One-to-Many Multi-agent Negotiation and **Coordination Mechanisms to Manage User** Satisfaction

One-to-Many Negotiation

Amro Najjar, Yazan Mualla, Kamal Singh, Gauthier Picard

14 July 2018 ACAN@AAMAS 2018. Stockholm. Sweden

Satisfaction Management

Satisfaction Management (SM)

- ▶ The provider seeking a balance between:
 - Minimizing its costs and use its resources efficiently
 - 2 Providing a (fine-grained) satisfactory service to its users

Satisfaction Management

Satisfaction Management (SM)

- ▶ The provider seeking a balance between:
 - Minimizing its costs and use its resources efficiently
 - Providing a (fine-grained) satisfactory service to its users

Satisfaction Management

Satisfaction Management (SM)

- ► The provider seeking a balance between:
 - Minimizing its costs and use its resources efficiently
 - Providing a (fine-grained) satisfactory service to its users

Problem!

In most of existing works, SM decision is taken unilaterally by the provider, the end-user preferences and her expectations are overlooked, inter-user differences are ignored

Evaluation

Proposition

Context

A one-to-many negotiation architecture whose goals are:

Objectives

- ► Integrate the user's subjective evaluation of the service quality[Hoßfeld et al., 2016, Najjar, 2015]
- Equip the provider with a fine-grained control over end-user satisfaction while respecting its budget constraints

Proposition

A one-to-many negotiation architecture whose goals are:

Objectives

- ► Integrate the user's subjective evaluation of the service quality[Hoßfeld et al., 2016, Najjar, 2015]
- Equip the provider with a fine-grained control over end-user satisfaction while respecting its budget constraints

In order to understand and model users' satisfaction and their subjective acceptability thresholds, we resorted to the literature of :

Related Domains

- Customer expectation management [Zeithaml et al., 1993] and Psychophysics [Reichl et al., 2010]
- 2 Quality of Experience (QoE) [Möller and Raake, 2014]

Plan

- Context
- Quality of Experience
- 3 One-to-Many Negotiation
- 4 Adaptive-QoE-Aware elasticity Management (AQUAMan*)
- 5 Evaluation

Quality of Experience

► QoE: is the service quality estimated subjectively by the end-user (a subjective and user-centric measure)

Quality of Experience

▶ QoE: is the service quality estimated subjectively by the end-user (a subjective and user-centric measure)

One-to-Many Negotiation

Challenge

Most of existing works are unilateral and they rely on MOS (Mean Opinion Score). Yet, MOS hides infiormation about user diversity and ignores users evolution [Hoßfeld et al., 2011]

Evaluation

Quality of Experience

▶ QoE: is the service quality estimated subjectively by the end-user (a subjective and user-centric measure)

One-to-Many Negotiation

Challenge

Context

Most of existing works are unilateral and they rely on MOS (Mean Opinion Score). Yet, MOS hides infiormation about user diversity and ignores users evolution [Hoßfeld et al., 2011]

A Possible Solution

- ► Recent empirical studies on QoE recommend providers to rely on percentiles to evaluate the user satisfaction[Hoßfeld et al., 2016]
- ► Agents can integrate user's personal and evolving preferences and involve her in the decision-making process [Najjar et al., 2017, Najjar et al., 2016a]

Plan

- Context
- Quality of Experience
- 3 One-to-Many Negotiation
- 4 Adaptive-QoE-Aware elasticity Management (AQUAMan*)
- Evaluation

One-to-Many Negotiation

One-to-Many Negotiation

- Allows a seller s to negotiate simultaneously with several buyers [Nguyen and Jennings, 2004]
- Involves negotiation and coordination strategies [Rahwan et al., 2002]

One-to-Many Negotiation

- Allows a seller s to negotiate simultaneously with several buyers [Nguyen and Jennings, 2004]
- Involves negotiation and coordination strategies
 [Rahwan et al., 2002]

Challenges

 Most of existing works address atomic simultaneous negotiation sessions

One-to-Many Negotiation

- ▶ One agreement is required, all other sessions are aborted
 - Useful works in service composition
 [Mansour and Kowalczyk, 2014, Richter et al., 2012]

Agenda

- Context
- Quality of Experience
- 3 One-to-Many Negotiation
- 4 Adaptive-QoE-Aware elasticity Management (AQUAMan*)
- 5 Evaluation

Context

Evaluation

AQUAMan Architecture

- Integrate the user into the loop [Najjar et al., 2016a]
- Allows for QoE-aware and personal elsaticity management [Najjar et al., 2016b]
- End-users have personalized utility functions and negotiation strategies
- Negotiation sessions are autonomous but they must respect their budget constraints RC
- Users can enter the system and leave at will (with variable influx)

Evaluation

AQUAMan*: User Satisfaction Management

One-to-Many Negotiation

During the negotiation process, user can accept/reject service depending on their expectations and subjective evaluation of its quality

AQUAMan's Adaptive Mechanism

- ► Goal: guarantee a predefined satisfaction goals while not exceeding RC, the average cost invested per user
- Solution: to do so, the provider must
 - Construct a model of negotiation behavior of each user [Najjar et al., 2017, Baarslag et al., 2015]
 - Adjust its negotiation strategy in order to restore user satisfaction to its predefined goals while RC

Formalization

Context

Satisfaction Goals

► Enforce Goal[k] how much percent of users receive a service of the satisfaction category k (e.g. acceptable, good, excellent, etc.)

Satisfaction Management as an Optimization Problem

$$\mathbf{Minimize} \ \sum_{i}^{K} \sum_{j}^{N^{t}} C_{i}^{k} \cdot X_{i}^{k} \tag{1}$$

Subject to

$$\sum_{k=1}^{K} X_i^k \le 1, \quad \forall i \tag{2}$$

$$\sum_{i=1}^{k} \left(\frac{\sum_{i=1}^{N^{t}} X_{i}^{m} + Already[m]}{\#TerminatedSessions} \right) \ge Goal[k], \quad \forall k$$
(3)

Evaluation

Heuristic Algorithm

Context

Construct a list of users approaching their deadline

Sorting the list

- Cost_{First}: users with cheaper acceptability requirements are put on top of the list
- Utility_{First} users with cheaper satisfaction on top
- **1** Deadline First the shorter the user's remaining time is, the upper in the list it is

Selecting Users from The list

- DISTANCE_TO_GOAL: the category furtherest from achieving its satisfaction goals is prioritized
- CATEGORY_COST the category the less costly is prioritized

Based on the user model, propose a tailored offer

Agenda

- Context
- Quality of Experience
- 3 One-to-Many Negotiation
- 4 Adaptive-QoE-Aware elasticity Management (AQUAMan*)
- 5 Evaluation

Optimal Solution vs Heuristic Algorithm

Table: Heuristic strategies vs. optimal cost

	Utility_First	Cost_First	Deadline_First
DISTANCE_TO_GOAL	+10.2%	+16.5%	+10.9%
CATEGORY_COST	+12.9%	+12.9%	+13.1%

Results

- ▶ The optimizer is intractable with high number of users
- Cost-wise, the best heuristic is 10% more expensive that the optimal solution

User Satisfaction & Cost

Figure: The user satisfaction achieved by the heuristic strategies (red curves) and their cost (blue dashed curve) compared with the optimal solution cost (blue solid curve).

Impact of User Feedback

Figure: The impact of f% (x-axis) on the ratio of users assigned to each satisfaction category (left y-axis) and on the cost spent per served user (right y-axis).

Impact of BBC Users

Figure: The Impact of BBC Users.

Conclusions & Future Works

Conclusions

Context

- ► AQUAMan* equips the user with fine-grained control over user satisfaction
- Satisfies the provider cost constraints
- Executable in tractable time

Conclusions & Future Works

Conclusions

- ► AQUAMan* equips the user with fine-grained control over user satisfaction
- Satisfies the provider cost constraints
- ► Executable in tractable time

Future Works

- ▶ Study the relations among different satisfaction goals
- ▶ Introduce measures of *QoE fairness*
- ► Develop BBC Handling Strategies

References I

Baarslag, T., Hendrikx, M. J., Hindriks, K. V., and Jonker, C. M. (2015).

Learning about the opponent in automated bilateral negotiation: a comprehensive survey of opponent modeling techniques.

Autonomous Agents and Multi-Agent Systems, pages 1-50.

Hoßfeld, T., Heegaard, P. E., Varela, M., and Möller, S. (2016).

Qoe beyond the mos: an in-depth look at qoe via better metrics and their relation to mos.

Quality and User Experience, 1(1).

References II

Mansour, K. and Kowalczyk, R. (2014). On dynamic negotiation strategy for concurrent negotiation over distinct objects.

In Novel Insights in Agent-based Complex Automated Negotiation, pages 109–124. Springer.

Möller, S. and Raake, A. (2014). Quality of experience: advanced concepts, applications and methods. Springer International Publishing.

1/10

References III

Multi-Agent Negotiation for QoE-Aware Cloud Elasticity Management.

PhD thesis, École nationale supérieure des mines de Saint-Étienne.

Najjar, A., Gravier, C., Serpaggi, X., and Boissier, O. (2016a). Modeling user expectations satisfaction for saas applications using multi-agent negotiation.

In 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI), pages 399–406.

References IV

- Najjar, A., Mualla, Y., Boissier, O., and Picard, G. (2017). Aquaman: Qoe-driven cost-aware mechanism for saas acceptability rate adaptation. In 2017 IEEE/WIC/ACM International Conference on Web Intelligence (WI).
- Najjar, A., Serpaggi, X., Gravier, C., and Boissier, O. (2016b). Multi-agent systems for personalized qoe-management. In *Teletraffic Congress (ITC 28), 2016 28th International*, volume 3, pages 1–6. IEEE.
- Nguyen, T. D. and Jennings, N. R. (2004).
 Coordinating multiple concurrent negotiations.
 In Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems-Volume 3, pages 1064–1071. IEEE Computer Society.

References V

Rahwan, I., Kowalczyk, R., and Pham, H. H. (2002). Intelligent agents for automated one-to-many e-commerce negotiation.

In Australian Computer Science Communications, volume 24, pages 197–204. Australian Computer Society, Inc.

Reichl, P., Egger, S., Schatz, R., and D'Alconzo, A. (2010). The logarithmic nature of qoe and the role of the weber-fechner law in qoe assessment.

In Communications (ICC), 2010 IEEE International Conference on, pages 1–5. IEEE.

References VI

Richter, J., Baruwal Chhetri, M., Kowalczyk, R., and Bao Vo, Q. (2012).

Establishing composite slas through concurrent qos negotiation with surplus redistribution.

Concurrency and Computation: Practice and Experience, 24(9):938–955.

Zeithaml, V. A., Berry, L. L., and Parasuraman, A. (1993). The nature and determinants of customer expectations of service.

Journal of the academy of Marketing Science, 21(1):1-12.

Limit of the Adaptive Mechanism

► We set *Goal* = 100% to push AQUAMan to accept as much user as possible in order to identify its limit

Costs of the Adaptive Mechanism

The cost spent per user of AQUAMan compared with other non-adaptive strategies

Elasticity Negotiation: Negotiation Object

Offer

- ▶ The negotiation object is offer $o_i^t = \langle v_1, v_2, \dots v_J \rangle$
- ▶ It assigns a value v_k ($k \in [1, J]$) to each of the service attribute

Example: in the transcoding service an offer is:

$$o_{da_i}^t = \langle HD, 10 \ min, 24p \rangle$$

Concession Strategy

- sa_i make concessions by reducing their aspiration rate
- ► Then $AR_i^{t+1} = AR_i^t \Delta AR_i^t$
- ▶ When T_{sa_i} is reached, sa_i quits the negotiation

λ controls the convexity of the concession curve

- $\lambda_i < 1$: Conciliatory
- $ightharpoonup \lambda_i pprox 1$: linear
- $ightharpoonup \lambda_i > 1$: Boulware

Linear User Utility functions

- $ightharpoonup sa_i$ rely on a utility function M derived from su_i preferences
- ▶ M is a weighted sum of μ_{sa_i} , linear attribute utility functions

$$\mu_{sa_i,at_j}(o_{da_i}^t[at_j]) = \frac{rv_{sa_i,at_j} - o_{da_i}^t[at_j]}{rv_{sa_i,at_j} - pv_{sa_i,at_j}}$$
(4)

- rv_{sai,atj} and pv_{sai,atj} are the preferred and reservation values of the attribute atj
- ► sai's subsequent decision is based on the acceptance condition

QoE Influence Factors

QoE is a function of influence factors. Influence factors are the independent variables and QoE is dependent variable:

$$QoE_s = \Phi(IF_1, IF_2, ..., IF_n)$$

QoE Influence Factors

QoE is a function of influence factors. Influence factors are the independent variables and QoE is dependent variable:

$$QoE_s = \Phi(IF_1, IF_2, ..., IF_n)$$

- SIF:technical aspects of the system on which the user consumes the factors
- MIF:user background, expectations, his personality and previous experience
- **3** CIF: the context when the user consumes the service

QoE-aware Agent Decision Model

- ➤ The user agent seeks to maximize the subjective satisfaction of the user
- ► Therefore, it derives its decision model and utility function from the user preferences
 - ► Thus, for each attribute:

$$\mu_{sa_i,at_j} = \alpha_{sa_i,at_j} \cdot f(v_{at_j}) + \beta_{sa_i,at_j}$$
 (5)

- ► The form of *f*() depends on the attribute type
- ▶ If the service involves multiple attributes:

$$M_{sa_i}(o) = \sum_{j=1}^{j=J} w_{sa_i,j}^t \cdot \mu_{sa_i,at_j}(o_{da_i}^t[at_j])$$
 (6)

▶ Where o is an offer received from the provider

The Logarithmic Hypothesis

- Derived from the Weber Fechner Law (WFL) of psychophysics
- ► Logarithmic relationship between *QoS* parameter and QoE:

$$QoE = -\alpha \cdot log(QoS) + \beta$$
 (7)

- QoS should be perceivable by the user (e.g. waiting time)
- Validated and applied to various applications (file download, Email, etc.)

QoE-Aware Version: Decision Model

M becomes a weighted sum of logarithmic attribute utility functions:

$$M_{sa_i}(o_{da_i}^t) = \sum_{i=1}^{j=J} w_{sa_i,j}^t \cdot \left[-\alpha_{sa_i,at_j} \cdot \ln(o_{da_i}^t[at_j]) + \beta_{sa_i,at_j} \right]$$
(8)

Coefficients

- $ightharpoonup lpha_{sa_i,at_j}$, eta_{sa_i,at_j} are the personal coefficients of sa_i for at_j
- ▶ Derived from *sa_i* preferences:

$$\alpha_{\mathsf{sa}_i} = \frac{1}{\ln(\mathsf{rv}_{i_{\mathsf{res}}}) - \ln(\mathsf{pv}_{i_{\mathsf{res}}})} \beta_{\mathsf{sa}_i} = \frac{\ln(\mathsf{rv}_{i_{\mathsf{res}}})}{\ln(\mathsf{rv}_{i_{\mathsf{ict}}}) - \ln(\mathsf{pv}_{i_{\mathsf{res}}})} \quad (9)$$

Use-case scenario: Cloud-hosted Service

Provider (ASP) Side

- A SaaS provider whose service is compute-intensive
- ▶ Rents resources from a cloud provider (CP) (e.g. Amazon EC2) to fulfill the requests

Use-case scenario: Cloud-hosted Service

Provider (ASP) Side

- A SaaS provider whose service is compute-intensive
- Rents resources from a cloud provider (CP) (e.g. Amazon EC2) to fulfill the requests

User Side

- ► We suppose that all attributes of the service are directly perceivable by the user (e.g. execution time)
- ► Therefore, we consider that the logarithmic hypothesis applies to these attributes

$$\mu_{sa_i,at_i}(v_{at_i}) = -\alpha_{sa_i,at_i} \cdot ln(v_{at_i}) + \beta_{sa_i,at_i}$$
 (10)

Coordination Protocol (1/2)

- ▶ States the rules of interaction between *ca* and *da*_i
- proposed to satisfy the specific requirements of elasticity management negotiation
- Illocutions sent from dai to ca are different from those sent from ca to dai

Illocutions $(da_i \rightarrow ca)$	Description
Inform(event)	da; notifies the coordinator ca about an important event
RequestIntervention	da_i asks ca to intervene in its session i because the decision is beyond da_i capacities.

Coordination Protocol (2/2)

- ▶ The illocutions sent from the *ca* to *da_i* are *imperative*
- ► dai cannot reject it

Illocutions $(ca \rightarrow da_i)$	Description		
Spawn (Ω_{da_i})	ca spawns a delegate da_i to negotiate with		
	sa _i		
$Modify(\Omega \prime_{da_i})$	ca alters the negotiation strategy of da_i .		
Suspend	ca orders the delegate da_i to suspend the negotiation process in the session i .		
Kill	ca terminates the delegate dai		

Example

Example

- $\blacktriangleright \mu_{sa_i,jct}$ is a decreasing logarithmic function
- ▶ Bob, gold SU, has lower reservation and preferred values
- ▶ Alice, bronze SU, has higher reservation and preferred values

Example (2)

Example (2)

- \blacktriangleright $\mu_{sa_i,res}$ is an increasing logarithmic function
- ▶ Bob, gold SU, has higher reservation and preferred values
- ▶ Alice, bronze SU, has lower reservation and preferred values
- ▶ M_{sa_i} , the overall utility function, is a weighted sum of $\mu_{sa_i,res}$ and $\mu_{sa_i,ict}$

Performance Model Example

Simple example of a performance model of a transcoding service

t/q	SD	MD	HD
10 min	4	5	8
20 min	2	4	6
30 min	1	2	3

- ▶ Tradeoffs
- ► Faster process requires more cloud resources ⇒ more costly for the ASP