1 "Converge or Oscillate Infinitely"

Lemma 1.1. Let (X_n) be a MG such that $|X_n - X_{n-1}| \le K \ \forall n$. Then $P(C \cup D) = 1$ for the events

$$C = \left\{ \omega : \lim_{n \to \infty} X_n(\omega) \text{ exists and is finite} \right\}$$
 (1.1)

$$D = \left\{ \omega : \limsup_{n \to \infty} X_n(\omega) = +\infty \text{ and } \liminf_n X_n(\omega) = -\infty \right\}$$
 (1.2)

Proof. WLOG assume $X_0 = 0$. Fix L > 0.

Define $T = \min\{n : X_n < -L\}$. The stopped process $(X_{T \wedge n}, n \ge 0)$ is a MG which is always $\ge -L - K$ (by def of T and assumption $|X_n - X_{n-1}| \le K$).

By the (positive super-MG) convergence theorem, $X_{T \wedge n}$ converges to some finite limit a.s. as $n \to \infty$ (This is obvious for $T < \infty$ but still true for $T = \infty$).

This implies $\{\inf_n X_n > -L\} = \{T = \infty\} \subset C$.

As *L* was arbitrary, letting $L \to \infty$ yields

$$A_1 = \left\{ \inf_n X_n > -\infty \right\} \subset C \tag{1.3}$$

Applying the same argument to $-X_n$ yields

$$A_2 = \left\{ \sup_n X_n < \infty \right\} \subset C \tag{1.4}$$

Noting $D = (A_1 \cap A_2)^c$ completes the proof.

2 Conditional Borel-Cantelli

Lemma 2.1 (Conditional Borel-Cantelli Lemma). Consider events (A_n) adapted to (\mathcal{F}_n) . Define $B_n = \bigcup_{m \geq n} A_m$ and $B = \bigcap_n B_n = \limsup_n A_n = \{A_n \ i.o.\}$. Then

(a)
$$\{A_n \text{ i.o.}\} \stackrel{a.s.}{=} \{\sum_{n=1}^{\infty} P(A_n \mid \mathcal{F}_{n-1}) = \infty\}$$

(b)
$$P(B_{n+1} \mid \mathcal{F}_n) \stackrel{a.s.}{\rightarrow} 1_B \text{ as } n \rightarrow \infty$$

 $B_1 \stackrel{a.s.}{=} B_2$ means $P(B_1 \Delta B_2) = 0$.

Proof. ?? Consider K < n. Then $B \subset B_n \subset B_K$ and

$$P(B \mid \mathcal{F}_n) \le P(B_{n+1} \mid \mathcal{F}_n) = P(B_{n+1} \mid_n) \le P(B_K \mid \mathcal{F}_n)$$
 (2.1)

Taking $n \to \infty$, by martingale convergence theorem

$$1_{B} \leq \liminf_{n} P(B_{n+1} \mid \mathcal{F}_{n}) \leq \limsup_{n} P(B_{n+1} \mid \mathcal{F}_{n}) \leq 1_{B_{K}}$$

$$(2.2)$$

Let $K \uparrow \infty$. Then $1_{B_K} \downarrow 1_B \stackrel{\text{a.s.}}{=} \lim_n P(B_{n+1} \mid \mathcal{F}_n)$. ?? Consider $X_n = \sum_{m=1}^n (1_{A_m} - P(A_m \mid \mathcal{F}_{m-1}))$, which is a MG, and $|X_{n+1} - X_n| = \sum_{m=1}^n (1_{A_m} - P(A_m \mid \mathcal{F}_{m-1}))$ $|1_{A_{n+1}} - P(A_{n+1} \mid \mathcal{F}_n)| \le 1$. Then ?? implies that $P(C \cup D) = 1$. We want to show

$$\left\{ \sum_{m} 1_{A_m} = \infty \right\} \stackrel{\text{a.s.}}{=} \left\{ \sum_{m} P(A_m \mid \mathcal{F}_{m-1}) = \infty \right\}$$
 (2.3)

Observe that $X_n = \sum_{m=1}^n 1_{A_m} - \sum_{m=1}^n P(A_m \mid \mathcal{F}_{m-1})$. On event $D = \{\omega : \limsup_n X_n = +\infty \text{ and } \liminf_n X_n = -\infty \}$, we have that both sums are infinite:

$$\infty = \limsup_{n} \sum_{m=1}^{n} 1_{A_m} - \sum_{m=1}^{n} P(A_m \mid \mathcal{F}_{m-1}) \le \sum_{m=1}^{\infty} 1_{A_m}$$
 (2.4)

$$-\infty = \liminf_{n} \sum_{m=1}^{n} 1_{A_m} - \sum_{m=1}^{n} P(A_m \mid \mathcal{F}_{m-1}) \ge -\sum_{m=1}^{\infty} P(A_m \mid \mathcal{F}_{m-1})$$
 (2.5)

On event C, either both sums are finite or both sums equal ∞ .

3 "Product" martingales

Our discussion thus far has examined sums of MGs. In this section, we consider products of MGs.

Convergence for "Multiplicative" MGs 3.1

Theorem 3.1 (Kakutani's Theorem). *Take* $(X_i, i \ge 1)$ *to be independent,* $X_i > 0$, $\mathbb{E}X_i = 1$. *We* know that $M_n = \prod_{i=1}^n X_i$ is a MG hence by MCT $M_n \stackrel{a.s.}{\to} M_\infty$ with $\mathbb{E} M_\infty \leq 1$. Then TFAE:

- (a) $\mathbb{E}M_{\infty}=1$
- (b) $M_n \to M_\infty$ in L^1
- (c) $(M_n, n > i)$ is UI
- (d) Set $a_i = \mathbb{E} X_i^{1/2}$ and note that $0 \le a_i \le 1$, $\prod_{i=1}^{\infty} a_i > 0$.
- (e) $\sum_{i} (1-a_i) < \infty$

Proof. Conditions ?????? are equivalent by the L^1 MG convergence theorem.

Conditions ???? are equivalent by calculus: use $1 - x + x^2 \le e^{-x} \le 1 - x$ for small x > 0.

Suppose ?? holds. Consider

$$N_n = \frac{X_1^{1/2}}{a_1} \cdot \frac{X_2^{1/2}}{a_2} \cdot \dots \cdot \frac{X_n^{1/2}}{a_n}.$$
 (3.1)

which is a MG. Note

$$\mathbb{E}[N_n^2] = \frac{\mathbb{E}M_n}{\prod_{i=1}^n a_i^2} \le \frac{1}{\prod_{i=1}^\infty a_i^2} = K < \infty$$
 (3.2)

Apply the Doob L^2 maximal inequality:

$$\mathbb{E}\left[\sup_{n} N_{n}\right] \leq 4K\tag{3.3}$$

Note that $M_n \leq N_n^2$ since $M_n = N_n^2 \prod_{i=1}^n a_i^2$. Therefore, $\mathbb{E}[\sup_n M_n] \leq (4K)^2 < \infty$. This implies that $(M_n, n \geq 1)$ is UI. If $Z \geq 0$, $\mathbb{E}Z < \infty$, then the family $\{X : 0 \leq X \leq Z\}$ is UI. This yields ??.

Suppose that **??** is false, so $\prod_{i=1}^{\infty} a_i = 0$. For the MG (N_n) , we have $N_n \stackrel{\text{a.s.}}{\to} N_{\infty}$, so we must have

$$N_{\infty} = \frac{\prod_{i=1}^{\infty} X_i^{1/2}}{\prod_{i=1}^{\infty} a_i}$$
 (3.4)

Since the denominator is 0, then $\prod_{i=1}^{\infty} X_i^{1/2} = M_{\infty}^{1/2} = 0$ a.s., so ?? fails.

3.2 Likelihood ratios (absolute continuity of infinite product measures)

Given densities $(f_i, 1 \le i < \infty)$ and $(g_i, 1 \le i < \infty)$, assume $f_i > 0$ and $g_i > 0$. Take $\Omega = \mathbb{R}^{\infty}$ with $X_i(\vec{\omega}) = \omega_i$. Work with P, the product measure where the (X_i) are independent with densities f_i . Consider Q, where the (X_i) have densities g_i .

Definition 3.2. The likelihood ratio

$$L_n = \prod_{i=1}^n \frac{g_i(X_i)}{f_i(X_i)}$$
 (3.5)

is the Radon-Nikodym density $\frac{dQ_n}{dP_n}$.

 $(Q_n \text{ is the probability measure with corresponding density } f_1 \otimes f_2 \otimes \cdots \otimes f_n)$

Know: $(L_n, n \ge 1)$ is a MG wrt P.

Suppose that $(L_n, n \ge 1)$ is UI. Then $L_n \to L_\infty$ in L^1 and $L_n = \mathbb{E}[L_\infty \mid \mathcal{F}_n]$. What this means, from the definition of R-N density, is

$$Q(A) = \mathbb{E}L_n 1_A \quad \forall A \in \mathcal{F}_n \tag{3.6}$$

$$= \mathbb{E}L_{\infty}1_A \quad \forall A \in \bigcup_n \mathcal{F}_n \tag{3.7}$$

$$= \mathbb{E}L_{\infty}1_A \quad \forall A \in \mathcal{F}_{\infty} \tag{3.8}$$

so L_{∞} is the R-N density $\frac{dQ}{dP}$ on \mathbb{R}^{∞} . Therefore, $Q \ll P$. Similarly, if $Q \ll P$, then we can prove $(L_n, n \ge 1)$ is UI. So $Q \ll P \iff (L_n, n \ge 1)$ is UI $\iff \sum_{i} (1 - a_i) < \infty$.

$$a_i = \mathbb{E}\left(\frac{g_i}{f_i}(X_i)\right)^{1/2} = \int g_i^{1/2}(x)f_i^{1/2}(x)dx$$
 (3.9)

algebra
$$\implies 1 - a_i = \frac{1}{2} \int \left(g_i^{1/2}(x) - f_i^{1/2}(x) \right)^2 dx$$
 (3.10)

Our condition becomes $Q \ll P \iff$

$$\sum_{i=1}^{\infty} \int \left(g_i^{1/2}(x) - f_i^{1/2}(x) \right)^2 dx < \infty$$
 (3.11)

" f_i and g_i become close for large i."

We know that if $f \neq g$, then Q and P are singular.