CALCULUS

Bachelor in Computer Science and Engineering

Course 2021–2022

Functions: properties and continuity

Problem 4.1. Sketch the graph of the following functions.

- 1) $f(x) = \sqrt{x-3}$.
- 2) $f(x) = x^2 4x + 5$.
- 3) $f(x) = |(x-2)^3 + 1|$.

Problem 4.2. Identify domain and image of the following functions. Then, for each case, study the continuity of f(x) and sketch its graph.

- 1) $f(x) = \lfloor x \rfloor$ ($\lfloor x \rfloor$ equals the largest integer $\leq x$).
- 2) $f(x) = x \lfloor x \rfloor$.
- 3) $f(x) = \sqrt{x \lfloor x \rfloor}$.
- 4) $f(x) = \lfloor x \rfloor + \sqrt{x \lfloor x \rfloor}$.
- $5) \quad f(x) = \left\lfloor \frac{1}{x} \right\rfloor .$

Problem 4.3. Study the continuity of the following functions.

1)
$$f(x) = \frac{e^x + 2\cos(x) - 8x + 5}{e^x + \sin^2(x) + 5}$$
.

2)
$$f(x) = \sqrt{x^4 + 3} + e^{-x^2 + \cos(x)} \sin(4x^5 + 3x^2 + 2x - 5 + \cos(x)) + 2\arctan(3^x - 5)$$
.

1

- 3) $f(x) = e^{4/x} + x^4 7$.
- 4) $f(x) = arc cos^5(x)$.
- 5) $f(x) = (x-3) \ln(9x-4)$.
- 6) $f(x) = (4x^6 + 3x^3 2x + 6) \ln(x) + \ln(9x 4) \arccos(x)$.

Problem 4.4. Analyze the continuity of the given functions.

$$f(x) = \begin{cases} x \cos\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

$$g(x) \ = \ \begin{cases} e^x & \text{if} \ x \le 0 \\ x^2 - x & \text{if} \ 0 < x < 1 \\ \cos \left(\pi |2 - x^2| \right) + 1 & \text{if} \ x \ge 1 \end{cases}$$

$$h(x) = \begin{cases} x^3 - x + 5 & \text{if } x < 0 \\ e^x + \sin(x) & \text{if } x \ge 0 \end{cases}$$

Problem 4.5. Prove that the following function is bounded.

$$f(x) = \begin{cases} e^{1/x} & \text{if } -7 \le x < 0 \\ 0 & \text{if } 0 \le x \le 5 \end{cases}$$

Problem 4.6. Prove that the equation cos(x) = x has *some* solution.

Problem 4.7. Prove the following theorems.

- (A) Let $f:[0,1]\to [0,1]$ be a continuous function. Then, there exists $x_0\in (0,1)$ such that $f(x_0)=x_0$.
- (B) Let $f, g: [x_1, x_2] \to \mathbb{R}$ be continuous functions such that $f(x_1) > g(x_1)$ and $f(x_2) < g(x_2)$. Then, there exists $x_0 \in (x_1, x_2)$ verifying $f(x_0) = g(x_0)$.