Задание 2. Изучение лампочки накаливания (Решение)

Часть 1. Вольтамперная характеристика лампочки.

1.1 Для построения графика необходимо рассчитать значения сил токов через лампочку при известных напряжениях по формуле

$$I = \frac{U}{R_0} \,. \tag{1}$$

Результаты расчетов приведены в Таблице 1, рядом приведен необходимый график.

Таблица 1.

Гаолица 1.							
U, B	U ₀ ,мВ	I, MA					
0,65	72,6						
1,03	88,7						
1,51	108,1						
2,07	126,9						
2,62	143,9						
3,22	160,3						
3,64	170,9						
4,14	182,1						
4,55	191,3						
4,90	199,7						

1.2 Так как лампочки одинаковые, то напряжения на них также будут одинаковыми и равными

$$U_x = \frac{U_1}{3} = 1,5B \tag{2}$$

По графику ВАХ, находим, что сила тока (одинаковая для всех лампочек) равна

$$I_{x} = 174 \,\text{MA} \tag{3}$$

Следовательно, мощность в этой цепи будет равна

$$P_1 = U_1 I_x = 0.26 Bm. (4)$$

1.3 При параллельном соединении напряжения на всех лампочках будет равно напряжению источника $U_1 = 4,5B$. По графику BAX находим, что сила тока через каждую лампочку равна

$$I_{v} = 310 \,\text{MA} \tag{5}$$

Следовательно, мощность цепи будет равна

$$P_2 = 3U_1 I_y = 4.2 \, Bm \,. \tag{6}$$

Заключительный этап республиканской олимпиады по учебному предмету «Физика» 2024-2025 учебный год

1.4 Для расчета ВАХ горячей лампочки используем закон Ома для участка цепи с учетом зависимости сопротивления от температуры:

$$I = \frac{U}{R_0 (1 + \alpha \Delta t)}. (7)$$

Здесь $\Delta t = t - t_0$ - разность между температурой нити и комнатной температурой. В этом уравнении не известна разность температур. Для получения системы уравнений воспользуемся законом теплоотдачи

$$P = \beta \Delta t \tag{8}$$

В условиях теплового равновесия, когда температура нити остается постоянной, мощность теплоты, выделяющейся при прохождении электрического тока, равна мощности теплоты, уходящей в окружающую среду. Мощность выделяющейся теплоты определяется законом Джоуля – Ленца:

$$P = UI \tag{9}$$

Из формул (2)-(3) выразим

$$\beta \Delta t = UI \quad \Rightarrow \quad \Delta t = \frac{UI}{\beta}$$
 (10)

и подставим в формулу (1):

$$I = \frac{U}{R_0 (1 + \alpha \Delta t)} = \frac{U}{R_0 \left(1 + \frac{\alpha}{\beta} UI \right)}.$$
 (11)

Мы получили уравнение, связывающее между собой силу тока и напряжение на лампочке. Это квадратное уравнение, которое можно решить аналитически:

$$I = \frac{U}{R_0 \left(1 + \frac{\alpha}{\beta} U I \right)} \implies \frac{\alpha}{\beta} U I^2 + I - \frac{U}{R_0} = 0 \implies I = \frac{-1 \pm \sqrt{\left(\frac{U}{R_0} \right)^2 + 4 \frac{\alpha}{\beta R} \frac{U}{R_0}}}{2 \frac{\alpha}{\beta} U}. \tag{12}$$

Физический смысл имеет положительный корень этого уравнения. Поэтому зависимость силы тока от напряжения задается функцией:

$$I = \frac{\sqrt{\left(\frac{U}{R_0}\right)^2 + 4\frac{\alpha}{\beta R}\frac{U}{R_0} - 1}}{2\frac{\alpha}{\beta}U}.$$
 (13)

1.5 Внимательно посмотрим на уравнение (5) и обратим внимание, что его можно представить в виде

$$I = \frac{U}{R_0 (1 + \alpha \Delta t)} = \frac{U}{R_0 (1 + \frac{\alpha}{\beta} UI)} \implies \frac{U}{I} = R_0 \left(1 + \frac{\alpha}{\beta} UI \right). \tag{6}$$

Входящие в него комбинации силы тока и напряжения имеют наглядный физический смысл: $\frac{U}{I} = R$ - сопротивление нити горячей нити накала; UI = P - мощность тока через лампочку.

Итак, зависимость сопротивления лампочки от выделяющейся мощности имеет линейный усполужень

характер:

$$R = R_0 \left(1 + \frac{\alpha}{\beta} P \right). \tag{7}$$

1.6 Таким образом, по заданным значениям напряжения и силы тока необходимо рассчитать мощность в цепи и сопротивление нити накала по формулам (7). После чего можно построить требуемый график.

Результаты расчетов приведены в Таблице 1 и на графике

Таблица 1.

U , \mathbf{B}	I, MA	P, B T	R , \mathbf{O} M
0,65	117	0,076	5,55
1,03	143	0,147	7,20
1,51	174	0,264	8,68
2,07	205	0,424	10,1
2,62	232	0,608	11,3
3,22	259	0,833	12,5
3,64	276	1,003	13,2
4,14	294	1,216	14,1
4,55	309	1,404	14,7
4,90	322	1,578	15,2

Расчеты показали, что данная зависимость сильно нелинейная – поэтому линейная модель должна быть отвергнута.

1.7 Несмотря на то, что линейная модель оказалась не пригодной для описания результатов эксперимента, для оценки температуры нити можно воспользоваться зависимостью сопротивления от температуры

$$R = R_0 \left(1 + \alpha \left(t - t_0 \right) \right) \tag{8}$$

Максимальное сопротивление лампочки равно R = 15,20м, тогда

$$t - t_0 = \frac{R - R_0}{\alpha R_0} \tag{9}$$

Подставляя численные значения находим, что максимальная температура нити накаливания равна

$$t = t_0 + \frac{R - R_0}{\alpha R_0} = 23^\circ + \frac{15.2 - 1.9}{5.0 \cdot 10^{-3} \cdot 1.9} \approx 1400^\circ C$$
 (10)

Часть 2.

2.1 Для построения графика зависимости мощности потерь от температуры необходимо рассчитать значения температур (мощности уже подсчитаны). Для расчета температур следует воспользоваться приведенной зависимостью между сопротивлением и температурой

Теоретический тур. Вариант 2.

Заключительный этап республиканской олимпиады по учебному предмету «Физика» 2024-2025 учебный год

$$\frac{T}{T_0} = \left(\frac{R}{R_0}\right)^{\frac{4}{5}} \tag{13}$$

Так как авторы задачи фактически построить график в относительный единицах, то можно рассчитать отношения $\frac{T}{T_0}$ (по формуле (13)) и $\frac{P}{P_0}$. Причем в качестве «нулевой точки»

можно выбрать любую из известных точек. Так как при повышении температуры вклад излучения в общие потери становится все более преобладающим, то разумно взять точки с максимальными значениями сил токов и напряжений. Поэтому в качестве «нулевой точки» выберем значения при U=3,22B. Результаты расчетов приведены в таблице 2.

Таблица 2.

U, B	<i>I</i> , мА	Р, Вт	<i>R</i> , кОм	$\left(\frac{T}{T_0}\right)$	$\left(\frac{P}{P_0}\right)$	$\left(\frac{T}{T_0}\right)^2$	$\left(\frac{T}{T_0}\right)^3$	$\left(\frac{T}{T_0}\right)^4$	$\left(\frac{T}{T_0}\right)^5$
0,65	117	0,076	5,55						
1,03	143	0,147	7,20						
1,51	174	0,264	8,68						
2,07	205	0,424	10,1						
2,62	232	0,608	11,3						
3,22	259	0,833	12,5	1,00	1,00	1,00	1,00	1,00	1,00
3,64	276	1,003	13,2	1,05	1,21	1,10	1,15	1,21	1,26
4,14	294	1,216	14,1	1,10	1,46	1,22	1,35	1,49	1,64
4,55	309	1,404	14,7	1,14	1,69	1,31	1,50	1,72	1,97
4,90	322	1,578	15,2	1,17	1,90	1,38	1,62	1,90	2,23

График показан на рисунке ниже: экспериментальные точки отмечены большими красными ромбами. Для определения показателя степени (указано, что она целая) можно вычислить значения

величины $\left(\frac{T}{T_0}\right)$ для нескольких значений n (в Таблице 2 n=2,3,4,5). Для наглядности эти точки нанесены на график.

Проведенные расчеты показывают, что экспериментальные точки очень близко ложатся на кривую, соответствующую n=4.

Заключительный этап республиканской олимпиады по учебному предмету «Физика» 2024-2025 учебный год

Таким образом, ответ однозначен: показатель степени в зависимости мощности излучения от температуры равен

$$n = 4 \tag{14}$$

2.3 Максимальную температуру нити накаливания можно выразить и рассчитать с помощью формулы (13), используя данные для комнатной температуры

$$T = T_0 \left(\frac{R}{R_0}\right)^{\frac{4}{5}} = (273 + 23) \left(\frac{15,2}{1,9}\right)^{\frac{4}{5}} = 1560K$$
 (15)

Переходя в привычную шкалу Цельсия, получаем:

$$t_{\text{max}} \,{}^{\circ}C = T - 273 \approx 1300 \,{}^{\circ}C$$
 (16)

Полученный результат незначительно отличается от полученного в рамках линейной модели. Следовательно, основная причина неприменимости линейной модели действительно заключается в том, что основной механизм потерь — тепловое излучение нити накаливания.