Representation Learning for Text: Word Embeddings

Luciano Barbosa

Motivation for Deep Learning

- In theory, feed forward networks with a single hidden layer can compute any function: no need for deep architectures
- However, learning shallow architectures is not always efficient
- Some problems require an exponential number of hidden units

Feature Representation in Text: One Hotel Encoding

- Each word mapped to a dimension and represented by a vector
- Example
 - $V = \{dog, bites, man\}$
 - $-D_1$: "dog bites man" = {[1,0,0],[0,1,0],[0,0,1]}
 - D_2 : "man bites dog" = {[0,0,1],[0,1,0],[1,0,0]}
- Dimensionality: size of vocabulary
- Naïve embedding
- Similar words have different representations

Feature Representation in Text: Bag of Words

- Each document represented by a vector
- Each dimension: a word with its respective weight
- Example
 - V = {the, cat, sat, on, hat, dog, ate, and}
 - $-D_1$: "the cat sat on the hat" = {2, 1, 1, 1, 1, 0, 0, 0}
 - $-D_2$: "the dog ate the cat and the hat" = {3, 1, 0, 0, 1, 1, 1, 1}
- Dimensionality: size of vocabulary
- Pros: Simple and very effective
- Cons:
 - Orderless
 - No notion of semantic similarity

Representation Learning

- In ML models, instances are represented by their features
- Motivation:
 - Instance/data representation is essential for effective ML models
 - Less dependent on feature engineering
 - Dimensionality reduction
- Definition:
 - Set of techniques that learn a "better" representation from the raw data
- Distributed representation or embeddings
 - Dense and low dimensional representation
 - Dimensions have no meaning

Different levels of abstraction of the input

Img-Source: http://ufldl.stanford.edu/wiki/

Embeddings in NLP

- Represent a linguistic unit as a dense vector
- Linguistic unit: character, word, sentence, document
- Map semantic meaning into a geometric space (embedding space)

Word Embeddings

- Embed the context of a word in a low-dimensional vector (e.g., 100, 200)
- Similar words are close in this space

Img-Source: https://medium.com/ @hari4om/word-embeddingd816f643140

Word Embeddings

- Built using dimensionality reduction techniques
 - Frequency based models (Latent Semantic Indexing)
 - Prediction based models (Neural networks)

Latent Semantic Indexing

- Build document and word representations
- Based on the co-occurrence of the words in the documents
- Dimensionality reduction: singular value decomposition (SVD)
 - $C = U\Sigma V^{T}$
 - C: term-document matrix
- Compute reduced C' with fewer dimensions

$C = U\Sigma V^{T}$

C		d_1	d_2	d_3	d ₄	d_5	d_6							
ship		1	0	1	0	0	0							٦
boat		0	1	0	0	0	0			Te	rm-D	ocum	nent	
ocea	n	1	1	0	0	0	0 =					atrix		
wood	d	1	0	0	1	1	0							
tree		0	0	0	1	0	1							
U			1	2	2	3		4	5					
ship	\top	-0 .	44	-0.30) (0.57	0.	58	0.25					
boat		−0 .	13	-0.33	3 —	0.59	0.	00	0.73				More	d Embaddings
ocea	n	-0.	48	-0.51	_	0.37	0.	00	-0.61	×			VVOIC	d Embeddings
wood	d	-0.	70	0.35		0.15	-0.	58	0.16					
tree		-0.	26	0.65	<u> </u>	0.41	0.	58	-0.09					
Σ	1		2	3	4		5							
1	2.:	16	0.00	0.0	0.	00	0.00	-		Г				
2	0.0	00	1.59	0.0	0.	00	0.00				٥.			
3	0.0	00	0.00	1.2	B 0.	00	0.00	×			Sı	ngula	ır valu	es
4	0.0	00	0.00	0.0	0 1.	00	0.00			L				
5	0.0	00	0.00	0.0	0.	00	0.39							
V^T		d_1	L	d_2	(d_3	d_4	ļ	d_5	d_{0}	5			
1	_	0.75	<u> </u>	0.28	-0.2	20	-0.45	-	-0.33	-0.12	2		_	
2	–	0.29) —	0.53	-0.1	19	0.63	3	0.22	0.43	1			
3		0.28	3 –	0.75	0.4	1 5	-0.20)	0.12	-0.33	3			Doc Embeddings
4		0.00)	0.00	0.5	58	0.00	-	-0.58	0.58	3			
5	_	0.53	3	0.29	0.6	53	0.19)	0.41	-0.22	2			cin.

Reducing to 2 Dimensions

Projecting LSI Word Embeddings

Rohde et al., An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence, 2005

Pros & Cons

- Pros
 - Simple
 - Capture similarity
- Cons
 - Co-occurrence matrix is sparse
 - Quadratic cost (SVD)

Prediction Based Models: CBOW

Predicts word in the context (language modeling)

Img-Source:

https://thinkinfi.com/continuous-bag-of-words-cbow-multi-word-model-how-it-works/

Prediction Based Models: CBOW

- Input:
 - Word context
 - Representation: one-hot e
- Output:
 - Probability distribution wrt
 - Size: vocabulary
- Hidden layer: embedo

Img-Source: http://arxiv.org/pdf/ 1301.3781.pdf

Prediction Based Models: Skip-gram

- Predicts the context given a word
- Input:
 - Word
 - Representation: one-hot encoding x1 one-hot
- Output:
 - N Probability distributions
 - Size: context size (N) X vocabular $x_v = x_v \in \mathbb{R}^v$
- Hidden layer: embedding

Img-Source: http://arxiv.org/pdf/ 1301.3781.pdf

Skip-gram with Negative Sampling

- Previous models are very costly
- Predicts words as neighbors
- Negative examples: words that a
- Inputs:
 - Word and its context word
 - Representation: one-hot encc
- Output:
 - Probability of matching

Img-Source: http://arxiv.org/pdf/

1301.3781.pdf

Skip-gram vs Negative Sampling

Skipgram

Negative Sampling

input word	output word	target		
make	shalt	1		
make	aaron	0		
make	taco	0		

Img-Source: https:// jalammar.github.io/illustratedword2vec/

Word Embeddings

Example: closest words

FRANCE	JESUS	XBOX	REDDISH	SCRATCHED	MEGABITS
AUSTRIA	GOD	AMIGA	GREENISH	NAILED	OCTETS
BELGIUM	SATI	PLAYSTATION	BLUISH	SMASHED	MB/S
GERMANY	CHRIST	MSX	PINKISH	PUNCHED	$_{ m BIT/S}$
ITALY	SATAN	IPOD	PURPLISH	POPPED	BAUD
GREECE	KALI	SEGA	BROWNISH	CRIMPED	CARATS
SWEDEN	INDRA	PSNUMBER	GREYISH	SCRAPED	$_{ m KBIT/S}$
NORWAY	VISHNU	HD	GRAYISH	SCREWED	MEGAHERTZ
EUROPE	ANANDA	DREAMCAST	WHITISH	SECTIONED	MEGAPIXELS
HUNGARY	PARVATI	GEFORCE	SILVERY	SLASHED	$_{ m GBIT/S}$
SWITZERLAND	GRACE	CAPCOM	YELLOWISH	RIPPED	AMPERES

Img-Source: http://arxiv.org/pdf/1301.3781.pdf

Word Embeddings in 2D

Img-Source: http://metaoptimize.s3.amazonaws.com/cw-embeddings-ACL2010/embeddings-mostcommon.EMBEDDING SIZE=50.png

Word Embeddings in 2D

Individuals factor map (PCA)

Existent Tools

- Demo:
 - https://rare-technologies.com/word2vec-tutorial/
- Word2Vec
 - https://code.google.com/p/word2vec/
- Doc2Vec
 - Learns dense representations for phrases, sentences and documents
 - https://groups.google.com/forum/#!topic/word2vec-toolkit/ Q49FIrNOQRo or Gensim
- GloVe:
 - http://nlp.stanford.edu/projects/glove/

Impact of Word Embeddings

- In most networks for text, word embeddings are the basis
- Having good word embeddings increases significantly your performance
- Which is the best is hard to tell
 - Try all available
 - Use pre-trained vectors available (you can also create yours)
- Corpus selection and tuning the parameters for the task at hand
 - E.g. for sentiment, good and bad should be far away in vector space

Embeddings for Car Price Prediction

Model

Model	Features	RMSE	MALE	
	STR	15,288	0.231	
I :	TXT	39,801	0.217	
Linear Regression	STR+TXT	18,555	0.171	
	CE	12,926	0.125	
	STR	15,410	0.228	
av.D	TXT	31,140	0.249	
SVR	STR+TXT	17,672	0.185	
	CE	13,076	0.127	
	STR	13,940	0.179	
D 1 D 4	TXT	16,909	0.193	
Random Forest	STR+TXT	15,440	0.168	
	CE	12,302	0.117	
	STR	14,929	0.185	
I:-l+CDM	TXT	14,601	0.177	
LightGBM	STR+TXT	13,560	0.130	
	CE	$12,\!305$	0.120	
	STR	15,351	0.258	
H00 4 : M	TXT	18,644	0.283	
H2O AutoML	STR+TXT	20,341	0.299	
	CE	12,439	0.118	
Regression Layer	CE	13,949	0.126	

Results

Embeddings

Car Embeddings

Query	Top 5	Average Price (USD)
Lamborghini	-	271,591
	Ferrari	137,567
	Aston	119,979
	Aston Martin	124,978
	Hummer	17,253
	Audi	23,796
Rolls-royce	-	116,298
	Ferrari	137,567
	Bentley	87,142
	Aston	119,979
	Jaguar	23,795
	${\bf Studebaker}$	30,290
Volkswagen	-	12,429
	Ford	19,112
	Volvo	20,431
	Porsche	51,561
	Cadillac	20,480
	Saturn	4,536
Saturn	-	4,536
	Saab	5,484
	Studebaker	30,290
	Honda	14,979
	Land	30,755
	Nissan	14,379

Embeddings for House Price Prediction

Model

			$_{ m SP}$			POA	
Mod.	Feature	MALE	RMSE	MAPE	MALE	RMSE	MAPE
LR	HA	0.266	264690	22.54	0.261	153806	22.52
	$_{\rm HA+HC}$	0.187	201275	14.73	0.241	184296	18.50
	HA+POI	0.257	257596	21.82	0.239	144529	20.77
	HE+POI	0.135	155039	9.93	0.144	94416	10.01
	$_{ m HE}$	0.135	$154964 \bullet$	9.92	0.144	$94201 \bullet$	10.08
RF	HA	0.140	158876	10.12	0.160	100752	11.41
	$_{\rm HA+HC}$	0.159	178738	12.33	0.171	107138	12.82
	HA+POI	0.151	167782	11.52	0.159	100292	11.56
	HE+POI	0.137	156865	10.07	0.146	95421	9.98
	$^{ m HE}$	0.137	157288	10.06	0.147	95832	10.22
LG	HA	0.146	161485	11.19	0.256	101434	12.23
	$_{\rm HA+HC}$	0.148	166866	11.37	0.201	104005	12.51
	HA+POI	0.156	169593	12.48	0.151	97068	10.48
	HE+POI	0.136	156161	9.96	0.147	95825	10.38
	$^{ m HE}$	0.136	156074	10.04	0.147	95756	10.35
XB	HA	0.140	159018	10.41	0.154	97256	11.06
	HA+HC	0.156	172180	12.30	0.175	107515	13.57
	HA+POI	0.158	172786	12.47	0.148	95423	10.49
	HE+POI	0.137	156685	10.19	0.147	95904	10.65
	$^{ m HE}$	0.137	157288	10.07	0.148	95798	10.58
AS	HA	0.144	161359	10.45	0.169	105156	12.28
	$_{\rm HA+HC}$	0.165	184744	12.95	0.163	101972	9.85
	HA+POI	0.152	167919	11.51	0.161	102113	11.73
	HE+POI	0.135	155115	9.92	$0.142 \bullet$	94418	9.90
	$_{ m HE}$	$0.134 \bullet$	166866	$9.79 \bullet$	0.143	94311	12.22
RL	HE	0.135	155585	9.80	0.143	94492	9.58∙

Results

House Embeddings

House/Apartment

Price