

National University of Computer & Emerging Sciences Islamabad

FAST School of Computing

Fall-2024

Islamabad Campus

MT1004 – Linear Algebra

Homework #3

Question #1

Determine whether the following statements are true (give an explanation) or false (give a counterexample.)

- i) If *S* is a linearly dependent set, then each vector is a linear combination of the other vectors in *S*.
- ii) If a set in \mathbb{R}^n is linearly dependent, then the set contains more than n vectors.
- iii) There are 3 pivot columns in a 5×3 matrix if its columns are linearly independent.
- iv) If u and v are linearly independent, and if (u, v, w) is linearly dependent then w is in Span(u, v).
- v) If *A* is an $m \times n$ matrix and if the equation Ax = b has at most one solution for each b in \mathbb{R}^m , then the columns of *A* are linearly independent.

Question #2

Let
$$\mathbf{u} = \begin{bmatrix} h \\ -1/2 \\ -1/2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} -1/2 \\ h \\ -1/2 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} -1/2 \\ -1/2 \\ h \end{bmatrix}$.

- i) For what real values of h is w in Span(u, v).
- ii) For what real values of h is (u, v, w) linearly dependent? Justify each answer.

Question #3

Show that the three vectors
$$\mathbf{u} = \begin{bmatrix} 0 \\ 3 \\ 1 \\ -1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 6 \\ 0 \\ 5 \\ 1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 4 \\ -7 \\ 1 \\ 3 \end{bmatrix}$ form a linearly

dependent set in \mathbb{R}^4 . Find the linear dependence relation among the vectors.