AKSA- AI Internship

Task: Feature Engineering

What is Feature Engineering?

Feature Engineering is the process of transforming raw data into meaningful inputs for machine learning models. It includes handling missing values, encoding, scaling, creating new features, and more.

I'll use the **iris dataset** as the example for the implementation of feature engineering task.

Importing the dataset

Feature Engineering Techniques

1. Handling Missing Values

Iris actually has no missing values though, but if there were, following is the example code how will we be handling them.

2. Encoding Categorical Variables

Label Encoding

```
[4] #Label Encoding

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['species_encoded'] = le.fit_transform(df['species'])
```

One-Hot Encoding

3. Feature Scaling

Standardization

```
[6] # Feature Scaling
    # Standardization

from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    df[['sepal_length', 'sepal_width']] = scaler.fit_transform(df[['sepal_length', 'sepal_width']])
```

Min-Max Normalization

```
[7] #Min-Max Normalization

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df[['petal_length', 'petal_width']] = scaler.fit_transform(df[['petal_length', 'petal_width']])
```

4. Feature Creation / Combination

```
#Feature Creation / Combination
# Sepal area = sepal length × sepal width
df['sepal_area'] = df['sepal_length'] * df['sepal_width']

# Petal area = petal length × petal width
df['petal_area'] = df['petal_length'] * df['petal_width']
```

5. Log Transformation

```
#Log Transformation
import numpy as np
df['log_petal_length'] = np.log(df['petal_length'] + 1) # Add 1 to avoid log(θ)
```

6. Binning (Discretization)

7. Polynomial Features

```
.] #Polynomial Features

from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=2, include_bias=False)
poly_features = poly.fit_transform(df[['sepal_length', 'sepal_width']])
```

8. Outlier Handling (IQR Method)

```
#Outlier Handling (IQR Method)

Q1 = df['sepal_width'].quantile(0.25)
Q3 = df['sepal_width'].quantile(0.75)
IQR = Q3 - Q1

df = df[(df['sepal_width'] >= Q1 - 1.5*IQR) & (df['sepal_width'] <= Q3 + 1.5*IQR)]</pre>
```

9. Feature Selection (Correlation Method)

Summary:

Technique	Purpose	Example (Iris Dataset)	
Imputation	Fill missing data	fillna(df.mean())	
Encoding	Convert categories to numbers	LabelEncoder, get_dummies()	
Scaling	Normalize feature range	StandardScaler, MinMaxScaler	
Feature Creation	New features from existing ones	sepal_area = length × width	
Log Transformation	Reduce skewness	np.log(petal_length + 1)	
Binning	Convert continuous to discrete	pd.cut() for petal_length	
Polynomial Features	Add interaction/power features	PolynomialFeatures()	
Outlier Handling	Remove extreme values	IQR method on sepal_width	
Feature Selection	Choose important features	Based on correlation	