Ch9: Root Locus Techniques

Contents:

Introduction

Defining Root Locus

Sketching Root Locus

Refining Root Locus

Using MATLAB and Control System Toolbox

Amin Fakhari, Fall 2023

Introduction

0000

Vector Representation of Complex Numbers

Any complex number $s = \sigma + j\omega$ in s-plane can be graphically represented by a **vector**. It also can be described in polar form with magnitude M and angle θ , as $M \angle \theta$.

$$s = \sigma + j\omega = M(\cos\theta + j\sin\theta) = M\angle\theta$$

$$M = |(\sigma + j\omega)| = \sqrt{\sigma^2 + \omega^2}, \quad \theta = \angle(\sigma + j\omega) = \begin{cases} \tan^{-1}\frac{\omega}{\sigma} & \sigma > 0\\ \tan^{-1}\frac{\omega}{\sigma} + \pi & \sigma < 0 \end{cases}$$

F(s) = s + a (where a is either real or complex) is a complex number which is calculated by substituting the complex number $s = \sigma + j\omega$ into the complex function F(s). F(s) also can be represented by a vector drawn from -a to the point s.

For example, for real a:

An Alternate Representation

Evaluation of a Complex Function via Vectors

Consider a complex function (like a transfer function) as

$$F(s) = \frac{(s+z_1)(s+z_2)\cdots(s+z_m)}{(s+p_1)(s+p_2)\cdots(s+p_n)} = \frac{\prod_{i=1}^m (s+z_i)}{\prod_{j=1}^n (s+p_j)}$$
 (Symbol Π means product)

Since each complex factor in the numerator and denominator can be thought of as a vector, the magnitude M and angle θ of F(s) at any point s are

$$M = |F(s)| = \frac{\prod_{i=1}^{m} |(s+z_i)|}{\prod_{j=1}^{n} |(s+p_j)|} = \frac{\prod \text{zero lengths}}{\prod \text{Pole lengths}}$$

$$\theta = \angle F(s) = \sum_{i=1}^{m} \angle (s + z_i) - \sum_{j=1}^{n} \angle (s + p_j) \qquad M = \frac{B_1}{A_1 A_2 A_3 A_4} \xrightarrow{\frac{A_1}{A_2 A_3 A_4}}$$

$$= \sum_{i=1}^{m} \angle (s + z_i) - \sum_{j=1}^{n} \angle (s + p_j) \qquad M = \frac{B_1}{A_1 A_2 A_3 A_4} \xrightarrow{\frac{A_1}{A_2 A_3 A_4}} \xrightarrow{\frac{A_1}{A_1 A_2 A_3 A_4}} \xrightarrow{\frac{A_1}{A_1 A_2$$

$$M = \frac{B_1}{A_1 A_2 A_3 A_4} \xrightarrow{P_4} \frac{B_1}{A_1} \xrightarrow{P_2} \frac{A_1}{A_1} \xrightarrow{P_2} \frac{A_1}{A_1} \xrightarrow{P_3} 0 \qquad \sigma$$

$$\theta = \phi_1 - (\theta_1 + \theta_2)$$

• $|(s + a_i)|$ is the magnitude and $\angle(s + a_i)$ is the angle (measured from the **positive** extension of the real axis σ) of the vector drawn from the zero $-z_i$ or pole $-p_j$ of F(s) to the point s.

0000

Example

Using s-plane, find
$$F(s)$$
 at the point $s=-3+j4$.

$$F(s) = \frac{(s+1)}{s(s+2)}$$

Answer: $M \angle \theta = 0.217 \angle - 114.3^{\circ}$

Infinite Poles and Zeros

A function G(s) can have poles and zeros at infinity.

Sketching Root Locus

$$G(s) = \frac{(s+z_1)(s+z_2)\cdots(s+z_m)}{(s+p_1)(s+p_2)\cdots(s+p_n)}$$

• If the function G(s) approaches **infinity** as s approaches **infinity**, then the function has a pole at infinity. For example,

$$G(s) = s$$
 has a pole at infinity

• If the function G(s) approaches **zero** as s approaches **infinity**, then the function has a zero at infinity. For example,

$$G(s) = 1/s$$
 has a zero at infinity

 \diamond Every function G(s) has always an equal number of poles and zeros if we include the **infinite poles and zeros** as well as the **finite poles and zeros**. For example,

$$G(s) = \frac{1}{s(s+1)(s+2)}$$
 has 3 finite poles and 3 infinite zeros.

Defining Root Locus

Introduction

0000

Defining Root Locus

• The system's <u>transient response</u> and <u>stability</u> are dependent upon the poles of the closed-loop transfer function T(s).

- Typically, the poles of the open-loop transfer function are easily found, but the poles of the closed-loop transfer function are more difficult to find, and they also change with changes in system gain *K*.
- We have no knowledge of the system's performance unless we find the roots of the denominator for specific values of K.
- The Root Locus will be used to give us a vivid picture of the poles of T(s) as K varies.

0000070

Defining Root Locus

Root Locus is a graphical presentation of the closed-loop poles as a system parameter K is varied.

Root locus is a powerful method of analysis and design for transient response and stability of systems of order higher than 2 (but it can also be used for first- and second-order systems) without having to factor the denominator of the closed-loop transfer function.

0000

Defining Root Locus: An Example

Consider a camera with motor that can be used to follow moving objects automatically.

Pole 1

-10

-9.47

-8.87

-8.16

-7.24

-5 + j2.24

-5 + j3.16

-5 + i3.87

-5 + i4.47

-5 + j5

-5

-5 - j3.16

-5 - j3.87

-5 - i4.47

-5 - j5

Variation of closed-loop poles location for different values of gain K.

K

0

5

10

15

20

2530

35

40

45

50

Defining Root Locus: An Example

As the gain K increases, the closed-loop pole which is at -10 for K=0, moves toward the right, and the closed-loop pole which is at 0 for K=0, moves toward the left. They meet at -5, break away from the real axis, and move into the complex plane. One closed-loop pole moves upward while the other moves downward.

• This representation of the paths (solid lines) of the closed-loop poles as the gain *K* is varied is called **Root Locus**.

MATLAB

Sketching Root Locus

Introduction

0000

Output

C(s)

 $(p_i \text{ and } z_i \text{ are poles } \&$

Properties of the Root Locus

The closed-loop transfer function for the system is

$$T(s) = \frac{KG(s)}{1 + KG(s)H(s)}$$

For $K \geq 0$, a value of s is a pole of T(s) if

$$KG(s)H(s) = -1 = 1 \angle (2k+1)180^{\circ}$$
 $k = 0, \pm 1, \pm 2, ...$

Since K is a positive scalar:

$$\angle G(s)H(s) =$$

 $\angle G(s)H(s) = (2k+1)180^{\circ}$, K|G(s)H(s)| = 1

$$K|G(s)H(s)| = 1$$

Hence, point s is on the root locus for a particular value of gain K if

$$\angle G(s)H(s) = \sum_{g(s)H(s)}^{g(s)H(s)} - \sum_{g(s)H(s)}^{g(s)H(s)} = (2k+1)180^{\circ}$$

$$K = \frac{1}{|G(s)H(s)|} = \frac{\prod \text{pole lengths of } G(s)H(s)}{\prod \text{zero lengths of } G(s)H(s)}$$

(Gain at point s)

$$K = \frac{A_1 A_2 A_3 A_4}{B_1}$$

$$\phi_1 - (\theta_1 + \theta_2 + \theta_3 + \theta_4) = (2k+1)180^{\circ}$$

Actuating

signal

 $E_a(s)$

KG(s)

 $K \ge 0$

H(s)

Input

Sketching the Root Locus

There are 5 rules that can be used to rapidly **sketch** the root locus with minimal calculations. The sketch gives intuitive insight into the behavior of a control system. Once a sketch is obtained, it is possible to **refine the sketch** and accurately **plot** it by finding actual points or angles on the root locus, which are required for a particular problem.

1. Number of Branches: If we define a branch as the path that one pole traverses, the number of branches of the root locus equals the number of **closed-loop poles**.

There are **two** branches, one originates at the origin, the other at -10.

2. Symmetry: The root locus is symmetrical about the real axis.

Sketching the Root Locus

3. Real-Axis Segments: Based on the equation

$$\angle G(s)H(s) = \sum_{s} \frac{\text{zero angles of}}{G(s)H(s)} - \sum_{s} \frac{\text{pole angles of}}{G(s)H(s)} = (2k+1)180^{\circ}$$

at each point P on the real axis σ :

- (1) the angular contribution of a pair of open-loop complex poles or zeros is 0,
- (2) the angular contribution of the open-loop poles and zeros to the left of the respective point P is 0,
- (3) the angular contribution of the even number of open-loop poles and zeros to the right of the respective point P is 0.
- ❖ Hence, on the real axis, for $K \ge 0$, the root locus exists to the left of an **odd number** of real-axis, finite open-loop (G(s)H(s)) poles and/or zeros.

0000000

Sketching the Root Locus

4. Starting and Ending Points: The root locus **begins** at the <u>finite and infinite poles</u> of G(s)H(s) where K=0 and **ends** at the <u>finite and infinite zeros</u> of G(s)H(s) where $K=\infty$.

There are two branches that begin at 0 and 10, and end at $\pm \infty$.

There are two branches that begin at -1 and -2, and end at -3 and -4.

Sketching the Root Locus

- **5. Behavior at Infinity**: This rule tell us what the root locus looks like as it approaches the zeros at infinity or as it moves from the poles at infinity.
- The root locus approaches straight lines as **asymptotes** as the locus approaches infinity. The equation of the asymptotes is given by the real-axis intercept σ_a and angle θ_a as follows:

$$\sigma_a = \frac{\sum \text{finite poles} - \sum \text{finite zeros}}{\text{number of finite poles} - \text{number of finite zeros}}$$

$$\theta_a = \frac{(2k+1)180^{\circ}}{\text{number of finite poles} - \text{number of finite zeros}}$$

where the angle θ_a is given with respect to the positive extension of the real axis and $k=0,\pm 1,\pm 2,...$ yields a multiplicity of lines that account for the many branches of a root locus that approach infinity.

• If the number of poles equals the number of zeros, the root locus does not have any asymptotes.

0000

00000

Example

Sketch the root locus for the system.

0000

Typical Pole-Zero Configurations and **Corresponding Root Loci**

00000V

Refining Root Locus

Introduction

0000

Refining the Sketch

These 5 rules permit us to **sketch** a root locus rapidly. If we want more detail, we must be able to accurately find important points on the root locus along with their associated gain *K*.

1. Real-Axis Breakaway and Break-In Points:

The point where the locus leaves the real axis (e.g., σ_1) is called the **breakaway point**, and the point where the locus returns to the real axis (e.g., σ_2) is called the break-in point.

Sketching Root Locus

- Angle with Real Axis:

At the breakaway or break-in point, the branches of the root locus form an angle of $180^{\circ}/n$ with the real axis, where n is the number of closed-loop poles arriving at or departing from the **single** breakaway or break-in point on the real axis.

Sketching Root Locus

0000070

Refining the Sketch

- Location on Real Axis: The breakaway point occurs at a point of maximum gain K on the real axis between the open-loop poles. The **break-in** point occurs at a point of **minimum** gain K on the real axis between the open-loop zeros.

There are two methods to find the location of these points on the real axis:

Refining the Sketch

Method 1: For points along the real-axis segment of the root locus where breakaway and break-in points could exist, $s = \sigma$. Hence,

$$K = -\frac{1}{G(\sigma)H(\sigma)}$$

By <u>differentiating</u> this equation with respect to σ and setting the derivative equal to zero (i.e., $dK/d\sigma = 0$), the points of maximum and minimum gain K, which are the breakaway and break-in points, can be found.

Method 2: Breakaway and break-in points satisfy the relationship:

$$\sum_{i=1}^{m} \frac{1}{\sigma + z_i} = \sum_{i=1}^{n} \frac{1}{\sigma + p_i}$$
 m : is number of zeros n : is number of poles
$$G(s)H(s) = \frac{\prod_{i=1}^{m} (s + z_i)}{\prod_{j=1}^{n} (s + p_j)}$$

By solving this equation for σ , points of maximum and minimum gain K, which are the breakaway and break-in points, can be found without differentiating.

0000

000000

Example

Find the breakaway and break-in points for the following root locus.

Answer: $\sigma = -1.45$, $\sigma = 3.82$

Sketching Root Locus

0000070

Refining the Sketch

2. Imaginary-Axis ($j\omega$ -Axis) Crossings:

The $i\omega$ -axis crossing is a point on the root locus that separates the stable operation of the system from the unstable operation. The value of ω at the $j\omega$ -axis crossing yields the frequency of oscillation at marginally stable operation.

There are two methods to find the points where the root loci cross the $j\omega$ -axis:

Method 1:

Introduction

Using **Routh-Hurwitz Criterion** for 1 + KG(s)H(s) = 0 as follows:

- Forcing a row of zeros in the Routh table will yield the gain *K*.
- Solving the even auxiliary polynomial for the roots yields the frequency ω at the $i\omega$ -axis crossing.

Method 2: Let $s = j\omega$ in the equation 1 + KG(s)H(s) = 0, equate both the real part and the imaginary part to zero, and then solve for ω and K.

$$T(s) = \frac{KG(s)}{1 + KG(s)H(s)}$$

0000070

Introduction

0000

Example

For the following system, find the frequency and gain K for which the root locus crosses the imaginary axis. For what range of K is the system stable?

Answer: K = 9.65, $\omega = 1.59$, $0 \le K < 9.65$

Refining the Sketch

3. Angles of Departure and Arrival (departure from complex poles and arrival to complex zeros):

Consider a test point s on the root locus in the very vicinity ϵ of a complex pole/zero. The sum of angles drawn from all finite poles and zeros to this test point must be an odd multiple of 180°.

In this example:
$$\phi'_1 - (\theta_1 + \theta'_2) = 180^{\circ}(2k + 1)$$

Since $\epsilon \to 0$, to find departure/arrival angle, it is assumed that all angles drawn from all other poles and zeros are drawn directly to the pole/zero that is near the test point s.

In this example, as
$$\epsilon \to 0$$
, $\theta_2' \to \theta_2$ and $\phi_1' \to \phi_1$, therefore,
$$\theta_1 = 180^\circ(2k+1) - \theta_2 + \phi_1$$

0000

Example

Given the following unity feedback system, find the angle of departure from the complex poles and sketch the root locus.

Answer: $\theta = -251.6^{\circ} \text{ or } 108.4^{\circ}$

Example

Sketch the root locus for the system and find the following:

- **a**. The exact point and gain where the locus crosses the $j\omega$ -axis.
- **b**. The range of *K* within which the system is stable.

0000070

c. The breakaway point on the real axis.

Answer: (a) K = 1.5, $\omega = 3.9$, (b) $0 \le K < 1.5$, (c) $\sigma_a = -2.88$

Refining the Sketch

4. Locating a Point on Root Locus and Finding its Associated Gain K:

We may want to accurately locate some points on the root locus as well as find their associated gain K. For example, finding a pair of dominant complex-conjugate closedloop poles such that $\zeta = 0.45$.

0000070

$$T(s) = \frac{KG(s)}{1 + KG(s)H(s)}$$

$$1 + KG(s)H(s)\Big|_{s=\sigma+(-\tan\beta)\sigma j} = 0$$

K, σ is calculated.

0000000

Generalized Root Locus

Sometimes we want to know how the closed-loop poles change as a function of another <u>parameter</u> (not the forward-path gain K). For example, in this system the parameter of interest is the open-loop pole at p_1 .

The solution to this problem is to create an equivalent system whose denominator is in the form of $1 + p_1G(s)H(s)$.

$$T(s) = \frac{10}{s^2 + (p_1 + 2)s + 2p_1 + 10} = \frac{10}{s^2 + 2s + 10 + p_1(s + 2)}$$

$$T(s) = \frac{\frac{10}{s^2 + 2s + 10}}{1 + p_1 \frac{(s + 2)}{s^2 + 2s + 10}} \equiv \frac{G(s)}{1 + p_1 G(s)H(s)}$$

$$\Rightarrow G(s)H(s) = \frac{(s + 2)}{s^2 + 2s + 10}$$

0000

Using MATLAB and Control System Toolbox

0000070

Plotting Root Locus Using rlocus

$$G(s)H(s) = \frac{s+2}{s^2 + 2s + 3}$$

The root locus can be drawn over a grid that shows constant damping ratio (ζ) and constant natural frequency (ω_n) curves.