

Universidade Presbiteriana Mackenzie

Apresentação da Disciplina

Prof. Jamil Kalil Naufal Júnior

Faculdade de Computação e Informática

- ✓ Estudo dos esquemas de representação de dados numéricos e análise de erros.
- ✓ Estudos dos algoritmos numéricos para problemas de sistemas de equações lineares, raízes de equações, interpolação e aproximação de funções, integração e equações diferenciais ordinárias.
- ✓ Análise assintótica e de convergência de algoritmos numéricos.

- √ Fatos e conceitos
 - Conhecer os principais algoritmos numéricos para problemas clássicos.
 - Conhecer métodos de análise de complexidade e convergência de algoritmos numéricos.
 - Praticar com implementação de algoritmos numéricos.
 - Resolver problemas através de raciocínio lógico.

- ✓ Procedimentos e habilidades
 - Identificar problemas que necessitem de abordagem via métodos numéricos.
 - Avaliar bibliotecas e frameworks para implementação de métodos numéricos.
 - Implementar tarefas em sistemas que dependam de algoritmos numéricos.

- ✓ Atitudes, normas e valores
 - Reconhecer a importância de integração de conhecimentos multidisciplinares em Análise Numérica.
 - Reconhecer a área de Análise Numérica como área teórica importante na formação de cientistas da computação
 - Valorizar o trabalho em grupo.

Um pouco de história

✓ Tábua babilônica

- Cálculo aproximado da hipotenusa de um triângulo retângulo de catetos de valor 1.
- A diagonal mostra uma aproximação da <u>raiz</u> <u>quadrada de 2</u>, com seis casas <u>decimais</u>.

$$1 + 24/60 + 51/60^2 + 10/60^3$$

$$1 + 0.4 + 0.014166 + 0.00004696 = 1.41421296$$

 Soluções de problemas utilizando algoritmos e soluções numéricas datam desde povos antigos.

Matemática Babilônica (Assírio-Babilônica), matemática desenvolvida pelos povos da Mesopotâmia, desde os dias dos antigos Sumérios até a queda da Babilônia em 539 a.C

https://pt.wikipedia.org/wiki/Matem%C3%A1tica_babil%C3%B4nica

Problemas simulares resolvidos por aproximação na antiguidade

Quadratura do círculo:

Problema proposto pelos antigos geômetras gregos consistindo em construir um quadrado com a mesma área de um dado círculo servindo-se somente de uma régua não graduada e um compasso em um número finito de etapas.

Cálculo de áreas e volumes de figuras geométricas.

Áreas que impulsionam os métodos numéricos

Astronomia, física e engenharia.

Matemáticos importantes na criação de fundamentos em métodos numéricos

Newton, Euler, Lagrange, Gauss, Jacobi, Fourier, Chebyshev.

Métodos utilizados em soluções

- Ajustes de curvas.
- Interpolação de dados.
- Calculo de áreas e comprimentos.
- Calculo de raízes de equações polinomiais.
- Resolução de equações diferenciais entre outras.

Computação e métodos numéricos

- Com a evolução e popularização da computação possibilita a solução de problemas de alta complexidade podem ser melhor abordados e solucionadas através de técnicas numéricas.
- Utilizar computadores para resolução de problemas de alta complexidade através de métodos numéricos.

Objetivos de soluções baseados em Análise numérica

 Garantir robustez, convergência, consistência, estabilidade em soluções aproximadas.

Problemas práticos atuais que adotam soluções numéricas

- Aplicativos para auxílio a tráfego (transito, localização, roteamento).
- Sistemas de controle de fluxo em trens, aeroportos, portos, aeroportos.
- Semáforos inteligentes.
- Sistemas de segurança bancário.
- Previsão de meteorologia.
 http://ciencia.usp.br/index.php/2017/08/22/como-e-e-como-sera-feita-previsao-do-tempo/
- Aplicações médicas: tomografia computadorizada, ressonância magnética, ultrassom para construção de imagens.
- Logística e distribuição de mercadorias.

Objetivos práticos para a adoçam de soluções numéricas

- Desenvolver projetos mais eficientes e próximos da realizada:
 - Sistemas de transporte mais eficientes.
 - Previsão futura mais eficiente.
- Projetar modelos de soluções nas quais modelos matemáticos exatos não são possíveis de obter.

Desafios em soluções numéricas

- Resolver problemas relevantes.
- Evitar propagação de erros.
- Conseguir soluções mais próximas possíveis da realidade.

Obrigado!

Prof. Jamil Kalil Naufal Júnior jamil.naufal@mackenzie.br