Table of contents

- Terminology
- Repeaters and hubs
- Bridges and switches
- Routers
- Broadcast and collision domain
- Summary and conclusions

Terminology

Terminology

- Repeaters and hubs
 - Broadcast: All signals are sent out to all physical ports except input port
- Bridges and switches
 - Only send frames to selected physical port based on destination MAC address
- Routers
 - Only send packet to selected physical port based on destination IP address

Repeaters and hubs

- Repeaters
 - Distance limitation in LAN
 - Electrical signal becomes weaker as it travels
 - Imposes a limit on length of a LAN
 - Repeaters join LANs together
 - Typically, analog electronic device
 - Continuously monitors electrical signals
 - Transmits an amplified copy
 - Layer 1 device

Repeaters and hubs

- Hubs
 - o Layer 1 device
 - No knowledge of addresses
 - Half-duplex
 - Can't send and receive data at same time, causing collisions
 - o 1 collision domain
 - Wasted bandwidth
 - Security risks
 - Multiport repeater
 - Replaced by switches

Repeaters and hubs

- Limitations of repeaters and hubs
 - o One large shared link
 - Each bit is sent everywhere
 - So, aggregate throughput is limited
 - o Cannot support multiple LAN technologies
 - Can't interconnect between different rates/formats
 - Does not buffer or interpret frames
 - Limitations on maximum nodes and distances
 - Shared medium imposes length limits
 - E.g., cannot go beyond 2500 meters on Ethernet

Bridges and switches

Bridges

- o Layer 2 device
 - Can learn MAC addresses
- Segments lans
 - Each segment can carry its own traffic
- Fewer ports
 - Usually, two
- o 2 collision domains
- Replaced by switches

Bridges and switches

- Switches
 - Layer 2 device
 - Switch = Hub + Bridge
 - o Full-duplex
 - Multiple collision domains
 - Each port has its own collision domain
 - Saves bandwidth
 - Increased security

Bridges and switches

Switches

- Self learning
 - Initially, MAC address table is empty

MAC address	Port

Bridges and switches

- Switches
 - o Self learning: Handling misses
 - A sends data to C
 - Broadcast data received from A
 - o And, learn A's port number

MAC address	Port
AA-AA-AA-AA-AA	1

Bridges and switches

- Switches
 - Self learning: Building the table
 - C sends data to A
 - Send data to A
 - o And, learn C's port number
 - **...**

MAC address	Port
AA-AA-AA-AA-AA	1
CC-CC-CC-CC-CC	3

Bridges and switches

- Bridges/switches
 - Traffic isolation
 - Frame only forwarded to necessary segments
 - Segments can support separate transmissions

Bridges and switches

- Switches vs hubs
 - Compared to hubs, switches provide
 - (A) Higher load on links
 - (B) Less privacy
 - (C) Traffic isolation
 - o Compared to hubs, Ethernet switches support
 - (A) Larger geographic span
 - (B) Similar span
 - (C) Smaller span

Bridges and switches

- Switches vs hubs
 - Compared to hubs, switches provide
 - (A) Higher load on links
 - (B) Less privacy
 - (C) Traffic isolation
 - Compared to hubs, Ethernet switches support
 - (A) Larger geographic span
 - (B) Similar span
 - (C) Smaller span

Routers

Router

- Layer 3 device
 - Routes traffic between networks
- Fewer ports
- Each router/switch has a forwarding table
 - Maps destination address to outgoing interface

- Basic operation
 - Receive packet
 - Look at header to determine destination address
 - Look in forwarding table to determine output interface
 - Modify packet header (e.g., decrease TTL, update checksum)
 - Send packet to output interface

Line Card (I/O)

- Key aspects
 - Placement, behaviour of lookup tables
 - o Design of switching fabric

Routers

• Lookup algorithm depends on protocol

Protocol	Mechanism	Techniques
Ethernet (48-bit) MPLS ATM	Exact match	Direct lookup Associative lookup Hashing Binary tree
IPv4 (32-bit) IPv6 (128-bit)	Longest-prefix match	Radix trie Compressed trie TCAM

Routers

- Longest Prefix Match (LPM)
 - Each packet has destination IP address
 - Router looks up table entry that matches address
 - Exact match is difficult to keep
 - Use longest address prefix that matches destination address
 - Finds most specific route (that has fewest hosts)

Routers

- Longest Prefix Match (LPM)
 - o Example 1

Destination	Output
11001000 00010111 00010*** *******	1
11001000 00010111 00011000 *******	2
11001000 00010111 00011*** *******	3

11001000 00010111 00010110 10100001

- Longest Prefix Match (LPM)
 - o Example 1

Destination	Output
11001000 00010111 0001 0*** ******	1
11001000 00010111 0001	2
11001000 00010111 0001 1*** ******	3

11001000 00010111 00010110 10100001

Routers

- Longest Prefix Match (LPM)
 - o Example 1

Destination	Output
11001000 00010111 0001 <u>0</u> *** ******	1
11001000 00010111 0001	2
11001000 00010111 0001 1*** ******	3

11001000 00010111 0001<u>0</u>110 10100001

Routers

- Longest Prefix Match (LPM)
 - o Example 2

Destination	Output
11001000 00010111 00010*** *******	1
11001000 00010111 00011 <mark>000</mark> ******	2
11001000 00010111 00011*** *******	3

11001000 00010111 00011<mark>000</mark> 10101010

Routers

- Longest Prefix Match (LPM)
 - o Example 3

Prefix	Output
192.168.20.16/28	1
192.168.0.0/16	2

192.168.20.191

- Longest Prefix Match (LPM)
 - o Example 3

Prefix	Binary	Output
192.168.20.16/28	11000000.10101000.000 10100.00010000	1
192.168.0.0/16	11000000.10101000.000	2
192.168.20.191	11000000.10101000.000 10100.10111111	

Routers

- Longest Prefix Match (LPM)
 - o Example 4

Prefix	Output
68.208.0.0/12	1
68.211.0.0/17	1
68.211.128.0/19	2
68.211.160.0/19	2
68.211.192.0/18	1

68.211.6.120

Routers

- Longest Prefix Match (LPM)
 - o Example 4

Prefix	Binary	Output
68.208.0.0/12	01000100.11010000.00000000.00000000	1
68.211.0.0/17	01000100.11010011.00000	1
68.211.128.0/19	01000100.11010011.10000000.00000000	2
68.211.160.0/19	01000100.11010011.10100000.00000000	2
68.211.192.0/18	01000100.11010011.11000000.00000000	1
68.211.6.120	01000100.11010011.00000	

- Benefits of CIDR allocation and LPM
 - Efficiency
 - Prefixes can be allocated at much finer granularity
 - Hierarchical aggregation
 - Upstream ISP can aggregate 2 contiguous prefixes from downstream ISPs to shorter prefix

- Software LPM lookup using binary trie
 - o Routing table and corresponding binary trie

Prefix	Router
0*	Α
10*	В
101*	С

Routers

• Software LPM lookup using binary trie

Input: 1011 Output: C

Routers

• Software LPM lookup using binary trie

Input: 1000Output: B

- Software LPM lookup using binary trie
 - o Prefixes spelled out by following path from root
 - Looking up is very fast
 - o Inefficient due to number of memory access
 - Visit up to 32 nodes for an IPv4 address

		1
	Prefixes	
Α	111*	0 B 1 0 A
В	10*	
С	1010*	
D	10101	
		D

- Software LPM lookup using direct trie
 - Multiple bits are represented by one node
 - Reduces depth, looking up needs fewer memory accesses
 - Reduces number of memory access
 - But, consumes a significant amount of memory

Routers

- Hardware for LPM lookup
 - o Content-Addressable Memory (CAM)
 - Input: Tag (address)
 - Output: Value (port)
 - Exact match, but O(1) in hardware
 - o Ternary Content-Addressable Memory (TCAM)
 - Can have wildcards: 0, 1, X (don't care)
 - "value" memory cell and "mask" (care/don't care) cell
 - E.g., If stored word is "10XX0"
 - o Then, TCAM will match any of four search words
 - "10000", "10010", "10100", or "10110"

Routers

LPM via TCAM

- o In parallel, search all prefixes for all matches
 - Then, choose longest match
 - Trick: Choose first match; already sorted by prefix length

- Decision
 - Forwarding tables on line cards
 - Each line card has its own forwarding table copy
 - Prevents central table bottleneck

- Decision
 - Switching fabric
 - Shared bus
 - Only one input can speak to one output at a time
 - Crossbar switch/switched backplane
 - Input/output pairs that don't compete can send in same time slot

Routers

- Crossbar switching
 - o Every input port has connection to every output port
 - Good parallelism 1 -
 - Needs scheduling 2

 $\circ\quad$ In each time slot, each input connected to zero or more outputs

Routers

- Crossbar switching
 - o Problem: Head-of-Line (HoL) blocking
 - Packet in front of queue blocks packets behind it from being processed

- Crossbar switching
 - o Problem: Head-of-Line (HoL) blocking
 - Solution: Virtual output queues
 - Instead of a single queue at each input
 - $\circ\quad$ Maintain N (one per output) virtual queues at each input

Broadcast and collision domain

- Broadcast domain
 - Includes all hosts that a broadcast frame transmitted by a single host can reach
- Collision domain
 - Section of network where packet collisions can occur if two nodes attempt to communicate at same time

Broadcast and collision domain

• Hub

Broadcast domain Collision domain

Broadcast and collision domain

• Hub

Broadcast and collision domain

Switch

Broadcast domain
Collision domain

Broadcast and collision domain

Switch

Broadcast domain
Collision domain

Broadcast and collision domain

Switch

- o All switch interfaces can be full-duplex
 - We can't get collisions
 - CSMA/CD is disabled on these interfaces
- o Why do we still care about collision domains?
 - A hub may be connected to switch
 - Switch interface to hub will be in half-duplex and CSMA/CD
 - Leading to collisions
 - A defective network card or interface sending trash
- o Switch is a collision domain separator
 - Each switch interface is a separate collision domain

Broadcast and collision domain

Router

- o Breaks/separates collision as well as broadcast domains
 - Broadcast message from one network will never reach other one

Broadcast and collision domain

Switch and router

Broadcast and collision domain

Switch and router

Broadcast and collision domain

- Modern networks
 - Wired networks use switches to reduce or eliminate collisions
 - Half-duplex links
 - Each switch port becomes its own collision domain
 - Full-duplex links
 - Possibility of collisions is eliminated entirely
 - For Gigabit Ethernet and faster
 - No hubs or repeaters exist
 - All devices require full-duplex links
 - o Collision domains are also found in other shared medium networks
 - E.g., wireless networks such as Wi-Fi

Summary and conclusions

- L2 and L3 physical devices have many common features
 - o Forward table lookups
 - Queueing and backplane switching
 - Fast vs slow paths
 - Switches and routers separate control plane from data plane
- High speed necessitates innovation
 - Specialized hardware
 - Software algorithms