

organizzazione e tecniche di allocazione

Es1: Si consideri una cache di 4KB con associazione a gruppi a 8 vie (8-way set associative) in congiunzione con una memoria centrale di 1MB.

Supponendo che un blocco sia di dimensione 64B, si dica come un indirizzo di memoria è suddiviso in campi e a quanto ammonta la dimensione di ogni campo.

Soluz.:

- trattandosi di una cache con associazione a gruppi, l'indirizzo di memoria centrale deve essere suddiviso nei campi tag, set, e parola.
- la memoria centrale è di 1MB, cioè 2²⁰ byte; pertanto un indirizzo di memoria centrale è espresso in 20 bit.
- la dimensione del campo parola è individuato univocamente dalla dimensione del blocco, che è di 64B, cioè 2⁶ byte; pertanto il campo parola è di 6 bit.
- una cache di 4KB possiede 2^{12} byte; ogni linea deve contenere un blocco e quindi impegna 2^6 byte; quindi la cache contiene 2^{12} $/2^6 = 2^6$ linee. Poiché un insieme deve contenere 8 linee, il numero di insiemi della cache è pari a $2^6/2^3 = 2^3$. Pertanto il campo set è di 3 bit.
- la dimensione del campo tag sarà dunque: 20 -3 -6 = 11 bit

organizzazione e tecniche di allocazione

Es2: Si consideri una cache di 16KB con associazione a gruppi a 4 vie (4-way set associative) e dimensione di linea di 32B.

Supponendo che il campo tag sia di 12 bit, si dica quale è la dimensione massima (in byte) di memoria principale che la cache è in grado di gestire, assumendo il singolo byte come unità di indirizzamento della memoria.

Soluz.:

- per calcolare la quantità massima di memoria principale gestibile, bisogna calcolare il numero di bit totali che esprimono una generica locazione di memoria.
- trattandosi di una cache con associazione a gruppi, l'indirizzo di memoria centrale deve essere suddiviso nei campi tag, set, e parola.
- sappiamo che il campo tag è di 12 bit; quindi occorre calcolare la dimensione dei campi set e parola.
- la dimensione del campo parola è individuato univocamente dalla dimensione del blocco, che è di 32B, cioè 2⁵ byte; pertanto il campo parola è di 5 bit.
- una cache di 16KB possiede 2^{14} byte; ogni linea deve contenere un blocco e quindi impegna 2^5 byte; quindi la cache contiene $2^{14}/2^5=2^9$ linee. Poiché un insieme deve contenere 4 linee, il numero di insiemi della cache è pari a $2^9/2^2=2^7$. Pertanto il campo set è di 7 bit.
- quindi la dimensione massima di memoria gestibile è: 212+7+5, cioè 16MB

organizzazione e tecniche di allocazione

Es3: Si consideri una cache di 4KB con associazione a gruppi a 4 vie (4-way set associative) in congiunzione con una memoria centrale di 256KB.

Supponendo che un blocco sia di dimensione 64B, si dica:

- a) se le locazioni di memoria con indirizzi (in esadecimale) 30E5C e 17A87 hanno la possibilità di essere caricate all'interno dello stesso set di linee;
- b) se in cache è presente la locazione con indirizzo **05ABC**, quali altre locazioni sono sicuramente presenti nella cache.

Soluz.:

- a) procedendo come visto negli esercizi precedenti, abbiamo che un indirizzo di memoria è decomponibile in un campo parola di 6 bit, un campo set di 4 bit, ed un campo taq di 8 bit.
- le due locazioni di indirizzo 30E5C e 17A87 possono trovarsi nello stesso insieme se il loro campo set è identico. Quindi basta controllare se i bit da 10 a 7 (a partire da destra) sono identici:

30E5C = (su 18 bit) 11000011100101110017A87 = (su 18 bit) 010111101010000111

- non essendo identici, la risposta è no.
- b) le altre locazioni che necessariamente saranno presenti con la locazione di indirizzo **05ABC** sono quelle all'interno del medesimo blocco.
- poiché **05ABC** = (su 18 bit) 00010110101111100, tutte le locazioni con indirizzo da 000101101010000000 (hex **05A80**) a 000101101010111111 (hex **05ABF**) si troveranno simultaneamente in cache.

organizzazione e tecniche di allocazione

Es4a: Siano date le seguenti 2 sequenze di indirizzi di memoria (parole) emessi dalla CPU

		Sequenza 1	Sequenza 2
1		000000000000000000000000000000000000000	000000000000000000000000000000000000000
2		00000000000000000000000010000110	00000000000000000000000011010110
3		0000000000000000000000011010100	00000000000000000000000001011111
4		000000000000000000000000000000000000000	00000000000000000000000011010110
5		000000000000000000000000111	000000000000000000000000000000000000000
6		0000000000000000000000011010101	000000000000000000000000000000000000000
7		00000000000000000000000010100010	000000000000000000000000000000000000000
8		0000000000000000000000010100001	0000000000000000000000000101110
9		000000000000000000000000000000000000000	000000000000000000000000000000000000000
1	0	000000000000000000000000000000000000000	000000000000000000000000001101001
1	1	000000000000000000000000000000101001	0000000000000000000000000001010101
1	2	00000000000000000000000011011101	00000000000000000000000011010111

ed una cache ad associazione diretta di 16 blocchi di una parola. Dire come si decompongono gli indirizzi e determinare le corrispondenti sequenze di hit e miss

Soluz.:

- trattandosi di una cache con associazione diretta, l'indirizzo di memoria centrale deve essere suddiviso nei campi etichetta, linea, e parola, ed in particolare:
 - poiché un blocco è costituito da una sola parola, il campo parola è a dimensionalità nulla (0 bit)
 - il campo linea sarà costituito da 4 bit in quanto occorre indirizzare 16 (= 24) linee (blocchi) di cache
 - il campo tag sarà quindi cosituito dai rimanenti 28 bit più significativi
- di seguito si mostra, per ogni sequenza di indirizzi, la corrispondente sequenza di hit e miss

	Sequenza 1	h/m	cache
1 2 3 4 5 6 7 8	[tag linea] 000000000000000000000000000000000000	miss miss miss hit miss miss miss	blocco 1 _{dec} in linea 0001 blocco 134 _{dec} in linea 0110 blocco 212 _{dec} in linea 0100 blocco 135 _{dec} in linea 0111 blocco 213 _{dec} in linea 0101 blocco 162 _{dec} in linea 0010 blocco 161 _{dec} in linea 0001 [1 _{dec} out] blocco 2 _{dec} in linea 0010 [162 _{dec} out]
10 11 12	00000000000000000000000000010 <mark>1100</mark> 0000000000	miss miss miss	blocco 44 _{dec} in linea 1100 blocco 41 _{dec} in linea 1001 blocco 221 _{dec} in linea 1101

	Sequenza 2	h/m	cache
	[tag linea]		
1	000000000000000000000000000000000000000	miss	blocco 4 _{dec} in linea 0100
2	000000000000000000000000011010110	miss	blocco 214 _{dec} in linea 0110
3	0000000000000000000000001010 <mark>1111</mark>	miss	blocco 175 _{dec} in linea 1111
4	0000000000000000000000001101 <mark>0110</mark>	hit	
5	000000000000000000000000000000 <mark>0100</mark>	hit	
6	000000000000000000000000000101 <mark>0100</mark>	miss	blocco 84 _{dec} in linea 0100 [4 _{dec} out]
7	00000000000000000000000000100 <mark>0001</mark>	miss	blocco 65 _{dec} in linea 0001
8	0000000000000000000000001010 <mark>1110</mark>	miss	blocco 174 _{dec} in linea 1110
9	00000000000000000000000000100 <mark>0000</mark>	miss	blocco 64 _{dec} in linea 0000
10	0000000000000000000000000110 <mark>1001</mark>	miss	blocco 105 _{dec} in linea 1001
11	00000000000000000000000000101 <mark>0101</mark>	miss	blocco 85 _{dec} in linea 0101
12	0000000000000000000000001101 <mark>0111</mark>	miss	blocco 215 _{dec} in linea <mark>0111</mark>

organizzazione e tecniche di allocazione

Es4b: Ripetere l'esercizio precedente nel caso di una cache ad associazione diretta di 8 blocchi, ognuno costituito da 2 parole.

Es4c: Con riferimento alle sequenze mostrate nell'es4a, supponendo di avere una cache ad associazione diretta in grado di memorizzare 8 parole, quale fra le seguenti dimensioni di blocco

- a) 1 parola
- b) 2 parole
- c) 4 parole

è la più conveniente (minimizza il numero di miss) ?

Es4d: Ripetere l'esercizio 4a nel caso di una cache ad associazione a 2 vie in grado di memorizzare 16 blocchi, ognuno costituito da 1 parola.

Soluz. Es4b:

- trattandosi di una cache con associazione diretta, l'indirizzo di memoria centrale deve essere suddiviso nei campi etichetta, linea, e parola, ed in particolare:
 - poiché un blocco è costituito da 2 parole, il campo parola è di 1 bit
 - il campo linea sarà costituito da 3 bit in quanto occorre indirizzare 8 (= 23) linee (blocchi) di cache
 - il campo tag sarà quindi cosituito dai rimanenti 28 bit più significativi
- di seguito si mostra, per ogni sequenza di indirizzi, la corrispondente sequenza di hit e miss

p = parola

	Sequenza 1	h/m	cache
	[tag 1 p]		
1	000000000000000000000000000000000000000	miss	blocco $1_{dec}/2 = 0_{dec}$ in linea 000
2	000000000000000000000000100000110	miss	blocco $134_{dec}/2 = 67_{dec}$ in linea 011
3	0000000000000000000000001101 <mark>010</mark> 0	miss	blocco $212_{dec}/2 = 106_{dec}$ in linea 010
4	000000000000000000000000000000000000000	hit	
5	000000000000000000000000100000111	hit	
6	0000000000000000000000001101 <mark>010</mark> 1	hit	
7	0000000000000000000000001010 <mark>001</mark> 0	miss	blocco $162_{dec}/2 = 81_{dec}$ in linea 001
8	0000000000000000000000001010 <mark>000</mark> 1	miss	blocco $161_{dec}/2 = 80_{dec}$ in linea 000 a
9	000000000000000000000000000000 <mark>001</mark> 0	miss	blocco $2_{dec}/2 = 1_{dec}$ in linea 001 b
10	00000000000000000000000000000010 <mark>110</mark> 0	miss	blocco $44_{dec}/2 = 22_{dec}$ in linea 110
11	000000000000000000000000000010 <mark>100</mark> 1	miss	blocco $41_{dec}/2 = 20_{dec}$ in linea 100
12	0000000000000000000000001101 <mark>110</mark> 1	miss	blocco $221_{dec}/2 = 110_{dec}$ in linea 110 c

```
a = [ \emptyset_{dec} \text{ out} ]
b = [81_{dec} \text{ out} ]
c = [22_{dec} \text{ out} ]
```



```
l = linea
p = parola
```

```
tag
                            | 1 |p]
    4_{dec}/2 = 2_{dec} in linea 010
1
                                     miss
                                          blocco
                                          blocco 214_{dec}/2 = 107_{dec} in linea 011
blocco 175_{dec}/2 = 87_{dec} in linea 111
2
    miss
3
    0000000000000000000000000000010101111
                                     miss
4
    000000000000000000000000011010110
                                     hit
5
    hit
                                         blocco 84_{dec}/2 = 42_{dec} in linea 010 a
blocco 65_{dec}/2 = 32_{dec} in linea 000
    6
                                     miss
7
    miss
8
    00000000000000000000000000000010101110
                                     hit
9
    hit
                                         blocco 105_{dec}/2 = 52_{dec} in linea 100
10
    000000000000000000000000001101001
                                     miss
11
    hit
12
    00000000000000000000000011010111
                                      hit
```

```
a = [2_{dec} out]
```


organizzazione e tecniche di allocazione

Es4c: Con riferimento alle sequenze mostrate nell'es4a, supponendo di avere una cache ad associazione diretta in grado di memorizzare 8 parole, quale fra le seguenti dimensioni di blocco

- a) 1 parola
- b) 2 parole
- c) 4 parole

è la più conveniente (minimizza il numero di miss) ?

Es4d: Ripetere l'esercizio 4a nel caso di una cache ad associazione a 2 vie in grado di memorizzare 16 blocchi, ognuno costituito da 1 parola. Usare la politica FIFO per il rimpiazzo dei blocchi.

Soluz. 4c:

- trattandosi di una cache con associazione diretta, l'indirizzo di memoria centrale deve essere suddiviso nei campi etichetta, linea, e parola, ed in particolare:
- a) blocco costituito da una sola parola:
 il campo parola ha 0 bit; il campo linea sarà costituito da 3 bit in quanto occorre indirizzare 8 (= 2³) linee (blocchi) di cache; il campo tag sarà quindi costituito da (32 3 0) = 29 bit;
- b) blocco costituito da 2 parole: il campo parola ha 1 bit (2¹ parole); il campo linea sarà costituito da 2 bit in quanto occorre indirizzare 4 (= 2²) linee (blocchi) di cache; il campo tag sarà quindi costituito da (32 – 2 – 1) = 29 bit;
- c) blocco costituito da 4 parole: il campo parola ha 2 bit (2² parole); il campo linea sarà costituito da 1 bit in quanto occorre indirizzare 2 (= 2¹) linee (blocchi) di cache; il campo tag sarà quindi cosituito da (32 1 2) = 29 bit.

М

Blocco di 1 parola

	Sequenza 1	h/m	cache
	[tag linea]		
1	000000000000000000000000000000 <mark>001</mark>	miss	blocco 1 _{dec} in linea <mark>001</mark>
2	00000000000000000000000010000 <mark>110</mark>	miss	blocco 134 _{dec} in linea 110
3	0000000000000000000000011010 <mark>100</mark>	miss	blocco 212 _{dec} in linea 100
4	000000000000000000000000000000000000000	hit	
5	000000000000000000000000010000111	miss	blocco 135 _{dec} in linea 111
6	0000000000000000000000011010 <mark>101</mark>	miss	blocco 213 _{dec} in linea 101
7	00000000000000000000000010100 <mark>010</mark>	miss	blocco 162 _{dec} in linea <mark>010</mark>
8	00000000000000000000000010100 <mark>001</mark>	miss	blocco 161 _{dec} in linea 001 [1 _{dec} out]
9	000000000000000000000000000000 <mark>010</mark>	miss	blocco 2 _{dec} in linea 010 [162 _{dec} out]
10	000000000000000000000000000101100	miss	blocco 44 _{dec} in linea 100 [212 _{dec} out]
11	00000000000000000000000000000101001	miss	blocco 41 _{dec} in linea 001 [161 _{dec} out]
12	0000000000000000000000011011 <mark>101</mark>	miss	blocco 221 _{dec} in linea 101 [213 _{dec} out]

Blocco di 1 parola

	Sequenza 2	h/m	cache
	[tag linea]		
1	000000000000000000000000000000000000000	miss	blocco 4 _{dec} in linea 100
2	00000000000000000000000011010 <mark>110</mark>	miss	blocco 214 _{dec} in linea 110
3	0000000000000000000000001011111	miss	blocco 175 _{dec} in linea 111
4	00000000000000000000000011010110		
5	00000000000000000000000000000000000000	hit	
6	000000000000000000000000001010 <mark>100</mark>	miss	blocco 84 _{dec} in linea 100 [4 _{dec} out]
7	000000000000000000000000000000000000000	miss	blocco 65 _{dec} in linea <mark>001</mark>
8	0000000000000000000000001011 <mark>110</mark>	miss	blocco 174 _{dec} in linea 110 [214 _{dec} out]
9	000000000000000000000000000000000000000	miss	blocco 64 _{dec} in linea 000
10	$00000000000000000000000001101 \color{red}001$	miss	blocco 105 _{dec} in linea 001 [65 _{dec} out]
11	000000000000000000000000001010 <mark>101</mark>	miss	blocco 85 _{dec} in linea 101
12	00000000000000000000000011010 <mark>111</mark>	miss	blocco 215 _{dec} in linea 111 [175 _{dec} out]

Blocco di 2 parole $\begin{array}{c} 1 = linea \\ p = parola \end{array}$

	Sequenza 1		cache
	[tag 1 p]		
1	000000000000000000000000000000000000000	miss	blocco $1_{dec}/2 = 0_{dec}$ in linea 00
2	00000000000000000000000010000110	miss	blocco $134_{dec}/2 = 67_{dec}$ in linea 11
3	$0000000000000000000000011010\textcolor{red}{\textbf{100}}$	miss	blocco $212_{dec}/2 = 106_{dec}$ in linea 10
4	000000000000000000000000000000000000000	hit	
5	00000000000000000000000010000111	hit	
6	00000000000000000000000011010 <mark>10</mark> 1	hit	
7	00000000000000000000000010100 <mark>01</mark> 0	miss	blocco $162_{dec}/2 = 81_{dec}$ in linea 01
8	00000000000000000000000010100 <mark>00</mark> 1	miss	blocco $161_{dec}/2 = 80_{dec}$ in linea 00 a
9	000000000000000000000000000000 <mark>01</mark> 0	miss	blocco $2_{dec}/2 = 1_{dec}$ in linea 01 b
10	000000000000000000000000000101 <mark>10</mark> 0	miss	blocco $44_{dec}/2 = 22_{dec}$ in linea 10 c
11	000000000000000000000000000101 <mark>00</mark> 1	miss	blocco $41_{dec}/2 = 20_{dec}$ in linea 00 d
12	00000000000000000000000011011 <mark>10</mark> 1	miss	blocco $221_{dec}/2 = 110_{dec}$ in linea 10 e

```
\begin{array}{l} \mathbf{a} = [ & \mathbf{0}_{\mathrm{dec}} \text{ out}] \\ \mathbf{b} = [ & \mathbf{81}_{\mathrm{dec}} \text{ out}] \\ \mathbf{c} = [ & \mathbf{106}_{\mathrm{dec}} \text{ out}] \\ \mathbf{d} = [ & \mathbf{80}_{\mathrm{dec}} \text{ out}] \\ \mathbf{e} = [ & \mathbf{22}_{\mathrm{dec}} \text{ out}] \end{array}
```


	Sequenza 2	h/m	cache
	[tag <mark>1</mark> p]		
1	000000000000000000000000000000000000000	miss	blocco $4_{dec}/2 = 2_{dec}$ in linea 10
2	0000000000000000000000011010 <mark>11</mark> 0	miss	blocco $214_{dec}/2 = 107_{dec}$ in linea 11
3	0000000000000000000000001011 <mark>1</mark> 1	miss	blocco $175_{dec}/2 = 87_{dec}$ in linea 11 a
4	0000000000000000000000011010 <mark>11</mark> 0	miss	blocco $214_{dec}/2 = 102_{dec}$ in linea 11 b
5	00000000000000000000000000000000 <mark>10</mark> 0	hit	
6	00000000000000000000000001010 <mark>10</mark> 0	miss	blocco $84_{dec}/2 = 42_{dec}$ in linea 10 c
7	00000000000000000000000001000 <mark>00</mark> 1	miss	blocco $65_{dec}/2 = 32_{dec}$ in linea 00
8	0000000000000000000000001011 <mark>11</mark> 0	miss	blocco $174_{dec}/2 = 87_{dec}$ in linea 11 d
9	00000000000000000000000001000 <mark>00</mark> 0	hit	
10	0000000000000000000000000110100101010101	miss	blocco $105_{dec}/2 = 52_{dec}$ in linea 00 e
11	$00000000000000000000000001010\textcolor{red}{\textbf{101}}$	hit	
12	00000000000000000000000011010 <mark>11</mark> 1	miss	blocco $215_{dec}/2 = 102_{dec}$ in linea $11 f$

```
\begin{array}{l} {\bf a} \; = \; [\; 102_{\rm dec} \; \; {\rm out} \; ] \\ {\bf b} \; = \; [\; \; 87_{\rm dec} \; \; {\rm out} \; ] \\ {\bf c} \; = \; [\; \; 2_{\rm dec} \; \; {\rm out} \; ] \\ {\bf d} \; = \; [\; 102_{\rm dec} \; \; {\rm out} \; ] \\ {\bf e} \; = \; [\; \; 32_{\rm dec} \; \; {\rm out} \; ] \\ {\bf f} \; = \; [\; \; 87_{\rm dec} \; \; {\rm out} \; ] \end{array}
```

Blocco di 4 parole $\begin{array}{l} l = linea \\ p = parola \end{array}$

```
h/m cache
                               |1|p]
                  tag
     1
                                             blocco
                                                      1_{dec}/4 = 0_{dec} in linea 0
                                        miss
                                             blocco 134_{dec}/4 = 33_{dec} in linea 1
2
     000000000000000000000000010000110
                                             blocco 212_{dec}/4 = 53_{dec} in linea 1 a
3
     00000000000000000000000011010100
                                        miss
4
     hit
5
                                             blocco 135_{dec}/4 = 33_{dec} in linea 1 b
     000000000000000000000000010000111
                                        miss
6
     0000000000000000000000001101010101
                                             blocco 213_{dec}/4 = 53_{dec} in linea 1 c
                                        miss
                                             blocco 162_{dec}/4 = 40_{dec} in linea 0 d
7
     miss
8
     000000000000000000000000010100001
                                        hit
9
     miss
                                             blocco
                                                     2_{dec}/4 = 0_{dec} in linea 0 e
10
     000000000000000000000000000101100
                                        miss
                                             blocco 44_{dec}/4 = 11_{dec} in linea 1 f
                                             blocco 41_{dec}/4 = 10_{dec} in linea 0 g
11
     miss
                                             blocco 221_{dec}/4 = 55_{dec} in linea 1 h
12
     00000000000000000000000011011101
                                        miss
```

```
\begin{array}{lll} \mathbf{a} = [&33_{\text{dec}} & \text{out}] & \mathbf{f} = [&53_{\text{dec}} & \text{out}] \\ \mathbf{b} = [&53_{\text{dec}} & \text{out}] & \mathbf{g} = [&\theta_{\text{dec}} & \text{out}] \\ \mathbf{c} = [&33_{\text{dec}} & \text{out}] & \mathbf{h} = [&11_{\text{dec}} & \text{out}] \\ \mathbf{d} = [&\theta_{\text{dec}} & \text{out}] & \\ \mathbf{e} = [&4\theta_{\text{dec}} & \text{out}] & \end{array}
```


	Sequenza 2	h/m	cache
	[tag 1 p		
1	000000000000000000000000000000 <mark>1</mark> 00	miss	blocco $4_{dec}/4 = 1_{dec}$ in linea 1
2	$00000000000000000000000011010{\color{red} 1}10$	miss	blocco $214_{dec}/4 = 53_{dec}$ in linea 1 a
3	$00000000000000000000000010101{\color{red}1}11$	miss	blocco $175_{dec}/4 = 43_{dec}$ in linea 1 b
4	$00000000000000000000000011010{\color{red} 1}10$	miss	blocco $214_{dec}/4 = 53_{dec}$ in linea 1 c
5	000000000000000000000000000000 <mark>1</mark> 00	miss	blocco $4_{dec}/4 = 1_{dec}$ in linea 1 d
6	$00000000000000000000000001010{\color{red}100}$	miss	blocco $84_{dec}/4 = 21_{dec}$ in linea 1 e
7	000000000000000000000000000000000000000	miss	blocco 65 _{dec} /4 = 16 _{dec} in linea <mark>0</mark>
8	000000000000000000000000101110	miss	blocco $174_{dec}/4 = 43_{dec}$ in linea 1 f
9	000000000000000000000000000000000000000	hit	
10	000000000000000000000000001101 <mark>0</mark> 01	miss	blocco 105 _{dec} /4 = 26 _{dec} in linea <mark>0</mark> g
11	$00000000000000000000000001010{\color{red} \color{blue} 1}01$	miss	blocco $85_{dec}/4 = 21_{dec}$ in linea 1 h
12	00000000000000000000000011010 <mark>1</mark> 11	miss	blocco $215_{dec}/4 = 53_{dec}$ in linea 1 i

W

Riassumendo i risultati ottenuti abbiamo:

Dimensione blocco	Numero totale miss	Numero totale hit	Migliore
1	21	3	v
2	18 21	6	X

Esercizi Cache

organizzazione e tecniche di allocazione

Es4c: Con riferimento alle sequenze mostrate nell'es4a, supponendo di avere una cache ad associazione diretta in grado di memorizzare 8 parole, quale fra le seguenti dimensioni di blocco

- a) 1 parola
- b) 2 parole
- c) 4 parole

è la più conveniente (minimizza il numero di miss) ?

Es4d: Ripetere l'esercizio 4a nel caso di una cache ad associazione a 2 vie in grado di memorizzare 16 blocchi, ognuno costituito da 1 parola. Usare la politica FIFO per il rimpiazzo dei blocchi.

organizzazione e tecniche di allocazione

Es4c: Con riferimento alle sequenze mostrate nell'es4a, supponendo di avere una cache ad associazione diretta in grado di memorizzare 8 parole, quale fra le seguenti dimensioni di blocco

- a) 1 parola
- b) 2 parole
- c) 4 parole

è la più conveniente (minimizza il numero di miss)?

Es4d: Ripetere l'esercizio 4a nel caso di una cache ad associazione a 2 vie in grado di memorizzare 16 blocchi, ognuno costituito da 1 parola. Usare la politica FIFO per il rimpiazzo dei blocchi.

Soluz. Es4d:

- trattandosi di una cache con associazione a 2 vie, l'indirizzo di memoria centrale deve essere suddiviso nei campi etichetta, set, e parola, ed in particolare:
 - poiché un blocco è costituito da 1 parola, il campo parola è di 0 bit
 - il campo set sarà costituito da 3 bit in quanto: il numero totale di linee della cache è 16 (= 24), che devono essere organizzate in gruppi di 2 linee (vie) ognuno; pertanto il numero di gruppi (set) è 8 (= $2^4/2$)
 - il campo tag sarà quindi costituito dai rimanenti (32-3-0) = 29 bit più significativi
- di seguito si mostra, per ogni seguenza di indirizzi, la corrispondente sequenza di hit e miss

set 001[0] si riferisce alla linea 0 del set 001 set 001[1] si riferisce alla linea 1 del set 001

a si applica la politica FIFO: la linea 001[0] è la prima ad essere stata allocata e quindi è rimpiazzato il suo contenuto. Esce il blocco $1_{\rm dec}$.

	Sequenza 2	h/m	cache
	[tag set]		
1	00000000000000000000000000000000000000	miss	blocco 4 _{dec} in set 100[0]
2	00000000000000000000000011010 <mark>110</mark>	miss	blocco 214 _{dec} in set 110[0]
3	00000000000000000000000010101 <mark>111</mark>	miss	blocco 175 _{dec} in set 111[0]
4	00000000000000000000000011010 <mark>110</mark>	hit	
5	0000000000000000000000000000000 <mark>100</mark>	hit	
6	000000000000000000000000001010 <mark>100</mark>	miss	blocco 84 _{dec} in set 100[1]
7	000000000000000000000000010000001	miss	blocco 65 _{dec} in set 001[0]
8	00000000000000000000000010101 <mark>110</mark>	miss	blocco 174 _{dec} in set 110[1]
9	000000000000000000000000000000000000000	miss	blocco 64 _{dec} in set 000[0]
10	00000000000000000000000001101 <mark>001</mark>	miss	blocco 105 _{dec} in set 001[1]
11	000000000000000000000000001010 <mark>101</mark>	miss	blocco 85 _{dec} in set 101[0]
12	00000000000000000000000011010 <mark>111</mark>	miss	blocco 215 _{dec} in set 111[1]

set 001[0] si riferisce alla linea 0 del set 001 set 001[1] si riferisce alla linea 1 del set 001

Es5: Sia data la seguente sequenza di indirizzi in lettura (l) o scrittura (s) emessi dalla CPU:

	Indirizzo	1/s	dato scritto (in esadecimale)
1 2	000100000000 000100001000	1	
3	000100001000	S	B1
4	000100001100	1	D.4
5 6	000100010000 000100010000	s 1	B4
7	000100010100	s	B7

Si assuma che la dimensione di parola coincida con un byte, e la presenza di una cache di ampiezza 16B, dimensione di blocco 4B, inizialmente vuota, e ad associazione a 2 vie (con politica di rimpiazzo LRU e politica di scrittura write-through).

Si assuma che la memoria abbia il contenuto esadecimale mostrato di seguito:

ind	byte	ind	byte	ind	byte	ind	byte
100	0C	101	00	102	07	103	02
104	00	105	00	106	00	107	00
108	AE	109	13	10A	A1	10B	23
10C	A1	10D	42	10E	90	10F	75
110	В9	111	16	112	00	113	00
114	0A	115	07	116	03	117	71

Si mostri come sia il contenuto della cache che il contenuto della memoria cambia.

ind = indirizzo

Soluzione:

Poiché un blocco è costituito da 4B, e la cache è di 16B, si avranno in cache 16/4 = 4 linee.

Essendo l'associatività a due linee (2 vie), la cache sarà costituita da due insiemi (set 0 e set 1) ognuno di 2 linee.

Quindi i 12 bit di indirizzo saranno suddivisi nel seguente modo:

- i 2 bit meno significativi individueranno il byte all'interno del blocco;
- il terzo bit da destra individuerà l'insieme (set 0 o set 1);
- i restanti bit costituiranno il campo tag.

Mostriamo di seguito l'evoluzione del contenuto della cache e della memoria.

Per la cache, nel caso in cui tutte e due le linee di un insieme (set) siano libere, si sceglie la linea con indirizzo minore per la allocazione (scelta arbitraria: si poteva usare un criterio diverso).

In caso di miss per una operazione di scrittura, si assume la politica "write allocate", cioè si porta prima in cache il blocco che contiene la parola da scrivere e poi si effettua la scrittura.

Nome e Cognome: Matricola: Pagina 6

Esercizio

es8

Sia data la seguente sequenza di indirizzi in lettura (l) o scrittura (s) emessi dalla CPU e che la memoria abbia il contenuto esadecimale mostrato di seguito:

				ind	. byte	ind	byte	ind	byte	ind	byte
#	indirizzo	l/s	byte				J		J		3
			scritto	100	08	101	DO	102	07	103	02
	(binario)		(HEX)	104	00	105	00	106	00	107	00
1	000100001000	s	43	108	AE	109	13	10A	A1	10B	23
2	000100001100	s	3F	100	A1	10D	42	10E	90	10F	75
3	000100001111	1		110	BB	111	16	112	00	113	00
4	000100001101	1		114	. OA	115	87	116	03	117	71
5	000100010100	1		118	3E	119	13	11A	A1	11B	23
6	000100011111	s	AE	110	A1	11D	82	11E	90	11F	15
7	000100000111	s	CD	120	F9	121	86	122	AO	123	00
8	000100100110	1		124	E9	125	16	126	05	127	00

Si assuma che la dimensione di parola coincida con un byte, e la presenza di una cache di ampiezza 16B, dimensione di blocco 2B, inizialmente vuota, e ad associazione a 2 vie (politica di rimpiazzo LRU, politica di scrittura write-back e gestione dei miss in scrittura con la politica write allocate).

Si mostri come sia il contenuto della cache che il contenuto della memoria cambia.

Soluzione (da compilare)

- Indicare di seguito in quali campi (e la loro dimensione) gli indirizzi emessi dalla CPU sono suddivisi: tag (o etichetta) da 9 bit, set (o insieme) da 2 bit, word (o parola) da 1 bit
- Indicare di seguito in quante linee/set la cache è suddivisa: La cache è costituita da 4 set, ognuno di 2 linee da 2B

Indicare l'evoluzione della cache e della modifica della memoria nello schema sottostante:

Indirizzo	hit/		Modifica memoria						
	miss	(per ogni linea	(per ogni linea di cache indicare il contenuto del campo tag)						
		set 00	set 01	set 10	set 11				
$108_{HEX} \atop 000100001000$	miss	$\begin{array}{c} linea \ 0 \\ [AE13] \\ write \ allocate \\ \downarrow \downarrow \\ linea \ 0 \\ [4313]^* \\ tag:000100001 \end{array}$							
$10C_{HEX} \ _{000100001100}$	miss	linea 0 [4313]* tag:000100001		$linea \ 0 \ [A142]$ $write \ allocate$ \downarrow $linea \ 0 \ [3F42]^*$ $tag:000100001$					

continuare nella pagina sequente

Indirizzo	hit/ miss	Cache (per ogni linea di cache indicare il contenuto	Modifica memoria M[ind.] = contenuto	
		set 00 set 01 set 10	set 11	
$10F_{HEX} \ _{000100001111}$	miss	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	linea 0 [9075] 01 tag:000100001	
$10D_{HEX}_{000100001101}$	hit	$\begin{array}{ccc} linea \ 0 & linea \ 0 \\ [4313]^* & [3F42]^* \\ tag:000100001 & tag:0001000 \end{array}$	linea 0 [9075] 01 tag:000100001	
$114_{HEX} \ 0001000101000$	miss	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} linea \ 0 \\ [9075] \\ 01 \ tag:000100001 \end{array}$	
000100010100		$[0A87] \ tag:0001000$	10	
		$\begin{array}{ccc} linea \ 0 & linea \ 0 \\ [4313]^* & [3F42]^* \\ tag:000100001 & tag:0001000 \end{array}$	$\begin{array}{c} linea \ 0 \\ \left[9075 \right] \\ 01 \ tag: 000100001 \end{array}$	
		$egin{array}{c} linea \ 1 \ igl[0A87 igr] \ tag:0001000 \end{array}$	$\begin{array}{c} linea \ 1 \\ \left[9015 \right] \\ 10 \textit{write allocate} \\ \downarrow \\ \end{array}$	
$11F_{HEX} \atop 000100011111$	miss		$\begin{smallmatrix}linea&1\\[90AE]^*\\tag:000100011\end{smallmatrix}$	
		$\begin{array}{ccc} linea & 0 & linea & 0 \\ [4313]^* & & [3F42]^* \\ tag:000100001 & & tag:0001000 \end{array}$	$\begin{array}{c} linea \ 0 \ [LRU] \\ [0000] \\ 01 write \ allocate \end{array}$	
		$\begin{array}{c} linea \ 1 \\ [0.487] \\ tag:0001000 \end{array}$	$ \begin{array}{c} $	
$_{0001000000111}^{107_{HEX}}$	miss	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \downarrow \\ linea~0~[LRU] \\ [00CD]^* \\ tag:000100000 \end{array}$	
		$egin{array}{c} linea \ 1 \ igl[0A87 igr] \ tag:0001000 \end{array}$	$ \begin{array}{c} linea \ 1 \\ [90AE]^* \\ tag:000100011 \end{array} $	
$\frac{126_{HEX}}{000100100110}$	miss	$\begin{array}{ccc} linea \ 0 & linea \ 0 \\ [4313]^* & [3F42]^* \\ tag:000100001 & tag:0001000 \end{array}$	$\begin{array}{c} linea \ 0 \\ [00CD]^* \\ tag:000100000 \end{array}$	Min El 00
		$linea \ 1 \ igl[0A87igr] \ tag:0001000$	$\begin{array}{c} linea \ 1 \ [LRU] \\ [0500] \\ 10 \\ tag:000100100 \end{array}$	M[11E] = 90 $M[11F] = AE$

^{*} indica linea sporca a causa della politica write-back

Nome e Cognome: Matricola: Pagina 5

Esercizio

es8

Sia data la seguente sequenza di indirizzi in lettura (l) o scrittura (s) emessi dalla CPU e che la memoria abbia il contenuto esadecimale mostrato di seguito:

				ind	byte	ind	byte	ind	byte	ind	byte
#	indirizzo	l/s	byte		•		J		J		J
			scritto	100	80	101	DO	102	07	103	02
	(binario)		(HEX)	104	00	105	00	106	00	107	00
1	000100000100	1		108	ΑE	109	13	10A	A1	10B	23
2	000100001100	s	3F	10C	A1	10D	42	10E	90	10F	75
3	000100001111	1		110	BB	111	16	112	00	113	00
4	000100001101	s	A9	114	OA	115	87	116	03	117	71
5	000100010100	1		118	3E	119	13	11A	A1	11B	23
6	000100011111	s	5E	11C	A1	11D	82	11E	90	11F	15
7	000100000111	s	66	120	F9	121	86	122	AO	123	00
8	000100100110	1		124	E9	125	16	126	05	127	00

Si assuma che la dimensione di parola coincida con un byte, e la presenza di una cache di ampiezza 32B, dimensione di blocco 4B, inizialmente vuota, e ad associazione a 2 vie (politica di rimpiazzo FIFO, politica di scrittura write-through e gestione dei miss in scrittura con la politica write allocate).

Si mostri come sia il contenuto della cache che il contenuto della memoria cambia.

Soluzione (da compilare)

- Indicare di seguito in quali campi (e la loro dimensione) gli indirizzi emessi dalla CPU sono suddivisi: tag (o etichetta) da 8 bit, set (o insieme) da 2 bit, word (o parola) da 2 bit
- Indicare di seguito in quante linee/set la cache è suddivisa: La cache è costituita da 4 set, ognuno di 2 linee da 4B

Indicare l'evoluzione della cache e della modifica della memoria nello schema sottostante:

Indirizzo	hit/		Modifica memoria					
	miss	(per ogni lin	(per ogni linea di cache indicare il contenuto del campo tag)					
		set 00	set 01	set 10	set 11			
$104_{HEX} \atop 0001100000100$	miss		$\begin{bmatrix}linea & 0\\ [00000000]\\tag:00010000\end{bmatrix}$					
			$\begin{bmatrix} linea & 0 \\ [00000000] \\ tag:00010000 \end{bmatrix}$		$\begin{bmatrix} linea & 0 \\ [A1429075] \\ write & allocate \\ \downarrow \downarrow$			
$\frac{10C_{HEX}}{000100001100}$	miss				$\begin{array}{c} linea \ 0 \\ [3F429075] \\ tag:00010000 \end{array}$	M[10C] = 3F		
$10F_{HEX} \atop 000100001111$	hit		$\begin{array}{c} linea \ 0 \\ \left[00000000\right] \\ tag:00010000 \end{array}$		$\begin{array}{c} linea \ 0 \\ [3F429075] \\ tag:00010000 \end{array}$			

continuare nella pagina sequente

Indirizzo	hit/		Modifica memoria			
	miss	(per ogni line	M[ind.] = contenuto			
		set 00	set 01	set 10	set 11	
$10D_{HEX} \atop 000100001101$	hit		$\begin{array}{c} linea \ 0 \\ [00000000] \\ tag:00010000 \end{array}$		$^{linea~0}_{[3FA99075]}_{tag:00010000}$	M[10D] = A9
$114_{HEX} \ _{000100010100}$	miss		linea 0 [0000000] tag:00010000		$[3FA99075] \ tag:00010000$	
000100010100			$\begin{array}{c} linea \ 1 \\ [0A870371] \\ tag:00010001 \end{array}$			
			$\begin{array}{c} linea \ 0 \\ \left[00000000\right] \\ tag:00010000 \end{array}$		$linea \ 0 \ [3FA99075] \ tag:00010000$	
			$egin{array}{l} linea & 1 \ [0.4870371] \ tag:00010001 \end{array}$		$\begin{array}{c} linea \ 1 \\ [A1829015] \\ write \ allocate \\ \downarrow \end{array}$	
$11F_{HEX} \atop 0001000111111$	miss				$\begin{array}{c} linea \ 1 \\ [A182905E] \\ tag:00010001 \end{array}$	M[11F] = 5E
107_{HEX}	hit		$\begin{array}{c} linea \ 0 \\ \left[0000066\right] \\ tag:00010000 \end{array}$		$linea \ 0 \ [3FA99075] \ tag:00010000$	
000100000111	1110		$linea\ 1\ [0A870371]\ tag:00010001$		$\begin{bmatrix}linea \ 1\\ A182905E]\\tag:00010001\end{bmatrix}$	M[107] = 66
126			$egin{array}{lll} linea & 0 & [FIF] \ [E9160500] \ tag:0001001 \end{array}$)]	$\begin{array}{c} linea \ 0 \\ [3FA99075] \\ tag:00010000 \end{array}$	
$\frac{126_{HEX}}{000100100110}$	miss		$\begin{array}{c} linea \ 1 \\ [0A870371] \\ tag:00010001 \end{array}$		$\begin{array}{c} linea \ 1 \\ [A182905E] \\ tag:00010001 \end{array}$	