COURSE

Xây dựng hồi quy đa biến

Lớp phân tích thống kê

Khương Quỳnh Long Hà Nội, 06-08/06/2020

Mục tiêu

- Một số chỉ số trong lựa chọn mô hình
- Nguyên tắc chung trong xây dựng hồi quy đa biến
- Một số phương pháp xây dựng hồi quy đa biến
- Ưu điểm, nhược điểm

Correlation ≠ Causation

Source of bias

- Sai lệch tiềm tàng trong mô hình
 - ✓ Sai lệch hệ thống (systematic)
 - ✓ Không hiệu chỉnh nhiễu
 - ✓ Interaction/Effect modification
 - ✓ Cộng tuyến (collinearity)
 - **√** ...

"All model are wrong, but some are useful"!

Hồi quy đa biến

Phương trình:

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$

- Mô hình y theo x₁, x₂,..., x_n
- Kiểm soát yếu tố gây nhiễu
 - ✓ Chỉ khi nào yếu tố gây nhiễu được thêm vào mô hình

Mô hình quá phức tạp/dư thừa

glucose	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
exercise	-2.841198	1.074594	-2.64	0.008	-4.948304	7340926
HT	-1.87393	.974953	-1.92	0.055	-3.785657	.0377968
age	1069152	.0833915	-1.28	0.200	2704326	.0566021
nwhite	.5645015	1.624027	0.35	0.728	-2.619955	3.748958
smoking	-1.023867	1.542842	-0.66	0.507	-4.049132	2.001399
drinkany	2.075594	1.056013	1.97	0.049	.0049212	4.146266
physact						
somewhat less active	-1.115604	2.202061	-0.51	0.612	-5.433493	3.202284
about as active	2.279466	2.151929	1.06	0.290	-1.940123	6.499055
somewhat more active	.8533755	2.258217	0.38	0.706	-3.574626	5.281377
much more active	5739344	2.574254	-0.22	0.824	-5.621634	4.473765
globrat						
Fair	2.793907	3.54875	0.79	0.431	-4.164624	9.752438
Good	1.46192	3.570144	0.41	0.682	-5.53856	8.462399
Very good	1.929168	3.70859	0.52	0.603	-5.342783	9.201118
Excellent	1.204172	4.352672	0.28	0.782	-7.33072	9.739064
medcond	4383873	1.056299	-0.42	0.678	-2.50962	1.632846
htnmeds	.4946444	1.315293	0.38	0.707	-2.084435	3.073724
statins	6432222	1.048295	-0.61	0.540	-2.698761	1.412317
diabetes	43.30088	1.763215	24.56	0.000	39.84349	46.75826
dmpills	13.77868	2.146727	6.42	0.000	9.569294	17.98807
insulin	24.43578	2.151594	11.36	0.000	20.21685	28.65471
weight	0685387	.1021843	-0.67	0.502	2689058	.1318285
BMI	.6045992	.2503422	2.42	0.016	.1137182	1.09548
waist	0394408	.12716	-0.31	0.756	2887811	.2098995
WHR	26.24673	11.55603	2.27	0.023	3.587205	48.90625
tchol	.0745073	.0420354	1.77	0.076	0079174	.156932
LDL	0571034	.0445027	-1.28	0.200	1443661	.0301593
TG	.0222467	.0096515	2.31	0.021	.0033217	.0411717
SBP	0034041	.0321762	-0.11	0.916	0664965	.0596883
DBP	0144425	.062711	-0.23	0.818	1374087	.1085238
_cons	59.27812	10.96702	5.41	0.000	37.77354	80.78269

Cách 1: Khái niệm + thống kê

Biến gây nhiễu (khái niệm)

- Yếu tố bên ngoài, tác động đồng thời lên yếu tố phơi nhiễm và kết cuộc
- Không nằm trên đường từ phơi nhiễm → kết cuộc

Biến gây nhiễu

- Theo thống kê: so sánh hệ số phương trình và sai số (standard error) của z → y
 - ✓ Rule of thumb:
 - Nếu z làm thay đổi beta > 10% (hoặc 15%) → z là biến gây
 nhiễu Giữ Z trong mô hình
 - Không thay đổi beta, ↓SE → Z là 1 predictor của y Tùy tình huống
 - Tăng SE → Z và X cộng tuyến (collinear) Loại Z khỏi mô hình
- → Khái niệm + thống kê

Biến gây nhiễu

Data FEV

FEV ~ smoke

FEV	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Smoke _cons	.7107189 2.566143	.1099426 .0346604	6.46 74.04	0.000 0.000	.4948346 2.498083	.9266033 2.634202

FEV ~ smoke + Age ?

FEV	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
Smoke Age _cons	2089949 .2306046 .367373	.0807453 .0081844 .0814357	-2.59 28.18 4.51	0.010 0.000 0.000	3675476 .2145336 .2074647	0504421 .2466755 .5272814

FEV	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Smoke	.7107189	.1099426	6.46	0.000	.4948346	.9266033
_cons	2.566143	.0346604	74.04	0.000	2.498083	2.634202

FEV	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
Smoke Age _cons	2089949 .2306046 .367373	.0807453 .0081844 .0814357	-2.59 28.18 4.51	0.010 0.000 0.000	3675476 .2145336 .2074647	0504421 .2466755 .5272814

- -Thay đổi beta (>10%) = tuổi là biến gây nhiễu
- -Không đổi beta, ↓ SE = tuổi là 1 predictor khác
- -Tăng SE của beta = tuổi và hút thuốc cộng tuyến

Biến gây nhiễu

Data FEV

FEV ~ smoke + age + gender?

FEV	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
Smoke	1539741	.0779766	-1.97	0.049	3070905	0008577
Age	.2267942	.0078845	28.76	0.000	.2113121	.2422763
Gender	.3152733	.0427104	7.38	0.000	.2314063	.3991403
_cons	.2377708	.0802279	2.96	0.003	.0802337	.3953079

Cộng tuyến (Collinear)

 Xảy ra khi 2 hay nhiều biến độc lập trong mô hình đa biến liên quan chặt với nhau

Đánh giá

- ✓ Kiểm tra mối liên quan giữa các biến độc lập
 - Chọn 1 trong các biến có liên hệ chặt với nhau
- ✓ Xây dựng mô hình hồi quy của các biến độc lập
 - o i.e., mỗi mô hình cho 1 biến độc lập (Ví dụ X1 ~ X2)
 - o Tính R² (kiểm tra nếu R² lớn)
 - Tính Variance Inflated Factor VIF (rule of thumb: >10 hoặc > 5)

Giải quyết

- ✓ Loại bớt biến liên quan với nhau
- ✓ Các loại hồi quy khác: e.g., ridge regression, lasso, elastic net

Cộng tuyến (Collinear)

- Giữ biến nào loại biến nào????
 - ✓ Biến phơi nhiễm chính > các biến độc lập khác
 - ✓ Dựa vào kinh nghiệm
 - ✓ Biến nào được đo lường chính xác hơn
 - ✓ Kiểm tra độ phù hợp mô hình

Đánh giá độ phù hợp mô hình (model fit)

Hồi quy Tuyến tính

- ✓ Partial F test (nested models)
- ✓ AIC/BIC (nested models hoặc non-nested models)

Hồi quy Logistic

- ✓ Likelihood ratio test (nested models)
- ✓ AIC/BIC (nested models hoặc non-nested models)

Hồi quy tuyến tính đa biến

Phương trình:

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$

- Diễn giải: Khi các x₂, ..., x_n không thay đổi, biến x₁ thay đổi 1 đơn vị thì biến y thay đổi bao nhiêu đơn vị?
- Tiên lượng: Với các thông tin của x₁, x₂, ... x_n thì y là bao nhiêu?
- Kiểm soát yếu tố gây nhiễu

Partial F-test

- F stat = (SSe_(reduce) SSe_(full)) / MSe_(full)
- Nested models only
 - √ Full: FEV ~ Smoke + Age
 - ✓ Reduce: FEV ~ Smoke
- Giả thuyết
 - \checkmark H₀: Sse_(full) = Sse_(reduce)
 - √ H_a: Sse_(full) < Sse_(reduce)

Partial F-test

- √ Full: FEV ~ Smoke + Age
- ✓ Reduce: FEV ~ Smoke

ssc install ftest // Cài đặt câu lệnh tính Partial F Test (chỉ cần cài 1 lần duy nhất)

```
reg FEV Smoke
estimate store M1 // Lưu mô hình M1
reg FEV Smoke Age
estimate store M2 // Lưu mô hình M2
ftest M1 M2 // Partial F-test
```

```
. ftest M1 M2
Assumption: M1 nested in M2
F( 1, 651) = 793.90
    prob > F = 0.0000
```

AIC/BIC

AIC (Akaike's Information Criterion)

- ✓ AIC = 2 x (Số biến log-likelihood)
- ✓ Khi đưa biến mới vào thì log-likelihood sẽ tăng --> cân nhắc giữa số biến và likelihood
- ✓ Penalize mô hình nhiều biến số & ít ý nghĩa
- ✓ AIC càng nhỏ → mô hình càng phù hợp

BIC (Bayesian Information Criterion)

- ✓ BIC = log(n)*Số biến 2*log-likelihood
- ✓ Tương tự AIC
- ✓ Conservative hon AIC

✓ Trong nested model, AIC/BIC cho kết quả tương tự partial F test

AIC/BIC

reg FEV Smoke
estat ic
reg FEV Smoke Age
estat ic
estat vif // kiểm tra VIF

Tóm tắt 4 bước

- 1. Xác định câu hỏi nghiên cứu
- 2. Explore dữ liệu
- 3. Xây dựng mô hình ban đầu 🥿
- 4. Kiểm tra giả định

B1: Xác định câu hỏi nghiên cứu

- Mục tiêu của mô hình?
- Biến outcome?
- Biến giải thích?
- Các biến khác có trong mô hình:
 - ✓ Đo lường/code như thế nào?
 - ✓ Biến nào quan trọng?

B2: Explore dữ liệu

Univariate distribution

- ✓ Phân phối của biến số
- ✓ Missing data?
- ✓ Out of range....

Bivariate analysis

✓ Mối liên quan giữa các biến

Missing data

x1	x2	x3	X1 + x2+ x3
1	•	0	
1		1	
1	1	0	ok
1	0	1	ok
	0	1	
•	0	•	•
•	1	0	

B3: Xây dựng mô hình ban đầu

• 2 cách:

- ✓ Forward: từ mô hình đơn giản → thêm biến
- ✓ Backward: từ mô hình phức tạp → loại bớt biến

Cân nhắc thêm/loại biến

- ✓ Biến gây nhiễu? (khái niệm + thống kê)
- ✓ Partial F test
- ✓ AIC/BIC

Nếu có cộng tuyến

- ✓ Bỏ bớt các biến có liên hệ chặt với nhau
- ✓ Which is the best?
 → AIC/BIC...

Kiểm tra interaction/effect modification

- ✓ Stratify
- ✓ Interaction term & kiểm tra bằng Partial F test/AIC/BIC

B4: Kiểm tra giả định

LINE

- Linear: Quan hệ tuyến tính giữa biến độc lập và phụ thuộc
- 2. Independence: Các sai số là độc lập
- Normality: Sai số của ước lượng có phân phối bình thường
- 4. Equal variance: Phương sai đồng nhất (homoscedasticity)

Hồi quy logistic:

$$log(p/(1-p)) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

- Xây dựng mô hình và giải thích dựa vào "log-odds"
- Kiểm soát yếu tố gây nhiễu

- Quy trình tương tự hồi quy tuyến tính
- Xác định biến gây nhiễu:
 - √ Khái niệm
 - ✓ Sự thay đổi beta & SE (Chú ý: beta = log(odds), không phải OR)
- So sánh mô hình
 - ✓ Likelihood ratio test # Partial F test (nested models)
 - ✓ AIC/BIC

Data "WCGS.dta"

Về lý thuyết tuổi ảnh hưởng smoke?

chd ~ smoke

chd	Coef.	Std. Err.	Z	P> z	[95% Conf.	. Interval]
smoke	.6298628	.1337217	4.71		.3677731	.8919525
_cons	-2.76362	.1041517	-26.53		-2.967753	-2.559486

chd ~ smoke + age

chd	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
smoke	.6381599	.13472	4.74	0.000	.3741135	.9022062
age	.0751775	.0113917	6.60	0.000	.0528502	.0975048
_cons	-6.321315	.5614499	-11.26	0.000	-7.421737	-5.220894

- Thay đổi beta log(odds): <10%
- Mô hình nào "tốt" hơn?
 - ✓ Likelihood ratio test/AIC/BIC

Likelihood ratio test

- Tương tự Partial F test
- -2*log-likelihood ~ chi² → p value
- ✓ Full: log(odds_{CHD}) ~ Smoke + Age
- ✓ Reduce: log(odds_{CHD}) ~ Smoke

```
logit chd smoke
estimate store M1 // Luu mô hình M1
logit chd smoke age
estimate store M2 // Luu mô hình M2
lrtest M1 M2 // likelihood ratio test
```

Giả thuyết

```
    ✓ H<sub>0</sub>: log-likelihood<sub>(full)</sub> = log-likelihood<sub>(reduce)</sub>
    ✓ H<sub>a</sub>: log-likelihood<sub>(full)</sub> > log-likelihood<sub>(reduce)</sub>
```

```
. lrtest M1 M2

Likelihood-ratio test LR chi2(1) = 43.15

(Assumption: M1 nested in M2) Prob > chi2 = 0.0000
```

AIC/BIC

logistic chd smoke age estat ic

Bài tập nhóm

- HERS data ("HERS.dta")
- Nghiên cứu thử nghiệm lâm sàng đánh giá liệu pháp điều trị hormone thay thế trong phòng ngừa nhồi máu cơ tim và tử vong. Dữ liệu được thu thập ở baseline trên 2763 phụ nữ mãn kinh có bệnh nền là CHD
- Mục đích (của ví dụ này)
 - ✓ Có mối liên quan giữa luyện tập thể dục đến đường huyết?

HERS data

Framework

4 bước xây dựng mô hình

• Bước 1:

Bước 2:

• Bước 3:

• Bước 4:

Một số phương pháp khác

Một số phương pháp lựa chọn biến

- Dựa vào kinh nghiệm/y văn
- Dựa vào p-value¹
 - ✓ Phân tích đơn biến
 - ✓ Những biến có p < 0.2 (0.25...) ở đơn biến → mô hình đa biến ban đầu
 - ✓ Những biến p <0.05 trong mô hình đa biến được giữ lại
 - ✓ Những biến loại được kiểm tra lại bằng Irtest

Một số phương pháp lựa chọn biến

- Stepwise
 - ✓ Dựa vào một số chỉ số (p-value, AIC/BIC...)
 - √ 2 loại
 - √ Forward
 - √ Backward
 - B1: Fit mô hình với toàn bộ biến được chọn
 - o B2: Loại biến có giá trị p-value cao nhất
 - B3: Fit lại mô hình với biến đã loại ở bước 2
 - B4...Bn: loại dần các biến đến khi tất cả các biến có p-value dưới ngưỡng

xi: stepwise, pr(0.2): reg glucose exercise HT age nwhite smoking drinkany i.physact i.globrat medcond htnmeds statins diabetes dmpills insulin weight BMI waist WHR tchol LDL TG SBP DBP

Không được khuyến cáo sử dụng

```
= 0.9158 >= 0.2000 removing SBP
                     removing Iphysact 5
p = 0.8225 >= 0.2000
p = 0.8118 >= 0.2000
                     removing Iglobrat 5
                     removing Iglobrat 3
p = 0.7579 >= 0.2000
                     removing waist
p = 0.7560 >= 0.2000
  = 0.7228 >= 0.2000
                     removing nwhite
                     removing DBP
p = 0.7300 >= 0.2000
                     removing htnmeds
 = 0.6852 >= 0.2000
                     removing Iglobrat 4
  = 0.6927 >= 0.2000
                     removing medcond
  = 0.6348 >= 0.2000
p = 0.6140 >= 0.2000
                     removing _Iphysact_2
  = 0.5661 >= 0.2000
                     removing statins
p = 0.4987 >= 0.2000 removing smoking
p = 0.3252 >= 0.2000 removing weight
                     removing Iglobrat 2
  = 0.2949 >= 0.2000
p = 0.2525 >= 0.2000 removing age
p = 0.2501 >= 0.2000 removing Iphysact 4
p = 0.2299 >= 0.2000 removing LDL
                                                   Number of obs
                                                                         2,740
      Source
                                           MS
                                                                        292.46
                                                   F(11, 2728)
                2071501.37
                                  11 188318.306
                                                   Prob > F
                                                                        0.0000
       Model
                1756580.42
                               2,728 643.907778
                                                   R-squared
                                                                        0.5411
    Residual
                                                   Adj R-squared
                                                                       0.5393
                3828081.79
                               2,739 1397.62022
                                                                       25.375
       Total
                                                   Root MSE
                           Std. Err.
                                               P>|t|
                                                          [95% Conf. Interval]
     glucose
                    Coef.
                -2.615241
                            1.01427
                                        -2.58
                                                0.010
                                                         -4.604056
                                                                     -.6264258
    exercise
                -1.823858
                                        -1.88
                                               0.060
                                                         -3.727316
                            .9707389
                                                                         .0796
                 .0275715
                            .0082211
                                         3.35
                                               0.001
                                                          .0114513
                                                                      .0436916
         WHR
                 22.21973
                            6.620853
                                         3.36
                                               0.001
                                                          9.237334
                                                                      35.20212
                 43.1877
                           1.739287
                                        24.83
                                               0.000
                                                          39.77725
                                                                      46.59816
    diabetes
    drinkany
                 2.244258
                            1.012678
                                         2.22
                                               0.027
                                                           .258564
                                                                      4.229953
     dmpills
                 13.92781
                           2.132756
                                         6.53
                                               0.000
                                                          9.745826
                                                                      18.10979
                                                                      4.348734
                 2.323166
                            1.033013
                                         2.25
                                               0.025
                                                           .297599
 Iphysact 3
        BMI
                            .0957505
                                         3.89
                                               0.000
                                                          .1845287
                                                                      .5600303
       tchol
                 .0249485
                             .012281
                                         2.03
                                               0.042
                                                          .0008675
                                                                      .0490294
     insulin
                 24.74155
                            2.122927
                                        11.65
                                               0.000
                                                          20.57884
                                                                      28.90425
                 55.88684
                            6.362311
                                         8.78 0.000
                                                          43.41141
                                                                      68.36228
```

Một số phương pháp lựa chọn biến

Bayesian

- ✓ Xác suất biến X xuất hiện trong mô hình
- ✓ Xác suất mô hình ABC xuất hiện
- ✓ Bayesian model averaging (BMA)

Directed Acyclic Graphs (DAGs)

- ✓ Dựa hoàn toàn vào mô hình khái niệm
- ✓ https://gitlab.com/LongKhuong/dags