

LFA0001 – Linguagens Formais e Autômatos Aula 10 Autômatos Finitos com Saída

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2016

Karina G. Roggia 2016 LFA0001 - Aula10 1 / 25

Sumário

Autômatos Finitos com Saída

Máquina de Mealy

Máquina de Moore

Equivalência Mealy e Moore

Exercícios

Autômatos Finitos com Saída

Saída de AFDs, AFNs e AF ε s: Aceita/Rejeita

- Extensão de Autômatos Finitos
- Objetivo: geração de palavra de saída
- Não altera o poder computacional

Karina G. Roggia 2016 LFA0001 - Aula10 3 / 25

Autômatos Finitos com Saída

Saídas associadas...

- às transições: Máquina de Mealy
 - Ao passar por uma transição
 - o autômato pode escrever na fita de saída
- aos estados: Máquina de Moore
 - Ao chegar em um estado
 - o autômato pode escrever na fita de saída

Karina G. Roggia 2016 LFA0001 - Aula10

Saída

Não é memória auxiliar

• não pode ser lida

Utiliza uma fita de saída

- diferente da fita de entrada
- move somente para a direita
- utiliza alfabeto próprio
 - alfabeto de símbolos de saída
 - pode ser igual ao alfabeto de entrada

Karina G. Roggia 2016 LFA0001 - Aula10 5 / 2

Autômatos Finitos com Saída

Resultado do processamento:

- condição Aceita/Rejeita
- informação contida na fita de saída

Definição das Máquinas de Mealy e de Moore:

modificações sobre definição de AFD

Máguina de Mealy

Definição (Máguina de Mealy)

Uma Máguina de Mealy é um AFD com saída nas transições

$$M = \langle \Sigma, Q, \delta, q_0, F, \Delta \rangle$$

onde:

- Σ é o alfabeto de entrada
- Q é o conjunto (finito) de estados
- $\delta: Q \times \Sigma \to Q \times \Delta^*$ é a função de transição
- $q_0 \in Q$ é o estado inicial
- $F \subseteq Q$ é o conjunto de estados finais
- Δ é o alfabeto de saída

Karina G. Roggia 2016 LFA0001 - Aula10 7 / 25

Computação

Para a entrada w

- sucessiva aplicação da função programa
- para cada símbolo de w
- até ocorrer uma condição de parada

Palavra vazia como saída:

- nenhuma gravação é realizada
- não move o cabeçote da fita de saída

Se todas as transições tiverem ε como saída

• processa como um AFD

Karina G. Roggia 2016 LFA0001 - Aula10 8 / 2

Exemplo

Máquina de Mealy que compacta brancos em um texto

$$\textit{M} = \langle \{\textit{a}, \beta\}, \{\textit{q}, \textit{p}\}, \delta, \textit{q}, \{\textit{q}, \textit{p}\}, \{\textit{a}\beta\} \rangle$$

Máquina de Moore

Definição (Máquina de Moore)

Uma Máquina de Moore é um AFD com saída nos estados

$$M = \langle \Sigma, Q, \delta, q_0, F, \Delta, \delta_S \rangle$$

onde:

- Σ é o alfabeto de entrada
- Q é o conjunto (finito) de estados
- $\delta: Q \times \Sigma \rightarrow Q$ é a função de transição
- $q_0 \in Q$ é o estado inicial
- $F \subseteq Q$ é o conjunto de estados finais
- Δ é o alfabeto de saída
- $\delta_S:Q o\Delta^*$ é a função (total) de saída

Karina G. Roggia 2016 LFA0001 - Aula10 10 / 25

Computação

Para a entrada w

- sucessiva aplicação da função programa
 - para cada símbolo de w
 - até ocorrer uma condição de parada
- juntamente com a sucessiva aplicação da função de saída
 - a cada estado atingido

Palavra vazia como saída:

- nenhuma gravação é realizada
- não move o cabeçote da fita de saída

Se todas as transições tiverem ε como saída

processa como um AFD

Karina G. Roggia 2016 LFA0001 - Aula10 11 / 25

Equivalência Mealy e Moore

Não é válida para a entrada vazia!

Demais casos:

Construída através dos teoremas a seguir

Karina G. Roggia 2016 LFA0001 - Aula10 12 / 25

Máquina de Moore → Máquina de Mealy

Toda Máquina de Moore pode ser simulada por uma Máquina de Mealy para entradas não vazias.

Problema: Estado inicial da Máquina de Moore Exemplo:

Karina G. Roggia 2016 LFA0001 - Aula10 13 / 25

Solução

Mealy equivalente:

Moore:

Demonstração

Seja $M=\langle \Sigma,Q,\delta,q_0,F,\Delta,\delta_S \rangle$ uma Máquina de Moore qualquer Mealy correspondente:

$$ME = \langle \Sigma, Q \uplus \{q_e\}, \delta_{ME}, q_e, F, \Delta \rangle$$

Estado q_e :

- novo estado
- usado somente na primeira transição executada
- garante a geração da saída referente ao estado inicial q₀ da Máquina de Moore original

Função programa δ_{ME}

- $\delta_{ME}(q_e, a) = (\delta(q_0, a), \delta_S(q_0)\delta_S(\delta(q_0, a)))$
- $\delta_{ME}(q, a) = (\delta(q, a), \delta_S(\delta(q, a)))$

Demonstração

Indução no tamanho da palavra de entrada prova que, de fato, ME simula M

- ao reconhecer a entrada a₁ a₂ . . . a_n
- se M passa pelos estados q_0, q_1, \ldots, q_n e gera as saídas u_0, u_1, \ldots, u_n
- então ME passa pelos estados $q_e, q_0, q_1, \dots, q_n$ e gera as saídas u_0, u_1, \dots, u_n

Máquina de Mealy → Máquina de Moore

Toda Máquina de Mealy pode ser simulada por uma Máquina de Moore

Problema: Estado que é destino de diversas transições diferentes Exemplo:

Solução

Mealy:

Moore equivalente:

Máguina de Moore Correspondente

Em geral, tem mais estados do que a Máquina de Mealy original.

Transições com saídas diferentes que atingem um mesmo estado:

- simulado por diversos estados (um para cada saída)
- estado será um par ordenado (estado, saída)

Karina G. Roggia 2016 LFA0001 - Aula10 19 / 25

Demonstração

Seja $M=\langle \Sigma,Q,\delta,q_0,F,\Delta \rangle$ uma Máquina de Mealy qualquer Moore correspondente:

$$MO = \langle \Sigma, (Q \times S(\delta)) \uplus \{\langle q_0, \varepsilon \rangle\}, \delta_{MO}, \langle q_0, \varepsilon \rangle, F \times S(\delta), \Delta, \delta_S \rangle$$

- $S(\delta)$: imagem de δ , restrita à componente saída
 - conjunto de saídas possíveis de M
- δ_{MO} é tal que
 - se $\delta(q_0, a) = (q, u)$

$$\delta_{MO}(\langle q_0, \varepsilon \rangle, a) = \langle q, u \rangle$$

• se $\delta(q,b)=(p,v)$, então, para cada $\delta(q_i,a_i)=(q,u_i)$

$$\delta_{MO}(\langle q, u_i \rangle, b) = \langle p, v \rangle$$

• a função de saída δ_S é tal que, para o estado $\langle q,u \rangle$

$$\delta_{S}(\langle q, u \rangle) = u$$

Karina G. Roggia 2016 LFA0001 - Aula10 20 / 25

Demonstração

Indução no tamanho da palavra de entrada prova que, de fato, MO simula M

- ao reconhecer a entrada a₁ a₂ . . . a_n
- se M passa pelos estados q_0, q_1, \ldots, q_n e gera as saídas u_1, \ldots, u_n
- então MO passa pelos estados $\langle q_0, \varepsilon \rangle, \langle q_1, u_1 \rangle, \dots, \langle q_n, u_n \rangle$ e gera as saídas $\varepsilon, u_1, \dots, u_n$

Exemplo

Dada a Máquina de Mealy compactadora de brancos

Karina G. Roggia 2016 LFA0001 - Aula10 22 / 25

Exemplo

Mealy: $M = \langle \{a, \beta\}, \{q, p\}, \delta, q, \{q, p\}, \{a\beta\} \rangle$

Moore equivalente:

$$MO = \langle \{a, \beta\}, Q, \delta_{MO}, \langle q, \varepsilon \rangle, F, \{a, \beta\}, \delta_{S} \rangle$$

onde
$$Q = F = \{q, p\} \times \{\varepsilon, a, \beta\}$$

Exercícios

- Defina formalmente:
 - (a) A função programa estendida para a Máquina de Mealy
 - (b) As seguintes funções estendidas para a Máquina de Moore:
 - 1. Função programa
 - 2. Função de saída

Exercícios

- ② Desenvolva um autômato finito com saída sobre o alfabeto de entrada $\{x, \beta, \bullet\}$. O objetivo é tratar brancos (β) corretamente em um texto. Assim, a máquina deve analisar um texto (palavra sobre o alfabeto), garantindo que:
 - sejam eliminados brancos contíguos
 - o texto deve iniciar por x e terminar por •
 - ullet sejam eliminados eventuais eta antes de um ullet
 - antes de um exista um x

Note que o sutômato somente pode alterar os brancos no texto. Caso o resto do texto não esteja de acordo com as regras, deve ser rejeitado pela máquina, não importando a saída gerada. Por exemplo:

- a entrada ββxxββxxββxxββ βββ deve ser aceita gerando a saída xxβxxβxx•
- a entrada •x deve ser rejeitada

Karina G. Roggia 2016 LFA0001 - Aula10 25 / 25