《单片机原理与接口技术》 实验指导书

霍凯 郭玉明 编 赵嘉蔚 肖燕彩 万里冰 审

北京通大學

机械工程实验中心 2020年4月

目录

1 μVision	n4 集成开发环境	2
	启动 μVision4	
	创建项目	
	源程序创建与添加	
	设定工具选项	
1.5	编译项目	7
	调试	
1.7	创建 HEX 文件	8
	[目	
2.1	指令应用程序设计实验	9
2.2	外部中断实验	12
2.3	定时器应用实验	14
2.4	8155 扩展及 LED 显示实验	16
2.5	模/数与数/模转换实验	18

1 μVision4 集成开发环境

KEIL C51 是 KEIL 公司开发的单片机 C 语言编译器,除兼容 ANSIC 外又增加很多与硬件密切相关的编译特性,使得在 8051 系列单片机上开发应用程序更为方便快捷。μVision4 是一种集成化的文件管理编译环境,集成了文件编辑处理、编译链接、项目管理、窗口、工具引用和软件仿真调试等多种功能,是相当强大的开发工具。

1.1 启动 µVision4

双击桌面上的"Keil µVision4"图标即可启动运行,也可单击"开始"按钮,将鼠标指向"程序",找到"Keil µVision4"图标并单击鼠标左键启动,启动运行后将显示如图 1-1 所示 µVision4 提示信息,几秒钟后提示信息自动消失,出现如图 1-2 所示窗口。主窗口由标题栏、下拉菜单、快捷工具按钮、项目窗口、文件编辑窗口、输出窗口以及状态栏等组成。

图 1-1 μVision4 启动提示信息

图 1-2 μVision4 的窗口分配

1.2 创建项目

单击 μVision4 菜单中的"Project",选择弹出的下拉式菜单中的 New μVision Project,如图 1-3,打开一个标准的 Windows 文件对话窗口,如图 1-4。要求填入新项目文件的名称,在"文件名"中输入程序项目名称,这里用"test"。"保存"后的文件扩展名为 uvproj,这是 KEIL μVision4 项目文件扩展名,以后能直接点击此文件以打开先前做的项目。

图 1-3 New μVision Project 菜单

图 1-4 文件窗口

在创建完项目文件后,弹出如图 1-5 所示的 Select Device 对话框,要求为默认的目标(Target 1)选择合适的器件。在对话框中显示了 μVision4 的器件数据库,从中可以直接选择所要使用的微处理器,在本例中使用 NXP (founded by Philips)公司的P89V51RD2。使用"Project"菜单下的"Select Device for Target 1"选项也可以弹出同样的对话框为项目选择 CPU 型号。

图 1-5 选取芯片

当芯片型号选取完毕后,会弹出如图 1-6 所示的对话框,询问是否需要添加 8051 的启动文件(START.51)到工程中,该选项选择是即可。

图 1-6 选择是否添加启动文件

1.3 源程序创建与添加

使用图标或"File"菜单中的"New"命令选项就可以创建一个新的源程序文件。创建新的源文件时将会打开一个空的文本编辑器窗口,如图 1-7 所示,可在此窗口中编辑源文件。编辑完成后需要先保存该文件为*.C 类型文件。将文件保存为*.C 文件后,文本编辑窗口中代码将会根据指令不同自动高亮不同颜色。

```
•
         EA = 1://打开中断
 103
  104
 105=/**************
                                   定时中断时间计算公式: 模式1 16位计数器
机器周期=12/fosc.
                                                               16位计数器, (2<sup>16-x</sup>)*机器
 106
     *Function: 定时器TO初始化
                                                                             65536-(fosc
 107
     *parameter:
     *Return:
 108
     *Modify:
 111
     void InitialTimeO (void)
 112⊟ {
113 |
         TMOD = 0 \times 01:
                            //0000 0001; m1 m0 = 0 1 模式1, 16位定时计数器
 114
         TH0=t1/256;
         TL0=t1%256;
         ET0 = 1;
                            //打开定时器
 117
         TRO = 1
 118 -}
 119=/**************
     *Function: 定时器1初始化
                                 有串口 不用定时器1
      *parameter:
 122
     *Return:
 123
     *Modify:
 124
           *********************************
 125
    void InitialTime1 (void)
main.c
```

图 1-7 文本编辑窗口

创建源程序之后,需要把这个文件添加到项目中。在 μVision4 中,将文件加到项目中有多种方式。例如,可以在"Project"窗口中选择 Source Group 1 文件组,然后单击鼠标右键,就会出现如图 1-8 所示的菜单,此时选中"Add Files to Group 'Source Group 1"选项,在打开如图 1-9 所示对话框中选择 main.c 即可。

图 1-8 右击项目组弹出的菜单

图 1-9 选择加载*.c 类型源文件

1.4 设定工具选项

μVision4 需要为目标硬件设置选项。单击主菜单栏中的"Project"菜单,然后选择 "Options for Target 1"菜单命令,出现如图 1-10 所示的对话框。在 Target 栏列出与所选 用芯片硬件相关的片内部件参量。表 1-1 描述了 Target 对话框中选项。在所有试验中使用的晶振类型为 12.0MHz,故编译调试前需将其改为 12.0MHz。

图 1-10 为目标设定工具选项

表 1-1 Target 对话框中选项

对话框选项	含义		
Xtal	标明 CPU 运行的时钟频率,一般与 XTAL 的频率相同		
Memory Model	标明 C51 编译器的内存模式		
Use On Chip ROM	使用片上自带的 ROM 作为程序存储器		
Use On Chip Arithmetic Unit	使用片上 AU 单元		
Use multiple DPTR registers	使用多个 DPTR		
Use On Chip XRAM	使用片上自带的 XRAM 存储器		
Off chip code memory	指明目标硬件上的所有外部地址存储器的地址范围		
Off chip Xdata memory	指明目标硬件上的所有外部数据存储器的地址范围		
Code Banking	指明 Code banking 的所有参数		
Xdata Banking	指明 Xdata banking 的所有参数		

实验中,若与 proteus 联合调试,则选择配置项目 debug 栏中右侧的仿真器,仿真器选择为 Proteus VSM Monitor-51 Driver。如图 1-11 所示。

图 1-11 选择 Proteus VSM Monitor-51 Driver 仿真

1.5 编译项目

使用编译目标文件工具栏的图标 并用鼠标左键依次单击它们。就可以编译所有的源程序。当所编译的内容有语法错误是,μVision4 将会把错误和警告信息在输出窗口(Output Windouw)的编译页(Build)中显示出来如图 1-12 所示。双击某一条信息,就可以打开源程序文件,并且光标停留在 μVision4 编译窗口中出现该错误或警告的源程序位置上。

```
* assembling DISPLAY.A51...
DISPLAY.A51(0): warning A41: MISSING 'END' STATEMENT
assembling DINPUT.A51...
DINPUT.A51(0): warning A41: MISSING 'END' STATEMENT
linking...

*** WARNING L16: UNCALLED SEGMENT, IGNORED FOR OVERLAY PROCESS
SEGMENT: PPR?INITIALITIME1?MAIN

*** WARNING L16: UNCALLED SEGMENT, IGNORED FOR OVERLAY PROCESS
SEGMENT: PPR?ELAYIMAIN

*** WARNING L16: UNCALLED SEGMENT, IGNORED FOR OVERLAY PROCESS
SEGMENT: PPR?ELAYIMAIN

*** SEGMENT: PPR?ELAYIMAIN
Program Size: data=34.4 xdata=0 code=1278
"test" - 0 Error(s), 5 Warning(s).

*** Build (Command ) Findin Files /
```

1-12 错误和警告信息

1.6 调试

一旦成功创建并编译了应用程序,就可以开始调试过程。通过"Debug 菜单"或工具条按钮可以很方便地对源程序进行单步运行,全速运行、设置断点等仿真调试,同时可通过命令窗口输入各种 μVision4 调试命令(如调入信号函数等)进行辅助仿真调试,通过"Regs"标签页可以观察调试过程中 CPU 内部寄存器状态的变化情况。如果希望在调试过程中查看源程序的汇编代码,可以单击"View 菜单\Disassembly Window"打开反汇编窗口,在该窗口中还可以利用右键菜单进行混合模式(Mixed Mode)与汇编模式(Assembly Mode)切换、在线汇编(Inline Assembly)、查看跟踪记录(View Trace Recorde)、插入/删除断点等操作。

在调试过程中如果需要查看内部存储数据,则在内存窗口(Memory 1)下输入 D:+数据地址进行查找。例如,查看 20H 中数据,则在搜索中输入 D:20H,确认后则可看到对应数据。具体操作如图 1-13 所示。

图 1-13 输入地址并查看对应数据

1.7 创建 HEX 文件

在应用程序测试完毕后,就可以创建一个 HEX 文件,然后进行软件下载或者烧录到 EPROM 中。若想生成 HEX 文件,就必须将"Options for Target"对话框中的"Output"下的 Create HEX File 复选框选中(如图 1-14 所示)。如果在选项 Run User Progrm#1下选定了程序的话,在生成文件的功能结束以后可以直接开始 PROM 的编程功能。

图 1-14 选中 Create HEX File 复选框

2 实验项目

2.1 指令应用程序设计实验

2.1.1 实验目的

利用已学MCS-51 单片机的指令进行较复杂的程序设计,并通过实验进一步熟悉集成开发环境的调试过程,培养编写复杂要求程序的能力。

2.1.2 实验设备或软件

- (1) PC机 一台
- (2) keil c51 和 Proteus 软件

2.1.3 实验要求

在μVision4集成环境下,创建项目和源文件xxxx(学号).c,在源文件中输入下面程序 并将xxxx(学号).c添加到项目中,完成工具选项设定,进行编译、修改和调试,根据调试 过程写出相应的执行结果。

设计程序,找出10个无符号数的最大值和最小值,分别存放在最大值MAX、最小值MIN及和SUM变量中;将和转换成BCD码,存入BCDH和BCDL变量中;求除去最大数和最小数后剩余8个数的平均值,放入AVG中。完成实验仿真。

2.1.4 实验步骤

(1) 启动 µVision4

双击桌面上的"Keil μVision4"图标即可启动运行,也可以单击"开始"按钮,将鼠标指向"程序",找到"Keil μVision4"图标并单击鼠标左键启动运行。

(2) 创建项目

单击 μVision4 菜单中的"Project",选择弹出的下拉式菜单中的 New μVision4 Project,则打开一个标准的 Windows 文件对话窗口,要求填入新项目文件名称。

在创建完项目文件后,会弹出 Select Device 对话框,为默认的目标(Target 1)选择合适的器件。

(3) 源程序创建与添加

使用图标或"File"菜单中的"New"命令选项创建一个新的源程序文件,创建新的源文件时将会打开一个空的文本编辑器窗口,可在此窗口中编辑源文件。

创建源程序之后,需要将这个文件添加到已创建的项目中。

(4) 设定工具选项

μVision4 需要为目标硬件设置选项。单击主菜单栏中的"Project"菜单,然后选择 "Options for Target 1"菜单命令,出现对话框,在 Target 栏设置与所选用芯片硬件相关的 片内部件参量。

(5) 编译项目

使用编译目标文件工具栏的图标并用鼠标左键单击,就可以编译所有的源程序。当 所编译的内容有语法错误是, µVision4 将会把错误和警告信息在输出窗口(Output Windouw)的编译页(Build)中显示出来。双击某一条信息,就可以打开源程序文件, 并且光标停留在 µVision4 编译窗口中出现该错误或警告的源程序位置上,方便源程序修 正。

(6) 调试

成功编译了应用程序后,就可以开始调试过程。通过"Debug 菜单"或工具条按钮可以很方便地对源程序进行单步运行,全速运行、设置断点等仿真调试,通过"Regs"标签页可以观察调试过程中 CPU 内部寄存器状态的变化情况。调试菜单如下表:

调试菜单	工具栏	快捷键	描述
Start/Stop Debug Session	Q	Ctrl+F5	启动/停止 keil 4 的调试模式
Run	≣ ↓	F5	运行至下一个启用的断点
Step	(+)	F11	单步进入一个函数
Step Over	<u>0</u> +	F10	单步跳过一个函数
Step Out of current Function	(P	Ctrl+F11	跳出当前函数
Run to Cursor Line	*()		执行到当前光标所在行
Stop Running	8	ESC	停止程序执行
Breakpoints			打开断点对话框
Insert/Remove Breakpoint	1		在指定行插入或者删除断点
Enable/Disable Breakpoint		Alt+F7	打开或者关闭断点
Disable All Breakpoints	@		关闭所有断点
Kill All Breakpoints	₩	F7	删除所有断点

(7) 记录实验初始条件和执行结果。

2.1.5 实验报告

- (1) 写出实验内容及要求;
- (2) 画出程序流程图:
- (3) 写出程序清单,并加以注释;
- (4) 写出程序执行结果及调试过程。

2.1.6 思考题

如果将最值或和放到某一指定内部 RAM 中,程序应该怎样修改?

2.1.7 考核成果及评价指标

2.1.7.1 考核成果

- (1)实验过程、实验程序及仿真运行结果;
- (2)实验报告。

2.1.7.2 成果评价标准

- (1)仿真操作 30%;
- (2)完成情况 40%;
- (3)实验报告 30%;

2.2 外部中断实验

2.2.1 实验目的

- (1) 分析P1口工作原理, 研究单片机P1口的使用方法;
- (2) 理解与中断有关的特殊功能寄存器的作用,明确中断初始化的方法和步骤。
- (3)运用中断服务程序原理,设计主程序和中断服务子程序。

2.2.2 实验设备

- (1) PC机 一台
- (2) keil c51 和 Proteus 软件

2.2.3 实验要求

在单片机的INT0引脚上连接一个按键KEY1, P1.0引脚上连接一个发光二极管LED1, 电路如图2-1所示。每按一次按键KEY1,在INT0引脚上会产生一个脉冲信号。

要求单片机以外中断方式对脉冲信号进行计数,累计3个脉冲改变一次P1.0口的输出状态,即LED1的亮灭状态改变一次。

图 2-1 外部中断实验电路连接图

2.2.4 实验步骤

- (1) 用Proteus软件画电路图:
- (2) 编写主程序和外中断服务程序:
- (3) 在keilc51中编译、调试和修改,记录调试过程及结果;
- (4) 在Proteus中运行程序,观察仿真结果,如有问题重复以上调试步骤。

2.2.5 实验报告

- (1) 写出实验内容及要求;
- (2) 画出程序流程图;
- (3) 写出程序清单,并加以注释;
- (4) 写出程序执行结果及调试过程。

2.2.6 思考题

如何修改外部中断的触发方式?中断初始化都需要进行哪些操作?

2.2.7 考核成果及评价指标

2.2.7.1 考核成果

- (1)实验过程、实验程序及仿真运行结果;
- (2)实验报告。

2.2.7.2 成果评价标准

- (1)仿真操作 30%;
- (2)完成情况 40%;
- (3)实验报告 30%;

2.3 定时器应用实验

2.3.1 实验目的

- (1) 理解与定时器/计数器有关的特殊功能寄存器的作用,明确其控制位的设定方法;
 - (2) 运用定时器/计数器的工作原理,根据初始化设置步骤设计中断服务程序;
 - (3) 分析中断的响应过程,解决中断程序设计中的问题。

2.3.2 实验设备

- (1) PC机 一台
- (2) keil c51 和 Proteus 软件

2.3.3 实验要求

实验电路如图2-2所示,单片机T1引脚上连接一个按键KEY1,每按一次KEY1键, 在T1引脚上产生一个脉冲信号,P1.0~P1.7引脚上分别连接发光二极管LED1~LED8。

要求系统上电后LED全部熄灭,T0工作在定时中断方式1,T1工作在计数器方式2。 当T1累计2个脉冲时点亮LED1, LED1亮1s后熄灭同时点亮LED2,LED2亮1s后熄灭同 时点亮LED3,依此类推,当LED8亮1s后熄灭全部LED。LED流水过程中KEY1失效,LED 全部熄灭后KEY1有效,T1从0开始计数,重复上述过程。

图2-2 定时器应用实验电路电路图

2.3.4 实验步骤

- (1) 用Proteus软件画电路图:
- (2) 编写主程序和定时/计数中断服务程序;
- (3)编译、调试,记录调试过程及结果;
- (4) 在Proteus中运行程序,观察仿真结果,如有问题重复以上调试步骤。

2.2.4 实验报告

- (1) 写出实验内容及要求;
- (2) 画出程序流程图;
- (3) 写出程序清单,并加简单注释;
- (4) 写出程序执行结果及调试过程。

2.2.5 思考题

如果同时点亮两个 LED 进行流水操作,应该何如修改程序?同时点亮三个 LED,甚至更多呢?

2.3.7 考核成果及评价指标

2.3.7.1 考核成果

- (1)实验过程、实验程序及仿真运行结果;
- (2)实验报告。

2.3.7.2 成果评价标准

- (1)仿真操作 30%;
- (2)完成情况 40%;
- (3)实验报告 30%;

2.4 8155 扩展及 LED 显示实验

2.4.1 实验目的

- (1) 运用动态显示和8155工作原理,设计显示程序。
- (2) 分析综合编程要求,解决复杂程序设计能力。

2.4.2 实验设备

- (1) PC机 一台
- (2) keil c51 和 Proteus 软件

2.4.3 实验要求

实验电路如图2-3所示,采用6位共阴极数码管进行显示,8155的PB口控制数码管的字形,PC口控制数码管的阴极电位。

- (1)编写动态显示程序,将被加数显示在数码管的左边两位上,加数显示在中间两位上,和显示在右边两位上。注意和不要超过 FFH
 - (2)编写静态显示程序,在某一个数码管上交替显示"P"或"H"。

图2-3 LED显示实验电路图

2.4.4 实验步骤

- (1) 用Proteus软件画电路图;
- (2) 编写动态和静态显示两个程序;
- (3)编译、调试,记录调试过程及结果;
- (4) 在Proteus中运行程序,观察仿真结果,如有问题重复以上调试步骤。

2.4.5 实验报告

- (1) 写出实验内容及要求;
- (2) 画出程序流程图;
- (3) 写出程序清单,并加以注释;
- (4) 写出程序执行结果及调试过程。

2.4.6 思考题

如果使用 74LS138 的 Y5 引脚连接 8155 的 $\overline{\text{CE}}$, 那么 8155 的命令口地址、B 口地址、C 口地址变为多少?

2.4.8 考核成果及评价指标

2.4.7.1 考核成果

- (1)实验过程、实验程序及仿真运行结果;
- (2)实验报告。

2.4.7.2 成果评价标准

- (1)仿真操作 30%;
- (2)完成情况 40%;
- (3)实验报告 30%;

2.5 模/数与数/模转换实验

2.5.1 实验目的

- (1) 运用A/D 转换工作原理,设计并行模数转换芯片ADC0808接口程序;
- (2) 运用D/A 转换工作原理,设计并行数模转换芯片DAC0832程序。

2.5.2 实验设备

- (1) PC机 一台
- (2) keil c51 和 Proteus 软件

2.5.3 实验要求

(1)调节电位器RV1时,即改变0808输入通道IN0的电压。编程序完成模数转换,结果显示在LED显示器上,记录对应模拟量值。实验电路如图2-4所示

图2-4 A/D转换电路示意图

(2)利用DAC0832转换器,产生锯齿波、三角波或方波等,周期自定,用虚拟示波器观察输出波形。实验电路如图2-5所示

图3-8 D/A转换电路示意图

(3)(选作)请编程实现,将A/D转换的数字量作为D/A转换的延时常数,当调电位器RV1时,D/A转换产生锯齿波的频率也随之变化。

锯齿波产生原理:每隔一定时间向D/A转换器送一数值,且该数值逐渐提高,达到一定值后,又回到最小值,如此重复。因D/A转换器输出的模拟信号与输入的数字信号成正比,所以输出的波形类似于锯齿形状。

编程中需要注意每向D/A转换器送一数值后,需延时一段时间,延时时长决定锯齿波周期大小。

2.5.4 实验步骤

- (1) 用Proteus软件画电路图:
- (2) 编写A/D转换和D/A转换两个程序;
- (3)编译、调试,记录调试过程及结果:
- (4) 在Proteus中运行程序,观察仿真结果,如有问题重复以上调试步骤。

2.5.5 实验报告

- (1) 写出实验内容及要求;
- (2) 画出程序流程图:
- (3) 写出程序清单,并加以注释;
- (4) 写出程序执行结果及调试过程。

2.5.6 思考题

请使用查询和中断两种方式实现 A/D 转换。

2.5.7 考核成果及评价指标

2.5.7.1 考核成果

- (1)实验过程、实验程序及仿真运行结果;
- (2)实验报告。

2.5.7.2 成果评价标准

- (1)仿真操作 30%;
- (2)完成情况 40%;
- (3)实验报告 30%;