Model Documentation of the 'NN3'

1 Nomenclature

1.1 Nomenclature for Model Equations

- x state vector
- u control input vector
- w noise vector
- z regulated output vector
- y measurement vector

2 Model Equations

State Vector and Input Vector:

$$x \in \mathbb{R}^4 u \qquad \qquad \in \mathbb{R}^1 w \in \mathbb{R}^1 z \qquad \qquad \in \mathbb{R}^1 y \in \mathbb{R}^1$$

System Equations:

$$\dot{x}(t) = Ax(t) + B_1 w(t) + Bu(t) \tag{1a}$$

$$z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)$$
(1b)

$$y(t) = Cx(t) + D21w(t)$$
(1c)

Outputs: z

2.1 Exemplary parameter values

Symbol	Value			
A	0.5	1.0	1.5	1.0
	-1.0	3.0	2.1	2.0
	1.0	-1.0	-0.6	1.0
	[-2.0]	2.0	-1.0	1.0
В	$\begin{bmatrix} 0 \end{bmatrix}$			
	0			
	0			
	$\lfloor 1.0 \rfloor$			
	$\begin{bmatrix} 0 \end{bmatrix}$			
B_1	0			
	0			
	$\lfloor 1.0 \rfloor$		_	
C_1	$[1.0 \ 0 \ 0 \ 0]$			
C	$[0 \ 0 \ 0 \ 1.0]$			
D_{11}	[0]			
D_{12}	[0]			
D_{21}	[0]			

3 Derivation and Explanation

This model is part of the "'COMPleib"' - library and was automatically imported into ACKREP.

The original description was:

NN3 C. W. Scherer, "An Efficient Solution to Multi-Objective Control Problems with LMI Objectives", Delft University of Technology, The Netherlands, 2000

4 Simulation

Figure 1: Simulation of the NN3.

References

[1] . W. Scherer, "An Efficient Solution to Multi–Objective Control Problems with LMI Objectives", Delft University of Technology, The Netherlands, 2000