Circuit Theory and Components

- Circuit analysing and solving methods
 - -Ohm's law, KCL, KVL
 - Mesh current, node voltage, superposition and Thevenin methods
- Passive Components
 - Resistors, Capacitors, Inductors, Transformers and Electromechanical components
 - –Standard component values

Basics of Electricity

- Electric current is movement of charges
- Every known charge is a multiple of electron's charge
- According to conductivity materials can be divided in three different categories
 - –Conductor (metals like gold, copper, silver,...)
 - -Dielectric (plastics, ceramics, ...)
 - -Semiconductor (silicon, germanium,...)

Some Basic Laws

- Resistance $R=\rho I/A$, R=resistance, ρ =resistivity, I=length
- TC $R_T = R_o(1 + \alpha \Delta T)$, $R_T = Resistance$ in a new temperature, $R_o = R_o =$
- Ohms law **U=RI**, U=voltage, I=current
- Current I=Q/t, Q=charge, t=time
- Current density J=I/A, J=density, A=cross-section area
- Power P=UI, P=power, U=voltage, I=current
- Energy W=Pt, W=energy, t=time

DC Circuits

- We don't have any complex impedances (like in AC circuits where inductors and capacitors cause a phase shift). At DC capacitors are like opens and inductors are like shortcircuits
- Resistances form real impedances (means no phase shift) and dissipate the power supplied to the circuit.

Kirchhoff's Current Law (KCL)

- •The sum of incoming currents in a node is equal to the sum of the outcoming currents
- •Law can also be formulated so that the sum of currents is zero in a node (if the direction of the currents is the same)

$$I_1 + I_2 + I_3 = I_4 + I_5$$

Kirchhoff's Voltage Law (KVL)

•The sum of voltage sources
(accumulators, batteries) is
equal to voltages losses (Sum of
generated voltages is equal to
voltage losses across
components which don't
generate voltages, like resistor,
capacitors, inductors etc.)

$$E_1 + E_2 - E_3 = U_{R1} + U_{R2}$$

An Example

$$E_1+E_2-E_3=(R_1+R_2)I =>I=6,67mA$$

 $E_3=-R_2I+U \text{ or } E_1+E_2=R_1I+U =>U=23,3V$

Circuit Analysis by Using Basic Laws

- Mark branch currents
- Write current equations by applying KCL
- Write loop equations by applying KVL
- Solve currents
- Solve desired voltages (etc.) by using branch currents

Current Division

$$I = I_{R1} + I_{R2}$$

$$I_{R2} = I - I_{R1}$$

$$R_1I_{R1} = R_2I_{R2}$$

$$R_1I_{R1} = R_2(I - I_{R1})$$

$$I_{R1} = IR_2/(R_1 + R_2)$$

$$I_{R2} = IR_1/(R_1 + R_2)$$

Voltage Division

$$U = R_1I + R_2I$$

$$U = (R_1 + R_2)I$$

$$I = U/(R_1 + R_2)$$

$$U_{R1} = R_1U/(R_1 + R_2)$$

$$U_{R2} = R_2U/(R_1 + R_2)$$

Mesh Current Method

- Mark loop currents, one current in each loop
- Write loop equations by using loop currents and applying KVL
- Solve loop currents
- Solve desired voltages (etc.) by using loop currents

$$\begin{cases} E_1 = R_1 I_1 + R_3 (I_1 + I_2) \\ E_2 = R_2 I_2 + R_3 (I_1 + I_2) \end{cases}$$

$$\begin{cases} E_1 = (R_1 + R_3)I_1 + R_3I_2 \\ E_2 = R_3 I_1 + (R_2 + R_3)I_2 \end{cases}$$

$$\begin{cases} I_1 = \dots \\ I_2 = \dots \end{cases}$$

Node Voltage Method

- Mark node voltages
- •Write node equations by using marked node voltages (sum of branch currents is zero)
- Solve node voltages
- •Find desired currents (etc.) by using solved node voltages

$$(E_1- U)/R_1+(0-U)/R_3+ (E_2- U)/R_2=0$$

 $U=(E_1/R_1+E_2/R_2)/(1/R_1+1/R_2+1/R_3)$
 $I_{R1}=(E_1- U)/R_1$
 $I_{R2}=(E_2- U)/R_2$
 $I_{R2}=(0-U)/R_2$

Superposition Method

- •<u>The circuit is analysed source</u> <u>by source</u>. Other current sources are opened and other voltage sources are shortcircuited.
- •Find the effect of each source
- •Combine partial solutions to get a final value for desired current or voltage

$$U'=E_1(R_2//R_3)/(R_1+R_2//R_3)$$
 $U''=E_2(R_1//R_3)/(R_2+R_1//R_3)$
 $U=U'+U''$

oamk.fi

STUDY MATERIAL

Thevenin Method

- •Find value for the Thevenin source by disconnecting the circuit element under study (E_T=Uoc)
- •Find short-circuit current across the element under study (Isc)
- •Find R_T=Uoc/Isc
- •Draw simplified circuit including the Thevenin source with its internal resistance
- Find desired voltage or current

$$\begin{split} &U_{\text{OC}} = E_1 - R_1 (E_1 - E_2) / (R_1 + R_2) \\ &I_{\text{SC}} = E_1 / R_1 + E_2 / / R_2 , E_T = U_{\text{OC}}, R_T = U_{\text{OC}} / I_{\text{SC}} \end{split}$$

$$I_{R3} = E_T / (R_T + R_3)$$

Resistances in the Series Connection

$$U_1=R_1I, U_2=R_2I, U_3=R_3I$$
 $U=U_1+U_2+U_3$
 $U=(R_1+R_2+R_3)I$
 $U=RI,$
 $R=R_1+R_2+R_3$
If N resistances $R=\sum_{i=1}^{N}R_i$

Resistances in the Parallel Connection

$$I_{R1}=U/R_1$$
, $I_{R2}=U/R_2$, $I_{R3}=U/R_3$
 $I=I_{R1}+I_{R2}+I_{R3}$
 $I=U/R_1+U/R_2+U/R_3$

$$I=(1/R_1+1/R_2+1/R_3)U$$

$$R = (1/R_1 + 1/R_2 + 1/R_3)^{-1}$$

$$R = (\sum_{i=1}^{N} \frac{1}{R_i})^{-1}$$

Triangle-to-Star Conversion

$$R_{AB} = R_1 + R_2 = R_B / / (R_A + R_C)$$

$$R_{BC} = R_2 + R_3 = R_C / / (R_A + R_B)$$

$$R_{CA} = R_1 + R_3 = R_A / / (R_B + R_C)$$

Triangle-to-star

$$R_1 = R_A R_B / (R_A + R_B + R_C)$$

$$R_2 = R_B R_C / (R_A + R_B + R_C)$$

$$R_3 = R_A R_C / (R_A + R_B + R_C)$$

Star-to-triangle

$$R_A = (R_1R_2 + R_1R_3 + R_2R_3)/R_2$$

$$R_B = (R_1R_2 + R_1R_3 + R_2R_3)/R_3$$

$$R_C = (R_1R_2 + R_1R_3 + R_2R_3)/R_1$$

Gain and Attenuation

Voltage gain A_u=u_o/u_i

Current gain A_i=i_o/i_i

Power gain A_p=P_o/P_i

In decibels

$$A_u = 20\log(u_o/u_i)$$

$$A_i = 20\log(i_0/i_i)$$

$$A_p = 10log(P_o/P_i)$$
 !!!!!

Attenuators

$$K = P_1 / P_2$$
 (attenuation !)

$$R1 = [Z_1 (K+1) - 2 (KZ_1Z_2)^{1/2}] / (K-1)$$

$$R2 = \left[\ Z_2 \left(\ K+1 \ \right) - 2 \left(\ KZ_1Z_2 \ \right)^{1/2} \ \right] / \left(\ K-1 \ \right)$$

$$R3 = [2(KZ_1Z_2)^{1/2}]/(K-1)$$

$$R1 = [\;(\;K - 1\;)\;Z_1\;(\;Z_2\;)^{1/2}]\;/\;[\;(\;K + 1\;)\;(\;Z_2\;)^{1/2}\;-\;2\;(\;K\;Z_1\;)^{1/2}\;]$$

R2 =
$$[(K-1)Z_2(Z_1)^{1/2}]/[(K+1)(Z_1)^{1/2}-2(KZ_2)^{1/2}]$$

R3 = [(K - 1)(
$$Z_1Z_2/K$$
)^{1/2}] / 2

Resistor Classification by Function

<u>Fixed resistors</u> (resistor has a fixed value, can't be adjusted)

<u>Variable resistors</u> (resistor value can be adjusted, trimmers, potentiometers)

Resistor Classification by Material

Carbon

- -Carbon film resistors
- –Solid resistors

Metal

- -Metal film resistors
- -Metal oxide film resistors

Metal glazed types *

- –Chip resistors
- –Chip network resistors
- -Network resistors

glass.)

^{*} These are made by sintering on alumina or other substrates mixtures of metal or metal oxide with

Variable Resistors

Others

- –Thermistors (NTCs and PTCs)
- -Varistors (Voltage Dependent Resistors)
- –LDRs (Light Dependent Resistors)
- –Wire wound resistors (power and accurate)
- -Enamel resistors
- -Cement resistors

Variable Resistors

Potentiometers (designed for heavy use)

Trimmers (usually for factory settings)

oamk.fi

STUDY MATERIAL

Resistor Networks

- •Used where several resistors are needed. For example in computer buses are needed lots of pull-up resistances.
- •There are available several kinds of packages and resistor configurations on the market

Standard Resistor Values

RESISTOR STANDARD DECADE VALUES

£1 92	286					£ 192	286		
.1% .25% .6%	1%	.1% .25% .8%	1%	.1% .28% .5%	1%	.1% .25% .6%	1%	.1% .25% .6%	1%
10.0	10.0	16.9	16.9	29.7	26.7	48.1		£1.8	
10.1		17.2		29.1		48.7	48.7	82.5	82.5
10.2	10.2	17.4	17.A	29.4	29.4	49.3		43.5	
10.4		17.6		29.6		49.9	49.9	84.5	84.5
10.5	10.5	17.8	17.B	30.1	30.1	50.5		45.6	
10.8		18.0		30.5		51.1	51.1	86.6	26Æ
10.7	10.7	18.2	18.2	30.9	30.8	51.7		87.6	
10.9		18.4		31.2		52.3	52.3	£8.7	86.7
11.0	11.0	19.7	18.7	31.6	31.6	53.0		49.6	
11.1		18.9		32.0		53.6	53.6	90.9	90.9
11.3	11.3	19.1	19.1	32.4	32.4	54.2		92.0	
11.4		19.3		32.6		54.9	54.9	93.1	93.1
11.5	11.5	19.6	19.6	33.2	33.2	55.6		94.2	
11.7		19.8		33.6		56.2	56.2	95.3	95.3
11.B	11.0	20:0	20.0	34.0	34.0	56.9		96.5	
12.0		20.3		34.4		57.6	57.8	97.8	97.6
12.1	12.1	20.5	20.5	34.6	34.0	58.3		98.6	
12.3		20.8		35.2		59.0	59.0		
12.4	12.4	21.0	21.0	35.7	35.7	59.7		E2#	E12
12.6		21.3		36.1		60.4	60.4	2%, 6%	10.0
12.7	12.7	21.5	21.5	36.5	36.5	61.2		10.0	10.0
12.9		21.8		37.0		61.9	81.9	11.0	
13.0	13.0	22.1	22.1	37.4	37.4	62.6		12.0	12.0
13.2		22.3		37.9		63.4	63.4	13.0	
13.3	13.3	22.6	22.8	39.3	38.3	84.2		15.0	15.0
13.5		22.9		39.6		84.9	84.9	16.0	
13.7	13.7	23.2	23.2	39.2	39.2	85.7		18.0	18.0
13.B		23.4		39.7		66.5	66.5	20.0	
14.0	14.0	23.7	23.7	40.2	40.2	67.3		22.0	22.0
14.2		24.0		40.7		68.1	68.1	24.0	
14.3	14.3	24.3	24.3	41.2	412	69.0		27.0	27.0
14.5		24.5		41.7		89.0	69.B	30.6	
14.7	14.7	24.9	24.9	42.2	42.2	70.6		33.0	33.0
14.9		25.2		42.7		71.5	71.5	36.0	
15.0	15.0	25.5	25.5	43.2	43.2	72.3		39.0	39.0
15.2		25.8		43.7		73.2	73.2	43.0	
15.4	15.4	26.1	26.1	44.2	44.2	74.1		47.0	47.0
15.6		26.4		44.6		75.0	75.0	51.0	
15.0	15.0	26.7	26.7	45.3	45.3	75.9		56.0	56.0
16.0		27.1		45.9		76.B	76.C	62.0	
16.2	16.2	27.4	27.4	46.4	46.4	77.7		66.0	66.0
16.4		27.7		47.0		78.7	78.7	75.0	
16.5	16.5	28.0	28.0	47.5	47.5	79.6		82.0	82.0
16.7		28.4		l		80.6	80.8	91.0	

Resistor Colour Codes

1st Color Band Color Band 2nd Color Tolerance Band Color Band

Resistor Color Code Chart

1st. & 2nd Color	Digit it	Multiplier	
Band	Represents	Titotapier	
BLACK	0	X1	
BROWN	1	X10	
RED	2	X100	
ORANGE	3	X1,000 or 1K	
YELLOW	4	X10,000 or 10K	
GREEN	5	X100,000 or 100K	
BLUE	6	X1,000,000 or 1M	
VIOLET	7	Silver is divide by 100	
GRAY	8	Gold is divide by 10	
WHITE	• 9	TolerancesGold= 5%Silver=10%None=20%	

Resistor Colour Codes

Resistor Colour Codes

Color	1st & 2nd Significant Figures	Multiplier	Tolerance
Black	0	1	
Brown	1	10	±1%
Red	2	100	±2%
Orange	3	1,000	±3%
Yellow	4	10,000	±4%
Green	5	100,000	
Blue	6	1,000,000	
Violet	7	10,000,000	
Gray	8	100,000,000	
White	9		
Gold		0.1	±5%
Silver		0.01	±10%
No Color			±20%

Capacitor Structure

- •C= $\varepsilon_0 \varepsilon_r A/d$,
 - -C=capacitance
 - $-\varepsilon_0$ =vacuum permittivity
 - $-\epsilon_r$ =relative permittivity
 - –A=plate area
 - -d =distance of plates
- •Q=CU,
 - -Q=charge
 - -U=voltage
- •Q=It,
 - -t=time
 - -I=current

Capacitors in the Series Connection

$$\begin{aligned} & \mathsf{U}_1 = \mathsf{Q}/\mathsf{C}_1, \, \mathsf{U}_2 = \mathsf{Q}/\mathsf{C}_2 \,, \, \mathsf{U}_3 = \mathsf{Q}/\mathsf{C}_3 \\ & \mathsf{U} = \mathsf{U}_1 + \mathsf{U}_2 + \mathsf{U}_3 \\ & \mathsf{U} = \mathsf{Q}/\mathsf{C}_1 + \, \mathsf{Q}/\mathsf{C}_2 + \, \mathsf{Q}/\mathsf{C}_3 \\ & \mathsf{U} = (1/\mathsf{C}_1 + \, 1/\mathsf{C}_2 + \, 1/\mathsf{C}_3)\mathsf{Q} \\ & \mathsf{C} = (1/\mathsf{C}_1 + \, 1/\mathsf{C}_2 + \, 1/\mathsf{C}_3)^{-1} \\ & \textit{If N capacitances} \qquad C = (\sum_{i=1}^{N} \frac{1}{C_i})^{-1} \end{aligned}$$

Capacitors in the Parallel Connection

$$Q_1 = C_1U, Q_2 = C_2U, Q_3 = C_3U$$

$$Q=Q_1+Q_2+Q_3$$

$$Q = (C_1 + C_2 + C_3)U$$

$$C=C_1+C_2+C_3$$

$$C = \sum_{i=1}^{N} C_i$$

oamk.fi

STUDY MATERIAL

Capacitor Classification

Non-polarized fixed capacitors

Polarized fixed capacitors

Variable capacitors

Capacitor Classification by Dielectric Material

Film Capacitors

- -Polyester (Mylar*)
- -Polycarbonate
- –Polystyrene
- –Polypropylene

Property	Polypropylene	Polyester (Mylar)	Polycarbonate	Polystyrene
Dielectric Constant	2.3	3.2	3.0	2.5
Density	0.905	1.395	1.20	0.95
Area Factor in ² /lb/mil	30.600	19.800	23.100	26.500
Temperature Rating (for capacitors) °C	105	125	125	85
Dissipation Factor % at 10 ⁸ Hz	0.02	1.6	1.0	0.01
Flatness of Electrical Properties	Excellent	Fair	Good	Excellent
Dielectric Strength V/mil at 1 mil	7.000	7.000	4.000	5.000
Tensile Strength lb/in ²	28.000	30.000	8.000	5.000
Moisture Sensitivity	None	Small	Moderate	None

^{*} Dupont trade mark

Capacitor Classification by Dielectric Material

Electrolytic Capacitors

-Aluminum

-Tantalum

•An aluminum electrolytic capacitor consist of cathode aluminum foil, capacitor paper (electrolytic paper), electrolyte and an aluminum oxide layer, which acts as dielectric. These capacitors have excellent withstand voltage per thickness.

•Tantalum electrolytic capacitors are suitable for applications where volumetric efficiency, stable electrical parameters and high reliability is needed

COMPARISON OF CAPACITOR DIELECTRIC CONSTANTS			
DIELECTRIC	K DIELECTRIC CONSTANT		
Air or Vacuum	1.0		
Paper	2.0 - 6.0		
Plastic	2.1 - 6.0		
Mineral Oil	2.2 - 2.3		
Silicone Oil	2.7 - 2.8		
Quartz	3.8 - 4.4		
Glass	4.8 - 8.0		
Porcelain	5.1 - 5.9		
Mica	5.4 - 8.7		
Aluminum Oxide	8.4		
Tantalum Pentoxide	26		
Ceramic	12 - 400,000		

Capacitor Classification by Dielectric Material

Others

-Paper

-Glass

-Porcelain

-Mica

Dielectric	Construction	Capacitance Range
Air	Meshed plates	10 - 400 pF
Mica	Stacked Sheets	10 - 5000 pF
Paper	Rolled foil	0.001 - 1 μF
Ceramic	Tubular	0.5 - 1600 pF
Disk	Tubular	0.002 - 0.1 μF
Electrolytic	Aluminum	5 - 1000 μF
Tantalum	Aluminum	0.01 - 300 μF

Ceramic Capacitor Markings

VALUE	MARKING	VALUE	MARKING	VALUE	MARKING		
1pf; 3pf; 5pf	1; 3; 5	1	•	pe interchanged with e			
			4.7 or 5 pF can be interchanged with each other.				
10 pf	10 or 100	0.001 uF	102	0.10 uF	104		
12 pf	12 or 120	0.0012uF (1200pf)	122	0.12 uF	124		
15 pf	15 or 150	0.0015uF	152	0.15 uf	154		
18 pf	18 or 180	0.0018 uF (1800pf)	182	0.18 uF	184		
22 pf	22 or 220	0.0022uF	222	0.22 uF	224		
27 pf	27 or 270	0.0027uF	272	0.27 uF	274		
33 pf	33 or 330	0.0033 uF	332	0.33 uF	334		
39 pf	39 or 390	0.0039uF	392	0.39 uF	394		
47 pf	47 or 470	0.0047uF	472	0.47 uF	474		
58 pf	58 or 580	0.0056uF	562	0.56 uF	564		
68 pf	68 or 680	0.0068uF	682	0.68 uF	684		
82 pf	82 or 820	0.0082uF	822	0.82 uF	824		

Mica Capacitor Colour codes

Dot Color	Significant Figures			Decimal Multiplier	Capacitive Tolerance	DC Test Voltage	Dot Color
	(A)	®	©	00	(E)	(E)	00101
Black	. 0	0	0		1 1 2 2 2 1		Black
Brown	. 1	1.	1	10	± 1%	100	Brown
Red	2	3	3	100	± 2%	200	Red
Orange	3	3		1,000	± 3% ± 4%	300	Orange
Yellow	4	4	4	10,000	± 4%	400	Yellow
Green	5	5	- 5	100,000	± 5%	500	Green
Blue	6	6	6 .	1,000,000	± 6%	600	Blue
Violet	7	7		10,000,000	± 7%	700	Violet
Gray	8	8	8	100,000,000	± 8%	800	Groy
White	9	9	9	1,000,000,000	± 9%	900	White
Gold	_		, ·	0.1	± 5%	1,000	Gold
Silver	1-	I —		0.01	± 10%	2,000	Silver
No Color	-	ı —	I —		± 20%	500	No Color

STUDY MATERIAL

Charging of a Capacitor

C has initially no charge and SW1 and SW2 are open

If SW1 is then closed C will be charged according to the curve (just below the circuit)

After that when C has been charged and if SW2 is closed, C will be discharged according to the curve on the bottom corner of the this slide.

Signal Rise Time

- •Usually input and stray capacitances cause that a signal has a certain rise time
- •Rise time t_r is the time needed from the 10% point to the 90 % point of signal (during the state change from low to high)

Signal Fall Time

- •Usually input and stray capacitances cause that a signal has a certain fall time
- •Fall time t_f is the time needed from the 10% point to the 90 % point of signal (during the state change from low to high)

STUDY MATERIAL

Simple RC Low Pass Filter

- •f=1/($2\pi RC$)
- •Can be used in applications where a simple, low cost filter is needed.

Simple RC High Pass Filter

$$f=1/(2\pi RC)$$

•Can be used in applications where a simple, low cost filter is needed.

STUDY MATERIAL

Inductors

Coil

- -L=Inductance
- -A=Area
- -N=Number of turns
- $-\mu_0$ =Permeability of vacuum
- $-\mu_r$ =Relative permeability (of core)
- -I=length of coil
- -d=diameter of coil

Toroid

- -r=radius of winding
- -R=average radius of toroid

Reluctance

- •Reluctance =magnetic resistance = R_m = $I/(\mu_0\mu_rA)$, I=length of magnetic circuit
- •Reluctances in the series connection $R_m = R_{m1} + R_{m2}$
- •In air-gapped magnetic circuits reluctances can be used to make analysis easier

$$L = \frac{N^2}{R_{_{m}}}$$

Use of Commercial Cores

$$N = \sqrt{\frac{L}{A_L}}$$

N=Number of turns

A_L=Design parameter of a core

L=Inductance

$$d_w = \sqrt{\frac{A_E}{N}}$$

d_w=diameter of wire

A_E=effective winding area

$$I_{w}=NI_{N}$$

I_w=Length of wire needed

I_N=average length of turn

GRADE	A _L (nH)	μ _e	AIR GAP (μm)	TYPE NUMBER (WITH NUT)	TYPE NUMBER (WITHOUT NUT)
3D3	40 ±3%	≈32	≈990	RM5-3D3-E40/N	RM5-3D3-E40
	63 ±3%	≈51	≈540	RM5-3D3-E63/N	RM5-3D3-E63
	100 ±3%	≈80	≈300	RM5-3D3-E100/N	RM5-3D3-E100
	800 ±25%	≈640	≈0	-	RM5-3D3
3H3	160 ±3%	≈129	≈180	RM5-3H3-A160/N	RM5-3H3-A160
	250 ±3%	≈201	≈110	RM5-3H3-A250/N	RM5-3H3-A250
	315 ±3%	≈253	≈80	RM5-3H3-A315/N	RM5-3H3-A315
	400 ±5%	≈321	≈60	RM5-3H3-A400/N	RM5-3H3-A400
	1650 ±25%	≈1310	≈0	-	RM5-3H3

NUMBER OF SECTIONS	NUMBER OF PINS	PIN POSITIONS USED	WINDING AREA (mm²)	WINDING WIDTH (mm)	AVERAGE LENGTH OF TURN (mm)	TYPE NUMBER
1	4	all	9.5	4.8	25	CSV-RM5-1S-4P
2	4	all	2 × 4.35	2 × 2.2	25	CSV-RM5-2S-4P

Effect of Inductance

- •Induced voltage U_L=LdI/dt
- •Inductance tries to oppose the changes caused by switching voltage on and off
- Constant DC voltage sees an inductor like "normal" wire

STUDY MATERIAL

Transformers

- Transformers can be used for isolation
- •Transformers are used for voltage amplitude reduction in power supplies
- Matching is also one application for transformers

$$\frac{U_{1}}{U_{2}} = \frac{I_{2}}{I_{1}} = \frac{N_{1}}{N_{2}}$$

$$\frac{Z_{1}}{Z_{2}} = (\frac{N_{1}}{N_{2}})^{2}$$

STUDY MATERIAL

Electromechanical and Mechanical Components

- Relays
- Connectors (BNC...)
- Cables (Coaxial...)
- Boxes
- Heat sink
- Fans
- Racks
- •PCBs

. . .

Sinusoidal Signal

- •u(t)=Asinωt,
 - –A=amplitude
 - -t=time
 - $-\omega$ =angular frequency
- • ω =2 π f=2 π /T,
 - -f=frequency
 - –T=period of signal
- •RMS-value=A/sqrt(2) (for sinusoidal signal)

Other Common AC Signals

- •In a pure sinusoidal signal we have only a single frequency
- •Pure triangle and rectangular AC signals have infinite number of frequencies

AC Circuits

- DC analysis methods are valid for AC circuits, too. KCL and KVL can be used. Main difference is that instead of resistance we have a more general term, <u>impedance</u>, and instead of real numbers, we use <u>complex numbers</u> in order to find out phase shifts between different signals
- Power is dissipated in resistors. Inductors and capacitors store power but do not dissipate that.

A Little Bit Complex Arithmetic

$$Z = a + jb$$

$$|Z| = \sqrt{a^2 + b^2}$$

$$\varphi = \arctan \frac{b}{a}$$

$$Z = \frac{a + jb}{c + jd}$$

$$|Z| = \frac{\sqrt{a^2 + b^2}}{\sqrt{c^2 + d^2}}$$

$$\varphi = \arctan \frac{b}{a} - \arctan \frac{d}{c}$$

AC Impedances

•
$$Z_L = j\omega L$$
,
 $-\omega = 2\pi f = 2\pi/T$

$$\bullet Z_C = 1/j\omega C = -j/\omega C$$

STUDY MATERIAL

Current and Voltage in different Circuit Elements

- •Do phase difference between the current and the voltage in a resistor
- In an inductor the voltage leads current
- In a capacitor the voltage lags the current

STUDY MATERIAL

Power in AC Circuits

- •Apparent Power, S=UI*=(ZI)I*=ZI²
- •Reactive Power, Q=XI²
- •True Power, P=RI²
- •Apparent power is the power supplied from the source. True power is the power dissipated in the resistances of the circuit. Reactances can store energy, but they don't dissipate power.

