

Logic Gates

Ms. Prathibha Prakash Department of Computer Science Amrita Vishwa Vidyapeetham

Objective

➤ Basics of Logic Gates

Logic gate

- Building blocks of digital electronic circuits.
- Boolean functions are implemented in digital circuits using these logic gates.
- Most logic gates have 2 inputs and 1 output.
- At any time, every terminal will be in one of the two binary conditions LOW (FALSE; 0;0V) or HIGH (TRUE;1;+5V).
- The function of each logic gate will be represented by Boolean expression

Logic gate

Logic gates are classified into:

Basic gates : OR, AND, NOT

Universal gate: NAND, NOR

Special purpose gates: EX-OR, EX-NOR

 Truth table explains all the outputs of a logic circuit for all possible inputs to that circuits.

AND gate

- The realization of logical AND operator.
- Logic expression, Y = A.B or AB

The circuit will give high output (1) if both inputs are high

otherwise, the output is low

inputs		output
A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

Truth table

OR Gate

- Logic expression, Y=A+B
- The circuit will give high output if any one input is high otherwise the output is low.

inp	uts	output
A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

Truth table

NOT Gate

- Single input single output gate.
- Also called Inverter because it inverts the given binary input.
- Logic expression, Y=A' =A

input	output
A	Y
0	1
1	0

Truth table

NAND Gate

- NAND is a combination of AND gate and NOT gate
 NOT + AND = NAND
- The circuit will give high (1) output if any one input is low (0) otherwise, the output is low (0).
- Logical expression, Y = A.B

inputs		output
A	В	Y=A.B
0	0	1
0	1	1
1	0	1
1	1	0

Truth table

NOR Gate

- NOR is a combination of OR gate and NOT gate.
 NOT + OR = NOR
- The circuit will give high (1) output if both inputs is low (0) otherwise the output is high (1).
- Logical expression, Y = A+B

inputs		output	
A B		Y=A+B	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

Truth table

XOR Gate

- Exclusive-OR gate
- The output is high if the circuit input has odd number of 1's otherwise the output is low i.e., with even number of 1's.
- Logical expression Y= A⊕ B = A'B+AB' (SOP)

inputs		output
A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

Truth table

X-NOR Gate

- Exclusive NOR gate or equivalence.
- The output is high if the circuit input has even number of 1's otherwise the output is low.
- Logical expression Y = A⊙ B = A'B'+AB

Complement of XOR

inputs		output
A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

Truth table

Realizing Logic circuit from function

- Boolean Function, F = x + y'z
 input variable : x, y, z
- Truth table
 3 input variables = 23 combinations
- Logic circuit
 literals 3 (x, y', z) and 2 terms

				A STE
i	nputs		output	■ 日本
x	У	z	F=x+y'z	
0	0	0	0	
0	0	1	1	
0	1	0	0	x = 0, y = 1, z = 0 $F = 0 + 1'.0$
0	1	1	0	= 0 + 0.0
1	0	0	1	$= \frac{0}{0} + \frac{0}{0}$
1	0	1	1	
1	1	0	1	x = 1, y = 1, z = 0 $F = 1 + 1'$. 0
1	1	1	1	= 1 + 0.0
				= 1 + 0 = 1

Realizing function from Logic circuit

Summary

➤ Basics of Logic gates

Universal Logic Gate

Ms. Prathibha Prakash Department of Computer Science Amrita Vishwa Vidyapeetham

Objective

- Universal Logic gates
- NAND gate
- NOR gate

Introduction

- NAND & NOR gate are known as the universal gates.
- These gates alone sufficient to implement any Boolean expression and are inexpensive.
- Basic logic gates (AND, OR and NOT) are logically complete.
- Sufficient to show that AND, OR and NOT can be implemented with NAND and NOR gate.

Universal NAND gate

 We can implement NOT, AND and OR gates by combining one or more NAND gates.

NAND Logic circuit

• Design NAND logic circuit for the Boolean expression $Z = \overline{BC} + AC$

NAND logic circuit

Universal NOR gate

 Implement NOT, AND and NOR gates by combining one or more NOR gates.

(a) NOT gate implementation

(b) OR gate implementation

NOR Logic circuit

• Design NOR logic circuit for the Boolean expression $Z = B\overline{C} + AC$

NOR Logic circuit

Summary

Universal Logic gates

Canonical & Standard Forms

Ms. Prathibha Prakash Department of Computer Science Amrita Vishwa Vidyapeetham

Objective

Representation of Boolean Function

- > Standard form
- ➤ Canonical Form

Introduction

- Boolean functions can be expressed in canonical and standard forms
- In the Boolean expression binary variable will be either in normal form (x) or in its complement form (x').

F(A,B,C,D) is a function:

- Product term: Logical ANDed among the literals.
 e.g., AB, A'B, ABC'
- Sum term: Logical ORed among the literals.
 e.g., A+B, A'+B, A+B+C'

Minterm: m_j

- Minterm /Standard product : <u>Product term</u> containing all the e.g.,F(A,B,C) : ABC', ABC'
 variables in normal or as complements.
- For n- variable function have 2^n possible minterms.
- While obtaining minterm, each variable is complemented if the corresponding bit of binary number is 0 and uncomplemented if 1.

x	у	minterm	symbol
0	0	x'y'	m_0
0	1	x'y	m_1
1	0	xy'	m_2
1	1	xy	m_3

A minterm equals 1 at exactly one input combination and is equal to 0 otherwise.

e.g.,
$$x'y' = 1$$
 only when $x = 0$, $y = 0$

Minterms with 2 binary variables x and y 2 variable - 2^2 = 4 minterms x is primed if x=0; x is unprimed if x=1

Minterms

 \geqslant 3 variable function with $2^3 = 8$ possible minterms

A	В	С	minterm	symbol	
0	0	0	A'B'C'	m_0	A=0 B=0 C=0
0	0	1	A'B'C	m_1	A' B' C'
0	1	0	A'BC'	m_2	A B C
0	1	1	A'BC	m_3	
1	0	0	AB'C'	m_4	A=1 B=0 C=0
1	0	1	AB'C	m_5	
1	1	0	ABC'	m_6	A B' C'
1	1	1	ABC	m_7	

Expressing functions as Sum of **Minterms**

- Boolean function can be expressed algebraically from the truth table
 - Select the minterms that produces a 1 in the function.

Take OR of those selected minterms.	х	у	z
i.e., sum of all minterms	0	0	0
VISHWA VIDYAPEETHAM	0	0	1
$\mathbf{f} = x'y'z + xy'z' + xyz$		1	0
$\blacksquare - \lambda y Z + \lambda y Z + \lambda y Z$	0	1	1

$$= \Sigma(1,4,7)$$

 $= m_1 + m_4 + m_7$

x'y'z ←	0	0	1	1	
	0	1	0	0	
	0	1	1	0	
xy′z'←	1	0	0	1	
	1	0	1	0	
	1	1	0	0	
хух ←	1	1	1	1	

Expressing functions as Sum of **Minterms**

- Any function can be expressed by ORing all minterms (m_i) corresponding to input combinations (i) at which the function has a value of 1.
- Resulting expression is referred to as SUM of minterms and is expressed as $F = \Sigma(2, 4, 5, 7)$ where Σ indicates ORing of the indicated minterms.
- $F = \Sigma(2, 4, 5, 7) = (m2 + m4 + m5 + m7)$

Summary

Canonical forms : Sum of Minterms

Canonical & Standard form-II

Ms. Prathibha Prakash Department of Computer Science Amrita Vishwa Vidyapeetham

Objective

Canonical form and standard form using maxterms

Maxterm : M_j

- Maxterm /Standard sums: Sum term containing all the variables
 e.g., F(A,B,C): A+B+C', Axc or their complements.
- For n variables can have 2^n possible maxterms.
- For maxterm, each variable is primed if the corresponding bit of binary number is 1 and unprimed if 0

x	у	maxterm	symbol	
0	0	x+y	M_0	
0	1	x+y'	M_1	
1	0	x'+y	M_2	
1	1	x'+y'	M_3	

A maxterm equals 0 at exactly one input combination and is equal to 1 otherwise.

e.g.,
$$x+y' = 0$$
 only when $x = 0$, $y = 1$

Maxterms with 2 binary variables x and y 2 variable - 2^2 = 4 maxterms x is primed if x=1; x is unprimed if x=0

Maxterms

 \triangleright 3 variable function with $2^3 = 8$ possible maxterms

A	В	С	maxterm	symbol	
0	0	0	A+B+C	M_0	A=0 B=0 C=
0	0	1	A+B+C'	M_1	DA B C
0	1	0	A+B'+C	M_2	A B C
0	1	1	A+B'+C'	M_3	
1	0	0	A'+B+C	M_4	A=1 B=0 C=
1	0	1	A'+B+C'	M_5	
1	1	0	A'+B'+C	M_6	A' B C
1	1	1	A'+B'+C'	M_7	

Expressing functions as Product of Maxterms

- > Select maxterms that produces a 0 in the function
- Take AND of those selected maxterm

i.e., product of all maxterms

$$\mathbf{f} = (x+y+z)(x+y'+z)(x+y'+z')(x'+y+z')(x'+y'+z)$$

$$= M_0.M_2.M_3.M_5.M_6$$

$$= \Pi(0,2,3,5,6)$$

				1.5
	x	У	Z	f
x+y+z←	0	0	0	0
	0	0	1	1
x+y'+z←	0	1	0	0
x+y'+z'-	0	1	1	0
	1	0	0	1
x'+y+z'←	1	0	1	0
x'+y'+z←	1	1	0	0
	1	1	1	1

Maxterm from Minterm

Minterm and Maxterm are complement to each other.

Complement of minterm = maxterm

Example : $F(x, y, z) = \Sigma (1, 4, 5, 6, 7)$

$$F'(x, y, z) = \Sigma(0, 2, 3) = (m0 + m2 + m3)$$

×	У	z	F	F'	
0	0	0	0	1	
0	0	1	1	0	
0	1	0	0	1	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	0	

Ms. Prathibha Prakash Department of Computer Science Amrita Vishwa Vidyapeetham

Objective

 Systematic method of simplifying Boolean Expression - Karnaugh map

Introduction

- The map method modified by Karnaugh is called K-map or Karnaugh map.
- Objective of K-map is the <u>minimization of Boolean function</u> with a simple procedure.
- K-map: Diagram made up of squares; n-variable 2^n squares

 Each square represents one minterm of the function

 Visual diagram of a function in standard form(SOP or POS)

K-maps

K-maps use 2-diamensional tables to simplify the Boolean expression.

2-variable map

$$2 \text{ variable} = f(A,B)$$

$$2^2$$
minterm = 4 cell map

B	С			
A	00	01	11	10
0	m_0	m_1	m_3	m_2
SHY	m_4	m_5	m_7	m_6

3-variable map

$$3$$
-variable = $f(A,B,C)$

$$2^3$$
 minterm = 8 cell map

AB C	00	01	11	10
00	m_0	m_1	m_3	m_2
01	m_4	m_5	m_7	m_6
11	m_{12}	m_{13}	m_{15}	m_{14}
10	m_8	m_9	m ₁₁	m_{10}

4-variable map

Adjacent cells differ by just one single bit

K- map Simplification

- First fill the appropriate cells with the value based on the output variable.
- Group the maximum number of 1's (SOP) and 0's (POS).
- Group need to be in power of 2 and done in decreasing order. If 8 cell K-map, try grouping for 8 (= 2^3), then for 4 (= 2^2), next for 2 (= 2^1) and last consider single bit.
- Later each group is expressed in terms of common input variable in the rows and column.

Grouping Rules

• Group the cells with largest number of consecutive 1's and no 0's.

0	0	1	1
1	1	0	0

		In	correc
0	1	1	0

 Grouping must be done in <u>decreasing order</u> and the number of 1's in the group must be a power of 2.

	in	correc
1	1	1
	1	1 1

		(correc
0	1	1	1
	I		

1	1	1	1
---	---	---	---

1	1	1	1
1	1	1	1

Grouping Rules

 Focus is on increasing the size of the group, so same elements can be repeated in multiple groups.

1
0

		CC	orrect
1	1	1	1
0	1	1	0
U		1	U

• Diagonal grouping is not permitted and elements around the edges can be grouped (circular property).

		correct			
	1	0	0	1	Γ
_	1	0	0	1	_

Summary

➤ Introduction to K-map with the simplification procedures

Ms. Prathibha Prakash Department of Computer Science Amrita Vishwa Vidyapeetham

Objective

K-map simplification examples

K-map Simplification

$$F(x,y) = x'y + xy' + xy \quad (\text{In SOP } x' = 0; x = 1)$$
01 10 11 With this expression we need 3 AND gates and 1 OR gate

Group2

Simplified expression, F(x, y) = x+y

Simplified expression need only 1 OR gate

Example(SOP)

 $ightharpoonup Y(A,B,C,D) = \sum (0, 2, 5, 7, 8, 10, 13, 15)$

Simplified expression Y(A,B,C,D) = BD + B'D'

Example(POS)

F(A,B,C,D) = \sum (0,1,2,5,8,9,10) Given SOP but for simplification using POS group the0's

 \triangleright Simplified expression F(A,B,C,D) = (C'+D')(A'+B')(B'+D)

Example(Don't care)

- Functions can have unspecified output for some input combination, we don't care the value of those unspecified terms.
- $F(A,B,C,D) = \sum (1,3,5,7,9) + d(6,12,13)$

$$F(A,B,C,D) = A'D+C'D$$

Without don't care
$$F(A,B,C,D) = A'D+B'C'D$$

Summary

 Explained how to perform K-map simplification with examples

