Четвертая задача

Векнков К. С. – М8О-105Б-23 – 7 вариант Май, 2024

Условие

Используя алгоритм Форда, найти минимальные пути из первой вершины во все достижимые вершины в нагруженном графе, заданном матрицей длин дуг.

Дано

Матрица длин дуг A:

$$\begin{pmatrix} \infty & 6 & 2 & 8 & \infty & \infty & \infty \\ \infty & \infty & \infty & 5 & 3 & \infty & \infty \\ 9 & \infty & \infty & 6 & \infty & 3 & \infty \\ \infty & 5 & 6 & \infty & 1 & 2 & 2 \\ \infty & \infty & \infty & 1 & \infty & \infty & 9 \\ \infty & \infty & \infty & 2 & \infty & \infty & 4 \\ \infty & 3 & \infty & \infty & 6 & 7 & \infty \end{pmatrix}$$

Решение

	V1	V2	V3	V4	V5	V6	V7	$\lambda_i^{(0)}$	$\lambda_i^{(1)}$	$\lambda_i^{(2)}$	$\lambda_i^{(3)}$	$\lambda_i^{(4)}$	$\lambda_i^{(5)}$
V1	∞	6	2	8	∞	∞	∞	0 /	0	0 6	0	0	0
V2	∞	∞	∞	5	3	∞	∞	∞	['] 6	6	6	6	6
V3	9	∞	∞	6	∞	3	∞			2		2	2
V4	∞	5	6	∞	1	2	2	∞	8	\ 8	₇ 7 \	$\begin{array}{c} 7 \\ 8 \end{array}$	7
V5	∞	∞	∞	1	∞	∞	9	∞	∞				8
V6	∞	∞	∞	2	∞	∞	4	∞	∞	$^{\downarrow}5$ \langle	5	5	5
V7	∞	∞	∞	∞	6	7	∞	∞	∞	10	√ 9	9	9

- 1. Из v_1 в v_2 : $v_1 v_2$, длина равна 6
 - (a) $\lambda_1^{(0)} + c_{12} = 0 + 6 = \lambda_2^{(1)}$
- 2. Из v_1 в v_3 : $v_1 v_3$, длина равна 2
 - (a) $\lambda_1^{(0)} + c_{13} = 0 + 2 = 2 = \lambda_3^{(1)}$
- 3. Из v_1 в v_4 : $v_1 v_3 v_6 v_4$, длина равна 7
 - (a) $\lambda_6^{(2)} + c_{64} = 5 + 2 = 7 = \lambda_4^{(3)}$
 - (b) $\lambda_3^{(1)} + c_{36} = 2 + 3 = 5 = \lambda_6^{(2)}$
 - (c) $\lambda_1^{(0)} + c_{13} = 0 + 2 = \lambda_3^{(1)}$
- 4. Из v_1 в v_5 : $v_1-v_3-v_6-v_4-v_5$, длина равна 8
 - (a) $\lambda_4^{(3)} + c_{45} = 7 + 1 = \lambda_5^{(4)}$
 - (b) $\lambda_6^{(2)} + c_{64} = 5 + 2 = \lambda_4^{(3)}$
 - (c) $\lambda_3^{(1)} + c_{36} = 2 + 3 = \lambda_6^{(2)}$
 - (d) $\lambda_1^{(0)} + c_{13} = 0 + 2 = \lambda_3^{(1)}$
- 5. Из v_1 в v_6 : $v_1 v_3 v_6$, длина равна 5
 - (a) $\lambda_3^{(1)} + c_{36} = 2 + 3 = \lambda_6^{(2)}$
 - (b) $\lambda_1^{(0)} + c_{13} = 0 + 2 = \lambda_3^{(1)}$
- 6. Из v_1 в v_7 : $v_1 v_3 v_6 v_7$, длина равна 9
 - (a) $\lambda_6^{(2)} + c_{67} = 5 + 4 = \lambda_7^{(3)}$
 - (b) $\lambda_3^{(1)} + c_{36} = 2 + 3 = \lambda_6^{(2)}$
 - (c) $\lambda_1^{(0)} + c_{13} = 0 + 2 = \lambda_3^{(1)}$