Hochschule Bremerhaven University of Applied Sciences

Fakultät II – Management und Informationssysteme Informatik

Modul Theoretische Informatik

Prof. Dr.-Ing Henrik Lipskoch

Protokoll zu Aufgabenblatt 05: Team: ti2023_22

Von

Ekane Njoh Junior Lesage Matrikelnmr: 40128

Aguiwo II Steve Matrikelnmer: 40088

Inhalt

I.	F	Aufgabe 1	
II.	F		3
		H	
		H	
		H	
		H	
		H	
		Literaturverzeichnis	

I. Aufgabe 1

Es handelt es sich bei dieser Aufgabe um die Formulierung unseres RFCs als echt-kontextfreie Sprache. Dazu sollte wir in unseren RFC nach einer echt-kontextfreie Struktur zu suchen und dabei folgende Punkte beachten:

- a) Das Extrahieren der Regeln (begrenzen Sie auf ca. 10-15) für die echt-kontextfreie Struktur
- b) und Formulierung dieser als eine echt-kontextfreie und zusammenhängende Grammatik
- c) und zwar mit Regeln in Chomsky-Normalform,
- d) mit den vereinbarten Symbolen und der Schreibweise aus der Vorlesung auf.

Anmerkungen:

- Da unser RFC keine echt-kontextfreie Struktur hat, haben wir uns eine dazu passende echt-kontextfreie Struktur überlegt.
- Wir werden uns bei dieser Aufgabe auf die Produktion eines Pflichtfeldes in unserem RFC begrenzen. Und zwar das Feld "type".

Aus [Folie] 5-8 Chomsky-Normalform wissen wir bereits, dass eine kontextfreie Grammatik $G=(\Sigma,V,P,S)$ mit $\in L(G)$ ist in Chomsky-Normalform (CNF) genau dann, wenn alle Regeln aus P: entweder der Form $X \to YZ$ oder der Form $X \to a$,

 $mit X, Y, Z \in V \text{ und } a \in \Sigma \text{ sind.}$

Deswegen lässt sich Folgendes ableiten:

Es ist $G = (\Sigma, V, P, problem + json)$ Dabei betrachten wir erstmal die Menge V, die alle unserer Variablen enthält.

$$\Sigma = \{; "type" :; https://; domain; .com; \}$$

$$V = \{S; A; B; Z; D; T; G\}$$

Unsere Regelmenge P:

$$S \rightarrow ABZ$$

 $A \rightarrow \{$
 $B \rightarrow "type" : D$
 $D \rightarrow https://T$
 $T \rightarrow domain$
 $G \rightarrow .com$
 $Z \rightarrow \}$

Wird zu

1. $S \rightarrow AB$ 2. $B \rightarrow CD$ 3. $D \rightarrow EF$ 4. $F \rightarrow XZ$ 5. $X \rightarrow OG$ 6. $O \rightarrow TG$ 7. $A \rightarrow "\{"$ 8. $C \rightarrow "type" :$ 9. $E \rightarrow https://$ 10. $T \rightarrow domain$ 11. $G \rightarrow com$ 12. $Z \rightarrow \}$

Es sind inzwischen neue Vraibale aufgetaucht, sodass sich unsere Variable Menge geändert hat.

$$V = \{S; A; B; Z; D; T; G; F; X; O; E; C\}$$

Nun entsprechen unsere neuen Produktionsregeln die CNF, denn jede Regel hat die Form $X \to YZ$ oder die Form $X \to a$, wobei A, B und C Nichtterminale und a Terminalsymbole sind. Alle Nichtterminale in den Regeln haben korrekte Ableitungen und es gibt keine Regeln mit leeren Ableitungen.

II. Aufgabe 2

a.	Н
u.	

III. Literaturverzeichnis

https://www.rfc-editor.org/rfc/rfc7807

Application error: a client-side exception has occurred (codecentric.de)

JSON - GeeksforGeeks