MATEMATIKA

1. letnik – splošna gimnazija

Jan Kastelic

Gimnazija Antona Aškerca, Šolski center Ljubljana

12. december 2024

1/63

Vsebina

- Deljivost
- Racionalna števila

2/63

Section 1

Deljivost

- Deljivost
 - Relacija deljivosti
 - Kriteriji deljivost
 - Osnovni izrek o deljenju
 - Praštevila in sestavljena števila
 - Osnovni izrek aritmetike
 - Največji skupni delitelj in najmanjši skupni večkratnik
- Racionalna števila

4 / 63

Jan Kastelic (GAA)

Naravno število m je **delitelj** naravnega števila n (**deljenec**), če obstaja naravno število k (**kvocient**), da velja:

$$\mathbf{n} = \mathbf{k} \cdot \mathbf{m}$$
.

5/63

Naravno število m je **delitelj** naravnega števila n (**deljenec**), če obstaja naravno število k (**kvocient**), da velja:

$$\mathbf{n} = \mathbf{k} \cdot \mathbf{m}$$
.

Naravno število m deli naravno število n, ko je število n večkratnik števila m.

$$m \mid n \Leftrightarrow n = k \cdot m; \quad m, n, k \in \mathbb{N}$$

5/63

Naravno število m je **delitelj** naravnega števila n (**deljenec**), če obstaja naravno število k (**kvocient**), da velja:

$$\mathbf{n} = \mathbf{k} \cdot \mathbf{m}$$
.

Naravno število m deli naravno število n, ko je število n večkratnik števila m.

$$m \mid n \Leftrightarrow n = k \cdot m; \quad m, n, k \in \mathbb{N}$$

Število m je delitelj samega sebe in vseh svojih večkratnikov.

5/63

Naravno število m je **delitelj** naravnega števila n (**deljenec**), če obstaja naravno število k (**kvocient**), da velja:

$$\mathbf{n} = \mathbf{k} \cdot \mathbf{m}$$
.

Naravno število m deli naravno število n, ko je število n večkratnik števila m.

$$m \mid n \Leftrightarrow n = k \cdot m; \quad m, n, k \in \mathbb{N}$$

Število m je delitelj samega sebe in vseh svojih večkratnikov.

1 je delitelj vsakega naravnega števila.

5/63

Naravno število m je **delitelj** naravnega števila n (**deljenec**), če obstaja naravno število k (**kvocient**), da velja:

$$\mathbf{n} = \mathbf{k} \cdot \mathbf{m}$$
.

Naravno število m deli naravno število n, ko je število n večkratnik števila m.

$$m \mid n \Leftrightarrow n = k \cdot m; \quad m, n, k \in \mathbb{N}$$

Število m je delitelj samega sebe in vseh svojih večkratnikov.

1 je delitelj vsakega naravnega števila.

Če d deli naravni števili m in $n,\ n>m$, potem d deli tudi vsoto in razliko števil m in n.

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

Relacija deljivosti je:

Relacija deljivosti je:

refleksivna:

12. december 2024

Relacija deljivosti je:

• refleksivna:

 $n \mid n$;

Relacija deljivosti je:

refleksivna:

 $n \mid n$;

antisimetrična:

Relacija deljivosti je:

refleksivna:

$$n \mid n$$
;

antisimetrična:

$$m \mid n \wedge n \mid m \Rightarrow m = n;$$

Relacija deljivosti je:

refleksivna:

$$n \mid n$$
;

antisimetrična:

$$m \mid n \wedge n \mid m \Rightarrow m = n;$$

tranzitivna:

Relacija deljivosti je:

refleksivna:

$$n \mid n$$
;

antisimetrična:

$$m \mid n \wedge n \mid m \Rightarrow m = n;$$

tranzitivna:

$$m \mid n \wedge n \mid o \Rightarrow m \mid o$$
.

Relacija deljivosti je:

refleksivna:

$$n \mid n$$
;

antisimetrična:

$$m \mid n \wedge n \mid m \Rightarrow m = n;$$

tranzitivna:

$$m \mid n \wedge n \mid o \Rightarrow m \mid o$$
.

6 / 63

Relacija s temi lastnostmi je relacija **delne urejenosti**, zato relacija deljivosti delno ureja množico \mathbb{N} .

Zapišite vse delitelje števil.

Zapišite vse delitelje števil.

- 6
- 16
- 37
- 48
- 120

Pokažite, da trditev velja.

Pokažite, da trditev velja.

• Izraz x - 3 deli izraz $x^2 - 2x - 3$.

• Izraz x + 2 deli izraz $x^3 + x^2 - 4x - 4$.

• Izraz x - 2 deli izraz $x^3 - 8$.

Pokažite, da trditev velja.

Pokažite, da trditev velja.

•
$$19 \mid (3^{21} - 3^{20} + 3^{18})$$

$$\bullet$$
 7 | $(3 \cdot 4^{11} + 4^{12} + 7 \cdot 4^{10})$

• 14 |
$$(5 \cdot 3^6 + 2 \cdot 3^8 - 3 \cdot 3^7)$$

•
$$25 \mid (7 \cdot 2^{23} - 3 \cdot 2^{24} + 3 \cdot 2^{25} - 2^{22})$$

•
$$11 \mid (2 \cdot 10^6 + 3 \cdot 10^7 + 10^8)$$

•
$$35 \mid (6^{32} - 36^{15})$$

Pokažite, da trditev velja.

Pokažite, da trditev velja.

•
$$3 \mid (2^{2n+1} - 5 \cdot 2^{2n} + 9 \cdot 2^{2n-1})$$

• 29 |
$$(5^{n+3} - 2 \cdot 5^{n+1} + 7 \cdot 5^{n+2})$$

• 10 |
$$(3 \cdot 7^{4n-1} - 4 \cdot 7^{4n-2} + 7^{4n+1})$$

•
$$10 \mid (9^{3n-1} + 9 \cdot 9^{3n+1} + 9^{3n} - 9^{3n+2})$$

•
$$5 \mid (7 \cdot 2^{4n-2} + 3 \cdot 4^{2n} - 16^n)$$

10 / 63

Pokažite, da je za poljubno naravno število u vrednost izraza

$$(u+7)(7-u)-3(3-u)(u+5)$$

večkratnik števila 4.

11 / 63

Kriteriji deljivosti

Jan Kastelic (GAA) MATEMATIKA

Kriteriji deljivosti

Deljivost z 2

12. december 2024

Jan Kastelic (GAA)

Deljivost z 2

Število je deljivo z 2 natanko takrat, ko so enice števila deljive z 2.

12 / 63

Deljivost z 2

Število je deljivo z 2 natanko takrat, ko so enice števila deljive z 2.

Deljivost s 3

12 / 63

Deljivost z 2

Število je deljivo z 2 natanko takrat, ko so enice števila deljive z 2.

Deljivost s 3

Število je deljivo s 3 natanko takrat, ko je vsota števk števila deljiva s 3.

12 / 63

Deljivost z 2

Število je deljivo z 2 natanko takrat, ko so enice števila deljive z 2.

Deljivost s 3

Število je deljivo s 3 natanko takrat, ko je vsota števk števila deljiva s 3.

Deljivost s 4 oziroma 25

Deljivost z 2

Število je deljivo z 2 natanko takrat, ko so enice števila deljive z 2.

Deljivost s 3

Število je deljivo s 3 natanko takrat, ko je vsota števk števila deljiva s 3.

Deljivost s 4 oziroma 25

Število je deljivo s 4 oziroma 25 natanko takrat, ko je dvomestni konec števila deljiv s 4 oziroma 25.

12 / 63

Deljivost z 2

Število je deljivo z 2 natanko takrat, ko so enice števila deljive z 2.

Deljivost s 3

Število je deljivo s 3 natanko takrat, ko je vsota števk števila deljiva s 3.

Deljivost s 4 oziroma 25

Število je deljivo s 4 oziroma 25 natanko takrat, ko je dvomestni konec števila deljiv s 4 oziroma 25.

Deljivost s 5

Deljivost z 2

Število je deljivo z 2 natanko takrat, ko so enice števila deljive z 2.

Deljivost s 3

Število je deljivo s 3 natanko takrat, ko je vsota števk števila deljiva s 3.

Deljivost s 4 oziroma 25

Število je deljivo s 4 oziroma 25 natanko takrat, ko je dvomestni konec števila deljiv s 4 oziroma 25.

Deljivost s 5

Število je deljivo s 5 natanko takrat, ko so enice števila enake 0 ali 5.

Jan Kastelic (GAA)

Število je deljivo s 6 natanko takrat, ko je deljivo z 2 in s 3 hkrati.

13 / 63

Jan Kastelic (GAA) MATEMATIKA

Število je deljivo s 6 natanko takrat, ko je deljivo z 2 in s 3 hkrati.

Deljivost z 8 oziroma s 125

13 / 63

Jan Kastelic (GAA) MATEMATIKA

Število je deljivo s 6 natanko takrat, ko je deljivo z 2 in s 3 hkrati.

Deljivost z 8 oziroma s 125

Število je deljivo z 8 oziroma s 125 natanko takrat, ko je trimestni konec števila deljiv z 8 oziroma s 125.

13 / 63

Število je deljivo s 6 natanko takrat, ko je deljivo z 2 in s 3 hkrati.

Deljivost z 8 oziroma s 125

Število je deljivo z 8 oziroma s 125 natanko takrat, ko je trimestni konec števila deljiv z 8 oziroma s 125.

Deljivost z 9

13 / 63

Število je deljivo s 6 natanko takrat, ko je deljivo z 2 in s 3 hkrati.

Deljivost z 8 oziroma s 125

Število je deljivo z 8 oziroma s 125 natanko takrat, ko je trimestni konec števila deljiv z 8 oziroma s 125.

Deljivost z 9

Število je deljivo z 9 natanko takrat, ko je vsota števk števila deljiva z 9.

13 / 63

Število je deljivo s 6 natanko takrat, ko je deljivo z 2 in s 3 hkrati.

Deljivost z 8 oziroma s 125

Število je deljivo z 8 oziroma s 125 natanko takrat, ko je trimestni konec števila deljiv z 8 oziroma s 125.

Deljivost z 9

Število je deljivo z 9 natanko takrat, ko je vsota števk števila deljiva z 9.

Deljivost z 10 oziroma 10ⁿ

Število je deljivo s 6 natanko takrat, ko je deljivo z 2 in s 3 hkrati.

Deljivost z 8 oziroma s 125

Število je deljivo z 8 oziroma s 125 natanko takrat, ko je trimestni konec števila deljiv z 8 oziroma s 125.

Deljivost z 9

Število je deljivo z 9 natanko takrat, ko je vsota števk števila deljiva z 9.

Deljivost z 10 oziroma 10ⁿ

Število je deljivo z 10 natanko takrat, ko so enice števila enake 0.

12. december 2024

Število je deljivo s 6 natanko takrat, ko je deljivo z 2 in s 3 hkrati.

Deljivost z 8 oziroma s 125

Število je deljivo z 8 oziroma s 125 natanko takrat, ko je trimestni konec števila deljiv z 8 oziroma s 125.

Deljivost z 9

Število je deljivo z 9 natanko takrat, ko je vsota števk števila deljiva z 9.

Deljivost z 10 oziroma 10ⁿ

Število je deljivo z 10 natanko takrat, ko so enice števila enake 0. Število je deljivo z 10^n natanko takrat, ko ima število na zadnjih n mestih števko 0.

← □ > ← 를 > ← ← 를 > ←

14 / 63

Število je deljivo z 11 natanko takrat, ko je alternirajoča vsota števk tega števila deljiva z 11.

14 / 63

Število je deljivo z 11 natanko takrat, ko je alternirajoča vsota števk tega števila deljiva z 11.

Deljivost s 7

14 / 63

Število je deljivo z 11 natanko takrat, ko je alternirajoča vsota števk tega števila deljiva z 11.

Deljivost s 7

Vzamemo enice danega števila in jih pomnožimo s 5,

14 / 63

Število je deljivo z 11 natanko takrat, ko je alternirajoča vsota števk tega števila deljiva z 11.

Deljivost s 7

- Vzamemo enice danega števila in jih pomnožimo s 5,
- 2 prvotnemu številu brez enic prištejemo dobljeni produkt,

14 / 63

Število je deljivo z 11 natanko takrat, ko je alternirajoča vsota števk tega števila deljiva z 11.

Deljivost s 7

- Vzamemo enice danega števila in jih pomnožimo s 5,
- 2 prvotnemu številu brez enic prištejemo dobljeni produkt,
- o vzamemo enice dobljene vsote in jih pomnožimo s 5 ...

14 / 63

Število je deljivo z 11 natanko takrat, ko je alternirajoča vsota števk tega števila deljiva z 11.

Deljivost s 7

- Vzamemo enice danega števila in jih pomnožimo s 5,
- prvotnemu številu brez enic prištejemo dobljeni produkt,
- o vzamemo enice dobljene vsote in jih pomnožimo s 5 ...

Postopek ponavljamo, dokler ne dobimo dvomestnega števila – če je to deljivo s 7, je prvotno število deljivo s 7.

14 / 63

Število je deljivo z 11 natanko takrat, ko je alternirajoča vsota števk tega števila deljiva z 11.

Deljivost s 7

- Vzamemo enice danega števila in jih pomnožimo s 5,
- 2 prvotnemu številu brez enic prištejemo dobljeni produkt,
- o vzamemo enice dobljene vsote in jih pomnožimo s 5 ...

Postopek ponavljamo, dokler ne dobimo dvomestnega števila – če je to deljivo s 7, je prvotno število deljivo s 7.

Deljivost s sestavljenim številom

12 december 2024

Število je deljivo z 11 natanko takrat, ko je alternirajoča vsota števk tega števila deljiva z 11.

Deljivost s 7

- Vzamemo enice danega števila in jih pomnožimo s 5,
- prvotnemu številu brez enic prištejemo dobljeni produkt,
- o vzamemo enice dobljene vsote in jih pomnožimo s 5 ...

Postopek ponavljamo, dokler ne dobimo dvomestnega števila – če je to deljivo s 7, je prvotno število deljivo s 7.

Deljivost s sestavljenim številom

Število zapišemo kot produkt dveh (ali več) tujih števil in preverimo deljivost z vsakim faktorjem posebej.

15 / 63

Naloga

S katerimi od števil 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 so deljiva naslednja števila?

15 / 63

Naloga

S katerimi od števil 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 so deljiva naslednja števila?

• 84742

• 393948

• 12390

• 19401

15 / 63

16 / 63

Naloga

Določite vse možnosti za števko a, da je število $\overline{65833a}$:

16 / 63

Naloga

Določite vse možnosti za števko a, da je število 65833a:

- deljivo s 3,
- deljivo s 4,
- deljivo s 5,
- deljivo s 6.

12. december 2024

Naloga

Določite vse možnosti za števko b, da je število $\overline{65b90b}$:

17 / 63

Naloga

Določite vse možnosti za števko b, da je število $\overline{65b90b}$:

- deljivo z 2,
- deljivo s 3,
- deljivo s 6,
- deljivo z 9,
- deljivo z 10.

12. december 2024

Kriteriji deljivost

Določite vse možnosti za števki c in d, da je število $\overline{115c1d}$ deljivo s 6.

18 / 63

Določite vse možnosti za števki c in d, da je število $\overline{115c1d}$ deljivo s 6.

Naloga

Določite vse možnosti za števki e in f, da je število $\overline{115e1f}$ deljivo z 8.

Kriteriji deljivost

Pokažite, da za vsako naravno število n 12 deli $n^4 - n^2$.

19 / 63

Pokažite, da za vsako naravno število n 12 deli $n^4 - n^2$.

Naloga

Preverite, ali je število 8641969 deljivo s 7.

19 / 63

20 / 63

Osnovni izrek o deljenju

12. december 2024

Jan Kastelic (GAA) MATEMATIKA

Osnovni izrek o deljenju

Za poljubni naravni števili m (**deljenec**) in n (**delitelj**), $m \ge n$, obstajata natanko določeni nenegativni števili k (**količnik**/**kvocient**) in r (**ostanek**), da velja:

20 / 63

Osnovni izrek o deljenju

Za poljubni naravni števili \mathbf{m} (**deljenec**) in \mathbf{n} (**delitelj**), $m \geq n$, obstajata natanko določeni nenegativni števili \mathbf{k} (**količnik**/**kvocient**) in \mathbf{r} (**ostanek**), da velja:

$$m = k \cdot n + r$$
; $0 \le r < n$; $m, n \in \mathbb{N}$; $k, r \in \mathbb{N}_0$.

20 / 63

Osnovni izrek o deljenju

Za poljubni naravni števili \mathbf{m} (**deljenec**) in \mathbf{n} (**delitelj**), $m \ge n$, obstajata natanko določeni nenegativni števili \mathbf{k} (**količnik**/**kvocient**) in \mathbf{r} (**ostanek**), da velja:

$$m = k \cdot n + r$$
; $0 \le r < n$; $m, n \in \mathbb{N}$; $k, r \in \mathbb{N}_0$.

Če je ostanek pri deljenju enak 0, je število m **večkratnik** števila n. Tedaj je število m deljivo s številom n. Pravimo, da n deli število m: $n \mid m$.

20 / 63

Določite, katera števila so lahko ostanki pri deljenju naravnega števila n s:

Določite, katera števila so lahko ostanki pri deljenju naravnega števila n s:

- številom 3;
- številom 7;
- številom 365.

21 / 63

Določite, katera števila so lahko ostanki pri deljenju naravnega števila n s:

- številom 3;
- številom 7;
- številom 365.

Naloga

Zapišite prvih nekaj naravnih števil, ki dajo:

Določite, katera števila so lahko ostanki pri deljenju naravnega števila n s:

- številom 3;
- številom 7;
- številom 365.

Naloga

Zapišite prvih nekaj naravnih števil, ki dajo:

- pri deljenju s 4 ostanek 3;
- pri deljenju s 7 ostanek 4;
- pri deljenju z 9 ostanek 4.

12 december 2024

Zapišite naravno število, ki da:

Zapišite naravno število, ki da:

- pri deljenju s 7 količnik 5 in ostanek 3;
- pri deljenju z 10 količnik 9 in ostanek 1;
- pri deljenju s 23 količnik 2 in ostanek 22.

22 / 63

Zapišite naravno število, ki da:

- pri deljenju s 7 količnik 5 in ostanek 3;
- pri deljenju z 10 količnik 9 in ostanek 1;
- pri deljenju s 23 količnik 2 in ostanek 22.

Naloga

Zapišite množico vseh naravnih števil *n*, ki dajo:

Zapišite naravno število, ki da:

- pri deljenju s 7 količnik 5 in ostanek 3;
- pri deljenju z 10 količnik 9 in ostanek 1;
- pri deljenju s 23 količnik 2 in ostanek 22.

Naloga

Zapišite množico vseh naravnih števil *n*, ki dajo:

- pri deljenju z 2 ostanek 1;
- pri deljenju z 2 ostanek 0;
- pri deljenju s 5 ostanek 2.

Katero število smo delili s 7, če smo dobili kvocient 3 in ostanek 5?

23 / 63

12. december 2024

Jan Kastelic (GAA) MATEMATIKA

Katero število smo delili s 7, če smo dobili kvocient 3 in ostanek 5?

Naloga

S katerim številom smo delili število 73. če smo dobili kvocient 12 in ostanek 1?

Katero število smo delili s 7, če smo dobili kvocient 3 in ostanek 5?

Naloga

S katerim številom smo delili število 73, če smo dobili kvocient 12 in ostanek 1?

Naloga

Marjeta ima čebulice tulipana, ki jih želi posaditi v več vrst. V vsaki od 3 vrst je izkopala po 8 jamic, potem pa ugotovila, da ji bosta 2 čebulici ostali. Koliko čebulic ima Marjeta?

Osnovni izrek o deljenju

Če neko število delimo z 8, dobimo ostanek 7. Kolikšen je ostanek, če to isto število delimo s 4?

24 / 63

Če neko število delimo z 8, dobimo ostanek 7. Kolikšen je ostanek, če to isto število delimo s 4?

Naloga

Če neko število delimo s 24 dobimo ostanek 21. Kolikšen je ostanek, če to isto število delimo s 3?

25 / 63

Jan Kastelic (GAA) MATEMATIKA

Glede na število deliteljev, lahko naravna števila razdelimo na tri skupine:

25 / 63

Glede na število deliteljev, lahko naravna števila razdelimo na tri skupine:

• **število** 1 – število, ki ima samo enega delitelja (samega sebe);

25 / 63

Glede na število deliteljev, lahko naravna števila razdelimo na tri skupine:

- **število** 1 število, ki ima samo enega delitelja (samega sebe);
- praštevila števila, ki imajo natanko dva delitelja (1 in samega sebe);

◆□▶ ◆□▶ ◆≧▶ ◆毫▶ ○毫 ○夕@◎

25/63

Glede na število deliteljev, lahko naravna števila razdelimo na tri skupine:

- **število** 1 število, ki ima samo enega delitelja (samega sebe);
- praštevila števila, ki imajo natanko dva delitelja (1 in samega sebe);
- sestavljena števila števila, ki imajo več kot dva delitelja.

25/63

Glede na število deliteljev, lahko naravna števila razdelimo na tri skupine:

- **število** 1 število, ki ima samo enega delitelja (samega sebe);
- praštevila števila, ki imajo natanko dva delitelja (1 in samega sebe);
- sestavljena števila števila, ki imajo več kot dva delitelja.

$$\mathbb{N} = \{1\} \cup \mathbb{P} \cup \{sestavljena \ \mathsf{\check{s}}tevila\}$$

25/63

Glede na število deliteljev, lahko naravna števila razdelimo na tri skupine:

- **število** 1 število, ki ima samo enega delitelja (samega sebe);
- praštevila števila, ki imajo natanko dva delitelja (1 in samega sebe);
- sestavljena števila števila, ki imajo več kot dva delitelja.

$$\mathbb{N} = \{1\} \cup \mathbb{P} \cup \{\textit{sestavljena} \; \mathsf{\check{s}tevila}\}$$

Praštevil je neskončno mnogo.

25 / 63

Glede na število deliteljev, lahko naravna števila razdelimo na tri skupine:

- **število** 1 število, ki ima samo enega delitelja (samega sebe);
- praštevila števila, ki imajo natanko dva delitelja (1 in samega sebe);
- sestavljena števila števila, ki imajo več kot dva delitelja.

$$\mathbb{N} = \{1\} \cup \mathbb{P} \cup \{sestavljena \ \mathsf{\check{s}}tevila\}$$

Praštevil je neskončno mnogo.

Število n je praštevilo, če ni deljivo z nobenim praštevilom, manjšim ali enakim \sqrt{n} .

25/63

Praštevila in sestavljena števila

12. december 2024

Eratostenovo sito

12. december 2024

Eratostenovo sito

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Jan Kastelic (GAA) MATEMATIKA 12. december 2024 26 / 63

Praštevila in sestavljena števila

Preverite, ali so dana števila praštevila.

Jan Kastelic (GAA)

Preverite, ali so dana števila praštevila.

- 103
- 163
- 137
- 197
- 147
- 559

27 / 63

12. december 2024

Jan Kastelic (GAA)

Osnovni izrek aritmetike

12. december 2024

Osnovni izrek aritmetike

Vsako naravno število lahko enolično/na en sam način (do vrstnega reda faktorjev natančno) zapišemo kot produkt potenc s praštevilskimi osnovami:

28 / 63

Osnovni izrek aritmetike

Vsako naravno število lahko enolično/na en sam način (do vrstnega reda faktorjev natančno) zapišemo kot produkt potenc s praštevilskimi osnovami:

$$n = p_1^{k_1} \cdot p_2^{k_2} \cdot \ldots \cdot p_l^{k_l}; \quad p_i \in \mathbb{P} \wedge n, k_i \in \mathbb{N}.$$

28 / 63

Osnovni izrek aritmetike

Vsako naravno število lahko enolično/na en sam način (do vrstnega reda faktorjev natančno) zapišemo kot produkt potenc s praštevilskimi osnovami:

$$n = p_1^{k_1} \cdot p_2^{k_2} \cdot \ldots \cdot p_l^{k_l}; \quad p_i \in \mathbb{P} \wedge n, k_i \in \mathbb{N}.$$

Zapis naravnega števila kot produkt potenc s praštevilskimi osnovami imenujemo tudi **praštevilski razcep**.

28 / 63

Zapišite število 8755 kot produkt samih praštevil in njihovih potenc.

29 / 63

Zapišite število 8755 kot produkt samih praštevil in njihovih potenc.

Naloga

Razcepite število 3520 na prafaktorje.

29 / 63

Zapišite praštevilski razcep števila 38250.

30 / 63

Zapišite praštevilski razcep števila 38250.

Naloga

Zapišite praštevilski razcep števila 3150.

30 / 63

31 / 63

Razcepite število 66 na prafaktorje in zapišite vse njegove delitelje.

31 / 63

Razcepite število 66 na prafaktorje in zapišite vse njegove delitelje.

Naloga

Razcepite število 204 na prafaktorje in zapišite vse njegove delitelje.

31 / 63

Zapišite vse izraze, ki delijo dani izraz.

32 / 63

Zapišite vse izraze, ki delijo dani izraz.

•
$$x^2 + x - 1$$

•
$$x^3 - x^2 - 4x + 4$$

•
$$x^3 - 27$$

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q ©

33 / 63

Največji skupni delitelj

33 / 63

Največji skupni delitelj

Največji skupni delitelj števil m in n je največje število od tistih, ki delijo števili m in n. Oznaka: D(m, n).

33 / 63

Največji skupni delitelj

Največji skupni delitelj števil m in n je največje število od tistih, ki delijo števili m in n. Oznaka: D(m, n).

Najmanjši skupni večkratnik

33 / 63

Največji skupni delitelj

Največji skupni delitelj števil m in n je največje število od tistih, ki delijo števili m in n. Oznaka: D(m, n).

Najmanjši skupni večkratnik

Najmanjši skupni večkratnik števil m in n je najmanjše število od tistih, ki so deljiva s številoma m in n.

Oznaka: v(m, n).

33 / 63

Največji skupni delitelj

Največji skupni delitelj števil m in n je največje število od tistih, ki delijo števili m in n. Oznaka: D(m, n).

Najmanjši skupni večkratnik

Najmanjši skupni večkratnik števil m in n je najmanjše število od tistih, ki so deljiva s številoma m in n.

Oznaka: v(m, n).

Števili m in n, katerih največji skupni delitelj je 1, sta **tuji števili**.

33 / 63

34 / 63

34 / 63

• Števili *m* in *n* prafaktoriziramo.

34 / 63

- Števili *m* in *n* prafaktoriziramo.
- Za D(m, n) vzamemo potence, ki so skupne obema številom v prafaktorizaciji.

◆□▶ ◆御▶ ◆巻▶ ◆巻▶ ○巻 ○夕@

34 / 63

- Števili *m* in *n* prafaktoriziramo.
- Za D(m, n) vzamemo potence, ki so skupne obema številom v prafaktorizaciji.
- Za v(m, n) vzamemo vse potence, ki se pojavijo v prafaktorizaciji števil, z največjim eksponentom.

(ㅁ▶◀鬪▶◀불▶◀불▶ - 불 - 쒸٩연

34 / 63

- Števili *m* in *n* prafaktoriziramo.
- Za D(m, n) vzamemo potence, ki so skupne obema številom v prafaktorizaciji.
- Za v(m, n) vzamemo vse potence, ki se pojavijo v prafaktorizaciji števil, z največjim eksponentom.

Za poljubni naravni števili m in n velja zveza $\mathbf{D}(\mathbf{m}, \mathbf{n}) \cdot \mathbf{v}(\mathbf{m}, \mathbf{n}) = \mathbf{m} \cdot \mathbf{n}$.

34 / 63

- Števili *m* in *n* prafaktoriziramo.
- Za D(m, n) vzamemo potence, ki so skupne obema številom v prafaktorizaciji.
- Za v(m, n) vzamemo vse potence, ki se pojavijo v prafaktorizaciji števil, z največjim eksponentom.

Za poljubni naravni števili m in n velja zveza $\mathbf{D}(\mathbf{m},\mathbf{n}) \cdot \mathbf{v}(\mathbf{m},\mathbf{n}) = \mathbf{m} \cdot \mathbf{n}$.

Evklidov algoritem

34 / 63

- Števili *m* in *n* prafaktoriziramo.
- Za D(m, n) vzamemo potence, ki so skupne obema številom v prafaktorizaciji.
- Za v(m, n) vzamemo vse potence, ki se pojavijo v prafaktorizaciji števil, z največjim eksponentom.

Za poljubni naravni števili m in n velja zveza $\mathbf{D}(\mathbf{m},\mathbf{n}) \cdot \mathbf{v}(\mathbf{m},\mathbf{n}) = \mathbf{m} \cdot \mathbf{n}$.

Evklidov algoritem

V tem algoritmu zapored uporabljamo osnovni izrek o deljenju. Najprej ga uporabimo na danih dveh številih.

ロト 4回ト 4 回ト 4 国ト (国) から(で)

- Števili *m* in *n* prafaktoriziramo.
- Za D(m, n) vzamemo potence, ki so skupne obema številom v prafaktorizaciji.
- Za v(m, n) vzamemo vse potence, ki se pojavijo v prafaktorizaciji števil, z največjim eksponentom.

Za poljubni naravni števili m in n velja zveza $\mathbf{D}(\mathbf{m},\mathbf{n}) \cdot \mathbf{v}(\mathbf{m},\mathbf{n}) = \mathbf{m} \cdot \mathbf{n}$.

Evklidov algoritem

V tem algoritmu zapored uporabljamo osnovni izrek o deljenju. Najprej ga uporabimo na danih dveh številih. V naslednjem koraku deljenec postane prejšnji delitelj, delitelj pa prejšnji ostanek.

4□ > 4□ > 4 = > 4 = > = 90

- Števili *m* in *n* prafaktoriziramo.
- Za D(m, n) vzamemo potence, ki so skupne obema številom v prafaktorizaciji.
- Za v(m, n) vzamemo vse potence, ki se pojavijo v prafaktorizaciji števil, z največjim eksponentom.

Za poljubni naravni števili m in n velja zveza $\mathbf{D}(\mathbf{m},\mathbf{n}) \cdot \mathbf{v}(\mathbf{m},\mathbf{n}) = \mathbf{m} \cdot \mathbf{n}$.

Evklidov algoritem

V tem algoritmu zapored uporabljamo osnovni izrek o deljenju. Najprej ga uporabimo na danih dveh številih. V naslednjem koraku deljenec postane prejšnji delitelj, delitelj pa prejšnji ostanek. V vsakem koraku imamo manjša števila, zato se algoritem konča v končno mnogo korakih.

- Števili *m* in *n* prafaktoriziramo.
- Za D(m, n) vzamemo potence, ki so skupne obema številom v prafaktorizaciji.
- Za v(m, n) vzamemo vse potence, ki se pojavijo v prafaktorizaciji števil, z največjim eksponentom.

Za poljubni naravni števili m in n velja zveza $\mathbf{D}(\mathbf{m}, \mathbf{n}) \cdot \mathbf{v}(\mathbf{m}, \mathbf{n}) = \mathbf{m} \cdot \mathbf{n}$.

Evklidov algoritem

V tem algoritmu zapored uporabljamo osnovni izrek o deljenju. Najprej ga uporabimo na danih dveh številih. V naslednjem koraku deljenec postane prejšnji delitelj, delitelj pa prejšnji ostanek. V vsakem koraku imamo manjša števila, zato se algoritem konča v končno mnogo korakih. Največji skupni delitelj danih števil m in n je zadnji od 0 različen ostanek pri deljenju v Evklidovem algoritmu.

Izračunajte največji skupni delitelj in najmanjši skupni večkratnih danih parov števil.

35 / 63

35 / 63

Naloga

Izračunajte največji skupni delitelj in najmanjši skupni večkratnih danih parov števil.

• 6 in 8

• 36 in 48

• 550 in 286

• 6120 in 4158

12. december 2024

Preverite, ali sta števili 522 in 4025 tuji števili.

36 / 63

Preverite, ali sta števili 522 in 4025 tuji števili.

Naloga

Izračunajte največji skupni delitelj in najmanjši skupni večkratnik treh števil.

36 / 63

Preverite, ali sta števili 522 in 4025 tuji števili.

Naloga

Izračunajte največji skupni delitelj in najmanjši skupni večkratnik treh števil.

• 1320, 6732 in 297

• 372, 190 in 11264

36 / 63

Z Evklidovim algoritmom izračunajte največji skupni delitelj parov števil.

37 / 63

Z Evklidovim algoritmom izračunajte največji skupni delitelj parov števil.

• 754 in 3146

• 4446 in 6325

37 / 63

Z Evklidovim algoritmom izračunajte največji skupni delitelj parov števil.

• 754 in 3146

• 4446 in 6325

Naloga

Izračuanjte število b, če velja: D(78166, b) = 418 in v(78166, b) = 1485154.

Določite največji skupni delitelj izrazov.

38 / 63

38 / 63

Naloga

Določite največji skupni delitelj izrazov.

•
$$x^3 - 5x^2 - 24x$$
 in $x^2 - 64$

•
$$x^2 + 3x + 10$$
, $x^3 - 4x$ in $x^3 - 8$

•
$$x^2 - 25$$
 in $x^3 - 27$

Določite najmanjši skupni večkratnik izrazov.

39 / 63

39 / 63

Naloga

Določite najmanjši skupni večkratnik izrazov.

•
$$x^2 - 64$$
 in $x + 8$

•
$$x$$
, $8 - x$ in $x^2 - 64$

•
$$x^2 + 3x - 10$$
, $2x$ in $x^2 + 5x$

12. december 2024

Velika Janezova terasa je dolga 1035 *cm* in široka 330 *cm*. Janez bi jo rad sam tlakoval s kvadratnimi vinilnimi ploščami. Ker ni najbolj vešč tega dela, bo kupil tako velike plošče, da mu jih ne bo treba rezati. Koliko so največ lahko velik kvadratne plošče? Koliko plošč bo potreboval za tlakovanje?

40 / 63

Velika Janezova terasa je dolga 1035 *cm* in široka 330 *cm*. Janez bi jo rad sam tlakoval s kvadratnimi vinilnimi ploščami. Ker ni najbolj vešč tega dela, bo kupil tako velike plošče, da mu jih ne bo treba rezati. Koliko so največ lahko velik kvadratne plošče? Koliko plošč bo potreboval za tlakovanje?

Naloga

Neca gre v knjižnico vsake 14 dni, Nace pa vsakih 10 dni. V knjižnici se srečata v ponedeljek 1. marca. Čez koliko dni se bosta naslednjič srečala? Na kateri dan in datum?

Section 2

Racionalna števila

41 / 63

- Deljivost
- Racionalna števila
 - Številski ulomki
 - Racionalna števila
 - Urejenost racionalnih števil
 - Algebrski ulomki
 - Računanje z ulomki
 - Potence s celimi eksponenti
 - Pravila za računanje s potencami s celimi eksponenti
 - Premo in obratno sorazmerje
 - Odstotki

Številski ulomki

43 / 63

Številski ulomki

Jan Kastelic (GAA) MATEMATIKA 12. december 2024 44 / 63

Za katere vrednosti x ulomek ni definiran?

44 / 63

Jan Kastelic (GAA) MATEMATIKA

Za katere vrednosti x ulomek ni definiran?

- $\bullet \quad \frac{x-2}{x+1}$
- $\frac{2}{x-5}$
- $\frac{x+2}{3}$
- $\frac{13}{2x-5}$

12. december 2024

Številski ulomki

Za katere vrednosti x ima ulomek vrednost enako 0?

45 / 63

Za katere vrednosti x ima ulomek vrednost enako 0?

$$\bullet \quad \frac{x-2}{x+1}$$

- $\frac{2}{x-5}$
- $\frac{x+2}{3}$
- $\frac{13}{2x-5}$

Številski ulomki

46 / 63

Ali imata ulomka isto vrednost?

46 / 63

Ali imata ulomka isto vrednost?

- $\frac{2}{3}$ in $\frac{10}{15}$
- \bullet $\frac{-1}{2}$ in $\frac{1}{-2}$
- $\frac{4}{5}$ in $\frac{-8}{-10}$
- $\frac{5}{8}$ in $\frac{8}{5}$

Številski ulomki

12. december 2024

Za kateri x imata ulomka isto vrednost?

47 / 63

Za kateri x imata ulomka isto vrednost?

- $\frac{x+1}{2}$ in $\frac{3}{4}$
- $\frac{4}{2x-1}$ in $\frac{1}{3}$
- $\frac{x+1}{2}$ in $\frac{x-1}{-3}$
- $\frac{x+1}{x-2}$ in $\frac{2}{5}$

12. december 2024

Številski ulomki

Ali ulomka predstavljata isto vrednost?

Ali ulomka predstavljata isto vrednost?

- $\bullet \left(\frac{1}{2}\right)^{-1} \text{ in } -\frac{1}{2}$
- $(\frac{2}{3})^{-1}$ in $\frac{3}{2}$
- $1\frac{3}{7}$ in $\left(\frac{7}{10}\right)^{-1}$

12. december 2024

Številski ulomki

Ali ulomka predstavljata isto vrednost?

12. december 2024

Ali ulomka predstavljata isto vrednost?

- $2 \cdot \frac{3}{4}$ in $\frac{3}{2}$
- $2\frac{3}{4}$ in $\frac{3}{2}$
- $\left(1\frac{2}{5}\right)^{-1}$ in $1\frac{5}{2}$
- $(1\frac{2}{5})^{-1}$ in $\frac{5}{7}$

Številski ulomki

50 / 63

Zapišite s celim delom oziroma z ulomkom.

50 / 63

Zapišite s celim delom oziroma z ulomkom.

- $\frac{4}{3}$
- $\frac{110}{17}$
- $3\frac{5}{8}$
- $2\frac{9}{2}$

50 / 63

12. december 2024

Jan Kastelic (GAA) MATEMATIKA

52 / 63

Jan Kastelic (GAA) MATEMATIKA

Glede na predznak razdelimo racionalna števila v tri množice:

$$\mathbb{Q} =$$

12. december 2024

Glede na predznak razdelimo racionalna števila v tri množice:

• množico negativnih racionalnih števil Q-,

$$\mathbb{Q} = \mathbb{Q}^-$$

12. december 2024

Glede na predznak razdelimo racionalna števila v tri množice:

- ullet množico negativnih racionalnih števil \mathbb{Q}^- ,
- množico z elementom nič: $\{\mathbf{0}\}$ in

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\}$$

Jan Kastelic (GAA)

Glede na predznak razdelimo racionalna števila v tri množice:

- množico negativnih racionalnih števil Q⁻,
- množico z elementom nič: $\{\mathbf{0}\}$ in
- množico pozitivnih racionalnih števil: Q⁺.

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$$

12 december 2024

Jan Kastelic (GAA)

53 / 63

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

53 / 63

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

• prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;

53 / 63

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;
- ② drugi ulomek je večji od prvega $\frac{a}{b} < \frac{c}{d}$ natanko tedaj, ko je ad < bc;

53 / 63

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;
- ② drugi ulomek je večji od prvega $\frac{a}{b} < \frac{c}{d}$ natanko tedaj, ko je ad < bc;
- o ulomka sta enaka $\frac{a}{b} = \frac{c}{d}$ natanko tedaj, ko je ad = bc.

53 / 63

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;
- ② drugi ulomek je večji od prvega $\frac{a}{b} < \frac{c}{d}$ natanko tedaj, ko je ad < bc;
- **1** ulomka sta enaka $\frac{a}{b} = \frac{c}{d}$ natanko tedaj, ko je ad = bc.

Enaka ulomka predstavljata isto racionalno število.

53 / 63

Jan Kastelic (GAA) MATEMATIKA 12. december 2024 54 / 63

54 / 63

54 / 63

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

54 / 63

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

Jan Kastelic (GAA)

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

$$\mathbb{Q}^ \mathbb{Q}^+$$
 negativna števila pozitivna števila

V množici ulomkov velja, da je vsak negativen ulomek manjši od vsakega pozitivnega ulomka.

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

54 / 63

55 / 63

Monotonost vsote

12. december 2024

Jan Kastelic (GAA)

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

55 / 63

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

55 / 63

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

55 / 63

Lastnosti relacije urejenosti

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

Tranzitivnost

55 / 63

Lastnosti relacije urejenosti

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

Tranzitivnost

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{c}{d} < \frac{e}{f} \quad \Rightarrow \quad \frac{a}{b} < \frac{e}{f}$$

55 / 63

Urejenost racionalnih števil

56 / 63

56 / 63

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

Jan Kastelic (GAA)

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

Pri prehodu na nasprotno vrednost se neenačaj obrne:

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

Pri prehodu na nasprotno vrednost se neenačaj obrne:

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad -\frac{a}{b} > -\frac{c}{d}$$

Jan Kastelic (GAA)

Urejenost racionalnih števil

57 / 63

4□ > 4□ > 4 = > 4 = > = 90

• prvi ulomek je večji ali enak od drugega $\frac{a}{b} \geq \frac{c}{d}$ natanko tedaj, ko je $ad \geq bc$;

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \geq \frac{c}{d}$ natanko tedaj, ko je $ad \leq bc$;

57 / 63

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

57 / 63

Ureienost racionalnih števil

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

• $\frac{a}{b} \leq \frac{a}{b}$ - refleksivnost;

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \geq \frac{c}{d}$ natanko tedaj, ko je $ad \leq bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

- $\frac{a}{b} \leq \frac{a}{b}$ refleksivnost;
- $\frac{a}{b} \le \frac{c}{d} \land \frac{c}{d} \le \frac{a}{b} \Rightarrow \frac{a}{b} = \frac{c}{d}$ antisimetričnost in

Jan Kastelic (GAA)

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

- $\frac{a}{b} \leq \frac{a}{b}$ refleksivnost;
- $\frac{a}{b} \le \frac{c}{d} \land \frac{c}{d} \le \frac{a}{b} \Rightarrow \frac{a}{b} = \frac{c}{d}$ antisimetričnost in
- $\frac{a}{b} \le \frac{c}{d} \land \frac{c}{d} \le \frac{e}{f} \Rightarrow \frac{a}{b} \le \frac{e}{f}$ tranzitivnost.

Algebrski ulomki

58 / 63

Računanje z ulomki

12. december 2024

Jan Kastelic (GAA) MATEMATIKA

Potence s celimi eksponenti

マロトマポトマミトマミト ヨーめのぐ

Pravila za računanje s celimi eksponenti

61/63

Premo in obratno sorazmerje

62 / 63

Odstotki

Jan Kastelic (GAA)