TakeHomeMidterm Econ 8050: Macroeconomics II Svetlana Pashchenko

Life-cycle model.

Consider the problem of a retired person who decumulates a given amount of wealth W. He solves the following problem:

$$\sum_{t=1}^{T} \beta^t u(c_t) \longrightarrow \max_{c_t, k_{t+1}}$$

s.t.

total resources of the household:

$$res_t = k_t(1+r) + y_t - x_t$$
$$k_1 = W$$

Here k_t is savings, y_t is pension income, and x_t is medical expense shock. There is a means-tested support program that guarantees each household consumption at the level c_{min} if his resources are too low. If $res_t > c_{\min}$, then $c_t = res_t - k_{t+1}$, $k_{t+1} \ge 0$. Else, $c_t = c_{\min}$ and $k_{t+1} = 0$.

Solve the model using backward induction. Assume CRRA utility function with risk aversion σ : $u(c_t) = \frac{c_t^{1-\sigma}}{1-\sigma}$. Set $\beta = 0.95, r = 0.04, \sigma = 3, T = 40, c_{\min} = 0.1$. For income, set $y_t = 1$ for all t. For initial wealth set W = 10. Assume x_t can take two values with probability 0.8 and 0.2. Download the file containing the values for x_t from the course website (xpts40.in). Discretize k using 100 gridpoints, so that k(1) = 0 and k(100) = 100. Make sure the grid is more dense around 0. When looking for optimal k_{t+1} do NOT restrict it to lie on the grid. Make sure you enforce the constraint $k_{t+1} \geq 0$. (When looking for a maximum you can use Matlab command fminbnd.) To find value function outside the grid of k use linear interpolation. (When doing linear interpolation command find can be useful.)

1. Solve the model and plot resulting policy functions for k_{t+1} and value function for ages 10 and 30 fixing x_t at the 1st and 2nd grid.

Organize your graphs as follows: 2×2 matrix. Left column - savings, right column - value function. Top row - for age 10, bottom row - age 30. Each graph should have 2 lines (clearly labeled): fixing x_t at the 1st and 2nd grid (command subplot in Matlab can be useful).

- 2. Simulate $\{x_t\}$ for t = 1:40. Plot savings over the lifecycle using your policy function.
- 3. Increase c_{min} to 0.5 and resolve the model. Plot savings over the life cycle.
- 4. Go back to c_{min} equal to 0.1. Remove medical shok (set $x_t = 0$). Resolve the model and plot savings over the lifecycle.
- 5. Go back to the initial parametrization with medical shok and increase β to 0.99. Resolve the model and plot savings over the lifecycle.
- 6. Combine saving profiles from questions 2-5 on the same graph and compare. Make sure to clearly label each line. Provide economic intuition.