Next-Gen Programming:

Maths Prompt Translator

Berlin

Boris Petreski, Ludvig Sanell, and Casper Kejser

Project objectives and scope

- Tasked with training model for code generation
- Our decision: mathematical queries into Python code

Development Journey

Choosing the model & initial testing

- Potential candidates
 - CodeGen
 - CodeT5
 - o GPT-2
- What we were after
- Initial model testing
 - Dataset & code
- Results
- Model sizes

Dataset

- Online datasets
- Entertained the idea of creating our own
- Tailored to our needs
- Started small
- Expanded with the help of a LLM
- Repeat entries
- Combining separate datasets
- Deleting repeats

Training and fine-tuning the model

- Base model chosen: CodeT5 (Initially large, changed to base)
- Dataset: combination of arithmetic custom-built, synthetic and well-known Python datasets
- Setup: training with multiple epochs and different parameters, training and validation loss monitored, progressive performance improvement
- Observation: accurate results, minor issues

Integration of complex datasets

APPS

 Broad spectrum of coding problems, from basic to advanced algorithmic tasks.

MBPP

 Logic-driven Python challenges, requiring reasoning and data manipulation.

Challenges: multiple valid solutions, different coding styles, edge cases

Testing and Results

- 5:1 split
- 1,914/11,484
- Same distribution of question types as the training set

Category-Specific Distribution

- Splitting of categories:
- Addition, Subtraction,
 Multiplication,
 Division, and
 Miscellaneous

Overall performance

- Accuracy: 99.27%
- 1,900/1,914
- Precision: 1.000
- Recall: 0.9927
- F1 Score: 0.9963

Error analysis

- Operand misplacement
- Formatting variations
- Syntax discrepancies in complex expressions

Example 1:

def solve(): return 72 / 71 def solve(): return 71 / 72

Example II:

def solve(): return (9 ** 2 + (5 * 6 - 4 ** 3))

def solve(): return (9 ** 2 + 5 * 6 - 4 ** 3)

Example III:

import math

def solve(): return math.sqrt(225)

def solve(): return sqrt(225)

Category Specific Performance

Category	Total Questions	Correct Answers	Accuracy (%)
Pure Addition	427	427	100
Pure Subtraction	440	440	100
Pure Division	462	461	99.78
Pure Multiplication	509	509	100
Miscellaneous	63	76	82.89
Overall	1,914	1,901	99.27

Fig. 2. Accuracy per arithmetic category.

The UI implementation

- Frontend (HTML & JS): Simple input field for math problems, syntax highlighting
- Backend (Flask & Python): Processes user input and translates it into executable Python code
- Al Model integration: fine-tuned CodeT5
- Initially execution results too trivial for problems with variables

Key Lessons and Conclusion

- Effectiveness of
 - Fine-Tuning
- Error Analysis and
 - Superficial
 - Discrepancies
- Importance of Dataset
 - Diversity

Q&A

If anyone has any questions, then feel free to ask!