HARNESSING DIVERSITY FOR IMPORTANT DATA SE-LECTION IN PRETRAINING LARGE LANGUAGE MOD-ELS

Chi Zhang *1, Huaping Zhong *2, Kuan Zhang¹, Chengliang Chai †1, Rui Wang³, Xinlin Zhuang³, Tianyi Bai³, Jiantao Qiu³, Lei Cao⁴, Ju Fan⁵, Ye Yuan¹, Guoren Wang¹, and Conghui He †3

¹Beijing Institute of Technology ²SenseTime Research ³Shanghai Artificial Intelligence Laboratory ⁴University of Arizona/MIT ⁵Renmin University of China

ABSTRACT

Data selection is of great significance in pretraining large language models, given the variation in quality within the large-scale available training corpora. To achieve this, researchers are currently investigating the use of data influence to measure the importance of data instances, i.e., a high influence score indicates that incorporating this instance to the training set is likely to enhance the model performance. Consequently, they select the top-k instances with the highest scores. However, this approach has several limitations, (1) Calculating the accurate influence of all available data is time-consuming. (2) The selected data instances are not diverse enough, which may hinder the pretrained model's ability to generalize effectively to various downstream tasks. In this paper, we introduce Quad, a data selection approach that considers both quality and diversity by using data influence to achieve state-of-the-art pretraining results. To compute the influence (i.e., the quality) more accurately and efficiently, we incorporate the attention layers to capture more semantic details, which can be accelerated through the Kronecker product. For the diversity, Quad clusters the dataset into similar data instances within each cluster and diverse instances across different clusters. For each cluster, if we opt to select data from it, we take some samples to evaluate the influence to prevent processing all instances. Overall, we favor clusters with highly influential instances (ensuring high quality) or clusters that have been selected less frequently (ensuring diversity), thereby well balancing between quality and diversity. Experiments on Slimpajama demonstrate that Ouad significantly outperforms other data selection methods with a low FLOPs consumption. Further analysis also validates the effectiveness of our influence calculation. Our code and data are available at (https://anonymous.4open.science/r/Quad/).

1 Introduction

Recently, large language models (LLMs) have significantly advanced the field of artificial intelligence (Zhao et al., 2023; Hadi et al., 2023; Minaee et al., 2024). Due to the unprecedented number of parameters (model size) and the pre-training on huge amount of training data, LLMs are generalizable a broad spectrum of downstream tasks. However, in practice, the computation resources limit both the model size and the volume of data used in pre-training. In this situation, judiciously selecting train datasets is critical for producing highly performance LLMs (Brown, 2020; Du et al., 2022; Gururangan et al., 2020; Hoffmann et al., 2022; Raffel et al., 2020). In particular, the quality

Figure 1: Distribution of influence scores of some sampled data instances.

of the training datasets vary dramatically, while the LLaMA-3.1 report (Dubey et al., 2024) shows that the use of high quality data in later training stages can greatly improve model performance.

Typical straightforward data selection approaches include rule-based data filtering (Raffel et al., 2020; Rae et al., 2021), querying high-performance models (e.g., GPT-4) (Wettig et al., 2024; Sachdeva et al., 2024), surrogate models (Lin et al., 2024; Shao et al., 2024), etc. Although these methods have achieved success on some datasets and models, they rely on simple heuristics to select training data. Without explicitly measuring the impact of the selected data on the model, these methods tend to produce sub-optimal pretraining results. To address this issue, some researchers (Xia et al., 2024; Yu et al., 2024) start evaluating each data instance by assigning it a score that reflects its impact on the model. Frequently used scoring methods include the influence function (Xia et al., 2024), early loss (Albalak et al., 2023), and perplexity (Chen et al., 2024). Among these methods, the influence function consistently delivers state-of-the-art results by effectively approximating the impact of adding each instance to the training set. A higher score signifies a higher priority for selecting a data instance, and hence the top-k (or gumble top-k) instances with the highest scores are chosen (Xie et al., 2023; Wettig et al., 2024; Yu et al., 2024).

However, the above methodologies have the following limitations.

Prohibitive Computation Cost. First, accurately calculating the influence score of one data instance is expensive, because it involves the computation of the Hessian matrix. However, in the LLM pre-training, the number of the candidate data instances is extremely large. It is thus prohibitively expensive to compute the scores for all of the candidates.

Lack of Diversity. Second, assume that all influence scores have been calculated, as shown in Figure 1a. We can see that the top-k instances (e.g., some high-score instances in C_1) tend to be closely distributed in the feature space because the influence computation is closely related to the data features. That is, the training instances selected in this way are lack of diversity (e.g., other instances in C_3 with high influence are also worth selecting), while as confirmed by some studies (Abbas et al., 2023; Tirumala et al., 2023), diversifying training samples mitigates overfitting, thereby enhancing the generalizability of the model. Therefore, an effective data training selection method should take both the influence scores and the diversity into consideration.

We thus propose Quad, a scalabe and effective data selection approach, which successfully addressing above challenges, achieves state-of-the-art pretraining results. Initially, Quad organizes the given dataset into clusters where the data instances within each cluster are similar, and those in different clusters exhibit diversity. Hence, we can sample a data subset from a cluster to estimate the accurate average influence of the cluster, so as to represent the cluster quality w.r.t the model performance.

Next, leveraging the property of the attention-based Transformer architecture which is widely adopted by the LLMs, we design a novel method to accurately compute the influence of an instance on LLM pre-training. More specifically, rather than solely relying on the MLP layers to compute the influence (Koh & Liang, 2017; Yu et al., 2024; Grosse et al., 2023; Engstrom et al., 2024), we incorporate the attention layers such that the influence computation considers more semantic information. In addition, given that calculating the Hessian matrix is time-consuming, particularly for attention layers with complex interactions, we incorporate the Kronecker product to approximate the Hessian matrix, thereby greatly expediting the computation. This successfully addresses the computation cost challenge.

To improve diversity, we apply the Multi-Arm Bandit (MAB) technique, where each cluster is regarded as an arm of the MAB. Upon selecting an arm, we draw samples from the cluster to calculate influence scores. Subsequently, Quad iteratively samples from clusters, taking into account both the influence score and data diversity, e.g., whether the cluster has already been sampled. Moreover, because this sampling strategy effectively avoids calculating the influence of all instances, it further speeds up the data selection process.

We summarize our main contributions as follows:

- To balance the quality and diversity, we incorporate an iterative MAB solution to first cluster the data instances and select data instances from these clusters.
- We propose a novel method to compute the influence function in attention-based Transformer architecture, so as to precisely measure the data quality in LLM pre-training.
- Experiments on the widely-used dataset Slimpajama and 9 popular downstream tasks demonstrate that Quad significantly outperforms state-of-art data selection methods by 1.39% in zero-shot accuracy, also with low computation resources consumption.

2 RELATED WORK

Rule-based Methods. Initially, researchers often relied on intuition to design hand-crafted heuristics (Soldaini et al., 2024) and (Penedo et al., 2023), aiming to improve data quality. Deduplication is another typical approach for selecting pretraining data, such as (Penedo et al., 2023) and SemDedup (Abbas et al., 2023) which use keyword-based and semantic deduplication, respectively. Additionally, certain approaches employ *n*-gram similarity (Gao et al., 2020; Xie et al., 2023) to assist in choosing corpora that is semantically aligned with the validation set data. Although these methods effectively filter out noise and redundant data from web sources, they rely on simple heuristics and cannot be well generalized.

LLM As a Selector. Although large models such as GPT-4 can effectively assess data quality due to their semantic comprehension capacity, the metrics utilized to rate data (*e.g.*, writing style, educational value etc.) heavily rely on human intuition (Wettig et al., 2024; Penedo et al., 2024; Zhang et al., 2024; Gunasekar et al., 2023). This often leads to a mismatch between the selected data and the data desired by the model.

Surrogate Models. DeepSeekMath (Shao et al., 2024) proposes an active learning strategy to train a web data classifier. Similarly, in MATES (Yu et al., 2024), a surrogate model was developed to estimate the influence scores of the data instances. RHO-1 (Lin et al., 2024) used a surrogate model trained with high-quality data to perform token-level data filtering. However, these surrogate models are not trained over large-scale data, and thus their generalizatio ability is limited.

Perplexity serves as a metric for selecting high-probability data in a language model. In (Chen et al., 2024; Marion et al., 2023; Muennighoff et al., 2024; Wenzek et al., 2019), perplexity (PPL) is utilized to filter data. As also discussed in Qurating (Wettig et al., 2024), we observe that this method often incorporates a significant amount of simple and redundant data, because they are easy for the model to predict.

Influence Function (Grosse et al., 2023; Choe et al., 2024) demonstrates that influence function can reveal the impact of training data on the performance of large models. Consequently, LESS (Xia

et al., 2024) and MATES (Yu et al., 2024) utilize influence functions for selecting data during the SFT and pretraining phases, respectively. For large models, computing influence functions is computationally expensive. (Grosse et al., 2023). Hence, given the large amount of data handled during pretraining, directly using LESS (Xia et al., 2024) for data selection at this stage poses considerable difficulties. To overcome this, MATES (Yu et al., 2024) employs a proxy model to approximate the influence score across the full dataset. However, the limited capacity of this small proxy model hinders its ability to provide accurate influence scores. Furthermore, relying on the influence to select data solely often leads to a lack of diversity in the chosen data.

3 METHODS

First, we present our problem statement in §3.1. Next, in §3.2, we explain how our method achieves the balance between quality and diversity in selecting pretraining data. Finally, in §3.3, we introduce how we compute the influence with attention layers more accurately and efficiently.

Figure 2: Overview of Quad

3.1 PROBLEM DEFINITION

To enhance the capabilities of large models, it is necessary to retrieve relevant data from a large pool of candidate data and perform further training for the large model. Formally, given the pool D_c and a reference set D_r , our problem is to select a subset $D_b \subset D_c$ to fine-tune the large model M, with the aim of minimizing the loss of the updated model M' in the reference set D_r .

3.2 BALANCE BETWEEN QUALITY AND DIVERSITY

As shown in Figure 1b, there are significant variations in the distribution of influence scores among different clusters. To achieve the quality-diversity balance, it is necessary to know the precise average influence score for instances in each cluster. However, Figure 1b shows that the influence scores for each cluster also fluctuate around the average, indicating a certain level of uncertainty. Estimating the average with a small sample size will not be accurate enough, while taking a large number of samples to compute the average influence is costly.

Hence, we propose to use the MAB (Vermorel & Mohri, 2005) technique that is capable of making decisions iteratively under uncertainty. At a high level, each cluster represents an arm of the MAB, and during each iteration, a cluster with a high average influence score tends to be selected and sampled. We will then compute the influence of data instances to update the average. Moreover, clusters that are not visited often present significant opportunities for sampling to balance the diversity.

The overall process of this approach is illustrated in Figure 2. Specifically, our method can be divided into the following four steps: First, we *sample the top-k clusters* with the highest cluster scores (denoted by CS) computed by MAB. Here, the cluster score is determined by both the influence score and the sample frequency. Then we *calculate the influence scores* for the samples in

each cluster (Section 3.3). At this point, we select high scoring samples to be added for training and use their scores to update the cluster score for each cluster. Throughout the iterative process, the MAB algorithm focuses on frequently sampling high-quality clusters that have high influence scores, which also enhances the accuracy of their quality estimation (i.e., updating the average influence \bar{I}_i). Simultaneously, it ensures diversity by also sampling less-visited clusters. Next, we discuss how to compute and update the cluster score in details.

Cluster Score (CS). The Upper Confidence Bound can effectively balance exploration (i.e., data diversity) and exploitation (i.e., data quality), so we use it as the cluster score to evaluate each cluster, as shown in Equation (1). Specifically, the cluster score is determined by the average influence score \bar{I}_i and the exploration score $\sqrt{\frac{2 \ln \sum_j T(C_j)}{T(C_i)}}$, where $T(C_i)$ denotes the frequency of instances sampled from cluster C_i , and $\sum_j T(C_j)$ denotes the total times of samples taken from all clusters.

$$CS_i = \bar{I}_i + \alpha \sqrt{\frac{2\ln\sum_j T(C_j)}{T(C_i)}}$$
(1)

Update the cluster score. During each iteration, a subset of data B_i is sampled from each cluster with a high cluster score (CS). The sum of their influence score I_i can be used to denote the impact of the samples from the cluster C_i on the model.

$$R(C_i) + = \sum_{z \in B_i} I_{\theta}(D_r, z), \quad T(C_i) + = 1$$
 (2)

where $R(C_j)$ denotes the total reward accumulated by cluster C_i over several iterations. Then the average influence score \bar{I}_i for cluster C_i can be represented as $\bar{I}_i = \frac{R(C_i)}{T(C_i)}$. As the sample size grows, \bar{I}_i for each cluster C_i steadily approaches the exact average influence of the cluster, which can be used to update the cluster scores for all clusters.

Data selection. During each iteration, we pick a small proportion(γ) of data instances from selected clusters. We also require that these instances have influence scores higher than the threshold τ , otherwise we will not select them, which are then added into the training dataset.

Algorithm 1: Quad Algorithm

```
Input: Candidate data pool D_c, reference set D_r, the model \theta
   Output: Selected data D_b
 1 C = \text{Cluster}(D_c);
 2 while do
         C_{top\_k} = top-k clusters with the highest Cluster Score(CS);
         B_{top\_k} = mini-batchs sampled from C_{top\_k}
 4
         \begin{array}{c|c} & \text{for } C_i \text{ in } C_{top\_k} \text{ do} \\ & R(C_j) += \sum_{z \in B_i} I_{\theta}(D_r,z), \quad T(C_j) += 1 \ ; \end{array} 
 5
 6
 7
        end
        8
10
11
        CS_i = \bar{I}_i + \alpha \sqrt{\frac{2 \ln \sum_j T(C_j)}{T(C_i)}};
13 end
14 return D_b;
```

3.3 INFLUENCE CALCULATION WITH ATTENTION LAYERS

Instead of retraining the large model with each data sample z, the impact of z on the model M can be estimated by calculating the influence function for each instance. In this section, we extend the influence calculation to multi-head attention layers and provide acceleration techniques.

$$I_{\theta}(D_r, z) = -\nabla L(\theta, D_r)(H + \lambda I)^{-1} \nabla L(\theta, z)$$
(3)

In the above equation, $I_{\theta}(D_r, z)$ denote the influence function of data z on model θ . $\nabla L(\theta, D_r)$ and $\nabla L(\theta, z)$ denote the gradient of reference dataset D_r and data z, respectively. Since the training of the large model does not often fully converge, resulting in a non-invertible Hessian matrix H, a regularization term λI is introduced (Bae et al., 2022). Equation (3) is typically divided into the following two stages to speed up the computation:

- 1. Approximate the multiplication of the gradient of the validation set $\nabla L(\theta, D_r)$ and the inverse Hessian matrix H^{-1} using the inverse Hessian vector product (iHVP).
- 2. Compute the dot product between the iHVP and the gradient of each training data point $\nabla L(\theta, z)$.

While this framework can accelerate the computation of the influence function, scaling it up to large language models (LLMs) with massive parameters is still expensive. Hence, K-FAC (Martens & Grosse, 2015; Ueno et al., 2020) can be used to accelerate the iHVP computation by using the Kronecker product to decompose the Hessian matrix.

The K-FAC approximate the parameters of different MLP layer θ_1 , θ_2 and θ_3 as independent. That's because, during the gradient computation and update process, there are usually only minimal direct dependencies between the gradients of different MLP layers. This is particularly evident during back propagation, where the weight updates for each MLP layer are primarily influenced by the parameters of that specific layer. Therefore, the influence function $I_{\theta_1,\theta_2,\theta_3}(D_r,z)$ in K-FAC method can be expressed as:

$$I_{\theta_1,\theta_2,\theta_3}(D_r,z) = I_{\theta_1}(D_r,z) + I_{\theta_2}(D_r,z) + I_{\theta_3}(D_r,z)$$
(4)

In attention mechanisms, there exist complex connections between the Query, Key, and Value layers. As the right-upper corner of Figure 3 shows, separately calculate the hessian matrix of Query, Key and Value layers, will miss massive information of Consequently, it is essential to consider the QKV layers as a unified layer θ_{qkv} when computing the influence function. Therefore, the influence function $I_{\theta_{att}}(D_r, z)$ can be expressed as:

$$I_{\theta_{att}}(D_r, z) = I_{\theta_{qkv}}(D_r, z) + I_{\theta_o}(D_r, z)$$

$$\tag{5}$$

Figure 3: Kronecker Product in calculating iHVP

Then, as the right-lower corner of Figure 3 shows, by decomposing the Hessian matrix into a kronecker product of smaller matrices and computing the inverse of each smaller matrix, we can avoid directly inverting the entire Hessian matrix, significantly reducing computational cost, and accelerate this process:

Forward propagation:

$$Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d_{k}}})V$$
 (6)

Backward propagation:

$$D\theta = vec(DW) = \delta \otimes x \tag{7}$$

Here, \otimes denotes the Kronecker product, and vec() represents the vectorization operation. Thus, the gradient of θ_{qkv} can be written as:

$$D\theta_{qkv} = \begin{bmatrix} \mathbf{vec}(\mathbf{D}\mathbf{W}_{\mathbf{Q}}) \\ \mathbf{vec}(\mathbf{D}\mathbf{W}_{\mathbf{K}}) \\ \mathbf{vec}(\mathbf{D}\mathbf{W}_{\mathbf{V}}) \end{bmatrix} = \begin{bmatrix} \delta_q \\ \delta_k \\ \delta_v \end{bmatrix} \otimes x \tag{8}$$

Let $\delta_{qkv} = \begin{bmatrix} \delta_q \\ \delta_k \\ \delta_n \end{bmatrix}$. Then, the Hessian matrix H_{qkv} can be estimates by:

$$H_{qkv} = E(D\theta_{qkv}D\theta_{qkv}^T) = E(\delta_{qkv}\delta_{qkv}^T \otimes x_{qkv}x_{qkv}^T)$$

$$\approx E(\delta_{qkv}\delta_{qkv}^T) \otimes E(x_{qkv}x_{qkv}^T) = \Delta_{qkv} \otimes X_{qkv}$$
(9)

Also, $H_o = \Delta_o \otimes X_o$. Thus, the iHVP of the attention layer can be estimated as follows:

$$H_{att}^{-1}v_{att} = \begin{bmatrix} \mathbf{H}_{\mathbf{qkv}}^{-1}\mathbf{v}_{\mathbf{qkv}} \\ \mathbf{H}_{\mathbf{o}}^{-1}\mathbf{v}_{\mathbf{o}} \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\Delta}_{\mathbf{qkv}} \otimes \mathbf{X}_{\mathbf{qkv}})^{-1}\mathbf{v}_{\mathbf{qkv}} \\ (\boldsymbol{\Delta}_{\mathbf{o}} \otimes \mathbf{X}_{\mathbf{o}})^{-1}\mathbf{v}_{\mathbf{o}} \end{bmatrix}$$
$$= \begin{bmatrix} (\boldsymbol{\Delta}_{\mathbf{qkv}}^{-1} \otimes \mathbf{X}_{\mathbf{qkv}}^{-1})\mathbf{v}_{\mathbf{qkv}} \\ (\boldsymbol{\Delta}_{\mathbf{o}}^{-1} \otimes \mathbf{X}_{\mathbf{o}}^{-1})\mathbf{v}_{\mathbf{o}} \end{bmatrix} = \begin{bmatrix} \mathbf{vec}(\boldsymbol{\Delta}_{\mathbf{qkv}}^{-1}\mathbf{V}_{\mathbf{qkv}}\mathbf{X}_{\mathbf{qkv}}^{-1}) \\ \mathbf{vec}(\boldsymbol{\Delta}_{\mathbf{o}}^{-1}\mathbf{V}_{\mathbf{o}}\mathbf{X}_{\mathbf{o}}^{-1}) \end{bmatrix}$$
 (10)

where v_{att}, v_{qkv}, v_o represent the gradient of reference dataset D_r on parameters $\theta_{att}, \theta_{qkv}, \theta_o$, respectively. Thus, the influence score of attention layers can be written as: $I_{\theta_{att}} = -\nabla L(\theta_{att}, z) H_{att}^{-1} v_{att}$.

To avoid the excessive memory usage of validation set gradients, we apply the Johnson-Lindenstrauss Lemma to reduce the dimensionality of both the iHVP computation results and the training data gradients $\nabla L(\theta, z)$.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Dataset Preparation. We use the entire 627B-token SlimPajama dataset as the candidate pool D_c . In the clustering process, the BAAI/bge-large-en-v1.5 model is employed to generate embeddings for the input data, and approximately 600 million data points from the candidate pool D_c are clustered into 10,000 groups using the k-means algorithm. We use LAMBADA (Paperno et al., 2016) as our reference set D_r , which is a widely used language modeling task and often serves as a validation benchmark for language model pretraining. (Yu et al., 2024; Xie et al., 2023; Hoffmann et al., 2022).

Experimental settings. We train a transformer-based decoder-only language model that contains 1.3B parameters, uses RoPE embeddings (Su et al., 2023), and has a maximum context window of 1024 tokens (Touvron et al., 2023). Following the setting of MATES (Su et al., 2023), 30B tokens out of the 627B are selected for training using Quad and compare with baselines. The learning rate is set to 5×10^{-5} , the batch size is set to 4096, and the Adam optimizer is employed with hyperparameters $\beta_1 = 0.9, \beta_2 = 0.95, \epsilon = 10^{-8}$. As for Multi-Armed Badit, we set the $\alpha = 0.002$, sample proporation $\gamma = 0.05$ and the sample threshold τ as 0.0025.

Baselines. We compare our methods with several baselines. (1) Random samples data from the entire candidate dataset randomly. (2) Qurating uses the large language model to select data. (3)

Table 1: Overall Performance

Selection Method	General Knowledge (3 tasks)	Commonsense Reasoning (4 tasks)	Reading Comprehension (2 tasks)	Overall	FLOPs
Random	50.33	36.19	39.09	41.55	7.66
DSIR	50.37 ^{↑0.04}	34.01 ^{\(\psi 2.18\)}	38.80 ↓1.29	40.53 \$\frac{1.02}{}\$	7.66
PPL	$48.71^{\ \ \downarrow 1.62}$	37.72 ^{↑1.53}	$38.57^{\ \downarrow 0.52}$	$41.57^{\ \ \uparrow 0.02}$	9.51
Semdedup	50.99 ^{†0.66}	$36.11^{\downarrow 0.08}$	39.44 ^{†0.35}	$41.81^{\ \ \uparrow 0.26}$	8.11
Qurating	<u>51.56</u> ^{↑1.23}	$35.93^{\downarrow 0.26}$	$39.70^{\ \ \uparrow 0.61}$	<u>42.01</u> ^{↑0.46}	13.66
MATES	50.45 ^{†0.12}	36.06 ^{↓0.13}	39.83 ^{↑0.74}	41.93 ^{↑0.38}	9.81
Quad(ours)	52.08 ^{†1.75}	<u>37.03</u> ^{↑0.84}	41.07	42.94 ^{†1.39}	9.15

DSIR selects data instances that are similar to the LAMBADA dataset. (4) PPL uses perplexity-based data selection, i.e., selecting data instances with the lowest perplexity scores. (5) MATES trains a surrogate model to evaluate the influence of each data instance on the target model.

Evaluation datasets. To comprehensively evaluate the capabilities of pretrained models, we conduct experiments on various downstream tasks covering three significant categories:

General Knowledge: ARC-C, ARC-E (Clark et al., 2018), and SciQ (Welbl et al., 2017).

Commonsense Reasoning: HellaSwag (Zellers et al., 2019), SIQA (Sap et al., 2019), Wino-Grande (Sakaguchi et al., 2021), Logiqa (Liu et al., 2020).

Reading Comprehension: OpenbookQA (Mihaylov et al., 2018), and BoolQ (Clark et al., 2019).

Evaluations are conducted using the lm-evaluation-harness (Gao et al., 2023) framework and the average accuracy (*i.e.*, Overall Score) is reported for comparison.

4.2 RESULTS

Overall Performance. As demonstrated in Table 1, our method surpasses all the baseline methods in downstream tasks with zero-shot evaluation. To be specific, we can observe that on General Knowledge and Reading Comprehension tasks, Quad has the improvement of 1.75% and 1.98% respectively compared with Random. Quad outperforms DSIR and Semdedup because they use rule-based heuristics to select data without considering the model. Although PPL and MATES consider the model, they do not perform well because the former one always selects some simple and duplicated instances, and the surrogate model of the latter one is small and lacking of enough training data. Qurating generally performs the best among other baselines, but still worse than our approach, and it incorporates the highest FLOPS(1e19) because of the usage of LLMs for data selection. In terms of the FLOPs, we can observe that except the methods (i.e., DSIR, SemDeDup) that use simple heuristics, we consume minimal computation resources because our MAB solution samples from clusters without considering the entire candidate dataset like PPL, Qurating and MATES.

Effectiveness of MAB. This section evaluates the effectiveness of the MAB approach for data selection in contrast to the straightforward method of choosing the top-k clusters with the highest influence scores for model training. To be specific, we randomly select an equivalent number of data points from the top 150, 500, and 1000 clusters. Figure 4a illustrates the trade-off between data quality and diversity: clusters with higher influence scores do not necessarily enhance model performance on downstream evaluation sets because of their lack of diversity. Hence, the multi-armed bandit method can more effectively capture the trade-off between quality and diversity across clusters, resulting in superior performance on downstream evaluation sets, as opposed to merely choosing the top-k clusters.

Figure 4: (a) shows the effectiveness of the MAB method; (b) shows the accuracy of calculating the influence function on MLP and attention layers; (c) shows the correlation between Query, Key, Value layers impact a lot on the accuracy of influence calculation; (d) shows the model performance of varying sample threshold τ .

Effectiveness of Influence Calculation. This experiment studies the effectiveness of our influence calculation method. In this section, we select the top 500 clusters with the highest scores using three methods: (1) no-Hessian (i.e., computing the gradient similarity between training data and reference data (Pruthi et al., 2020)) without considering the Hessian matrix; (2) MLP(i.e., calculating influence function on MLP layers) and (3) Ours (i.e., calculating influence function on both MLP and attention layers). From each cluster, we uniformly sample data to train the large model. As shown in Figure 4b, our solution (MLP+Attention) performs better than MLP because the attention layer considers more semantics. no-Hessian performs the worst because it does not precisely capture the impact of training data instances on the model without the Hessian matrix.

Also, we conduct experiments to verify the relationship between the Query, Key, Value matrices, which is shown in Figure 4c. In this experiment, we compare the Pearson correlation coefficients between the following three methods and the baseline approach, which computes the influence score for the attention layer without any acceleration. (1) No-Hessian(i.e., computing the gradient similarity between training data and reference data) without considering the Hessian matrix; (2) Independent (i.e., calculating the Hessian matrices of the query, key, and value layers independently) and (3) Ours (i.e., calculating the Hessian matrices of the query, key, and value layers as a whole).

4.3 ABLATION STUDY

This group of experiments performs ablation studies on the hyperparameters of Quad. Figure 4d and Figure 5 show the impact of sample threshold and α respectively.

Sampling Threshold of Influence (τ). Setting the threshold too high or low will both degrade the model performance. This is because the selected data instances tend to exist in few clusters with high influence scores, resulting in poor diversity. In contrast, when the threshold is set too low, the sampled instances will be from many clusters with low influence scores, which also degrades the model performance.

 α for Quality-Diversity Balance. Our approach employs α to balance the diversity and quality in the MAB framework. When α is small, we tend to focus on the several clusters with high influence scores without considering diversity much, so the MAB framework is likely to get stuck in a local optimum. For example, this results in the model enhancing its performance in specific areas (such as Common Sense Reasoning in Figure 5 when $\alpha=1.5e-3$), while the performance in other areas (i.e., General Knowledge and Reading Comprehension) is not good enough. Thus the overall score is not the optimal. However, when α is large, the MAB framework focuses too much on diversity without selecting enough high-quality data, which ultimately results in a limited improvement of model performance.

Figure 5: α for Quality-Diversity Balance.

5 CONCLUSION

This paper presents Quad, a method designed to balance both the diversity and quality of data in pretraining data selection. Quad employs the influence function to identify data that benefits the model. First, we group the data into clusters and use a subset from each to represent the influence of the entire cluster. Given that influence scores within a cluster display some uncertainty, we view each cluster as an arm in an MAB framework. This method conducts samplings from high-quality clusters, allowing for more precise estimation of their influence scores and meanwhile maintaining the diversity. Moreover, we extend the influence function to attention layers and enhance the calculation efficiency to better measure the impact of data within each cluster on the model.

REFERENCES

Amro Abbas, Kushal Tirumala, Dániel Simig, Surya Ganguli, and Ari S Morcos. Semdedup: Data-efficient learning at web-scale through semantic deduplication. *arXiv preprint arXiv:2303.09540*, 2023.

Alon Albalak, Liangming Pan, Colin Raffel, and William Yang Wang. Efficient online data mixing for language model pre-training. In R0-FoMo: Robustness of Few-shot and Zero-shot Learning in Large Foundation Models, 2023.

Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If influence functions are the answer, then what is the question? *Advances in Neural Information Processing Systems*, 35:17953–17967, 2022.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Jie Chen, Zhipeng Chen, Jiapeng Wang, Kun Zhou, Yutao Zhu, Jinhao Jiang, Yingqian Min, Wayne Xin Zhao, Zhicheng Dou, Jiaxin Mao, et al. Towards effective and efficient continual pre-training of large language models. *arXiv preprint arXiv:2407.18743*, 2024.

Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang, Youngseog Chung, Adithya Pratapa, Willie Neiswanger, Emma Strubell, Teruko Mitamura, et al. What is your data worth to gpt? llm-scale data valuation with influence functions. *arXiv preprint arXiv:2405.13954*, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv* preprint *arXiv*:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. *arXiv preprint arXiv:1803.05457*, 2018.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language models with mixture-of-experts. In *International Conference on Machine Learning*, pp. 5547–5569. PMLR, 2022.

- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
- Logan Engstrom, Axel Feldmann, and Aleksander Madry. Dsdm: Model-aware dataset selection with datamodels. *arXiv preprint arXiv:2401.12926*, 2024.
- L Gao, J Tow, B Abbasi, S Biderman, S Black, A DiPofi, C Foster, L Golding, J Hsu, A Le Noac'h, et al. A framework for few-shot language model evaluation, 12 2023. *URL https://zenodo.org/records/10256836*, 7, 2023.
- Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for language modeling. *arXiv preprint arXiv:2101.00027*, 2020.
- Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization with influence functions. *arXiv preprint arXiv:2308.03296*, 2023.
- Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are all you need. *arXiv preprint arXiv:2306.11644*, 2023.
- Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey, and Noah A Smith. Don't stop pretraining: Adapt language models to domains and tasks. *arXiv* preprint arXiv:2004.10964, 2020.
- Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah, Muhammad Irfan, Anas Zafar, Muhammad Bilal Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili, et al. A survey on large language models: Applications, challenges, limitations, and practical usage. *Authorea Preprints*, 2023.
- Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. An empirical analysis of compute-optimal large language model training. Advances in Neural Information Processing Systems, 35:30016–30030, 2022.
- Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In *International conference on machine learning*, pp. 1885–1894. PMLR, 2017.
- Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu Yang, Jian Jiao, Nan Duan, et al. Rho-1: Not all tokens are what you need. *arXiv preprint arXiv:2404.07965*, 2024.
- Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A challenge dataset for machine reading comprehension with logical reasoning. arXiv preprint arXiv:2007.08124, 2020.
- Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker. When less is more: Investigating data pruning for pretraining llms at scale. *arXiv* preprint arXiv:2309.04564, 2023.
- James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate curvature. In *International conference on machine learning*, pp. 2408–2417. PMLR, 2015.
- Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity? a new dataset for open book question answering. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 2381–2391, 2018.
- Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Amatriain, and Jianfeng Gao. Large language models: A survey. *arXiv preprint arXiv:2402.06196*, 2024.

- Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language models. *Advances in Neural Information Processing Systems*, 36, 2024.
- Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset: Word prediction requiring a broad discourse context. *arXiv preprint arXiv:1606.06031*, 2016.
- Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli, Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb dataset for falcon llm: outperforming curated corpora with web data, and web data only. *arXiv* preprint arXiv:2306.01116, 2023.
- Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data at scale. *arXiv preprint arXiv:2406.17557*, 2024.
- Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data influence by tracing gradient descent. *Advances in Neural Information Processing Systems*, 33: 19920–19930, 2020.
- Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models: Methods, analysis & insights from training gopher. *arXiv preprint arXiv:2112.11446*, 2021.
- Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. *Journal of machine learning research*, 21(140):1–67, 2020.
- Noveen Sachdeva, Benjamin Coleman, Wang-Cheng Kang, Jianmo Ni, Lichan Hong, Ed H Chi, James Caverlee, Julian McAuley, and Derek Zhiyuan Cheng. How to train data-efficient llms. arXiv preprint arXiv:2402.09668, 2024.
- Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.
- Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social iqa: Commonsense reasoning about social interactions. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 4463–4473, 2019.
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
- Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur, Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, et al. Dolma: An open corpus of three trillion tokens for language model pretraining research. arXiv preprint arXiv:2402.00159, 2024.
- J Su, Y Lu, S Pan, A Murtadha, B Wen, and Y Liu Roformer. Enhanced transformer with rotary position embedding., 2021. *DOI: https://doi. org/10.1016/j. neucom*, 2023.
- Kushal Tirumala, Daniel Simig, Armen Aghajanyan, and Ari Morcos. D4: Improving llm pretraining via document de-duplication and diversification. Advances in Neural Information Processing Systems, 36:53983–53995, 2023.
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

- Yuichiro Ueno, Kazuki Osawa, Yohei Tsuji, Akira Naruse, and Rio Yokota. Rich information is affordable: A systematic performance analysis of second-order optimization using k-fac. In *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pp. 2145–2153, 2020.
- Joannes Vermorel and Mehryar Mohri. Multi-armed bandit algorithms and empirical evaluation. In *European conference on machine learning*, pp. 437–448. Springer, 2005.
- Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions. *arXiv preprint arXiv:1707.06209*, 2017.
- Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzmán, Armand Joulin, and Edouard Grave. Cenet: Extracting high quality monolingual datasets from web crawl data. *arXiv preprint arXiv:1911.00359*, 2019.
- Alexander Wettig, Aatmik Gupta, Saumya Malik, and Danqi Chen. Qurating: Selecting high-quality data for training language models. In *Forty-first International Conference on Machine Learning*, 2024. URL https://openreview.net/forum?id=GLGYYqPwjy.
- Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less: Selecting influential data for targeted instruction tuning. In *Forty-first International Conference on Machine Learning*, 2024.
- Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy S Liang. Data selection for language models via importance resampling. *Advances in Neural Information Processing Systems*, 36: 34201–34227, 2023.
- Zichun Yu, Spandan Das, and Chenyan Xiong. Mates: Model-aware data selection for efficient pretraining with data influence models. *arXiv* preprint arXiv:2406.06046, 2024.
- Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp. 4791–4800, 2019.
- Yifan Zhang, Yifan Luo, Yang Yuan, and Andrew C Yao. Autonomous data selection with language models for mathematical texts. In *ICLR 2024 Workshop on Navigating and Addressing Data Problems for Foundation Models*, 2024.
- Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv preprint arXiv:2303.18223, 2023.

A APPENDIX

Table 2: Performance Comparison

Selection Method	C	General K	Knowledg	ge		Commo	nsense F	Reasoning	Reading Comprehension			Overall	
	arc-e	arc-c	sciq	avg	logiqa	hellaswag	siqa	winogrande	avg	openbookqa	boolq	avg	
Random	50.27	20.31	80.40	50.33	21.20	34.11	38.49	50.99	36.20	17.60	60.58	39.09	41.55
Semdedup	51.35	20.73	80.90	50.99	19.05	34.56	39.30	51.54	36.11	18.80	60.09	39.45	41.81
MATES	50.00	21.25	80.10	50.45	21.66	33.90	38.69	52.17	36.61	19.00	60.67	39.84	41.94
PPL	45.41	20.82	79.90	48.71	20.43	35.92	39.92	54.62	37.72	18.80	58.35	38.58	41.57
DSIR	49.28	20.14	81.70	50.37	21.20	30.89	35.98	47.99	34.02	16.20	61.41	38.81	40.53
Qurating	52.10	23.29	79.80	51.56	20.43	33.57	39.05	50.67	35.93	18.00	61.41	39.71	42.04
Quad(ours)	52.27	21.76	82.20	52.08	22.89	34.41	38.74	52.09	37.03	20.00	62.14	41.07	42.94
topk-cluster													
top-150	48.61	20.90	79.00	49.50	23.66	34.51	39.00	51.78	37.24	19.20	61.74	40.47	42.04
top-500	51.05	21.25	79.70	50.67	22.73	34.40	39.20	52.41	37.19	18.80	62.76	40.78	42.48
top-1000	49.96	20.99	80.40	50.45	21.97	34.00	38.74	50.2	36.23	18.20	60.61	39.41	41.67

Table 3: Ablation Study of Threshold τ

Threshold	C	General K	Cnowledg	ge	Commonsense Reasoning					Reading Comprehension			Overall
	arc-e	arc-c	sciq	avg	logiqa	hellaswag	siqa	winogrande	avg	openbookqa	boolq	avg	
0.0015	51.26	21.16	80.20	50.87	21.51	33.92	39.00	51.07	36.38	19.60	61.74	40.67	42.16
0.0020	52.23	22.27	80.70	51.73	22.89	34.77	38.33	50.20	36.55	19.20	61.50	40.35	42.45
0.0025	52.27	21.76	82.20	52.08	22.89	34.41	38.74	52.09	37.03	20.00	62.14	41.07	42.94
0.0030	50.25	19.62	80.80	50.22	22.27	33.96	38.96	53.28	37.12	20.60	59.20	39.90	42.10

Table 4: Ablation Study of α

Alpha	(General K	Knowledg	ge		Commo	nsense F	Reasoning	Reading Comprehension			Overall	
	arc-e	arc-c	sciq	avg	logiqa	hellaswag	siqa	winogrande	avg	openbookqa	boolq	avg	
0.0015	50.55	20.73	79.70	50.33	23.35	34.60	40.58	52.25	37.70	19.60	60.06	39.83	42.38
0.0020	52.27	21.76	82.20	52.08	22.89	34.41	38.74	52.09	37.03	20.00	62.14	41.07	42.94
0.0025	51.64	22.10	78.30	50.68	21.81	34.76	38.02	52.57	36.79	19.80	62.05	40.93	42.34
0.0030	50.63	21.93	78.70	50.42	22.12	34.64	39.15	51.14	36.76	18.60	61.71	40.16	42.07

Table 5: Effectiveness of Influence Calculation

Method	(General K	Inowledg	ge		Commo	nsense F	Reasoning	Reading Comprehension			Overall	
	arc-e	arc-c	sciq	avg	logiqa	hellaswag	siqa	winogrande	avg	openbookqa	boolq	avg	
Random	50.27	20.31	80.40	50.33	21.20	34.11	38.49	50.99	36.20	17.60	60.58	39.09	41.55
No-Hessian	49.03	20.99	80.50	50.20	22.58	33.40	38.89	52.41	36.82	19.20	61.50	40.35	42.06
MLP	50.63	21.50	78.90	50.34	22.89	33.32	38.74	52.57	36.88	19.60	61.77	40.69	42.21
Ours	51.05	21.25	79.70	50.67	22.73	34.40	39.20	52.41	37.19	18.80	62.76	40.78	42.48

Table 6: Model Architecture

Hyperparameter	Value
Vocabulary Size	32,000
MLP Ratio	8/3
Hidden Dimension Size	2048
Number of Layers	24
Number of Attention Heads	16
Number of KV Attention Heads	16
RoPE Base	10,000
Maximum Context Window Length	1024
Number of Parameters	1,345,423,360(1.3B)