# CG1111: Engineering Principles and Practice I

**Basic Principles of DC Motors** 



## Learning Outcomes

- Learn about the different types of motors
- Understand the parameters of DC motor and its circuit representation

Understand DC motor specifications

#### Introduction

- Motors convert electrical energy to mechanical energy, by using the force created by interacting magnetic fields
- List of some common household appliances that use motors:
  - -Fan, refrigerator, DVD player, computer's cooling fan, vacuum cleaner, hairdryer, etc.
- All motors have a stationary part and a moving part:
  - -Stationary part: "stator"
  - Moving part: "rotor" if it produces rotational motion

#### Classification of Motors



- There are many ways to construct a motor. Not all of them are shown here.
- For CG1111, we shall focus on permanent magnet DC (PMDC) motor

## Some Special DC Motors

#### Brushless DC Motor

Requires an electronic circuit
 between motor & power supply,
 which produces alternating
 current in motor coil from DC

-Comes with 3 wires, unlike normal DC motors (2 wires)



#### Stepper Motor

- -DC motors that move in discrete steps Motor
- With computer control, can achieve very precise positioning & speed control



Credit: www.engineersgarage.com

## Some Special DC Motors

#### Gear Motor

- Made up of electric motor combined with a geared speed reducer
- -For a motor of a given power, higher torque can be produced by decreasing the speed:

 $Power = Torque \times Speed$ 



#### Motor vs. Generator

 If a torque is applied to a DC motor's shaft to spin it, a voltage is produced between its terminals

#### Simple test:

- -Connect an LED between the terminals of a small DC motor (e.g, used in toys) and spin the shaft by fingers
- The LED will be ON for one direction of spin, and not for the reversed spin (LED is reversed biased)

#### How Does A PMDC Motor Work?

- Let us first look at a phenomenon:
  - In the presence of a magnetic field, a current-carrying conductor experiences a force

-The direction of the force can be determined using the right-hand rule:



#### How Much Force is Exerted?

 The magnitude of the force exerted on the conductor is given by

$$F = B \times I \times l \times \sin \theta$$
,

#### where:

- -B is the magnetic flux density,
- -I is the current through the conductor,
- -l is the length of the conductor,
- $-\theta$  is the angle between the direction of the magnetic field and the direction of the current

## What Happens When the Conductor is a Loop?

In the case of a current-carrying loop, a torque is produced that can turn the loop



#### The Need for "Commutation"

For the loop to continue spinning, the loop's current needs to be reversed in direction every half a turn, a procedure called "commutation"

 Accomplished either mechanically via the use of commutator & carbon brush, or electronically via electronic commutation



## Real DC Motor has Many Loops

- A real motor consists of many loops spread over the circumference of a core known as "armature":
  - Total torque is much higher than single loop
  - They allow the motor to turn continuously





## Motor Speed

- Motor speed is often specified as RPM (revolutions per minute)
- Relation between RPM & angular speed  $\omega$ :

$$\omega = 2\pi \times (rev \ per \ second)$$

$$= 2\pi \times \frac{RPM}{60} \text{ [rad/s]}$$

## Motor Constant: K<sub>t</sub>

• Torque produced is proportional to motor current  $I_m$ :

$$T_{\text{shaft}} = K_t I_m \text{ [N.m]}$$

- K<sub>t</sub> is called "torque constant"
  - It describes how well the motor converts current into torque
  - Depends on magnetic properties & geometry of motor
  - Normally measured after motor was built

## Motor Constant: K<sub>e</sub>

- When a motor shaft spins, the magnetic flux passing through the rotor coil changes
- The changing flux induces an electromotive force (emf) in the coil, which opposes the source current
- The induced emf is called "back emf", and is proportional to rotational speed:

$$E_b = K_e \omega \text{ [V]}$$

- K<sub>e</sub> is called "back emf constant"
  - Depends on magnetic properties & geometry of motor
  - For PMDC motor:

$$K_t = K_e$$

#### Power

Mechanical power at motor shaft:

$$P_{\rm out} = T_{\rm shaft} \, \omega \, [W]$$

• Electrical power supplied to motor:

$$P_{\text{in}} = V_m I_m \text{ [W]}$$

## Motor Efficiency



- Electric motors are energy conversion devices
- Part of energy is always lost in any energy conversion process
- Mechanical power available at shaft is always less than electrical power input
- Efficiency of motor:

$$\eta = \frac{P_{\text{out}}}{P_{\text{in}}}$$

#### Circuit Representation: PMDC Motor



From the circuit:

$$I_m = \frac{V_m - E_b}{R_m}$$

• Since  $E_b = K_e \omega$ , we have:

$$I_m = \frac{V_m}{R_m} - \frac{K_e \omega}{R_m}$$

### Basic Properties of PMDC Motor

Rearranging:

$$\omega = \frac{V_m}{K_e} - \frac{R_m I_m}{K_e}$$

• For a fixed load (i.e., fixed  $T_{\rm shaft}$ , which implies fixed  $I_m$  since  $T_{\rm shaft} = K_t I_m$ ):

Shaft speed  $\omega$  can be increased by increasing motor voltage  $V_m$ 

• For a fixed voltage  $V_m$ , if  $T_{\rm shaft}$  increases,  $I_m$  increases, and hence  $\omega$  decreases:

Shaft speed  $\omega$  decreases with increasing load  $T_{\rm shaft}$ 

## Key Parameters in Datasheet

- No-load speed:
  - -Speed at which shaft spins without mechanical load
- No-load current:
  - -Current drawn under no-load condition

#### Note:

-When no load is attached to the motor shaft, the motor is still required to produce torque to overcome the friction torque

### Key Parameters in Datasheet

#### Stall torque:

- -Amount of load that causes motor to stop ( $\omega = 0$ )
- -This is the maximum torque the motor can produce

#### Stall current:

- -Current drawn under stall condition
- Most motors will be damaged if subjected to stall conditions for too long

#### **THANK YOU**