

Continuous Assessment Test - I

Programmie Name & Branch: B.Tech. (BME/BME/BMA)

Course Name & Code: Engineering Thermodynamics (MEE1003)

Slot: A1+TA1+V1

Exam Duration: 90 Mins.

Max, Marks: 50

General instruction(s):

1. Missing data, if any, may be suitably assumed.

Answer all the Questions (5 x 10 = 50 Marks)

S.No.	Questions			
l.a)	Determine the work output of a steam turbine, wherein the mass flow rate is 1.5 kg/s and the heat transfer from the turbine is 8.5 kW. The following data are known for the steam entering and leaving the turbine.			
		Inlet conditions	Exit conditions	
	Pressure (MPa)	2	0.1	
	Temperature (°C)	350		
	Velocity (m/s)	50	100	
	Enthalpy (kJ/kg)	3137	2675.5	
	Elevation above referen plane (m), g = 9.8 m/s	ce 6	3	
4 800	Determine whether the heat and the work interactions for the following cas positive, negative or zero. The system to be considered is shown in italics: 1) The pump plunger is pushed down, forcing air into the tyre. Assume pump, ty connecting tube to be non-conducting. 2) Steam in a closed vessel at a temperature of 150 °C is kept in the atmospheremperature of 25 °C. 3) Gas in an insulated cylinder expands as the piston is slowly moving downward.			
1.b)	positive, negative or zero. The system of 25 °C. 3) Gas in an insulated cylinder expense of 25 °C.	stem to be considered is sown, forcing <i>air</i> into the cting. temperature of 150 °C is spands as the piston is slo	shown in italics: tyre. Assume pump, tyre a kept in the atmosphere a wly moving downwards.	
1.0)	positive, negative or zero. The system of 25 °C.	stem to be considered is sown, forcing <u>air</u> into the eting. temperature of 150 °C is spands as the piston is slown a closed rigid contains	shown in italics: tyre. Assume pump, tyre as kept in the atmosphere and the atmosphere are a the atmosphere and the atmosphere are a the atmosphere are a the atmosphere are a the atmosphere at a the atmosphere are a the atmosphere at a the atmosphere atmosphere at a the at	

SPARCH YIT QUESTION PAPERS ON TELEGRAM YO JOIN

2	Explain Joule's experiment involving cyclic process and Prove that heat and work are path functions
3.	One kg of a perfect gas is compressed from 1.1 bar. 27 °C according to a law PV a constant, until the pressure is 6.6 bar. Calculate the work flow to or from the cylinder walls: i) When the gas is ethane (molar mass 30 kg/kmol), which has Cp = 2.1 kJ/kgK ii) When the gas is argon (molar mass 40 kg/kmol), which has Cp = 0.52 kJ/kgK
4.	Unit mass of a certain fluid is contained in a cylinder at an initial pressure of 20 bar. The fluid is allowed to expand reversibly behind a piston according to a law PV ² constant until the volume is doubled. The fluid is then cooled reversibly at constant pressure until the piston regains its original position; heat is then supplied reversibly with the piston firmly locked in position until the pressure rises to the original value of 20 bar. Calculate the net work done by the fluid for an initial volume of 0.05 m ³
5.	A heat exchanger is to heat water (Cp = 4.18 kJ/kg °C) from 25 to 60 °C at a rate of 0.2 kg/s. The heating is to be accomplished by geothermal water (Cp = 4.31 kJ/kg °C)² available at 140 °C at a mass flow rate of 0.3 kg/s. Determine (a) the rate of heat transfer in the heat exchanger and (b) the exit temperature of geothermal water in the heat exchanger