CLAIMS

What is claimed is:

1	1.	A method for managing an instance of a model, wherein the instance includes a set of
2		nodes with associated node variables and a set of connection constraints, the method
3		comprising the computer-implemented steps of:
4		receiving an intent to modify the instance, wherein the intent to modify specifies a
5		first node of the set of nodes;
6		loading into volatile memory information associated with said first node;
7		determining, based at least on said information associated with said first node, a first
8		subset of said set of connection constraints, wherein said first subset of
9		connection constraints includes all connection constraints that restrict said
10		intent to modify, and wherein said first subset of connection constraints
11		includes fewer constraints than said set of connection constraints;
12		determining, based on said first subset of connection constraints, a first subset of node
13		variables that are associated with nodes of said set of nodes, wherein said first
14		subset of node variables includes all variables that may have associated values
15		that affect whether any constraint of said first subset of connection constraints
16		is violated; and
17		loading into volatile memory a first subset of node variable information, wherein said
18		first subset of node variable information includes only information about said
19		first subset of node variables.
1	2.	The method of Claim 1, further comprising the computer-implemented steps of:
2		receiving a modification to said first node; and
		-28-

3		based on said first subset of node variable information and said set of connection
4		constraints, determining whether said modification violates any constraint of
5		said set of connection constraints.
1	3.	The method of Claim 2, further comprising the computer-implemented steps of:
2		upon a determination that a variable value associated with a second node of said set
3		of nodes is affected by said modification,
4		determining, based on said first subset of node variables, a second subset of
5		said set of connection constraints, wherein said second subset of
6		connection constraints includes all constraints that restrict said variable
7		value associated with said second node;
8		determining, based on said second subset of connection constraints, a second
9		subset of node variables that are associated with nodes of said set of
10		nodes, wherein said second subset of node variables includes all
11		variables that may have associated values that affect whether any
12		constraint of said second subset of connection constraints is violated;
13		and
14		to determine whether said variable value of said second node violates any
15		constraints of said set of connection constraints, loading into volatile
16		memory, if not already loaded, a second subset of node variable
17		information, wherein said second subset of node variable information
18		includes only information about said second subset of node variables.
1	4.	The method of Claim 1, wherein said first subset of connection constraints includes
2		only constraints that restrict said intent to modify.

1	5.	The method of Claim 1, furt	ner comprising the computer-in	nplemented step of
---	----	-----------------------------	--------------------------------	--------------------

- 2 indicating that a constraint of said set of connection constraints is violated by said
- 3 intended modification.
- 1 6. The method of Claim 1, wherein said intended modification includes a change to said
- 2 first node.
- 1 7. The method of Claim 6, further comprising the computer-implemented step of
- 2 indicating that a constraint of said set of connection constraints is violated by said
- 3 change to said first node.
- 1 8. The method of Claim 1, wherein said modification includes addition of said first node
- 2 to said instance.
- 1 9. The method of Claim 8, further comprising the computer-implemented step of
- 2 providing a set of one or more variable values for said first node that do not violate
- any of said constraints of said set of connection constraints.
- 4 10. The method of Claim 1, further comprising the computer-implemented step of
- 5 causing display of a representation of said first subset of connection constraints and
- 6 said first subset of node variables.
- 1 11. The method of Claim 1, wherein said first subset of node variables includes variables
- 2 associated with a first set of one or more passive nodes, and wherein said first node is
- 3 editable and said one or more passive nodes are not editable.

1	12.	The method of Claim 1, further comprising the computer-implemented step of
2		representing said model according to constraint programming techniques.
1	13.	A computer-readable medium carrying one or more sequences of instructions which
2		when executed by one or more processors, causes the one or more processors to
3		perform the method recited in Claim 1.
1	14.	A computer-readable medium carrying one or more sequences of instructions which
2		when executed by one or more processors, causes the one or more processors to
3		perform the method recited in Claim 2.
1	15.	A computer-readable medium carrying one or more sequences of instructions which
2		when executed by one or more processors, causes the one or more processors to
3		perform the method recited in Claim 3.
1	16.	A computer-readable medium carrying one or more sequences of instructions which
2		when executed by one or more processors, causes the one or more processors to
3		perform the method recited in Claim 4.
1	17.	A computer-readable medium carrying one or more sequences of instructions which
2		when executed by one or more processors, causes the one or more processors to

- perform the method recited in Claim 5.
- 2 when executed by one or more processors, causes the one or more processors to
- 3 perform the method recited in Claim 6.

A computer-readable medium carrying one or more sequences of instructions which,

3

1

18.

1	19.	A computer-readable medium carrying one or more sequences of instructions which,
2		when executed by one or more processors, causes the one or more processors to

- 3 perform the method recited in Claim 7.
- 1 20. A computer-readable medium carrying one or more sequences of instructions which,
- when executed by one or more processors, causes the one or more processors to
- perform the method recited in Claim 8.
- 1 21. A computer-readable medium carrying one or more sequences of instructions which,
- when executed by one or more processors, causes the one or more processors to
- perform the method recited in Claim 9.
- 1 22. A computer-readable medium carrying one or more sequences of instructions which,
- when executed by one or more processors, causes the one or more processors to
- perform the method recited in Claim 10.
- 1 23. A computer-readable medium carrying one or more sequences of instructions which,
- when executed by one or more processors, causes the one or more processors to
- perform the method recited in Claim 11.
- 1 24. A computer-readable medium carrying one or more sequences of instructions which,
- 2 when executed by one or more processors, causes the one or more processors to
- perform the method recited in Claim 12.
- 1 25. A system for managing an instance of a model that includes a set of nodes and a set of
- 2 constraints, the system comprising:

ORACLE CONFIDENTIAL

3		means for receiving an intent to modify the instance, wherein the intent to modify
4		specifies a first node of the set of nodes;
5		means for loading into volatile memory information associated with said first node;
6		means for determining, based at least on said information associated with said first
7		node, a first subset of said set of connection constraints, wherein said first
8		subset of connection constraints includes all connection constraints that
9		restrict said intent to modify, and wherein said first subset of connection
10		constraints includes fewer constraints than said set of connection constraints;
11		means for determining, based on said first subset of connection constraints, a first
12		subset of node variables that are associated with nodes of said set of nodes,
13		wherein said first subset of node variables includes all variables that may have
14		associated values that affect whether any constraint of said first subset of
15		connection constraints is violated; and
16		means for loading into volatile memory a first subset of node variable information,
17		wherein said first subset of node variable information includes only
18		information about said first subset of node variables.
1	26.	The system of Claim 25, further comprising:
2		means for receiving a modification to said first node; and
3		means for determining, based on said first subset of node variable information and
4		said set of connection constraints, whether said modification violates any
5		constraint of said set of connection constraints.

I	27.	The system of Claim 26, further comprising:
2		means for determining, upon a determination that a variable value associated with a
3		second node of said set of nodes is affected by said modification and based on
4		said first subset of node variables, a second subset of said set of connection
5		constraints, wherein said second subset of connection constraints includes all
6		constraints that restrict said variable value associated with said second node;
7		means for determining, upon a determination that a variable value associated with a
8		second node of said set of nodes is affected by said modification and based on
9		said second subset of connection constraints, a second subset of node
10		variables that are associated with nodes of said set of nodes, wherein said
11		second subset of node variables includes all variables that may have
12		associated values that affect whether any constraint of said second subset of
13		connection constraints is violated; and
14		means for loading into volatile memory, if not already loaded, a second subset of
15		node variable information to determine whether said variable value of said
16		second node violates any constraints of said set of connection constraints,
17		wherein said second subset of node variable information includes only
18		information about said second subset of node variables.