第 1 节 n 维向量空间的概念

安徽财经大学

统计与应用数学学院

安徽财经大学

目录

- 1 n 维向量空间的概念
- 2 \mathbb{R}^n 的子空间

智能语音应用已经逐渐走进我们的生活,比如智能音箱、手机里面的各种智能语音服务等。这些设备或程序是如何接收和处理我们语音的呢?首先要做的就是"采样",将连续的模拟信号转换为离散的数字信号,下图显示包含人类笑声的一段信号。在传输和处理过程中就只考虑这些"采样点"上的值,可以用矩阵 (y_1,y_2,\cdots,y_n) 来表示,这样便于压缩、分离、识别等后续任务。这类矩阵很特殊,其本身及所在的空间也是线性代数中非常重要的内容,在实际工程中有着极为广泛的应用,这是本章所要研究的对象。

- n 维向量空间的概念
- $2 \mathbb{R}^n$ 的子空间

向量的线性运算

在几何空间中, 如果点 P 对于坐标原点 O 的位置向量 \overrightarrow{OP} 是 a, 那么 a 的分量就是点 P 的坐标, 因此, 向量也就记为 $a = (a_1, a_2, a_3)$. 我们定义向量的线性运算, 即向量的加法

$$\mathbf{a} + \mathbf{b} = (a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

和向量的数乘

$$k\mathbf{a} = (ka_1, ka_2, ka_3),$$

并且向量的加法与数乘满足八条运算法则:

4/21

向量的加法与数乘满足八条运算法则

$$1^{\circ}$$
 $a+b=b+a;$
 2° $(a+b)+c=a+(b+c);$
 3° $a+0=a;$
 4° $a+(-a)=0;$
 5° $1a=a;$
 6° $\lambda(\mu a)=(\lambda\mu)a;$
 7° $\lambda(a+b)=\lambda a+\lambda b;$
 8° $(\lambda+\mu)a=\lambda a+\mu a,$
其中 λ,μ 为数.

对于所有三维向量 (a_1, a_2, a_3) 组成的集合, 若按我们定义的向量的加法与数乘满足八条运算法则, 则称这个集合构成一个三维向量空间, 记为 \mathbf{R}^3 .

向量的加法与数乘满足八条运算法则

$$1^{\circ}$$
 $a+b=b+a;$
 2° $(a+b)+c=a+(b+c);$
 3° $a+0=a;$
 4° $a+(-a)=0;$
 5° $1a=a;$
 6° $\lambda(\mu a)=(\lambda \mu)a;$
 7° $\lambda(a+b)=\lambda a+\lambda b;$
 8° $(\lambda+\mu)a=\lambda a+\mu a,$
其中 λ,μ 为数.

对于所有三维向量 (a_1, a_2, a_3) 组成的集合, 若按我们定义的向量的加法与数乘满足八条运算法则, 则称这个集合构成一个三维向量空间, 记为 \mathbf{R}^3

向量的加法与数乘满足八条运算法则

$$1^{\circ}$$
 $a+b=b+a;$
 2° $(a+b)+c=a+(b+c);$
 3° $a+0=a;$
 4° $a+(-a)=0;$
 5° $1a=a;$
 6° $\lambda(\mu a)=(\lambda\mu)a;$
 7° $\lambda(a+b)=\lambda a+\lambda b;$
 8° $(\lambda+\mu)a=\lambda a+\mu a,$
其中 λ,μ 为数.

对于所有三维向量 (a_1, a_2, a_3) 组成的集合,若按我们定义的向量的加法与数乘满足八条运算法则,则称这个集合构成一个三维向量空间,记为 \mathbb{R}^3 .

• n 个数 a_1, a_2, \dots, a_n 组成的有序数组称为n 维向量, 记为

$$\boldsymbol{\alpha}=(a_1,a_2,\cdots,a_n).$$

- 我们也称 $\alpha = (a_1, a_2, \dots, a_n)$ 为 n 维行向量, a_i 称为向量 α 的第 i 个分量;
- 称

$$\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

为 n 维列向量, b_i 称为向量 β 的第 i 个分量.

• 分量为实数的向量称为实向量, 分量为复数的向量称为复向量

• n 个数 a_1, a_2, \dots, a_n 组成的有序数组称为n 维向量, 记为

$$\boldsymbol{\alpha}=(a_1,a_2,\cdots,a_n).$$

- 我们也称 $\alpha = (a_1, a_2, \dots, a_n)$ 为 n 维行向量, a_i 称为向量 α 的第 i 个分量:
- 称

$$\boldsymbol{\beta} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

为 n 维列向量, b_i 称为向量 β 的第 i 个分量.

• 分量为实数的向量称为实向量, 分量为复数的向量称为复向量.

• n 个数 a_1, a_2, \dots, a_n 组成的有序数组称为n 维向量, 记为

$$\boldsymbol{\alpha}=(a_1,a_2,\cdots,a_n).$$

- 我们也称 $\alpha = (a_1, a_2, \dots, a_n)$ 为 n 维行向量, a_i 称为向量 α 的第 i 个分量:
- 称

$$oldsymbol{eta} = \left(egin{array}{c} b_1 \ b_2 \ dots \ b_n \end{array}
ight)$$

为 n 维列向量, b_i 称为向量 β 的第 i 个分量.

• 分量为实数的向量称为实向量, 分量为复数的向量称为复向量

• n 个数 a_1, a_2, \dots, a_n 组成的有序数组称为n 维向量, 记为

$$\boldsymbol{\alpha}=(a_1,a_2,\cdots,a_n).$$

- 我们也称 $\alpha = (a_1, a_2, \dots, a_n)$ 为 n 维行向量, a_i 称为向量 α 的第 i 个分量:
- 称

$$oldsymbol{eta} = \left(egin{array}{c} b_1 \ b_2 \ dots \ b_n \end{array}
ight)$$

为 n 维列向量, b_i 称为向量 β 的第 i 个分量.

• 分量为实数的向量称为实向量, 分量为复数的向量称为复向量.

- 设 $\alpha = (a_1, a_2, \dots, a_n), \beta = (b_1, b_2, \dots, b_n)$ 为 n 维向量, 若它们的 各个分量对应相等, 则称 α 与 β 相等, 记为 $\alpha = \beta$.
- 定义零向量 $\mathbf{0} = (0, 0, \dots, 0)$, 负向量 $-\alpha = (-a_1, -a_2, \dots, -a_n)$.
- 记 \mathbb{R}^n 为具有 n 个实分量的一切 n 维向量的集合, 且定义加法和数乘规则如下:

设
$$\boldsymbol{lpha}=\left(a_1,a_2,\cdots,a_n
ight), \boldsymbol{eta}=\left(b_1,b_2,\cdots,b_n
ight), k\in\mathbf{R}$$
,则

$$\alpha + \beta = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n),$$

 $k\alpha = (ka_1, ka_2, \dots, ka_n).$

向量的加法与数乘满足下列运算规律:

- 设 $\alpha = (a_1, a_2, \dots, a_n)$, $\beta = (b_1, b_2, \dots, b_n)$ 为 n 维向量, 若它们的 各个分量对应相等, 则称 α 与 β 相等, 记为 $\alpha = \beta$.
- 定义零向量 $\mathbf{0} = (0, 0, \dots, 0)$, 负向量 $-\alpha = (-a_1, -a_2, \dots, -a_n)$.
- 记 \mathbb{R}^n 为具有 n 个实分量的一切 n 维向量的集合,且定义加法和数乘规则如下:

设
$$\boldsymbol{\alpha}=\left(a_1,a_2,\cdots,a_n\right), \boldsymbol{\beta}=\left(b_1,b_2,\cdots,b_n\right), k\in\mathbf{R}$$
, 则

$$\boldsymbol{\alpha} + \boldsymbol{\beta} = (a_1 + b_1, a_2 + b_2, \cdots, a_n + b_n),$$

$$k\boldsymbol{\alpha} = (ka_1, ka_2, \cdots, ka_n).$$

向量的加法与数乘满足下列运算规律:

n 维实向量空间

设 α, β, γ 都是 n 维向量, k, l 是数,

$$1^{\circ}$$
 $\alpha + \beta = \beta + \alpha$;

$$2^{\circ}$$
 $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma);$

$$3^{\circ}$$
 $\alpha + 0 = \alpha$;

$$4^{\circ}$$
 $\boldsymbol{\alpha} + (-\boldsymbol{\alpha}) = \mathbf{0};$

$$5^{\circ}$$
 $1\alpha = \alpha$:

$$6^{\circ}$$
 $k(l\alpha) = (kl)\alpha$;

$$7^{\circ}$$
 $k(\alpha + \beta) = k\alpha + k\beta;$

$$8^{\circ}$$
 $(k+l)\alpha = k\alpha + l\alpha$.

\mathbf{R}^n 称为 n 维实向量空间.

实际上, n 维行向量可以视为 $1\times n$ 矩阵, n 维列向量可以视为 $n\times 1$ 矩阵. 向量的加法及数乘实质上就是矩阵的加法及数乘. $1^\circ-8^\circ$ 条运算规律就是矩阵的加法和数乘所满足的八条运算规律.

n 维实向量空间

设 α, β, γ 都是 n 维向量, k, l 是数,

$$1^{\circ}$$
 $\alpha + \beta = \beta + \alpha$;

$$2^{\circ} \quad (\boldsymbol{\alpha} + \boldsymbol{\beta}) + \boldsymbol{\gamma} = \boldsymbol{\alpha} + (\boldsymbol{\beta} + \boldsymbol{\gamma});$$

$$3^{\circ} \quad \boldsymbol{\alpha} + \mathbf{0} = \boldsymbol{\alpha};$$

$$4^{\circ} \quad \boldsymbol{\alpha} + (-\boldsymbol{\alpha}) = \mathbf{0};$$

$$5^{\circ}$$
 $1\alpha = \alpha$:

$$6^{\circ}$$
 $k(l\alpha) = (kl)\alpha;$

$$7^{\circ}$$
 $k(\alpha + \beta) = k\alpha + k\beta$;

$$8^{\circ}$$
 $(k+l)\alpha = k\alpha + l\alpha$.

\mathbf{R}^n 称为 n 维实向量空间.

实际上, n 维行向量可以视为 $1 \times n$ 矩阵, n 维列向量可以视为 $n \times 1$ 矩阵. 向量的加法及数乘实质上就是矩阵的加法及数乘. $1^\circ - 8^\circ$ 条运算规律就是矩阵的加法和数乘所满足的八条运算规律.

第三章 n 维向量空间

- 我们已经看到,对于给定的坐标系,可以把一个物理向量表示为 R³ 中的向量。在 Rⁿ 中引进长度和角度的一般概念仍然是可能的和有用的,后面第四章中我们将这样做。
- 早在 18 世纪, 拉格朗日研究质点运动时, 就曾用质点在空间的位置 坐标 (x, y, z) 及时间 t 这四个有序数 (x, y, z, t) 来描述质点的运动, 因而引入了四维向量及四维向量空间的概念.
- 又如, 在一个较复杂的控制系统中 (如导弹、飞行器等), 决定系统在 t 时刻的参数, 假定最少需要 n 个: $x_1(t), x_2(t), \cdots, x_n(t)$, 那么这 n 个变量就称为系统的状态变量.
- n 维向量 $X = (x_1(t), x_2(t), \cdots, x_n(t))$ 就称为系统的状态向量. 它的全体就称为系统的状态空间. 状态空间中的任一点 X (向量) 就表示系统的一个状态.
- 一个 $m \times n$ 矩阵的每一行可看成是一个 n 维向量, 每一列则可看成一个 m 维向量, 一共有 m 个行向量, n 个列向量.

有了向量的运算,线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

可以写成以下简单形式:

$$x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} + \dots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix},$$

則

$$x_1\boldsymbol{\alpha}_1 + x_2\boldsymbol{\alpha}_2 + \cdots + x_n\boldsymbol{\alpha}_n = \boldsymbol{b}$$

安徽财经大学

有了向量的运算,线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

可以写成以下简单形式:

$$x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} + \dots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix},$$

即

$$x_1\boldsymbol{\alpha}_1 + x_2\boldsymbol{\alpha}_2 + \cdots + x_n\boldsymbol{\alpha}_n = \boldsymbol{b},$$

即

$$x_1\boldsymbol{\alpha}_1 + x_2\boldsymbol{\alpha}_2 + \cdots + x_n\boldsymbol{\alpha}_n = \boldsymbol{b},$$

其中 $\alpha_j = (a_{1j}, a_{2j}, \dots, a_{mj})^{\mathrm{T}} (j = 1, 2, \dots, n), b = (b_1, b_2, \dots, b_m)^{\mathrm{T}}.$ 还可写为如下更简单形式:

$$(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n) \boldsymbol{X} = \boldsymbol{b},$$

其中 $X = (x_1, x_2, \dots, x_n)^T$. 满足上式的 X 称为方程组 AX = b 的一个解向量.

- 1 n 维向量空间的概念
- 2 R^n 的子空间

取 $\emptyset \neq V \subset \mathbf{R}^n$, 对于 \mathbf{R}^n 的运算, V 常常也构成一个 n 维向量空间.

定义 (3.1.1)

设 $\emptyset \neq V \subset \mathbf{R}^n$, 如果 V 对于 \mathbf{R}^n 的线性运算也构成一个向量空间, 那么称 V 为 \mathbf{R}^n 的一个子空间.

一个非空子集合要满足什么条件才能成为子空间呢?

取 $\emptyset \neq V \subset \mathbf{R}^n$, 对于 \mathbf{R}^n 的运算, V 常常也构成一个 n 维向量空间.

定义 (3.1.1)

设 $\emptyset \neq V \subset \mathbf{R}^n$, 如果 V 对于 \mathbf{R}^n 的线性运算也构成一个向量空间, 那么称 V 为 \mathbf{R}^n 的一个子空间.

一个非空子集合要满足什么条件才能成为子空间呢?

12/21

设有非空子集合 $V \subset \mathbf{R}^n$, 对于 \mathbf{R}^n 中原有的运算, V 中的向量满足向量 空间定义中的规则 $1^{\circ}, 2^{\circ}, 5^{\circ} - 8^{\circ}$ 是显然的. 如果 V 对于 \mathbf{R}^{n} 中原有的 运算具有封闭性, 那么不难看出规则中的 3°, 4° 也满足. 因此, 我们得到

定理 (3.1.1)

设 $V \to \mathbb{R}^n$ 的非空子集合, $V \to \mathbb{R}^n$ 的一个子空间的充要条件为 V 对于 \mathbf{R}^n 的加法和数乘运算是封闭的.

例 (3.1.1)

设 $V = \{(x_1, x_2) \mid x_2 = 2x_1\} \subset \mathbf{R}^2$, (c, 2c) 为 V 的任一元素, $k \in \mathbf{R}$, 则

$$k(c,2c)=(kc,2kc)\in\mathit{V}.$$

设 (a,2a),(b,2b) 为 V 的任意两元素,则

$$(a, 2a) + (b, 2b) = (a + b, 2(a + b)) \in V.$$

易见, V 为 \mathbb{R}^2 的子空间.

例 (3.1.2)

在 \mathbb{R}^3 中,由平行四边形法则,过坐标原点的平面上的任两向量的和向量 仍在该平面上, 其上的任一向量的数乘向量仍在该平面上, 故该平面为 \mathbb{R}^3 的一个子空间。同理,过原点的空间直线也为 \mathbb{R}^3 的一个子空间。但 是,不过原点的平面或空间直线不是 \mathbb{R}^3 的子空间,这是因为 0 不在它们 之中, 而任何子空间都应是包含零元的 (对此, 我们可以参见例 3).

例 (3.1.2)

在 ${f R}^3$ 中,由平行四边形法则,过坐标原点的平面上的任两向量的和向量仍在该平面上,其上的任一向量的数乘向量仍在该平面上,故该平面为 ${f R}^3$ 的一个子空间。同理,过原点的空间直线也为 ${f R}^3$ 的一个子空间。但是,不过原点的平面或空间直线不是 ${f R}^3$ 的子空间,这是因为 ${f 0}$ 不在它们之中,而任何子空间都应是包含零元的(对此,我们可以参见例 3).

例 (3.1.3)

考虑 R³ 的子集

$$W = \{(x, y, z) \in \mathbf{R}^3 \mid x + y - z = 1\}.$$

容易验证, W 关于向量的线性运算不封闭. 事实上, $\alpha=(1,0,0)\in W$, 但 $2\alpha\notin W$. 故 W 不是 \mathbf{R}^3 的子空间.

应用实例: 矩阵、向量在计算机图形学中的应用

用几何的术语来说,若用矩阵 A 乘向量 v, 则向量 v 变换为另一个向量 w. 我们可将 Av 看成函数 w = f(v) = Av. 例如,在计算机图形学中,这种变换用来在电视广告中产生文字与动画。这为一个向量被一个矩阵乘的效果提供了一种可视化的方法。

安徽财经大学

现在简单地把二维向量表示为平面上的点 考虑

$$egin{aligned} oldsymbol{v}_1 = \left(egin{array}{c} 0 \ 0 \end{array}
ight), oldsymbol{v}_2 = \left(egin{array}{c} 2 \ 0 \end{array}
ight), oldsymbol{v}_3 = \left(egin{array}{c} 2 \ 2 \end{array}
ight), oldsymbol{v}_4 = \left(egin{array}{c} 0 \ 2 \end{array}
ight), \ oldsymbol{v}_5 = \left(egin{array}{c} 1 \ 0 \end{array}
ight), oldsymbol{v}_6 = \left(egin{array}{c} 2 \ 1 \end{array}
ight), oldsymbol{v}_7 = \left(egin{array}{c} 1 \ 2 \end{array}
ight), oldsymbol{v}_8 = \left(egin{array}{c} 0 \ 1 \end{array}
ight), \end{aligned}$$

其中 v_1, v_2, v_3, v_4 是一边长为 2 的正方形的顶点, v_5, v_6, v_7, v_8 是这个正方形各边的中点 (图 (a)).

设 $\pmb{w}_i = \pmb{A} \pmb{v}_i (i=1,2,\cdots,8)$, $\pmb{A} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, 则变换后的正方形如图 (b) 所示:

$$\mathbf{w}_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{w}_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \mathbf{w}_3 = \begin{pmatrix} 4 \\ 0 \end{pmatrix}, \mathbf{w}_4 = \begin{pmatrix} 2 \\ -2 \end{pmatrix},$$
 $\mathbf{w}_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{w}_6 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \mathbf{w}_7 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}, \mathbf{w}_8 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$

原正方形中点 v_5, v_6, v_7, v_8 是如何变换为旋转后正方形的中点向量 w_5, w_6, w_7, w_8 的呢? 如果 v_1 与 v_2 之间的线段不变换为 w_1 与 w_2 之间的线段, 那么要确定 v_1 与 v_2 之间的线段上的点如何变换则是冗长乏味的.

下列定理具有重大的实际价值, 正如上面提到的, 只需计算出端点被映射 到哪里即可, 使计算机图形学中的计算得到简化.

以下我们证明, 对于 2×2 矩阵 A, 任何把二维向量 v 变为二维向量 w的变换 w = Av. 总是把直线映成直线, 这里给出的证明, 用意是说明线 性代数与几何之间的关系和线性代数的作用, 证明的细节并不重要.

定理 (3.1.2)

对于任何一个 2×2 矩阵 A, 二维向量空间的映射 $v \rightarrow w = Av$ 把直线 映成直线, 把一条直线映射到一点的特殊情况除外,

证明.

向量 v_1 与 v_2 之间的线段 L 可表示为向量组

$$L = \{ \boldsymbol{u} : \boldsymbol{u} = \boldsymbol{v}_1 + c (\boldsymbol{v}_2 - \boldsymbol{v}_1), 0 \leqslant c \leqslant 1 \}.$$

当 c=0 时, 可得 v_1 . 设 $w_1=Av_1, w_2=Av_2$. 需证上述映射把 L 映射 到线段

$$L' = \{ \boldsymbol{y} : \boldsymbol{y} = \boldsymbol{w}_1 + c (\boldsymbol{w}_2 - \boldsymbol{w}_1), 0 \leqslant c \leqslant 1 \}.$$

下面我们证明向量 $u = v_1 + c(v_2 - v_1)$ 映射到向量 $y = w_1 + c(w_2 - w_1)$, 即 y = Au:

$$Au = A(v_1 + c(v_2 - v_1)) = Av_1 + cA(v_2 - v_1)$$

= $w_1 + c(Av_2 - Av_1) = w_1 + c(w_2 - w_1) = y$,

在 $w_1 = w_2$ 的特殊情况, L' 缩为点 w_1 .

小结

- n 维向量, 向量的线性运算 (加法和数乘) 满足八条运算法则.
- n 维向量空间的概念: 设 V 是一个 n 维向量的集合, 如果 V 非空, 且对向量的线性运算封闭, 即 $\forall \alpha, \beta \in V, k \in \mathbb{R}$, 都有 $\alpha + \beta \in V$, $k\alpha \in V$, 则称 V 构成一个向量空间.
- 全体 n 维实向量组成的集合 \mathbf{R}^n 构成一个向量空间, 称为 n 维实向量空间.
- \mathbf{R}^n 的子空间: 设 V 为 \mathbf{R}^n 的非空子集合, V 是 \mathbf{R}^n 的一个子空间的 充要条件为 V 对于 \mathbf{R}^n 的加法和数乘运算是封闭的.
- 设 $\alpha_1, \cdots, \alpha_r \in \mathbf{R}^n$, 则

$$L(\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_r)=\{k_1\boldsymbol{\alpha}_1+k_2\boldsymbol{\alpha}_2+\cdots+k_r\boldsymbol{\alpha}_r\mid k_1,k_2,\cdots,k_r\in\mathbf{R}\}$$

构成 \mathbf{R}^n 的一个子空间, 称为由向量组 $\alpha_1, \cdots, \alpha_r$ 生成的子空间

