

Seminar # 2

Seminar # 2 of MIPT course: Introduction to machine learning

Speaker: Alexey O. Seleznev *PhD in Computational Chemistry*

5VISION TEAM

Moscow 2017

OUTLINE

- Discussion on the assignment results
 - > Assignment 2
 - > Assignment 3
- Hot topics in machine learning
- Autoencoders
- Deep generative models
 - > Variational autoencoders
 - > Generative adversarial networks
- References

Assignment Results

Assignment 2

Leaderboard

1	_	Igor Prusov	0.30555	7	Mon, 15 May 2017 00:21:03
2	↑1	pepe	0.30373	4	Mon, 22 May 2017 10:24:49
		Baseline	0.15307		

Solutions

- > Tell about your solution
- ➤ How did you get to it?
- ➤ Was it an interesting task?

Assignment 3

Leaderboard

1	new	SergeyVolodin	0.78512	4	Tue, 23 May 2017 15:16:46
2	new	pepe	0.71158	2	Mon, 22 May 2017 13:22;32 (-2.5h)
		Baseline	0.57282		

Solutions

- > Tell about your solution
- ➤ How did you get to it?
- ➤ Was it an interesting task?

Hot Topics in Machine Learning

Hot Topics in Machine Learning

Deep learning

- > Reasons for being hot:
 - State-of-the-art results in some applications (image recognition, neural translation, speech recognition, etc)
 - Concept of end-to-end learning (no need for hand-craft features)
 - Neurobiological inspiration
- Examples of research topics:
 - Understanding of learning representations and learning process in general (including invention of new training techniques)
 - Learning a two-way transformation of the data into a space where variables are disentangled
 - Deep generative models
 - Models of long-term dependencies

Hot Topics in Machine Learning

- ❖ Semi-supervised learning (a lot of unlabeled data; how to use it efficiently)
- Machine learning and reasoning (correlation vs causation)
- Approximate Bayesian inference
- Exploration vs exploitation dilemma in reinforcement learning (e.g.
 Bayesian reinforcement learning)
- Online learning
- Backpropagation through random operations
- Multi-agent systems

Definition

An autoencoder is a neural network that is trained to copy its input to its output

- ❖ Our goal is to learn a hidden representation z of data
- Types of autoencoders (how to prevent learning the identical transform.)
 - Undercomplete autoencoders (less z than x)
 - > Sparse autoencoders

$$L(\boldsymbol{x}, g(f(\boldsymbol{x}))) + \Omega(\boldsymbol{h})$$

Denoising Autoencoders (corrupted input)

$$L(\boldsymbol{x}, g(f(\tilde{\boldsymbol{x}})))$$

➤ Autoencoders penalizing derivatives (contractive autoencoders)

$$L(\boldsymbol{x}, g(f(\boldsymbol{x}))) + \lambda \sum_{i} ||\nabla_{\boldsymbol{x}} h_{i}||^{2}$$

- Regularizer of this form forces the model to learn features that does not change much when x changes slightly
- It allows finding local directions that are almost invariant to changes in input data (embeddings)

Applications

- Dimensionality reduction
- ➤ Manifold learning (especially contractive autoencoders)
- > Semantic hashing
- > Pre-training

Deep Generative Models

Deep Generative Models

- Generative vs Discriminative models
 - Discriminative models learn the (hard or soft) boundary between classes
 - ➤ Generative models model the distribution of individual classes

	Frequentist	Bayesian
Discriminative	p(z; w, β)	$p(z, \beta; w) = p(z \mid \beta; w) * p(\beta)$
Generative	p(z, w; β)	$p(z, w, \beta) = p(z, w \mid \beta) * p(\beta)$

z – category, w – input, beta - parameters

➤ If generative models learn the full probability, they can restore the missing part (e.g. the input)

Deep Generative Models

- * Examples of generative models:
 - ➤ Naïve Bayesian classificator
 - ➤ Linear and quadratic discriminant analysis
 - Bolzmann machines
 - Variational autoencoder
 - Generative adversarial networks

Variational Autoencoder

Idea

Let us maximize the lower bound of data probability

$$\mathcal{L}(q) = \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z}|\boldsymbol{x})} \log p_{\text{model}}(\boldsymbol{z}, \boldsymbol{x}) + \mathcal{H}(q(\boldsymbol{z} \mid \boldsymbol{x}))$$

$$= \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z}|\boldsymbol{x})} \log p_{\text{model}}(\boldsymbol{x} \mid \boldsymbol{z}) - D_{\text{KL}}(q(\boldsymbol{z} \mid \boldsymbol{x}) || p_{\text{model}}(\boldsymbol{z}))$$

$$\leq \log p_{\text{model}}(\boldsymbol{x}).$$

In contrast to a common autoencoder, here we have a stochastic unit with elements z

Goodfellow et al (book)

Variational Autoencoder

- To get working equations, we have to suggest the form of distributions (e.g. Gaussian for z and Bernoulli for x)
- ➤ Reparametrization trick is necessary to allow gradient to go through the stochastic unit:

$$\mathbf{z} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \quad \leadsto \quad \mathbf{z} = \boldsymbol{\mu} + \mathbf{L}\boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \boldsymbol{\Sigma} = \mathbf{L}\mathbf{L}^T$$

- Two components in the loss function: reconstruction error and KL divergence
- * Thus, variational autoencoder is composed of encoder and decoder trained simultaneously.
- ❖ To generate new data, we take random z points and project them to output by means of decoder

Variational Autoencoder

Numbers generated by a Variational autoencoder

Generative Adversarial Networks

Idea

- ➤ GAN is based on a game theoretic scenario in which the generator competes with an adversary
- ightharpoonup Generator produces samples $x = g(z; {m{ heta}}^{(g)})$
- Discriminator tries to distinguish between samples drawn from the training data and samples drawn from the generator
- ightharpoonup Discriminator estimates the probability $d(m{x};m{ heta}^{(d)})$ of being a real sample

$$v(\boldsymbol{\theta}^{(g)}, \boldsymbol{\theta}^{(d)}) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \log d(\boldsymbol{x}) + \mathbb{E}_{\boldsymbol{x} \sim p_{\text{model}}} \log (1 - d(\boldsymbol{x}))$$
$$g^* = \operatorname*{arg\,min\,max}_{g} v(g, d)$$

Generative Adversarial Networks

* Examples of generated images

Goodfellow et al (book)

❖ Any questions about the course?

References

- I. Goodfellow, Y. Bengio, A. Courville. *Deep Learning*. The MIT Press 2016
- D. Kingma, D. Rezende, S. Mohamed, M. Welling. *Semi-supervised learning with deep generative models*. In NIPS'2014