Naïve Bayes classifier

Outline

- Probability Review
 - Conditional Probability
 - Bayes Theorem
 - Conditional Independence
- Naïve Bayes Classifier

Naïve Bayes Classifier

This is a computationally efficient method that is sometimes very effective.

- Key concepts to understand are:
 - Conditional probability
 - Bayes theorem
 - Conditional independence

Conditional Probability

- P(A/B): the conditional probability of event A "given" event B
- i.e. the probability of event *A* occurring assuming event *B* has happened/will happen

	far	close	total
make	5	3	8
miss	10	2	12
total	15	5	20

•
$$P(make) = 8/20=0.4$$

$$P(make|close)=3/5=0.6$$

•
$$P(close|make) = ?$$

Conditional Probability

• Definition: P(A/B) = P(A & B) / P(B)

Example:

	far	close	total
make	5	3	8
miss	10	2	12
total	15	5	20

$$P(make/close) = P(make \& close) / P(close) = (3/20) / (5/20)$$

= 0.15/0.25 = 0.6

Note: this means P(A/B) * P(B) = P(B/A) * P(A)

Bayes Rule

Conditional Probability:

$$P(C \mid A) = \frac{P(A \& C)}{P(A)}$$

$$P(A \mid C) = \frac{P(A \& C)}{P(C)}$$

Bayes Theorem:

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

Example of Bayes Rule

- Given:
 - A doctor knows that meningitis causes stiff neck 50% of the time
 - Prior probability of any patient having meningitis is 1/50,000
 - Prior probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Independence

■ A and B are independent if P(A & B) = P(A)*P(B)

Here the events <u>are not</u> independent:

$$P(make \& far) = 5/20=0.25$$

but $P(make)*P(far) = 8/20*15/20=0.30$

	far	close	total
make	5	3	8
miss	10	2	12
total	15	5	20

Independence

Here the events <u>are</u> independent:

$$P(make \& far) = 9/20=0.45$$

which equals
 $P(make)*P(far) = 12/20*15/20=0.45$

	far	close	total
make	9	3	12
miss	6	2	8
total	15	5	20

Conditional Independence

• A and B are conditionally independent given C iff P(A & B/C) = P(A/C)*P(B/C)

• Question:

- Are height and reading ability independent?
- What if we take age into account?

Conditional Independence

A and B are conditionally independent given C iff

$$P(A \& B/C) = P(A/C)*P(B/C)$$

 Example: Height and reading ability are not independent but they are conditionally independent given the age level

	a		
	short	tall	total
reads poorly	92	29	121
reads well	18	81	99
total	110	110	220

	you		
	short	tall	total
reads poorly	90	9	99
reads well	10	1	11
total	100	10	110

	0		
	short	tall	total
reads poorly	2	20	22
reads well	8	80	88
total	10	100	110

Outline

- Probability Review
 - Conditional Probability
 - Bayes Theorem
 - Conditional Independence
- Naïve Bayes Classifier

Bayesian Classifiers

- Consider each attribute and class label as random variables
- Given a record with attributes $\{A_1, A_2, ..., A_n\}$
 - Goal is to predict class C
 - Specifically, we want to find the value of C that maximizes $P(C/A_1, A_2, ..., A_n)$
- Can we estimate $P(C/A_1, A_2, ..., A_n)$ directly from data?

Bayesian Classifiers

- Approach:
 - Compute the posterior probability $P(C/A_1, A_2, ..., A_n)$ for all values of C using the Bayes theorem

$$P(C \mid A_1, A_2, ..., A_n) = \frac{P(A_1, A_2, ..., A_n \mid C)P(C)}{P(A_1, A_2, ..., A_n)}$$

- Choose value of C with maximum $P(C | A_1, A_2, ..., A_n)$
- Equivalent to choosing value of C that maximizes $P(A_1, A_2, ..., A_n/C) * P(C)$
- How to estimate $P(A_1, A_2, ..., A_n / C)$?

Naïve Bayes Classifier

- Assume conditional independence among attributes A_i with respect to class:
- $P(A_1, A_2, ..., A_n/C) = P(A_1/C_j) P(A_2/C_j) ... P(A_n/C_j)$
- Estimate $P(A_i/C_j)$ for all A_i and C_j
- For each new record $\{A_1, A_2, ..., A_n\}$:
 - Calculate $P(C_j | A_1, A_2, ..., A_n)$ for each class C_j
 - Assign the class with the largest conditional probability

How to Estimate Probabilities from Data?

- Class: $P(C) = N_c/N$
 - e.g., P(No) = 7/10, P(Yes) = 3/10
- For discrete attributes:
- $P(A_i / C_k) = |A_{ik}|/N_c$

where A_{ik} is number of instances having attribute A_i and belongs to class C_k

Examples:

$$P(Status=Married/No) = 4/7$$

 $P(Refund=Yes/Yes)=0$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

How to Estimate Probabilities from Data?

- For continuous attributes:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability $P(A_i/c)$

How to Estimate Probabilities from Data?

Normal distribution:

$$P(A_i \mid c_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(A_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$$

- One for each (A_i, c_i) pair
- For (Income, Class=No):
 - If Class=No
 - Sample mean = 110
 - Sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi} (54.54)} e^{-\frac{(120-110)^2}{2(2975)}} = 0.0072$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Example of Naïve Bayes Classifier

Given a Test Record:

naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0
```

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

X = (Refund = No, Married, Income = 120K)

```
• P(X/Class=No) = P(Refund=No/Class=No)

\times P(Married/Class=No)

\times P(Income=120K/Class=No)

= 4/7 \times 4/7 \times 0.0072 = 0.0024
```

•
$$P(X/Class=Yes) = P(Refund=No/Class=Yes)$$

 $\times P(Married/Class=Yes)$
 $\times P(Income=120K/Class=Yes)$
 $= 1 \times 0 \times 1.2 \times 10^{-9} = 0$

```
Since P(X|No)P(No) > P(X|Yes)P(Yes)
Therefore P(No|X) > P(Yes|X)
=> Class = No
```


Naïve Bayes Classifier

- If one of the conditional probabilities is zero, then the entire expression becomes zero.
- Probability estimation:

Original:
$$P(A_i \mid C) = \frac{N_{ic}}{N_c}$$

Laplace:
$$P(A_i \mid C) = \frac{N_{ic} + 1}{N_c + c}$$

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	ves	no	no	ves	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

A: attributes M: mammals N: non-mammals

$$P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A|N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A \mid M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

=> Mammals

Naïve Bayes (Summary)

- Robust to isolated noise points and any irrelevant attributes
- Handle missing values by ignoring the instance during probability estimate calculations
- Shown to work well on text classification related problems
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN)

