# **Modeling Instructions**

#### **NEW**

In the New window, click Model Wizard.

#### **MODEL WIZARD**

- 1. In the Model Wizard window, click **2D**.
- 2. In the Select Physics tree, select Fluid Flow>Single-Phase Flow>Laminar Flow (spf).
- 3. Click Add.
- 4. In the Select Physics tree, select Chemical Species Transport of Diluted Species (tds).
- 5. Click Add.
- 6. Click Study.
- 7. In the Select Study tree, select **General Studies>Stationary**.
- 8. Click **Done**

# **GLOBAL DEFINITIONS**

### Parameters 1

- 1. In the Model Builder window, under Global Definitions click Parameters 1.
- 2. In the Settings window for Parameters, locate the Parameters section.
- 3. In the table, enter the following settings:

| Name | Expression     | Value                       | Description                      |
|------|----------------|-----------------------------|----------------------------------|
| Dg   | 6.7e-10[m^2/s] | 6.7E-10 m <sup>2</sup> /s   | Diffusion coefficient of glucose |
| Dia  | 2.54 [mm]      | 2.54E-3 m                   | Diameters of inlets and outlet   |
| C0   | 5.56 [mM]      | 5.56 mol/m <sup>3</sup>     | Concentration of glucose         |
| Q1   | 100e-6 [L/min] | 1.6667E-9 m <sup>3</sup> /s | Flow rate of inlet 1 (buffer)    |
| QR   | 1              | 1                           | Flow ratio Q1/Q2 (Q2= glucose)   |
| LC   | 65 [mm]        | 0.065 m                     | Channel length                   |
| WC   | 12 [mm]        | 0.012 m                     | Channel width                    |
| rho  | 1 [kg/L]       | 1000 kg/m <sup>3</sup>      | Density of water                 |

#### **GEOMETRY 1**

1. Change Length unit to: mm

# Rectangle 1 (r1)

- 1. In the Geometry toolbar, click **Rectangle**.
- 2. In the Settings window for Rectangle, locate the Size and Shape section.
- 3. In the Width text field, type: WC.
- 4. In the Height text field, type: **LC**.
- 5. In the Settings window for Rectangle, locate the Position section.
- 6. In the x text field, type: -WC/2.
- 7. In the y text field, type: -22[mm].
- 8. Click Build Selected.

# Fillet 1 (fil1)

- 1. In the Geometry toolbar, click **Fillet**.
- 2. Select the four corners of the rectangle (r1-1, 2, 3, 4)
- 3. In the Radius text field, type: 6 [mm]
- 4. Click **Build Selected**.

# Circle 1 (c1)

- 1. In the Geometry toolbar, click **Circle**.
- 2. In the Settings window for Circle, locate the Size and Shape section.
- 3. In the Radius text field, type: Dia/2.
- 4. In the Settings window for Circle, locate the Position section.
- 5. In the y text field, type: -12[mm].
- 6. Click Build Selected.

# Circle 2 (c2)

- 1. In the Geometry toolbar, click Circle.
- 2. In the Settings window for Circle, locate the Size and Shape section.
- 3. In the Radius text field, type: **Dia/2**.
- 4. Click **Build Selected**.

# Circle 3 (c3)

- 1. In the Geometry toolbar, click Circle.
- 2. In the Settings window for Circle, locate the Size and Shape section.
- 3. In the Radius text field, type: **Dia/2**.
- 4. In the Settings window for Circle, locate the Position section.
- 5. In the y text field, type: **33[mm]**.
- 6. Click Build Selected.

# Difference 1 (dif1)

- 1. In the Geometry toolbar, click **Booleans and Partitions** and choose **Difference**.
- 2. Select the object fil1 only.
- 3. In the Settings window for Difference, locate the Difference section.
- 4. Find the Objects to subtract subsection. Select the Activate Selection toggle button.
- 5. Select the objects c1, c2, and c3.
- 6. In the Geometry toolbar, click Build All.

# Line Segment 1 (Is1)

- 1. In the Model Builder window, under Component 1 (comp1) right-click Geometry 1 and choose Line Segment.
- 2. In the Settings window for Line Segment, locate the Starting Point section.
- 3. For specify, select: **Coordinates**.
- 4. In the x text field, type: -WC/2.
- 5. In the y test field, type: **19 [mm]**.

- 6. In the Settings window for Line Segment, locate the Endpoint section.
- 7. For specify, select: **Coordinates**.
- 8. In the x text field, type: WC/2.
- 9. In the y test field, type: 19 [mm].
- 10. In the Geometry toolbar, click Build All.

#### **MATERIALS**

#### Material 1 (mat1)

- 1. In the Model Builder window, under Component 1 (comp1) right-click Materials and choose **Add Material from Library**.
- 2. In the Add Material tree, select Liquids and Gases>Liquids>Water.
- 3. Click + Add to Component.

# **LAMINAR FLOW (SPF)**

#### Inlet 1

- In the Model Builder window, under Component 1 (comp1) right-click Laminar Flow (spf) and choose Inlet.
- 2. Select Boundaries 8, 9, 15, and 16.
- 3. In the Settings window for Inlet, locate the Boundary Condition section and select Mass flow.
- 4. In the normal mass flow rate text field, type: Q1\*rho.
- 5. In the channel thickness text field, type: **0.1 [mm]**.

#### Inlet 2

- In the Model Builder window, under Component 1 (comp1) right-click Laminar Flow (spf) and choose Inlet.
- 2. Select Boundaries 10, 11, 17, and 18.
- 3. In the Settings window for Inlet, locate the Boundary Condition section and select Mass flow.
- 4. In the normal mass flow rate text field, type: Q1\*rho/QR.
- 5. In the channel thickness text field, type: **0.1 [mm]**.

# Outlet 1

- 1. In the Model Builder window, under Component 1 (comp1) right-click Laminar Flow (spf) and choose **Outlet**.
- 2. Select Boundaries 12, 13, 19, and 20.

# TRANSPORT OF DILUTED SPECIES (TDS)

### Transport Properties

- 1. In the Settings window for Transport Properties, locate the Convection section.
- 2. Under Velocity field, change u to: Velocity field (spf).
- 3. In the Settings window for Transport Properties, locate the Diffusion section.
- 4. Change material to: Water (mat1).
- 5. In the diffusion coefficient text field, type: **Dg**.

# Inflow 1

- 1. In the Model Builder window, under Component 1 (comp1) right-click Transport of diluted Species (tds) and choose **Inflow**.
- 2. Select Boundaries 8, 9, 15, and 16.

# Inflow 2

- 1. In the Model Builder window, under Component 1 (comp1) right-click Transport of diluted Species (tds) and choose **Inflow**.
- 2. Select Boundaries 10, 11, 17, and 18.
- 3. In the Settings window for Inlet, locate the Concentration section.
- 4. In the  $c_{0,c}$  text field, type: **CO**.

# Outflow 1

- 1. In the Model Builder window, under Component 1 (comp1) right-click Transport of diluted Species (tds) and choose **Outflow**.
- 2. Select Boundaries 12, 13, 19, and 20.

### MESH 1

- 1. In the Model Builder window, under Component 1 (comp1) click Mesh 1.
- 2. In the Settings window for Mesh, locate the Physics-Controlled Mesh section.
- 3. From the Element size list, choose **Fine**.
- 4. Click Build All.

### STUDY 1

# Parametric Sweep

- 1. In the Model Builder window, right-click Study 1 and choose Parametric Sweep.
- 2. In the Settings window for Parametric Sweep, locate the Study Settings section.
- 3. Right-click Parameter name in the table, and select Add.
- Select QR (flow ratio Q1/Q2 (Q2 = glucose)).
- 5. In the text field under Parameter value list in the table, type: 1, 2, 4.
- 6. Click on **Compute**.

#### **RESULTS**

### Velocity (spf)

Add a **Streamline** node, to generate streamlines on top of the 2D velocity color map.

- 1. In the Velocity (spf) toolbar, click **Streamline**.
- 2. In the Settings window for Streamline, locate the Streamline Positioning section.
- 3. For positioning, select: Uniform density.
- 4. In the Separating distance text field, type: **0.025**.
- 5. In the Settings window for Streamline, locate the Coloring and Style section.
- 6. For Color, select: Gray.
- 7. Click Plot.

# Velocity (1D)

- 1. In the Results toolbar, click **Add Plot Group**, and select **1D Plot Group**.
- 2. In the Label text field, type: Velocity.
- 3. In the Velocity toolbar, click **Line Graph**.
- 4. Select Boundary 3 (long horizontal line at 19 mm).
- 5. In the Settings window for Line Graph, locate the Legends section.
- 6. Check Show Legends.
- 7. Click Plot.

# Concentration (1D)

- 1. In the Results toolbar, click **Add Plot Group**, and select **1D Plot Group**.
- 2. In the Label text field, type: Concentration.
- 3. In the Velocity toolbar, click Line Graph.
- 4. Select Boundary 3 (long horizontal line at 19 mm).
- 5. In the Settings window for Line Graph, locate the y-Axis Data section.
- 6. In the Expression text field, type: c.
- 7. In the Settings window for Line Graph, locate the Legends section.
- 8. Check Show Legends.
- 9. Click Plot.





