Sobre Pruebas de Hipótesis

Evaluación, Generación, Gráficos, PH etc.

Para: Estudiantes de IAM

2021 - 04 - 27

LECTURA DE DATOS

A continuación se da una vista previa del conjunto de datos:

Tabla 1: Emcabezado de Datos

	X1	X2	Х3	Grupos
1	9.6838	8.7045	4.0509	1
2	5.9703	4.5724	8.3056	1
3	1.5094	6.3666	7.5676	1
4				NA
5	•	•	•	NA
6			•	NA
98	7.8864	6.0692	6.445	3
99	4.1332	4.5396	6.7288	3
100	4.4509	7.6449	8.2376	3

Resumen de los Datos

Tabla 2: Resumen de Datos

X1	X2	X3	Grupos
Min. :-1.969	Min. :-0.3808	Min. :-0.1823	1:27
1st Qu.: 3.776	1st Qu.: 3.7231	1st Qu.: 3.2236	2:28
Median: 5.186	Median: 5.1071	Median: 4.7204	3:45
Mean: 5.157	Mean: 5.1503	Mean: 4.9258	NA
3rd Qu.: 6.756	3rd Qu.: 6.6321	3rd Qu.: 6.5206	NA
Max. :11.137	Max.: 9.2089	Max. :11.4573	NA

DATOS POR GRUPOS

Tabla 3: Medias por Grupos

Grupos	X1	X2	Х3
1	4.504767	4.987718	5.178689
2	4.928179	5.102939	4.947521
3	5.690567	5.277362	4.760589

Tabla 4: Desviaciones Estándar por Grupos

Grupos	X1	X2	Х3
1	2.740672	1.809656	2.518015
2	2.634428	2.322268	2.916262
3	1.804084	1.706208	2.403054

Tabla 5: Varianzas por Grupos

Grupos	X1	X2	Х3
1	7.511285	3.274856	6.340397
2	6.940210	5.392928	8.504582
3	3.254719	2.911147	5.774668

Tabla 6: Medianas por Grupos

Grupos	X1	X2	Х3
1	4.3004	4.57240	4.83410
2	4.6078	5.03415	4.94875
3	5.5045	5.22570	4.36050

Pruebas de Normalidad Multivariadas

Tabla 7: Resultados de NM

Test	Statistic	p value	Result
Mardia Skewness	8.69541680950064	0.561232907640276	YES
Mardia Kurtosis	-0.485009811062382	0.627669386036795	YES
MVN	NA	NA	YES

Test	Variable	Statistic	p value	Normality
Shapiro-Wilk	X1	0.9938	0.9308	YES
Shapiro-Wilk	X2	0.9882	0.5217	YES
Shapiro-Wilk	X3	0.9878	0.4962	YES

	n	Mean	Std.Dev	Median	Min	Max	$25 \mathrm{th}$	$75 \mathrm{th}$	Skew	Kurtosis
X1	100	5.156932	2.360555	5.18565	-1.9689	11.1373	3.776300	6.755725	-0.1529182	0.0052095
X2	100	5.150320	1.907849	5.10705	-0.3808	9.2089	3.723100	6.632100	-0.2036691	-0.3835989
X3	100	4.925817	2.565363	4.72040	-0.1823	11.4573	3.223625	6.520600	0.2568454	-0.2877569

Tabla 8: Resultados de NM

Test	Statistic	p value	Result
Mardia Skewness	24.3325702815579	0.00676492265803443	NO
Mardia Kurtosis	1.76902217293395	0.0768901744081527	YES
MVN	NA	NA	NO

Test	Variable	Statistic	p value	Normality
Shapiro-Wilk	X1	0.9840	0.9391	YES
Shapiro-Wilk	X2	0.9521	0.2413	YES
Shapiro-Wilk	X3	0.9786	0.8304	YES

	n	Mean	$\operatorname{Std.Dev}$	Median	Min	Max	$25 \mathrm{th}$	$75 \mathrm{th}$	Skew	Kurtosis
X1	27	4.504767	2.740672	4.3004	-1.9689	9.6838	2.76530	6.1330	-0.1252070	-0.4751280
X2	27	4.987718	1.809656	4.5724	-0.3808	8.7045	3.93525	6.1042	-0.4885750	1.0733485
X3	27	5.178689	2.518015	4.8341	0.0305	10.6845	3.84740	6.9798	0.0947103	-0.3876734

Pruebas de Shapito Wilk Multivariada

Método	Paquete	Función	Estadística	p-Valor
Shapiro-Wilk normality test	mvnormtest	mshapiro.test	0.9802882	0.1399768
Multivariate Shapiro-Wilk normality test	RVAideMemoire	mshapiro.test	0.9802882	0.1399768

Prueba M-Box para Matrices de Var-Cov $(\Sigma_1 = \Sigma_2), n \geq 20)$

Resultados de esta PH Utilizando la función boxM del paquete biotools del R:

Box's M-test for Homogeneity of Covariance Matrices

data: datos[1:55, 1:3] Chi-Sq (approx.) = 3.9051, df = 6, p-value = 0.6895

Prueba T2-Hotelling para: $\underline{\mu}_1 - \underline{\mu}_2 = \underline{\delta}_0$.

$$\Sigma_1 = \Sigma_2 = \Sigma$$
-Pob. Normal

Se desea contrastar las hipótesis:

$$\begin{cases} H_0 \ : \ \underline{\mu}_1 - \underline{\mu}_2 = \underline{\delta}_0 \\ \\ H_a \ : \ \underline{\mu}_1 - \underline{\mu}_2 \neq \underline{\delta}_0 \end{cases}$$

En este caso, se usa como estimador de Σ a la varianza ponderada dada por:

$$S_p = \hat{\Sigma} = \frac{(n-1)S_1 + (m-1)S_2}{n+m-2},$$

Bajo H_0 -cierto, el estadístico de prueba es:

$$T^{2} = \frac{nm}{n+m} \left(\overline{\underline{\mathbf{x}}} - \overline{\underline{\mathbf{y}}} - \underline{\delta}_{0} \right)^{t} \mathbf{S}_{p}^{-1} \left(\overline{\underline{\mathbf{x}}} - \overline{\underline{\mathbf{y}}} - \underline{\delta}_{0} \right) \sim \frac{(n+m-2)p}{n+m-p-1} F_{p;\ n+m-p-1} = kF$$

con:

$$k = \frac{(n+m-2)p}{n+m-p-1}$$

Rechazamos H_0 si:

$$T_0^2 > kF = \frac{(n+m-2)p}{n+m-p-1} F_{\alpha \ : \ p \ , \ n+m-p-1}$$

O equivalentemente, rechazamos H_0 si:

$$F_0 = \frac{1}{k}T_0^2 = \frac{n+m-p-1}{(n+m-2)p}T_0^2 > F_{tabla} = F_{\alpha:p,n+m-p-1}$$

Se crea una función de usuario llamada: HT2_sigmas_iguales la cual se utiliza a continuación.

Existen varias funciones en distintos paquetes del R que se utilizan para esta prueba de hipótesis cuando $\Sigma_1 = \Sigma_2 = \Sigma$ -Desconocida, Pob. Normal, las cuales se ilustran a continuación.

Resultados de esta prueba Utilizando la función HotellingsT2 del paquete ICNP del R:

```
library(ICSNP)

HotellingsT2(x, y)
```

Hotelling's two sample T2-test

data: x and y T.2 = 0.12435, df1 = 3, df2 = 51, p-value = 0.9453 alternative hypothesis: true location difference is not equal to c(0,0,0)

Resultados de esta prueba Utilizando la función T2.test del paquete rrcov del R:

```
library(rrcov)
resT2 <- T2.test(x, y)
resT2</pre>
```

Two-sample Hotelling test

data: x and y T2 = 0.38767, F = 0.12435, df1 = 3, df2 = 51, p-value = 0.9453 alternative hypothesis: true difference in mean vectors is not equal to (0,0,0) sample estimates: X1 X2 X3 mean x-vector 4.504767 4.987719 5.178689 mean y-vector 4.928179 5.102939 4.947521

Tabla 9: Medias de Resultados con T2.test

	X1	X2	Х3
mean x-vector	4.504767	4.987718	5.178689
mean y-vector	4.928179	5.102939	4.947521

Resultados de esta prueba Utilizando la función hotelling.test del paquete Hotelling del R:

```
library(Hotelling)
resh <- hotelling.test(x, y)
resh</pre>
```

Test stat: 0.12435 Numerator df: 3 Denominator df: 51 P-value: 0.9453

Estadísticas de la función hotelling.test del paquete Hotelling del R

Ahora, Para Muestras Grandes, (igualmente para la PH con: $\Sigma_1 = \Sigma_2 = \Sigma$ -Desconocida)

Se desea contrastar las hipótesis:

$$\begin{cases} H_0 \ : \ \underline{\mu}_1 - \underline{\mu}_2 = \underline{\delta}_0 \\ \\ H_a \ : \ \underline{\mu}_1 - \underline{\mu}_2 \neq \underline{\delta}_0 \end{cases}$$

Donde el tamaño de muestra utilizado n-es grande.

Bajo H_0 -cierto, el estadístico de prueba es:

$$\chi^2 = \frac{nm}{n+m} (\overline{\mathbf{x}} - \overline{\mathbf{y}} - \underline{\delta}_0)^t \mathbf{S}_p^{-1} (\overline{\mathbf{x}} - \overline{\mathbf{y}} - \underline{\delta}_0) \sim \chi_p^2$$

Rechazamos H_0 si:

$$\chi_0^2 > \chi_{\alpha ; p}$$

Se crea una función de usuario llamada: HT2_sigmas_iguales_ngrande la cual se utiliza a continuación.

$$\frac{\chi_0^2}{0.387666735927368}$$
 df χ_{Tabla} Valor-p 0.387666735927368 3 7.81472790325118 0.94277830815779

Resultados de esta PH Utilizando la función HotellingsT2 del paquete ICNP del R:

Hotelling's two sample T2-test

data: x and y T.2 = 0.38767, df = 3, p-value = 0.9428 alternative hypothesis: true location difference is not equal to c(0,0,0)

$\Sigma_1 \neq \Sigma_2$ -Pob. Normal

Se desea contrastar las hipótesis:

$$\begin{cases} H_0 \ : \ \underline{\mu}_1 - \underline{\mu}_2 = \underline{\delta}_0 \\ \\ H_a \ : \ \underline{\mu}_1 - \underline{\mu}_2 \neq \underline{\delta}_0 \end{cases}$$

Bajo H_0 -cierto, el estadístico de prueba es:

$$T^{2} = \left(\overline{\underline{\mathbf{x}}} - \overline{\underline{\mathbf{y}}} - \underline{\delta}_{0}\right)^{t} \left[\frac{S_{1}}{n} + \frac{S_{2}}{m}\right]^{-1} \left(\overline{\underline{\mathbf{x}}} - \overline{\underline{\mathbf{y}}} - \underline{\delta}_{0}\right) \sim \frac{vp}{v - p + 1} F_{p; v - p + 1} = kF$$

$$\text{con:} \quad k = \frac{vp}{v - p + 1} \quad \text{y} \quad v = \frac{tr(S_{e}) + \left[tr(S_{e})\right]^{2}}{\sum_{i=1}^{2} \frac{1}{n_{i} - 1} \left\{tr(V_{i}) + \left[tr(V_{i})\right]^{2}\right\}}$$

es decir:

$$v = \frac{tr(S_e) + [tr(S_e)]^2}{\frac{1}{n_1 - 1} \left\{ tr(V_1) + [tr(V_1)]^2 + tr(V_2) + [tr(V_2)]^2 \right\}}$$
$$V_i = \frac{S_i}{n_i} \quad \text{y} \quad S_e = V_1 + V_2 = \frac{S_1}{n} + \frac{S_2}{m}.$$

Rechazamos H_0 si: $T_0^2 > kF$ ó $F_0 = \frac{1}{k}T_0^2 > F_{tabla}$

Se crea una función de usuario llamada: $HT2_sigmas_diferentes$ la cual se utiliza a continuación.

T2	\mathbf{v}	K = vp/(v - p + 1)	F_0	df_1	df_2	F_{Tabla}	Valor-p
0.386428446579277	38	3.166666666666667	0.122030035761877	3	36	2.86626555094018	0.946521235587968

Para este caso de $\Sigma_1 \neq \Sigma_2$ -Desconocida, Pob. Normal, **No conozco si existen funciones en R** para realizar dicha prueba, si conocen alguna me la hacen saber por favor.

Prueba de Hipótesis para $\mu = \mu_0$.

Pob. Normal

Se desean contrastar las hipótesis:

$$\begin{cases} H_0 : \underline{\mu} = \underline{\mu_0} \\ H_a : \underline{\mu} \neq \underline{\mu_0} \end{cases}$$

El estadístico de prueba es:

$$T^{2} = \left(\overline{\underline{\mathbf{x}}} - \underline{\mu}_{0}\right)^{t} \left(\frac{1}{n}\mathbf{S}\right)^{-1} \left(\overline{\underline{\mathbf{x}}} - \underline{\mu}_{0}\right) = n(\overline{\underline{\mathbf{x}}} - \underline{\mu}_{0})^{t}\mathbf{S}^{-1}(\overline{\underline{\mathbf{x}}} - \underline{\mu}_{0}),$$

Se utiliza el siguiente resultado:

$$T^2 \sim \frac{(n-1)p}{(n-p)} F_{p,n-p} = kF$$
, con: $k = \frac{(n-1)p}{(n-p)}$

o equivalentemente:

$$F = \frac{1}{k}T^2 = \frac{(n-p)}{(n-1)p}T^2 \sim F_{p,n-p},$$

donde, F_p , n-p-denota una v.a con distribución F con p y n-p grados de libertad respectivamente.

Al nivel de significancia del α %, rechazamos H_0 : $\mu = \mu_0$, en favor de: H_a : $\mu \neq \mu_0$, si el valor de:

$$T_0^2 = n(\underline{\overline{\mathbf{x}}} - \underline{\mu}_0)^t \mathbf{S}^{-1}(\underline{\overline{\mathbf{x}}} - \underline{\mu}_0) > kF = \frac{(n-1)p}{(n-p)} F_{\alpha;p,n-p},$$

o equivalentemente, rechazamos H_0 si:

$$F_0 = \frac{(n-p)}{(n-1)p}T^2 = \frac{1}{k}T_0^2 > F_{\alpha;p,n-p},$$

Se crea una función de usuario llamada: $HT2_mu\theta$ con la cual se obtinen los siguinetes resultados:

$$T2$$
 K F_0 df_1 df_2 F_{Tabla} Valor- p 307.063821111781 3.25 94.481175726702 3 24 3.00878657044736 1.98729921407903e-13

En R existen varias funciones en distintos paquetes o librerias, las cuales se utilizan para realizar este tipo de pruebas de hipóteis. A continuación se ilustran varias de ellas.

Se recomienda leer muy bien las ayudas que existen sobre estas funciones para utilizarlas de manera adecuada y definir de de forma apropiada sus respectivos argumentos.

Resultados de esta PH utilizando la función HottellingsT2 del paquete ICSNP del R.

```
x <- subset(datos1, datos1$Grupos == 1)
x <- x[, 1:3]
HotellingsT2(x)</pre>
```

Hotelling's one sample T2-test

data: x T.2 = 94.481, df1 = 3, df2 = 24, p-value = 1.987e-13 alternative hypothesis: true location is not equal to c(0,0,0)

Resultados de esta PH Utilizando la función T2.test del paquete rrcov del R.

T2.test(x)

One-sample Hotelling test

data: x T2 = 307.064, F = 94.481, df1 = 3, df2 = 24, p-value = 1.987e-13 alternative hypothesis: true mean vector is not equal to (0, 0, 0)'

sample estimates: X1 X2 X3 mean x-vector 4.504767 4.987719 5.178689

Prueba de Hipótesis para $\mu = \mu_0$.

n-Grande.

En esta caso, el estadístico de prueba utilizado es:

$$\chi_0^2 = n(\overline{\underline{\mathbf{x}}} - \underline{\mu}_0)^t \mathbf{S}^{-1} (\overline{\underline{\mathbf{x}}} - \underline{\mu}_0) \underset{\text{Bajo } H_0}{\sim} \chi_{(p)}^2$$

La regla de decisión es: Rechazar H_0 si $\chi_0^2 > \chi_{\alpha;p}^2$.

Para este se creo una función de usuario llamada: $HT2_mu0_ngrande$ la cual se utiliza a continuación.

$$\frac{\chi_0^2}{307.063821111781}$$
 $\frac{df}{3}$ $\frac{\chi_{Tabla}}{7.81472790325118}$ $\frac{1}{9}$

Igualmente, también se puede suar la función Hotellings T2 del R de la siguiente forma.

Resultados utilizando la Función HotellingsT2 del R

```
HotellingsT2(grupo1[, 1:3], mu = mu_0, test = "chi")
```

Hotelling's one sample T2-test

data: grupo1[, 1:3] T.2 = 307.06, df = 3, p-value < 2.2e-16 alternative hypothesis: true location is not equal to c(0,0,0)

Prueba T2-Hotelling para contrastes de medias: $C\mu = \delta_0$.

Pob. Normal.

Se desea contrastar las hipótesis:

$$\begin{cases} H_0 : C\underline{\mu} = \underline{\gamma} \\ H_0 : C\underline{\mu} \neq \underline{\gamma} \end{cases}, \quad \text{con} \quad \underline{\gamma} = \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_k \end{pmatrix} - \text{Vector de Constantes.}$$

Un estimador insesgado para $C\underline{\mu}$ es: $C\overline{\underline{\mathbf{x}}}$, el cual tiene la siguiente distribución:

$$C\overline{\underline{\mathbf{x}}} \sim N_k \bigg(C\underline{\mu} \ , \ C\Sigma_{\overline{\underline{\mathbf{x}}}} C^T \bigg) \ , \ \text{es decir} :$$

$$C\overline{\underline{\mathbf{x}}} \sim N_k \left(C\underline{\mu} , \frac{1}{n} C \Sigma C^t \right), \text{ pues : } \Sigma_{\overline{\underline{\mathbf{x}}}} = \frac{\Sigma}{n}.$$

Como Σ -es desconocida se usa la estadística de prueba:

$$T_0^2 = n \left(C \overline{\underline{\mathbf{x}}} - \underline{\gamma} \right)^t \left[C \mathbf{S} C^t \right]^{-1} \left(C \overline{\underline{\mathbf{x}}} - \underline{\gamma} \right) \sim \frac{(n-1)k}{n-k} F_{k,n-k} = cF$$

Se rechaza
$$H_0$$
 si: $T_0^2 > cF$ ó $F_0 = \frac{1}{c}T_0^2 > F_{tabla}$, $c = \frac{(n-1)k}{n-k}$.

Se crea una función de usuario llamada: $HT2_CU$ con la cual se obtinen los siguinetes resultados:

Prueba T2-Hotelling para contrastes de medias: $C\mu = \delta_0$.

n-Grande.

En este caso el estadístico de prueba es:

$$\chi_0^2 = n(C\overline{\mathbf{x}} - \gamma)^t [C\mathbf{S}C^t]^{-1} (C\overline{\mathbf{x}} - \gamma) \sim \chi_k^2$$

Se rechaza H_0 si: $\chi_0^2 > \chi_{Tabla} = \chi_{\alpha;k}$

Se crea una función de usuario llamada: HT2_CU_ngrande con la cual se obtinen los siguinetes resultados:

$$\frac{\chi_0^2}{212.867850345757} \frac{df}{2} \frac{\chi_{Tabla}}{5.99146454710798} \frac{\text{Valor-}p}{0}$$

Prueba de Razón de Ver. de una Matriz de Var-Cov: $\Sigma = \Sigma_0$.

Pob. Normal.

Se tiene interés en la siguiente PH:

$$\begin{cases} H_0 : \mathbf{\Sigma} = \mathbf{\Sigma}_0 \\ H_a : \mathbf{\Sigma} \neq \mathbf{\Sigma}_0 \end{cases}$$

La Estadística de Razon de Verosimilitud para esta PH es:

$$\lambda = \frac{|\mathbf{S}|^{\frac{v}{2}}}{|\mathbf{\Sigma}_0|^{\frac{v}{2}}} \operatorname{Exp} \left\{ -\frac{1}{2} \left[v \operatorname{tr}(\mathbf{S} \mathbf{\Sigma}_0^{-1}) - v p \right] \right\}$$

y haciendo $\lambda^{\star} = -2\log\lambda$, se tiene que:

$$\lambda^* = v \left[\text{Log}|\mathbf{\Sigma}_0| - \text{Log}|\mathbf{S}| + \text{tr}(\mathbf{S}\mathbf{\Sigma}_0^{-1}) - p \right]$$

Bajo H_0 -cierta, se tiene que:

$$\lambda^{\star} \sim \chi_k^2 \; , \quad para \quad n-1 \; \; {
m grande}$$

con,
$$k = \frac{p(p+1)}{2}$$
.

Rechazamos H_0 si.

$$\lambda^{\star} > \chi^2_{\alpha ; k}$$

Para este se creo una función de usuario llamada: $sigma_sigma\theta$ la cual se utiliza a continuación.

λ_0^\star	df	χ_{Tabla}	$\operatorname{Valor-}p$
21.7798732836933	6	12.591587243744	0.00132724441806598