

Coffee Machine Predictive Maintenance Challenge

Marcello Morchio - Andrea Boero

May 23rd 2019 – www.datascienceseed.com

The Challenge

Counters

Serial	YYYY	MM	dd	hh:mm:ss	Week	Model	LabelCounter	AbsoluteCounter	RelativeCounter
1535632	2016	11	29	04:00:07	49	model 31	numcaffegenerale	179112	0
1535632	2016	11	29	05:00:07	49	model 31	numcaffegenerale	179120	8
1535632	2016	11	29	06:00:07	49	model 31	numcaffegenerale	179158	38

45.330.415 entries 395 csv files

Faults

Serial	YYYY	ММ	dd	hh:mm:ss	Week	Model	Errorcode	Critical
1535632	2016	11	29	04:00:07	49	model 62	185	WARNING
1535632	2016	11	29	05:00:07	49	model 20	185	WARNING
1535632	2016	11	29	06:00:07	49	model 20	185	WARNING

364.695 entries

395 csv files

13 MB

Cleanings

Errorcode	Model	Week	hh:mm:ss	dd	ММ	YYYY	Serial
1	model 10	49	04:00:07	29	11	2016	1535632
1	model 9	49	05:00:07	29	11	2016	1535632
1	model 31	49	06:00:07	29	11	2016	1535632

73.861 entries

391 csv files

3 MB

Let's see the data in its face!

DataScienceSeed

In [5]: 1 df_counters.head()

Out[5]: Serial YYYY MM dd hh:mm:ss Week Model LabelCounter AbsoluteCounter RelativeCounter

0 1535632 2016 11 29 00:00:38 49 model 31 numcaffegenerale 179112.0 0.0

11 29 01:00:07 49 model 31 numcaffegenerale 179112.0 1 1535632 2016 0.0 2 1535632 2016 11 29 02:00:07 49 model 31 numcaffegenerale 179112.0 0.0 11 29 03:00:07 179112.0 3 1535632 2016 49 model 31 numcaffegenerale 0.0 4 1535632 2016 11 29 04:00:07 49 model 31 numcaffegenerale 179112.0 0.0

In [6]: 1 df_counters.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 45330415 entries, 0 to 192929

Data columns (total 10 columns):

Serial int64 YYYY int64 int64 MM dd int64 object hh:mm:ss Week int64 Model object LabelCounter object AbsoluteCounter float64 RelativeCounter float64

dtypes: float64(2), int64(5), object(3)

memory usage: 3.7+ GB

Out[11]: LabelCounter 78 numcaffegr1 numcaffegenerale 77 75 numacqua 50 nummac1gr1 nummac2gr1 50 50 numcicligr1 numlattegr1 numvaporeariats 41 38 numvapore numlattefr 36 32 numcaffegr2 numvaporets 31 25 ngr2 25 ngr1 tempogr2 25 numcaffegr3 19 17 ngr3 17 portatagr3 16 tempogr3 nummac3gr1 numcaffegr4 numsolubile portatagr4 ngr4 tempogr4 numcicligr2 nummac3gr2 numlattegr2 nummac1gr2 nummac2gr2 Name: Model, Length: 34, dtype: int64

Explore counters

DataScienceSeed

	Serial	YYYY	ММ	dd	hh:mm:ss	Week	Model	LabelCounter	AbsoluteCounter	RelativeCounter
0	1535632	2016	11	29	00:00:38	49	model 31	numcaffegenerale	179112.0	0.0
1	1535632	2016	11	29	01:00:07	49	model 31	numcaffegenerale	179112.0	0.0
2	1535632	2016	11	29	02:00:07	49	model 31	numcaffegenerale	179112.0	0.0
3	1535632	2016	11	29	03:00:07	49	model 31	numcaffegenerale	179112.0	0.0
4	1535632	2016	11	29	04:00:07	49	model 31	numcaffegenerale	179112.0	0.0

Cleaning?

Counter names are not homogenous - numcaffegr1

7/

DataScienceSeed df_counters[['LabelCounter','RelativeCounter']].boxplot(by='LabelCounter',figsize=(15,6)) plt.xticks(rotation=90) plt.show() Boxplot grouped by LabelCounter RelativeCounter mask = df counters['LabelCounter']==most used counter df_counters[mask][['RelativeCounter']].describe() 1.0 RelativeCounter Cleaning 4.062609e+06 4.301778e+01 Numcaffegr1 1.346052e+03 $< x_{mean} + 2\sigma$ Min -20000-2.003300e+04 0.000000e+00 Max + 9000000.6 0.000000e+00 4 000000e+00 9.594000e+04 0.2 umcaffegr4 umlattegr1

Explore machines population

Let's see how many different machines we have in the datasets

```
In [29]:
             set counters = set(df counters['Serial'].unique())
           2 set_faults = set(df_faults['Serial'].unique())
             set cleanings = set(df cleanings['Serial'].unique())
             print("SN in counters : %5d"%len(set counters))
             print("SN in faults : %5d"%len(set faults))
             print("SN in cleanings : %5d"%len(set cleanings))
         SN in counters :
                           1258
         SN in faults
                           1109
         SN in cleanings :
                            718
In [30]:
             print("SN in cleaning & faults : %5d"%len(set_cleanings & set_faults))
          print("SN in counters & faults : %5d"%len(set counters & set faults))
             print("SN in all sets : %5d"%len(set cleanings & set counters & set faults))
         SN in cleaning & faults :
```

What machines to keep in the dataset to build the model?

684

SN in counters & faults : 1102

SN in all sets

We are interested in the correlation with cleanings and faults so we may decide to keep only the intersection

DataScienceSeed

Cleaning?

```
DataScienceSeed
In [31]:
               models population = pd.concat([df counters[['Model', 'Serial']],
                                                df faults[['Model','Serial']],
                                                df_cleanings[['Model','Serial']]]).drop_duplicates()['Model'].value_counts()
               models_population
Out[31]:
          model 20
                       263
          model 10
                       183
          model 13
                       168
          model 9
                       150
                        47
          model 11
          model 12
                        41
                                                           dd
                                                              hh:mm:ss Week
                                                                                       LabelCounter AbsoluteCounter RelativeCounter
                                                                               Model
          model 8
                        41
                                                                                                                           0
                                                                04:00:07
                                                                                                          179112
                                          1535632
                                                  2016
                                                        11 29
                                                                             model 31
                                                                                     numcaffegenerale
          model 60
                        40
          model 63
                        36
                                                                05:00:07
                                                                                     numcaffegenerale
                                                                                                          179120
                                          1535632
                                                  2016
                                                                          49 model 31
          model 50
                        21
                                          1535632
                                                                06:00:07
                                                                          49 model 31
                                                                                     numcaffegenerale
                                                                                                          179158
                                                  2016
                                                        11 29
          model 14
                        20
          model 31
                        17
          model 5
                        15
                                                      MM
                                                          dd
                                                              hh:mm:ss Week
                                                                                      Errorcode
                                                                                                  Critical
                                           Serial
                                                 YYYY
                                                                                Model
          model 19
                        15
          model 22
                        14
                                                           29
                                                                                           185 WARNING
                                         1535632
                                                 2016
                                                       11
                                                                04:00:07
                                                                              model 62
                                         1535632
                                                 2016
                                                       11 29
                                                                05:00:07
                                                                              model 20
                                                                                            185 WARNING
          model 68
          model 69
                                                       11 29
                                                                                            185 WARNING
                                         1535632
                                                 2016
                                                                06:00:07
                                                                             model 20
          model 30
          model 45
          model 43
                                                 YYYY MM
                                                           dd
                                                               hh:mm:ss Week
                                                                                Model
                                                                                       Errorcode
                                           Serial
          model 28
                                         1535632
                                                        11 29
                                                                 04:00:07
                                                                               model 10
                                                                                                                Explore models
          model 29
          model 4
                                         1535632
                                                  2016
                                                           29
                                                                 05:00:07
                                                                               model 9
          model 58
                                                                06:00:07
                                         1535632
                                                  2016
                                                       11 29
                                                                              model 31
          model 46
          model 75
          model 36
          model 65
          model 49
```

model 67

Name: Model, Length: 78, dtype: int64

```
In [33]: 1 df_faults['Critical'].value_counts()
```

Out[33]: 1 192014 CRITICAL 53931 WARNING 44889

Name: Critical, dtype: int64

Explore Faults

The alarm type "1" is numeric an not homogeneous with CRITICAL and WARNING Let's convert it to a string

```
In [34]: 1 # if-then on one column, see
2 # http://pandas-docs.github.io/pandas-docs-travis/user_guide/cookbook.html
3 df_faults.loc[df_faults['Critical']==1,'Critical'] = 'ONE'
```

In [35]: 1 df_faults['Critical'].value_counts()
2

Out[35]: ONE 192014 CRITICAL 53931 WARNING 44889

Name: Critical, dtype: int64

Serial	YYYY	MM	dd	hh:mm:ss	Week	Model	Errorcode	Critical
1535632	2016	11	29	04:00:07	49	model 62	185	WARNING
1535632	2016	11	29	05:00:07	49	model 20	185	WARNING
1535632	2016	11	29	06:00:07	49	model 20	185	WARNING

How many error codes per each category?

In [36]: 1 df_faults[['Critical','ErrorCode']].drop_duplicates()['Critical'].value_counts()

Out[36]: ONE 80 WARNING 53 CRITICAL 38

Name: Critical, dtype: int64

Explore Faults Critical vs ErrorCode


```
df faults['ErrorCode'].value counts().sort index()
Out[37]: 1
                                                                               Some error codes are much more frequent than others. Let's see this in a bar diagram
                     2143
                      9600
                                                                                  plt.figure(figsize=(18,4))
                         2
                                                                                  plt.bar(df_faults['ErrorCode'].value_counts().sort_index().index,
                    24091
                                                                                         df faults['ErrorCode'].value counts().sort index().values)
                                                                                  plt.show()
                       738
                     1223
            11
            18
                      1299
                                                                               50000
            20
                        14
                                                                               40000
           21
                       817
            22
                      1200
                                                                               30000
                       107
                                                                               20000
            24
                        24
           25
                        16
                                                                               10000
            26
                        15
            251
                        18
            252
                      1334
                                                                               What is the error code with the maximum number of occurrencies?
            266
                        11
           270
                        16
                                                                               1 df faults['ErrorCode'].value counts().idxmax()
           282
                      2100
                                                                      Out[39]: 185
            283
                      3197
            285
                      1935
                                                                                                                                                    Cleaning?
                                                                               What tipe of error is it?
            351
           352
                        50
                                                                               df_faults[df_faults['ErrorCode']==185]['Critical'].value_counts()
            366
                         8
                                                                      Out[40]:
                                                                                         44448
           383
                       682
                                                                                         10763
                                                                               WARNING
           421
                                                                              CRITICAL
                                                                               Name: Critical, dtype: int64
            451
           483
            583
           Name: ErrorCode, Length: 91, dtype: int64
```

Faults distribution across models

To explore this, let's summarize into a dataset indexed by machine model, starting with how many machines there are for each model and how many faults for each model

```
1 # Merge models population with the number of faults recorded
     In [48]:
                   df issues summary = pd.concat([models population,
                                                    df faults['Model'].value counts()], axis=1,sort=False)
                   # Rename the columns
                   df_issues_summary.columns = ['Population', 'Faults']
                                                                                           Let's split the faults per type (or severity)
                6 df issues summary.head()
     Out[48]:
                                                                                 In [49]:
                                                                                             1 df_faults.groupby(['Critical','Model'])['Serial'].count()\
                        Population Faults
                                                                                                           .unstack(0).sort_values('CRITICAL',ascending=False).head()
               model 20
                              263 90743.0
                                                                                 Out[49]:
                                                                                              Critical CLEANING CRITICAL
                                                                                                                             ONE WARNING
                              183 48821.0
               model 10
                              168 79880.0
               model 13
                                                                                               Model
                model 9
                              150 15048.0
                                                                                                         11729.0
                                                                                                                   36755.0 19616.0
                                                                                                                                     11780.0
                                                                                             model 13
                               47 6007.0
                model 11
                                                                                             model 10
                                                                                                          6549.0
                                                                                                                   12185.0 24904.0
                                                                                                                                      5183.0
                                                                                                          3642.0
                                                                                                                    1345.0
                                                                                                                           8785.0
                                                                                             model 9
                                                                                                                                      1276.0
                                                                                             model 12
                                                                                                           714.0
                                                                                                                     626.0
                                                                                                                           3080.0
                                                                                                                                       420.0
Let's compute the ratio of faults per machine type
                                                                                             model 17
                                                                                                           554.0
                                                                                                                     579.0 1290.0
                                                                                                                                       309.0
```

```
minimum_number_of_machines = 10

1    _df = df_issues_summary_rate[df_issues_summary_rate['Population']>=minimum_number_of_machines]
```

	Population	Faults	ONE	CRITICAL	WARNING	CLEANING
model 5	15	494.200000	356.666667	1.400000	67.600000	68.533333
model 13	168	475.476190	116.761905	218.779762	70.119048	69.815476
model 60	40	370.750000	354.900000	0.025000	15.825000	NaN
model 20	263	345.030418	268.768061	0.547529	74.615970	1.098859
model 10	183	266.781421	136.087432	66.584699	28.322404	35.786885
model 17	14	195.142857	92.142857	41.357143	22.071429	39.571429
model 31	17	189.411765	171.294118	0.058824	14.000000	4.058824
model 8	41	174.463415	83.219512	13.975610	4.487805	72.780488
model 16	14	157.785714	110.928571	0.142857	0.071429	46.642857
model 50	21	152.095238	130.095238	NaN	20.571429	1.428571
model 11	47	127.808511	66.808511	12.297872	12.148936	36.553191
model 12	41	118.048780	75.121951	15.268293	10.243902	17.414634
model 9	150	100.320000	58.566667	8.966667	8.506667	24.280000
model 14	20	97.850000	32.050000	9.050000	7.800000	48.950000
model 19	15	56.466667	35.400000	1.466667	2.600000	17.000000
model 22	14	55.857143	32.500000	0.428571	1.071429	21.857143
model 63	36	40.750000	39.111111	0.444444	1.194444	NaN
model 34	11	25.000000	14.636364	0.818182	0.363636	9.181818

Timeline on counters (per machine type)

Let's check when exactly machines start genereting counters

```
df_countersf[df_countersf['Model'].isin(models_to_look)]\
                 .groupby(['Model','Timestamp'])['Serial'].count().unstack('Model')\
                 .resample('W').sum().plot(figsize=(18,9),subplots=True)
   plt.show()
          model 10
 40000
 20000
 75000
                                                                                                                                   model 13
 50000
25000
                                                                                                                                  model 20
100000
50000
           model 9
20000
10000
                                        oct
```

```
df_faultsf.groupby(['Critical','Timestamp'])['Serial'].count()\
               .unstack('Critical').resample('W').sum().plot(figsize=(18,6),subplots=True)
   plt.show()
4000
         CLEANING
2000
4000
                                                                                                                              CRITICAL
2000
10000
                                                                                                                                 ONE
5000
                                                                                                                              WARNING
2000
                                                                 Cleaning?
```


Modeling

Features	Target	
Training set	isible to mode	Model
Test set	idden to mode)

Features

Modeling

Preparation – Feature Engineering

TARGET: there will be a Fault on day X for machine Y?

Features: Faults, Cleanings, Counters In «some» days before day X

dataset.head(10)

	Serial	Model	Target Timestamp	TARGET	numcaffegenerale- 20D	numcaffegenerale- 19D	numcaffegenerale- 18D	numcaffegenerale- 17D	numcaffegenerale- 16D	numcaffegenerale- 15D	n		
0	1479635	model 20	2016-10-21	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
0	1479635	model 20	2016-10-22	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
0	1479635	model 20	2016-10-23	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
0	1479635	model 20	2016-10-24	0.0	0.0	0.0	0.0		Fe	atures		Target	
0	1479635	model 20	2016-10-25	0.0	0.0	0.0	0.0						
0	1479635	model 20	2016-10-26	0.0	0.0	0.0	0.0						
0	1479635	model 20	2016-10-27	0.0	0.0	0.0	0.0						
0	1479635	model 20	2016-10-28	0.0	0.0	0.0	0.0						
0	1479635	model 20	2016-10-29	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
0	1479635	model 20	2016-10-30	0.0	0.0	0.0	0.0	0.0	0.0	0.0			

nceSeed

1 dataset.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 45323 entries, 0 to 0

Columns: 604 entries, Serial to CLEANING-1D

dtypes: float64(601), object(3)

memory usage: 209.2+ MB

Models

Ligh Gradient Boost Model

Neural Network

Light-GBM

Quick overview on Medium

E.g. Decision tree – Random Forest

Leaf-wise tree growth

E.g. LGBM

Light-GBM

Quick overview on Medium

- **Big Dataset (10K+ rows)**
- Efficient memory usage
- Light speed
- **High Accuracy**
- **Categorical friendly**
- Requires some tuning

DataScienceSeed

Fitting time: 25.623752487267904 s

Classification Report

		precision	recall	f1-score	support
	0	0.87	0.85	0.86	7829
	1	0.83	0.86	0.85	7128
micro	avg	0.85	0.85	0.85	14957
macro	avg	0.85	0.85	0.85	14957
weighted	avg	0.85	0.85	0.85	14957

Confusion Matrix

[[6616 1213]

[999 6129]]

0.8471319972356598

T_name	
Week	979
FAULT-6D	577
FAULT-9D	503
FAULT-7D	405
FAULT-10D	

		True co	ndition
		Condition positive	Condition negative
Predicted	Predicted condition positive	True positive	False positive, Type I error
condition	Predicted condition negative	False negative, Type II error	True negative

Neural Network

DataScienceSeed

Parameters

- Layers
- Neurons / Layer
- Activation
- Batch size
- Epochs


```
76 *keras3.py
                 <u>F</u>ile <u>E</u>dit F<u>o</u>rmat <u>K</u>un <u>∪</u>ptions <u>w</u>indows <u>H</u>eip
                         model = Sequential()
                         for lrs in range (n of layers):
                                  model.add(Dense(int(neurons per layer),
                                                    kernel initializer='random uniform',
Build inner layers
                                                    bias initializer='zeros',
                                                    kernel regularizer=regularizers.12(lambd)))
                                  model.add(Activation(activation))
                         model.add(Dense(1, kernel initializer='random uniform',
Build output layer
                                              bias initializer='zeros',
                                              kernel regularizer=regularizers.12(lambd)))
                         model.add(Activation('sigmoid'))
                         model.compile(optimizer=optimizers.Adam(),
                                         loss='binary crossentropy',
                                         metrics=['accuracy'])
                         model.fit(train data, train labels, epochs=n of epochs, verbose=0)
                         train loss, train acc = model.evaluate(train data, train labels, batch size=batch size)
Train and evaluate
                         test loss, test acc = model.evaluate(test data, test labels, batch size=batch size)
                                                                                                                        Ln: 84 Col: 22
```


Plot performance vs lambda Vs parametri

						_				
trial	lambda 🔻 n	of epochs 🔻 b	atch size 🔻 n	of lavers 🔻	neurons per laver 🔻	activation 🔻	train acc 🔻	test acc	dataset	▼
1218	0	100	100	3	128	tanh	0.890487369	0.880337079	FlairBit_5d_	onehot_scaled.csv
1203	0	100	100	3	128	tanh	0.892935252	0.878089887	FlairBit_5d_	onehot_scaled.csv
1225	0	100	100	3	128	tanh	0.890286725	0.877849117	FlairBit_5d_	onehot_scaled.csv
246	0	100	100	3	256	tanh	0.876785714	0.877447833	FlairBit_5d_	onehot_rm15_scaled.csv
259	0	100	100	3	128	tanh	0.878009631	0.877367578	FlairBit_5d_	onehot_rm15_scaled.csv
1229	0	100	100	3	64	tanh	0.888400651	0.876565009	FlairBit_5d_	onehot_scaled.csv
239	0	100	100	3	128	tanh	0.881560995	0.875361155	FlairBit_5d_	onehot_rm15_scaled.csv
240	0	100	100	3	128	tanh	0.879835473	0.875280898	FlairBit_5d_	onehot_rm15_scaled.csv
241	0	100	100	3	64	tanh	0.875441412	0.875040131	FlairBit_5d_	onehot_rm15_scaled.csv
1214	0	100	100	3	32	tanh	0.882622042	0.874638844	FlairBit_5d_	onehot_scaled.csv
255	0	100	100	3	64	tanh	0.880758428	0.874558585	FlairBit_5d_	onehot_rm15_scaled.csv
1211	0	100	100	3	256	tanh	0.893918416	0.874398074	FlairBit_5d_	onehot_scaled.csv
235	0	100	100	3	256	tanh	0.879514446	0.874317818	FlairBit_5d_	onehot_rm15_scaled.csv
1213	0	100	100	3	32	tanh	0.884146954	0.874077048	FlairBit_5d_	onehot_scaled.csv
238	0	100	100	3	16	tanh	0.870505618	0.874077043	FlairBit_5d_	onehot_rm15_scaled.csv
323	0	100	100	3	16	relu	0.868398875	0.873675762	FlairBit_5d_	onehot_rm15_scaled.csv
257	0	100	100	3	128	tanh	0.880357144	0.873675762	FlairBit_5d_	onehot_rm15_scaled.csv
234	0	100	100	3	128	tanh	0.882182986	0.873535502	FlairBit_5d_	onehot_rm15_scaled.csv
254	0	100	100	3	128	tanh	0.875	re	- E4	onehot_rm15_scaled.csv
1208	0	100	100	3	128	tanh			-	ale
1215	0	100	100	3				to S	A C	1
245	0	100	100	3		†	10 1000	12		u.

Interpretation: SHAP

DataScienceSeed

Shap Documentation

- SHAP (SHapley Additive exPlanations) is a unified approach to explain the output of any machine learning model.
- SHAP connects game theory with local explanations, uniting several previous methods

Interpretation: SHAP (LGBM model)

Shap Documentation

