

Wydział Mechaniczny Energetyki i Lotnictwa Politechnika Warszawska

Zapis Konstrukcji

mgr inż. Grzegorz Kamiński

5 lipca 2024

Klasyfikacja kół zębatych - uzębienie

Klasyfikacja kół zębatych - kształt koła

Klasyfikacja kół zębatych - kształt linii zeba

Geometria koła

symbol literowy letter symbol	nazwa polska Polish term	nazwa angielska English term	jednostka unit
da	średnica wierzchołków	tip diameter	mm
d_f	średnica podstaw	root diameter	mm
ď	średnica podziałowa	reference diameter	mm
p	podziałka	pitch	mm
h	wysokość zęba	tooth depth	mm
h_a	wysokość głowy	addendum	mm
h_f	wysokość stopy	pedendum	mm
ά	kąt zarysu	pressure angle	deg
z	liczba zębów	number of teeth	, III)
m	moduł	module	mm
b	szerokość wieńca	facewidth	mm

Podziałka obwodowa p — długość łuku koła podziałowego zawarta między jednoimiennymi

Podziałka obwodowa p — długość łuku koła podziałowego zawarta między jednoimiennymi

$$\pi \cdot d = z \cdot p$$

$$0 \circ d = z \cdot \frac{p}{\pi} = 0 \circ 0$$

Podziałka obwodowa p — długość łuku koła podziałowego zawarta między jednoimiennymi

$$-\pi \cdot d = z \cdot p$$

$$d = z \cdot \frac{p}{\pi}$$

$$d = z \cdot m$$

Moduły koła zębatego

Zoctawionio	modute	SW 700	rmalizo	Manuch	zgodnio -	norma	DNII	COE	CINS	1

		Sze	regi mod	lułów			
1 m	2	mls.	2	1	2	. 1	2
0,05	(111)	0,3	6,	2	d ₁₁	12	
	0,055		0,35		2,25		14
0,06	rillo	0,4		2,5		16	
	0,07	6,,,	0,45	Gun	2,75	6	18
0,08		0,5		3		20	
m)r	0,09	mn.	0,55	Di II	3,5	h	22
0,1	(")	0,6	6,	4	6	25	
	0,11		0,7		4,5		28
0,12	(III)	0,8	h m	5		32	
(4)	0,14	6	0,9	6)	5,5	6)	36
0,15		1		6		40	
,M	0,18	_Mh	1,125	n	7		45
0,2		1,25	0 6	8	1	50	
	0,22		1,375		9		55
0,25	and a	1,5		10		60	
	0,28		1,75		11		70

Podstawowe zależności

średnica podziałowa

$$d = z \cdot m \qquad (4)$$

średnica głów

$$d_a = (z+2) \cdot m \quad (5)$$

średnica stóp

$$d_f = (z - 2, 4) \cdot m$$
 (6)

policzen<mark>ie</mark> liczby z<mark>ę</mark>bów z

policzenie liczby zębów z, $z_{mierzenie}$ średnicy głów d_{a} ,

- policzenie liczby zębów z, $z_{mierzenie}$ średnicy głów d_{a} ,
- * <mark>o</mark>bliczen<mark>ie</mark> moduł<mark>u m̃</mark>, m

- policzen<mark>ie</mark> liczby z<mark>ę</mark>bów z,
- * z<mark>m</mark>ierzeni<mark>e śr</mark>ednicy <mark>gł</mark>ów d_a,
- * obliczenie moduł<mark>u m</mark>,
- * d<mark>ob</mark>ór mo<mark>du</mark>łu znor<mark>ma</mark>lizowan<mark>eg</mark>o m,

- <mark>policzenie</mark> liczby z<mark>ęb</mark>ów z,
- * z<mark>mi</mark>erzeni<mark>e śr</mark>ednicy <mark>gł</mark>ów d̃_a,
- * oblicze<mark>nie</mark> moduł<mark>u m</mark>,
- dobór modułu znormalizowanego m,
- * wyznaczenie średnic d(m), d_a(m), d_t(m).

Rysunek koła zębatego

Rysunek koła zębatego

Schemat połączenia wpustowego

	Długość wpustu										
6	8	10	12	14	16	18	20				
22	25	28	32	36	40	45	50				
56	63	70	80	90	100	110	125				
140	160	180	200	220	250						

Wymiary wpustów pryzmatycznych

- * d średnica wału,
- * b szerokość wpustu,
- * h wysokość wpustu,
- * l długość wpustu,
- * t₁ głębokość rowka w wale,
- * t₂ głębokość rowka w piaście,
- * r promień zaokrąglenia wpustu,
- * s wymiar fazowania wpustu.

d	ь	h	ı	mh.	+-	r lub s
ponad do	0	n	· ·	t_1	t_2	min max
$6 \div 8$	2	2	$6 \div 20$	1,2	1	$0,16 \div 0,25$
8 ÷ 10	3	3	$6 \div 36$	1,8	1,4	$0,16 \div 0,25$
$10 \div 12$	4	4	$8 \div 45$	2,5	1,8	$0,16 \div 0,25$
$12 \div 17$	5	5	$10 \div 56$	3	2,3	$0,25 \div 0,40$
$17 \div 22$	6	6	$14 \div 70$	3,5	2,8	$0,25 \div 0,40$
$22 \div 30$	8	7	$18 \div 90$	4	3,3	$0,25 \div 0,40$
$30 \div 38$	10	8	$22 \div 110$	5	3,3	$0,40 \div 0,60$
$38 \div 44$	12	8	$28 \div 140$	5	3,3	$0,40 \div 0,60$
$44 \div 50$	14	9	$36 \div 160$	5,5	3,8	$0,40 \div 0,60$
$50 \div 58$	16	10	$45 \div 180$	6	4,3	$0,40 \div 0,60$
$58 \div 65$	18	11	$50 \div 200$	7	4,4	$0,40 \div 0,60$
$65 \div 75$	20	12	$56 \div 220$	7,5	4,9	$0,60 \div 0,80$
$75 \div 85$	22	14	$63 \div 250$	9	5,4	$0,60 \div 0,80$
$85 \div 95$	25	14	$70 \div 280$	9	5,4	$0,60 \div 0,80$
$95 \div 110$	28	16	80 ÷ 320	10	6,4	$0,60 \div 0,80$
$110 \div 130$	32	18	$90 \div 360$	11	7,4	$0,60 \div 0,80$
$130 \div 150$	36	20	$100 \div 400$	12	8,4	$1,0 \div 1,2$
$150 \div 170$	40	22	$100 \div 420$	13	9,4	$1,0 \div 1,2$
$170 \div 200$	45	25	$110 \div 450$	15	10,4	$1,0 \div 1,2$
$200 \div 230$	50	28	$125 \div 500$	17	11,4	$1,0 \div 1,2$
$230 \div 260$	56	32	$140 \div 500$	20	12,4	$1,6 \div 2,0$
260 ÷ 290	63	32	$160 \div 500$	20	12,4	$1,6 \div 2,0$
$290 \div 330$	70	36	$180 \div 500$	22	14,4	$1,6 \div 2,0$
$330 \div 380$	80	40	$200 \div 500$	25	15,4	$2,5 \div 3,0$
$380 \div 440$	90	45	$220 \div 500$	28	17,4	$2,5 \div 3,0$
$440 \div 500$	100	50	$250 \div 500$	31	19,5	$2,5 \div 3,0$

Pierścienie osadcze sprężynujące

		wyr	niary pier	wymiary czopa wału					
symbol	D_0	g	a_{max}	Ь	domin	D	D_1	f	h
Z3	2,7	0,4	1,9	0,8	0 1111	3	2,8	0,5	0,3
Z4	3,7	0,4	2,2	0,9	1	4	3,8	0,5	0,3
Z_5	4,7	0,6	2,5	1,1	1	5	4,8	0,7	0,35
Z6	5,6	0,7	2,7	1,3	1,2	6	5,7	0,8	0,45
Z8	7,4	0,8	3,2	1,5	1,2	8	7,6	0,9	0,6
Z9	8,4	1	3,3	1,7	1,2	9	8,6	0,9	0,6
Z10	9,3	1	3,3	1,8	1,5	10	9,6	1,1	0,6
Z12	11	1	3,3	1,8	1,7	12	11,5	1,1	0,75
Z13	11,9	1	3,4	2	1,7	13	12,4	1,1	0,9
Z14	12,9	1 (3,5	2,1	1,7	14	13,4	1,1	0,9
Z15	13,8	1	3,6	2,2	1,7	15	14,3	1,1	1,1
Z16	14,7	1	3,7	2,2	1,7	16	15,2	1,1	1,2
Z17	15,7	1	3,8_	2,3	1,7	17	16,2	1,1	1,2
Z18	16,5	1,2	3,9	2,4	2	18	17	1,3	1,2
Z19	17,5	1,2	3,9	2,5	2	19	18	1,3	1,5
Z20	18,5	1,2	4	2,6	2	20	19	1,3	1,5
Z21	19,5	1,2	4,1	2,7	2	21	20	1,3	1,5
Z22	19,5	1,2	4,2	2,8	2	22	21	1,3	1,5
Z24_	22,2	1,2	4,4	3	2	24	22,9	1,3	1,7
Z25	23,2	1,2	4,4	3	2	25	23,9	1,3	1,7
Z26	24,2	1,2	4,5	3,1	2	26	24,9	1,3	1,7
Z28	25,9	1,5	4,7	3,2	2	28	26,6	1,6	2,1
Z30	27,9	1,5	5	3,5	2	30	28,6	1,6	2,1

Pierścienie osadcze sprężynujące

symbol		wym	iary pier	,	wymiary czopa wału					
symbol	D_0	g	amax	b	domin	D	D_1	f	h	
Z32	29,6	1,5	5,2	3,6	2,5	32	30,3	1,6	2,6	
Z34	31,5	1,5	5,4	3,8	2,5	34	32,3	1,6	2,6	
Z35	32,2	1,5	5,6	3,9	2,5	35	33	1,6	3	
Z36	33,2	1,75	5,6	4	2,5	36	34	1,85	3	
Z38	35,2	1,75	5,8	4,2	2,5	38	36	1,85	3	
Z40	36,5	1,75	6	4,4	2,5	40	37,5	1,85	3,8	
Z42	38,5	1,75	6,5	4,5	2,5	42	39,5	1,85	3,8	
Z45	41,5	1,75	6,7	4,7	2,5	45	42,5	1,85	3,8	
Z48	44,5	1,75	6,9	5	2,5	48	45,5	1,85	3,8	
Z50	45,8	2 6	6,9	5,1	2,5	50	47	2,15	4,5	
Z52	47,8	2	7	5,2	2,5	52	49	2,15	4,5	
Z55	50,8	2	7,2	5,4	2,5	55	52	2,15	4,5	
Z56	51,8	2	7,3	5,5	2,5	56	53	2,15	4,5	
Z58	53,8	2	7,3	5,6	2,5	58	55	2,15	4,5	
Z60	55,8	2	7,4	5,8	2,5	60	57	2,15	4,5	
Z62	57,8	2	7,5	6	2,5	62	59	2,15	4,5	
Z63	58,8	2	7,6	6,2	2,5	63	60	2,15	4,5	
Z65	60,8	2,5	7,8	6,3	3	65	62	2,65	4,5	
Z70	65.5	2,5	8,1	6,6	3	70	67	2.65	4.5	

Wymiary zgodnie z normą DIN 471 [6

Bibliografia

- [1] PN-ISO 1122-1:2004. Słownik terminów związanych z kołami zębatymi Część 1: Definicje związane z geometrią.
- [2] PN-ISO 701:2001. Międzynarodowe oznaczenia kół zębatych Symbole parametrów geometrycznych.
- [3] PN-ISO 54:2001. Przekładnie zębate walcowe ogólnego przeznaczenia oraz dla przemysłu ciężkiego.
- [4] PN-ISO 2203:2002. Rysunek techniczny Przedstawianie uproszczone przekładni zębatych.
- [5] ISO R:773:1969. Rectangular or square parallel keys and their corresponding keyways.
- [6] DIN 471:2011-03. Retaining rings for shafts Normal type and heavy type.

Dziękuję za uwagę

grzegorz.kaminski@pw.edu.pl