Models of Infectious Diseases (II)

<Last Updated on October 14, 2020>

Taisuke Nakata

Graduate School of Public Policy University of Tokyo

- Useful references:
 - Andrew Atkeson "On Using SIR Models to Model Disease Scenarios for COVID-19."
 - https://www.minneapolisfed.org/research/quarterly-review/on-using-sir-models-to-model-disease-scenarios-for-covid-19
 - Ben Moll "Lockdowns in SIR Models."
 - https://benjaminmoll.com/wp-content/uploads/2020/05/SIR_notes.pdf

Outline

(1) SI Model

(2) SIS Model

(3) SIR Model

SIR Model

SIR Model

- Covid-19, etc.
- After you get infected, you can recover with immunity (so that you won't get infected again).
- Initially, everyone can get infected.
- A backward-looking model (easy to solve)
- Not optimization based.

- S_t : Number of people susceptible to the disease at time t.
- I_t : Number of people with the disease at time t.
- R_t : Number of people recovered from disease at time t.
- Normalization: $S_t + I_t + R_t = 1$.

- With probability γI_t , susceptible person at time t becomes infected at time t+1.
- With probability τ , infected person at time t recover without obtaining immunity at time t+1.
- Initial condition: $I_1 = \epsilon$ and $R_1 = 0$.

•
$$S_{t+1} - S_t = -\gamma I_t S_t$$

$$\bullet I_{t+1} - I_t = \gamma I_t S_t - \tau I_t$$

$$\bullet R_{t+1} - R_t = \tau I_t$$

$$\bullet S_t + I_t + R_t = 1$$

Find "steady states."

$$\bullet \ S_{SS} - S_{SS} = -\gamma I_{SS} S_{SS}$$

$$\bullet \ I_{SS} - I_{SS} = \gamma I_{SS} S_{SS} - \tau I_{SS}$$

$$\bullet \ R_{SS} - R_{SS} = \tau I_{SS}$$

$$\bullet S_{SS} + I_{SS} + R_{SS} = 1$$

Thus, at a steady state, we have

•
$$0 = -\gamma I_{SS} S_{SS}$$

•
$$0 = \gamma I_{SS} S_{SS} - \tau I_{SS}$$

•
$$0 = \tau I_{SS}$$

$$\bullet S_{SS} + I_{SS} + R_{SS} = 1$$

- From the third equation, we have
 - $I_{SS} = 0$
- We are left with

$$\bullet \ 0 = \gamma * 0 * S_{SS}$$

•
$$S_{ss} + R_{ss} = 1$$

- $\bullet \ 0 = \gamma * 0 * S_{SS}$
- $\bullet S_{ss} + R_{ss} = 1$
- Any S_{ss} and R_{ss} satisfying the two equations above can be steady states.
- For example, $(S_{ss} = 1, R_{ss} = 0, I_{ss} = 0)$ is one steady state.

• Which steady state the economy will end up depends on the initial condition.

Compute "dynamics" (convergence towards steady state)

- Suppose that $I_1 = \epsilon$ and $R_1 = 0$ (i.e. $S_1 = 1 \epsilon$).
- Compute $\{I_t, S_t, R_t\}_{t=2}^{\infty}$
- How? Recursively.
 - $S_2 S_1 = -\gamma I_1 S_1$
 - $I_2 I_1 = \gamma I_1 S_1 \tau I_1$
 - $R_2 R_1 = \tau I_1$
- $S_2 = (1 \epsilon) \gamma \epsilon (1 \epsilon) = (1 \epsilon)(1 \gamma \epsilon)$
- $I_2 = \epsilon + \gamma \epsilon (1 \epsilon) \tau \epsilon = \epsilon (1 + \gamma (1 \epsilon)) \tau \epsilon$
- $R_2 = 0 + \tau \epsilon = \tau \epsilon$

• Basic reproductive number: $X_0 = \frac{\gamma}{\tau}$

• Effective reproductive number: $X_t^e = \frac{\gamma}{\tau} S_t$

• Herd immunity threshold: $S^* = \frac{1}{X_0}$ (or $R^* = 1 - S^*$)

$$\bullet I_{t+1} - I_t = \gamma I_t S_t - \tau I_t > 0$$

$$\Rightarrow \gamma S_t - \tau > 0$$

$$\Rightarrow S_t > \frac{\tau}{\gamma} = \frac{1}{X_0} = S^*$$

• I_t peaks when $S_t = S^*$.

$$\bullet I_{t+1} - I_t = \gamma I_t S_t - \tau I_t < 0$$

$$\Rightarrow \frac{\gamma}{\tau} < \frac{1}{S_t}$$

$$\Rightarrow X_0 < \frac{1}{S_t}$$

$$\Rightarrow X_0 < 1 < \frac{1}{S_t}$$

- If $X_0 < 1$, then $X_0 < \frac{1}{S_t}$ because $S_t < 1$ for any t.
- So, if $X_0 < 1$, I_t declines at any time.

Compute "dynamics" (exogenous shocks)

- Introduce "Lockdown" policy.
 - α_t : degree of lockdown at time t.

$$\bullet S_{t+1} - S_t = -\gamma (1 - \alpha_t) I_t S_t$$

•
$$I_{t+1} - I_t = \gamma (1 - \alpha_t) I_t S_t - \tau I_t$$

$$\bullet \ R_{t+1} - R_t = \tau I_t$$

$$\bullet S_t + I_t + R_t = 1$$

• Suppose that $\alpha_t = 0.5, 0.25, 0.75$ for all $41 \le t \le 100$.

Analyze "welfare."

- Suppose that $y_t = (S_t + R_t)(1 \alpha_t)$. Y_t is output.
- Define a per-period utility at time t as follows.

$$U_t = Y_t - \chi I_t$$

• Define welfare at time t as follows.

$$W_{t} = \sum_{k=0}^{\infty} \beta^{k} U_{t+k}$$

$$= U_{t} + \beta U_{t+1} + \beta^{2} U_{t+2} + \beta^{3} U_{t+3} + \cdots$$

• Suppose that $\alpha_t = 0.5, 0.25, 0.75$ for all $41 \le t \le 100$.

Exercises

1. SIR-D Model

$$\bullet \, S_{t+1} - S_t = -\gamma I_t S_t$$

•
$$I_{t+1} - I_t = \gamma I_t S_t - \tau I_t - \phi I_t$$

$$\bullet R_{t+1} - R_t = \tau I_t$$

$$\bullet D_{t+1} - D_t = \phi I_t$$

$$\bullet S_t + I_t + R_t + D_t = 1$$

SIR-D Model

• Examine the steady state of the model.

• Compute convergence to a steady state.

Analyze the effect of a lockdown policy.

• Analyze the welfare effect of a lockdown policy.

2. SEIR Model

$$\bullet \, S_{t+1} - S_t = -\gamma I_t S_t$$

•
$$E_{t+1} - E_t = \gamma I_t S_t - \sigma E_t$$

•
$$I_{t+1} - I_t = \sigma E_t - \tau I_t$$

$$\bullet R_{t+1} - R_t = \tau I_t$$

$$\bullet S_t + E_t + I_t + R_t = 1$$

SEIR Model

• Examine the steady state of the model.

• Compute convergence to a steady state.

• Analyze the effect of a lockdown policy.

• Analyze the welfare effect of a lockdown policy.