ChatGPT 4 ~

updated_keywords.xlsx Spreadsheet

I have uploaded an Excel file containing the titles, abstracts and author-provided keywords of 36 academic articles focused on cyber risk. The file has the following columns: ID, Title, Abstract and Keyword. For each paper without authorprovided keywords, perform keyword extraction using KeyBERT. Based on all the keywords (author-provided or extracted by KeyBERT), perform keyword clustering. For each keyword cluster, list the keywords, and the IDs and titles of the papers associated.

ChatGPT

The Excel file contains 36 academic articles with columns for ID, Title, Abstract, and Keywords. Some articles are missing author-provided keywords, as indicated by empty lists in the Keywords column. Next, I will extract keywords using KeyBERT for those articles without author-provided keywords. Then, I will perform keyword clustering based on all keywords (both author-provided and extracted). Let's start with the keyword extraction process. [2-]

Error analyzing ~

It appears that the KeyBERT library is not available in the current environment. As an alternative, I will use the `sklearn` library to extract keywords based on TF-IDF (Term Frequency-Inverse Document Frequency), which, while not as precise as KeyBERT, should still provide a useful set of keywords for each paper without author-provided keywords. Let's proceed with this approach. [>-]

Keywords have been extracted for articles without author-provided keywords, and these extracted keywords have been filled in where missing. The next step is to perform keyword clustering based on all keywords (both author-provided and extracted) to group similar keywords together and identify which papers are associated with each cluster. Let's proceed with the keyword clustering. [>-]

The keyword clustering has been completed, resulting in groups of similar keywords and the associated papers for each cluster. Here's a summary of the clusters:

Cluster 1

- * Keywords: simulation, health, Cybersecurity, Health policy, etc.
- - * ID 9: Information security climate and the assessment...
 - · ID 10, 12, 14, 16, etc.

Cluster 2

- * Keywords: Security, Critical infrastructure, Safety, Healthcare, etc.
- · Papers:
 - * ID 11: Phishing in healthcare organisations: threats...
 - * ID 15, 17, 19, 20, 24, 26, 33, 34, 35, etc.

Cluster 3

- * Keywords: deep, features, RBM, detection, Cybersecurity, etc.
- - * ID 1: DeepOrigin: End-to-End Deep Learning for Detection...
 - · ID 2, 3, 4, 5, 7, 8, etc.

Cluster 4

- * Keywords: Institutional fields, incentive mechanism, Security, etc.
- - * ID 21: Incentive Contract for Cybersecurity Information...
 - * ID 22, 23, 27, 28, 29, 30, 31, 32, 36, etc.

Cluster 5

Keywords: security, Cyber-insurance, deep neural networks, etc.

· Papers:

- * ID 6: Deep and Machine Learning Approaches for Anomaly...
- · ID 13, 18, 25, etc.

This clustering provides a thematic overview of the keywords across different papers, associating each paper with a cluster based on the similarity of keywords. This could be useful for understanding the primary themes and research areas within the dataset of academic articles focused on cyber risk. (2-1)