Elektrikernas kokbok

Björn Ögren

2022-11-16

Contents

4 CONTENTS

Introduction

Elbjörnen, det är jag det ${<}3$

Du hittar mig på:

Twitter: https://twitter.com/elbjornen Unsplash: https://unsplash.com/@elbjornen GitHub: https://github.com/elbjornen 6 CONTENTS

Likströmskretsar

8 CONTENTS

$\overline{\text{URI}}$

Den tyske fysikern Simon Ohm uppställde år 1826 den regel som brukar kallas för Ohms lag. Om en ström I passerar igenom en ledare med resistansen R så faller spänningen med $U = I \times R$. Spänningsfallet blir proportionellt både mot strömmen och resistansen. Med en vätskeanalogi kan man säga at det blir ett "tryckfall" när vätskeflödet passerar ett motstånd.

1.1 Spänning

Elektrisk spänning eller potentialskillnad, väsentligen samma sak som elektromotorisk kraft, är skillnaden i elektrisk potential mellan två punkter i en elektrisk krets.

Samband	Beteckning	Storhet	Enhet	Förkortning
$U = R \times I$	U	Spnning	Volt	V

1.1.0.1 Tip:

- Om spänningen är lika stor men strömmen har ökat, då måste resistansen ha minskat.
- Om resistasen är oförändrad men strömmen minskat då måste även spänningen minskat.
- Om resistansen ökar kommer strömmen att minska.

Den typen av logiska resonemang är viktig vid **felsökning**.

1.1.1 Prefix

10 CHAPTER 1. URI

Vanliga prefix	Enhet	Förkostning
1 kilovolt	kV	10^{3}
$1\ milivolt$	mV	10^{-3}
$1\ mikrovolt$	μV	10^{-6}

1.2 Resistans

Samband	Beteckning	Storhet	Enhet	Förkortning
$R = \frac{U}{I}$	I	Resistans	Ohm	Ω

1.2.0.1 Tip:

- Om spänningen är lika stor men strömmen har ökat, då måste resistansen ha minskat.
- Om resistasen är oförändrad men strömmen minskat då måste även spänningen minskat.
- Om resistansen ökar kommer strömmen att minska.

Den typen av logiska resonemang är viktig vid **felsökning**.

1.2.1 Prefix

Resistans mäts i ohm och som betecknas med den grekiska bokstaven Ω som uttalas (åmega). I formler används bokstaven R för att beteckna resistans. För att utrycka små och stora resistanser använder vi prefix framför enheten ohm.

Vanliga prefix	Enhet	Förkostning
1 megaohm 1 kiloohm	$M\Omega$ $k\Omega$	$\frac{10^6}{10^3}$
1 miliohm	$m\Omega$	10^{-3}

1.3 Ström

En elektrisk ström består av av laddningar i rörelse. En metalltråd innehåller fria elektroner men även om de hela tiden rör sig (p.g.a. värmerörelsen), så sker detta slumpmässigt utan att därför någon nettoström uppkommer. Om man tillför laddning, elektroner, till metalltrådens ena ände så stör man jämvikten och en utjämningsström av elektroner flyter kortvarigt i tråden. Om man dessutom kan bortföra elektronerna från metalltrådens andra ände så fortsätter strömmen att flyta genom tråden.

1.3. STRÖM 11

Samband	Beteckning	Storhet	Enhet	Förkortning
$I = \frac{U}{R}$	I	Strm	Ampere	A

1.3.0.1 Tip:

- Om spänningen är lika stor men strömmen har ökat, då måste resistansen ha minskat.
- Om resistasen är oförändrad men strömmen minskat då måste även spänningen minskat.
- Om resistansen ökar kommer strömmen att minska.

Den typen av logiska resonemang är viktig vid felsökning.

1.3.1 Prefix

Strömmen mäts i ampere och grundenheten är 1 ampere. I formler betecknas strömmen med bokstaven I. Ampere förkortas A i dokumentation. För att enklare kunna skriva värdet på små och stora strömmar används prefix framför enheten ampere.

Vanliga prefix	Enhet	Förkostning
1 kiloampere 1 miliampere 1 mikroampere	$\begin{array}{c} kA \\ mA \\ \mu A \end{array}$	$ \begin{array}{r} 10^3 \\ 10^{-3} \\ 10^{-6} \end{array} $

Ledarresistans

En ledningstråds resistans beror på hur många fria ledningselektroner som finns tillgängliga för laddningstransporten, det vill säga vilket material den är tillverkad av, men även på trådens area A. Eftersom ledningselektronerna stöter på motstånd längs tråden, så beror resistansen även på hur lång den är l.

Samband	Beteckning	Storhet	Enhet	Förkortning
$R = \frac{\rho \times L}{A}$	R	Resistans	Omega	Ω

Exempel uträkning
$R = \frac{\rho \times L}{A}$ $R = \frac{0.0175 \times 10}{1}$ $R = 0.0175 \Omega$

2.1 Ledarresistivitet

Materialkonstanten ρ i resistansformeln brukar anges i sorten $[\Omega mm^2/m]$. Detta förenklar beräkningar av kabelresistanser, eftersom det är naturligt att tala om kabellängder i m och tvärsnittsareor av storleksordningen mm^2 - den som inte känner till detta kan dock bli mycket förbryllad!

Metall I	Resistivitet $\rho \ [\Omega mm^2/m]$
Aluminium	0,027
Jrn	0, 11
Koppar	0,0175

Samband	Beteckning	Storhet	Enhet	Förkortning
$\rho = \frac{R \times A}{L}$	ρ	Material konsta	n $m{O}mega\ milime$	$ter/[\Omega$ ethe $n^2/m]$

$$\frac{\text{Exempel uträkning}}{\rho = \frac{R \times A}{L}} \\ \rho = \frac{2.67 \times 0.75}{20} \\ \rho = 0,0090,1 \; [\Omega mm^2/m]$$

2.2 Ledararea

Samband	Beteckning	Storhet	Enhet	Förkortning
$A = \frac{\rho \times L}{R}$	A	Area	Milimeter	mm^2

$$\frac{\text{Exempel uträkning}}{A = \frac{\rho \times L}{R}} \\ A = \frac{0.0175 \times 20}{0.466} \\ A = 0,75 \ mm^2$$

2.3 Ledarlängd

Samband	Beteckning	Storhet	Enhet	Förkortning
$L = \frac{R \times A}{\rho}$	L	Lngd	Meter	m

$$\frac{L = \frac{R \times A}{\rho}}{L = \frac{1.75 \times 1.0}{0.0175}}$$

$$L = 100 \ m$$

Seriekoppling

Seriekoppling innebär att alla komponenter genomlöps av hela den strömstyrka som flyter genom ledningen, medan den elektriska spänningen över seriekopplingen fördelas över komponenterna i förhållande till deras resistans.

3.1 Spänningsdelning

Seriekopplar vi sju likadana lampor, kommer spänningen att fördela sig jämt över dem. Det bildar vad det kallas en **spänningsdelarkedja**.

Kirchoffs andra lag: Summan av delspäningarna är lika med den totala spänningen.

Samband	Beteckning	Storhet	Enhet	Förkortning
$\begin{array}{l} U_{tot} = \\ U_1 + \\ U_2 + U_3 \end{array}$	U_{tot}	Spnning	Volt	V

3.2 Okänd spänningsdelning

Samband	Beteckning	Storhet	Enhet	Förkortning
$\begin{array}{l} \overline{U_{tot}} = \\ U_{tot} - \end{array}$	U_{tot}	Spnning	Volt	V
$U_3 - U_2$				

3.3 Delresistans

Samband	Beteckning	Storhet	Enhet	Förkortning
$R_{//} \frac{R_{tot}}{R}$	$R_{//}$	Delresistans	Omega	Ω

Om alla delresistanser	är	lika
$\begin{array}{c} R_{//} \frac{R_{tot}}{R} \\ R_{//} = \frac{100}{10} \\ R_{//} = 4, 2~\Omega \end{array}$		

$$\frac{\text{Om delresestanerna \"{a}r olika}}{R_1 = R_{tot} - R_1}$$

$$R_1 = 10 - 6$$

$$R_1 = 6~\Omega$$

3.4 Ersättningsresistans

Ersättningsresistans är den resistans vilken man kan ersätta två eller flera resistorer i en krets med. För seriekopplingar är den totala resistansen $R_T \$ helt enkelt summan av de olika resistorernas resistans.

3.4. ERSÄTTNINGSRESISTANS

17

Exempel uträkning ersättningsresistans

$$\begin{split} R_{ERS.} &= R_1 + R_2 + R_3 \\ R_{ERS.} &= 10 + 12 + 18 \\ R_{ERS.} &= 40 \ \Omega \end{split}$$

Ersättningsresistansen går även att räkna ut från spänning totalt delat med strömen

$$\begin{split} R_{ERS.} &= \frac{U_{tot}}{I} \\ R_{ERS.} &= \frac{U_{tot}}{I} \\ R_{ERS.} &= 4, 2~\Omega \end{split}$$

Pararellkoppling

Kirchhoffs första strömlag beskriver hur strömmar förgrenar sig i en pararellkrets. Den andra beskriver hur spänningar fördelas i en seriekrets.

4.0.1 Strömgrening

Strömmen som flytter in till en punkt kallas "huvudström" och de som flyter därifrån kallas "grenströmmar".

Kirchoffs första lag:

Summan av alla strömmar som flyter till en punkt är lika med summan av alla strömmar som flyter till punkten.

Samband	Beteckning	Storhet	Enhet	Förkortning
	I_h	Huvudstrm	Ampere	A

$$\frac{\text{Exempel uträkning}}{I_h = I_1 + I_2 + I_3} \\ I_h = 2 + 2 + 2 \\ I_h = 9 \ A$$

4.1 Okänd grenström

Samband	Beteckning	Storhet	Enhet	Förkortning
$ \overline{I_3 = I_h - I_1 - I_2} $	I	Strm	Ampere	A

$$\frac{\text{Exempel uträkning}}{I_3 = I_h - I_1 - I_2} \\ I_3 = 6 - 3 - 2 \\ I_h = 1 \ A$$

4.2 Ersättningsresistans

Ersättningsresistans är den resistans vilken man kan ersätta två eller flera resistorer i en krets med.

Samband	Beteckning	Storhet	Enhet	Förkortning
$\begin{array}{c} \frac{1}{R} = \\ \frac{1}{R}_1 + \frac{1}{R}_2 + \\ \frac{1}{R}_3 osv \end{array}$	R	ersttningsresist	tans Omega	Ω

Exempel uträk	rning
$\frac{\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}}{\frac{1}{R} = \frac{1}{10} + \frac{1}{12}}$ $R_{ers} = 40.9$	

Ersättningsresistansen går även att räkna ut från spänning totalt delat med strömen

$$\begin{split} R_{ers} &= \frac{U_{tot}}{I} \\ R_{ers} &= \frac{U_{tot}}{I} \\ R_{ers} &= 4, 2~\Omega \end{split}$$

Ackumulatorer

5.1 Polspänning

Samband	Beteckning	Storhet	Enhet	Förkortning
U =	U	Spnning	Volt	V
$E\!-\!R_i\! imes\!I$				

$$\frac{\text{Exempel uträkning}}{U=E-R_i\times I} \\ U=1, 5-0, 4\times 0, 9 \\ U=1, 14\ V$$

5.2 Spänningsfall

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{U_{drop}} = \\ R_i \times I$	U_{drop}	spnningsfall	Volt	V

$$\begin{split} &\frac{\text{Exempel uträkning}}{U_{drop} = R_i \times I} \\ &U_{drop} = 0, 6 \times 2, 2 \\ &U_{drop} = 1, 32 \ V \end{split}$$

5.3 EMK Total

Samband	Beteckning	Storhet	Enhet	Förkortning
$E_{tot} =$	E_{tot}	Elektromotorise	k kraf Vtølt tal	V
$E_{batt} \times Antalet\ batt$	terier i serie			

$$E_{tot} = \underbrace{E_{batt} \times Antalet \ batterier \ i \ serie}_{E_{tot} = 4, 5 \times 3}$$

$$E_{tot} = 13, 5 \ V$$

5.4 Resistans total

Samband	Beteckning	Storhet	Enhet	Förkortning
\$	R_{tot}	Resistans total	Omega	Ω
R_{tot}				
$= R_y +$				
R_i				

$$\frac{\text{Exempel uträkning}}{R_{tot} = R_y + R_i} \\ R_{tot} = 22 + 1, 2 \\ R_{tot} = 23, 2 \ \Omega$$

5.5 Yttre resistans

Samband	Beteckning	Storhet	Enhet	Förkortning
$R_y = R_y$	R_y	Resistan syttre	Omega	Ω
$R_{tot} - R_i$				

$$\frac{\text{Exempel uträkning}}{R_y = R_{tot} - R_i} \\ R_y = 5 - 0, 4$$

23

$$\frac{\text{Exempel uträkning}}{R_y = 4,6~\Omega}$$

5.6 Seriekoppling

5.6.1 Inre resistans

Samband	Beteckning	Storhet	Enhet	Förkortning
$\begin{array}{l} \overline{R_{i~tot}} = \\ Antal~Batt \times \\ R_{I~Batt} \end{array}$	R_i	In reresistans	Omega	Ω

Exempel uträkning inre resistans i strömkällan

$$\begin{aligned} R_{i~tot} &= Antal~Batt \times R_{I~Batt} \\ R_{i~tot} &= 3 \times 0, 3 \\ R_{i~tot} &= 0, 9~\Omega \end{aligned}$$

Vid seriekoppling adderas reistanserna sig

5.6.2 Kortslutningsström

Samband	Beteckning	Storhet	Enhet	Förkortning
$I = I_{max}$	I_{max}	Kortslutningsst	trm Ampere	A

Exempel uträkning kortslutningsström

$$\begin{split} I &= I_{max} \\ I &= I_{max} = 0, 5~A \\ I &= I_{max} = 0, 5~A \end{split}$$

Eftersom det vid seriekoppling är samma ström genom hela kretsen

5.7 Pararellkoppling

5.7.1 Inre resistans

Samband	Beteckning	Storhet	Enhet	Förkortning
$R_{i\ tot} = \\ \frac{R_{iBatt}}{Batt_{Antal}}$	R_{i-tot}	Inre resistans	Omega	Ω

Exempel uträkning inre resistans i strömkällan

$$R_{i~tot} = \frac{R_{i/Batt}}{Batt_{Antal}}$$

$$R_{i~tot} = \frac{0.3}{3}$$

$$R_{i~tot} = 0.1~\Omega$$
 Vid parallelkoppling delas resistansen sig

5.7.2 Kortslutningsström

Samband	Beteckning	Storhet	Enhet	Förkortning
$\begin{array}{c} \overline{I_{max}} = \\ Batt \ antal \times \\ I_i \end{array}$	I_{max}	Kortslutningss	trmAmpere	A

Exempel uträkning

$$I_{max} = Batt \ antal \times I_i$$

$$I_{max} = 3 \times 0, 5 \ A$$

$$I_{max} = 1, 5 \ A$$
 wid personal keep line blire.

Eftersomm totalströmmen vid pararellkoppling blir summan av delströmmarna

Effekt

Effekt betecknas ofta med bokstaven P från engelskans power och kan bland annat yttra sig i form av ett värmeflöde eller mekaniskt arbete. SI-enheten för effekt är watt (W), där en watt motsvarar en energiomvandling på en joule per sekund (W=J/s). Utöver watt finns det ett flertal enheter som betecknar effekt, exempelvis enheten hästkraft, vilket i Sverige motsvarar en effekt på 735,5 watt.

Den momentana effektutvecklingen i en resistor är produkten av spänningen över komponenten och den elektriska strömmen genom komponenten.

Samband	Beteckning	Storhet	Enhet	Förkortning
$P = U \times I$	P	Effekt	Watt	\overline{W}

$$\frac{\text{Exemple uträkning}}{P = U \times I}$$

$$P = U \times I = 230 \times 0, 5$$

$$P = 115 \ W$$

6.1 Watttid

Samband	Beteckning	Storhet	Enhet	Förkortning
W =	P	Watttid	Watt	\overline{W}
$P \times t$				

$$\frac{\text{Exemple uträkning}}{W = P \times t}$$

$$W = P \times t = 0,115 \times 10^3 \times 10$$

$$W = 1,15 \ kWh$$

6.2 Kostnadsberäkning

Samband	Beteckning	Storhet	Enhet	Förkortning
$Kostnad = kW \times Pris$	Kostnad	Effekt	Watt	W

Exemple uträkning

 $\begin{aligned} Kostnad &= kW \times Pris \\ Kostnad &= kW \times Pris = 1, 15 \times 1, 10 \\ Kostnad &= -: -Kr \end{aligned}$

Växelströmskretsar

Frekvenz

7.1 Tidsintervall

Frekvens är en storhet för antalet repeterande händelser inom ett givet tidsintervall[1]. För att beräkna frekvensen fixerar man ett tidsintervall, räknar antalet förekomster av händelsen och dividerar detta antal med längden av tidsintervallet. Resultatet anges i enheten hertz (Hz) efter den tyske fysikern Heinrich Rudolf Hertz, där 1 Hz är en händelse som inträffar en gång per sekund. Alternativt kan man mäta tiden mellan två förekomster av händelsen ((tids)perioden) och därefter beräkna frekvensens reciproka värde.

7.1.1 Frekvens

Samband	Beteckning	Storhet	Enhet	Förkortning
$Frekvens = \frac{1}{Tid}$	f	Frekvens	Hertz	Hz

$$\frac{\text{Exempel uträkning}}{Frekvens = \frac{1}{Tid}}$$

$$\frac{f = \frac{1}{38} \times 10^{3}}{f = 26, 3 \ Hz}$$

7.1.2 Tid