Oitava lista de exercícios.

Equações e inequações com frações e raízes.

- 1. Resolva as equações abaixo.

 - a) $\frac{x-2}{x+3} = 0$. b) $\frac{2x+5}{x-1} = 3$. c) $\frac{5x-2}{1-3x} = -1$. d) $\frac{3-\frac{x}{2}}{3x+8} = \frac{1}{4}$. e) $\frac{3x+5}{4x-5} = -3$.

 - f) $\frac{4-\frac{x}{2}}{4x+1} = 0$.
 - g) $\frac{2}{x+1} \frac{4}{x-1} = 0$.

 - i) $\frac{4}{x+1} + \frac{1}{x-1} = \frac{5}{x^2-1}$.

 - j) $\frac{3}{x+1} + \frac{2}{x-1} = 3$. k) $\frac{2}{x-4} + \frac{5}{x-2} = 3$.
 - $1) \quad \frac{1}{2x+1} + \frac{1}{3x-1} = \frac{2}{5}.$
 - m) $\frac{3}{x-2} \frac{2}{x+3} = \frac{1}{x}$.
 - n) $\frac{2}{x+1} \frac{2}{2x-3} = \frac{3}{x}$.
 - o) $\frac{2x^2}{x+5} = 5$.
 - p) $\frac{x^2}{3x-3} = 2x 1$.
- 2. Resolva as inequações abaixo.

 - a) $\frac{x-2}{x+3} \le 0$. b) $\frac{x+4}{x-2} \le 0$. c) $\frac{2x-3}{x-1} \le 0$. d) $\frac{4x+5}{x+2} \le 0$.

 - e) $\frac{x-2}{2x+6} \le 0$.
 - $f) \quad \frac{x+1}{2x-5} \le 0.$
 - g) $3 \frac{x}{x+2} \le 0$.
 - h) $\frac{5x}{x-4} \ge 10$.

 - i) $\frac{2x-7}{x-2} \ge 3$. j) $\frac{3x+1}{2x-5} \le 2$. k) $1 + \frac{2}{x+1} \le \frac{2}{x}$.

- Resolva as equações abaixo.
 - a) $\sqrt{x+1} = 2x 1$.
 - b) $\sqrt{2x+1} = x-1$.
 - c) $\sqrt{x-3} = 9 x$.
 - d) $\sqrt{4-x} = 3x 2$.
 - e) $4\sqrt{3x-1} = 2/3 2x$.
 - f) $\sqrt{5 x^2} = 3 2x$.
- 4. (Stewart) Uma fogueira foi acesa em um terreno plano. A temperatura T (em °C) em um ponto que está a x metros do centro da fogueira é dada por

$$T(x) = \frac{600000}{x^2 + 300}$$

Determine a que distância do centro da fogueira a temperatura é menor ou igual a 500°C.

5. A abscissa (coordenada x) do centro de gravidade de uma placa de madeira com o formato dado na figura abaixo é definida pela expressão

$$\frac{400 - 15w}{80 - 2w}$$

considerando que as medidas estão centímetros e que o ponto inferior esquerdo da placa é a origem. Determine para que valores de w a abscissa é maior ou igual a 3.

6. Uma indústria metalúrgica recebeu uma grande encomenda de parafusos, que podem ser produzidos em duas máquinas da empresa. A primeira máquina é capaz de produzir a encomenda em 8 horas, enquanto a segunda faz o mesmo serviço em 10 horas. Em quanto tempo é possível produzir os parafusos, usando as duas máquinas?

Dica:

- A primeira máquina produz 1/8 dos parafusos por hora. Já a segunda produz 1/10 dos parafusos por hora.
- Chamemos de t o tempo gasto para produzir os parafusos usando as duas máquinas.
 Nesse caso, a quantidade total de parafusos produzidos por hora nos fornece a equação

$$\frac{1}{8} + \frac{1}{10} = \frac{1}{t}.$$

- Agora, obtenha *t* resolvendo essa equação.
- 7. Os canos A e B são capazes de encher um reservatório em 3 e 4 horas, respectivamente. Por outro lado, o cano C é capaz de esvaziar o reservatório em 5 horas. Escreva uma equação e determine o tempo que teremos que esperar para que o reservatório fique cheio.
- 8. Mayara e Genival trabalham juntos na produção de doces de festa. Em conjunto, os dois produzem um lote de doces em 1,2 horas. Entretanto, quando trabalham sozinhos, Genival gasta 1 hora a mais que Mayara para produzir o mesmo lote. Quanto tempo cada um gasta para produzir, sozinho, esse lote de petiscos?
- 9. Ao sair de casa, Rodolfo descobre que pode chegar ao seu compromisso na hora certa se dirigir a 60 km/h. Depois de dirigir 40% da distância original, ele descobre que estava trafegando apenas a uma velocidade média de 50 km/h. A que velocidade ele deve viajar deste momento em diante para chegar na hora certa?

Dica:

- Como você não sabe qual é a distância total que Rodolfo tem que percorrer, chame-a de x. Em função de x, escreva a distância que Rodolfo já percorreu e aquela que ainda falta percorrer.
- O tempo gasto em uma viagem é a razão entre a distância percorrida e a velocidade média. Assim, o tempo total da viagem de Rodolfo é dado por x/60.

- Chame de y a velocidade média em que Rodolfo deve viajar daqui para frente e escreva uma equação que relacione o tempo total de viagem ao tempo gasto nas duas partes do percurso (o tempo consumido até o momento e o tempo a ser gasto a partir de agora).
- Resolva a sua equação para obter y.

Respostas.

1.a.
$$x = 2$$
.

1.b.
$$x = 8$$
.

1.c.
$$x = 1/2$$
.

1.d.
$$x = 4/5$$
.

1.e.
$$x = 2/3$$
.

1.f.
$$x = 8$$
.

1.g.
$$x = -3$$
.

1.h.
$$x = 0$$
.

1.i.
$$x = 8/5$$
.

1.j.
$$x = -1/3$$
 ou $x = 2$.

1.k.
$$x = 3$$
 ou $x = 16/3$.

1.l.
$$x = -1/12$$
 ou $x = 2$.

$$1.m. x = -1/2.$$

1.n.
$$x = -9/4$$
 ou $x = 1$.

1.o.
$$x = -5/2$$
 ou $x = 5$.

1.p.
$$x = 2/5$$
 ou $x = 1$.

$$2.a. -3 < x \le 2.$$

$$2.b. -4 \le x < 2.$$

2.c.
$$1 < x \le 3/2$$
.

2.d.
$$-2 < x \le -5/4$$
.

2.e.
$$-3 < x \le 3$$
.

$$2.f. -1 \le x < 5/2.$$

$$2.g. -3 \le x < -2.$$

2.h.
$$4 < x \le 8$$
.

$$2.i. -1 \le x < 2.$$

2.j.
$$x < 5/2$$
 ou $x \ge 11$.

$$2.k. -2 \le x < -1$$
 ou $0 < x \le 1$.

3.a.
$$x = 5/4$$
.

3.b.
$$x = 4$$
.

3.c.
$$x = 7$$
.

3.d.
$$x = 11/9$$
.

3.e.
$$x = 1/3$$
.

3.f.
$$x = 2/5$$
.

$$4. x \ge 30 \text{ m}.$$

- $5. w \le 160/9 \text{ cm}.$
- 6. Em 40/9 horas (cerca de 4,444 h, ou 4h27m).
- 7. 60/23 horas (cerca de 2,609 h, ou 2h37m).
- 8. Mayara gasta 2h e Genival consome 3h.
- 9. A 69,23 km/h.