NEGATIVE THERMAL EXPANSION IN POLAR CRYSTALS Tuesday 13th September, 2022

Anton Mnatsakanov, Yuriy Poplavko

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Abstract

- The negative expansion in solids is influenced by self-ordering in the interior structure, which is common in polar and magnetic crystals.
- The effect is associated with the nature of non-centrosymmetric crystals which is caused by the difference in electroneutrality of atoms forming polar crystals.
- The negative expansion is specified by the **configurational entropy** due to the structural ordering in the pyroelectrics and ferroelectrics.
- The effect can be applied in thermal compensators as well as in the technology for controlling thin films with certain characteristics.

THERMAL EXPANSION

$$\alpha_V = (1/V) \cdot (\partial V/\partial T)_p$$

$$\alpha_V = \alpha_1 + \alpha_2 + \alpha_3$$

MAIN FEATURES OF THERMAL EXPANSION

- ① In this model, the average atom shift is $\langle x \rangle = (b/c^2) \cdot k_B T$.
- ② The stronger the inter-atomic connections in a crystal, the more difficult it is to modify and destroy them.
- ③ The Debye temperature θ_D characterizes the binding energy between atoms, so $T_{melt} \sim \theta_D^2$.
- The Grüneisen law defines a state of equation for solids, considering inter-atomic forces anharmonicity and establishing the similarity of temperature dependence for α and specific heat C_V : α = γ · $C_V/3K$.

MAIN FEATURES OF THERMAL EXPANSION

⑤ Microscopic analysis reveals that α is a reciprocal of the slope of the curve expressing the dependence of binding energy on interatomic distance (a+x) at a location corresponding to an atom's time-average position: $dU(a+x)/d(a+x) \sim 1/\alpha$.

® With increasing temperature, the shift of oscillating atoms to the left becomes smaller than the shift to the right. The time-average equilibrium location of an atom (a+x), as illustrated by the dotted line, changes to the right, and this effect grows larger as the energy of the atoms oscillations increases.

NEGATIVE THERMAL EXPANSION MODELING

Negative thermal expansion: \Box - minimum and saturation on $\alpha(T)$ dependence;

 $oxed{b}$ - symbolic explanation of negative $lpha\colon 1$ - repulsion energy, 2 - polar bonds attraction energy, 3 - non-polar attraction energy, 4 - average dynamic position oscillating particles

$$\alpha \sim T^3$$

In the ideal case

- physical substantiation of polar non-centrosymmetric crystals existence;
- matching negative $\alpha(T)$ with thermodynamic theory;
- explanation of special $\alpha(T)$ dependence, which twice changing its sign when crossing temperature axis.

Polar non-centrosymmetric crystals existence

Polar-sensitive structures manifest itself in crystals as the ability to provide the electrical (vector type) response to the non-electrical scalar actions. Hybridized ionic-covalent bonding causes the reduction in crystal symmetry, so the polar crystals always belong to non-centrosymmetric classes.

Matching negative $\alpha(T)$ with thermodynamic theory;

The configurational entropy arises as the part of total entropy of a system, which, in addition to kinetic energy of particles, is characterized by the different positions of the groups of particles.

To explain the negative $\alpha(T)$ seen in certain temperature range, use the Gibbs function, which is isobaric-isothermal thermodynamic potential eq.(1).

$$G = U + pV - TS \qquad (1)$$

$$dG = -SdT + Vdp \qquad (2)$$

$$\alpha = (\partial V/\partial T)_p/V$$

$$V = (\partial G/\partial p)_T \tag{3}$$

$$\alpha = \frac{1}{V} \left(\frac{\partial (\partial G/\partial T)}{\partial p} \right) = \frac{-1}{V} \left(\frac{\partial S}{\partial p} \right)_{T} \quad (4)$$

Explanation of special $\alpha(T)$ dependence.

Anomalous dependence of temperature deformation, although it has similar cause, in different crystals manifests itself in different ways.

VARIOUS CASES OF NEGATIVE $\alpha(T)$

Volume of unit cells temperature expansion ferroelectrics include $BaTiO_3$ (1), $PbTiO_3$ (2), while antiferroelectrics include $PbZrO_3$ (3), and $NaNbO_3$ (4)

- 1 V(T) dependences of polar phase,
- 2 V(T) for non-polar phase,
- 3 V(T) for antipolar phase,
- lacksquare α_f coefficient at ferroelectric transition,
- α_{af} at anti-ferroelectric transition, arrows indicate direction of Tc displacement with increasing pressure p.

VARIOUS CASES OF NEGATIVE $\alpha(T)$

Typical for ferroelectric $\alpha(T)$ dependence: 1 - KD2P04; $2 - TGS (NH_2CH_2COOH)_3 \cdot H_2SO_4$; $3 - BaTiO_3$ ceramics.

In a Te crystal, the coefficient of transverse thermal expansion is positive: $\alpha_1=\alpha_2=+27\cdot 10^{-16}K^{-1},$ but along the chains it is negative: $\alpha_3=-1.6\cdot 10^{-6}K^{-1}.$ In Te and Se crystals, the Te–Te (or Se–Se) helical chains are elongated along the broad axis 3.

VARIOUS CASES OF NEGATIVE $\alpha(T)$

Explanation of $\alpha(T)$ minimum in polar crystals, $\triangle V$ – volume increment for: 1 – polar bonding, 2 – non-polar bonding , 3 – transition section; 4 – thermal expansion coefficient α .

CONCLUSION

- α It is demonstrated that $\alpha(T)$ is the reciprocal of the slope of the curve expressing the dependence of binding energy on inter-atomic distance at the point corresponding to an atom's time-average location.
- ☆ It is thought that polarity in some crystals is caused by structural compensation for the differing electronegativity of surrounding atoms.
- Δ It is shown that the negative value of $\alpha(T)$ corresponds to such a circumstance in which the entropy increases with rising pressure: this is a feature of configurational entropy.
- $^{\Delta}$ It is suggested that the area of negative $\alpha(T)$ is caused by polar bond self-ordering, which results in an increase in crystal volume.
- ${\mathfrak A}$ In ferroelectrics, the volume of polar phase increases in comparison with paraelectric phase, so $\alpha(T)$ shows a deep minimum while phase transition shifts to low temperature when pressure rises.

Thanks for attention!