# Trabalho Final – Turma 12

Caso de Uso: Olist

05/Junho/2020

# **Coordenadores:**

Prof<sup>a</sup> Dr<sup>a</sup> Alessandra de Álvila Montini Prof<sup>a</sup> Dr. Adolpho Walter Pimazoni Canton

# **GRUPO 12:**

- Ana Lúcia da Cunha Cox
- Thiago Yoshiaki Miyabara Nascimento





# Agenda



- 2. Contextualização do Problema
- 3. Base de Dados
  - i. Bases originais
  - ii. Processo de redução de variáveis
  - iii. Principais variáveis
- 4. Análise Exploratória de Dados
- 5. Modelagem com Estatística Tradicional
- 6. Modelagem com Inteligência Artificial
- 7. Desafios encontrados
- 8. Conclusões





# 1. Objetivo do Trabalho

O objetivo do trabalho é **predizer o valor do frete** das compras realizadas na plataforma do e-commerce Olist.

A predição será realizada por meio da análise do banco de dados histórico e uso de **modelos estatísticos** e **algoritmos de Machine Learning**, que selecionarão as **características mais relevantes** que explicam o valor da entrega.

Desta forma, a empresa poderá traçar estratégias de logística, desenvolver programas de frete grátis e ações preventivas para minimizar a desistência da compra devido ao valor do frete.





# 2. Contextualização do Problema

Em 2020 é esperado que **38%** de todas as vendas sejam feitas através de marketplaces como a Olist.

### Importância do eCommerce

Estudo feito em todas as capitais pela Confederação Nacional de Dirigentes Lojistas (CNDL) e pelo Serviço de Proteção ao Crédito (SPC Brasil). Os dados mostram que 86% dos consumidores conectados realizaram ao menos uma aquisição em lojas online nos últimos 12 meses.

### **Comportamento do Cliente**

De acordo com uma pesquisa realizada pela Manhattan Associates, mais de **70% dos consumidores brasileiros preferem fazer compras online** ao invés de ir à uma loja, e cerca de **60% pedem para retirar seus itens no local**.





# 2. Contextualização do Problema

5

Segundo a pesquisa E-commerce Trends, da empresa de marketing digital Rock Content, o frete caro é responsável por **82,3%** do abandono do carrinho de compras.

### Principais fatores que influenciam no comportamento de compra:

- Relação entre altos custos do frete e abandono do carrinho de compras;
- Demora ou indisponibilidade no valor do frete;
- Diferença entre preços da loja física e e-commerce;
- Defasagem no preço entre marketplaces;
- Limitação de preços e prazos de entrega.



# revent database traces ort("The Rails environment to marrie quire 'spec\_helper' equire 'rspec/rails' require 'capybara/rspec' require 'capybara/reils' Capybara.javascript Category.delete\_all; Company grant Shoulda:: Matchers.com i gare & learning config.integrate do lateral with.test\_framework with.library :reils # Add additional regulars bear as # Requires supporting name and # spec/support/ and its summer # run as spec files by warming the # in \_spec.rb will back by many # run twice. It is recommend to # end with \_spec.ro. how can am

# 3. Bases de Dados







# 3.i. Base Original

| Base de dados                               | Quantidade<br>de<br>Registros | Quantidade<br>de<br>Variáveis | Quantidade<br>de<br>Duplicadas | Quantidad<br>e de Nulos | Período<br>Inicial     | Período<br>Final       |
|---------------------------------------------|-------------------------------|-------------------------------|--------------------------------|-------------------------|------------------------|------------------------|
| olist_closed_deals_dataset.csv              | 842                           | 14                            | 0                              | 804                     | 2017-12-05<br>02:00:00 | 2018-11-14<br>18:04:19 |
| olist_customers_dataset.csv                 | 99.441                        | 5                             | 0                              | 0                       | Não<br>Aplicável       | Não<br>Aplicável       |
| olist_geolocation_dataset.csv               | 1.000.163                     | 5                             | 261.831                        | 0                       | Não<br>Aplicável       | Não<br>Aplicável       |
| olist_marketing_qualified_leads_dataset.csv | 8.000                         | 5                             | 0                              | 60                      | 2017-06-14<br>00:00:00 | 2018-05-31<br>00:00:00 |
| olist_order_items_dataset.csv               | 112.650                       | 7                             | 0                              | 0                       | 2016-09-19<br>00:15:34 | 2020-04-09<br>22:35:08 |
| olist_order_payments_dataset.csv            | 103.886                       | 5                             | 0                              | 0                       | Não<br>Aplicável       | Não<br>Aplicável       |
| olist_order_reviews_dataset.csv             | 105.189                       | 7                             | 94                             | 96.151                  | Não<br>Aplicável       | Não<br>Aplicável       |
| olist_orders_dataset.csv                    | 99.441                        | 8                             | 0                              | 2.980                   | 2016-09-04<br>21:15:19 | 2018-10-17<br>17:30:18 |
| olist_products_dataset.csv                  | 32.951                        | 9                             | 0                              | 611                     | Não<br>Aplicável       | Não<br>Aplicável       |
| olist_sellers_dataset.csv                   | 3.095                         | 4                             | 0                              | 0                       | Não<br>Aplicável       | Não<br>Aplicável       |
| product_category_name_translation.csv       | 71                            | 2                             | 0                              | 0                       | Não<br>Aplicável       | Não<br>Aplicável       |





### **Análise Exploratória**

- Verificação e tratamento de valores faltantes;
- Criação do dicionário de dados;
- o Entendimento da base.



# Filtro e Tratamento Aplicado à Base Original

# Seleção de colunas de acordo com a regra do negócio

- Filtro de valores zerados;
- Filtro dos registros duplicados;
- Vendas canceladas;
- Conexão com API do IBGE para obter os códigos UF.



Base Final com Outliers e sem Outliers 103.268 registros *versus* 86.741 registros

# Modelos Preditivos com 6 modelos distintos

- Criação da variável "Volume";
- Cálculo da distância entre vendedor e comprador com base na geolocalização;
- o Exclusão de outliers.







#### Variáveis do Produto

- Preço;
- Peso;
- Altura;
- Largura;
- · Comprimento;
- Volume.



### Variáveis Temporais

- Timestamp de criação do pedido;
- Timestamp de aprovação do pedido;
- *Timestamp* de postagem;
- Timestamp de previsão de entrega;
- Timestamp da entrega.



### Variáveis de Localização

- UF do vendedor;
- UF do cliente;
- Calculo da distância entre vendedor e comprador com base na geolocalização.



### Variável Resposta

Preço do frete







# 4. Análise Exploratória de Dados



Na **Entrega 1** foi feita uma detalhada análise exploratória das 71 variáveis que as 11 base de dados apresentavam. Posteriormente, refizemos essa análise com **ênfase** no nosso *business case*.

# **Principais atividades realizadas:**

- Contagem e tratamento de valores faltantes e/ou em branco (missings);
- Identificação e tratamento de *outliers*;
- Criação de variáveis auxiliares;
- Tratamento de dados inconsistentes;
- Resumo das principais métricas estatísticas da base.



# 4. Análise Exploratória de Dados

# 11)

**Top 10 categorias de produtos** 



Origem de Mídia



#### **Estado dos Vendedores**



Média do Valor do Frete por UF



#### **UF dos Clientes**







# 5. Modelagem com Estatística Tradicional



Depois de definir o *business case*, na **Entrega 2**, foi feita uma análise profunda da *feature* "**Valor do Frete**".

# **Principais atividades realizadas:**

- Resumo das principais métricas estatísticas;
- Geração do *heatmap* da **correlação** e **covariância**, relacionando a variável em estudo com as demais variáveis da base;

### Analisando os resultados obtidos estatisticamente pudemos:

- Selecionar das variáveis com maior influência no valor do frete;
- Normalizar da base.



# Resumo das principais Estatísticas com *Outliers*

| summary | freight_value      |
|---------|--------------------|
| count   | 113930             |
| min     | 1.0                |
| 25%     | 13.11              |
| mean    | 20.081679891161265 |
| stddev  | 15.735210411713263 |
| 50%     | 16.32              |
| 75%     | 21.19              |
| 85%     | 26.63              |
| 90%     | 34.13              |
| 95%     | 45.2               |
| 99%     | 85.59              |
| max     | 409.68             |

# Resumo das principais Estatísticas sem *Outliers*

| summary | ~ | freight_value      | ~ |
|---------|---|--------------------|---|
| count   |   | 86741              |   |
| min     |   | 5.0                |   |
| 25%     |   | 12.69              |   |
| mean    |   | 15.573961794306335 |   |
| stddev  |   | 4.5732571996071005 |   |
| 50%     |   | 15.38              |   |
| 75%     |   | 18.3               |   |
| 85%     |   | 20.14              |   |
| 90%     |   | 22.0               |   |
| 95%     |   | 23.63              |   |
| 99%     |   | 25.91              |   |
| max     |   | 26.72              |   |



# 5. Modelagem com Estatística Tradicional

# (14)

### Heatmap da Correlação com Outliers



# Heatmap da Covariância sem Outliers



# Heatmap da Correlação com Outliers



### Heatmap da Covariância sem Outliers







### **Box-Plot do Valor do Frete com Outliers**



### Box-Plot do Valor do Frete sem *Outliers*





# 5. Modelagem com Estatística Tradicional

# 16)

# Histograma do Valor do Frete com *Outliers*



# Histograma do Valor do Frete sem *Outliers*









Árvore de Regrssão



**GBT Regressor** 



Random Forest Regression



GLR - Gaussian



GBT Regressor – Categoria do Produto









Árvore de Regrssão



**GBT** Regressor



Random Forest Regression



GLR - Gaussian



GBT Regressor – Categoria do Produto

MAE sem *outliers*: 2.301002436385273
MAE com *outliers*: 5.293480047119417
RMSE sem *outliers*: 3.032605165346057
RMSE com *outliers*: 9.862082979772966
R2 sem *outliers*: 55.94360716156693









Árvore de Regrssão



**GBT Regressor** 



Random Forest Regression



**GLR - Gaussian** 



GBT Regressor – Categoria do Produto



MAE sem *outliers*: 1.90685251941861 MAE com *outliers*: 5.050109013400841 RMSE sem *outliers*: 2.652784875178676 RMSE com *outliers*: 10.186470369642779 R2 sem *outliers*: 66.30642631065373 R2 com *outliers*: 59.48098951685474









Árvore de Regrssão



**GBT Regressor** 



Random Forest Regression



**GLR - Gaussian** 



GBT Regressor – Categoria do Produto

MAE sem outliers: 1.6829742177602103
MAE com outliers: 4.473540942479851
RMSE sem outliers: 2.434614975890428
RMSE com outliers: 9.219827125176893
R2 sem outliers: 71.62057516443838









Árvore de Regrssão



**GBT** Regressor



Random Forest Regression



GLR - Gaussian



GBT Regressor – Categoria do Produto

MAE sem outliers: 1.8997635232778034
MAE com outliers: 4.865857056867012
RMSE sem outliers: 2.5946979492735562
RMSE com outliers: 9.919719460971242
R2 sem outliers: 67.76581988618263
R2 com outliers: 61.57532892387621









Árvore de Regrssão



**GBT** Regressor



Random Forest Regression



**GLR - Gaussian** 



GBT Regressor – Categoria do Produto

MAE sem outliers: 2.3068815598471657
MAE com outliers: 5.267211130719013
RMSE sem outliers: 3.0397542524028918
RMSE com outliers: 9.866085169380018
R2 sem outliers: 55.75950674222789
R2 com outliers: 61.98971737533314









Árvore de Regrssão



**GBT** Regressor



Random Forest Regression



GLR - Gaussian



GBT Regressor – Categoria do Produto

MAE sem outliers: 1.737223408500116
MAE com outliers: 5.419682592124251
RMSE sem outliers: 2.5606264366004683
RMSE com outliers: 14.23506543295993
R2 sem outliers: 68.65254958422193
R2 com outliers: 16.805421774143237



# 6. Modelagem com Inteligência Artificial

O modelo que apresentou melhores resultados foi o **GBT Regressor** sem a variável do nome da categoria do produto.







Árvore de Regrssão





**Random Forest** Regression



**GLR** - Gaussian



**GBT Regressor -**Categoria do **Produto** 

| MODELO                               | ▼ MAE ▼            | MAE_FULL          | RMSE               | RMSE_FULL          | R2 -              | R2_FULL            |
|--------------------------------------|--------------------|-------------------|--------------------|--------------------|-------------------|--------------------|
| GBTRegressor                         | 1.6829742177602103 | 4.473540942479851 | 2.434614975890428  | 9.219827125176893  | 71.62057516443838 | 66.80620295232022  |
| RandomForestRegressor                | 1.8997635232778034 | 4.865857056867012 | 2.5946979492735562 | 9.919719460971242  | 67.76581988618263 | 61.57532892387621  |
| DecisionTreeRegressor                | 1.90685251941861   | 5.050109013400841 | 2.652784875178676  | 10.186470369642779 | 66.30642631065373 | 59.48098951685474  |
| LinearRegression                     | 2.301002436385273  | 5.293480047119417 | 3.032605165346057  | 9.862082979772966  | 55.94360716156693 | 62.003370347318906 |
| GeneralizedLinearRegression Gaussian | 2.3068815598471657 | 5.267211130719013 | 3.0397542524028918 | 9.866085169380018  | 55.75950674222789 | 61.98971737533314  |

| MODELO                             | MAE -              | MAE_FULL          | RMSE -             | RMSE_FULL         | R2 -              | R2_FULL            |
|------------------------------------|--------------------|-------------------|--------------------|-------------------|-------------------|--------------------|
| GBTRegressor                       | 1.6829742177602103 | 4.473540942479851 | 2.434614975890428  | 9.219827125176893 | 71.62057516443838 | 66.80620295232022  |
| GBTRegressor Product_Category_Name | 1.737223408500116  | 5.419682592124251 | 2.5606264366004683 | 14.23506543295993 | 68.65254958422193 | 16.805421774143237 |



# 7. Desafios encontrados





Desafios da 1ª entrega – Entendimento inicial da base Criação de um dicionário de dados

Desafios da 2ª entrega – Dúvidas em relação ao código (Erros no Pyspark) Escolha do problema a ser resolvido

Desafios da 3ª entrega – Escolha dos modelos corretos Análise dos resultados

Desafios da 4ª entrega – Elaboração do resumo executivo dos resultados Busca incansável por melhores resultados





### Conclusões

- O projeto foi uma excelente oportunidade de aplicar na prática os conhecimentos teóricos adquiridos durante o curso.
- 2. O trabalho desenvolvido pode ser utilizado para controle dos preços aplicados pelos fornecedores do serviço de entrega, evitando assim **fraudes**;
- 3. Com os modelos aplicados é possível saber quais localidades de origem-destino o frete ficará mais barato, possibilitando ações estratégicas de logística para a Olist;
- 4. Os resultados do modelo apresentado podem ser utilizados como uma nova *feature*, enriquecendo **futuras análises** como por exemplo, **ações promocionais**.

### **Próximos Passos**

Le Entendimento dos *outilers*, com foco na obtenção de valor destes dados.



# Trabalho Final – Turma 12

Caso de Uso: Olist

05/Junho/2020

# **Coordenadores:**

Prof<sup>a</sup> Dr<sup>a</sup> Alessandra de Álvila Montini Prof<sup>a</sup> Dr. Adolpho Walter Pimazoni Canton

# **GRUPO 12:**

- Ana Lúcia da Cunha Cox
- Thiago Yoshiaki Miyabara Nascimento



