Dilworth Theorem ? Let $P = (x, \leq)$ be a poset and let y be the length of a largest antichain in). Then the elements of X can be partitioned into r chains Proof: Induction on 1x1. Ban Can: |X|=1 Induction Hypo. Assure the strat is true for all pooch defined on $|x| \leq n_{-1}$ $|x| \leq n_{-1}$ |x| $1 \times 1 = n$

maximal element of DIEX $\mathcal{J} = (\times, \preceq)$.) if means there is no element $y \in X, y \neq x$ such that $x \not\leq y$. (x) {n3, x) le a subposet Set minus het is be the length of a largest antichain in ?". By Induction hypothesis, the element of x' can be parlithoned into r' chains,

het these chains be C'2,-7 (,1.

 $\det f = (X \setminus C_{i,j}^{*} \preceq).$ Claim: Leugh of largest antichain in p'' is $\leq r-1$. By Ind hypothesis, XIC! can be partitioned into r-1 chains. X can be partitioned into r chains. add c