Lab 2

September 20, 2018

1 Lab 2

Aimun Khan

aak2629

Caleb Johnson

CDJ2273

2 Problem 1

2.0.1 Part a.

```
In [4]: #1a.
        import pandas
        import seaborn
        import matplotlib.pyplot as plt
       DF1 = pandas.read_csv("Lab2_Data/DF1")
       print(DF1)
       print(DF1.corr())
       plot = seaborn.heatmap(DF1.corr())
       plt.show()
       print("0 and 2 are correlated with correlation coefficient 0.990066")
       print("1 and 3 are correlated with correlation coefficient -0.990235")
      Unnamed: 0
                        0
                                            2
                                   1
0
                 1.038502 0.899865 0.835053 -0.971528
              1 0.320455 -0.647459 0.149079 0.352593
1
2
              2 0.055480 2.234771 0.271672 -2.108739
3
              3 -0.007260 -0.524299 -0.126550 0.670827
              4 -1.237390 -1.377017 -1.049932 1.342079
4
5
              5 0.477841 0.032660 0.336723 -0.171675
6
              6 -0.486923 -1.128336 -0.459850 1.113013
7
              7 0.313020 0.677323 0.123082 -0.617958
```

```
8 0.919790 -0.539665 0.956577 0.821389
8
9
              9 0.574238 -1.024339 0.471622 1.006623
             10 -0.745211 1.117401 -0.955933 -1.128786
10
             11 -0.472249 1.819872 -0.660452 -1.782977
11
12
             12
                0.426001 1.501646 0.275335 -1.466056
13
                1.529169 1.964452
                                   1.485045 -1.950166
14
                0.454290 -0.643795
                                   0.417083 0.623628
15
             15
                2.225789 -0.015177
                                   2.123942 0.125185
16
             16 0.325455 -0.679482 0.589621 0.849904
17
             17 -0.620078 -0.260013 -0.631947
                                            0.314077
             18 -0.968355 -0.576313 -0.852067 0.608772
18
19
             19 -0.497867 -0.826118 -0.474271 0.877328
20
             20 0.138424 2.346433 0.246833 -2.328777
21
             21 -0.612432  0.867661 -0.426946 -1.218642
22
             22 -3.201179 -0.295933 -3.000997 0.163514
             23 -0.703764 -0.895308 -0.399714 0.728313
23
24
             24 1.601584 -0.255763 1.724664 0.133922
25
             25 0.191843 -0.728643 0.266744 0.769094
             26 0.125723 0.471644 0.053597 -0.459898
26
27
                0.221168 0.606079 0.386691 -0.897673
             27
28
             28 -0.231375 -2.708069 -0.003476 2.633477
29
             29
                0.536865 -0.276776
                                  0.394512 0.031890
9970
           9970 -2.730439 -1.547178 -2.701821
                                            1.708031
           9971 0.688554 -0.370272 0.725510 0.236869
9971
           9972
           9973 -2.400426 0.117176 -2.372839 -0.025592
9973
9974
           9974 -1.598474 0.268953 -1.623537 -0.362582
9975
           9975 -0.535834 0.012192 -0.441412 0.095823
9976
           9976 -1.100836 2.479797 -1.014950 -2.628093
9977
           9977 -0.008764 -0.075486 0.009927 -0.219688
9978
           9979
           9979 -1.406525 -0.908348 -1.271741 0.882756
           9980 -0.173609 -0.185395 -0.343300 0.256917
9980
           9981 0.960713 -0.128936 0.722877 0.139783
9981
9982
           9982 -0.226978 1.026923 -0.154546 -1.041752
9983
           9983 0.550183 1.805770 0.256797 -1.447349
9984
           9984 0.447656 -0.905489
                                   0.640393 0.796162
9985
           9985 0.165993 0.222795 0.151294 -0.023453
9986
           9986 -0.814842 -1.089027 -0.902200 1.057734
           9987 0.207744 1.102626 0.116032 -1.273074
9987
           9988 -0.452244 0.129441 -0.517421 -0.328953
9988
           9989 -0.493284 0.222432 -0.717655 -0.267048
9989
9990
           9990 -0.423431 -0.415418 -0.465615 0.494101
9991
           9991 -1.684161 -0.182262 -1.538363 0.004538
9992
           9992 -1.780461 0.910024 -1.597428 -0.772670
9993
           9993 -0.941366  0.055372 -0.657820  0.192450
9994
           9994 0.790076 1.339041 0.717082 -1.282713
```

```
      9995
      9995
      -0.632309
      -0.145873
      -0.797517
      0.436184

      9996
      9996
      0.679417
      -0.530216
      0.526470
      0.439397

      9997
      9997
      0.890697
      -2.210855
      1.072751
      2.285372

      9998
      9998
      0.475293
      0.490971
      0.536909
      -0.195772

      9999
      9999
      1.207406
      0.819239
      1.230797
      -0.752397
```

[10000 rows x 5 columns]

	Unnamed: 0	0	1	2	3
Unnamed: 0	1.000000	-0.003991	0.008789	-0.004044	-0.007086
0	-0.003991	1.000000	-0.003998	0.990066	0.004111
1	0.008789	-0.003998	1.000000	-0.004085	-0.990235
2	-0.004044	0.990066	-0.004085	1.000000	0.004067
3	-0.007086	0.004111	-0.990235	0.004067	1.000000

0 and 2 are correlated with correlation coefficient 0.990066 1 and 3 are correlated with correlation coefficient -0.990235

2.0.2 Part b.

```
In [5]: #1b.
    import numpy
    print(numpy.cov(DF1.drop(columns=["Unnamed: 0"]).corr()))
[[ 0.33002024 -0.00564931    0.33000902    0.00242671]
[-0.00564931    0.66019896 -0.00566404 -0.66017005]
```

2.0.3 Part c.

In [6]: #1c.

3 Problem 2

```
In [7]: #2.
        import numpy
        import pandas
        import seaborn
        import matplotlib.pyplot as plt
        # Find pairwise correlations
        DF2 = pandas.read_csv("Lab2_Data/DF2")
        print(list(DF2))
        DF2.plot.scatter('0','1')
        plt.show()
        print("Two outliers, (-1,1) looks like more of an outlier because its far away from the
        data_matrix = DF2.as_matrix()
        cov = DF2.cov()
        cov = np.linalg.inv(cov)
        data = cov.dot(data_matrix.T)
        dataT = data.T
        x = dataT[:, 1]
        y = dataT[:, 2]
        plt.scatter(x, y)
        plt.show()
        print("We've isolated only the point (0,1) as an outlier by inverting the matrix")
['Unnamed: 0', '0', '1']
```


Two outliers, (-1,1) looks like more of an outlier because its far away from the trend line, by

```
NameError
```

Traceback (most recent call last)

```
<ipython-input-7-12dcf730cc71> in <module>()
    16
    17 cov = DF2.cov()
---> 18 cov = np.linalg.inv(cov)
    19 data = cov.dot(data_matrix.T)
    20
```

NameError: name 'np' is not defined

4 Problem 3

```
In [8]: #pt 2
      print("Pt. 1:")
      import numpy as np
```

```
b_hats = []
        for x in range (0, 1000):
            n = 150
            x = np.random.normal(0, 1, n)
            e = np.random.normal(0, 1, n)
            b_hat = (x.dot(e)) / (x.dot(x))
            b_hats.append(b_hat)
        print("Mean:", np.mean(b_hats))
        print("Std:", np.std(b_hats))
        print("B = 0.15 is significant")
        #pt 2
        print("\nPt. 2:")
        n = 1000
        x_axis = []
        x_axis2 = []
        y_axis = []
        for value in range (1, n):
            x = np.random.normal(0, 1, 150)
            e = np.random.normal(0, 1, 150)
            b_hat = (x.dot(e)) / (x.dot(x))
            b_hats.append(b_hat)
            x_axis.append(value)
            x_axis2.append(1 / (int(value)**.5))
            y_axis.append(np.std(b_hats))
        plt.scatter(x_axis, y_axis)
        plt.plot(x_axis, x_axis2, 'r')
        plt.show()
        print("Good fit to line")
        print("Mean:", np.mean(b_hats))
        print("Std:", np.std(b_hats))
Mean: 0.0025935168950072737
Std: 0.08109094686948413
B = 0.15 is significant
```

Pt. 1:

Pt. 2:

Good fit to line

Mean: -0.00038289061621863584

Std: 0.08126770366075596

5 Problem 4

Problem 4)

6 4.a)

7 4.b)

```
In [12]: def nameFrequency(name, y1, y2):
    males = 0
    females = 0

for i in range(y1,y2):
```

```
data.columns = ['Name', 'Sex', 'Number']
                 data = data.set_index(['Name'])
                 a = data.loc[data.index.isin([name])]
                 a = pandas.DataFrame(data = a)
                 a.columns = ["Sex", "Number"]
                 sex = a["Sex"]
                 amt = a["Number"]
                 amt = pandas.DataFrame(data = amt)
                 amt.columns = ['Number']
                 if sex.size == 0:
                     b = \{'col': [0, 0]\}
                     result = pandas.DataFrame(data=b)
                 if sex.size == 1:
                     if sex[0] == 'F':
                         females += amt.iloc[0]['Number']
                         b = {'col': [[males], [females]]}
                         result = pandas.DataFrame(data = b)
                     else:
                         males += amt.iloc[0]['Number']
                         b = {'col': [[males], [females]]}
                         result = pandas.DataFrame(data = b)
                 if sex.size == 2:
                     males += amt.iloc[1]['Number']
                     females += amt.iloc[0]['Number']
                     b = {'col1': [[males], [females]]}
                     result = pandas.DataFrame(data = b)
             return result
In [13]: print(nameFrequency('Caleb', 1975, 1985))
      col1
0
   [10578]
      [55]
1
In [16]: import matplotlib.pyplot as plt
         import numpy as np
         %matplotlib inline
         freq = []
         total = 0
         years = [1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984]
         for i in range(1975,1985):
```

data = pandas.read_csv("Names/Names/yob" + str(i) + ".txt")

```
new = []
         for j in range(0,len(freq)):
             new.append(freq[j].iloc[0].item())
             total += sum(new[j])
         total
         #plt.show()
Out[16]: 10578
   Problem 5
8
In [18]: import pandas as pd
         import matplotlib.pyplot as plt
         import numpy as np
         %matplotlib inline
         #Print the first 5 rows of the DataFrame
         tweets = pd.read_csv("tweets.csv")
         tweets.head()
         #Create a function that finds what candidate names occur in a piece of text.
         #Use the apply method on DataFrames to generate a new column called candidate that
         #contains what candidate(s) the tweet mentions.
         def get_candidate(row):
             candidates = []
             text = row["text"].lower()
             if "clinton" in text or "hillary" in text:
                 candidates.append("clinton")
             if "trump" in text or "donald" in text:
                 candidates.append("trump")
             if "sanders" in text or "bernie" in text:
                 candidates.append("sanders")
             return ",".join(candidates)
         tweets["candidate"] = tweets.apply(get_candidate,axis=1)
         #bar plot
```

freq.append(nameFrequency('Caleb', i, i+1))

counts = tweets["candidate"].value_counts()

plt.bar(range(len(counts)), counts)

print("Bar plot:")

```
plt.show()
print(counts)
```

Bar plot:


```
119998
trump
clinton, trump
                            30521
                            25429
sanders
                            25351
clinton
                            22746
                             6044
clinton, sanders
clinton,trump,sanders
                            4219
trump, sanders
                             3172
Name: candidate, dtype: int64
```

```
plt.hist(tweets["user_age"])
plt.show()
plt.clf()
#add labels
plt.hist(tweets["user_age"])
plt.title("Tweets mentioning candidates")
plt.xlabel("Twitter account age in years")
plt.ylabel("# of tweets")
plt.show()
plt.clf()
#stacked histogram
print("Stacked:")
cl_tweets = tweets["user_age"][tweets["candidate"] == "clinton"]
sa_tweets = tweets["user_age"][tweets["candidate"] == "sanders"]
tr_tweets = tweets["user_age"][tweets["candidate"] == "trump"]
plt.hist([
        cl_tweets,
        sa tweets,
        tr tweets
    ],
    stacked=True,
    label=["clinton", "sanders", "trump"]
)
plt.legend()
plt.title("Tweets mentioning each candidate")
plt.xlabel("Twitter account age in years")
plt.ylabel("# of tweets")
plt.show()
plt.clf()
#annotating the histogram
plt.hist([
        cl tweets,
        sa_tweets,
        tr tweets
    ],
    stacked=True,
    label=["clinton", "sanders", "trump"]
)
plt.legend()
plt.title("Tweets mentioning each candidate")
plt.xlabel("Twitter account age in years")
plt.ylabel("# of tweets")
plt.annotate('More Trump tweets', xy=(1, 300), xytext=(2, 300),
            arrowprops=dict(facecolor='black'))
plt.show()
```

plt.clf()

Histogram:

Stacked:

C:\Users\caleb\Anaconda3\lib\site-packages\numpy\core\fromnumeric.py:52: FutureWarning: reshapereturn getattr(obj, method)(*args, **kwds)

<matplotlib.figure.Figure at 0x27afcb4f780>

```
In [21]: #extracting colors
    print("Colors:")
    import matplotlib.colors as colors

tweets["red"] = tweets["user_bg_color"].apply(lambda x: colors.hex2color('#{0}'.formatweets["blue"] = tweets["user_bg_color"].apply(lambda x: colors.hex2color('#{0}'.formatweeting a plot fig, axes = plt.subplots(nrows=2, ncols=2) ax0, ax1, ax2, ax3 = axes.flat

ax0.hist(tweets["red"])
    ax0.set_title('Red in backgrounds')

ax1.hist(tweets["red"][tweets["candidate"] == "trump"].values)
    ax1.set_title('Red in Trump tweeters')
```

```
ax2.hist(tweets["blue"])
ax2.set_title('Blue in backgrounds')
ax3.hist(tweets["blue"][tweets["candidate"] == "trump"].values)
ax3.set_title('Blue in Trump tweeters')
plt.tight_layout()
plt.show()
#removing common bg colors
print("Removing colors:")
tweets["user_bg_color"].value_counts()
tc = tweets[~tweets["user_bg_color"].isin(["CODEED", "0000000", "F5F8FA"])]
def create_plot(data):
    fig, axes = plt.subplots(nrows=2, ncols=2)
    ax0, ax1, ax2, ax3 = axes.flat
    ax0.hist(data["red"])
    ax0.set_title('Red in backgrounds')
    ax1.hist(data["red"][data["candidate"] == "trump"].values)
    ax1.set_title('Red in Trump tweets')
    ax2.hist(data["blue"])
    ax2.set_title('Blue in backgrounds')
    ax3.hist(data["blue"][data["candidate"] == "trump"].values)
    ax3.set_title('Blue in Trump tweeters')
    plt.tight_layout()
    plt.show()
create_plot(tc)
```

Colors:

```
During handling of the above exception, another exception occurred:
    ValueError
                                               Traceback (most recent call last)
    <ipython-input-21-8bff9092768c> in <module>()
      4 import matplotlib.colors as colors
----> 6 tweets["red"] = tweets["user_bg_color"].apply(lambda x: colors.hex2color('#{0}'.for
      7 tweets["blue"] = tweets["user_bg_color"].apply(lambda x: colors.hex2color('#{0}'.fe
    ~\Anaconda3\lib\site-packages\pandas\core\series.py in apply(self, func, convert_dtype
   2549
                    else:
   2550
                        values = self.asobject
-> 2551
                        mapped = lib.map_infer(values, f, convert=convert_dtype)
   2552
   2553
                if len(mapped) and isinstance(mapped[0], Series):
    pandas/_libs/src/inference.pyx in pandas._libs.lib.map_infer()
    <ipython-input-21-8bff9092768c> in <lambda>(x)
      4 import matplotlib.colors as colors
----> 6 tweets["red"] = tweets["user_bg_color"].apply(lambda x: colors.hex2color('#{0}'.for
      7 tweets["blue"] = tweets["user_bg_color"].apply(lambda x: colors.hex2color('#{0}'.fe
      8
    ~\Anaconda3\lib\site-packages\matplotlib\colors.py in hex2color(c)
    270
            Example: #efefef -> (0.93725, 0.93725, 0.93725)
            11 11 11
    271
--> 272
            return ColorConverter.to_rgb(c)
    273
    274
    ~\Anaconda3\lib\site-packages\matplotlib\colors.py in to_rgb(arg)
    303
                if *arg* is *RGBA*, the *A* will simply be discarded.
                11 11 11
    304
--> 305
                return to_rgb(arg)
```

KeyError: ('#22330', None)

```
306
        307
                @staticmethod
        ~\Anaconda3\lib\site-packages\matplotlib\colors.py in to rgb(c)
                """Convert `c` to an RGB color, silently dropping the alpha channel.
        238
        239
    --> 240
                return to_rgba(c)[:3]
        241
        242
        ~\Anaconda3\lib\site-packages\matplotlib\colors.py in to_rgba(c, alpha)
                    rgba = _colors_full_map.cache[c, alpha]
        132
        133
                except (KeyError, TypeError): # Not in cache, or unhashable.
                    rgba = _to_rgba_no_colorcycle(c, alpha)
    --> 134
        135
                    try:
                        _colors_full_map.cache[c, alpha] = rgba
        136
        ~\Anaconda3\lib\site-packages\matplotlib\colors.py in _to_rgba_no_colorcycle(c, alpha)
        176
                    except ValueError:
        177
    --> 178
                    raise ValueError("Invalid RGBA argument: {!r}".format(orig_c))
        179
                # tuple color.
        180
                c = np.array(c)
        ValueError: Invalid RGBA argument: '#22330'
In [22]: #plotting sentiment
         print("Plotting sentiment:")
         gr = tweets.groupby("candidate").agg([np.mean, np.std])
         fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(7, 7))
         ax0, ax1 = axes.flat
         std = gr["polarity"]["std"].iloc[1:]
         mean = gr["polarity"]["mean"].iloc[1:]
         ax0.bar(range(len(std)), std)
         ax0.set xticklabels(std.index, rotation=45)
         ax0.set_title('Standard deviation of tweet sentiment')
         ax1.bar(range(len(mean)), mean)
         ax1.set_xticklabels(mean.index, rotation=45)
         ax1.set_title('Mean tweet sentiment')
```

```
plt.tight_layout()
plt.show()
#side-by-side bar plot
print("Side-by-side bar plot:")
def tweet_lengths(text):
    if len(text) < 100:</pre>
        return "short"
    elif 100 <= len(text) <= 135:</pre>
        return "medium"
    else:
        return "long"
tweets["tweet_length"] = tweets["text"].apply(tweet_lengths)
tl = \{\}
for candidate in ["clinton", "sanders", "trump"]:
    tl[candidate] = tweets["tweet_length"][tweets["candidate"] == candidate].value_co
fig, ax = plt.subplots()
width = .5
x = np.array(range(0, 6, 2))
ax.bar(x, tl["clinton"], width, color='g')
ax.bar(x + width, tl["sanders"], width, color='b')
ax.bar(x + (width * 2), tl["trump"], width, color='r')
ax.set_ylabel('# of tweets')
ax.set_title('Number of Tweets per candidate by length')
ax.set_xticks(x + (width * 1.5))
ax.set_xticklabels(('long', 'medium', 'short'))
ax.set_xlabel('Tweet length')
plt.show()
```


Side-by-side bar plot:


```
In [23]: import pandas as pd
         import matplotlib.pyplot as plt
         import numpy as np
         %matplotlib inline
         #Print the first 5 rows of the DataFrame
         tweets = pd.read_csv("tweets.csv")
         tweets.head()
         #Create a function that finds what candidate names occur in a piece of text.
         #Use the apply method on DataFrames to generate a new column called candidate that
         #contains what candidate(s) the tweet mentions.
         def get_candidate(row):
             candidates = []
             text = row["text"].lower()
             states = [ "Alabama", "Alaska", "Arizona", "Arkansas", "California", "Colorado",
             for state in states:
                 if state.lower() in text:
                     candidates.append(state)
             return ",".join(candidates)
         tweets["candidate"] = tweets.apply(get_candidate,axis=1)
```

```
#bar plot
print("Bar plot:")
counts = tweets["candidate"].value_counts()
plt.bar(range(len(counts)), counts)
plt.show()
print(counts)
```

Bar plot:

	219747
California	3027
Virginia,West Virginia	2158
Washington	1654
Nebraska	1271
Virginia	1249
Ohio	1110
Nebraska, Virginia, West Virginia	828
New Mexico	592
Florida	551
Florida,Ohio,Pennsylvania	483
Nebraska, Virginia	423
New York	420
Pennsylvania	362
Texas	306

Alaska Oregon Iowa Kentucky Louisiana Indiana Utah Maine New Jersey Virginia, Washington, West Virginia Arizona Georgia Florida, Ohio Wisconsin	227 216 194 178 151 136 130 115 113 104 85 72 71 69
Vermont	60
Nebraska, Texas, Virginia, West Virginia Kentucky, Ohio Alaska, Virginia, West Virginia Nebraska, Wyoming Florida, Washington Pennsylvania, Texas California, Kentucky, Nebraska, Virginia Kansas, Oklahoma, Texas Montana, Oregon New York, Ohio	1 1 1 1 1 1 1 1
California, New Jersey, Oregon, Virginia, West Virginia	1
Florida, Michigan, Ohio, Pennsylvania	1
Colorado, Nevada	1
California,Ohio Iowa,Virginia,Washington,West Virginia	1 1
Idaho, Utah, Wyoming	1
Maryland, Utah	1
Florida, New York, Ohio	1
Nebraska, Texas	1
Ohio, Virginia	1
Massachusetts, Michigan California, Michigan	1
Georgia, Mississippi, Utah	1
Pennsylvania, Virginia, West Virginia	1
California, Georgia	1
California, Montana, Oregon	1
Arizona, Ohio	1
Iowa, Ohio	1
California, New York, Pennsylvania Arizona, Georgia, Mississippi, North Carolina	1
Name: candidate, Length: 172, dtype: int64	1

1.a) WE HAVE:
$$Z \sim N(\mu g^2)$$
, Z IS A UNIVARIATE GLAUSSIAN.

 $Z_{avg} = \sum_{i=1}^{N} Z_i$. TO FIND HOW CLOSE Z_{avg} IS TO μ , WESET

 $N = 10,000$, $\mu = \emptyset$, $\sigma^2 = 1$. CLT SAYS $P(z_{avg} > 1) = P(z_{avg} >$