Lesson 12

Genome Annotation & Genomic DBs

By the end of this lesson you will...

- Understand the basic concepts of annotation
- Be familiar with two common annotation file formats
 - o BED
 - o GFF3
- Know how to use the Bedtools software for working with annotations
- Know how to browse and download data from some genomic DBs:
 - SRA/ENA for raw sequencing data
 - ENSEMBL for assemblies, annotations, and more

What is genome annotation?

Let's say you have sequenced and assembled a new genome:

What is genome annotation?

- Labeling of genomic regions/loci
- Detection of genes or other functional sequences
- Assignment of specific functions to loci
- What can we annotate?
 - Protein coding / noncoding genes
 - Gene structure (introns, exons, UTRs)
 - Repetitive elements
 - Transposable elements
 - Regulatory sequences
 - o ..

CGTTGTTGTGATTCCACTCTATTGAGGCATTAACTGATGCGGAA GGAGATCTGGAATGAACTGGCCTATGTCACAGAAACTGTGCAA ATACCCAATGTCGTTAGTGTAGGTTCTGACCGATACGTGCTTCG TTGAGAACTCACAATTTTACAACTGGGGACATAAACCCTACGCC CATCATCTACTGACGTCCCTGAGGCTCCAGTTCATGTAATGGGA GAGTATCCGCCGCAAGATCTAGTGCAATGGTGGTATAGTAAGCT CGTACTGTAGTAGAGGCGACACGGGTAGGATCATCAGTAATAA GGATAGTG

Structural and Functional annotation

How can we represent annotations?

- The basic idea define genomic regions
- Use assembly-specific coordinates
- Add relevant label

Chromosome	Start	End	Label
Chr1	1000	2500	DNAse I gene
Chr1	3000	3500	Predicted gene - unknown function
Chr3	2000	4000	Transposable element

The BED format

- (genome-) Browser Extensible Data
- Simple format for labeling genomic regions
- A TSV text file (table)
- Can have 3-12 columns usually 4:
 - Chromosome
 - Start
 - End
 - Name (optional)
- Coordinates start from 0
- End coordinate is excluded

ChrI ChrI ChrI ChrI ChrI ChrI ChrI ChrI	22230 138831 160105 160238 165826 182620 183142 189426 209448 8848 9093 9425 29644 35271 35604 35851 197016 197714 220895 221037 226621 258670 259578 265163 266178 327069 327390 350459 643488 643859 644362 1179 4073 82700 83055 84069	22552 138992 160237 160574 166162 182959 183474 189757 209778 9092 9424 9518 29975 35602 35796 36221 197320 198054 221036 221370 226952 258976 259909 265494 266256 327394 327704 350751 643858 644002 644603 1429 4322 83036 83194 84294	scaffold_1009275 scaffold_103827 497 scaffold_103827 719 scaffold_103827 80 scaffold_103827 418 scaffold_1040613 scaffold_1078619 scaffold_1088826 scaffold_1152430 scaffold_1164182 scaffold_1165675 scaffold_1209080 scaffold_1223358 scaffold_1226651 scaffold_1282665 scaffold_129756 303 scaffold_13509 1456 scaffold_13509 1700 scaffold_13509 2870 scaffold_1374021 scaffold_1403478	43 719 2761 335 631 110 2521 141 969 2332 1215 439 127 192 956 871 1639 2327 3536 118 1293	571 Gene9_mRNA1 Gene306_mRNA1 Gene307_mRNA1 Gene308_mRNA1 Gene309_mRNA1 296 Gene123_mRNA1 1107 Gene71_mRNA1 4537 Gene70_mRNA1 4537 Gene70_mRNA1 4897 Gene142_mRNA1 2448 Gene152_mRNA1 1101 Gene337_mRNA1 1701 Gene42_mRNA1 1701 Gene112_mRNA1 1701 Gene110_mRNA1 1701 Gene1112_mRNA1 1701 Gene1112_mRNA1 1701 Gene112_mRNA1 1701 Gene331_mRNA1 1701 Gene331_mRNA1 1701 Gene331_mRNA1		9999941 99999 9999966 99999 9999982 99999 9999984 99999 9999984 99999 9999997 10000 10000001 10000001 10000011 10000011 10000015 10000015 10000017 10000029 10000031 10000031 10000031 10000038 10000040 10000041 10000041 10000047 10000047 10000056 10000057	966 8 982 9 983 10 984 11 997 12	14 15 14 15 16 17 18 19 18 20 21 20 19 18 17 19 20 21 22 23 22
---	--	--	---	--	--	--	--	--	--

The GFF format

- General Feature Format
- A **hierarchical** format for describing genomic features
- A TSV text file
- Watch out for different GFF versions it's a mess!
 - o GFF
 - O GFF2 ≈ GTF
 - o GFF3

The GFF**3** format

- Always starts with the line:##gff-version 3
- 9 mandatory columns
- Coordinates start from 1
- End coordinate is included

	Name	Description
1	seqid	Chromosome/scaffold name
2	source	Program or DB that created the annotation
3	type	Feature type (gene, exon, CDS)
4	start	Start position on chromosome/scaffold
5	end	End position on chromosome/scaffold
6	score	Some score we assign to the feature (or .)
7	strand	+/- (or .)
8	phase	0,1 or 2 - indicating the coding frame (or .)
9	attributes	Additional information about the feature

GFF3 - example

```
##gff-version 3
        SGD
                                        230218
                                                                         ID=chrI;dbxref=NCBI:NC 001133;Name=chrI
ChrI
                chromosome
ChrI
        SGD
                                        801
                                                                         ID=TEL01L; Name=TEL01L; Note=Telomeric%20region%20on%20the%2
                telomere
ChrI
        SGD
                X element
                                337
                                        801
                                                                         ID=TEL01L X element; Name=TEL01L X element; dbxref=SGD:S0000
ChrI
                X element combinatorial repeat
                                                        336
                                                                                         ID=TEL01L X element combinatorial repeat; N
        SGD
                                                63
                                                                                 ID=TEL01L telomeric repeat; Name=TEL01L telomeric r
ChrI
                telomeric repeat
                                                62
        SGD
ChrI
                                                                 ID=YAL069W; Name=YAL069W; Ontology term=G0:0003674, G0:0005575, G0:000
        SGD
                        335
                gene
                                649
                                                                ID=YAL069W_mRNA;Name=YAL069W_mRNA;Parent=YAL069W
ChrI
                                649
        SGD
                mRNA
                        335
ChrI
                                                                 Parent=YAL069W mRNA; Name=YAL069W exon; orf classification=Dubious
        SGD
                        335
                                649
                                                        0
                exon
                                                                 Parent=YAL069W mRNA; Name=YAL069W CDS; orf classification=Dubious
ChrI
        SGD
                CDS
                        335
                                649
                                                        0
ChrI
        SGD
                ARS
                        707
                                776
                                                                 ID=ARS102; Name=ARS102; Alias=ARSI-1; Note=Autonomously%20Replicating
ChrI
                        87286
                                87752
                                                                ID=YAL030W; Name=YAL030W; gene=SNC1; Alias=SNC1, SNAP%20receptor%20SNC
        SGD
                gene
ChrI
                                87752
        SGD
                mRNA
                        87286
                                                                ID=YAL030W mRNA; Name=YAL030W mRNA; Parent=YAL030W
                                                                 Parent=YALO20W mRNA: Mara-YALO30W exon; orf classification=Verified
ChrI
        SGD
                        87286
                                87387
                exon
                                87387
                                                                                             030W CDS;orf classification=Verified
ChrI
        SGD
                CDS
                        87286
                                                    What Linux command
ChrI
        SGD
                        87501
                                87752
                                                                                                  exon; orf classification=Verified
                exon
ChrI
        SGD
                CDS
                        87501
                                87752
                                                                                                   DS;orf classification=Verified
                                                        should we use to
                                                   extract features of type
                                                       "gene" located on
                                                        chromosome II?
```

Viewing BED and GFF files in IGV

Common pitfalls - BED/GFF3 files

Annotation file doesn't match genome assembly version

- Different chromosome names
 - "Chr1" vs. "1"
 - "Chrl" vs. "S288C_Chrl"

BED - shifted coordinates (remember it starts from 0)

Bedtools - working with annotation files

- Can read BED, GFF and BAM files
- Contains many useful features
- Use:

```
$ bedtools <subcommand> -h
```

to get help

```
(NGS course new) [taungs@hpcssd ~]$ bedtools
bedtools: flexible tools for genome arithmetic and DNA sequence analysis.
         bedtools <subcommand> [options]
The bedtools sub-commands include:
 Genome arithmetic 1
                 Find overlapping intervals in various ways.
    intersect
                 Find overlapping intervals within a window around an interval.
    window
    closest
                 Find the closest, potentially non-overlapping interval.
                 Compute the coverage over defined intervals.
    coverage
                 Apply a function to a column for each overlapping interval.
    map
                 Compute the coverage over an entire genome.
    genomecov
                 Combine overlapping/nearby intervals into a single interval.
    merge
                 Cluster (but don't merge) overlapping/nearby intervals.
    cluster
    complement
                 Extract intervals not represented by an interval file.
   shift
                 Adjust the position of intervals.
                 Remove intervals based on overlaps b/w two files.
    subtract
    slop
                 Adjust the size of intervals.
    flank
                 Create new intervals from the flanks of existing intervals.
                 Order the intervals in a file.
    sort
   random
                 Generate random intervals in a genome.
   shuffle
                 Randomly redistrubute intervals in a genome.
                 Sample random records from file using reservoir sampling.
   sample
                 Report the gap lengths between intervals in a file.
    spacing
    annotate
                 Annotate coverage of features from multiple files.
 Multi-way file comparisons ]
   multiinter
                 Identifies common intervals among multiple interval files.
   unionbedg
                 Combines coverage intervals from multiple BEDGRAPH files.
 Paired-end manipulation ]
                 Find pairs that overlap intervals in various ways.
   pairtobed
    pairtopair
                 Find pairs that overlap other pairs in various ways.
```

Bedtools - useful commands

intersect

\$ bedtools intersect -a file1.gff
-b file2.bed > intersect.gff

getfasta

\$ bedtools getfasta -fi
genome.fasta -bed regions.bed >
regions.fasta

Bedtools - useful commands

Merge

\$ bedtools merge -i
file.bed > merged.bed

genomecov

\$ bedtools genomecov -ibam file.bam
-bg >read_counts.bedGraph

How genome annotations are created?

- Annotation lift-over
- 2. ORF finders
- 3. Ab-initio gene prediction
- 4. Evidence-based annotation
- 5. Combine everything annotation pipelines
- 6. Manual curation

Annotation lift-over

- Transform gene coordinates from one assembly to another
- Relevant for:
 - Different assembly of the same genome
 - Different individual from the same species
 - Closely-related species

ORF finders

- Look for Open Reading Frames
- Mainly relevant for prokaryotes
- High ratio of false positives

CGGATCTCGGATATGAGACCACTC ... ATTTAGATCGCTAGTAGACCCACATA

Ab initio gene prediction

Use mathematical models to describe gene structures

Apply to new genome sequence

CGTTGTTGTGATTCCACTCTATTGAGGCATTAACTGATGCGGAA GGAGATCTGGAATGAACTGGCCTATGTCA ATACCCAATGTCGTTAGTGTAGGTTCTGACCGATACGTGCTTCG TTGAGAACTCACAATTTTACAACTGGGGACATAAACCCTACGCC CATCATCTACTGACGTCCCTGAGGCTCCAGTTCATGTAATGGGA GAGTATCCGCCGCAAGATCTAGTGCAATGGTGGTATAGTAAGCT CGTACTGTAGTAGAGGCGACACGGGTAGGATCATCAGTAATAA GGATATAG

Evidence-based annotation

Transcript and protein sequences can be used as gene evidence

- 1. Map evidence to genome sequence
- 2. Infer gene location and structure

A typical annotation pipeline

Manual curation

- Manual inspection of gene models vs. evidence
- Manually fixing models when needed

Still noisy...

Even with best evidence and predictions -

Automatic annotation is error-prone!

Both missing predictions and false predictions

Manual curation is too expensive - most genes are never curated

What about functional annotation?

Usually based on homology

- Similarity to known proteins
- Presence of protein domains
- Assignment to a gene family

- Main methods:
 - Best BLAST hit
 - InterproScan

Downloading data with wget

- The wget command allows you to download files from HTTP/HTTPS/FTP URLs
- Input: URL address
- By default, downloads to ./<original file name>
- To specify another location use -0

```
wget
"ftp://ftp.ensemblgenomes.org/pub/bacteria/release-47/gff3/bacteria_4
5_collection/abiotrophia_defectiva_atcc_49176/README" -O dir/new_file
```

 You may need to use the --no-check-certificate flag, but only for trusted websites!

Working with compressed data - tar/gzip

 Files can be compressed (zipped) to save space

```
# compress a file
gzip file.txt
# decompress file
gzip -d file.txt.gz
```

 Multiple files can be bundled together into one tar archive

```
# tar multiple files
tar -cvf my.tar file1 file2 file3
# tar a directory
tar -cvf my.tar dir/
# untar an archive
tar -xvf my.tar
```

In many cases, the tar archive will also be compressed - .tar.gz / .tgz

```
# extract and decompress file
tar -zxvf file.tar.gz
```

SRA - Sequence Read Archive

- Maintained by NCBI (and others)
- As of 8.6.2021, contains ~5.44 x 10¹⁶ bases (= 5,440 Tb) of reads from ~72,000 species
- Contains multiple types of reads
 - Short/long reads
 - DNA/RNA-seq reads
- Most common repository for depositing NGS reads
- Data are stored in base-call format (.sra)
- To download data in FastQ format use <u>SRA toolkit</u>

ENA - European Nucleotide Archive

- Maintained by the European Bioinformatics Institute
- Synchronized with SRA
- Stores reads as FastQ files
- Provides an easy and fast interface to the data
- https://www.ebi.ac.uk/ena

SRA/ENA data organization and accession IDs

Searching ENA by accession IDs

Data availability

Raw genome and RNA-Seq reads have been deposited into the National Center for Biotechnology Information Sequence Read Archive under accession codes SRP150040, SRP186721 and SRP172989, respectively. The nonreference genome sequences and annotated genes of the tomato pan-genome and SNPs called from the RIL population are available via the Dryad Digital Repository (https://doi.org/10.5061/dryad.m463f7k).

Search results page

							🚣 Download All
Study Accession	Sample Accession	Experiment Accession	Run Accession	Tax Id	Scientific Name	Library Name	FASTQ FTP
PRJNA454805	SAMN09229594	SRX4183310	SRR7279481	195583	Solanum lycopersicum var. cerasiforme	Esther052516_BGV005912	SRR727948fastq.gz SRR727948fastq.gz
PRJNA454805	SAMN09229632	SRX4183309	SRR7279482	195583	Solanum lycopersicum var. cerasiforme	Esther052516_BGV006904	SRR727948fastq.gz SRR727948fastq.gz
PRJNA454805	SAMN09229595	SRX4183308	SRR7279483	4084	Solanum pimpinellifolium	Esther120315_BGV006148	SRR727948fastq.gz SRR727948fastq.gz
PRJNA454805	SAMN09229594	SRX4183307	SRR7279484	195583	Solanum lycopersicum var. cerasiforme	Esther120315_BGV005912	SRR727948fastq.gz
PRJNA454805	SAMN09229602	SRX4183306	SRR7279485	195583	Solanum lycopersicum var. cerasiforme	Esther120315_BGV006232	SRR727948fastq.gz

I Described All

ENA advanced search

Filter results by:

- Organism
- Experiment properties
- Sequencing properties
- Date

Downloading data from ENA

• **Option 1** - direct download from FTP using wget

```
wget "ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR194/005/SRR1945435/SRR1945435_1.fastq.g/z
wget "ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR194/005/SRR1945435/SRR1945435_2.fastq.g/z
gzip -d *.gz
```

- Option 2 use <u>Kingfisher</u>
 - Requires a simple setup
 - Can enhance download speed by 60 fold
 - Very useful for large data volumes


```
kingfisher get -r ERR1739691 -m ena-ascp gzip -d *.gz
```


- Ensembl is a web portal for genomic data
- Contains data for thousands of organisms from all kingdoms
 - Genome sequences (assembly)
 - Annotation (structural/functional)
 - Transcripts and proteins
 - Variation (SNPs/SVs)
 - Comparative genomics resources
- Provides easy data access
- Contains a web genome browser
- Offers various tools like BLAST/BLAT search

The Ensembl websites

https://www.ensembl.org

Vertebrates (including human)

http://ensemblgenomes.org

Anything else

1. Find your species of interest

2. Choose the data you are interested in

Date Medified

3. Copy FTP link and download (wget \rightarrow gzip)

	Name	Size	Date Modified
_	Arabidopsis_thaliana.TAIR10.dna.chromosome.1.fa.gz	8.8 MB	3/4/20, 1:13:00 PM
Genome assembly	Arabidopsis_thaliana.TAIR10.dna.chromosome.2.fa.gz	5.8 MB	3/4/20, 1:13:00 PM
•	Arabidopsis_thaliana.TAIR10.dna.chromosome.3.fa.gz	6.8 MB	3/4/20, 1:13:00 PM
	Arabidopsis_thaliana.TAIR10.dna.chromosome.4.fa.gz	5.4 MB	3/4/20, 1:13:00 PM
	Arabidopsis thaliana.TAIR10.dna.chromosome.5.fa.gz	7.8 MB	3/4/20, 1:13:00 PM
	Arabidopsis_thaliana.TAIR10.dna.chromosome.Mt.fa.gz	112 kB	3/4/20, 1:13:00 PM
A II - I	Arabidopsis thaliana.TAIR10.dna.chromosome.Pt.fa.gz	47.2 kB	3/4/20, 1:13:00 PM
All chromosomes	Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz	34.8 MB	3/4/20, 1:13:00 PM
	Arabidopsis_thaliana.TAIR10.dna_rm.chromosome.1.fa.gz	7.4 MB	3/4/20, 1:13:00 PM
	Arabidopsis_thaliana.TAIR10.dna_rm.chromosome.2.fa.gz	4.5 MB	3/4/20, 1:13:00 PM
	Arabidopsis_thaliana.TAIR10.dna_rm.chromosome.3.fa.gz	5.5 MB	3/4/20, 1:13:00 PM
Hard repeat	Arabidopsis_thaliana.TAIR10.dna_rm.chromosome.4.fa.gz	4.3 MB	3/4/20, 1:13:00 PM
masked	Arabidopsis_thaliana.TAIR10.dna_rm.chromosome.5.fa.gz	6.5 MB	3/4/20, 1:13:00 PM
IIIaskeu	Arabidopsis_thaliana.TAIR10.dna_rm.chromosome.Mt.fa.gz	103 kB	3/4/20, 1:13:00 PM
	Arabidopsis_thaliana.TAIR10.dna_rm.chromosome.Pt.fa.gz	24.3 kB	3/4/20, 1:13:00 PM
	Arabidopsis_thaliana.TAIR10.dna_rm.toplevel.fa.gz	28.4 MB	3/4/20, 1:13:00 PM
	Arabidopsis_thaliana.TAIR10.dna_sm.chromosome.1.fa.gz	9.2 MB	3/4/20, 1:13:00 PM
	Arabidopsis_thaliana.TAIR10.dna_sm.chromosome.2.fa.gz	6.0 MB	3/4/20, 1:13:00 PM
	Arabidopsis_thaliana.TAIR10.dna_sm.chromosome.3.fa.gz	7.1 MB	3/4/20, 1:13:00 PM
Soft repeat	Arabidopsis_thaliana.TAIR10.dna_sm.chromosome.4.fa.gz	5.6 MB	3/4/20, 1:13:00 PM
masked	Arabidopsis_thaliana.TAIR10.dna_sm.chromosome.5.fa.gz	8.2 MB	3/4/20, 1:13:00 PM
IIIaskeu	Arabidopsis_thaliana.TAIR10.dna_sm.chromosome.Mt.fa.gz	118 kB	3/4/20, 1:13:00 PM
	Arabidopsis_thaliana.TAIR10.dna_sm.chromosome.Pt.fa.gz	50.6 kB	3/4/20, 1:13:00 PM
	Arabidopsis_thaliana.TAIR10.dna_sm.toplevel.fa.gz	36.3 MB	3/4/20, 1:13:00 PM
	CHECKSUMS	1.5 kB	3/8/20, 4:01:00 PM
	README	4.9 kB	3/4/20, 1:13:00 PM

3. Copy FTP link and download (wget \rightarrow gzip)

Genome annotation

Bulk and advanced downloads

If you want to download lots of data, check out:

- A. Ensembl Biomart
 - A web-based tool for querying and exporting Ensembl data
- B. Bioconductor BiomaRt package
 - An R package for accessing the Biomart from within R

