Topics: Normal distribution, Functions of Random Variables

- 1. The time required for servicing transmissions is normally distributed with μ = 45 minutes and σ = 8 minutes. The service manager plans to have work begin on the transmission of a customer's car 10 minutes after the car is dropped off and the customer is told that the car will be ready within 1 hour from drop-off. What is the probability that the service manager cannot meet his commitment?
 - A. 0.3875
 - B. 0.2676
 - C. 0.5
 - D. 0.6987

Answer: B

Wok being start after 10 minutes, so the Average time increase from 45 to 55 minutes.

$$Z = (X-\mu)/\sigma$$

= $(55-45)/8 = 0.625$

Probability = 0.26598552904870054

- 2. The current age (in years) of 400 clerical employees at an insurance claims processing center is normally distributed with mean $\mu = 38$ and Standard deviation σ =6. For each statement below, please specify True/False. If false, briefly explain why.
 - A. More employees at the processing center are older than 44 than between 38 and 44.
 - B. A training program for employees under the age of 30 at the center would be expected to attract about 36 employees.

Answer:

A. False

$$Z = (X-\mu)/\sigma$$

= $(44-38)/6$
= 1

Probability = 0.8413447460685429

Here, $(\mu + \sigma = 38+6=44)$ most of the data falls between one std. deviation of the mean, so it is not possible.

B. True

Z=(X-
$$\mu$$
)/ σ
P(X\le 30) = p (Z \le (30-38)/6) = p (Z \le -1.33) = 0.0918(using z table)
Expected count = 0.0918*400 = 36.72 (400 is clerical employees)

3. If $X_1 \sim N(\mu, \sigma^2)$ and $X_2 \sim N(\mu, \sigma^2)$ are *iid* normal random variables, then what is the difference between 2 X_1 and $X_1 + X_2$? Discuss both their distributions and parameters.

Answer:

- As we know that if $X \sim N$ (μ_1 , σ_1^2), and $Y \sim N$ (μ_2 , σ_2^2) are two independent random variables then $X + Y \sim N$ ($\mu_1 + \mu_2$, $\sigma_1^2 + \sigma_2^2$), and $X Y \sim N$ ($\mu_1 \mu_2$, $\sigma_1^2 + \sigma_2^2$)
- Similarly, if Z = aX + bY, where X and Y are as defined above, i.e Z is linear combination of X and Y, then $Z \sim N (a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^{\wedge 2})$.
- Therefore, in the question, $2X_1 \sim N$ (2 μ ,4 σ^2) and $X_1 + X_2 \sim N$ ($\mu + \mu$, $\sigma^2 + \sigma^2$) $\sim N$ (2 μ , 2 σ^2), 2X1-(X1+X2) = N (4 μ ,6 σ^2).
- \triangleright 2 X_1 will be greater scale version than $X_1 + X_2$. If X_1 and X_2 are normally distributed then the sum of the random sample will be exactly same.
- 4. Let $X \sim N$ (100, 20²). Find two values, a and b, symmetric about the mean, such that the probability of the random variable taking a value between them is 0.99.
 - A. 90.5, 105.9
 - B. 80.2, 119.8
 - C. 22, 78
 - D. 48.5, 151.5
 - E. 90.1, 109.9

Answer: D

- 5. Consider a company that has two different divisions. The annual profits from the two divisions are independent and have distributions $Profit_1 \sim N(5, 3^2)$ and $Profit_2 \sim N(7, 4^2)$ respectively. Both the profits are in \$ Million. Answer the following questions about the total profit of the company in Rupees. Assume that \$1 = Rs. 45
 - A. Specify a Rupee range (centered on the mean) such that it contains 95% probability for the annual profit of the company.
 - B. Specify the 5th percentile of profit (in Rupees) for the company
 - C. Which of the two divisions has a larger probability of making a loss in a given year?

Answer:

a.

stats.norm.ppf(0.975, loc=5, scale=3)	10.87	45×10.87	= 489.15
stats.norm.ppf(0.25, loc=5,scale=3)	2.97	45× 2.97	= 133.65
stats.norm.ppf(0.975, loc=7,scale=3)	12.87	45×12.87	= 579.15
stats.norm.ppf (0.25, loc=7, scale=3)	4.97	45× 4.97	= 223.65

Range of Profit₁ = (133.65, 489.15)

Range of Profit₂ = (223.65, 579.15)

b.

stats.norm.ppf(0.05, loc=5, scale=3)	2.065	45×2.065	= 92.925
stats.norm.ppf(0.05, loc=7,scale=3)	0.065	45×0.065	= 02.925

 5^{th} percentile of profit in rupees = 92.925 + 02.925 = 95.25

c. 2nd division has larger probability of making a loss in given year.