Numerical Solution of Diffusion Equation

1. 1D Diffusion equation

$$\frac{\partial P(x,t)}{\partial t} = D \cdot \frac{\partial^2 P(x,t)}{\partial x^2}$$

The plot of P vs x for different times is given below: (Taking L = 50, D = 0.5, delta_t = 0.1)

2. 2D Diffusion equation

$$\frac{\partial P(x,y,t)}{\partial t} = D_x \cdot \frac{\partial^2 P(x,y,t)}{\partial x^2} + D_y \cdot \frac{\partial^2 P(x,y,t)}{\partial y^2}$$

All the following cases are simulated with L = 20, delta_t = 0.1

Case I: Dx = Dy

$$Dx = Dy = 0.5$$

At n = 0

At n = 10

At n = 100

At n = 1000

At n = 10000

Case II: Dx > Dy Dx = 0.5, Dy = 0.1

At n = 0

At n = 100

At n = 1000

At n = 10000

Case III: Dx < Dy

$$Dx = 0.1$$
, $Dy = 0.5$

At n = 0

At n = 100

At n = 1000

At n = 10000

