Projeto de Restauracion de Ecosistemas TESTE

Toa Quindi

2025-10-10

Table of Contents

1	Introdución			1
2	Objetivo general			1
	2.1	Obj	etivos especificos	2
	Tarefas do trabalho			2
	3.1 Pag		cotes	2
	3.2	Coi	nexión con repositorio de dados	3
	3.2.1		Sumario estadístico	3
	3.3	Are	a de estudo	4
	3.3.1		Extracción de coordenadas máx y min	7
	3.3.2		Extracción de centroides	7
	3.3.3		Tabelas	7
	3.4	Aná	álisis	9
	3.5	Grá	ficos	9

1 Introdución

Proyecto desarrollado para el modulo Fluxo de trabalho reproductivel em R, dictado por el professor Diogo Rocha y Hernani Ramos aplicado a un contexto de restauración de ecosistema en la region sierra sur de Ecuador.

2 Objetivo general

Criar uma estructura de trabalho de base para pesquisa de restauração de ecossitemas aplicado en la áreas protegidas de la sierra sur de Equador.

2.1 Objetivos especificos

Definir las áreas de estudio Definira las variables para el análisis de la variación Analizar la variación de cada área desde el año 2000 hasta el año 2045

3 Tarefas do trabalho

- Criar repositorio em Github (ok)
- Criar planilha con dados simulados (excel) (ok)
- Criar planilha con dados simulados (Google sheets) (ok)
- Criar dados históticos simulados del año 2000 (ok)
- Conectar la planilha de datos con Github (ok)
- Conectar repositorio e planilha com Rstudio (ok)
- Criar relatorio Rmarkdown (ok)
- Checar impressao de relatorio em html (ok)
- Instalar MacTeX on macOS https://tug.org/mactex/()
- Checar impressao de relatorio em pdf (ok)
- Checar impressao de relatorio em word (ok)
- Fazer sumario estadistico de dados (ok)
- Organizar scripts (ok)

3.1 Pacotes

```
# instalacion y abrir pacotes
# install.packages(terra)
# install.packages(ggplot2)
# install.packages(dplyr)
# tinytex::install_tinytex() #Para windows
# install.packages(MacTex) #Para mac instalar
# install.packages(readxl)
# install.packages("sf")
# install.packages("ggspatial")
# install.packages("ggsn")
library(terra)
library(ggplot2)
library(dplyr)
library(readr)
library(googlesheets4) #código que abre o pacote.
library(sf)
library(rnaturalearth)
library(rnaturalearthdata) # Datos necesarios para rnaturalearth
library(ggspatial)
```

3.2 Conexión con repositorio de dados

planilha

https://docs.google.com/spreadsheets/d/1_pp_YBuU1xgU2OD62DSHViigh90yhGJR2 DeAujrFY3A/edit?usp=sharing

```
## # A tibble: 480 × 11
##
         Ιd
              ano area
                           ecosistema score no n score no c score yes n
score_yes_c
      <dbl> <dbl> <chr>
                                            <dbl> <chr>
                           <chr>>
                                                                   <dbl>
##
<chr>>
##
            2000 Reserval Paramo
                                                4 IV
                                                                        4
   1
ΙV
             2000 Reserval Paramo
##
   2
                                                4 IV
                                                                        4
ΤV
                                                                        5 V
##
   3
             2000 Reserval Paramo
                                                5 V
          4 2000 Reserval Paramo
                                                4 IV
##
   4
                                                                        4
ΙV
   5
          5 2000 Reserval Paramo
                                                5 V
                                                                        5 V
##
   6
          6 2000 Reserval Paramo
                                                4 IV
                                                                        4
##
IV
   7
             2000 Reserval Paramo
                                                5 V
                                                                        5 V
##
          7
   8
            2000 Reserval Paramo
                                                5 V
                                                                        5 V
##
          8
##
   9
          9 2000 Reserval Paramo
                                                5 V
                                                                        5 V
         10 2000 Reserval Paramo
                                                                        5 V
## 10
                                                5 V
## # 1 470 more rows
## # i 3 more variables: score <chr>, long <dbl>, lat <dbl>
```

3.2.1 Sumario estadístico

```
summary(datos)
##
         Id
                                       area
                                                      ecosistema
                         ano
         : 1.0
                                                      Length:480
##
   Min.
                   Min.
                           :2000
                                  Length:480
   1st Qu.:120.8
                   1st Qu.:2025
                                  Class :character
                                                     Class :character
   Median :240.5
                   Median :2032
                                  Mode :character
                                                     Mode :character
##
   Mean
          :223.8
                   Mean
                           :2029
##
##
   3rd Qu.:320.2
                   3rd Qu.:2040
                   Max.
          :440.0
##
   Max.
                           :2045
##
                    score no c
                                                       score_yes_c
      score no n
                                        score_yes_n
                   Length:480
                                                      Length:480
##
   Min.
          :1.000
                                      Min. :1.000
   1st Qu.:2.000
                   Class :character
                                      1st Qu.:2.000
                                                      Class :character
##
##
   Median :4.000
                   Mode :character
                                      Median :4.000
                                                      Mode :character
##
   Mean
          :3.263
                                       Mean
                                              :3.423
##
   3rd Qu.:5.000
                                       3rd Qu.:5.000
          :5.000
                                              :5.000
##
   Max.
                                       Max.
##
       score
                            long
                                            lat
##
   Length:480
                      Min.
                              :-79.14
                                               :-3.614
                                       Min.
##
   Class :character
                      1st Qu.:-79.10
                                       1st Qu.:-3.540
                      Median :-78.80
##
   Mode :character
                                       Median :-3.091
```

```
## Mean :-78.81 Mean :-3.101
## 3rd Qu.:-78.52 3rd Qu.:-2.655
## Max. :-78.50 Max. :-2.621
```

3.3 Area de estudo

```
#Escala nacional
#Datos de los países del mundo
world <- ne_countries(scale = "medium", returnclass = "sf")</pre>
#Filtrar el país deseado
ecuador <- subset(world, sovereignt == "Ecuador")</pre>
#Dibujar el mapa
datos_sf <- st_as_sf(datos, coords = c("long", "lat"), crs = 4326)</pre>
#WGS84
linha_sf <- datos_sf %>%
  summarize(do union = FALSE) %>%
  st_cast("LINESTRING")
ggplot(data = ecuador) +
  geom_sf(fill = "antiquewhite", color = "gray60") +
  geom_sf(data = datos_sf, color = "red", size = 2) +
                                                              #pontos
  geom_sf(data = linha_sf, color = "blue", size = 0.1) +
                                                                #Linha
conectando
  labs(
    title = "Mapa de Ecuador",
    subtitle = "Dados provenientes da planilha",
    x = "Longitud", y = "Latitud"
  ) +
  theme_minimal()
```

Mapa de Ecuador

Dados provenientes da planilha


```
#Escala regional
getwd()
## [1]
"/Users/pacha_cutig/Documents/Fluxo_trabalho_reproductivel_R/T_final/rest
auracion_ecosistemas"
ruta archivo <-
setwd("/Users/pacha cutig/Documents/Fluxo trabalho reproductivel R/T fina
1/restauracion ecosistemas")
shp1 <- st read("Shp/Limite prov 2019 est.shp")</pre>
## Reading layer `Limite_prov_2019_est' from data source
`/Users/pacha_cutig/Documents/Fluxo_trabalho_reproductivel_R/T_final/rest
auracion ecosistemas/Shp/Limite prov 2019 est.shp'
     using driver `ESRI Shapefile'
## Simple feature collection with 1 feature and 7 fields
## Geometry type: POLYGON
## Dimension:
                  XY
## Bounding box: xmin: -79.76377 ymin: -3.6271 xmax: -78.42214 ymax: -
2,496561
## Geodetic CRS: WGS 84
```

```
shp2 <- st_read("Shp/SNAP_areas_est.shp")</pre>
## Reading layer `SNAP_areas_est' from data source
##
`/Users/pacha cutig/Documents/Fluxo_trabalho_reproductivel_R/T_final/rest
auracion ecosistemas/Shp/SNAP areas est.shp'
     using driver `ESRI Shapefile'
##
## Simple feature collection with 2 features and 12 fields
## Geometry type: POLYGON
## Dimension:
## Bounding box: xmin: -79.14597 ymin: -3.623105 xmax: -78.4976 ymax: -
2.619635
## Geodetic CRS: WGS 84
datos_sf <- st_as_sf(datos, coords = c("long", "lat"), crs = 4326)</pre>
ggplot() +
  geom sf(data = shp1, aes(fill = "Provincia del Azuay")) +
  geom_sf(data = shp2, aes(fill = "Áreas de estudio_SNAP")) +
  scale_fill_manual(values = c("Provincia del Azuay" = "lightblue",
"Áreas de estudio SNAP" = "red")) +
  labs(title = "Mapa de áreas de estudio",
       x = "Longitud",
       y = "Latitud") +
  theme_minimal() # Aplica un tema más limpio
```


3.3.1 Extracción de coordenadas máx y min

```
bbox <- st_bbox(shp2)
print(bbox)

## xmin ymin xmax ymax
## -79.145966 -3.623105 -78.497602 -2.619635</pre>
```

3.3.2 Extracción de centroides

3.3.3 Tabelas

```
#Ver las primeras filas de la tabla (como un data.frame)
head(st_drop_geometry(shp2))
## codigo_de_ csnap nam
map
```

```
FA210 HB01057 MARCOS PEREZ DE CASTILLA AREA PROTEGIDA
## 1
COMUNITARIA
                              RIO NEGRO SOPLADORA
## 2
          FA210 HB01055
                                                              PARQUE
NACIONAL
##
                                               ror
## 1 ACUERDO MINISTERIAL NO. 036 DEL 23/04/2019
       ACUERDO MINIATERIAL NO. 009DEL 23/01/2018
##
                                                                subap
                                                                         esc
                                                      rom
## 1
                                        SIN MODIFICACION COMUNITARIO 50000
## 2 ACUERDO MINISTERIAL NO.21 DEL 05 DE AGOSTO DE 2020
                                                              ESTATAL
                                                                       5000
           psi
                    are
                                edel txt
## 1 TERRESTRE 8425.229 EN REVISIÓN SPN
## 2 TERRESTRE 2175.673 CONCLUIDO SPN
#Convertir la tabla a un data.frame sin geometría
tabla <- st_drop_geometry(shp2)</pre>
#Proyección de datos
st_crs(shp2)
## Coordinate Reference System:
     User input: WGS 84
##
##
     wkt:
## GEOGCRS["WGS 84",
       DATUM["World Geodetic System 1984",
##
           ELLIPSOID["WGS 84",6378137,298.257223563,
##
               LENGTHUNIT["metre",1]]],
##
       PRIMEM["Greenwich",0,
##
##
           ANGLEUNIT["degree", 0.0174532925199433]],
##
       CS[ellipsoidal,2],
           AXIS["latitude", north,
##
##
               ORDER[1],
               ANGLEUNIT["degree", 0.0174532925199433]],
##
##
           AXIS["longitude",east,
##
               ORDER[2],
##
               ANGLEUNIT["degree",0.0174532925199433]],
       ID["EPSG",4326]]
##
#Reproyectar a UTM adecuado (ajustar el EPSG según la zona)
shp2 m <- st transform(shp2, 32717)
shp2_m$area_m2 <- st_area(shp2_m)</pre>
shp2_m$area_km2 <- as.numeric(shp2_m$area_m2) / 1e6</pre>
head(st_drop_geometry(shp2_m))
     codigo_de_ csnap
##
                                               nam
map
          FA210 HB01057 MARCOS PEREZ DE CASTILLA AREA PROTEGIDA
## 1
COMUNITARIA
                              RIO NEGRO SOPLADORA
                                                              PARQUE
## 2
          FA210 HB01055
NACTONAL
```

```
##
                                              ror
## 1 ACUERDO MINISTERIAL NO. 036 DEL 23/04/2019
       ACUERDO MINIATERIAL NO. 009DEL 23/01/2018
##
                                                     rom
                                                               subap
                                                                       esc
## 1
                                       SIN MODIFICACION COMUNITARIO 50000
## 2 ACUERDO MINISTERIAL NO.21 DEL 05 DE AGOSTO DE 2020
                                                             ESTATAL
                                                                      5000
                                               area m2 area km2
                               edel txt
           psj
                    are
## 1 TERRESTRE 8425.229 EN REVISIÓN SPN 84252294 [m^2] 84.25229
## 2 TERRESTRE 2175.673 CONCLUIDO SPN 21756727 [m^2] 21.75673
```

3.4 Análisis

```
#Tablas de cvs
datos <- read_sheet(url_dados, sheet = "datos")</pre>
#Ver filas y columnas específicas
datos_res <- datos >
 filter(area == "Reserva1") |>
  select(2, 3, 4, 7, 9)
head(datos_res, 40)
## # A tibble: 40 × 5
##
        ano area
                    ecosistema score_yes_n score
##
      <dbl> <chr>>
                     <chr>
                             <dbl> <chr>
##
   1 2000 Reserval Paramo
                                         4 bom
##
   2 2000 Reserval Paramo
                                         4 bom
   3 2000 Reserval Paramo
##
                                          5 optimo
  4 2000 Reserval Paramo
##
                                         4 bom
  5 2000 Reserval Paramo
##
                                          5 optimo
##
  6 2000 Reserval Paramo
                                          4 bom
## 7 2000 Reserval Paramo
                                          5 optimo
## 8 2000 Reserval Paramo
                                          5 optimo
## 9 2000 Reserval Paramo
                                          5 optimo
## 10
      2000 Reserval Paramo
                                          5 optimo
## # 💷 30 more rows
```

3.5 Gráficos

```
#Criar mapas con serie histórica de evolucion desde el 2000 hasta 20 años
de monitoreo de restauración.
datos <- read_sheet(url_dados, sheet = "datos")

ggplot(datos, aes(x = ano, y = score_yes_n, color = area)) +
    geom_smooth(se = FALSE, size = 1.2, method = "loess") +
    facet_wrap(~ ecosistema) +
    labs(
        title = "Tendencia por año con restauración",
        x = "Año",
        y = "Score",
        color = "Área"</pre>
```

```
) +
theme_minimal(base_size = 14)
```

Tendencia por año con restauración


```
ggplot(datos, aes(x = ano, y = score_no_n, color = area)) +
  geom_smooth(se = FALSE, size = 1.2, method = "loess") +
  facet_wrap(~ ecosistema) +
  labs(
    title = "Tendencia por año sin restauración",
    x = "Año",
    y = "Score",
    color = "Área"
  ) +
  theme_minimal(base_size = 14)
```

Tendencia por año sin restauración

