JSC «Kazakh-British Technical University» Faculty of Information Technology Chair of Information Systems Management

AP	PROVED	BY
Dea	an of FIT	
Ima	anbayev. A	Z
<u> </u>	<u></u> »	2025.

SYLLABUS

Discipline: CSE1301 Databases **Number of credits: 3 (2/0/1)**

Term: Fall 2025

Personal	Time and place	of classes	Contact information				
Information about the Instructor	Lessons	Office Hours	e-mail				
Kuralbayev Aibek Talgatuly Senior Lector	According to the schedule	According to the schedule	aibekkuralbayev@gmail.com				
Dilyara Akhmetova	According to the schedule	According to the schedule	d.akhmetova@kbtu.kz				
Sholpan Saimassayeva	According to the schedule	According to the schedule	s.saimassayeva@kbtu.kz				
Assel Smaiyl	According to the schedule	According to the schedule	a.smaiyl@kbtu.kz				
Tolendi Nurzhigit	According to the schedule	According to the schedule	n.tolendi@kbtu.kz				

Course duration: 3 credits, 15 weeks (45 class hours)

Course pre-requisites:

Course Objectives:

This course aims to basic principles of databases, design and development databases as part of an entire information system, proficiency in basic database development. This course includes SQL databases foundation, also Database Management Systems are covered. As a chosen DMBS – PostgreSQL Server will be highlighted. As additional part of this course, integration of databases with backend web-application will be implemented.

Course Goals:

After the completion of the course, students will learn how to do the following:

- Develop SQL databases as part of an entire information system.
- Design normalized database structures
- Create and manage databases.
- Create stored procedures and triggers.
- Create SQL transactions

Literature:

Required:

1. DATABASE SYSTEM CONCEPTS, SEVENTH EDITION, Silberschatz Abraham, Korth, Henry F., Sudarshan, S., 1344 pages, 2020

Supplementary:

1. https://www.postgresql.org/docs/current/tutorial.html

COURSE CALENDAR

	COURSE CALENDAR												
	Class work	inde	SIS tudents ependent study)	TSIS (teacher supervised independent study)									
W ee k	Торіс	L ec tu re s, h o u rs	L a b, h o u rs	S e m i nar s , h o urs	Ch apt ers for rea din g	Ho urs	Descr iption	H o urs	Descrip tion				
1	Week #1. Introduction to Databases Database-System Applications Purpose of Database Systems View of Data Database Languages Database Design Database Engine Toolkit	2	0	1		1							

	W 1 1/2 D 1 1 1 1 2						
2	Week #2. Relational model &						
	keys;						
	• ER modeling fundamentals			4	_		
	• mapping ERD→relations	2	0	1	1		
	• 1NF–3NF, BCNF						
	<i>'</i>						
	• practice normalizing						
2	Week #3. Structured Query						
	Language (SQL) - Part 1						
	Data Definition Language						
	foundation, overview of DDL						
	basic principles.	2	0	1	1	Lab #1	
	1					240 111	
	Data manipulation Language						
	foundation, basic SQL						
	operators overview, principles						
	of data manipulation.						
4	Week #4. Structured Query						
	Language (SQL) - Part 3						
	. Data table galaction data	2	0	1	1	Lab #2	
	• Data table selection, data filtering, ordering of output data.						
	intering, ordering or output data.						
5	Week #5 Same at word Over over						
3	Week #5. Structured Query Language (SQL) - Part 4						
	Language (SQL) - 1 art 4	2	0	1	1	Lab #3	
	• Function and operators.						
6	Week #6. Structured Query						
	Language (SQL) - Part 5						
		2	0	1	1	Lab #4	
	• Constraints						
7	Week #7. Structured Query						
	Language (SQL) - Part 6						
	Additional Basic Operations						
	• Set operations	2	0	1	1	Lab #5	
	• Null values						
	Aggregate functions						
	Nested subqueries						
8	Week #8. Midterm exam	2	0	1	1		

9	 Week #9. Intermediate SQL Join Expressions Views Transactions Integrity Constraints SQL Data Types and Schemas Index Definition in SQL Authorization 	2	0	1	1	Lab #6	
10	Week #10. Intermediate SQL (cont.) • Join Expressions • Views • Transactions • Integrity Constraints • SQL Data Types and Schemas • Index Definition in SQL • Authorization	2	0	1	1	Lab #7	

11	Week #11. Intermediate SQL (cont.) • Join Expressions • Views • Transactions • Integrity Constraints • SQL Data Types and Schemas • Index Definition in SQL • Authorization	2	0	1	1	Lab #8	
12	Week #12. Intermediate SQL (cont.) • Join Expressions • Views • Transactions • Integrity Constraints • SQL Data Types and Schemas • Index Definition in SQL • Authorization	2	0	1	1	Lab #9	
13	Week #13. Advanced SQL • Functions and Procedures • Triggers • Recursive Queries • Advanced Aggregation Features • Window functions • Query optimization and performance tuning	2	0	1	1	Lab #10	

14	Week #14. Advanced SQL (cont.) • Functions and Procedures • Triggers • Recursive Queries • Advanced Aggregation Features • Window functions • Query optimization and performance tuning	2	0	1		
15	Lecture #15. Endterm exam	2	2	1		·
	Final Exam				In wri	tten form
	Total	3 0	0	15	15	45

COURSE ASSESSMENT PARAMETERS

Type of activity	Final scores
Laboratory works	20%
Midterm	20%
Endterm	20%
Final exam	40%
Total	100%

Criteria for evaluation of students during semester:

		Weeks															Total	
	Assessment criteria	1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4	1 5	16 -1 7	score s
1.	Laboratory works			*	*	*	*	*			*	*	*	*	*			20%
3.	Midterm and endterm								*							*		40%
5.	Final exam																*	40%
	Total																	100%

Academic Policy

KBTU standard academic policy is used.

- Cheating, duplication, falsification of data, plagiarism, and crib are not permitted under any circumstances!
- Attendance is mandatory.

Attention. Missing 30% attendance to lessons, student will be taken from discipline with filling in F (Fail) grade.

Attendance is conducted online in the platform wsp.kbtu.kz and starts at the beginning of the first lesson.

If a student noted that he/she is present, but will be absent when checking the attendance, this student receives -3 points.

Students must participate fully in every class. While attendance is crucial, merely being in class does not constitute "participation". Participation means reading the assigned materials, coming to class prepared to ask questions and engage in discussion.

- Students are expected to take an active role in learning.
- Written assignments (independent work) must be typewritten or written legibly and be handed in time specified. <u>Late papers are not accepted!</u>
- Students must arrive to class on time.
- Students are to take responsibility for making up any work missed.
- Make up tests in case of absence will not normally be allowed.
- Mobile phones must always be switched off in class.
- Students should always be appropriately dressed (in a formal/semi-formal style).
- Students should always show tolerance, consideration and mutual support towards other students.