

Disciplina: Métodos Numéricos Professor: Gibson Barbosa

Email: gibson.barbosa@unicap.br

- Seja f(x) uma função contínua no intervalo [a,b] que possui uma única raiz para f(x) = 0 nesse intervalo
- Inicia-se escrevendo a função f(x) como

$$f(x) = \varphi(x) - x$$

$$f(x) = \varphi(x) - x = 0$$

$$\varphi(x) = x$$

- Ao substituir o valor de x na função φ(x), teremos como resultado o próprio valor de x
- A raiz de f(x) será o ponto fixo de φ(x), ou seja, o valor que ao ser substituído em φ(x) retorna o próprio valor de x

• Ex.:

$$f(x) = x^2 - x - 2$$

• EX.:
$$f(x) = x^2 - x - 2$$

 $f(x) = x^2 - 2 - x = \varphi(x) - x$

$$\varphi(x) = x^2 - 2$$

$$\varphi(2) = 2^2 - 2 = 2$$

$$f(2) = 2^2 - 2 - 2 = 0$$

- Para encontrarmos a raiz de f(x), podemos encontrar o valor numérico que ao substituirmos em φ(x), essa função retorna o próprio valor de x.
- Para encontrarmos esse valor de x, vamos utilizar um processo iterativo, onde começamos a calcular o valor de φ(x) com um valor inicial de x, e recalculamos repetidamente o valor de φ(x) sempre usando o resultado de uma dada iteração como a nova estimativa de x, ou seja, fazendo:

$$x_{k+1} = \varphi(x_k)$$

- Estime a raiz da função $f(x) = x^2 e^x$
 - Arredondar em 3 casas decimais

Estime a raiz da função
$$f(x) = x^2 - e^x$$
 $f(x) = g(x) - h(x) \Rightarrow g(x) = x^2 e h(x) = e^x$

• Estime a raiz da função $f(x) = x^2 - e^x$

$$f(x) = 0$$

$$x^{2} - e^{x} = 0$$

$$\varphi(x) = \sqrt{e^{x}}$$

$$\varphi(x) = -\sqrt{e^{x}}$$

$$\varphi(x) = -\sqrt{e^{x}}$$

• Estime a raiz da função $f(x) = x^2 - e^x$

• Para
$$\varphi(x) = -\sqrt{e^x} e x_0 = -1$$

$$x_0 = -1 \rightarrow \phi(x_0) = \phi(-1) = -\sqrt{e^{-1}} = -0,606$$

 $x_1 = -0,606 \rightarrow \phi(x_1) = \phi(-0,606) = -\sqrt{e^{-0,606}} = -0,738$
 $x_2 = -0,738 \rightarrow \phi(x_2) = \phi(-0,738) = -\sqrt{e^{-0,738}} = -0,691$
 $x_3 = -0,691 \rightarrow \phi(x_3) = \phi(-0,691) = -\sqrt{e^{-0,691}} = -0,707$
 $x_4 = -0,707$

• Estime a raiz da função $f(x) = x^2 - e^x$

o Para
$$\varphi(x) = -\sqrt{e^x}$$
 e $x_0 = -1$

$f(x) = x^2 - e^x$
0,632
-0,178
0,067
-0,024
0,007

Condições para aplicar o MIL:

Seja uma função f(x) contínua em um intervalo [a,b] e α uma raiz de f(x) contida em [a,b]. Seja $\phi(x)$ uma função de iteração obtida a partir de f(x),

Se

- φ(x) e φ'(x) forem contínuas em [a,b]
- $|\phi'(x)| < 1$ (para todo) $\forall x \in [a,b]$
- x0 ∈ [a,b]

Então

$$\lim_{n\to+\infty} x_n = \alpha$$

Referencias

 https://www.professores.uff.br/salete/wp-content/uploads/sites/111/2017/08/c alnuml.pdf

Obrigado!