Aufbau

Mengen

2 Zahlen

Aufbau

Mengen

Zahlen

Mengen

Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens zu einem Ganzen.

(G. Cantor; Beiträge zur Begründung der transfiniten Mengenlehre; Mathematische Annalen; Bd. 46; 1895; S. 481-512)

- Element: Ein Objekt x in der Menge M ($x \in M$).
- Enthalten: Es gilt für alle $x \in M$ auch $x \in N$ ($M \subset N$).
- Gleichheit: Es gilt $M \subset N$ und $N \subset M$ (M = N).

Mengen in Sage

```
Set([<element1>,<element2>,...])
```

- Es ist eine ungeordnete Menge von beliebigen Objekten.
- Mengen in Sage haben den Typ set.
- Leere Mengen: leere_menge = Set([]).
- Zugriff: M[n] (Menge M, $n \ge 0$)
- Intervallzugriff: M[i:j].

Aufbau

Mengen

2 Zahlen

Natürliche Zahlen N (nach Peano)

Natürliche Zahlen $\mathbb{N} := \{0, 1, 2, 3, \dots\}$:

- $0 \in \mathbb{N}$
- **2** Es gibt eine Nachfolgerabbildung $nf: \mathbb{N} \to \mathbb{N} \setminus \{0\}$
- of ist injektiv.
- **③** Ist $M \subset \mathbb{N}$ mit $0 \in M$ und folgt für alle $m \in M$ das $nf(m) \in M$ gilt, so ist $M = \mathbb{N}$.

Bemerkungen:

- Nachfolgefunktion: nf(m) = m + 1
- Es besteht ein enger Zusammenhang zwischen den natürlichen Zahlen und vollständiger Induktion.
- Sage: kein eigener Datentyp (aber: ganze Zahlen (Integer)).

Äquivalenzrelation

Sei M eine Menge. Eine Äquivalenzrelation R auf M ist eine Teilmenge

$$R \subseteq M \times M$$

mit den folgenden Eigenschaften (Schreibweise: $(x, y) \in R$, $x \sim_R y$, $x \sim y$):

- **1 Reflexivität:** für alle $x \in M$ gilt $x \sim x$.
- 2 Symmetrie: für alle $x, y \in M$ folgt aus $x \sim y$ das $y \sim x$.
- **1 Transitivität:** für alle $x, y, z \in M$ und $x \sim y$, $y \sim z$ folgt $x \sim z$.

Äquivalenzklasse

- Sei \sim_R eine Äquivalenzrelation auf einer Menge M.
- Eine Teilmenge $A \subset M$ heißt Äquivalenzklasse, falls gilt:
 - (a) $A \neq \emptyset$.
 - **(b)** $x, y \in A \Rightarrow x \sim y$.
 - (c) $x \in A$, $y \in M$, $x \sim y \Rightarrow y \in A$.
- Eine Äquivalenzrelation zerlegt eine Menge in disjunkte Äquivalenzklassen.
- Andersrum definiert eine disjunkte Zerlegung einer Menge eine Äquivalenzrelation.
- Ein $a \in A$ ist ein Repräsentant der Äquivalenzklasse A. Man schreibt auch \overline{a} oder $a \mod R$ für ein Äquivalenzklasse A.

Ganze Zahlen Z

Ganze Zahlen: $\mathbb{Z} := \{0, 1, -1, 2, -2, \dots\}$

- Äquivalenzrelation auf $\mathbb{N} \times \mathbb{N}$: $(m,n) \sim (p,q)$ genau dann, wenn m+q=n+p gilt.
- Nichtnegative Zahlen: (m,0). Sie sind paarweise nicht äquivalent zueinander.
- Negative Zahlen: (0, m).
- ullet Die ganzen Zahlen $\mathbb Z$ sind gegeben durch die Menge der Äquivalenzklassen.
- Addition:

$$\overline{(m,n)} + \overline{(u,v)} := \overline{(m+u,n+v)}$$

• Multiplikation:

$$\overline{(m,n)}\cdot\overline{(u,v)}:=\overline{(mu+nv,mv+nu)}$$

Rationale Zahlen Q

Äquivalenzrelation auf $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$:

$$(m, n) \sim (p, q)$$
 genau dann, wenn $mq = np$ gilt.

Statt (m, n) schreibt man $\frac{m}{n}$.

- Die Äquivalenzklasse $\overline{(0,n)}$, $n \in \mathbb{Z}$ ist die 0 in \mathbb{Q} .
- Mit (n, m) gehören auch alle Erweiterungen (kn, km) zu einer Ä.-klasse.
- Addition:

$$\overline{\left(\frac{m}{n}\right)} + \overline{\left(\frac{p}{q}\right)} = \overline{\left(\frac{mq + pn}{nq}\right)},$$

Multiplikation:

$$\overline{\left(\frac{m}{n}\right)} \cdot \overline{\left(\frac{p}{q}\right)} = \overline{\left(\frac{mp}{nq}\right)}.$$

Gruppe

Eine Gruppe ist ein Paar (G, \cdot) bestehend aus einer Menge G und einer Verknüpfung \cdot auf G, d.h. einer Abbildung

$$\cdot: G \times G \rightarrow G, (a, b) \mapsto a \cdot b$$

mit folgenden Eigenschaften

- **(G1)** $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ für alle $a, b, c \in G$.
- **(G2)** Es existiert ein $e \in G$ (neutrales Element) mit $e \cdot a = a$ für alle $a \in G$ und zu jedem $a \in G$ existiert ein $a' \in G$ (inverses Element) mit $a' \cdot a = e$.

abelsche Gruppe: $a \cdot b = b \cdot a$ für alle $a, b \in G$.

Eigenschaften einer Gruppe

- Für ein neutrales Element gilt auch $a \cdot e = a$ für alle $a \in G$.
- Es gibt genau ein neutrales Element $e \in G$.
- Zu jedem $a \in G$ ist das inverse Element $a' \in G$ eindeutig und wird durch a^{-1} bezeichnet.
- Es gilt auch $a \cdot a' = e$.
- Für abelsche Gruppen schreibt man oft + statt \cdot . Das Inverse zu a wird dann mit -a, das Neutrale mit 0 bezeichnet.

Körper

Ein Körper ist ein Tripel $(K,+,\cdot)$ bestehend aus einer Menge K und zwei Verknüpfungen + und \cdot mit folgenden Eigenschaften:

- **(K1)** (K, +) ist eine abelsche Gruppe. (Das neutrale Element heiße 0. Das inverse Element zu $a \in K$ sei -a.)
- (K2) $(K \setminus \{0\}, \cdot)$ sei eine abelsche Gruppe. (Das neutrale Element dazu sei 1.)
- (K3) Distributivgesetze

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

 $(a+b) \cdot c = (a \cdot c) + (b \cdot c)$ für alle $a, b, c \in K$.

(Ein Körper ist ein kommutativer unitärer Ring)

Beispiele

Gruppen:

- $(\mathbb{Z}, +)$, die ganzen Zahlen mit Addition.
- $(\mathbb{Z}/n\mathbb{Z}, +)$, die Restklassen modulo n mit Addition.
- $\bullet \ (\mathbb{Q},+),\ (\mathbb{Q}\smallsetminus\{0\},\cdot)$
- $(Add(M, \mathbb{R}), +)$, die reellwertigen Funktionen auf einer Menge M mit punktweiser Addition.

Körper:

- ullet Die rationalen Zahlen ${\mathbb Q}$ mit den Verknüpfungen + und \cdot .
- ullet Die reellen Zahlen ${\mathbb R}$ mit den Verknüpfungen + und $\cdot .$
- ullet Die komplexen Zahlen ${\mathbb C}$ mit den Verknüpfungen + und $\cdot .$
- Für p Primzahl $\mathbb{Z}/p\mathbb{Z}$, die Restklassen modulo p mit + und \cdot .

Anordnung

Sei K ein Körper. Er heißt angeordnet, wenn es einen Positivbereich $P \subset K$ gibt mit

- Die Mengen P, $\{0\}$, und $-P := \{-x \mid x \in P\}$ sind disjunkt.
- $K = P \cup \{0\} \cup -P$.
- Aus $x, y \in P$ folgt $x + y \in P$ und $x \cdot y \in P$.

Man definiert:

$$x>y$$
 genau dann, wenn $x-y\in P,$ $x\geq y$ genau dann, wenn $x-y\in P\cup\{0\}.$

Analog definiert man < und \le .

Schranken

Sei K ein angeordneter Körper.

- obere Schranke $y \in K$: Für $M \subset K$, wenn für alle $x \in M$ die Relation $x \le y$ gilt.
- nach oben beschränkt: Wenn eine Teilmenge M von K eine obere Schranke besitzt (analog untere Schranke).
- Maximum von M: Eine obere Schranke y einer Teilmenge $M \subset K$, wenn $y \in M$ (analog Minimum).
- Supremum: Die kleinstmögliche obere Schranke y einer Teilmenge $M \subset K$ (analog Infimum) (Nicht notwendigerweise in M oder K).

Reelle Zahlen \mathbb{R}

- Sei M die Menge aller Teilmengen von \mathbb{Q} mit oberer Schranke.
- Äquivalenzrelation: Zwei Elemente aus *M* seien äquivalent, wenn sie dieselben Mengen von oberen Schranken haben.
- Die entstehenden Äquivalenzklassen nennt man reelle Zahlen.

Bemerkungen

- ullet Es lassen sich die üblichen Verknüpfungen auf ${\mathbb R}$ definieren.
- Die reellen Zahlen k\u00f6nnen auch als Vervollst\u00e4ndigung von \u00dc definiert werden oder durch den Dedekindschen Schnitt.
- Die rationalen Zahlen sind als Äquivalenzklassen der einelementigen Mengen $\{x\}$, $x\in\mathbb{Q}$ enthalten.

Rundungsfehler

• Relativer Fehler: Sei rd(x) die 'gerundete' Gleitkomma-Zahl zu $x \in \mathbb{R}$. Dann gilt

$$\frac{|x - rd(x)|}{|x|} \le \varepsilon$$

mit $\varepsilon = b^{1-t}$ (b=Basis, t=Anzahl signifikante Stellen).

- Rundungsfehler können sich innerhalb eines Verfahrens verstärken. (Fehlerfortpflanzung).
- Katastrophale Auswirkungen möglich! Z.B. Absturz der Arianne-Rakete 1996.

Warnung! Die Subtraktion zweier fast gleichgroßer Gleitkommazahlen ist zu vermeiden.

Komplexe Zahlen $\mathbb C$

Der Körper $\mathbb C$ der komplexen Zahlen: Die Menge $\mathbb R^2=\mathbb R imes\mathbb R$ mit

- Addition: (k, l) + (n, m) = (k + n, l + m)
- Multiplikation: $(k, l) \cdot (n, m) = (kn lm, km + ln)$
- i := (0,1) mit
 - $i^2 = (0,1) \cdot (0,1) = (-1,0)$
 - $\forall (x, y) \in \mathbb{C} : (x, y) = x \cdot (1, 0) + y \cdot (0, 1) = x + iy$
- Betrag: $|z| = |(x, y)| := \sqrt{x^2 + y^2}$ (Sage: abs)

Eigenschaften von C

- Fundamentalsatz der Algebra: Jedes nicht konstante Polynom (mit komplexen Koeffizienten) hat mindestens eine Nullstelle in \mathbb{C} .
- Polarkoordinaten (r, φ) zu $(x, y) \in \mathbb{C}$

$$r := \sqrt{x^2 + y^2}, \quad \tan(\varphi) = \frac{y}{x}$$

• Es gilt: $z = (x, y)_{\mathsf{Rechtwinklig}} = (r, \varphi)_{\mathsf{Polar}} = re^{i\varphi}$