Linear equation solvers Iterative methods

Ivo Roghair, Martin van Sint Annaland

Chemical Process Intensification, Eindhoven University of Technology

Today's outline

- Introduction
- 2 Sparse matrices
- 3 Laplace's equation
- 4 Creating a sparse system
- 6 Iterative methods
- **6** Summary

Today's outline

- Introduction
- 2 Sparse matrices
- 3 Laplace's equation
- 4 Creating a sparse system
- 6 Iterative methods
- **6** Summary

Sparse matrices

- In many engineering cases, we deal with sparse matrices (as opposed to dense matrices)
- A matrix is sparse when it mostly consists of zeros
- Linear systems where equations depend on a limited number of variables (e.g. spatial discretization)
- Storing zeros is not very efficient:

```
>> A = eye(10000);
>> whos A
>> S = sparse(A);
>> whos S
```

- Can you think of a way to achieve this?
- Sparse matrix formats: Yale, CRS, CCS

Sparse matrix storage format

 Example: Yale storage format, storing 3 vectors:

- A = [5836]
- $IA = [0 \ 0 \ 2 \ 3 \ 4]$
- JA = [0 1 2 1]

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 5 & 8 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 6 & 0 & 0 \end{bmatrix}$$

- A stores the non-zero values
- TA stores the index in A of the first non-zero in row i
- JA stores the column index
- Note: zero-based indices are used here!

Sparse matrix layout examples

Today's outline

- Introduction
- 2 Sparse matrices
- 3 Laplace's equation
- 4 Creating a sparse system
- 6 Iterative methods
- **6** Summary

$$\begin{split} \frac{\partial T}{\partial t} &= \alpha \nabla^2 T \\ T &= \text{Temperature} \\ \alpha &= \text{Thermal diffusivity} \end{split}$$

$$\frac{\partial T}{\partial t} = \alpha \nabla^2 T$$

$$T = \text{Temperature}$$

$$\alpha = \text{Thermal diffusivity}$$

Laplace's equation

$$\begin{split} \frac{\partial T}{\partial t} &= \alpha \nabla^2 T \\ T &= \text{Temperature} \\ \alpha &= \text{Thermal diffusivity} \end{split}$$

In steady state:

$$\nabla^2 T = 0$$

Discretization of Laplace's equation (I)

 Define a grid of points in x and y

- Define a grid of points in x and y
- Index of the grid points using 2D coordinates i and j

Discretization of Laplace's equation (I)

- Define a grid of points in x and y
- Index of the grid points using 2D coordinates i and i
- Set up the equations using a 1D index system: $T_{i,j} = T_{i+N_{\nu}(j-1)}$

Discretization of Laplace's equation (II)

Estimate the second-order differentials: assume a piece-wise linear profile in the temperature:

Discretization of Laplace's equation (II)

Estimate the second-order differentials: assume a piece-wise linear profile in the temperature:

$$\frac{\partial^2 T}{\partial x^2} \approx \frac{\frac{\partial T}{\partial x}\Big|_{i+\frac{1}{2}} - \frac{\partial T}{\partial x}\Big|_{i-\frac{1}{2}}}{\Delta x}$$

$$\approx \frac{\frac{\left(T_{i+1,j} - T_{i,j}\right)}{\Delta x} - \frac{\left(T_{i,j} - T_{i-1,j}\right)}{\Delta x}}{\Delta x}$$

$$= \frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{(\Delta x)^2}$$

The *y*-direction is derived analogously, so that the 2D Laplace's equation is discretized as:

$$\frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{(\Delta x)^2} + \frac{T_{i,j+1} - 2T_{i,j} + T_{i,j-1}}{(\Delta y)^2} = 0$$

The *y*-direction is derived analogously, so that the 2D Laplace's equation is discretized as:

$$\frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{(\Delta x)^2} + \frac{T_{i,j+1} - 2T_{i,j} + T_{i,j-1}}{(\Delta y)^2} = 0$$

Use a single index counter $k = i + N_x(j-1)$, so that the equation becomes:

$$\frac{T_{k+1} - 2T_k + T_{k-1}}{(\Delta x)^2} + \frac{T_{k+N_x} - 2T_k + T_{k-N_x}}{(\Delta y)^2} = 0$$

Discretization of Laplace's equation (III)

The y-direction is derived analogously, so that the 2D Laplace's equation is discretized as:

$$\frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{(\Delta x)^2} + \frac{T_{i,j+1} - 2T_{i,j} + T_{i,j-1}}{(\Delta y)^2} = 0$$

Use a single index counter $k = i + N_x(i-1)$, so that the equation becomes:

$$\frac{T_{k+1} - 2T_k + T_{k-1}}{(\Delta x)^2} + \frac{T_{k+N_x} - 2T_k + T_{k-N_x}}{(\Delta y)^2} = 0$$

For an equal spaced grid $\Delta x = \Delta y = 1$:

$$T_{k-N_x} + T_{k-1} - 4T_k + T_{k+1} + T_{k+N_x} = 0$$
$$\Rightarrow AT = b$$

Today's outline

- Introduction
- 2 Sparse matrices
- 3 Laplace's equation
- 4 Creating a sparse system
- 6 Iterative methods
- **6** Summary

Creating the linear system

$$T_{k-N_x} + T_{k-1} - 4T_k + T_{k+1} + T_{k+N_x} = 0$$

Create a banded matrix A: the main diagonal k contains -4, whereas the bands at k-1, k+1, $k-N_x$ and $k+N_x$ contain a 1. Boundary cells just contain a 1 on the main diagonal so that the temperature is equal to T_b (e.g. $T_1=1T_b$).

0 :	1	0 0 : 1 :	0 0 : : 1 	0 0 : -4 1 :	0 0 : 1 -4 :	0 0 : 1 :	0 0 : : 1 	 1	0 0 :: 0 ::	$\begin{bmatrix} T_1 \\ T_2 \\ \vdots \\ T_k \\ T_k + 1 \\ \vdots \\ T_{(N_y - 1)N_x} \\ T_{(N_y - 1)N_x + 1} \end{bmatrix}$	$\begin{bmatrix} T_b \\ T_b \\ \vdots \\ 0 \\ 0 \\ \vdots \end{bmatrix}$	
: 0 0	: 0 0	: 0 0	: 0 0	: 0 0	: 0 0	: 0 0	: 0 0	1 0	: 0 1	$\begin{bmatrix} \vdots \\ T_{(N_y-1)N_x} \\ T_{(N_y-1)N_x+1} \end{bmatrix}$	$\begin{bmatrix} \vdots \\ T_b \\ T_b \end{bmatrix}$	

Creating the linear system

$$T_{k-N_x} + T_{k-1} - 4T_k + T_{k+1} + T_{k+N_x} = 0$$

Create a *banded* matrix *A* in Matlab, by setting the coefficients for the internal cells:

```
Nx=5; %number of points along x direction
Ny=5; %number of points in the y direction
Nc=Nx*Ny; % Total number of points

e = ones(Nc,1);
A = spdiags([e,e,-4*e,e,e],[-Nx,-1,0,1,Nx],Nc,Nc);
b = zeros(Nc,1);
```

The function spdiags uses the following arguments:

- The coefficients that have to be put on the diagonals arranged as columns in a matrix
- The position of the bands with respect to the main diagonal
- Size of the resulting matrix (in our case square $N_x N_y \times N_x N_y$)

Creating a sparse system 0000000000

Matrix sparsity

 Let's check the matrix layout:

>> spy(A)

- This command shows the non-zero values of a matrix
- Apart from the main diagonal, there are offset bands!

About boundary conditions

For the nodes on the boundary, we have a simple equation:

$$T_{k,\text{boundary}} = \text{Some fixed value}$$

- However, we have set all nodes to be a function of their neighbors...
- Find the boundary node indices using k = i + Nx(j-1)
 - i = 1, j = 1:Ny
 - i = Nx, j = 1:Ny
 - j = 1, i = 1:Nx
 - j = Ny, i = 1:Nx
- Reset the row in A to zeros, set $A_{kk} = 1$
- Set value in rhs: $b_k = T_{k,boundary}$
- Boundary conditions are often more elaborate to implement!
 See setBoundaryConditions.m.

Partial implementation of the boundary conditions

See setBoundaryConditions.m.

```
function [A,b] = setBoundaryConditions(A,b,Tb,Nx,Ny)
% Set boundary conditions over x-direction
for i=1:Nx
   i = 1;
    ind = i + Nx * (j-1);
   A(ind,:) = 0; % Reset matrix for boudary cells
   A(ind,ind) = 1; % Add a 1 on the diagonal
   b(ind) = Tb(1);
   j = Ny;
    ind = i + Nx * (j-1);
    A(ind,:) = 0; % Reset matrix for boudary cells
   A(ind,ind) = 1; % Add a 1 on the diagonal
    b(ind) = Tb(2);
end
%% Repeat for y-direction
```

How applying boundary conditions affects the linear system

function [A,b] = setBoundaryConditions(A,b,Tb,Nx,Ny)

```
function [A,b] = setBoundaryConditions(A,b,Tb,Nx,Ny)
```

- Make sure that matrix A and right hand side vector b are in your workspace, as well as Nx and N_y
- Create a vector that holds the temperature at each boundary:

```
>> T = [10 20 30 40];
```

• Call the function, store A and b in new variables:

```
>> [A2,b2] = setBoundaryConditions(A,b,T,Nx,Ny);
```

Check the new structure of the matrix and the right hand side:

```
>> subplot(1,2,1); spy(A2);
>> subplot(1,2,2); spy(b2);
```

The program and auxiliary functions are on Canvas

```
(solveLaplaceEq.m)
function [x,y,T,A] = solveLaplaceEq(Nx,Ny)
% Solves the steady-state Laplace equation
Tb = [10 20 30 40]; % Fixed boundary temperatures
% Fill sparse matrix with [1 1 -4 1 1]
e = ones(Nx*Ny,1);
A = \text{spdiags}([e, e, -4*e, e, e], [-Nx, -1, 0, 1, Nx], Nx*Ny, Nx*Ny);
b = zeros(Nx*Ny,1);
[A,b] = setBoundaryConditions(A,b,Tb,Nx,Ny);
T = A \setminus b; % Solve matrix
Tc = reshape(T,[Nx,Ny]); % Reshape x-vec to mat Nx,Ny
[xc yc] = meshgrid(1:Nx,1:Ny); % Get position arrays
surf(xc,yc,Tc); % Surface plot
```

Solved for a 20 \times 20 system with $T_b = [10 \ 20 \ 30 \ 40]$.

LU decomposition of a sparse matrix

```
>> [L,U,P] = lu(A)
>> subplot(1,2,1)
>> spy(L)
>> subplot(1,2,2)
>> spy(U)
```

LU decomposition of a sparse matrix

```
>> [L,U,P] = lu(A)
>> subplot(1,2,1)
>> spy(L)
>> subplot(1,2,2)
>> spy(U)
```

- With LU decomposition we produce matrices that are less sparse than the original matrix.
- Sparse storage often required, and also numerical techniques that fully utilizes this!

LU decomposition

- LU decomposition and Gaussian elimination on a matrix like A requires more memory (with 3D problems, the offset in the diagonal would even be bigger!)
- In general extra memory allocation will not be a problem for MATLAB
- MATLAB is clever, in that sense that it attempts to reorder equations, to move elements closer to the diagonal)

LU decomposition

- LU decomposition and Gaussian elimination on a matrix like A requires more memory (with 3D problems, the offset in the diagonal would even be bigger!)
- In general extra memory allocation will not be a problem for MATLAB
- MATLAB is clever, in that sense that it attempts to reorder equations, to move elements closer to the diagonal)

Alternatives for elimination methods

- Use iterative methods when systems are large and sparse.
- Often such systems are encountered when we want to solve PDEs of higher dimensions

Today's outline

- Introduction
- Sparse matrices
- 3 Laplace's equation
- 4 Creating a sparse system
- 6 Iterative methods
- **6** Summary

Examples of iterative methods

- Jacobi method
- Gauss-Seidel method
- Succesive over relaxation
- bicg Bi-conjugate gradient method
- pcg preconditioned conjugate gradient method
- gmres generalized minimum residuals method
- bicgstab Bi-conjugate gradient method

The Jacobi method

In our example we derived the following equation:

$$T_{k-N_x} + T_{k-1} - 4T_k + T_{k+1} + T_{k+N_x} = 0$$

• Rearranging gives:

$$T_k = \frac{T_{k-N_x} + T_{k-1} + T_{k+1} + T_{k+N_x}}{4}$$

The Jacobi method

In our example we derived the following equation:

$$T_{k-N_x} + T_{k-1} - 4T_k + T_{k+1} + T_{k+N_x} = 0$$

• Rearranging gives:

$$T_k = \frac{T_{k-N_x} + T_{k-1} + T_{k+1} + T_{k+N_x}}{4}$$

- In the Jacobi scheme the iteration proceeds as follows:
 - 1 Start with an initial guess for the values of T at each node

The Jacobi method

In our example we derived the following equation:

$$T_{k-N_x} + T_{k-1} - 4T_k + T_{k+1} + T_{k+N_x} = 0$$

Rearranging gives:

$$T_k = \frac{T_{k-N_x} + T_{k-1} + T_{k+1} + T_{k+N_x}}{4}$$

- In the Jacobi scheme the iteration proceeds as follows:
 - $oldsymbol{1}$ Start with an initial guess for the values of T at each node
 - 2 Compute updated values and store a new vector:

$$T_k^{\text{new}} = \frac{T_{k-N_x}^{\text{old}} + T_{k-1}^{\text{old}} + T_{k+1}^{\text{old}} + T_{k+N_x}^{\text{old}}}{4}$$

The Jacobi method

In our example we derived the following equation:

$$T_{k-N_x} + T_{k-1} - 4T_k + T_{k+1} + T_{k+N_x} = 0$$

Rearranging gives:

$$T_k = \frac{T_{k-N_x} + T_{k-1} + T_{k+1} + T_{k+N_x}}{4}$$

- In the Jacobi scheme the iteration proceeds as follows:
 - 1 Start with an initial guess for the values of T at each node
 - 2 Compute updated values and store a new vector:

$$T_k^{\text{new}} = \frac{T_{k-N_x}^{\text{old}} + T_{k-1}^{\text{old}} + T_{k+1}^{\text{old}} + T_{k+N_x}^{\text{old}}}{4}$$

3 Do this for all nodes

The Jacobi method

In our example we derived the following equation:

$$T_{k-N_x} + T_{k-1} - 4T_k + T_{k+1} + T_{k+N_x} = 0$$

Rearranging gives:

$$T_k = \frac{T_{k-N_x} + T_{k-1} + T_{k+1} + T_{k+N_x}}{4}$$

- In the Jacobi scheme the iteration proceeds as follows:
 - \bigcirc Start with an initial guess for the values of T at each node
 - 2 Compute updated values and store a new vector:

$$T_k^{\text{new}} = \frac{T_{k-N_x}^{\text{old}} + T_{k-1}^{\text{old}} + T_{k+1}^{\text{old}} + T_{k+N_x}^{\text{old}}}{4}$$

- 3 Do this for all nodes
- 4 Repeat the procedure until converged

```
% Grid size
nx = 40; ny = 40;
```

```
% Grid size
nx = 40; ny = 40;
% The temperature field + boundaries at old and new times
T = zeros(nx,ny);
T(1,:) = 40;  % Left
T(nx,:) = 60;  % Right
T(:,1) = 20;  % Bottom
T(:,ny) = 30;  % Top
Tnew = T;
```

```
% Grid size
nx = 40; ny = 40;
% The temperature field + boundaries at old and new times
T = zeros(nx, ny);
T(1,:) = 40; % Left
T(nx,:) = 60; \% Right
T(:,1) = 20; \% Bottom
T(:,ny) = 30; \% Top
Tnew = T:
% For plotting
[x y] = meshgrid(1:nx, 1:ny);
for iter = 1:1000
  for i = 2:nx-1
    for j = 2:ny-1
      Tnew(i,j) = (T(i-1,j)+T(i+1,j)+T(i,j-1)+T(i,j+1))/4.0;
    end
  end
```

```
% Grid size
nx = 40; nv = 40;
% The temperature field + boundaries at old and new times
T = zeros(nx, ny);
T(1,:) = 40; % Left
T(nx,:) = 60; \% Right
T(:,1) = 20; \% Bottom
T(:,ny) = 30; \% Top
Tnew = T:
% For plotting
[x y] = meshgrid(1:nx, 1:ny);
for iter = 1:1000
  for i = 2:nx-1
    for j = 2:ny-1
      Tnew(i,j) = (T(i-1,j)+T(i+1,j)+T(i,j-1)+T(i,j+1))/4.0;
    end
  end
  surf(x,y,Tnew);
  title(['Iteration: 'num2str(iter)]);
  drawnow
  T = Tnew; % Update T
end
```

About the straightforward implementation

- The method as implemented works fine for a simple Laplace equation
- For generic systems of linear equations, the implementation cannot be used.

About the straightforward implementation

- The method as implemented works fine for a simple Laplace equation
- For generic systems of linear equations, the implementation cannot be used.

We will now introduce the Jacobi method so it can be used for generic systems of linear equations.

The Jacobi method with matrices

We can split our (banded) matrix A into a diagonal matrix D and a remainder R:

$$A = D + R$$

Jacobi method: solving a system

• We can solve AT = b, now written generally as Ax = b, by:

$$Ax = b$$

$$(D + R)x = b$$

$$Dx = b - Rx$$

$$Dx^{\text{new}} = b - Rx^{\text{old}}$$

$$x^{\text{new}} = D^{-1}(b - Rx^{\text{old}})$$

Using the n and n+1 notation for old and new time steps, we find in general:

$$x^{n+1} = D^{-1} \left(b - Rx^n \right)$$
$$x_i^{n+1} = \frac{1}{A_{ii}} \left(b_i - \sum_{j \neq i} A_{ij} x_j^n \right)$$

 $\begin{array}{l} \mathsf{Set} \ \, \mathcal{T}^{\mathsf{old}} \\ = \mathsf{a} \ \, \mathsf{guess} \end{array}$

The full file is on Canvas, solveJacobi.m.

```
while ( xDiff > tol && it_jac < 1000 )</pre>
        x_old = x;
        for i=1:N
4
            s = 0;
5
            for j = 1:N
6
                 if (j ~= i)
7
                      s = s+A(i,j)*x_old(j);
8
                 end
            end
10
            x(i) = (b(i)-s)/A(i,i);
11
        end
12
        it_jac = it_jac+1;
13
        xDiff = norm((x-x_old)./x,2);
14
   end
15
   it_jac
```

The core of the solver

The full file is on Canvas, solveJacobi.m.

```
while ( xDiff > tol && it_jac < 1000 )</pre>
        x_old = x;
        for i=1:N
4
             s = 0:
5
             for j = 1:N
6
                 if (j ~= i)
7
                      s = s+A(i,j)*x_old(j);
8
                 end
             end
10
             x(i) = (b(i)-s)/A(i,i);
11
        end
12
        it_jac = it_jac+1;
13
        xDiff = norm((x-x_old)./x,2);
14
   end
15
   it_jac
```

Try to call it from the solveLaplaceEq.m file, instead of using \.

A few details on this algorithm

- The while loop holds two aspects
 - A convergence criterion (norm((x-x_old)./x,2)> tol). Some considerations are:
 - L_1 -norm (sum)
 - L₂-norm (Euclidian distance)
 - L_{∞} -norm (max)
 - Protection against infinite loops (no convergence)

A few details on this algorithm

- The while loop holds two aspects
 - A convergence criterion (norm((x-x_old)./x,2)> tol). Some considerations are:
 - L_1 -norm (sum)
 - L₂-norm (Euclidian distance)
 - L_{∞} -norm (max)
 - Protection against infinite loops (no convergence)
- Reset the sum for each row, before summing for the new unknown node

A few details on this algorithm

- The while loop holds two aspects
 - A convergence criterion (norm((x-x_old)./x,2)> tol). Some considerations are:
 - L_1 -norm (sum)
 - L₂-norm (Euclidian distance)
 - L_{∞} -norm (max)
 - Protection against infinite loops (no convergence)
- Reset the sum for each row, before summing for the new unknown node

- Start vector x is not shown in the example, but should be there!
- It can have huge impact on performance!
- The for-loops also have a large performance penalty!

The solver using array indices

Make a copy of the Jacobian solver, and replace the for-loop by a vector-operation:

```
% While not converged or max_it not reached
while ( xDiff > tol && it_jac < 1000 )</pre>
  x_old = x;
  for i=1:N
    % Sum off-diagonal*x_old
    offDiagonalIndex = [1:(i-1) (i+1):N];
    Aij_Xj = A(i,offDiagonalIndex)*x_old(offDiagonalIndex);
    % Compute new x value
    x(i) = (b(i)-Aij_Xj)/A(i,i);
  end
  it_jac = it_jac+1;
  xDiff = norm((x-x_old)./x,2);
end
```

Iterations 1, 2, 3 and 10

Gauss-Seidel method

The Gauss-Seidel method is quite similar to Jacobi method

- The only difference is that the new estimate x^{new} is returned to the solution x^{old} as soon as it is completed
- For following nodes, the updated solution is used immediately

The Gauss-Seidel method is quite similar to Jacobi method

- The only difference is that the new estimate x^{new} is returned to the solution x^{old} as soon as it is completed
- For following nodes, the updated solution is used immediately
- Our straightforward script (from the Jacobi method) is therefore changed easily:
 - Do not create a Tnew array (save memory!)
 - Do not store the solution in Tnew, but simply in T
 - Do not perform the update step T=Tnew
 - See laplace_gaussseidel.m for the algorithm.

Gauss-Seidel method

The Gauss-Seidel method is quite similar to Jacobi method

- The only difference is that the new estimate x^{new} is returned to the solution x^{old} as soon as it is completed
- For following nodes, the updated solution is used immediately
- Our straightforward script (from the Jacobi method) is therefore changed easily:
 - Do not create a Tnew array (save memory!)
 - Do not store the solution in Tnew, but simply in T
 - Do not perform the update step T=Tnew
 - See laplace_gaussseidel.m for the algorithm.
- The straightforward script works well for the current Laplace equation, but we define the generic Gauss-Seidel algorithm on the following slides.

- Define a lower and strictly upper triangular matrix, such that A = L + U
- Now we can solve AT=b by:

$$(L + U)T = b$$

$$LT = b - UT$$

$$LT^{\text{new}} = b - UT^{\text{old}}$$

$$T^{\text{new}} = L^{-1}(b - UT^{\text{old}})$$

• Using the n and n+1 notation for old and new time steps, we find in for the general Gauss-Seidel method:

$$x_{i}^{n+1} = L^{-1} (b - Ux^{n})$$

$$x_{i}^{n+1} = \frac{1}{A_{ii}} \left(b_{i} - \sum_{j < i} A_{ij} x_{j}^{n+1} - \sum_{j > i} A_{ij} x_{j}^{n} \right)$$

Today's outline

- Introduction
- Sparse matrices
- 3 Laplace's equation
- 4 Creating a sparse system
- 6 Iterative methods
- **6** Summary

Summary

- Partial differential equations can be written as sparse systems of linear equations
- Sparse systems can be handled with a direct method like Gaussian elimination
- If you have systems of more than 1 dimension, a direct method still can be used, if there are no memory issues, otherwise an iterative method may be attractive.
- The Jacobi method was introduced. Many other methods are based on the Jacobi method (SOR method, for example)