Algebra 1A, lista 3.

Konwersatorium 24.10.2016, ćwiczenia 25.10.2016.

- 0S. Materiał teoretyczny: rzad elementu grupy, podgrupa generowana przez podzbiór/element grupy. Grupa cykliczna: definicja, wyliczenie wszystkich. Mnożenie permutacji w postaci dwuwierszowej, w postaci iloczynu cykli. Permutacja odwrotna. Rozkład permutacji na cykle rozłaczne. Inwersja w permutacji, transpozycja. Permutacje parzyste/nieparzyste. Znak permutacji.
 - 1K. Dana jest grupa G.
 - (a) Załóżmy, że $a \in G$ i aa = a. Udowodnić, że a = e.
 - (b) Załóżmy, że $a, b \in G$ i ab = e. Dowieść, że wtedy ba = e (więc $b = a^{-1}$).
- 2S. Niech $k \in \mathbb{N}, k > 1$. Sprawdzić, że zbiór $k\mathbb{Z} = \{kn : n \in \mathbb{Z}\}$ jest podgrupą grupy $(\mathbb{Z}, +)$ oraz, że jest to grupa izomorficzna z grupą $(\mathbb{Z}, +)$.
 - 3. Załóżmy, że H jest nietrywialną podgrupą grupy $(\mathbb{Z},+)$.
 - (a) Udowodnić, że istnieje liczba dodatnia, która należy do H.
- (b) Niech k będzie najmniejszą liczbą dodatnią należącą do H. Udowodnić, że $k\mathbb{Z} \subseteq H$. Udowodnić, że $k\mathbb{Z} = H$.

Wywnioskować stad, że każda podgrupa grupy $(\mathbb{Z},+)$ jest postaci $k\mathbb{Z}$ dla pewnego $k \in \mathbb{Z}$.

- 4. Załóżmy, że grupa G jest skończona. Udowodnić, że G jest cykliczna \iff istnieje $a \in G$ taki, że ord(a) = |G|.
 - 5. Udowodnić, że każda podgrupa grupy cyklicznej jest cykliczna.
- 6S. W każdej z grup z zad. 2.6 (tzn. zadanie 6 z listy 2) wskazać przynajmniej jedną nietrywialną podgrupę właściwą lub uzasadnić, że takiej podgrupy nie ma.
- nych. Jaki jest znak tej permutacji? Zapisać permutację σ^{-1} w postaci tabularycznej i jako iloczyn cykli rozłacznych.
 - 9. Wyznaczyć rzędy następujących permutacji z S_{10} :
 - (1)S (1,2)(4,5,6,7)
 - (2)S (1,2,3)(4,5,6,7)
- (3) K $\alpha \circ \beta$, gdzie $\alpha, \beta \in S_{20}$, α to cykl długości k, zaś β to cykl długości l oraz cykle te są rozłączne. Wsk: $ord(\alpha\beta)$ to NWW(k,l) (najmniejsza wspólna wielokrotność rzędów α i β). To trzeba udowodnić.
 - 10. Doskonałe tasowanie zbioru 2n kart do gry to permutacja:

Jaka jest najmniejsza liczba doskonałych tasowań 52 kart, po której karty są w wyjściowym układzie? Jaka jest ta liczba dla 50 kart?

11. Dla wielomianu $W(x_1, x_2, x_3, x_4)$ i permutacji $\sigma \in S_4$ definiujemy wielomian $W^{\sigma}(x_1, x_2, x_3, x_4)$ wzorem:

$$W^{\sigma}(x_1, x_2, x_3, x_4) = W(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(4)})$$

Niech $G_W = \{ \sigma \in S_4 : W = W^{\sigma} \}.$

Wyznaczyć G_W dla następujących wielomianów:

- (a) $(x_1 + x_2)(x_3 + x_4)$
- (b) $(x_1 x_2)(x_3 x_4)$
- (c) $(x_1 x_2)^2 + (x_2 x_3)^2 + (x_3 x_4)^2 + (x_4 x_1)^2$.

 G_W jest zawsze pewną podgrupą S_4 .

12*. Piętnastka to następująca układanka: w ramce z miejscami na 16 kostek umieszczone jest 15 kostek z liczbami od 1 do 15, jedno miejsce pozostaje wolne. W pojedynczym ruchu można przesuwać poziomo lub pionowo kostkę na wolne miejsce, z miejsca sąsiedniego. Udowodnić, że w ten sposób z układu:

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

nie można w żadnej liczbie ruchów przejść do układu:

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15