A Robust Causal Network Pipeline for Gene Expression Time Series

Jonathan Lu, Bianca Dumitrascu, Brian Jo, Ian McDowell
Prof. Barbara Engelhardt
4/26/17

Goal: Understand Glucocorticoid Response

- Immunosuppressant drugs
 - Asthma, Eczema
 - Anti-inflammatory
 - Metabolic side effects
- Complex genetic response

Glucocorticoid Transcriptional Response is Complex

Glucocorticoid Transcriptional Response is Complex

Data

- Stimulated lung cell lines
- ~3-4 replicates/timepoint
- ~3k differentially expressed genes (~18k total)

Data

- Stimulated lung cell lines
- ~3-4 replicates/timepoint
- ~3k differentially expressed genes (~18k total)

Challenges

- Causal Inference
- High Dimensionality
- Statistical Significance

Data

- Stimulated lung cell lines
- ~3-4 replicates/timepoint
- ~3k differentially expressed genes (~18k total)

Challenges

- Causal Inference
- High Dimensionality
- Statistical Significance

Goal

- 1. Build robust causal pipeline that overcomes challenges
- 2. Validate causal networks using external data

Previous Work

	Mukhophadyay 2007, Tam 2012,	Lozano 2009, Shojaie 2010, Yao 2015,	Our Work
High- Dimensional Causal Fit			
Statistical Significance		~	
External Validation		~	

Approach

	Our Work
High- Dimensional Causal Fit	Regularized Vector Autoregression
Statistical Significance	Statistical Null and False Discovery Control from Permuted Data
External Validation	Association Test in Lung Gene Expression Data

Pipeline Workflow

Preprocess Data

Apply Causality Tests

Build Significant Network

Challenge: Causal Inference

- Vector Autoregression (VAR)
 - Granger Causality: X → Y if including past values of X helps to predict Y
 - Fast, effective, flexible lags

$$Y_{t} = \sum_{i=1}^{k} \alpha_{i} Y_{t-i} + \sum_{i=1}^{k} \beta_{i} X_{t-i} + \epsilon_{t}$$

$$H_0: \beta_i = 0$$
 for all i

$$H_A: \beta_i \neq 0$$
 for some i

Challenge: High Dimension

Fit all causes simultaneously and regularize.

$$Y_{t} = \sum_{i=1}^{k} \alpha_{i} Y_{t-i} + \sum_{g \in G} \sum_{i=1}^{k} \beta_{i}^{g} X_{t-i}^{g} + \varepsilon_{t}$$

$$\hat{\beta} = \underset{\beta}{\operatorname{arg\,min}} \|Y - X\beta\|_{2}^{2} + \lambda f(\beta)$$

$$f_{ ext{LASSO}}(\boldsymbol{eta}) = |\boldsymbol{eta}|_1 \ f_{ ext{RIDGE}}(\boldsymbol{eta}) = |\boldsymbol{eta}|_2^2 \ f_{ ext{ELASTIC}}(\boldsymbol{eta}) = lpha |\boldsymbol{eta}|_1 + (1-lpha)|\boldsymbol{eta}|_2^2$$

$$H_0: \beta_i^g = 0$$
 for given $g \in G$.

$$H_A: \beta_i^g \neq 0$$
 for some given $g \in G$

- Statistical Test is undefined for high dimension
- FDR Control is difficult for p-values
 - Around 10^8 tests
- Solution:
 - Use shuffled data as null
 - Use Coefficients instead of p-values

Timepoints

$$Y_t = \sum_{i=1}^k \alpha_i Y_{t-i} + \sum_{g \in G} \sum_{i=1}^k \beta_i^g X_{t-i}^g + \varepsilon_t$$

$$Y_t = \sum_{i=1}^k \alpha_i Y_{t-i} + \sum_{g \in G} \sum_{i=1}^k \beta_i^g X_{t-i}^g + \varepsilon_t$$

$$Y_t = \sum_{i=1}^k \alpha_i Y_{t-i} + \sum_{g \in G} \sum_{i=1}^k \beta_i^g X_{t-i}^g + \varepsilon_t$$

$$Y_t = \sum_{i=1}^k \alpha_i Y_{t-i} + \sum_{g \in G} \sum_{i=1}^k \beta_i^g X_{t-i}^g + \varepsilon_t$$

$$Y_{t} = \sum_{i=1}^{k} \alpha_{i} Y_{t-i} + \sum_{g \in G} \sum_{i=1}^{k} \beta_{i}^{g} X_{t-i}^{g} + \varepsilon_{t}$$

$$|\overrightarrow{\beta_{i}^{g}}| = 0$$

Global FDR

Local FDR

Validation

- Validate X → Y
 by:
 - Trans-eQTL
 - Association test in GTEx Data

Validation

Results

- ZS, ZU: Normalization Types
- 1, 2: Lag Numbers

Conclusion

- 1. We use Vector Autoregression to build causal networks from gene expression time series.
- 2. We address challenges of dimensionality and statistical significance.
- 3. Our causal networks are robust, validating on external data and uncovering strong signals.

Future work

- Iteratively suggest new experiments and refine networks
 - Perturbation Pagerank
- Learn causal relations under different perturbations

Acknowledgments

Engelhardt Lab (Princeton)

Bianca Dumitrascu

Brian Jo

Barbara Engelhardt

Ari, Derek, Allison, Greg, Izzy, ...

Reddy Lab (Duke)

Ian McDowell

Tim Reddy

Data collection Team

Extra

Validation

