Calculus

Al ToolKit

Fall Semester, 2023

Function and Machine Learning

- Goal of machine learning is to approximate the unknown real function $y = f^*(x)$ with $f_{\theta}(x)$,
 - \circ where $\, heta \in \mathbb{R}^d\,$ is a model parameter.
 - \circ We want to find optimal θ , which can optimize the objective function.
 - What kinds of objective function?

 \Rightarrow

• If objective functions are differentiable, $\frac{df}{dx} := \lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x}$ can we find optimal θ easily?

Differentiation Rules

Product rule

$$\Rightarrow (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

Quotient rule

$$\Rightarrow \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

Sum rule

$$\Rightarrow (f(x) + g(x))' = f'(x) + g'(x)$$

Chain rule

$$\Rightarrow$$
 $(g(f(x)))' = g'(f(x))f'(x)$

 $\frac{d}{dx}x^n = nx^{n-1}$ $\frac{d}{dx}e^x = e^x$ $\frac{d}{dx}\ln x = \frac{1}{x}$

Derivative and Approximation

$$\bullet \frac{df}{dx}(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon} \Rightarrow \frac{df}{dx}(x) \approx \frac{f(x+\epsilon) - f(x)}{\epsilon} \Rightarrow \epsilon \frac{df}{dx}(x) \approx f(x+\epsilon) - f(x) \Rightarrow f(x+\epsilon) \approx \epsilon \frac{df}{dx}(x) + f(x)$$

⇒ Can we expand this approximation into n-th order polynomial?

Taylor Series

- The Taylor polynomial of degree n of $f:\mathbb{R} \to \mathbb{R}$ at x_0 is defined as:

$$\Rightarrow T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

- If $n o \infty$ the Taylor series of f at x_0 is defined as:

$$\Rightarrow T_{\infty}(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Partial Differentiation and Gradient

- For a function $f: \mathbb{R}^n \to \mathbb{R}$, partial derivative is defined as:

$$\Rightarrow \frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_n) - f(x))}{h}$$

If partial derivatives are collected into the row vector, gradient of a function is obtained.

$$\Rightarrow \nabla_{\mathbf{x}} f = \frac{df}{d\mathbf{x}} = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} & \frac{\partial f(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{1 \times n}$$

Gradients of Vector-Valued Functions

- For $\mathbf{x} \in \mathbb{R}^n$, a vector-valued function $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ is $\mathbf{f}(\mathbf{x}) = \begin{vmatrix} f_1(\mathbf{x}) \\ \vdots \\ f_m(\mathbf{x}) \end{vmatrix} \in \mathbb{R}^m$.
- Its partial derivative is given as a vector,

$$\frac{\partial \boldsymbol{f}}{\partial x_i} = \begin{bmatrix} \frac{\partial f_1}{\partial x_i} \\ \vdots \\ \frac{\partial f_m}{\partial x_i} \end{bmatrix} = \begin{bmatrix} \lim_{h \to 0} \frac{f_1(x_1, \dots, x_{i-1}, x_i + h, x_{i+1}, \dots x_n) - f_1(\boldsymbol{x})}{h} \\ \vdots \\ \lim_{h \to 0} \frac{f_m(x_1, \dots, x_{i-1}, x_i + h, x_{i+1}, \dots x_n) - f_m(\boldsymbol{x})}{h} \end{bmatrix} \in \mathbb{R}^m.$$

And its gradient is given as a matrix, by collecting these partial derivatives:

$$\frac{\mathrm{d}\boldsymbol{f}(\boldsymbol{x})}{\mathrm{d}\boldsymbol{x}} = \left[\begin{array}{c} \frac{\partial \boldsymbol{f}(\boldsymbol{x})}{\partial x_1} \cdots \begin{bmatrix} \frac{\partial \boldsymbol{f}(\boldsymbol{x})}{\partial x_n} \end{bmatrix} \\
= \begin{bmatrix} \frac{\partial f_1(\boldsymbol{x})}{\partial x_1} \cdots \begin{bmatrix} \frac{\partial f_1(\boldsymbol{x})}{\partial x_n} \\ \vdots \\ \frac{\partial f_m(\boldsymbol{x})}{\partial x_1} \cdots \begin{bmatrix} \frac{\partial f_m(\boldsymbol{x})}{\partial x_n} \end{bmatrix} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

Rules of Partial Differentiation

Product rule, sum rule, chain rule also applies for partial differentiation.

• If $f(x_1, x_2)$ and $x_1(s, t)$ & $x_2(s, t)$,

$$\Rightarrow \frac{\partial f}{\partial s} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial s} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial s}$$

$$\Rightarrow \frac{\partial f}{\partial t} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial t}$$

$$\Rightarrow \frac{\partial f}{\partial t} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial t}$$

$$\Rightarrow \frac{\partial f}{\partial t} = \frac{\partial f}{\partial x_1} \frac{\partial f}{\partial t} = \underbrace{\begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial t} \end{bmatrix}}_{= \frac{\partial f}{\partial x_1}} \underbrace{\begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial t} \end{bmatrix}}_{= \frac{\partial f}{\partial x_2}} \underbrace{\begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial t} \end{bmatrix}}_{= \frac{\partial f}{\partial x_2}} \underbrace{\begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial t} \end{bmatrix}}_{= \frac{\partial f}{\partial x_2}} \underbrace{\begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \end{bmatrix}}_{= \frac{\partial f}{\partial x_2}} \underbrace{\begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \end{bmatrix}}_{= \frac{\partial f}{\partial x_2}} \underbrace{\begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \end{bmatrix}}_{= \frac{\partial f}{\partial x_2}} \underbrace{\begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \end{bmatrix}}_{= \frac{\partial f}{\partial x_2}} \underbrace{\begin{bmatrix} \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \end{bmatrix}}_{= \frac{\partial f}{\partial x_2}} \underbrace{\begin{bmatrix} \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \end{bmatrix}}_{= \frac{\partial f}{\partial x_2}} \underbrace{\begin{bmatrix} \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \end{bmatrix}}_{= \frac{\partial f}{\partial x_2}} \underbrace{\begin{bmatrix} \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \end{bmatrix}}_{= \frac{\partial f}{\partial x_2}} \underbrace{\begin{bmatrix} \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \end{bmatrix}}_{= \frac{\partial f}{\partial x_2}} \underbrace{\begin{bmatrix} \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \end{bmatrix}}_{= \frac{\partial f}{\partial x_2}} \underbrace{\begin{bmatrix} \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \end{bmatrix}}_{= \frac{\partial f}{\partial x_2}} \underbrace{\begin{bmatrix} \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \end{bmatrix}}_{= \frac{\partial f}{\partial x_2}} \underbrace{\begin{bmatrix} \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \end{bmatrix}}_{= \frac{\partial f}{\partial x_2}} \underbrace{\begin{bmatrix} \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \end{bmatrix}}_{= \frac{\partial f}{\partial x_2}} \underbrace{\begin{bmatrix} \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \end{bmatrix}}_{= \frac{\partial f}{\partial x_2}} \underbrace{\begin{bmatrix} \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \end{bmatrix}}_{= \frac{\partial f}{\partial x_2}} \underbrace{\begin{bmatrix} \frac{\partial f}{\partial x_2} & \frac{\partial f}{\partial x_2} \\ \frac$$

⇒ The chain rule can be written as a matrix multiplication

Jacobian and Hessian

- Jacobian: the collection of all 1st-order partial derivatives of a function $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$.

$$\Rightarrow J = \nabla_{x} f = \frac{\mathrm{d} f(x)}{\mathrm{d} x} = \left[\frac{\partial f(x)}{\partial x_{1}} \cdots \frac{\partial f(x)}{\partial x_{n}} \right]$$

$$= \begin{bmatrix} \frac{\partial f_{1}(x)}{\partial x_{1}} \cdots \frac{\partial f_{1}(x)}{\partial x_{n}} \\ \vdots & \vdots \\ \frac{\partial f_{m}(x)}{\partial x_{1}} \cdots \frac{\partial f_{m}(x)}{\partial x_{n}} \end{bmatrix},$$

- Hessian: the collection of all second-order partial derivatives

- If
$$f: \mathbb{R}^2 o \mathbb{R}$$
, $oldsymbol{H} = egin{bmatrix} rac{\partial^2 f}{\partial x^2} & rac{\partial^2 f}{\partial x \partial y} \\ rac{\partial^2 f}{\partial x \partial y} & rac{\partial^2 f}{\partial y^2} \end{bmatrix}$

- If $f : \mathbb{R}^n \to \mathbb{R}^m$, the Hessian is an (m x n x n) tensor.

Higher-Dimension Differentiation and Approximation

- Recall $f(x+\epsilon) \approx \epsilon \frac{df}{dx}(x) + f(x)$.
- Similarly, $f(x_1 + \epsilon_1, x_2, \dots, x_n) \approx f(x_1, x_2, \dots, x_n) + \epsilon_1 \frac{\partial}{\partial x_1} f(x_1, x_2, \dots, x_n)$
 - If we repeat this, $f(x_1+\epsilon_1,x_2+\epsilon_2,\ldots,x_n+\epsilon_n)\approx f(x_1,x_2,\ldots,x_n)+\sum_i\epsilon_i\frac{\partial}{\partial x_i}f(x_1,x_2,\ldots,x_n)$.
 - Let $\epsilon = [\epsilon_1, \dots \epsilon_n]^{\top}$ and $\nabla_{\mathbf{x}} f = \left[\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right]^{\top}$, then $f(\mathbf{x} + \epsilon) \approx f(\mathbf{x}) + \epsilon^T \nabla_{\mathbf{x}} f(\mathbf{x})$.
 - What happens if we consider $f(\cdot)$ as our objective function $L(\cdot)$, and $\|\epsilon\| = 1$?

$$\Rightarrow L(\theta + \epsilon) \approx L(\theta) + \epsilon^T \nabla_{\theta} L(\theta) = L(\theta) + \|\nabla_{\theta} L(\theta)\| cos(\alpha)$$

⇒ Can we relate this with optimization?

Gradients, Backpropagation, Chain Rule, and Neural Network

$$\frac{\partial L}{\partial \boldsymbol{\theta}_{K-1}} = \frac{\partial L}{\partial \boldsymbol{f}_{K}} \frac{\partial \boldsymbol{f}_{K}}{\partial \boldsymbol{\theta}_{K-1}}$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}_{K-2}} = \frac{\partial L}{\partial \boldsymbol{f}_{K}} \frac{\partial \boldsymbol{f}_{K}}{\partial \boldsymbol{f}_{K-1}} \frac{\partial \boldsymbol{f}_{K-1}}{\partial \boldsymbol{\theta}_{K-2}}$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}_{K-3}} = \frac{\partial L}{\partial \boldsymbol{f}_{K}} \frac{\partial \boldsymbol{f}_{K}}{\partial \boldsymbol{f}_{K-1}} \left[\frac{\partial \boldsymbol{f}_{K-1}}{\partial \boldsymbol{f}_{K-2}} \frac{\partial \boldsymbol{f}_{K-2}}{\partial \boldsymbol{\theta}_{K-3}} \right]$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}_{i}} = \frac{\partial L}{\partial \boldsymbol{f}_{K}} \frac{\partial \boldsymbol{f}_{K}}{\partial \boldsymbol{f}_{K-1}} \cdots \boxed{\frac{\partial \boldsymbol{f}_{K}}{\partial \boldsymbol{f}_{K-1}}}$$

 $\cdots \left[rac{\partial oldsymbol{f}_{i+2}}{\partial oldsymbol{f}_{i+1}} rac{\partial oldsymbol{f}_{i+1}}{\partial oldsymbol{ heta}_i}
ight]$

Any Questions?