Mathematical Physics

Ikhan Choi

October 17, 2022

Contents

Ι	Mechanics	3
1	Lagrangian mechanics1.1 Newtonian mechanics1.2 Calculus of variations1.3 Rigid bodies	4 4 4
2	Hamiltonian mechanics	6
3	Continuum mechanics 3.1 Conservation laws	7 7 7 7
II	Thermal physics	8
4	Thermodynamics 4.1 Laws of thermodynamics	9 9
5	Kinetic theory	10
6	Statistical mechanics 6.1 Ensembles	11 11 11
II	Classical field theory	12
7	Relativity 7.1 Special relativity	13 13 13 13 13
8	Electromagnetism 8.1 Maxwell equations	14 14 14
9	Lagrangian field theory	15

IV	Quantum mechanics	16
10	Historical backgrounds	17
	10.1 Wave-particle duality	17
	10.2 Nuclear physics	17
11	Quantization	18
	11.1 Interpretations of quantum mechanics	18
	11.2 Canonical quantization	18
	11.3 Spin	18
12	Schrödinger equation	19
	12.1 Time-independent potentials	19
	12.2 Approximation methods	19
	12.3 Relativistic Schrödinger equation	19
	12.4 Scattering theory	19

Part I Mechanics

Lagrangian mechanics

1.1 Newtonian mechanics

- 1.1 (Laws of motion). Galilean structure, Galilean group
- 1.2 (Conservation laws).

1.2 Calculus of variations

- 1.3 (Euler-Lagrange equation).
- **1.4** (Closed system). $\frac{\partial \mathcal{L}}{\partial t} = 0$
- **1.5** (Definition of generalized momentum). $\frac{\partial \mathcal{L}}{\partial q} = 0$
- 1.6 (Equivalence to Newtonian mechanics).

1.3 Rigid bodies

- 1.7 (Inertia tensor).
- 1.8 (Eulerian angle).
- 1.9 (Lagrangian top).

Exercises

Oscillation

- 1.10 (Harmonic oscillator).
- 1.11 (Damped oscillation).
- 1.12 (Pendulum).
- 1.13 (Lissajous curve).
- 1.14 (Coupled oscillation).

Central forces

- 1.15 (Polar coordinates).
- 1.16 (Effective potential).
- 1.17 (Kepler's problem).
- 1.18 (Rutherford scattering).

System of particles

- 1.19 (Closed systems).
- 1.20 (Collisions).
- 1.21 (Two-body problem).
- 1.22 (Three-body problem).

Euler-Lagrange equations

- 1.23 (Brachiostochrone).
- 1.24 (Geodesic on the sphere).
- 1.25 (Dido's isoperimetric problem).
- 1.26 (Pendulum with moving support). A rhenomic system
- 1.27 (Sliding beads on a rim).
- 1.28 (Double pulley system).

Hamiltonian mechanics

Exercises

Continuum mechanics

- 3.1 Conservation laws
- 3.2 Fluid mechanics
- 3.3 Solid mechanics

plasticity, elasticity?

Part II Thermal physics

Thermodynamics

4.1 Laws of thermodynamics

Equation of states Maxwell's relations

4.2 Thermal processes

Kinetic theory

 $ergodic\ hypothesis\ Boltzmann\ statistics\ Boltzmann\ equation,\ chapman\ enskog\ BBGKY\ hierarchy\ stochastic\ processes\ linear\ response$

Statistical mechanics

6.1 Ensembles

ensembles microcanonical, canonical, grand canonical classical gas Boltzmann distribution

6.2 Quantum statistics

Two statistics Fermi sea Bose-Einstein condensation

Part III Classical field theory

Relativity

- 7.1 Special relativity
- 7.2 General relativity
- 7.3 Einstein field equation
- 7.4 Black holes

Electromagnetism

8.1 Maxwell equations

gauge transform

8.2 Optics

Lagrangian field theory

Part IV Quantum mechanics

Historical backgrounds

10.1 Wave-particle duality

```
10.1 (Black body radiation). (1901)
```

10.2 (Photon interaction).

Photoelectric effect (1905)

Compton scattering (1923)

- 10.3 (Atom model). (a) Rutherford scattering(1911)
 - (b) Bohr model
 - (c) Franck-Hertz experiment(1914)
 - (d) De Brogile waves(1924)
- **10.4** (Electron diffraction). (a) Davisson-Germer(1927)
 - (b) George Pagit Thompson(1928)

10.2 Nuclear physics

neutrino

Quantization

11.1 Interpretations of quantum mechanics

- 11.1 (Wave function). Hilbert space, Dirac notation
- 11.2 (Pictures).
- 11.3 (Copenhagen interpretation). POVM and measurement observables and self-adjoint operators
- 11.4 (Hidden variable theory). EPR paradox, Bell's inequality, CHSH inequality

11.2 Canonical quantization

- 11.5 (Canonical commutation relation).
- 11.6 (Weyl quantization).
- 11.7 (Stone-von Neumann theorem).

11.3 Spin

11.8 (Projective representations).

Schrödinger equation

12.1 Time-independent potentials

```
12.1 (Infinite well).
```

12.2 (Harmonic oscillator).

12.3 (Free particle).

12.4 (Hydrogen atom).

12.2 Approximation methods

WKB approximation

12.3 Relativistic Schrödinger equation

fine structure Klein Gordon equation

12.4 Scattering theory