1°. (1 point) Let Sym_n and $Skew_n$ be the spaces of $n \times n$ symmetric and skew-symmetric matrices respectively. Prove that $Mat_n(\mathbb{R}) = Sym_n \oplus Skew_n$ and for any matrix $A \in Mat_n(\mathbb{R})$ find formulas for $pr_{Sym_n}(A)$, $pr_{Skew_n}(A)$.

Clearly, the dim $(Mat_n(R)) = n^2$, as we need n^2 matrices with a single 1 and 0 everywhere else. Skew-symmetric matrices have elements on one side with respect to the diagonal, so the $\dim(Skew_n(R)) = (n^2-n)$, where we subtract n to account for the diagonal. The same works for symmetric matrices, but with $+n: \frac{n^2+n}{2} = dim(Sym_n(R))$ dim (Mat, (R)) = dim (Sken, (R))+dim (Sym, (R)) $n^2 = \frac{n^2 - n}{2} + \frac{n^2 + n}{2}$ $h^2 = h^2 + h^2$ n2 = n2 => the sum is direct, there's no inter-section. As any square matrix can be expressed as:

2°. (1 point) Let $\mathbb{R}^{\mathbb{R}}$ be the vector space of all functions $f:\mathbb{R}^{\mathbb{R}}\to\mathbb{R}$ and $\mathbb{A}=\{f\in\mathbb{R}^{\mathbb{R}}\mid f(-x)=f(x)\},$ $\mathbb{B} = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f(-x) = -f(x) \}$ be the subspaces of even and odd functions.

(a) Prove that $\mathbb{R}^{\mathbb{R}} = \mathbb{A} \oplus \mathbb{B}$ (b) compute $pr_{\mathbb{A}}(e^x)$, $pr_{\mathbb{A}}(e^x)$ and sketch their graphs.

a) def of even function: F(x) = F(x)

def of odd function: -f(x) = f(-x)

Hence, $\frac{f(x)-f(-x)}{2}$ is odd. $\frac{f(-x)+f(x)}{2}$ is even

Also, $f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}$

Thus, 12 = AOB

b) From (a) any f(x) can be written as:

 $e^{x} = \frac{e^{x} + e^{-x}}{2} + \frac{e^{x} - e^{-x}}{2} = \cosh x + \sinh x$ $e^{x} = \frac{e^{x} + e^{-x}}{2} + \frac{e^{x} - e^{-x}}{2} = \cosh x + \sinh x$ $e^{x} = \frac{e^{x} + e^{-x}}{2} + \frac{e^{x} - e^{-x}}{2} = \cosh x + \sinh x$ $e^{x} = \frac{e^{x} + e^{-x}}{2} + \frac{e^{x} - e^{-x}}{2} = \cosh x + \sinh x$ $e^{x} = \frac{e^{x} + e^{-x}}{2} + \frac{e^{x} - e^{-x}}{2} = \cosh x + \sinh x$ $e^{x} = \frac{e^{x} + e^{-x}}{2} + \frac{e^{x} - e^{-x}}{2} = \cosh x + \sinh x$ $e^{x} = \frac{e^{x} + e^{-x}}{2} + \frac{e^{x} - e^{-x}}{2} = \cosh x + \sinh x$ $e^{x} = \frac{e^{x} + e^{-x}}{2} + \frac{e^{x} - e^{-x}}{2} = \cosh x + \sinh x$ $e^{x} = \frac{e^{x} + e^{-x}}{2} + \frac{e^{x} - e^{-x}}{2} = \cosh x + \sinh x$ $e^{x} = \frac{e^{x} + e^{-x}}{2} + \frac{e^{x} - e^{-x}}{2} = \cosh x + \sinh x$

3. (2 + 0.5 + 0.5 points) Let
$$A = \begin{bmatrix} 2 & -1 & 0 & -1 & 0 & 2 \\ -4 & -7 & 0 & -5 & 0 & -2 \\ 0 & 1 & 2 & 1 & 0 & -2 \\ 4 & 11 & 0 & 9 & 0 & 2 \\ 4 & 3 & -8 & 3 & -2 & 6 \\ 0 & 0 & 0 & 0 & 0 & -2 \end{bmatrix}$$
. For $\lambda \in \mathbb{R}$ let $\mathbb{V}_{\lambda} = \{v \in \mathbb{R}^6 \mid Av = \lambda v\}$.

(a) For each $\lambda \in \{2, -2, 4\}$ find a basis in \mathbb{V}_{λ} ;

 $\textit{Hint: } Av = \lambda v \Rightarrow (A - \lambda \cdot I_6)v = 0 \text{ so you just need to find a basis in the space of general solutions of } (A - \lambda \cdot I_6)v = 0;$

(b) Prove that $\mathbb{R}^6 = \mathbb{V}_{-2} \oplus \mathbb{V}_2 \oplus \mathbb{V}_4$

Hint: use the criterion that involves dimension, it's a one line exercise after (a) is solved;

(c) For each $\lambda \in \{2, -2, 4\}$ find $pr_{\mathbb{V}_{\lambda}}(x)$ for $x = [1, 2, 3, 4, 5, 6]^T$.

							_	,		_	_																			
α)	+ c	r	λ	=	2.	Γ	<i>(f</i>	+-	2	· <u>]</u>	6/	V																		
	0 -1	6) -1	0	2																									
	-4 - 5) (7 - 5	ି ପ	-2																									
_	0 1	C	1	0	-2		V	= 1	0																					
	4 11	0	8 3 C	0	2																									
	Ч ?	۶ -	83	-4	6																						NI Z			
	00	0) C	0	-4																						V	2		
																				_							11			
	0 -1	0	-1 -5 1	0	2	0					1	0	Đ	-1	D	0	0		\	4		В				0		1		
	-4-9	0	-5	ପ	-2	0) h -			0	1	0	1	Ó	0	0		\	જ		- B				0		-1		
	0 1	0	1 4 3 0	0	-2	0	<i> </i> *	RE	F		0	<i>O</i>	1000	-1	1	0	0 0 0 0 0	=	> ×	(N (-	1 8 - B	<u>ځ</u>	٨	<	-딏 0	,	1 2	>	
	4 11	0	7	0	2	0	j		$\overline{}$		0	Ø	D	D	O	1	٥		נ	(₄		В				0	Ĺ	1		
	4 3	-{	3	-4	6	0					0	0	0	0	0	0	0		\	5	-	L				1		0		
	00	0	0	0	-4	0					0	0	0	0	0	0	O]		Ļ×	ွေ		0				0		0		
	$\lambda =$	-	2!																							W.	2			
	-			_						<u>.</u>	r						_		-	-	_		-			"				
	9-1	0	-1	0	2	0					1	Ð		0	0	1/2			1	7		-1	φ		0		0		12 0120	
	-4 -5 0 1	0	-5	D	-2	0		RR	F	_	0	1	0	1	0	0	0		>	٤		- 0 1 2 1	L		-1		0		0	
	0 1	4	1	0	-2	0		\r\r			0		1	0	0	-1/2	6	$\stackrel{\sim}{\sim}$	> >	4	=	1	φ	(0	1	D	1	1 2	>
	4 11 4 3	0	11	0	2	0			_		0	0	0	0	D	O	O		×	() () () () () () () () () ()		۲			1		0			
	4 3	-{	3	0	6	0					0	0	D	0	0	0	0		'	'٢		в			0		1		0	
	00	0	-5 1 11 3 0	0	0	0]					0	0	D	O	0	D	0		1,	[٤	L	Ý	_		0		0		1	
	1 =																									W.	4			
					_	١					_						, ,			7	_		4		_	"				_
	-2-1	0	-1	0	2	0						0	0		-1		0		>	4		2			1					
	-4 -11	0	-5	D	-2	0		RR	E <i>F</i>	_	0	1	0	D	-1	0	0		X	رکا	\perp	7			1					
	-4 -11 0 1 4 11 4 3 0 0	-2	1	0	-2	0	<u>.</u>	' ' '		>	0	100	0	0	13	0	0	->	, x	(g)	>	-1		(-1	>				
	4 11	0	5	0	2	0					0	0	0	1	3	0	0		/	۲,	_	32			-3					
	4 3	-{	3	-6	6	0					0	O	0	0	0	1	0		×	·-		L			1					
	[0 0	0	0	0	-ر	0					0	0	Đ	0	D	D	[0]		\z	اع	↓	0			0					

b)
$$\dim(\mathbb{R}^{6}) = \dim(\mathbb{V}_{2}) + \dim(\mathbb{V}_{2}) + \dim(\mathbb{V}_{4})$$
 $6 = 2 + 3 + 1$
 $6 = 6$

C) $\left\{e^{f} \le \text{ Cake } V_{2} \oplus V_{2} \oplus V_{4} \text{ as Jasis For } \mathbb{R}^{6}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{2} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{2} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{2} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{2} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{2} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{2} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{2} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{2} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{2} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{2} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{2} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{2} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{2} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{2} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{2} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{2} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{4} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{4} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{4} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{4} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{4} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{4} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{4} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{4} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{4} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{4} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{4} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{4} \oplus V_{4}}\right\}$
 $\left\{e^{f} \le \text{ Find } [X]_{U_{2} \oplus V_{4$

4°. (1 point) Let $\mathbb{U} = \{f(x) \in \mathbb{R}[x, 100] \mid f(5) = 0\}$. Find a direct complement of \mathbb{U} . *Hint:* if you use one of the seminar problems it becomes a one-line exercise.

Let
$$V = \mathcal{E}f(x) \in \mathcal{R}[x, 100]$$
.

 $U = \langle (x-5), (x-5)x \dots (x-5)x^{9} \rangle$.

A direct compliment would be just some constant, e.g. $1 \Rightarrow V = \langle 1 \rangle$
 $R[x, 100] = U \oplus V$

5. (1 + 1 point) Let $D = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$, i.e. for example $Dx^2 = 2x^2$ or $Dx^2y = 2x^2y + x^2y$ and so on.

(a) Show that for some $f(x,y) \in \mathbb{R}[x,y;3]$ we have $Df(x,y) = \lambda f(x,y)$ and find all possible values of such λ ;

(b) Let $\mathbb{V}_{\lambda} = \{f(x,y) \in \mathbb{R}[x,y;3] \mid Df(x,y) = \lambda f(x,y)\}$. For all possible values λ found in (a) compute dim \mathbb{V}_{λ} ;

(c) Prove that $\mathbb{R}[x,y;3] = \mathbb{V}_{\lambda_1} \oplus \mathbb{V}_{\lambda_2} \oplus \ldots \oplus \mathbb{V}_{\lambda_k}$, where $\lambda_1,\ldots,\lambda_k$ are the values found in (a).

a) Consider different cases:

$$D(x,y^{\circ}) = 0 \Rightarrow \lambda = 0$$

$$D(x,y^{\circ}) = x \Rightarrow \lambda = 1$$

$$D(x^3, y^0) = 3x^3 \Rightarrow \lambda = 3$$

$$D(x,y) = xy + xy = 2xy \Rightarrow \lambda = 2$$

$$D(x^2, y) = 3x^2y = > \lambda = 3$$

From this,
$$\lambda = deg(x,y) \in \{0,1,2,3\}$$

$$V_t = \langle x, y \rangle$$

$$V_2 = \langle x^2, y^2, xy \rangle$$

$$V_3 = \langle x^3, y^3, x^2y, xy^2 \rangle$$

6°. (2 points) For each $\lambda \in \mathbb{R}$ compute the rank of the following matrix.

$$A = \begin{bmatrix} 1 & 2 & \lambda \\ -1 & 1 & -3 \\ 1 & -3 & 1 \end{bmatrix}$$

In this problem using a computer is not allowed because of the parameter. You need to show steps.

Hint: The above theorem allows you to use not only row but also column operations.

