III Local fields

Definition 7:1: Let (K,1:1) be a valued field.

K is a <u>local field</u> it it is complete and

Locally compact.

Eg. IR and C are local fields.

Proposition 7.2: Let (K, 1.1) be a unon-anch. complete valued field. TFAE:

(i) Kistocally compact.

lii) Ox is compart.

(iii) V is discrete and $k := 0_{K/m}$ is finite. Proof: (i) =>(ii) Let $U \ni 0$ be a compact neighboruhood of D. Then $\exists x \in O_{K}$ s.t. $x O_{K} \subseteq U$. Since $x O_{K}$ is closed, $x O_{K}$ is compact => O_{K} is compact

 $(x O \times \frac{x^{-1}}{2} O_K$ is a homeomorphism

(ii) =>(i) O_K compact => $\alpha + O_K$ compact $\forall \alpha \in K$ =) K locally compact.

'(ii)=7(iii) Let $x \in M$, and $A_x \subseteq O_K$ be a set of cost veps. For O_K/xO_K . Then $O_K = U$, $U + xO_K$ a disjoint open cover

=) Ax is finite by compartness A Ox

=> OK/xOK is finite

=> OK/m is fruito.

Suppose v is not diserte.

Let $x = x_1, x_2, x_2, \dots$ s.t.

 $V(x_1) > V(x_2) > V(x_3) > ... > 0$.

Then x Ox f x20x f x30x f... f 0x.

But OK/XOK is finite so can only

here fintely many subgroups. *

(iii) =>(ii) Suno OK is a metre, it

suffice to shar Ox is sequentially.

compact. Let $(x_n)_{n=1}^{\infty}$ be a sequence in \mathcal{O}_{k}

and fix HEOK a uniformizer is OK.

Since TiOK/HiHOK = k, OK/HiOK 18

funite $(O_{K} \geq \pi O_{K} \geq \dots \geq \pi^{i} O_{K}), \forall i \geq 1.$

Sime OK/HOK is finite, FatOK/HOK

and a subsequence $(x, x)_{n=1}^{\infty}$ s.t. $x_{i,n} = \alpha$ and π

We define y,=x,..

Since $O_{K/\Pi^2}O_{K}$ is finite, $\exists a_2 \in O_{K/\Pi^2}O_{K}$

 $\alpha_{2n} \equiv \alpha_2 \text{ wad } \pi^2 \theta_k$.

Define y2 = x22.

Continuing in this fashian, ne obtain seguences $(2C; n)_{n=1}^{\infty}$ for i=1, 2, ...

s.f. (1) (xin) =1 is a serbsequence of (xin) =

(2) For any i, $\beta \alpha_i \in O_F/_{H^i}O_{k} \subseteq \mathcal{I}$. $\alpha_{in} \equiv \alpha_i \mod H^i \quad \forall n \in \mathcal{I}$.

Then necessarily d; = di+, mod Hi Vi.

Now choose $y_i = x_{ii}$; this defines a subsequence $(x_n)_{n=1}^{\infty}$. Moreover $y_i \equiv a_i \equiv a_{i+1} \equiv y_{i+1} \mod \pi^i$ ¹⁴ Thus y_i is (analy, hence converges by completeness.

Eg. (i) Op is a local field.

(ii) $F_{\rho}((t))$ is a local field. More on uniense limits.

bel $(A_n)_{n=1}$ a sequence of sels/opags/negs and $\ell_n: A_{n+1} \to A_n$ brownmorphisms. Definition 7:3: Assume A_n is finite. The profinite topology on $A:=\lim_n A_n$ is the nearbest topology on A s.t. $A \to A_n$ is continuous H_n . where A_n are estimated with the discrete topology.

Foret: $A = \lim_{n} A_n$ with profinite, is compact, totally disconnected and Hauseloof.

Proposition 7.4: Let K be a local field.

Under the isomorphism

 $O_K \cong \varprojlim O_{K/\Pi^n}O_K$ $^{S}(\pi \in O_K \text{ a uniformizer})$, the topology on O_K consides with the profinite topology.

Proof: One checks that the sets $B := \{ a + \pi^n O_K \mid n \in \mathbb{N}_{\geq 1}, a \in A_{\Pi^n} \}$ And is a set of coset ceps for $O_K/\Pi^n O_K$

is a basis of open sets in both topologies. For 1.1: clear.

For profunte topology: $O_K \rightarrow O_K/\pi^nO_K$ is collinuos iff $\alpha + \pi^nO_K$ open $\forall \alpha + A_{\pi^n}$.

Thus B is basis for profunte topology. D

Lemma 7.5: Let K be a non-onch. local field and $\forall K$ a finite extension. Then L is a lad field.

Proof: Theorem 6-1 => 1 complete and

discretely calued.

Suffices to shar $k_{\perp} = 9 l/m_{\perp}$ is finite. Let $\alpha_1, ..., \alpha_n$ be bosis for L as a K-v.s. Il llsup (sup norm) equiv. to $1 \cdot l_{\perp}$ implies there exists r > 0 s.t.

OL = {xEL: ||x||sup = r}

Take a & K s.t. lalz r, then $\theta_{L} \leq \hat{\Theta}_{l} a \alpha_{i} \theta_{K}$

=> OL is fin. gen. as a module over Ox.

=> k_ is fin. gen. over k.

Definition 7.7: A discretely valued field (K,1.1) hors equal characteristic of characteristic Otherwise it has mixed characteristic

Eg. Op has mixed down.

Note: If K is a non-onch. local feld, thes
mixed chear. (resp. equal chear.) off chark = 0
7 (resp. chear K > 0).

Theorem 7.8: Let K be a local field of equal characteristic p>0. Then $K \cong F_{p}^{n}((t))$ some $n \ge 1$.

Proof: K complete discretely calmed, char K>O.

Moreover $k \subseteq \mathbb{F}_p^n$ is finite, hence pertect. By Theorem 5.7, K= Fpr ((t)). Lemma 7-9: An also- value 1-1 on a field is non-ouclimedeur of In is bounded Yat I. P-of: "=> Since 1-11=1, 1-01=101, thus suffices to shar In | bounded for n21. Then $|n| = |1+1+...+1| \le 1$. "E" Suppose In ISB Un & Z. Let x, y ∈ K with 1 >cl ≤ |y|. Then we have $|x+y|^{m} = |\frac{2}{50}\binom{m}{i}x^{i}y^{m-i}|$ = = | (m) xiy m-i) < 141 (m+1) B 8 Taking in the voots gres 1x+y 1 = 141 [(m+1)B] m

 $|x+y| \leq |y| = \max(|x|, |y|)$

 \square