Day 4-1

Assignment:

- Homework 03, Due Wed, 8am
 - Project ideas
 - git
- Lab 04 is available now
 - Sensors and displays

Today's Topics:

- Project Ideas
- git
- I2C
- LED Matrix

 $http://www.gartner.com/newsroom/id/3114217?imm_mid=0d7750\&cmp=em-iot-na-na-newsltr_20150827$

02-2 I2C

Interfacing with sensors over a serial bus

I²C

- "two-wire interface" standard
- Used to attach low-speed peripherals to embedded systems
- The Bone has two I²C controllers (Section 21 of TRM)

Display Kernel Log Messages

Hardware - Bone

You can see which ones are configured at boot time

```
beagle$ dmesg | grep i2c

[    0.156139] omap_i2c 44e0b000.i2c: bus 0 rev0.11 at 400 kHz

[    0.157673] input: tps65217_pwr_but as
/devices/ocp.2/44e0b000.i2c/i2c-0/0-0024/input/input0

[    0.169206] omap_i2c 44e0b000.i2c: unable to select pin group
[    0.170089] omap_i2c 4819c000.i2c: bus 1 rev0.11 at 100 kHz
[    0.172685] omap_i2c 4819c000.i2c: unable to select pin group
[    0.762708] i2c /dev entries driver
```

Two buses each running at different speeds

Time in seconds

i2c - bone

P9				P8				
DGND	1	2	DGND	DGND	- 1	2	DGND	
VDD_3V3	3	4	VDD_3V3	GPIO_38	3	4	GPIO_39	
VDD_5V	5	6	VDD_5V	GPIO_34	5	6	GPIO_35	
SYS_5V	7	8	SYS_5V	GPIO_66	7	8	GPIO_67	
PWR_BUT	9	10	SYS_RESETN	GPIO_69	9	10	GPIO_68	
GPIO_30	1 1	12	GPIO_60	GPIO_45	1 1	12	GPIO_44	
GPIO_31	13	14	GPIO_50	GPIO_23	13	14	GPIO_26	
GPIO_48	15	16	GPIO_51	GPIO_47	15	16	GPIO_46	
I2C1_SCL	17	18	I2C1_SDA	GPIO_27	17	18	GPIO_65	
I2C2_SCL	19	20	I2C2_SDA	GPIO_22	19	20	GPIO_63	
I2C2_SCL	21	22	I2C2_SDA	GPIO_62	21	22	GPIO_37	
GPIO_49	23	24	I2C1_SCL	GPIO_36	23	24	GPIO_33	
GPIO_117	25	26	I2C1_SDA	GPIO_32	25	26	GPIO_61	
GPIO_115	27	28	GPIO_123	GPIO_86	27	28	GPIO_88	
GPIO_121	29	30	GPIO_122	GPIO_87	29	30	GPIO_89	
GPIO_120	31	32	VDD_ADC	GPIO_10	31	32	GPIO_11	
AIN4	33	34	GNDA_ADC	GPIO_9	33	34	GPIO_81	
AIN6	35	36	AIN5	GPIO_8	35	36	GPIO_80	
AIN2	37	38	AIN3	GPIO_78	37	38	GPIO_79	
AINO	39	40	AIN1	GPIO_76	39	40	GPIO_77	
GPIO_20	41	42	GPIO_7	GPIO_74	41	42	GPIO_75	
DGND	43	44	DGND	GPIO_72	43	44	GPIO_73	
DGND	45	46	DGND	GPIO_70	45	46	GPIO_71	

The first I2C bus is utilized for reading EEPROMS on cape add-on boards and can't be used for other digital I/O operations without interfering with that function, but you can still use it to add other I2C devices at available addresses.

The second I2C bus is available for you to configure and use.

Hardware – TMP101

• Goal: Interface to a TMP101 temp sensor

Parameter Name	Value
Typical Accuracy (°)	±2.0°C from -25°C to +85°C (max) ±3.0°C from -55°C to +125°C (max)
Supply Current (µA)	45 μ A , 0.1μ A Standby
Resolution	9- to 12-bits,
Operating Voltage Range (V)	2.7V to 5.5V
Device Description	Serial Output Temp Sensor

http://www.ti.com/lit/gpn/tmp101

2-wire bus

- The two wires are
 - Serial Clock (SCL), is an input to the TMP101 and is used to clock data into and out of the TMP101.
 - Serial Data (SDA), is bidirectional and carries the data to and from the TMP101.
- The only other two pins on the TMP101 that you need to use are the Power Supply (Vdd) and Ground.

Software - bone

Bus number

• See what's on a bus with **i2cdetect**

beagle\$ i2cdetect -y -r 1

I have 2, TMP101's and an LED matrix.

- The TMP101's are at **1001 000** and **1001 001**
- Convert to hex 0x48 and 0x49

Registers

• Each TMP101 has four registers

Table 2. Pointer Addresses of the TMP100 and TMP101 Registers

P1	P0	REGISTER
0	0	Temperature Register (READ Only)
0	1	Configuration Register (READ/WRITE)
1	0	T _{LOW} Register (READ/WRITE)
1	1	THIGH Register (READ/WRITE)

- Read with \$ i2cget -y 1 0x48 00
- **0x18** which is 24C or 75.2F

Table 6. Configuration Register Format

BYTE	D7	D6	D5	D4	D3	D2	D1	D0
1	OS/ALERT	R1	R0	F1	F0	POL	TM	SD

Table 2. Pointer Addresses of the TMP100 and TMP101 Registers

Registers

P1	P0	REGISTER
0	0	Temperature Register (READ Only)
0	1	Configuration Register (READ/WRITE)
1	0	T _{LOW} Register (READ/WRITE)
1	1	THIGH Register (READ/WRITE)

- Read with \$ i2cget -y 1 0x48 01
- 0x80 which is 1000 0000

Table 6. Configuration Register Format

BYTE	D7	D6	D5	D4	D3	D2	D1	D0
1	OS/ALERT	R1	R0	F1	F0	POL	TM	SD

SD – Shutdown Mode

TM - Thermostat Mode

POL-Polarity

F1/F0 – Fault Queue

R1/R0 – Converter Resolution

OS – OS/Alert

Table 8. Resolution of the TMP100 and TMP101

			CONVERSION TIME
R1	R0	RESOLUTION	(typical)
0	0	9 Bits (0.5°C)	40ms
0	1	10 Bits (0.25°C)	80ms
1	0	11 Bits (0.125°C)	160ms
1	1	12 Bits (0.0625°C)	320ms

LED Matrix

- In the lab you will be interfacing an I2C LED matrix
- Some are bicolor (red and green)
- Some are single color
- Both interface the same way: i2c
- How many wires to you need to control 128 LEDs?

https://www.adafruit.com/products/902

https://www.adafruit.com/products/871

BoneScript I2C API

• Details: https://github.com/jadonk/bonescript

I2C

Uses https://github.com/korevec/node-i2c

```
i2cOpen(port, address, options, [callback])
i2cScan(port, [callback])
i2cWriteByte(port, byte, [callback])
i2cWriteBytes(port, command, bytes, [callback])
i2cReadByte(port, [callback])
i2cReadBytes(port, command, length, [callback])
i2cStream(port, command, length, [callback])
```

exercises/i2c/matrixLE[

```
#!/usr/bin/env node
var b = require('bonescript');
var port = '/dev/i2c-2'
var matrix = 0x70;
var time = 1000; // Delay between images in ms
// The first byte is GREEN, the second is RED.
var smile =
        [0x00, 0x3c, 0x00, 0x42, 0x28, 0x89, 0x04, 0x85,
        0x04, 0x85, 0x28, 0x89, 0x00, 0x42, 0x00, 0x3c];
var frown =
        [0x3c, 0x00, 0x42, 0x00, 0x85, 0x20, 0x89, 0x00,
        0x89, 0x00, 0x85, 0x20, 0x42, 0x00, 0x3c, 0x00];
var neutral =
        [0x3c, 0x3c, 0x42, 0x42, 0xa9, 0xa9, 0x89, 0x89, 0x89, 0x89]
        0x89, 0x89, 0xa9, 0x42, 0x42, 0x3c, 0x3c];
```

exercises/i2c/matrixLEI

```
var port = '/dev/i2c-2'
var matrix = 0x70;
b.i2cOpen(port, matrix);
b.i2cWriteByte(port, 0x21); // Start oscillator (p10)
b.i2cWriteByte(port, 0x81); // Disp on, blink off (p11)
b.i2cWriteByte(port, 0xe7); // Full brightness (page 15)
doFrown();
function doFrown() {
            b.i2cWriteBytes(port, 0x00, frown);
setTimeout(doNeutral, 1*time);
function doNeutral() {
            b.i2cWriteBytes(port, 0x00, neutral);
setTimeout(doSmile, 2*time);
function doSmile() {
            b.i2cWriteBytes(port, 0x00, smile);
```


exercises/i2c/matrixLEI

```
// Fade the display
setTimeout(doFadeDown, 3*time);
var fade = 0xef;
function doFadeDown() {
    b.i2cWriteByte(port, fade);
          fade--;
          if(fade >= 0xe0) {
                    setTimeout(doFadeDown, time/10);
          } else {
                    setTimeout(doFadeUp);
function doFadeUp() {
    b.i2cWriteByte(port, fade);
          fade++;
          if(fade <= 0xef) {</pre>
                    setTimeout(doFadeUp, time/10);
```


Writing one column

b.i2cWriteBytes(port, 0x04, [0xff]);

- Turns on the third column of *green* LEDs, without writing the other columns
- Try it!

Wiring LED matrix

• Don't forget pull-up resistors!

P9							
DGND	- 1	2	DGND				
VDD_3V3	3	4	VDD_3V3				
VDD_5V	5	6	VDD_5V				
SYS_5V	7	8	SYS_5V				
PWR_BUT	9	10	SYS_RESETN				
GPIO_30	1 1	12	GPIO_60				
GPIO_31	13	14	GPIO_50				
GPIO_48	15	16	GPIO_51				
I2C1_SCL	17	18	I2C1_SDA				
I2C2_SCL	19	20	I2C2_SDA				
I2C2_SCL	21	22	I2C2_SDA				
GPIO_49	23	24	I2C1_SCL				
GPIO_117	25	26	I2C1_SDA				
GPIO_115	27	28	GPIO_113				
GPIO_111	29	30	GPIO_112				
GPIO_110	31	32	VDD_ADC				
AIN4	33	34	GNDA_ADC				
AIN6	35	36	AIN5				
AIN2	37	38	AIN3				
AINO							
GPIO_20	41	42	GPIO_7				
DGND	43	44	DGND				
DGND	45	46	DGND				

fritzing

LED Matrix

• Goal: Etch-a-Sketch on the LED Matrix!