t \rightarrow h_t(x)f(ϕ (t,x)) = (T(t)f)(x) is continuous on \mathbb{R} . It follows from the dominated convergence theorem that T(·)f is weakly continuous. Hence (T(t))_{t∈ \mathbb{R}} is strongly continuous (see e.g., [Davies (1980), Prop. 1.23]).

The group defined by (3.12) is positive whenever $(h_t)_{t\in\mathbb{R}}\subset C^b(X)_+$. We now show that every positive group on $C_o(X)$ is of the form (3.12).

<u>Proposition</u> 3.9. Let $(T(t))_{t\in\mathbb{R}}$ be a strongly continuous group of positive operators on $C_o(X)$. Then there exist a continuous flow on X and a continuous cocycle $(h_t)_{t\in\mathbb{R}}$ of ϕ such that (3.12) holds.

<u>Proof.</u> Since T(t) and $T(t)^{-1} = T(-t)$ are positive operators, T(t) actually is a lattice isomorphism. Then there exist a homeomorphism ϕ_t on X and $h_t \in C^b(X)_+$ such that $T(t)f = h_t \cdot f \circ \phi_t$ for all $f \in C_0(X)$ ($t \in \mathbb{R}$). The group property of $(T(t))_{t \in \mathbb{R}}$ then implies that $\phi(t,x) := \phi_t(x)$ defines a flow on X and that $(h_t)_{t \in \mathbb{R}}$ is a cocycle of ϕ . It remains to show that ϕ and $(h_t)_{t \in \mathbb{R}}$ are continuous.

At first we consider the flow. Since we have $\phi_{t+s} = \phi_t \circ \phi_s$ and every ϕ_t is a homeomorphism on X , it is enough to establish continuity of ϕ at points $(0,x_0) \in \mathbb{R} \times X$. Given a compact neighbourhood V of $x_0 = \phi(0,x_0)$, there exists a continuous function f: X + [0,1] satisfying $f(x_0) = 1$ and supp $f \in V$. There exists $t_0 > 0$ such that $\|T(t)f - f\| < \frac{1}{2}$ for $|t| \le t_0$. Let $W:=\{x \in X: |f(x)| > \frac{1}{2}\}$; then for $|t| \le t_0$ and $x \in W$ we have $|h_t(x) \cdot f(\phi(t,x)) - f(x)| < \frac{1}{2}$ and $|f(x)| > \frac{1}{2}$; hence $f(\phi(t,x)) > 0$. This implies that $\phi(t,x) \in V$ whenever $|t| \le t_0$ and $x \in W$.

To prove continuity of the cocycle we first remark that by strong continuity of $(\mathtt{T}(\mathtt{t}))_{\mathtt{t}\in\mathbb{R}}$ the mapping $(\mathtt{t},\mathtt{x}) \to (\mathtt{T}(\mathtt{t})\mathtt{f})(\mathtt{x})$ is continuous on \mathbb{R} x X for every fixed $\mathtt{f}\in C_{0}(\mathtt{X})$. Given compact subsets $\mathtt{A}\subset\mathbb{R}$, $\mathtt{B}\subset\mathtt{X}$, the set $\mathtt{C}:=\phi(\mathtt{A}\mathtt{x}\mathtt{B})$ is compact; hence there exists $\mathtt{f}\in C_{0}(\mathtt{X})$ such that $\mathtt{f}|_{\mathtt{C}}=1$. For $(\mathtt{t},\mathtt{x})\in\mathtt{A}\times\mathtt{B}$ we have $\mathtt{h}_{\mathtt{t}}(\mathtt{x})=(\mathtt{T}(\mathtt{t})\mathtt{f})(\mathtt{x})$. Thus $(\mathtt{t},\mathtt{x})+\mathtt{h}_{\mathtt{t}}(\mathtt{x})$ is continuous on $\mathtt{A}\times\mathtt{B}$.

Corollary 3.10. Let ϕ be a separately continuous flow. Then ϕ is continuous. If $(h_{\mathsf{t}})_{\mathsf{t}\in\mathbb{R}}$ is a cocycle of ϕ such that $\mathsf{t} + h_{\mathsf{t}}(\mathsf{x})$ is continuous for every $\mathsf{x} \in \mathsf{X}$, then $(h_{\mathsf{t}})_{\mathsf{t}\in\mathbb{R}}$ is continuous.