General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA TECHNICAL MEMORANDUM

NASA TM X-71849

(NASA-TM-X-71849) THE EXPERIMENTAL CIEAN COMBUSTOR PROGRAM: DESCRIPTION AND STATUS TO NOVEMBER 1975 (NASA) 129 p HC \$6.00 CSCL 21E

N76-13102

Unclas 07 05641

THE EXPERIMENTAL CLEAN COMBUSTOR PROGRAM - DESCRIPTION AND STATUS TO NOVEMBER 1975

by Richard W. Niedzwiecki Lewis Research Center Cleveland, Ohio 44135 December 1975

For inclusion in "THE RULES DOCKET" for the 1976 review of the EPA aircraft gas turbine engine emission standards

THE EXPERIMENTAL CLEAN COMBUSTOR PROGRAM -

DESCRIPTION AND STATUS TO NOVEMBER 1975

by Richard W. Niedzwiecki

National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio

SUMMARY

The Experimental Clean Combustor Program is a multi-year contract cf-fort. Primary program objectives are the generation of technology for the development of advanced commercial CTOL aircraft engines with lower exhaust emissions than current aircraft, and demonstration of this technology in full-scale engines in 1976. The program is administered by the NASA Lewis Research Center and is being conducted by two contractors. Low pollution engine-combustors are being evolved by the General Electric Company for the CF6-50 engine and by Pratt & Whitney Aircraft for the JT9D-7 engine.

The program is being conducted in three phases. Phase I, already completed, consisted of screening tests of low pollution combustor concepts. Phase II, currently in progress, consists of test rig refinement of the most promising combustor concepts. Phase II test results form the major basis of this report. Phase III, also currently in progress, consists of incorporating and evaluating the best combustors as part of a complete engine. Engine test plans and pollution sampling techniques are described in this report.

Program pollution goals, specified at engine idle and take-off conditions, are idle emission index values of 20 and 4 for carbon monoxide (CO) and total unburned hydrocarbons (THC), respectively, and at take-off are an oxides of nitrogen (NO $_{\rm X}$) emission index level of 10 and a smoke number of 15. Pollution data were obtained at all engine operating conditions. Results are presented in terms of emission index and also in terms of the Environmental Protection Agency's 1979 Standards Parameter (EPAP).

In Phase II, each contractor investigated two combustor concepts. All combustor concepts incorporated multi-burning zones, produced substantial reductions of gaseous pollutants and achieved the goal smoke level. General Electric evaluated double/annular and radial/axial combustor concepts. The best

double/annular configuration exceeded the idle pollution goals producing emission index values of CO and THC of 19 and 2.2, respectively. Although the $\rm NO_X$ goal was not achieved, a substantial reduction of over 50 percent, compared to the reference production CF6-50 engine, was achieved. On an EPAP basis, this configuration produced values of 3.01 for CO, 0.31 for THC, and 4.15 for $\rm NO_X$. In addition, this configuration demonstrated altitude relight characteristics comparable to the reference design, did not appear to have any carboning or durability problems and did not appear to have any unsolvable exit temperature distribution problems. Radial/axial combustor pollutant reductions while substantial, were not as large as those of the double/annular design. This combustor experienced flashback and durability problems. On the basis of these results, the double/annular combustor was selected as the most promising concept and the one most readily adaptable to engine installation.

Pratt & Whitney evaluated a vorbix and a hybrid combustor concept. The best vorbix configuration approached the CO and NO_X goals and exceeded the THC goal. Emission index values of 26.4 for CO, 3.5 for THC, and 14.6 for NO_X were demonstrated. On an EPAP basis, this configuration produced values of 6.25 for CO, 0.64 for THC, and 3.48 for NO_X. In addition, the vorbix combustor produced altitude relight characteristics comparable to JT9D-7 rig data and did not appear to have any unsolvable durability or exit temperature distribution problems. The hybrid combustor produced comparable pollutant reductions but demonstrated poor altitude relight characteristics. On the basis of these results, the vorbix combustor was selected as the most promising concept and the one most readily adaptable to engine installation.

Up to the present, all combustor testing has been in component test rigs. It appears that two promising low-pollution combustor designs, the General Electric double/annular design and the Pratt & Whitney vorbix design, suitable for engine installation have been developed. However, verification of the pollution reductions achieved as well as the practicality of the designs await the Phase III engine demonstration tests wherein the low pollution combustors will be evaluated as components of the CF6-50 and the JT9D-7 engines.

INTRODUCTION

This report describes the results of combustor component testing obtained to date for the Experimental Clean Combustor Program. Also described are the

program's objectives, program plan, schedule, pollution and performance goals, the pollution reduction approaches investigated, and future program efforts emphasizing demonstration tests of low-pollution combustors installed in full-scale engines.

While considerable progress has been made in reducing the smoke levels of gas turbine engines, no combustors for current aircraft incorporate design features specifically for the reduction of gaseous pollutants. The Environmental Protection Agency has published standards which require substantial reduction of gaseous pollutants by 1979. The pollutants in question are oxides of nitrogen formed primarily during high power engine operation and carbon monoxide and total unburned hydrocarbons formed primarily during low power engine operation.

It appears that substantial reduction of pollutants can be attained. The concepts for pollution reduction now exist. However, although the mechanisms of pollution production as well as techniques for reducing pollutants are generally known, application of these techniques to specific engine-combustor designs have not yet demonstrated the anticipated pollutant reductions without compromising other combustor parameters. Thus additional technology was needed to apply these concepts. Therefore, the "Experimental Clean Combustor Program" was initiated since no other program aimed at timely evolution of "clean" combustors existed.

The program aim is to develop this required pollution reduction technology. This will be accomplished by evaluating the most promising pollution reduction techniques through combustor component resting, solving interface and performance problems which low pollutant combustor designs create for engine installation, and demonstrating the pollution reductions in high pressure ratio CTOL engines in 1976.

PROGRAM DESCRIPTION

General

The "Experimental Clean Combustor Program" is a multi-year contract effort administered by the NASA-Lewis Research Center and conducted by two contractors: The General Electric Company of Evendale, Ohio; Pratt & Whitney Aircraft of East Hartford, Connecticut. The program's primary objectives are the following:

- 1. To generate and demonstrate the technology required to develop advanced commercial CTOL aircraft engines with lower exhaust pollutant emissions than are possible with current technology.
 - 2. To demonstrate the emission reductions in full-scale engines in 1976.

Although pollution reduction investigations are being conducted with combustors sized to fit within the GE CF6-50 and the P&W JT9D-7 engines, the program is aimed at generating technology primarily applicable to advanced commercial engines with overall compressor pressure ratios of 20 to 35. This technology should also be applicable to military engines. Specifically, the program emphasizes pollution reduction through combustor design. Gaseous pollutant reductions are emphasized since commercial engines currently produce smoke emissions which are below visible thresholds.

Program Plan

The program is being conducted in three sequential, individually funded phases. The planned program schedule is shown in table I. Program phases consist of the following:

Phase I: Combustor screening. - Phase I efforts were initiated in December 1972, and have been completed. Phase I consisted of component combustor test rig screening of various combustor designs to determine the most promising combustor concepts based on pollutant emission characteristics and performance. Interim Phase I program status is described in reference 1. Phase I program results are detailed in the Contractor Reports contained in references 2 and 3. Results of combustion noise addendum studies performed concurrent with Phase I testing are contained in references 4 and 5.

Phase II: Combustor refinement and optimization. - Phase II efforts were initiated in July 1974, are currently in progress and are nearing completion. Phase II results form the major basis for this report. This phase consists of refinement and optimization of the best Phase I combustor designs through test rig component evaluations in order to establish required overall combustor performance, durability, and engine adaptability.

Phase III: Combustor-engine testing. - Phase III efforts were initiated in June 1975, and are scheduled for completion in 1976. Phase III consists of tests of each contractor's best Phase II combustor as part of a complete engine. Engine testing is aimed at authentication of pollution reductions as well as de-

termination of low-pollution engine-combustor acceleration/deceleration characteristics.

Program Goals

Inasmuch as smoke emissions have been reduced to below the visible threshold on current commercial engines, program focus is directed towards reduction of gaseous pollutants of oxides of nitrogen, total unburned hydrocarbons, and carbon monoxide. However, further reductions in smoke and particulate emissions are also sought. These pollutant reductions must be accomplished with a minimum and acceptable sacrifice of conventional combustor performance parameters.

<u>Pollution goals.</u> - Criteria used for selecting pollution goals were the following: The goals represent optimistic projections of achievable pollutant reductions. The goals are currently beyond combustor design state-of-the-art, and, in order to be achieved, require pollutant reductions by factors of three to seven for the CF6-50 and the JT9D-7 engines.

Combustor exhaust pollutant goals in terms of engine operating modes are listed in table II. Gaseous pollutant goals for oxides of nitrogen or NO_X ($NO_X = NO + NO_2$), carbon monoxide, CO, and total unburned hydrocarbons, THC, are expressed in terms of emission index. Emission index is the ratio of grams of pollutant formed per kilogram of fuel consumed. Smoke and particulate concentrations are expressed in terms of the SAE smoke number. Idle and take-off operating modes represent standard day engine operating conditions. Pollution data obtained during combustor component testing (program Phases I and II) at simulated engine conditions but of reduced pressure, require extrapolation to indicate concentrations at engine conditions.

For comparative purposes, the Environmental Protection Agency 1979 Standards for T-2 class engines, estimated on an emission index basis, are also included in table II. T-2 class engines have been defined by the Environmental Protection Agency as turbofan or turbojet engines with 8000 pounds thrust or greater, excluding the JT-3D and the JT-8D model families as well as supersonic transport engines. The NO $_{\rm X}$ emission index value was back calculated from the EPA Standard by assuming that NO $_{\rm X}$ emission index values at taxi-idle and approach conditions are unchanged and that climbout values equal 75 percent of the computed take-off value. A comparison of standards

and program pollutant values show that the idle pollutant values are quite close. The major variance occurs in the NO_X value where the program goal is lower, 10 as opposed to 13 for the 1979 EPA standards.

Also contained in table II are engine emissions data for the JT9D-7 and the CF6-50 engines. These data indicate that reductions by factors of three to seven are required to achieve program goal values.

The Environmental Protection Agency parameter values (EPAPS) for CO, THC, and NO $_{\rm X}$ are contained in table III. Listed are the 1979 EPAP required values for T-2 class engines, current EPAP values for the CF6-50 and JT9D-7 engines, and the percentages that current engine values exceed the required values. As can be seen, substantial reductions are required for all pollutants. Subsequent report sections describe emissions data both in terms of emission index and EPAP.

Performance goals. - Key combustor performance goals are listed in table IV. With the exception of combustion efficiency and possibly pattern factor, these goals represent values achievable with current aircraft engines. Thus, these goals represent limits up to which these values can be increased in pursuit of the pollution goals. With current aircraft, combustion efficiencies of 99 percent are not achieved at the taxi-idle condition. Combustion efficiencies of 99 percent or higher are required at all engine conditions to achieve the program pollution goals.

Program Approaches to Pollution Reduction

The greatest concentrations of gas turbine pollutants are formed at the two extremes of the engine operating power range. Thus, pollutant control involves minimizing pollutant formation at both low power conditions as typified by engine idle as well as at high power or take-off. If pollutant formation can be significantly reduced at the extreme engine operating modes, then corresponding reductions in pollutants could be realized at intermediate engine operating modes such as descent, cruise, and climbout. For the above reasons, pollution goals were selected at and combustor evaluations were conducted primarily at simulated engine idle and take-off conditions in Phase I. In Phase II, combustors are being evaluated at conditions simulating all engine operational modes.

Idle pollutants. - Incomplete combustion is the principal cause of idle pollutants. The principal pollutants at idle are carbon monoxide, CO, and unburned

hydrocarbones, THC, either as raw fuel or as partially oxidized fuel. The latter are primarily responsible for the characteristic odor common to all airports (ref. 6). Aircraft combustors are designed for maximum performance at take-off and cruise conditions. Operation at low power conditions generally results in lower combustion efficiencies and, as a result, in higher pollutant emissions. Typical combustion efficiencies at idle vary between 88 and 96 percent: the actual values are dependent on engine size, type, and age, as well as operational procedures such as the amount of power extracted and the amount of compressor air bleed used.

Low combustion efficiency at idle results primarily from the poor burning conditions encountered. Low combustor inlet air temperatures, typically 366 to 466 K cause quenching to occur thus terminating combustion before completion. Low pressures, typically 2 to 4 atmospheres, reduce burning intensity. The low fuel-air ratios required at idle, typically 0.010 to 0.013, result in low primary zone equivalence ratios reducing burning intensity as well as causing poor fuel atomization and distribution. Equivalence ratio is the ratio of local fuel-air ratio to the fuel-air ratio at stoichiometric combustion which is 0.0676 for ASTM jet A fuel. In addition, the low volatility of commercial aircraft kerosene fuel further aggravates the problem.

High power pollutants. - Combustor pressure, inlet air temperature, and fuel-air ratio increase as the power level of a gas turbine engine is increased. At full power, the combustion efficiency is nearly 100 percent and negligible levels of carbon monoxide and unburned hydrocarbons exist. However, the higher temperature and pressure levels within the combustor lead to the generation of smoke and oxides of nitrogen.

Reduction of smoke and particulate matter has received a great deal of attention in recent years and new gas turbine engines generate little, if any, visible smoke. Smoke reduction was accomplished principally by reducing combustor primary zone fuel-air ratio thereby eliminating large, fuel-rich zones.

Redesigning gas turbine combustor so that they produce significantly reduced oxides of nitrogen levels is a difficult task. Oxides of nitrogen are natural products of combustion forming during all combustion processes involving air. The formation of oxides of nitrogen in combustors is relatively well understood and has been the subject of many technical reports (refs. 7 to 9). The amount formed is controlled by the chemical reaction rate and is a function of the flame temperature, residence time of combustion gases at the highest temperatures, the concentrations of oxygen and nitrogen present, and, to a lesser extent, the combustor pressure.

Combined pollution considerations. - Table V highlights some of the difficulties encountered in applying pollution reduction techniques. Because of the large changes in combustor environment between low power and high power engine operating modes, and also because of differences in mechanisms for production of the pollutants at these operating modes, techniques which reduce pollutants at one condition can increase pollutants at the other condition. An exception is improvement in fuel preparation and distribution which could produce better control of the combustion reactions thereby reducing pollutants at both power modes.

<u>Program pollution reduction approaches</u>. - Three main pollution reduction approaches are being pursued in this program. Each approach appears to contain the potential for reducing pollutants at all engine operating conditions. The approaches are being investigated individually and in combination. The approaches are:

Multiple Burning Zones: In this approach combustion is split into two burning zones, a pilot burner optimized for low power operation, and a main burner optimized for high power operation. Pilot burner equivalence ratios are near 1 at idle with mixing of combustion gases with diluent air delayed. Main burner equivalence ratios are 0.5 to 0.8 at take-off with increased and quick mixing of combustion gases and diluent air. Only the pilot burner is fired during operation at low power conditions. Both burning zones, with fuel reduced to the pilot burner, are fired during high power operation.

Two types of multiple burning zone combustors are being investigated. In one type, each burning zone operates independently of the other. In the other type, burners are coupled. For example, hot gases from the pilot burner are used to increase combustion stability and vaporize fuel for the main burner.

Improved Distribution and Preparation of Fuel: The purpose of fuel distribution and preparation studies are to provide fuel systems which better control fuel-air mixture uniformity as well as mixture strength. The following methods are being employed:

- 1. Increased number of fuel sources.
- 2. Advanced fuel-air atomization techniques.
- 3. Premixing of fuel and air upstream of the burning zones.
- 4. Prevaporization of fuel upstream of the burning zones.

Fuel staging is also being investigated. Fuel is being staged radially, axially, and in combustor sectors at low power conditions. Staging fuel consists of supplying fuel to some but not all of the fuel injectors. Staging fuel improves

atomization, increases local burning intensities, and minimizes quenching interfaces between combustion gases and diluent air.

Combustor Air Distribution: Effects of combustor air staging are being determined by proportionating airflow with combustor blockage to produce optimum pollution reduction conditions at either low or high power conditions.

Program applications of these techniques are described in the next section of this report.

ENGINE-COMBUSTOR CONCEPTS

Reference Engine-Combustors

All of the low-pollution combustion concepts investigated in this program were configured to fit within the contractors engine-combustor envelope, and designed to operate at engine environment conditions. Contained below are descriptions of the Pratt & Whitney JT9D-7 engine and the General Electric CF6-50 engine. More detailed descriptions are contained in references 2 and 3.

<u>JT9D-7</u> engine-combustor. - the JT9D-7 engine is an advanced, dual-spool, axial flow turbofan engine designed with a high overall compression ratio and a high bypass ratio. The mechanical configuration is shown schematically in figure 1. Since its introduction into commercial service, this engine has acquired widespread use as the powerplant for both the Boeing 747 and the Douglas DC-10-40 aircraft.

The engine consists of five major modules: a fan and low-pressure compressor module, a combustor module, a high-pressure turbine module, and a low-pressure turbine module. The low-pressure spool consists of a single stage fan and a three-stage, low-pressure compressor driven by a four-stage, low-pressure turbine. The high-pressure spool consists of an eleven-stage, high-pressure compressor driven by a two-stage, high-pressure turbine. The accessory gearbox is driven through a towershaft located between the low- and high-pressure compressors. Selected key specifications for the JT9D-7 engine are listed in table VI.

The mechanical design of the JT9D-7 reference combustor is shown schematically in figure 2. The combustor is annular in design with an overall length between the trailing edge of the compressor exit guide vane to the leading edge of the turbine inlet guide vane of 0.6 meter. The actual burning length between the fuel nozzle face and the turbine inlet guide vane leading edge is 0.45

meter. Key performance parameters of the JT9D-7 reference combustor are summarized in table VII.

<u>CF6-50 engine-combustor</u>. - The CF6-50 engine is a duel-rotor, high-bypass ratio turbofan incorporating a variable stator, high-pressure ratio compressor, an annular combustor, an air-cooled core engine turbine, and a coaxial front fan with a low-pressure turbine. The CF6-50 engine is in commercial service as the powerplant for the McDonnell-Douglas DC-10 Series 30 Tri-Jet long range intercontinental aircraft and the Airbus Industrie A300B aircraft.

Basic engine sections are shown in figure 3. The engine consists of a fan section, compressor section, combustor section, turbine section, and accessory drive section. This high bypass turbofan engine has a high thrust-to-weight ratio and favorable fuel economy characteristics. The key overall specifications of the CF6-50 engine are presented in table VIII.

The mechanical design of the CF6-50 reference combustor, as installed in the engine, is shown schematically in figure 4. The key features of this combustor are its low-pressure loss step diffuser, its carbureting swirl cup dome design, and its short burning length. Several of the more important design parameters of this combustor are presented in table IX.

Low-Emission Combustor Concepts

Contained below are descriptions of the combustor concepts evaluated in program Phases I and II.

Pratt & Whitney JT9D-7 combustor concepts. - 90° sectors of combustors, of the JT9D-7 engine-combustor size were evaluated in both program phases.

Phase I Combustor Designs: Thirty-two configurations of three distinct combustor concepts were evaluated. The concepts are shown schematically in figure 5 and are described below.

1. Swirl-can Combustor - As in all swirl-can combustors, all combustor airflow exclusive of liner coolant air, passes either through or around the combustor modules and thus through the primary burning zone. Each swirl-can consists of three major components; a carburetor, swirler, and a flame stabilizer. In operation, fuel and air enter the carburetor, mix in passing through the swirler, and burn in the wake of the flame stabilizer. The combustor consists of a 3-row array simulating 120 swirl-cans for the entire annulus. Module diameters vary between rows with the largest modules placed on the

outer row. This arrangement provides maximum stability and corresponding minimum carbon monoxide and unburned hydrocarbon emissions during low-power operation where only the outer module row is fueled.

Combustor modifications included variations in the three module components as well as variations in fuel entry techniques and swirl-can equivalence ratios.

2. Staged Premix Combustor - This combustor consists of multiple burning zones; a pilot or low-power burner, and a main burner. Each burner has its own fuel injectors, premix passage, flameholder, and combustion volume. The main pollution reduction features contained in this combustor are the premix passages. Their purpose is to control fuel-air mixture uniformity and strength.

Idle power is furnished by supplying fuel to only the pilot burner. Both burners are fueled at high power. The two premix passages and combustion zones are axially displaced with the pilot zone located upstream of the main zone. This placement avoids rapid quenching of the pilot zone combustion gases by main zone air.

Combustor modifications emphasized staging of fuel and air between the combustion zones as well as varying the diluent air.

3. Vorbix Combustor - This combustor also employs two burning zones, a pilot, and a main zone, located along the combustor axis. Air and fuel splits between zones are configured so that the pilot burner only is fueled at idle conditions. At high-power conditions, main burner fuel is introduced at the exit of the pilot zone where it is vaporized. Air required for main zone burning is introduced through swirlers located on both combustor liners. Modifications emphasized fuel and air splits between burning zones as well as location and number of main zone fuel sources.

Detailed test results for all three combustor concepts are contained in reference 3. Although all program goals were not achieved with any of the concepts, all concepts produced significant pollutant reductions.

Lowest emissions at idle engine conditions were obtained with the staged premix combustor. The carbon monoxide emission index level was 55 percent below the goal and the total hydrocarbon emission index level was 75 percent below the goal. The vorbix combustor approached but did not meet the goals. The swirl-can combustor provided significantly higher idle emissions that were close to the levels produced by current production JT9D-7 combustors.

At sea-level take-off conditions, although none of the combustors was able to meet the goal for oxides of nitrogen, several combustor configurations provided significant reductions relative to the production combustor. The best results were obtained with the vorbix and the swirl-can combustors, both of which provided approximately 60 percent lower emissions of nitrogen oxides than the current production JT9D-7 combustor. All three combustor concepts met the smoke goal.

Combustor performance data indicated the need for substantial improvement. The vorbix and swirl-can combustors operated with combustion efficiencies of 99.5 percent or higher at take-off conditions. The staged premix combustors had lower efficiencies at take-off conditions. Both the swirl-can and the staged premix combustors require development to meet the current JT9D-7 engine altitude relight requirements.

Phase II Combustor Designs: Based on Phase I results, two combustor concepts were selected for Phase II evaluation. These combustors are described below.

- 1. Vorbix Combustor The Phase II vorbix combustor design is shown schematically in figure 6(a) and pictorially in figure 6(b). This design evolved from Phase I testing and incorporated several modifications. These are: the pilot burner length was increased to reduce carbon monoxide and unburned hydrocarbon emissions; to reduce oxides of nitrogen formation, the main burner length was shortened, liner height was reduced, and the throat height connecting the pilot and main burners was reduced. A listing of the Phase II vorbix configurations evaluated to date is contained in appendix A. Data tables for all evaluated configurations are contained in appendix B.
- 2. Hybrid Combustor The hybrid combustor is shown schematically in figure 7(a) and pictorially in figure 7(b). This design represents an attempt to combine the best features of two of the Phase I designs: a staged premix pilot burner which produced low pollutants at idle conditions; a swirl-can main burner which produced low pollutants at take-off conditions. A listing of evaluated Phase II hybrid configurations is contained in appendix A. Data tables for evaluated configurations are contained in appendix C.

To date, the Pratt & Whitney Phase II test program is approximately twothirds complete. Both combustor designs have been evaluated and the vorbix design has been selected as the one most promising and most readily adaptable for engine installation. Further Phase II testing will be used to optimize this design for Phase III engine installation. General Electric CF6-50 combustor concepts. - Full-annular combustor designs, conforming to CF6-50 dimensions, were utilized to determine pollution levels and combustor performance. Sector rigs were also utilized for specialized testing: altitude relight tests were performed in a 60° sector; high-pressure durability and carboning tests were performed in a 13° sector.

Phase I Combustor Designs: Thirty-four configurations of four combustor concepts, including specialized testing of the CF6-50 design, were investigated. The combustor concepts are shown schematically in figure 8 and are described below.

- 1. Specialized testing of the standard CF6-50 combustor was undertaken to validate test facility pollutant sampling techniques and to assess the effectiveness of various fuel and air staging techniques in reducing low-power pollutants.
- 2. Single Annulus Lean Dome Combustor The standard CF6-50 combustor was modified to produce extremely lean primary zone equivalence ratios. This was accomplished by eliminating the diluent air and passing all of the combustor airflow through the primary zone. The lean primary zone tests, along with the reference CF6-50 12sts, evaluated the potential of incorporating variable geometry into standard combustor designs.
- 3. Swirl-can Combustor A 2-row swirl-can combustor was evaluated by General Electric. Combustor features are similar to the Pratt & Whitney design differing principally in the reduced number of swirl-cans and swirl-can rows in the array. General Electric evaluated arrays consisting of 60, 72, and 90 modules.
- 4. Radial/Axial Staged Combustor This combustor incorporates multiple burning zones; a pilot burner of conventional design, and a main burner incorporating a premix passage. Combustor operation is staged with only the pilot burner fueled at low-power conditions and both burners fueled at high-power conditions. Main zone burning is stabilized by V-gutter-type chutes located at the end of the premix passage. Combustion gases from the pilot burner are used to enhance main burner combustion stability, permitting operation to low main zone equivalence ratios.
- 5. Double Annular Lean Dome Combustor This combustor incorporates two parallel burning zones. In operation, only the outer annulus is fueled at low-power conditions. Both annuli are fueled at high-power conditions. Combustor modifications emphasized fuel nozzle type, fuel and air distribution, and diluent air introduction.

Phase I detailed test results are contained in reference 2. All program goals were not achieved with any of the combustor concepts. CF6-50 combustor tests demonstrated that substantial pollutant reductions apporaching goal values are achievable at engine idle by sector burning the fuel. No NO $_{\rm X}$ reductions at take-off were obtained. Swirl-can combustors produced only minimal pollutant reductions at both idle and take-off conditions. The double/annular and radial/axial combustor designs achieved idle pollution goal values and reduced NO $_{\rm X}$ baseline take-off levels by approximately 50 percent.

Phase II Combustor Designs: Based on Phase I results, the double/annular and radial/axial combustors were selected for Phase II evaluation. The Phase II designs incorporate minor modifications of the Phase I designs and are discussed below.

- 1. Double Annular Combustor The Phase II double/annular combustor is shown schematically in figure 9(a) and pictorially in figure 9(b). Figure 9(c) is a photograph of the 60^o altitude relight sector which illustrates the combustor's front end. A listing of Phase II configurations is contained in appendix A. Data tables for all evaluated configurations are contained in appendix D.
- 2. Radial/Axial Combustor ~ The Phase II radial/axial combustor design is shown schematically in figure 10(a) and pictorially in figure 10(b). A listing of the Phase II configurations is contained in appendix A. Data tables for all evaluated configurations are contained in appendix E.

The General Electric Phase II test program has been completed. Both combustor designs have been evaluated and the double/annular design has been selected as being the most promising and most readily adaptable to engine installation.

TEST CONDITIONS, PROCEDURES, AND DATA ANALYSIS

Test Conditions

Combustor pollution and performance testing were performed at actual engine operating conditions, simulated engine operating conditions and parametric variations about the reference engines operating conditions. In these tests, the combustor inlet temperatures, reference velocities, fuel-air ratios, and turbine cooling air extraction rates of the reference combustors were exactly duplicated. Combustor inlet pressure levels were also duplicated at the

idle condition. However, pressure levels were reduced, relative to those of the reference engines, at approach, climbout take-off and simulated cruise due to test rig airflow/pressure limitations. In these cases, airflow rates were correspondingly reduced to maintain the true reference velocities.

Pratt & Whitney test rig conditions are shown in table X. General Electric test rig conditions are shown in table XI. Also included in these tables for comparison are the reference engine-combustor conditions where they differ from the test rig conditions.

Altitude relight testing was conducted at conditions simulating the enginecombustor relight map. Relight factors investigated were lean blowout, relight. and cross-fire.

Data Acquisition

Data acquisition procedures were designed for expedient data acquisition for all engine operating modes. Pollution data were obtained at the combustor exit plane by utilizing multi-point traversing rakes. Samples were recorded by on-line gas analysis equipment consisting of Beckman Model 402 flame ionization detectors for total unburned hydrocarbon measurement, nondispersive infrared (NDIR) instruments for measurement of carbon monoxide and carbon dioxide, and chemiluminescence analyzers for measurement of nitric oxide and nitrogen dioxide. Smoke emissions were measured by filter strain methods.

Combustor exit temperature distributions were determined by multi-point traversing rakes. Sufficient combustor instrumentation was provided to assess combustor performance and status during test runs. All data were recorded by on-line computing systems. Additional details regarding instrumentation, sampling techniques, probe designs, procedures, etc. and contained in references 2 and 3.

Data Analysis

Test rig data are contained in appendixes B through E in sections entitled "1. Test Rig Data". In setting test point conditions, it was rarely possible to operate precisely at the design point fuel-air ratio. Thus, when more than one fuel-air ratio was investigated at a test condition, the general procedure

used was to plot the emissions against fuel-air ratio and determine emission levels at the design point fuel-air ratio by interpolation. When only one fuel-air ratio was investigated at a test condition, emission levels at that value are reported.

Combustion efficiencies were calculated from concentrations of carbon monoxide and total unburned hydrocarbons in the combustor exhaust gases. A carbon monoxide level of 42.7 is equivalent to a 1-percent combustion inefficiency. An unburned hydrocarbon level of 10 is equivalent to a 1-percent combustion inefficiency. Exhaust gas sample validity was constantly monitored during test runs by comparing calculated carbon balance fuel-air ratio values with metered values.

Data Correlation Procedures

Correlations extrapolating test rig data to reference engine conditions were required in order to permit comparisons of test rig results with program goals. EPAP requirements, and with current reference engine levels. Correlations were required for the following reasons:

- 1. In the test rigs it was not possible to duplicate engine pressure levels greater than idle.
- 2. Since it was rarely possible to set design point values precisely in the test rigs, it was necessary to normalize the data to the design points.

Generally, pressure correlations from test rig to engine values, especially for higher engine power points, produced large differences in pollution data. Normalization of test rig to engine parameters of inlet temperature, reference velocity, inlet-air humidity, and combustor exit temperatures for NO_X correlation produced small differences, in the aggregate ordinarily within several percentage points, with the exception of inlet-air humidity corrections of the Pratt & Whitney rig data. Pratt & Whitney inlet-air humidity corrections produced NO_X reductions of 8 to 10 percent.

Test rig data extrapolated to engine conditions are contained in appendixes B through E under sections entitled "2. Data corrected to engine pressures", and are discussed in succeeding report sections. The correlations used are described below.

Oxides of nitrogen correlation. - The NO_X correlation parameter used has been previously described in references 3 and 10 and is given below:

$$NO_{x}Eng = (NO_{x}Rig) \left(\frac{P_{Eng}}{P_{Rig}}\right)^{n} \left(\frac{V_{ref, Eng}}{V_{ref, Rig}}\right) \left(\frac{T_{exit, Eng}}{T_{exit, Rig}}\right) \left(\frac{\frac{T_{inlet, Eng} - T_{inlet, Rig}}{288}\right) \left(\frac{P_{Eng}}{P_{Rig}}\right)^{n} \left(\frac{V_{ref, Eng}}{V_{ref, Rig}}\right)^{n} \left(\frac{V_{ref, Eng}}{V_{ref, Eng}}\right)^{n} \left(\frac{V_{ref, Eng}}{V_{ref$$

where subscripts:

Eng engine design point values

Rig test rig values

P inlet total pressure, atm

V_{ref} reference velocity, m/sec

T_{exit} combustor exit average temperature, K

Tinlet combustor inlet temperature, K

If inlet-air humidity (normalized to a humidity level of 6.29 g/kg which corresponds to 60 percent relative humidity on a standard day)

n inlet pressure ratio exponent, (=0.2 or 0.5)

Two values were used for the inlet pressure ratio exponent n. For the majority of the data, exclusive of engine approach data where only the pilot was fired, the exponent was 0.5 This value is consistent with the value used in references 3 and 10. For approach data with the pilot only fired, an exponent of 0.2 was used. This exponent was derived from Phase II data by General Electric personnel and resulted from a statistical analysis of test data. Verification data for this exponent are contained in table XII and figure 11.

<u>Total unburned hydrocarbon correlation</u>. - Total unburned hydrocarbons were correlated from test rig to engine pressures by the following expression:

$$\text{THC}_{\text{Eng}} - \text{THC}_{\text{Rig}} \left(\frac{P_{\text{Rig}}}{P_{\text{Eng}}} \right)$$

Verification data for this expression, developed by General Electric personnel with Phase II data, are contained in table XII and figure 12. No correlations except the inlet-pressure correction were made to the total unburned hydrocarbon data.

<u>Carbon monoxide correlation</u>. - Test rig carbon monoxide levels were correlated to engine pressure levels by the following expression:

$$CO_{Eng} = CO_{Rig} \left(\frac{P_{Rig}}{P_{Eng}} \right)^{N}$$

where

$$N = x \left(\frac{CO_{Rig}}{100} \right)^{-0.7}$$

and x equals 0.6 for pilot only operation, and 0.2 when both burning zones are fired. Verification data for this expression, developed by General Electric with Phase II data, are contained in table XII and figure 13. Only inlet-pressure corrections were made to the carbon monoxide data.

EPAP Calculations

The data and calculations presented below were obtained from General Electric and Pratt & Whitney. This material describes the data inputs and calculations required for calculating EPAP values for the CF6-50 and JT9D-7 engines.

General Electric EPAP calculation. - Production engine CF6-50 standard day status cycle data are presented in table XIII. The idle data were obtained from a status deck matched to 109 production engines. The high-power cycle data were obtained from a cycle deck matched to 17 production engines.

EPAP Calculation Procedure: A standard procedure for calculating emissions levels, in terms of the parameter (EPAP) used by the EPA in defining standards for the test configurations has been developed. The prescribed procedure is:

$$EPAP_{i} = \frac{\begin{pmatrix} t_{j} \\ \hline \begin{pmatrix} t_{j} \\ \hline \begin{pmatrix} 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} W_{F_{j}} \\ \hline 1000 \end{pmatrix} (EI_{ij})}{\begin{pmatrix} t_{j} \\ \hline 60 \end{pmatrix} \begin{pmatrix} F_{N_{j}} \\ \hline 1000 \end{pmatrix}}$$
(1)

where

EI emissions index (g/kg fuel)

EPAP emissions parameter (g/kg thrust-hr)

F_N net thrust (KN)

t prescribed time (min)

W_F fuel flow rate (g/s)

and the subscripts are

i type of emissions (CO, HC, NO_x)

j prescribed power level (idle, approach, climbout, and take-off)

For a particular engine cycle, equation (1) can be reduced to:

$$EPAP_{i} = \begin{pmatrix} C_{j} \end{pmatrix} (EI_{ij})$$
 (2)

where

$$C_{j} = \frac{\begin{pmatrix} \frac{t_{j}}{60} \begin{pmatrix} W_{F_{j}} \\ 1000 \end{pmatrix}}{\begin{pmatrix} \frac{t_{j}}{60} \end{pmatrix} \frac{F_{N_{j}}}{1000}}$$
(3)

The coefficients (C_j) for the CF6-50C cycle are derived in table XIV and equation (2) becomes

$$EPAP_{i} = 0.1365 (EI_{i, idle}) + 0.0912 (EI_{i, approach}) + 0.1487 (EI_{i, climb}) + 0.0571 (EI_{i, take-off})$$
(4)

Alternately, equation (2) can be expressed as

$$EPAP_{i} \quad (EPAP_{i, std}) \qquad \frac{EI_{ij}}{\frac{EPAP_{i, std}}{C_{j}}}$$
 (5)

where (EPAP $_{i, std}$) is the standard for each type of emissions. For the CF6-50C, equation (5) becomes

$$\frac{\text{EPAP}_{\text{CO}} = 4.3}{31.49} + \frac{\text{EI}_{\text{CO, approach}}}{47.15} + \frac{\text{EI}_{\text{CO, climb}}}{28.91}$$

$$+ \frac{\text{EI}_{\text{CO, take-off}}}{75.30}$$
(6a)

$$\frac{\text{EPAP}_{\text{HC}}}{5.859} + \frac{\frac{\text{EI}_{\text{HC, approach}}}{8.771} + \frac{\frac{\text{EI}_{\text{HC, climb}}}{5.379}}{5.379}$$

$$+ \frac{EI_{HC, take-off}}{14.01}$$
 (6b)

$$EPAP_{NO_{X}} = 3.0 \frac{EI_{NO_{X,idle}}}{21.97} + \frac{EI_{NO_{X,approach}}}{32.89} + \frac{EI_{NO_{X,climb}}}{20.17} + \frac{EI_{NO_{X,climb}}}{52.53}$$

$$+ \left(\frac{EI_{NO_{X,take-off}}}{52.53}\right) \tag{6c}$$

In this form, each term in the summations is the fraction of the standard produced at that operating mode. Calculations based on equation (6) and measured emission indices are used to calculate the EPAP.

Production engine CF6-50 standard day dry EPAP values and the engine mode pollutant contributions to the valves are presented in table XV.

<u>Pratt & Whitney EPAP calculations.</u> - Production engine JT9D-7 standard day status cycle data are presented in table XVI. The NO_X , CO, and THC data were obtained from an 18-engine pilot lot data base with JP4 and Jet A fuel. Multiplication of the emission index for CO, THC, and NO_X by the EPAP coefficient at each engine mode yields the EPAP contribution for that engine mode. A summation of the EPAP contributions gives the EPAP value.

Current production JT9D-7 emission index values and EPAP values are contained in table XVII.

Report EPAP calculations. - All of the EPAP data contained in this report were computed using the methods and coefficients described above. Where combustion efficiencies were less than values assumed for the EPAP coefficient calculation, coefficient terms were not re-calculated.

RESULTS AND DISCUSSION

Presented in this section are summaries of pollution and performance test rig results for the combustor concepts evaluated in Phase II.

Pratt & Whitney Combustor Concepts

Since the Pratt & Whitney Phase II test program is still in progress, final

assessments regarding the combustors cannot be made at this time. Results obtained to date are given below.

<u>Pollution results.</u> - Total unburned hydrocarbon goals were achieved with both the vorbix and hybrid combustors. Carbon monoxide and oxides of nitrogen goal values were not achieved. However, substantial reductions of both pollutants, compared to reference JT9D-7 engine levels, were realized and program goals and 1979 EPA standards were approached. Smoke levels were low for both combustors.

Vorbix Combustor: Vorbix combustor test results, for all configurations evaluated, are contained in appendix B. A summary of these results is contained in table XVIII. Listed are the EPAP values including the EPAP contribution at each engine operating mode extrapolated to engine conditions, the 1979 EPAP standard values, and production JT9D-7 engine pollution levels. Three sets of test point combinations are presented for each configuration; those producing the lowest NO $_{\rm X}$ EPAP, those producing the lowest CO and THC EPAPS and those producing the lowest combined EPAP's for all three pollutants. Data points are identified by configuration numbers which are defined in the appendix.

The greatest single factor limiting achievable pollutant reductions with the vorbix combustor is CO formation in the pilot burner. This is especially true at the engine idle condition where program CO goal values were not achieved. At higher power points, NO_X reductions were also limited by pilot burner performance. In order to obtain high-combustion efficiencies, the pilot burner required a greater percentage of fuel than was desirable for low NO_X formation.

The vorbix combustor did demonstrate one operational feature which was not demonstrated by any other Phase II combustor. That is, at the approach condition, high-combustion efficiency performance was obtained with both the pilot and main burners fully fueled. This feature eliminates unnecessary fuel staging and should make achievement of required acceleration/deceleration performance easier to attain.

The bext vorbix combustion pollution data were achieved with configurations S-11 and S-20. These results are contained in table XIX. Configuration S-11 produced the lowest NO_X, THC, and bled idle CO EPAP values. Configuration S-20 produced the lowest CO EPAP value but at the unbled idle condition. The unbled idle condition, at which the production JT9D-7 is evaluated, is less severe than the bled condition since combustor inlet temperatures and pressures are higher. Thus it appears that configuration S-11, although it was

not evaluated at the unbled idle condition, should be capable of producing the best vorbix pollution results.

Also included in table XIX are simulated cruise performance data. S-11 cruise results are not representative of attainable vorbix cruise pollution levels since the data were obtained at a non-optimum pilot-to-main burner fuel split. Configuration S-20 is more indicative of achievable cruise pollution levels. Two sets of cruise data are presented. They differ in that different amounts of fuel were supplied to the pilot burner. The higher CO, lower NO_X values were obtained with a smaller amount of fuel supplied to the pilot burner and a greater amount supplied to the main burner.

Hybrid Combustor: Hybrid combustor test results are contained in appendix C. A summary of test results is contained in table XX.

Major factors limiting the pollutant reductions which could be achieved with the hybrid combustor are the narrow combustion stability range of the premix pilot borner and the quick quench of the main burner. The pilot burner, while producing excellent idle performance, did not operate efficiently at reduced pilot fuel-air ratios for higher engine power points when both burners were fired. In addition, at the approach condition, efficient combustion was not achievable with both burners fired, although efficient approach burning was achieved with only the pilot burner fired.

The best hybrid combustor pollution data were achieved with configurations II-5 and II-6. These data are contained in table XXI. Configuration II-5 produced the lowest NO_X EPAP value. Configuration II-6 produced the lowest CO and TIIC values.

Combustor performance results. - In most cases the vorbix combustor produced better performance results. The vorbix combustor demonstrated test rig relight capability comparable to the reference JT9D-7 engine-combustor. The hybrid combustor altitude relight was unsatisfactory with blowout and maximum relight occurring below required values.

Both combustor concepts produced pressure loss levels comparable to the reference combustor. Both combustors also produced radial average exit temperature profiles which, while not identical to the reference combustor profile, indicated that the reference combustor profile was achievable with additional effort.

Pattern factors measured for both combustor concepts at high-power conditions were higher than the reference combustor being 0.4 to 0.7 as compared to 0.42 for the reference combustor. However, it appears that with sufficient

added effort pattern factors for both concepts could be reduced to acceptable levels. At low-power conditions, vorbix combustor pattern factors were acceptable. Hybrid values were not, generally being greater than 1. While uneven temperature distributions are not generally a problem at low power conditions, gross maldistributions could have an effect on turbine life.

While combustor durability was not extensively investigated, potential durability problems appear to exist in both combustor concepts. The hybrid combustor pilot experienced flashback into the premix passage and some erosion occurred in the main stage swirlers. The vorbix combustor "throat" which joins the pilot and main burners appears to be particularly succeptable to hot spots and will require additional coolant air in the engine-combustor design.

Pollution and performance combustor assessments. - Based on the pollution and performance data obtained to date, the vorbix combustor was selected as the more promising concept and the one most readily adaptable to engine installation. Thus further Phase II testing will be restricted to the vorbix combustor and engine-combustor hardware will be designed and fabricated for Phase III engine testing.

Remaining Phase II testing will emphasize optimization of pollution reduction features, pattern factor and radial exit temperature tailoring, and further altitude relight assessments.

General Electric Combustor Concepts

The General Electric Phase II test program has been completed and the results obtained are given in the succeeding sections.

<u>Pollution results.</u> - Carbon monoxide and total unburned hydrocarbon goals were achieved with several of the GE combustors. Oxides of nitrogen goal values were not achieved. However, substantial NO_X reductions, compared to reference CF6-50 engine levels, were realized. Smoke levels were low for all combustor configurations investigated.

Double/Annular Combustor: Double/annular combustor results for all configurations are contained in appendix D. A summary of these results is contained in table XXII. As can be seen, 1979 required EPAP values for CO and THC were achieved and surpassed for all of the latter configurations. However, it was not possible to operate this combustor at approach conditions with both burning zones fully fueled.

The best double/annular pollution data obtained are shown in table XXIII. Configuration D/A-13 produced the lowest EPAP values for all pollutants. Two sets of EPAP values are shown. These include two different fueling modes at approach; the pilot only fueled and the pilot and one-half the main burner sector fueled. The polot only mode produced the lowest CO and THC EPAP values. The pilot and one-half the main sector fueled produced a lower NO_X EPAP while still exceeding CO and THC EPAP requirements. Of the two modes, the pilot and one-half main fueling mode appears preferable since this mode will facilitate engine acceleration.

Configuration D/A-13 utilized all available combustor airflow for combustion and dilution, leaving none for tailoring of exit temperature distribution. Configuration D/A-10 has approximately 5 percent of the combustor airflow available for exit temperature and thus would probably be a more realistic configuration for engine installation. This configuration produced lower CO and THC EPAPs but a higher $NO_{\rm x}$ EPAP.

Although NO $_{\rm X}$ 1979 EPAP standard values were not achieved with the double/annular combustor, values of 4 to 4.5 have been achieved. These values represent substantial reductions compared to the reference CF6-50 engine value of 7.7. The NO $_{\rm X}$ EPAP requirement is particularly difficult to attain with the CF6-50 combustor because of its high pressure ratio of 30:1. The high-pressure ratio results in high combustor inlet temperatures and pressures both of which increase NO $_{\rm X}$ formation. The magnitude of these effects can be estimated by consideration of the NO $_{\rm X}$ correlation parameter described in a prior section.

Radial/Axial Combustor: Combustion and pollution results for all radial/axial combustor configurations are contained in appendix E. A summary of pollution results are contained in table XXIV. As can be seen, it was not possible to operate with high combustion efficiency at the approach condition with both burning zones fueled. Only the unburned hydrocarbon 1979 EPAP standard was achieved with this combustor. Decreases in NO_X levels were generally accompanied by increases in CO.

The best radial axial combustor pollution data were obtained with configuration R/A-2 and are given in table XXV. Two sets of data at climbout and take-off are included. These represent different pilot fuel-air ratios for the same overall fuel-air ratio. Reducing pilot fuel-air ratio typically produces lower NO_X EPAP values but accompanying higher THC and CO values. Cruise data for two different fueling modes are also included. By fueling only one-half the main

burner, NO_X EPAP values can be reduced by 1.5 without significantly affecting CO and THC emissions.

Combustor performance results. - Both the double/annular and the radial/axial combustor demonstrated pressure loss levels comparable to the reference CF6-50 combustor. Both combustors produced radial average exit temperature profiles which, while requiring additional tailoring to achieve reference values, indicated that reference values were achievable. Both combustors also demonstrated good altitude relight, cross-fire, and blowout capability. Relight assessments were made in a 60° sector rig and relight improvements were incorporated into the full-annular hardware as testing progressed.

Extensive carboning-durability assessments were made in another sector rig. Tests were conducted with heavy distillate fuels at increased pressures. Results indicated that the double/annular combustor does not appear to have any durability-carboning problems. The radial axial combustor, conversely, experienced upstream burning in the main stage premix passage with resulting hardware damage.

Pattern factors for both combustors were higher than desirable. At high-power conditions, pattern factors typically were between 0.35 to 0.50 as compared to the reference combustor value of 0.25. Double/annular pattern factors at low-power conditions of idle and approach were high - generally near 1. Thus additional efforts are required to reduce pattern factor values, especially for the double/annular combustor at low-power conditions. These efforts will be conducted in the early phases of the Phase III program where the engine-combustor hardware will be evaluated in the full-annular test facility prior to engine installation.

Pollution and performance combustor assessments. - Based on the Phase II pollution and performance data, the double/annular combustor was selected as the most promising comcept and the one most readily adaptable to engine installation. This combustor concept has been designed and will be fabricated for Phase III engine testing.

PHASE III - ENGINE DEMONSTRATIONS

Up to the present, all testing conducted under the "Experimental Clean Combustor Program" has been in test rigs at reduced pressure conditions. It appears that two promising low-pollution combustor designs, the GE double/annular design

and the Pratt & Whitney vorbix design, suitable for engine installation have been developed. However, verification of the pollution reductions achieved as well as the practicality of the designs await the engine demonstration tests wherein the low-pollution combustors will be evaluated as components of the CF6-50 and JT9L-7 engines.

To date, the Phase III effort has been initiated and the engine demonstrations will be completed in 1976. The Phase III program consists of several efforts. These are described in succeeding sections.

Design Efforts

Design of combustor hardware was initiated in Phase II with final completion and solution of engine-combustor interface problems occurring in Fhase III.

In addition to combustor hardware, engine fuel control systems capable of providing fuel distribution for multi-burning zone combustors are also being designed. The fuel control must satisfy all engine fuel handling requirements including acceleration, safety, and draining requirements. The control will be a breadboard design which will not include control of vane or bleed scheduling.

Engine Tests

A series of three test sequences will be conducted. These consist of the following:

Shakedown tests. - The purpose of the shakedown tests is to determine that the engine, combustor, and instrumentation are in proper working order for subsequent testing. In addition assessments will be made regarding fuel flow splits and their effect on engine acceleration. Testing will be primarily at idle and sub-idle power levels.

Steady-state performance/emissions tests. - The engines shall undergo a series of tests at actual engine operating conditions. Test objectives consist of the following:

- 1. Optimization and combination of engine/combustor hardware and fuel splits between burning zones.
 - 2. Documentation of rollution and performance characteristics.
 - 3. Assessments of pollution sampling techniques.

Data will be obtained at the engine power points listed in table XXVI. Two types of engine test points are indicated. Test points of primary interest are designated as main power points and consist of idle, approach, climbout, and take-off. Three fuel flow splits shall be investigated for each of these power settings. Variations in fuel flow splits will be utilized in asssessing tradeoffs between combustion efficiency and emission levels.

In addition to the main power points, pollution and performance data will also be obtained at the six secondary power points listed in table XXVI. Data obtained at the secondary power points will be utilized to better establish engine pollution and performance characteristics.

Three techniques will be utilized to obtain engine exhaust pollution data. Implementation of these techniques is shown in table XXVI and is discussed below:

12-Point Fixed Sampling: The first technique will utilize the 12-point cruciform rake described in the Federal Register of July 17, 1973, volume 38, number 136 - Part II entitled "Control of Air Pollution from Aircraft and Aircraft Engines". This technique will be used at the main engine power points at the optimum fuel splits.

24-Point Fixed Sampling: The second technique also consists of fixed sampling and is the primary pollution sampling technique. It shall be utilized for all test points. This technique also consists of a cruciform rake with double the number of arms, 8 instead of 4 The arms will be located 45° apart with each arm containing three probe sampling positions at the centers of equal areas.

Traverse Sampling: Traverse sampling consists of rotating the probe described above and obtaining samples at 5° intervals. Traverse data will be obtained at the main engine power points at the optimum fuel splits.

Acceleration and deceleration tests. - Acceleration/deceleration engine tests will be made with several pilot to main burner fuel splits. The cut-in point of the main burner, once the engine has been started with the pilot burner, will also be investigated. Testing will be compatible with the design and construction requirements for transient engine operation as set forth in the Code of Federal Regulations of January 1, 1974, Subpart E, paragraph 33.73, "Power or Thrust Response". The 5-second power or thrust response, stated in the reference is considered a goal for engine acceleration rate. Acceleration testing will proceed as a series of progressively more rapid accelerations, starting from a relatively gradual rate and approaching the goal "snap acceleration" rate.

REFERENCES

- Richard W. Niedzwiecki, and Robert E. Jones, "The Experimental Clean Combustor Program - Description and Status." NASA TM X-71547, April 1974. Presented at the SAE Air Transport Meeting, Dallas, Texas, May 1974.
- 2. D. W. Bahr, and C. C. Gleason, "Experimental Clean Combustor Program, Phase I Final Report." GE 74 AEG 380, General Electric Company, (NASA CR-134737), June 1975.
- 3. R. Roberts, A. Peduzzi, and G. E. Vitti, "Experimental Clean Combustor Program, Phase I Final Report." PWA-5153, Pratt & Whitney Aircraft Division, United Technologies Corporation, (NASA CR-134736), October 1975.
- 4. J. J. Emerling, "Experimental Clean Combustor Program, Noise Measurement Addendum, Phase I Final Report." GE 75 AEG 315, General Electric Company, (NASA 134853), July 1975.
- 5. T. G. Sofrin, and D. A. Ross, "Noise Addendum, Experimental Clean Combustor Program, Phase I Final Report." PWA-5252, Pratt & Whitney Aircraft Division, United Technologies Corporation, (NASA CR-134820), October 1975.
- 6. David A. Kendall, and Philip L. Levins, "Odor Intensity and Characterization of Jet Exhaust and Chemical Analytical Measurements." ADL-74443, Arthur D. Little, Inc., (NASA CR-121159), March 1973.
- 7. Y. B. Zeldovich, "Oxidation of Nitrogen in Combustion Explosions." Acad. des Sci. de l'URSS Comptes Rendus (Doklady), Vol. 51, No. 3, (1946), pp. 217-220.
- 8. C. P. Feinmore, "Formation of Nitric Oxide in Premixed Hydrocarbon Flames," Symposium (International) on Combustion, 13th, Pittsburgh, 1971, pp. 373-379.
- 9. Craig T. Bowman, "Investigation of Nitric Oxide Formation Kinetics in Combustion Processes The Hydrogen-Oxygen-Nitrogen Reaction." Comb. Sci. Tech., Vol. 3, (1971), pp. 37-45.
- 10. Richard W. Niedzwiecki, and Robert E. Jones, "Parametric Test Results of a Swirl-Can Combustor." NASA TM X-68247, June 1973. Presented at the AIChE Seventy-Fifth National Meeting, Detroit, Michigan, June 1973.

APPENDIX A

This appendix contains description of combustor configurations evaluated in Phase II of the Experimental Clean Combustor program. Only the configurations evaluated for pollution reduction are described. Not contained are configurations evaluated for diffuser performance, altitude relight, and carboning-durability performance. These will be contained in subsequent contractor and NASA reports.

Vorbix Configurations

Pratt & Whitney evaluated 11 vorbix combustor configurations to date. The baseline design is shown in figure 6. Configurations are described in table A-I. Airflow splits are contained in table A-II.

Hybrid Configurations

Seven hybrid combustor configurations have been evaluated by Pratt & Whitney. The baseline design is shown in figure 7. Configuration descriptions are contained in table A-III. Airflow splits are contained in table A-IV.

Double/Annular Configurations

General Electric evaluated 14 double/annular combustor configurations. The baseline design is shown in figure 9. Configuration descriptions are contained in table A-V. Airflow splits are contained in table A-VI.

Radial/Axial Configurations

Seven radial/axial combustor configurations have been evaluated by General Electric. The baseline design is shown in figure 10. Configuration descriptions are contained in table A-VII. Airflow splits are contained in table A-VIII.

CONFIG.	MODIFICATIONS	DESIGN INTENT				
S-11	BASELINE DESIGN: REFERENCED TO PHASE I CONFIGURATION S-10 1. Throat annular height reduced. 2. Increased pilot burner volume - axial length increased 3.8 cm. 3. Reduce main burner cross-sectional area. 4. Add cooling air scoops to throat; incorporate improved main burner nozzle seating arrangement to eliminate liner-nozzle interference.	1. Provide better separation between burning zones. 2. Contain idle burning in pilot. 3. Reduce main burner residence time. 4. Durability improvements.				
5-12,13	 Install alternating right and left hand main burner swirlers. Configuration S-13 - Utilize 7 (alternate) instead of 13 main burner fuel injectors. 	Enhance main burner quick mixing. Improve part power combustion efficiency.				
5-14,15	 Install low pressure drop fuel injectors in main burner. Configuration S-15 - Utilize 7 (alternate) instead of 13 main burner fuel injectors. 	Optimize fuel injection system. Improve part power combustion efficiency.				
3-16	 Add blockage rings to pilot swirlers. Dilution air added downstream of main burner swirlers. Install co-rotational swirlers in main burner. 	 Optimize idle performance at design point fuel-air ratio. Improve part power combustion efficiency. Reduce quick quenching in main burner. 				
-17	Install aerating pilot nozzles in pilot fuel injectors.	Fuel injection study.				
i=18	Pilot burner redesigned with increased volume. S-17 aerating pilot nozzles retained.	Increase pilot zone residence time.				
-19	Install pressure atomizing pilot nozzles.	Improve idle performance.				
-20	Increase pilot airflow so equivalence ratio is 0.8.	Reduce equilibrium CO values.				
-21	Main burner fuel injection system redesigned. Premix passages provided.	Reduce NOx formation through premixed fuel preparation.				

TABLE A-I. - PHASE II VORBIX COMBUSTOR CONFIGURATIONS, PRATT & WHITNEY

2

TABLE A-II. - VORBIX BURNER AIRFLOW SPLITS

Location	S-11	S-12	S-13	S-14	S-15	s-16	S-17	S-18	S-19	S-20
Pilot Nozzle				Company of the St.	10	ary bessel	3.16	5.68		e ping meren
Pilot Swirler (SW)	13.32	13.37	13.37	13.37	13.37	1.94	2.15	5.68	4.0	14.1
Pilot SW Cool	1.208	1.21	1.21	1.21	1.21	1.25	1.39			platina anta 19 an
Main SW ID	25.91	28.23	28.23	28.23	28.23	24.08	28.06 60.12	(0.0	50.0	
Main SW OD	28.88	26.17	26.17	26.17	26.17	31.53	28.85	60.12	62.0	50.9
ID Dil			1 1 8 8501 B 10 10 8 8501 B		2040-72-98	4.05	4.01	3.21	3.0	4.0
OD Dil					77 5600 840	4.71	4.54	3.35	3.0	3.9
Main Nozzle Cool		0.95	0.95	0.95	0.95	1.14	1.05	1.14	1.0	1.2
Bulkhead Cool	2.688	2.69	2.69	2.69	2.69	2.78	3.09	2.53	3.0	2.8
Finwall Cyl	2.658	2.29	2.29	2.29	2.29	2.23	2.54	685 - SATURES	6 dauthir	
Pinwall ID	1.249	1.08	1.08	1.08	1.08	1.05	1.19			
Finwall OD .	1.344	1.14	1.14	1.14	1.14	1.38	1.37		ga Pagawas Pasani (1900)	opportunity and
ID Cool	6.655	7.76	7.76	7.76	7.76	7.37	7.94	8.79	8.0	7.6
OD Cool	10.556	9.70	9.70	9.70	9.70	10.86	4.92	10.26	1.0	10.8
Sidewall Cool	4.914	5.40	5.40	5.40	5.40	5.62	5.75	. 4.94	5.0	4.8

3

TABLE A-III. - PHASE II HYBRID COMBUSTOR CONFIGURATIONS, PRATT & WHITNEY

ORIGINAL PAGE IS OF POOR QUALITY

NO.		MODIFICATIONS		DESIGN INVENT				
H-1	1.	SELINE DESIGN: REFERENCED TO PHASE I PREMIX AND SWIRL-CAN CONFIGURATIONS Premixed pilot from Phase I configuration P-3. Swirl-can main burner with outer swirler flameholders and fuel splashplate. Main burner diffuser inserts.	100	Combine two Phase I combustor concepts: low idle pollutants with the premix pilot burner; low NOx production with the swirl-can main burner.				
H-2		Install counter rotating inner and outer main burner swirlers		Enhance mixing and reduce NOx.				
н-3	YOU STREET,	Block outer flow path on main burner and add dilution air on the o.d. Provide staged main burner fuel system.	1.	Reduce main burner residence time by quick quench. Investigate staging of fuel at part power points.				
H-4		Install pilot spray cone pilot fuel nozzles.		Fuel injection study.				
н-5		Install configuration H-1 with reduced pilot premix passage airflow. Increase current dilution airflow levels.	1.	Permit operation at part and high power with reduced req- uired pilot fuel flow. Maintain pressure drop.				
н-6		Pilot dilution air eliminated and flow diverted to pilot premix passage and main burner bulkhead.		Permit part and high power operation with reduced pilot fuel flow; eliminate quick-quench effects.				
H-7		Install configuration H-6 with solid cone pilot nozzles		Fuel injection study.				
	HYE	RID TEST PROGRAM STOPPED AFTER CONFIGURATION H-7	_					

33

TABLE A-IV. - HYBRID BURNER AIRFLOW SPLITS

Location	H-1	H-2	H-3	H-4	H-5	H-6	H-7	
Pilot F.H.	18.14	16.30	18.0	18.0	12.46	12.46	12.46	
Pilot F.H. Weep	4.85	4.40	4.0	4.0	3.51	3.51	3.51	
Pilot F.H. Cool (I.D.) Main outer Sw.	24.00	24.50	0.6	0.6	0.47 34.16	0.47 34.16	0.47 34.16	
Main inner Sw.	20.34	20.80	15.8	15.8	18.85	18.85	18.85	
Bulk. Cool	3.94	4.00	4.4	4.4	3.87	3,87	3.87	
Dilution I. D. Dilution O. D. (1) Dilution O. D. (2)	10.64	11.00	12.7 15.7 9.2	12.7 15.7 9.2	9.83	9,83	9.83	
Finwall (I.D.)	0.82	0.82	1.0	1.0	0.73	0.73	0.73	
Finwall (O.D.)	0.99	1.00	1.3	1.3	0.89	0.89	0.89	
I. D. Cool	4.88	5.00	6.1	6.1	4.50	4.50	4.50	
O. D. Cool	6.30	6.90	5.6	5.6	5.99	5.99	5.99	
Side wall	5.1	5.40	5.5	5.5	4.72	4.72	4.72	

TABLE A-V. - PHASE II DOUBLE/ANNULAR COMBUSTOR CONFIGURATION, GENERAL ELECTRIC

CONFIG.	MODIFICATIONS .	DESIGN INTENT
D/A-1	REFERENCED TO PHASE I BASELINE DESIGN D/A -II-16 1. Centerbody extended 3.17 cm. 2. Install pilot swirlers from Phase I configuration III-2. 3. Provide main burner dome dilution holes: 60 @ 0.95 cm diameter	 Provide better sheltering for idle burning. Best available from Phase I. Provide leaner main burning; approach design pressure loss.
D/A-2	 Install stronger pilot secondary swirlers. Add mixing section (barrels) to main burner swirlers. Move main burner dome aft 1.45 cm. 	 Improve pilot fuel-air atomization and mixing. Improve fuel-air mixing. Accommodate No. 2; reduce dome to dilution length 20%.
D/A-3	 Install higher flow primary and secondary air swirlers on main burner. Centerbody shortened to original length. Remove liner air dilution holes. 	1,2. Provide leaner main burner micture and burning. 3. Provide leaner main burner; improve idle performance.
D/A-l4	 Install new pilot burner nozzle-swirler assembly - 60° axial secondary swirlers, 90° simplex nozzles. Reduce pilot burner liner coolant 33%. Modify main burner nozzle swirler - primary swirler immersion decreased from .89 to .13 cm; pressure atomizing fuel nozzles installed. 	 Provide increased pilot burner cup air-fuel mixing. Eliminate excess coolant. Increase mixing within swirl-cup.
D/A-5	Add barrel extensions to pilot burner swirlers. Pilot burner dome and centerbody moved downstream 1.8 com.	1. Promote mixing. 2. Accommodate modification no. 1.
D/A-6	1. Add 120056 cm dia. dilution holes to first pilot burner liner panel. 2. Close main burner dilution holes, put air through first liner panel.	 Produce more favorable stoichiometry - reduce idle pollutants. Promote more effective mixing for NOx reduction.
D/A-7	 Enlarge pilot burner liner dilution holes Primary and secondary swirlers from D/A·1,2 installed in main burner and liner dilution holes enlarged. Centerbody slotted in one location (3.8 long by 2.5 cm wide). 	 Optimize pilot design - reduce NO emissions. Improve main burner stability. Improve cross-fire characteristics.
D/A-8	 Pilot burner dilution holes moved from first to second liner panel. Main burner dilution holes moved to fourth liner panel Install lower flow rate simplex fuel nozzles. Pilot burner nozzles reduced from 20 to 17 kg/hr; main burner nozzles reduced from 50 to 20 kg/hr. 	1. Reduce idle emissions. 2. Achieve better combustor mechanical design 3. Permit more variability in fuel staging.
D/A-9	1. Main burner fourth panel dilution holes closed, first panel holes enlarged.	1. Produce more rapit main burner quenching.
D/A-10	D/A-7 main burner configuration rebuilt.	Determine if low NOx emissions of D/A-7 can be reportuced.
D/A-11		Develop better combustor mechanical design. Promote more effective mixing, evlove better mechanical design.

the our make harring some 30 of principle spices contact frames, which is a

grant Table 9 to Bedesig Ten by

CONSTRUCTO DE LA COMPANSA DE LOS DESENTADOS DE CONTRADOS DE LA COMPANSA DEL COMPANSA DE LA COMPANSA DE LA COMPANSA DEL COMPANSA DE LA COMPANSA DEL COMPANSA DEL COMPANSA DE LA COMPANSA DE LA COMPANSA DE LA COMPANSA DEL COMPAN

CONFIG.		MODIFICATIONS	DESIGN INTENT
D/A-12	3.	Main stage second panel dilution holes moved back to first panel New pilot burner primary swirler/venturi installed Pilot burner secondary swirler flow area reduced by 17%. New pilot burner fuel nozzles installed	1. Second liner panel location produced higher NOx levels. 2. Design passed carboning tests and met altitude relight requirements. 3. Design matches flow area of the Phase III engine-combustor design. 4. Design matches Phase III engine-combustor design.
D/A-13		Main burner aft profile trim holes in 4th liner panel closed and first liner panel dilution holes enlarged. Thimbles added to main burner first panel dilution holes to increase diluent penetration.	1,2. Obtain lower NOx values by better mixing, quenching and leaner burning.
D/A-14	2.	Main burner 4th panel liner trim holes opened. Main burner liner thimbles removed. Pilot burner liner dilution hole diameter increased from .67 cm to .71 cm. Pilot burner liner first panel coolant increased from 0.9 to 2.8 %.	1. Provide more open area and lower pressure loss. 2. Not practical for engine installation. 3. Simulate cooling airflow distribution of the Phase III engine-combustor. 4. Simulate Phase III engine-combustor design.
D/A-14b		Engine prototype fuel nozzles installed on pilot burner stage.	Simulate engine-combustor design.
	DOI	BLE/ANNULAR TEST PROGRAM COMPLETED FOR PHASE II	

THE TRANSPORT OF LEADING TO A SECURE OF THE PARTY OF THE

OF POOR QUALITY

2

TABLE A-VI. - AIRFLOW DISTRIBUTIONS, ALL DOUBLE/ANNULAR COMBUSTOR CONFIGURATIONS

CONFIGURATION ,	II-4	11-8	п-9	п-11	II-13	П-16	DI	D2	D3	D4	D5	D6	D7	D8	D9	DIO	DII	DIZ	D13	D14	Engine Design
OUTER SWIRL CUPS Fuel Nozzle Shroud Primary Swirler Secondary Swirler Total	0.9 3.4 28.4 32.7	3.4 14.1	3.4	0.9 3.4 14.1	0.9 3.6 13.5	0.9 4.0 7.3	0.9 3.5 8.8 13.2	0.9 3.6 7.1	0.9 3.6 7.2	0.1 3.7 9.0	0.1 -3.6 9.0	0.1 3.5 8.8 12.4	0.1 3.6 8.8	0.1 3.6 8.8 12.5	0.1 3.6 8.8 12.5	0.1 3.6 8.8 12.5	0.1 3.6 8.8 12.5	0.9 5.2 7.4	0.1 5.1 7.3 12.5	0.8 4.7 6.7	0.8 4.6 7.2 12.6
INNER SWIRL CUPS Fuel Nozzle Shroud Primary Swirler Secondary Swirler Total	0.9 3.4 28.4 32.7		0.9 3.4 28.7 33.0	0.9 3.4 28.7 33.0	0.9 3.6 30.0 34.5		0.9 3.5 29.1 33.5	0.9 3.6 29.6 34.1		0.1 9.6 39.0 48.7	0.1 9.6 38.6 48.3	0.1 9.3 37.6 47.0		0.1 3.6 29.8 33.5	0.1 3.6 29.6 33.5	0.1 3.6 29.8 33.5			0.1 3.5 29.3 32.9		1.5 4.6 26.9 33.0
Outer Liner, Panel 1 Outer Liner, Panel 2 Inner Dome Inner Liner, Panel 1 Inner Liner, Panel 2 Inner Liner, Panel 4 Total	0 0 0 0 0 0 0	0	0 0 0 0 13.8 0	0 0 0 13.8 0 0	0	0 0 0 18.7* 0 0	0 0 4.8 16.9* 0 0	0 0 4.9 17.3* 0 0	0 0 4.9 0 0	0 0 5.0 0 0 0	0 0 5.0 0 0 0	3.2 0 0 4.3 0 7.5	4.7 0 4.9 10.9 0	0 4.7 0 10.9 0 4.9 20.5	0	0 4.7 4.9 10.9 0 0	0 4.7 0 5.5 5.5 4.9 20.6	0 4.9	0 4.6 0 17.0* 0 21.6	0 4.4	0 4.5 0 10.6 0 2.0
Outer Liner Outer Dome Centerbody Inner Dome Inner Liner Seal Leakage Total	11.2 4.2 3.1 3.9 10.8 1.4 34.6	1.4	11.2 4.2 3.1 3.9 11.0 1.4	11.2 4.2 3.1 3.9 11.0 1.4	8.0 4.4 3.3 4.1 8.7 1.5	8.5 4.7 3.6 4.3 9.4 1.6 32.1	7.7 5.1 3.9 5.0 8.4 1.5	7.9 5.3 3.9 4.9 8.6 1.5	1.5	1.5	8.2 4.6 4.0 4.2 11.5 1.5	1.5	8.1 4.5 4.0 4.1 11.3 1.5	8.1 4.5 4.0 4.1 11.3 1.5 33.5	8.1 4.5 4.0 4.0 11.3 1.5	8.1 4.5 4.0 4.1 11.3 1.5	8.1 4.5 4.0 4.1 11.3 1.5	8.0 4.5 3.9 4.1 11.2 1.5	8.0 4.4 3.9 4.1 11.1 1.5	9.4 4.1 3.6 3.7 10.2 1.4 32.4	9.4 7.1 3.1 5.5 10.8 1.4
w Thimbled	Dilution	n Holes						ALLITYON WALL	ORIGINAL PAGE L		ţ										

TABLE A-VIII. - AIRFLOW DISTRIBUTIONS, RADIAL/AXIAL-STAGED COMBUSTOR

			Conf	igurat	ion			Engine
	R1	R2	R3	R4	R5	R6	R7	Design
Pilot Cups								
Fuel Nozzle Shroud	0.9	0.9	0.9	0.1	0,1	0.1	0.1	0.8
Primary Swirler	3.2	3,2	3.2	3.2	3.9	3.3	4.1	3.9
Secondary Swirler	5.4	8.0	7.9	7.9	11.1	9.5	11.5	7.5
Total	9.5	12.1	12.0	11.2	15.1	12,9	15.7	12.2
Main Stage Flameholders								
Carbureted	63.9	16.9	65.1	65.6	47.0	17.7	47.2	50.0
Uncarbureted	0	47.5	0	0	0	40.8	0	0
Total	63.9	64.6	65.1	65.6	47.0	58.5	47.2	50.0
Dilution								
Pilot Stage	0	0	0	0	0	4.5	5.5	4.5
Inner Liner	0	0	0	0	8.7	0	0	2.0*
Total	0	0	0	0	8.7	4.5	5.5	6.5
Cooling								
Pilot Stage	11.1	7.6	7.5	7.6	9.3	7.9	11.4	11.1
Flameholders	1.3	1.3	1.1	1.1	1.5	1.1	1,7	1.4
Outer Liner	5.5	5.6	5.6	5.7	6.9	5.9	7.2	6.7
Inner Liner	7.4	7.5	7.4	7,5	9,2	7.8	9.6	10.7
Seal Leakage	1.3	1.3	1.3	1.3	1.6	1.4	1.7	1.4
Total	26.6	23.3	22.9	23.2	28,5	24.1	31.6	31.3

APPENDIX B

This appendix contains summaries of test rig data for all of the Pratt & Whitney vorbix combustor configurations evaluated in Phase II of the Experimental Clean Combustor Program. Data are presented in two groupings:

- 1. Test Rig Data In this section, data are presented as they were obtained in the test rig with one exception. In setting test point conditions, it was rarely possible to operate precisely at the design point fuel-air ratio. Thus, when more than fuel-air ratio was investigated at a test condition, the general procedure used was to plot the emissions against fuel-air ratio and determine emission levels at the design point fuel-air ratio by interpolation. When only one fuel-air ratio was investigated at a test condition, emission levels at that value are reported.
- 2. Data Corrected to Engine Pressures Correlations which were used to extrapolate test rig data to engine conditions are contained in the Data Correlation Procedures section of the report. Calculations of EPAP values were made according to the procedures described in the EPAP Calculations section of the report.

41

APPENDIX B-1

P & W VORBIX COMBUSTOR DATA, CONFIGURATION S-11

refused to the second second second			
 TEST	TATA	TA A CTL A	
 3.84	10 11 4	110.1.0	

ENGINE CONDITION	IDLE	APPR	OACH	CLIMBOUT			TAKE-	-OFF	and part over the stage		CRUISE
READING NUMBER	I - 1	APP-1	APP-2	CLI-1	TO1	TO2	TO3	TO4	TO5	TO6	CTOL CRUISE
FUELING MODE	PILOT	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN							
INLET PRESSURE ATM.	2.94	6.67	6.71	6.75	6.81	6.72	6.78	6.71	6.85	6.77	6.80
FUEL-AIR RATIO-PILOT	.0126	.0074	•0096	.0042	.0032	.0036	.0047	.0056	.0065	.0072	.0040
FUEL-AIR RATIO-TOTAL	.0126	.0139	.0140	•0208	.0217	.0193	.0193	.0215	.0192	.0216	•0200
CO - E.I.	36.0	26.0	14.2	25.0	11.2	33.6	11.9	7.8	53	7.0	38.9
THC -E.I.	0.8	2.1	0.6	1.5	5.0	2.5	0.7	-0-	0.2	0.3	56.7
NO _x - E.I.	4.1	5.3	7.1	8.5	9.9	8.5	9.2	10,1	9.2	10.3	5.7
SMOKE NO.								-			
COMBUSTION EFFICIENCY %		99.2	99.6	99.3	99.2	99.0	99.7	99.8	99.9	99.8	93.4
PATTERN FACTOR	0.27										
CONTRIBUTION	6.19	1.77	0.97	2.66	0.46	1.39	0.49	0.32	0.22	0.29	
THC - EPAP CONTRIBUTION	0.14	0.14	0.04	0.16	0.21	0.10	0.01	-0-	0.01	0.01	
2. DATA CORRE	CTED T	O ENGI	NE PR	SSURES:							
CO - E.I.	36.0	23.0	11.8	14.7	4.0	20.6	4.4	2.0	0.9	1.6	28.4
THC - E.I.	0.8	1.7	0.5		1.6	0.8	0.1	-0-	0.1	0.1	40.9
NOx - E.I.	3.8	5.1	6.7	11.9	15.4	14.5	15.2	16.2	14.9	17.0	6.2'
COMBUSTION EFFICIENCY		99.3	99.7	99.6		99.4			100	100	95.2
% CO - EPAP CONTRIBUTION	6.19	1.57	0.80	1.56	0.16	0.85	0.18	0.08	0.04	0.07	
THC - EPAP CONTRIBUTION	0.14	0.11	0.03	0.06	+	0.03	-		-0-	-0-	
NO _X - EPAP CONTRIBUTION	0.65	0.35	0.46	1.27	0.64	0.60	0.63	0.67	0.62	0.70	

42 APPENDIX B-2

P & W VORBIX COMBUSTOR DATA, CONFIGURATIONS S-12,13

. TEST RIG DATA

NGINE CONDITION	IDLE	APPR.	CLIMBOUT	,41 1-		T	AKE-OF	9			NO CRUISE	DATA
EADING TUMBER	I-1	APP-1	CLI÷1	то-1	TO-2	TO-3	TO-4	TO-5	TO-6	то-7	1993 (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
TUELING MODE	PILOT	PILOT	PILOT & 7 MAIN INJ.	&	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & 7/11 MAIN	PILOT & 7/11 MAIN		
nlet Ressure ATM .	2.92	6.81	6.73	6.76	6.79	6.82	6.84	6.86	6.81	6.81		
TUEL-AIR RATIO-PILOT	.0121	.0130	.0060	.0036	.0046	.0050	.0058	.0073	.0050	.0088		
TUEL-AIR RATIO-TOTAL	.0121	.0130	.0192	.0216	.0222	.0215	0219	.0222	.0169	.0221		
00 - E.I. HC -E.I.	36.0 1.9	7.5	23.3	57.3 3.8	51.5 1.1	59.5	39.2	31.9	20.0	19.4		
NO _v - E.I.	3.6	10.2	8.3	9.7	9.9	9.7	10.7	12.0	9.0	13.9	Option 1	
COMBUSTION EFFICIENCY %	99.0	99.8	99•4		98.7		99.0	99.2	99.4			
PATTERN	0.46					~0°49			0.49		Contract design	
O - EPAP	6.19	0.51	2.48	2.37	2.13	2.46	1.62	1.32	0.83	0.80		
THC - EPAP CONTRIBUTION	0.33	0.03	0.10	0.16	0.06	0.05	0.05	0.03	0.04	0.02		i i
DATA CORRE	CTED TO	ENGIN	E PRESSURI	SS:								
00 - E.I.	35.8	3.3	13.3	1,0.9		1,3.0		CONTRACTOR OF THE PARTY OF THE	10.0	9.51		
CHC - E.I.	1.9	0.3	0.3	1.2		0.4	0.4	0.3	0.3	0.2		
OMBUSTION	3.2	9.4	12.3	15-5	15.4	15.0	16.7	18.3	15.7	21.4	a week and a second	185
EFFICIENCY	99.0	99.9	99•7	98.9	99.1	99.0	00.4	99.5	99.7	99.8		
CO - EPAP	6.16	0.23	1.42	1.69	1.49	1.78	1.05	0.80	0.41	0.39		
THC - EPAP CONTRIBUTION	0.33	0.02	0.04	0.05	0.02	0.02	0.01	0.01	0.01	0,01		
NO _X - EPAP	0.55	0.64*	1.31	0.61	0.61	0.62	0.69	0.76	0.65	0.89		

^{* ---} P.2 NO, EXTRAPOLATION TO ENGINE PRESSURE

APPENDIX B-3

P & W VORBIX COMBUSTOR DATA, CONFIGURATIONS S-14, 15

. TEST RIG DATA

ENGINE	SAME PILOT AS S-12,13	NO CLIMB.		TA	KE-O	FF			CRU.
CONDITION	IDLE, APPROACH PILOT DATA SAME	DATA			,			-	DAT.
NUMBER			TO-1	TO-2	TO-3	TO-4	TO-5		
FUELING MODE			PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & 7/11 MAIN	PILOT & %/11 MAIN		
· INLET PRESSURE ATM.			6.71	6.81	6.75	6.76	6.76		Nacional Control of the Control of t
FUEL-AIR RATIO-PILOT			.0042	.0058	。0090	.0041	.0058		
FUEL-AIR RATIO-TOTAL			.0223	.0219	.0223	.0220	.0219		
CO - E.I.			1,7.6	15.2	15.0	71.9	61.9		
THC -E.I.			2.8	1.1	Oals	3.9	2.2		
NO _Y - E.I.			12.5	13.7	18.5	8.7	10.2		
SMOKE NO.		harden and a second		-					
COMBUSTION EFFICIENCY %			98.6	99.5	99.6	97.9	98.4		
PATTERN FACTOR									
CONTRIBUTION			1.97	0.63	0.62	2.98	2.53		
THC - EPAP CONTRIBUTION			0.12	0.01	0.01	0.16	0.09		
2. DATA CORR	ECTED TO ENGINE PRESSURES:								
CO - E.I. THC - E.I. NO _X - E.I.			32.l ₁ 0.9 19.5	6.5 0.1 21.5	0.1	5) ₁ .1 1.3 13.3	0.7		
COMBUSTION EFFICIENCY %	6.00 T.00 Q.00 B.00 A.00		99.2	99.8	99.8				
CO - EPAP CONTRIBUTION			1.34	0.27	0.26	2.24	1.84		
THC - EPAP CONTRIBUTION	-Car -ASA -ASA -ASA - ASA - ASA		0.04	0.01	0.01	0.05	0.03		
NO _X - EPAP CONTRIBUTION	74.0 10.0 87.0 F8.0 sr.n		0.81	0.89	1.18	0.55	0.65		

44

APPENDIX B-4

.P & W VORBIX COMBUSTOR DATA, CONFIGURATION S-16

. TEST RIG DATA

ENGINE CONDITION	IDLE BLED	NO APPROACH DATA	NO CLIMBOUT DATA		T	AKE-OF	P	17 2 1	NO CRUIS	SE DATA
READING NUMBER	I - 1			TO-1	TO-2	TO-3	то-4	TO- 5		
FUELING MODE	PILOT	and the state of t		&	PILOT & MAIN	&	PILOT & MAIN	PILOT & MAIN		
INLET PRESSURE ATM.	2.93			6.67	6.77	6.84	6.73	6.66		
FUEL-AIR RATIO-PILOT	.0126			.0052	.0056	•0066	.0075	.0097	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
FUEL-AIR RATIO-TOTAL	.0126			.0220	.0162	•0192	.0224	.0214		
CO - E.I.	61.5			26.4		13.0	THE RESERVE AND ADDRESS OF THE PARTY OF THE	8.7	n romentario della	
THC -E.I.	1.0			0.5	0.3	-0-	0.2	-0-	7 317	
NO _x - E.I.	3.3			10.9	12.1	14.0	14.6	13.6		
SMOKE NO. COMBUSTION EFFICIENCY %	98.5			99•3	99•7	99•7	99.5	99.8		
PATTERIX FACTOR	0.29		Barrier E.		0.80					
CO - EPAP CONTRIBUTION	10.6			1.09	0.44	0.54	0.94	0.36		
THC - EPAP CONTRIBUTION	0.2			0.02	0.01	-0-	0.01	-0-		
2. DATA CORRE	CTED TO	ENGINE PRES	SURES:							
CO - E.I.	61.5			1),.7	3.6	5.1	11.8	2.4		
THC - E.I.	1.0			0.2	0.1	-0-	0.1	-0-		
$NO_X - E.I.$	3.0	Take the part of		17.4	21.5	22.8	22.7	22.4		
COMBUSTION EFFICIENCY %	98.5	F3 110 11		99.6	99.9	99.9	99•7	99.9		
CO - EPAP CONTRIBUTION	10.6			0.61	0.15	0.21	0.49	0.10	754	
THC - EPAP CONTRIBUTION	0.17			0.01	-0-	-0-	-0-	-0-		
NO _X - EPAP CONTRIBUTION.	0.51	20 80,0		0.72	0.89	0.95	0.94	0.93		

45 . APPENDIX B-5

P & W VORBIX COMBUSTOR DATA, CONFIGURATION S-17

1.	TES	T	RI	G	DA	TA	
THE RESERVE	DANISHMEN	-	PROPERTY AND PERSONS	OWNERS OF TAXABLE PARTY.	No.	-	

ENGINE CONDITION	IDLE	APPROACH	CLIMBOUT	i Tyrei		TAKE	-OFF			NO CRUISE DATA
READING NUMBER	I-1	APP-1	CL-1	TO-1	T0-2	то-3	TO-4	T9 5	то-6	
FUELING MODE	PILOT	PILOT	PILOT	PILOT	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	
INLET PRESSURE ATM.	2.93	6.80	6.71	6.78	6.82	6.75	6.81	6.84	6.80	1934 1934 1934 1934 1934 1934 1934 1934
FUEL-AIR RATIO-PILOT	•0126	•0136	•0198	.0215	.0022	.0042	.0054	•0075	.0098	
FUEL-AIR RATIO-TOTAL	.0126	.0136	•0198	.0215	.0220	.0220	.0217	.0224	.0217	
CO - E.I.	55.6	15.7	8.2	7.3	82.7	35.1	25.1	20.5	11.9	
THC -E.I.	1.3	0.4	0.4	0.6	10.9	1.1	0.7	0.5	0.2	41 1 2 2 2 2 2 2 2 2
NO _y - E.I.	3.0	4.7	6.8	7.4	8.1	11.3	12.5	14.7	15.7	
SMOKE NO. COMBUSTION EFFICIENCY %	98.6	99.6	99.8	99.8	97.0	99.1	99•3	99.5	99•7	
PATTERI? FACTOR	0.30									
CO - EPAP CONTRIBUTION	9•\$6	1.07	0.87	0.30	3.42	1.45	1.04	0.85	0.49	The second secon
THC - EPAP CONTRIBUTION	0.22	0.03	0.04	0.02	0.45	0.05	0.03	0.02	0,01	
2. DATA CORRE	CTED I	O ENCINE	PRESSURES	<u>:</u>						
CO - E.I.	55.5	9.5	0.3	0.1	63.9	21.8	13.9	10.4	4.4	
THC - E.I.	1.3	0.3	0.2	0.2	3.5	0.4	0.2	0.2	0.1	
NO _x - E.I.	2.5	4.3*	10.3	11.7	12.8	18.0	19.6	22.4	24.4	
COMBUSTION EFFICIENCY %	98.6	99.8	100	100	98.2	99•5	99.7	99•7	99•9	
% CO - EPAP CONTRIBUTION	9.55	0.65	0.03	-0-	2.65	0.90	0.57	0.43	0.18	
THC - EPAP CONTRIBUTION	0.22	0.02	0.02	0.01	0.15	0.01	0.01	0.01	-0-	
NO _x - EPAP CONTRIBUTION.	0.43	0.29*	1.10	0.48	0.53	0.47	0.52	0.61	0.65	

COMBUSTOR INLET TEMPERATURE AND REFERENCE VELOCITY AT NOMINAL ENGINE CONDITIONS.
* --- $P^{\circ 2}$ NO $_{\mathbf{x}}$ EXTRAPOLATION TO ENGINE PRESSURE

46 . APPENDIX B-6-a.

P & W VORBIX COMBUSTOR DATA, CONFIGURATION S-18

1. TEST RIG DATA IDLE, APPROACH, CLIMBOUT AND TAKEOFF DATA

ENGINE CONDITION	IDLE		APPR	DACH		CLIMBOUT		TI	KE-OFF	7		
READING NUMBER	I1	APP-1	APP-2	APP-3	APP-4	CL-1	TO-1	TO-2	то-3	то-4	TO-5	
FUELING MODE	PILOT	PILOT & MAIN	&	PILOT & MAIN								
INLET PRESSURE ATM.	2.93	6.88	6.84	6.80	6.94	6.82	6.81	6.80	6.84	6.90	6.76	
FUEL-AIR RATIO-PILOT	.0126	.0027	.0055	.0081	•0107	•0030	.0032	.0042	•0053	.0073	.0097	
FUEL-AIR RATIO-TOTAL	.0126	.0134	.0137	.0133	.0134	•0201	.0218	•0216	.0215	.0217	.0217	
CO - E.I. THC -E.I.		67.0 41.3	25.8 1.9	19.3 0.4	18.8	24.7	34.9	27.5	22.7	12.5	8.2 0.1	
NO _y - E.I. SMOKE NO.	3.2	3.7	7.5	7.3	6.4	10.5	12.7	14.5	16.1	16.1	14.9	
COMBUSTION EFFICIENCY %	98.2	94•3	99•2	99.5	99•4	99•3	99.1	99•3	99•4	99•7	99.8	
PATTERI? FACTOR			0.79						0.78			
CO - EPAP CONTRIBUTION	12.04	4.57	1.76	1.32	1.28	2.63	1.44	1.14	0.94	0.52	0.34	
THC - EPAP CONTRIBUTION	0.21	2.82	0.13	0.03	0.10	0.10	0.03	0.02	0.01	-0-	-0-	
2. DATA CORRE	CTED T	O ENGI	NE PRE	SSURES	<u>:</u>							
30 - E.I.	69.9		23.1	16,8	16.5	14.5	21.8	15.7	12.0	4.8	2.2	
THC - E.I.		33.4	1.5	0.3	1.1	0.3	0.3	0.1	0.1	-0-	-0-	
COMBUSTION	2.8	3.6	7.1	7.1	6.1	14.5	20.2	22.9	25.5	24.8	23.9	
EFFICIENCY	98.2	95.2	99•3	99.6	99•5	99.6	99.5	99.6	99.7	99.9	100	
% CO - EPAP CONTRIBUTION	12.02	4.32	1.58	1.15	1.13	1.54	0.90	0.65	0.50	0.20	0.09	
THC - EPAP CONTRIBUTION	0.21	2.28	0.10	0.02	0.08	0.04	0.01	0.01	-0-	-0-	-0-	
NO _X - EPAP CONTRIBUTION.	0.48	0.25	0.48	0.48	0.41	1.54	0.84	0.95	1.06	1.03	0.99	

APPENDIX B-6-b

VORBIX CONFIGURATION S-18 CONTINUED

. TEST RIG DATA

ENGINE CONDITION		CRUISI	2			Bur min	AND THE CORE
READING NUMBER	CR-1	CR-2	CR-3		en (F)		A PERSONAL PROPERTY OF THE PRO
FUELING MODE	&	PILOT & MAIN	&				00 (30) 2008
INLET PRESSURE ATM.	6.81	6.81	6.81			70,81	TOTAL PROPERTY
FUEL-AIR RATIO-PILOT	•0050	.0059	.0069				
FUEL-AIR RATIO-TOTAL	。0201	.0201	.0200			atile.	
CO - E.I.	21.5	17.3	15.1				rym Aller of State and State
NO _Y - E.I. SMOKE NO.	12.3	12.3	12.8				
COMBUSTION EFFICIENCY %		99.6			88	And the second s	
PATTERN FACTOR					Manager 1		
CONTRIBUTION							
THC - EPAP CONTRIBUTION						Commence of the Commence of th	
2. DATA CORREC	CTED TO	ENGINE	PRESSU	RES:			
30 - E.I.	17.9	14.0	11.9				
$\frac{\text{THC} - \text{E.I.}}{\text{NO}_{\mathbf{X}} - \text{E.I.}}$	13.0	12.8	13.5				
COMBUSTION EFFICIENCY	99.6	99•7	99.7				
CO - EPAP CONTRIBUTION					1,2	2001 T	
THC - EPAP CONTRIBUTION						44.6	
NO _X - EPAP CONTRIBUTION.						200	

COMBUSTOR INLET TEMPERATURE AND REFERENCE VELOCITY AT NOMINAL ENGINE CONDITIONS.

ORIGINAL PAGE IS

APPENDIX B-7

P & W VORBIX COMBUSTOR DATA, CONFIGURATION S-19

ENGINE	IDLE BLED	TAKE-OFF	- Askin's	10000
CONDITION	interior in accominante displacifica en	TARE-OFF		- 10/11/06/19 (Million
READING NUMBER	I-1	TO-1	1 g-800 g-800 1-80 •	• 612.0.2
FUELING MODE	PILOT	PILOT & MAIN	PALE MAIN PALE PALES	69(1.13(d)) 93(6)(
INLET PRESSURE ATM.	2.97	6.86	18.3 63.8 (8.8	\$18,000 12,000,223,82 Miles
FUEL-AIR RATIO-PILOT	•0126	.0078	8800, 6100, 6100.	7024-000 140-000
FUEL-AIR RATIO-TOTAL	•0126	•0228	0050. , 000. toso.	7.1 de 1.2. de
CO - E.I.	63.0	10.6	The state of the s	THE LABOR
THC -E.I.	0.3	. 0.2	1 0.8 C. P. C. P. C. 1	
NOx - E.I.	3.2		1 0.50 to 10 0.00 C. Cr. 10	71.7
SMOKE NO.			and the same of th	
COMBUSTION EFFICIENCY	98.5	99•7	9,29 0,00 8,00	William Colored
PATTERN FACTOR			10 mg m m m m m m m m m m m m m m m m m m	The state of the s
CO - EPAP CONTRIBUTION	10.81	0.14	The state of the s	TALE
THC - EPAP CONTRIBUTION	0.01,	0.01		
2. DATA CORREC	TED TO ENGL	NE PRESSURES:	Harmonia es desta a marco	
CO - E.I.	63.6	3.6		
THC - E.I.	0.3	0.1	1 4.0 6.0 5.0 1	
10x - E.I.	2.7			
COMBUSTION EFFICIENCY %	98.5	99•9		
CO - EPAP CONTRIBUTION	10.94	0.15		The second second
THC - EPAP CONTRIBUTION	0.04	0.003		
NO _X - EPAP CONTRIBUTION.	0.46			

49
APPENDIX B-8 -a

P & W VORBIX COMBUSTOR DATA, CONFIGURATION S-20

mmam	DIG	TA MA
TEST	KLG	DATA

ENGINE CONDITION	IDLE	IDLE UNBLED			APP	ROACH	in its	CLIM	BOUT			TAKE-	-OFF
EEADING NUMBER	I-1	I - 2	APP-1	APP-2	APP-3	APP-4	APP-5	CL-1	CL-2	TO-1	TO-2	TO-3	то-4
FUELING MODE	PILOT	PILOT	PILOT & MAIN	PILOT & MAIN	PILOT & 7/11 MAIN	PILOT & 7/11 MAIN	PILOT & 7/11 MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN
INLET PRESSURE ATM.	2.94	3.76	6.75	6.83	6.82	6.82	6.80	6.78	6.77	6.83	6.85	6.83	6.79
FUEL-AIR RATIO-PILOT	•0126	•0103	.0070	.0104	.0062	.0069	•0105	.0041	.0076	.0022	.0033	،0044	.0041
FUEL-AIR RATIO-TOTAL	.0126	0103ء	.0142	۰0140	.0130	.0139	•0140	.0194	10205	.0209	60213	.0215	.0215
CO - E.I. THC -E.I.	46.2 6.4	28.4 3.7	16.5	11.8	25.3 4.8	19.5	9.9 0.4	22.1	7-1	63.7 12./ı	1,3.0	29.0	21.0
NO _v - E.I. SMOKE NO.	3.5	4.3	5.9	9.4	5.2	5.9	9,6	8.1	10.7	8.3	8.8	9.6	10.6
COMBUSTION EFFICIENCY %	98.3	99.0	99•5	99•7	98.9	99•3	99•7	99.4	99.8	97•3	98.8	99•3	
PATTERN	0.40		0.49			0.33		0.63				0,66	
CONTRIBUTION	7.95	5.01	1.13	0.80	1.73	1.33	0.68	2.39	0.79	2.64	1.78	1.20	0.87
THC - EPAP CONTRIBUTION	1.10	0.65	0.05	0.01	0.32	0.18	0.03	0.07	-0-	0.51	0.08	0.01	0.01
2. DATA CORRE	CTED T	O ENGIN	E PRES	SURES:									
CO - E.I.	46.3	26.4 3.5	11,0	9.7	22.6	17.0	7.9 0.3	12.6	2.1	46.8	28.7	17.0	10.7 0.1
NO _x - E.I.	3.0	3.9	5-4	8.6	5.0	5.6	9.0	11.5	15.0	13.0	13.7	14.6	13.7
FIRE LOLENCY	98.3	99.0	99.6	99.8	99.1	99•4	99.8	99•7	100	98.5	99•3	99.6	99.7
CO - EPAP CONTRIBUTION	7.97	4.66	0.96	0.66	1.54	1.16	0.54	1.35	0.23	1.94	1.19	0.70	0.44
THE - EPAP CONTRIBUTION	1.10	0.62	0.01	0.01	0.26	0.15	0.02	0.03	-0-	0.17	0.03	0.005	0.00
CONTRIBUTION.	0.51	0.69	0.37	0.59	.0.34	0.38	0.61	1.22	1.59	0.54	0.57	0.61	0.57

APPENDIX B-8-b

VORBIX CONFIGURATION S-20 CONTINUED

1.	TEST	RIG	DATA
UNIVERSITY AND ADDRESS.	The second second second		the same of the same of

ENGINE CONDITION	TAKEOFF		CR	UISE	1000			16 121 3 1 18 121 3		June Removed
READING NUMBER	то-6	CR-1	CR-2	CR-3	CR-4	CR-5			•	
FUELING MODE	PILOT & 7/11 MAIN	&	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN		THE PARTY	PLAT	400 - 13 - 170 ·
INLET PRESSURE ATM.	6.95	6.81	6.80	6.82	6.90	6.78	etua agua	ind the second		MINISTER OF
FUEL-AIR RATIO-PILOT	•0077	.0040	.0045	.0061	•0077	.0082	2020/23	1 11112		
FUEL-AIR RATIO-TOTAL	•0229	•0205	.0205	。0206	.0224	•0206	10 m = 12/05	1014	P37.2.	
CO - E.I.	10.3	_308	33.2	15.9	20.3	7.8	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	75		
THC -E.I.	0.1	0.1	0.9	0.2	0.9	-0-				
NO _x - E.I.	12.7	7.0	7.2	8.1	9.3	10.0				
SMOKE NO.	3,							d more d	maril Congress	
COMBUSTION EFFICIENCY %	99•7	99.2	99•2	99.6	99•5	99.8		27.84		
PATTERN FACTOR			0.63							
CONTRIBUTION	0.43									
THC - EPAP CONTRIBUTION	0.004	4							$ \cdot $	
2. DATA CORRE	CTED TO E	NGINE P	RESSUE	ES:						The second secon
CO - E.I.	3.4	26.7	29.0	12.7	16.9	5.3				V = 1
THC - E.I.	-0-	0.1	0.7	0.2	0.7	-0-				
NOx - E.I.	18.5	7.1	7.1	8.2	9.1	10.0	The Mark Street			\
COMBUSTION										
EFFICIENCY %	99•9	99•4	99•3	99.7	99.5	99•9				
CO - EPAP CONTRIBUTION	0.14			2.0.		·				
THC - EPAP CONTRIBUTION	0.001						6161 1626			
NO _X - EPAP CONTRIBUTION.	0.76						1.6 . 1E.0			

P & W VORBIX COMBUSTOR DATA, CONFIGURATION S-21

TEST	RIG	DATA

ENGINE CONDITION	IDLE BLED	IDLE UNBLED	A	PPROACH	1	NO CLIMB.		T.	AKE-OF	F	NO CRUISE	DATA
READING NUMBER	ID-1	ID-2	APP-1	APP-2	APP-3		TO-1	TO-2	TO-3	то-4		
FUÉLING MODE	PILOT	PILOT	PILOT & MAIN	PILOT &: MAIN	PILOT & MAIN		PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN		
INLET PRESSURE ATM.	2.93	3.62	6.80	6.60	6.78		6.72	6.82	6.78	6.82		
FUEL-AIR RATIO-PILOT	.0126	.0107	.0058	.0075	.0102		.0031	.0041	.0069	.0075		
FUEL-AIR RATIO-TOTAL	.0126	.0107	.0140	.0130	.0142		.0227	.0225	.0227	.0223		
CO - E.I. THC -E.I. NO _Y - E.I. SMOKE NO.	1,3.0 3.2 3.2	30./ ₁ 1.8 3.6	57.5 29.7 4.5	35.5 12.5 5.4	23.1 2.6 7.3		99.9 26.5. 7.4	1.8 9.3	14.7 0.8 13.3	12.3 0.4 14.1		
COMBUSTION EFFICIENCY	98.7	99.1	95•7	97•9	99.2				99.6	99.7		
PATTERI? FACTOR	0.39			0.45		1						
CONTRIBUTION	7.40	5.36	3.92	2.42	1.58		4.14	1.78	0.61	0.51		
THC - EPAP CONTRIBUTION	0.55	0.32	2.03	0.85	0.18		1.10	0.07	0.03	0.02		
2. DATA CORRE	CTED I	O ENGIN	E PRESS	SURES:								
CO - E.I. THC - E.I. NO _X - E.I.	43.0 3.2 2.8	27.0 1.7 3.2	53.8 23.7 4.3	32.0 9.7 5.5	20.4 2.1 6.6		79.5 8.4 11.6	28.7 0.6 1/1.0	6.2 0.2 20.0	14.6 0.1 21.1		
COMBUSTION EFFICIENCY %	98.7	99•2	96.4	98.3	99•3		97•3	99•3	99.8			
CO - EPAP CONTRIBUTION	7.40	4.76	3.67	2.18	1.39		3.29	1.19	0.26	0.19		
THC - EPAP CONTRIBUTION	0.55	0.29	1.62	0.66	0.14		0,35	-0.02	0.01	0.01		
NO _X - EPAP CONTRIBUTION.	0.48	0.57	0.29	0.37.	0.45		0.48	0.58	0.83	0.89		

COMBUSTOR INLET TEMPERATURE AND REFERENCE VELOCITY AT NOMINAL ENGINE CONDITIONS.

ORIGINAL PAGE IS

APPENDIX C

This appendix contains summaries of test rig data for all of the Pratt & Whitney hybrid combustor configurations evaluated in Phase II of the Experimental Clean Combustor Program. Data are presented in two groupings:

- 1. Test Rig Data In this section, data are presented as they were obtained in the test rig with one exception. In setting test point conditions, it was rarely possible to operate precisely at the design point fuel-air ratio. Thus, when more than fuel-air ratio was investigated at a test condition, the general procedure used was to plot the emissions against fuel-air ratio and determine emission levels at the design point fuel-air ratio by interpolation. When only one fuel-air ratio was investigated at a test condition, emission levels at that value are reported.
- 2. Data Corrected to Engine Pressures Correlations which were used to extrapolate test rig data to engine conditions are contained in the Data Correlation Procedures section of the report. Calculations of EPAP values were made according to the procedures described in the EPAP Calculations section of the report.

53 APPENDIX C-1.

P & W HYBRID COMBUSTOR DATA, CONFIGURATION H-1

1. TEST RIG DATA IDLE ENGINE TAKE-OFF DATA NOT OBTAINED AT APPROACH, CLIMB, CRUI BLED CONDITION READING TO.-2 TO.-3 TO.-4 1-1 TO.-1 NUMBER PILOT PILOT PILOT PILOT PILOT FUELING & 8 & ONLY MODE ONLY MAIN MAIN MAIN INLET 6.80 6.81 6.74 2.96 6.80 PRESSURE ATM. FUEL-AIR .0068 .0155 .0046 .0056 .0126 RATIO-PILOT FUEL-AIR .0215 .0155 .0214 .0215 .0126 RATIO-TOTAL 49.0 29.2 8.7 6.6 CO - E.I. THC -E.I. 31.5 13.0 2.3 18.5 6.3 8.6 1.5 9.4 NO_x - E.I. SMOKE NO. 10.2 20.2 COMBUSTION 98.8 95.9 97.4 99.2 99.8 EFFICIENCY % PATTERN 1.33 FACTOR CO - EPAP 2.24 0.10 2.03 1.30 0.27 CONTRIBUTION THC - EPAP 1.48 0.06 1.21 0.77 0.26 CONTRIBUTION 2. DATA CORRECTED TO ENGINE CO - E.I. 13.2 0.5 19.0 33.7 1.4 THC - E.I. 8.7 6.0 14.7 0,2 2.0 9.4 $NO_{x} - E.I.$ 2.9 36.0 13.6 16.0 COMBUSTION 98.8 100 EFFICIENCY 98.3 99.0 99.8 CO - EPAP 2.27 0.79 0.06 1.40 0.01 CONTRIBUTION THC - EPAP 1.50 0.39 0.25 0.08 0.02 CONTRIBUTION NO_X - EPAP 0.50 0.56 0.61 0.66 1.49

COMBUSTOR INLET TEMPERATURE AND REFERENCE VELOCITY AT NOMINAL ENGINE CONDITIONS.

CONTRIBUTION

54 APPENDIX C-2

P & W HYBRID COMBUSTOR DATA, CONFIGURATION H-2

1.	TEST	RIG	DATA

ENGINE CONDITION	BLED	APPR	OACH	CLIMBOUT	T	AKE-OF	F	NO CRUISE DATA .
READING NUMBER	I-1	APP-1	APP-2	CL-1	TO-1	T0-2	то-3	
FUELING MODE	PILOT	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	
INLET PRESSURE ATM.	2.95	6.76	6.73	6.80	6.96	6.86	6.89	
FUEL-AIR RATIO-PILOT	•0126	•0068	•0104	.0072	•0014	.0055	.0079	(A) 1/2 (A)
FUEL-AIR RATIO-TOTAL	•0126	.0135	.0132	.0204	.0217	.0224	•0228	MARKET REALISM
CO - E.I.	11.5	111.6 300+	289.4	The state of the s	58.7 18.5	12.1	10.3	
NO _y - E.I. SMOKE NO.	4.0	1,8	3.6	The second second second	11.7	11.7	9.7	
COMBUSTION EFFICIENCY	99•7	67.0	70.0	99.0	96.2	99•7	99•7	
PATTERIX FACTOR	1.49						0.44	
CO - EPAP CONTRIBUTION	1.98	7.61	2.97	3.04	2.43	0.50	0.43	
THC - EPAP CONTRIBUTION	0.15	20.46	19.74	0.37	0.77	0.02	0.02	
2. DATA CORRE	CTED TO	O ENGIN	E PRESS	URES:				
CO - E.I. THC - E.I. NO _X - E.I.	11.7 0.9 3.5	107. 239. 2.1	1,0.1 229. 1,.2	1.3	J _{12.5} 6.1 18.3	17.3	3.4 0.2 14.6	
COMBUSTION EFFICIENCY %	99.6	73.6	76.2	99•5	98.4	99•9	99•9	Control Control -
CO - EPAP CONTRIBUTION	2.01	7.30	2.73	1.87	1.76	0.19	0.14	
THC - EPAP CONTRIBUTION	0.15	16.30	15.62	0.14	0.25	0.01	0.01	Table world
NO _X - EPAP CONTRIBUTION.	0.61	0.14	0.28	1.10	0.76	0.72	0.60	

COMBUSTOR INLET TEMPERATURE AND REFERENCE VELOCITY AT NOMINAL ENGINE CONDITIONS.

OF POOR QUALITY

APPENDIX C-3

P & W HYBRID COMBUSTOR DATA, CONFIGURATION H-3

	and the same	-	-
	macon	DTC	DATA
1 -	1. 14. 14. 14.	PC 110	110.1.0

ENGINE CONDITION	BLED	IDLE UNBLED	APPROACH		TAKE-OFF	NO DATA	OBTAINE	TA	CLIMBOU	e & CRUISE
READING NUMBER	I-1	I-2	APP-1 APP-2 A	PP-3	TO-1	Carlo Philosophic (March 1975)		•		Number of States
FUELING MODE	PILOT	PILOT	PILOT MAIN ONLY 7,	AIN NLY, /11 nj.	MAIN ONLY					The second secon
INLET PRESSURE ATM.	2.94	3.83	6.70 6.76 6	.76	6.76					
FUEL-AIR RATIO-PILOT	.0126	•0099	.0130 -0-	-0-	-0-				The Validation and American	
FUEL-AIR RATIO-TOTAL	.0126	.0099	.0130 .0130 .	0130	•0119					
CO - E.I.	8.0	24.3	1.9 15.5 1	3.4	0.9					
THC -E.I.	0.4	6.5		1.3	0.5	er entre				
NO _Y - E.I. SMOKE NO.	3.8	2,8		7.1	11.6	V 184 7				
COMBUSTION EFFICIENCY	99.8	98.8		9.6	100					
PATTERN FACTOR	1.02		0.89 -							
CO - EPAP CONTRIBUTION	1.38	4.28	0.13 1.06 0	•91	0.04					In the
THC - EPAP CONTRIBUTION	0.06	1.15	0.08 0.20 0	•09	0.02					
2. DATA CORRE	ECTED	TO ENGI	NE PRESSURES:					-		
CO - E.I.	8.1	22.5	0.2 13.1 1	1.4	-0-					
THC - E.I.	0.4	6.2	PROFITE TO THE PROFITE THE PRO	1.1	ال ٥					
::Ox - E.I.	3.3	2.7		6.8	14.9					
COMBUSTION EFFICIENCY	99.8	98.9	99.9 99.5 9	9.6	100					
CO - EPAP CONTRIBUTION	1.39	3.97	0.01 0.89 0	.78	-0-					
THC - EPAP CONTRIBUTION	0.06	1.09	0.06 0.16 0	.07	0,02					
NO _X - EPAP CONTRIBUTION	0.56	0.47	0.56* 0.51 0	.46	0.61	3.				

COMBUSTOR INLET TEMPERATURE AND REFERENCE VELOCITY AT NOMINAL ENGINE CONDITIONS.

* -- P° NO EXTRAPOLATION TO ENGINE PRESSURE

56 APPENDIX C-4

P & W HYBRID COMBUSTOR DATA, CONFIGURATION H-4

TAND TAND	TDIE												-	-
ENGINE CONDITION	IDLE BLED	APPRO	DACH	CLIM	BOUT		erender um		T	AKE-OF	F			
READING NUMBER	I -1	APP-1	APP-2	CL-1	CL-2	CL-3	TO-1	TO-2	TO-3	TO-4	10-5	T 0- 6	TO- 7	•
FUELING MODE	PILOT	PILOT	NO PILOT, 4/11 MAIN	17.000	PILOT & MAIN	PILOT & MAIN	PILOT	PILOT	MAIN ONLY	MAIN ONLY	MAIN ONLY	PILOT & MAIN	PILOT & MAIN	
INLET PRESSURE ATM.	2.92	6.94	6.76	6.84	6.89	6.79	6.87	6.95	6.79	6.84	6.74	6.82	6.87	
FUEL-AIR RATIO-PILOT	.0126	.0130	-0-	.0051	.0061	.0075	.0065	•0088	-0-	-0-	-0-	.0054	.0073	
FUEL-AIR RATIO-TOTAL	.0126	.0130	.0130	.0201	•0200	.0201	.0065	•0088	.0128	.0151	.0184	.0216	.0219	
30 - E.I.	9.0	1.8	47.0	80.0	90.1	101.	29.9	1.8	2.7	4.0	12.2	26.7	4.2	
THC -E.I.	0.6	0.4	1.6	79.4	94.1	111.	5.2	1.8	0.7	0.6	0.8	2.6	-0-	
NO _Y - E.I.	3.5	9.1	6.6	13.9	12.1	10.3	4.7	9.4	17.1	19.9	19.2	15.4	15.5	
SMOKE NO.														
COMBUSTION EFFICIENCY %	99.7	99.9	98.7	90.2	88.5	86.3	98.8	99.8	99.9	99.9	99.6	99.1	99.9	
PATTERN FACTOR	1.10											0.47		
CO - EPAP	1.55	0.12	3.21	8.52	9.60	11.5	1.24	0.07	0.11	0.17	0.51	1.11	0.17	
THC - EPAP CONTRIBUTION	0.10	0.03	0.11	8.46	10.0	11.9	0.22	0.07	0.03	0.02	0.03	0.11	-0-	
2. DA'I'A CORRE	CTED ?	ro engi	NE PRE	SSURES:										
CO - E.I.	8.9	0.2 1	13.5	63.4	72.9	89.7				0.5	4.5	15.1	0.5	-
THC - E.I.	0.6	0.3	1.2	29.3	35.1	40.9				0.2	0.3	0.8	-0-	-
NOx - E.I.	3.1	8.2*	6.6	21.5	20.3	17.8				33.4	33.1	24.6	24.1	-
COMBUSTION EFFICIENCY %	99.7	100 9	98,9		94.8	93.8		<u> </u>		100	99.9	99.6	100 .	
CO - EPAP CONTRIBUTION	1.53	0.02	2.97	6.75	7.76	9.55				0.02	0.19	0.63	0.02	
THC - EPAP CONTRIBUTION	0.10	0.02	0.08	3.12	3.73	4.35				0.01	0.01	0.03	-0-	
NO _X - EPAP CONTRIBUTION.	0.53	0.56*	0.45	2.29	2.16	1.90				1.38	1.37	1.02	1.00	

^{* -} P.2 NO EXTRAPOLATION TO ENGINE PRESSURE

57 APPENDIX C-5

P & W HYBRID COMBUSTOR DATA, CONFIGURATION H-5

4 .	TEST	RTG	DATA
	TEMPL	1177	T125 T T2

ENGINE CONDITION	BLED	ene de la companya de	APPI	ROACH		CLIMBOUT		TAKE-	-OFF		NO CRUISE DATA
READING NUMBER	I-l	APP-1	APP-2	APP-3	APP-4	CL-1	TO-1	TO-2	TO-3	TO-4	
FUELING MODE	PILOT	PILOT	MAIN	7/11 MAIN ONLY	4/11 MAIN ONLY	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	
INLET PRESSURE ATM.	2.95	6.84	6.80	6.87	6.74	6.81	6.93	6.76	6.79	6.78	
FUEL-AIR RATIO-PILOT	.0126	.0130	-0-	-0-	-0-	.0052	•0033	.0052	.0074	.0097	2 25 T 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2
FUEL-AIR RATIO-TOTAL	.0126	.0130	.0130	.01.34	.0128	•0198	•0222	.0217	.0217	.0217	10775-078
CO - E.I. THC -E.I.	16.0 0.7	1.4		81.6	74.8 49.0	33.3 4.0	49.8	1.0	13.0	1.9	
NO _x - E.I. SMOKE NO.	4.4	12.2	3.2	5.3	6.4	6.6	10.1	10.6	10.5	15.5	
COMBUSTION EFFICIENCY %	99.6	99.8	85.7	90.3	93.4	98.8	93.4	99.6	99.6	99.4	And Andrews
PATTERN FACTOR	1.84	1.33				0.26					
CONTRIBUTION	2.75	0.10	9.68	5.57	5.10	3.55	2.90	0.54	0.54	0.70	
THC - EPAP CONTRIBUTION	0.12	0,11	7.50	5.32	3.34	0.43	2.06	0.04	0.06	0.08	
2. DATA CORRE	CTED I	O ENGI	NE PRE	SSURES	11				e ch		
THC - E.I. NO _X - E.I.	16.2 0.7 4.0	1.3	137. 87.9 3.5		21.6 38.9 6.7	21.6 1.5 9.9	52.7 16.4 16.3	5.1 0.3 17.4	5.1' 0.5 17.2	7.6 0.6 25.5	
COMBUSTION EFFICIENCY	99.6	100	88.0			99.4	97.1	99.9		99.8	
CO - EPAP CONTRIBUTION	2.79	0.01	9.35	5.30	4.82	2.30	2.18	0.21	0.21	0.32	1
THC - EPAP CONTRIBUTION	0.12	0.09	6.00	4.30	2.65	0.16	0.68	0.01	0.02	0.03	
NO _X - EPAP CONTRIBUTION.	0.68	0.77*	0.24	0.38	0.46	1.05	0.67	0.72	0.71	1.05	

COMBUSTOR INLET TEMPERATURE AND REFERENCE VELOCITY AT NOMINAL ENGINE CONDITIONS.

* -- P° NO EXTRAPOLATION TO ENGINE PRESSURE

58

APPENDIX C-6 .

P & W HYBRID COMBUSTOR DATA, CONFIGURATION H-6

mmom	TTA	TAME
1111 1111	12 1 6 2	מיוימוו
 TEST	Trace	THIT

ENGINE CONDITION	BLED	IDLE UNBLED	Al	PPROAC	Н	CLIMBOUT		T	KE-OF	P		CRUISI
READING NUMBER	1-1	I-2	APP-1	APP-2	APP-3	CL-1	TO-1	TO-2	TO-3	TO-4	TO-5	
FUELING MODE	PILOT	PILOT	PILOT	PILOT & MAIN	MAIN ONLY	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT
INLET PRESSURE ATM.	2.93	3.76	6.76	6.73	6.88	6.80	6.89	6.84	6.85	6.92	6.95	6.84
FUEL-AIR RATIO-PILOT	.0126	.0103	.0130	.0048	-0-	.0076	.0022	.0031	•0014	.0076	.0093	.0077
FUEL-AIR RATIO-TOTAL	.0126	.0103	.0130	.0136	.0130	.0194	.0226	.0223	.0228	.0215	.0225	.0205
00 - E.I.	9.6	3.9	-0-	81.6	45.0	33.3	49.9	62.5	47.8	18.5	19.8	39.0
THC -E.I.	4.2	2.9	0.3	697	2.0	4.1	26.4	41.5	11.3	3.5	2.1	8.2
NOx - E.I.	4.2	3.1	16.0	1.0	7.4	8.2	14.6	13.3	12.8	11.1	13.2	7.6
SMOKE NO.								4.	2.		3.	
COMBUSTION EFFICIENCY %	99•4	99.6	100	28.4	98.8	98.8	96.2	94.4		99.2		98.3
PATTERN FACTOR	1.94									0.40		
CONTRIBUTION	1.65	0.69	-0-	5.57	3.07	3.55	2.07	2.59	1.98	0.77	0.82	
THC - EPAP CONTRIBUTION	0.72	0.51	0.02	47.5	0.14	0.43	1.09	1.72	0.47	0.14	0.09	
2. DATA CORRE	CTED T	O ENGIN	E PRES	SURES:		i i wa	2.0					
00 - E.I.	9.6	3.5	-0-	77.3	41.8	21.6	34.7	45.7	32.8	9.0	9.9	34.6
TRC - E.I.	4.2	2.8	0.2	551.	1.6	1.5	8.6	13.5	3.7	1.1	0.7	6.0
70x - E.I.	3.6	2.8	15.2*		6.7	11.6	21.6	19.7	18.7	16.4	18.3	7.5
COMBUSTION EFFICIENCY %	99.4	99.6	100	43.1	7	99•4	98.3			99.7	99.7	98.6
CO - EPAP CONTRIBUTION	1.65	0.62	-0-	5.27	2.85	2.30	1.44	1.89	1.36	0.37	0.41	,
THC - EPAP CONTRIBUTION	0.72	0.49	0.01	37.6	0.11	0.16	0.36	0.56	0.15	0.05	0.03	
NO _X - EPAP CONTRIBUTION.	0.61	0.50	0.97*	0.10	0.45	1.23	0.90	0.81	0.78	0.68	0.76	

^{* --} P.2 NO EXTRAPOLATION TO ENGINE PRESSURE

59
APPENDIX C-7

P & W HYBRID COMBUSTOR DATA, CONFIGURATION H-7

	TEST	DTA	A ITT A CT
7 -	distriction.	HILL	DATA

ENGINE	IDLE BLED	APPROACH	CLIMBOUT	TAKEOFF	CRUISE
CONDITION READING	I-1	APP-1	CL-1	TO-1	CR-1 :
NUMBER FUELING MODE	PILOT	PILOT	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN
INLET PRESSURE ATM.	2.93	6.77	6.82	5.86	6.71
FUEL-AIR RATIO-PILOT	.0126	.0134	•0076	•0076	•0076
FUEL-AIR	.0126	.0134	•0204	•0557	•0206
CO - E.I.	44.0	30.0	30.5	14.2	39.6
THC E.I.	4.5	0.9	4.2	1.1	5.7
NO _Y - E.I.	3.7	10.7	10.1	11.0	8.8
SMOKE NO.			T		
COMBUSTION EFFICIENCY	98.5	99•2	98.9	99.6	98.5
PATTERN FACTOR	1.43				
CO - EPAP CONTRIBUTION	7.58	2.05	3.25	0.59	
THC - EPAP CONTRIBUTION	0.77	0.06	0.45	0.05	
2. DATA CORF		TO ENGIN	E PRESSURE	S:	
CO - E.I.	43.9		18.5	5.9	34.9
THC - E.I.	4.4	0.7	1.6	0.4	4.1
NO _x - E.I.	3.1	9.5*	14.1	16.1	9.2
COMBUSTION EFFICIENCY	98.5	99•4	99.4	99.8	98.8
CO - EPAP CONTRIBUTION	7.50	1.49	1.97	0.24	
THC - EPAP CONTRIBUTION	0.76	0.05	0.17	0.01	
NO _X - EPAP	0.5	4 0.65*	1.50	0.66	

COMBUSTOR INLET TEMPERATURE AND REFERENCE VELOCITY AT NOMINAL ENGINE CONDITIONS.

* -- P-2 NO EXTRAPOLATION TO ENGINE PRESSURE

APPENDIX D

This appendix contains summaries of test rig data for all of the General Electric double/annular combustor configurations evaluated in Phase II of the Experimental Clean Combustor Program. Data are presented in two groupings:

- 1. Test Rig Data In this section, data are presented as they were obtained in the test rig with one exception. In setting test point conditions, it was rarely possible to operate precisely at the design point fuel-air ratio. Thus, when more than fuel-air ratio was investigated at a test condition, the general procedure used was to plot the emissions against fuel-air ratio and determine emission levels at the design point fuel-air ratio by interpolation. When only one fuel-air ratio was investigated at a test condition, emission levels at that value are reported.
- 2. Data Corrected to Engine Pressures Correlations which were used to extrapolate test rig data to engine conditions are contained in the Data Correlation Procedures section of the report. Calculations of EPAP values were made according to the procedures described in the EPAP Calculations section of the report.

GE DOUBLE/ANNULAR COMBUSTOR DATA, CONFIGURATION D/A-1

. TENT RIG DATA

ENGINE CONDITION	IDLE STD.	IDLE 6% BLEED	IDLE 12%BLEED					APPROA	СН	antere 201 Kristi vines		adiron Marin Kin	
READING NUMBER	I-1	I-2	I - 3	APP-1	APP-2	APP-3	APP-4	APP-5	APP-6	APP-7	APP-8	APP-9	APP-10
FUELING MODE	PILOT	PILOT	PILOT	PILOT	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	MAIN	PILOT	PILOT & MAIN	PILOT & MAIN	MAIN ONLY	PILOT & 1/2 MAIN
INLET PRESSURE ATM.	2.94	2.93	2.94	3•44	3.42	3.38	3.38	3.40	6.88	6,83	6.87	6.89	6.89
FUEL-AIR RATIO-PILOT	.0110	.0135	•0160	•0138	•0014	•0062	.0082	-0-	•0137	.0042	.0081	-0-	.0080
FUEL-AIR RATIO-TOTAL	.0110	•0135	.0160	•0138	.0145	.0139	.0141	.0141	•0137	.0141	.0139	.0138	.0138
CO - E.I. THC -E.I.	17.0 10.8	56.8 6.9	78.2 7.3		135.6	127.7	100.1 79.2	83.2 13.5		123.5	81.2 44.0	73.0 12.1	61.3 25.2
NO _x - E.I.	3.3	3.6	3.6	7.8	2.1	2.2	3.3	1.0	10.3	2.9	4.8	3.2	5.0
COMBUSTION EFFICIENCY %	97.8	98.0	97.4	99.1	92.1	90.7	89.7	96.7	99.6			97.1	
PATTERN	1.77	1.24	0.97	1.11	0.28	0.46	0.65	0.54	1.12	0.33	0.70	0.56	0.63
CO - EPAP CONTRIBUTION	6.42	7.76	10.7	3.22	12.37	11.65	9.13	7.59	1.25	11.25	7.41	6.66	5.59
THC - EPAP CONTRIBUTION	1.47	0.94	1.00	0.04	4.28	5.76	7.22	1.23	0.07	3.12	4.01	1.10	2.30
2. DATA CORRE	CTED 1	O ENGINE	PRESSURES	1									
30 - E.I.	47.3	and the same of th	78.6	7.7	111.1	103.5	78.1	62.8	4.7	112.5	71.8	64.0	52.8
THC - E.I. NO _x - E.I. COMBUSTION	3.3	7.0 3.7	7.5 3.7	10.7	13.7	18.3	22.9 6.5	3.9 4.7	12.1	20.0	25.8 6.4	- 7.1 - 4.3	14.8 6.8
EFFICIENCY	97.8	98.0	97.4	99.8	96.0	95.8	95.9	98.1	99.8	95.4	95.7	97.8	97.3
CO - EPAP CONTRIBUTION	6.46	7.78	10.73	0.70	10.13	9.44	7.12	5•73	0.43	10.26	6.55	5.84	4.82
THC - EPAP CONTRIBUTION	1.49	0.96	1.02	0.01	1.25	1.67	2.09	0.36	0.05	1.82	2.35	0.65	1.35
NO _X - EPAP CONTRIBUTION.	0.45	0.51	0.51	.0.98	0.36	0.40	0.59	0.43	1.10	0.34	0.58	0.39	0.53

^{* --} P.2 NO EXTRAPOLATION TO ENGINE PRESSURE

^{@ --} ALTERNATE MAIN INJECTORS FUELED

APPENDIX D-1-b

GE DOUBLE ANNULAR CONFIGURATION D/A-1 cont.

1.	TEST	RIG	DATA

ENGINE CONDITION		APP	ROACH		CLIM	BOUT			T	AKE-OF	F		NO CRIUSI DATA
READING NUMBER	APP-11	APP-12	APP-13	APP-14	CL-1	CL-2	CT-3	CL-4	TO-1	TO-2	то-3	то-4	
FUELING MODE	PILOT & 12 MAIN	PILOT &	PILOT	MAIN ONLY	PILOT &	PILOT &	&	PILOT & MAIN	&	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	*
INLET PRESSURE ATM.	3.42	3.40	3-41	3•35							4.74		
FUEL-AIR RATIO-PILOT	.0043	•0063	.0083	-0-	.0032	.0044	.0063	.0101	.0033	.0043	.0063	.0101	
FUEL-AIR RATIO-TOTAL	.0139	.0142	.0141	•0138	.0216	.0216	.0214	.0209	•0233	.0233	•0233	.0228	
CO - E.I. THC -E.I.	96.5	81.0	76.6	78.2	11.8	7.3	6.2	19.1	6.7	0.1	3.0	6.9	
NO _v - E.I. SMOKE NO.	2.0	2.6	3.9	2.1	6.1	6.0	6.5	10.9	5.9	6.4	7.2	11.2	
COMBUSTION EFFICIENCY	92.8	94.5	95.0	85.9	99•7	99.8	99.8	99•4	99.8	99.9	99.9	99.8	
PATTERN	0.93	0.68	0.81	1.92	0.40	0.35	0.21	0.30	0.41	0.33	0.26	0.25	
CO - EPAP CONTRIBUTION	8.80	7.39	6.94	7.13	1.76	1.09	0.92	2.89	0.38	0.24	0.17	0.39	
THC - EPAP CONTRIBUTION	4.54	3.28	2.97	11.23	0.06	0.07	0.10	0.27	0.01	0.01	0.01	0.02	
2. DATA CORRI	ECTED TO	O ENGIN	E PRESSI	JRES:									
CO - E.I. THC - E.I.	75.0 14.6	60.9 10.5	56.9 9.5	58.1 35.2	2.6	0.9	0.6	6.7	0.6 -0-	0.1	0.1	0,6	
NO _x - E.I. COMBUSTION EFFICIENCY	3.9 96.8	97.5	7.4 97.7	95.1	99.9	100	15.7	99.8	15.1	16.3	18.5	29.4 100	
CO - EPAP CONTRIBUTION	6.84	5.55	5-19	5.39	0.39	0.13	0.09	1.00	0.03	0.01	0.005	0.001	
THC - EPAP CONTRIBUTION	1.33	0.96	0.87	3.21	0.01	0.01	0.01	0.04	-0-	-0-	-0-	-0-	
NO _X - EPAP CONTRIBUTION.	0.36	0.45	0.67	0.40	2.15	2.14	2.33	3.92	0.86	0.93	1.05	1.68	

COMBUSTOR INLET TEMPERATURE AND REFERENCE VELOCITY AT NOMINAL ENGINE CONDITIONS.

@ -- ALTERNATE MAIN INJECTORS FUELED

63

APPENDIX D-2-a

GE DOUBLE/ANNULAR COMBUSTOR DATA, CONFIGURATION D/A-2

4	TEST	DTC	DAMA
	TEGT	UTG	DUTH

ENGINE CONDITION	IDLE		APPI	ROACH		CL	IMBOUT		1 But		TAKE	-OFF		
READING NUMBER	I-1	APP-1	APP-2	APP-3	APP-4	CL-1	CL-2	CL-3	CL-4	TO-1	T0-2	то-3	то-4	то-5
FUELING MODE	PILOT	PILOT	PILOT & MAIN	PILOT & MAIN	MAIN ONLY	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	MAIN ONLY	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN
NLET PRESSURE ATM.	2.94	3•39	6.77	6.80	6.79	4•77	4.78	4•73		4.71	4.72	4.72	4.74	
FUEL-AIR RATIO-PILOT	.0110	•0131	.0041	.0081	-0-	.0031	.0042	.0063	.0102	-0-	.0031	.0041	.0061	.0101
TUEL-AIR RATIO-TOTAL	.0110	.0131	.0141	.0138	.0140	.0215	.0215	.0217	.0216	.0231	.0233	.0231	.0231	.0231
CO - E.I. CHC -E.I. NO _x - E.I.	9.8 3.7	29.1 0.7 9.0 -0-	109。 21.3 3.7	62.8 21.2 7.9	58.7 10.9 4.2	13.6 0.5 6.3	7.6 0.3 6.2 -0-	J ₁ .9 0.3 7.6	9.9 0.4 15.1	7.5 0.5 9.7	8.5 0.9 7.8	6.1 1.2 7.4	3.8 3.0 8.2	5.5 1.7 16.3
COMBUSTION EFFICIENCY %	98.0	99•3	95•3	96.4		99.6	99.8	99•9	99•7	99.8	99.7	99•7	99.6	99.7
PATTERN PACTOR	1.23	1.42	1.36	0.72		0.51	0.66	0.37	0.37	0.50	0.54	0.57	0.41	0.31
O - EPAP	6.13	2.65	9.96	5.73	5.35	2.02	1.13	0.73	1.47	0.13	0.49	0.35	0.22	0.31
THC - EPAP CONTRIBUTION	1.34	0.05	1.94	1.93	0.99	0.07	0.04	0.04	0.06	0.03	0.05	0.07	0.17	0.10
. DATA CORRE	CTED 1	O ENGI	NE PRE	ESSURES	ı									
CHC - E.I.	9.9 3.4	5.0 0.2 11.J ₁ *	98.5 12.3 J ₁ .6	511-0 12-3 10-7	50.1 6.3 5.3	3.5 0.1 13.8	1.0 0.1 13.5	0.3 0.1 16.5	1.8 0.1 33.5	0.8 0.1 22.1	1.1 0.1 18.4	0.5 0.2 17.3	0.1 0.5 18.9	0.3 0.3 37.8
COMBUSTION EFFICIENCY %	98.0	99.0	96.5	97.5	98.2	99•9	100	100	100	100	100	100	100	100
O - EPAP	6.17	0.46	8.98	4.92	4.57	0.52	0.15	0.04	0.27	0.04	0.06	0.03	0.01	0.02
CHC - EPAP	1.35	0.02	1.12	1.12	0.58	0.01	0.01	0.01	0.01	0.005	0.008	0.01	0.03	0.02
NO _X - EPAP CONTRIBUTION.	0.47	1.04*	0.42	0.91	a.48	2.05	2.00	2.45	4.99	1.28	1.05	0.99	1.08	2.16

^{* --} P.2 NO EXTRAPOLATION TO ENGINE PRESSURE

APPENDIX D-2-b

GE DOUBLE/ANNULAR CONFIGURATION D/A-2 cont.

. TEST RIG DATA

ENGINE CONDITION	TA	KE-OFF	•	NO CRUISE DATA OBTAINED
READING NUMBER	то-6	TO-7	то-8	
FUELING MODE	PILOT & MAIN	&	PILOT & MAIN	
INLET PRESSURE ATM.	6.80		6.80	
FUEL-AIR RATIO-PILOT	•0031	•00710	•0060	
FUEL-AIR RATIO-TOTAL	•0229	.0228	.0226	The state of the s
CO - E.I.	6.3	3.4	1.9	
THC_E.I.	0.3	0.2	0.2	
NO _v - E.I.	9.6	9.1	10.5	
SMOKE NO.	1			
COMBUSTION EFFICIENCY %	99.8	99•9	99•9	
PATTERN FACTOR	0.45	0.39	0.50	
CONTRIBUTION	0.36	0.19	0.11	
THC - EPAP CONTRIBUTION	0.02	0.01	0.01	
2. DATA CORRE	SCTED T	O ENGI	NE PRE	SSURES:
CO - E.I.	0.8	0.2	0.1	
THC - E.I.	0.1	0.1	0.1	
NOx - E.I.	18.7	18.1	20.9	
COMBUSTION EFFICIENCY %	100	100	100	
CO - EPAP CONTRIBUTION	0.05	0.01	0.006	
THC - EPAP CONTRIBUTION	0.004	0.003	0.003	
NO _X - EPAP CONTRIBUTION	1.07	1.03	1.19	

65 APPENDIX D-3-a

GE DOUBLE/ANNULAR COMBUSTOR DATA, CONFIGURATION D/A-3

ENGINE CONDITION	IDLE STD.	IDLE 6%BLEED	IDLE 12% BLEED	APPI	ROACH	C	LIMBOU	P			TAI	KE-OFF	
READING NUMBER	I-1	I - 2	I-3	APP-1	APP-2	CL-1	CL-2	CL-3	CT-7.	TO-1	T0-2	TO-3	то-4
FUELING MODE	PILOT	PILOT	PILOT	PILOT		PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	MAIN ONLY	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN
INLET PRESSURE ATM.	2.96	2.91	2.87	3•43	6.79	4•74	4•73	4.75	4.74	4.72		4•73	
FUEL-AIR RATIO-PILOT	.0110	.0130	.0153	.0140	.0140	.0029	.0040	.0061	.0098	-0-	.0030	.0041	.0060
FUEL-AIR RATIO-TOTAL	.0110	.0130	.0153	.0140	.0140	.0211	.0214	.0215	•0210	.0231	.0233	.0234	.0231
CO - E.I.	66.0	80.5	90.8	52.0	30.5	17.2	11.7	9.3	22.2	15.5	12.2	8.4	6.5
THC -E.I.	34.5	37.6	37.6	0.9	0,2	0.6	0.2	0.2	0.8	0.4	0.3	0.1	0.1
NO _x - E.I.	3.4	3.3	3.1	6.9	9.1	8.0	8.2	9.7	13.6	11.9	10.4	10.3	11.1
SMOKE NO.	2.			2.	16.		-0-				-0-		
COMBUSTION EFFICIENCY %	95.0	94.4	94.1	98.7	99•3	99.5	99•7	99.8	99•4	99.6	99•7	99.8	99.8
PATTERN FACTOR	1.55	1.29	1.10	1.36	1.33	0.47	0.45	0.38	0.64	0.52	0.49	0.38	0.34
CO - EPAP CONTRIBUTION	9.01	10.99	12.40	4.74	2.78	2.56	1.74	1.38	3.30	0.89	0.70	0.48	0.37
THC - EPAP CONTRIBUTION	4.71	5.13	5.13	0.08	0.02	0.09	0.03	0.03	0.12	0.02	0.02	0.006	0.006
2. DATA CORRI	ECTED '	PO ENGINE	PRESSURE	3:									
CO - E.I.	66.7	80.3	89.8	35.3	23.8	5.4	2.5	1.6	8.1.	1,0	2.5	1.0	0.5
THC - E.I.	35.0	37.9	37.6	0.3	0.1	0.1	0.01	0.01	0.2	0.06	0.01	NAME AND ADDRESS OF THE PARTY O	0.02
NOx - E.I.	3.1	3.2	3.0	8.1.*	9.1.*	_	18.2	21.6	30.2	28.2	21,2	23.5	26.3
COMBUSTION EFFICIENCY	94.9	94•3	94.1	99•2		99.9	99.9	100	99.8	99.9	99.9	100	100
CO - EPAP CONTRIBUTION	9.11	10.97	12.26	3.22	2.17	0.80	0.38	0.23	1.25	0.23	0.14	0.06	0.03
THC - EPAP CONTRIBUTION	4.78	5.17	5.13	0,02	0.01	0.02	0.01	0.01	0.02	-0-	-0-	-0-	-0-
NO _X - EPAP CONTRIBUTION.	0.43	0.43	0.40	0.77	0.85*	2.70	2.71	3.22	4.49	1.61	1.38	1.34	1.50

^{* --} $P^{•2}$ NO_x extrapolation to engine pressure

APPENDIX D-3-b

GE DOUBLE/ANNULAR CONFIGURATION D/A-3 cont.

. TEST RIG DATA

ENGINE CONDITION	TAKE-OFF NO CRUISE DATA OBTAINED	
READING NUMBER	то-5 то-6 то-7 то-8	Milyanser (A.) Telepaser (A.) Telepaser (A.)
FUELING MODE	PILOT PILOT PILOT & & & & & MAIN MAIN MAIN	
INLET PRESSURE ATM.	4.76 6.80 6.80 6.80	
FUEL-AIR RATIO-PILOT	.0102 .0031 .0042 .0060	
FUEL-AIR RATIO-TOTAL	•0234 •0233 •0237 •0235	
30 - E.I.	11.1 9.2 5.6 4.7	
THC-E.I.	0.2 0.3 0.2 0.4	
NOx - E.I.	15.7 12.3 12.6 13.7	
SMOKE NO.	1 The second of	
COMBUSTION EFFICIENCY %	99.7 99.8 99.9 99.9	
PATTERN FACTOR	0.54 0.46 0.42 0.37	
CONTRIBUTION	0.63 0.53 0.32 0.27	•
THC - EPAP CONTRIBUTION	0.01 0.02 0.01 0.02	
2. DATA CORRE	ECTED TO ENGINE PRESSURES:	
30 - E.I.	2.01 1.91 0.61 0.38	
THC - E.I.	0.03 0.07 0.05 0.09	
NOx - E.I.	36.2 23.9 24.0 26.0	
COMBUSTION EFFICIENCY %	100 100 100 100	
CO - EPAP CONTRIBUTION	0.11 0.11 0.03 0.02	
THC - EPAP CONTRIBUTION	-00- 0.005	
NO _X - EPAP CONTRIBUTION.	2.07 1.36 1.37 1.49.	

67
APPENDIX D-4

GE DOUBLE ANNULAR COMBUSTOR DATA, CONFIGURATION D/A-4

ENGINE	IDLE	DATA	NOT	OBTAI	NED A	r API	ROACH	, C	LIMBO	UT,	TAKE	-OFF	OR	CRU	ISE	
CONDITION READING		2 2 4 7 1 1 1	2007 ASS						10000		7	× 25 2 3.4	,	20.77		
NUMBER	I-1															
HUPLDEIN					45.4											
FUELING	PILOT															
MODE	ONLY															
INLET																
PRESSURE	2.91															
ATM.							31 1 61		Ass.			And a				
FUEL-AIR	077.0															
RATIO-PILOT	.0110															
FUEL-AIR	.0110															
RATIO-TOTAL	•0110															
CO - E.I.	40.0															
THCE.I.	7.0				150,120											
NO _x - E.I.	4.4														No. of Section 1	
SMOKE NO.																
COMBUSTION																
EFFICIENCY	98.4															
%	2000				4.00			150	- 12,000	1000	1000			1,122.1		
PATTERN	1.02															
FACTOR																
CO - EPAP	5.46															
CONTRIBUTION	5.40													医肾 素		
THC - EPAP	0.96															
CONTRIBUTION	0.70															
			, ppr	aamp												
2. DATA CORRE		ENGINE	5 PRE	SSURE	<u>5:</u>											
	39.8												4			
THC - E.I.	7.0	A SECTION														
NOx - E.I.	4.1															
COMBUSTION																
EFFICIENCY	98.4															
%			10000		- Hal		11.1.3.	88	100		10.00	100	E 100	41297		n d koluben
CO - EPAP	5.43															
CONTRIBUTION																
THC - EPAP	0.96															
CONTRIBUTION				1.4				(I spec	1000		
NO _X - EPAP	0.56						7-4									
CONTRIBUTION.																

APPENDIX D-5 -

GE DOUBLE/ANNULAR COMBUSTOR DATA, CONFIGURATION D/A-5

:. TEST RIG DATA

ENGINE CONDITION	IDLE	APPR.	CL	IMBOUT		TAKE-	-OFF	NO CRUISE DA	TA OBTAINED	
READING NUMBER	I-1	APP-1	CL-1	CL-2	CL-3	TO-1	TO-2		HATELLY CONTRACTOR	
FUELING MODE	PILOT	PILOT	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	&	PILOT & MAIN		19275 2183 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
INLET FRESSURE ATM.	2.92	3.40	4.84	4.78	4.79	8.53	8.54			
FUEL-AIR RATIO-PILOT	.0110	.0140	.0041	.0060	.0103	.0054	.0064	The second control of and describe		
FUEL-AIR RATIO-TOTAL	.0110	.0140	.0211	.0208	.0213	.0231	.0231			
CO - E.I.	39.5	0.1	8.6	9.4	22.1	2.0	2.2 0.1			
NO _x - E.I. SMOKE NO.	4,0	6.7	7.2	7.8	12.9		13.1			
COMBUSTION EFFICIENCY	98.8		99.8		99.4		99•9		4.54 20	
PATTERN	0.87	1.34	0.38	0.31	0.47	0.34	0.36			
CONTRIBUTION	5.39	4.16	1.28	1.40	3.29	0.11	0.13			
THC - EPAP CONTRIBUTION	0.33	0.01	-0-	-0-	0.07	0.006	0.006			
2. DATA CORRE	CTED T	O ENGI	NE PRE	SSURES	<u>:</u>					
00 - E.I. THO - E.I.	39.5	12.6	1.3	1.6	8.4	0.2	0.2			
NO _x - E.I.	3.7		15.5	16.8	27.9		22.6			
EFFICIENCY %	98.8	99.7	100	100	99.8	100	100			
CO - EPAP CONTRIBUTION	5.39	1.15	0.20	0.24	1.24	0.009	0.01			
THC - EPAP CONTRIBUTION	0.33	0.003	-0-	-0-	0.01	0.002	0.002			
NO _X - EPAP CONTRIBUTION.	0.50	0.71*	2.31	2.50	4.15	1.23	1.29			

COMBUSTOR INLET TEMPERATURE AND REFERENCE VELOCITY AT NOMINAL ENGINE CONDITIONS.

* -- P-2 NO EXTRAPOLATION TO ENGINE PRESSURE

DE POOR QUALITY

APPENDIX D-6

GE DOUBLE/ANNULAR COMBUSTOR DATA, CONFIGURATION D/A-6

1. TEST RIG DATA

FACTOR CO - EPAP

CONTRIBUTION THC - EPAP

CONTRIBUTION

0.95 1.16

0.29 0.01

3.37

2.57

			
ENGINE CONDITION	IDLE	APPROACH	NO DATA OBTAINED AT CLIMBOUT, TAKEOFF OR CRUISE
READING NUMBER	I-1	APP-1	
FUELING MODE	PILOT	PILOT	THE TOTAL STATE OF THE PROPERTY OF THE PROPERT
INLET PRESSURE ATM.	2.94	3.40	
FUEL-AIR RATIO-PILOT	.0110	•01710	
FUEL-AIR RATIO-TOTAL	.0110	•0140	
CO - E.I.	24.7	28.2	
THC -E.I.	2.1	0.1	
NO _x - E.I.	3.9	8.3	
SMOKE NO.	1.	1.	
COMBUSTION EFFICIENCY %	99•2	99•3	
PATTERN	0.95	1.16	

2. DATA CORRE	CTED T	O ENGINE PH	RESSURES:
00 - E.I.	25.0	4.7	
THC - E.I.	2.1	-0-	
NOx - E.I.	3.8	9.8*	
COMBUSTION EFFICIENCY %	99.2	99•9	
CO - EPAP CONTRIBUTION	3.41	0.43	
THC - EPAP CONTRIBUTION	0.29	0.003	
NO _X - EPAP CONTRIBUTION.	0.51	0.89*	

COMBUSTOR INLET TEMPERATURE AND REFERENCE VELOCITY AT NOMINAL ENGINE CONDITIONS.

-- P°2 NO EXTRAPOLATION TO ENGINE PRESSURE

APPENDIX D-7

GE DOUBLE/ANNULAR COMBUSTOR DATA, CONFIGURATION D/A-7

*	TEST	DTC	$\Delta m \Delta G$
	TEGI	UTG	DATA

ENGINE CONDITION	IDLE	APPROACH	CLI	MBOUT			TAKE-	-OFF				NO CRUISE OBTAINED
READING NUMBER	I -1	APP-1	CL-1	CL-2	CL-3	TO-1	TO-2	TO-3	TO-4	TO-5	T0-6	
FUELING MODE	PILOT	PILOT	PILOT & MAIN	TCLIG & NIAM								
INLET PRESSURE ATM.	2.95	3.40	4.77	4.76	4.76	4.77	4.77	4.78	9.57	9.50	9.57	
FUEL-AIR RATIO-PILOT	.0110	.011to	.00110	.0058	.0062	.0040	.0062	.0104	دبا٥٥.	.0061	.0081	
FUEL-AIR RATIO-TOTAL	.0110	.0140	.0215	.0220	.0215	.0230	.0231	.0233	.0231	.0231	•0230	
30 - E.I.	18.5	75.9	10.5	6.9	8.8	5.7	4.1	7.3	2.7	3.3	2.2	
THCE.I.	1.4	0.4	0.2	0.2	0.3	0.1	0.1	0.1	-0-	0.1	-0-	to the second
NO _x - E.I.	3.5	7.0	5.3	4.9	5.0	5.3	4.8	7.8	10.9	9.4	10.5	
SMOKE NO.		0.6	0.2	0.3	0.2	0.5	0.8		0.5	1.7	0.9	
COMBUSTION EFFICIENCY %	99.4	98.2	99•7	99.8	99.8	99•9	99•9	99.8	99.9	99•9	100	b
PATTERN FACTOR	1.14	1.07	0.56	0.41	0.38	0.46	0.45	0.46	0.49	0.51	0.31	Anna Tank Marian
CONTRIBUTION	2.53	6.92	1.56	1.03	1.31	0.33	0.23	0.42	0.15	0.19	0.13	
THC - EPAP CONTRIBUTION				1796.35								
2. DATA CORRE	CTED '	ro engine	PRESS	URES:								
30 - E.I.	18.9	30.9	2.0	0.8	1.4	0.4	0.1.	0.7	0.3	0.3	0.2	
THC - E.I.	1.4	0.1	0.4	0.1	0.6	-0-	-0-	-0-	-0	-0-	-0-	
NOx - E.I.	3.5	-	12.5	10.8		13.2	12.0	19.0	19.0	15.9	18.3	
COMBUSTION												-
EFFICIENCY %	99.4	99•3	100	100	100	100	100	100	100	100	100	
GO - EPAP CONTRIBUTION	2.58	2.82	0.30	0.11	0.20	0.02	0.007	0.04	0.02	0.02	0.01	
THC - EPAP CONTRIBUTION	0.19	0.01	0.005	0.005	0.008	0.001	0.001	0.001	-0-	0.002	-0-	
NO _X - EPAP CONTRIBUTION.	0.48	0.82*	1.86	1.60.	1.73	0.75	0.68	1.08	1.03	0.91	1.04	

^{* --} P. NO EXTRAPOLATION TO ENGINE PRESSURE

71
APPENDIX D-8-a

GE DOUBLE/ANNULAR COMBUSTOR DATA, CONFIGURATION D/A-8

ENGINE CONDITION	IDLE			A)	PPROAC	H				CLIM	BOUT		TAKE	-OFF
READING NUMBER	I-1	APP-1	APP-2	APP-3	APP-4	APP-5	APP-6	APP-7	CL-1	CL-2.	CL-3	CL-7.	TO-1	TO-2
FUELING MODE	PILOT	PILOT	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN
INLET PRESSURE ATM.	2.94	3.39	3.39	3.40	3.41	6.80	6.80	6.81	4.76	4.76	4.76	4.76	4.76	4.76
FUEL-AIR RATIO-PILOT	.0110	•0137	•00114	•0056	.0070	.0046	.0071	•0092	•0033	.0042	•0062	.0081	.0031	.0042
FUEL-AIR RATIO-TOTAL	.0110	•0137	.0137	.0139	.0139	.0140		.0140	.0214	.0213	.0212	.0213	.0231	.0231
CO - E.I.	18.5	.21.2	141.	,123.	108.	119.	91.7	69.9	6.9	4.8	hall	7.0	4.6	2.8
THC -E.I.	1.7	0.5	51.3	50.1	52.0	30.6	37.0	37.6	0.1	0.1	0.1	0.3	0.1	-0-
NO _x - E.I.	3.2	6.4	2.2	2.8	3.5	3.8	4.8	5.6	6.5	6.6	7.7	8.3	8.0	8,1
SMOKE NO.	1.	2.		2.		2.					3.	-		
COMBUSTION EFFICIENCY %	99.4	99.5	91.6	92.1	92.3	94.2	94.2	94.6	99.8	99.9	99.9	99.8	99•9	99.9
PATTERN FACTOR	1.05	1.07	0.40	0.43	0.62	0.36	0.52	0.90	0.33	0.34	0.29	0.34	0.35	0.31
CO - EPAP CONTRIBUTION	2.53	1.93	12.84	11.22	9.84	10.87	8.36	6.37	1.03	0.71	0.65	1.04	0.26	0.16
THC - EPAP CONTRIBUTION	0.23	0.05	4.68	4.57	4.74	2.79	3.37	3.43	0.02	0.02	0.02	0.05	0.006	-0-
2. DATA CORRE	CTED	TO ENGI	INE PRE	ESSURES	3:									
CO - E.I.	18.7	2.1	116.	99.3	85.4	108	81.7	60.8	0.8	0.3	0.2	0.8	0.2	0.1
THC - E.I.	1.7	0.1	14.9	the second name of the second	15.2	17.8	21.5	21.9	-0-	0-	-0-	0.1	-0-	-0-
NOx - E.I.	3.1	8.5*	4.3	5.5	6.8	4.9	6.3	7.3	14.8	15.1	17.7	20.1	19.5	19.5
COMBUSTION EFFICIENCY	99.4	99.9	95.8	96.2	96.5	95.7	95.9	96.4	100	100	100	100	100	100
CO - EPAP CONTRIBUTION	2.55	0.21	10.57	9.06	7.79	9.89	7.45	5.54	0.11	0.04	0.03	0.12	0.01	0.004
THC - EPAP CONTRIBUTION	0.23	0.01	1.36	1.33	1.38	1.62	1.96	2.00	0.003	0.003	0.003	0.009	0.001	-0-
NO _X - EPAP	0.42	0.77*	0.39	0.50	0.62	0.45	0.58	0.67	2.20	2.24	2.63	3.00	1.11	1.11

^{* -} P.2 NO EXTRAPOLATION TO ENGINE PRESSURE

72 APPENDIX D-8-5 ·

GE DOUBLE/ANNULAR CONFIGURATION D/A-8 cont.

. TEST RIG DATA

ENGINE CONDITION	TAKE-OFF	NO CRUISE DATA OBTAINED
READING NUMBER	то-3 то-4	
FUELING MODE	PILOT PILOT & & MAIN MAIN	
INLET PRESSURE ATM.	4.76 4.75	
FUEL-AIR RATIO-PILOT	.0062 .0082	
FUEL-AIR RATIO-TOTAL	.0231 .0231	
CO - F.I.	2.3 2.4	
THCE.I.	0.1 0.1	
NOx - E.I.	9.0 9.9	
SMOKE NO.	1	
COMBUSTION EFFICIENCY %	99.9 99.9	
PATTERN FACTOR	0.27 0.30	
CO - EPAP CONTRIBUTION	0.13 0.14	
THC - EPAP CONTRIBUTION	0.006 0.006	
2. DATA CORRE	CTED TO ENGINE	PRESSURES:
CO - E.I.	0.06 0.06	
THC - E.I.	0.02 0.02	
$NO_{\mathbf{X}} - E.I.$	21.67 24.30	
COMBUSTION		
EFFICIENCY %	100 100	
CO - EPAP CONTRIBUTION	0.003 0.003	
THC - EPAP CONTRIBUTION	0.001 0.001	
NO _X - EPAP CONTRIBUTION.	1.24 1.39	

73 APPENDIX D-9-a.

GE DOUBLE/ANNULAR COMBUSTOR DATA, CONFIGURATION D/A-9

ENGINE CONDITION	IDLE	erge electric		A1	PPROACI	H			CL	IMBOUT		T	AKE-OF	?
READING NUMBER	I-1	APP-1	APP-2	APP-3	APP-4	APP-5	APP-6	APP-7	CL-1	CL-2	CL-3	TO-1	TO-2	TO-3
FUELING MODE	PILOT	PILOT	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & ½ MAIN	PILOT & ½ MAIN	PILOT & ½ MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN
INLET PRESSURE ATM.	2.91	3.39	3.40	3.39	3.38	3.40	3.41	3.41	4.76	4.76	4.78	4.76	4.76	4.76
FUEL-AIR RATIO-PILOT	.0110	.0139	.0071	.0091	.0112	•0072	•0092	.0113	.0035	.0041	•0060	.0030	.0040	.0060
FUEL-AIR RATIO-TOTAL	.0110	•0139	.0140	.0140	.0139	.0140	.0141	.0141	.0212	.0210	.0213	.0225	.0223	.0227
CO - E.I.	21.2	18.6	113.	89.0	72.5	68.3	63.5	53.4	7.3	5.4	3.9	5.8	3.6	2.5
THC -E.I.	3.0	0.4	55.7	52.6	38.2	25.5	23.0	21.8	0.1	-0-	-0-	-0-	-0-	-0-
NOx - E.I.	3.2	6.4	3.4	4.2	5.1	3.9	4.8	5.5	5.8	6.0	7.0	7.2	7.2	8.0
SMOKE NO.	1.	1.								1.		1.		
COMBUSTION EFFICIENCY %	99.2	99.5	91.8	92.7	94.5	95.9	96.2	96.6	99.8	99.9	99.9	99.9	99.9	99.9
PATTERN FACTOR	1.02	0.99	0.49	1.06	1.03	0.56	0.71	0.88	0.39	0.37	0.34	0.37	0.38	0.35
CO - EPAP CONTRIBUTION	2.89	1.70	10.26	8.12	6.61	6.23	5.79	4.87	1.09	0.80	0.58	0.33	0.21	0.14
THC - EPAP CONTRIBUTION	0.41	0.04	5.08	4.80	3.48	2.33	2.10	1.99	0.02	-0-	-0-	-0-	-0-	-0-
2. DATA CORRE	CTED I	O ENGI	NE PRE	SSURES	1									
CO - E.I.	21.1	1.7	89.6	68.0	53.1	49.5	45.2	36.4	0.9	0.11	0.2	0.4	0.1	0.1
THC - E.I.	3.0	0.1	16.2	15.2	11.0	7.4	6.7	6.4	-0-	-0-	-0-	-0-	-0-	-0-
NOx - E.I.	3.3	8.4*	6.5	8.1	9.8	7.3	8.8	10.2	14.1	14.7	16.9	19.2	19.3	21.1
COMBUSTION EFFICIENCY %	99.2	100	96.3	96.9	97.7	98.1	98.3	98.5	100	100	100	100	100	100
CO - EPAP CONTRIBUTION	2.88	0.11	8.17	6.20	4.84	4.51	4.12	3.32	0.13	0.06	0.02	0.02	0.005	0.003
THC - EPAP CONTRIBUTION	0.41	0.01	1.48	1.39	1.01	0.68	0.61	0.58	0.003	-0-	-0-	. - 0-	- 0-	-0-
NOX - EPAP	0.45	0.76*	0.59	0.73	0.89	0.67	0.80	0.93	2.09	2.18	2.51	1.09	1.04	1.21

^{* --} P.2 NO EXTRAPOLATION TO ENGINE PRESSURE

⁻⁻ ALTERNATE MAIN INJECTORS FUELED

74
APPENDIX D-9-b-

GE DOUBLE/ANNULAR CONFIGURATION D/A-9 cont.

TEST	DTC	DAMA
 TEGI	UTG	DATA

INGINE CONDITION	TAKE-OFF	CRUISE	Maria (1994)			ATTE
READING NUMBER	TO-4	CR-1 CR-2	CR-3	Total Salar		
FUELING MODE	PILOT & MAIN	PILOT PILOT & & MAIN MAIN	PILOT & MAIN			
INLET PRESSURE ATM.	4.76	4.78 4.66	4.66	#110 - 100 -	The second second second	
FUEL-AIR RATIO-PILOT	.0100	.0032 .0041	•0062	Contract Contract (Contract Contract Co	The second secon	
FUEL-AIR RATIO-TOTAL	.0227	.0209 .0209	.0212			
CO - E.I. THC -E.I.	4.7	18.6 13.8 0.3 0.2	0.3			
NO _x - E.I. SMOKE NO.	10.1	4.7 4.8	5.6	and the same of th		
COMBUSTION EFFICIENCY %	99•9	99.5 99.7	99•7			
PATTERN FACTOR	0.31	0.38 0.36	0.28			
CONTRIBUTION	0.27					
THC - EPAP CONTRIBUTION	-0-					
2. DATA CORRE	CTED TO E	NGINE PRESSU	JRES:			
00 - E.I. THC - E.I. NO _X - E.I.	0.2 -0- 26.5	10.6 6.7 0.1 0.1 7.4 8.3	5.7 0.1 8.9			
COMBUSTION EFFICIENCY %	100	99•7 99•8	99.9			
CO - EPAP CONTRIBUTION	0.01			and the		
THC - EPAP CONTRIBUTION	-0-					
NO _X - EPAP CONTRIBUTION.	1.52	7				

75 APPENDIX D-10-9

GE DOUBLE/ANNULAR COMBUSTOR DATA, CONFIGURATION D/A-10

ENGINE CONDITION	IDLE		AP	PROACH					CLIM	BOUT		T	AKE-OF	F
READING NUMBER	I-1	APP-1	APP-2	APP-3	APP-4	APP-5	APP-6	CL-1	CL-2	CL-3	CL-4	TO-1	TO-2	TO-3
FUELING MODE	PILOT	PILOT	PILOT & ½ MAIN	PILOT & MAIN	PILOT & MAIN	&	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOI & MAIN				
INLET PRESSURE ATM.	2.93	3.40	3.42	3.40	3.40	6.82	6.82	4.77	4.78	4.79	4.76	4.78	4.77	4.77
FUEL-AIR RATIO-PILOT	.0110	.0140	.0040	.0070	.0103	.0069	.0107	.0030	•0042	•0063	.0080	.0031	.0041	.0061
FUEL-AIR RATIO-TOTAL	•0110	100 mm 100 mm 10				and the second		.0208			.0209		.0228	.0228
30 - E.I.	17.8	19.5	92.7	65.5	53.3	49.6	36.8	13.6	10.2	9.7	14.2	7.2	4.9	4.0
THC -E.I.	1.4	0.3	53.5	30.5	24.6	21.8	15.7	0.1	0.1	0.1	0.3	-0-	-0-	-0-
NOx - E.I.	3.3	6.6	2.4	3.8	5.2	5.0	7.2	6.2	6.2	7.2	7.9	7.5	7.7	8.6
SMOKE NO.	1.	1.				1.	1.	1.				1.		
COMBUSTION EFFICIENCY %	99.4	99.5	92.5	95.4	96.3	96.7	97.6	99.7	99.8	99.8	99.6	99.8	99.9	99.9
PATTERN FACTOR	0.80	0.99	0.90	0.65	0.87	0.60	0.70	0.45	0.37	0.32	0.28	0.41	0.140	0.37
CONTRIBUTION	2.43	1.78	8.45	5.97	4.86	4.52	3.36	2.02	1.52	1.44	2.11	0.41	0.28	0.23
THC - EPAP CONTRIBUTION	0.19	0.03	4.88	2.78	2.24	1.99	1.43	0.02	0.02	0.02	0.04	-0-	-0-	-0-
2. DATA CORRE	CTED T	O ENGI	NE PRE	SSURES	<u>.</u>									
30 - E.I.	17.9	1.9	71.5	47.0	36.3	41.6	29.6	3.5	1.9	1.7	3.8	0.7	0.2	0.1
THC - E.I.	1.4	-0-	15.6	8.9	7.2	12.8	9.2	-0-	-0-	-0-	0.1	-0-	-0-	-0-
NOx - E.I.	3.4	8.6*	4.8	7.4	10.1	6.8	9.9	15.1	14.5	17.5	19.3	19.5	20.1	22.1
COMBUSTION														
EFFICIENCY %	99.4	100	96.8	98.0	98.4	97.7	98.4	99.9	100	100	100	100	100	100
CO - EPAP CONTRIBUTION	2.44	0.17	6.52	4.29	3.31	3.79	2.70	0.51	0.29	0.26	0.56	0.04	0.01	0.007
THC - EPAP CONTRIBUTION	0.19	-0-	1.43	0.81	0.65	1.17	0.84	0.003	0.003	0.003	0.008	-0-	-0-	-0-
NO _X - EPAP	0.46	0.78*	0.44	0.67	0.92	0.62	0.90	2.24	2.15	2.61	2.88	1.11	1,15	1.26

^{* --} P.2 NO EXTRAPOLATION TO ENGINE PRESSURE

^{@ --} ALTERNATE MAIN INJECTORS FUELED

76 APPENDIX D-10-b

GE DOUBLE/ANNULAR CONFIGURATION D/A-10 cont.

ENGINE	TAKE-OFF	NO CRUISE DATA OBTAINED
CONDITION	THILD OF F	The state of the s
READING NUMBER	то-4 то-5	
MODE	PILOT PILOT & & MAIN MAIN	
INLET PFEBSURE ATM。	4.76 6.82	
FUEL-AIR RATIO-PILOT	.0081 .0080	
FUEL-AIR RATIO-TOTAL	.0229 .0229	
CO - E.I.	J ₁₋₉ 3-3	
NO _v - E.I.	9-1 11-6	
COMBUSTION EFFICIENCY %	99.9 99.9	
PATTERN	0.32 0.29	
O - EPAP	0.28 0.19	
THC - EPAP CONTRIBUTION	-00-	
	CTED TO ENG	INE PRESSURES:
0 - E.I.	0.24 0.17	
HC - E.I.	-00-	性性
OMBUSTION	23.13 23.88	
EFFICIENCY %	100 100	
O - EPAP CONTRIBUTION	0.01 0.01	
THC - EPAP CONTRIBUTION	-00-	
NO _X - EPAP CONTRIBUTION.	1.32 1.36	

77
APPENDIX D-11-a

GE DOUBLE/ANNULAR COMBUSTOR DATA, CONFIGURATION D/A 11

ENGINE CONDITION	IDLE					AP 1.10	ACH					C	LŢMBOU	יי
READING NUMBER	I-1	APP-1	APP-2	APP-3	APP-4	APP-5	APP-6	APP-7	APP-8	APP-9	APP-10	CL-1	CL-2	CL-3
FUELING MODE	PILOT ONLY	PILOT	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & ½ MAIN	PILOT & MAIN	PILOT & MAIN	&				
INLET PRESSURE ATM.	2.91	3.42	3.40	3.41	3.42	6.80	3.40	3•39	3.40	6.80	6.79	4.76	4.76	4.78
FUEL-AIR RATIO-PILOT	.0110	•0138	.0031	•0070	.0112	.0035	.0031	•0070	.0111	.0070	•0110	.0033	.0042	.006
FUEL-AIR RATIO-TOTAL	.0110	.0138	.0137	.0138	.0139	.0138	.0137	.0139	.0139	.0139	•0139	.0214	.0214	.021
00 - E.I.	20.6	18.4	140.	105.	68.1	90.5	54.5	23.5	17.7	16.0	36.2	4.4	3.0	2.7
THC -E.I.	2.5	0.1	35.8	45.4	30.2	14.1	12.8	2.5	14.2	1.8	10.7	0.1	0.1	-0-
NOx - E.I.	3.0	6.6	1.7	2.9	4.9	2.2	3.0	4.4	5.7	5.9	7.8	6.4	6.9	7.9
SMOKE NO.	1.	1.					1.	1.	1.				1.	
COMBUSTION EFFICIENCY	99•3	99.6	93.1	93.0	95.4	95.2	97.4	99.2	97.5	99.4	98.1	99•9	99•9	99.9
PATTERN	1.04	1.07	0.40	0.61	1.03	0.43	1.30	0.91	1.18	0.86	1.14	0.38	0.39	0.27
CONTRIBUTION	2.81	1.68	12.80	9.58	6.21	8.25	4.97	2.14	4.35	1.46	3.30	0.65	0.45	0.1
THC - EPAP CONTRIBUTION	0.34	0.01	3.27	4.14	2.75	1.29	1.17	0.23	1.30	0.16	0.98	0.02	0.02	-0
2. DATA CORRE	CTED 1	ro ENGI	INE PRI	ESSURES	31							V 31		
CO - E.I.	20.5	1.7	116	82.7	1,9-3	80-6	37.3	11.8	31.5	10.8	29.0	0.2	0.1	0.1
THC - E.I.	2.5	-0-	10.1		8.8	8.2	3.7	0.7	1,1	1.1	6.3	-0-	-0-	-0-
NOx - E.I.	3.2	8.6*		5.5	9.1	2.8	5.9	8./1	10.7	7.7	10.3	15.1	15.8	18.1
COMBUSTION				mileti neat										
EFFICIENCY %	99•3	100	96.3	96.7	98.0	97.3	98.8	99.7	98.9	99.6	98.7	100	100	100
CO - EPAP CONTRIBUTION	2.80	0.15	10.5	7.54	4.50	7.35	3.40	1.08	2.87	0.98	2.64	0.03	0.01	0.01
THC - EPAP CONTRIBUTION	0.34	0.003	0.95	1,21	0.80	0.75	0.34	0.07	0.38	0.10	0.57	0.003	0.003	-0-
NO ETAP CONTRIBUTION.	0.44	0.79*	0.30	0.51	Q.83	0.25	0.53	0.76	0.98	0.70	0.94	2.24	2.35	2.71

^{* --} P.2 NO EXTRAPOLATION TO ENGINE PRESSURE

^{# -- 15} INJECTOR SECTOR FUELED ON MAIN

78 APPENDIX D-11-b

GE DOUBLE/ANNULAR CONFIGURATION D/A -11 cont.

ENGINE CONDITION	CLIMBOUT		TAI	Œ-OFF			NO CRUISE DATA OBTAINED
READING NUMBER	CL-4	TO-1	T0-2	TO-3	то-4	то-5	Section 2
FUELING MODE	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	&	PILOT & MAIN	PILOT & ½ MAIN	
INLET PRESSURE ATM.	4.78	4.78	4.77	4.76	4•79	4.76	The stage was their stage.
FUEL-AIR RATIO-PILOT	.0082 .	.0031	.0036	.0041	.0062	.0082	
FUEL-AIR RATIO-TOTAL	.0212	.0228	.0229	.0229	.0229	.0230	
CO - E.I.	4.5	2.7	2.3	1.9	1.4	1.5	
THC -E.I.	0.1	0.1	-0-	-0-	-0-	-0-	
NO _v - E.I.	8.8	7.8	8.0	8.0	8.9	9.6	
SMOKE NO.			1.				
COMBUSTION EFFICIENCY %	99.9	99.9	100	100	100	100	
PATTERN FACTOR	0.30	0.40	0.44	0.38	0.29	0.25	
CO - EPAP CONTRIBUTION	0.67	0.15	0.13	0.11	0.08	0.09	
THC - EPAP CONTRIBUTION	0.02	0.006	-0-	-0-	-0-	-0-	
2. DATA CORRI	ECTED TO	ENGINE	PRESS	URES:			
CO - E.I.	0.23	0.07	0.06	0.05	0.01	0.01	
THC - E.I.	0.02	0.02	1317/510 1809 Pales Proprietario	THE RESERVE OF THE PARTY OF THE	-0-		
NO_{X} - E.I.	20.32	19.76	20.79	20.98	23.60	25.00	
COMBUSTION EFFICIENCY %	100	100	100	100	100	100	
CO - EPAP CONTRIBUTION	0.03	0.004	0.003	0.003	0.002	0.002	
THC - EPAP CONTRIBUTION	0.003	0.001	-0-	-0-	-0-	-0-	
NO _X - EPAP	3.02	1.13	1.19	1.20	1.35	1.43	10/ 100 added supportation

79 APPENDIX D-12 -a

GE DOUBLE/ANNULAR COMBUSTOR DATA, CONFIGURATIONS D/A 12 a & b

ENGINE CONDITION	IDLE 12-a	IDLE		Al	PPROACE	H			Cl	LIMBOUT	2		TAKE-	-OFF
READING NUMBER	I-1	I - 2	APP-1	APP-2	APP-3	APP-4	APP-5	CL-1	CL-2	CL-3	CL-4	CL-5	TO-1	TO-2
FUELING MODE	PILOT	PILOT	PILOT	PILOT & ½ MAIN	PILOT & ½ MAIN	PILOT & ½ MAIN	PILOT & ½ MAIN	PILOT & MAIN						
INLET PRESSURE ATM.	2.93	2.94	3.41	6.75	6.77	6.80	6.78	4.76	4.76	4•77	4•77	4.76	4•77	4.78
FUEL-AIR RATIO-PILOT	.0110	.0110	.0143	.0057	.0072	•0092	.0112	•0025	•0031	•0041	.0062	.0083	.0032	.0036
FUEL-AIR RATIO-TOTAL	0110	.0110	.0143	.0143	.0142	.0142	.0141	.0216	.0213	.0215	.0215	.0216	.0236	.0233
30 - E.I.	25.0	21.7	21.7	16.0	20.9	37.4	10.3	8.9	7.2	4.6	4.0	6,5	4.4	3.3
THC -E.I.	7.1	2.8	0.3	2.4	2.7	6.6	13.8	0.2	0.2	0.2	0.2	0.2	0.4	-0-
NO _x - E.I.	3.4	3.0	6.5	5.3	5.9	6.7	7.6	6.5	6.5	6.6	7.5	8.4	7.6	7.5
SMOKE NO.	1.	1.	1.	3.	2.	2.	3。	1.						1.
COMBUSTION EFFICIENCY %	98.7	99.2	99•4	99•4	99•3	98.5	97.7	99.8	99.8	99.9	99•9	99.8	99.9	99•9
PATTERN FACTOR	1.16	1.27	1.05	1.16	1.02	0.86	1.04	0.41	0.33	0.36	0.34	0.34	0.41	0.38
CO - EPAP CONTRIBUTION	3.41	2.96	2.25	1.46	1.91	3.41	3.68	1.32	1.07	0.68	0.59	0.97	0.25	0.19
THC - EPAP CONTRIBUTION	0.97	0.38	0.03	0.22	0.25	0.60	1.26	0.03	0.03	0.03	0.03	0.03	0.02	-0-
2. DATA CORRI	ECTED	TO ENG	INE PR	ESSURE	S:									
CO - E.I.	25.2	22.0	3.5	10.8	15.1	30.1	32.8	1.1	0.9	0.3	0.2	0.7	0.2	0.1
THC - E.I.	7.1	2.8	0.1	1.4	1.6	3.8	8.0	0.04		0.04	0.04		0.06	
NOx - E.I.	3.4	3.2	8.8*	6.9	7.7	8.8	10.0	15.8	14.7	14.8	17.5	21.9	19.8	20.1
COMBUSTION EFFICIENCY %	98.7	99.2	99•9	99.6	99.5	98.9	98.4	100	100	100	100	100	100	100
CO - EPAP CONTRIBUTION	3•44	3.00	0.31	0.98	1.37	2.75	2.99	0.21	0.13	0.04	0.02	0.10	0.01	0.005
THC - EPAP CONTRIBUTION	0.97	0.39	0.008	0.13	0.14	0.35	0.73	0.006	0.006	0.006	0.006	0.006	0.003	-0-
NO _X - EPAP	0.46	0.43	0.80*	0.63	0.71	0.80	0.91	2.34	2.18	2.20	2.61	3.26	1.13	1.15

 $[\]star$ -- $P^{\bullet 2}$ NO $_{_{\mathbf{X}}}$ EXTRAPOLATION TO ENGINE PRESSURE

^{# -- 15} INJECTOR SECTOR FUELED ON MAIN

APPENDIX D-12-b

GE DOUBLE/ANNULAR CONFIGURATION D/A-12-b cont.

1. TEST RIG DATA

ENGINE	TAKE-OFF	NO CRUISE DATA OBTAINED
CONDITION	TARE-OFF	NO CROIDE DATA OBTAINED
REALING NUMBER	то-3 то-4 то-5	AND THE RESERVE OF THE PROPERTY OF THE PROPERT
FUELING MODE	PILOT PILOT PILOT & & & MAIN MAIN MAIN	
INLET PRESSURE ATM.	4.77 4.78 4.78	
FUEL-AIR RATIO-PILOT	.0042 .0062 .0082	
FUEL-AIR RATIO-TOTAL	.0236 .0234 .0234	
00 - E.I.	2.9 2.0 2.1	
THC -E.I.	0.1 0.1 -0-	
NO _Y - E.I.	7.5 8.4 9.4	
SMOKE NO.		The second secon
COMBUSTION EFFICIENCY %	99.9 100 100	
PATTERR FACTOR	0.35 0.35 0.35	
CO - EPAP CONTRIBUTION	0.17 0.11 0.12	The state of the s
THC - EPAP CONTRIBUTION	0.006 0.006 -0-	
2. DATA CORRE	CCTED TO ENGINE PRE	ESSURES:
30 - E.I.	0.07 0.05 0.05	
THC - E.I.	0.02 0.02 -0-	
NOx - E.I.	19.33 22.42 24.88	
COMBUSTION EFFICIENCY	100 100 100	
% CO - EPAP CONTRIBUTION	.0004 0.003 0.003	
THC - EPAP CONTRIBUTION	-000-	
NO _x - EPAP CONTRIBUTION.	1.10 1.28 1.42	CONTRACTOR CASE STORAGE PROPERTY OF THE STORAGE PROPER

GE DOUBLE/ANNULAR COMBUSTOR DATA, CONFIGURATION D/A 13

ENGINE CONDITION	IDLE		Al	PPROACE	I			CL	LMBOUT		TAKE-OFF			
READING NUMBER	I-1	APP-1	APP-2	APP-3	APP-4	APP-5	CL-1	CL-2	CL-3	CL-4	ТО-1	T0- 2	TO-3	то-4
FUELING MODE	PILOT	PILOT	PILOT	PILOT & 1/2 MAIN	PILOT & ½ MAIN	PILOT & ½ MAIN	PILOT & MAIN							
INLET PRESSURE ATM.	2.93	3.45	6.84	6.80	6.82	6.83	4.72	4.74	4.75	4.73	2.72	4.76	4.72	4.72
FUEL-AIR RATIO-PILOT	.0110	.0140	.0140	.0030	.0060	.0085	٥٥٥٥٥ ،	.0041	.0061	.0082	.0063	.0025	.0036	.0038
FUEL-AIR RATIO-TOTAL	.0110	.0140	.0140	.0140	.0141	.0139	.0210	.0212	.0212	.0214	.0232	.0233	.0231	.0231
CO - E.I.	19.2	23.4	9.7	47.7	16.8	28.5	10.7	5.5	4.4	7.0	5.2	8,2	4.9	4.9
THC -E.I.	2.2	0.1	0.1	12.8	4.1	4.4	0.1	-0-	-0-	0.1	-0-	-0-	-0-	-0-
NO _v - E.I.	3.1	6.3	8.3	4.3	4.6	5.7	5.3	5.3	6.1	6.9	5.6	7.1	6.8	6.9
SMOKE NO.														
COMBUSTION EFFICIENCY %	99•3	99.4	99.8	97.6	99.2	98.9	99•7	99•9	99•9	99.8	99.9	99.8	99.8	99•9
PATTERN FACTOR	1.19	1.16	1.20	1,40	0.98	0.75	0.40	0.41	0.36	0.28		0.51	0.43	0.43
CO - EPAP CONTRIBUTION	2.62	2.13	0.88	4.35	1.53	2.60	1.59	0.82	0.65	1.04	0.30	0.47	0.28	0,28
THC - EPAP CONTRIBUTION	0.30	0.01	0.01	1.17	0.37	0.40	0.01	-0-	-0-	0.01	- 0-	-0-	-0-	-0-
2. DATA CORR	ECTED	TO ENG	INE PR	ESSURE	S:									
30 - E.I.	19.3	3.1	3.3	39.8	11.5	22.0	2.1	0.4	0.2	0.8	0.1	1.0	0.2	0.2
THC - E.I.	2.2	-0-	0.1	7.4	2.4	2.6	-0-	-0-	-0-	-0-	-0-	-0-	-0-	-0-
NO _x - E.I. COMBUSTION	3.0	8.9*	8.8*	6.0	6.3	8.0	13.8	13.3	14.9	17.4	19.4	18.6	18.6	18.9
EFFICIENCY %	99.3	99.9	99•9	98.3	99.5	99.2	100	100	100	100	100	100	100	100
CO - EPAP CONTRIBUTION	2.64	0.28	0.30	3.63	1.05	2.01	0.31	0.06	0.03	0.12	0.007	0.06	0.01	0,01
THC - EPAP CONTRIBUTION	0.30	0.003	0.005	0.68	0.22	0.23	0.003	-0-	-0-	0.003	-0-	-0-	-0-	-0-
NO _X - EPAP CONTRIBUTION	0.41	0.81*	0.80*	0.55	0.57	0.73	2.05	1.97	2.22	2.59	1.11	1.06	1.06	1.08

^{* --} P° 2 NO EXTRAPOLATION TO ENGINE PRESSURE

^{# -- 15} INJECTOR SECTOR PUELED ON MAIN

APPENDIX D-13-b

GE DOUBLE/ANNULAR CONFIGURATION D/A-13 cont.

ENGINE CONDITION			TAI	KE-OFF				NO CRUISE DATA OBTAINED
READING NUMBER	TO-5	то-6	то-7	то-8	то-9	TO-10	TO-11	
FUELING MODE	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	
INLET PRESSURE ATM.	4.75	4.73	6.83	9.55	9.53	9.53	9.54	And the State of t
FUEL-AIR RATIO-PILOT	•0047	062	.0060	.0025	.0036	.0045	•0060	
FUEL-AIR RATIO-TOTAL	.0235	.0232	.0228	.0229	.0231	.0231	.0229	
CO - E.I.	3.4	2.4	1.4	4.2	2.2	1.4	1.0	
THC -E.I.	-0-	-0-	-0-	0.2	-0-	-0-	-0-	
NO _Y - E.I.	6.8	7.3	9.2	9.0	9.7	9.7	10.2	
SMOKE NO. COMBUSTION EFFICIENCY	99.9	99•9	100	99.9	99•9	100	100	
PATTERN FACTOR	0.43	0.36	0.32	0.42	0.38	0.31	0.32	The Control of the Co
CO - EPAP CONTRIBUTION	0.19	0.14	0.08	0.24	0.13	0.03	0,06	
THC - EPAP CONTRIBUTION	-0-	-0-	-0-	0.01	-0-	-0-	-0-	
2. DATA CORRI	ECTED '	PO ENG	INE PRI	ESSURES	81			
CO - E.I. THC - E.I.	0.09		_0.07				0.10 -0-	
NO _x - E.I. COMBUSTION	18.3	20.3				THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	Charles and the second second	
EFFICIENCY %	100	100	100	100	100	100	100	
CO - EPAP CONTRIBUTION	0.005	0.003	0.004	0.03	0.01	0.008	0.006	
THC - EPAP CONTRIBUTION	-0-	-0-	-0-	0.003	-0-	-0-	-0-	THE RESIDENCE OF THE PARTY OF T
NO _X - EPAP CONTRIBUTION	1.04	1.16	1.16	0.96	1.04	1.04	1.09	

83 APPENDIX D-14-a-

GE DOUBLE/ANNULAR COMBUSTOR DATA, CONFIGURATION D/A 14-a

ENGINE														- 196 - 1964.
CONDITION	IDLE		Al	PPROAC	H			CLIMB	OUT			TAK	E-OFF	
READING NUMBER	ID-1	APP-1	APP-2	APP-3	APP-4	APP-5	CL-1	CL2	CL-3	CL-4	70-1	T0-2	TO-3	TO-4
FUELING MODE	PILOT	PILOT	- T. ST. ST. ST. ST. ST.	PILOT & MAIN	PILO & MAIN									
INLET PRESSURE ATM.	2.91	3-41	6.80	6.80	6.80	6.80	9.53	9.51	9.53	9.54	9.56	9.60	9.54	9.53
FUEL-AIR RATIO-PILOT	.0110	.0140	.0140	.0031	.0062	.0091	.0025	.0031	.0041	.0062	.0021	.0031	•00/12	.006
FUEL-AIR RATIO-TOTAL	.0110	.0140	.0140	.0141	.0142	.0141	.0217	.0216	.0217	.0217	•0234	.0234	.0236	.023
CO - E.I. THC -E.I.	26.9 3.8	0.7	0.5	22.0	87.7 28.5	71.5	6.0	4.4	3.0	2.14	0.2	0.1	0.1	1.9
NO _x - E.I.	3.0	5.8	7.6	3.5	4.9	5.7	10.4	10.4	1.0.7	11.8	12.2	12.1	12.5	13.4
SMOKE NO.	1.	1.	-0-						1.			-0-		
COMBUSTION EFFICIENCY %	99.0	99•4	99•7	95.4	95.1	94.4	99.9	99.9	99.9	99.9	99.8	99.9	99.9	100
PATTERN FACTOR	1.10	1.15	1.35	0.58	0.58	0.89	0.50	0.47	0.45	0.40	0.58	0.57	0.52	0.14
CO - EPAP CONTRIBUTION	3.67	2.06	1.03	9.28	8.05	6.57	0.89	0.65	0.45	0.36	0.37	0.25	0.11	0.11
THC - EPAP CONTRIBUTION	0.52	0.06	0.04	2.01	2.60	3.59	0.01	-0-	-0-	-0-	0.01	0.006	0.006	0.00
2. DATA CORRE	ECTED T	O ENGI	NE PRE	SSURES										
CO - E.I.	26.8	2.7	the facility of the state of the state of	101.	77.9	62.3	1.4	0.7		0.3	1.4	0.6	0.3	0.2
THC - E.I.	3.0	0.2	0.3	15.9	16.6	22.9	0.04	-0	-0-	-0-	0.06	0.03	0.03	0.0
NO _X - E.I.	3.2	7.0%	8.4*	4.7	6.5	7.7	17.01	16.99	17.58	19.12	21.48	21.41	20.96	22.4
COMBUSTION EFFICIENCY %	99.1	99.9	99.9	96 . L	96.5	96.3	100	100	100	100	100	100	100	100
CO - EPAP CONTRIBUTION	3.66	0.25	0.35	9.25	7.15	5.72	0.21	0.11	0.06	0.05	0.08	0.03	0.01	0.01
THC - EPAP CONTRIBUTION	0.41	0.02	0.02	1.17	1.51	2.09	0.006	-0-	-0-	-0-	0.003	0.002	0.002	0.00
NO _X - EPAP CONTRIBUTION.	0.44	0.69*	0.77*	0.43	0.59	0.71	2.53	2.53	2.61	2.84	1.23	1.22	1.20	1.28

COMBUSTOR INLET TEMPTRATURE AND REFERENCE VELOCITY AT NOMINAL ENGINE CONDITIONS.

* - P.2 NO EXTRAPOLATION TO ENGINE PRESSURE

1

APPENDIX D-14-b .

GE DOUBLE/ANNULAR CONFIGURATION D/A-14-a cont.

-4	COLUMN COLUMN	DTC	A PTI A CT
1 -	TEST	PC I C+	110.1.0

ENGINE CONDITION		CRI	UISE	
READING NUMBER	CR-1	CR-2	CR-3	CR-4
TUELING MODE	PILOT & MAIN	PILOT & MAIN	&	PILOT & MAIN
INLET PRESSURE ATM.	4.76	4.76	4.78	4.78
FUEL-AIR RATIO-PILOT	.0031	•0042	.0062	.0083
FUEL-AIR RATIO-TOTAL	.0214	.0213	.0213	.0213
CO - E.I.	-	11.5		13.9
THC -E.I.	5.1	5.2	6.2	7.0
SMOKE NO. COMBUSTION EFFICIENCY %	99.6	99•7	99•7	99.6
PATTERN FACTOR	0.51	0.50	0.50	0.56
CO - EPAP CONTRIBUTION				
THC - EPAP CONTRIBUTION				
2. DATA CORRE	CTED T	O ENGI	NE PRE	SSURES
CO - E.I.	8.8	5.2	4.6	6,9
NO _x - E.I.	8.3	8.6	9.9	0.2
COMBUSTION EFFICIENCY %	99.8			99.8
CO - EPAP CONTRIBUTION				
THC - EPAP CONTRIBUTION				
NO _X - EPAP CONTRIBUTION.				

85
APPENDIX D-15 .

GE DOUBLE/ANNULAR COMBUSTOR DATA, CONFIGURATION D/A 14-b

1. TEST RIG DATA

ENGINE CONDITION	IDLE	APPROA	СН	NO CLIMBOUT,	TAKE-OFF	OR CRUISE	DATA	OBTAINED
READING NUMBER	ID-1	APP-1 APP-	-2 APP-3					
FUELING MODE	FILOT	PILOT PILO						
INLET PRESSURE ATM.	2.93	3.40 5.08	6.77					
FUEL-AIR RATIO-PILOT	.0110	.0140 .011	0 .0140					
FUEL-AIR RATIO-TOTAL	.0110					1		
CO - E.I.			5 15.4					
THC -E.I.	19.4	0.3 0.3	0.2					
NO _x - E.I.	3.1	6.1 7.	5 8.0					
SMOKF NO.	1.	1. 1.	1.					
COMBUSTION EFFICIENCY %	97.0	99.2 99.	5 99.6					
PATTERIX FACTOR	1.68	1.30 1.2	3 1.45			en e		
CO - EPAP	6.42	2.96 1.8	7 1.40					
THC - EPAP CONTRIBUTION	2.65	0.03 0.03	1 0.02					
2. DATA CORRE	CTED I	O ENGINE F	PRESSURES:					
CO - E.I.	47.2	6.4 4.	5 5.2					
THC - E.I.	19.5		04 0.1					
NOx - E.I.	3.1	8.2* 8.						
COMBUSTION								
EFFICIENCY %	96.9	99.8 99.	9 99.9		inappy by valvy alla			
CO - EPAP CONTRIBUTION	6.45	0.58 0.4	1 0.47					
THC - EPAP CONTRIBUTION	2.66	0.008 0.0	04 0.011					
NO _X - EPAP CONTRIBUTION.	0.42	0.75* 0.8	C* 0.82*	•				

COMBUSTOR INLET TEMPERATURE AND REFERENCE VELOCITY AT NOMINAL ENGINE CONDITIONS.

* -- P-2 NO EXTRAPOLATION TO ENGINE PRESSURE

APPENDIX E

This appendix contains summaries of test rig data for all of the General Electric radial/axial combustor configurations evaluated in Phase II of the Experimental Clean Combustor Program. Data are presented in two groupings:

- 1. Test Rig Data In this section, data are presented as they were obtained in the test rig with one exception. In setting test point conditions, it was rarely possible to operate precisely at the design point fuel-air ratio. Thus, when more than fuel-air ratio was investigated at a test condition, the general procedure used was to plot the emissions against fuel-air ratio and determine emission levels at the design point fuel-air ratio by interpolation. When only one fuel-air ratio was investigated at a test condition, emission levels at that value are reported.
- 2. Data Corrected to Engine Pressures Correlations which were used to extrapolate test rig data to engine conditions are contained in the Data Correlation Procedures section of the report. Calculations of EPAP values were made according to the procedures described in the EPAP Calculations section of the report.

87
APPENDIX E-1-a

ENGINE CONDITION	ID	LE	La Parley and Labor			APP	ROACH						CLIM	BOUT
READING NUMBER	ID-1	ID-2	APP-1	APP-2	APP-3	APP-4	APP-5	APP-6	APP-7	APP-8	APP-9	APP-10	CL-1	CL-2
FUELING MODE	PILOT	PILOT ONLY	PILOT ONLY	PILOT	PILOT	PILOT & 1/2 MAIN	PILOT & ½ MAIN	PILOT & ½ MAIN	PILOT & ½ MAIN	& 1 2	& 1/2	PILOT [®] & ½ MAIN	PILOT & MAIN	PILO & MAIN
INLET PRESSURE ATM.	2.91	2.89	3.42	3.42	6.85	3.42	6.87	3.42	3.42	6.83	6.87	3.40	4.76	4.75
FUEL-AIR RATIO-PILOT	.0110	.0115	•0137	.0138	.0139	.0038	.0058	•0059	.0057	.0057	.0073	.0074	.0047	.005
FUEL-AIR RATIO-TOTAL	.0110	•0115	.0137	.0138	.0139	.0137	.0137	.0139	.0137	.0138	.0138	.0139	.0208	.020
CO - E.I.	91.0	86.8	29.6	27.9	11.6	106.	87.2	97.0	111.	101.	99.7	107.	64.9	54.2
THC -E.I.	34.0	29.1	2.5	0.5		170.	73.0	87.2		100.	69.0	93.9	13.8	6.7
NO _x - E.I.	2.1	2.3	4.4	5.3	6.3	2.3	4.0	3.2	2.7	4.0	6.1	4.5	5.1	7.4
SMOKE NO.	5.9	10.4						1.6						
COMBUSTION EFFICIENCY %	94.5	95.1	99.1	99.3	99.7	80.6	90.7	89.0	81.9	87.6	90.8	88.1	97.1	98.1
PATTERN FACTOR														
CO - EPAP CONTRIBUTION	12.43	11.85	2.70	2.54	1.06	9.67	7.95	8.95	10.12	9.19	9.09	9.76	9.65	8.0
THC - EPAP CONTRIBUTION	4.64	3.97	0.23	0.05	0.04	15.47	6.66	7.95	14.14	9.15	6.29	8.56	2.05	1.0
2. DATA CORRE	CTED T	O ENGI	NE PRES	SURES										
CO - E.I.	90.8	86.2	5.3	4.6	2.7	83.7	77.6	75.5	88.3	85.4	89.6	76.6	41.0	32.2
THC - E.I.	_	28.8	0.7	0.2	Married Williams	49.6	12.9			58.6	40.5	27.3	2.5	1.2
NO _x - E.I.	2.1	2.0	5.5*	6.4*	6.9*	4.4	5.3	5.9	5.2	5.3	8.1	8.5	11.5	16.9
COMBUSTION			1			7.1	-							
EFFICIENCY %	94.5	95.1	99.8	99•9	99.9	93.1	93.9	95.7	93.4	92.1	93.9	95.5	98.8	99.1
CO - EPAP CONTRIBUTION	12.40	11.77	0.48	0.42	0.25	7.73	7.07	6.88	8.05	7.79	8.17	6.98	6.10	4.7
THC - EPAP CONTRIBUTION	4.63	3.93	0.07	0.01	0.02	4.52	3.91	2.33	4.13	5.34	3.69	2.49	0.38	0.1
NO _X - EPAP CONTRIBUTION.	0.28	0.31	0.50	0.58	0.63	* 0.40	0.48	0.54	0.48	0.49	0.73	0.77	1.71	2.5

- * -- P*2 NO EXTRAPOLATION TO ENGINE PRESSURE
- ¢ -- ALTERNATE PILOT INJECTORS FUELED
- + -- ALTERNATE PILOT AND ALTERNATE MAIN INJECTORS FUELED
- @ -- ALTERNATE MAIN INJECTORS FUELED

88
APPENDIX E-1-b

GE RADIAL/AXIAL CONFIGURATION R/A-1 cont.

1.	TEST	RIG	DATA

ENGINE	CLIMBOUT				TAKE	-OFF				NO CRUISE DATA, OBTAINEI
READING NUMBER	CL-3	TO-1	TO-2	T0-3	TO-4	TO-5	то-6	TO-7	то-8	
FUELING MODE	PILOT C MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	& &	PILOT & MAIN	PILOT & MAIN	
INLET PRESSURE ATM.	4.75	9.59	4.72	9.59	4.78	4.75	4080			A suppose that a second
FUEL-AIR RATIO-PILOT	.0068	•0038	•0038	•0057	.0058	.0077	•0030	.0038	.0049	
FUEL-AIR RATIO-TOTAL	.0209	.0225	.0231	•0222	.0228	.0226	.0229	.0228	.0231	
CO - E.I.	38.0	23.1	31.7	13.7	16.9	13.3	53.0	38.4	28.9	The Committee of the Co
THC -E.I.	2.4	1.5	3.4	0.2	0.4	0.2	24.0	9.2	3.8	
NO _x - E.I.	10.5	7.0	4.9	12.7	9.8	14.0	5.3	7.4	8.4	
SMOKE NO.			1.7					0.5		
COMBUSTION EFFICIENCY %	98.9	99•3	98.9	99.7	99.6	99.2	96.4	98.2	98.9	
PATTERN FACTOR										
CO - EPAP CONTRIBUTION	5.65	1.32	1.81	0.78	0.97	0.76	3.03	2.19	1.65	
THC - EPAP CONTRIBUTION	0.36	0.09	0.19	0.01	0.02	0.01	1.37	0.53	0.22	
2. DATA CORRE	CTED TO E	IGINE :	PRESSU	RES:			•			
CO - E.I.	19.5	12.3	13.9	5.5	4.7	3.0	30.0	18.8	12.1	
THC - E.I.	0.4		0.5	0.06		0.03		1.5	0.6	The state of the s
NOx - E.I.			11.7	21.8	23.4	33.1	12.5	17.4	19.5	
COMBUSTION EFFICIENCY %	99•5	99.7	99.6	99.9	4.5	99.9	98.9			
CO - EPAP CONTRIBUTION	2.90	0.70	0.79	0.31	0.27	0.17	1.71	1.07	0.69	Me The state of the state of th
THC - EPAP CONTRIBUTION	0.07	0.03	0.03	-0-	-0-	-0-	0.22	0.08	0.03	
NO _X - EPAP CONTRIBUTION.	3.47	0.69	0.67	1.24	1.34	1.89	0.71	0.99	1.11	

COMBUSTOR INLET TEMPERATURE AND REFERENCE VELOCITY AT NOMINAL ENGINE CONDITIONS.

¢ -- ALTERNATE FILOT INJECTORS FUELED

ASSESSED AND ACTION ASSESSED TO SECURE ASSESSED. THE

ENGINE CONDITION	IDLE			A	PPROAC	H				CLIM	BOUT		TAKE-	-OFF
READING NUMBER	ID-1								CL-1			CL-4	TO-1	TO-2
FUELING MODE	PILOT	PILOT	PILOT & ½ MAIN	FILOT & ½ MAIN	PILOT & ½ MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & ½ MAIN	PILOT & ½ MAIN	PILOT & MAIN	PILOT & MAIN
INLET PRESSURE ATM.	2.91	4.78	4.77	4.80	4.74	4.78	4.80	4.79	4.55	4.76	4.76	4.74	4.80	4.60
FUEL-AIR RATIO-PILOT	.0110	.0140	.0048	.0057	.0077	.0040	•0050	•0060	.0049	.0074	.0049	.0074	•0039	•0011
FUEL-AIR RATIO-TOTAL	•0110	·0140	.0137	.0137	.0142	.0142	.01.43	.0141	.0215	.0215	.0215	.0215	.0227	.0230
CO - E.I. THC -E.I.	54.0	12.5	99.8	91.9 75.2	83.4 42.2	127. 229.	117. 139.	94.5	26.4	19.0	27.3	0.8	23.3	15.4 0.3
NO _x - E.I.	3.3	8.1	2.4	3.2	5.2	1.2	1.9	2.8	6.2	9.4	6.3	10.0	6.4	7.2
SMOKE NO.	0.8	0.8		0.6				1.2						
EFFICIENCY	98.1	99•7	86.6	90.3	93.8	74.1	83.4	88.0	99.3	99.5	99.2	99.4	99.4	99.6
PATTERN FACTOR	0.64	0.41	1.20	1.07	0.73	1.05	0.71	0.63	0.36	0.66	0.56	0.53	0.33	0.34
CO - EPAP CONTRIBUTION	7.35	1.14	9.10	8.38	7.61	11.6	10.7	10.1	3.93	2.83	1.56	1.20	1.33	0.88
THC - EPAP CONTRIBUTION	0.83	0.04	10.1	6.86	2.85	20.9	12.7	8,62	0.16	0.06	0.11	0.05	0.05	0.02
2. DATA CORRE	CTED T	O ENGI	NE PRE	SSURES	<u>.</u>									
CO - E.I.	53.8	1.3	83.4	76.1	67.9	109.	99.6	93.7	10.9	6.4	11.0	7.1	3.9	1.8
THC - E.I.	6.1	0.2	45.1	30.9	17.1	93.6	56.9	38.9	0.2	0.1	0.3	0.1	0.]	0.0
NOx - E.I.	3.1	9.2*	3.8	4.8	8.0	2.0	2.7	3.7	14.2	21.4	14.3	22.8	16.1	18.4
COMBUSTION EFFICIENCY	98.1	100	93.5	95.1	96.7	88.1	92.0	93.9	99.7	99.8	99.7	99.8	99.8	99.9
CONTRIBUTION	7.35	0.11	7.61	6.94	6.19	9.92	9.08	8.55	1.62	0.96	1.63	1.05	0.48	0.22
THO - EPAP COMPRIBITION	0.83	0.01	4.11	2.81	1.56	8.54	5.19	3.55	0.03	0.01	0.05	0.02	0.01	-0-
NO _X - EPAP CONTRIBUTION	0.42	0.84*	0.35	0.111	0.73	0.18	0.25	0.34	2.11	3.18	2.13	3.39	0.92	1.05

^{* --} P.2 NO EXTRAPOLATION TO ENGINE PRESSURE

[—] ALTERNATE MAIN INJECTORS FUELED

APPENDIX E-2-b

GE RADIAL/AXIAL CONFIGURATION R/A-2 cont.

1. TEST RIG DATA

ENGINE CONDITION	TAKE-OFF			CI	RUISE				
READING NUMBER	TO-3	CR-1	CR-2	CR-3	CR-4	CR-5	CR-6	CR-7	
FUELING MODE	PILOT & MAIN	PILOT	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT	PILOT & ½ MAIN	PILOT [®] & ½ MAIN	
INLET PRESSURE ATM.	4.59	4.78	4.78	4.73	4.74	4.79	4.78	4.77	The second secon
FUEL-AIR RATIO-PILOT	•0069	.0210	•0052	.0063	•0078	.0048	.0058	.0074	
FUEL-AIR RATIO-TOTAL	.0230	.0210	.0223	.0221	.0223	•0206	•0207	.0211	
CO - E.I.	10.8	6.7	40.4	34.4	29.2	11.2	29.8	32.3	
THC -E.I.	0.2	0.3	5.9	3.1	1.7	5.9	3.9	2.7	
NO - E.I.	9.8	7.5	4.9	5.7	8.0	4.6	5.3	6.7	
SMOKE NO.		5.3							A SALTE SEAT THE SE
COMBUSTION EFFICIENCY %	99•7	99.8	98.5	98.9	99•2	98.5	98.8	99.0	1.00 - 1.221.30
PATTERN FACTOR	0.33	0.32	0.32	0.32	0.31	0.62	0.31	0.32	1 见力 100000
CONTRIBUTION	0.62							4	1 19 1 19 1 19 1 1 1 1 1 1 1 1 1 1 1 1
THC - EPAP CONTRIBUTION	0.01								A CONTRACTOR OF THE STATE OF TH
2. DATA CORRE	CTED TO E	ENGINE	PRESSU	RES:					
CO - E.I.	1.8	1.2	29.2	23.7	19.2	29.8	19.8	22.0	A first manage and the
THC - E.I.	0.03	0.1	2.5	1.3	0.7	2.5	1.6	1.1	
NOx - E.I.	24.9	10.8	7.2	8.2	21.7	6.8	7.8	9.8	
COMBUSTION EFFICIENCY %	100	100	99.1	99.3	99.5	99.1	99.4	99.4	
CO - EPAP CONTRIBUTION	0.10								
THC - EPAP CONTRIBUTION	-0-								134 (7)
NO _X - EPAP CONTRIBUTION.	1.42								070420000

APPENDIX E-3-a -

GE RADIAL/AXIAL COMBUSTOR DATA, CONFIGURATION R/A-3

ENGINE		IDLE		APP	ROACH				CLIM	BOUT	eriggiste. Mala		
READING NUMBER	ID-1	ID-2 6% BLEED	ID-3 12% BLEED	APP-1	APP-2	CL-1	CL-2	CL-3	CL-7	.CL-5	CL-6	CL-7	CL-8
FUELING MODE	FILOT	PILOT	PILOT	PILOT	DILOT	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & ½ MAIN	PILOT [©] & ½ MAIN
INLET PRESSURE ATM.	2.89	2.90	2.85	3.39	6.80	4.74	9.53	9.53	4.72	9.53	4.68	4.74	4.76
FUEL-AIR RATIO-PILOT	•0110	.0137	.0159	.0140	.0140	.0039	•0039	.0048	.0048	.0068	.0070	.0039	•0068
FUEL-AIR RATIO-TOTAL	.0110	.0137	.0159	.onho	.0140	.0212	.0212	.0211	.0213	.0210	.0215	.0211	•0209
CO - E.I.	58.3	47.9	46.8	16.2	7.1	73.0	65.8	7.6	56.4	29.9	33.1	51.6	30.4
NO _Y - E.I.	3.2	3.2	3.1	6.2	7.6	3.8	5.6	7.8	5.3	12.6	9.0	6.5	11.2
SMOKE NO.	0.8			2.2	1.6					0.9	2.6		2.3
COMBUSTION EFFICIENCY %	97.2	98.5	98.6	99.6	99.8	92.2	95.7	98.2	96.7	99.1	98.9	97.4	99.1
PATTERN FACTOR	0.68	0.51	0.57	0.51	0.70	0.41	0.38	0.33	0.32	0.28	0.27	0.43	0.57
CO - EPAP CONTRIBUTION	7.96	6.54	6.39	1.48	0.65	10.9	9.79	6.93	8.39	4.45	4.92	7.67	4.52
THC - EPAP CONTRIBUTION	1.97	0.46	0.37	0.02	0.03	9.03	4.06	1.13	2.96	0.25	0.55	2.13	0.36
2. DATA CORRE	CTED T	O FNGINE	PRESSURES:										
CO - E.I.	58.8	47.6	45.7	1.1	0.9	47.8	50.3	33.1	33.9	18.8	15.8	30.0	13.9
THC - E.I.	14.3	3.4	2.7	0.1	0.2	11.1	10.0	2.8	3.6	0.6	0.7	2.6	0.4
NO _x - E.I.	3.0	3.1	3.0	7.4*	7.6*	8.4	8.6	12.0	11.7	19.4	20.3	14.9	25.2
COMBUSTION EFFICIENCY %	97.2	98.5	98.7	100	100	97.8	97.8	98.9	98.9	99.5	99.6	99.0	99.6
CO - EPAP CONTRIBUTION	7.89	6.50	6.24	0.10	0.08	7.11	7.48	4.92	5.04	2.80	2.35	4.46	2.07
THC - EPAP CONTRIBUTION	1.95	0.47	0.37	0.01	0.02	1.65	1.49	0.42	0.54	0.09	0.10	0.39	1.67
NO _X - EPAP CONTRIBUTION.	0.41	0.42	0.41	0.67*	0.70*	1.25	1,28	1.78	1.74	2.89	3.02	2.22	3.75

^{* -} P° NO EXTRAPOLATION TO ENGINE PRESSURE

^{@ --} ALTERNATE MAIN INJECTORS FUELED

APPENDIX E-3-b .

GE RADIAL/AXIAL CONFIGURATION R/A-3 cont.

1. TEST RIG DATA

ENGINE CONDITION			TAKE-	-OFF			NO CRUISE I	ATA	OBTAINED .	
READING NUMBER	TO-1	T0-2	T0-3	TO-4	TO-5	то-6			And the second	
FUELING MODE	&	PILOT & MAIN	PILOT & MAIN	PILOP & MAIN	PILOT & MAIN	PILOT & MAIN				
INLET PRESSURE ATM.	14.714	9.53	4.74	9.53	4.74	9.53				•
FUEL-AIR RATIO-PILOT	•0039	.0040	•0050	.0050	•0069	.0070	The state of the s		and the second s	
FUEL-AIR RATIO-TOTAL	•0228	.0231	.0231	.0232	.0230	.0232			The second secon	
CO - E.I.	43.7	27.2	28.1	14.9	16.0	8.1				
THC -E.I.	12.1	1.6	2.4	1.0	0.5	0.5				
NO _y - E.I.	5.8	7.2	7.5	8.9	10.3	14.3			The Control of the Control	_
SMOKE NO. COMBUSTION EFFICIENCY	97.8	98.9	99.1	99.6	99.6	99.8				
PATTERN FACTOR	0.40	0.30	0.32	0.30	0.28	0.27	0 70.00 1		1.0000	
CO - EPAP CONTRIBUTION	2.50	1.55	1.60	0.85	0.91	0.46			TANK - CO	
THC - EPAP CONTRIBUTION	0.69	0.26	0.14	0.06	0.03	0.03	ř			
2. DATA CORRE	CTED T	O ENGI	NE PRE	SSURES	1				A State of the sta	
CO - E.I.	22.7	15.4	11.5	6.3	4.3	2.2				
THC - E.I.	1.9	1.5	0.4	0.3	0.1	0.2				
NO _x - E.I.	13.4	11.7	17.0	14.2	23.9	22.9			Advertised to the second	
COMBUSTION EFFICIENCY %	99•3	99.5	99•7	99.8	99•9	99•9				
CO - EPAP CONTRIBUTION	1.30	0.88	0.66	0.36	0.24	0.12				
THC - EPAP CONTRIBUTION				0.02			11.00	44.0		
NO _x - EPAP CONTRIBUTION.	0.77	0.67	0.97	0.81	1.36	1.31				

APPENDIX E-4

GE RADIAL/AXIAL COMBUSTOR DATA, CONFIGURATION R/A-4

1.	TEST	RIG	DATA

ENGINE CONDITION	IDLE	APPROACH		CLI	MBOUT		TA	KE-OFF		C	RUISE	
READING NUMBER	ID-1	APP-1	CL-1	CL-2	CL-3	CL-4	TO-1	Ť0-2	то-3	CR-1	CR-2	CR-3
FUELING MODE	PILOT	PILOT	PILOT & MAIN	PILOT & MAIN	&	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN
INLET PRESSURE ATM.	2.89	3.42	4.76	4.76	4.77	4.75	4.76	4•77	4.76	4•75	4.78	4.78
FUEL-AIR RATIO-PILOT	.0110	.0140	.0038	.0048	.0068	.0097	.0040	.0050	•0069	.0049	.0069	.0077
FUEL-AIR RATIO-TOTAL	.0110	.0140	.0217	.0214	.0214	.0215	.0230	.0230	.0229	.0207	.0208	.0207
CO - E.I. THC -E.I. NO _x - E.I.	1,3.3	17.8	81,-8	73.5 30.4	56.7 8.3 7.1		58.1 29.8 3.4	37.7 6.5 5.1	23.5 1.6 9.0	And in case of the last of the	87.8 31.4 5.5	79.6 16.6 7.1
SMOKE NO.	3.3	1.5 1.	2.3	3.6		1001	3.4	0	9.0		7.7	
COMBUSTION EFFICIENCY	98.8	99.5	89.7	95.2	97.8	98.3	95•7	98.5	99•3	89.0	94.8	96.5
PATTERN	0.60	0.67	0.36	0.34	0.25	0.31	0.32	0.30	0.27	0.36	0.27	0.25
CO - EPAP CONTRIBUTION	5.91	1.62	12.6	10.9	8.43	7.60	3.32	2.15	1.34			
THC - EPAP CONTRIBUTION	0.20	0.08	12.4	4.52	1.23	0.80	1.70	0.37	0.09	*		
2. DATA CORRE	CTED T	O ENGINE	PRESSU	RES:								
CO - E.I.	42.8	1.5	54.4	48.3	34:3	29.7	84.0	18:3	8.6	64.8	72.5	64.8
THC - E.I.	1.4	0.3	15.4	5.6	1.5	1.0	4.8	1.0	0.3	36.1	13.1	6.9
NO _X - E.I. COMBUSTION	3.1	5.6*	5.2	8.1	15.6	22.6	8.5	12.4	21,9	4.4	8.4	10,2
EFFICIENCY %	98.9	99•9	97.2	98.3	99.0	99.2	98.7	99.5	99.8	94.9	97.0	97.8
CO - EPAP CONTRIBUTION	5.84	0.14	8.09	7218	: 5: 10	4.42	1.94	1.05	0.49			
THC - EPAP CONTRIBUTION	0.20	0.02	2.28	0.83	0.23	0.15	0.27	0.06	0.01			
NO _X - EPAP CONTRIBUTION.	0.43	0.51*	0.77	1.20	.2.32	3.36	0.49	0.71	1.25			

COMBUSTOR INLET TEMPERATURE AND REFERENCE VELOCITY AT NOMINAL ENGINE CONDITIONS.

* -+ P^{•2} NO_x EXTRAPOLATION TO ENGINE PRESSURE

ENGINE CONDITION	IDLE	APPROACH	CI	LIMBOU	<u>r</u>	TAK	E-OFF		CRUISE	14810	
READING NUMBER	ID-1	APP-1	CL-1	CL-2	CL-3	TO-1	T0-2	CR-1	CR-2	CR-3	12) · 3838
FUELING MODE	PILOT	PILOT	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN	2/1/200 2/1/20
INLET PRESSURE ATM.	2.90	3.41	4.70	4.78	4.76	4.71	4•73	4.74	4.78	4.76	792
FUEL-AIR RATIO-PILOT	.0110	.0140	.0040	.0050	.0068	.0040	.0050	.0045	.0069	.0083	
FUEL-AIR RATIO-TOTAL	.0110	.0140	.0214	.0214	.0209	.0227	.0230	.0207	.0208	.0208	
CO - E.I.	41.0	15.6	78.3	53.3	41.0	111.3	36.7	88.0	60.3	53.0	
THCE.I.	2.0	0.8	83.7	17.1	4.2	3.3	4.4		10.3	5.2	
NO _x - E.I.	3.4	7.0	2.1	3.0	5.4	7.9	10.0	2.2	4.4	5.7	建筑工作,并是
SMOKE NO.	1.			5.							
COMBUSTION EFFICIENCY	98.8	99.6	89.8	97.0	98.6	98.6	98.7	90.7	97.6	98.2	
PATTERN FACTOR	0.26	0.31	0.33	0.29	0.24	0.24	0.17	0.31	0.35	0.41	
CO - EPAP CONTRIBUTION	5.60	1.42	11.7	7.93	6.10	2.53	2.10				
THC - EPAP CONTRIBUTION	0.27	0.08	12.5	2.54	0.62	0.19	0.25				
2. DATA CORRE	CTED I	O ENGINE	PRESSU	TRES:							
CO - E.I.	40.7	0.2	52.3	31.5	21.8	23.1	17.5	72.6	J ₁ 7.0	10.3	
THC - E.I.	2.0	0.2	15.2	3.2	0.8	CONTROL CALCULATION OF THE PARTY OF THE PART	Decements Joseph	30.0	11-3	2.2	
NOx - E.I.	3.4	7.9 *	4.6	6.3	11.	18.4	22.9	3.2	6.2	8.0	REPORT OF
COMBUSTION EFFICIENCY %	98.8	100	97.3	98.9	99•4	99.4	99.5	95•3	98.5	98.8	
CO - EPAP CONTRIBUTION	5.56	1.42	7.78	14.69	3.24	1.32	1.00		44.44		
THC - EPAP CONTRIBUTION	0.27	0.02	2.26	0.48	0.12	0.03	0.04				
NO _X - EPAP CONTRIBUTION.	0.46	0.72*	0.61	0.93	1.71	1.05	1.31				

^{* --} P.2 NO EXTRAPOLATION TO ENGINE PRESSURE

95 APPENDIX E-6

1. TEST RIG DATA

ENGINE CONDITION	IDLE	Al	PPROACE	I	CLIMBOUT	NO TAKE-OFF DATA	CRUISE	MANUAL REPORTS
READING NUMBER	ID-1	APP-1	APP-2	APP-3	CL-1	10 30 10 11	CR-1 CR-2	CR-3
FUELING MODE	PILOT	PILOT	PILOT & MAIN	PILOT & MAIN	PILOT & MAIN		PILOT PILOT & & MAIN MAIN	PILOT & MAIN
INLET PRESSURE ATM.	2.96	3.48	3.50	3.60	4.77		4.77 4.77	4•92
FUEL-AIR RATIO-PILOT	0110ء	.0140	.0048	.0070	。0071		.0050 .0072	•0079
FUEL-AIR RATIO-TOTAL	.0110	.0140	.0137	.0139	،0214	4, 6157, 527	.02,10 .0213	.0208
CO - E.I.	23.4	13.2	105.	138。	20.0		73.4 39.2	38.7
THC -E.I.	0.5	0.1	375。	203.	3.0		30.0 2.2	2.4
NO _x - E.I.	3.2	7.9	0.8	1.8	6.0		3.5 5.5	5.9
SMOKE NO.		1.						
COMBUSTION EFFICIENCY %	99•4	99•7	60.1	76.4	99•2	16 5 00 m	95.3 98.9	98.9
PATTERN FACTOR	0.36	0.28	0.83	0.1;1	0.30	9 35 9 73	0.23 0.24	0.35
CO - EPAP CONTRIBUTION	3.20	1.20	9.55	12.6	2.97			12.6554 (b. 122)
THC - EPAP CONTRIBUTION	0.06	0.01	34.2	18.6	0.45			TTOTAL MARKET STATES
2. DATA CORRE	CTED T	O ENGI	TE PRE	SSURES	<u>.</u>			
CO - E.I.	23.9	0.7	82.8	115。	11.5		59.1 28.0	27.9
THC - E.I.	0.5	Charles and the Contract of th	112.	62.6	0.6		12.5 0.9	1,0
NOx - E.I.	2.9	9.2*	1.6	3.2	Marie Commission of the Commis		5.1 7.8	8.3
COMBUSTION								
EFFICIENCY %	99•4	100	86.9	91.1	99.7		97.4 99.3	99•2
CO - EPAP CONTRIBUTION	3.26	0.06	7.55	10.5	1.71			
THC - EPAP CONTRIBUTION	0.07	-0-	10.2	5.71	0.08			
NO _X - EPAP CONTRIBUTION.	0.39	0.84*	0.15	0.29	.2.02	Market Called		

^{* --} P.2 NO EXTRAPOLATION TO ENGINE PRESSURE

96 APPENDIX E-7

1.	TEST	RIG	DATA
			12.15.1

ENGINE CONDITION	IDLE	APPROACH	C	LIMBOU	P	TAKE-	-OFF		CRU	ESE	
READING NUMBER	ID-1	APP-1	CL-1	CL-2	CL-3	TO-1	T0-2	Ť0-3	CR-1	ER-2	
FUELING MODE	PILOT	PILOT	PILOT & MAIN								
INLET PRESSURE ATM.	2.92	3.40	4.72	4.72	4.74	14.76	9•53	4.74	4.74	4.74	
FUEL-AIR RATIO-PILOT	0110ء	。0140	。0039	•0050	.0070	•0048	.0049	•0058	.0048	.0078	
FUEL-AIR RATIO-TOTAL	0110	•0140	.0222	.0218	.0217	。0233	。0231	.0235	.0206	•0209	
CO - E.I. THC -E.I.	52.0 8.6	9.0 0.2	65.5 187.	85.8 98.4	11.9		19.0		77.1 161.	72.6 30.7	
NO _x - E.I.	2.8	5.2	0.7	1.3	3.2	2.8	4.4	3.9	1.8	2.9	
SMOKE NO.		0.2	0.9	2.9	1.1	1.1	0.9	0.8			*
COMBUSTION EFFICIENCY %	97.9	99.8	79•7	88.2	97•7	95.3	97.2	98.8	82.1	95.2	
PATTERN FACTOR	0.62	0.38	0.66	0.69	0.45	0.53	0.42	0.45	0.91	0.43	
CO - EPAP CONTRIBUTION	7.10	0.82	9.74	12.8	7.12	3.44	2.35	1.73	7		
THC - EPAP CONTRIBUTION	1.17	0.02	27.8	14.6	1.77	1.90	1.08	0.27	70,5		
2. DATA CORRE	CTED TO	O ENGINE	PRESSU	RES:							
CO - E.I.	52.0	0.2	111-4	58.7	27.1	35.7	27.0	12.9	62.11	58.2	
THC - E.I.	8.6	0.1.	3/1-1	17.9	2.2	5.3	6.1	0.8	66.7	12.7	
NOx - E.I.	2.6	7.0*	1.6	3.1	7.1	6.9	7.6	9.1	3.1	404	
COMBUSTION EFFICIENCY %	97•9	100	95.6	96.8	99.2	98.6	99.6	98.8	91.9	97.4	
CO ~ EPAP CONTRIBUTION	7.10	0.01	6.16	8.73	4.03	2.04	1.54	0.74	513.37		
THC - EPAP CONTRIBUTION	1.17	0.005	5.07	2.66	0.33	0.30	0.35	0.04	7		*
NO _X - EPAP CONTRIBUTION.	0.36	0.64*	0.24	0.46	1.06	0.39	0.43	0.54	attr		

^{* --} P.2 NO EXTRAPOLATION TO ENGINE PRESSURE

TABLE 2. - PROGRAM SCHEDULE

Contract effort	Contract effort 1972 1973					1974									19	75				1976							L	1977																	
	JA	s	NI	9	F	M	A M	J	J A	s	O N	D	JF	М	A	M J	J	A	s	NIC	D	J	M	Α	M J	J	A S	0	N D	J	F	A	м ј	J	A S	0	N D	J	F	ма	м	J J	A	s o	N
Phase I:		,						i																	1				1			-													
Combustor screening				T		Ť			1							T			1								1						,		1										
hase II:								,	v_					li					1								1	GI	1	[P& W													-	
ombustor refinement									÷				+			ì			T				1				- 1						1				1								
base BI:									1										-					1													0								
Engine tests				1													1		1										ļ.														,		1

Contract award.

O Testing complete.

Closed symbols indicate completed items.

Open symbols indicate planned completion date.

TABLE II. - POLLUTION GOALS

POLLUTANT	ENGINE MODE	PROGRAM GOAL	1979 EPA STANDARD	JT9D-7 ENGINE EMISSIONS DATA P.R. 22:1	CF6-50 ENGINE EMISSIONS DATA P.R. 30:1
OXIDES OF NITROGEN AS NO ₂ - E. I.	TAKE-OFF	10	13	32	36
CARBON MONOXIDE E.I.	IDLE	20	22.5	77	73
TOTAL UN- BURNEDHY- DROCARBONS E.I.	IDLE	14	4•5	30	30
SMOKE - SAE	TAKE-OFF	15	19	10	13

TABLE III. - EPA PARAMETER VALUES

ENGINE	CARBON MONOXIDE	TOTAL UNBURNED HYDROCARBONS	OXIDES OF NITROGEN
REQUIRED EPA VALUES T-2 ENGINE CLASS	4•3	0.8	3.0
CF6-50 ENGINE P.R 30:1			
CURRENT VALUES	10.8	4.3	7•7
% CURRENT VALUES EXCEED REQUIREMENTS	151.	438.	157•
JT9D-7 ENGINE P.R 22:1			
CURRENT VALUES	14.29	5•34	4•90
% CURRENT VALUES EXCEED REQUIREMENTS	232•	568.	63.

TABLE IV. - PERFORMANCE GOALS

PARAMETER	ENGINE MODE	PROGRAM GOAL
COMBUSTION EFFICIENCY	ALL MODES	99%+
PRESSURE LOSS	CRUISE	6%
PATTERN FACTOR	TAKE-OFF, CRUISE	0.25
ALTITUDE RELIGHT	WINDMILLING	
DURABILITY	ADEQUATE AT ALL ENGI	ME CONDITIONS

TABLE V. - POLLUTION CONSIDERATIONS

RESULT

TABLE VI. - KEY SPECIFICATIONS OF THE JT9D-7 ENGINE

Weight (kg)	 3982.5
Length (m)	 3.912
Maximum diameter, cold (m)	 3.427
Pressure ratio	 21.7
Airflow rate (kg/s)	 691
Maximum sea-level static thrust (kN)	197
Cruise performance	
Mach number	 0.85
Altitude (m)	 , 10 668
Thrust (kN)	 44.6
Specific fuel consumption (kg/Ns)	 1.979×10^{-5}
	-

TABLE VII. - KEY OPERATING PARAMETERS OF THE JT9D-7 REFERENCE COMBUSTOR

Compressor exit axial Mach number	0.258
Compressor discharge temperature (K)	768.9
Combustor temperature rise (K)	763.9
Combustor section pressure loss (%)	6.0
Combustor exit temperature pattern factor	0.42±0.03
Average combustor exit temperature (K) · · · · · · · · · · · · · · · · · · ·	1532.8

NOTE: Data for standard day sea-level static take-off conditions.

TABLE VIII. - KEY SPECIFICATIONS OF THE CF6-50 ENGINE

Weight (kg)	3780
Length-cold (m)	4.82
Maximum diameter, cold (m)	2.72
Fan/comp. stages	1-(3)/14
HPT/LPT stages	2/4
Thrust/weight	5.95
Pressure ratio	30:1
Airflow (kg/s)	660
Maximum SLS thrust (kN)	218
Specific fuel consumption	0.389
Cruise performance	
Mach number	0.85
Altitude (m)	10 500
Thrust (kN)	48
Specific fuel consumption	0.654

TABLE IX. - CF6-50 COMBUSTOR KEY DESIGN PARAMETERS

Combustor airflow (kg/s)	103.42
Compressor exit Mach number	0.27
Overall system length (m)	0.7595
Burning length (m)	0.348
Dome height (m)	0.1143
Reference velocity (m/s)	
Space rate (j/hr-m ³ -atm)	2.2×10^{11}
Pressure loss-total (%)	4.3
Number of fuel nozzles	30
Fuel nozzle spacing (cm)	6.91
Burning length/fuel nozzle spacing	5.0
Fuel nozzle spacing/dome height	0.60
Design flow splits	
Outer-center-inner (% of combustor airflow)	33-32-35
Liner cooling flow (% of combustor airflow)	30
Exit temperature pattern factor	0.26
Exit temperature profile factor	
Combustion efficiency (%)	99.9
t jargin sagang parampan di panggan di di kanggan di nagaran kanggan dan di di di panggan di kanggan di pangga	

NOTE: Data for standard day sea-level static take-off conditions.

TABLE X. - TEST RIG CONDITIONS, SIMULATION OF JT9D-7 ENGINE-COMBUSTOR CONDITIONS, PRATT & WHITNEY

Engine operating	Inlet pressure,	Inlet temperature,	Fuel-air ratio	Reference velocity, m/sec		Combustor exit temperature,	Comments	
condition	tion atm K Vorbix Hybrid K	K						
Standard day idle bled	2.93	427	0.0126	19.2	33.2	886	True engine conditions	
Standard day idle unbled	3.95	464	0.0100	21.0	36.6	850	True engine conditions	
Standard day approach	6.80	586	0.0130	23.2	40.5	1006	Engine pressure = 8.50 atm	
Standard day climbout	6.80	735	0.0194	25.6	45.1	1396	Engine pressure = 18.50 atm	
Standard day take-off	6.80	767	0.0215	26.2	45.4	1486	Engine pressure = 21.10 atm	
CTOL cruise	6.80	704	0.0205	24.7	43.6	1413	Engine pressure = 9.31 atm	

200

TABLE XI. - TEST RIG CONDITIONS, SIMULATION OF CF6-50 ENGINE-COMBUSTOR CONDITIONS, GENERAL ELECTRIC

Engine operating condition	Inlet pressure, atm	Inlet temperature, K	Fuel-air ratio	Reference velocity, m/sec	Combustor exit temperature, K	Comments
Standard day idle	2.92	429	0.0110	18.3	865	True engine conditions
Standard day approach	6.8	630	0.0140	23.2	1136	Engine pressure = 11.7 atm
Standard day climbout	9.5	786	0.0214	25.3	1503	Engine pressure = 25. 9 atm
Standard day take-off	9.5	820	0.0231	25.6	1586	Engine pressure = 29.8 atm
CTOL cruise 0.85 Mach ~35 K	9.5	733	0.0210	24.4	1449	Engine pressure = 11.4 atm

000

TABLE XII. - SUMMARY OF PRESSURE EXPONENTS, ECCPII TESTS

Emission	Operating	Pressure exponent used,	Data statistical analysis				
	condition	n		n	$\sigma_{ m n}$	$2\sigma_{\rm p}$	
						$\frac{2\sigma_{\mathrm{n}}}{\overline{\mathrm{n}}}$	
$NO_{\mathbf{x}}$	Approach						
^	Pilot only	0.2	¹ 17	0.241	0.104	0.862	
	Two stage	. 5	12	. 456	. 102	. 450	
	Climbout	. 5	3	. 507	. 085	. 336	
	Take-off	. 5	23	489	.115	. 469	
HC	All	1.0	² 38	1.038	1.364	2.628	
СО	Pilot only	$0.6 \left(\frac{100}{\text{EI}_{\text{CO}}}\right)^{0.7} \le 2.0$	34	0.500	$\left(\frac{100}{\text{EI}_{\text{CO}}}\right)^{0.7}$	≤2.0	
	Two stage	$0.2 \left(\frac{100}{\text{EI}_{\text{CO}}}\right)^{0.7} \le 2.0$	40	0.191	$\left(\frac{100}{\text{EI}_{\text{CO}}}\right)^{0.7}$	≤2.0	

N = number of data points.

$$\overline{n} = \frac{\Sigma n_i}{N}$$

$$\sigma_{n} = \sqrt{\frac{\sum n_{i}^{2} - N\overline{n}^{2}}{N-1}}$$

NOTE: Pressure range investigated, 4.8 to 9.6 atmospheres.

 $^{^{1}}$ 0.008 \le f \le 0.014. 2 EI_{CH,1} \ge 0.2 g/kg.

 $^{^{3}}$ f = 0.014.

TABLE XIII. - CF6-50 ENGINE STATUS CYCLE PARAMETERS

Cycle condition	Idle unbled	Approach	Climbout	Take-off
Ambient temperature, K	288	288	288	288
Ambient pressure, atm	1.0	1.0	1.0	1.0
F _n , kN	7.53	6 59	188.66	221.95
% F _n	3.39	30.0	85.0	100.0
N _g , rpm	6412	8620	9890	10150
Combustor inlet pressure, atm	2.92	11.7	25.9	29.8
Combustor inlet temperature, K	429	630	786	820
Fuel flow, ideal, kg/hr	547	2395	7104	8573
Airflow total, kg/s	16.37	56.7	109.3	122.0
Airflow combustor, kg/s	13.81	47.6	92.1	103.0
Reference velocity, m/sec	18.3	23.2	25.3	25.6
Fuel-air ratio, ideal	0.0110	0.0140	0.0214	0.0231
Combustor exit temperature, K	865	1136	1503	1586

NOTE: Fuel flows and fuel-air ratios assume combustion efficiency = 100%.

TABLE XIV. - EPAP COEFFICIENTS FOR ECCP II/CF6-50C

(Class T2 Engine)

Power Level	t Minutes	F _N 1b _f	(2) F pph	$ \frac{\left(\frac{\mathbf{t}}{60}\right) \left(\frac{\mathbf{f}_{N}}{1000}\right)}{\mathbf{Klb}_{\mathbf{f}} - \mathbf{hr.}} $	$ \frac{\left(\frac{t}{60}\right) \left(\frac{W_{F}}{1000}\right)}{Klb_{m}-hr.} $	c $1b_m/1b_f-hr.$	$\frac{\left(\frac{4\cdot3}{C}\right)}{}$	$\frac{\left(\frac{0.8}{C}\right)}{}$	$\frac{\left(\frac{3.0}{C}\right)}{}$
Idle ⁽¹⁾	26. 0	1,692	1,219	0.7331	0.5282	0.1365	31.49	5.859	21.97
Approach	4.0	14,969	5,292	0.9979	0.3528	0.0912	47.15	8.771	32.89
Climb	2.2	42,412	15,692	1.5551	0.5753	0.1487	28.91	5.379	20.17
Takeoff	0.7	49.896	18,938	0.5821	0.2209	0.0571	75.30	14.010	52.53
Σ				3.8682					

$$EPAP_{i} = \sum_{j}^{j} (EI_{ij}] = (EPAP_{i}, std) \sum_{j}^{j} \left[\frac{EI_{ij}}{\left(\frac{EPAP_{i, std}}{C_{j}}\right)} \right]$$

$$(EPAP_{CO, std}) = 4.3, (EPAP_{HC, std}) = 0.8, (EPAP_{NO_x, std}) = 3.0 lb_m/Klb_f-hr.$$

Ţ

⁽¹⁾ Assumes no CDP bleed or thrust reverse.

Assumes target levels of combustion efficiency (99.0% at idle, 99.8% elsewhere).

TABLE XV. - CF6-50 PRODUCTION ENGINE EMISSION INDEX
AND EPAP VALUES

ENGINE MODE	E.I. THC	E.I. CO	E.I. NO
IDLE	30	73	2,5
APPROACH	0.01	4.3	10.0
CLIMBOUT	0.01	0.3	29•5
TAKE-OFF	0.01	0.2	35•5
EPAP	4.3	10.8	7•7

TABLE XVI. - JT9D-7 ENGINE STATUS CYCLE PARAMETERS

PARAMETER	IDLE BLED	IDLE UNBLED	<u>APPROACH</u>	CLIMBOUT	TAKE-OFF
F _n , kN		16.90	61.59	174.50	205•3
Inlet air temperature, K	428	46 4	586	735	767
Fuel flow, kg/hr	728	839	2109	5986	7324
TSFC		. 4868	•3359	•3365	•3499
Inlet pressure, atm	2.93	3•95	8.50	18.50	21.1
Fuel air ratio EPAP coefficient	•0126	•0100	•0130	•0194	•0215
% of total	•1728 44•9	•1763 44•9	.0682 17.4	•1065 27•1	.0414 10.6

NOTE:

⁻⁻ Assumes combustion efficiency = 99 % at idle; 100 % at all other conditions.

⁻⁻ Engine nominal by-pass ratio - 520; compressor ratio - 202

TABLE XVII. - CURRENT PRODUCTION JT9D-7 ENGINE EMISSION
LEVELS (dry basis)

POLLUTANT	E.I. THC	E.I. CO	E.I. NO
IDLE, UNBLED	29.8	77.0	3•3
APPROACH	1.0	9.6	8.4
CLIMBOUT	0.1	0.5	22.9
TAKE-OFF	0.05	0.2	31•5
EPAP	5•34	14.29	4.9

							per and - 10 pp - 100	. e.h., e tykazan	a est expansión el apartagaga	:	منيد ۽ ملهن ۽ حصوص دو هن ه	کاو ها چه در څهنده د د د	re energis_H	na siku nugagaan siip	e vo ^{li} nina a ssaul ga	TO STORE A PLE OF THE POST PROPERTY WHEN
	OF POOR	VIDIAU										•	•			
	OR (7 A T														
		て シ														
TABLE XVI	II- PHASE II VORBIX COM	OSTOR C	ONFIGU	TRATION	s, engi	ne moi	E CONT	RIBUTIO	ns to	EPAP N	UMBERS	AND TO	TAL EP	AP NUMB	ERS.	
	T	v.			 -			1 -						Τ		
ENGINE OPERATING MODE:		CON	IDLE TRIBUT	TON	1	PPROAC			IMBOUT			KE-OFF TRIBUT		TOTAL	EPAP N	UMBER
		<u>co</u>	THC	NOx	CO	THC	NOx	CO	THC	NOx	co	THC	$NO_{\mathbf{X}}$	CO	THC	NO _x
1979-EPA STANDARDS	LOWEST COMBINED VALUES													4.3	0.8	3.0 .
JT9D-7 ENGINE	LOWEST COMBINED VALUES	13 58	5.25	0.58	0.65	0.07	0.57	0.05	0.01	2.44	0.01	-0-	1.30	14.29	5.34	4.9
CONFIGURATION S-11	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	19 - 16	0.14	11 11	0.80	0.11 0.03		11 11	0.06	11 - 11	0.85 0.04 0.08	0.003	0.60 0.62 0.67	10.17 8.59 8.63	0.34 0.23 0.23	2.87 3.00 3.05
CONFIGURATION S-12,13	LOWEST NOX VALUES LOWEST CO & THE VALUES LOWEST COMBINED VALUES	6.16 "	0.33	0.55	0.23	0.02	0.64	1.42	0.01 ₄	1.31	1.78 0.41	0.02 0.01		9.59 8.22 8.22	0.41 0.40 0.40	3.12 3.15 3.15
CONFIGURATION S-14,15 (same pilot as S-12,13	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	6.16 "	0.33	0.55	0.23	0.02	0.64			**************************************	0.26	0.05 -0.01 0.01	-1.18	*****		
CONFIGURATION S-16	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	10.58	0.17	0.51							0.61 0.10	0.01 -0-	0.72 0.93			
CONFIGURATION S-17	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	9•55	0.22	0.43	0,65	0.02	0.29	0.03	0.02	1.10	0.90	0.01	0.47 0.48	11.13 10.23 10.23	0.27 0.27 0.27	2.29 2.30 2.30
CONFIGURATION S-18	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	12.02	0.21	0.48	1.15	2.28 0.02 0.08	0.48	1.54	0.04	1.54	0.90		0.84 0.99	18.78 14.80 14.78	2.54 0.27 0.33	3.11 3.49 3.42
CONFIGURATION 5-19	LOWEST COMBINED VALUES	10.94	0.04	0.46							0.15	0.84				
CONFIGURATION 5-20	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES		0.62	0.51 0.69		0.26 0.02 0.01	0.61	1•35 0•23	0.03	1.22 1.59	0.44	0.17 0.003 0.005	0.57	12.80 5.87 6.25	1.56 0.6կ 0.60	2.61 3.46 3.48
CONFIGURATION S-21	LOWEST NOX VALUES LOWEST COMBINED VALUES			0.48 0.57		1.62	0.29				0.19	0.35 0.01 0.01	0.89			

11

TABLE XIX. - PRATT & WHITNEY VORBIX COMBUSTOR, BEST POLLUTION
PERFORMANCE RESULTS

Combustor	Engine mode		CO	7	гнс	N	o _x	Combustion
configurations		EI	EPAP contri- bution	EI	EPAP contri- bution	EI	EPAP contri- bution	efficiency, percent
S-11	Idle bled Approach	36 11.8	6.19 .80	0.82	0.14	3.78 6.74	0.65 .46	99.1 99.7
	Climbout	14.68	1.56	. 55	.06	11.88	1.27	99.6
	Take-off	1.99	. 08	0	0	16.18	. 67	100
	Σ ΕΡΑΡ		8.63		. 23		3.05	
	Cruise	28.4		40.9		6.22	·	98.4
S-20	Idle bled	46.3	7.97	6.41	1.10	2.98	0.51	98.3
	Idle unbled	26.4	4.66	3.52	. 62	3.89	. 69	99.0
	Approach	9.7	. 66	. 16	. 01	8.62	. 59	99.8
	Climbout	2.1	. 23	0	0	15.0	1.59	100
	Take-off	17.0	.70	.11	. 005	14.6	. 61	99.6
	Σ EPAP bled idle		9. 56		1.12		3.30	-
	Σ EPAP unbled idle		6.25		. 64		3.48	
	Cruise no. 1	26.7		. 09		7.1		99.4
	Cruise no. 2	12.7		. 15		8.2		99.7

NOTE: All data extrapolated to JT9D-7 engine pressures.

TABLE XX. - PHASE II HYBRID COMBUSTOR CONFIGURATIONS, ENGINE MODE CONTRIBUTIONS TO EPAP NUMBERS AND TOTAL EPAP NUMBERS.

ENGINE OPERATING MODE			IDLE TRIBUT		COI	PFROAC	LION	CON	IMBOU.	MOTE	COX	KE-OFI TRIBUT	MOI			HUMBER	
		_co	THC	NO _x c	CO	THC	NOx	CO	THC	NOx	CO	THC	NOx	CO	THC	NOx	
1979 EPA STANDARDS	LOWEST COMBINED VALUES					*****								4.3	0.8	3.0	مانوان المانوان
JT9D-7 ENGINE	LOWEST COMBINED VALUES	13.58	5.25	0.58	0.65	0.07	0.57	0.05	0.01	2 . 141	0.01	-0-	1.30	14.29	5.34	4.9	
CONFIGURATION H-1	LOWEST NOX VALUES LOWEST CO & THE VALUES LOWEST COMBINED VALUES	2°27 "	1.50	0.50									0.56 0.66				
CONFIGURATION H-2	LOVEST NOX VALUES: LOWEST CO & THC VALUES LOWEST COMBINED VALUES	2.01 "	0.15	0.61		16.32 15.62	0.14 0.28	1.87	0.14 9	1,10	0.14	0.007	7 0.60	6.75	16.62 15.92 15.92	2.59	
CONFIGURATION H-3	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	3.97 1.39		0.47 0.56		0.07	0.46 0.56				-0- 11	-0- 11	0.61				# 40 4 6 1 <u>9</u>
CONFIGURATION H-4	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	1.53 "	0,10 "	0.53			0.45 0.56			1.90 2.29	0.00)	1 -0- 11	1.00	8.30	4.53 3.24 3.24	4.38	-
CONFIGURATION H-5	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	2.79	0.12	0.68		6.00 0.09	0.24 0.77	2.30	0.16	1.05			0.67 0.71		6.96 0.38 0.38	3.21	
CONFIGURATION H-6	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	0.62	0.49	0.50		0.11 0.01	0.45 0.97	2,30	0.02	1.23	0.37	0.05	0.68 "	3.29	0.66 0.57 0.57	3.37	
CONFIGURATION H-7	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	7.56 "	0.77	0.54	1.49	0.05	0.65	1.97	0.17	1.50	0.24	0.01	0.66	11.26 11.26 11.26	1.00	3.35	

TABLE XXI. - PRATT & WHITNEY HYBRID COMBUSTOR, BEST POLLUTION
PERFORMANCE RESULTS

Combustor	Engine mode		co	, ,	THC	Ŋ	vo _x	Combustion
configuration		EI	EPAP contri- bution	EI	EPAP contri- bution	, EI ,	EPAP contri- bution	efficiency, percent
H-5	Idle bled	16.2	2.79	0.7	0.12	4.0	0.68	99.6
	Approach*	.1	. 01	1.3	.09	12.0	.77	99. 9
	Climbout	21.6	2.30	1.5	.16	9.9	1.05	99.3
	Take-off	5.1	.21	. 5	. 02	17.2	.71	99.8
	Σ ΕΡΑΡ		5. 31		. 39		3.21	
H-6	Idle bled	9.6	1.65	4.2	0.72	3.6	0.61	99.4
	Idle unbled	3.5	. 62	2.8	.49	2.8	. 50	99.6
	Approach*	0	0	.2	.14	15.2	. 97	100
	Climbout	21.6	2.30	1.5	.16	11.6	1.23	99.3
	Take-off	9.0	. 37	1.1	. 05	16.4	. 68	99.7
	Σ EPAP bled idle		4.32		. 94		3.56	
	Σ EPAP unbled idle		3.29		.71		3.45	
	Cruise	34.6		6.0		7.5		98.6

NOTES: *Pilot only fueled at approach; NO_{x} extrapolated to engine pressures by $P^{0.2}$.

All data extrapolated to JT9D-7 engine pressures.

TABLE XXII. - PHASE II DOUBLE/ANNULAR COMFUSTOR CONFIGURATIONS, ENGINE MODE CONTRIBUTIONS TO EPAP NUMBERS AND TOTAL EPAP NUMBERS.

		IDI	-		PPROACH	CLIMBOUT	TAKE-OFF	TOTAL EPAP NUMBER
ENGINE OPERATING MODE:		CONTRIB	ZNOITU XOX	CO	TRIBUTIONS THO NOx	CONTRIBUTIONS CO THC NOx	CONTRIBUTIONS CO THC NOx	CO THC NOx
1979 EPA STANDARDS	LOWEST COMBINED VALUES							4.3 0.8 3.0
CF6-50 ENGINE	LOWEST COMBINED VALUES	9.97 4.1	0.34	0.39	0.001 0.91	0.04 0.001 4.39	0.01 0.001 2.03	10.8 4.3 7.7
CONFIGURATION D/A-1	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	6.46 1.4		5.84 0.43	0.65 0.39 0.05 1.10	0.13 0.01 2.14 0.09 0.01 2.33 0.13 0.01 2.14	0.03 -0- 0.86 0.005 -0- 1.05 0.03 -0- 0.86	6.99 1.55 4.93
CONFIGURATION D/A-2	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	6.17 1.3	5 0.47		1.12 0.42 0.02 1.04	0.15 0.01 2.00 0.04 0.01 2.45 0.15 0.01 2.00	0.03 0.01 0.99 0.006 0.03 1.08 0.03 0.01 0.99	6.68 1.41 5.04
CONFIGURATION D/A-3	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	9.11 4.7 " "	3 0.43 "	2.17 11	0.01 0.85 " "	0.80 0.02 2.70 0.23 0.006 3.22 0.39 0.006 2.71	0.02 0.005 1.49	12.14 4.81 5.32 11.53 4.80 5.99 11.72 4.80 5.33
CONFIGURATION D/A-4	LOWEST COMBINED VALUES	5.43 0.9	6 0.56		************	***********		
CONFIGURATION D/A-5	LOWEST COMBINED VALUES	5.39 0.3	3 5.03	1,15	0.003 0.71	0.20 -0- 2.31	1.23 0.002 1.23	7.97 0.34 4.75
CONFIGURATION D/A-6	LOWEST COMBINED VALUES	3.41 0.2	0.51	0.43	0.003 0.89			
CONFIGURATION D/A-7	LOWEST COMBINED VALUES	2.58 0.1	0.48	2.82	0.01 0.82	0.11 0.005 1.60	0.007 0.01 0.68	5.52 0.21 3.58
CONFIGURATION D/A-8	LOWEST NOX VALUES LOWEST CO & THE VALUES LOWEST COMBINED VALUES	2.55 0.2			1.36 0.39 0.01 0.77	0.11 0.003 2.20 0.03 0.003 2.63 0.04 0.003 2.24	0.004 -0- 1.11	13.23 1.59 4.12 2.79 0.25 4.93 2.80 0.25 4.54
configuration D/A-9	LOWEST NOX VALUES LOWEST CO & THE VALUES LOWEST COMBINED VALUES	2.88 O.L	0.45		1.48 0.59 0.01 0.76	0.13 0.003 2.09 0.02 -0- 2.51 0.13 0.003 2.09	-0- 0.003 1.21	11.19 1.89 4.17 3.01 0.42 4.93 3.12 0.43 4.34
CONFIGURATION D/A-10	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	2.44 0.19	0.46		1.43 0.44 -0- 0.78	0.29 0.003 2.15 0.26 0.003 2.61 0.29 0.003 2.15	0.01 -0- 1.15	2.88 0.19 5.00
CONFIGURATION D/A-11	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	2.80 0.31	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.75 0.25 0.003 0.79	0.03 0.003 2.24 0.01 0.003 2.35 0.03 0.003 2.24	0.002 -0- 1.35	2.96 0.35 4.93
CONFIGURATION D/A-12	LOWEST NOX VALUES LOWEST CO & THE VALUES LOWEST COMBINED VALUES	3.00 0.39	0.43		0.13 0.63 0.008 0.80	0.13 0.006 2.18 0.02 0.006 2.61 0.04 0.006 2.20	0.00¼ -0- 1.10 0.003 -0- 1.28 0.00¼ -0- 1.10	3.33 0.40 5.12

TABLE XXII - DOUBLE/ANNULAR COMBUSTOR DATA cont.

GINE OPERATING MODE:		IDLE CONTRIBUTION CO THC NOX	APPROACH CONTRIBUTION CO THC NOx	CLIMBOUT CONTRIBUTION CO THC NOx	TAKE-OFF CONTRIBUTION CO THC NOx	TOTAL EPAP NUMBER
ONFIGURATION D/A-13	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	2,64 0.30 0.41	3.63 0.68 0.55 0.28 0.003 0.81	0.06 -0- 1.97 0.03 -0- 2.22 0.06 -0- 0.96	0.03 0.003 0.96 0.003 -0- 1.16 0.03 0.003 0.96	2.95 0.30 4.60
infiguration d/a-14a	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	3.66 0.41 0.44 " " "	9.25 1.17 0.43 0.25 0.02 0.69 0.35 0.02 0.77	0.05 -0- 2.84	0.01 0.002 1.20	13.03 1.58 4.60 3.97 0.43 5.17 4.13 0.43 4.84
infiguration d/a-145	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	6.45 2.66 0.42	0.47 0.01 0.82 0.41 0.004 0.80 0.47 0.01 0.82			

114

TABLE XXIII. - GENERAL ELECTRIC DOUBLE/ANNULAR COMBUSTOR BEST POLLUTION

PERFORMANCE DATA

Combustor	Engine mode		CO	T	нс	" N	o _x	Combustion
configuration		EI	EPAP contri- bution	EI	EPAP contri- bution	EI	EPAP contri- bution	efficiency, percent
D/A-13	Idle	19.3	2.64	2.2	0.30	3.0	0.41	99.3
	Approach pilot only*	3.1	.28	.03	. 003	12.8	.81	99.9
	Approach pilot and one-half main	11.5	1.05	2.49	.22	6.25	. 57	99.5
	Climbout	.41	.06	0	0	13.3	1.97	100
	Take-off	. 52	.03	.1	.003	16.9	. 96	100
	Σ EPAP pilot only approach		3.01		. 31		4.15	
	Σ EPAP pilot one-half main approach		3.78		. 53		3.91	
	Cruise	8.8		.2		8.0		99.8
D/A-10	Idle	17.9	2.44	1.4	0.19	3.4	0.46	99.4
	Approach*	1.9	. 17	0	0	8.6	.78	100
	Climbout	1.92	.29	0	.003	14.5	2.15	- 100
	Take-off	.7	.04	0	0	19.5	1.11	100
	Σ ΕΡΑΡ		2.94		.19		4.50	

NOTES: All data extrapolated to CF6-50 engine pressures.

^{*}Pilot only fueled at approach; NO_{X} extrapolated to engine pressures by $P^{0.2}$.

TABLE XXIV. - PHASE II RADIAL/AXIAL COMBUSTOR CONFIGURATIONS, ENGINE MODE CONTRIBUTIONS TO EFAP NUMBERS AND TOTAL EPAP NUMBERS.

ENGINE OPERATING MODE:		IDLE CONTRIBUTION CO THC NOx	APPROACH CONTRIBUTION CO THC NOx	CLIMBOUT CONTRIBUTION CO THC NOx	TAKE-OFF CONTRIBUTION CO THC NOx	TOTAL EPAP NUMBER CO THC NOx
1979 EPA STANDARDS	LOWEST COMBINED VALUES					4.3 0.8 3.0
CF6-50 ENGINE	LOWEST COMBINED VALUES	9.97 4.10 ' 0.34	0.39 0.001 0.91	0.04 0.001 4.39	0.01 0.001 2.03	10.8 4.3 3.0
CONFIGURATION R/A-1	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	12.40 4.63 0.28 11.77 3.93 0.31		6.10 0.38 1.71 2.90 0.07 3.47	0.17 0.002 1.89	26.9 9.56 3.06 15.09 4.02 6.30 15.62 4.05 5.10
CONFIGURATION R/A-2	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	7.35 0.83 0.43		1.62 0.03 2.11 0.96 0.01 3.18		
CONFIGURATION R/A-3	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	6.24 0.37 0.41 " " "	0.08 0.01 0.70	7.11 1.65 1.25 2.35 0.10 3.02		
configuration r/a-4	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	5.84 0.20 0.43	0.14 0.02 0.51	8.09 2.28 0.77 4.42 0.15 3.36 5.10 0.23 2.32		16.01 2.77 2.20 10.89 0.38 5.55 11.57 0.46 4.51
CONFIGURATION R/A-5	LOWEST NOX VALUES LOWEST CO & THE VALUES LOWEST COMBINED VALUES	7.74 0.36 0.42	0.09 0.02 0.72	7478 2.26 0.61 3.24 0.12 1.71		16.93 2.67 2.80 12.07 0.54 4.16 12.07 0.54 4.16
CONFIGURATION R/A-6	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	3.26 0.07 0.39	7.55 10.22 0.15 0.06 0:003 0.84	1.71 0.03 2.02		
CONFIGURATION R/A-7	LOWEST NOX VALUES LOWEST CO & THC VALUES LOWEST COMBINED VALUES	_7.10 1.17 0.36	0.01 0.005 0.64 " " "	6.16 5.07 0.24 4.03 0.33 1.06	2.04 0.30 0.39 0.74 0.04 0.54 " "	15.31 6.55 1.63 11.88 1.55 2.60 11.88 1.55 2.60

TABLE XXV. - GENERAL ELECTRIC RADIAL/AXIAL COMBUSTOR BEST POLLUTION PERFORMANCE DATA

Combustor	Engine mode		СО	r	нс	N	O _x	Combustion
configuration		EI	EPAP	EI	EPAP	EI	EPAP	efficiency, percent
			contri-		contri-		contri-	
			bution		bution		bution	
R/A - 2	Idle	53.8	7.35	6.1	0.83	3	0.43	98.1
Climbout $F/A = 0.0074$	Approach pilot only*	1.3	.11	.2	.01	9.2	.84	100
Take-off $F/A = 0.0069$	Climbout	6.4	. 96	.1	. 01	21.4	3.18	99.8
	Take-off	1.8	.10	. 03	.002	24.9	1.42	100
	Σ ΕΡΑΡ		8.52		. 852	1	5.87	
	Cruise	29.1		2.47		7.2		99.1
	Cruise one-half main fueled	29.8		2.47		6.84		99.1
R/A - 2	Idle	53.8	7.35	6.1	0.83	3	0.43	98.1
Climbout $F/A = 0.0049$	Approach pilot only*	1.3	.11	.2	.01	9.2	.84	100
Climbout $F/A = 0.0039$	Climbout	10.9	1.62	.2	. 03	14.2	2.11	99.8
	Take-off	8.5	. 48	.1	.01	16.1	. 92	99.8
	Σ ΕΡΑΡ		9.56		.88		4.30	

NOTE: All data extrapolated to CF6-50 engine pressures.

^{*}Pilot only fueled at approach; NO_{X} extrapolated to engine pressures by $P^{0.2}$.

TABLE XXVI. - STEADY STATE PERFORMANCE/EMISSION TESTS POINTS

MAIN POWER POINTS ENGINE CONDITIONS		IDLE			APPROACH			CLIMBOUT		TAKEOFF
SECONDARY POWER ENGINE CONDITIONS	SUB-IDLE		RICH-IDLE	SUB-APPROACH		RICH APPROACH	SUB-CLIMBOUT		SUB-TAKEOFF	
PRIMARY/SECONDARY FUEL STAGING POINTS					(2X)			(2X)		(2X)
12-POINT FIXED POLLUTION SAMPLING		X			X		•	X		X
24-POINT FIXED POLLUTION SAMPLING	X	X	X	X	(3X)	χ	Х	(3X)	X	(3X)
TRAVERSE SAMPLING		X			X			Х		Х

TOTALS:

A. Total Engine Points Investigated
1. 16 Total Engine Conditions
2. Single Fuel Scheduling at:

a. Sub-idle

b. Idle

c. Rich idle

d. Sub-approach

e. Rich approach

f. Sub-climbout

g. Sub-takeoff

3. 3-Fuel Splits Investigated at:
a. Approach (approximately 30% power)
b. Climbout (approximately 85% power)
c. Takeoff (100% power)

B. Pollution Sampling

1. 12-point Fixed Sampling - 4 EPAP settings

2. 24-point Fixed Sampling - all engine conditions, 16 total test points

3. Traverse Sampling - 4 test points, EPAP settings

Figure 1. - Cross-sectional schematic of the JT9D-7 reference engine.

Figure 2. - Cross-sectional schematic of the JT90-7 reference combustor.

Figure 3. - General Electric CF6-50 High Bypass Turbofan Engine.

Figure 4. - Production CF6-50 engine combustor.

STAGED PREMIX COMBUSTOR, JT9D ENGINE

Figure 5. - Pratt & Whitney phase I combustor concepts for the JT9D-7 engine.

Figure 6-b. - Phase II Vorbix Combustor, P. & W.

Figure 7-a. - Phase II Hybrid Combustor, P. &W.

Figure 7-b. - Phase II Hybrid Combustor, P. &W.

SINGLE ANNULUS - LEAN DOME COMBUSTOR, CF6-50 ENGINE

RADIAL/AXIAL STAGED COMBUSTOR, CF6-50 ENGINE

NASA SWIRL CAN MODULAR COMBUSIOR FOR CF6-50 ENGINE

DOUBLE-ANNULAR LEAN DOME COMBUSTOR, CF6-50 ENGINE

Figure 8. - Combustor concepts for the CF6-50 engine, GE.

Figure 9-a. - Phase II Double/Annular Combustor, G.E.

Figure 9-b. - Phase II Double/Annular Combustor, G.E.

Front view Figure 9-c. - Phase II Double/Annular Combustor, 60^{0} sector relight model, G.E.

Figure 10-a. - Phase II Radial/Axial Combustor, G.E.

Figure 10-b. - Phase II Radial/Axial Combustor, G. E.

Figure 11. - Effect of combustion efficiency on $\mathrm{NO}_{\mathbf{X}}$ pressure exponent, ECCP phase II test configurations.

Figure 10-b. - Phase II Radial/Axial Combustor, G. E.

Figure 11. – Effect of combustion efficiency on $\mathrm{NO}_{\mathbf{X}}$ pressure exponent, ECCP phase II test configurations.

Figure 12. - Effect of pressure on HC emissions.

Figure 13. - Effect of pressure on CO emission index, all ECCP II tests.