

## UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO PROGRAMA DE PÓS-GRADUAÇÃO EM BIOMETRIA E ESTATÍSTICA

### Alunos

Gleyce Alves Pereira da Silva Ivanildo Batista da Silva Júnior Jaine de Moura Carvalho Taciana Araújo da Silva

## **Professor**

Dr. Lucian Bogdan Bejan

Resolução da sétima lista de Estatística Aplicada

# Sumário

| 1 | Questão 1                 |
|---|---------------------------|
|   | .1 Resolução da questão 1 |
|   | 1.1.1 letra a)            |
|   | 1.1.2 letra b)            |
|   | 1.1.3 letra c)            |
| 2 | Questão 2                 |
|   | Resolução da questão 2    |
| 3 | Questão 3                 |
|   | .1 Resolução da questão 3 |
|   | 3.1.1 letra a)            |
|   | 3.1.2 letra b)            |
| 4 | Questão 4                 |
|   | .1 Resolução da questão 4 |
|   | 4.1.1 letra a)            |
|   | 4.1.2 letra b)            |
| 5 | Questão 5                 |
|   | .1 Resolução da questão 5 |
|   | 5.1.1 letra a)            |
|   | 5.1.2 letra b)            |
|   | 5.1.3 letra c)            |

De 50.000 válvulas fabricadas por uma companhia retira-se uma amostra de 400 válvulas, e obtémse a vida média de 800 horas e o desvio padrão de 100 horas.

- (a) Qual o intervalo de confiança de 99% para a vida média da população ?
- (b) Com que confiança dir-se-ia que a vida média é  $800 \pm 0.98$  ?
- (c) Que tamanho deve ter a amostra para que seja de 95% a confiança na estimativa  $800 \pm 7.84$ ?

(Que suposições você fez para responder às questões acima?)

### 1.1 Resolução da questão 1

#### 1.1.1 letra a)

Criando uma função para calcular o intervalo de confiança a 99%.

```
IC <- function(x, sd, n, nc) {
   c(round(x - qnorm((1 - nc/2), mean=0, sd=1)*sd/(sqrt(n)),3),
     round(x + qnorm((1 - nc/2), mean=0, sd=1)*sd/(sqrt(n)),3))
}</pre>
```

Aplicando a função para calcular o intervalo de confiança. A função irá retornar um vetor com o limite inferior e limite superior, respectivamente.

```
IC(800,100,400,0.01)
## [1] 787.121 812.879
```

#### 1.1.2 letra b)

Criando uma função para calcular a confiança.

```
qnormal = 0.98
nc = function(qnormal,n,sd) {
   qnormal*(sqrt(n))/sd
}
```

Aplicando a função para calcular a confiança.

```
# e inserir o resultado em na função pnorm
#como o resultado é bicaudal, temos que multiplicá-lo por 2
#e por fim o resultado será subtraído de 1
round(1-(pnorm(nc(qnormal, 400,100), lower.tail=FALSE)*2),4)
```

```
## [1] 0.1554
```

A confiança é de 15.54%.

#### 1.1.3 letra c)

Criando uma função para calcular a amostra.

```
tamanho_amostral <- function(nc,sd, ic){
  ((qnorm(1 - nc/2)*sd)/ic)^2
}</pre>
```

Aplicando a função para calcular o tamanho da amostra para que seja de 95% a confiança na estimativa  $800 \pm 7.84$ 

```
round(tamanho_amostral(0.05, 100,7.84),1)
## [1] 625
```

O valor da amostra deve ser de 625.

Uma amostra aleatória de 625 donas de casa revela que 70% delas preferem a marca A de detergente. Construir um intervalo de confiança para p = proporção das donas de casa que preferem A com c.c.  $\gamma = 90\%$ .

## 2.1 Resolução da questão 2

Criando uma função para calcular o intervalo de confiança a 90%.

```
intervalo_proporcao = function(cc,p,n) {
   c(p - qnorm(l-((l-cc)/2))*sqrt(p*(l-p)/n),
   p + qnorm(l-((l-cc)/2))*sqrt(p*(l-p)/n))
}
```

Aplicando a função que retornará um vetor com o limite inferior e limite superior.

```
round(intervalo_proporcao(0.9,0.7,625),2)
## [1] 0.67 0.73
```

Criando uma função para calcular o intervalo de confiança conservador a 90%.

```
intervalo_conservador = function(cc,p,n) {
   c(p - qnorm(1-((1-cc)/2))*sqrt(1/(4*n)),
      p + qnorm(1-((1-cc)/2))*sqrt(1/(4*n)))
}
```

Aplicando a função que retornará um vetor com o limite inferior e limite superior do intervalo de confiança conservador a 90%.

```
round(intervalo_conservador(0.9,0.7,625),3)
## [1] 0.667 0.733
```

Antes de uma eleição, um determinado partido está interessado em estimar a proporção p de eleitores favoráveis ao seu candidato. Uma amostra piloto de tamanho 100 revelou que 60% dos eleitores eram favoráveis ao candidato em questão.

- a) Determine o tamanho da amostra necessário para que o erro cometido na estimação seja de, no máximo, 0.01 com probabilidade de 80%.
- b) Se na amostra final, com tamanho igual ao obtido em (a), observou-se que 55% dos eleitores eram favoráveis ao candidato em questão, construa um intervalo de confiança para a proporção p. Utilize  $\gamma = 0.95$ .

### 3.1 Resolução da questão 3

#### 3.1.1 letra a)

Criando uma função para calcular o tamanho da amostra.

```
tamanho_amostral2 <- function(nc,erro,p) {
    ((qnorm(1-((1-nc)/2))/erro)^2)*p*(1-p)
}</pre>
```

Aplicando a função

```
#arredondando para um valor inteiro
round(tamanho_amostral2(0.8,0.01,0.6),0)
```

```
## [1] 3942
```

São cerca de **3942** observações.

#### 3.1.2 letra b)

Calculando o intervalo de confiança com a função criada na questão 2.

```
n=tamanho_amostral2(0.8,0.01,0.6)
round(intervalo_proporcao(0.95, 0.55,n),3)
```

```
## [1] 0.534 0.566
```

Suponha que estejamos interessados em estimar a proporção de consumidores de um certo produto. Se a amostra de tamanho 300 forneceu 100 indivíduos que consomem o dado produto, determine:

- a) o intervalo de confiança para p, com coeficiente de confiança de 95% (interprete o resultado);
- b) o tamanho da amostra para que o erro da estimativa não exceda a 0.02 unidades com probabilidade de 95% (interprete o resultado).

### 4.1 Resolução da questão 4

Na resolução dessas questões usaremos as funções criadas nas questões anteriores.

#### 4.1.1 letra a)

Intervalo de confiança e intervalo de confiança conservador.

```
#intervalo de confiança
round(intervalo_proporcao(0.95,(100/300),300),3)

## [1] 0.280 0.387

#intervalo de confiança conservador
round(intervalo_conservador(0.95,(100/300),300),3)

## [1] 0.277 0.390
```

**Interpretação**: se constrirmos um grande número de intervalos aleatórios para p, todos baseados em amostras de tamanho n, em 95% desses intervalos encontraríamos o valor do parâmetro p.

#### **4.1.2** letra b)

Calculando o tamanho da amostra.

```
#arredondando para um valor inteiro
round(tamanho_amostral2(0.95,0.02,(100/300)),0)
```

```
## [1] 2134
```

Calculando para um número de indvíduos igual a 150 temos o valor máximo de p, que é 0.25  $\frac{150}{300} \cdot \frac{150}{300}$ .

```
round(tamanho_amostral2(0.95,0.02,(150/300)),0)
## [1] 2401
```

**Interpretação**: Com tamanho da amostra, em 95% das vezes que estimarmos um intervalo de confiança proporção amostral terá uma diferença do verdadeiro valor de p por menos que 2%.

Numa pesquisa de mercado para estudar a preferência da população de uma cidade em relação a um determinado produto, colheu-se uma amostra aleatória de 300 indivíduos, dos quais 180 preferiam esse produto.

- a) Determine um intervalo de confiança para a proporção da população que prefere o produto em estudo; tome  $\gamma = 0.90$ .
- b) Determine a probabilidade de que a estimativa pontual dessa proporção não difira do verdadeiro valor em mais de 0.001.
- c) É possível obter uma estimativa pontual dessa proporção que não difira do valor verdadeiro em mais de 0,0005 com probabilidade 0.95? Caso contrário, determine o que deve ser feito.

### 5.1 Resolução da questão 5

Nessa resolução usaremos funções criadas em questões anteriores.

#### **5.1.1** letra a)

Intervalo de confiança e intervalo de confiança conservador.

```
#intervalo de confança
round(intervalo_proporcao(0.90,(180/300),300),3)

## [1] 0.553 0.647

#intervalo de confança conservador
round(intervalo_conservador(0.90,(180/300),300),3)

## [1] 0.553 0.647
```

#### **5.1.2** letra b)

Criando uma função para calcular o z-score para proporção

```
z_proporcao = function(e,p,n) {
  e/(sqrt((p*(l-p))/n))
}
```

Calculando o valor do z-score para as variáveis da questão

```
z_score = z_proporcao(0.001,(180/300),300)
z_score
## [1] 0.03535534
```

Calculando a probabilidade.

```
round(1-(pnorm(z_score, lower.tail=FALSE)*2),4)
## [1] 0.0282
```

A probabilidade da estimativa pontual dessa proporção não difira do verdadeiro valor em mais de 0.001 é de 2.82%.

#### 5.1.3 letra c)

Calculando o tamanho da amostra, vemos que não é uma valor que possa ser realizável, deve-se alterar o valor de  $\gamma$ .

```
round(tamanho_amostral2(0.95,0.0005,(180/300)),0)
## [1] 3687800
```