fn make_randomized_response_bool

Vicki Xu, Hanwen Zhang, Zachary Ratliff
May 5, 2025

This proof resides in "contrib" because it has not completed the vetting process.

Proves soundness of make_randomized_response_bool in mod.rs at commit f5bb719 (outdated¹).

make_randomized_response_bool accepts a parameter prob of type Q and a parameter constant_time
of type bool. The function on the resulting measurement takes in a boolean data point arg and returns
the truthful value arg with probability prob, or the complement !arg with probability 1 - prob. The
measurement function makes mitigations against timing channels if constant_time is set.

Warning 1 (Code is not constant-time). make_randomized_response_bool takes in a boolean constant_time parameter that protects against timing attacks on the Bernoulli sampling procedure. However, the current implementation does not guard against other types of timing side-channels that can break differential privacy, e.g., non-constant time code execution due to branching.

PR History

• Pull Request #490

1 Hoare Triple

Preconditions

- Variable prob must be of type Q0
- Variable constant_time must be of type bool
- Type bool must have trait SampleBernoulli<Q0>
- Type Q0 must have trait Float

Pseudocode

```
def make_randomized_response_bool(prob: QO, constant_time: bool):
    input_domain = AtomDomain(bool)
    output_domain = AtomDomain(bool)
    input_metric = DiscreteMetric()
    output_measure = MaxDivergence(QO)

if (prob < 0.5 or prob >= 1): #
    raise Exception("probability must be in [0.5, 1)")
```

¹See new changes with git diff f5bb719..48d3d28 rust/src/measurements/randomized_response/mod.rs

```
9
      c = prob.inf_div((1).neg_inf_sub(prob)).inf_ln()
      def privacy_map(d_in: u32) -> Q0: #
11
12
          if d_in == 0:
13
              return 0
          else:
14
               return c
      def function(arg: bool) -> bool: #
17
          sample = not sample_bernoulli_float(prob, constant_time)
18
19
          return arg ^ sample
20
21
      return Measurement(input_domain, output_domain, function, input_metric, output_measure,
      privacy_map)
```

Postcondition

For every setting of the input parameters (prob, constant_time, QO) to make_randomized_response_bool such that the given preconditions hold, make_randomized_response_bool raises an exception (at compile time or run time) or returns a valid measurement. A valid measurement has the following properties:

- 1. (Data-independent runtime errors). For every pair of elements x, x' in input_domain, function(x) returns an error if and only if function(x') returns an error.
- 2. (Privacy guarantee). For every pair of elements x, x' in input_domain and for every pair (d_in,d_out), where d_in has the associated type for input_metric and d_out has the associated type for output_measure, if x, x' are d_in-close under input_metric, privacy_map(d_in) does not raise an exception, and privacy_map(d_in) \leq d_out, then function(x), function(x') are d_out-close under output_measure.

2 Proof

Proof. (Privacy guarantee.)

Note 1. The following proof makes use of the following lemma that asserts the correctness of a Bernoulli sampler function.

Lemma 2.1. sample_bernoulli_float satisfies its postcondition.

sample_bernoulli can only fail due to lack of system entropy. This is usually related to the computer's physical environment and not the dataset. The rest of this proof is conditioned on the assumption that sample_bernoulli does not raise an exception.

Let x and x' be datasets in the input domain (either \top or \bot) that are d_in-close with respect to input_metric. Here, the metric is DiscreteMetric which enforces that d_in ≥ 1 if $x \ne x'$ and d_in = 0 if x = x'. If x = x', then the output distributions on x and x' are identical, and therefore the max-divergence is 0. Consider $x \ne x'$ and assume without loss of generality that $x = \top$ and $x' = \bot$. For shorthand, we let p represent prob, the probability that sample_bernoulli_float returns \top . Observe that p = [0.5, 1.0) otherwise make_randomized_response_bool raises an error.

We now consider the max-divergence $D_{\infty}(Y||Y')$ over the random variables Y = function(x) and Y' = function(x').

$$\begin{aligned} \max_{x \sim x'} D_{\infty}(Y||Y') &= \max_{x \sim x'} \max_{S \subseteq Supp(Y)} \ln \left(\frac{\Pr[Y \in S]}{\Pr[Y' \in S]} \right) \\ &\leq \max_{x \sim x'} \max_{y \in Supp(Y)} \ln \left(\frac{\Pr[Y = y]}{\Pr[Y' = y]} \right) \end{aligned} \qquad \text{Lemma 3.3 [1]}$$

$$&= \max_{x \sim x'} \max \left(\ln \left(\frac{\Pr[Y = \top]}{\Pr[Y' = \top]} \right), \ln \left(\frac{\Pr[Y = \bot]}{\Pr[Y' = \bot]} \right) \right)$$

$$&= \max \left(\ln \left(\frac{p}{1 - p} \right), \ln \left(\frac{1 - p}{p} \right) \right)$$

$$&= \ln \left(\frac{p}{1 - p} \right)$$

We let $c = \text{privacy}_{\text{map}}(d_{\text{in}}) = Q0.\inf_{\text{ln}}(\text{prob.inf}_{\text{div}}(1.\text{neg}_{\text{inf}}_{\text{sub}}(\text{prob})))$. The computation of c rounds upward in the presence of floating point rounding errors. This is because $1.\text{neg}_{\text{inf}}_{\text{sub}}(\text{prob})$ appears in the denominator, and to ensure that the bound holds even in the presence of rounding errors, the conservative choice is to round down (so the quantity as a whole is bounded above). Similarly, $\inf_{\text{div}}_{\text{div}}$ and $\inf_{\text{ln}}_{\text{ln}}$ round up.

When $\mathtt{d_in} > 0$ and no exception is raised in computing $\mathtt{c} = \mathtt{privacy_map}(\mathtt{d_in})$, then $\ln\left(\frac{p}{1-p}\right) \le \mathtt{c}$. Therefore we've shown that for every pair of elements $x, x' \in \{\bot, \top\}$ and every $d_{DM}(x, x') \le \mathtt{d_in}$ with $\mathtt{d_in} \ge 0$, if x, x' are $\mathtt{d_in\text{-}close}$ then $\mathtt{function}(x)$, $\mathtt{function}(x') \in \{\bot, \top\}$ are $\mathtt{privacy_map}(\mathtt{d_in})$ -close under $\mathtt{output_measure}$ (the Max-Divergence).

References

[1] Shiva P. Kasiviswanathan and Adam Smith. On the "semantics" of differential privacy: A bayesian formulation. *Journal of Privacy and Confidentiality*, 6(1), June 2014.