Esercizi 07 — 8 pt

1 — 1 pt

Si consideri la funzione $f(x) = 2^{-x} - 1$ e il metodo di bisezione per l'approssimazione dello zero $\alpha = 0$. Scelto l'intervallo di partenza [-1,4] per il metodo di bisezione, si riportino i valori delle iterate $x^{(0)}$ e $x^{(1)}$ così approssimate.

$$x^{(0)} = 1.5$$
 $x^{(1)} = 0.25$

2 — 1 pt

Si consideri il metodo di Newton modificato per l'approssimazione dello zero $\alpha=3$ della funzione $f(x)=\left(1-e^{(x-3)}\right)\left(\frac{x^2}{9}-1\right)$. Qual è l'ordine di convergenza p atteso per il metodo per $x^{(0)}$ "sufficientemente" vicino ad α ?

$$p=2$$

3 — 2 pt

Si consideri il sistema di equazioni non lineari

$$\mathbf{F}(\mathbf{x}) = \left(e^{\left(x_1^2 + x_2^2 - 1\right)/4} - 1, \ x_1 + e^{x_2} - 2\right)^T,$$

dove $\mathbf{x} = (x_1, x_2)^T$. Posta l'iterata iniziale $\mathbf{x}^{(0)} = (2/3, 1/3)^T$, si riporti l'iterata $\mathbf{x}^{(2)}$ ottenuta applicando il metodo di Newton al sistema precedente.

$$\mathbf{x}^{(2)} = (1.0437, -0.0410)^T$$

4 — 2 pt

Si consideri la funzione di iterazione $\phi(x) = \left(\gamma + \frac{1}{2}\right)x + 2\gamma - 1 + (x+2)^{\mu}$ dipendente da due parametri $\gamma, \mu \in \mathbb{R}$ e dotata del punto fisso $\alpha = -2$. Per quali valori di $\gamma \geq -1$ e μ , il metodo delle iterazioni di punto fisso converge ad α con ordine pari almeno a p=3 per $x^{(0)}$ "sufficientemente" vicino ad α ?

$$\gamma = -\frac{1}{2}$$
 e $\mu \ge 3$

5 — 2 pt

Si consideri la funzione $\phi(x)=\theta\,x\,(1-2x)$ dipendente da un parametro $\theta\in\mathbb{R}$ e dotata di un punto fisso $\alpha_1=0$ e un secondo punto fisso $\alpha_2\in\mathbb{R}$. Per quali valori di $\theta>0$ il punto fisso α_2 è positivo $(\alpha_2>0)$ e il metodo delle iterazioni di punto fisso converge ad α_2 per ogni scelta di $x^{(0)}$ "sufficientemente" vicino ad α_2 ?

$1 < \theta < 3$