

Termoventilador

Docente:

Pedro Salgueiro

Trabalho realizado por:

João Conceição, nº 38052

Ruben Teimas, nº 39868

Pedro Claudino, nº 39870

Índice

1.	Abord	agem ao Problema 3
2.	Model	os ASM 4
3.	Tabela	s de Transição de Estados 5
4.	Equaç	šes de Saída:
	a.	Módulo de controle do modo de funcionamento 6
	b.	Módulo de controle do mecanismo de oscilação 7
5.	Impler	nentação dos Flip-Flops:
	a.	Módulo de controle do modo de funcionamento 8
	b.	Módulo de controle do mecanismo de oscilação 9
6.	Circuit	os no Logisim 10

Abordagem ao Problema

Como trabalho final da cadeira de Sistemas Digitais foi-nos pedido que implementássemos um termoventilador. Para tal, o circuito do mesmo foi divido em 2 módulos:

- Módulo de controle do modo de funcionamento;
- Módulo de controle do mecanismo de oscilação;

Para o Módulo de controle do modo de funcionamento temos:

1. Entradas:

- a. BLD O botão que liga e desliga o termoventilador;
- b. BM O botão que altera o modo de funcionamento do termoventilador (botão de pressão).

2. Saídas:

- a. R1 Resistência 1;
- b. R2 Resistência 2;
- c. MV Motor de ventilação.

3. Estados:

- a. In Estado Inicial;
- b. Q1 Modo de Funcionamento 1 (R1 e MV ativas);
- c. Q2 Modo de Funcionamento 2 (R1, R2 e MV ativas);
- d. F Modo de Funcionamento 3 (MV ativa).

Para Módulo de controle do mecanismo de oscilação temos:

1. Entradas:

- a. BLD O botão que liga e desliga o termoventilador;
- b. BO O botão que liga e desliga o mecanismo de oscilação.

2. Saídas:

- a. SD Rotação do termoventilador para a direita;
- b. SE Rotação do termoventilador para a esquerda.
- c. MO Motor do mecanismo de Oscilação

3. Estados:

- a. A Estado Inicial;
- b. B Primeiro impulso do clock para a direita (SD e MO ativas);
- c. C Segundo impulso do clock para a direita (SD e Mo ativas);
- d. D Primeiro impulso do clock para a esquerda (SE e MO ativas)
- e. E Segundo impulso do clock para a esquerda (SE e MO ativas).

Modelos ASM

Módulo de controle do modo de funcionamento

Módulo de controle do mecanismo de oscilação

Tabelas de Transição de Estados

Tabela de transição de estados do **módulo de controle do modo de funcionamento:**

			003	Q_N	661	Q _{N+1}	80		20	30
BLD	BM	ACT	SEG	X1	X0	X1	X0	R1	R2	MV
0	923	IN	IN	0	0	0	0	0	0	0
1	953	IN	Q1	0	0	0	1	0	0	0
0	,255	Q1	IN	0	1	0	0	1	0	1
1	0	Q1	Q1	0	1	0	1	1	0	1
1	1	Q1	Q2	0	1	1	0	1	0	1
0	323	Q2	IN	1	0	0	0	1	1	1
1	0	Q2	Q2	1	0	1	0	1	1	1
1	1	Q2	F	1	0	1	1	1	1	1
0	, s=1	F	IN	1	1	0	0	0	0	1
1	0	F	F	1	1	1	1	0	0	1
1	1	F	Q1	1	1	0	1	0	0	1

Tabela de transição de estados do **módulo de controle do mecanismo de oscilação:**

					Q _N				Q _{N+1}				
BLD	во	ACT	SEG	X2	X1	XO	X2	X1	XO	SD	SE	МО	
0	2	Α	Α	0	0	0	0	0	0	0	0	0	
1	0	Α	Α	0	0	0	0	0	0	0	0	0	
1	1	Α	В	0	0	0	0	0	1	0	0	0	
0	=	В	Α	0	0	1	0	0	0	1	0	1	
1	0	В	Α	0	0	1	0	0	0	1	0	1	
1	1	В	С	0	0	1	0	1	0	1	0	1	
0	-	С	Α	0	1	0	0	0	0	1	0	1	
1	0	С	Α	0	1	0	0	0	0	1	0	1	
1	1	С	D	0	1	0	0	1	1	1	0	1	
0	2	D	Α	0	1	1	0	0	0	0	1	1	
1	0	D	Α	0	1	1	0	0	0	0	1	1	
1	1	D	E	0	1	1	1	0	0	0	1	1	
0	2	E	Α	1	0	0	0	0	0	0	1	1	
1	0	E	Α	1	0	0	0	0	0	0	1	1	
1	1	E	В	1	0	0	0	0	1	0	1	1	

Equações das saídas

Módulo de controle do modo de funcionamento:

BLD.BM\X1.X0	00	01	11	10
00	0	1	0	1
01	0	1	0	1
11	0	1	0	1
10	0	1	0	1

R1=(X1 ⊕ X0)

BLD.BM\X1.X0	00	01	11	10
00	0	0	0	1
01	0	0	0	1
11	0	0	0	1
10	0	0	0	1

R2=X1.X0

BLD.BM\X1.X0	00	01	11	10
00	0	1	1	1
01	0	1	1	1
11	0	1	1	1
10	0	1	1	1

MV=X1.X0

Módulo de controle do mecanismo de oscilação:

BLD

BO.X2\X1.X0	00	01	11	10
00	0	1	0	1
01	0	124	22	
11	0	-		
10	0	1	0	1

BLD

BO.X2\X1.X0	00	01	11	10
00	0	0	1	0
01	1	100	-	-
11	1_	87	1772	لتـــا
10	0	0	1	0

BLD

BO.X2\X1.X0	00	01	11	10
00	0	1	0	1
01	0	220	23	123
11	0	-	-	-
10	0	1	0	1

BLD

BO.X2\X1.X0	00	01	11	10
00	0	0	1	0
01	1	-	-	-
11	1_	(4)	-	
10	0	0	1	0

SD=X1⊕X0

SE=X2+X1.X0

BLD

BO.X2\X1.X0	00	01	11	10
00	0	1	1	1
01	(Ī	-	-	-
11	1_	123	. 2	
10	0	1	1	1

BLD

BO.X2\X1.X0	00	01	11	10
00	0	1	1	1
01	(Ī	-	-	-
11	1_	1943		لـــــــــــــــــــــــــــــــــــــ
10	0	1	1	1

MO=X2+X1+X0

Implementação dos Flip-Flops

Os flip-flops utilizados pelo grupo neste trabalho foram do tipo Edge-Triggered D com a finalidade de facilitar a obtenção das equações e consequentemente da implementação do circuito.

Para tal utilizamos como auxiliar a tabela de flip-flops Edge-Triggered D:

Q*	Q	D
0	0	0
0	1	1
1	0	0
1	1	1

Módulo de controle do modo de funcionamento:

BLD.BM\X1.X0	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	1	0	1
10	0	0	[1	1

D1=BLD.BM.X1+BLD.BM(X1 X0)

BLD.BM\X1.X0	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	0	1	[1]
10	1	1	1	0

 $D0=BLD.\overline{BM}(\overline{X1}.X0)+BLD.BM(X1+\overline{X0})$

Módulo de controle do mecanismo de oscilação:

BLD

BO.X2\X1.X2	00	01	11	10
00	0	0	0	0
01	0	. #	-	
11	0	<u>8</u>	(-)	32
10	0	0	1	0

BLD

BO.X2\X1.X2	00	01	11	10
00	0	0	0	0
01	0	22	1/2	128
11	0	(-)	100	
10	0	1)	0	1

BLD

BO.X2\X1.X2	00	01	11	10
00	0	0	0	0
01	0	5	157	
11	0		-	
10	0	0	0	0

BLD

BO.X2\X1.X2	00	01	11	10
00	0	0	0	0
01	0	- (1000	-
11	0	座	82	123
10	0	0	0	0

D2=BLD.BO.X1.X0

D1=BLD.BO(X1⊕X0)

BLD

BO.X2\X1.X2	00	01	11	10
00	0	0	0	0
01	0	-	-	
11	1	32	- 2	121
10	1	0	0	1

BLD

BO.X2\X1.X2	00	01	11	10
00	0	0	0	0
01	0	恒	92	\$ <u>25</u> 5
11	0		-	-
10	0	0	0	0

D0=BLD.BO. $\overline{X0}(\overline{X1}+\overline{X2})$

Circuitos no Logisim

Circuito do **módulo de controle do modo de funcionamento**

Circuito do **módulo de controle do mecanismo de oscilação**

Circuito final do termoventilador(main)