

WPM1481

Single P-Channel, -12V, -5.5A, Power MOSFET

V _{DS} (V)	Typical Rds(on)()	I _D (A)
	0.022@ V _{GS} =-4.5V	-5.5
-12	0.030@ V _{GS} =-2.5V	-4.0
	0.045@ V _{GS} =-1.8V	-2.5

Descriptions

The WPM1481 is P-Channel enhancement MOS Field Effect Transistor. Uses advanced trench technology and design to provide excellent R_{DS (ON)} with low gate charge. This device is suitable for use in DC-DC conversion, power switch and charging circuit. Standard Product WPM1481 is Pb-free.

Features

- Trench Technology
- Supper high density cell design
- Excellent ON resistance for higher DC current
- Extremely Low Threshold Voltage
- Small package DFN2*2-6L

Applications

- Driver for Relay, Solenoid, Motor, LED etc.
- DC-DC converter circuit
- Power Switch
- Load Switch
- Charging

Http://www.sh-willsemi.com

DFN2*2-6L

Pin configuration (Top view)

WLSI = Company Code

C = Device Code

Y = Year WW = Week

Marking

Order information

Device	Package	Shipping	
WPM1481- 6/TR	DFN2*2-6L	3000/Reel&Tape	

Absolute Maximum ratings

Parameter	Symbol	10 S	Steady State	Unit	
Drain-Source Voltage	V _{DS}	-12		V	
Gate-Source Voltage	V _{GS}	±12		V	
Continuous Drain Current ^{a d}	T _A =25°C		-5.1	-4.3	۸
Continuous Drain Current	T _A =70°C	l _D	-4.0	-3.4	А
Mariana Barra Biratina a d	T _A =25°C	-	1.9	1.4	107
Maximum Power Dissipation ^{a d}	T _A =70°C	P _D	1.2	0.9	W
Continuous Drain Current b d	T _A =25°C	l _D	-3.7	-3.0	^
Continuous Drain Current	T _A =70°C		-3.0	-2.4	Α
M . D D bd	T _A =25°C		1.0	0.6	107
Maximum Power Dissipation ^{b d}	T _A =70°C	P _D	0.6	0.4	W
Pulsed Drain Current ^c	I _{DM}	-24		А	
Operating Junction Temperature	TJ	-55~150		°C	
Lead Temperature	TL	260		°C	
Storage Temperature Range	T _{stg}	-55 ~150		°C	

Thermal resistance ratings

Parameter	Symbol	Typical	Maximum	Unit	
Junction-to-Ambient Thermal Resistance ^a	t 10 s	R _{JA}	49	64	
punction-to-Ambient Thermal Resistance	Steady State		66	88	
Junction-to-Ambient Thermal Resistance b	t 10 s	D	84	118	°C/W
punction-to-Ambient Thermal Resistance	Steady State	R _{JA}	125	180	
Junction-to-Case Thermal Resistance	Steady State	R _{JC}	32	42	

- a Surface mounted on FR-4 Board using 1 square inch pad size, 1oz copper
- b Surface mounted on FR-4 board using minimum pad size, 1oz copper
- c Pulse width<380µs, Single pulse
- d Maximum junction temperature T_J=150°C.
- e Pulse test: Pulse width <380 us duty cycle <2%.

Will Semiconductor Ltd. 2 May, 2013 - Rev.1.3

Electronics Characteristics (Ta=25°C, unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit		
OFF CHARACTERISTICS								
Drain-to-Source Breakdown Voltage	Source Breakdown Voltage BV _{DSS} V _{GS} = 0 V, I _D = -250uA		-12			V		
Zero Gate Voltage Drain Current	ero Gate Voltage Drain Current I _{DSS} V _{DS} = -10V, V _{GS} = 0V				-1	uA		
Gate-to-source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} =±10V			±100	nA		
ON CHARACTERISTICS								
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} = -250uA$	-0.4		-0.9	V		
		$V_{GS} = -4.5V$, $I_D = -5.5A$		22	26	m		
Drain-to-source On-resistance b, e	R _{DS(on)}	$V_{GS} = -2.5V$, $I_D = -4.0A$		30	38			
		V _{GS} = -1.8V, I _D = -2.5A		45	59			
Forward Transconductance ^e	g FS	V _{DS} =-5.0V, I _D = -5.5A		23		S		
CAPACITANCES, CHARGES		1		l		l		
Input Capacitance	C _{ISS}	$V_{GS} = 0 V$,		1880		pF		
Output Capacitance	Coss	f = 1.0 MHz,		437				
Reverse Transfer Capacitance	C _{RSS}	V _{DS} = -10 V		413				
Total Gate Charge	Q _{G(TOT)}	V 45V		44.5				
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = -4.5 \text{ V},$ $V_{DS} = -10 \text{ V},$		3.5				
Gate-to-Source Charge	Q _{GS}	$V_{DS} = -10 \text{ V},$ $V_{DS} = -5.5 \text{A}$		1.7		nC		
Gate-to-Drain Charge	Q_{GD}	- ID = -3.3A		9.25				
SWITCHING CHARACTERISTICS								
Turn-On Delay Time	td _(ON)	$V_{GS} = -4.5 \text{ V},$		33.6				
Rise Time	tr	$V_{DS} = -6 V$,		35.6		ns		
Turn-Off Delay Time	td _(OFF)	R _L =3 ,		50				
Fall Time	tf	R _G =6		63				
BODY DIODE CHARACTERISTICS								
Forward Voltage	V _{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 1.0 \text{A}$		-0.76	-1.5	V		

Will Semiconductor Ltd. 3 May, 2013 - Rev.1.3

Typical Characteristics (Ta=25°C, unless otherwise noted)

Output characteristics

Transfer characteristics

On-Resistance vs. Drain current

On-Resistance vs. Gate-to-Source voltage

On-Resistance vs. Junction temperature

Threshold voltage vs. Temperature

Gate Charge Characteristics

Will Semiconductor Ltd. 5 May, 2013 - Rev.1.3

Transient thermal response (Junction-to-Ambient)

Will Semiconductor Ltd. 6 May, 2013 - Rev.1.3

Package outline dimensions

DFN2*2-6L

Top view

Bottom view

Side View

NOTE:

1) TSLP AND SLP SHARE THE SAME EXPOSE DUTLING BUT WITH DIFFERENT THICKNESS:

		TSLP	SLP
	MAX.	0.800	0.900
A	N□M.	0.750	<u>:</u> - 0,850
	MIN.	0.700	0.800

Will Semiconductor Ltd. 7 May, 2013 - Rev.1.3