Introducción Objetivos Marco Teórico Métodos de Optimización Resultados Conclusiones y Trabajos Futuros

Métodos de optimización de la gradiente de descenso en una red neuronal convolucional

Víctor Jesús Sotelo Chico1

¹Universidad Nacional de Ingeniería

Seminario de Tesis I

Contenido

- Introducción
- Objetivos
- Marco Teórico
 - Aprendizaje Automático
 - Redes Neuronales
- Métodos de Optimización
 - Momentum
 - Nesterov
 - Adagrad
 - RMSprop
 - Adam
- 6 Resultados
- Conclusiones y Trabajos Futuros

Introducción
Objetivos
Marco Teórico
Métodos de Optimización
Resultados
Conclusiones y Trabajos Futuros

Introducción

En la actualidad es indispensable emplear mucho tiempo en el entrenamiento de redes neuronales profundas, por lo que surge la necesidad de encontrar métodos que aceleren este proceso.

Objetivos

- Entender las ventajas y desventajas de distintos métodos de optimización de la gradiente de descenso.
- Obtener la capacidad de discriminar entre distintos métodos de optimización.
- Lograr un mejor entendimiento de las redes neuronales profundas.

Aprendizaje Automático

Se encarga consiste aprenden a identificar patrones en un conjunto de datos. A medida que se realiza este aprendizaje, la máquina podrá ser capaz de realizar una predicción o tomar decisiones sin haber estado programada explícitamente para realizar esta tarea.

El Aprendizaje Automático puede ser divido de la siguiente forma :

- Aprendizaje Supervisado
- Aprendizaje No Supervisado
- Aprendizaje por Refuerzo

Aprendizaje Supervisado

El aprendizaje supervisado tiene los siguiente tipos de problemas :

- Regresión Lineal
- Regresión Logística
- Clasificación

Aprendizaje No Supervisado

En este tipo de aprendizaje tenemos problemas de clustering.

Aprendizaje por Refuerzo

FIGURE – Esquema de aprendizaje por refuerzo

Redes Neuronales Artificiales

Estas redes toman como inspiración la arquitectura del cerebro para la construcción de sistemas inteligente. Actualmente son la base para el desarrollo de la inteligencia artificial.

Comparación neuronas biológicas y artificiales

FIGURE - Redes neuronales biológicas y artificiales

Redes neuronales Prealimentadas

Es un tipo de red neuronal más simple que existe. Esta red puede clasificarse en :

- Perceptron simple
- Perceptron Multicapas
- Redes neuronales convolucionales

Esquema Redes neuronales Prealimentadas

Back Propagation

Redes Neuronales Convolucionales

Capas de una red neuronal convolucional

- Input Layer
- Convolutional Layer
- Pooling Layer
- Fully Conected Layer
- Output Layer

Introducción Objetivos Marco Teórico Métodos de Optimización Resultados Conclusiones y Trabajos Futuros

Momentum Nesterov Adagrad RMSprop Adam

Gradiente de Descenso

Gradiente de Descenso

FIGURE - Gradiente de descenso

Variantes de la Gradiente de Descenso

Existen 3 variantes de la gradiente de descenso :

- Batch gradient descent
- Stochastic gradient descent
- Mini-batch gradient descent

Métodos para optimizar la gradiente de descenso

- Momentum
- Nesterov Momentum
- Adagrad
- RMSprop
- Adam

Momentum

$$\nu_t = \gamma \nu_{t-1} + \eta \nabla_{\theta} J(\theta)
\theta = \theta - \nu_t$$
(1)

Nesterov

$$\nu_{t} = \gamma \nu_{t-1} + \eta \nabla_{\theta} J(\theta - \gamma \nu_{t-1})$$

$$\theta = \theta - \nu_{t}$$
(2)

Adagrad

$$g_{t,i} = \nabla_{\theta} J(\theta_{t,i})$$

$$\theta_{t+1,i} = \theta_{t,i} - \eta \cdot g_{t,i}$$
(3)

$$\theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{G_{t,ii} + \epsilon}} \cdot g_{t,i} \tag{4}$$

RMSprop

$$E[g^{2}]_{t} = \gamma E[g^{2}]_{t-1} + (1 - \gamma)g_{t}^{2}$$

$$\theta_{t+1} = \theta_{t} - \frac{\eta}{\sqrt{E[g^{2}]_{t} + \epsilon}}g_{t}$$
(5)

Adam

$$m_{t} = \beta_{1} m_{t-1} + (1 - \beta_{1}) g_{t}$$

$$v_{t} = \beta_{2} v_{t-1} + (1 - \beta_{2}) g_{t}^{2}$$
(6)

Resultados

Para obtener nuestros resultados utilizamos 2 datasets :

- CIFAR 10
- CIFAR 100

Resultados CIFAR-10

Método	Precisión(%)	Tiempo de ejecución(s)
Momemtum	53.04	303.07
Nesterov	54.09	305.59
Adagrad	44.42	310.20
RMSprop	68.91	322.20
Adam	68.02	316.51

FIGURE – Precisión 50000 epochs

Resultados CIFAR-10 - Precisión

FIGURE - Comparación de precisión para 5000 epochs

Errores Función de Costo CIFAR-10

Método	Error en función de costo
Momemtum	1.26
Nesterov	1.38
Adagrad	1.73
RMSprop	0.19
Adam	0.30

FIGURE - Comparación de errores función de costo 5000 epochs

Errores Función de Costo CIFAR-10

FIGURE – Comportamiento de errores en la función de costo 5000 epochs

Resultados CIFAR-10 - Precisión

Método	Precisión(%)	Tiempo de ejecución(s)
Momemtum	60.80	585.41
Nesterov	62.37	605.19
Adagrad	47.62	598.54
RMSprop	70.31	621.17
Adam	70.42	622.18

FIGURE - Precisión 100000 epochs

Resultados CIFAR-10 - Precisión

FIGURE - Comparación de precisión para 10000 epochs

Errores Función de Costo CIFAR-10

Método	Error en función de costo
Momemtum	1.10
Nesterov	1.08
Adagrad	1.64
RMSprop	0.19
Adam	0.14

FIGURE - Comparación de errores función de costo 10000 epochs

Errores Función de Costo CIFAR-10

FIGURE – Comparación de las errores rango 0-500

Resultados CIFAR-100 - Precisión

	Precisión(%)	Tiempo de ejecución(s)
	11001011(70)	Trempe de ejecucion(e)
Momemtum	17.33	597.75
Nesterov	17.33	595.53
Adagrad	7.73	628.75
RMSprop	36.66	622.50
Adam	35,13	624.64

FIGURE - Precisión 100000 epochs

Resultados CIFAR-100 - Precisión

FIGURE - Comparación de precisión para 10000 epochs

Errores Función de Costo CIFAR-100

Conclusiones

- Los métodos de optimización Adam y RMSprop obtuvieron los mejores resultados de precisión en ambas pruebas.
- A pesar de que el método de optimización Adam fue propuesto a partir del RMSprop. Adam fue superado en algunas de pruebas realizadas.
- Adam es el método que tiene un decaimiento más acelerado al calcular el error en la función de costo cross-entropy.

Conclusiones

- Entre los métodos adaptativos Adam, RMSprop y Adagrad

 Solo este último obtuvo los peores resultados, esto se
 debió a su dificultad de trabajar con la suma de las
 gradientes al cuadrado lo cual poco a poco redujo su tasa
 de aprendizaje.
- El RMSprop como una mejora del Adagrad, obtuvó mejores resultados que este último. Esto debido a que RMSprop trabaja con el promedio de la raíz de la gradiente anterior y tasas de decaimiento para controlar el problema de la disminución de la tasa de aprendizaje del método Adagrad.

Trabajos Futuro

- Correcto diseño de una red neuronal convolucional.
- Obtener resultados con distintos hardwares.
- Realizar una implementación más interactiva.