

勘探地球物理新进展课程作业

 学生姓名:
 你的名字

 专业:
 17 级地球物理班

 学号:
 你的学号

 任课教师:
 陈老师

2018年9月2日

目录

§1	作业		1
	1.1	论述航空电磁法仪器进展	1
	1.2	论述地面电磁法仪器进展	1
	1.3	论述大规模高密度电磁探测的意义和作用	2
	1.4	论述频谱激电进展及发展趋势	2
§ 2	作业		2
	2.1	论述三维 MT/AMT 在地热勘探中的应用	2
	2.2	论述三维 MT/AMT 在活火山研究中的应用	2
	2.3	论述决定岩矿石频谱激电响应的因素	2
	2.4	论述频谱激电区分矿与非矿原理	2
§ 3	作业	三	2
	3.1	论述影响 TEM 浅层勘探效果的因素	2
	3.2	论述 IP 效应对 TEM 观测的影响	2
	3.3	如何提高浅层瞬步电磁仪的性能?	2
	3.4	如何识别和利用 IP 和 SPM 效应?	2
§ 4	作业	四	2
	4.1	论述航空瞬变电磁 (ATEM) 响应中 IP 效应研究进展	2
	4.2	论述三维 TEM 正反演进展	2
	4.3	论述正则化反演的地质地球物理意义	3
	4.4	论述在已知矿体形态矿床开展多方法地球物理勘探试验的意义	3
§ 5	作业	五	3
	5.1	论述电阻率法和电磁法联合反演进展	3
	5.2	论述电阻率法和电磁法联合反演的物理基础	3
	5.3	论述地震、电阻率法、电磁法和地震雷达联合反演的物理基础	3
	5.4	论述多方法联合反演的原理与进展	3
§ 6	作业	 \	3
	6.1	论述电法和电磁法勘探 (包括航空、地面、井地和井间电法电磁法) 在油	
		气勘探中的应用	3
	6.2	论述海洋电磁法在油气勘探中的应用	3
	6.3	论述地震与电磁法联合勘探进展	3
	6.4	论述地震与电磁法联合勘探进展	3

§7	作业七		3
	7.1	论述磁法反演新进展	3
	7.2	论述重力反演新进展	4
	7.3	论述三维地震数据断层自动解释新进展	4
	7.4	论述三维地震波阻抗反演进展	4
§8 作业八		八	4
	8.1	论述三维地震数据地质构造自动解释新进展	4
	8.2	论述三维地震与测井数据联合解释新进展	4
	8.3	论述大规模并行计算在地球物理数据处理、反演与解释中的应用	4
	8.4	论述大规模地球物理并行正反演基本原理 (包括问题分解与综合方法、	
		并行化方法、并行效率分析等)	4
	8.5	论述激电效应的机理	4

§1 **作业一**

鲁迅说过:"这个世界不只有眼前的苟且,还有明天的苟且,后天的苟且,以及陈老师的 4w 字作业"(鲁迅, 2018)。

1.1 论述航空电磁法仪器进展

引用文献 (Fountain, 1998; Auken et al., 2017)。

插入一个公式

$$\mathbf{F} = m\frac{d^2\mathbf{r}}{dt^2} \tag{1.1}$$

引用公式(1.1)

插入一个图

引用图 (1)

插入表

表 1 表名字,黑体 5号

x (m)	y (m)
1.000	2.000
3.000	4.000

引用表 (1)

1.2 论述地面电磁法仪器进展

.

1.3	论述大规模高密度电磁探测的意义和作用
1.4	论述频谱激电进展及发展趋势
	§2 作业二
2.1	论述三维 MT/AMT 在地热勘探中的应用
2.2	论述三维 MT/AMT 在活火山研究中的应用
2.3	论述决定岩矿石频谱激电响应的因素
2.4	论述频谱激电区分矿与非矿原理
	§3 作业三
	Ç
3.1	论述影响 TEM 浅层勘探效果的因素
2.2	
3.2	论述 IP 效应对 TEM 观测的影响
0.0	
3.3	如何提高浅层瞬步电磁仪的性能?
0.4	
3.4	如何识别和利用 IP 和 SPM 效应?
	§4 作业四
4.1	论述航空瞬变电磁 (ATEM) 响应中 IP 效应研究进展
4.2	论述三维 TEM 正反演进展

4.3	论述正则化反演的地质地球物理意义
4.4	论述在已知矿体形态矿床开展多方法地球物理勘探试验的意义
	§5 作业五
5.1	论述电阻率法和电磁法联合反演进展
5.2	论述电阻率法和电磁法联合反演的物理基础
5.3	论述地震、电阻率法、电磁法和地震雷达联合反演的物理基础
5.4	论述多方法联合反演的原理与进展
	§6 作业六
6.1	论述电法和电磁法勘探 (包括航空、地面、井地和井间电法电磁法) 在油气勘探中的应用
6.2	论述海洋电磁法在油气勘探中的应用
6.3	论述地震与电磁法联合勘探进展
6.4	论述地震与电磁法联合勘探进展
	§7 作业七
7.1	论述磁法反演新进展

7.2 论述重力反演新进展
......
7.3 论述三维地震数据断层自动解释新进展
......
7.4 论述三维地震波阻抗反演进展
......

§8 作业八
8.1 论述三维地震数据地质构造自动解释新进展
......
8.2 论述三维地震与测井数据联合解释新进展
......
8.3 论述大规模并行计算在地球物理数据处理、反演与解释中的应用
......
8.4 论述大规模地球物理并行正反演基本原理(包括问题分解与综合方法、并行化方法、并行效率分析等)

8.5 论述激电效应的机理

.....

参考文献

Auken, E., Boesen, T., & Christiansen, A. V. (2017). Chapter Two - A Review of Airborne Electromagnetic Methods With Focus on Geotechnical and Hydrological Applications From 2007 to 2017. (pp. 47 – 93). volume 58 of Advances in Geophysics.

Fountain, D. (1998). Airborne electromagnetic systems - 50 years of development. Exploration Geophysics, 29, 1–11.

鲁迅 (2018). 吶喊. 北京: 某不知名出版社.