Please submit your solutions to Moodle by Monday, 27.11.2023, 23:55.

1.

$$\begin{split} V_{BE}(ON) &= V_{EB}(ON) = 0.7V \\ V_{CE}(SAT) &= V_{EC}(SAT) = 0.2V \\ \beta_1 &= \beta_2 = 100 \end{split}$$

Find the DC operating point of Q_1 and Q_2 and verify the transistor states.

2.

$$\begin{array}{l} \beta{=}100 \\ V_{BE}(ON){=}0.7V \\ V_{CE}(SAT){=}0.2V \\ V_{A}{=}\infty \end{array}$$

- **a.** Find the Quiescent voltages and currents.
- **b.** Find s.s. AC R_{in} and R_{out}.
- **c.** Find R_{out} if $r_o=100k\Omega$.
- **d.** Find $A_V = v_{out}/v_s$ by assuming $r_o = \infty$.

3.

 $\beta=100$ $V_{BE}(ON)=0.7V$ $V_{CE}(SAT)=0.2V$ $V_{A}=\infty, V_{T}=26mV$

- **a.** Find the value of R_E to establish a DC emitter current of 0.5mA.
- **b.** Find the value of R_C to establish a DC collector voltage of 5V.
- c. For R_L =10k Ω and the transistor r_o =200k Ω draw the small signal equivalent circuit of the amplifier and determine the overall voltage gain.
- **d.** Find s.s. AC R_{in} and R_{out}.
- e. Consider the equivalent circuit below, what is $A_{\rm OC}$?

4.

 $\beta=100 \\ V_{BE}(ON)=0.7V \\ V_{CE}(SAT)=0.2V \\ V_{A}=\infty, \ V_{T}=26mV$

- **a.** If the DC component of v_s is zero, find the DC emitter current.
- **b.** Find s.s. AC R_{in} and R_{out}.
- **c.** Find the s.s. AC voltage gain $A_V = v_{out}/v_s$
- **d.** Find the s.s. AC current gain $A_i=i_{out}/i_i$

5.

 β =100 $V_{BE}(ON)$ =0.7V $V_{CE}(SAT)$ =0.2V V_{A} = ∞ , V_{T} =26mV

- **a.** Find the Q points (I_{C1}, V_{CE1}) (I_{C2}, V_{CE2}) and verify the transistor states.
- **b.** Find the small signal gain $A_V = v_{out}/v_{in}$.
- c. Find the s.s. R_{in} and R_{out}

6.

For the circuit shown β is large, $V_A = \infty$ $V_{BE}(ON) = 0.7V$, $V_{CE}(SAT) = 0.2V$.

Find and plot the large signal V_{out} for $0 < V_{in} < 10V$ without small signal analysis. Clearly indicate the slopes and all critical voltages.