Medical Informatics

Lecture 5: Translating an ER model into the Relational Model

Dr Areti Manataki

Nanjing Medical University

The story so far: ER model

ER diagram basics

The story so far: ER model

- ER diagram basics:
 - Entity sets: rectangles
 - Relationship sets: diamonds connected to the entity sets
 - Attributes: ovals (with primary keys underlined)
 - Key constraints: arrows
 - Total participation: thick line
 - Weak entity sets: thick or double border
 - Entity hierarchies: ISA

The story so far: relational model

Relational model basics

The story so far: relational model

- Relational model basics:
 - Relation schema: the format of a table, consisting of its name and the names and domains of each column
 - Relation instance: set of tuples matching the schema
 - Primary key: minimal set of fields uniquely identifying a tuple
 - Foreign key: values must be drawn from key values in the referenced table

The story so far: relational model

Student

· · · · · ·			
ĺ	cid	title	credits
	dbs	Database Systems	20
1	inf1	Informatics 1	10
	sls	Scottish Legal System	10
	lalg	Linear Algebra	10

```
CREATE TABLE Takes (
    mn CHAR(8),
    cid CHAR(20),
    mark INTEGER,
    PRIMARY KEY (mn, cid),
    FOREIGN KEY (mn) REFERENCES Student,
    FOREIGN KEY (cid) REFERENCES Course
```

In this lecture

 Systematically transform an ER model (conceptual model) into a relational one (implementation in RDBMS)


```
CREATE TABLE Employee (
    nin CHAR(9),
    name VARCHAR(20),
    email VARCHAR(35),
    PRIMARY KEY (nin) )

CREATE TABLE Works_In (
    nin CHAR(9),
    did INTEGER,
    since INTEGER,
    PRIMARY KEY (nin, did),
    FOREIGN KEY (nin) REFERENCES Employee,
    FOREIGN KEY (did) REFERENCES Department
)

CREATE TABLE ......
```

In this lecture

- Systematically transform an ER model (conceptual model) into a relational one (implementation in RDBMS)
- Transforming:
 - entity and relationship sets
 - key and participation constraints
 - weak entity sets and hierarchies

Entity sets to tables

- Create a table for the entity set.
- Each attribute becomes a field, with the corresponding domain.
- The primary key is declared.

```
CREATE TABLE Employee (
    nin CHAR(9),
    name VARCHAR(20),
    email VARCHAR(35),
    PRIMARY KEY (nin) )
```


Relationship sets to tables

In the case where there are no constraints:

- Create a table for the relationship set.
- Specify a field (with the corresponding domain) for each of the following:
 - attributes of the relationship set
 - primary key attributes of each participating entity set.
- Declare primary key using all key attributes from participating entity sets.
- Declare foreign key constraints for all key attributes from participating entity sets.

Relationship sets to tables


```
CREATE TABLE Works_In (
    nin CHAR(9),
    did INTEGER,
    since INTEGER,
    PRIMARY KEY (nin, did),
    FOREIGN KEY (nin) REFERENCES Employee,
    FOREIGN KEY (did) REFERENCES Department
)
```

Mapping relationship sets with key constraints – 1st approach

- Create a table for the relationship set.
- Specify a field (with the corresponding domain) for each of the following:
 - attributes of the relationship set
 - primary key attributes of each participating entity set.
- Declare primary key using only key attributes of the source entity set.
- Declare foreign key constraints for all key attributes from participating entity sets.

Mapping relationship sets with key constraints – 1st approach


```
CREATE TABLE Manages (
    nin CHAR(9),
    did INTEGER,
    since INTEGER,
    PRIMARY KEY (did),
    FOREIGN KEY (nin) REFERENCES Employee,
    FOREIGN KEY (did) REFERENCES Department
)
```

Mapping relationship sets with key constraints – 2nd approach

- Main idea: no separate table, just include the information about the relationship set in the table for the entity set with the key (source entity set).
- In the table for the source entity set:
 - Specify a field (with the corresponding domain) for each of the following:
 - attributes of the relationship set
 - primary key attributes of the target entity set.
 - Declare foreign key constraints for the primary key attributes of the source entity set.

Mapping relationship sets with key constraints – 2nd approach

Mapping key and participation constraints

- In the table for the source entity set:
 - Specify a field (with the corresponding domain) for each of the following:
 - attributes of the relationship set
 - primary key attributes of the target entity set.
 - Declare foreign key constraints for the primary key attributes of the source entity set.
 - Declare those fields as NOT NULL.

Mapping key and participation constraints


```
CREATE TABLE Department (
    did INTEGER,
    dname VARCHAR(20),
    budget INTEGER,
    nin CHAR(9) NOT NULL,
    since INTEGER,
    PRIMARY KEY (did),
    FOREIGN KEY (nin) REFERENCES Employee )
```

Mapping participation constraints

When not combined with a key constraint, a participation constraint cannot be captured in SQL, unless we use more advanced SQL.

Translating weak entity sets

- Create a table for the weak entity set.
- Specify a field (with the corresponding domain) for each of the following:
 - attributes of the weak entity set
 - attributes of the identifying relationship set
 - primary key attributes of the identifying owner.
- Declare a primary key that consists of the partial key of the weak entity set and the key attributes of the identifying owner.
- Declare foreign key constraints for the primary key attributes of the identifying owner, and set them ON DELETE CASCADE.

Translating weak entity sets

Translating entity hierarchies

- Create a table for the superclass, as usual.
- For each subclass:
 - Create a table.
 - Specify a field (with the corresponding domain) for each of the following:
 - attributes of the subclass
 - primary key attributes of the superclass.
 - Declare the primary key to be the primary key of the superclass.
 - Declare foreign key constraints for the primary key attributes of the superclass.

Translating entity hierarchies

```
email
                                                     name
                                              nin
CREATE TABLE Hourly_Employee (
    nin CHAR(9),
                                                    Employee
    hourly wage INTEGER,
    PRIMARY KEY (nin),
    FOREIGN KEY (nin) REFERENCES Employee
                                                      ISA
                                        hourly_wage
CREATE TABLE Contract Employee (
                                                               contractId
    nin CHAR(9),
    contract id INTEGER,
                                           Hourly_Employee
                                                          Contract_Employee
    PRIMARY KEY (nin),
    FOREIGN KEY (nin) REFERENCES Employee
```

Conclusions

- We've seen how to systematically transform an ER model into a relational one.
- Some constraints expressed in the ER model might not be that easy to capture in the relational model.
- In some cases, there might be more than one possible transformations.
- In the next lecture we'll learn how to populate tables. We'll also get to write some simple queries in SQL.

Acknowledgements

The content of these slides was originally created for the Medical Informatics course from The University of Edinburgh, which is licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.

These lecture slides are also licensed under a CC BY-SA 4.0 license.

