

Usable Security

What Is It and Why Do We Need It?

Karoline Busse

Usable Security and Privacy Research Group, Universität Bonn

Usability + Security

Why We Need Usability

CC-BY-ND Rick Dolishny

Why We Need Security

"Leider wurde unser größtes Eiswerk in Hoppenheim Opfer einer Hacker-Attacke, wodurch die Produktion [...] zwei Tage lang komplett ausfielen."

 $[\ldots]$

Zu unserer eigenen Unzufriedenheit kommt es daher derzeit bei einigen Artikeln zu Engpässen."

Pic: @skoops/Twitter

Why Do We Need Usable Security?

Adapted from Jonathan Nightingale

Because Security is Hard. We want to make it easy!

- Three seminal papers are seen as the origin of Usable Security and Privacy research:
 - 1996 Zurko and Simon's: "User-Centered Security"
 - 1999 Adams and Sasse's: "Users Are Not the Enemy"
 - 1999 Whitten and Tygar's "Why Johnny Can't Encrypt: A Usability Evaluation of PGP 5.0"
 - USENIX Security Test of Time Award 2015
- All argued that users should not be seen as the problem to be dealt with,
 - but that security experts need to communicate more with users, and adopt user-centered design approaches.

PGP: The Classic

What We Do

Usable Security for Professionals

Facilitating Malware Analysis

Source code

Compilation

High-level abstractions are lost

Decompiled code

Decompilation

Recovered abstractions

Binary code

universitä

Facilitating Malware Analysis

Decompiling a P2P Zeus sample with Hex-Rays

- 1,571 goto for 49,514 LoC
- 1 goto for each 32 LoC

DREAM Decompiler

- No more gotos!
- Most compact code

NDSS'15 Distinguished Paper: "No More Gotos:

Decompilation Using Pattern-Independent Control-Flow Structuring and Semantic-Preserving Transformations

DREAM++ Decompiler

- Additional usability improvements
- Conducted quantitative user study

```
\mathbf{if}(A)
          do
              while (c_1)
                  n_1
              if(c_2)
R_1
                  break
             n_3
          while (c_3)
       else
          if (\neg b_1)
             n_4
          if (b_1 \wedge b_2)
R_2
           else
              n_5
          n_7
          while ((d_1 \wedge d_3) \vee (\neg d_1 \wedge d_2))
```


- 3 decompilers (within-subjects)
 - Hex-Rays
 - DREAM
 - DREAM++

- IEEE S&P '16: "Helping Johnny to Analyse Malware: A Usability-Optimized Decompiler and Malware Analysis User Study"
- 2 levels of experience (between-subject)
 - Students and Professionals
- 2 groups of malware analysis tasks (split-plot)
 - 3 medium and 3 hard tasks (within-subjects)

Decompiler	Avg. Score	р	Pass	Fail	р
Students					
Dream ⁺⁺	70.24		30	12	
DREAM	50.83	0.002	16	26	0.002
Hex-Rays	37.86	< 0.001	11	31	< 0.001
Experts					
DREAM ⁺⁺	84.72		15	3	
DREAM	79.17	0.234	15	3	0.570
Hex-Rays	61.39	0.086	9	9	0.076

Follow-Up Research and Startup

- Follow-Up: Function Recognition in Binaries
 - Cooperation with Politecnico di Milano
 - To be published 2018
- Startup: Code Intelligence

ERC Research Grant: Frontiers of Usable Security

ERC Grant: USec Frontiers

- Password storage is hard
 - See latest password breaches (Yahoo et al.)
- Where do developers struggle?
 - Researching password storage APIs in Java

Why is password storage so hard?

- 2 frameworks (between-subjects)
 - JSF (manual implementation)
 - Spring (opt-in)
- 2 levels of priming (between-subject)
 - With or without security emphasis
- Pre-screening survey and debriefing interview

- Security knowledge does not guarantee secure software
- More usable APIs are not enough
 - Secure password storage needs to be enforced
- Explicitly requesting security is necessary
- Continious Learning: Many implemented outdated mechanics
- Conflicting advice on secure storage makes it hard

ACM CCS 2017: "Why Do Developers Get Password Storage Wrong? A Qualitative Usability Study"

Perception of Security and Privacy

- Different people have different conceptions of security and privacy
 - Example: Threat modeling
 - This shapes security decisions and habits
- Products are often designed with a Western (US/EU) audience in mind
 - How does this influence adaption in other cultural contexts (e.g. Asia, Middle East)
- In the work context, seucirty narratives can influence employee happiness and internal power struggles

Security Narratives

- Interview study within a small consulting company
 - 5 employees, 1 CEO
- Surprising findings:
 - Uncertainty is not necessarily a bad thing
 - Fruitful discussions and mutual education

EuroUSEC 2017 WIP: "Security Narratives: Can (Language) Insecurities be Beneficial for Security Departments?"

Methods in Usable Security Research

- Brand new sibling research group since autumn 2017
 - Head: Emanuel von Zezschwitz
 - Heavily HCl influenced
- Methodological research:
 - Lab studies vs. Field studies
 - Experts vs. End users
- Mobile HCI, Privacy and Security

Questions?