Практическое задание №1.3.3

1. Загрузите данные из файла в объект *DataFrame*, Добавьте заголовки к столбцам: «index», «year», «month», «day», «min_t», «average_t», «max_t», «rainfall».

Расшифровка:

- index индекс BMO,
- year год,
- month месяц,
- day день,
- min_t минимальная температура воздуха,
- average_t средняя температура воздуха,
- max_t максимальная температура воздуха,
- rainfall количество осадков.
- 2. Удалите столбец index.
- 3. Используя метод info(), ответьте на вопросы:
 - 3.1. Есть ли в данных пропущенные значения?
 - 3.2. В каком столбце данных больше всего пропущенных значений?
- 4. В данных за какой год больше всего пропусков?
- 5. Объедините столбцы «Год», «Месяц» и «День» в один столбец «Дата» в формате гггг-мм-дд (2000-01-20). Данные в новом столбце должны иметь формат *datetime*;
- 6. Для каждого наблюдения рассчитайте размах температур (разность максимальной и минимальной суточных температур) и количество предшествующих ему дней без осадков (используйте циклы Python и условный оператор):

Мин. темп. воздуха	Сред. темп. воздуха	Макс. темп. воздуха	Кол-во осадков	Размах темп.	Кол-во дней без осадков
-12.4	-11.0	-9.9	3.9	2.5	0
-28.1	-14.8	-9.8	3.8	18.3	0
-38.5	-34.6	-26.6	0.0	11.9	0
-34.6	-30.1	-23.4	0.0	11.2	1
-26.8	-21.4	-16.6	1.1	10.2	2
-28.6	-24.2	-17.4	0.8	11.2	0
-31.0	-27.0	-24.0	0.0	7.0	0
-33.3	-30.3	-24.6	0.0	8.7	1

- 7. Определите самый длинный период засухи.
- 8. Для каждого года вычислите среднегодовую температуру и общее количество осадков. Запишите результаты в объекты Series.
 - 8.1. Какой год можно считать самым теплым? Какой самым холодным?
 - 8.2. В какой год выпало больше всего осадков? В какой меньше всего?

Используя запись имя_серии.plot() вы можете построить график и посмотреть как изменялась температура. С помощью имя_серии. plot.bar() можно отобразить на столбиковой диаграмме количество осадков, выпавших в каждый год.

- 9. Выведете наблюдения, удовлетворяющие условиям:
 - 9.1. Средняя температура воздуха ниже $-30\,^{\circ}$ С (для некоторых регионов можно использовать $-10\,^{\circ}$ С, $-35\,^{\circ}$ С, $-40\,^{\circ}$ С).
 - 9.2. Средняя температура воздуха выше 27°С и количество дней без осадков больше 3.

Полезные функции и методы

Одну и ту же задачу можно решить несколькими способами. Эти функции и методы могут вам понадобиться:

- ightharpoonup read_table() загрузить данные из «.txt»;
- \rightarrow <u>.head()</u> отобразить несколько первых строк *DataFrame*;
- \triangleright .info() информация о *DataFrame*;
- ▶ <u>.drop()</u> удалить строки или столбцы;
- ▶ .dtypes узнать тип данных в столбце;
- ➤ .astype(), to_datetime(), .to_numeric() изменить тип данных;
- ➢ <u>.isnull()</u>.sum() вычислить количество пропущенных значений в каждом столбце;
- $\rightarrow \underline{\max()}, \underline{\min()}, \underline{\max()} \underline{\max()}$ максимум, минимум, среднее значение;
- > pd.Grouper(), .groupby() группировка наблюдений;
- $\ge <u>.agg()</u> агрегирование наблюдений;$
- ➤ .tuncate() логическая индексация (можно использовать даты!);
- Уже знакомые вам операторы тоже работают с pandas. Действие (или условие) выполняется (или проверяется) для каждого наблюдения. Так, например, чтобы найти разность между двумя числовыми характеристиками (столбцами) по всему набору данных, используйте оператор «-»:

имя_ DF [«новый_столбец»] = имя_ DF [«столбец_1»] - имя_ DF [«столбец_2»] Если необходимо найти сумму двух числовых характеристика или склеить строковые значения двух столбцов — используйте «+». Если вы хотите получить значения, которые больше заданного числа, например 5, используйте запись

имя DataFrame [«имя столбца»] > 5

> Одним из вариантов выполнения задания 4 может быть следующая конструкция:

```
# В данных за какой год больше всего пропусков for i in range(1960, 2020): print(i, df[df['year'] == i].isnull().sum().sum())
```

➤ Шпаргалка: https://smysl.io/blog/pandas/.