Code boxes for Delta Method Tutorial

This tutorial requires an R version >= 4.1.0 and Python version >= 3.5

```
The following code will be used throughout the complete tutorial
```

```
#This should point to **your** Python path as explained in last section
Sys.setenv(RETICULATE_PYTHON = "/usr/local/Caskroom/miniconda/base/envs/DeltaMethod/bin/python")
library(caracas)
library(MASS)
#Parser for Sympy (you need sympy version 1.10 or 1.9 development)
#check sympy_version() to see you have the right one
sympy_version()
## [1] '1.9'
#Create parsers to find the functions check sympy's documentation
#and substitute dots for $ in https://docs.sympy.org/latest/index.html
                 <- get_sympy()</pre>
sympy
                 <- sympy$parsing$sympy_parser$parse_expr</pre>
Parse
RandomSymbol <- sympy$stats$rv$RandomSymbol
                 <- sympy$stats$Variance</pre>
Variance
                <- sympy$stats$Covariance</pre>
Covariance
Symbol
                <- sympy$Symbol</pre>
Lambdify
                <- sympy$utilities$lambdify</pre>
Simplify <- sympy$simplify
Derivative <- sympy$derive_by_array
Taylor
                <- sympy$series</pre>
LaTeX
                 <- sympy$latex
                <- sympy$Function</pre>
Function
```

Mean (classical)

```
variable_list <- append(variable_list, list("phi_prime" = phi_prime))

#Direction vector (horizontal vector)
v <- Parse("xbar - mu", local_dict = variable_list)

#Get hadamard (directional) derivative
hadamard <- v #phi_prime = 1 so it doesn't change the result

#Variance
var_phi <- Variance(hadamard)$expand() |> Simplify()

#Recall the covariance is 0 due to independence
var_phi <- var_phi$subs(Variance(xbar), "sigma**2/n")

print(var_phi)</pre>
```

sigma**2/n

Ratio of two means

To estimate the ratio of two means we need to define it as a function of symbols

```
<- Symbol('mu_x')
mu_x
mu_y
        <- Symbol('mu_y')
       <- Symbol('n', positive=T) #Sample size of x</pre>
<- Symbol('sigma_x', positive = T) #Standard deviation of x</pre>
sigma_xy <- Symbol('sigma_xy') #Covariance</pre>
       <- RandomSymbol('xbar')</pre>
xbar
        <- RandomSymbol('ybar')</pre>
ybar
#List variables for parse
variable_list <- list('mu_x' = mu_x, 'mu_y' = mu_y, 'xbar' = xbar,</pre>
                     'ybar' = ybar, 'n' = n, 'sigma_xy' = sigma_xy,
                     'sigma_x' = sigma_x, 'sigma_y' = sigma_y)
#We are working with the variance of the ratio
mean_ratio
           <- Parse("mu_x/mu_y", local_dict = variable_list)</pre>
```

We then obtain the derivative:

```
\#\# -mu_x*(-mu_y + ybar)/mu_y**2 + (-mu_x + xbar)/mu_y
```

The variance of that gradient is given as follows:

```
#Get the variance of gradient
var_mean_ratio <- Variance(hadamard)$expand() |> Simplify()
print(var_mean_ratio)
```

(mu_x**2*Variance(ybar) - 2*mu_x*mu_y*Covariance(xbar, ybar) + mu_y**2*Variance(xbar))/mu_y**4 Recall that \bar{X} and \bar{Y} are random variables with the following variances:

$$\mathrm{Var}\big[\bar{X}\big] = \frac{\sigma_X^2}{n}, \qquad \text{and} \qquad \mathrm{Var}\big[\bar{Y}\big] = \frac{\sigma_Y^2}{n}.$$

which are specified as follows:

```
#To establish a power (say x^2) use ** function instead of ^
var_xbar <- Parse("sigma_x**2/n", local_dict = variable_list)
var_ybar <- Parse("sigma_y**2/n", local_dict = variable_list)
cov_xbar_ybar <- Parse("sigma_xy/n", local_dict = variable_list)</pre>
```

Further simplifications are allowed that result in a cleaner expression:

```
#Recall the covariance is 0 due to independence
var_mean_ratio <- var_mean_ratio$subs(Covariance(xbar, ybar), cov_xbar_ybar)

#Assign the variances of p1_hat and p2_hat
var_mean_ratio <- var_mean_ratio$subs(Variance(xbar), var_xbar)
var_mean_ratio <- var_mean_ratio$subs(Variance(ybar), var_ybar)

#This is the final expression for the variance
var_mean_ratio <- var_mean_ratio |> Simplify()
print(var_mean_ratio)
```

(mu_x**2*sigma_y**2 - 2*mu_x*mu_y*sigma_xy + mu_y**2*sigma_x**2)/(mu_y**4*n)

We transform the expression into an R function:

The function can be evaluated for different values:

[1] 0.008869031

Relative Risk

To estimate the relative risk we need to define it as a function of symbols

Recall that in the case of estimating the Relative Risk: $RR = \frac{p_1}{p_2}$ we use the estimator:

$$\widehat{RR} = \frac{\widehat{p}_1}{\widehat{p}_2}.$$

As $\hat{p_1}$ and $\hat{p_2}$ are random variables that have the following variance:

$$Var[\hat{p}_i] = \frac{p_i(1 - p_i)}{N}$$
 for $i = 1, 2$.

which is specified as follows:

```
var_p1_hat <- Parse("p1*(1 - p1)/N", local_dict = variable_list)
var_p2_hat <- Parse("p2*(1 - p2)/N", local_dict = variable_list)</pre>
```

Finally, we create the log Relative Risk and calculate its derivative:

```
## -(-p2 + p2_hat)/p2 + (-p1 + p1_hat)/p1
```

The variance of that gradient is given as follows:

```
#Get the variance of gradient
var_log_rr <- Variance(hadamard)$expand() |> Simplify()
print(var_log_rr)
```

Further simplifications are allowed that result in a cleaner expression:

```
#Recall the covariance is 0 due to independence
var_log_rr <- var_log_rr$subs(Covariance(p1_hat, p2_hat), 0)

#Assign the variances of p1_hat and p2_hat
var_log_rr <- var_log_rr$subs(Variance(p1_hat), var_p1_hat)
var_log_rr <- var_log_rr$subs(Variance(p2_hat), var_p2_hat)

#This is the final expression for the variance
print(var_log_rr)</pre>
```

```
## (1 - p2)/(N*p2) + (1 - p1)/(N*p1)
```

Finally we transform the symbolic expression into an R function:

The function can be evaluated for different values:

```
#You can use the variance function to estimate the IF with data
variance_function(p1 = 0.7, p2 = 0.4, N = 100)

## [1] 0.01928571

variance_function(p1 = 0.3, p2 = 0.5, N = 500)

## [1] 0.006666667

variance_function(p1 = 0.1, p2 = 0.1, N = 2)
```

[1] 9

Counter Example: Attributable Risk

For the counterexample of the function where the Taylor series is zero given by

$$AF = \begin{cases} \frac{e^{\theta/x} - 1}{e^{\theta/x}} & \text{if } x \neq 0, \\ 1 & \text{if } x = 0. \end{cases}$$

```
#Get the variables
x <- Symbol('x', positive=T)

#Tenth order Taylor
Taylor("(exp(1/x) - 1)/exp(1/x)", x0 = 0, n = 10)$removeO()</pre>
```

0

Higher Order Delta Method

```
Estimate the Taylor series for p(1-p):
```

```
#Get the variables
p <- Symbol('p', positive=T)

#3rd order Taylor
Taylor("p*(1-p)", x0 = 1/2, n = 3)$removeO()

## 0.25 - (p - 0.5)**2</pre>
```

Correlation parameters

```
mu uv
         <- Symbol('mu_uv')
        <- Symbol('mu_u')
mu_u
mu_v
        <- Symbol('mu_v')
mu_u2 <- Symbol('mu_u2', positive=T)</pre>
mu_v2 <- Symbol('mu_v2', positive=T)</pre>
       <- Symbol('N', positive=T, integer=T) #Sample size</pre>
uvbar <- RandomSymbol("uvbar")</pre>
ubar <- RandomSymbol("ubar")</pre>
vbar <- RandomSymbol("vbar")</pre>
ubar2 <- RandomSymbol("ubar2")</pre>
vbar2 <- RandomSymbol("vbar2")</pre>
#List variables for parse
variable_list <- list('mu_uv' = mu_uv, 'mu_u' = mu_u, 'mu_v' = mu_v,</pre>
                       'mu_u2' = mu_u2, 'mu_v2' = mu_v2, 'N' = N,
                       'uvbar' = uvbar, 'ubar' = ubar, 'vbar' = vbar,
                       'ubar2' = ubar2, 'vbar2' = vbar2)
#We are working with the variance of the covariance
exp <- "(mu_uv - mu_u*mu_v)/(sqrt(mu_u2 - mu_u**2)*sqrt(mu_v2 - mu_v**2))"</pre>
cov_function <- Parse(exp, local_dict = variable_list)</pre>
#Gradient
#Obtain the gradient of log RR
g_cov <- Derivative(cov_function, list(mu_uv, mu_u, mu_v, mu_u2, mu_v2))</pre>
g_cov <- Simplify(g_cov)</pre>
print(g_cov)
## [1/(sqrt(-mu_u**2 + mu_u2)*sqrt(-mu_v**2 + mu_v2)), (mu_u*mu_uv - mu_u2*mu_v)/((-mu_u**2 + mu_u2)**(
```

[1/(sqrt(-mu_u**2 + mu_u2)*sqrt(-mu_v**2 + mu_v2)), (mu_u*mu_uv - mu_u2*mu_v)/((-mu_u**2 + mu_u2)*

You can print the code in LaTeX as follows:

```
LaTeX(g_cov)
```

```
 \begin{bmatrix} \frac{1}{\sqrt{-\mu_{u}^{2} + \mu_{u2}}\sqrt{-\mu_{v}^{2} + \mu_{v2}}} & \frac{\mu_{u}\mu_{uv} - \mu_{u2}\mu_{v}}{(-\mu_{u}^{2} + \mu_{u2})^{\frac{3}{2}}\sqrt{-\mu_{v}^{2} + \mu_{v2}}} & \frac{-\mu_{u}\mu_{v2} + \mu_{uv}\mu_{v}}{\sqrt{-\mu_{u}^{2} + \mu_{u2}}(-\mu_{v}^{2} + \mu_{u2})^{\frac{3}{2}}} & \frac{\mu_{u}\mu_{v} - \mu_{uv}}{2(-\mu_{u}^{2} + \mu_{u2})^{\frac{3}{2}}\sqrt{-\mu_{v}^{2} + \mu_{u2}}} & \frac{\mu_{u}\mu_{v} - \mu_{uv}}{2\sqrt{-\mu_{u}^{2} + \mu_{u2}}} & \frac{2(-\mu_{u}^{2} + \mu_{u2})^{\frac{3}{2}}\sqrt{-\mu_{v}^{2} + \mu_{u2}}} & \frac{\mu_{u}\mu_{v} - \mu_{uv}}{2\sqrt{-\mu_{u}^{2} + \mu_{u2}}(-\mu_{v}^{2} + \mu_{v2})^{\frac{3}{2}}} \end{bmatrix} 
 \text{#Convert to matrix as it is a list} 
 \text{variable_list} \leftarrow \text{append(variable_list, list("g_cov" = g_cov))}
```

```
<- Parse("Matrix(g_cov)", local_dict = variable_list)</pre>
g_cov
#Direction vector (horizontal vector)
v <- Parse("Matrix([uvbar - mu_uv, ubar - mu_u, vbar - mu_v,</pre>
                                           ubar2 - mu_u2, vbar2 - mu_v2])", local_dict = variable_list)
#Compute inner product
hadamard <- g cov$dot(v)</pre>
                                                                              \frac{-\mu_{uv} + \bar{u}v}{} + \frac{(-\mu_v + \bar{v})(-\mu_u\mu_{v2} + \mu_{uv}\mu_v)}{} + \frac{(-\mu_v + \bar{v})(\mu_u\mu_v - \mu_{uv})}{} + \frac{(-\mu_v + \bar{u}_v)(\mu_u\mu_v - \mu_{uv})}{} + \frac{(-\mu_v + \bar{u}_v)(\mu_v\mu_v - \mu_{uv})}{} + \frac{(-\mu_v + \bar{u}_v)(
\frac{\left(-\mu_{u}+\bar{u}\right)\left(\mu_{u}\mu_{uv}-\mu_{u2}\mu_{v}\right)}{\left(-\mu_{u}^{2}+\mu_{u2}\right)^{\frac{3}{2}}\sqrt{-\mu_{v}^{2}+\mu_{v2}}}+\frac{-\mu_{uv}+\bar{u}v}{\sqrt{-\mu_{u}^{2}+\mu_{u2}}\sqrt{-\mu_{v}^{2}+\mu_{v2}}}+\frac{\left(-\mu_{v}+\bar{v}\right)\left(-\mu_{u}\mu_{v2}+\mu_{uv}\mu_{v}\right)}{\sqrt{-\mu_{u}^{2}+\mu_{u2}}\left(-\mu_{v}^{2}+\mu_{v2}\right)^{\frac{3}{2}}}+\frac{\left(-\mu_{v2}+\bar{v}_{2}\right)\left(\mu_{u}\mu_{v}-\mu_{uv}\right)}{2\sqrt{-\mu_{u}^{2}+\mu_{u2}}\left(-\mu_{v}^{2}+\mu_{v2}\right)^{\frac{3}{2}}}+\frac{\left(-\mu_{v2}+\bar{v}_{2}\right)\left(\mu_{u}\mu_{v}-\mu_{uv}\right)}{2\left(-\mu_{u}^{2}+\mu_{u2}\right)^{\frac{3}{2}}\sqrt{-\mu_{v}^{2}+\mu_{v2}}}+\frac{\left(-\mu_{v2}+\bar{v}_{2}\right)\left(\mu_{u}\mu_{v}-\mu_{uv}\right)}{2\sqrt{-\mu_{u}^{2}+\mu_{u2}}\left(-\mu_{v}^{2}+\mu_{v2}\right)^{\frac{3}{2}}}+\frac{\left(-\mu_{v2}+\bar{v}_{2}\right)\left(\mu_{u}\mu_{v}-\mu_{uv}\right)}{2\sqrt{-\mu_{u}^{2}+\mu_{u2}}\left(-\mu_{v}^{2}+\mu_{v2}\right)^{\frac{3}{2}}}+\frac{\left(-\mu_{v2}+\bar{v}_{2}\right)\left(\mu_{u}\mu_{v}-\mu_{uv}\right)}{2\sqrt{-\mu_{u}^{2}+\mu_{u2}}\left(-\mu_{v}^{2}+\mu_{v2}\right)^{\frac{3}{2}}}+\frac{\left(-\mu_{v2}+\bar{v}_{2}\right)\left(\mu_{u}\mu_{v}-\mu_{uv}\right)}{2\sqrt{-\mu_{u}^{2}+\mu_{u2}}\left(-\mu_{v}^{2}+\mu_{v2}\right)^{\frac{3}{2}}}+\frac{\left(-\mu_{v2}+\bar{v}_{2}\right)\left(\mu_{u}\mu_{v}-\mu_{uv}\right)}{2\sqrt{-\mu_{u}^{2}+\mu_{u2}}\left(-\mu_{v}^{2}+\mu_{v2}\right)^{\frac{3}{2}}}+\frac{\left(-\mu_{v2}+\bar{v}_{2}\right)\left(\mu_{u}\mu_{v}-\mu_{uv}\right)}{2\sqrt{-\mu_{u}^{2}+\mu_{u2}}\left(-\mu_{v}^{2}+\mu_{v2}\right)^{\frac{3}{2}}}+\frac{\left(-\mu_{v2}+\bar{v}_{2}\right)\left(\mu_{u}\mu_{v}-\mu_{uv}\right)}{2\sqrt{-\mu_{u}^{2}+\mu_{u2}}\left(-\mu_{v}^{2}+\mu_{v2}\right)^{\frac{3}{2}}}+\frac{\left(-\mu_{v2}+\bar{v}_{2}\right)\left(\mu_{u}\mu_{v}-\mu_{uv}\right)}{2\sqrt{-\mu_{u}^{2}+\mu_{u2}}\left(-\mu_{v}^{2}+\mu_{v2}\right)^{\frac{3}{2}}}+\frac{\left(-\mu_{v2}+\bar{v}_{2}\right)\left(\mu_{u}\mu_{v}-\mu_{uv}\right)}{2\sqrt{-\mu_{u}^{2}+\mu_{v2}}\left(-\mu_{v}^{2}+\mu_{v2}\right)^{\frac{3}{2}}}+\frac{\left(-\mu_{v2}+\bar{v}_{2}\right)\left(\mu_{u}\mu_{v}-\mu_{uv}\right)}{2\sqrt{-\mu_{u}^{2}+\mu_{v2}}\left(-\mu_{v}^{2}+\mu_{v2}\right)^{\frac{3}{2}}}+\frac{\left(-\mu_{v}+\bar{v}_{2}\right)\left(\mu_{u}\mu_{v}-\mu_{uv}\right)}{2\sqrt{-\mu_{u}^{2}+\mu_{v2}}\left(-\mu_{v}^{2}+\mu_{v2}\right)^{\frac{3}{2}}}+\frac{\left(-\mu_{v}+\bar{v}_{2}\right)\left(\mu_{u}\mu_{v}-\mu_{uv}\right)}{2\sqrt{-\mu_{u}^{2}+\mu_{v2}}\left(-\mu_{v}^{2}+\mu_{v2}\right)^{\frac{3}{2}}}+\frac{\left(-\mu_{v}+\bar{v}_{2}\right)\left(\mu_{u}\mu_{v}-\mu_{v}\right)}{2\sqrt{-\mu_{u}^{2}+\mu_{v2}}\left(-\mu_{v}^{2}+\mu_{v}^{2}\right)^{\frac{3}{2}}}+\frac{\left(-\mu_{v}+\bar{v}_{2}\right)\left(\mu_{u}\mu_{v}-\mu_{v}\right)}{2\sqrt{-\mu_{u}^{2}+\mu_{v}^{2}}}+\frac{\left(-\mu_{v}+\bar{v}_{2}\right)\left(\mu_{v}^{2}+\mu_{v}^{2}\right)}{2\sqrt{-\mu_{v}^{2}+\mu_{v}^{2}}}+\frac{\left(-\mu_{v}+\bar{v}_{2}\right)\left(\mu_{v}^{2}+\mu_{v}^{2}\right)}{2\sqrt{-\mu_{v}^{2}+\mu_{v}^{2}}}+\frac{\left(-\mu_{v}+\bar{v}_{2}\right)\left(\mu_{v}^{2}+\mu_{v}^{2}\right)}{2\sqrt{-\mu_{v}^{2}+\mu_{v}^{2}}}+\frac{\left(-\mu_{v}+\bar{v}_{
#Get the variance of gradient
var_cov <- Variance(hadamard)$expand()</pre>
#Simplification process takes minutes be patient!
var_cov <- Simplify(var_cov)</pre>
#Further simplification required to delete the Cov(1,1)
var cov <- Simplify(var cov)</pre>
print(var_cov)
## (4*(-mu_u**4 + 2*mu_u**2*mu_u2 - mu_u2**2)*(mu_u**2*mu_v2*Covariance(vbar, vbar2) - mu_u*mu_uv*
We then create all the variances we are going to substitute:
                                              <- Symbol('sigma_uv', positive = T)
sigma_uv
sigma_u
                                           <- Symbol('sigma_u', positive = T)</pre>
sigma_v
                                               <- Symbol('sigma_v', positive = T)
                                             <- Symbol('sigma_u2', positive = T)</pre>
sigma_u2
sigma_v2 <- Symbol('sigma_v2', positive = T)</pre>
                                          <- Symbol('cov_u_v', positive = T)
cov_u_v
cov_uv_v <- Symbol('cov_uv_v', positive = T)</pre>
cov_uv_u <- Symbol('cov_uv_u', positive = T)</pre>
cov_v_v2 <- Symbol('cov_v_v2', positive = T)</pre>
cov_u_u2 <- Symbol('cov_u_u2', positive = T)</pre>
cov_uv_u2 <- Symbol('cov_uv_u2', positive = T)</pre>
cov_uv_v2 <- Symbol('cov_uv_v2', positive = T)</pre>
cov_u2_v2 <- Symbol('cov_u2_v2', positive = T)</pre>
                                            <- Symbol('cov_u2_v', positive = T)</pre>
cov_u2_v
cov_v2_u
                                           <- Symbol('cov_v2_u', positive = T)</pre>
#We then substitute the variances
variable_list <- append(variable_list,</pre>
                                                                                                list("sigma_u"
                                                                                                                                                                  = sigma_u, "sigma_uv" = sigma_uv,
                                                                                                                     "sigma_v" = sigma_v, "sigma_u2" = sigma_u2,
                                                                                                                     "sigma_v2" = sigma_v2, "cov_u_v" = cov_u_v,
                                                                                                                     "cov_v_v2" = cov_v_v2, "cov_uv_v" = cov_uv_v,
                                                                                                                     "cov_uv_u" = cov_uv_u, "cov_uv_u2" = cov_uv_u2,
                                                                                                                     "cov uv v2" = cov uv v2,
                                                                                                                     "cov_u_u^2" = cov_u_u^2, "cov_u^2v^2" = cov_u^2v^2,
                                                                                                                      "cov_u2_v" = cov_u2_v, "cov_v2_u" = cov_v2_u)
```

```
<- Parse("sigma_u**2/N", local_dict = variable_list)</pre>
var_ubar
             <- Parse("sigma_v**2/N", local_dict = variable_list)</pre>
var_vbar
             <- Parse("sigma_uv**2/N", local_dict = variable_list)</pre>
var_uvbar
var_u2bar
             <- Parse("sigma_u2**2/N", local_dict = variable_list)</pre>
             <- Parse("sigma_u2**2/N", local_dict = variable_list)</pre>
var_v2bar
             <- Parse("cov_u_v/N", local_dict = variable_list)</pre>
covar_u_v
covar_u_u2 <- Parse("cov_u_u2/N", local_dict = variable_list)</pre>
covar v v2 <- Parse("cov v v2/N", local dict = variable list)</pre>
covar_u2_v <- Parse("cov_u2_v/N", local_dict = variable_list)</pre>
covar_v2_u <- Parse("cov_v2_u/N", local_dict = variable_list)</pre>
covar_u2_v2 <- Parse("cov_u2_v2/N", local_dict = variable_list)</pre>
covar_uv_u <- Parse("cov_uv_u/N", local_dict = variable_list)</pre>
covar uv v <- Parse("cov uv v/N", local dict = variable list)</pre>
covar_uv_u2 <- Parse("cov_uv_u2/N", local_dict = variable_list)</pre>
covar_uv_v2 <- Parse("cov_uv_v2/N", local_dict = variable_list)</pre>
var_cov <- var_cov$subs(Variance(ubar), var_ubar)</pre>
var_cov <- var_cov$subs(Variance(vbar), var_vbar)</pre>
var_cov <- var_cov$subs(Variance(uvbar), var_uvbar)</pre>
var_cov <- var_cov$subs(Variance(ubar2), var_u2bar)</pre>
var_cov <- var_cov$subs(Variance(vbar2), var_v2bar)</pre>
var_cov <- var_cov$subs(Covariance(ubar, vbar), covar_u_v)</pre>
var_cov <- var_cov$subs(Covariance(ubar, ubar2), covar_u_u2)</pre>
var_cov <- var_cov$subs(Covariance(vbar, vbar2), covar_v_v2)</pre>
var_cov <- var_cov$subs(Covariance(ubar2, vbar), covar_u2_v)</pre>
var_cov <- var_cov$subs(Covariance(vbar2, ubar), covar_v2_u)</pre>
var_cov <- var_cov$subs(Covariance(ubar2, vbar2), covar_u2_v2)</pre>
var_cov <- var_cov$subs(Covariance(uvbar, ubar), covar_uv_u)</pre>
var_cov <- var_cov$subs(Covariance(uvbar, vbar), covar_uv_v)</pre>
var_cov <- var_cov$subs(Covariance(uvbar, vbar2), covar_uv_v2)</pre>
var_cov <- var_cov$subs(Covariance(uvbar, ubar2), covar_uv_u2)</pre>
#Further simplification
var_cov <- Simplify(var_cov)</pre>
#Transform the symbolic algebra into an R function
variable_list <- append(variable_list, list("var_cov" = var_cov))</pre>
exp <- pasteO("lambdify((mu_u, mu_v, mu_uv, mu_u2, mu_v2, sigma_u, sigma_v, sigma_uv,",
               "sigma_u2, sigma_v2, cov_u_v, cov_uv_u, cov_uv_v, cov_v_v2,",
               "cov_u_u2, cov_uv_u2,",
               "cov_uv_v2, cov_u2_v2, cov_u2_v, cov_v2_u, N","), var_cov)")
var_cov <- Parse(exp, local_dict = variable_list)</pre>
#You can check the variance function works as intended:
samples <- 1000
rho
        <- 0.83
        <- mvrnorm(n=samples, mu=c(0, 0), Sigma=matrix(c(1, rho, rho, 1), nrow=2))</pre>
colnames(data) <- c("U","V")</pre>
rho_hat <- cov(data[,"U"], data[,"V"])</pre>
variance_rho <- var_cov(</pre>
 mu_u = mean(data[,"U"]),
mu_v = mean(data[,"V"]),
```

```
= mean(data[,"U"]*data[,"V"]),
  mu_uv
          = mean(data[,"U"]^2),
  mu_u2
  mu_v^2 = mean(data[,"V"]^2),
  sigma_u = sd(data[,"U"]),
  sigma_v = sd(data[,"V"]),
  sigma_uv = sd(data[,"U"]*data[,"V"]),
  sigma_u2 = sd(data[,"U"]^2),
  sigma_v2 = sd(data[,"V"]^2),
  cov_u_v = cov(data[,"U"],data[,"V"]),
  cov_uv_u = cov(data[,"U"]*data[,"V"],data[,"U"]),
  cov_uv_v = cov(data[,"U"]*data[,"V"],data[,"V"]),
  cov_v_v2 = cov(data[,"V"],data[,"V"]^2),
  cov_u_u2 = cov(data[,"U"],data[,"U"]^2),
  cov_uv_u2 = cov(data[,"U"]*data[,"V"],data[,"U"]^2),
  cov_uv_v2 = cov(data[,"U"]*data[,"V"],data[,"V"]^2),
  cov_u2_v = cov(data[,"U"]^2,data[,"V"]),
  cov_v2_u = cov(data[,"V"]^2,data[,"U"]),
  cov_u2_v2 = cov(data[,"U"]^2,data[,"V"]^2),
 N = samples
#Confidence interval
rho_hat + qnorm(1 - 0.975/2)*sqrt(variance_rho)
## [1] 0.8367203
rho_hat - qnorm(1 - 0.975/2)*sqrt(variance_rho)
## [1] 0.8359433
```

Summary (steps)

We can summarize the previous results in the following steps. Note that the code will not work as no function f is specified:

1. Instantiate the estimator $\hat{\theta}$ of θ as random variable and θ as constant.

```
theta <- Symbol('theta')
theta_hat <- RandomSymbol('theta_hat')

variable_list <- list("theta" = theta, "theta_hat" = theta_hat)</pre>
```

2. Create the function ϕ whose variance is to be estimated. In this example it is θ^2 .

3. Obtain ϕ 's derivative

```
phi_prime <- Derivative(phi, list(theta))
variable_list <- append(variable_list, list("phi_prime" = phi_prime))
phi_prime <- Parse("Matrix(phi_prime)", local_dict = variable_list)</pre>
```

4. Obtain the direction vector v

```
v <- Parse("Matrix([theta_hat - theta])", local_dict = variable_list)</pre>
```

5. Get the dot product:

```
hadamard <- phi_prime$dot(v)
```

6. Calculate the variance

```
#Get the variance of gradient
variance_f <- Variance(hadamard)$expand() |> Simplify()
```

7. Replace the variance of the estimator by the new variable

```
sigma_thetahat <- Parse("sigma_thetahat**2", local_dict = variable_list)
variance_f <- variance_f$subs(Variance(theta_hat), sigma_thetahat)</pre>
```

7. Conver to R function

8. Enjoy!

```
variance_function(theta = 3, sigma_thetahat = 0.01)
```

```
## [1] 0.0036
```

Installation

Installing R

Go to https://cran.r-project.org/ and choose your operating system.

- If using Windows select this option, then choose base and download the exe file.
- If using Mac select this option, then choose the option based on your processor (Intel or ARM). To see what processor you have go to About this Mac and check the **processor**.
- If using Linux the suggested way is to download the binaries from CRAN as the ones you get from the package managers (apt, yum, etc) are usually old.

Suggestion RStudio

RStudio is an integrated development environment for R (*i.e.* its an editor that allows you to work better on your scripts). It needs to be installed separately from R (you need both installations). To install go to https://www.rstudio.com/products/rstudio/download/ and choose the Free Desktop version.

Installing R packages

Open R (or RStudio) if installed and write install.packages(c("reticulate","caracas")) on the console and wait for installation.

Installing Python

Python already comes installed with your operating system; however we suggest an additional (separate) installation using Anaconda. To install go to https://www.anaconda.com/products/individual. Anaconda comes bundled with a bunch of data science tools that are not required for this tutorial: if you'd prefer a meager installation you can install Miniconda https://docs.conda.io/en/latest/miniconda.html. For both installations the process that follows is the same. We'll refer to both as conda.

Please make sure you are installing a conda version corresponding to Python >= 3.5 (i.e. any Python version greater than 3.5 like 3.6, 3.7 are great for this.)

Creating a conda environment

Once conda is installed open Anaconda Prompt (Windows) or Terminal (Mac). Write:

```
conda create -y --name DeltaMethod python=3.9
```

to create a new environment called DeltaMethod. Write

```
conda env list
```

to get the path to your environment. For example my path is /usr/local/Caskroom/miniconda/base/envs/DeltaMethod.

We'll use this environment in the R code. Before loading library caracas, at the beginning of the code, write:

```
Sys.setenv(RETICULATE_PYTHON = "path/to/your/environment/bin/python")
```

for example, in my computer it ends up like this:

```
Sys.setenv(RETICULATE_PYTHON = "/usr/local/Caskroom/miniconda/base/envs/DeltaMethod/bin/python")
```

to verify that the environment is set check its in python and libpython:

```
reticulate::py_config()
```

```
## python: /usr/local/Caskroom/miniconda/base/envs/DeltaMethod/bin/python
```

libpython: /usr/local/Caskroom/miniconda/base/envs/DeltaMethod/lib/libpython3.9.dylib

pythonhome: /usr/local/Caskroom/miniconda/base/envs/DeltaMethod:/usr/local/Caskroom/miniconda/ba

version: 3.9.7 | packaged by conda-forge | (default, Sep 29 2021, 19:23:19) [Clang 11.1.0]
numpy: /usr/local/Caskroom/miniconda/base/envs/DeltaMethod/lib/python3.9/site-packages/nump

numpy_version: 1.21.4

##

NOTE: Python version was forced by RETICULATE_PYTHON

Installing Sympy

To install Sympy ensure you are using a version >= 1.9. Go to Anaconda Prompt (Terminal) and activate the environment:

```
conda activate DeltaMethod
```

Finally, install sympy and numpy in the environment

```
conda install -y -c conda-forge sympy">=1.9" numpy
```

Warning If R or RStudio was already open before completing installation you'll need to restart them.