ML HW1 Report

109550171 陳存佩

Part. 1, Coding (60%):

Linear regression model

Mean Square Error: 110.42352089914914

weights: 52.73882513770308

intercepts: -0.3344699947594075

Logistic regression model

cross_entropy: 47.24761018449381

weights: -4.876889778933664

intercepts: -1.7116223226069782

Part. 2, Questions (40%):

1. What's the difference between Gradient Descent, Mini-Batch Gradient Descent, and Stochastic Gradient Descent?

	Gradient Descent	Mini-Batch GD	Stochastic GD
Formul a	$w_{i+1} = w_i - a \cdot \nabla_{w_i} J(w_i)$	$w_{i+1} = w_i - a \cdot \nabla_{w_i} J(x^{i:i+b}, y^{i:i+b}; w_i)$	$w_{i+1} = w_i - a \cdot \nabla_{w_i} J(x^i, y^i; w_i)$
Desc.	An iterative optimization algorithm: find the minimum of any differentiable function	Considered to be the cross- over between GD and SGD. Split the dataset into small subsets (batches) and compute the gradients for each subset.	A simplification of GD. Randomly choose partition of the dataset instead of using whole dataset to compute iterations.
Pros. & Cons.	 Time-consuming and computationally expensive May converge to a local minimum 	Can use vectorized implementation for faster computations	 Converge faster for larger datasets May lead to noisier results than the GD

2. Will different values of learning rate affect the convergence of optimization? Please explain in detail.

Learning rate affect the speed of convergence.

Larger learning rate leads to faster convergence, but it might skip the solution.

Smaller learning rate causes slower convergence, so it needs more iterations to converge.

3. Show that the logistic sigmoid function (eq. 1) satisfies the property $\sigma(-a) = 1 - \sigma(a)$ and that its inverse is given by $\sigma^{-1}(y) = \ln \{y/(1-y)\}$.

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$
 (4.59) (eq. 1)

3.
$$1-\sigma(\alpha)=1-\frac{1}{1+\exp(-\alpha)}=\frac{1}{1+\exp(-\alpha)-1}=\frac{\exp(-\alpha)}{1+\exp(-\alpha)}=\frac{\exp(-\alpha)}{1+\exp(-\alpha)}$$

$$=\frac{1}{\frac{1}{\exp(-\alpha)+1}}=\frac{1}{\exp(\alpha)+1}=\sigma(-\alpha)_{\#}$$

$$\text{et } f(x)=\frac{1}{1+\exp(-x)}$$

$$\frac{1}{f(x)}=1+\exp(-x)$$

$$\frac{1}{f(x)}=1+\exp(-x)$$

$$\exp(-x)=\frac{1}{f(x)}-1$$

$$-x=\ln(\frac{1-f(x)}{f(x)})$$

$$x=\ln(\frac{1-f(x)}{f(x)})$$

4. Show that the gradients of the cross-entropy error (eq. 2) are given by (eq. 3).

$$E(\mathbf{w}_1, \dots, \mathbf{w}_K) = -\ln p(\mathbf{T}|\mathbf{w}_1, \dots, \mathbf{w}_K) = -\sum_{n=1}^N \sum_{k=1}^K t_{nk} \ln y_{nk} \qquad (4.108)$$

$$\nabla_{\mathbf{w}_j} E(\mathbf{w}_1, \dots, \mathbf{w}_K) = \sum_{n=1}^N (y_{nj} - t_{nj}) \phi_n \qquad (4.109)$$
(eq. 2)

Hints:

$$a_k = \mathbf{w}_k^{\mathrm{T}} \boldsymbol{\phi}.$$
 (4.105) (eq. 4)
$$\frac{\partial y_k}{\partial a_j} = y_k (I_{kj} - y_j)$$
 (4.106) (eq. 5)

4.
$$\frac{\partial E}{\partial y_{nk}} = \frac{-t_{nk}}{y_{nk}}$$

$$\frac{\partial E}{\partial \alpha_{nj}} = \sum_{k=1}^{K} \frac{\partial E}{\partial y_{nk}} \frac{\partial y_{nk}}{\partial \alpha_{nj}}$$

$$= -\sum_{k=1}^{K} \frac{t_{nk}}{y_{nk}} \frac{\partial y_{nk}}{\partial \alpha_{nj}} = -t_{nj} + \sum_{k=1}^{K} t_{nk} y_{nj} = -t_{nj} + y_{nj}$$

$$\Rightarrow \nabla w_{j} E(w_{i}, ..., w_{k}) = \sum_{n=1}^{K} (y_{nj} - t_{nj}) \phi_{n} \#$$