UMA ABORDAGEM COM MODELOS DE APRENDIZADO DE MÁQUINA

PROF. DR. MURILO COELHO MALDI

BRUNO LEANDRO PEREIRA RA 791067

CARLOS EDUARDO FONTANELI RA 769949

IVAN DUARTE CALVO RA 790739

Problemática

Escolha e estudo de conjunto de dados, gerar e avaliar um modelo classificador

Conjunto de Dados

O dataset escolhido possui o objetivo de classificar o remédio com a melhor resposta utilizado para o tratamento des pacientes com uma determinada doença.

Atributos

- Idade
- Sexo
- Pressão Sanguínea
- Nível de Colesterol
- Relação Sódio/Potássio
- Rémedio Indicado(Alvo)

Estudo dos Dados

Realização da análise descritiva e exploratória dos dados.

Treino, Teste e Avaliação de Modelos

Implementação dos modelos de DECISION TREE, KNN E GAUSSIAN NAYVE BAYES, com treino, teste e métricas de avaliação.

Objetivos & Metodologia

Objetivos

Gerar modelos preditivos e analisar o desempenho dos mesmo para o conjunto de testes. Ademais, buscou-se inferir as qualidades e defeitos de cada modelo.

Metodologia

Análise exploratória dos dados.

Implementação sistematizada de modelos, com treino e teste sobre o conjunto de dados.

Avaliação dos resultados obtidos.

Ferramentas

Linguagem de programação multiparadigma orientada a objetos: Python.

Jupiter Notebooks para realização do relatório.

Canva para elaboração da apresentação.

Amálise Exploratória

Obtenção de informações

mais palpáveis e interpretativas

Busca de possíveis **outliers** e/ou desbalanceamentos

Representação visual dos dados através de gráficos

Boxplot das variáveis para representação de um conjunto de observações de uma variável quantitativa

Colesterol

- Distribuição equilibrada
- Recorrência um pouco maior na classe alto(high)

Nível de colesterol (alto ou baixo)

Pressão Sanguinea

- Distribuição relativamente equilibrada
- Maior recorrência na classe alta(high) seguida da baixa(low)
- Condizente com o contexto de pacientes doentes

Pressão sanguínea (baixo, normal ou alto)

Sexo

- Distribuição equilibrada
- Recorrência um pouco maior na classe masculino(M)

Idade

• Maiores recorrências tendem a ser ao redor da média, similar a uma distribuição normal

 Comportamento condizente visto que o atibuto medida um fenômeno natural

Proporção de Sódio para Potássio no Sangue

 Predominância nos níveis próximos de 10, o que pode-se ser um resultado esperado para pessoas com alguma irregularidade dado que níveis recomendados de proporção são de 1:3

Boxplots das variáveis contínuas e discretas

- Sem outliers em Idade, possivelmente relacionado ao provável comportamento de distribuição normal
- Possíveis outliers em Sódio-Potássio
- Alguns valores acima de 32%;

Idade

Sódio-Potássio

Remédio (alvo)

 Classes A, B e C com significativamente menos recorrência;

 Classe Y com recorrência 4x maior que outras classes;

Pré-Processamento Base

Separação entre atributos e alvo;

Discretização dos atributos nominais ([0, número_de_classes - 1]);

Divisão entre treino(70%) e teste(30%);

Normalização dos atributos contínuos para KNN(cal. distancia) e GaussNB(distribuição gaussiana);

Pré-Processamento Adicional

Processo opcional, usado para testagem se houve ou não ganho/perda de desempenho e se o mesmo vale a pena.

Remoção de outliers, exclusão de tuplas com valore muito discrepantes para o atributo Na_to_K

Duplicação de tuplas com classes alvos menos recorrentes para balancemanto dos dados;

Árvore de Decisão

Divisão do conjunto de dados baseados em condições

Treinamento, teste e avaliação

Cálculo de métricas de avaliação

Análise visual dos resultadoas com matriz de confusão

Árvore Gerada

Ex. Gini

 De acordo com o Indice Gini, a chance de um elemento escolhido aleatoriamente ser identificado incorretamente é de aproximadamente 69%

$$P(Y) = 65/140$$

$$P(A) = 16/140$$

$$P(B) = 13/140$$

$$P(C) = 10/140$$

$$P(X) = 36/140$$

0,6915

Decisão da árvore

• Divisão perfeita entre a classe y e as demais classes

Na_to_K <= 14.8285 gini = 0.6915 samples = 140 value = [65, 16, 13, 10, 36]

BP <= 0.5 gini = 0.6763 samples = 75 value = [0, 16, 13, 10, 36]

gini = 0.0 samples = 65 value = [65, 0, 0, 0, 0]

Matriz de Confusão

• 100% de Acurácia

$$acurácia = \frac{Total\ de\ acertos}{Total\ de\ itens}$$

Outras Métricas

- Precisão 100%
- Sensibilidade 100%
- F-score 100%
- Obs. pré-processamento adicional não foi testado, pois o modelo já obteve máximo em todas as métricas;

	precision	recall	f1-score	support
0	1.00	1.00	1.00	26
1	1.00	1.00	1.00	7
2	1.00	1.00	1.00	3
3	1.00	1.00	1.00	6
4	1.00	1.00	1.00	18
accuracy			1.00	60
macro avg	1.00	1.00	1.00	60
weighted avg	1.00	1.00	1.00	60

Naive Bayes Gaussiano

Assume que os atributos possuem distribuição Gaussiana

Treinamento, teste e avaliação

Cálculo de métricas de avaliação

Análise visual dos resultadoas com matriz de confusão

Métricas sem Pré-Processamento Adicional

- Menor precisão, falsos positivos;
- Maior recall, falsos negativos;
- Acurácia de 90%, possível overfitting;

Gaussian Naives p	Bayes recision	recall	f1-score	support
0 1 2 3 4	1.00 0.88 0.50 0.75 1.00	0.77 1.00 1.00 1.00	0.87 0.93 0.67 0.86 1.00	26 7 3 6 18
accuracy macro avg weighted avg	0.82 0.94	0.95 0.90	0.90 0.87 0.90	60 60 60

Métricas com Pré-Processamento Adicional

- Aumenta da precisão, menos falsos positivos;
- Queda do recall, mais falsos negativos;
- Aumento da acurácia, efeito do préprocessamento adicional;
- Acurácia de 92% atenuação de possível overfitting;

Gaussian N		Bayes with ecision	addition recall	nal pre-pro f1-score	cess support
	0 1 2 3 4	0.89 0.79 1.00 0.89 1.00	0.68 1.00 1.00 1.00 0.95	0.77 0.88 1.00 0.94 0.98	25 23 26 17 42
accura macro a weighted a	ıvğ	0.92 0.93	0.93 0.92	0.92 0.92 0.92	133 133 133

Sem pré-proc. adi. x Com pré-proc. adi.

K Vizinhos Mais Próximos

Alguma particularidade do modelo

Treinamento, teste e avaliação

Cálculo de métricas de avaliação

Análise visual dos resultadoas com matriz de confusão

Sem pré-proc. adi. x Com pré-proc. adi.

Seleção da quantidade k de vizinhos

Sem pré-proc. adi. x Com pré-proc. adi.

Seleção da quantidade k de vizinhos

Métricas sem Pré-Processamento Adicional

- k = 5
- Falsos positivos e negativos semelhantes em ambos os casos;
- Acurácia de 85%

Sem Pré-proces	ssamento adic precision		f1-score	support
0	•		0.94	
0 1	0.88 0.88	$0.81 \\ 1.00$	0.84 0.93	26 7
1 2 3	0.60 1.00	1.00 0.50	0.75 0.67	7 3 6
4	0.85	0.94	0.89	18
accuracy macro avg	0.84	0.85	0.85 0.82	60 60
weighted avg	0.87	0.85	0.85	60

Métricas com Pré-Processamento Adicional

- k = 9
- Aumento da acurácia, efeito do préprocessamento adicional;
- Acurácia de 89%;

Com Pré-proce	essamento adi	cional		
	precision		f1-score	support
0 1 2 3 4	1.00 0.85 0.89 0.77 0.95	0.72 1.00 0.96 1.00 0.86	0.84 0.92 0.93 0.87 0.90	25 23 26 17 42
accuracy macro avg weighted avg	0.89 0.91	0.91 0.89	0.89 0.89 0.89	133 133 133

Sem pré-proc. adi. x Com pré-proc. adi.

Avalição com matriz de confusão

Considerações Finais

KNN pode ser bastante preciso ou ser capaz de generalizar, mostrou ser bastante adaptável a qualquer demanda;

GNB bastante preciso, pouca capacidade de generalização;

AD muito apto a dividir os dados, extremamente ajustado ao conjunto de dados;

Opinião de especialista para escolher o melhor modelo dado o contexto e possíveis novos dados;