IF5181 Pengenalan Pola

Klasifikasi

Masayu Leylia Khodra

Referensi: Bab 8 dari Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.

Outline

- Klasifikasi: what, how
- Klasifikasi berbasis pengetahuan
- Klasifikasi berbasis pembelajaran mesin
 - Decision tree learning
 - Naive Bayes
 - IF-THEN rules
 - Ekstraksi dari Decision Tree
 - Rule Induction: Sequential Covering Method
 - Neural Network

Klasifikasi: Aplikasi

- Traffic sign recognition
- Kategorisasi aspek
- Klasifikasi sentimen
- Identifikasi kalimat majemuk
- Klasifikasi intent dari kalimat
- Spam filtering

- Klasifikasi citra hiu atau bukan
- POS Tagging
- Named-entity recognition
- Diagnosis penyakit
- Identifikasi pesawat tempur

Klasifikasi

- Klasifikasi: proses menentukan kategori yang diambil dari predefined-category set.
- Fungsi Klasifikasi: data → class ∈ C
- Pendekatan (Sebastiani, 2005; Aly, 2005):
 - Berbasis pengetahuan
 - Berbasis pembelajaran mesin: producing a learning model from a labeled training set

Klasifikasi berbasis Pengetahuan

Cased-based Classification

- Case-based reasoning:
 - Retrieve
 - Reuse
 - Revise
 - Retain

Klasifikasi berbasis Pembelajaran Mesin

- Konstruksi model:
 - Training data: kumpulan data berlabel untuk konstruksi model.
 - Model direpresentasikan sebagai aturan klasifikasi, pohon keputusan, atau representasi pengetahuan lainnya.
- Validasi dan Tes model: estimasi kinerja model terhadap test data.
 - Test data harus independent dari training data.
 - Test data untuk memilih model disebut validation data.
- Model deployment: klasifikasi data baru

Konstruksi Model

Konstruksi Model: Contoh

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Model Learning

Naive Bayes learning

P(buys computer = "yes") = 9/14 = 0.643

P(buys computer = "no") = 5/14 = 0.357

P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222 P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6

P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444

P(income = "medium" | buys_computer = "no") = 2/5 = 0.4

P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667

P(student = "yes" | buys_computer = "no") = 1/5 = 0.2

P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667

P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4

Validasi Model Validation Kinerja data validasi Facts Interviewer User (class) Inference Engine Expertise

Knowledge Base (model)

Testing Model Test data Kinerja Facts Interviewer User Inference Engine (class) Expertise Knowledge Base (model)

Validasi & Tes Model

- Idealnya ada tiga jenis dataset: training set, validation set, test set.
- Kinerja model = kinerja pada test-set.
- Test-set hanya digunakan satu kali.

Hold-out Validation

 Salah satu cara: pisahkan dataset menjadi training data dan validation data. Umumnya: 80% training, 20% validation data (atau 90:10)

K-Fold Cross Validation

Evaluasi: Confusion Matrix

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Pengukuran

	Predicted class				
		+ve	-ve		
Actual	+ve	True Positive(TP)	False Negative(FN)		
Class	-ve	False Positive(FP)	True Negative(TN)		

Akurasi =
$$\frac{TP+TN}{TP+FP+TN+FN}$$

F-Measure

	Predicted class				
		+ve	-ve		
Actual	+ve	True Positive(TP)	False Negative(FN)		
Class	-ve	False Positive(FP)	True Negative(TN)		

$$Precision = rac{X}{Y} ext{ or } rac{TP}{TP + FP}$$
 $Recall = rac{Y}{Z} ext{ or } rac{TP}{TP + FN}$

Precision: % item yang dipilih yang benar. Recall: % item benar yang diambil.

F-Measure

F-Measure: kombinasi antara nilai prec. dan recall

$$F-measure = \frac{2 \times Recall \times Precision}{Recall + Precision}$$

Ukuran Kinerja Lain

- Kappa (Cohen's kappa):
 - akurasi dinormalisasi dengan imbalance dari class.
- ROC Curves
- Geometric mean of the true rates
- Dominance

Model Deployment

Review Tahapan Pembelajaran Mesin

- Proses konstruksi model
 - Training data → Model Klasifikasi
- Proses validasi dan tes model
 - Validation data → model terbaik
 - Test data → kinerja model
- Proses klasifikasi (deployment)
 - Data yang tidak diketahui kelasnya → kelas data

Algoritma Pembelajaran

- Decision tree learning
- Naive Bayes
- IF-THEN rules
 - Ekstraksi dari Decision Tree
 - Rule Induction: Sequential Covering Method
- Neural Network

Decision Tree Learning

Example		Attributes								,	Target
1	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0-10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30-60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0-10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0-10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0-10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0-10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30-60	T

Russell, S. J., & Norvig, P. (2016). *Artificial intelligence: a modern approach*. Malaysia; Pearson Education Limited,.

Decision Tree Learning

- Aim: find a small tree consistent with the training examples
- Idea: (recursively) choose "most significant" attribute as root of

```
function DTL(examples, attributes, default) returns a decision tree
   if examples is empty then return default
   else if all examples have the same classification then return the classification
   else if attributes is empty then return Mode (examples)
   else
        best \leftarrow \text{Choose-Attributes}, examples
        tree \leftarrow a new decision tree with root test best
       for each value v_i of best do
            examples_i \leftarrow \{elements of examples with best = v_i\}
            subtree \leftarrow DTL(examples_i, attributes - best, Mode(examples))
            add a branch to tree with label v_i and subtree subtree
       return tree
```

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

$$Info_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j)$$

$$Gain(A) = Info(D) - Info_A(D)$$

Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

$$IG(Patrons) = 1 - \left[\frac{2}{12}I(0,1) + \frac{4}{12}I(1,0) + \frac{6}{12}I(\frac{2}{6}, \frac{4}{6})\right] = 0.541 \text{ bits}$$

$$IG(Type) = 1 - \left[\frac{2}{12}I(\frac{1}{2}, \frac{1}{2}) + \frac{2}{12}I(\frac{1}{2}, \frac{1}{2}) + \frac{4}{12}I(\frac{2}{4}, \frac{2}{4}) + \frac{4}{12}I(\frac{2}{4}, \frac{2}{4})\right] = 0 \text{ bits}$$

Patrons? = Full

$$I(1/3,2/3)=0.92$$

 $IG(Alt)=0.92-5/6*I(2/5,3/5)-1/6*I(0,1)=0.11$

. . .

IG(Hun)=0.92-4/6*I(1/2,1/2)-2/6*I(0,1)=0.25

. . .

Patrons? = Full and Hungry? = Yes

Patrons?

None

Full

Hungry?

Yes

No

Type?

Fri/Sat?

No

Yes

T

IG(Type)=1-1/2*I(1/2,1/2)-1/4*I(0,1)-1/4*I(1,0)=0.5

...

Klasifikasi dengan Hyperplane Decision Tree

Example			80	20.	At	tributes	3	307	20 70		Target
1	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0-10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30-60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0-10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0-10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0-10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0-10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30-60	T

Decision Tree Learning: Why Popular

- Relatively fast learning speed
- Convertible to simple and easy to understand classification rules
- Easy to be adapted to database system implementations (e.g., using SQL)
- Comparable classification accuracy with other methods

Naive Bayes Classifier

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no


```
P(buys_computer = "yes") = 9/14 = 0.643

P(buys_computer = "no") = 5/14= 0.357

P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222

P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6

P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444

P(income = "medium" | buys_computer = "no") = 2/5 = 0.4

P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667

P(student = "yes" | buys_computer = "no") = 1/5 = 0.2

P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667

P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4
```

Naive Bayes: Learning

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$v_{NB} = \underset{v_j \in \{yes, no\}}{\operatorname{arg\,max}} P(v_j) \prod_{i} P(a_i \mid v_j)$$

 $P(v_j)$: probabilitas kelas v_j $P(a_i|v_j)$: probabilitas atribut a_i pada v_j $P(a_i|v_i) = (v_i \cap a_i) / |v_i|$

Naive Bayes: Klasifikasi

$$v_{NB} = \underset{v_j \in \{yes, no\}}{\operatorname{arg\,max}} P(v_j) \prod_i P(a_i \mid v_j)$$

```
P(buys_computer = "yes") = 9/14 = 0.643

P(buys_computer = "no") = 5/14 = 0.357

P(age = "<=30"|buys_computer = "yes") = 2/9 = 0.222

P(age = "<= 30"|buys_computer = "no") = 3/5 = 0.6

P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444

P(income = "medium" | buys_computer = "no") = 2/5 = 0.4

P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667

P(student = "yes" | buys_computer = "no") = 1/5 = 0.2

P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667

P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4
```

X = (age <= 30, income = medium, student = yes, credit_rating = fair)

P(X|buys_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044 P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028

P(X|buys_computer = "no") = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
P(X|buys_computer = "no") *
P(buys_computer = "no") = 0.007

Naive Bayes: Keuntungan vs Kerugian

- Keuntungan
 - Mudah untuk dibuat
 - Hasil bagus
 - Incremental learning
- Kerugian
 - Asumsi independence antar atribut

Klasifikasi dengan IF-THEN rules

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

IF age = young AND student = no THEN buys_computer = no

IF age = young AND student = yes THEN buys_computer = yes

IF age = mid-age THEN buys_computer = yes

IF age = old AND credit_rating = excellent THEN buys_computer = no

IF age = old AND credit_rating = fair THEN buys_computer = yes

Klasifikasi dengan IF-THEN rules (2)

Represent the knowledge in the form of IF-THEN rules
 Format: IF rule-precondition THEN rule-consequent
 Contoh: IF age = youth AND student = yes THEN buys computer = yes

Ekstraksi rule dari decision trees karena lebih mudah dimengerti daripada

trees.

IF age = young AND student = no THEN buys computer = no

IF age = young AND student = yes THEN buys_computer = yes

IF age = mid-age THEN buys_computer = yes

IF age = old AND credit_rating = excellent THEN buys_computer = no

IF age = old AND credit_rating = fair THEN buys computer = ves

Rule Induction: Sequential Covering Algorithm

- Sequential covering algorithm: Extracts rules directly from training data
- Rules are learned sequentially, each for a given class Ci will cover many tuples of Ci but none (or few) of the tuples of other classes

```
while (enough target tuples left)
generate a rule
remove positive target tuples satisfying this rule
```


Sequential Covering Algorithm

 $COVER(Target_attr, Attrs, Examples, Threshold)$

- $Learned_rules \leftarrow \{\}$
- $Rule \leftarrow \text{LEARN-ONE-RULE}(Target_attr, Attrs, Examples)$
- WHILE PERFORMANCE(Rule, Examples) > Threshold, DO
 - Learned_rules \leftarrow Learned_rules + Rule
 - $Examples \leftarrow Examples$ {Examples correctly classified by Rule}
 - $-Rule \leftarrow LEARN-ONE-RULE(Target_attr, Attrs, Examples)$
- Learned_rules ← SORT Learned_rules ACCORD TO PERFORMANCE OVER Examples
- RETURN Learned_rules

- Algoritma covering: bangkitkan rules yang meng-cover kelas spesifik
- Steps:
 - Generate rule R on training data
 - Remove training data covered by R
 - Repeat the process

Learn-One-Rule

 $LEARN-ONE-RULE(Target_attr, Attrs, Examples)$

- $Pos \leftarrow positive Examples; Neg \leftarrow negative Examples$
- If Pos

 $NewRule \leftarrow \text{most general rule possible; } NewRuleNeg \leftarrow Neg$ While NewRuleNeg

- 1. $Candidate_literals(CLs) \leftarrow generate candidates$
- 2. $Best_literal \leftarrow argmax_{L \in CLs}$ PERFORMANCE(Specialize(NewRule, L))
- 3. add Best_literal to NewRule preconditions
- 4. $NewRuleNeg \leftarrow$ subset of NewRuleNeg that satisfies NewRule preconditions
- Return NewRule

```
T: attributes
C: classes

For all A in T do:

For all possible value vi in A do:

For all Cj in C do:

find count(Cj)

Cmax=class with largest count

RA=RA U (A=v ⇒ Cmax)

ErrA=number of incorrectly classified by RA
```

R=RA where ErrA is minimum

Learn-One-Rule: Contoh

Day	Outlook	Temperature	Humidity	Wind	Ski?
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Attribute	Rules	Error	Total
Outlook	outlook=Sunny⇒No	2/5	4/14
	outlook=Overcast⇒Yes	0/4	
	outlook=Rain⇒Yes	2/5	
Temp	Temp=Hot⇒No	2/4	5/14
	Temp=Mild⇒Yes	2/6	
	Temp=Cool⇒Yes	1/4	
Humidity	Humidity=High⇒No	3/7	4/14
	Humidity=Normal⇒Yes	1/7	
Windy	Windy=Weak⇒Yes	2/8	5/14
	Windy=Strong⇒No	3/6	39

https://www.slideshare.net/totoyou/covering-rulesbased-algorithm

Sequential Covering Algorithm: Contoh

Day	Outlook	Temperature	Humidity	Wind	Ski?
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Relative Frequency:

 $\frac{n_c}{n}$

Threshold=0.5 LearnedRules={}

Rule R1: { outlook=Sunny⇒No; outlook=overcast⇒Yes; outlook=Rain⇒Yes} RelativeFreq(R1,Examples)=10/14 > threshold

LearnedRules={R1} Examples= {D6,D9,D11,D14}

n = # examples the rule matches

 $n_c = \#$ examples the rule matches and classifies correctly

Sequential Covering Algorithm: Contoh (lanj)

Day	Outlook	Temperature	Humidity	Wind	Ski?
D6	Rain	Cool	Normal	Strong	No
D9	Sunny	Cool	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D14	Rain	Mild	High	Strong	No

Rule R2: { outlook=Sunny⇒Yes; outlook=Rain⇒No} RelativeFreg(R2,Examples)=4/4 > threshold

LearnedRules={R1,R2} Examples= {}

Sorted LearnedRules: {R2,R1}

Attribute	Rules	Error	Total
Outlook	outlook=Sunny⇒Yes	0/2	0/4
	outlook=Rain⇒No	0/2	
Temp	Temp=Mild⇒Yes	1/2	2/4
	Temp=Cool⇒Yes	1/2	
Humidity	Humidity=High⇒No	0/1	1/4
	Humidity=Normal⇒Yes	1/3	
Windy	Windy=Weak⇒Yes	0/1	1/4
	Windy=Strong⇒No	1/3	

Klasifikasi dengan Artificial Neural Network (FFNN)

x1	x2	f
0	0	0
0	1	1
1	0	1
1	1	0

x 1	x2	f
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

Artificial Neural Network (Jaringan Syaraf Tiruan)

Artificial Neuron

44

Perceptron AND

$\sum = -0.8*x0+$	0.5*x1+0.5*x2
$f = sign(\Sigma)$	

x1	x2	Σ	sign(∑)	f
1	1	-0.8*1+0.5*1+0.5*1=0.2	+1	1
1	-1	-0.8*1+0.5*1+0.5*-1=-0.8	-1	-1
-1	1	-0.8*1+0.5*-1+0.5*1=-0.8	-1	-1
-1	-1	-0.8*1+0.5*-1+0.5*-1=-1.8	-1	-1

sign (net): +1 jika net > 0, dan -1 sebaliknya

Fungsi Aktivasi

Linear / identity

f (net)=net

f'(net)=1

Relu (rectified linear unit)

f(net)=max(0,net)

f'(net)=max(0,1)

Fungsi Aktivasi (lanjutan)

Sigmoid / logistik /soft step f (net)=1/(1+e^{-net}) f'(net)=f (net)(1-f (net))

Softmax

f (net_i)= $e^{net_i}/\sum e^{net_j}$ f'(net_i)=f (net_i)(1-f (net_i))

https://isaacchanghau.github.io/post/activation_functions/

Feed Forward ANN

Struktur jaringan tanpa backward link

Informasi mengalir maju input → hidden layers → output

Feed Forward ANN: Topologi

Input layer berukuran i fitur

H hidden layer Hidden layer 1: j neuron Hidden layer h: k neuron

Output layer berukuran m neuron

Feed Forward ANN: Representasi Model (Bobot)

	n ₁₁	n ₁₂	 n _{1j}
x ₀ =+1	w _{0_11}	w _{0_12}	 w _{0_1j}
x ₁	W _{1_11}	W _{1_12}	 W _{1_1j}
X ₂	W _{2_11}	W _{2_12}	 W _{2_1j}
x _i	W _{i_11}	W _{i_12}	 w _{i_1j}

	n ₂₁	n ₂₂	
n ₁₀ =+1	w _{10_21}	W _{10_22}	
n ₁₁	W _{11_21}	W _{11_22}	
n ₁₂	W _{12_21}	W _{12_22}	
n _{1j}	W _{1j_21}	W _{1j_22}	

	o ₁	 o _m
n _{h0} =+1	w _{h0_1}	 W _{h0_m}
n _{h1}	W _{h1_1}	 W _{h1_m}
n _{h2}	W _{h2_1}	 W _{h2_m}
n _{hk}	W _{hk_1}	 W _{hk_m}

Feed Forward ANN: Contoh Klasifikasi

1	
0.9	1
0.9 0.8	1
0.7	/ -
0.6	$1 + e^{-x}$
0.5	
0.4	
0.3 0.2	
0.1-	

Sigmoid / logistik /soft step

f /pat = 1 / (1 + a - net)

x1	x2	f
0	0	0
0	1	1
1	0	1
1	1	0

$$\begin{array}{l} \text{h1} = & \sigma(20x1 + 20x2 - 10) = & \sigma(20^*1 + 20^*0 - 10) = & \sigma(10) \approx 1 \\ \text{h2} = & \sigma(-20x1 - 20x2 + 30) = & \sigma(-20^*1 - 20^*0 + 30) = & \sigma(10) \approx 1 \\ \text{y} = & \sigma(20\text{h1} + 20\text{h2} - 30) = & \sigma(20^*1 + 20^*1 - 30) = & \sigma(10) \approx 1 \end{array}$$

Feed Forward ANN: Contoh Klasifikasi

x0	x1	x2	f	∑h1	h1	∑h2	h2	Σy	у
1	0	0	0	-10	0.00	30	1.00	-10.00	0.00
1	0	1	1	10	1.00	10	1.00	10.00	1.00
1	1	0	1	10	1.00	10	1.00	10.00	1.00
1	1	1	0	30	1.00	-10	0.00	-10.00	0.00

Feed Forward ANN: Perhitungan Output

	n ₁₁	n ₁₂	 n _{1j}
x ₀ =+1	w _{0_11}	W _{0_12}	 w _{0_1j}
x ₁	w _{1_11}	w _{1_12}	 w _{1_1j}
X _i	w _{i_11}	W _{i_12}	 w _{i_1j}

	o ₁	 o _m
n _{h0} =+1	W _{h0_1}	 W _{h0_m}
n _{h1}	w _{h1_1}	 W _{h1_m}
n _{hk}	W _{hk_1}	 W _{hk_m}

```
Input \mathbf{x} = (1, x_1, x_2, ..., x_i)
n_{11} = f((w_{0.11}, ..., w_{i.11}).(1, x_1, ..., x_i))
n_{1i} = f((w_{01i}, ..., w_{i1i}).(1, x_1, ..., x_i))
n_{21} = f((w_{10\ 21}, ..., w_{1i\ 21}).(1, n_{1i}, ..., n_{1i}))
o_1 = f((w_{h0}, ..., w_{hk}).(1, n_{h1}, ..., n_{hk}))
o_m = f((w_{h0\ m}, ..., w_{hk\ m}).(1, n_{h1}, ..., n_{hk}))
```

Feed Forward ANN pada Keras


```
from keras import models
from keras import layers
```

```
#definisikan model sebagai urutan layer
model = models.Sequential()
#model menerima input dengan jumlah fitur 500 dan output 32
#jumlah instance tidak perlu dituliskan dalam input_shape
model.add(layers.Dense(32,input_shape=(500,)))
#input layer ini otomatis 32 (output layer sebelumnya)
model.add(layers.Dense(32))
```

Tugas 1

- Pilihlah dataset dari https://archive.ics.uci.edu/ml/datasets.php
- Tools: Jupyter Notebook dengan python. Gunakan scikit-learn untuk konstruksi model klasifikasi (training data)
- Skenario:
 - split dataset menjadi 90:10 (train:test)
 - Lakukanlah holdout validation dengan split training data menjadi 90:10 (train:validasi)
 - Gunakanlah validation data untuk memilih model klasifikasi terbaik dari berbagai algoritma pembelajaran dengan variasi nilai parameter berbeda.
 - Lakukanlah 5-fold cross validation untuk training data.
 - Pilih model klasifikasi terbaik dari berbagai algoritma pembelajaran dengan variasi nilai parameter berbeda.
 - Gunakanlah test data untuk mendapatkan kinerja dari setiap skenario.
- Lakukanlah analisis di proses validasi dan testing