

TMA4140 Diskret Matematikk Høst 2021

Norges teknisk–naturvitenskapelige universitet Institutt for matematiske fag

Løsningsforslag — Øving 3

Seksjon 3.1

- 53
- **a)** $2 \cdot 25 + 1 \cdot 1$ cent.
- **b)** $2 \cdot 25 + 1 \cdot 10 + 1 \cdot 5 + 4 \cdot 1$ cent.
- **c)** $3 \cdot 25 + 1 \cdot 1$ cent.
- **d)** $2 \cdot 25 + 1 \cdot 10$ cent.
- Uten nickels (femmere) gir den grådige algoritmen optimal løsning på del **a**), **c**) og **d**) fordi den i disse tilfellene gjør de samme valgene som den grådige algoritmen gjør med nickels (og vi vet at den grådige algoritmen med alle fire myntene alltid gir optimal løsning).

På **b)** gir den grådige algoritmen 12 mynter, men dette er ikke optimalt da man kan veksle i 1 quarter, 4 dimes og 4 pennies.

Her er det nok å finne et eksempel der den grådige algoritmen ikke bruker færrest mulig mynter. F.eks. er 10c+5c=15c, men den grådige algoritmen vil at vi skal bruke fire mynter $(12c+3\cdot1c)$ i stedet for to.

Seksjon 3.2

Husk at $\log x$ betyr $\log_2 x$ i læreboken.

- **a)** For $n \ge 1$ har vi $\log(n^2 + 1) \le \log(n^2 + n^2) = \log(2n^2) = \log 2 + 2\log n \le 3\log n$, så $\log(n^2 + 1)$ er $O(\log n)$. Ved Teorem 3 får vi at $n\log(n^2 + 1)$ er $O(n\log n)$. Ved Teorem 2 får vi at $n\log(n^2 + 1) + n^2\log n$ er $O(n^2\log n)$.
 - **b)** For $n \ge 1$ har vi $(n \log n + 1)^2 = n^2 (\log n)^2 + 2n \log n + 1$ som er $O(n^2 (\log n)^2)$ ved Teorem 2. Ved Teorem 2 har vi at $\log n + 1$ er $O(\log n)$ og at $n^2 + 1$ er $O(n^2)$. Kombinert med Teorem 3 får vi at $(\log n + 1)(n^2 + 1)$ er $O(n^2 \log n)$. Igjen ved Teorem 2 får vi til slutt at $(n \log n + 1)^2 + (\log n + 1)(n^2 + 1)$ er $O(n^2 (\log n)^2)$.

- 30 c) For $x > \frac{1}{2}$ gjelder $\frac{1}{2}x \le \lfloor x + \frac{1}{2} \rfloor \le 2x$. Dette viser at $\lfloor x + \frac{1}{2} \rfloor$ er $\Theta(x)$. Valget av konstanter her er ikke unikt. Det eksisterer uendelig mange valg av konstanter som passer sammen. Alle valg av konstanter C_1, C_2 og k slik at $C_1x \le \lfloor x + \frac{1}{2} \rfloor \le C_2x$ for alle x > k viser at funksjonene er av samme orden.
 - e) Husk at $\log_a x = \frac{\log_b x}{\log_b a}$. I base 2 og base 10 får vi $\log_{10} x = \frac{\log x}{\log 10}$, som gir $\log x = (\log 10) \log_{10} x$. Fra dette ser vi at $\log_{10} x$ er $\Theta(\log x)$ siden $(\log 10) \log_{10} x \le \log x \le (\log 10) \log_{10} x$ for alle x > 0.
- 34 a) For x > 1 har vi

$$3x^2 \le 3x^2 + x + 1$$

og

$$3x^2 + x + 1 \le 3x^2 + x^2 + x^2 = 5x^2 \le 6x^2 = 2 \cdot 3x^2$$
.

Dette viser at $3x^2 + x + 1$ er $\Theta(3x^2)$. Valget av konstanter er $C_1 = 1$, $C_2 = 2$ og k = 1.

b) Under er et bilde som viser at funksjonene er av samme orden.

Nei. Et eksempel på at dette ikke stemmer er f(x) = 2x og g(x) = x. Vi vet at 2x er O(x), men vi vet også at $2^{2x} = 4^x$ *ikke* er $O(2^x)$.

Seksjon 4.1

- | 11 | **a**) 7:00.
 - **b**) 8:00.
 - **c)** 10:00.
- 42

$$a \equiv b \pmod{m}$$

 $m \mid (a - b)$
 $mc \mid (ac - bc)$
 $ac \equiv bc \pmod{mc}$