Inclusion - Exclusion for 3 sets Consider the Venn diagram associated with A, B&C. Let's view A UB UC as the union of the Pairwise disjoint regions 1, 2, 3, 4, 5, 6, 7: We note that region 1 is the set of elements on A that we not in B and not in C. Thus, region 1 is AnBnC. Similarly, region 2 is BNANC, region 3 is CNANB, region 4 is ANB nC (as these elements are in A and B but not C), region 5 is AnchB,
region 6 is BnCAA

region 7 is AnBnC. We know that LAUBUCI = LANBACI + 1BAAACI + 1CAAABI + (AnBnC) + (AnCnB) + (BnCnA) + (AnBnC). Let's confirm that IAUBUCI = IAI + IBI + CI - IAnBI-IAnCI-1BnCI+ lAnBnCI by showing that the expression on the right hand side counts each of the 7 regions once and only once. We can use a table to do this:

	AnBno	BnAnC	CnĀnB	AnBnO	AncaB	BnCnA	(AnBac
+ A				(0	
+ 131				1			1
+ 101					1		
- (AnB)	0			-1	0	0	1-1
- IAncl				0	-1		-1
- (BnC)			0	0		-	- 1
+ lAnBnCl	0	0	0	0	0	0	
Total.	1	1	ľ	1	1	f	1

Ow final row of column totals shows that each of ow-7 regions is counted once and only once.

Hence | AOBOC| = | A| + |B| + |C| - |ANB| - |ANC| - |BNC| + |ANBNC|,

as desired.