Linear SVM

Classifier: $f(x)=w^Tx+b$

 $f(X) \ge 0 \Rightarrow X$ is in category $\theta_1 \longleftarrow$

Parameters: w, b

 $f(X) < 0 \Rightarrow X$ is in category θ_2

Training Data: $T = \{(\mathbf{x}_i, \mathbf{y}_i)\}, i = 1, ..., |T|.$ \mathbf{x}_i is a feature vector; $\mathbf{y}_i \in \{-1, 1\}$

Goal 1: Correct labeling on training data:

If $y_i = 1 \rightarrow w^T x_i + b \ge 1$

If $y_i = -1 \rightarrow w^T x_i + b \le -1$

Goal 2: Maximize margin Large margin \Leftrightarrow Small w^Tw **Constraint**

 $|\forall i, y_i(w^Tx_i+b)\geq 1$

Objective

Minimize $\Phi(w)=w^Tw$

The optimization problem is quadratic programming with linear constraints