

Eexam

Place student sticker here

Note:

- During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number.
- This number is printed both next to the code and to the signature field in the attendance check list.

Machine Learning for Graphs and Sequential Data (Problem sheet)

Graded Exercise: IN2323 / Endterm Date: Friday 30th July, 2021

Examiner: Prof. Dr. Stephan Günnemann **Time:** 11:30 – 12:45

Working instructions

- DO NOT SUBMIT THIS SHEET! ONLY SUBMIT YOUR PERSONALIZED ANSWER SHEET THAT IS DISTRIBUTED THROUGH TUMEXAM!
- Make sure that you solve the version of the problem stated on your personalized answer sheet (e.g., Problem 1 (Version B), Problem 2 (Version A), etc.)

Problem 1: Normalizing Flows (Version A)

We use the following normalizing flow model to specify a density $p_2(\mathbf{x})$ over \mathbb{R}^2 . The base density $p_1(\mathbf{z})$ is equal to the Uniform([0, 2]²) distribution, that is

$$p_1(\mathbf{z}) = \begin{cases} \frac{1}{4} & \text{if } z_1 \in [0, 2] \text{ and } z_2 \in [0, 2], \\ 0 & \text{else.} \end{cases}$$

The model is specified by the following forward transformation $f\colon \mathbb{R}^2 \to \mathbb{R}^2$

$$\boldsymbol{x} = f(\boldsymbol{z}) = \boldsymbol{A}\boldsymbol{z} = \begin{pmatrix} 1/3 & 0 \\ 0 & 1/4 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}.$$

Problem 1: Normalizing Flows (Version B)

We use the following normalizing flow model to specify a density $p_2(\mathbf{x})$ over \mathbb{R}^2 . The base density $p_1(\mathbf{z})$ is equal to the Uniform([0, 2]²) distribution, that is

$$p_1(\mathbf{z}) = \begin{cases} \frac{1}{4} & \text{if } z_1 \in [0, 2] \text{ and } z_2 \in [0, 2], \\ 0 & \text{else.} \end{cases}$$

The model is specified by the following forward transformation $f\colon \mathbb{R}^2 \to \mathbb{R}^2$

$$\mathbf{x} = f(\mathbf{z}) = \mathbf{A}\mathbf{z} = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/12 \end{pmatrix} \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix}.$$

Problem 1: Normalizing Flows (Version C)

We use the following normalizing flow model to specify a density $p_2(\mathbf{x})$ over \mathbb{R}^2 . The base density $p_1(\mathbf{z})$ is equal to the Uniform([0, 2]²) distribution, that is

$$p_1(\mathbf{z}) = \begin{cases} \frac{1}{4} & \text{if } z_1 \in [0, 2] \text{ and } z_2 \in [0, 2], \\ 0 & \text{else.} \end{cases}$$

The model is specified by the following forward transformation $f\colon \mathbb{R}^2 \to \mathbb{R}^2$

$$\boldsymbol{x} = f(\boldsymbol{z}) = \boldsymbol{A}\boldsymbol{z} = \begin{pmatrix} 1/3 & 0 \\ 0 & 1/12 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}.$$

Problem 1: Normalizing Flows (Version D)

We use the following normalizing flow model to specify a density $p_2(\mathbf{x})$ over \mathbb{R}^2 . The base density $p_1(\mathbf{z})$ is equal to the Uniform([0, 2]²) distribution, that is

$$p_1(\mathbf{z}) = \begin{cases} \frac{1}{4} & \text{if } z_1 \in [0, 2] \text{ and } z_2 \in [0, 2], \\ 0 & \text{else.} \end{cases}$$

The model is specified by the following forward transformation $f\colon \mathbb{R}^2 \to \mathbb{R}^2$

$$\mathbf{x} = f(\mathbf{z}) = \mathbf{A}\mathbf{z} = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/10 \end{pmatrix} \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix}.$$

Problem 2: Variational Inference (Version A)

We would like to draw samples from a logistic distribution with reparametrization.

The cumulative distribution function (CDF) of the logistic distribution with scale parameter ϕ is defined as

$$F_x(a) = \Pr(x \le a) = \frac{1}{1 + \exp(-\phi a)}.$$

We have access to an algorithm that produces samples u from the uniform distribution on [0, 1], that is

$$b(u) = \begin{cases} 1 & \text{if } u \in [0, 1], \\ 0 & \text{else.} \end{cases}$$

Problem 2: Variational Inference (Version B)

We would like to draw samples from a logistic distribution with reparametrization.

The cumulative distribution function (CDF) of the logistic distribution with scale parameter ϕ is defined as

$$F_x(a) = \Pr(x \le a) = \frac{1}{1 + \exp(-a + \phi)}.$$

We have access to an algorithm that produces samples u from the uniform distribution on [0, 1], that is

$$b(u) = \begin{cases} 1 & \text{if } u \in [0, 1], \\ 0 & \text{else.} \end{cases}$$

Problem 2: Variational Inference (Version C)

We would like to draw samples from a logistic distribution with reparametrization.

The cumulative distribution function (CDF) of the logistic distribution with scale parameter ϕ is defined as

$$F_x(a) = \Pr(x \le a) = \frac{1}{1 + \exp(-a/\phi)}.$$

We have access to an algorithm that produces samples *u* from the uniform distribution on [0, 1], that is

$$b(u) = \begin{cases} 1 & \text{if } u \in [0, 1], \\ 0 & \text{else.} \end{cases}$$

Problem 2: Variational Inference (Version D)

We would like to draw samples from a logistic distribution with reparametrization.

The cumulative distribution function (CDF) of the logistic distribution with scale parameter ϕ is defined as

$$F_x(a) = \Pr(x \le a) = \frac{1}{1 + \exp(-a - \phi)}.$$

We have access to an algorithm that produces samples u from the uniform distribution on [0, 1], that is

$$b(u) = \begin{cases} 1 & \text{if } u \in [0, 1], \\ 0 & \text{else.} \end{cases}$$

Problem 3: Deep Generative Models (Version A)

Suppose $f: \mathbb{R}^N \to \mathbb{R}^M$ is a fully-connected neural network, where N < M.

Problem 3: Deep Generative Models (Version B)

Suppose $f: \mathbb{R}^N \to \mathbb{R}^M$ is a fully-connected neural network, where N < M.

a) Can we use f as the decoder in a variational autoencoder model? Justify your answer.

b) Can we use f as the transformation to define a normalizing flow model? Justify your answer.

c) Can we use f as the generator in a generative adversarial network? Justify your answer.

Problem 3: Deep Generative Models (Version C)

Suppose $f: \mathbb{R}^N \to \mathbb{R}^M$ is a fully-connected neural network, where N < M.

Problem 3: Deep Generative Models (Version D)

Suppose $f: \mathbb{R}^N \to \mathbb{R}^M$ is a fully-connected neural network, where N < M.

a) Can we use f as the generator in a generative adversarial network? Justify your answer.

b) Can we use f as the decoder in a variational autoencoder model? Justify your answer.

c) Can we use f as the transformation to define a normalizing flow model? Justify your answer.

Problem 4: Robustness (Version A)

Assume we are interested in robustness certification for a model classifying data from \mathbb{R}^D . So far, we have only considered norm-bound perturbation models that — for the l_2 norm — can be expressed via the constraints

$$||\tilde{\mathbf{x}} - \mathbf{x}||_2 \le \epsilon,$$

$$\tilde{\mathbf{x}} \in \mathbb{R}^D,$$
(4.1)

with adversarial budget $\epsilon \geq 0$, perturbed input $\tilde{\textbf{\textit{x}}}$ and unperturbed input $\textbf{\textit{x}} \in \mathbb{R}^D$.

Now we want to model *sparse* norm-bound perturbations, in which the adversary can perturb at most $\eta \in \mathbb{N}$ vector entries. For this, extend Equation (4.1) with additional **linear constraints**. You may introduce at most $\mathcal{O}(D)$ constraints and $\mathcal{O}(D)$ variables. You are allowed to use integer-valued variables.

More formally, the modeled perturbation set should be

$$\mathcal{P}(x) = \left\{ \tilde{\boldsymbol{x}} \in \mathbb{R}^D \left| ||\tilde{\boldsymbol{x}} - \boldsymbol{x}||_2 \le \epsilon \wedge \sum_{d=0}^{D-1} \mathbb{1} \left(\tilde{x}_d \neq x_d \right) \le \eta \right. \right\},$$

Problem 4: Robustness (Version B)

Assume we are interested in robustness certification for a model classifying data from \mathbb{R}^D . So far, we have only considered norm-bound perturbation models that — for the l_2 norm — can be expressed via the constraints

$$||\tilde{\mathbf{x}} - \mathbf{x}||_2 \le \epsilon,$$
 $\tilde{\mathbf{x}} \in \mathbb{R}^D,$ (4.1)

with adversarial budget $\epsilon \geq 0$, perturbed input $\tilde{\mathbf{x}}$ and unperturbed input $\mathbf{x} \in \mathbb{R}^D$.

Now we want to model *sparse* norm-bound perturbations, in which the adversary can perturb at most $\eta \in \mathbb{N}$ vector entries. For this, extend Equation (4.1) with additional **linear constraints**. You may introduce at most $\mathcal{O}(D)$ constraints and $\mathcal{O}(D)$ variables. You are allowed to use integer-valued variables.

More formally, the modeled perturbation set should be

$$\mathcal{P}(x) = \left\{ \tilde{\boldsymbol{x}} \in \mathbb{R}^D \left| ||\tilde{\boldsymbol{x}} - \boldsymbol{x}||_2 \le \epsilon \wedge \sum_{d=0}^{D-1} \mathbb{1} \left(\tilde{x}_d \neq x_d \right) \le \eta \right. \right\},\,$$

Problem 4: Robustness (Version C)

Assume we are interested in robustness certification for a model classifying data from \mathbb{R}^D . So far, we have only considered norm-bound perturbation models that — for the l_2 norm — can be expressed via the constraints

$$||\tilde{\mathbf{x}} - \mathbf{x}||_2 \le \epsilon, \tilde{\mathbf{x}} \in \mathbb{R}^D,$$
 (4.1)

with adversarial budget $\epsilon \geq 0$, perturbed input $\tilde{\mathbf{x}}$ and unperturbed input $\mathbf{x} \in \mathbb{R}^D$.

Now we want to model *sparse* norm-bound perturbations, in which the adversary can perturb at most $\eta \in \mathbb{N}$ vector entries. For this, extend Equation (4.1) with additional **linear constraints**. You may introduce at most $\mathcal{O}(D)$ constraints and $\mathcal{O}(D)$ variables. You are allowed to use integer-valued variables.

More formally, the modeled perturbation set should be

$$\mathcal{P}(x) = \left\{ \tilde{\boldsymbol{x}} \in \mathbb{R}^D \left| ||\tilde{\boldsymbol{x}} - \boldsymbol{x}||_2 \le \epsilon \wedge \sum_{d=0}^{D-1} \mathbb{1} \left(\tilde{x}_d \neq x_d \right) \le \eta \right. \right\},$$

Problem 4: Robustness (Version D)

Assume we are interested in robustness certification for a model classifying data from \mathbb{R}^D . So far, we have only considered norm-bound perturbation models that — for the l_2 norm — can be expressed via the constraints

$$||\tilde{\mathbf{x}} - \mathbf{x}||_2 \le \epsilon,$$
 $\tilde{\mathbf{x}} \in \mathbb{R}^D,$ (4.1)

with adversarial budget $\epsilon \geq 0$, perturbed input $\tilde{\mathbf{x}}$ and unperturbed input $\mathbf{x} \in \mathbb{R}^D$.

Now we want to model *sparse* norm-bound perturbations, in which the adversary can perturb at most $\eta \in \mathbb{N}$ vector entries. For this, extend Equation (4.1) with additional **linear constraints**. You may introduce at most $\mathcal{O}(D)$ constraints and $\mathcal{O}(D)$ variables. You are allowed to use integer-valued variables.

More formally, the modeled perturbation set should be

$$\mathcal{P}(x) = \left\{ \tilde{\boldsymbol{x}} \in \mathbb{R}^D \left| ||\tilde{\boldsymbol{x}} - \boldsymbol{x}||_2 \le \epsilon \wedge \sum_{d=0}^{D-1} \mathbb{1} \left(\tilde{x}_d \neq x_d \right) \le \eta \right. \right\},\,$$

Problem 5: Autoregressive Models (Version A)

Consider a sequential process described by the following autoregressive model.

$$X_t = X_{t-1} + \varepsilon_t$$

The noise variables ε_t are independently $\mathcal{N}(0,1)$ distributed and we condition the process on $X_0 = 0$.

0	
1	
2	

a) Is this autoregressive process stationary? Justify your answer.

0		
1		
2		

b) Now we define a second process Y_t as following

$$Y_t = X_t - X_{t-1}.$$

Problem 5: Autoregressive Models (Version B)

Consider a sequential process described by the following autoregressive model.

$$X_t = X_{t-1} + \varepsilon_t$$

The noise variables ε_t are independently $\mathcal{N}(0,1)$ distributed and we condition the process on $X_0 = 0$.

a) Is this autoregressive process	stationary?	Justify your	answer.
-----------------------------------	-------------	--------------	---------

0 1 2

b) Now we define a second process Y_t as following

$$Y_t = X_t - X_{t-1}.$$

Problem 5: Autoregressive Models (Version C)

Consider a sequential process described by the following autoregressive model.

$$X_t = X_{t-1} + \varepsilon_t$$

The noise variables ε_t are independently $\mathcal{N}(0,1)$ distributed and we condition the process on $X_0 = 0$.

0	
1	
2	

a) Is this autoregressive process stationary? Justify your answer.

0		
1		
2		

b) Now we define a second process Y_t as following

$$Y_t = X_t - X_{t-1}.$$

Problem 5: Autoregressive Models (Version D)

Consider a sequential process described by the following autoregressive model.

$$X_t = X_{t-1} + \varepsilon_t$$

The noise variables ε_t are independently $\mathcal{N}(0,1)$ distributed and we condition the process on $X_0 = 0$.

a)	Is this	autoregre	ssive pr	ocess	stationar	у?	Justify	your	answer.
----	---------	-----------	----------	-------	-----------	----	---------	------	---------

0 1 2

b) Now we define a second process Y_t as following

$$Y_t = X_t - X_{t-1}.$$

1 2

Problem 6: Hidden Markov Models (Version A)

Consider a hidden Markov model with 3 states 1, 2, 3. There are 3 possible observations a, b, c. The initial distribution π , transition probabilities **A** and emission probabilities **B** are

where \mathbf{A}_{ij} specifies the probability of transitioning from state i to state j.

Problem 6: Hidden Markov Models (Version B)

Consider a hidden Markov model with 3 states 1, 2, 3. There are 3 possible observations a, b, c. The initial distribution π , transition probabilities **A** and emission probabilities **B** are

where \mathbf{A}_{ij} specifies the probability of transitioning from state i to state j.

We have observed the sequence $X_{1:3} = [aab]$. What is the most likely latent state Z_2 given these observations? Justify your answer.

Problem 6: Hidden Markov Models (Version C)

Consider a hidden Markov model with 3 states 1, 2, 3. There are 3 possible observations a, b, c. The initial distribution π , transition probabilities **A** and emission probabilities **B** are

where \mathbf{A}_{ij} specifies the probability of transitioning from state i to state j.

Problem 6: Hidden Markov Models (Version D)

Consider a hidden Markov model with 3 states 1, 2, 3. There are 3 possible observations a, b, c. The initial distribution π , transition probabilities **A** and emission probabilities **B** are

where \mathbf{A}_{ij} specifies the probability of transitioning from state i to state j.

We have observed the sequence $X_{1:3} = [cca]$. What is the most likely latent state Z_2 given these observations? Justify your answer.

Problem 7: Temporal point processes (Version A)

We simulate a homogeneous Poisson process with intensity μ on the interval [0, T]. What is the probability that we observe no events (i.e., the first event t_1 will hapen after T)? Justify your answer.

Problem 7: Temporal point processes (Version B)

Problem 7: Temporal point processes (Version C)

We simulate a homogeneous Poisson process with intensity μ on the interval [0, T]. What is the probability that we observe no events (i.e., the first event t_1 will hapen after T)? Justify your answer.

Problem 7: Temporal point processes (Version D)

Problem 8: Graphs - Clustering (Version A)

In this task, we consider a Stochastic Block Model with 2 communities that can generate *weighted* graphs. We assume that the edge weights are drawn from the Poisson distribution, that is

$$p(A_{ij} = k | z_i, z_j, \eta) = \frac{\eta_{z_i z_j}^k}{k!} \exp(-\eta_{z_i z_j})$$

Suppose we observed the weighted adjacency matrix $\mathbf{A} \in \{0,1,2,...\}^{N \times N}$ and the cluster indicators $\mathbf{z} \in \{1,2\}^N$. Derive the maximim likelihood estimate of the parameters $\boldsymbol{\eta} = \begin{pmatrix} \eta_{11} & \eta_{12} \\ \eta_{21} & \eta_{22} \end{pmatrix}$.

Hint: It might be helpful to introduce shorthand notation

$$N_p = \sum_{i=1}^{N} \mathbb{1}(z_i = p)$$
 and $M_{pq} = \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} \mathbb{1}(z_i = p, z_j = q),$

Problem 8: Graphs - Clustering (Version B)

In this task, we consider a Stochastic Block Model with 2 communities that can generate *weighted* graphs. We assume that the edge weights are drawn from the Poisson distribution, that is

$$p(A_{ij} = k | z_i, z_j, \eta) = \frac{\eta_{z_i z_j}^k}{k!} \exp(-\eta_{z_i z_j})$$

Suppose we observed the weighted adjacency matrix $\mathbf{A} \in \{0, 1, 2, ...\}^{N \times N}$ and the cluster indicators $\mathbf{z} \in \{1, 2\}^N$. Derive the maximim likelihood estimate of the parameters $\boldsymbol{\eta} = \begin{pmatrix} \eta_{11} & \eta_{12} \\ \eta_{21} & \eta_{22} \end{pmatrix}$.

Hint: It might be helpful to introduce shorthand notation

$$N_p = \sum_{i=1}^{N} \mathbb{1}(z_i = p)$$
 and $M_{pq} = \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} \mathbb{1}(z_i = p, z_j = q),$

Problem 8: Graphs - Clustering (Version C)

In this task, we consider a Stochastic Block Model with 2 communities that can generate *weighted* graphs. We assume that the edge weights are drawn from the Poisson distribution, that is

$$p(A_{ij} = k | z_i, z_j, \eta) = \frac{\eta_{z_i z_j}^k}{k!} \exp(-\eta_{z_i z_j})$$

Suppose we observed the weighted adjacency matrix $\mathbf{A} \in \{0, 1, 2, ...\}^{N \times N}$ and the cluster indicators $\mathbf{z} \in \{1, 2\}^N$. Derive the maximim likelihood estimate of the parameters $\boldsymbol{\eta} = \begin{pmatrix} \eta_{11} & \eta_{12} \\ \eta_{21} & \eta_{22} \end{pmatrix}$.

Hint: It might be helpful to introduce shorthand notation

$$N_p = \sum_{i=1}^{N} \mathbb{1}(z_i = p)$$
 and $M_{pq} = \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} \mathbb{1}(z_i = p, z_j = q),$

Problem 8: Graphs - Clustering (Version D)

In this task, we consider a Stochastic Block Model with 2 communities that can generate *weighted* graphs. We assume that the edge weights are drawn from the Poisson distribution, that is

$$p(A_{ij} = k | z_i, z_j, \eta) = \frac{\eta_{z_i z_j}^k}{k!} \exp(-\eta_{z_i z_j})$$

Suppose we observed the weighted adjacency matrix $\mathbf{A} \in \{0, 1, 2, ...\}^{N \times N}$ and the cluster indicators $\mathbf{z} \in \{1, 2\}^N$. Derive the maximim likelihood estimate of the parameters $\boldsymbol{\eta} = \begin{pmatrix} \eta_{11} & \eta_{12} \\ \eta_{21} & \eta_{22} \end{pmatrix}$.

Hint: It might be helpful to introduce shorthand notation

$$N_p = \sum_{i=1}^{N} \mathbb{1}(z_i = p)$$
 and $M_{pq} = \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} \mathbb{1}(z_i = p, z_j = q),$

Problem 9: Graphs - Ranking (Version A)

We consider a directed graph G = (V, E) with adjacency matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

where A_{ij} indicates if there exists an edge from node i to node j.

	a) Find the stationary distribution $\pi(\infty)$ associated with the random walk on graph G . Justify your answer.
1	
1 2 3	
3	

Problem 9: Graphs - Ranking (Version B)

We consider a directed graph G = (V, E) with adjacency matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

where A_{ij} indicates if there exists an edge from node i to node j.

a) Find the stationary distribution $\pi(\infty)$ associated with the random walk on graph G. Justify your answer.

b) Explain why the Markov chain corresponding to the random walk on graph G is not irreducible.

c) We want to add a single directed edge (u, v) to the graph G and create a new graph $G' = (V, E \cup \{(u, v)\})$, such that the Markov chain corresponding to the random walk on graph G' becomes irreducible. What edge (u, v) should we add such that the PageRank score for node 1 in G' is also maximized? Also, compute the PageRank scores for all the nodes in G' after adding the chosen edge (u, v).

Problem 9: Graphs - Ranking (Version C)

We consider a directed graph G = (V, E) with adjacency matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

where A_{ij} indicates if there exists an edge from node i to node j.

0	П	a) Find the stationary distribution $\pi(\infty)$ associated with the random walk on graph G . Justify your answer
1	П	
2	Ħ	
3	П	

Problem 9: Graphs - Ranking (Version D)

We consider a directed graph G = (V, E) with adjacency matrix

$$\boldsymbol{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

where A_{ij} indicates if there exists an edge from node i to node j.

a) Find the stationary distribution $\pi(\infty)$ associated with the random walk on graph G. Justify your answer.

b) Explain why the Markov chain corresponding to the random walk on graph G is not irreducible.

c) We want to add a single directed edge (u, v) to the graph G and create a new graph $G' = (V, E \cup \{(u, v)\})$, such that the Markov chain corresponding to the random walk on graph G' becomes irreducible. What edge (u, v) should we add such that the PageRank score for node 1 in G' is also maximized? Also, compute the PageRank scores for all the nodes in G' after adding the chosen edge (u, v).

Problem 10: Graphs - Semi-Supervised Learning (Version A)

We consider the graph G with the following adjacency matrix A.

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

We assume that the vector of labels is $\mathbf{y} = \begin{bmatrix} \hat{\mathbf{y}}_S \\ \mathbf{y}_U \end{bmatrix}$ where $\hat{\mathbf{y}}_S = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ are known labels and $\mathbf{y}_U = \begin{bmatrix} * \\ * \\ * \end{bmatrix}$ are unknown

In other words, $S = \{1, 2\}$ is the set of labeled nodes and $U = \{3, 4, 5\}$ is the set of unlabeled nodes.

a) Find the optimal cost and all the optimal solutions to the following optimization problem:

$$\mathbf{y}^* = \underset{\mathbf{y} \in \{0,1\}^5}{\text{arg min }} \mathbf{y}^T \mathbf{L} \mathbf{y}$$

 $\mathbf{y} \in \{0,1\}^5$ (10.1)
subject to $\mathbf{y}_i = \hat{\mathbf{y}}_{S,i}$ for $i \in \{1,2\}$

where L = D - A denotes the Laplacian of the graph G, and D is the degree matrix. Justify your answer.

b) We consider a relaxation of the optimization problem from Equation (10.1) (note that we now optimize over \mathbb{R}^6):

$$\mathbf{y}^* = \underset{\mathbf{y} \in \mathbb{R}^5}{\arg\min} \mathbf{y}^T \mathbf{L} \mathbf{y}$$

 $\mathbf{y} \in \mathbb{R}^5$ (10.2)
subject to $y_i = \hat{y}_{S,i}$ for $i \in \{1, 2\}$

Suppose that the solution y^* of this optimization problem is given.

We now consider a modified graph G' with adjacency matrix

$$\mathbf{A}' = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

We denote the labels of G' as $\mathbf{y}' = \begin{bmatrix} \hat{\mathbf{y}}'_S \\ \mathbf{y}'_U \end{bmatrix}$, where $\mathbf{y}'_S = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ are known labels and $\mathbf{y}'_U = \begin{bmatrix} * \\ * \\ * \end{bmatrix}$ are unknown labels.

Your task is to explain how the solution y^* of the optimization problem in Equation 10.2 can be used to solve the following optimization problem:

$$\underset{\mathbf{y}' \in \mathbb{R}^6}{\arg\min} \, \mathbf{y}'^\mathsf{T} \mathbf{L}' \mathbf{y}'$$

$$\underset{\mathbf{y}' \in \mathbb{R}^6}{\sup\text{et to } \mathbf{y}'_i = \hat{\mathbf{y}}'_{S,i} \text{ for } i \in \{1,2,3\} }$$

$$(10.3)$$

Problem 10: Graphs - Semi-Supervised Learning (Version B)

We consider the graph G with the following adjacency matrix A.

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

We assume that the vector of labels is $\mathbf{y} = \begin{bmatrix} \hat{\mathbf{y}}_S \\ \mathbf{y}_U \end{bmatrix}$ where $\hat{\mathbf{y}}_S = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ are known labels and $\mathbf{y}_U = \begin{bmatrix} * \\ * \\ * \end{bmatrix}$ are unknown

In other words, $S = \{1, 2\}$ is the set of labeled nodes and $U = \{3, 4, 5\}$ is the set of unlabeled nodes.

a) Find the optimal cost and all the optimal solutions to the following optimization problem:

$$\mathbf{y}^* = \underset{\mathbf{y} \in \{0,1\}^5}{\operatorname{arg \, min}} \mathbf{y}^\mathsf{T} \mathbf{L} \mathbf{y}$$

subject to $\mathbf{y}_i = \hat{\mathbf{y}}_{S,i}$ for $i \in \{1,2\}$

where L = D - A denotes the Laplacian of the graph G, and D is the degree matrix. Justify your answer.

b) We consider a relaxation of the optimization problem from Equation (10.1) (note that we now optimize over \mathbb{R}^6):

$$\mathbf{y}^* = \underset{\mathbf{y} \in \mathbb{R}^5}{\arg\min} \mathbf{y}^T \mathbf{L} \mathbf{y}$$

subject to $y_i = \hat{y}_{S,i}$ for $i \in \{1, 2\}$

Suppose that the solution y^* of this optimization problem is given.

We now consider a modified graph G' with adjacency matrix

$$\boldsymbol{A}' = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

We denote the labels of G' as $\mathbf{y}' = \begin{bmatrix} \hat{\mathbf{y}}'_S \\ \mathbf{y}'_U \end{bmatrix}$, where $\mathbf{y}'_S = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ are known labels and $\mathbf{y}'_U = \begin{bmatrix} * \\ * \\ * \end{bmatrix}$ are unknown labels.

Your task is to explain how the solution y^* of the optimization problem in Equation 10.2 can be used to solve the following optimization problem:

$$\underset{y' \in \mathbb{R}^6}{\arg\min y'^T L' y'}$$
 (10.3) subject to $y_i' = \hat{y}_{S,i}'$ for $i \in \{1,2,3\}$

Problem 10: Graphs - Semi-Supervised Learning (Version C)

We consider the graph G with the following adjacency matrix A.

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

We assume that the vector of labels is $\mathbf{y} = \begin{bmatrix} \hat{\mathbf{y}}_S \\ \mathbf{y}_U \end{bmatrix}$ where $\hat{\mathbf{y}}_S = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ are known labels and $\mathbf{y}_U = \begin{bmatrix} * \\ * \\ * \end{bmatrix}$ are unknown

In other words, $S = \{1, 2\}$ is the set of labeled nodes and $U = \{3, 4, 5\}$ is the set of unlabeled nodes.

a) Find the optimal cost and all the optimal solutions to the following optimization problem:

$$\mathbf{y}^* = \underset{\mathbf{y} \in \{0,1\}^5}{\text{arg min }} \mathbf{y}^T \mathbf{L} \mathbf{y}$$

 $\mathbf{y} \in \{0,1\}^5$ (10.1)
subject to $\mathbf{y}_i = \hat{\mathbf{y}}_{S,i}$ for $i \in \{1,2\}$

where L = D - A denotes the Laplacian of the graph G, and D is the degree matrix. Justify your answer.

b) We consider a relaxation of the optimization problem from Equation (10.1) (note that we now optimize over \mathbb{R}^6):

$$\mathbf{y}^* = \underset{\mathbf{y} \in \mathbb{R}^5}{\arg\min} \mathbf{y}^T \mathbf{L} \mathbf{y}$$

 $\mathbf{y} \in \mathbb{R}^5$ (10.2)
subject to $y_i = \hat{y}_{S,i}$ for $i \in \{1, 2\}$

Suppose that the solution y^* of this optimization problem is given.

We now consider a modified graph G' with adjacency matrix

$$\mathbf{A}' = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

We denote the labels of G' as $\mathbf{y}' = \begin{bmatrix} \hat{\mathbf{y}}'_S \\ \mathbf{y}'_U \end{bmatrix}$, where $\mathbf{y}'_S = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ are known labels and $\mathbf{y}'_U = \begin{bmatrix} * \\ * \\ * \end{bmatrix}$ are unknown labels.

Your task is to explain how the solution y^* of the optimization problem in Equation 10.2 can be used to solve the following optimization problem:

$$\underset{\mathbf{y}' \in \mathbb{R}^6}{\arg\min} \, \mathbf{y}'^\mathsf{T} \mathbf{L}' \mathbf{y}'$$

$$\underset{\mathbf{y}' \in \mathbb{R}^6}{\sup\text{et to } \mathbf{y}'_i = \hat{\mathbf{y}}'_{S,i} \text{ for } i \in \{1,2,3\} }$$

$$(10.3)$$

Problem 10: Graphs - Semi-Supervised Learning (Version D)

We consider the graph G with the following adjacency matrix A.

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

We assume that the vector of labels is $\mathbf{y} = \begin{bmatrix} \hat{\mathbf{y}}_S \\ \mathbf{y}_U \end{bmatrix}$ where $\hat{\mathbf{y}}_S = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ are known labels and $\mathbf{y}_U = \begin{bmatrix} * \\ * \\ * \end{bmatrix}$ are unknown

In other words, $S = \{1, 2\}$ is the set of labeled nodes and $U = \{3, 4, 5\}$ is the set of unlabeled nodes.

a) Find the optimal cost and all the optimal solutions to the following optimization problem:

$$\mathbf{y}^* = \underset{\mathbf{y} \in \{0,1\}^5}{\text{arg min }} \mathbf{y}^T \mathbf{L} \mathbf{y}$$

$$\mathbf{y} \in \{0,1\}^5$$
subject to $y_i = \hat{y}_{S,i}$ for $i \in \{1,2\}$

where L = D - A denotes the Laplacian of the graph G, and D is the degree matrix. Justify your answer.

b) We consider a relaxation of the optimization problem from Equation (10.1) (note that we now optimize over \mathbb{R}^6):

$$\mathbf{y}^* = \underset{\mathbf{y} \in \mathbb{R}^5}{\arg\min} \mathbf{y}^T \mathbf{L} \mathbf{y}$$

subject to $y_i = \hat{y}_{S,i}$ for $i \in \{1, 2\}$

Suppose that the solution y^* of this optimization problem is given.

We now consider a modified graph G' with adjacency matrix

$$\boldsymbol{A}' = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

We denote the labels of G' as $\mathbf{y}' = \begin{bmatrix} \hat{\mathbf{y}}'_S \\ \mathbf{y}'_U \end{bmatrix}$, where $\mathbf{y}'_S = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ are known labels and $\mathbf{y}'_U = \begin{bmatrix} * \\ * \\ * \end{bmatrix}$ are unknown labels.

Your task is to explain how the solution y^* of the optimization problem in Equation 10.2 can be used to solve the following optimization problem:

$$\underset{\mathbf{y}' \in \mathbb{R}^6}{\arg\min} \mathbf{y}'^T \mathbf{L}' \mathbf{y}'$$

$$\underset{\mathbf{y}' \in \mathbb{R}^6}{\min} \mathbf{t} = \hat{\mathbf{y}}'_{S,i} \text{ for } i \in \{1,2,3\}$$

$$(10.3)$$