DS4400 Project: Loan Default Prediction

Matthew Martin

Background

- Over \$44 billion of loans issued as of December 2018 since 2011
- Lenders face risk of having loan default
- Charged off loans
- Mitigate risk of loss of money if can determine if borrower will not make payments

Dataset

- From Lending Club
- Loan data from 2007-2018
- 145 features
 - Categorical
 - Numerical
- ~ 1303607 data points
 - o 1041952 paid off loans
 - o 261655 defaulted loans
- Training/Test Split
 - 0 80/20
 - Before October 2016 in training

Data Preprocessing

- Deleted features with more than 30% of data missing
- Grouped variables together
 - o i.e. State address -> Region
- Dropped features that only apply to one class
 - Based upon feature descriptions
- Converted dates to datetime objects in order to split test and train data

loan_amnt	funded_amnt	int_rate	installment	annual_inc	issue_d	loan_status	dti	delinq_2yrs	earliest_cr_line	
30000	30000	22.35	1151.16	100000.0	2018- 12-01	0	30.46	0.0	2012	
40000	40000	16.14	975.71	45000.0	2018- 12-01	0	50.53	0.0	2009	
20000	20000	7.56	622.68	100000.0	2018- 12-01	0	18.92	0.0	1999	
4500	4500	11.31	147.99	38500.0	2018- 12-01	0	4.64	0.0	2003	
8425	8425	27.27	345.18	450000.0	2018- 12-01	0	12.37	0.0	1997	
20000	20000	17.97	507.55	57000.0	2018- 12-01	0	22.18	0.0	1995	

Feature Exploration

- Example features
 - Loan amount
 - Annual income
 - Debt to income ratio
 - Interest rate
- Trends
 - Loans defaulted at higher interest rates
 - Loans defaulted with borrowers of lower income than paid loans
 - Lower grade loans more likely to default

Feature Exploration

- Feature Importance
- Some multicollinearity
- Loan Status correlations
 - Strongest positive
 - Interest rate
 - 60 month term
 - Strongest negative
 - Total payment
 - Grade B loans
 - Open to buy on bank cards

acc_open_past_24mths	0.100731
grade_D	0.108647
grade_E	0.127284
term_ 60 months	0.175899
int_rate	0.258412
total_pymnt	-0.318482
total_pymnt_inv	-0.318038
grade_B	-0.106295
bc_open_to_buy	-0.077103
avg_cur_bal	-0.071585
tot_hi_cred_lim	-0.070042

Model Results

Model	Train Accuracy	Test Accuracy	
Logistic Regression (0.25)	92.9%	98.5%	
Logistic Regression (0.50)	94.4%	98.2%	
Logistic Regression (0.75)	92.8%	96.7%	
Logistic Regression (0.90)	90.2%	94.7%	
LDA	89.6%	94.8%	
SVM	93.9%	97.6%	
Random Forest (10)	99.5%	91.8%	
Random Forest (50)	99.9%	97.8%	
Random Forest (100)	1.0%	98.3%	
Random Forest (250)	1.0%	98.6%	
Adaboost (10)	94.5%	98.8%	
Adaboost (50)	95.4%	99.2%	
Adaboost (100)	95.8%	99%	
Neural Network	95.4%	99%	

Model	Area Under Curve		
Logistic Regression (0.5)	98.3%		
LDA	95.1%		
Linear SVM	97.6%		
Random Forest (250)	98.6%		
Adaboost (50)	99.2%		
Neural Network	99%		

Challenges

- Dealing with large amount of features
- Gaining domain knowledge
 - Needed to get rid of features that solely predicted one class
- Data preprocessing
- Label imbalance
 - Needed to find more data
 - Undersample

Conclusion

- Hard to classify if borrower will default on loan solely upon features before loan is approved
 - Spread between feature values associated between class labels is small
- Feature associations
 - Lead to paid
 - Higher total payment
 - Higher credit limit
 - Higher annual income
 - Lead to default
 - Higher funded amount
 - Higher debt to income ratio
 - Higher interest rate
 - Higher past due delinquencies
- May need to look into if important features are impacting prediction too much

Future Work

- Do deeper analysis on borrowers who defaulted
 - See what trend of pre acceptance variables may lead to profit even if loan defaults
 - Try to see if there is an ideal recommendation for loan features per borrower applicant based on his or her credentials
- Regression problem
 - Try to predict the interest rate for a specific loan and borrower

