Задача А. Наивный поиск подстроки в строке

Имя входного файла: search1.in Имя выходного файла: search1.out Ограничение по времени: 2 секунды

Ограничение по памяти:

Даны строки p и t. Требуется найти все вхождения строки p в строку t в качестве подстроки.

Формат входных данных

Первая строка входного файла содержит p, вторая — t ($1 \leqslant |p|, |t| \leqslant 10^4$). Строки состоят из букв латинского алфавита.

Формат выходных данных

В первой строке выведите количество вхождений строки p в строку t. Во второй строке выведите в возрастающем порядке номера символов строки t, с которых начинаются вхождения p. Символы нумеруются с единицы.

search1.in	search1.out
aba	2
abaCaba	1 5

Задача В. Быстрый поиск подстроки в строке

Имя входного файла: search2.in Имя выходного файла: search2.out Ограничение по времени: 2 секунды

Ограничение по памяти:

Даны строки p и t. Требуется найти все вхождения строки p в строку t в качестве подстроки.

Формат входных данных

Первая строка входного файла содержит p, вторая — t ($1\leqslant |p|,|t|\leqslant 10^6$). Строки состоят из букв латинского алфавита.

Формат выходных данных

В первой строке выведите количество вхождений строки p в строку t. Во второй строке выведите в возрастающем порядке номера символов строки t, с которых начинаются вхождения p. Символы нумеруются с единицы.

search2.in	search2.out
aba	2
abaCaba	1 5

Задача С. Префикс-функция

Имя входного файла: prefix.in Имя выходного файла: prefix.out Ограничение по времени: 2 секунды

Ограничение по памяти:

Постройте префикс-функцию для заданной строки s.

Формат входных данных

Первая строка входного файла содержит s ($1\leqslant |s|\leqslant 10^6$). Строка состоит из букв латинского алфавита.

Формат выходных данных

Выведите значения префикс-функции строки s для всех индексов $1, 2, \ldots, |s|$.

prefix.in	prefix.out
aaaAAA	0 1 2 0 0 0
abacaba	0 0 1 0 1 2 3

Задача D. Z-функция

Имя входного файла: z.in
Имя выходного файла: z.out
Ограничение по времени: 2 секунды

Ограничение по памяти:

Постройте Z-функцию для заданной строки s.

Формат входных данных

Первая строка входного файла содержит s ($1\leqslant |s|\leqslant 10^6$). Строка состоит из букв латинского алфавита.

Формат выходных данных

Выведите значения Z-функции строки s для индексов $2, 3, \ldots, |s|$.

z.in	z.out
aaaAAA	2 1 0 0 0
abacaba	0 1 0 3 0 1

Задача Е. Поиск подстроки в строке с одним несовпадением

Имя входного файла: search3.in Имя выходного файла: search3.out Ограничение по времени: 2 секунды

Ограничение по памяти:

Даны строки p и t. Требуется найти все вхождения строки p в строку t в качестве подстроки, с точностью до возможного несовпадения одного символа.

Формат входных данных

Первая строка входного файла содержит p, вторая — t ($1\leqslant |p|,|t|\leqslant 10^6$). Строки состоят из букв латинского алфавита.

Формат выходных данных

В первой строке выведите количество вхождений строки p в строку t. Во второй строке выведите в возрастающем порядке номера символов строки t, с которых начинаются вхождения p. Символы нумеруются с единицы.

search3.in	search3.out
aaaa	4
Caaabdaaaa	1 2 6 7

Задача F. Поиск периода

Имя входного файла: period.in Имя выходного файла: period.out Ограничение по времени: 2 секунды

Ограничение по памяти:

Дана строка s. Требуется найти минимальную по длине строку t, такую что s представима в виде конкатенации одной или нескольких строк t.

Формат входных данных

Первая строка входного файла содержит s ($1\leqslant |s|\leqslant 10^6$). Строка состоит из букв латинского алфавита.

Формат выходных данных

Выведите длину искомой строки t.

period.in	period.out
abcabcabc	3
abacaba	7

Задача G. Множественный поиск

Имя входного файла: search4.in Имя выходного файла: search4.out Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

Дано множество строк S и строка t. Требуется для каждой сроки $p \in S$ определить, встречается ли она в t как подстрока.

Формат входных данных

Первая строка входного файла содержит целое число n — мощность S ($1 \le n \le 10^6$). Следующие n строк содержат по одной строке из S. Сумма длин всех строк из S не превосходит 10^6 . Последняя строка входного файла содержит t ($1 \le t \le 10^6$). Все строки состоят из строчных латинских букв.

Формат выходных данных

Для каждой сроки из S выведите «YES», если она встречается в t и «NO» в противном случае. Строки нумеруются в порядке появления во входном файле.

search4.in	search4.out
3	YES
abc abcdr	NO
abcdr	YES
abcde	
xabcdef	

Задача Н. Сравнения подстрок

Имя входного файла: substrcmp.in Имя выходного файла: substrcmp.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана строка. Нужно уметь отвечать на запросы вида: равны ли подстроки [а..b] и [с..d].

Формат входных данных

Сперва строка S (не более 10^5 строчных латинских букв). Далее число M — количество запросов. В следующих M строках запросы a,b,c,d. $0 \leqslant M \leqslant 10^5, 1 \leqslant a \leqslant b \leqslant |S|, 1 \leqslant c \leqslant d \leqslant |S|$

Формат выходных данных

M строк. Выведите Yes, если подстроки совпадают, и No иначе.

substrcmp.in	substrcmp.out
trololo	Yes
3	Yes
1 7 1 7	No
3 5 5 7	
1 1 1 5	

Задача І. Словарь

Имя входного файла: dictionary.in Имя выходного файла: dictionary.out

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан набор слов и текст, требуется определить для каждого слова, присутствует ли оно в тексте как подстрока.

Формат входных данных

В первой строке дан текст (не более 10^6 строчных латинских букв). Далее дано число M — количество слов в словаре.

В следующих M строках записаны слова (не более 30 строчных латинских букв). Слова различны и отсортированы в лексикографическом порядке.

Суммарная длина слов в словаре не более 10^5 .

Формат выходных данных

M строк вида Yes, если слово присутствует, и No иначе.

dictionary.in	dictionary.out
trololo	No
3	Yes
abacabadabacaba	Yes
olo	
trol	

Задача Ј. Помогите, спасите!

Имя входного файла: keepcounted.in Имя выходного файла: keepcounted.out

Ограничение по времени: 2 секунды Ограничение по памяти: 16 мегабайт

Дана строка. Найдите для каждого её префикса количество различных подстрок в нём.

Формат входных данных

В единственной строке входных данных содержится непустая строка S, состоящая из N ($1 \le N \le 10^4$) маленьких букв английского алфавита.

Формат выходных данных

Выведите N строк, в i-й строке должно содержаться количество различных подстрок в i-м префиксе строки S.

keepcounted.in	keepcounted.out
aabab	1
	2
	5
	8
	11
atari	1
	3
	5
	9
	14

Задача К. Запросы на строках

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Дана строка s, состоящая из строчных букв латинского алфавита, обозначим f(s), как количество различных подстрок в s.

Вы должны уметь отвечать на запрос f(s[l..r]), где s[l..r] означает подстроку, начинающуюся в l и заканчивающуюся в r, все границы включительно.

Формат входных данных

Первая строка содержит строку s, состоящую из строчных букв латинского алфавита $(1\leqslant |s|\leqslant 5000)$. Строка строка содержит число q — количество запросов $(1\leqslant q\leqslant 10^4)$. Следующие q строк содержат по два числа l и r — границы запросов $(1\leqslant l\leqslant r\leqslant |s|)$.

Формат выходных данных

Для каждого запроса выведите ответ на него.

стандартный ввод	стандартный вывод
bbaba	3
5	1
3 4	7
2 2	5
2 5	8
2 4	
1 4	
baaba	1
5	3
3 3	8
3 4	5
1 4	1
3 5	
5 5	

Задача L. Curiosity

Имя входного файла: curiosity.in Имя выходного файла: curiosity.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Curiosity — это марсоход, который иследует кратер «Гейл» на Марсе. Не так давно, он нашел следы воды в марсианской почве, что в будущем упростит планирование миссий для людей.

Curiosity может напрямую контактировать с Землей на скорости до 32 килобит в секунду, но в среднем нужно 14 минут и 6 секунд, чтобы сигнал дошел от Земли до Марса.

«Вы только что увидели камень и нажали на тормоз, но вы уже знаете, что вездеход уже проходит этот камень» — объясняет Мэтт Хэверли, водитель марсохода. «Так мы только планируем путь, а потом записываем набор простых текстовых команд: поехать на один метр вперед, повернуть налево, сделать фото и т.д.».

Иногда требуется реагировать очень быстро на неожиданные события. Например, если камеры увидели что-то интересное, тогда вы могли бы захотеть изменить маршрут марсохода, что-бы он сделал еще одно фото. Чтобы сделать это, вы отправляете команду замены в форме $s/\langle string \rangle / \langle replacement \rangle / g$. Это заменяет все вхождения $\langle string \rangle$, начиная с самого левого, на $\langle replacement \rangle$.

Более формально, если A — непустая строка и B — строка, тогда чтобы применить замену s/A/B/g к строке S, нужно сделать следующее:

- Найти самое левое вхождение строки A в S, такое, что $S = S_L + A + S_R$.
- \bullet Если нет ни одного вхождения, то ответом является S.
- Пусть R результат применения s/A/B/g к строке S_R .
- Ответом является $S_L + B + R$.

Это означает, что:

- Если существует два пересекающихся вхождения строки A в S, только левое из них заменяется. Например, если применить "s/aba/c/g" к "abababa", получим "cbc": после замены первого вхождения "aba" строка превратится в "cbaba", и только последнее вхождение "aba" может быть заменено после этого.
- Никакая замена не может использовать результат предыдущих замен. Например, применив "s/a/ab/g" к "a", получим "ab", а, применив "s/a/ba/g" к "a", получим "ba".

Вы знаете, что чем длиннее команда, тем больше времени занимает ее отправка. Тем самым, от вас требуется написать программу, которая найдет кратчайшую команду, изменяющая начальную строку в конечную.

Формат входных данных

Первые две строки содержат начальную и конечную строки, соответственно.

Обе строки не пусты и их длины не превосходят 2000 символов.

Строка содержит только латинские буквы, пробелы и знаки пунктуации (запятые, двоеточия, точки с запятой и дефисы).

Заданные строки не равны друг другу.

Формат выходных данных

Выведите команду, которая изменяет начальную строку в конечную минимальной длины. Если существует несколько кратчайших команд, выведите любую.

curiosity.in	curiosity.out
move left, move right; move up move left, move down, move up	s/right;/down,/g
If not found: move x; else move -x If found: move x; else move -x	s/ not//g
abababa cbc	s/aba/c/g

Задача М. Цензура

Имя входного файла: censored.in Имя выходного файла: censored.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Посчитайте, сколько строк над алфавитом из n символов длины m не содержат ни одной подстроки из заданного множества "запрещенных" строк.

Формат входных данных

В первой строке написаны целые числа n $(1 \le n \le 100)$ — количество символов в алфавите, m $(1 \le m \le 100)$ — длина искомых строк и p $(0 \le p \le 10)$ — количество "запрещенных" подстрок. Следующая строка содержит n символов с кодами больше 32 — буквы алфавита. Далее идет p "запрещенных" строк, длины которых не превосходят $\min(m, 10)$ символов. Строки целиком состоят из символов алфавита.

Формат выходных данных

В первой строке выведите ответ на задачу.

censored.in	censored.out
2 3 1	5
ab	
bb	

Задача N. Подозрительные строки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Вы работаете в компании, специализирующейся на интернет-технологиях, и сейчас вы разрабатываете спам-фильтр. Этот фильтр определяет, содержит ли строка спам, для этого он использует словарь «спам-слов». Если входная строка содержит по крайней мере одно слово из этого словаря в качестве подстроки, то фильтр считает, что это сообщение подозрительное. (примечание: вся строка считается подстрокой для самой себя)

Вы решили решить более сложную задачу: посчитать, сколько существует различных строк длины l, состоящих из строчных букв, который являются подозрительными для данного фильтра. Выведите ответ по модулю 10000.

Формат входных данных

В первой строке записано число n — число спам-слов в словаре $(1 \le n \le 10)$. Во второй строке перечислены спам-слова через пробел (длина строк не больше 10, строки состоят только из строчных латинских букв). В третьей строке задано число l $(1 \le l \le 2^{31} - 1)$.

Формат выходных данных

Выведите число подозрительных строк длины l по модулю 10000.

стандартный ввод	стандартный вывод
1	1
x	
1	
2	2
ab bb	
2	
2	6350
ab bb	
5	
2	4054
aab bba	
5	
9	8752
xxxxxx xxx x yyxyy xxxyxxx y yx xy	
zzzzzzzzz	
5	
10	5040
aaaaaaaaa bbbbbbbbbb ccccccccc	
ddddddddd eeeeeeee fffffffff	
ggggggggg hhhhhhhhhh xxxxxxxxxx	
zzzzzzzzz	
2147483647	

Задача О. Варвары и Тарзан

Имя входного файла: divljak.in Имя выходного файла: divljak.out Ограничение по времени: 6 секунд Ограничение по памяти: 1024 мегабайта

Задача про странных людей — варваров. Их много, но только некоторые из них действительно важны. В этой истории есть n важных варваров, которые пронумерованы числами от 1 до n. У каждого из них есть камень, на котором написано слово, состоящее только из строчных латинских букв.

Наши варвары играют в интересную игру с их другом Тарзаном.

Игра проходит в q раундов. Всего есть два типа раундов, каждый из них определяется Тарзаном:

- 1. Тарзан показывает слово р варварам
- 2. Тарзан задает варвару с номером s следующий вопрос: «Среди всех слов, которые я тебе показывал, сколько из них содержат слово на твоем камне как подстроку?»

Помогите варварам ответить на вопросы Тарзана правильно.

Формат входных данных

Первая строка содержит целое число n ($1 \le n \le 10^5$) — число варваров.

В каждой из следующих n строк содержится слово из строчных букв латинского алфавита, i-е из них — слово на камне у варвара с номером i.

Далее следует целое число q ($1 \le q \le 10^5$) — число раундов в игре.

Следующие q строк описывают раунды игры: i-я строка описывает i-й раунд игры. Каждая строка содержит число z. Если z равно 1, то это раунд первого типа, и далее в той же строке содержится число p, состоящее из строчных букв латинского алфавита.

Если же z равно 2, то это раунд второго типа, и в той же строке содержится число s ($1 \le s \le n$) — номер варвара, которому Тарзан задал вопрос.

Суммарная длина всех слов, записанных на камнях у варваров, не превосходит $2 \cdot 10^6$. Суммарная длина всех слов, которые Тарзан показывает варварам, не превосходит $2 \cdot 10^6$.

Формат выходных данных

Для каждого раунда второго типа выведите ответ на вопрос Тарзана.

Примеры

divljak.in	divljak.out
3	1
a	1
bc	
abc	
3	
1 abca	
2 1	
2 3	
7	1
abba	3
bbaa	4
b	
bbaa	
abba	
a	
ba	
7	
1 aaabbabbaab	
2 7	
1 baabaaa	
1 aabbbab	
2 3	
1 aabba	
2 3	

Замечание

Пояснение к примеру

Пояснение к первому примеру: Единственное слово, которое показал Тарзан, это **abca**. Ответ на первый вопрос — 1, потому что слово **a** является подстрокой слова **abca**. Ответ на второй вопрос — также 1, потому что слово **abc** является подстрокой слова **abca**.

Задача Р. Обратная задача Префикс-функции

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.5 секунд Ограничение по памяти: 256 мегабайт

Боб только что выучил алгоритм Кнута-Мориса-Пратта.

Для строки $S = s_1 s_2 \dots s_n$, $\pi(S) = (f_2, f_3, \dots, f_n)$, где f_i это максимальное j < i такое, что $s_1 s_2 \dots s_j = s_{i-j+1} s_{i-j+2} \dots s_i$.

По заданным f_2, f_3, \ldots, f_n и размеру алфавита найдите количество строк S таких, что $\pi(S) = (f_2, f_3, \ldots, f_n)$. Так как ответ может быть слишком большим, выведите его по модулю $(10^9 + 7)$.

Формат входных данных

Первая строка входа содержит два целых числа n и c, задающие длину строки и размера алфавита, соответственно ($2 \le n \le 2 \cdot 10^5, 1 \le c \le 10^9$).

Вторая строка содержит (n-1) целых чисел $f_2, f_3, \ldots, f_n \ (0 \le f_i < i)$.

Гарантируется, что количество требуемых строк непусто.

Формат выходных данных

Выведите одно целое число — остаток от деления количества подходящих строк по модулю $10^9 + 7$

стандартный ввод	стандартный вывод
3 3	12
0 0	
5 1000000000	100000000
1 2 3 4	