Practice Worksheet: Relations & Functions

Use the given form of each relation to complete the other forms. Then determine if the relation is a function.

1] Rewrite the relation given in the mapping diagram as a scatterplot.

2] Rewrite the relation given in the scatter plot as a mapping diagram.

Is the relation also a function?

Is the relation also a function?

3] Rewrite the relation given in the table as a mapping diagram.

X	У
1	-2
-3	-1
1	0
2	2
0	3

4] Rewrite the relation given in the scatter plot as a set of ordered pairs (NOT a table).

Is the relation also a function?

Is the relation also a function?

Identify the domain and range, then determine if each graph shows a function or a relation only.

5]

6]

Range:

Function? Yes

Credit: Mrs. Wolfe, Carlisle school, PA

Function?

http://carlisleschools.ss13.sharpschool.com/common/pages/UserFile.aspx?fileId=1582601

Identify the domain and range, then evaluate each function for the given value of x.

8] $f = \{(10,7), (-2,4), (5,3), (4,10)\}$

Domain:

{-2,4,5,10}

Range:

{ 3, 4,7,10}

f(10) =

97

Domain: {-3, -1, 0, 1}

Range: $\{0, 1, 3\}$ $\begin{bmatrix}0\\1\end{bmatrix}$

f(-1) =

10]

Domain: \ -3 - (12)

Range: $\left\{ -\frac{1}{2} - \frac{1}{2} \right\}$

f(-3) = -

11] -3 -2 -1 0 -3 -2 -1 0 1 2 3

Domain: $\left\{-2,0,13\right\}$

Range: { -1, 0, 1,2}

 $f(3) = \bigcirc$

Domain: (0,8)

Range: [-3,]

f(0) =

Domain: O M

Range: $\left[-\frac{3}{2}\right]$

f(4) =

Domain: $(-\infty, \infty)$

Range: $\left(-\infty, 4\right]$

f(-3) =

Domain: (- SS SS)

Range: $\left[-6\right]$ ∞

f(2) = -

Domain: (-W, w)

Range: $\left(-\varnothing, \varnothing\right)$

 $f(-2) = \bigcirc$