Tarea 1: Representación de redes a través de la teoría de grafos

Maday Hernández Quevedo

11 de febrero de 2019

Introducción

La teoría de grafos tiene aplicación en diversas áreas, debido a que las redes aparecen prácticamente en todas las actividades de nuestra vida diaria: sistemas de comunicaciones, sistemas hidráulicos, circuitos eléctricos y electrónicos, sistemas mecánicos, redes sociales, entre otros.

Como menciona Ravindra [?], las redes físicas son quizás las más comunes y mejor identificables tipos de redes. Sistemas de transporte, ya sea por carretera o rieles, suelen modelarse en sistemas de distribución complejos y decisiones logísticas.

Un ejemplo típico de investigación de operaciones es el problema de transporte. En este, un transportista con inventario de mercancías en sus almacenes debe enviar estos productos a centros minoristas geográficamente dispersos, cada uno con una demanda dada del cliente, donde el objetivo es incurrir en los mínimos gastos de transporte posibles.

Otro ejemplo representativo de uso de grafos son los algoritmos de búsqueda web de Google, que se basan en el gráfico WWW, que contiene todas las páginas web como vértices y los hipervínculos como bordes. [?]

La teoría de los grafos ha sido muy también ha sido usada en en química, debido a la posibilidad de representar los modelos estructurales mediante diagramas. En un grafo molecular, los vértices representan a los átomos y los lados a los enlaces químicos que conectan ciertas parejas de átomos. [?]

1. Grafo simple no dirigido acíclico

La mayoría de los esquemas de líneas de autobuses, tranvías o trenes del transporte público pueden ser representados por grafos simples no dirigidos acíclicos.

A continuación se muestra un sección ochos estaciones de la Línea 2 del Metro de Monterrey, donde las estaciones son los nodos y el tramo de línea entre ellos, los vértices.

Listing 1: Representación con un grafo de ocho estaciones de la Línea 2 del Metro de Monterrey.

```
import matplotlib.pyplot as plot
import networkx as nx
G = nx \cdot Graph()
G.add_node(1)
G.add_node(2)
G.add_node(3)
G.add_node(4)
G.add_node(5)
G.add_node(6)
G.add_node(7)
G.add_node(8)
pos = {1:(200, 50), 2:(250,100), 3:(300, 150), 4:(350,200), 5:(400,250),
    6:(450,300),7:(500,350),8:(550,400)}
G.add_edge(1,2)
G.add_edge(2,3)
G.add_edge(3,4)
G.add_edge(4,5)
G.add_edge(5,6)
G.add_edge(6,7)
G.add_edge(7,8)
nx.draw_networkx_nodes(G, pos, node_size=400, node_color='y',
    node_shape='o')
nx.draw_networkx_edges(G, pos, width=1, alpha=0.8, edge_color='black')
labels = {}
labels[1] = r'Sendero'
labels[2] = r'Santiago Tapia'
labels[3] = r'San Nicols'
labels[4] = r'Anhuac'
labels[5] = r'Universidad'
labels[6] = r'Nios Hroes'
labels[7] = r'Regina'
```


Figura 1: Representación con un grafo de ocho estaciones de la Línea 2 del Metro de Monterrey.

```
labels[8] = r'General Anaya'

nx.draw_networkx_labels(G, pos, labels, font_size=8)
plot.xlim(0,600)
plot.axis('off')
plot.savefig("1.eps")

plot.show()
```

2. Grafo simple no dirigido cíclico

Dentro de esta categoría se pueden encontrar: relaciones comerciales entre empresas, relaciones de parentezco, amistad o romance entre personas, entre otros. A continuación se muestra un grafo que representa las relaciones de amistad en un grupo de 10 personas.

Listing 2: Relaciones de amistad en un grupo de personas.

```
import matplotlib.pyplot as plot
import networkx as nx

G = nx . Graph ()

pos = {1:(300, 200), 2:(150,100), 3:(250, 300), 4:(350,300),
    5:(450,200), 6:(150,200),7:(370,200),8:(350,100)}
```

```
G.add_edge(1,2)
G.add_edge(1,3)
G.add_edge(1,4)
G.add_edge(4,5)
G.add_edge(2,6)
G.add_edge(7,8)
G.add_edge(4,5)
G.add_edge(3,6)
G.add_edge(1,6)
G.add_edge(1,7)
nx.draw_networkx_nodes(G, pos, node_size=400, node_color='y',
    node_shape='o')
nx.draw_networkx_edges(G, pos, width=1, alpha=0.8, edge_color='black')
labels = {}
labels[1] = r'Mario'
labels[2] = r'Betty'
labels[3] = r'Arturo'
labels[4] = r'Carlos'
labels[5] = r'Anna'
labels[6] = r'Jane'
labels[7] = r'Emily'
labels[8] = r'Andrew'
nx.draw_networkx_labels(G, pos, labels, font_size=12)
plot.xlim(0,500)
plot.axis('off')
plot.savefig("2.eps")
plot.show()
```

3. Grafo simple no dirigido reflexivo

Un criador de perros posee 6 razas diferentes de estos animales. Con un grafo de este tipo puede representar de cuales de estos animales ha obtenido crías. En el grafo se puede observar que todas las razas excepto la Beagle, que es recién adquirida y aún no se ha reproducidos, ha tenido crías de su misma raza. También se observa que han habido cruzamientos entre bóxer y bulldog y entre pitbull y rottweiler.

Listing 3: Estado de cría de razas de perro.

```
# -*- coding: utf-8 -*-
"""
Created on Mon Feb 11 15:37:20 2019
```


Figura 2: Relaciones de amistad en un grupo de personas.

```
@author: Madys
import matplotlib.pyplot as plot
import networkx as nx
G = nx . Graph ()
G.add_edge(1,2)
G.add_edge(3,4)
G.add_node(5)
G.add_node(6)
apareados={1,2,3,4,5}
noApareado={6}
pos = {1:(200, 350), 2:(550,350), 3:(650, 220), 4:(400,100),
    5:(150,220),6:(100,100)}
nx.draw_networkx_nodes(G, pos,nodelist=apareados,node_size=400,
    node_color='r', node_shape='o')
nx.draw_networkx_nodes(G, pos,nodelist=noApareado, node_size=400,
    node_color='y', node_shape='o')
nx.draw_networkx_edges(G, pos,width=1, alpha=0.8, edge_color='black')
labels = {}
labels[1] = r'Boxer'
labels[2] = r'Bulldog'
```


Figura 3: Estado de cría de razas de perro

```
labels[3] = r'Rottweiler'
labels[4] = r'Stanford'
labels[5] = r'Poodle'
labels[6] = r'Beagle'

nx.draw_networkx_labels(G, pos, labels, font_size=12)
plot.xlim(20,730)
plot.axis('off')
plot.savefig("3.eps")

plot.show()
```

4. Grafo simple dirigido acíclico

La cadena de propagación de las ITS (Infecciones de Transmisión Sexual) para las cuales no se conoce cura o las que solo afectan al individuo una vez en la vida, pueden representarse mediante grafos simples dirigidos acíclicos. En este caso, el portador cada sujeto es un vértice y la dirección de transmisión de la enfermedad, es representada en la arista, desde la presona portador hacia el sujeto sano que posteriormente se convierte en portador y contagia a otros sujetos sanos.

Listing 4: Representación de l la transmisión de una ITS en un grupo de personas.

```
import matplotlib.pyplot as plot
```

```
import networkx as nx
G = nx \cdot Graph ()
G.add_node(1)
G.add_node(2)
G.add_node(3)
G.add_node(4)
G.add_node(5)
G.add_node(6)
G.add_node(7)
G.add_node(8)
pos = \{1: (300, 400), 2: (100, 300), 3: (250, 300), 4: (350, 300), and a substitution of the context of the c
               5:(450,200), 6:(150,200),7:(300,200),8:(250,100)}
G.add_edge(1,2)
G.add_edge(1,3)
G.add_edge(1,4)
G.add_edge(4,5)
G.add_edge(2,6)
G.add_edge(7,8)
G.add_edge(4,7)
nx.draw_networkx_nodes(G, pos, node_size=400, node_color='y',
               node_shape='o')
nx.draw_networkx_edges(G, pos, width=1, alpha=0.8, edge_color='black')
labels = {}
labels[1] = r'Mario'
labels[2] = r'Betty'
labels[3] = r'Arturo'
labels[4] = r'Carlos'
labels[5] = r'Anna'
labels[6] = r'Jane'
labels[7] = r'Emily'
labels[8] = r'Andrew'
{\tt nx.draw\_networkx\_labels(G,\ pos,\ labels,\ font\_size=12)}
plot.xlim(50,500)
plot.axis('off')
plot.savefig("4.eps")
plot.show()
```


Figura 4: Representación de l la transmisión de una ITS en un grupo de personas.

5. Grafo simple dirigido cíclico

En ciudades con carreteras estrechas como Santiago de Cuba, en diferentes sectores, las carreteras son de un solo sentido y se representan con grafos de este tipo. Las aristas representan las calles y los vértices son las intersecciones entre al menos dos aristas.

Listing 5: Representación de carreteras de doble sentido en Santiago de Cuba.

```
# -*- coding: utf-8 -*-
"""
Created on Mon Feb 11 12:26:08 2019

@author: Madys
"""
import matplotlib.pyplot as plot
import networkx as nx

G = nx . DiGraph ()

G.add_edge(1,2)
G.add_edge(2,3)
G.add_edge(6,5)
G.add_edge(6,5)
G.add_edge(4,5)
G.add_edge(4,5)
G.add_edge(7,8)
G.add_edge(7,8)
G.add_edge(1,4)
G.add_edge(4,7)
G.add_edge(4,7)
G.add_edge(8,5)
```


Figura 5: Carreteras de sentido único en Santiago de Cuba.

```
G.add_edge(5,2)
G.add_edge(3,6)
G.add_edge(6,9)

pos = {1:(50, 350), 2:(250,350), 3:(450, 350), 4:(50,200), 5:(250,200), 6:(450,200),7:(50,50),8:(250,50),9:(450,50)}
nx.draw_networkx_nodes(G, pos, node_size=500, node_color='y', node_shape='o')
nx.draw_networkx_edges(G, pos, width=1, alpha=0.8, edge_color='black')

plot.xlim(0,500)
plot.axis('off')
plot.savefig("5.eps")

plot.show()
```

6. Grafo simple dirigido reflexivo

Un grafo en el que cada vértice es una empresa de servicios y las aristas, cada una de las otras empresas a las que le presta servicios, puede representarse mediante un grafo dirigido reflexivo pues algunas de estas empresas se brindan servicio a ellas mismas.

Un sitio web pequeño, en el cual se accede a todas sus páginas a través de un menú estático también se puede representar con este tipo de grafo.

Otro ejemplo está dado por la representación de un grupo de personas conectadas a una red social y los perfiles de otras personas que tengan abiertos en el navegador en ese momento. Cada una de esas persona también pudiesen estar mirando su propio perfil. En la siguiente imagen puede apreciarse en color rojo que Mayra y Andrew tienen abiertos sus propios perfiles.

Listing 6: Representación de carreteras de doble sentido en Santiago de Cuba.

```
import matplotlib.pyplot as plot
import networkx as nx
G = nx . DiGraph ()
G.add_edge(1,2)
G.add_edge(1,3)
G.add_edge(1,5)
G.add_edge(2,3)
G.add_edge(3,5)
G.add_edge(4,5)
node1 = \{1,2\}
node2 = {3,4,5}
pos = \{1: (200, 350), 2: (550, 350), 3: (650, 220), 4: (400, 100), 5: (150, 220)\}
nx.draw_networkx_nodes(G, pos, nodelist=node1,node_size=400,
    node_color='r', node_shape='o')
nx.draw_networkx_nodes(G, pos, nodelist=node2,node_size=400,
    node_color='y', node_shape='o')
nx.draw_networkx_edges(G, pos,width=1, alpha=0.8, edge_color='black')
labels = {}
labels[1] = r'Mayra'
labels[2] = r'Andrew'
labels[3] = r'Emily'
labels[4] = r'Laura'
labels[5] = r'Oliver'
```


Figura 6: Red de carreteras de sentido único en Santiago de Cuba.

```
nx.draw_networkx_labels(G, pos, labels, font_size=12)
plot.xlim(20,1000)
plot.axis('off')
plot.savefig("6.eps")
plot.show()
```

7. Multigrafo no dirigido acíclico

La ruta entre Santiago de Cuba y Holguín puede representarse como un multigrafo no dirigido cíclico. En un pueblo llamado Caballería la carretera principal se bifurca, pudiendo continuar por la ruta principal hasta Banes, o por el camino alternativo de Caballería, que, aunque es más largo, puede recorrerse en menor tiempo a causa del poco tránsito.

Listing 7: Posible ruta entre Santiago de Cuba y Holguín.

```
import matplotlib.pyplot as plot
import networkx as nx

G = nx . MultiGraph ()

G.add_edge(1,2)
```

```
G.add_edge(2,3)
G.add_edge(3,4)
G.add_edge(4,5)
G.add_edge(5,6, weight=3)
G.add_edge(5,6,weight=2)
G.add_edge(6,7)
black=[(1,2),(2,3),(3,4),(4,5),(6,7)]
blue=[(5,6)]
red=[(5,6)]
pos = {1:(100, 100), 2:(200,180), 3:(280, 250), 4:(320,300),
    5:(450,380),6:(500,480), 7:(570,580)}
nx.draw_networkx_nodes(G, pos ,node_size=400, node_color='y',
    node_shape='o')
nx.draw_networkx_edges(G, pos,edgelist=black,width=1,edge_color='black',
    alpha=0.8)
nx.draw_networkx_edges(G, pos, edgelist=blue,width=6, alpha=0.5,
edge_color='b', style='dashed')
nx.draw_networkx_edges(G, pos, edgelist=red,width=4, alpha=0.5,
edge_color='r')
labels = {}
labels[1] = r'Santiago'
labels[2] = r'1'
labels[3] = r'2'
labels[4] = r'3'
labels[5] = r'Caballera'
labels[6] = r'Caballera'
labels[7] = r'Holgun'
nx.draw_networkx_labels(G, pos, labels, font_size=12)
plot.xlim(20,800)
plot.axis('off')
plot.savefig("7.eps")
plot.show()
```


Figura 7: Posible ruta entre Santiago de Cuba y Holguín

8. Multigrafo no dirigido cíclico

En la presa del Cacao, ubicada en el Municipio Cotorro, Ciudad de La Habana, se realizó un proyecto para favorecer la agricultura. Al rededor de la presa se construyeron una serie de canales para mantener el suelo húmedo durante todo el año. Este sistema puede ser representado mediante el grafo mostrado a continuación, el cual los vértices representan la unión entre uno o más canales y las aristas, cada uno de los canales.

Listing 8: Representación de carreteras de doble sentido en Santiago de Cuba.

```
# -*- coding: utf-8 -*-
"""
Created on Mon Feb 11 12:26:08 2019

@author: Madys
"""
import matplotlib.pyplot as plot
import networkx as nx

G = nx . MultiGraph ()

G.add_edge(1,2, weight=3)
G.add_edge(1,2, weight=5)
G.add_edge(1,2, weight=6)
G.add_edge(2,3, weight=4)
```

```
G.add_edge(2,3, weight=3)
G.add_edge(2,3, weight=5)
G.add_edge(1,4, weight=4)
G.add_edge(1,4, weight=3)
G.add_edge(4,5, weight=5)
G.add_edge(4,5, weight=3)
G.add_edge(1,6, weight=3)
G.add_edge(1,6,weight=2)
G.add_edge(6,7, weight=1)
G.add_edge(6,7, weight=4)
G.add_edge(1,8, weight=5)
G.add_edge(1,8, weight=4)
G.add_edge(1,8, weight=2)
G.add_edge(8,9, weight=5)
G.add_edge(8,9, weight=4)
blue=[(1,2),(2,3),(1,4),(4,5),(1,6),(6,7),(1,8),(8,9)]
red=[(1,2),(2,3),(1,4),(4,5),(1,6),(6,7),(1,8),(8,9)]
green=[(1,2),(2,3),(1,8)]
pos = \{1: (400, 400), 2: (300, 300), 3: (100, 100), 4: (500, 500), \}
    5:(650,650),6:(250,500), 7:(100
      ,700), 8:(500, 300), 9:(700,300)}
nx.draw_networkx_nodes(G, pos ,node_size=400, node_color='y',
    node_shape='o')
nx.draw_networkx_edges(G, pos, edgelist=blue,width=6, alpha=0.5,
edge_color='b', style='dashed')
nx.draw_networkx_edges(G, pos, edgelist=green,width=5, alpha=0.5,
edge_color='g')
nx.draw_networkx_edges(G, pos, edgelist=red,width=4, alpha=0.5,
edge_color='r')
labels = {}
labels[1] = r'$Presa$'
nx.draw_networkx_labels(G, pos, labels, font_size=12)
plot.xlim(20,800)
plot.axis('off')
plot.savefig("8.eps")
plot.show()
```


Figura 8: Red de carreteras de sentido único en Santiago de Cuba.

9. Multigrafo no dirigido reflexivo

En la Universidad de Oriente se quiere realizar un concurso de habilidades entre las carreras de Ingeniería en Electrónica, Ingeniería en Automática, Licenciatura en Física, Ingeniería en Informática y Licenciatura en Matemática-Cibernética. Las habilidades a evaluar serán matemática y programación.

El siguiente grafo muestra como está organizado el concurso. Cada vértice representa a los estudiantes que estudian una de las carreras y las aristas, con qué estudiantes pueden participar en cada habilidad, por eso los vértices aparecen en color rojo.

Los vértices rojos unen a los que pueden concursar en entre sí en matemáticas y los azules, los que pueden concursar en programación.

Listing 9: Concurso de habilidades.

```
# -*- coding: utf-8 -*-
"""
Created on Mon Feb 11 14:15:32 2019
Gauthor: Madys
"""
import matplotlib.pyplot as plot
import networkx as nx
G = nx . MultiGraph ()
```

```
G.add_edge(1,2, weight=1)
G.add_edge(1,2, weight=3)
G.add_edge(2,3, weight=3)
G.add_edge(1,3, weight=3)
G.add_edge(4,5, weight=1)
G.add_edge(4,5, weight=3)
blue=[(1,2),(4,5)]
red=[(1,2),(2,3),(1,3),(4,5)]
pos = {1:(200, 100), 2:(100,400), 3:(200, 700), 4:(500,700), 5:(650,400)}
nx.draw_networkx_nodes(G, pos ,node_size=400, node_color='r',
    node_shape='o')
nx.draw_networkx_edges(G, pos, edgelist=blue,width=6, alpha=0.5,
edge_color='b', style='dashed')
nx.draw_networkx_edges(G, pos, edgelist=red,width=4, alpha=0.5,
edge_color='r')
labels = {}
labels[1] = r'Automtica'
labels[2] = r'Elctrica'
labels[3] = r'Fsica'
labels[4] = r'Informtica'
labels[5] = r'Ciberntica'
nx.draw_networkx_labels(G, pos, labels, font_size=12)
plot.xlim(20,800)
plot.axis('off')
plot.savefig("9.eps")
plot.show()
```

10. Multigrafo dirigido acíclico

Estos grafos pueden utilizarse para representar la cuenca hidrográfica de un río en su flujo hacia el mar. Los vértices representan los puntos en los que al menos dos ramificaciones del delta confluyen o se separan.

Figura 9: Concurso de habilidades.

Listing 10: Representación del delta de un río en su transcurso hacia el mar.

```
# -*- coding: utf-8 -*-
Created on Mon Feb 11 16:44:18 2019
@author: Madys
0.00
import matplotlib.pyplot as plot
import networkx as nx
G = nx . MultiDiGraph ()
G.add_edge(1,2, weight=3)
G.add_edge(1,2, weight=5)
G.add_edge(1,2, weight=6)
G.add_edge(2,3, weight=4)
G.add_edge(2,5, weight=3)
G.add_edge(2,5, weight=5)
G.add_edge(1,4, weight=4)
G.add_edge(1,4, weight=3)
G.add_edge(4,5, weight=5)
G.add_edge(4,5, weight=3)
G.add_edge(1,6, weight=3)
G.add_edge(1,6,weight=2)
G.add_edge(6,7, weight=1)
G.add_edge(6,7, weight=4)
G.add_edge(1,8, weight=5)
G.add_edge(1,8, weight=4)
```

```
G.add_edge(1,8, weight=2)
G.add_edge(8,9, weight=5)
G.add_edge(8,9, weight=4)
blue=[(1,2),(2,3),(2,5),(1,4),(4,5),(1,6),(6,7),(1,8),(8,9)]
red=[(1,2),(2,5),(1,4),(4,5),(1,6),(6,7),(1,8),(8,9)]
green=[(1,2),(2,5),(1,8)]
pos = {1:(400, 700), 2:(300,300), 3:(150, 100), 4:(400,200),
    5:(300,100),6:(250,500), 7:(100
      ,100), 8:(500, 300), 9:(700,100)}
nx.draw_networkx_nodes(G, pos ,node_size=400, node_color='y',
    node_shape='o')
nx.draw_networkx_edges(G, pos, edgelist=blue,width=6, alpha=0.5,
edge_color='b', style='dashed')
nx.draw_networkx_edges(G, pos, edgelist=green,width=5, alpha=0.5,
edge_color='g')
nx.draw_networkx_edges(G, pos, edgelist=red,width=4, alpha=0.5,
edge_color='r')
labels = {}
labels[1] = r'Nacimiento'
nx.draw_networkx_labels(G, pos, labels, font_size=12)
plot.xlim(20,800)
plot.axis('off')
plot.savefig("10.eps")
plot.show()
```

11. multigrafo dirigido cíclico

Este tipo de grafo es especialmente útil para representar viajes por lugares a los que se puede llegar mediante diferentes vías, regresando luego al punto de origen. Un ejemplo concreto de esto sería un recorrido vacacional por diferentes ciudades. Partiendo de la ciudad A, hay tres posibles vías para llegar a la ciudad B, en bus, en auto de alquiler o en tren, cada uno de estos medios de transporte representaría una arista diferente para unir los vértices. De la ciudad B se quiere llegar a la ciudad C, a la que solo se puede llegar por barco o por avión, y así sucesivamente hasta completar el recorrido y regresar a casa.

Figura 10: Representación del delta de un río en su transcurso hacia el mar.

Listing 11: Representación de las posibles maneras de elegir la ruta de un circuito vacacional.

```
# -*- coding: utf-8 -*-
Created on Mon Feb 11 17:00:30 2019
@author: Madys
import matplotlib.pyplot as plot
import networkx as nx
G = nx . MultiDiGraph ()
G.add_edge(1,2, weight=3)
G.add_edge(1,2, weight=5)
G.add_edge(1,2, weight=6)
G.add_edge(2,3, weight=3)
G.add_edge(2,3, weight=5)
G.add_edge(2,3, weight=6)
G.add_edge(3,4, weight=3)
G.add_edge(4,5, weight=3)
G.add_edge(4,5, weight=5)
G.add_edge(5,6, weight=3)
G.add_edge(6,7, weight=6)
G.add_edge(7,1, weight=6)
```

```
blue=[(1,2),(2,3),(3,4),(4,5),(5,6)]
red=[(1,2),(2,3),(4,5)]
green=[(1,2),(2,3),(6,7),(7,1)]
pos = {1:(400, 700), 2:(700,600), 3:(550, 400), 4:(400,200),
    5:(300,100),6:(150,200), 7:(100
      ,400)
nx.draw_networkx_nodes(G, pos ,node_size=400, node_color='y',
    node_shape='o')
nx.draw_networkx_edges(G, pos, edgelist=blue,width=6, alpha=0.5,
edge_color='b', style='dashed')
nx.draw_networkx_edges(G, pos, edgelist=green,width=5, alpha=0.5,
edge_color='g')
nx.draw_networkx_edges(G, pos, edgelist=red,width=4, alpha=0.5,
edge_color='r')
labels = {}
labels[1] = r'Casa'
labels[2] = r'A'
labels[3] = r'B'
labels[4] = r'C'
labels[5] = r'D'
labels[6] = r'E'
labels[7] = r'F'
nx.draw_networkx_labels(G, pos, labels, font_size=12)
plot.xlim(20,800)
plot.axis('off')
plot.savefig("11.eps")
plot.show()
```

12. multigrafo dirigido reflexivo

González-Cervantes [?] empleó teoría de grafos para representar el potencial eléctrico en el corazón, demostrando se pueden incorporar las leyes fisiológicas involucradas. Cada uno de los vértices representa uno de los puntos principales que generan los impulsos eléctricos y que llevan la electricidad a cada parte del corazón, las aristas describen el valor máximo de voltaje y su duración en tiempo que descarga cada vértice. Además, puede proporcionar información con respecto al potencial eléctrico por zonas para una mejor localización. En la imagen se muestra la representación con grafos del intervalo PR.

Figura 11: Representación de las posibles maneras de elegir la ruta de un circuito vacacional.

Listing 12: Representación con grafos del intervalo PR.

```
import matplotlib.pyplot as plot
import networkx as nx
G = nx . MultiDiGraph ()
G.add_edge(1,2)
G.add_edge(2,3)
G.add_edge(3,4)
G.add_edge(3,5)
G.add_edge(1,6,weight=3)
G.add_edge(1,6,weight=1)
blue=[(1,6)]
G.add_edge(2,6)
node1 = \{6\}
pos = \{1: (50, 350), 2: (250, 350), 3: (450, 350), 4: (600, 350), 5: (550, 340), \}
    6:(450,330)}
nx.draw_networkx_nodes(G, pos, node_size=500, node_color='y',
    node_shape='o')
nx.draw_networkx_edges(G, pos, width=1, alpha=0.8, edge_color='black')
nx.draw_networkx_nodes(G, pos, nodelist=node1,node_size=400,
    node_color='r', node_shape='o')
nx.draw_networkx_edges(G, pos, edgelist=blue,width=6, alpha=0.5,
```


Figura 12: Representación con grafos del intervalo PR.

```
edge_color='b', style='dashed')
labels = {}
labels[1] = r'v1'
labels[2] = r'v2'
labels[3] = r'v3'
labels[4] = r'e21'
labels[5] = r'e14'
labels[6] = r'v6'

nx.draw_networkx_labels(G, pos, labels, font_size=12)
plot.xlim(20,800)
plot.axis('off')
plot.savefig("12.eps")

plot.show()
```