Chapter 4. Network Layer - Data Plane

2019年12月17日 10:07

NOTE TAKING AREA

Overview

Network layer protocols in every host, router. Router examines header fields in all IP datagrams passing through it.

Network-layer functions: forwarding and routing.

- Forwarding: router's input to output.
- Routing: determine route taken packets from source to destination.

<u>Data plane: local, per-router function, forwarding function.</u>

Control plane: network-wide logic (forwarding function).

- Traditional routing algorithms: in routers (per-router).
- Software-defined networking (SDN): in remote servers (logically centralized). Service model: individual datagram guaranteed delivery, flow of datagrams in-order delivery.

Internet service model provide "best effort" service, no guarantee on bandwidth, loss, order or timing.

Router architecture

router input ports

router output ports

Input port functions: -> line termination -> data link layer protocol (receive) -> lookup, forwarding, queueing (decentralized switching) ->.

Forwarding: destination-based forwarding, generalized forwarding.

Destination-based forwarding: <u>longest prefix matching</u>.

Switching fabrics: from input to output, has a switching rate.

Three types: memory, bus, crossbar.

Output ports: -> datagram buffer, queueing -> link layer protocol (send) -> line termination ->.

Scheduling datagrams: priority scheduling, network neutrality.

Scheduling mechanisms: FIFO scheduling, tail drop / priority / random.

o Priority: multiple classes, with different priorities.

- o Round Robin (RR) scheduling: multiple classes, send complete packet.
- Weighted Fair Queueing (WFQ): generalized RR, with weight.

IP: Internet Protocol

Network layer components: routing protocols (path selection: RIP, OSPF, BGP), forwarding table, IP protocol (addressing conversion, datagram format, packet handling conventions), ICMP protocol (error reporting).

IP <u>fragmentation</u>, <u>reassembly</u>: divide according to <u>MTU</u>, and reassemble.

IPv4 address: 32-bit for interface. Each interface has an IP address.

Subnets: IP address subnet part (high, subnet mask) and host part (low).

Classless Inter Domain Routing (CIDR): a.b.c.d/x.

Get an IP address: static, Dynamic Host Configuration Protocol (DHCP).

DHCP: discover, offer, request, ack.

DHCP -> UDP -> IP -> Ethernet -> Physics.

Hierarchical addressing: route aggregation.

ISP get block of addresses from ICANN (Internet Corporation for Assigned Names and Numbers).

NAT (Network Address Translation): intermediate between Internet and subnet.

Implementation NAT router:

- Outgoing datagrams replace source IP to NAT IP, source port to NAT new port.
- Remember (in NAT translation table) source pair to NAT pair.
- Incoming datagrams replace pair to corresponding subnet pair.

NAT is controversial.

IPv6: header format helps speed processing / forwarding, header changes to facilitate QoS, fixed-length 40 byte header, no fragmentation allowed.

Remove checksum, options indicated by "next header", ICMPv6.

Handle both IPv4 and IPv6: <u>tunneling</u>, IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers.

Generalized forwarding and SDN

Routers containing a flow table being computed and distributed by a logically centralized routing controller.

Open flow data plane abstraction: flow defined by header fields.

Generalized forwarding (simple packet-handling rules):

- 1. src=1.2.*.*, dest=3.4.5.* → drop
- 2. $src = *.*.*.*, dest=3.4.*.* \rightarrow forward(2)$
- 3. src=10.1.2.3, $dest=*.*.*.* \rightarrow send to controller$
 - Pattern: match values in packet header fields.
 - Actions: for matched packet, drop, forwarding, modify, match, send.
 - Priority: disambiguate overlapping patterns.
 - Counters: #bytes and #packets.

Flow table defines router's match and action rules.

Flow table entries: rule, action, and stats.

Match + action unifies different kinds of device: router, switch, firewall, NAT.

CUE COLUMN

Example of longest prefix matching

Destination Address Range	Link interface
11001000 00010111 00010*** *******	0
11001000 00010111 00011000 ******	I
11001000 00010111 00011*** *******	2
otherwise	3

examples:

DA: 11001000 00010111 00010110 10100001 which interface?

DA: 11001000 00010111 00011000 10101010 which interface?

Router output buffering size

RFC 3439 rule of thumb: $buffer = RTT \times link\ capacity\ C$. Recent recommendation: $buffer = \frac{RTT \times C}{\sqrt{N}}$, N is number of flows.

IP datagram format

IP fragmentation and reassembly example

dest addr from

138.76.29.7, 5001 to 10.0.0.1, 3345

IPv6 datagram format

ver	pri	flow label								
payload len next hdr hop limit										
	source address (128 bits)									
destination address (128 bits)										
data										
→ 32 bits										

Priority: among datagrams in flow.

Flow label: identify datagrams in same flow.

138.76.29.7, 5001

Next header: identify upper layer protocol for data.

Example of flow table

Destination-based forwarding:

Switch Port			Eth type		IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
*	*	*	*	*	*	51.6.0.8	*	*	*	port6

IP destined to 51.6.0.8 should be forwarded to output port 6.

Firewall:

Switch Port					IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
*	*	*	*	*	*	*	*	*	22	drop

Destination-based layer 2 (switch) forwarding:

Switch Port	MAC src			VLAN ID	IP Src		IP Prot		TCP dport	Action
*	22:A7:23:	*	*	*	*	*	*	*	*	nort3

Frames from MAC address 22:A7:23:22:E1:02 should be forwarded to output port 6.

SUMMARIES

- 1. Overview of network layer: data plane and control plane, forwarding and routing, service model.
- 2. Router architecture: input port, switching fabrics, output ports.
- 3. IP: subnet, DHCP, NAT, IPv6.
- 4. Generalized forwarding and SDN: flow table entries.