

İ.Ü. MÜHENDİSLİK FAK., BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Algoritma Analizi Dersi Bütünleme Sınavı 21/06/2022

Önemli: Sınav süresi 70 Dakikadır.	Sınav
süresi boyunca öğrenci kimliğinizi veya	nüfus
cüzdanınızı masanın üzerinde bulundu	runuz.
Cep telefonlarınızı kapatınız.	Sınav
sorumlularının talimatlarına uyunuz.	Sınav
başlangıcından itibaren ilk 15 dakikada	sınavı
terk etmeyiniz.	

Adı:	Toplam:
Soyadı: No:	C1)
	C2)
İmza:	C3)
	C4)

SORULAR

S.1) (**7p+10p+7p**) Lineer hash tablosu aşağıda verilmiştir. Bu tabloda bir eleman daha eklenmesi durumunda yükleme faktörü aşılacağından tabloda genişlemeye ihtiyaç olacaktır (koyu olan hücrelere kayıt eklenmiştir).

- a) Bu tablonun her hücrenin bit bazında etiketlerini yazınız ve sınır değerinin yerini belirleyiniz.
- b) Yükleme faktörü α için aralık belirleyiniz.
- c) Tabloda var olan değerlerin ikili tabanda indeks değerlerinin ortak yönünü belirleyiniz.
- **S-2)** (**20p**) G=(V,E) bir ağırlıklı yönsüz graf olup EnKısaYollar(A,B) algoritması G grafının komşuluk matrisi olan A matrisini girdi olarak alıp v_1 düğümünden diğer düğümlere olan en kısa yolları sırası ile B dizisine atıp ve B dizisini sonuç olarak döndüren bir algoritmadır. $V=\{v_1,v_2,...,v_n\}$ olduğuna göre v_1 düğümünün diğer düğümlere olan uzaklıkların minimum toplamını bulan algoritmayı yazınız.
- S-3) (15p+15p) T(n)=aT(n/b)+f(n), $a,b,n\in Z^+$ ve $f(n)=O(n^2)$ şeklinde verilmiştir. Buna göre aşağıdaki soruları cevaplayınız.
 - a) $\lim_{n \to \infty} \frac{T(n)}{f(n)} = c$ ve c bir sabit olarak verilmiştir. Buna göre T(n) bağıntısının mertebesini elde ediniz (mertebe mümkün olan en dar küme ile verilecektir).
 - b) $\lim_{n \to \infty} \frac{T(n)}{f(n)} = 0$ olarak verilmiştir. Buna göre T(n) bağıntısının mertebesini elde ediniz (mertebe mümkün olan en dar küme ile verilecektir).
- **S-4)** (**26p**) 6, 70, 30, 15, 20, 100, 52 değerleri geldikleri sıra ile atlamalı listeye (skip list) eklenecektir. Her eklenen eleman için atlamalı listenin şeklini tekrar çiziniz (sıra numarası 2'nin kuvveti olan elemanlar bir üst listeye eklenmektedir. Bu durum en temel liste için geçerli olup; üst listeler için aynı durum geçerlidir).

(-3) T(n) = aT(n/b) + f(n) of $f(n) = O(n^2)$ a) $\lim_{n \to \infty} T(n) = c$ we a sobit old of and an electrical electron of f(n) = d are f(n) = d and f(n) = d and f(n) = d are f(n) = d and f(n) = d are f(n) = d and f(n) = d are f(n) = d and f(n) = d are f(n) = d and f(n) = d are f(n) = d and f(n) = d are f(n) = d and f(n) = d are f(n) = d and f(n) = d are f(n) = d and f(n) = d are f(n) = d and f(n) = d are f(n) = d and f(n) = d are f(n) = d and f(n) = d are f(n) = d and f(n) = d are f(n) = d and f(n) = d are f(n) = d and f(n) = d are f(n) = d and f(n) = d are f(n) = d and f(n) = d are f(n)