Michael Patson Homework 6 Oregon State

1.

A) Find the shortest distance from G to C

Using the formula maximize dt point of invesitigation to ds = 0 $dt - ds \le lst$ for edge s -> t

Option 1: G to D to F to C: 23
Option 2: G to D to F to B to C: 31
Option 3: G to H to B to C: 16
Option 4: G to H to A to F to B to C: 28
Option 5: G to H to A to B to C: 19
Option 6: G to H to A to F to C: 20

We can see that Option 3: G to H to B to C: 16 has the shortest route I also solver this using solver in Excel, below is the copied spread sheet. For part 2, I did the same thing. Spreadsheet is attached an different tabs are labeled to each problem

	Node										
	Α	I	В	С	D	Ε	F	G	Н		
Α	1	100	8	100	100	100	10	100	100	Total Distance	16
В	1	100	100	4	100	10	100	100	100		
С	1	100	100	100	3	100	100	100	100		
D	1	100	100	100	100	25	18	100	100		
Е	1	100	100	100	9	100	100	7	100		
F		5	7	4	100	2	100	100	100		
G	1	100	100	100	2	100	100	100	3		
Н		4	9	100	100	100	100	100	100		

Modify below for each problem

	Node												
										Total	Out-		
	Α		В	С	D	Ε	F	G	Н	Out	In		
Α		0	0	0	0	0	0	0	0	0	0	=	0
В		0	0	1	0	0	0	0	0	1	0	=	0
С		0	0	0	0	0	0	0	0	0	-1	=	-1
D		0	0	0	0	0	0	0	0	0	0	=	0
E		0	0	0	0	0	0	0	0	0	0	=	0
F		0	0	0	0	0	0	0	0	0	0	=	0
G		0	0	0	0	0	0	0	1	1	1	=	1
Н		0	1	0	0	0	0	0	0	1	0	=	0
Total in		0	1	1	0	0	0	0	1				

Michael Patson Homework 6 Oregon State Using above strategy for part B

G to:	Cost	
Α		7
В		12
С		16
D		2
E		19
F		17
G	N/A	
Н		3

Michael Patson Homework 6 Oregon State

2)

First need to calculate cost be tie and profit (for objective function)

	Selling			
Type of Tie	Price	Labor	Material	PPT
Silk=s	6.7	0.75	2.5	3.45
Poly=p	3.55	0.75	0.48	2.32
Blend1=n	4.31	0.75	0.75	2.81
Blend2=c	4.81	0.75	0.81	3.25

We use the last column to formulate $Max(3.45X_1+2.32X_2+2.81X_3+3.25X_4)$

Problem was solved using excel and solver and is attached in the Problem 2 tab of included excel

Total benefit **120060**

3)

				CONSTRAIN	ITS		
Start	End	Opt	Cost	Start	Cap	inequality	Supply/Demand
P1	W1	150	10	P1	150	=	150
P1	W2	0	15	P2	450	=	450
P2	W1	200	11	Р3	250	=	250
P2	W2	250	8	P4	150	=	150
Р3	W1	0	13	W1	0	=	0
Р3	W2	150	8	W2	0	=	0
Р3	W3	100	9	W3	0	=	0
P4	W2	0	14	R1	-100	=	-100
P4	W3	150	8	R2	-150	=	-150
W1	R1	100	5	R3	-100	=	-100
W1	R2	150	6	R4	-200	=	-200
W1	R3	100	7	R5	-200	=	-200
W1	R4	0	10	R6	-150	=	-150
W2	R3	0	12	R7	-100	=	-100
W2	R4	200	8				
W2	R5	200	10	Total Cost	17,100		
W2	R6	0	14				
W3	R4	0	14				
W3	R5	0	12				
W3	R6	150	12				
W3	R7	100	6				

Michael Patson Homework 6

Oregon State

Part 2) When the equation is edited for account for no warehouse 2, solver cannot find a solution. The program bottlenecks are the warehouse solution. Warehouse 2 is critical as it connects to P1, P2, P3, P4.

Part 3 Yes, you can do it but it will cost more. You need to add two limits, so that the total transfer in and out of w2 is less than 100 for each

				CONSTR				
Start	End	N	Cost	Start	Cap	inequality	Supply/Dem	and
P1	W1	150	10	P1	150	=	150	
P1	W2	0	15	P2	450	=	450	
P2	W1	350	11	Р3	250	=	250	
P2	W2	100	8	P4	150	=	150	
Р3	W1	0	13	W1	0	=	0	
Р3	W2	0	8	W2	0	=	0	
Р3	W3	250	9	W3	0	=	0	
P4	W2	0	14	R1	-100	=	-100	
P4	W3	150	8	R2	-150	=	-150	
W1	R1	100	5	R3	-100	=	-100	
W1	R2	150	6	R4	-200	=	-200	
W1	R3	100	7	R5	-200	=	-200	
W1	R4	150	10	R6	-150	=	-150	
W2	R3	0	12	R7	-100	=	-100	
W2	R4	50	8					
				Total				
W2	R5	50	10	Cost	18300			
W2	R6	0	14					
W3	R4	0	14	Limit wa	arehouse			
W3	R5	150	12	w2	100	<=	100	input
W3	R6	150	12	W2	100	<=	100	out
W3	R7	100	6					

4) Work is in attached excel spread sheet, results are summarized below

for part A)

Coin Value	1	5	10	25		Change				
Count							202			
amount	2	0	0	8		Desired	202			
						Total Coins	10			
It takes 10 coins 2 at value 1 and 8 at value 25.										
Coin Value	1	3	7	12	27	Change				
Count							293			
amount	0	0	2	3	9	Desired	202			
						Total Coins	293			

14

It takes 14 coins 9 at value 27, 3 at value 11, 2 at value 7.