Stats Demo 1

Environment setup

```
knitr::opts_chunk$set(echo = TRUE, tidy.opts = list(width.cutoff = 60), tidy = TRUE)
library(Sleuth3)
library(ggplot2)
library(ggplot2)
library(dplyr)
library(plotly)
#library(ggplot2)
```

1. Creating data

Creating data for test. Prices for CS course books in OSU bookstore. Notice the difference between lists and Data frames.

```
Prices <- c(99.34, 51.53, 20.45, 97.22, 61.89, 58.17, 61.63, 44.63, 96.69, 48.88)
Prices

## [1] 99.34 51.53 20.45 97.22 61.89 58.17 61.63 44.63 96.69 48.88

typeof(Prices)

## [1] "double"

#check? data_frame(Prices)

is.data.frame(Prices)

## [1] FALSE

#as trans the type

PricesDF <- as.data.frame(Prices)

colnames(PricesDF) <- ("Price")

PricesDF$Price

## [1] 99.34 51.53 20.45 97.22 61.89 58.17 61.63 44.63 96.69 48.88

PricesDF
```

```
##
      Price
## 1
     99.34
## 2
     51.53
     20.45
## 3
## 4
     97.22
## 5
     61.89
## 6
     58.17
## 7
     61.63
## 8
     44.63
## 9 96.69
## 10 48.88
```

```
Genres <- factor(c("Science", "Engineering", "Art", "Science",
"Math", "Engineering", "Art", "Math", "Engineering", "Art"))
BookStore <- data.frame(Price = Prices, Genre = Genres)
BookStore</pre>
```

```
##
     Price
                  Genre
## 1 99.34
                Science
## 2
     51.53 Engineering
## 3
     20.45
## 4
     97.22
                Science
## 5
     61.89
                   Math
## 6
     58.17 Engineering
## 7
     61.63
## 8 44.63
                   Math
## 9 96.69 Engineering
                    Art
## 10 48.88
```

2. Working with data

Manipulating data frames is easier as each column becomes an object.

3. Plots

ggplot provides a platform to plot various plots by changing the graph types. Refer to https://rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf for common commands. The type of plot depends on the nature of the variable. Here we see how bar plots are better suited for discreet data:

4. Distribution of Data

Sampling from any distribution, we can examine a histogram of the data:

5. Central Limit Theorem

When repeated samples are drawn with a sample size~=30, the sample mean distribution approximately represents a normal distribution:

6. One sample t-test

Test whether the mean price of your sample of CS books is significantly different from the mean price of all books in the OSU bookstore (population):

7. Two sample t-test

What about when we compare against the mean price of all books on Amazon? We can compare using a similarly sized sample from Amazon. We then test if the mean prices are significantly different between the two samples:

8. One and two-tail analysis

alternative: the alternative hypothesis. Allowed value is one of "two.sided" (default), "greater" or "less". var.equal: a logical variable indicating whether to treat the two variances as being equal. If TRUE then the pooled variance is used to estimate the variance otherwise the Welch test is used.

9. Paired t-test

When there exists a natural pairing in the observations. For example, when comparing the prices of the same books in Amazon and OSU BookStore.

10. Reporting