总复习

- 一. 曲线积分的计算法
 - 1. 基本方法

曲线积分 第一类 (对弧长) 定积分 第二类 (对坐标)

2. 基本技巧

- (1) 利用对称性及重心公式简化计算;
- (2) 利用积分与路径无关的等价条件
- (3) 利用格林公式(注意加辅助线的技巧);
- (4) 利用斯托克斯公式;
- (5) 利用两类曲线积分的联系公式.

二. 曲面积分的计算法

1. 基本方法

```
曲面积分 第一类(对面积) 二重积分第二类(对坐标)
```

- (1) 统一积分变量 代入曲面方程
- (2) 积分元素投影 第一类: 始终非负第二类: 有向投影
- (3) 确定二重积分域
 - 一把曲面积分域投影到相关坐标面

2. 基本技巧

(1) 利用对称性及重心公式简化计算

(2) 利用高斯公 注意公式使用条件 添加辅助面的技巧

(辅助面一般取平行坐标面的平面)

(3) 两类曲面积分的转化

练. 设*L* 是周长为*a* 的椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$, 则 $\oint_L (2xy + 3x^2 + 4y^2) ds = \frac{12a}{5}$

提示: 利用对称性

原式 = 12
$$\oint_L \left(\frac{x^2}{4} + \frac{y^2}{3} \right) ds = 12a$$

2. 设 Γ 为圆周 $\begin{cases} x^2 + y^2 + z^2 = R^2, \text{ 它是线密度为 1} \\ x + y + z = 0 \end{cases}$

的物质曲线,关于z 轴的转动惯量 $I = \frac{4}{3}\pi R^3$

提示:
$$I = \oint_{\Gamma} (x^2 + y^2) ds$$

= $\frac{2}{3} \oint_{\Gamma} (x^2 + y^2 + z^2) ds = \frac{4}{3} \pi R^3$

例1. 计算曲线积分

$$I = \int_{L} (e^{x} \cos y - e^{y} \sin x + y) dx + (e^{y} \cos x - e^{x} \sin y) dy$$

其中 是摆线
$$\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}$$
 由点 $O(0,0)$ 到点 $A(2\pi,0)$

的一段弧.

M:
$$I = \int_{L+AO} -\int_{AO} \int_{O} \int_{A} \int_{O} \int_{A} \int_{A} \int_{O} \int_{A} \int_{A} \int_{D} \int_{D} \int_{A} \int_{D} \int_{D} \int_{A} \int_{D} \int_{A} \int_{A} \int_{D} \int_{D} \int_{A} \int_{D} \int_{D} \int_{A} \int_{D} \int_{A} \int_{A} \int_{D} \int_{D} \int_$$

例2. 设 C 为沿 $x^2 + y^2 = a^2$ 从点 (0, a) 依逆时针 到点(0,-a)的半圆,计算

$$\int_{c} \frac{y^{2}}{\sqrt{a^{2} + x^{2}}} dx + \left[ax + 2y \ln(x + \sqrt{a^{2} + x^{2}}) \right] dy$$

解:添加辅助线,利用格林公式.

原式 =
$$\int_{C+C'} -\int_{C'}$$

$$= \iint_{D} \left[a + \frac{2y}{\sqrt{a^2 + x^2}} - \frac{2y}{\sqrt{a^2 + x^2}} \right] dx dy$$

$$= \frac{1}{2} \pi a^3$$

$$=\frac{1}{2}\pi a^3$$

练习1: $I = \int_{L} \sqrt{x^2 + y^2} dx + y[xy + \ln(x + \sqrt{x^2 + y^2})] dy$

其中 $L 是 y = \sin x$ 上由 $A(2\pi,0)$ 到 $B(3\pi,0)$ 的一段

角
$$\mathbf{q} : \int_{L} = \int_{L+BA} - \int_{BA}$$

$$\therefore \oint_{L+\overline{BA}} = -\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

$$= -\iint y^2 dx dy = -\frac{4}{9}$$

$$\int_{3\pi} = \int_{3\pi}^{2\pi} \sqrt{x^2} \, dx = -\frac{5}{2} \pi^2$$

$$\therefore \int_{L} = \oint_{L+BA} - \int_{BA} = -\frac{9}{4} - (-\frac{5}{2}\pi^{2}) = \frac{5}{2}\pi^{2} - \frac{4}{9}$$

2. 计算 $I = \int_{L} (\sin y - y \sin x) dx + (\cos x + x \cos y + x^{2}) dy$ 其中L 是沿曲线 $y = \sqrt{1 - x^{2}}$ 从A (0,1) 到B (1,0) 的一段弧.

解:
$$\frac{\partial P}{\partial y} = \cos y - \sin x$$
 $\frac{\partial Q}{\partial x} = \cos y - \sin x + 2x$ 则

 $I = \int_{L} (\sin y - y \sin x) dx + (\cos x + x \cos y) dy + \int_{L} x^{2} dy$

积分与路径无关,取 BO+OA

$$= -\int_0^1 dy + \int_{\pi/2}^0 \cos^3 t \, dt$$

$$=-1$$
 $-\frac{2}{3}$ $=-\frac{5}{3}$

3. 已知 $\int_{L} F(x, y)(y dx + x dy)$ 与路径无关,且由方程 F(x, y) = 0 确定的隐函数 y = y(x) 过点(1,2),求 y(x).

解: 利用
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
, 得 $y F_2' = x F_1'$

$$\therefore \frac{dy}{dx} = -\frac{F_1'}{F_2'} = -\frac{y}{x} \Longrightarrow \frac{dy}{y} = -\frac{dx}{x}$$

积分得 xy = C, 利用 $y|_{x=1} = 2$, 得 C = 2,

故所求函数为
$$y = \frac{2}{x}$$

例3 已知 f(0) = -1 确定 f(x) 使

$$I = \int_{L} [\tan x - f(x)] \frac{y}{\cos^{2} x} dx + f(x) dy 与路径无关,$$

并求当L 是曲线 $y = (x \sin x + \tan x)(x-1) + x$

从 (0,0) 到 (1,1) 上一段的积分值

解:
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
 \Rightarrow $\sec^2 x \tan x - \sec^2 x \ f(x) = f'(x)$

$$f(x) = \tan x - 1 + Ce^{-\tan x} \nabla f(0) = -1$$
 $C = 0$

∴ $f(x) = \tan x - 1$ 时,积分与路径无关

$$I = \int_{(0,0)}^{(1,1)} = \tan 1 - 1$$

例4 设 Q(x,y) 具有一阶连续偏导数,且

 $\int_{L} 2xydx + Q(x,y)dy$ 与路径无关,并对任意t 恒有

$$\int_{(0,0)}^{(t,1)} 2xydx + Q(x,y)dy = \int_{(0,0)}^{(1,t)} 2xydx + Q(x,y)dy \stackrel{\bigstar}{\nearrow} Q(x,y)$$

A(t,0)

A(t,0)

解 由积分与路径无关条件知 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} = 2x$

$$\Rightarrow Q(x,y) = x^2 + \varphi(y) \varphi(y)$$
 待定

$$\therefore \int_{(0,0)}^{(t,1)} 2xy \, dx + Q(x,y) \, dy = \int_0^1 [t^2 + \varphi(y)] \, dy$$

$$= t^2 + \int_0^1 \varphi(y) \, dy$$

$$\int_{(0,0)}^{(1,t)} 2xy \, dx + Q(x,y) \, dy = \int_0^t [1^2 + \varphi(y)] \, dy = t + \int_0^t \varphi(y) \, dy$$

例4 设 Q(x, y)具有一阶连续偏导数,且

 $\int_{L} 2xydx + Q(x,y)dy$ 与路径无关,并对任意t 恒有

$$\int_{(0,0)}^{(t,1)} 2xydx + Q(x,y)dy = \int_{(0,0)}^{(1,t)} 2xydx + Q(x,y)dy \stackrel{\Rightarrow}{\Rightarrow} Q(x,y)$$

由题设有
$$t^2 + \int_0^1 \varphi(y) dy = t + \int_0^t \varphi(y) dy$$

对t 求导 $\varphi(t) = 2t-1$

$$\therefore Q(x, y) = x^2 + 2y - 1$$

例5. 函数 $\phi(x)$ 具有二阶导数,并使曲线积分 $\int_{L} (3\phi'(x) - 2\phi(x) + xe^{-x}) y dx + \phi'(x) dy$

与路径无关,求 $\phi(x)$.

解: 利用 $P_y = Q_x$, 得

$$\phi''(x) - 3\phi'(x) + 2\phi(x) = xe^{-x}$$

对应齐次方程的通解 $Y = C_1 e^x + C_2 e^{2x}$

设非齐次方程特解 $y^* = (ax+b)e^{-x}$

代入原方程可定出 $a = \frac{1}{6}$, $b = \frac{5}{36}$

则所求 $\phi(x) = Y + y*$

$$= C_1 e^{x} + C_2 e^{2x} + (\frac{1}{6}x + \frac{5}{36}) e^{-x}$$

例6. 在变力 F = yzi + zxj + xyk 的作用下, 质点 由原点沿直线运动到椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 第一卦 限的点 $M(\xi,\eta,\zeta)$, 问 ξ,η,ζ 取何值时, 力 F 所作的 功最大, 并求出功的最大值 $\text{ # Example 1 and 2 and 3 and$ $\therefore W = \int_{OM} yzdx + zxdy + xydz = \int_0^1 3\xi \eta \zeta t^2 dt = \xi \eta \zeta$

$$\begin{array}{ll}
\zeta & \eta & \zeta & \zeta & \zeta & \zeta \\
\zeta & W &= \int_{OM} yzdx + zxdy + xydz = \int_{0}^{1} 3\xi\eta\zeta t^{2}dt = \xi\eta\zeta \\
&$$

本
本
本
本
本
本
大
 $\xi = \frac{a}{\sqrt{3}}, \quad \eta = \frac{b}{\sqrt{3}}, \quad \zeta = \frac{c}{\sqrt{3}} \quad W_{\text{max}} = \frac{\sqrt{3}}{9} abc$

例7 $I = \iint zdS$ 其中Σ是柱面 $x^2 + z^2 = R^2$

被锥面 $z = \sqrt{x^2 + y^2}$ 截下的部分

两曲面的交线

$$\begin{cases} z = \sqrt{R^2 - x^2} \\ z = \sqrt{x^2 + y^2} \end{cases}$$

投影柱面
$$2x^2 + y^2 = R^2$$
 $D_{xy}: 2x^2 + y^2 \le R^2$

$$D_{xy}: 2x^2 + y^2 \le R^2$$

$$\therefore dS = \sqrt{1 + {z'_{x}}^{2} + {z'_{y}}^{2}} dx dy = \frac{R}{\sqrt{R^{2} - x^{2}}} dx dy$$

$$I = \iint_{\Sigma} z dS = \iint_{D_{xy}} \sqrt{R^{2} - x^{2}} \cdot \frac{R}{\sqrt{R^{2} - x^{2}}} dx dy = \frac{\sqrt{2}}{2} \pi R^{3}$$

例8. 计算 $I = \iint_{\Sigma} 8xzdydz - 3yzdzdx + (4z - \frac{5}{2}z^2)dxdy$

其中∑是 $z = e^x$ (0 ≤ x ≤ 2) 绕 z 轴旋转一周所成的曲面的下侧.

$$x^2 + y^2 \le 4$$
 取上侧

$$\iint_{\Sigma} + \iint_{\Sigma_{1}} = \iiint_{\Omega} 4 \, dv = 4 \int_{1}^{e^{2}} dz \iint_{D_{z}} dx \, dy$$

$$= 4 \int_{1}^{e^{2}} \pi (\ln z)^{2} \, dz = 8 \pi (e^{2} - 1)$$

$$\iint_{\Sigma_1} = \iint_{\Sigma_1} (4z - \frac{5}{2}z^2) dx dy = \iint_{D_{xy}} (4e^2 - \frac{5}{2}e^4) dx dy$$

$$= 4\pi(4e^2 - \frac{5}{2}e) \qquad \therefore \quad I = 2(5e^4 - 4e^2 - 4)\pi$$

例9. 计算 $\iint_{\Sigma} x^3 dy dz + y^3 dz dx + z^3 dx dy$, Σ 为上半 球面 $x^2 + y^2 + z^2 = 1$ 的上侧.

解:设Σ。为半球底面,取下侧,与Σ所围区域为Ω

原式 =
$$\iint_{\Sigma + \Sigma_0} -\iint_{\Sigma_0} = 3 \iiint_{\Omega} (x^2 + y^2 + z^2) dv - 0$$

$$= 3 \int_0^{2\pi} d\theta \int_0^{\pi/2} \sin \phi d\phi \int_0^1 r^4 dr = \frac{6}{5} \pi$$

练习: 求
$$I = \iint_{\Sigma} \left(\frac{dydz}{x} + \frac{dzdx}{y} + \frac{dxdy}{z} \right),$$
 其中 Σ 为球

面 $x^2 + y^2 + z^2 = R^2$ 的外侧. (答案: $12\pi R$)

例10、设 f(u) 具有连续导数,计算曲面积分

$$I = \iint_{\Sigma} x^3 dy dz + \left[\frac{1}{z} f\left(\frac{y}{z}\right) + y^3\right] dz dx + \left[\frac{1}{y} f\left(\frac{y}{z}\right) + z^3\right] dx dy$$

其中 Σ 为锥面 $z = \sqrt{x^2 + y^2}$ 和球面 $x^2 + y^2 + z^2 = 1$
$$x^2 + y^2 + z^2 = 4$$
 所围成立体表面的外侧。

$$\frac{\partial P}{\partial x} = 3x^2 \quad \frac{\partial Q}{\partial y} = \frac{1}{z^2} f'\left(\frac{y}{z}\right) + 3y^2 \quad \frac{\partial R}{\partial z} = -\frac{1}{z^2} f'\left(\frac{y}{z}\right) + 3z^2$$

由高斯公式得
$$I = \iiint 3(x^2 + y^2 + z^2) dxdydz$$

= $3\int_0^{2\pi} d\theta \int_0^{\frac{\pi}{4}} \sin \varphi d\varphi \int_1^2 r^4 dr = \frac{93}{5}\pi(2 - \sqrt{2})$

例11. 已知曲面壳 $z = 3 - (x^2 + y^2)$ 的面密度 $\rho = x^2 + y^2 + z$, 求此曲面壳在平面 z = 1以上部分 Σ 的质量 M.

解: $\sum 在 xoy$ 面上的投影为 $D_{xy}: x^2 + y^2 \le 2$, 故

$$M = \iint_{\Sigma} \rho \, dS = \iint_{D_{xy}} 3\sqrt{1 + 4(x^2 + y^2)} \, dx dy$$
$$= 3\int_{0}^{2\pi} d\theta \int_{0}^{\sqrt{2}} r \sqrt{1 + 4r^2} \, dr = \dots = 13\pi$$

练习: 曲面 Σ : $z=1-x^2-y^2$ ($z \ge 0$), 其上面密度

$$\rho = x^2 + y^2$$
, 求其质量

(答案:
$$\frac{\pi}{60}$$
 (25 $\sqrt{5}$ +1))

例12. 求面密度为 1 的锥面 $z = \frac{h}{a} \sqrt{x^2 + y^2}$ (0 $\leq z \leq h$, a > 0) 对 oz 轴的转动惯量.

PF:
$$I = \iint_{\Sigma} (x^2 + y^2) dS$$

$$= \iint_{D_{xy}} (x^2 + y^2) \sqrt{1 + \frac{h^2}{a^2}} dx dy$$

$$= \frac{\sqrt{a^2 + h^2}}{a} \int_0^{2\pi} d\theta \int_0^a r^3 dr = \frac{\pi}{2} a^3 \sqrt{a^2 + h^2}$$

练习: 求面密度为 1 的球面 $\Sigma: x^2 + y^2 + z^2 = R^2$ 绕 z 轴的转动惯量 I . **(答案:** $\frac{8}{3}\pi R^4$)

例13. 设半径为R 的球面 Σ 的球心在定球面 $x^2 + y^2 + z^2 = a^2$ 上的点 M(0,0,a) (a > 0) 处,问当R 取何值时, 球面 Σ 在定球内部那部分的面积最大.

解: $\sum : x^2 + y^2 + (z - a)^2 = R^2$ 含于定球面 $x^2 + y^2 + z^2 = a^2$ 内部那部分 $\sum x^2 + y^2 + z^2 = a^2$ 内部那部分 $\sum x^2 + y^2 + z^2 = a^2$

 $D: x^2 + y^2 \le R^2 - \frac{R^4}{4a^2}$

其面积为

$$S = \iint_{\Sigma'} dS = \iint_{D} \frac{R}{\sqrt{R^2 - x^2 - y^2}} dx dy$$

$$S = \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dx dy \qquad D: x^{2} + y^{2} \le R^{2} - \frac{R^{4}}{4 a^{2}}$$

$$D: x^{2} + y^{2} \leq R^{2} - \frac{R^{2}}{4 a^{2}}$$

$$= \int_{0}^{2\pi} d\theta \int_{0}^{R} \sqrt{1 - \frac{R^{2}}{4 a^{2}}} R r$$

$$= \int_{0}^{2\pi} d\theta \int_{0}^{R} \sqrt{\frac{R^{2} - r^{2}}{\sqrt{R^{2} - r^{2}}}} dr$$

$$= 2\pi R(R - \frac{R^{2}}{2 a}), \quad a \in (0, +\infty)$$

由实际意义可知

$$S_{\text{max}} = S(\frac{4a}{3}) = \frac{16\pi a(2a-1)}{9}$$

总复习

《高等数学》(下)

常微分方程

- 1、一阶微分方程的求解 变量分离、齐次、线性、伯努利、全微分
- 2、可降阶的高阶微分方程的求解
- 3、线性微分方程解的结构定理
- 4、二阶线性常系数齐次与非齐次微分方程的求解

典型例题

1. 求解微分方程
$$x \frac{dy}{dx} = y(\ln y - \ln x)$$

解:原方程改写为
$$\frac{dy}{dx} = \frac{y}{x} \ln \frac{y}{x}$$

分离变量
$$\frac{du}{u(\ln u - 1)} = \frac{dx}{x}$$

两边积分 $\ln(\ln u - 1) = \ln x + \ln C$

从而通解为 $y = xe^{Cx+1}$

2. 求解微分方程
$$\frac{dy}{dx} = \frac{y}{x - y^2 \cos y}$$

解:将原方程写成 $\frac{dx}{dy} - \frac{1}{y}x = -y\cos y$

$$x = e^{-\int -\frac{1}{y} dy} \left[\int (-y \cos y) e^{\int -\frac{1}{y} dy} dy + C \right]$$

$$=y\left[\int (-y\cos y)\frac{1}{y}dy+C\right]$$

$$= y(C - \sin y)$$

3. 求解微分方程 $xy' - 4y = x^2 \sqrt{y}$

解:原方程变形为 $\frac{dy}{dx} - \frac{4}{x}y = xy^{\frac{1}{2}}$

方程变为
$$\frac{dz}{dx} - \frac{2}{x}z = \frac{x}{2}$$

$$\therefore \sqrt{y} = z = e^{-\int -\frac{2}{x} dx} \left[\int \frac{x}{2} e^{\int -\frac{2}{x} dx} dx + C \right] = x^2 \left[\int \frac{1}{2x} dx + C \right]$$
$$= x^2 \left(\frac{1}{2} \ln x + C \right)$$

4. 求解微分方程 $(2xy^2 - y)dx + (y^2 + x + y)dy = 0$

解:原方程变形为

$$2xy^{2}dx - (ydx - xdy) + (y^{2} + y)dy = 0$$

用
$$\mu(x, y) = \frac{1}{y^2}$$
乘方程两边

$$2xdx - \frac{ydx - xdy}{y^2} + (1 + \frac{1}{y})dy = 0$$

∴ 通解:
$$x^2 - \frac{x}{y} + y + \ln y = C$$

5. 设
$$\phi(x) \in C$$
, $\phi(x) = e^x - \int_0^x (x-u)\phi(u) du$, 求 $\phi(x)$.

求解可得
$$\phi(x) = \frac{1}{2}(\cos x + \sin x + e^x)$$

思考: 设
$$\phi(x) = e^{x} - x^{3/2} \int_{0}^{\sqrt{x}} \phi(\sqrt{x} u) du$$
, 如何求 $\phi(x)$?

提示: 对积分换元, 令 $t = \sqrt{x}u$, 则有

$$\phi(x) = e^{x} - x \int_{0}^{x} \phi(t) dt$$

6. 求解初值问题
$$\begin{cases} 2 yy'' = (y')^2 + y^2 \\ y(0) = 1, y'(0) = -1 \end{cases}$$

$$\therefore p^2 = y^2$$

两边积分并整理得 $y = C_2 e^{-x}$

由
$$y(0) = 1$$
, 知: $C_2 = 1$

故所求特解为
$$y = e^{-x}$$

7. 求微分方程通解 y'' + 2y' + 3y = 0

解:特征方程 $r^2 + 2r + 3 = 0$ $\Rightarrow r_{1,2} = -1 + \sqrt{2}i$

通解 $y = e^{-x} [C_1 \cos \sqrt{2}x + C_2 \sin \sqrt{2}x]$

8. 求微分方程通解 $y^{(4)} + y''' + y' + y = 0$

解: 特征方程 $r^4 + r^3 + r + 1 = 0$

$$\Rightarrow r_{1,2} = -1, \quad r_{2,4} = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i$$

通解

$$y = (C_1 + C_2 x)e^{-x} + e^{\frac{1}{2}x}[C_3 \cos \frac{\sqrt{3}}{2} x + C_2 \sin \frac{\sqrt{3}}{2} x]$$

9. 求微分方程通解 $y'' - 4y' + 4y = xe^{2x}$

解:特征方程 $r^2 - 4r + 4 = 0 \Rightarrow r_{1,2} = 2$

对应齐方程通解 $Y = (C_1 + C_2 x)e^{2x}$

 $\therefore \lambda = 2$ 是二重根

可设特解 $y^* = x^2(ax+b)e^{2x}$

代入方程得 $a = \frac{1}{6}, b = 0$ $\therefore y^* = \frac{1}{6}x^3e^{2x}$

通解 $y = (C_1 + C_2 x)e^{2x} + \frac{1}{6}x^3 e^{2x}$

10. 求微分方程通解 $y'' + 2y' + 5y = e^{-x} \cos 2x$

解: 特征方程 $r^2 + 2r + 5 = 0 \implies r_{1,2} = -1 + 2i$

对应齐方程通解 $Y = e^{-x}[C_1 \cos 2x + C_2 \sin 2x]$

 $\therefore \lambda \pm i\omega = -1 \pm 2i$ 是一重根

可设特解 $y^* = x(a\cos 2x + b\sin 2x)e^{-x}$

代入方程得 $a = 0, b = \frac{1}{4}$ $\therefore y^* = \frac{1}{4}e^{-x}\sin 2x$

通解

 $y = e^{-x} [C_1 \cos 2x + C_2 \sin 2x] + \frac{1}{4} e^{-x} \sin 2x$

11. 求微分方程通解形式 $y'' + y = x + \cos x + e^{2x} \cos 3x$

解: 特征方程 $r^2 + 1 = 0 \Rightarrow r_{1,2} = \pm i$

对应齐方程通解 $Y = C_1 \cos x + C_2 \sin x$

下面分别求方程特解形式

$$y'' + y = x$$
 $y_1^* = a_1 x + a_2$
 $y'' + y = \cos x$ $y_2^* = x(b_1 \cos x + b_2 \sin x)$
 $y'' + y = e^{2x} \cos 3x$ $y_3^* = e^{2x}(d_1 \cos 3x + d_2 \sin 3x)$

原方程通解形式

$$y = C_1 \cos x + C_2 \sin x + y_1^* + y_2^* + y_3^*$$

12. 已知 $y_1 = xe^x + e^{2x}$, $y_2 = xe^x + e^{-x}$, $y_3 = xe^x + e^{2x} + e^{-x}$ 是某二阶常系数线性非齐次微分方程的三个解,求出该微分方程。

解: 由线性微分方程解的结构理论知

$$y_3 - y_2 = e^{2x}$$
 及 $y_3 - y_1 = e^{-x}$ 是对应齐次方程

的解,且它们线性无关

所以对应齐次方程的特征方程为

$$(r-2)(r+1) = 0$$
 \mathbb{P} $r^2 - r - 2 = 0$

所以可设方程为 y'' - y' - 2y = f(x)

将
$$y_1 = xe^x + e^{2x}$$
代入方程 $\Rightarrow f(x) = e^x - 2xe^x$

所求方程为
$$y'' - y' - 2y = e^x - 2xe^x$$

13. 求满足 f(0) = -1, f'(0) = 1 的具有二阶连续导数的函数 f(x) ,使得

$$f(x) y dx + \left[\frac{3}{2} \sin 2x - f'(x) \right] dy = 0$$

是全微分方程,并求此全微分方程的积分曲线中经过(π,1)的一条积分曲线。

解:
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
 $\Rightarrow 3\cos 2x - f''(x) = f(x)$
 $\therefore f''(x) + f(x) = 3\cos 2x$

对应齐次方程的通解 $Y = C_1 \cos x + C_2 \sin x$

令 $y^* = A\cos 2x + B\sin 2x$ 代入方程得 A = -1, B = 0

所以方程通解为 $f(x) = C_1 \cos x + C_2 \sin x - \cos 2x$

因此全微分方程为

$$(\sin x - \cos 2x) y dx - (\cos x + \frac{1}{2} \sin 2x) dy = 0$$

$$u(x, y) = \int_{(0,0)}^{(x,y)} = \int_{0}^{y} -(\cos x + \frac{1}{2}\sin 2x) \, dy = -(\cos x + \frac{1}{2}\sin 2x) \, y$$

所以全微分方程通解为 $(\cos x + \frac{1}{2}\sin 2x)y = C$

由
$$y|_{x=\pi}=1$$
知: $C=-1$

于是所求积分曲线为 $y = -(\cos x + \frac{1}{2}\sin 2x)^{-1}$

14、设 f(x)î C^2 , 且满足方程

$$f(x) = \sin x - \int_0^x (x-t) f(t) dt$$

求 f(x).

提示: $f(x) = \sin x - x \int_0^x f(t) dt + \int_0^x t f(t) dt$

上式两边对x 求导两次:

$$f'(x) = \cos x - \int_0^x f(t) dt - x f(x) + x f(x)$$

$$f''(x) = -\sin x - f(x)$$

因此问题化为解下列初值问题

$$\begin{cases} f''(x) + f(x) = -\sin x \\ f(0) = 0, f'(0) = 1 \end{cases}$$

最后求得
$$f(x) = \frac{1}{2}\sin x + \frac{x}{2}\cos x$$

15 已知 \grave{o}_{ι} $\overset{\text{\frac{a}}{b}}{\overset{\tex$

解:由
$$\frac{P}{A} = \frac{P}{A}$$
 Þ 鱶 $(x) - x y = 3yf(x)$

$$\land f \Diamond(x) - 3f(x) = x$$

$$f(x) = e^{\Re dx} \stackrel{\text{ff}}{\rightleftharpoons} xe^{-3dx} dx + C = e^{3x} \stackrel{\text{ff}}{\rightleftharpoons} xe^{-3x} dx + C$$

$$f(x) = e^{\Re dx} \stackrel{\text{ff}}{\rightleftharpoons} xe^{-3dx} dx + C = e^{3x} \stackrel{\text{ff}}{\rightleftharpoons} xe^{-3x} dx + C$$

$$= Ce^{3x} - \frac{1}{3}(x + \frac{1}{3})$$

Q 蝌(0,0) 午
$$\frac{x^2}{2}$$
 $ydy + \frac{3}{2}y^2f(x)dx =$ 1 年 $\frac{1}{4}$ 1 年 $\frac{1}{2}ydy = \frac{1}{4}$

$$f(1) = 1$$
 \Rightarrow $C = \frac{13}{9}e^{-3}$

$$f(x) = \frac{13}{9}e^{3x-3} - \frac{1}{3}(x+\frac{1}{3})$$

级数的收敛、求和与展开

$$\sum_{n=0}^{\infty} u_n(x) \xrightarrow{\overline{x}} \overline{n} \longrightarrow_{\overline{R}} S(x) \quad (\text{在收敛域内进行})$$

$$\overline{R} \xrightarrow{\overline{H}} S(x) \quad (\text{在收敛域内进行})$$

$$\exists x = x_0 \text{ 时}, \sum_{n=0}^{\infty} u_n(x) \text{ 为数项级数};$$

$$\exists u_n(x) = a_n x^n \text{ 时}, \sum_{n=0}^{\infty} u_n(x) \text{ 为幂级数}$$

$$\exists u_n(x) = a_n \cos nx + b_n \sin nx \quad (a_n, b_n) \text{ ∮}$$

$$\text{氏系数}) \text{ 时}, \quad \sum_{n=0}^{\infty} u_n(x) \text{ 为傅立叶级数} \text{ o}$$

基本问题: 判别敛散; 求收敛域;

求和函数; 级数展开。

1、设 $\sum_{n=1}^{\infty} a_n (x-1)^n$ 在 x=-1 处的收敛,试求在 x=2 处的敛散性。

解: |x-1| < |-1-1| = 2 \longrightarrow -1 < x < 3 由阿贝尔定理,在如上范围内绝对收敛 故 x = 2 时,原级数绝对收敛。

练习: 若 $\sum_{n=1}^{\infty} n a_n (x+1)^{n-1}$ 在 x=3 处的条件收敛,求

原级数的收敛半径R。

解:由阿贝尔定理, x=3为端点

即
$$|x+1| < R \implies -R-1 < x < R-1 \implies R=4$$

练习 将 $f(x) = \frac{1}{2x^2 + x - 1}$ 展成x的幂级数

解:
$$f(x) = -\frac{1}{3}(\frac{1}{1+x} + \frac{2}{1-2x})$$

$$\overline{\text{m}} \quad \frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n \quad -1 < x < 1$$

$$\therefore \frac{1}{1-2x} = \sum_{n=0}^{\infty} 2^n x^n \quad |x| < \frac{1}{2}$$

$$f(x) = -\frac{1}{3} \left(\sum_{n=0}^{\infty} (-1)^n x^n + \sum_{n=0}^{\infty} 2^n x^n \right)$$

$$=\sum_{n=0}^{\infty}\frac{(-1)^{n+1}-2^{n+1}}{3}x^{n} \qquad -\frac{1}{2}< x<\frac{1}{2}$$

2、设 f(x)是周期为 2π 的周期函数,在 $[-\pi,\pi)$

上的表达式为
$$f(x) = \begin{cases} -1, & -\pi < x \le 0 \\ x, & 0 < x \le \pi \end{cases}$$

(1) 求傅里叶系数 b,

解:
$$b_2 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin 2x \, dx$$

解:
$$b_2 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin 2x dx$$
 $-\frac{\pi}{2}$

$$= \frac{1}{\pi} \int_{-\pi}^{0} (-\sin 2x) \, dx + \frac{1}{\pi} \int_{0}^{\pi} x \sin 2x \, dx = -\frac{3}{2}$$

(2) 写出 $[-\pi, \pi]$ 上傅里叶系数的和函数的表达式

分段表示

(略)

(3) 求
$$x = \frac{\pi}{3}$$
, $\frac{\pi}{2}$, 5π , 6.1π , -4.2π , 116.8π 时的值

解: 由图与函数的周期性可知:

$$f(\frac{\pi}{3}) = \frac{\pi}{3}$$

$$f(\frac{\pi}{2}) = \frac{\pi}{2}$$

$$f(5\pi) = f(\pi) = \frac{\pi-1}{2}$$

$$f(6.1\pi) = f(0.1\pi) = 0.1\pi$$

$$f(-4.2\pi) = f(-0.2\pi) = -1$$

$$f(116.8\pi) = f(0.8\pi) = 0.8\pi$$

3、证明
$$\lim_{n\to\infty}\frac{n^n}{n!}=\infty$$

思路: 利用无穷大与无穷小的关系

只要证 $\lim_{n\to\infty}\frac{n!}{n^n}=0$ 看成是某个正项级数的通项 故只需证明级数收敛。

4、 求下列级数的和函数

(1) 求
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n(2n-1)} x^n$$
 ($|x| \le 1$) 的和函数

(2) 求
$$\sum_{n=1}^{\infty} \frac{n+1}{2^n n!} x^{2n}$$
 ($|x| \le +\infty$) 的和函数

(1) 求
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n(2n-1)} x^{2n}$$
 ($|x| \le 1$) 的和函数

解: 逐项求导得

$$s'(x) = 2\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)} x^{2n-1}$$

去分母常求导, 去分子常积分,

再逐项求导,得

$$s''(x) = 2\sum_{n=1}^{\infty} (-1)^n x^{2n-2} = 2 \cdot \frac{1}{1 - (-x^2)} = \frac{2}{1 + x^2}$$

$$: s'(x) = 2 \arctan x$$
 分部积分,得

$$\therefore s(x) = 2x \arctan x - \ln(1 + x^2) \qquad (|x| \le 1)$$

(2) 求
$$\sum_{n=1}^{\infty} \frac{n+1}{2^n n!} x^{2n}$$
 ($|x| \le +\infty$) 的和函数

解:
$$s(x) = \sum_{n=1}^{\infty} \frac{x^{2n}}{2^n (n-1)!} + \sum_{n=1}^{\infty} \frac{1}{2^n n!} x^{2n}$$

$$\sum_{n=1}^{\infty} \frac{x^{2n}}{2^{n} (n-1)!} = \sum_{n=1}^{\infty} \frac{\left(\frac{x^{2}}{2}\right)^{n}}{(n-1)!} = \frac{x^{2}}{2} \sum_{n=1}^{\infty} \frac{\left(\frac{x^{2}}{2}\right)^{n-1}}{(n-1)!} = \frac{x^{2}}{2} e^{\frac{x^{2}}{2}}$$

$$\sum_{n=1}^{\infty} \frac{1}{2^n n!} x^{2n} = \sum_{n=1}^{\infty} \frac{\left(\frac{x^2}{2}\right)^n}{n!} = e^{\frac{x^2}{2}} - 1$$

$$\therefore s(x) = \frac{x^2}{2} e^{\frac{x^2}{2}} + e^{\frac{x^2}{2}} -1$$

5. 设正项级数 $\sum_{n=1}^{\infty} u_n$ 和 $\sum_{n=1}^{\infty} v_n$ 都收敛,证明级

级数 $\sum_{n=1}^{\infty} (u_n + v_n)^2$ 也收敛.

提示: 因 $\lim_{n\to\infty} u_n = \lim_{n\to\infty} v_n = 0$, ∴ 存在N > 0,

当n > N 时

$$u_n^2 < u_n$$
, $v_n^2 < v_n$

又因

$$(u_n + v_n)^2 \le 2(u_n^2 + v_n^2) < 2(u_n + v_n) \quad (n > N)$$

利用收敛级数的性质及比较判

敛法易知结论正确.

练习

求下列幂级数的和函数:

(1)
$$\sum_{n=1}^{\infty} \frac{2n-1}{2^n} x^{2(n-1)}; \quad (2) \quad \sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}$$

$$\mathbf{pr}: (1) \qquad x \neq 0$$

$$\mathbf{pr}: = \sum_{n=1}^{\infty} \frac{1}{2^n} (x^{2n-1})' = \left[\frac{1}{x} \sum_{n=1}^{\infty} \left(\frac{x^2}{2} \right)^n \right]' = \left[\frac{1}{x} \cdot \frac{x^2/2}{1-x^2/2} \right]'$$

$$= \left[\frac{x}{2-x^2} \right]' = \frac{2+x^2}{(2-x^2)^2} \qquad (0 < \frac{x^2}{2} < 1)$$

显然x = 0 时上式也正确,而在 $x = \pm \sqrt{2}$ 级数发散,

故和函数为
$$S(x) = \frac{2 + x^2}{(2 - x^2)^2}, \quad x \in (-\sqrt{2}, \sqrt{2}).$$

$$(2) \sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}$$

$$x \neq 0$$

解: 原式=
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) x^n = \sum_{n=1}^{\infty} \int_{0}^{x} t^{n-1} dt - \sum_{n=1}^{\infty} \left(\frac{1}{x} \int_{0}^{x} t^n dt \right)$$

$$= \int_{0}^{x} \left(\sum_{n=1}^{\infty} t^{n-1} \right) dt - \frac{1}{x} \int_{0}^{x} \left(\sum_{n=1}^{\infty} t^{n} \right) dt$$

$$= \int_{0}^{x} \frac{1}{1-t} dt - \frac{1}{x} \int_{0}^{x} \frac{t}{1-t} dt \qquad (0 < |x| < 1)$$

$$= -\ln(1-x) + 1 + \frac{1}{x} \ln(1-x)$$

$$= 1 + (\frac{1}{x} - 1) \ln(1-x)$$

$$(2) \sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}$$

原式 = 1 +
$$(\frac{1}{x} - 1) \ln (1 - x)$$
 $0 < |x| < 1$

显然x = 0时,和为 $0; x = \pm 1$ 时,级数也收敛

根据和函数的连续性,有