Vaja 62: Modeli optičnih naprav

Matevž Demšar

26. februar 2024

Opis. Pri vaji sestavimo preproste modele treh optičnih naprav: projekcijskega aparata, daljnogleda in mikroskopa.

Projekcijski aparat. Projekcijski aparat sestavimo z virom svetlobe, kondenzorjem (ki je sam sestavljen iz dveh zbiralnih leč), objektivom in zaslonom, kot kaže skica. Slika na zaslonu je povečana in obrnjena, njeno povečavo pa določimo s formulo:

$$N = y'/y$$

Pričakujemo, da bo povečava enaka tudi razmerju razdalje med predmetom in objektivom ter objektivom in zaslonom:

$$N = \frac{x' + f_o}{x + f_o}$$

Skica 1: Projekcijski aparat

Meritve in izračuni. Izmerimo goriščno razdaljo kondenzorja f_k , goriščno razdaljo objektiva f_o , razdaljo med predmetom in objektivom $x+f_o$ ter razdaljo med objektivom in zaslonom $x'+f_o$. Da izmerimo povečavo, izmerimo še širino predmeta y ter širino slike y'.

$$f_k = 5,5 \ cm \pm 0,1 \ cm$$

 $f_o = 13,0 \ cm \pm 0,1 \ cm$
 $x + f_o = 17,6 \ cm \pm 0,1 \ cm$
 $x' + f_o = 38,9 \ cm \pm 0,1 \ cm$
 $y = 3,6 \ cm \pm 0,1 \ cm$
 $y' = 10,7 \ cm \pm 0,1 \ cm$

$$N = y'/y$$

$$N = 3,0 \pm 0,1$$

$$N = \frac{x' + f_o}{x + f_o}$$

$$N = 2,2$$

Daljnogled. Daljnogled sestavimo iz dveh zbiralnih leč, kot kaže skica. Leči skozi katero gledamo, pravimo okular, drugi leči pa objektiv.

Povečavo lahko približno ocenimo ali pa predvidimo po formuli:

$$N = \frac{f_1}{f_2} \cdot \frac{1}{1 - f_1/a},$$

v kateri f_1 predstavlja goriščno razdaljo objektiva, f_2 goriščno razdaljo okularja, a pa oddaljenost opazovanega predmeta od objektiva.

Skica 2: Daljnogled

Meritve in izračuni. Izmerimo goriščno razdaljo objektiva f_1 in okularja f_2 ter razdaljo a. Ocenimo povečavo.

$$f_1 = 84 \ cm \pm 1 \ cm$$

 $f_2 = 6,0 \ cm \pm 0,1 \ cm$
 $a = 20,8 \ m \pm 0,1 \ m$

Ocena povečave: $N \approx 3$

$$N = \frac{f_1}{f_2} \cdot \frac{1}{1 - f_1/a}$$

$$N = 12, 5 \pm 0, 6$$

Mikroskop. Mikroskop sestavimo iz dveh zbiralnih leč, kakor prikazuje skica, njegovo povečavo pa izračunamo po formuli

$$N = \frac{d \cdot r}{f_1 \cdot f_2},$$

v katerid predstavlja razdaljo med lečama, f_1 in f_2 njuni goriščni razdalji, r pa je konstanta.

Skica 3: Mikroskop

Meritve in izračuni. Izmerimo razdaljo med lečama d ter goriščni razdalji f_1 in f_2 .

$$d = 23, 3 \ cm \pm 0, 1 \ cm$$

 $f_1 = 6, 0 \ cm \pm 0, 1 \ cm$

$$f_2 = 8,7 \ cm \pm 0,1 \ cm$$

Ocena povečave: $N\approx 10$

$$N = \frac{d \cdot r}{f_1 \cdot f_2}$$

$$r = 25 \ cm$$

$$N = 11, 2 \pm 0, 4$$

Zaključek. Ocenjevanje povečave se je izkazalo za nezanesljivo.