AUTONOMY IN ROBOTICS

Seneca

Saeid Khosravani Summer 2022

Safety First

Circuit Breakers and Fuses

Reset circuit breaker to return electrical system to normal operation

- Fuse provides overload protection in electrical systems
- Element inside melts, interrupts flow of current

General Safety Guidelines

- Research characteristics of robot used
- Work station design allows safe operation
- Control panels outside work envelope
- Interlock access to controller

Manipulator

∘ Joints provide linear or rotary movement

Degrees of Freedom

Robot dexterity does not compare to a human

Revolute Configuration

Five revolute joints in vertically articulated configuration

Cartesian Configuration

Arm movement along three intersecting perpendicular lines

Speed Control

The point speed has a few different options.

Distance / Time: the robot will travel so far in so much time. (500mm/sec)

Time: The robot will take a preset amount of time to move to the next point. (1sec)

Percentage: The robot will move at a percentage of full speed to the next point. (50%)

Accuracy

Degrees of Freedom

Degrees of Freedom allow the motion of a robot in each axis.

Axes of Motion – Degrees of Freedom

Linear (Cartesian)

- X-axis
- Y-axis
- Z-axis

Angular (Rotation)

- About X-axis
- About Y-axis
- About Z-axis

Degrees of Freedom - Rotation

Degrees of Freedom

Wrist and arm movements for degrees of freedom

What is Autonomy?

- In general, autonomy is the ability to make one's own decisions and act on them.
- In robotics, autonomy is to take an appropriate action bases on a given situation.
- Autonomy can be complete or partial (tele-operated robots).

Sensors

- Physical device that provides information about the world
- Sensing is sampling the environment to understand and perceive it. This process is commonly referred to as perception.

$$v = \int a_x dt$$

$$x + \Delta x = \int v dt = \int \int a_x dt = \int \int (a_x + \delta) dt$$

$$\begin{array}{c}
 *A \\
 v_0 = 0 \\
 x_0 = 0
 \end{array}$$

* B
$$x_b = ?$$

Effectors

 Any device on the robot that have an impact on the environment.

Actuators

 A mechanism that enables the effector to execute an action. They are used for locomotion and manipulation.

Control

- The regulation of the behavior of a system to make it perform as desired.
- Controllers enable robots to be autonomous.

System

 A group of interacting items that form a unified whole.

Agent

 Any system which can be viewed as perceiving its environment through sensors and acting upon it through effectors.

Obstacle avoidance: if the robot hits an obstacle it will stop, move away from the obstacle, turn 90 degrees, so that it faces away from the obstacle and then continue moving forwards.

VALID = obstacle avoidance active	STP = Stop	= 0
CMD = Movement Command	FWD = Forwards	= 1
STR = Start Timer	BCK = Backwards	= 2
UPD = Bumper Reg Update	RR = Rotate right	= 3
and the transfer of the property	RL = Rotate left	= 4
FL = Front left bumper	TR = Turn right	= 5
FR = Front right bumper	TL = Turn left	= 6
BL = Back left bumper	BRK = Break	= 7
BR = Back right bumper		
F = Front middle bumper or FL or FR		

Components of Autonomous Robotics

State

- State is a description of the robot (of a system in general) and its environment.
- Sates in a robot can be:
 - Observable: the robot knows its state entirely
 - Partially Observable: the robot only known a part of its state
 - Hidden: the robot does not have any access to its state
 - Discrete: up, down, ...
 - Continuous: speed

Autonomy in Robotics

Levels of Autonomy

- Level 0: Not autonomous at all; driver has sole control of the vehicle.
- Level I:A single function is automated, but does not necessarily use information about the driving environment. A car operating under simple cruise control would qualify as Level I.
- Level 2:Acceleration, deceleration and steering are automated, and use sensory input from the environment to make decisions. Modern cars that have cruise control and automated lane maintenance or collision-avoidance braking would fall into this category. The driver is still ultimately responsible for the safe operation of the car.

Autonomy in Robotics

Levels of Autonomy

- Level 3: In this level, all safety functions are automated, but the driver is still needed to take over in an emergency that the car can't handle.
- Level 4 and 5:These are the fully autonomous levels, where the car handles all driving decisions with no input from a human at all. The difference is that Level 4 cars are limited to a specific set of driving scenarios, such as city, suburban and highway driving, whereas Level 5 cars can handle any driving scenario, including off-road operation.
- https://www.sae.org/standards/content/j3016_ 202104/

AUTONOMOUS ROBOTICS EXAMPLES

AUTONOMOUS ROBOTICS EXAMPLES

