

Name: Amuru Likhitha Batch: COMETFWC019

Date: 10 July 2025

GATE 2009, ECE Question Number 59

Abstract

This project uses an Arduino UNO and a 7-segment display to simulate a vending machine logic system from GATE 2009 Question 59. Based on two inputs (P1, P2), prices are displayed: 0, 2, 5, or E.

1. Components

Component	Qty	
Arduino UNO	1	
Push Buttons (P1, P2)	2	
7-Segment Display	1	
(Common Cathode)		
220Ω Resistors	7	
Breadboard	1	
Jumper Wires	12	
Laptop with Arduino	1	
IDE		

Table 1: List of components used

2. Setup and Connections

- Connect push button P1 to D2 and P2 to D3 with pull-down resistors.
- Connect 7-segment display segments:

$$-$$
 a \rightarrow D4, b \rightarrow D5, c \rightarrow D6, d \rightarrow D7, e \rightarrow D8, f \rightarrow D9, g \rightarrow D10

- Connect each segment pin through a 220Ω resistor.
- Common cathode pin of display to GND.

• Arduino GND connected to breadboard GND.

3. Logic Summary

- Inputs: P1, P2 (1 = pressed, 0 = not pressed)
- Segment g: q = P1 + P2
- Segment e: e = b + c
- Segment d: d = c + e
- Display outputs: 0, 2, 5, or E depending on input

4. Pin Mapping

- **P1** D2 (Input)
- **P2** D3 (Input)
- 7-Segment Display:

$$-a - D4$$
, $b - D5$, $c - D6$, $d - D7$
 $-e - D8$, $f - D9$, $g - D10$

5. Circuit Diagram

6. Hardware Code – Arduino (C++)

```
int P1 = 2;
int P2 = 3;
int seg_a = 4;
int seg_b = 5;
int seq_c = 6;
int seg_d = 7;
int seg_e = 8;
int seq_f = 9;
int seg_g = 10;
void setup() {
  pinMode (P1, INPUT);
 pinMode(P2, INPUT);
 pinMode(seg_a, OUTPUT);
 pinMode(seg_b, OUTPUT);
 pinMode(seg_c, OUTPUT);
 pinMode(seg_d, OUTPUT);
 pinMode(seg_e, OUTPUT);
 pinMode(seg_f, OUTPUT);
 pinMode(seg_g, OUTPUT);
void loop() {
  int val_P1 = digitalRead(P1);
  int val_P2 = digitalRead(P2);
  if(val_P1 == 0 && val_P2 == 0) { // Display '0'
    digitalWrite(seg_a, 1);
    digitalWrite(seg_b, 1);
    digitalWrite(seg_c, 1);
    digitalWrite(seg_d, 1);
    digitalWrite(seg_e, 1);
    digitalWrite(seg_f, 1);
    digitalWrite(seg_g, 0);
 else if(val_P1 == 1 && val_P2 == 0) { // Display '2'
   digitalWrite(seg_a, 1);
    digitalWrite(seg_b, 1);
   digitalWrite(seg_c, 0);
    digitalWrite(seg_d, 1);
    digitalWrite(seg_e, 1);
    digitalWrite(seg_f, 0);
    digitalWrite(seg_g, 1);
 else if (val P1 == 0 && val P2 == 1) { // Display '5'
    digitalWrite(seg_a, 1);
    digitalWrite(seg_b, 0);
    digitalWrite(seg_c, 1);
    digitalWrite(seg_d, 1);
```

```
digitalWrite(seg_e, 0);
  digitalWrite(seg_f, 1);
  digitalWrite(seg_g, 1);
}
else { // Display 'E'
   digitalWrite(seg_a, 1);
   digitalWrite(seg_b, 0);
   digitalWrite(seg_c, 0);
   digitalWrite(seg_e, 1);
   digitalWrite(seg_d, 1);
   digitalWrite(seg_e, 1);
   digitalWrite(seg_f, 1);
   digitalWrite(seg_g, 1);
}
delay(100);
}
```

7. Analysis

7.1 Truth Table

P1	P2	Display
0	0	0
1	0	2
0	1	5
1	1	E

7.2 Segment Activation

Digit	a	b	c	d	е	f	g
0	1	1	1	1	1	1	0
2	1	1	0	1	1	0	1
5	1	0	1	1	0	1	1
E	1	0	0	1	1	1	1

7.3 Derivations

- g = P1 + P2
- \bullet e = b + c
- \bullet d = c + e

8. Conclusion

This hardware implementation using a 7-segment display successfully models vending machine logic using basic input and output pins of Arduino UNO. The results are validated against GATE 2009 Question 59 output specifications.