INFRARED CO LINE LIST FOR THE $X^{-1}\Sigma^{+}$ STATE

D. GOORVITCH

Space Sciences Division, NASA Ames Research Center, Moffett Field, CA 94035-1000; goorvitch@cma.arc.nasa.gov
Received 1994 January 5; accepted 1994 April 28

ABSTRACT

A complete line list with improved accuracy for all the rotation-vibration transitions of the fundamental, first, and second overtone bands up to v = 20 and J = 149 of the ground state $X^{-1}\Sigma^{+}$ of the seven CO isotopes— $^{12}C^{-16}O$, $^{13}C^{-16}O$, $^{12}C^{-17}O$, $^{12}C^{-18}O$, $^{13}C^{-18}O$, $^{14}C^{-16}O$, and $^{13}C^{-17}O$ —is made available to the astronomical community. A line list of the pure rotational transitions up to v = 5 and J = 60 is also made available for these seven isotopes. This line list contains the transition frequency, the lower state energy, the Einstein A-value, the gf-value, the transition strength at 3000 K or 1000 K for the pure rotational transitions, the expectation value of the effective dipole moment operator, and the quantum numbers of each transition. Individual partition functions are reported in the temperature range of 500 to 10,000 K. This line list is available as four text files from the author using an anonymous ftp transfer and in computer-readable form in the AAS CD-ROM Series, Vol. 3.

Subject heading: molecular data

1. INTRODUCTION

There is a long history of calculating the intrinsic molecular line parameters for CO (Kirby-Docken & Liu 1978). Two conditions make it necessary to recalculate the intrinsic molecular parameters of CO. The first is the availability of more accurate energy term values, while the second is the reporting of better expectation values of the electric dipole moment operator. Both of these conditions have been met recently with the publication of mass-independent Dunham parameters by Farrenq et al. (1991) and expectation values of the electric dipole moment function by Goorvitch & Chackerian (1994a, b). They have reported rotation-vibration expectation values of the electric dipole moment operator for $v \le 20$ and $J \le 149$ for the fundamental, first, and second overtone bands of the $X^{1}\Sigma^{+}$ ground state of the seven isotopes of CO centered at approximately 2.5, 1.25, and 0.83 μ m. The object of this short note is make available to the general astronomical community an accurate line list for the seven isotopes of CO: 12C16O, ¹³C¹⁶O, ¹²C¹⁷O, ¹²C¹⁸O, ¹³C¹⁸O, ¹⁴C¹⁶O, and ¹³C¹⁷O. This line list is available as four text files from the author by sending an e-mail message to the internet address co@cma.arc.nasa.gov or co@128.102.20.45, and in computer-readable form in the AAS CD-ROM Series, Vol. 3.

Because of its large dissociation energy and the relatively high abundance of its constituent atoms, carbon monoxide in its several isotopic forms is observed in a variety of astrophysical sources. Since many of these sources are quite hot, the molecular emissions can be observed from highly excited vibrational levels that may or may not be in local thermodynamic equilibrium. The main isotopic forms, ¹²C¹⁶O and ¹³C¹⁶O, have been observed in a variety of astrophysical sources such as stellar photospheres, comets, and the interstellar medium. The minor isotopic forms ¹²C¹⁷O, ¹²C¹⁸O, ¹³C¹⁸O, and ¹³C¹⁷O are also observable in several of these astrophysical sources. The presence of these minor isotopic forms of CO provides evidence of the nuclear processes which occur in the interior of stars.

2. CALCULATION

This CO line list includes the transition frequency in wavenumbers (cm⁻¹), the expectation value of the effective electric dipole matrix operator in D² (debye²), the Einstein transition probability or A-value in s⁻¹, the lower state term energy in wavenumbers with the lowest energy level equal to zero, the gf-value, the strength S in cm mol⁻¹ evaluated at T = 3000 K or 1000 K for the pure rotational transitions, the upper state vibrational quantum number (v'), the lower state vibrational quantum number (v''), the transition type (R or P), the lower state angular momentum number (J''), and the isotopic designation, e.g., 26 for 12 Cl⁶O. To remove any ambiguity in the A-value, the gf-value or the strength, I present their definitions. The Einstein A-value is given by

$$A_{v+n,J'\to v,J''} = \frac{64\pi^4\sigma^3}{3h} \langle v+n, J'|M(x)|v, J''\rangle^2 \frac{|m|}{2J'+1}, (1)$$

where

$$\frac{64\pi^4}{3h} = 3.136186 \times 10^{-7} \,\mathrm{cm}^3 \,\mathrm{s}^{-1} \,\mathrm{D}^{-2} \,; \tag{2}$$

 σ is the frequency of the transition in cm⁻¹; $v \equiv v''$; n = 0, 1, 2, or 3 and denotes the pure rotational or overtone bands, i.e., v' = v + n; M(x) is the electric dipole moment function as a function of the reduced internuclear distance x (see Chackerian & Tipping 1983); $m \equiv [J'(J'+1) - J''(J''+1)]/2$; and h is Planck's constant. The single and double primes designate the upper and lower states of the transition, respectively. The transition frequencies, σ , are calculated using the results of Farrenq et al. (1991). These calculated transition frequencies are compared to those observed in the solar spectrum reported by Geller (1992). The frequencies of the highest J-values observed for the R and P branches of the $\Delta v = +1$ series agree to

TABLE 1

LOWEST ENERGY LEVELS WHEN THE

MINIMUM POINT OF THE POTENTIAL

CURVE IS THE ZERO REFERENCE

the second decimal place or better. The transition frequencies calculated with the constants of Authier, Bagland, & Le Floch (1993) agree with those calculated with the constants of Farrenq et al. (1991) for $J \leq 40$. However for higher J the frequencies calculated with the constants of Authier et al. (1993) start to progressively deviate from the transitions measured in the solar spectrum.

sured in the sold spectrum.
The transition moments, $\langle v + n, J' M(x) v, J'' \rangle^2$, are cal-
culated using the results of Goorvitch & Chackerian (1994a,
b), who used the experimentally derived electric dipole mo-
ment function (EDMF) reported by Chackerian et al. (1984).
Recently, Huré & Roueff (1993) reported expectation values
of the EDMF using an ab initio EDMF. A comparison by
Chackerian et al. (1994) of results using the experimentally
derived EDMF with those using the ab initio derived EDMF
show that the experimentally derived EDMF of Chackerian et
al. (1984) is to be preferred.

The emission oscillator strength, $f_{v+n,J'\to v,J'}$, is related to the A-values through

$$g_{J'}f_{v+n,J'\to v,J''} = -\frac{m_e c}{8\pi^2 e^2 \sigma^2} (2J'+1) A_{v+n,J'\to v,J''}, \quad (3)$$

where $m_e c/8\pi^2 e^2 = 1.499$ cm⁻² s (Larsson 1983) and $g_J = 2J + 1$. The absorption oscillator strength, $f_{v+n,J'} \leftarrow v,J''$, is then given by

$$g_{J''}f_{v+n,J'\leftarrow v,J''} = -g_{J'}f_{v+n,J'\rightarrow v,J''} = gf.$$
 (4)

The strength S (cm mol⁻¹) at absolute temperature T is given by

$$S_{v+n,J' \leftarrow v,J''} = \frac{\pi e^2}{m_e c^2} g_{J''} f_{v+n,J' \leftarrow v,J''} \frac{1}{Q(T)}$$

$$\times \exp\left[-\frac{hcE(v'',J'')}{kT}\right] \left[1 - \exp\left(-\frac{hc\sigma}{kT}\right)\right], \quad (5)$$

where $\pi e^2/m_e c^2 = 8.8523 \times 10^{-13}$ cm mol⁻¹ and E(v'', J'') is the lower state term energy in cm⁻¹. The strength S is related to the optical depth, t_σ , through $dt_\sigma = S\Phi(\sigma - \sigma_0)Nds$, where N is the number density of the radiating species in mol cm⁻³, ds is the path length differential in cm, and $\Phi(\sigma - \sigma_0)$ is the line shape of the transition centered at σ_0 in cm and is normalized to unity, i.e., $\int \Phi(\sigma - \sigma_0) d\sigma = 1$. The partition function, Q(T), is defined as

$$Q(T) = \sum_{\text{el}} \sum_{v''} \sum_{J''} g_{\text{el}}(2J'' + 1) \exp \left[- \frac{hcE(el, v'', J'')}{kT} \right], (6)$$

"el" indicates summation over the electronic states, $g_{\rm el} = (2 - \delta_{\Lambda,0})(2S+1)$ is the degeneracy number of the electronic states given by Sharp (1987), where Λ is the resultant orbital angular momentum about the internuclear axis and S is the resultant spin of the electronic state, and h, c, and k are the usual constants. The lowest energy level of each isotope, E(0, 0), is taken as the zero-point reference for the energy levels. If one

Isotope	$E(0, 0)^{a}$
¹² C ¹⁶ O	1081.5857
¹³ C ¹⁶ O	1057.5452
¹² C ¹⁷ O	1067.8459
¹² C ¹⁸ O	1055.5364
¹³ C ¹⁸ O	1030.8832
¹⁴ C ¹⁶ O	1036.5699
¹³ C ¹⁷ O	1043.4860

^a Units of wavenumbers (cm⁻¹).

uses the minimum point of the potential curve as the reference of zero energy, then the right-hand sides of equations (5) and (6) are multiplied by $\exp(hcE(0,0)/kT)$. Table 1 presents the value of the lowest energy level for each isotope when the minimum point of the potential curve is the zero reference.

Chackerian, Guelachvili, & Tipping (1983) have given individual partition functions for ¹²C¹⁶O, ¹³C¹⁶O, and ¹²C¹⁸O isotopes over the temperature range of 100 to 4000 K. I have calculated individual partition functions for the remaining CO isotopes and extended the temperature range to 10,000 K for all seven isotopes. I have fitted individual partition functions for the seven CO isotopes every 100 K from 500 to 10,000 K using the fitting form (Sauval & Tatum 1984)

$$\log Q(T) = \sum_{i=0}^{3} a_i \left(\log \frac{5040}{T} \right)^i. \tag{7}$$

The results of the linear regression fit are given in Table 2. The columns left to right are the isotope designation and the linear regression coefficients a_i . The numbers in parentheses are the standard error estimates for each regression coefficient given in the last significant figures. The coefficient of determination, r^2 , is better than 0.999.

These partition functions are calculated by directly summing over the ground state levels plus using approximate formulas for the contribution of the electronic states. The lowest energy level is taken as zero, consistent with equations (5) and (6). Term values of the ground state have been measured directly up to v = 20 and J = 133 by Farrenq et al. (1991) and

TABLE 2
INDIVIDUAL PARTITION FUNCTIONS

Isotope	$a_0^{\ a}$	$a_1^{\mathbf{a}}$	$a_2^{\mathbf{a}}$	$a_3^{\mathbf{a}}$
¹² C ¹⁶ O	3.6142(14)b	-1.7736(7)b	0.4108(34)b	0.0176(37)b
¹³ C ¹⁶ O	3.6409(14)	-1.7796(7)	0.4047(33)	0.0224(35)
¹² C ¹⁷ O	3.6294(14)	-1.7770(7)	0.4073(33)	0.0204(36)
¹² C ¹⁸ O	3.6432(13)	-1.7801(7)	0.4042(32)	0.0228(35)
¹³ C ¹⁸ O	3.6713(13)	-1.7863(7)	0.3977(31)	0.0278(34)
¹⁴ C ¹⁶ O	3.6647(13)	-1.7849(7)	0.3992(32)	0.0266(35)
¹³ C ¹⁷ O	3.6568(13)	-1.7831(7)	0.4010(32)	0.0253(35)

^a The coefficients a_i are defined in eq. (7).

^b Numbers in parentheses are the standard errors of the coefficients a_i estimated in the last significant figures.

TABLE 3 Comparison of Calculated Partition Functions For $^{12}\mathrm{C}^{16}\mathrm{O}$

<i>T</i> (K)		Q(T)	
1000	380.3ª	380.3 ^b	380.3
2000	928.3	928.2	928.3
3000	1717.2	1716.6	1717.2
4000	2760.0	2752.9	2760.1
5000	4066.0	4030.1	4066.1
6000	5644.3	5532.0	5644.5
7000	7507.4	7240.6	7507.8
8000	9677.2	9143.8	9676.3
9000	12191.8	11249.2	12187.2

^a Results reported by Irwin 1987.

v = 41 and J = 94 by Guelachvili et al. (1983). Direct summation over the terms of the ground state for $v \le 41$ and $J \le 94$ gave results below the values reported by Irwin (1987) for ¹²C¹⁶O at the higher temperatures. Extending the summations to 80,000 cm⁻¹ gives results that differ from those reported by Irwin (1987) by no more than 0.038%. These results are for ¹²C¹⁶O. The contribution of the electronic states to the partition function is calculated using the results of Sharp (1987) for the electronic and vibrational contribution and McDowell (1988) for the rotational contribution. Isotopic effects are accounted for using the formulas of Fäy, Marenin, & van Citters (1971). For temperatures less than 8000 K the contribution of excited electronic states is less than 0.2%. Since Farreng et al. (1991) have reported mass-independent Dunham coefficients, the summation over term values can be calculated for the different isotopes with confidence. Table 3 reports the present calculation of the partition function for ¹²C ¹⁶O along with the results of Irwin (1987). The columns left to right are the temperature, the partition function values reported by Irwin (1987), the present calculation with the summation over the observed laboratory levels, (i.e., $v \le 41$, $J \le 94$), and the present calculation with the summation extended to 80,000 cm⁻¹. As can be seen from Table 3 there is no practical difference between the results of Irwin (1987) and the present calculations when summation is extended to 80,000 cm⁻¹. Table 4 reports individual isotopic partition functions at several temperatures.

The A-values were compared with the previous calculation of Chackerian & Tipping (1983) by comparing directly the

TABLE 5

Comparison of Transition Moments with the Previous Calculation of Chackerian & Tipping (1983)^a

		$\Delta v = v' - v''$	
Іѕоторе	+1	+2	+3
¹³ C ¹⁶ O ¹² C ¹⁸ O ¹³ C ¹⁸ O	$0.93 \le \Re \le 1.07$ $0.93 \le \Re \le 1.05$ $0.93 \le \Re \le 1.05$	$0.78 \le \Re \le 1.05$ $0.86 \le \Re \le 1.05$ $0.84 \le \Re \le 1.04$ $0.84 \le \Re \le 1.04$ $0.84 \le \Re \le 1.04$	$0.96 \le \Re \le 5.65$ $0.96 \le \Re \le 1.30$ $0.96 \le \Re \le 1.30$

^a \mathcal{R} is the ratio of the presently calculated transition moments squared to those of Chackerian & Tipping 1983.

square of the transition moment matrix element, $\langle v+n, J'|M(x)|v, J''\rangle^2$ (see eq. [1] and Goorvitch & Chackerian 1994a, b). The results of this comparison are given in Table 5, where \mathcal{R} is the ratio of the presently calculated values of $\langle v+n, J'|M(x)|v, J''\rangle^2$ to those of Chackerian & Tipping (1983). No comparisons could be made for the $^{14}C^{16}O$ and $^{13}C^{17}O$ isotopes since Chackerian & Tipping (1983) did not calculate transition moments for these isotopes. Comparisons with these previous calculations show good agreement for the $\Delta v=+1$ transitions. The comparison for the $\Delta v=+2$ and +3 transitions show differences as large as a factor of 5.65. The primary difference between the present calculations and those previously reported of Chackerian & Tipping (1983) results from my use of a more up-to-date EDMF reported by Chackerian et al. (1984).

Table 6 reports the transition frequency, the gf-value and the J-value of the bandhead for each of the R-branches of the $^{12}C^{16}O$ overtone bands. The columns from the left are the lower state vibrational quantum number, the frequency, the gf-value, and the J-value for the fundamental, first, and second overtone bands. The values for the other isotopes are similar.

The pure rotational transitions are calculated for $v \le 5$ and $J \le 60$ for the seven isotopes. Chackerian & Tipping (1983) have calculated the pure rotational transitions for v = 0 up to J'' = 54 for the isotopes $^{12}C^{16}O$, $^{13}C^{16}O$, and $^{12}C^{18}O$. A comparison of the presently calculated A-values for the pure rotational transitions for v = 0 with the results of Chackerian & Tipping (1983) show deviations increasing from 0.7% to 2.8% with increasing J. The A-values for any of the pure rotational transitions with $v \le 5$ and $J'' \le 150$ can be calculated using the expressions developed in the paper by Goorvitch & Chackerian (1994a). The expectation value for the pure rotational

TABLE 4

CALCULATED ISOTOPIC PARTITION FUNCTIONS

				Q(T)			
<i>T</i> (K)	¹² C ¹⁶ O	¹³ C ¹⁶ O	¹² C ¹⁷ O	¹² C ¹⁸ O	$^{13}C^{18}O$	¹⁴ C ¹⁶ O	¹³ C ¹⁷ O
1000	380.3	399.1	390.9	400.8	421.8	416.8	410.8
3000	1717.2	1819.7	1774.8	1828.7	1944.0	1916.5	1883.8
6000	5644.5	6007.5	5848.1	6039.3	6449.0	6351.1	6234.9
9000	12187.2	12992.2	12638.7	13062.8	13972.5	13755.1	13497.0

^b Present calculation with summation over ground state levels with $v \le 41$ and $J \le 94$.

^c Present calculation with summation over ground state levels less than 80,000 cm⁻¹.

538 GOORVITCH

TABLE 6 Transition Frequencies, gf-Values, and J-Values for the Bandheads of the R-Branch Overtone Bands of $^{12}C^{16}O$

					$\Delta v = v' - v''$				
		+1			+2			+3	
v''	σ^{a}	gf	J''	$\sigma^{\mathbf{a}}$	gf	J''	$\sigma^{\mathbf{a}}$	gf	J''
0	2328.3621	1.199(-03)	91	4360.1039	6.503(-06)	51	6417.8126	2.972(-08)	34
1	2298.6615	2.317(-03)	90	4305.4160	1.907(-05)	50	6337.3504	1.278(-07)	34
2	2269.0511	3.357(-03)	89	4250.8728	3.813(-05)	50	6257.0913	3.415(-07)	34
3	2239.5374	4.375(-03)	89	4196.4842	6.194(-05)	49	6177.0627	6.967(- 07)	33
4	2210.1256	5.282(-03)	88	4142.2550	9.291(-05)	49	6097.2606	1.290(-06)	33
5	2180.8100	6.121(-03)	87	4088.1802	1.263(-04)	48	6017.6774	2.172(-06)	33
6	2151.5922	6.895(-03)	86	4034.2789	1.677(-04)	48	5938.3342	3.272(-06)	32
7	2122.4784	7.695(-03)	86	3980.5313	2.089(-04)	47	5859.2383	4.871(-06)	32
8	2093.4732	8.355(-03)	85	3926.9711	2.595(-04)	47	5780.3756	6.947(-06)	32
9	2064.5704	8.957(-03)	84	3873.5684	3.150(-04)	47	5701.7606	9.182(-06)	31
10	2035.7712	9.503(-03)	83	3820.3554	3.652(-04)	46	5623.4114	1.228(-05)	31
11	2007.0807	1.011(-02)	83	3767.3102	4.279(-04)	46	5545.3072	1.602(-05)	31
12	1978.5034	1.056(-02)	82	3714.4515	4.828(-04)	45	5467.4548	1.962(-05)	30
13	1950.0322	1.096(-02)	81	3661.7719	5.521(-04)	45	5389.8833	2.458(-05)	30
14	1921.6676	1.130(-02)	80	3609.2742	6.086(-04)	44	5312.5640	3.029(-05)	30
15	1893.4122	1.174(-02)	80	3556.9649	6.828(-04)	44	5235.4979	3.677(-05)	30
16	1865.2721	1.200(-02)	79	3504.8315	7.402(-04)	43	5158.7178	4.228(-05)	29
17	1837.2382	1.221(-02)	78	3452.8935	8.194(-04)	43	5082.1928	5.006(-05)	29
18	1809.3097	1.239(-02)	77	3401.1236	8.785(-04)	42	5005.9194	5.865(-05)	29
19	1781.4856	1.250(-02)	76	3349.5533	9.620(-04)	42	4929.9228	6.538(-05)	28
20	1753.7742	1.274(-02)	76	3298.1462	1.049(-03)	42	4854.1792	7.521(-05)	28

^a σ in cm⁻¹.

transition of the EDMF, $\langle v, J' | M(x) | v, J'' \rangle^2$, is expressible as

$$\langle v, J'|M(x)|v, J''\rangle = \mathcal{M}_{v}^{v}(0)\sqrt{F_{v}^{v}(m)},$$
 (8)

where $\mathcal{M}_{v}^{v}(0)$ is the rotationless transition moment and $F_{v}^{v}(m)$ is the vibration-rotation interaction factor. For the pure rotational transitions the vibrational-rotation factor was fitted by a fourth-degree polynomial in m, that is

$$\sqrt{F_v^v(m)} = \sum_{i=0}^4 b_i m^i$$
 (9)

(see Goorvitch & Chackerian 1994a for details). The results of these fits are given in Tables 7 and 8. Table 7 gives the rotationless dipole moments, $\mathcal{M}_{v}^{v}(0)$, for the pure rotationless transitions. The columns from the left are the vibrational quantum number and the individual rotationless dipole moments in D for each isotope. Table 8 presents the coefficients b_i for calculating the vibration-rotation interaction factor $F_v^v(m)$ using

equation (9). The columns in this table from the left are the vibrational quantum number and the individual b_i s-values.

Tables 9, 10, and 11 report the $^{12}C^{16}O$ transitions for J=0, 20, 100, and 135 for the $\Delta v=+1$, +2, and +3 series, respectively. The columns in these three tables from the left are the transition frequency in wavenumbers, the expectation value of the effective electric dipole matrix operator squared, in D^2 (debye²), the Einstein transition probability or A-value in s⁻¹, the lower state term energy in wavenumbers with the lowest energy level equal to zero, the gf-value, the strength S in cm mol⁻¹ evaluated at T=3000 K, the upper state vibrational quantum number, the lower state vibrational quantum number, the transition type, and the lower state angular momentum number.

3. CONCLUSION

A detailed line list is made available for the fundamental, first, and second overtone bands of the seven isotopes of CO. Each overtone band for each isotope consists of 6279 lines. A

TABLE 7 ROTATIONLESS DIPOLE MOMENTS, $\mathcal{M}_{v}^{v}(0)$, for the Pure Rotational Transitions (D)

\overline{v}	¹² C ¹⁶ O	¹³ C ¹⁶ O	¹² C ¹⁸ O	¹² C ¹⁷ O	¹³ C ¹⁸ O	¹⁴ C ¹⁶ O	¹³ C ¹⁷ O
0	-1.1013(-01)	-1.1046(-01)	-1.1049(-01)	-1.1034(-01)	-1.1079(-01)	-1.1072(-01)	-1.1063(-01)
1	-8.5066(-02)	-8.5962(-02)	-8.6034(-02)	-8.5598(-02)	-8.6906(-02)	-8.6705(-02)	-8.6460(-02)
2	-5.9961(-02)	-6.1420(-02)	-6.1539(-02)	-6.0815(-02)	-6.2987(-02)	-6.2652(-02)	-6.2246(-02)
3	-3.4803(-02)	-3.6824(-02)	-3.6990(-02)	-3.5977(-02)	-3.9017(-02)	-3.8549(-02)	-3.7980(-02)
4	-9.5731(-03)	-1.2160(-02)	-1.2374(-02)	-1.1070(-02)	-1.4984(-02)	-1.4381(-02)	-1.3650(-02)
5	1.5743(-02)	1.2583(-02)	1.2322(-02)	1.3919(-02)	9.1241(-03)	9.8620(-03)	1.0759(-02)

 ${\it TABLE~8}$ Polynomial Fits to $[F^v_v(m)]^{1/2}$ for the Pure Rotational Transitions

	v	b ₀	b ₁	b ₂	b3	b4
	0	9.9985(-01)	3.0160(-07)	-1.0290(-04)	-2.8660(-11)	-3.4601(-10)
	1	9.9977(-01)	4.6416(-07)	-1.3444(-04)	-4.3977(-11)	-4.5695(-10)
	2	9.9962(-01)	7.4813(-07)	-1.9250(-04)	-7.0611(-11)	-6.6399(-10)
$^{12}C^{16}O$	3	9.9928(-01)	1.4233(-06)	-3.3484(-04)	-1.3512(-10)	-1.1744(-09)
	4	9.9708(-01)	5.7174(-06)	-1.2291(-03)	-5.4066(-10)	-4.3959(-09)
	5	1.0019(+00)	-3.7325(-06)	7.5483(-04)	3.5320(-10)	2.7554(-09)
	0	9.9987(-01)	2.5741(-07)	-9.8086(-05)	-2.4411(-11)	-3.1307(-10)
	1	9.9980(-01)	3.9347(-07)	-1.2718(-04)	-3.7146(-11)	-4.0979(-10)
	2	9.9969(-01)	6.1584(-07)	-1.7963(-04)	-5.8459(-11)	-5.8671(-10)
$^{13}C^{16}O$	3	9.9941(-01)	1.1558(-06)	-3.0241(-04)	-1.0949(-10)	-1.0042(-09)
	4	9.9806(-01)	3.7555(-06)	-9.2451(-04)	-3.5750(-10)	-3.1266(-09)
	5	1.0020(+00)	-3.8879(-06)	9.0214(-04)	3.6948(-10)	3.1101(-09)
	0	9.9986(-01)	2.7374(-07)	-1.0012(-04)	-2.6081(-11)	-3.2678(-10)
	1	9.9979(-01)	4.2142(07)	-1.3023(-04)	-3.9897(-11)	-4.2931(-10)
	2	9.9966(-01)	6.7247(-07)	-1.8499(-04)	-6.3716(-11)	-6.1864(-10)
$^{12}C^{17}O$	3	9.9936(-01)	1.2453(-06)	-3.1564(-04)	-1.1867(-10)	-1.0740(-09)
	4	9.9773(-01)	4.4298(06)	-1.0357(-03)	-4.1983(-10)	-3.5904(-09)
	5	1.0020(+00)	-3.9610(-06)	8.3184(-04)	3.7230(-10)	2.9397(-09)
	0	9.9987(-01)	2.5687(-07)	-9.7692(-05)	-2.4272(-11)	-3.1044(-10)
	1	9.9981(-01)	3.8095(-07)	-1.2659(-04)	-3.6228(-11)	-4.0606(-10)
	2	9.9969(-01)	6.0926(07)	-1.7860(-04)	-5.7794(-11)	-5.8064(-10)
¹² C ¹⁸ O	3	9.9943(-01)	1.1663(-06)	-2.9990(-04)	-1.0907(-10)	-9.9115(-10)
	4	9.9813(-01)	3.6897(06)	-9.0506(-04)	-3.5024(-10)	-3.0460(-09)
	5	1.0020(+00)	-4.0260(-06)	9.1766(-04)	3.7948(-10)	3.1482(-09)
	0	9.9989(-01)	2.1471(-07)	-9.2936(-05)	-2.0285(-11)	-2.7973(-10)
	1	9.9984(01)	3.2283(-07)	-1.1952(-04)	-3.0452(-11)	-3.6261(-10)
	2	9.9975(-01)	5.0476(-07)	-1.6639(-04)	-4.7852(-11)	-5.1100(-10)
³ C ¹⁸ O	3	9.9954(-01)	9.2930(-07)	-2.7106(-04)	-8.7252(-11)	-8.4506(-10)
	4	9.9868(-01)	2.4668(-06)	-7.1239(-04)	-2.3671(-10)	-2.2594(-09)
	5	1.0023(+00)	-4.5311(-06)	1.1810(-03)	4.2817(-10)	3.8151(-09)
	0	9.9989(-01)	2.2374(-07)	-9.4023(-05)	-2.1197(-11)	-2.8658(-10)
	1	9.9983(-01)	3.3107(-07)	-1.2113(-04)	-3.1410(-11)	-3.7225(-10)
	2	9.9973(-01)	5.2917(-07)	-1.6914(-04)	-4.9829(-11)	-5.2635(-10)
¹⁴ C ¹⁶ O	3	9.9952(-01)	9.6356(-07)	-2.7742(-04)	-9.0805(-11)	-8.7676(-10)
	4	9.9858(-01)	2.8130(-06)	-7.5059(-04)	-2.6438(-10)	-2.4134(-09)
	5	1.0022(+00)	-4.4582(-)06	1.1050(-03)	4 .1824(-10)	3.6191(-09)
	0	9.9988(-01)	2.3688(-07)	-9.5351(-05)	-2.2327(-11)	-2.9511(-10)
	1	9.9982(-01)	3.5194(-07)	-1.2310(-04)	-3.3336(-11)	-3.8427(-10)
	2	9.9972(-01)	5.5019(-07)	-1.7254(-04)	-5.2165(-11)	-5.4557(-10)
¹³ C ¹⁷ O	3	9.9949(-01)	1.0554(-06)	-2.8538(-04)	-9.8520(-11)	-9.1673(-10)
	4	9.9843(-01)	3.1079(-06)	-8.0156(-04)	-2.9403(-10)	-2.6206(-09)
	5	1.0022(+00)	-4.1677(-06)	1.0267(-03)	3.9603(-10)	3.4211(-09)

NOTE.—The coefficients b_i are defined in eq. (9).

TABLE 9 LINE LIST OF $^{12}C^{16}O$ $\Delta v = +1$ Transitions

	<i>]</i> "		100	100	100	100	100	20	100	20	100	20	100	0	20	0	20	135	20	0	20	135	20	0	20	135	20	0	20	100	135	20	0	20	100	20
	type		Ь	Ъ	Ь	Д	Ъ	Ъ	Ъ	Ь	Д	Д	Ы	꿈	Ъ	꿈	Д,	꿈	Д	æ	Я	Ж	Ы	8	æ	R	Ъ	æ	R	R	æ	Ъ	Ж	R	꿈	Д
	<i>"</i> "		7	9	2	4	ဗ	20	2	19	-	18	0	20	17	19	16	50	15	18	20	19	14	17	19	18	13	16	18	20	17	13	15	17	19	11
	v'		∞	7	9	S	4	21	က	20	7	19	1	21	18	20	17	21	16	19	21	20	15	18	20	19	14	17	19	21	18	13	16	18	20	13
	S	cm/molecule	3.673(-25)	7.846(-25)	1.662(-24)	3.466(-24)	7.024(-24)	8.145(-27)	1.351(-23)	1.762(-26)	2.339(-23)	3.845(-26)	3.076(-23)	5.895(-28)	8.463(-26)	1.281(-27)	1.878(-25)	1.723(-31)	4.202(-25)	2.806(-27)	9.349(-27)	3.298(-31)	9.474(-25)	6.204(-27)	2.027(-26)	6.350(-31)	2.152(-24)	1.383(-26)	4.431(-26)	3.898(-29)	1.233(-30)	4.919(-24)	3.107(-26)	9.772(-26)	7.890(-29)	1.131(-23)
	gf		6.602(-03)	5.862(-03)	5.098(-03)	4.310(-03)	3.498(-03)	3.251(-03)	2.661(-03)	3.162(-03)	1.800(-03)	3.065(-03)	9.128(-04)	1.664(-04)	2.961(-03)	1.620(-04)	2.851(-03)	1.838(-02)	2.734(-03)	1.572(-04)	3.543(-03)	1.839(-02)	2.610(-03)	1.521(-04)	3.455(-03)	1.828(-02)	2.480(-03)	1.465(-04)	3.358(-03)	1.590(-02)	1.812(-02)	2.344(-03)	1.407(-04)	3.252(-03)	1.570(-02)	2.202(-03)
	E(v''J'')	cm ⁻¹	32009.3643	30200.9409	28366.3694	26505.5749	24618.4838	38576.6231	22705.0248	36931.0393	20765.1284	35260.3801	18798.7272	37917.0909	33564.5613	36264.1752	31843.4982	64722.5752	30097.1061	34586.1834	38576.6231	63393.7106	28325.3003	32883.0311	36931.0393	62039.5983	26527.9968	31154.6333	35260.3801	53175.4284	60660.1760	24705.1121	29400.9052	33564.5613	51699.6990	22856.5636
	A	Hz	4.654(+01)	4.262(+01)	3.821(+01)	3.329(+01)	2.784(+01)	1.351(+02)	2.181(+01)	1.355(+02)	1.519(+01)	1.354(+02)	7.927(+00)	9.844(+01)	1.349(+02)	9.880(+01)	1.338(+02)	1.245(+02)	1.321(+02)	9.879(+01)	1.562(+02)	1.291(+02)	1.299(+02)	9.846(+01)	1.570(+02)	1.329(+02)	1.270(+02)	9.771(+01)	1.572(+02)	1.581(+02)	1.364(+02)	1.235(+02)	9.657(+01)	1.568(+02)	1.613(+02)	1.193(+02)
+1 IKANSIIIONS	\mathbb{R}^2	D^2	9.684(-02)	8.467(-02)	7.252(-02)	6.039(-02)	4.829(-02)	2.219(-01)	3.620(-02)	2.125(-01)	2.413(-02)	2.028(-01)	1.206(-02)	2.170(-01)	1.930(-01)	2.081(-01)	1.831(-01)	1.727(-01)	1.730(-01)	1.989(-01)	2.129(-01)	1.697(-01)	1.628(-01)	1.896(-01)	2.045(-01)	1.658(-01)	1.524(-01)	1.800(-01)	1.958(-01)	1.926(-01)	1.614(-01)	1.420(-01)	1.703(-01)	1.868(-01)	1.870(-01)	1.315(-01)
$\Delta v = +1$ 1 K	D	cm-1	1450.1033	1472.6596	1495.2934	1518.0033	1540.7876	1558.5716	1563.6446	1582.8651	1586.5722	1607.2421	1609.5683	1631.0344	1631.7033	1656.0615	1656.2490	1664.7655	1680.8794	1681.1725	1685.6921	1694.8390	1705.5943	1706.3680	1711.4172	1724.9636	1730.3932	1731.6483	1737.2259	1739.4979	1755.1445	1755.2754	1757.0135	1763.1190	1768.1119	1780.2401
7	J",		135	135	135	135	135	135	135	135	135	135	135	100	135	100	135	100	135	100	135	100	135	100	135	100	135	100	135	100	135	100	135	100	100	100
10	type		а	Д	Д	Д	Ъ	Д	Д	Д	Д	Д	Д	Д	Д	Ь	Д	Ъ	Д	Д	Ь	Д	Ч	Д	Д	Ъ	Ъ	Ъ	Д	Ъ	Д	д	Д	д	Д	Д.
LINE LIST OF	"a		22	19	18	17	16	15	14	13	12	Ξ	10	20	6	19	∞	18	7	17	9	16	ည	15	4	14	က	13	7	12	7	Ξ	0	10	6	∞
Ž	<i>'</i> v		21	20	19	18	17	16	15	14	13	12	11	21	10	20	6	19	œ	18	7	17	9	16	S.	15	4	14	က	13	7	12	-	11	10	6
	တ	cm/molecule	1.041(-31)	1.955(-31)	3.696(-31)	7.052(-31)	1.354(-30)	2.621(-30)	5.109(-30)	1.002(-29)	1.979(-29)	3.928(-29)	7.834(-29)	2.576(-29)	1.568(-28)	5.154(-29)	3.143(-28)	1.040(-28)	6.298(-28)	2.114(-28)	1.258(-27)	4.334(-28)	2.490(-27)	8.956(-28)	4.851(-27)	1.864(-27)	9.189(-27)	3.908(-27)	1.652(-26)	8.246(-27)	2.673(-26)	1.750(-26)	3.286(-26)	3.732(-26)	7.988(-26)	1.713(-25)
	gf		1.677(-02)	1.637(-02)	1.590(-02)	1.541(-02)	1.485(-02)	1.425(-02)	1.362(-02)	1.294(-02)	1.222(-02)	1.147(-02)	1.068(-02)	1.390(-02)	9.862(-03)	1.352(-02)	9.012(-03)	1.310(-02)	8.131(-03)	1.264(-02)	7.220(-03)	1.216(-02)	6.280(-03)	1.165(-02)	5.310(-03)	1.111(-02)	4.310(-03)	1.054(-02)	3.279(-03)	9.945(-03)	2.218(-03)	9.325(-03)	1.125(-03)	8.680(-03)	8.011(-03)	7.318(-03)
	E(v" J")	cm ⁻¹	64722.5752	63393.7106	62039.5983	60660.1760	59255.3776	57825.1335	56369.3713	54888.0162	53380.9918	51848.2200	50289.6222	53175.4284	48705.1189	51699.6990	47094.6307	50198.8523	45458.0782	48672.8133	43795.3826	47121.5049	42106.4659	45544.8484	40391.2511	43942.7635	38649.6626	42315.1695	36881.6266	40661.9850	35087.0708	38983.1285	33265.9252	37278.5186	35548.0746	33791.7162
	A	Hz	3.709(+01)	3.778(+01)	3.828(+01)	3.864(+01)	3.877(+01)	3.873(+01)	3.848(+01)	3.799(+01)	3.727(+01)	3.631(+01)	3.509(+01)	6.316(+01)	3.360(+01)	6.370(+01)	3.183(+01)	6.400(+01)	2.975(+01)	6.403(+01)	2.735(+01)	6.378(+01)	2.462(+01)	6.324(+01)	2.154(+01)	6.239(+01)	1.808(+01)	6.123(+01)	1.422(+01)	5.973(+01)	9.935(+00)	5.787(+01)	5.205(+00)	5.565(+01)	5.303(+01)	5.000(+01)
	\mathbb{R}^2	D^2	2.798(-01)	2.674(-01)	2.544(-01)	2.415(-01)	2.280(-01)	2.146(-01)	2.010(-01)	1.873(-01)	1.736(-01)	1.599(-01)	1.462(-01)	2.540(-01)	1.326(-01)	2.425(-01)	1.190(-01)	2.307(-01)	1.055(-01)	2.189(-01)	9.205(-02)	2.068(-01)	7.869(-02)	1.947(-01)	6.542(-02)	1.825(-01)	5.221(-02)	1.703(-01)	3.908(-02)	1.580(-01)	2.600(-02)	1.458(-01)	1.298(-02)	1.335(-01)	1.213(-01)	1.090(-01)
	ρ	cm ⁻¹	944.3333	964.6793	985.0890	1005.5666	1026.1157	1046.7392	1067.4396	1088.2189	1109.0787	1130.0201	1151.0438	1164.2360	1172.1504	1185.7484	1193.3399	1207.3354	1214.6120	1228.9994	1235.9662	1250.7424	1257.4018	1272.5657	1278.9177	1294.4704	1300.5126	1316.4573	1322.1850	1338.5266	1343.9332	1360.6786	1365.7550	1382.9128	1405.2289	1427.6261

	<i>]</i> ,,		135	100	20	20	0	135	100	20	20	0	20	100	135	20	0	20	100	20	135	0	20	100	135	0	20	100	0	135	20	100	0	135	20	100	135
	type		Я	Я	В	Д	Ж	Я	Я	R	Ъ	Я	Ж	Ж	Ж	Ъ	Я	꿈	Ж	Д	Я	æ	В	Я	Ж	8	æ	ሜ	絽	æ	굡	æ	굠	Я	æ	굞	굡
	<i>"</i> 0	İ	10	12	6	က	9	6	11	œ	2	ស	7	10	œ	₩	4	9	6	0	2	က	သ	œ	9	2	4	2	-	ស	က	9	0	4	7	ro	က
	v'		11	13	10	4	7	10	12	6	က	9	œ	11	6	2	ស	7	10		œ	4	9	6	7	က	2	œ	7	9	4	7	-	2	က	9	4
	S	cm/molecule	1.519(-28)	1.356(-26)	7.103(-23)	8.644(-21)	5.825(-23)	3.080(-28)	2.904(-26)	1.654(-22)	1.801(-20)	1.343(-22)	3.849(-22)	6.248(-26)	6.252(-28)	3.379(-20)	3.047(-22)	8.926(-22)	1.349(-25)	4.811(-20)	1.268(-27)	6.719(-22)	2.052(-21)	2.917(-25)	$\cdot 2.562(-27)$	1.406(-21)	4.645(-21)	6.306(-25)	2.648(-21)	5.131(-27)	1.022(-20)	1.358(-24)	3.786(-21)	1.011(-26)	2.132(-20)	2.900(-24)	1.936(-26)
	gf		1.438(-02)	1.267(-02)	2.123(-03)	8.364(-04)	7.247(-05)	1.351(-02)	1.203(-02)	1.946(-03)	6.369(-04)	6.317(-05)	1.762(-03)	1.133(-02)	1.256(-02)	4.311(-04)	5.353(-05)	1.571(-03)	1.057(-02)	2.188(-04)	1.151(-02)	4.354(-05)	1.371(-03)	9.767(-03)	1.039(-02)	3.319(-05)	1.163(-03)	8.908(-03)	2.248(-05)	9.176(-03)	9.467(-04)	7.995(-03)	1.142(-05)	7.878(-03)	7.223(-04)	7.026(-03)	6.490(-03)
	E(v''J'')	cm-1	50289.6222	40661.9850	19082.1499	7134.7700	12463.7686	48705.1189	38983.1285	17156.1253	5051.7432	10452.2222	15204.1184	37278.5186	47094.6307	2942.3028	8414.4693	13226.0530	35548.0746	806.3828	45458.0782	6350.4391	11221.8547	33791.7162	43795.3826	4260.0622	9191.4507	32009.3643	2143.2711	42106.4659	7134.7700	30200.9409	0.0000	40391.2511	5051.7432	28366.3694	38649.6626
	Ą	Hz	1.362(+02)	1.617(+02)	1.282(+02)	5.624(+01)	6.375(+01)	1.319(+02)	1.580(+02)	1.208(+02)	4.395(+01)	5.705(+01)	1.123(+02)	1.532(+02)	1.264(+02)	3.051(+01)	4.961(+01)	1.027(+02)	1.472(+02)	1.588(+01)	1.195(+02)	4.139(+01)	9.203(+01)	1.399(+02)	1.111(+02)	3.236(+01)	8.010(+01)	1.312(+02)	2.248(+01)	1.010(+02)	6.690(+01)	1.211(+02)	1.170(+01)	8.930(+01)	5.235(+01)	1.094(+02)	7.571(+01)
	\mathbb{R}^2	D^2	1.143(-01)	1.354(-01)	1.090(-01)	4.486(-02)	7.750(-02)	1.057(-01)	1.266(-01)	9.858(-02)	3.373(-02)	6.668(-02)	8.808(-02)	1.176(-01)	9.674(-02)	2.254(-02)	5.578(-02)	7.747(-02)	1.082(-01)	1.130(-02)	8.739(-02)	4.479(-02)	6.674(-02)	9.852(-02)	7.768(-02)	3.371(-02)	5.589(-02)	8.860(-02)	2.255(-02)	6.761(-02)	4.493(-02)	7.842(-02)	1.131(-02)	5.720(-02)	3.385(-02)	6.798(-02)	4.645(-02)
-Continued	ь	cm-1	1968.2849	1970.4972	1973.2910	1982.7754	1989.0128	1999.0268	1999.7252	1999.9303	2008.4215	2015.1815	2026.6473	2029.0336	2029.8448	2034.1352	2041.4229	2053.4404	2058.4218	2059.9147	2060.7387	2067.7353	2080.3080	2087.8891	2091.7080	2094.1169	2107.2485	2117.4346	2120.5661	2122.7519	2134.2602	2147.0571	2147.0811	2153.8693	2161.3412	2176.7551	2185.0587
-	J''		0	135	20	100	20	0	20	135	100	20	0	20	135	100	20	0	20	135	20	100	0	20	20	135	0	100	50	20	0	135	100	20	20	0	
LABLE	type		Я	Я	R	꿈	Д	Я	꿈	路	R	Ъ	꿉	R	ጸ	ж	Ъ	R	8	ሜ	Д	R	R	R	ሷ	ዳ	꿈	ద	ዳ	Д,	굕	꿈	æ	æ	Ъ	æ	
	",a		14	16	16	18	10	13	15	15	17	6	12	14	14	16	∞	11	13	13	2	15	10	12	9	12	6	14	11	22	∞	11	13	10	4	7	
	ν,		15	17	17	19	11	14	16	16	18	10	13	15	15	17	6	12	14	14	∞	16	11	13	7	13	10	15	12	9	6	12	14	11	ъ	∞	
	S	cm/molecule	7.035(-26)	2.407(-30)	2.173(-25)	1.610(-28)	2.615(-23)	1.604(-25)	4.870(-25)	4.733(-30)	3.309(-28)	6.066(-23)	3.683(-25)	1.100(-24)	9.370(-30)	6.855(-28)	1.410(-22)	8.506(-25)	2.503(-24)	1.865(-29)	3.276(-22)	1.431(-27)	1.974(-24)	5.731(-24)	7.586(-22)	3.735(-29)	4.600(-24)	3.008(-27)	1.320(-23)	1.742(-21)	1.074(-23)	7.518(-29)	6.367(-27)	3.057(-23)	3.936(-21)	2.505(-23)	
	f g		1.345(-04)	1.783(-02)	3.138(-03)	1.543(-02)	2.053(-03)	1.279(-04)	3.017(-03)	1.748(-02)	1.511(-02)	1.898(-03)	1.210(-04)	2.887(-03)	1.704(-02)	1.473(-02)	1.737(-03)	1.138(-04)	2.750(-03)	1.650(-02)	1.569(-03)	1.430(-02)	1.062(-04)	2.604(-03)	1.396(-03)	1.588(-02)	9.827(-05)	1.381(-02)	2.452(-03)	1.216(-03)	9.001(-05)	1.517(-02)	1.327(-02)	2.291(-03)	1.029(-03)	8.141(-05)	
	E(v''J'')	cm-1	27621.7621	59255.3776	31843.4982	50198.8523	20982.2696	25817.1199	30097.1061	57825.1335	48672.8133	19082.1499	23986.8951	28325.3003	56369.3713	47121.5049	17156.1253	22131.0050	26527.9968	54888.0162	15204.1184	45544.8484	20249.3682	24705.1121	13226.0530	53380.9918	18341.9044	43942.7635	22856.5636	11221.8547	16408.5346	51848.2200	42315.1695	20982.2696	9191.4507	14449.1813	
	A	Hz	9.500(+01)	1.389(+02)	1.558(+02)	1.637(+02)	1.144(+02)	9.297(+01)	1.542(+02)	1.408(+02)	1.655(+02)	1.088(+02)	9.046(+01)	1.519(+02)	1.419(+02)	1.664(+02)	1.023(+02)	8.745(+01)	1.488(+02)	1.419(+02)	9.497(+01)	1.666(+02)	8.390(+01)	1.449(+02)	8.675(+01)	1.411(+02)	7.980(+01)	1.659(+02)	1.402(+02)	7.759(+01)	7.509(+01)	1.392(+02)	1.643(+02)	1.347(+02)	6.744(+01)	6.975(+01)	
	\mathbb{R}^2	D^2	1.605(-01)	1.562(-01)	1.777(-01)	1.809(-01)	1.209(-01)	1.505(-01)	1.683(-01)	1.505(-01)	1.743(-01)	1.103(-01)	1.404(-01)	1.588(-01)	1.443(-01)	1.673(-01)	9.955(-02)	1.301(-01)	1.491(-01)	1.375(-01)	8.874(-02)	1.599(-01)	1.198(-01)	1.393(-01)	7.787(-02)	1.302(-01)	1.094(-01)	1.521(-01)	1.293(-01)	6.693(-02)	9.885(-02)	1.225(-01)	1.439(-01)	1.192(-01)	5.593(-02)	8.822(-02)	
	ρ	cm-1	1782.4634	1785.3860	1789.0967	1796.7959	1805.2863	1807.9975	1815.1593	1815.6922	1825.5527	1830.4127	1833.6151	1841.3066	1846.0663	1854.3848	1855.6181	1859.3153	1867.5382	1876.5107	1880.9009	1883.2941	1885.0970	1893.8533	1906.2597	1907.0277	1910.9590	1912.2820	1920.2513	1931.6928	1936.8999	1937.6187	1941.3495	1946.7309	1957.1986	1962.9184	

TABLE 9—Continued

σ	R ²	A	E(v" J")	gf	S	$\overline{v'}$	v"	type	J"
cm^{-1}	D^2	$_{ m Hz}$	cm ⁻¹		cm/molecule				
2188.4899	2.267(-02)	3.639(+01)	2942.3028	4.898(-04)	4.004(-20)	2	1	R	20
2206.5271	5.729(-02)	9.603(+01)	26505.5749	6.002(-03)	6.094(-24)	5	4	R	100
2215.7044	1.138(-02)	1.897(+01)	806.3828	2.490(-04)	5.710(-20)	1	0	R	20
2216.3185	3.536(-02)	6.014(+01)	36881.6266	5.010(-03)	3.518(-26)	3	2	R	135
2236.3713	4.634(-02)	8.088(+01)	24618.4838	4.921(-03)	1.244(-23)	4	3	\mathbf{R}	100
2247.6467	2.392(-02)	4.243(+01)	35087.0708	3.437(-03)	5.753(-26)	2	1	R	135
2266.2858	3.514(-02)	6.382(+01)	22705.0248	3.781(-03)	2.412(-23)	3	2	R	100
2279.0410	1.214(-02)	2.244(+01)	33265.9252	1.768(-03)	7.143(-26)	1	0	R	135
2296.2686	2.368(-02)	4.474(+01)	20765.1284	2.582(-03)	4.206(-23)	2	1	R	100
2326.3174	1.197(-02)	2.352(+01)	18798.7272	1.322(-03)	5.570(-23)	1	0	R	100

NOTE.—See text for explanation of columns.

TABLE 10

TABLE 10

LINE LIST OF $^{12}\text{Cl}^{6}\text{O}$ $\Delta v = +2$ TRANSITIONS

	<i>]</i> "		100	135	50	135	100	100	135	20	100	100	135	0	20	100	100	135	20	0	20	100	100	135	20	0	20	100	100	20	135	0	20	100	100	20
	type		Ъ	Д	Ы	Ж	Д	8	Д	Д	Д	꿈	æ	Ж	Ъ	Д	굠	꿈	꿈	꿈	Ы	<u>ፈ</u>	ዝ	Я	ద	絽	Д	Ь	æ	H	Я	꿈	Д	Ы	꿈	絽
	v''		6		20	16	œ	20	0	19	7	19	15	20	18	9	18	14	20	19	17	ഹ	17	13	19	18	16	4	16	18	12	17	15	က	15	17
	n'		11	က	55	18	10	22	5	21	6	21	17	22	20	∞	20	16	22	21	19	2	19	15	21	20	18	9	18	20	14	19	17	2	17	19
	S	cm/molecule	5.287(-27)	4.526(-28)	1.362(-27)	6.388(-31)	1.011(-26)	1.074(-29)	3.636(-28)	2.758(-27)	1.915(-26)	2.023(-29)	1.156(-30)	1.037(-28)	5.626(-27)	3.565(-26)	3.840(-29)	2.101(-30)	1.748(-27)	2.109(-28)	1.156(-26)	6.478(-26)	7.342(-29)	3.835(-30)	3.547(-27)	4.320(-28)	2.388(-26)	1.134(-25)	1.412(-28)	7.249(-27)	7.021(-30)	8.908(-28)	4.958(-26)	1.875(-25)	2.729(-28)	1.490(-26)
	gf		3.353(-04)	2.300(-05)	3.672(-04)	3.489(-03)	2.745(-04)	3.176(-03)	7.664(-06)	3.354(-04)	2.196(-04)	2.928(-03)	3.156(-03)	2.015(-05)	3.051(-04)	1.707(-04)	2.686(-03)	2.834(-03)	4.634(-04)	1.843(-05)	2.762(-04)	1.279(-04)	2.454(-03)	2.525(-03)	4.244(-04)	1.678(-05)	2.484(-04)	9.113(-05)	2.228(-03)	3.870(-04)	2.228(-03)	1.520(-05)	2.219(-04)	6.063(-05)	2.009(-03)	3.506(-04)
	E(v''J'')	cm ⁻¹	35548.0746	35087.0708	38576.6231	59255.3776	33791.7162	53175.4284	33265.9252	36931.0393	32009.3643	51699.6990	57825.1335	37917.0909	35260.3801	30200.9409	50198.8523	56369.3713	38576.6231	36264.1752	33564.5613	28366.3694	48672.8133	54888.0162	36931.0393	34586.1834	31843.4982	26505.5749	47121.5049	35260.3801	53380.9918	32883.0311	30097.1061	24618.4838	45544.8484	33564.5613
	A	Hz	1.090(+01)	5.540(-01)	6.252(+01)	8.514(+01)	9.196(+00)	1.043(+02)	1.904(-01)	5.891(+01)	7.585(+00)	9.946(+01)	7.975(+01)	4.687(+01)	5.524(+01)	6.076(+00)	9.434(+01)	7.411(+01)	7.737(+01)	4.420(+01)	5.155(+01)	4.688(+00)	8.905(+01)	6.831(+01)	7.307(+01)	4.149(+01)	4.776(+01)	3.441(+00)	8.348(+01)	6.867(+01)	6.234(+01)	3.872(+01)	4.395(+01)	2.357(+00)	7.772(+01)	6.411(+01)
$\Delta v = +2$ Iransitions	\mathbb{R}^2	D^2	2.291(-03)	1.163(-04)	1.238(-02)	1.727(-02)	1.847(-03)	2.116(-02)	3.815(-05)	1.113(-02)	1.455(-03)	1.918(-02)	1.535(-02)	1.325(-02)	9.972(-03)	1.114(-03)	1.731(-02)	1.355(-02)	1.431(-02)	1.194(-02)	8.894(-03)	8.224(-04)	1.556(-02)	1.187(-02)	1.291(-02)	1.071(-02)	7.879(-03)	5.776(-04)	1.389(-02)	1.159(-02)	1.030(-02)	9.554(-03)	6.936(-03)	3.787(-04)	1.233(-02)	1.035(-02)
$\Delta v = +2.11$	ь	cm ⁻¹	3113.3569	3116.7408	3154.9526	3159:9428	3161.5873	3161.6345	3165.0787	3204.1554	3209.9780	3215.2273	3215.6301	3234.0138	3253.5242	3258.5267	3268.9586	3271.4545	3280.6414	3283.9502	3303.0609	3307.2310	3322.8349	3327.4213	3331.2759	3334.0533	3352.7664	3356.0880	3376.8611	3382.0764	3383.5352	3384.3248	3402.6412	3405.0944	3431.0414	3433.0448
	J''		135	135	135	135	135	135	135	135	100	135	100	135	100	135	100	135	100	135	100	135	100	135	100	135	135	100	135	135	100	135	135	100	135	135
OF 1.	type		Ъ	ᅀ	Ъ	Ь	Д	ሷ	Δ,	Ъ	Д	Ы	Д	Ъ	Ъ	Д	Ь	Д	Ъ	Ь	Ь	Ъ	Д	Д	д	Д	ዳ	Ъ	Д	굡	Ь	Ь	쮼	Д	Д	굞
LINE LIST OF "C"O	",0		20	19	18	17	16	15	14	13	20	12	19	11	18	10	17	6	16	∞	15	7	14	9	13	ນ	20	12	4	19	Π	က	18	10	7	17
Z L	<i>v</i> ′		22	21	20	19	18	17	16	15	22	14	21	13	20	12	19	11	18	10	17	6	16	∞	15	2	22	14	9	21	13	ĸ	20	12	4	19
	S	cm/molecule	2.000(-32)	3.447(-32)	5.990(-32)	1.048(-31)	1.850(-31)	3.285(-31)	5.871(-31)	1.054(-30)	4.289(-30)	1.899(-30)	7.964(-30)	3.412(-30)	1.491(-29)	6.164(-30)	2.808(-29)	1.111(-29)	5.331(-29)	1.991(-29)	1.018(-28)	3.532(-29)	1.956(-28)	6.170(-29)	3.771(-28)	1.052(-28)	6.341(-32)	7.289(-28)	1.730(-28)	1.118(-31)	1.422(-27)	2.681(-28)	1.985(-31)	2.746(-27)	3.789(-28)	3.551(-31)
	gf		1.787(-03)	1.610(-03)	1.446(-03)	1.292(-03)	1.151(-03)	1.019(-03)	8.972(-04)	7.840(-04)	1.391(-03)	6.793(-04)	1.262(-03)	5.801(-04)	1.140(-03)	4.920(-04)	1.024(-03)	4.113(-04)	9.162(-04)	3.376(-04)	8.151(-04)	2.711(-04)	7.206(-04)	2.117(-04)	6.316(-04)	1.594(-04)	4.923(-03)	5.485(-04)	1.142(-04)	4.550(-03)	4.749(-04)	7.627(-05)	4.186(-03)	4.021(-04)	4.584(-05)	3.834(-03)
	E(v''J'')	cm ⁻¹	64722.5752	63393.7106	62039.5983	60660.1760	59255.3776	57825.1335	56369.3713	54888.0162	53175.4284	53380.9918	51699.6990	51848.2200	50198.8523	50289.6222	48672.8133	48705.1189	47121.5049	47094.6307	45544.8484	45458.0782	43942.7635	43795.3826	42315.1695	42106.4659	64722.5752	40661.9850	40391.2511	63393.7106	38983.1285	38649.6626	62039.5983	37278.5186	36881.6266	60660.1760
	A	Hz	2.200(+01)	2.064(+01)	1.928(+01)	1.792(+01)	1.658(+01)	1.525(+01)	1.393(+01)	1.263(+01)	3.136(+01)	1.135(+01)	2.947(+01)	1.004(+01)	2.758(+01)	8.820(+00)	2.564(+01)	7.632(+00)	2.374(+01)	6.483(+00)	2.184(+01)	5.384(+00)	1.996(+01)	4.346(+00)	1.808(+01)	3.381(+00)	1.039(+02)	1.621(+01)	2.504(+00)	9.964(+01)	1.449(+01)	1.726(+00)	9.510(+01)	1.267(+01)	1.070(+00)	9.028(+01)
	\mathbb{R}^2	D^2	1.264(-02)	1.116(-02)	9.826(-03)	8.611(-03)	7.521(-03)	6.536(-03)	5.649(-03)	4.847(-03)	1.141(-02)	4.124(-03)	1.016(-02)	3.460(-03)	9.024(-03)	2.884(-03)	7.967(-03)	2.369(-03)	7.010(-03)	1.912(-03)	6.132(-03)	1.510(-03)	5.332(-03)	1.159(-03)	4.598(-03)	8.586(-04)	2.620(-02)	3.929(-03)	6.056(-04)	2.377(-02)	3.348(-03)	3.978(-04)	2.148(-02)	2.790(-03)	2.354(-04)	1.932(-02)
	Ь	cm-1	2227.7206	2273.1979	2318.7916	2364.5113	2410.3650	2456.3598	2502.5014	2548.7947	2593.4798	2595.2434	2639.9654	2641.8504	2686.5951	2688.6179	2733.3744	2735.5471	2780.3078	2782.6386	2827.3989	2829.8924	2874.6505	2877.3076	2922.0644	2924.8829	2938.4110	2969.6418	2972.6166	2993.6300	3017.3832	3020.5061	3048.9514	3065.2885	3068.5487	3104.3859

1,1		100	135	0	20	20	100	135	0	20	20	100	135	0	20	20	100	0	20	135	20	100	0	20	135	20	100	0	20	20	135	100	0	20	20	100
type	:	æ	æ	짪	ж	Ы	æ	Ж	Я	R	Ь	H	R	æ	2	Ь	R	R	R	æ	Ы	R	Ж	꿈	æ	Д	æ	ዳ	꿉	Ъ	צ	22	꿈	Я	4	æ
",a		6	2	6	10	7	œ	4	œ	6	9	2	က	2	œ	ъ	9	9	7	2	4	2	ro	9	-	က	4	4	က	7	0	က	က	4	-	7
<i>v</i> ,		=	7	11	12	6	10	9	10	11	œ	6	ည	6	10	7	∞	œ	6	4	9	7	2	œ	က	2	9	9	7	4	7	ည	ស	9	ဗ	4
s	cm/molecule	1.507(-26)	4.287(-28)	3.327(-25)	2.613(-24)	1.771(-23)	2.918(-26)	7.132(-28)	6.929(-25)	5.471(-24)	3.568(-23)	5.588(-26)	1.122(-27)	1.427(-24)	1.137(-23)	7.010(-23)	1.053(-25)	2.890(-24)	2.339(-23)	1.606(-27)	1.326(-22)	1.936(-25)	5.705(-24)	4.727(-23)	1.936(-27)	2.366(-22)	3.429(-25)	1.084(-23)	9.317(-23)	3.840(-22)	1.575(-27)	5.730(-25)	1.943(-23)	1.768(-22)	5.239(-22)	8.724(-25)
af	·	8.875(-04)	5.852(-04)	5.091(-06)	1.418(-04)	6.009(-05)	7.361(-04)	4.254(-04)	4.175(-06)	1.188(-04)	4.667(-05)	5.967(-04)	2.887(-04)	3.345(-06)	9.761(-05)	3.490(-05)	4.700(-04)	2.602(-06)	7.835(-05)	1.762(-04)	2.482(-05)	3.567(-04)	1.949(-06)	6.105(-05)	8.935(-05)	1.645(-05)	2.577(-04)	1.388(-06)	4.582(-05)	9.789(-06)	3.022(-05)	1.734(-04)	9.206(-07)	3.270(-05)	4.836(-06)	1.050(-04)
E(v'' J'')	cm ⁻¹	35548.0746	42106.4659	18341.9044	20982.2696	15204.1184	33791.7162	40391.2511	16408.5346	19082.1499	13226.0530	32009.3643	38649.6626	14449.1813	17156.1253	11221.8547	30200.9409	12463.7686	15204.1184	36881.6266	9191.4507	28366.3694	10452.2222	13226.0530	35087.0708	7134.7700	26505.5749	8414.4693	11221.8547	5051.7432	33265.9252	24618.4838	6350.4391	9191.4507	2942.3028	22705.0248
V	Hz	4.122(+01)	2.044(+01)	1.628(+01)	3.168(+01)	1.490(+01)	3.520(+01)	1.531(+01)	1.372(+01)	2.727(+01)	1.189(+01)	2.937(+01)	1.071(+01)	1.129(+01)	2.303(+01)	9.129(+00)	2.380(+01)	9.019(+00)	1.898(+01)	6.727(+00)	6.664(+00)	1.859(+01)	6.936(+00)	1.519(+01)	3.512(+00)	4.533(+00)	1.381(+01)	5.069(+00)	1.170(+01)	2.768(+00)	1.223(+00)	9.551(+00)	3.451(+00)	8.573(+00)	1.403(+00)	5.942(+00)
R. ²	D_2^2	4.972(-03)	2.421(-03)	2.855(-03)	3.786(-03)	1.679(-03)	4.064(-03)	1.734(-03)	2.310(-03)	3.128(-03)	1.286(-03)	3.247(-03)	1.159(-03)	1.826(-03)	2.536(-03)	9.493(-04)	2.521(-03)	1.402(-03)	2.008(-03)	6.970(-04)	6.662(-04)	1.887(-03)	1.036(-03)	1.544(-03)	3.484(-04)	4.359(-04)	1.344(-03)	7.284(-04)	1.144(-03)	2.561(-04)	1.162(-04)	8.922(-04)	4.770(-04)	8.058(-04)	1.249(-04)	5.329(-04)
Communed	cm ⁻¹	3759.4777	3780.6247	3792.5608	3794.5452	3807.6250	3814.7802	3837.9667	3844.3288	3846.8506	3858.9663	3870.2410	3895.4577	3896.2532	3899.3155	3910.4580	3925.8580	3948.3311	3951.9372	3953.0947	3962.0968	3981.6285	4000.5592	4004.7127	4010.8743	4013.8793	4037.5497	4052.9343	4057.6387	4065.8022	4068.7922	4093.6182	4105.4531	4110.7120	4117.8620	4149.8303
													_		_						_															
, i.,	,	0	135	20	100	20	0	100	135	20	100	20	0	100	135	100	20	20	0	100	20	135	0	8	100	8	135	0	20	100	20	135	0	20	8	
type J''		R 0	R 135	P 20	P 100	R 20	В 0	R 100	R 135	P 20	P 100	R 20	R 0	R 100	R 135	P 100	P 20	R 20	В 0	R 100	P 20	R 135	R 0	R 20	R 100	P 20	R 135	В 0	R 20	R 100	P 20		R		P 20	
"" type J"							15 R 0						14 R 0						13 R 0									11 R 0					10 R 0			
type		R.	В	д	Д	Ж		æ	æ	Д		ж		Я	Ж	д	Ы	R		굡	Ы	æ	Ж	Ж	R	Ъ			R	æ	ሷ	æ			д	
", type	lecule	18 16 R	11 R	14 P	2 P	16 R	15	14 R	10 R	13 P	1 P	15 R	14	13 R	9 R	2 0 P	12 P	14 R	13	12 R	11 P	8 R	12 R	13 R	11 R	10 P	7 R	11	12 R	10 R	9 P	6 R	10	13 11 R	8 P	
1, " " type	cm/molecule	18 16 R	13 11 R	16 14 P	4 2 P	18 16 R	17 15	16 14 R	12 10 R	15 13 P	3 1 P	17 15 R	16 14	15 13 R	11 9 R	2 0 P	14 12 P	16 14 R	15 13	14 12 R	13 11 P	10 8 R	14 12 R	15 13 R	13 11 R	12 10 P	9 7 R	13 11	14 12 R	12 10 R	11 9 P	8 6 R	12 10	13 11 R	10 8 P	
f S v' where	the cm/molecule	33 1.369(-05) 1.848(-27) 18 16 R	1.289(-29) 13 11 R	1.033(-25) 16 14 P	2.820(-25) 4 2 P	3.086(-26) 18 16 R	3.856(-27) 17 15	5.297(-28) 16 14 R	2.360(-29) 12 10 R	2.163(-25) 15 13 P	3.565(-25) 3 1 P	6.423(-26) 17 15 R	8.078(-27) 16 14	1.033(-27) 15 13 R	4.309(-29) 11 9 R	3.042(-25) 2 0 P	4.537(-25) 14 12 P	1.343(-25) 16 14 R	1.698(-26) 15 13	2.019(-27) 14 12 R	9.527(-25) 13 11 P	7.821(-29) 10 8 R	3.578(-26) 14 12 R	2.818(-25) 15 13 R	3.959(-27) 13 11 R	1.997(-24) 12 10 P	1.405(-28) 9 7 R	7.531(-26) 13 11	5.924(-25) 14 12 R	7.738(-27) 12 10 R	4.168(-24) 11 9 P	2.484(-28) 8 6 R	1.586(-25) 12 10	1.243(-24) 13 11 R	8.640(-24) 10 8 P	
$\frac{1.0011}{n}$	the cm/molecule	+01) 31154.6333 1.369(-05) 1.848(-27) 18 16 R	1.948(-03) $1.289(-29)$ 13 11 R	1.966(-04) 1.033(-25) 16 14 P	3.622(-05) $2.820(-25)$ 4 2 P	3.162(-04) $3.086(-26)$ 18 16 R	1.224(-05) $3.856(-27)$ 17 15	1.798(-03) $5.297(-28)$ 16 14 R	1.679(-03) $2.360(-29)$ 12 10 R	1.728(-04) 2.163(-25) 15 13 P	1.796(-05) 3.565(-25) 3 1 P	[2.832(-04) 6.423(-26) 17 15 R	1.087(-05) $8.078(-27)$ 16 14	1.596(-03) $1.033(-27)$ 15 13 R	1.425(-03) $4.309(-29)$ 11 9 R	5.935(-06) $3.042(-25)$ 2 0 P	1.504(-04) 4.537(-25) 14 12 P	2.519(-04) 1.343(-25) 16 14 R	25817.1199 9.563(-06) 1.698(-26) 15 13	1.404(-03) $2.019(-27)$ 14 12 R	1.295(-04) 9.527(-25) 13 11 P	1.188(-03) $7.821(-29)$ 10 8 R	8.332(-06) 3.578(-26) 14 12 R	2.219(-04) 2.818(-25) 15 13 R	1.224(-03) 3.959(-27) 13 11 R	1.098(-04) 1.997(-24) 12 10 P	9.676(-04) $1.405(-28)$ 9 7 R	7.163(-06) $7.531(-26)$ 13 11	. 1.936(-04) 5.924(-25) 14 12 R	1.050(-03) $7.738(-27)$ 12 10 R	9.172(-05) 4.168(-24) 11 9 P	7.664(-04) 2.484(-28) 8 6 R	6.087(-06) $1.586(-25)$ 12 10	22856.5636 1.666(-04) 1.243(-24) 13 11 R	7.512(-05) 8.640(-24) 10 8 P	
$\frac{1.0011}{n}$	Hz cm ⁻¹ cm/molecule	03) 3.591(+01) 31154.6333 1.369(-05) 1.848(-27) 18 16 R	51848.2200 1.948(-03) 1.289(-29) 13 11 R	28325.3003 1.966(-04) 1.033(-25) 16 14 P	22705.0248 3.622(-05) 2.820(-25) 4 2 P	31843.4982 $3.162(-04)$ $3.086(-26)$ 18 16 R	29400.9052 1.224(-05) 3.856(-27) 17 15	(43942.7635 1.798(-03) 5.297(-28) 16 14 R	50289.6222 1.679(-03) 2.360(-29) 12 10 R	26527.9968 1.728(-04) 2.163(-25) 15 13 P	20765.1284 1.796(-05) 3.565(-25) 3 1 P	30097.1061 2.832(-04) 6.423(-26) 17 15 R	9.27621.7621 1.087(-05) 8.078(-27) 16 14	42315.1695 1.596(-03) 1.033(-27) 15 13 R	+ 48705.1189 + 1.425(-03) + 4.309(-29) + 11 + 9 + R	2.511(-01) 18798.7272 5.935(-06) 3.042(-25) 2 0 P	24705.1121 1.504(-04) 4.537(-25) 14 12 P	28325.3003 2.519(-04) 1.343(-25) 16 14 R	25817.1199 9.563(-06) 1.698(-26) 15 13) 40661.9850 1.404(-03) 2.019(-27) 14 12 R	22856.5636 1.295(-04) 9.527(-25) 13 11 P	47094.6307 1.188(-03) 7.821(-29) 10 8 R	23986.8951 8.332(-06) 3.578(-26) 14 12 R	26527.9968 2.219(-04) 2.818(-25) 15 13 R	38983.1285 1.224(-03) 3.959(-27) 13 11 R	20982.2696 1.098(-04) 1.997(-24) 12 10 P	45458.0782 9.676(-04) 1.405(-28) 9 7 R	7.22131.0050 7.163(-06) 7.531(-26) 13 11	24705.1121 1.936(-04) 5.924(-25) 14 12 R	37278.5186 1.050(-03) 7.738(-27) 12 10 R	19082.1499 9.172(-05) 4.168(-24) 11 9 P	43795.3826 7.664(-04) 2.484(-28) 8 6 R	20249.3682 6.087(-06) 1.586(-25) 12 10	3.620(+01) 22856.5636 $1.666(-04)$ $1.243(-24)$ 13 11 R	17156.1253 7.512(-05) 8.640(-24) 10 8 P	

..535G

TABLE 10—Continued

σ	\mathbb{R}^2	A	E(v'' J'')	gf	S	v'	v''	type	J"
cm ⁻¹	D^2	Hz	cm ⁻¹		cm/molecule				
4158.1121	2.807(-04)	2.109(+00)	4260.0622	5.486(-07)	3.169(-23)	4	2	R	0
4163.9292	5.285(-04)	5.844(+00)	7134.7700	2.173(-05)	3.162(-22)	5	3	R	20
4170.0551	4.057(-05)	4.731(-01)	806.3828	1.591(-06)	4.819(-22)	2	0	P	20
4206.1822	2.653(-04)	3.081(+00)	20765.1284	5.299(-05)	1.121(-24)	3	1	R	100
4210.9080	1.373(-04)	1.072(+00)	2143.2711	2.718(-07)	4.350(-23)	3	1	R	0
4217.2869	3.116(-04)	3.580(+00)	5051.7432	1.297(-05)	5.149(-22)	4	2	R	20
4262.6697	8.786(-05)	1.062(+00)	18798.7272	1.778(-05)	9.700(-25)	2	0	R	100
4263.8372	4.468(-05)	3.621(-01)	0.0000	8.957(-08)	4.022(-23)	2	0	R	0
4270.7816	1.530(-04)	1.825(+00)	2942.3028	6.450(-06)	7.068(-22)	3	1	R	20
4324.4098	4.992(-05)	6.183(-01)	806.3828	2.131(-06)	6.529(-22)	2	0	R	20

NOTE.—See text for explanation of columns.

TABLE 11 LINE LIST OF $^{12}C^{16}O \Delta v = +3$ Transitions

	<i>"</i> .		100	135	135	100	100	20	135	135	100	100	20	0	135	20	135	100	100	20	0	135	20	135	100	20	100	0	135	20	100	20	100	0	20	135
			P 1	R 1	P 1	ж 1	P 1	Ь	R 1	P 1	R 1	P 1	д	%	R	22	P 1	P 1	R 1	Ь	Я	R 1	22	P 1	P 1	д	ж :-	æ	R 1	æ	Р	<u>.</u>	R 1	æ	22	R 1
	, type		_		_	~	_	_	~	~ 1	_	•	•	_		_	_	~	<u>~</u>	~	•			_	~	_			_	~				_	~	6
	"o '		4 11	7 14	9	1 18	3 10	3 20	5 13	5 2	0 17	6	2 19	3 20	5 12	3 20	4 1	1 8	9 16	1 18	2 19	4 11	2 19	3 0	2 0	0 17	8 15	1 18	3 10	1 18	9 6	9 16	7 14	0 17	0 17	
	'n	e	14	1.) 21) 13) 23) 16		20) 12	22) 23) 15	23		11 () 19	21) 22) 14) 22		01 (20) 18	2) 13	2	_) 19	71 (20	22) 12
	S	cm/molecule	7.893(-29)	3.095(-31)	5.211(-30)	5.969(-30)	1.367(-28)	1.543(-28)	5.282(-31)	5.661(-30)	1.079(-29)	2.332(-28)	2.951(-28)	1.231(-29)	8.989(-31)	2.196(-28)	4.914(-30)	3.901(-28)	1.954(-29)	5.669(-28)	2.366(-29)	1.522(-30)	4.214(-28)	2.655(-30)	6.362(-28)	1.089(-27)	3.542(-29)	4.559(-29)	2.559(-30)	8.100(-28)	1.003(-27)	2.093(-27)	6.422(-29)	8.803(-29)	1.563(-27)	4.254(-30)
	gf		2.259(-05)	3.699(-04)	1.266(-06)	3.689(-04)	1.720(-05)	3.618(-05)	3.088(-04)	5.867(-07)	3.193(-04)	1.274(-05)	3.130(-05)	2.094(-06)	2.540(-04)	5.114(-05)	2.145(-07)	9.148(-06)	2.737(-04)	2.688(-05)	1.814(-06)	2.054(-04)	4.441(-05)	4.822(-08)	6.322(-06)	2.280(-05)	2.321(-04)	1.558(-06)	1.628(-04)	3.816(-05)	4.171(-06)	1.913(-05)	1.944(-04)	1.324(-06)	3.253(-05)	1.261(-04)
	(,,,		285	713	979	523	186	231	162	566	133	746	393	606	918	231	708	162	049	801	752	200	393	252	643	613	484	834	222	801	409	982	635	311	613	189
	$\mathbb{E}(v'' J'')$	cm-1	38983.1285	56369.3713	38649.6626	50198.8523	37278.5186	38576.623	54888.0162	36881.6266	48672.8133	35548.0746	36931.0393	37917.0909	53380.9918	38576.6231	35087.0708	33791.7162	47121.5049	35260.3801	36264.1752	51848.2200	36931.0393	33265.9252	32009.3643	33564.5613	15544.8484	34586.1834	50289.6222	35260.3801	30200.9409	31843.4982	13942.7635	32883.0311	33564.5613	48705.1189
	A]	Hz	.636(+00) 3	973(+01) 5	5.979(-02) 3	2.697(+01) 5	1.285(+00) 3	1.383(+01) 3	1.705(+01) 5	3.336(-02) 3	2.413(+01) 4	3.825(-01) 3	1.234(+01) 3	1.079(+01) 3	.451(+01) 5	1.867(+01) 3	258(-02) 3	.272(-01) 3	2.137(+01) 4	1.092(+01) 3	9.635(+00) 3	213(+01) 5	1.672(+01) 3	2.916(-03) 3	3.180(-01) 3	9.555(+00) 3	1.871(+01) 4	8.528(+00) 3	9.940(+00) 5	1.481(+01) 3	521(-01) 3	8.261(+00) 3	1.618(+01) 4	.470(+00) 3	.301(+01) 3	7.955(+00) 4
2			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	7	_	_	_	_	_	_		_	_	_	_	_	دن		_	7	_	•
IOI II GNIWA	\mathbb{R}^2	D^2	1.034(-04	1.239(-03)	4.232(-06)	1.648(-03)	7.747(-05)	8.142(-04)	1.016(-03)	1.931(-06)	1.402(-03)	5.652(-05)	6.934(-04)	9.258(-04)	8.217(-04)	1.068(-03)	6.951(-07)	3.996(-05)	1.183(-03)	5.864(-04)	7.897(-04)	6.533(-04)	9.131(-04)	1.539(-07)	2.720(-05)	4.900(-04)	9.866(-04)	6.678(-04)	5.094(-04)	7.729(-04)	1.768(-05)	4.050(-04)	8.133(-04)	5.591(-04)	6.488(-04)	3.882(-04)
1 6 - 25	ο	cm-1	4648.4983	4671.3923	4714.2050	4716.0740	4721.9930	4726.5054	4752.8095	4788.5422	4794.9976	4795.7325	4800.5364	4812.1655	4834.4458	4850.7623	4863.1045	4869.7153	4874.1433	4874.8146	4886.9295	4916.3069	4926.2252	4937.8864	4943.9392	4949.3431	4953.5177	4961.9419	4998.3973	5001.9351	5018.4013	5024.1240	5033.1263	5037.2056	5077.8953	5080.7198
` .			_							_																										
7	J''		135	135	135	135	135	135	135	135	100	135	100	135	100	135	135	100	135	135	100	135	135	100	135	135	100	135	100	135	100	135	100	135	100	135
			P 135	P 135	P 135	P 135	P 135	P 135	P 135	P 135	P 100	P 135	P 100	P 135	P 100	R 135	P 135	P 100	R 135	P 135	P 100	P 135	R 135	P 100	P 135	R 135	P 100	P 135	P 100	R 135	R 100	P 135	P 100	R 135	R 100	P 135
Lisi of C O	v'' type J''		20 P 135															17 P 100	19 R 135	9 P 135	16 P 100	8 P 135	18 R 135	15 P 100	7 P 135		14 P 100	6 P 135	13 P 100			5 P 135	12 P 100		19 R 100	4 P 135
LINE LIST OF CO	type		ы	ል	Д	д	Д	Д	Ы	Ъ	Ь	Ы	Ь	Ы	Ъ	ж	Д	д	쮼	Д	Д	Ъ	æ	Ь	10 7 P 135	æ	Ь	Д	Д	굞	Я	Д	Д	æ	Я	7 4 P 135
LINE LIST OF C	v'' type	cm/molecule	ы	ል	18 P	17 P	16 P	15 P	14 P	13 P	20 P	12 P	19 P	11 P	. 18 P	20 R	10 P	17 P	19 R	9 P	16 P	Ъ	æ	15 P	7 P	17 R	Ь	6 P	13 P	16 R	20 R	5 P	12 P	15 R	19 R	4.201(-30) 7 4 P 135
LINE LIST OF CO	$v^{\prime} v^{\prime\prime}$ type	cm/molecule	-33) 23 20 P	-33) 22 19 P	21 18 P	-33) 20 17 P	19 16 P	18 15 P	-32) 17 14 P	-32) 16 13 P	23 20 P	-31) 15 12 P	22 19 P	14 11 P	21 18 P	23 20 R	13 10 P	20 17 P	22 19 R	12 9 P	19 16 P	11 8 P	21 18 R	18 15 P	10 7 P	20 17 R	17 14 P	9 6 P	-29) 16 13 P	19 16 R	-30) 23 20 R	8 5 P	-29) 15 12 P	-31) 18 15 R	22 19 R	7 4 P
LINE LIST OF CO	(a, b) f	cm ⁻¹ cm/molecule	52 1.529(-04) 2.117(-33) 23 20 P	3.517(-33) 22 19 P	5.866(-33) 21 18 P	9.835(-33) 20 17 P	1.653(-32) 19 16 P	2.782(-32) 18 15 P	4.680(-32) 17 14 P	7.856(-32) 16 13 P	4.524(-31) 23 20 P	1.313(-31) 15 12 P	8.020(-31) 22 19 P	2.179(-31) 14 11 P) 1.423(-30) 21 18 P	1.291(-32) 23 20 R	3.581(-31) 13 10 P) 2.537(-30) 20 17 P	2.171(-32) 22 19 R	5.805(-31) 12 9 P	4.529(-30) 19 16 P	9.240(-31) 11 8 P	3.674(-32) 21 18 R	8.079(-30) 18 15 P	1.435(-30) 10 7 P	6.238(-32) 20 17 R	1.439(-29) 17 14 P	2.158(-30) 9 6 P	2.554(-29) 16 13 P	1.062(-31) 19 16 R	1.844(-30) 23 20 R	3.104(-30) 8 5 P	4.508(-29) 15 12 P	1.813(-31) 18 15 R	3.309(-30) 22 19 R	4.201(-30) 7 4 P
O J IO	J'') gf S v' type		1.529(-04) 2.117(-33) 23 20 P	1.333(-04) 3.517(-33) 22 19 P	1.153(-04) 5.866(-33) 21 18 P	9.904(-05) 9.835(-33) 20 17 P	8.430(-05) 1.653(-32) 19 16 P	57825.1335 7.097(-05) 2.782(-32) 18 15 P	56369.3713 5.902(-05) 4.680(-32) 17 14 P	4.839(-05) 7.856(-32) 16 13 P	1.224(-04) 4.524(-31) 23 20 P	53380.9918 3.902(-05) 1.313(-31) 15 12 P	51699.6990 1.063(-04) 8.020(-31) 22 19 P	3.088(-05) $2.179(-31)$ 14 11 P	9.135(-05) 1.423(-30) 21 18 P	64722.5752 8.746(-04) 1.291(-32) 23 20 R	2.390(-05) 3.581(-31) 13 10 P	7.791(-05) 2.537(-30) 20 17 P	7.734(-04) 2.171(-32) 22 19 R	1.802(-05) 5.805(-31) 12 9 P	6.574(-05) $4.529(-30)$ 19 16 P	1.319(-05) 9.240(-31) 11 8 P	6.798(-04) 3.674(-32) 21 18 R	5.478(-05) 8.079(-30) 18 15 P	9.297(-06) 1.435(-30) 10 7 P	5.924(-04) $6.238(-32)$ 20 17 R	4.503(-05) 1.439(-29) 17 14 P	6.267(-06) 2.158(-30) 9 6 P	3.645(-05) 2.554(-29) 16 13 P	5.117(-04) 1.062(-31) 19 16 R	4.796(-04) $1.844(-30)$ 23 20 R	3.992(-06) 3.104(-30) 8 5 P	2.899(-05) 4.508(-29) 15 12 P	4.376(-04) 1.813(-31) 18 15 R	4.220(-04) 3.309(-30) 22 19 R	2.363(-06) 4.201(-30) 7 4 P
	E(v''J'') gf S v' type	$^{\mathrm{cm}^{-1}}$) 64722.5752 1.529(-04) 2.117(-33) 23 20 P) 63393.7106 1.333(-04) 3.517(-33) 22 19 P) 62039.5983 1.153(-04) 5.866(-33) 21 18 P	0 60660.1760 9.904(-05) 9.835(-33) 20 17 P	59255.3776 8.430(-05) 1.653(-32) 19 16 P	57825.1335 7.097(-05) 2.782(-32) 18 15 P	56369.3713 5.902(-05) 4.680(-32) 17 14 P	54888.0162 4.839(-05) 7.856(-32) 16 13 P	53175.4284 1.224(-04) 4.524(-31) 23 20 P	53380.9918 3.902(-05) 1.313(-31) 15 12 P	51699.6990 1.063(-04) 8.020(-31) 22 19 P	51848.2200 3.088(-05) 2.179(-31) 14 11 P	50198.8523 9.135(-05) 1.423(-30) 21 18 P	64722.5752 8.746(-04) 1.291(-32) 23 20 R	50289.6222 2.390(-05) 3.581(-31) 13 10 P	48672.8133 7.791(-05) 2.537(-30) 20 17 P	63393.7106 7.734(-04) 2.171(-32) 22 19 R	48705.1189 1.802(-05) 5.805(-31) 12 9 P	47121.5049 6.574(-05) 4.529(-30) 19 16 P	47094.6307 1.319(-05) 9.240(-31) 11 8 P	62039.5983 6.798(-04) 3.674(-32) 21 18 R	45544.8484 5.478(-05) 8.079(-30) 18 15 P	45458.0782 9.297(-06) 1.435(-30) 10 7 P	60660.1760 5.924(-04) 6.238(-32) 20 17 R	43942.7635 4.503(-05) 1.439(-29) 17 14 P	43795.3826 6.267(-06) 2.158(-30) 9 6 P	42315.1695 3.645(-05) 2.554(-29) 16 13 P) 59255.3776 $5.117(-04)$ $1.062(-31)$ 19 16 R	1.84175.4284 4.796(-04) 1.844(-30) 23 20 R	42106.4659 3.992(-06) 3.104(-30) 8 5 P	2.034(+00) 40661.9850 2.899(-05) 4.508(-29) 15 12 P	57825.1335 4.376(-04) 1.813(-31) 18 15 R	51699.6990 4.220(-04) 3.309(-30) 22 19 R	40391.2511 2.363(-06) 4.201(-30) 7 4 P

]"[20	20	0	135	100	20	20	0	135	100	20	20	0	135	100	20	20	0	135	100	20	20	0	100	20	20	0	100	20	20	0	20	100	70
	type		R	Д	Ж	ጸ	æ	Ж	Д	꿉	æ	æ	В	Ь	Я	ሜ	В	æ	Д	æ	æ	絽	짪	Д	æ	絽	Я	Д	R	굞	æ	Ъ	괊	ж	Ж	Ъ
	"u		11	6	10	က	7	10	œ	6	7	9	6	7	œ	1	જ	œ	9	7	0	4	7	က	9	က	9	4	2	7	ນ	က	4	4	1	2
	٦,		14	12	13	9	10	13	11	12	ស	6	12	10	11	4	∞	11	6	10	က	7	10	∞	6	9	6	7	∞	ro	œ	9	7	7	4	ល
	s	cm/molecule	7.877(-26)	1.824(-25)	8.355(-27)	4.844(-29)	3.444(-27)	1.484(-25)	3.301(-25)	1.552(-26)	5.594(-29)	5.661(-27)	2.759(-25)	5.833(-25)	2.831(-26)	5.212(-29)	8.940(-27)	5.042(-25)	9.986(-25)	5.045(-26)	3.058(-29)	1.335(-26)	9.004(-25)	1.638(-24)	8.718(-26)	1.837(-26)	1.560(-24)	2.534(-24)	1.445(-25)	2.229(-26)	2.593(-24)	3.602(-24)	2.259(-25)	4.068(-24)	2.181(-26)	4.504(-24)
	g f		9.466(-06)	3.585(-06)	2.873(-07)	1.132(-05)	3.330(-05)	7.238(-06)	2.569(-06)	2.131(-07)	5.584(-06)	2.293(-05)	5.396(-06)	1.775(-06)	1.534(-07)	2.194(-06)	1.498(-05)	3.905(-06)	1.174(-06)	1.066(-07)	5.361(-07)	9.139(-06)	2.728(-06)	7.349(-07)	7.090(-08)	5.075(-06)	1.826(-06)	4.282(-07)	4.467(-08)	2.454(-06)	1.158(-06)	2.265(-07)	2.623(-08)	6.846(-07)	9.447(-07)	1.041(-07)
	E(v''J'')	cm ⁻¹	22856.5636	19082.1499	20249.3682	38649.6626	32009.3643	20982.2696	17156.1253	18341.9044	36881.6266	30200.9409	19082.1499	15204.1184	16408.5346	35087.0708	28366.3694	17156.1253	13226.0530	14449.1813	33265.9252	26505.5749	15204.1184	11221.8547	12463.7686	24618.4838	13226.0530	9191.4507	10452.2222	22705.0248	11221.8547	7134.7700	8414.4693	9191.4507	20765.1284	5051.7432
	A	Hz	4.506(+00)	1.892(+00)	1.983(+00)	8.613(-01)	3.428(+00)	3.543(+00)	1.394(+00)	1.512(+00)	4.376(-01)	2.430(+00)	2.715(+00)	9.896(-01)	1.119(+00)	1.771(-01)	1.634(+00)	2.019(+00)	6.722(-01)	7.983(-01)	4.455(-02)	1.025(+00)	1.449(+00)	4.321(-01)	5.454(-01)	5.854(-01)	9.960(-01)	2.585(-01)	3.529(-01)	2.910(-01)	6.486(-01)	1.403(-01)	2.126(-01)	3.937(-01)	1.151(-01)	6.617(-02)
	\mathbb{R}^2	D^2	1.731(-04)	6.864(-05)	1.097(-04)	3.174(-05)	1.253(-04)	1.305(-04)	4.852(-05)	8.025(-05)	1.542(-05)	8.504(-05)	9.598(-05)	3.308(-05)	5.700(-05)	5.970(-06)	5.477(-05)	6.852(-05)	2.158(-05)	3.906(-05)	1.438(-06)	3.294(-05)	4.723(-05)	1.333(-05)	2.564(-05)	1.804(-05)	3.119(-05)	7.666(-06)	1.594(-05)	8.604(-06)	1.952(-05)	4.002(-06)	9.239(-06)	1.139(-05)	3.267(-06)	1.815(-06)
Continued	ο	cm-1	5538.9714	5554.6538	5571.1419	5579.5551	5597.1321	5616.6958	5631.4306	5648.4159	5663.4938	5678.6644	5694.6649	5708.4442	5725.9306	5747.6505	5760.4294	5772.8751	5785.6904	5803.6820	5832.0198	5842.4231	5851.3225	5863.1646	5881.6659	5924.6407	5930.0027	5940.8620	5959.8775	6007.0772	6008.9110	6018.7775	6038.3121	6088.0427	6089.7267	6096.9061
ĭ															_													_								
1	J.,,		100	20	0	100	20	135	100	20	0	100	20	100	135	20	0	100	20	100	20	135	0	100	20	100	20	135	0	100	20	100	20	0	135	100
ABLE II—	type J"		P 100	P 20	R 0	R 100	R 20	R 135	P 100	P 20	R 0	R 100	R 20	P 100	R 135	P 20	R 0	R 100	R 20	P 100	P 20	R 135	R 0	R 100	R 20	P 100	P 20	R 135	В.	R 100	R 20	P 100	P 20	R		
1	v'' type J''		5 P 100	15 P	16 R 0				4 P 100		15 R 0						14 R 0												12 R 0					11 R 0		
1	I		Ь	Ь	19 16	16 13 R	19 16 R	11 8 R	7 4 P	17 14 P	18 15	15 12 R	18 15 R	Ь		16 13 P	17 14	14 11 R	17 14 R	Ы	ፈ	æ	Ж	굞	%	4 1 P	14 11 P	8 5 R		æ	æ	а	Д	14 11 R 0	4 R	
1	"n	cm/molecule	5 P	15 P	16	13 R	16 R	8 R	4 P	д	15	12 R	15 R	3 P	7 R	13 P	14	11 R	14 R	2 P	12 P	6 R	13 R	10 R	13 R	1 P	11 P	5 R	12	9 R	12 R	0 P	10 P	14 11	7 4 R	11 8 R
1	v' v''	cm/molecule	-27) 8 5 P	-27) 18 15 P	-28) 19 16	-28) 16 13 R	-27) 19 16 R	-30) 11 8 R	-27) 7 4 P	-27) 17 14 P	-28) 18 15	-28) 15 12 R	-27) 18 15 R	6 3 P	10 7 R	-26) 16 13 P	-28) 17 14	14 11 R	-26) 17 14 R	5 2 P	15 12 P	9 6 R	16 13 R	13 10 R	16 13 R	-27) 4 1 P	-26) 14 11 P	8 5 R	15 12	12 9 R	4.142(-26) 15 12 R	3 0 P	13 10 P	4.439(-27) 14 11	3.702(-29) 7 4 R	2.034(-27) 11 8 R
1	f S v' v''	cm ⁻¹ cm/molecule	94 2.597(-06) 1.510(-27) 8 5 P) 4.021(-27) 18 15 P	1.701(-28) 19 16	1.162(-28) 16 13 R	3.018(-27) 19 16 R	6.967(-30) 11 8 R) $2.137(-27)$ 7 4 P	7.714(-27) 17 14 P	3.287(-28) 18 15	2.097(-28) 15 12 R	5.829(-27) 18 15 R) 2.767(-27) 6 3 P) 1.117(-29) 10 7 R) 1.475(-26) 16 13 P	6.343(-28) 17 14	3.761(-28) 14 11 R	1.124(-26) 17 14 R	3.132(-27) 5 2 P	2.806(-26) 15 12 P	1.742(-29) 9 6 R) 1.220(-27) 16 13 R	6.689(-28) 13 10 R	2.163(-26) 16 13 R	2.827(-27) 4 1 P	5.296(-26) 14 11 P	2.611(-29) 8 5 R	2.336(-27) 15 12	1.176(-27) 12 9 R	4.142(-26) 15 12 R	1.586(-27) 3 0 P	9.897(-26) 13 10 P	3.773(-07) $4.439(-27)$ 14 11	2.001(-05) 3.702(-29) 7 4 R	4.637(-05) 2.034(-27) 11 8 R
1	J") gf S v' v"		2.597(-06) 1.510(-27) 8 5 P	1.585(-05) 4.021(-27) 18 15 P	1.113(-06) $1.701(-28)$ 19 16	1.606(-04) $1.162(-28)$ 16 13 R	2.743(-05) $3.018(-27)$ 19 16 R	9.504(-05) $6.967(-30)$ 11 8 R	1.500(-06) $2.137(-27)$ 7 4 P	1.296(-05) $7.714(-27)$ 17 14 P	29400.9052 9.244(-07) 3.287(-28) 18 15	1.306(-04) 2.097(-28) 15 12 R	2.285(-05) $5.829(-27)$ 18 15 R	7.832(-07) 2.767(-27) 6 3 P	6.928(-05) 1.117(-29) 10 7 R	26527.9968 1.043(-05) 1.475(-26) 16 13 P	7.574(-07) $6.343(-28)$ 17 14	1.044(-04) $3.761(-28)$ 14 11 R	1.878(-05) $1.124(-26)$ 17 14 R	3.530(-07) 3.132(-27) 5 2 P	8.250(-06) 2.806(-26) 15 12 P	4.849(-05) $1.742(-29)$ 9 6 R	6.112(-07) $1.220(-27)$ 16 13 R	8.169(-05) 6.689(-28) 13 10 R	1.521(-05) 2.163(-26) 16 13 R	1.253(-07) $2.827(-27)$ 4 1 P	6.398(-06) 5.296(-26) 14 11 P	3.222(-05) 2.611(-29) 8 5 R	4.850(-07) $2.336(-27)$ 15 12	6.243(-05) 1.176(-27) 12 9 R	1.212(-05) 4.142(-26) 15 12 R	2.730(-08) 1.586(-27) 3 0 P	20982.2696 4.852(-06) 9.897(-26) 13 10 P	22131.0050 3.773(-07) 4.439(-27) 14 11	40391.2511 2.001(-05) 3.702(-29) 7 4 R	33791.7162 4.637(-05) 2.034(-27) 11 8 R
1	E(v''J'') gf S v' v''	cm ⁻¹) 28366.3694 2.597(-06) 1.510(-27) 8 5 P	7.051(+00) 30097.1061 1.585(-05) 4.021(-27) 18 15 P	31154.6333 1.113(-06) 1.701(-28) 19 16) $42315.1695 1.606(-04) 1.162(-28) 16 13 R$) 31843.4982 $2.743(-05)$ $3.018(-27)$ 19 16 R) $47094.6307 9.504(-05) 6.967(-30)$ 11 8 R) 26505.5749 1.500(-06) 2.137(-27) 7 4 P	28325.3003 1.296(-05) 7.714(-27) 17 14 P	29400.9052 9.244(-07) 3.287(-28) 18 15	40661.9850 1.306(-04) 2.097(-28) 15 12 R	30097.1061 2.285(-05) 5.829(-27) 18 15 R	0.24618.4838 - 7.832(-07) - 2.767(-27) - 6 - 3 - P	45458.0782 6.928(-05) 1.117(-29) 10 7 R	26527.9968 1.043(-05) 1.475(-26) 16 13 P	27621.7621 $7.574(-07)$ $6.343(-28)$ 17 14	38983.1285 1.044(-04) 3.761(-28) 14 11 R	28325.3003 1.878(-05) 1.124(-26) 17 14 R	22705.0248 3.530(-07) 3.132(-27) 5 2 P	24705.1121 8.250(-06) 2.806(-26) 15 12 P	$43795.3826 \ 4.849(-05) \ 1.742(-29) \ 9 \ 6 \ \mathbf{R}$	25817.1199 6.112(-07) 1.220(-27) 16 13 R	37278.5186 8.169(-05) 6.689(-28) 13 10 R	26527.9968 1.521(-05) 2.163(-26) 16 13 R	20765.1284 1.253(-07) 2.827(-27) 4 1 P	22856.5636 6.398(-06) 5.296(-26) 14 11 P	42106.4659 3.222(-05) 2.611(-29) 8 5 R	23986.8951 4.850(-07) 2.336(-27) 15 12	35548.0746 6.243(-05) 1.176(-27) 12 9 R	24705.1121 1.212(-05) 4.142(-26) 15 12 R	2.738(-03) 18798.7272 2.730(-08) 1.586(-27) 3 0 P	2.491(+00) 20982.2696 4.852(-06) 9.897(-26) 13 10 P	(2.533(+00) 22131.0050 3.773(-07) 4.439(-27) 14 11	1.477(+00) 40391.2511 2.001(-05) 3.702(-29) 7 4 R	4.636(+00) 33791.7162 4.637(-05) 2.034(-27) 11 8 R

TABLE 11—Continued

σ	\mathbb{R}^2	A	E(v'' J'')	gf	S	$\overline{v'}$	v''	type	J"
cm ⁻¹	D^2	Hz	cm ⁻¹		cm/molecule				
6116.9646	4.865(-06)	1.164(-01)	6350.4391	1.399(-08)	3.250(-25)	6	3	R	0
6167.3927	6.044(-06)	2.172(-01)	7134.7700	3.680(-07)	5.876(-24)	6	3	\mathbf{R}	20
6172.5834	7.713(-07)	2.830(-02)	18798.7272	2.261(-07)	1.343(-26)	3	0	\mathbf{R}	100
6175.2426	6.540(-07)	2.477(-02)	2942.3028	3.797(-08)	4.529(-24)	4	1	P	20
6195.8300	2.228(-06)	5.539(-02)	4260.0622	6.489(-09)	4.117(-25)	5	2	R	0
6246.9560	2.791(-06)	1.042(-01)	5051.7432	1.721(-07)	7.479(-24)	5	2	R	20
6253.7819	1.461(-07)	5.746(-03)	806.3828	8.589(-09)	2.859(-24)	3	0	P	20
6274.9032	8.114(-07)	2.096(-02)	2143.2711	2.394(-09)	4.199(-25)	4	1	R	0
6326.7274	1.026(-06)	3.978(-02)	2942.3028	6.406(-08)	7.670(-24)	4	1	R	20
6354.1791	1.835(-07)	4.921(-03)	0.0000	5.481(-10)	2.693(-25)	3	0	R	0
6406.7016	2.341(-07)	9.431(-03)	806.3828	1.481(-08)	4.949(-24)	3	0	R	20

NOTE.—See text for explanation of columns.

TABLE 12 Beginning Line List of the Pure Rotational Transitions

σ	R ²	A	E(v'' J'')	gf	S	$\overline{v'}$	v''	type	J"	isotope
cm ⁻¹	D^2	Hz	cm ⁻¹		cm/molecule					
3.3413	8.383(-05)	3.269(-10)	9978.5056	1.317(-10)	7.714(-34)	5	5	R	0	38
3.3716	2.236(-04)	8.960(-10)	8030.6787	3.544(-10)	3.454(-32)	4	4	\mathbf{R}	0	38
3.3775	9.790(-05)	3.943(-10)	10031.7165	1.554(-10)	8.629(-34)	5	5	\mathbf{R}	0	46
3.4019	1.520(-03)	6.256(-09)	6058.9737	2.431(-09)	4.079(-30)	3	3	\mathbf{R}	0	38
3.4083	2.059(-04)	8.523(-10)	8073.7764	3.299(-10)	3.091(-32)	4	4	R	0	46
3.4217	1.165(-04)	4.879(-10)	10096.4045	1.874(-10)	9.740(-34)	5	5	R	0	37
3.4322	3.964(-03)	1.675(-08)	4063.3308	6.396(-09)	1.912(-28)	2	2	R	0	38
3.4391	1.484(-03)	6.309(-09)	6091.6946	2.399(-09)	3.928(-30)	3	3	R	0	46
3.4531	1.854(-04)	7.982(-10)	8126.1738	3.010(-10)	2.688(-32)	4	4	R	0	37
3.4625	7.548(-03)	3.276(-08)	2043.6919	1.229(-08)	6.774(-27)	1	1	R	0	38
3.4699	3.922(-03)	1.713(-08)	4085.4105	6.397(-09)	1.895(-28)	2	2	R	0	46
3.4845	1.440(-03)	6.370(-09)	6131.4792	2.359(-09)	3.750(-30)	3	3	R	0	37
3.4928	1.227(-02)	5.465(-08)	0.0000	2.015(-08)	2.120(-25)	0	0	\mathbf{R}	0	38
3.4993	1.527(-04)	6.841(-10)	10209.0426	2.512(-10)	1.164(-33)	5	5	\mathbf{R}	0	28
3.5007	7.513(-03)	3.370(-08)	2054.8649	1.236(-08)	6.863(-27)	1	1	\mathbf{R}	0	46
3.5124	1.593(-04)	7.214(-10)	10227.8102	2.630(-10)	1.195(-33)	5	5	R	0	3 6
3.5159	3.871(-03)	1.759(-08)	4112.2588	6.398(-09)	1.875(-28)	2	2	\mathbf{R}	0	37
3.5315	1.225(-02)	5.642(-08)	0.0000	2.034(-08)	2.191(-25)	0	0	\mathbf{R}	0	46
3.5318	1.523(-04)	7.013(-10)	8217.4219	2.528(-10)	2.076(-32)	4	4	\mathbf{R}	0	28
3.5451	1.470(-04)	6.848(-10)	8232.6269	2.450(-10)	1.984(-32)	4	4	\mathbf{R}	0	36
3.5473	7.471(-03)	3.486(-08)	2068.4520	1.246(-08)	6.971(-27)	1	1	\mathbf{R}	0	37
3.5644	1.366(-03)	6.466(-09)	6200.7707	2.289(-09)	3.452(-30)	3	3	\mathbf{R}	0	28
3.5778	1.354(-03)	6.480(-09)	6212.3181	2.277(-09)	3.404(-30)	3	3	\mathbf{R}	0	3 6
3.5788	1.223(-02)	5.862(-08)	0.0000	2.058(-08)	2.278(-25)	0	0	\mathbf{R}	0	37
3.5795	1.948(-04)	9.342(-10)	10324.0086	3.279(-10)	1.350(-33)	5	5	\mathbf{R}	0	27
3.5969	3.783(-03)	1.841(-08)	4159.0249	6.397(-09)	1.838(-28)	2	2	\mathbf{R}	0	28
3.6105	3.769(-03)	1.854(-08)	4166.8191	6.397(-09)	1.831(-28)	2	2	R	0	36
3.6132	1.217(-04)	6.003(-10)	8310.5703	2.068(-10)	1.557(-32)	4	4	\mathbf{R}	0	27
3.6294	7.397(-03)	3.697(-08)	2092.1217	1.262(-08)	7.158(-27)	1	1	R	0	28
3.6432	7.385(-03)	3.733(-08)	2096.0669	1.265(-08)	7.189(-27)	1	1	R	0	36

Notes.—See text for explanation of columns. Table 12 is published in its entirety in computer-readable form in the AAS CD-ROM Series, Vol. 3.

TABLE 13
BEGINNING LINE LIST OF THE FUNDAMENTAL TRANSITIONS

σ	\mathbb{R}^2	A	$\mathbb{E}(v'' J'')$	gf	S	v'	v''	type	J''	isotope
cm ⁻¹	D^2	Hz	cm ⁻¹		cm/molecule					
849.8039	2.928(-01)	2.827(+01)	69999.5215	1.743(-02)	7.914(-33)	21	20	P	149	26
856.6729	2.918(-01)	2.886(+01)	69612.2062	1.739(-02)	9.572(-33)	21	20	P	148	26
857.0984	2.876(-01)	2.849(+01)	68948.3033	1.727(-02)	1.265(-32)	21	20	P	149	27
862.2408	2.837(-01)	2.862(+01)	68159.3991	1.714(-02)	1.796(-32)	21	20	P	149	36
863.2127	2.832(-01)	2.866(+01)	68005.3522	1.712(-02)	1.925(-32)	21	20	P	149	28
863.5241	2.908(-01)	2.946(+01)	69226.4014	1.735(-02)	1.157(-32)	21	20	P	147	26
863.7689	2.867(-01)	2.907(+01)	68567.4004	1.723(-02)	1.524(-32)	21	20	P	148	27
868.7648	2.828(-01)	2.918(+01)	67783.3560	1.709(-02)	2.159(-32)	21	2 0	P	148	36
868.8127	2.784(-01)	2.873(+01)	67081.4706	1.694(-02)	2.895(-32)	21	20	P	149	37
869.7017	2.801(-01)	2.899(+01)	68742.5046	1.706(-02)	1.443(-32)	20	19	P	149	26
869.7083	2.822(-01)	2.921(+01)	67630.2615	1.708(-02)	2.312(-32)	21	20	P	148	28
870.3576	2.899(-01)	3.007(+01)	68842.1295	1.732(-02)	1.397(-32)	21	20	P	146	26
870.4223	2.857(-01)	2.965(+01)	68188.0212	1.719(-02)	1.836(-32)	21	20	P	147	27
871.8550	2.760(-01)	2.878(+01)	66550.9300	1.686(-02)	3.662(-32)	21	20	P	149	46
874.2649	2.739(-01)	2.879(+01)	66114.3966	1.677(-02)	4.438(-32)	21	20	P	149	38
875.1398	2.775(-01)	2.927(+01)	66712.1271	1.690(-02)	3.467(-32)	21	20	P	148	37
875.2721	2.819(-01)	2.974(+01)	67408.8446	1.705(-02)	2.593(-32)	21	20	P	147	36
876.1873	2.813(-01)	2.977(+01)	67256.7040	1.703(-02)	2.774(-32)	21	20	P	147	28
876.5652	2.750(-01)	2.914(+01)	67690.8352	1.689(-02)	2.302(-32)	20	19	P	149	27
876.6022	2.791(-01)	2.959(+01)	68349.7991	1.703(-02)	1.749(-32)	20	19	P	148	26
877.0585	2.848(-01)	3.023(+01)	67810.1872	1.714(-02)	2.208(-32)	21	20	P	146	27
877.1731	2.889(-01)	3.068(+01)	68459.4130	1.727(-02)	1.685(-32)	21	20	P	145	26
878.0864	2.751(-01)	2.931(+01)	66184.9088	1.681(-02)	4.377(-32)	21	20	P	148	46
880.4184	2.730(-01)	2.931(+01)	65751.1194	1.672(-02)	5.297(-32)	21	20	P	148	38
881.3870	2.714(-01)	2.923(+01)	66901.9690	1.675(-02)	3.267(-32)	20	19	P	149	36
881.4507	2.766(-01)	2.981(+01)	66344.3238	1.685(-02)	4.148(-32)	21	20	P	147	37
881.7625	2.810(-01)	3.031(+01)	67035.8856	1.700(-02)	3.111(-32)	21	20	P	146	36
882.2966	2.706(-01)	2.924(+01)	66747.9649	1.672(-02)	3.497(-32)	20	19	P	149	28
882.6496	2.803(-01)	3.033(+01)	66884.7001	1.698(-02)	3.327(-32)	21	20	P	146	28
883.2664	2.741(-01)	2.972(+01)	67304.7549	1.684(-02)	2.780(-32)	20	19	P	148	27

Notes.—See text for explanation of columns. Table 13 is published in its entirety in computer-readable form in the AAS CD-ROM Series, Vol. 3.

 $\label{thm:table 14} TABLE~14$ Beginning Line List of the First Overtone Transitions

:							_				
	σ	R^2	A	E(v'' J'')	gf	S	v'	v''	$_{ m type}$	J''	isotope
	cm ⁻¹	D^2	Hz	cm ⁻¹		cm/molecule					
	2061.6780	1.358(-02)	1.873(+01)	69999.5215	1.962(-03)	1.671(-33)	22	20	P	149	26
	2070.4999	1.298(-02)	1.812(+01)	68948.3033	1.882(-03)	2.575(-33)	22	20	P	149	27
	2073.9149	1.351(-02)	1.896(+01)	69612.2062	1.949(-03)	2.006(-33)	22	20	P	148	26
	2076.4018	1.254(-02)	1.766(+01)	68159.3991	1.823(-03)	3.558(-33)	2 2	20	P	149	36
	2077.4854	1.248(-02)	1.761(+01)	68005.3522	1.816(-03)	3.799(-33)	22	20	P	149	28
	2082.3256	1.291(-02)	1.834(+01)	68567.4004	1.870(-03)	3.082(-33)	2 2	20	P	148	27
	2083.4875	1.199(-02)	1.706(+01)	67081.4706	1.750(-03)	5.543(-33)	22	20	P	149	37
	2086.0935	1.343(-02)	1.918(+01)	69226.4014	1.936(-03)	2.406(-33)	2 2	20	P	147	26
	2086.5613	1.172(-02)	1.675(+01)	66550.9300	1.713(-03)	6.886(-33)	2 2	20	P	149	46
	2087.9257	1.247(-02)	1.786(+01)	67783.3560	1.812(-03)	4.248(-33)	22	20	P	148	36
	2088.8914	1.150(-02)	1.650(+01)	66114.3966	1.683(-03)	8.229(-33)	22	20	P	149	38
	2088.9511	1.241(-02)	1.781(+01)	67630.2615	1.804(-03)	4.532(-33)	2 2	20	P	148	28
	2094.0955	1.284(-02)	1.855(+01)	68188.0212	1.858(-03)	3.685(-33)	22	20	P	147	27
	2094.6082	1.193(-02)	1.725(+01)	66712.1271	1.739(-03)	6.596(-33)	22	20	P	148	37
	2097.4874	1.166(-02)	1.694(+01)	66184.9088	1.702(-03)	8.181(-33)	2 2	20	P	148	46
	2098.2141	1.336(-02)	1.941(+01)	68842.1295	1.923(-03)	2.884(-33)	22	20	P	146	26
	2099.3956	1.241(-02)	1.807(+01)	67408.8446	1.801(-03)	5.068(-33)	2 2	20	P	147	36
	2099.6591	1.145(-02)	1.668(+01)	65751.1194	1.673(-03)	9.764(-33)	22	20	P	148	38
	2100.3630	1.235(-02)	1.800(+01)	67256.7040	1.793(-03)	5.403(-33)	2 2	20	P	147	28
	2105.6772	1.187(-02)	1.744(+01)	66344.3238	1.728(-03)	7.842(-33)	22	20	P	147	37
	2105.8097	1.277(-02)	1.877(+01)	67810.1872	1.846(-03)	4.403(-33)	22	20	P	146	27
	2106.8209	1.194(-02)	1.756(+01)	68742.5046	1.762(-03)	2.777(-33)	21	19	P	149	26
	2108.3627	1.161(-02)	1.712(+01)	65820.4310	1.692(-03)	9.711(-33)	22	20	P	147	46
	2110.2765	1.328(-02)	1.964(+01)	68459.4130	1.911(-03)	3.454(-33)	22	20	P	145	26
	2110.3771	1.140(-02)	1.686(+01)	65389.3879	1.662(-03)	1.158(-32)	22	20	P	147	38
	2110.8114	1.235(-02)	1.828(+01)	67035.8856	1.789(-03)	6.042(-33)	22	20	P	146	3 6
	2111.7213	1.229(-02)	1.820(+01)	66884.7001	1.781(-03)	6.436(-33)	22	20	P	146	28
	2114.5665	1.145(-02)	1.703(+01)	67690.8352	1.696(-03)	4.292(-33)	21	19	P	149	27
	2116.6944	1.181(-02)	1.763(+01)	65978.0802	1.717(-03)	9.316(-33)	22	20	P	146	37
	2117.4682	1.271(-02)	1.899(+01)	67433.9195	1.834(-03)	5.257(-33)	22	20	P	145	27

Notes.—See text for explanation of columns. Table 14 is published in its entirety in computer-readable form in the AAS CD-ROM Series, Vol. 3.

TABLE 15
BEGINNING LINE LIST OF THE SECOND OVERTONE TRANSITIONS

σ	\mathbb{R}^2	A	E(v'' J'')	gf	S	v'	v''	type	J"	isotope
cm^{-1}	D^2	Hz	cm^{-1}		cm/molecule					
3248.3425	7.262(-04)	3.916(+00)	69999.5215	1.652(-04)	1.770(-34)	23	20	P	149	26
3259.3392	6.902(-04)	3.760(+00)	68948.3033	1.576(-04)	2.707(-34)	23	20	P	149	27
3265.9575	7.233(-04)	3.965(+00)	69612.2062	1.644(-04)	2.124(-34)	23	20	P	148	26
3266.4789	6.662(-04)	3.653(+00)	68159.3991	1.524(-04)	3.733(-34)	23	20	P	149	36
3267.7667	6.611(-04)	3.629(+00)	68005.3522	1.513(-04)	3.971(-34)	23	20	P	149	28
3274.7213	6.312(-04)	3.487(+00)	67081.4706	1.448(-04)	5.750(-34)	23	20	P	149	37
3276.3294	6.876(-04)	3.805(+00)	68567.4004	1.567(-04)	3.240(-34)	23	20	P	148	27
3278.1390	6.146(-04)	3.406(+00)	66550.9300	1.411(-04)	7.109(-34)	23	20	P	149	46
3280.6441	6.012(-04)	3.340(+00)	66114.3966	1.382(-04)	8.461(-34)	23	20	P	149	38
3283.0112	6.634(-04)	3.694(+00)	67783.3560	1.515(-04)	4.453(-34)	23	20	P	148	36
3283.4737	7.205(-04)	4.013(+00)	69226.4014	1.635(-04)	2.548(-34)	23	20	P	147	26
3284.2108	6.583(-04)	3.669(+00)	67630.2615	1.504(-04)	4.735(-34)	23	20	P	148	28
3290.6434	6.287(-04)	3.525(+00)	66712.1271	1.439(-04)	6.838(-34)	23	20	P	148	37
3293.2248	6.850(-04)	3.850(+00)	68188.0212	1.559(-04)	3.873(-34)	23	20	P	147	27
3293.7669	6.123(-04)	3.442(+00)	66184.9088	1.403(-04)	8.440(-34)	23	20	P	148	46
3296.0330	5.990(-04)	3.375(+00)	65751.1194	1.374(-04)	1.003(-33)	23	20	P	148	38
3299.4520	6.607(-04)	3.734(+00)	67408.8446	1.507(-04)	5.309(-34)	23	20	P	147	36
3300.5640	6.557(-04)	3.709(+00)	67256.7040	1.496(-04)	5.643(-34)	23	20	P	147	28
3300.8911	7.177(-04)	4.062(+00)	68842.1295	1.626(-04)	3.054(-34)	23	20	P	146	26
3306.4779	6.263(-04)	3.562(+00)	66344.3238	1.431(-04)	8.126(-34)	23	20	P	147	37
3309.3092	6.100(-04)	3.478(+00)	65820.4310	1.395(-04)	1.001(-33)	23	20	P	147	46
3310.0259	6.825(-04)	3.895(+00)	67810.1872	1.551(-04)	4.628(-34)	23	20	P	146	27
3311.3379	5.968(-04)	3.409(+00)	65389.3879	1.366(-04)	1.189(-33)	23	20	P	147	38
3315.8014	6.581(-04)	3.775(+00)	67035.8856	1.498(-04)	6.325(-34)	23	20	P	146	36
3316.8263	6.531(-04)	3.750(+00)	66884.7001	1.487(-04)	6.719(-34)	23	20	P	146	28
3318.2101	7.150(-04)	4.111(+00)	68459.4130	1.617(-04)	3.657(-34)	23	20	P	145	26
3318.6950	6.204(-04)	3.568(+00)	68742.5046	1.442(-04)	2.848(-34)	22	19	P	149	26
3322.2250	6.239(-04)	3.600(+00)	65978.0802	1.423(-04)	9.648(-34)	23	20	P	146	37
3324.7660	6.078(-04)	3.515(+00)	65457.5155	1.387(-04)	1.187(-33)	23	20	P	146	46
3326.5588	5.947(-04)	3.444(+00)	65029.2202	1.358(-04)	1.407(-33)	23	20	P	146	38

NOTES.—See text for explanation of columns. Table 15 is published in its entirety in computer-readable form in the AAS CD-ROM Series, Vol. 3.

line list containing 2562 lines is also available for the pure rotational transitions. The first 30 transitions of these lengthy tables are given in Tables 12, 13, 14, and 15. The columns are identical to the columns in Tables 9, 10, and 11, except for the addition of a column at the extreme right which gives the isotopic designation, e.g., 26 for $^{12}C^{16}O$.

Tables 12–15 are available in their entirety in computer-readable form in the AAS CD-ROM Series, Vol. 3. They are also available

as four text files using anonymous ftp over theinternet. Send e-mail to co@cma.arc.nasa.gov or co@128.102.20.45 with "CO linelist" in the body of the message. Instructions on retrieving the CO line lists will be returned.

I wish to thank R. H. Tipping of the University of Alabama, for an illuminating discussion, and D. F. Carbon of Ames Research Center, for his helpful comments.

REFERENCES

Authier, N., Bagland, N., & Le Floch, A. 1993, J. Molec. Spectrosc., 160, 590

Chackerian, C., Jr., Farrenq, R., Guelachvili, G., Rossetti, C., & Urban, W. 1984, Canadian J. Phys., 62, 1579

Chackerian, C., Jr., Goorvitch, D., Huré, J. M., & Roueff, E. 1994, J. Molec. Spectrosc., 165, 583

Chackerian, C., Jr., Guelachvili, G., & Tipping, R. H. 1983, J. Quant. Spectrosc. Rad. Transf., 30, 107

Chackerian, C., Jr., & Tipping, R. H. 1983, J. Molec. Spectrosc., 99, 431 Farrenq, R., Guelachvili, G., Sauval, A. J., Grevesse, N., & Farmer, C. B. 1991, J. Molec. Spectrosc., 149, 375

Fäy, T., Marenin, I., & van Citters, W. 1971, J. Quant. Spectrosc. Rad. Transf., 11, 1203

Geller, M., 1992, A High-Resolution Atlas of the Infrared Spectrum of the Sun and the Earth Atmosphere from Space. Vol. 3: Key to Identification of Solar Features (NASA RP-1224) (Washington, DC: NASA)

GOORVITCH

Goorvitch, D., & Chackerian, C., Jr. 1994a, ApJS, 91, 483
——. 1994b, ApJS, 92, 311
Guelachvili, G., De Villeneuve, D., Farrenq, R., Urban, W., & Verges, J. 1983, J. Molec. Spectrosc., 98, 64
Huré, J. M., & Roueff, E. 1993, J. Molec. Spectrosc., 160, 335
Irwin, A. W. 1987, A&A, 182, 348

Kirby-Docken, K., & Liu, B. 1978, ApJS, 36, 359 Larsson, M. 1983, A&A, 128, 291 McDowell, R. S. 1988, J. Chem. Phys., 88, 356 Sauval, A. J., & Tatum, J. B. 1984, ApJS, 56, 193 Sharp, C. M. 1987, Los Alamos Sci. Lab. Rep. LA-10776-MS