ARITHMETIC OPERATIONS PROGRAMMING

Representation of digits in micro-processing systems 8-bit two's complement

Binary sign	Binary value	Decimal sign	Decimal value	
0	1111 1111 (max)	+	255	
0	0000 0001 (min)	+	1	
0	0000 0000		0	
1	1111 1111 (min)	-	1	
1	0000 0000 (max)	-	256	

Addition and Subtraction

Concept of Carry / Borrow bit:

9-th bit in 8-bit "Add" or "Subtract "operations or

17-th bit in 16-bit "Add" or "Subtract" operations is considered as a special C-bit (C-flag) in Condition Code Register (CCR)

+ 57

+ 116

- 59

00111010+1

- \$C5

PROGRAMMING THE SUBTRACTION OPERATION

Org \$1500

LDAA # \$ 39

SBCA # \$ 74

STAA \$1001

END

; Starting address of the program

; Load BCD digit \$39 (0011 1001)

; Subtract BCD \$ 74 (0111 0100)

; Store the result in address \$1001

Please read pp. 50 to 60: "Multi-precision operations, BCD operations and Multiplication & Division operations. Read example programs.

Condition Code Register (CCR)

Condition code Register (CCR) is special purpose register which contains set of flags indicating conditions of the operation recently executed

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Н		N	Z	V	С

Bit 0: C-bit => Carry Flag

Bit 1: V-bit => Overflow Flag. Whenever result of a two's compliment operation is out of range V=1

Bit 2: Z-bit => Zero Flag. Whenever result is 0 than Z=1, otherwise Z=0

Bit 3: N-bit => Whenever the most significant bit of the result of operation is = 1, than N=1, Otherwise, N=0

Bit 5: H-bit => Half-carry flag is carry flag for lower 4-bits to the upper 4 bits.

Program Loops

- Loop is program element for repetitive operation with determined segment of algorithm.
- Definition 1: Finite loop a sequence of instructions that will be executed for finite number of times
- Definition2: <u>Endless loop</u> a sequence of instructions that will be executed forever if started (until power off)

Program Loops

- Loop is program element for repetitive operation with determined segment of algorithm.
- Definition 1: <u>Finite loop</u> a sequence of instructions that will be executed for finite number of times
- Definition2: Endless loop a sequence of instructions that will be executed forever if started (until power off)