

1/35
SEQUENCE LISTING

5 <110> Biotica Technology Limited
 Pfizer Inc
 Gaisser, Sabine

10 <120> Polyketides and their synthesis

15 <130> IP0013-WO01
 <150> GB0327721.7
 <151> 2003-11-28

20 <160> 57
 <170> PatentIn version 3.2

25 <210> 1
 <211> 305
 <212> PRT
 <213> Streptomyces fradiae

30 <400> 1

35 Met Asn Asp Arg Pro Arg Arg Ala Met Lys Gly Ile Ile Leu Ala Gly
 1 5 10 15

40 Gly Ser Gly Thr Arg Leu Arg Pro Leu Thr Gly Thr Leu Ser Lys Gln
 20 25 30

45 Leu Leu Pro Val Tyr Asp Lys Pro Met Ile Tyr Tyr Pro Leu Ser Val
 35 40 45

50 Leu Met Leu Ala Gly Ile Arg Glu Ile Gln Ile Ile Ser Ser Lys Asp
 50 55 60

55 His Leu Asp Leu Phe Arg Ser Leu Leu Gly Glu Gly Asp Arg Leu Gly
 65 70 75 80

60 Leu Ser Ile Ser Tyr Ala Glu Gln Arg Glu Pro Arg Gly Ile Ala Glu
 85 90 95

65 Ala Phe Leu Ile Gly Ala Arg His Ile Gly Gly Asp Asp Ala Ala Leu
 100 105 110

70 Ile Leu Gly Asp Asn Val Phe His Gly Pro Gly Phe Ser Ser Val Leu
 115 120 125

75 Thr Gly Thr Val Ala Arg Leu Asp Gly Cys Glu Leu Phe Gly Tyr Pro
 130 135 140

80 Val Lys Asp Ala His Arg Tyr Gly Val Gly Glu Ile Asp Ser Gly Gly

2/35

145 150 155 160

5 Arg Leu Leu Ser Leu Glu Glu Lys Pro Arg Arg Pro Arg Ser Asn Leu
 165 170 175

10 Ala Val Thr Gly Leu Tyr Leu Tyr Thr Asn Asp Val Val Glu Ile Ala
 180 185 190

15 Arg Thr Ile Ser Pro Ser Ala Arg Gly Glu Leu Glu Ile Thr Asp Val
 195 200 205

20 Asn Lys Val Tyr Leu Glu Gln Gly Arg Ala Arg Leu Thr Glu Leu Gly
 210 215 220

25 Arg Gly Phe Ala Trp Leu Asp Met Gly Thr His Asp Ser Leu Leu Gln
 225 230 235 240

30 Ala Gly Gln Tyr Val Gln Leu Leu Glu Gln Arg Gln Gly Glu Arg Ile
 245 250 255

35 Ala Cys Ile Glu Glu Ile Ala Met Arg Met Gly Phe Ile Ser Ala Glu
 260 265 270

40 Gln Cys Tyr Arg Leu Gly Gln Glu Leu Arg Ser Ser Ser Tyr Gly Ser
 275 280 285

45 Tyr Ile Ile Asp Val Ala Met Arg Gly Ala Ala Ala Asp Ser Arg Ala
 290 295 300

50 Gln
 305

45 <210> 2
 <211> 303
 <212> PRT
 <213> Streptomyces fradiae

50 <400> 2

55 Met Asn Asp Arg Pro Arg Arg Ala Met Lys Gly Ile Ile Leu Ala Gly
 1 5 10 15

60 Gly Ser Gly Thr Arg Leu Arg Pro Leu Thr Gly Thr Leu Ser Lys Gln
 20 25 30

60 Leu Leu Pro Val Tyr Asp Lys Pro Met Ile Tyr Tyr Pro Leu Ser Val
 35 40 45

3/35

Leu Met Leu Ala Gly Ile Arg Glu Ile Gln Ile Ile Ser Ser Lys Asp
50 55 60

5 His Leu Asp Leu Phe Arg Ser Leu Leu Gly Glu Gly Asp Arg Leu Gly
65 70 75 80

10 Leu Ser Ile Ser Tyr Ala Glu Gln Arg Glu Pro Arg Gly Ile Ala Glu
85 90 95

15 Ala Phe Leu Ile Gly Ala Arg His Ile Gly Gly Asp Asp Ala Ala Leu
100 105 110

20 Ile Leu Gly Asp Asn Val Phe His Gly Pro Gly Phe Ser Ser Val Leu
115 120 125

25 Thr Gly Thr Val Ala Arg Leu Asp Gly Cys Glu Leu Phe Gly Tyr Pro
130 135 140

30 Val Lys Asp Ala His Arg Tyr Gly Val Gly Glu Ile Asp Ser Gly Gly
145 150 155 160

35 Arg Leu Leu Ser Leu Glu Glu Lys Pro Arg Arg Pro Leu Glu Pro Gly
165 170 175

40 Arg His Arg Leu Tyr Leu Tyr Thr Asn Asp Val Val Glu Ile Ala Arg
180 185 190

45 Thr Ile Ser Pro Ser Ala Arg Gly Glu Leu Glu Ile Thr Asp Val Asn
195 200 205

50 Lys Val Tyr Leu Glu Gln Gly Arg Ala Ala His Gly Ala Gly Ala Val
210 215 220

55 Val Ala Trp Leu Asp Met Gly Thr His Asp Ser Leu Leu Gln Ala Gly
225 230 235 240

60 Gln Tyr Val Gln Leu Leu Glu Gln Arg Gln Gly Glu Arg Ile Ala Cys
245 250 255

65 Ile Glu Glu Ile Ala Met Arg Met Gly Phe Ile Ser Ala Glu Gln Cys
260 265 270

70 Tyr Arg Leu Gly Gln Glu Leu Arg Ser Ser Ser Tyr Gly Ser Tyr Ile
275 280 285

4/35

Ile Asp Val Ala Met Arg Gly Ala Ala Ala Asp Ser Arg Ala Gln
290 295 300

5 <210> 3
<211> 333
<212> PRT
<213> Streptomyces fradiae

10 <400> 3

Met Arg Val Leu Val Thr Gly Gly Ala Gly Phe Ile Gly Ser His Phe
1 5 10 15

15 Thr Gly Gln Leu Leu Thr Gly Ala Tyr Pro Asp Leu Gly Ala Thr Arg
20 25 30

20 Thr Val Val Leu Asp Lys Leu Thr Tyr Ala Gly Asn Pro Ala Asn Leu
35 40 45

25 Glu His Val Ala Gly His Pro Asp Leu Glu Phe Val Arg Gly Asp Ile
50 55 60

30 Ala Asp Gln Ala Leu Val Arg Arg Leu Met Glu Gly Val Gly Leu Val
65 70 75 80

35 Val His Phe Ala Ala Glu Ser His Val Asp Arg Ser Ile Glu Ser Ser
85 90 95

40 Glu Ala Phe Val Arg Thr Asn Val Glu Gly Thr Arg Val Leu Leu Gln
100 105 110

45 Ala Ala Val Asp Ala Gly Val Gly Arg Phe Val His Ile Ser Thr Asp
115 120 125

50 Glu Val Tyr Gly Ser Ile Ala Glu Gly Ser Trp Pro Glu Asp His Pro
130 135 140

Leu Ala Pro Asn Ser Pro Tyr Ala Ala Thr Lys Ala Ala Ser Asp Leu
145 150 155 160

55 Leu Ala Leu Ala Tyr His Arg Thr Tyr Gly Leu Asp Val Arg Val Thr
165 170 175

Arg Cys Ser Asn Asn Tyr Gly Pro Arg Gln Tyr Pro Glu Lys Ala Val
180 185 190

60 Pro Leu Phe Thr Thr Asn Leu Leu Asp Gly Leu Pro Val Pro Leu Tyr
195 200 205

Gly Asp Gly Gly Asn Thr Arg Glu Trp Leu His Val Asp Asp His Cys
 210 215 220
 5

Arg Gly Val Ala Leu Val Ala Ala Gly Gly Arg Pro Gly Val Ile Tyr
 225 230 235 240
 10

Asn Ile Gly Gly Gly Thr Glu Leu Thr Asn Ala Glu Leu Thr Asp Arg
 245 250 255
 15

Ile Leu Glu Leu Cys Gly Ala Asp Arg Ser Ala Val Arg Arg Val Ala
 260 265 270
 20

Asp Arg Pro Gly His Asp Arg Arg Tyr Ser Val Asp Thr Thr Lys Ile
 275 280 285
 25

Arg Glu Glu Leu Gly Tyr Ala Pro Arg Thr Gly Ile Thr Glu Gly Leu
 290 295 300
 30

Ala Gly Thr Val Ala Trp Tyr Arg Asp Asn Arg Ala Trp Trp Glu Pro
 305 310 315 320
 35

Leu Lys Arg Ser Pro Gly Gly Arg Glu Leu Glu Arg Ala
 325 330
 40

<210> 4
 <211> 333
 <212> PRT
 <213> Streptomyces fradiae

<400> 4

Met Arg Val Leu Val Thr Gly Gly Ala Gly Phe Ile Gly Ser His Phe
 1 5 10 15
 45

Thr Gly Gln Leu Leu Thr Gly Ala Tyr Pro Asp Leu Gly Ala Thr Arg
 20 25 30

Thr Val Val Leu Asp Lys Leu Thr Tyr Ala Gly Asn Pro Ala Asn Leu
 35 40 45
 50

Glu His Val Ala Gly His Pro Asp Leu Glu Phe Val Arg Gly Asp Ile
 50 55 60
 55

Ala Asp His Gly Trp Trp Arg Arg Leu Met Glu Gly Val Gly Leu Val
 65 70 75 80
 60

6/35

Val His Phe Ala Ala Glu Ser His Val Asp Arg Ser Ile Glu Ser Ser
85 90 95

5 Glu Ala Phe Val Arg Thr Asn Val Glu Gly Thr Arg Val Leu Leu Gln
100 105 110

10 Ala Ala Val Asp Ala Gly Val Gly Arg Phe Val His Ile Ser Thr Asp
115 120 125

Glu Val Tyr Gly Ser Ile Ala Glu Gly Ser Trp Pro Glu Asp His Pro
130 135 140

15 Val Ala Pro Asn Ser Pro Tyr Ala Ala Thr Lys Ala Ala Ser Asp Leu
145 150 155 160

20 Leu Ala Leu Ala Tyr His Arg Thr Tyr Gly Leu Asp Val Arg Val Thr
165 170 175

25 Arg Cys Ser Asn Asn Tyr Gly Pro Arg Gln Tyr Pro Glu Lys Ala Val
180 185 190

30 Pro Leu Phe Thr Thr Asn Leu Leu Asp Gly Leu Pro Val Pro Leu Tyr
195 200 205

35 Gly Asp Gly Gly Asn Thr Arg Glu Trp Leu His Val Asp Asp His Cys
210 215 220

Arg Gly Val Ala Leu Val Gly Ala Gly Gly Arg Pro Gly Val Ile Tyr
225 230 235 240

40 Asn Ile Gly Gly Thr Glu Leu Thr Asn Ala Glu Leu Thr Asp Arg
245 250 255

45 Ile Leu Glu Leu Cys Gly Ala Asp Arg Ser Ala Leu Arg Arg Val Ala
260 265 270

50 Asp Arg Pro Gly His Asp Arg Arg Tyr Ser Val Asp Thr Thr Lys Ile
275 280 285

55 Arg Glu Glu Leu Gly Tyr Ala Pro Arg Thr Gly Ile Thr Glu Gly Leu
290 295 300

Ala Gly Thr Val Ala Trp Tyr Arg Asp Asn Arg Ala Trp Trp Glu Pro
305 310 315 320

50 Leu Lys Arg Ser Pro Gly Arg Glu Leu Glu Arg Ala

7/35

325

330

5 <210> 5
 <211> 2160
 <212> DNA
 <213> Streptomyces eurythermus

10 <400> 5
 ggcatgcctt cggggtgtgc ggcggcgccct cagagcgtgg ccagtacctc gtgcagggcc 60
 gcatcacct tgtcctgtac gtcggcgcg agccccgggt acatcggcag cgagaagatc
 tgcgtcccca gccgctccgt caccggcagc gagcccttgg cgtaccccag gtgcgcgaag 120
 cccgcatgg tgtgcacggg ccacggtaa ctgatgttga gcgagatccc gtacgacttg
 agccctcga ttagtgcgtc cggcgccgg tggcggacga cgtacacgta atacacgtgg 180
 tcgttgcctt cggtgacgga cggcagcacc aggccgcccgg ggcccgtcag gttcgcgagt
 ccttcggcgt aacgccccgc gaccgcgcgc cggccctcga tgtagcggtc gaggcgggtg 240
 agcttgcggc gcaggatctc cgcctgcacc tcgtcgagcc ggctgttgtg gccggcgctc
 tgcacgacgt agtacacgac tcccatgcgg tagtagcgca gccggcgac cgcacggtcg 300
 acgtccgcgt cgtcggtcag cacggcccccgg ccgtcgccgt acgcaccgag gacattcgtc
 gggtagaacg agaaggcggc ggcgtcgccc agcgtccgg ccagctcgcc gtggtgtccgg 360
 gcaccgtcg cctggcgca gtcctccagc accaccaggc cgtcgctc ggccaggcg 420
 cgcaaggcgccatgtcgac gcactgccc tacaggtgca cccgcacgcag ggccattcg
 cgccgggtga tgacgtccgc gacctggcgt gtgtccatga ggtggtcctc ggccggacg 480
 tcgacgaaga cggcggtggc accgggtccgg tcgatggcca ccaccgtcgg cgcggccgtg
 ttggagacgg tgacgacctc gtccccggg cccacccga ggcgcgtcag acccagctt 540
 acggcggtgg tgccgttgc gacaccgcgg cagtgccga ggccgtggta gtccgcgaac
 tccttctcga acccggtccac gctggggccgg aggaccaact gcccggaggc gaagacggtc
 tcgacggcgt cgaggaggcgc cgcgcgttcg ttctggatt cccgcaggta gtcccgacgc 600
 taggttagtca cggagagctc aacctccaga gtgtttcgat ggggtgggtgg gaagccgg
 cgcgccggacc aggtcggtcc agcagtcgcg gaccgactcc cgcagcgaac ggccgggtc
 ccagccccgcg aggccggccgg cccgcggccgt gtcgaccgcg agccagtcct cccggcgccc
 gggagccccgg cccggagccg ggcgtccac caccggcgcc ggaatgccgc tcgcctcgat
 gaacaggccg accagggtcgc ggacggcgac cgcctcgccc cgcggatgc cgcacggcgac
 cgggacggcc ggtgcgcggg cggcgccac gacggcggtc gccacgtccc gcacatcgac
 gtagtcccggt tgccgcgcga gccgggacag ttccacgacg gcctccgcac cccgtcccg
 55 ggc 1260
 ggccaggccg cccggatgc ggcgtccac caccggcgcc ggaatgccgc tcgcctcgat
 gaacaggccg accagggtcgc ggacggcgac cgcctcgccc cgcggatgc cgcacggcgac
 cgggacggcc ggtgcgcggg cggcgccac gacggcggtc gccacgtccc gcacatcgac
 gtagtcccggt tgccgcgcga gccgggacag ttccacgacg gcctccgcac cccgtcccg
 60 ggc 1320
 ggccaggccg cccggatgc ggcgtccac caccggcgcc ggaatgccgc tcgcctcgat
 gaacaggccg accagggtcgc ggacggcgac cgcctcgccc cgcggatgc cgcacggcgac
 cgggacggcc ggtgcgcggg cggcgccac gacggcggtc gccacgtccc gcacatcgac
 gtagtcccggt tgccgcgcga gccgggacag ttccacgacg gcctccgcac cccgtcccg
 ggc 1380
 ggccaggccg cccggatgc ggcgtccac caccggcgcc ggaatgccgc tcgcctcgat
 gaacaggccg accagggtcgc ggacggcgac cgcctcgccc cgcggatgc cgcacggcgac
 cgggacggcc ggtgcgcggg cggcgccac gacggcggtc gccacgtccc gcacatcgac
 gtagtcccggt tgccgcgcga gccgggacag ttccacgacg gcctccgcac cccgtcccg
 ggc 1440
 ggccaggccg cccggatgc ggcgtccac caccggcgcc ggaatgccgc tcgcctcgat
 gaacaggccg accagggtcgc ggacggcgac cgcctcgccc cgcggatgc cgcacggcgac
 cgggacggcc ggtgcgcggg cggcgccac gacggcggtc gccacgtccc gcacatcgac
 gtagtcccggt tgccgcgcga gccgggacag ttccacgacg gcctccgcac cccgtcccg
 ggc 1500
 ggccaggccg cccggatgc ggcgtccac caccggcgcc ggaatgccgc tcgcctcgat
 gaacaggccg accagggtcgc ggacggcgac cgcctcgccc cgcggatgc cgcacggcgac
 cgggacggcc ggtgcgcggg cggcgccac gacggcggtc gccacgtccc gcacatcgac
 gtagtcccggt tgccgcgcga gccgggacag ttccacgacg gcctccgcac cccgtcccg
 ggc 1560

8/35

	ggccgcccagc agccgctcg cgacactggcc cagcagactg atccgcgggg tgccggggcc	1620
	cgacacgttg gacaccgta gcaccacacc gtcgacccac ccgcccagg tgccccgcag	1680
5	caccgcctcg ctggcggcga gcttgcctct gccgtacgcc gtgtccggc goggtaacggc	1740
	gtcggcgccc accgaaccgc cggcggtcac cggccgtac tccagtaccg agccgaggtg	1800
10	gaccagccgc ggccgcgcgg acatcagcgc cagcgcctcc agcaggcgca gctgtggcac	1860
	cgcggtggcg gaccacatct gtcgtcggt acggcccccag atgcgtccga cggagttgac	1920
	gatcgtgtcc ggacgctccg cgtccagggc ggccggccagc gccgcggat ccgtaccggc	1980
15	caggtccagg gtgacgcagc ggtacggcat cggctcctcg ggccggcggc ggcccaccac	2040
	caccacgtca cggcccccgcg cggcgaacgc cgccacaca tgccggccga cgtacccggc	2100
20	gccgcccagg accacgacgc tgccactgcc actgcccgcg ggcattcgat cgttaccat	2160

<210> 6
<211> 4461
<212> DNA
25 <213> Streptomyces eurythermus

	<400> 6 cgtcagtaca gcgtgtggc acacgccacc agggtgcgca gctcgatgtt gaggttagttg	60
30	ccgtgcgcca gcagcccggt gagctgaccg agcgacagcc aggcaagtc gtccgggtcg tcctccggga agtcgtgcgg gacctccacg atcacgtacg gttctggc gtggaaagaag	120
	cgcggccct cctcgactg gacggcgctg tagcgacgt cctgaggcgg cgccgacagc	180
35	acgtcctcca ggtacggcgg gccgggcagc ccccgccgac cggtgtgctc ctgtggccgg	240
	cactggacccg tggggccag ctcggcgacg ttcaagggtgcc cgacgtccac ccgtgcccgc	300
40	acgagcgctgt gcagcacgac gtcgacggac ttgaccagca gcccacatcag acccggcagc	360
	cgcggctcga tgagcgctg cgtccaggag gtgacccccc ggctgctggc gctgacccctcg	420
45	gcggccatga cccggaagtg cccggccgtc tcgtggcga tctcgtgcgg cgtcggtac	480
	cagccgtccg ccgtcaccgt atcgagcgac accccgttct gcaccagctc ccgcaggcg	540
	cgcacacccg tgaaccacgt caggacctcg gccgtcgat gccgcgcgc acccggcag	600
50	ccgaagaagg agcgacgac gggggacggg gcgacgcgt cggcgccgc cgtggcagg	660
	caggcgagga tggaccgggc gtccatgtt accacgttgc ccagcatcag cagccggcgg	720
	agctgccccca gcgtcagcca gcggaaagtcc tcccgatgt cgaggtcgac gtccggccgc	780
55	aactcgacga tcgtgttccg gttcggtttg gccaggaacc agtccgcctg ttccggactgg	840
	atcgagtcga ccaggacacg cggccgtcgc ggccccatga acaggtccag atagcgatg	900
60	tgcgcggccccc ggtgcaccccc ggtgaagttg ctccgggtgg cctgcacggc cggcgacacc	960
		1020

9/35

	tgaagaacgt tgacgttccc gggctccatc ttggcctgca tcaggaagtgcagcaccccg	1080
	tcgatctccc gcgccacgt cccgagcagc cccacctccg gctgcacgtatgggctgc	1140
5	gtccagcccc gtcgggcag ccggtccgta cgacgtgca gcccctccac ggagaagaaa	1200
	cggcccgacg cgtggtgcag gtttcccgtatccgggttggaa agctccagcc ggcagactcc	1260
10	gcgaaggaa cgcgggacac gtcgaagcgc cccgcccga ggcgttcggc cagccagccg	1320
	gagatgccgt cgaacggcgt gaccgcactg tccgcggtgc gtgccgacac cagcaccggc	1380
	cgcgcgtgt ccaccgggtaccggggccgg accgcgtccg cacggcggc cgcggcggcc	1440
15	tgccccgggg gggcggatcg cggcggtacg gttcgcggg cgggttccgc ggcgggtgcgc	1500
	ggcgggacgg ggcgggtgtctgtccgcg gcggtacgcgttggacgggttccggcc	1560
20	gtgtccgcgg tggccgtgcc ggcgagggcg tcgccgatgg tccggcacac ctgcgtccatc	1620
	cggtcgttca gatagaagtgc accgcggcg aagggtgtca gggcgaagggg gcccgtggtc	1680
	agctcccgcc aggccctcgc ctccctccagc gggacatcg gatcacggc accggtgagc	1740
25	accgtgaccg gacagtccag cgcaccgcg ggcacatacg cgtacgtgcc cgcgcggc	1800
	tagtcgttgc ggatcgccgg cagggccagc cgcagcagct cctcgtccctg gaggacggcg	1860
	tcctcggtgc cctgaagcgt ggcgatctcc ggcgatcagcg cgtcgtcgcc gaggaggtgg	1920
30	gcgacgtccc gccggcgac cgtcggcgca cggcggcccg acaccagcag atggacgggg	1980
	gaggcctgcc cggAACCGCG cagccggcg cgcacccctcgacgcccaccgt ggcacccatg	2040
35	ctgtccccga acagcgcgag cggacggtacg gcccacgcgaa ggcgtccgg caccacctgg	2100
	tccaccaggc ccgatataggc cgggatgaac ggctcgtgcc ggcggccctg gggcccgcc	2160
40	tactgcacccg ccagcgccctc cacggtctcg tccagtcgcgttccagggc ggcgaaggag	2220
	gtcgcggcgcc caccggcggt cgggaagcag accagacgcgatccggccatcgccaccgg	2280
	cggtaacggc ggaccacag accctcgatccggccatcgccaccggggatcgccaccgg	2340
45	acgggtggtg cggaaagggt gtcacggcg gatccagctc ctgcgtcgcc gggggaccgc	2400
	tgtcggggac ggcacgtcggt gtcggacgt cgggtacggcg cgtcggggcg tgacggggag	2460
	ggacggggcg gtcgggtcagt cgggtcgccg ggcctccctgc gcggccttct tcagcggttc	2520
50	ccaccacgcg cgggtctccg cgtaccagcg caccgtgtcc gccaggcccg tcgtgaagtc	2580
	cgtacgcggg gcatagccca gtcgcccgt gatcttgccg atgtccagcg cgtaccgcg	2640
55	gtcgtcccccc ggcgggtcg cgcgtggcg caccgacgcg ggcgtccgcac cgcacagccc	2700
	gagcagccgc ttctgtcgttccggccatcgccaccggatcgccaccggatcgccaccgg	2760
60	ctcgccccgg cggcccgccgg tcgcccaccag gtcgtatcccg cggcgtggatcgatccacgt	2820
	cggccatcgccaccggatcgccaccggatcgccaccggatcgccaccggatcgccaccgg	2880

	gttcgtggcg aagagcggga cgacatttc ggggtgctgg tacggccgt agttgttggaa	2940
5	gcaccgggtg acgacgaccg gcaggccgta cgtccggtgg taggccagcg ccaggaggtc	3000
	cgacgcccgc ttcgaggcgg cgtacgggaa gttcggcgcc agcggctgct cctcgcgcca	3060
	cgacccctcg gcgatcgagc cgtacaccc tcgttggag acgtggacga accggccggc	3120
10	ccccgcctcc accgcggcct gcaagaggac ttgcgtcccc cgtacgttcg tctcgacgaa	3180
	cggccacgacg tggcgatgg agcggtccac gtgcgactcc gccgcgaagt ggaccacgac	3240
15	gtccggccccc cgcacgaccc gggacatcac ctccgcgtcc cggatgtcgg cgtgcacgaa	3300
	ctccagcgcac ggatggtccg cgaccgggtc caggttggcg aggttcccg cataggtcag	3360
	cttgcgacc accaccgtcc gcgcggccgc caggtccgga tacgccccgg ccagcagttg	3420
20	tctgacgaag tgcgagccga tgaagcccgc acctccggtg accagcagcc gcatgggagc	3480
	acagaccttt ctccaggga cggaaacgg ggaggcggac gggacggag gcgaggggcgg	3540
25	tggctatgcg gccgggtccgg acatgaggggt ctccgcacg tccatcaagt accggccgta	3600
	gctggagctc tcgagttcac gcgcggacgtc gtggcactgc cgccgcgtga tgtacccat	3660
	ccgcaggggcg atctcctcga cgcaggagat ccgcacgccc tgccgctgct ccaggagctg	3720
30	gacgtactgc cccgcttgca gcagcgagct gtgcgtgccc atgtccagcc aggccaaacc	3780
	gcgcggccagt tccgtatac gggcgccggc ctgctccagg tacaccttgt tgacgtcggt	3840
35	gatctccagc tcgccccgcg gcgcgggtgt cagccgcgg gcgcgttcca ccacgcgtt	3900
	gtcgtagaag tacagccccg tcaccgcgag atgggagcgg ggcttctccg gcttctcctc	3960
	cagggacacc agccggcctt ccgcgtcgac ctcgcgcacg ccgtacgccc ggggttcctt	4020
40	caccgggttag ccgaacagct cgcagccgtc cagccgcgc ggcgtggagg ccagcacgg	4080
	ggagaacccc ggaccgtgga agacgttgc cccaggatg agggcgaccg ggtcgcccc	4140
45	gatgtgctcc tcgcccgatga ggaacgcctc ggatgcgtccc cggggctcct cctgctcgcc	4200
	gtagccgaca ctgatcccga tgcggctgcc gtcgcccagc agcgaacgga acatctccaa	4260
	gtgcgtcttc gacgtgatga tctggatgtc ccggatcccc gccagcatga gcaccgacag	4320
50	cgggttagtag atcatgggt tgtcgtagac cggcagcaac tgcttggaca gtgcggccgt	4380
	cagggggcgc aggccgtgc cgctgcgcgc cggcaggatg atgccttca tggccgcggc	4440
55	gtccgcgtc gtcttcgtca t	4461
	<210> 7	
	<211> 3375	
	<212> DNA	
60	<213> Streptomyces eurythermus	

11/35

<400>	7						
gtgagcccg	cacccgccac	cgaggaccgg	gccggccggc	ggcgccgcct	gcaactgacc	60	
5	cgcgagccc	agtggttcgc	ggaaacccag	gacgaccgt	acgcgctcgt	cctgcgcgccc	120
	gaggccaccg	acccggcccc	gtacgaggag	cgatccggg	cccacgggccc	gctcttccgc	180
10	agcgacctgc	tcgacacactg	ggtcacggcg	agcagggccg	tcgcccacga	agtgatcacc	240
	tcacccgcct	tcgacgggct	cacggccgac	gggcggcgcc	ccggcgcgcg	gaaactgccc	300
15	ctgtccggca	ccgcgcgtcga	cgcgaccgc	gccacatgcg	cacggttcgg	ggccctcacc	360
	gcctggggcg	ggccgctgct	gcccggcgcc	cacgagcggg	cgctgcgcga	gtccgcccga	420
20	cggcggggccc	acacactcct	cgacggggcg	gaggccgccc	tggccgcccga	cggcaccgtc	480
	gacctcgtcg	acgcgtacgc	ccgcaggctc	cccgcgttgg	tcctccgcga	acagctcgcc	540
25	gtgccggagg	aggcggcgac	cgccattcgag	gacgcgttgg	ccggctgccc	ccgcaccctg	600
	gacggcgccc	tgtgcccga	actcctcccg	gacgcgttgg	cggggggtgcg	cgcggaaagcc	660
30	gcgcgtacccg	ccgtgcttggc	ctccgcctcg	cgcgggactc	cggccggccc	ggccccccgac	720
	gccgtcgccg	ccgcccgcac	cctggccgtc	gcggccgcgc	agcccgacgc	caccctcgtc	780
35	ggcaacgccc	tacaggagct	gctggcgctgt	cccgcgcagt	gggcggagct	cgtacgcgac	840
	ccgcgcctcg	cggccgcccgc	ggtgaccgaa	acgcgtcggt	tcgccccgc	cgtccgcctg	900
40	gagcggcggg	tcgccccgcga	ggacacggac	atcgccgggc	agcgcctccc	cggccgggggg	960
	agcgtcgta	tcctcgctcg	cgccgtcaac	cgcgccccc	tatccgcggg	aagcgacgccc	1020
45	tccaccaccg	tcccgcacgc	cggcgccggc	ccccgtacct	ccgccccctc	cgtccgcctca	1080
	cccccttcg	acctcacacg	ccccgtggcc	gcgcgggggc	cggtcggt	ccccggcgac	1140
50	ctgcacttcc	gcctcgccgg	ccccctggtc	ggaacggtgc	ccgaagccgc	gctcggtgcg	1200
	ctggccgcac	ggctccccgg	tctgcgcgc	gcggggccgg	ccgtgcggcg	ccgcccgtca	1260
55	ccggtgctgc	acggacacgc	ccgcctcccc	gtcgccgtcg	cccggacggc	ccgtgacactg	1320
	ccccccaccg	caccgcggaa	ctgaggaggg	agtgcggcga	tgcgtatcct	gctgacgtcg	1380
	ttcgcgaca	acacgcacta	ctacaacctg	gtccccctcg	gctggggcgt	gcgcgcggcc	1440
60	gggcacgacg	tacgggtcgc	cagccagccc	tcgctgaccg	gcaccatcac	cggctccggg	1500
	ctgaccgcgg	tccccgtgg	cgacgacacg	gccatcgctcg	agctgatcac	cgagatcgcc	1560
	gacgacctcg	tcctctacca	cgaggcatg	gacttcgtgg	acacccgcga	cgagccgtcg	1620
	tcctggaaac	acgcctcgg	acagcagacg	atcatgtcg	ccatgtgtt	ctcgccgtcg	1680
	aacggcgaca	gcaccatcga	cgacatggtg	gcgcgtggccc	gttcctggaa	accggacactc	1740
	gtcctgtggg	agcccttcac	ctacgcggga	cccgctcgcc	cgacgcctg	cggcgccgccc	1800

12/35

	cacgccccggc	tgctgtgggg	tcccgaacgtg	gtcctaaca	cacggccggca	gttcacccgg	1860
	ctgctcgccg	agcgccccgt	cgaacagcgc	gaggaccgg	tcggcgaatg	gctcacgtgg	1920
5	acgctggagc	gccacggcct	cgccgcccac	gcggacacga	tcgaggaact	gttcgcccgg	1980
	cagttggacga	tcgacccca	cgccgggagc	ctggcgctgc	cggtcgacgg	cgaggtcgtg	2040
10	cccatgcgct	tcgtgcccgt	caacggcgcc	tcggtcgtcc	ccgcctggct	ctccgagccg	2100
	cctgcccggc	cccgggtctg	cgtcaccctc	ggcgtctcca	cccgggagac	ctacggcacf	2160
	gacggcgtcc	cgttccacga	actgctggcc	ggactggccg	acgtggacgc	cgagatcg	2220
15	gccaccctcg	acgcggggca	gctccggac	gccggcggtc	tgcccgaa	tgtgcgcgtc	2280.
	gtcgacttcg	tgccgctgga	cgcctgctg	ccgagctgcg	ccgcgatcgt	ccaccacgg	2340
20	ggcgcgggaa	cctgtttcac	ggccaccgtg	cacggcgtcc	cgcagatcgt	cgtggcctcc	2400
	ctctggacg	cgcgcgtgaa	ggcgcaccaa	ctcggcgagg	cgggcggccgg	gatgcacctg	2460
	gaccccgaaa	aactggcgt	ggacaccctg	cgcggcgccg	tcgtgcgggt	gctggagac	2520
25	cgcgagatgg	ccgtggcgcc	gcgtcgcc	gccgacgaga	tgctcgccgc	ccccaccccg	2580
	gccgcgc	tcccccgcc	cgaacgc	accggcg	accggcg	ctgatcccgc	2640
	caaggagccc	ccatgaac	cgaatac	ggcgcac	cccgtt	cgacctgg	2700
30	caccaggaa	agggcaagga	ctaccggcg	gaggccgagg	agctggccgc	gcttgtcacc	2760
	cagcgccg	ccggggcc	ctccctcc	gacgtggc	gcggAACGGG	gatgcac	2820
35	cggcacctcg	gcgac	cgaggagg	gccgggt	agatgt	ccccaccc	2880
	gccatcg	agcggcg	cccggagg	ggcatcc	ggggggacat	gcgggact	2940
40	gccctcg	gccgtt	cgccgt	tgcatgt	gttccat	gcacatcg	3000
	gaccagcg	aactggac	ggcgatcg	cgttcg	cgcac	gtccggcg	3060
	gtcgtgatcg	tcgatcc	gtggttcc	gagacgtt	caccgg	cgtcggcg	3120
45	agcctcg	aggccgagg	ccgcaccat	gcgcgtt	cccactcc	gctcgagg	3180
	ggcgcac	ggatcgat	ggactac	gtcg	cgccgg	ggtgcgg	3240
	ttgaaggaga	ccatcg	cacgtt	ggcgtgc	agtacgagg	ggcctt	3300
50	gcggcg	tgtccgt	gtac	cacggcc	ccgacc	actttcg	3360
	ggcgtcc	agg	cctga				3375
55	<210>	8					
	<211>	295					
	<212>	PRT					
	<213>	Streptomyces eurythermus					
60	<400>	8					

13/35

Met Lys Gly Ile Ile Leu Ala Gly Gly Ser Gly Thr Arg Leu Arg Pro
1 5 10 15

5 Leu Thr Gly Ala Leu Ser Lys Gln Leu Leu Pro Val Tyr Asp Lys Pro
20 25 30

10 Met Ile Tyr Tyr Pro Leu Ser Val Leu Met Leu Ala Gly Ile Arg Asp
35 40 45

15 Ile Gln Ile Ile Thr Ser Lys Thr His Leu Glu Met Phe Arg Ser Leu
50 55 60

20 Leu Gly Asp Gly Ser Arg Ile Gly Ile Ser Val Gly Tyr Ala Glu Gln
65 70 75 80

Glu Glu Pro Arg Gly Ile Ala Glu Ala Phe Leu Ile Gly Glu Glu His
85 90 95

25 Ile Gly Asp Asp Pro Val Ala Leu Ile Leu Gly Asp Asn Val Phe His
100 105 110

30 Gly Pro Gly Phe Ser Ser Val Leu Ala Ser Thr Ala Ala Arg Leu Asp
115 120 125

35 Gly Cys Glu Leu Phe Gly Tyr Pro Val Lys Asp Pro Arg Arg Tyr Gly
130 135 140

40 Val Gly Glu Val Asp Ala Glu Gly Arg Leu Val Ser Leu Glu Glu Lys
145 150 155 160

45 Pro Glu Lys Pro Arg Ser His Leu Ala Val Thr Gly Leu Tyr Phe Tyr
165 170 175

Asp Asn Gly Val Val Asp Ile Ala Arg Arg Leu Thr Pro Ser Pro Arg
180 185 190

50 Gly Glu Leu Glu Ile Thr Asp Val Asn Lys Val Tyr Leu Glu Gln Gly
195 200 205

55 Arg Ala Arg Met Thr Glu Leu Gly Arg Gly Phe Ala Trp Leu Asp Met
210 215 220

60 Gly Thr His Ser Ser Leu Leu Gln Ala Gly Gln Tyr Val Gln Leu Leu
225 230 235 240

14/35

Glu Gln Arg Gln Gly Val Arg Ile Ser Cys Val Glu Glu Ile Ala Leu
245 250 255

5 Arg Met Gly Tyr Ile Ser Ala Arg Gln Cys His Glu Leu Gly Arg Glu
260 265 270

10 Leu Glu Ser Ser Ser Tyr Gly Arg Tyr Leu Met Asp Val Ala Glu Thr
275 280 285

Leu Met Ser Gly Pro Ala Ala
290 295

15 <210> 9
<211> 332
<212> PRT
20 <213> Streptomyces eurythermus

<400> 9

25 Met Arg Leu Leu Val Thr Gly Gly Ala Gly Phe Ile Gly Ser His Phe
1 5 10 15

30 Val Arg Gln Leu Leu Ala Gly Ala Tyr Pro Asp Leu Ala Gly Ala Arg
20 25 30

35 Thr Val Val Val Asp Lys Leu Thr Tyr Ala Gly Asn Leu Ala Asn Leu
35 40 45

40 Asp Pro Val Ala Asp His Pro Ser Leu Glu Phe Val His Ala Asp Ile
50 55 60

45 Val His Phe Ala Ala Glu Ser His Val Asp Arg Ser Ile Ala Asp Ala
85 90 95

50 Ser Ala Phe Val Glu Thr Asn Val Arg Gly Thr Gln Val Leu Leu Gln
100 105 110

55 Ala Ala Val Glu Ala Gly Ala Gly Arg Phe Val His Val Ser Thr Asp
115 120 125

60 Glu Val Tyr Gly Ser Ile Ala Glu Gly Ser Trp Arg Glu Glu Gln Pro
130 135 140

65 Leu Ala Pro Asn Ser Pro Tyr Ala Ala Ser Lys Ala Ala Ser Asp Leu
145 150 155 160

Leu Ala Leu Ala Tyr His Arg Thr Tyr Gly Leu Pro Val Val Val Thr
165 170 175

5

Arg Cys Ser Asn Asn Tyr Gly Pro Tyr Gln His Pro Glu Lys Val Val
180 185 190

10

Pro Leu Phe Ala Thr Asn Leu Leu Asp Gly Leu Thr Val Pro Leu Tyr
195 200 205

15

Ser Asp Gly Gly Asn Ser Arg Asp Trp Leu His Val Asp Asp His Cys
210 215 220

20

Arg Gly Ile Ser Leu Val Ala Thr Arg Gly Arg Pro Gly Glu Val Tyr
225 230 235 240

25

His Ile Gly Gly Gly Thr Glu Leu Thr Asn Arg Glu Leu Thr Lys Arg
245 250 255

Leu Leu Gly Leu Cys Gly Ala Asp Ala Ser Ser Val Arg His Val Ala
260 265 270

30

Asp Arg Pro Gly His Asp Leu Arg Tyr Ala Leu Asp Ile Gly Lys Ile
275 280 285

35

Thr Gly Glu Leu Gly Tyr Ala Pro Arg Thr Asp Phe Thr Thr Gly Leu
290 295 300

40

Ala Asp Thr Val Arg Trp Tyr Ala Glu Asn Arg Ala Trp Trp Glu Pro
305 310 315 320

45

Leu Lys Lys Ala Ala Gln Glu Ala Arg Arg Thr Asp
325 330

<210> 10
<211> 787
<212> PRT
50 <213> Streptomyces eurythermus

<400> 10

55

Val Ser Thr Pro Ser Ala Pro Pro Val Pro Gly Ala Pro Ser Pro Ala
1 5 10 15

60

Gly His Pro Asp Glu Gly Leu Trp Val Arg Arg Tyr Arg Pro Val Arg
20 25 30

16/35

Asp Pro Glu Leu Arg Leu Val Cys Phe Pro His Ala Gly Gly Ala Ala
35 40 45

5 Thr Ser Phe Ala Ala Leu Ala Arg Gly Leu Asp Glu Thr Val Glu Ala
50 55 60

10 Leu Ala Val Gln Tyr Pro Gly Arg Gln Asp Arg Arg His Glu Pro Phe
65 70 75 80

15 Ile Pro Ser Ile Ser Gly Leu Val Asp Gln Val Val Pro Glu Ile Leu
85 90 95

Arg Trp Ala Asp Arg Pro Leu Ala Leu Phe Gly His Ser Met Gly Ala
100 105 110

20 Thr Val Ala Phe Glu Val Ala Arg Arg Leu Arg Gly Ser Gly Gln Ala
115 120 125

25 Ser Pro Val His Leu Leu Val Ser Gly Arg Arg Ala Pro Thr Val Arg
130 135 140

30 Arg Arg Asp Val Ala His Leu Leu Asp Asp Asp Ala Leu Ile Ala Glu
145 150 155 160

35 Ile Ala Thr Leu Gln Gly Thr Glu Asp Ala Val Leu Gln Asp Glu Glu
165 170 175

Leu Leu Arg Leu Ala Leu Pro Ala Ile Arg Asn Asp Tyr Arg Ala Ala
180 185 190

40 Gly Thr Tyr Ala Tyr Val Pro Gly Gly Ala Leu Asp Cys Pro Val Thr
195 200 205

45 Val Leu Thr Gly Asp Arg Asp Pro Asp Val Pro Leu Glu Glu Ala Arg
210 215 220

50 Ala Trp Arg Glu Leu Thr Thr Gly Pro Phe Ala Leu His Thr Phe Ala
225 230 235 240

Gly Gly His Phe Tyr Leu Asn Asp Arg Met Asp Glu Val Cys Arg Thr
245 250 255

55 Ile Gly Asp Ala Leu Ala Gly Thr Ala Thr Ala Asp Thr Ala Thr Gly
260 265 270

Thr Val Pro Pro Arg Thr Ala Ala Asp Thr Ser Thr Gly Pro Val Pro

17/35

275

280

285

5 Pro Arg Thr Ala Ala Asp Thr Ala Arg Glu Pro Val Pro Pro Arg Ser
290 295 300

10 Ala Pro Ala Pro His Gly Ala Ala Arg Arg Arg Ala Asp Ala Val Arg
305 310 315 320

Pro Gly Asp Pro Val Asp Thr Ala Arg Arg Val Leu Val Ser Ala Arg
325 330 335

15 Thr Ala Asp Ser Ala Val Thr Pro Phe Asp Gly Ile Ser Gly Trp Leu
340 345 350

20 Ala Glu Arg Leu Arg Ala Gly Arg Phe Asp Val Ser Arg Val Pro Phe
355 360 365

25 Ala Glu Leu Arg Gly Trp Ser Phe His Pro Gly Thr Gly Asn Leu His
370 375 380

30 His Ala Ser Gly Arg Phe Phe Ser Val Glu Gly Leu His Val Arg Thr
385 390 395 400

Asp Arg Leu Pro Glu Arg Gly Trp Thr Gln Pro Ile Ile Val Gln Pro
405 410 415

35 Glu Val Gly Leu Leu Gly Ile Val Ala Arg Glu Ile Asp Gly Val Leu
420 425 430

40 His Phe Leu Met Gln Ala Lys Met Glu Pro Gly Asn Val Asn Val Leu
435 440 445

45 Gln Val Ser Pro Thr Val Gln Ala Thr Arg Ser Asn Phe Thr Gly Val
450 455 460

50 His Arg Gly Arg Asp Ile Arg Tyr Leu Asp Leu Phe Met Gly Pro Arg
465 470 475 480

Arg Ala Arg Val Leu Val Asp Ser Ile Gln Ser Glu Gln Ala Asp Trp
485 490 495

55 Phe Leu Ala Lys Arg Asn Arg Asn Met Ile Val Glu Leu Ala Ala Asp
500 505 510

60 Asp Asp Leu Asp Ile Gly Glu Asp Phe Arg Trp Leu Thr Leu Gly Gln
515 520 525

Leu Arg Arg Leu Leu Met Leu Asp Asn Val Val Asn Met Asp Ala Arg
530 535 540

5

Ser Ile Leu Ala Cys Leu Pro Thr Ala Asp Ala Asp Ala Ser Ala Pro
545 550 555 560

10

Ser Pro Val Leu Arg Ser Phe Phe Gly Ser Pro Gly Ala Ala Arg His
565 570 575

15

Thr Thr Ala Glu Val Leu Thr Trp Phe Thr Gly Val Arg Ala Leu Arg
580 585 590

20

Glu Leu Val Gln Asn Arg Val Pro Leu Asp Thr Val Thr Ala Asp Gly
595 600 605

25

Trp Tyr Arg Thr Pro His Glu Ile Ala His Glu Ser Gly Arg His Phe
610 615 620

Arg Val Met Ala Ala Glu Val Ser Ala Ser Ser Arg Glu Val Thr Ser
625 630 635 640

30

Trp Thr Gln Pro Leu Ile Glu Pro Arg Leu Pro Gly Leu Met Ala Leu
645 650 655

35

Leu Val Lys Ser Val Asp Gly Val Leu His Ala Leu Val Arg Ala Arg
660 665 670

40

Val Asp Val Gly His Leu Asn Val Ala Glu Leu Ala Pro Thr Val Gln
675 680 685

Cys Arg Pro Gln Glu His Thr Gly Pro Arg Gly Leu Pro Gly Pro Pro
690 695 700

45

Tyr Leu Glu Asp Val Leu Ser Ala Pro Pro Gln Asp Val Arg Tyr Asp
705 710 715 720

50

Ala Val Gln Ser Glu Glu Gly Arg Phe Phe His Ala Gln Asn Arg
725 730 735

55

Tyr Val Ile Val Glu Val Pro His Asp Phe Pro Glu Asp Ala Pro Asp
740 745 750

60

Asp Phe Ala Trp Leu Ser Leu Gly Gln Leu Thr Gly Leu Leu Ala His
755 760 765

19/35

Gly Asn Tyr Leu Asn Ile Glu Leu Arg Thr Leu Val Ala Cys Ala His
770 775 780

5

Thr Leu Tyr
785

10

<210> 11
<211> 333
<212> PRT
<213> Streptomyces eurythermus

15

<400> 11

Met Val Asn Asp Pro Met Pro Arg Gly Ser Gly Ser Gly Ser Val Val
1 5 10 15

20

Val Leu Gly Gly Ala Gly Tyr Val Gly Arg His Val Cys Ala Ala Phe
20 25 30

25

Ala Ala Arg Gly Arg Asp Val Val Val Val Gly Arg Arg Pro Pro Glu
35 40 45

30

Glu Pro Met Pro Tyr Arg Cys Val Thr Leu Asp Leu Ala Gly Thr Asp
50 55 60

35

Pro Ala Ala Leu Ala Ala Ala Leu Asp Ala Glu Arg Pro Asp Thr Ile
65 70 75 80

40

Val Asn Ser Val Gly Ser Ile Trp Gly Arg Thr Asp Glu Gln Met Trp
85 90 95

45

Ser Ala Thr Ala Val Pro Thr Leu Arg Leu Leu Glu Ala Leu Ala Leu
100 105 110

50

Met Ser Ala Arg Pro Arg Leu Val His Leu Gly Ser Val Leu Glu Tyr
115 120 125

55

Gly Pro Val Thr Pro Gly Gly Ser Val Gly Ala Asp Ala Val Pro Arg
130 135 140

Pro Asp Thr Ala Tyr Gly Arg Ser Lys Leu Ala Ala Ser Glu Ala Val
145 150 155 160

60

Leu Arg Gly Thr Ser Gly Gly Trp Val Asp Gly Val Val Leu Arg Val
165 170 175

Ser Asn Val Ser Gly Pro Gly Thr Pro Arg Ile Ser Leu Leu Gly Gln

20/35
180 185 190

5 Val Ala Glu Arg Leu Leu Ala Ala Gly Thr Gly Ala Glu Ala Val
195 200 205

10 Val Glu Leu Ser Arg Leu Arg Ala His Arg Asp Tyr Val Asp Val Arg
210 215 220

Asp Val Ala Asp Ala Val Val Ala Ala Ala Arg Ala Pro Ala Val Pro
225 230 240

15 Val Ala Val Gly Ile Gly Arg Gly Glu Ala Val Ala Val Arg Asp Leu
245 250 255

20 Val Gly Leu Phe Ile Glu Ala Ser Gly Ile Pro Ala Arg Val Val Glu
260 265 270

25 Arg Pro Ala Pro Gly Arg Ala Pro Gly His Arg Glu Asp Trp Leu Arg
275 280 285

30 Val Asp Thr Gly Ala Ala Arg Ala Leu Leu Gly Trp Ala Pro Arg Arg
290 295 300

Ser Leu Arg Glu Ser Val Arg Asp Cys Trp His Asp Leu Val Arg Ala
305 310 320

35 His Arg Leu Pro Thr Thr Pro Ser Lys His Ser Gly Gly
325 330

40 <210> 12
<211> 373
<212> PRT
<213> Streptomyces eurythermus

45 <400> 12

Val Thr Thr Tyr Val Trp Asp Tyr Leu Ala Glu Tyr Gln Asn Glu Arg
1 5 10 15

50 Ala Asp Leu Leu Asp Ala Val Glu Thr Val Phe Ala Ser Gly Gln Leu
20 25 30

55 Val Leu Gly Pro Ser Val Asp Gly Phe Glu Lys Glu Phe Ala Asp Tyr
35 40 45

60 His Gly Leu Arg His Cys Gly Gly Val Asp Asn Gly Thr Asn Ala Val
50 55 60

21/35

Lys Leu Gly Leu Gln Ala Leu Gly Val Gly Pro Gly Asp Glu Val Val
65 70 75 80

5 Thr Val Ser Asn Thr Ala Ala Pro Thr Val Val Ala Ile Asp Gly Thr
85 90 95

10 Gly Ala Thr Pro Val Phe Val Asp Val Arg Ala Glu Asp His Leu Met
100 105 110

15 Asp Thr Asp Gln Val Ala Asp Val Ile Thr Pro Arg Thr Lys Ala Leu
115 120 125

20 Leu Pro Val His Leu Tyr Gly Gln Cys Val Asp Met Ala Pro Leu Arg
130 135 140

Ala Leu Ala Glu Gln His Gly Leu Val Val Leu Glu Asp Cys Ala Gln
145 150 155 160

25 Ala His Gly Ala Arg His His Gly Glu Leu Ala Gly Thr Leu Gly Asp
165 170 175

30 Ala Ala Ala Phe Ser Phe Tyr Pro Thr Lys Val Leu Gly Ala Tyr Gly
180 185 190

Asp Gly Gly Ala Val Leu Thr Asp Asp Ala Asp Val Asp Arg Ala Leu
35 195 200 205

Arg Arg Leu Arg Tyr Tyr Gly Met Glu Asp Val Tyr Tyr Val Val Gln
210 215 220

40 Thr Pro Gly His Asn Ser Arg Leu Asp Glu Val Gln Ala Glu Ile Leu
225 230 235 240

Arg Arg Lys Leu Thr Arg Leu Asp Arg Tyr Ile Glu Gly Arg Arg Ala
45 245 250 255

50 Val Ala Arg Arg Tyr Ala Glu Gly Leu Ala Asn Leu Thr Gly Pro Gly
260 265 270

Gly Leu Val Leu Pro Ser Val Thr Glu Gly Asn Asp His Val Tyr Tyr
55 275 280 285

Val Tyr Val Val Arg His Pro Arg Arg Asp Asp Ile Ile Glu Ala Leu
60 290 295 300

22/35

Lys Ser Tyr Gly Ile Ser Leu Asn Ile Ser Tyr Pro Trp Pro Val His
305 310 315 320

5 Thr Met Thr Gly Phe Ala His Leu Gly Tyr Ala Lys Gly Ser Leu Pro
325 330 335

10 Val Thr Glu Arg Leu Ala Asp Glu Ile Phe Ser Leu Pro Met Tyr Pro
340 345 350

Gly Leu Ala Pro Asp Val Gln Asp Lys Val Ile Ala Ala Leu His Glu
355 360 365

15 Val Leu Ala Thr Leu
370

20 <210> 13
<211> 447
<212> PRT
<213> Streptomyces eurythermus

25 <400> 13

30 Val Ser Pro Ala Pro Ala Thr Glu Asp Pro Ala Ala Ala Gly Arg Arg
1 5 10 15

Leu Gln Leu Thr Arg Ala Ala Gln Trp Phe Ala Gly Thr Gln Asp Asp
20 25 30

35 Pro Tyr Ala Leu Val Leu Arg Ala Glu Ala Thr Asp Pro Ala Pro Tyr
35 40 45

40 Glu Glu Arg Ile Arg Ala His Gly Pro Leu Phe Arg Ser Asp Leu Leu
50 55 60

45 Asp Thr Trp Val Thr Ala Ser Arg Ala Val Ala Asp Glu Val Ile Thr
65 70 75 80

50 Ser Pro Ala Phe Asp Gly Leu Thr Ala Asp Gly Arg Arg Pro Gly Ala
85 90 95

55 Arg Glu Leu Pro Leu Ser Gly Thr Ala Leu Asp Ala Asp Arg Ala Thr
100 105 110

60 Cys Ala Arg Phe Gly Ala Leu Thr Ala Trp Gly Gly Pro Leu Leu Pro
115 120 125

60 Ala Pro His Glu Arg Ala Leu Arg Glu Ser Ala Glu Arg Arg Ala His
130 135 140

23/35

5 Thr Leu Leu Asp Gly Ala Glu Ala Ala Leu Ala Ala Asp Gly Thr Val
145 150 155 160

10 Asp Leu Val Asp Ala Tyr Ala Arg Arg Leu Pro Ala Leu Val Leu Arg
165 170 175

15 Glu Gln Leu Gly Val Pro Glu Glu Ala Ala Thr Ala Phe Glu Asp Ala
180 185 190

20 Leu Ala Gly Cys Arg Arg Thr Leu Asp Gly Ala Leu Cys Pro Gln Leu
195 200 205

25 Leu Pro Asp Ala Val Ala Gly Val Arg Ala Glu Ala Ala Leu Thr Ala
210 215 220

30 Val Leu Ala Ser Ala Leu Arg Gly Thr Pro Ala Gly Arg Ala Pro Asp
225 230 235 240

35 Ala Val Ala Ala Ala Arg Thr Leu Ala Val Ala Ala Ala Glu Pro Ala
245 250 255

40 Ala Thr Leu Val Gly Asn Ala Val Gln Glu Leu Leu Ala Arg Pro Ala
260 265 270

45 Gln Trp Ala Glu Leu Val Arg Asp Pro Arg Leu Ala Ala Ala Val
275 280 285

50 Thr Glu Thr Leu Arg Val Ala Pro Pro Val Arg Leu Glu Arg Arg Val
290 295 300

55 Ala Arg Glu Asp Thr Asp Ile Ala Gly Gln Arg Leu Pro Ala Gly Gly
305 310 315 320

60 Ser Val Val Ile Leu Val Ala Ala Val Asn Arg Ala Pro Val Ser Ala
325 330 335

65 Gly Ser Asp Ala Ser Thr Thr Val Pro His Ala Gly Gly Arg Pro Arg
340 345 350

70 Thr Ser Ala Pro Ser Val Pro Ser Ala Pro Phe Asp Leu Thr Arg Pro
355 360 365

75 Val Ala Ala Pro Gly Pro Phe Gly Leu Pro Gly Asp Leu His Phe Arg
370 375 380

24/35

Leu Gly Gly Pro Leu Val Gly Thr Val Ala Glu Ala Ala Leu Gly Ala
385 390 395 400

5 Leu Ala Ala Arg Leu Pro Gly Leu Arg Ala Ala Gly Pro Ala Val Arg
405 410 415

10 Arg Arg Arg Ser Pro Val Leu His Gly His Ala Arg Leu Pro Val Ala
420 425 430

15 Val Ala Arg Thr Ala Arg Asp Leu Pro Ala Thr Ala Pro Arg Asn
435 440 445

<210> 14

<211> 424

20 <212> PRT

<213> Streptomyces eurythermus

<400> 14

25 Met Arg Ile Leu Leu Thr Ser Phe Ala His Asn Thr His Tyr Tyr Asn
1 5 10 15

30 Leu Val Pro Leu Gly Trp Ala Leu Arg Ala Ala Gly His Asp Val Arg
20 25 30

35 Val Ala Ser Gln Pro Ser Leu Thr Gly Thr Ile Thr Gly Ser Gly Leu
35 40 45

35 Thr Ala Val Pro Val Gly Asp Asp Thr Ala Ile Val Glu Leu Ile Thr
50 55 60

40 Glu Ile Gly Asp Asp Leu Val Leu Tyr Gln Gln Gly Met Asp Phe Val
65 70 75 80

45 Asp Thr Arg Asp Glu Pro Leu Ser Trp Glu His Ala Leu Gly Gln Gln
85 90 95

50 Thr Ile Met Ser Ala Met Cys Phe Ser Pro Leu Asn Gly Asp Ser Thr
100 105 110

55 Ile Asp Asp Met Val Ala Leu Ala Arg Ser Trp Lys Pro Asp Leu Val
115 120 125

60 Leu Trp Glu Pro Phe Thr Tyr Ala Gly Pro Val Ala Ala His Ala Cys
130 135 140

Gly Ala Ala His Ala Arg Leu Leu Trp Gly Pro Asp Val Val Leu Asn

25/35

145

150

155

160

5 Ala Arg Arg Gln Phe Thr Arg Leu Leu Ala Glu Arg Pro Val Glu Gln
165 170 175

Arg Glu Asp Pro Val Gly Glu Trp Leu Thr Trp Thr Leu Glu Arg His
180 185 190

10 Gly Leu Ala Ala Asp Ala Asp Thr Ile Glu Glu Leu Phe Ala Gly Gln
195 200 205

15 Trp Thr Ile Asp Pro Ser Ala Gly Ser Leu Arg Leu Pro Val Asp Gly
210 215 220

20 Glu Val Val Pro Met Arg Phe Val Pro Tyr Asn Gly Ala Ser Val Val
225 230 235 240

25 Pro Ala Trp Leu Ser Glu Pro Pro Ala Arg Pro Arg Val Cys Val Thr
245 250 255

30 Leu Gly Val Ser Thr Arg Glu Thr Tyr Gly Thr Asp Gly Val Pro Phe
260 265 270

His Glu Leu Leu Ala Gly Leu Ala Asp Val Asp Ala Glu Ile Val Ala
275 280 285

35 Thr Leu Asp Ala Gly Gln Leu Pro Asp Ala Ala Gly Leu Pro Gly Asn
290 295 300

40 Val Arg Val Val Asp Phe Val Pro Leu Asp Ala Leu Leu Pro Ser Cys
305 310 315 320

45 Ala Ala Ile Val His His Gly Gly Ala Gly Thr Cys Phe Thr Ala Thr
325 330 335

50 Val His Gly Val Pro Gln Ile Val Val Ala Ser Leu Trp Asp Ala Pro
340 345 350

Leu Lys Ala His Gln Leu Ala Glu Ala Gly Ile Ala Leu Asp
355 360 365

55 Pro Gly Glu Leu Gly Val Asp Thr Leu Arg Gly Ala Val Val Arg Val
370 375 380

60 Leu Glu Ser Arg Glu Met Ala Val Ala Arg Arg Leu Ala Asp Glu
385 390 395 400

Met Leu Ala Ala Pro Thr Pro Ala Ala Leu Val Pro Arg Leu Glu Arg
405 410 415

5

Leu Thr Ala Ala His Arg Arg Ala
420

10

<210> 15

<211> 240

<212> PRT

15

<213> Streptomyces eurythermus

20

Met Asn Leu Glu Tyr Ser Gly Asp Ile Ala Arg Leu Tyr Asp Leu Val
1 5 10 15

His Gln Gly Lys Gly Lys Asp Tyr Arg Ala Glu Ala Glu Glu Leu Ala
20 25 30

25

Ala Leu Val Thr Gln Arg Arg Pro Gly Ala Arg Ser Leu Leu Asp Val
35 40 45

30

Ala Cys Gly Thr Gly Met His Leu Arg His Leu Gly Asp Leu Phe Glu
50 55 60

35

Glu Val Ala Gly Val Glu Met Ser Pro Asp Met Leu Ala Ile Ala Gln
65 70 75 80

40

Arg Arg Asn Pro Glu Ala Gly Ile His Arg Gly Asp Met Arg Asp Phe
85 90 95

45

Ala Leu Gly Arg Arg Phe Asp Ala Val Ile Cys Met Phe Ser Ser Ile
100 105 110

50

Gly His Met Arg Asp Gln Arg Glu Leu Asp Ala Ala Ile Gly Arg Phe
115 120 125

55

Ala Ala His Leu Pro Ser Gly Gly Val Val Ile Val Asp Pro Trp Trp
130 135 140

60

Phe Pro Glu Thr Phe Thr Pro Gly Tyr Val Gly Ala Ser Leu Val Glu
145 150 155 160

Ala Glu Gly Arg Thr Ile Ala Arg Phe Ser His Ser Ala Leu Glu Asp
165 170 175

27/35

Gly Ala Thr Arg Ile Asp Val Asp Tyr Leu Val Gly Val Pro Gly Glu
180 185 190

5 Gly Val Arg His Leu Lys Glu Thr His Arg Ile Thr Leu Phe Gly Arg
195 200 205

10 Ala Gln Tyr Glu Ala Ala Phe Thr Ala Ala Gly Met Ser Val Glu Tyr
210 215 220

15 Leu Pro His Ala Ala Thr Asp Arg Gly Leu Phe Val Gly Val Gln Ala
225 230 235 240

20 <210> 16
<211> 72
<212> DNA
<213> Artificial

25 <220>
<223> primer

30 <400> 16
ggggaaattca gatctggtct agaggtcagc cggcggtggcg gcgcgtgagt tcctccagtc 60
gcgggacgat ct 72

35 <210> 17
<211> 38
<212> DNA
<213> Artificial

40 <220>
<223> Primer

45 <400> 17
gggcatatga acgaccgtcc ccgccgcgcc atgaaggg 38

<210> 18
<211> 50
<212> DNA
<213> Artificial

50 <220>
<223> primer

<400> 18
ccccctctaga ggtcactgtg cccggctgtc ggcggcggcc ccgcgcatgg 50

55 <210> 19
<211> 52
<212> DNA
<213> Artificial

60 <220>
<223> primer

<400> 19
ccccctctaga ggtcatgcgc gctccagttc cctgccgccc ggggaccgct tg 52
5
<210> 20
<211> 81
<212> DNA
<213> Artificial
10
<220>
<223> primer

<400> 20
15 gggtcttagat cgattaatta aggaggacat tcatgcgcgt cctggtgacc ggaggtgcgg 60
gcttcatcggt ctgcgcacttc a 81

20 <210> 21
<211> 40
<212> DNA
<213> Artificial

25 <220>
<223> primer

<400> 21
30 gggcatatgt acgagggcgg gttcgccgag cttaacgacc 40

<210> 22
<211> 40
<212> DNA
35 <213> Artificial

<220>
<223> primer

40 <400> 22
ggggtctaga ggtcatccgc gcacaccgac gaacaacccg 40

45 <210> 23
<211> 38
<212> DNA
<213> Artificial

50 <220>
<223> primer

<400> 23
gggcatatgg cggcgagcac tacgacggag gggaatgt 38

55 <210> 24
<211> 38
<212> DNA
<213> Artificial
60 <220>

29/35

5 <223> primer
 <400> 24
 gggtcttagag gtcacgggtg gtcctgccg gccctcag 38
10 <210> 25
 <211> 22
 <212> DNA
 <213> Artificial

15 <220>
 <223> primer

20 <400> 25
 catcgtaag gagttcgacg gt 22

25 <210> 26
 <211> 21
 <212> DNA
 <213> Artificial

30 <220>
 <223> primer

35 <400> 26
 gccagctcg ggacgtccat c 21

40 <210> 27
 <211> 35
 <212> DNA
 <213> Artificial

45 <220>
 <223> primer

50 <400> 27
 ggccatatga gccccgcacc cgccaccgag gaccc 35

55 <210> 28
 <211> 42
 <212> DNA
 <213> Artificial

60 <220>
 <223> primer

 <400> 28
 ggtcttagagg tcagttccgc ggtgcgggtgg cgggcaggtc ac 42

65 <210> 29
 <211> 41
 <212> DNA
 <213> Artificial

70 <220>
 <223> primer

<400> 29
ggccatatgc gtatcctgct gacgtcggttc gcgcacaaca c 41
5
<210> 30
<211> 44
<212> DNA
<213> Artificial
10
<220>
<223> primer

<400> 30
15 ggtctagagg tcaggcgccgg cggtgcgcgg cggtgaggcg ttcg 44

<210> 31
<211> 39
20 <212> DNA
<213> Artificial

<220>
<223> primer
25
<400> 31
ggagatctgg cgccgcggtg cgccgcggtg aggcgttcg 39

30 <210> 32
<211> 42
<212> DNA
<213> Artificial

35 <220>
<223> primer

<400> 32
40 gggcatatga acctcgaata cagcggcgac atcgccccgt tg 42

<210> 33
<211> 44
<212> DNA
45 <213> Artificial

<220>
<223> primer

50 <400> 33
ggtctagagg tcaggcctgg acgcccacga agagtccgcg gtcg 44

55 <210> 34
<211> 37
<212> DNA
<213> Artificial

60 <220>
<223> primer

31/35

<400> 34
ggccatatga ctacctacgt ctgggactac ctggcgg 37

5 <210> 35
<211> 40
<212> DNA
<213> Artificial

10 <220>
<223> primer

<400> 35
ggtctagagg tcagagcgtg gccagtacct cgtgcagggc 40

15 <210> 36
<211> 41
<212> DNA
20 <213> Artificial

<220>
<223> primer

25 <400> 36
gggcatatgg tgaacgatcc gatgccgcgc ggcagtggca g 41

30 <210> 37
<211> 43
<212> DNA
<213> Artificial

35 <220>
<223> primer

<400> 37
ggtctagagg tcaacctcca gagtgtttcg atggggtggt ggg 43

40 <210> 38
<211> 39
<212> DNA
<213> Artificial

45 <220>
<223> primer

<400> 38
gggcatatga agggcatcat cctggcgggc ggcagcggc 39

50 <210> 39
<211> 46
55 <212> DNA
<213> Artificial

<220>
<223> primer

60 <400> 39

32/35

ggtctagagg tcatgcggcc ggtccggaca tgagggtctc cgccac

46

5 <210> 40
<211> 36
<212> DNA
<213> Artificial

10 <220>
<223> primer

<400> 40
gggcatatgc ggctgctgg caccggaggt gcgggc

36

15 <210> 41
<211> 36
<212> DNA
<213> Artificial

20 <220>
<223> primer

<400> 41
25 ggtctagagg tcagtcggtg cgccgggcct cctgcg

36

30 <210> 42
<211> 40
<212> DNA
<213> Artificial

35 <220>
<223> primer

<400> 42
35 gggcatatgt gtccctccta attaatcgat gcgttcgtcc

40

40 <210> 43
<211> 51
<212> DNA
<213> Artificial

45 <220>
<223> primer

<400> 43
50 ggagatctgg tctagatcgt gttccctcc ctgcctcgtg gtccctcaacg c

51

5 <210> 44
<211> 36
<212> DNA
<213> Artificial

<220>
<223> primer

0 <400> 44
gggcatatga gcaccccttc cgcaccaccc gttccg

36

5 <210> 45
 <211> 40
 <212> DNA
 <213> Artificial

10 <220>
 <223> primer

15 <400> 45
 ggtagagg tcagtagcgt gtgtggcac acgccaccag 40

20 <210> 46
 <211> 37
 <212> DNA
 <213> Artificial

25 <220>
 <223> primer

 <400> 46
 ggcatatga gcagttctgt cgaagctgag gcaagtg 37

30 <210> 47
 <211> 41
 <212> DNA
 <213> Artificial

35 <220>
 <223> primer

40 <400> 47
 ggtagagg tcatcgcccc aacgcccaca agctatgcag g 41

45 <210> 48
 <211> 33
 <212> DNA
 <213> Artificial

50 <220>
 <223> primer

 <400> 48
 cccatatgac cggagttcga ggtacgcggc ttg 33

55 <210> 49
 <211> 33
 <212> DNA
 <213> Artificial

60 <220>
 <223> primer

 <400> 49
 gatactagtc cgccgaccgc acgtcgctga gcc 33

```

<210> 50
<211> 38
<212> DNA
5 <213> Artificial

<220>
<223> primer

10 <400> 50
tgcactagtg gccggcgct cgacgtcatc gtcgacat 38

15 <210> 51
<211> 36
<212> DNA
<213> Artificial

20 <220>
<223> primer

<400> 51
tcgatatacggt gtccctgcgggt ttcacctgca acgctg 36

25 <210> 52
<211> 36
<212> DNA
<213> Artificial

30 <220>
<223> primer

35 <400> 52
ggtagact acggcgactg cctcgccgag gagccc 36

40 <210> 53
<211> 36
<212> DNA
<213> Artificial

45 <220>
<223> primer

50 <400> 53
ggcatatgtt cgccgacgtg gaaacgacct gctgcg 36

55 <210> 54
<211> 35
<212> DNA
<213> Artificial

60 <220>
<223> primer

65 <400> 54
gaaattcggc caggacgcgt ggctggtcac cggt 35

```

35/35

5 <210> 55
 <211> 42
 <212> DNA
 <213> Artificial

10 <220>
 <223> primer

10 <400> 55
 ggtctagaaa gagcgtgagc aggctttct acagccaggt ca 42

15 <210> 56
 <211> 38
 <212> DNA
 <213> Artificial

20 <220>
 <223> primer

20 <400> 56
 ggcatgcagg aaggagagaa ccacgatgac caccgacg 38

25 <210> 57
 <211> 41
 <212> DNA
 <213> Artificial

30 <220>
 <223> primer

35 <400> 57
 ggtctagaca ccagccgtat cctttctcggttcctttgt g 41