PSALTer results panel

 $S = \\ \int \int \int \int (\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} - 2r_{\frac{1}{3}} (\partial_{\beta}\mathcal{A}^{\beta}_{,\ \theta} \partial^{i}\mathcal{A}^{\alpha\beta}_{,\ \alpha} + \partial_{\alpha}\mathcal{A}^{\alpha\betai} \partial_{\theta}\mathcal{A}^{\beta}_{,\ \theta} - 2\partial^{i}\mathcal{A}^{\alpha\beta}_{,\ \alpha} \partial_{\theta}\mathcal{A}^{\beta}_{,\ \beta} - 2\partial^{i}\mathcal{A}^{\alpha\beta}_{,\ \alpha} \partial_{\theta}\mathcal{A}^{\beta}_{,\ \beta} - 2\partial^{i}\mathcal{A}^{\alpha\beta}_{,\ \alpha} \partial_{\theta}\mathcal{A}^{\beta}_{,\ \beta} + 2\partial_{\beta}\mathcal{A}_{,\ \alpha} \partial_{\theta}\mathcal{A}^{\beta}_{,\ \beta} + 2\partial_{\beta}\mathcal{A}_{,\ \alpha} \partial_{\theta}\mathcal{A}^{\beta}_{,\ \beta} + 3\partial_{\alpha}\mathcal{A}^{\alpha\betai} \partial_{\theta}\mathcal{A}^{\beta}_{,\ \beta} - 6\partial^{i}\mathcal{A}^{\alpha\beta}_{,\ \alpha} \partial_{\theta}\mathcal{A}^{\beta}_{,\ \beta} - 6\partial^{i}\mathcal{A}^{\alpha\beta}_{,\ \beta} - 6\partial^{i}\mathcal{A}^{\alpha\beta}_{,\ \alpha} \partial_{\theta}\mathcal{A}^{\beta}_{,\ \beta} - 6\partial^{i}\mathcal{A}^{\alpha\beta}_{,\ \beta} - 6\partial^{i}\mathcal{A}^{\alpha\beta}_{,$

Wave operator

	$^{0\overset{+}{.}}\mathcal{F}^{\parallel}$	$0.+f^{\parallel}$	0.+f1	${}^0\mathcal{H}^{\parallel}$										
${}^{0,^{+}}\mathcal{H}^{\parallel}\dagger$	$6k^2(-r_1+r_2)$	0	0	0										
^{0,+} f [∥] †	0	0	0	0										
${}^{0^{+}}_{\cdot}f^{\perp}_{}$ †	0	0	0	0										
^{0.} 'A"†	0	0	0	0	$\overset{1^{+}}{\cdot}\mathcal{H}^{\parallel}{}_{\alpha\beta}$	$^{1.}^+\mathcal{F}^{\perp}_{\alpha\beta}$	$1^+f^{\parallel}_{\alpha\beta}$	$^{1}\mathcal{A}^{\parallel}{}_{lpha}$	$^{1}\mathcal{H}^{\perp}{}_{\alpha}$	$^{1}f^{\parallel}_{\alpha}$	$^{1}f_{\alpha}^{\perp}$			
				$^{1\overset{+}{.}}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$k^2 (2r_1 + r_1)$	0	0	0	0	0	0			
				$^{1^{+}}\mathcal{H}^{\perp}\dagger^{lphaeta}$	0	0	0	0	0	0	0			
				$1^+f^{\parallel} \uparrow^{\alpha\beta}$	0	0	0	0	0	0	0			
				$^{1}\mathcal{A}^{\parallel}$ † lpha	0	0	0	$k^2 (-r. + 2r. + r.)$	0	0	0			
				$^{1}\mathcal{A}^{\perp}\dagger^{\alpha}$	0	0	0	0	0	0	0			
				$f^{\parallel} \uparrow^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	0	0	0	0	$^{2^{+}}\mathcal{A}^{\parallel}{}_{\alpha\beta}$	$\overset{2^+_{\cdot}}{f^{\parallel}}_{\alpha\beta}$	${}^{2}\mathcal{H}^{\parallel}{}_{\alpha\beta\chi}$
											$^{2^{+}}\mathcal{A}^{\parallel}\dagger^{\alpha\beta}$	0	0	0
											$2.^+f^{\parallel} \dagger^{\alpha\beta}$	0	0	0
											$2^{-}\mathcal{A}^{\parallel} + \alpha^{\alpha\beta\chi}$	0	0	$k^2 r$.

Saturated propagator

			0.+ τ⊥	0⁻σ∥										
^{0,+} σ †	$\frac{1}{6 k^2 (-r_1 + r_2)}$	0	0	0										
0. ⁺ τ †	0	0	0	0										
$0.^+\tau^{\perp}$ †	0	0	0	0										
$0^{-}\sigma^{\parallel}$ †	0	0	0	0	$^{1^+}\sigma^{\parallel}{}_{\alpha\beta}$	$1.^+\sigma^{\perp}_{\alpha\beta}$	$1.^{+}\tau^{\parallel}_{\alpha\beta}$	$^{1}\sigma^{\parallel}{}_{\alpha}$	$1 \sigma_{\alpha}$	$1^{\cdot}\tau^{\parallel}_{\alpha}$	$1 \tau_{\alpha}$			
				$^{1.^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{1}{k^2(2r.+r.)}$	0	0	0	0	0	0			
				$^{1^+}\sigma^{\scriptscriptstyle \perp}$ $^+$	0	0	0	0	0	0	0			
				$1.^+\tau^{\parallel}$ †	0	0	0	0	0	0	0			
				$\frac{1}{2}\sigma^{\parallel}\uparrow^{\alpha}$	0	0	0	$\frac{1}{k^2 \left(-r. + 2r. + r. \right)}$	0	0	0			
				$^{1}\sigma^{\perp}\dagger^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{2}\tau^{\parallel} + \alpha$	0	0	0	0	0	0	0			
				$1^{-}\tau^{\perp} + \alpha$	0	0	0	0	0	0	0	$^{2^+}\sigma^{\parallel}_{\alpha\beta}$	$2^+_{\cdot}\tau^{\parallel}_{\alpha\beta}$	$2 \sigma^{\parallel}_{\alpha\beta\chi}$
				'							$^{2^+}\sigma^{\parallel}$ † $^{\alpha\beta}$	0	0	0
											$^{2\overset{+}{.}}\tau^{\parallel}\dagger^{lphaeta}$	0	0	0
											$2^{-}\sigma^{\parallel} + \alpha^{\alpha\beta\chi}$	0	0	$\frac{1}{k^2 r_1}$

Source constraints

Spin-parity forn	Covariant form	Multiplicities			
$0.\sigma^{\parallel} == 0$	$\epsilon \eta_{\alpha\beta\chi\delta} \ \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$	1			
$0^+_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1			
$0^+_{\cdot}\tau^{\parallel}==0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$	1			
1 τ ^{⊥α} == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3			
1. T a == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3			
$\frac{1}{1}\sigma^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{etalpha\chi}=0$	3			
$1^+_{\cdot T} \parallel^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} = = \partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\chi}$	3			
$1^+ \sigma^{\perp}^{\alpha\beta} == 0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3			
$2^+_{\cdot \tau} \parallel^{\alpha\beta} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} $	5			
$2^+ \sigma^{\parallel^{\alpha\beta}} == 0$	$3\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 3\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\sigma^{\chi}_{\chi}^{\delta} = 2\partial_{\delta}\partial^{\beta}\partial^{\alpha}\sigma^{\chi}_{\chi}^{\delta} + 3(\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi})$	5			
Total expected gauge generators:					

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue:	$-\frac{3}{r_{i}}$ +	$\frac{3}{r2rr.}$ +	$-\frac{8}{2r_{.3}+r_{.5}}>0$
Polarisations:	2		

Unitarity conditions

 $r. \in \mathbb{R} \&\& ((r. < -2r. \&\& 2r. + r. < r. < 0) || (r. > -2r. \&\& (r. < 0 || r. > 2r. + r.)))$