EE230-02 RFIC II Fall 2018

Lecture 2: RF Basics Review1

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Cadence Lab

ENGR 289 Access Code: 117 7746

How to send data without wire?

How to send data without wire?

Modulation

Process of adding information (or signal) to a carrier signal, typically a sinewave.

■ Why do we need to modulate? Why not just send the data as is?

Why Modulation?

Large Antenna

Why Modulation?

□ Antenna

- Converts an electrical signal into an electromagnetic wave radiated in free space
- Dimension is proportional to wavelength of carrier frequency
 - Wavelength = 300 meter / Freq (in MHz)
 - 1 MHz → 300 meter
 - 2.4 GHz → 12.5 cm
 - Antenna usually ½ or ¼ wavelength long

OR

Review of Some Basic Concepts

- □ Sinewave Signal
- ☐ Time Domain vs. Frequency Domain
- □ Filtering
- □ Frequency Translation
- Modulation
- Demodulation

Review: Sinewave Signal

- □ Basis for RF signal is sinewave
- □ Three key parameters

Review: Time Domain vs Freq Domain

- ☐ Signal can be represented in both time and frequency domains.
 - Time-domain: How signal changes over time
 - Freq-domain: How much signal is within each frequency band

Review: Filtering

- Process of selecting signals in the frequency band of interest.
- □ Examples: High pass filter (HPF), Low pass filter (LPF), Band pass filter (BPF)

Review: Frequency Translation

- Move signal to a different frequency band.
 - Trig Identity*: The product of two sinewaves produces sum and difference frequencies
 - "Up-Conversion": Move to higher frequency

"Down-Conversion": Move to lower frequency

Trig Identity*: cosA cosB = [cos(A+B)-cos(A-B)]/2

Review: Modem

Baseband & Passband

Modulator & Demodulator Modem

Review: Modulation Terminology

Amplitude Modulation (AM) vs. Amplitude Shift Keying (ASK)

- Amplitude modulation vs. Digital modulation
- If modulating signal is continuous analog, it is called "AM"
- If modulating signal is digital signal, it is called "ASK"
- Similarly, FM vs. FSK, PM vs. PSK

Review: Modulation

Review: Digital Modulation

Review: Signal Constellation

Ideal & Noisy PSK Constellation

Constellation of ASK Signal

Noisy Signal & Constellation

Constellation of FSK Signal

Ideal & Noisy Constellation

Error Vector Magnitude (EVM)

- ☐ Quantitative measure of the impairments that corrupt the signal.
- ☐ The deviation of the constellation points from their ideal positions.

$$EVM_1 = \frac{1}{V_{rms}} \sqrt{\frac{1}{N} \sum_{j=1}^{N} e_j^2}$$

$$EVM_2 = \frac{1}{P_{avg}} \cdot \frac{1}{N} \sum_{j=1}^{N} e_j^2$$

Review: Quadrature Modulation

A
$$cos(2\pi f_c t + \emptyset) = A cos(2\pi f_c t) cos(\emptyset) + A sin(2\pi f_c t) sin(\emptyset)$$

= $\mathbf{I} cos(2\pi f_c t) + \mathbf{Q} sin(2\pi f_c t)$

where $I = A \cos(\emptyset)$ and $Q = A \sin(\emptyset)$

Symbol rate = ½ Bit rate

Review: QPSK Constellation

(a)

(b)

Review: 16QAM

- □ Four possible amplitudes for the sine and cosine waveforms e.g., ±1 and ±2, thus obtaining 16 possible output waveforms.
- ☐ Group four consecutive bits of the binary baseband stream select one of the 16 waveforms accordingly.
- ☐ The resulting output occupies one-fourth the bandwidth of PSK

$$x_{16OAM}(t) = \alpha_1 A_c \cos \omega_c t - \alpha_2 A_c \sin \omega_c t$$
 $\alpha_1 = \pm 1, \pm 2, \alpha_2 = \pm 1, \pm 2$

Symbol rate = $\frac{1}{4}$ Bit rate

Review: Multipath Propagation

Review: OFDM

Review: Demodulation

- Inverse of Modulation
- ☐ Extract original I and Q from received modulated signal
- □ Example: Demodulate Quadrature modulated signal
 - Multiply input signal with two 90 deg phase related sine waves
 - LPF to eliminate high freq. signal components
 - Recover scaled version of original I and Q

Key Specs for Transceivers

- ☐ Direct Conversion Transceiver
- Non-idealities in RF circuits
- □ Key Specs for Transmitter
- ☐ Key Specs for Receiver
- ☐ Important System Level Concepts

Direct Conversion Transceiver

- ☐ Also known as "Homodyne" or "Zero-IF"
- □ Simplest analog implementation compared to other radio architectures
- ☐ RF section mainly performs up/down freq translation
- Channel selection and most of AGC are performed at low frequency

Direct Conversion Transceiver

Direct Conversion Receiver

Non-idealities in RF Circuits

- ☐ Definition: Signal Power
- Noise
- ☐ Linearity
- ☐ Clock Noise

Definitions related to Signal Power

Signal power on resistor R

- Voltage swing is sinusoidal with amplitude A (0-pk).
- Power (Watt) = $A^2/(2R) = A_{rms}^2/R$ where $A_{rms} = A/sqrt(2)$

dBm

- Power ratio in dB w/ respect to 1 mW.
- 10mW => 10 log(10mW/1mW) = 10dBm

Watt	dBm	A _{rms} (in V) R=50ohm	Comment
1000	60	223	Typ. Microwave Oven
1	30	7.1	Cell Phone Transmit Power
1m	0	0.225	Bluetooth Transmit Power
50p	-73	50u	Bluetooth Receive Sensitivity
4e-21	-174	4.4e-10	Thermal Noise Floor in 1Hz at room temp

Noise: Thermal Noise

- Due to random charge carrier motion in any conducting medium whose temp is above absolute zero.
- Important noise source in Wireless.
- Thermal noise sets the noise floor given the bandwidth (BW).
- kTB = -174dBm + 10log(BW) at room temp
 - K: Boltzmann's constant = 1.38x10⁻²³ J/K
 - T: Temp in Kelvin (K) = 273 + degree in C
 - B: BW in Hz.
 - Example: Noise in 1MHz BW = -174dBm/Hz + 10log(1e6) = -114dBm (0.45uVrms on 50ohm)

Noise: Noise Figure

- Noise on the digital signal does not propagate if "Noise Margin" is met.
- Analog amplifier adds noise* to the signal, degrading signal quality.
- Noise Factor (F) = SNRin/SNRout
- Noise Figure (NF) = 10log(F) (in dB)
 - Ideal Amplifier: SNRin = SNRout, F=1, NF=0dB
 - Real Amplifier: SNRin>SNRout, Good NF=1-3dB

Digital: Noise Margin

Analog: Noise Figure

^{*} Also, circuit other types of noise, such as flicker, shot, etc. See [5]

Noise: Cascaded NF

- Cascaded amplifiers are used when a single stage gain is not high enough.
- Friis formula to calculate total equivalent F.
 - Ftotal = F1 + (F2-1)/G1 + (F3-1)/(G1G2) + ... [6]
 - F2, F3, ... are reduced by the gain of preceding stages.
 - If G1 is sufficiently large enough, F1 is most critical to achieve low Ftotal.

