I. to prove: $\sim P v S$

2.
$$\sim R \longrightarrow S$$
 [note: that is *not* " $\sim (R \longrightarrow S)$ "]

Because $P \rightarrow R$ and $R \rightarrow S$, we can get $P \rightarrow S$.

And $P \rightarrow S$ is equivalent to ($^{\sim}P \vee S$) by material implication.

The proof is done.

II. to prove: P

Prove by conditions:

Based on premise 1, $P v(Q^R)$ is true. So, $P or (Q^R)$ is true.

If Q is true, then P is true and P $v(Q^R)$ is still true by premise 2.

If Q is not true, to keep $P v(Q^R)$ still true, P must be true.

The proof is done.

III. to prove: $\sim Q --> P$

Premise 1 is \sim (P v S) \rightarrow Q and this is equivalent to \sim Q \rightarrow (P v S).

Since premise 2 gives us $^{\sim}Q\rightarrow^{\sim}S$, so when we have $^{\sim}Q$ and will get (P v S) and $^{\sim}S$, then P must be true.

So, the entire process is just: $^{\sim}Q \rightarrow P$. The proof is done.

IV. to prove:
$$(P \rightarrow P) v (P \rightarrow P)$$

 $(P \rightarrow ^{\sim} P)$ is equivalent to $(^{\sim} P \rightarrow P)$.

And this is just $(P \rightarrow {}^{\sim}P) \rightarrow ({}^{\sim}P \rightarrow P)$ which is equivalent to $(P \rightarrow {}^{\sim}P)$ v $({}^{\sim}P \rightarrow P)$.

V. to prove: ~S

By premise 1, Q or R must be true.

Since either Q or R is true, and by premises 2 and 3, we will get ~P.

The premise 4 is $S \rightarrow P$ which is equivalent to $^{\sim}P \rightarrow ^{\sim}S$.

We've got ~P, so now we get ~S. And the proof is done.