MTHS 100

DOUBLE TUTORIAL 10

1 First Hour

Question 1. Which functions from the list below are exponential or logarithmic? If it is an exponential or a logarithmic function, what is its base?

- (a) $y = x^2$,
- (b) $y = 2^x$,
- (c) $y = \log_4 x$,
- (d) $y = \log_{10} x$,
- (e) $y = 10^x$,
- (f) $y = x^{10}$.

Question 2. Solve the following equations for x.

- (a) $\log_2 x = 3$,
- (b) $\log_3 x = 1$,
- (c) $\log_{10} x = -3$,
- (d) $\log_4 x = \frac{3}{2}$.

Question 3. Solve the equation for x.

- (a) $10^x = 2$,
- (b) $10^x = 10$,
- (c) $10^x = 125$.

Question 4. Evaluate the following logarithms using the formula

$$\log_a x = \frac{\log_{10} x}{\log_{10} a}$$

and a calculator.

- (a) $\log_3 45$,
- (b) $\log_5 0.01$.

Question 5. Which of the functions are increasing/decreasing?

- (a) $y = 2^x$,
- (b) $y = \left(\frac{1}{2}\right)^x$,
- (c) $y = 1.1^x$,
- (d) 0.99^x .

Second Hour

Question 1. Consider a fair die, whose faces are numbered 1, 2, 3, 4, 5, 6. What is the probability of throwing a number greater than two?

- (a) What is the set of all possible outcomes? We call this set the sample space.
- (b) How many elementary events are contained in the sample set?
- (c) What is the set of desired outcomes?
- (d) What is the number of the elements in the set of desired outcomes?
- (e) What is the probability of throwing a number greater than two?

Question 2. Consider a fair die. We roll the die twice and evaluate the sum.

- (a) Sketch the tree diagram.
- (b) What is the number of the elements in the sample space?
- (c) What is the number of the events of the sum being greater than or equal to 10?
- (d) What is the probability of throwing a sum greater than or equal to 10?

Question 3. Which of the following numbers can be a value of a probability?

- (a) 50%,
- (b) 0,
- (c) 0.01,
- (d) 110%,
- (e) $-\frac{1}{2}$,
- (f) $\frac{2}{3}$,
- $(g) \ \frac{3}{2},$
- (h) 100%.