ECO 4004: Math. Econ. Statistics Problem Set 8: Sampling Distributions

1. If the random variable X has the exponential distribution with parameter θ , then we know that $E(X^j) = \frac{\theta \times j!}{\theta^{j+1}} = \frac{j!}{\theta^j}$, using the following definite integral:

$$\int_0^\infty t^n e^{-at} dt = \frac{n!}{a^{n+1}} \text{ if } a > 0 \text{ and } n \text{ is positive integer.}$$

Suppose $\theta = 2$.

(1) Show that
$$E(X) = 1/2$$
, $E(X^2) = 1/2$, $E(X^3) = 3/4$, $E(X^4) = 3/2$.

Consider random sampling, sample size 20, from that population. Let $\overline{W} = \frac{1}{20} \sum_{i=1}^{20} X_i^2$.

- (2) Calculate $E(\overline{W})$.
- (3) Calculate $V(\overline{W})$.

2. Let \overline{X} and S^2 denote the sample mean and sample variance in random sampling, sample size 20, from a N(10, 80) population. Calculate the probabilities of each of the following events:

A:
$$\overline{X} \le 14$$
,

A:
$$\overline{X} \le 14$$
, B: $10 \le \overline{X} \le 12$, C: $S^2 \le 108.8$, D: $B \cap C$

C:
$$S^2 \le 108.8$$

D:
$$B \cap C$$

E:
$$\frac{\sqrt{20}(\overline{X}-10)}{S} \le 1.066$$
, F: $\overline{X} \le 10 + 0.3047S$.

F:
$$\overline{X} \le 10 + 0.3047S$$

For Exercise #2, to get values of F(a), G(a) and H(a), where F(.), G(.) and H(.)denote the cdf of N(0,1), $\chi^2(19)$ and t(19) and a is a real number, you can refer to either of Wackerly et al. (2008)'s tables or you can calculate those values by GAUSS.

3. Suppose that X_i is normally distributed, calculate $V(S^2)$.