Работу выполнил Просвирин Кирилл, 712гр.

5 февраля 2018 г., 12 февраля 2018 г.

Маршрут IX

под руководством А.В. Гаврикова, к.ф.-м.н.

Лабораторная работа № 2.2.3

Определение теплопроводности газов при атмосферном давлении

Цель работы: определение теплопроводности воздуха или углекислого газа при атмосферном давлении и разных температурах по теплоотдаче нагреваемой током нити в цилиндрическом сосуде.

В работе используется: Водонагреватель; ММЭС Р4834; эталонное сопротивление 10 Ом; цифровой вольтметр B7-78/1; источник питания GPS-2303 GW INSTEK; термостат LT100.

1 Постановка эксперимента

Данная лабораторная работа предусматривает следующую методику измерений: для разных значений температуры воды, протекающей через кожух, находим зависимость падения напряжения U_n и U_0 . После чего по этим данным строим график зависимости Q от тока подогрева нити I_H .

Обозначения:

 R_M — магазин сопротивлений;

 R_{H} — сопротивление нити;

 $R_{\rm \Theta}$ — эталонное сопротивление.

Рис. 1: Схема установки

Нетрудно показать, что если температура среды не зависит от времени, то теплопроводность \varkappa можно найти из соотношения

$$\varkappa = \frac{Q}{T_1 - T_2} \frac{1}{2\pi L} \ln \frac{r_2}{r_1},\tag{1}$$

где r_1 — радиус нити, r_2 — радиус цилиндра, L — длина цилиндра, Q — полный поток тепла, ΔT — разность температур газа у поверхности нити и цилиндра.

Выделяемая мощность может быть найдена по формуле $Q = 10U_H/U_{
m P}$

2 Проведение измерений

1. Снимем зависимость напряжения на нити U_H от напряжении на эталонном сопротивлении U_{\Im} .

	$T_1 = 297.8 \ K$		$T_2 = 304 \ K$		$T_3 = 312 \ K$		$T_4 = 322.8 \ K$		$T_5 = 332,9 \ K$	
$N_{\overline{0}}$	U_0, B	U_H, B	U_0, B	U_H, B	U_0, B	U_H, B	U_0, B	U_H, B	U_0, B	U_H, B
1	0,05	0,755	0,05	0,762	0,05	0,766	0,05	0,774	0,05	0,782
2	0,075	1,134	0,075	1,143	0,075	1,151	0,075	1,162	0,075	$1,\!173$
3	0,1	1,513	0,1	1,524	0,1	1,536	0,1	1,549	0,1	$1,\!566$
4	$0,\!125$	1,893	0,125	1,907	0,125	1,921	0,125	1,938	$0,\!125$	1,956
5	$0,\!150$	$2,\!273$	$0,\!150$	2,289	$0,\!150$	2,307	$0,\!150$	2,328	$0,\!150$	2,349
6	0,2	3,037	0,2	3,059	0,2	3,082	0,2	3,107	0,2	3,137
7	$0,\!225$	3,421	0,225	3,446	0,225	3,471	0,225	3,501	0,225	$3,\!535$
8	$0,\!25$	2,273	$0,\!25$	3,848	$0,\!25$	3,862	$0,\!25$	3,896	$0,\!25$	3,932

Таблица 1: Основные данные измерений

2. По данным из таблицы 1 построим график зависимости выделяемой мощности от сопротивления и определим по нему угол наклона dQ/dR и сопротивление нити R_0 при нулевой выделяемой мощности.

Рис. 2: График зависимости сопротивления $Q(R_H)$

Замечание.

3. Построим по значениям R_0 график зависимости сопротивления нити от температуры

T, K	297,8	304	312	322,8	332,9
R_0, Ω	15,11	15,21	15,33	15,48	15,63

Таблица 2: Значения R_0 при искомых температурах

Рис. 3: График зависимости сопротивления $Q(R_H)$

Откуда находим угол наклона $dR/dT = (0.0146 \pm 0.0002) \text{ Ом}/K$.

4. Для каждой температуры прибора определим значение коэффициента теплопроводности газа по формуле (1).

T, K	297,8	304	312	322,8	332,9
$\frac{dQ}{dR}$, BT · $10^{-2}/K$	80,0	87,3	80,6	90,9	99,2
$\sigma\left(\frac{dQ}{dR}\right)$, Br · $10^{-2}/K$	1,5	7,1	5	1,9	6,1
\varkappa , Дж · $10^{-2}/K$ · м	2,68	2,93	2,70	3,1	3,3
$\sigma \varkappa$, Дж · $10^{-2}/K$ · м	0,06	0,24	0,07	0,2	0,2

Таблица 3: Расчет коэффициента теплопроводности

5. По данным таблицы 3 построим график зависимости теплопроводности от температуры. И в предположении, что $\varkappa = AT^{\beta},$ найдем показатель степени $\beta.$

Из наклона прямой на графике находим $\beta = (1.70 \pm 0.16)$

3 Итоги

Полученные в результате настоящей лабораторной работы значения коэффициента теплопроводности совпадают с табличными значениями в пределах погрешности, а графики имеют «хороший», линейный вид ($\Re \approx 0.9775$).

Комментарий. Погрешности измерений были подсчитаны в среде «OriginPro».