Patent claims

1. Compounds of the general formula (I):

 $A \bigvee_{X} \bigvee_{Y} \bigvee_{Q} \bigvee_$

wherein

10

5

A is a heteroalkyl-, heterocycloalkyl-, heteroalkyl-cycloalkyl-, heteroaryl- or heteroarylalkyl group,

15 heteroa

U is hydrogen, a heteroalkyl-, heterocycloalkyl-, heteroalkylcycloalkyl-, heteroaryl- or heteroaryl-alkyl group,

G-E is selected from the following groups,

20

or is part of an optionally substituted phenyl ring,

V-W is a group of the formula CH-CH or C=C (cis or trans),

25

 R^1 is a C_1-C_4 alkyl- or a C_3-C_4 -cycloalkyl group,

X is oxygen or a group of the formula NR^2 , wherein R^2 is hydrogen, a alkyl-, alkenyl-, alkynyl-, hetero-

alkyl-, aryl-, heteroaryl-, cycloalkyl-, alkylcycloalkyl-, heteroalkylcycloalkyl-, heterocycloalkyl-, aralkyl- or a heteroaralkyl group,

- Y is oxygen or a group of the formula NR^{10} , wherein R^{10} is hydrogen, oxygen, a OH, NH_2 , alkyl- or a heteroalkyl group (as for example a alkyloxy-, alkyl-amino- or dialkylamino group).
- 10 R^3 and R^4 are independently of each other hydrogen, a C_1 - C_4 alkyl group or together are part of a cycloalkyl group with 3 or 4 ring atoms,
- R⁹ is hydrogen, a alkyl-, alkenyl-, alkynyl-, heteroalkyl-, aryl-, heteroaryl-, cycloalkyl-, alkyl-cycloalkyl-, heteroalkylcycloalkyl-, heterocycloalkyl-, aralkyl- or a heteroaralkyl group,
- or a pharmacologically acceptable salt, solvate,

 hydrate or a pharmacologically acceptable formulation
 thereof.
- Compounds according to claim 1, wherein A is a group of the formula -C(CH₃)=CHR⁵ or -CH=CHR⁵, wherein R⁵ is a heteroaryl- or a heteroarylalkyl group.
 - 3. Compounds according to claim 1, wherein A is a group of the general formula (II) or (III):

wherein

Q a sulphur, oxygen or a group of the formula NR^7 wherein R^7 is hydrogen, a $C_1\text{-}C_4$ alkyl group or a $C_1\text{-}C_4\text{-}$

30

heteroalkyl group, z is nitrogen or a CH group and R^6 is a group of the formula OR^8 or NHR^8 , a alkyl-, alkenyl, alkinyl- or a heteroalkyl group, wherein R^8 is hydrogen, a C_1 - C_4 -alkyl group or a C_1 - C_4 -heteroalkyl group.

- 4. Compounds according to claim 3, wherein z is a CH-group.
- 10 5. Compounds according to claim 3 or 4, wherein Q is sulphur or oxygen.

5

15

30

- 6. Compounds according to the claims 3 to 5, wherein R^6 is a group of the formula CH_3 , CH_2OH or CH_2NH_2 .
- 7. Compounds according to the claims 1 to 6, wherein X is oxygen.
- 8. Compounds according to the claims 1 to 7, wherein R¹ is a methyl group.
 - 9. Compounds according to the claims 1 to 8, wherein \mathbb{R}^3 and \mathbb{R}^4 are methyl groups.
- 25 10. Compounds according to the claims 1 to 9, wherein U is hydrogen.
 - 11. Compounds according to the claims 1 to 10, wherein R⁹ is hydrogen.
 - 12. Compounds according to the claims 1 to 11, wherein Y is oxygen or a group of the formula NH, NOH or NO.
- 13. Pharmaceutical compositions containing a compound according to any one of the claims 1 to 12 and optionally carrier and/or adjuvants.

14. Use of a compound or a pharmaceutical composition according to any one of the preseding claims 1 to 13 for the treatment of cancer diseases.

Summary

The present invention relates to new macrocycles of the general formula (I) as well as their use for the treatment of cancer diseases.

$$A \downarrow U \downarrow R^9 R^3 R^4 OH X \downarrow OH O O$$