Structural modelling of Li₂Sc_{2/3}Cl₄

- Li-Cl, Li-Li potentials used from previous studies
- Sc-Cl potentials fitted to ScCl₃

	Ехр.	Comp.
а	10.404	10.504
α	90.0	90.3

Movement of Li from 8a tetrahedral to 16c octahedral at 0K optimization

initial

after 100 cycles

(after 659 cycles)

Do the potentials describe the system accurately?

MD simulations

- 2ns
- 1,500 ions

direct coordination

• T = 300 K, 600 K, 900 K

RDFs for the Sc-Cl interactions suggest structural stability, but a dynamic nature

edge-sharing

octahedra near

edge-sharing

octahedra far

0 ns

1 ns

2 ns

MD: Li-ion conductivity

off U _{iso} (Å ²)
0.025
0.038
0.025
0.0029
0.0029
0.0208

Do the potentials describe the system accurately?

RT Conductivity:

- Experimental: 1.5 mS/cm
- Computational: 32.3 mS/cm

Machine Learning (ML)

- Development of ML potentials based on DFT for more accurate modelling of the system
- Investigate 8a tetrahedral vs. 16c octahedral phenomenon to confirm lowest-energy structure using ML potentials
- MD calculations using ML potentials to better understand the inconsistency between experimental and calculated conductivities