

There is no ground.

Electricity leaves the battery, does something useful and then returns to the battery.

It doesn't flow away into a "ground puddle"....

Signals flow on two wires

Grounding and Common-Mode Rejection

Have assumed *connections* between components are ideal

Untrue: Wires have significant impedance:

Calculate resistance of PCB track:-

Common-Mode Signals

Typical signal wires have resistances $\sim 0.1\Omega$ Typical signal currents $\sim 10V / 10k\Omega = 1mA -> 100\mu V!$ BAD!!

PCB Layout

Ground

Common-Mode Signals (2)

What you really built

Gain changes with load. 123µV (~2° C error for type K) Error proportional to load current.

Common-Mode Signals (3)

Worse in any normal system (>1 opamp)

Large currents flow.

Induced voltages depend on

- Loads on other amplifiers
- Signals on other amplifiers
- Details of PCB design
- Quality of soldering

=> Can't design!

Dynamic current for logic

Fast logic is massively worse:

CMOS "NOT" gate

Typical values of "Ground Bounce"

For CMOS logic current only flows for switching time.

$$\Rightarrow$$
 Charge = $Q_{switch} \approx \tau_{switch} \cdot I_{max} = \tau_{switch} \cdot \frac{V_{CC}}{R_{switch}}$

Define a "Power Dissipation Capacitance"

$$C_{PD} = \frac{Q_{switch}}{V_{CC}} = \frac{\tau_{switch}}{R_{switch}}$$

For 74AHC00
$$C_{PD} = 9pF$$
, $\tau_{switch} = 3.5ns \Rightarrow I_{max} \sim 13mA$

A single gate will produce a spike of $0.12\Omega \times 13\text{mA} = 1.6\text{mV}$.

Worse: Inductance $\sim 0.18 \mu H \sim 32 \Omega$ @ $1/2\pi$ x 3.5ns

-> 0.42 VOLTS

A big system can produce ~1V of junk.

