Lagrangian & Hamiltonian Dynamics Pendulum on a Rotating Rim

BENJAMIN HOWE

bhowe@student.bridgew.edu

I. DESCRIPTION

The pendulum on a rotating rim. A simple pendulum of length b and mass m moves on a mass-less rim of radius a rotating with constant angular velocity ω . Find the equation of motion for the mass.

II. ANALYSIS

- 1. The rim is mass-less, so all energy the terms are only for the pendulum mass, note: $1/2I\omega^2=0$
- 2. The pendulum, however:
 - a) has kinetic energy,

$$\mathbf{T} = \frac{1}{2m\dot{x}^2} + \frac{1}{2m\dot{y}^2} + \frac{1}{2}I\omega^2 \tag{1}$$

b) and gravitational potential energy,

$$\mathbf{U} = mg\left(y - y_0\right) \tag{2}$$

3. A change of coordinates from Cartesian to polar is the most sensible way to proceed.

$$x = a\cos(\alpha t) + b\sin\theta \qquad \dot{x} = -a\alpha\sin(\alpha t) + b\sin(\theta)\dot{\theta}$$

$$y = a\sin(\alpha t) - b\cos\theta \qquad \dot{y} = a\alpha\cos(\alpha t) + b\sin(\theta)\dot{\theta}$$
(3)

- 4. From here, the plan is to get a differential equation, or two, in just θ and $\dot{\theta}$.
- 5. Using python code we will perform a 4^{th} order Runge-Kutta numerical analysis and plot the pendulum's position x(t) and y(t).

III. THE MATH

$$\mathbf{T} = \frac{1}{2}m\left(a^2\alpha^2 + b^2\dot{\theta}^2 + 2ab\alpha\dot{\theta}\left[\sin\theta\cos\alpha t - \sin\alpha t\cos\theta\right]\right) \tag{4}$$

[Use: $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$]

$$\mathbf{T} = \frac{1}{2}m\left(m^2\omega^2 + b^2\dot{\theta}^2 + 2ab\alpha\dot{\theta}\sin\left(\theta - \alpha t\right)\right)$$

$$\mathbf{U} = mg\left(a\sin\alpha t - b\cos\theta\right) \tag{5}$$

$$\mathcal{L} = \mathbf{T} - \mathbf{U} \tag{6}$$

$$\mathcal{L} = \frac{1}{2}m\left(m^2\alpha^2 + b^2\dot{\theta}^2 + 2ab\alpha\dot{\theta}\sin\left(\theta - \alpha t\right)\right) - mg\left(a\sin\alpha t - b\cos\theta\right) \tag{7}$$

$$\frac{\partial \mathcal{L}}{\partial \theta} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{\theta}} \tag{8}$$

$$\frac{\partial \mathcal{L}}{\partial \theta} = \frac{1}{2} m \left(2ab\alpha \dot{\theta} \cos \left(\theta - \alpha t \right) \right) - mgb \sin \theta \tag{9}$$

$$\frac{\partial \mathcal{L}}{\partial \dot{\theta}} = \frac{1}{2} m \left(2b^2 \dot{\theta}^2 + 2ab\alpha \sin \left(\theta - \alpha t \right) \right) \tag{10}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{\theta}} = mb^2 \ddot{\theta} + mab\alpha \cos(\theta - \alpha t) \left(\dot{\theta} - \alpha\right) \tag{11}$$

$$mb^{2}\ddot{\theta} + mab\alpha\cos\left(\theta - \alpha t\right)\left(\dot{\theta} - \alpha\right) = mab\alpha\dot{\theta}\cos\left(\theta - \alpha t\right) - mgb\sin\theta \tag{12}$$

$$\ddot{\theta} = \frac{a\alpha^2}{b}\cos(\theta - \alpha t) - \frac{g}{b}\sin\theta \tag{13}$$

IV. CODE

As usual, it is necessary to import various libraries to perform the task at hand.

```
In [1]: import math
    import numpy as np
    from matplotlib import pyplot as plt
    import matplotlib.animation
```

Here we introduce the constant terms in our aparatus, create the empty arrays we will use and define the intial conditions.

```
In [2]: # some constant values
        a = 0.35 # radius of rim in meters
        b = 1.1 # length of pendulum in meters
        m = 0.7 # mass of bob in kg
        alpha = 2.15 # angular speed of rim in rad/sec
        g = 9.8 # acceleration due to gravity
        N = 10000  # number of iterations
        h = .001 \# step size
In [3]: # create some empty arrays
        theta = np.zeros(N+1)
        omega = np.zeros(N+1)
        thetadot = np.zeros(N+1)
        omegadot = np.zeros(N+1)
        t = np.zeros(N+1)
        x = np.zeros(N+1)
        y = np.zeros(N+1)
In [4]: # initial condition
        theta[0] = np.pi/2.0
```

From the math (see part IV), we have two first order differential equations to define.

$$\dot{\omega} = \frac{a\alpha^2}{b}\cos(\theta - \alpha t) - \frac{g}{b}\sin\theta$$

$$\dot{\theta} = \omega$$

```
In [5]: # define some functions
    def thetadot(omega):
        return omega
    def omegadot(theta, t):
        return (a * alpha**2 / b) * np.cos(theta - alpha * t) - (g/b) * np.sin(theta)
```

To analyze the system, we use the 4th order Runge-Kutta method.

First, we will plot the angle theta vs. time.

It is useful to switch back to Cartesian coordinates to visualize the motion of the aparatus.

$$x = a\cos(\alpha t) + b\sin\theta$$
$$y = a\sin(\alpha t) - b\cos\theta$$

To enhance the presentation we now animate the motion of the pendulum bob.

```
plt.grid()
plt.title('Position', fontsize=14)
plt.xlabel('x')
plt.ylabel('y')
1, = ax.plot([],[])

def animate(i):
        l.set_data(x_new[:i], y_new[:i])

ani = matplotlib.animation.FuncAnimation(fig, animate, frames=len(t_new))

from IPython.display import HTML
HTML(ani.to_jshtml())
```

Out[12]: <IPython.core.display.HTML object>

V. REFERENCES

1. Credit for animation code:

https://stackoverflow.com/questions/43445103/inline-animations-in-jupyter.

2. Download from my GitHub site:

https://github.com/benhowe75/Physics-439.git

3. Inspiration for the problem:

```
http://www.astro.uwo.ca/
http://www.astro.uwo.ca/~houde/courses/PDF%20files/physics350/Lagrange.pdf
```