Задача 12 (4 балла)

С учетом фононной поляризации диэлектрическая проницаемость кристалла дается формулой

$$\varepsilon(\omega) = \varepsilon_{\infty} + (\varepsilon_{0} - \varepsilon_{\infty}) \frac{\omega_{\text{TO}}^{2}}{\omega_{\text{TO}}^{2} - \omega^{2} - i\gamma\omega}.$$

Рассчитайте численно закон дисперсии поперечных электромагнитных волн $\omega(k)$ в такой среде при параметрах $\varepsilon_0=12.85,\ \varepsilon_\infty=10.88,\ \hbar\omega_{TO}=33$ meV, $\hbar\gamma=0.31$ meV и постройте графики зависимостей

- (a) Re $\hbar\omega(k)$ и Im $\hbar\omega(k)$ от вещественного k,
- (b) $\operatorname{Re} k(\hbar\omega)$ и $\operatorname{Im} k(\hbar\omega)$ от вещественного $\hbar\omega$.

Требуемый диапазон энергий $\operatorname{Re}\hbar\omega\in[15,50]$ meV, диапазон волновых векторов $\operatorname{Re}k\in[0,2\cdot10^5]$ cm⁻¹.

Формат решения: Отправляйте на почту с темой ED2022 HW 12 6 файлов:

- 1. pdf файл с формулой, по которой идет расчет
- 2. код решения на любом языке программирования/в любом математическом пакете
- 3. 4 графика зависимостей в формате pdf. Оси на графиках должны быть подписаны: что от чего строится и какие значения получаются.