8 Vectores y rectas

INTRODUCCIÓN

Los vectores son utilizados en distintas ramas de la Física que usan magnitudes vectoriales, por lo que es importante que los alumnos conozcan sus elementos y operaciones.

Se introducen también en esta unidad las distintas ecuaciones de la recta y cómo identificar el vector director, la pendiente y la ordenada en el origen.

RESUMEN DE LA UNIDAD

- Vector: $AB = (b_1 a_1, b_2 a_2)$
- Módulo: $|AB| = \sqrt{(b_1 a_1)^2 + (b_2 a_2)^2}$
- Ecuaciones de la recta:

Vectorial:
$$(x, y) = (a, b) + t \cdot (v_1, v_2)$$

Paramétricas:
$$\begin{cases} x = a + tv_1 \\ y = b + tv_2 \end{cases}$$

Continua:
$$\frac{x-a}{v_1} = \frac{y-b}{v_2}$$

Punto-pendiente: y - b = m(x - a)

Explícita: y = mx + nGeneral: Ax + By + C = 0

OBJETIVOS	CONTENIDOS	PROCEDIMIENTOS	
Identificar los elementos de un vector.	 Coordenadas de un vector. Módulo, dirección y sentido. Vectores equivalentes y paralelos. 	 Cálculo del módulo de un vector a partir de sus coordenadas. Identificación de vectores equivalentes y paralelos. 	
2. Realizar operaciones con vectores.	 Suma y resta de vectores. Multiplicación de un vector por un número. Suma de un punto y un vector. 	 Operaciones con vectores gráfica y analíticamente. Operaciones con puntos y vectores gráfica y analíticamente. 	
3. Expresar las rectas mediante sus diferentes ecuaciones.	 Ecuaciones vectorial y paramétricas de una recta. Ecuaciones continua y punto-pendiente. Vector director, pendiente y ordenada en el origen de la recta. Ecuaciones explícita y general. 	 Expresión de las distintas ecuaciones de una recta: vectorial, paramétricas, continua, punto-pendiente, explícita y general, dados dos de sus puntos. Obtención del vector director, la pendiente y la ordenada en el origen de una recta. 	
4. Posiciones relativas de dos rectas.	 Rectas paralelas, coincidentes y secantes. Rectas paralelas a los ejes de coordenadas. 	 Estudio de la posición relativa de dos rectas. Identificación de rectas paralelas a los ejes de coordenadas. 	

IDENTIFICAR LOS ELEMENTOS DE UN VECTOR

NOMBRE: _____ CURSO: ____ FECHA: ____

- **Vector:** segmento orientado \overrightarrow{AB} determinado por dos puntos: $A(a_1, a_2)$, origen del vector, y $B(b_1, b_2)$, extremo del vector.
- Coordenadas del vector: $\overrightarrow{AB} = (b_1 a_1, b_2 a_2)$
- Módulo: $|\overline{AB}| = \sqrt{(b_1 a_1)^2 + (b_2 a_2)^2}$

EJEMPLO

Calcula las coordenadas y el módulo del siguiente vector.

Origen: A (2, 2)

Extremo: B(-3, -1)

Coordenadas: $\overrightarrow{AB}(-3 - 2, -1 - 2) = (-5, -3)$

Módulo: $|\overrightarrow{AB}| = \sqrt{(-5)^2 + (-3)^2} = \sqrt{25 + 9} = \sqrt{34}$

1 ¿Cuáles son las coordenadas y el módulo de los siguientes vectores?

Dados los puntos A(3, 6), B(-3, 0), C(0, -5) y D(-2, 7), representa y calcula las coordenadas y el módulo de los vectores \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} y \overrightarrow{DA} .

- **Dirección** de un vector es la recta sobre la que está situada el vector.
- **Sentido** de un vector es la forma de recorrer el segmento *AB*; es decir, de fijar el origen y el extremo.
- **Vectores equivalentes** son aquellos que tienen el mismo módulo, dirección y sentido, por lo que sus coordenadas son iguales.
- Vectores paralelos son los que tienen la misma dirección, sus coordenadas son proporcionales.

EJEMPLO

Determina si estos vectores son equivalentes.

$$\overrightarrow{AB} = (-2 - (-4), 3 - 2) = (2, 1)$$

$$\overrightarrow{CD} = (2 - 0, 2 - 1) = (2, 1)$$

$$\vec{EF} = (-1 - 3, -3 - (-1)) = (-4, -2)$$

 \overrightarrow{AB} y \overrightarrow{CD} tienen las mismas coordenadas; por tanto, son equivalentes.

Las coordenadas de \overrightarrow{EF} son proporcionales a las coordenadas

de
$$\overrightarrow{AB}$$
 y \overrightarrow{CD} : $\frac{2}{-4} = \frac{1}{-2}$.

Los vectores \overrightarrow{AB} , \overrightarrow{CD} y \overrightarrow{EF} son paralelos.

3 Dibuja dos vectores equivalentes y dos paralelos, pero que no sean equivalentes, a cada uno de los dados. Demuestra numéricamente su equivalencia.

Dibuja los vectores \overrightarrow{AB} y \overrightarrow{BA} , siendo A(4, -1) y B(-5, 0), y contesta a las siguientes cuestiones.

- b) ¿Y paralelos?
- c) ¿Tienen la misma dirección?
- d) ¿Cómo son sus sentidos?
- e) ¿Cuáles son el origen y el extremo de cada uno?
- f) Calcula sus módulos.

REALIZAR OPERACIONES CON VECTORES

_____ CURSO: _____ FECHA: ____

- Para **sumar** gráficamente dos vectores \vec{u} y \vec{v} , se toma uno ellos, \vec{u} , y con origen en su extremo se dibuja un vector equivalente a \vec{v} . La suma $\vec{u} + \vec{v}$ es otro vector cuyo origen es el origen de \vec{u} , y su extremo es el extremo de \vec{v} .
- En coordenadas, si las coordenadas de \vec{u} son (u_1, u_2) y las coordenadas de \vec{v} son (v_1, v_2) , el vector suma es: $\overrightarrow{u} + \overrightarrow{v} = (u_1 + v_1, u_2 + v_2)$
- Para **restar** gráficamente dos vectores \vec{u} y \vec{v} , se toman vectores equivalentes a ambos que tengan el mismo origen, y la diferencia es otro vector que tiene como origen el extremo de \vec{v} , y como extremo, el extremo de \vec{u} .
- En coordenadas, si las coordenadas de \vec{u} son (u_1, u_2) y las coordenadas de \vec{v} son (v_1, v_2) , el vector diferencia es: $\vec{u} - \vec{v} = (u_1 - v_1, u_2 - v_2)$

EJEMPLO

$$\vec{u} = (1 - (-1), 2 - (-1)) = (2, 3)$$

 $\vec{v} = (-3 - (-2), 4 - 2) = (-1, 2)$
 $\vec{u} + \vec{v} = (2 + (-1), 3 + 2) = (1, 5)$
 $\vec{u} - \vec{v} = (2 - (-1), 3 - 2) = (3, 1)$

Dados los vectores \vec{u} y \vec{v} de la figura, calcula gráficamente y por coordenadas los vectores $\vec{u} + \vec{v}$ y $\vec{u} - \vec{v}$.

1 Las coordenadas de los puntos A, B, C y D son:

$$A(-1, 3)$$

$$C(4.-7)$$

$$C(4, -7)$$
 $D(-4, 0)$

Calcula el resultado de estas operaciones.

a)
$$\overrightarrow{AB} + \overrightarrow{CD}$$

b)
$$\overrightarrow{AB} - \overrightarrow{CD}$$

c)
$$\overrightarrow{CD} - \overrightarrow{AB}$$

d)
$$\overrightarrow{AR} - \overrightarrow{AR}$$

e)
$$\overrightarrow{CD} + \overrightarrow{CC}$$

d)
$$\overrightarrow{AB} - \overrightarrow{AB}$$
 e) $\overrightarrow{CD} + \overrightarrow{CD}$ f) $-\overrightarrow{AB} - \overrightarrow{CD}$

2 Halla gráficamente el vector suma $\vec{u} + \vec{v}$ y el vector diferencia $\vec{u} - \vec{v}$.

- Para multiplicar un vector u por un número real k se multiplica el módulo del vector por el número real, y se mantiene la dirección del vector. El sentido será el mismo si k es positivo, y contrario, si k es negativo.
- En coordenadas, si $\vec{u} = (u_1, u_2)$, el **producto de un número real** k por un vector \vec{u} se calcula multiplicando cada coordenada por el número k.

EJEMPLO

Dado el vector \vec{u} , de origen A(2, -1) y extremo B(3, -2), calcula gráfica y analíticamente el producto de \vec{u} por los números 2 y -1.

$$\vec{u} = \vec{AB} = (3 - 2, -2 - (-1)) = (1, -1)$$

 $2\vec{u} = 2 \cdot (1, -1) = (2, -2)$
 $(-1)\vec{u} = (-1) \cdot (1, -1) = (-1, 1)$

3 Sabiendo que A(-3, 3) y B(-1, 5), calcula gráfica y analíticamente $k \cdot AB$.

a)
$$k = 2$$

b)
$$k = -4$$

c)
$$k = \frac{1}{2}$$

d)
$$k = 3$$

- La suma de un punto A más un vector \vec{u} es otro punto B que resulta de trasladar el punto A según el vector \vec{u} .
- En coordenadas, si $A(a_1, a_2)$ y $\vec{u} = (u_1, u_2)$, su suma es el punto $B(b_1, b_2) = (a_1 + u_1, a_2 + u_2)$.

EJEMPLO

Resuelve los apartados.

b) Si A'(-3, 0) es el trasladado de A por el vector \vec{v} , ¿cuáles son las coordenadas de \vec{v} ?

a)
$$B = A + \vec{u} = (3, -4) + (-3, 5) = (3 + (-3), -4 + 5) = (0, 1)$$

b)
$$A' = A + \overrightarrow{v} \rightarrow (-3, 0) = (3 + v_1, -4 + v_2) \rightarrow v_1 = -6 \text{ y } v_2 = 4$$

4 Si trasladamos el punto A por el vector \vec{u} para obtener el punto B, calcula los valores x e y. Representa los puntos trasladados.

a)
$$A(0, -5)$$
 $\vec{u}(x, y) \to B(5, 0)$

b)
$$A(-3, x)$$
 $\vec{u}(4, 3) \to B(y, 2)$

EXPRESAR LAS RECTAS MEDIANTE SUS DIFERENTES ECUACIONES

• Si A(a, b) es un punto de la recta, $\vec{v} = (v_1, v_2)$ es un vector de la recta, y t es un número real, cualquier punto P(x, y) de la recta se puede obtener con la **ecuación vectorial**:

$$(x, y) = (a, b) + t \cdot (v_1, v_2)$$

- El vector $\vec{v} = (v_1, v_2)$ se llama **vector director** de la recta.
- Las **ecuaciones paramétricas** de la recta son: $\begin{cases} x = a + t \cdot v_1 \\ y = b + t \cdot v_2 \end{cases}$

EJEMPLO

Dados los puntos A(-2, 5) y B(-1, 1) de una recta:

- a) Calcula la ecuación vectorial y las ecuaciones paramétricas.
- b) Estudia si el punto C(-1, 9) pertenece a la recta.

Como la recta pasa por los puntos A y B, podemos tomar como vector director de la recta $\overrightarrow{v} = \overrightarrow{AB} = (-1 - (-2), 1 - 5) = (1, -4)$.

- a) Las ecuaciones pedidas son:
 - Ecuación vectorial: $(x, y) = (-2, 5) + t \cdot (1, -4)$
 - Ecuaciones paramétricas: x = -2 + ty = 5 - 4t
- b) En las ecuaciones paramétricas sustituimos las coordenadas del punto C por $x \in y$: $\begin{cases} -1 = -2 + t \\ 9 = 5 4t \end{cases}$

Despejamos t en las dos ecuaciones: $\begin{cases} t = -1 + 2 = 1 \\ t = \frac{9 - 5}{-4} = 1 \end{cases}$. Como en ambos casos se obtiene

- el mismo valor, se determina que C(-1, 9) pertenece a la recta.
- Dada la siguiente ecuación vectorial de una recta: $(x, y) = (4, 8) + t \cdot (-3, 5)$, indica un punto de esa recta y su vector director.
- 2 Escribe la ecuación vectorial y las ecuaciones paramétricas de la recta que pasa por los puntos A(-5, 2) y B(0, 1).
- 3 Estudia si los puntos A(7, 4), B(1, 2) y C(0, 0) pertenecen o no a la recta: $\begin{cases} x = 3 + 2t \\ y = 2t \end{cases}$

Si A(a, b) es un punto concreto de la recta, $\vec{v} = (v_1, v_2)$ es su vector director y P(x, y) es un punto genérico, tenemos las siguientes ecuaciones de la recta.

- Ecuación continua: $\frac{x-a}{v_1} = \frac{y-b}{v_2}$
- Ecuación punto-pendiente: y b = m(x a)
- Ecuación explícita: y = mx + n
- $m = \frac{v_1}{v_2}$ es la pendiente de la recta y $n = b \frac{v_1}{v_2}a$ es la ordenada en el origen.

EJEMPLO

Dada la recta expresada en forma vectorial: $(x, y) = (2, 1) + t \cdot (4, 3)$

- a) Halla sus ecuaciones en forma continua, punto-pendiente y explícita.
- b) Indica su pendiente y su ordenada en el origen.
- a) Un punto de la recta es A(2, 1), su vector director es $\vec{v} = (4, 3)$, y la ecuación continua es: $\frac{x-2}{4} = \frac{y-1}{3}$. Multiplicando en cruz, se tiene que 4(y-1) = 3(x-2), obteniendo la ecuación punto-pendiente de la recta: $y-1 = \frac{3}{4}(x-2)$

Por último, despejando y, y operando obtenemos la ecuación explícita de la recta:

$$y-1 = \frac{3}{4}x - \frac{3}{2} \rightarrow y = \frac{3}{4}x - \frac{1}{2}$$

b) La pendiente es $m = \frac{3}{4}$ y la ordenada en el origen es $n = -\frac{1}{2}$.

- a) Las coordenadas de dos de sus puntos.
- b) El vector director.
- c) Su ecuación continua.

- Expresa la ecuación que pasa por el punto A(1, -2) y que tiene por vector director $\vec{v} = (-1, 1)$ mediante sus ecuaciones:
 - a) Punto-pendiente.
 - b) Explícita.

La ecuación general o implícita de la recta es de la forma:

$$Ax + By + C = 0$$

donde A, B y C son números reales.

El vector director de la recta es $\vec{v} = (B, -A)$.

La pendiente de la recta es $m = \frac{-A}{B}$.

La ordenada en el origen o punto de corte con el eje Y es $n = \frac{-C}{R}$.

EJEMPLO

Resuelve los apartados.

- a) Da la ecuación general de la recta que pasa por los puntos P(1, -2) y Q(0, 3).
- b) Indica cuáles son la pendiente y la ordenada en el origen.
- a) Calculamos el vector director: $\overrightarrow{PQ} = (0 1, 3 (-2)) = (-1, 5) = (B, -A)$ Por lo tanto -5x - v + C = 0

Para hallar el valor de ${\it C}$ sustituimos uno de los puntos dados; por ejemplo, ${\it Q}(0,3)$,

y despejamos $C: -5 \cdot 0 - 3 + C = 0 \rightarrow C = -3$

La ecuación general o implícita de la recta es: -5x - y - 3 = 0

- b) La pendiente es $m = \frac{5}{-1} = -5$ y la ordenada en el origen es $n = \frac{3}{-1} = -3$.
- 6 Calcula la ecuación general de la recta que pasa por los puntos A(2, 2) y B(-2, 3).
- 7 A partir de la ecuación 2x 3y + 2 = 0 de una recta, halla el vector director, la pendiente y la ordenada en el origen.
- 8 ¿Cuál es la ecuación general o implícita de la recta cuya ecuación explícita es y = 3x + 4?
- 9 Dada la ecuación -2x + y 8 = 0 de una recta, escribe su ecuación punto-pendiente.

POSICIONES RELATIVAS DE DOS RECTAS

NOMBRE: _____ CURSO: _____ FECHA: _____

POSICIONES	VECTORES DIRECTORES	PENDIENTES	ECUACIÓN GENERAL
Paralelas (igual dirección y sin puntos comunes)	Proporcionales $\frac{\overrightarrow{v_2}}{\overrightarrow{v_1}} = \frac{\overrightarrow{u_2}}{\overrightarrow{u_1}}$	lguales $m=m'$	$\frac{A}{A'} = \frac{B}{B'} \neq \frac{C}{C'}$
Coinidentes (igual dirección y todos los puntos comunes)	Proporcionales $\frac{\overrightarrow{v_2}}{\overrightarrow{v_1}} = \frac{\overrightarrow{u_2}}{\overrightarrow{u_1}}$	Iguales $m = m'$	$\frac{A}{A'} = \frac{B}{B'} = \frac{C}{C'}$
Secantes (distinta dirección y un punto en común)	No proporcionales $\frac{\overrightarrow{V_2}}{\overrightarrow{V_1}} \neq \frac{\overrightarrow{U_2}}{\overrightarrow{U_1}}$	Distintas m ≠ m'	$\frac{A}{A'} \neq \frac{B}{B'}$

EJEMPLO

Estudia la posición relativa de los siguientes pares de rectas.

a)
$$r: \frac{x+2}{3} = \frac{y}{1}$$

b)
$$r: y = 5x - 2$$

$$s: (x, y) = (2, -1) + t(-2, 1)$$

a) El vector director de r es (3, 1) y el vector director de s es (-3, -1). Los vectores directores son proporcionales: $\frac{1}{3} = \frac{-1}{-3}$.

Para ver si las rectas son paralelas o coincidentes tomamos el punto (-2, 0) de r y lo sustituimos en s para ver si cumple o no su ecuación: $-2 - 3 \cdot 0 - 12 \neq 0$, y se deduce que no pertenece a s. Las rectas r y s son paralelas.

- b) La pendiente de r es m=5 y el vector director de s es $\vec{v}=(-2,1)$, por lo que la pendiente de s es $m'=\frac{1}{-2}=-\frac{1}{2}\neq 5$. Las rectas r y s son secantes.
- Escribe la ecuación de una recta paralela a la recta r: y = -x + 5 que pase por el punto (0, 0) de todas las formas indicadas.
 - a) Vectorial.

b) Punto-pendiente.

- c) General.
- 2 Escribe la ecuación de una recta secante a la recta r: y = -x + 5 que pase por el punto (0, 0) de todas las formas indicadas.
 - a) Vectorial.

b) Punto-pendiente.

c) General.

3 Estudia la posición relativa de los siguientes pares de rectas.

a)
$$r: \frac{x+1}{4} = \frac{y-1}{-2}$$

s: $x + 2y - 1 = 0$

b)
$$r: y = 2x - 1$$

 $s: y - 3 = -(x + 2)$

c)
$$r: -3x - 3y + 3 = 0$$

$$s: x + y + 2 = 0$$

Dada la recta que pasa por un punto A(a, b), cuyo vector director es $\vec{v} = (v_1, v_2)$, si una de sus dos coordenadas es cero, la recta es paralela a uno de los ejes de coordenadas.

• Si
$$v_1 \neq 0$$
 y $v_2 = 0$, la ecuación de la recta es $y = b$. Es una recta paralela al eje X .

• Si
$$v_1 = 0$$
 y $v_2 \neq 0$, la ecuación de la recta es $x = a$. Es una recta paralela al eje Y .

Las rectas paralelas a los ejes no se pueden expresar mediante una ecuación en forma continua, ya que una de las coordenadas de su vector director es cero.

EJEMPLO

Expresa la recta que pasa por el punto A(0, 3) y B(4, 3) mediante sus ecuaciones:

a) Vectorial.

b) General.

- a) Su vector director es $\overrightarrow{AB} = (4 0, 3 3) = (4, 0)$, y pasa por cualquiera de los puntos dados, por ejemplo, por A. La ecuación vectorial es: $(x, y) = (0, 3) + t \cdot (4, 0)$
- b) Puesto que los dos puntos dados tienen como segunda coordenada 3, la ecuación general es: y = 3.
- 4 Escribe las ecuaciones general y paramétricas de las siguientes rectas.

- 5 Expresa, mediante las ecuaciones vectorial y explícita, las siguientes rectas.
 - a) Paralela al eje Y, y que pasa por el punto $A\left(-\frac{3}{2},0\right)$.
 - b) Paralela al eje X, y que pasa por el punto B(0, 7).