Procedures of CLAS12 PCAL module construction

A. Daniel, S. Stepanyan, H. Voskanyan, G. Asryan, W. Tang, C. Shloka, J. Riso, N. Gevorgyan, K. Hicks

Version 1.1 04-29-11

A. Introduction

To reconstruct the energy of high-energy showering particles and to separate high-energy $\pi^{\circ}s$ and photons, a Pre-shower detector (PCAL) with finer granularity will be built and installed in front of the current EC. There will be six PCAL modules, one for each CLAS12 sector, see Figure 1. The PCAL module has a similar geometry as the current EC. Each module is a lead-scintillator sandwich with three stereo readout planes (U, V, and W). There are 15 layers of 1-cm thick scintillator layers, segmented into 4.5-cm wide strips, and sandwiched between 2.2-mm thick lead sheets. Lead and scintillator layers are confined between two endplates, Figure 2. The total thickness of the PCAL is about 5.5 radiation lengths. A variable width of the readout segmentation will be used to minimize the number of readout channels, without diminishing resolution in separation of close clusters. For the first 52 shortest strips in U and for the last 46 longest strips in the V and W stereo readout planes the 45 mm (single strip) segmentation will be used. For the remaining strips, 90-mm wide (double strip) segmentation will be used.

This document discusses the procedures for cutting the scintillator strips, procedures for QA tests of scintillator fiber assembly, and for the stacking of scintillator-lead layers of the Preshower calorimeter, as well as the procedures for routing of Wavelength-shifting (WLS) fibers through the scintillator strips.

A partial version of a full-scale prototype was built in the EEL room 125 to get some insight into the optimal routing of the fibers and explore the different options for assembly of the PCAL modules, see Figure 3. These studies were aimed to obtain some information on the challenges one may face during actual construction of the PCAL. These include placement of photomultiplier tubes, methods for supporting and stacking the elements during the construction, methods of WLS fiber handling and routing of the fibers through the scintillator strips, methods for spot gluing, etc. One of the main goals behind the prototyping was to get some experience with the fiber routing. Bending of a fiber may cause some degradation of optical properties such as transparency, core/cladding composition of the fiber, and, hence can affect the light output. Thus, it is crucial to have some understanding of the bending and routing of the fibers.

The prototype discussed in this document is built in such a way that it mimics the PCAL dimensions at the three corners of the triangle. The actual size of the prototype differs from the nominal dimensions of the PCAL, however, for our investigations it is sufficient to reproduce the geometry of each corner. This is partly because the bending radius of the fibers are relatively small at the corners, and, thus investigating the fiber routing options in these region gives insight into the overall handling of the fibers for the large module. The bend radii of the WLS fibers are controlled by slots on the wall, which guide fibers into required path and eventually into the assigned PMTs. Rest of the document, provides an overview of the assembly of scintillator strips to form a module. Some of this information is derived from the assembly of the mini prototype. We will discuss the assembly of a single module; however, the procedure is the same for the assembly of all six modules of the PCAL.

Figure 1: Schematic diagram of the preshower calorimeter for the CLAS12 detector. The figure shows the six modules and the associated readouts for different views.

Figure 2: Shown is the three dimensional CAD model of the box which contains the scintillator bars and lead layers for a module.

Figure 3: Picture of the mini version of the PCAL prototype. Figure shows the different arrangement of scintillator layers and routing of WLS fibers from these layers to the wall

B. PCAL Basics

- 1) Scintillators of varying lengths but fixed cross section of 4.5 cm x 1 cm is combined into a layer of the PCAL. This layer forms a triangular geometry. Longest scintillator will form the base of the triangle and the shortest scintillator is located at the apex of the layer.
- 2) From beam direction, the first layer in the module is U view where scintillator strips are parallel to the side that is perpendicular to the beam direction. Strip lengths increase along the polar angle θ with respect to the beam direction. The next layer, V view, is rotated clockwise so that the scintillators are parallel to the next side of the triangle. In a similar manner the third plane, W view, has scintillators aligned with the third side of the triangle and is the mirror image of the V view, see Figure 4.
- 3) Lead sheets (2.2 mm thick), which acts as a radiator, are placed in between scintillator layers; and these sheets have the same dimensions as the scintillator layer (except for the thickness) and fully cover the scintillator layer.
- 4) This arrangement (U L V L W L) repeats 5 times, however, there is no lead layer (L) after the last scintillator layer. There are 5U, 5V, 5W and 14 lead layers for a module (sector).
- 5) When facing the beam, the PMTs on the left wall of the box (total number 68) will collect light from the U view. U layers consist of 84 strips each of nominal width 4.5cm and thickness 10 mm. For the U layer, the first 52 short strips at the apex of the triangle are read out individually. This means the first 52 strips on all

U layers are read out by a single PMT. For a single strip there are 4 fibers and for 5 layers of the given view we have 20 fibers read out by a single PMT in this arrangement. For the rest of the strips (32 long strips towards the base of the triangle) combination of two scintillator strips represent one readout channel. This means that two adjacent strips in all 5 layers are read out via single PMT. Thus at large angles 16 PMTs are used to read out all of the last 32 strips in the 5 U layers. In summary there are 16+52=68 PMTs on the left wall of each sector which will collect light from the U layers.

- 6) When facing beam, the PMTs on the top wall of the box will collect light from V and W layers. There are 78 strips for each V and W layers. Since there are 5 layers for each view, the total number of scintillator strips is 5 times 78 (for each view).
- 7) For V and W, longest 46 strips are read out individually using single PMT. For the rest of 32 shorter strips, combinations of two scintillators represent one readout channel. The total number of PMTs for V layer is 46 + (32/2) = 62 PMT. Similarly, W view also needs 62 PMTs. Thus in the top wall we have 62+62=124 PMTs, and for one module we have a total of 124+68=192PMTs.

Figure 4: Figure shows the schematics of the arrangement of the scintillator bars to form different views as mentioned in the text.

C. Procedures for assembly of PCAL box, for stacking of scintillator-lead layers, and for routing of WLS fibers

Stacking of scintillator strips

- a) All the parts of the PCAL box assembly must be cleaned from debris and grease left from the machining, use alcohol (isopropanol), work must be done in a clean, dust free environment, and workers must have gloves and clean-room coats.
- b) Put the bottom window on a support table (3 sawhorses) and assemble side plates. Clean inside of the assembly and then install retainers. All of this must be done in accordance to the assembly drawings.
- c) Lay down one layer of 0.05 mm thick Teflon sheets on the window to cover the area where scintillators will be laid.
- d) First layer to be assembled is the U layer, then V and then W (see explanations above). Begin with the longest scintillator strip in a layer. Visually inspect the scintillator strips to make sure that the scintillator bars are in good condition. Clean strips from dust if necessary.
- e) When stacking scintillator strips make sure that there is no space between the strips. Gaps between individual strips should be kept as small as possible, use shims (thin aluminum plates) at corner, where the smallest strip is, to push strips against each other. Make sure that each strip is tightly bound between retainer (at the fiber readout end) and the springs at the opposite end. If the strip is loose, put shims to compress about 1/3 of the strip.
- f) After arranging the strips and finishing the layer, start inserting WLS fibers through the holes in the scintillator strip according to Table 1 (Table 1 contains information on optimal distribution of fibers for each layer and the length of scintillator bars for each view).
- g) Visually inspect the WLS fibers to make sure that the fiber is in good condition.
- h) For each hole, insert two fibers (note that there are 2 fibers per hole and hence there are 4 fibers per scintillator strip).
- i) Begin inserting the fibers from the outside of the wall through the holes in the scintillator strip; fibers go through the hole in the sidewall that is near to the scintillator strip that is being worked on.
- j) One person will carry the fiber bundle and another person will do the routing.
- k) Once the fibers reach to the opposite end, cut the fibers according to the dimensions in Table 1. Dimensions are such that the fiber end should come out from the fiber holder holes at the PMT side by about 3 cm. Repeat this process for the second hole of the strip being worked on.
- 1) Once this is finished the four fibers are routed to the assigned holes of the base of the PMT housing according to Table 2 (Table 2 contains relation between strip number and the PMT).
- m) By comparing with Table 1 decide whether the remaining pieces of fibers from above process is long enough for another strip in the same layer. If they are of sufficient length, repeat the routing procedure for that strip. If it is not sufficient

- then discard the fiber, and start working on the next strip with a new bunch of fibers.
- n) After finishing the routing of fibers for all strips in the layer, start testing each fiber for continuity and the correctness of the placement of the fiber to corresponding PMT base (please refer to Table 2). This test will be done by placing a light source (blue LED) on far end of a strip and photometer to the PMT base.
- o) After satisfactory completion of above steps, spot glue fibers in to the scintillator strip. This procedure is discussed in next section.

Spot gluing procedure

- a) Gluing should be done at the far end to the PMT side.
- b) Start the procedure from the longest scintillator bar. This procedure can be done on several strips (for example five) at a time.
- c) Pull fibers out by about 1 to 2 mm from the hole. This is to make sure that we are spot gluing both fibers in the hole.
- d) Glue the fibers to the scintillator. Make sure that the minimum amount of glue is used for spot gluing; we don't want to close the hole since we need to flush nitrogen through the holes. In order to control the amount of glue use a glue dispenser. Spot gluing tests were done with DYMAX optical UV curing adhesive OP-4-20632.
- e) After putting the glue, insert a Teflon wire (< 2mm OD) into the hole from the upper side of the hole. This is to make sure that we have some space remaining for the airflow even after UV curing. Insert about 2 cm of the Teflon wire into the hole; we don't want to push the glue farther inside the hole.
- f) After putting the Teflon wire, use UV light to cure the glue. For the tests, we used OminiCure spot curing system that was available in PCAL room. After about 15 seconds, carefully withdraw the Teflon wire from the hole, but continue curing for about 45 seconds more.

Note: every one involved in this process must use protective glasses. Also, screens must be placed to avoid exposing others from the UV light.

- g) Once the spot gluing is done, put scintillators back in correct position.
- h) Once gluing is completed for one layer, position scintillator strips using shims and springs. Make sure scintillators are secured properly and are tightly confined (see section C).
- i) Cover scintillator layer with Teflon sheets.

Stacking lead sheets

a) Lead sheets are ordered flat, precut in ½ layer size (right angle triangles). They must be clear from debris and must be deburred (manufacturer).

- b) Use alcohol (isopropanol), to clean surfaces from any residual oil or dust, if flatness is not acceptable put the sheet on a wooden table and flatten it with wood blocks.
- c) Using gantry crane and suction cups pick up a lead sheet and put on top of the scintillator layer. Make sure that the edge of the scintillators matches with the edge of the lead plate. Repeat this for the second half of the triangle.

Note: This procedure must be done by trained personal.

d) Shim lead sheets if needed.

After the satisfactory completion of the arrangement of scintillator strips, routing of fibers and placement of lead, start working on the next layer by following previous steps. Cover the lead layer with Teflon sheets before stacking the next layer of scintillators.

Remember that after the 15th scintillator layer, there are no lead sheets. When finish stacking of the 15th layer of scintillators (W-view) and routing and spot gluing of fibers, cover it with Teflon sheets and put the top window of the module and bolt it down to side walls. Follow the procedures on the engineering drawings.

D. Procedures for gluing of fibers to PMT housing base

At this point, we already have done the necessary tests to make sure that the fibers are routed to the correct PMT housing bases and are ready to be glued at the PMT base. This gluing is to fix fibers in place for polishing and for connecting to the PMT cathode.

- a) Fibers are glued into the PMT housing base with DB-190 glue.
- b) Fill up the holes on the housing with glue using a syringe. Make sure to move/shake fibers so that glue will reach the bottom of the housing base.
- c) After the gluing, fibers end will stay out of the base surface by a few centimeters. Later these protruding fibers will be cut and polished.

Strip	Length	WSF	Strip	Length	WSF length
•	(mm)	length	_	(mm)	(mm)
		(mm)			
U1	120.1166	970.1166	U43	2054.657	2606.657
U2	166.1922	1009.192	U44	2100.732	2645.732
U3	212.2678	1048.268	U45	2146.757	2684.757
U4	258.318	1087.318	U46	2192.833	2723.833
U5	304.3936	1126.394	U47	2238.908	2762.908
U6	350.4692	1165.469	U48	2285.035	2802.035
U7	396.4686	1204.469	U49	2331.06	2841.06
U8	442.5188	1243.519	U50	2377.135	2879.135
U9	488.5944	1282.594	U51	2423.211	2918.211
U10	534.6192	1320.619	U52	2469.286	2957.286
U11	580.7202	1359.72	U53	2515.337	3001.337
U12	626.7958	1398.796	U54	2561.387	3035.387
U13	672.846	1437.846	U55	2607.462	3079.462
U14	718.9216	1476.922	U56	2653.538	3113.538
U15	764.9718	1515.972	U57	2699.563	3157.563
U16	811.0474	1555.047	U58	2745.638	3191.638
U17	857.0976	1594.098	U59	2791.714	3235.714
U18	903.1224	1633.122	U60	2837.739	3269.739
U19	949.198	1672.198	U61	2883.814	3313.814
U20	995.2736	1710.274	U62	2929.839	3354.839
U21	1041.349	1749.349	U63	2975.966	3395.966
U22	1087.425	1788.425	U64	3021.99	3441.99

U23	1133.45	1827.45	U65	3068.066	3500.066
U24	1179.525	1866.525	U66	3114.065	3567.065
U25	1225.601	1905.601	U67	3160.141	3625.141
U26	1271.651	1944.651	U68	3206.191	3692.191
U27	1317.701	1983.701	U69	3252.267	3750.267
U28	1363.777	2022.777	U70	3298.368	3817.368
U29	1409.852	2061.852	U71	3344.443	3875.443
U30	1455.903	2099.903	U72	3390.494	3942.494
U31	1501.953	2138.953	U73	3436.544	4000.544
U32	1548.028	2178.028	U74	3482.619	4067.619
U33	1594.104	2217.104	U75	3528.695	4125.695
U34	1640.129	2256.129	U76	3574.745	4192.745
U35	1686.204	2295.204	U77	3620.821	4250.821
U36	1732.28	2334.28	U78	3666.896	4317.896
U37	1778.305	2373.305	U79	3712.921	4375.921
U38	1824.38	2412.38	U80	3758.997	4442.997
U39	1870.456	2451.456	U81	3804.971	4500.971
U40	1916.532	2489.532	U82	3851.046	4568.046
U41	1962.556	2528.556	U83	3897.173	4526.173
U42	2008.632	2567.632	U84	3943.248	4693.248

Table 1a: Table shows the length of scintillator bars and the optimal length of fibers for the V layer.

Strip	Length (mm)	WSF length	Strip	Length (mm)	WSF length
		(mm)	_		(mm)
V1	55.6768	585.6768	V40	2219.173	2761.173
V2	111.0742	631.0742	V41	2274.646	2818.646
V3	166.5732	681.5732	V42	2330.094	2875.094
V4	222.0468	727.0468	V43	2385.593	2932.593
V5	277.5458	777.5458	V44	2441.067	2989.067
V6	333.0194	823.0194	V45	2496.541	3046.541
V7	388.5184	874.5184	V46	2552.04	3103.04
V8	443.9412	919.9412	V47	2607.488	3160.488
V9	499.4148	971.4148	V48	2662.961	3216.961
V10	554.8884	1016.888	V49	2718.435	3274.435
V11	610.362	1068.362	V50	2773.909	3330.909
V12	665.8356	1113.836	V51	2829.382	3388.382
V13	721.3092	1165.309	V52	2884.856	3445.856
V14	776.7828	1210.783	V53	2940.329	3502.329
V15	832.2564	1261.256	V54	2995.803	3559.803
V16	887.73	1306.73	V55	3051.277	3616.277
V17	943.2036	1362.204	V56	3106.776	3673.776
V18	998.6772	1427.677	V57	3162.249	3730.249
V19	1054.176	1488.176	V58	3217.697	3787.697
V20	1109.65	1553.65	V59	3273.196	3844.196
V21	1165.123	1613.123	V60	3328.67	3901.67
V22	1220.597	1678.597	V61	3384.144	3958.144
V23	1276.071	1738.071	V62	3439.617	4015.617
V24	1331.544	1803.544	V63	3495.091	4072.091
V25	1387.018	1863.018	V64	3550.564	4129.564
V26	1442.491	1928.491	V65	3606.038	4186.038
V27	1497.965	2087.965	V66	3661.512	4243.512
V28	1553.439	2053.439	V67	3716.985	4299.985
V29	1608.938	2113.938	V68	3772.459	4357.459
V30	1664.411	2179.411	V69	3827.958	4413.958
V31	1719.885	2239.885	V70	3883.431	4471.431
V32	1775.358	2305.358	V71	3938.905	4527.905
V33	1830.832	2362.832	V72	3994.379	4585.379
V34	1886.306	2419.306	V73	4049.852	4641.852
V35	1941.779	2476.779	V74	4105.326	4699.326
V36	1997.253	2533.253	V75	4160.799	4755.799
V37	2052.726	2590.726	V76	4216.273	4813.273
V38	2108.225	2647.225	V77	4271.747	4869.747
V39	2163.699	2704.699	V78	4327.22	4927.22

Table 1b: Table shows the length of scintillator bars and the optimal length of fibers for the V layer.

Strip	Length (mm)	WSF length(mm	Strip	Length (mm)	WSF length(mm
W1	55.4482	585.6768	W40	2219.071	2761.173
W2	110.9218	631.0742	W41	2274.545	2818.646
W3	166.3954	681.5732	W42	2330.018	2875.094
W4	221.869	727.0468	W43	2385.492	2932.593
W5	277.368	777.5458	W44	2440.991	2989.067
W6	332.8416	823.0194	W45	2496.464	3046.541
W7	388.3152	874.5184	W46	2551.938	3103.04
W8	443.7888	919.9412	W47	2607.412	3160.488
W9	499.2624	971.4148	W48	2662.885	3216.961
W10	554.736	1016.888	W49	2718.359	3274.435
W11	610.2096	1068.362	W50	2773.858	3330.909
W12	665.734	1113.836	W51	2829.331	3388.382
W13	721.2076	1165.309	W52	2884.805	3445.856
W14	776.6812	1210.783	W53	2940.279	3502.329
W15	832.1548	1261.256	W54	2995.752	3559.803
W16	887.6284	1306.73	W55	3051.226	3616.277
W17	943.1274	1362.204	W56	3106.725	3673.776
W18	998.601	1427.677	W57	3162.198	3730.249
W19	1054.075	1488.176	W58	3217.672	3787.697
W20	1109.548	1553.65	W59	3273.146	3844.196
W21	1165.022	1613.123	W60	3328.619	3901.67
W22	1220.495	1678.597	W61	3384.118	3958.144
W23	1275.944	1738.071	W62	3439.592	4015.617
W24	1331.417	1803.544	W63	3495.065	4072.091
W25	1386.891	1863.018	W64	3550.539	4129.564
W26	1442.39	1928.491	W65	3606.013	4186.038
W27	1497.863	2087.965	W66	3661.486	4243.512
W28	1553.337	2053.439	W67	3716.985	4299.985
W29	1608.811	2113.938	W68	3772.459	4357.459
W30	1664.284	2179.411	W69	3827.932	4413.958
W31	1719.758	2239.885	W70	3883.406	4471.431
W32	1775.257	2305.358	W71	3938.88	4527.905
W33	1830.73	2362.832	W72	3994.353	4585.379
W34	1886.204	2419.306	W73	4049.852	4641.852
W35	1941.678	2476.779	W74	4105.326	4699.326
W36	1997.151	2533.253	W75	4160.799	4755.799
W37	2052.625	2590.726	W76	4216.248	4813.273
W38	2108.124	2647.225	W77	4271.747	4869.747
W39	2163.597	2704.699	W78	4327.22	4927.22

Table 1c: Table shows the length of scintillator bars and the optimal length of fibers for the W layer.

Strip	PMT	Strip	PMT	Strip	PMT
U1	U1	U29	U29	U57	U55
U2	U2	U30	U30	U58	U55
U3	U3	U31	U31	U59	U56
U4	U4	U32	U32	U60	U56
U5	U5	U33	U33	U61	U57
U6	U6	U34	U34	U62	U57
U7	U7	U35	U35	U63	U58
U8	U8	U36	U36	U64	U58
U9	U9	U37	U37	U65	U59
U10	U10	U38	U38	U66	U59
U11	U11	U39	U39	U67	U60
U12	U12	U40	U40	U68	U60
U13	U13	U41	U41	U69	U61
U14	U14	U42	U42	U70	U61
U15	U15	U43	U43	U71	U62
U16	U16	U44	U44	U72	U62
U17	U17	U45	U45	U73	U63
U18	U18	U46	U46	U74	U63
U19	U19	U47	U47	U75	U64
U20	U20	U48	U48	U76	U64
U21	U21	U49	U49	U77	U65
U22	U22	U50	U50	U78	U65
U23	U23	U51	U51	U79	U66
U24	U24	U52	U52	U80	U66
U25	U25	U53	U53	U81	U67
U26	U26	U54	U53	U82	U67
U27	U27	U55	U54	U83	U68
U28	U28	U56	U54	U84	U68

Table 2a: Table shows the correspondence between the scintillator bars and PMTs for the U layer. Adjacent bars are read out by a single PMT for the region highlighted with yellow color.

Strip	PMT	Strip	PMT	Strip	PMT
V1	V1	V27	V14	V53	V37
V2	V1	V28	V14	V54	V38
V3	V2	V29	V15	V55	V39
V4	V2	V30	V15	V56	V40
V5	V3	V31	V16	V57	V41
V6	V3	V32	V16	V58	V42
V7	V4	V33	V17	V59	V43
V8	V4	V34	V18	V60	V44
V9	V5	V35	V19	V61	V45
V10	V5	V36	V20	V62	V46
V11	V6	V37	V21	V63	V47
V12	V6	V38	V22	V64	V48
V13	V7	V39	V23	V65	V49
V14	V7	V40	V24	V66	V50
V15	V8	V41	V25	V67	V51
V16	V8	V42	V26	V68	V52
V17	V9	V43	V27	V69	V53
V18	V9	V44	V28	V70	V54
V19	V10	V45	V29	V71	V55
V20	V10	V46	V30	V72	V56
V21	V11	V47	V31	V73	V57
V22	V11	V48	V32	V74	V58
V23	V12	V49	V33	V75	V59
V24	V12	V50	V34	V76	V60
V25	V13	V51	V35	V77	V61
V26	V13	V52	V36	V78	V62

Table 2b: Table shows the correspondence between the scintillator bars and PMTs for the V layer. Adjacent bars are read out by a single PMT for the region highlighted with yellow color.

Strip	PMT	Strip	PMT	Strip	PMT
W1	W1	W27	W14	W53	W37
W2	$\mathbf{W}1$	W28	W14	W54	W38
W3	W2	W29	W15	W55	W39
W4	W2	W30	W15	W56	W40
W5	W3	W31	W16	W57	W41
W6	W3	W32	W16	W58	W42
W7	W4	W33	W17	W59	W43
W8	W4	W34	W18	W60	W44
W9	W5	W35	W19	W61	W45
W10	W5	W36	W20	W62	W46
W11	W6	W37	W21	W63	W47
W12	W6	W38	W22	W64	W48
W13	W7	W39	W23	W65	W49
W14	W7	W40	W24	W66	W50
W15	W8	W41	W25	W67	W51
W16	W8	W42	W26	W68	W52
W17	W 9	W43	W27	W69	W53
W18	W 9	W44	W28	W70	W54
W19	W10	W45	W29	W71	W55
W20	W10	W46	W30	W72	W56
W21	W11	W47	W31	W73	W57
W22	W11	W48	W32	W74	W58
W23	W12	W49	W33	W75	W59
W24	W12	W50	W34	W76	W60
W25	W13	W51	W35	W77	W61
W26	W13	W52	W36	W78	W62

Table 2c: Table shows the correspondence between the scintillator bars and PMTs for the W layer. Adjacent bars are read out by a single PMT for the region highlighted with yellow color.

E. Procedures for measuring the light transmission characteristics of the scintillator-fiber system.

In order to achieve a uniform response over the area covered by the PCAL, the transmission properties of the scintillator bars needs to be characterized. To minimize the data acquisition time, we will measure the PMT anode average current produced as a result of the irradiation of a radioactive source (90 Sr beta source) at different positions of the scintillator bar. For the first sector, we will do the measurements for all of the longest (>200 cm) scintillator bars. The apparatus consists of a PMT to measure the response of the scintillator-fiber system and a radioactive source, which is mounted on a holder that is positioned on the top of a system that can be moved automatically along the length of the scintillator strip (see Figure 7 below).

Work described below requires two persons.

Figure 7: Figure shows the setup inside the light tight box.

- a) Begin with the longest scintillator strip for a given sector, view and layer.
- b) Visually inspect the scintillator strips to make sure that the scintillator strips are in good condition.
- c) Make sure that the holes in the strips are clean. To do this, place the scintillator strip on the staging table. Insert the long stainless steel wire in to the hole; make sure to shake the wire to remove the specks or dust that may be in the holes. Repeat this for the other hole also. Then blow air through the hole for the final cleaning.
- d) Once the cleaning is done carefully insert test fibers into the scintillator (two fibers per hole). These fibers need special attention; we don't want any kind of scratch on the fibers since the light output depends on the condition of these test fibers. Also, note that these fibers are glued to a plastic adapter; during measurements one side of the adaptor is going to be in contact with the photocathode of the PMT. So the adaptor also needs to be handled carefully.
- e) Place the scintillator-fiber assembly on the setup in the dark box. Make sure the edge of the scintillator coincide with the zero marking on the aluminum profile. Make sure that the extra fiber on the far end of scintillator is also resting on the aluminum profile.
- f) Push the adaptor into the PMT housing and make sure that it touches the photocathode. Secure the PMT.
- g) Close the dark box, visually inspect that the box is closed properly.
- h) Switch on the HV and raise it to 1000V
- i) In the graphical interface, input the sector, layer, view and scintillator number from the drop down menu. Program creates a unique output file based on these information.
- j) Select the step size (usually 10 cm) and press start. Inside the dark box, the source will move automatically to different positions along the length of the scintillator. The Keithley multimeter will collect 500 readings (this number can be changed in the GUI) of the PMT anode current at a given source position; the average and the standard deviation of the measurements will be recorded to the output file for each position of the source together with the position value.
- k) The dark current is also recorded to the output file. The reading recorded when source passes the far end of the strip is the dark current. This is the last reading in the output file.
- 1) Switch off the HV once the measurement is finished.
- m) Open the dark box, detach the adapter from the PMT. Carefully take the scintillator and fiber system to the staging table.
- n) Carefully remove the fibers from the tested scintillator strip.
- o) Move the tested scintillator to the storage shelf.
- p) One can check the data collected for the previous scintillator while the measurement is going on for the next strip. To do this, open paw (in the directory where the GUI is located) and type exe plot_pmtcurr file_name (replace file_name with the name of the data file). Make sure PMT current has its typical exponential dependence on source position and the response is uniform. Also make sure that the dark current displayed on the top of the graph is reasonable.

q) Repeat steps a to p for the next strip

Note: Make sure that appropriate training is completed since radioactive source is involved in the measurement. Handling of the materials requires use of gloves. If you need to open the dark box during the measurement, make sure that the HV is turned off.

F. Fiber testing procedures.

We will use the same setup used for scintillator tests for the testing of fibers also. First, visually inspect and make sure that all fibers are in good condition and there are no broken fibers. Handling of fibers needs special attention and extreme care. To minimize exposure (and hence avoiding dirt from outside), only minimum length of fibers should be taken out of the plastic wrapper for the tests described here. For light transmission measurements select four fibers at a time.

Work described below requires two persons

- a) Open both ends of plastic cover which contains the fibers. Keep the plastic cover in the middle portion which will act as a protective cover. Only minimum length of fibers from both ends should be taken out of the plastic cover for the tests.
- b) Select four fibers from the bunch.
- c) Insert the selected fibers through the holes in plastic adaptor.
- d) Insert the other end of the selected fibers to the test scintillator (test scintillator is only about 30cm long). For consistency, adjust the length of the fibers so that the fibers are just enough to cover full length of the test scintillator.
- e) Keep this scintillator-fiber system (about halfway through) under the radioactive source, which is parked at the far end from the PMT side. For consistency, make sure that the distance between source and PMT is same for all the measurements.
- f) Close the dark box, visually inspect that the box is closed properly.
- g) We will do one measurement on the scintillator-fiber system and one to measure the dark current. Using the GUI which control Keithely multimeter, record the PMT anode current. The average, standard deviation of the measurements as well as the dark current will be recorded to the output file.
- h) Switch off the HV once the measurement is finished.
- i) Open the dark box, detach the adapter from the PMT and take out the tested fibers from the adaptor.
- j) If the average PMT anode current is less than 15% of the nominal value, separate this bunch of fibers from the rest.
- k) Try to carefully inspect the above fibers one at a time, it may be that one fiber is broken or bad and the other three are good. If you can't visually identify the bad fibers, use different combinations of these fibers along with fibers from the new bunch. Remove the bad fiber(s) from the rest.
- 1) Repeat the step (a) to (i) for next bunch of fibers.

G. Procedures for cutting scintillator strips.

Scintillator strips for PCAL were ordered and received in two lengths, 420 cm (1450 strips) and 450cm (2710 strips). Since the PCAL layer has an isosceles triangular shape, strips in a layer have different lengths and ends of strips must be cut in an angle. The shorter strips are to be cut for U-view, the longer strips are for V- and W-views.

The shorter strips are to be cut for U-view, the longer strips are for V- and W-views. Strips in U-view (perpendicular to the beam direction) have the same angle cut at both ends, 27.1°. One end of V- and W-strips has 27.1° angle cut, while the second end has 35.8° angle cut.

To cut the scintillator strips to the right length and angle, method proposed by FNAL-NICADD group, a radial arm saw and a 10" 80 teeth C4 wood saw blade, is used. A long cutting table was build based on Delta RS830 10" radial arm saw to handle the longest PCAL strips. As a base for the table a frame made of Bosch Rexroth aluminum profiles is used. Two, 90 degree long profiles were used to support wood plates as a tabletop, see Figure 5 and Figure 6. The back of the profile, closest to the saw's mounting point, was used to alight strips and saw. Two trapezoidal shape plates from ½ inch aluminum were machined for alignment of the saw blade and the end of scintillator strips for cutting. Aluminum trapezoids have one of sides perpendicular to the parallel sides, while second side formed exact angle required for the cutting (27.1° or 35.8°). Parallel sides were made long enough to give required level arm for the correct alignment of the saw blade and the scintillator ends against the profile.

Figure 5: Schematics of the cutting table

Figure6: Picture of the cutting table. The radial arm saw is mounted on the table.

Scintillators are cut 5 at the time. The value of the lengths for each strip is given for the longest side. Required accuracy for the strip length is ± 1 mm. Length of the strips are measured using a tape measure attached to the aluminum profile at the back of the table. Two PCAL strips are cut from each original strip. Each original strip is labeled from both ends. After cutting, each PCAL strip is labeled to indicate module, layer and the strip number. Records are kept on correspondence of the original (FNAL) and the new (PCAL) labels.

Following are the steps for cutting the scintillator strips for U-view:

a. Align the saw blade against the long Bosch Rexroth profile using machined aluminum plates and set the angle in a way that longest cut is towards the back of the table.

- b. Place all the strips for the whole layer on the bench and measure average width. Recalculate length of strips corresponding to the average length using exact value of cut angles.
- c. Set five scintillator pieces on the table and press them against the back wall of the table (against aluminum profile).
- d. Align ends that in the way that only ~5 cm will be cut-out from the ends.
- e. Push and secure strips against tabletop with screwed-in handle and make a cut.
- f. Release strips and flip them, lengthwise, and put them on the table without changing the order.
- g. Using tape-measure position the end of the strip closest to the profile (back wall) in correct distance from the blade.
- h. Push the alignment plate towards the end of the strip and secure it. Make sure strip will not move.
- i. Put rest of the strips against the plate and against the first strip. Check the position of the first strip again, if strip is moved, reposition.
- j. Push and secure strips against the tabletop and make a cut.
- k. Release strips, part of the strips that are on the long side of the table now ready, they have right length and angles.
- 1. Clean ends from burred, surfaces from debris, label and move strips to the storage.
- m. Cut out part of the strips now have one end with correct angle.
- n. Move cutout strips to the table, flip each one along their axis, and change the order on the table (farthest from the back wall now will become the closest to the back wall).
- o. Repeat steps f to k.

Note:

Most of the work discussed in this document needs relatively clean environment. Also, handling of the materials requires use of gloves. Additional, procedure specific safety instructions are included in the relevant sections.