Electrostatics

Course- PHY 2105 / PHY 105 Lecture 14

Md Shafqat Amin Inan

Coulomb's Law

The electrostatic force between two charged object is directly proportional to the product of the amount of charges and inversely proportional to the square of the distance between them

$$k = \frac{1}{4\pi\varepsilon_0}$$

- Experimental law
- Valid for point charges only
- ❖ Obeys Inverse Square Law
- ❖ Valid for only charges at rest

Electrostatic constant,
$$k = 9 \times 10^9 \frac{Nm^2}{C^2}$$

Permittivity constant,
$$\varepsilon_0 = 8.854 \times 10^{-12} \ \frac{C^2}{Nm^2}$$

Coulomb's Law: Superposition

Electric Field

A charge has an effect on its surroundings. The area where it has an effect is generally called an *Electric field*. If any other charge enters that area, it feels an electrostatic Coulomb force.

The electric force on a charged body is exerted by the electric field created by other charged bodies.

$$F = q_0 E$$

$$\overrightarrow{E} = rac{1}{4\piarepsilon_0}rac{q}{r^2}\;\widehat{r}$$

for point test charges only

Superposition of Electric field

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{N} \frac{q_i}{r_i^2} \hat{r}$$

- ☐ Treat electric field as a vector quantity
- ☐ q is source charge
- ☐ The test charge is positive

Electric field due to a dipole

Pairs of point charges with equal magnitude and opposite sign are called *electric dipoles*

At any point

$$E = \frac{1}{4\pi\varepsilon_0} \frac{p}{z^3}$$

Along the dipole axis

$$E = \frac{1}{4\pi\varepsilon_0} \frac{2p}{z^3}$$

Where, dipole moment, p=qd

21.22 •• Two point charges are placed on the x-axis as follows: Charge $q_1 = +4.00$ nC is located at x = 0.200 m, and charge $q_2 = +5.00$ nC is at x = -0.300 m. What are the magnitude and direction of the total force exerted by these two charges on a negative point charge $q_3 = -6.00$ nC that is placed at the origin?

21.14 • A negative charge of $-0.550~\mu\text{C}$ exerts an upward 0.200-N force on an unknown charge 0.300 m directly below it. (a) What is the unknown charge (magnitude and sign)? (b) What are the magnitude and direction of the force that the unknown charge exerts on the -0.550- μC charge?

21.15 •• Three point charges are arranged on a line. Charge $q_3 = +5.00$ nC and is at the origin. Charge $q_2 = -3.00$ nC and is at x = +4.00 cm. Charge q_1 is at x = +2.00 cm. What is q_1 (magnitude and sign) if the net force on q_3 is zero?

21.47 • Three negative point charges lie along a line as shown in Fig. E21.47. Find the magnitude and direction of the electric field this combination of charges produces at point P, which lies 6.00 cm from the -2.00- μ C charge measured perpendicular to the line connecting the three charges.

Figure **E21.47**

Electric Flux

The concept of **flux** describes how much of something goes through a given area.

The flux of an electric field as a measure of the number of electric field lines passing through an area

The **area vector** of a flat surface of area A has the following magnitude and direction:

- ☐ Magnitude is equal to area (A)
- \Box Direction is along the normal to the surface (\hat{n}) ; that is,

perpendicular to the surface

PHY 2105 PHY 105

- (a) Surface is face-on to electric field:
 - \vec{E} and \vec{A} are parallel (the angle between \vec{E} and \vec{A} is $\phi = 0$).
 - The flux $\Phi_E = \vec{E} \cdot \vec{A} = EA$.

- **(b)** Surface is tilted from a face-on orientation by an angle ϕ :
- The angle between \vec{E} and \vec{A} is ϕ .
- The flux $\Phi_E = \vec{E} \cdot \vec{A} = EA \cos \phi$.

- (c) Surface is edge-on to electric field:
- \vec{E} and \vec{A} are perpendicular (the angle between \vec{E} and \vec{A} is $\phi = 90^{\circ}$).
- The flux $\Phi_E = \vec{E} \cdot \vec{A} = EA \cos 90^\circ = 0$.

Flux in an enclosed space

(d) Negative charges inside box, inward flux

A point charge $q = +3\mu C$ is surrounded by an imaginary sphere of radius r = 0.2m centered on the charge. Find the resulting electric flux through the sphere.

$$\Phi_E = EA = \frac{q}{4\pi\epsilon_0 r^2} 4\pi r^2 = \frac{q}{\epsilon_0}$$

$$= \frac{3.0 \times 10^{-6} \text{ C}}{8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2} = 3.4 \times 10^5 \text{ N} \cdot \text{m}^2/\text{C}$$

