Міністерство освіти і науки України Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Звіт З виконання лабораторної роботи №1 з дисципліни "Аналогова схемотехніка"

Виконала:

студентка групи ДК-62

Довженко Б.І.

Перевірив:

доц. Короткий \in В.

1. Дослідження суматора напруги на резисторі

Було створено суматор напруг згідно з схемою, яка наведена в методичних рекомендаціях до лабораторної роботи.

Резистори R_1 , R_2 було взято з номіналом 48.5 кОм.

Для перевірки роботи суматора, було подано 2 постійні напруги на кожен резистор по 1В. Розрахувавши за теоретичною формулою $U_{\text{вих}} = \frac{U_1 + U_2}{2}$ отримала результат 1В.

Результати симуляції відповідають теоретичним значенням:

Далі на суматор було подано два сигнали:

а) Імпульсивний з амплітудою 1В, частотою 1кГц та коефіцієнтом заповнення 50%;

До виходу суматора було під'єднанно один зі входів осцилографу. Результат та значення вхідних сигналів зазначено нижче:

Далі було в LTSpice виконано дану симуляцію, а джерела налаштовані аналогічно до налаштувань генератору під час лабораторного дослідження:

Одержаний результат відповідає результату, який отримали під час лабораторного досліду.

2. Дослідження RC-кола

Під час виконання даної лабораторної роботи було складено RC-ланцюжок використовуючи такі номінали:

Тривалість заряду/розряду до 99% складає:

$$t = 5\tau = 5 \times R \times C = 5 \times 101.9 \times 10^{-9} \times 0.986 \times 10^3 = 502$$
мкс

Далі слід подати імпульсивний сигнал, період якого в 5 раз більше, а саме 2510мкс, або частоту 398Гц.

Було проведено симуляцію схеми в LTspice, результати якого співпадають з дослідженням на лабораторній роботі.

Зі симуляції видно, що час заряду/розряду дорівнює 505мкс, що близько до розрахованого.

3. Дослідження RC-фільтру низької частоти

В даній схемі, використанні такі ж самі номінали компонентів як у попередньому колі.

Частота зразу даного фільтра дорівнює:

$$f_3=rac{1}{2\pi imes R imes C}=rac{1}{2 imes 3.14 imes 986 imes 101.9 imes 10^{-9}}pprox 1,584$$
кОм

Для такого фільтру було проведено дослідження амплітудно-частотної характеристики, для цього був використаний відповідний пакет Network Analyzer у ПЗ нашої Analog Discovery 2.

В теорії на частоті зрізу відбувається зниження коефіцієнта на 3 дБ. Що і було підтверджено на практиці.

Зробивши моделювання в LTSpice, переконалися що також підтверджується дане твердження:

Таблиця значень K_u :

Nº	f, кГц	Ки теор.	Ки експ.	Похибка %
1	0	1	1	-
2	0,4	0,969595	0,964	0,58039238
3	0,8	0,892714	0,893	0,03198253
4	1,2	0,797249	0,7984	0,14419216
5	1,5824	0,707654	0,7059	0,24853878
6	1,8	0,707654	0,6967	1,57233175
7	2	0,660829	0,6583	0,38410293
8	2,2	0,621069	0,6104	1,747903
9	2,4	0,584512	0,5717	2,24105933
10	2,6	0,551049	0,5523	0,22650291

Висновок: під час виконання даної лабораторної роботи було досліджено дві схеми, а саме: суматор напруг на резисторах та фільтр низьких частот. В ході роботи зняли вихідну напругу на суматорі при постійних та при змінних сигналах. При постійних напругах на виході будемо отримувати середнє арифметичне від напруг на вході, а при змінних — накладання сигналів. Фільтр низьких частот — це досить проста схема, але її особливість це те, що вона містить конденсатор, і разом з резистором і утворює даний фільтр, що не пропускає сигнали вищі ніж частота зрізу. Виконанні експерименти лабораторної роботи були проведені в симуляторі. Збіжність результатів симуляції і експерименту підтверджують коректність виконання роботи.