CS-E4740 - Federated Learning

FL Networks

Assoc. Prof. Alexander Jung

Spring 2025

Playlist

Glossary

Course Site

Table of Contents

A Mathematical Model of FL

Components of an FL Network

Laplacian Matrix of an FL Network

Choosing (or Learning) an FL Network

Table of Contents

A Mathematical Model of FL

Components of an FL Network

Laplacian Matrix of an FL Network

Choosing (or Learning) an FL Network

A ("Real-World") FL System

Abstracting Away Details

To analyze an FL system, we (need to) ignore many details:

- physical properties of communication links
- low-level communication protocols
- hardware configuration of devices
- operating systems of devices
- scientific computing software (Python packages)

An FL Network

- ▶ FL network consists of devices, denoted i = 1, ..., n.
- ▶ Some i, i' connected by edge with the weight $A_{i,i'} > 0$.
- ▶ Device *i* generates data $\mathcal{D}^{(i)}$ and trains model $\mathcal{H}^{(i)}$.
- ▶ Data $\mathcal{D}^{(i)}$ used to construct loss func. $L_i(\cdot)$.

FL Network is an Approximation

Table of Contents

A Mathematical Model of FL

Components of an FL Network

Laplacian Matrix of an FL Network

Choosing (or Learning) an FL Network

A Precise Definition

An FL Network consists of a

- finite number of **nodes** $V := \{1, \dots, n\}$
- ▶ **local model** $\mathcal{H}^{(i)}$ at each node $i \in \mathcal{V}$
- ▶ a **local loss function** $L_i(\cdot)$ at each node $i \in \mathcal{V}$
- ightharpoonup set of undirected **edges** \mathcal{E}
- ▶ positive **edge-weight** $A_{i,i'}$ ∈ \mathbb{R}_{++} for each $\{i,i'\}$ ∈ \mathcal{E}

We collect nodes V, edges \mathcal{E} and edge-weights $A_{i,i'}$ of FL network into an **undirected weighted graph** \mathcal{G} .

Nodes of an FL Network

- Consider an FL system with finite number n of devices.
- \blacktriangleright We index devices as i = 1, ..., n.
- \triangleright The indices form the nodes \mathcal{V} of an FL network.
- ▶ Each node $i \in \mathcal{V}$ represents a physical device.
- \blacktriangleright We will use "device i" and "node i" interchangeably.

Local Models of an FL Network

- ▶ Consider an FL system with devices i = 1, ..., n.
- **Each** device trains local (personal) model $\mathcal{H}^{(i)}$.
- ▶ The devices might use (very) different local models.
- ▶ We use local model parameters $\mathbf{w}^{(i)}$ for parametric $\mathcal{H}^{(i)}$.

Local Loss Functions of an FL Network

- ▶ Consider device *i*, training its local model $\mathcal{H}^{(i)}$.
- ► To train a model is to learn a useful hypothesis $h^{(i)} \in \mathcal{H}^{(i)}$.
- ▶ We measure usefulness of $h^{(i)}$ by a local loss function

$$L_{i}\left(\cdot\right):\mathcal{H}^{\left(i\right)}\rightarrow\mathbb{R}:h^{\left(i\right)}\mapsto L_{i}\left(h^{\left(i\right)}\right)$$

▶ Different devices might use different loss functions.

Local Loss Functions of an FL Network - ctd.

- ▶ FL methods use different constructions of loss funcs.
- lacktriangle for param. models $\mathcal{H}^{(i)}$, with parameters $\mathbf{w}^{(i)} \! \in \! \mathbb{R}^d$, use

$$L_{i}\left(\cdot\right):\mathbb{R}^{d}\rightarrow\mathbb{R}:\mathbf{w}^{\left(i\right)}\mapsto L_{i}\left(\mathbf{w}^{\left(i\right)}\right)$$

can use average loss on local dataset

$$L_{i}\left(\mathbf{w}^{(i)}\right) := \frac{1}{m_{i}} \sum_{r=1}^{m_{i}} \left(y^{(i,r)} - \left(\mathbf{w}^{(i)}\right)^{T} \mathbf{x}^{(i,r)}\right)^{2}$$

use reward signals to estimate loss (federated reinf. learning)

Edges (Links) in FL Network

- \blacktriangleright An FL network has **undirected weighted** edges \mathcal{E} .
- ▶ $\{i, i'\} \in \mathcal{E}$ indicates a **similarity** between devices i, i'.
- ▶ We quantify similarity with edge weight $A_{i,i'} > 0$.
- Different FL appl. use different notions of similarity.
- ▶ We will treat the edges mainly as a **design choice**.

Effect of Placing an Edge

We will design FL algorithms that are based on a FL network.

$$\mathcal{D}^{(i)}, \mathcal{H}^{(i)}$$
 $A_{i,i'}$ $\mathcal{D}^{(i')}, \mathcal{H}^{(i')}$

Placing an edge $\{i, i'\} \in \mathcal{E}$ between devices i, i' has two consequences on the FL algorithms:

- ▶ We must communicate results of computations between devices i, i' ($A_{i,i'} \approx$ channel capacity).
- ▶ The local models at i, i' are forced to be similar.

Connectivity of an FL Network- Definitions

Consider an FL network with graph G. We then define:

- ▶ \mathcal{G} is **connected** if there is path between any $i, i' \in \mathcal{V}$
- ▶ A **component** $C \subseteq V$ is a connected sub-graph without any edges between C and $V \setminus C$.
- ▶ **Neighbourhood** of $i \in V$ is $\mathcal{N}^{(i)} := \{i' \in V : \{i, i'\} \in \mathcal{E}\}.$
- ▶ Weighted node degree of $i \in V$ is $d^{(i)} := \sum_{i' \in \mathcal{N}^{(i)}} A_{i,i'}$.
- ▶ The max. node degree of \mathcal{G} is $d_{\max} := \max_{i \in \mathcal{V}} d^{(i)}$.

Connectivity of an FL Network - Example

- ► FL network with graph \mathcal{G} containing n=6 nodes.
- ▶ Uniform edge-weights, $A_{i,i'} = 1$ for all $\{i, i'\} \in \mathcal{E}$.
- ► Two components $C^{(1)} = \{1, 2, 3\}, C^{(2)} = \{4, 5, 6\}.$
- $b d^{(1)} = 1$, $\mathcal{N}^{(2)} = \{1, 3\}$, $d_{\text{max}} = 2$.

Design Choices

- ▶ We use FL networks to study and design FL systems.
- Each FL network involves design choices for
 - the nodes (which devices do we include?)
 - the local models and loss functions, and
 - ▶ the edges (which devices are connected or similar?).
- Trade-offs between computational complexity, accuracy, robustness, explainability, privacy-protection.

Design Space and Objectives

Table of Contents

A Mathematical Model of FL

Components of an FL Network

Laplacian Matrix of an FL Network

Choosing (or Learning) an FL Network

Laplacian Matrix of FL Network

- ightharpoonup Consider FL network with weighted undirected graph \mathcal{G} .
- ▶ Laplacian matrix $\mathbf{L}^{(\mathcal{G})} \in \mathbb{R}^{n \times n}$ of \mathcal{G} defined element-wise

$$L_{i,i'}^{(\mathcal{G})} := \begin{cases} -A_{i,i'} & \text{for } i \neq i', \{i, i'\} \in \mathcal{E} \\ \sum_{i'' \neq i} A_{i,i''} & \text{for } i = i' \\ 0 & \text{else.} \end{cases}$$

Laplacian Matrix - Example

Here is a graph \mathcal{G} with uniform edge weights $A_{i,i'} = 1$.

Properties of the Laplacian Matrix

The Laplacian matrix $\mathbf{L}^{(G)}$ of an FL network is

- ightharpoonup symmetric $\mathbf{L}^{(\mathcal{G})} = \left(\mathbf{L}^{(\mathcal{G})}\right)^T$ (since edges are undirected)
- ▶ and positive semi-definite (psd),

$$\mathbf{w}^T \mathbf{L}^{(\mathcal{G})} \mathbf{w} \ge 0 \text{ for every } \mathbf{w} \in \mathbb{R}^n.$$
 (1)

The psd property (1) follows from the identity

$$\mathbf{w}^{T} \mathbf{L}^{(\mathcal{G})} \mathbf{w} = \underbrace{\sum_{\{i,i'\} \in \mathcal{E}} A_{i,i'} (w^{(i)} - w^{(i')})^{2}}_{\text{total variation}}$$

which holds for every $\mathbf{w} = (w^{(1)}, \dots, w^{(n)})^T \in \mathbb{R}^n$.

The Spectrum of the Laplacian Matrix

▶ We can decompose any Laplacian matrix $\mathbf{L}^{(\mathcal{G})} \in \mathbb{R}^{n \times n}$ as

$$\mathbf{L}^{(\mathcal{G})} = \sum_{j=1}^{n} \lambda_{j} \mathbf{u}^{(j)} (\mathbf{u}^{(j)})^{T},$$

ightharpoonup with orthonormal eigenvecs. $\mathbf{u}^{(1)},\ldots,\mathbf{u}^{(n)}\in\mathbb{R}^n$, i.e.,

$$\left(\mathbf{u}^{(j)}\right)^T\mathbf{u}^{(j')} = egin{cases} 1 & ext{ for } j=j' \\ 0 & ext{ otherwise,} \end{cases}$$

▶ and non-neg. eigvals

$$0 = \lambda_1 \leq \ldots \leq \lambda_n \leq 2d_{\max}$$
.

The spectrum of $\mathbf{L}^{(\mathcal{G})}$ is the set of different eigvals.

Spectral Characterization of FL Networks

Consider an FL network with the graph \mathcal{G} consisting of k connected components $\mathcal{C}^{(1)}, \ldots, \mathcal{C}^{(k)}$.

The Laplacian matrix
$$\mathbf{L}^{(\mathcal{G})} = \sum_{j=1}^{n} \lambda_{j} \mathbf{u}^{(j)} (\mathbf{u}^{(j)})^{T}$$

- ▶ has eigvals. $\lambda_c = 0$ for c = 1, ..., k, with
- ightharpoonup corresponding eigvecs. $\mathbf{u}^{(c)}$, given entry-wise as

$$u_i^{(c)} = egin{cases} rac{1}{\sqrt{\left|\mathcal{C}^{(c)}
ight|}} & ext{ for } i \in \mathcal{C}^{(c)} \ 0 & ext{ otherwise.} \end{cases}$$

 ${\cal G}$ is connected $(k\!=\!1)$ if and only if $\lambda_2>0$.

Spectral Clustering - Toy Example

Here is a graph that consists of two components:

- ▶ The Laplacian matrix has two zero eigvals. $\lambda_1 = \lambda_2 = 0$.
- ▶ What are corresp. eigvecs. $\mathbf{u}^{(1)}$, $\mathbf{u}^{(2)}$? Are they unique?

Table of Contents

A Mathematical Model of FL

Components of an FL Network

Laplacian Matrix of an FL Network

Choosing (or Learning) an FL Network

Weather Stations across Finland

Each weather station i collects data (observations) $\mathcal{D}^{(i)}$ that can be used to train a local model $\mathcal{H}^{(i)}$

Python script for reproducing the Fig.:

Local Dataset of a FMI Station

Each FMI station i generates a local dataset $\mathcal{D}^{(i)}$ of the form

Time	Air Temperature
2025-01-13 16:08:00	-1.5
2025-01-13 16:09:00	-1.5
2025-01-13 16:10:00	-1.4
2025-01-13 16:11:00	-1.5
2025-01-13 16:12:00	-1.5

FL Network for FMI

Which nodes (FMI stations) should be connected by edges?

The Effect of Adding an Edge

- ► Model params. (updates) exchanged across edge \Rightarrow requires a communication link between i, i'!
- ▶ Model params. $\mathbf{w}^{(i)}, \mathbf{w}^{(i')}$ are coupled with strength $A_{i,i'}$

Connectivity measured by λ_2

- ▶ FL algorithms are faster for \mathcal{G} with large $\lambda_2(\mathcal{G})$.
- ▶ Place (given number of) edges to maximize $\lambda_2(\mathcal{G})$.

Computational Aspects

- ► FL algorithms operate by iterative message passing.
- Each edge adds compute/comm. per-iteration.
- ▶ More edges speed up alg. \Rightarrow needs fewer iterations.

Statistical Aspects

Consider an FL network with nodes i = 1, ..., n, each generating data $\mathcal{D}^{(i)}$ and training model $\mathcal{H}^{(i)}$.

- ▶ Edge $\{i, i'\} \in \mathcal{E}$ forces models at i, i' to be similar.
- \triangleright Can be detrimental if i, i' have different data distributions.
- ▶ Place edges only between *statistically similar* nodes i, i'.
- ▶ How to measure the stat. similarity between nodes i, i'?

Measuring Statistical Similarity

ightharpoonup Consider the local (weather) dataset $\mathcal{D}^{(i)}$

Time	Air Temperature
2025-01-13 16:08:00	-1.5
2025-01-13 16:09:00	-1.5
2025-01-13 16:12:00	-1.5

- Let's interpret the data as (the realization) of a random process with parametric prob. distr. $p(\mathcal{D}^{(i)}; \theta)$.
- We estimate θ by a function $\widehat{\theta}^{(i)}$ of $\mathcal{D}^{(i)}$.
- Measure similarity between i, i', e.g., by $\|\widehat{\boldsymbol{\theta}}^{(i)} \widehat{\boldsymbol{\theta}}^{(i')}\|$.

Measuring Statistical Similarity (ctd.)

- ▶ Interpret $\widehat{\theta}^{(i)}$ as a vector repr. $\mathbf{z}^{(i)} \in \mathbb{R}^k$ of $\mathcal{D}^{(i)}$.
- ▶ Place edges between nearest neighb. using $\|\mathbf{z}^{(i)} \mathbf{z}^{(i')}\|$.
- ▶ We also use other constructions for $\mathbf{z}^{(i)}$, e.g.,
 - for FMI stations, can use $\mathbf{z}^{(i)} := (latitude, longitude)^T$,
 - ▶ use gradient $\mathbf{z}^{(i)} := \nabla L_i(\mathbf{w})$ of local loss func.,
 - ightharpoonup construct $\mathbf{z}^{(i)}$ by auto-encoder (learnt embedding).

Example: FMI Weather Stations

Connect FMI station i to nearest neighb. using vector $\mathbf{z}^{(i)} := (latitude, longitude)^T$.

Python script for reproducing the Fig.:

Example: FMI Weather Stations (ctd.)

Connect FMI station i to nearest neighb. using $\mathbf{z}^{(i)} := \text{avg. temp during } 2024-05-15$.

Python script for reproducing the Fig.:

What's Next?

The next module formulates FL as an optimization problem defined over an FL network.

Later modules use FL networks for the design and analysis of FL systems.