

Devoir maison n°8

à rendre le 22/01

Exercice 1

Dans un étang se trouvent deux populations de poissons : des gardons et des brochets. Le brochet est un prédateur naturel du gardon. Sa population d'une année sur l'autre varie donc en fonction :

- du nombre de brochets déjà présents dans l'étang (reproduction),
- du nombre de gardons déjà présents dans l'étang (proies).

De la même façon, la population du gardon évolue en fonction :

- du nombre de gardons déjà présents dans l'étang (reproduction),
- du nombre de brochets déjà présents dans l'étang (prédateurs).

Au premier janvier 2021, on relève 1000 gardons et 100 brochets dans l'étang. Pour $n \in \mathbb{N}$, on note g_n , respectivement b_n , le nombre de gardons, resp. de brochets, au 1^{er} janvier de l'année 2021 + n.

Après une étude, des biologistes ont déterminé que les suites $(g_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ vérifient les relations de récurrence croisées suivantes :

$$\begin{cases} g_{n+1} &= 1, 1g_n - 0, 2b_n \\ b_{n+1} &= 0, 4g_n + 0, 5b_n. \end{cases}$$

Pour tout $n \in \mathbb{N}$, on note U_n le vecteur $U_n = \begin{pmatrix} g_n \\ b_n \end{pmatrix}$ et A la matrice $A = \begin{pmatrix} 1, 1 & -0, 2 \\ 0, 4 & 0, 5 \end{pmatrix}$.

- 1. Soit $n \in \mathbb{N}$. Quelle relation relie U_n , U_{n+1} et A? En déduire une relation entre U_n , A et U_0 lorsque n est un entier supérieur ou égal à 1.
- 2. Soit *P* la matrice $P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$. Justifier que *P* est inversible et calculer P^{-1} .
- 3. On pose $D = P^{-1}AP$. Calculer D.
- 4. Démontrer que pour tout entier $n \ge 1$: $A^n = PD^nP^{-1}$.
- 5. En déduire une expression de g_n et de b_n pour tout entier $n \ge 1$. Quelle est la limite des deux suites $(g_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$? Quelle interprétation en faites-vous?

Exercice 2

La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=1$ et la relation de récurrence

$$\forall n \in \mathbb{N}, u_{n+1} = f(u_n),$$

où

$$f: [0, +\infty[\to \mathbb{R}, \ x \mapsto \frac{1}{1+x}]$$

- 1. (a) Construire dans un même repère, sur l'intervalle [0,1], la droite d'équation y=x et la courbe représentant la fonction f. On prendra 10 carreaux ou 10 cm comme unité graphique.
 - (b) Construire u_1 , u_2 et u_3 sur l'axe des abscisses.

Dans la suite de l'exercice, on pourra admettre que $(u_n)_{n\in\mathbb{N}}$ est à termes positifs.

2. On note φ la solution positive de l'équation f(x) = x. Calculer φ , puis prouver que pour tout $x \ge 0$:

$$|f(x) - f(\varphi)| \le \frac{|x - \varphi|}{1 + \varphi}.$$

3. Démontrer par récurrence que pour tout $n \in \mathbb{N}$:

$$|u_n - \varphi| \le \left(\frac{1}{1+\varphi}\right)^n |1-\varphi|.$$

4. En déduire que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.