EECS 495—Intro to Database Systems Fall - 2015

HW No. 2 –Solutions

Q1:

a)
$$Y \rightarrow Z \Rightarrow Y \rightarrow YZ$$
 (augmentation) $X \rightarrow Y, Y \rightarrow YZ \Rightarrow X \rightarrow YZ$ (transitivity)

b)
$$X \rightarrow Y \Rightarrow XZ \rightarrow YZ$$
 (augmentation) $Z \rightarrow W \Rightarrow YZ \rightarrow YW$ (augmentation) $XZ \rightarrow YZ, YZ \rightarrow YW \Rightarrow XZ \rightarrow YW$ (transitivity)

c) To disprove the rule, we show a relation which violates it.

X Y Z In this relation,

$$XY \rightarrow Z$$
 and $Z \rightarrow X$ holds
 $XY \rightarrow Z$ and $Z \rightarrow X$ holds

Q2:

- 1. The first FD causes no violation since the closure of ABH contains all attributes.
- 2. The second FD A->DE violates BCNF since A is not a superkey.

We split into R1= (ADE; $\{A->DE\}$) and

R2= (ABCFGH; { ABH \rightarrow C, BGH \rightarrow F, F \rightarrow AH, BH \rightarrow G})

Note that $F \rightarrow ADH$ has been replaced by the derived $FD F \rightarrow AH$.

Similarly BH \rightarrow GE is been replaced by B \rightarrow G.

3. In the second iteration we test R1 and see tit is in BCNF.

In R2 observe that ABH-→C and BGH → do not violate BCNG since ABH and BGH are superkeys in the original relation R and they still remain superkeys in R2.

The FD causing problems is $F \rightarrow AH$ since F is not superkey in R2 and we split R2 into:

R21 =(FAH;
$$\{F \rightarrow AH\}$$
) and
R22 =(FBCG; $\{FB \rightarrow CG\}$)

Note that FB→CG is not in the original set of FDs F in R, but is derivable from F.

Now we are finished since both R21 and R22 are in BCNF.

Observe, however that the decomposition is lossy.

Q3:

We claim that any two-attribute relation is in BCNF. We need to examine the possible nontrivial FD's with a single attribute on the right. There are not too many cases to consider, so let us consider them in turn. In what follows, suppose that the attributes are A and B.

- 1. There are no nontrivial FD's. Then surely the BCNF condition must hold, because only a nontrivial FD can violate this condition. Incidentally, note that {A,B} is the only key in this case.
- 2. $A \rightarrow B$ holds, but $B \rightarrow A$ does not hold. In this case, A is the only key, and each nontrivial FD contains A on the left (in fact the left can only be A). Thus there is no violation of the BCNF condition.
- 3. $B \rightarrow A$ holds, but $A \rightarrow B$ does not hold. This case is symmetric to case (2).
- 4. Both $A \rightarrow B$ and $B \rightarrow A$ hold. Then both A and B are keys. Surely any FD has at least one of these on the left, so there can be no BCNF violation.

Q4:

If we apply the extraneity test to $A \rightarrow BC$, we find that both B and C are extraneous under F. However, it is incorrect to delete both! The algorithm for finding the canonical cover picks one of the two, and deletes, it. Then,

1. If C is deleted, we get the set $F' = \{A \rightarrow B, B \rightarrow AC, \text{ and } C \rightarrow AB\}$. Now, B is not extraneous in the right-hand side of $A \rightarrow B$ under F'. Continuing the algorithm, we find A and B are extraneous in the right-hand side of $C \rightarrow AB$, leading to two canonical covers

$$F_C = \{A \rightarrow B, B \rightarrow C, \text{ and } C \rightarrow A\}, \text{ and } F_C = \{A \rightarrow B, B \rightarrow AC, \text{ and } C \rightarrow B\}.$$

2. If B is deleted, we get the set $\{A \to C, B \to AC, \text{ and } C \to AB\}$. This case is symmetrical to the previous case, leading to the canonical covers

$$F_C = \{A \rightarrow C, C \rightarrow B, \text{ and } B \rightarrow A\}, \text{ and } F_C = \{A \rightarrow C, B \rightarrow C, \text{ and } C \rightarrow AB\}.$$

```
Q5:
```

```
a. select b
from r
group by b
having count(distinct c) >1
b. create assertion b-to-c check
(not exists
(select b
from r
group by b
having count(distinct c)>1
)
```

Q6:

a. Starting with $A \rightarrow BC$. We can conclude: $A \rightarrow B$ and $A \rightarrow C$.

```
Since A \rightarrow B and B \rightarrow D, A \rightarrow D (decomposition, transitive)

Since A \rightarrow CD and CD \rightarrow E, A \rightarrow E (union, decomposition, transitive)

Since A \rightarrow A, we have (reflexive)

A \rightarrow ABCDE from the above steps (union)

Since E \rightarrow A, E \rightarrow ABCDE (transitive)

Since CD \rightarrow E, and CD \rightarrow ABCDE (transitive)

Since B \rightarrow D and BC \rightarrow CD, BC \rightarrow ABCDE (augmentative, transitive)
```

The candidate keys are A, BC, CD, and E.

b. Answer: A decomposition $\{R_1, R_2\}$ is a lossless-join decomposition if $R_1 \cap R_2 \to R_1$ or $R_1 \cap R_2 \to R_2$. Let $R_1 = (A, B, C), R_2 = (A, D, E),$ and $R_1 \cap R_2 = A$. A is a candidate key. Therefore $R_1 \cap R_2 \to R_1$.