Caution: The notation [n] can denote both the set of numbers $\{1, \ldots, n\}$ or the equivalence class of n with respect to some equivalence relation. Which of these is meant should be clear from context. On this sheet, it will be *mostly* mean the latter, since we talk about equivalence relations. But to clear up the ambiguity, we mostly explicitly wrote either $\{1, \ldots, n\}$ or $[n]_{\sim}$ in the solutions.

Exercise 1

- a) Give two relations each over the set [5]:
 - i) that are well-founded
 - ii) that are not well-founded
- b) Which of the following relations is well-founded? Give a justification of why or why not.
 - i) A relation that is irreflexive, asymmetric, and finite.
 - ii) The relation $R = \{(n-1, n) \mid n \in \mathbb{N} \}.$
 - iii) The relation RR, where R is defined as above.
 - v) The divisibility order on \mathbb{N} , i.e. $R = \{(a,b) \mid a,b \in \mathbb{N} \text{ and } \exists c(c \in \mathbb{Z} \land a \cdot c = b)\}.$
 - vi) The relation $\{(uabv, ubav) \mid u, v \in \{a, b, c\}^*\}$; that is, two words w and w' are related if we can obtain w' from w by replacing one occurrence of the subword ab with ba.

Note: Exercise iv) was removed because the supposed partial order in it was not actually a partial order.

Solution:

- a) i) As long as the transitive closure of the relation defined over the set [5] does not contain any cycles, it will be well founded in this case because the set [5] is finite. E.g. $R_1 = \emptyset$, $R_2 = \{(1,2),(2,3),(3,5)\}$.
 - ii) An infinite descending chain must be present in the relation to make it not well founded. E.g. in $R_3 = \{(1,2), (2,3), (3,5), (5,1)\}$, we have the infinite descending chain $1, 2, 3, 5, 1, 2, 3, 5, 1, \ldots$ Another trivial example is $R_4 = [5] \times [5]$.
- b) i) Such a relation is not necessarily well-founded as it may contain cycles. The above example of $R = \{(1,2), (2,3), (3,5), (5,1)\}$ is irreflexive, asymmetric, and finite but it still contains an infinite descending chain.
 - ii) Well-founded. If we start at n, we can descend at most n+1 times as the relation is only defined on \mathbb{N} ; it is not defined past -1.
 - iii) Well-founded. This relation is similar to the example above, but now it can be written as $R = \{(n-2,n) \mid n \in \mathbb{N}\}$. Since we now take two steps at a time, we can only make $\lceil \frac{n}{2} \rceil$. In general, it is easy to see that if R is well-founded then R^n is also well-founded for any $n \geq 1$.
 - v) Well-founded. If we start at a non-zero number n, then every time we descend, the numbers get strictly smaller and we already know that $< \mathbb{N}$ is well-founded, so we can only descend finitely often also in the divisibility order (at most n-1 times since 1 is least).

If we start at 0, we can descend to any number $n \in \mathbb{N} \setminus \{0\}$ and then we can again only descend at most n-1 times, as we have just seen.

Note that this is an interesting case: for any natural number n, there is a descending chain in the divisibility order starting from 0. So there are arbitrarily long infinite descending chains, but there is no *infinite* descending chain.

vi) Well-founded. Every time we descend, we replace a ba in the word with ab while leaving the rest of the word the same. So if we had an infinite descending chain w_0, w_1, w_2, \ldots with $|w_0| = n$ then this would also be an infinite descending chain in the n-times lexicographic product of the (obviously well-founded) relation $a \prec b \prec c$, and the lexicographic product of finitely many well-founded relations is again well-founded.

An alternative view is that we can define a 'measure' function $m: \Sigma^* \to \mathbb{N}$ that counts the number of index pairs (i,j) with $1 \le i < j \le |w|$ such that $w_i = b$ and $w_j = a$. Every time we descend, this measure function decreases by 1, so it is clear that we can only descend finitely often (namely $m(w_0)$ times).

Exercise 2

For each of the following, determine if it is an equivalence relation or not. If yes, also describe what the equivalence classes look like.

- a) $x \sim y$ iff x + y is odd (over the set \mathbb{Z})
- b) $x \sim y$ iff x + y is even (over the set \mathbb{N})
- c) $x \sim y$ iff $|x y| \le 5$ (over the set \mathbb{Z})
- d) $x \sim y$ iff f(x) = f(y) (over the set A) for some function $f: A \to B$
- e) $x \sim_z y$ for points $x, y \in \mathbb{R}^2$ iff x and y have the same distance from some fixed point $z \in \mathbb{R}^2$
- f) $l_1 \sim l_2$ iff l_1 and l_2 are parallel lines in the Euclidean plane
- g) $l_1 \sim l_2$ iff l_1 and l_2 are orthogonal lines in the Euclidean plane
- h) $l_1 \sim l_2$ iff l_1 and l_2 are intersecting lines in the Euclidean plane

Solution:

- a) No. This not even reflexive since x+x=2x is never odd. (Transitivity also does not hold, e.g. $1\sim 2$ and $2\sim 3$ but $1\nsim 3$.
- b) Yes. Reflexive since x + x = 2x is always even. Symmetric due to commutativity of +. Transitive because if x+y is even then x and y are either both odd or both even. If additionally y+z is even, then in the first case z also has to be even and in the second case it also has to be odd.
 - The two equivalence classes are simply the set of all even numbers $[0]_{\sim}$ and the set of all odd numbers $[1]_{\sim}$.
- c) No. It is reflexive and symmetric, but transitivity is violated because $0\sim 3$ and $3\sim 6$ but $0\sim 6$.
- d) Yes. Reflexivity, symmetric, and transitivity are all obvious. The equivalence classes are all of the form $f^{-1}(y)$ for some $y \in \text{ran}(f)$. We have $[x]_{\sim} = f^{-1}(f(x))$.
 - The equivalence classes of \sim are also called the *fibres* of f. The equivalence relation \sim is sometimes called the *equivalence kernel*.

- e) Yes. This is just an instance of d) with the function $x \mapsto d(x, z)$ where $d(\cdot, \cdot)$ denotes the distance in the Euclidean plane. The equivalence classes of \sim are circles around the point z. Each real number $r \geq 0$ gives rise to an equivalence that is a circle of radius r around z.
- f) Yes. Reflexivity, symmetry, and transitivity are easy to see, and the equivalence classes are simply bundles of parallel lines (i.e. lines that face in the same direction). Every angle between 0° (inclusive) and 360° (exclusive) gives rise to a different equivalence class.
- g) No. This already violates reflexivity since no line is orthogonal to itself.
- h) No. This violates transitivity. In the following configuration, each of the horizontal lines intersects with the vertical one, but the two horizontal lines do not intersect.

Exercise 3

For $m \in \mathbb{Z}$, define a relation \equiv_m on \mathbb{Z} defined such that $a \equiv_m b \leftrightarrow m \mid (a - b)$.

You may use without proof that if $a \mid b$ and $a \mid c$ then also $a \mid -a$ and $a \mid (b+c)$.

- a) Show that \equiv_m is an equivalence relation.
- b) What do the equivalence classes of \equiv_4 look like? What about \equiv_m in general (for $m \geq 2$)?
- c) What are the equivalence classes of \equiv_0 and \equiv_1 ?
- d) Let $f, g: \mathbb{Z}/\equiv_m \times \mathbb{Z}/\equiv_m \to \mathbb{Z}/\equiv_m$ with f([x], [y]) = [x+y] and $g([x], [y]) = [x\cdot y]$. Show that f and g are well-defined.
- e) What would be a reasonable canonical representative of the equivalence class $[a]_{\equiv_m}$ for $m \geq 2$? Solution:
 - a) Reflexivity: $a \equiv_m a$ because $m \mid 0 = (a a)$.
 - Symmetry: Suppose $a \equiv_m b$. Then $m \mid (a b)$. But then also $m \mid -(a b) = b a$ and thus $b \equiv_m a$.
 - Transitivity: Suppose $a \equiv_m b$ and $b \equiv_m c$. Then $m \mid (a-b)$ and $m \mid (b-c)$. But then also $m \mid (a-b) + (b-c) = (a-c)$.
 - b) $[0]_{\equiv_4} = \{\dots, -8, -4, 0, 4, 8, \dots\}$
 - $[1]_{\equiv_4} = \{\ldots, -7, -3, 1, 5, 9, \ldots\}$
 - $[2]_{\equiv_4} = \{\ldots, -6, -2, 2, 6, 10, \ldots\}$
 - $[3]_{\equiv_4} = \{\dots, -5, -1, 3, 7, 11, \dots\}$

In general, the equivalence classes have the form $[a]_{\equiv_m} = \{\dots, a-2m, a-m, a, a+m, a+2m, \dots\}$.

- c) $a \equiv_0 b \leftrightarrow 0 \mid (a-b) \leftrightarrow a-b=0 \leftrightarrow a=b$ So $a \equiv_0 b$ is simply the identity relation, whose equivalence classes have the form $[a]_0 = \{a\}$.
 - $a \equiv_1 b \leftrightarrow 1 \mid (a b) \leftrightarrow$ True Thus $a \equiv_1 b$ is simply the universal relation $\mathbb{Z} \times \mathbb{Z}$ and there is only one big equivalence class, namely \mathbb{Z} itself.

- We need to prove that the function $(a,b) \mapsto [a+b]_{\equiv_m}$ is invariant under \equiv_m . That is: if $a \equiv_m a'$ and $b \equiv_m b'$, then $[a+b]_{\equiv_m} = [a'+b']_{\equiv_m}$, i.e. $a+b \equiv_m a'+b'$.

 Unfolding the definition of \equiv_m everywhere, we have as assumptions $m \mid (a-a')$ and $m \mid (b-b')$ and we must show that $m \mid ((a+b)-(a'+b'))$. We can rearrange this goal to $m \mid ((a-a')+(b-b'))$, which follows directly from the assumptions.
 - We shorten things a bit this time: Suppose $m \mid (a-a')$ and $m \mid (b-b')$. Obtain $k, l \in \mathbb{Z}$ such that a-a'=km and b-b'=lm, i.e. a'=a-km and b'=b-lm.

We need to show that $m \mid (a \cdot b - a' \cdot b')$. We simplify the right-hand side by plugging in the above equations for a' and b' and obtain:

$$a \cdot b - a' \cdot b' = ab - (a - km)(b - lm) = m(al + bk - kl)$$

This is now obviously divisible by m, as required.

e) One can e.g. simply pick the smallest non-negative number in the equivalence class. This can be computed as $a - \lfloor \frac{a}{m} \rfloor \cdot m$, i.e. the remainder of the integer division $a \div m$ (this remainder is often written as 'a mod b', or, in many programming languages, 'a % b').

Bonus exercise

Let \sim_1 and \sim_2 be equivalence relations on some set A. We say that \sim_1 is a refinement of \sim_2 if $x \sim_1 y$ implies $x \sim_2 y$ for all $x, y \in A$. We write this as $\sim_1 \leq \sim_2$.

- a) Check that \leq defines a partial order on the set of equivalence relations.
- b) List all equivalence relations (or equivalently, partitions) of the set $\{1, 2, 3, 4\}$ in a format of your choice and draw the refinement relation on these as a Hasse diagram.
- c) In general, what are the finest and coarsest equivalence relations on A, i.e. what are the least and greatest elements of \leq ? What do their equivalence classes look like?
- d) Show that $\sim_1 \leq \sim_2$ iff every equivalence class of \sim_1 is a subset of an equivalence class of \sim_2 .
- e) Write a computer program that generates a list of all equivalence relations on the set $\{1, \ldots, n\}$ in a format of your choice. How many are there for n = 0 to 10?

Solution:

- a) All three properties are fairly obvious:
 - Reflexivity: $x \sim_1 y$ implies $x \sim_1 y$ for all $x, y \in A$.
 - Antisymmetry: If $\sim_1 \leq \sim_2$ and $\sim_2 \leq \sim_1$ then for any $x, y \in A$ we have $x \sim_1 y \to x \sim_2 y$ and $x \sim_2 y \to x \sim_1 y$, so $x \sim_1 y \leftrightarrow x \sim_2 y$, so $x \sim_1 y \leftrightarrow x \sim_2 y$, so $x \sim_1 y \leftrightarrow x \sim_2 y$.
 - Transitivity: If $\sim_1 \leq \sim_2$ and $\sim_2 \leq \sim_3$ then for any $x, y \in A$ with $x \sim_1 y$ we have $x \sim_2 y$ and then $x \sim_3 y$.
- b) We simply write out the equivalence classes and abbreviate a bit, e.g. we write 12, 34 instead of $\{\{1,2\}, \{3,4\}\}$. We then have the following 15 equivalence relations, grouped by how many equivalence classes there are and what size they have:
 - four different classes: 1, 2, 3, 4
 - one class of size 2 and two classes of size 1: 12, 3, 4, 13, 2, 4, 14, 2, 3, 23, 1, 4, 24, 1, 3, 34, 1, 2
 - \bullet two classes of size 2: 12, 34, 13, 24, 14, 23
 - one class of size 3, one class of size 1: 123, 4, 124, 3, 134, 2, 234, 1

• only one class: 1234

- c) The finest one (least element of \leq) is the discrete relation (or identity relation) Id_A where every element is its own equivalence class.
 - The coarsest one (greatest element of \leq) is the universal relation $A \times A$ with only one big equivalence class, namely A itself.
- d) For the first direction, suppose $\sim_1 \leq \sim_2$ and let X be an equivalence class of \sim_1 . Then there exists $x \in A$ such that $X = [x]_{\sim_1}$. We then claim that $[x]_{\sim_1} \subseteq [x]_{\sim_2}$. To show this, let $y \in [x]_{\sim_1}$. Then $y \sim_1 x$. But then also $y \sim_2 x$ by our assumption and thus $y \in [x]_{\sim_2}$.
 - For the other direction, suppose every equivalence class of \sim_1 is a subset of some equivalence class of \sim_2 . We need to show that $\sim_1 \leq \sim_2$. So let $x, y \in A$ with $x \sim_1 y$. Then $y \in [x]_{\sim_1}$. But then by our assumption there exists some $z \in A$ with $[x]_{\sim_1} \subseteq [z]_{\sim_2}$ and thus $x \in [z]_{\sim_2}$ and also $y \in [z]_{\sim_2}$ and thus $x \sim_2 z$ and $y \sim_2 z$. By transitivity, $x \sim_2 y$ as desired.
- e) The function partitions computes a list of all partitions of the input set S. We shall represent sets as lists with no duplicate elements. A partition is represented as a set of sets (i.e. a list of lists). Note that since we represent the input S as a list, we have some implicit order on the elements (i.e. there is a 'first element').

If S is empty, the empty partition is the only partition.

Otherwise, we pick the first element x of S and then construct an equivalence class for it. Every subset of S that contains x is a valid choice, so we just pick an arbitrary subset X of $S \setminus \{x\}$, and use $X \cup \{x\}$ as the equivalence class of x.

Then we recursively find a partition of the remaining set $S \setminus (X \cup \{x\})$.

import Data.List

```
type Partition a = [[a]]

partitions :: Eq a => [a] -> [Partition a]
partitions [] = [[]]
partitions (x : xs) =
    [(x : ys) : cs | ys <- subsequences xs, cs <- partitions (xs \\ ys)]</pre>
```

Note that due to the way we construct these partitions, there are no duplicate elements in the result list.

Denote the number of equivalence relations on $\{1,\ldots,n\}$ with B_n With a simple map (\n -> length \$ partitions [1..n]) [0..10]

we can compute B_n for n=0 to 10:

\overline{n}	0	1	2	3	4	5	6	7	8	9	10
$\overline{B_n}$	1	1	2	5	15	52	203	877	4,140	21,147	115,975

These are the so-called $Bell\ numbers$ (A000110 on OEIS).