

인공지능과 텐서플로우

김루진 강사 -----소속

인공지능을 위한 파이썬 코딩 기초

학습 내용

- 1 텐서플로어
- 2 텐서
- 3 텐서플로어 수행
- 4 CNN 예

≰☆ 엔드 투 엔드 머신러닝 플랫폼

TF 2.11이 출시되었습니다. 버전 보기

TensorFlow를 사용해 프로덕션급 머신 러닝 모델 만들기

선행 학습된 모델을 사용하 거나 직접 모델을 학습시키

다양한 실력 수준에 맞는 ML 솔루션 찾아보기

연구에서 프로덕션 단계로 나아가기

머신러닝&딥러닝을 위한 고성능 수치 계산 패키지

www.tensorflow.org

- ≫ 한 개 이상의 CPU또는 GPU를 사용하여 병렬처리 가능
- >> 구글의 브래인팀이 개발하여 오픈 API로 배포

≰常데이터 플로우

- >> 노드(Mathematical Operation) 및 에지(Multidimensional data array) 즉 Tensor로 구성
- >> 모든 데이터는 Tensor로 표현
- >> 파이토치와 함께 가장 많이 사용되고 있는 인공지능 프레임워크

≰☆ 텐서플로우의 이점, '추상화'

>> 개발자는 애플리케이션의 전체적인 논리에만 집중

- TensorFlow는 다양한 수준의 추상화를 제공하므로 사용자는 자신의 요구에 맞는 수준을 선택할 수 있습니다.
- 상위 수준의 Keras API를 사용하여 모델을 빌드하고 학습시키세요.
- 그러면 TensorFlow 및 머신러닝을 쉽게 시작할 수 있습니다.

≰ 텐서

>> 텐서는 다차원 배열,넘파이(NumPy) ndarray 객체와 비슷

RANK	ТҮРЕ	EXAMPLE	
0	scalar	[1]	
1	vector	[1,1]	
2	matrix	[[1,1],[1,1]]	
3	3-tensor	[[[1,1],[1,1]],[[1,1]],[[1,2],[2,1]]]	
n	n-tensor		

***** TensorFlow

>>> 텐서(Tensor)를 흘려 보내면서(Flow) 딥러닝 알고리즘 수행

≰위 케라스(Keras)

>>> TensorFlow 2.0 부터는 직관적인 High-Level API

≰∉ Tensor

» n차원의 배열로 numpy와 호환하며 사용

테서플로우 사용하기

♣ Colab 주소

》 https://colab.research.google.com/ 활용(64bit)

- ▶ Colab에서 GPU를 사용하는 방
 - 상단에서 런타임 > 런타임 유형 변경 클릭

텐서플로우 사용하기

≰등 필요한 패키지 설치

- >> pip install tensorflow
- >> pip install keras
- >> pip install gensim

덴서플로우 사용하기

- ≰☆ 함수를 사용하여 리스트나 넘파이 배열에서 텐서 만들 ₩tf.convert_to_tensor 함수
 - ▶리스트나 넘파이 배열에서 텐서 만드는 함수

테서플로우 사용하기

≰策텐서 만들기

```
a = np.array([1, 2, 3], dtype=np.int32)
b = [4, 5, 6]
t_a = tf.convert_to_tensor(a)
t_b = tf.convert_to_tensor(b)
print(t_a)
print(t_b)
```

>>> tf.Tensor([1 2 3], shape=(3,), dtype=int32)

테서플로우 사용하기

≰ 속성 확인하기

```
t_{ones} = tf.ones((2, 3))
```

t_ones.shape

>>>TensorShape([2, 3])

t_ones.numpy()

>>> array([[1., 1., 1.], [1., 1., 1.]], dtype=float32)

- **≰** TensorFlow 2.0
 - >>> 2019년 9월 30일, TensorFlow 2.0 정식 Release1.x 버전과 비교
 - >> 즉시 실행 모드로 불리는 Eager Execution 적용되어 코드의 직관성이 높음

▶사용자 친화적이어 서 쉽게 배울 수 있 는 Keras만을 High-Level API로 공식 지원

● 텐서플로우

≰ TensorFlow 2.0

>> Eager Execution (즉시 실행 모드)

```
import tensorflow as tf
import numpy as np
                            Eager Execution
tf.__version__
'2.2.0'
a = tf.constant(10)
b = tf.constant(20)
                     numpy() 메서드는 numpy 값을 리턴
d = (a+b).numpy()
print(type(c))
                        tf.convert_to_tensor() 메서드는
print(c)
                        numpy 값을 tensor 값으로 변환
print(type(d), d)
d_numpy_to_tensor = tf.convert_to_tensor(d)
print(type(d_numpy_to_tensor))
print(d_numpy_to_tensor)
<class 'tensorflow.python.framework.ops.EagerTensor'>
tf.Tensor(30, shape=(), dtype=int32)
<class 'numpy.int32'> 30
<class 'tensorflow.python.framework.ops.EagerTensor'>
tf.Tensor(30, shape=(), dtype=int32)
```

- ▶numpy() 함수를 이용하면 파이썬의 넘파이 타입으로 변환 가능
- → Eager Execution 기능을 통해 텐서플로우를 파이썬처럼 사용 가능

≰ TensorFlow 2.0

>> Eager Execution – tf.placeholder 삭제

- ▶TF 1.x 버전
 - 함수를 실행하여 결과를 얻기 위해서는 tf.placeholder()에 입력 값을 주고 그 값을 이용해 함수에서 정의된 연사을 실행

【 TensorFlow 2.0

>> Eager Execution – tf.placeholder 삭제

- ▶TF 2.0
 - 일반적인 Python 코드와 마찬가지로 함수에 값을 직접 넘겨주면 즉시 결과 를 얻을 수 있음

常 TensorFlow 2.0

>> Eager Execution – tf.placeholder 삭제

○ 텐서플로우 활용

머신러닝을 통해 까다로운 실생활 문제를 해결하도록 지원하는 전체 생태계

- ≰ 사용분야 사용되는 분야
 - >> 필기 숫자 판별
 - >> 이미지 인식
 - >> 단어 임베딩
 - >> 반복 신경망
 - >> 기계 번역을 위한 시퀀스 투 시퀀스 모델
 - >> 자연어 처리

○ 텐서플로우 활용

머신러닝을 통해 까다로운 실생활 문제를 해결하도록 지원하는 전체 생태계

- ≰ 텐서플로우가 사용되는 곳
 - >>> 분류: 개체가 속한 범주를 식별
 - >> 응용프로그램: 스팸 감지, 이미지 인식
 - >>> 알고리즘: SVM , 최근접 이웃 , 랜덤 포레스트
 - >> 회귀: 객체와 관련된 연속 값 속성 예측
 - >>> 클러스터링: 유사한 개체를 세트로 자동 그룹화

≰☆ 자연어 처리를 통한 예제 구성

Hi King

Hi Queen

Hi Jack

WORD	INDEX	EXAMPLE
hi	0	[1,0,0,0]
king	1	[0,1,0,0]
queen	2	[0,0,1,0]
jack	3	[0,0,0,1]

[Tensorflow] 행렬 원소간 곱 vs. 행렬 곱(tf.math.multiply() vs.tf.matmul())

감사합니다.