Espectro de um sinal

Data: <u>14-10-2022</u>

Tags: #FCD #SoftwareEngineering #uni

AMOSTRAGEM

A operação de amostragem do sinal x(t) consiste em tomar os valores do sinal em instantes regularmente espaçados no tempo e considerar que nos intervalos de tempo entre esses instantes o sinal tem amplitude nula.

o período de amostragem que designaremos por T_a e cujo inverso é a frequência de amostragem em Hertz, $f_a=1/T_a$ Hz.

(1) Pulse Amplitude Modulation

ESPECTRO Define representation of general regularies of a sum of sinusoids Any x(t) can be described on $0 \le t \in T$ using 2 a sum of sinusoids $x(t) = A_0 + A_1 \cos(2\pi f_1 t + \phi) + A_2 \cos(2\pi f_2 t + \phi_2)$ $x(t) = A_0 + A_1 \cos(2\pi f_1 t + \phi) + A_2 \cos(2\pi f_2 t + \phi_2)$ $x(t) = A_0 + A_1 \cos(2\pi f_1 t + \phi) + A_2 \cos(2\pi f_2 t + \phi_2)$ (may require N large) $x(t) = A_0 + A_1 \cos(2\pi f_1 t + \phi_1) + A_2 \cos(2\pi f_2 t + \phi_2)$ (may require N large) $x(t) = A_0 + A_1 \cos(2\pi f_1 t + \phi_1) + A_2 \cos(2\pi f_2 t + \phi_2)$ $x(t) = A_0 + A_1 \cos(2\pi f_1 t + \phi_1) + A_2 \cos(2\pi f_2 t + \phi_2)$ Varies w. time t varies w. frequency f_k Spectrum X(t) uses A_k, b_k to represent x(t) as

EXAMPLE:

$$x(t) = A \cos(2\pi j_0 t + \Phi)$$

Graph Spectrum X(g)
Decompose $x(t)$ (EULER EXPANSION)

a function of frequency

Euler expansion:

$$\chi(t) = \frac{A}{2} e^{j2\pi f_{0}t} + \frac{A}{2} e^{j(2\pi f_{0}t + \phi)}$$

$$= \frac{A}{2} e^{j\phi} e^{j2\pi f_{0}t} + \frac{A}{2} e^{-j\phi} e^{-j2\pi f_{0}t}$$

$$\chi(t) = \begin{cases} A/2 e^{j\phi}, & f = f_{0} \\ A/2 e^{-j\phi}, & f = -f_{0} \end{cases}$$

General case $\chi(t) = A_{o} + \sum_{k=1}^{N} A_{k} \cos(2\pi f_{k} t + \phi_{k})$ $= A_{o} + \sum_{k=1}^{N} \left(\frac{A_{k}}{2} e^{j\phi_{k}} e^{j2\pi f_{k} t} + \frac{A_{k}}{2} e^{j\phi_{k}} e^{-j2\pi f_{k} t} \right)$ $= a_{o} + \sum_{k=1}^{N} \left(a_{k} e^{j2\pi f_{k} t} + a_{k}^{\chi} e^{-j2\pi f_{k} t} \right)$ $= a_{o} = A_{o}, \quad a_{k} = \frac{A_{k}}{2} e^{j\phi_{k}}$ $a_{n}^{\chi} = a_{n}^{\chi(f)} a_$

Example: Saxophone Concert A (440 Hz)

frequency components at 440, 880, 1320, etc amplitude of 1320 > amplitude of 880 Example: $\chi(t) = 3 + 2\cos(20\pi t + \pi/s) + \cos(30\pi t - \pi/s)^{6}$ Graph $\chi(t)$. $\chi(t) = 3 + \frac{2}{2}e^{i\pi/3}e^{j2\pi i0t} + \frac{2}{2}e^{i\pi/3}e^{-j2\pi i0t}$ α_{0} α_{1} α_{1} α_{2} α_{3} α_{4} α_{5} α_{1} α_{1} α_{1} α_{2} α_{3} α_{5} α_{6} α_{7} α_{1} α_{1} α_{1} α_{1} α_{2} α_{3} α_{4} α_{5} α_{1} α_{1} α_{2} α_{3} α_{4} α_{5} α_{5} α_{6} α_{7} α_{1} α_{1} α_{1} α_{2} α_{3} α_{4} α_{5} α_{5} α_{6} α_{7} α_{1} α_{1} α_{1} α_{2} α_{3} α_{4} α_{5} α_{5} α_{6} α_{7} α_{1} α_{1} α_{2} α_{3} α_{4} α_{5} α_{5} α_{6} α_{7} α_{1} α_{1} α_{1} α_{2} α_{3} α_{4} α_{5} α_{5} α_{6} α_{7} α_{1} α_{1} α_{2} α_{3} α_{4} α_{5} α_{5} α_{6} α_{7} α_{1} α_{1} α_{1} α_{2} α_{3} α_{4} α_{5} α_{5} α_{6} α_{7} α_{1} α_{1} α_{1} α_{2} α_{3} α_{4} α_{5} α_{5} α_{6} α_{7} α_{1} α_{1} α_{2} α_{3} α_{4} α_{5} α_{5} α_{6} α_{7} α_{7} α_{1} α_{1} α_{2} α_{3} α_{4} α_{5} α_{5} α_{5} α_{6} α_{7} α_{7} α_{1} α_{1} α_{2} α_{3} α_{4} α_{5} $\alpha_$