Question Bank in Inverse Laplace Transforms

5 marks Questions

- 1. Find Inverse Laplace Transform of $\frac{2s-1}{s^2+8s+29}$
- 2. Find Inverse Laplace Transform of $tan^{-1}(\frac{s+a}{b})$
- 3. Find $L^{-1} \left\{ \frac{1}{s(s^2+4)} \right\}$

6 marks Questions

- 1. Find the Inverse Laplace Transform of $\frac{(s+3)^2}{(s^2+6s+5)^2}$ by using convolution Theorem.
- 2. Find the Inverse Laplace Transform of $\frac{1}{(s-2)^4(s+3)}$ by using method of partial fractions.
- 3. Find the Inverse Laplace Transform of $\frac{(s+2)^2}{(s^2+4s+8)^2}$ by using convolution Theorem.
- 4. Find $L^{-1}\left(\frac{s^2}{(s^2+5)(s^2+4)}\right)$
- 5. Find the Inverse Laplace Transform of $\frac{(s+3)^2}{(s^2+6s+5)^2}$ by using convolution Theorem.
- 6. Find $L^{-1} \left[\log \frac{(s^2+4)}{(s+2)^2} \right]$ by using convolution Theorem.
- 7. Find $L^{-1} \left\{ \frac{4s+12}{s^2+8s+12} \right\}$
- 8. Find the inverse Laplace Transform of log $\left(1 + \frac{a^2}{s^2}\right)$.
- 9. Using convolution Theorem, find the Inverse Laplace Transform of $\frac{s^2}{(s^2+9)(s^2+4)}$
- 10. Find the Inverse Laplace Transform of $\frac{s+29}{(s+4)(s^2+9)}$.
- 11. Find $L^{-1} \left\{ \log \left(1 \frac{1}{s^2} \right) \right\}$
- 12. Find inverse Laplace transform of $\log \left(\frac{s^2 + a^2}{\sqrt{s+b}} \right)$
- 13. Determine inverse Laplace Transform $L^{-1}\left\{\frac{s}{(s^2+1)(s^2+4)}\right\}$, using Convolution theorem.

1

14. Determine the inverse Laplace transform of $\log \left(\frac{s^2 + a^2}{(s+b)^2} \right)$

8 marks Questions

- 1. Find Inverse Laplace Transform of (i) $\frac{2s+3}{s^2+2s+2}$ (ii) $\frac{s+2}{s^2(s+3)}$
- 2. Find $L^{-1} \left\{ \frac{(s+3)^2}{(s^2+6s+13)^2} \right\}$
- 3. Find the inverse Laplace transform of $\frac{s^2 + 2s + 3}{(s^2 + 2s + 5)(s^2 + 2s + 2)}$
- 4. Using Convolution theorem find the Inverse Laplace Transform of $\frac{(s+2)^2}{(s^2+4s+8)^2}$
- 5. (i) Find $L^{-1} \left\{ \frac{s+2}{s^2 4s + 13} \right\}$ (ii) Find $L^{-1} \left\{ \tan^{-1}(s) \right\}$