#### Climate Policy and Banks' Portfolio Allocation

Giovanni Covi, Maren Froemel, Dennis Reinhardt, Nora Wegner

Discussion by Seho Kim (Danmarks Nationalbank)

IBRN Climate Workshop October 20, 2025

**Disclaimer**: The views expressed here do not necessarily reflect the official positions or opinions of Danmarks Nationalbank or the European System of Central Banks.

#### **Research question**

- How do banks respond to transition risks arising from climate policy?
  - Implication for financial stability
  - Depending on their response, the transition can be accelerated or slowed

#### **Research question**

- How do banks respond to transition risks arising from climate policy?
  - Implication for financial stability
  - Depending on their response, the transition can be accelerated or slowed
- This paper's strategy
  - Combine UK banks' regulatory large exposure data with climate policy stringency
  - Exploit their exposures to countries with different climate policy stringency

# Main findings and what I learn from this paper

- $\blacksquare$  Higher climate policy stringency  $\Longrightarrow$  less lending to transition-exposed sectors
  - No change in lending to transition-aligned sectors

## Main findings and what I learn from this paper

- $\blacksquare$  Higher climate policy stringency  $\Longrightarrow$  less lending to transition-exposed sectors
  - No change in lending to transition-aligned sectors
- 2 The response is heterogeneous depending on the bank's transition risk exposure
  - Less-exposed banks cut lending to brown sectors more than highly exposed banks
  - At the extreme, highly exposed banks increase lending to brown sectors

Transition risk may "concentrate": brown gets browner, green gets greener

## Main findings and what I learn from this paper

- Higher climate policy stringency ⇒ less lending to transition-exposed sectors
  - No change in lending to transition-aligned sectors
- 2 The response is heterogeneous depending on the bank's transition risk exposure
  - Less-exposed banks cut lending to brown sectors more than highly exposed banks
  - At the extreme, highly exposed banks increase lending to brown sectors

Transition risk may "concentrate": brown gets browner, green gets greener

- 3 Other countries' climate policies create spillovers in lending
  - E.g., when the U.S. tighten policy, banks increase brown lending to the U.K.

If climate policy is not **coordinated**, climate-finance leakage occurs

#### **Comments overview**

- Measuring transition risk exposure
- 2 Measuring climate policy stringency
- 3 Some minor comments

■ To compute TEC (and TAC),

$$\textit{TEC}_{b,j,t} = \sum_{k} \overrightarrow{\textit{TEC}_k} \times \textit{EXP}_{b,k,j,t}$$

- Banks exposed to the same industries have the same TEC, regardless of country
- E.g., TEC/TAC rationale for electricity production sector Alessi and Battiston (2022)
  - TEC: Share of the production of electricity from fossil fuels
  - TAC: Share of the production of electricity from renewable sources

■ TEC and TAC for major European countries in 2023





- Huge heterogeneity in the "true" TEC and TAC
  - The interpretation of changes in exposure should be done with care
  - Lower TEC/CPRS ≠ lower "true" transition risk exposure

- Suggestion 1: S&P Trucost Environmental data
  - A global firm-level dataset covering 20,000 companies
  - Includes Scope 1, Scope 2, and Scope 3 GHG emissions
  - Easily accessible through WRDS and mergeable with Compustat Global
  - Aggregate the data by country, sector, and year ⇒ measure of exposure

- Suggestion 1: S&P Trucost Environmental data
  - A global firm-level dataset covering 20,000 companies
  - Includes Scope 1, Scope 2, and Scope 3 GHG emissions
  - Easily accessible through WRDS and mergeable with Compustat Global
  - lacktriangle Aggregate the data by country, sector, and year  $\Longrightarrow$  measure of exposure
- Suggestion 2: Check robustness using "true" TEC/TAC
  - For some industries, you can find actual data which follows the TEC/TAC rationale

## **Comments 2: Measuring climate policy stringency**

- CCPI climate policy index
  - Performance rating by climate and energy policy experts within each country
  - $lue{}$   $\sim$  450 experts for 63 countries + EU (CCPI 2025)
- Caveats
  - In many countries, there are only 1-2 experts, and there is turnover over the years
    - $\Rightarrow$  Since this paper uses  $\triangle CCPI_{j}$ , dynamic consistency is important
  - 2 How should we quantitatively interpret a one-unit increase in CCPI?
    - $\Rightarrow$  A one-unit increase in Norway could be different from a one-unit increase in Korea

## Comments 2: Measuring climate policy stringency

- **Suggestion**: to use a quantitatively interpretable, objective measure
- World Bank Carbon Pricing Dashboard (WB CPD)
  - Information about carbon taxes and emissions trading systems around the world
  - Carbon price, coverage, and government revenue from carbon pricing
  - Period: 1990- & Coverage: 82 jurisdictions
- Government revenue from carbon pricing to GDP would be useful
- The policy coverage of the CCPI is much broader than that of the WB CPD

#### **Minor comments**

- Location of firms is based on where they are incorporated
  - Dataset focuses on large exposures ⇒ large multinationals as counterparts
  - Location of headquarters  $\neq$  location of production
  - Suggestion: drop the manufacturing sector and check robustness

#### **Minor comments**

- Location of firms is based on where they are incorporated
  - Dataset focuses on large exposures ⇒ large multinationals as counterparts
  - Location of headquarters  $\neq$  location of production
  - Suggestion: drop the manufacturing sector and check robustness
- **2** TEC only measures direct exposure
  - There may also be exposure through supply chains
  - For example, the AI/ICT sector consumes large amounts of electricity
  - Suggestion: Scope 2 and 3 GHG emissions from Trucost could be useful

#### Minor comments

- Location of firms is based on where they are incorporated
  - Dataset focuses on large exposures ⇒ large multinationals as counterparts
  - Location of headquarters ≠ location of production
  - Suggestion: drop the manufacturing sector and check robustness
- 2 TEC only measures direct exposure
  - There may also be exposure through supply chains
  - For example, the AI/ICT sector consumes large amounts of electricity
  - Suggestion: Scope 2 and 3 GHG emissions from Trucost could be useful
- 3 Lower TEC share: reallocation or capital outflow?
  - Shifts to low-TEC sectors or capital outflows reduce TEC share
  - Strict climate policy ⇒ capital outflows?
  - Suggestion: Run the same regressions using the CPRS ratio

#### In a nutshell

- Great contribution to an important area of research!
- I believe tightening the measurement would improve the paper
- I hope my comments are helpful

# Thank you!

#### References I

Alessi, Lucia and Stefano Battiston, "Two sides of the same coin: Green Taxonomy alignment versus transition risk in financial portfolios," International Review of Financial Analysis, 2022, 84, 102319.