INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA

LICENCIATURA EM ENGENHARIA INFORMÁTICA

LICENCIATURA EM ENGENHARIA INFORMÁTICA – PÓS-LABORAL

ELETRÓNICA

Duração: 2h:30m

Número:_

(EXAME) ÉPOCA NORMAL 31 JANEIRO 2023

Nota: As perguntas referentes à componente prática devem ser respondidas no enunciado.

Nome:

II - Componente Prática (16 valores)

2. Considere o circuito da figura onde o *amp-op* da figura seguinte é ideal e V+=15V e V-=-15V. (11 valores)

Figura 2

a) Determine os valores de V_{out} em função das resistências $(R_0,\,R_1\,,\,R_2,\,R_3,\,R_4\,e\,R_5)$ e das fontes de tensão DC $(V_{b0},\,V_{b1}\,e\,V_{b2})$.

b	Qual a gama de valores que V_{b1} pode assumir para que o amp-op da esquerda não sature Considere que todas as resistências do circuito assumem o valor de 1750 Ω e as fontes de tensão DC (exceto V_{b1}) assumem o valor de 3V.

Nota: As perguntas referentes à componente prática devem ser respondidas no enunciado.

Nome:	ne:	

Número:

c) Suponha que as fontes V_{b1} e V_{b2} foram substituídas por fontes de tensão AC com as seguintes características:

```
V_{b1} = 2 \times \sin(2 \times \pi \times 50 \times t)
V_{b2} = 2 \times \sin(2 \times \pi \times 50 \times t + \pi)
```

Considere ainda que $V_{b0}=2V$, $R_0=5K\Omega$, $R_1=1K\Omega$ e $R_2=2K\Omega$, $R_3=3K\Omega$, $R_4=4K\Omega$, $R_5=5K\Omega$ e o período de amostragem igual a uma centésima do período do sinais.

Complete o código Pyton que represente as formas de onda de V_{b1}, V_{b2} e V_{out}.

```
import numpy as np
from matplotlib import pyplot as plt
from math import pi
R0 = 5e3
R1=1e3
R2 = 2e3
R3 = 3e3
R4=4e3
R5=5e3
t= ____
Vb0 =
Vb1=
Vb2=
Vout=Vb1.copy()
for i in range(len(t)):
      Vout[i] =
plt.figure()
plt.plot(t, Vb1, label="Vb1")
plt.plot(t, Vb2, label="Vb2")
plt.plot(t, Vout, label="Vout")
plt.xlabel("tempo [s]")
plt.ylabel("Vb1, Vb2 e Vout [V]")
plt.title("Sinais de entrada e saída")
plt.grid()
plt.legend()
plt.show()
```

d) Pretende-se utilizar o circuito para implementar um conversor Digital-Analógico. A entrada de 3 bits (b₂, b₁, b₀) é codificada pelos valores das tensões de entrada (V_{b2}, V_{b1}, V_{b0}) respetivamente, onde o valor lógico "0" corresponde a 0 Volts e o valor lógico "1" corresponde 5 Volts. A tensão de saída V_{out} deve corresponder ao valor binário da entrada da seguinte forma:

Determine o valor das resistências R_0 , R_1 e R_2 , considerando que R_3 =1 $K\Omega$, R_4 =1 $K\Omega$ e R_5 =1 $K\Omega$.

