

HappaMathsNotes

解析几何

作者: OyamaHappa 时间: July 19, 2024

版本: 20240719105707

数学: 学无止境

数学是人类智慧皇冠上最灿烂的明珠。——考特

目录

第1章 解析几何
1.1 直线的方程
1.1.1 点到直线距离公式
1.1.2 直线到直线距离公式
1.1.3 对称
1.1.3.1 点关于点对
1.1.3.2 点关于线对称
1.1.3.3 线关于点对称
1.1.3.4 线关于线对称
1.2 圆的方程
1.2.1 圆的直径式方程
1.2.2 阿波罗尼斯圆
1.2.3 圆的参数方程
1.2.3.1 三角换元
1.2.4 直线与圆位置关系
1.2.4.1 直线与圆相离
1.2.5 圆系方程
1.2.5.1 ⇒ 公共弦
1.3 椭圆
1.3.1 第一定义
1.3.2 焦点三角形
1.3.2.1 小焦点三角形
1.3.2.2 大焦点三角形
1.3.3 焦点弦
1.3.4 焦点三角形面积
1.3.4.1 MAX
1.3.4.2 面积公式
1.3.5 距离
1.3.5.1 椭圆上的点到中心的距离 PO
1.3.5.2 椭圆上的点到焦点的距离 PF
1.3.6 椭圆的第二定义
1.3.7 椭圆的参数方程
1.4 双曲线

第1章 解析几何

1.1 直线的方程

$$Ax + By + C = 0 \Longrightarrow y = -\frac{A}{B} - \frac{C}{B}$$

$$l_1 \parallel l_2 \Longrightarrow k_1 = k_2 \Longrightarrow A_1 B_2 = A_2 B_1 \coprod B_1 C_2 \neq B_2 C_1$$

$$l_1 \perp l_2 \Longrightarrow k_1 k_2 = -1 \Rightarrow A_1 A_2 + B_1 B_2 = 0$$
 方向向量 (B,-A) 法向量 (A,B)
$$cos\theta = \frac{1}{\sqrt{1+k^2}} = \frac{1}{\sqrt{1+\frac{A^2}{B^2}}} = \frac{|B|}{\sqrt{A^2+B^2}}$$

1.1.1 点到直线距离公式

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

1.1.2 直线到直线距离公式

$$\begin{split} d = \Delta y cos\theta = |-\frac{C_1}{B} + \frac{C_2}{B}| \frac{B}{\sqrt{A^2 + B^2}} &= \frac{|C_2 - C_1|}{\sqrt{A^2 + B^2}} \\ d &= \frac{|C_2 - C_1|}{\sqrt{A^2 + B^2}} \end{split}$$

1.1.3 对称

1.1.3.1 点关于点对

$$A(x_1,y_1)$$
 关于 $P(x_0,y_0)$ 对称点 $(2x_0-x_1,2y_0-y_1)$

1.1.3.2 点关于线对称

$$A\frac{x_1 + x_2}{2} + By_1 + y_2 + C = 0$$
$$-\frac{A}{B}\frac{y^2 - y^1}{x_2 = x_1} = -1$$

1.1.3.3 线关于点对称

1.1.3.4 线关于线对称

1.1.3.4.1 平行

$$C_2 - C_1 = C_3 - C_2$$

1.1.3.4.2 不平行

$$tan(\theta_1 - \theta_2) = tan(\theta_2 - \theta_3) \Rightarrow \frac{k_1 - k_2}{1 + k_1 k_2} = \frac{k_2 - k_3}{1 + k_2 k_3}$$

$$\frac{k_1 - k_2}{1 + k_1 k_2} = \frac{k_2 - k_3}{1 + k_2 k_3}$$
 到值公式

1.2 圆的方程

$$x^{2} + y^{2} + Dx + Ey + F = 0 \Rightarrow (x + \frac{D}{2})^{2} + (y + \frac{E}{2})^{2} = \frac{D^{2} + E^{2} + 4F}{4} > 0$$

1.2.1 圆的直径式方程

$$(x-a)(x-c) + (y-b)(y-d) = 0$$

1.2.2 阿波罗尼斯圆

动点到两定点的距离之比为定值 (k ≠ 1) 则动点轨迹为圆

1.2.3 圆的参数方程

$$\begin{cases} x = \cos(\theta) \\ y = \sin(\theta) \end{cases}$$

1.2.3.1 三角换元

$$(x-a)^{2} + (y-b)^{2} = R^{2}$$

$$x-a = \cos(\theta)$$

$$y-b = \sin(\theta)$$

$$\Rightarrow \begin{cases} x = a + R\cos(\theta) \\ y = b + R\sin(\theta) \end{cases}$$

1.2.4 直线与圆位置关系

$$d = \frac{|Aa + Bb + C|}{\sqrt{A^2 + B^2}}$$

1.2.4.1 直线与圆相离

$$d_{min} = d - r$$

$$d_{MAX} = d + r$$

1.2.4.1.1 $d' \Rightarrow$ 要求距离

$$d = r + d' \Rightarrow 1 \uparrow$$

$$r - d' < d < r + d' \Rightarrow 2 \uparrow$$

$$d = r - d'' \Rightarrow 3 \uparrow$$

$$0 < d < r - d' \Rightarrow 4 \uparrow$$

 $O_1O_2 > r_1 + r_2 \Rightarrow$ 相离,4 条公切线 $O_1O_2 = r_1 + r_2 \Rightarrow$ 外切,3 条公切线 $|r_1 - r_2| < O_1O_2 < r_1 + r_2 \Rightarrow$ 相交,2 条公切线 $O_1O_2 = |r_1 - r_2| \Rightarrow$ 内切,1 条公切线 $O < O_1O_2 < |r_1 - r_2| \Rightarrow$ 内含,0 条公切线 $O_1O_2 = 0 \Rightarrow$ 同心圆,0 条公切线

1.2.5 圆系方程

$$\lambda(Ax + By + C) + x^2 + y^2 + Dx + Ey + F = 0$$

$$\begin{cases} Ax + By + C = 0 \\ x^2 + y^2 + Dx + Ey + F = 0 \end{cases} \Rightarrow$$
交点

$$\lambda(x^{2} + y^{2} + D_{1}x + E_{1}y + F_{1}) + x^{2} + y^{2} + D_{2}x + E_{2}y + F_{2} = 0$$

$$\begin{cases} x^{2} + y^{2} + D_{1}x + E_{1}y + F_{1} = 0 \\ x^{2} + y^{2} + D_{2}x + E_{2}y + F_{2} = 0 \end{cases} \Rightarrow$$
定点 \Leftrightarrow 交点
$$\star x = -1$$

1.2.5.1 ⇒ 公共弦

$$\begin{cases} x^2 + y^2 + D_1 x + E_1 y + F_1 = 0 \\ x^2 + y^2 + D_2 x + E_2 y + F_2 = 0 \end{cases} \Rightarrow l_1 : (D_1 = D_2)x + (E_1 - E_2)y + (F_1 - F_2) = 0$$
$$l_1 : (D_1 = D_2)x + (E_1 - E_2)y + (F_1 - F_2) = 0$$

1.3 椭圆

1.3.1 第一定义

动点到两定点和为定值 即动点轨迹为椭圆

$$\star a^2 = b^2 + c^2 \Rightarrow \begin{cases} a > b \\ a > c \end{cases}$$

通经 $x = 4 \pm c \Rightarrow |y| = \frac{b^2}{a}$
通经:2|y|= $\frac{2b^2}{a}$

椭圆	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$
范围	$-a \le x \le a -b \le y \le b$	$-b \le x \le b -a \le y \le a$
顶点		
焦点坐标	$F_1(c,0)$ $F_2(-c,0)$	$F_1(0,c)$ $F_2(0,-c)$
abc 关系	$a^2 = b^2 + c^2$	$a^2 = b^2 + c^2$
长轴	2a	2a
短轴	2b	2b
焦距	2c	2c
* 离心率	$e = \frac{a}{c} \in (0,1)$	$e = \frac{a}{c} \in (0,1)$
通经	$\frac{c}{\frac{2b^2}{a}}$	
准线	$\frac{a}{\pm \frac{c^2}{a}}$	

1.3.2 焦点三角形

1.3.2.1 小焦点三角形

$$|AF_1| + |AF_2| = 2a$$
 $|F_1F_2| = 2c$
 $\Rightarrow C_{\triangle AF_1F_2} = 2a + 2c$

1.3.2.2 大焦点三角形

$$C_{\triangle ABF_2} = |AF_1| + |AF_2| + |BF_1| + |BF_2| = 4a$$

1.3.3 焦点弦

过焦点的与相交的叫做焦点弦

$$y = k(x \pm c)$$

$$\star |PF_1| + |PF_2| = 2a \Rightarrow |PF_1| = 2a - |PF_2| \star$$

1.3.4 焦点三角形面积

1.3.4.1 MAX

当 P 点位于上/下顶点时, 顶角 $\angle F_1 P F_2$ 取到最大值

$$\frac{1}{2}\cdotp 2\cdotp c\cdotp b = bc$$

1.3.4.2 面积公式

$$b^2 \cdot \tan\left(\frac{\alpha}{2}\right)$$

双曲线
$$\frac{b^2}{\tan\left(\frac{\alpha}{2}\right)}$$

1.3.5 距离

1.3.5.1 椭圆上的点到中心的距离 |PO|

[a,b]

1.3.5.2 椭圆上的点到焦点的距离 |PF|

$$[a-c, a+c]$$

1.3.6 椭圆的第二定义

动点到定点距离只比动点到定直线的距离只比为定值,则动点的轨迹为椭圆 定点-焦点 $(\pm c,0)$

定点-焦点 (±
$$c$$
,0)
定直线-准线 $x = \pm \frac{a^2}{c}$
定值- $e = \frac{c}{a}$

$$|PF| = a \pm ex_0$$

1.3.7 椭圆的参数方程

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow \begin{cases} x = a \cdot \cos(\theta) \\ y = b \cdot \sin(\theta) \end{cases}$$

1.4 双曲线

双曲线	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	
范围	$x \in (-\infty, -a] \cup [a, +\infty)$	
顶点	(a,0),(-a,0)	
焦点坐标	$F_1(c,0)$ $F_2(-c,0)$	
abc 关系	$c^2 = a^2 + b^2$	
实轴	2a	
虚轴	2b	
焦距	2c	
* 离心率	$e = \frac{a}{c} \in (1, +\infty)$	
通经	$\frac{2b^2}{a}$	