Blockchain

Part – I: Introduction

Credits: Several of the slides borrowed from Prof. Ari Juels, Jacobs Technion-Cornell Institute and Prof. Aggelos Kiayias, The University of Edinburgh

What is Blockchain?

- From a bird's-eye view it is a data structure: "linked-list" with specific properties
- It is a "distributed" database of "records" of all events that have been executed and shared among participating "parties"

What is Blockchain?

- List of records (blocks)
- that are linked using cryptography
- Each block generally contains
 - a cryptographic hash of the previous block,
 - a <u>timestamp</u>,
 - data

Limitations of Distributed Databases

- The limitations of distributed databases:
 - Trust
 - Low fault-tolerance
 - Complexity
 - Costs
 - Immutability
 - Transparency

Network topologies

- Centralized -> central control over data (prone to single point of failure)
- Decentralized -> multiple central owners that control the data
- The distributed ledger is shared and updated with every incoming event among the nodes connected
 - No central server
 - No central control over data

What do we get from moving centralized to distributed ledgers?

- Transparency
- Distributed trust (trust is distributed among all parties)
- Fault-tolerance (no more single-point failures)
- Costs
- Immutability

Transparency in Blockchain

- Transparency: Every participant has a copy of the current blockchain data
 - They have access to all blocks added to the structure so far

Distributed Trust in Blockchain

- Consensus: All network participants must agree that an event to be added to chain is valid.
- This is achieved through the use of consensus algorithms
 - Many different consensus algorithms

Fault tolerance

Byzantine fault tolerance

- Assume some nodes and the network may be actively malicious
 - They might be able to prevent honest nodes from communicating not reply at all or send different messages to different nodes
- Fundamentally need **N=3f+1 for consensus**, where f is *faulty nodes*
 - f out of N might not reply => Need to proceed with N-f or 2f+1
 - f out of the N-f might be malicious => Need majority
 - N-2f > f => N>3f or N=3f+1
- Can be relaxed to N=2f+1 under various stronger assumptions

Public (permissionless) vs Private (permissioned) Blockchains

Consideration of who's able to write that data.

Public Blockchains

Anyone can participate (write to blockchain)

Private Blockchain

- Participants are predefined, known, and trusted
 - Many of the mechanisms are not needed – or rather they are replaced with legal contracts

Open vs Closed Blockchains

Consideration of who's able to read that data.

Open Blockchains

Anyone can access the blocks and read

Closed Blockchain

 Only a predefined group (i.e., industry, government etc.) can access the blocks and read

Public/Private and Open/Closed Blockchains

Summary

- Distributed ledgers use blockchain protocols as one main means of implementation
- The blockchain is a distributed database that satisfied unique set of safety and liveness properties
- To understand it better, we can focus on one of its successful application: Bitcoin!