Sub.Code : 212 'D'

NEB - GRADE XII 2077 (2020)

Chemistry

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Time: 1.30 hrs.

Full Marks (Condense): 30

	run man	rs (condens
	Group 'A'	
	Attempt any five questions:	5x2=10
1.	Write two important features of hybrid orbitals.	2
2	Define the terms: i) Primary standard solution ii) Acidimetry	1+1
3,	How many coulombs are required to produce 50 gm. of Al reaction is	when electrode
	$AI^{***} + 3e^- \rightarrow AI$ (atomic mass of $AI = 27$).	2
4.	For a reaction, $2N_2O_3\rightarrow 4NO_2+O_p$, The rate of disappearance of N_2O_3 is 4) what will be the rate of formation of NO_3 ?	2
5,	Write the action of heat on blue vitriol.	2 1+1
6.	Write an example of each of the following i) Aldol Condensation ii) Rosenmund's reduction	1+1
775	Write down the structure of a primary amine and a second	lary amine
	from C ₃ H ₄ N and give their IUPAC name.	1-1
	Group 'B'	
8,	Attempt any two questions. Define the terms: i) titration error ii) unknown solution	2x5=10
	THE STATE OF THE S	

What volume of 10 M HCl and 3 M HCl should be mixed to obtain one

litre of 6 M HCl solution.

Contd...

1+1+3

Sub.Code : 212 'D'

NEB - GRADE XII 2077 (2020)

Chemistry

Candidates are required to give their answers in their own words as far as practicable. The figures in margin indicate full marks.

Time: 1:30 hrs.

Full Marks (Condense): 30

Group 'A'

Attempt any five questions.

5x2=10

- What is the mode of hybridization of B in BF₃? Write any two important features of this hybridization.
- 2. Distinguish between end point and equivalence point of reaction.
- 3. What is meant by single electrode potential? How is it measured?
- 4. Define enthalpy of formation giving an example of it.
- 5. Give the balanced chemical reaction for the preparation of black oxide from blue vitriol. How is black oxide converted into red oxide?
- 6. What is Williamson's etherification reaction?
- A primary haloalkane (X), if allowed to react with KCN yields a compound(Y), which on acidic hydrolysis gave propanoic acid. Identify (X) and (Y).

Group 'B'

Attempt any two questions.

2x5=10

- 8. Are all standard solutions, primary standard solutions or not? Give reason, 1 g of a divalent metal was dissolved in 25mL of 2N H₂SO₄ (f = 1.01). The excess acid required 15.1mL of 1N NaOH (f = 0.8) for complete neutralization. Find the atomic weight of the metal.
- 9. What is meant by enthalpy of formation? Calculate the enthalpy of formation of ethane at 298 K, if the enthalpies of combustion of C, H and C.H. are 94.14, 68.47 and 373.3 KCal respectively.
- 10. An Organic Compound (A) reacts with PBr, to give (B). Compound B produces (C) when heated with alc. KOH. The compound (C) undergoes ozonolysis to yield ethanal and methanal as major products. The compound A responses iodoform test. Identify A, B, C and write reactions involved. How is (A) obtained from CH, MgBr?

Contd.

Attempt any one question.

1x10=10

11. Give a suitable chemical reaction for the laboratory preparation of trichloromethane. What happens when trichloromethane reacts with

i. Phenol

ii. Nitric acid

iii. Silver powder

iv. Atmospheric air.

12.Define the terms (i) activation energy (ii) order of reaction
(iii) molecularity of reaction (iv) effective collision (v) rate law equation.

Why does powder sugar dissolve faster than grain sugar?

The following data were obtained for a hypothetical reaction $x + y \longrightarrow z$

Expt	[x] mol L-1	[y] mol L-1	Formation of z mol L-1 S-1
1	0.20	0.20	3x10 ⁻³
2	0.40	0.20	1.2x10 ⁻²
3	0.60	0.40	6x10 ⁻³
4	0.80	0.20	9x10 ⁻³

	Page No
	Chroup 'Airma of the first the
1) Are	What are hybrid orbitals? Draw hybrid structure of methane? The process of mixing of dissimilar atomic orbitals of same atom giving rise to equal number of a new sel of orbitals having same energy is known as hybridization and new orbital is called hybrid orbitals.
	and a seem to have see
	methane ((Hu) egy = 15² 25² 2p² (e) = 15² 25¹ 2pn¹ 2py¹ 2pz¹ [1] [1] [1] [1]
	sp3 hybridization
	for G, En (1) interior for H many and a second as a second
	Fr CMu, (D) H 2 109.5
	HO DH

9	What do you mean by normality of a solution is IN?	
THE STATE OF THE S	Normally is defined as the number of gram equivalent of solute present in one little of solution It is denoted by N.	
	Normality- no of gram equevalent of solute	
	Normality of a solution is 1 N means that one gram equivalent of substance is, present in one Littre of its solution. It is also known as normal solution.	
3	Distinguish between electrochemical equivalent and chemical equivalent.	
\$	Destrochemical equivalent	1
	erated by one od charge.	1-1
	2. It is denoted by T. 3. It is denoted by E.	1

An Erra the chemical formula of green without is the chemical is the chemical formula	of green vitail	An When aniline is theoled with beazene diazenium chloride, p-amina Ozabenzene is obtain ed. This reachant is known as caupling reachant. (S) No-Vit + H. (O) May 0.5°C (O) No (O) Left H. (O) May 0.5°C (O)
---	-----------------	--

			33	لب
Calculate the volume of 1 m wood required to neutralized produced from the neutralized recution. Solo. NJ = M1 = JN NJ = 200CC	Define the terms. The difference between the equivalence point and end point is called to traken emper	exoue) fructure (kethexose)	11-C-04 11-C-04 11-C-04 11-C-04 11-C-04	No.

An: Name a primary reference electrode and mention its impairant wie ference electrode is an electrode which has a jean electrode potential. Standard with the electrode is an example of primary reference electrode. Its potential is assumed to be zero and well-tonion electrode de primary reference electrode. Its potential is assumed to be zero and well-tonion (ell potential using different electrodes. Numerical: The given cell notation is as: Ma(s) / mg ²⁺ (sm) // (u ²⁺ (1m)/10(s) Anode where reduction titles place. Mg acts and a divide which undergoed anidation and (u acts a cothode where reduction titles place. Mg - mg - mg + 44e - (oxidation) (u ²⁺ +4e) (u (reduction) (u ²⁺ +4e) (u (reduction) (u ²⁺ +4e) (u (reduction) (u ²⁺ +2e) (u (reduction) (u ²⁺ +2e) (u (reduction) (u ²⁺ +2e) (u (reduction)	2	1
STA OF STA STATE OF S	Page No.	No
E C E E B D D D D D D D D D D D D D D D D D	primary redponne electrode and mention the	8
मिन न मिन मिन मिन मिन मिन मिन मिन मिन मि	tonous electrode is an electrode which has	hay fm
Mumerical: The given cell nobben is au: Anode -2.37V mg(s) Img ²⁺ (sm) [I (u ⁴⁺ (1m)] (u(s) Anode -2.37V mg(s) Img ²⁺ is anode which undergoes a cothode where reduction titles place. mg - mg - mg ²⁺ + de - (oxidation) (u ²⁺ +de) (u (reduction) (u ²⁺ +de) (u (reduction) - +0.1u-(-0.39) +2.31V	Electrode is an example of primary reference. Its potential is assumed to be zero and altusofe cell potential using different electrodes.	Jes.
Anode -2.37V Anode -2.37V Anode Cottode which undergreed a cottode where reduction take place. Mg - Mg + de - (onidation) (u2+ + de (u (reduction)) (u2+ + de (u (reduction)) - + 0.14 - (-1.37) +2.21 V	notation is as:	
mg (3) I mg ** is anode and (u*+tu) mg acts and as anode which undergoes as cothode where reduction takes place. mg - mg + 1e - (onidation) (u2+1e - 1u (redution) - + 0.1u - (-2.5) + 2.71 V	(lux=(1m)/(u(s) Cathode + 0.34 V	
mg acts and cosode which undergoes as cothode where reduction takes place. mg -1 mg +1e (onidation) (u2+1e -1 (u (redution)) (u2+1e -10.14-(-2.13) -10.14-(-2.13)	is anode and (u2+th) is cathode.	
Evel =	rode which undergoed anidahan and lu acts eduction take place. +de (oxidahan) - (u (redution)	Cf.
- + 0.14-(-2.33) + 2.31 V	nodel + Eo red (anode)	
	(-1.33)	

THE STATE	
	Page No.
	N.V.
	. 00
	NO CH + H() - NO CH + H, 0 Ab qm 53.5 qm
	1000 x 40 =
1111	23.4 gm & Nall
1111	
111	

	Page No.
	Date
50	How would you reparate 1° 2° 8° a ming from their minture by Hollman method?
Bu	The mixture of 1°, 2° and 3" amines can be separated by treating it toith bettmans reagent in diethyl analate.
	18-NY + COOCENS - 1 CONTRE + 2CINSON
	PLY-NUM + COOLEMS - COOLEMS + COLUMB + COLUMB ON ON ON ON ON OTHER (Oily liquid)
	RS-N + COOKEMS - No reachon
	bow the motione containing dethyl examile diethyl examile ester, lerhang amine and alcohol are subjected to filthation. The diethyl examile 1s obtained as residue and is theored with agilland to obtain primary amine.
111	CONMA + ay LOH - J. COOK + R-NY
111	Now the mixture containing diethyl oxamic ester, ethanol and text an am no is subjected to tractoryl distillation.

	Page No.
	CONTAR + 09. 404 - 1 (DOIL + R. LM + 975017)
141	In this way 10,20 and 3° amines are separated.
1	