

Scalable Probabilistic Inference for Global Seismic Monitoring (S43B-2238)

CTBTO
PREPARATORY COMMISSION

Nimar S. Arora, Tony Dear, and Stuart Russell nimar@cs.berkeley.edu, tonydear@berkeley.edu, and russell@cs.berkeley.edu

Introduction

- The Comprehensive Nuclear-Test-Ban Treaty (CTBT) bans all nuclear explosions on Earth, regardless of purpose.
- Global seismic monitoring aims to recover all seismic events in the magnitude range of interest, given a set of detections.
- Data from the International Monitoring System (IMS) are processed in real time at the International Data Centre (IDC) in Vienna.

- The current automated system (**SEL3**) detects 69% of real events and creates twice as many spurious events.
- 16 human analysts find more events, correct existing ones, throw out spurious events, and generate **LEB** ("ground truth").
- Unreliable below magnitude 4 (about 1 kiloton).

Yellow stars – LEB, Red circles – SEL3. Results for 1 week.

The NET-VISA Model

• Unlike SEL3, which processes the data in stages, we propose a single vertically integrated probability model that is empirically estimated and includes seismic knowledge as prior information.

- Event magnitudes are distributed as per the Guttenberg
 Richter distribution (exponential distribution with rate log(10)).
- Event detection probabilities depend on the station, the seismic wave type (phase), event magnitude, and distance from the event to the station.

The NET-VISA Model (Continued)

• Event parameters – arrival time, azimuth, amplitude, etc. – have station-specific distributions.

- Events are generated by a time-homogenous Poisson process.
- Earthquakes are located according to a kernel density estimate, while explosions have a uniform prior.

- The residual distribution for the travel time, azimuth, and slowness are mostly modeled as Laplacian distributions.
- Noise detections are generated by a station-specific timehomogenous Poisson process.
- All parameters are estimated from historical training data.

Performing Inference

- Given the set of detections at all the stations, we need to infer the most probable explanation (MPE) a sequence of events and the association of events to detections.
- Our algorithm goes through a sequence of moves which mainly focus on events and detections in the current window.

• The birth move adds new events by probabilistically "inverting" detections.

• The re-associate move shuffles detections among the events.

The relocate move changes event locations.

Performing Inference (Continued)

Parallel and Distributed Computing

 \rightarrow D₄ D₅ D₆ D₇ D₈ D₉ D₁₀

- In actual implementation of the algorithm, we massively split up the computation using both multiple cores and multiple machines.
- We first split all detections among multiple threads and propose events independently of each other.
- During event relocation, each thread randomly perturbs an event independently of each other, each for a fraction of the original number of iterations. At the end, we simply keep the best one.
- We further parallelize the proposal phase by splitting detections among multiple machines in a computer cluster on Amazon's EC2.
- We use MIT's StarCluster software to manage such networks.

Results

- We train on 2.5 months of data and evaluate on one week.
- The predicted events are matched to a ground truth event from the LEB within 5 degrees and 50 seconds.
- Recall: % of ground truth events that matched a predicted event.
- Error: Average distance between predicted matched events.

m _b range	# of Events	SEL3		NET-VISA						
		Rec (%)	Err (km)	8 cores CPU-hours: 180 hrs Elapsed: 22.5 hrs		192 cores CPU-hours: 214 hrs Elapsed: 3.65 hrs				
				Rec (%)	Err (km)	Rec (%)	Err (km)			
0-2	74	64.9	101	86.5	79	86.5	90			
2-3	36	50.0	186	80.6	153	83.3	155			
3-4	558	66.5	104	87.1	120	86.7	118			
>4	164	86.6	70	92.7	74	92.7	69			
Avg	832	69.7	99	88.0	108	87.7	107			

- NET-VISA significantly outperforms SEL3, reducing missed events from 30.3% down to about 12%.
- Parallel computing leads to speedup with no loss of performance.

Results (Continued)

Evaluation on DPRK Nuclear Explosion (25 May 2009)

- NET-VISA also has no difficulty locating nuclear events.
- Our prediction agrees well with NEIC and LEB (roughly 5 km).
- NET-VISA associated the event with detections from 53 stations, versus 39 stations by SEL3.

Dealing with Large Aftershock Sequences

- Large events, such as the Dec. 2004 Sumatra earthquake and the March 2011 Tohoku earthquake, can overwhelm processors.
- IDC bulletins are often delayed by weeks or months.
- We take full advantage of parallel processing for speedup.
- Results are shown for experiments on 72 hours of data from the Sumatra event and 48 hours from the Tohoku event.

		CDII	Flancad	SEL3		NET-VISA	
Event	Cores	CPU- hours	Elapsed (hrs)	Recall (%)	Error (km)	Recall (%)	Error (km)
Sumatra	1				124	81.9	119
	8			70.8		81.9	113
	192	859	23.4			81.3	114
Tohoku	8	2010	251	74 7	119	78.9	108
	192	2470	38	71.7		78.4	101

• As with the validation results, using multiple cores has resulted in much more reasonable computation time.

Conclusions and Further Work

- NET-VISA reduces detection failures by more than a factor of 2 relative to SEL3.
- NET-VISA is currently being tested in the CTBTO environment for possible deployment in operations.
- We are now developing the SIG-VISA prototype with an extension of the generative model down to the waveform level, including the step of signal detection in the model.

Acknowledgements

This project has been funded by CTBTO and Amazon EC2.