Prénom: THEO

Nom: DENIS

NOMA: 27411800

Travail 3

Transistor bipolaire: Analyse DC et AC

Soit l'amplificateur bipolaire représenté à la Fig. 3.1, où le signal du générateur est noté v_{SIG} , l'entrée est notée v_{IN} et la sortie est notée v_{OUT} .

Fig. 3.1 – Schéma du circuit de l'amplificateur bipolaire.

La tension d'alimentation est $V_{DD}=5$ [V] et le transistor est un bipolaire BC107B. Les capacités du montage valent respectivement $C_{in}=1$ [μ F] et $C_L=0.1$ [μ F]. La résistance de base vaut $R_B=168$ [$k\Omega$] et la résistance de générateur $R_{sig}=100$ [Ω]. On considère par ailleurs 3 cas pour les valeurs des résistances R_E et R_C :

- 1. $R_E = 50 [\Omega]$ et $R_C = 330 [\Omega]$.
- 2. $R_E = 10 [k\Omega]$ et $R_C = 3.3 [k\Omega]$.
- 3. $R_E = 10 \, [\text{M}\Omega] \, \text{et} \, R_C = 1 \, [\text{k}\Omega].$

Analyse DC

- 1. Sur base du schéma de l'amplificateur de la Fig. 3.1
 - Donnez le type de transistor utilisé?

Bipolaire NPN

- Identifiez les bornes du transistor auxquelles correspondent v_{IN} et v_{OUT} ?

Nin: Base / Nout : Collection

- Identifiez la configuration d'amplificateur utilisée?

Emetteur commun (entré sur base, sontie sur collecteur)

- Donnez les conditions de polarisation pour placer le transistor en régime actif. Sur base de simulations Spice, identifiez ensuite dans quelle régime se trouve le transistor pour les 3 choix de résistances de polarisation proposés.

3 choix de résistances de polarisation proposes.

Pour être en régime actif: VBC < 0.4V, $VBE \approx 0.7V$, VCE > 0.3VIN RE = 500 et Re = 330 a « Actif (VBC = 1.5V, VBE = 0.74V, VCE = 1.32V)

2) RE = 10 ka et Re = 3,3 ka : Saturé (VBC = 0.42V, VBE = 0.638V) VCE = 0.16V)

3) RE=10 Ma et RE=18. a: Cut-off (VE=031V, VBC=0V

2. Pour le cas où le transistor se trouve en régime actif, donnez toutes les équations qui permettent de calculer les courants et tensions du montage. Comparez ensuite avec les valeurs Spice extraites au travers d'une simulation du point de fonctionnement DC (.op).

sont proches avec un maximum d'écat de les valeurs de VB

Point de polarisation

Grandeur	Unité	Valeur calculée	Valeur simulée sur Spice
I_B	MA	23,41	23,32
I_C	mA	7,33	7,36
I_E	m A	7,35	7,33
V_B	V	1068	1,081
V_C	V	2,58	2,59
V_E	V	6,368	6,366

Analyse AC

3. Donnez les équations des paramètres petit signal g_m , r_o , r_π et r_e du transistor bipolaire et estimez leurs valeurs numériques. Comparez avec les valeurs extraites de Spice.

Formules $g_{m} = \underbrace{\partial i}_{\partial N_{BC}}$	证证 工	$R_{\pi} = \underbrace{\text{Nbe}}_{\text{ib}} = \underbrace{\text{B}}_{\text{gm}}$	P=Pax=335 (wient de LTSpice
No = 1 =	VA ; Re	= nobe = of of a =	
Grandeur	Unité	Valeur calculée	Valeur simulée sur Spice
8m	m S	283	282
r_0	ka.	8,13	8,36
r_{π}	6a	1,19	1 19
r_e	Ω	3,53	3,53

4. Dessinez le schéma petit signal du circuit d'amplification. Calculez les résistances d'entrée (par rapport à v_{IN}) et de sortie de l'amplificateur. Calculez les gains petit signal $\frac{v_{out}}{v_{in}}$ et $\frac{v_{out}}{v_{sig}}$ dans la bande passante.

Résistances d'entrée et de sortie du circuit d'amplification

Néglige effet l'anly:
$$n_0 = \infty$$

Rin = Nin| $\rightarrow lin = (1-\alpha)Nin + Nin = Nin = RB(NE+RE)$
 $lin | R_{L=\infty} \rightarrow Rot = RE$

Rout = Nout | $\rightarrow Rout = RE$

Rout = 330. $\rightarrow Rout = 330$.

Prénom: THÉO

Nom: DENIS

NOMA: 27411800

5. Simulez en AC et tracez le diagramme de Bode des gains (du montage et du circuit) en fonction de la fréquence avec une source de tension AC (v_{SIG} appliquée via une capacité de découplage de 1 [μ F]) et une charge capacitive de 100 [nF] (entre v_{OUT} et la masse). Comparez avec vos calculs de l'exercice précédent. Calculez aussi les limites haute et basse de la bande passante.

