Final Assessment 1

Kaviyadevi(20106064)

In [1]: #importing libraries

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [2]: #importing dataset

data=pd.read_csv(r"C:\Users\user\Downloads\madrid_2001.csv")
data

Out[2]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	PI
0	8/1/2001 1:00	NaN	0.37	NaN	NaN	NaN	58.400002	87.150002	NaN	34.529999	105.000
1	8/1/2001 1:00	1.50	0.34	1.49	4.10	0.07	56.250000	75.169998	2.11	42.160000	100.599
2	8/1/2001 1:00	NaN	0.28	NaN	NaN	NaN	50.660000	61.380001	NaN	46.310001	100.099
3	8/1/2001 1:00	NaN	0.47	NaN	NaN	NaN	69.790001	73.449997	NaN	40.650002	69.779
4	8/1/2001 1:00	NaN	0.39	NaN	NaN	NaN	22.830000	24.799999	NaN	66.309998	75.180
217867	4/1/2001 0:00	10.45	1.81	NaN	NaN	NaN	73.000000	264.399994	NaN	5.200000	47.880
217868	4/1/2001 0:00	5.20	0.69	4.56	NaN	0.13	71.080002	129.300003	NaN	13.460000	26.809
217869	4/1/2001 0:00	0.49	1.09	NaN	1.00	0.19	76.279999	128.399994	0.35	5.020000	40.770
217870	4/1/2001 0:00	5.62	1.01	5.04	11.38	NaN	80.019997	197.000000	2.58	5.840000	37.889
217871	4/1/2001 0:00	8.09	1.62	6.66	13.04	0.18	76.809998	206.300003	5.20	8.340000	35.369

217872 rows × 16 columns

In [4]: data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 217872 entries, 0 to 217871 Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype		
0	date	217872 non-null	object		
1	BEN	70389 non-null	float64		
2	CO	216341 non-null	float64		
3	EBE	57752 non-null	float64		
4	MXY	42753 non-null	float64		
5	NMHC	85719 non-null	float64		
6	NO_2	216331 non-null	float64		
7	NOx	216318 non-null	float64		
8	OXY	42856 non-null	float64		
9	0_3	216514 non-null	float64		
10	PM10	207776 non-null	float64		
11	PXY	42845 non-null	float64		
12	S0_2	216403 non-null	float64		
13	TCH	85797 non-null	float64		
14	TOL	70196 non-null	float64		
1 5	station	217872 non-null	int64		
dtype	object(1)				

memory usage: 26.6+ MB

In [5]: #filling null values
 df=data.fillna(0)
 df

Out[5]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PI
0	8/1/2001 1:00	0.00	0.37	0.00	0.00	0.00	58.400002	87.150002	0.00	34.529999	105.000
1	8/1/2001 1:00	1.50	0.34	1.49	4.10	0.07	56.250000	75.169998	2.11	42.160000	100.599
2	8/1/2001 1:00	0.00	0.28	0.00	0.00	0.00	50.660000	61.380001	0.00	46.310001	100.099
3	8/1/2001 1:00	0.00	0.47	0.00	0.00	0.00	69.790001	73.449997	0.00	40.650002	69.779
4	8/1/2001 1:00	0.00	0.39	0.00	0.00	0.00	22.830000	24.799999	0.00	66.309998	75.180
217867	4/1/2001 0:00	10.45	1.81	0.00	0.00	0.00	73.000000	264.399994	0.00	5.200000	47.880
217868	4/1/2001 0:00	5.20	0.69	4.56	0.00	0.13	71.080002	129.300003	0.00	13.460000	26.809
217869	4/1/2001 0:00	0.49	1.09	0.00	1.00	0.19	76.279999	128.399994	0.35	5.020000	40.770
217870	4/1/2001 0:00	5.62	1.01	5.04	11.38	0.00	80.019997	197.000000	2.58	5.840000	37.889
217871	4/1/2001 0:00	8.09	1.62	6.66	13.04	0.18	76.809998	206.300003	5.20	8.340000	35.369

217872 rows × 16 columns

```
In [6]: df.columns
Out[6]: Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO 2', 'NOx', 'OXY', 'O 3',
```

In [7]: sns.pairplot(df)

Out[7]: <seaborn.axisgrid.PairGrid at 0x269e6d76970>


```
In [8]: sns.distplot(data["MXY"])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Futur eWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='MXY', ylabel='Density'>

MODEL BUILDING

1.Linear Regression


```
In [15]: print(lr.score(x_test,y_test))
```

0.8870068844960968

2. Ridge Regression

```
In [16]: from sklearn.linear_model import Ridge
In [17]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
Out[17]: Ridge(alpha=10)
In [18]: rr.score(x_test,y_test)
Out[18]: 0.8870086109906489
```

3.Lasso Regression

```
In [19]: from sklearn.linear_model import Lasso
```

```
In [20]: la=Lasso(alpha=10)
la.fit(x_train,y_train)

Out[20]: Lasso(alpha=10)

In [21]: la.score(x_test,y_test)

Out[21]: 0.5104330787352147
```

4. Elastic Net Regression

5.Logistic Regression

```
In [26]: from sklearn.linear_model import LogisticRegression
In [27]: feature_matrix = df1.iloc[:,0:16]
    target_vector = df1.iloc[:,-1]
In [28]: feature_matrix.shape
Out[28]: (217872, 15)
In [29]: target_vector.shape
Out[29]: (217872,)
```

```
In [30]: from sklearn.preprocessing import StandardScaler
In [31]: | fs=StandardScaler().fit_transform(feature_matrix)
In [32]: logr = LogisticRegression()
         logr.fit(fs,target_vector)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:76
         3: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-
         learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regressi
         on (https://scikit-learn.org/stable/modules/linear_model.html#logistic-regressi
           n_iter_i = _check_optimize_result(
Out[32]: LogisticRegression()
In [33]: |observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
In [34]: | prediction=logr.predict(observation)
         print(prediction)
         [28079099]
In [35]: logr.classes
Out[35]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
                28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
                28079017, 28079018, 28079019, 28079021, 28079022, 28079023,
                28079024, 28079025, 28079035, 28079036, 28079038, 28079039,
                28079040, 28079099], dtype=int64)
In [36]: logr.score(fs,target_vector)
Out[36]: 0.9029889109201733
```

6.Random Forest

```
In [44]: df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3','PM10', 'F
x=df1[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2', 'NOx', 'OXY','PM10', 'PXY', 'SO_2', '
y=df1['station']
```

```
In [45]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=45)
In [46]: | from sklearn.ensemble import RandomForestClassifier
         rfc = RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[46]: RandomForestClassifier()
In [47]: parameters = {'max_depth':[1,2,3,4,5],
             'min_samples_leaf':[5,10,15,20,25],
             'n_estimators':[10,20,30,40,50]}
In [48]: from sklearn.model_selection import GridSearchCV
         grid_search = GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring='acc
         grid_search.fit(x_train,y_train)
Out[48]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [49]: grid_search.best_score_
Out[49]: 0.5780396129926406
In [50]: rfc_best = grid_search.best_estimator_
```

Results

1.linear regression: 0.8870068844960968

2.lasso regression: 0.5104330787352147

3.ridge regression: 0.8870086109906489

4. Elasticnet regression: 0.8629615244493962

5.Logistic regresssion: 0.9029889109201733

6.Random forest regression: 0.5780396129926406

Hence Logistic regression gives high accuarcy for the madrid_2001 model.