CIS 5560 Professor J. Woo

PREDICTING AD CLICK FRAUD

MACHINE LEARNING PREDICTIVE ANALYSIS USING AZURE ML AND DATABRICKS SPARK ML

Group-F Hai Anh Le Neha Gupta Maria Boldina

TABLE OF CONTENTS

- Introduction
- Dataset details
- Technical specifications
- Data processing and constrains
- Selecting algorithms and performance metrics
- Azure ML algorithms
- Databricks Spark ML algorithms
- Azure ML and Spark ML Results comparison

INTRODUCTION

- Click Fraud happens at an overwhelming volume, resulting in misleading click data and wasted money
- Click Fraud occurs when a person, automated script or computer program imitates a legitimate user, clicking on an ad without having an actual interest in the target of the ad's link
- As the largest mobile market in the world, China suffers from huge volumes of fraudulent traffic
- TalkingData is China's largest independent big data service platform
 - covers over 70% of active mobile devices nationwide
 - handles 3 billion clicks per day
 - 90% of which are potentially fraudulent

The goal of our project is to predict whether a user will download an app after clicking on a mobile app ad

To better target the audience, to avoid fraudulent practices and save money

DATASET DETAILS

- Dataset name: TalkingData AdTracking Fraud Detection
- Dataset URL: https://www.kaggle.com/c/talkingdata-adtracking-fraud-detection/data
- Dataset contains 200 million clicks over 4 day period
- Dataset size:
 - Original dataset size: 7GB
 TalkingData
 - Implemented Python code to reduce size to 1 GB (15%)
- Dataset format: .csv

DATASET DETAILS

rows 2717539	colu 95 8	mns						
	ip	арр	device	OS	channel	click_time	attributed_time	is_attributed
view as	III				. latar			
	161007	3	1	13	379	2017-11-06T14:35:08		0
	172522	3	1	25	379	2017-11-06T14:38:27		0
	124979	3	1	18	379	2017-11-06T14:40:16		0
	129614	3	1	20	379	2017-11-06T14:49:36		0
	28739	3	1	13	379	2017-11-06T14:50:29		0
	23550	3	1	13	379	2017-11-06T14:53:39		0
	129614	3	1	19	379	2017-11-06T14:57:50		0
	128855	3	1	13	379	2017-11-06T14:58:16		0
	108942	3	1	19	379	2017-11-06T15:04:28		0
	192796	3	1	19	379	2017-11-06T15:07:24		0
	32450	3	1	17	379	2017-11-06T15:07:29		0
	107899	6	1	13	459	2017-11-06T15:12:43		0
	89489	3	1	13	379	2017-11-06T15:13:23		0
	164537	58	1	19	120	2017-11-06T15:14:35		0
	129614	3	1	15	379	2017-11-06T15:16:47		0
	89489	3	1	13	379	2017-11-06T15:20:38		0
	3653	3	1	18	379	2017-11-06T15:21:34		0
	108942	3	1	13	379	2017-11-06T15:37:28		0
	204158	35	1	13	21	2017-11-06T15:41:07	2017-11-07T08:17:19	1

DATASET DETAILS

Data fields

Each row of the training data contains a click record, with the following features.

- ip:ip address of click.
- app : app id for marketing.
- device: device type id of user mobile phone (e.g., iphone 6 plus, iphone 7, huawei mate 7, etc.)
- os: os version id of user mobile phone
- channel: channel id of mobile ad publisher
- click_time: timestamp of click (UTC)
- attributed_time: if user download the app for after clicking an ad, this is the time of the app download
- is_attributed: the target that is to be predicted, indicating the app was downloaded

TECHNICAL SPECIFICATIONS

Azure ML Studio

- Free Workspace
- 10GB storage
- Single node
- Region: South Central US

databricks

- DataBricks Subscription
- Cluster 4.0 (includes Apache Spark 2.3.0, Scala 2.11)
- 2 Spark Workers with total of 16 GB Memory and 4 Cores
- Python 2.7

DATA PROCESSING AND CONSTRAINTS

- Unbalanced dataset with number of negative classes (0) far more outweighing the positive class (1)
- 0.19% App downloaded
- 99.81% App not downloaded
- 1GB dataset still too large for Azure ML → sampling was used

WORKING WITH UNBALANCED DATA

- Helps balance data & avoid overfitting
- Increased percent of minority class (1) from 0.19% to 11%

- Stratified Split ensures that the output dataset contains a representative sample of the values in the selected column
- Ensures that the random sample does not contain all rows with just 0s
- \sim 8% sample used = 80 MB

SELECTING ALGORITHMS FOR AZURE ML

Two-Class Classification:

- Binary or binomial classification is the task of classifying the elements of a given set into two groups
- predicting a category or class, either downloaded (1) or not downloaded (0)
- Decision trees often perform well on imbalanced datasets because their hierarchical structure allows them to learn signals from both classes.
- Tree ensembles almost always outperform singular decision trees
 - Algorithm #1: Two-class Decision Jungle
 - Algorithm #2: Two-class Decision Forest

SELECTING PERFORMANCE METRICS

False Positives indicate the model predicted an app was downloaded when in fact it wasn't We want to minimize the FP → save \$\$\$

AZURE ML MODEL #1: TWO-CLASS DECISION JUNGLE

- 8% Sample
- SMOTE 5000%
- 70:30 Split Train/Test
- Cross-Validation
- Tune Model
 Hyperparameters
- Features used: all 7

AZURE ML MODEL #1: RESULTS

AZURE ML MODEL #1: Tune Model Hyperparameters

- With Tune Hyperparameters
- Without Tune
 Hyperparameters

AZURE ML MODEL #2: TWO-CLASS DECISION FOREST

- 8% Sample
- SMOTE 5000%
- 70:30 Split Train/Test
- Cross-Validation
- Tune Model
 Hyperparameters
- Permutation Feature
 Importance

AZURE ML MODEL #2: Cross Validation

AZURE ML MODEL #2: RESULTS

AZURE ML MODEL #2: Permutation Feature Importance

- Features used:
 - channel
 - app

AZURE ML MODEL #2: Improving Precision

Precision

FP decreased from 1,659 to 377 FN increased from 1,834 to 5,142

Permutation Feature Importance Results

AZURE ML RESULTS COMPARISON

	TWO-CLASS DECISION JUNGLE	TWO-CLASS DECISION FOREST
AUC	0.905	0.997
PRECISION	1.0	0.992
RECALL	0.001	0.902
TP	35	47,199
FP	0	377
TN	52,306	406,228
FN	406,605	5,142

Two-class Decision Forest is the best model!

SELECTING ALGORITHMS FOR DATABRICKS SPARK ML

Binary Classification:

- Predicting a category or class, either downloaded (1) or not downloaded (0)
- Binary or binomial classification is the task of classifying the elements of a given set into two groups (predicting which group each one belongs to) on the basis of a classification rule.
- Algorithm #1: Decision Tree Classifier
- Algorithm #2: Random Forest Classifier

DATABRICKS SPARK ML COMBINATION OF FEATURES

- Feature 1: extract day of the week and hour of the day from the click time
- **Feature 2:** group clicks by combination of (lp, Day_of_week_number and Hour)
- **Feature 3:** group clicks by combination of (Ip, App, Operating System, Day_of_week_number and Hour)
- **Feature 4:** group clicks by combination of (App, Day_of_week_number and Hour)
- **Feature 5:** group clicks by combination of (lp, App, Device and Operating System)
- Feature 6: group clicks by combination of (lp, Device and Operating System)

DATABRICKS MODEL #1: Decision Tree Classifier TrueLabel and Prediction

DATABRICKS MODEL #2: Random Forest Classifier TrueLabel and Prediction

DATABRICKS MODEL #1: Decision Tree Classifier Confusion Matrix

DATABRICKS MODEL #2: Random Forest Classifier Confusion Matrix

DATABRICKS SPARK ML RESULTS COMPARISON

	Decision Tree Classifier	Random Forest Classifier
AUC	0.815	0.746
PRECISION	0.822	0.878
RECALL	0.633	0.495
ТР	86,683	67,726
FP	18,727	9,408
TN	7,112,961	7,122,280
FN	50,074	69,031
RMSE	0.0972	0.1038

Decision Tree Classifier is the best model!

AZURE ML AND DATABRICKS RESULTS COMPARISON

	TWO-CLASS DECISION JUNGLE	TWO-CLASS DECISION FOREST	DECISION TREE CLASSIFIER	RANDOM FOREST CLASSIFIER
AUC	0.905	0.997	0.815	0.746
PRECISION	1.0	0.992	0.822	0.878
RECALL	0.001	0.902	0.633	0.495
TP	35	47,199	86,683	67,726
FP	0	377	18,727	9,408
TN	52,306	406,228	7,112,961	7,122,280
FN	406,605	5,142	50,074	69,031
Run Time	2 hrs	2-3 hrs	22 mins	50 mins

Azure ML Two-class Decision Forest is the best model!

REFERENCES

- Github link: https://github.com/ngupta8
- https://www.kaggle.com/c/talkingdata-adtracking-frauddetection/data
- https://blogs.msdn.microsoft.com/andreasderuiter/2015/02/09/performance-measures-in-azure-ml-accuracy-precision-recall-and-f1-score/
- https://docs.microsoft.com/en-us/azure/machine-learning/studio/
- https://docs.microsoft.com/en-us/azure/machinelearning/studio/algorithm-choice
- https://docs.databricks.com/spark/latest/mllib/binary-classification-mllib-pipelines.html

THANK YOU!