

Examine this Equality of Variances table. If your alpha is 0.05, do you have sufficient evidence to reject the assumption of equal variances?

Equality of Variances				
Method	Num DF	Den DF	F Value	Pr > F
Folded F	39	39	1.45	0.2460

- a. yes
- ø b. no

Check My Answer

Correct.

The *p*-value of 0.2460 is greater than your alpha, so you would fail to reject the null hypothesis and proceed as if the variances are equal.

3 0 C

Which type of modeling has the following characteristics?

- answers the question "How X is related to Y?"
- · has small sample sizes and few variables
- is assessed using *p*-values and confidence intervals
- a. explanatory modeling
- b. predictive modeling

Check My Answer

Correct.

In explanatory modeling, the goal is answer the question, "How is X related to Y?" You typically have small sample sizes and few variables, and you assess the model using *p*-values and confidence intervals.

A 95% confidence interval for SAT scores is (1157.90, 1223.35). What can you conclude from this information?

- a. The true average SAT score is significantly different from 1200.
- b. The true average SAT score is not significantly different from 1200.
- c. The true average SAT score is less than 1200.
- d. None of the above. You cannot determine statistical significance from confidence intervals.

Check My Answer

Correct.

The interval 1157 to 1223 contains 1200. If your interval contains the targeted value, the true average score is not significantly different.

What is the null hypothesis for a one-sample *t* test? Select all that apply.

- a. H₀: µ=µ₀
- b. H₀: μ₀₌₀
- c. H₀: μ-μ₀=0
- \blacksquare d. H₀: μ_0 -0=0

Check My Answer

Correct

A one-sample t test compares the mean calculated from a sample to a hypothesized mean. The null hypothesis of the test is generally that the difference between the two means is 0. This can be stated as $\mu = \mu_0$ or $\mu - \mu_0 = 0$.