$Basic\ Topology^1$

-TW-

2024年3月28日

序

天道几何,万品流形先自守; 变分无限,孤心测度有同伦。

> 2024 年 3 月 28 日 长夜伴浪破晓梦,梦晓破浪伴夜长

目录

第一章	拓扑空间和连续性	1
1.1	拓扑空间	1
	1.1.1 度量拓扑	1
	1.1.2 序列的收敛性	3
	1.1.3 拓扑基 Topology Basis	4
1.2	连续映射,Hausdorff 空间,同胚映射	6
	1.2.1 连续映射	6
	1.2.2 Hausdorff 空间	8
	1.2.3 同胚映射	10
1.3	乘积拓扑	11
第二章	几个重要的拓扑性质	12
2.1	紧性	12
2.2	乘积空间的紧性,其他紧性	
	2.2.1 乘积空间的紧性	15
	2.2.2 紧性与连续映射	17
	2.2.3 其他紧性	18
2.3	连通性	20
	2.3.1 连通性	20
	2.3.2 拓扑不变性	23
	2.3.3 连通分支	27
	2.3.4 道路连通性	29
第三章	商空间与闭曲面	34
3.1	商空间与商映射	34

第一章 拓扑空间和连续性

1.1 拓扑空间

1.1.1 度量拓扑

定义 下面给出度量空间 X 的定义:

定义 1.1.1. 集合 X 上的度量 d 是一个映射 $d: X \times X \longrightarrow \mathbb{R}$, s. t. i 正定性:

$$d(x, y) \ge 0, \forall x, y \in X$$
 "=" $\Leftrightarrow x = y$ (1.1)

ii 对称性:

$$d(x, y) = d(y, x), \forall x, y \in X$$
(1.2)

iii 三角不等式:

$$d(x, y) \le d(x, z) + d(z, y), \forall x, y, z \in X$$

$$\tag{1.3}$$

当集合 X 上规定了一个度量 d 后,称为**度量空间**,记作 (X, d)

度量拓扑 设 (X, d) 为一个度量空间,下面规定 X 的一个拓扑。 首先给出球形邻域 (开球) 的概念,此处的定义与欧氏空间中的一致

定义 1.1.2. 设 $x_0 \in X$, $\epsilon > 0$, 称 X 的子集

$$B(x_0, \epsilon) := \{ x \in X \mid d(x_0, x) < \epsilon \} \tag{1.4}$$

为以 x_0 为心, ϵ 为半径的球形邻域 (开球)

接下来准备定义空间 X 上的度量拓扑

引理 1.1.1. (X, d) 的任意两个开球的交集是若干个开球的并

证明. Suppose $U = B(x_1, \epsilon_1) \cap B(x_2, \epsilon_2)$

 $\forall x \in U$, let $\epsilon_x = \min\{\epsilon_1 - d(x, x_1), \epsilon_2 - d(x, x_2)\}$

Then for each $y \in B(x, \epsilon_x)$,

$$d(y, x_1) \le d(y, x) + d(x, x_1) \le \epsilon_1 \tag{1.5}$$

$$d(y, x_2) \le d(y, x) + d(x, x_2) \le \epsilon_2 \tag{1.6}$$

Therefore, $y \in U$, $\forall y \in B(x, \epsilon_x)$, So $B(x, \epsilon_x) \subseteq U$ Thus,

$$U = \bigcup_{x \in U} B(x, \epsilon_x) \tag{1.7}$$

命题 1.1.1. 设 X 的子集族

$$\tau_d \coloneqq \{U \mid U$$
为若干个开球的并} (1.8)

则 τ_d 为 X 上的一个拓扑,称为 X 上由度量 d 决定的**度量拓扑**

证明. $\emptyset \in \tau_d$, $X = \bigcup_{x \in X} B(x, \epsilon_x)$

显然 τ_d 中的任意元素之并仍在 τ_d 中

 $\forall U_1, \ U_2 \in \tau_d, \ let \ U_1 = \bigcup_{a \in I} B(x_a, \epsilon_a), \ U_2 = \bigcup_{\beta \in J} B(x_\beta, \epsilon_\beta), \ Then$

$$U_1 \cap U_2 = (\bigcup_{a \in I} B(x_a, \epsilon_a)) \cap (\bigcup_{\beta \in J} B(x_\beta, \epsilon_\beta))$$
(1.9)

$$= \bigcup_{a \in I, \ \beta \in J} B(x_a, \epsilon_a) \cap B(x_\beta, \epsilon_\beta)$$
 (1.10)

According to Lemma 1.1.1, $U_1 \cap U_2 \in \tau_d$

1.1.2 序列的收敛性

定义 首先回顾一下拓扑空间中的邻域以及数学分析中序列收敛的概念:

定义 1.1.3. 设 A 是拓扑空间 X 的一个子集,点 $x \in A$. 如果存在开集 U,满足 $x \in U \subseteq A$,则称 x 是 A 的一个内点,A 是 x 的一个邻域.

定义 1.1.4. 设 $\{x_n\}$ 为拓扑空间 X 中的点序列. 如果点 x_0 的任意邻域 U都包含 $\{x_n\}$ 的几乎所有项 (即只有有限个 x_n 不在 U 中; 或 $\exists N \in \mathbb{N}$, $s.t. x_n \in U$, $\forall n > N$),称 $\{x_n\}$ 收敛 到 x_0 ,记作 $x_n \to x_0$

举例 拓扑空间中推广的序列收敛的概念中失去了一些重要的性质.

1. 拓扑空间中的序列可能收敛到多个点.

例 1.1.1. 考虑 \mathbb{R} 上的余有限拓扑 (\mathbb{R}, t_f) ,只要序列 $\{x_n\}$ 的项两两不同,则任一点 $x \in \mathbb{R}$ 的邻域 (必是有限集的余集) 包含 $\{x_n\}$ 的几乎所有项,从而 $x_n \to x$

- $\mathbf{\dot{z}}$. i \mathbb{R} 上的余有限拓扑 (\mathbb{R} , τ_f) 中,开集为有限集的余集,即可视作在数轴中挖去有限个点所剩下的集合
 - ii 事实上条件"序列 $\{x_n\}$ 的项两两不同"可减弱为"序列 $\{x_n\}$ 中每一项都只出现有限次"
- 2. 可能出现 A 中任一序列均不收敛到聚点 x 的情况.

例 1.1.2. 考虑 \mathbb{R} 上的余可数拓扑 (\mathbb{R} , t_c),设 A = (0,1), $x_0 = 2$,则 x_0 的任一邻域 U 均包含 A 中元素,即 $U \cap A \neq \emptyset$,所以 x_0 为 A 的聚点. 但对于任一 A 中序列 $\{x_n\}$,其可看作可数集 $M = \{x_n\}$,于是集合 $S = \mathbb{R} \setminus M$ 为开集,且为包含 x_0 的邻域,且 S 中不包含序列 $\{x_n\}$ 中任一项,从而 A 中序列 $\{x_n\}$ 并不收敛到聚点 x_0

1.1.3 拓扑基 Topology Basis

引入 回顾欧氏空间 Rn 中的开集与开球之间的关系.

$$U \subseteq_{open} \mathbb{R}^n \longleftrightarrow \forall p \in U, \ \exists \delta_p > 0, \ \text{s. t. } B(p, \delta_p) \subseteq U$$
 (1.11)

$$U = \bigcup_{p \in U} B(p, \delta_p) \tag{1.12}$$

其中每个开集都可由若干个开球 $B(p, \delta_p)$ 组成, 开球 $B(p, \delta_p)$ 起到了"砖块"的作用.

定义 类比欧式空间中开球的性质,下面给出一般的拓扑空间中拓扑基的定义.

定义 1.1.5. 设 X 为一个拓扑空间, $\mathcal B$ 为一个由 X 中若干个开集构成的集族. 若 \forall X 中的 开集 U, U 可表为 $\mathcal B$ 中若干元素之并,即

$$\forall U \subseteq_{open} X, \ U = \bigcup_{a \in I} U_a, \ U_a \in \mathcal{B}$$
 (1.13)

则称 \mathcal{B} 构成了 X 的一个拓扑基 (Topology Basis)

例 1.1.3. 考虑 \mathbb{R}^1 欧式拓扑,则 $\mathcal{B} = \{(a,b) \mid a < b\}$ 为 \mathbb{R} 的一组拓扑基. 令 $\mathcal{B}' = \{(a,b) \mid a < b, \ a,b \in \mathbb{Q}\}$,则 \mathcal{B}' 也为 \mathbb{R} 的一组拓扑基.

下面给出拓扑基的一个刻画.

命题 1.1.2. 设 X 是一个集合, \mathcal{B} 为 X 的若干子集构成的集族,则

$$\mathcal{B}$$
为 X 上某个拓扑的拓扑基 $\iff \mathcal{B}$ s.t. (1.14)

- 1. $\bigcup_{U \in \mathcal{B}} U = X$
- 2. $\forall U_1, U_2 \in \mathcal{B}, U_1 \cap U_2$ 可表为 \mathcal{B} 中若干元素之并.

注. 实际使用中常将条件 2 用下列等价表述替代:

$$\forall U_1, \ U_2 \in \mathcal{B}, \ \forall p \in U_1 \cap U_2, \ \exists U_p \in \mathcal{B}, \ \text{s.t.} \ p \in U_p \subseteq U_1 \cap U_2 \tag{1.15}$$

等价拓扑基 下面给出拓扑基等价的定义.

定义 1.1.6. 设 X 为一个集合, 子集族 \mathcal{B} , \mathcal{B}' 满足命题1.1.2中的条件 1,2, 若

$$\forall U \in \mathcal{B}, \ p \in U, \ \exists U' \in \mathcal{B}', \ \text{s.t.} \ p \in U' \subseteq U$$
 (1.16)

$$\forall V^{'} \in \mathcal{B}^{'}, \ p^{'} \in V^{'}, \ \exists V \in \mathcal{B}, \ \text{s.t.} \ p^{'} \in V^{'} \subseteq V$$

$$(1.17)$$

则称 \mathcal{B} , \mathcal{B}' 等价.(你中有我,我中有你)

命题 1.1.3. 设 X 为一个集合,子集族 \mathcal{B} , \mathcal{B}' 满足命题1.1.2中的条件 1,2,且 \mathcal{B} , \mathcal{B}' 等价,则由 \mathcal{B} 生成的拓扑 τ 与由 \mathcal{B}' 生成的拓扑 τ' 相同.

例 1.1.4. 考虑欧式拓扑 ℝ²,记

$$\mathcal{B} = \{ \mathcal{H} 圆盘 \} \tag{1.18}$$

$$\mathcal{B}' = \{ \mathcal{H} 矩 \mathcal{H} \} \tag{1.19}$$

则 B, B'等价,均生成欧式拓扑.

1.2 连续映射, Hausdorff 空间, 同胚映射

1.2.1 连续映射

定义 首先给出一般拓扑空间中局部连续性的概念.

定义 1.2.1. 设 X, Y 为拓扑空间, $f: \longrightarrow Y$ 是一个映射, $x \in X$. 如果对于 Y 中 f(x) 的任一邻域 U, $f^{-1}(U)$ 总是 x 的邻域,则称 f 在 x 处**连续**.

注. 事实上,此处出现的**邻域**均可替换成**开邻域**,容易证明其等价. 整体连续性的定义沿用了这一改动.

下面再给出整体连续性的定义.

定义 1.2.2. 设 X, Y 为拓扑空间, 映射 $f: \longrightarrow Y$ 如果满足

$$\forall U \subseteq_{open} Y, f^{-1}(U) \subseteq_{open} X$$
 (1.20)

则称 f 为拓扑空间 X 到 Y 的连续映射

等价定义 下面给出连续映射的等价定义.

命题 1.2.1. 设 X.Y 为拓扑空间,下列命题等价:

- $1. f: X \longrightarrow Y$ 连续.
- 2. 设 \mathcal{B} 为 Y 的一组拓扑基, $\forall U \in \mathcal{B}, f^{-1}(U) \subseteq_{open} X$.
- 3. $f(\overline{A}) \subseteq \overline{f(A)}$, $\forall A \subseteq X$.
- 4. $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B}), \ \forall B \subseteq Y.$
- 5. $\forall F \subseteq Y, f^{-1}(F) \subseteq X$.

证明. $1 \Leftrightarrow 2$ 显然, 下面推 $1 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1$:

 $1 \to 3$: $\forall x \in A$, proof $f(x) \in \overline{f(A)}$:

I.
$$x \in A$$
,显然 $f(x) \in f(A) \subseteq \overline{f(A)}$

II. $x \notin A$, $x \in A'$, 不妨设 $f(x) \notin f(A)$, 则

$$\forall U \subseteq Y, f(x) \in U, \text{ s. t.} f^{-1}(U) \subseteq X$$
由于 $x \in A'$,且 $x \in f^{-1}(U)$ 为 X 中开集,因此

$$f^{-1}(U)\backslash\{x\}\cap A = f^{-1}(U)\cap A \neq \emptyset \tag{1.21}$$

从而 $\exists a \in f^{-1}(U) \cap A$, s.t.

$$f(a) \in U \cap f(A) \tag{1.22}$$

$$U \setminus \{x\} \cap A = U \cap A \neq \emptyset \tag{1.23}$$

于是 $f(x) \in \overline{f(A)}$.

 $3 \to 4$: $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B}) \Leftrightarrow f(\overline{f^{-1}(B)}) \subseteq \overline{B}$ (According to 3.)

 $4 \rightarrow 5$: $\forall F \subseteq Y$, According to 4.

$$\overline{f^{-1}(F)} \subseteq f^{-1}(\overline{F}) = f^{-1}(F) \subseteq \overline{f^{-1}(F)} \tag{1.24}$$

于是 $f^{-1}(F) = \overline{f^{-1}(F)} \subseteq_{closed} X$.

 $5 \to 1$: $\forall U \subseteq_{open} Y$, proof $f^{-1}(U) \subseteq_{open} X$. 因为

$$X = f^{-1}(U) \sqcup f^{-1}(Y \backslash U) \tag{1.25}$$

所以

$$f^{-1}(U) = X \backslash f^{-1}(Y \backslash U) = f^{-1}(Y \backslash U)^{c} \subseteq_{open} X$$
 (1.26)

1.2.2 Hausdorff 空间

引入 首先回顾拓扑空间中序列收敛的定义1.1.4. 对于该定义,注意到以下几点

- 令拓扑空间 $X = \mathbb{R}^n$,则该定义与数学分析中点列极限的 ϵN 语言吻合.
- 在此定义下极限不唯一.(例1.1.1,例1.2.1)

例 1.2.1. 设 $X = \{0, 1\}, \ \tau = \{\{0\}, \{0, 1\}, \emptyset\}, \ x_n = 0, \ \forall n \in \mathbb{N}, \ \bigcup_{n \to \infty} \lim_{n \to \infty} x_n = 0 \ and \ 1$

定义 为了使得极限唯一,需要对拓扑空间做出限制.

定义 1.2.3. 设 X 为一个拓扑空间,若 X 满足 $\forall x_1, x_2 \in X, x_1 \neq x_2, \exists U_1, U_2$ open, s.t.

$$x_1 \in U_1, \ x_2 \in U_2, \ U_1 \cap U_2 = \emptyset$$
 (1.27)

则称 X 为一个Hausdorff 空间.

例 1.2.2. $X = \{0, 1\}, \tau = \{\{0\}, \{0, 1\}$ 不是 Hausdorff 空间.(1 的邻域总是包含 0)

例 1.2.3. 度量空间都是 Hausdorff 空间.

证明. 设 (X,d) 为一个度量空间, $\forall x_1, x_2 \in X, x_1 \neq x_2, s.t.$

根据度量空间的定义1.1.1,设 $d = d(x_1, x_2) > 0$,于是

$$x_1 \in B(x_1, \frac{d}{3}), \ x_2 \in B(x_2, \frac{d}{3}), \ B(x_1, \frac{d}{3}) \cap B(x_2, \frac{d}{3}) = \emptyset$$
 (1.28)

性质 Hausdorff 空间满足了序列收敛的唯一性.

命题 1.2.2. 设 X 为一个 Hausdorff 空间, $\{x_n\} \subseteq X$,若 $\lim_{n \to \infty} x_n$ 存在,则 $\lim_{n \to \infty} x_n$ 唯一.

事实上,在极限都存在的情况下,Hausdorff 空间上极限与连续映射可交换次序.

命题 1.2.3. 设 X, Y 均为 Hausdorff 空间, $f: X \longrightarrow Y$ 为连续映射, $\{x_n\} \subseteq X$,若 $\lim_{n\to\infty} x_n = x_0$, $\lim_{n\to\infty} f(x_n) = y_0$,则

$$\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n) \tag{1.29}$$

证明. 即证: $\forall U \subseteq_{open} Y, f(\lim_{n \to \infty} x_n) \in U, s.t.$

$$\exists N \in \mathbb{N}, \ f(x_n) \in U, \ \forall n > N$$
 (1.30)

根据连续映射的性质,

$$\lim_{n \to \infty} x_n \in f^{-1}(U) \subseteq_{open} X \tag{1.31}$$

$$\Rightarrow \exists N \in \mathbb{N}, \ x_n \in f^{-1}(U), \ \forall n > N$$
 (1.32)

$$\Rightarrow f(x_n) \in U, \ \forall n > N \tag{1.33}$$

 $\dot{\mathbf{L}}$. 此命题中,条件 Hausdorff **空间**保证了极限 $\lim_{n\to\infty} x_n$, $\lim_{n\to\infty} f(x_n)$ 存在时的唯一性.

1.2.3 同胚映射

定义 我们总是希望能够研究拓扑性质相同的一类拓扑空间的性质,这就引出了**同胚** (Homeomorphism) 的概念.

定义 1.2.4. 设 X, Y 为拓扑空间, 映射 $f: X \longrightarrow Y$ 如果满足以下三条性质:

- 1. f 为双射.
- 2. f 连续.
- 3. *f*⁻¹ 连续.

则称 f 为一个同胚映射 / 拓扑变换,简称为同胚 (Homeomorphism)

例 1.2.4.

$$f:[0,1)\longrightarrow S^1 \tag{1.34}$$

$$t \longmapsto e^{2\pi i t} \tag{1.35}$$

其中 S^1 为复平面上的单位圆周. 则 f 为连续双射,但 f^{-1} 在 S^1 上 (1,0) 处不连续. 这导致了两个空间的拓扑性质不同,比如 S^1 为有界闭集,可有限覆盖;而 [0,1) 则不行.

若只是要求连续,而不要求同胚,可能会出现一些违背直觉的例子.比如 Peano 曲线.

例 1.2.5. *Peano* 曲线是这样的一个映射 $f:[0,1] \longrightarrow \Delta$,其中 $\Delta \subseteq \mathbb{R}^2$ 是边长为 1 的正三角形. 而 f 充满了 Δ 的整个空间 (具体构造可见视频*Peano* 曲线)

1.3 乘积拓扑

引入 回忆欧式空间 $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$,对于其上的欧式拓扑,记

$$\beta = \{B(x, \delta) \mid x \in \mathbb{R}^2, \ \delta > 0\}$$
 (1.36)

$$\beta' = \{ (a, b) \times (c, d) \mid a < b, c < d \}$$
 (1.37)

不难证明, β , β' 均为 \mathbb{R}^2 上欧式拓扑的拓扑基. 在 β' 中, (a,b), (c,d) 分别为 \mathbb{R} 和 \mathbb{R} 中开集.

定义 类比 β' 中元素的定义, 我们给出乘积拓扑的定义.

定义 1.3.1. 设 X, Y 为拓扑空间, 定义 $\tau \subseteq X \times Y$ 为如下的子集族:

$$\tau := \{ U \times V \mid U \subseteq X, \ V \subseteq Y \}$$
 (1.38)

则 τ 生成了 $X \times Y$ 上的一个拓扑. 该拓扑成为 $X \times Y$ 上的**乘积拓扑**.

证明. 根据命题1.1.2, $X \times Y \in \tau$, 只需证其条件 2.

 $\forall U_1 \times V_1, \ U_2 \times V_2 \in \tau, \ \forall x \in (U_1 \times V_1) \cap (U_2 \times V_2), \ \ \mathbb{R}$

$$U_3 \times V_3 := (U_1 \times V_1) \cap (U_2 \times V_2) \tag{1.39}$$

$$= \{(x, y) \mid (x, y) \in U_1 \times V_1 \perp \exists (x, y) \in U_2 \times V_2\}$$
 (1.40)

$$= \{(x, y) \mid x \in U_1 \cap U_2 \perp \exists y \in V_1 \cap V_2\}$$
 (1.41)

$$= (U_1 \cap U_2) \times (V_1 \cap V_2) \in \tau \tag{1.42}$$

于是 $x \in U_3 \times V_3 \in \tau$, 故 τ 为 $X \times Y$ 上的一组拓扑基.

注. 事实上, 定义中的 U, V 可分别换为 X, Y 中的一组拓扑基, 容易证明其定义等价, 即

$$\tau := \{\beta_1 \times \beta_2 \mid \beta_1, \beta_2 \text{ 分别为 } X, Y \text{ 的一组拓扑基}\}$$
 (1.43)

对于多个拓扑空间 X_1, X_2, \dots, X_n 的乘积拓扑,可同样由上述定义拓展得到:

$$X_1 \times X_2 \times \dots \times X_n := ((X_1 \times X_2) \times \dots) \times X_n \tag{1.44}$$

第二章 几个重要的拓扑性质

2.1 紧性

引入 先规定一些术语方便讨论.(开覆盖、有限覆盖等)

定义 2.1.1. 设 X 是一个拓扑空间,对于 X 中的一族开子集 $\{U_i\}_{i\in I}$,若

$$\bigcup_{i \in I} U_i = X \tag{2.1}$$

则称 $\{U_i\}_{i\in I}$ 为 X 的一个开覆盖.

若开覆盖 $\{U_i\}_{i\in I}$ 中存在子集 $\{U_j\}_{j\in J}$, $J\subseteq I$, s.t.

$$\bigcup_{j \in J} U_j = X \tag{2.2}$$

则称 $\{U_j\}_{j\in J}$ 为原先开覆盖的一个<u>子覆盖</u>. 特别地,若 $card(\{U_j\}_{j\in J}) < card(\mathbb{N})$,即 J 为有限集,则称 $\{U_i\}_{j\in J}$ 为原先开覆盖的一个**有限子覆盖**.

定义 下面给出一般拓扑空间紧性的定义.

定义 2.1.2. 设 X 为一个拓扑空间, 若对于 $\forall X$ 的开覆盖, 其有有限子覆盖, 则称 X 是 \underline{X} 的. 注. 下面介绍一些紧性的好处,即我们为什么要这样定义紧性:

• 紧性能使得空间的结构变得特殊,从而便于操作. 对于困难的定理,可以优先考虑在紧致空间中是否成立. 若不成立,则其在目标拓扑空间中也大概率不成立.

例 2.1.1. 证明欧氏空间 \mathbb{R} 中, $f:[a,b] \longrightarrow \mathbb{R}$ 连续 \Rightarrow 有界.

• 可以基本无限制地做积分. 比如在欧氏空间 ℝ中,对于定义在形如 [a,b), (a,b), (a,+∞) 区间上的广义积分,通常需要考虑其收敛性的问题,而在紧致空间上则不需要. 从而我们可以在紧致空间上用积分定义**拓扑不变量**来研究不同的拓扑空间之间是否同胚.

子集的紧性

引入 首先回忆一下数学分析中有限覆盖定理的叙述.

定理 2.1.1. (有限覆盖定理)

设 $[a,b]\subseteq\mathbb{R}$,则对于 $\forall \mathbb{R}$ 中的开集族 $\{U_i\}_{i\in I}$,s. t. $[a,b]\subseteq\bigcup_{i\in I}U_i$,总可以从 $\{U_i\}_{i\in I}$ 中找到有限个元素 $U_{i_1},\ U_{i_2},\ \cdots,\ U_{i_n}$,s. t.

$$[a,b] \subseteq \bigcup_{k=1}^{n} U_{i_k} \tag{2.3}$$

仔细观察不难发现,此处对于紧性的叙述与我们之前的定义2.1.2中的叙述有所不同.

定义 为了澄清这件事情,下面我们给出紧子集的定义.

定义 2.1.3. 设 X 为一个拓扑空间, $Y \subseteq X$,若 Y 在子空间拓扑下是紧的,则称 Y 为 X 的一个**紧子集**.

注. 不难证明,上述定义与下列叙述等价 (等价定义):

 $\forall X$ 中覆盖 Y 的开集族 $\{U_i\}_{i\in I}$, 可从中找到 U_{i_1} , U_{i_2} , ..., U_{i_n} , s.t.

$$Y \subseteq \bigcup_{k=1}^{n} U_{i_k} \tag{2.4}$$

此处的定义便与数学分析中的有限覆盖定理 (定理2.1.1) 相吻合.

性质 下面给出几条紧致空间的性质.

1. 紧 ⇒ 闭.

受欧氏空间 \mathbb{R}^n 的刻板印象影响,我们总是认为紧集一般都为闭集,实则不然. 事实上,恰好相反,大多数情况下紧集并无法推出闭集.

例 2.1.2. 设 $X = \{0, 1\}, \tau = \{\{0\}, \{0, 1\}, \emptyset\}, Y = \{0\} \subseteq X$

由于 τ 为有限集,因此 Y 自然为紧集. 但容易验证 Y 不是闭集 $(Y^c = \{1\})$ 不是开集).

然而,只需要对背景空间 X 做一定的限制 (Hausdorff),其紧子集 Y 就可满足为闭集.

命题 2.1.1. 设 X 为 Hausdorff 空间, $Y \subseteq X$ 为 X 的紧子集,则 Y 为闭集. 证明. 即证 Y^c 为 X 中的开集.

 $\forall x \in Y^c$, 由于 X 为 Hausdorff 空间, 因此

对于 $\forall y \in Y$, $\exists U_y$, $V_y \subseteq X$, s.t. $x \in V_y$, $y \in U_y$, $U_y \cap V_y = \emptyset$. 于是

$$Y \subseteq \bigcup_{y \in Y} U_y \tag{2.5}$$

因为 Y 为 X 中紧子集,所以 $\exists y_1, \dots, y_n \in Y$, s.t.

$$Y \subseteq \bigcup_{i=1}^{n} U_{y_i} \tag{2.6}$$

令

$$V = \bigcap_{i=1}^{n} V_{y_i} \subseteq_{open} X \tag{2.7}$$

由于 $x \in V \neq \emptyset$, $V \cap U_{y_i} = \emptyset$, $\forall i = 1 \sim n$, 因此

$$x \in V \subseteq X \setminus \bigcup_{i=1}^{n} U_{y_i} \subseteq Y^c$$
 (2.8)

从而 Y^c 为开集,Y 为闭集.

2. 紧集的闭子集必为紧集.

命题 2.1.2. 设 X 为拓扑空间,X 为紧集, $Y \subseteq_{closed} X$,则 Y 为紧集. 证明. $\forall \{U_i\}_{i \in I},\ U_i \subseteq_{open} X, \forall i \in I,\ s.\ t.$

$$Y \subseteq \bigcup_{i \in I} U_i \tag{2.9}$$

则

$$X = (\bigcup_{i \in I} U_i) \cup Y^c \tag{2.10}$$

由于 $Y \subseteq_{closed} X$ 为闭集,因此 Y^c 为开集,根据紧集的定义 (定义2.1.2) $\exists U_{i_1}, \cdots, U_{i_n} \in \{U_i\}_{i \in I}, \text{ s. t.}$

$$X = (\bigcup_{k=1}^{n} U_{i_k}) \cup Y^c \tag{2.11}$$

于是

$$Y \subseteq \bigcup_{k=1}^{n} U_{i_k} \tag{2.12}$$

2.2 乘积空间的紧性,其他紧性

2.2.1 乘积空间的紧性

有限个空间的乘积 下面我们讨论一般情况 (有限个空间的乘积) 乘积空间的紧性. 主要证明:

$$X \S, Y \S \Rightarrow X \times Y \S$$

下面给出一条引理,也可视作紧集(定义2.1.2)的等价定义.

引理 2.2.1. 设 X 为一个拓扑空间, \mathcal{B} 为 X 的一组拓扑基. 则

$$X \not S \Leftrightarrow \forall \{U_a\}_{a \in I}, \ U_a \in \mathcal{B}, \ a \in I, \ \{U_a\}_{a \in I} \ \overline{\mathcal{B}} \stackrel{.}{=} X,$$
 (2.13)

则
$$\{U_a\}_{a\in I}$$
 存在有限子覆盖 (2.14)

证明. ⇒ 显然,下面证 ⇐:

 $\forall \{U_a\}_{a\in I},\ U_a \subseteq X,\ a\in I,\ X=\bigcup_{a\in I}U_a.$ 由于 $\mathcal B$ 为 X 的一组拓扑基,因此

$$U_a = \bigcup_{\beta \in J_a} V_{\beta}^a, \ V_{\beta}^a \in \mathcal{B}, \ \forall \beta \in J_a$$
 (2.15)

于是

$$X = \bigcup_{a \in I} \bigcup_{\beta \in I_{a}} V_{\beta}^{a} \tag{2.16}$$

根据条件可知, $\exists V_{\beta_1}^{a_1}, \cdots, V_{\beta_{i_1}}^{a_1}, \cdots, V_{\beta_1}^{a_n}, \cdots, V_{\beta_{i_n}}^{a_n} \in \{V_{\beta}^a\}_{a \in I.\ \beta \in J_a}, \ \text{s. t.}$

$$X = \bigcup_{k=1}^{n} \bigcup_{l=1}^{l=i_k} V_{\beta_l}^{a_k} \tag{2.17}$$

由于

$$V_{\beta_l}^{a_k} \subseteq U_{a_k} \in \{U_a\}_{a \in I}, \ \forall k = 1 \sim n, \ l = 1 \sim i_k$$
 (2.18)

因此

$$\bigcup_{l=1}^{l=i_k} V_{\beta_l}^{a_k} \subseteq U_{a_k}, \ \forall k = 1 \sim n \tag{2.19}$$

$$X = \bigcup_{k=1}^{n} U_{a_k} \tag{2.20}$$

从而 X 为紧集得证.

下面证明我们的主线.

命题 2.2.1. 设 X, Y 为拓扑空间, X, Y 为紧集 $\Rightarrow X \times Y$ 为紧集.

证明. 根据引理2.2.1, $\forall \{U_a \times V_a\}_{a \in I}$, $U_a \subseteq X$, $V_a \subseteq Y$, $X \times Y = \bigcup_{a \in I} U_a \times V_a$. 由于 $U_a \times V_a$ 为 $X \times Y$ 为乘积拓扑的拓扑基中的元素,因此只需证 $\{U_a \times V_a\}_{a \in I}$ 存在有限子覆盖.

 $\forall x \in X$,容易由定义验证 $\{x\} \times Y$ 为紧集.

由于 $\{U_a \times V_a\}_{a \in I}$ 覆盖了 $X \times Y$,因此自然覆盖了 $\{x\} \times Y$. 由 $\{x\} \times Y$ 的紧性可得, $\exists U_1^x \times V_1^x, \cdots, U_{n_x}^x \times V_{n_x}^x \in \{U_a \times V_a\}_{a \in I}$, s.t.

$$\{x\} \times Y \subseteq \bigcup_{i=1}^{n_x} U_i^x \times V_i^x \tag{2.21}$$

 $\mathbb{R}\ U^x\coloneqq\bigcap_{i=1}^{n_x}U_i^x,\ \mathbb{M}\ x\in U^x,$

$$U^{x} \times Y \subseteq \bigcup_{i=1}^{n_{x}} U_{i}^{x} \times V_{i}^{x} \tag{2.22}$$

因为 $X = \bigcup_{x \in X} U^x$, X 为紧集, 所以 $\exists U^{x_1}, \cdots, U^{x_m} \in \{U^x\}_{x \in X}$,s.t.

$$X = \bigcup_{k=1}^{m} U^{x_k} \tag{2.23}$$

从而

$$X \times Y = \bigcup_{k=1}^{m} U^{x_k} \times Y = \bigcup_{k=1}^{m} \bigcup_{i=1}^{n_{x_k}} U_i^{x_k} \times V_i^{x_k}$$

$$(2.24)$$

 $X \times Y$ 为紧集.

紧性与连续映射 2.2.2

下面命题说明紧集在连续映射下的像也为紧集.

命题 2.2.2. 设 X, Y 为拓扑空间, X 为紧集, $f: X \longrightarrow Y$ 为连续映射, 则 $f(X) \subseteq Y$ 为紧 集.

证明. $\forall \{U_a\}_{a\in I},\ U_a\underset{open}{\subseteq} Y,\ a\in I,\ f(X)\subseteq\underset{a\in I}{\bigcup}U_a,\ \mathrm{s.t.}$

$$X = f^{-1}(\bigcup_{a \in I} U_a) = \bigcup_{a \in I} f^{-1}(U_a)$$
 (2.25)

由于 f 连续,因此 $f^{-1}(U_a) \subseteq X$ open. 因为 X 为紧集,所以 $\exists f^{-1}(U_1), \dots, f^{-1}(U_n) \in \{f^{-1}(U_a)\}_{a \in I}, \text{ s. t.}$

$$X = \bigcup_{i=1}^{n} f^{-1}(U_n) \tag{2.26}$$

$$X = \bigcup_{i=1}^{n} f^{-1}(U_n)$$

$$f(X) \subseteq \bigcup_{i=1}^{n} U_n$$

$$(2.26)$$

从而 f(X) 为紧集.

根据这一结论,可以得到欧氏空间的一个结论的推广.

推论 2.2.2. 设 X 为拓扑空间,X 为紧集,设 $f: X \longrightarrow E^1$ 为连续实值函数,则 f(X) 有 界,且可取到最值.

证明. 利用欧氏空间中紧集为有界闭集的结论即可证明.

2.2.3 其他紧性

极限点紧性 下面介绍极限点紧性 (limit point compact), 也即 JOJO 讲过的 Frechet 紧集.

定义 2.2.1. 设 X 为拓扑空间,若 X 的任意无限子集都有聚点,则称 X 为极限点紧致的 (limit point compact).

下面的命题说明,紧致性可推出极限点紧致.

命题 2.2.3. 设 X 为拓扑空间,若 X 紧致,则 X 极限点紧致.

证明. $\forall A \subseteq X$, $card(A) \ge card(\mathbb{N})$, 即 A 为无限集,下证 A 存在聚点: 反证法. 假设 $\forall x \in X$, $\exists U_x \subseteq X$, $x \in U_x$ s.t. $U_x \setminus \{x\} \cap A = \emptyset$., 则

$$X = \bigcup_{x \in X} U_x \tag{2.28}$$

由于 X 为紧集,因此 $\exists U_{x_1}, \cdots, U_{x_n} \in \{U_x\}_{x \in X}$, s.t.

$$X = \bigcup_{i=1}^{n} U_{x_i} \tag{2.29}$$

由于 $U_{x_i}\setminus\{x_i\}\cap A=\emptyset$,即每个 U_{x_i} 中至多含 A 中一个元素,因此 A 有限,矛盾 综上,X 为极限点紧致集.

反之,极限点紧致能否推出紧致性呢?答案是 Absolutely 否定的. 下面给出经典反例.

例 2.2.1. 考虑乘积空间 $\mathbb{Z}_+ \times Y$,其中赋予 $\mathbb{Z}_+ = \{1, 2, \cdots\}$ 离散拓扑, $Y = \{0, 1\}$ 平凡拓扑

首先证明其极限点紧致性.∀∅ ≠ A ⊆ Z₊ × Y, 若 (n, 1) ∈ A, 则下面证明 (n, 0) 为其聚点.
 容易得到一组拓扑基 B = {{n} × Y, {n} × ∅ | n ∈ Z₊}, 于是

$$\forall U \subseteq_{open} \mathbb{Z}_+ \times Y, \ (n,0) \in U, \ \text{s. t.} \{n\} \times Y \subseteq U$$

$$(n,1) \in U \setminus \{(n,0)\} \cap A \neq \emptyset \tag{2.30}$$

因此 (n,0) 为 A 的聚点,同理可证 $(n,0) \in A$ 时,(n,1) 为聚点,从而证明了极限点紧性.

• 对于开覆盖 $\{\{n\} \times Y\}_{n \in \mathbb{Z}_+}$,不存在有限子覆盖,故非紧致.

列紧性 下面给出列紧的定义.

定义 2.2.2. 设 X 为拓扑空间,若 $\forall \{x_n\}_{n=1}^{+\infty} \subseteq X$,其都有收敛子列,则称 X 为<u>列紧的</u> (sequentially compact).

下面的命题说明了列紧可以推出极限点紧.

命题 2.2.4. 设 X 为拓扑空间,若 X 列紧,则极限点紧.

证明. $\forall A \subseteq X$, A 为无限集,则可取出两两不同的序列 $\{x_n\}_{n=1}^{+\infty} \subseteq A$. 由于 X 为列紧集,因此 \exists 子列 $\{x_{n_k}\}_{k=1}^{+\infty} \subseteq \{x_n\}_{n=1}^{+\infty}$, $s.t. x_{n_k} \to x \in X$ 容易说明, $x \in X$ 即为 A 的聚点.

然而,极限点紧无法推出列紧.下面是一个反例.

例 2.2.2. 考虑 \mathbb{R} 及其上的右拓扑 $\tau := \{(a, +\infty) \mid a \in \mathbb{R}\} \cup \{\emptyset\}$

(ℝ,τ) 为极限点紧集.

 $\forall \emptyset \neq A \subseteq \mathbb{R}$, $\exists x_0 \in A$, 下面证明 $x_0 - 1$ 即为 A 的一个聚点.

$$\forall U \subseteq \mathbb{R}, x_0 - 1 \in U, \text{ s.t. } U = (a, +\infty), a < x_0 - 1, 于是$$

$$x_0 \in U \setminus \{x_0 - 1\} \cap A \neq \emptyset \tag{2.31}$$

从而 $x_0 - 1$ 为 A 的聚点.

(ℝ, τ) 非列紧.

取 $\{x_n\}_{n=1}^{+\infty}\subseteq\mathbb{R}$, $x_n=-n$, $\forall n\in\mathbb{N}$, 假设子列 $\{x_{n_k}\}_{k=1}^{+\infty}$ 收敛, $x_{n_k}\to x$, 则

$$\forall U \subseteq \mathbb{R}, x \in U, \text{ s. t. } U = (a, +\infty), a < x$$

由于 $\exists N \in \mathbb{N}$, s.t. $x_{n_k} < \alpha, \forall k > N$,于是 $x_{n_k} \notin U$, $\forall k > N$,这与 $\{x_{n_k}\}_{k=1}^{+\infty}$ 收敛矛盾. 综上, (\mathbb{R}, τ) 非列紧.

事实上,紧致性与列紧在一般条件下无法互推. 下面给出一个紧致但非列紧的反例.

例 2.2.3. 考虑推广乘积空间

$$[0,1]^{[0,1]} = \prod_{q \in [0,1]} [0,1] = \{ \overline{f} \mid f : [0,1] \longrightarrow [0,1], \ \forall n \in [0,1], \ f(n) \in [0,1] \}$$
 (2.32)

利用 Tychonoff 定理可证明其为紧致集,但非列紧.

2.3 连通性

2.3.1 连通性

为了说明连通性的概念, 先给出不连通的定义.

定义 2.3.1. 设 X 为拓扑空间,若 $\exists U \subset X$, $V \subset X$, $U \neq \emptyset$, $V \neq \emptyset$, s.t.

$$X = U \sqcup V \ (U \cap V = \emptyset) \tag{2.33}$$

则称 X 是不连通的 (disconnected).

从而可定义连通性的概念.

定义 2.3.2. 设 X 为拓扑空间, 若 X 满足

$$X = U \sqcup V, \ U, V \underset{open}{\subset} X \Rightarrow U = \emptyset \text{ or } V = \emptyset$$
 (2.34)

则称 X 为**连通的** (connected).

注. 同时,我们可给出子空间连通性的定义.

定义 2.3.3. 设 X 为拓扑空间, $Y \subset X$,若 Y 在子空间拓扑下连通,则称 Y 为连通的 (connected).

下面给出连通性的一些等价刻画.

命题 2.3.1. 设 X 为拓扑空间,则下列叙述等价:

- (a) X 连通.
- (b) 若 $U \subset X$ 既开又闭,则 $U = \emptyset$ 或 U = X.
- (c) 对于 \forall 离散拓扑空间 Y, 其中 $|Y| \ge 2$, 不存在连续满射 $f: X \longrightarrow Y$

证明.

- $(a) \Rightarrow (b)$: 由定义,取 $V = U^c$ 即可得证.
- (b) ⇒ (c): 反证法. 假设 ∃ 连续满射 $f: X \longrightarrow Y$,其中 Y 为元素个数 ≥ 2 的离散拓扑空间.

 $\forall y \in Y$,由于 f 为满射,且 $|Y| \ge 2$,因此 $f^{-1}(y) \ne X$ 且 $f^{-1}(y) \ne \emptyset$.

因为 $\{y\} \subset Y$ 既开又闭,而 f 连续,所以 $f^{-1}(y) \subset X$ 既开又闭.

于是 $f^{-1}(y) = X$ 或 $f^{-1}(y) = \emptyset$. 矛盾

 $(c) \Rightarrow (a)$: 证明逆否命题: 假设 X 不连通,构造一个 Y 及连续满射 $f: X \longrightarrow Y$.

 $\exists U, V \subset_{open} X$, s.t. $X = U \sqcup V$. $\mathbb{R} Y = \{0, 1\}$, \diamondsuit

$$f: X \longrightarrow Y = \{0, 1\} \tag{2.35}$$

$$x \longmapsto f(x) = \begin{cases} 0, & x \in U \\ 1, & x \in V \end{cases}$$
 (2.36)

容易证明, f 即为连续满射.

下面我们来证明一件看似显然的事情. 事实上,后续很多命题的证明都基于这一事实.

命题 2.3.2. ℝ (欧式拓扑) 是连通的.

证明. 反证法. 假设 \mathbb{R} 不连通,则 $\exists U \subset X$ 既开又闭, $U \neq \emptyset$ 且 $U \neq \mathbb{R}$.

于是 $\exists x_1 \in U^c$, $x_2 \in U$, 不妨设 $x_1 < x_2$.

 \diamondsuit $S = \{x \in \mathbb{R} \mid [x_1, x] \subset U^c\}, 则 <math>x_1 \in S \neq \emptyset$.

由于 $\forall y \geq x_2$, $[x_1, y] \not\subset U^c \Rightarrow y \not\in S$, 因此 x_2 为 S 的一个上界.

从而根据确界原理, $\exists x_0 = \sup S, \ x_0 \in \mathbb{R}$. 下面对 x_0 进行讨论.

- $x_0 \in U$,由于 U 为开集,因此 $\exists \delta > 0$,s. t. $(x_0 \delta, x_0 + \delta) \subset U$. 于是 $x_0 \frac{\delta}{2} \in U$ 也为 S 的上界. 这与 x_0 为上确界矛盾.
- $x_0 \in U^c$,由于 U^c 为开集,因此 $\exists \delta > 0$,s.t. $(x_0 \delta, x_0 + \delta) \subset U^c$.
 - $-x_0 \in S$, 则易证明 $x_0 + \frac{\delta}{2} \in S$, 这与 x_0 为上确界矛盾.
 - $-x_0 \notin S$,则用反证法易证明 $x_0 \frac{\delta}{2} \notin S$,从而 $x_0 \frac{\delta}{2}$ 为 S 的一个上界,与 x_0 为上确界矛盾.

综上,各情况都得出矛盾.从而 ℝ 连通.

同时我们可对 ℝ 中的连通子集做出刻画.

命题 2.3.3. $X \subset \mathbb{R}$ 是连通的 $\Leftrightarrow X$ 为一个区间.

证明.

⇐: 与命题2.3.2 类似.

⇒: 反证法. 假设 X 不是区间,则 $\exists a,b \in X$, a < b, s.t. $\exists a < x_0 < b$, $x_0 \notin X$. 于是

$$X = ((-\infty, x_0) \cap X) \sqcup (X \cap (x_0, +\infty))$$
 (2.37)

这与X的连通性矛盾. 综上,X为区间.

2.3.2 拓扑不变性

此前我们已经得到了一个拓扑不变性: 紧致性. 下面我们说明**连通性**同样为**拓扑不变性**. **命题** 2.3.4. 设 X, Y 为拓扑空间, $f: X \longrightarrow Y$ 连续,若 X 连通,则 f(X) 连通.

证明. 由于 $f: X \longrightarrow Y$ 连续,因此 f(X) 赋予子空间拓扑意义下, $f: X \longrightarrow f(X)$ 连续. 设 $U \subset f(X)$ 既开又闭,且 $U \neq \emptyset$. 则由于 f 连续,因此 $f^{-1}(U) \subset X$ 既开又闭. 因为 $f: X \longrightarrow f(X)$ 为满射,因此 $f^{-1}(U) \neq \emptyset$. 根据 X 的连通性, $f^{-1}(U) = X$. 于是 U = f(X). 这就证明了 f(X) 是连通的.

从而得到连通性也为拓扑不变性.

推论 2.3.1. 若 $X \cong Y$ (同胚),则 X 连通 $\Leftrightarrow Y$ 连通.

下面给出几个例子来体会利用拓扑不变性来判断同胚问题的威力.

例 2.3.1. 证明**:** S¹ ≇ ℝ.

证明.

Proof 1. 由于 S^1 ⊂ \mathbb{R}^2 在子空间拓扑下为紧集,而 \mathbb{R} 非紧,因此 $S^1 \not\cong \mathbb{R}$.

 $Proof\ 2.$ 假设 $\varphi: S^1 \longrightarrow \mathbb{R}$ 为同胚映射,则取 $p = (0,1) \in S$,易证 $\varphi|_{S^1 \setminus \{p\}} : S^1 \setminus \{p\} \longrightarrow \mathbb{R} \setminus \{\varphi(p)\}$ 仍为同胚映射. 根据球极投影, $S^1 \setminus \{p\} \cong \mathbb{R}$, \mathbb{R} 连通,于是 $S^1 \setminus \{p\}$ 连通. 而 $\mathbb{R} \setminus \{\varphi(p)\}$ 不连通. 这与 $S^1 \setminus \{p\} \cong \mathbb{R} \setminus \{\varphi(p)\}$ 矛盾. 综上, $S^1 \not\cong \mathbb{R}$.

类似地,可以证明下面的例题.

例 2.3.2. 证明: [0,1) ≇ ℝ.

证明. 假设 $\varphi: [0,1) \longrightarrow \mathbb{R}$ 为同胚映射,则 $\varphi|_{(0,1)}: (0,1) \longrightarrow \mathbb{R} \setminus \{\varphi(0)\}$ 仍为同胚映射. 由于 (0,1) 连通,而 $\mathbb{R} \setminus \{\varphi(0)\}$ 不连通,因此矛盾. $[0,1) \not\cong \mathbb{R}$.

下面我们给出一个判断连通性的强有力的方法.

命题 2.3.5. 设 X 为拓扑空间, $\{F_a\}_{a\in I}$ 为 X 的一族连通子集,且两两相交非空. 若 $X=\bigcup_{a\in I}F_a$,则 X 连通.

注. 通俗来讲,就是两两之间也相连的连通集,他们拼成的集合也是连通的.

证明. 反证法. 假设 $\exists U \subset X$ 既开又闭, $U \neq \emptyset$ 且 $U \neq X$, 则

$$U = X \cap U = \bigcup_{a \in I} (F_a \cap U) \tag{2.38}$$

由于 $U \neq \emptyset$,因此 $\exists a_1$, s.t. $F_{a_1} \cap U \neq \emptyset$.

因为 $F_{a_1} \cap U \subset F_{a_1}$ 为既开又闭集,所以 $F_{a_1} \cap U = F_{a_1}$, $F_{a_1} \subset U$.

同理根据 $U^c \neq \emptyset$ 为既开又闭集, $\exists a_2$, s.t. $F_{a_2} \subset U^c$.

于是
$$F_{a_1} \cap F_{a_2} = \emptyset$$
,这与 $\{F_a\}_{a \in I}$ 两两相交非空矛盾. 综上, X 为连通集.

例 2.3.3. 证明: $S^1 \not\cong S^2$.

证明. 由于 $S^1 \setminus \{p_1, p_2\}$ 不连通,因此只需证 $S^2 \setminus \{p_1, p_2\}$ 连通.

又根据球极投影, $S^2 \setminus \{p\} \cong \mathbb{R}^2 \Rightarrow S^2 \setminus \{p_1, p_2\} \cong \mathbb{R}^2 \setminus \{p\}$

因此只需证 $\mathbb{R}^2\setminus\{p\}$ 连通. 不妨取 p=(0,0), 证明如下:

 \$\phi\$

$$Z_{x,y} = (\{x\} \times \mathbb{R}) \cup (\mathbb{R} \times \{y\})$$
 (2.39)

 $Z_{x,y}$ 即为两条分别与 x,y 坐标轴平行的直线的并集.

根据投影映射, $\{x\} \times \mathbb{R} \cong \mathbb{R}$ 连通,同理 $\mathbb{R} \times \{y\}$ 连通.

因为 $(\{x\} \times \mathbb{R}) \cap (\mathbb{R} \times \{y\}) = \{(x,y)\} \neq \emptyset$,所以由命题2.3.5, $Z_{x,y}$ 连通.

因为对于集合族 $\{Z_{x,y}\}_{x\neq 0, y\neq 0}$, $\forall Z_{x,y}, Z_{x',y'} \in \{Z_{x,y}\}_{x\neq 0, y\neq 0}$, s.t.

$$(x, y') \in Z_{x,y} \cap Z_{x',y'} \neq \emptyset \tag{2.40}$$

于是再次根据命题2.3.5,由于

$$\mathbb{R}\backslash\{(0,0)\} = \bigcup_{x\neq 0, \ y\neq 0} Z_{x,y} \tag{2.41}$$

因此 ℝ\{(0,0)} 连通.

利用命题2.3.5,可以证明乘积空间的连通性.

命题 2.3.6. 设 X, Y 为连通拓扑空间,则 X×Y 连通.

证明. 类比例2.3.3 中证明方法. 令

$$Z_{x,y} = (\{x\} \times Y) \cup (X \times \{y\}) \tag{2.42}$$

根据投影映射, $\{x\} \times Y \cong Y$ 连通,同理, $X \times \{y\} \cong X$ 连通. 由于 $(\{x\} \times Y) \cap (X \times \{y\}) = \{(x,y)\} \neq \emptyset$,因此由命题2.3.5, $Z_{x,y}$ 连通. 对于集合族 $\{Z_{x,y}\}_{(x,y) \in X \times Y}$, $\forall Z_{x,y}, Z_{x',y'} \in \{Z_{x,y}\}_{(x,y) \in X \times Y}$,s. t.

$$(x, y') \in Z_{x,y} \cap Z_{x',y'} \neq \emptyset \tag{2.43}$$

于是再次根据命题2.3.5,因为

$$X \times Y = \bigcup_{(x,y) \in X \times Y} Z_{x,y} \tag{2.44}$$

所以 $X \times Y$ 连通.

例 2.3.4. $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ 连通 $\Rightarrow \cdots \Rightarrow \mathbb{R}^n$ 连通.

例 2.3.5. n 维单位开球 $B_1 = \{x \in \mathbb{R}^n \mid ||x|| < 1\}$ 连通.

证明. 令

$$\varphi: B_1 \longrightarrow \mathbb{R}^n \tag{2.45}$$

$$x \longmapsto \frac{x}{1 - ||x||} \tag{2.46}$$

设 $y=\frac{x}{1-||x||}$ \Rightarrow $||y||=\frac{||x||}{1-||x||}$ \Rightarrow $||x||=\frac{||y||}{1+||y||}$,代回 $y=\frac{x}{1-||x||}$ 中,得到 $x=\frac{y}{1+||y||}$ 于是容易证明 φ 为同胚映射, $B_1\cong\mathbb{R}^n$ 连通.

下面给出连通性的另一条性质,即连通集的闭包仍为连通集.

命题 2.3.7. 设 X 为拓扑空间, $\overline{Y} \subset X$,若 $Y \subset$ 连通,则 \overline{Y} 连通.

证明. 反证法. 假设 $\exists U, V \subset \overline{Y}, U, V \neq \emptyset$, s.t.

$$\overline{Y} = U \sqcup V \tag{2.47}$$

于是 $Y = Y \cap \overline{Y} = (Y \cap U) \sqcup (Y \cap V)$. 由于 $Y \cap U, Y \cap V \subset Y$ 既开又闭,而 Y 连通,因此 $Y \cap U = Y$ 或 $Y \cap V = Y$. 不妨设 $Y \cap U = Y$,则 $Y \subset U$.

因为 $U \subset \overline{Y}$, 所以 $\overline{Y} \subset U$, $U = \overline{Y}$. 这与 $V \neq \emptyset$ 矛盾.

综上, \overline{Y} 连通.

例 2.3.6. 证明: S² 连通.

证明.

方法 1. 由于 $S^2\setminus\{p\}\cong\mathbb{R}^2$ 连通,因此对于 $\forall p,p'\in S^2,\ p\neq p'$,根据命题2.3.5,因为

$$S^{2} = (S^{2} \setminus \{p\}) \cup (S^{2} \setminus \{p'\})$$
(2.48)

所以 S^2 连通.

方法 2. 由于 $S^2 = \overline{S^2 \setminus \{p\}}$,而 $S^2 \setminus \{p\} \cong \mathbb{R}^2$ 连通,因此根据命题2.3.7, S^2 连通.

2.3.3 连通分支

对于一般的拓扑空间 X,我们总可以将 X 分解为若干互不相交的连通子集的并,这就是要介绍的**连通分支**.

定义 2.3.4. 设 X 为拓扑空间, $Y \subset X$, 若 Y 满足

- 1. Y 连通.
- 2. $\forall Y' \subset X$ 连通,若 $Y \subset Y'$,则 Y = Y'.

则称 Y 为 X 的一个连通分支.

下面的命题说明了连通分支的存在性.

命题 2.3.8. 设 X 为拓扑空间,则 X 可表为若干个连通分支的无交并.

证明. For a fixed $x_0 \in X$, let $S_{x_0} \coloneqq \{F \subset X \mid F \text{ connected, } x_0 \in F\}$ 注意到,单点集为任一拓扑空间的连通子集,于是 $\{x_0\} \in S_{x_0} \neq \emptyset$. 令

$$X_{x_0} := \bigcup_{F \in S_{x_0}} F \tag{2.49}$$

由于 $x_0 \in \bigcap_{F \in S_{x_0}} F$,因此根据命题2.3.5, X_{x_0} 连通. 下面证明 $\{X_{x_0}\}_{x_0 \in X}$ 为无交连通分支.

- 设 $Y \subset X$ 连通, $X_{x_0} \subset Y$,则 $x_0 \in X_{x_0} \subset Y$,于是 $Y \in S_{x_0} \Rightarrow Y = X_{x_0}$. X_{x_0} 为连通分支.
- 设 $X_{x_1} \cap X_{x_2} \neq \emptyset$,则 $X_{x_1} \cup X_{x_2}$ 连通. 且 $X_{x_1} \subset X_{x_1} \cup X_{x_2}$,根据连通分支的极大性, $X_{x_1} = X_{x_1} \cup X_{x_2}$. 同理, $X_{x_2} = X_{x_1} \cup X_{x_2} = X_{x_1}$. 故 $\{X_{x_0}\}_{x_0 \in X}$ 中元素两两不交.

故存在指标集 I, 满足 $x_i \in X$, $\forall i \in I$, 且

$$X = \bigsqcup_{i \in I} X_{x_i} \tag{2.50}$$

注. 事实上,上述命题证明过程中得到的无交连通分支即为拓扑空间 X 的**所有连通分支**,即对于任一给定的拓扑空间 X,其所有连通分支**存在、两两无交且唯一**.

证明. 设 $Y \subset X$ 为连通分支,则 $\exists y_0 \in Y \subset X$,由于 $X = \bigsqcup_{i \in I} X_{x_i}$,因此 $\exists i_0 \in I$,s. t. $y_0 \in X_{x_{i_0}}$. 根据命题2.3.5, $Y \cup X_{x_{i_0}}$ 连通. 根据连通分支极大性, $Y = X_{x_{i_0}} = Y \cup X_{x_{i_0}}$.

下面给出连通分支的一条性质.

命题 2.3.9. 连通分支均为闭集.

证明. 设 $Y \subset X$ 为拓扑空间 X 的连通分支,则根据命题2.3.7, \overline{Y} 连通,且 $Y \subset \overline{Y}$. 根据连通分支的极大性, $Y = \overline{Y}$ 为闭集.

下面给出连通分支的例子.

例 2.3.7. 对于有理数集 $\mathbb{Q} \subset \mathbb{R}$, $\mathbb{Q} = \coprod_{q \in \mathbb{Q}} \{q\}$,其中 $\{q\}$, $q \in \mathbb{Q}$ 即为 \mathbb{Q} 的连通分支.

证明.

- 首先,单点集在所有拓扑空间下连通.
- 反证法. 假设 $X \subset \mathbb{Q}$ 为连通集, $\{q\} \subsetneq X$,则 $\exists q' \in X$, $q' \in \mathbb{Q}$, $q \neq q'$. 不妨设 q < q',根据无理数的稠密性, $\exists x_0 \in (q, q')$, $x_0 \in \mathbb{R} \setminus \mathbb{Q}$,则

$$X = ((-\infty, x_0) \cap \mathbb{Q}) \cap X \bigsqcup X \cap (\mathbb{Q} \cap (x_0, +\infty))$$
 (2.51)

于是 X 不连通, 矛盾.

综上, $\{q\}$, $q \in \mathbb{Q}$ 为 \mathbb{Q} 的连通分支.

2.3.4 道路连通性

定义 为了说明道路连通的概念, 先来定义何为"道路".

定义 2.3.5. 设 X 为拓扑空间,X 中的一条道路 (path) 是指一个连续映射 $\gamma:[0,1] \longrightarrow X$.

下面定义道路连通 (path connected) 的概念.

定义 2.3.6. 设 X 为拓扑空间,若 X 满足 $\forall p, q \in X$, \exists 道路 $\gamma : [0, 1] \longrightarrow X$, s.t.

$$\gamma(0) = p, \ \gamma(1) = q$$
 (2.52)

则称 X 道路连通 (path connected).

例 2.3.8. 设 $I \subset \mathbb{R}$ 为区间,则 I 道路连通.

证明.
$$\forall p, q \in X$$
, $\gamma(t) = t \cdot p + (1 - t) \cdot q$.

拓扑不变性 下面的命题说明道路连通性为拓扑不变性.

命题 2.3.10. 设 X, Y 为拓扑空间, $f: X \longrightarrow Y$ 连续, 则 X 道路连通 ⇒ f(X) 道路连通.

证明. Fix $p, q \in f(X)$. Since $f: X \longrightarrow f(X)$ is surjective, there exists $f^{-1}(p), f^{-1}(q) \in X$. Since X is path connected, \exists a path $\gamma: [0,1] \longrightarrow X$, s. t.

$$y(0) = f^{-1}(p), \ y(1) = f^{-1}(q)$$
 (2.53)

Then $f \circ \gamma : [0, 1] \longrightarrow f(X)$ is a path on f(X) with $(f \circ \gamma)(0) = p, (f \circ \gamma)(1) = q$.

推论 2.3.2. 若 $X \cong Y$, 则 X 道路连通 $\Leftrightarrow Y$ 道路连通.

注. 这便说明了道路连通性为拓扑不变性.

道路连通 & 连通 下面来说明道路连通与连通的关系.(道路连通 ⇒ 连通,连通 ⇒ 道路连通)

首先是道路连通 ⇒ 连通.

命题 2.3.11. 设 X 为拓扑空间,则 X 道路连通 ⇒ X 连通.

证明. 设 X 道路连通,下面证明 X 连通.

反证法. 假设 X 不连通,则 $\exists U, V \subset X$, $U \cap V = \emptyset$, $s.t. X = U \cup V$.

Fix $p \in U$, $q \in V$, then $p \neq q$.

Since X is path connected, there exists a path $\gamma:[0,1]\longrightarrow X$, s.t.

$$\gamma(0) = p, \ \gamma(1) = q$$
 (2.54)

Since $X = U \sqcup V$, then

$$[0,1] = \gamma^{-1}(U) \sqcup \gamma^{-1}(V) \tag{2.55}$$

Since γ is continuous, $\gamma^{-1}(U)$, $\gamma^{-1}(V) \underset{open}{\subset} [0,1]$ and $\gamma^{-1}(U)$, $\gamma^{-1}(V) \neq \emptyset$. 这与 [0,1] 连通矛盾. 从而 X 连通.

下面给出连通但非道路连通的例子.

例 2.3.9. 设 $X \subset \mathbb{R}^2$, $X = Y \sqcup Z$,其中

$$Y := \{(0, y) \mid -1 \le y \le 1\} \tag{2.56}$$

$$Z := \{ (x, \sin \frac{\pi}{x}) \mid 0 < x \le 1 \}$$
 (2.57)

则 X 连通,但非道路连通.

证明.

• X 连通. 不难证明 $X = \overline{Z}$,故只需证明 Z 连通 (命题2.3.7). 记

$$f:(0,1] \longrightarrow \mathbb{R}^2 \tag{2.58}$$

$$X \longmapsto (x, \sin\frac{\pi}{x})$$
 (2.59)

由于每个分量都连续,因此 f 连续,且 Z = Imf = f((0,1]),而 (0,1] 连通 故 Z = f((0,1]) 连通. 从而 $X = \overline{Z}$ 连通.

• X 非道路连通. 反证法. For any fixed $p \in Y$, $q \in Z$, \exists a path $\gamma : [0, 1] \longrightarrow X$, s.t.

$$\gamma(0) = p, \ \gamma(1) = q \tag{2.60}$$

Since $Y \subset X$, $\gamma^{-1}(Y) \subset [0, 1]$ is closed.

下面只需证明 $\gamma^{-1}(Y)$ open 即可推出与 [0,1] 连通条件矛盾.

 $(\mathbb{H} \ \forall t_0 \in \gamma^{-1}(Y), \text{ find a } \delta_{t_0} > 0, \text{ s. t.} (t_0 - \delta_{t_0}, t_0 + \delta_{t_0}) \cap [0, 1] \subset \gamma^{-1}(Y))$

Let $\epsilon_{t_0} = \min\{\frac{1}{2} |\gamma(t_0) - (0, -1)|, \frac{1}{2} |(0, 1) - \gamma(t_0)|\} > 0.$

设 $U \subset \mathbb{R}^2$ 为以 $\gamma(t_0)$ 为中心, $2\epsilon_{t_0}$ 为边长的开矩形,于是 U 与直线 $y=\pm 1$ 无交,即

$$U \cap \{y = 1\} = \emptyset, \ U \cap \{y = -1\} = \emptyset \tag{2.61}$$

下面给出一条 Lemma, 其证明过程放在最后.

引理 $2.3.3. U \cap Y 为 U$ 的一条连通分支.

由于 $\gamma(t_0) \in U \subset \mathbb{R}^2$ open,因此 $t_0 \in \gamma^{-1}(U) \subset_{open} [0,1]$. 于是 $\exists \delta > 0$, s. t. $(t_0 - \delta, t_0 + \delta) \cap [0,1] \subset \gamma^{-1}(U)$.

Let $I = (t_0 - \delta, t_0 + \delta) \cap [0, 1]$, 故 I 为区间,I 连通,且 $t_0 \in I$.

于是 $\gamma(t_0) \in \gamma(I)$ 连通, $\gamma(I) \subset U$,而 $\gamma(t_0) \in U \cap Y$ 为 U 的连通分支

从而 $\gamma(I) \subset U \cap Y$,即有

$$I = (t_0 - \delta, t_0 + \delta) \cap [0, 1] \subset \gamma^{-1}(Y)$$
 (2.62)

综上, $\gamma^{-1}(Y)$ 既开又闭, $\gamma^{-1}(p) \in \gamma^{-1}(Y) \neq \emptyset$,且 $\gamma^{-1}(Y) \neq [0,1]$,这与 [0,1] 连通矛盾. 故 X 非道路连通.

下面给出 Lemma 2.3.3 的证明.

证明. $\forall U \cap Y \subsetneq F \subset U$, 即 $\exists p \in F$, $p \in U \cap Z$, 下证 F 不连通.

由于 U 与两条直线 $y = \pm 1$ 均无交,因此 $U \cap Z$ 同胚于一条条无交的线段.

故对于 any fixed $p \in U \cap Z$, $\exists a > 0$, 直线 $\{x = a\} \cap (U \cap Z) = \emptyset$, p 在 $\{x = a\}$ 右侧, s.t.

$$F = (\{x \le a\} \cap F) \cup (\{x \ge a\} \cap F) \tag{2.63}$$

由于 $U \cap Y \subset \{x \leq a\} \cap F, \{p\} \subset \{x \geq a\} \cap F,$ 因此 F 不连通.

综上, $U \cap Y$ 为 U 的连通分支.

局部道路连通 事实上,连通性再加上一定条件便可推出道路连通.

定义 2.3.7. 设 X 为拓扑空间,若 X 满足 $\forall p \in X$, $\forall p$ 的开邻域 U,总存在 $V \subset X$,V 道路连通, s. t.

$$p \in V \subset U \tag{2.64}$$

则称 X 局部道路连通 (locally path connected).

下面说明连通性 + 局部道路连通 ⇒ 道路连通性.

(事实上只用到了局部道路连通的弱化性质)

命题 2.3.12. 设 X 为拓扑空间,若 X 连通,且 X 局部道路连通,则 X 道路连通.

证明. Fix $p_0 \in X$. Let

$$S := \left\{ p \in X \mid \exists \ a \ path \ \gamma : [0, 1] \longrightarrow X, \ \text{s.t.} \ \gamma(0) = p_0, \ \gamma(1) = p \right\}$$
 (2.65)

Then $p_0 \in S \neq \emptyset$. 下面证明 S = X, 即证明 S 既开又闭.

• S open. $\forall p \in S$, \exists a path $\gamma : [0, 1] \longrightarrow X$, $\gamma(0) = p_0$, $\gamma(1) = p$. Since X is locally path connected, there exists $U \subset X$, s. t. $p \in U$ is path connected. Then $\forall p_1 \in U$, $\exists \varphi : [0, 1] \longrightarrow U$, s. t. $\varphi(0) = p$, $\varphi(1) = p_1$. Let

$$\widetilde{\gamma}: [0,1] \longrightarrow X$$
 (2.66)

$$t \longmapsto \widetilde{\gamma}(t) = \begin{cases} \gamma(2t), & 0 \le t \le \frac{1}{2} \\ \varphi(2t-1), & \frac{1}{2} \le t \le 1 \end{cases}$$
 (2.67)

由粘接原理, $\widetilde{\gamma}$ 分别在 $[0,\frac{1}{2}]$ 与 $[\frac{1}{2},1]$ 上连续. 因此 $\widetilde{\gamma}$ 连续.

Then $\widetilde{\gamma}$ is a path connecting p_0 and p_1 . Therefore $U \subset S$. S is open.

S closed. ∀p∈S', 即证 p∈S.
 Since X is locally path connected, ∃U ⊂ X, s.t. p∈U is path connected.

Since $p \in S'$, there exists $p_2 \in S$ and a path $\gamma : [0, 1] \longrightarrow X$, $\gamma(0) = p_0$, $\gamma(1) = p_2$. There also exists a path $\varphi : [0, 1] \longrightarrow U$, s.t. $\varphi(0) = p_2$, $\varphi(1) = p$. Similarly, let

$$\widetilde{\gamma}: [0,1] \longrightarrow X$$
 (2.68)

$$t \longmapsto \widetilde{\gamma}(t) = \begin{cases} \gamma(2t), & 0 \le t \le \frac{1}{2} \\ \varphi(2t-1), & \frac{1}{2} \le t \le 1 \end{cases}$$
 (2.69)

Then $\widetilde{\gamma}$ is a path. $p \in S$. $S' \subset S \Rightarrow S = \overline{S}$ closed.

综上,S = X. 容易证明任两点之间存在道路. 故 X 道路连通.

第三章 商空间与闭曲面

3.1 商空间与商映射

3.1.1 Möbius 带

作为商空间及商映射的引入,本节将分别从**几何直观**和**抽象视角**两方面构造 *Möbius* 带,其中包含两层意思:

- 给出 Möbius 带所代表的确切的集合.
- 在 Möbius 带所代表的集合上赋予拓扑, 使之成为拓扑空间.

几何直观 在几何直观的方法中,我们将借助 \mathbb{R}^3 空间,把 *Möbius* 带定义为 \mathbb{R}^3 的一个子集.

先对要定义的 Möbius 带给出粗糙的叙述:

- 一根长度为 2l 的木棍,其中点沿着 xOy 平面半径为 a 的圆移动 (公转). 中点初始坐标为 (a,0,0),且最初木棍垂直于 xOy 平面.
- 木棍在公转过程中,同时进行着自转,具体为 A 点匀速向外、B 点匀速向内转动,并在公转完一圈后 A, B 位置恰好互换一次. 木棍扫过的轨迹即为 Möbius 带 (子空间拓扑).

图 3.1: R³ 中的 Möbius 带

下面我们构造一个从矩形纸带 X 到上述构造的 $M\ddot{o}bius$ 带 M 的映射 $\varphi: X \longrightarrow M$,使其实现直观上的 "粘合过程".

对于 M 上任一点, 其只由公转的角度 θ 和它与木棍中点的距离 u 决定, 其中

$$-l \le u \le l, \ 0 \le \vartheta \le 2\pi \tag{3.1}$$

可以定义纸带即为 $X = [0, 2\pi] \times [-l, l]$, 从而不难得到

$$\varphi: X \longrightarrow M \tag{3.2}$$

$$(\theta, u) \longmapsto \left((a + u \sin \frac{\theta}{2}) \cos \theta , (a + u \sin \frac{\theta}{2}) \sin \theta , u \cos \frac{\theta}{2} \right)$$
 (3.3)

容易得到,9 增大,表示线段 $\{9\} \times [-1,1]$ 的像,即 M 中的木棍就在公转 + 自转.

这样,我们就借助 \mathbb{R}^3 给出了 *Möbius* 带的表示形式,并定义了其拓扑空间. 但这样直观的方法自然而然存在着一个问题,就是这样定义**需要借助** \mathbb{R}^3 **这个与** X 无关的第三方空间.

然而按理来说, $M\ddot{o}$ bius 带的构成应当只与我们的纸带 X 以及粘合方式有关,不应当依赖于第三方空间,这就引出了接下来讲的**抽象**方法.

抽象方法