Least-Squares Fitting

Helwig Hauser et al., UiB Dept. of Informatics

Looking Back & Forth

Last time:

- variance and covariance
- eigenanalysis
- PCA (principal component analysis)

Today:

- least-squares fitting
 - best linear fit
 - best quadratic fit
 - normal equations
 - numerical issues

Introduction

Least-Squares Fitting:

- reducing data complexity:
 - find the line that approximates the data best
 - find some other (simple) function that approximates the data best
- modeling a phenomenon
- "solving" overdetermined equation systems

Systems of Linear Equations Revisited

Given a system of linear equations Ax = b $(A \in \mathbb{R}^{n \times m})$,

- we have discussed n = m (one sol., no sol., or many solutions)
- we touched upon $n \neq m$
 - if n < m (underdetermined system):
 - usually many solutions
 - also possible: no solution
 - if n > m (overdetermined system):
 - usually no solution
 - also possible: one solution or even many

[illustration from Wikipedia]

Modeling the Data

Given some data, measuring y(x) relations:

here:
 time (years) on x
 vs. Sept. sea ice
 extent in the Arctic (y)
 [in 10⁶ km²]

Any trend?

– best-fit line?

Model:

- data x_i, y_i
- model m(x) = kx + d
- $-y_i = m(x_i) + e_i$
- error e_i

Measuring the Error (deviation from model)

Key to finding "the optimal model", for ex.:

- maximum error $E_{\infty}(f) = \max_{1 < k < n} |f(x_k) y_k|$
- average error $E_1(f) = \frac{1}{n} \sum_{k=1}^{n} |f(x_k) y_k|$
- RMS (root-mean-square) error $E_2(f) = \left(\frac{1}{n}\sum_{k=1}^n|f(x_k)-y_k|^2\right)^{1/2}$

Above:

- data (*n* samples): x_k and y_k
- model: $f(x) \rightarrow f(x_k)$ modelled to be similar to y_k

Measuring the Error/Deviation

Key to find

- maximu
- average
- RMS (rc

Above:

- model:
- data: x

Least-squares Fit

Assuming E_2 , i.e., RMS errors:

- we should minimize $E_2(f) = \left(\frac{1}{n} \sum_{k=1}^{n} |f(x_k) - y_k|^2\right)^{1/2}$ for all data

Minimizing squared errors \rightarrow minimizing E_2 !

– instead of minimizing $E_2(f)$ as above, we min. $\sum |f(x_k) - y_k|^2$

$$\sum_{k=1}^{n} |f(x_k) - y_k|^2$$

Best-fit line example:

– in order to fit a line model f(x) = Ax + B

we minimize
$$E_2(f) = \sum_{k=1}^{n} |f(x_k) - y_k|^2 = \sum_{k=1}^{n} (Ax_k + B - y_k)^2$$

(note the redefined, squared & scaled E_2)

- two unknowns here: A and $B \leftarrow$ important to see the unknowns!
- the partial derivatives of E_2 wrt. A and B must be 0 in the min.!

Least-squares Fit

Assuming
$$E_2$$
, i.e., RMS errors:

- we should minimize $E_2(f) = \left(\frac{1}{n}\sum_{k=1}^n|f(x_k)-y_k|^2\right)^{1/2}$ for all data

Minimizing squared errors \rightarrow n

– instead of minimizing $E_2(f)$ as

Best-fit line example:

– in order to fit a line model f(x)

we minimize $E_2(f) = \sum |f(f)|$ (note the redefined, squared E_2 ₋₆

- two unknowns here: A and B
- the partial derivatives of E_2 wrt. A and B must be 0 in the min.!

Inspecting the Partial Derivatives

Starting from the sum of squared errors E_2 :

$$E_2(f) = \sum_{k=1}^{n} |f(x_k) - y_k|^2 = \sum_{k=1}^{n} (Ax_k + B - y_k)^2$$

we derivate by both A and B and set to 0:

$$\frac{\partial E_2}{\partial A} = 0 : \sum_{k=1}^{n} 2(Ax_k + B - y_k)x_k = 0$$

$$\frac{\partial E_2}{\partial B} = 0 : \sum_{k=1}^{n} 2(Ax_k + B - y_k) = 0$$

 leading to a system of linear equations:

$$\begin{pmatrix} \sum_{k=1}^{n} x_k^2 \sum_{k=1}^{n} x_k \\ \sum_{k=1}^{n} x_k & n \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} \sum_{k=1}^{n} x_k y_k \\ \sum_{k=1}^{n} y_k \end{pmatrix}$$

values, computed from samples

values, computed from samples

Sea Ice Example

42 years of measurements of Arctic sea ice extent:

- $-1979 \le x_i \le 2020,$ $3.57 < y_i < 7.67$
- we set up the 2x2 equation systemM p = b:

$$\mathbf{M} = \begin{pmatrix} \mathbf{x}^{\top} \mathbf{x} & \sum x_i \\ \sum x_i & n \end{pmatrix} {}_{5}$$

$$\mathbf{b} = \begin{pmatrix} \mathbf{x}^{\mathsf{T}} \mathbf{y} \\ \sum y_i \end{pmatrix}$$

– and solve then for p:

$$\mathbf{p} = \begin{pmatrix} -0.0837 \\ 173.3588 \end{pmatrix}$$

Sea Ice Example

42 years of measurements of Arctic sea ice extent:

- $-1979 \le x_i \le 2020$, $3.57 < y_i < 7.67$
- we set up the 2x2 equation system

$$Mp = b$$
:

$$\mathbf{M} = \begin{pmatrix} \mathbf{x}^{\top} \mathbf{x} & \sum x_i \\ \sum x_i & n \end{pmatrix}^{5}$$

$$\mathbf{b} = \begin{pmatrix} \mathbf{x}^{\top} \mathbf{y} \\ \sum y_i \end{pmatrix}$$

– and solve then for p:

$$\mathbf{p} = \begin{pmatrix} -0.0837 \\ 173.3588 \end{pmatrix}$$

Sea Ice Example

42 years of measurements of Arctic sea ice extent:

- $-1979 \le x_i \le 2020,$ $3.57 < y_i < 7.67$
- we set up the 2x2 equation systemM p = b:

$$\mathbf{M} = \begin{pmatrix} \mathbf{x}^{\top} \mathbf{x} & \sum x_i \\ \sum x_i & n \end{pmatrix} \mathbf{5}$$

$$\mathbf{b} = \begin{pmatrix} \mathbf{x}^{\top} \mathbf{y} \\ \sum y_i \end{pmatrix}$$

– and solve then for p:

$$\mathbf{p} = \begin{pmatrix} -0.0837 \\ 173.3588 \end{pmatrix}$$

Other, non-linear Models

[see also MATLAB example 3a_B]

Alternative to linear regression:

- fitting a higher-order polynomial, for ex.: $f(x) = A x^2 + B x + C$
- now: three unknowns A, B, and C
- considering the partial derivatives of E_2 wrt. A, B, and C, and setting them to 0, gives a 3 x 3 system of equations

$$E_2(A, B, C) = \sum_{k} (f(x_k) - y_k)^2 = \sum_{k} (Ax_k^2 + Bx_k + C - y_k)^2$$

$$\frac{\partial E_2}{\partial A} = 0$$
: $\sum_{k} 2 \left(A x_k^2 + B x_k + C - y_k \right) x_k^2$

$$\frac{\partial E_2}{\partial B} = 0: \quad \sum_k 2 \left(A x_k^2 + B x_k + C - y_k \right) x_k$$

$$\frac{\partial E_2}{\partial C} = 0 : \begin{bmatrix} \sum_k x_k^4 & \sum_k x_k^3 & \sum_k x_k^2 \\ \sum_k x_k^3 & \sum_k x_k^2 & \sum_k x_k \\ \sum_k x_k^2 & \sum_k x_k & n \end{bmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix} = \begin{pmatrix} \sum_k x_k^2 y_k \\ \sum_k x_k y_k \\ \sum_k y_k \end{pmatrix}$$

Other, non-linear Models

Alternative to linear regression:

- fitting a higher-order polynomia
- now: three unknowns A, B, and
- considering the partial derivative and setting them to 0, gives a 3

$$E_2(A, B, C) = \sum_k (f(x_k) - y_k)^2$$

$$\frac{\partial E_2}{\partial A} = 0$$
: $\sum_k 2\left(Ax_k^2 + Bx_k + Bx_k^2\right)$

$$\frac{\partial E_2}{\partial B} = 0$$
: $\sum_k 2\left(Ax_k^2 + Bx_k + Bx_k^2\right)$

$$\frac{\partial E_2}{\partial C} = 0$$

$$= \left(\begin{array}{c} \sum_{k} x_k^2 y_k \\ \sum_{k} x_k y_k \\ \sum_{k} y_k \end{array}\right)$$

Other, non-linear Models

Alternative to linear regression:

- fitting a higher-order polynomia
- now: three unknowns A, B, and
- considering the partial derivative and setting them to 0, gives a 3

$$E_2(A, B, C) = \sum_k (f(x_k) - y_k)^2$$

$$\frac{\partial E_2}{\partial A} = 0: \quad \sum_k 2\left(Ax_k^2 + Bx_k + \frac{\partial E_2}{\partial A}\right)$$

$$\frac{\partial E_2}{\partial B} = 0$$
: $\sum_k 2\left(Ax_k^2 + Bx_k + Bx_k^2\right)$

$$\frac{\partial E_2}{\partial C} = 0$$

$$= \left(\begin{array}{c} \sum_{k} x_k^2 y_k \\ \sum_{k} x_k y_k \\ \sum_{k} y_k \end{array}\right)$$

Exponential Fit

[see also MATLAB example 3a_C]

Alternative to polynomial fits,

- it can be interesting/relevant to approximate the data with an exponential $f(x) = C e^{Ax}$
- unfortunately, forming the partial derivatives of E_2 does *not* lead to a system of linear equations
- but here:a change of variableshelps:
 - $Y = \ln y \ (X = x)$ $B = \ln C$

$$C \sum_{k=1}^{n} x_k \exp(2Ax_k) - \sum_{k=1}^{n} x_k y_k \exp(Ax_k) = 0$$

$$C \sum_{k=1}^{n} \exp(Ax_k) - \sum_{k=1}^{n} y_k \exp(Ax_k) = 0$$

$$f(x) = y = C \exp(Ax)$$

$$\ln y = \ln(C \exp(Ax)) = \ln C + \ln(\exp(Ax)) = B + Ax \to Y = AX + B$$

Exponential Fit

[see also MATLAB example 3a_C]

Alternative to polynomial fits,

- it can be interesting/relevented to approximate the data verified
- unfortunately,
 forming the partial derivations
 does not lead to a system
- but here:a change of variableshelps:

•
$$Y = \ln y \ (X = x)$$

 $B = \ln C$

$$f(x) = y = C \exp(Ax)$$

$$\ln y = \ln(C \exp(Ax)) = \ln C + C$$

Exponential Fit

[see also MATLAB example 3a_C]

Alternative to polynomial fits,

it can be interesting/relevent to approximate the data v

Another View on Least-Squares Fitting

Given overdetermined system A x = b with $A \in \mathbb{R}^{n \times m}$, n > m

- and A has full (column-)rank,
 i.e., the columns of A are linearly independent (A ↔ basis),
- then $\mathbf{A} \mathbf{x}$ (for all $\mathbf{x} \in \mathbb{R}^{m \times 1}$) generates all vectors $\mathbf{y} \in \mathbb{R}^{n \times 1}$, i.e., an m-dimensional subspace $\mathbf{\Gamma}$ of \mathbb{R}^n (since m < n), for which an exact solution \mathbf{x} (to $\mathbf{A} \mathbf{x} = \mathbf{y}$) exists
- usually, $\mathbf{b} \notin \Gamma$, i.e., no exact solution \mathbf{x} is found for $\mathbf{A} \mathbf{x} = \mathbf{b}$
- question: what's the best $y_i \in \Gamma$ (wrt. A x = b)?
- answer (in the least-squares sense): choose y₁ closest to b!
- the (minimal) error **e** is then given as $\mathbf{e} = \mathbf{b} \mathbf{y}_{!}$ and **e** is orthogonal to Γ !
- thus, $\mathbf{A}^{\mathsf{T}} \mathbf{e} = \mathbf{0} \rightarrow \mathbf{A}^{\mathsf{T}} \mathbf{e} = \mathbf{A}^{\mathsf{T}} (\mathbf{b} \mathbf{y}_{!}) = \mathbf{A}^{\mathsf{T}} (\mathbf{b} \mathbf{A}\mathbf{x}_{!}) = \mathbf{0}$
- ergo $(\mathbf{A}^T \mathbf{A}) \mathbf{x}_! = \mathbf{A}^T \mathbf{b} \leftarrow \text{the } normal equations}$ for best-possible $\mathbf{x}_!$

Another View on Least-Squares Fitting

Given the normal equations $(A^TA) x_! = A^T b$ for the overdetermined system A x = b with $A \in \mathbb{R}^{n \times m}$, n > m

- and full-rank A (still),
- $(\mathbf{A}^{\mathsf{T}} \mathbf{A})$ is nicely invertible!
- thus we can find $\mathbf{x}_{!}$ by $\mathbf{x}_{!} = \mathbf{A}^{+} \mathbf{b}$ with $\mathbf{A}^{+} = (\mathbf{A}^{T} \mathbf{A})^{-1} \mathbf{A}^{T}$ and \mathbf{A}^{+} being called the pseudo-

Another look at $y_! = A x_!$, i.e., the vector in Γ that is closest to **b**

- since the error $\mathbf{e} = (\mathbf{b} \mathbf{y}_1)$ is orthogonal to $\mathbf{\Gamma}$,
- $\mathbf{y}_{\scriptscriptstyle \parallel}$ is the orthogonal projection of **b** onto Γ
- and $\mathbf{y}_{!}$ is given by $\mathbf{y}_{!} = \mathbf{A} (\mathbf{A}^{T} \mathbf{A})^{-1} \mathbf{A}^{T} \mathbf{b}$
- thus \mathbf{P}_{Γ} is the matrix that projects onto Γ , i.e., the column-space of \mathbf{A} , with $\mathbf{P}_{\Gamma} = \mathbf{A} (\mathbf{A}^{\mathsf{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{T}}$

[see also MATLAB example 3a_D]

[G. Strang explaining the projection]

Another View on Least-Squares Fitting

²⁰²⁵[see also MATLAB example 3a_D]

Numerical Issues

When attempting to compute higher-order fits:

- likely, the equation system becomes numerically ill-conditioned (think of the high powers of x_k in the normal equations!)
- rescaling of x, for ex., to the unit interval, can help

Numerical Issues

When attempting to compute higher-order fits:

- likely, the equation system becomes numerically ill-conditioned (think of the high powers of x_k in the normal equations!)
- rescaling of x, for ex., to the unit interval, can help

Issues of Higher-order Fits

[see also MATLAB example 3a_E]

For non-tiny datasets:

- low-order fitting is usually fine (regression line, quadratic fit, ...)
- higher-order fits lead to numerical issues—below with polyfit()...

cubic and 4th-order fit (OK)

5th-order fit (not OK)

Issues of Higher-order Fits

[see also MATLAB example 3a_E]

For non-tiny datasets:

- low-order fitting is usually fine (regression line, quadratic fit, ...)
- higher-order fits lead to numerical issues
 - centering & normalization of the abscissa helps (a bit)...
- still:
 - the standard approaches to polynomial fitting like polyfit() run into numerical problems fairly soon
 - higher-order polynomial models tend to oscillate at the ends of the abscissa-interval (on the left, on the right)

Stability of solution:

- slight variationsof the sea ice data:
 - leave out one point
 - add 5% of noise
- we also show a bit of past and future to test prediction

[see also MATLAB example 3a_F]

Stability of solution:

- slight variationsof the sea ice data:
 - leave out one point
 - add 5% of noise
- we also show a bit of past and future to test prediction

LS-lines appear quite stable and allow (some careful) prediction

Stability of solution:

- slight variationsof the sea ice data:
 - leave out one point
 - add 5% of noise
- we also show a bit of past and future to test prediction

linear prediction based on the data up to 10 years ago

Stability of solution:

- slight variationsof the sea ice data:
 - leave out one point
 - add 5% of noise
- we also show a bit of past and future to test prediction

quadratic fits are less stable and long-term prediction seems questionable

Stability of solution:

- slight variationsof the sea ice data:
 - leave out one point
 - add 5% of noise
- we also show a bit of past and future to test prediction

quadratic prediction based on the data up to 10 years ago

Stability of solution:

- slight variationsof the sea ice data:
 - leave out one point
 - add 5% of noise
- we also show a bit of past and future to test prediction

cubic fits are spreading a lot and provide no real information 20 years into the future

Stability of solution:

- slight variationsof the sea ice data:
 - leave out one point
 - add 5% of noise
- we also show a bit of past and future to test prediction

cubic prediction based on the data up to 10 years ago

Stability of solution:

- slight variations
 of the sea ice data:
 - leave out one point
 - add 5% of noise
- we also show a bit of past and future to test prediction

quartic fits are, of course, even less stable and thus also less suitable for prediction

Stability of solution:

- slight variationsof the sea ice data:
 - leave out one point
 - add 5% of noise
- we also show a bit of past and future to test prediction

quartic prediction based on the data up to 10 years ago

Outlook

Next:

piece-wise modeling with splines

Reading and Related Material

In the book:

– chapter 3 (on curve fitting) and related parts

On Wikipedia:

many good pages