Analiza sintactică ascendentă. Gramatici de precedență simplă

Analiza sintactică ascendentă – analiza de la șir spre axiomă.

Analiza sintactică răspunde la întrebările *x* aparține L(G) și dacă aparține să se găsească derivarea lui *x*.

Gramaticile de precedență simplă ne ajută să răspundem la astfel de întrebări.

Relații de precedență între simbolurile unei gramatici

- 1. $X_1 \triangleq X_2$, dacă \exists producții de tipul $A \rightarrow \alpha X_1 X_2 \beta$, pentru $\forall \alpha, \beta, X_1, X_2 \in V_N U V_T$
- 2. $X_1 < X_2$, dacă \exists producții de tipul $A \rightarrow \alpha X_1 B \beta$, pentru $\forall \alpha, \beta$, $X_1 \in V_N U V_T$, $B \in V_N$ și \exists derivarea $B \stackrel{+}{\Rightarrow} X_2 \gamma$
- X₁> X₂, dacă
 - a) ∃ producții de tipul A→ αCX₂β pentru ∀α, β, C∈ V_N, X₂∈V_T și C ⇒γ X₁
 - b) \exists producții de tipul $A \rightarrow \alpha CB\beta$ pentru $\forall \alpha, \beta, X_2 \in V_T$ și $C \stackrel{+}{\Rightarrow} \gamma X_1 B \stackrel{+}{\Rightarrow} X_2 \delta$

Dacă $S \stackrel{\star}{=} > x$

Atunci

- a) \$ <x (începutul analizei)
- b) x>\$ (sfârșitul analizei)

\$ S \$ sir acceptat

Gramatici de precedență simplă

- **Def**. Gramatica G independentă de context este de precedență simplă dacă:
- 1. Nu există două sau mai multe producții cu aceiași parte dreaptă.
- 2. Axioma nu se întâlnește în partea dreaptă a niciunei producții.
- 3. Nu există derivări de tipul A ≛>A
- 4. Între orice două simboluri există cel mult o relație de precedență.

€

Algoritmul Prim

Fie B \in V_N

- Prim (B)=Ø.
- 2. Pentru \forall producție $B \rightarrow X_1X_2X_3...Xn$, $X_i \in V_NUV_T$ Prim (B)= Prim (B) U X_1 .
- 3. Prim'(B)=Prim(B).
- Pentru ∀ A∈ Prim (B) şi A∈ V_N se defineşte
 Prim (B)=Prim(B) U Prim(A)
- 5. Dacă Prim′(B) ≠Prim(B) salt la 3.
- 6. Stop.

Algoritmul Prim

Fie B \in V_N

- 1. Ultim (B)=Ø.
- 2. Pentru \forall producție $B \rightarrow X_1X_2X_3...X_n$, $X_i \in V_NUV_T$ **Ultim (B)= Ultim (B) U X**_n.
- 3. Ultim '(B)= Ultim (B).
- Pentru ∀ A∈ Ultim (B) şi A∈ V_N se defineşte
 Ultim (B)= Ultim (B) U Ultim (A)
- 5. Dacă Ultim'(B) \neq Ultim (B) salt la 3.

Stop

Relațiile de precedență exprimate prin mulțimile Prim și Ultim

- 1. $X_1 \triangleq X_2$ pentru $\forall A \rightarrow \alpha X_1 X_2 \beta$, $(\forall \alpha, \beta, X_1, X_2 \in V_N U V_T)$
- 2. $X_1 < Prim(Y)$ pentru $\forall A \rightarrow \alpha X_1 Y \beta$, $(\forall \alpha, \beta, X_1 \in V_N U V_T, Y \in V_N)$
- 3. Ultim(Y)> X_2 , pentru $\forall A \rightarrow \alpha Y X_2 \beta \ (\forall \alpha, \beta, Y \in V_N, X_2 \in V_T)$
- 4. Ultim(Y)> Prim(Z) \cap V_T, pentru \forall A $\rightarrow \alpha$ YZ β ($\forall \alpha, \beta, Y, Z \in V_N$)
- 5. **\$< Prim (S)** (S- axioma)
- 6. Ultim(S)>\$

Matricea relatiilor de precedentă

	V _N U V _T U {\$}						
V _N U V _T U {\$}							

Analiza șirului

Configurația inițială

Se scriu relațiilie de precedență dintre simboluri și porțiunea cuprinsă între relațiile

< se înlocuiește cu partea stângă a uneia din regulile gramaticii, partea dreaptă a careia coincide cu porțiunea dată.</p>

Exemplu

$$G=(V_N,V_T,P,S)$$
 $V_N=\{R,S,L,A\}$ $V_T=\{i,n,a,b\}$

$$P = \{1. R \rightarrow S\}$$

- $2. S \rightarrow A$
- 3. S \rightarrow aL
- 4. L \rightarrow Sb
- 5. L →SL
- 6. A \rightarrow i
- 7. $A \rightarrow n$

Să se analizeze șirul aiiib

Lichidarea ambiguităților

X₁≜X₂ și X₁≤X₂

X₁≜X₂ se oține din regula de tipul A→ αX₁X₂β X₁<X₂ se oține din regula de tipul A→ αX₁Zβ, Z ∈ V_N, X₂∈ Prim(Z) Se introduce A→ αX₁C și C→X₂β

X₁≜X₂ și X₁>X₂

 $X_1 \triangleq X_2$ se oține din regula de tipul $A \rightarrow \alpha X_1 X_2 \beta$

 $X_1>X_2$ se oține din regula de tipul $A\to \alpha YX_2\beta$, $Y\in V_N$, $X_1\in Ultim(Y)$, $X_2\in V_T$ sau din $A\to \alpha YZ\beta$, $X_1\in Ultim(Y)$, $X_2\in Prim(Z)$, $X_2\in V_T$

Se introduce $A \rightarrow \alpha X_1 C$ și $C \rightarrow X_2 \beta$

3. X1< X2 si X1>X2

 $X_1 \le X_2$ se oține din regula de tipul $A \to \alpha X_1 Z\beta$, $Z \in V_N$, $X_2 \in Prim(Z)$

 $X_1>X_2$ se oține din regula de tipul $A\to \alpha YX_2\beta$, $Y\in V_N$, $X_1\in Ultim(Y)$, $X_2\in V_T$ sau din $A\to \alpha YZ\beta$, $X_1\in Ultim(Y)$, $X_2\in Prim(Z)$, $X_2\in V_T$

Se introduce $D \rightarrow \alpha X_1$ și $A \rightarrow DZ\beta$