Assignment 1 2021-March Session-03-16-2021-shift-1:1-15

EE24BTECH11049 Patnam Shariq Faraz Muhammed

1) Consider three observations a, b and c such that b = a + c. If the standard deviation of a + 2, b + 2, c + 2 is d, then which of the following is true?

(2021-Mar-16-S1)

a)
$$b^2 = a^2 + c^2 + 3d^2$$

a)
$$b^2 = a^2 + c^2 + 3d^2$$

b) $b^2 = 3(a^2 + c^2) - 9d2$

c)
$$b^2 = 3(a^2 + c^2) + 9d^2$$

d) $b^2 = 3(a^2 + c^2 + d^2)$

d)
$$b^2 = 3(a^2 + c^2 + d^2)$$

2) Let a vector $\alpha \hat{\mathbf{i}} + \beta \hat{\mathbf{j}}$ be obtained by rotating the vector $\sqrt{3}\hat{\mathbf{i}} + \hat{\mathbf{j}}$ by an angle 45° about the origin in counterclockwise direction in the first quadrant. Then the area of triangle having vertices (α, β) , $(0, \beta)$ and (0, 0) is equal to:

(2021-Mar-16-S1)

b)
$$\frac{1}{2}$$

c)
$$\frac{1}{\sqrt{2}}$$

d)
$$2\sqrt{2}$$

3) If for a > 0, the feet of perpendiculars from the points $\mathbf{A}(a, -2a, 3)$ and $\mathbf{B}(0, 4, 5)$ on the plane lx + my + nz = 0 are points $\mathbf{C}(0, -a, -1)$ and \mathbf{D} respectively, then the length of line segment $\mathbf{C}\mathbf{D}$ is equal to:

(2021-Mar-16-S1)

a)
$$\sqrt{41}$$

b)
$$\sqrt{55}$$

c)
$$\sqrt{31}$$

d)
$$\sqrt{66}$$

(2021-Mar-16-S1)

	a) $\left[-\frac{4}{3}, 2 \right]$	b) [1,∞)	c) (-∞, -1]	d) (-3, 1)
5)	Let the functions $f : \mathbf{R} \mapsto \mathbf{R}$ and $g : \mathbf{R} \mapsto \mathbf{R}$ be defined as: $f(x) = \begin{cases} x+2, & x \le x$			
	NOT differentiable	is equal to:		(2021-Mar-16-S1)
	a) 1	b) 2	c) 3	d) 0
6)	Let a complex num of $ z $ is equal to	ober z , $ z \neq 1$, satisfy	$\log_{\frac{1}{\sqrt{2}}} \left[\frac{(z +11)}{(z -1)^2} \right] \le 2. \ 7$	Then, the largest value
	or s is equal to			(2021-Mar-16-S1)
	a) 5	b) 8	c) 6	d) 7
7)	A pack of cards has one card missing. Two cards are drawn randomly and are found to be spades. The probability that the missing card is not a spade is: (2021-Mar-16-S1)			
	a) $\frac{3}{4}$		50	d) $\frac{22}{425}$
8)	If n is the number is divisible by	of irrational terms in	the expansion of [3	(2021-Mar-16-S1)
	a) 8	b) 26	c) 7	d) 30
9)	9) Let the position vectors of two points \mathbf{P} and \mathbf{Q} be $3\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ and $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 4\hat{\mathbf{k}}$ respectively. Let \mathbf{R} and \mathbf{S} be two points such that the direction ratios of lines \mathbf{PR} and \mathbf{QS} are $(4, -1, 2)$ and $(-2, 1, -2)$ respectively. Let lines \mathbf{PR} and \mathbf{QS} intersect at \mathbf{T} . If the vector \mathbf{TA} is perpendicular to both \mathbf{PR} and \mathbf{QS} and the length of vector \mathbf{TA} is $\sqrt{5}$ units, then the modulus of a position vector of \mathbf{A} is: (2021-Mar-16-S1)			

 $f(x) = (4a - 3)(x + \log_e 5) + (a - 7)\cot(\frac{x}{2})\sin^2(\frac{x}{2}),$

4) The range of $a \in R$ for which the function

 $x \neq 2n\pi$, $n \in \mathbb{N}$ has critical points, is

- a) $\sqrt{5}$
- b) $\sqrt{171}$
- c) $\sqrt{227}$
- d) $\sqrt{482}$

10) If the three normals drawn to the parabola, $y^2 = 2x$ pass through the point (a, 0) $a \neq 0$, then 'a' must be greater than

(2021-Mar-16-S1)

a) 1

- b) $\frac{1}{2}$
- c) $-\frac{1}{2}$
- d) -1

11) let

$$S_K = \sum_{r=1}^k \tan^{-1} \left[\frac{(6^r)}{(2^{r+1} + 3^{2r+1})} \right]$$
. Then $\lim_{k \to \infty} S_k = \frac{1}{2^{r+1}} \sum_{k \to \infty} S_k = \frac{1}{2^{r+$

(2021-Mar-16-S1)

- a) $tan^{-1}\left(\frac{3}{2}\right)$ b) $cot^{-1}\left(\frac{3}{2}\right)$
- c) $\frac{\pi}{2}$

d) $tan^{-1}(3)$

12) The number of roots of the equation, $(81)^{\sin^2 x} + (81)^{\cos^2 x} = 30$ in the interval $[0, \pi]$ is equal to:

(2021-Mar-16-S1)

a) 3

b) 2

c) 4

d) 8

13) If y = y(x) is the solution of the differential equation,

$$\frac{dy}{dx} + 2y\tan x = \sin x, y\left(\frac{\pi}{3}\right) = 0$$

, then the maximum value of the function y(x) over **R** is equal to :

(2021-Mar-16-S1)

a) 8

b) $\frac{1}{2}$

- c) $-\frac{15}{4}$
- d) $\frac{1}{8}$
- 14) Which of the following Boolean expression is a tautology?
- (2021-Mar-16-S1)

a) $(p \land q) \land (p \rightarrow q)$

b) $(p \land q) \lor (p \lor q)$

- c) $(p \land q) \lor (p \rightarrow q)$ d) $(p \land q) \rightarrow (p \rightarrow q)$
- 15) let $A = \begin{pmatrix} \iota & -\iota \\ -\iota & \iota \end{pmatrix}$. Then, the system of linear equations $A^8 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 8 \\ 64 \end{pmatrix}$ has (2021-Mar-16-S1)
 - a) No solution

c) A unique solution

b) Exactly two solutions

d) Infinitely many solutions