Hidden Markov Models (HMM) continued

ECE/CS 498 DS U/G

Lecture 15

Ravi K. Iyer

Dept. of Electrical and Computer Engineering
University of Illinois at Urbana Champaign

Announcements

- MP2 Checkpoint 3 due on Wednesday, Mar 27
- MP3 will be released on Friday, Mar 29
- ICA 4 on HMMs today
- Graduate project details released (check Piazza, course website)
 - Two proposal ideas due on Friday, Mar 29
 - Encouraged to start early and share ideas before the deadline

Markov Models vs HMM

A Markov Model can be specified by the following components.

Component	Explanation	
$x = \{1, 2, \dots N\}; x_t \in x$	A set of N states that can be observed directly	
$A = \begin{bmatrix} a_{11} & \dots & \dots & a_{N1} \\ \vdots & \ddots & \dots & \vdots \\ a_{1j} & \dots & a_{ij} & \dots & a_{Nj} \\ \vdots & \dots & \dots & \ddots & \dots \\ a_{1N} & \dots & \dots & \dots & a_{NN} \end{bmatrix}$	A transition probability matrix A, each a_{ij} representing the probability of moving from state i to state j , s . t . $\sum_{j=1}^{N} a_{ij} = 1 \ \forall i$	
$\pi = \pi_1, \pi_2, \dots \pi_N$	An initial probability distribution over states. π_i is the probability that the Markov chain will start in state i . Some states j may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^N \pi_i = 1$	

A **Markov Model** embodies the Markov Assumption:

$$P(x_{t+1}|x_0,...x_t) = P(x_{t+1}|x_t)$$

Markov Models vs HMM

A Hidden Markov Model (HMM) can be specified by the following components.

Component	Explanation
$S = \{\sigma_1, \sigma_2, \dots \sigma_n\}; S_t \in S$	A set of N states that are hidden and cannot be directly observed
$A = \begin{bmatrix} a_{11} & \dots & \dots & \dots & a_{N1} \\ \vdots & \ddots & \dots & \dots & \vdots \\ a_{1j} & \dots & a_{ij} & \dots & a_{Nj} \\ \vdots & \dots & \dots & \ddots & \dots \\ a_{1N} & \dots & \dots & \dots & a_{NN} \end{bmatrix}$	A transition probability matrix A, each a_{ij} representing the probability of moving from state i to state j , s . t . $\sum_{j=1}^{N} a_{ij} = 1 \ \forall i$
$E = \{\epsilon_1, \epsilon_2, \dots \epsilon_M\}; E_t \in E$	A set of observable events
$O = E_1, E_2, \dots E_T$	A sequence of T observations
$B = \begin{bmatrix} b_{11} & \dots & \dots & \dots & b_{M1} \\ \vdots & \ddots & \dots & \dots & \vdots \\ b_{1j} & \dots & b_{ij} & \dots & b_{Mj} \\ \vdots & \dots & \dots & \ddots & \dots \\ b_{1N} & \dots & \dots & \dots & b_{MN} \end{bmatrix}$	An observation matrix B. Each b_{ij} is referred to as an emission probability or observation likelihood. $i.e$ $b_{ij} = P(E = \epsilon_j S = \sigma_i)$
$\pi = \pi_1, \pi_2, \dots \pi_N$	An initial probability distribution over states. π_i is the probability that the Markov chain will start in state i . Some states j may have $\pi_j=0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^N \pi_i=1$

A HMM embodies the **Markov Assumption**:

$$P(S_{t+1}|S_0,...S_t) = P(S_{t+1}|S_t)$$

A HMM also follows **Output Independence**:

$$P(E_t|S_0,...,S_t,...S_T,E_1,...,E_t,...E_T) = P(E_t|S_t)$$

Forwards Algorithm

- 1. Input: (A, B, π) and observed sequence E_1, \dots, E_n
- 2. $[\alpha_{1}, Z_{1}] = \text{normalize}(b_{1})$ $\alpha_{t}(j) = \frac{1}{Z_{t}} P(E_{t}|S_{t} = \sigma_{j}) \sum_{i=1}^{N} P(S_{t} = \sigma_{i}) \alpha_{t-1}(i)$ 3. **for** t = 2 : n **do** $[\alpha_{t}, Z_{t}] = \text{normalize}(b_{t})$ $(A^{T} \alpha_{t-1})$ $Z_{t} = \sum_{i=1}^{N} \alpha_{t}(j)$
- 4. return $\alpha_1, \dots, \alpha_n$ and $\log(P(E_1, \dots, E_n)) = \sum_t \log(Z_t)$
- 5. Subroutine: [v, Z] = normalize(u): $Z = \sum_i u_i$; $v_i = u_i/Z$;

NOTE: represents elementwise product (Hadamard product)

Backwards Algorithm

- 1. Input: (A, B, π) and observed sequence E_1, \dots, E_n
- 2. $\beta_n=1$; // initialize $\beta_n(j)$ to 1 for all states σ_j
- 3. for t = n 1: 1 do $\beta_{t-1} = A(b_t \cap \beta_t)$
- 4. return β_1, \dots, β_n

Inference – using Forwards-Backwards expressions

$$P(S_t|E_1, E_2, ..., E_n) = \frac{P(E_{t+1}, ..., E_n | S_t) P(S_t|E_1, ..., E_t)}{P(E_{t+1}, ..., E_n | E_1, ..., E_t)}$$

For $S_t = \sigma_j$ and $\gamma_t(j) = P(S_t = \sigma_j | E_1, E_2, ..., E_n)$, the above equation is:

$$P(S_t = \sigma_j | E_1, E_2, \dots, E_n) = \frac{P(E_{t+1}, \dots, E_n | S_t = \sigma_j) P(S_t = \sigma_j | E_1, \dots, E_t)}{P(E_{t+1}, \dots, E_n | E_1, \dots, E_t)}$$

$$\gamma_t(j) = \frac{\beta_t(j)\alpha_t(j)}{P(E_{t+1}, \dots, E_n | E_1, \dots, E_t)} = \frac{\beta_t(j)\alpha_t(j)}{\sum_{i=1}^N \beta_t(j)\alpha_t(j)}$$
Theorem of total probability

Inference: Most likely state

- Forwards-backwards algorithm gives $P(S_t = \sigma_j | E_1, ..., E_n)$ for all j
- Find the individually most likely state at time t given all observations

$$S_t^* = \underset{j \in \{1,...,N\}}{\operatorname{argmax}} \gamma_t(j)$$

HMM Security Example

- Suppose you are a security expert monitoring the NCSA system
- By monitoring the system events, you want to say whether the system is safe or not
 - System's safety is a hidden state
 - Events are observed
 - Events are related to the safety of the system
- Is the system safe?
 - **HMM** to the rescue!

Security Example: Transition Matrix

Transition matrix (A)

The system has three distinct security states –

- (a) No Attack (NA),
- (b) Attack in Progress (AP), and
- (c) Attack Complete (AC).
- Every hour, the system is being attacked by attackers coordinating together around the world and trying to compromise the system.
- The system states always transition from NA to AP and AP to AC.
- An attacker is successful in changing the state of the system with probability of 0.75 and fails with a probability of 0.25.
- If the attack fails, the system stays in its current state.
- If the system state reaches AC the attack is complete, and the system stays in that state.

Transition Probability Matrix

Security Example: Emission matrix and initial distribution

Observation matrix (B)

- Your monitoring system reports two types of events
 - Port Scan (PS)
 - Software Installation (SI)
- Monitors are always accurate and works.
 Attackers cannot compromise the monitors. Every hour, we get information from the monitors if the attackers are trying to do PS or SI.

Initial distribution (π)

• We have no idea about the initial state of the system.

$$\mathbf{B} = \begin{array}{ccc} \mathbf{PS} & \mathbf{SI} \\ \mathbf{NA} & \begin{pmatrix} 0.7 & 0.3 \\ 0.5 & 0.5 \\ \mathbf{AC} & 0.2 & 0.8 \end{pmatrix}$$

Observation Matrix

Initial state distribution/prior

Security Example – Observed Sequence

Find $S_1, ..., S_5$ given the observed sequence PS, PS, SI, SI, SI.

Forward Algorithm

$$\alpha_3 \propto b_3 \odot (A^T \alpha_2)$$

$$[0.3]$$

$$= \begin{bmatrix} 0.5 \\ 0.5 \\ 0.8 \end{bmatrix} \odot \begin{bmatrix} 0.25 & 0 & 0 \\ 0.75 & 0.25 & 0 \\ 0 & 0.75 & 1 \end{bmatrix} \begin{bmatrix} 0.22 \\ 0.58 \\ 0.20 \end{bmatrix}$$

$$= \begin{bmatrix} 0.3 \\ 0.5 \\ 0.8 \end{bmatrix} \odot \begin{bmatrix} 0.055 \\ 0.31 \\ 0.635 \end{bmatrix}$$

$$= \begin{bmatrix} 0.0165 \\ 0.155 \\ 0.508 \end{bmatrix}$$

Normalizing, we get:

$$\alpha_3 = \frac{1}{0.6795} \begin{bmatrix} 0.0165\\ 0.155\\ 0.508 \end{bmatrix}$$
$$= \begin{bmatrix} 0.02\\ 0.23\\ 0.75 \end{bmatrix}$$

Forward Algorithm

		AC (0.2 0.6)	
Stat es		< PS > (t = 1)	Normalize
NA	$\chi_1(NA)$	$P(NA) \times P(PS NA) = \frac{1}{3} \times 0.7 = 0.23$	$=\frac{0.23}{0.464}=0.5$
AP	$\alpha_1(AP)$	$P(AP) \times P(PS AP) = \frac{1}{3} \times 0.5 = 0.167$	$=\frac{0.167}{0.464}=0.36$
AC	$\alpha_1(AC)$	$P(AC) \times P(PS AC) = \frac{1}{3} \times 0.2 = 0.67$	$=\frac{0.067}{0.464}=0.14$
		< PS, PS > (t=2)	
NA	$\alpha_2(NA)$	$(\alpha_1(NA) \times P(NA NA) + \alpha_1(AP) \times P(NA AP) + \alpha_1(AC)P(NA AC)) \times P(PS NA) = (0.5 \times 0.25 + 0.36 \times 0 + 0.14 \times 0) \times 0.7 = 0.0875$	$=\frac{0.0875}{0.402}=0.22$
AP	$\alpha_2(AP)$	$(\alpha_1(NA) \times P(AP NA) + \alpha_1(AP) \times P(AP AP) + \alpha_1(AC)P(AP AC)) \times P(PS AP) = $ $(0.5 \times 0.75 + 0.36 \times 0.25 + 0.14 \times 0) \times 0.5 = 0.2325$	$=\frac{0.2325}{0.402}=0.58$
AC	$\alpha_2(AC)$	$(\alpha_1(NA) \times P(AC NA) + \alpha_1(AP) \times P(AC AP) + \alpha_1(AC)P(AC AC)) \times P(PS AC) = (0.5 \times 0 + 0.36 \times 0.75 + 0.14 \times 1) \times 0.2 = 0.082$	$=\frac{0.082}{0.402}=0.20$

Backward Algorithm

Note that $\sum_{i} \beta_t(j)$ is not necessarily 1.

Gamma calculation (using forwards-backwards)

$$\gamma_3 \propto \alpha_3 \odot \beta_3$$

$$= \begin{bmatrix} 0.02 \\ 0.23 \\ 0.75 \end{bmatrix} \odot \begin{bmatrix} 0.31 \\ 0.57 \\ 0.64 \end{bmatrix}$$

$$= \begin{bmatrix} 0.0062\\ 0.1311\\ 0.48 \end{bmatrix}$$

Normalizing, we get:

L0.78J

$$\gamma_3 = \frac{1}{0.6173} \begin{bmatrix} 0.0062\\0.1311\\0.48 \end{bmatrix}$$
$$= \begin{bmatrix} 0.01\\0.21 \end{bmatrix}$$

NA AP AC
$$S_3^* = \operatorname{argmax}\{0.01, 0.21, 0.78\}$$