ELTE PROG-MAT. 2000-2001

11.

Visszalépéses keresés

Legyen $n \in \mathbb{N}$, és n > 1. Legyenek U_i $(i \in [1..n])$ tetszőleges véges, nem üres halmazok $(0 < \sigma_i = |U_i| < \infty)$. $U = U_1 \times \cdots \times U_n$.

Legyen $\varrho:U\to\mathbb{L}$, amely felbontható $\varrho_i:U\to\mathbb{L}$ $(i\in[0..n])$ tulajdonságok sorozatára az alábbi módon:

```
1. \varrho_0 = \uparrow;
```

2. $\forall i \in [0..n-1]$): $\forall u \in U : \varrho_{i+1}(u) \to \varrho_i(u)$;

3.
$$\forall i \in [1..n] : \forall u, v \in U : (\forall j \in [1..i] : u_j = v_j) \rightarrow \varrho_i(u) = \varrho_i(v);$$

4.
$$\varrho = \varrho_n$$
.

A feladat annak eldöntése, hogy létezik-e olyan elem U-ban, amelyre teljesül a ϱ feltétel, és ha igen, adjunk meg egy ilyen elemet.

```
\begin{split} A &= U \times \mathbb{L} \\ u & l \\ B &= \{\mathcal{X}\} \\ Q &: \uparrow \\ R &: (l = \exists v \in U : \varrho(v) \land l \rightarrow (u \in U \land \varrho(u))) \end{split}
```

Számozzuk meg U elemeit az alábbi módon: Minden U_i halmaz elemeit számozzuk meg nullától σ_i-1 -ig. Ezután U minden u eleméhez van egy (i_1,\ldots,i_n) rendezett n-es, amelyre $u=(u_{i_1},\ldots,u_{i_n})$, ahol $0\leq i_1<\sigma_1,\ldots,0\leq i_n<\sigma_n$. Ezen megszámozás egy lexikografikus rendezést definiál U-n.

Legyen $\mathcal{N}=[0..\sigma_1-1]\times\cdots\times[0..\sigma_n-1]$. Ekkor a fenti megszámozás egy bijekciót létesít \mathcal{N} és U között. Jelölje ezt az $\mathcal{N}\to U$ leképezést φ .

Vegyük észre, hogy az $\mathcal N$ halmaz elemei felfoghatók vegyesalapú számrendszerben felírt számként is. Ez alapján egy $\nu \in \mathcal N$ n-es számértéke:

$$f(\nu) = \sum_{i=1}^{n} \nu_i * Q_i,$$
 ahol:
 $Q_i = \prod_{j=i+1}^{n} \sigma_j \quad (i \in [1..n])$

A bevezetett jelölésekkel a feladatot újra specifikáljuk, és most már megkövetelhetjük azt is, hogy ha létezik keresett tulajdonságú elem, akkor az első ilyet adjuk meg:

$$\begin{split} A &= \mathcal{N} \times \mathbb{L} \\ \nu & l \\ B &= \{\mathcal{X}\} \\ Q : \uparrow \\ R : (l &= \exists \mu \in \mathcal{N} : \varrho(\varphi(\mu))) \land \\ l &\to (\varrho(\varphi(\nu)) \land \forall \mu \in \mathcal{N} : f(\mu) < f(\nu) \to \neg \varrho(\varphi(\mu))) \end{split}$$

Ha nem használjuk ki a ϱ speciális tulajdonságait, akkor a fenti feldat megoldható lineáris kereséssel, a $[0..|\mathcal{N}|-1]$ intervallumon. Vizsgáljuk meg, hogy hogyan használhatnánk ki ϱ specialitását!

Ha $\varrho_i(\varphi(\nu))$ igaz és $\varrho_{i+1}(\varphi(\nu))$ pedig hamis, akkor minden olyan $\nu' \in \mathcal{N}$ -re, amelynek első i+1 komponense megegyezik ν első i+1 komponensével, $\varrho_{i+1}(\varphi(\nu'))$ is hamis lesz. Ezért ha az i+1-edik pozíció után a ν csak nullákat tartalmaz, akkor a keresésben nagyobbat léphetünk, és növelhetjük ν -t az i+1-edik pozíción.

Az algoritmus még egyszerűbbé tehető, ha a ν -t kiegészítjük egy túlcsordulás bittel, amelynek 1 értéke azt jelzi, hogy ν értéke már nem növelhető.

Terjesszük ki az f függvényt az alábbi módon:

$$f: \{0,1\} \times \mathcal{N} \to \mathbb{N}_0$$

$$f(c,\nu) = c*Q_0 + \sum_{i=1}^n \nu_i *Q_i,$$
 ahol:
$$Q_0 = \prod_{j=1}^n \sigma_j$$

$$\begin{split} A_{n\ddot{o}vel} &= \mathcal{N} \times \mathbb{N}_0 \times \{0,1\} \\ &\quad \nu \quad m \quad c \\ B_{n\ddot{o}vel} &= \mathcal{N} \times \mathbb{N}_0 \\ &\quad \nu' \quad m' \\ Q_{n\ddot{o}vel} &: (\nu = \nu' \wedge m = m' \wedge m' \in [1..n] \wedge \forall i \in [m'+1..n] : \nu_i = 0) \\ R_{n\ddot{o}vel} &: (f(c,\nu) = f(\nu') + Q_{m'} \wedge m \in [0..m'] \wedge \\ &\quad \forall i \in [m+1..n] : \nu_i = 0) \end{split}$$

$$\begin{array}{c|c}
\hline
 n \ddot{o} vel(c, \nu, m) \\
\hline
 c := 1 \\
\hline
 c = 1 \land m \neq 0 \\
\hline
 \nu_m = \sigma_m - 1 \\
\hline
 m, \nu_m := m - 1, 0 \quad c, \nu_m := 0, \nu_m + 1
\end{array}$$

$$P_{n\"{o}vel}: (f(\nu) + c * Q_m = f(\nu') + Q_{m'} \land m \in [0..m'] \land \forall i \in [m+1..n]: \nu_i = 0 \land \forall i \in [1..m-1]: \nu_i = \nu_i')$$

A fenti meggondolások másik következménye, hogy célszerű egy olyan művelet bevezetése is amely amellett, hogy $\varrho(\varphi(\nu))$ -t eldönti, azt a legkisebb indexet is megadja, amelyre $\varrho_i(\varphi(\nu))$ hamis.

$$\begin{split} A_{keres} &= \mathcal{N} \times \mathbb{N}_0 \times \mathbb{L} \\ \nu & m & l \end{split}$$

$$B_{keres} &= \mathcal{N} \times \mathbb{N}_0 \\ \nu' & m \end{split}$$

$$Q_{keres} : (\nu = \nu' \wedge m = m' \wedge m' \in [1..n] \wedge \varrho_{m'-1}(\varphi(\nu))$$

$$R_{keres} : (\nu = \nu' \wedge l = \varrho(\varphi(\nu)) \wedge \cdots \\ \neg l \to (m \in [m'..n] \wedge \varrho_{m-1}(\varphi(\nu)) \wedge \neg \varrho_m(\varphi(\nu))) \end{split}$$

Ez a feladat visszavezethető lineáris keresés 2.8-ra.

$egin{pmatrix} keres(u,m,l) \end{pmatrix}$		
$m,l:=m-1,\uparrow$		
$l \wedge m \neq n$		
	$l := \varrho_{m+1}(\varphi(\nu))$	
	m := m + 1	

A program levezetéséhez a már bemutatott specifikációt használjuk. Legyen az invariáns tulajdonság:

$$\begin{split} P: (\forall \mu \in \mathcal{N}: 0 \leq f(0,\mu) < f(c,\nu) \to \neg \varrho(\varphi(\mu)) \land l = \varrho(\varphi(\nu)) \land \\ \neg l \to (c = 1 \lor m \in [1..n] \land \neg \varrho_m(\varphi(\nu)) \land \varrho_{m-1}(\varphi(\nu)) \land \\ \forall i \in [m+1..n]: \nu_i = 0) \end{split}$$

$ u, c, m := \varepsilon_0, 0, 1 $				
keres(u,m,l)				
$\neg l \wedge c = 0$				
$n\ddot{o}vel(c, u,m)$				
c = 0				
keres(u,m,l)	SKIP			

Megjegyezzük, hogy a visszalépéses kereséshez hasonlóan több visszalépéses technikát alkalmazó algoritmus is levezethető, például a visszalépéses számlálás:

$\nu,c,m,d:=\varepsilon_0,0,1,0$			
c = 0			
keres(u,m,l)			
	l		
	d := d + 1	SKIP	
	$n\ddot{o}vel(c, u)$,m)	