) Derive the Gini coefficient of X.

The Gini coefficient is defined as,

$$G_{\theta_1,\theta_2} = 2 \int_0^1 \left(p - \frac{\int_0^p Q(t)dt}{E(X)} \right) dp$$
 (3)

Let's first compute the expectation value of X,

$$E(X) = \int_{-\infty}^{+\infty} x \cdot f_{\theta_1, \theta_2}(x) dx$$

$$= \int_{\theta_2}^{+\infty} x \frac{\theta_1 \theta_2^{\theta_1}}{x^{\theta_1 + 1}} dx$$

$$= \theta_1 \theta_2^{\theta_1} \int_{\theta_2}^{+\infty} x^{-\theta_1} dx$$

$$= -\frac{\theta_1 \theta_2^{\theta_1}}{(\theta_1 - 1)} \left[x^{-(\theta_1 - 1)} \right]_{\theta_2}^{+\infty}$$

$$= \begin{cases} -\frac{\theta_1 \theta_2^{\theta_1}}{(\theta_1 - 1)} \left(-\frac{1}{\theta_2^{-(\theta_1 - 1)}} \right), & \theta_1 > 1 \\ +\infty, & \theta_1 \le 1 \end{cases}$$

$$= \begin{cases} \frac{\theta_1 \theta_2}{(\theta_1 - 1)}, & \theta_1 > 1 \\ +\infty, & \theta_1 \le 1 \end{cases}$$

So the Gini coefficient is defined for $\theta_1 > 1$,

$$G_{\theta_1,\theta_2} = 2\left(\int_0^1 pdp - \int_0^1 \frac{\int_0^p Q_{\theta_1,\theta_2}(t)dt}{E(X)}dp\right)$$

We compute each integral separately,

$$\int_0^1 p dp = \frac{1}{2}$$

Then,

$$\int_0^p Q_{\theta_1,\theta_2}(t)dt = \theta_2 \int_0^p \frac{1}{(1-t)^{1/\theta_1}}$$

We use the change of variable $u = 1 - t \implies du = -dt$

The boundaries becomes,

$$\begin{cases} t = 0 & \Longrightarrow u_1 \equiv 1 \\ t = p & \Longrightarrow u_2 \equiv 1 - p \end{cases}$$

Then,

$$\begin{split} \int_0^p Q_{\theta_1,\theta_2}(t)dt &= -\theta_2 \int_{u_1}^{u_2} \frac{1}{(u)^{1/\theta_1}} du \\ &= -\theta_2 \left[\frac{(u)^{-(1/\theta_1 - 1)}}{-((1/\theta_1) - 1)} \right]_{u_1}^{u_2} \\ &= \frac{\theta_2}{(1/\theta_1) - 1} \left(\frac{1}{(1 - p)^{1/\theta_1 - 1}} - \frac{1}{1^{1/\theta_1 - 1}} \right) \\ &= \frac{\theta_2}{(1/\theta_1) - 1} \left(\frac{1}{(1 - p)^{1/\theta_1 - 1}} - 1 \right) \end{split}$$

Therefore for $\theta_1 > 1$,

$$\begin{split} \frac{\int_0^p Q_{\theta_1,\theta_2}(t)dt}{E(X)} &= \frac{\frac{\theta_2}{(1/\theta_1)-1} \left(\frac{1}{(1-p)^{1/\theta_1-1}}-1\right)}{\frac{\theta_1\theta_2}{(\theta_1-1)}} \\ &= \frac{\theta_2}{(1/\theta_1)-1} \left(\frac{1}{(1-p)^{1/\theta_1-1}}-1\right) \frac{(\theta_1-1)}{\theta_1\theta_2} \\ &= \frac{\theta_1(1-(1/\theta_1))}{((1/\theta_1)-1)\theta_1} \left(\frac{1}{(1-p)^{1/\theta_1-1}}-1\right) \\ &= -\left(\frac{1}{(1-p)^{(1/\theta_1)-1}}-1\right) \\ &= 1 - \frac{1}{(1-p)^{(1/\theta_1)-1}} \end{split}$$

Then,

$$\int_0^1 \frac{\int_0^p Q_{\theta_1,\theta_2}(t)dt}{E(X)} dp = \underbrace{\int_0^1 1dp}_A - \underbrace{\int_0^1 \frac{1}{(1-p)^{(1/\theta_1)-1}} dp}_B$$

Computing integral A and B.

$$A = \int_0^1 1dp = 1$$

$$B = \int_0^1 \frac{1}{(1-p)^{(1/\theta_1)-1}} dp$$

We use the change of variable $u = 1 - p \implies du = -dp$.

The boundaries become,

$$\begin{cases} p = 0 & \Longrightarrow u_1 \equiv 1 \\ p = 1 & \Longrightarrow u_2 \equiv 0 \end{cases}$$

2020-2021 3

Then,

$$\begin{split} \int_0^1 \frac{1}{(1-p)^{(1/\theta_1)-1}} dp &= -\int_{u_1}^{u_2} \frac{1}{(u)^{(1/\theta_1)-1}} du \\ &= -\int_{u_1}^{u_2} u^{-((1/\theta_1)-1)} du \\ &= \frac{1}{((1/\theta_1)-1)-1} \left[(u)^{((1/\theta_1)-1-1)} \right]_1^0 \\ &= -\frac{1}{(1/\theta_1)-2} \\ &= \frac{1}{2-(1/\theta_1)} \end{split}$$

Eventually the Gini coefficient is (for $\theta_1 > 0$),

$$G_{\theta_1,\theta_2} = 2\left(\frac{1}{2} - \frac{1}{2 - (1/\theta_1)}\right)$$

$$= 2\left(\frac{1}{2}\left[1 - \frac{1}{1 - (1/2\theta_1)}\right]\right)$$

$$= 1 - \frac{1}{1 - (1/2\theta_1)}$$

$$= \frac{1/2\theta_1}{1 - (1/2\theta_1)}$$

$$= \frac{1}{2\theta_1\left(1 - \frac{1}{2\theta_1}\right)}$$

$$= \frac{1}{2\theta_1 - 1}$$

(c) Derive the maximum likelihood estimator (MLE) of G_{θ_1,θ_2} . Call this estimator \hat{G}_{MLE}

Let's first compute the likelihood function $L(\theta_1, \theta_2)$,

$$\begin{split} L(\theta_1, \theta_2) &:= \Pi_{i=1}^n f_{\theta_1, \theta_2}(x) \\ &= \Pi_{i=1}^n \frac{\theta_1 \theta_2^{\theta_1}}{x^{\theta_1 + 1}} \cdot I(X_i \ge \theta_2 > 0) \\ &= \theta_1^n \theta_2^{n\theta_1} \frac{1}{\Pi_{i=1}^n X_i^{\theta_1 + 1}} \cdot I(X_{(1)} \ge \theta_2 > 0) \end{split}$$

where $X_{(1)} \equiv \min(X_1, ..., X_n)$.

We notice that $L(\theta_1, \theta_2)$ is not continuous along θ_2 and then not differentiable in θ_2 . However, we observe that $L(\theta_1, \theta_2)$ increase with θ_2 . Therefore, we have to take θ_2 the largest possible in order to maximize $L(\theta_1, \theta_2)$ respecting the condition $X_{(1)} \leq \theta_2 > 0$ otherwise we would have $L(\theta_1, \theta_2) = 0$,

$$\hat{\theta}_2 = X_{(1)}$$

For $\hat{\theta}_1$ we can compute the log-likelihood function $l(\theta_1, \theta_2)$,

$$\begin{split} l(\theta_1, \theta_2) &:= \ln(L(\theta_1, \theta_2)) \\ &= \ln(\theta_1^n) + \ln(\theta_2^{n\theta_1}) + \ln(1) - \ln(\pi_{i=1}^n X_i^{(\theta_1 + 1)}) \\ &= n \ln(\theta_1) + n\theta_1 \ln(\theta_2) - (\sum_{i=1}^n \ln(X_i^{(\theta_1 + 1)})) \\ &= n \ln(\theta_1) + n\theta_1 \ln(\theta_2) - \sum_{i=1}^n (\theta_1 + 1)) \ln(X_i) \end{split}$$

We differentiate with respect to θ_1 in order to find the maximum,

$$\frac{\partial l(\theta_1, \theta_2)}{\partial \theta_1} = \frac{n}{\theta_1} + n \ln(\theta_2) - \sum_{i=1}^n \ln(X_i)$$

Then,

$$\frac{\partial l(\theta_1, \theta_2)}{\partial \theta_1} = 0 \iff \hat{\theta}_1 = \frac{n}{\sum_{i=1}^n (\ln(X_i)) - n \ln(\hat{\theta}_2)}$$
$$= \frac{n}{\sum_{i=1}^n (\ln(X_i) - \ln(X_{(1)}))}$$
$$= \frac{n}{\sum_{i=1}^n \ln\left(\frac{X_i}{X_{(1)}}\right)}$$

Now we can compute \hat{G}_{MLE} ,

$$\begin{split} \hat{G}_{\text{MLE}} &:= G_{\hat{\theta}_1, \hat{\theta}_2} \\ &= \frac{1}{2\hat{\theta}_1 - 1} \\ &= \frac{1}{\left(\frac{2n}{\sum_{i=1}^n \ln\left(\frac{X_i}{X_{(1)}}\right)}\right) - 1} \end{split}$$

(d) Propose a method of moment estimator of G_{θ_1,θ_2} . Call this estimator \hat{G}_{MME}

We already have computed the expectation value of X,

$$E(X) = \begin{cases} \frac{\theta_1 \theta_2}{(\theta_1 - 1)}, & \theta_1 > 1\\ +\infty, & \theta_1 \le 1 \end{cases}$$

We know that,

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv E(X)$$

2020-2021 5

Let's solve for θ_1 ,

$$\bar{X} = \frac{\hat{\theta}_1 \hat{\theta}_2}{(\hat{\theta}_1 - 1)} \iff \bar{X} \hat{\theta}_1 - \bar{X} = \hat{\theta}_1 \hat{\theta}_2$$

$$\iff \hat{\theta}_1 (\bar{X} - \hat{\theta}_2) = \bar{X}$$

$$\iff \hat{\theta}_1 = \frac{\bar{X}}{(\bar{X} - \hat{\theta}_2)}$$

In order to estimate $\hat{\theta}_2$ we know that the CDF is given by,

$$F_{\theta_1\theta_2}(x) = P(X \le x) = 1 - \left(\frac{\theta_2}{x}\right)^{\theta_1}$$

Therefore,

$$P(X > x) = 1 - P(X \le x)$$
$$= \left(\frac{\theta_2}{x}\right)^{\theta_1}$$

The probability that all random variables (X_1, \ldots, X_n) are greater than x is,

$$P((X_1, ..., X_n) > x) = \prod_{i=1}^n P(X > x)$$
$$= \left(\frac{\theta_2}{x}\right)^{n\theta_1}$$

Then, the probability that the minimum random variable $X_{(1)} \equiv \min(X_1, \dots, X_n)$ is greater than x is also,

$$P(X_{(1)} > x) = \left(\frac{\theta_2}{x}\right)^{n\theta_1}$$

Therefore,

$$P(X_{(1)} \le x) = 1 - \left(\frac{\theta_2}{x}\right)^{n\theta_1}$$

The corresponding probability density function is,

$$\begin{split} f_{\theta_1,\theta_2}(x) &= F_{\theta_1,\theta_2}'(x) \\ &= \frac{\mathrm{d}}{\mathrm{d}x} \left(1 - \left(\frac{\theta_2}{x} \right)^{n\theta_1} \right) \\ &= -\theta_2^{n\theta_1} \frac{\mathrm{d}}{\mathrm{d}x} \left(x^{-n\theta_1} \right) \\ &= n\theta_1 \theta_2^{n\theta_1} x^{-(n\theta_1+1)} \\ &= \frac{n\theta_1 \theta_2^{n\theta_1}}{x^{(n\theta_1+1)}}, \quad x \geq \theta_2 \end{split}$$

The corresponding expectation value is,

$$E(X) = \int_{\theta_2}^{+\infty} x \cdot f_{\theta_1, \theta_2}(x) dx$$

$$= \int_{\theta_2}^{+\infty} x \cdot \frac{n\theta_1 \theta_2^{n\theta_1}}{x^{(n\theta_1 + 1)}} dx$$

$$= n\theta_1 \theta_2^{n\theta_1} \int_{\theta_2}^{+\infty} x^{(-n\theta_1)} dx$$

$$= \frac{n\theta_1 \theta_2^{n\theta_1}}{-(n\theta_1 - 1)} \left(-\frac{1}{\theta_2^{-(n\theta_1 - 1)}} \right)$$

$$= \frac{n\theta_1 \theta_2}{(n\theta_1 - 1)}$$

Setting expectation value E(X) to be equal the minimum random variable $X_{(1)}$,

$$X_{(1)} = \frac{n\theta_1\theta_2}{(n\theta_1 - 1)} \iff \hat{\theta}_2 = X_{(1)} \frac{(n\hat{\theta}_1 - 1)}{n\hat{\theta}_1}$$

Therefore,

$$\begin{split} \hat{\theta}_{1} &= \frac{\bar{X}}{(\bar{X} - \hat{\theta}_{2})} \\ &= \frac{\bar{X}}{\bar{X} - X_{(1)} \frac{(n\bar{\theta}_{1} - 1)}{n\hat{\theta}_{1}}} \\ &\iff \bar{X} = \hat{\theta}_{1} \left(\bar{X} - X_{(1)} \frac{(n\bar{\theta}_{1} - 1)}{n\hat{\theta}_{1}} \right) \\ &= \hat{\theta}_{1} \bar{X} - \hat{\theta}_{1} X_{(1)} \frac{(n\bar{\theta}_{1} + \hat{\theta}_{1} X_{(1)} \frac{1)}{n\hat{\theta}_{1}}}{n\hat{\theta}_{1}} + \hat{\theta}_{1} X_{(1)} \frac{1)}{n\hat{\theta}_{1}} \\ &= \hat{\theta}_{1} \left(\bar{X} - X_{(1)} \right) + \frac{X_{(1)}}{n} \\ &\iff \hat{\theta}_{1} = \frac{\bar{X} - (X_{(1)}/n)}{(\bar{X} - X_{(1)})} \\ &= \frac{n\bar{X} - X_{(1)}}{n(\bar{X} - X_{(1)})} \end{split}$$

Now we can compute \hat{G}_{MME} ,

$$\begin{split} \hat{G}_{\text{MME}} &:= G_{\hat{\theta}_{1}, \hat{\theta}_{2}} \\ &= \frac{1}{2\hat{\theta}_{1} - 1} \\ &= \frac{1}{\left(\frac{2(n\bar{X} - X_{(1)})}{n(\bar{X} - X_{(1)})}\right) - 1} \end{split}$$

2020-2021 7

(e) Set $\theta_1^0 = 3$ and $\theta_2^0 = 1$. Generate an i.i.d sample of size n = 20 from the density $f_{\theta_1^0, \theta_2^0}$. In order to achieve this, you can make use of the inverse transform sampling. Using this sample, compute \hat{G}_{MLE} and \hat{G}_{MME} .

We have,

$$f_{\theta_1^0,\theta_2^0} = \begin{cases} \frac{3 \cdot 1^3}{x^{3+1}} = \frac{3}{x^4}, & x \ge 1\\ 0, & \text{otherwise} \end{cases}$$

We compute the CDF of X,

$$F_{\theta_1,\theta_2}(x) = \int_1^x \frac{3}{t^4} dt = 3 \left[\frac{t^{-3}}{-3} \right]_1^x$$
$$= -\left(\frac{1}{x^3} - \frac{1}{1^3} \right)$$
$$= 1 - \frac{1}{x^3}$$

The inverse is,

$$F_{\theta_1,\theta_2}^{-1}(y) = \frac{1}{(1-y)^{1/3}}$$

Using the following R code,

```
source("src/utils.r")

# set a seed for reproductability
set.seed(42)

# Generate sample of size n = 20 by using inverse transform sampling
rv_vector <- inverse_transform_sampling(n = 20, inv_cdf = inv_cdf)

# plot an histogram of the random variable vector
hist(rv_vector, breaks = 50, freq = FALSE, xlab = "X", main = "random sample")

# compute Gini coefficients
gini_mle(rv_vector = rv_vector, n = 20)
gini_mme(rv_vector = rv_vector, n = 20)</pre>
```

We get the following estimations,

$$\hat{G}_{\text{MLE}} = 0.1728057 \quad ; \quad \hat{G}_{\text{MME}} = 0.1770613$$
 (4)

(f) Repeat this data generating process N = 1000 times (with the same sample size n = 20 and the same (θ_1^0, θ_2^0)). Hence, you obtain a sample of size N of each estimator of G_{θ_1,θ_2} . Make a **histogram** and a **boxplot** of these two samples. What can you conclude?

```
# Generate N = 1000 times the sample
x <- sim(N = 1000, n = 20, f = inverse_transform_sampling, inv_cdf)
gini_mle_sample <- x["gini-mle-sample", ]</pre>
```

```
gini_mme_sample <- x["gini-mme-sample", ]

# histogram of gini samples
par(mfrow = c(1, 2))
hist(gini_mle_sample, breaks = 50, main = "", xlab = "Gini MLE sample", col = "steelblue")
abline(v = gini_theoretical(theta_1), col = "green", lty = 2)
hist(gini_mme_sample, breaks = 50, main = "", xlab = "Gini MME sample", col = "red")
abline(v = gini_theoretical(theta_1), col = "green", lty = 2)
legend("topright", c("Gini MLE", "Gini MME", "True Gini"), fill = c("steelblue", "red", "green"))

# boxplot of gini samples
par(mfrow = c(1, 2))
boxplot(gini_mle_sample, col = "grey")
abline(h = gini_theoretical(theta_1), col = "brown", lty = 2)
boxplot(gini_mme_sample, col = "grey")
abline(h = gini_theoretical(theta_1), col = "brown", lty = 2)</pre>
```

- FIGURE 1 histogramme de N=1000 simulations des coefficients de Gini estimé par la méthodes du maximum de vraisemblance (à gauche) et la méthode des moments (à droite) basées sur un échantillons de taille n=20
- FIGURE 2 boxplot de N=1000 simulations des coefficients de Gini estimé par la méthodes du maximum de vraisemblance (à gauche) et la méthode des moments (à droite) basées sur un échantillons de taille n=20
- (g) Use the samples obtained in (f) to estimate the **bias**, the **variance** and the **mean squared error** (MSE) of both estimators What can you conclude?
- (h) Repeat the calculations in (f) for n = 20, 40, 60, 80, 100, 150, 200, 300, 400, 500. Compare the biases, the variances and the mean squared errors of both estimators graphically (make a separate plot for each quantity as a function of n). What can you conclude? Which estimator is the best? Justify your answer.
- (i) Create an histogram for $\sqrt{n}(\hat{G}_{\text{MLE}} G_{\theta_1^0, \theta_2^0})$, for n = 20, n = 100 and n = 500. What can you conclude?

2 Regression

The company wants to understand how electricity consumption is linked to productivity (i.e daily amount in 1000 euros that the company gains when the machine operates). We gather a dataset made of 40 independent observations for which we observe the following variables,

```
X \equiv \text{Electricity consumption in MWh}; Y \equiv \text{productivity in thousands of euros per day} (5)
```

(a) Is it reasonnable to fit a linear regression model between **productivity** (Y) and **electricity consumption** (X)? If no, what transformation of X and/or Y would you propose to retrieve a linear model? Justify.

 $\underline{\mathrm{Hint}}$: graphical representation may help visualize how the variables and the residuals behave.

For the rest of the exercise, we work we the transformed variables X^* and Y^* . Write down the obtained model.

Note: it may be that $Y = Y^*$ and/or $X = X^*$.

If we look at the scatter plot of X and Y. We see clearly that the relationship between X and Y is not linear at all.

(b) Mathematically derive the marginal impact of X on Y in your model. This is computed via the following formula,

$$\frac{\partial E(Y|X=x)}{\partial x} \tag{6}$$

Provide interpretation.

(c) Is the linear effect significant? Choose the adequate test for testing linear significance. Compute the p-value of this test. Based on the resulting p-value, what can we conclude? Analyse the value of the linear effect.

A Code R: fichier utils.r

```
theta_1 <- 3
theta_2 <- 1
# cumulative density function
cdf <- function(x) {</pre>
  (-1 / x^3)
# inverse of cumulative density function
inv_cdf <- function(y) {</pre>
  (1 / ((1 - y)^(1 / 3)))
}
# generate random variables vector from the inverse cdf
inverse_transform_sampling <- function(n, inv_cdf) {</pre>
  \# generate randoms numbers from the uniform distribution U(0,1)
  data_unif <- runif(n)</pre>
  rv_vector <- inv_cdf(y = data_unif)
}
# maximum likelihood method for qini coefficient estimator
gini_mle <- function(rv_vector, n) {</pre>
  return(1 / ((2 * n) / (sum(log(rv_vector / min(rv_vector)))) - 1))
# method of moment for gini coefficient estimator
gini_mme <- function(rv_vector, n) {</pre>
  return(1 / ((2 * (n) * mean(rv_vector) - min(rv_vector)) / (n * (mean(rv_vector) - min(rv_vector))
gini_theoretical <- function(theta_1) {</pre>
  return(1 / ((2 * theta_1) - 1))
bias <- function(sample, theoretical) {</pre>
  mean(sample) - theoretical
mse <- function(sample, theoretical) {</pre>
  mean((sample - theoretical)^2)
\# x: simulation of sample size n
compute_statistical_quantities <- function(x, n) {</pre>
  mean <- mean(x)</pre>
  gini_mle_estimator <- gini_mle(rv_vector = x, n = n)</pre>
  gini_mme_estimator <- gini_mme(rv_vector = x, n = n)</pre>
  print(gini_mle_estimator)
  print("next simulation")
```

```
c(
    mean,
    gini_mle_estimator,
   gini_mme_estimator
 )
}
\# N: simulation size (i.e. number of samples)
# n: sample size
# f: function to generate random variables
# ... any other parameters given to f
sim <- function(N = 1000, n = 20, f, ...) {</pre>
 # compute a matrix of random variables based on the distribution f
  # each column correspond to one simulation
 x \leftarrow matrix(f(N * n, ...), nrow = n)
  # for each column (i.e. each simulation of sample size n)
  # we compute statistical quantities (mean, gini estimators,...)
  \# the function "FUN" is called for each column
  stats <- apply(</pre>
   X = X
   MARGIN = 2,
   FUN = compute_statistical_quantities,
    n = n
  )
 rownames(stats) <- c("mean-sample", "gini-mle-sample", "gini-mme-sample")</pre>
 return(stats)
}
```