§12.8. Implicit Functions

In \mathbb{R}^2 , an implicit function is given such an equation F(x, y(x)) = 0where x is independent variable and y depends on x.

For example, $x^2 + y^2 = 1$.

Let the equation F(x,y) = 0 be satisfied at the point (a,b) and the first partial derivatives of F be continuous at all near (a,b). Then F is a differentiable at that point.

Can the equation be solved for y as a function of x near (a,b)? That is, is there a function y(x) defined in some interval I = (a - h, a + h) where h > 0 satisfying y(a) = b and such that F(x, y(x)) = 0 holds for all x in I?

If there is such a function y(x), we can try to find its derivative at x = a by differentiating the equation F(x,y) = 0 implicitly with respect to x and evaluating the result at (a,b).

$$F_1(x,y) + F_2(x,y) \frac{dy}{dx} = 0$$
 so that $\frac{dy}{dx}|_{x=a} = -\frac{F_1(a,b)}{F_2(a,b)}$ if $F_2(a,b) \neq 0$.

This condition implies that the level curve F(x,y) = F(a,b) has nonvertical tangent lines near (a,b).

A similar situation holds for equations involving several variables. Let F(x, y, z) = 0 define z as a function of x and y (say z = z(x, y)) near some point $P_0 = (x_0, y_0, z_0)$ satisfying the equation. If F has continuous first partial near P_0 , then the partial derivates of z can be found at (x_0, y_0) by implicit differentiation of the equation F(x, y, z) = 0 with respect to x and y:

$$F_1(x,y,z) + F_3(x,y,z) \frac{\partial z}{\partial x} = 0$$
 and $F_2(x,y,z) + F_3(x,y,z) \frac{\partial z}{\partial y} = 0$, so that:

$$\frac{\partial z}{\partial x}|_{(x_0,y_0)} = -\frac{F_1(x_0,y_0,z_0)}{F_3(x_0,y_0,z_0)} \text{ and } \frac{\partial z}{\partial y}|_{(x_0,y_0)} = -\frac{F_2(x_0,y_0,z_0)}{F_3(x_0,y_0,z_0)} \text{ provided } F_3(x_0,y_0,z_0) \neq 0.$$

Since F_3 is the z component of the gradient vector of F, this condition implies that the level surface of F passing through P_0 does not have a horizontal normal vector, so it is not vertical (it is not parallel to the z-axis).

Example 1. Near what points on the sphere $x^2 + y^2 + z^2 = 1$ can the equation of the sphere be solved for z as a function of x and y? Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at such points.

Let $F(x, y, z) = x^2 + y^2 + z^2 - 1$. The sphere is the level surface F(x, y, z) = 0 of the function $F(x, y, z) = x^2 + y^2 + z^2 - 1$.

The above equation can be solved for z = z(x, y) near P_0 provided P_0 is not on the equator of the sphere $x^2 + y^2 = 1$ and z = 0 because the equator consists of those points that satisfy $F_3(x, y, z) = 0$. If P_0 is not on the equator, then it is on either the upper or the lower hemisphere, represented by $z = z(x, y) = \sqrt{1 - x^2 - y^2}$ and $z = z(x, y) = -\sqrt{1 - x^2 - y^2}$, respectively.

If $z \neq 0$, we can compute the first partial derivates of the solution z = z(x, y) by implicity differentiating the equation of the sphere $x^2 + y^2 + z^2 = 1$:

$$2x + 2z\frac{\partial z}{\partial x} = 0$$
 so $\frac{\partial z}{\partial x} = -\frac{x}{z}$;
 $2y + 2z\frac{\partial z}{\partial y} = 0$ so $\frac{\partial z}{\partial y} = -\frac{y}{z}$.

$$2y + 2z\frac{\partial z}{\partial y} = 0$$
 so $\frac{\partial z}{\partial y} = -\frac{y}{z}$

§Systems of Equations

Consider the system of equations: $\begin{cases} F(x,y,z,w) = 0 \\ G(x,y,z,w) = 0 \end{cases}.$

It might possess near some point that satisfies them solutions of one

$$\begin{cases} x = x(z, w) & , \\ x = x(y, w) & , \\ y = y(z, w) & , \\ z = z(y, w) & , \\ y = y(x, w) & , \\ z = z(x, w) & , \\ w = w(x, z) & , \\ w = w(x, y) & . \end{cases}$$

such solutions exist, we should be able to differentiate the given system of equations implicity to find partial derivates of the so-

lutions. For example, let x and y depend on z and w, that is; $\begin{cases} x = x(z, w) \\ \vdots \end{cases}$

Compute $\frac{\partial x}{\partial z}$.

$$F_1 \frac{\partial x}{\partial z} + F_2 \frac{\partial y}{\partial z} + F_3 = 0$$

$$G_1 \frac{\partial x}{\partial z} + G_2 \frac{\partial y}{\partial z} + G_3 = 0.$$

Note that $F_4 \frac{\partial w}{\partial z}$ and $G_4 \frac{\partial w}{\partial z}$ are not present because w and z are independent variables. Then $\left(\frac{\partial x}{\partial z}\right)_w = -\frac{F_3 G_2 - F_2 G_3}{F_1 G_2 - F_2 G_1}$.

Example 2. Let x, y, u and v be related by the equations $\begin{cases} u = x^2 + xy - y^2 \\ v = 2xy + y^2 \end{cases}$ Find a). $\left(\frac{\partial x}{\partial u}\right)_v$ and b). $\left(\frac{\partial x}{\partial u}\right)_y$ at the point (x, y) = (2, -1).

a). We assume x and y as functions of u and v and differentiate the given equations with respect to u holding v.

$$1 = \frac{\partial u}{\partial u} = (2x + y)\frac{\partial x}{\partial u} + (x - 2y)\frac{\partial y}{\partial u}$$

$$0 = \frac{\partial v}{\partial u} = 2y \frac{\partial x}{\partial u} + (2x + 2y) \frac{\partial y}{\partial u}.$$

At
$$(x, y) = (2, -1)$$
, we get;

$$1 = 3\frac{\partial x}{\partial y} + 4\frac{\partial y}{\partial y}$$

$$0 = -2\frac{\partial x}{\partial u} + 2\frac{\partial y}{\partial u}.$$

Eliminating $\frac{\partial y}{\partial u}$, we have $\frac{\partial x}{\partial u} = \frac{1}{7}$.

b). We assume x and v as functions of y and u and differentiate the given equations with respect to u holding y.

$$1 = \frac{\partial u}{\partial u} = (2x + y) \frac{\partial x}{\partial u}$$

$$\frac{\partial v}{\partial u} = 2y \frac{\partial x}{\partial u}.$$

At
$$(x,y) = (2,-1)$$
, we get $\left(\frac{\partial x}{\partial u}\right)_y = \frac{1}{3}$.

§Jacobian Determinants

The Jacobian determinant (or simply the Jacobian) of the two functions, u = u(x, y) and v = v(x, y), with respect to two variables, x and y, is the determinant

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}.$$

Similarly, the Jacobian of two functions, F(x, y, ...) and G(x, y, ...), with respect to the variables, x and y, is the determinant

$$\frac{\partial(F,G)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \\ \frac{\partial G}{\partial x} & \frac{\partial G}{\partial y} \end{vmatrix} = \begin{vmatrix} F_1 & F_2 \\ G_1 & G_2 \end{vmatrix}.$$

The definition above can be extended in the obvious way to give the jacobian of n functions with respect to n variables. For example, the jacobian of three functions F, G and H with respect to x, y and z, is the determinant

$$\frac{\partial(F,G,H)}{\partial(x,y,z)} = egin{array}{c|c} F_1 & F_2 & F_3 \\ G_1 & G_2 & G_3 \\ H_1 & H_2 & H_3 \\ \end{array}.$$

Example 3. In terms of jacobians, the value of $\left(\frac{\partial x}{\partial z}\right)_w$, obtained from the system of equations F(x, y, z, w) = 0 and G(x, y, z, w) = 0.

Then
$$\left(\frac{\partial x}{\partial z}\right)_{w} = -\frac{\frac{\partial(F,G)}{\partial(z,y)}}{\frac{\partial(F,G)}{\partial(x,y)}} = -\frac{\begin{vmatrix} F_{3} & F_{2} \\ G_{3} & G_{2} \end{vmatrix}}{\begin{vmatrix} F_{1} & F_{2} \\ G_{1} & G_{2} \end{vmatrix}} = -\frac{F_{3}G_{2} - F_{2}G_{3}}{F_{1}G_{2} - F_{2}G_{1}}.$$
 Note that x

and y are dependent variables and z, w are independent variables.

The denominator is the jacobian of F and G with respect to the dependent variables x, y and the numerator is the same jacobian except that the dependent variable x is replaced by the independent variable z.

§The Implicit Function Theorem

Consider a system of n equations in n + m variables,

$$\begin{cases} F_{(1)}(x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n) = 0 \\ F_{(2)}(x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n) = 0 \\ \vdots \\ F_{(n)}(x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n) = 0, \end{cases}$$

and a point $P_0 = (a_1, a_2, \dots, a_m, b_1, b_2, \dots, b_n)$ that satisfies the system. Suppose each of the functions $F_{(i)}$ has continuous first partial derivatives with respect to each of the variables x_j and y_k , $(i = 1, \dots, n, j = 1, \dots, m, k = 1, \dots, n)$, near P_0 . Finally, suppose that

$$\frac{\partial(F_{(1)}, F_{(2)}, \dots, F_{(n)})}{\partial(y_1, y_2, \dots, y_n)}\bigg|_{P_0} \neq 0.$$

Then the system can be solved for y_1, y_2, \ldots, y_n as functions of x_1, x_2, \ldots, x_m near P_0 . That is, there exist functions

$$\phi_1(x_1,\ldots,x_m),\ldots,\phi_n(x_1,\ldots,x_m)$$

such that

$$\phi_j(a_1,...,a_m) = b_j, \quad (j = 1,...,n),$$

and such that the equations

$$F_{(1)}(x_1, \ldots, x_m, \phi_1(x_1, \ldots, x_m), \ldots, \phi_n(x_1, \ldots, x_m)) = 0,$$

$$F_{(2)}(x_1, \ldots, x_m, \phi_1(x_1, \ldots, x_m), \ldots, \phi_n(x_1, \ldots, x_m)) = 0,$$

$$F_{(n)}(x_1, \dots, x_m, \phi_1(x_1, \dots, x_m), \dots, \phi_n(x_1, \dots, x_m)) = 0,$$

hold for all (x_1, \ldots, x_m) sufficiently near (a_1, \ldots, a_m) .

Moreover,

$$\frac{\partial \phi_i}{\partial x_j} = \left(\frac{\partial y_i}{\partial x_j}\right)_{x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_m} = -\frac{\frac{\partial (F_{(1)}, F_{(2)}, \dots, F_{(n)})}{\partial (y_1, \dots, y_j, \dots, y_n)}}{\frac{\partial (F_{(1)}, F_{(2)}, \dots, F_{(n)})}{\partial (y_1, \dots, y_i, \dots, y_n)}}$$

Example 4. Show that the system
$$\begin{cases} xy^2 + xzu + yv^2 = 3\\ x^3yz + 2xv - u^2v^2 = 2 \end{cases}$$
 can

be solved for (u, v) as a function of (x, y, z)(1,1,1,1,1) and find the value of $\frac{\partial v}{\partial y}$ for the solution at (x,y,z)=(1,1,1).

Let
$$\begin{cases} F(x, y, z, u, v) = xy^2 + xzu + yv^2 - 3\\ G(x, y, z, u, v) = x^3yz + 2xv - u^2v^2 - 2 \end{cases}$$

Let
$$\begin{cases} F(x, y, z, u, v) = xy^{2} + xzu + yv^{2} - 3 \\ G(x, y, z, u, v) = x^{3}yz + 2xv - u^{2}v^{2} - 2 \end{cases}$$
.
$$\frac{\partial(F,G)}{\partial(u,v)}|_{P_{0}} = \begin{vmatrix} xz & 2yv \\ -2uv^{2} & 2x - 2u^{2}v \end{vmatrix}_{P_{0}} = \begin{vmatrix} 1 & 2 \\ -2 & 0 \end{vmatrix} = 4. \text{ Since the jacobian}$$

is nonzero, the theorem assures us that the given equations can be solved for u and v as functions of x,y and z that is, (u, v) = f(x, y, z).

Since
$$\frac{\partial(F,G)}{\partial(u,y)}|_{P_0} = \begin{vmatrix} xz & 2xy + v^2 \\ -2uv^2 & x^3z \end{vmatrix}_{P_0} = \begin{vmatrix} 1 & 3 \\ -2 & 1 \end{vmatrix} = 7$$
, then $(\frac{\partial v}{\partial x}) = -\frac{7}{4}$.

Example 5. If the equations $x = u^2 + v^2$ and y = uv are solved for u and v in terms of x and y, find $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$ and $\frac{\partial v}{\partial y}$. Show that $\frac{\partial(u,v)}{\partial(x,y)} = \frac{1}{\frac{\partial(x,y)}{\partial(u,v)}}.$

Let
$$F(u, v, x, y) = u^2 + v^2 - x = 0$$
, $G(u, v, x, y) = uv - y = 0$ and $J = \frac{\partial(F,G)}{\partial(u,v)} = \begin{vmatrix} 2u & 2v \\ v & u \end{vmatrix} = 2(u^2 - v^2) = \frac{\partial(x,y)}{\partial(u,v)}$.

If
$$u^2 \neq v^2$$
, then $J = \frac{\partial(F,G)}{\partial(u,v)} \neq 0$

Thus,
$$\frac{\partial(u,v)}{\partial(x,y)} = \frac{1}{J^2} \begin{vmatrix} u & -2v \\ -v & 2u \end{vmatrix} = \frac{J}{J^2} = \frac{1}{J} = \frac{1}{\frac{\partial(x,y)}{\partial(u,v)}}.$$