SI231b: Matrix Computations

Lecture 13: Eigenvalue Problems

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology ShanghaiTech University

Oct. 24, 2022

MIT Lab, Yue Qiu

Outline

- ► Eigenvalues and Eigenvectors
- Characteristic Polynomials
- Eigenspaces
- Algebraic and Geometric Multiplicity
- ► Similarity Transformation
- ► Defective Eigenvalues and Matrices
- ► Eigenvalue Decomposition

Oct. 24, 2022

MIT Lab, Yue Qiu Si231b: Matrix Computations, Shanghai Tech

Eigenvalues and Eigenvectors

Problem: given a $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$), find a vector $\mathbf{v} \in \mathbb{C}^n$ with $\mathbf{v} \neq \mathbf{0}$ such that

$$\mathbf{Av} = \lambda \mathbf{v}, \qquad \text{for some } \lambda \in \mathbb{C} \tag{*}$$

- (*) is called an eigenvalue problem or eigen-equation
- let (\mathbf{v}, λ) be a solution to (*). We call
 - (\mathbf{v}, λ) an eigen-pair of **A**
 - λ an eigenvalue of **A**
 - ullet v an eigenvector of **A** associated with λ
- ▶ if (\mathbf{v}, λ) is an eigen-pair of \mathbf{A} , $(\alpha \mathbf{v}, \lambda)$ is also an eigen-pair for any $\alpha \in \mathbb{C}, \alpha \neq 0$
- ightharpoonup unless specified, we will assume $\|\mathbf{v}\|_2 = 1$ in the sequel

Left/Right Eigenvector

Right Eigenvector

▶
$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$
 for $\mathbf{x} \neq \mathbf{0}$

Left Eigenvector

$$\mathbf{x}^H \mathbf{A} = \lambda \mathbf{x}^H \text{ for } \mathbf{x} \neq \mathbf{0}$$

Unless specified, eigenvectors in our lecture are right eigenvectors.

Spectral Radius

$$\rho(\mathbf{A}) = \max |\lambda(\mathbf{A})|$$

Numerical Range

$$\textit{W}(\textbf{A}) = \left\{ \textbf{x}^{\textit{H}} \textbf{A} \textbf{x} | \| \textbf{x} \|_2 = 1 \right\}$$

Characteristic Polynomial

Fact: Every $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) has n eigenvalues.

from the eigenvalue problem we see that

- let $p(\lambda) = \det(\mathbf{A} \lambda \mathbf{I})$, called the characteristic polynomial of \mathbf{A}
- \blacktriangleright it can be shown that $p(\lambda)$ is a polynomial of degree n,

$$p(\lambda) = \alpha_0 + \alpha_1 \lambda + \alpha_2 \lambda^2 + \ldots + \alpha_n \lambda^n$$

where $\{\alpha_i\}_{i=1}^{n+1}$ depend on **A**

- ightharpoonup as $p(\lambda)$ is a polynomial of degree n, it can be factored as $p(\lambda) = \prod_{i=1}^{n} (\lambda_i - \lambda)$ where $\lambda_1, \dots, \lambda_n$ are the roots of $p(\lambda)$
- we have $\det(\mathbf{A} \lambda \mathbf{I}) = 0 \iff \lambda \in \{\lambda_1, \dots, \lambda_n\}$

MIT Lab. Yue Qiu

Eigenvalues and Eigenvectors

Fact: an eigenvalue can be complex even if **A** is real.

- ▶ a polynomial $p(\lambda) = \alpha_0 + \alpha_1 \lambda + \alpha_2 \lambda^2 + \ldots + \alpha_n \lambda^n$ with real coefficients α_i 's can have complex roots
- example: consider

$$\mathbf{A} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

• we have $p(\lambda) = \lambda^2 + 1$, so $\lambda_1 = \mathbf{j}$, $\lambda_2 = -\mathbf{j}$

Fact: if **A** is real and there exists a real eigenvalue λ of **A**, the associated eigenvector **v** can be taken as real.

- lacktriangle obviously, when ${\bf A}-\lambda {\bf I}$ is real we can define $\mathcal{N}({\bf A}-\lambda {\bf I})$ on \mathbb{R}^n
- or, if \mathbf{v} is a complex eigenvector of a real \mathbf{A} associated with a real λ , we can write $\mathbf{v} = \mathbf{v}_{\mathrm{R}} + \mathbf{\dot{p}}_{\mathrm{I}}$, where $\mathbf{v}_{\mathrm{R}}, \mathbf{v}_{\mathrm{I}} \in \mathbb{R}^{n}$. It is easy to verify that \mathbf{v}_{R} and \mathbf{v}_{I} are eigenvectors associated with λ

イロト イ団ト イミト イミト

6 / 13

Eigenvalues and Eigenvectors

For $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$), we should be careful

- ▶ the meaning of *n* eigenvalues: they are defined as the *n* roots of the characteristic polynomial $p(\lambda) = \det(\mathbf{A} \lambda \mathbf{I})$
- example: consider

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

- from the original definition ${\bf Av}=\lambda {\bf v},$ one can verify that $\lambda=1$ is the only eigenvalue of ${\bf A}$
- from the characteristic polynomial, which is $p(\lambda)=(1-\lambda)^2$, we see two roots $\lambda_1=\lambda_2=1$ as two eigenvalues

◆□ > ◆□ > ◆豆 > ◆豆 > 豆 の Q @

MIT Lab, Yue Qiu SI231b: Metrix Computations, Shanghaffeeh Oct. 24, 2022

Eigenspaces

Eigenspace

If **A** is an $n \times n$ square matrix and λ is an eigenvalue of **A**, then the union of the zero vector **0** and the set of all eigenvectors corresponding to eigenvalues λ is a subspace of \mathbb{R}^n known as the eigenspace of λ .

Subspace Interpretation

Denote \mathcal{E}_{λ} the eigenspace of **A** associated with λ , then

- ▶ $\forall x \in \mathcal{E}_{\lambda}$, $x \neq 0$, x is an eigenvector of A associated with eigenvalue λ .
- \triangleright $\mathcal{E}_{\lambda} = \mathcal{N}(\mathbf{A} \lambda \mathbf{I})$
- $ightharpoonup \mathcal{E}_{\lambda}$ is an invariant subspace of \mathbf{A} , i.e., $\mathbf{A}\mathcal{E}_{\lambda} \subset \mathcal{E}_{\lambda}$

MIT Lab, Yue Qiu

Algebraic Multiplicity and Geometric Multiplicity

Repeated Eigenvalues

- ▶ order $\lambda_1, \ldots, \lambda_n$ such that $\{\lambda_1, \ldots, \lambda_k\}$ $(k \le n)$ is the set of all distinct eigenvalues of **A**, i.e., $\lambda_i \ne \lambda_j$ for all $i, j \in \{1, \ldots, k\}$ with $i \ne j$
- denote μ_i as the number of repeated eigenvalues of λ_i , $i = 1, \ldots, k$
 - μ_i is called the algebraic multiplicity of the eigenvalue λ_i

$$p(\lambda) = (\lambda - \lambda_1)^{\mu_1} (\lambda - \lambda_2)^{\mu_2} \cdots (\lambda - \lambda_k)^{\mu_k},$$

with $\mu_1 + \mu_2 + \cdots + \mu_k = n$.

- ightharpoonup every λ_i can have more than one eigenvector (scaling not counted)
 - if $\dim \mathcal{N}(\mathbf{A} \lambda_i \mathbf{I}) = r$, we can find r linearly independent \mathbf{v}_i 's
 - denote $\gamma_i = \dim \mathcal{N}(\mathbf{A} \lambda_i \mathbf{I}), i = 1, \dots, k$
 - γ_i is the dimension of the eigenspace of λ_i
 - γ_i is called the geometric multiplicity of the eigenvalue λ_i

MIT Lab. Yue Oiu SI231b. Marzis Computations. Standbulleding. Oct. 24, 2022 9

Similarity Transformation

For $\mathbf{A} \in \mathbb{R}^{n \times n} (or \, \mathbb{C}^{n \times n})$, if $\mathbf{T} \in \mathbb{R}^{n \times n} (or \, \mathbb{C}^{n \times n})$ is nonsingular, the map $\mathbf{A} \mapsto \mathbf{T}^{-1} \mathbf{A} \mathbf{T}$ is called a similarity transformation of \mathbf{A} .

Theorem 1 If **T** is nonsingular, then **A** and $T^{-1}AT$ have the same

- ► characteristic polynomial
- eigenvalues
- algebraic multiplicity
- geometric multiplicity

Hint: using characteristic polynomial to show.

Defective Eigenvalues and Matrices

Lemma 1: the algebraic multiplicity of an eigenvalue λ_i is at least as great as its geometric multiplicity, i.e., $\mu_i \geq \gamma_i$.

You need to prove this.

Defective Eigenvalue

An eigenvalue whose algebraic multiplicity exceeds its geometric multiplicity is a defective eigenvalue.

Defective Matrix

A matrix that has one or more defective eigenvalues.

Examples: consider the following matrices

$$\mathbf{A} = \begin{bmatrix} 2 & & \\ & 2 & \\ & & 2 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 2 & 1 & \\ & 2 & 1 \\ & & 2 \end{bmatrix}$$

11 / 13

Diagonalizability and Eigenvalue Decomposition

Theorem 2: An $n \times n$ matrix **A** is nondefective if and only if it has an eigenvalue decomposition

$$\mathbf{A} = \mathbf{V} \wedge \mathbf{V}^{-1}$$

with $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ and the k-th column of **V** being the eigenvector \mathbf{v}_k associated with λ_k .

Hint: you need the following lemma to prove the theorem

Lemma 2: Let $\mathbf{A} \in \mathbb{C}^{n \times n}$, and suppose that the eigenvalues $\lambda_1, \ldots, \lambda_n$ are ordered such that $\{\lambda_1, \dots \lambda_k\}$, $k \le n$, is the set of all distinct eigenvalues of **A**. Also, let \mathbf{v}_i be any eigenvector associated with λ_i . Then $\mathbf{v}_1, \dots, \mathbf{v}_k$ must be linearly independent.

From the theorem 2, another term for nondefective is diagonalizable.

Properties of Eigenvalue Decomposition

If **A** admits an eigenvalue decomposition, the following properties can be (easily) shown:

$$\blacktriangleright \det(\mathbf{A}) = \prod_{i=1}^n \lambda_i$$

$$\blacktriangleright \operatorname{tr}(\mathbf{A}) = \sum_{i=1}^n \lambda_i$$

- ▶ the eigenvalues of \mathbf{A}^k are $\lambda_1^k, \ldots, \lambda_n^k$
- ▶ A is nonsingular if and only if A does not have zero eigenvalues

Note: the first three properties does not require the eigenvalue decomposition to prove.