1. Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

1 point

- $\bigcirc \ x^{(i) < j >}$
- $\bigcap x^{\leq i \geq (j)}$
- $\bigcap x^{(j) < i >}$
- $\bigcap x^{< j > (i)}$
- 2. Consider this RNN:

1 point

This specific type of architecture is appropriate when:

- $T_x = T_y$
- $\bigcirc T_x < T_y$
- $\bigcap T_x > T_y$
- $\bigcap T_x = 1$

- Speech recognition (input an audio clip and output a transcript)
- Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)
- Image classification (input an image and output a label)
- Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- $\bigcirc \ \ \mathsf{Estimating} \ P(y^{<1>},y^{<2>},\dots,y^{< t-1>})$
- igotimes Estimating $P(y^{< t>})$
- \bigcirc Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t-1>})$
- $\bigcirc \ \, \mathsf{Estimating}\, P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \dots, y^{< t>})$
- 5. You have finished training a language model RNN and are using it to sample random sentences, as follows:

1 point

What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.

6.	You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?	1 point
	Vanishing gradient problem.	
	Exploding gradient problem.	
	ReLU activation function g(.) used to compute g(z), where z is too large.	
	Sigmoid activation function g(.) used to compute g(z), where z is too large.	
7.	Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $a^{< t>}$. What is the dimension of Γ_u at each time step?	1 point
	○ 1	
	100	
	O 300	
	O 10000	
8.	Here're the update equations for the GRU.	1 point
	GRU	
	$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$	
	$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$	
	$\Gamma_r = \sigma(W_r[\ c^{< t-1>}, x^{< t>}] + b_r)$	
	$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t - 1>}$	
	$a^{< t>} = c^{< t>}$	
	Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?	
	\bigcirc Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.	
	\bigcirc Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.	
	$lacktriangle$ Betty's model (removing Γ_r), because if $\Gamma_u pprox 0$ for a timestep, the gradient can propagate back through that timestep without much decay.	
	\bigcirc Betty's model (removing Γ_r), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.	

9. Here are the equations for the GRU and the LSTM:

LSTM

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c) \qquad \qquad \tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u) \qquad \qquad \Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r) \qquad \qquad \Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>} \qquad \qquad \Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_o * c^{< t>}$$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ___ in the GRU. What should go in the the blanks?

- $igotimes \Gamma_u$ and $1-\Gamma_u$
- $\bigcap \Gamma_u$ and Γ_r
- \bigcap 1 $-\Gamma_u$ and Γ_u
- \bigcap Γ_r and Γ_u
- 10. You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\ldots,x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>},\ldots,y^{<365>}$. You'd like to build a model to map from $x\to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

1 point

- Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
- Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
- \bigodot Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{<1>},\dots,x^{< t>}$, but not on $x^{< t+1>},\dots,x^{<365>}$
- O Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not other days' weather.