- 1. (13%) Consider the circuit shown in Figure 1. Assume the transistor parameters are $V_{TN}=0.8 \text{ V}$, $K_n=0.2 \text{ mA/V}^2$, and $\lambda=0$. Let $V_{DD}=5 \text{ V}$, $R_i=R_1 \parallel R_2=200 \text{ k}\Omega$ and $R_{si}=0$. (a) (8%) Design the circuit such that $I_{DQ}=0.5 \text{ mA}$ and the Q-point is in the center of the saturation region. (b) (5%) Find the small-signal voltage gain.
- 2. (10%) The transistor in the circuit in Figure 2 has parameters $I_{DSS} = 8$ mA and $V_P = -4$ V. Determine V_G , I_{DQ} , V_{GSQ} , and V_{DSQ} .

- 3. (15%) Consider the circuit shown in Figure 3, The transistor parameters are $V_{TP1} = -0.4 \text{ V}$, $V_{TN2} = 0.4 \text{ V}$, $(W/L)_1 = 20$, $(W/L)_2 = 80$, $k_p' = 40 \,\mu\text{A/V}^2$, $k_n' = 100 \,\mu\text{A/V}^2$, and $\lambda_1 = \lambda_2 = 0$. Let $R_1 + R_2 = 600 \,\text{k}\Omega$. (a) (10%) Design the circuit such that $I_{DQ1} = 0.1 \,\text{mA}$, $I_{DQ2} = 0.3 \,\text{mA}$. The voltage across R_{S1} is to be 0.6 V and $V_{SDQ1} = 1 \,\text{V}$. (b) (5%) Determine the small-signal voltage gain $A_{v1} = v_{o1}/v_i$ for M_1 .
- 4. (12%) Consider the constant-current source shown in Figure 4. Assume that the threshold voltage of each transistor is $V_{TN}=1$ V. (a) Design the ratio of K_{n4}/K_{n3} such that $V_{GS3}=2$ V. (b) Determine K_{n2} such that $I_Q=0.1$ mA. (c) Find K_{n3} such that $I_{REF}=0.2$ mA

- 5. (15%) Consider the circuit shown in Figure 5 with circuit parameters: $V^+ = 5 \text{ V}$, $V^- = -5 \text{ V}$, $R_S = 4 \text{ k}\Omega$, $R_D = 2 \text{ k}\Omega$, $R_L = 4 \text{ k}\Omega$, and $R_G = 50 \text{ k}\Omega$. The transistor parameters are: $V_{TP} = -0.8 \text{ V}$, $K_p = 1 \text{ mA/V}^2$, and $\lambda = 0$. (a) Draw the small-signal equivalent circuit. (b) Determine the small-signal voltage gain $A_v = v_o/v_i$. (c) Find the input resistance R_i .
- 6. (15%) In the source-follower circuit shown in Figure 6, the transistor parameters are $V_{TN} = -2 \text{ V}$, $K_n = 5 \text{ mA/V}^2$, and $\lambda = 0.01 \text{ V}^{-1}$. (a) Design the circuit such that $I_{DQ} = 5 \text{ mA}$. (b) Find the small-signal voltage gain $A_v = v_o/v_i$. (c) Find the output resistance R_o .

7. (20%) For the NMOS amplifier with depletion load in Figure 7, the transistor parameters are $V_{TND} = 0.6 \text{ V}$, $V_{TNL} = -0.8 \text{ V}$, $K_{nD} = 1.2 \text{ mA/V}^2$, $K_{nL} = 0.2 \text{ mA/V}^2$, and $\lambda_D = \lambda_L = 0$. Let $V_{DD} = 5 \text{ V}$. (a) Determine the transfer voltage (V_{GSD} and V_O) at the transition points A and B. (b) Find V_{GSDQ} and V_{DSDQ} such that the Q-point is in the middle of the saturation region. (c) Determine I_{DQ} . (d) Following (c) and assume that $\lambda_D = \lambda_L = 0.01 \text{ V}^{-1}$, find the small-signal voltage gain.

