# Contrats d'assurance et rente sur deux têtes Définitions de vie conjointe et dernier survivant

#### Hiver 2023



# Objectifs d'apprentissage

# Objectif général

■ Connaître la définition des statuts de vie conjointe et de dernier survivant

# Objectifs d'apprentissage

# Objectif général

Connaître la définition des statuts de vie conjointe et de dernier survivant

#### Vous serez en mesure de

- Définir les statuts vie conjointe et dernier survivant.
- Donner un exemple de produit d'assurance sur deux têtes.
- Exprimer les probabilités et produits associés aux statuts vie conjointe et dernier survivant en notation actuarielle.

# Ressources

#### **Ressources officielles**

**AMLCR**: Chapitre 10 (10.1, 10.2, 10.3)

#### Ressources

#### Ressources officielles

**AMLCR**: Chapitre 10 (10.1, 10.2, 10.3)

#### Ressources additionnelles

Nomenclatures des symboles actuariels https://en.wikipedia.org/wiki/Actuarial\_notation

Contrat sur deux vies : (x) et (y)

 $\blacksquare$  (x) **et** (y) sont vivants

- $\blacksquare$  (x) **et** (y) sont vivants
  - ▶ Vie conjointe (*Joint life*)

- $\blacksquare$  (x) **et** (y) sont vivants
  - ► Vie conjointe (*Joint life*)
  - $lacktriangledown T_{xy}$  temps d'attente jusqu'au décès d'un assuré

- $\blacksquare$  (x) **et** (y) sont vivants
  - ► Vie conjointe (*Joint life*)
  - $ightharpoonup T_{xy}$  temps d'attente jusqu'au décès d'un assuré
- $\blacksquare$  (x) **ou** (y) sont vivant

- $\blacksquare$  (x) **et** (y) sont vivants
  - ► Vie conjointe (*Joint life*)
  - $ightharpoonup T_{xy}$  temps d'attente jusqu'au décès d'un assuré
- $\blacksquare$  (x) **ou** (y) sont vivant
  - ► Dernier survivant (*Last survivor*)

- $\blacksquare$  (x) **et** (y) sont vivants
  - ► Vie conjointe (*Joint life*)
  - $ightharpoonup T_{xy}$  temps d'attente jusqu'au décès d'un assuré
- $\blacksquare$  (x) **ou** (y) sont vivant
  - ► Dernier survivant (*Last survivor*)
  - $ightharpoonup T_{\overline{xy}}$  temps d'attente jusqu'au deuxième décès















$$T_{xy} + T_{\overline{xy}} = \min(T_x, T_y) + \max(T_x, T_y)$$

$$T_{xy} + T_{\overline{xy}} = \min(T_x, T_y) + \max(T_x, T_y) = T_x + T_y$$

- $T_{xy} + T_{\overline{xy}} = \min(T_x, T_y) + \max(T_x, T_y) = T_x + T_y$
- $v^{T_{xy}} + v^{T_{\overline{xy}}} = v^{T_x} + v^{T_y}$

$$T_{xy} + T_{\overline{xy}} = \min(T_x, T_y) + \max(T_x, T_y) = T_x + T_y$$

$$v^{T_{xy}} + v^{T_{\overline{xy}}} = v^{T_x} + v^{T_y}$$

#### Probabilité du statut vie conjointe

- $\bullet$   $tp_{xy} = \Pr[(x) \text{ et } (y) \text{ sont les deux vivant dans } t \text{ années}] = \Pr[T_{xy} > t]$
- $\bullet$   $tq_{xy} = \Pr[(x) \text{ et } (y) \text{ ne sont pas les deux vivant dans } t \text{ années}] = \Pr[T_{xy} \leq t]$

### Probabilité du statut vie conjointe

- $\mathbf{p}_{t} = \mathbf{pr}[(x) \text{ et } (y) \text{ sont les deux vivant dans } t \text{ années}] = \mathbf{pr}[T_{xy} > t]$
- $lacksquare tq_{xy} = \Pr[(x) \text{ et } (y) \text{ ne sont pas les deux vivant dans } t \text{ années}] = \Pr[T_{xy} \leq t]$
- $\mathbf{u}_{u|t}q_{xy}=\Pr[(x) \text{ et } (y) \text{ sont les deux vivant dans } u \text{ années, mais pas dans } u+t \text{ années}]=\Pr[u\leq T_{xy}\leq u+t]$

### Probabilité du statut vie conjointe

- $\mathbf{p}_{t} = \mathbf{pr}[(x) \text{ et } (y) \text{ sont les deux vivant dans } t \text{ années}] = \mathbf{pr}[T_{xy} > t]$
- $lacksquare tq_{xy} = \Pr[(x) \text{ et } (y) \text{ ne sont pas les deux vivant dans } t \text{ années}] = \Pr[T_{xy} \leq t]$
- $\mathbf{u}_{u|t}q_{xy} = \Pr[(x) \text{ et } (y) \text{ sont les deux vivant dans } u \text{ années, mais pas dans } u+t \text{ années}] = \Pr[u \leq T_{xy} \leq u+t]$
- $\mathbf{L}_t q_{xy}^1 = \Pr[(x) \text{ meurt en premier, avant } t \text{ années}] = \Pr[T_x < t \text{ et } T_x < T_y]$

#### Probabilité du statut dernier survivant

- $lacksquare tp_{\overline{xy}} = \Pr[ ext{au moins un de }(x) ext{ ou } (y) ext{ est vivant dans } t ext{ années}] = \Pr[T_{\overline{xy}} > t]$
- $\qquad {}_tq_{\overline{xy}} = \Pr[(x) \text{ et } (y) \text{ sont décédés dans } t \text{ années}] = \Pr[T_{\overline{xy}} \leq t]$

#### Probabilité du statut dernier survivant

- ullet  $tp_{\overline{xy}}=\Pr[ ext{au moins un de }(x) ext{ ou }(y) ext{ est vivant dans } t ext{ années}]=\Pr[T_{\overline{xy}}>t]$
- $\qquad \mathbf{1}_t q_{\overline{xy}} = \Pr[(x) \text{ et } (y) \text{ sont décédés dans } t \text{ années}] = \Pr[T_{\overline{xy}} \leq t]$
- $\mathbf{u}_{|u|t}q_{\overline{xy}}=\Pr[\mathrm{au} \ \mathrm{moins} \ \mathrm{un} \ \mathrm{de}\ (x) \ \mathrm{et}\ (y) \ \mathrm{sont} \ \mathrm{vivant} \ \mathrm{dans}\ u \ \mathrm{ann\'{e}es}, \ \mathrm{mais} \ \mathrm{les} \ \mathrm{deux} \ \mathrm{sont} \ \mathrm{d\'{e}c\'{e}d\'{e}s} \ \mathrm{dans}\ u+t \ \mathrm{ann\'{e}es}]=\Pr[u\leq T_{\overline{xy}}\leq u+t]$

# Désambiguation de la notation

 $\blacksquare$  (x) et (y) sont habituellement notés en nombre dans les symboles de probabilité, certaines ambigüités peuvent survenir

### Désambiguation de la notation

- $\blacksquare$  (x) et (y) sont habituellement notés en nombre dans les symboles de probabilité, certaines ambigüités peuvent survenir
- On sépare les âges par :
- e.g. x a 40 ans, et y a 42 ans.  $\Pr[(x)$  et (y) sont les deux vivants dans t années] =  $_tp_{40:42}$

## Désambiguation de la notation

- $\blacksquare$  (x) et (y) sont habituellement notés en nombre dans les symboles de probabilité, certaines ambigüités peuvent survenir
- On sépare les âges par :
- e.g. x a 40 ans, et y a 42 ans.  $\Pr[(x)$  et (y) sont les deux vivants dans t années]  $= {}_tp_{40:42}$
- On ajoute un exposant pour signifier que des deux risques proviennent de modèles de survie distincts (e.g. homme et femme)
- e.g. x est un homme 40 ans, et y une femme de 40 ans.  $\Pr[(x) \text{ et } (y) \text{ sont les deux vivant dans } t \text{ années}] = {}_t p_{40:40}^{h f}$

$$T_{xy} + T_{\overline{xy}} = \min(T_x, T_y) + \max(T_x, T_y) = T_x + T_y$$

$$v^{T_{xy}} + v^{T_{\overline{xy}}} = v^{T_x} + v^{T_y}$$

$$\quad \blacksquare \ \bar{a}_{\overline{T_{xy}}} + \bar{a}_{\overline{T_{\overline{xy}}}} = \bar{a}_{\overline{T_x}} + \bar{a}_{\overline{T_y}}$$

$$T_{xy} + T_{\overline{xy}} = \min(T_x, T_y) + \max(T_x, T_y) = T_x + T_y$$

$$v^{T_{xy}} + v^{T_{\overline{xy}}} = v^{T_x} + v^{T_y}$$

## Quels sont les produits existants

lacksquare 2 moments d'occurrences de décès  $(t=T_{xy},t=T_{\overline{xy}})$ 

# Quels sont les produits existants

- lacksquare 2 moments d'occurrences de décès  $(t=T_{xy},t=T_{\overline{xy}})$ 
  - ightharpoonup Assurance premier décès :  $A_{xy}$
  - Assurance dernier décès :  $A_{\overline{xy}}$

# Quels sont les produits existants

- lacksquare 2 moments d'occurrences de décès  $(t=T_{xy},t=T_{\overline{xy}})$ 
  - ightharpoonup Assurance premier décès :  $A_{xy}$
  - ightharpoonup Assurance dernier décès :  $A_{\overline{xy}}$
- lacksquare 2 périodes de survie des statuts xy et  $\overline{xy}$   $(t \leq T_{xy}, t \leq T_{\overline{xy}})$

# Quels sont les produits existants

- lacksquare 2 moments d'occurrences de décès  $(t=T_{xy},t=T_{\overline{xy}})$ 
  - lacktriangle Assurance premier décès :  $A_{xy}$
  - ightharpoonup Assurance dernier décès :  $A_{\overline{xy}}$
- 2 périodes de survie des statuts xy et  $\overline{xy}$   $(t \le T_{xy}, t \le T_{\overline{xy}})$ 
  - Payable pendant la survie de  $xy: \bar{a}_{xy}$
  - lacksquare Payable pendant la survie de  $\overline{xy}$  :  $\bar{a}_{\overline{xy}}$

Qui à besoin de ses produits?

# Qui à besoin de ses produits?

- Assurance premier décès : Partenaires d'affaires pour racheter des parts
- Assurance dernier décès : Lègue à la famille
- lacktriangle Payable pendant la survie de xy: Supporter un train de vie plus luxueux à deux
- lacktriangle Payable pendant la survie de  $\overline{xy}$ : Assurer les besoins de base d'un couple

# Créer de nouveaux produits

Combiner plusieurs produits simples

# Créer de nouveaux produits

# Combiner plusieurs produits simples

■ Une rente qui décroit au moment du premier décès  $a_{xy} + a_{\overline{xy}}$ 

# Créer de nouveaux produits

# Combiner plusieurs produits simples

- Une rente qui décroit au moment du premier décès  $a_{xy} + a_{\overline{xy}}$
- Une rente jusqu'au second décès et une assurance vie sur payer les frais funéraires de chacun des décès

$$a_{\overline{xy}} + A_{xy} + A_{\overline{xy}}$$

Révision des connaissances acquises

#### Révision des connaissances acquises

■ Définir les statuts vie conjointe et dernier survivant.

# Révision des connaissances acquises

- Définir les statuts vie conjointe et dernier survivant.
- Donner un exemple de produit d'assurance sur deux têtes.

### Révision des connaissances acquises

- Définir les statuts vie conjointe et dernier survivant.
- Donner un exemple de produit d'assurance sur deux têtes.
- Exprimer les probabilités et produits associés aux statuts vie conjointe et dernier survivant en notation actuarielle.