Chapitre 7: Temps et évolutions chimique : cinétique et catalyse - Exercices

Exercice 1 : Eau oxygénée et ions iodure.

Eau oxygénée peut se décomposer lentement en présence d'ions iodure selon la réaction d'équation :

 $H_2O_{2(aq)} + 2I_{(aq)} + 2H_3O_{(aq)} \rightarrow I_{2(aq)} + 4H_2O_{(1)}$

Par spectrophotométrie, on détermine la concentration en quantité de matière du diiode formé au cours du temps, voici les résultats :

Todatato .					
t (en s)	0	126	434	682	930
[l ₂] (en mmol.L ⁻¹)	0,00	1,74	4,06	5,16	5,84

- 1. Calculer la vitesse volumique d'apparition du diiode aux instants t₂ = 126 s et t₄ = 682 s.
- 2. Comparer ces deux vitesses.

Exercice 2 : Décomposition du pentaoxyde de diazote.

Le dioxyde d'azote NO₂ est un gaz roux, l'un des principaux polluant atmosphériques. Il peut être obtenu par la réaction d'ordre 1 d'équation :

 $2N_2O_{5(q)} \rightarrow 4NO_{2(q)} + O_{2(q)}$

Dans une enceinte de volume constant maintenue à 50° C, on introduit du pentaoxyde de diazote N_2O_5 est on suit sa décomposition avec un manomètre. On en déduit la concentration en N_2O_5 au cours du temps, représentée sur le graphique ci-contre :

- 1. Justifier le choix du capteur utilisé pour suivre cette réaction.
- 2. Définir le temps de demi-réaction.
- 3. Le déterminer graphiquement.
- Représenter qualitativement l'allure de la concentration en N₂O₅ au cours du temps à 100°C. Justifier cette allure.
- 5. Représenter l'allure de la vitesse volumique de disparition du N₂O₅ en fonction de sa concentration. Justifier.

Exercice 3: Réaction autocatalysée.

On mélange à la date t = 0 s :

- 0,5 mL d'acide sulfurique à 1 mol.L⁻¹.
- 1,0 mL d'acide oxalique à 5,0 x 10⁻³ mol.L⁻¹.
- 1,0 mL de permanganate de potassium à 2,0 x 10⁻³ mol.L⁻¹.

Les ions permanganate et l'acide oxalique réagissent selon la réaction suivante :

 $2MnO_4^-(aq) + 5H_2C_2O_4(aq) + 6H^+(aq) \rightarrow 2Mn^{2+}(aq) + 10CO_2(aq) + 8H_2O_{(1)}$ On mesure l'absorbance A de la solution pour une longueur d'onde adaptée à la couleur violette de l'ion permanganate en solution. La mesure d'étalonnage donne la relation A = 2200 [MnO₄-]. La courbe A =

f(t) est représentée ci-dessous :

- Rappeler la définition de la vitesse volumique de disparition MnO₄⁻ et l'exprimer en fonction de l'absorbance A.
- 3. Déterminer les valeurs de la vitesse de disparition de MnO₄- aux dates t = 0 s, t = 200 s et t = 300 s.
- 4. Comment évolue cette vitesse au cours du temps ? A quelle date est-elle maximale ?
- 5. Ici l'un des produits de la réaction, l'ion manganèse Mn²+ catalyse la réaction. Pourquoi est-elle qualifiée de réaction « autocatalysée » ?
- 6. Deux paramètres antagonistes d'évolution de la vitesse entrent en compte. L'un est la concentration du catalyseur dont l'augmentation permet d'accélérer la réaction. Quel est l'autre ?

