Glucides

- A. Le fructose est un pentose
- B. Le fructose est un cétose
- C. L'α-D-fructopyranose présente un hydroxyle en C1 en dessous du plan du cycle
- D. L'acide D-gluconique est un produit d'oxydation de la fonction aldéhydique du D-glucose
- E. La glucosamine présente une fonction amine sur le carbone 6 de l'ose

BD	A	Faux : hexose
	В	Vrai
	C	Faux : le carbone anomérique est en C2
	D	Vrai : oxydation C1
	E	Faux : sur le carbone 2

Considérant la molécule suivante, on peut dire que c'est :

- A. L'acide gluconique
- B. L'acide glucarique
- C. L'acide α -D-glucuronique
- D. L'acide α -D-galacturonique
- E. L'acide β-D-glucuronique

С	A	Faux : -onique = oxydation C1
	В	Faux : -arique = oxydation C1 + C6
	C	Vrai
	D	Faux
	E	Faux

Propriétés chimiques des oses (Ostéo 2006)

- A. Le galactose peut être un produit d'interconversion du glucose
- B. Le fructose est un épimère du galactose
- C. La liaison O-osidique résulte d'une réaction de glycosylation
- D. La réaction catalysée par la glucokinase est une réaction d'estérification
- E. Le sorbitol est un produit d'oxydation du glucose

CD	A	Faux : Gal est un épimère du Glc
	В	Faux : interconversion = aldose ↔ cétose
	C	Vrai
	D	Vrai : Glucose → Glucose-6-P (ester phosphorique)
		Faux : produit de réduction

- A. I est un acide aldarique
- B. I est un acide uronique
- C. Il est un acide gluconique
- D. III est un disaccharide
- E. III est un produit de substitution
- A. IV est le Galactose
- B. V est le Glucose
- C. V est le Galactose
- D. VI est le Galactose
- E. VI est le Mannose

BCD	A	Faux : oxydation C1 +C6
	В	Vrai
	C	Vrai
	D	Vrai
	E	Faux : produit d'addition
D	A	Faux : IV =Fructose
	В	Faux : V = Mannose
	C	Faux
	D	Vrai : VI = Galactose
	E	Faux

Structure des glucides. (2003) Soit le trisaccharide suivant :

Il peut provenir de la digestion :

- A. De l'amylose
- B. De l'amylopectine
- C. Du glycogène
- D. D'un glycosaminoglycane
- E. Du lactose

ABC	A	Vrai
	В	Vrai
	C	Vrai
	D	Faux : généralement (hexoamine + acide hexuronique)n
	E	Faux : diholoside
		β -galactopyranosyl(1 \rightarrow 4)glucopyranose

 Le tétrasaccharide ci-dessous est un marqueur de la maladie de Pompe (glycogénose) mis en évidence dans les urines par spectrométrie de masse. (2005)

Il s'agit de:

- A. 4 glucoses reliés par 1 liaison α (1-6) et 2 liaisons α (1-4)
- B. 4 galactoses reliés par 1 liaison α (1-4) et 2 liaisons α (1-6)
- C. 4 glucoses reliés par 1 liaison α (1-4) et 2 liaisons α (1-6)
- D. 4 galactoses reliés par 1 liaison α (1-6) et 2 liaisons α (1-4)
- E. Aucune réponse n'est exacte.

A	A	Vrai
	В	Faux
	C	Faux
	D	Faux
	E	Faux

- A. Le glycogène et l'amidon sont des polysaccharides qui constituent des formes de réserve énergétique majeure de glucose chez les animaux
- B. Le glycogène est un polymère de résidus de glucose liés par des liaisons osidiques α(1→4) et α(1→6) et possède donc autant d'extrémités réductrices que de résidus de glucose
- C. La chitine est un hétéropolysaccharide constitué d'une répétition d'un motif dimérique de résidus de glucose et de N-acétyl-glucosamine liés par des liaisons béta(1→4)
- D. La cellulose est une forme de réserve énergétique végétale qui diffère du glycogène et de l'amidon par la seule nature des liaisons intrachaînes des résidus de glucose
- E. La cellulose présente des liaisons hydrogène entre des atomes d'oxygène de résidus de glucose intra-chaîne et des liaisons hydrogène entre différents fragments de cellulose

E	A	Faux: amidon → végétal
	В	Faux: 1 seule extrémité réductrice correspondant au
		premier résidu de glucose ayant sa fonction anomérique
		libre
	C	Faux: polymère de N-acétyl-glucosamine liés en béta
		$(1\rightarrow 4)$
	D	Faux : cellulose ne possède pas de ramification
		effectivement liaison béta(1→4) entre résidus de glucose
		mais ce n'est pas une forme de réserve énergétique, mais
		un constituant structural de la paroi des cellules végétales
	Е	Vrai : entre glucose du fragment linéaire (intra-chaîne) et
		entre glucose de plusieurs fragments différents (inter-
		chaîne)