Nation Code

Master

(CUDENATION)

Why shouldn't you ask a DBA to help you move?

They've been known to drop tables.

By the end of the day that will be hilarious

NoSQL VS SQL

The question is where do you want the pain?

It's all about reading and writing

NosQL

Easy to write difficult to read

Easy to read difficult to write

What is SQL?

SQL is a language used for managing and accessing data held in a relational database.

That doesn't help...

Let's see

A relational database is a set of tables structured in columns in rows.

The structure allows relations between pieces of data in separate tables

Think Excel...

name	age	salary
Ross	35	50000
Rachel	33	45000
Monica	33	48000
Chandler	35	?
Phoebe	32	16500
Joey	32	20000

But a bit more complicated...

Name	Age	salary							
Ross	35	50000			Nar	ma	Love_in	itarast	
Rachel	33	45000			INAI	116	LOVE_III	110103	
Monica	33	48000			Ro	SS	Racl	hel	
Chandler	35	?							
Phoebe	32	16500						Ross	
Joey	32	20000			Rac		Rus		
					Mor	nica	Pet	ie	
					Pho	ebe	Mik	(e	
					Jo	ey	Jani	ne	
Name	Address				Jo	ey	Jani	ne	
		Block	Name	job_title	min_salary		Jani _salary	ne	
Ross	20 Apartment B		Name	job_title				ne	
Ross Rachel	20 Apartment B 20 Apartment B	Block	Name Chandler	job_title ?		max		ne	
Ross	20 Apartment B 20 Apartment B 20 Apartment B	Block	Chandler	?	min_salary 0	max	_salary	ne	
Ross Rachel Monica Phoebe	20 Apartment B	Block Block	Chandler Monica	? Chef	min_salary 0 20000	max_	_salary ∞	ne	
Ross Rachel Monica Phoebe Chandler	20 Apartment B	Block Block Block	Chandler Monica Joey	? Chef Actor	min_salary 0 20000 10000	max_	_salary	ne	
Ross Rachel Monica Phoebe	20 Apartment B	Block Block Block Block	Chandler Monica	? Chef	min_salary 0 20000	max_	_salary ∞	ne	

19 Apartment Block

19 Apartment Block

Joey

Chandler

Microsoft Access

MysQL

IBM DB2

PostgreSQL

Oracle

Microsoft
SQL Server

SQLite

https:// www.codecademy.com/ articles/what-is-rdbms-sql

Lets start with the basics

Create our connection

1. Open MySQL Workbench

2. Create a new connection

3. Call the connection name employee and click OK

Create our schema

1. Click create new schema button

2. Name our schema employeedb

3. Click apply (twice)

Import data

1. Right click on the schema and select Table Data Import Wizard

2. Select the CSV to import

3. Make sure data types are correct and create table

Ready for the SeQueL

All a basic SQL query does is SELECT which columns we want to see FROM which table(s). We then want to limit them WHERE the rows meet certain conditions.

Which table?

SELECT * FROM current_job_detail;

Which columns?

Which rows?

This is were we get a few more options...

BETWEEN NOT BETWEEN LIKE NOT LIKE NOTIN

SELECT * FROM current_job_detail WHERE employee_id = 1000;

SELECT * FROM current_job_detail WHERE employee_id != 1000;

SELECT * FROM current_job_detail WHERE salary >= 50000;

SELECT * FROM current_job_detail WHERE salary BETWEEN 3000 and 5000;

SELECT * FROM current_job_detail WHERE job_title LIKE (1%evel%);

SELECT * FROM current_job_detail WHERE job_title LIKE (Devel%);

SELECT * FROM current_job_detail WHERE job_title NOT LIKE (%evel%);

SELECT * FROM current_job_detail WHERE job_title LIKE ('P_oduct Lead');

SELECT * FROM current_job_detail WHERE job_title IN ('Product Lead', 'Marketing Lead');

Only one constraint isn't very helpful though

SELECT * FROM current_job_detail WHERE salary <= 35000 AND job_title = 'Developer';

- 1) Look in each of the tables and work out what information is in there
- 2) Return a table of all of the tech leads
- 3) Return a table of all of the female employees
- 4) Return a table of all the employees that name starts with an S
- 5) Return a table of all the employees that have ever been a developer
- 6) Return a table of all the laptop ids that run Ubuntu as an OS

Extension

- 1) Return a table of all the employees whose name starts with A or S
- 2) Return a table of all the employees born in the 80s

CREATETABLE my_favourite_employees (employee_id int PRIMARY KEY, varchar(64); job_title

DANGER ZONE

DROP TABLE my_favourite_employees;

INSERT INTO my_favourite_employees SELECT employee_id, job_title FROM current_job_detail WHERE employee_id in (1001, 1002)

DANGER ZONE

DELETE FROM my_favourite_employees WHERE employee_id = 1001

- 1) Create a table called great_names with 2 columns name and employee_id
- 2) Insert 5 employees with great names into your table (your choice*)
- 3) Delete one of the employees out of your table based on their job title

Extension

- 1) Recreate your table with an extra column called great_name_ind
- 2) Insert 5 employees into your table and set the value of great_name_ind to 'Y'
- 3) Change one of the rows in your table so the great_name_ind = 'N'

What makes relational databases a bit different to NoSQL

Relations?

Primary vs Foreign

Would student_name be a good primary key?

Would student_id* be a better primary key?

^{*} a unique id given to each student when they start

https://en.wikipedia.org/wiki/Relational_database

SELECT * FROM current_job_detail INNER JOIN employee_detail ON current_job_detail.employee_id = employee_detail.employee_id

Eurgh...

Introducing aliases

SELECT * FROM current_job_detail cjd INNER JOIN employee_detail ed ON cjd.employee_id = ed.employee_id

FROM current_job_detail cjd

DANGER ZONE

SELECT * FROM current_job_detail cjd INNER JOIN jobs_history jh ON cjd.employee_id = jh.employee_id

Why is this dangerous?

One to One relationships

One to Many relationships

Many to Many relationships

Try this

SELECT employee_id FROM current_job_detail cjd INNER JOIN employee_detail ed ON cjd.employee_id = ed.employee_id

SELECT cjd.employee_id FROM current_job_detail cjd INNER JOIN employee_detail ed ON cjd.employee_id = ed.employee_id

- 1) Return a table linking laptop_detail and current_job_detail
- 2) Return a table of only the employees that own a Mac
- 3) Return a table of all the employees that were an apprentice developer but are now a developer
- 4) Return a table of all the employees that weren't a developer and now are

Extension

- 1) Return a table of all the employees that have had more then one job title (not using aggregates)
- 2) Look in your table, you may have duplicates. Remove them.

Aggregating

So far we've only returned the values in a table

But what if I want to know an average salary?

AVG COUNT SUM MIN MAX

SELECT MAX(salary) FROM current_job_detail;

What about the max salary for each job title?

Introducing GROUP BY

SELECT job_title, MAX(salary) FROM current_job_detail GROUP BY job_title;

SELECT job_title, AVG(salary) FROM current_job_detail GROUP BY job_title;

SELECT job_title, MIN(salary) FROM current_job_detail GROUP BY job_title;

SELECT job_title, SUM(salary) FROM current_job_detail GROUP BY job_title;

COUNT is a little different

SELECT job_title, COUNT(*) FROM current_job_detail GROUP BY job_title;

- 1) Return a table of the max salary by job type
- 2) Return a table counting how many people have each OS
- 3) Return a table of the average salary of staff members that have at some point been an apprentice developer

Extension

- 1) Return a row of data containing the name of the person with the highest salary (don't just eyeball the table and select an employee id)
- 2) Do the same for the highest salary by job type