Initialize the coils data with Fourier series.

[called by: focus.]

0.1 overview

- 1. If case_coils=1, then the Fourier series will be used for represent the coils.
- 2. The basic equations about the Fourier representation is,

$$x = X_{c,0} + \sum_{n=1}^{N} \left[X_{c,n} \cos(nt) + X_{s,n} \sin(nt) \right], \tag{1}$$

$$y = Y_{c,0} + \sum_{n=1}^{N} [Y_{c,n}\cos(nt) + Y_{s,n}\sin(nt)], \qquad (2)$$

$$z = Z_{c,0} + \sum_{n=1}^{N} \left[Z_{c,n} \cos(nt) + Z_{s,n} \sin(nt) \right], \tag{3}$$

0.2 Initilization

There are several ways to initialize the coils data.

- 1. case_init = 1: Toroidally placing Ncoils circular coils with a radius of init_radius and current of init_current. The *i*th coil is placed at $\zeta = \frac{i-1}{Ncoils} \frac{2\pi}{Nfp}$.
- 2. case_init = 0: Read coils data from ext.focus file. The format is as following. This is the most flexible way, and each coil can be different.

```
# Total number of coils
       16
#----1-----1
#coil_type coil_name
  1 Mod_001
#Nseg current Ifree Length Lfree target_length
 128 9.844910899889484E+05 1 5.889288927667147E+00 1 1.0000000000000000E+00
#NFcoil
#Fourier harmonics for coils (xc; xs; yc; ys; zc; zs)
3.044612087666170E+00 8.531153655332238E-01 4.194525679767678E-02 2.139790853335835E-02
   3.243811555342430E-03
-1.172175996642087E-16
-4.456021385977147E-15 8.545613874434043E-16 -3.133154295448265E-16 1.764367073160815E-16
  -1.187904023667544E-16
0.00000000000000E+00 -5.425716121023922E-02 -8.986316303345250E-02 -2.946386365076052E-03
   -4.487052148209031E-03
-4.293247278325474E-17 -1.303273952226587E-15 7.710821807870230E-16 -3.156539892466338E-16
  9.395672288215928E-17
1.013941937492003E-03
  -----2-----2
```

3. case_init = -1: Get coils data from a standard coils.ext file and then Fourier decomposed (normal Fourier tansformation and truncated with NFcoil harmonics)

0.3 Discretization

1. Discretizing the coils data involves massive triangular functions in nested loops. As shown in Eq.(??), the outside loop is for different discrete points and for each point, a loop is needed to get the summation of the harmonics.

2. To avoid calling triangular functions every operations, it's a btter idea to allocate the public triangular arrays.

$$cmt(iD, iN) = \cos(iN \frac{iD}{D_i} 2\pi); iD = 0, coil(icoil)\%D; iN = 0, coil(icoil)\%N$$
(4)

$$smt(iD, iN) = \sin(iN \frac{iD}{D_i} 2\pi); iD = 0, coil(icoil)\%D; iN = 0, coil(icoil)\%N$$
(5)

3. Using the concept of vectorization, we can also finish this just through matrix operations. This is in **fouriermatrix**.

```
subroutine fouriermatrix(xc, xs, xx, NF, ND)
nn(0:NF, 1:1) : matrix for N; iN

tt(1:1, 0:ND) : matrix for angle; iD/ND*2pi
nt(0:NF,0:ND) : grid for nt; nt = matmul(nn, tt)
xc(1:1, 0:NF) : cosin harmonics;
xs(1:1, 0:NF) : sin harmonics;
xx(1:1, 0:ND) : returned disrecte points;

xx = xc * cos(nt) + xs * sin(nt)
```

4. Actually, in real tests, the new method is not so fast. And parallelizations are actually slowing the speed, both for the normal and vectorized method.

rdcoils.h last modified on 018-07-13 09:55:03.;

Focus subroutines;