Hiragana Recognition with CNN

Ting-Wei Chang

Dataset

- 1405 handwritten Hiragana images
 - 1000 images produced by Matheus Inoue.
 - 405 images produced by Wishyut.
 - 52 Hiragana characters, each character corresponding to 20-29 images.
- Extract labels from filenames
 - Each filename contains the romanji corresponding to each Hiragana, e.g. "kanaA0.jpg" indicates "a" (あ).
 - Regex is used to extract the file name.
- Training data and testing data
 - Data is split into 1124 training data and 281 testing data.

Image Preprocessing

- Noise removal
 - Morphology techniques and thresholds are applied to input images using openCV.
- Reshape images
 - Each image is reshaped into 64x64 pixels and put inside a 84x84 frame.

- Augmentation
 - Small rotations and shears are applied to training images.

CNN Model

- The CNN structure
 - Two convolution blocks
 - Each block contains 2 convolution layers and 1 maxpooling layer
 - One flattening layer
 - One dense layer with 256 neurons
 - Output layer with 52 neurons
 - Corresponds to 52 characters

CNN Model

- Training details
 - Use RMSprop as optimizer
 - 16 iterations with early stopping criterion
- Training history
 - Run through 16 iterations
 - Final validation loss: 0.2790

Testing results

- 281 testing data from the original dataset
 - 97% accuracy
- 92 images of my handwritten Hiragana
 - 83% accuracy
 - These images are not from the original dataset; in other words, they may have different features.
- Conclusion
 - More diverse handwriting styles, alongside increased data quantity, can lead to a better model with higher accuracy.

Confusion matrix, without normalization

Confusion matrix of the total 281 testing data

Confusion matrix, with normalization

- 0.8

0.4

0.2