Modular Forms

 $\mathcal{H} = \{z = x + iy \in \mathbb{C} | y > 0\}, \ \gamma = \binom{a}{c} \binom{b}{d} \in \mathrm{SL}_2(\mathbb{R}) \text{ acts by } z \to \frac{az+b}{cz+d} \text{ with factor of automorphy } j(\gamma,z) := cz+d.$ Translation matrices: $T^{\alpha} := \binom{1}{0} \binom{\alpha}{1} : z \mapsto z + \alpha.$

MF: $f: \mathcal{H} \to \mathbb{C}$ (various an properties), $f(\gamma \tau) = j(\gamma, \tau)^{\kappa} f(\tau)$ $\forall \gamma \in \Gamma$, condition at the cusps: If $\ell \in \mathbb{P}^1(\mathbb{R})$ with Γ_{ℓ} parabolic and $\sigma_{\ell} \infty = s$ then $\sigma_{\ell}^{-1} \Gamma \sigma_{\ell} \cong \langle T^{\alpha_{\ell}} \rangle$, set $z_{\ell} := \sigma_{\ell}^{-1} z = x_{\ell} + i y_{\ell}$ and $q_{\ell} := \mathbf{e}(\frac{z_{\ell}}{\alpha_{\ell}})$, and then $f|_{\kappa} \sigma(z) = \sum_{n \in \mathbb{Z}} a_n(y_{\ell}) q_{\ell}^n$. Γ commen with $\mathrm{SL}_2(\mathbb{Z})$: $\ell \in \mathbb{P}^1(\mathbb{Q})$, $\sigma_{\ell} \in \mathrm{SL}_2(\mathbb{Z})$, α_{ℓ} depends only on ℓ .

When f hol, a_n const, hol at cusp: $a_n = 0 \,\forall n < 0$. In many cases a_n interesting function of n ($\sigma_{\kappa-1}(n)$ for Eisenstein series, relations with number of points on elliptic curves modulo p for some cusp forms of weight 2). $\dim_{\mathbb{C}} M_{\kappa}(\Gamma) < \infty \Rightarrow$ relations between coeffs. $S_{\kappa}(\Gamma) \subseteq M_{\kappa}(\Gamma)$: vanishing at all cusps, decay exp there. f Mer at cusp: $a_n = 0 \,\forall n \ll 0$. Defines $M_{\kappa}^!(\Gamma)$.

For $\kappa \in \frac{1}{2}\mathbb{Z}$ need subgps of

$$\mathrm{Mp}_2(\mathbb{R}) := \{ (\gamma, \varphi) | \ \gamma \in \mathrm{SL}_2(\mathbb{R}), \ \varphi : \mathcal{H} \to \mathbb{C}, \ \varphi(z)^2 = j(\gamma, z) \}.$$

As examples, theta functions (more below), Dedekind η (with char). $\frac{1}{\eta}$ related to the partition function.

Shimura (1971) relates MF's of weight $k + \frac{1}{2}$ ($k \in \mathbb{N}$) to MF's of weight 2k, Shintani (1975) in the other way around. More explicitly, given $f \in S_{2k}(\Gamma)$, he shows that the generating series of certain linear combinations of integrals of f are the Fourier coefficients of $g \in S_{k+1/2}(\tilde{\Gamma})$.

[Sn] Shintani, T., On the construction of holomorphic cusp forms of half-integral weight, Nagoya Math. J., vol 58, 83-126 (1975).

Lattices and Geodesics

 $V := M_2(\mathbb{Q})_0$ (trace 0), quad of sgn (2,1) with $Q(\lambda) := -N \det \lambda$ and $(\lambda, \mu) := N \operatorname{Tr}(\lambda \mu)$. $G := \operatorname{Spin}(V) \cong \operatorname{SL}_2$ over \mathbb{Q} by conj. Then we have $\mathcal{H} \cong \{\text{negative lines in } V_{\mathbb{R}}\}$ by the map $z \mapsto \mathbb{R} Z^{\perp}(z)$ for $Z^{\perp}(z) := \frac{1}{\sqrt{N}y} {x - |z|^2 \choose 1 - x}$ with $Q(Z^{\perp}(z)) = -1$, for which the orth comp $\mathbb{R} \Re Z(z) \oplus \mathbb{R} \Im Z(z)$ where $Z(z) := \frac{1}{\sqrt{N}} {z - z^2 \choose 1 - z}$.

 $L \subseteq V$ even lattice $(Q(L) \subseteq \mathbb{Z})$, contained in the dual lattice $L^* := \{\lambda \in V | (\lambda, L) \subseteq \mathbb{Z}\}$ with $D_L := L^*/L$. Stable orth grp:

$$\Gamma := \left\{ \gamma \in \operatorname{SL}_2(\mathbb{R}) \middle| \gamma L = L, \ \gamma \middle|_{D_L} = \operatorname{Id} \middle|_{D_L} \right\}, \qquad \operatorname{P}\Gamma := \Gamma / \{\pm 1\}.$$

For example, for L spanned by $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, and $\frac{1}{N} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ the dual is spanned by $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\frac{1}{2N} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, and $\frac{1}{N} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $D_L \cong \mathbb{Z}/2N\mathbb{Z}$, and $\Gamma = \Gamma_0(N)$. Related to integral binary quadratic forms. We set $\pi : \mathcal{H} \to Y := \Gamma \backslash \mathcal{H}$ and $X = Y \cup \{\text{cusps}\}$, cusps are $\Gamma \backslash \mathbb{P}^1(\mathbb{Q})$. For such ℓ , β_ℓ describes $L \cap \ell$, and then $\varepsilon_\ell := \frac{\alpha_\ell}{\beta_\ell}$ equals $\sqrt{\frac{N|D_\ell|}{8}}$.

For $\lambda \in L^*$ with $m = Q(\lambda) > 0$, set $c_{\lambda} := \{z \in \mathcal{H} | \lambda \perp Z^{\perp}(z)\}$ —oriented geodesic, as well as $c(\lambda) := \pi(c_{\lambda}) \subseteq Y$.

Prop: If $\frac{m}{N} \in \mathbb{Q}^2$ (split-hyper) then $P\Gamma_{\lambda}$ triv, c_{λ} connects two cusps in $\mathbb{P}^1(\mathbb{Q})$, $c(\lambda) \cong c_{\lambda}$. Otherwise $P\Gamma_{\lambda}$ cyclic, c_{λ} connects quad irrats in $\mathbb{P}^1(\mathbb{R})$, $c(\lambda) \subseteq Y$ closed geodesic.

Given $h \in D_L$ and $m \in \mathbb{Q}$, set

$$L_{m,h} := \{ \lambda \in L + h | Q(\lambda) = m, \ \lambda \neq 0 \}.$$

Non-empty only if $m \in \mathbb{Z} + Q(h)$. If $m \neq 0$ then $\Gamma \setminus L_{m,h}$ finite, $\mathfrak{R}_{m,h}$ set of reps.

For $f \in S_{2k}(\Gamma)$ and m > 0, set

$$\operatorname{Tr}_{m,h}(f) := \sum_{\lambda \in \mathfrak{R}_{m,h}} \int_{c(\lambda)} f(z) (\lambda, Z(z))^{k-1} dz.$$

If m split-hyper, related to certain central L-values.

Shintani: For k > 0, $\sum_{m=1}^{\infty} \operatorname{Tr}_{m,0}(f) q^m \in S_{k+1/2}(\tilde{\Gamma})$. To get to level 1, we obtain vector-valued modular forms.

Indefinite Theta Functions

 $\operatorname{Mp}_2(\mathbb{Z}) = \left\langle T, S \middle| S^2 = (ST)^3 = Z, \ Z^4 = (I, 1) \right\rangle, \ S := \left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}\right)$ with $\sqrt{z} \in \mathcal{H}$ and T with $\varphi = 1$.

Weil rep: $\rho_L : \mathrm{Mp}_2(\mathbb{Z}) \to \mathrm{GL}\left(\mathbb{C}[D_L]\right)$ defined by

$$\rho_L(T)\mathfrak{e}_h = \mathbf{e}(Q(h))\mathfrak{e}_h, \quad \rho_L(S)\mathfrak{e}_h = \frac{1}{\sqrt{i|D_L|}} \sum_{g \in D_L} \mathbf{e}(-(g,h))\mathfrak{e}_g.$$

 $\tau = u + iv \in \mathcal{H}, z \in \mathcal{H}, k \in \mathbb{N}$:

$$\Theta_{k,L}(\tau,z) := \sqrt{v} \sum_{h \in D_L} \sum_{\lambda \in L+h} \left(\lambda, Z(z) \right)^k \mathbf{e} \left[Q(\lambda) \tau + \left(\lambda, Z^{\perp}(z) \right)^2 \frac{iv}{2} \right] \mathfrak{e}_h.$$

Thm: For fixed $z \in \mathcal{H}$ we have $(\tau \mapsto \Theta_{k,L}(\tau,z)) \in \mathcal{A}_{k+1/2}(\rho_L)$, and if $\tau \in \mathcal{H}$ is fixed then $(z \mapsto \Theta_{k,L}(\tau,z)) \in \mathcal{A}_{-2k}(\Gamma) \otimes_{\mathbb{C}} \mathbb{C}[D_L]$. First part by Borcherds, second is easy.

Main idea: For $f \in S_{2k}(\Gamma)$ we set

$$I_{k,L}(\tau,f) := \int_{Y} f(z)\Theta_{k,L}(\tau,z)d\mu(z), \qquad d\mu(z) = \frac{dxdy}{y^2},$$

which is in $\mathcal{A}_{k+1/2}(\rho_L)$. Need to show that gives Shintani. We already have the expansion, since

$$\Theta_{k,L}(\tau,z) = \sqrt{v} \sum_{h \in D_L} \sum_{m \in \mathbb{Z} + Q(h)} \left[\sum_{\lambda \in L_{m,h}} \left(\lambda, Z(z) \right)^k e^{-\pi v(\lambda, Z^{\perp}(z))^2} \right] q^m \mathfrak{e}_h$$

(plus $\sqrt{v}\mathfrak{e}_0$ when k=0), can integrate for each m and h separately. Shimura: A similar integral, in the other direction.

Proof of Shintani

Set $g(\xi) := e^{-\xi^2/2}$, with decaying anti-symmetric "primitive function" $e(\xi) := -\frac{\operatorname{sgn}(\xi)}{\sqrt{2}}\Gamma\left(\frac{1}{2},\frac{\xi^2}{2}\right)$ for $\xi \neq 0$. We define

$$\psi_{k,-1}(\lambda,z) := (\lambda, Z(z))^k g(\sqrt{2\pi}(\lambda, Z^{\perp}(z)))$$
 and

$$\psi_{k-1,0}(\lambda,z) := \frac{\left(\lambda, Z(z)\right)^{k-1}}{\sqrt{2\pi}} e\left(\sqrt{2\pi}\left(\lambda, Z^{\perp}(z)\right)\right).$$

Summand in $\Theta_{k,L}$ is $v^{\frac{1-k}{2}}\psi_{k,-1}(\sqrt{v}\lambda,z)$, and if $L_z := -2iy^2\partial_{\overline{z}}$ is the weight lowering operator then $-L_z\psi_{k-1,0}(\sqrt{v}\lambda,z) = \psi_{k,-1}(\sqrt{v}\lambda,z)$.

For $m \neq 0$ and h unfolding gives

$$\int_{Y} f(z) \sum_{\lambda \in L_{m,h}} \psi_{k,-1} (\sqrt{v}\lambda, z) d\mu(z) = \sum_{\lambda \in \mathfrak{R}_{m,h}} \int_{\Gamma_{\lambda} \backslash \mathcal{H}} f(z) \psi_{k,-1} (\sqrt{v}\lambda, z) d\mu(z),$$

and we multiply by $v^{\frac{1-k}{2}}$ and apply Stokes:

$$\int_{\mathcal{R}} f(z) (-L_z G(z)) d\mu(z) = \oint_{\partial \mathcal{R}} f(z) G(z) dz + \int_{\mathcal{R}} L_z f(z) G(z) d\mu(z).$$

 $m < 0 \Rightarrow |\Gamma_{\lambda}| < \infty$, $\psi_{k,-1}(\sqrt{v\lambda}, z)$ decays at $\partial \mathcal{H}$. For m > 0 do the same on $\mathcal{H} \setminus c(\lambda)$, decaying except on $c(\lambda)$, different signs produce $\mathrm{Tr}_{m,h}(f)$. If m = 0 then for \mathfrak{L} representing cusps, it is roughly

$$\sum_{\lambda \in \mathfrak{L}} \int_{\Gamma_{\lambda} \setminus \mathcal{H}} f(z) \psi_{k,-1} (\sqrt{v}\lambda, z) d\mu(z),$$

leaves only vanishing constant term of f. QED.

Regularized Integrals

For $f \in M_{2k}^!(\Gamma)$, the integral $I_{k,L}(\tau, f)$ diverges. For regularization, assume $\Gamma \leq \mathrm{SL}_2(\mathbb{Z})$, latter with the fundamental domain

$$\mathcal{F} := \left\{ z \in \mathcal{H} \middle| |x| \le \frac{1}{2}, |z| \ge 1 \right\} \cong Y(1), \qquad \mathcal{F}_T := \left\{ z \in \mathcal{F} \middle| y \le T \right\},$$

and then $\mathcal{F}_T(L) := \bigcup_{\ell \in \mathfrak{L}} \bigcup_{j=0}^{\alpha_\ell - 1} \sigma_\ell \{z + j | z \in \mathcal{F}_T\} \cong Y \text{ for } \mathfrak{L} \subseteq \mathbb{P}^1(\mathbb{Q})$ fin set of reps mod Γ . Then the regularized Shintani lift $I_{k,L}^{\text{reg}}(\tau, f)$ is

$$\operatorname{CT}_{s=0} \lim_{T \to \infty} \int_{\mathcal{F}_T(L)} f(z) \Theta_{k,L}(\tau,z) y^{-s} d\mu(z).$$

If k > 0 and $f \in M_{2k}^!(\Gamma)$ has no constant terms then the result of Shintani essentially holds, except that the integral $\operatorname{Tr}_{m,h}(f)$ for $m \in \mathbb{N} \cdot \mathbb{Q}^2$ diverges as well (will be regularized below).

For evaluating $I_{k,L}^{\text{reg}}(\tau, f)$ we need $\Theta_{k,L}(\tau, z)$ near a cusp. Given ℓ , set $\Theta_{k,\ell}(\tau)$ to be

$$\sum_{h \in D_L} \sum_{0 < m \in \mathbb{O}} \left(\iota_{\ell}(m, h) + \overline{\delta}_{m, 0} (-1)^k \iota_{\ell}(m, -h) \right) \frac{\operatorname{He}_k \left(2\sqrt{2\pi m v} \right)}{(2\pi v)^{k/2}} q^m \mathfrak{e}_h.$$

Prop:
$$(\Theta_{k,L}\mid_{2k,z}\sigma_\ell)(\tau,z_\ell)=\frac{i^ky_\ell^{k+1}}{\sqrt{N}\beta_\ell}\Theta_{k,\ell}(\tau)+O(e^{-C_\ell y_\ell^2}).$$

Cor: If f has no constant terms then $I_{k,L}^{\mathrm{reg}}(\tau,f)$ is just the con-

Cor: If f has no constant terms then $I_{k,L}^{\text{reg}}(\tau, f)$ is just the convergent limit $\lim_{T\to\infty}\int_{\mathcal{F}_T}f(z)\Theta_{k,L}(\tau,z)d\mu(z)$. Otherwise need to subtract, for every $\ell\in\mathfrak{L}$, the function $i^k\Theta_{k,\infty}(\tau)c_\ell(0)\frac{T^k}{k}$ times $\sqrt{\frac{|D_\ell|}{8}}=\frac{\varepsilon_\ell}{\sqrt{N}}$ before taking the limit.

These ideas allow to evaluate (regularized) Shintani lifts of other modular forms, yielding interesting results. We mention the case k=0, as well as lifting harmonic weak Maass forms. We do it for nearly holomorphic MF's. One reason is that we can still use Stokes with an exact differential form.

[BFI]: Bruinier, J. H., Funke, J., Imamoğlu, Ö, REGULARIZED THETA LIFT-INGS AND PERIODS OF MODULAR FUNCTIONS, J. reine angew. Math., vol 703, 43–93 (2015).

[ANS]: Alfes-Neumann, C., Schwagenscheidt, M., Shintani Theta Lifts of Harmonic Maass Forms, to appear in Trans. Amer. Math. Soc., https://arxiv.org/abs/1712.04491.

Nearly Holomorphic MF's

We say that f is nearly holomorphic of depth p if $f(z) = \sum_{l=0}^{p} \frac{f_l(z)}{y^l}$ with f_l hol, $f_p \neq 0$. This is $\mathrm{SL}_2(\mathbb{R})$ -invariant. Expansion at ∞ if $T^{\alpha} \in \Gamma$: $f(z) = \sum_{n \in \mathbb{Z}} \sum_{l=0}^{p} \frac{c(n,l)}{y^l} \mathbf{e}(nz)$, with same conditions for nearly hol at ∞ and nearly weakly hol at ∞ (similar at other cusps).

Regularized trace: $\lambda \in L^*$ split-hyper with $m = Q(\lambda)$, $c(\lambda)$ goes from $\ell_{-\lambda}$ to ℓ_{λ} and we define, if f has no constant coefficients,

$$\int_{c(\lambda)}^{\text{reg}} f(z) \left(\lambda, Z(z)\right)^{k-1} dz := \int_{c(\lambda) \cap \mathcal{F}_T(L)} f(z) \left(\lambda, Z(z)\right)^{k-1} dz +$$

$$+ i^k (2\sqrt{m})^{k-1} \sum_{n \neq 0} \sum_{l=0}^p c_{\ell_\lambda}(n, l) \left(\frac{2\pi n}{\alpha_{\ell_\lambda}}\right)^{l-k} \Gamma\left(k - l, \frac{2\pi nT}{\alpha_{\ell_\lambda}}\right) +$$

$$+ (-i)^k (2\sqrt{m})^{k-1} \sum_{n \neq 0} \sum_{l=0}^p c_{\ell_{-\lambda}}(n, l) \left(\frac{2\pi n}{\alpha_{\ell_{-\lambda}}}\right)^{l-k} \Gamma\left(k - l, \frac{2\pi nT}{\alpha_{\ell_{-\lambda}}}\right).$$

Incomplete Γ for n < 0: If l < k well-def, for l = k use $\text{PV} \int_t^\infty e^{-t} \frac{dt}{t}$, if $\mu = k - l < 0$ write

$$\Gamma(\mu, t) = \frac{(-1)^{\mu}}{|\mu|!} \left(\Gamma(0, t) + \sum_{a=0}^{|\mu|-1} \frac{a! e^{-t}}{(-t)^{a+1}} \right).$$

This is indep of T since σ_{ℓ} takes $(\lambda, Z(z))$ to $2\sqrt{m}iy_{\ell}$ and thus $\frac{d}{dT} = 0$. With constant terms, we also have to subtract $i^k (2\sqrt{Q(\lambda)})^{k-1}$ times $\sum_{l \neq k} c_{\ell_{\lambda}}(0, l) \frac{T^{k-l}}{l-k} - c(0, k) \log T$ and the same with $\ell_{-\lambda}$ by the same idea. $\operatorname{Tr}_{m,h}^{\operatorname{reg}}(f)$ a similar sum.

For Stokes we need additional primitive functions of higher order of $\psi_{k,-1}$. Set

$$P_{\nu}(\xi) := \sum_{r=0}^{\lfloor \nu/2 \rfloor} \frac{\xi^{\nu-2r}}{r!(\nu-2r)!2^r}, \quad Q_{\nu}(\xi) := \sum_{a=0}^{\nu-1} \frac{(\nu-1-a)!}{\nu!} P_{\nu-1-2a}(\xi),$$

with $P_{\nu} = 0$ if $\nu < 0$ and $Q_{-1} = 1$, as well as

$$h_{\nu}(\xi) := P_{\nu}(\xi)e(\xi) + Q_{\nu}(\xi)g(\xi), \quad g_{\kappa,\nu}(\xi;\eta) := (\xi + i\eta)^{\kappa}h_{\nu}(\xi),$$

and

$$\psi_{\kappa,\nu}(\lambda,z) := \frac{\left(\lambda,Z(z)\right)^{\kappa}}{(2\pi)^{(\nu+1)/2}} h_{\nu}\left(\sqrt{2\pi}\left(\lambda,Z^{\perp}(z)\right)\right).$$

Lem: $h'_{\nu}(\xi) = h_{\nu-1}(\xi), -L_z \psi_{\kappa,\nu}(\sqrt{v}\lambda, z) = \psi_{\kappa+1,\nu-1}(\sqrt{v}\lambda, z)$ (if none of the arguments vanish— $h'_{\nu}(\xi) = h_{\nu-1}(\xi) - \sqrt{2\pi} \cdot P_{\nu}(0) \cdot \delta_{\xi=0}$ as dist)

Cor: If f is of depth p and $k \ge 0$ then

$$\int_{\mathcal{R}} f(z)\psi_{k,-1}(\sqrt{v}\lambda,z)d\mu(z) = \sum_{\nu=0}^{p} \oint_{\partial \mathcal{R}} (L_{z}^{\nu}f)(z)\psi_{k-\nu-1,\nu}(\sqrt{v}\lambda,z)dz.$$

Noting that $P_{\nu}(0)$ vanishes for odd ν and equals $\frac{1}{2^b b!}$ when $\nu = 2b$ is even, we can prove:

Prop: For $h \in D_L$ and m > 0 not split-hyper we have

$$\lim_{T\to\infty}v^{\frac{1-k}{2}}\int_{Y_T}f(z)\sum_{\lambda\in L_{m,h}}\psi_{k,-1}\big(\sqrt{v}\lambda,z\big)d\mu(z)=\sum_{b=0}^{\lfloor p/2\rfloor}\frac{\mathrm{Tr}_{m,h}(L^{2b}f)}{(4\pi v)^bb!}.$$

Note that for $L^{2b}f$ the weight is k-2b.

For split-hyper m, a summand λ with $Q(\lambda) = m$ will contribute an integral along $c(\lambda) \cap \mathcal{F}_T(L)$. This yields the integral part of $\sum_{b=0}^{\lfloor p/2 \rfloor} \frac{\operatorname{Tr}_{m,h}^{\operatorname{reg}}(L^{2b}f)}{(4\pi v)^b b!}$, but there are two other boundary integrals, near ℓ_{λ} . If $\eta = 2\sqrt{2\pi mv}$ then the one at ∞ gives

$$\frac{\left(2\sqrt{m}\right)^{k-1}}{-\sqrt{2\pi}\cdot\eta^k}\sum_{n\in\mathbb{Z}}e^{-2\pi nT/\alpha_{\ell_\lambda}}\sum_{l=0}^p\frac{l!c_{\ell_\lambda}(n,l)}{T^{l-k}}\sum_{\nu=0}^l\frac{(-1)^\nu}{(l-\nu)!}\widehat{g_{k-\nu-1,\nu}}\left(\frac{-nT}{\alpha_{\ell_\lambda}\eta};\eta\right),$$

where we define the Fourier transform

$$\widehat{g_{\kappa,\nu}}(t;\eta) := \int_{-\infty}^{\infty} g_{\kappa,\nu}(\xi;\eta) \mathbf{e}(-\xi t) d\xi.$$

Since we take the limit $T \to \infty$, we only need their behavior at the limit $t \to \infty$, as well as the value as t = 0 in case f has constant terms. The integral near $\ell_{-\lambda}$ yields a similar contribution, with $(-1)^k$.

Fourier Transforms

One advantage of making e, and with it h_{ν} and $g_{\kappa,\nu}$, discontinuous at 0, is that it decays strongly in both directions and Fourier transforms can be taken.

Prop: For any ν we have

$$\widehat{h_{\nu}}(t) = \sqrt{2\pi} \left(\frac{g(2\pi t)}{(2\pi i t)^{\nu+1}} - \sum_{r=0}^{\nu} \frac{P_{\nu-r}(0)}{(2\pi i t)^{r+1}} \right).$$

This comes from the classical evaluation $\widehat{g}(t) = \frac{g(2\pi t)}{\sqrt{2\pi}}$ with der of dists.

The Fourier transforms $\widehat{g_{\kappa,\nu}}$ are easy to evaluate for $\kappa \geq 0$, since it $g_{\kappa,\nu}$ is h_{ν} times a polynomial.

Lem: Up to an error term of $o_{\varepsilon,\nu,\kappa,\eta}(e^{-2\pi^2(1-\varepsilon)t^2})$, the value of $\widehat{g_{\kappa,\nu}}(t;\eta)$ for $\kappa \geq 0$ is

$$-\sqrt{2\pi}(i\eta)^{\kappa+1+\nu}\sum_{b=0}^{\lfloor\nu/2\rfloor}\frac{(-1)^b}{2^bb!(\nu-2b)!\eta^{2b}}\sum_{c=\nu-2b}^{\kappa+\nu-2b}\binom{\kappa}{c+2b-\nu}\frac{c!}{(-2\pi\eta t)^{c+1}}.$$

This uses the fact that multiplying a function of ξ by $\xi + i\eta$ operates like $i\left(\eta + \frac{\partial_t}{2\pi}\right) = \frac{i}{2\pi}e^{-2\pi\eta t}\partial_t e^{2\pi\eta t}$ on the Fourier transform.

Lem: For every $\kappa \in \mathbb{Z}$ and $\eta \neq 0$ we have

$$\widehat{g_{\kappa,\nu}}(t;\eta) = -2\pi i e^{-2\pi\eta t} \int_{-\operatorname{sgn}(\eta)\infty}^{t} e^{2\pi\eta s} \widehat{g_{\kappa+1,\nu}}(s;\eta) ds.$$

Prop: If $\kappa \leq -1$ then the value of $\widehat{g_{\kappa,\nu}}(t;\eta)$ is $-\sqrt{2\pi}(i\eta)^{\nu+1+\kappa}$ times

$$\sum_{b=0}^{\lfloor \nu/2 \rfloor} \frac{(-1)^b}{2^b b! \eta^{2b}} e^{-2\pi \eta t} \sum_{j=0}^{|\kappa|-1} \frac{\Gamma(2b-\nu+|\kappa|-1-j,-2\pi \eta t)(2\pi \eta t)^j}{j! (|\kappa|-1-j)!}$$

plus an error term which is $o_{\varepsilon,\nu,\kappa,\eta}(e^{-2\pi^2(1-\varepsilon)t^2})$ as $t \to -\operatorname{sgn}(\eta)\infty$, but in the other direction this error term is

$$-\frac{(2\pi)^{|\kappa|} i^{\kappa+\nu-1} \operatorname{sgn} \eta}{(|\kappa|-1)!} J_{\nu}(\eta) e^{-2\pi\eta t} t^{|\kappa|-1} (1+o(1)).$$

 J_{ν} grows like a polynomial times $e^{\eta^2/2}$.

Lem: The sum $\sum_{\nu=0}^{l} \frac{(-1)^{\nu}}{(l-\nu)!} \widehat{g_{k-\nu-1,\nu}}(t;\eta)$ is

$$-\sqrt{2\pi}(i\eta)^k \frac{\operatorname{He}_l(\eta)}{\eta^l l!} \cdot (-2\pi\eta t)^{l-k} e^{-2\pi\eta t} \Gamma(k-l, -2\pi\eta t),$$

with error $-2\pi(i\eta)^k \frac{(-1)^k \operatorname{sgn} \eta}{(l-k)!} e^{-2\pi\eta t} (-2\pi\eta t)^{l-k} \frac{J_l(\eta)}{\eta^l} (1+o(1))$ in case $\eta t>0$ and $l\geq k$ but decreases rapidly otherwise.

Lem: If $l \neq k$ then the sum $\sum_{\nu=0}^{l} \frac{(-1)^{\nu}}{(l-\nu)!} \widehat{g_{k-\nu-1,\nu}}(0;\eta)$, evaluated at t=0, is $-\frac{\sqrt{2\pi}(i\eta)^k}{(l-k)l!} \left(\frac{\operatorname{He}_l(\eta)}{\eta^l} - \frac{\operatorname{He}_k(\eta)}{\eta^k}\right)$. It is much nastier when l=k.

Prop: Take $h \in D_L$, m > 0 split-hyper, and T > 0 large, and assume that f has no constant terms. Then

$$v^{\frac{1-k}{2}} \int_{Y_T} f(z) \sum_{\lambda \in L_{m,h}} \psi_{k,-1}(\sqrt{v}\lambda, z) d\mu(z)$$

equals the desired sum $\sum_{b=0}^{\lfloor p/2 \rfloor} \frac{\operatorname{Tr}_{m,h}^{\operatorname{reg}}(L^{2b}f)}{(4\pi v)^b b!}$ plus a linear combination of $c(n,l)J_l(2\sqrt{2\pi mv})$ with n<0 and $l\geq k$, appearing only for finitely many values of m. Works also if f has constant terms c(0,l) with $l\neq k$ (correcting terms in $I_{k,L}^{\operatorname{reg}}(\tau,f)$), if $c(0,k)\neq 0$ an extra term of mild growth.

The case where $p \ge k$ involves not only more complicated Fourier transforms, but also non-trivial terms with negative indices.

Prop: For every $h \in D_L$ and $0 > m \in \mathbb{Z} + Q(h)$, the limit

$$\lim_{T \to \infty} v^{\frac{1-k}{2}} \int_{Y_T} f(z) \sum_{\lambda \in L_{m,k}} \psi_{k,-1} (\sqrt{v}\lambda, z) d\mu(z)$$

equals the sum

$$\sum_{\nu=k}^{p} \frac{4^{k} \sqrt{\pi |m|^{\frac{k-1}{2}}} h_{\nu}(2\sqrt{2\pi |m|v}) \operatorname{Tr}_{m,h}^{(k)}(R_{2k-2\nu}^{\nu-k} L_{z}^{\nu} f)}{\sqrt{2} (4\sqrt{2\pi |m|v})^{\nu} (\nu-k)!}.$$

This is because in Stokes the argument of d is no longer smooth, and one must take out the point where $\lambda \perp Z(z)$. The trace is a sum over values at CM points. This decreases like a polynomial times $e^{-4\pi mv}$, and resembles in character the non-holomorphic part of harmonic weak Maass forms.

Lattice Sums and Constant Terms

For the constant terms, we shall need lattice sums of the $g_{\kappa,\nu}$'s:

$$G_{\kappa,\nu}(\omega;c,\eta) := \sum_{0 \neq \xi \in \mathbb{Z} + \omega} g_{\kappa,\nu}(c\xi;\eta), \quad \omega \in \mathbb{R}/\mathbb{Z}, \ c \in \mathbb{R}^{\times}.$$

We need only for $\eta = 0$, but evaluate as the limit $\eta \to 0$, since for $\eta \neq 0$ we can use Poisson summation.

 $\frac{te^{\omega t}}{e^t-1} = \sum_{m=0}^{\infty} B_m(\omega) \frac{t^m}{m!}$ (Bernoulli pols), $B_m := B_m(0)$ (Bernoulli nums), $\mathbb{B}_m : \mathbb{R}/\mathbb{Z} \to \mathbb{R}$ Bernoulli funcs (same as B_m on (0,1) except $\mathbb{B}_1(0+\mathbb{Z})=0)$. For the latter, $\mathbb{B}_m(\omega) = -\sum_{0 \neq t \in \mathbb{Z}} \frac{m! \mathbf{e}(t\omega)}{(2\pi i t)^m}$.

Prop: For $\omega \neq 0$ set $\omega_c := \operatorname{sgn} c \cdot \omega$, and then if $\kappa \geq 0$ then up to an error term of $o_{\varepsilon,\nu,\kappa,\eta} \left(e^{-2\pi^2(1-\varepsilon)/c^2} \right)$ as $c \to 0$, $G_{\kappa,\nu}(\omega;c,\eta)$ equals

$$\frac{\sqrt{2\pi}}{|c|} \left[(-1)^{\nu+1} \kappa! P_{\kappa+\nu+1}(i\eta) + \sum_{i=1}^{\nu} \frac{P_{\nu-\mu}(-i\eta)}{\mu!} \sum_{i=1}^{\kappa+\mu+1} {\kappa+\mu+1 \choose m} \frac{(i\eta)^{\mu+\kappa+1-m} |c|^m \mathbb{B}_m(\omega_c)}{\kappa+\mu+1} \right].$$

For $\omega = 0$ we evaluate as $\lim_{\omega \to 0} (G_{\kappa,\nu}(\omega;c,\eta) - g_{\kappa,\nu}(c\omega;\eta))$.

For negative κ we need the rational functions

$$F(q, -j) = \sum_{t=1}^{\infty} t^j q^t$$
 for $|q| < 1$ and $j \in \mathbb{N}$,

the polygamma function $\psi^{(m)} = \frac{d^{m+1}}{dz^{m+1}} \log \Gamma(z)$, the function $Z_m(w)$ vanishing at w = 0 and having derivative

$$[(1-\delta_{m,0})Q_{m-1}(w)+wQ_m(w)+(P_{m-1}(w)+wP_m(w))e^{w^2/2}e(w)]w^{m-1}$$

the integral $\phi_m(\eta) := \int_0^{\eta} w^{2m} e^{w^2/2} dw$, the combinatorial coefficient $C(M,r) := \frac{2r}{(M-2r)!} + \frac{1-\delta_{2r,M}}{(M-1-2r)!}$ when $0 \le 2r \le M$, and the polynomials $\Pi_{\kappa,\nu}(\eta)$ defined by

$$\sum_{\mu=0}^{|\nu|-1} \frac{Q_{\nu}^{(\mu)}(-i\eta)Q_{-\kappa-\mu-1}(\eta)}{i^{\kappa+\nu+1}i^{\kappa+\mu}\mu!} - \sum_{\mu>0,-\kappa} \frac{P_{\nu-\mu}(-i\eta)(\kappa+\mu)!P_{\kappa+\mu+1}(i\eta)}{i^{\kappa+\nu+1}\mu!}.$$

Thm: If
$$\kappa \leq -1$$
, $\omega \neq 0$, and $\eta \neq 0$, then $G_{\kappa,\nu}(\omega;c,\eta)$ equals

$$\sqrt{\pi} \sum_{\mu=0}^{|\kappa|-1} \frac{P_{\nu-\mu}(-i\eta) \left[\psi^{(|\kappa|-\mu-1)} \left(1-\omega_c - \frac{i\eta}{|c|}\right) - (-1)^{\kappa+\mu} \psi^{(|\kappa|-\mu-1)} \left(\omega_c + \frac{i\eta}{|c|}\right) \right]}{\sqrt{2} |c|^{|\kappa|-\mu} \mu! (|\kappa|-\mu-1)!} + \\$$

$$+\sqrt{\pi} \frac{P_{\nu+\kappa+1}(-i\eta)(2\log|c|+\gamma+\log 2)}{\sqrt{2}|c|\cdot(|\kappa|-1)!} + \frac{\sqrt{2\pi}}{|c|} \sum_{\mu=0}^{|\kappa|-1} \frac{P_{\nu-\mu}(-i\eta)Z_{|\kappa|-\mu-1}(\eta)}{\mu!(-i\eta)^{|\kappa|-\mu-1}} +$$

$$+ \frac{\sqrt{2\pi}}{|c|} \sum_{\mu=|\kappa|}^{|\nu|} \frac{P_{\nu-\mu}(-i\eta)}{\mu!} \sum_{m=0}^{\kappa+\mu+1} \binom{\kappa+\mu+1}{m} \frac{(i\eta)^{\kappa+\mu+1-m}|c|^m \mathbb{B}_m(\omega_c)}{\kappa+\mu+1} +$$

$$+\frac{\sqrt{2\pi}}{|c|}i^{\kappa+\nu+1}\Pi_{\kappa,\nu}(\eta)+\frac{\sqrt{2\pi}}{|c|}e^{\eta^2/2}\mathrm{e}(\eta)\left[\frac{iQ_{\nu+\kappa+1}(-i\eta)}{(|\kappa|-1)!}-\sum_{\mu=0}^{|\kappa|-2}\frac{i^{|\kappa|-\mu-1}P_{|\kappa|-\mu-2}(\eta)P_{\nu-\mu}(-i\eta)}{\mu!(|\kappa|-1-\mu)}\right]+\frac{\sqrt{2\pi}}{|c|}e^{-\frac{i}{2\pi}}e^{-\frac{i$$

$$+\sum_{j=0}^{|\kappa|-1} \left(\frac{-2\pi}{|c| \operatorname{sgn} \eta}\right)^{j+1} \frac{F\left(e^{2\pi(i\delta\omega - |\eta/c|)}, -j\right)}{j!} \left[i^{j+1} e^{\eta^2/2} \frac{Q_{\nu + \kappa + j + 1}(-i\eta)}{(|\kappa| - j - 1)!} + \right.$$

$$+\sum_{\mu=0}^{|\kappa|-1-j} \frac{P_{\nu-\mu}(-i\eta)}{i^{\kappa+\mu+1}\mu!} \bigg[\sum_{r=0}^{\lfloor (|\kappa|-\mu-j)/2\rfloor} \frac{C(|\kappa|-\mu-j,r)\phi_{|\kappa|-\mu-j-r-1}(\eta)}{2^r r! \eta^{|\kappa|-\mu-j-1}} - \frac{\overline{\delta}_{\mu,|\kappa|-j-1} e^{\eta^2/2} P_{|\kappa|-\mu-j-2}(\eta)}{|\kappa|-1-j-\mu|} \bigg] \bigg]$$

plus an error of $o_{\varepsilon,\kappa,\nu,n}(e^{-2\pi^2(1-\varepsilon)/c^2})$.

In the combination $\sum_{\nu=0}^{l} \frac{(-1)^{\nu}}{(l-\nu)!} G_{k-1-\nu,\nu}(\omega;c,\eta)$ there are cancelations, in particular we have:

Lem: The sum $\sum_{\nu=0}^{l} \frac{(-1)^{\nu} \Pi_{k-1-\nu,\nu}(\eta)}{(l-\nu)!}$ equals $-\frac{\operatorname{He}_{k}(\eta)}{l!(k-l)}$ in case l < k and equals $\sum_{b=1}^{l} \frac{(-1)^{k+b-1}(l-k+b-1)!}{b!(l-b)!(l-k)!} Q_{2b-1-k}(\eta)$ for $l \ge k$.

There are additional simplifications in the limit $\eta \to 0$:

Prop: If $\omega \neq 0$ then the value of $\sum_{\nu=0}^{l} \frac{(-1)^{\nu}}{(l-\nu)!} G_{k-1-\nu,\nu}(\omega;c,0)$ is

$$\frac{\sqrt{2\pi}}{|c|(k-l)} \left[P_l(0) |c|^{k-l} \mathbb{B}_{k-l}(\omega_c) - \frac{i^k \operatorname{He}_k(0)}{l!} \right] + o_{\varepsilon,k,l}(e^{-2\pi^2(1-\varepsilon)/c^2})$$

for l < k, and in case $l \ge k$ it equals

$$\frac{\sqrt{2\pi}}{|c|} P_l(0) \left[\frac{\psi^{(l-k)}(1-\omega_c) + (-1)^{l-k}\psi^{(l-k)}(\omega_c) + \delta_{l,k}(2\log|c| + \gamma + \log 2)}{2|c|^{l-k}(l-k)!} + \frac{1}{2|c|^{l-k}(l-k)!} \right] + \frac{1}{2|c|^{l-k}(l-k)!} + \frac{1}{2|c|^{l-k}(l-k)!}$$

$$+\overline{\delta}_{l,k}\frac{i^{l-k}Q_{l-k-1}(0)}{l-k}\right] + \frac{2\pi}{|c|}Q_{l}(0)i^{l-k+1}\left[\frac{(-2\pi)^{l-k}F\left(\mathbf{e}(\omega_{c}),k-l\right)}{|c|^{l-k}(l-k)!} + \frac{\delta_{l,k}}{2}\right] +$$

$$+\frac{\sqrt{2\pi}i^k}{|c|}\sum_{k=1}^l\frac{(-1)^{k+b-1}(l-k+b-1)!}{b!(l-b)!(l-k)!}Q_{2b-1-k}(0)+o_{\varepsilon,k,l}(e^{-2\pi^2(1-\varepsilon)/c^2}).$$

Prop: For $\omega = 0$, the sum $\sum_{\nu=0}^{l} \frac{(-1)^{\nu}}{(l-\nu)!} G_{k-1-\nu,\nu}(0;c,0)$ takes the value

$$\frac{\sqrt{2\pi}}{|c|(k-l)} \left[\overline{\delta}_{l,k-1} P_l(0) |c|^{k-l} B_{k-l} - \frac{i^k \operatorname{He}_k(0)}{l!} \right] + \delta_{l,k-1} Q_{k-1}(0)$$

if l < k, and when $l \ge k$ its value is

$$\frac{\sqrt{2\pi}}{|c|}P_l(0)\Bigg[\frac{\psi^{(l-k)}(1)\left[1+(-1)^{l-k}\right]+\delta_{l,k}(2\log|c|+\gamma+\log 2)}{2|c|^{l-k}(l-k)!}+\overline{\delta}_{l,k}\frac{i^{l-k}Q_{l-k-1}(0)}{l-k}\Bigg]+$$

$$-\overline{\delta}_{l,k} \frac{2\pi}{|c|} Q_l(0) i^{l-k+1} \frac{(-2\pi)^{l-k} B_{l-k+1}}{|c|^{l-k} (l-k+1)!} + \frac{\sqrt{2\pi} i^k}{|c|} \sum_{k=1}^l \frac{(-1)^{k+b-1} (l-k+b-1)!}{b! (l-b)! (l-k)!} Q_{2b-1-k}(0),$$

both up to the error term $o_{\varepsilon,k,l}(e^{-2\pi^2(1-\varepsilon)/c^2})$.

Set $\Phi_w(\omega)$ to be $-\frac{\mathbb{B}_w(\omega)}{w}$ if w > 0 and $-\frac{\psi^{(|w|)}(1-\omega)+(-1)^w\psi^{(|w|)}(\omega)}{2\cdot|w|!}$ in case $w \leq 0$, completed with argument 1 if $\omega = 0$, and the contribution of ℓ to $\mathrm{Tr}_{0,h}^{\mathrm{reg}}(f)$ is $\sqrt{\frac{|D_\ell|}{8}} = \frac{\varepsilon_\ell}{\sqrt{N}}$ times $\iota_\ell(0,h)$ times $c_\ell(0,0)(\sqrt{N}\beta_\ell)^k\Phi_k(\frac{k_{\ell,h}}{\beta_\infty})$.

Prop: The contribution of the cusp ℓ to the integral

$$v^{\frac{1-k}{2}} \int_{Y_T} f(z) \sum_{\lambda \in L_{0,h}} \psi_{k,-1} (\sqrt{v}\lambda, z) d\mu(z)$$

is $\sqrt{\frac{|D_\ell|}{8}} = \frac{\varepsilon_\ell}{\sqrt{N}}$ times $\iota_\ell(0,h)$ times

$$-\sum_{l=0}^{p} \frac{l! c_{\ell}(0,l) \sqrt{N} \beta_{\infty} T^{k-1-l}}{(2\pi)^{k/2} v^{\frac{k-1}{2}}} \sum_{\nu=0}^{l} \frac{(-1)^{\nu}}{(l-\nu)!} G_{k-1-\nu,\nu} \left(\frac{k_{h}}{\beta_{\infty}}; \frac{\sqrt{2\pi N \nu} \beta_{\infty}}{T}, 0\right).$$

This equals $\sum_{b=0}^{\lfloor p/2 \rfloor} \frac{\operatorname{Tr}_{0,h}^{\operatorname{reg}}(L^{2b}f)}{(4\pi v)^b b!}$ (with weight k-2b), plus the correction terms from the regularization, plus additional terms with $l \geq k$. The additional terms involve half-integral powers of $\frac{1}{v}$ if $l \neq k$, and more complicated expressions in case l=k. All vanish if f has no constant terms.

The Regularized Shintani Lift

We define

$$I_{k,L}^{\mathrm{nh}}(\tau,f) := \sum_{b=0}^{\lfloor p/2\rfloor} \sum_{h \in D_L} \sum_{0 \leq m \in \mathbb{Z} + Q(h)} \frac{\mathrm{Tr}_{0,h}^{(\mathrm{reg})}(L^{2b}f)}{(4\pi v)^b b!} q^m \mathfrak{e}_h$$

(which is nearly holomorphic of depth $\lfloor \frac{p}{2} \rfloor$). We set $I_{k,L}^{\text{neg}}(\tau, f)$ to be

$$\sum_{h \in D_{I} 0 > m \in \mathbb{Z} + Q(h)\nu = k} \sum_{p=1}^{p} \frac{4^{k} \sqrt{\pi} |m|^{\frac{k-1}{2}} h_{\nu}(2\sqrt{2\pi|m|v}) \operatorname{Tr}_{m,h}^{(k)}(R_{2k-2\nu}^{\nu-k} L_{z}^{\nu} f)}{\sqrt{2} (4\sqrt{2\pi|m|v})^{\nu} (\nu - k)!} q^{m} \mathfrak{e}_{h}$$

(plus some contribution from the constant terms), and get

Thm (Li-Z): The Shintani lift $\tau \mapsto I_{k,L}(\tau, f)$ of $f \in M^!_{2k}(\Gamma)$ is given by

$$I_{k,L}(\tau,f) = I_{k,L}^{\rm nh}(\tau,f) + I_{k,L}^{\rm neg}(\tau,f) + I_{k,L}^{\rm prin}(\tau,f) + I_{k,L}^{\rm const}(\tau,f) + I_{k,L}^{\rm cor}(\tau,f),$$

where $I_{k,L}^{\text{prin}}(\tau, f)$ is a finite sum of exponentially increasing functions based on $m \in N\mathbb{Q}^2$ with coefficients c(n, l) with n < 0 and $l \ge k$, $I_{k,L}^{\text{const}}(\tau, f)$ depends only on the coefficient c(0, k), and $I_{k,L}^{\text{cor}}(\tau, f)$ is a small correction term appearing only with c(0, k - 1). For k = 0 we have to add $\sqrt{v} \int_{Y}^{\text{reg}} f(z) d\mu(z) \mathfrak{e}_{0}$.

Cor: If p < k then $\tau \mapsto I_{k,L}(\tau, f)$ is nearly holomorphic (no poles) of weight $k + \frac{1}{2}$ and depth $\lfloor \frac{p}{2} \rfloor$.

In particular, this is always the case for anisotropic lattices, where Γ has no cusps at all and no regularization is necessary (then it is cuspidal).