일반 영역 위에서의 이중적분

일반 영역

푸비니의 정리

반복적분 - 적분 순서 바꾸기

이중적분의 성질

넓이, 부피

<mark>이분적분학_권윤기</mark>

이중적분(일반영역 위에서의 이중적분)

다중적분

일반영역

$$F(x,y) = \begin{cases} f(x,y), & (x,y) \in D \\ 0, & (x,y) \in R, \ (x,y) \not\in D \end{cases}$$

영역 R에 대해서 F의 이중적분이 존재한다면 D 위에서 f의 이중적분을 다음과 같이 정의할 수 있다.

$$\iint_D f(x,y) dA = \iint_R F(x,y) dA$$

단,
$$F(x,y) = \begin{cases} f(x,y), & (x,y) \in D \\ 0, & (x,y) \in R, & (x,y) \not\in D \end{cases}$$

미분적분학_권윤기

3

이중적분(일반영역 위에서의 이중적분)

다중적분

 $y < g_1(x)$ 또는 $y > g_2(x)$ 인 (x,y)에 대해 F(x,y) = 0이다.

즉, $(x,y) \not\in D$ 에 대해서는 F(x,y) = 0이다.

$$\iint_{D} f(x,y) dA = \iint_{R} F(x,y) dA = \int_{a}^{b} \int_{c}^{d} F(x,y) dy dx$$
$$= \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} F(x,y) dy dx$$
$$= \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x,y) dy dx$$

평면영역 D 가 x를 변수로 갖는 두 연속함수의 그래프 사이에 있다. 즉, 폐구간 [a,b]에서 연속인 두 함수 g_1 과 g_2 에 대해서

$$D = \{(x,y) | a \le x \le b, g_1(x) \le y \le g_2(x)\}$$
 : 타입 I

f가 타입 I의 영역

 $D = \{(x,y) | a \le x \le b, g_1(x) \le y \le g_2(x) \}$ 상에서 연속 함수이면

$$\iint_D f(x,y) \, dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) \, dy \, dx$$

미분적분학_권윤기

이중적분(일반영역 위에서의 이중적분)

다즈저브

평면영역 D 가 y를 변수로 갖는 두 연속함수의 그래프 사이에 있다. 즉, 폐구간 [c,d]에서 연속인 두 함수 h_1 과 h_2 에 대해서

$$D = \{(x,y) | c \le y \le d, h_1(y) \le x \le h_2(y)\}$$
 : 타입 II

f가 타입 II의 영역

 $D = \{(x,y) | c \le y \le d, h_1(y) \le x \le h_2(y) \}$ 상에서 연속 함수이면

$$\iint_D f(x,y) \, dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y) \, dx \, dy$$

$$\iint_D f(x,y) \ dA = \int_a^b \underbrace{\left[\int_{g_1(x)}^{g_2(x)} f(x,y) \ dy \right]}_{y\text{에 관해 적분}} \ dx$$

$$\downarrow \qquad \qquad \downarrow$$

$$x 만의 함수$$

미분적분학_권윤기 7

이중적분(일반영역 위에서의 이중적분)

다중적분

푸비니 정리

푸비니 정리(Fubini's Theorem)

영역 D에서 연속인 함수 f에 대해 다음이 성립한다.

(1) 구간 [a,b]에서 $g_1(x) \leq g_2(x)$ 이고 연속인 두 함수 $y=g_1(x)$ 와 $y=g_2(x)$ 에 대해 $D=\left\{(x,y)|a\leq x\leq b,\,g_1(x)\leq y\leq g_2(x)\right\}$ 이면 다음이 성립한다.

$$\iint_D f(x,y) \, dA = \iint_D f(x,y) \, dy \, dx = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) \, dy \, dx$$

푸비니 정리(Fubini's Theorem)

영역 D에서 연속인 함수 f에 대해 다음이 성립한다.

(2) 구간 [c,d]에서 $h_1(y) \leq h_2(y)$ 이고 연속인 두 함수 $x = h_1(y)$ 와 $x = h_2(y)$ 에 대해 $D = \left\{ (x,y) | c \leq y \leq d, \, h_1(y) \leq x \leq h_2(y) \right\}$ 이면 다음이 성립한다.

$$\iint_D f(x,y) \, dA = \iint_D f(x,y) \, dx \, dy = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y) \, dx \, dy$$

미분적분학_권윤기 9

이중적분(일반영역 위에서의 이중적분)

다중적분

푸비니 정리(Fubini's Theorem)

영역 D에서 연속인 함수 f에 대해 다음이 성립한다.

$$D = \{ (x,y) | a \le x \le b, g_1(x) \le y \le g_2(x) \}$$

$$= \{ (x,y) | c \le y \le d, h_1(y) \le x \le h_2(y) \}$$

$$\iint_{D} f(x,y) dA = \begin{cases} \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x,y) dy dx \\ \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x,y) dx dy \end{cases}$$

<mark>미분적분학_권윤기 10</mark>

예제 D 가 포물선 $y = 2x^2$ 과 $y = 1 + x^2$ 에 의해 둘러싸인 영역일 때 $\iint_{\mathbb{R}} (x+2y) dA$ 의 값을 구하여라.

$$D = \left\{ (x,y) \mid -1 \le x \le 1, \ 2x^2 \le y \le 1 + x^2 \right\}$$

$$\int_D^{(x+2y)} dA$$

$$= \int_{-1}^1 \int_{2x^2}^{1+x^2} (x+2y) \, dy \, dx$$

$$= \int_{-1}^1 \left[\left\{ x(1+x^2) + (1+x^2)^2 \right\} - \left\{ x(2x^2) + (2x^2)^2 \right\} \right] \, dx$$

$$= \int_{-1}^1 \left[\left\{ x(1+x^2) + (1+x^2)^2 \right\} - \left\{ x(2x^2) + (2x^2)^2 \right\} \right] \, dx$$

$$= \int_{-1}^1 \left[-3x^4 - x^3 + 2x^2 + x + 1 \right] \, dx = 2 \int_0^1 \left(-3x^4 + 2x^2 + 1 \right) \, dx$$

$$= 2 \left[-\frac{3}{5}x^5 + \frac{2}{3}x^3 + x \right]_0^1 = 2 \left(-\frac{3}{5} + \frac{2}{3} + 1 \right) = 2 \cdot \frac{16}{15} = \frac{32}{15}$$

11 미분적분학_권윤기

이중적분(일반영역 위에서의 이중적분)

예제 포물면 $z=x^2+y^2$ 아래에 있고, 직선 y=2x와 포물선 $y=x^2$ 으로 둘러싸인 xy 평면에 있는 영역 D 위에 있는 입체의 부피를 구하여라.

$$\begin{split} V &= \iint_D (x^2 + y^2) \; dA = \int_0^2 \int_{x^2}^{2x} (x^2 + y^2) \; dy \; dx \\ &= \int_0^2 \left[x^2 y + \frac{y^3}{3} \right]_{x^2}^{2x} dx \\ &= \int_0^2 \left[\left\{ x^2 (2x) + \frac{(2x)^3}{3} \right\} - \left\{ x^2 (x^2) + \frac{(x^2)^3}{3} \right\} \right] dx \\ &= \int_0^2 \left(-\frac{x^6}{3} - x^4 + \frac{14}{3} x^3 \right) dx \\ &= \left[-\frac{x^7}{21} - \frac{x^5}{5} + \frac{7}{6} x^4 \right]_0^2 = \frac{216}{35} \end{split}$$

$$V = \iint_D (x^2 + y^2) dA = \int_0^4 \int_{y/2}^{\sqrt{y}} (x^2 + y^2) dx dy$$

$$= \int_0^4 \left[\frac{x^3}{3} + xy^2 \right]_{y/2}^{\sqrt{y}} dy$$

$$= \int_0^4 \left[\left\{ \frac{(\sqrt{y})^3}{3} + (\sqrt{y})y^2 \right\} - \left\{ \frac{1}{3} (\frac{y}{2})^3 + (\frac{y}{2})y^2 \right\} \right] dy$$

$$= \int_0^4 \left(-\frac{13}{24} y^3 + y^{5/2} + \frac{1}{3} y^{3/2} \right) dy$$

$$= \left[-\frac{13}{96} y^4 + \frac{2}{7} y^{7/2} + \frac{1}{3} \frac{2}{5} y^{5/2} \right]_0^4 = \frac{216}{35}$$

예제 직선 y=x-1과 포물선 $y^2=2x+6$ 에 의해 유계된 영역 D에 대해 $\iint_D xy \, dA$ 를 구하여라.

$$D = \begin{cases} (x,y) | & -3 \le x \le -1, \ -\sqrt{2x+6} \le y \le \sqrt{2x+6} \\ -1 \le x \le 5, & x-1 \le y \le \sqrt{2x+6} \end{cases}$$
$$= \left\{ (x,y) | -2 \le y \le 4, \ \frac{y^2}{2} - 3 \le x \le y+1 \right\}$$

미분적분학_권윤기 13

이중적분(일반영역 위에서의 이중적분)

다중적분

$$y = \sqrt{2x + 6}$$

$$y = x - 1$$

$$y = -\sqrt{2x + 6}$$

$$(5, 4)$$

$$y = x - 1$$

$$(-1, -2)$$

$$\iint_{D} xy \, dA = \int_{-2}^{4} \int_{y^{2}/2-3}^{y+1} xy \, dx \, dy$$

$$= \int_{-2}^{4} \left[\frac{x^{2}}{2} y \right]_{y^{2}/2-3}^{y+1} dy$$

$$= \int_{-2}^{4} \frac{y}{2} \left[(y+1)^{2} - (\frac{y^{2}}{2} - 3)^{2} \right] dy$$

$$= \frac{1}{2} \int_{-2}^{4} \left(-\frac{y^{5}}{4} + 4y^{3} + 2y^{2} - 8y \right) dy$$

$$= \frac{1}{2} \left[-\frac{y^{6}}{24} + y^{4} + \frac{2}{3} y^{3} - 4y^{2} \right]_{-2}^{4} = \frac{216}{35}$$

$$\iint_{D} xy \, dA = \int_{-3}^{-1} \int_{-\sqrt{2x+6}}^{\sqrt{2x+6}} xy \, dy \, dx$$
$$+ \int_{-1}^{5} \int_{x-1}^{\sqrt{2x+6}} xy \, dy \, dx$$

x + 2y + z = 2, x = 2y, x = 0, z = 0에 의해 사면체의 부피를 구하여라.

$$D = \left\{ (x,y) \mid 0 \le x \le 1, \ \frac{x}{2} \le y \le 1 - \frac{x}{2} \right\}$$

$$V = \iint_{D} (2 - x - 2y) \, dA \qquad 0 \, \Big| \qquad 1 \qquad x$$

$$= \int_{0}^{1} \int_{x/2}^{1 - x/2} (2 - x - 2y) \, dy \, dx$$

$$= \int_{0}^{1} \left[2y - xy - y^{2} \right]_{x/2}^{1 - x/2} \, dx$$

$$= \int_{0}^{1} \left[\left\{ 2(1 - \frac{x}{2}) - x(1 - \frac{x}{2}) - (1 - \frac{x}{2})^{2} \right\} - \left\{ 2(\frac{x}{2}) - x(\frac{x}{2}) - (\frac{x}{2})^{2} \right\} \right] dx$$

$$= \int_{0}^{1} (x^{2} - 2x + 1) \, dx$$

$$= \left[\frac{x^{3}}{3} - x^{2} + x \right]_{0}^{1} = \frac{1}{3} - 1 + 1 = \frac{1}{3}$$

15 미분적분학_권윤기

이중적분(일반영역 위에서의 이중적분)

예 다음 반복 적분의 값을 찾고 그 적분 영역을 xy 평면에 그려라.

$$\int_0^1 \int_{x^3}^{x^2} y \, dy \, dx$$

$$\begin{split} & \int_0^1 \int_{x^3}^{x^2} y \, dy \, dx \\ & = \int_0^1 \left\{ \int_{x^3}^{x^2} y \, dy \right\} dx \\ & = \int_0^1 \left[\frac{y^2}{2} \right]_{x^3}^{x^2} dx \\ & = \int_0^1 \frac{1}{2} \left[(x^2)^2 - (x^3)^2 \right] \, dx \\ & = \frac{1}{2} \int_0^1 (x^4 - x^6) \, dx \\ & = \frac{1}{2} \left[\frac{x^5}{5} - \frac{x^7}{7} \right]_0^1 = \frac{1}{2} \cdot \frac{7 - 5}{35} = \end{split}$$

예 $D = [0,1] \times [0,1]$ 에서 함수 $f(x,y) = x^2 + y$ 의 이중 적분을 찾아라.

$$\iint_{D} (x^{2} + y) dA$$

$$= \int_{0}^{1} \int_{0}^{1} (x^{2} + y) dy dx$$

$$= \int_{0}^{1} \left[x^{2}y + \frac{y^{2}}{2} \right]_{0}^{1} dx$$

$$= \int_{0}^{1} \left[\left\{ x^{2} + \frac{1}{2} \right\} - 0 \right] dx$$

$$= \int_{0}^{1} (x^{2} + \frac{1}{2}) dx$$

$$= \left[\frac{x^{3}}{3} + \frac{1}{2}x \right]_{0}^{1} = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}$$

$$\iint_{D} (x^{2} + y) dA$$

$$= \int_{0}^{1} \int_{0}^{1} (x^{2} + y) dx dy$$

$$= \int_{0}^{1} \left[\frac{x^{2}}{3} + xy \right]_{0}^{1} dy$$

$$= \int_{0}^{1} \left[\left\{ \frac{1}{3} + y \right\} - 0 \right] dy$$

$$= \int_{0}^{1} (\frac{1}{3} + y) dy$$

$$= \left[\frac{1}{3} y + \frac{y^{2}}{2} \right]_{0}^{1} = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}$$

미분적분학_권윤기 17

이중적분(일반영역 위에서의 이중적분)

다중적분

예
$$D = \{(x,y)|x^2+y^2 \le 1, x \ge 0, y \ge 0\}$$
일 때
$$\iint_D \frac{x}{\sqrt{x^2+y^2}} dA \stackrel{\text{=}}{=}$$
찾아라.

$$\iint_{D} \frac{x}{\sqrt{x^{2} + y^{2}}} dA$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{1 - x^{2}}} \frac{x}{\sqrt{x^{2} + y^{2}}} dy dx$$
삼각 치환법 이용
$$y = x \tan \theta$$

$$\Rightarrow dy = x \tan \theta d\theta$$
계산 과정이 복잡

$$\iint_{D} \frac{x}{\sqrt{x^{2} + y^{2}}} dA = 0$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{1 - y^{2}}} \frac{x}{\sqrt{x^{2} + y^{2}}} dx dy$$

$$= \int_{0}^{1} \left[\sqrt{x^{2} + y^{2}} \right]_{0}^{\sqrt{1 - y^{2}}} dy$$

$$= \int_{0}^{1} \left[\sqrt{(\sqrt{1 - y^{2}})^{2} + y^{2}} - \sqrt{(0)^{2} + y^{2}} \right] dy$$

$$= \int_{0}^{1} (1 - y) dy = \left[y - \frac{y^{2}}{2} \right]_{0}^{1} = 1 - \frac{1}{2} = \frac{1}{2}$$

예 영역 $D=[0,\pi] \times [0,\pi/2]$ 에서 함수 $f(x,y)=\sin{(x+y)}$ 가 적분 가능한가? 만약 이 함수가 적분 가능하다면 이중 적분 $\iint_D f(x,y) \, dA$ 를 찾아라.

함수 $f(x,y) = \sin(x+y)$ 는 x+y가 다항 함수이고 \sin 함수로의 합성이므로 영역 D에서 유계이고 연속이므로 적분 가능

$$\iint_{D} f(x,y) dA = \int_{0}^{\pi/2} \int_{0}^{\pi} \sin(x+y) dx dy = \int_{0}^{\pi/2} [-\cos(x+y)]_{0}^{\pi} dy$$

$$= \int_{0}^{\pi/2} [-\cos(\pi+y) + \cos(0+y)] dy$$

$$= [-\sin(\pi+y) + \sin y]_{0}^{\pi/2}$$

$$= \left(-\sin(\pi+\frac{\pi}{2}) + \sin\frac{\pi}{2}\right) - (-\sin(\pi+0) + \sin 0) = -(-1) + 1 = 2$$

미분적분확_권윤기 19

이중적분(일반영역 위에서의 이중적분)

다중적분

적분 순서 바꾸기

적분 순서에 따라 계산이 쉬울 수도,

어려울 수도 있고 계산이 가능할 수도 계산이 불가능할 수도 있다.

따라서 적분 영역과 적분 순서를 정하는 것에 따라 다중적분의 계산의 효율성은 다르다.

미분적분확_권윤기 20

예제 반복적분 $\int_0^1 \int_x^1 \sin(y^2) \, dy \, dx$ 의 값을 구하여라.

$$\int_0^1 \int_x^1 \sin(y^2) \, dy \, dx = \int_x^1 \int_0^1 \sin(y^2) \, dx \, dy$$

이분적분학_권윤기 21

이중적분(일반영역 위에서의 이중적분)

다중적분

이중적분의 성질

$$\iint_{D} [f(x,y) + g(x,y)] dA = \iint_{D} f(x,y) dA + \iint_{D} g(x,y) dA$$

$$\iint_{D} cf(x,y) dA = c \iint_{D} f(x,y) dA$$

만약
$$D$$
의 모든 점 (x,y) 에 대해서 $f(x,y) \geq g(x,y)$ 이면,
$$\iint_D f(x,y) \; dA \geq \iint_D g(x,y) \; dA$$

미분격분학_권윤기 22

영역 D가 서로 겹치지 않는 D_1,D_2 에 대해서 $D=D_1\cup D_2$ 라면

$$\iint_{D} f(x,y) dA = \iint_{D_{1}} f(x,y) dA + \iint_{D_{2}} f(x,y) dA$$

미분적분학_권윤기 23

이중적분(일반영역 위에서의 이중적분)

다중적분

(a) D is neither type I nor type II.

(b) $D = D_1 \cup D_2$, D_1 is type I, D_2 is type II.

넓이

영역 D 상의 상수 함수 f(x,y)=1을 적분하면 $\Rightarrow D$ 의 넓이 : A(D)를 얻는다.

$$\iint_D 1 \ dA = A(D)$$

미분적분학_권윤기 25

이중적분(일반영역 위에서의 이중적분)

다중적분

D 안에 있는 모든 점 (x,y)에 대해서 $m \leq f(x,y) \leq M$ 이면

$$m \cdot A(D) \le \iint_D f(x,y) dA \le M \cdot A(D)$$

가 성립한다.

예제 D가 중심이 원점이고 반지름이 2인 원판일 때,

적분
$$\iint_D e^{\sin x \cos y} dA$$
의 값을 근사하여라.

 $-1 \le \sin x \le 1, -1 \le \cos y \le 1$

 $\Rightarrow -1 \le \sin x \cos y \le 1$

$$e^{-1} \le e^{\sin x \cos y} \le e^1 = e$$

$$A(D) = \iint_D 1 \, dA = \int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} 1 \, dy \, dx \qquad A(D) = \pi(2)^2 = 4\pi$$
$$= \int_{-2}^2 [y]_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \, dx = 4 \int_0^2 \sqrt{4-x^2} \, dx$$

$$\frac{1}{e} \cdot 4\pi \le \iint_D e^{\sin x \cos y} \, dA \le e \cdot 4\pi \quad \Rightarrow \quad \frac{4\pi}{e} \le \iint_D e^{\sin x \cos y} \, dA \le 4\pi e^{-\frac{1}{2}} = \frac{1}{e} = \frac$$

미분적분학_권윤기 27

이중적분(일반영역 위에서의 이중적분)

다중적분

부피

영역 D에서 항상 $f(x,y) \ge 0$ 이고 적분 가능한 함수 z = f(x,y)의 이중 적분은 영역 D와 함수 f(x,y)에 의해 유계된 영역(둘러싸인 영역)으로 입체 V의 부피를 나타낸다.

$$V = \iint_D f(x, y) \ dA$$

