TRIGONOMETRIC

EQUATION

Definition: An equation involving trigonometric functions as a variable is called Trigonometric Equations.

Solution of Trigonometric Equation

- 1. Principal Solution: The solution of the trigonometric equation lying in the interval $[0,2\pi)$.
- 2. General Solution: All the trigonometric functions are Periodic and Many-one, hence there are infinite values of θ for which trigonometric functions have same value. The expression involving integer n which gives all solutions of a trigonometric equation is called general solution.
- 3. Particular Solution: The solution of the trigonometric equation lying in the given interval.
- For all trigonometric function, we two principal values in $[0,2\pi)$.
- General solution for both principal values will be same although these may apparently look different.

General Solutions of Some Standard Trigonometric Equation

- (1) If $\sin \theta = 0 \implies \theta = n\pi$, $n \in I$.
- (2) If $\cos \theta = 0 \implies \theta = (2n+1)\frac{\pi}{2}, n \in I$.
- (3) If $\tan \theta = 0 \implies \theta = n\pi$, $n \in I$.
- (4) **Theorem 1**: For $x, y \in R$, $\sin x = \sin y \implies x = n\pi + (-1)^n y$, $n \in I$.
- (5) **Theorem 2**: For $x, y \in R$, $\cos x = \cos y \implies x = 2n\pi \pm y$, $n \in I$.
- (6) **Theorem 3**: For $x, y \in R \left\{ (2n+1) \frac{\pi}{2} \right\}$, $\tan x = \tan y \implies x = n\pi + y$, $n \in I$.
- (7) If $\sin \theta = 1 \implies \theta = 2n\pi + \frac{\pi}{2} = (4n+1)\frac{\pi}{2}, n \in I$.
- (8) If $\cos \theta = 1 \implies \theta = 2n\pi$, $n \in I$.
- (9) If $\sin^2 \theta = \sin^2 \alpha$, $\cos^2 \theta = \cos^2 \alpha$ or $\tan^2 \theta = \tan^2 \alpha \implies \theta = n\pi \pm \alpha$, $n \in I$.

Example 1. Find the Principal solutions of the equation

(i)
$$\sin \theta = \frac{\sqrt{3}}{2}$$

(iii)
$$\tan \theta = -\frac{1}{\sqrt{3}}$$

(ii)
$$\cot \theta = -1$$

Example 2. Find the solution of

(i)
$$\sin \theta = -\frac{\sqrt{3}}{2}$$

$$(iv)\frac{1}{3}\sin^3(-\theta) = 0$$

(ii)
$$\cos\left(\frac{3\theta}{2}\right) = 0$$

(v)
$$\cos \theta = \frac{1}{2}$$

(iii)
$$\tan\left(\frac{3\theta}{4}\right) = 0$$

(vi)
$$\csc\left(\frac{\theta}{2}\right) = -1$$

(vii)
$$\sec 2\theta = -\frac{2}{\sqrt{3}}$$

(ix)
$$\tan^2 \theta = 1$$

(x)
$$\cos^2 2\theta = 1$$

(viii)
$$\cos 4\theta = -\frac{\sqrt{3}}{2}$$

Example 3. Solve:

(i)
$$\frac{\tan 3x - \tan 2x}{1 + \tan 3x \tan 2x} = 1$$

(iii)
$$\tan 2x + \tan x + \tan 2x \tan x = 1$$

(iv) $\tan 2x = -\cot\left(x + \frac{\pi}{3}\right)$

(ii)
$$\tan \theta = \frac{3}{4}$$

Example 4. Solve the following simultaneous trigonometric equations

(i)
$$\sin x = -\frac{1}{2}, \cos x = -\frac{\sqrt{3}}{2}$$

(iii)
$$\tan x = -1, \cos = \frac{1}{\sqrt{2}}$$

(ii)
$$\tan \theta = -\sqrt{3}$$
, $\sec \theta = -2$

$$(iv) 7\cos^2\theta + 3\sin^2\theta = 4$$

Important Points to be Considered

- (a) For equations of the type $\sin \theta = k$ or $\cos \theta = k$, one must check that $|k| \le 1$.
- (b) Avoid squaring the equations, if possible, because it may lead to extraneous solution. Reject extra solutions if they do not satisfy the given equation.
- (c) Do not cancel the common variable factor from the two sides of the equations which are in the product because it may lose some solutions.
- (d) The answer should not contain such values of θ , which make any of the terms undefined or infinite.
 - (i) Check that denominator is not zero at any stage while solving equations.
 - (ii) If $\tan \theta$ or $\sec \theta$ is involved in the equations, θ should not be odd multiple of $\frac{\pi}{2}$
 - (iii)If $\cot\theta$ or $\csc\theta$ is involved in the equations, θ should not be odd multiple of π or 0

Different Types of Solving Trigonometric Equations

Type I: - By Factorisation

Example 5. Solve:

(i)
$$2\sin^2\theta - 3\sin\theta - 2 = 0$$

(ii)
$$3\sin^2 x - 7\sin x + 2 = 0$$
,
 $x \in [0, 5\pi]$

(v)
$$\frac{\sin^3 \frac{x}{2} - \cos^3 \frac{x}{2}}{2 + \sin x} = \frac{\cos x}{3}$$

(vi) $\cos^3 x + \cos^2 x - 4\cos^2 \frac{x}{2} = 0$

(iii)
$$\sin 2x = \cos x$$

(iv)
$$\sin 3x = \cos x$$

(vii)
$$(2\sin x - \cos x)(1 + \cos x) = \sin^2 x$$

Example 6. If
$$\sin \alpha, 1 \& \cos 2\alpha$$
 are in GP then find general solution for α .

Example 7. If $\frac{1}{6}\sin\theta,\cos\theta$ and $\tan\theta$ are in GP then general solution for θ is –

(a)
$$2n\pi \pm \frac{\pi}{3}$$

(c)
$$n\pi \pm \frac{\pi}{3}$$

(b)
$$2n\pi \pm \frac{\pi}{6}$$

Type II: - By Reducing it to a Quadratic Equation

Example 8. Solve:

(i)
$$\sin^2 \theta - \cos \theta = \frac{1}{4}$$
,

$$0 \le \theta \le 2\pi$$

(ii)
$$\cos 2x + 3\sin x = 2$$
,
 $x \in [0, \pi]$

(iii)
$$\tan x + \sec x = 2\cos x$$
,
 $0 \le x \le 2\pi$

(iv)
$$2\sin^2\theta + \sin^2 2\theta = 2$$
,
 $\theta \in (-\pi, \pi)$

Example 9. Solve:

(i)
$$6-10\cos x = 3\sin^2 x$$

(iii)
$$4\sec^2\theta = 5 + \tan^2\theta$$

(ii)
$$2\cos^2 x + 3\sin x = 0$$

(iv)
$$\sec^2 2\theta = 1 - \tan 2\theta$$

(v)
$$5\sin^2 x - 7\sin x \cos x + 16\cos^2 x = 4$$

$$(vi) \sin^4 x + \cos^4 x = \frac{7}{2} \sin x \cos x$$

Type III: - By Introducing an Auxiliary Argument

Trigonometric of the form $a \sin \theta + b \cos \theta = c$, where $a,b,c \in R$ can be solved by dividing both sides of the equation by $\sqrt{a^2 + b^2}$

Consider $a \sin \theta + b \cos \theta = c$

$$\therefore \frac{a}{\sqrt{a^2 + b^2}} \sin \theta + \frac{b}{\sqrt{a^2 + b^2}} \cos \theta = \frac{c}{\sqrt{a^2 + b^2}}$$

Equation (1) has a solution only when if $|c| \le \sqrt{a^2 + b^2}$

Let $\frac{a}{\sqrt{a^2+b^2}} = \cos \alpha$, $\frac{b}{\sqrt{a^2+b^2}} = \sin \alpha$ & $\alpha = \tan^{-1} \frac{b}{a}$ by introducing this auxiliary

argument α , equation (1) reduces to

 $\sin(\theta + \alpha) = \frac{c}{\sqrt{a^2 + b^2}}$, this equation can solve easily.

Example 10. Find the number of distinct solutions of $\sec x + \tan x = \sqrt{3}$, where $0 \le x \le 3\pi$ **Example 11.** Solve:

(i)
$$\sin x + \sqrt{2} = \cos x$$

(iii)
$$\csc x = 1 + \cot x$$

(ii)
$$\sqrt{3}\sin x + \cos x = \sqrt{3}$$

(iv)
$$\sin \theta + \cos \theta = 1$$

(v)
$$(\sqrt{3}-1)\sin x + (\sqrt{3}+1)\cos x = 2$$

Example 12. Prove that the equation $k \cos x - 3\sin x = k + 1$ posses' as solution iff $k \in (-\infty, 4]$

Example 13. If the equation $7\cos x + 5\sin x = 2k + 1$ has a solution, then find the number of integral values of k for which.

Type IV: - By Transforming Sum of Trigonometric Functions into Product

Example 14. Solve:

(i)
$$\cos 2\theta + \cos 4\theta = 0$$

(iv)
$$\sin 2x - \sin 4x + \sin 6x = 0$$

(ii)
$$\cos 3x + \sin 2x - \sin 4x = 0$$

(v)
$$\sqrt{3}\sin 2x + \cos 5x - \cos 9x = 0$$

(iii)
$$\sin x + \sin 3x + \sin 5x = 0$$

(vi)
$$\cos \theta + \cos 3\theta + \cos 5\theta + \cos 7\theta = 0$$

Type V: - By Transforming Product into Sum

Example 15. Solve:

(i) $\sin 5x \cos 3x = \sin 6x \cos 2x$

(ii) $4\sin\theta\sin 2\theta\sin 4\theta = \sin 3\theta$

(iii)
$$\cos \theta \cos 2\theta \cos 3\theta = \frac{1}{4}$$
, where $0 \le x \le \pi$

Type VI: - By Change of Variable

- Trigonometric equations of the form $P(\sin x \pm \cos x, \sin x \cos x) = 0$, where P(x, y) is a polynomial, can be solved by using the substitution $\sin x \pm \cos x = t$
- Trigonometric of the form $a \sin \theta + b \cos \theta = c$ can also solved by changing $\sin \theta$ and $\cos \theta$ into their corresponding tangent of half the angle.

Example 16. Solve:

(i)
$$\sin x + \cos x - 2\sqrt{2}\sin x \cos x = 0$$

(ii)
$$\sin 2x + 3\sin x = 1 + 3\cos x$$

(iii)
$$\sin^4 x + \cos^4 x = \sin x \cos x$$

Example 17. Solve:

(i)
$$4\sin\theta + 3\cos\theta = 5$$

(ii)
$$\sin x + \tan \frac{x}{2} = 0$$

Type VII: - Use of the Boundness of the Function Involved

Example 18. Solve:
$$\sin x \left(\cos \frac{x}{4} - 2\sin x\right) + \left(1 + \sin \frac{x}{4} - 2\cos x\right)\cos x = 0$$

Example 19. Solve:
$$(\sin x + \cos x)^{1+\sin 2x} = 2$$
, where $0 \le x \le \pi$.

Example 20. Solve for x and y:
$$2^{\frac{1}{\cos^2 x}} \sqrt{y^2 - y + \frac{1}{2}} \le 1$$

Example 21. The number of solution(s) of
$$2\cos^2\left(\frac{x}{2}\right)\sin^2 x = x^2 + \frac{1}{x^2}$$
, $0 \le x \le \frac{\pi}{2}$, is/are –

(c) Infinite

(d) None of these

Example 22. If
$$x^2 - 4x + 5 - \sin y = 0$$
, $y \in [0, 2\pi)$, then –

(a)
$$y \in [0, 2\pi)$$

(c)
$$y \in [0, 2\pi)$$

(b)
$$y \in [0, 2\pi)$$

(d)
$$y \in [0, 2\pi)$$

Example 23. If $\sin x + \cos x = \sqrt{y + \frac{1}{y}}$, y > 0, $x \in [0, \pi]$, then find the least positive value of x satisfying the giving condition.

Trigonometric Inequalities

Example 24. Find the solution set of inequality

(i)
$$\sin \theta > \frac{1}{2}$$

(ii)
$$\cos x \ge -\frac{1}{2}$$

Example 25. Find the value of x in the interval $\left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$ for which

$$\sqrt{2}\sin 2x + 1 \le 2\sin x + \sqrt{2}\cos x.$$

- **Example 26.** Find values of α lying between 0 and π for which the inequality: $\tan \alpha > \tan^3 \alpha$ is valid.
- **Example 27.** Find the value of x in the interval $[0, 2\pi]$ for which $4\sin^2 x 8\sin x + 3 \le 0$.

Mixed Concept Examples

Example 28. Solve:

(i)
$$\tan^2 \theta + \sec^2 \theta + 3 = 2(\sqrt{2} \sec \theta + \tan \theta)$$

(ii)
$$5^{(1+\log_5\cos x)} = \frac{5}{2}$$

(iii)
$$(\cos x)^{\sin^2 x - 3\sin x + 2} = 1, x \neq \frac{n\pi}{2}, n \in I$$

- **Example 29.** If the set of all values of x in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ satisfying $\left|4\sin x + \sqrt{2}\right| < \sqrt{6}$ is $\left(\frac{a\pi}{24}, \frac{b\pi}{24}\right)$ then find the value of $\left|\frac{a-b}{2}\right|$
- *Example 30.* Find the values of x in the interval $[0, 2\pi]$ which satisfy the inequality: $3|2\sin x 1| \ge 3 + 4\cos^2 x$
- **Example 31.** Find the value of θ , for which $\cos 3\theta + \sin 3\theta + (2\sin 2\theta 3)(\sin \theta \cos \theta)$ is always positive.
- **Example 32.** Find general solution of $1 + |\cos x| + |\cos x|^2 + |\cos x|^3 + \dots = 4$.
- **Example 33.** The number of values of x in the interval $[0,5\pi]$ satisfying the equation

$$3\sin^2 x - 7\sin x + 2 = 0$$
 is –