JEE Main 29 Jan 2024 (Shift-2) (Memory Based)

The Actual Paper will be Updated with Solution After the Official Release

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- In a simple pendulum of length 10 m, string is initially kept horizontal and the bob is released. 10% of energy is lost till the bob reaches lowermost position. Then find speed of bob at lowermost position.
 - (1) 6 m/s
 - (2) $6\sqrt{5}$ m/s
 - (3) $7\sqrt{5}$ m/s
 - (4) $4\sqrt{2}$ m/s

Answer (2)

Sol. $W_{\text{total}} = \Delta K$

$$\Rightarrow 0.9 \, mgl = \frac{1}{2} mv^2$$

$$\Rightarrow \quad v = \sqrt{1.8 \times 10 \times 10}$$

$$= 6\sqrt{5}$$
 m/s

The intensity at each slit are equal for a YDSE and it is maximum (I_{max}) at central maxima. If I is intensity for phase difference $\frac{7\pi}{2}$ between two waves (at screen).

Then
$$\frac{I}{I_{\text{max}}}$$
 is

 $(1) \frac{1}{2}$

(3) $\frac{3}{8}$

(4) $\frac{1}{\sqrt{2}}$

Answer (1)

Sol.
$$I = I_{\text{max}} \cos^2\left(\frac{\Delta\phi}{2}\right)$$

$$\frac{I}{I_{\text{max}}} = \cos^2 \frac{7\pi}{4} \qquad \qquad \therefore \quad \Delta \phi = \frac{7\pi}{2}$$

$$\therefore \Delta \phi = \frac{7\pi}{2}$$

$$\frac{I}{I_{\text{max}}} = \cos^2\left(\frac{\pi}{4}\right) = \frac{1}{2}$$

An electromagnetic wave has electric field given by

$$\vec{E} = (9.6\hat{j})\sin\left[2\pi\left\{30\times10^{6}t - \frac{1}{10}x\right\}\right], x \text{ and } t \text{ are in}$$

SI units. The maximum magnetic field is

- $(1) 3.2 \times 10^{-8}$
- $(2) 9.6 \times 10^{-8}$
- $(3) 1.7 \times 10^{-8}$
- $(4) 10^{-7}$

Answer (1)

Sol.
$$\frac{E}{B} = C$$

$$\Rightarrow B = \frac{E}{C} = 3.2 \times 10^{-8}$$

- A planet at distance r from sun takes 200 days to complete one revolution around sun. What will be time period for a planet at distance $\frac{r}{4}$ from the sun?
 - (1) 50 days
 - (2) 25 days
 - (3) 100 days
 - (4) 12.5 days

Answer (2)

Sol.
$$T^2 \propto R^3$$

$$\frac{200^2}{T^2} = \frac{r^3}{\left(\frac{r}{4}\right)^3}$$

$$\frac{200}{T} = \left(4\right)^{\frac{3}{2}}$$

$$\frac{200}{8} = T$$

$$\Rightarrow$$
 T = 25 days

5. The truth table for the combination of logical gates

- $\begin{array}{c|ccccc}
 A & B & Y \\
 \hline
 0 & 0 & 0 \\
 \hline
 0 & 1 & 0 \\
 \hline
 1 & 0 & 0 \\
 \hline
 1 & 1 & 1
 \end{array}$
- $\begin{array}{c|cccc}
 A & B & Y \\
 \hline
 0 & 0 & 0 \\
 \hline
 0 & 1 & 1 \\
 \hline
 1 & 0 & 0 \\
 \hline
 1 & 1 & 1
 \end{array}$

Answer (3)

Sol.
$$Y = A \cdot B + \overline{A} \cdot B = B(A + \overline{A}) = B$$

6. A uniform wire has length L and radius r. It is acted on by a force F as shown. The elongation is Δl . If F and r are both halved, the new elongation will be:

- $(1) \ \frac{\Delta l}{2}$
- (2) ΔI
- (3) 4∆*I*
- $(4) 2\Delta I$

Answer (4)

Sol.
$$\Delta I = \frac{FL}{Ay} \propto \frac{F}{r^2}$$

$$\Rightarrow \Delta I' = \frac{\frac{1}{2}}{\left(\frac{1}{2}\right)^2} \Delta I = 2\Delta I$$

7. Two forces F₁ and F₂ are applied on two rods P and Q of same materials such that elongation in rods are same. If ratio of their radii is x : y and ratio of length is m : n, then ratio of F₁ : F₂ is

(1)
$$\left(\frac{y}{x}\right)^2 \frac{n}{m}$$

(2)
$$\left(\frac{x}{y}\right)^2 \cdot \frac{n}{m}$$

(3)
$$\left(\frac{x}{y}\right)^2 \cdot \frac{m}{n}$$

(4)
$$\left(\frac{y}{x}\right)^2 \cdot \left(\frac{m}{n}\right)$$

Answer (2)

Sol.
$$\Delta I_1 = \frac{F_1 I_1}{Y A_1}, \ \Delta I_2 = \frac{F_2 I_2}{Y A_2}$$

$$\frac{F_1}{F_2} = \frac{A_1}{A_2} \times \frac{I_2}{I_1} = \left(\frac{r_1}{r_2}\right)^2 \left(\frac{I_2}{I_1}\right) = \frac{x^2}{y^2} \cdot \frac{n}{m}$$

- 8. Two charged particles A and B have charge q each while masses are m_1 & m_2 . Both have same velocity v and enter into a transverse magnetic field B such that their radii are r_1 & r_2 . Then the ratio m_1 : m_2 is
 - (1) $\frac{r_2}{r_1}$
 - $(2) \left(\frac{r_1}{r_2}\right)$
 - (3) $\frac{r_1}{r_2}$
 - $(4) \left(\frac{r_2}{r_1}\right)^2$

Answer (3)

Sol.
$$r = \frac{mv}{Bq}$$

$$r \propto m \Rightarrow \frac{r_1}{r_2} = \frac{m_1}{m_2}$$

- 9. A liquid drop of radius *R* is divided into 27 identical drops. If surface tension of the drops is *T*, then find work done in this process.
 - (1) $4\pi R^2 T$
 - (2) $3\pi R^2 T$
 - (3) $8\pi R^2 T$
 - (4) $\frac{1}{8}\pi R^2 T$

Answer (3)

Sol. $W = T \times \text{change in area } (\Delta S)$

From volume conservation

$$\frac{4}{3}\pi R^3 = 27\pi r^3 \times \frac{4}{3}$$

$$R = 3r$$

$$r = \frac{R}{3}$$

$$\Delta S = 4\pi r^2 \times 27 - 4\pi R^2$$

$$=4\pi \times \frac{R^2}{9} \times 27 - 4\pi R^2 = 2(4\pi R^2)$$

$$W = 8\pi R^2 T$$

10. Alternating voltage and current in circuit is given asV = (100 sinωt) volt

$$I = 100 \sin \left(\omega t + \frac{\pi}{3}\right) \text{mA}$$

Find average power dissipated in circuit.

- (1) 2.5 w
- (2) 5 w
- (3) 10 w
- (4) 20 w

Answer (1)

Sol.
$$P_{\text{avg}} = IV \cos \phi = \frac{100}{\sqrt{2}} \times \frac{100 \times 10^{-3}}{\sqrt{2}} \cos 60^{\circ} = 2.5 \text{ w}$$

11. Consider a rod moving in a magnetic field as shown:

The induced emf across the ends of the rod is

- (1) 3 mV
- (2) 6 mV
- (3) 0 V
- (4) 1 mV

Answer (1)

Sol.
$$\varepsilon = B\ell v = 3 \text{ mV}$$

12. A particle connected with light thread is performing vertical circular motion. Speed at point *B* (Lowermost point) is of just sufficient, so that it is able to complete its circular motion. Ignoring air friction, find the ratio of kinetic energy at *A* to that at *B*. (A being top-most point)

- (1) 1:5
- (2) 5:1
- (3) $1:7\sqrt{2}$
- (4) $1:5\sqrt{2}$

Answer (1)

Sol.
$$V_A = \sqrt{gL}$$

$$V_B = \sqrt{5gL}$$

$$\Rightarrow \frac{k_A}{k_B} = \frac{1}{5}$$

JEE (Main)-2024: Phase-1 (29-01-2024)-Evening

In given circuit, an ideal battery is connected with four resistances as shown. Find current i as mentioned in diagram.

- (1) 2 A
- (2) 1 A
- (3) 4 A
- (4) 0.5 A

Answer (2)

Sol. req = $2 + 2 + 1 = 5 \Omega$

$$i_b = \frac{10}{5} = 2 \text{ A}$$

$$i = \frac{i_b}{2} = 1 \text{ A}$$

- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. A physical quantity Q depends on other physical quantities *a*, *b* and *c* as

$$Q = \frac{a^4b^3}{c^2}$$

If maximum percentage error in measurement of *a*, *b* and *c* are 3%, 4% and 5% respectively, then find maximum percentage error in measurement of *Q*.

Answer (34)

Sol.
$$Q = \frac{a^4b^3}{c^2}$$

$$\frac{\Delta Q}{Q} = 4\frac{\Delta a}{a} + 3\frac{\Delta b}{b} + 2\frac{\Delta c}{c}$$

$$\frac{\Delta Q}{Q} \times 100 = 4(3) + 3(4) + 2(5)$$
$$= 12 + 12 + 10$$

% error
$$\frac{\Delta Q}{Q}$$
% = 34%

22. Consider the circuit shown:

The ammeter reads 0.9 A. Value of R is _____

Answer (30)

Sol. 20 Ω & 15 Ω in parallel

$$\Rightarrow$$
 20 × 0.3 = 15 × i

$$\Rightarrow$$
 i = 0.4 A

$$\Rightarrow$$
 $i_R = 0.9 - 0.3 - 0.4 \text{ A}$

$$= 0.2 A$$

$$\Rightarrow R \times 0.2 = 20 \times 0.3$$

$$\Rightarrow R = 30 \Omega$$

23. Consider the circuit shown:

Charge on 6 μ F when A and B are shorted is _____ μ C.

Answer (36)

Sol. In steady state, 6 Ω and 3 Ω are in series.

$$\Rightarrow \Delta V_{6\Omega} = 6 \text{ V} = \Delta V_{6uF}$$

$$\Rightarrow$$
 ϕ = CV = 36 μ C

24. Distance between twice-magnified virtual image of an object placed in front of mirror is 15 cm. Find focal length of spherical mirror in cm.

Answer (10)

Sol. Magnified virtual image of real object

⇒ Concave mirror

$$\left(\frac{v}{u}\right) = 2$$

$$\Rightarrow$$
 2x + x = 15

$$x = 5 \text{ cm}$$

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{10} - \frac{1}{5} = \frac{1}{f}$$

$$\frac{1-2}{10} = \frac{-1}{10} = \frac{1}{f}$$

$$\Rightarrow f = -10$$

25. The displacement of a particle changing with time as $x = 6t^3 - 12t^2 + 20t + 30$. Find velocity (in m/s) of particle when it's acceleration became zero. (t is time in s)

Answer (12)

Sol.
$$v = \frac{dx}{dt} = 20$$

$$=18t^2-24t+20$$

$$a = \frac{dv}{dt} = 36t - 24$$

At
$$a = 0$$

$$t = \frac{24}{36} = \frac{2}{3} \sec$$

Then,

$$v = 18 \times \frac{4}{9} - 24 \times \frac{2}{3} + 20$$

$$= 8 - 16 + 20 = 12 \text{ m/s}$$

26. Electric field in a region is given by $\vec{E} = (6\hat{i} + 7\hat{j} + 8\hat{k})$ units. An area of 30 units is considered in *y-z* plane. Calculate the electric flux through this area.

Answer (180)

Sol.
$$\phi = \vec{E} \cdot \vec{A} = (6\hat{i} + 7\hat{j} + 8\hat{k}) \cdot 30\hat{i} = 180$$

27. *N* moles of non-linear polyatomic gas (degree of freedom 6) is mixed with 2 moles of monoatomic gas. The resultant mixture has molar specific heat equal to that of a diatomic gas, then *N* is

Answer (4)

Sol.
$$\frac{n_1 \frac{f_1}{2} R + n_2 \frac{f_2}{2} R}{n_1 + n_2} = \frac{5}{2} R$$

$$\frac{2 \times \frac{3}{2} R + N \times \frac{6}{2} R}{N+2} = \frac{5}{2} R$$

$$\frac{6+6N}{N+2}=5$$

$$6 + 6N = 5N + 10$$

$$N = 4$$

28. A particle starts oscillation from origin on *x*-axis with period of oscillation (6) sec and amplitude *A*. If time taken by particle to reach from x = A to $x = \frac{\sqrt{3}}{2}A$ for the first time is τ then. Value of 6τ is _____ sec.

Answer (3)

Sol.
$$x = A \sin\left(\omega t + \frac{\pi}{2}\right)$$

$$x = A \cos \omega t$$

$$\frac{\sqrt{3}}{2}A = A\cos\left(\frac{2\pi}{\tau}t\right)$$

$$\frac{\sqrt{3}}{2} = \cos\left(\frac{\pi}{3}t\right)$$

$$\frac{\pi}{6} = \frac{t}{3}\pi$$

$$t=\frac{1}{2}=0.5$$

$$6\tau = 3$$

29.

30.

JEE Main 29 Jan 2024 (Shift-2) (Memory Based)

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- 1. Best reducing agent among the given ions is
 - (1) Ce4+
- (2) Gd²⁺
- (3) Lu³⁺
- (4) Nd3+

Answer (2)

Sol. Gd²⁺: [Xe] 5d¹4f⁷

Gd²⁺ would get converted into Gd³⁺ as Gd³⁺ has stable electronic configuration

2. Choose the correct reaction.

(1)
$$CH_3 - CH_2 - C - NH_2 \xrightarrow{Br_2}$$

$$CH_3 - CH_2 - CH_2 - NH_2$$

(2)
$$\underbrace{Br_2}_{UV}$$
 \underbrace{Br}_{Br}

(3)
$$CH_3 - CH_2 - CH_2 - CH_2 - NH_2 \xrightarrow{HNO_2 \\ (0-5)^{\circ}C}$$

 $CH_3 - CH_2 - CH_2 - CH_2 - OH$

Answer (4)

Sol.
$$HI$$
 $CH_3 - CH_2 - C - NH_2 \xrightarrow{Br_2} CH_3 - CH_2 - NH_3$

$$\begin{array}{c}
& & \text{Br} \\
& & \text{CH}_{3} - \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{2} - \text{NH}_{2} \xrightarrow{\text{HNO}_{2}} \\
& & \text{CH}_{3} - \text{CH}_{2} - \text{CH}_{2} - \text{CH} - \text{CH}_{3} \\
& & \text{OH}
\end{array}$$

3. IUPAC name of compound

OH

is

- (1) Hex-2-en-1-ol
- (2) Cyclohex-2-en-1-ol
- (3) 3-hydroxy cyclohexene
- (4) Cyclohex-1-en-3-ol

Answer (2)

- 4. Why does oxygen shows anomalous behaviour?
 - (1) Large size, high electronegativity
 - (2) Small size, small electronegativity
 - (3) Small size, high electronegativity absence of vacant d-orbital
 - (4) Large size, high electronegativity presence of vacant d-orbital

Answer (3)

Sol. Oxygen shows anomalous behaviour due to small size, high electronegativity and absence of vacant d-orbital.

- 5. Match the following
 - (A) Lyman
- (i) IR
- (B) Balmer
- (ii) IR
- (C) Paschen
- (iii) Visible
- (D) Pfund
- (iv) UV

(1)
$$A \rightarrow (iv), B \rightarrow (iii)$$

$$C \rightarrow (i), D \rightarrow (ii)$$

(2)
$$A \rightarrow (i), B \rightarrow (iii)$$

$$C \rightarrow (ii)$$
. $D \rightarrow (iv)$

(3)
$$A \rightarrow (iv), B \rightarrow (ii)$$

$$C \rightarrow (iii), D \rightarrow (iv)$$

(4)
$$A \rightarrow (i)$$
, $B \rightarrow (ii)$

$$C \rightarrow (iii), D \rightarrow (iv)$$

Answer (1)

Sol. Lyman \rightarrow UV

Balmer → Visible

Paschen → IR

Pfund \rightarrow IR

- 6. IUPAC name of K₂MnO₄ is
 - (1) Potassium tetraoxomanganate(VI)
 - (2) Potassium tetraoxomanganate(III)
 - (3) Potassium tetraoxomanganese(VI)
 - (4) Tetraoxomanganese(VI) potassium

Answer (1)

Sol. Correct IUPAC name of K₂MnO₄ is Potassium tetraoxomanganate(vi)

7. Find out final product (A)

$$\begin{array}{c|c}
 & \text{NH}_2 \\
\hline
 & \text{(i) HNO}_2 (0-5)^{\circ} C \\
\hline
 & \text{(ii) Cu}_2 \text{Cl}_2 / \text{HCl}
\end{array}$$

Answer (3)

- 8. Which of the following element has highest 1st lonization energy?
 - (1) N

(2) C

(3) Si

(4) Al

Answer (1)

Sol. N has highest 1st Ionization energy among C, Si, N and Al.

For, $N = 1402 \text{ kJ mol}^{-1} (IE_1)$

 $C = 1086 \text{ kJ mol}^{-1} (IE_1)$

 $AI = 577 \text{ kJ mol}^{-1} (IE_1)$

 $Si = 786 \text{ kJ mol}^{-1} (IE_1)$

- 9. Which reagent gives bright red ppt with Ni²⁺ in basic medium?
 - (1) DMG
- (2) Nessler's reagent
- (3) KCNS
- (4) K₄[Fe(CN)₆]

Answer (1)

Sol.
$$NiCl_2 + CH_3 - C = NOH$$

$$CH_3 - C = NOH$$

$$DMG$$

$$Dimethylglyoxime
$$(Cherry red ppt.)$$

$$(Bright red)$$$$

10. Match the following List-I and List-II

	List-I		List-II
	(Polymer)		(Monomer)
(A)	Starch	(i)	β-glucose
(B)	Cellulose	(ii)	Nucleotide
(C)	Nucleic acid	(iii)	α -glucose
(D)	Protein	(iv)	α -Amino acid

(1)
$$A \rightarrow (i)$$
; $B \rightarrow (iii)$; $C \rightarrow (ii)$; $D \rightarrow (iv)$

(2)
$$A \rightarrow (iii)$$
; $B \rightarrow (i)$; $C \rightarrow (ii)$; $D \rightarrow (iv)$

(3)
$$A \rightarrow (iii)$$
; $B \rightarrow (i)$; $C \rightarrow (iv)$; $D \rightarrow (ii)$

(4)
$$A \rightarrow (ii)$$
; $B \rightarrow (iii)$; $C \rightarrow (i)$; $D \rightarrow (iv)$

Answer (2)

Sol. Starch is polymer of α -D-glucose. Cellulose is polymer of β -D-glucose. Nucleic acid is polymer of nucleotide. Proteins are polymer of α -aminoacids.

11. Which of the following can show geometrical isomerism?

Answer (4)

Sol. The two geometrical isomers of

- 12. Which reagent is used to convert alkyl halide into alkyl isocyanide?
 - (1) KCN
- (2) AgCN
- (3) KNO₂
- (4) AgNO₂

Answer (2)

Sol. $R-X+AgCN \rightarrow R-N \equiv C+AgX$

- 13. Find the total number of sigma (σ) and π bonds in 2-formylhex-4-enoic acid.
 - (1) 20

(2) 22

- (3) 18
- (4) 24

Answer (2)

Sol. The structure of 2-formylhex-4-enoic acid is

O H
$$\parallel_1 \parallel_2 3 \qquad 4 \qquad 5 \qquad 6 \qquad \sigma \text{ - bonds} = 19$$
H—O—C—C—CH₂—CH = CH—CH₃ $\pi \text{ - bonds} = 3$
|
C—H
 \parallel

- 14. A gas 'X' is added to Nessler's reagent then brown precipitate is formed, gas X is
 - (1) NH₃
- (2) SO₂
- (3) Cl₂
- (4) Br₂

Answer (1)

Sol. $2K_2HgI_4 + 3KOH + NH_3 \longrightarrow$ Nessler's

reagent

 $\begin{bmatrix} \mathsf{OHg}_2 \!\cdot\! \mathsf{NH}_2 \end{bmatrix} \mathsf{I} + \mathsf{7KI} + 2\mathsf{H}_2\mathsf{O} \\ \mathsf{Brown}\,\mathsf{ppt} \\ \end{bmatrix}$

Ammonia gas on reaction with Nessler's reagent to form brown ppt. Brown ppt formed is also called iodide of million's base $(H_2N - Hg - O - Hg - I)$

15. Match the following

I (compounds)		II (pKa)	
(a)	p-nitrophenol	(i)	10
(b)	m-nitrophenol	(ii)	16
(c)	Ethanol	(iii)	7.1
(d)	Phenol	(iv)	8.3

- (1) (a) \rightarrow (i); (b) \rightarrow (ii); (c) \rightarrow (iii); (d) \rightarrow (iv)
- (2) (a) \rightarrow (iii); (b) \rightarrow (iv); (c) \rightarrow (ii); (d) \rightarrow (i)
- (3) (a) \rightarrow (iv); (b) \rightarrow (iii); (c) \rightarrow (ii); (d) \rightarrow (i)
- (4) (a) \rightarrow (iii); (b) \rightarrow (iv); (c) \rightarrow (i); (d) \rightarrow (ii)

Answer (2)

Sol. Acidic strength order:

p-nitrophenol > m-nitrophenol > Phenol >> ethanol

- 16. We have given some hydrocarbons
 - (A) $HC \equiv CH$
 - (B) $H_2C = CH_2$

(D) $CH_3 - CH_2 - CH_2 - H$

Correct order of acidic strength of above hydrocarbons.

- (1) A > B > C > D
- (2) A > B > D > C
- (3) C > D > B > A
- (4) A > C > B > D

Answer (2)

Sol. More the stability of conjugate base of given acids, more will be the acidic strength.

- (A) $HC \equiv C^{\Theta}$ (more % s character more will be stability of anion)
- (B) $H_2C = CH^{\Theta}$

(C)
$$CH_3 - C$$
 (Alkyl group increases electron CH_3

density on carbon so stability decreases)

(D)
$$CH_3 - CH_2 - CH_2^{\Theta}$$

Order of stability of conjugate base

So order of acidic strength

- 17. In chromatographic techniques, which of the following follows preferential adsorption?
 - (A) Column chromatography
 - (B) Thin layer chromatography
 - (C) Paper chromatography
 - (1) A only
- (2) B only
- (3) C only
- (4) A and B both

Answer (4)

Sol. Column chromatography Thin layer chromatography absorption of substance

Paper chromatography → Partition chromatography

18. Consider the following sequence of reactions

HO CHO HO CHO
$$\overline{[B]}$$
 $\overline{[C]}$

Fina A, B and C

(1) A: DiBAL-H

B: NaOH (dil)

C: Zn - Hg/HCI

(2) A: LiAIH₄

B: KOH (alcoholic)

C: NH₂ - NH₂/KOH

(3) A: DiBAL - H

B: NaOH (dil)

C: NH₂ - NH₂/KOH

(4) A: NaBH₄

B: KOH (aqueous)

C: Zn - Hg/HCI

Answer (3)

- Sol. (A) DiBALH Convert ester to aldehyde
 - (B) dil NaOH Aldol condensation
 - (C) NH₂ NH₂/KOH Wolff Kishner reduction
- 19. The correct statement about Zn, Cd, Hg are
 - (1) All are solid metals at room temperature
 - (2) They have high enthalpy of atomization
 - (3) All are paramagnetic
 - (4) Zn, Cd cannot show variable oxidation state but Hg can show variable oxidation state

Answer (4)

Sol. Hg can show +1 and +2 O.S.

20.
$$+ CHCl_3 \xrightarrow{1) NaOH} Major Product$$

The major product in the above reaction is

- (1) 2-hydroxybenzaldehyde
- (2) 2-hydroxybenzoic acid
- (3) 4-hydroxybenzaldehyde
- (4) 3-hydroxybenzaldehyde

Answer (1)

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. Oxidation state of Fe (Iron) in complex formed in brown ring test.

Answer (1)

Sol. Complex formed during brown ring test is $[Fe(H_2O)_5NO]SO_4$.

NO is present as NO+ here.

$$x + 5 \times 0 + 1 = +2$$

$$x = +1$$

Oxidation state of Fe is +1

22. How many of the following compounds have zero dipole moment?

Answer (3)

Sol. CO_2 , BF_3 and CH_4 have symmetrical structures leading to $\mu = O$

23. Calculate equilibrium constant for the given following reaction at 500K.

$$N_2(g) + 3H_2(g) = 2NH_3(g)$$

Given molarity of NH₃(g), N₂(g) and H₂(g) at equilibrium is 1.5×10^{-2} M, 2×10^{-2} M and 3×10^{-2} M respectively.

Answer (417)

Sol.
$$K_C = \frac{[NH_3]^2}{[N_2][H_2]^3}$$

$$K_{C} = \frac{(1.5 \times 10^{-2})^{2}}{(2 \times 10^{-2}) \times (3 \times 10^{-2})^{3}}$$

$$K_C = \frac{2.25 \times 10^{-4}}{2 \times 10^{-2} \times 27 \times 10^{-6}}$$

$$K_C = 0.04167 \times 10^4$$

$$K_C = 416.7 \approx 417$$

24. 50 ml of 0.5 M oxalic acid is completely Neutralised by 25 ml of NaOH solution. Find out amount of NaOH (in gm) present in 25 ml of given NaOH solution.

Answer (2)

Sol. $M_1V_1N_1 = M_2V_2N_2$

$$(50) (0.5) (2) = (M_2) (25) (1)$$

$$M_2 = 2$$

Moles of NaOH =
$$\frac{2 \times 25}{1000} = \frac{1}{20}$$

Mass of NaOH =
$$\frac{1}{20} \times 40 = 2gm$$

25. If standard enthalpy of vaporization of CCI₄ is 30.5 kJ/mol, find heat absorbed for vaporization of 294 gm of CCI₄. [Nearest integer] [in kJ]

Answer (58)

Sol. Vaporization of 1 mole CCI₄ requires 30.5 kJ

294 gm is
$$\frac{294}{154} = 1.91$$
 moles

- Vaporization of 1.91 moles of CCI₄ will require $30.5 \times 1.91 \text{ kJ} = 58.255 \text{ kJ}$
- 26. Find out molality of 0.8 M H₂SO₄ solution having density of solution equal to 1.02 gm/ml (Nearest integer)

Answer (1)

Sol.
$$m = \frac{1000 \text{ M}}{10008 - \text{M} (\mu)}$$

$$= \frac{1000 (0.8)}{1000 (1.02) - (0.8) (98)} = \frac{800}{1020 - 78.4}$$

$$= \frac{800}{941.6} = 0.849$$

27. Aqueous solution of [AuCl₄]⁻ on electrolysis by passing current for 10 minutes, the mass of Au deposited at Cathode is 1.97 gm. Find out current required (in A) (Nearest integer)

Answer (5)

Sol. Au³⁺ + 3e⁻
$$\longrightarrow$$
 Au(s)
1.97 gm
0.03 mole $\frac{1.97}{197} = 0.01$ mole

Charge =
$$0.03 \times 96500$$

Current =
$$\frac{0.03 \times 96500}{10 \times 60}$$

= 4.825 A
 $\approx 5A$

28. If half life of radioactive bromine (Br-82) is 36 hr, find percentage remaining after one day. [nearest integer]

Answer (63)

Sol.
$$\ln \frac{N_0}{N} = \lambda t = \frac{\ln 2}{36} \times 24$$

$$= \frac{2}{3} \ln 2$$

$$\Rightarrow \frac{N_0}{N} = 2^{2/3}$$

$$\Rightarrow \frac{N}{N_0} = \frac{1}{2^{2/3}}$$

% age remaining =
$$100 \frac{N}{N_0} = \frac{100}{2^{2/3}} = 62.99$$

29.

30.

JEE Main 29 Jan 2024 (Shift-2) (Memory Based)

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

Given set = $\{1, 2, 3, ..., 50\}$

One number is selected randomly from set. Find probability that number is multiple of 4 or 6 or 7.

- (1)
- (3) $\frac{8}{25}$

Answer (1)

- **Sol.** Take P(A) = Probability that number is multiple of 4
 - P(B) = Probability that number is multiple of 6
 - P(C) = Probability that number is multiple of 7

$$P(A) = \frac{12}{50}, P(B) = \frac{8}{50}, P(C) = \frac{7}{50}$$

$$P(A \cap B) = \frac{4}{50}$$
 (Multiple of 12)

$$P(B \cap C) = \frac{1}{50}$$
 (Multiple of 42)

$$P(A \cap C) = \frac{1}{50}$$
 (Multiple of 28)

$$P(A \cap B \cap C) = 0$$
 (Multiple of 84)

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(A \cap C) + P(A \cap B \cap C)$$

$$= \frac{12}{50} + \frac{8}{50} + \frac{7}{50} - \frac{4}{50} - \frac{1}{50} + 0$$

$$= \frac{21}{50}$$

$$2. \qquad \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1 - \sin 2x} \, dx \text{ is}$$

- (1) $\sqrt{2} \sqrt{3} + 1$ (2) $2\sqrt{2} \sqrt{3} 1$
- (3) $2\sqrt{2} + \sqrt{3} 1$ (4) $\sqrt{2} + \sqrt{3} 1$

Answer (2)

Sol.
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} |\sin x - \cos x| dx$$

$$=\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} (\cos x - \sin x) dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} (\sin x - \cos x) dx$$

$$= \left(\sin x + \cos x\right)_{\frac{\pi}{6}}^{\frac{\pi}{4}} + \left(-\sin x - \cos x\right)_{\frac{\pi}{4}}^{\frac{\pi}{3}}$$

$$= \left[\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right) - \left(\sin \frac{\pi}{6} + \cos \frac{\pi}{6} \right) \right] + \left[\left(-\sin \frac{\pi}{3} - \cos \frac{\pi}{3} \right) - \left(-\sin \frac{\pi}{4} + \cos \frac{\pi}{4} \right) \right]$$

$$= \left[\sqrt{2} - \left(\frac{1}{2} + \frac{\sqrt{3}}{2} \right) \right] + \left[-\frac{\sqrt{3}}{2} - \frac{1}{2} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right]$$
$$= 2\sqrt{2} - \sqrt{3} - 1$$

- A = {1, 2, 3, 4} minimum number of elements added to make it equivalence relation on set A containing (1, 3) and (1, 2) in it.
 - (1) 8

(2) 9

(3) 12

(4) 16

Answer (1)

Sol. Set $A = \{1, 2, 3, 4\}$

For reflexive relation

We need to have (1, 1), (2, 2), (3, 3), (4, 4).

For symmetric,

 $(1, 3) \in A$

So (3, 1) should be added

And $(1, 2) \in A$

So (2, 1) should be added

set has become {(1, 1), (2, 2), (3, 3), (4, 4), (1, 3), (3, 1), (1, 2), (2, 1)

Now $(3, 1) \in A$

 $(1, 2) \in A$

So (3, 2) should be added (for transitive)

Then (2, 3) should be added (for symmetric)

So set becomes

So minimum 8 elements are added

- If In a, In b, In c are in AP and In a In 2b, In 2b -In 3c, In 3c – In a are in AP then a:b:c is
 - (1) 1:2:3
- (2) 7:7:4
- (3) 9:9:4
- (4) 4:4:9

Answer (3)

Sol. In a, In b, In $c \rightarrow AP$

$$\Rightarrow$$
 $b^2 = ac$

$$\ln \frac{a}{2b}$$
, $\ln \frac{2b}{3c}$, $\ln \frac{3c}{a}$

$$\rightarrow AF$$

$$\left(\frac{2b}{3c}\right)^2 = \frac{a}{2b} \times \frac{3c}{a}$$

$$\frac{4b^2}{9c^2} = \frac{3c}{2b}$$

$$8b^3 = 27c^3$$

$$2b = 3c$$

...(ii)
$$\Rightarrow \boxed{4b = 9c}$$

$$4b^2 = 9c^2$$

$$4ac = 9c^2$$

$$\Rightarrow$$
 $4a = 9c$

From (ii) & (iii)

$$4a = 9c = 4b = k$$

$$a = \frac{k}{4}b = \frac{k}{4}c = \frac{k}{9}$$

$$a:b:c=\frac{1}{4}:\frac{1}{4}:\frac{1}{9}$$

- If r = |z|, $\theta = \arg(z)$ and $z = 2 2i \tan\left(\frac{5\pi}{8}\right)$ then find
 - (1) $\left(2\sec{\frac{5\pi}{8}}, \frac{3\pi}{8}\right)$ (2) $\left(2\sec{\frac{3\pi}{8}}, \frac{3\pi}{8}\right)$
 - (3) $\left(2\tan\frac{3\pi}{8}, \frac{5\pi}{8}\right)$ (4) $\left(2\tan\frac{3\pi}{8}, \frac{3\pi}{8}\right)$

Answer (2)

Sol.

$$z = 2 - 2i \frac{\sin \frac{5\pi}{8}}{\cos \frac{5\pi}{8}}$$

$$=\frac{2}{\cos\frac{5\pi}{8}}\left(\cos\frac{5\pi}{8}-i\sin\frac{5\pi}{8}\right)$$

$$=\frac{2}{\cos\frac{5\pi}{8}}e^{i\frac{\left(-5\pi\right)}{8}}$$

$$=2\sec\left(\frac{5\pi}{8}\right)e^{i\frac{(-5\pi)}{8}}$$

$$=2\sec\left(\frac{3\pi}{8}\right)e^{ir}e^{i\frac{(-5\pi)}{8}}$$

$$=2\sec\frac{3\pi}{8}e^{i\frac{(3\pi)}{8}}$$

$$\theta = \frac{3\pi}{8}, r = 2\sec\frac{3\pi}{8}$$

- In which interval the function $f(x) = \frac{x}{x^2 6x 16}$ is increasing?
 - $(1) \phi$

- (2) $\left[1, \frac{3}{4}\right] \cup \left(\frac{5}{4}, \infty\right)$
- (3) $\left(\frac{5}{4}, \infty\right)$
- (4) $\left[\frac{3}{4}, \frac{5}{4}\right]$

Answer (1)

Sol.
$$f(x) = \frac{x}{x^2 - 6x - 16}$$

$$f'(x) = \frac{(x^2 - 6x - 16) - (x)(2x - 6)}{(x^2 - 6x - 16)^2}$$

$$\Rightarrow \frac{-x^2-16}{(x^2-6x-16)^2} < 0 \ \forall \ x \in D_f$$

- 7. (α, β) lie on the parabola $y^2 = 4x$ and (α, β) also lie on chord with mid-point $\left(1, \frac{5}{4}\right)$ of another parabola

 $x^2 = 8y$, then value of $|(8 - \beta)(\alpha - 28)|$ is

- (1) 192
- (2) 92

(3) 64

(4) 128

Answer (1)

Sol. Chord with point, $T = S_1$

$$\Rightarrow xx_1 - 4(y + y_1) = x_1^2 - 8y_1$$

$$(x_1, y_1) \equiv \left(1, \frac{5}{4}\right) \implies x - 4\left(y + \frac{5}{4}\right) = \frac{1 - 8 \times 5}{4}$$

$$x - 4v - 5 = -9$$

$$\Rightarrow x-4y+4=0$$

 (α, β) lie on (L1) and also $y^2 = 4x$

$$\Rightarrow \alpha - 4\beta + 4 = 0$$

$$\beta^2 = 4\alpha$$

$$\beta^2 = 4(4\beta - 4)$$

$$\beta^2-16\beta+16=0$$

$$⇒ (β-8)^2 = 64-16 = 48$$

$$⇒ β = 8 ± 4√3$$

$$α = 4β-4$$

$$= 28 ± 16√3$$

$$(28+16√3, 8+4√3) \text{ and } (28-16√3, 8-4√3)$$

$$(8-β)(α-28)$$

$$⇒ (-4√3)(16√3)$$

$$= -192$$

8. Unit vector $\vec{u} = x\hat{i} + y\hat{j} + z\hat{k}$ makes angles

$$\frac{\pi}{2}, \frac{\pi}{3}, \frac{2\pi}{3} \text{ with } \left(\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{k}\right), \left(\frac{1}{\sqrt{2}}\hat{j} + \frac{1}{\sqrt{2}}\hat{k}\right),$$

$$\left(\frac{\hat{i}}{\sqrt{2}} + \frac{\hat{j}}{\sqrt{2}}\right) \text{ respectively and}$$

$$\vec{v} = \frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j} + \frac{1}{\sqrt{2}}\hat{k} \text{ find } |\vec{u} - \vec{v}|.$$

(1)
$$\sqrt{\frac{5}{2}}$$

(2)
$$\sqrt{\frac{7}{2}}$$

(3)
$$\sqrt{\frac{2}{5}}$$

(4)
$$\sqrt{\frac{2}{7}}$$

Answer (1)

Sol.
$$\frac{x}{\sqrt{2}} + \frac{z}{\sqrt{2}} = 0$$
 ...(1

$$\frac{y}{\sqrt{2}} + \frac{z}{\sqrt{2}} = \frac{1}{2}$$
 ...(2)

$$\frac{x}{\sqrt{2}} + \frac{y}{\sqrt{2}} = \frac{-1}{2}$$
 ...(3)

$$\Rightarrow y = 0, z = \frac{1}{\sqrt{2}}, x = \frac{-1}{\sqrt{2}}$$

$$\vec{v} - \vec{u} = \sqrt{2}\hat{i} + \frac{1}{\sqrt{2}}\hat{j}$$

$$\left|\vec{V} - \vec{U}\right| = \sqrt{2 + \frac{1}{2}}$$

$$=\sqrt{\frac{5}{2}}$$

9. If first term of non-constant GP be $\frac{1}{8}$ and every

term is AM of next two, then $\sum_{r=1}^{20} T_r - \sum_{r=1}^{18} T_r$ is

$$(1) 2^{15}$$

$$(2) -2^{15}$$

$$(3) -2^{18}$$

$$(4) 2^{18}$$

Answer (2)

Sol.
$$a_1 = \frac{1}{8}$$

 $a, ar, ar^2, ar^3 \dots$
 $2ar = ar^2 + ar^3$
 $2 = r + r^2$
 $r^2 + r - 2 = 0$
 $(r + 2)(r - 1) = 0$
 $r \neq 1$
 $\Rightarrow r = -2$

$$\sum_{r=1}^{20} T_r - \sum_{r=1}^{18} T_r$$

 $= \frac{a(1 - r^{20})}{1 - r} - \frac{a(1 - r^{18})}{1 - r}$
 $= \frac{1}{8} \left[\frac{1}{3} \left[1 - r^{20} - 1 + r^{18} \right] \right]$
 $= \frac{1}{24} 2^{18} \left[1 - 4 \right]$
 $= -\frac{2^{18}}{8} \Rightarrow -2^{15}$

10. The mean of 5 observations is $\frac{24}{5}$ and variance is $\frac{194}{25}$. If the mean of first four observations is $\frac{7}{2}$, then the variance of first four observations is

(1)
$$\frac{3}{2}$$

(2)
$$\frac{5}{2}$$

(3)
$$\frac{5}{4}$$

$$(4) \frac{2}{3}$$

Answer (3)

Sol.
$$\sum_{i=1}^{5} x_i = 24$$

$$\frac{\sum_{i=1}^{3} x_{i}^{2}}{5} - \left(\frac{24}{5}\right)^{2} = \frac{194}{25}$$

$$\Rightarrow \sum_{i=1}^{3} x_{i}^{2} = \frac{770}{25} \times 5 = 154$$

$$5^{th}$$
 observation = $24 - \frac{7}{2} \times 4 = 10$

New variance
$$= \frac{\sum_{i=1}^{4} x_i^2}{4} - \left(\frac{7}{2}\right)^2$$
$$= \frac{154 - 100}{4} - \frac{49}{4}$$
$$= \frac{5}{4}$$

11.

12.

13.

14.

15.

. .

16.

17.

18.

19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. The remainder when $64^{32^{32}}$ is divided by 9 is

Answer (1)

Sol. $64 \equiv 1 \pmod{9}$

$$64^{32^{32}} \equiv 1^{32^{32}} \pmod{9}$$

⇒ Remainder = 1

22. Area bounded by $0 \le y \le \min \{x^2 + 2, 2x + 2\}, x \in [0, 3]$ is A, then 12 A is

Answer (164)

Sol.
$$\min\{x^2+2, 2x+2\}\begin{cases} x^2+2 & 0 \le x \le 2\\ 2x+2 & 2 \le x \le 3 \end{cases}$$

Area =
$$A = \int_{0}^{2} (x^{2} + 2)dx + \frac{1}{2}[6 + 8] \times 1$$

$$=\frac{x^3}{3}+2x$$
 $\Big|_{x=0}^{2}$ +7

$$\frac{8}{3} + 4 + 7 = \left(\frac{8}{3} + 11\right)$$
 unit

$$12A = 12\left(\frac{8}{3} + 11\right) = 164$$

23. The number of ways to distribute 8 identical books into 4 distinct bookshelf is (where any bookshelf can be empty)

Answer (165)

Sol.
$$x_1 + x_2 + x_3 + x_4 = 8$$

= 165

Number of ways =
$$\binom{8+4-1}{4-1}$$

= $\binom{11}{3}$

24. If
$$f(x) = \ln\left(\frac{1-x^2}{1+x^2}\right)$$
 then value of $225(f'(x) - f''(x))$

at $x = \frac{1}{2}$

Answer (736)

Sol.
$$f(x) = \ln(1 - x^2) - \ln(1 + x^2)$$

$$f'(x) = \frac{-2x}{1-x^2} - \frac{2x}{1+x^2}$$

$$=-2x\left[\frac{2}{1-x^4}\right]$$

$$f'(x) = \frac{4x}{x^4 - 1}$$

$$f''(x) = 4 \left[\frac{(x^4 - 1) - 4x^4}{(x^4 - 1)^2} \right]$$

$$= 4 \left[\frac{-3x^4 - 1}{\left(x^4 - 1\right)^2} \right]$$

$$f'(x) - f''(x) = 4 \left[\frac{x}{x^4 - 1} + \frac{3x^4 + 1}{(x^4 - 1)^2} \right]$$

At
$$x = \frac{1}{2}$$

$$225\lceil f'(x) - f''(x) \rceil = 736$$

25.
$$\frac{3\cos 2x + \cos^3 2x}{\cos^6 x - \sin^6 x} = x^3 - x^2 + 6$$
, then find sum of roots,

Answer (1)

Sol. ∴

$$\frac{\cos 2x(3 + \cos^2 2x)}{(\cos^2 x - \sin^2 x)[\sin^4 x + \cos^4 x + \sin^2 x \cos^2 x]},$$
$$\cos^2 x - \sin^2 x = \cos 2x$$

$$= \frac{3 + \cos^2 2x}{1 - \sin^2 x \cos^2 x} = 4 \left(\frac{3 + \cos^2 2x}{4 - \sin^2 2x} \right) = 4$$

$$\Rightarrow x^3 - x^2 + 6 = 4$$

$$\Rightarrow x^3 - x^2 + 2 = 0$$

: therefore sum of roots = 1

26.
$$x \left(\cos\left(\frac{y}{x}\right)\right) \frac{dy}{dx} = y\cos\left(\frac{y}{x}\right) + x$$

where
$$\sin\left(\frac{y}{x}\right) = \ln|x| + \frac{\alpha}{2}$$
 and $f(1) = \frac{\pi}{3}$

Find α^2 .

Answer (3)

Sol.
$$\because \left(\cos\frac{y}{x}\right)\frac{dy}{dx} = \frac{y}{x}\cos\frac{y}{x} + 1$$

Putting y = vx

$$\Rightarrow \frac{dy}{dx} = x \frac{dv}{dx} + v$$

$$\Rightarrow \cos v \left(x \frac{dv}{dx} + v \right) = v \cos v + 1$$

$$\Rightarrow \int \cos v dv = \int \frac{dx}{x}$$

$$\Rightarrow \sin \frac{y}{x} = \ln |x| + c$$

where
$$c = \frac{\alpha}{2}$$

putting initial condition,

$$2\sin\frac{\pi}{3} = \alpha$$

$$\Rightarrow \alpha = \sqrt{3}$$

$$\Rightarrow \alpha^2 = 3$$

27. If $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OC} = \vec{b}$, and area of $\triangle OAC$ is S and a parallelogram with sides parallel to \overrightarrow{OA} and \overrightarrow{OC} and diagonal $\overrightarrow{OB} = 12\vec{a} + 4\vec{b}$, has area equal to B, then $\frac{B}{S}$ is equal to

Answer (96)

Sol.
$$S = \frac{1}{2} |\vec{a} \times \vec{b}|$$

$$B = \left| 12\vec{a} \times 4\vec{b} \right|$$

$$\Rightarrow \frac{B}{S} = \frac{48 \left| \vec{a} \times \vec{b} \right|}{\frac{1}{2} \left| \vec{a} \times \vec{b} \right|} = 96$$

- 28.
- 29.
- 30.