

Report No.: FR980514D

FCC RADIO TEST REPOR

FCC ID TYM-J100

Equipment Wireless Module

: AVAYA **Brand Name Model Name** J100

Marketing Name : J100 Wireless Module

Applicant : AVAYA

250 Sidney Street, Belleville, Ontario, K8P

3Z3, Canada

Manufacturer : Wistron Corporation

21th Fl., 88, Sec.1, Hsin Tai Wu Rd., Hsichih,

Taipei Hsien 221, Taiwan, R.O.C.

: FCC Part 15 Subpart E §15.407 Standard

The product was received on Aug. 05, 2019 and testing was started from Sep. 16, 2019 and completed on Sep. 26, 2019. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Louis Wu

/ DIAZE W/M

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL: 886-3-327-3456 Page Number : 1 of 24 FAX: 886-3-328-4978 Report Issued Date: Nov. 08, 2019

Report Template No.: BU5-FR15EWL AC MA Version 2.4

: 01 Report Version

Table of Contents

Report No.: FR980514D

His	tory c	of this test report	3
Sur	nmar	y of Test Result	4
		eral Description	
	1.1	Product Feature of Equipment Under Test	
	1.2	Modification of EUT	
	1.3	Testing Location	5
	1.4	Applicable Standards	
2	Test	Configuration of Equipment Under Test	6
	2.1	Carrier Frequency and Channel	6
	2.2	Test Mode	7
	2.3	Connection Diagram of Test System	7
	2.4	Support Unit used in test configuration and system	8
	2.5	EUT Operation Test Setup	8
	2.6	Measurement Results Explanation Example	8
3	Test	Result	9
	3.1	26dB & 99% Occupied Bandwidth Measurement	9
	3.2	Maximum Conducted Output Power Measurement	11
	3.3	Power Spectral Density Measurement	12
	3.4	Unwanted Emissions Measurement	14
	3.5	AC Conducted Emission Measurement	18
	3.6	Automatically Discontinue Transmission	
	3.7	Antenna Requirements	21
4	List o	of Measuring Equipment	22
5	Unce	ertainty of Evaluation	24
Арр	endi	x A. Conducted Test Results	
App	endi	x B. AC Conducted Emission Test Result	
App	endi	x C. Radiated Spurious Emission	
App	endi	x D. Radiated Spurious Emission Plots	
App	endi	x E. Duty Cycle Plots	
App	endi	x F. Setup Photographs	

TEL: 886-3-327-3456 Page Number : 2 of 24
FAX: 886-3-328-4978 Report Issued Date : Nov. 08, 2019

Report Version

: 01

Report Template No.: BU5-FR15EWL AC MA Version 2.4

History of this test report

Report No.: FR980514D

Report No.	Version	Description	Issued Date
FR980514D	01	Initial issue of report	Nov. 08, 2019

TEL: 886-3-327-3456 Page Number : 3 of 24
FAX: 886-3-328-4978 Report Issued Date : Nov. 08, 2019

Summary of Test Result

Report No.: FR980514D

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.403(i)	26dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.407(a)	Maximum Conducted Output Power	Pass	-
3.3	15.407(a)	Power Spectral Density	Pass	-
3.4	15.407(b)	Unwanted Emissions	Pass	Under limit 1.85 dB at 5149.760 MHz
3.5	15.207	AC Conducted Emission	Pass	Under limit 12.97 dB at 0.830 MHz
3.6	15.407(c)	Automatically Discontinue Transmission	Pass	-
3.7	15.203 15.407(a)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang Report Producer: Yimin Ho

TEL: 886-3-327-3456 Page Number : 4 of 24
FAX: 886-3-328-4978 Report Issued Date : Nov. 08, 2019

1 General Description

1.1 Product Feature of Equipment Under Test

Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n and Wi-Fi 5GHz 802.11a/n/ac.

Product Specification subjective to this standard			
Antonno Typo	WLAN: Chip Antenna		
Antenna Type	Bluetooth: Chip Antenna		

Report No.: FR980514D

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978			
Test Site No.	Sporton Site No. TH05-HY CO05-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. 03CH13-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW0007

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- ANSI C63.10-2013

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

TEL: 886-3-327-3456 Page Number : 5 of 24
FAX: 886-3-328-4978 Report Issued Date : Nov. 08, 2019

2 Test Configuration of Equipment Under Test

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

Report No.: FR980514D

b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	36	5180	44	5220
5150-5250 MHz Band 1	38*	5190	46*	5230
(U-NII-1)	40	5200	48	5240
(3 1411 1)	42#	5210		

Note:

- 1. The above Frequency and Channel in "*" were 802.11n HT40 and 802.11ac VHT40.
- 2. The above Frequency and Channel in "#" were 802.11ac VHT80.

TEL: 886-3-327-3456 Page Number : 6 of 24
FAX: 886-3-328-4978 Report Issued Date : Nov. 08, 2019

Report Version

: 01

Report Template No.: BU5-FR15EWL AC MA Version 2.4

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT20 (Covered by HT20)	MCS0
802.11ac VHT40 (Covered by HT40)	MCS0
802.11ac VHT80	MCS0

Report No.: FR980514D

Test Cases	
AC Conducted	Mode 1: WLAN 5GHz Tx
Emission	Wode 1. WEAN SGHZ 1X

Ch. #		Band I: 5150-5250 MHz				
		802.11a	802.11n HT20	802.11n HT40	802.11ac VHT80	
L	Low	36	36	38	-	
M	Middle	40	40	-	42	
Н	High	48	48	46	-	

2.3 Connection Diagram of Test System

TEL: 886-3-327-3456 Page Number : 7 of 24
FAX: 886-3-328-4978 Report Issued Date : Nov. 08, 2019

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Adapter	Phihong	PSAC12R-050	N/A	N/A	N/A
2.	Main board	DELL	N/A	N/A	N/A	N/A
3.	Notebook	DELL	Latitude E5480	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Notebook	DELL	Latitude E3340	FCC DoC/ Contains FCC ID: PD97260NGU	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

Report No.: FR980514D

2.5 EUT Operation Test Setup

The RF test items, utility "cmd" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).
=
$$4.2 + 10 = 14.2$$
 (dB)

TEL: 886-3-327-3456 Page Number : 8 of 24
FAX: 886-3-328-4978 Report Issued Date : Nov. 08, 2019

Report Version

: 01

Report Template No.: BU5-FR15EWL AC MA Version 2.4

3 Test Result

3.1 26dB & 99% Occupied Bandwidth Measurement

3.1.1 Description of 26dB & 99% Occupied Bandwidth

This section is for reporting purpose only.

There is no restriction limits for bandwidth.

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
 Section C) Emission bandwidth

Report No.: FR980514D

- 2. Set RBW = approximately 1% of the emission bandwidth.
- 3. Set the VBW > RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
- 7. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \geq 3 * RBW.
- 8. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of 26dB & 99% Occupied Bandwidth

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number: 9 of 24
FAX: 886-3-328-4978 Report Issued Date: Nov. 08, 2019

Report No.: FR980514D

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-3456 Page Number : 10 of 24 FAX: 886-3-328-4978 Report Issued Date: Nov. 08, 2019

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

<FCC 14-30 CFR 15.407>

For the 5.15-5.25 GHz bands:

■ For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

Report No.: FR980514D

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note that U-NII-2 band, devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

The testing follows Method PM-G of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Method PM-G (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit at its maximum power control level.
- 3. Measure the average power of the transmitter
- 4. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 11 of 24
FAX: 886-3-328-4978 Report Issued Date : Nov. 08, 2019

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

<FCC 14-30 CFR 15.407>

For the 5.15-5.25 GHz bands:

For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1.0 MHz band. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1.0 MHz band.

Report No.: FR980514D

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section F) Maximum power spectral density.

Method SA-3

(power averaging (rms) detection with max hold):

- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 1 MHz.
- Set VBW ≥ 3 MHz
- Number of points in sweep ≥ 2 Span / RBW.
- Sweep time ≤ (number of points in sweep) × T, when duty cycle is less than 98 percent
 where T is the minimum transmission duration over which the transmitter is on and is
 transmitting at its maximum power control level for the tested mode of operation.
- Detector = power averaging (rms).
- Trace mode = max hold.
- Allow max hold to run for at least 60 seconds, or longer as needed to allow the trace to stabilize.
- The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 2. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.

TEL: 886-3-327-3456 Page Number : 12 of 24
FAX: 886-3-328-4978 Report Issued Date : Nov. 08, 2019

3.3.4 Test Setup

Report No.: FR980514D

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

Note: Average Power Density (dB) = Measured value+ Duty Factor

TEL: 886-3-327-3456 Page Number : 13 of 24
FAX: 886-3-328-4978 Report Issued Date : Nov. 08, 2019

Report Template No.: BU5-FR15EWL AC MA Version 2.4

Report Version : 01

3.4 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

Report No.: FR980514D

3.4.1 Limit of Unwanted Emissions

- (1) For transmitters operating in the 5150-5250 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of –27dBm/MHz.
- (2) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table:

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts)

EIRP (dBm)	Field Strength at 3m (dBµV/m)						
- 27	68.3						

- (3) KDB789033 D02 v02r01 G)2)c)
 - (i) Sections 15.407(b)(1-3) specifies the unwanted emissions limit for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of −27 dBm/MHz.
 - (ii) Section 15.407(b)(4) specifies the unwanted emissions limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b)(4)(i). The emission limits are based on the use of a peak detector.

3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

TEL: 886-3-327-3456 Page Number : 14 of 24
FAX: 886-3-328-4978 Report Issued Date : Nov. 08, 2019

3.4.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
Section G) Unwanted emissions measurement.

Report No.: FR980514D

- (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
- (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
- (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
- 2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Report Version

: 01

TEL: 886-3-327-3456 Page Number : 15 of 24
FAX: 886-3-328-4978 Report Issued Date : Nov. 08, 2019

Report Template No.: BU5-FR15EWL AC MA Version 2.4

3.4.4 Test Setup

For radiated emissions below 30MHz

Report No.: FR980514D

: 01

For radiated emissions from 30MHz to 1GHz

TEL: 886-3-327-3456 Page Number : 16 of 24
FAX: 886-3-328-4978 Report Issued Date : Nov. 08, 2019

For radiated emissions above 1GHz

Report No.: FR980514D

: 01

3.4.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.4.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.4.7 Duty Cycle

Please refer to Appendix E.

3.4.8 Test Result of Radiated Spurious Emissions (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

TEL: 886-3-327-3456 Page Number : 17 of 24
FAX: 886-3-328-4978 Report Issued Date : Nov. 08, 2019

3.5 AC Conducted Emission Measurement

3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR980514D

Eroquency of emission (MUz)	Conducted limit (dBμV)								
Frequency of emission (MHz)	Quasi-peak	Average							
0.15-0.5	66 to 56*	56 to 46*							
0.5-5	56	46							
5-30	60	50							

^{*}Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

TEL: 886-3-327-3456 Page Number : 18 of 24
FAX: 886-3-328-4978 Report Issued Date : Nov. 08, 2019

3.5.4 Test Setup

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.5.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: 886-3-327-3456 Page Number : 19 of 24
FAX: 886-3-328-4978 Report Issued Date : Nov. 08, 2019

Report Template No.: BU5-FR15EWL AC MA Version 2.4 Report Version

Report Issued Date: Nov. 08, 20
Report Version: 01

Report No.: FR980514D

3.6 Automatically Discontinue Transmission

3.6.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

Report No.: FR980514D

3.6.2 Measuring Instruments

See list of measuring equipment of this test report.

3.6.3 Test Result of Automatically Discontinue Transmission

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

TEL: 886-3-327-3456 Page Number : 20 of 24
FAX: 886-3-328-4978 Report Issued Date : Nov. 08, 2019

3.7 Antenna Requirements

3.7.1 Standard Applicable

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: FR980514D

: 01

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-3456 Page Number : 21 of 24
FAX: 886-3-328-4978 Report Issued Date : Nov. 08, 2019

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Jan. 07, 2019	Sep. 18, 2019~ Sep. 21, 2019	Jan. 06, 2020	Radiation (03CH13-HY)
Bilog Antenna	TESEQ	CBL 6111D& 00800N1D01 N-06	40103 & 07	30MHz~1GHz	Apr. 30, 2019	Sep. 18, 2019~ Sep. 21, 2019	Apr. 29, 2020	Radiation (03CH13-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-124 1	1GHz~18GHz	Jul. 02, 2019	Sep. 18, 2019~ Sep. 21, 2019	Jul. 01, 2020	Radiation (03CH13-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590074	1GHz~18GHz	May 20, 2019	Sep. 18, 2019~ Sep. 21, 2019	May 19, 2020	Radiation (03CH13-HY)
Preamplifier	Keysight	83017A	MY532701 47	1GHz~26.5GHz	Mar. 15, 2019	Sep. 18, 2019~ Sep. 21, 2019	Mar. 14, 2020	Radiation (03CH13-HY)
Amplifier	SONOMA	310N	187282	9kHz~1GHz	Dec. 18, 2018	Sep. 18, 2019~ Sep. 21, 2019	Dec. 17, 2019	Radiation (03CH13-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz~40GHz	Dec. 06, 2018	Sep. 18, 2019~ Sep. 21, 2019	Dec. 04, 2018	Radiation (03CH13-HY)
Spectrum Analyzer	Keysight	N9010A	MY553705 26	10Hz~44GHz	Mar. 19, 2019	Sep. 18, 2019~ Sep. 21, 2019	Mar. 18, 2020	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0030/126E	30M-18G	Feb. 13, 2019	Sep. 18, 2019~ Sep. 21, 2019	Feb. 12, 2020	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	804793/4	30M-18G	Feb. 13, 2019	Sep. 18, 2019~ Sep. 21, 2019	Feb. 12, 2020	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24961/ 4	30M-18G	Feb. 13, 2019	Sep. 18, 2019~ Sep. 21, 2019	Feb. 12, 2020	Radiation (03CH13-HY)
Spectrum Analyzer	Keysight	N9010A	MY553705 26	10Hz~44GHz	Mar. 19, 2019	Sep. 18, 2019~ Sep. 21, 2019	Mar. 18, 2020	Radiation (03CH13-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1m~4m	N/A	Sep. 18, 2019~ Sep. 21, 2019	N/A	Radiation (03CH13-HY)
Software	AUDIX	E3 6.2009-8-24c	RK-001124	N/A	N/A	Sep. 18, 2019~ Sep. 21, 2019	N/A	Radiation (03CH13-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Sep. 18, 2019~ Sep. 21, 2019	N/A	Radiation (03CH13-HY)
EMI Test Receiver	Keysight	N9038A (MXE)	MY541300 85	20Hz ~ 8.4GHz	Nov. 01, 2018	Sep. 18, 2019~ Sep. 21, 2019	Oct. 31, 2019	Radiation (03CH13-HY)
Filter	Wainwright	WLKS1200-1 2SS	SN2	1.2GHz Low Pass Filter	Mar. 22, 2019	Sep. 18, 2019~ Sep. 21, 2019	Mar. 21, 2020	Radiation (03CH13-HY)
Filter	Woken	WHKX8-5272. 5-6750-18000 -40ST	SN5	6.75G Highpass	Mar.13, 2019	Sep. 18, 2019~ Sep. 21, 2019	Mar. 12, 2020	Radiation (03CH13-HY)
Power Sensor	DARE	RPR3006W	13I00030S NO32	9kHz~6GHz	Dec. 03, 2018	Sep. 16, 2019~ Sep. 25, 2019	Dec. 02, 2019	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSV40	101397	10Hz~40GHz	Nov. 13, 2018	Sep. 16, 2019~ Sep. 25, 2019	Nov. 12, 2019	Conducted (TH05-HY)
Switch Box & RF Cable	Burgeon	ETF-058	EC120838 2	N/A	Mar. 27, 2019	Sep. 16, 2019~ Sep. 25, 2019	Mar. 26, 2020	Conducted (TH05-HY)

TEL: 886-3-327-3456 Page Number : 22 of 24 FAX: 886-3-328-4978 Report Issued Date : Nov. 08, 2019

Report Template No.: BU5-FR15EWL AC MA Version 2.4

Report Version : 01

Report No.: FR980514D

Instrument Manufacturer		Model No.	Serial No.	erial No. Characteristics		Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Sep. 26, 2019	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Nov. 12, 2018	Sep. 26, 2019	Nov. 11, 2019	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 14, 2018	Sep. 26, 2019	Nov. 13, 2019	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Sep. 26, 2019	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Dec. 31, 2018	Sep. 26, 2019	Dec. 30, 2019	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Dec. 31, 2018	Sep. 26, 2019	Dec. 30, 2019	Conduction (CO05-HY)

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : 23 of 24 FAX: 886-3-328-4978 Report Issued Date : Nov. 08, 2019

5 Uncertainty of Evaluation

<u>Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)</u>

Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	2.2

Report No.: FR980514D

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.0
of 95% (U = 2Uc(y))	4.9

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	EA
of 95% (U = 2Uc(y))	5.4

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	4.2
of 95% (U = 2Uc(y))	4.3

TEL: 886-3-327-3456 Page Number : 24 of 24
FAX: 886-3-328-4978 Report Issued Date : Nov. 08, 2019

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Derek Hsu	Temperature:	21~25	°C
Test Date:	2019/9/16~2019/09/25	Relative Humidity:	51~54	%
TX Tool	DutApiClass	TX Tool Version	2.0.0.96	

TEST RESULTS DATA 26dB and 99% OBW

	Band I													
Mod.	Mod. Data Rate		CH.	Freq. (MHz)		9% width Hz)	Band	dB width Hz)			Band EIRP	99% width Limit Bm)		Note
					Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2		
11a	6Mbps	1	36	5180	16.78	-	33.67	-		-		-		
11a	6Mbps	1	40	5200	16.83	-	30.97	-		-	22.26	-	·	
11a	6Mbps	1	48	5240	16.93	-	32.32	-		-	22.29	-	·	
HT20	MCS0	1	36	5180	17.73	-	37.01	-		-	22.49	-	,	
HT20	MCS0	1	40	5200	17.78	-	34.37	-		-	22.50	-		
HT20	MCS0	1	48	5240	17.98	-	38.56	-		-	22.55	-	·	
HT40	MCS0	1	38	5190	36.36	-	48.31	-		-	23.01	-		
HT40	MCS0	1	46	5230	37.66	-	75.25	-		-	23.01	-		
VHT80	MCS0	1	42	5210	77.32	-	81.84	-			23.01	-		

TEST RESULTS DATA Average Power Table

	FCC Band I												
Mod.	Mod. Data NTX		NTX CH. Freq.		Average Conducted Power (dBm)			FCC Conducted Power Limit (dBm)		DG (dBi)			Pass/Fail
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2		
11a	6Mbps		36	5180	13.50	-		24.00	-	2.40	ı		Pass
11a	6Mbps	1	40	5200	13.60	-		24.00	-	2.40	-		Pass
11a	6Mbps	1	48	5240	13.80	-		24.00	-	2.40	-		Pass
HT20	MCS0	1	36	5180	13.70	-		24.00	-	2.40	-		Pass
HT20	MCS0	1	40	5200	13.60	-		24.00	-	2.40	-		Pass
HT20	MCS0	1	48	5240	13.80	-		24.00	-	2.40	-		Pass
HT40	MCS0	1	38	5190	10.40	-		24.00	-	2.40	-		Pass
HT40	MCS0	1	46	5230	13.00	-		24.00	-	2.40	-		Pass
VHT20	MCS0	1	36	5180	13.60	-		24.00	-	2.40	-		Pass
VHT20	MCS0	1	40	5200	13.50	-		24.00	-	2.40	-		Pass
VHT20	MCS0	1	48	5240	13.70	-		24.00	-	2.40	-		Pass
VHT40	MCS0	1	38	5190	10.30	-		24.00	-	2.40	-		Pass
VHT40	MCS0	1	46	5230	12.90	-		24.00	-	2.40	-		Pass
VHT80	MCS0	1	42	5210	6.10	-		24.00	-	2.40	-		Pass

TEST RESULTS DATA Power Spectral Density

	FCC Band I														
Mod.	Mod. Data Rate		CH.	Freq. (MHz)	Fac	uty ctor B)		Average Power Density Bm/MH		PS Lir	rage SD mit /MHz)	D (dl	_		Pass /Fail
					Ant 1	Ant 2	Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2		
11a	6Mbps	1	36	5180	0.00	-	3.54	-		11.00	-	2.40	-		Pass
11a	6Mbps	1	40	5200	0.00	-	3.41	-		11.00	-	2.40	-		Pass
11a	6Mbps	1	48	5240	0.00	-	3.47	-		11.00	-	2.40	-		Pass
HT20	MCS0	1	36	5180	0.00	-	3.02	-		11.00	-	2.40	-		Pass
HT20	MCS0	1	40	5200	0.00	-	3.31	-		11.00	-	2.40	-		Pass
HT20	MCS0	1	48	5240	0.00	-	3.76	-		11.00	-	2.40	-		Pass
HT40	MCS0	1	38	5190	0.00	-	-3.15	-		11.00	-	2.40	-		Pass
HT40	MCS0	1	46	5230	0.00	-	-0.07	-		11.00	-	2.40	-		Pass
VHT80	MCS0	1	42	5210	0.00	-	-10.42	-		11.00	-	2.40	-		Pass

Appendix B. AC Conducted Emission Test Results

Toot Engineer	Howard Lin	Temperature :	25.9~26.4℃
Test Engineer :	HOWAIU LIII	Relative Humidity:	52.8~53.2%

Report No. : FR980514D

TEL: 886-3-327-3456 Page Number : B1 of B

EUT Information

 Report NO :
 980514

 Test Mode :
 Mode 1

 Test Voltage :
 120Vac/60Hz

Phase: Line

FullSpectrum

Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.692250		24.35	46.00	21.65	L1	OFF	19.4
0.692250	26.50	-	56.00	29.50	L1	OFF	19.4
0.795750		25.25	46.00	20.75	L1	OFF	19.4
0.795750	30.85	-	56.00	25.15	L1	OFF	19.4
0.827250		28.79	46.00	17.21	L1	OFF	19.5
0.827250	36.29	-	56.00	19.71	L1	OFF	19.5
0.845250		27.16	46.00	18.84	L1	OFF	19.5
0.845250	33.72		56.00	22.28	L1	OFF	19.5
0.944250		24.30	46.00	21.70	L1	OFF	19.5
0.944250	27.28	-	56.00	28.72	L1	OFF	19.5
1.518000		23.97	46.00	22.03	L1	OFF	19.5
1.518000	25.95		56.00	30.05	L1	OFF	19.5

EUT Information

Report NO: 980514
Test Mode: Mode 1
Test Voltage: 120Vac/60Hz
Phase: Neutral

FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.804750		28.38	46.00	17.62	N	OFF	19.5
0.804750	35.25		56.00	20.75	N	OFF	19.5
0.829500		33.03	46.00	12.97	N	OFF	19.5
0.829500	39.14		56.00	16.86	N	OFF	19.5
0.870000		25.11	46.00	20.89	N	OFF	19.5
0.870000	30.25		56.00	25.75	N	OFF	19.5
0.926250		25.78	46.00	20.22	N	OFF	19.5
0.926250	29.65	-	56.00	26.35	N	OFF	19.5
1.263750		24.77	46.00	21.23	N	OFF	19.5
1.263750	28.65	-	56.00	27.35	N	OFF	19.5
1.432500		26.09	46.00	19.91	N	OFF	19.5
1.432500	29.71		56.00	26.29	N	OFF	19.5

Appendix C. Radiated Spurious Emission

Toot Engineer :		Temperature :	21.5~23.5°C
Test Engineer :	Ryan Lin, J.C. Liang and Wilson Wu	Relative Humidity :	46.5~49.5%

Report No.: FR980514D

Band 1 - 5150~5250MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	•	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		(H/V)
		5148.46	60.75	-13.25	74	52.16	32	6.08	29.49	100	259	Р	Н
		5149.76	51.1	-2.9	54	42.51	32	6.08	29.49	100	259	Α	Н
	*	5180	108.01	-	-	99.58	31.82	6.1	29.49	100	259	Р	Н
	*	5180	99.97	-	-	91.54	31.82	6.1	29.49	100	259	Α	Н
802.11a													Н
CH 36													Н
5180MHz		5149.76	57.22	-16.78	74	48.63	32	6.08	29.49	100	79	Р	V
310011112		5150	46.93	-7.07	54	38.34	32	6.08	29.49	100	79	Α	V
	*	5180	102.59	-	-	94.16	31.82	6.1	29.49	100	79	Р	V
	*	5180	95.64	-	-	87.21	31.82	6.1	29.49	100	79	Α	٧
													V
													V
		5127.92	50.97	-23.03	74	42.38	32	6.07	29.48	109	259	Р	П
		5127.14	43.31	-10.69	54	34.72	32	6.07	29.48	109	259	Α	П
	*	5200	106.61	-	-	98.3	31.7	6.11	29.5	109	259	Р	Η
	*	5200	98.88	-	-	90.57	31.7	6.11	29.5	109	259	Α	П
000 44		5397	47.59	-26.41	74	39.41	31.59	6.12	29.53	109	259	Р	П
802.11a		5447.96	39.12	-14.88	54	30.7	31.79	6.17	29.54	109	259	Α	Н
CH 40 5200MHz		5102.44	49.79	-24.21	74	41.21	32	6.06	29.48	117	82	Р	V
3200WIF12		5127.66	41.76	-12.24	54	33.17	32	6.07	29.48	117	82	Α	V
	*	5200	102.46	-	-	94.15	31.7	6.11	29.5	117	82	Р	V
	*	5200	95.01	-	-	86.7	31.7	6.11	29.5	117	82	Α	V
		5417.72	47.23	-26.77	74	38.96	31.67	6.14	29.54	117	82	Р	V
		5459.16	38.97	-15.03	54	30.51	31.82	6.18	29.54	117	82	Α	V

TEL: 886-3-327-3456 Page Number: C1 of C13

		5034.06	50.3	-23.7	74	42.01	31.74	6.02	29.47	100	259	Р	Н
		5098.02	41.2	-12.8	54	32.64	31.99	6.05	29.48	100	259	Α	Н
	*	5240	107.26	-	-	99.19	31.46	6.11	29.5	100	259	Р	Н
	*	5240	99.68	-	-	91.61	31.46	6.11	29.5	100	259	Α	Н
		5418	48.53	-25.47	74	40.26	31.67	6.14	29.54	100	259	Р	Н
802.11a		5453	39.26	-14.74	54	30.82	31.81	6.17	29.54	100	259	Α	Н
CH 48		5048.88	49.42	-24.58	74	41.06	31.8	6.03	29.47	271	306	Р	V
5240MHz		5092.3	40.66	-13.34	54	32.12	31.97	6.05	29.48	271	306	Α	V
	*	5240	103.91	-	-	95.84	31.46	6.11	29.5	271	306	Р	V
	*	5240	96.06	-	-	87.99	31.46	6.11	29.5	271	306	Α	V
		5384.96	47.51	-26.49	74	39.38	31.54	6.12	29.53	271	306	Р	V
		5457.2	39.11	-14.89	54	30.66	31.81	6.18	29.54	271	306	Α	V
Remark	1. No	o other spurious	s found.			ı		ı		ı			
	2. Al	l results are PA	SS against	Peak and	Average lim	nit line.							

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : C2 of C13

Band 1 5150~5250MHz WIFI 802.11a (Harmonic @ 3m) Report No.: FR980514D

Ant. 1 802.11a	(MHz)	(dBµV/m)	Limit	Line	Lovel						1	
802.11a	,	(dBuV/m)			Level	Factor	Loss	Factor	Pos		Avg.	
	40000	(abpviii)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
	10360	47.4	-20.8	68.2	54.71	39.74	9.91	56.96	100	0	Р	Н
	15540	56.82	-17.18	74	62.06	38.76	12.65	56.65	210	25	Р	Н
	15540	44.49	-9.51	54	49.73	38.76	12.65	56.65	210	25	Α	Н
												Н
CH 36 5180MHz	10360	46.95	-21.25	68.2	54.26	39.74	9.91	56.96	100	0	Р	V
3 I OUIVITIZ	15540	54.98	-19.02	74	60.22	38.76	12.65	56.65	206	62	Р	V
	15540	43.91	-10.09	54	49.15	38.76	12.65	56.65	206	62	Α	V
												V
	10400	46.66	-21.54	68.2	53.77	39.9	9.93	56.94	100	0	Р	Н
	15600	57.08	-16.92	74	62.58	38.4	12.68	56.58	216	25	Р	Н
	15600	45.05	-8.95	54	50.55	38.4	12.68	56.58	216	25	Α	Н
802.11a												Н
CH 40	10400	47.11	-21.09	68.2	54.22	39.9	9.93	56.94	100	0	Р	V
5200MHz —	15600	56.45	-17.55	74	61.95	38.4	12.68	56.58	198	64	Р	V
	15600	43.51	-10.49	54	49.01	38.4	12.68	56.58	198	64	Α	V
												V
	10480	47.75	-20.45	68.2	54.71	39.98	9.97	56.91	100	0	Р	Н
	15720	59.93	-14.07	74	65.53	38.1	12.74	56.44	201	26	Р	Н
	15720	49.29	-4.71	54	54.89	38.1	12.74	56.44	201	26	Α	Н
802.11a												Н
CH 48	10480	47.63	-20.57	68.2	54.59	39.98	9.97	56.91	100	0	Р	V
5240MHz	15720	58.32	-15.68	74	63.92	38.1	12.74	56.44	196	64	Р	V
	15720	46.65	-7.35	54	52.25	38.1	12.74	56.44	196	64	Α	V
												V

TEL: 886-3-327-3456 Page Number: C3 of C13

Band 1 5150~5250MHz WIFI 802.11n HT20 (Band Edge @ 3m)

Report No.: FR980514D

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5147.68	62.93	-11.07	74	54.34	32	6.08	29.49	100	259	Р	Н
		5149.76	52.15	-1.85	54	43.56	32	6.08	29.49	100	259	Α	Н
	*	5180	106.78	-	-	98.35	31.82	6.1	29.49	100	259	Р	Н
	*	5180	99.08	-	-	90.65	31.82	6.1	29.49	100	259	Α	Н
802.11n													Н
HT20													Н
CH 36		5150	57.53	-16.47	74	48.94	32	6.08	29.49	281	314	Р	V
5180MHz		5149.24	48.34	-5.66	54	39.75	32	6.08	29.49	281	314	Α	V
	*	5180	102.72	-	-	94.29	31.82	6.1	29.49	281	314	Р	V
	*	5180	94.92	-	-	86.49	31.82	6.1	29.49	281	314	Α	V
													V
													V
		5117	50.98	-23.02	74	42.4	32	6.06	29.48	105	258	Р	Н
		5127.92	43.94	-10.06	54	35.35	32	6.07	29.48	105	258	Α	Н
	*	5200	106.01	-	-	97.7	31.7	6.11	29.5	105	258	Р	Н
	*	5200	98.87	-	-	90.56	31.7	6.11	29.5	105	258	Α	Н
802.11n		5433.68	48.13	-25.87	74	39.79	31.73	6.15	29.54	105	258	Р	Н
HT20		5459.16	39.26	-14.74	54	30.8	31.82	6.18	29.54	105	258	Α	Н
CH 40		5023.92	50.13	-23.87	74	41.88	31.7	6.01	29.46	280	314	Р	V
5200MHz		5128.44	42.1	-11.9	54	33.51	32	6.07	29.48	280	314	Α	V
	*	5200	101.98	-	-	93.67	31.7	6.11	29.5	280	314	Р	V
	*	5200	94.87	-	-	86.56	31.7	6.11	29.5	280	314	Α	V
		5430.32	48.25	-25.75	74	39.92	31.72	6.15	29.54	280	314	Р	V
		5459.16	39.08	-14.92	54	30.62	31.82	6.18	29.54	280	314	Α	V

TEL: 886-3-327-3456 Page Number: C4 of C13

		1											
		5065.78	49.66	-24.34	74	41.23	31.86	6.04	29.47	100	258	Р	Н
		5087.1	41.11	-12.89	54	32.59	31.95	6.05	29.48	100	258	Α	Н
	*	5240	106.79	-	-	98.72	31.46	6.11	29.5	100	258	Р	Н
	*	5240	99.65	-	-	91.58	31.46	6.11	29.5	100	258	Α	Н
802.11n		5430.6	48.42	-25.58	74	40.09	31.72	6.15	29.54	100	258	Р	Н
HT20		5459.72	39.16	-14.84	54	30.7	31.82	6.18	29.54	100	258	Α	Н
CH 48		5077.48	49.58	-24.42	74	41.1	31.91	6.04	29.47	284	312	Р	V
5240MHz		5089.7	40.54	-13.46	54	32.01	31.96	6.05	29.48	284	312	Α	V
	*	5240	103.27	-	-	95.2	31.46	6.11	29.5	284	312	Р	V
	*	5240	95.98	-	-	87.91	31.46	6.11	29.5	284	312	Α	V
		5387.2	48.59	-25.41	74	40.45	31.55	6.12	29.53	284	312	Р	V
		5456.08	39.22	-14.78	54	30.77	31.81	6.18	29.54	284	312	Α	V
	1. No	o other spurious	s found.	1		1	1	1	1	1	1	1	
Remark	2. All	l results are PA	SS against	Peak and	Average lin	nit line.							

Report No.: FR980514D

TEL: 886-3-327-3456

Page Number

: C5 of C13

Band 1 5150~5250MHz WIFI 802.11n HT20 (Harmonic @ 3m) Report No.: FR980514D

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		10360	47.17	-21.03	68.2	54.48	39.74	9.91	56.96	100	0	Р	Н
		15540	55.63	-18.37	74	60.87	38.76	12.65	56.65	216	26	Р	Н
802.11n		15540	44.58	-9.42	54	49.82	38.76	12.65	56.65	216	26	Α	Н
HT20													Н
CH 36		10360	46.83	-21.37	68.2	54.14	39.74	9.91	56.96	100	0	Р	V
5180MHz		15540	54.45	-19.55	74	59.69	38.76	12.65	56.65	200	63	Р	V
		15540	43.37	-10.63	54	48.61	38.76	12.65	56.65	200	63	Α	V
													V
		10400	46.26	-21.94	68.2	53.37	39.9	9.93	56.94	100	0	Р	Н
		15600	56.62	-17.38	74	62.12	38.4	12.68	56.58	211	26	Р	Н
802.11n		15600	45.23	-8.77	54	50.73	38.4	12.68	56.58	211	26	Α	Н
HT20													Н
CH 40		10400	46.43	-21.77	68.2	53.54	39.9	9.93	56.94	100	0	Р	V
5200MHz		15600	56.55	-17.45	74	62.05	38.4	12.68	56.58	206	64	Р	V
		15600	43.72	-10.28	54	49.22	38.4	12.68	56.58	206	64	Α	V
													V
		10480	47.64	-20.56	68.2	54.6	39.98	9.97	56.91	100	0	Р	Н
		15720	58.94	-15.06	74	64.54	38.1	12.74	56.44	208	25	Р	Н
802.11n		15720	48.31	-5.69	54	53.91	38.1	12.74	56.44	208	25	Α	Н
HT20													Н
CH 48		10480	48.16	-20.04	68.2	55.12	39.98	9.97	56.91	100	0	Р	V
5240MHz		15720	57.16	-16.84	74	62.76	38.1	12.74	56.44	202	63	Р	٧
		15720	46.23	-7.77	54	51.83	38.1	12.74	56.44	202	63	Α	V
													V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 Page Number: C6 of C13

Band 1 5150~5250MHz WIFI 802.11n HT40 (Band Edge @ 3m) Report No.: FR980514D

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		5149.24	57.68	-16.32	74	49.09	32	6.08	29.49	100	259	Р	Н
		5149.76	50.79	-3.21	54	42.2	32	6.08	29.49	100	259	Α	Н
	*	5190	100.54	-	-	92.17	31.76	6.1	29.49	100	259	Р	Н
	*	5190	93.51	-	-	85.14	31.76	6.1	29.49	100	259	Α	Н
802.11n		5456.08	47.71	-26.29	74	39.26	31.81	6.18	29.54	100	259	Р	Н
HT40		5439.84	40.18	-13.82	54	31.8	31.76	6.16	29.54	100	259	Α	Н
CH 38		5149.5	58.95	-15.05	74	50.36	32	6.08	29.49	281	306	Р	V
5190MHz		5149.24	47.55	-6.45	54	38.96	32	6.08	29.49	281	306	Α	V
	*	5190	97.05	-	-	88.68	31.76	6.1	29.49	281	306	Р	V
	*	5190	89.5	-	-	81.13	31.76	6.1	29.49	281	306	Α	V
		5404.28	46.83	-27.17	74	38.62	31.62	6.12	29.53	281	306	Р	V
		5459.44	39.69	-14.31	54	31.23	31.82	6.18	29.54	281	306	Α	V
		5133.12	53.68	-20.32	74	45.09	32	6.07	29.48	100	258	Р	Н
		5148.72	43.87	-10.13	54	35.28	32	6.08	29.49	100	258	Α	Н
	*	5230	103.62	-	-	95.49	31.52	6.11	29.5	100	258	Р	Н
	*	5230	96.16	-	-	88.03	31.52	6.11	29.5	100	258	Α	Н
802.11n		5420.24	48.62	-25.38	74	40.34	31.68	6.14	29.54	100	258	Р	Н
HT40		5374.04	40.19	-13.81	54	32.1	31.5	6.12	29.53	100	258	Α	Н
CH 46		5145.08	50.33	-23.67	74	41.74	32	6.08	29.49	274	313	Р	V
5230MHz		5149.5	41.93	-12.07	54	33.34	32	6.08	29.49	274	313	Α	V
	*	5230	99.08	-	-	90.95	31.52	6.11	29.5	274	313	Р	V
	*	5230	92.04	-	-	83.91	31.52	6.11	29.5	274	313	Α	V
		5359.76	47.52	-26.48	74	39.48	31.44	6.12	29.52	274	313	Р	V
		5458.6	39.96	-14.04	54	31.5	31.82	6.18	29.54	274	313	Α	V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 Page Number: C7 of C13

Band 1 5150~5250MHz WIFI 802.11n HT40 (Harmonic @ 3m)

Report No.: FR980514D

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		10380	46.2	-22	68.2	53.41	39.82	9.92	56.95	100	0	Р	Н
		15570	53.3	-20.7	74	58.68	38.58	12.66	56.62	300	166	Р	Н
802.11n		15570	38.69	-15.31	54	44.07	38.58	12.66	56.62	300	166	Α	Н
HT40													Н
CH 38		10380	46.49	-21.71	68.2	53.7	39.82	9.92	56.95	100	0	Р	V
5190MHz		15570	44.85	-29.15	74	50.23	38.58	12.66	56.62	100	0	Р	V
													V
													V
		10460	47.05	-21.15	68.2	54.05	39.96	9.96	56.92	100	0	Р	Н
		15690	43.89	-30.11	74	49.51	38.13	12.72	56.47	100	0	Р	Н
802.11n													Н
HT40													Н
CH 46		10460	47.39	-20.81	68.2	54.39	39.96	9.96	56.92	100	0	Р	V
5230MHz		15690	44.44	-29.56	74	50.06	38.13	12.72	56.47	100	0	Р	V
													V
													V

^{2.} All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 Page Number: C8 of C13

Band 1 5150~5250MHz WIFI 802.11ac VHT80 (Band Edge @ 3m) Report No.: FR980514D

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5144.82	55.96	-18.04	74	47.37	32	6.08	29.49	100	259	Р	Н
		5139.62	51.01	-2.99	54	42.42	32	6.08	29.49	100	259	Α	Н
	*	5210	94.4	-	-	86.15	31.64	6.11	29.5	100	259	Р	Н
	*	5210	86.67	-	-	78.42	31.64	6.11	29.5	100	259	Α	Н
802.11ac		5453	47.52	-26.48	74	39.08	31.81	6.17	29.54	100	259	Р	Н
VHT80		5451.04	41.16	-12.84	54	32.73	31.8	6.17	29.54	100	259	Α	Н
CH 42		5141.96	53.13	-20.87	74	44.54	32	6.08	29.49	281	313	Р	>
5210MHz		5141.96	47.15	-6.85	54	38.56	32	6.08	29.49	281	313	Α	٧
	*	5210	89.55	-	-	81.3	31.64	6.11	29.5	281	313	Р	V
	*	5210	82.91	-	-	74.66	31.64	6.11	29.5	281	313	Α	>
		5444.88	48.44	-25.56	74	40.04	31.78	6.16	29.54	281	313	Р	>
		5440.96	40.93	-13.07	54	32.55	31.76	6.16	29.54	281	313	Α	٧

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 Page Number: C9 of C13

Band 1 5150~5250MHz WIFI 802.11ac VHT80 (Harmonic @ 3m) Report No.: FR980514D

WIFI Peak Pol. Note Frequency Level Over Limit Read Antenna Path Preamp Ant Table Ant. Limit Line Level **Factor** Loss Factor Pos Pos Avg. (deg) (P/A) (H/V) 1 (MHz) (dBµV/m) (dB) (dB \(V/m \) (dB/m) (dBµV) (dB) (dB) (cm) 10420 46.6 -21.6 68.2 53.67 39.92 9.94 56.93 100 15630 45.63 -28.37 74 51.16 38.31 12.7 56.54 100 0 Ρ Н Н 802.11ac Н **VHT80** ٧ CH 42 10420 46.88 -21.32 68.2 53.95 39.92 9.94 56.93 100 0 5210MHz 15630 45.02 -28.98 74 50.55 38.31 12.7 56.54 100 0 Ρ ٧ ٧ ٧

Remark

No other spurious found.

2. All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 Page Number : C10 of C13

Emission below 1GHz

Report No.: FR980514D

WIFI 802.11n HT20 (LF @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		141.55	35.83	-7.67	43.5	49.83	17.16	1.02	32.18	100	0	Р	Н
		167.74	33.63	-9.87	43.5	49.18	15.5	1.11	32.16	-	-	Р	Н
		239.52	29.09	-16.91	46	43.07	16.85	1.31	32.14	-	-	Р	Н
		431.58	30.53	-15.47	46	38.59	22.33	1.77	32.16	-	-	Р	Н
		854.5	31.85	-14.15	46	32.06	28.8	2.62	31.63	-	-	Р	Н
		941.8	33.62	-12.38	46	31.95	30.07	2.65	31.05	-	-	Р	Н
													Н
													Н
													Н
													Н
802.11n													Н
HT20													Н
LF		42.61	30.37	-9.63	40	44.11	18.03	0.52	32.29	100	0	Р	V
		134.76	32.24	-11.26	43.5	46.13	17.3	1	32.19	-	-	Р	V
		261.83	26.87	-19.13	46	37.99	19.66	1.37	32.15	-	-	Р	V
		600.36	32.21	-13.79	46	37.12	25.21	2.12	32.24	-	-	Р	V
		856.44	31.89	-14.11	46	32.09	28.8	2.62	31.62	-	-	Р	V
		957.32	33.87	-12.13	46	31.46	30.65	2.68	30.92	-	-	Р	V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.										
Remark		I results are PA		mit line.									

TEL: 886-3-327-3456 Page Number : C11 of C13

Note symbol

Report No.: FR980514D

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions
	shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-3456 Page Number : C12 of C13

A calculation example for radiated spurious emission is shown as below:

Report No.: FR980514D

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) = Antenna Factor(dB/m) + Path Loss(dB) + Read Level($dB\mu V$) Preamp Factor(dB)
- 3. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBμV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

TEL: 886-3-327-3456 Page Number : C13 of C13

Appendix D. Radiated Spurious Emission Plots

Toot Engineer		Temperature :	21.5~23.5°C
Test Engineer :	Ryan Lin, J.C. Liang and Wilson Wu	Relative Humidity :	46.5~49.5%

Report No.: FR980514D

Note symbol

-L	Low channel location
-R	High channel location

TEL: 886-3-327-3456 Page Number: D1 of D4

Band 1 - 5150~5250MHz

Report No.: FR980514D

WIFI 802.11a (Band Edge @ 3m)

WIFI	Band 1 5150~5250M	Hz Band Edge @ 3m
ANT	802.11a CH	36 5180MHz
1	Horizontal	Fundamental
Peak	100.0 122.5 100.0	122.5 1959
Avg.	144 Level (dithol/mi) 102.0 102.0 102.0 102.0 103.0 104.0 105.0	Left blank

Page Number TEL: 886-3-327-3456 : D2 of D43

TEL: 886-3-327-3456 Page Number: D3 of D43

TEL: 886-3-327-3456 Page Number: D4 of D43

WIFI	Band 1 5150~5250M	Hz Band Edge @ 3m
ANT	802.11a CH40) 5200MHz - R
1	Horizontal	Fundamental
Peak	123- 106.0 106.0 107.0	Left blank
Avg.	Total control (min) Date: 2019 69-20 1225 105.0	Left blank

TEL: 886-3-327-3456 Page Number : D5 of D43

TEL: 886-3-327-3456 Page Number : D6 of D43

WIFI Band 1 5150~5250MHz Band Edge @ 3m **ANT** 802.11a CH40 5200MHz - R 1 Vertical **Fundamental** Left blank Peak Left blank : 03CH13-HY : AV6_BE_54 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:1.000KHz SWT:Auto Avg.

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number: D7 of D43

WIFI Band 1 5150~5250MHz Band Edge @ 3m **ANT** 802.11a CH48 5240MHz - L 1 Horizontal **Fundamental** Peak : 03CH13-HY : PEAK_BE_74 3m HORN_9120b_1241 HORIZONTAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto : 03CH13-HY : PEAK(UNII) 3m HORN_9120b_1241 HORIZONTAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Left blank Avg. : 03CH13-HY : AV6_BE_54 3m HORN_9120D_1241 HORIZONTAL : RBW:1000.000KHz VBW:1.000KHz SWT:Auto

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number: D8 of D43

WIFI	Band 1 5150~5250M	Hz Band Edge @ 3m
ANT	802.11a CH48	3 5240MHz - R
1	Horizontal	Fundamental
Peak	12.5 196.8 197.8 198.9 1	Left blank
Avg.	\$1,500 (dillo/mm) Date: 2019 699 20 102.5 105.0 51	Left blank

TEL: 886-3-327-3456 Page Number : D9 of D43

WIFI Band 1 5150~5250MHz Band Edge @ 3m **ANT** 802.11a CH48 5240MHz - L 1 Vertical **Fundamental** Peak : 03CH13-HY : PEAK_BE_74 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto : 03CH13-HY : PEAK(UNII) 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Left blank Avg. : 03CH13-HY : AV6_BE_54 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:1.000KHz SWT:Auto

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : D10 of D43

WIFI Band 1 5150~5250MHz Band Edge @ 3m **ANT** 802.11a CH48 5240MHz - R 1 Vertical **Fundamental** Left blank Peak : 03CH13-HY : PEAK_BE_74 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Left blank : 03CH13-HY : AV6_BE_54 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:1.000KHz SWT:Auto Avg.

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : D11 of D43

Band 1 5150~5250MHz WIFI 802.11n HT20 (Band Edge @ 3m)

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : D12 of D43

WIFI Band 1 5150~5250MHz Band Edge @ 3m **ANT** 802.11n HT20 CH36 5180MHz 1 Vertical **Fundamental** Peak : 03CH13-HY : PEAK_BE_74 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto : 03CH13-HY : PEAK(UNII) 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Left blank Avg. : 03CH13-HY : AV6_BE_54 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:1.000KHz SWT:Auto

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : D13 of D43

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : D14 of D43

WIFI Band 1 5150~5250MHz Band Edge @ 3m **ANT** 802.11n HT20 CH40 5200MHz - R 1 Horizontal **Fundamental** Left blank Peak : 03CH13-HY : PEAK_BE_74 3m HORN_9120b_1241 HORIZONTAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Left blank : 03CH13-HY : AV6_BE_54 3m HORN_9120b_1241 HORIZONTAL : RBW:1000.000KHz VBW:1.000KHz SWT:Auto Avg.

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : D15 of D43

WIFI Band 1 5150~5250MHz Band Edge @ 3m **ANT** 802.11n HT20 CH40 5200MHz - L 1 Vertical **Fundamental** Peak : 03CH13-HV : PEAK_BE_74 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto : 03CH13-HY : PEAK(UNII) 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Left blank : 03CH13-HY : AV6_BE_54 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:1.000KHz SWT:Auto Avg.

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : D16 of D43

WIFI Band 1 5150~5250MHz Band Edge @ 3m **ANT** 802.11n HT20 CH40 5200MHz - R 1 Vertical **Fundamental** Left blank Peak : 03CH13-HY : PEAK_BE_74 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Left blank : 03CH13-HY : AV6_BE_54 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:1.000KHz SWT:Auto Avg.

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : D17 of D43

WIFI Band 1 5150~5250MHz Band Edge @ 3m **ANT** 802.11n HT20 CH48 5240MHz - L 1 Horizontal **Fundamental** Peak : 03CH13-HY : PEAK_BE_74 3m HORN_9120b_1241 HORIZONTAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto : 03CH13-HY : PEAK(UNII) 3m HORN_9120b_1241 HORIZONTAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Left blank : 03CH13-HY : AV6_BE_54 3m HORN_9120D_1241 HORIZONTAL : RBW:1000.000KHz VBW:1.000KHz SWT:Auto Avg.

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : D18 of D43

TEL: 886-3-327-3456 Page Number : D19 of D43

TEL: 886-3-327-3456 Page Number : D20 of D43

WIFI Band 1 5150~5250MHz Band Edge @ 3m **ANT** 802.11n HT20 CH48 5240MHz - R 1 Vertical **Fundamental** Left blank Peak : 03CH13-HY : PEAK_BE_74 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Left blank : 03CH13-HY : AV6_BE_54 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:1.000KHz SWT:Auto Avg.

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : D21 of D43 FAX: 886-3-328-4978

Band 1 5150~5250MHz WIFI 802.11n HT40 (Band Edge @ 3m)

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : D22 of D43

WIFI Band 1 5150~5250MHz Band Edge @ 3m **ANT** 802.11n HT40 CH38 5190MHz - R 1 Horizontal **Fundamental** Left blank Peak Left blank Avg. : 03CH13-HY : AV6_BE_54 3m HORN_9120D_1241 HORIZONTAL : RBW:1000.000KHz VBW:3.000KHz SWT:Auto

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : D23 of D43

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : D24 of D43

WIFI Band 1 5150~5250MHz Band Edge @ 3m **ANT** 802.11n HT40 CH38 5190MHz - R 1 Vertical **Fundamental** Left blank Peak Left blank Avg. : 03CH13-HY : AV6_BE_54 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:3.000KHz SWT:Auto

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : D25 of D43

WIFI Band 1 5150~5250MHz Band Edge @ 3m **ANT** 802.11n HT40 CH46 5230MHz - L 1 Horizontal **Fundamental** Peak : 03CH13-HY : PEAK_BE_74 3m HORN_9120b_1241 HORIZONTAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto : 03CH13-HY : PEAK(UNIT) 3m HORN_9120D_1241 HORIZONTAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Left blank Avg. : 03CH13-HY : AV6_BE_54 3m HORN_9120D_1241 HORIZONTAL : RBW:1000.000KHz VBW:3.000KHz SWT:Auto

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : D26 of D43

WIFI Band 1 5150~5250MHz Band Edge @ 3m **ANT** 802.11n HT40 CH46 5230MHz - R 1 Horizontal **Fundamental** Left blank Peak Left blank Avg. : 03CH13-HY : AV6_BE_54 3m HORN_9120D_1241 HORIZONTAL : RBW:1000.000KHz VBW:3.000KHz SWT:Auto

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : D27 of D43

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : D28 of D43

WIFI Band 1 5150~5250MHz Band Edge @ 3m **ANT** 802.11n HT40 CH46 5230MHz - R 1 Vertical **Fundamental** Left blank Peak : 03CH13-HY : PEAK_BE_74 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Left blank Avg. : 03CH13-HY : AV6_BE_54 3m HORN_9120D_1241 VERTICAL : RBW:1000.000KHz VBW:3.000KHz SWT:Auto

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : D29 of D43

Band 1 5150~5250MHz WIFI 802.11ac VHT80 (Band Edge @ 3m)

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number: D30 of D43

WIFI	Band 1 5150~5250MHz Band Edge @ 3m						
ANT	802.11ac VHT80 CH42 5210MHz - R						
1	Horizontal	Fundamental					
Peak	1235 1958 1959	Left blank					
Avg.	123	Left blank					

TEL: 886-3-327-3456 Page Number : D31 of D43

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number: D32 of D43

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number: D33 of D43

Band 1 - 5150~5250MHz

WIFI 802.11a (Harmonic @ 3m)

WIFI	Band 1 5150~5250MHz Harmonic @ 3m							
ANT	802.11a CH36 5180MHz							
1	Horizontal	Vertical						
Peak Avg.	14 Level (dilloviris) Doller, 2019-06-20 105-0 17-5	Telephone (1986) 1986 (1986) 1						

TEL: 886-3-327-3456 Page Number : D34 of D43

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number: D35 of D43

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number: D36 of D43

Band 1 5150~5250MHz WIFI 802.11n HT20 (Harmonic @ 3m)

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number: D37 of D43

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number: D38 of D43

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number: D39 of D43

Band 1 5150~5250MHz

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : D40 of D43

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : D41 of D43

Band 1 5150~5250MHz WIFI 802.11ac VHT80 (Harmonic @ 3m)

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : D42 of D43

Emission below 1GHz 5GHz WIFI 802.11n HT20 (LF)

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number: D43 of D43

Appendix E. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting	Duty Factor(dB)
802.11a	95.95	1420	0.70	1kHz	0.18
5GHz 802.11n HT20	95.71	1340	0.75	1kHz	0.19
5GHz 802.11n HT40	91.74	666	1.50	3kHz	0.37
5GHz 802.11ac VHT20	95.74	1350	0.74	1kHz	0.19
5GHz 802.11ac VHT40	92.47	675	1.48	3kHz	0.34
5GHz 802.11ac VHT80	85.13	332	3.01	10kHz	0.70

Report No.: FR980514D

TEL: 886-3-327-3456 Page Number : E-1 of 4

802.11a

Date: 16.SEP.2019 22:14:39

802.11n HT20

Date: 16.SEP.2019 23:25:31

FAX: 886-3-328-4978

TEL: 886-3-327-3456 Page Number : E-2 of 4

802.11n HT40

Date: 16.SEP.2019 23:30:07

802.11ac VHT20

Date: 16.SEP.2019 23:41:31

TEL: 886-3-327-3456 Page Number : E-3 of 4

802.11ac VHT40

Date: 16.SEP.2019 23:44:49

802.11ac VHT80

Date: 16.SEP.2019 23:52:48

FAX: 886-3-328-4978

TEL: 886-3-327-3456 Page Number : E-4 of 4