

IBC 开发设计说明

□系统构成

合作

□电气原理

□接线图

合作

□针脚定义

Pins	Name	Pins	Name
1	MGND	13	
2	VBAT	14	VCC2
3		15	
4		16	IGN
5		17	
6		18	
7	VCC1	19	
8	BrakeSignal1	20	
9	BrakeSignal2	21	CAN0_L
10	GND	22	CAN0_H
11		23	
12		24	PressSignal

□线束接插件型号

序号	名称	型号	供应商	示图
1	线束接插件	1-2278915-1	TE	Manual Section 1
2	电源线端子	1241416-1	TE	
3	信号线端子	968221-1	TE	
4	电源线密封堵	1394512-1	TE	
5	信号线密封堵	967067-1	TE	
6	锁止件	1534358-1	TE	//

□传感器接插件型号

序号	名称	型号	供应商	示图
1	角度传感器接插件	1-967616-1	TE	
2	角度传感器端子	963727-1	TE	
3	角度传感器密封堵	967067-2	TE	
4	压力传感器接插件	6-2271128-2	TE	

□CAN通信接口电路

□ IBC 功能设计

● 刹车踏板助力功能

依据制动踏板力或制动踏板行程位置调节制动主缸的液压,随着踏板行程的增加而增大制动压力,实现驾驶员对车辆行车制动的灵活控制。

● 外部请求制动

通过CAN网络接收制动请求指令,依据请求的压力大小进行制动主缸的液压调节,实现主动刹车的功能。

● 制动能量回收

通过CAN网络接收制能量回收请求,协助制动能量回收系统进行制动能量的回收,依据补偿的制动压力请求降低制动主缸的液压输出。

- □ IBC与ESC的交互
- --IBC响应外部模块(ESC/VCU等ADAS模块)的制动请求,实现主动刹车(EBR功能)
- --协助制动能量回收功能,由协调模块(如ESC或VCU)通过ForceBlending协调分配实际主缸制动压力

口建压时间

-- 紧急制动最快建压速度0.5s至最大压力。

口性能指标

- 寿命 100万次
- 最大制动压力 100bar
- 工作电流 < 80A
- 防水等级 IP69K
- 总体重量:IBC+制动主缸及储液罐总成≈6kg

口开发计划示例

- 1、完成方案匹配和客户需求确认 —— 2个月
- 2、零部件设计和制作 ——— 5个月
- 3、首轮样件准备和提交 ———— 1个月
- 4、产品的标定测试 ————2个月
- 5、路试验证 ———— 1个月

口 安装及布置要求

- 前围板厚度不低于3mm
- 固定螺栓4颗,拧紧力矩15Nm
- 主缸缸径 根据车辆制动系统匹配确定
- 油管连接由客户设计布置方案

口 标定项目

- 1)主缸PV特性
- 2) 踏板行程与踏板反力曲线
- 3)电机控制参数
- 4)整车减速度—制动液压曲线

口 标定车辆状态要求

- 车辆满足安全驾驶条件,动力、转向和制动器均为量产设计状态
- 动力系统正常,完成基本功能标定,后续软件可更新至具有完整功能
- ABS/ESC 具有完整功能
- 驻车制动正常,电子驻车需具有应急制动功能
- 液压管路和卡钳均是OTS样件

口 开发现状

经过多次的设计改进,目前第三代设计完成A样机阶段样件

特点:

- 集成化,控制器+执行部件—体化设计,结构紧凑,易于装配布置
- 无刷PMSM电机,噪音低,寿命周期长,扭矩控制精确
- 踏板半解耦设计,可以应用于电动车制动能量回收

开发进展:

- 软件硬件集成完成,具备刹车助力功能和自动刹车功能
- 实车测试匹配已完成8个车型,应用于ADAS功能和无人驾驶研究
- 已收到客户2018年5000套正式订单。

□ 开发现状

实车匹配案例:纯电动SUV

测试数据

—— 绿色 实际主缸压力

—— 蓝色 制动请求压力

—— 红色 踏板行程(未踩下踏板)

实车装配图片

感谢!