Chapter 4 Permutations and Combinations

EE24BTECH11012 - Bhavanisankar G S

1)	A student is to answer 10 out of 13 questions
	in an examination such that he must choose
	atleast four from the first five questions. The
	number of choices available to him is (2003)

- a) 346
- b) 140
- c) 196
- d) 280

- a) $7! \times 5!$ b) $6! \times 5!$ c) 30!
- d) $5! \times 4!$

- a) 480
- b) 240
- c) 360
- d) 120

- a) ${}^{8}C_{3}$
- b) 21
- c) 3^{8}
- d) 5

- a) 601
- b) 600
- c) 603
- d) 602

- a) 5040
- b) 6210
- c) 385
- d) 1110

7) The set
$$S = 1, 2, 3, ..., 12$$
 is to be partitioned into three sets A,B and C of equal size. Thus, $A \cup B \cup C = S, A \cap B = B \cap C = A \cap C = \phi$. The number of ways to partition S is (2007)

a)
$$\frac{12!}{(4!)^3}$$

b) $\frac{12!}{(4!)^4}$

c)
$$\frac{12!}{3!(4!)^3}$$

d) $\frac{12!}{3!(4!)^4}$

1

d)
$$\frac{3!(4!)^4}{3!(4!)^6}$$

8) In a shop, there are five types of ice-creams available. A child buys six ice-creams. **Statement1**: The number of different ways in

which the child can buy six ice-creams is ${}^{10}C_5$. Statement2: The number of different ways in which the child can buy six ice-creams is equal to the number of different ways of arranging 6 A's and 4 B's in a row. (2008)

- a) Statement 1 is false, Statement 2 is true.
- b) Statement 1 is true, Statement 2 is true, Statement 2 is the correct explanation of Statement 1.
- c) Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation of statement 1.
- d) Statement 1 is true, Statement 2 is false.
- 9) How many different words can be formed by jumbling the letters in the word MISSISSIPPI in which no two S are adjacent?
 - a) $8^{6}C_{4}^{7}C_{4}$
- c) $6 \times 8^{7}C_{4}$ d) $7^{6}C_{4}^{8}C_{4}$
- b) $6 \times 7^{8}C_{4}$

- a) atleast500butlessthan750
- b) atleast750butlessthan1000
- c) atleast 1000
- d) lessthan500
- 11) There are two urns. Urn A has 3 distinct red balls while Urn B has 9 distinct blue balls. From each urn, two balls are taken at random and then transferred to the other. The number of ways in which this can be done is: (2010)

- a) 36
- b) 66
- c) 108
- d) 3
- 12) **Statement 1**: The number of ways of distributing 10 identical balls in 4 identical boxes such that no box is empty is 9C_3 .

Statement 2: The number of ways of choosing any three 3 places from 9 different places is ${}^{9}C_{3}$. (2011)

- a) Statement 1 is true, statement 2 is true; Statement 2 is the correct explanation of Statement 1.
- b) Statement 1 is true, Statement 2 is true; Statement 2 is not the correct explanation of Statement 1.
- c) Statement 1 is true, Statement 2 is false.
- d) Statement 1 is false, Statement 2 is true.
- 13) These are 10 points in a plane, out of which 6 are collinear. If *N* is the number of triangles formed by these points, then; (2012)
 - a) $N \le 100$
- c) $140 < N \le 190$
- b) $100 < N \le 140$
- d) N > 190
- 14) Assuming the balls to be identical except for the difference in colours, The number of ways in which one or more balls can be selected from 10 white, 9 green and 7 black balls. (2012)
 - a) 880
- b) 629
- c) 630
- d) 879
- 15) Let T_n be the set of all possible triangles formed by joining the vertices of a n-sided regular polygon. If $T_{n+1} T_n = 10$, then the value of n is : (*JEEMAIN*2013)
 - a) 7
- b) 5
- c) 10
- d) 8