

Dual Low Noise, Audio Amplifier

The LM833 is a standard low-cost monolithic dual general-purpose operational amplifier employing Bipolar technology with innovative high-performance concepts for audio systems applications. With high frequency PNP transistors, the LM833 offers low voltage noise (4.5 nV/√Hz), 15 MHz gain bandwidth product, 7.0 V/μs slew rate, 0.3 mV input offset voltage with 2.0 μV/°C temperature coefficient of input offset voltage. The LM833 output stage exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source/sink AC frequency response.

The LM833 is specified over the automotive temperature range and is available in the plastic DIP and SOP-8 packages (M and N suffixes).

Low Voltage Noise: 4.5 nV/√Hz

• High Gain Bandwidth Product: 15 MHz

• High Slew Rate: 7.0 V/μs

• Low Input Offset Voltage: 0.3 mV

Low T.C. of Input Offset Voltage: 2.0 μV/°C

• Low Distortion: 0.002%

Excellent Frequency Stability

Dual Supply Operation

Rating	Symbol	Value	Unit
Supply Voltage (V _{CC} to V _{EE})	٧S	+36	V
Input Differential Voltage Range (Note 1)	V _{IDR}	30	V
Input Voltage Range (Note 1)	v_{IR}	±15	٧
Output Short Circuit Duration (Note 2)	tsc	Indefinite	
Operating Ambient Temperature Range	TA	-40 to +85	°C
Operating Junction Temperature	TJ	+150	°C
Storage Temperature	T _{stg}	-60 to +150	ô
Maximum Power Dissipation (Notes 2 and 3)	P_{D}	500	mW

NOTES: 1. Either or both input voltages must not exceed the magnitude of V_{CC} or V_{EE}.

2. Power dissipation must be considered to ensure maximum junction temperature

(T_J) is not exceeded (see power dissipation performance characteristic).

3. Maximum value at $T_A \le 85$ °C.

ORDERING INFORMATION

DEVICE	Package Type	MARKING	Packing	Packing Qty
LM833N	DIP8	LM833	TUBE	2000/box
LM833M/TR	SOP8	LM833	REEL	2500/reel

ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, T_A = 25^{\circ}\text{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Offset Voltage (R _S = 10 Ω , V _O = 0 V)	VIO	_	0.3	5.0	mV
Average Temperature Coefficient of Input Offset Voltage $R_S = 10 \Omega$, $V_O = 0 V$, $T_A = T_{low}$ to T_{high}	ΔV _{IO} /ΔΤ	-	2.0	-	μV/°C
Input Offset Current (V _{CM} = 0 V, V _O = 0 V)	lIO	_	10	200	nA
Input Bias Current (V _{CM} = 0 V, V _O = 0 V)	I _{IB}	_	300	1000	nA
Common Mode Input Voltage Range	VICR	_ _12	+14 -14	+12 -	V
Large Signal Voltage Gain (R _L = 2.0 k Ω , V _O = \pm 10 V	AVOL	90	110	-	dB
Output Voltage Swing: $ \begin{array}{l} R_L = 2.0 \text{ k}\Omega, \text{ V}_{\text{ID}} = 1.0 \text{ V} \\ R_L = 2.0 \text{ k}\Omega, \text{ V}_{\text{ID}} = 1.0 \text{ V} \\ R_L = 10 \text{ k}\Omega, \text{ V}_{\text{ID}} = 1.0 \text{ V} \\ R_L = 10 \text{ k}\Omega, \text{ V}_{\text{ID}} = 1.0 \text{ V} \\ R_L = 10 \text{ k}\Omega, \text{ V}_{\text{ID}} = 1.0 \text{ V} \end{array} $	V _{O+} V _{O-} V _{O+} V _{O-}	10 - 12 -	13.7 -14.1 13.9 -14.7	- -10 - -12	V
Common Mode Rejection (V _{in} = ±12 V)	CMR	80	100	-	dB
Power Supply Rejection (V _S = 15 V to 5.0 V, -15 V to -5.0 V)	PSR	80	115	-	dB
Power Supply Current (V _O = 0 V, Both Amplifiers)	ID	-	4.0	8.0	mA

AC ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, T_{A} = 25°C, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Slew Rate (V_{in} = -10 V to +10 V, R_L = 2.0 k Ω , A_V = +1.0)	S _R	5.0	7.0	-	V/μs
Gain Bandwidth Product (f = 100 kHz)	GBW	10	15	-	MHz
Unity Gain Frequency (Open Loop)	fU	_	9.0	-	MHz
Unity Gain Phase Margin (Open Loop)	θ_{m}	-	60	-	Deg
Equivalent Input Noise Voltage (R _S = 100 Ω , f = 1.0 kHz)	e _n	_	4.5	-	nV/√Hz
Equivalent Input Noise Current (f = 1.0 kHz)	in	-	0.5	-	pA/√Hz
Power Bandwidth ($V_O = 27 V_{pp}$, $R_L = 2.0 k\Omega$, THD $\leq 1.0\%$)	BWP	-	120	-	kHz
Distortion (R _L = 2.0 k Ω , f = 20 Hz to 20 kHz, V _O = 3.0 V _{rms} , A _V = +1.0)	THD	-	0.002	-	%
Channel Separation (f = 20 Hz to 20 kHz)	CS	-	-120	-	dB

Figure 1. Maximum Power Dissipation versus Temperature

Figure 2. Input Bias Current versus Temperature

Figure 3. Input Bias Current versus Supply Voltage

Figure 4. Supply Current versus Supply Voltage

Figure 5. DC Voltage Gain versus Temperature

Figure 6. DC Voltage Gain versus Supply Voltage

Figure 7. Open Loop Voltage Gain and Phase versus Frequency

Figure 8. Gain Bandwidth Product versus Temperature

Figure 9. Gain Bandwidth Product versus Supply Voltage

Figure 10. Slew Rate versus Temperature

Figure 11. Slew Rate versus Supply Voltage

Figure 12. Output Voltage versus Frequency

Figure 13. Maximum Output Voltage versus Supply Voltage

Figure 14. Output Saturation Voltage versus Temperature

Figure 15. Power Supply Rejection versus Frequency

Figure 16. Common Mode Rejection versus Frequency

Figure 17. Total Harmonic Distortion versus Frequency

Figure 18. Input Referred Noise Voltage versus Frequency

Figure 19. Input Referred Noise Current versus Frequency

Figure 20. Input Referred Noise Voltage versus Source Resistance

Figure 21. Inverting Amplifier

Figure 22. Noninverting Amplifier Slew Rate

Figure 23. Noninverting Amplifier Overshoot

PACKAGE

Dimensions In Millimeters						
Symbol:	Min:	Max:	Symbol:	Min:	Max:	
Α	1.250	1.570	D	0.400	0.950	
A1	0.100	0.250	Q	0°	8°	
В	4.800	5.100	а	0.420 TYP		
С	5.800	6.250	b	1.270 TYP		
C1	3.800	4.000				

DIP8

Dimensions In Millimeters							
Symbol:	Min:	Max:	Symbol:	Min:	Max:		
Α	6.100	6.680	L1	3.000	3.600		
В	9.000	9.500	а	1.524 TYP			
D	8.400	9.000	b	0.889 TYP			
D1	7.420	7.820	С	0.457 TYP			
E	3.100	3.550	d	2.540 TYP			
L	0.500	0.700					

Important statement:

Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Huaguan Semiconductor Co,Ltd. the performance of the semi conductor products produced by the company can reach the performance indicators that can be applied at the time of sales. the use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan semicondu ctor. Not all parameters of each device need to be tested. The above documents are for reference only, and all are subject to the physical parameters.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.