INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

CSN-101 (Introduction to Computer Science and Engineering)

Lecture 13: Computer Networking and Web Technology

Dr. Sudip Roy

Assistant Professor

Department of Computer Science and Engineering

Piazza Class Room: https://piazza.com/iitr.ac.in/fall2019/csn101

[Access Code: csn101@2019]

Moodle Submission Site: https://moodle.iitr.ac.in/course/view.php?id=45

[Enrollment Key: csn101@2019]

MTF

Plan for Lecture Classes in CSN-101 (Autumn, 2019-2020)

Week	Lecture 1 (Monday 4-5 PM)	Lecture 2 (Friday 5-6 PM)
1	Evolution of Computer Hardware and Moore's Law, Software and Hardware in a Computer	Computer Structure and Components, Operating Systems
2	Computer Hardware: Block Diagrams, List of Components	Computer Hardware: List of Components, Working Principles in Brief, Organization of a Computer System
3	Linux OS	Linux OS
4	Writing Pseudo-codes for Algorithms to Solve Computational Problems	Writing Pseudo-codes for Algorithms to Solve Computational Problems
5	Sorting Algorithms – Bubble sort, selection sort, and Search Algorithms	Sorting Algorithms – Bubble sort, selection sort, and Search Algorithms
6	C Programming	C Programming
7	Number Systems: Binary, Octal, Hexadecimal, Conversions among them	Number Systems: Binary, Octal, Hexadecimal, Conversions among them
8	Number Systems: Negative number representation, Fractional (Real) number representation	Boolean Logic: Boolean Logic Basics, De Morgan's Theorem, Logic Gates: AND, OR, NOT, NOR, NAND, XOR, XNOR, Truth-tables
9	Computer Networking and Web Technologies: Basic concepts of networking, bandwidth, throughput	Computer Networking and Web Technologies: Basic concepts of networking, bandwidth, throughput
10	Different layers of networking, Network components, Type of networks	Network topologies, MAC, IP Addresses, DNS, URL
11	Different fields of CSE: Computer Architecture and Chip Design	Different fields of CSE: Data Structures, Algorithms and Programming Languages
12	Different fields of CSE: Database management	Different fields of CSE: Operating systems and System softwares
13	Different fields of CSE: Computer Networking, HPCs, Web technologies	Different Applications of CSE: Image Processing, CV, ML, DL
14	Different Applications of CSE: Data mining, Computational Geometry, Cryptography, Information Security	Different Applications of CSE: Cyber-physical systems and IoTs

Computer network

- A collection of computing devices connected in order to communicate and share resources
- Connections between computing devices can be physical using wires or cables or wireless using radio waves or infrared signals

Networking

Node (host)

Any device on a network

Data transfer rate (bandwidth)

The speed with which data is moved from one place to another on a network

Network Topologies:

- LAN topologies
- WAN topologies

LAN Topologies (Physical)

- 1) Bus
- 2) Star
- 3) Ring
- 4) Switched
- 5) Daisy chains
- 6) Hierarchies

Bus topology

- All networked nodes are interconnected, peer to peer, using a single, open-ended cable
- Both ends of the bus must be terminated with a terminating resistor to prevent signal bounce

Ring topology

Star topology

- Have connections to networked devices that "radiate" out form a common point
- Each networked device in star topology can access the media independently
- Have become the dominant topology type in contemporary LANs
- Stars have made buses and rings obsolete in LAN topologies

Switched topology

- A switch is a multiport, Data Link Layer device
- A switch "learns" Media Access Control addresses and stores them in an internal lookup table
- Temporary, switched paths are created between the frame's originator and its intended recipient, and the frames are forwarded along the temporary path
- Switched topology features multiple connections to a switching hub/Switch

Each port, and the device to which it connects, has its own dedicated

bandwidth

Daisy chains

- Developed by serially interconnecting all the hubs of a network
- This simple approach uses ports on existing hubs for interconnecting the hubs
- Daisy chains are easily built and don't require any special administrative skills

• Daisy chains were, historically, the interconnection method of choice for

emerging, first-generation LANs

Hierarchical rings

Hierarchical stars

Hierarchical combinations

WAN Topologies

- 1) Peer-to-peer WANs
- 2) Ring WANs
- 3) Star WANs
- 4) Full-mesh WANs
- 5) Partial-mesh WANs
- 6) Two-tiered
- 7) Three-tiered
- 8) Hybrids

Peer-to-peer

Ring topology

Star topology

Full-mesh topology

Partial-mesh

Two-tiered topology

Three-tiered

Hybrid topology

Networking

Protocol

A set of rules that defines how data is formatted and processed on a network

File server

A computer dedicated to storing and managing files for network users

Web server

A computer dedicated to responding to requests for web pages P2P model

A decentralized approach that shares resources and responsibilities among many "peer" computers

Open Systems

Number	Layer
7	Application layer
6	Presentation layer
5	Session layer
4	Transport layer
3	Network layer
2	Data Link layer
1	Physical layer

FIGURE 15.5 The layers of the OSI Reference Model

Open Systems Interconnection Reference Model

A seven-layer logical break down of network interaction to facilitate communication standards

Each layer deals with a particular aspect of network communication

OSI

Network Protocols

- Network protocols are layered such that each one relies on the protocols that underlie it
- Sometimes referred to as a protocol stack

FIGURE 15.6 Layering of key network protocols

TCP/IP

Transmission Control Protocol (TCP)

Software that breaks messages into packets, hands them off to the IP software for delivery, and then orders and reassembles the packets at their destination

Internet Protocol (IP)

Software that deals with the routing of packets through the maze of interconnected networks to their final destination

TCP/IP

User Datagram Protocol (UDP)

An alternative to TCP that is faster but less reliable

Ping

A program used to test whether a particular network computer is active and reachable

Traceroute

A program that shows the route a packet takes across the Internet

Traceroute in Action


```
C:\WINDOWS\System32\cmd.exe
                                                                              - 0 X
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.
C:\Documents and Settings\UserName>tracert google.com
Tracing route to google.com [64.233.187.99]
over a maximum of 30 hops:
                                192.168.1.1
                <1 ms
                         <1 ms
                                GATEWAY1.ORLANDO.dimenoc.com [66.193.174.1]
       1 ms
                <1 ms
       1 ms
                 1 ms
                          1 ms
                                POS4-1.GW5.ORL1.ALTER.NET [63.122.161.105]
                 1 ms
                                500.at-1-1-0.CL2.ORL1.ALTER.NET [152.63.80.102]
                                0.so-7-0-0.XL2.ATL4.ALTER.NET [152.63.86.109]
       15 ms
       13 ms
                                0.so-7-0-0.BR1.ATL4.ALTER.NET [152.63.86.173]
                13 ms
                                so-1-1-0.gar2.Atlanta1.Level3.net [4.68.127.177]
       15 ms
                15 ms
                         14 ms
       16 ms
                15 ms
                                ae-21-52.car1.Atlanta1.Level3.net [4.68.103.34]
                16 ms
                         15 ms
                                4.78.208.2
                         15 ms
                                66.249.95.125
       15 ms
                16 ms
                         19 ms
                                216.239.49.226
       16 ms
                16 ms
       16 ms
                         16 ms
                16 ms
Trace complete.
C:\Documents and Settings\UserName>
```

FIGURE 15.7 The traceroute utility

Used with permission from Microsoft

High-Level Protocols

Other protocols build on TCP/IP protocol suite

Simple Mail Transfer Protocol (SMTP) used to specify transfer of electronic mail

File Transfer Protocol (FTP) allows a user to transfer files to and from another computer

Telnet used to log onto one computer from another

Hyper Text Transfer Protocol (http) allows exchange of Web documents

High-Level Protocols

Protocol	Port	
Echo	7	
File Transfer Protocol (FTP)	21	
Telnet	23	
Simple Mail Transfer Protocol (SMTP)	25	
Domain Name Service (DNS)	53	
Gopher	70	
Finger	79	
Hypertext Transfer Protocol (HTTP)	80	
Post Office Protocol (POP3)	110	
Network News Transfer Protocol (NNTP)	119	
Internet Relay Chat (IRC)	6667	

Port

A numeric designation that corresponds to a particular high-level protocol

FIGURE 15.8 Some protocols and the ports they use

Network Addresses

Hostname

A name made up of words separated by dots that uniquely identifies a computer on the Internet

IP address

An address made up of four one-byte numeric values separated by dots that uniquely identifies a computer on the Internet

FIGURE 15.10 An IP address stored in four bytes

Network Addresses

IPv4

The last block was assigned in 2011

IPv6

32 bits organized into 4 groups of 8

FE80:0000:0000:0000:0202:B3FF:FE1E:8329

They work in parallel

Address Recognition Protocol (ARP)

- IP address is at network layer, need to map it to the MAC (medium address control) (Ethernet address) link layer address
- Use ARP to map 48 bit Ethernet address to 32 bit IP
 - IP requests MAC address for IP address from local ARP table
 - If not there, then an ARP request packet for IP address is sent using physical broadcast address (all FFFs)
 - Host with requested IP address responds with its MAC address as a unicast packet
 - On return, host updates ARP table and returns MAC address
 - ARP cache times out
 - ARP packets are on top of Ethernet

Address Recognition Protocol (ARP)

ARP requests are local only, do not cross routers

- Compare local IP and subnet mask => local subnet
- Compare local subnet to destination IP
 - if local, ARP for MAC address
 - else remote so
 - if ROUTE entry, ARP for router to subnet
 - if default route, ARP for default gateway
 - otherwise, drop packet & return error

Setting static IP addresses

- Open Control Panel and select Network Connections
- Under <u>LAN or High-Speed Internet</u> select local area connection,
- right-click and select properties
- <u>select Internet Protocol</u> (TCP/IP) and click on properties
- <u>fill in</u> IP number, Subnet Mask, Default Gateway and DNS server
- click OK, close.
- Use ping to test your setup.

Domain Name System

Domain name system (DNS)

A distributed system for managing hostname resolution

Domain name server

A computer that attempts to translate a hostname into an IP address

Domain Squatting

Ransoming domain names

Domain Name System

Top-Level Domain	General Purpose
.aero	Aerospace industry
.biz	Business
.com*	U.S. commercial (unrestricted)
.coop	Cooperative
.edu*	U.S. educational
.gov*	U.S. government
.info	Information (unrestricted)
.int*	International organizations
.jobs	Employment
.mil*	U.S. military
.museum	Museums
.name	Individuals and families
.net*	Network (unrestricted)
.org*	Nonprofit organization (unrestricted)
.pro	Certain professions

FIGURE 15.11 Some top-level domains and their general purpose (* indicates an original TLD)

Distinctions between Client-Server and Peer-to-Peer

- Client-server
 - Asymmetric relationship
 - Client predominately makes requests, server makes replies
- Peer-to-peer
 - Symmetric relationship

Networking

 Computer networks have opened up an entire frontier in the world of computing called the client/server model

Client/Server Computing

- Client machines:
 single-user PCs or workstations
 that provide a highly user friendly interface to the end
 user
- The server provides a set of shared user services to the clients
- The server enables many clients to access shared resources (e.g. a large database).
- The server typically runs on a cloud or a high-performance computer system.

Generic Client/Server Architecture

Some Server Types

- A file server is a computer and storage device dedicated to storing files. Any user on the network can store files on the server.
- A print server is a computer that manages one or more printers.
- A network server is a computer that manages network traffic.
- A database server is a computer system that processes database queries.

Multiple services

Position of UDP in the TCP/IP protocol suite

UDP vs TCP

UDP

- Low-level, connectionless
- No reliability guarantee

TCP

- Connection-oriented
- Not as efficient as UDP

Why use UDP?

- TCP connection is impossible
- TCP connection is too expensive
- TCP connection expense is wasteful
- Communication pattern isn't point-to-point

UDP: User Datagram Protocol

- In TCP/IP protocol suite, using IP to transport datagram (similar to IP datagram).
- Allows a application to send datagram to other application on the remote machine.
- Delivery and duplicate detection are not guaranteed.
- Low overhead: faster than TCP
- UDP (User Datagram Protocol) creates a transport layer connection between two processes.
- The port number identifies the process, or running application program. So using the port number, UDP directs the packet to the correct location.
- UDP does little else. No flow control. No ack of received packets. Only error control is if a checksum error is detected, it quietly drops the packet.

Transmission Control Protocol -TCP

- Reliable stream transport
 - Connection oriented (full duplex virtual circuit)
 - Conceptually place call, two ends communicate to agree on details
 - After agreeing application notified of connection
 - During transfer, ends communicate continuously to verify data received correctly
 - When done, ends tear down the connection
 - If UDP is like regular mail, TCP is like phone call
 - Provides buffering and flow control
 - Takes care of lost packets, out of order, duplicates, long delays
 - Isolates application program from network details
 - Jargon
 - Segment = TCP packet
 - Socket= source (address + port) + destination (address + port)

TCP – providing reliability

- Positive acknowledgement (ACK) with retransmission
 - Sender keeps record of each packet sent
 - Sender awaits an ACK
 - Sender starts timer when sends packet

TCP: Establishing Connection

- TCP connection defined by 4-tuple
 - (IP1, Port1, IP2, Port2) --- (google.com, 4093, iitr.ac.in, 22)
- Three-Way Handshake
 - Each side notifies other of starting sequence number it will use for sending
 - Each side acknowledges other's sequence number
 - SYN-ACK: Acknowledge sequence number + 1
 - Can "piggy-back" second SYN with first ACK

Detailed encapsulation process

- If one computer (host A) wants to send data to another computer (host B), the data is packaged through a process called *encapsulation*
- As the data packet moves down through the layers of the OSI model, it receives headers, trailers, and other information.

Detailed encapsulation process

Networks must perform the following five conversion steps in order to encapsulate data:

- 1. Build the data.
- 2. Package the data for end-to-end transport.
- 3. Add the network IP address to the header.
- 4. Add the data link layer header and trailer.
- 5. Convert to bits for transmission.

Data Encapsulation Example

01001010010010011101010010001101000... Layer 1: Physical Layer

Let us focus on the Layer 2, Data Link, Ethernet Frame for now.

Encapsulation

Encapsulation and decapsulation

