ELSEVIER

Contents lists available at ScienceDirect

Phytochemistry

journal homepage: www.elsevier.com/locate/phytochem

Oleanane-type triterpene saponins with collagen synthesis-promoting activity from the flowers of *Bellis perennis*

Toshio Morikawa ^{a,b,*}, Kiyofumi Ninomiya ^{a,b}, Yasunobu Takamori ^a, Eriko Nishida ^a, Misato Yasue ^a, Takao Hayakawa ^a, Osamu Muraoka ^{a,b}, Xuezheng Li ^c, Seikou Nakamura ^c, Masayuki Yoshikawa ^{a,c}, Hisashi Matsuda ^{c,*}

- ^a Pharmaceutical Research and Technology Institute, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
- ^b Antiaging Centre, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
- ^c Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan

ARTICLE INFO

Article history: Received 22 May 2014 Received in revised form 8 May 2015 Accepted 18 May 2015 Available online 28 May 2015

Keywords:
Daisy
Bellis perennis
Asteraceae
Collagen synthesis promoting activity
Perennisoside
Oleanane-type triterpene saponin

ABSTRACT

The methanol extract from *Bellis perennis* (Asteraceae) flowers was found to promote collagen synthesis in normal human dermal fibroblasts (NHDFs). Seven oleanane-type triterpene saponins, perennisosides XIII–XIX, and two known saponins, bellissaponins BS5 and BS9, were isolated from the methanol extract. The structures were determined based on chemical and physicochemical data, and confirmed using previously isolated related compounds as references. Among the isolates, including 19 previously reported saponins, perennisosides XVIII, I, II, VII, IX, and XI, asterbatanoside D, bernardioside B₂, and bellissaponins BS5 and BS9 significantly promoted collagen synthesis at 3–30 µM without cytotoxicity.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Bellis perennis is an Asteraceae plant species commonly known as the daisy, which is widely distributed in Europe and North Africa. The whole flowering plant of *B. perennis* has been used for the treatment of bruises, bleeding, muscular pain, purulent skin diseases, and rheumatism in European folk medicine (Gruenwald et al., 2007). During studies exploring the bioactive constituents of B. perennis flowers, isolation and structural elucidation of triterpene saponins, flavonoids, and aromatic and acyclic alcohol glycosides were reported (Karakas et al., 2014; Morikawa et al., 2008, 2010, 2011; Yoshikawa et al., 2008). It was also found that the methanol extract and several saponin constituents inhibited elevation of triglyceride levels in plasma (Yoshikawa et al., 2008) and pancreatic lipase activity (Morikawa et al., 2010), and induced gastric emptying in olive oil-loaded mice (Morikawa et al., 2011). Evaluation of the methanol extract established that it can promote collagen synthesis in normal human dermal fibroblasts (NHDFs). Separation of the active constituents in the extract resulted in isolation of seven new oleanane-type triterpene saponins, called perennisosides XIII–XIX (1–7). This study deals with the isolation and structural elucidation of these new saponins (1–7), as well as collagen synthesis activity of its saponin constituents.

2. Results and discussion

2.1. Effects of the methanol extract on collagen synthesis in NHDFs

One of the main causes of skin aging is the reduction of type-I collagen, a primary component of the dermal layer of skin (Meigel et al., 1977). Thus, compounds that maintain type-I collagen levels may be useful to prevent skin aging. (Lee et al., 2007). Collagen is a fibrous extracellular matrix protein. In addition, it is a major component of connective tissue in the human body. Approximately 3–6% of the total tissue protein in the body is collagen, and the functional properties of skin depend on the integrity of collagen in the dermis. Collagen deposition is finely controlled, and is dependent on the physiological status of the body. Changes in the rate of collagen deposition occur during wound healing, development of new bone, and aging. Thus, the control of collagen metabolism may be useful for various therapeutic

^{*} Corresponding authors at: Pharmaceutical Research and Technology Institute, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan (T. Marikawa).

E-mail addresses: morikawa@kindai.ac.jp (T. Morikawa), matsuda@mb.kyoto-phu.ac.jp (H. Matsuda).

and cosmetic applications (Koya-Miyata et al., 2004). Medicinal foods could be potential resources for these applications because of their low toxicity.

Dried flowers of B. perennis were extracted with methanol under conditions of reflux to obtain the methanol extract (25.8% from the dried material). The methanol extract was partitioned using ethyl acetate (EtOAc)-H2O (1:1, v/v) to yield an EtOAc-soluble fraction (6.7%) and an aqueous phase. The latter was subjected to Diaion HP-20 column chromatography (H₂O → MeOH) to yield H₂O- and MeOH-eluted fractions (12.5% and 6.4%, respectively). The methanol extract $(1-10 \mu g/mL)$ was found to promote collagen synthesis in normal human dermal fibroblasts (NHDFs) (Table 1). Using bioassay-guided fractionation, the MeOH-eluted fraction was found to be the active fraction (% control of collagen content at 10 μ g/mL: 147.3 \pm 1.9, p < 0.05) without cytotoxicity [cell viability (%) in the 3-(4.5-dimethylthiazol-2-vl)-2.5-diphenyltetrazolium bromide (MTT) assay: 98.8 ± 1.11. In contrast, the EtOAc-soluble fraction (% control of collagen content at $10 \,\mu\text{g/mL}$: 100.0 ± 4.2 ; cell viability (%): 102.9 ± 0.8) and the H₂O-eluted fraction $(87.8 \pm 9.1 \text{ and } 105.9 \pm 0.8, \text{ respectively})$ showed no activity.

2.2. Isolation

In previous studies, 34 saponin constituents were isolated from the active MeOH-eluted fraction including perennisosides I (**8**, 0.0122%), II (**9**, 0.0110%), III (**10**, 0.0026%), VII (**11**, 0.0089%), VIII (**12**, 0.0124%), IX (**13**, 0.0076%), XI (**14**, 0.0132%), and XII (**15**, 0.0111%), perennisaponins B (**16**, 0.0048%), F (**17**, 0.0586%), and K (**18**, 0.0268%), asterbatanoside D (**19**, 0.0063%), bernardioside B₂ (**20**, 0.0128%), bellidioside A (**21**, 0.0575%), bellissaponins BS1 (**22**, 0.0035%) and BS6 (**23**, 0.0233%), and bellisosides D (**24**, 0.0262%), E (**25**, 0.1906%), and F (**26**, 0.0262%) (Morikawa et al., 2008, 2010, 2011; Yoshikawa et al., 2008).

In the present study, several additional constituents in the MeOH-eluted fraction were identified using normal-phase silica gel and reversed-phase ODS column chromatography, followed by HPLC. Seven new oleanane-type triterpene saponins, called perennisosides XIII (1, 0.0022%), XIV (2, 0.0130%), XV (3, 0.0007%), XVI (4, 0.0143%), XVII (5, 0.0130%), XVIII (6, 0.0117%), and XIX (7, 0.0005%), and two known saponins, bellissaponins BS5 (27, 0.0059%) (Glensk et al., 2001; Wray et al., 1992) and BS9 (28, 0.0029%) (Glensk et al., 2001) were isolated as shown in Fig. 1.

2.3. Structures of perennisosides XIII–XIX (1–7)

Perennisoside XIII (1) was obtained as an amorphous powder with a positive optical rotation ($[\alpha]_D^{27}$ +7.6 in MeOH). Using positive- and negative-ion FABMS, quasimolecular ion peaks were observed at m/z 1229 [M+Na]⁺ and 1205 [M-H]⁻, and HRFABMS analysis established that its molecular formula was $C_{58}H_{94}O_{26}$.

Treatment of 1 with 0.5% sodium methoxide (NaOMe)-MeOH produced a des-acyl derivative and methyl (S)-(+)-3-hydroxybutyrate (Burk et al., 1995), which was identified by HPLC using an optical rotation detector (Morikawa et al., 2010, 2011; Yoshikawa et al., 2008). The des-acyl derivative was treated successively with 5% aqueous sulfuric acid (H₂SO₄)-1,4-dioxane (1:1, v/v) to liberate bayogenin (Kasai et al., 1988), together with L-rhamnose and D-glucose; these were identified by HPLC using an optical rotation detector (Morikawa et al., 2010, 2011; Yoshikawa et al., 2008). The 1 H (Table 2) and 13 C NMR (Table 3) spectra (pyridine- d_{5}) of 1, which were assigned with the aid of DEPT, TOCSY, ¹H-¹H COSY, HSQC, HMBC, and phase-sensitive ROESY experiments, showed signals assignable to six methyls [δ 0.85, 0.87, 1.23, 1.34, 1.35, 1.67 (3H each, all s, H₃-29, 30, 26, 27, 24, 25)], a methylene, and two methines bearing an oxygen function [δ 3.66, 4.15 (1H each, both d, I = 10.3 Hz, H_2-23), 4.22 (1H, br s, H-3), 4.55 (1H, br s. H-2)], an olefinic proton [δ 5.49 (1H, t-like, I = ca, 3 Hz, H-12)]. three glucopyranosyl moieties [δ 4.96 (1H, d, J = 7.6 Hz, Glc-H-1'''''), 5.11 (1H, d, J = 7.9 Hz, Glc-H-1''''), 6.03 (1H, d, J = 7.6 Hz, Glc-H-1")], and a rhamnopyranosyl moiety [δ 1.60 (3H, d, I = 6.2 Hz, Rha-H₃-6"), 6.51 (1H, br s, Rha-H-1")] with a 3-hydroxybutyryl group { δ 1.54 (3H, d, I = 6.2 Hz, 3HB-H₃-4"""), [2.80 (1H, dd, I = 4.8, 13.7 Hz), 2.94 (1H, dd, I = 8.2, 13.7 Hz), 3HB-H₂-2"", 4.69 (1H, m, 3HB-H-3""")}. The ¹H and ¹³C NMR spectra of **1** resembled that of bernardioside B₂ (20) (Schöpke et al., 1996), except for the signals due to an additional β-D-glucopyranosyl moiety (Glc-H-1"") and a 3-hydroxybutyryl group. As shown in Fig. S1, the TOCSY and ¹H–¹H COSY experiments on **1** indicated the presence of partial structures written in bold lines. In the HMBC experiment of 1, longrange correlations were observed between the following protons and carbons: Glc-H-1" and C-28 ($\delta_{\rm C}$ 176.3); Glc-H-2" [δ 4.32 (m)] and Rha-C-1 (δ_C 101.1); Rha-H-1" and C-2" (δ_C 75.1); Glc-H-1"" and C-3" (δ_C 88.8); Glc-H-1"" and C-6" (δ_C 69.2); and 3HB-H₂- $2^{'''''}$, Rha-H- $4^{'''}$ and 3HB-C- $1^{''''''}$ ($\delta_{\rm C}$ 171.9) (Fig. S1). The 28-O-sugar moieties in 1 were also characterized by a phase-sensitive ROESY experiment as shown in Fig. 2. The evidence mentioned above led to deduction of the structure of 1 as bayogenin {28-0-[4-0-(3S)-3-hvdroxybutvrvll- α -L-rhamnopyranosyl(1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 3)]-[β -D-glucopyranosyl(1 \rightarrow 6)]- β -D-glucopyranosyl}

Perennisoside XIV (**2**) was obtained as an amorphous powder with a negative optical rotation ($[\alpha]_D^{23}$ –2.3 in MeOH). In the positive-ion FABMS, a quasimolecular ion peak was observed at m/z 1305 [M+Na][†], and HRFABMS analysis indicated that the molecular formula was $C_{60}H_{98}O_{29}$. Acid hydrolysis of **2** with 5% aqueous H_2SO_4 –1,4-dioxane (1:1, v/v) liberated bayogenin together with L-rhamnose and D-glucose, which were again identified by HPLC using an optical rotation detector. The ¹H (Table 2) and ¹³C NMR (Table 3) spectra (pyridine- d_5) showed signals assignable to the bayogenin portion [δ 0.84, 0.86, 1.19, 1.22, 1.33, 1.62 (3H each,

Table 1 Effects of methanol extract of *B. perennis* flowers and TGF- β 1 on collagen synthesis in NHDFs.

		Collagen content (% of control)						
		0 μg/mL	1 μg/mL	3 μg/mL	10 μg/mL			
MeOH extract		100.0 ± 1.7 (100.0 ± 3.5)	115.5 ± 2.8 ^a (95.4 ± 1.5)	118.9 ± 5.5 ^b (95.8 ± 3.0)	140.2 ± 1.4^{b} (89.9 ± 0.9)			
	0 ng/mL	1 ng/mL	3 ng/mL	10 ng/mL	30 ng/mL			
TGF-β1	100.0 ± 1.8 (100.0 ± 2.4)	196.5 ± 5.7 ^b (85.2 ± 1.2)	240.0 ± 5.7 ^b (74.1 ± 3.1 ^c)	255.9 ± 10.1 ^b (71.0 ± 2.6 ^c)	261.0 ± 2.0^{b} (70.5 ± 2.0^{c})			

Each value represents the mean \pm S.E.M. (N = 4).

Significantly different from the control.

p < 0.05.

^b p < 0.01.

^c Cytotoxic effects were observed, and values in parentheses indicate cell viability (%) in MTT assay.

Fig. 1. Triterpene saponins (1–28) from *B. perennis* flowers.

all s, H₃-29, 30, 26, 27, 24, 25), 3.60, 4.35 (1H each, both d, $J = 11.0 \text{ Hz}, H_2-23$, 4.33, 4.82 (1H each, both br s, H-3, 2), 5.46 (1H, t-like, J = ca. 3, H-12)] together with four glucopyranosyl units δ 4.96 (1H, d, J = 7.0 Hz, Glc-H-1""), 5.12 (1H, d, J = 7.6 Hz, Glc-H-1''''), 5.17 (1H, d, J = 7.6 Hz, Glc-H-1'), 6.10 (1H, d, J = 8.2 Hz, Glc-H-1")] and a rhamnopyranosyl moiety [δ 1.75 (3H, d, J = 6.2 Hz, Rha- H_3-6'''), 6.40 (1H, br s, Rha-H-1''')]. The ¹H and ¹³C NMR spectroscopic properties were quite similar to those of bellissaponin BS6 (23) (Wray et al., 1992), except for the signals due to an additional β-D-glucopyranosyl moiety (Glc-H-1""). Finally, the position of the sugar components was determined on the basis of the HMBC experiment, which showed long-range correlations between the following proton and carbon pairs: Glc-H-1' and C-3 (δ_C 83.0); Glc-H-1" and C-28 ($\delta_{\rm C}$ 176.4); Rha-H-1" and Glc-C-2" ($\delta_{\rm C}$ 74.9); Glc-H-1"" and Glc-C-3" (δ_C 88.3); and Glc-H-1"" and Glc-C-6" (δ_C 69.4). In a phase-sensitive ROESY experiment of 2, the ROE correlations in the 28-O-sugar moieties observed between the similar proton pairs were as those of 1 (Fig. 2). Thus, the connected position was clarified unambiguously, and the structure of 2 was elucidated to be 3-O-β-D-glucopyranosylbayogenin {28-O-α-L-rhamn opyranosyl(1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 3)]-[β -D-glucopyrano $syl(1 \rightarrow 6)$]-β-D-glucopyranosyl} ester.

The molecular formulae of perennisosides XV (**3**) and XVI (**4**) were determined to be $C_{62}H_{100}O_{30}$ and $C_{64}H_{104}O_{31}$, respectively, by positive- and negative-ion FABMS and HRFABMS analyses. The ¹H (Table 2) and ¹³C NMR (Table 3) spectroscopic properties were quite similar to those of **2**, except for the signals due to an additional acyl moiety {**3**: an acetyl moiety [δ 2.09 (3H, s)]; **4**: a (3S)-3-hydroxybutyryl moiety [δ 1.54 (3H, d, J = 6.2 Hz), 2.79 (1H, dd, J = 4.8, 13.7 Hz), 2.91 (1H, dd, J = 8.2, 13.7 Hz), 4.68 (1H, m)]}. Treatment of **3** and **4** with 0.5% sodium methoxide (NaOMe)-

MeOH provided the common des-acyl derivative (2). The connectivities of the acyl group and oligoglycoside linkage were characterized in HMBC experiments, which showed long-range correlations between the following proton and carbon pairs: Glc-H-1' [3: δ 5.11 (1H, d, J = 7.9 Hz); 4: δ 5.12 (1H, d, J = 7.6 Hz)] and C-3 (**3**: δ_C 83.2; **4**: δ_C 82.9); Glc-H-1" [**3**: δ 6.03 (1H, d, J = 7.7 Hz); **4**: δ 6.02 (1H, d, J = 7.6 Hz)] and C-28 (**3**: δ _C 176.4; **4**: δ _C 176.2); Rha-H-1" [3: δ 6.41 (1H, br s); 4: δ 6.47 (1H, br s)] and Glc-C-2" (3: δ_C 75.1; 4: δ_C 75.0); Glc-H-1"" [3: δ 5.09 (1H, d, J = 7.9 Hz); 4: δ 5.09 (1H, d, J = 8.2 Hz)] and Glc-C-3" (**3**: δ _C 88.6; **4**: δ _C 88.7); Glc-H-1"" [3: δ 4.93 (1H, d, J = 7.7 Hz); 4: δ 4.94 (1H, d, J = 7.6 Hz)] and Glc-C-6" (3: δ_{C} 69.4; 4: δ_{C} 69.1); and Rha-H-4" [3: δ 5.73 (1H, dd, J = 9.5, 9.6 Hz); **4**: δ 5.84 (1H, dd, J = 9.6, 9.6 Hz)] and the acyl carbonyl carbon (3: δ_C 170.7; 4: δ_C 171.9). On the basis of this evidence, the structures of 3 and 4 were determined to be 3-O-β-D-glucopyranosylbayogenin {28-O-(4-O-acetyl)-α-L-rhamnopy ranosyl(1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 3)]-[β -D-glucopyranosyl $(1 \rightarrow 6)$]- β -D-glucopyranosyl} ester and 3-O- β -D-glucopyranosylbayogenin $\{28-0-[4-0-(3S)-3-hydroxybutyryl]-\alpha-L-rhamnopyra$ nosyl(1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 3)]-[β -D-glucopyranosyl(1 \rightarrow 6)]-β-D-glucopyranosyl} ester, respectively.

Perennisoside XVII (**5**) was obtained as an amorphous powder. Its molecular formula, $C_{60}H_{98}O_{29}$, was found to be the same as that of **2** by HRFABMS. Acid hydrolysis of **5** with 5% aqueous $H_2SO_4-1,4$ -dioxane (1:1, v/v) liberated bayogenin together with L-rhamnose, D-glucose, and D-galactose, which were also identified by HPLC using an optical rotation detector. The 1H (Table 2) and ^{13}C NMR (Table 3) spectroscopic properties were quite similar to those of **2**, except for the signals due to a β-D-galactopyranosyl unit [δ5.01 (1H, d, J = 7.7 Hz, Gal-H-1"")] instead of the 3"-O-β-D-glucopyranosyl moiety in **2**. Connectivity of the β-D-galactopyranosyl moiety

Table 2 1 H NMR spectroscopic data (800^{a} and 600^{b} MHz, pyridine- d_{5}) of perennisosides XIII-XIX (1-7).

4	1 ^a	2 ^a	3 ^b	4 ^b	5 ^a	6 ^b	7 ^b
1	1.31 (m)	1.22 (m)	1.28 (m)	1.24 (m)	1.23 (m)	1.32 (m)	1.30 (m)
2	2.38 (dd, 3.2, 13.6) 4.52 (br s)	2.28 (dd, 2.4, 14.4) 4.77 (br s)	2.31 (br d, <i>ca.</i> 14) 4.80 (br s)	2.30 (br d, <i>ca.</i> 13) 4.82 (br s)	2.28 (dd, 2.4, 14.4) 4.78 (br s)	2.35 (br d, <i>ca</i> . 14) 4.77 (br s)	2.23 (m) 4.69 (br s)
3	4.22 (br s)	4.77 (br s)	4.31 (br s)	4.30 (br s)	4.78 (br s)	4.77 (br s) 4.27 (br s)	4.38 (br s)
5	1.75 (br d, ca. 12)	1.73 (m)	1.83 (m)	1.78 (m)	1.73 (br d, <i>ca</i> . 10)	1.77 (m)	1.80 (m)
5	1.32 (m)	1.20 (m)	1.30 (m)	1.26 (m)	1.20 (m)	1.23 (m)	1.25 (m)
•	1.68 (m)	1.70 (m)	1.82 (m)	1.78 (m)	1.59 (m)	1.80 (m)	1.82 (m)
7	1.78 (m)	1.70 (m)	1.72 (m)	1.77 (m)	1.70 (m)	1.51 (m)	1.60 (m)
	1.90 (dd, 4.0, 12.8)	1.75 (m)	1.83 (m)	1.91 (m)	1.75 (m)	1.72 (m)	1.70 (m)
9	1.82 (dd, 6.4, 11.0)	1.74 (m)	1.79 (m)	1.74 (m)	1.74 (m)	1.77 (m)	1.72 (m)
11	2.06 (m)	2.00 (br dd, ca. 5, 14)	2.03 (m)	2.03 (m)	2.00 (m)	2.01 (m)	2.04 (m)
	2.22 (m)	2.17 (m)	2.21 (m)	2.19 (m)	2.16 (ddd, 2.4, 3.2, 14.4)	2.14 (m)	2.16 (m)
12	5.49 (dd, 3.6, 3.7)	5.45 (dd, 3.4, 3.4)	5.48 (t-like, ca. 3)	5.47 (t-like, ca. 3)	5.45 (dd, 3.4, 3.8)	5.46 (t-like, ca. 3)	5.46 (t-like, ca.
15	1.54 (m)	1.50 (m)	1.47 (m)	1.58 (m)	1.50 (br dd, ca. 3, 14)	1.55 (m)	1.54 (m)
	2.03 (m)	2.03 (m)	2.05 (m)	2.03 (m)	2.01 (m)	2.05 (m)	2.04 (m)
16	1.98 (m)	2.03 (br d, ca. 12)	1.98 (m)	1.95 (m)	2.01 (br d, ca. 15)	2.05 (m)	2.02 (m)
	2.03 (br dd, ca.	2.13 (m)	2.19 (m)	2.19 (m)	2.12 (m)	2.19 (m)	2.16 (m)
	3,14)						
18	3.15 (dd, 4.0, 13.6)	3.13 (dd, 4.0, 13.6)	3.13 (dd, 4.0,	3.12 (dd-like)	3.12 (dd, 4.8, 13.0)	3.13 (br d, ca. 15)	
	100()	1.22 ()	13.6)	100()	101()	100()	13.8)
19	1.26 (m)	1.22 (m)	1.25 (m)	1.20 (m)	1.21 (m)	1.23 (m)	1.22 (m)
)1	1.77 (m) 1.17 (m)	1.75 (m)	1.78 (m) 1.18 (m)	1.77 (m)	1.75 (dd, 13.0, 15.2) 1.16 (br d, <i>ca</i> . 15)	1.77 (m)	1.75 (m)
21	` '	1.16 (m) 1.34 (ddd, 4.0, 12.8,	` '	1.12 (m) 1.31 (m)	, ,	1.15 (m)	1.17 (m)
	1.31 (m)	1.34 (ddd, 4.0, 12.8, 13.6)	1.37 (m)	1.31 (111)	1.34 (ddd, 4.0, 13.6,	1.33 (m)	1.36 (m)
22	1.80 (m)	,	1.80 (m)	1.80 (m)	14.6) 1.80 (ddd, 3.2, 4.0, 14.4)	1.82 (m)	1.78 (m)
-2	1.99 (m)	2.00 (m)	2.00 (III)	1.92 (m)	2.00 (m)	1.96 (m)	2.04 (m)
23	3.66 (d, 10.4)	3.60 (d, 10.4)	3.62 (d, 10.8)	3.62 (d, 11.0)	3.60 (d, 11.0)	3.58 (d, 11.0)	3.57 (d, 10.9)
.5	4.12 (d, 10.4)	4.29 (d, 10.4)	4.30 (d, 10.8)	4.30 (d, 11.0)	4.28 (d, 11.0)	4.34 (d, 11.0)	3.70 (d, 10.9)
24	1.34 (3H, s)	1.31 (3H, s)	1.31 (3H, s)	1.31 (3H, s)	1.31 (3H, s)	1.29 (3H, s)	1.17 (3H, s)
25	1.66 (3H, s)	1.59 (3H, s)	1.62 (3H, s)	1.61 (3H, s)	1.60 (3H, s)	1.60 (3H, s)	1.60 (3H, s)
26	1.21 (3H, s)	1.18 (3H, s)	1.18 (3H, s)	1.19 (3H, s)	1.19 (3H, s)	1.16 (3H, s)	1.17 (3H, s)
27	1.33 (3H, s)	1.22 (3H, s)	1.31 (3H, s)	1.34 (3H, s)	1.23 (3H, s)	1.23 (3H, s)	1.22 (3H, s)
29	0.86 (3H, s)	0.85 (3H, s)	0.87 (3H, s)	0.86 (3H, s)	0.85 (3H, s)	0.85 (3H, s)	0.85 (3H, s)
30	0.92 (3H, s)	0.92 (3H, s)	0.92 (3H, s)	0.87 (3H, s)	0.92 (3H, s)	0.85 (3H, s)	0.91 (3H, s)
3-0-sugar		(Glc)	(Glc)	(Glc)	(Glc)	(Fuc)	(Rha)
1′		5.11 (d, 7.6)	5.11 (d, 7.9)	5.12 (d, 7.6)	5.11 (d, 7.8)	4.99 (d, 7.1)	5.72 (br s)
2′		4.03 (m)	4.02 (m)	4.02 (m)	4.00 (dd, 7.8, 8.8)	4.39 (m)	4.75 (br s)
3′		4.15 (m)	4.17 (m)	4.19 (m)	4.13 (dd, 8.8, 8.8)	4.03 (m)	4.56 (m)
4′		4.17 (m)	4.19 (m)	4.20 (m)	4.14 (dd, 8.8, 8.8)	4.04 (m)	4.32 (m)
5′		3.85 (m)	3.84 (m)	3.83 (m)	3.84 (ddd, 2.4, 5.6, 8.8)	3.80 (q-like)	4.55 (m)
5′		4.30 (m)	4.31 (m)	4.30 (m)	4.32 (dd, 4.8, 12.0)	1.49 (3H, d, 6.1)	1.60 (3H, d, 6.0
28-0-		4.44 (m)	4.43 (m)	4.45 (m)	4.42 (m)		
sugar							
sugar 28-0-Glc	602 (d. 7.9)	6.07 (4.75)	6 02 (d. 7.7)	6.02 (4.7.6)	6.02 (4.75)	6 10 (d 9 0)	600 (4.80)
sugar 28-O-Glc 1"	6.02 (d, 7.8)	6.07 (d, 7.5)	6.03 (d, 7.7)	6.02 (d, 7.6)	6.03 (d, 7.5)	6.10 (d, 8.0)	6.09 (d, 8.0)
sugar 28-0-Glc "	4.30 (dd, 7.8, 8.3)	4.35 (dd, 7.5, 8.8)	4.31 (m)	4.30 (m)	4.28 (dd, 7.5, 8.8)	4.35 (m)	4.34 (m)
sugar 28-O-Glc " 2"	4.30 (dd, 7.8, 8.3) 4.22 (m)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8)	4.31 (m) 4.24 (m)	4.30 (m) 4.20 (m)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2)	4.35 (m) 4.27 (m)	4.34 (m) 4.24 (m)
sugar 88-O-Glc " " "	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8) 4.28 (m)	4.31 (m) 4.24 (m) 4.29 (m)	4.30 (m) 4.20 (m) 4.30 (m)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2) 4.20 (dd, 8.8, 9.2)	4.35 (m) 4.27 (m) 4.18 (m)	4.34 (m) 4.24 (m) 4.16 (m)
sugar 28-O-Glc " " " " " "	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6) 4.03 (m)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8)	4.31 (m) 4.24 (m) 4.29 (m) 4.00 (m)	4.30 (m) 4.20 (m) 4.30 (m) 4.00 (m)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2)	4.35 (m) 4.27 (m)	4.34 (m) 4.24 (m) 4.16 (m) 4.06 (m)
sugar 28-O-Glc " " " " " "	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8) 4.28 (m) 4.03 (m)	4.31 (m) 4.24 (m) 4.29 (m)	4.30 (m) 4.20 (m) 4.30 (m)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2) 4.20 (dd, 8.8, 9.2) 4.00 (ddd, 2.0, 4.8, 9.2)	4.35 (m) 4.27 (m) 4.18 (m) 4.08 (m)	4.34 (m) 4.24 (m) 4.16 (m)
sugar 8-O-Glc " "	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6) 4.03 (m) 4.15 (dd, 4.8, 12.0)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8) 4.28 (m) 4.03 (m) 4.14 (dd, 5.1, 12.0)	4.31 (m) 4.24 (m) 4.29 (m) 4.00 (m) 4.14 (m)	4.30 (m) 4.20 (m) 4.30 (m) 4.00 (m) 4.16 (m)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2) 4.20 (dd, 8.8, 9.2) 4.00 (ddd, 2.0, 4.8, 9.2) 4.13 (dd, 4.8, 12.0)	4.35 (m) 4.27 (m) 4.18 (m) 4.08 (m) 4.27 (m)	4.34 (m) 4.24 (m) 4.16 (m) 4.06 (m) 4.24 (m)
sugar 28-O-Glc "" "" "" "" ""	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6) 4.03 (m) 4.15 (dd, 4.8, 12.0)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8) 4.28 (m) 4.03 (m) 4.14 (dd, 5.1, 12.0)	4.31 (m) 4.24 (m) 4.29 (m) 4.00 (m) 4.14 (m)	4.30 (m) 4.20 (m) 4.30 (m) 4.00 (m) 4.16 (m)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2) 4.20 (dd, 8.8, 9.2) 4.00 (ddd, 2.0, 4.8, 9.2) 4.13 (dd, 4.8, 12.0)	4.35 (m) 4.27 (m) 4.18 (m) 4.08 (m) 4.27 (m)	4.34 (m) 4.24 (m) 4.16 (m) 4.06 (m) 4.24 (m) 4.64 (dd, 2.3,
sugar (8-0-Glc "" "" "" ""	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6) 4.03 (m) 4.15 (dd, 4.8, 12.0) 4.54 (dd, 2.0, 12.0) 6.43 (br s)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8) 4.28 (m) 4.03 (m) 4.14 (dd, 5.1, 12.0) 4.54 (br d, ca. 12)	4.31 (m) 4.24 (m) 4.29 (m) 4.00 (m) 4.14 (m)	4.30 (m) 4.20 (m) 4.30 (m) 4.00 (m) 4.16 (m)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2) 4.20 (dd, 8.8, 9.2) 4.00 (ddd, 2.0, 4.8, 9.2) 4.13 (dd, 4.8, 12.0) 4.53 (dd, 2.0, 12.0)	4.35 (m) 4.27 (m) 4.18 (m) 4.08 (m) 4.27 (m)	4.34 (m) 4.24 (m) 4.16 (m) 4.06 (m) 4.24 (m) 4.64 (dd, 2.3,
sugar 28-O-Glc "" "" "" "" "" ""-O-Rha	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6) 4.03 (m) 4.15 (dd, 4.8, 12.0) 4.54 (dd, 2.0, 12.0)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8) 4.28 (m) 4.03 (m) 4.14 (dd, 5.1, 12.0) 4.54 (br d, ca. 12) 6.32 (br s) 4.70 (dd, 1.6, 3.2)	4.31 (m) 4.24 (m) 4.29 (m) 4.00 (m) 4.14 (m) 4.53 (m)	4.30 (m) 4.20 (m) 4.30 (m) 4.00 (m) 4.16 (m) 4.55 (m)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2) 4.20 (dd, 8.8, 9.2) 4.00 (ddd, 2.0, 4.8, 9.2) 4.13 (dd, 4.8, 12.0) 4.53 (dd, 2.0, 12.0)	4.35 (m) 4.27 (m) 4.18 (m) 4.08 (m) 4.27 (m) 4.66 (br d, ca. 11)	4.34 (m) 4.24 (m) 4.16 (m) 4.06 (m) 4.24 (m) 4.64 (dd, 2.3, 11.5)
sugar 18-O-Glc """ """ """ """-O-Rha	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6) 4.03 (m) 4.15 (dd, 4.8, 12.0) 4.54 (dd, 2.0, 12.0) 6.43 (br s) 4.71 (br s) 4.52 (dd, 1.6, 9.6)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8) 4.28 (m) 4.03 (m) 4.14 (dd, 5.1, 12.0) 4.54 (br d, ca. 12) 6.32 (br s) 4.70 (dd, 1.6, 3.2) 4.45 (dd, dd, 3.2, 8.8)	4.31 (m) 4.24 (m) 4.29 (m) 4.00 (m) 4.14 (m) 4.53 (m) 6.41 (br s) 4.69 (br s) 4.50 (dd, 3.3, 9.5)	4.30 (m) 4.20 (m) 4.30 (m) 4.00 (m) 4.16 (m) 4.55 (m) 6.47 (br s) 4.72 (br s) 4.53 (m)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2) 4.20 (dd, 8.8, 9.2) 4.00 (ddd, 2.0, 4.8, 9.2) 4.13 (dd, 4.8, 12.0) 4.53 (dd, 2.0, 12.0) 6.29 (br s) 4.70 (dd, 1.6, 3.4) 4.42 (dd, 3.4, 8.8)	4.35 (m) 4.27 (m) 4.18 (m) 4.08 (m) 4.27 (m) 4.66 (br d, ca. 11) 6.55 (br s) 4.77 (br s) 4.54 (m)	4.34 (m) 4.24 (m) 4.16 (m) 4.06 (m) 4.24 (m) 4.64 (dd, 2.3, 11.5) 6.46 (br s) 4.79 (br s) 4.55 (m)
sugar 18-O-Glc "" "" "" "" "" "" "" "" "" "" "" "" "	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6) 4.03 (m) 4.15 (dd, 4.8, 12.0) 4.54 (dd, 2.0, 12.0) 6.43 (br s) 4.71 (br s) 4.52 (dd, 1.6, 9.6) 5.81 (dd, 9.6, 9.6)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8) 4.28 (m) 4.03 (m) 4.14 (dd, 5.1, 12.0) 4.54 (br d, ca. 12) 6.32 (br s) 4.70 (dd, 1.6, 3.2) 4.45 (dd, dd, 3.2, 8.8) 4.24 (dd, 8.8, 9.6)	4.31 (m) 4.24 (m) 4.29 (m) 4.00 (m) 4.14 (m) 4.53 (m) 6.41 (br s) 4.69 (br s) 4.50 (dd, 3.3, 9.5) 5.73 (dd, 9.5, 9.6)	4.30 (m) 4.20 (m) 4.30 (m) 4.00 (m) 4.16 (m) 4.55 (m) 6.47 (br s) 4.72 (br s) 4.53 (m) 5.84 (dd, 9.6, 9.6)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2) 4.20 (dd, 8.8, 9.2) 4.00 (ddd, 2.0, 4.8, 9.2) 4.13 (dd, 4.8, 12.0) 4.53 (dd, 2.0, 12.0) 6.29 (br s) 4.70 (dd, 1.6, 3.4) 4.42 (dd, 3.4, 8.8) 4.23 (dd, 8.8, 8.8)	4.35 (m) 4.27 (m) 4.18 (m) 4.08 (m) 4.27 (m) 4.66 (br d, ca. 11) 6.55 (br s) 4.77 (br s) 4.54 (m) 4.34 (m)	4.34 (m) 4.24 (m) 4.16 (m) 4.06 (m) 4.24 (m) 4.64 (dd, 2.3, 11.5) 6.46 (br s) 4.79 (br s) 4.55 (m) 4.32 (m)
sugar :8-O-Glc "" "" "" "" ""-O-Rha	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6) 4.03 (m) 4.15 (dd, 4.8, 12.0) 4.54 (dd, 2.0, 12.0) 6.43 (br s) 4.71 (br s) 4.52 (dd, 1.6, 9.6) 5.81 (dd, 9.6, 9.6) 4.47 (m)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8) 4.28 (m) 4.03 (m) 4.14 (dd, 5.1, 12.0) 4.54 (br d, ca. 12) 6.32 (br s) 4.70 (dd, 1.6, 3.2) 4.45 (dd, dd, 3.2, 8.8) 4.24 (dd, 8.8, 9.6) 4.41 (m)	4.31 (m) 4.24 (m) 4.29 (m) 4.00 (m) 4.14 (m) 4.53 (m) 6.41 (br s) 4.69 (br s) 4.50 (dd, 3.3, 9.5) 5.73 (dd, 9.5, 9.6) 4.41 (m)	4.30 (m) 4.20 (m) 4.30 (m) 4.00 (m) 4.16 (m) 4.55 (m) 6.47 (br s) 4.72 (br s) 4.53 (m) 5.84 (dd, 9.6, 9.6) 4.48 (m)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2) 4.20 (dd, 8.8, 9.2) 4.00 (ddd, 2.0, 4.8, 9.2) 4.13 (dd, 4.8, 12.0) 4.53 (dd, 2.0, 12.0) 6.29 (br s) 4.70 (dd, 1.6, 3.4) 4.42 (dd, 3.4, 8.8) 4.23 (dd, 8.8, 8.8) 4.39 (m)	4.35 (m) 4.27 (m) 4.18 (m) 4.08 (m) 4.27 (m) 4.66 (br d, ca. 11) 6.55 (br s) 4.77 (br s) 4.54 (m) 4.34 (m) 4.55 (m)	4.34 (m) 4.24 (m) 4.16 (m) 4.06 (m) 4.24 (m) 4.64 (dd, 2.3, 11.5) 6.46 (br s) 4.79 (br s) 4.55 (m) 4.32 (m) 4.50 (m)
sugar 18-O-Glc """ """ """-O-Rha """ """ """ """ """ """ """ "	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6) 4.03 (m) 4.15 (dd, 4.8, 12.0) 4.54 (dd, 2.0, 12.0) 6.43 (br s) 4.71 (br s) 4.52 (dd, 1.6, 9.6) 5.81 (dd, 9.6, 9.6) 4.47 (m) 1.57 (3H, d, 6.4)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8) 4.28 (m) 4.03 (m) 4.14 (dd, 5.1, 12.0) 4.54 (br d, ca. 12) 6.32 (br s) 4.70 (dd, 1.6, 3.2) 4.45 (dd, dd, 3.2, 8.8) 4.24 (dd, 8.8, 9.6) 4.41 (m) 1.72 (3H, d, 6.4)	4.31 (m) 4.24 (m) 4.29 (m) 4.00 (m) 4.14 (m) 4.53 (m) 6.41 (br s) 4.69 (br s) 4.50 (dd, 3.3, 9.5) 5.73 (dd, 9.5, 9.6) 4.41 (m) 1.46 (3H, d, 6.2)	4.30 (m) 4.20 (m) 4.30 (m) 4.00 (m) 4.16 (m) 4.55 (m) 6.47 (br s) 4.72 (br s) 4.53 (m) 5.84 (dd, 9.6, 9.6) 4.48 (m) 1.57 (3H, d, 6.0)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2) 4.20 (dd, 8.8, 9.2) 4.00 (ddd, 2.0, 4.8, 9.2) 4.13 (dd, 4.8, 12.0) 4.53 (dd, 2.0, 12.0) 6.29 (br s) 4.70 (dd, 1.6, 3.4) 4.42 (dd, 3.4, 8.8) 4.23 (dd, 8.8, 8.8) 4.39 (m) 1.70 (3H, d, 6.2)	4.35 (m) 4.27 (m) 4.18 (m) 4.08 (m) 4.27 (m) 4.66 (br d, ca. 11) 6.55 (br s) 4.77 (br s) 4.54 (m) 4.34 (m)	4.34 (m) 4.24 (m) 4.16 (m) 4.06 (m) 4.24 (m) 4.64 (dd, 2.3, 11.5) 6.46 (br s) 4.79 (br s) 4.55 (m) 4.32 (m) 4.50 (m)
sugar 18-O-Glc " " " " " " " " " " " " " " " " " " "	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6) 4.03 (m) 4.15 (dd, 4.8, 12.0) 4.54 (dd, 2.0, 12.0) 6.43 (br s) 4.71 (br s) 4.52 (dd, 1.6, 9.6) 5.81 (dd, 9.6, 9.6) 4.47 (m)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8) 4.28 (m) 4.03 (m) 4.14 (dd, 5.1, 12.0) 4.54 (br d, ca. 12) 6.32 (br s) 4.70 (dd, 1.6, 3.2) 4.45 (dd, dd, 3.2, 8.8) 4.24 (dd, 8.8, 9.6) 4.41 (m)	4.31 (m) 4.24 (m) 4.29 (m) 4.00 (m) 4.14 (m) 4.53 (m) 6.41 (br s) 4.69 (br s) 4.50 (dd, 3.3, 9.5) 5.73 (dd, 9.5, 9.6) 4.41 (m)	4.30 (m) 4.20 (m) 4.30 (m) 4.00 (m) 4.16 (m) 4.55 (m) 6.47 (br s) 4.72 (br s) 4.53 (m) 5.84 (dd, 9.6, 9.6) 4.48 (m)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2) 4.20 (dd, 8.8, 9.2) 4.00 (ddd, 2.0, 4.8, 9.2) 4.13 (dd, 4.8, 12.0) 4.53 (dd, 2.0, 12.0) 6.29 (br s) 4.70 (dd, 1.6, 3.4) 4.42 (dd, 3.4, 8.8) 4.23 (dd, 8.8, 8.8) 4.39 (m)	4.35 (m) 4.27 (m) 4.18 (m) 4.08 (m) 4.27 (m) 4.66 (br d, ca. 11) 6.55 (br s) 4.77 (br s) 4.54 (m) 4.34 (m) 4.55 (m)	4.34 (m) 4.24 (m) 4.16 (m) 4.06 (m) 4.24 (m) 4.64 (dd, 2.3, 11.5) 6.46 (br s) 4.79 (br s) 4.55 (m) 4.32 (m) 4.50 (m)
sugar 18-0-Glc "" "" "" "" "" "" "" "" "" "" "" "" ""	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6) 4.03 (m) 4.15 (dd, 4.8, 12.0) 4.54 (dd, 2.0, 12.0) 6.43 (br s) 4.71 (br s) 4.52 (dd, 1.6, 9.6) 5.81 (dd, 9.6, 9.6) 4.47 (m) 1.57 (3H, d, 6.4) (Glc)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8) 4.28 (m) 4.03 (m) 4.14 (dd, 5.1, 12.0) 4.54 (br d, ca. 12) 6.32 (br s) 4.70 (dd, 1.6, 3.2) 4.45 (dd, dd, 3.2, 8.8) 4.24 (dd, 8.8, 9.6) 4.41 (m) 1.72 (3H, d, 6.4) (Glc)	4.31 (m) 4.24 (m) 4.29 (m) 4.00 (m) 4.14 (m) 4.53 (m) 6.41 (br s) 4.69 (br s) 4.50 (dd, 3.3, 9.5) 5.73 (dd, 9.5, 9.6) 4.41 (m) 1.46 (3H, d, 6.2) (Glc)	4.30 (m) 4.20 (m) 4.30 (m) 4.00 (m) 4.16 (m) 4.55 (m) 6.47 (br s) 4.72 (br s) 4.72 (br s) 4.53 (m) 5.84 (dd, 9.6, 9.6) 4.48 (m) 1.57 (3H, d, 6.0) (Glc)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2) 4.20 (dd, 8.8, 9.2) 4.00 (ddd, 2.0, 4.8, 9.2) 4.13 (dd, 4.8, 12.0) 4.53 (dd, 2.0, 12.0) 6.29 (br s) 4.70 (dd, 1.6, 3.4) 4.42 (dd, 3.4, 8.8) 4.23 (dd, 8.8, 8.8) 4.39 (m) 1.70 (3H, d, 6.2) (Gal)	4.35 (m) 4.27 (m) 4.18 (m) 4.08 (m) 4.27 (m) 4.66 (br d, ca. 11) 6.55 (br s) 4.77 (br s) 4.54 (m) 4.34 (m) 4.55 (m)	4.34 (m) 4.24 (m) 4.16 (m) 4.06 (m) 4.24 (m) 4.64 (dd, 2.3, 11.5) 6.46 (br s) 4.79 (br s) 4.55 (m) 4.32 (m) 4.50 (m)
sugar 18-0-Glc "" "" "" "" "" "" "" "" "" "" "" "" ""	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6) 4.03 (m) 4.15 (dd, 4.8, 12.0) 4.54 (dd, 2.0, 12.0) 6.43 (br s) 4.71 (br s) 4.52 (dd, 1.6, 9.6) 5.81 (dd, 9.6, 9.6) 4.47 (m) 1.57 (3H, d, 6.4) (Glc) 5.09 (d, 7.8)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8) 4.28 (m) 4.03 (m) 4.14 (dd, 5.1, 12.0) 4.54 (br d, ca. 12) 6.32 (br s) 4.70 (dd, 1.6, 3.2) 4.45 (dd, dd, 3.2, 8.8) 4.24 (dd, 8.8, 9.6) 4.41 (m) 1.72 (3H, d, 6.4) (Glc) 5.09 (d, 7.8)	4.31 (m) 4.24 (m) 4.29 (m) 4.00 (m) 4.14 (m) 4.53 (m) 6.41 (br s) 4.69 (br s) 4.50 (dd, 3.3, 9.5) 5.73 (dd, 9.5, 9.6) 4.41 (m) 1.46 (3H, d, 6.2) (Glc) 5.09 (d, 7.9)	4.30 (m) 4.20 (m) 4.30 (m) 4.00 (m) 4.16 (m) 4.55 (m) 6.47 (br s) 4.72 (br s) 4.53 (m) 5.84 (dd, 9.6, 9.6) 4.48 (m) 1.57 (3H, d, 6.0) (Glc) 5.09 (d, 8.2)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2) 4.20 (dd, 8.8, 9.2) 4.00 (ddd, 2.0, 4.8, 9.2) 4.13 (dd, 4.8, 12.0) 4.53 (dd, 2.0, 12.0) 6.29 (br s) 4.70 (dd, 1.6, 3.4) 4.42 (dd, 3.4, 8.8) 4.23 (dd, 8.8, 8.8) 4.39 (m) 1.70 (3H, d, 6.2) (Gal) 4.99 (d, 7.8)	4.35 (m) 4.27 (m) 4.18 (m) 4.08 (m) 4.27 (m) 4.66 (br d, ca. 11) 6.55 (br s) 4.77 (br s) 4.54 (m) 4.34 (m) 4.55 (m)	4.34 (m) 4.24 (m) 4.16 (m) 4.06 (m) 4.24 (m) 4.64 (dd, 2.3, 11.5) 6.46 (br s) 4.79 (br s) 4.55 (m) 4.32 (m) 4.50 (m)
sugar 28-O-Glc "" 2" 5" 5" 5" 2"-O-Rha "" 2"' 3"' 4"' 5"' 5"'' 5"'' 5"''	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6) 4.03 (m) 4.15 (dd, 4.8, 12.0) 4.54 (dd, 2.0, 12.0) 6.43 (br s) 4.71 (br s) 4.52 (dd, 1.6, 9.6) 5.81 (dd, 9.6, 9.6) 4.47 (m) 1.57 (3H, d, 6.4) (Glc) 5.09 (d, 7.8) 3.98 (dd, 7.8, 8.8)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8) 4.28 (m) 4.03 (m) 4.14 (dd, 5.1, 12.0) 4.54 (br d, ca. 12) 6.32 (br s) 4.70 (dd, 1.6, 3.2) 4.45 (dd, dd, 3.2, 8.8) 4.24 (dd, 8.8, 9.6) 4.41 (m) 1.72 (3H, d, 6.4) (Glc) 5.09 (d, 7.8) 4.01 (dd, 7.8, 8.8)	4.31 (m) 4.24 (m) 4.29 (m) 4.00 (m) 4.14 (m) 4.53 (m) 6.41 (br s) 4.69 (br s) 4.50 (dd, 3.3, 9.5) 5.73 (dd, 9.5, 9.6) 4.41 (m) 1.46 (3H, d, 6.2) (Glc) 5.09 (d, 7.9) 3.97 (m)	4.30 (m) 4.20 (m) 4.30 (m) 4.00 (m) 4.16 (m) 4.55 (m) 6.47 (br s) 4.72 (br s) 4.53 (m) 5.84 (dd, 9.6, 9.6) 4.48 (m) 1.57 (3H, d, 6.0) (Glc) 5.09 (d, 8.2) 3.97 (m)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2) 4.20 (dd, 8.8, 9.2) 4.00 (ddd, 2.0, 4.8, 9.2) 4.13 (dd, 4.8, 12.0) 4.53 (dd, 2.0, 12.0) 6.29 (br s) 4.70 (dd, 1.6, 3.4) 4.42 (dd, 3.4, 8.8) 4.23 (dd, 8.8, 8.8) 4.39 (m) 1.70 (3H, d, 6.2) (Gal) 4.99 (d, 7.8) 4.42 (dd, 7.8, 9.1)	4.35 (m) 4.27 (m) 4.18 (m) 4.08 (m) 4.27 (m) 4.66 (br d, ca. 11) 6.55 (br s) 4.77 (br s) 4.54 (m) 4.34 (m) 4.55 (m)	4.34 (m) 4.24 (m) 4.16 (m) 4.06 (m) 4.24 (m) 4.64 (dd, 2.3, 11.5) 6.46 (br s) 4.79 (br s) 4.55 (m) 4.32 (m)
sugar 28-O-Glc """"""""""""""""""""""""""""""""""""	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6) 4.03 (m) 4.15 (dd, 4.8, 12.0) 4.54 (dd, 2.0, 12.0) 6.43 (br s) 4.71 (br s) 4.52 (dd, 1.6, 9.6) 5.81 (dd, 9.6, 9.6) 4.47 (m) 1.57 (3H, d, 6.4) (Glc) 5.09 (d, 7.8) 3.98 (dd, 7.8, 8.8) 4.02 (m)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8) 4.28 (m) 4.03 (m) 4.14 (dd, 5.1, 12.0) 4.54 (br d, ca. 12) 6.32 (br s) 4.70 (dd, 1.6, 3.2) 4.45 (dd, dd, 3.2, 8.8) 4.24 (dd, 8.8, 9.6) 4.41 (m) 1.72 (3H, d, 6.4) (Glc) 5.09 (d, 7.8) 4.01 (dd, 7.8, 8.8) 4.13 (m)	4.31 (m) 4.24 (m) 4.29 (m) 4.00 (m) 4.14 (m) 4.53 (m) 6.41 (br s) 4.69 (br s) 4.50 (dd, 3.3, 9.5) 5.73 (dd, 9.5, 9.6) 4.41 (m) 1.46 (3H, d, 6.2) (Glc) 5.09 (d, 7.9) 3.97 (m) 4.17 (m)	4.30 (m) 4.20 (m) 4.30 (m) 4.00 (m) 4.16 (m) 4.55 (m) 6.47 (br s) 4.72 (br s) 4.73 (m) 5.84 (dd, 9.6, 9.6) 4.48 (m) 1.57 (3H, d, 6.0) (Glc) 5.09 (d, 8.2) 3.97 (m) 4.17 (m)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2) 4.20 (dd, 8.8, 9.2) 4.00 (ddd, 2.0, 4.8, 9.2) 4.13 (dd, 4.8, 12.0) 4.53 (dd, 2.0, 12.0) 6.29 (br s) 4.70 (dd, 1.6, 3.4) 4.42 (dd, 3.4, 8.8) 4.23 (dd, 8.8, 8.8) 4.39 (m) 1.70 (3H, d, 6.2) (Gal) 4.99 (d, 7.8) 4.42 (dd, 7.8, 9.1) 4.09 (dd, 3.4, 9.1)	4.35 (m) 4.27 (m) 4.18 (m) 4.08 (m) 4.27 (m) 4.66 (br d, ca. 11) 6.55 (br s) 4.77 (br s) 4.54 (m) 4.34 (m) 4.55 (m)	4.34 (m) 4.24 (m) 4.16 (m) 4.06 (m) 4.24 (m) 4.64 (dd, 2.3, 11.5) 6.46 (br s) 4.79 (br s) 4.55 (m) 4.32 (m) 4.50 (m)
sugar 8-O-Glc " " " " " " " " " " " " " " " " " " "	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6) 4.03 (m) 4.15 (dd, 4.8, 12.0) 4.54 (dd, 2.0, 12.0) 6.43 (br s) 4.71 (br s) 4.52 (dd, 1.6, 9.6) 5.81 (dd, 9.6, 9.6) 4.47 (m) 1.57 (3H, d, 6.4) (Glc) 5.09 (d, 7.8) 3.98 (dd, 7.8, 8.8) 4.02 (m) 4.04 (dd, 8.8, 8.8)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8) 4.28 (m) 4.03 (m) 4.14 (dd, 5.1, 12.0) 4.54 (br d, ca. 12) 6.32 (br s) 4.70 (dd, 1.6, 3.2) 4.45 (dd, dd, 3.2, 8.8) 4.24 (dd, 8.8, 9.6) 4.41 (m) 1.72 (3H, d, 6.4) (Glc) 5.09 (d, 7.8) 4.01 (dd, 7.8, 8.8) 4.13 (m) 4.04 (dd, 9.6, 9.6)	4.31 (m) 4.24 (m) 4.29 (m) 4.00 (m) 4.14 (m) 4.53 (m) 6.41 (br s) 4.69 (br s) 4.50 (dd, 3.3, 9.5) 5.73 (dd, 9.5, 9.6) 4.41 (m) 1.46 (3H, d, 6.2) (Glc) 5.09 (d, 7.9) 3.97 (m) 4.17 (m) 4.02 (m)	4.30 (m) 4.20 (m) 4.30 (m) 4.00 (m) 4.16 (m) 4.55 (m) 6.47 (br s) 4.72 (br s) 4.53 (m) 5.84 (dd, 9.6, 9.6) 4.48 (m) 1.57 (3H, d, 6.0) (Glc) 5.09 (d, 8.2) 3.97 (m) 4.17 (m) 4.02 (m)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2) 4.20 (dd, 8.8, 9.2) 4.00 (ddd, 2.0, 4.8, 9.2) 4.13 (dd, 4.8, 12.0) 4.53 (dd, 2.0, 12.0) 6.29 (br s) 4.70 (dd, 1.6, 3.4) 4.42 (dd, 3.4, 8.8) 4.23 (dd, 8.8, 8.8) 4.39 (m) 1.70 (3H, d, 6.2) (Gal) 4.99 (d, 7.8) 4.42 (dd, 7.8, 9.1) 4.09 (dd, 3.4, 9.1) 4.09 (dd, 3.4, 9.1) 4.40 (br d, ca. 3)	4.35 (m) 4.27 (m) 4.18 (m) 4.08 (m) 4.27 (m) 4.66 (br d, ca. 11) 6.55 (br s) 4.77 (br s) 4.54 (m) 4.34 (m) 4.55 (m)	4.34 (m) 4.24 (m) 4.16 (m) 4.06 (m) 4.24 (m) 4.64 (dd, 2.3, 11.5) 6.46 (br s) 4.79 (br s) 4.55 (m) 4.32 (m) 4.50 (m)
sugar 8-0-Glc "" "" "" "" "" "" "" "" "" "" "" "" ""	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6) 4.03 (m) 4.15 (dd, 4.8, 12.0) 4.54 (dd, 2.0, 12.0) 6.43 (br s) 4.71 (br s) 4.52 (dd, 1.6, 9.6) 5.81 (dd, 9.6, 9.6) 4.47 (m) 1.57 (3H, d, 6.4) (Glc) 5.09 (d, 7.8) 3.98 (dd, 7.8, 8.8) 4.02 (m) 4.04 (dd, 8.8, 8.8) 4.13 (m)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8) 4.28 (m) 4.03 (m) 4.14 (dd, 5.1, 12.0) 4.54 (br d, ca. 12) 6.32 (br s) 4.70 (dd, 1.6, 3.2) 4.45 (dd, dd, 3.2, 8.8) 4.24 (dd, 8.8, 9.6) 4.41 (m) 1.72 (3H, d, 6.4) (Glc) 5.09 (d, 7.8) 4.01 (dd, 7.8, 8.8) 4.13 (m) 4.04 (dd, 9.6, 9.6) 4.15 (m)	4.31 (m) 4.24 (m) 4.29 (m) 4.00 (m) 4.14 (m) 4.53 (m) 6.41 (br s) 4.69 (br s) 4.50 (dd, 3.3, 9.5) 5.73 (dd, 9.5, 9.6) 4.41 (m) 1.46 (3H, d, 6.2) (Glc) 5.09 (d, 7.9) 3.97 (m) 4.17 (m) 4.02 (m) 4.00 (m)	4.30 (m) 4.20 (m) 4.30 (m) 4.00 (m) 4.16 (m) 4.55 (m) 6.47 (br s) 4.72 (br s) 4.53 (m) 5.84 (dd, 9.6, 9.6) 4.48 (m) 1.57 (3H, d, 6.0) (Glc) 5.09 (d, 8.2) 3.97 (m) 4.17 (m) 4.02 (m) 4.00 (m)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2) 4.20 (dd, 8.8, 9.2) 4.00 (ddd, 2.0, 4.8, 9.2) 4.13 (dd, 4.8, 12.0) 4.53 (dd, 2.0, 12.0) 6.29 (br s) 4.70 (dd, 1.6, 3.4) 4.42 (dd, 3.4, 8.8) 4.39 (m) 1.70 (3H, d, 6.2) (Gal) 4.99 (d, 7.8) 4.42 (dd, 7.8, 9.1) 4.09 (dd, 3.4, 9.1) 4.40 (br d, ca. 3) 4.05 (m)	4.35 (m) 4.27 (m) 4.18 (m) 4.08 (m) 4.27 (m) 4.66 (br d, ca. 11) 6.55 (br s) 4.77 (br s) 4.54 (m) 4.34 (m) 4.55 (m)	4.34 (m) 4.24 (m) 4.16 (m) 4.06 (m) 4.24 (m) 4.64 (dd, 2.3, 11.5) 6.46 (br s) 4.79 (br s) 4.55 (m) 4.32 (m) 4.50 (m)
sugar 8-O-Glc " " " " " " " " " " " " " " " " " " "	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6) 4.03 (m) 4.15 (dd, 4.8, 12.0) 4.54 (dd, 2.0, 12.0) 6.43 (br s) 4.71 (br s) 4.52 (dd, 1.6, 9.6) 5.81 (dd, 9.6, 9.6) 4.47 (m) 1.57 (3H, d, 6.4) (Glc) 5.09 (d, 7.8) 3.98 (dd, 7.8, 8.8) 4.02 (m) 4.04 (dd, 8.8, 8.8) 4.13 (m) 4.21 (dd, 5.6, 12.0)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8) 4.28 (m) 4.03 (m) 4.14 (dd, 5.1, 12.0) 4.54 (br d, ca. 12) 6.32 (br s) 4.70 (dd, 1.6, 3.2) 4.45 (dd, dd, 3.2, 8.8) 4.24 (dd, 8.8, 9.6) 4.41 (m) 1.72 (3H, d, 6.4) (Glc) 5.09 (d, 7.8) 4.01 (dd, 7.8, 8.8) 4.13 (m) 4.04 (dd, 9.6, 9.6) 4.15 (m) 4.19 (dd, 5.6, 12.0)	4.31 (m) 4.24 (m) 4.29 (m) 4.00 (m) 4.14 (m) 4.53 (m) 6.41 (br s) 4.69 (br s) 4.50 (dd, 3.3, 9.5) 5.73 (dd, 9.5, 9.6) 4.41 (m) 1.46 (3H, d, 6.2) (Glc) 5.09 (d, 7.9) 3.97 (m) 4.17 (m) 4.02 (m) 4.00 (m) 4.19 (m)	4.30 (m) 4.20 (m) 4.30 (m) 4.00 (m) 4.16 (m) 4.55 (m) 6.47 (br s) 4.72 (br s) 4.73 (m) 5.84 (dd, 9.6, 9.6) 4.48 (m) 1.57 (3H, d, 6.0) (Glc) 5.09 (d, 8.2) 3.97 (m) 4.17 (m) 4.02 (m) 4.00 (m) 4.20 (m)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2) 4.20 (dd, 8.8, 9.2) 4.00 (ddd, 2.0, 4.8, 9.2) 4.13 (dd, 4.8, 12.0) 4.53 (dd, 2.0, 12.0) 6.29 (br s) 4.70 (dd, 1.6, 3.4) 4.42 (dd, 3.4, 8.8) 4.23 (dd, 8.8, 8.8) 4.29 (dd, 3.4, 6.2) (Gal) 4.99 (d, 7.8) 4.42 (dd, 7.8, 9.1) 4.09 (dd, 3.4, 9.1) 4.40 (br d, ca. 3) 4.05 (m) 4.27 (m)	4.35 (m) 4.27 (m) 4.18 (m) 4.08 (m) 4.27 (m) 4.66 (br d, ca. 11) 6.55 (br s) 4.77 (br s) 4.54 (m) 4.34 (m) 4.55 (m)	4.34 (m) 4.24 (m) 4.16 (m) 4.06 (m) 4.24 (m) 4.64 (dd, 2.3, 11.5) 6.46 (br s) 4.79 (br s) 4.55 (m) 4.32 (m) 4.50 (m)
sugar (8-0-Glc """"""""""""""""""""""""""""""""""""	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6) 4.03 (m) 4.15 (dd, 4.8, 12.0) 4.54 (dd, 2.0, 12.0) 6.43 (br s) 4.71 (br s) 4.52 (dd, 1.6, 9.6) 5.81 (dd, 9.6, 9.6) 4.47 (m) 1.57 (3H, d, 6.4) (Glc) 5.09 (d, 7.8) 3.98 (dd, 7.8, 8.8) 4.02 (m) 4.04 (dd, 8.8, 8.8) 4.13 (m)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8) 4.28 (m) 4.03 (m) 4.14 (dd, 5.1, 12.0) 4.54 (br d, ca. 12) 6.32 (br s) 4.70 (dd, 1.6, 3.2) 4.45 (dd, dd, 3.2, 8.8) 4.24 (dd, 8.8, 9.6) 4.41 (m) 1.72 (3H, d, 6.4) (Glc) 5.09 (d, 7.8) 4.01 (dd, 7.8, 8.8) 4.13 (m) 4.04 (dd, 9.6, 9.6) 4.15 (m)	4.31 (m) 4.24 (m) 4.29 (m) 4.00 (m) 4.14 (m) 4.53 (m) 6.41 (br s) 4.69 (br s) 4.50 (dd, 3.3, 9.5) 5.73 (dd, 9.5, 9.6) 4.41 (m) 1.46 (3H, d, 6.2) (Glc) 5.09 (d, 7.9) 3.97 (m) 4.17 (m) 4.02 (m) 4.00 (m)	4.30 (m) 4.20 (m) 4.30 (m) 4.00 (m) 4.16 (m) 4.55 (m) 6.47 (br s) 4.72 (br s) 4.53 (m) 5.84 (dd, 9.6, 9.6) 4.48 (m) 1.57 (3H, d, 6.0) (Glc) 5.09 (d, 8.2) 3.97 (m) 4.17 (m) 4.02 (m) 4.00 (m)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2) 4.20 (dd, 8.8, 9.2) 4.00 (ddd, 2.0, 4.8, 9.2) 4.13 (dd, 4.8, 12.0) 4.53 (dd, 2.0, 12.0) 6.29 (br s) 4.70 (dd, 1.6, 3.4) 4.42 (dd, 3.4, 8.8) 4.39 (m) 1.70 (3H, d, 6.2) (Gal) 4.99 (d, 7.8) 4.42 (dd, 7.8, 9.1) 4.09 (dd, 3.4, 9.1) 4.40 (br d, ca. 3) 4.05 (m)	4.35 (m) 4.27 (m) 4.18 (m) 4.08 (m) 4.27 (m) 4.66 (br d, ca. 11) 6.55 (br s) 4.77 (br s) 4.54 (m) 4.34 (m) 4.55 (m)	4.34 (m) 4.24 (m) 4.16 (m) 4.06 (m) 4.24 (m) 4.64 (dd, 2.3, 11.5) 6.46 (br s) 4.79 (br s) 4.55 (m) 4.32 (m) 4.50 (m)
sugar 18-0-Glc """ """""""""""""""""""""""""""""""""	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6) 4.03 (m) 4.15 (dd, 4.8, 12.0) 4.54 (dd, 2.0, 12.0) 6.43 (br s) 4.71 (br s) 4.52 (dd, 1.6, 9.6) 5.81 (dd, 9.6, 9.6) 4.47 (m) 1.57 (3H, d, 6.4) (Glc) 5.09 (d, 7.8) 3.98 (dd, 7.8, 8.8) 4.02 (m) 4.04 (dd, 8.8, 8.8) 4.13 (m) 4.21 (dd, 5.6, 12.0) 4.52 (br d, ca. 12)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8) 4.28 (m) 4.03 (m) 4.14 (dd, 5.1, 12.0) 4.54 (br d, ca. 12) 6.32 (br s) 4.70 (dd, 1.6, 3.2) 4.45 (dd, dd, 3.2, 8.8) 4.24 (dd, 8.8, 9.6) 4.41 (m) 1.72 (3H, d, 6.4) (Glc) 5.09 (d, 7.8) 4.01 (dd, 7.8, 8.8) 4.13 (m) 4.04 (dd, 9.6, 9.6) 4.15 (m) 4.19 (dd, 5.6, 12.0) 4.52 (dd, 2.4, 12.0)	4.31 (m) 4.24 (m) 4.29 (m) 4.00 (m) 4.14 (m) 4.53 (m) 6.41 (br s) 4.69 (br s) 4.50 (dd, 3.3, 9.5) 5.73 (dd, 9.5, 9.6) 4.41 (m) 1.46 (3H, d, 6.2) (Glc) 5.09 (d, 7.9) 3.97 (m) 4.17 (m) 4.02 (m) 4.00 (m) 4.19 (m) 4.53 (m)	4.30 (m) 4.20 (m) 4.30 (m) 4.00 (m) 4.16 (m) 4.55 (m) 6.47 (br s) 4.72 (br s) 4.53 (m) 5.84 (dd, 9.6, 9.6) 4.48 (m) 1.57 (3H, d, 6.0) (Glc) 5.09 (d, 8.2) 3.97 (m) 4.17 (m) 4.02 (m) 4.00 (m) 4.20 (m) 4.55 (m)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2) 4.20 (dd, 8.8, 9.2) 4.00 (ddd, 2.0, 4.8, 9.2) 4.13 (dd, 4.8, 12.0) 4.53 (dd, 2.0, 12.0) 6.29 (br s) 4.70 (dd, 1.6, 3.4) 4.42 (dd, 3.4, 8.8) 4.23 (dd, 8.8, 8.8) 4.39 (m) 1.70 (3H, d, 6.2) (Gal) 4.99 (d, 7.8) 4.42 (dd, 7.8, 9.1) 4.09 (dd, 3.4, 9.1) 4.40 (br d, ca. 3) 4.05 (m) 4.27 (m) 4.45 (m)	4.35 (m) 4.27 (m) 4.18 (m) 4.08 (m) 4.27 (m) 4.66 (br d, ca. 11) 6.55 (br s) 4.77 (br s) 4.54 (m) 4.34 (m) 4.55 (m) 1.77 (3H, d, 6.4)	4.34 (m) 4.24 (m) 4.16 (m) 4.06 (m) 4.24 (m) 4.64 (dd, 2.3, 11.5) 6.46 (br s) 4.79 (br s) 4.55 (m) 4.32 (m) 4.50 (m) 1.75 (3H, d, 6.3)
sugar 8-O-Glc "" "" "" "" "" "" "" "" "" "" "" "" "	4.30 (dd, 7.8, 8.3) 4.22 (m) 4.24 (dd, 8.9, 9.6) 4.03 (m) 4.15 (dd, 4.8, 12.0) 4.54 (dd, 2.0, 12.0) 6.43 (br s) 4.71 (br s) 4.52 (dd, 1.6, 9.6) 5.81 (dd, 9.6, 9.6) 4.47 (m) 1.57 (3H, d, 6.4) (Glc) 5.09 (d, 7.8) 3.98 (dd, 7.8, 8.8) 4.02 (m) 4.04 (dd, 8.8, 8.8) 4.13 (m) 4.21 (dd, 5.6, 12.0)	4.35 (dd, 7.5, 8.8) 4.22 (dd, 8.8, 8.8) 4.28 (m) 4.03 (m) 4.14 (dd, 5.1, 12.0) 4.54 (br d, ca. 12) 6.32 (br s) 4.70 (dd, 1.6, 3.2) 4.45 (dd, dd, 3.2, 8.8) 4.24 (dd, 8.8, 9.6) 4.41 (m) 1.72 (3H, d, 6.4) (Glc) 5.09 (d, 7.8) 4.01 (dd, 7.8, 8.8) 4.13 (m) 4.04 (dd, 9.6, 9.6) 4.15 (m) 4.19 (dd, 5.6, 12.0)	4.31 (m) 4.24 (m) 4.29 (m) 4.00 (m) 4.14 (m) 4.53 (m) 6.41 (br s) 4.69 (br s) 4.50 (dd, 3.3, 9.5) 5.73 (dd, 9.5, 9.6) 4.41 (m) 1.46 (3H, d, 6.2) (Glc) 5.09 (d, 7.9) 3.97 (m) 4.17 (m) 4.02 (m) 4.00 (m) 4.19 (m)	4.30 (m) 4.20 (m) 4.30 (m) 4.00 (m) 4.16 (m) 4.55 (m) 6.47 (br s) 4.72 (br s) 4.73 (m) 5.84 (dd, 9.6, 9.6) 4.48 (m) 1.57 (3H, d, 6.0) (Glc) 5.09 (d, 8.2) 3.97 (m) 4.17 (m) 4.02 (m) 4.00 (m) 4.20 (m)	4.28 (dd, 7.5, 8.8) 4.19 (dd, 8.8, 9.2) 4.20 (dd, 8.8, 9.2) 4.00 (ddd, 2.0, 4.8, 9.2) 4.13 (dd, 4.8, 12.0) 4.53 (dd, 2.0, 12.0) 6.29 (br s) 4.70 (dd, 1.6, 3.4) 4.42 (dd, 3.4, 8.8) 4.23 (dd, 8.8, 8.8) 4.29 (dd, 3.4, 6.2) (Gal) 4.99 (d, 7.8) 4.42 (dd, 7.8, 9.1) 4.09 (dd, 3.4, 9.1) 4.40 (br d, ca. 3) 4.05 (m) 4.27 (m)	4.35 (m) 4.27 (m) 4.18 (m) 4.08 (m) 4.27 (m) 4.66 (br d, ca. 11) 6.55 (br s) 4.77 (br s) 4.54 (m) 4.34 (m) 4.55 (m)	4.34 (m) 4.24 (m) 4.16 (m) 4.06 (m) 4.24 (m) 4.64 (dd, 2.3, 11.5) 6.46 (br s) 4.79 (br s) 4.55 (m) 4.32 (m) 4.50 (m)

Table 2 (continued)

Position	1 ^a	2 ^a	3 ^b	4 ^b	5 ^a	6 ^b	7 ^b
4"""	4.17 (dd, 8.9, 9.6)	4.17 (m)	4.19 (m)	4.20 (m)	4.15 (dd, 8.8, 8.8)	4.18 (m)	4.16 (m)
5"""	3.84 (m)	3.88 (ddd, 3.2, 5.6, 9.6)	3.89 (m)	3.88 (m)	3.88 (ddd, 2.4, 5.6, 8.8)	3.86 (m)	3.86 (m)
6"""	4.32 (dd, 4.8, 12.0)	4.30 (m)	4.31 (m)	4.30 (m)	4.31 (dd, 4.8, 12.0)	4.30 (m)	4.30 (m)
	4.44 (dd, 2.4, 12.0)	4.44 (m)	4.43 (m)	4.45 (m)	4.42 (m)	4.46 (dd, 2.4,	4.45 (dd, 2.6,
						11.8)	11.8)
4'''-O-acyl	(3HB)		(Ac)	(3HB)			
2"""	2.78 (dd, 4.8, 14.4)		2.09 (3H, s)	2.79 (dd, 4.8,			
				13.7)			
	2.91 (dd, 8.0, 14.4)			2.91 (dd, 8.2,			
	, , , ,			13.7)			
3"""	4.65 (m)			4.68 (m)			
4''''''	1.52 (3H, d, 6.2)			1.54 (3H, d, 6.2)			

Table 3 13 C NMR spectroscopic data (200^a and 150^b MHz, pyridine- d_5) of perennisosides XIII–XIX (1–7).

Position	1 ^a	2 ^a	3 ^b	4 ^b	5 ^a	6 ^b	7 ^b	Position	1 ^a	2 ^a	3 ^b	4^{b}	5 ^a	6 ^b	7 ^b
1	45.2	44.2	44.2	44.2	44.2	44.3	44.8	28-0-sugar							
2	71.7	70.5	70.5	70.5	70.5	70.6	71.0	28-0-Glc							
3	73.4	83.3	83.2	82.9	83.3	83.0	81.6	1"	94.4	94.4	94.3	94.1	94.4	94.8	94.8
4	42.6	42.8	42.8	42.7	42.8	42.7	43.0	2"	75.26	75.1	75.1	75.0	75.3	75.1	75.8
5	48.5	48.0	47.9	47.7	48.0	47.8	47.5	3"	88.8	88.2	88.6	88.7	88.3	79.5	78.3
6	18.5	18.0	18.3	18.1	18.2	18.1	18.2	4"	69.1	69.1	69.1	68.8	69.1	71.1	71.4
7	33.5	33.1	33.3	33.4	33.1	33.1	33.0	5"	77.4	77.2	77.4	77.3	77.3	77.7	77.7
8	40.2	40.2	40.2	40.3	40.2	40.1	40.3	6"	69.4	69.6	69.4	69.1	69.5	69.4	69.6
9	48.7	48.7	48.6	48.5	48.7	48.6	48.7	2"-O-Rha							
10	37.3	37.1	37.1	36.9	37.1	37.0	37.2	1‴	101.1	101.3	100.9	101.0	101.3	101.4	101.5
11	24.1	24.1	24.1	24.0	24.1	24.0	24.1	2‴	72.3	72.3	72.2	72.2	72.3	72.2	72.2
12	123.1	122.9	122.8	122.9	122.9	122.8	122.8	3‴	70.3	72.6	70.1	70.1	72.58	72.5	72.5
13	144.1	144.2	143.9	144.0	144.2	144.3	144.3	4‴	75.4	73.8	75.0	74.9	73.8	73.8	73.9
14	42.5	42.6	42.5	42.5	42.6	42.5	42.5	5‴	67.7	70.1	67.6	67.6	70.07	69.7	70.3
15	29.0	28.7	28.9	28.9	28.7	28.7	28.7	6‴	18.2	18.7	18.1	18.1	18.8	18.7	18.7
16	23.3	23.4	23.2	23.1	23.4	23.4	23.5	3"-O-sugar	(Glc)	(Glc)	(Glc)	(Glc)	(Gal)		
17	47.3	47.3	47.3	47.2	47.3	47.2	47.2	1""'	104.1	104.0	104.1	104.0	104.6		
18	42.0	42.1	42.0	41.8	42.1	42.0	42.0	2""'	75.15	75.5	75.5	75.2	72.60		
19	46.6	46.5	46.5	46.3	46.5	46.4	46.5	3""'	78.56	78.33	78.3	78.2	77.4		
20	30.8	30.7	30.7	30.6	30.7	30.7	30.7	4""'	71.7	71.7	71.7	71.5	70.11		
21	34.2	34.2	34.2	34.0	34.2	34.0	34.1	5''''	78.64	78.64	78.6	78.5	75.1		
22	32.3	32.3	32.3	32.2	32.3	32.3	32.4	6''''	62.5	62.5	62.5	62.3	62.1		
23	68.0	65.9	65.6	65.3	65.9	65.5	65.2	6"-0-Glc							
24	14.5	15.0	15.1	15.1	15.0	15.0	14.8	1"""	105.5	105.4	105.4	105.4	105.4	105.3	105.3
25	17.5	17.5	17.4	17.3	17.5	17.4	17.6	2"""	75.32	75.3	75.3	75.2	75.4	75.3	75.2
26	17.7	17.6	17.7	17.6	17.6	17.5	17.6	3"""	78.30	78.25	78.2	78.1	78.34	78.3	78.3
27	26.1	26.0	26.0	26.0	26.0	25.9	26.0	4"""	71.7	71.67	71.6	71.3	71.72	71.4	71.6
28	176.3	176.5	176.4	176.2	176.5	176.5	176.6	5"""	78.34	78.5	78.6	78.4	78.2	78.3	78.3
29	33.1	33.1	33.1	33.1	33.1	33.1	33.1	6"""	62.8	62.8	62.7	62.5	62.8	62.5	62.7
30	23.9	23.9	23.8	23.7	23.9	23.8	23.9	4'''-O-acyl	(3HB)		(Ac)	(3HB)			
3-0-sugar		(Glc)	(Glc)	(Glc)	(Glc)	(Fuc)	(Rha)	1"""	172.0		170.7	171.9			
1'		105.6	105.6	105.7	105.6	106.1	104.1	2"""	45.6		21.1	45.5			
2′		75.5	75.5	75.4	75.5	72.5	72.6	3"""	64.9			64.8			
3′		78.29	78.3	78.2	78.6	75.3	72.8	4"""	24.2			24.2			
4'		71.7	71.7	71.5	71.67	72.6	74.0								
5′		78.59	78.6	78.4	78.27	71.4	69.8								
6′		62.8	62.7	62.5	62.8	17.3	18.6								

was characterized on the basis of the HMBC spectrum, in which a long-range correlation was observed between Gal-H-1"" and Glc-C-3" ($\delta_{\rm C}$ 88.0). As was expected, ROE correlations by the phase-sensitive ROESY experiment of **5** were observed between the following proton pairs in the 3"-O-β-D-galactopyranosyl part in **5** {Gal-H-4"" [δ 4.40 (1H, br d, J = ca. 3 Hz)] and Gal-H-3"" [δ 4.09 (1H, dd, J = 3.4, 9.1 Hz)]/Gal-H-5"" [δ 4.05 (1H, m)]} (Fig. 2). Consequently, the structure of **5** was determined to be 3-O-β-D-glucopyranosylbayogenin {28-O-α-L-rhamnopyranosyl(1 \rightarrow 2)-[β-D-galactopyranosyl (1 \rightarrow 3)]-[β-D-glucopyranosyl] ester.

Perennisosides XVIII (**6**) and XIX (**7**) were also obtained as amorphous powders with negative optical rotations (**6**: $[\alpha]_D^{26}$ –3.8; **7**; $[\alpha]_D^{24}$ –7.1 both in MeOH). In the positive- and negative-ion FABMS, common quasimolecular ion peaks were observed at

m/z 1127 [M+Na]⁺ and 1103 [M-H]⁻, and HRFABMS analysis established that the molecular formula was $C_{54}H_{88}O_{23}$. The acid hydrolysis of **6** and **7** with 5% aqueous H_2SO_4 –1,4-dioxane (1:1, v/v) liberated bayogenin together with L-rhamnose (for **6** and **7**), D-fucose (for **6**), and D-glucose (for **6** and **7**), which were identified by HPLC using an optical rotation detector. The 1H (Table 2) and ^{13}C NMR (Table 3) spectra (pyridine- d_5) of **6** showed signals assignable to six methyls [δ 0.85, 0.85, 1.16, 1.23, 1.29, 1.60 (3H each, all s, H_3 -29, 30, 26, 27, 24, 25)], a methylene and two methines bearing an oxygen function [δ 3.58, 4.34 (1H each, both d, J = 11.0 Hz H_2 -23), 4.27 (1H, br s, H-3), 4.77 (1H, br s, H-2)], an olefinic proton [δ 5.46 (1H, t-like, J = ca. 3 Hz, H-12)], a β-D-fucopyranosyl [δ 4.99 (1H, d, J = 7.1 Hz, Fuc-H-1')], two β-D-glucopyranosyl [δ 4.97 (1H, d, J = 7.3 Hz, Glc-H-1''''), 6.10 (1H, d, J = 8.0 Hz, Glc-H-1''')], and a

Fig. 2. Important ROE correlations of the 28-O-sugar moieties in 1, 2, and 5.

 α -L-rhamnopyranosyl moiety [δ 1.77 (3H, d, I = 6.4 Hz, Rha-H₃-6"), 6.55 (1H, br s, Rha-H-1")]. The ¹H and ¹³C NMR spectroscopic properties of **6** were quite similar to those of bellissaponin BS6 (**23**) (Wray et al., 1992), except for signals due to the 3-0-glycosyl moiety. In the HMBC experiment of 6, long-range correlations were observed between the following proton and carbon pairs: Fuc-H-1' and C-3 (δ_C 83.0); Glc-H-1" and C-28 (δ_C 176.5); Rha-H-1" and Glc-C-2" (δ_C 75.1); and Glc-H-1"" and Glc-C-6" (δ_C 69.4). Thus the connected position was clarified unambiguously, and the structure of **6** was elucidated to be 3-O-β-D-fucopyranosylbayogenin $\{28-0-\alpha-L-rhamnopyranosyl(1 \rightarrow 2)-[\beta-p-glucopyranosyl(1 \rightarrow 6)] \beta$ -D-glucopyranosyl $\}$ ester. On the other hand, the 3-O- α -Lrhamnopyranosyl analog of 6, perennisoside XIX (7), was also determined by various 2D NMR measurements. Consequently, the structure of **7** was elucidated to be 3-0- α -L-rhamnopyranosylbayogenin $\{28\text{-}O\text{-}\alpha\text{-}L\text{-}rhamnopyranosyl}(1 \rightarrow 2)\text{-}[\beta\text{-}D\text{-}glucopyra-}$ $nosyl(1 \rightarrow 6)$]-β-D-glucopyranosyl} ester.

2.4. Effects on collagen synthesis in NHDFs

In previous studies, ursane-type triterpene 28-0-oligoglycosyl esters, asiaticoside and madecassoside, were isolated from *Centella asiatica*, a herb used in Sri Lankan and Indian Ayurvedic traditional medicine (Matsuda et al., 2001a,b). These triterpene saponins were reported to be promoters of human type-I collagen synthesis (Bonte et al., 1994; Lee et al., 2007; Liu et al., 2008). The structures of asiaticoside and madecassoside resembled saponin constituents from *B. perennis* flowers; thus, similar activities were expected. As shown in Table 4, perennisosides XVIII (6,% control of collagen content: 113.1 \pm 1.1 at 30 μ M), I (8, 120.6 \pm 3.4 at 3 μ M), II (9, 131.7 \pm 3.1 at 30 μ M), VII (11, 132.0 \pm 5.0 at 10 μ M), IX (13, 126.1 \pm 6.0 at 10 μ M), and XI (14, 124.8 \pm 4.6 at 10 μ M), as well

as asterbatanoside D (**19**, 121.7 \pm 2.8 at 10 μ M), bernardioside B₂ (**20**, 115.4 \pm 1.9 at 30 μ M), and bellissaponins BS5 (**27**, 127.0 \pm 2.7 at 10 μ M) and BS9 (**28**, 127.6 \pm 2.9 at 30 μ M), significantly promoted collagen synthesis without cytotoxicity. These activities were more potent than those of asiaticoside (138.1 \pm 2.3 at 100 μ M) and madecassoside (113.5 \pm 1.9 at 100 μ M).

2.5. Concluding remarks

In conclusion, seven new oleanane-type triterpene saponins, perennisosides XIII–XIX (1–7), were isolated the methanol extract of *B. perennis* flowers, and promoted collagen synthesis in NHDFs. Among the isolates, which included 19 previously reported saponins (8–26), 10 saponin constituents (6, 8, 9, 11, 13, 14, 19, 20, 27, and 28) significantly promoted collagen synthesis at concentrations of $10–30~\mu\text{M}$, without causing cytotoxicity. These data demonstrated that the methanol extract and several saponin constituents from *B. perennis* flowers could promote the synthesis of type-I collagen. The detailed mechanism of action should be studied further.

3. Experimental

3.1. General experimental procedures

The following instruments were used to obtain physical data: specific rotations. Horiba SEPA-300 digital polarimeter (l = 5 cm): IR spectra. Shimadzu FTIR-8100 spectrometer: ¹H NMR spectra. JEOL JNM-ECA800 (800 MHz), JNM-ECA600 (600 MHz), and JNM-ECS400 (400 MHz) spectrometers; ¹³C NMR spectra, JEOL JNM-ECA800 (200 MHz), JNM-ECA600 (150 MHz), and JNM-ECS400 (100 MHz) spectrometers with tetramethylsilane as an internal standard; FABMS and HRFABMS, JEOL JMS-SX 102A mass spectrometer; HPLC detector, Shimadzu RID-6A refractive index and SPD-10A UV-VIS detectors, and Shodex OR-2 optical rotation detector; HPLC column, Cosmosil 5C₁₈-MS-II and HILIC (Nacalai Tesque, Inc., Kyoto, Japan) and Wakopak Navi C-30-5 (Wako Pure Chemical Industries, Ltd., Osaka, Japan) 4.6 mm i.d. × 250 mm and 20 mm i.d. \times 250 mm for analytical and preparative purposes, respectively, YMC-Pack ODS-AQ (YMC Co., Ltd., Kyoto, Japan) and Kaseisorb LC NH₂-60-5 (Tokyo Kasei Co., Ltd., Tokyo, Japan), 4.6 mm i.d. \times 250 mm for identification of acyl and sugar moieties, respectively.

The following experimental conditions were used for column chromatography (CC): highly porous synthetic resin, Diaion HP-20 (Mitsubishi Chemical Co., Tokyo, Japan); normal-phase silica gel CC, silica gel 60 N (Kanto Chemical Co., Ltd., Tokyo, Japan; 63–210 mesh, spherical, neutral); reversed-phase ODS CC, Chromatorex ODS DM1020T (Fuji Silysia Chemical, Ltd., Aichi, Japan; 100–200 mesh); TLC, pre-coated TLC plates with silica gel $60F_{254}$ (Merck, Darmstadt, Germany, 0.25 mm, normal-phase) and silica gel RP-18 WF $_{254S}$ (Merck, Darmstadt, Germany, 0.25 mm, reversed-phase); reversed-phase HPTLC, pre-coated TLC plates with silica gel RP-18 WF $_{254S}$ (Merck, Darmstadt, Germany, 0.25 mm); detection was carried out by spraying 1% Ce(SO $_4$) $_2$ -10% aqueous H $_2$ SO $_4$, followed by heating.

3.2. Plant material

The flowers of *B. perennis*, which were cultivated in Albania, were purchased from Tochimoto Tenkaido Co., Ltd., Osaka, Japan in November 2006 as described previously (Morikawa et al., 2008). A voucher specimen (lot. No. 20860501K) of this plant material is on file in our laboratory.

Table 4 Effects of saponin constituents from B. perennis flowers on collagen synthesis in NHDFs.

	Collagen content (% of control)						
	0 μΜ	3 μΜ	10 μΜ	30 μΜ			
Perennisoside XIII (1)	100.0 ± 5.3	104.5 ± 6.5	99.8 ± 0.7	112.4 ± 4.1			
	(100.0 ± 3.3)	(89.0 ± 2.2)	(94.8 ± 3.7)	(107.0 ± 0.8)			
Perennisoside XIV (2)	100.0 ± 4.5	98.5 ± 2.2	103.4 ± 3.7	109.0 ± 2.5			
• •	(100.0 ± 2.6)	(99.3 ± 1.1)	(98.2 ± 0.5)	$(74.9 \pm 2.1^{\circ})$			
Perennisoside XV (3)	100.0 ± 2.6	98.8 ± 2.5	97.1 ± 1.0				
(2)	(100.0 ± 3.3)	(88.5 ± 1.4)	$(65.4 \pm 2.7^{\circ})$				
Perennisoside XVI (4)	100.0 ± 2.1	99.4 ± 1.2	100.1 ± 5.7	101.8 ± 8.0			
erennisosiae Avr (1)	(100.0 ± 0.8)	(97.7 ± 1.3)	(105.6 ± 6.1)	(100.3 ± 3.0			
Perennisoside XVII (5)	100.0 ± 3.0	110.5 ± 8.5	90.4 ± 9.3	85.9 ± 3.5			
Cicinnisoside XVII (3)	(100.0 ± 5.0)	(90.0 ± 3.4)	(103.1 ± 12.8)	(122.3 ± 12			
Danamaianaida VVIII (C)	100.0 ± 3.0)	, ,	101.9 ± 1.5	113.1 ± 1.1			
Perennisoside XVIII (6)		98.0 ± 2.9					
	(100.0 ± 2.7)	(100.5 ± 1.4)	(104.3 ± 1.3)	(102.1 ± 2.			
PerennisosideXIX (7)	100.0 ± 1.3	100.7 ± 0.9	111.3 ± 8.9	79.4 ± 6.5			
	(100.0 ± 0.4)	(99.4 ± 0.4)	(97.7 ± 1.0)	(104.3 ± 1.			
Perennisoside I (8)	100.0 ± 7.6	120.6 ± 3.4^{b}	175.1 ± 11.7 ^b	135.8 ± 12			
	(100.0 ± 0.9)	(105.3 ± 1.6)	(101.7 ± 1.7)	(99.9 ± 2.0)			
Perennisoside II (9)	100.0 ± 2.1	103.1 ± 5.6	116.1 ± 7.2	131.7 ± 3.1			
	(100.0 ± 3.7)	(106.7 ± 1.5)	(112.6 ± 2.0)	(116.4 ± 1.			
PerennisosideIII (10)	100.0 ± 2.6	109.5 ± 4.1	113.1 ± 3.3	106.0 ± 5.7			
(),	(100.0 ± 2.7)	(102.8 ± 1.3)	(99.8 ± 0.1)	(103.1 ± 2.			
Perennisoside VII (11)	100.0 ± 6.1	109.2 ± 8.8	132.0 ± 5.0 ^b	(10311 = 21			
erenmoonde in (11)	(100.0 ± 0.7)	(89.5 ± 0.4)	$(76.2 \pm 0.4^{\circ})$	(73.1 ± 0.8			
Perennisoside VIII (12)	100.0 ± 9.1	86.9 ± 3.0	79.5 ± 4.0	90.5 ± 3.7			
erennisoside vin (12)				90.3 ± 3.7 $(120.0 \pm 1.$			
Danamaiaaaida IV (12)	(100.0 ± 0.6)	(99.6 ± 1.7)	(108.5 ± 1.9)				
Perennisoside IX (13)	100.0 ± 1.2	$126.1 \pm 6.0^{\circ}$	133.9 ± 1.5 ^b	143.8 ± 7.1			
erennisoside XI (14)	(100.0 ± 1.2)	(102.7 ± 1.3)	(105.3 ± 2.1)	(111.1 ± 2.			
	100.0 ± 3.2	124.8 ± 4.6^{b}	120.3 ± 2.9^{b}	120.0 ± 1.4			
	(100.0 ± 0.8)	(111.1 ± 4.0)	(112.3 ± 2.2)	(97.9 ± 2.3)			
Perennisoside XII (15)	100.0 ± 1.4	97.8 ± 2.3	96.7 ± 4.6	89.5 ± 14.3			
	(100.0 ± 2.5)	(95.5 ± 2.8)	(117.0 ± 9.0)	(125.6 ± 8.			
Perennisaponin B (16)	100.0 ± 5.1	114.7 ± 2.6					
• • • •	(100.0 ± 1.2)	(113.5 ± 2.6)	$(32.0 \pm 9.4^{\circ})$	(1.0 ± 16.3)			
Perennisaponin F (17)	100.0 ± 1.0	109.4 ± 6.0	,	•			
	(100.0 ± 1.9)	$(78.1 \pm 3.6^{\circ})$	$(2.7 \pm 17.7^{\circ})$				
Perennisaponin K (18)	100.0 ± 3.7	102.8 ± 2.8	(211 = 1711)				
cremisaponiii k (16)	(100.0 ± 5.4)	(115.8 ± 12.1)	$(25.8 \pm 10.8^{\circ})$	(3.2 ± 14.1)			
Astorbatanosido D (10)			(23.8 ± 10.8) 121.7 ± 2.8^{b}	•			
Asterbatanoside D (19)	100.0 ± 3.9	113.1 ± 4.1		94.7 ± 4.5			
	(100.0 ± 0.9)	(105.6 ± 3.0)	(109.9 ± 1.9)	(133.6 ± 2.			
Bernardioside B ₂ (20)	100.0 ± 2.6	106.7 ± 0.8	112.6 ± 1.2	115.4 ± 1.9			
	(100.0 ± 0.9)	(120.3 ± 2.8^{b})	$(121.1 \pm 7.9^{\circ})$	$(124.8 \pm 4.$			
Bellidioside A (21)	100.0 ± 3.9	105.4 ± 4.5	113.3 ± 3.3	108.3 ± 1.4			
	(100.0 ± 2.7)	(103.6 ± 1.3)	(92.8 ± 1.7)	(91.3 ± 0.7)			
Bellissaponin BS1 (22)	100.0 ± 5.3	90.9 ± 1.5	92.1 ± 2.2				
	(100.0 ± 2.4)	(101.6 ± 1.0)	(106.0 ± 3.1)	(39.6 ± 5.4)			
Bellissaponin BS6 (23)	100.0 ± 5.8	107.6 ± 4.7	98.2 ± 3.3	112.0 ± 7.3			
,	(100.0 ± 1.6)	(99.0 ± 2.1)	(96.8 ± 1.9)	(79.5 ± 1.5			
Bellisoside D (24)	100.0 ± 4.3	84.9 ± 3.2	(86.6 = 1.6)	(7010 = 110			
Semsoside B (21)	(100.0 ± 1.5)	(105.8 ± 4.7)	$(62.2 \pm 14.2^{\circ})$	$(3.5 \pm 2.6^{\circ})$			
Bellisoside E (25)		107.9 ± 8.1	(02.2 ± 14.2)	(3.3 ± 2.0)			
Bellisoside E (23)	100.0 ± 2.4		(26.2 + 15.70)	(17 : 10 1			
) II: 11 F(00)	(100.0 ± 3.3)	(105.1 ± 3.6)	$(26.2 \pm 15.7^{\circ})$	(1.7 ± 10.1)			
Bellisoside F (26)	100.0 ± 2.6	55.3 ± 5.6	(1.0 = 00)				
	(100.0 ± 1.2)	(107.3 ± 4.5)	$(1.9 \pm 5.9^{\circ})$				
Bellissaponin BS5 (27)	100.0 ± 4.9	108.3 ± 6.1	127.0 ± 2.7^{b}	125.4 ± 4.3			
	(100.0 ± 5.3)	(148.5 ± 1.5^{b})	(157.7 ± 2.7^{b})	(159.2 ± 1.			
Bellissaponin BS9 (28)	100.0 ± 4.4	110.0 ± 4.0	121.7 ± 5.4 ^b	127.6 ± 2.9			
	(100.0 ± 1.1)	(102.3 ± 1.4)	(102.4 ± 1.3)	(95.9 ± 1.3			
	0 μΜ	10 μΜ	30 μΜ	100 μΜ			
Asiaticosido	1000 + 2.1	105 5 + 2.7	100 4 + 4 1	1201 - 22			
Asiaticoside	100.0 ± 3.1	105.5 ± 2.7	109.4 ± 4.1	138.1 ± 2.3			
	(100.0 ± 0.9)	(99.8 ± 0.1)	(102.3 ± 0.9)	(94.7 ± 0.8)			
Madecassoside	100.0 ± 2.0	104.8 ± 1.4	102.7 ± 1.3	113.5 ± 1.9			
	(100.0 ± 4.2)	(97.1 ± 1.1)	(94.1 ± 2.1)	(91.9 ± 0.6)			

Each value represents the mean \pm S.E.M. (N = 4). Significantly different from the control.

3.3. Extraction and isolation

The dried flowers of B. perennis (3.0 kg) were extracted three times with MeOH under conditions of reflux for 3 h. Evaporation of the solvent under reduced pressure provided the MeOH extract (775.0 g, 25.8%). The bulk of the MeOH extract (720.0 g) was

partitioned between an EtOAc-H2O (1:1) mixture, and removal of the solvents in vacuo yielded an EtOAc-soluble fraction (187.1 g, 6.7%) and an aqueous phase (532.0 g). The aqueous phase was subjected to Diaion HP-20 CC (4.0 kg, H2O → MeOH, twice) to obtain H2O-eluted (350.0 g, 12.5%) and MeOH-eluted (180.0 g, 6.4%) fractions, as described previously (Morikawa et al., 2008).

^a *p* < 0.05.
^b *n* < 0.01

^c Cytotoxic effects were observed, and values in parentheses indicate cell viability (%) in MTT assay.

The MeOH-eluted fraction (140.0 g) was subjected to normalphase silica gel CC [3.0 kg, CHCl₃-MeOH-H₂O (20:3:1 \rightarrow 10:3 $:1 \rightarrow 7:3:1$, v/v/v, lower layer $\rightarrow 6:4:1$) \rightarrow MeOH] to obtain eight fractions [Fr. 1 (0.85 g), Fr. 2 (5.67 g), Fr. 3 (2.41 g), Fr. 4 (1.24 g), Fr. 5 (7.73 g), Fr. 6 (96.05 g), Fr. 7 (10.11 g), and Fr. 8 (16.09 g)]. Fraction 7 (10.11 g) was subjected to reversed-phase silica gel CC [300 g, MeOH-H₂O (20:80 \rightarrow 30:70 \rightarrow 40:60 \rightarrow 50:50 \rightarrow 70:30, v/v) \rightarrow MeOH] to afford nine fractions [Fr. 7–1 (796.8 mg), Fr. 7–2 (2520.6 mg), Fr. 7-3 (641.1 mg), Fr. 7-4 (713.4 mg), Fr. 7-5 (1910.7 mg), Fr. 7-6 (3098.7 mg), Fr. 7-7 (257.8 mg), Fr. 7-8 (286.5 mg), and Fr. 7-9 (361.2 mg)] as reported previously (Morikawa et al., 2008). Fraction 7-5 (1910.7 mg) was separated by HPLC [Cosmosil 5C₁₈-MS-II, CH₃CN-MeOH-H₂O (26:16:58, v/v/v)] to afford 10 fractions (Fr. 7-5-1 (174.1 mg), Fr. 7-5-2 (150.2 mg), Fr. 7-5-3 [=perennisoside XVIII (6, 272.3 mg, 0.0117%)], Fr. 7-5-4 (228.7 mg), Fr. 7-5-5 (135.4 mg), Fr. 7-5-6 (87.1 mg), Fr. 7-5-7 (70.7 mg), Fr. 7-5-8 [=bellissaponin BS5 (27. 136.4 mg, 0.0059%) (Glensk et al., 2001; Wray et al., 1992)], Fr. 7-5-9 [=bellissaponin BS9 (28, 68.6 mg, 0.0029%) (Glensk et al., 2001)], and Fr. 7-5-10 (153.9 mg)}. Fraction 7-5-4 (228.7 mg) was further purified by HPLC [Cosmosil HILIC, CH3CN-H2O (90:10, v/v)] to furnish perennisoside XIX (7, 10.9 mg, 0.0005%). Fraction 7–5–5 (135.4 mg) was further purified by HPLC [Cosmosil 5C₁₈-MS-II, CH₃CN-MeOH-H₂O (25:16:59, v/v/v)] to furnish perennisoside XIII (1, 51.1 mg, 0.0022%). Fraction 8 (16.09 g) was subjected to reversed-phase silica gel CC [300 g, MeOH-H₂O $(20:80 \rightarrow 30:70 \rightarrow 40:60 \rightarrow 50:50 \rightarrow 70:30, v/v) \rightarrow MeOH$ afford nine fractions [Fr. 8-1 (3977.2 mg), Fr. 8-2 (759.6 mg), Fr. 8-3 (774.2 mg), Fr. 8-4 (5033.2 mg), Fr. 8-5 (427.2 mg), Fr. 8-6 (946.7 mg), Fr. 8-7 (2280.8 mg), Fr. 8-8 (2189.0 mg), and Fr. 8-9 (710.1 mg)] as reported previously (Morikawa et al., 2008). Fraction 8-7 (960.0 mg) was separated by HPLC [Cosmosil 5C₁₈-MS-II, CH₃CN-MeOH-H₂O (22:16:62, v/v)] to afford nine fractions {Fr. 8-7-1 (38.6 mg), Fr. 8-7-2 (43.6 mg), Fr. 8-7-3 (52.7 mg), Fr. 8-7-4 (39.4 mg), Fr. 8-7-5 (57.6 mg), Fr. 8-7-6 [=perennisoside XVI (4, 133.1 mg, 0.0135%)], Fr. 8-7-7 (126.6 mg), Fr. 8-7-8 (119.9 mg), and Fr. 8-7-9 (46.7 mg)}. Fraction 8-7-7 (126.2 mg) was further purified by HPLC [Cosmosil HILIC, CH₃CN-H₂O (80:20, v/v)] to furnish perennisosides XV (3, 7.3 mg, 0.0007%) and XVI (4, 8.4 mg, 0.0008%). Fraction 8-8 (506.5 mg) was further purified by HPLC [Cosmosil 5C₁₈-MS-II, CH₃CN-MeOH-1% aqueous AcOH (20:16:64, v/v)] to furnish perennisoside XVII (5, 70.4 mg, 0.0130%) and XIV (2, 19.4 mg, 0.0036%).

3.3.1. Perennisoside XIII (**1** = bayogenin {28-0-[4-0-(3S)-3-hydroxy butyryl]- α - ι -rhamnopyranosyl(1 \rightarrow 2)-[β - υ -glucopyranosyl(1 \rightarrow 3)]-[β - υ -glucopyranosyl(1 \rightarrow 6)]- β - υ -glucopyranosyl} ester)

Amorphous powder, $[\alpha]_0^{27}$ + 7.6 (c 3.11, MeOH); IR (KBr) $\nu_{\rm max}$ cm $^{-1}$: 3440, 1736, 1655, 1260, 1075; For $^1{\rm H}$ and $^{13}{\rm C}$ NMR spectroscopic data, see Tables 2 and 3; Positive-ion FABMS m/z: 1229 [M+Na] $^+$; Negative-ion FABMS m/z: 1205 [M-H] $^-$, 1119 [M-C₄H₇O₂] $^-$, 957 [M-C₁₀H₁₇O₇] $^-$, 811 [M-C₁₆H₂₇O₁₁] $^-$, 649 [M-C₂₂H₃₇O₁₆] $^-$, 487 [M-C₂₈H₄₇O₂₁] $^-$; HRFABMS m/z: 1229.5924 [M+Na] $^+$ (calcd for C₅₈H₉₄O₂₆Na, 1229.5931).

3.3.2. Perennisoside XIV (**2** = 3-O- β -D-glucopyranosylbayogenin {28-O- α - ι -rhamnopyranosyl(1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 3)]-[β -D-glucopyranosyl(1 \rightarrow 6)]- β -D-glucopyranosyl} ester)

Amorphous powder, $[\alpha]_D^{23}$ –2.3 (*c* 1.30, MeOH); IR (KBr) ν_{max} cm⁻¹: 3440, 1736, 1656, 1260, 1075; For ¹H and ¹³C NMR spectroscopic data, see Tables 2 and 3; Positive-ion FABMS m/z: 1305 [M+Na]⁺; Negative-ion FABMS m/z: 1281 [M-H]⁻, 1119 [M-C₆H₁₁O₅]⁻, 957 [M-C₁₂H₂₁O₁₀]⁻, 811 [M-C₁₈H₃₁O₁₄]⁻, 649 [M-C₂₄H₄₁O₁₉]⁻, 487 [M-C₃₀H₅₁O₂₄]⁻; HRFABMS m/z: 1305.6088 [M+Na]⁺ (calcd for $C_{60}H_{98}O_{29}Na$, 1305.6091).

3.3.3. Perennisoside XV (**3** = 3-O- β -D-glucopyranosylbayogenin {28-O-(4-O-acetyl)- α -L-rhamnopyranosyl(1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 3)]-[β -D-glucopyranosyl] ester)

Amorphous powder, $[\alpha]_D^{25} - 2.5$ (c 0.56, MeOH); IR (KBr) $v_{\rm max}$ cm⁻¹: 3445, 1736, 1655, 1260, 1076; For ¹H and ¹³C NMR spectroscopic data, see Tables 2 and 3; Positive-ion FABMS m/z: 1347 [M+Na]⁺; Negative-ion FABMS m/z: 1323 [M-H]⁻, 1161 [M-C₆H₁₁O₅]⁻, 999 [M-C₁₂H₂₁O₁₀]⁻, 649 [M-C₂₆H₄₃O₂₂]⁻, 487 [M-C₃₂H₅₃O₂₇]⁻; HRFABMS m/z: 1347.6190 [M+Na]⁺ (calcd for C₆₂H₁₀₀O₃₀Na, 1347.6197).

3.3.4. Perennisoside XVI (**4** = 3-O- β -D-glucopyranosylbayogenin {28-O-[4-O-(3S)-3-hydroxybutyryl]- α -L-rhamnopyranosyl(1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 3)]-[β -D-glucopyranosyl(1 \rightarrow 6)]- β -D-glucopyranosyl} ester)

Amorphous powder, $[\alpha]_D^{27}$ +1.5 (c 3.58, MeOH); IR (KBr) $v_{\rm max}$ cm $^{-1}$: 3440, 1736, 1655, 1260, 1076; For 1 H and 13 C NMR spectroscopic data, see Tables 2 and 3; Positive-ion FABMS m/z: 1391 [M+Na] $^+$; Negative-ion FABMS m/z: 1367 [M-H] $^-$, 1281 [M-C₄H₇O₂] $^-$, 1119 [M-C₁₀H₁₇O₇] $^-$, 811 [M-C₂₂H₃₇O₁₆] $^-$, 649 [M-C₂₈H₄₇O₂₁] $^-$, 487 [M-C₃₄H₅₇O₂₆] $^-$; HRFABMS m/z: 1391.6454 [M+Na] $^+$ (calcd for C₆₄H₁₀₄O₃₁Na, 1391.6459).

3.3.5. Perennisoside XVII (**5** = 3-O- β -D-glucopyranosylbayogenin {28-O- α -L-rhamnopyranosyl(1 \rightarrow 2)-[β -D-galactopyranosyl(1 \rightarrow 3)]-[β -D-glucopyranosyl(1 \rightarrow 6)]- β -D-glucopyranosyl} ester)

Amorphous powder, $[\alpha]_0^{27}$ –1.1 (c 3.27, MeOH); IR (KBr) $v_{\rm max}$ cm⁻¹: 3440, 1736, 1655, 1230, 1075; For ¹H and ¹³C NMR spectroscopic data, see Tables 2 and 3; Positive-ion FABMS m/z: 1305 [M+Na]⁺; Negative-ion FABMS m/z: 1281 [M-H]⁻, 1119 [M-C₆H₁₁O₅]⁻, 957 [M-C₁₂H₂₁O₁₀]⁻, 811 [M-C₁₈H₃₁O₁₄]⁻, 649 [M-C₂₄H₄₁O₁₉]⁻, 487 [M-C₃₀H₅₁O₂₄]⁻; HRFABMS m/z: 1305.6097 [M+Na]⁺ (calcd for C₆₀H₉₈O₂₉Na, 1305.6091).

3.3.6. Perennisoside XVIII (**6** = 3-O- β -D-fucopyranosylbayogenin {28-O- α -L-rhamnopyranosyl(1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 6)]- β -D-glucopyranosyl} ester)

Amorphous powder, $[\alpha]_{2}^{26}$ –3.8 (c 3.39, MeOH); IR (KBr) $v_{\rm max}$ cm⁻¹: 3440, 1736, 1655, 1260, 1063; For ¹H and ¹³C NMR spectroscopic data, see Tables 2 and 3; Positive-ion FABMS m/z: 1127 [M+Na]⁺; Negative-ion FABMS m/z: 1103 [M-H]⁻, 957 [M-C₆H₁₁O₄]⁻, 941 [M-C₆H₁₁O₅]⁻, 633 [M-C₁₈H₃₁O₁₄]⁻, 487 [M-C₂₄H₄₁O₁₈]⁻; HRFABMS m/z: 1127.5619 [M+Na]⁺ (calcd for C₅₄H₈₈O₂₃Na, 1127.5614).

3.3.7. Perennisoside XIX (**7** = 3-0- α -L-rhamnopyranosylbayogenin {28-0- α -L-rhamnopyranosyl(1 \rightarrow 2)-[β -D-glucopyranosyl(1 \rightarrow 6)]- β -D-glucopyranosyl} ester)

Amorphous powder, $[\alpha]_D^{24}$ –7.1 (c 0.57, MeOH); IR (KBr) $v_{\rm max}$ cm $^{-1}$: 3451, 1741, 1655, 1084, 1061; For 1 H and 13 C NMR spectroscopic data, see Tables 2 and 3; Positive-ion FABMS m/z: 1127 [M+Na] $^{+}$; Negative-ion FABMS m/z: 1103 [M-H] $^{-}$, 649 [M-C₁₈H₃₃O₁₃] $^{-}$, 633 [M-C₁₈H₃₃O₁₄] $^{-}$; HRFABMS m/z: 1127.5619 [M+Na] $^{+}$ (calcd for C₅₄H₈₈O₂₃Na, 1127.5614).

3.4. Solvolysis and acid hydrolysis of perennisosides XIII (1)

A solution of **1** (2.0 mg) in 0.5% NaOMe–MeOH (1.0 mL) was stirred at room temperature for 3 h. The reaction mixture was neutralized with Dowex HCR-W2 (H⁺ form) and the resin was removed by filtration. Evaporation of the solvent under reduced pressure gave a residue that was subjected to HPLC analysis [column: YMC-Pack ODS-AQ, 250×4.6 mm i.d.; mobile phase: MeOH–H₂O (20:80, v/v); detection: optical rotation [Shodex OR-2 (Showa Denko Co., Ltd., Tokyo, Japan)]; flow rate: 0.7 mL/min] to identify methyl (*S*)-(+)-3-hydroxybutrate [t_R 9.2 min (positive)], which

was identified by a commercially obtained sample $\{ [\alpha]_D^{20} + 41.3 \}$ (c = 0.32, CHCl₃)} (Burk et al., 1995). The deacylated product was dissolved in 5% aqueous H₂SO₄-1,4-dioxane (1:1, v/v, 1 mL) and heated under conditions of reflux for 1 h. After cooling, the reaction mixture was neutralized with Amberlite IRA-400 (OH- form), and the resin removed by filtration. Upon removal of the solvent under reduced pressure, the residue was partitioned in EtOAc-H₂O (1:1, v/v), with removal of the solvent in vacuo from the EtOAc-soluble fraction and an aqueous phase, respectively. The EtOAc-soluble fraction was purified by HPLC [Cosmosil 5C₁₈-MS-II, MeOH-H₂O (80:20, v/v)] to furnish bayogenin (0.6 mg, 74.1%) (Kasai et al., 1988). In turn, the aqueous layer was subjected to HPLC analysis under the following conditions: HPLC column, Kaseisorb LC NH2-60-5, 4.6 mm i.d. × 250 mm (Tokyo Kasei Co., Ltd., Tokyo, Japan); detection, optical rotation [Shodex OR-2 (Showa Denko Co., Ltd., Tokyo, Japan); mobile phase, CH₃CN-H₂O (85:15, v/v); flow rate 0.5 mL/min]. Identification of L-rhamnose [$t_{\rm P}$: 12.0 min (negative optical rotation)] and D-glucose [t_R : 20.7 min (positive optical rotation)] in the aqueous layer was carried out by comparison of its retention time and optical rotation with those of authentic samples.

3.5. Deacylation of perennisosides XV (3) and XVI (4)

Solutions of **3** (1.8 mg) and **4** (4.0 mg) in 0.5% NaOMe–MeOH (1.0 mL) were stirred at room temperature for 3 h. Through the same work-up and identification procedure used for **1**, a common desacyl derivative **2** (1.5 mg, 88.5% from **3**; 3.1 mg, 82.5% from **4**) was purified by HPLC [Cosmosil $5C_{18}$ –MS-II, CH₃CN–MeOH–H₂O (20:16:64, v/v/v)]. Furthermore, methyl (*S*)-(+)-3-hydroxybutrate was identified from a part of reaction mixture of **4** by the HPLC analysis mentioned above using an optical rotation detector.

3.6. Acid hydrolysis of perennisosides XIV (2), XVII (5), XVIII (6), and XIX (7)

Solutions of **2** and **5–7** (each 2.0 mg) were heated in 5% aqueous H_2SO_4 –1,4-dioxane (1:1, v/v, 1 mL) under conditions of reflux for 1 h. Through the same procedure, bayogenin (0.5 mg, 65.7% from **2**; 0.6 mg, 78.8% from **5**; 0.6 mg, 67.9% from **6**; 0.7 mg, 79.1% from **7**) was purified from each EtOAc-soluble fraction by HPLC [Cosmosil $5C_{18}$ –MS-II, MeOH– H_2O (80:20, v/v)], and the sugar components L-rhamnose from **2** and **5–7**, D-fucose [15.5 min (positive optical rotation)] from **6**, D-glucose from **2** and **5–7**, and D-galactose [22.2 min (positive optical rotation)] from **5** were identified in the aqueous layer under the HPLC conditions mentioned above.

3.7. Bioassays

3.7.1. Reagents

Dulbeco's minimum essential medium (DMEM, DL: glucose 1000 mg/L) was from Sigma–Aldrich Chemical (St. Louis, MO, USA); fetal bovine serum (FBS) was from Life Technologies (Rockville, MD, USA), and other chemicals were from Wako Pure Chemical Industries, Co., Ltd. (Osaka, Japan). The 96-well microplates were purchased from Sumitomo Bakelite Co., Ltd. (Tokyo, Japan).

3.7.2. Cell culture

NHDFs, derived from human fetal foreskin fibroblasts, were purchased from Kurabo Industries Ltd. (Osaka, Japan). The cells were cultured in Kurabo's modified medium 106S supplemented with 2% FBS and human skin fibroblast growth factor (Kurabo Industries Ltd.) at 37 °C in a humidified atmosphere containing 5% $\rm CO_2$.

3.7.3. Effect on collagen synthesis in NHDFs

Collagen synthesis was evaluated as described previously, with modifications (Koya-Miyata et al., 2004). Briefly, a cell suspension of 2.5×10^4 NHDFs in $100~\mu L$ DMEM containing FBS (10%), penicillin G (100 U/mL), and streptomycin (100 $\mu g/mL$) was inoculated in a 96-well microplate and pre-incubated for 24 h at 37 °C under a 5% CO $_2$ atmosphere. The medium was exchanged with 100 μL of fresh medium [FBS (–)] with or without the test sample added to the medium. After incubation for 48 h, type-I collagen content in the supernatant was determined using a commercial kit [Procollagen Type I C-peptide (PIP) EIA Kit (Takara Bio Inc., Shiga, Japan)] (Lee et al., 2007). Data were expressed as the percent of control collagen content.

In addition, the cell proliferation was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. Thus, the medium was exchanged with 100 μL of fresh medium, and 10 μL of MTT {5 mg/mL in phosphate-buffered saline [PBS (–)]} solution was added. After incubation for 4 h, the medium was removed, and i-PrOH (100 μL containing 0.04 M HCl) was added to dissolve the formazan produced in the cells. The optical density (O.D.) of the formazan solution was measured by a microplate reader at 570 nm (reference: 655 nm). Each test compound was dissolved in DMSO, and the solution was added to the medium (final DMSO concentration, 0.5%). Transforming growth factor (TGF)- $\beta 1$ (from human recombinant), asiaticoside (Matsuda et al., 2001a,b), and madecassoside (Matsuda et al., 2001a,b) were used as reference compounds.

3.8. Statistics

Values are expressed as the mean \pm S.E.M. One-way analysis of variance (ANOVA) followed by Dunnett's test was used for statistical analyses. Probability (p) values less than 0.05 were considered significant.

Acknowledgements

This work was supported by MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2014–2018.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.phytochem.2015. 05.011.

References

Bonte, F., Dumas, M., Chaudagne, C., Meybeck, A., 1994. Influence of asiatic acid, madecassic acids, and asiaticoside on human collagen I synthesis. Planta Med. 60, 133–135.

Burk, M.J., Harper, T.G.P., Kalberg, C.S., 1995. Highly enantioselective hydrogenation of β-keto esters under mild conditions. J. Am. Chem. Soc. 117, 4423–4424.

Glensk, M., Wray, V., Nimtz, M., Schöpke, T., 2001. Triterpenoid saponins of *Bellis perennis*. Sci. Pharm. 69, 69–73.

Gruenwald, J., Brendler, T., Jaenicke, C. (Eds.), 2007. PDR for Herbal Medicines, fourth ed. Thomson Healthcare Inc., Montvale, pp. 896–897.

Karakas, F.P., Söhretoglu, D., Liptaj, T., Stujber, M., Turker, A.U., Marák, J., Çalis, I., Yalçin, F.N., 2014. Isolation of an oleanane-type saponin active from Bellis perennis through antitumor bioassay-guided procedures. Pharmaceut. Biol. 52, 951-955.

Kasai, R., Miyakoshi, M., Nie, R.-L., Zhou, J., Matsumoto, K., Morita, T., Nishi, M., Miyahara, K., Tanaka, O., 1988. Saponins from *Bolbostemma paniculatum*: cyclic bisdesmosides, tubeimosides II and III. Phytochemistry 27, 1439–1446.

Koya-Miyata, S., Okamoto, I., Ushio, S., Iwaki, K., Ikeda, M., Kurimoto, M., 2004. Identification of a collagen production-promoting factor from an extract of Royal Jelly and its possible mechanism. Biosci. Biotechnol. Biochem. 68, 767– 773.

Lee, J., Jung, E., Lee, J., Huh, S., Kim, J., Park, M., So, J., Ham, Y., Jung, K., Hyun, C.-G., Kim, Y.S., Park, D., 2007. *Panax ginseng* induces human Type I

- collagen synthesis through activation of Smad signaling. J. Ethnopharmacol. 109, 29–34.
- Liu, M., Dai, Y., Li, Y., Luo, Y., Huang, F., Gong, Z., Meng, Q., 2008. Madecassoside isolated from *Centella asiatica* herbs facilitates burn wound healing in mice. Planta Med. 74, 809–815.
- Matsuda, H., Morikawa, T., Ueda, H., Yoshikawa, M., 2001a. Medicinal foodstuffs. XXVI. inhibitors of aldose reductase and new triterpene and its oligoglycoside, centellasapogenol A and centellasaponin A, from *Centella asiatica* (Gotu Kola). Heterocycles 55, 1499–1504.
- Matsuda, H., Morikawa, T., Ueda, H., Yoshikawa, M., 2001b. Medicinal foodstuffs. XXVII. saponin constituents of Gotu Kola (2): structures of new ursane- and oleanane-type triterpene oligoglycosides, centellasaponin B, C, and D, from *Centella asiatica* cultivated in Sri Lanka. Chem. Pharm. Bull. 49, 1368–1371.
- Meigel, W.N., Gay, S., Weber, L., 1977. Dermal architecture and collagen type distribution. Arch. Dermatol. Res. 259, 1–10.
- Morikawa, T., Li, X., Nishida, E., Ito, Y., Matsuda, H., Nakamura, S., Muraoka, O., Yoshikawa, M., 2008. Perennisosides I–VII, acylated triterpene saponins with antihyperlipidemic activities from the flowers of *Bellis perennis*. J. Nat. Prod. 71, 828–835.

- Morikawa, T., Li, X., Nishida, E., Nakamura, S., Ninomiya, K., Matsuda, H., Oda, Y., Muraoka, O., Yoshikawa, M., 2010. Medicinal flowers part 29. Acylated oleanane-type triterpene bisdesmosides: perennisaponins G, H, I, J, K, L, and M with pancreatic lipase inhibitory activity from the flowers of *Bellis perennis*. Helv. Chim. Acta 93, 573–586.
- Morikawa, T., Li, X., Nishida, E., Nakamura, S., Ninomiya, K., Matsuda, H., Hamao, M., Muraoka, O., Hayakawa, T., Yoshikawa, M., 2011. Medicinal flowers. XXXII. structures of oleanane-type triterpene saponins, perennisosides VIII, IX, X, XI, and XII, from the flowers of *Bellis perennis*. Chem. Pharm. Bull. 59, 889–895.
- Schöpke, T., Thiele, H., Hiller, K., Wray, V., Nimtz, M., 1996. Triterpenoid saponins from *Bellis bernardii*. J. Nat. Prod. 59, 939–943.
- Wray, V., Kunath, A., Schöpke, T., Hiller, K., 1992. Bayogenin and asterogenic acid glycosides from *Bellis perennis*. Phytochemsitry 31, 2555–2557.
- Yoshikawa, M., Li, X., Nishida, E., Nakamura, S., Matsuda, H., Muraoka, O., Morikawa, T., 2008. Medicinal flowers. XXI. Structures of perennisaponins A, B, C, D, E, and F, acylated oleanane-type triterpene oligoglycosides, from the flowers of *Bellis perennis*. Chem. Pharm. Bull. 56, 559–568.