## Sheaves jn Geometry and Logic

Sanders Mac Lane & Leke Moerdijk April 14, 2020

## Contents

| 1 | Categorical Preliminaries | 3  |
|---|---------------------------|----|
| 2 | Index                     | 9  |
|   |                           | 10 |

## 1 Categorical Preliminaries

A category C consists of a collection of **objects**, a collection of **morphisms** and four operations; two of these operations associate with each morphism f of C its **domain**  $\operatorname{dom}(f)$  or  $\operatorname{d}_0(f)$  and its **codomain**  $\operatorname{cod}(f)$  or  $\operatorname{d}_1(f)$ , respectively, both of which are objects of C. The other two operations are operation which associates with each object C of C a morphism  $1_C$  (or  $\operatorname{id}_C$ ) of C called the **identity morphism** of C and an operation of C s.t.  $\operatorname{d}_0(f) = \operatorname{d}_1(g)$  another morphism  $f \circ g$ . These operations are required to satisfy the following axioms

- 1.  $d_0(1_C) = C = d_1(1_C)$
- 2.  $d_0(f \circ g) = d_0(g), d_1(f \circ g) = d_1(f)$
- 3.  $1_D \circ f = f, f \circ 1_C = f$
- 4.  $(f \circ g) \circ h = f \circ (g \circ h)$

In an arbitrary category  ${\bf C}$ , a morphism  $f:C\to D$  in  ${\bf C}$  is called an **isomorphism** if there exists a morphism  $g:D\to C$  s.t.  $f\circ g=1_D$  and  $g\circ f=1_C$ . If such a morphism f exists, one says that C is isomorphic to D and one writes  $f:C\xrightarrow{\sim} D$  and  $C\cong D$ 

A morphism  $f:C\to D$  is called an **epi(morphism)** if for any object E and any two parallel morphisms  $g,h:D\rightrightarrows E$  in  ${\bf C},\,gf=hf$  implies g=h; one writes  $f:C\to D$  to indicate that f is an epimorphism. Dually,  $f:C\to D$  is called a **mono(morphism)** if for any object B and any two parallel morphisms  $g,h:B\rightrightarrows C$  in  ${\bf C},\,fg=fh$  implies g=h; in this case, one writes  $f:C\to D$ . Two monomorphisms  $f:A\to D$  and  $g:B\to D$  with a common codomain D are called **equivalent** if there exists an isomorphism  $h:A\overset{\sim}{\to}B$  with gh=f. A **subobject** of D is an equivalence class of monomorphisms into D. The collection  $\operatorname{Sub}_{\bf C}(D)$  of subobjects of D carries a natural partial order defined by  $[f]\leq [g]$  iff there is an  $h:A\to B$  s.t. f=gh, where [f] and [g] are the classes of  $f:A\to D$  and  $g:B\to D$ 



If C is a category, we sometimes write  $C_0$  for its collection of objects and  $C_1$  for its collection of mophisms. For two objects C and D, the collection of morphisms with domain C and codomain D is denoted by one of the following three symbols

$$\operatorname{Hom}_{\mathbf{C}}(C,D), \quad \operatorname{Hom}(C,D), \quad \mathbf{C}(C,D)$$

We shall tacitly assume we are working in some fixed universe U of sets. Members of U are then called **small** sets, whereas a collection of members of U which doesnot itself belong to U will sometimes be referred to as a **large** set. Given such an ambient universe U, a category  $\mathbf{C}$  is **locally small** if for any two objects C and D of  $\mathbf{C}$  the hom-set  $\mathrm{Hom}_{\mathbf{C}}(C,D)$  is a small set, while  $\mathbf{C}$  is called **small** if both  $\mathbf{C}_0$  and  $\mathbf{C}_1$  are small sets.

Given a category C, one can form a new category  $C^{op}$ , called the **opposite** or **dual** category of C, by taking the same objects but reversing the direction of all the morphisms and the order of all compositions.

Given a category  ${\bf C}$  and an object C of  ${\bf C}$ , one can construct the **comma category** or the **slice category**  ${\bf C}/C$  (read:  ${\bf C}$  over C): object of  ${\bf C}/C$  are morphisms of  ${\bf C}$  with codomain C, and morphisms in  ${\bf C}/C$  from one such object  $f:D\to C$  to another  $g:E\to C$  are commutative triangles in  ${\bf C}$ 



Given two categories  ${\bf C}$  and  ${\bf D}$ , a **functor** from  ${\bf C}$  to  ${\bf D}$  is an operation F which assigns to each objects C of  ${\bf C}$  an object F(C) of  ${\bf D}$  and to each morphism f of  ${\bf C}$  a morphism F(f) of  ${\bf D}$  in such a way that F respects the domain and codomain as well as the identities and compositions.

For a category C there is an **identity functor**  $id_C : C \to C$ , and for two functors  $F : C \to D$  and  $G : D \to E$  one can form a new functor  $G \circ F : C \to E$  by **composition** 

Let F and G be two functors from a category  $\mathbf{C}$  to a category  $\mathbf{D}$ . A **natural transformation**  $\alpha$  from F to G, written  $\alpha: F \to G$ , is an operation associating with each object C of  $\mathbf{C}$  a morphism  $\alpha_C: FC \to GC$  of  $\mathbf{D}$  in such a way that for any morphism  $f: C' \to C$  in  $\mathbf{C}$ , the diagram

$$FC' \xrightarrow{\alpha_{C'}} GC'$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$FC \xrightarrow{\alpha_C} GC$$

commutes. The morphism  $\alpha_C$  is called the **component** of  $\alpha$  at C. If every component of  $\alpha$  is an isomorphism,  $\alpha$  is said to be a **natural isomorphism**.

If  $\alpha: F \to G$  and  $\beta: G \to H$  are two natural transformation between functors  $\mathbf{C} \to \mathbf{D}$ , one can define composite natural transformation  $\beta \circ \alpha$  by setting

$$(\beta \circ \alpha)_C = \beta_{G(C)} \circ \alpha_C$$

By fixed categories C and D this yields a new category  $D^C$ : the objects of  $D^C$  are functors from C to D while the morphisms of  $D^C$  are natural transformations between such functors. Categories so constructed are called functor categories

For categories **C** and **D**, a functor  $F: \mathbf{C}^{\mathrm{op}} \to \mathbf{D}$  is also called a **contravariant functor** from **C** to **D**. In contrast, ordinary functors from **C** to **D** are sometimes called \*covariant. Thus  $C' \mapsto \mathrm{Hom}_{\mathbf{C}}(C',C)$  for fixed C yields a contravariant functor from **C** to **Sets**, while  $C \mapsto \mathrm{Hom}_{\mathbf{C}}(C',C)$  for fixed C' is the covariant Hom-functor.

$$C' \longrightarrow \operatorname{Hom}_{\mathbf{C}}(C', C)$$

$$\downarrow \qquad \qquad \downarrow$$

$$C'' \longrightarrow \operatorname{Hom}_{\mathbf{C}}(C'', C)$$

A functor  $F : \mathbf{C} \to \mathbf{D}$  is called **full** (respectively **faithful**) if for any two objects C and C' of  $\mathbf{C}$ , the operation

$$\operatorname{Hom}_{\mathbf{C}}(C',C) \to \operatorname{Hom}_{\mathbf{D}}(FC',FC); \quad f \mapsto F(f)$$

induced by F is surjective (respectively injective). A functor  $F: \mathbf{C} \to \mathbf{D}$  is called an **equivalence of categories** if F is full and faithful and if any object of  $\mathbf{D}$  is isomorphic to an object in the image of F. For example, if  $F: \mathbf{C} \to \mathbf{D}$  is a functor s.t. there exists a functor  $G: \mathbf{D} \to \mathbf{C}$  and natural isomorphism  $\alpha: F \circ G \xrightarrow{\sim} \mathrm{id}_{\mathbf{D}}$  and  $\beta: G \circ F \xrightarrow{\sim} \mathrm{id}_{\mathbf{C}}$ , then F is an equivalence (and G is sometimes called a **quasi-inverse** for F).

We say that an object X equipped with morphsims  $\pi_1: X \to A$  and  $\pi_2: X \to B$  is a **product** of A and B if for any other object Y and any two maps  $f: Y \to A$  and  $g: Y \to B$  there is a **unique** map  $h: Y \to X$  s.t.  $\pi_1 \circ h = f$  and  $\pi_2 \circ h = g$  [this unique is denoted by  $(f,g): Y \to X$  or sometimes  $\langle f,g \rangle$ ]

$$A \xleftarrow{f} f, g \downarrow \downarrow \qquad g$$

$$A \xleftarrow{\pi_1} X \xrightarrow{\pi_2} B$$

A product of an I-indexed family  $A_i$  is written  $\prod_i A_i$ . For a poset  $(P, \leq)$  viewed as a category in the way explained above, the product of two objects p and q is their infimum, which may or may not exist.

The singleton set  $\{*\}$  is the set S, unique up to isomorphism, for which there is exactly one morphism  $A \to S$  from any other set A into S. In an arbitrary category  $\mathbf{C}$ , an object C with the property that for any other object D of  $\mathbf{C}$  there is one and only one morphism from D to C is called a **terminal object** of C. It's often denoted by 1 or by  $1_{\mathbf{C}}$ 

Given two functions  $f: B \to A$  and  $g: C \to A$  between sets, one may construct their **fibered product** (or **pullback**) as the set

$$B \times_A C = \{(b, c) \in B \times C \mid f(b) = g(c)\}\$$

Thus  $B \times_A C$  is a subset of the product, and therefore comes equipped with two **projections**  $\pi_1: B \times_A C \to B$  and  $\pi_2: B \times_A C \to C$  which fit into a commutative diagram

$$\begin{array}{ccc} B \times_A C & \xrightarrow{\pi_2} & C \\ \downarrow^{\pi_1} & & \downarrow^g \\ B & \xrightarrow{f} & A \end{array}$$

This diagram has the property that given any other set X and functions  $\beta: X \to B$  and  $\gamma: X \to C$  s.t.  $f\beta = g\gamma$ , there is a unique function  $\delta: X \to B \times_A C$  with  $\pi_1 \delta = \beta$  and  $\pi_2 \delta = \gamma$  [namely  $\delta(x) = (\beta(x), \gamma(x))$ ]

In a general category C, one says that a commutative square

$$P \xrightarrow{q} C$$

$$\downarrow g$$

$$B \xrightarrow{f} A$$

is a **pullback** (square) or a fibered product if it has the property just described for sets: given any object X of  $\mathbf C$  and morphisms  $\beta: X \to B$  and  $\gamma: X \to C$  with  $f\beta = g\gamma$ , there is a unique  $\delta: X \to P$  s.t.  $p\delta = \beta$  and  $q\delta = \gamma$ 



This unique map  $\delta$  is usually denoted by  $(\beta,\gamma)$ . Given  $f:B\to A$  and  $g:C\to A$ , the pullback P with its projections P and q is uniquely determined up to isomorphism and one usually writes  $B\times_A C$  for this pullback. We also says that the arrow p is the pullback of g along f. Notice that p is a monomorphism if g is. A morphism  $f:B\to A$  in a category  ${\bf C}$  is a monomorphism iff the pullback of f along itself is an isomorphism, iff the square

$$\begin{array}{ccc}
B & \xrightarrow{1} & B \\
\downarrow^{1} & & \downarrow^{f} \\
B & \xrightarrow{f} & A
\end{array}$$

is a pullback

*Proof.*  $1 \rightarrow 2$ . Consider



We have g(g'g) = gg'g = (gg')g = g, hence g'g = 1 $2 \rightarrow 3$ .  $\lambda$  has inverse g



 $3 \rightarrow 1$ .

There is an important "pasting-lemma" for pullback squares. Given a commutative diagram of the form

$$\begin{array}{ccc}
Q \longrightarrow P \longrightarrow D \\
\downarrow & & \downarrow \\
C \longrightarrow B \longrightarrow A
\end{array}$$

the outer rectangle is a pullback if both inner squares are pullbacks; and conversely, if the outer rectangle as well as the right-hand square pullbacks, then so is the left-hand square

For two parallel arrows  $f:A\to B$  and  $g:A\to B$  in a category  ${\bf C}$ , the **equalizer** of f and g is a morphism  $e:E\to A$  s.t. fe=ge and which is universal with this property; that is, given any other morphism  $u:X\to A$  in  ${\bf C}$  s.t. fu=gu, there is a unique  $v:X\to E$  s.t. ev=u

$$E \xrightarrow{e} A \xrightarrow{g} B$$

$$\downarrow v \downarrow u$$

$$X$$

Equalizer need not always exists. However, in the category of sets the equalizer of any pair of functions  $f,g \rightrightarrows B$  exists, and can be constructed be the set

$$E = \{a \in A \mid f(a) = g(a)\}$$

where e is set inclusion

Consider two categories  $\boldsymbol{A}$  and  $\boldsymbol{X}$  and two functors between them in opposite directions, say

$$F: \mathbf{X} \to \mathbf{A} \quad G: \mathbf{A} \to \mathbf{X}$$

One says that G is **right adjoint** to F (and that F is **left adjoint** to G, notation  $F \dashv G$ ) when for any two objects X from X and A from A there is a natural bijection between morphisms

$$\frac{X \xrightarrow{f} GA}{FX \xrightarrow{h} A} \tag{1}$$

in the sense that each morphism f uniquely determines a morphism h, and conversely. This bijection is to be natural in the following sense: given any morphisms  $\alpha:A\to A'$  in  $\mathbf A$  and  $\xi:X'\to X$  in  $\mathbf X$ , and corresponding arrows f and h composites also correspond

$$\frac{X' \xrightarrow{\xi} X \xrightarrow{f} GA \xrightarrow{G\alpha} GA'}{FX' \xrightarrow{F\xi} FX \xrightarrow{h} A \xrightarrow{\alpha} A'}$$

If we write this bijective correspondence as

$$\theta: \operatorname{Hom}_{\mathbf{X}}(X, GA) \xrightarrow{\sim} \operatorname{Hom}_{\mathbf{A}}(FX, A)$$
 (2)

then this naturality condition can be expressed by the equation

$$\theta(G(\alpha) \circ f \circ \xi) = \alpha \circ \theta(f) \circ F(\xi)$$

Given  $\theta$  as in (2), and an object X in X, setting A = FX gives a unique map

$$\eta = \eta_X : X \to GFX$$

s.t.  $\theta(\eta_X) = 1_{F(X)}$ . This map  $\eta_X$  is called the **unit** of the adjunction (at X). If one takes  $\xi = 1_X$ , A = FX,  $f = \eta$ ,  $\alpha = 1_A$  and A' = A, then

$$\frac{X \xrightarrow{1_X} X \xrightarrow{\eta} GFX \xrightarrow{Gh} GA}{FX \xrightarrow{F1_X} FX \xrightarrow{h} A \xrightarrow{1_A} A}$$

In short,  $\eta$  determined the adjunction, since h corresponds to  $G(h) \circ \eta_X$  under the correspondence (1). This means that each f determines uniquely an h which makes the following triangle commutes.

$$X \xrightarrow{\eta} GFX \quad FX$$

$$\downarrow_{Gh} \quad \downarrow$$

$$GA \quad A$$

## 2 Index

| E                         | N                       |  |
|---------------------------|-------------------------|--|
| equalizer 8 equivalent 3  | natural transformation4 |  |
| <b>F</b> faithful functor | <b>P</b> pullback6      |  |
| L<br>locally small 4      | Subobject               |  |