0 Prelims

0.1 Basics

0.1.1

Direct computation or 0.1.4 gives YNYNYN

0.1.2

$$\begin{split} M(P+Q) &= MP + MQ \\ &= PM + QM, \\ \Longrightarrow P+Q \in \beta \end{split} \qquad \text{since } P,Q \in \beta = (P+Q)M \end{split}$$

0.1.3

$$\begin{split} M(PQ) &= (MP)Q \\ &= (PM)Q \\ &= P(QM) \\ &= (PQ)M \\ \Longrightarrow PQ \in \beta \end{split} \qquad \begin{array}{c} P \in \beta = P(MQ) \\ Q \in \beta \\ \end{array}$$

0.1.4

yielding a system of equations

$$p+r=p$$
 $\Longrightarrow r=0$ $\Rightarrow s=p$ $r=r$ $\Rightarrow r=0$

So we need r = 0, s = p

0.1.5

1. (a) No, because

$$\frac{2}{4} \mapsto 2$$

$$\frac{1}{2} \mapsto 1$$

(b) Yes:

$$\frac{a}{b} = \frac{c}{d}$$

$$\implies (\frac{a}{b})^2 = (\frac{c}{d})^2$$

$$\implies \frac{a^2}{b^2} = \frac{c^2}{d^2}$$

0.1.6

No: because there can be multiple decimal representations of numbers. e.g. $1=0.99999\ldots$

0.1.7

- Reflexivity: f(a) = f(a), hence $a \sim a$
- Symmetry:

$$\begin{array}{c} a \sim b \\ \Longrightarrow f(a) = f(b) \\ \Longrightarrow f(b) = f(a) \\ \Longrightarrow b \sim a \end{array}$$

• Likewise, transitivity follows from transitivity of equality

The equivalence classes are "clearly" the fibers of f

0.2 Properties of the Integers

0.2.1

In my notebook not typing it out lol

0.2.2

k|a,b means that $\exists c,d\in\mathbb{Z}$ such that

$$kc = a,$$

 $kd = b$

Then,

$$as + bt = kcd + kdb$$
$$= k(cs + db)$$

Hence, k|as + bt

0.2.3

Let n = cd, with ints c, d > 1. Done.

0.2.4

$$ax + by = a(x_0 + \frac{b}{d}t) + b(y_0 - \frac{a}{d}t)$$
$$= ax_0 + \frac{ab}{d}t + by_0 - \frac{ab}{d}t$$
$$= ax_0 + by_0$$
$$= N$$

0.2.5

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8

0.2.6

Let S be a nonempty subset of \mathbb{Z}^+ .

Pick $s_1 \in S$. Then $m_1 = s_1$ is the minimal element of $S_1 = \{s_1\}$.

Suppose now we have a chain of subsets of S going

$$S_1 \subset \cdots \subset S_n$$

with $|S_i| = i$, and minimal element m_n . If $S_n = S$, we're done. Otherwise, pick $s_{n+1} \in S - S_n$.

1. Case: $s_{n+1} > m_n$

Then keep $m_{n+1} = m_n$ as the minimal element

2. Case: $s_{n+1} < m_n$

Then set $m_{n+1} = s_{n+1}$ as the minimal element

In this way, we get that S_{n+1} has a minimal element m_{n+1} .

But Case 2 cannot occur inginitely many times, else that would make an infinite chain of positive integers with strict inequalities, which is impossible. I.e.

$$m_1 \geq m_2 \geq \cdots$$

can only have finitely many strict inequalities. Where the chain terminates is the (unique) minimal element

0.2.7 S

uppose $a^2 = pb^2$. Then $p|a^2 \implies p|a$, since p is prime. Hence $\exists a_0 \in \mathbb{Z}$ such that $pa_0 = a$ and $|a_0| < |a|$ (otherwise we'd have $p = \pm 1$ which is not prime). Then letting $c = a_0$

$$a^2 = pb^2 \tag{1}$$

$$\implies (pc)^2 = pb^2 \tag{2}$$

$$\implies p^2c^2 = pb^2 \tag{3}$$

$$\implies pc^2 = b^2 \tag{4}$$

Analogously now, we have $p|b^2 \implies p|b \implies \exists b_0 \in \mathbb{Z}$ where $pb_0 = b$ and $|b_0| < |b|$. Letting $d = b_0$ and leaving off from (4),

$$pc^2 = (pd)^2$$

$$\implies c^2 = pd^2$$

$$\implies a_0^2 = pb_0^2$$

which is the same situation we started with before. Hence, we can iterate the process, obtaining integers a_1, a_2, a_3, \ldots and b_1, b_2, b_3, \ldots such that

$$|a| > |a_0| > |a_1| > |a_2| > |a_3| > \cdots,$$

 $|b| > |b_0| > |b_1| > |b_2| > |b_3| > \cdots$

which is impossible

0.2.8

IDK

0.2.9

program

0.2.10

IDK

0.2.11

If d|n, then we can prime factorize each integer

$$d = p_0^{\alpha_0} \cdots p_k^{\alpha_k}$$
$$n = p_0^{\beta_0} \cdots p_k^{\beta_k}$$

such that $\alpha_i < \beta_i$ for all i. Then

$$\phi(d) = p_0^{\alpha_0 - 1}(p_0 - 1) \cdots p_k^{\alpha_k - 1}(p_k - 1)$$

$$\phi(n) = p_0^{\beta_0 - 1}(p_0 - 1) \cdots p_k^{\beta_k - 1}(p_k - 1)$$

And so clearly $\phi(d)|\phi(n)$

0.3 $\mathbb{Z}/n\mathbb{Z}$: The Integers Modulo n

0.3.1

 $\bar{r} = \{r + 18k | k \in Z\}$ for $r = 0, \dots, 17$. Fuck you.

0.3.2

Suppose $m \in \mathbb{Z}$. By Euclidean Division,

$$m = kn + r$$

where |r| < n and we can take $r \ge 0$ wlg, so $r \in \{0, \dots, n = e\}$, and $m \equiv r \mod n$, hence falling into the equivalence class \bar{r} .

0.3.3

$$a - \sum_{i=0}^{n} a_i = \sum_{j=0}^{n} a_j 10^j - \sum_{i=0}^{n} a_i$$

$$= \sum_{i=0}^{n} a_i 10^i - a_i$$

$$= \sum_{i=0}^{n} a_i (10^i - 1)$$

$$= \sum_{i=0}^{n} a_i (9 \cdot 11 \dots 1)$$
 where the 1 appears i times. E.g. $10000 - 1 = 9999$

$$= 9 \sum_{i=0}^{n} a_i (\cdot 11 \dots 1)$$

Which is a multiple of 9. Hence $a \equiv \sum_{i=0}^{n} a_i \mod 9$

0.3.4

Awfully convoluted guess work that eventually got me there lol

0.3.5

Same as above

0.3.6

$$\begin{split} \bar{0}^2 &= \bar{0^2} = \bar{0} \\ \bar{1}^2 &= \bar{1}^2 = \bar{1} \\ \bar{2}^2 &= \bar{2}^2 = \bar{4} = \bar{0} \\ \bar{3}^2 &= \bar{3}^2 = \bar{9} = \bar{1} \end{split}$$

0.3.7

Clearly from above the only residues are 0 and 1, so the remainder is at most 1+1=2

0.3.8

 $a^2 + b^2 = 3c^2$ directly implies that

$$a^2 + b^2 \equiv 3c^2 \pmod{4} \tag{5}$$

from ??, we have that a^2, b^2, c^2 are each congruent either to 1 or 0.

1. Case: $a^2, b^2 \equiv 1$ Then (5) becomes

$$2 \equiv 3c^2 \pmod{4}$$

but $c^2 \equiv 0$ or $c^2 \equiv 1$, resulting in a contradiction in either case.

2. Case: One of a^2, b^2 is congruent to 1. Assume wlg $a^2 \equiv 1$, so $b^2 equiv0$. Then we get

$$1 \equiv 3c^2 \pmod{4}$$

Again, setting $c^2 \equiv 0$ or $c^2 \equiv 1$ fails

3. Case: $a^2, b^2 \equiv 0$ Clearly, this is the only possible case that works in (5), and it only works by likewise setting $c^2 \equiv 0$.

Hence, we must have $a^2, b^2, c^2 \equiv 0 \pmod{4}$. This implies that, for example,

$$a^2 = 0 + 4k k \in Z (6)$$

$$\implies a^2 = 4k \tag{7}$$

$$\implies a = \pm 2\sqrt{k} \tag{8}$$

So a is even (and analogously, so is b and c). Dividing (8) by 4, we obtain

$$\frac{a^2}{4} = k$$

implying that k itself must be even. So we can restrict our possible solution set to

$$a^2 = 4k, k \in 2Z$$

So $a^2 = 8k$, and likewise, $b^2 = 8l$, $c^2 = 8m$. Returning to the original equation,

$$a^{2} + b^{2} = 3c^{2}$$

$$\implies (8k)^{2} + (8l)^{2} = 3(8m)^{2}$$

$$\implies 64k^{2} + 64l^{2} = 3 \cdot 64m^{2}$$

$$\implies k^{2} + l^{2} = 3m^{2}$$

But this is the same situation we started with. So iterating, k, l, m would themselves have to be multiples of 8, whose factors themselves would have to be multiples of 8, and so on...

0.3.9

Let s = 2n + 1 be an odd int

1. Case: n = 2k is even Then

$$s^{2} = (2n + 1)^{2}$$

$$= (2(2k) + 1)^{2}$$

$$= (4k + 1)^{2}$$

$$= 16k^{2} + 8k + 1$$

$$\equiv 1 \pmod{8}$$

2. Case: n = 2k + 1 is odd Then

$$s^{2} = (2n+1)^{2}$$

$$= (2(2k+1)+1)^{2}$$

$$= (4k+3)^{2}$$

$$= 16k^{2} + 24k + 9$$

$$\equiv 1 \pmod{8}$$

0.3.10

Follows from 0.3.14 LOL

0.3.11

NO SHIT

0.3.12

IDK

0.3.13

le $\exists c, d \in Z$ such that

$$ac + nd = 1$$

 $\implies nd = 1 - ac$
 $\implies ac \equiv 1 \pmod{n}$

0.3.14

$$\bar{a} \in \mathbb{Z}/n\mathbb{Z}$$

$$\iff \exists c : \bar{a}\bar{c} = 1$$

$$\iff \exists c : ac \equiv 1 \pmod{n}$$

 $\iff a, n$ relatively prime from the last two exercises

Not doing manual verification

0.3.15

 Ew