General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA CR-

141811

(NASA-CR-141811) AN INVESTIGATION IN MSFC 14-INCH TWT TO DETERMINE THE STATIC STABILITY CHARACTERISTICS OF C.OO4-SCALE MODEL (74-OTS) SPACE SHUTTLE VEHICLE 5 CONFIGURATION (IA33), VOLUME 1 (Chrysler G3/18 04914

N76-13180

Unclas

SPACE SHUTTLE

AEROTHERMODYNAMIC DATA REPORT

JOHNSON SPACE CENTER

HOUSTON, TEXAS

DATA MANagement services

DMS-DR-2174 NASA CR-141,811

VOLUME 1 OF 3

AN INVESTIGATION IN THE MSFC 14-INCH TWT

TO DETERMINE THE STATIC STABILITY CHARACTERISTICS

OF THE 0.004-SCALE MODEL (74-OTS) SPACE

SHUTTLE VEHICLE 5 CONFIGURATION (IA33)

by

E. C. Allen, Rockwell International

Prepared under NASA Contract Number NAS9-13247

by

Data Management Services Chrysler Corporation Space Division New Orleans, La. 70189

for

Engineering Analysis Division

Johnson Space Center National Aeronautics and Space Administration Houston, Texas

WIND TUNNEL TEST SPECIFICS:

Test Number

MSFC TWT 594 A/B

NASA Series Number:

IA33

Model Number:

74-0TS

Test Dates:

9 May - 21 June, 15 October - 17, 1974

Occupancy Hours:

226

FACILITY COORDINATOR:

C. D. Andrews Marshall Space Flight Center Mail Stop ED32 Huntsville, Alabama 35801

Prone: (205) 453-3174

PROJECT ENGINEERS:

E. C. Allen

Rockwell International

3322 South Memorial Parkway

Suite 143

Huntsville, Alabama 35801

Phone: (205) 881-2200

P. M. Schwartz

Rockwell International

Space Division

12214 Lakewood Blvd.

Mail Code ACO7

Downey, California 90241

Phone: (213) 922-4820

DATA MANAGEMENT SERVICES:

Prepared by:

Liaison--V. W. Sparks, D. A. Sarver

Operations -- R. B. Lowe

Reviewed by:

D. E. Poucher

Approved: A. J. Manager

Data Operations

Concurrence:

Data Management Services

Chrysler Corporation Space Division assumes no responsibility for the data presented other than display characteristics.

AN INVESTIGATION IN THE MSFC 14-INCH TWT

TO DETERMINE THE STATIC STABILITY CHARACTERISTICS

OF THE 0.004-SCALE MODEL (74-OTS) SPACE

SHUTTLE VEHICLE 5 CONFIGURATION

(IA33)

Ьy

E. C. Allen, Rockwell International

ABSTRACT

This report presents data for wind tunnel test (IA33) of a 0.004-scale orbiter, external tank, and solid rocket motor integrated vehicle model (74-OTS) in the MSFC Trisonic Wind Tunnel.

The primary test objective was to obtain data on the static stability characteristics in both pitch and yaw of the Shuttle Vehicle 5 over a Mach number range of 0.6 through 4.96. The effect on vehicle aerodynamic characteristics of tank and SRB nose shape, SRB nozzle shroud flare angle, and orbiter/ET fairing were investigated.

TABLE OF CONTENTS

		<u>Page</u>
ABSTRACT		iii
INDEX OF MODEL FIGURES		2
INDEX OF DATA FIGURES		4
INTRODUCTION		7
NOMENCLATURE		8
CONFIGURATIONS INVESTIGATED		13
INSTRUMENTATION		17
TEST FACILITY DESCRIPTION		19
TEST PROCEDURES		20
DATA REDUCTION		21
TABLES		
		28
I. TEST CONDITIONS	ι αττον εκμμάρν	29
II. DATA SET/RUN NUMBER COL	LATION SUPPART	48
III. MODEL DIMENSIONAL DATA		
FIGURES		76
MODEL		
DATA (VOLUME 1 - FIGURES 4-1 (VOLUME 2 - FIGURES 13-		97
APPENDIX TABULATED SOURCE DATA	(VOLUME 3)	9

INDEX OF MODEL FIGURES

IGURE		DESCRIPTION	PAGE
1.	Axis S	Systems	76
2.	Model	Sketches and Graphs	
	a.	General Arrangement of Launch Vehicle Model (Balance In Orbiter)	77
	b.	General Arrangement of Launch Vehicle Model (Balance In Tank, Straight Sting)	78
	с.	General Arrangement of Launch Vehicle Model (Balance In Tank, Forked Sting)	79
	d.	Tank (T ₂₀) Protuberances - Side View	80
	e.	Tank (T ₂₀) Protuberances - Top View	81
	f.	rank Long Ogive Nose (T27) and Base Extension (PT_{21})	82
	g.	Orbiter/Tank Fairing, FRg	83
	h.	SRB (S ₁₈) Protuberances	84
	i.	SRB Alternate Nose Shape (S15) and Aft Skirt Flare (S14)	85
	j.	Definition of Base Pressure Tube Location, (Balance In Orbiter)	86
	k.	Definition of Base Pressure Tube Locations, Balance In Tank (Straight Sting)	87
	1.	Definition of Base Pressure Tube Locations, Balance In Tank (Forked Sting)	88
	m.	Base Pressure Coefficient Increment Due to Difference Between Taps and Rake	89
	'n	Orbiter Rody Flap Pressure Coefficients	90

INDEX OF MODEL FIGURES (Concluded)

FIGURE		DESCRIPTION	PAGE
3.	Model	Photographs	
	a.	Photograph of Configuration T ₁ P ₁ S ₁ P ₂ O ₁	91
	b.	Photograph of Tunnel Installation of Launch Vehicle Model (Balance In Orbiter)	92
	. C.	Photograph of Tunnel Installation of Launch Vehicle Model (Balance In Tank)	93
	d.	Photograph of Tunnel Installation of Launch Vehicle Model (Balance In Tank, Forked Sting)	94
	e.	Photograph of Configuration T ₁ P ₁	95

INDEX OF DATA FIGURES

FIGURE		SCHEDULE OF COEFFICIENTS		DACEC
NUMBER VOLUME 7	TITLE	PLOTTED	VARYING	PAGES
A A	CONFIGURATION BUILDUP-EFFECT ON LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG	(A)	MACH & CONFIG.	1-75
5	CONFIGURATION BUILDUP-EFFECT ON LATERAL/ DIRECTIONAL CHAR., ALPHA = 0 DEG	(B)	MACH & CONFIG.	76-115
6	LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG	(C)	MACH & ALPHA	116-234
7	LAUNCH VEHICLE-FIRST STAGE-LATERAL/ DIRECTIONAL CHARACTERISTICS	(D)	MACH, BETA & ALPHA	235-307
8	LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO	(c)	MACH, ALPHA & STING	308-422
9	LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO	(D)	MACH, BETA & STING	423-489
10	LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO	(C)	MACH, ALPHA AND CONFIGURATION	490-608
13	LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO	(D)	MACH, BETA AND CONFIGURATION	609-681
12	LONGITUDINAL RUDDER DEFLECTION EFFECTS- FIRST STAGE	(E)	MACH, RUDDER AND ALPHA	682-744
VOLUME 13	Z LATERAL/DIRECTIONAL RUDDER EFFECTIVENESS- FIRST STAGE, ALPHA = 0 DEG	(F)	MACH, RUDDER AND BETA	745-810
14	LATERAL/DIRECTIONAL RUDDER EFFECTIVENESS- FIRST STAGE, ALPHA = 5 DEG	(F)	MACH, RUDDER AND BETA	811-870

INDEX OF DATA FIGURES (Continued)

FIGURE NUMBER	INDEX OF DATA FIGURES	SCHEDULE OF COEFFICIENTS PLOTTED	CONDITIONS VARYING	PAGES
15	LATERAL/DIRECTIONAL RUDDER EFFECTIVENESS- FIRST STAGE, ALPHA = -5 DEG	(F)	MACH, RUDDER AND BETA	871-930
16	LONGITUDINAL ELEVON DEFLECTION EFFECTS- FIRST STAGE	(G)	MACH, ELEVTR AND ALPHA	931-993
17	LATERAL/DIRECTIONAL ELEVON EFFECTIVENESS- FIRST STAGE, ALPHA = 0 DEG.	(H)	MACH, ELEVTR AND BETA	994-1056
18	ELEVON AND BODY FLAP HINGE MOMENTS- LONGITUDINAL-FIRST STAGE, BETA = 0 DEG.	(1)	MACH	1057-1086
19	ELEVON AND BODY FLAP HINGE MOMENTS- LATERAL/DIRECTIONAL-FIRST STAGE, ALFA = 0	(J)	MACH	1087-1116
20	SOLID ROCKET BOOSTER FLARE EFFECT-FIRST STAGE-LONGITUDINAL AERO	(c)	MACH, CONFIG. & ALPHA	1117-1232
21	RUDDER HINGE MOMENT-LATERAL/DIRECTIONAL- FIRST STAGE, ALPHA = 0 DEG.	(K)	MACH	1233-1242
22	RUDDER HINGE MOMENT-LATERAL/DIRECTIONAL- FIRST STAGE, ALPHA = 5 DEG.	(K)	MACH	1243-1251
23	RUDDER HINGE MOMENT-LATERAL/DIRECTIONAL- FIRST STAGE, ALPHA = -5 DEG.	(K)	MACH	1252-1260
24	SOLID ROCKET BOOSTER FLARE EFFECT-FIRST STAGE-LATERAL/DIRECTIONAL AERO	(D)	MACH, CONFIG. & BETA	1261-1333
25	LAUNCH VEHICLE-SECOND STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG.	(L)	MACH & ALPHA	1334-1426
26	LAUNCH VEHICLE-SECOND STAGE-LATERAL/ DIRECTIONAL CHARACTERISTICS	(D)	MACH, ALPHA AND BETA	1427-1487

INDEX OF DATA FIGUR S (Concluded)

SCHEDULE OF COEFFICIENTS PLOTTED:

- (A) CN, CLMF, CAF versus ALPHA CABT, CN versus CLMF CABE, CABS, CABO versus ALPHA
- (B) CY, CBL, CYN versus BETA CY versus CYN
- (C) (A) + CAF, CABT, CN, CLMF versus MACH
- (D) (B) + CY, CBL, CYN versus MACH
- (E) CN, CLMF, CAF versus ALPHA CN/DR, CLMDR, CAFDR versus MACH
- (F) CBL, CY, CYN versus BETA CYDR, CYNDR, CBLDR versus MACH
- (G) CN, CLMF, CAF versus ALPHA CN/DE, CLMDE, CAFDE versus MACH
- (H) CBL, CY, CYN versus BETA CYDE, CYNDE, CBLDE versus MACH
- (I) CHEO, CHEI, CHBF versus ALPHA
- (J) CHEO, CHEI, CHBF versus BETA
- (K) CHR versus BETA
- (L) CN, CLMF, CAF versus ALPHA CABT, CN versus CLMF CABO, CABE versus ALPHA CAF, CABT, CN, CLMF versus MACH

INTRODUCTION

The purposes of this test were: (1) to determine the static stability characteristics of the Shuttle Vehicle 5 configuration; (2) to determine the effect on the Vehicle 5 aerodynamic characteristics of ET and SRB nose shape, SRB nozzle shroud flare angle, orbiter to tank fairing, and sting location; (3) to provide flow visualization using thin film oil paint; and (4) to determine rudder, body flap, and inboard and outboard elevon hinge moments.

The mated vehicle model was mounted in three different ways: (1) the orbiter mounted on the balance with the SRB's attached to the tank and the tank in turn attached to the orbiter; (2) the tank mounted on the balance (with the sting protruding through the tank base) with the SRB's and orbiter attached to the tank, and (3) with the tank mounted on the balance and the balance in turn supported by a forked sting entering the nozzle of each SRB, extending forward into the SRB's then crossing over to the tank to provide a balance socket.

Data were obtained for Mach numbers from 0.6 through 4.96 at angles-of-attack and -sideslip from -10 to 10 degrees.

The Rockwell designation for this model is 74-OTS and the NASA Series number is IA33. The MSFC test number is TWT-594 A/B.

This report consists of 3 volumes arranged in the following manner:

VOLUME 1 - Plotted Data Figures 4-12 VOLUME 2 - Plotted Data Figures 13-26

VOLUME 3 - Tabulated Source Data

NOMENCLATURE

Symbol	Plot Symbol	Definition
$A_{\mathbf{b}}$	<i>y</i>	base area, in ²
Abe		tank base area, in. ²
Abf		body flap area, in. ²
Abf		orbiter/tank fairing base area, in. ²
$A_{\mathbf{b_0}}$		orbiter base area, in. ²
A_{b_S}		SRB base area, in. ²
bref	BREF	reference span, in. ²
c.g.		center of gravity
CABE	CABE	tank base axial force coefficient
CABF	CABF	orbiter/tank fairing axial force coefficient
CAB _O	CABO	orbiter base axial force coefficient
CABS	CABS	SRB base axial force coefficient
c _{Af}	CAF	forebody axial force coefficient
CAT	CA	total axial force coefficient
C _L	CBL	rolling moment coefficient in body axis system
c _m	CLM	pitching moment coefficient
$c^{m\Omega}$	CLMU	uncorrected pitching moment coefficient
c _n	CYN	yawing moment coefficient in the body axis system

NOMENCLATURE (Continued)

Symbol .	Plot Symbol	<u>Definition</u>
c _{mf}	CLMF	forebody pitching moment coefficient
CAB	CABT	total base axial force coefficient
	CN/DR	normal force coefficient due to rudder deflection
	CLM/DR	pitching moment coefficient due to rudder deflection
	CAF/DR	forebody axial force due to rudder deflection
	CYDR	side force coefficient due to rudder deflection
	CYNDR	yawing moment coefficient due to rudder deflection
	CBLDR	rolling moment coefficient due to rudder deflection
	CN/DE	normal force coefficient due to elevon deflection
	CLMDE	pitching moment coefficient due to elevon deflection
•. •	CAFDE	forebody axial force coefficient due to elevon deflection
	CYDE	side force coefficient due to elevon deflection
	CYNDE	yawing moment coefficient due to elevon deflection
	CBLDE	rolling moment coefficient due to elevon deflection
$c_{h_{eo}}$	CHEO	outboard elevon hinge moment coefficient
c _{hei}	CHET	inboard elevon hinge moment coefficient
c_{hbf}	CHBF	body flap hinge moment coefficient
c _h r	CHR	rudder hinge moment coefficient

NOMENCLATURE (Continued)

Symbol	Plot Symbol	<u>Definition</u>
CN	CN	normal force coefficient
CNBF	CNBF	body flap upper surface normal force coefficient, adjusted to freestream static pressure
CNB _O	CNBO	orbiter base normal force coefficient
c_{N_U}	CNU	uncorrected normal force coefficient
CPB _{BF}	CPBBF	body flap upper surface pressure coefficient
رت3 ^É	СРВЕ	tank base pressure coefficient
CPBF	CPBF	orbiter/tank fairing base pressure coefficient
СРВ0	СРВО	orbiter base pressure coefficient
CPBS	CPBS	SRB base pressure coefficient
Сү	СҮ	side force coefficient (body or stability axis system)
^l ref	LREF	reference length, in.
M	МАСН	Mach number
MRP	MRP	moment reference point
	XMRP	moment reference point on x-axis
	YMRP	moment reference point on y-axis
	ZMRP	moment reference point on z-axis
P _{to}		freestream static pressure, psi
P _{bbf}	·	body flap upper surface pressure, psi

NOMENCLATURE (Continued)

Symbol	Plot Symbol	Definition
P_{b_e}	٠.	tank base pressure, psi
Pbf		orbiter/tank fairing base pressure, psi
P _{bo}	· ·	orbiter base pressure, psi
P _{bs}		SRB base pressure, psi
P_{t}		total pressure, psi
q	Q(PSI)	dynamic pressure, psi
RN/L	RN/L	Reynolds number per unit length; million/ft.
S _{ref}	SREF	reference area, in. ²
Sbfref		body flap reference area, in. ²
Seref		elevon reference area, in. ²
Sr _{ref}		rudder reference area, in. ²
T		temperature, °F
α	ALPHA	angle-of-attack, angle between the projection of the wind X_W -axis on the body X , Z -plane and the body X -axis; deg.
β	ВЕТА	sideslip angle, angle between the wind X_W -axis and the projection of this axis on the body X , Z -plane; deg.
δ		control surface deflection angle; deg. positive deflections are:
δa	AILRON	aileron - left aileron trailing edge down
δe	ELEVTR	elevator - trailing edge down

NOMENCLATURE (Concluded)

		•
Symbol	Plot Symbol	<u>Definition</u>
δ _{BF}	BDFLAP	body flap - trailing edge down
δςΒ	SPDBRK	speed brake
s _r	RUDDER	rudder - trailing edge left
Δδ _r	DRUDDR	rudder deflection increment
Δδe	DELEVN	elevator deflection increment
Mg		pitching moment, in1b.
SUBSCRIPTS		
be	· .	tank base
bf		hody flap
b _O		orbiter base
bs		SRB base
e		elevator or elevon
r		rudder
SB		speed brake
eL & eR		elevon left and right
t		total conditions
W		wind the second
ref	en e	reference conditions
œ		freestream conditions

CONFIGURATIONS INVESTIGATED

The model geometry (0.004-scale) is shown in figure 2a. The model was constructed entirely of stainless steel.

As described in the introduction, the model was mounted on the sting/balance combination in three different ways; (1) the orbiter mounted on the balance with the SRB's attached to the tank and the tank in turn attached to the orbiter (see figure 2a); (2) the tank mounted on the balance (with the sting protruding through the tank base) with the SRB's and orbiter attached to the tank (see figure 2b); and (3) with the tank mounted on the balance and the balance in turn supported by a forked sting entering the nozzle of each SRB, extending forward into the SRB's then crossing over to the tank to provide a balance socket (see figure 2c).

The model had positionable elevons and rudders which could be deflected (by installing a control surface set to the desired angle) to the following angles.

$$\delta_{el}$$
 & δ_{eR} (deg) = -5, 0, 10, 15
 δ_r (deg) = 0, -15, -20 for δ_{SB} = 0

The 0° rudder and the body flap were instrumented to provide hinge moments. The δ_{eL} = 0° elevon was split and the inboard and outboard sections were both instrumented to provide hinge moments.

The model was fabricated in conformance with the lines drawings as listed below.

Orbiter

Tank

Forward Body and Cabin	VL70-000202C
Mid-body-wing/glove fairing	VL70-000200B
Aft body	VL70-000203
Vertical tail	VL70-000146A
Wing tip	VL70-006092
OMS/RCS Pods	VL70-008457
	VL78-000041C
	VL77-000066

CONFIGURATIONS INVESTIGATED (Continued)

The following nomenclature was used to designate model parts:

Component	Definition
<u>Orbiter</u>	
B62	fuselage - per VL70-000200B, 202C, & 203
C12	canopy - per VL70-000202C
E26	elevon - per VL70-000202B
F10	body flap - per VL70-000200B
W127	wing - per VL70-000200B
M14	OMS pods - per VL70-008457
N28	OMS nozzle - per VL70-008457
V8	vertical - per VL70-000146A
R5	rudder - per VL70-000146A
<u>Tank</u>	
AT16	attach structure, front ORB/ET - per SK-H-4011
AT25	strengthened attach structure, left rear ORB/ET - per VL78-000062B
AT26	strengthened attach structure, right rear ORB/ET - per VL78-000062B
AT24	attach structure, front ORB/ET (ET alone) - per SK-H-4011
FL5	LOX feed line ET/ORB - per VL78-000062A
FL6. + + ***.	LH2 pressure line ET/ORB - per VL78-000062A
FL9	LH feed line ET/ORB - per VL78-000062A

CONFIGURATIONS INVESTIGATED (Continued)

	FR6	umbilical door fairing support - per VL78-000062A
	PT12	tank lightning rod - per VL78-000062A
	PT13	LOX recirculation line - per VL78-000062A
	PT14	LOX pressure line - per VL78-000062A
	PT20	LOX pressure line and electrical conduit - per VL78-000062A
	PT21	tank base extension
	T20	tank - per VL78-000041C
	T27	tank with 1208 in. radius ogive mose, LOX pressure line, and electrical conduit
<u>SRB</u>		
	PS7	attach rings and rear structural ring - per VL77-000066
	PS8	electrical tunnel
	PS9	tie down structure - per VL77-000066
.*	S14	20° aft skirt
	S 15	28° nose shape
	\$18	SRB baseline - per VL70-000066
The figurations	ollowing ab tested:	obreviations were used to describe the model con-
	T1P1	Tank + protuberances
	S1P2	SRB's + protuberances
	01	Orbiter
	T2	Tank long ogive nose

CONFIGURATIONS INVESTIGATED (Concluded)

S3	SRB 29° nose shape
F2	Orbiter/tank fairing
S2	SRB 20° aft skirt
£1	Tank base extension

Details of the model components are given in table III. The various configuration components are illustrated by figure as indicated below:

- 1) Tank Protuberances, figure 2d and figure 2e.
- 2) Tank Long Ogive Nose and Tank Base Extension, figure 2f.
- 3) Orbiter/Tank Fairing, figure 2g.
- 4) SRB Protuberances, figure 2h.
- 5) SRB Alternate Nose Shape and Aft Skirt Flare, figure 2i.

INSTRUMENTATION

Balance number 239 was used throughout the test regardless of whether the balance was installed in the orbiter or in the tank. The model-balance combination for the balance in the orbiter tests, was mounted to the tunnel pitch sector using the MSFC 5 degree offset sting with a straight extension. During the port in of the test for which the balance was in the tank and supported by the forked sting, the forked sting was mounted in the sector using the infC S-2 straight extension. When the balance was in the tank supported is a straight sting, the straight sting was mounted directly into the sector.

Pressure transducers were used to measure base pressures. Depending upon the model configuration as many as five base pressures were recorded. The configuration and associated base pressure measurement requirements are given below:

Balance in Orbiter (see figure 2j)

Orbiter base pressure

$$P_{b_0} = 1, 2, 3, 5$$
 (all manifolded together)

2) Body flap base pressure

$$P_{bhf} = 4$$

3) Tank base pressure

$$P_{be} = 6, 7, 8$$
 (all manifolded together)

4) SRB base pressure

$$P_{be} = 9$$
, 10 (manifolded together)

Balance in Orbiter + FRg (see figure 2j)

 $\begin{cases} 1\\2\\3 \end{cases}$ Same as listed above

5) Fairing base pressure

$$P_{b_f} = 11$$

INSTRUMENTATION (Concluded)

Balance in Tank (straight sting, see figure 2k)

Same as listed above

Balance in Tank (forked sting, see figure 21)

- 1)
 2 Same as listed above
- 4) SRB base pressure $P_{b_S} = 9$

TEST FACILITY DESCRIPTION

The Marshall Space Flight Center 14" x 14" Trisonic Wind Tunnel is an intermittent blowdown tunnel which operates by high pressure air flowing from storage to either vacuum or atmospheric conditions. A Mach number range from .2 to 5.85 is covered by using two interchangeable test sections. The transonic section permits testing at Mach 0.20 through 2.50 and the supersonic section permits testing at Mach 2.74 through 5.85. Mach numbers between .2 and .9 are obtained by using a controllable diffuser. The range from .95 to 1.3 is achieved through the use of plenum suction and perforated walls. Mach numbers of 1.44, 1.93 and 2.50 are produced by interchangeable sets of fixed contour nozzle blocks. Above Mach 2.50 a set of fixed contour nozzle blocks are tilted and translated automatically to produce any desired Mach number in .25 increments.

Air is supplied to a 6000 cubic foot storage tank at approximately -40°F dew point and 500 psi. The compressor is a three-stage reciprocaling unit driven by a 1500 hp motor.

Tunnel flow is established and controlled with a servo-actuated gate valve. The controlled air flows through the valve diffuser into the stilling chamber and heat exchanger where the air temperature can be controlled from ambient to approximately 180°F. The air then passes through the test section which contains the nozzle blocks and test region.

Downstream of the test section is a hydraulically controlled pitch sector that provides a total angle of attack range of 20° ($\pm 10^{\circ}$). Sting offsets are available for obtaining various maximum angles of attack up to 90° .

TEST PROCEDURES

For the oil flow portion of the test, the model was prepared by filling the cracks and openings with polyester resin putty, finishing with thin coats of white lacquer for color, and sealing with a thin coat of clear lacquer to protect the color coat from contamination by the artist's oil pigment used for flow visualization.

The model was dual sting mounted on two MSFC 0.5 in. dummy balances, one installed in the external tank and the other in the orbiter. Stings were such that the orbiter and tank assembly could be separated easily for preparation, photography and clean up.

Black and white photographs of the flow pattern on the top, side and bottom of the orbiter and of the top of the tank assembly were taken.

The oil flows were obtained in accord with the thin film technique with artist's oil pigments as described in the SRO Rockwell Internal Letter from P. Hawthorne to R. Crowder, dated 28 October 1973.

Shadowgraphs of the model upright and rolled left 90° were made. These photos were taken during the force runs whenever possible and are available on request from the Aerodynamics Group, Shuttle Aero Sciences, Space Division, Rockwell International.

DATA REDUCTION

All model forces and moments (measured by the balance 239) were resolved in the body exis system and presented in the form of nondimensional coefficients. Data were corrected for weight tares and sting deflections. Data were also adjusted to be representative of a model with freestream static pressure acting on the orbiter base, orbiter body flap upper surface, External Tank base, and Solid Rocket Booster base. Orbiter, ET and SRB base pressures were recorded using tubes attached to the model sting with tube openings located near the base region. Comparison of base pressures sensed by these tubes with base pressures measured during other tests using pressure orifices located in the model skin indicated the tubes were not sensing an accurate base pressure. This error was due to the tube locations not being close enough to the model base, therefore measuring pressures in a region with appreciable flow velocities. Orbiter and ET base pressures were corrected for this (tube - tap) effect using the data presented in figure 2m, which was derived from a comparison of IA33 base pressures with base pressures from test IA53. Orbiter body flap upper surface pressures were determined using test IA81 data in addition to IA33 data, as shown on the curve in figure 2n. Coefficients were nondimensionalized as shown below.

INTEGRATED VEHICLE (TSO)

Balance Coefficients (Balance either in the orbiter or the external tank)

CNU =
$$\frac{F_N}{qS_{ref}}$$
, normal force coefficient uncorrected for base pressure forces.

$$_{\rm CN}$$
 = CNU - CNB $_{\rm O}$ - CN $_{\rm BF}$, normal force coefficient corrected for orbiter base pressure acting on the orbiter base and body flap.

CAT =
$$\frac{F_A}{qS_{ref}}$$
, total axial force coefficient.

CAF = CAT - CAB
$$_0$$
 - CAB $_S$ - CAB $_E$, forebody axial force coefficient.

$$CY = \frac{F\gamma}{qS_{ref}}$$
, side force coefficient.

$${\rm CLMU} \ = \ \frac{{\rm M_Y}}{{\rm qS_{ref}} \ \ell_{ref}}, \ {\rm pitching} \ {\rm moment} \ {\rm coefficient} \ {\rm uncorrected}$$

$$CLM = CLMU + CNB_0 \frac{X_1}{\ell_{ref}} + CN_{BF} \frac{X_2}{\ell_{ref}} - CAB_0 \frac{Z_1}{\ell_{ref}},$$

pitching moment coefficient corrected for orbiter base pressure acting on the orbiter base and body flap.

CYN =
$$\frac{M_Z}{qSref bref}$$
, yawing moment coefficient.

$$CBL = \frac{M_X}{qS_{ref} b_{ref}}, rolling moment coefficient.$$

$$CNB_0 = -CPB_{0}_{IA33}$$
 $\frac{A_{b0RB}}{Sref}$ tan i_b , normal force component coefficient of orbiter base drag.

$$CN_{BF} = -CPB_{bf} \frac{S_{bf_{ref}}}{S_{ref}}$$
, body flap normal force coefficient.

$${\rm CAB_0} = -{\rm CPB_{OIA33}} \, \frac{{\rm A_{b_{ORB}}}}{{\rm S_{ref}}}$$
, axial force component coefficient of orbiter base drag.

$$CAB_E = -CPB_{EIA33} \frac{A_{b_e}}{S_{ref}}$$
 tank base axial force coefficient.

CABs = -CPBs
$$\frac{A_{bs}}{S_{ref}}$$
, SRB base axial force coefficient.

Where:

$$CPB_{0_{1A33}} = \left(\frac{P_{b_0} - P_{\infty}}{q}\right)_{MEASURED} + \Delta CPBO$$

ΔCPBO is from figure 2m

$$CPBE_{IA33} = \left(\frac{P_{b_e} - P_{\infty}}{q}\right)_{MEASURED} + \Delta CPBE$$

ACPBE is from figure 2m

 $CPB_{
m bf} = C_{
m p}$ as obtained from the curve on figure 2n for all datasets except AlCOO5, AlCOO3 and AlCO24

 $CPB_{bf} = CPB_{01A33}$ for datasets A1C005, A1C006, A1C023 and A1C024

INTEGRATED VEHICLE PLUS ORBITER/ET FAIRING (TSO + F)

(Balance in the Orbiter)

All coefficients were computed as indicated above except for the following:

 $CAF = CAT - CAB_0 - CAB_S - CAB_E - CAB_F$, forebody axial force coefficient

$$CLM = CLM_U + CNB_0 \frac{X_1}{\ell_{ref}} + CN_{BF} \frac{X_2}{\ell_{ref}} - CAB_F \frac{Z_2}{\ell_{ref}} - CAB_0 \frac{Z_1}{\ell_{ref}}$$

pitching moment coefficient corrected for base pressure acting on the orbiter base, body flap, and orbiter/ET fairing

CABF = $-CPB_F$ $\frac{A_{b_f}}{S_{ref}}$, fairing base axial force coefficient

Where: $CPB_F = \frac{P_{b_f} - P_{\infty}}{q}$, fairing base pressure coefficient

SECOND STAGE VEHICLE (TO)

(Balance in the external tank)

All coefficients were computed as indicated above except for the following:

CAF = CAT - CABO - CABE, forebody axial force coefficient

EXTERNAL TANK ALONE (T)

$$CN = \frac{F_N}{qS_{ref}}$$
, normal force coefficient

$$CAF = CAT - CAB_E$$
, forebody axial force coefficient

$$CLM = \frac{M_Y}{qS_{ref} l_{ref}}$$
, pitching moment coefficient

Hinge Moment Coefficients

Rudder

$$C_{h_r} = \frac{HM_r}{qS_{rref}\bar{c}_r}$$

Where: $C_{h_{r}}$ = rudder hinge moment coefficient

HM_r = rudder hinge moment

 $S_{r_{ref}}$ = rudder reference area

 \bar{c}_r = rudder reference length

Elevon, Outboard

$$C_{\text{heo}} = \frac{\text{HM}_{\text{eo}}}{\text{qS}_{\text{eref}} \bar{c}_{\text{e}}}$$

Where: $C_{h_{e0}}$ = outboard elevon hinge moment coefficient

HM_{eO} = outboard elevon hinge moment

S_e = elevon reference area

ce = elevon reference length

Elevon, Inboard

$$c_{h_{ei}} = \frac{HM_{ei}}{qS_{e_{ref}} \bar{c}_{e}}$$

Where: Chai = inboard elevon hinge moment coefficient

HM_{ei} = inboard elevon hinge moment

Body Flap

$$c_{h_{bf}} = \frac{HM_{bf}}{qS_{bf_{ref}}c_{bf}}$$

Where: $C_{h_{bf}}$ = body flap hinge moment coefficient

HMbf = body flap hinge moment

 $S_{bf_{ref}}$ = body flap reference area

 \tilde{c}_{bf} = body flap reference length

Model reference dimensions used in the data reduction are:

PARAMETER	FULL SCALE	MODEL SCALE
Reference Areas		
S _{ref} (wing)	2690.00 ft. ²	6.198 in. ²
s _{rref}	101.15 ft. ²	0.233 in. ²
	210.00 ft. ²	0.484 in. ²
S _{bfref}	142.6 ft. ²	0.329 in. ²

PARAMETER	FULL SCALE	MODEL SCALE
Reference Lengths		
lref = bref	1290.0 in.	5.160 in.
<code>2bf(distance from CG to body flap)</code>	1365.0 in.	5.46 in.
$ar{c}_{r}$	73.2 in.	0.293 in.
$ar{c}_{e}$	90.7 in.	0.363 in.
c _{bf}	81.0 in.	0.324 in.
Moment Reference Point from ET base on ET G	1199.8 in.	4.799 in.
Base Areas		
Orbiter (A _{bo})	314.10 ft. ²	0.724 in. ²
Orbiter (A _{boms})	122.57 ft. ²	0.282 in. ²
A _{bORB}	436.7 ft. ²	1.006 in. ²
Tank (A _{be})	597.6 ft. ²	1.377 in. ²
Fairing (A _{bf})	79.7 ft. ²	0.184 in. ²
SRB (2)		
A _{bs}		
· · · · · · · · · · · · · · · · · · ·	402.1 ft. ²	0.926 in. ²
S ₂ (20° flare)	498.2 ft. ²	1.148 in. ²

DATA REDUCTION (Concluded)

 $i_b = 14.75^{\circ}$, average orbiter base slant angle.

 X_1 = 5.052 in., axial moment arm for orbiter base drag.

 $X_2 = 5.346$ in., axial moment arm for body flap.

 $Z_1 = 1.344$ in., vertical moment arm for orbiter base drag.

 Z_2 = 0.730 in., vertical moment arm for fairing base drag.

TEST	IA-33 (TWT-594	; TAB	TABLE I.						
		TEST CON	DITIONS						
MACH NUMBER	REYNOLDS NUMBER (per unit length)	DYNAMIC PRESSURE (pounds/sq.inch)	STAGNATION TEMPERATURE (degrees Fuhrenhelt)	STAGNATION PRESSURE (pounds/sq inch)					
0.6	5.0 x 10 ⁶	4.35	100	22					
0.8	6.0	6.45	100	22					
0.9	6.2	7.36	100	22					
0.95	6.4	7.74	100	22,					
1.0	6.5	8.14	160	22					
1.10	6.6	9.39	100	22					
1.2	6.7	10.68	100	22					
1.25	6.7	11.43	100	22					
1.46	6.5	9.47	100	22					
1.96	7.0	10.20	100	28					
2.99	4.0	5.19	140	30					
4.96	4.8	3.07	140	90					

BALANCE UTILIZED:		MSFC 239		
		CAPACITY:	ACCURACY:	COEFFICIENT TOLERANCE:
	NF	200 lbs.	±1.0 lb.	± 0.15
	SF	100 lbs.	±0.5 lb.	± 0.08
	۸F	50 lbs.	±0.25 lb.	± 0.04
	PM	196 in.lbs.	±1.0 in.1b.	± 0.18
	RM	98 in.1bs	±0.5 in.1b.	± 0.09
To a series We	Vil	50 in.lbs	±0.2 in.1b.	± 0.05

COMMENTS:

Accuracy based on $\pm 0.5\%$ of balance capacity. Tolerance based on q=10 psi.

TABLE II.

TEST	:MSF	c Tw7 594 (IA33)		amagining gyallad Silah yeragjaylaga - Nadalila - N	DAT	A SET	Γ/RUI	וטא זי	VBEI	S COLI	_A†I0	N SUMA	JARY		DATE	9 M	y - 2	4 Jan	re, 19	74
DATA		CONFIGURATION	F	·	PARA		RS/V/	LUES	NO. OF RUNS	₩	(CH NUI	0.9	•				12.99	14.96	with the second second	1
1916	001	7. 14	A	0	-	-			7	T		2	3	4		18	237		<u> </u>	
	002		O	B	-	-			7	16		15	13	14		17	250	12 4		, see a s
	003	71 P. S. P2	0	ß	_	_			7	9	<u> </u>	10	//	12	<u> </u>	20	259	2/	ļ	
	004	4	19	0	_	**************************************			Z	8	<u></u>	7	6	5		19	233	5.5	ļ	
	005	7, P, Ø,	A	0	0	0			7	122	ļ	123	125	124	ļ	1.53	167	106		
	006		0	ß	0	0			Z	121	<u> </u>	120	110	119	ļ	134	166	105	<u> </u>	
	007	TIPISIPEDI	A	0	0	0			10	130	129	128	12/5	127	107	192.	108	167	131	1 2
	003		0	ß	0	0			10	115	114	113	117	112	111	/35	104	103	116	Z
	009		5	13	0	0			9	159	158	157	155	156	141	133	160	161		EWD.
	010		-5	ধ	0	0			9	145	144	143	146	14/2	150	/39	165	164		EAS
	0//		A	0	-15	0	<u> </u>		6	49	 	SD	SZ	51		78	}	81		
	0/2		5	ß	-15	0			6	217	<u> </u>	218	220	219		184	ļ	181		are characters
	013		-5	В	-15	0			6	232		231	229	230		185	<u> </u>	/80		confidence
I	0/4		P	0	-20	0			6	56		55	53	54		79	ļ	80		Saloe
	015		5	ß	-20	0			6	224		223	221	222	<u> </u>	/83		182		in land
<u> </u>	016		-	ß	-20	0				225	<u> </u>	226	1	127		186		129		CD Schools
<u>l</u>	017		A	٥	0	Ó			9	1	40	41			48	4	26	25		-
Y (018	<u> </u>	0	ਲ	0	0			6	47	<u> </u>	46	44	45		29		28	L	Brown
1	7	13. 19			25		31	-	37		43	45		55	7) r==	61		<u>67</u>		75 78
ICN	عبر د	LME ICH . LEY	<i>ارم</i> الــالـــا	است	C.B.L		IC WY	LILL DEFE	CENT.	s	ICW.	عليك	<u> ሌ ል ያ</u>	, ich	5.2.T	LDV	L.L.L. AR (1)	IDVAI	R (2)	NDV
SC.	c OR	β $CA = -10.70$ ES $B = -10.70$	10	0,		CL = ;	: 2 × `	2 ma 3 · 3 · 4 ·												43

MSFC - Form 252-2 (Rev. May 1973)

TE	ST:MS/	"C TWT 594 (IA33)			DAT	A SE	T/RU	N NU	мве	R COL	LATIC	N SUM	MARY		DATE					
ž	ATA SET	CONFIGURATION					ERS/V	ALUES	w or				(OR AL							-
\$	CONTRACT AND LOCAL	TIPISIPEDI	A A	0	Sr O	O	-					1	1.10	1	1	1	2.99	4.96		i i i
12.3	.030	1,1011291	0	ß	0	0	ļ		8		243	242		241	262	260	-	254		_}
		Tz Pis3 Pz ØIFz	A	0	0	0	-		6	257	 	256	1	255	 	259	ļ	365	ļ	
	022	IE (1331ZPIFE	0	ß	 	0			9	196	95	94	93	97	101	87_	98	29_	ļ	_
<u>-</u>	023	7 0 d.	<u> </u>	B	0				6	91	ļ	90	92	89	<u> </u>	88	ļ	lon	<u> </u>	
	024	TIPIDI	<u>5</u>	В	0	0			6	151		152	154	153	<u></u>	137	-	162	 -	_
	025	T, P, S2 P2 Ø1	A		0	0			6	150_		149	147	149		133		183	ļ	- 7
		1117521247	4	0		0			9		58	59	61	60	110	22_	83	72	<u> </u>	57 37
1/2	026	* D = O = of	0	ß	Ó				_6_	65		64	62	63		76	[103-		RUN
光	027	TIPISIPZ Ø.	A	0	٥	-5				<u> </u>	ļ	ļ								NUMB
杰	058		0	ß	0	-5														E TOTAL
	029		P	0	Ó	10				248		247	246	249		261				S
-	030		0	ß	0	10			5	252		251	253	250		258				
派	031		B	0	0	15.														1
类	032		0	B	0	15														race and a
\perp	033		0	B	-/5	0			6	66		67	69	68		75		177		
	034	<u> </u>	V	4	-,?o	0			6	73		72		71		74		173		
	035	TIPIS3P2 01F2	A	0	0	1			2							*		35		
Y	036		0	3	j.	¥]			/							Ì		94		
1	7	13 19	·	2	5		31		37		43	49		55	and the second second	61		6 7		Service 10. Tel
<u> </u>	a on /			<u>l</u>				EFFIC	سا	141		****	A. 1. 5!		There we have the second	فالكنسانات فالاستخارات	<u>t</u> L	* MARKED COUNTY MAKE	B 0	75 76 A

MSFC- Form 263-2 (Rev. May 1973) Run 263 Removed; AMINI FORCE N. G. # DATA UNLECORDED

3

EST: MSF = THT 594(ZAS										N SUMA		E.	DATE		NT VAF	HABLE	1	
DATA SET CONFIGURATION	c:	:нD. β	PAR	Se	HS/V	ALUES		c.6		0.9	1.10	1,25	1.46	1.96	2.99	4.96		
112 037 Ø /	A	6	Ö	0			9	172	171	170							ļ	
038 T.P.S. P201	J	J		-5			5	200		199	197	198		187	ļ			
039	0	е		1			5	195		194	196	183		192	<u> </u>	ļ	ļ	-
040	A	C		10			5	201	ļ	202	204	203		188	 	 		-
04/	0	B			<u> </u>	<u> </u>	5	208		207	205	206	-	191			 	-
042	A	0		15		<u> </u>	5	216		215	213	214		189	<u> </u>			
073 V	C	\mathcal{E}	<u> </u>	<u></u>		ļ	5	209		210	212	211		190	-	ļ	<u> </u>	₹
V 044 & (- &MS PODS)	A	0	1	0		1	4	233	ļ	234	236	235	<u> </u>	<u> </u>	ļ		 	
						J		ļ	<u></u>	<u> </u>	ļ	<u> </u>		<u> </u>			ļ	_
		<u> </u>			<u> </u>						<u> </u>	ļ		<u> </u>	 			- Commenter
									<u> </u>		<u> </u>	<u> </u>		 			}	
			<u>. </u>			<u> </u>			ļ		<u> </u>		<u> </u>	<u> </u>	 	<u> </u>		-[
				<u> </u>	<u> </u>			<u> </u>		<u> </u>	 	ļ		<u> </u>			 	4
				<u> </u>		<u> </u>		 	<u> </u>	<u> </u>	ļ	ļ	 	<u> </u>	<u> </u>		 	4
		<u> </u>			<u> </u>	ļ		<u> </u>		<u> </u>	_	1	ļ				 -	1
		_			<u> </u>			ļ	<u> </u>	-	<u> </u>			 			-	-
					<u> </u>	<u> </u>		<u> </u>	ļ	<u> </u>	 -	<u> </u>	 	 	1	-		-
		ļ	<u></u>		<u> </u>			<u> </u>		1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	<u></u>		1
7 13 1			25		31		.37		43	ą.		55		61		67	· ·	75
		daala	ــــــــــــــــــــــــــــــــــــــ	- - - 		OEFF!	J.L.	<u>: </u>	Lie	<u>L</u>	1111	-1-1-1-		10\	AR (1)	iDVA	R (2)	N

MSTC - Form 253-2 (Rev. May 1973)

D	ATA SET	CONT	FIGURATION	in the same	COLUMN TO A	i e e e e e e e e	A 1944 - Married World Co.	RS/VALUI	==* OF			PICKS THOUSE STORE	(OR AL					~~~	
DE	ENTIFIER			α	β	Sr_	<u>δe</u> .		RUN	s 0.6	0.8	0.9		**************************************	1.44		2.99	1	1.05
? 1	10 101	T, 1	2	A	0	<u> </u>			$\perp Z$	1		2	3	24		18	237	23	
	102		,	0	B	<u> </u>			7	16	<u> </u>	15	13	14		17	240	24	
	103	TIP	5, P2	0	B	_			7	9		10	11	12		20	239	21	
	104	·	·	IA	0		٠		7	8		7	6	50		19	238	22	
	105	TIP	0,	A	0	0	0		7	122		123	125	124		133	167	106	
1	106		*	0	B	0	0		7	121		120	118	119		134	166	105	
	101	TIP	5,120,	A	0	0	0		10	130	129	128	126	127	109	132	108	107	131
ļ	108	THE SHOW THE ST		0	B	Q	0		10	115	114	113	117	112	111	135	104	103	116
Ì	109			5	В	O	0		9	159	158	157	155	156	141	136	160	161	
1	110			-5	B	0	0		9	145	144	143	7	142			165	164	
1	111			1/1		-15	0		6	49		50	52	51		72		81	
1	//2			5	B	-15	٥		6	217		1	220			184		181	
	//3			-5		-15	0		6	232		231	7	230		185		180	
†	114			A	1	-20			6	56		35	53	54		79		80	
ť	115			5	•	-20			6	224		223		222		183		182	
†	116	- 		-5		-20			6	225		1	228	1		186		129	
1	117			A		0	0		9	1	40	41	43	42	48	30	26	25	
1	118			1	B	0	Ö		6	47	70	46	44	45	, ,	29		28	
ď		· · · · · · · · · · · · · · · · · · ·		-						<u> </u>		-		-		61			7
Ū.	BF. 10	ARF	19 19			25		31	37	~~~~~~~	43	49		55_					, , <i>j</i>
_		 	A=-10 To	اسلسا				COEFF	ICENT:			<u> </u>	<u> </u>	<u>. ii</u>		10V/	AR (1)	IDVAR	(2)

TABLE II. (Continued)

TEST: MS	Er That's	(94 (IA33)			DATA	set	/RUN	וטא ו	MBER	COLL	ATION.	1 SUMM	ARY		DATE	;		<u></u>		
			٠.				RS/VA						OR AL	TERNA	TE INDE	PENDE	NT VAR	HABLE		
DATA SET	CONFICU	PATION	œ	β	8-	Se	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		PUNS	0.6	0.8	0.9	1.10		1 .		2.99	4,96		
R1C 119	7. P. S.	P2 01	A	0	0	0			8	244	243	242	245	241	262	260		264		
120			0	B					6	257		256	254	255		259	<u> </u>	265		
/21	Ta P. Sx	P2. O. F2	A	0					9	96	95	94	93	97	101	1	98	99		
122	i i		0						6	91		90	92	89		88		100		
	7.1	? d.	5	ß					6	151		152	154	153	<u> </u>	137	<u> </u>	162		Î
123		<u> </u>	-5						6	150		149	147	148		138		163		7 E.S
125	TPS	2 /2 01	A						9	57	58	59	61	60	110	77	83	82		I n
			0	B		V			6	65		64	62	63		76		102		NO
126	T, P, S	0 5	A			-5														MON
¥ /27 * /28	1,7,3	1201		0		-5														MBER
			0	B			}		5	248		247	246	249		261				S
129			A	C	\vdash	10			5	252		251		250		258				
/30			0		-	10			3_	434		<i>A31</i>		200						COMME
类 /3/			A		-	15						<u> </u>	 	}		<u> </u>				
132			0		4	15			_	2,	 -	1 00	69	68		75		177		Į
/33		 . 	0	B	-15	0			6	66		67	1	71		74		178		
134	Ψ		0	i	-20				6	73		72	70			1	86	85		1
135	TiP, S3	P2 01 F2	1	2	0				2			ļ				 	-	84		-
¥ 156			0	B	0	· V				<u></u>		<u> </u>	<u></u>		<u></u>	1	L 2007 12-11-11	. Land Commercial Comm	,	
1 7	13	19	· 	· ·	25		31		- 37		43	49		<u>55</u>		61		67		75 7
	لتبيا		<u> </u>	<u></u>	<u> </u>	1-1-1		DEFFI	CENT	s,	1111	<u> </u>	1_1	<u>. 1</u>	5-1-4-8	<u> </u>	AR (1)	IDVAF	₹ (2)	NDI
a or schedu							·····								ndo-market					

MSFC - Form 263-2 (Rev. May 1973) % Data ter KECO'LLE

ယ

TABLE II. (Continued)

							31		37		43	4:		55		61		G7	
777																			
744	Ø (
744	Ø (
744	<i>Q</i> (-						
744	Ψ (= \$3.15																		
744	φι sa τ s																		
144	<u>Ø(- 9,7 s</u>		-																
144	<i>Φ</i> (- <i>Φ</i> - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				<u> </u>	-	_			ļ		 		 		1			
140	(// [~ V//] ~/			1	ľ	l .	i	1 1		i	ì	1	1	l	1	1	1.	L	
	Ø(- ØMS	PODS)	A	0	Y	0			4	233		234	236	235		!	ļ		
	V		C	\mathcal{B}		15		2	5	209		T		ı		190			
				1		15			5	216		1	1	ŀ	<u> </u>	1			
			0	ì		10			5	208		207	205	206	 	1			
		·	A	1		10			3	201		202	204	203		1			
	11 11 31	1201	1			+			5	195		194	196	193		192		·	-
/37	<u> 97</u>	0 d		T	H				200		1 2 -	· ·							
	~ ~ ~	**************************************	10 S 10 S 10 S 10 S 10 S	1		1	- 				171	170	168	169	173	124	175	126	
A SET	CONFIGUR	IATION	SC	HD.	PARA	AMETE	R5/V/	LUES	OF	06	A R	0.9	1.10	1.25	1.46	1.96	2,99	4.96	al-momentus (b.)
195.	C 1207 37	7 (2.7/35)							NO.	MA	CH NUM	BERS (OR AL	TERNAT	E INDE	PENDE	NT VAR	IABLE)	
	A SET TIFIER 137 138 139 140 141 142 143	A SET CONFICURTIFIER	A SET CONFIGURATION 137 Ø / 138 T, P, S, P2 Ø 1 139 140 141 142 143	137	SCHD. THEIER CONFIGURATION C B	SCHD. PARATION	A SET CONFIGURATION SCHD. PARAMETE G B S	SCHD. PARAMETERS/VI CONFIGURATION	SCHD. PARAMETERS/VALUES CONFISURATION SCHD. PARAMETERS/VALUES CONFISURATION CONF	SCHD. PARAMETERS/VALUES NO. OF RUNS NO. OF RUNS NO. OF RUNS NO. OF RUNS NO. OF RUNS NO. OF OF RUNS NO. OF OF RUNS OF OF OF OF OF OF OF O	SCHD. PARAMETERS/VALUES NO. MA	SCHD. PARAMETERS/VALUES NO. MACH NUM	SCHD. PARAMETERS/VALUES NO. MACH NUMBERS	SCHD. PARAMETERS/VALUES NO. MACH NUMBERS OR ALTIFIER CONFIGURATION	A SET CONFIGURATION SCHD. PARAMETERS/VALUES NO. MACH NUMBERS OR ALTERNATITIFIER CONFIGURATION C B S. S. S. S. S. S. S.	DATA SET	DATA SET/RUN NUMBER COLLATION SUMMARY SCHOL PARAMETERS/VALUES NO. MACH NUMBERS (OR ALTERNATE INDEPENDE OF RUNS O. 6 O. 8 O. 9 P.10 P.25 P.46 P.25 P.46 P.25 P.46 P.25 P.46 P.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DATA SET/RUN NUMBER COLLATION SUMMARY SCHD. PARAMETERS/VALUES NO. MACH NUMBERS (OR ALTERNATE INDEPENDENT VARIABLE) A SET CONFISURATION

	CATA SET	CONF	FICUPATION	SC C	-	PARA Sr		ERS/V	ALUES		<u> </u>		().9			Name and Address of the Owner, where	1.96	التكافينين بسري		
D	1 C 201	7, 1	P	A	1	-	-			7	/		2	3	41			237	0	
Ť	202	*		0			_			7	16		15	13	14		17	240	24	
Ì		T.P.	S, P2	0	ß					1	9		10	11	12		20	239	21	
\neg	204		,		0	-	a147			17	8		7	6	5		19	238	22	
7	205	T. P.	Ø.		Q_{\perp}	0	0			7	122		123	125	124		133	167	106	
	206		V	0	B	0	0				121			118					105	
	207	TIPIS	S. P. G.	A	0	c	c	<u> </u>		10	130	129	128	126	127	109	132	108	107	131
	208			0	ß	0	<u></u>			10	115	114	113	117	112	111_	135	104	103	116
	209			5	ß	0	O			9	159	158	157	155	156	141	136	160	161	
	210				ß	0	O			9	145	144	143	146	142	140	139	165	164	
	211			A	0	-15	0			6	49		50	52	51		78		81	
	212			5	B	-15	0			6	217		218	220	219		184		/8/	
	213			-5	B	-15	0			6	232	: 	231	229	230		185		180	
	214			A	0	- 20	C			6	56		55	53	54		79		80	
	215	1.		5	В	-20	G			6	224		223	221	222		183		182	
	216			5	B	-20	0			6	225		226	228	227		186		179	
	212			Α	0	0	۵			9	39	40	3		42	48		26		
V	218		V	0	B	0	0			6	47	,	46	44	45		29		28	
1	7	,	13	19		25.		31		37		43	49		55		51		67	7
C A	FR. 1		1	L		L		111		بيا		سنيا			سعل			L L	IDVAF	<u>, , , (2) (</u>
	** (3.7)	a c	S A = -10 B = -10	0 To 10	90,	Δ	S = 2	ຸ _ກ ີເຕ	DEFFI	CENT	5		_				1007		10000	

来 Data UNRECORDED.

TABLE II. (Continued)

	ATA SET	CONFIGURATION					RS/V	ALUES	NO. OF	0				VI 10-10-10-10-10-10-10-10-10-10-10-10-10-1	المستحدث والمراجع والمراجع			4.96	,
ID	ENTIFIER	CONFICENTION	a	β	3.	Se_	<u> </u>			3	1				ĭ.		2.99	22 - 200	ana Astaria
R:	1C 219	T. P. S. P. DI	A	0	<u></u>	<u>0</u>	-		8		243		245		765	ł		264	
	220	4	0	B			<u> </u>	ļ	6	257		256		255		259	90	265	
	221	Tz Pi S3 Pr. O.F.	2 A	0			ļ		9	96	95		 		101	87	98	99	
	222	V		B			<u> </u>		6	91		1	92	89		88	 	100	
	223	T.P. d.	15	B			<u> </u>		6	151		152	154	l	ļ	137	<u> </u>	162	
	224	V	- 5	B					6	150		149	147	148		138		163	
	225	T.P. Sz P. 6.	A	٥					9	57	58	59	61	60	110	72	83	82	
	226		0	\mathcal{B}		Y			6	65		64	62	63		76		102	
※-	227	TIRSIPZ QI	A	0		-5													
*	228		o	B		-5									·	<u> </u>			
<u> </u>	229	1	A	0		10			5	248		247	246	249		261			
			P	В		10			5	252		251	253	250		258			
米	230		A	0		15													سمسجوسي
7			0	B	╁	15		1						ļ					
Æ	232		0	B	-15	0	1	 	6	66		67	69	68		75		177	
	233		0	_	-20	Ť	1		6	73		72	1	71		74		178	
-	234			1	 	\vdash	┼	 	2								86	25	
		Tili S3 P2 DI F		<u>0</u> B	0		╁──	 	-									84	
 	¥ 236	<u> </u>	10	10			<u> </u>			<u></u>	40	محسسا		55		61		67	7
1		7 13	19		25	 	31		37		43	49	1 1 1 K			 		lria	
-			1111			<u> </u>	<u> </u>	OEFF	CENT	 S			 			IDV	AR (1)	IDVAF	(2)

TABLE II. (Continued)

	ATA SET		S94(IA3	sc	нD.	PARA	VETE	RS/V/	ALUES	NO. OF	0,6	CH NUM	BERS (OR AL	LERNAT	E INDE	196	2,99	SABLE !	
-	NTIFIER	O.		A		0 0	Se o			i	172	171	170	168	169	173	174	175	176	
4	<u>C 237</u>		5, Pz Ø.				-5			5	200	_/	1	197			187			
-		11/13	1 [2 9]		B	1	-5			3	195	<u> </u>		196	1		192			
\dashv	239			A		1-	10			5	201	<u> </u>		204			188			
1	240				ß		10		1	5	208		1	205			191		<u> </u>	ļ
1	241			A	19		15	<u> </u>		5	216		T	213			189			ļ
1	242			0			15			5	209		T	212	1		190			
1	243	ه میر و میر	, O. D. \			*	0		1		233			236			1			
1	- 47	Q (-Q)	is Pods)		1	<u> </u>														
_		<u></u>		1			1													
_			<u> </u>				 													<u> </u>
<u>.</u>							 	1									<u></u>			
				-			1										<u> </u>			
			<u> </u>						1									<u> </u>		<u></u>
				1			 	1	1											
:				-			 													
	· · · · · · · · · · · · · · · · · · ·						ļ. 											<u> </u>		
-						25		31		37		43	45)	55		61		67	
	لسا	7	13 19				1.1.1	بال	OEFF		<u> </u>						lu. IDV	AR (1)	IDVA	R (2)

D	ATA SET	CONFI	MRATION			CONTRACTOR STATE	THE RESERVE OF THE PERSON NAMED IN	ERS/V	ALUES	a ar	TENERS MADE AND CO		MBERS					_	-	·
) DE	NTIFIER			ď	β	<u>্</u> ত্	క్	ļ	<u> </u>	RUNS	0.6	0.8	0.9	1	1	1.46	1	1	4.96	1.05
<u>B1</u>	C 301		<i>P,</i>	1	0			 		Z		ļ	12	3	4		1	237	1	
_[302			0	B			<u> </u>	ļ	7	16	ļ	15	13	14			240	}	
	303	T.P.	S, Pz_	0	B		~	ļ		7	9		10	11	12	ļ	20	239	21	ļ
	304		•	1	0		_			7	8	ļ	7	6	5		19	238	22	
	305	T.P.	Ø.	A	0	c	c)			7	122		123	125	124		133	167	106	
	306	\	,	0	В	0	c			7	121		120	118	119	ļ, ,	134	166	105	
	307	T.P.S.	Po J.	A	0	0	0			10	130	129	128	126	127	109	132	108	107	131
	308			0	B	0	C			10	115	114	1/3	117	112	111	135	104	103	116
	309			5	ß	0	0			9	159	158	157	155	156	141	/36	160	16!	
	310			-5	B	0	0			9	145	144	143	146	142	140	139	165	164	
	3/1			A	0	-15	٥			6	49		50	52	51		78		81	
	3/2			5		-15				9	217		218	220	219		184		181	
	3/3				f	-15	0			6	232			229			185		180	
	314			T		-20	0			6	56			53			79		80	
1	315			5		-20	0			6	224		223	22/	222		183		182	
	316			1		-20	ð			6	225		1	228			186		179	
	3/7	·.	<u> </u>	11		0	0			-	39	40		43		48	30	26	25	
V	318		V	0	B	0	0			6	47		46	44	45		29		28	
	<u> </u>	13	19			.5		31		37		43	49	استونستان و و وجود	55		61		67	7
Ή,	E ₁ O, , ,C	$\mathcal{H}\mathcal{E}\mathcal{J}$. 1		.,		1 , ,			 	<u>ئىر</u>				Liei	.1_L	ا د د د	
			=-10 To 1				م ث ہر		DEFFI			• 					IDVA	(I)	IDVAR	(2)

MSFC - Form 263-2 (Rev. May 1973) * DATE JUKECOLDE:

TABLE II. (Continued)

Đ	ATA SET	CONF	ICURATION					RS/V/	ALUES	NO. OF	MA	CH NUM	BERS (OR AL	TERNAT	L W/	1.9%	2.99	4.96	
	NTIFIER	aran sara		0	7	<u>eCr</u>				RUNS			242	ام ا		262			264	
0	<u>1C 319</u>	TiPI	S1/2 01	A	0	0	0	 -				273	1 1	254		1	259		265	
_	320	,	k	0	В	-	-	 		9	257	95	94	93	97	101		98	99	
_	321	Tr. Pis	3 P2 8, F2	4	0		-			6	91	73	90	92	89	<u> </u>	88		100	
_	322		<u> </u>	0	B		-			 			· ·	154			137		162	
	32.3	TI	P. Ø.	5	B	+				6	151			147	Ī		138		163	
1	324			<u>-5</u>						6_	/ <u>\$7</u>	200	1	61	60	110	 	83	82	
	325	TiP, S	2 P2 Ø1	A		-	╂	 	 	9	57	58	59 64	62	63	1//0	76		102	
	326		<u> </u>	0	ę	-	<u> </u>		 	6	65		67	60	83	 	1	 		
光	327	TIPIS	1 P2 Oc	1	0	-	-5	 -								<u> </u>		 		
污	328		:	C	B		-5	 	-			 			2.00	 	261	 	1	
	329			A	೧		10	 	 -	Š.	248		\$	246	ł	 	1	<u> </u>		
	330			0	ß		10	ļ	 	5	252		251	253	250		258	<u> </u>		
×	331			A	0		15	<u> </u>	<u> </u>	<u> </u>		 	 		!	 			<u> </u>	
*	332-			0	ß	V	15	ļ <u>.</u>	 	<u> </u>			<u> </u>						122	
	333			0	B	-15	0	<u> </u>		6	66		67		7	<u> </u>	75		177	
	334		V	0	В	-20			<u> </u>	6	73		72	70	7/		74	86	178	
		TIR S3	P2 \$1 F2	A	0	0		<u> </u>		2	<u> </u>		<u> </u>	<u> </u>	 		 	00	85°	
1	336		<u> </u>	0	B	0	1	<u> </u>	<u> </u>						<u> </u>	<u> </u>		<u> </u>	<u> </u>	
<u> </u>		7	13 19			25		31		. 7.7	<u></u>	43	49)	55		61		67	75
			بايبينا			سا	444		<u></u>		<u> </u>	1111		<u> </u>	111	1111	101	AR (1)	IDVAF	(2) N
	10 mg							C	OEFF	ICEN I							<u></u>			

TABLE II. (Continued)

	TA SET		594(I)			но.	PARA	METE	RS/V/	ALUES	NO.	МА	сн иим	BERS (OR AL	TERNA	LE INDE	PENDE	NT VAR	IABLE	
	ITIFIER	CONF	ic_aatic		CI	β	٥r	Se			RUNS	0.6	0.8	0.9	1.10	1,25	1.46	1.76	12.17	4.96	economista.
211	337	Ø	,		A	0	0	0			9	172	171			1	173		175	116	
	338	T.P.S		81	A	0		-5			5	200			197	198	<u> </u>	187			
	339	1111			0	В		-5			5	195		,	196	Г	i	192			<u> </u>
1	340	-:			A	O		10			5	201		r	204		L	188	-	 	
-	341				O	В		10			5	208		207	205	206	 	191	 		
	342				A	0		15			5	216		215	2/3	214	 	189	ļ		
	343		$\sqrt{}$		0	B		15			5	209		210	2/2	211		190	 	 	
-	344		OMS PO	as	A	0	V	0		<u> </u>	4	233		234	236	235	<u> </u>	ļ	 		
	377	<u> </u>	- 			-										ļ	ļ	 	 		 -
												·		<u> </u>				ļ	 	ļ	
														<u> </u>	<u> </u>		<u> </u>		<u> </u>		<u> </u>
																,	<u></u>	1	ļ	ļ	
		<u> </u>					<u> </u>						I			ļ	ļ	<u> </u>	<u> </u>	ļ	
		<u> </u>		· .		-												<u> </u>	ļ	<u></u>	 -
						i									<u> </u>		<u> </u>	\ 	ļ	ļ	<u> </u>
				<u> </u>				1												<u> </u>	ļ
	<u>, , , , , , , , , , , , , , , , , , , </u>	 -			一	1		1	-		1							<u> </u>	<u> </u>		<u> </u>
	<u> </u>			 	<u> </u>	-	 	-	 	-	 	1									
		<u> </u>			<u>. </u>				31		37		43	49	9	55		61	<u></u>	67	
1		7 	13	19			25 1 1 1			OEFF	,] _		Lu	للنا	1-1-1	111		IDV	/AR (1)	IDVA	R (2)

TABLE II. (Continued)

DATA SET	C TWT 594(IA						ALUES	NO.	•	CH NUM	BERS (OR AL				الأستان والمستني		
IDENTIFIER	CONFIGURATION			6r				RUNS	0.6	0.8	0.9.		4 _	1:36	i	ì	l _	1.02
R1C 401	T. P.	A	0					7			2	3	4		1	237	1	
402	<u> </u>	0	B					7	16		15	13	14		·	240		
403	T, P, S, Pz	0	B					7	9		10	11_	12			239		
404			0		-	ļ		Z	8		7	6	5			238	•	
405	Ti Pi Di	A	0	0	٥			7	122		123	125	124		1	167		<u> </u>
406		0	B	0	0			7	121		,	118				166		<u> </u>
407	T. P. S. P2 01		0	O	0			10	130	129	128	126	127		ı	108		
408		0	B	0	O]	10	115	114	113	117	1/2	111	135	104	103	116
409		5	B	0	0			9	159	158	157	155	156	141	136	160	161	
410		-5	ß	0	0			9	145	144	143	146	142	140	139	165	164	
411		T.A	0	-15	0			6	49		50	52	51	· · · · · · · · · · · · · · · · · · ·	78		81	
4/2		5	B	-15				6	217		218	220	219		184		181	
413		-5	7	-15				6	232		231	229	230		185		180	
4/4		A	1	-20				6	56		55	53	54		79		80	
415		5	1	-20				6	224		223	221	222		183		182	
416			1	-20				6	225	_	226	228	227		186		179	
417		-1	0	0	O			9	39	40	411	43	42	48	30	26	25	
¥ 418			B	0	0			ઇ	47		46	44	415		29		28	! !
	13 19		A	25	<u> </u>	31		37	,	43	49		55		61		67	
CH8F.			<u> </u>	Li		بال	OEFFI	سنا			للل				l L L J	 AR (1)	I DVAI	₹ (2)
ar OR	$\beta \propto A = -10 \tau_0$ LES $\beta = \frac{A}{B} = -10 \tau_0$	10"	_/_	<u> </u>	20				-		. 					<u></u>		

TABLE II. (Continued)

,	ATA SET	CONFICUPATION					ERS/v	ALUES	NO. OF	a				The same of the sa		مواحثنا حنسوب		HABLE !	The second named in column 2 is not a second
۱D	ENTIFIER	CONFIGURATION	ļα	β	<u>S-</u>	JSe		<u> </u>	Y	¥		7	1	1	1		3.	4.96	san ta anades se s
P	10419	TIPISIPE DI	14	0	0	Q		 	8	244	243	242	245	241	262	1		264	· · · · · · · · · · · · · · · · · · ·
	420	V	0	B				<u> </u>	6	257		·	254			259		265	
	421	Tz Pi S3 Pz Ø, F2	IA	0			<u> </u>		9	96	95	94	93	,	r	1	98	1 1	
	422	V	0	3					6	91		90	92	89		88		100	
	423	7. P. d.	5	B				1	6	151		152	154	153		137		162	
	424	-	-5	B					6	150		149	147	148		/38		163	·
		TIP, S2 P2 B1	A	0					9	57	58	59	61	60	110	27	83	82	
	426	V	0	ß		V			6	65		64	62	63		76		102	
¥.		TIPISIP2 DI	A	0		1-5													
米	428		0	ß	П	5	•												
	429		IA	0		10			5	248		247	246	249		26!			
	430		10			10			i	252		1	253	1		258			
34	730			0		15					· · · · ·								
14. 14.			6		\	/3													
jeb≥.	432		_1	B	-15	_		1	6	66		67	69	68		75		177	
	433			B	-20				6	73			70) ·		74		178	
	434	- DC- B N C		T	0	++	1		Z	-5-13-		1 5		<u> </u>	ļ. 		86	25	
$\left \cdot \right $		TIP, S3 P2 Ø, F2	0	B	0	+	1	 	1					· · · · · · · · · · · · · · · · · · ·				84	
<u> </u>	1 436	Y		Section 1		<u> </u>				_	لم	<u> </u>	<u> </u>		L.,		Lagrania and Australia (Color)	67	7
1	1111	7 13 19			25 L 1 1		31 1-1-1	OEFFI	37 1 1		43	49 1 1 L		<u>55</u>	<u> </u>	61 DV:	AR (1)	I 1 2 E	ارر

Ą

TABLE II. (Continued)

7 A T	A SET				 	sc	HD.	PAF	RAMET	ERS	PVALL		VO. OF								NT VAR		·
	TIFIER	CONF	GUR	ATION		α	β	Sr	Se			R	UNS	0.6	0.8	0.9					2.99		بالسم عول و
10	1/37	Ø,				A	0	0	0	_			9	/72	171	170	168	169	173	1	175	176	
T	438	T.R.S	, <i>f</i>	20	<u>.</u>	A	0	<u> </u>	-5				50	200		199				187			
	439					0	B		- 5				5_	195			196		ļ	192			
	440					A	0		10				5	201		1	204			188			~
Γ	441		1			0	B		10				5	208		207	205	206		191			
	442					A	0		15				5	216		215	213	214		189			
-	443		V			0	1	П	15			. .	5	209		210	212	211		170			
┰		\$6-0	(M C	P _m N	د١	1	0	V	0			,	4	233		234	236	235_		<u></u>			
I	777	90 90	77.3	<u>, 100</u>	<u></u>	 		<u> </u>	1														
										1								·					
-									1	1	1												
						 	<u> </u>		-	+		_											:
			 			╂-		<u> </u>		1	1	$\neg \vdash$											
-					.	 		 	-	+-	-	- -		-									
_	-			,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	······	1—	-	├-	-	1						1							
_				 		ļ	├	╫								-	-						
				·	·	 -	-	├								 							
		<u></u>	· /			╂	-	 				-			<u></u>								
						<u> </u>	1			ــــــــــــــــــــــــــــــــــــــ	!_				<u></u>	<u> </u>	<u> </u>			61		67	
· .		7	13		19	·		25		31			37	···	43	49)	55_		1		<u></u>	. ,
_ _	<u>1_1_1_1</u>	_1_1	با		<u> </u>	<u> </u>	<u> </u>	1.1.	<u> </u>		COE	FFIC	ENT	5	1_1:1-1	<u> </u>	<u>1, 1 - 1, 1</u>		<u> </u>	IDV	AR (1)	IDVAI	₹ (2)

TABLE II. (Continued)

4		
1 4 1 40 38 39		
1 4 1 +Grit V V -0.8 V V V 6 42 41 40 38 39		
1 4 1 +Grit V V -0.8 V V V 6 42 41 40 38 39		
	┊┈ ┼┈┼┈┼	1
		-
7 T -4.1 T T T 12 30 24 28 25 26 27 17 14 3 12 21 20 19 24 23 22 18 13	5 6 7 12 11 10	9
RIC501 T.P.S.P201 A O -0.8 0.1 O 0.1 12 31 32 33 36 35 34 16 15	4 37 3/1	<i>γ</i>

CNBF	7 13	19	3	<u></u>	25	<u> </u>	31	<u></u>	37		43	4	3	55		61		67		75
					 			-	<u> </u>				-	<u> </u>			1	+	+-	Section 2
<u> </u>					<u> </u>	ļ	ļ				 	 	ļ	 	 	 	-	1	+-	-
											ļ	<u> </u>	ļ	 	· † ——		 	+	1	_
			Î										ļ	<u> </u>	<u> </u>			-		
													ļ	<u> </u>	<u> </u>			 	1	-
	-		1														<u> </u>	<u> ; </u>		_
				1-	-		1		(<u> </u>	1		
				 				1												- Company
			1-	 					1						<u> </u>					
				}_ -	<u> </u>			-												Carrier Commercial
			_	<u> </u>									<u> </u>							- August
			<u> </u>															1		2
V 4	1	+Grit	11	V	-0.8	√	<u> </u>	4	6	42	41	40	37	38	27		 			-
3					4.3				12	21	20	19	24	23	22 39	18	1.3	1211	1019	-
7 2	111111111111111111111111111111111111111		II	Ī	-4.1	T	I	I	12	30	29	28	25	26	27	17	14	56	1-1-	-
RIC601	T, P, S, P2	Øı	A	٥	-0.8	0.1	٥	0.1		31	32	33	36	35	34	16	15	4 3/1	T7	7
DATA SET	CONFIGU	RATION	SC dt	Η Б. β	δ_{p}	Se		LUES SeF	OF	A STREET, SQUARE, SQUA	0.8		1.0	1.10	,20	1.46		2.75 2.19		
E311144-	33 TWT-5									COLL	CH NUM	SUMM BERS (OR AL	TERNAT	EINDE	PENDE	NT VAF	HABLE		zaige.
-c T 15	22 77111-5	944 A)	1			A	- /07 6 61		, n = n	COLI	人主任の対	MILLID	ΔRY	Į.) N L -	SOIC	2/_/	5-17	111	 _

TABLE III. MODEL DIMENSIONAL DATA

MODEL COMPO	DNENT: BODY - BG2		
GENERAL DES	CRIPTION:Configuration	on 140 C, orbiter fo	iselage MCR
	illar to 140 A/B fuselage		
Improved midt	ody-wing-boot fairing, X	(= 940 to X = 104).
MODEL SCALE:			
DRAWING NUM	VL70-000140C, -000	202C, 000205A, -000	200B, -000203A
	th (IML: Fwd Sta. X _o =238) h (OML: Fwd Sta X _o =235),		MODEL SCALE 5.161.
Max W	idth(@ X _o = 1528.3), In.	261.0	1.056
Max D	epth (@ X _O = 1464), In.	250.0	1.000
. Finens	ess Ratio	<u> </u>	4,800
Area	- Ft ²		The state of the s
	Max. Cross-Sectional	<u></u>	0.0055
	Planform	***************************************	***
	Wetted		
	Bose		•

ORIGINAL PAGE IS OF POOR QUALITY

MODEL COMPONENT : CANOPY - C12		
GENERAL DESCRIPTION: _Configuration140	C orbiter ca	nopy, vehicle
cabin No. 31 updated to MCR 200-Ri. Use	· ·	
MODEL SCALE: 0.004		
DRAWING NUMBER VI70-000140C, -000202	2B, -000204	
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length (Xo= 434.643-578), in.	143.357	0.573
Max Width (@ Y _o = 513.127), In.	152.412	0.610
Max Depth ($Z_0=501$ to 449.39), In.	51.61	0.206
Fineness Ratio	Constitution of the section of the s	**
Area		
Max. Cross-Sectional		
Planform	Applications of the first of the second	
Wetted		- Charles
Base	The state of the s	

TABLE III. MODEL DIMENSIONAL DATA (Continued) *REVISED 4/24/74

MODEL COMPONENT: ELEVON - E26	•	
GENERAL DESCRIPTION: <u>Configuration 140A/B or</u>	biter elevons	
Data are for one side.		

MODEL SCALE: 0.0040 MODEL DR	AWING: SS-AOOI	148, RELEASE 6
DRAWING NUMBER: VI.70-0002000060	89, -006092	
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area - Ft ²	210.0	0.003
Span (equivalent), In.	349.2	1.397
Inb'd equivalent chord, In.	<u> 118 004</u>	_0.472
Outb'd equivalent chord , In.	55.192	0.221
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord	0.2096	0.2096
At Outb'd equiv. chord	0.4004	0.4004
Sweep Back Angles, degrees		
Leading Edge	0.00	0.00
, Trailing edge	_10.056_	-10-056
Hingeline	0.00	_0.60
*Area Moment (Product of area & c),Ft3	_1587.25_	0.0001
*Mean Aerodynamic Chord, In.	90.7	0.363

MODEL COMPONENT : BODY FLAP - Flo		
GENERAL DESCRIPTION: Configuration 1	ЮС <u>body flap.</u>	Hingeline
located at X ₀ = 1532, Z ₀ = 238.		
MODEL SCALE: 0.0040		
DRAWING NUMBER	55114	
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length $(X_0=1525.5 \text{ to } X_0=1613),In$. 87.50	0.350
Max Width (@ L.E., Xo = 1525.5),I	n. 256.00	1.024
Max Depth $(X_0 = 1532)$, In.	<u> 19.798</u>	0.0792
Fineness Ratio		The state of the s
· Areo - Ft ²	nell-lamining to the latter latter later l	Comment of the Control of the Contro
Max. Cross-Sectional (@H.L.)	35.196	0.00056
Planform	135.00	0.0022
Wetted	the distribution of the second	the state of the latter than the state of th
Base (X _O = 1613)	4.89	0.000078

TABLE III. MODEL DIMENSIONAL DATA (Continued)

. MODEL DIMENSIONAL DATA	(Continued)	
MODEL COMPONENT: WING-W 127		Mire danişdekimi in simmen en April zugunyayaya
SENERAL DESCRIPTION: Configuration 1900 orbiter wi	pe. MCR 200-Bi.	similar to
140A/B wing W116but with refinements: improved w	dng_beat_midbod	fairing
$(X_0 = 940 \text{ to } X_0 = 1040)$; elevon split line reloc	ated from Yo=281	to Y
MODEL SCALE: 0.0010	The state of the s	भूतिक स्वास्त्र कार्यक प्रमुख्य के प्रमुख्य कार्यक स्वतः स्वास्त्र कार्यक स्वतः स्वतः स्वतः स्वतः स्वतः स्वतः स
TEST NO.	the state of the s	000140с, -000200В
DIMENSIONS: ORIGINAL PAGE IS OF POOR OTHER	FULL-SCALE	MODEL SCALE
OF POOR QUALITY Area (Theo.) Ft ² Planform Span (Theo In. Aspect Ratio Rate of Taper Taper Ratio	2690.00 936.63 2.265 1.177 0.200	0.043 3.747 2.255 1.177 0.200
Dihedral Angle, degrees Incidence Angle, degrees Aerodynamic Twist, degrees Sweep Back Angles, degrees Leading Edge Trailing Edge	3.500 0.500 3.000 lt5.000 = 10.056	3.500 0.500 3.000 45.000 -10.056
O.25 Element Line Chords: Root (Theo) B.P.O.O. Tip, (Theo) B.P. MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC	35.209 680.24 137.85 474.81 1136.83 290.58 182.13	2.757 0.551 1.6.2 1.162 0.720
EXPOSED DATA Area (Theo) Ft Span, (Theo) In. BP108 Aspect Ratio Taper Ratio Chords	1751,50 720,68 2,059 0,245	7.006 2.893 2.050 0.245
Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA)	562.09 137.85 392.83 1185.08 204.20 251.77	2.2\3 0.15\ 1.571 4.7\0 1.189
Root b = $\frac{2}{2}$	0.113	0.113
Data for (1) of (2) Sides Leading Edge Cuff Planform Area Ft Leading Edge Intersects Fus M. L. 0 Sta Leading Edge Intersects Wing 0 Sta	1024.00 1024.00	7.0018 7.000 4.096

MODEL COMPONENT : OMS POD - Maje	*	
GENERAL DESCRIPTION : Preliminary IMC	version of sho	rt OMS pod.
(First used on 0.015 scale Model 36-0 f		
MODEL SCALE: 0.0040		
DRAWING NUMBER VI.70-008457		
•	·	
•		
DIMENSIONS: (For 1 of 2 sides).	FULL SCALE	MODEL SCALE
Length (OMS Fwd Sta Xo=1311), In.	254.00	1,016
Max Width (@ $X_0 = 1511$), In.	135.6	0.5424
Max Depth (@ X = 1511), In.	73.6	<u> </u>
Fineness Ratio	2.511080	2.514080
Area - Ft ²		·
Max. Cross-Sectional	<u> 54.507</u>	0.00087
Planform		
Wetted	Constitution in the constitution of the cons	
Base	Apprintment of the Control of the Co	The state of the s
		,

MODEL COMPONENT:	OMS NOZZLES - N28			
GENERAL DESCRIPTION	ON: <u>Configuration</u>	140A/B Orbi	ter OMS norel	<u>es</u>
			, <u></u>	
			<u> </u>	
MODEL SCALE: 0.00	040			•
DRAVING NUMBER:	VL70-000110A (Locat	ion): SS-A00	106, RELEASE	5 (Contour)
DIMENSIONS:			FULL SCALE	MODEL SCALE
MACH NO.	•			
	int to Exit Plane Exit Plane			
Diameter - In Exit Throat Inlet				
Area - ft ² Exit Throat				•
solicasqqiik	(Station) In.			
X Y Z Right			1518.0 - 68.0 492.0	6.072 - 0.352 - 1.968
xboser Nos X Z	zztes		1518.00 88.0 492.0	6.072 0.352 1.968
Null Position LeftxUpper No: Pitch Yaw	zzle	•		<u>15⁰ligi</u> 12 ⁰ 17!
Right YYYYY No Pite Yaw			15°49'	15 ⁰ 49! 12 ⁰ 17!

*REVISED 4/24/74

TABLE III. (Continued) MODEL DIMENSIONAL DATA

MODEL COMPONENT: VERTICAL - V 8		
GENERAL DESCRIPTION: Configuration 140C orbiter	vertical to	11
(identical to configuration 140A/B vertical tail).		· · · · · · · · · · · · · · · · · · ·
(Ittelfolder be continued		•
Charles and the second		·
MODEL SCALE: 0.0040		
DRAWING NUMBER: VL70-000140C, -000146B		,
DIMENSIONS:	FULL SCALE	MODEL SCALE
TOTAL DATA		
Area (Theo) - Ft ² Planform Span (Theo) - In. Aspect Ratio Rate of Taper Taper Ratio Sweep-Back Angles, Degrees. Leading Edge * Trailing Edge O.25 Element Line Chords: Root (Theo) WP Tip (Theo) WP MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC	\$13.253 315.720 1.675 0.507 0.404 45.000 26.2 41.130 268.500 108.470 199.808 1463.50 635.522 0.000	0.0060 1.263 1.675 0.507 0.404 45.000 26.2 41.130 1.074 0.434 0.790 5.854 2.542 0.000
Airfoil Section Leading Wedge Angle - Deg. Trailing Wedge Angle - Deg. Leading Edge Radius	10.000 14.920 2.00	10.000 14,920 0.008
Void Area	13.17	0.00021
Blanketed Area	0.00	0.000

· TABLE III. MODEL DIMENDIONAL DATA (Continued)

MODEL COMPONENT: RUDDER - R-	•	• .
GENERAL DESCRIPTION:Configuration 140C	orbiter rudd	ler (identical
to configuration 140A/B rudder).		
MODEL SCALE: 0.0040		
DRAWING NUMBER: VE70-000146B, -	000095	
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area - Ft ²	100.15	0.0016
Span (equivalent) , In.	· 201.00	0.804
Inb'd equivalent chord , In.	91.585	0.366
Outb'd equivalent chord , In.	50.833	0.203
Ratio movable surface chord/ total surface chord	* .	
At Inb'd equiv. chord	0.400	0.400
At Outb'd equiv. chord	0.400	0.1100
Sweep Back Angles, degrees	•	
Leading Edge	34.83	34.83
Trailing Edge	26.25	26.25
Hingeline	34.63	34.83
Area Moment (Product of Area and c), Ft	3 _ 610.92	0,000030
Mean Aerodynamic Chord	73.2	0.293

MODEL COMPONENT: ATTACH STRUCTURE - AT16

GENERAL DESCRIPTION: Forward orbiter/ET attach structure (2 member structure)

MODEL SCALE: 0.0040

MODEL DRAWING: SS-A00117

DRAWING NO.: VL78-000062B, SK-H-4011

dimensions:	MEMBER		FULL SCALE	MODEL SCALE
•	#L	x _o	394,38	1.578
• .		Yo	Q.Q	0.00
		Z _o	LWR ML	LWR ML
		XŢ	1131.00	4.524
		YŢ	561.298	0.187
		ZŢ	561.298	2.245
	#2	X _o	394 38	1.578
•		Yo	o	0
•		Z_{0}	LWR ML	LWR ML
		XT	1131.00	4.524
	•	Y <u>T</u>	- 146.8	- 0.187
		Z _T	561.298	2.245
Diameter of members: (1	in.)		5.70	0.0228

MODEL COMPONENT: ATTACH STRUCTURE - AT25

GENERAL DESCRIPTION: Strengthened attach structure, left rear orbiter to ET - 2 members.

MODEL SCALE: 0.0010

DRAWING NO.: VL78-000062B, VL78-000063

DIMENSIONS:		FULL SCALE	MODEL SCALE
Member No. 1 (Aft):	x _o	1317.00	5.268
	Yo	- 96.50	- 0.386
	Z _o	267.50	1.070
	X _T	2058.00	8.232
•	Z [™]	- 96.50	- 0.386
	Z _T	515.50	2.062
•	Diameter, In.	11.50	0.046
Member No. 2 (Forward):	X ₀	1317.00	5.268
	Xo.	- 96.50	- 0.386
•	Zo	267.50	1.070
	X _T	1872.00	7.488
	Yq	- 125.88	- 0.503
	z _T	504.50	2.018
	Diameter, In.	15.50	0.062

HODEL COMPONENT: ATTACH STRUCTURE - AT26

GEMERAL DESCRIPTION: Strengthening attach structure right rear Orbiter to ET - 2 members.

MODEL SCALE: 0.0040

DRAWING NO.: VL78-000062B, VL78-000063

DIMENSIONS:		FULL SCALE	MODEL SCALE
Member No. 1 (Aft)	x _o	1317.00	5.268
• • • • • • • • • • • • • • • • • • •	Yo	96.50	0.386
	z_{o}	267.50	1.070
	XŢ	2058.00	8.232
•	Yığı	96.50	0.386
· ·	Z _{rp}	515.50	2.062
	Diameter, In.	11.50	0.046
Member No. 2 (Forward)	X _o	1317.00	5.268
•	Yo	96.50	0.386
	Z _o	267.50	1.070
	X _T	1872.00	7.488
	Y _{ŢŢ}	125.68	0.503
	$z_{ m T}$	504.50	2.018
	Biameter, In.	15.50	0.062

MODEL COMPONENT: ATTACH STRUCTURE - AT24

GENERAL DESCRIPTION: Forward orbiter/ET attach structure (2 member structure) simulating the attach structure after ET separation.

MODEL SCALE: 0.0040		MODEL DRAWING:	SS-A00117
dimensions:		FULL SCALE	MODEL SCALE
. Member #1	x _o	346.00	1.384
•	· ************************************	0.00	0.00
	z _o	280.07	1.120
	$\mathbf{x}_{\mathbf{T}}$	1131.00	4.524
•	Ym	46.∞	0.184
•	Z _T	565.07	2.260
Member #2	x _o	346.00	1.384
	Yo	0.00	0.00
	Z _o	280.07	1.120
	X _T	1131.00	4.524
	$\mathtt{Y}_{\mathbf{T}}$	- 46.00	- 0.184
	\mathbf{z}_{T}	70-088	1.120
Diameter of Members,	In.	5.70	0.0228

MODEL COMPONENT: FEEDLINE - FL5

GENERAL DESCRIPTION: LOX feedline simulated between ET and Orbiter.

MODEL SCALE: 0.0040

MODEL DRAWING: SS-A00117

DRAWING NO.: VL78-000062B

dimensions:		FULL SCALE	MODEL SCALE
Leading edge at:	$\mathbf{x}_{\mathbf{T}}$	1033.3	4.132
	X _T	70.0	0.280
•	$\mathbf{x}^{\mathbf{T}}$	1033.3	4.132
	$\mathbf{r}_{\mathbf{T}}$	- 70.0	- 0.280
Trailing edge at:	XŢ	2071.50	8.286
•	$\mathtt{Y}_{\mathbf{T}}$	70.00	0.280
·	X_{T_0}	2071.50	8.286
	X T	70.00	0.280
Diameter, In.		18.80	0.188

Centerline of LOX feedline located radially at $\emptyset = 23^{\circ}24$.

MODEL COMPONENT: PRESSURE LINE - FLG

GENERAL DESCRIPTION: Max. cross-sectional area simulating LH2 pressure

line and electrical conduit box between ET and Orbiter.

MODEL SCALE: 0.0040

DRAWING NO.: VL78-000062B

MODEL DRAWING: SS-A00117

DIMENSIONS:	-		FULL SCALE	MODEL SCALE
Leading edge at:		$\mathbf{x}_{\mathbf{T}}$	1127.1	4.508
		Y _A	110.3	0.441
Trailing edge at:	•	X _J	2062.1	8.248
		$x_{\mathbf{T}}$	110.3	0.441

Centerline of LH pressure line located radially at $\phi = 33^{\circ}45^{\circ}$.

MODEL COMPONENT : LH2 UMBILICAL	FEEDLINE - FL9	
GENERAL DESCRIPTION	cal Feedline with ar	n electrical ouich
disconnect box between the Orbiter a	and ET.	
MODEL SCALE: 0.0040	•	
DRAWING NUMBER VL78-000062B		
DIMENSIONS :	FULL SCALE	MODEL SCALE
Centerline at X	2071.5	8.285
Max Width	31.2	0.125
Max Depth	37.5	0.150
Diameter	-17.0	<u> </u>
. Area	at such interesting of the control o	Mary and the second desirable by the second
Max. Cross-Sectional	MCSHAMES OF SECURIOR	
Planform	Territor throughous and an action of the later to the	The contract of the state of th
Wetted	**************************************	White transfer in the second s
Base		-

MODEL COMPONENT: REAR ATTACH STRUCTURE FAIRING - FR6

GENERAL DESCRIPTION: Rear ET/Orbiter attach structure cross-member or

beam fairing used in conjunction with AT12, AT13, FI, and FL2.

MODEL SCALE: 0.0040

DRAWING NO.: VL78-000062B

MODEL DRAWING: SS-A01256

DIMENS	SIONS:		FULL SCALE	MODEL SCALE
ÌÆ	eading edge centerline at	\mathtt{X}_{T}	2036.67	8.147
		AA	0.00	0.00
•		ZŢ	183.00	0-732
Ma	ximum length, In.		64.00	0.256
Me	eximum width, In.		190.00	0.760

MODEL COMPONENT: ET PROTUBERANCE - PT12

GENERAL DESCRIPTION: Lightning rod attached to ET nose.

MODEL SCALE: 0.004

DRAWING NO.: VL78-00068A

DIMENSIONS:	ι		FULL SCALE	MODEL SCALE
Length		•	30.90	0.124
Diameter, In.			3.20	0.013

MODEL COMPONENT: ET PROTUBERANCE - PT13

GENERAL DESCRIPTION: Maximum cross-sectional area simulating LOX recirculation

line and electrical conduit box on planform view of External Tank, T_{20} .

MODEL SCALE: 0.0040

MODEL DRAWING: SS-A00117

DRAWING NO.: VL78-000062B

DIMENSIONS:		FULL SCALE	MODEL SCALE
Leading edge at:	$\mathbf{x_r}$	1208.3	4.833
	TŢ	+ 95.0	+ 0.380
	XŢ	1208.3	4,833
	$\mathbf{r}_{\mathbf{T}}$	- 95.0	- 0.380
Trailing edge at:	XŢ	2060.5	8.242
4	TŢ	95.0	0.380
	$\mathbf{x}_{\mathbf{T}}$	2060.5	8.242
	$\mathtt{Y}_{\mathbf{T}}$	- 95.0	- 0.380

Centerline of LOX recirculation line located radially at $\beta = 33^{\circ}45'$.

MODEL COMPONENT: ET PROTUBERANCE - PT14

GENERAL DESCRIPTION: LOX pressure line on Tank T20.

MODEL SCALE: 0.0040

DRAWING NO : VI.78-000062B

DIMENSIONS:		FULL SCALE	MODEL ECALE
Leading edge at:	x _T	355.90	1.424
•	ХŪ	6.0	0.024
Trailing edge at:	$\mathbf{x_T}$	2060.5	8.242
	·TT	,87,0	0.348

Centerline of LOX pressure line located radially at $\phi = 23^{\circ}24^{\circ}$.

MODEL COMPONENT: NOSE CONE LINES - PT20

GENERAL DESCRIPTION: Maximum cross-sectional area simulating the LOX pressure line and electrical conduit on top of external tank (T_{20}) nose cone area.

MODEL SCALE: 0.0040

DRAWING NO .:

DIMENSIONS:		FULL SCALE	MODEL SCALE
Leading edge at:	$\mathbf{x_{T}}$	360.92	1.444
	YT	34.0	0.136
Trailing edge at:	XŢ	955.1	3.820
	IŢ	336.5	1.346

Centerline of lines located radially at $\emptyset = 33^{\circ}45^{\circ}$.

MODEL COMPONENT: Tank base extension - PT 21

GENERAL DESCRIPTION: Cylindrical base extension on external tank, Teo.

MODEL SCALE: 0.0040

1

DRAWING NO.: VL72-000131, VL78-000062

MODEL DRAWING: LMSC R80058

Dimensions:	FULL SCALE	MODEL SCALE
Length, In.	428.25	1.713
Diameter, In.	330.20	1.321
Area - Ft ²		è
Max. Cross-sectional	594.679	2.379
Base	594.679	2.379
WP of Extension centerline	400.00	1.600

TABLE III. (Continued) MODEL DIMENSIONAL DATA

MODEL COMPONENT : EXTERNAL TANK - To	<u> </u>	
GENERAL DESCRIPTION : External Oxygen-	Hydrosen tank	
MODEL SCALE: 0.0040		
NODED SCARE: 0.0040		
DRAWING NUMBER: VI72-000131, VI78-00	00062	
•		
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length, In. (Nose @ X ₀ =328.92)	1846.905	7.386
Max Width Dia, In. @ Xo=975.675	333_2	1.333
Max Depth , In.	330.2	1.333
Fineness Ratio	5.65713	5.65713
. Area - Ft ²		
Max. Cross-Sectional	605.534	0.0096
Major Cross section	591.679	0.0095
WP of tank centerline (Z)	,In. 400.000	0.0064
Base (on 330.2 dia.)	594.679	0.0095

TABLE III. (Continued) MODEL DIMENSIONAL DATA

 $(\ \])$

MODEL COMPONENT : EXTERNAL TANK - TOTAL		
GENERAL DESCRIPTION: External tank Too with 1208 In. radius crive		
DESC		
MODEL SCALE: 0.0040 MODE	L DRAVING: LMS	C R80058
DRAWING NUMBER: _VI72-000131, VI78-00	0062	
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length , In. (@ K ₀ =328.92)	-1947-155	7.789
Max. Dia, In. (@ X _T = 975.675)	333.2	1.423
Major Diameter, In.	330.2	1.333
Fineness Ratio	5.807	5.897
. Area - Ft ²		
(@ X _p 975.675) Max. Cross—Sectional	605.534	0.0097
Major Cross-section Planform	594.679	0.0095
Wetted		Approximation of the second
Bose (on 330.2 dia.)	594.679	0,0095
WP of tank centerline (Z)	400.00	0.0064

TABLE III. (Continued) MODEL DIMENSIONAL DATA

MODEL COMPONENT: SRB PROTUBERANCE - PS7

GENERAL DESCRIPTION: SRB/EW attach ring: two attach rings and one structural

ring.

MODEL SCALE: 0.0040

DRAWING NO.: VL77-000066

DIMENSIONS (DATA FOR 1 OF 2):	FULL SCALE	MODEL SCALE
Centerline at XB	1505	6.020
	1517	6.068
	1852	7.408
Width	1.0	0.040
Heigth	10	0.040

TABLE III. (Continued) MODEL DIMENSIONAL DATA

MODEL COMPONENT: ELECTRICAL TUNNEL - PS8

GENERAL DESCRIPTION: Electrical tunnel on wall of solid rocket motor

booster.

MODEL SCALE: 0.0040

DRAWING NO.: VL77-000036A

DIMENSIONS:	FULL SCALE	MODEL SCALE
Length, In.	1341.5	5.366
Width; In.	6.0	0.024
Height, In.	3.0	0.012
Leading edge angle (Deg.)	18	18

TABLE III. (Continued) MODEL DIMENSIONAL DATA

MODEL COMPONENT: Tie-DOWN STRUCTURE - PS-9

GENERAL DESCRIPTION; Tie-down lugs on shroud of solid rocket motor booster.

MODEL SCALE: 0.004

DRAWING NO.: VL77-000066

dimensions:	FULL SCALE	MODEL SCALE
Number of tie-down lugs	4	4
Length, In.	64.00	0.256
Width, In.	13.00	0.052
Max. Height (at T. E.)	8.334	0. 033
Angular position (from vertical), Deg.	. €o	60

TABLE III. (Continued) MODEL DIMENSIONAL DATA

MODEL COMPONENT: BOOSTER, SOLID ROCKET MOTOR - Sil

GENERAL DESCRIPTION: SRB with 200 aft skirt

MODEL SCALE: 0.004

MODEL DRAWING: LMSC R80055, R80056

DRAWING NO.: V177-000066

DIMENSIONS:	FULL SCALE	MODEL SCALE
Length (includes nozzle), In.	1789.40	7.158
Tank diameter, In.	146.00	0.584
Aft skirt diameter, In.	213.70	0.855
Skirt flare angle	200	20°
Fineness ratio:	12.256	12.256
Area - Ft ²		
Max. Cross-sectional (tank)	116.261	0.0019
Max. cross sectional (skirt)	249.079	0.0040
WL of BSRM centerline (Z_{T})	400.00	4.600
FS of ESRM nose (X _m)	743.00	2.972
BP of ESRM centerline (Ym)	250.5	1.002
· · · · · · · · · · · · · · · · · · ·		

TABLE III. (Continued) MODEL DIMENSIONAL DATA

MODEL COMPONENT: BOOSTER, SOLID ROCKET MOTOR - S15

GENERAL DESCRIPTION: SRB with 280 nose

MODEL SCALE: 0.004

MODEL DRAWING: LMSC R80055, R80056

DRAWING NO.: VL77-000066

dimensions:	FULL SCALE	MODEL SCALE
Length (includes nozzle), In.	1846.40	7.386
Tank diameter, In.	146.00	0.584
Aft skirt diameter, in.	192.00	0.768
Nose planform angle	28°	280
Nose side view angle	Ίħο	Tito
Fineness ratio	12.647	12.647
Area - Ft ²		
Max. cross-sectional (tank)	116.261	0.0064
Mex. cross-sectional (skirt)	201.062	0.0032
WL of BSRM centerline $(Z_{\underline{T}})$	1,00.00	1.600
FS of BSRM nose (X _T)	743.00	2.972
BP of BSRM centerline (Y_{T})	250.5	1.002

TABLE III. (Concluded) MODEL DIMENSIONAL DATA

MODEL COMPONENT: BOOSTER SOLID ROCKET MOTOR - S18		
GENERAL DESCRIPTION: Configuration MCR 500. Data for 1 of 2 sides		
MODEL SCALE: 0.0040		
DRAWING NUMBER		·
•		
DIMENSIONS :	FULL SCALE	MODEL SCALE
Length (Includes nozzle), In.	1,989,4	7.958
Max Width (Tank dia.), In.	146.0	0.584
Max Depth (Aft shroud), In.	192.0	0.768
Fineness Rotio	9.06771	9.06771
Areq - Ft ²	egith work was a few construction of the const	The state of the s
Max. Cross-Sectional	201.06193	0.0032
Planform	Aganter Character complete the asymptotic recomplete against	Northware (see Sheet representations of the second
Wetted	the Book of Commence of the State of the Sta	The Reference of the Parties of the
Base		And a second
WP of BSRM centerline (z_T) , In.	400.00	1.600
FS of BSRM Nose (XT), In.	743.00	2.972

Notest

Figure 1. Axis Systems

a. General Arrangement of Launch Vehicle Model (Balance In Orbiter)

Figure 2. - Model Sketches and Graphs.

 General Arrangement of Launch Vehicle Model (Balance in Tank, Straight Sting) Figure 2. - Continued.

 General Arrangement of Launch Vehicle Model (Balance in Tank, Forked Sting) Figure 2. - Continued.

d. Tank (T₂₀) Protuberances - Side View Figure 2. - Continued.

e. Tank (T_{20}) Protuberances - Top View Figure 2. - Continued.

f. Tank Long Ogive Nose (T_{27}) and Base Extension (PT_{21}) Figure 2. - Continued)

g. Orbiter/Tank Fairing, FR_g Figure 2. - Continued.

140

Side View

i. SRB Alternate Nose Shape (S_{15}) and Aft Skirt Flare (S_{14}) Figure 2. - Continued.

BALANCE IN ORBITER

Manifold tubes as follows:

with FR Installed

$$P_{\mathbf{b}_{\mathbf{f}}} = 11$$

j. Definition of Base Pressure Tube Locations, Balance in Orbiter Figure 2. - Continued.

BALANCE IN TANK (Straight Sting)

Manifold tubes as follows

k. Definition of Base Pressure Tube Locations,
 Balance in Tank (Straight Sting)
 Figure 2. - Continued.

BALANCE IN TANK (Forked Sting)

Manifold tubes as follows:

 Definition of Base Pressure Tube Locations, Balance in Tank (Forked Sting) Figure 2. - Continued.

m. Base Pressure Coefficient Increment Due to Difference Between Pressure Taps and Rake Figure 2. - Continued.

n. Orbiter Body Flap Pressure CoefficientsFigure 2. - Concluded.

(])

a. Photograph of Configuration TiP1S1P201 Figure 3. - Model Photographs.

 Photograph of Tunnel Installation of Launch Vehicle Model (Balance In Orbiter) Figure 3. - Continued.

 Photograph of Tunnel Installation of Launch Vehicle Model (Balance In Tank) Figure 3. - Continued.

 d. Photograph of Tunnel Installation of Launch Vehicle Model (Balance In Tank, Forked Sting) Figure 3. - Continued.

e. Photograph of Configuration T₁P₁ Figure 3. - Concluded.

DATA FIGURES

Volume 1 - Figures 4-12 Volume 2 - Figures 13-26

PRECEDING PAGE BLANK NOR FILMED

(D)MACH = 1.10

Contract of the second

FIG 4 CONFIGURATION BUILDUP-EFFECT ON LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(F)MACH = 1.46

PAGE 6

FIG 4 CONFIGURATION BUILDUP-EFFECT ON LONGITUDINAL CHARACTERISTICS. BETA = 0 JEG

(G)MACH = 1.96

PAGE 7

(I)MACH =

4.96

.60 (A)MACH =

The same of the sa

FIG 4 CONFIGURATION BUILDUP-EFFECT ON LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG
(E)MACH = 1.25

PAGE 14

FIG 4 CONFIGURATION BUILDUP-EFFECT ON LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG PAGE (G)MACH = 1.96

FIG 4 CONFIGURATION BUILDUP-EFFECT ON LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG

(B)MACH = .80 PAGE

t many for the second with the second second

PAGE 22 (D)MACH = 1.10

FIG 4 CONFIGURATION BUILDUP-EFFECT ON LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

CEDMACH = 1.25

PAGE 23

PAGE 24 (F)MACH = I.46

PAGE 26 (H)MACH = 2.99

property of the second second

FIG 4 CONFIGURATION BUILDUP-EFFECT ON LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG
PAGE 27

.90 (C)MACH

(G)MACH = 1.96

FIG 4 CONFIGURATION BUILDUP-EFFECT ON LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG

[A)MACH = .60

PAGE 37

FIG 4 CONFIGURATION BUILDUP-EFFECT ON LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

CIDMACH = 4.96

PAGE 45

-.1 0 .1 .2 .3 .4 FOREBODY PITCHING MOMENT COEFFICIENT, CLMF

PAGE 45 .60 (A)MACH =

48 PAGE CCOMACH = .90

52 PAGE (G)MACH =

68 PAGE (C)MACH = .90

(1)MACH = 2.99

FIG 4 CONFIGURATION BUILDUP-EFFECT ON LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG
PAGE 75

PAGE .60 CADMACH =

FIG 5 CONFIGURATION BUILDUP-EFFECT ON LATERAL/DIRECTIONAL CHAR., ALPHA = 0 DEG
(J)MACH 4.96
PAGE 85

FIG 5 CONFIGURATION BUILDUP-EFFECT ON LATERAL/DIRECTIONAL CHAR., ALPHA = 0 DEG

(H)MACH = 1.96

PAGE 93

FIG 5 CONFIGURATION BUILDUP-EFFECT ON LATERAL/DIRECTIONAL CHAR.. ALPHA = 0 DEG
(A)MACH = .60
PAGE 96

(COMACH =

FIG 5 CONFIGURATION BUILDUP-EFFECT ON LATERAL/DIRECTIONAL CHAR., ALPHA = 0 DEG

(D)MACH = 1.05

PAGE 99

(I)MACH = 2.99PAGE 104

PAGE 106 .60 (A)MACH =

FIG 5 CONFIGURATION BUILDUP-EFFECT ON LATERAL/DIRECTIONAL CHAR. ALPHA = 0 DEG

(B)MACH = .80

PAGE 107

110 PAGE (E)MACH = 1.10

PAGE 112 1.47 CGOMACH =

FIG 5 CONFIGURATION BUILDUP-EFFECT ON LATERAL/DIRECTIONAL CHAR. ALPHA = 0 DEG
(H)MACH = 1.96
PAGE 113

PAGE 114 (I)MACH = 2.99

DATA SET SYMBOL CONFIGURATION DESCRIPTION
(VICOOT) O MSFC 594(1A33) 740TS (TIPIS)P201) DRB STING

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG

(B)MACH = .80

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

COMMACH = 1.10

PAGE 119

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(E)MACH = 1.25

PAGE 120

-8 -4 Ó 4 ANGLE OF ATTACK, ALPHA, DEGREES

12

16

-16

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG

(F)MACH = 1.46

PAGE 121

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG 123 PAGE (H)MACH = 2.99

PAGE 124 (I)MACH = 4.96

ne habe kaneda y had Amerik Springer Senson had bed and the dependent of the senson had the dependent of the senson had Springer of the senson had

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG

(C)MACH = .90

PAGE 127

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG
PAGE 1.25

PITCHING MOMENT

FOREBODY

.15[

.10[

.05€

-.05 E

-.10

-.15

-.20[

- 25 E.J.

-16

-12

REFERENCE INFORMATION

16

12

8

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG 130 PAGE (F)MACH = 1.46

-8 -4 0 4 ANGLE OF ATTACK. ALPHA, DEGREES

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS BETA = 0 DEG

CG)MACH = 1.96

PAGE 131

(H)MACH = 2.99PAGE 132

PAGE 136 (C)MACH = .90

(E)MACH = 1.25PAGE

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DE6

CIDMACH = 4.96

PAGE 142

OATA SET SYMBOL CONFIGURATION DESCRIPTION
(VICOOT) O MSFC 594([A33] 740TS [TIPISIP20]) CRB STING

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(C)MACH = .90

PAGE 145

Arrivari nu

REFERENCE INFORMATION DATA SET SYMBOL CONFIGURATION DESCRIPTION (VICOUT) O MSFC 594(IA33) 740TS (TIPISIP201) ORB STING .24 , 20[.18‡ .16₽ .14 BASE SRB .10 .08- .06 ,04‡ .02£ 0 0 0 0 0 0 0 0 0 FOREBODY PITCHING MOMENT COEFFICIENT. CLMF ,5 FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(I)MACH = 4.96

151

PAGE

FOREBODY PITCHING MOMENT COEFFICIENT, CLMF FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG 152 PAGE .60 (A)MACH =

.5

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(B)MACH = .80

PAGE 15

REFERENCE INFORMATION SG. FT IN. IN. IN. XT IN. YT IN. ZT DATA SET SYMBOL CONFIGURATION DESCRIPTION (VICOUT) O MSFC 594(1A33) 740TS (TIPISIP201) FOREBODY PITCHING MOMENT COEFFICIENT, CLMF

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(D)MACH = 1.10

PAGE 155

FOREBODY PITCHING MOMENT COEFFICIENT, CLMF FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG 156 PAGE (E)MACH = 1.25

-.2

REFERENCE INFORMATION DATA SET SYMBOL CONFIGURATION DESCRIPTION (VICOUT) O MSFC 594(1A33) 740TS (TIPISIP201) ORB STING IN.
IN. XT
IN. YT
IN. ZT Ø FOREBODY PITCHING MOMENT COEFFICIENT, CLMF .5

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG

(F)MACH =

157

PAGE

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG PAGE 158 (G)MACH = 1.96

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(B)MACH = .80

PAGE 162

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(D)MACH = 1.05

PAGE 164

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(E)MACH = 1.10

PAGE 16

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(F)MACH = 1.25

PAGE 166

REFERENCE INFORMATION DATA SET SYMBOL CONFIGURATION DESCRIPTION IN. IN. IN. XT IN. YT IN. ZT [AICOUT] O MSFC 594(1A33) 740YS [TIPISIP201] ORB STING .13- .11 .10E .09[.08F .07 .06£ BASE .05 .04 *03£ .02€ .01 12 -8 ANGLE OF ATTACK, ALPHA, DEGREES

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG

(G) MACH = 1.46

PAGE 167

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(H)MACH = 1.97

PAGE 168

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(I)MACH = 2.99

PAGE 169

groupploker in and and about the light for the carefred out of the light of he like tweet out a light of the a

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(J)MACH = 4.96

PAGE 170

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(A)MACH = .60

PAGE 171

(D)MACH = 1.05

PAGE

174

-.02[

- .03 fin

-20

-16

REFERENCE INFORMATION DATA SET SYMBOL CONFIGURATION DESCRIPTION (A1COO7) O MSFC 594(1A33) 740TS (T1P1S1P201) ORB STING .11E .10[.09 .08 COEFFICIENT .07[.06€ .05- FORCE .04 .03£ .02[BASE .01 -.01

SQ. FT IN. IN. IN. XT IN. YT IN. ZT

12

ANGLE OF ATTACK, ALPHA, DEGREES FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG PAGE 175 (E)MACH in the authorizing the medical state of the way of the contraction of the contract of the contract of COEFFICIENT

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG (F)MACH = 1.25 PAGE 176

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(H)MACH = 1.97

PAGE 178

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG
PAGE 180

Specificant (St. 1999) and (St. 1999

DATA SET SYMBOL CONFIGURATION DESCRIPTION
(AICOOT) O MSFC 594(1A33) 740TS (TIPISIP201)

ORB STING

REFERENCE INFORMATION

SREF 2690.0000 SG. FT

LREF 1290.0000 IN.

BREF 1290.0000 IN.

XMRP 976.0000 IN. XT

YMRP 400.0000 IN. YT

SCALE .0040

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG

(A)MACH = .60

PAGE 181

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(B)MACH = .80

PAGE 182

REFERENCE INFORMATION DATA SET SYMBOL CONFIGURATION DESCRIPTION (A1COO7) O MSFC 594(1A33) 740TS (T1P151P201) ORB STING IN. IN. IN. XT IN. YT IN. ZT .10= .09-.08 .07 .06[.05- .03 .02 .01 -.01[12 ANGLE OF ATTACK, ALPHA, DEGREES

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG

(C)MACH = .91

PAGE 183

PAGE

184

.02[

.01=

-.02

- .03 <u>E</u>

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG
PAGE 185

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(F)MACH = 1.25

PAGE 186

PAGE 188 CHOMACH = 1.97

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(J)MACH = 4.96

PAGE 190

-8 -4 0 4
ANGLE OF ATTACK, ALPHA, DEGREES

12

- **.**03基...

-20

-16

-12

DATA SET SYMBOL CONFIGURATION DESCRIPTION CRB STING (VICOUT) O MSFC 594(IA33) 740TS (TIP15IP201) .30 .28 .26-.24 .20 .18[.16 .10 .08 .06 6 Ż 3 MACH NUMBER 0

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG

(A)ALPHA = -10.00

PAGE 191

PAGE 194 (D)ALPHA = -4.00

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG
PAGE 195

(G)ALPHA =

PAGE 198 4.00 (H)ALPHA =

REFERENCE INFORMATION DATA SET SYMBOL CONFIGURATION DESCRIPTION (VICOUT) O MSFC 594(1A33) 740TS (TIP15(P201) .30+ .28 .26€ .24 .22 o^ .20E .18[.16 E .14E .10 .08€ .06€

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG

2 3 MACH NUMBER

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG
(J)ALPHA = 8.00
PAGE 200

DATA SET SYMBOL CONFIGURATION DESCRIPTION (VICOO7) O MSFC 594(1A33) 740TS (TIPISIP201) .30 .28 .26 .24E .20 .14 .10 .08£ .06 Ź Ś MACH NUMBER

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG
(K)ALPHA = 10.00 PAGE 201

(A)ALPHA = -10.00

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG

(B) ALPHA = -8.00

PAGE 203

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG

(C)ALPHA = -6.00

PAGE 204

REFERENCE INFORMATION DATA SET SYMBOL CONFIGURATION DESCRIPTION (VICCO7) O MSFC 594(1A33) 74015 (TIPISIP201) ORB STING .24 .20€ .18 .16[.14 .12 .10 .08‡ .06[.04€ .02€

FIG S LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG
PAGE 205

2 3 MACH NUMBER FORCE

AXIAL

BASE

SRB

AND

山

ORB,

THE

OF

SUM

REFERENCE INFORMATION

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG PAGE 206 (E)ALPHA = -2.00

PAGE (G)ALPHA = 2.00

ting wip and time the residence in the contract of the contrac

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG

CJ)ALPHA = 8.00

PAGE 211

PAGE 212 CKJALPHA = 10.00

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG
PAGE 213

erriging organizative production of an organization of the contract of the contraction of the production of the contraction of

PAGE (B)ALPHA = -8.00

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(C) ALPHA = -6.00

PAGE 215

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(D) ALPHA = -4.00

PAGE 216

DATA SET SYMBOL CONFIGURATION DESCRIPTION REFERENCE INFORMATION SQ. FT IN. IN. IN. XT IN. YT IN. ZT (V(C007) () MSFC 594(1A33) 740TS (T)P1S1P201) CRB STING -

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(E)ALPHA = -2.00

PAGE 217

MACH NUMBER

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(F)ALPHA = .00

PAGE 218

DATA SET SYMBOL CONFIGURATION DESCRIPTION
(VICOD7) () MSFC 594(1A33) 740TS (TIPISIP201)

ORB STING

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(G)ALPHA = 2.00

PAGE 219...

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(H) ALPHA = 4.00

PAGE 220

DATA SET SYMBOL CONFIGURATION DESCRIPTION
(VICCOT) O HSFC 594(1A33) 740TS (TIPISIP201) CRB STIN

REFERENCE INFURMATION

SREF 2690.0000' SG. FT
LREF 1290.0000 IN.

BREF 1290.0000 IN.

XMRP 975.0000 IN. XT
YMRP .0000 IN. YT
ZMRP 400.0000 IN. ZT
SCALE .0040

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG
PAGE 221

AL FORCE COEFFICIENT, CN

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(J)ALPHA = 8.00

PAGE 222

REFERENCE INFORMATION DATA SET SYMBOL CONFIGURATION DESCRIPTION (VICOD7) O MSFC 594(IA33) 740TS (TIPISIP201) ORB STING -.6[Ó

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(K) ALPHA = 10.00

PAGE 223

MACH NUMBER

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DE6

(A)ALPHA = -10.00

PAGE 224

DATA SET SYMBOL CONFIGURATION DESCRIPTION
(VICOD7) O MSFC 594(1A33) 740TS (TIPISIP201) CRB

REFERENCE INFORMATION

ING

SREF 2690.0000 SQ. FT

LREF 1290.0000 IN.

BREF 1290.0000 IN.

XMRP 976.0000 IN. XT

YMRP ,0000 IN. YT

ZMRP 480.0000 IN. ZT

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG

(B)ALPHA = -8.00

PAGE 225

-.05<u>€</u>

-.10

-.15[

-.20<u>卡</u>

Ó

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(D)ALPHA = -4.00

PAGE 227

PITCHING MOMENT

FOREBODY

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG
PAGE 228

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG

(F) ALPHA = .00

PAGE 229

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG

(H)ALPHA = 4.00

PAGE 231

FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS, BETA = 0 DEG
PAGE 232

MACH NUMBER

Ò

(J)ALPHA = 8.00

REFERENCE INFORMATION DATA SET SYMBUL CONFIGURATION DESCRIPTION (VICOO7) O MSFC 594(IA33) 740TS (TIPISIP201) ORB STING IN. IN. IN. XT IN. YT IN. ZT .40 .35 .30 .15 .10 .05€ -.05[-.10[MACH NUMBER FIG 6 LAUNCH VEHICLE-FIRST STAGE-LONGITUDINAL CHARACTERISTICS. BETA = 0 DEG

PAGE

PAGE 234 (K)ALPHA = 10.00

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

PAGE 237

(C)MACH = .90

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

(D)MACH = 1.05

PAGE 238

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

PAGE 239

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

(G)MACH = 1.47

PAGE

PAGE (H)MACH = 1.97

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

(J)MACH = 4.96

PAGE 244

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

PAGE 245

PAGE (B)MACH = .80 246

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

PAGE 247

250 PAGE (F)MACH = 1.25

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

PAGE

251

(G)MACH = 1.4

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

PAGE 255

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

(E)MACH = 1.10

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

(H)MACH = 1.97

PAGE 262

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS
PAGE

PAGE

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

PAGE 265

(B)MACH = .80 PAGE 266

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

(C)MACH = .90

PAGE

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

(D)MACH = 1.05

PAGE 268

FIG 7 LAUNCH VEHICLE FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

(G)MACH = 1.47

PAGE

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS
PAGE
PAGE

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

(J)MACH = 4.96

PAGE 274

276 PAGE (B)BETA = -8.00

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

(C)BETA = -6.00 PAGE 277

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

(D)BETA = -4.00 PAGE 278

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

PAGE
PAGE

PAGE 280 (F)BETA 00.

CIC 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS
PAGE
PAGE

PAGE 282 4.00 (H)BETA =

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS
PAGE 283

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

PAGE 284

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

PAGE

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

PAGE 286

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

(B)SETA = -8.00

PAGE

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

COBETA = -6.00

PAGE 289

(E)BETA = -2.00

PAGE 2.00 CGOBETA =

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS
PAGE 294

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS
PAGE
PAGE

297

PAGE 300 (D)BETA = -4.00

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS
PAGE
PAGE

301

PAGE (F)BETA = .00

FIG 7 LAUNCH VEHICLE-FIRST STAGE-LATERAL/DIRECTIONAL CHARACTERISTICS

(K)BETA = 10.00

PAGE

307

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO (H)MACH = 2.39

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO
PAGE

PAGE

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO

(B)MACH

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO

(EDMACH = 1.10

357

FIG 3 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO
PAGE
2.99

361

(A)MACH

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO

(E)MACH = 1.10

PAGE 367

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO

PAGE 369

(G)MACH = 1.6

HOAMCID

(A)MACH

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO
PAGE 377

REFERENCE INFORMATION

SREF 2690.0000 SG. FT

LREF 1290.0000 IN.

BREF 1290.0000 IN.

XMRP 978.0000 IN. XT

YMRP .0000 IN. YT

ZHRP 400.0000 IN. ZT

SCALE .0040

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO

(J)MACH = 4.96

PAGE

September 1912 Septem

FIG 3 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO

CADAL BHE ID. OR

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO

(B)ALPHA = -8.00

PAGE

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO
PAGE 385

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO
PAGE 386

FIG 3 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO (E) ALPHA = -2.00

PAGE

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO

(G)ALPHA = 2.00

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO
PAGE
PAGE

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO

(J) ALPHA = 8.00

PAGE

(A)ALPHA = -10.00

393

PAGE (B)ALPHA = -8.00

PAGE (D) Λ LPH Λ = -4.00

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO
PAGE
PAGE

398 PAGE .00 (F)ALPHA =

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO
PAGE
PAGE

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO
(E)ALPHA = -2.00
PAGE

PAGE 410 CHIALPHA =

REFERENCE INFORMATION

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO 412 PAGE 8.00 (J)ALPHA =

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO
PAGE

(B)ALPHA = -8.00

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO
PAGE

PAGE 416 (D)ALPHA = -4.00

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO
PAGE 419

PAGE (H)ALPHA =: 4.00

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO

CIDALPHA = 6.00

PAGE

FIG 8 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LONGITUDINAL AERO

CJ)ALPHA = 8.00

PAGE 422

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO
PAGE 423

.80 (B)MACH =

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO
PAGE 425

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO
PAGE 427

PAGE 428 (F)MACH = 1.25

CHARLES AND COMMON PARTY OF THE PARTY OF THE

1.47

(G)MACH =

PAGE

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

(H)MACH = 1.97

PAGE 430

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO
PAGE 431

PAGE 432 (J)MACH = 4.96

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

(A)MACH = .60

PAGE 433

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

(F)MACH = 1.25

PAGE 438

The product of the Control of the Co

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO
PAGE 439

1.47

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

(H)MACH = 1.97

PAGE 440

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

(A)MACH = .60

PAGE 443

PAGE .80 (B)MACH =

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

(F)MACH = 1.25

PAGE 448

SIDESLIP ANGLE, BETA, DEGREES

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO
PAGE 449

PAGE (H)MACH = 1.97

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

CI)MACH = 2.99

PAGE 451

(J)MACH = 4.96 PAGE 452

have not the second

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

PAGE 455

REFERENCE INFORMATION

DATA SET SYMBOL CONFIGURATION DESCRIPTION

(F)MACH = 1.25PAGE 458

REFERENCE INFORMATION DATA SET SYMBOL CONFIGURATION DESCRIPTION SQ. FT IN. IN. IN. XT IN. YT IN. ZT MSFC 594(1A33) 740TS (TIPISIP201) DATA NOT AVAILABLE DATA NOT AVAILABLE ORB STING [A1C008] (A1C030) BREF XMRP YMRP ZMRP SCALE 976.0000 .0000 400.0000 .0040 Þ COEFFICIENT .3 2 - .! O .1
YAWING MOMENT COEFFICIENT.CYN . 4 -.3

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

CIDMACH = 2.99

PAGE 461

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO
(J)MACH = 4.96

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

PAGE 463

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

(B)BETA = -6.00

PAGE 464

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

(C)BETA = -4.00

PAGE 465

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

(D)BETA = -2.00

PAGE 466

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO
PAGE 467

(F)BETA = 2.00

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

(G)BETA = 4.00

PAGE 469

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

PAGE 471

PAGE 472 (A)BETA = -8.00

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

(B)BETA = -6.00

PAGE 473

(C)BETA = -4.00

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

CD3BETA = -2.00

PAGE 475

PAGE 476 .00 (E)BETA =

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

(F)BETA = 2.00

PAGE 477

PAGE (G)BETA = 4.00

DATA SET SYMBOL CONFIGURATION DESCRIPTION MSFC 594(1A33) 740TS (T1P1S1P201) ORB STING MSFC 594(1A33) 740TS (T1P1S1P201) FORKED STING MSFC 594(1A33) 740TS (T1P1S1P201) FORKED STING

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

PAGE

479

美国50位于A

COEFFICIENT

MOMENT

ROLL ING

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

CIDBETA = 8.00

PAGE 480

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

(A)BETA = -8.00

PAGE 481

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

(B)BETA = -6.00

PAGE 482

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO
PAGE

PAGE (D)BETA = -2.00

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO
PAGE 485

1.2

MACH NUMBER

1.0

.8

6

1.4

2.0

1.8

1.6

-.30[

- . 35 أ

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO
PAGE

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO

CHOBETA = 6.00

PAGE 489

restriction and the second The second second

FIG 9 LAUNCH VEHICLE-FIRST STAGE-STING EFFECTS ON LATERAL/DIRECTIONAL AERO
PAGE 489

PAGE .60 (A)MACH =

PAGE (C)MACH = .90

FIG10 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO

(E)MACH = 1.25

PAGE

FORCE

NORMAL

497

FIGIO LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO
PAGE

(H)MACH = 2.99

FIG10 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO
PAGE

PAGE

).

FIGIO LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO

(I]MACH = 4.96

PAGE

FIG10 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO
PAGE

PAGE

FIG10 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO
PAGE

PAGE

517

FIGIO LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO
PAGE

(D)MACH

FIG10 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO

CCOMACH

.31

DACE

537

A STATE OF THE PROPERTY OF T

PAGE 542 (H)MACH = 1.97

€ HOAMACH =

PAGE

FIG10 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO
PAGE 565

PAGE 566 (B)ALPHA = -8.00

FIGIO LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO

(C)ALPHA = -6.00

PAGE

FIG10 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO

(E)ALPHA = -2.00

PAGE

FIG10 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO PAGE

(G)ALPHA = 2,00

FIG10 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO

(1)ALPHA = 6.00

E 573

PAGE (J)ALPHA = 8.00

FIGIO LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO

(K) ALPHA = 10.00

PAGE 575

(A)ALPHA = -10.00PAGE 576

FIGIO LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO
(B)ALPHA = -8.00

PAGE 577

FIG10 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO
PAGE 580

FIG10 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO

(G)ALPHA = 2.00

PAGE 582

FIGIO LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO
PAGE
PAGE

PAGE 585

PAGE 586 (K)ALPHA = 10.00

FIGIO LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO
PAGE 587

(B)ALPHA = -8.00

FIG10 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO

COALPHA = -6.00

PAGE

PAGE 590 (D)ALPHA = -4.00

FIG10 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO
PAGE
PAGE

(G)ALPHA =

FIG10 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO (I)ALPHA = 6.00

PAGE

FIG10 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO
(K)ALPHA = 10.00 PAGE

FIGIO LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO PAGE

(F)ALPHA = .00

605

FIGIO LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO
PAGE

PAGE

FIGIO LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LONGITUDINAL AERO
PAGE

(K)ALPHA = 10.00

.90

(C)MACH

611

PAGE

A SHOW THE

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO
(J)MACH = 4.96
PAGE 618

(C)MACH = .90

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO
PAGE 623

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO

(G)MACH = 1.47

PAGE 625

i para in the about the bid, protested activities and date of eigh

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO
CHOMACH = 1.97
PAGE 626

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO PAGE

(I)MACH = 2.99

627

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO

CJOMACH = 4.96

PAGE 628

REFERENCE INFORMATION

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO
(F)MACH = 1.25
PAGE 634

REFERENCE INFORMATION DATA SET SYMBOL CONFIGURATION DESCRIPTION SO. FT IN. IN. IN. XT IN. YT IN. ZT MSFC 594(1A33) 740TS (TIPISIP201) DATA NOT AVAILABLE DATA NOT AVAILABLE (A1C008) (A1C036) (A1C022) ĝ ORB STING .30[COEFFICIENT, CYN .20 ,10[.05 YAWING MOMENT 12 16 -8 -4 SIDESLIP ANGLE, BETA, DEGREES

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AFRO

(G)MACH = 1.47

PAGE 635

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO
(I)MACH = 2.99
PAGE 637

REFERENCE INFORMATION DATA SET SYMBOL CONFIGURATION DESCRIPTION MSFT 594(1A33) 74015 (TIPISIP201) DATA NOT AVAILABLE MSFC 594(1A33) 74015 (T2PIS3P201F2) CRB STING YMRP ZMRP SCALE 1.0

2690.0000 1290.0000 1290.0000 976.0000 .0000 400.0000

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO (A)MACH =

(B)MACH =.80 PAGE 640

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO

PAGE 641

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO
(E)MACH = 1.10
PAGE 643

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO
PAGE 644

646 PAGE (H)MACH = 1.97

REFERENCE INFORMATION DATA SET SYMBOL CONFIGURATION DESCRIPTION SQ. FT IN. MSFC 594(1A33) 740TS (TIPISIP201) MSFC 594(1A33) 740TS (TIPISIP201F2) MSFC 594(1A33) 740TS (T2PISIP201F2) ORB STING ORB STING ORB STING IN. IN. XT IN. YT IN. ZT

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO
(A)BETA = -10.00
PAGE 649

MACH NUMBER

Š.

6

Berka daga kacemba sebagai sebagai kati bigas at bira katebar perta sangga parlam garapa sa paga sa perta perb

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO

(C)BETA = -6.00

PAGE 651

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO
(E)BETA = -2.00 PAGE 653

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO

(F)BETA = .00 PAGE 654

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO

(H)BETA = 4.00

PAGE 656

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO

CIDBETA = 6.00

PAGE 657

658 PAGE (J)BETA = 8.00

FIGI1 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO
(K)BETA = 10.00 PAGE 659

MACH NUMBER

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO

(A)BETA = -10.00

PAGE 660

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO

(B)BETA = -8.00

PAGE 661

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO

(C)BETA = -6.00

PAGE 662

REFERENCE INFORMATION SQ. FT IN. IN. XT IN. YT IN. ZT 2690.0000 1290.0000 1290.0000 976.0000 .0000 400.0000 .0040 CONFIGURATION DESCRIPTION DATA SET SYMBOL. MSFC 594(1A33) 740TS (TIPISIP201) MSFC 594(1A33) 740TS (TIPISIP201F2) MSFC 594(1A33) 740TS (T2PIS3P201F2) ORB STING ORB STING ORB STING .14 .12= .10 .08‡ .06£ .04F -.02[-.08 -.10

FIGI1 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO

PAGE 663

MACH NUMBER

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO

(F)BETA = .00

PAGE 665

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO

(J)BETA = 8.00

PAGE 669

670 PAGE (K)BETA = 10.00

REFERENCE INFORMATION 2690.0000 1290.0000 1290.0000 976.0000 0000 400.0000 DATA SET SYMBOL CONFIGURATION DESCRIPTION SREF LREF BREF XMRP YMRP ZMRP SCALE MSFC 594(1A33) 740TS (TIPISIP201) MSFC 594(1A33) 740TS (TIPISIP201F2) MSFC 594(1A33) 740TS (TIPISIP201F2) ORB STING .30- .25# COEFFICIENT, CYN .20£ .15[.10‡ .05 MOMENT -.05[-.10卡

-.20F

-.25[

-.30[

SQ. FT IN. IN. IN. XT IN. YT IN. ZT

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO PAGE (A)BETA = -10.00

MACH NUMBER

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO
(B)BETA = -8.00
PAGE 672

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO
(C)BETA = -6.00 PAGE 673

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO (D)BETA = -4.00 PAGE 674

Secularities of the secular se

FIGIT LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO
(E)BETA = -2.00 PAGE 675

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO

(F)BETA = .00

PAGE 676

FIG11 LAUNCH VEHICLE-FIRST STAGE-DRAG STUDY EFFECT ON LATERAL/DIRECTIONAL AERO
PAGE 677

(H)BETA =

(I)BETA = 6.00

FIG 12 LONGITUDINAL RUDDER DEFLECTION EFFECTS-FIRST STAGE

FIG 12 LONGITUDINAL RUDDER DEFLECTION EFFECTS-FIRST STAGE
(E)MACH = 1.10

FIG 12 LONGITUDINAL RUDDER DEFLECTION EFFECTS-FIRST STAGE
(F)MACH = 1.25

(GJMACH = 1.46

FIG 12 LONGITUDINAL RUDDER DEFLECTION EFFECTS-FIRST STAGE
.+)MACH = 1.97

(I)MACH = 2.99

FIG 12 LONGITUDINAL RUDDER DEFLECTION EFFECTS-FIRST STAGE
(B)ALPHA = -8.00

CCJALPHA = -6.00

FIG 12 LONGITUDINAL RUDDER DEFLECTION EFFECTS-FIRST STAGE
CDJALPHA = -4.00

FIG 12 LONGITUDINAL RUDDER DEFLECTION EFFECTS-FIRST STAGE
(FJALPHA = .00

FIG 12 LONGITUDINAL RUDDER DEFLECTION EFFECTS-FIRST STAGE
CHIALPHA = 4.00

 $(I)\Lambda LPH\Lambda = 6.00$

FIG 12 LONGITUDINAL RUDDER DEFLECTION EFFECTS-FIRST STAGE
(J)ALPHA = 8.00

(K)ALPHA = 10.00

FIG 12 LONGITUDINAL RUDDER DEFLECTION EFFECTS-FIRST STAGE

FIG 12 LONGITUDINAL RUDDER DEFLECTION EFFECTS-FIRST STAGE
(B)ALPHA = -8.00

ORB STING -15.000 ORB STING -20.000

FIG 12 LONGITUDINAL RUDDER DEFLECTION EFFECTS-FIRST STAGE

FIG 12 LONGITUDINAL RUDDER DEFLECTION EFFECTS-FIRST STAGE

REFERENCE INFORMATION DRUDDR DATA SET SYMBOL CONFIGURATION DESCRIPTION SQ. FT IN. IN. IN. XT IN. YT IN. ZT ORB STING -15.000 ORB STING -20.000 MSFC 594(1A33) 740TS (TIPISIP201) MSFC 594(1A33) 740TS (TIPISIP201) .0008 .0006-.0004 .0002£ - .0002 -.0004 -.0006 -.0008 -.0010# H - .0012 -.0014 -.0016 -.0018 2 3 MACH NUMBER Ó

FIG 12 LONGITUDINAL RUDDER DEFLECTION EFFECTS-FIRST STAGE
(G) ALPHA = 2.00

FIG 12 LONGITUDINAL RUDDER DEFLECTION EFFECTS-FIRST STAGE
(1) ALPHA = 6.00

REFERENCE INFORMATION DATA SET SYMBOL CONFIGURATION DESCRIPTION DRUDDR 2690 .0000 1290 .0000 1290 .0000 976 .0000 976 .0000 400 .0000 SQ. FT IN. IN. XT IN. XT IN. YT IN. ZT MSFC 594(1A33) 740TS (TIPISIP201) MSFC 594(1A33) 740TS (TIPISIP201) ORB STING -15.000 ORB STING -20.000 BREF XMRP YMRP ZMRP SCALE .0016 .0014- ∵0012[0 0 .0010[.0008[.0006[.0004 .0002[FORCE -,0002‡ -.0004 FOREBODY -.0006 -.0008[-.0010 -1 MACH NUMBER

FIG 12 LONGITUDINAL RUDDER DEFLECTION EFFECTS-FIRST STAGE
(B)ALPHA = -8.00

FIG 12 LONGITUDINAL RUDDER DEFLECTION EFFECTS-FIRST STAGE

FIG 12 LONGITUDINAL RUDDER DEFLECTION EFFECTS-FIRST STAGE

(G)ALPHA = 2.00

FIG 12 LONGITUDINAL RUDDER DEFLECTION EFFECTS-FIRST STAGE
(H)ALPHA = 4.00

