

Lecture 5: Marks and Channels

DS 4200
FALL 2022
Prof. Ab Mosca (they/them)
NORTHEASTERN UNIVERSITY

Last Class

We:

- Reviewed task abstraction
- Practiced interviewing domain experts

Any Questions?

Today

Marks and Channels

VISUALIZATION DESIGN PROCESS

From Munzner's book

Visualization Building Blocks

Munzner's Nested Model

Visualization Building Blocks

VISUAL ENCODING

From Munzner's book

What is it? The literal representation of data in a visualization.

What is it? The literal representation of data in a visualization.

What is it? The literal representation of data in a visualization.

https://altair-viz.github.io/gallery/index.html

What is it? The literal representation of data in a visualization.

MARKS AND CHANNELS

From Munzner's book

Marks and Channels

MARKS AND CHANNELS = basic visual primitives that make up visualizations

Marks and Channels

Marks and Channels = basic visual primitives that make up visualizations

MARK = basic graphical element in an image

CHANNELS = ways to control the appearance of marks

Marks

MARK = basic graphical element in an image

Channels

CHANNEL = way to control the appearance of marks (independent of dimensions)

2 Attributes -> 2 Channels Marks Position Color Channels → Vertical → Both **→** Shape **→** Tilt

→ Size

→ Length

→ Area

→ Volume

3 Attributes -> 3 Channels

Marks

4 Attributes \rightarrow 4 Channels

Marks

2 Attributes -> 2 Channels

CHOOSING MARKS AND CHANNELS

From Munzner's book

Marks

- Work in 3 groups (one for each mark type)
- What types of data or things can you represent with each of these mark types?
- Be prepared to share your answers

Marks

A note on color:

• We consider 3 aspects of color: hue, luminance, and saturation

https://rockcontent.com/blog/building-effective-color-scales/

- Work in 5 groups (one for each channel)
- Use your assigned channel to create a visual encoding for the following data:

Dataset 1
Pear
Apple
Grape

Dataset 3
1.5
7.25
- 3.4

Based on human perception

Identity

→ What: position, shape, hue (color)

Magnitude

How much: position, size, luminance (color), saturation (color), tilt

Expressiveness + Effectiveness

- **Expressiveness Principle =** The visual encoding should express all of, and only, the information in the dataset attributes.
- i.e. The perceptual interpretation of channels (identity vs. magnitude) should match the interpretation of data.

- Expressiveness Principle = The visual encoding should express all of, and only, the information in the dataset attributes.
- i.e. The perceptual interpretation of channels (identity vs. magnitude) should match the interpretation of data.

- **Expressiveness Principle =** The visual encoding should express all of, and only, the information in the dataset attributes.
- i.e. The perceptual interpretation of channels (identity vs. magnitude) should match the interpretation of data.

- **Expressiveness Principle =** The visual encoding should express all of, and only, the information in the dataset attributes.
- i.e. The perceptual interpretation of channels (identity vs. magnitude) should match the interpretation of data.

Effectiveness Principle = The salience (noticeability) of channels used in the visual encoding should match the importance of attributes. - i.e. More important attributes should be encoded with more effective channels.

Effectiveness Principle = The salience (noticeability) of channels used in the visual encoding should match the importance of attributes.

- i.e. More important attributes should be encoded with more effective channels.

Effectiveness

Effectiveness = Based on a compilation of research, how well a channel supports:

- Accuracy
- Discriminability
- Separability
- Visual popout
- Grouping

Definition: how close human perceptual judgement is to an objective measurement of the stimulus

Accuracy

Definition: how close human perceptual judgement is to an objective measurement of the stimulus

How much longer is the second bar?

Definition: how close human perceptual judgement is to an objective measurement of the stimulus

How much longer is the second bar?

2X

Definition: how close human perceptual judgement is to an objective measurement of the stimulus

How much bigger is the second square?

Definition: how close human perceptual judgement is to an objective measurement of the stimulus

How much bigger is the second square?

4X

Definition: how close human perceptual judgement is to an objective measurement of the stimulus

How much bigger is the second box?

Definition: how close human perceptual judgement is to an objective measurement of the stimulus

How much bigger is the second box? 27X

Definition: how close human perceptual judgement is to an objective measurement of the stimulus

Discriminability

Definition: how differentiable levels of the channel are

https://web.cse.ohiostate.edu/~shen.94/Melbo urne/Slides/TamaraChp5. pdf

Separability

Definition: whether channels exist independently or integrally with others

+ Hue (Color)

Position

Fully separable

Size + Hue (Color)

Some interference

Width + Height

Some/significant interference

Red + Green (saturation)

Major interference

Definition: how well a distinct item stands out from others

Color is a good channel for this

Shape is not as helpful

Definition: how well a distinct item stands out from others

Combining color and shape causes "competition" – color is processed first

Grouping

Definition: how likely people are to infer differences as representing distinct groups

C's and D's

Expressiveness + Effectiveness

Channels: Expressiveness Types and Effectiveness Ranks

Let's take a break! Stretch, go for a walk, be social © Be back here in 10 mins.

DECOMPOSING GRAPHICS

Summary

Today we:

- Reviewed Marks and Channels
- Reviewed Expressiveness and Effectiveness
- Worked on ic-04 (Decomposing Graphics)

ic-04 is DUE today. hw-02 is DUE before next class.