Zonglin Lyu

Email: zonglinlyu123123@gmail.com | Phone: (646) 445-9529 | Website: https://zonglinl.github.io

EDUCATION

Columbia University, New York, NY

M.S. in Operations Research

University of California San Diego, La Jolla, CA

B.S. in Applied Mathematics

Overall GPA: 3.64 — MS level GPA 4.09

Enrolled: Sept 2017 — June 2020

Enrolled: Sept 2021 — Dec 2022

Overall GPA: 3.81 — Major GPA 3.95

RESEARCH INTERESTS

- Artificial Intelligence
- Computer Vision
- Deep Learning
- Multi-modal Learning
- Multi-agent Collaboration in Computer Vision

PUBLICATION

- *: equal in contribution
- †: corresponding author
 - 1. Multiagent Multitraversal Multimodal Self-Driving: The MARS Dataset. (Submitted, pdf is coming soon)
 - 2. Zonglin Lyu*, Yiming Li*, Mingxuan Lu, Chao Chen, Michael Milford, and Chen Feng[†]. "Collaborative Visual Place Recognition." (2023).pdf
 - 3. Xuande Feng*, Zonglin Lyu*,†. "How Features Benefit: Parallel Series Embedding for Multivariate Time Series Forecasting with Transformer." In 2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI) (Oral presentation). pdf

RESEARCH EXPERIENCE

AI4CE Lab

New York University, NY

Advisor: Chen Feng

Jan 2023 - present

- Conduct a literature review on Test Time Training, Visual Place Recognition, Point Cloud Prediction
- Formulate the first framework for Collaborative Visual Place Recognition and develop an effective and robust algorithm that balances noise and extra information that collaborators provide. Multi-agent collaboration achieves at most a 50% reduction in error rate than single-agent. The paper was submitted to ICRA 2024.
- Propose methods for future improvements and extensions for Collaborative VPR.
- Benchmark a large-scale outdoor dataset. The paper is coming soon.
- Design a method to take advantage of languages in VPR.
- Implemented with PyTorch. Codebase can be found here.

Transformer in Multivariate Time Series Prediction

Self-desgined research

Columbia University, NY March 2022 - July 2022

- Conduct literature reviews on time series prediction based on Neural Networks.
- Propose Parallel Series Embedding method applied in transformer-based models to predict time series, achieving notable improvements (at most 50% reduction in RMSE) over the baseline. The paper was accepted to ICTAI 2022.
- Implemented with PyTorch. Codebase can be found here.

PROJECT EXPERIENCE

SE-(3) Equivariant Performer

Advisor: Krzysztof Choromanski

Columbia University, NY Oct 2022 - Dec 2022

- Conduct literature reviews on equivariant neural networks for point clouds.
- Prove that SE3 equivariance is compatible with Performer (linear transformer).
- \bullet Design a novel model based on SE(3)-Transformer, making it compatible to performer. The model achieves a 10% performance increase and 2x speedup over the baseline, and the performer variant archives a 5% performance improvement and more than 20% memory efficiency.
- Implemented with PyTorch. Codebase can be found here.

Supervising OCR models with LLMs

Advisor: Peter N. Belhumeur

Columbia University, NY Oct 2022 - Dec 2022

Conduct literature reviews on Language Models, OCR Models, and Diffusion Models.

- Design a method to supervise an OCR Model with LLMs. Try to use the output distribution of LLMs to provide knowledge of language to the OCR models.
- Train a Character-level Bert. With this model, there is a small improvement over the baseline.
- Implemented with PyTorch. Codebase can be found here and here.

Statistical Inference & Random Optimization

Advisor: Henry Lam

Columbia University, NY Sept 2021 - Oct 2022

- Construct an algorithm to implement cheap bootstrap efficiently. Apply this to Neural Network Model, Queuing system, Computer Network Model, and Integer Programming.
- Construct algorithms to solve the random optimization problem for different methods. Visualize and analyze the optimality gap of each method.
- Implemented with Python, Matlab, and R.

SKILLS

- Relevant Coursework: Mathematics of Deep Learning (A+), Practical Deep Learning & System Performance (A+), Machine Learning & High Dimensional Data Mining, Simulation (A+), Python, Reinforcement Learning (audit), Deep Learning for Computer Vision (audit), Machine Learning, Intro to C, Intro to Java, Probability, Statistics, Stochastic Processes, Optimization, Numerical Analysis, Linear Algebra, Mathematical Analysis
- Online Courses: Analysis of Algorithm, Data Structure
- Programming and Software Python (Pytorch, Numpy, Pandas, matplotlib, etc.), Java, C, C++, SQL, R, MAT-LAB, LaTeX.