Taller de Ética y Fairness en IA-ML

Un Caso de Sesgo de Selección

Cinthya Vergara - Universidad Adolfo Ibáñez

IA, Ética y Fairness

Actividades

- Inteligencia Artificial en la actualidad
- Sesgos
- Pensando en grupo: ¿Cómo resolvemos los sesgos?
- © Desafíos en el modelamiento de AI-ML
- Cierre y Conversación

¿Dónde nos encontramos con Al?

Ética y fairness en Al-ML

- ¿Qué es "fairness" en IA-ML?
 - Problemas comunes: sesgos, discriminación, falta de transparencia.

Fairness

- Se traduce al español como equidad o imparcialidad.
- En el contexto de la inteligencia artificial y el aprendizaje automático, se refiere a la capacidad de un sistema o modelo para tratar de manera justa y sin sesgo a todos los individuos o grupos, sin discriminación ni prejuicio.

Sesgos en IA: Un Desafío de Diversidad e Inclusión

Selección de Candidatos

Sesgo de IA que favorece a los hombres, obstaculizando la diversidad y la adquisición de talento.

Asistente Virtual

Problemas para comprender acentos diversos que llevan a la exclusión del usuario.

Reconocimiento Facial

Tasas de error más altas para individuos de piel oscura, arriesgando la discriminación.

#?! And the pie subreman subr

Diagnóstico Médico

Menor precisión diagnóstica para pacientes de tonalidad de piel más oscura y/o subrepresentación.

Publicidad Digital

Algoritmos que refuerzan estereotipos de género, limitando las oportunidades percibidas.

Caso: Algoritmo de Contratación

AMAZON (2014)

- Automatización de selección de CV para puestos técnicos
- Aprendió patrones de éxito basados en datos históricos
- Penalizaba cv que incluían la palabra "femenino", como en "capitana de club de ajedrez femenino".
- Rebajó puntaje de graduadas en dos universidades exclusivas de mujeres

¿Podría pasar en Chile?

Algunas cifras en Chile

Ejemplo Interactivo

Modelo de Contratación Sesgado

Con base en datos chilenos se generaron datos sintéticos para probar distintas estrategias usando un modelo de Regresión Logística.

	mean	std	min	max/top
Edad	33.45	5.33	18	54
Genero	_	_	_	Hombre
NivelEducativo	_	_	_	Universitario
RamaPrincipal	_	_	_	Desarrollo
AñosExperiencia	9.72	2.91	0	20
AñosExperienciaPro	5.16	3.17	0	16
HaTrabajadoCon	_	_	_	Angular
PuntajesTecnologias	13.74	7.62	1	38
HabilidadesComputacionales	4.06	1.47	1	10
SalarioAnterior	2.34MM	1.13MM	0.50MM	9.61MM
Puntaje	2.28	1.02	0.36	9.73
Contratacion	0.65	0.48	0	1

Simulación de Modelo Predictivo Base

	Hombre	No Binario	Mujer
Tasa de Selección Promedio	0.76	0.43	0.49
Accuracy Promedio	0.94	0.91	0.93
FPR Promedio	0.14	0.08	0.07
TPR Promedio	0.96	0.90	0.92

Pregunta clave

¿Cómo podemos crear sistemas de IA más justos?

Nube de Palabras

Inicio del Taller

Objetivos del taller

- Analizaremos implicaciones éticas y de equidad
- Desarrollaremos soluciones creativas
- Q Identificaremos oportunidades y desafíos en IA

Un poco de código

Actividad en Grupos: Análisis del Caso

- 1. Identificar fuentes de sesgo en los datos
- 2. Analizar por qué el modelo amplifica estos sesgos
- 3. Proponer soluciones para mitigar el sesgo

Creative Problem Solving

¿Cómo podemos crear sistemas de IA más justos?

Comienza la cuenta regresiva ...

30m 47s

Discusión y Cierre del Taller

Simulación Caso Fairness

- Bootstrap:
 - Realiza 100 iteraciones de remuestreo
 - Cada iteración genera una muestra aleatoria del dataset original
 - Permite obtener estimaciones más robustas y estimar la variabilidad
- Preprocesamiento:
 - Escala características numéricas con StandardScaler
 - Codifica características categóricas con OneHotEncoder

- Evaluación:
 - Evalúa rendimiento y fairness para cada grupo sensible
 - Calcula métricas promedio y su desviación estándar
- Salida del Análisis
 - Métricas promedio por grupo
 - Disparidades entre grupos
 - Variabilidad de las métricas

Comparación Modelos (3 estrategias)

Métrica	BASE	SIN_GENERO	ATENUADO
Accuracy (Hombres)	0.937 ± 0.004	0.935 ± 0.004	0.929 ± 0.005
Accuracy (No Binarios)	0.920 ± 0.019	0.909 ± 0.021	0.905 ± 0.020
Accuracy (Mujeres)	0.925 ± 0.006	0.925 ± 0.007	0.915 ± 0.007
FPR (Hombres)	0.135 ± 0.010	0.127 ± 0.010	0.091 ± 0.009
FPR (No Binarios)	0.073 ± 0.018	0.124 ± 0.031	0.044 ± 0.017
FPR (Mujeres)	0.068 ± 0.007	0.070 ± 0.007	0.045 ± 0.005
TPR (Hombres)	0.960 ± 0.003	0.955 ± 0.003	0.936 ± 0.005
TPR (No Binarios)	0.909 ± 0.033	0.955 ± 0.022	0.832 ± 0.042
TPR (Mujeres)	0.919 ± 0.009	0.920 ± 0.009	0.872 ± 0.012
Tasa de Selección (Hombres)	0.755 ± 0.008	0.749 ± 0.007	0.725 ± 0.008
Tasa de Selección (No Binarios)	0.422 ± 0.037	0.471 ± 0.034	0.374 ± 0.041
Tasa de Selección (Mujeres)	0.479 ± 0.015	0.480 ± 0.014	0.444 ± 0.014

Resultados globales por modelo

Modelo	Diferencia en Accuracy	Diferencia en Tasa de Selección	Disparidad FPR
Base	0.016	0.332	0.066
Sin género	0.026	0.278	0.057
Atenuado	0.019	0.327	0.039

Principales Resultados

- La precisión (accuracy) más alta
 se observa en el modelo BASE,
 especialmente para el grupo de hombres (0.937 ± 0.004).
- El modelo Atenuado es el que presenta mejor balance entre precisión y reducción de disparidades, especialmente en términos de FPR y TPR.
- Si bien existe un pequeño costo en accuracy, considerar fairness genera mejoras, especialmente en la equidad de género o grupos minoritarios.

- Desafíos Persistentes:
 - Ningún modelo elimina completamente las disparidades
- Datos reflejan sesgos estructurales/sistémicos

LLuvia de Ideas

Indicadores y Estrategias

Estrategias Genéricas

Creative Problem Solving

Indicadores y Estrategias (III) Indicadores de Fairness

Indicador	Descripción	Fórmula
Calibration	Asegura que las probabilidades predichas por el modelo coincidan con las probabilidades reales de un evento, desglosadas por grupo.	Si un modelo predice una probabilidad $p=0.8$, entonces aproximadamente el 80% de las instancias deberían ser positivas.
Treatment Equality	Mide si la probabilidad de que se haga una predicción positiva es igual para todos los grupos.	$P(\hat{y}=1 A=a)=P(\hat{y}=1 A=b)$, donde a y b son distintos valores del atributo sensible A .
Fairness Through Unawareness	Se asegura de que el modelo no utilice explícitamente variables sensibles para hacer predicciones.	El modelo no utiliza explícitamente las variables sensibles, pero puede ser sensible a efectos indirectos.
Causal Fairness	Mide si la relación causal entre las características y la predicción es justa.	Depende de un análisis causal, que se basa en identificar y comparar las relaciones causales entre las variables.

Indicadores y Estrategias (III) Indicadores de Fairness

Indicador	Descripción	Fórmula
Demographic Parity	Mide si la probabilidad de una predicción positiva es similar entre diferentes grupos.	$P(\hat{y}=1 A=a)=P(\hat{y}=1 A=b)$, donde A es el atributo sensible (por ejemplo, género o etnia).
Equal Opportunity	Asegura que todos los grupos tengan la misma tasa de aciertos (recall).	$TPR_a = TPR_b$, donde $TPR = \frac{TP}{TP+FN}$ (True Positive Rate) es la tasa de verdaderos positivos.
Equalized Odds	Garantiza que la tasa de aciertos (TPR) y la tasa de falsos positivos (FPR) sean iguales entre los grupos.	$TPR_a = TPR_b, FPR_a = FPR_b,$ donde $FPR = rac{FP}{FP + TN}$ (False Positive Rate).
Predictive Parity	Asegura que los modelos tengan la misma precisión (precision) para diferentes grupos.	$\left. rac{TP}{TP+FP} \right _a = \left. rac{TP}{TP+FP} \right _b$

Atenuación de atributos

La atenuación de atributos busca reducir la influencia de ciertos atributos sensibles para que el modelo no se vea demasiado influenciado por ellos.

Concepto	Fórmula	
Pérdida del Modelo (Error)	$L_{modelo} = -rac{1}{N} \sum_{i=1}^{N} [y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i)]$	
Pérdida de Equidad (Fairness)	Disparidad de Precisión: $L_{fairness} = \ Acc_{grupo1} - Acc_{grupo2}\ $ Disparidad de FPR: $L_{FPR} = \ FPR_{grupo1} - FPR_{grupo2}\ $	
Función de Pérdida Compuesta	$L(heta,\lambda) = L_{modelo} + \lambda (L_{fairness} + L_{FPR}) \$$ donde $\$\lambda \geq 0$	
Penalización en Atributos Sensibles	$egin{aligned} X_{shrink} &= \lambda X_{sensible} + (1-\lambda) X_{otros} \ heta_{shrink} &= \lambda heta_{sensible} + (1-\lambda) heta_{otros} donde \lambda \in [0,1] \end{aligned}$	
Optimización del Factor de Shrinkage	$(\hat{\lambda},\hat{ heta}) = rg\min_{\lambda, heta} L(heta,\lambda)$	

Muchas gracias por su Atención!

... y sigamos trabajando por un mundo más justo, inclusivo y amable ;) 🦄 📙

Referencias (Parte 1)

- 1. O'Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown. ISBN 978-0553418811.
- 2. Staniscuaski, F., Kmetzsch, L., Soletti, R. C., Reichert, F., Zandonà, E., Ludwig, Z. M., Lima, E. F., Neumann, A., Schwartz, I. V. D., Mello-Carpes, P. B., et al. (2021). Gender, race and parenthood impact academic productivity during the COVID-19 pandemic: from survey to action. *Frontiers in Psychology*, 12, 663252.
- 3. Viglione, G., et al. (2020). Are women publishing less during the pandemic? Here's what the data say. *Nature*, 581(7809), 365-366.
- 4. Gao, J., Yin, Y., Myers, K. R., Lakhani, K. R., & Wang, D. (2021). Potentially long-lasting effects of the pandemic on scientists. *Nat Commun*, 12, 6188.
- 5. buk. (2024). RADIOGRAFÍA: MUJERES EN EL TRABAJO 2024. Retrieved from https://info.buk.cl/radiografia-de-las-mujeres-en-el-trabajo-2024

Referencias (Parte 2)

- 6. Instituto Nacional de Estadísticas (INE). (2023). Síntesis de resultados Encuesta Suplementaria de Ingresos ESI 2023. Retrieved from https://www.ine.gob.cl/estadisticas/sociales/ingresos-y-gastos/encuesta-suplementaria-de-ingresos
- 7. Dastin, J. (2022). Amazon scraps secret AI recruiting tool that showed bias against women. In *Ethics of data and analytics* (pp. 296-299). Auerbach Publications.
- 8. Caton, S., & Haas, C. (2024). Fairness in machine learning: A survey. ACM Computing Surveys, 56(7), 1-38.
- 9. Carrizosa, E., Galvis-Restrepo, M., & Romero Morales, D. (2022). Improving the fairness of linear models in supervised classification by feature shrinkage. Preprint, available from the authors.
- 10. Lavanchy, M. (2024). Amazon's Sexist Hiring Algorithm Could Still Be Better Than a Human. *The Conversation*. Retrieved from https://www.imd.org/research-knowledge/digital/articles/amazons-sexist-hiring-algorithm-could-still-be-better-than-a-human/

