TCL, condition de Lindenberg, martingales

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles de carré intégrable centrées. On note, pour tout $n\geq 1$, $S_n=X_1+\ldots+X_n$, $s_n^2=\mathbb{E}\left[S_n^2\right]$ et on pose si besoin $S_0=0$. L'objectif est d'obtenir le TCL sous la condition de Lindenberg

$$\forall \varepsilon > 0, \qquad \frac{1}{s_n^2} \sum_{k=1}^n \mathbb{E}\left[X_k^2 \mathbf{1}_{|X_k| > \varepsilon s_n}\right] \xrightarrow{n \to +\infty} 0. \tag{1}$$

On envisage deux situations : le cas des variables indépendantes et celui des martingales. Dans le le premier cas, la condition de Lindenberg est en fait nécessaire et suffisante pour l'obtention du TCL.

1. Variables indépendantes.

On suppose dans ce paragraphe que les $(X_n)_{n\geq 1}$ sont indépendantes et on note, pour $n\geq 1$, $b_n=s_n^{-2}\max_{1\leq k\leq n}\mathbb{E}\left[X_k^2\right]$.

Théorème 1. Soit $(X_n)_{n\geq 1}$ une suite de variables indépendantes de carré intégrable centrées. La condition de Lindenberg (1) est vérifiée si et seulement si $\lim_{n\to+\infty} b_n = 0$ et $(S_n/s_n)_{n\geq 1}$ converge en loi vers N de loi gaussienne centrée réduite.

Nous allons en fait démontrer une généralisation de ce résultat aux cas des tableaux de variables indépendantes.

Soient $(p_n)_{n\geq 1}$ une suite d'entiers strictement positifs et, pour tout $n\geq 1$, $X_{n,k}$, $1\leq k\leq p_n$ des variables aléatoires indépendantes de carré intégrable et centrées. On note, pour tout $n\geq 1$ et tout $1\leq k\leq p_n$,

$$Z_n = \sum_{1 \le k \le p_n} X_{n,k}, \qquad \sigma_{n,k}^2 = \mathbb{E}\left[X_{n,k}^2\right], \qquad \sigma_n^2 = \sum_{1 \le k \le p_n} \sigma_{n,k}^2, \qquad \delta_n = \max_{1 \le k \le p_n} \sigma_{n,k}^2.$$

Dans ce contexte, la condition de Lindenberg s'écrit

$$\forall \varepsilon > 0, \qquad \lambda_n(\varepsilon) = \sum_{1 \le k \le p_n} \mathbb{E}\left[X_{n,k}^2 \mathbf{1}_{|X_{n,k}| > \varepsilon}\right] \xrightarrow{n \to +\infty} 0. \tag{2}$$

Théorème 2. On suppose que, pour tout $n \ge 1$, les variables aléatoires $X_{n,k}$, $1 \le k \le p_n$ sont indépendantes de carré intégrable et centrées et que $\sigma_n^2 \longrightarrow \sigma^2 > 0$.

La condition de Lindenberg (2) est vérifiée si et seulement si $\lim_{n\to+\infty} \delta_n = 0$ et $(Z_n)_{n\geq 1}$ converge en loi vers σN où N est gaussienne centrée réduite.

Avant de faire la démonstration de ce résultat voyons comment il permet de retrouver le théorème 1. Pour celà, il suffit de définir, pour $n \ge 1$ et $1 \le k \le n$, $X_{n,k} = X_k/s_n$. On a alors, $Z_n = S_n/s_n$, $\sigma_n^2 = 1$, $\delta_n = b_n$ et

$$\forall \varepsilon > 0, \qquad \lambda_n(\varepsilon) = \frac{1}{s_n^2} \sum_{k=1}^n \mathbb{E} \left[X_k^2 \mathbf{1}_{|X_k| > \varepsilon s_n} \right].$$

Démonstration. Remarquons tout d'abord que la condition de Lindenberg (2) implique en particulier que $\delta_n \longrightarrow 0$. En effet, pour tout $1 \le k \le p_n$ et tout $\varepsilon > 0$,

$$\mathbb{E}\left[X_{n,k}^2\right] = \mathbb{E}\left[X_{n,k}^2 \mathbf{1}_{|X_{n,k}| > \varepsilon}\right] + \mathbb{E}\left[X_{n,k}^2 \mathbf{1}_{|X_{n,k}| \le \varepsilon}\right] \le \lambda_n(\varepsilon) + \varepsilon^2$$
(3)

et par suite, pour tout $\varepsilon > 0$,

$$\delta_n \le \lambda_n(\varepsilon) + \varepsilon^2$$
, $\limsup \delta_n \le \varepsilon^2$.

Il suffit donc d'établir l'équivalence entre la condition de Lindenberg et la convergence en loi de Z_n vers σN sous l'hypothèse supplémentaire que $\delta_n \longrightarrow 0$.

Désignons par $\varphi_{n,k}$ la fonction caractéristique de $X_{n,k}$ et par ψ_n celle de Z_n . Vu l'indépendance des variables $X_{n,k}$, $1 \le k \le n$ on a $\psi_n = \prod_{1 \le k \le p_n} \varphi_{n,k}$ et, d'après le théorème de Paul Lévy, le théorème se résume à

$$\forall \varepsilon > 0, \quad \lambda_n(\varepsilon) \xrightarrow{n \to +\infty} 0 \qquad \Longleftrightarrow \qquad \forall t \in \mathbf{R}, \quad \psi_n(t) \xrightarrow{n \to +\infty} e^{-\frac{\sigma^2 t^2}{2}}.$$

Commençons par écrire que

$$\forall x \in \mathbf{R}, \qquad e^{ix} = 1 + ix - \frac{1}{2}x^2 + \frac{1}{2}x^2 Q(x),$$

avec, en particulier $\operatorname{Re}(Q(x)) = 1 - 2x^{-2}(1 - \cos x)$ et

$$|1 - Q(x)| \le 1, \qquad |Q(x)| \le \min\left(2, \frac{|x|}{3}\right).$$
 (4)

Si X est une variable aléatoire de carré intégrable et centrée.

$$\mathbb{E}\left[e^{iX}\right] = \mathbb{E}\left[1 + iX - \frac{1}{2}X^2 + \frac{1}{2}X^2Q(X)\right] = 1 - \frac{1}{2}\mathbb{E}\left[X^2\right] + \frac{1}{2}\mathbb{E}\left[X^2Q(X)\right]. \tag{5}$$

Notons log z la détermination principale du logarithme. Rappelons que, pour |z-1| < 1,

$$\log z = \sum_{n \ge 1} (-1)^{n-1} \frac{(z-1)^n}{n}, \qquad |\rho(z)| = \log z - (z-1)| \le \sum_{n \ge 2} |z-1|^n = \frac{|z-1|^2}{1 - |z-1|}.$$

On a, via (5), comme $|1 - Q(x)| \le 1$,

$$\left| \mathbb{E}\left[e^{iX} \right] - 1 \right| = \left| \frac{1}{2} \mathbb{E}\left[X^2 (1 - Q(X)) \right] \right| \le \frac{1}{2} \mathbb{E}\left[X^2 \right]. \tag{6}$$

En particulier, lorsque $\mathbb{E}\left[X^2\right] < 2$, $\left|\mathbb{E}\left[e^{iX}\right] - 1\right| < 1$ et

$$\log \mathbb{E}\left[e^{iX}\right] = \mathbb{E}\left[e^{iX}\right] - 1 + R(X), \qquad \text{où} \quad R(X) = \rho\left(\mathbb{E}\left[e^{iX}\right]\right).$$

Si $\mathbb{E}[X^2] < 2$, il résulte de (5) et (6) que

$$\log \mathbb{E}\left[e^{iX}\right] = -\frac{1}{2}\mathbb{E}\left[X^{2}\right] + \frac{1}{2}\mathbb{E}\left[X^{2}Q(X)\right] + R(X), \quad \text{avec} \quad |R(X)| \le \frac{1}{4}\frac{\mathbb{E}[X^{2}]^{2}}{1 - \frac{1}{2}\mathbb{E}[X^{2}]}. \quad (7)$$

Prenons $t \in \mathbf{R}$. Par indépendance des variables $X_{n,k}$, $1 \le k \le p_n$, on a

$$\psi_n(t) = \prod_{1 \le k \le p_n} \varphi_{n,k}(t);$$

d'autre part, on déduit de l'inégalité (6) que

$$\max_{1 \le k \le n} |\varphi_{n,k}(t) - 1| \le \frac{t^2}{2} \delta_n.$$

Puisque $\delta_n \longrightarrow 0$, pour *n* assez grand $(\delta_n < 2/t^2)$,

$$\psi_n(t) = \prod_{1 \le k \le p_n} e^{\log \varphi_{n,k}(t)} = \exp\left(\sum_{1 \le k \le p_n} \log \varphi_{n,k}(t)\right)$$

et compte tenu de (7) appliquée à $tX_{n,k}$ pour tout $1 \leq k \leq p_n$

$$\sum_{1 \le k \le p_n} \log \varphi_{n,k}(t) = -\frac{t^2}{2} \sum_{1 \le k \le p_n} \sigma_{n,k}^2 + \frac{t^2}{2} \sum_{1 \le k \le p_n} \mathbb{E} \left[X_{n,k}^2 Q(tX_{n,k}) \right] + \sum_{1 \le k \le p_n} R(tX_{n,k}).$$

Par hypothèse, $\sum_{1 \le k \le p_n} \sigma_{n,k}^2 \longrightarrow \sigma^2$ et l'inégalité de (7) donne, comme $x \longmapsto 1/(1-x)$ est croissante sur]0,1[,

$$\left| \sum_{1 \le k \le p_n} R(X_{n,k}) \right| \le \sum_{1 \le k \le p_n} \frac{t^4}{4} \frac{\sigma_{n,k}^4}{1 - \frac{t^2}{2} \sigma_{n,k}^2} \le \frac{t^4}{4} \frac{\delta_n}{1 - \frac{t^2}{2} \delta_n} \sum_{1 \le k \le p_n} \sigma_{n,k}^2 \longrightarrow 0.$$

Par conséquent, $\psi_n(t)$ converge vers $e^{-\sigma^2 t^2/2}$ si et seulement si

$$\sum\nolimits_{1 < k < p_n} \mathbb{E}\left[X_{n,k}^2 Q(tX_{n,k})\right] \longrightarrow 0.$$

Il s'agit donc de montrer que la condition de Lindenberg est équivalente à

$$\forall t \in \mathbf{R}, \qquad l_n(t) = \sum_{1 < k < p_n} \mathbb{E}\left[X_{n,k}^2 Q(tX_{n,k})\right] \xrightarrow{n \to +\infty} 0.$$

Supposons la condition de Lindenberg vérifiée. On a alors, puisque $|Q(x)| \leq \min(2, |x|/3)$, pour tout $t \in \mathbf{R}$ et tout $\varepsilon > 0$,

$$\mathbb{E}\left[X_{n,k}^{2} |Q(tX_{n,k})|\right] \leq \mathbb{E}\left[X_{n,k}^{2} \min(2, |tX_{n,k}|/3) \mathbf{1}_{|X_{n,k}| > \varepsilon}\right] + \mathbb{E}\left[X_{n,k}^{2} \min(2, |tX_{n,k}|/3) \mathbf{1}_{|X_{n,k}| \le \varepsilon}\right]$$

$$\leq 2\mathbb{E}\left[X_{n,k}^{2} \mathbf{1}_{|X_{n,k}| > \varepsilon}\right] + \frac{|t|\varepsilon}{3} \mathbb{E}\left[X_{n,k}^{2}\right]$$
(8)

d'où l'on déduit, en sommant de k=1 à p_n , que, pour tout $t \in \mathbf{R}$ et tout $\varepsilon > 0$,

$$|l_n(t)| \le 2\lambda_n(\varepsilon) + \frac{|t|}{3} \varepsilon \sum_{1 \le k \le p_n} \sigma_{n,k}^2, \qquad \limsup_{n \to +\infty} |l_n(t)| \le \frac{|t|}{3} \varepsilon \sigma^2.$$

 $\lim_{n\to+\infty} l_n(t) = 0$ pour tout réel t.

Réciproquement, supposons que $l_n(t) \longrightarrow 0$ pour tout réel t. En particulier,

$$\forall t \in \mathbf{R}, \qquad \operatorname{Re}(l_n(t)) = \sum_{1 \le k \le p_n} \mathbb{E}\left[X_{n,k}^2 \operatorname{Re}(Q(tX_{n,k}))\right] \longrightarrow 0.$$

Or $\operatorname{Re}(Q(x)) = 1 - 2x^{-2}(1 - \cos x) \ge 1 - 4x^{-2}$ pour |x| > 0. Si $|x| \ge 2\sqrt{2}$, $\operatorname{Re}(Q(x)) \ge \frac{1}{2}$ et comme $\operatorname{Re}(Q)$ est positive

$$\frac{1}{2}\mathbf{1}_{|x|>2\sqrt{2}} \le \operatorname{Re}(Q(x)).$$

Par conséquent, pour tout $\varepsilon > 0$,

$$\sum_{1 \leq k \leq p_n} \mathbb{E}\left[X_{n,k}^2 \, \mathbf{1}_{|X_{n,k}| > \varepsilon}\right] \leq 2 \sum_{1 \leq k \leq p_n} \mathbb{E}\left[X_{n,k}^2 \mathrm{Re}\left(Q\left(2\sqrt{2}X_{n,k}/\varepsilon\right)\right)\right] = 2 \mathrm{Re}\left(l_n\left(2\sqrt{2}/\varepsilon\right)\right) \longrightarrow 0.$$

Ceci termine la démonstration.

Remarque. Si on veut seulement montrer que la condition de Lindenberg est suffisante, la démonstration est un peu plus simple. En effet, comme $\sigma_n^2 \longrightarrow \sigma^2$, il suffit de démontrer que

$$\left|\psi_n(t) - e^{-\frac{t^2\sigma_n^2}{2}}\right| = \left|\prod_{1 \le k \le p_n} \varphi_{n,k}(t) - \prod_{1 \le k \le p_n} e^{-\frac{t^2\sigma_{n,k}^2}{2}}\right| \longrightarrow 0.$$

Comme il s'agit de nombres complexes de module inférieur à 1, on a

$$\left|\prod\nolimits_{1\leq k\leq p_n}\varphi_{n,k}(t)-\prod\nolimits_{1\leq k\leq p_n}e^{-\frac{t^2\sigma_{n,k}^2}{2}}\right|\leq \sum\nolimits_{1\leq k\leq p_n}\left|\varphi_{n,k}(t)-e^{-\frac{t^2\sigma_{n,k}^2}{2}}\right|.$$

En utilisant la relation (5), on obtient

$$\left| \varphi_{n,k}(t) - e^{-\frac{t^2 \sigma_{n,k}^2}{2}} \right| \le \frac{t^2}{2} \mathbb{E} \left[X_{n,k}^2 |Q(tX_{n,k})| \right] + \left| 1 - \frac{\sigma_{n,k}^2 t^2}{2} - e^{-\frac{t^2 \sigma_{n,k}^2}{2}} \right|.$$

Or, si $x \ge 0$, $0 \le e^{-x} - 1 + x \le x^2/2$. Par conséquent,

$$\left| \varphi_{n,k}(t) - e^{-\frac{t^2 \sigma_{n,k}^2}{2}} \right| \le \frac{t^2}{2} \mathbb{E} \left[X_{n,k}^2 |Q(tX_{n,k})| \right] + \frac{t^4}{8} \sigma_{n,k}^4.$$

On obtient alors en utilisant l'inégalité (8) et en sommant sur k, pour tout $\varepsilon > 0$,

$$\left|\psi_n(t) - e^{-\frac{t^2 \sigma_n^2}{2}}\right| \le 2\lambda_n(\varepsilon) + \frac{|t|\sigma_n^2 \varepsilon}{3} + \frac{t^2 \delta_n \sigma_n^2}{8}.$$

Il suffit de faire tendre n vers l'infini puis ε vers 0.

2. Le cas des martingales.

On suppose à présent que $(S_n)_{n\geq 0}$ est une martingale de carré intégrable centrée avec $S_0=0$. On note $(\langle S \rangle_n)_{n\geq 0}$ le crochet prévisible de cette martingale à savoir

$$\langle S \rangle_0 = 0, \qquad \langle S \rangle_n = \sum_{1 \le k \le n} \mathbb{E}\left((S_n - S_{n-1})^2 \mid \mathcal{F}_{n-1} \right), \quad n \ge 1.$$

Pour $n \geq 0$, on note $s_n^2 = \mathbb{E}\left[S_n^2\right] = \mathbb{E}[\langle S \rangle_n]$, et on pose, pour $n \geq 1$, $X_n = S_n - S_{n-1}$.

Nous allons démontrer le résultat suivant dû à Brown [Bro71].

Théorème 3. Soit $(S_n)_{n\geq 1}$ est une martingale de carré intégrable telle que $S_0=0$.

 $Si(\langle S \rangle_n/s_n^2)_{n\geq 1}$ converge en probabilité vers 1 et si la condition de Lindenberg (1) est vérifiée, alors $(S_n/s_n)_{n\geq 1}$ converge en loi vers N gaussienne centrée réduite.

Comme dans le cas des variables indépendantes, nous allons montrer une généralisation de ce résultat pour des tableaux de différences de martingales. Soient $(p_n)_{n\geq 1}$ une suite d'entiers strictement positifs et, pour tout $n\geq 1$, $(Z_{n,k},\,\mathcal{F}_{n,k})_{0\leq k\leq p_n}$ une martingale de carré intégrable telle que $Z_{n,0}=0$. On note, pour tout $n\geq 1$ et tout $1\leq k\leq p_n$,

$$X_{n,k} = Z_{n,k} - Z_{n,k-1}, \qquad V_{n,k} = \mathbb{E}_{n,k-1} \left(X_{n,k}^2 \right), \qquad \Delta_n = \max_{1 \le k \le p_n} V_{n,k},$$

où $\mathbb{E}_{n,k}$ désigne l'espérance conditionnelle par rapport à $\mathcal{F}_{n,k}$. On note encore $A_{n,0}=0$,

$$A_{n,j} = \sum_{1 \le k \le j} \mathbb{E}_{n,k-1} \left((Z_{n,k} - Z_{n,k-1})^2 \right) = \sum_{1 \le k \le j} V_{n,k}, \qquad Z_n = Z_{n,p_n}, \qquad A_n = A_{n,p_n}.$$

Finalement, $\sigma_n^2 = \mathbb{E}[Z_n^2] = \mathbb{E}[A_n]$.

Théorème 4. On suppose que $\lim_{n\to+\infty}\sigma_n^2=\sigma^2>0$ et que $(A_n/\sigma_n^2)_{n\geq 1}$ converge vers 1 en probabilité.

Si la condition de Lindenberg (2) est vérifiée alors $(Z_n)_{n\geq 1}$ converge en loi vers σN où N suit la loi gaussienne centrée réduite.

On retrouve le théorème 3 en considérant $X_{n,k} = (S_k - S_{k-1})/s_n$

Démonstration. Commençons par établir le théorème lorsqu'il existe une constante C telle que $A_n \leq C$ pour tout $n \geq 1$. Il s'agit donc de démontrer que $\mathbb{E}\left[e^{itZ_n}\right] \longrightarrow e^{-\sigma^2t^2/2}$. Puisque $\sigma_n^2 \longrightarrow \sigma^2$, ceci revient à montrer que $\mathbb{E}\left[e^{itZ_n+\sigma_n^2t^2/2}\right] \longrightarrow 1$. Remarquons d'autre part que $e^{itZ_n+\sigma_n^2t^2/2} - e^{itZ_n+A_nt^2/2}$ converge vers 0 dans L^1 . En effet,

$$\left| e^{itZ_n + \sigma_n^2 t^2/2} - e^{itZ_n + A_n t^2/2} \right| = \left| e^{\sigma_n^2 t^2/2} - e^{A_n t^2/2} \right|$$

et comme $\sigma_n^2 \longrightarrow \sigma^2$, $A_n/\sigma_n^2 \longrightarrow 1$ en probabilité, cette dernière quantité converge vers 0 en probabilité. On obtient la convergence dans L¹ par convergence dominée puisque $0 \le A_n \le C$. Nous devons donc montrer que

$$\mathbb{E}\left[e^{itZ_n+A_nt^2/2}\right] = \mathbb{E}\left[e^{itZ_{n,p_n}+A_{n,p_n}t^2/2}\right] \xrightarrow{n \to +\infty} 1.$$

Soit $n \ge 1$. Posons, pour $0 \le k \le p_n$, $H_k = e^{itZ_{n,k} + A_{n,k}t^2/2}$. On a $e^{itZ_n + A_nt^2/2} - 1 = H_{p_n} - H_0$ puisque $H_0 = 1$ et

$$\left| \mathbb{E}\left[e^{itZ_n + A_n t^2/2} \right] - 1 \right| = \left| \mathbb{E}\left[\sum_{1 \leq k \leq p_n} (H_k - H_{k-1}) \right] \right| = \left| \mathbb{E}\left[\sum_{1 \leq k \leq p_n} \mathbb{E}_{n,k-1} \left(H_k - H_{k-1} \right) \right] \right|.$$

Par conséquent,

$$\left| \mathbb{E}\left[e^{itZ_n + A_n t^2/2} \right] - 1 \right| \le \mathbb{E}\left[\sum_{1 \le k \le p_n} \left| \mathbb{E}_{n,k-1} \left(H_k - H_{k-1} \right) \right| \right]. \tag{9}$$

On a, pour tout $1 \le k \le p_n$,

$$\begin{split} H_k - H_{k-1} &= e^{itZ_{n,k-1} + t^2 A_{n,k}/2} \left(e^{itX_{n,k}} - e^{-t^2 V_{n,k}/2} \right) \\ &= e^{itZ_{n,k-1} + t^2 A_{n,k}/2} \left(1 + itX_{n,k} - \frac{t^2 X_{n,k}^2}{2} + \frac{t^2}{2} X_{n,k}^2 Q(tX_{n,k}) - e^{-t^2 V_{n,k}/2} \right) \end{split}$$

et puisque $A_{n,k}$, $Z_{n,k-1}$ et $V_{n,k}$ sont $\mathcal{F}_{n,k-1}$ mesurables et $\mathbb{E}_{n,k-1}\left(X_{n,k}\right)=0$

$$\mathbb{E}_{n,k-1}\left(H_k - H_{k-1}\right) = e^{itZ_{n,k-1} + t^2 A_{n,k}/2} \left(\frac{t^2}{2} \mathbb{E}_{n,k-1} \left(X_{n,k}^2 Q(tX_{n,k})\right) - U\left(t^2 V_{n,k}/2\right)\right)$$

où $U(x)=e^{-x}-1+x$. Comme $0\leq U(x)\leq x^2/2$ pour $x\geq 0$ et $A_{n,k}\leq A_{n,p_n}\leq C$, on obtient

$$|\mathbb{E}_{n,k-1}(H_k - H_{k_1})| \le e^{Ct^2/2} \frac{t^2}{2} \left(\mathbb{E}_{n,k-1} \left(X_{n,k}^2 | Q(tX_{n,k})| \right) + \frac{t^2}{4} V_{n,k}^2 \right)$$

$$\le e^{Ct^2/2} \frac{t^2}{2} \left(\mathbb{E}_{n,k-1} \left(X_{n,k}^2 | Q(tX_{n,k})| \right) + \frac{t^2}{4} \Delta_n V_{n,k} \right)$$

et sommant ces inégalités de k=1 à p_n , puisque $A_{n,p_n}=\sum_{1\leq k\leq p_n}V_{n,k}\leq C$,

$$\sum\nolimits_{1 \le k \le p_n} \left| \mathbb{E}_{n,k-1} \left(H_k - H_{k-1} \right) \right| \le e^{Ct^2/2} \frac{t^2}{2} \left(\sum\nolimits_{1 \le k \le p_n} \mathbb{E}_{n,k-1} \left(X_{n,k}^2 |Q(tX_{n,k})| \right) + \frac{t^2}{4} \Delta_n C \right).$$

L'inégalité (9) donne alors

$$\left| \mathbb{E}\left[e^{itZ_n + A_n t^2/2} \right] - 1 \right| \le e^{Ct^2/2} \frac{t^2}{2} \left(\sum_{1 \le k \le p_n} \mathbb{E}\left[X_{n,k}^2 |Q(tX_{n,k})| \right] + \frac{t^2}{4} \Delta_n C \right).$$

puis en utilisant (8), pour tout $\varepsilon > 0$,

$$\left| \mathbb{E}\left[e^{itZ_n + A_n t^2/2} \right] - 1 \right| \le e^{Ct^2/2} \frac{t^2}{2} \left(2\lambda_n(\varepsilon) + \frac{|t|}{3} \varepsilon \sigma_n + \frac{t^2}{4} C \mathbb{E}[\Delta_n] \right). \tag{10}$$

Il reste donc à estimer $\mathbb{E}[\Delta_n]$. Utilisant le même découpage que pour obtenir l'inégalité (3), on a, pour tout $\varepsilon > 0$,

$$\Delta_n \leq \sum_{1 \leq k \leq p_n} \mathbb{E}_{n,k-1} \left(X_{n,k}^2 \mathbf{1}_{|X_{n,k}| > \varepsilon} \right) + \varepsilon^2, \qquad \mathbb{E}[\Delta_n] \leq \lambda_n(\varepsilon) + \varepsilon^2.$$

Il suffit de prendre $\limsup_{n\to+\infty}$ dans l'inégalité (10) pour conclure.

Affranchissons nous à présent de l'hypothèse $A_n \leq C$. Puisque A_n converge vers σ^2 en probabilité, $\mathbb{P}(A_n > C)$ converge vers 0 pour tout $C > \sigma^2$. Prenons un tel $C > \sigma^2$ et posons

$$\forall n \ge 1, \quad \forall 1 \le k \le p_n, \qquad X_{n,k}^* = X_{n,k} \, \mathbf{1}_{A_{n,k} \le C}.$$

Par construction, $|X_{n,k}^*| \leq |X_{n,k}|$ et, comme $A_{n,k}$ est $\mathcal{F}_{n,k-1}$ -mesurable, $\mathbb{E}_{n,k}\left(X_{n,k}^*\right) = 0$ et $A_{n,p_n}^* \leq C$. D'autre part, $A_n^* = A_n$ et $Z_n^* = Z_n$ sur $\{A_n \leq C\}$. Comme $\mathbb{P}(A_n \leq C) \longrightarrow 1$, $A_n - A_n^*$ et $Z_n - Z_n^*$ converge vers 0 en probabilité. En particulier, A_n^* converge vers σ^2 en probabilité. En fait $A_n - A_n^*$ converge vers 0 dans L^1 puisque $0 \leq A_n^* - A_n \leq A_n$ et $(A_n)_{n\geq 1}$ est équi-intégrable car convergeante vers σ^2 dans L^1 via le lemme de Scheffé. Il s'en suit que $(\sigma_n^*)^2 = \mathbb{E}[A_n^*] \longrightarrow \sigma^2$. Enfin, $\lambda_n^*(\varepsilon) \leq \lambda_n(\varepsilon)$. On peut donc appliquer le résultat précédant à la suite $(Z_n^*)_{n\geq 1}$ qui converge en loi vers σN . Puisque $Z_n^* - Z_n$ converge vers 0 en probabilité, il en va de même de la suite $(Z_n)_{n\geq 1}$.

3. L'estimation clef.

Finissons en démontrant les majorations de la fonction Q voir (4). Pour tout $n \ge 0$ et tout $x \in \mathbb{R}$, on a, en intégrant par parties,

$$\int_0^1 (1-s)^n e^{ixs} \, ds = \frac{1}{n+1} + \frac{ix}{n+1} \int_0^1 (1-s)^{n+1} e^{ixs} \, ds. \tag{11}$$

Pour n=0 et $x\neq 0$, on obtient

$$\frac{e^{ix} - 1}{ix} = 1 + ix \int_0^1 (1 - s)e^{ixs} ds, \qquad e^{ix} = 1 + ix + (ix)^2 \int_0^1 (1 - s)e^{ixs} ds,$$

où la seconde formule est vraie aussi pour x = 0. Via (11) pour n = 1, on a

$$e^{ix} = 1 + ix + \frac{(ix)^2}{2} + \frac{(ix)^3}{2} \int_0^1 (1-s)^2 e^{ixs} ds$$
;

une récurrence élémentaire donne, pour tout $n \ge 0$

$$e^{ix} = \sum_{k=0}^{n} \frac{(ix)^n}{n!} + \frac{(ix)^{n+1}}{n!} \int_0^1 (1-s)^n e^{ixs} \, ds$$

qui n'est rien d'autre que la formule de Taylor avec reste intégrale. Notons $R_n(x)$ le second terme du membre de droite. On a, pour tout réel x,

$$|R_n(x)| \le \frac{|x|^{n+1}}{n!} \int_0^1 (1-s)^n \, ds = \frac{|x|^{n+1}}{(n+1)!}.$$

D'autre part via (11) pour n-1,

$$R_n(x) = \frac{(ix)^n}{(n-1)!} \frac{ix}{n} \int_0^1 (1-s)^n e^{ixs} \, ds = \frac{(ix)^n}{(n-1)!} \left(\int_0^1 (1-s)^{n-1} e^{ixs} \, ds - \frac{1}{n} \right).$$

Or
$$\frac{1}{n} = \int_0^1 (1-s)^{n-1} ds$$
 et

$$R_n(x) = \frac{(ix)^n}{(n-1)!} \int_0^1 (1-s)^{n-1} \left(e^{ixs} - 1\right) ds.$$

Par conséquent, comme $|e^{ixs} - 1| \le 2$,

$$|R_n(x)| \le \frac{2|x|^n}{(n-1)!} \int_0^1 (1-s)^{n-1} ds = \frac{2|x|^n}{n!}.$$

Finalement,

$$|R_n(x)| \le \min\left(\frac{|x|^{n+1}}{(n+1)!}, 2\frac{|x|^n}{n!}\right).$$

Avec ces notations, on a $Q(x) = 2x^{-2}R_2(x)$ et $|Q(x)| \le \min(|x|/3, 2)$. D'autre part, vu l'expression de R_2 , via (11) pour n = 1,

$$Q(x) = -(ix) \int_0^1 (1-s)^2 e^{ixs} ds = 1 - 2 \int_0^1 (1-s)e^{ixs} ds$$

d'où l'on déduit immédiatement que

$$|Q(x) - 1| \le 2 \int_0^1 (1 - s) \, ds = 1.$$

Références.

[Bro71] B. M. Brown, Martingale central limit theorems, Ann. Math. Statist. 42 (1971), 59–66.