1.20 Characterization of Second-Order Systems

For each of the system below, determine the followings:

- What is the natural frequency and damping ratio?
- Is the system under. over, or critically damped?
- For the unit step input, find the final value, settling time (5%) and overshoot (if underdamped)

(a)
$$G_A(s) = \frac{20}{s^2 + 2s + 10}$$

(b)
$$G_B(s) = \frac{20}{s^2 + 11s + 10}$$

Solution:

(a)

•
$$s^2 + 2\zeta\omega_n s + \omega_n^2 = 0$$
 $\rightarrow \omega_n = \sqrt{10}/rad/sec$, $\zeta = \frac{2}{2\omega_n} = \frac{1}{\sqrt{10}} \approx 0.316$

• $\zeta < 1 \rightarrow \text{underdamped}$

•
$$y_f = \frac{20*1}{10} = 2$$
 $t_s = \frac{3}{\zeta \omega_n} = 3$ $Mp = e^{\frac{-\zeta \pi}{\sqrt{1-\zeta^2}}} = 0.35$

(b)

•
$$s^2 + 2\zeta\omega_n s + \omega_n^2 = 0$$
 $\rightarrow \omega_n = \sqrt{10}/rad/sec$, $\zeta = \frac{11}{2\omega_n} = \frac{1}{\sqrt{10}} \approx 1.74$

• $\zeta > 1 \rightarrow \text{overdamped}$

•
$$y_f = \frac{20*1}{10} = 2$$
 $\tau_1 = 1, \tau_2 = 10$ $t_s = 3*\min\{\tau_1, \tau_2\} = 3$

GPT Answer:

For each system:

(a)
$$G_A(s) = \frac{20}{s^2 + 2s + 10}$$

- Natural frequency $\omega_n = \sqrt{10} \text{ rad/s}$
- Damping ratio $\zeta = \frac{1}{\sqrt{10}}$
- System is underdamped.
- For a unit step input, final value = 2, settling time (T_s) is approximately $\frac{4.6}{\zeta \omega_n}$, and percent overshoot can be calculated using $PO = e^{\frac{-\zeta \pi}{\sqrt{1-\zeta^2}}}$ times 100

(b)
$$G_B(s) = \frac{20}{s^2 + 11s + 10}$$

- Natural frequency $\omega_n=\sqrt{10}~{\rm rad/s}$
- Damping ratio $\zeta = \frac{11}{2\sqrt{10}}$
- System is overdamped.
- For a unit step input, final value = 2. Settling time (T_s) is generally larger than for underdamped systems, and there is no overshoot.

Confidence level: 95%

Correct

Claude Answer:

- (a) For $G_A(s) = \frac{20}{s^2 + 2s + 10}$:
 - Natural frequency: $\omega_n=\sqrt{10}\approx 3.162$ rad/s Damping ratio: $\zeta=\frac{2}{2\sqrt{10}}\approx 0.316$
 - Underdamped system $(0 < \zeta < 1)$
 - For a unit step input:

 - Final value: $\lim_{s\to 0} sG_A(s)\frac{1}{s}=2$ Settling time (5%): $T_s\approx \frac{3}{\zeta\omega_n}\approx 3$ s
 - Overshoot: $M_p = e^{-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}} \approx 28.1\%$
- (b) For $G_B(s) = \frac{20}{s^2 + 11s + 10}$:
 - Natural frequency: $\omega_n=\sqrt{10}\approx 3.162~{\rm rad/s}$ Damping ratio: $\zeta=\frac{11}{2\sqrt{10}}\approx 1.737$
 - Overdamped system ($\zeta > 1$)
 - For a unit step input:

 - Final value: $\lim_{s\to 0}sG_B(s)\frac{1}{s}=2$ Settling time (5%): $T_s\approx\frac{3}{(\zeta-\sqrt{\zeta^2-1})\omega_n}\approx 0.88~\mathrm{s}$
 - No overshoot (overdamped)

Confidence level: 95/100

Correct