EPC8002 – Enhancement Mode Power Transistor

 V_{DS} , 65 V $R_{DS(on)}$, $\,480~m\Omega$ I_D , 2A

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low R_{DS(on)}, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR}. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Maximum Ratings					
	PARAMETER VALUE				
V	Drain-to-Source Voltage (Continuous)		V		
V _{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	78	V		
I _D	Continuous (T _A = 25°C, R _{θJA} = 36°C/W)	2	^		
	Pulsed (25°C, $T_{PULSE} = 300 \mu s$)	2	Α		
V _{GS}	Gate-to-Source Voltage	6	V		
	Gate-to-Source Voltage	-4	V		
T _J	Operating Temperature -40 to 150		°C		
T _{STG}	Storage Temperature	-40 to 150			

Thermal Characteristics						
	PARAMETER TYP UNIT					
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	8.2				
$R_{\theta JB}$	Thermal Resistance, Junction-to-Board	16	°C/W			
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	82				

Note 1: R_{RIA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details

EPC8002 eGaN FETs are supplied only in passivated die form with solder bars Die Size: 2.1 mm x 0.85 mm

Applications

- Ultra High Speed DC-DC Conversion
- · RF Envelope Tracking
- Wireless Power Transfer
- · Game Console and Industrial Movement Sensing (Lidar)

Benefits

- · Ultra High Efficiency
- Ultra Low R_{DS(on)}
- Ultra Low Q_G
- · Ultra Small Footprint

Static Characteristics (T _J = 25°C unless otherwise stated)							
	PARAMETER TEST CONDITIONS MIN TYP MAX UNIT						
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, } I_D = 125 \mu\text{A}$	65			V	
I _{DSS}	Drain-Source Leakage	$V_{DS} = 52 \text{ V}, V_{GS} = 0 \text{ V}$		20	100	μΑ	
I _{GSS}	Gate-to-Source Forward Leakage	$V_{GS} = 5 \text{ V}$		0.1	1	mA	
	Gate-to-Source Reverse Leakage	V _{GS} = -4 V		20	100	μΑ	
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 0.1 \text{ mA}$	0.8	1.4	2.5	V	
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V, } I_D = 0.5 \text{ A}$		380	480	mΩ	
V_{SD}	Source-Drain Forward Voltage	$I_S = 0.4 \text{ A}, V_{GS} = 0 \text{ V}$		2.6		V	

Specifications are with substrate connected to source where applicable.

Dynamic Characteristics ($T_j = 25^{\circ}$ C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _{ISS}	Input Capacitance			20	24	
C _{RSS}	Reverse Transfer Capacitance	$V_{DS} = 32.5 \text{ V}, V_{GS} = 0 \text{ V}$		0.12	0.18	
C _{oss}	Output Capacitance			6.7	10	рF
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	V 04-225VV 0V		8.9		
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)	$V_{DS} = 0 \text{ to } 32.5 \text{ V}, V_{GS} = 0 \text{ V}$		10		
R_{G}	Gate Resistance			0.3		Ω
Q _G	Total Gate Charge	$V_{DS} = 32.5 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 0.5 \text{ A}$		133	167	
Q _{GS}	Gate-to-Source Charge			57		
Q _{GD}	Gate-to-Drain Charge	$V_{DS} = 32.5 \text{ V, } I_{D} = 0.5 \text{ A}$		15	26]
Q _{G(TH)}	Gate Charge at Threshold			46		pC
Q _{OSS}	Output Charge	$V_{DS} = 32.5 \text{ V}, V_{GS} = 0 \text{ V}$		334	500	
Q _{RR}	Source-Drain Recovery Charge			0		

Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BVDSS. Note 3: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BVDSS.

Figure 3: $R_{DS(on)}$ vs V_{GS} for Various Drain Currents

Figure 2: Transfer Characteristics

Figure 4: $R_{DS(on)}$ vs V_{GS} for Various Temperatures

Figure 5A: Capacitance (Log Scale)

Figure 6: Gate Charge

Figure 7: Reverse Drain-Source Characteristics

Figure 8: Normalized On-State Resistance vs Temperature

Figure 9: Normalized Threshold Voltage vs Temperature

Figure 10: Gate Leakage Current

All measurements were done with substrate shortened to source.

Figure 12: Gain Chart

Frequency	Gate (Z _{GS})	Drain (Z _{DS})
[MHz]	[Ω]	[Ω]
200	3.09 - j29.97	63.13 - j71.32
500	2.20 - j11.92	15.96 -j46.65
1000	1.14 - j4.46	3.35 - j23.47
1200	0.95 - j2.76	1.91 - j18.52
1500	0.87 - j0.55	1.66 - j12.66
2000	1.09 + j2.61	2.28 - j6.12
2400	1.44 + j4.87	4.35 - j2.80
3000	2.36 + j8.79	6.41 + j0.69

S-Parameter Table - Download S-parameter files at www.epc-co.com

Figure 11: Smith Chart

S-Parameter Characteristics $V_{GSQ}=1.17~V,~V_{DSQ}=30~V,~I_{DQ}=0.2~A$ Pulsed Measurement, Heat-Sink Installed, $Z_0=50~\Omega$

Figure 13: Device Reflection

Figure 14: Taper and Reference Plane details – Device Connection

Micro-Strip design: 2-layer $\frac{1}{2}$ oz (17.5 µm) thick copper 30 mil thick RO4350 substrate

Figure 15: Transient Thermal Response Curves

Figure 16: Safe Operating Area

TAPE AND REEL CONFIGURATION

	EPC8002 (note 1)			
Dimension (mm)	target	min	max	
а	8.00	7.90	8.30	
b	1.75	1.65	1.85	
c (see note)	3.50	3.45	3.55	
d	4.00	3.90	4.10	
е	4.00	3.90	4.10	
f (see note)	2.00	1.95	2.05	
g	1.5	1.5	1.6	

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

solder bump side down (face side down)

under this corner

Part	Laser Markings			
Number	Part # Marking Line 1	Lot_Date Code Marking line 2	Lot_Date Code Marking Line 3	
	Marking Line I	Marking line 2	Marking Line 3	
EPC8002	8002	YYYY	ZZZZ	

Dim	Micrometers			
Dim	Min	Nominal	Max	
Α	2020	2050	2080	
В	820	850	880	
С	555	580	605	
d	400	400	400	
e	600	600	600	
f	200	225	250	
g	175	200	225	
h	425	450	475	
i	175	200	225	
j	400	400	400	

Side View

Seating Plane

Seating Plane

Pad no. 1 is Gate

Pad no. 2 is Source Return for Gate Driver

Pad no. 3 and 5 are Source

Pad no. 4 is Drain

Pad no. 6 is Substrate*

*Substrate pin should be connected to Source

RECOMMENDED LAND PATTERN (measurements in μm)

The land pattern is solder mask defined.
Solder mask opening is 5 µm smaller per side than bump.

Pad no. 1 is Gate

Pad no. 2 is Source Return for Gate Driver

Pad no. 3 and 5 are Source

Pad no. 4 is Drain

Pad no. 6 is Substrate*

*Substrate pin should be connected to Source

RECOMMENDED STENCIL DRAWING (measurements in µm)

Blue = bump, Gray = stencil

Recommended stencil should be 4 mil (100 µm) thick, must be laser cut, openings per drawing. Intended for use with SAC305 Type 3 solder, reference 88.5% metals content. Additional assembly resources available at: https://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. eGaN® is a registered trademark of Efficient Power Conversion Corporation.

EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx

Information subject to change without notice.
Revised August, 2019