Примерно компютърно контролно по ИО

Зад. 1. Като се използва Solver на MS Excel, да се намери оптимално решение и оптимална стойност на целевата функция за задачата:

$$\min z(x_1, x_2, x_3, y_1, y_2, y_3) = 300x_1 + 400x_2 + 200x_3 + 5000y_1 + 4000y_2,$$

$$x_1 + x_2 + x_3 = 1500,$$

$$x_1 - 1000y_1 \le 0,$$

$$x_2 - 1000y_2 \le 0,$$

$$x_1 \le 300,$$

$$x_2 \le 500,$$

$$x_3 \le 800,$$

$$x_i \ge 0, i = 1, 2, 3; x_3 - \text{пяло}; y_1, y_2 \in \{0, 1\}$$

Зад. 2. За обслужване на своите клиенти, куриерски офис се нуждае от различен брой служители през различните дни от седмицата. Броят служители, необходими през всеки от дните, е даден в следната таблица:

Ден от	Брой необходими
седмицата	служители
понеделник	12
вторник	10
сряда	7
четвъртък	9
петък	8
събота	5
неделя	4

Според Кодекса на труда, всеки служител на пълен работен ден, след като работи пет последователни дни, трябва да почива два дни. Например, служител, работил в дните от четвъртък до понеделник включително, трябва да почива във вторник и сряда. Куриерският офис желае да наеме само служители на пълен работен ден. Да се формулира линеен оптимизационен модел (без да се решава!), чрез който куриерският офис да минимизира разходите си, ако е известно, че дневната надница на всеки служител е 100 лв, ако той работи в дните от понеделник до петък и 140 лв, ако той работи събота или неделя.

Зад. 3. Фабрика за дребни машинни детайли произвежда 4 типа такива – тип A, тип B, тип C и тип D. Цените, на които фабриката продава по

един брой от всеки тип, са съответно \$16, \$10, \$16 и \$15. Всеки детайл се произвежда от 1 брой стандартна заготовка, каквито има налични общо 250, и се обработва от две машини. Целта на фабриката е да максимизира своя приход, взимайки предвид ограниченото налично машинно време (съответно 75 и 48 часа за двете машини), както и времето, необходимо за обработка на един детайл от всеки тип от всяка машина. Математическият модел на тази задача, е следният:

$$\max z = 16x_A + 10x_B + 16x_C + 15x_D,$$

$$0, 4x_A + 0, 2x_B + 0, 15x_C + 0, 3x_D \le 75,$$

$$0, 35x_A + 0, 2x_B + 0, 3x_C + 0, 15x_D \le 48,$$

$$x_A + x_B + x_C + x_D \le 250,$$

$$x_A \ge 0, x_B \ge 0, x_C \ge 0, x_D \ge 0.$$

Задачата е решена с Excel Solver и по-долу е даден полученият анализ на чувствителността:

V	ar	ia	h	le	Ce	lls

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$7 T	Гип А	0	-0.333333333	16	0.333333333	1E+30
\$C\$7 1	Гип В	0	-5.333333333	10	5.333333333	1E+30
\$D\$7 1	Гип С	70	0	16	14	0.25
\$E\$7 T	Гип D	180	0	15	1	7

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$F\$3	Машина М1 (ч)	64.5	0	75	1E+30	10.5
\$F\$4	Машина М2 (ч)	48	6.666666667	48	27	10.5
\$F\$5	Брой заготовки	250	14	250	23.33333333	90

Отговорете възможно най-пълно на въпросите от долните подусловия, като имате предвид, че всяко подусловие е независимо (десетичните дроби могат да се закръгляват като $0,333...\approx1/3,0,666...\approx2/3$):

- (a) Ако фабриката "закупи" още 24 часа производствено време на машина M2, плащайки за това \$100, ще увеличи прихода си с \$50;
- (б) Ще се промени ли оптималния базис, ако наличното време на M1 стане 60 ч.;
- (в) Ако един брой детайл тип В поскъпне до \$14, за фабриката все така няма да е изгодно да произвежда детайли от този тип.