CLAIMS:

1. A method of forming silicon-doped aluminum oxide, comprising:

co-evaporating aluminum oxide and silicon monoxide; and depositing at least some of the evaporated aluminum oxide and silicon monoxide on a substrate to form the silicon-doped aluminum oxide on the substrate.

- 2. The method of claim 1 wherein the co-evaporating and depositing are conducted in a chamber, and wherein there is no O_2 flowed into the chamber during the co-evaporation and deposition.
- 3. The method of claim 1 wherein the co-evaporating comprises thermal evaporation of the aluminum oxide from single crystal sapphire.
- 4. The method of claim 1 wherein the co-evaporating comprises thermal evaporation of the silicon monoxide.
- 5. The method of claim 1 wherein the co-evaporating comprises ion beam evaporation of the aluminum oxide.

б

6.	T	he	method	of	claim	1	wherein	the	co-evaporating	comprises
electron	gun	eva	poration	of	the	alı	ıminum (oxide	. .	

- 7. The method of claim 1 wherein the co-evaporating comprises: thermal evaporation of the silicon monoxide; and one or both of electron gun evaporation and ion beam evaporation of the aluminum oxide.
- 8. The method of claim 1 wherein the substrate comprises silicon.
- 9. The method of claim 1 wherein the substrate comprises monocrystalline silicon.
- 10. The method of claim 1 wherein the substrate comprises a semiconductive material, and further comprising forming a conductive material on the deposited silicon-doped aluminum oxide; the conductive material being separated from the semiconductive material by the silicon-doped aluminum oxide.

б

11. A method of forming silicon-doped aluminum oxide comprising:

forming a vapor mixture of aluminum oxide and silicon monoxide; and

co-condensation of the aluminum oxide and silicon monoxide on a substrate to form the silicon-doped aluminum oxide on the substrate.

- 12. The method of claim 11 wherein the deposition is conducted in a chamber, and wherein there is no O_2 flowed into the chamber during the deposition.
- 13. The method of claim 11 wherein the substrate comprises silicon.
- 14. The method of claim 11 wherein the substrate comprises monocrystalline silicon.
- 15. The method of claim 11 wherein the substrate comprises a semiconductive material, and further comprising forming a conductive material on the deposited silicon-doped aluminum oxide; the conductive material being separated from the semiconductive material by the silicon-doped aluminum oxide.

and

16. A method of forming a transistor, comprising:

forming an insulating layer of silicon-doped aluminum oxide over a substrate, the forming the insulating layer of silicon-doped aluminum oxide comprising:

co-evaporation of aluminum oxide and silicon monoxide;

deposition of at least some of the evaporated aluminum oxide and silicon monoxide on the substrate to form the silicon-doped aluminum oxide on the substrate;

forming a patterned conductive material over the insulating layer of silicon-doped aluminum oxide; and

forming a pair of conductive source/drain regions spaced from one another by the patterned conductive material; the conductive material defining a transistor gate between the source/drain regions.

17. The method of claim 16 wherein the co-evaporation comprises:

thermal evaporation of the silicon monoxide; and
one or both of electron gun evaporation and ion beam evaporation
of the aluminum oxide.

18. The method of claim 16 wherein the patterned conductive material comprises a pair of opposing sidewalls, and further comprising patterning the insulating layer of silicon-doped aluminum oxide to be coextensive with the sidewalls of the patterned conductive material.

19. The method of claim 16 wherein the patterned conductive material comprises a pair of opposing sidewalls, and further comprising patterning the insulating layer of silicon-doped aluminum oxide to be coextensive with the sidewalls of the patterned conductive material; the patterning of the insulating layer of silicon-doped aluminum oxide occurring during the patterning of the conductive material.

- 20. The method of claim 16 wherein the substrate comprises silicon.
- 21. The method of claim 16 wherein the substrate comprises monocrystalline silicon, and wherein the forming the source/drain regions comprises implanting conductivity-enhancing dopant into the monocrystalline silicon.

22.	The method	of claim	16 wherein	the substrate	comprises
monocrystal	line silicon, an	d wherein	the forming	the source/dr	ain regions
comprises	implanting	conductiv	ity-enhancing	g dopant	into the
monocrystal	line silicon an	d through	the silicon-d	loped aluminu	m oxide.

23. A method of forming a memory device, comprising:

forming a first insulating layer over a substrate;

forming a floating gate over the first insulating layer;

forming a second insulating layer over the floating gate;

forming a control gate over the second insulating layer; and

at least one of the first and second insulating layers comprising

silicon-doped aluminum oxide, and being formed by:

co-evaporation of aluminum oxide and silicon monoxide; and

deposition of at least some of the evaporated aluminum oxide and silicon monoxide to form the silicon-doped aluminum oxide.

24. The method of claim 23 wherein both of the first and second insulating layers comprise silicon-doped aluminum oxide.

	25.	The	meth	od	of	claim	23	wherein	only	the	first	of	the	first
and	second	insu	lating	lay	ers	comp	rise	s silicon-	doped	i alu	ıminu	m (oxide	€.

- 26. The method of claim 23 wherein only the second of the first and second insulating layers comprises silicon-doped aluminum oxide.
- 27. The method of claim 23 wherein the co-evaporation and deposition is conducted in a chamber, and wherein there is no O_2 flowed into the chamber during the co-evaporation and deposition.
- 28. The method of claim 23 wherein the substrate comprises silicon.
- 29. The method of claim 23 wherein the substrate comprises monocrystalline silicon.