Polymorphism-aware phylogenetic models MIC-Phy 2021

Dominik Schrempf

February 16, 2021

Comparative genomics and phylogenetics

DNA substitution models

Evolution as a series of substitutions

$$\Pr(X_t = b | X_0 = a) = \left(e^{tQ}\right)_{ab}$$

$$\boldsymbol{Q} = \begin{pmatrix} \cdot & q_{AC} & q_{AG} & q_{AT} \\ q_{CA} & \cdot & q_{CG} & q_{CT} \\ q_{GA} & q_{GC} & \cdot & q_{GT} \\ q_{TA} & q_{TC} & q_{TG} & \cdot \end{pmatrix}$$

Transition rate matrix.

Species are populations and recombination separates histories of genes Incomplete lineage sorting

¹Rannala and Yang (2003).

²De Maio et al. (2015) and Schrempf et al. (2016).

Neutral, K-allelic Wright-Fisher³ model

Discrete-time, discrete-state Markov chain

N constant haploid population size.

K alleles.

 \mathbf{z}_{τ} state of population $(\mathbf{z}_{\alpha},\ldots,\mathbf{z}_{\kappa})$ in generation τ ; $\|\mathbf{z}_{\tau}\|_{1}=N$; the total number of states is $\binom{N+K-1}{K-1}$.

 $m{U}$ $K \times K$ mutation probability matrix; the elements describe the probability to mutate from one state to another.

The distribution of alleles in the next generation $\tau+1$ is derived by sampling with replacement from the alleles of generation τ

$$oldsymbol{z}_{ au+1} | oldsymbol{z}_{ au} \sim \mathsf{Mult}(oldsymbol{N}, rac{oldsymbol{z}_{ au}}{oldsymbol{N}} oldsymbol{U}).$$

For K = 4, and N = 10, we have 286 states.

³Wright (1931) and Fisher (1930).

Neutral, K-allelic Moran⁴ model with mutation

Continuous-time, discrete-state Markov process

Individuals are randomly chosen to reproduce. The offspring is of the same type as the parent and replaces another randomly chosen individual from the population.

For $a, b \in \{\alpha, \dots, \kappa\}$ and with mutation rates q_{ab} , we have

$$(\ldots, z_{\mathsf{a}}, \ldots, z_{\mathsf{b}}, \ldots) o (\ldots, z_{\mathsf{a}} - 1, \ldots, z_{\mathsf{b}} + 1, \ldots)$$
 at rate $N\left(\frac{z_{\mathsf{b}}}{N} \frac{z_{\mathsf{a}}}{N} + \frac{z_{\mathsf{a}}}{N} \frac{q_{\mathsf{a}\mathsf{b}}}{N}\right)$.

⁴Moran (1958).

Approximation for low mutation rates

Drift removes variation fast; disallow mutations when the population is polymorphic

Examples using nucleotides. Cartoon of evolving population with large size and state space for N=5.

Population can only be

Monomorphic
$$(..., z_a = N, ...) \equiv \{Na\}$$
; K states.

Bi-allelic
$$(\ldots, z_a = i, \ldots, z_b = N - i, \ldots) \equiv \{ia | (N - i)b\}; {K \choose 2} (N - 1) \text{ states.}$$

For K = 4, and N = 10, we have 4+54 states.

Discrete multivariate boundary mutation model⁵

From the Moran model with mutation, we have

$$(\ldots, z_a, \ldots, z_b, \ldots) \to (\ldots, z_a - 1, \ldots, z_b + 1, \ldots)$$
 at rate $\frac{z_a z_b}{N} + z_a \frac{q_{ab}}{N}$.

Transition rate matrix **M**

Boundary mutation leads to

$$m_{\{Na\} \to \{(N-1)a|1b\}} = q_{ab}, \ m_{\{ia|(N-i)b\} \to \{(i\pm 1)a|(N-i\mp 1)b\}} = rac{i(N-i)}{N}.$$

⁵Schrempf and Hobolth (2017).

Polymorphism-aware phylogenetic Model (PoMo)

Use discrete multivariate boundary mutation model with

- K = 4 nucleotides;
- virtual population size N;
- transition rate matrix M.

Likelihood calculation similar to DNA substitution models, for example,

$$\Pr\left(X_{t} = \{(\textit{N}-1)\textit{a}|1\textit{b}\}\right)X_{0} = \{\textit{N}\textit{a}\} = \left(e^{t\textit{M}}\right)_{\{\textit{N}\textit{a}\}\{(\textit{N}-1)\textit{a}|1\textit{b}\}}.$$

Assessment of tree estimation error

Incomplete lineage sorting

Simulate

- Up to 1000 gene trees with the multispecies coalescent model; 10 samples per species⁶.
- **2** Sequences with 1000 base pairs per gene (HKY⁷ model); $\theta = 0.025^8$.

Infer phylogeny from data.

Measure branch score distance between original and estimated species tree.

⁶MSMS, Ewing and Hermisson (2010).

⁷Hasegawa et al. (1985).

⁸SegGen, Rambaut and Grassly (1997).

Tree estimation error

Incomplete lineage sorting, $1N_e$ generations height, 10 samples per species

BEST (Liu 2008), *BEAST (Heled and Drummond 2010), and HyPhy (Pond et al. 2005).

Exchangeabilities, stationary distributions, and reversibility

Some mathematical prerequisites

The mutation rates can be separated into

$$q_{ab}=r_{ab}\pi_b,$$

where

 π_a is the stationary distribution of allele frequencies, and r_{ab} are the exchangeabilities.

If the mutation model is reversible, the exchangeabilities are symmetric $r_{ab} = r_{ba}$.

Theorem (Retention of reversibility of mutation model)

The discrete multivariate boundary mutation model is reversible if and only if the underlying mutation model is reversible.

Stationary distribution (reversible mutation model)

Theorem

For K,N>1 and reversible mutation models, the discrete multivariate boundary mutation model defined by the transition rate matrix ${\bf M}$ has a stationary distribution of

$$arphi_{\{\mathit{Na}\}} = rac{1}{Z}\pi_{\mathit{a}},$$

$$arphi_{\{\mathit{ia}\mid(\mathit{N}-\mathit{i})\mathit{b}\}} = rac{1}{Z}\pi_{\mathit{a}}\pi_{\mathit{b}}r_{\mathit{a}\mathit{b}}\left(rac{1}{\mathit{i}} + rac{1}{\mathit{N}-\mathit{i}}
ight)$$

with normalization constant

$$Z = 1 + \sum_{k=1}^{N-1} \frac{1}{k} \sum_{\substack{a,b \ a \neq b}} r_{ab} \pi_a \pi_b.$$

Stationary distribution

Alleles α and β (K=2), N=10, $q_{\alpha\beta}=q_{\beta\alpha}=\theta$; comparison to diffusion theory

Tree estimation error

Yule 9 tree with 60 species, $3N_e$ generations height, 10 samples per species

IQ-TREE (Minh et al. 2020).

⁹Yule (1925).

Separation of mutation rate matrix¹⁰

$$oldsymbol{Q} = oldsymbol{Q}^{\mathsf{rev}} + oldsymbol{Q}^{\mathsf{flux}}, \ q_{\mathsf{ab}} = r_{\mathsf{ab}} \pi_{\mathsf{b}} + \phi_{\mathsf{ab}} \pi_{\mathsf{b}}.$$

Parameter	Description
$\pi_{a} = r_{ba} \ \phi_{ab} = -\phi_{ba}$	Stationary distribution of allele frequencies Symmetric exchangeabilities ($\sum_c r_{ac} \pi_c = 0$) Antisymmetric excess of flux ($\sum_c \phi_{ac} \pi_c = 0$)

Example with K=3 and N=5. Only boundary states are shown.

¹⁰Burden and Tang (2016) and Schrempf and Hobolth (2017).

Stationary distribution (general mutation model)

Theorem

For K, N > 1, the discrete multivariate boundary mutation model defined by the transition rate matrix M has a stationary distribution of

$$\begin{split} \varphi_{\{\mathit{Na}\}} &= \frac{1}{c} \pi_{\mathit{a}}, \\ \varphi_{\{\mathit{ia}|(\mathit{N}-\mathit{i})\mathit{b}\}} &= \frac{1}{c} \pi_{\mathit{a}} \pi_{\mathit{b}} \left[r_{\mathit{a}\mathit{b}} \left(\frac{1}{\mathit{i}} + \frac{1}{\mathit{N}-\mathit{i}} \right) - \phi_{\mathit{a}\mathit{b}} \left(\frac{1}{\mathit{i}} - \frac{1}{\mathit{N}-\mathit{i}} \right) \right] \end{split}$$

with normalization constant

$$c = 1 + \sum_{k=1}^{N-1} \frac{1}{k} \sum_{\substack{a,b \ a \neq b}} r_{ab} \pi_a \pi_b.$$

Stationary distribution with flux

Alleles α , β , γ and δ (K=4) and N=30

The stationary distribution with parameters $r_{ab}=0.01\cdot(1,2,3,4,5,6),$ $\pi_a=(0.1,0.2,0.3,0.4)$ and $\phi_{ab}=0.01\cdot(-0.8,-1.7,1.6,3.3,-2.7,1.3).$

Summary

Idea of PoMo

Improve phylogenetic inference by modeling the evolution of populations and not of individuals.

Discrete multivariate boundary mutation model

- Moran model.
- 2 Approximation for low mutation rates.
- $oldsymbol{3}$ Separation of mutation rate matrix $oldsymbol{Q}$.

Stationary distribution fits well if $\theta < 0.1$.

Advanced mutation models¹¹

Partition models

Branch models

Mixture models

$$m_1 \mathbf{Q_1} + m_2 \mathbf{Q_2}$$

ACCTTGAAGG ACCTTCAAGG

Allelic selection

$$w_a = 1$$
$$w_b = 1 + s$$

¹¹Schrempf et al. (2019) and Borges et al. (2019).

Acknowledgments

Carolin Kosiol

Arndt von Haeseler

Claus Vogl

Bui Quang Minh

Asger Hobolth

Nicola De Maio

Gergely Szöllősi

Nicolas Lartillot

Eötvös Loránd University

Bibliography I

- Borges, Rui, Gergely J. Szöllősi, and Carolin Kosiol (2019). "Quantifying GC-Biased Gene Conversion in Great Ape Genomes Using Polymorphism-Aware Models." In: *Genetics* 212.4, pp. 1321–1336. DOI: 10.1534/genetics.119.302074.
- Burden, Conrad J. and Yurong Tang (2016). "An approximate stationary solution for multi-allele neutral diffusion with low mutation rates." In: *Theoretical Population Biology* 112, pp. 22–32. DOI: 10.1016/j.tpb.2016.07.005.
- De Maio, Nicola, Dominik Schrempf, and Carolin Kosiol (2015). "PoMo: An Allele Frequency-Based Approach for Species Tree Estimation." In: *Systematic Biology* 64.6, pp. 1018–1031. DOI: 10.1093/sysbio/syv048.
- Ewing, Gregory and Joachim Hermisson (2010). "MSMS: a coalescent simulation program including recombination, demographic structure and selection at a single locus." In: *Bioinformatics* 26.16, pp. 2064–2065. DOI: 10.1093/bioinformatics/btq322.
- Fisher, Ronald (1930). The genetical theory of natural selection.

Bibliography II

- Hasegawa, Masami, Hirohisa Kishino, and Taka-aki Yano (1985). "Dating of the human-ape splitting by a molecular clock of mitochondrial DNA." In: *Journal of Molecular Evolution* 22.2, pp. 160–174. DOI: 10.1007/BF02101694.
- Heled, Joseph and Alexei J. Drummond (2010). "Bayesian Inference of Species Trees from Multilocus Data." In: *Molecular Biology and Evolution* 27.3, pp. 570–580. DOI: 10.1093/molbev/msp274.
- Liu, Liang (2008). "BEST: Bayesian estimation of species trees under the coalescent model." In: *Bioinformatics* 24.21, pp. 2542–2543. DOI: 10.1093/bioinformatics/btn484.
- Minh, Bui Quang, Heiko A Schmidt, Olga Chernomor, Dominik Schrempf, Michael D Woodhams, Arndt von Haeseler, and Robert Lanfear (2020). "IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era." In: *Molecular Biology and Evolution* 37.5. Ed. by Emma Teeling, pp. 1530–1534. DOI: 10.1093/molbev/msaa015.

Bibliography III

- Moran, P. a. P. (1958). "Random processes in genetics." In: *Mathematical Proceedings of the Cambridge Philosophical Society* 54.01, pp. 60–71. DOI: 10.1017/S0305004100033193.
- Pond, Sergei L. Kosakovsky, Simon D. W. Frost, and Spencer V. Muse (2005). "HyPhy: hypothesis testing using phylogenies." In: *Bioinformatics* 21.5, pp. 676–679. DOI: 10.1093/bioinformatics/bti079.
- Rambaut, Andrew and Nicholas C. Grassly (1997). "Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees." In: Computer Applications in the Biosciences: CABIOS 13.3, pp. 235–238. DOI: 10.1093/bioinformatics/13.3.235.
- Rannala, Bruce and Ziheng Yang (2003). "Bayes Estimation of Species Divergence Times and Ancestral Population Sizes Using DNA Sequences From Multiple Loci." In: Genetics 164.4, pp. 1645–1656.

Bibliography IV

- Schrempf, Dominik, Bui Quang Minh, Nicola De Maio, Arndt von Haeseler, and Carolin Kosiol (2016). "Reversible polymorphism-aware phylogenetic models and their application to tree inference." In: *Journal of Theoretical Biology* 407, pp. 362–370. DOI: 10.1016/j.jtbi.2016.07.042.
- Schrempf, Dominik and Asger Hobolth (2017). "An alternative derivation of the stationary distribution of the multivariate neutral Wright–Fisher model for low mutation rates with a view to mutation rate estimation from site frequency data." In: *Theoretical Population Biology* 114, pp. 88–94. DOI: 10.1016/j.tpb.2016.12.001.
- Schrempf, Dominik, Bui Quang Minh, Arndt von Haeseler, and Carolin Kosiol (2019). "Polymorphism-Aware Species Trees with Advanced Mutation Models, Bootstrap, and Rate Heterogeneity." In: *Molecular Biology and Evolution* 36.6. Ed. by Naruya Saitou, pp. 1294–1301. DOI: 10.1093/molbev/msz043.
- Wright, Sewall (1931). "Evolution in Mendelian Populations." In: *Genetics* 16.2, pp. 97–159.

Bibliography V

Yule, G. U. (1925). "A Mathematical Theory of Evolution, Based on the Conclusions of Dr. J. C. Willis, F.R.S." In: *Philosophical Transactions of the Royal Society B: Biological Sciences* 213.402-410, pp. 21–87. DOI: 10.1098/rstb.1925.0002.