Universidade do Estado de Santa Catarina Centro de Ciências Tecnológicas Departamento de Ciência da Computação Bacharelado em Ciência da Computação

Herton da Silveira e Silva, Adriano Pereira Silva, Eliel Reich Mahousse Douna

Sistema de Semáforos

Sistemas DigitaisProf. Leandro Israel Pinto

Joinville Julho/2024

Sobre o problema

Desenvolver um sistema de semáforos para as vias, assegurando o fluxo seguro de veículos e o cruzamento de pedestres. O projeto envolve a análise detalhada da Máquina de Estados, garantindo transições eficazes e seguras entre os diferentes sinais. Também será realizada a implementação de um Circuito Lógico para controlar o sistema de semáforos, assegurando a sincronização precisa das luzes de trânsito. O layout adotado, descrito a seguir, servirá como base para o planejamento e a execução do sistema, visando maximizar a eficiência e a segurança do trânsito e dos pedestres.

Layout escolhido para desenvolver o sistema

Máquina de estados

Uma máquina de estados é um modelo matemático usado para representar programas de computadores ou circuitos lógicos, isto é, para o sistema de semáforo criado nesse projeto, a máquina de estados representa as etapas de funcionamento dos semáforos. Nesse sentido, cada etapa vai ilustrar um momento específico em que cada semáforo vai estar com a configuração de vermelho, amarelo ou verde.

A nomeclatura do diagrama possui um timeout, que será o tempo de espera entre os estados, e cada estado terá a seguinte função:

- S1, S2, S3, S4 Representam os estados dos sinais de trânsito dos veículos.
- X1 Representa um estado de ciclo que ocorre de forma automática(verde para os pedestres).
- X2, X3, X4 e X5 São estados ramificados dos botões de pedestre em estado lógico true (acionados).
- T1, T2, T3, T4 Compõem as transições dos estados, ou seja, representam o momento da cor amarela de atenção.

Circuito lógico

O circuito lógico foi derivado da tabela-verdade do sistema, que representa o comportamento lógico das saídas dadas as entradas do circuito.

	S	ENTRADAS					SAÍDAS																								
												SEN	4ÁFOR	O(A)	SEN	1ÁFOR	O(B)	SEN	1ÁFOR	O(C)	SEN	1ÁFOR(O(D)	F	1	F	2	F	3	Р	94
		P	Q3	Q2	Q1	Q0	PR	Q3'	Q2'	Q1'	Q0'	VD	AM	VD	VD	AM	VD	VD	AM	VD	VD	AM	VD	VD	VM	VD	VM	VD	VM	VD	VM
0	S1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	1	0	1	0	1
1	T1	0	0	0	0	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	1	0	1	0	1
2	S2	0	0	0	1	0	0	0	0	1	1	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	1	0	1	0	1
3	T2	0	0	0	1	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	1	0	1	0	1
4	S3	0	0	1	0	0	0	0	1	0	1	0	0	1	0	0	1	1	0	0	0	0	1	0	1	0	1	0	1	0	1
5	T3	0	0	1	0	1	0	0	1	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	1	0	1	0	1
6	S4	0	0	1	1	0	0	0	1	1	1	0	0	1	0	0	1	0	0	1	1	0	0	0	1	0	1	0	1	0	1
7	T4	0	0	1	1	1	0	1	0	0	0	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	1	0	1	0	1
8	X1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	1	1	0	1	0	1	0	1	0
0	S1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	1	0	1	0	1
1	T1	1	0	0	0	1	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	0	1	0	1	0	1	0	1	0	1
2	S2	1	0	0	1	0	0	0	0	1	1	0	0	1	1	0	0	0	0	1	0	0	1	0	1	0	1	0	1	0	1
3	T2	1	0	0	1	1	0	1	0	1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	1	0	1	0	1	0	1
4	S3	1	0	1	0	0	0	0	1	0	1	0	0	1	0	0	1	1	0	0	0	0	1	0	1	0	1	0	1	0	1
5	T3	1	0	1	0	1	0	1	0	1	1	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	1	0	1	0	1
6	S4	1	0	1	1	0	0	0	1	1	1	0	0	1	0	0	1	0	0	1	1	0	0	0	1	0	1	0	1	0	1
7	T4	1	0	1	1	1	0	1	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	0	1	0	1	0	1	0	1
9	X2	1	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0	1	1	0	1	0	1	0	1	0
10	Х3	1	1	0	1	0	1	0	1	0	0	0	0	1	0	0	1	0	0	1	0	0	1	1	0	1	0	1	0	1	0
11	X4	1	1	0	1	1	1	0	1	1	0	0	0	1	0	0	1	0	0	1	0	0	1	1	0	1	0	1	0	1	0
12	X5	1	1	1	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	1	1	0	1	0	1	0	1	0

	Q0'	
	Q3'Q0' + PQ3'Q1'	
	Q1'	
Q3Q0 + Q3	'Q1Q0' + P'Q1'Q0 + Q2Q	1'Q0 + PQ3'Q2'Q1
	Q2'	
Q3Q1+Q	3'Q2Q0' + P'Q2Q1' + PQ2	2Q1+P'Q2'Q1Q0
	Q3'	
	PQ3'Q0 + Q2Q1Q0	0
	PR	
	PQ3	

para construir o circuito

Por fim, o circuito lógico abaixo feito no Cedar Logic:

