

Introduction: What is an Image?

- An image is a 2D function: f(x, y), where x and y are spatial coordinates, and the *amplitude* of the function is called *intensity* or *grey level*.
- An images is just a matrix of numbers, e.g. [0, 255].
- Images are composed of picture elements: pixels

Tasks in Computer Vision

- Classification: output variable takes class label. Can produce probability of belonging to a particular class.
- Regression: output variable takes continuous value

What computers see!

Introduction: What is an Image Processing?

- Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it.
- For instance, we slide the **3x3 filter** over the image, element-wise multiply, and add the outputs

1	1	1	0	0
0	1	1	4	0
0	0	1	1	1
0	0	1	1	0
10	1	1	0	0

Result

Image

$$I(x,y) * h = \sum_{i=-a}^{a} \sum_{j=-b}^{b} I(x-i,y-j).h(i,j)$$

Inner Product

Image Convolution

a process of combining image **pixels** with a certain matrix weight to identify specific features of the image, such as edge detection, sharpening, blurring,

- Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it.
- For instance, we slide the **3x3 filter** over the image, element-wise multiply, and add the outputs

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Image

- Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it.
- For instance, we slide the 3x3 filter over the image, element-wise multiply, and add the outputs

1 _{×1}	1 _{×0}	1,	0	0
0,0	1 _{×1}	1,0	1	0
0 _{×1}	O _{×0}	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

1	0	1
0	1	0
1	0	1

Filter (kernel)

- Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it.
- For instance, we slide the **3x3 filter** over the image, element-wise multiply, and add the outputs

1	1,	1 _{×0}	0,	0
0	1,0	1 _{×1}	1,0	0
0	0 _{×1}	1 _{×0}	1,	1
0	0	1	1	0
0	1	1	0	0

Image

1	0	1
0	1	0
1	0	1

Filter (kernel)

- Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it.
- For instance, we slide the **3x3 filter** over the image, element-wise multiply, and add the outputs

1	1	1,	0,0	0 _{×1}
0	1	1 _{×0}	1,	O _{×0}
0	0	1 _{×1}	1,0	1,
0	0	1	1	0
0	1	1	0	0

Image

1	0	1
0	1	0
1	0	1

- Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it.
- For instance, we slide the **3x3 filter** over the image, element-wise multiply, and add the outputs

1	1	1	0	0
0 _{×1}	1 _{×0}	1,	1	0
O _{×0}	0,	1 _{×0}	1	1
0 _{×1}	O _{×0}	1 _{×1}	1	0
0	1	1	0	0

I ((x, y)	* h	$=\sum_{i=-a}^{a}\sum_{j=-b}^{b}I(x-i,y-j).h(i,j)$
4	3	4	(0x1)+(1x0)+(1x1)+
2			(0x0)+(0x1)+(1x0)+
			(0x1)+(0x0)+(1x1)=2
F	Resul	t	

Image

1	0	1
0	1	0
1	0	1

- **Image processing** is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it.
- For instance, we slide the 3x3 filter over the image, element-wise multiply, and add the outputs

1	1	1	0	0
0	1 _{×1}	1,0	1,	0
0	O _{×0}	1 _{×1}	1 _{×0}	1
0	0 _{×1}	1,0	1,	0
0	1	1	0	0

I ($I(x,y) * h = \sum_{i=-a}^{a} \sum_{j=-b}^{b} I(x-i,y-j).h(i,j)$						
4	3	4	(1x1)+(1x0)+(1x1)+				
2	4		(0x0)+(1x1)+(1x0)+				
			(0x1)+(1x0)+(1x1)=4				

Result

Image

1	0	1
0	1	0
1	0	1

- Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it.
- For instance, we slide the **3x3 filter** over the image, element-wise multiply, and add the outputs

Result

1	1	1	0	0
0	1	1 _{×1}	1,0	0 _{×1}
0	0	1,0	1,	1,
0	0	1 _{×1}	1,0	0 _{×1}
0	1	1	0	0

I ((x, y)	* h	$=\sum_{i=-a}^{a}\sum_{j=-b}^{b}I(x-i,y-j).h(i,j)$
4	3	4	(1x1)+(1x0)+(0x1)+
2	4	3	(1x0)+(1x1)+(1x0)+
			(1x1)+(1x0)+(0x1)=3

Image

1	0	1
0	1	0
1	0	1

- **Image processing** is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it.
- For instance, we slide the 3x3 filter over the image, element-wise multiply, and add the outputs

1	1	1	0	0
0	1	1	1	0
0 _{×1}	0,0	1 _{×1}	1	1
0,0	0,	1,0	1	0
0 _{×1}	1,0	1,	0	0

I ($I(x,y) * h = \sum_{i=-a}^{a} \sum_{j=-b}^{b} I(x-i,y-j).h(i,j)$						
4	3	4	(0x1)+(0x0)+(1x1)+				
2	4	3	(0x0)+(0x1)+(1x0)+				
2			(0x1)+(1x0)+(1x1)=2				

Result

Image

1	0	1
0	1	0
1	0	1

Filter (kernel)

- **Image processing** is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it.
- For instance, we slide the **3x3 filter** over the image, element-wise multiply, and add the outputs

1	1	1	0	0
0	1	1	1	0
0	0 _{×1}	1,0	1 _{×1}	1
0	0,0	1,	1,0	0
0	1,	1,0	0,	0

$I(x,y) * h = \sum_{i=-a}^{a} \sum_{j=-b}^{b} I(x-i,y-j).h(i,j)$						
4	3	4	(0x1)+(1x0)+(1x1)+			
2	4	3	(0x0)+(1x1)+(1x0)+			
2	3		(1x1)+(1x0)+(0x1)=3			

Result

Image

1	0	1
0	1	0
1	0	1

- Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it.
- For instance, we slide the **3x3 filter** over the image, element-wise multiply, and add the outputs

1	1	1	0	0
0	1	1	1	0
0	0	1,	1 _{×0}	1,
0	0	1,0	1,	0,×0
0	1	1,	0,×0	0,1

I((x, y)	* h :	$=\sum_{i=-a}^{a}\sum_{j=-b}^{b}I(x-i,y-j).h(i,j)$
4	3	4	(1x1)+(1x0)+(1x1)+
2	4	3	(1x0)+(1x1)+(0x0)+
			$(1 \vee 1) \perp (0 \vee 0) \perp (0 \vee 1) - 4$

Result

Image

1	0	1
0	1	0
1	0	1

Filter (kernel)

Introduction: Feature Extraction

Each filter identifies a specific set of features of the image

0 -1 0 -1 5 -1 0 -1 0

Original

Sharpen

Edge Detect

Strong Edge Detect

How to define mask coefficients?

Depends on what the filter is supposed to do!

Original

Filter

Filtered (Deleting)

Introduction: Feature Extraction

Each filter identifies a specific set of features of the image

Original

Sharpen

Edge Detect

Strong Edge Detect

How to define mask coefficients?

Depends on what the filter is supposed to do!

Original

0	0	0
0	1	0
0	0	0

Filter

Filtered (No change)

Introduction: Feature Extraction

Each filter identifies a specific set of features of the image

Original

Sharpen

Edge Detect

Strong Edge Detect

How to define mask coefficients?

Depends on what the filter is supposed to do!

Original

Filter

Shifted *left* by 1 pixel

Manual Feature Extraction

Domain Knowledge

Features should be robust to image variations

Viewpoint variation

Scale variation

Deformation

Occlusion

Background clutter

Intra-class variation

Define Features

Detect Features to Classify

Can we learn a *hierarchy of features robust to image variations* directly from the data instead of hand engineering?

Solution: Convolutional Neural Networks

Why CNN for Image?

- 1. Some patterns are much smaller than the whole image
 - A neuron does not have to see the whole image to discover the pattern
 - Connecting to a small region with fewer parameters

Why CNN for Image?

- 1. Some patterns are much smaller than the whole image
 - A neuron does not have to see the whole image to discover the pattern
 - Connecting to a small region with fewer parameters
- 2. The very same patterns appear in different regions

Why CNN for Image?

- 1. Some patterns are much smaller than the whole image
 - A neuron does not have to see the whole image to discover the pattern
 - Connecting to a small region with fewer parameters
- 2. The very same patterns appear in different regions
- 3. Subsampling the pixels will not change the object
 - We can subsample the pixels to make the image smaller
 - Fewer parameters for the network to process the image

bird

bird

The Whole CNN

The Whole CNN

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

1	-1	-1	
-1	1	-1	Filter 1
-1	-1	1	

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

Each filter detects a small pattern (3 x 3).

Property 1

6 x 6 Image

Note that these filter indices are the network parameters to be learned. We do not predefine them like in conventional image processing methods.

Stride is how far the filter moves in every step along one direction.

Stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 Image

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

What if Stride is 2?

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 Image

Filter 1

Unless otherwise stated, stride is by default 1

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 Image

A feature map, a.k.a. Activation Map, is the result of applying a convolution across an image

Feature Map

		_			
1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 Image

Why do we have two highest scores there?

Feature Map

1	-1	-1	
-1	1	-1	Filter 1
-1	-1	1	This filter detects left diagonal edges

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 Image

Property 2

The very same patterns appear in different regions

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 Image

Follow the same process for **every filter**

Feature Maps

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 Image

For example,

if we had **6 3x3 filters**, we'll get **6 separate feature maps**. We stack these up to get a "new image" of size **4x4x6**

Feature Maps are 4 x 4 images

CNN: Spatial Dimensions

A closer look at spatial dimensions

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Input size: 6x6 (spatially)

Filter size: 3x3

Stride: 1

Output image size: 4x4

- Note that applying convolution repeatedly will shrink feature maps spatially!
- Shrinking too fast is not good, doesn't work well!
- To preserve size spatially, it is common to zero-pad the border

0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	0
0	0	1	0	0	1	0	0
0	0	0	1	1	0	0	0
0	1	0	0	0	1	0	0
0	0	1	0	0	1	0	0
0	0	0	1	0	1	0	0
0	0	0	0	0	0	0	0

Padding: 1

Output Image Size

$$Width_{out} = \frac{Width_{in} - Width_{filter} + 2*Padding_{Size}}{Stride} + 1$$
 $Height_{out} = \frac{Height_{in} - Height_{filter} + 2*Padding_{Size}}{Stride} + 1$
 $Dimension_{out} = Number_{filter}$

CNN: Spatial Dimensions

For example;

Input Image: 32x32x3

Filter size: 5x5
Filter number: 10

Stride: 1 Padding: 2

Output Image Size

$$Width_{out} = \frac{Width_{in} - Width_{filter} + 2*Padding_{Size}}{Stride} + 1 = \frac{32 - 5 + 2*2}{1} + 1 = 32$$

$$Height_{out} = \frac{Height_{in} - Height_{filter} + 2*Padding_{Size}}{Stride} + 1 = \frac{32 - 5 + 2*2}{1} + 1 = 32$$

$$Dimension_{out} = Number_{filter} = 10$$

$$=> Output Image Size: 32x32x10$$

Number of parameters in this layer?

Each filter has 5x5x3 + 1 = 76 parameters (+1 for bias) Since there are 10 filters, in total 76*10 = 760 parameters

CNN: Convolution for Multi-channel Images

CNN: Convolution for Multi-channel Images

				100000000	1 12	
0	0	0	0	0	0	
0	167	166	167	169	169	ŧ
0	164	165	168	170	170	
0	160	162	166	169	170	
0	156	156	159	163	168	
0	155	153	153	158	168	

0	0	0	0	0	0	
0	163	162	163	165	165	
0	160	161	164	166	166	
0	156	158	162	165	166	
0	155	155	158	162	167	
0	154	152	152	157	167	

Input Channel #2 (Green)

Input Channel #3 (Blue)

-1	-1	1
0	1	-1
0	1	1

Kernel Channel #1

308

Kernel Channel #2

-498

Kernel Channel #3

 $\begin{array}{ccc}
 & & \\
164 & +1 = -25
\end{array}$

Output

Bias = 1

Click here to see the gif animation!

Convolution versus Fully Connected

- In a fully-connected mode,
 - a neuron in the hidden layer is connected to all neurons in the input layer
 - no spatial information is preserved (i.e. if we shuffle the image pixels, there is no difference!)
 - the number of trainable parameters becomes extremely large

100 Hidden Units

Total trainable parameter number:

(256x100) + 100 + (26x100) + 26 = 28326

Convolution versus Fully Connected

- In a fully-connected mode,
 - the number of trainable parameters becomes extremely large
 - there is little or no invariance to shifting, scaling, and other forms of distortion

154 input change from 2 shift left

77: black to white 77: white to black

Convolution versus Fully Connected

- In a fully-connected mode,
 - the number of trainable parameters becomes extremely large
 - there is little or no invariance to shifting, scaling, and other forms of distortion
 - the topology of the input data is completely ignored

Convolution versus Fully Connected

- In a **convolution** mode, spatial structure is preserved. We have
 - fewer parameters!
 - shared weights!

Convolution versus Fully Connected

- In a **convolution** mode, spatial structure is preserved. We have
 - fewer parameters!
 - shared weights!

CNN: Pooling

- Pooling layer makes the representation smaller, more manageable, and robust to position variations
- Pooling operates over each feature map (a.k.a. activation map) independently
 - Max-pooling: takes a max response over spatial locations
 - Average-pooling: takes an average response over spatial locations

CNN: Pooling

- Pooling layer makes the representation smaller, more manageable, and robust to position variations
- Pooling operates over each feature map (a.k.a. activation map) independently
 - Max-pooling: takes a max response over spatial locations
 - Average-pooling: takes an average response over spatial locations

CNN: Flattening

The Whole CNN

The Whole CNN

Feature Learning

- Learn a hierarchy of features in input image through convolution
- Introduce non-linearity through activation function (Conv + ReLU)
- Reduce dimensionality and preserve spatial invariance with pooling

The Whole CNN

Classification

- Convolution and Pooling layers output high-level features of the input
- Fully connected layer uses these features for classifying input image
- Express output as the **probability** of an image belonging to a particular class
- Apply Softmax function to classify an object with probabilistic values between 0 and 1

$$softmax(z_i) = \frac{exp(z_i)}{\sum_{j} exp(z_j)}$$

The Whole CNN in PyTorch

The Whole CNN in PyTorch

The Whole CNN in PyTorch

CNN: Receptive Fields

- The **receptive field** is defined as the region in the input space that a particular CNN's feature is looking at (i.e. be affected by)
- With the network going deeper, the size of the receptive field is becoming larger.

The receptive field of vanilla convolutions grows linearly with the number of layers $(3\times3, 5\times5, 7\times7, \text{ etc.})$.

CNN: Dilated Convolutions

- Vanilla convolutions struggle to integrate global context since the effective receptive field of units can only grow linearly with layers.
- The dilation operation supports the exponential expansion of the receptive field without loss of resolution or coverage.
- The receptive field grows exponentially while the number of parameters grows linearly.
- Dilated convolutions have gridding artifacts

(the receptive field is 5x5)

Neighboring output units are computed from completely separated sets of input units.

(the receptive field is larger, i.e. 7x7)

CNN: 1x1 Convolution

- 1x1 convolution leads to an increase/decrease in the dimension of the number of feature maps
- Useful in semantic segmentation to merge different layers

Computer Vision Tasks for CNNs

- Semantic Image Segmentation with CNNs
 - Convolutional Encoder-Decoder structure
 - Not instance-aware
 - Skip connections

Transfer Learning with CNNs

- Common "Wisdom": You need a lot of data to train a CNN
- Solution: Transfer learning
 - taking a model trained on a similar task that has lots of data and adopting this model to the task that may not have enough training data
 - This strategy is Pervasive!

Train on ImageNet

Why on ImageNet?

- Convenience, lots of data
- We know how to train these well

Note that, for some other tasks we would need to start with something else (e.g., videos for optical flow)

Transfer Learning with CNNs

- Common "Wisdom": You need a lot of data to train a CNN
- Solution: Transfer learning
 - taking a model trained on a similar task that has lots of data and adopting this model to the task that may not have enough training data
 - This strategy is Pervasive!

Conclusion

- A Convolutional Neural Network (CNN) is a special kind of multi-layer feed-forward neural network that can extract topological properties from an image.
- CNNs are neurobiologically motivated by the findings of locally sensitive and orientation-selective nerve cells in the visual cortex.
- CNNs can recognize visual patterns with extreme variability.
- If a neuron in the feature map fires, this corresponds to a match with the template.
- Filter indices in CNNs are learned directly by the network.
- Pooling (subsampling) layers reduce the spatial resolution of each feature map
 - By reducing the spatial resolution of the feature map, a certain degree of shift and distortion invariance is achieved.
- Like almost every other neural network, CNNs are trained with a version of the back-propagation algorithm.

Discussion

- Which of the following is the correct order for the typical CNN operation?
 - Convolution -> max pooling -> flattening -> full connection

- Max pooling -> convolution -> flattening -> full connection
- Flattening -> max pooling -> convolution -> full connection
- None

- What are the benefits of using convolutional layers instead of having fully connected ones for image processing tasks?
 - Convolutional layers use
 - o spatial context by only assigning weights to nearby pixels
 - translation invariance
 - o lot fewer parameters due to weight sharing.
- What is the resulting image size if we apply a 3x3 convolution to an image with a size of 150x150? (no padding!)
 - 148x148

Discussion

- What is the resulting image size if we apply a pooling operation (with the size of 2x2) to an image with a size of 150x150?
 - 75x75
- Assume that we have an input tensor with the size of 128x128x16. How many parameters would a single 1x1 convolutional filter have, including the bias?
 - 16 (depth channel only) + 1 (bias) = 17
- Assume that we have a binary classification task of categorizing images as dog or not dog. We implement a CNN with a single output neuron. Let's assume that the output of this neuron is z. The final output of our network, \hat{y} is then given by:

$$\hat{y} = sigmoid(ReLU(z))$$

We also have a threshold of 0.5 to classify all images as a dog, if their final value is $\hat{y} \ge 0.5$. What problem are we going to face in this case?

Since we first use ReLU and then sigmoid all the predictions will be positive. Note that ReLU response will be *always* \geq **0**. When you pass this to Sigmoid ($S(x) = \frac{1}{1+e^{-x}}$), the output will *always be* \geq **0.5**. Therefore, $sigmoid(ReLU(z)) \geq$ **0.5** $\forall z$.

Reading Material

- Deep Learning Book
 - Chapter <u>9.1, 9.2, 9.3, 9.4</u>

Chapter

- Video
 - Please check this video explaining how CNN features are learned in detail https://www.youtube.com/watch?v=N6wn8zMRIVE
- Blogs
 - https://medium.com/@subham.tiwari186/understanding-convolutional-neural-networkscnns-72b62b17dd3a

- CNN Explainer:
 - https://poloclub.github.io/cnn-explainer/

