Adopted Levels, Gammas

	History		
Type	Author	Citation	Literature Cutoff Date
Update	J. H. Kelley, J. L. Godwin, C. G. Sheu	ENSDF	31-Mar-2004

 $Q(\beta^-)$ =-17979.9 *10*; S(n)=18898.64 *8*; S(p)=17254.40 *4*; $Q(\alpha)$ =91.84 *4* **2012Wa38** Note: Current evaluation has used the following Q record. $Q(\beta^-)$ =-17979.8 *10*; S(n)=18899.68 *12*; S(p)=17255.44 *9*; $Q(\alpha)$ =91.84 *4* **2003Au02**

 $Q(\beta^-)$ =-17979.8 *10*; S(n)=18899.68 *12*; S(p)=17255.44 9; $Q(\alpha)$ =91.84 4 2003Au02 See also table 8.10: electromagnetic transitions in ⁸Be (2004Ti06) and reaction: ⁴He(α , α).

⁸Be Levels

Cross Reference (XREF) Flags

		G 6 Li(d, α), H 6 Li(t,n) I 6 Li(3 He,	ecay M) N) O	7Li(p,n) 7Li(p,p), 7Li(p,p) 7Li(p,p), 7Li(p,p) 7Li(p, α) 7Li(d,n) 7Li(3 He,d), 7Li(7 Li(4 Ct), 7 Li(7 Li, 6 He) 7Be(n,p) 9Be(p,d), 9Be(p.	Z 10 B(d, α) Others: 3 He,d α) AA 11 B(3 He, 6 Li) AB 12 C(d, 6 Li) AC 12 C(3 He, 7 Be) AD 12 C(α ,2 α), 12 C(α , 8 Be)
E(level)	J^{π}	T _{1/2}		XREF	Comments
0.0	0+	5.57 eV 25	ABCDE HIJI		XREF: Others: AA, AB, AC, AD, AE, AF $\%\alpha$ =100 T=0 Γ : from 4 He(α , α)(1992Wa09). Previous value Γ =6.8 eV 17 (1968Be02). Other value Γ =5.5 eV 13 9 Be(p,d).
3030 10	2+	1513 keV <i>15</i>	ABCDE HIJI	KL PQRS UVW YZ	XREF: Others: AA, AB, AC, AD, AF $\%\alpha \approx 100$ T=0 E(level): see 2004Ti06 table 8.11.
11.35×10 ³ 15	4+	≈3.5 MeV	CD JI	C PR UVW Z	XREF: Others: AB, AC, AD $\%\alpha\approx100$ T=0 E(level): values in the literature are 11.4 MeV 3^{4} He(α , α) (1959Br71), 11.7 MeV 4^{4} He(α , α) (1974Ch45), 11.3 MeV 4^{6} Li(α ,d) (1962Ce01), 11.3 MeV 2^{7} Li(d,n)(1995Ar25), 11.40 MeV 5^{7} Li(d,n) (1969Ho11) and 11.3 MeV 3^{9} Be(p,d) (1969Su02), Γ : values found in the literature are 4.0 MeV 4^{4} He(α , α) (1974Ch45), \approx 4.3 MeV 4^{4} He(α , α) (1967Ke10), 3.7 MeV 2^{7} Li(d,n)(1995Ar25), 2.8 MeV 2^{7} Li(d,n) (1995Ar25), 2.8 MeV 2^{7} Li(d,n) (1969Ho11). 5.2 MeV 2^{9} Be(p,d) (1981Be53) \approx 2.6 MeV 2^{9} Be(2^{9} He, 2^{9} Clare (1966Ca13,1967Ca13) and 2^{9} Algerthank MeV 2^{9} Li(2^{9} Li(2^{9} Clare (1966Ca13,1968Lo01).

Adopted Levels, Gammas (continued)

⁸Be Levels (continued)

E(level)	J^{π}	$T_{1/2}$		XREF			Comments
16626 3	2+	108.1 keV 5	BCD H	I KL PQ	R UVW	YZ	XREF: Others: AA, AB, AC %IT<2.65×10 ⁻³ ; %α≈100 T=0&1 E(level): from weighted average of E=16627 keV 5 7 Li(3 He,d), 16623 keV 3 4He(4 α,α) and 16630 keV 3 4He(4 α,α). Γ: from weighted average of Γ=113 keV 3 7Li(3 He,d), 90 keV 5 10 B(d,α), 107.7 keV 5 4 He(4 α,α)
16922 3	2+	74.0 keV <i>4</i>	CD H	I KL PQ	R UVW	YZ	and 108.5 keV 5 4 He(α , α). XREF: Others: AA, AB, AC 8 IT<3.89×10 $^{-3}$; % α ≈100 T=0&1 E(level): from weighted average of E=16901 keV 5 7 Li(3 He,d), 16925 keV 3 4 He(α , α) and 16918 keV 3 4 He(α , α). 7 Li(3 He,d), 70 keV 5 10 B(d, α), 74.4 keV 4 4 He(α , α) and 73.6 keV 4 4 He(α , α).
17640.0 <i>10</i>	1+	10.7 keV 5	E	I L N PQ	UVW	Z	and 73.6 keV 4 He(α , α). XREF: Others: AA, AC %IT=0.204; %p=99.8 T=1 E(level): from 7 Li(p, γ). Γ : from 7 Li(p, γ).
18150 4	1+	138 keV 6		I L N PQ	UV	Z	XREF: Others: AA %IT=4.6×10 ⁻³ ; %p≈100 T=0 E(level): from weighted average of E=18155 keV 5 ⁷ Li(p,p' γ), 18150 keV 5 ¹⁰ B(d,α) and 18144 keV 5 ⁹ Be(d,t). Γ: from ¹⁰ B(d,α).
18910	2-	122 keV		I LMN P	T		7. Holin B(d, α). %IT=2.2×10 ⁻⁴ ; %n=?; %p=? Γ: from R-matrix fit to ⁷ Be(n,p), (n, α) and (n, $\alpha\gamma$) data. Other values are Γ =131 keV 44 ⁷ Li(p, γ), 50 keV 20 ⁷ Li(p,n) and 48 keV 18 ⁷ Li(p,p).
19069 <i>10</i>	3+	271 keV <i>15</i>		I LNP	UV		%IT=3.87×10 ⁻³ ; %p≈100 T=1 T: tentative. E(level): from weighted average of E=19060 keV 20 7 Li(p, γ) and 19071 keV 10 9 Be(d,t). Γ : from weighted average of Γ =271 keV 17 7 Li(p, γ) and 270 keV 30 9 Be(d,t).
19235 10	3+	227 keV <i>16</i>		MN P	TUVW	Z	Enp, y) and 270 keV 30 Be(d,t). XREF: Others: AE $%n≈50; %p≈50$ T=0 T: tentative. E(level): from weighted average of E=19220 keV 30 9 Be(3 He,α), 19260 keV 30 9 Be(d,t) and 19234 keV 12 Ag(14 N, 8 Be). Γ: from weighted average of Γ=208 keV 30 9 Be(p,d), 265 keV 30 9 Be(3 He,α), 220 keV 30 9 Be(d,t) and 210 keV 35 Ag(14 N, 8 Be). branching ratio from 7 Li(p,n).

Adopted Levels, Gammas (continued)

⁸Be Levels (continued)

E(level)	$_J^\pi$	T _{1/2}		XREF			Comments
19400	1-	≈645 keV		I MN	U		%n=?; %p=?
19860 <i>50</i>	4 ⁺	0.7 MeV <i>1</i>	D	IK O	RS VW	Z	Γ: from ${}^{7}\text{Li}(p,p),(p,p')$. %p=30; %α=70
19800 30	4	0.7 Ivie v 1	ע	IK U	KS VW	2	%p=50; %u=70 T=0
							$\Gamma \alpha / \Gamma_p = 2.3 \ 5^{10} B(d, 2\alpha),$
							10 B(d,p+ 7 Li)(1992Pu06). Other measurement
							$\Gamma \alpha / \Gamma = 0.96 \text{ from } ^4\text{He}(\alpha, \alpha).$
							E(level): from 9 Be(d,t). Γ : from 9 Be(d,t).
20100	2+	880 keV 20	D	MNOP	s v	Z	$% = \frac{1}{2} \left(\frac{1}{2} \right)^{2} \left(\frac{1}{2} \right)^{2$
20100	_	000 110 / 20	_			_	T=0
							$\Gamma \alpha / \Gamma_p = 4.5 \ 6^{10} B(d,\alpha), {}^{10} B(d,p) (1992 Pu 06).$
20200	0.4	50 0.1. 11.0 0	_			_	Γ : from 7 Li(d,n).
20200	0+	720 keV <i>20</i>	D	M P		Z	%α≈50; %n=? T=0
							Γ : from 7 Li(d,n).
							$\Gamma \alpha / \Gamma \approx 0.50^{-4} \text{He}(\alpha, \alpha).$
20.9×10^3	4-	1.6 MeV 2		N			%p=?
	.(1)						Γ : from 7 Li(p,p).
21.5×10^3	3 ⁽⁺⁾	1.1 MeV		LM	T	Z	%IT=?; %n=?; %p=?
22000 [†]	1-						Γ: from ⁷ Li(p,n).
22000	1	≈4 MeV		L			%IT=?; %p=? T=1
							Γ : from ⁷ Li(p, γ).
$22.05 \times 10^3 \ 10$		270 keV 70			U W		E(level): from ${}^{9}\text{Be}({}^{3}\text{He},\alpha)$.
							Γ : from ${}^{9}\mathrm{Be}({}^{3}\mathrm{He},\alpha)$.
$22.24 \times 10^3 \ 2$	2+	≈0.8 MeV	D G	MNO		Z	%n=?; %p=?; %d=?; %α=? T=0
							E(level): from 6 Li(d, α) (1997Cz01).
							Γ : from ⁶ Li(d, α) (1965Fr02).
$22.63 \times 10^3 10$		100 keV 50		K	W		E(level): from ${}^{9}\text{Be}({}^{3}\text{He},\alpha)$.
							Γ : from ${}^{9}\text{Be}({}^{3}\text{He},\alpha)$.
$22.98 \times 10^3 \ 10$		230 keV 50			W		E(level): from ${}^{9}\text{Be}({}^{3}\text{He},\alpha)$.
24000 [†]	(1.0)=	7.14.37				7	Γ : from 9 Be(3 He, α).
24000	$(1,2)^{-}$	≈7 MeV		L O		Z	%IT=?; %p=?; %α=? T=1
							Γ : from 7 Li(p, γ).
25200	2+		D G	0		Z	$%p=?; %d=?; %\alpha=?$
25500	4+		D C				T=0
25500	4		D G				$\%$ d=?; $\%\alpha$ =? T=0
							Γ: broad.
27494.1 <i>18</i>	0_{+}	5.5 keV 20	EFG		X		%IT=0.60; %n=39.4; %p=6.9; %d=27.0;
							$%^{3}$ H=11.7; $%^{3}$ He=6.6; $%\alpha$ =7.9
							T=2 E(level): from weighted average of
							E=27492.2 keV 26^{-10} B(p, 3 He) (1975Ro01)
							and 27495.8 keV 24 6 Li(d, γ) (1976No07).
							Γ : from ⁶ Li(d, γ). Other values are
							Γ =10 keV 3 ⁶ Li(d,p),(d,d),(d, α) (1969B114),

Adopted Levels, Gammas (continued)

⁸Be Levels (continued)

E(level)	T _{1/2}	XREF	Comments
			14.7 keV 40 4 He(α , α),(α ,p) (1976Hi04) and 12.3 keV 3 10 B(p, 3 He) (1975Ro01).
			E(level): for parameters of this state see (1979Fr04). However, the sum of the branching ratios given in (1979Fr04) greatly exceeds 100%.
28600?		L	%IT=?; %p=?
			Γ : broad.
32×10^3 ?	1 MeV		Z E(level): from 10 B(d, α) (1993Pa31).
			Γ : from 10 B(d, α) (1993Pa31).
$\approx 41 \times 10^3$?		G	

[†] Giant resonance: see reaction $^7\text{Li}(p,\gamma)$.

$\gamma(^{8}\text{Be})$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	\mathbf{E}_f J	$\frac{\pi}{f}$ Mult.	δ	Comments
3030	2+	3029	0.0 0	+ E2	·	Γ_{γ} : 8.3×10 ⁻³ eV (calculated in 1986La05).
11.35×10^3	4+	11350	0.0 0	+ E4		Γ_{γ} : 0.46×10 ⁻³ eV (calculated in 1986La05).
16626	2+	13580	3030 2	+ M1		Γ_{γ} <2.80 eV 18; B(M1)(W.u.)<5.3×10 ⁻² 3
		16607	0.0 0	+ E2		$\Gamma_{\gamma} = 7.0 \times 10^{-2} \text{ eV } 25; \text{ B(E2)(W.u.)} = 7.1 \times 10^{-2} 25$
16922	2+	13879	3030 2	+ M1		Γ_{γ} <2.80 eV 18; B(M1)(W.u.)<5.3×10 ⁻² 3
		16903	0.0 0	+ E2		$\Gamma_{\gamma} = 8.4 \times 10^{-2} \text{ eV } 14; \text{ B(E2)(W.u.)} = 7.8 \times 10^{-2} 13$
17640.0	1+	718	16922 2	+ M1		$\Gamma_{\gamma} = 1.3 \times 10^{-3} \text{ eV } 3; \text{ B(M1)(W.u.)} = 0.17 \text{ 4}$
		1014	16626 2	⁺ M1+E2	-0.014 <i>13</i>	$\Gamma_{\gamma} = 3.2 \times 10^{-2} \text{ eV } 3; \text{ B(M1)(W.u.)} = 1.5 2$
		14586	3030 2	⁺ M1+E2	0.21 4	$\Gamma_{\gamma} = 6.8 \text{ eV } 13; \text{ B(M1)(W.u.)} = 0.10 2;$
						B(E2)(W.u.)=0.23 10
		17619	0.0 0			Γ_{γ} =15.0 eV 18; B(M1)(W.u.)=0.13 2
18150	1+	1228	16922 2	+ M1		$\Gamma_{\gamma} = 6.2 \times 10^{-2} \text{ eV } 7; \text{ B(M1)(W.u.)} = 1.6 2$
		1524	16626 2	+ M1		$\Gamma_{\gamma} = 7.7 \times 10^{-2} \text{ eV } 19; \text{ B(M1)(W.u.)} = 1.0 3$
		15095	3030 2	+ M1		Γ_{γ} =4.3 eV 12; B(M1)(W.u.)=5.9×10 ⁻² 17
		18128	0.0	+ M1		Γ_{γ} =1.9 eV 4; B(M1)(W.u.)=1.5×10 ⁻² 3
18910	2^{-}	1988	16922 2	+ E1		$\Gamma_{\gamma} = 9.9 \times 10^{-2} \text{ eV } 43; \text{ B(E1)(W.u.)} = 4.6 \times 10^{-2} 20$
		2284	16626 2	+ E1		Γ_{γ} =0.17 eV 7; B(E1)(W.u.)=5.3×10 ⁻² 20
19069	3+	16013	3030 2	+ M1		$\Gamma_{\gamma} = 10.5 \text{ eV}; \text{ B(M1)(W.u.)} = 0.122$
27494.1	0_{+}	9847.6	17640.0 1	+ M1		Γ_{γ} =21.9 eV 39; B(M1)(W.u.)=1.10 20
						Γ_{γ} : from (1979Fr04). Revised from Γ_{γ} =24 eV 3
						(1976No07).

 $^{^{\}dagger}$ From E(level) difference; recoil correction applied.

Adopted Levels, Gammas

Level Scheme

⁸Li β^- decay 1986Wa01,1989Ba31

Type Author Citation Literature Cutoff Date
Update J. H. Kelley, J. L. Godwin, C. G. Sheu ENSDF 31-Mar-2004

Parent: ⁸Li: E=0.; $J^{\pi}=2^+$; $T_{1/2}=839.9$ ms 9; $Q(\beta^-)=16005.16$ 10; $\%\beta^-$ decay=100.0

1960Fa04: 8 Li(β^{-}). Deduced nuclear properties.

1960Gr10: 8 Li(β^{-}), deduced nuclear properties.

1960No01: ${}^{8}\text{Li}(\beta^{-})$, deduced nuclear properties.

1960No05: ${}^{8}\text{Li}(\beta^{-})$, deduced nuclear properties.

1970Sc34: 8 Li(β^-), measured β -delayed α -spectrum. 8 Be deduced level.

1971Wi05: 8 Li(β^{-}), measured delayed α spectra, $T_{1/2}$. Deduced no second-class current contribution.

1974Tr01: ${}^{8}\text{Li}(\beta^{-})$, measured Ba(θ).

1980Mc07: ${}^{8}\text{Li}(\beta^{-})$, measured Ba(θ). Deduced final state energy dependence.

1982Fi03: 8 Li(β^{-}), measured β -delayed E_{α} , I_{α} .

1984La27: 8 Li(β^{-}), measured charge particle spectra following β -decay. Deduced evidence for β -delayed triton emission.

1986Wa01: $^8\text{Li}(\beta^-)$, analyzed β -delayed breakup α -spectra. ^8Be deduced level, Γ , Gamow-Teller matrix elements. R-matrix.

1988Ha21: ${}^8\text{Li}(\beta^-)$, measured β -decay asymmetry vs $\text{E}(\beta)$. Deduced no second class current evidence.

1989Ba31: ${}^{8}\text{Li}(\beta^{-})$; calculated α -spectra. ${}^{8}\text{Be}$ deduce possible broad intruder state. Many-level R-matrix fit.

1992De07: 8 Li(β^{-}). Deduced BaALPHA-correlation measurement procedure.

1993Mo28: 8 Li(β ⁻), measured β -decay end point energy.

1996Eb01: 8 Li(β^{-}), measured β -decay count rate asymmetry.

2002Bh03: 8 Li(β^{-}), analyzed β -delayed E_{α}. 8 Be deduced R-matrix parameters.

2003Hu06: 8 Li(β^{-}), measured β -decay asymmetry from polarized source, electrons transverse polarization. Deduced time reversal violating triple correlation parameter, scalar leptoquark mass limit.

⁸Be Levels

E(level) $J^{\pi^{\dagger}}$ $T_{1/2}^{\dagger}$ Comments $0.0 \quad 0^{+}$ 5.57 eV 25 $3030 \ 10 \quad 2^{+}$ 1513 keV 15 $\%\alpha = 100$

β^- radiations

E(decay) E(level) $I\beta^{-\uparrow}$ Log ft Comments

(12975 10) 3030 ≈100 ≥5.37 av $E\beta$ =6248 5 log ft=5.37 from (1986Wa01). Other value in the literature is log ft=5.72 (1989Ba31). Because broad levels of 8 Be participate in the β -decay, it is necessary to make detailed computations to determine the log ft value.

[†] From Adopted Levels.

[†] Absolute intensity per 100 decays.

8 B β^{+} decay 1989Ba31,1969Ba43

Type Author Citation Literature Cutoff Date
Update J. H. Kelley, J. L. Godwin, C. G. Sheu ENSDF 31-Mar-2004

Parent: ⁸B: E=0.0; $J^{\pi}=2^{+}$; $T_{1/2}=770$ ms 3; $Q(\beta^{+})=17979.8$ 10; $\%\beta^{+}$ decay=100.0

1986Wa01: 8 B($β^+$), analyzed β-delayed breakup α-spectra. Deduced intruder states role.

1989Ba31: ${}^8B(\beta^+)$; calculated α -spectra. 8Be deduce possible broad intruder state. Many-level R-matrix fit.

1993Ch06: ${}^8B(\beta^+)$, analyzed Gamow-Teller β -decay data. Deduced log ft, β -decay matrix elements.

2000Or04: 8 B(EC), measured β-delayed α spectrum. Deduced neutrino spectrum. Implications for solar neutrino measurements discussed.

2002Bh03: 8 B(EC), analyzed β-delayed $E_α$.

2003Wi11: 8 B($β^{+}$), (EC), measured β-delayed $E_{α}$.

2003Wi16: ${}^8B(\beta+\alpha)$, measured β -delayed E_{α} , I_{α} , β - α -coin. Deduced neutrino spectrum.

⁸Be Levels

E(level) $J^{\pi \dagger}$ $T_{1/2}^{\dagger}$ Comments

0.0 0⁺ 5.57 eV 25
3030 10 2⁺ 1513 keV 15 %α=100
16626 3 2⁺

ε, β^+ radiations

E(decay)	E(level)	$I\beta^{+\dagger}$	$1\varepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
(1354 3)	16626	<12	< 0.45	>3.3	<12	av E β =123.9 13; ε K=0.0356 11; ε L=0.00149 5
(14950 10)	3030	>88		<5.6	>88	log ft from (1969Ba43). av E β =6732 5 log ft =5.77 from (1989Ba31). Because broad levels of ⁸ Be participate in the β -decay, it is necessary to make detailed
						computations to determine the $\log ft$ value.

[†] Absolute intensity per 100 decays.

[†] From Adopted Levels.

9 C β⁺p decay 1988Mi03,2000Ge09,2001Be51

Type Author Citation Literature Cutoff Date
Update J. Kelley 26-Feb-2013

Parent: ${}^{9}\text{C}$: E=0; J^{π}=(3/2⁻); T_{1/2}=126.5 ms 9; Q(β ⁺p)=16680.3 25; % β ⁺p decay=62.0 19 ${}^{9}\text{C}$ -O(β ⁺p): from 2012Wa38.

1988Mi03: Implanted 9 C into a thick Si detector and measured the total β -delayed breakup energy; deduced β -decay feeding to low-lying states. They missed several higherlying states that are fed and did not directly distinguish delayed p vs. α emission.

2000Ge09: ⁹C from the TRIUMF/TISOL facility was implanted in a thin carbon foil. Data were taken in two detector configurations; one configuration was sensitive to decay through the p+⁸Be_{g.s.} decay mode while the other configuration was sensitive to the α+⁵Li_{g.s.} and p+⁸Be*(3.0) decay channels. Breakup particles from ⁹C -> ⁸Be+p -> 2α+p and ⁹C -> ⁵Li+α -> 2α+p were detected either in an array of 4 ΔΕ-E telescopes configured with two segmented Si annular detectors or with a similar array 2 ΔΕ-E telescopes configured with two doublesided position sensitive Si strip detectors and a plastic scintillator to count β-particles. Detector sensitivities and coincidence efficiencies were evaluated by Monte Carlo techniques, and a phenomenological approach was used to deduce the β-decay reaction branching ratios.

2001Be51: At the CERN/ISOLDE facility, doublesided strip detectors (DSSD) were coupled with thick stopping detectors to provide high-granularity and large solid angle coverage for detecting decay particles. Emphasis was placed on characterizing population and decay of the≈14.65 MeV IAS. Furthermore a thin ΔE DSSD was implemented to avoid threshold (efficiency) concerns that troubled (2000Ge09). Lastly, the experimenters evaluated the decay branching ratios for the ¹²B*(12.2) state. Little comment is given on other populated levels.

2001Bu05: The authors of (2000Ge09) give a more rigorous alternate interpretation of their data in a full R-matrix analysis. There is a poor agreement between deduced level energies and accepted energy values.

Comments:

Four relevant articles are given that discuss three different experimental efforts. Agreement is relatively mixed.

The experiments that are most sensitive to decay to ${}^9B_{g.s.}$ find the largest feeding to that state, we take (54.1 15)% from (2001Be51). Data from TRIUMF produced the most comprehensive set of populated levels, though they are analyzed via two different methods in (2000Ge09) and (2001Bu05) yielding somewhat different results, due in part to differences in the ${}^9B_{g.s.}$ branch and subsequent renormalization. Lastly are the states above 14 MeV, (2000Ge09) reports only ${}^9B^*(14.0: J^{\pi}=?)$ which decays mainly via proton emission, while (2001Be51) reports population of ${}^9B^*(14.6: J^{\pi}=3/2^-)$ which decays about evenly via p and α emission. On the other hand the analysis of (2001Bu05) reports population of both levels. Finally, in (2000Ge09, 2001Bu05) a previously unknown 9B level at E_x =13.3 MeV is reported.

The 9B ground state feeding from (2001Be51) is accepted here; the branching ratios from (2000Ge09) including the mostly α background component are then renormalized (\times 0.864). The branches feeding both of the E_x =14.0 and 14.6 MeV states are accepted, though it may be that only one level was populated. The particle breakup branching ratios for $^9B*(12.2)$ are accepted from (2001Be51). And lastly, the weak branch to $^9B*(13.3)$ is included with some uncertainty.

$$\frac{\text{E(level)}^{\dagger}}{0.0} \quad \frac{\text{J}^{\pi \dagger}}{0^{+}} \quad \frac{\Gamma^{\dagger}}{5.57 \text{ eV } 25} \\
3030 \quad 10 \quad 2^{+} \quad 1513 \text{ keV } 15$$

[†] From Adopted dataset for ⁸Be in ENSDF database.

${}^{9}\text{C}\,\beta^{+}\text{p decay}$ 1988Mi03,2000Ge09,2001Be51 (continued)

Delayed Protons (⁸Be)

E(p)	E(8Be)	I(p)	E(9B)
165.18 <i>81</i>	0.0	54.1 15	0
2249.6 98	0.0	0.156 17	2345
$2.64 \times 10^3 14$	0.0	5.19 52	2780
8281 <i>37</i>	3030	1.47 44	12160
10499 <i>24</i>	3030	0.0033	14655
10974 36	0.0	0.53 8	12160
11987 89	0.0	0.0017 3	13300 ?
12619 <i>62</i>	0.0	0.164 17	14010
13192 22	0.0	0.0011	14655

9 C β^{+} p decay 1988Mi03,2000Ge09,2001Be51

Decay Scheme

I(p) Intensities: Relative I(p)

4 **He** (α, γ) 2004Ti06

	History		
Type	Author	Citation	Literature Cutoff Date
Update	J. H. Kelley, J. L. Godwin, C. G. Sheu	ENSDF	31-Mar-2004

1975Na12: $^4\text{He}(\alpha,\gamma)$ E=33-38 MeV, measured $\sigma(\text{E,E}_{\gamma})$. ^8Be levels deduced M1 Γ .

1977Pa26: ${}^{4}\text{He}(\alpha,\gamma)$ E=33.4-35 MeV, measured E_{γ}, I_{γ} (E) ${}^{8}\text{Be}$ level deduced Γ_{γ} .

1978Bo30: ${}^4\text{He}(\alpha,\gamma)$ E=32-36 MeV, measured $\sigma(\text{E},\theta)$. ${}^8\text{Be}$ resonances deduced radiative widths, δ . 1979LoZU: ${}^4\text{He}(\alpha,\gamma)$ E not given, measured $\sigma(\text{E}_{\gamma},\theta)$. ${}^8\text{Be}$ levels deduced Γ_{γ} for T=1, M1 transition.

1994De30: 4 He(α , γ) E≈resonance, measured $\gamma(\theta$,E). 8 Be deduced resonances δ , mixing parameter, $\Gamma(M1)$, $\Gamma(E2)$.

1995De18: ${}^4\text{He}(\alpha, \gamma)$ E=33-34.7 MeV, measured γ yield vs. E, I_{γ} (THETA). ${}^8\text{Be}$ deduced doublet decay features, δ (E2/M1), Γ_{γ} ,

2001HaZZ: ${}^{4}\text{He}(\alpha, \gamma)$ E=33-35 MeV, measured $\sigma(\theta)$.

⁸Be Levels

E(level)			Comments		
0.0 $3.18 \times 10^3 5$					
11.4×10^3					
16.6×10^3	unresolved.				
16.9×10^3	unresolved.				

γ (8Be)

\mathbb{E}_{γ}	$E_i(level)$	\mathbf{E}_f	Comments
3.18×10^3	3.18×10^3	0.0	Γ_{γ} : 8.3×10 ⁻³ eV (calculated in 1986La05).
11.4×10^3	11.4×10^3	0.0	Γ_{γ} : 0.46×10 ⁻³ eV (calculated in 1986La05).
16.6×10^3	16.6×10^3	0.0	$\Gamma_{\gamma 0} = 7.0 \times 10^{-2} \text{ eV } 25$
			Γ_{γ} : from (1995De18).
16.9×10^3	16.9×10^3	0.0	$\Gamma_{\gamma 0} = 8.4 \times 10^{-2} \text{ eV } 14$
			Γ_{γ} : from (1995De18).

⁴He(α,γ) **2004Ti06**

Level Scheme

⁴He(α , α) **2004Ti06**

Type Author Citation Literature Cutoff Date Update J. H. Kelley, J. L. Godwin, C. G. Sheu ENSDF 31-Mar-2004

1968Be02: ${}^4\text{He}(\alpha,\alpha)$ E_α=182.2-191.5 keV, measured σ (E_α). ${}^8\text{Be}$ deduced Q, Γ-level.

1972Ba83: 4 He(α,α) E=30-70 MeV, measured σ (E, θ). Deduced phase shifts. 8 Be deduced levels, J, π .

1974Ch45: ${}^4\text{He}(\alpha,\alpha)$ E=18.00-29.50 MeV, measured $\sigma(E,\theta)$. Deduced phase shifts L=0, 2, 4, 6.

1976Fo03: 4 He(α,α) E=650, 850 MeV, measured $\sigma(\theta)$.

1976Hi04: ${}^{4}\text{He}(\alpha,\alpha)$ E=54.96-55.54 MeV, measured $\sigma(E,\theta)$. ${}^{8}\text{Be}$ deduced resonance parameters.

1978Hi04: ${}^{4}\text{He}(\alpha,\alpha)$ E=32.6-35.4 MeV, measured $\sigma(E,\theta)$. ${}^{8}\text{Be}$ deduced resonance parameters.

1978Na16: ${}^{4}\text{He}(\alpha,\alpha)$ E=158.2 MeV, measured $\sigma(\theta)$.

1980Be14: 4 He(α,α) E at 4.32, 5.07 GeV/c, measured $\sigma(\theta)$.

1980Ma30: ${}^{4}\text{He}(\alpha,\alpha)$ E=0.5-70 MeV, analyzed phase shift data.

1985Bo35: 4 He(α , α) E=12.3, 29.5, analyzed phase shift data. Deduced parameter zero position dependent resonance location.

1992Go21: 4 He(α,α) E_{CM} =11.39 MeV, measured $\sigma(\theta)$.

1992Wu09: 4 He(α , α) E≈threshold, measured relative yield. Deduced 8 Be resonance splitting mechanism.

1994Co16: ${}^{4}\text{He}(\alpha,\alpha)$ E=197 MeV, measured $\sigma(\theta)$. DWIA analysis.

1994Mo27: ${}^{4}\text{He}(\alpha,\alpha)$ E \approx 7-35 MeV, analyzed $\sigma(\theta)$. Deduced model potential parameters.

1995Yi01: 4 He(α,α) E=0-25 MeV, analyzed phase shifts vs. E. Deduced R-matrix parameters.

1996Ku08: 4 He(α , α) E=low. 8 Be level deduced Γ.

1996St25: ${}^{4}\text{He}(\alpha,\alpha)$ E_{C.M.}=158, 200 MeV, measured $\sigma(\theta)$. DWBA analysis.

2002Bh03: ${}^{4}\text{He}(\alpha,\alpha)$ E \approx 0.4-33 MeV, analyzed phase shifts. ${}^{8}\text{Be}$ deduced R-matrix parameters.

2003Av04: ${}^{4}\text{He}(\alpha,\alpha)$ E<35 MeV, analyzed $\sigma(\theta)$. Deduced density distribution.

2003De37: 4 He(α,α) E \approx 0-40 MeV, analyzed σ , phase shifts, rotational band features. Deduced resonance and antiresonance effects.

E(level)	J^π	$T_{1/2}$	L	Comments
0.0		5.57 eV 25		Γ : from (1992Wa09), other value Γ =6.8 eV 17 (1968Be02).
3.18×10^3	2+	1.5 MeV	2	
11.5×10 ³ 3	4+	4.0 MeV 4	4	E(level): from 11.4 MeV 3 (1959Br71) and 11.7 MeV 4 (1974Ch45). Γ: from (1974Ch45). Other value≈4.3 MeV (1967Ke10).
16627 2	2+	108.1 keV 4	2	$\Gamma \alpha \approx \Gamma$. E(level): from weighted average of 16623 keV 3 and 16630 keV 3. Γ : from weighted average of 107.7 keV 5 and 108.5 keV 5.
16921 2	2+	74.0 keV <i>3</i>	2	$\Gamma \alpha \approx \Gamma$. E(level): from weighted average of 16925 keV 3 and 16918 keV 3. Γ : from weighted average of 74.4 keV 4 and 73.6 keV 4.
19.9×10^3	4+	<1 MeV	4	Γα/Γ≈0.96
20.1×10^3	2+		2	
20.2×10^3	0_{+}	<1 MeV	0	$\Gamma \alpha / \Gamma < 0.5$
22.2×10^3	2+		2	
25.2×10^3	2+		2	
25.5×10^3	4+		4	Γ =broad.
$28.\times10^{3}$?	(6^{+})	≈20 MeV	6	
$57.\times10^3$?	(8^{+})	≈73 MeV		

6 Li(d, γ) 2004Ti06

	History		
Type	Author	Citation	Literature Cutoff Date
Update	J. H. Kelley, J. L. Godwin, C. G. Sheu	ENSDF	31-Mar-2004

1976No07: $^6\text{Li}(d,\gamma)$ E=6.85-7.10 MeV, measured yields. ^8Be deduced resonance, Γ , T. 1991Wi19: $^6\text{Li}(\text{pol. d},\gamma)$ E=90 MeV, measured E_γ , I_γ , $\sigma(\theta)$, vector, tensor analyzing power vs θ . ^8Be deduced d+ ^6Li D-state probability.

1994Wi08: ⁶Li(pol. d, γ) E=2-14 MeV, measured σ (E) vs θ , vector, tensor analyzing power vs θ , E. Deduced transition matrix elements phases. ⁸Be deduced D-state probability.

⁸Be Levels

E(leve	el)	$T_{1/2}$		Comments
$ \begin{array}{r} 0\\ 3.0 \times 10^{3}\\ 17.64 \times 10^{3}\\ 27495.8\ 24 \end{array} $		5.5 keV 20	T=2 E(level): f	from E _{res} =6965 keV.
				γ ⁽⁸ Be)
E_{γ}	$E_i(level)$	E_f	Mult.	Comments
9847.6	27495.8	17.64×10^3	M1	Γ_{γ} =21.9 eV 39 Γ_{γ} : from (1979Fr04). Revised from Γ_{γ} =24 eV 3 (1976No07).

6 Li(d, γ) 2004Ti06

Level Scheme

⁶Li(d,n), ⁶Li(d,p) **2004Ti06**

```
History
                                                                   Author
                                                                                                               Literature Cutoff Date
                                                                                                  Citation
                                               J. H. Kelley, J. L. Godwin, C. G. Sheu
                                   Update
                                                                                                  ENSDF
                                                                                                                     31-Mar-2004
1957Sl01: <sup>6</sup>Li(d,n) E≈1-6 MeV, measured neutron yields. <sup>8</sup>Be deduced excited states energies.
1966Sc26: ^{6}Li(d,n<sub>1</sub>) E=0.24-0.84 MeV, measured \sigma(E,θ).
1970Ga07: {}^{6}\text{Li}(d,n) \text{ E}=12\text{-}17 \text{ MeV}, \text{ measured } \sigma(\text{E},\text{E}({}^{7}\text{Be}),\theta({}^{7}\text{Be})), \sigma(\text{E},\text{E}({}^{13}\text{N}),\theta({}^{13}\text{N})).
1970Th08: <sup>6</sup>Li(d,n<sub>0</sub>), <sup>6</sup>Li(d,n<sub>1</sub>) E=2.5-3.7 MeV, measured P<sub>n</sub>(E,THETA=10 DEG-140 DEG).
1975Az02: ^{6}Li(d,n) E=13.9, 15.25 MeV, measured \sigma(E<sub>n</sub>,θ).
1975Mc02: ^6Li(d,n) E=0.5-3.4 MeV, measured \sigma(E_{\gamma}). Deduced \sigma(E).
1977El09: ^{6}Li(d,n) E=0.2-0.9 MeV, measured \sigma(E,θ).
1977Gl05: {}^{6}Li(pol. d,n) E=0.6, 0.8, 1.0 MeV, measured vector, tensor analyzing powers Ay(\theta), A(\theta).
1977Sz05: <sup>6</sup>Li(d,n) E=100-180 keV, measured \sigma(E). Deduced astrophysical \sigma.
1979Ru07: <sup>6</sup>Li(d,n) E=0.4-10 MeV, measured σ(E). Deduced reaction mechanism. DWBA calculation.
1980Gu26: ^{6}Li(d,n) E=1.28-11.93 MeV, measured \sigma(total,E).
1982Ce02: ^{6}Li(d,n\gamma) E=48, 170 keV, measured thick target yield. Deduced \sigma(E), astrophysical S(E).
1983As03: ^6Li(d,n) E=4.8 MeV, measured ^7Be production \sigma.
1985Ce12: ^{6}Li(d,n) E=50-160 keV, measured thick target \gamma-ray yields.
1993Cz01: {}^{6}Li(d,n) E<1 MeV, measured yield ratios, astrophysical S-factor, \sigma(\theta). Deduced {}^{8}Be resonance role in charge symmetry
    violation.
1996Bo27: <sup>6</sup>Li(d,n) E(C.M.)=0.5-9 MeV, measured \sigma(\theta_n, E_n), \sigma(\theta).
1997Cz04: <sup>6</sup>Li(d,n) E=65-135 keV, measured charged particle spectra. Deduced reaction yields ratio, (d,p<sub>0</sub>) reaction astrophysical
    S-factorS. <sup>8</sup>Be deduced resonance \Gamma_n/\Gamma_p.
1997No04: <sup>6</sup>Li(d,n) E≤2 MeV, analyzed reaction rates. Deduced primordial <sup>6</sup>Li component production related features.
2000El08: ^{6}Li(d,n) E=0.7-3.4 MeV, measured E<sub>\gamma</sub>, I<sub>\gamma</sub>. Deduced thick target \gamma-ray yields.
2001Ho23: ^{6}Li(d,n) E=24-111 keV, measured \sigma, S-factor.
1968Du09: ^{6}Li(d,p), (pol. d,p) E=2.1-10.9 MeV, measured \sigma(E,E<sub>p</sub>,\theta), vector-polarization analyzing power A(E,E<sub>p</sub>,\theta).
1969B114: ^6Li(d,p) E=6.33-7.14 MeV, measured \sigma(E,θ). ^8Be deduced resonance, \Gamma-level.
1969Ho39: ^{6}Li(d,p) E=1.8 MeV, measured \sigma(E_{p},\theta).
1969Le22: <sup>6</sup>Li(d,p\gamma) E=40-130 keV, measured \sigma(E,E<sub>p</sub>,E\gamma), \sigma(E,E\alpha,\theta(\alpha)).
1969Vi06: ^{6}Li(d,p) E=180 MeV, measured \sigma(E_{p},\theta). Deduced reaction mechanism.
1970Fi07: ^6Li(vector-pol. d,p) E=10, 12 MeV, measured analyzing power A(\theta).
1970Po03: <sup>6</sup>Li(d,p) E=4.5-5.5 MeV, measured \sigma(E,\theta), \sigma(E,E_p,\theta).
1975Mc02: <sup>6</sup>Li(d,p) E=0.5-3.4 MeV, measured \sigma(E,\theta). Deduced \sigma(E).
1977Br33: ^{6}Li(d,p) E=361 MeV, measured proton production at 180°, \sigma.
1977El09: ^{6}Li(d,p) E=0.1-1.0 MeV, measured \sigma(E,θ).
1977Gl05: ^{6}Li(pol. d,p) E=0.6, 0.96 MeV, measured vector, tensor analyzing powers Ay(\theta), A(\theta).
1979Bo33: ^{6}Li(d,p) E=100-180 keV, measured \sigma(E). Deduced astrophysical \sigma.
1981Bo03: ^6Li(d,p) E=698 MeV, measured \sigma(\theta). Deduced deuteron optical model parameters. DWBA.
1981Ce04: <sup>6</sup>Li(d,p) E=29-170 keV, measured thick target yield. Deduced \sigma(\theta).
1981Yu01: <sup>6</sup>Li(d,p) E=9.05 MeV, measured \sigma(\theta). Optical model, zero-range DWBA analyses.
1985Ce12: ^{6}Li(d,p) E=50-160 keV, measured thick target \gamma-ray yields.
1993Ce02: <sup>6</sup>Li(d,p) E(C.M.)=20-135 keV, measured spectra, yield ratios.
1993Cz01: {}^{6}Li(d,p) E<1 MeV, measured yield ratios, astrophysical S-factor, \sigma(\theta). Deduced {}^{8}Be resonance role in charge symmetry
    violation.
1994Ye09: ^6Li(d,p) E=0.15 MeV, measured E<sub>p</sub>, E<sub>\alpha</sub>, \gamma spectra.
1997Cz04: <sup>6</sup>Li(d,p) E=65-135 keV, measured charged particle spectra. Deduced reaction yields ratio, (d,p<sub>0</sub>) reaction astrophysical
    S-factors vs E. ^8Be deduced resonance \Gamma_n/\Gamma_p.
```

2000El08: 6 Li(d,p) E=0.7-3.4 MeV, measured E_γ, I_γ. Deduced thick target γ-ray yields. 2002Ba77: 6 Li(d,p) E=low, analyzed σ , related data. Deduced electron screening potential.

6 Li(d,n), 6 Li(d,p) 2004Ti06 (continued)

⁸Be Levels

 $\frac{J^{\pi}}{0^{+}} \quad \frac{T_{1/2}}{10 \text{ keV } 3} \quad \frac{T_{-2}}{T_{-2}} \\ \text{E(level): from E}_{res} = 6.945 \text{ MeV } \Gamma_{p0} < \Gamma_{p1} \ \$ \ \Gamma_{p0} < \Gamma_{d}.$ Comments

6 Li(d, α), 6 Li(d,p α) 2004Ti06

Type Author Citation Literature Cutoff Date Update J. H. Kelley, J. L. Godwin, C. G. Sheu ENSDF 31-Mar-2004

1967Cl06: ${}^{6}\text{Li}(d,\alpha)$ E=3 to 12 MeV, measured $\sigma(E,\theta)$. ${}^{8}\text{Be}$ deduced levels, J, π .

1969B114: 6 Li(d,α) E=6.33-7.14 MeV, measured σ (E,θ). 8 Be deduced resonance, Γ-level.

1971Ne12: 6 Li(pol. d, α) E=0.4, 0.6, 0.8, 0.96 MeV, measured vector, tensor analyzing power. 8 Be deduced resonances, J, π .

1975Mc02: 6 Li(d, α) E=0.5-3.4 MeV, measured σ (E, θ).

1975Wi25: 6 Li(d, α) E=425 keV, measured polarization.

1977El09: 6 Li(d,α) E=0.1-1.0 MeV, measured σ (E,θ).

1977Ri09: 6 Li(d, α) E=1.5-11.5 MeV, measured σ (E, θ), α (E, θ). 8 Be deduced resonance structure.

1977Mi13: 6 Li(d,p α) E=7.5, 10, 10.5 MeV, measured (E,E1,E2, θ_1 , θ_2). Deduced reaction mechanism.

1979Bo33: 6 Li(d, α) E=100-180 keV, measured σ (E). Deduced astrophysical σ .

1979Ri03: 6 Li(pol. d, α) E=5.0-6.5, 8.0-10.0 MeV, measured A_V(THETA,E), A_{VV}(THETA,E).

1981Go19: ${}^{6}\text{Li}(d,\alpha) \; E_{C.M.} = 35-110 \; \text{keV}, \; \text{measured} \; \sigma(E).$

1986So07: 6 Li(pol. d, α), E \approx 6.9-7.05 MeV, measured $\sigma(\theta)$, T_{20} (THETA), T_{21} (THETA), T_{22} (THETA), i T_{11} (THETA). 8 Be deduced isospin forbidden decay, channel spin dependent γ ratio.

1989Ba88: 6 Li(d, α) E=18.2-36.8 MeV, measured $\sigma(\theta)$. Deduced model parameters.

1990Sa47: ⁶Li(pol. d,α) E=10 MeV, analyzed tensor analyzing power data. ⁶Li deduced D-state component.

1992En01: 6 Li(d, α) E_{C.M.}=10-1004 keV, measured $\sigma(\theta,E)$. Deduced astrophysical S-factor vs. E, electron screening potential energy.

1993Ce02: 6 Li(d, α) E_{C.M.}=20-135 keV, measured spectra, yield ratios.

1994Ar24: 6 Li(d, α) E=18.2-44.5 MeV, measured $\sigma(\theta)$. Deduced $\sigma(E)$. 8 Be deduced possible level.

1997Cz01: 6 Li(d, α) E=50-180 keV, measured σ (E), astrophysical S-factor vs. E. Deduced subthreshold resonance contribution.

2002Ba77: $^6\text{Li}(d,\alpha)$ E=low, analyzed σ . Deduced electron screening potential.

2002Sa09: 6 Li(d, α) E_{C.M.}=2.3-3.5 MeV. Deduced σ , astrophysical S-factor.

2003Pi13: ⁶Li(d,α) E(C.M.)≈10-1000 keV, analyzed astrophysical S-factors, electron screening potential energy.

2003Sp02: 6 Li(d, α) E=low, analyzed σ , astrophysical S-factors.

2004Ka13: 6 Li(d, α) E=30-75 keV, measured thick-target yields for PdLi and AuLi targets. Deduced environmental effects.

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments
$22.24 \times 10^3 \ 2$	2+		E(level): from E_{res} =-0.05 MeV 2.
22.8×10^3		≈600 keV	E(level): from E_{res} =0.8 MeV and $\Gamma_{lab}\approx$ 800 keV.
25.1×10^3	2+	≈1.05 MeV	E(level): from E_{res} =3.75 MeV and $\Gamma_{lab}\approx$ 1.4 MeV.
25.5×10^3	4+		
27.49×10^3	0_{+}		T=2
$\approx 28.\times 10^3$			
$\approx 41.\times 10^3$?			
$\approx 43.\times 10^3$?			
$\approx 50.\times 10^3$?			

6 Li(t,n) 2004Ti06

Type Author Citation Literature Cutoff Date
Update J. H. Kelley, J. L. Godwin, C. G. Sheu ENSDF 31-Mar-2004

1984LiZY: 6 Li(t,n) E=2-4.5 MeV, measured $\sigma(\theta)$, $\sigma(E_n)$, σ . 8 Be deduced levels.

⁸Be Levels

 $\frac{\text{E(level)}}{0.0}$ 3.0×10^{3} 16.6×10^{3} 16.9×10^{3}

⁶Li(³He,p) **2004Ti06**

	History		
Type	Author	Citation	Literature Cutoff Date
Undate	J. H. Kelley, J. L. Godwin, C. G. Sheu	ENSDE	31-Mar-2004

1965Fl03: 6 Li(3 He,p) E=5-17 MeV, measured σ (E,E_p, θ _p).

1969Nu01: 6 Li(3 He,p) E=8 MeV, measured $\sigma(\theta)$. 8 Be resonance deduced E, Γ-level.

1969Vi05: ${}^{6}\text{Li}({}^{3}\text{He,p})$ E<2 MeV, measured $\sigma(E,E_{p},\theta), \ \sigma(E_{p},E_{\alpha}).$ ${}^{8}\text{Be}$ deduced resonance interference, Γ -level.

1980El02: ${}^{6}\text{Li}({}^{3}\text{He,p})$ E=0.5-1.85 MeV, measured $\sigma(E_{p},\theta)$.

1995Ba24: 6 Li(pol. 3 He,p) E=4.6 MeV, measured $\sigma(\theta)$, analyzing power vs. θ .

E(level)
0.0
3.0×10^{3}
16.63×10^3
16.92×10^3
17.64×10^3
18.15×10^3
19.0×10^3
19.4×10^3
19.9×10^3

6 Li(α ,d), 6 Li(α ,2 α) 2004Ti06

History

Type	Author	Citation	Cutoff Date	
Update	J. H. Kelley, J. L. Godwin, C. G. Sheu	ENSDF	31-Mar-2004	
Full Evaluation	D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J Millener et al.	NP A745, 155 (2004)	31-Mar-2004	

1968Do13: ${}^{6}\text{Li}(\alpha,2\alpha)$ E=25 MeV, measured $\sigma(E_{\alpha},E_{d},\theta)$.

1969Do02: 6 Li(α ,2 α) E=25 MeV, measured σ (E $_{\alpha-1}$,E $_{\alpha-2}$, θ_1 , θ_2).

1969Pi11: 6 Li(α ,2 α) E=55 MeV, measured σ (E $_{\alpha-1}$,E $_{\alpha-2}$, θ_1 , θ_2).

1970Ga14: $^6\text{Li}(\alpha,2\alpha)$ E=42.8, 55 MeV, measured $\sigma(\theta)$.

1970Ja17: 6 Li(α ,2 α) E=64 MeV, measured σ (E $_{\alpha-1}$,E $_{\alpha-2}$, θ_1 , $\theta_{\alpha-2}$). 1971Be52: 6 Li(α ,d) E=12 MeV, measured σ (E $_{d}$). 8 Be deduced variations in ghost anomaly.

1971Wa19: 6 Li(α ,2 α) E=50.4, 59.0, 60.5, 70.3, 79.6 MeV, measured σ (E,E $_{\alpha-1}$,E $_{\alpha-2}$, $\theta_{\alpha-1}$, $\theta_{\alpha-2}$).

1974Gr21: 6 Li(α ,d) E=20, 24 MeV, measured σ (E_d, θ), deduced exchange contributions.

1974Le14: 6 Li(α ,d) E=12-25 MeV, measured σ (E $_{\alpha}$, θ).

1979Do04: $^6\text{Li}(\alpha,2\alpha)$ E=700 MeV, measured absolute $\sigma(\text{E}_{\alpha-1},\text{E}_{\alpha-2},\theta_{\alpha-1},\theta_{\alpha-2})$. Deduced effective number of α clusters.

1985Ko29: $^6\text{Li}(\alpha,2\alpha)$ E=27.2 MeV, measured $\sigma(E_{\alpha-1},\theta_{\alpha-1},\theta_{\alpha-2})$. Deduced reaction mechanism.

1989Li24: 6 Li(α ,d) E=26.68 MeV, measured $\sigma(\theta)$. Deduced reaction mechanism, clusters role.

1992Wa18: 6 Li(α ,2 α) E=77-119 MeV, measured $\sigma(\theta_1,\theta_2,E1,E2)$. Deduced reaction mechanism, spectral functions.

E(level)	$T_{1/2}$	Comments	
0.0			
3.0×10^3	1.2 MeV 3		
$11.3 \times 10^3 4$		E(level): from (1962Ce01).	

6 Li(6 Li, α) 2004Ti06

History

Type	Author	Citation	Cutoff Date	
Update	J. H. Kelley, J. L. Godwin, C. G. Sheu	ENSDF	31-Mar-2004	
Full Evaluation	D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J Millener et al.	NP A745, 155 (2004)	31-Mar-2004	

1964Ma26: 6 Li(6 Li,α) E(6 Li)=2-4.4 MeV, measured $\sigma(\theta, E)$.

1966Be22: $^6\text{Li}(^6\text{Li},\alpha)2\alpha$ E=2.75 MeV, measured α - $\alpha(\theta, E_\alpha)$.

1968Da20: 6 Li(6 Li, $^{\alpha}$) E=24.5 MeV, measured σ (E $_{\alpha}$, θ), σ (E $_{t}$). 8 Be deduced levels, L.

1969In06: 6 Li(6 Li, α) E=6 MeV, measured σ (E $_\alpha$, $\theta_{\alpha-1}$, $\theta_{\alpha-2}$). 8 Be deduced resonances, Γ-level. 1970Fr06: 6 Li(6 Li, α)2 α E=4-24 MeV, measured σ (E, θ).

1971Gl07: 6 Li(6 Li, α) E=26, 30 MeV, measured σ (E $_\alpha$, θ). 8 Be deduced resonances. 1971No04: 6 Li(6 Li, α) E not given, analyzed σ (E $_\alpha$). 8 Be levels deduced Γ-level.

1983Mi10: 6 Li(6 Li, α) E=3.5-6.8 MeV, measured $\sigma(\theta)$ vs E.

1990Le05: 6 Li(6 Li, α) E=2-16 MeV, measured $\sigma(\theta)$, I_{γ} (THETA). Deduced fusion σ (E), reaction mechanism.

⁸Be <u>Levels</u>

E(level)	$T_{1/2}$
0.0	
3.0×10^3	
11.4×10^3	
16.6×10^3	90 keV
16.9×10^3	70 keV
19.9×10^3 ?	1.3 MeV
22.2×10^3 ?	
22.5×10^3	

⁷Li(p, γ) **2004Ti06**

	History		
Type	Author	Citation	Literature Cutoff Date
Update	J. H. Kelley, J. L. Godwin, C. G. Sheu	ENSDF	31-Mar-2004

1964Mi10: 7 Li(p, γ) E_p=0.50-2.0 MeV, measured α -, γ -spectra.

1964Pr04: 7 Li(p, γ) E_p=0.4-1.8 MeV, measured α -, γ -spectrum, α - γ -coin. 8 Be deduced levels.

1964Sc19: 7 Li(p, γ) E_p=0.2-1.7 MeV, measured p, $\gamma(\theta,E)$. 8 Be deduced levels, J, π .

1969Sw01: 7 Li(p, γ) E=0.44-2.45 MeV, measured σ (E, θ). 8 Be deduced resonances, levels, Γ -level, γ -branching.

1969Sw02: $^{7}\text{Li}(p,\gamma)$ E=0.44, 1.50 MeV, measured $\sigma(E,E_{\gamma},E_{\alpha},\theta(\alpha-\gamma))$. ⁸Be transition deduced γ -mixing.

1976Fi05: 7 Li(p, γ) E=0.8-17.6 MeV, measured σ (E,E $_{\gamma}$, θ). 8 Be deduced giant resonances, Γ_{γ} .

1977Ul02: 7 Li(pol. p, γ) E=380-960 keV, measured A(E, θ). 8 Be deduced level, Γ , J, π .

1981Ma33: $^7\text{Li}(p,\gamma)$ E=11.5-30 MeV, measured E_{γ} , I_{γ} . Deduced $\sigma(E,\theta)$. $^7\text{Li}(p,\gamma)$ E=4-30 MeV, measured $\sigma(E)$. ^8Be deduced possible GDR.

1983Fi13: 7 Li(p, γ) E=400-550 keV, measured yield vs. E.

1984Se16: ⁷Li(pol. p, γ) E=14 MeV. Analyzed $\sigma(\theta)$, analyzing power data. Deduced j-dependence of polarization effects.

1989BrZO: ⁷Li(p, γ) E not given, measured 2α - γ -coin. Deduced ⁸Be level excitation σ .

1990Ri06: 7 Li(p, γ) E=7.5, 8 MeV, measured E $_{\gamma}$, spectral shape at θ_{γ} =90°. 8Be level deduced intrinsic line shape.

1991Br11: 7 Li(p, γ) E=25 MeV, measured σ (E, θ), γ (particle)-coin. Deduced reaction mechanism, σ upper limit.

1992Ce02: 7 Li(p, γ) E=40-180 keV, measured capture E $_{\gamma}$, I $_{\gamma}$, $\gamma(\theta)$. Deduced astrophysical S-factor. 8 Be levels deduced γ -ray to charged particle branching ratio.

1994Ch23: ${}^{7}\text{Li}(\text{pol. p},\gamma) \text{ E} \leq 80 \text{ keV}$, measured $\sigma(\theta)$, analyzing power vs. θ . Deduced implications for astrophysical S-factor.

1994Ro16: 7 Li(p, γ) E \leq 1.5 MeV. Analyzed astrophysical S-factor. Deduced resonance tail role.

1995Bb21: ⁷Li(pol. p, γ) E \approx 70 keV. Analyzed $\sigma(\theta)$, analyzing power. Deduced no evidence for large p-wave strength.

1995Za03: 7 Li(p, γ) E=100-1500 keV, measured E $_{\gamma}$, I $_{\gamma}$ (THETA) ratios. Deduced σ (E), astrophysical S-factor vs. E, capture mechanism. 8 Be deduced resonance energy, Γ .

1996Go01,1997Go13: 7 Li(pol. p, γ) E=0-80 keV, measured α - γ -coin, A_{y} (THETA), $\sigma(\theta)/A_{0}$. Deduced p-wave strength, astrophysical implications.

1996Ha06: 7 Li(p, γ) E=80-450 keV, measured I_{γ} (THETA), relative yields. Deduced Legendre coefficients.

1997Ba04: 7 Li(p, γ) E=low. Analyzed p-wave strength in σ . Deduced projectile penetration factors dependence.

2000Sp01: 7 Li(pol. p, γ) E=40-100 keV, measured yields, analyzing power. Deduced slope of astrophysical S-factor, role of subthreshold resonance.

E(level)	J^π	T _{1/2}	l_p	Comments
0.0 3.03×10^3				
16.626×10^3 16.922×10^3				
17640.0 <i>10</i> 18150 <i>5</i>	1 ⁺ 1 ⁺	10.7 keV <i>4</i> 147 keV	1	Γ : from Γ_{lab} =12.2 keV 5.
18.91×10^3	(2^{-})	131 keV <i>44</i>		
$19.07 \times 10^3 2$	$(1,2,3)^{-}$	271 keV <i>17</i>		
$20.\times10^3$? 21.5×10^3				
21.6×10^3	1-	≈4.5 MeV	0	T=1
22.5×10^3			(0)	
23.8×10^3 $27. \times 10^3$?	$(1^-,2^-)$	≈7. MeV	(0)	T=1
28.6×10^3				Γ=broad.

⁷Li(p, γ) **2004Ti06** (continued)

γ (8Be)

 $E\gamma$ values are from recoil-corrected E(level) differences.

E_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	Εγ	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f
718	17640.0	1+	16.922×10^3	14596	17640.0	1+	3.03×10^3
1014	17640.0	1+	16.626×10^3	15105	18150	1+	3.03×10^3
1228	18150	1+	16.922×10^3	16013	19.07×10^3	$(1,2,3)^{-}$	3.03×10^3
1524	18150	1+	16.626×10^3	17619	17640.0	1+	0.0
1988	18.91×10^3	(2^{-})	16.922×10^3	18128	18150	1+	0.0
2284	18.91×10^3	(2^{-})	16.626×10^3				

⁷Li(p,γ) 2004Ti06

Level Scheme

⁷Li(p,n) **2004Ti06**

Type Author Citation Literature Cutoff Date Update J. H. Kelley, J. L. Godwin, C. G. Sheu ENSDF 31-Mar-2004

1969Cl06: 7 Li(p,n) E=30,50 MeV, measured $\sigma(\theta)$. Deduced isospin-dependent effective interaction.

1970Ro07: 7 Li(p,n) E=0.9-1.9 MeV, measured σ (E). 7 Li(p,n) deduced thresholds.

1972Az01: 7 Li(p,n) E=17.8 MeV, measured $\sigma(E_n,\theta)$.

1972El19: ${}^{7}\text{Li}(p,n)$ E=2.2-5.5 MeV, measured $\sigma(E,E_{n},\theta)$.

1972Pr03: ${}^{7}\text{Li}(p,n_1)$ E=2.37-6.0 MeV, measured $\sigma(E)$.

1973Ro35: 7 Li(pol. p,n) E=2.05-3.00 MeV, measured analyzing power A(θ).

1974Bu16: 7 Li(p,n) E<3.8 MeV, measured σ (E,E_n, θ).

1974Sh06: ⁷Li(p,n), measured Q.

1975Mc18: 7 Li(p,n) E =15,20,30 MeV, measured σ.

1976Po06: $^{7}\text{Li}(p,n)$ E=4.2-26 MeV, measured $\sigma(E,\theta)$ to ^{7}Be ground state, first excited state; θ =3.5°-159°.

1977Ri07: 7 Li(p,n) E=800 MeV, measured σ .

1977Sc37: ${}^{7}\text{Li}(p,n)$ E=25-45 MeV, measured $\sigma(E,E_n)$.

1979Ba68: $^{7}\text{Li}(p,n)$ E=1 GeV, measured $\sigma(E_n,\theta)$. Deduced dependency of quasielastic neutron production on mass.

1980Au02: 7 Li(p,n) E=25,35,45 MeV, measured σ (E_n). Deduced Gamow-Teller analog transition effective interaction.

1980Go07: 7 Li(p,n) E=120 MeV, measured $\sigma(\theta=0^{\circ})$.

1982Ta03: 7 Li(p,n) E=60-200 MeV, measured $\sigma(\theta=0^{\circ})$. Deduced isovector effective interaction strength ratio.

1982Wa02: 7 Li(p,n) E=60-200 MeV, measured total reaction σ vs. E. Activation technique.

1984Ta07: ⁷Li(pol. p,n) E=160 MeV, measured transverse spin transfer coefficient D(NN) (θ =0°), polarized neutrons.

1986JeZZ: ⁷Li(pol. p,n) E=55-72 MeV, measured polarization transfer, θ =0°.

1989Ra09: 7 Li(p,n) E=492 MeV, measured $\sigma(\theta,E)$. Deduced unit $\sigma(\text{ratio})$.

1989Wa15: 7 Li(p,n) E=200-400 MeV, measured $\sigma(\theta)$.

1990Ra08: ${}^{7}\text{Li}(p,n)$, ${}^{7}\text{Li}(pol. p,n)$ E=60-200 MeV, measured $\sigma(\theta)$.

1990Ta11: 7 Li(p,n) E=80-795 MeV, measured $\sigma(\theta)$.

1994Ra23: 7 Li(pol. p,n) E=186 MeV, measured $\sigma(\theta,E_n)$, $\sigma(\theta)$, spin observable vs. θ . Deduced quasifree excitation role in giant resonance region.

1994Sa43: 7 Li(pol. p,n) E=300,400 MeV, measured $\sigma(\theta)$ vs. Energy transfer, neutron energy spectra, polarization transfer coefficients vs. θ .

1994Wa22: ${}^{7}\text{Li}(p,n)$, ${}^{7}\text{Li}(pol. p,n)$ E=186 MeV, measured $\sigma(\theta,E_n)$, polarization transfer coefficient, analyzing power vs. θ .

1995Ya12: 7 Li(p,n) E=186 MeV, measured $\sigma(\theta,E_n)$. Deduced quasifree reaction contribution in giant resonance region, $\Delta L=1$ transitions energy spectra.

1999Bu10: ⁷Li(p,n) E<2000 keV. Analyzed data.

2000Jo17: ⁷Li(p,n) E=35 MeV, measured $\sigma(\theta)$. Deduced isovector optical potential parameters.

2001Go25: ⁷Li(p,n) E=120,160 MeV. Analyzed neutron spectra. Deduced Gamow-Teller matrix elements.

2003Ko40: 7 Li(p,n) E \approx 1.9 MeV, measured neutron yields.

E(level)	J^{π}	$T_{1/2}$	L	Comments
18.9×10 ³	2-	50 keV 20		
19.2×10^3	3 ⁺		1	T=1
2				T: tentative $\Gamma_p \approx \Gamma_n$.
19.5×10^3	1-			
20.1×10^3 ?				
20.2×10^3 ?	(.)			
21.5×10^3	$3^{(+)}$	1.1 MeV		

⁷Li(p,p), ⁷Li(p,p') **2004Ti06**

Type Author Citation Literature Cutoff Date
Update J. H. Kelley, J. L. Godwin, C. G. Sheu ENSDF 31-Mar-2004

1965Gl03: 7 Li(p,p), 7 Li(p,p') E=2.5-12 MeV, measured σ (E, θ). 8 Be deduced levels, J, π , Γ -level.

1969Ki04: 7 Li(p,p₀),(p,p₁) E=2.7-10.6 MeV, measured σ (E, θ), polarization analyzing power (E, θ).

1969Le08: 7 Li(p,p) E=1.36 MeV, measured σ .

1972Pr03: ${}^{7}\text{Li}(p,p_1)$ E=2.0-6.0 MeV, measured $\sigma(E)$.

1973Br13: 7 Li(pol. p,p) E=0.67 to 2.45 MeV, measured A(θ ,E). Deduced phase shifts for E=0.4 to 2.45 MeV. Deduced channel spin mixing. 8 Be deduced levels, J, π . Deduced nature of threshold state. Deduced two 3⁺ states are coupled.

1976Hi04: 7 Li(p,p),(p,p') E=11.65-11.75 MeV, measured σ (E, θ). 8 Be deduced resonance parameters.

1979Ar10: ⁷Li(p,p) E<2 MeV, calculated phase shifts. ⁸Be deduced resonance, R-matrix analysis.

1982Pe06: ${}^{7}\text{Li}(p,p),(p,p')$ E=24.4 MeV, measured $\sigma(E_{p'}), \sigma(\theta)$. E=24-50 MeV, analyzed data.

1985Ki07: 7 Li(p,p' γ) E=2.4-4.2 MeV, measured thick target relative γ yields, E_{γ} , I_{γ} .

1988Bo37: 7 Li(p,p' γ) E \approx 2.7-3.8 MeV, measured $\sigma(\theta)$ vs. E.

1988Gu10: 7 Li(p,p) E_{C,M.} \approx 1.2-2.4 MeV, measured $\sigma(\theta)$ vs. E. 8 Be deduced resonance parameters.

1994Mi21: 7 Li(p,p' γ) E=2.5-3.5 MeV, measured γ yield vs. E. Deduced β , Li elemental.

1999Sa16: 7 Li(p,p') E=1.0-4.1 MeV, measured E_{γ}, I_{γ}, thick target γ -ray yields.

2001Zh38: ${}^{7}\text{Li}(p,p),(p,p')$ E=0.143-1.0 GeV. Analyzed $\sigma(\theta)$.

2004Ya12: 7 Li(p,p') E=300 MeV, measured particle spectra, σ (E, θ).

E(level)	J^{π}	T _{1/2}	Comments
17640	1+	10.7 keV	$\theta_{\rm p}^2 = 0.064$.
18155 5	1+	147 keV	$ heta_{\mathrm{p}}^{2} = 0.064.$ $\Gamma_{\mathrm{p'}} \approx 6 \; \mathrm{keV}$
18.90×10^3	2-	48 keV 18	
19.05×10^3	3+	≈350 keV	
19.22×10^3	3+		
19.4×10^3	1-	≈656 keV	
$20.9 \times 10^3 2$	4-	1.58 MeV 18	
22.2×10^3			Γ =broad, possible doublet.

⁷Li(p, α) **2004Ti06**

History Author Literature Cutoff Date Citation J. H. Kelley, J. L. Godwin, C. G. Sheu **ENSDF** 31-Mar-2004 1964As04: 7 Li(p, α) E_p=2-3.5 MeV, polarized, measured asymmetry. 1964Ma25: 7 Li(p, α) E_n=0.85 MeV, measured α -spectrum (θ). 8 Be deduced absence of three reported levels. 1964Ma51: 7 Li(p, α) E=1-12 MeV, measured σ (E, θ). 8 Be deduced levels. 1964Mi10: 7 Li(p, α) E_p=0.50-2.0 MeV, measured α -, γ -spectra. 8 Be deduced levels. 1964Pr04: 7 Li(p, $\alpha \gamma$) E_p=0.4-1.8 MeV, measured α -, γ -spectrum, α - γ -coin. 8 Be deduced levels. 1965Bo07: ⁷Li(pol. p, α) E_p=3.2-5.3 MeV, measured $\sigma(E_{\alpha},\theta)$. Deduced polarization. 1966Ma03: 7 Li(p, $\alpha \gamma$) E=0.4-2.4 MeV, measured σ (E,E $_{\alpha}$), γ - α -coin. 1968Du11: 7 Li(p, α) E=150 keV, measured σ (E $_{\alpha}$, θ). Deduced Q. 1968Le22: 7 Li(p, α) E=130 keV, measured σ (E $_{\alpha}$, θ (α)). 1968Pe03: ⁷Li(pol. p, α) E=0.8-3.0 MeV, measured σ (E, θ). Deduced polarization analyzing power. 1968Pl01: 7 Li(p, α) E=3-10 MeV, measured polarization analyzing power (E, θ). 1969De04: 7 Li(p, α) E=30.3 MeV, measured $\sigma(\theta)$. 1969Sw01: $^{7}\text{Li}(p,\alpha)$ E=0.44-2.45 MeV, measured $\sigma(E,\theta)$. Deduced direct reaction contribution. ^{8}Be deduced resonances, levels, Γ -level, γ -branching. 1971Sp05: 7 Li(p, α) E=130,271,416,561 keV, measured $\sigma(\theta)$. Deduced total σ . 1976Hi04: 7 Li(p, α) E=11.65-11.75 MeV, measured σ (E, θ). 8 Be deduced resonance parameters. 1986Ro13: 7 Li(p, α) E_{C.M.}=25-873 keV, measured $\sigma(\theta)$. Deduced σ , astrophysical S(E) factor. 1989Ba88: 7 Li(p, α) E=29.1-44.6 MeV, measured $\sigma(\theta)$. Deduced model parameters. 1989Ha14: 7 Li(p, α) E=20-250 keV, measured σ (E). Deduced astrophysical S-factor vs. E. 1990Ra28: $^7\text{Li}(p,\alpha)$ E_{C.M.}=0.013-1 MeV, analyzed $\sigma(\theta)$, astrophysical S-factor vs. E. Deduced reaction mechanism at thermonuclear energy. 1991Ri03: 7 Li(p, α) E=low, analyzed reaction rate, astrophysical S-factor data. 1992En01: 7 Li(p, α) E_{C,M}=10-1004 keV, measured $\sigma(\theta,E)$. Deduced astrophysical S-factor vs. E. 1999Sp09: 7 Li(p, α) E<0.4 MeV. Deduced $\sigma(\theta)$, astrophysical S-factor. 2000Ba89: $^{7}\text{Li}(p,\alpha)$ E_{C,M}=0-900 keV. Analyzed $\sigma,\sigma(\theta)$. 8 Be levels deduced R-matrix parameters. 2001La35: 7 Li(p, α) E \approx 10-400 keV. Deduced astrophysical S-factor. 2002Ba77: 7 Li(p, α) E=low, analyzed σ , related data. Deduced electron screening potential. **2002Gr09**: ${}^{7}\text{Li}(p,\alpha)$ E=100-200 keV, measured E_{\alpha}.

⁸Be Levels

2003Pi13, 2003Pi14, 2003Sp02: ⁷Li(p,α) E(C.M.)≈10-1000 keV, analyzed astrophysical S-factors, electron screening potential

energy.

E(level)	J^{π}	Comments
15.9×10^3	2+	E(level): probably refers to the 16.6 MeV state.
19.7×10^3	0_{+}	
20.1×10^3	2+	
21.8×10^3 ?	0_{+}	
22.2×10^3	2+	
$\approx 24.\times 10^3$		
$25.\times10^{3}$	2+	

7 Li(d,n) 2004Ti06

History

Type	Author	Citation	Cutoff Date
Update	J. H. Kelley, J. L. Godwin, C. G. Sheu	ENSDF	31-Mar-2004
Full Evaluation	D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J Millener et al.	NP A745, 155 (2004)	31-Mar-2004

1957Sl01: ⁷Li(d,n) E≈1-6 MeV, measured neutron yields. ⁸Be deduced states energies.

1966Mi09: ⁷Li(d,n) E=0.8,1.0 MeV, measured $\sigma(\theta_{\alpha},\alpha)$, $\sigma(\theta_{n})$, $\sigma(E_{\alpha-1}, E_{\alpha-2}, \theta_{\alpha-1}, \theta_{\alpha-2})$.

1967Je01: 7 Li(d,n)2 α E=180 keV, measured σ (E $_{\alpha}$, $\theta_{n,\alpha}$).

 ${}_{4}^{8}\mathrm{Be}_{4}$

1969Ho11: 7 Li(d,n)2 α E=0.98,1.2,1.4,1.6 MeV, measured σ (E, E $_{\alpha,\theta,\Phi}$). 8 Be level deduced Γ-level.

1970Sa20: 7 Li(d,n) E=500 keV, measured $\sigma(\theta)$. 8 Be level deduced J, π .

1971Ro05: 7 Li(d,n) E=3.72,4.76 MeV, measured σ (E_n). 8 Be resonance deduced Γ-level.

1972Se09: ⁷Li(d,n) E=0.2-1.02 MeV, analyzed polarization effects, resonant matrix elements.

1973Ka32: 7 Li(d,n) analyzed α - α -coin, reaction data. 8 Be analyzed levels.

1980Ma48: 7 Li(d,n) E=13.2 MeV, measured σ (E_n). 8 Be levels deduced neutron branching.

1980Ya11: 7 Li(d,n) E=400,680,1020 keV, measured $\sigma(E_n)$. Deduced reaction mechanism. 8 Be levels deduced neutron branching. 1983Da32: 7 Li(d,n) E=0.19 MeV, measured $\sigma(\theta)$. Deduced back angle anomaly.

1995Ar25: 7 Li(d,2 α) E=19.7 MeV, measured (θ_1 , θ_2). 8 Be deduced level energy, Γ .

2001Ho23: 7 Li(d,n) E=24-111 keV, measured σ , S-factor.

E(level)	T _{1/2}	lp	Comments
$0.$ $3.10 \times 10^3 7$	1744 keV 62		Edgually weighted average of 2.1 May Land 2.10 May 0
3.10×10°/	1744 KeV 02		E(level): weighted average of 3.1 MeV I and 3.10 MeV 9 . Γ : weighted average of Γ =1750 keV $I00$ and 1740 keV 80 .
11.3×10 ³ 2	3.7 MeV 2		E(level): a state with E=11.40 MeV 5 is reported in (1969Ho11) and E=11.3 MeV 2 is reported in (1995Ar25). Γ: a state with Γ=2.8 MeV 2 is reported in (1969Ho11) and Γ=3.7 MeV 2 is reported in (1995Ar25).
16.6×10^3		1	
16.9×10^3			
17.6×10^3		1	
18.2×10^3		1	
18.9×10^3			
19.1×10^3			
19.2×10^3			
20.1×10^3	0.88 MeV 16		Γ: average of 0.85 MeV 25 (1991Ar18) and 0.90 MeV 20 (1992Da22).
20.2×10^3	0.71 MeV 16		Γ: average of 0.75 MeV 25 (1991Ar18) and 0.70 MeV 20 (1992Da22).

7 Li(3 He,d), 7 Li(3 He,d α) 2004Ti06

Type Author Citation Literature Cutoff Date
Update J. H. Kelley, J. L. Godwin, C. G. Sheu ENSDF 31-Mar-2004

1969Nu01: $^7\text{Li}(^3\text{He,d})$ E=8 MeV, measured $\sigma(\theta)$. ^8Be resonance deduced E, Γ-level. 1970Di12: $^7\text{Li}(^3\text{He,d})$ E=10 MeV, measured $\sigma(E_d,\theta)$, $\sigma(E_p,\theta)$. ^8Be levels deduced S. 1971Pi06: $^7\text{Li}(^3\text{He,d})$ E=15 MeV, measured $\sigma(E_d,\theta)$, SIGNA(E_t,θ). ^8Be deduced levels, Γ-level. 1975Bo56: $^7\text{Li}(^3\text{He,d})$ E=1.0-2.5 MeV, measured $\sigma(E,E_d,\theta)$. 1976Da24: $^7\text{Li}(^3\text{He,d}\alpha)$ E=4.7 MeV, measured $\alpha(\theta)$, σ . 1977Bo29: $^7\text{Li}(^3\text{He,d}\alpha)$ E=1.0-2.5 MeV, measured $\sigma(E,E_d,\theta)$. ^8Be level deduced S. 1979RoZZ: $^7\text{Li}(^3\text{He,d})$ E=13 MeV, measured $\sigma(E_d)$. Deduced reaction mechanism. 1981Ba38: $^7\text{Li}(\text{pol.})$ $^3\text{He,d}$ E=33.3 MeV, measured $\sigma(\theta)$, A(θ). ^8Be levels deduced S. 1985Fr01: $^7\text{Li}(^3\text{He,d}\alpha)$ E=120 MeV, measured $\sigma(E_1,E_2,\theta_1,\theta_2)$. Deduced residuals missing mass spectra. 2003Fr22: $^7\text{Li}(^3\text{He,d}\alpha)$ E=390-1130 keV, measured $\sigma(\theta_d,\theta_\alpha)$ vs arc length. 1991Ar19: $^7\text{Li}(^3\text{He,d}\alpha)$ E=5 MeV, measured $\sigma(\theta_d,\theta_\alpha)$ vs arc length.

⁸Be Levels

E(level)	$T_{1/2}$
0.0	
3.0×10^{3}	
16627 5	113 keV 3
16901 <i>5</i>	77 keV <i>3</i>
17.6×10^3	
18.2×10^3	

1995Ar14: $^{7}\text{Li}(^{3}\text{He,d}\alpha)$ E=4.5, 6 MeV, measured dALPHA-coin.

⁷Li(α,t) **2004Ti06**

History

Type	Author	Citation	Cutoff Date
Update	J. H. Kelley, J. L. Godwin, C. G. Sheu	ENSDF	31-Mar-2004
Full Evaluation	D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J Millener et al.	NP A745, 155 (2004)	31-Mar-2004

1971Be52: 7 Li(α ,t) E=10 MeV, measured σ (E_t). 8 Be deduced variations in ghost anomaly.

1972Me07: $^{7}\text{Li}(\alpha,t)$ E=30 MeV, measured $\sigma(E_p,\theta(p))$, $(E_d,\theta(d))$, $(E_t,\theta(t))$. Deduced S, cluster reduced widths. DWBA, pwbae analysis.

1972Va34, 1974Dm01: 7 Li(α ,t) E=15-25 MeV, measured σ (E, θ). Deduced reaction mechanisms.

1974Ma49: 7 Li(α ,t) E=29.4 MeV, measured $\sigma(\theta)$. 8 Be deduced levels.

1985Pu03, 1992Ko26: 7 Li(α ,t) E=50 MeV, analyzed breakup $\sigma(\theta_{\alpha-1},\theta_{\alpha-2},E_{\alpha-1})$. 8 Be deduced resonances, Γ .

E(level)	J^{π}
0	0+
3.0×10^{3}	
11.4×10^3	
16.6×10^3	
16.9×10^3	
19.9×10^3	

⁷Li(⁷Li,⁶He) **2004Ti06**

Type Author Citation Literature Cutoff Date
Update J. H. Kelley, J. L. Godwin, C. G. Sheu ENSDF 31-Mar-2004

1988Bo18: 7 Li(7 Li, 6 He) E=22 MeV, measured σ (E(6 He)), σ (θ). Deduced reaction mechanism.

⁸Be Levels

 $\frac{\text{E(level)}}{0}$ 3.0×10^{3}

⁷Be(n,p) **2004Ti06**

History

Type Author Citation Literature Cutoff Date
Update J. H. Kelley, J. L. Godwin, C. G. Sheu ENSDF 31-Mar-2004

1988Bo15: 7 Be(n,p) E \approx 0.02-10 eV, measured σ (E). R-matrix fit.

1988Ko03: 7 Be(n,p) E=0.025-13500 eV, measured σ . 8 Be levels deduced Γ_{p} , Γ_{n} , Γ .

1989Ce03: 7 Be(n,p) E=thermal, 2 keV, measured σ .

1991An17: 7 Be(n,p) E=24.5 keV, measured reaction σ .

1998Fi02: ⁷Be(n,p) E not given, analyzed reaction rate uncertainties. Deduced uncertainties in elemental abundances from primordial nucleosynthesis.

2002Gl03: ${}^{7}\text{Be}(n,p)$ E=low, compiled, analyzed σ , particle spectra, resonance parameters.

2003Ad05: ${}^{7}\text{Be(n,p)}$ E(C.M.)<20 MeV, analyzed σ . Deduced R-matrix parameters. ${}^{8}\text{Be}$ levels deduced neutron and proton resonance widths.

2004Cy01: ⁷Be(n,p) E<2 MeV, analyzed reaction rates.

E(level)	Comments
18.90×10^3	Γ_n =0.225 MeV and Γ_p =1.409 MeV (2003Ad05: S-matriX).
19.23×10^3	level is the sum of EX=19.07 MeV and 19.24 MeV contributions Γ_n =0.077 MeV and Γ_p =0.088 MeV (2003Ad05: S-matriX).
21.56×10^3	Γ_n =0.490 MeV and Γ_p =0.610 MeV (2003Ad05: S-matriX).

9 Be(p,d), 9 Be(p,np) 2004Ti06

History

Type	Author	Citation	Cutoff Date
Update	J. H. Kelley, J. L. Godwin, C. G. Sheu	ENSDF	31-Mar-2004
Full Evaluation	D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J Millener et al.	NP A745, 155 (2004)	31-Mar-2004

- 1966La20: 9 Be(p,d) E=7.0,8.0,9.0 MeV, measured σ (E,E_d), σ (E,E_α). 8 Be deduced level, Γ-level.
- 1968Le01: ${}^9\text{Be}(p,d)$ E=100 MeV, measured $\sigma(E_d,\theta)$. ${}^8\text{Be}$ deduced levels, relative S.
- 1969Ba05: 9 Be(p,d) E=155.6 MeV, measured $\sigma(E_d,\theta)$. 8 Be deduced levels, J, π , L, S.
- 1969Co06: 9 Be(p,pn) E=12, 17 MeV, measured σ (E,θ).
- 1969Su02: ${}^9\text{Be}(\text{p,d})$ E=185 MeV, measured $\sigma(\text{E}_{\text{d}},\theta)$. ${}^8\text{Be}$ deduced levels, L_n, S. 1971Be52: ${}^9\text{Be}(\text{p,d})$ E=3.8 MeV, measured $\sigma(\text{E}_{\text{d}})$. ${}^8\text{Be}$ deduced variations in ghost anomaly.
- 1971Sc26: 9 Be(p,d) E=46,100 MeV. Analyzed $\sigma(\theta)$. 8 Be levels deduced S. DWBA, local-energy approximation.
- 1972Hu03: 9 Be(p,d₀) E=5,6,7,8,9,10,11 MeV, measured $\sigma(\theta)$. 8 Be deduced S.
- 1974Mi05: 9 Be(p,pn) E=46 MeV, measured $\sigma(E_p,\theta)$.
- 1974Wi21: 9 Be(p,d) E=6.5-9.5 MeV, measured $\sigma(E,E_{p},\theta)$, $\sigma(E,E_{d},\theta)$.
- 1975Ch42: 9 Be(p,pn) E=5.5 MeV, measured σ .
- 1976Ba67: 9 Be(p,d) E=39.91 MeV, measured $\sigma(\theta)$. Deduced anomaly.
- 1976Da15: 9 Be(pol. p,d) E=15 MeV, measured $\sigma(\theta)$, $A_v(THETA)$. 8 Be levels deduced S, Γ , J-admixtures.
- 1977Gu14: 9 Be(p,d) E=17.7 MeV, measured $\sigma(E_d,\theta)$.
- 1977Wa05: ⁹Be(p,pn) E=45, 47 MeV, measured excitation energy, energy sharing spectra.
- 1978Je01: 9 Be(p,pn) E=10-24 MeV, measured $\sigma(E_{p},\theta_{p},\theta_{n})$ in kinematically complete geometry. Deduced reaction mechanism.
- 1981Ov02: ${}^{9}\text{Be}(p,d)$ E=33 MeV, measured $\sigma(E_d)$. ${}^{8}\text{Be}$ resonances deduced Γ , α -reduced widths.
- 1984Wa21: 9Be(pol. p,pn) E=148.8 MeV, measured separation energy spectra, $\sigma(E_p, \theta_p, \theta_n)$, analyzing powers. 8Be deduced tentative deep-hole neutron states.
- 1984Za07: 9 Be(p,d) E=50.72 MeV, measured $\sigma(\theta)$. Deduced reaction mechanism. 8 Be levels deduced S.
- 1985Be30: 9 Be(p,np) E=1 GeV, measured $\sigma(E_{p1},\sigma(E_{n}))$. Deduced proton, neutron space distribution role.
- 1985Pu03: ⁹Be(p,d) E=9 MeV. Analyzed breakup $\sigma(\theta_{\alpha-1},\theta_{\alpha-2},E_{\alpha-1})$. ⁸Be deduced resonances, Γ.
- 1987Go27: 9 Be(p,d) E=18.6 MeV. Analyzed $\sigma(\theta)$. Deduced model parameters. 8 Be levels deduced spectroscopic factors.
- 1987Ka25: ⁹Be(pol. p,d) E=60 MeV, measured inclusive spectra, analyzing power vs. θ. Deduced continuum final state matrix element amplitudes.
- 1992Ko26: ⁹Be(p,d) E=9 MeV. Analyzed data. Deduced two-cluster system resonance parameter variation features.
- 1997Za06: 9 Be(p,d) E=16-390 keV, measured astrophysical S-factor, $\sigma(\theta)$.
- 1998Br10: 9 Be(pol. p,d) E=77-321 keV, measured $\sigma(\theta)$, A_{v} (THETA). Deduced reaction mechanism.
- 2000Sh01: 9 Be(p,np) E=70 MeV, measured proton spectra, neutron spectra, pp-, pn-coin, $\sigma(E,\theta)$. 8 Be deduced radius.
- 2001Ba47: 9 Be(p,d) E=16-700 keV. Analyzed σ , $\sigma(\theta)$, astrophysical S-factor, analyzing powers. Deduced R-matrix parameters.

E(level)	T _{1/2}	Comments
0.0 3038 25	5.5 eV <i>13</i> 1.50 MeV 2	
$11.3 \times 10^3 \ 3$	5.2 MeV <i>1</i>	E(level): from (1969Su02). Γ: from (1981Be53).
16.6×10^3		
16.9×10^3		
17.6×10^3		
18.2×10^3		
19.1×10^3		
19.21×10^3	208 keV 30	
19.4×10^3		
22.05×10^3		

⁹Be(d,t) **2004Ti06**

Type Author Citation Literature Cutoff Date
Update J. H. Kelley, J. L. Godwin, C. G. Sheu ENSDF 31-Mar-2004

1967Fi07: 9 Be(d,t) E=11.8 MeV, measured $\sigma(E_{d'},\theta)$, $\sigma(E_{t},\theta)$. 8 Be deduced levels, S.

1971Be52: 9 Be(d,t) E=2.5 MeV, measured $\sigma(E_t,\theta)$. 8 Be deduced variations in ghost anomaly.

1973Za06: 9 Be(d,t) E=13.6 MeV, measured σ (E_t,θ).

1974Bo42: ${}^{9}\text{Be}(d,t_0)$ E=0.9-2.5 MeV, measured $\sigma(E,E_{p0},\theta)$, $\sigma(E,E_{p1},\theta)$, $\sigma(E,E_{t0},\theta)$.

1974Fr02: 9 Be(d,t) E=0.6-2.7 MeV, measured $\sigma(\theta)$.

1975Zw01: 9 Be(d,t) E=0.9-3.1 MeV, measured $\sigma(E,\theta)$, $\sigma(E)$. 8 Be levels deduced S.

1976Da15: ${}^9\text{Be}(\text{pol. d,t}) \text{ E=15 MeV}$, measured $\sigma(\theta)$, $A_y(\text{THETA})$. ${}^8\text{Be}$ levels deduced S, Γ , J-admixtures. DWBA analysis.

1977Oo01: 9 Be(d,t) E=27.97 MeV, measured $\sigma(\theta)$. 8 Be deduced levels, L, S, ISOSPIN-mixing.

1978Ta04: 9 Be(d,t) E=12.17-14.43 MeV, measured $\sigma(\theta)$.

1981Ov02: ${}^{9}\text{Be}(d,t)$ E=26 MeV, measured $\sigma(E_{\alpha},\sigma(E_{d}),\sigma(E_{t}),\sigma(E({}^{6}\text{Li})),\sigma(E({}^{16}\text{O}))$. ${}^{8}\text{Be}$ resonances deduced Γ , α -reduced widths.

1984An16: 9 Be(pol. d,t) E=2-2.8 MeV, measured $\sigma(\theta)$, vector analyzing power vs. θ . Deduced reaction mechanism. DWBA.

1988Go02,1988Gu20: 9 Be(d,t) E=18 MeV, measured $\sigma(\theta)$. Deduced model parameters, spectroscopic factors. DWBA.

1989Sz02: 9 Be(d,t) E=6.7-7.5 MeV, measured $\sigma(\theta)$ vs. E. Deduced reaction mechanism.

1994Ab25: 9 Be(d,t) E=0.9-11.2 MeV, measured σ (E).

1994Ly02: ⁹Be(pol. d,t) E=1.3-3.1 MeV, measured vector analyzing power vs. *θ*,E. Deduced direct, resonant interactions interference evidence. DWBA, R-matrix analyses.

1995Ab41: 9 Be(d,t) E=3-11 MeV, measured $\sigma(\theta)$. Deduced σ .

1995Gu22: 9 Be(d,t) E=8-50 MeV, analyzed $\sigma(\theta)$. Deduced vertex constants. DWBA.

1997Ya02,1997Ya08: 9 Be(d,t) E_{C.M.}=57-139 MeV, measured energy spectra, $\sigma(\theta)$. Deduced σ , astrophysical S-factors.

2000Ge16: 9 Be(d,t) E=3-11 MeV, measured $\sigma(\theta)$, integral σ .

E(level)	$T_{1/2}$	S		Comments	
0.0		<u> </u>			
$3.03 \times 10^3 I$	1.43 MeV 6				
11.4×10^3					
16.6×10^3		0.074			
16.9×10^3		1.56			
17.6×10^3		0.22			
18144 5		0.17			
19071 <i>10</i>	270 keV 30	0.41			
19.26×10 ³ 3	220 keV 30	0.48			
$19.86 \times 10^3 5$	0.70 MeV 10	0.40	unresolved.		
20.1×10^3			unresolved.		

⁹Be(³He,α) **2004Ti06**

History

Type	Author	Citation	Cutoff Date
Update	J. H. Kelley, J. L. Godwin, C. G. Sheu	ENSDF	31-Mar-2004
Full Evaluation	D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J Millener et al.	NP A745, 155 (2004)	31-Mar-2004

1966Su04: ${}^{9}\text{Be}({}^{3}\text{He},\alpha) \text{ E}({}^{3}\text{He})=3.0 \text{ MeV}$, measured α - $\alpha(\theta)$. ${}^{8}\text{Be}$ deduced J, π .

1968Ar12: 9 Be(3 He, α) E=19-37 MeV, measured $\sigma(E_{\alpha})$, $\sigma(E_{\alpha},\theta)$. 8 Be deduced levels, L_n, S.

1973Ro28: ${}^{9}\text{Be}({}^{3}\text{He},\alpha) \text{ E=2.9-10.0 MeV, measured } \sigma(\text{E},\theta).$

1974Ca32: ${}^{9}\text{Be}({}^{3}\text{He},\alpha)$ E=5.0 MeV, measured α -continuum. Deduced contribution to 2α , 3α decay modes.

1975Bi14: ${}^{9}\text{Be}({}^{3}\text{He},\alpha)$ E=4, 5, 7 MeV, measured $\sigma(E_{\alpha},\theta)$. ${}^{8}\text{Be}$ deduced levels, isobaric spin mixing.

1975Ro09: ${}^{9}\text{Be}({}^{3}\text{He},\alpha)$ E=2-10 MeV, measured $\sigma(\text{E},\text{E}_{\alpha},\theta)$ α - α -coin, α - $\alpha(\theta,t)$. DWBA analysis.

1976Aj01: 9 Be(3 He, α) E=49.3 MeV, measured σ (E $_{\alpha}$, θ). 8 Be deduced levels, Γ .

1976Ka23: 9 Be(pol. 3 He, α) E=33.3 MeV, measured $\sigma(\theta)$, A(θ). Deduced J-dependence. 8 Be levels deduced S.

1985Pu03: 9 Be(3 He, α) E=9.94 MeV, analyzed breakup $\sigma(\theta_{\alpha-1}, \theta_{\alpha-2}, E_{\alpha-1})$. 8 Be deduced resonances, Γ.

1992Ko26: ⁹Be(³He,α) E=9.94 MeV E=0.68-1.98 MeV, analyzed data. Deduced two-cluster system resonance parameter variation features.

E(level)	$T_{1/2}$	S	Comments
$\begin{array}{c} 0.0 \\ 2900 \ 40 \\ 11.4 \times 10^{3} \end{array}$	1.35 MeV <i>15</i> ≈2.6 MeV		Γ: from (1966Ca08,1967Ca13).
16.6×10^{3} 16.9×10^{3} 17.6×10^{3}		1.74 0.72	
17.6×10^{3} 19.22×10^{3} 19.9×10^{3}	265 keV 30	1.17	
$22.05 \times 10^{3} 10$ $22.55 \times 10^{3} ? 6$	270 keV <i>70</i> 186 keV <i>32</i>		
$22.63 \times 10^{3} 10$ $22.63 \times 10^{3} 10$ $22.98 \times 10^{3} 10$	100 keV 50 230 keV 50		
$\approx 25.\times 10^3$?	200 110 / 00		

¹⁰Be(p,t) **2004Ti06**

Type Author Citation Literature Cutoff Date
Update J. H. Kelley, J. L. Godwin, C. G. Sheu ENSDF 31-Mar-2004

1979Fr04: 10 Be(p,t) E=42, 46 MeV, measured t-charged particle-coin, tn γ -coin. 8 Be deduced lowest J=0, T=2 positive parity level, systematics of isospin forbidden decay widths.

⁸Be Levels

 $\frac{\text{E(level)}}{0} \quad \frac{\text{L}}{27.49 \times 10^3} \quad 0$

10 B(p, 3 He) 2004Ti06

History Author Citation Literature Cutoff Date Update J. H. Kelley, J. L. Godwin, C. G. Sheu **ENSDF** 31-Mar-2004

1971Sq01: 10 B(p, 3 He) E=49.5 MeV, measured σ (E(3 He), θ). 1975Ro01: 10 B(p, 3 He) E=45 MeV, measured σ (E(3 He), θ). Deduced T=2 levels, completed isobaric quintet. 1977Av01: 10 B(p, 3 He) E=660 MeV, measured absolute σ . 1983LeZZ: 10 B(p, 3 He) E not given, measured Q. 8 Be deduced T=2 state mass excess. 1983Ya05: 10 B(p, 3 He) E=51.9 MeV, measured σ (θ). 8 Be deduced level isospin mixing ratio, β_{2} .

⁸Be Levels

E(level) 0.0 3.0×10^{3} 16.6×10^3 16.9×10^3

10 B(d, α) **2004Ti06**

History

Type	Author	Citation	Cutoff Date 31-Mar-2004
Update	J. H. Kelley, J. L. Godwin, C. G. Sheu	ENSDF	
Full Evaluation	D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J Millener et al.	NP A745, 155 (2004)	31-Mar-2004
100/1 > E 00.2	5MW 1 (T.) D. 1 1 1 1 1 8D 1		

1968Co31: 10 B(d, α) E=0.8-2.5 MeV, measured σ (E, θ). Deduced reaction mechanism. 8 Be transitions deduced L.

1969Na17: 10 B(d,α) E=0.6, 1.1, 1.45, 1.9 MeV, measured σ (E,E $_{\alpha}$,θ). 8 Be deduced level, Γ-level.

1969Nu01: 10 B(d,α) E=4 MeV, measured $\sigma(\theta)$. 8 Be resonance deduced E, Γ-level.

1970Ca12: 10 B(d,α) E=4-12 MeV, measured σ (E,E_α,θ). 8 Be deduced levels, Γ-level.

1970St02: 10 B(d,α) E=1-2 MeV, measured σ (E,E_α, θ (α)). 8 Be deduced level, Γ-level.

1971La14: 10 B(d, α) E=0.4, 1.0, 1.5 MeV, measured $2\alpha(\theta)$. Deduced reaction mechanism.

1971No04: 10 B(d,α) E not given, analyzed σ (E_α). 8 Be levels deduced Γ-level.

1973Ro28: 10 B(d, α) E=2.9-10.0 MeV, measured σ (E, θ).

1974La29: 10 B(d,α) E=1.83 MeV, measured σ (E_α,θ). 8 Be levels deduced Γ-level.

1975Ro09: 10 B(d, α) E=2.9=10 MeV, measured σ (E,E $_{\alpha}$, θ), α - α -coin, α - α (θ ,t). DWBA analysis.

1975Va04: 10 B(d, α) E=2.5-4.5 MeV, measured σ (E,E $_{\alpha}$, θ), α - α -coin, absolute σ .

1976Gr22: 10 B(d, α), measured $\sigma(\theta)$. Deduced 3α reaction mechanisms.

1985Pu03: 10 B(d,α) E=2.5, 3 MeV, analyzed breakup $\sigma(\theta_{\alpha-1},\theta_{\alpha-2},E_{\alpha-1})$. 8 Be deduced resonances, Γ.

1992Ko26: 10 B(d, α) E=2.5, 3 MeV, analyzed data. Deduced two-cluster system resonance parameter variation features.

1992PuZZ: 10 B(d, α) E=13.6 MeV, measured residual nucleus breakup spectra. 8 Be levels deduced $\Gamma_{\alpha}/\Gamma_{\nu}/\Gamma_{\nu}$.

2001Ho22: 10 B(d, α) E=120-340 keV, measured $\sigma(\theta)$, S-factor.

E(level)	J^{π}	T _{1/2}	Comments
0.0			
2.9×10^{3}			
11.4×10^3		≈4 MeV	Γ: from (1966Lo18,1969Lo01).
16.63×10^3	2+	90 keV 5	
16.92×10^3	2+	70 keV 5	
17.64×10^3			T=1
18150 <i>5</i>		138 keV 6	
19.2×10^3	3 ⁺		
19.86×10^3			$\Gamma \alpha / \Gamma_{\rm p} = 2.3 \ 5 \ (1992 \text{Pu} \cdot 06)$
20.1×10^3			$\Gamma \alpha / \Gamma_{\rm p} = 4.5 \ 6 \ (1992 \text{Pu} \cdot 06)$
21.5×10^3			
22.2×10^3			
$24.\times10^{3}$			
25.2×10^3			
$\approx 32. \times 10^3$?		$\approx 1 \; MeV$	from (1993Pa31).

¹¹**B**(³**He**, ⁶**Li**) 2004Ti06

History Author Citation Literature Cutoff Date Update J. H. Kelley, J. L. Godwin, C. G. Sheu **ENSDF** 31-Mar-2004

1974De25: 11 B(3 He, 6 Li) E=25.20-26.25 MeV, measured σ (E(3 He),E(6 Li), θ). Deduced reaction mechanism. 1986Ja02: 11 B(3 He, 6 Li) E=71.8 MeV, measured σ (θ). Deduced reaction mechanism. 1986Ja14: 11 B(3 He, 6 Li) E=71.8 MeV, measured σ (θ). Deduced reaction mechanism.

⁸Be Levels

Projectile: energy: E=71.8 MeV.

E(level) 0.0 3.0×10^{3} 16.6×10^3 16.9×10^3 17.6×10^3 18.2×10^{3}

¹²C(d, ⁶Li) **2004Ti06**

History

Type Author Citation Literature Cutoff Date
Update J. H. Kelley, J. L. Godwin, C. G. Sheu ENSDF 31-Mar-2004

1971Gu07: ${}^{12}\text{C}(d, {}^{6}\text{Li})$ E=19.5 MeV, measured $\sigma(E({}^{6}\text{Li}), \theta)$.

1971Mc04: 12 C(d, 6 Li) E=55 MeV, measured σ (E(6 Li)).

1972Be29: 12 C(d, 6 Li) E=28 MeV, measured $\sigma(\theta)$. 8 Be deduced relative S.

1972Co23: 12 C(d, 6 Li) E=28 MeV, measured σ (E(6 Li), θ). Deduced multistep process contributions.

1974Ga30 12 C(d, 6 Li) E=13.6 MeV, measured $\sigma(\theta)$.

1975Be01: 12 C(d, 6 Li) E=35 MeV, measured σ (E(6 Li), θ). Deduced α -S.

1975Go36: 12 C(d, 6 Li) E=13.2, 12.7 MeV, measured $\sigma(\theta)$.

1980Ya02: 12 C(d, 6 Li) E=54.25 MeV, measured $\sigma(\theta)$. 8 Be levels deduced S $_{\alpha}$. DWBA analysis.

1981Do15: 12 C(d, 6 Li) E=12.7, 13.2, 13.6 MeV, measured σ (E(6 Li)), σ (θ). 8 Be deduced level.

1981Ov02: $^{12}C(d,^{6}Li)$ E=33 MeV, measured $\sigma(E_{\alpha}),\,\sigma(E_{d})$. ^{8}Be resonance deduced $\Gamma,\,\alpha$ -reduced widths.

1983Sh39: 12 C(d, 6 Li) E=12.7, 13.2 MeV, measured $\sigma(\theta)$, ratios. 8 Be level deduced production mechanism. ToF.

1984Um04: 12 C(d, 6 Li) E=54.2 MeV, measured $\sigma(\theta)$. 8 Be levels deduced α -particle spectroscopic factors. Finite-range DWBA analysis.

1986Ya12: 12 C(pol. d, 6 Li) E=51.7 MeV, measured $\sigma(\theta)$, analyzing power vs. θ . 8 Be level deduced spectroscopic factors. Finite-range DWBA analysis.

1987Ta07: 12 C(pol. d, 6 Li) E=18, 22 MeV, measured $\sigma(\theta)$ iT₁₁, T₂₀, T₂₁, T₂₂ vs. θ . DWBA analysis.

1988Ra27: E=15 MeV, analyzed $\sigma(\theta)$. ⁸Be level deduced spectroscopic factors. DWBA analysis.

1989Go07: 12 C(d, 6 Li) E=50 MeV, measured σ (E(6 Li)), θ (6 Li). Deduced reaction mechanism, potential dependence.

1989Go26: 12 C(d, 6 Li) E=50 MeV, measured σ (E(6 Li), θ), σ (θ). DWBA.

E(level)	S_{α}
0.0	0.48
3.0×10^3	0.51
11.4×10^3	0.82
16.6×10^3	
16.9×10^3	

¹²C(³He, ⁷Be) **2004Ti06**

Type Author Citation Literature Cutoff Date
Update J. H. Kelley, J. L. Godwin, C. G. Sheu ENSDF 31-Mar-2004

1965En01: ${}^{12}\text{C}({}^{3}\text{He}, {}^{7}\text{Be}) \text{ E}=29.4 \text{ MeV}, \text{ measured } \sigma(\text{E}, \text{E}({}^{7}\text{Be}), \theta).$

1970De12: 12 C(3 He, 7 Be) E=30 MeV, measured σ (E(7 Be), θ). 8 Be deduced relative S.

1975Au01: $^{12}\text{C}(^{3}\text{He}, ^{7}\text{Be})$ E=26 MeV, measured $\sigma(\text{E}(^{7}\text{Be}), \theta)$. Deduced relative α -particle S.

1976Pa07: 12 C(3 He, 7 Be) E \leq 31 MeV, measured σ (E,E(7 Be), θ). Deduced reaction mechanism.

1976St11: 12 C(3 He, 7 Be) E=70 MeV, measured $\sigma(\theta)$. Deduced S_{α}. 8 Be deduced levels.

1986Ra15,1988Ra20,1988Ra21: 12 C(3 He, 7 Be) E=41 MeV, measured $\sigma(\theta)$. Deduced model parameters. DWBA analysis.

1989Si02: 12 C(3 He, 7 Be) E=33 MeV, measured $\sigma(\theta)$, particle spectra. Deduced model parameters.

1990Ra25: 12 C(pol. 3 He, 7 Be) E=41 MeV, analyzed $\sigma(\theta)$, asymmetry vs θ . Deduced model parameters, ejectile states role. Finite-range DWBA.

1990Sm04, 1991Be49: ${}^{12}\text{C}({}^{3}\text{He}, {}^{7}\text{Be})$ E=22.5 MeV, measured $\sigma(\text{E}({}^{7}\text{Be}))$, yields.

⁸Be Levels

E(level) 0.0 3.0×10³ 11.4×10³ 16.6×10³ 16.9×10³ 17.6×10³

12 C(α ,2 α), 12 C(α , 8 Be) 2004Ti06

History

Type	Author	Citation	Cutoff Date
Update	J. H. Kelley, J. L. Godwin, C. G. Sheu	ENSDF	31-Mar-2004
Full Evaluation	D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J Millener et al.	NP A745, 155 (2004)	31-Mar-2004

1969Do02: 12 C(α ,2 α) E=25 MeV, measured σ (E $_{\alpha-1}$,E $_{\alpha-2}$, θ_1 , θ_2). 1970Ja06: 12 C(α ,2 α) E $_{\alpha}$ =90 MeV, measured σ (E $_{\alpha}$,E(8 Be)).

1973Wo06: ${}^{12}\text{C}(\alpha, {}^{8}\text{Be}) \text{ E=65 MeV, measured } \sigma(\text{E}({}^{8}\text{Be})), \sigma(\theta).$

1976Sh02: 12 C(α ,2 α) E=90 MeV, measured $\sigma(\theta)$, α - $\alpha(\theta)$. 8 Be levels deduced α -S.

1976Wo11: 12 C(α , 8 Be) E=65-72.5 MeV, measured σ (E(8 Be), θ) 8 Be levels deduced absolute, relative S $_{\alpha}$, L. DWBA analysis.

1980Wa07 12 C(α , 2α) E=140 MeV, measured σ (E_{α -1},E_{α -2}, θ_{α -1}, θ_{α -2}). 8 Be levels deduced S. 1981Ru10: 12 C(α , 8 Be) E=20-50 MeV, measured σ (E_{α -1},E_{α -2}). Deduced reaction mechanism. 1989Ko55: 12 C(α , 2 C) E=20-30 MeV, measured $\alpha\alpha$ -correlation function.

1999Na05: 12 C(α ,2 α) E=580 MeV, measured $\sigma(\theta_1,\theta_2,E)$. Deduced dominance of quasifree knockout mechanism. DWIA calculations.

1999St06: 12 C(α ,2 α) E=200 MeV, measured E $_{\alpha}$, $\alpha\alpha$ -coin, σ (E, θ). Deduced α -cluster spectroscopic factors. DWIA analysis.

⁸Be Levels

E(level)

0.0 3.0×10^{3}

 11.4×10^3

Ag(¹⁴N, ⁸Be) **2004Ti06,1989He24**

Type Author Citation Literature Cutoff Date
Update J. H. Kelley, J. L. Godwin, C. G. Sheu ENSDF 31-Mar-2004

1989He24: Ag(14 N, 8 Be) E=35 MeV/nucleon, measured n(fragment)-coin, relative energy spectra following ejectile breakup. 8 Be level deduced E, Γ .

⁸Be <u>Levels</u>

 $\frac{\text{E(level)}}{0}$ $\frac{\text{T}_{1/2}}{0}$ 19234 12 210 keV 35