

Graph wavefront algorithm

Haowen Zhang
Georgia Institute of Technology
July 7, 2022

- A sequence graph $G(V, E, \sigma)$ is a directed labeled graph
- Function $\sigma: V \to \Sigma^+$ labels each vertex with a string over the alphabet Σ ={A, C, G, T}

- A sequence graph $G(V, E, \sigma)$ is a directed labeled graph
- Function $\sigma: V \to \Sigma^+$ labels each vertex with a string over the alphabet Σ ={A, C, G, T}

• Given a query and a sequence graph, find a walk in the graph so that the edit distance between the query and the walk is minimized.

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

				s_2		
		Т	G	$rac{s_2}{C}$	Α	Α
	0	1	2	3	4	5
Т	1					
Α	2					
s_1 C	3					
С	4					
Α	5					

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

				s_2		
		Т	G	$rac{s_2}{C}$	Α	Α
	0	1	2	3	4	5
Т	1-	*				
Α	2					
s_1 C	3					
С	4					
Α	5					

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

					s_2			
			Τ	G	C	Α	Α	
		0	1	2	3	4	5	
	Т	1	0	1	2	3	4	
	Α	2	1	1	2	2	3	
	s_1C	3	2	2	1	2	3	
	С	4	3	3	2	2	3	
1	, А	5	4	4	3	2	2	48.84

Time: $O(N^2)$

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

				s_2		
		Т	G	C	Α	Α
	0	1	2	3	4	5
Т	1	0	1	2	3	4
Α	2	1	1	2	2	3
s_1 C	3	2	2	1	2	3
С	4	3	3	2	2	3
, А	5	4	4	3	2	2

Time: $O(N^2)$

Can we do better in practice?

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

				s_2		
		Т	G	С	Α	Α
	0	1	2	3	4	5
Т	1	0	1	2	3	4
Α	2	1	1	2	2	3
s_1 C	3	2	2	1	2	3
С	4	3	3	2	2	3
А	5	4	4	3	2	2

Time: $O(N^2)$

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

Time: $O(N^2) O(DN)$

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

Time: $O(N^2) O(DN)$

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

$$\tilde{J}_{d,k} = \max \begin{cases}
\tilde{H}_{d-1,k-1} \\
\tilde{H}_{d-1,k+1} + 1 \\
\tilde{H}_{d-1,k} + 1
\end{cases} (2)$$

$$\tilde{H}_{d,k} = j + LCP\left(s_1[i+1,|s_1|], s_2[j+1,|s_2|]\right),$$

$$j = \tilde{J}_{d,k}, \ i = k+j$$

Observation: DP cells with d are always adjacent to DP cells with d-1 or d

Time: $O(N^2) O(DN)$

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

$$\tilde{J}_{d,k} = \max \begin{cases}
\tilde{H}_{d-1,k-1} \\
\tilde{H}_{d-1,k+1} + 1 \\
\tilde{H}_{d-1,k} + 1
\end{cases} (2)$$

$$\tilde{H}_{d,k} = j + LCP\left(s_1[i+1,|s_1|], s_2[j+1,|s_2|]\right),$$

$$j = \tilde{J}_{d,k}, \ i = k+j$$

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

$$\tilde{J}_{d,k} = \max \begin{cases}
\tilde{H}_{d-1,k-1} \\
\tilde{H}_{d-1,k+1} + 1 \\
\tilde{H}_{d-1,k} + 1
\end{cases} (2)$$

$$\tilde{H}_{d,k} = j + LCP\left(s_1[i+1,|s_1|], s_2[j+1,|s_2|]\right),$$

$$j = \tilde{J}_{d,k}, \ i = k+j$$

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

$$\tilde{J}_{d,k} = \max \begin{cases}
\tilde{H}_{d-1,k-1} \\
\tilde{H}_{d-1,k+1} + 1 \\
\tilde{H}_{d-1,k} + 1
\end{cases} (2)$$

$$\tilde{H}_{d,k} = j + LCP\left(s_1[i+1,|s_1|], s_2[j+1,|s_2|]\right),$$

$$j = \tilde{J}_{d,k}, \ i = k+j$$

Offset on diagonal <=> cell column index

Extension step

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

$$\tilde{J}_{d,k} = \max \begin{cases}
\tilde{H}_{d-1,k-1} \\
\tilde{H}_{d-1,k+1} + 1 \\
\tilde{H}_{d-1,k} + 1
\end{cases} (2)$$

$$\tilde{H}_{d,k} = j + LCP\left(s_1[i+1,|s_1|], s_2[j+1,|s_2|]\right),$$

$$j = \tilde{J}_{d,k}, \ i = k+j$$

Offset on diagonal <=> cell column index

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

$$\tilde{J}_{d,k} = \max \begin{cases}
\tilde{H}_{d-1,k-1} \\
\tilde{H}_{d-1,k+1} + 1 \\
\tilde{H}_{d-1,k} + 1
\end{cases} (2)$$

$$\tilde{H}_{d,k} = j + LCP\left(s_1[i+1,|s_1|], s_2[j+1,|s_2|]\right),$$

$$j = \tilde{J}_{d,k}, \ i = k+j$$

Expansion step

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

$$\tilde{J}_{d,k} = \max \begin{cases}
\tilde{H}_{d-1,k-1} \\
\tilde{H}_{d-1,k+1} + 1 \\
\tilde{H}_{d-1,k} + 1
\end{cases} (2)$$

$$\tilde{H}_{d,k} = j + LCP\left(s_1[i+1,|s_1|], s_2[j+1,|s_2|]\right),$$

$$j = \tilde{J}_{d,k}, \ i = k+j$$

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

$$\tilde{J}_{d,k} = \max \begin{cases}
\tilde{H}_{d-1,k-1} \\
\tilde{H}_{d-1,k+1} + 1 \\
\tilde{H}_{d-1,k} + 1
\end{cases} (2)$$

$$\tilde{H}_{d,k} = j + LCP\left(s_1[i+1,|s_1|], s_2[j+1,|s_2|]\right),$$

$$j = \tilde{J}_{d,k}, \ i = k+j$$

Extension step

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

$$\tilde{J}_{d,k} = \max \begin{cases}
\tilde{H}_{d-1,k-1} \\
\tilde{H}_{d-1,k+1} + 1 \\
\tilde{H}_{d-1,k} + 1
\end{cases} (2)$$

$$\tilde{H}_{d,k} = j + LCP\left(s_1[i+1,|s_1|], s_2[j+1,|s_2|]\right),$$

$$j = \tilde{J}_{d,k}, \ i = k+j$$

a=1
Extension step

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

$$\tilde{J}_{d,k} = \max \begin{cases}
\tilde{H}_{d-1,k-1} \\
\tilde{H}_{d-1,k+1} + 1 \\
\tilde{H}_{d-1,k} + 1
\end{cases} (2)$$

$$\tilde{H}_{d,k} = j + LCP\left(s_1[i+1,|s_1|], s_2[j+1,|s_2|]\right),$$

$$j = \tilde{J}_{d,k}, \ i = k+j$$

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

$$\tilde{J}_{d,k} = \max \begin{cases}
\tilde{H}_{d-1,k-1} \\
\tilde{H}_{d-1,k+1} + 1 \\
\tilde{H}_{d-1,k} + 1
\end{cases} (2)$$

$$\tilde{H}_{d,k} = j + LCP\left(s_1[i+1,|s_1|], s_2[j+1,|s_2|]\right),$$

$$j = \tilde{J}_{d,k}, \ i = k+j$$

Expansion step

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

$$\tilde{J}_{d,k} = \max \begin{cases}
\tilde{H}_{d-1,k-1} \\
\tilde{H}_{d-1,k+1} + 1 \\
\tilde{H}_{d-1,k} + 1
\end{cases} (2)$$

$$\tilde{H}_{d,k} = j + LCP\left(s_1[i+1,|s_1|], s_2[j+1,|s_2|]\right),$$

$$j = \tilde{J}_{d,k}, \ i = k+j$$

Expansion step

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

$$\tilde{J}_{d,k} = \max \begin{cases}
\tilde{H}_{d-1,k-1} \\
\tilde{H}_{d-1,k+1} + 1 \\
\tilde{H}_{d-1,k} + 1
\end{cases} (2)$$

$$\tilde{H}_{d,k} = j + LCP\left(s_1[i+1,|s_1|], s_2[j+1,|s_2|]\right),$$

$$j = \tilde{J}_{d,k}, \ i = k+j$$

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

$$\tilde{J}_{d,k} = \max \begin{cases}
\tilde{H}_{d-1,k-1} \\
\tilde{H}_{d-1,k+1} + 1 \\
\tilde{H}_{d-1,k} + 1
\end{cases} (2)$$

$$\tilde{H}_{d,k} = j + LCP\left(s_1[i+1,|s_1|], s_2[j+1,|s_2|]\right),$$

$$j = \tilde{J}_{d,k}, \ i = k+j$$

Extension step

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

$$\tilde{J}_{d,k} = \max \begin{cases}
\tilde{H}_{d-1,k-1} \\
\tilde{H}_{d-1,k+1} + 1 \\
\tilde{H}_{d-1,k} + 1
\end{cases} (2)$$

$$\tilde{H}_{d,k} = j + LCP\left(s_1[i+1,|s_1|], s_2[j+1,|s_2|]\right),$$

$$j = \tilde{J}_{d,k}, \ i = k+j$$

Extension step

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

$$\tilde{J}_{d,k} = \max \begin{cases}
\tilde{H}_{d-1,k-1} \\
\tilde{H}_{d-1,k+1} + 1 \\
\tilde{H}_{d-1,k} + 1
\end{cases} (2)$$

$$\tilde{H}_{d,k} = j + LCP\left(s_1[i+1,|s_1|], s_2[j+1,|s_2|]\right),$$

$$j = \tilde{J}_{d,k}, \ i = k+j$$

Return min cost

$$H_{i,j} = \min \begin{cases} H_{i-1,j} + 1 \\ H_{i,j-1} + 1 \\ H_{i-1,j-1} + \Delta_{i,j} \end{cases}$$
 (1)

$$\tilde{J}_{d,k} = \max \begin{cases}
\tilde{H}_{d-1,k-1} \\
\tilde{H}_{d-1,k+1} + 1 \\
\tilde{H}_{d-1,k} + 1
\end{cases} (2)$$

$$\tilde{H}_{d,k} = j + LCP\left(s_1[i+1,|s_1|], s_2[j+1,|s_2|]\right),$$

$$j = \tilde{J}_{d,k}, \ i = k+j$$

Return min cost

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

Α

G

G

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
(1)

• DP recurrence to compute sequence-to-graph alignment

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

0	1	2
1	0	1
2	1	1
3	2	2
4	3	2
5	4	3
6	5	4
7	6	5

G

3
2
2
2
3
1
2
3

2	3	4
1	თ	4
1	1	2
2	1	2
2	2	1
1	2	2
2	2	3
3	3	2

DP recurrence to compute sequence-to-graph alignment

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

0		
	0	1
	1	1
	2	2
		2

G

1	2
1	2
2	2
1	
	1
	2

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
(1)

$$\tilde{J}_{d,v,k} = \max \begin{cases} \tilde{H}_{d-1,v,k-1} \\ \tilde{H}_{d-1,v,k+1} + 1 \\ \tilde{H}_{d-1,v,k} + 1 \\ 0, \exists u, (u,v) \in E, \tilde{H}_{d,u,k-|\sigma(u)|} = |\sigma(u)| \end{cases}$$

$$\tilde{H}_{d,v,k} = j + LCP\left(q[i+1,|q|], \sigma(v)[j+1,|\sigma(v)|]\right),$$

$$j = \tilde{J}_{d,v,k}, \ i = k+j$$
(2)

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

$$\tilde{J}_{d,v,k} = \max \begin{cases} \tilde{H}_{d-1,v,k-1} \\ \tilde{H}_{d-1,v,k+1} + 1 \\ \tilde{H}_{d-1,v,k} + 1 \\ 0, \exists u, (u,v) \in E, \tilde{H}_{d,u,k-|\sigma(u)|} = |\sigma(u)| \end{cases}$$

$$\tilde{H}_{d,v,k} = j + LCP\left(q[i+1,|q|], \sigma(v)[j+1,|\sigma(v)|]\right),$$

$$j = \tilde{J}_{d,v,k}, \ i = k+j$$

DP recurrence to compute sequence-to-graph alignment

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

$$\tilde{J}_{d,v,k} = \max \begin{cases} \tilde{H}_{d-1,v,k-1} \\ \tilde{H}_{d-1,v,k+1} + 1 \\ \tilde{H}_{d-1,v,k} + 1 \\ 0, \exists u, (u,v) \in E, \tilde{H}_{d,u,k-|\sigma(u)|} = |\sigma(u)| \end{cases}$$

$$\tilde{H}_{d,v,k} = j + LCP\left(q[i+1,|q|], \sigma(v)[j+1,|\sigma(v)|]\right),$$

$$j = \tilde{J}_{d,v,k}, \ i = k+j$$

$$(2)$$

d=0

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

$$\tilde{J}_{d,v,k} = \max \begin{cases} \tilde{H}_{d-1,v,k-1} \\ \tilde{H}_{d-1,v,k+1} + 1 \\ \tilde{H}_{d-1,v,k} + 1 \\ 0, \exists u, (u,v) \in E, \tilde{H}_{d,u,k-|\sigma(u)|} = |\sigma(u)| \end{cases}$$

$$\tilde{H}_{d,v,k} = j + LCP\left(q[i+1,|q|], \sigma(v)[j+1,|\sigma(v)|]\right),$$

$$j = \tilde{J}_{d,v,k}, \ i = k+j$$

• DP recurrence to compute sequence-to-graph alignment

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

$$\tilde{J}_{d,v,k} = \max \begin{cases}
\tilde{H}_{d-1,v,k-1} \\
\tilde{H}_{d-1,v,k+1} + 1 \\
\tilde{H}_{d-1,v,k} + 1 \\
0, \exists u, (u,v) \in E, \tilde{H}_{d,u,k-|\sigma(u)|} = |\sigma(u)|
\end{cases}$$

$$\tilde{H}_{d,v,k} = j + LCP\left(q[i+1,|q|], \sigma(v)[j+1,|\sigma(v)|]\right),$$

$$j = \tilde{J}_{d,v,k}, \ i = k+j$$
(2)

d=1

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

$$\tilde{J}_{d,v,k} = \max \begin{cases} \tilde{H}_{d-1,v,k-1} \\ \tilde{H}_{d-1,v,k+1} + 1 \\ \tilde{H}_{d-1,v,k} + 1 \\ 0, \exists u, (u,v) \in E, \tilde{H}_{d,u,k-|\sigma(u)|} = |\sigma(u)| \end{cases}$$

$$\tilde{H}_{d,v,k} = j + LCP\left(q[i+1,|q|], \sigma(v)[j+1,|\sigma(v)|]\right),$$

$$j = \tilde{J}_{d,v,k}, \ i = k+j$$

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$

$$\begin{split} \tilde{J}_{d,v,k} &= \max \begin{cases} \tilde{H}_{d-1,v,k-1} \\ \tilde{H}_{d-1,v,k+1} + 1 \\ \tilde{H}_{d-1,v,k} + 1 \\ 0, \exists u, (u,v) \in E, \tilde{H}_{d,u,k-|\sigma(u)|} = |\sigma(u)| \end{cases} \\ \tilde{H}_{d,v,k} &= j + LCP\left(q[i+1,|q|], \sigma(v)[j+1,|\sigma(v)|]\right), \\ j &= \tilde{J}_{d,v,k}, \ i = k+j \end{split}$$

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

$$\tilde{J}_{d,v,k} = \max \begin{cases} \tilde{H}_{d-1,v,k-1} \\ \tilde{H}_{d-1,v,k+1} + 1 \\ \tilde{H}_{d-1,v,k} + 1 \\ 0, \exists u, (u,v) \in E, \tilde{H}_{d,u,k-|\sigma(u)|} = |\sigma(u)| \end{cases}$$

$$\tilde{H}_{d,v,k} = j + LCP\left(q[i+1,|q|], \sigma(v)[j+1,|\sigma(v)|]\right),$$

$$j = \tilde{J}_{d,v,k}, \ i = k+j$$

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

$$\begin{split} \tilde{J}_{d,v,k} &= \max \begin{cases} \tilde{H}_{d-1,v,k-1} \\ \tilde{H}_{d-1,v,k+1} + 1 \\ \tilde{H}_{d-1,v,k} + 1 \\ 0, \exists u, (u,v) \in E, \tilde{H}_{d,u,k-|\sigma(u)|} = |\sigma(u)| \\ \tilde{H}_{d,v,k} &= j + LCP\left(q[i+1,|q|], \sigma(v)[j+1,|\sigma(v)|]\right), \\ j &= \tilde{J}_{d,v,k}, \ i = k+j \end{split}$$

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

$$\begin{split} \tilde{J}_{d,v,k} &= \max \begin{cases} \tilde{H}_{d-1,v,k-1} \\ \tilde{H}_{d-1,v,k+1} + 1 \\ \tilde{H}_{d-1,v,k} + 1 \\ 0, \exists u, (u,v) \in E, \tilde{H}_{d,u,k-|\sigma(u)|} = |\sigma(u)| \\ \tilde{H}_{d,v,k} &= j + LCP\left(q[i+1,|q|], \sigma(v)[j+1,|\sigma(v)|]\right), \\ j &= \tilde{J}_{d,v,k}, \ i = k+j \end{split}$$

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

$$\tilde{J}_{d,v,k} = \max \begin{cases} \tilde{H}_{d-1,v,k-1} \\ \tilde{H}_{d-1,v,k+1} + 1 \\ \tilde{H}_{d-1,v,k} + 1 \\ 0, \exists u, (u,v) \in E, \tilde{H}_{d,u,k-|\sigma(u)|} = |\sigma(u)| \end{cases}$$

$$\tilde{H}_{d,v,k} = j + LCP\left(q[i+1,|q|], \sigma(v)[j+1,|\sigma(v)|]\right),$$

$$j = \tilde{J}_{d,v,k}, \ i = k+j$$

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

$$\tilde{J}_{d,v,k} = \max \begin{cases} \tilde{H}_{d-1,v,k-1} \\ \tilde{H}_{d-1,v,k+1} + 1 \\ \tilde{H}_{d-1,v,k} + 1 \\ 0, \exists u, (u,v) \in E, \tilde{H}_{d,u,k-|\sigma(u)|} = |\sigma(u)| \end{cases}$$

$$\tilde{H}_{d,v,k} = j + LCP\left(q[i+1,|q|], \sigma(v)[j+1,|\sigma(v)|]\right),$$

$$j = \tilde{J}_{d,v,k}, \ i = k+j$$

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

$$\tilde{J}_{d,v,k} = \max \begin{cases} \tilde{H}_{d-1,v,k-1} \\ \tilde{H}_{d-1,v,k+1} + 1 \\ \tilde{H}_{d-1,v,k} + 1 \\ 0, \exists u, (u,v) \in E, \tilde{H}_{d,u,k-|\sigma(u)|} = |\sigma(u)| \end{cases}$$

$$\tilde{H}_{d,v,k} = j + LCP\left(q[i+1,|q|], \sigma(v)[j+1,|\sigma(v)|]\right),$$

$$j = \tilde{J}_{d,v,k}, \ i = k+j$$

DP recurrence to compute sequence-to-graph alignment

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

$$\tilde{J}_{d,v,k} = \max \begin{cases} \tilde{H}_{d-1,v,k-1} \\ \tilde{H}_{d-1,v,k+1} + 1 \\ \tilde{H}_{d-1,v,k} + 1 \\ 0, \exists u, (u,v) \in E, \tilde{H}_{d,u,k-|\sigma(u)|} = |\sigma(u)| \end{cases}$$

$$\tilde{H}_{d,v,k} = j + LCP\left(q[i+1,|q|], \sigma(v)[j+1,|\sigma(v)|]\right),$$

$$j = \tilde{J}_{d,v,k}, \ i = k+j$$

d=2

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

$$\begin{split} \tilde{J}_{d,v,k} &= \max \begin{cases} \tilde{H}_{d-1,v,k-1} \\ \tilde{H}_{d-1,v,k+1} + 1 \\ \tilde{H}_{d-1,v,k} + 1 \\ 0, \exists u, (u,v) \in E, \tilde{H}_{d,u,k-|\sigma(u)|} = |\sigma(u)| \end{cases} \\ \tilde{H}_{d,v,k} &= j + LCP\left(q[i+1,|q|], \sigma(v)[j+1,|\sigma(v)|]\right), \\ j &= \tilde{J}_{d,v,k}, \ i = k+j \end{split}$$

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1

$$\begin{split} \tilde{J}_{d,v,k} &= \max \begin{cases} \tilde{H}_{d-1,v,k-1} \\ \tilde{H}_{d-1,v,k+1} + 1 \\ \tilde{H}_{d-1,v,k} + 1 \\ 0, \exists u, (u,v) \in E, \tilde{H}_{d,u,k-|\sigma(u)|} = |\sigma(u)| \end{cases} \\ \tilde{H}_{d,v,k} &= j + LCP\left(q[i+1,|q|], \sigma(v)[j+1,|\sigma(v)|]\right), \\ j &= \tilde{J}_{d,v,k}, \ i = k+j \end{split}$$

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

$$\tilde{J}_{d,v,k} = \max \begin{cases} \tilde{H}_{d-1,v,k-1} \\ \tilde{H}_{d-1,v,k+1} + 1 \\ \tilde{H}_{d-1,v,k} + 1 \\ 0, \exists u, (u,v) \in E, \tilde{H}_{d,u,k-|\sigma(u)|} = |\sigma(u)| \end{cases}$$

$$\tilde{H}_{d,v,k} = j + LCP\left(q[i+1,|q|], \sigma(v)[j+1,|\sigma(v)|]\right),$$

$$j = \tilde{J}_{d,v,k}, \ i = k+j$$

• DP recurrence to compute sequence-to-graph alignment

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

$$\begin{split} \tilde{J}_{d,v,k} &= \max \begin{cases} \tilde{H}_{d-1,v,k-1} \\ \tilde{H}_{d-1,v,k+1} + 1 \\ \tilde{H}_{d-1,v,k} + 1 \\ 0, \exists u, (u,v) \in E, \tilde{H}_{d,u,k-|\sigma(u)|} = |\sigma(u)| \end{cases} \\ \tilde{H}_{d,v,k} &= j + LCP\left(q[i+1,|q|], \sigma(v)[j+1,|\sigma(v)|]\right), \\ j &= \tilde{J}_{d,v,k}, \ i = k+j \end{split}$$

d=2

$$H_{i,v,j} = \min \begin{cases} H_{i-1,v,j} + 1, & i \ge 1 \\ H_{i,v,j-1} + 1, & j \ge 1 \\ H_{i-1,v,j-1} + \Delta_{i,v,j}, & i \ge 1, j \ge 1 \\ H_{i,u,|\sigma(u)|}, & j = 0, \forall u, (u,v) \in E \end{cases}$$
 (1)

$$\tilde{J}_{d,v,k} = \max \begin{cases} \tilde{H}_{d-1,v,k-1} \\ \tilde{H}_{d-1,v,k+1} + 1 \\ \tilde{H}_{d-1,v,k} + 1 \\ 0, \exists u, (u,v) \in E, \tilde{H}_{d,u,k-|\sigma(u)|} = |\sigma(u)| \end{cases}$$

$$\tilde{H}_{d,v,k} = j + LCP\left(q[i+1,|q|], \sigma(v)[j+1,|\sigma(v)|]\right),$$

$$j = \tilde{J}_{d,v,k}, \ i = k+j$$

 We use an array to keep the offset of the furthest cell and a queue to keep the diagonals that contain the furthest cells with d

Algorithm 1: Graph wavefront algorithm to find the optimal global sequence to graph alignment

```
Input: Query sequence q, sequence graph G = (V, E, \sigma), start vertex v_s \in V and end vertex v_e \in V.
```

```
1 function GWFEDITDIST(q, G, v_s, v_e) begin

2 | k_e \leftarrow |q| - |v_e|

3 | \tilde{H}_{v_s,0} \leftarrow 0

4 | Q \leftarrow [(v_s,0)]

5 | d \leftarrow 0

6 | while true do

7 | GWFEXTEND(q, G, Q, \tilde{H})

8 | if \tilde{H}_{v_e,k_e} = |v_e| then

9 | L return d

10 | d \leftarrow d+1

11 | GWFEXPAND(q, G, Q, \tilde{H})
```


Return min cost, d=2

Graph wavefront pruning

- Find the max sum of aligned query length and graph walk length
- Prune the wavefront left behind

Graph wavefront pruning

 Find the max sum of aligned query length and graph walk length

Graph wavefront pruning

 Find the max sum of aligned query length and graph walk length

• Prune the wavefront left behind

Pruning, d=2