ZAHLENFOLGEN Teil 2

Geometrische Folgen

Auch Wachstumsfolgen Viele Aufgaben

Lösungen nur auf der Mathe-CD Hier nur Ausschnitte

Datei Nr. 40012

Friedrich Buckel

März 2002

Internetbibliothek für Schulmathematik

4.1 Definition und erste Beispiele

Eine Zahlenfolge heißt geometrisch, wenn der Quotient aufeinanderfolgender Glieder konstant ist.

$$\frac{a_{n+1}}{a_n} = q \quad (1)$$

Beispiele

a)
$$3 \xrightarrow{.2} 6 \xrightarrow{.2} 12 \xrightarrow{.2} 24 \xrightarrow{.2} 48 \xrightarrow{.2} \dots$$

Die Quotienten aufeinanderfolgender Glieder sind stets 2: $\frac{a_2}{a_1} = 2 = \frac{a_3}{a_2} = \frac{a_4}{a_3} = ...$

b)
$$8 \xrightarrow{\cdot 0,5} 4 \xrightarrow{\cdot 0,5} 2 \xrightarrow{\cdot 0,5} 1 \xrightarrow{\cdot 0,5} \frac{1}{2} \xrightarrow{\cdot 0,5} \frac{1}{4} \dots$$

Die Quotienten aufeinanderfolgender Glieder hier $\frac{1}{2}$: $\frac{a_2}{a_1} = \frac{1}{2} = \frac{a_3}{a_2} = \frac{a_4}{a_3} = \dots$

c) Für die Aufgabe "Prüfe nach, ob eine geometrische Folge vorliegen kann"

$$a_1 = \frac{4}{9}$$
; $a_2 = \frac{4}{3}$; $a_3 = 4$; $a_4 = 12$; ...

müssen diese Quotienten berechnet werden:

$$q = \frac{a_2}{a_1} = \frac{\frac{4}{3}}{\frac{4}{9}} = \frac{4}{3} \cdot \frac{9}{4} = 3 \; ; \quad q = \frac{a_3}{a_2} = \frac{4}{\frac{4}{3}} = 4 \cdot \frac{3}{4} = 3 \; ; \quad q = \frac{a_4}{a_3} = \frac{12}{4} = 3 \; ; \ldots,$$

Weil diese Quotienten gleich sind, kann eine geometrische Folge vorliegen.

Man sagt "kann", weil es zahllose weitere Folgen gibt, die z. B. ab a₅ oder später abweichen und keine geometrische Folge bilden.

d) Die Folge $\left\{12; -6\sqrt{2}; 6; -3\sqrt{2}; 3; -\frac{3}{2}\sqrt{2}; ...\right\}$ ist zu untersuchen.

Lösung:
$$\frac{a_2}{a_1} = \frac{-6\sqrt{2}}{12} = -\frac{\sqrt{2}}{2} = -\frac{1}{\sqrt{2}}; \qquad \qquad \frac{a_3}{a_2} = \frac{6}{-6\sqrt{2}} = -\frac{1}{\sqrt{2}}; \\ \frac{a_4}{a_3} = \frac{-3\sqrt{2}}{6} = -\frac{\sqrt{2}}{2} = -\frac{1}{\sqrt{2}}; \qquad \qquad \frac{a_5}{a_4} = \frac{3}{-3\sqrt{2}} = -\frac{1}{\sqrt{2}} \\ \frac{a_6}{a_5} = \frac{-\frac{3}{2}\sqrt{2}}{3} = -\frac{1}{2}\sqrt{2} = -\frac{1}{\sqrt{2}};$$

Da alle möglichen Quotienten aufeinander folgender Zahlen gleich groß, nämlich $q=-\frac{1}{\sqrt{2}}$ sind, liegt eine geometrische Folge vor.

4.2 Die innere Struktur von geometrischen Folgen

Aus der Definition, wonach die Quotienten $\frac{a_{n+1}}{a_n} = q$ konstant sein sollen, folgt diese

Gleichung:

$$a_{n+1} = a_n \cdot q \tag{2}$$

Sie zeigt, wie man vorgehen muß, um eine arithmetische Folge zu erzeugen.

Beispiel 1: Man wählt ein erstes Glied der Folge, etwa $a_1 = 3$ und z.B. q = 5

Dann folgt nach (2):
$$a_2 = a_1 \cdot q = 3 \cdot 5 = 15$$

$$a_3 = a_2 \cdot q = 15 \cdot 5 = 75$$

$$a_4 = a_3 \cdot q = 75 \cdot 5 = 375$$

$$a_5 = a_4 \cdot q = 375 \cdot 5 = 1875$$
 usw.

Dieses Vorgehen läßt sich sehr gut graphisch darstellen:

Folglich kann man a_4 auch direkt aus a_1 berechnen: $a_4 = a_1 \cdot q^3$

Oder a_6 aus a_1 : $a_6 = a_1 \cdot q^5$

Oder a_7 aus a_5 : $a_7 = a_7 \cdot q^2$

Oder a_{12} aus a_{5} : $a_{12} = a_{5} \cdot q^{7}$

Oder a_n aus a_m (n>m): $a_n = a_m \cdot q^{n-m}$

Oder a_n aus a_1 : $a_n = a_1 \cdot q^{n-1}$

Oder a_n aus a_2 : $a_n = a_2 \cdot q^{n-2}$ usw.

Oder in umgekehrter Richtung: a_2 aus a_5 : $a_2 = \frac{a_5}{q^3}$

Oder a_3 aus a_7 : $a_3 = \frac{a_7}{q^4}$

Bei unserer Beispielfolge gilt somit $a_n = 3 \cdot 5^{n-1}$.

Beispiel 2: Gegeben ist die Folge $\left\{\frac{1}{8}; \frac{1}{4}; \frac{1}{2}; 1; 2; 4; \ldots\right\}$

Zeige, daß es sich um eine arithmetische Folge handeln kann. Stelle eine Berechnungsformel für $\,a_n\,$ auf.

Lösung:

$$\frac{a_2}{a_1} = \frac{\frac{1}{4}}{\frac{1}{8}} = \frac{1}{4} \cdot 8 = 2;$$
 $\frac{a_3}{a_2} = \frac{\frac{1}{2}}{\frac{1}{4}} = \frac{1}{2} \cdot 4 = 2;$

$$\frac{a_4}{a_3} = \frac{1}{\frac{1}{2}} = 2;$$
 $\frac{a_5}{a_4} = \frac{2}{1} = 2;$ $\frac{a_6}{a_5} = \frac{4}{2} = 2.$

Da alle möglichen Quotienten aufeinander folgender Zahlen gleich groß, nämlich q=2 sind, liegt eine geometrische Folge vor.

Berechnung von
$$a_n$$
:
$$a_n = a_1 \cdot q^{n-1} = \frac{1}{8} \cdot 2^{n-1}$$

Dies läßt sich umformen:
$$a_n = 2^{-3} \cdot 2^{n-1} = 2^{n-4}$$

Oder:
$$a_n = \frac{1}{8} \cdot \frac{2^n}{2} = \frac{1}{16} \cdot 2^n \text{ usw.}$$

Beispiel 3: Von einer geometrischen Folge kennt man $a_3 = \frac{1}{64}$ und $a_6 = \frac{1}{8}$. Berechne q, a_1 und a_{15} .

Lösung:

$$q^3 = \frac{a_6}{a_3} = \frac{\frac{1}{8}}{\frac{1}{64}} = \frac{1}{8} \cdot \frac{64}{1} = 8 \implies q = \sqrt[3]{8} = 2.$$

Also wird
$$a_1 = \frac{a_3}{q^2} = \frac{\frac{1}{64}}{2^2} = \frac{1}{64 \cdot 4} = \frac{1}{256}$$

Und schließlich:
$$a_n = a_1 \cdot q^{n-1} = \frac{1}{256} \cdot 2^{n-1}$$

Mit den Regeln der Potenzrechnung kann man diesen Term verändern:

$$2^{n-1} = \frac{2^n}{2} \implies a_n = \frac{1}{256} \cdot \frac{2^n}{2} = \frac{1}{512} \cdot 2^n = \frac{2^n}{2^9}$$
 z.B. für $a_{13} = \frac{2^{13}}{2^9} = 2^4 = 16$

Beispiel 4: Von einer geometrischen Folge kennt man $a_2 = 9$ und $a_7 = \frac{1}{27}$. Berechne q, a_1 und a_n .

$$q^5 = \frac{a^7}{a^2} = \frac{1}{27 \cdot 9} = \frac{1}{3^3 \cdot 3^2} = \frac{1}{3^5} \implies q = \frac{1}{3} \quad \text{ergibt} \quad a_1 = \frac{a_2}{q} = \frac{9}{\frac{1}{3}} = 9 \cdot 3 = 27 \; .$$

$$a_n = a_1 \cdot q^{n-1} = 27 \cdot \left(\frac{1}{3}\right)^{n-1} = 27 \cdot \left(\frac{1}{3}\right)^n : \frac{1}{3} = 81 \cdot \left(\frac{1}{3}\right)^n = 81 \cdot \frac{1}{3^n} = \frac{81}{3^n} = 81 \cdot 3^{-n}$$

Beispiel 5: Von einer geometrischen Folge kennt man $a_3 = 4$ und $a_6 = 8\sqrt{2}$. Berechne a_9 und a_n .

$$q^3 = \frac{a^6}{a^3} = \frac{8\sqrt{2}}{4} = \frac{2\sqrt{2}}{4} = \sqrt{2}^3 \implies q = \sqrt{2}$$

$$a^9 = a^6 \cdot q^3 = 8\sqrt{2} \cdot 2\sqrt{2} = 16 \cdot 2 = 32$$

Die Formel für a_n kann man von a_1 aus bestimmen, also so $a_n = a_1 \cdot q^{n-1}$ Aber dazu muß man zuerst a_1 kennen. Gut, wer will, kann dies berechnen:

$$a_1 = \frac{a_3}{q^2} = \frac{4}{2} = 2$$
. Dann erhält man

$$a_n = a_1 \cdot q^{n-1} = 2 \cdot \sqrt{2}^{n-1} = 2 \cdot \frac{\sqrt{2}^n}{\sqrt{2}} = \sqrt{2}\sqrt{2}^n = \sqrt{2}^{n+1}$$

Man kann aber genauso von a₃ aus rechnen, das geht dann so:

$$a_n = a_3 \cdot q^{n-3} = 4 \cdot \sqrt{2}^{n-3} = 2^2 \cdot 2^{\frac{n-3}{2}} = 2^{\frac{2+\frac{n}{2}-3}{2}} = 2^{\frac{1}{2}+\frac{n}{2}}$$

Daraus folgt dann
$$a_n = 2^{\frac{n+1}{2}} = (2^{\frac{1}{2}})^{n+1} = (\sqrt{2})^{n+1}$$

Beispiel 6: Von einer geometrischen Folge kennt man $a_4 = 3$ und $a_8 = 27$ Berechne alle Glieder von a_1 bis a_7 und a_n .

$$q^4 = \frac{a^8}{a^4} = \frac{27}{3} = 9 \implies q = \pm \sqrt[4]{9} = \pm \sqrt{3}$$

ACHTUNG: Es gibt zwei passende geometrische Folgen,

Mit
$$a_1 = \frac{a^4}{q^3} = \frac{3}{3\sqrt{3}} = \frac{1}{\sqrt{3}}$$
 und mit $a_1^* = \frac{a^4}{q^3} = \frac{3}{-3\sqrt{3}} = -\frac{1}{\sqrt{3}}$

Daraus folgt:
$$a_2 = a_1 \cdot q = \pm \frac{1}{\sqrt{3}} \cdot (\pm \sqrt{3}) = \pm 1 \qquad \text{(eindeutig!)}$$

$$a_3 = a_2 \cdot q = 1 \cdot (\pm \sqrt{3}) = \pm \sqrt{3}$$

$$a_4 = a_3 \cdot q = \pm \sqrt{3} \cdot (\pm \sqrt{3}) = 3 \qquad \text{(eindeutig!)}$$

$$a_5 = a_4 \cdot q = 3 \cdot (\pm \sqrt{3}) = \pm 3\sqrt{3}$$

$$a_6 = a_5 \cdot q = \pm 3\sqrt{3} \cdot (\pm \sqrt{3}) = 9 \qquad \text{(eindeutig!)}$$

$$a_7 = a_6 \cdot q = 9 \cdot (\pm \sqrt{3}) = \pm 9\sqrt{3}$$

und $a_n = a_1 \cdot q^{n-1} = \pm \frac{1}{\sqrt{3}} \cdot \left(\pm \sqrt{3}\right)^{n-1} = \pm \frac{1}{\sqrt{3}} \cdot \frac{\left(\pm \sqrt{3}\right)^n}{\pm \sqrt{3}} = \frac{1}{3} \left(\pm \sqrt{3}\right)^n$

Diese beiden Folgen kann man so darstellen:

Man beobachtet, daß hier zwei Folgen verknüpft sind. Sie treffen sich immer bei jedem übernächsten Glied, weil bei eben bei q^2 der Vorzeichenunterschied weg fällt. Die untere Folge ist wegen negativem q alternierend (d.h. sie wechselt ständig das Vorzeichen.

Aufgaben

- (1) Untersuche, ob eine geometrische Folge vorliegt. Wenn ja, erstelle den Funktionsterm für a_n .
 - (a) $a_3 = 15$; $a_5 = 375$; $a_8 = 46875$
 - (b) $a_3 = 18$; $a_6 = \frac{9}{4}$; $a_8 = \frac{9}{32}$
 - (c) $a_2 = 36$; $a_4 = 81$; $a_7 = \frac{2187}{8}$
 - (d) $a_1 = -27$; $a_3 = -3$; $a_4 = 1$
- (2) Gegeben ist eine geometrische Folge durch 2 Glieder. Berechne die angegebenen Glieder der Folge sowie den Funktionsterm für a_n .
 - (a) $a_2 = \frac{4}{5}$; $a_3 = \frac{2}{25}$; $a_4 = ?$; $a_4 = ?$
 - (b) $a_3 = 1$; $a_6 = \frac{1}{8}$; $a_{10} = ?$; $a_1 = ?$
 - (c) $a_4 = 24$; $a_6 = \frac{32}{3}$; $a_8 = ?$; $a_{11} = ?$
 - (d) $a_3 = 144$; $a_7 = \frac{729}{16}$; $a_2 = ?$; $a_5 = ?$
 - (e) $a_3 = 4$; $a_6 = 8\sqrt{2}$; $a_4 = ?$; $a_5 = ?$
 - (f) $a_5 = 3\sqrt{3}$; $a_8 = 27$; $a_2 = ?$; $a_6 = ?$

4.3 Exponentialfolgen sind Geometrische Folgen

In all unseren Beispielen enthielt der Term für an die Variable n im Exponenten. Es lag also stets eine Exponentialfunktion vor. Dies zeigt ja schon die hergeleitete Formel

$$a_n = a_1 \cdot q^{n-1}$$

Wir wollen nun einige solche Exponentialfolgen untersuchen.

Gegeben ist die Folge a_n durch $a_n = \frac{2^n}{32}$. **Beispiel 7:**

Zeige, daß eine geometrische Folge vorliegt.

 $q = \frac{a_{n+1}}{a_n} = \frac{\frac{2^{n+1}}{32}}{\frac{2^n}{32}} = \frac{2^{n+1}}{32} \cdot \frac{32}{2^n} = 2$ ist konstant. Beweis:

Gegeben ist die Folge a_n durch $a_n = \frac{3^{n-4}}{7^{n+1}}$. **Beispiel 8:**

Zeige, daß eine geometrische Folge vorliegt.

Lösung auf CD

Gegeben ist die Folge a_n durch $a_n = \left(-\sqrt[3]{2}\right)^{n-2}$. **Beispiel 9:**

Zeige, daß eine geometrische Folge vorliegt.

Lösung auf CD

Gegeben ist die Folge a_n durch $a_n = 4^{2-\frac{1}{2}n}$. Beispiel 10:

Zeige, daß eine geometrische Folge vorliegt.

Lösung auf CD

Liegt bei $a_n = 12 - 2^n$ eine geometrische Folge vor ? **Beispiel 11:**

Lösung auf CD

SATZ: Jede Folge der Bauart $a_n = a \cdot b^n$ oder $a_n = b^{r \cdot n + s}$

ist eine geometrische Folge.

Beweis: auf CD

Aufgaben

(3)Berechne die ersten 5 Glieder dieser Folgen:

(a)
$$a_n = 2^{3n}$$

(b)
$$a_n = 3 \cdot 2^{n+1}$$

(c)
$$a_n = 3^{-2n+2}$$

(d)
$$a_n = 3 \cdot 2^{4-n}$$

(e)
$$a_n = 10 \cdot \left(\frac{2}{3}\right)^{n-1}$$

(f)
$$a_n = \frac{3}{2^{n-1}}$$

(g)
$$a_n = \left(\frac{5}{2}\right)^{1-n}$$

(h)
$$a_n = \sqrt{\frac{2}{3^n}}$$

(i)
$$a_n = 48 \cdot \frac{2^{n-2}}{3^{n+1}}$$

(4) Schalte zwischen die beiden gegebenen Zahlen die passenden Zahlen, so daß eine geometrische Folge entsteht.

(a)
$$a_1 = 8$$
; $a_5 = 64$

$$a_1 = 8$$
; $a_5 = 64$ (b) $a_1 = 5$; $a_4 = 6$

(5) Schalte zwischen diese Zahlen so wenig wie möglich neue, so daß eine geometrische Folge entsteht.

(a)
$$a_3 = \sqrt{2}$$
; $b = 2\sqrt{2}$; $c = 8$

(b)
$$b = 12$$
; $a_5 = \frac{4}{3}$; $c = \frac{4}{81}$

(c)
$$b = \frac{1}{2}$$
; $c = 4$; $a_7 = 128\sqrt{2}$

4.4 Logarithmen für Geometrische Folgen

Grundaufgaben:

(G1) Gegeben ist die Folge $a_n = 2^n$. Ist $b = 131\,072$ ein Glied dieser Folge?

Lösung:

Es muß also gelten: $a_n = 2^n = 131072$

$$2^{n} = 131072$$
 (1)

Die Unbekannte n steht im Exponenten. Es gibt nur eine Möglichkeit, diese von dort herunter zu holen, das ist die Anwendung des 3. Logarithmengesetzes. Dieses heißt:

$$\log_b a^n = n \cdot \log_b a$$

Demnach gilt auch

$$\log_h 2^n = n \cdot \log_h 2$$
.

Man nimmt nun eine solche Basis, deren Logarithmen im Taschenrechner eingearbeitet sind. Beispielsweise die Zehnerlogarithmen, also die Logarithmen zur Basis 10. Diese schreibt man entweder so: $\log_{10} 2$ oder nach alter Tradition kurz $\lg 2$. Auf den Taschenrechnern trägt die Taste dafür den Aufdruck "log". Die Taste $\ln x$ ist ein andere Logarithmusfunktion, nämlich zur Basis e = 1,71828..., das ist die Eulersche Zahl. Man könnte sie auch verwenden.

Wir logarithmieren also die Gleichung (1), d.h. wir nehmen von beiden Seiten den Logarithmus:

$$lg 2^n = lg 131072$$

Nun wenden wir auf die linke Seite das 3. Logarithmengesetz an:

$$n \cdot lg \ 2 = lg \ 131072$$

und dividieren durch lg 2:

$$n = \frac{\lg 131072}{\lg 2} = 17$$

Ergebnis: $2^{17} = 131072$, also ist $b = a_{17}$.

Viel mehr auf CD

AUFGABE 6

(a) Ist z = 17.294.403 ein Glied der Folge $a_n = 3.7^n$?

- (b) Ist $z = \frac{1}{531441}$ ein Glied der Folge $a_n = 3^{-n}$
- (c) Ist $z = 358\ 271\ 148$ ein Glied der Folge $a_n = \frac{1}{2} \cdot 4^n$?

AUFGABE 7

- (a) Ab welcher Nummer sind die Glieder der Folge b_n größer als die der Folge a_n ? Dabei ist gegeben: $a_n = 758 \cdot 4^n$ und $b_n = 5 \cdot 6^n$.
- (b) Ab welcher Nummer sind die Glieder der Folge b_n kleiner als die der Folge a_n ? Dabei ist gegeben: $a_n = 2,5^n$ und $b_n = 890 \cdot 2^n$.
- (c) Ab welcher Nummer sind die Glieder der Folge b_n größer als die der Folge a_n ? Dabei ist gegeben: $a_n = 4^{12-n}$ und $b_n = 2 \cdot 3^{-n}$.

AUFGABE 8

- (a) Die Folge $a_n = 3^{-n}$ besteht aus lauter positiven Gliedern und fällt. Wird die Folge kleiner als 10^{-12} ? Und wenn ja, ab welcher Nummer?
- (b) Ab welchem n ist $a_n = 2^{5-3n}$ kleiner als 10^{-20} ?
- (c) Ab welchem n ist $a_n = \left(\frac{4}{5}\right)^n$ kleiner als 10^{-10} ?
- (d) Ab welchem n ist $a_n = \frac{240}{4^n}$ kleiner als 10^{-12} ?

AUFGABE 9

- (a) Ab welcher Nummer n ist $a_n = 8^n$ größer als 10 Milliarden?
- (b) Ab welcher Nummer n ist $a_n = 34 \cdot 2^n$ größer als 10 ¹⁵?
- (c) Zeige, daß jede noch so große Zahl M ab einer bestimmten Nummer n überschritten wird: $a_n = \left(\frac{3}{2}\right)^n$.
- (d) Zeige, daß jede noch so große Zahl M ab einer bestimmten Nummer n überschritten wird: $a_n = \frac{5^{n+1}}{2^{n-2}} \, .$

4.5 Geometrische Folgen aus der Geometrie

Nebenstehende Streckenschnecke entsteht, indem man von 4 Geraden ausgeht, die miteinander jeweils 45° bilden. Dann beginnt man mit einem Punkt A₁, der vom Mittelpunkt M die Entfernung (z.B. z = 8) hat. Von A₁ aus fällt man das Lot im Uhrzeigersinn auf die nächste Gerade bis A₂. Von dort aus fällt man wieder das Lot bis A₃ usw. So entsteht eine Folge von Strecken

Berechne a₁ bis a₅ sowie a_n. Zeige, daß eine geometrische Folge vorliegt. Berechne a₂₀. Was läßt sich vermuten?

 a_1 , a_2 ,

AUFGABE 11

Nebenstehende Abbildung erzeugt eine geometrische Punktfolge P₁, P₂, P₃, ... In ihr entsteht so die Streckenfolge P_1P_2 , P_2P_3 , P_3P_3 , usw. Berechne die zugehörigen Streckenlängen und stelle einen Funktionsterm für das allgemeine Glied der Folge auf.

Wähle z. B: a = 3 cm, b = 6 cm und c = 1 cm.

AUFGABE 12

Die Gerade g bildet mit h einen 45° Winkel, g und k dagegen 60°.

Wir wählen einen beliebigen Punkt A₁ auf k und konstruieren der Reihe nach die Punkte B_1 , A_2 , B_2 , A_3 , B_3 usw.

Es sei $a_1 = \overline{A_1}B_1$, $a_n = \overline{A_n}B_n$.

Stelle eine Berechnungsformel für an auf, wenn a beliebige groß sein kann.

Zeige, daß eine geometrische Folge vorliegt.

AUFGABE 13

In ein Quadrat werden fortgesetzt weitere Quadrate eingezeichnet, deren Ecken auf den Seiten des vorgehenden Quadrats liegen, und deren Seiten mit den vorgehenden Seiten jeweils einen Winkel von 30° bilden. So entsteht eine Folge von Quadraten mit den Seitenlängen a₁, a₂, ..., a_n,

Zeige, daß die Folge der Seiten und der Quadratinhalte geometrisch ist. Berechne zu $a_1 = 8$ cm a_2 bis a_5 .

Es sei $A_1B_1 = a_1$ und $A_1B_2 = a_1$ '

In ein gleichseitiges Dreieck der Seitenlänge $a_1 = a$ wird auf die dargestellte Art eine Folge von gleichseitigen Dreiecken einbeschrieben. Berechne die Folge der Dreiecksseiten a_1 , a_2 , ... a_n , ... und der Flächeninhalte F_1 , F_2 , ..., F_n .

AUFGABE 15

In ein Quadrat der Seite a wird ein Kreis einbeschrieben. In diesen wiederum ein Quadrat, das parallel zum äußeren Quadrat liegt usw. Berechne die Folge der Flächeninhalte der Quadrate Q_1 , Q_2 , ..., Q_n , ... und der Kreise: F_1 , F_2 , ..., F_n , ...

4.6 Arithmetische Wachstumsfolgen

Beispiel 1

Eine Maschine produziert pro Minute 25 Klinkersteine. Zur Zeit t = 0 sind n(0) = 450 Klinker im Lager. Wie viele sind dort nach 1 Minute, 2 Minuten, 30 Minuten, 2 Stunden und n Minuten?

Lösung auf CD

Beispiel 2:

n(t) sei die Anzahl von Objekten irgendeiner Art. Ihre Anzahl genüge der Gleichung $n(t) = 2450 - 28 \cdot t$

Beschreibe die Situation.

Lösung auf CD

4.7 Geometrische Wachstumsfolgen

Musterbeispiel 1:

Ein Bakterienstamm vermehrt sich so, daß pro Minute 15% neue Bakterien entstehen, Die Startmenge sei z(0) = 40

Lösung auf CD

Musterbeispiel 2:

Von zwei Bakterienstämmen sind ihre Wachstumsgesetze bekannt.

- n(t) sei die Anzahl der Bakterien des Stammes 1 zur Zeit t (in Minuten)
- m(t) sei die Anzahl der Bakterien des Stammes 2 zur Zeit t (in Minuten).

Es gelte:
$$n(t) = 40 \cdot 1,05^{t}$$
 und $m(t) = 1,02^{t+288}$.

- a) (1) Beschreibe das Wachstumsverhalten des ersten Bakterienstammes.
 - (2) Wie viele Bakterien sind nach 30 Minuten vorhanden?
 - (3) Nach welcher Zeit sind 100 Bakterien vorhanden?
 - (4) In welcher Zeitspanne Δt hat sich die Startmenge verdoppelt?
 - (5) Zeige daß sich in dieser Zeitspanne Δt jede Menge n(t) verdoppelt.
- b) (1) Beschreibe das Wachstumsverhalten des zweiten Bakterienstammes.
 - (2) Nach welcher Zeit sind 500 Bakterien vorhanden?
 - (3) In welcher Zeitspanne Δt hat sich die Startmenge verdreifacht?
 - (4) Zeige daß sich in dieser Zeitspanne Δt jede Menge m(t) verdreifacht.
- c) Zu welchem Zeitpunkt t sind von beiden Stämmen gleich viele Individuen vorhanden?

Lösung auf CD

Allgemeine Untersuchungen zu Wachstumsfolgen CD ...

Der Zunahmefaktor ist von Zeitpunkt unabhängig!

CD ...

Als nächstes wollen wir klären, daß dieses exponentielle Wachstum ein prozentuales Wachstum ist:

Lösung auf CD

In welcher Zeitspanne gehen diese Funktionswerte auf die Hälfte zurück?

Lösung auf CD