

Continuum Mechanics Fundamentals

- The *key words* of continuum mechanics are tensors such as stress, strain, and rate-of-deformation
- The rules are the conservation laws of mechanics mass, momentum and energy.
- Stress, strain, and rate of deformation vary with position and time. The relation between them is the constitutive law.
- The constitutive law must generally be determined by experiment but it is constrained by thermodynamic and other physical conditions.
- The *language* of continuum mechanics is *tensor* analysis.

Biomechanics: Mechanics↔**Physiology**

Continuum Mechanics

Geometry and structure
Boundary conditions
Conservation laws

- mass
- energy
- momentum

Constitutive equations

Physiology

Anatomy and morphology Environmental influences Biological principles

- mass transport, growth
- · metabolism and energetics
- motion, flow, equilibrium
 Structure-function relations

Therefore, continuum mechanics provides a mathematical framework for integrating the structure of the cell and tissue to the mechanical function of the whole organ

Kinematics

- Solid continua deform and fluid continua flow
- Flow is measured by the *rate-of-deformation tensor* which is related to *velocity gradients*.
- Deformation is measured by the strain tensor, which describes change of shape
- For solid biomechanics we focus on deformation
- In particular we derive strain tensors for large (finite) deformations as opposed to infinitesimal deformations

Kinematics

Reference State ("undeformed") Current State ("deformed") Time: t=0 t=t Region: R_0

 $\mathbf{X} = X_R \mathbf{e}_R$ undeformed (or "material") coordinates $\mathbf{x} = X_i \mathbf{e}_i$ current (or "spatial") coordinates

Lagrangian & Eulerian Descriptions

Lagrangian or "material" description of motion

$$\mathbf{X} = \mathbf{X}(\mathbf{X}, t)$$

- Motion as seen by the convecting material particle
- Undeformed coordinates label material points
- · Most useful for solid mechanics problems

Eulerian or "spatial" description of motion

$$\mathbf{X} = \mathbf{X}(\mathbf{x},t)$$

- Motion as seen by a fixed spatial observer
- Current spatial coordinates of material points change
- Most useful for fluid flow problems

Displacement Vector

The displacement vector, **u**

$$\boldsymbol{u} = \boldsymbol{x} - \boldsymbol{X} = \boldsymbol{x} (\boldsymbol{X}, t) - \boldsymbol{X} = \boldsymbol{x} - \boldsymbol{X} (\boldsymbol{x}, t)$$

Reference State ("undeformed") Time: t=0 Region: R₀ Time: t=0 Region: R₀ R

Chain rule:
$$\delta X_i = \frac{\partial X_i}{\partial X_R} \delta X_R \implies F_{iR} = \frac{\partial X_i}{\partial X_R}$$

 $\delta \mathbf{x} = \mathbf{F} \cdot \delta \mathbf{X}$

Displacement Gradient Tensor

The displacement vector, u

$$\mathbf{u} = \mathbf{x} - \mathbf{X} \to \mathbf{U}_{i} = \mathbf{X}_{i} - \mathbf{X}_{i}$$

$$\frac{\partial u_{i}}{\partial X_{R}} = \frac{\partial X_{i}}{\partial X_{R}} - \frac{\partial X_{i}}{\partial X_{R}}$$

$$\boldsymbol{G}_{\text{iR}} = \boldsymbol{F}_{\text{iR}} - \boldsymbol{\delta}_{\text{iR}}$$

$$G = F - I$$

Polar Decomposition Theorem

For F non-singular and square

$$F = R \cdot U = V \cdot R$$

where

 $\boldsymbol{U} = \boldsymbol{U}^{\mathsf{T}}, \boldsymbol{V} = \boldsymbol{V}^{\mathsf{T}}$ are the right and left stretch tensors $\boldsymbol{R}^{\mathsf{T}} \cdot \boldsymbol{R} = \boldsymbol{I}$ is the orthogonal rotation tensor

 $C = F^{T} \cdot F = (R \cdot U)^{T} \cdot (R \cdot U) = U^{T} \cdot R^{T} \cdot R \cdot U = U^{T} \cdot U = U^{2}$ is the right Cauchy-Green Deformation tensor (Lagrangian)

 $\mathbf{B} = \mathbf{F} \cdot \mathbf{F}^{\mathsf{T}} = (\mathbf{V} \cdot \mathbf{R}) \cdot (\mathbf{V} \cdot \mathbf{R})^{\mathsf{T}} = \mathbf{V} \cdot \mathbf{R} \cdot \mathbf{R}^{\mathsf{T}} \cdot \mathbf{V}^{\mathsf{T}} = \mathbf{V} \cdot \mathbf{V}^{\mathsf{T}} = \mathbf{V}^{2}$ is the left Cauchy-Green Deformation tensor (Eulerian)

(Finite) Strain Tensors

Strain is a measure of *change of shape* independent of rotation. Change of shape corresponds to change of *length* (i.e. stretch)

$$\boldsymbol{\mathcal{E}} = \frac{1}{2} (\boldsymbol{\mathcal{C}} - \boldsymbol{\mathcal{I}})$$
 Lagrangian Green's Strain Tensor
$$\boldsymbol{\mathcal{E}}_{RS} = \frac{1}{2} \left(\frac{\partial \boldsymbol{x}_{i}}{\partial \boldsymbol{\mathcal{X}}_{R}} \frac{\partial \boldsymbol{x}_{i}}{\partial \boldsymbol{\mathcal{X}}_{S}} - \boldsymbol{\delta}_{RS} \right)$$

$$\boldsymbol{e} = \frac{1}{2} (\boldsymbol{I} - \boldsymbol{B}^{-1})$$

$$e_{ij} = \frac{1}{2} \left(\delta_{ij} - \frac{\partial X_R}{\partial X_i} \frac{\partial X_R}{\partial X_j} \right)$$

Eulerian Almansi's Strain Tensor

Infinitesimal (Cauchy) Strain

The Green's and Alamansi strain tensors are exact measures of shape change for any finite deformation, but they are nonlinear. In terms of the displacement gradients, the finite strains are quadratic, e.g.

$$\boldsymbol{u} = \boldsymbol{X} - \boldsymbol{X} \Rightarrow \boldsymbol{\mathcal{E}}_{RS} = \frac{1}{2} \left(\frac{\partial u_{R}}{\partial X_{S}} + \frac{\partial u_{S}}{\partial X_{R}} + \frac{\partial u_{i}}{\partial X_{R}} \frac{\partial u_{i}}{\partial X_{S}} \right)$$

When the displacement gradients are small enough (<1%), we may linearize the finite strains to obtain the infinitesimal Cauchy strain tensor:

$$\varepsilon_{RS} = \frac{1}{2} \left(\frac{\partial u_{R}}{\partial X_{S}} + \frac{\partial u_{S}}{\partial X_{R}} \right) = \frac{1}{2} \left(\frac{\partial u_{R}}{\partial x_{S}} + \frac{\partial u_{S}}{\partial x_{R}} \right)$$
$$\varepsilon = \frac{1}{2} (\mathbf{F} + \mathbf{F}^{T}) - \mathbf{I}$$

Strain is Change in Length

- The stretch and strain tensors U, V, C, B, E and e all describe how material elements of length change
- Consider the elements of undeformed and deformed length dL and dl respectively:

$$\begin{split} \mathrm{d} L^2 &= \mathrm{d} \, \boldsymbol{X}^T \cdot \mathrm{d} \, \boldsymbol{X} \\ &= \mathrm{d} \, X_\mathrm{R} \, \mathrm{d} \, X_\mathrm{R} = \mathrm{d} \, X_\mathrm{R} \, \mathrm{d} \, X_\mathrm{S} \delta_\mathrm{RS} \\ \mathrm{d} \, \ell^2 &= \mathrm{d} \, \boldsymbol{x}^T \cdot \mathrm{d} \, \boldsymbol{x} = \left(\boldsymbol{F} \cdot \mathrm{d} \, \boldsymbol{X} \right)^T \cdot \boldsymbol{F} \cdot \mathrm{d} \, \boldsymbol{X} = \mathrm{d} \, \boldsymbol{X}^T \cdot \boldsymbol{F}^T \cdot \boldsymbol{F} \cdot \mathrm{d} \, \boldsymbol{X} = \mathrm{d} \, \boldsymbol{X}^T \cdot \boldsymbol{C} \cdot \mathrm{d} \, \boldsymbol{X} \\ &= \mathrm{d} \, \boldsymbol{x}_\mathrm{i} \, \mathrm{d} \, \boldsymbol{x}_\mathrm{i} = \frac{\partial X_\mathrm{i}}{\partial X_\mathrm{R}} \, \frac{\partial X_\mathrm{i}}{\partial X_\mathrm{S}} \, \mathrm{d} \, X_\mathrm{R} \, \mathrm{d} \, X_\mathrm{S} = C_\mathrm{RS} \, \mathrm{d} \, X_\mathrm{R} \, \mathrm{d} \, X_\mathrm{S} \end{split}$$

Therefore,
$$d\ell^2 - dL^2 = 2d\boldsymbol{X}^T \cdot \boldsymbol{E} \cdot d\boldsymbol{X} = 2d\boldsymbol{x}^T \cdot \boldsymbol{e} \cdot d\boldsymbol{X}$$
$$d\ell^2 - dL^2 = 2\boldsymbol{E}_{RS} dX_R dX_S = 2\boldsymbol{e}_{ij} dX_i dX_j$$

i.e., the finite strain tensors are measures of *change in squared lengths*

Area Changes

- If we can obtain length changes from F, we must be able to derive area changes too.
- Nanson's formula relates elements of deformed area da (of the surface with deformed outward normal n) to the corresponding undeformed area element dA (with undeformed outward normal N)

$$\boldsymbol{n} \cdot \boldsymbol{F} \frac{\mathrm{d} a}{\mathrm{d} A} - = \boldsymbol{N} \det \boldsymbol{F}$$

$$\left(\frac{\mathrm{d} a}{\mathrm{d} A}\right)^{2} = \frac{\boldsymbol{N} \cdot \boldsymbol{N} \left(\det \boldsymbol{F}\right)^{2}}{\left(\boldsymbol{n} \cdot \boldsymbol{F}\right) \cdot \left(\boldsymbol{n} \cdot \boldsymbol{F}\right)} = \frac{\left(\det \boldsymbol{F}\right)^{2}}{\boldsymbol{n} \cdot \boldsymbol{B} \cdot \boldsymbol{n}} = \frac{\left(\det \boldsymbol{F}\right)^{2}}{n_{i} n_{j} B_{ij}}$$

Volume Change

 Elements of volume in the deformed dv and undeformed dV states are related by the determinant of F:

$$dv = \det \mathbf{F} dV$$

• E.g. Consider a unit cube that is deformed so that its principal stretch ratios are λ_1 , λ_2 , λ_3

Simple extension

Uniform extension

$$x_{1} = \lambda_{1}X_{1} \qquad x_{2} = \lambda_{2}X_{2} \qquad x_{3} = \lambda_{3}X_{3}$$

$$[F] = \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{bmatrix} [B] = [C] = \begin{bmatrix} \lambda_{1}^{2} & 0 & 0 \\ 0 & \lambda_{2}^{2} & 0 \\ 0 & 0 & \lambda_{3}^{2} \end{bmatrix}$$

$$[E] = \frac{1}{2} \begin{bmatrix} \lambda_{1}^{2} - 1 & 0 & 0 \\ 0 & \lambda_{2}^{2} - 1 & 0 \\ 0 & 0 & \lambda_{3}^{2} - 1 \end{bmatrix} \quad [e] = \frac{1}{2} \begin{bmatrix} 1 - \frac{1}{\lambda_{1}^{2}} & 0 & 0 \\ 0 & 1 - \frac{1}{\lambda_{2}^{2}} & 0 \\ 0 & 0 & 1 - \frac{1}{\lambda_{3}^{2}} \end{bmatrix}$$

$$[E] = \begin{bmatrix} \lambda_{1} - 1 & 0 & 0 \\ 0 & \lambda_{2} - 1 & 0 \\ 0 & 0 & \lambda_{3} - 1 \end{bmatrix}$$

$$[E] = \begin{bmatrix} \lambda_{1} - 1 & 0 & 0 \\ 0 & \lambda_{2} - 1 & 0 \\ 0 & 0 & \lambda_{3} - 1 \end{bmatrix}$$

$$[In 1-D, \lambda = \text{stretch ratio} = \frac{\ell}{\ell_{0}}$$

$$E = \frac{(\ell - \ell_{0})}{\ell_{2}} \qquad E = \frac{1}{2} \left(\frac{\ell^{2}}{\ell_{2}^{2}} - 1 \right) = \frac{1}{2} \left(\frac{\ell^{2} - \ell_{0}^{2}}{\ell^{2}} \right) \qquad e = \frac{1}{2} \left(1 - \frac{\ell_{0}^{2}}{\ell_{2}^{2}} \right) = \frac{1}{2} \left(\frac{\ell^{2} - \ell_{0}^{2}}{\ell_{2}^{2}} \right)$$

Simple Shear

Simple Shear

$$x_1 = X_1 + X_2 \tan \gamma$$

 $x_2 = X_2 \quad x_3 = X_3$

$$[F] = \begin{bmatrix} 1 & \tan \gamma & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow [E] = \frac{1}{2} \begin{bmatrix} 0 & \tan \gamma & 0 \\ \tan \gamma & \tan^2 \gamma & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

tan² γ vanishingly small for small strain

Pure Torsion of a Cylinder

Pure torsion
$$r = R$$
 $\theta = \Theta + \alpha Z$ $z = Z$

[F] = Grad
$$\mathbf{x} = \begin{bmatrix} \frac{\partial r}{\partial R} & \frac{1}{R} \frac{\partial r}{\partial \Theta} & \frac{\partial r}{\partial Z} \\ r \frac{\partial \theta}{\partial R} & \frac{r}{R} \frac{\partial \theta}{\partial \Theta} & r \frac{\partial \theta}{\partial Z} \\ \frac{\partial z}{\partial R} & \frac{1}{R} \frac{\partial z}{\partial \Theta} & \frac{\partial z}{\partial Z} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & r\alpha \\ 0 & 0 & 1 \end{bmatrix}$$

 α is the twist per unit length of the tube

The Cauchy Stress Tensor

Cauchy Stress tensor *T*

$$T = \begin{bmatrix} T_{xx} & T_{yx} & T_{zx} \\ T_{xy} & T_{yy} & T_{zy} \\ T_{xz} & T_{yz} & T_{zz} \end{bmatrix}$$

Cauchy's Formula

Cauchy's formula:

$$t(n) = n \cdot T$$

 T_{ij} is the component in the x_j direction of the traction vector $\mathbf{t}^{(n)}$ acting on the face normal to the x_i axis in the *deformed* state of the body. The "true" stress.

Lagrangian Stress Tensors

The (half) Lagrangian Nominal stress tensor S

$$t_{\rm j}^{(N)} = N_R S_{Rj}$$

 S_{Rj} is the component in the x_j direction of the traction measured per unit *reference* area acting on the surface normal to the (undeformed) X_R axis. Useful experimentally

but *not* symmetric: $S = \det F \cdot F^{-1} \cdot T \neq S^{T}$

The symmetric (fully) Lagrangian **Second Piola-Kirchhoff stress tensor P**

$$\mathbf{P} = \mathbf{S} \cdot \mathbf{F}^{-\mathsf{T}} = (\det \mathbf{F}) \mathbf{F}^{-\mathsf{1}} \cdot \mathbf{T} \cdot \mathbf{F}^{-\mathsf{T}} = \mathbf{P}^{\mathsf{T}}$$

$$P_{RS} = \left(\det \mathbf{F}\right) \frac{\partial X_R}{\partial X_i} \frac{\partial X_S}{\partial X_i} T_{ij} = P_{SR}$$

- Useful mathematically but no direct physical interpretation
- For small deformations differences between T, P, S vanish

Example: Uniaxial Stress

undeformed length = L undeformed area = A

deformed length = ℓ deformed area = a

Cauchy Stress

$$T = \frac{F}{a}$$

Nominal Stress

$$S = \det \boldsymbol{F} \cdot \boldsymbol{F}^{-1} \cdot \boldsymbol{T} = \frac{\ell a}{LA} \frac{L}{\ell} \frac{F}{a} = \frac{F}{A}$$

Second Piola-Kirchhoff Stress

$$P = \mathbf{S} \cdot \mathbf{F}^{-1} = \mathbf{S} \frac{L}{\ell} = \frac{F}{A} \frac{L}{\ell}$$

Governing Equations

- Conservation Laws
 - Conservation of Mass
 - Conservation of Momentum
 - Linear
 - Angular
 - Conservation of Energy
- Constitutive Laws

Conservation of Mass: Lagrangian

"The mass δm (= $\rho_0 \delta V$) of the material in the initial material volume element δV remains constant as the element deforms to volume δv with density ρ , and this must hold everywhere (i.e. for δV arbitrarily small)"

$$\iint \rho_0 \, dV = \iint \rho \, dV$$

$$\iint \rho_0 \, dX_1 \, dX_2 \, dX_3 = \iint \rho \, dx_1 \, dx_2 \, dx_3 = \iint \rho \left| \frac{\partial X_i}{\partial X_R} \right| dX_1 \, dX_2 \, dX_3$$

Hence:
$$\frac{\rho_0}{\rho} = \frac{dv}{dV} = det\mathbf{F} = det\mathbf{U} = \lambda_1 \cdot \lambda_2 \cdot \lambda_3 = \sqrt{I_3}$$

Thus, for an *incompressible* solid: $\rho = \rho_0 \implies \det \mathbf{F} = 1$

Conservation of Linear Momentum

"The rate of change of linear momentum of the particles that instantaneously lie within a fixed region R equals the resultant of the body forces b per unit mass acting on the particles in R plus the resultant of the surface tractions $t^{(n)}$ acting on the surface S"

$$\frac{D}{Dt} \iiint_{R} \rho \mathbf{v} \, dV = \iiint_{R} \rho b \, dV + \iint_{S} \mathbf{t}^{(n)} \, dS$$

$$\rho \frac{D \mathbf{v}}{Dt} = \operatorname{div} \mathbf{T} + \rho \mathbf{b}$$
or
$$\rho \frac{\partial \mathbf{v}_{i}}{\partial t} + \rho \mathbf{v}_{k} \frac{\partial \mathbf{v}_{i}}{\partial \mathbf{x}_{k}} = \frac{\partial \mathbf{T}_{ji}}{\partial \mathbf{x}_{j}} + \rho \mathbf{b}_{i}$$

Conservation of Angular Momentum

"The rate of change of angular momentum of the particles that instantaneously lie within a fixed region R equals the resultant couple about the origin of the body forces b per unit mass acting on the particles in R plus the resultant couple of the surface tractions $t^{(n)}$ acting on S".

Subject to the assumption that no distributed body or surface couples act on the material in the region, this law leads simply to the symmetry of the stress tensor:

$$T = T^{T}$$

Conservation of Energy

"The rate of change of kinetic plus internal energy in the region R equals the rate at which mechanical work is done by the body forces b and surface tractions $t^{(n)}$ acting on the region plus the rate at which heat enters R across S".

$$\frac{\mathsf{D}}{\mathsf{D}\,t} \left(\frac{1}{2} \iiint_{\mathcal{R}} \rho \mathbf{v} \cdot \mathbf{v} \, d\mathsf{V} + \iiint_{\mathcal{R}} \rho \mathbf{e} \, d\mathsf{V} \right) = \iiint_{\mathcal{R}} \rho \mathbf{b} \cdot \mathbf{v} \, d\mathsf{V} + \iint_{\mathcal{S}} \mathbf{t}^{(\mathsf{n})} \cdot \mathbf{v} \, d\mathcal{S} - \iint_{\mathcal{S}} \mathbf{q} \cdot \mathbf{n} \, d\mathcal{S}$$

With some manipulation, this leads to:

$$\rho \frac{\mathsf{D} e}{\mathsf{D} t} = \mathsf{tr}(\boldsymbol{T} \cdot \boldsymbol{D}) - \mathsf{div} \, \boldsymbol{q} = T_{ji} \frac{\partial \boldsymbol{v}_{i}}{\partial \boldsymbol{x}_{j}} - \frac{\partial \boldsymbol{q}_{i}}{\partial \boldsymbol{x}_{i}}$$

where: **e** is the *internal energy density*

q is the *heat flux vector*

Conservation Laws

Mass

$$\frac{\rho_0}{\rho} = \frac{dV}{dV} = \det \boldsymbol{F}$$

$$\frac{\rho_0}{\rho} = \frac{dv}{dV} = \det \mathbf{F}$$

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \mathbf{v}) = 0$$

Momentum

$$\rho \frac{\mathsf{D} \boldsymbol{v}}{\mathsf{D} t} = \mathsf{div} \boldsymbol{T} + \rho \boldsymbol{b}$$

$$T = T^{\mathsf{T}}$$

Energy

$$\rho \frac{\mathsf{D} e}{\mathsf{D} t} = \mathsf{tr}(\boldsymbol{T} \cdot \boldsymbol{D}) - \mathsf{div}\,\boldsymbol{q}$$

Nonlinear Biomechanics: Universal Governing Equations

Kinematics

Strain-displacement relation

Deformation gradient tensor

$$E = \frac{1}{2}(F^{T}F - I)$$

$$F_{iR} = \frac{\partial x_i}{\partial X_{D}} \quad F = \text{Grad}(x)$$

Conservation of Momentum

Force balance

$$DivS+\rho b = Div(P \cdot F^{T})+\rho b = 0$$

Moment balance

$$P = P^{T}$$

Conservation of Mass

Lagrangian form (ρ is mass density)

$$\rho = \rho_0 \det \mathbf{F}$$

Constitutive law

Hyperelastic relation for Lagrangian 2nd Piola-Kirchoff stress (*W* is the *strain energy* function)

Eulerian Cauchy stress

$$P_{RS} = \frac{1}{2} \left(\frac{\partial W}{\partial E_{RS}} + \frac{\partial W}{\partial E_{SR}} \right)$$
$$T = \frac{1}{\det F} F \cdot P \cdot F^{T}$$

The Constitutive Law

- describes the mechanical properties of a material, which depend on its constituents
- is a mathematical relation for *stress* as a function of *kinematic* quantities, such as *strain* or *strain-rate*
- is an *idealization* and an approximation
- the validity of the idealization depends not only on the material but on the mechanical conditions
- must typically be determined by experiment
- is *constrained* by thermodynamic and other physical conditions, e.g. conservation of mass and energy
- should be derived from considerations of material microstructure

Solids and Fluids

Solids

- · Can support shear stress indefinitely without flowing
- Assume an unloaded natural shape
- Deform with minimal or substantial energy dissipation
- Usually composites

Fluids

- Liquids and gases
- Gases have lower density and higher compressibility than liquids; dependent on temperature
- Phase transition as function of temperature and pressure
- Support stress as fluid hydrostatic pressure at rest
- Can not resist a shear stress indefinitely without flowing
- No unique unloaded natural state; conform to the shape of their container
- · Dissipate energy as heat when they flow
- Usually mixtures

Elastic solids

- Stress depends only on strain, $T_{ii} = T_{ii}(\epsilon_{kl})$
- Return to a unique natural state when loads removed
- Work done during loading is stored as potential energy without dissipation (a reversible process)
- Example: Isotropic Hookean (linear) elastic solid
- Hookean solids have a constant elastic modulus, E
- In nonlinear solids, E_{tangent} is dependent on strain

Viscous Fluids

- Shear stress depends on the *rate* of shear strain, $T_{ij} = T_{ij}(D_{kl})$
- Example: Newtonian viscous fluid, $T_{ij} = -p_{ij} + 2\mu D_{ij}$
- Linear viscous (Newtonian) fluids have constant $\textit{viscosity}~\mu$
- Viscosity measures resistance to *shear*, $\tau = \mu \dot{\gamma} = \mu \frac{ds}{dy}$
- · Work done on flowing viscous fluids is dissipated as heat
- In non-Newtonian fluids, apparent viscosity depends on the shear rate , γ e.g. whole blood is shear-thinning

Viscoelastic Solids and Fluids

- Stress depends on strain and strain-rate, $T_{ij} = T_{ij}(\epsilon_{kl}, D_{kl})$
- Creep at constant stress
- Stress relaxation at constant strain
- Hysteresis, energy dissipation during loading and unloading

- Elastic stress depends on strain (spring)
- Viscous stress depends on strain-rate (dashpot)
- · Strains add in series, stresses are the same
- · Stresses add in parallel, strains are the same

Viscoelastic Solids and Fluids

- Stress depends on strain *and* strain-rate, T_{ij} = $T_{ii}(\varepsilon_{kl}, D_{kl})$
- Creep at constant stress

- Elastic stress depends on strain (spring)
- Viscous stress depends on strain-rate (dashpot)
- · Strains add in series, stresses are the same
- Stresses add in parallel, strains are the same

Linear Viscoelastic Models: Creep Functions

Other Material Properties

Viscoplastic

 behaves like a viscous fluid after shear stress exceeds a finite *yield stress* (e.g. whole blood)

Thixotropic

• sol-gel transformation from solid (gel) to fluid (sol), Spropertiesftening

MANGINAS TETTO Ect

• progressive, irreversible reduction in elastic stiffness induced by increased maximum previous strain

· e.g. elastomers and small intestine

Considerations in Biomechanics

MODELING CONSIDERATION	EXPERIMENTAL CONSIDERATION	TISSUE EXAMPLE
linear/nonlinear	small or large strain testing	ligament
e.g. Hookean/non-Hookean	hard vs. soft tissues	bone vs. skin
e.g. Newtonian/Non-Newtonian	test over a varied shear rates	plasma vs. whole blood
symmetry: isotropic/anisotropic	microstructure, histology	skin, muscle, lung
homogeneous/nonhomogeneous	morphology, architecture	trabecular and cortical bone blood vessel wall layers
composites	cellular, extracellular and	lung alveolar structure
micromechanics, homogenization	vascular components	
biphasic/poroelastic theories	tissue hydration and fluid movement	cartilage and synovial fluid
environment	in-vivo vs. in-vitro, temperature	isolated perfused heart
variability	species, subject	numerous collagen subtypes
irreversible properties	injury, repair	scarring of skin
changes in natural shape and material properties	growth and remodeling	muscle hypertrophy, bone remodeling
active stress and strain	contraction, locomotion	muscle, white blood cells
contact properties	adhesion, cell and tissue interfaces	platelets , joints

Introduction to Tissue Mechanics: Summary of Key Points

- Biomechanics is mechanics applied to biology; our specific focus is solid mechanics applied to physiology.
- Biomechanics involves the interplay of experimental measurement in living tissues and theoretical analysis based on physical foundations
- Biomechanics has numerous *applications* in biomedical engineering, biophysics, medicine, and other fields.
- The constitutive law describes the mechanical properties of a particular material. A major objective of biomechanics is identifying the constitutive law for biological cells and tissues.
- In an *elastic solid*, the stress depends only on the *strain*; it returns to its undeformed natural state when unloaded.
- In an *viscous fluid*, the stress depends only the *strain-rate*.
- Stress depends on *strain and strain rate* in *viscoelastic* materials; they exhibit creep, relaxation, hysteresis.

Topic 2: Summary of Key Points

- The constitutive law describes the mechanical properties of a material, which depend on its constituents
- In an elastic solid, the stress depends only the strain; it returns to its undeformed natural state when unloaded.
- Stress depends on strain and strain rate in viscoelastic materials; they exhibit creep, relaxation, hysteresis.

Two Definitions of Elasticity

In words

In an **elastic material** the stress depends only on the strain.

The work done by the stress producing strain in a hyperelastic material is stored as potential energy in a thermodynamically reversible process.

Mathematically

$$oldsymbol{\mathcal{T}} = oldsymbol{\mathcal{T}} \left(arepsilon
ight) \qquad \mathrm{d} oldsymbol{\mathcal{W}} = oldsymbol{\mathcal{T}} \, \mathrm{d} \, arepsilon \ \qquad \qquad oldsymbol{\mathcal{T}} = rac{\partial oldsymbol{\mathcal{W}}}{\partial arepsilon} \ oldsymbol{\mathcal{T}}_{ij} = oldsymbol{\mathcal{T}}_{ij} \left(arepsilon_{kl}
ight) \qquad \qquad oldsymbol{\mathcal{T}}_{ij} = rac{\partial oldsymbol{\mathcal{W}}}{\partial arepsilon_{ij}}$$

W (Work per unit volume) is also called the *strain energy density*

Strain Energy in Reversible Processes

Rate of change = Rate of Work + Rate of Heat of Internal Energy Done by Stresses Absorbed

$$\rho \frac{\mathrm{d}I}{\mathrm{d}t} = \frac{\mathrm{d}W}{\mathrm{d}t} + \rho \frac{\mathrm{d}Q}{\mathrm{d}t}$$

For a reversible process, the change in total entropy:

$$\mathrm{d}\mathcal{S} = \frac{\mathrm{d}\mathbf{Q}}{\theta} \rightarrow \mathrm{d}\mathbf{W} = \rho \Big(\mathrm{d}\mathbf{I} - \mathrm{d}\mathbf{Q}\Big) = \rho \Big(\mathrm{d}\mathbf{I} - \theta \,\mathrm{d}\mathbf{S}\Big) = \mathbf{T}_{\mathbf{i}\mathbf{j}} \,\mathrm{d}\varepsilon_{\mathbf{i}\mathbf{j}}$$

where θ is temperature

- Stress is the derivative of *strain energy* with respect to strain.
- Stress arises from an *increase in internal energy I* or a *decrease in entropy S* with strain; strain energy is stored as either or both of these:
- Crystalline materials (e.g. collagen) derive stress from an increase in the internal energy between their bonds, (W ≡ ρI)
- Rubbery materials (e.g. elastin) derive stress from a decrease in entropy, (W = $\rho F = \rho (I \theta S)$, the Helmholtz Free Energy

Hyperelastic Constitutive Law for Finite Deformations

Second Piola-Kirchhoff Stress

$$P_{\text{RS}} = \frac{\partial W}{\partial C_{\text{RS}}} + \frac{\partial W}{\partial C_{\text{SR}}} = \frac{1}{2} \left(\frac{\partial W}{\partial E_{\text{RS}}} + \frac{\partial W}{\partial E_{\text{SR}}} \right) = \frac{\partial W}{\partial E_{\text{RS}}}$$

Cauchy Stress

$$T_{ij} = \frac{\rho}{\rho_o} \frac{\partial x_i}{\partial X_R} \frac{\partial x_j}{\partial X_S} \frac{\partial W}{\partial E_{RS}}$$

Isotropic Strain Energy Functions

Let,
$$W = W(I_1, I_2, I_3)$$

where, I_1 , I_2 , I_3 are the *principal invariants* of C_{RS}

$$\begin{split} & \textit{I}_{1} = \text{tr}\, \textbf{\textit{C}} = \textit{C}_{11} + \textit{C}_{22} + \textit{C}_{33} \\ & \textit{I}_{2} = \frac{1}{2} \Big(\big(\text{tr}\, \textbf{\textit{C}} \big)^{2} - \text{tr}\, \textbf{\textit{C}}^{2} \Big) = \textit{C}_{11} \textit{C}_{22} + \textit{C}_{11} \textit{C}_{33} + \textit{C}_{33} \textit{C}_{22} \\ & \textit{I}_{3} = \det \textbf{\textit{C}} \end{split}$$

$$\frac{\partial W}{\partial C_{RS}} = \frac{\partial W}{\partial I_{1}} \frac{\partial I_{1}}{\partial C_{RS}} + \frac{\partial W}{\partial I_{2}} \frac{\partial I_{2}}{\partial C_{RS}} + \frac{\partial W}{\partial I_{3}} \frac{\partial I_{3}}{\partial C_{RS}} \qquad \text{Chain rule}$$

$$= \frac{\partial W}{\partial I_{1}} \delta_{RS} + \frac{\partial W}{\partial I_{2}} \left(I_{1} \delta_{RS} - C_{RS} \right) + \frac{\partial W}{\partial I_{3}} \left(I_{1} \delta_{RS} - I_{1} C_{RS} + C_{RP} C_{SP} \right)$$

Isotropic Strain Energy Functions: Examples

$$W = C_1(I_1 - 3) + C_2(I_2 - 3) = C_1(\operatorname{tr} \boldsymbol{C} - 3) + \frac{1}{2}C_2((\operatorname{tr} \boldsymbol{C})^2 - \operatorname{tr} \boldsymbol{C}^2 - 3)$$
(Mooney-Rivlin model)

$$\boldsymbol{\mathcal{W}} = \boldsymbol{C_1} \Big(\boldsymbol{e}^{\boldsymbol{\alpha} \left(\boldsymbol{I_1} - \boldsymbol{3} \right)} - \boldsymbol{1} \Big) + \boldsymbol{C_2} \Big(\boldsymbol{I_2} - \boldsymbol{3} \Big)$$

(Veronda-Westman model) $\alpha \approx 5$ for skin and heart muscle

$$\begin{split} \mathcal{W} = \tfrac{1}{2} \lambda \delta_{\mathbf{i}\mathbf{j}} \delta_{\mathbf{k}\mathbf{l}} \varepsilon_{\mathbf{i}\mathbf{j}} \varepsilon_{\mathbf{k}\mathbf{l}} + \mu \Big(\delta_{\mathbf{i}\mathbf{k}} \delta_{\mathbf{j}\mathbf{l}} + \delta_{\mathbf{i}\mathbf{l}} \delta_{\mathbf{j}\mathbf{k}} \Big) \varepsilon_{\mathbf{i}\mathbf{j}} \varepsilon_{\mathbf{k}\mathbf{l}} \\ \text{(Isotropic Hooke's Law)} \end{split}$$

Strain Energy Functions for Myocardium

Transversely Isotropic Exponential (Humphrey & Yin, 1989)

$$W = 0.21 \left(e^{9.4 \left(I_1 - 3 \right)} - 1 \right) + 0.35 \left(e^{66 \left(\lambda_F - 1 \right)^2} - 1 \right)$$

Transversely Isotropic Exponential (Guccione et al, 1990)

$$W = 0.6 (e^Q - 1)$$

where, in the dog

$$Q = 26.7E_{11}^2 + 2.0 \left(E_{22}^2 + E_{33}^2 + E_{23}^2 + E_{32}^2 \right) + 14.7 \left(E_{12}^2 + E_{21}^2 + E_{13}^2 + E_{31}^2 \right) ,$$

and, in the rat

$$Q = 9.2E_{11}^{2} + 2.0(E_{22}^{2} + E_{33}^{2} + E_{23}^{2} + E_{32}^{2}) + 3.7(E_{12}^{2} + E_{21}^{2} + E_{13}^{2} + E_{31}^{2}).$$

Orthotropic Exponential (Holzapfl and Ogden, 2009)

$$\Psi = \frac{a}{2b} \exp[b(I_1 - 3)] + \sum_{i = f, s} \frac{a_i}{2b_i} \left\{ \exp[b_i(I_{4i} - 1)^2] - 1 \right\} + \frac{a_{fs}}{2b_{fs}} \left[\exp(b_{fs}I_{8fs}^2) - 1 \right],$$

$$W = 0.36 \left(\frac{\lambda_1^{32}}{32} + \frac{\lambda_2^{30}}{30} + \frac{\lambda_3^{31}}{31} - 3 \right)$$

Orthotropic Exponential (Usyk et al, *J Elast*, 2000)

$$W = \frac{c}{2}e^{Q}$$

$$Q = b_1 E_{FF}^2 + b_2 E_{SS}^2 + b_3 E_{NN}^2 + b_4 \left(E_{FS}^2 + E_{SF}^2 \right) + b_5 \left(E_{FN}^2 + E_{NF}^2 \right) + b_6 \left(E_{SN}^2 + E_{NS}^2 \right)$$

Slightly Compressible Orthotropic Constitutive Model

Constitutive law:

$$W = \frac{1}{2}C (e^{Q} - 1) + C_{compr}(J \ln J - J + 1);$$

$$Q = b_{ff} E_{ff}^2 + b_{ss} E_{ss}^2 + b_{nn} E_{nn}^2 + b_{fs} (E_{fs}^2 + E_{sf}^2)$$

+ $b_{fn} (E_{fn}^2 + E_{nf}^2) + b_{ns} (E_{ns}^2 + E_{sn}^2);$

where E_{IJ} are components of Green's strain tensor \boldsymbol{E} in an orthogonal coordinate system having fiber, sheet and sheet-normal (f, s, n) axes respectively; J is the determinant of the stretch tensor U. The following material constants: C = 0.88 kPa; $b_{ff} = 18.5$; $b_{ss} = 3.58$; $b_{nn} = 3.58$; $b_{fs} = 2.8$; $b_{fn} = 2.8$; $b_{fs} = 2.8$; $b_{compr} = 100$

T. Usyk et al., J Elast, 2000

Incompressible Materials

Stress is not completely determined by the strain because a *hydrostatic pressure* can be added to T_{ij} without changing $C_{\rm RS}$. The extra condition is the *kinematic incompressibility* constraint

$$I_3 = \left(\det \mathcal{F}\right)^2 = \left(\lambda_1 \lambda_2 \lambda_3\right)^2 = 1$$

To avoid derivative of W tending to ∞

$$W = W(I_1, I_2) - \frac{1}{2}\rho(I_3 - 1)$$

p is a Lagrange multiplier (a pressure) that is an additional unknown that must be solved for, now that we have added the additional equation (I_3 =1)

$$P_{RS} = 2 \frac{\partial W}{\partial I_1} \frac{\partial I_1}{\partial C_{RS}} + 2 \frac{\partial W}{\partial C_{RS}} \frac{\partial I_2}{\partial C_{RS}} - p \underbrace{\frac{\partial X_R}{\partial X_i} \frac{\partial X_S}{\partial X_i}}_{C_{DS}^{-1}}$$

Slightly Compressible Materials

Although most tissues are approximately incompressible, in reality vascular, lymphatic or interstitial fluid can be squeezed out by stress thus resulting in small volume changes.

Rather than adding an explicit *constraint* on the volume changes, we add a term to W that is a function of I_3 , with a (relatively large) material parameter K that controls the degree of compressibility:

$$W = W(I_1, I_2) + K(J-1)\ln(J)$$
 where $J = \det(\mathbf{F}) = \sqrt{I_3}$