Introduction to CN

Introduction and basics of Networking

Telegraph service

Elements of Telegraph Networks

- Digital transmission
 - Text messages converted into symbols
 - Transmission system designed to convey symbols
- Multiplexing
 - Framing needed to recover text characters
- Message Switching
 - Messages contain source & destination addresses
 - Store-and-Forward: messages forwarded hop-by-hop across network
 - Routing according to destination address

Electric Telegraph Networks

- · Electric telegraph networks exploded
 - Message switching & Store-and-Forward operation
 - Key elements: Framing, Multiplexing, Addressing, Routing, Forwarding

Digital Communications

- Morse code converts text message in sequence of dots & dashes
- Use transmission system designed to convey dots and dashes

	Morse Code		Morse Code		Morse Code		Morse Code
Α		J	. —	S		2	
В		К		Т	_	3	
С		L		U	· · _	4	
D		M		V		5	
Е	-	N	_ ·	W		6	
F		0		Х		7	
G		Р		Υ		8	
Н		Q		Z		9	
,I		R		1	·	0	

N-Square Problem in Networking

The N² Problem

- Initially, p2p direct communications for N users to be fully connected directly
 - · Requires too much space for cables
 - . Inefficient & costly since connections not always on

Telephone Networking

Elements of Telephone Networks

- Digital transmission & switching
 - Digital voice; Time Division Multiplexing
- Circuit switching Connection oriented
 - User signals for call setup and tear-down
 - Route selected during connection setup
 - End-to-end connection across network
 - Signaling coordinates connection setup
- Hierarchical Network Structure
 - Decimal numbering system
 - Hierarchical structure; simplified routing; scalability

Medium Access Control

Medium Access Control

- Dedicated communication lines were expensive
- Terminals generated messages sporadically
- Frames carried messages to/from attached terminals
- Address in frame header identified terminal
- Medium Access Controls for sharing a line in arbitrated manner
- Example: Polling protocol on a multi-drop line

Mulitplexing

Multiplexing

- Multiplexer allows a line to carry frames to/from multiple terminals
- Frames are buffered at multiplexer until line becomes available, i.e. store-and-forward
- Header carries other control information for framing

Error Control Protocol

Error Control Protocol

- Communication lines introduced errors
- Error checking codes used on frames
 - "Cyclic Redundancy Check" (CRC) calculated based on frame header and information payload, and appended
 - Header also carries ACK/NAK control information
- Retransmission requested when errors detected

Packet Switching

Packet Switching

- Network should support multiple applications
 - Transfer arbitrary message size
 - Low delay for interactive applications
 - Store-and-forward operation could induce high delay on interactive messages
- · Packet switching introduced
 - Network transfers packets using store-and-forward
 - Packets have maximum length
 - Break long messages into multiple packets
 - By switching, packets delivered (and reassembled) at destination

The ARPANET

The ARPANET

• The vulnerability of the telephone system was a concern.

(a) Telephone system structure; (b) Distributed switching system structure

The ARPANET Design

- Connection-less packet transmission
- Packets are encapsulated in frames
- Error control uses check bits
- Destinations identified by unique addresses
- Routing tables at the packet switches
- Messages are segmented into packets
- End-to-end congestion control
- Flow control prevents buffer overflow

Protocols and Services

Layers, Services & Protocols

- The overall communications process between machines connected across one or more networks is very complex
- Layering partitions related communications functions into groups that are manageable
- Each layer provides a service to the layer above
- Each layer operates according to a protocol

Protocols

- A protocol is a set of precise & unambiguous rules that governs
 - how two or more communicating entities in a layer are to interact
 - Messages that can be sent and received
 - Actions that are to be taken when a certain event occurs

The purpose of a protocol is to provide a service to the layer above

DNS

Example: DNS Protocol

- DNS protocol is an application layer protocol
- DNS is a distributed database that resides in multiple machines in the Internet
- DNS protocol allows queries of different types
- DNS usually involves short messages and so uses service provided by UDP Well-known port 53

TCP

- Browser software uses HTTP to send request for document
- HTTP server waits for requests by listening to a well-known port number (80 for HTTP)
- HTTP client sends request messages through an "ephemeral port number," e.g. 1127
- HTTP needs a Transmission Control Protocol (TCP) connection between the HTTP client and HTTP server to transfer messages reliably

HTTP

- HTTP client sends its request message: "GET comm.html ..."
- HTTP server sends a status response: "200 OK"
- HTTP server sends requested file
- Browser displays document
- Clicking a link sets off a chain of events across the Internet!

Example

Example: HTTP

- HTTP is an application layer protocol
- Retrieves documents on behalf of a browser application program
- HTTP specifies fields in request messages and response messages
 - Request types; Response codes
 - Content type, options, cookies, ...
- HTTP specifies actions to be taken upon receipt of certain messages