

(1) Publication number: 0 578 616 A2

12

EUROPEAN PATENT APPLICATION

(21) Application number: 93810474.2

(51) Int. Cl.⁵: C12N 15/52, C12N 9/00

2 Date of filing: 05.07.93

30 Priority: 09.07.92 AT 1403/92 08.03.93 AT 437/93 29.04.93 CH 1310/93 04.05.93 CH 1375/93

(3) Date of publication of application: 12.01.94 Bulletin 94/02

84 Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

71 Applicant: SANDOZ LTD. Lichtstrasse 35 CH-4002 Basel (CH)

(84) BE CH DK ES FR GB GR IE IT LI LU NL PT SE

71 Applicant: SANDOZ-PATENT-GMBH Humboldtstrasse 3 D-79539 Lörrach (DE)

84) DE

71) Applicant: SANDOZ-ERFINDUNGEN Verwaltungsgesellschaft m.b.H. Brunner Strasse 59
A-1230 Wien (AT)

⊗ AT

72 Inventor: Leitner, Ernst
Daxerfeld 5
A-6250 Kundl (AT)

Inventor: Schneider, Elisabeth Canisiusweg 125 Top 34 A-6064 Rum (AT)

Inventor: Schoergendorfer, Kurt A-6322 Unterlangkampfen Nr. 437 (AT)

Inventor: Weber, Gerhard

A-6322 Unterlangkampfen Nr. 437 (AT)

(54) Cylosporin synthetase.

57) The nucleotide sequence which codes for cyclosporin synthetase and similar enzymes and recombinant vectors containing the sequence. The vectors are used in methods for the production of cyclosporin and cyclosporin derivatives.

5

30

35

This invintion rilates to nucliotid sequinces which code for enzymes possessing cyclisporin synthetase-lik activity and to mithods firth production ficyclosporin and cyclosporin derivatives using these sequences.

The fungus *Tolypocladium niveum* (previously known as *Tolypocladium inflatum* GAMS) produces cyclosporins, a group of neutral cyclic p ptides composed felev namin acids. Oth r fungi have been found which may form cyclosporins (Dreyfuss, 1986; Nakajima *et al.*, 1989) but *Tolypocladium niveum* is the most important organism for the production of cyclosporins by fermentation. Cyclosporins exhibit remarkable biological effects: for example cyclosporin A, the main metabolite, is a potent immunosuppressant (Borel *et al.*, 1976). An enzyme has been identified which catalyses the entire peptide biosynthesis of cyclosporin and is therefore called cyclosporin synthetase (Zocher *et al.*, 1986, Billich and Zocher 1987). The biosynthesis proceeds non-ribosomally by a thiotemplate process, as has also been described for other peptide synthetases (Kleinkauf and von Döhren 1990). Each amino acid is first activated in the form of an adenylate, then bound in the form of a thioester and linked with the following amino acid to the peptide. In the case of cyclosporin A, seven of the amino acids, bound as thioesters, are methylated before they are linked to the preceding amino acid in a peptide bond. This methylation function is an integral constituent of the enzyme polypeptide (Lawen and Zocher 1990). Including the cyclisation reaction, cyclosporin synthetase performs at least 40 reactions.

Cyclosporin A contains three non-proteinogenic amino acids: D-alanine in position 8, α-amino butyric acid in position 2 and, in position 1, the unusual amino acid (4R)-4-[(E)-2- butenyl]-4-methyl-L-threonine (Bmt or C9 amino acid). All three amino acids must be each prepared by a biosynthetic pathway which is independent of the primary biosynthetic pathway. Cyclosporin synthetase does not possess an alanine-racemase function (Kleinkauf and von Döhren 1990) and thus, D-alanine cannot be produced by cyclosporin synthetase by epimerisation of enzyme-bound L-alanine, as is the case for other peptide antibiotics whose biosynthesis mechanism is known.

Although attempts have been made to isolate and characterize cyclosporin synthetase in terms of its amino acid sequence, because of the complexity and size of the enzyme this has not to date been possible. Hence it has not been possible to characterize the DNA coding for cyclosporin synthetase.

This invention provides a nucleotide sequence which codes for an enzyme possessing cyclosporin synthetase-like activity. In the present specification, an enzyme possessing cyclosporin synthetase-like activity is an enzyme which catalyses the peptide biosynthesis of cyclosporins and structurally related peptides and derivatives.

Preferably, the nucleotide sequence codes for cyclosporin synthetase or an enzyme which is at least 70% (for example, at least 80, 90 or 95%) homologous to it and which possesses cyclosporin synthetase-like activity.

Preferably, the nucleotide sequence codes for an enzyme which possesses cyclosporin synthetase-like activity and in which at least one amino acid recognition unit is different from that of cyclosporin synthetase.

Preferably, the nucleotide sequence comprises the sequence represented in Seq Id 1 or a sequence which hybridises to it under conditions of reduced stringency or, more preferably stringent coinditions. Stringent conditions include hybridisation at 42°C in 6 x SSPE, 50% formamide, 5 x Denhardt's solution, and 0.1% SDS and washing three times for 10 minutes in 2 x SSC, 0.1% SDS and twice for 30 minutes in 0.2 x SSC, 0.1% SDS at 65°C. Reduced stringency conditions include a washing temperature of 60°C. Even more preferably the nucleotide sequence codes for an enzyme having the amino acid sequence set out in Seq Id 2. The nucleotide sequence may have a restriction map as represented in figure 1.

In another aspect, the invention provides a recombinant vector containing a nucleotide sequence as defined above. The vector may include the endogenous promotor for cyclosporin synthetase or may include some other suitable promotor. A suitable promotor region is illustrated in Seq Id 7. The recombinant vector may be in the form of a plasmid, a cosmid, a P1-vector or a YAC-vector. The invention also extends to host cells carrying the vector. Preferably the host cell is a <u>Tolypocladium niveum</u> cell.

The invention also provides a process for the production of cyclosporin or a cyclosporin derivative, comprising cultivating a host cell as defined above and causing the host cell to produce the cyclosporin or cyclosporin derivative.

The invention also provides a method for the production of a cyclosporin derivative, comprising altering the DNA sequence coding for cyclosporin synthetase so that the enzyme causes the production of the cyclosporin derivative, placing the altered DNA sequence in a vector, transforming a host cell with the vector, and causing the host cell to produce the cyclosporin derivative. Preferably the DNA sequence coding for cyclosporin synthetase is altered by changing the fragm nts that code for amin acid recogniti n units. Alterati ns may be mad using standard techniques such as thos based n PCR procedures. Point d letions, mutations and inserti ns, as w II as larger alterations are possible.

This specification describes the isolation and characterisation of the gen for cyclosporin synthetase from

Tolypocladium niveum and the use of the gene in genetically ngineering cells, including Tolypocladium niveum cells. While a protocol for the isolation of cyclosporin synthetase from Tolypocladium niveum was published in 1990 (Law n and Zocher 1990), it is however not suitable for extracting large quantities of homogeneous enzyme in a short period of time. Also, in the publication, the synthetase was attributed an M_r of approximately 650,000 Dalton. It may, how vor, justifiably be assumed from sedimentation analyses with fluorescence-labelled protein (Lawen et al., 1992) and by extrapolation from the protein size of comparable enzymes that cyclosporin synthetase has an M_r of approximately 1,500 kDa. The enzyme occurs as a single polypeptide chain and cannot be decomposed into subunits by either denaturing or reducing agents (Lawen and Zocher 1990).

The enormous size of the enzyme means that a strategy for amino acid sequencing which differs from the customarily used route must be used. Substantially more homogeneous material is required than is generally used to perform fragmentation tests. It is for this reason that a protocol was developed for cyclosporin synthetase which may, in principle, also be applied to analogous enzymes from other microorganisms and, in the practical example of the purification of the enzyme from *Tolypocladium niveum* (example 1), gave rise to a substantial improvement in terms of yield and the amount of time required.

Purification may initially proceed according to customary processes. Cell disruption may be performed, for example, with a high pressure homogeniser or a glass bead mill; the cells being present in moist or lyophilised state. If the cells are moist, pressure disruption is conveniently performed, for example with a Maunton Gaulin apparatus. Lyophilised cells are conveniently broken up by grinding in a mortar under liquid nitrogen.

15

35

40

45

The crude extract so obtained is clarified by centrifugation. The nucleic acids are removed by precipitating them from the extract using customary reagents for this purpose; polyethyleneimine or protamine sulphate are, for example, used. The nucleic acid precipitation also removes fine suspended particles, which can disturb subsequent purification stages. Then the proteins may be precipitated out of the clarified crude extract to provide the enzyme in a more concentrated form. The protein precipitation is customarily performed with ammonium sulphate. For cyclosporin synthetase, saturation to 50% is sufficient to achieve almost complete precipitation. After this step, the enzyme is in an enriched and highly concentrated state.

In principle, all chromatographic methods are suitable for further purification of the enzyme, such as ion-exchange chromatography and gel permeation chromatography. With very large proteins, gel permeation chromatography is particularly suitable as a very selective purification step. If the correct molecular sieve is chosen, an approximately 90% homogeneous protein preparation may be obtained in a single step. Analysis of purity is performed in SDS polyacrylamide gels (preferably gradient gels 4-15%).

The purification process used produces stable, at least 90% homogeneous, active enzyme preparations, as is necessary for characterisation of enzyme kinetics or protein chemistry. In Example 1, the protocol described in detail for *Tolypocladium niveum*, in comparison with the published method, reduces the time required from 4 days to 10 hours and increases the yield by approximately a factor of 4.

With a protein of this exceptional size, the requirement for amino acid sequences to identify the gene or gene product correctly is naturally greater than for an average-sized protein. Apart from the possibility of N-terminal blocking, it is also not possible to prepare a protein of this size in such a way that it is suitable for N-terminal sequencing. For these reasons, it is necessary to obtain a sufficient number of internal amino acid sequences.

However, when a protein of this size is fragmented, so many fragments are produced (theoretically approximately 700, assuming one cleavage every 20 amino acids) that the standard method of completely fragmenting the protein and purifying the fragments by high-pressure reversed-phase chromatography (HP-RPC) is not practicable. For this reason, fragmentation is performed under conditions which are sub-optimal for the relevant endoproteinases to give substantially larger fragments.

Cyclosporin synthetase is cleaved by adjusting the pH value. In particular, cleavage into large fragments of up to 200 kDa is achieved by adjusting the pH value to approximately 7.5 in a HEPES buffer with the addition of EDTA and DTT. The fragments obtained in this manner may be isolated and enriched as is conventional, for example by using chromatography and electrophoresis, such as the combination of anion exchange chromatography on MonoQ with HP-RPC or the combination of MonoQ with SDS-polyacrylamide gel electrophoresis/electroblot.

The sub-optimal conditions are principally obtained by altering the buffer conditions, and possibly also altering the cleavage temperature (see Example 3 as a possible variant). The nonetheless numerous fragments must each be isolated or enriched by 2 purification steps, it being in principle possible to use any chromatographic and electrophoretic separation techniques. In the case of cyclosporin synthetase fragments from *Tolypocladium niveum*, the combinations of anine xchange chromatography of Mono with HP-RPC (Examples 4 and 5) and Mono with SDS-polyacrylamid gel lectrophoresis/electroble to the conditions of an interval advantageous.

The n n-ribosomal biosynthetic pathway implies that the sequenc of th cyclic peptid is determined by

the c rresponding arrangement of the amino acid activating domains. Each of these domains must perform analogous reactions, nam ly th activation of the amin acid by ad nylation and binding in the form of a thioester. Hence it may be expected that recurrent, preserved moieties will be found in the protein sequence.

In fact, in previously analysed peptid synthetases, preserved regi ns within the sequences have been discovered, the number of which coincid is with the number of aminicides to be activated: three for ACV synthetase (activates aminoadipic acid, cysteine and valine; Smith et al., 1990, MacCabe et al., 1991, Gutierrez et al., 1991); one each for gramicidine synthetase I (Kraetzschmar et al., 1989) and tyrocidine synthetase I (Weckermann et al., 1988); and four preserved regions in gramicidine synthetase 2, which activates the amino acids proline, valine, ornithine and leucine (Turgay et al., 1992).

Maximally accurate identification and characterisation of such preserved regions of cyclosporin synthetase at both the enzymatic and genetic levels constitutes the basis for well-directed genetic engineering in terms of altering enzyme specificity for the *in vivo* production of cyclosporin variants. It is therefore useful to identify proteolytic fragments of cyclosporin synthetase which may be correlated with a partial function of the synthetase. The following correlations were made:

- (1) a protein fragment with a methyl transferase function (the method on which this work is based is, in principle, applicable to all methyl transferases and is published in Yu et al., 1983; a first application to cyclosporin synthetase is published in Lawen and Zocher 1990); see Example 7;
- (2) a protein fragment capable of activating L-alanine (Example 8).

10

15

25

The method used in Example 8 exploits the fact that when proteins are subjected to limited proteolytic cleavage, *inter alia* intact domains are cleaved which, due to their correct spatial folding, are still capable of exercising their enzyme function to a limited extent. Theoretically, therefore, each amino acid activating domain may be identified with this method. The optimal conditions (for proteolytic cleavage and its timing in relation to amino acid activation) must, however, be determined by testing in each individual case. Moreover, unambiguous identification of a domain may be achieved only if the amino acid it activates occurs only once in the product.

The gene is isolated by DNA hybridisation with oligonucleotides specific to cyclosporin synthetase (Example 10). Whether a specific DNA fragment actually belongs to the cyclosporin synthetase gene is established by Northern hybridisation, since a non-transcribed neighbouring fragment does not hybridise with the corresponding RNA (Example 15). The DNA sequence of the cloned DNA of the cyclosporin synthetase gene is determined and compared with the amino acid partial fragments of cyclosporin synthetase (Examples 13 and 14).

Hence it is possible to transform *Tolypocladium niveum* with the complete gene for cyclosporin synthetase. Among the transformants, strains may be found which contain several copies of this gene or copies with altered regulation. Those strains are selected which, in fermentation tests, display increased cyclosporin formation or can form the same quantity of cyclosporin over a shorter fermentation period.

It is also possible to select the transformed strains by the activity of the cyclosporin synthetase, independently of whether cyclosporin is formed in greater quantities or faster. The isolated cyclosporin synthetase gene can act as an analytical aid in order to determine whether a specific strain of *Tolypocladium niveum* has a high concentration of the mRNA or not (Example 15). Such strains may then be subjected to conventional mutagenesis and strain selection. Even if the initial strain used for transformation is not limited in its cyclosporin synthetase activity, a strain is provided in this way which potentially allows greater cyclosporin formation. The combination of classical genetics (mutation and strain selection) with molecular genetics (transformation with isolated genes) allows the isolation of improved strains which could not be achieved by either of the two methods alone: not by classical genetics because a double mutation is extremely rare in a single selection stage; not by molecular genetics because in some circumstances an unknown factor has a limiting effect.

A further use of the isolated gene is gene-specific mutagenesis. Instead of producing mutations in the entire genome - and therefore also altering many uninvolved genes - the isolated gene alone is mutated using suitable methods (Sambroock *et al.*, 1989) and then transformed to *Tolypocladium niveum* (Example 17). Among the transformants, the proportion of mutants in the cyclosporin synthetase gene is higher than with mutagenesis of the fungus. Mutants, which form specific cyclosporins in greater or reduced quantities, may more frequently be found than with conventional mutagenesis.

By internal sequence comparisons of the derived amino acid sequences (Example 14c) and the correlation of specific partial sequences (Example 8 and Example 9 or Example 14ab), domains of the cyclosporin synthetase for the activation of the individual amino acids may be localised (as performed above for non-ribosomal peptid synthetases). By this means, well-directed mutagen sis of cycl sporin synthetase gen may b performed, by interchanging th gene region f individual domains, by deliberat ly removing a corresp nding region or the cyclosporin synthetase gene may also be extended by individual domains. After transformation of such mutated genes into *Tolypocladium niveum*, new cyclosporin variants may become accessible. The cloned

gene may be us d to produce strains of *T lypocladium niveum* which no l ng r have an activ cyclosporin synthetase g n. Such strains may b used for the production of D-alanin or Bmt by f rm ntation or act as recipient strains for *in vitro* modified cyclosporin synthetase genes. To this nd, an inactiv v rsion produced *in vitro* is constructed for the transfer rmation (Example 18).

When screening for microorganisms which can synthesis cycl sporins, it is necessary that the active metabolites under test conditions are also actually formed in sufficient quantity. Such substances may moreover have slightly changed characteristics and may for this reason alone be overlooked. Example 16 describes the use of the isolated cyclosporin synthetase gene to find microorganisms which contain the cyclosporin synthetase gene in their genome. These genes do not have to be active for this purpose. On the basis of these hybridisations, the corresponding genes may be isolated in a manner analogous to Examples 10, 11 and 12 and transformed into *Tolypocladium niveum*. A strain may be used to this end which no longer contains any active cyclosporin synthetase. This interspecific recombination cannot be achieved with other methods. As described in the preceding paragraph, such strains may be subjected to a screening programme. In this case, genetic variability is based on the introduced gene which hybridises with the cyclosporin synthetase gene.

The control sequences of the cyclosporin synthetase gene may also be used for the construction of plasmids. An example of a control sequence is that which occurs in synp4 (Example 12). The promoter may be fused with a readily detectable reporter gene, such as for example the β-glucuronidase gene (Tada *et al.*, 1991). Strains of *Tolypocladium niveum* which are transformed with these plasmids permit, not only the selection of regulatory mutants, but moreover make it possible to measure and optimise promoter activity independently of other functions.

The following examples and figures illustrate the invention without, however, limiting it.

Figure 1: Restriction map of cyclosporin synthetase gene from *Tolypocladium niveum* cloned in λSYN3. The position of some restriction cleavage points is shown in relation to a scale (2.0, 4.0, 6.0, etc. kb). Among these, several partial fragments subcloned in plasmids are represented as rectangles (S5, E3, S3, etc.). If the corresponding rectangle is filled in, this means that the corresponding DNA fragment reacts with a high molecular weight RNA in Northern hybridisation (S5, E3, S3, E1, E2). Rectangles with lengthwise lines indicate that no bands were obtained in Northern hybridisation (E4, S2). Empty rectangles indicate that the DNA was not used as a probe (S4). The following two tables give the positions of the fragments (S5, H2, etc) and enzyme restriction sites shown in figure 1 (in bp):

Start	End	Fragment Name
1	2500	S5
1300	3300	H2
2000	5400	E3
2500	5300	S3
4700	11750	нз
5300	8400	S4
5400	7000	E1
7000	9200	E2
9200	12100	E4
10250	13850	S2

50

45

5

15

30

35

Enzym Restriction sites :								
Sall	1,	HindIII	1300,	E∞RI	2000,			
Sall	2500,	HindIII	3300,	HindIII	3800,			
HindlII	4700,	Sall	5300,	E∞RI	5400,			
E∞RI	7000,	Sall	8400,	EcoRI	9200,			
Sall	10250,	HindIII	11750,	EcoRI	12100,			
Sall	13850.							

5

10

15

20

25

30

35

40

55

Figure 2: Restriction map of plasmid pSIM10. The construction and structure of the plasmid is described in Example 18. The positions are stated in bp. Nucleotides 4749-6865 are DNA from *Tolypocladium niveum* containing the promoter of the cyclophilin gene. Nucleotides 1-1761 contain the hygromycin phosphotransferase gene from plasmid pCSN44 (Staben *et al.*, 1989). Nucleotides 1761-4714 are from plasmid pGEM7Zf (Promega Inc.).

Figure 3: Restriction map of plasmid pSIM11. Construction of the plasmid is described in Example 18. Nucleotides 4924 to 8553 are the 3.6 kb Xhol restriction fragment from the cyclosporin synthetase gene. Nucleotides 8548-10489 and 1-4929 are plasmid pSIM10 (figure 2).

Figure 4: Restriction map of plasmid pSIM12. Construction of the plasmid is described in Example 18. Nucleotides 4924 to 5727 are the 0.8 kb Xhol restriction fragment from the cyclosporin synthetase gene. Nucleotides 5722-7663 and 1-4929 are plasmid pSIM10 (figure 2).

Figure 5: Restriction map of cyclosporin synthetase gene from *Tolypocladium niveum* cloned in syncosl3. The position of some restriction cleavage points is shown. The position of the part cloned in λ syn3 is marked with the crosshatched bar.

All the restriction maps shown in figures 1, 2, 3, 4 and 5 are only approximate reproductions of restriction cleavage points in DNA molecules. The distances as drawn are proportional to the actual distances, but the actual distances may be different. Not all restriction cleavage point are shown, it is possible for further cleavage points to be present.

Example 1: Isolation of active cyclosporin synthetase in electrophoretically homogeneous form:

The starting material used for the protein purification is *Tolypocladium niveum*, strain 7939/45 (Lawen *et al.*, 1989). All steps are performed at a temperature between 0° and 4°C. 10 g of lyophilised mycelium is finely ground in a mortar with addition of liquid nitrogen and then suspended in buffer A (buffer A: 0.2 M HEPES pH 7.8, 0.3 M KCl, 4 mM EDTA, 40 (v/v)% glycerol, 10 mM DTT). The suspension is carefully stirred over ice for 1 hour and then centrifuged for 10 min at 10,000 g to remove cell debris.

The supernatant is collected and nucleic acids are precipitated with polyethyleneimine (final concentration 0.1%). The precipitate is removed by centrifugation for 10 min at 10,000 g.

The supernatant is again collected and proteins are precipitated using a solution of ammonium sulphate (saturated) in buffer B (0.1 M HEPES pH 7.8, 4 mM EDTA, 15 (v/v)% glycerol, 4 mM DTT) at room temperature. The solution is added dropwise to the supernatant up to a final concentration of 50% of saturation. The mixture is left to stand for a further 30 minutes to reach equilibrium. The precipitated proteins are collected by centrifugation for 30 minutes at 30,000 g. The pellet obtained is resolubilised to 10 ml in buffer B.

The resolubilised pellet is then subjected to molecular sieve chromatography. The molecular sieve is a HW65-F Fractogel obtained from Merck; the column dimensions are 2.6 cm x 93 cm, and the volume is 494 ml. The column is operated under fast performance liquid chromatography (FPLC) conditions. The flow rate is 2 ml/min, continuous under buffer B. The cyclosporin synthetase elutes under these conditions at an elution volume of 260 to 310 ml. Processing 10 g of lyophilised mycelium produces 50 mg of cyclosporin synthetase in electrophoretically homogeneous form within 10 hours.

Example 2: Detection of enzymatic activity of cyclosporin synthetase :

80 μ l of an nzyme sample in buffer B are incubated, in a t tal volume of 130 μ l, with 3.5 mM ATP, 8 mM MgCl₂, 10 mM DTT, 10 μ M C9 acid, 690 μ M of any th r constitu nt amino acid and 100 μ M S-ad n syl-methionine + 2 μ Ci of adenosyl-L-m thionine-S-[methyl-3H] (75 Ci/mmol) for 1 hour at 22°C. Extraction and de-

tection of the cyclosporin A formed are performed as described in Billich and Zecher 1987.

Example 3: Endoproteinase cleavages:

The following nd proteinases (Boehringer Mannh im, sequ ncing grade) are used: trypsin from bovin pancreas (cleaves after arginine and lysine); LysC from Lysobacter enzyrnogenes (cleaves after lysine); GluC = V8 from Staphylococcus aureus (cleaves after glutamic acid and aspartic acid).

The cleavages are not performed under the conditions recommended by the manufacturer; but rather under 'sub-optimal' conditions. The cyclosporin synthetase is incubated in its storage buffer (0.1 M HEPES pH 7.5, 4 mM EDTA, 4 mM DTT, 15 (w/v)% glycerol) with protease in a ratio of 100 µg: 1 µg for 2 to 3 hours at 25°C. In this way, fragments of a size up to approximately 200 kDa are produced.

Example 4: MonoQ purification of fragments:

Purification is performed using a commercially available MonoQ column (HR 5/5) obtained from PHAR-MACIA, at 4°C. The protease digested protein sample is diluted (1:5) in buffer 1 (20 mM HEPES pH 7.5, 2 mM EDTA, 2 mM DTT, 5 w/v% glycerol) and applied to the column. The gradient elution of fragments is carried out in 20 ml of 0% to 100% buffer 2 (buffer 1 + 500 mM NaCl).

20 Example 5: HP-RPC purification of MonoQ fractions:

Purification is performed using a commercially available Nucleosil 300A-C4-5µ column of dimensions 85 x 4.5 mm. The MonoQ fraction sample is diluted (1:5) in buffer 1 (5% acetonitrile, 0.1% TFA) and applied at a flow rate of 1 ml/min and room temperature. Gradient elution is carried out in 85 minutes from 0% to 100% buffer 2 (90% acetonitrile, 0.1% TFA).

Example 6: SDS-PAGE/Blot purification of MonoQ fractions:

SDS-PAGE is performed according to Lämmli (1970). Thioglycolic acid (2 mM) is added to the electrophoresis buffer in order to prevent the N termini being blocked by residual radicals from the polymerisation reaction. The MonoQ fractions are used after denaturation with SDS for the electrophoresis. For sequencing, the proteins are blotted out of the gel onto glass fibre membranes ("Glassybond" from Biometra) using the semidry method.

Example 7: Protein fragment with methyl transferase activity: identification and purification

The active centre of methyl transferases may be crosslinked with its substrate S-adenosyl-methionine by UV irradiation. This may be exploited by providing a radioactive substrate and so achieving radioactive labelling of the enzyme (Yu et al., 1983). This method, which is also known as "photoaffinity labelling", has been used on cyclosporin synthetase (Lawen and Zocher 1990) and it is possible to show that several labelled protein fragments are produced upon subsequent protease digestion. Alabelled fragment is enriched by a combination of the methods described in Examples 4 and 6 and so made accessible to sequencing (see Example 9: aa4). This fragment has a size of approximately 47,000 Dalton.

45 Example 8: Amino acid activating protein fragments: identification and purification

55

Protein fragments that have the capacity to activate an amino acid are identified by loading the synthetase with radioactively labelled amino acid in the simultaneous presence of an endoproteinase. Approximately 500 μ g of purified cyclosporin synthetase are incubated with 25 mM of ATP, 30 mM MgCl₂ and 5 μ Ci of ¹⁴C-L-alanine and are simultaneously treated with, for example, endoproteinase LysC. The reaction is arrested after 3 hours by precipitation of the proteins with TCA. The fragments are resolubilised in a sample buffer for SDS-PAGE, omitting reducing agents. Half of the batch is subjected to SDS-PAGE and the labelled protein fragment is detected by autoradiography of the gel after amplification in "amplify solution" (from NEN) and drying. A fragment with a M_r of approximately 140,000 Dalton is identified and enriched by a combination of the methods described in Examples 4 and 6. The amino acid sequence is giv n in Example 9: aa13.

Exampl 9: Amin acid partial sequences f cyclosporin synth tas:

The following partial sequences ar btained from cyclosporin synth tas obtained from Exampl 6. amino acids 1916 to 1942 of Seq Id 2 with amin acid 1921 being S and 1942 b ing I aal: amino acids 2906 to 2925 of Seq Id 2 aa2: 5 **aa**3: amino acids 12240 to 12261 of Seq Id 2 with amino acid 12254 being E. aa4: amino acids 6535 to 6550 of Seq Id 2 **aa5**: amino acids 12654 to 12671 of Seq Id 2 **aa6**: amino acids 1099 to 1117 of Seq Id 2 with amino acids 1116 and 1117 being V and L amino acids 1984 to 1996 of Seq Id 2 with amino acid 1991 undeterminable. **aa8**: 10 aa9: amino acids 13718 to 13738 of Seq Id 2 with amino acid 13731 undeterminable. aa10: amino acids 9611 to 9622 of Seq Id 2 aa12: amino acids 11475 to 11484 of Seq Id 2 aa13: amino acids 13601 to 13620 of Seq Id 2 amino acids 9549 to 9568 of Seq Id 2 with amino acid 9565 undeterminable. aa14: 15 aa15: amino acids 9504 to 9521 of Seq Id 2 aa16: amino acids 13569 to 13586 of Seq Id 2 with amino acid 13568 being G aa17: amino acids 1020 to 1034 of Seq Id 2 amino acids 9070 to 9084 of Seq Id 2 with amino acids 9082 and 9083 undeterminable aa19: amino acids 6532 to 6546 of Seq Id 2 with amino acid 6545 undeterminable aa20: 20

Example 10: Isolation of λ-clones which hybridise with an oligonucleotide specific to cyclosporin synthetase

a) Construction of a genomic λ-gene library from Tolypocladium niveum.

DNA is isolated from the mycelium of a culture of *Tolypocladium niveum* grown in medium 1 [50 g/l of maltose, 10 g/l of casein peptone (digested with trypsin, Fluka), 5 g/l of KH₂PO₄ and 2.5 g/l of KCl; the pH value is adjusted to 5.6 with phosphoric acid]. 4 ml of a spore suspension of *Tolypocladium niveum* strain ATCC 34921 with 4 x 10^8 spores per ml are added to 200 ml of medium 1 in a 1 l conical flask and are shaken for 72 hours at 25°C and 250 rpm. The mycelium is filtered off with a Būchner funnel, washed with 10 mM of tris-Cl pH 8.0, 1 mM EDTA and ground to a fine powder under liquid nitrogen. Nuclei are isolated from 40 g of moist mycelial mass and are then lysed; the DNA is purified by CsCl-EtBr centrifugation. This method is described in Jofuku and Goldberg (1988). 4.3 mg of DNA are obtained, which, in a 0.5% agarose gel, produces a band exhibiting lower mobility than λ -DNA.

40 μg of the DNA are incubated with 1.4 units of the restriction enzyme Sau3A in 10 mM of tris-Cl pH 7.5, 10 mM MgCl₂, 1 mM of DTE, 50 mM of NaCl for 60 minutes at 37°C and then 10 minutes at 65°C. The extent of cleavage is verified on an agarose gel: part of the DNA is between 10 and 20 kb in size. The DNA is then applied to two NaCl gradients, which are produced by freezing and slowly thawing at 4°C two Beckman SW28.1 ultracentrifuge microtubes with 20% NaCl in TE (10 mM tris-Cl, pH 8.0, 1 mM EDTA). The microtubes are centrifuged for 16 hours at 14,000 rpm in Beckman L8M ultracentrifuge in rotor SW28.1. The contents of the microtubes are fractionated. Fractions with DNA larger than 10 kb are combined and dialysed against TE. After concentration of the DNA to 500 μg/ml, the DNA is combined with λ EMBL3-DNA (Promega Inc.), previously cleaved with EcoRI and BamHI. 1.5 μg of the DNA and 1 μg of λ EMBL3-DNA (cleaved with EcoRI and BamHI) are ligated for 16 hours at 16°C in 5 μl of 30 mM tris-Cl pH 7.5, 10 mM of MgCl₂, 10 mM of DTE, and 2.5 mM ATP after the addition of 0.5 U of T4-DNA ligase (DNA concentration 500 μg/ml). The ligation mixture is packaged *invitro* with the assistance of protein extracts ("packaging mixes", Amersham). The λ -lysates produced are titrated with E. Coli KW251 (Promega Inc.). Approximately 4.5 x 105 pfu are obtained.

b) Isolation of λ -clones

50

55

25

35

40,000 recombinant phages from the *Tolypocladium niveum* gene library are cast with *E. coli* strain KW251 onto 90 mm TB plates (TB contains 10 g/l of bacto tryptone and 5 g/l of NaCl and 0.7% of agarose, the pH is adjusted to 7.5 with NaOH). Two blots onto nitrocellulose (Stratagene) are made from each plate (Maniatis *et al.*, 1982). From the amino acid sequence of the cyclosporin synthetase fragment aa9 (Example 9), an oligonucleotide mixture (96 different lig nucleotides, ach 20 nucleotides in length) with the sequences

5' GCA TCA ATA TTA AAT TGA TC 3'
G G G C G
T

5

may be produced on the basis of the genetic code. 1.5 µg of this oligonucleotide mixture are incubated in 25µl of 50 mM tris-Cl pH 9.5, 10 mM MgCl₂, 5 mM DTE, 5% glycerol with 150 μCi γ-ATP (³²P) and 20 U of polynucleotide kinase (Boehringer) for 30 minutes at 37°C. Over 80% of the radioactivity is incorporated. Hybridisation is performed at 37°C in 400 ml 6 x SSPE (Maniatis et al., 1982), 5 x Denhardt's solution (Maniatis et al., 1982), 0.1% SDS, 100 μg/ml denatured herring sperm DNA (Maniatis et al., 1982), 0.1 mM ATP, 1.4 x 106 cpm/ml ³²Plabelled oligonucleotide mixture for 16 hours. The filters are washed three times for 5 minutes and twice for 30 minutes in 6 x SSC (Maniatis et al., 1982) at 4°C. The filters are then washed for 10 minutes at 37°C in a TMAC (tetramethylammonium chloride) washing solution which is prepared according to Wood et al., 1985. Finally, the filters are washed for 30 minutes at 57°C in the TMAC washing solution, dried and exposed for 10 days with a Kodak Xomatik AR X-ray film. Regions of the agarose layer corresponding to positive signals on the X-ray film are punched out and resuspended in SM buffer (5.8 g/l NaCl, 2 g/l MgSO₄ x 7 H₂O and 50 mM tris-Cl pH 7.5). A suitable dilution is again cast with KW251 onto a TB plate. The plaques are again transferred onto nitrocellulose. The DNA is isolated from plaques producing a positive hybridisation signal in the second hybridisation. The purified DNA from these phages is used for Southern hybridisations and restriction analyses. Figure 1 shows the restriction map of the *Tolypocladium niveum* proportion of such a λ -clone (= λ SYN3). Subcloning is performed in various plasmid vectors (for example pUC18, Pharmacia).

To isolate λ -clones containing the neighbouring DNA fragments ("chromosome walking"), the plaque hybridisation method described above is repeated a number of times; the marginal restriction fragments being used in each case as ³²P-labelled probes. In order to clone the DNA adjoining the region shown schematically in figure 1 (λ SYN3), fragment S5 is used (figure 1). Hybridisation is then performed at 42°C in 6 x SSPE, 50% formamide, 5 x Denhardt's solution, 0.1% SDS, 100 µg/ml denatured herring sperm DNA, and 100 µM ATP. Before hybridisation, the ³²P-labelled DNA is heated to 100°C for 5 minutes and cooled in ice. After 16 to 20 hours, the filters are washed: three times for 10 minutes in 2 x SSC, 0.1% SDS and twice for 30 minutes in 0.2 x SSC, 0.1% SDS at 65°C. The dried filters are autoradiographed. Those areas of the agarose corresponding to positive signals are further processed as described above.

Example 11: Isolation of cosmid clones containing parts of the cyclosporin synthetase gene

a) Construction of a genomic cosmid gene library from Tolypocladium niveum

Protoplasts are produced as described in Example 17. Approximately 109 protoplasts are carefully lysed in 2 ml of TE (10 mM tris-HCl, 1 mM EDTA, pH 8.0). 0.1 mg/ml of RNase A are added and incubation is continued for 20 minutes at 37°C. After the addition of 0.5% SDS and 0.1 mg/ml of proteinase K, incubation is continued for a further 40 minutes at 55°C. The batch is very carefully extracted twice with each of TE-saturated phenol, phenol/chloroform (1:1) and chloroform/isoamyl alcohol (24:1) (Maniatis *et al.*, 1982). The aqueous, slightly viscous supernatant is combined with one tenth its volume of 3 M sodium acetate (pH 5.2) and covered with a layer of 2.5 times its volume of absolute ethanol at -20°C and the DNA, found as fine threads at the phase interface, wound up using glass rods. The DNA is dissolved in 3 ml of TE for at least 20 hours. Depending on the quality of the protoplasts, approximately 500 μg/ml of DNA are obtained. Analysis with field inversion gel elecrophoresis (FIGE) (0.8% agarose, 0.5 x TBE (Maniatis *et al.*, 1982), 6 V/cm, forwards pulse 0.2 to 3 sec, pulse ratio 3.0, running time 5 hours) gives a size greater than 150 kb. Two batches of 135 μg of DNA are cleaved with 7.5 and 15 units respectively of restriction enzyme Ndell (from Boehringer Mannheim) for 1 hour at 37°C in 1 ml of buffer (tris-acetate 33 mM, magnesium acetate 10 mM, potassium acetate 66 mM, DTT 0.5 mM, pH 7.9). Aliquots of the cleaved DNA are tested with FIGE and give a maximum size for the fragments obtained of approximately 45 and 30 kb respectively.

Using a gradient mixer, linear NaCl density gradients from 30% to 5% in 3 mM EDTA pH 8.0 are produced in ultracentrifuge microtubes and the DNA fragments applied. After centrifugation for 5 hours at 37,000 rpm and 25°C (Beckman L7-65 ultracentrifuge, rotor SW 41), the gradient is harvested in 500 µl fractions. Fractions with DNA greater than 30 kb and less than 50 kb are dialysed three times for tw hours against TE (tris-HCl 10 mM, EDTA 1 mM, pH 8.0), precipitat d with thanol and each dissolved in 50 µl TE.

sCos1 (from Stratag n) is used as the cloning vector. The vector arms cleaved with BamHI and Xbal are produced and modified as stated by Evans tal., (1989). 1µg of the cleaved vector are ligated with approxi-

mately 500 ng of the DNA fragments in 20 µl of ligation mix (tris-HCl 66 mM, MgCl₂5 mM, DTE 1 mM, ATP 1 mM, pH 7.5) with 16 units of T4-DNA ligase (from Boehringer) for 16 hours at 12°C. 4 µl portions of the batch are packaged interpretated in lambda phage heads with packaging attracts (Gigapak, from Stratagen). *E. coli* SRB (from Stratagen) is used as the host strain for the infection and the bacteriophage lambda-competent cells are produced following the method of Sambroock *t al.*, (1989). After infection, the batches are plated in aliquots onto LB medium (Maniatis *et al.*, 1982) with 75 µg/ml of ampicillin. Recombinant clones are discernible as colonies after 20 hours at 37°C. In total, approximately 50,000 colonies are obtained, which are then suspended in 0.9% NaCl/20% glycerol and stored at -70°C. Analysis of 40 randomly selected clones by isolation and restriction of the cosmids obtained shows that all the clones contain recombinant cosmids; the average insert size is 36 kb.

b) Isolation of cosmid clones

10

30

50

The cosmid gene library is plated at a density of approximately 2500 colonies per 85 mm plate on LB medium with 75 μ g/ml of ampicillin (Maniatis *et al.*, 1982). Transfer of each onto two nylon membranes (Duralon UV, Stratagene) is performed as described in Sambroock *et al.*, (1989). The 1.6 kb HindIII fragment from λ syn3 (see figure 1) is labelled with alpha-³²P-dATP using "Random Primin g" (from Stratagene) and is used as a hybridisation probe. Prehybridisation is performed for 6 hours, hybridisation for 18 hours at 42°C in 5 x SSC, 40% formamide, 5 x Denhardt's (Maniatis *et al.*, 1982), 0.1% SDS, 25 mM NaH₂PO₄, pH 6.5, and 250 μ g/ml of herring sperm DNA. The filters are washed twice for 10 minutes in 2 x SSC/0.1% SDS at room temperature and twice for 40 minutes in 1 x SSC/0.1% SDS at 60°C. The membranes are exposed for 14 hours on X-ray film (Kodak Xomatic AR). Colonies having positive signals are purified, the corresponding cosmid-DNA isolated from the colonies and characterised by various restriction analyses and hybridisations with the labelled λ syn3 probes, and the vector-DNA sCos1. Figure 5 shows the restriction map of the cloned regions of such a cosmid, syncosl3; the *Tolypocladium niveum* DNA contained in it amounts to approximately 35 kb and also includes the region of λ syn3.

Example 12: Isolation of a P1 clone with the complete gene for cyclosporin synthetase

Protoplasts are produced from *Tolypocladium niveum* as described in Example 17 and suspended at a density of 109/ml in TPS. 1 ml portions of this suspension are mixed with 1 ml of 1.6% melted agarose (Incert from FMC) held at 40°C and cast into small 1.5 mm thick blocks using a casting stand (BioRad). After solidifying, the blocks are transferred into lysis buffer (0.45 M EDTA pH 8.0, 1% N-lauroyl sarcosin, 1 mg/ml proteinase K) and incubated for 16 hours at 55°C. The blocks are washed for thrice for 2 hours in 0.5 M EDTA pH 8.0 while being slowly rocked and are then stored at 4°C. Before being cleaved, the blocks are cut into small strips, transferred into Eppendorf microtubes and washed for four times for 2 hours and once for 16 hours in TE. The blocks are preincubated in four parallel batches at 4°C, each in 300 µl BamHl buffer (from NEB), supplemented with 100 µg/ml of bovine serum albumin (from NEB) and 80 µM S-adenosylmethionine, for 3 hours on ice. Then, 2 units of BamHl (from NEB) and 16, 20, 24 or 28 units of BamHl methylase (from NEB) are added to each batch and incubation is continued for a further 90 minutes on ice and then for 1 hour at 37°C. The reactions are arrested by the addition of 20 mM of EDTA and 0.5 mg/ml of proteinase K and incubated at 37°C for 30 minutes.

The blocks are applied to a 1% agarose gel (Seaplaque GTG from FMC) and the DNA fragments separated by pulsed field gel electrophoresis ((Chef DR II from BioRad), 0.5 x TBE (Maniatis et al., 1982), switch interval of 8-16 sec, 150 V, 16 h, 12°C).

The region of DNA fragments between 70 and 100 kb is cut out of the gel and the agarose hydrolysed with β-agarase (from NEB). The DNA solution obtained in this manner is very carefully extracted once with tris-saturated phenol and once with chloroform/isoamyl alcohol (24+1) and then concentrated to a final volume of approximately 100 μl by extraction with 1-butanol.

pNS528tet14-Ad10-SacIIB (from DuPont-NEN) is used as the cloning vector. The vector arms are prepared as stated in Pierce *et al.*, (1992). Approximately 250 ng of the cleaved vector are ligated with approximately 500 ng of the DNA fraction for 16 hours at 16°C (performed as in Example 11, total volume 15 μl). After heating the ligation to 70°C for 10 minutes, 4μl aliquots are cleaved with pacase (from DuPont-NEN) and packaged into bacteriophage P1 envelopes by addition of the "head/tail" extract, as described in Pierce and Sternberg (1991). After infection of E. *coli* NS3529, the preparation is plated onto LB medium (Maniatis *t al.*, 1982) with 25 μg/ml kanamycin and 5% saccharose. R combinant clones become visible after incubation of the plates at 37°C f r 20 h.

In total, approximately 2000 colonies are btain d, which are stored as a pool in 0.9% NaCl/20% glycerol

at -70°C as "P1 library".

10

The general new library (10 x 500 colonies) is screened as described in Example 11 (cosmid clones). Inter alia, a positive clone is brained which contains all the fragments of the cosmid clone syncosl3, together with additionally a further approximately 30 kb of the cyclosporin synthesis general new in the 5' direction. Hybridisation with oligenucleotide mixtures derived from suitable amines acid sequences (see Example 9 and Example 10) shows that all the tested sequences are present on this P1 clone (synp4). In this way, it is ensured that the complete general for cyclosporine synthesis is contained on this clone synp4.

Example 13: DNA partial sequence of the cyclosporin synthetase gene from *Tolypocladium niveum* ATCC34921

- a) The DNA cloned as described in Examples 11 and 12 is sequenced and is illustrated as Seq Id 1.
- b) A polypeptide with the amino acid sequence illustrated as Seq Id 2 is be derived from this DNA.

Example 14: Comparison of the amino acid sequences derived from the DNA with the cyclosporin synthetase amino acid partial sequences

The DNA of Seq Id 1 is translated on the basis of the genetic code into an amino acid sequence (i.e. position 1 of the protein sequence corresponds to position 885 of the DNA sequence) and is compared with the amino acid sequences given in Example 9:

AA-Partial sequence 3: in Seq Id 2, position 12254 is T. Otherwise all amino acids correspond.

AA-Partial sequence 4: all amino acids correspond.

AA-Partial sequence 5: all amino acids correspond.

AA-Partial sequence 9: in Seq Id 2, position 13730 is W. Otherwise all amino acids correspond. (Position 13 of the AA partial sequence aa9 could not be determined.)

AA-Partial sequence 10: all amino acids correspond.

AA-Partial sequence 12: all amino acids correspond.

AA-Partial sequence 13: all amino acids correspond.

AA-Partial sequence 14: in Seq Id 2, position 9565 is C. Otherwise all amino acids correspond.

AA-Partial sequence 15: all amino acids correspond.

AA-Partial sequence 16: Position 1 of the AA partial sequence aa16 does not correspond to the AA sequence of Seq Id 2. Otherwise all amino acids correspond.

AA-Partial sequence 19: in Seq Id 2, positions 9082 and 9083 are R and Y. Otherwise all amino acids correspond.

35 AA-Partial sequence 20: in Seq Id 2, position 6545 is W. Otherwise all amino acids correspond.

Further, internal comparison of the amino acids 13804-14063 of Seq Id 2 with amino acids 12304-12563 of Seq Id 2 shows that 178 out of 259 amino acids are identical (68.7%). A further 28 amino acid residues (10.8%) are functionally similar. In total, 11 partial regions similar to each other may be identified in this manner.

Example 15: Isolation of RNA from mycelium of Tolypocladium niveumand Northern hybridisation

A 1 I conical flask with 100 ml of medium 4 (Dreyfuss et al., 1976) is inoculated with a spore suspension of Tolypocladium niveum ATCC34921 (1 x 107 spores/ml) and shaken for 96 hours at 250 rpm and 25°C. Il conical flasks with 100 ml of medium 5 (Dreyfuss et al., 1976) are inoculated with 10 ml of this preculture and shaken for 7 days at 25°C and 250 rpm. The cyclosporin A concentration is determined (Dreyfuss et al., 1976) to be 100 µg/ml. 8 g of moist mycelial mass is filtered, washed with TE (10 mM tris-Cl pH 7.5, 1 mM EDTA) and ground to a fine powder in a mortar under liquid nitrogen. RNA is then isolated according to the method described by Cathala et al., (1983). 4 mg of RNA are obtained, which are stored at -70°C. 10 µg of the RNA are separated on a denaturing 1.2% agarose gel containing 0.6 M formaldehyde. The electrophoresis buffer is 0.2 M MOPS, 50 mM sodium acetate, 10 mM EDTA, pH 7.0. The RNA is dissolved in a buffer mixed together from 0.72 ml formamide, 0.16 ml of 10 x concentrated electrophoresis buffer, 0,26 ml formaldehyde, 0.18 ml water and 0.10 ml glycerol. The samples are heated to 100°C for 2 minutes and separated at 115 V, 100 mA over 2 hours. The gel is shaken three times for 20 minutes in 10 x SSC, blotted onto Hybond N-Filter and fixed by UV treatment. Hybridisation is performed at 42°C in 6 x SSPE, 50% formamide, 5 x Denhardt's solution, 0.1% SDS, 100 μg/ml d natured herring sperm DNA, and 100 μM ATP. Th ³²P-lab iled DNA (fragm nts of the cl ned DNAs described in Examples 9 to 12) are heated to 100°C f r 5 minutes and cool d in ice before hybridisati n. After 16 to 20 h urs, th filters are washed: three times for 10 minutes in 2 x SSC, 0.1% SDS and twice for 30 minutes in 0.2 x SSC, 0.1% SDS at 65°C. The dried filters are autoradiographed. If the fragm nt

used as the probe is a fragment of the cyclosporin synthetas g n, a band may be detected in the X-ray film after 24 to 72 hours of autoradiography at -70°C. The band exhibits distinctly less mobility than the largest of the comparison RNA used (9500 b; RNA-ladder, BRL). Figure 1 summarises the results of such hybridisations: in relation to the restriction map of a λ -cloin, the isolation of which is described in Example 10, the positions of individual restriction fragments are given which were used as probes in Northern hybridisations. The filled-in rectangles indicate that the bands described above may be detected (E2, E3, E1, S3, S5), while the rectangles with the transverse lines stand for those fragments which do not hybridise with such a band (E4, S2). (Fragment S4 was not used as a probe).

10 Example 16: Identification of homologous synthetase genes

100 ml of medium 1 (Dreyfuss *et al.*, 1976) are inoculated with 1 x 108 fungal spores and shaken for 72 hours at 25°C and 250 rpm. The mycelium is filtered out, washed with TE and lyophilised. 100 mg of lyophilised mycelium are added to 700 µl of lysis buffer (200 mM tris-Cl pH 8.5, 250 mM NaCl, 25 mM EDTA, 0.5% SDS) and 100 mg of aluminium oxide powder (Sigma A2039) in an Eppendorf homogeniser and are homogenised. 500 µl of phenol-chloroform are then added and vigorously mixed in. After 15 minutes centrifugation, the extraction is repeated. A volume of 3M sodium acetate pH 5.2 corresponding to 0.1 time the volume of the supernatant are added to the supernant and then a volume of i-propanol corresponding to 0.6 time the volume of the supernatant is thoroughly mixed in. After 5 minutes of centrifugation, the pellet is washed with 70% ethanol, briefly dried and dissolved in 100 µl of TE with 100 µg/ml of RNase and incubated for 15 minutes at 37°C. The phenol-chloroform extraction and ethanol precipitation are then repeated. The precipitated DNA is collected.

5 μl portions of the DNA are cleaved with *Xho*l, separated on an agarose gel and blotted onto a nylon filter. This filters are hybridised with ³²P-labelled λSYN3 DNA as a probe. Hybridisation is performed under standard conditions, as described in Example 10 ("chromosome walking"). The hybridisations may, however, also be performed under less stringent conditions.

The following hybridising bands are obtained with DNA from *Tolypocladium niveum* (all data are estimates due to mobility in the gel): 3.6 kb, 3.4 kb, 3.2 kb, 3.0 kb, 2.3 kb, 1.9 kb and 0.7 kb. DNA from *Fusarium solani* ATCC 46829 also displays bands at 3.6 kb, 3.4 kb, 1.9 kb and 0.7 kb together with a further band at approximately 2.1 kb. DNA from *Neocosmospora vasinfecta* ATCC 24402 also displays the bands at 3.6 kb, 3.4 kb, 1.9 kb and 0.7 kb, together with two further bands at 2.9 kb and 1.8 kb. DNA from *Tolypocladium geodes, Acremonium sp. S42160/F, Paecilomyces sp. S84-21622/F, Verticillium sp. 85-22022/F* (Dreyfuss, 1986) each display several hybridising bands in the range 0.7 kb to 7 kb.

On the basis of the DNA sequence Seq Id 1, the following oligonucleotide pairs are be synthesised:

Nucleotides 35073-35092 of Seq Id 1

Nucleotides 37848-37829 of Seq Id 1 (complementary strand)

or also

35

40

55

Nucleotides 40309-40328 of Seq Id 1

Nucleotides 42018-41999 of Seq Id 1(complementary strand)

If 50 ng of the *Tolypocladium geodes* CBS723.70 DNA is amplified with the first of the two oligonucleotide pairs described above (Sambroock *et al.*, 1989): 30 cycles: 1 min 30 sec 94°C; 2 min 30 sec 50°C; 6 minutes 72°C, a 350 bp DNA is produced. If a part of this DNA is sequenced, the sequence given as Seq ld 3 is obtained. This DNA sequence is 75.1% homologous to the corresponding DNA sequence of Seq ld 1.

Also, if 50 ng of the *Neocosmospora vasinfecta* ATCC 24402 DNA is amplified with the second of the two oligonucleotide pairs described above (Sambroock *et al.*, 1989): 30 cycles: 1 minutes 30 sec 94°C; 2 minutes 30 sec 50°C; 6 minutes 72°C, a 1713 bp DNA is produced. If this DNA is sequenced, the sequence given as Seq Id 4 is obtained. This DNA sequence is 96.3% homologous to the corresponding DNA sequence of Seq Id 1.

50 Example 17: Protoplastisation and transformation of Tolypocladium niveum

a) Method 1:

200 ml of medium 1 (maltose (monohydrate) 50 g/l, casein peptone, digested with trypsin (Fluka 70169) 10 g/l, KH₂PO₄ 5 g/l, KCl 2.5 g/l pH 5.6) in a conical flask are inoculated with 10° spores of *Tolypocladium niveum* and are incubated at 27°C, 250 rpm f r approximately 70 hours. 200 μl of (0.1%) β-mercaptoethanol ar added and incubation continued for a furth r 16 h urs. The mycelium is harvested by centrifugati n (Beckman J2-21 centrifug , rot r JA14, 8000 rpm, 20°C, 5 minutes), washed in 40 ml of TPS (NaCl 0.6 M, KH₂PO₄/NaH₂PO₄

66 mM pH 6.2) and the pellet v lume measured by centrifugation in calibrated microtub s at 2000 g (in B ckman GPR centrifug , GH3.7 rotor, 3000 rpm, 5 minut s). The mycelium is suspended in TPS (3 ml of TPS are used for each 1 ml of pellet volume) and the same volume of protoplastisation solution is added (Novozym 234 10 mg/ml from Novo Industri, batch PPM-2415), cytohelicas 5 mg/ml (from IBF), Zymolyase 20T 1 mg/ml (from S ikagaku Kogy , batch n . 120491). The suspension is incubated at 27°C at 80 rpm for approximately 60 minutes. The protoplasts are filtered through a milk filter, centrifuged out (700 g, 10 minutes) and taken up in a total of 4 ml of TPS. Each 1 ml of this suspension is layered on to 4 ml of 35% saccharose solution and is centrifuged at 600 g, 20°C for 20 minutes. The protoplast bands at the phase interface are drawn off, each diluted to 10 ml with TPS, centrifuged out, carefully resuspended in 200 μ l portions of TPS and the suspensions are combined. For each 1 ml of pellet volume of starting mycelium (see above), approximately 2 x 108 protoplasts are obtained.

The protoplast suspension is centrifuged out (700 g, 10 minutes) and suspended in 1 M sorbitol, 50 mM CaCl₂ at a density of 1 x 10⁸. 90 µl portions of this suspension are combined with 10 µl of the vector DNA to be transformed, which contains the <u>amdS</u> gene from *Aspergillus nidulans*, for example plasmid p3SR2 (Hynes et al., 1983), (1-10 µg dissolved in tris-HCl 10 mM, EDTA 1 mM, pH 8.0) and 25 µl of PEG 6000-Lsg are added (25% PEG 6000, 50 mM CaCl₂, 10 mM tris-HCl, pH 7.5, freshly prepared from the stock solutions: 60% PEG 6000 (from BDH), 250 mM tris-HCl pH 7.5, 250 mM CaCl₂). The transformation batch is placed on ice for 20 minutes and then a further 500 µl of the mixed PEG 6000 solution are added and carefully mixed in. After 5 minutes at room temperature, 1 ml of 0.9 M NaCl, 50 mM CaCl₂ is added, the entire batch added to 7 ml of melted soft agar TMMAAC+N, held at 45°C, and cast onto preheated TMMAAC+N plates. Medium TMMAAC+N contains 6 g/l glucose, 3 g/l KH₂PO₄, 0.5 g/l KCl, 0.4 g/l MgSO₄ x 7 H₂O, 0.2 g/l CaCl₂ x 2 H₂O, 8 mM acrylamide, 2.1 g/l CsCl, 1 ml/l trace element solution, and 0.6 M NaCl. 15 g/l of Agar-Agar (Merck) are used for plates and 7 g/l for soft agar. The trace element solution contains 1 mg/ml of FeSO₄ x 7 H₂O, 9 mg/ml of ZnSO₄ x 7 H₂O, 0.4 mg/ml of CuSO₄ x 5 H₂O, 0.1 mg/ml of MnSO₄ x H₂O, 0.1 mg/ml of H₃BO₃ and 0.1 mg/ml of Na₂MoO₄ x H₂O. Transformants are capable of using acrylamide as a source of nitrogen in the medium and may therefore be identified after approximately 3 weeks at 25°C as colonies against weak background growth.

b) Method 2:

30

Two portions each of 4.0 ml of the *Tolypocladium niveum* spores (ATCC 34921; 5 x 108/ml) are introduced into a 1 I conical flask with 200 ml of medium 1 (50 g/l maltose (monohydrate), 10 g/l casein peptone, digested with trypsin, FLUKA 70169, 5 g/l KH₂PO₄, 2.5 g/l KCl, pH 5.6) and are shaken at 25°C at 250 rpm for 65 hours. The mycelium is filtered out over a sterile sintered porcelain filter with GMX nylon gauze and washed with TE (10 mM tris-Cl pH 7.5, 1 mM EDTA) and resuspended in 40 ml of YG (5 g/l yeast extract, 20 g/l dextrose). Centrifugation is carried out at 900 g and 20°C for 5 minutes. The pellet is resuspended in YG (approximately 1 ml pellet in 5 ml) and 5 ml of protoplastisation solution are added to 5 ml of suspension. The protoplastisation solution is produced from a solution containing 1.1 M KCl and 0.1 M citric acid. The pH is adjusted to 5.8 with KOH. Driselase (Sigma D9515) is added (15 mg/ml; storage at -20°C); the suspension remains in the ice for 15 minutes and the starch carrier is removed by centrifugation for 5 minutes at 2000 rpm. Novozym (4 mg/ml) and bovine serum albumin (Sigma A7096, 20 mg/ml) are added. The solution is filtered through Millipore SLGV025LS and remains in the ice until used. The preparation is shaken at 37°C for 2.5 hours at 250 rpm. The preparation is filtered through a milk filter. The protoplasts are centrifuged out (700 g; 20°C; 5 minutes) and carefully resuspended in STC (1.2 M sorbitol, 50 mM CaCl₂, 10 mM tris-HCl pH 7.5). 5 ml of 35% saccharose solution are carefully covered with a layer of the suspension and centrifuged (600 g; 20°C; 20 minutes). The bands are drawn off and diluted to approximately 5 ml with STC. 2 x 108 protoplasts are obtained from 200 ml of culture.

50 μl of the protoplast suspension (1 x 108/ml) are introduced into a sterile Eppendorf tube and 5 μg of plasmid DNA in TE and 12.5 μl of PEG solution (20% PEG 4000, 50 mM CaCl₂, 10 mM tris-HCl pH 7.5) are added. This solution is mixed from separately autoclaved stock solutions: 1 M CaCl₂, 1 M tris-HCl pH 7.5, 60% PEG 4000 (Riedel de H\u00e4en). Once the mixture has stood for 20 minutes in ice, 0.5 ml of PEG solution are added and carefully mixed in. After 5 minutes at room temperature, 1 ml of 0.9 M NaCl, 50 mM CaCl₂ are carefully mixed in. The suspension is added to 10 ml of TM88 sorbitol soft agar (20 g/l malt extract, 4 g/l yeast extract, 10 g/l bacto agar, 218 g/l sorbitol, pH 5.7) (45°C) and cast onto TM88 sorbitol plates (10 ml TM88 sorbitol agar: 20 g/l malt extract, 4 g/l yeast extract, 30 g/l bacto agar, 218 g/l sorbitol, pH 5.7). After 15 to 20 hours at 25°C, 10 ml f TM88 sorbitol agar with 600 μg/ml of hygromycin (45°C) are poured ov r. Hygromycin resistant transformants may be det cted after 7 days at 25°C.

Example 18: Construction f vectors pSIM10, PSIM11 and pSIM12 and transformation with these plasmids

a) Isolation of cyclophilin g n from Tolypocladium niveum

As described in Exampl 10, th *Tolypocladium niveum* gene library is screen d with a radioactively labelled DNA probe. Hybridisation is performed at 42°C in 6 x SSPE, 30% formamide, 5 x Denhardt's solution, 0.1% SDS, 100 μg/ml denatured herring sperm DNA, and 100 μM ATP. ³²P-labelled DNA (fragments of the DNA of the cyclophilin gene from *Neurospora crassa*, Tropschug *et al.*, 1988) are heated to 100°C for 5 minutes and cooled in ice before hybridisation. After 16 to 20 hours, the filters are washed three times for 10 minutes in 2 x SSC, 0.1% SDS and twice for 30 minutes in 1 x SSC, 0.1% SDS at 45°C. The dried filters are autoradiographed. The purified DNA from λ-phages is subcloned in plasmids and characterised by restriction mapping, Southern hybridisation and DNA sequencing. The cDNA sequence of Seq Id 5 is obtained. The sequence is homologous to the cyclophilin gene of *N. crassa*. The start codon ATG is at positions 12-14 and the stop codon TAA is at positions 552-554.

15

30

40

45

5

b) Construction of vector pSIM10 and transformation with this plasmid

On the basis of the Seq Id 5, a first oligonucleotide is synthesised which is largely complementary to Seq Id 5 (positions 2 to 29); however, the ATG region (12 to 14) is altered in such a way that a Clal cleavage point (ATCGAT) is produced. A second oligonucleotide contains a sequence of the plasmid pUC18 and a recognition sequence for BamHI and is given as Seq Id 6.

A plasmid containing a 2.7 kb *EcoRI-Hind*III fragment from Example 18a cloned into pUC18 is linearised with *Hind*III. 1 ng of the plasmid DNA is amplified with the oligonucleotides described above (Sambroock *et al.*, 1989): 30 cycles: 1 minutes 30 sec 94°C; 2 minutes 30 sec 50°C; 6 minutes 72°C. A 2.1 kb DNA is produced. After chloroform extraction, this DNA is purified by ultrafiltration (Ultrafree MC 100 000; Millipore) and cleaved in the appropriate buffer with the enzymes *Clal* and *BamHI*. 50 ng of this DNA are ligated with 50 ng of *BamHI* and *Clal* cleaved DNA of the plasmid pGEM7Zf (Promega). The newly produced plasmid is cleaved with *Clal* and *Xbal* and ligated with a *Clal-Xbal* restriction fragment 1.76 kb in size from the plasmid pCSN44 (Staben *et al.*, 1989). A restriction map of this plasmid (pSIM10) is reproduced in figure 3.

The 2157 bp BamHI-Clal restriction fragment of the plasmid (4714-6865 in figure 3), which contains the cyclophilin gene promoter, has the DNA sequence of Seq Id 7.

The plasmid pSIM10 may be used for the transformation of *Tolypocladium niveum*, as described in Example 17. DNA from the transformants is cleaved with *Bam*HI and, after electrophoresis, blotted on a nylon membrane. The 1.8 kb *BgI*II fragment from pSIM10 (figure 3) is used as a radioactive probe. In this way, those of the transformants in which the plasmid pSIM10 has been incorporated once or a plurality of times into the genome may be identified.

The Xhol cleavage point in plasmid pSIM10 (4924) allows the construction of plasmids which contain defined parts of the cyclosporin synthetase gene with which a deliberate inactivation of the cyclosporin synthetase gene is possible:

pSIM11 contains a 3.6 kb Xhol restriction fragment (42285-45909 of Seq Id 1). If the plasmid linearised with EcoRV is used for the transformation, approximately 30% of transformants obtained no longer form cyclosporin. It is shown with Southern hybridisations with DNA from such transformants that an 8.4 kb Xbal fragment is no longer detectable, but instead two new restriction fragments with 10.6 kb and 8.2 kb are detected.

pSIM12 contains a 0.8 kb Xhol restriction fragment (39663-40461 of Seq Id 1). If the plasmid linearised with <u>Sall</u> is used for the transformation, approximately 30% of transformants obtained no longer form cyclosporin. It is shown with Southern hybridisations with DNA from such transformants than an 8.4 kb Xbal fragment is no longer detectable, but instead two new restriction fragments with 10.4 kb and 5.6 kb are detected.

Example 19: Cotransformation with synp4

50

55

pSIM10 (Example 18) is used as transformation vector. Together with this vector, equimolar quantities of synp4 (Example 12) are also used in the same transformation batch. These cotransformations are performed according to the method described in Example 17 and *Tolypocladium niveum* ATCC 34921 is used as the starting strain.

G n mic DNA from hygromycin resistant transformants is isolated according to a rapid method. T this end, mycelium is tak n from an area f approximately 1 cm² f th corresponding col ny and transferred into Eppendorf homogenisers. 1 ml lysis buffer (50 mM EDTA, 0.2% SDS) and 100 mg aluminium oxid (grad A5, from Sigma) are added and th roughly homogenis d for approximately 5 minutes. After centrifugation (5 min-

utes, 11,000 rpm) the supernatant is extracted ince with each of tris-saturated phenel, phenel/chleroferm (1:1) and chloroform/isoamyl alcohol (24:1) and the DNA precipitated with isopropanol using the standard procedure (Sambroock t al., 1989).

The DNA is complitely restricted with the restriction enzyme Sall, separated with gill lectroph resis and investigated in South in hybridisations. The 0.8% agarose gill is transferred by vacuum blotting (Vacublot, from Pharmacia) onto a nylon membrane (Duralon-UV from Stratagene) and fixed with UV.

As probe for the hybridisations, the small *Spel* restriction fragment from the bacteriophage P1 vector pNS-528tetl4-Ad10-SacIIB (from DuPont-NEN) is prepared by gel electrophoresis and Geneclean II Kit (from BIO101) and radioactively labelled with alpha ³²P dATP by "random primer" synthesis (from Stratagene).

Prehybridisation is performed for approximately 8 to 16 hours at 42°C in 6 x SSC, 50% formamide, 5 x Denhardt's (Maniatis *et al.*, 1982), 0.1% SDS, 0.25 mg/ml denatured herring sperm DNA, and 25 mM NaH₂PO₄ pH 6.5 in a volume of 10 ml per 100 cm² of membrane. After addition of the labelled probe, incubation is continued for a further 16 to 20 hours at 42°C. The blot is washed twice for 10 minutes with 2 x SSC/0.1% SDS at 25°C and twice for 30 minutes with 0.5 x SSC/0.1% SDS at 60°C. After autoradiography for approximately 48 to 96 hours at -70°C with Kodak intensifying film onto X-ray film (Xomatic AR, from Kodak), bands become visible on the X-ray film.

Some of the investigated DNAs display hybridisation signals which are attributable to the integration of synp4. The number of signals, which should correlate with the number of integrated synp4 molecules, varies between 1 and 3.

A transformant strain verified in this manner is investigated for cyclosporin A formation by test fermentation in a shaking flask as described by Dreyfuss *et al.* (1976). Whilst approximately 100 µg/ml of cyclosporin A is formed in parallel tests of the untransformed starting strain *Tolypocladium niveum* ATCC 34921, approximately 150 µg/ml of cyclosporin A is detected in tests with the strain in which additional copies of the cyclosporin synthetase gene are present due to the integration of synp4.

Abbreviations used:

10

20

25

	ACV	aminoadipyl-cysteinyl-valine
	amdS	acetamidase gene
30	ATCC	American Type Culture Collection
	ATP	adenosine triphosphate
	bp	base pairs
	CBS	Centraalbureau voor Schimmelcultures
	DTE	dithioerythritol
35	DTT	dithiothreitol
	EDTA	ethylenediaminetetraacetic acid
	HEPES	N-2-hydroxyethyl-piperazine-N-2-propanesulphonic acid
	MOPS	3-morpholinepropanesulphonic acid
	PEG	polyethylene glycol
40	pfu	plaque forming units
	SDS	sodium dodecyl sulphate
	SDS-PAGE	SDS-polyacrylamide gel electrophoresis
	SSC	150 mM NaCl, 15 mM sodium citrate, pH 7.0
	SSPE	180 mM NaCl, 10 mM sodium phosphate, 1 mM EDTA, pH 7.7
45	TE	10 mM tris-Cl pH 7.5, 1 mM EDTA
	TFA	trifluoroacetic acid
	tris	tris(hydroxymethyl)aminomethane
	YAC	yeast artificial chromosome

Moreover, the customary abbreviations for the restriction endonucleases are used (Sau3A, HindIII, EcoRI, HindIII, Clal etc.; Maniatis et al., 1982). The nucleotide abbreviations A, T, C, G are used for DNA sequences and the amino acid abbreviations (Arg, Asn, Asp, Cys etc.; or R, N, D, C etc.) for polypeptides (Sambroock et al., 1989).

Literature list:

55

50

A. Billich and R. Zoch r (1987) Enzymatic Synth sis of Cyclosporin A J. Biol. Chem. 262, 36, 17258-17259 J. F. Borel, C. Feurer and H. U. Gubler (1976) Biological ffects of cyclosporin A: a new antilymphotic agent Agents Actions 6: 468

- M. Dr yfuss, E. Härri, H. Hofmann, H. K bel, W. Pach and H. Tscherter (1976) Cyclosporin A and C European J. Appl. Microbiology 3 (1976), S. 125-133.
- M. M. Dreyfuss (1986) Neu Erkentnisse aus in m pharmakologisch n Pilz-Screening, Sydowia 39 (1986), S. 22-36.
- K. D. Jofuku and R. B. Goldb rg, Analysis of plant gen structure, in: Plant molecular biology: a practical approach (C. H. Shaw, Hrsg.), 1. Aufl., IRL press, Oxford 1988, S. 37-66.
- H. Kleinkauf and H. v. Döhren (1990) Nonribosomal biosynthesis of peptide antibiotics *Eur. J. Biochem.* 192, 1-15
- J. Kraetzschmar, M. Krause and M. A. Marahiel (1989) Gramicidin S Biosynthesis Operon Containing the Structural Genes grsA and grsB has an Open Reading Frame Encoding a Protein Homologous to Fatty Acid Thioesterases J. Bacteriol. 171, 5422-5429
- U. K. Laemmli (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4 *Nature* 227, 680 685
- A. Lawen, R. Traber, D. Geyl, R. Zocher and H. Kleinkauf (1989) Cell-Free Biosynthesis of New Cyclosporins J. Antibiotics 42, 8, 1283-1289
- A. Lawen, J. Dittmann, B. Schmidt, D. Riesner and H. Kleinkauf (1992) Enzymatic biosynthesis of cyclosporin A and analogues *Biochimie* 74, 511-516
- A. Lawen and R. Zocher (1990) Cyclosporin Synthetase. The Most Complex Peptide Synthesizing Multienzyme Polypeptide So Far Described J. Biol. Chem. 265, 19, 11355-11360
- A. P. McCabe, H. v. Liempt, H. Palissa, M. B. R. Riach, E. Pfeifer, H. v. Döhren and J. R. Kinghorn (1991) δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase from Aspergillus nidulans. Molecular characterization of the acvA gene encoding the first enzyme of the penicillin biosynthetic pathway J. Biol. Chem. 266, 12646
- T. Maniatis, E.F. Fritsch and J. Sambroock, *Molecular cloning: a laboratory manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor 1982/1.
- H. Nakajima, T. Hamasaki, k. Tanaka, Y. Kimura, S. Udagawa and Y. Horie (1989) Production of Cyclosporin by fungi belonging to the genus Neocosmospora, *Agric. Biol. Chem.* **53** (1989) Nr. 8, S. 2291-2292.
- J. C. Pierce and N. Sternberg (1991), Using the bacteriophage P1 system to clone high molecular weight (HMW) genomic DNA, *Methods Enzymol*. in press
- J. C. Pierce, B. Sauer and N. Sternberg (1992), A positive selection vector for cloning high molecular weight DNA by the bacteriophage P1 system: Improved cloning efficacy. *Proc. Natl. Acad. Sci. USA* 89 2056 2060.
- J. Sambroock, E.F.Fritsch and T. Maniatis, *Molecular Cloning: a laboratory manual* Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1989/2
- D. J. Smith, A. J. Earl and G. Turner (1990) The multifunctional peptide synthetase performing the first step of penicillin biosynthesis in Penicillium chrysogenum is a 421.073 dalton protein similar to Bacillus brevis peptide antibiotic synthetases *EMBO J.* **9**, 2743-2750
- C. Staben, B. Jensen, M. Singer, J. Pollock, M. Schechtman, J. Kinsey and E. Selker (1989) Use of a bacterial Hygromycin B resistance gene as a dominant selectable marker in Neurospora crassa transformation, Fungal Genetics Newsletter 36 (1989), S. 79.
- S. Tada, K. Gomi, K. Kitamoto, K. Takahashi, G. Tamura und S. Hara (1991) Construction of a Fusion Gene Comprising the Taka-Amylase- A Promoter and the Escherichia-Coli beta-Glucuronidase Gene and Analysis of Its Expression in Aspergillus-Oryzae, *Mol Gen Genet* 229 (1991) Nr. 2, S. 301-306.
- M. Tropschug, D.W. Nicholson, F. Hartl, H. Köhler, N. Pfanner, E. Wachter and W. Neupert (1988) Cyclosporin A-binding Protein (Cyclophilin) of Neurospora crassa. One gene codes for both the cytosolic and mitochondrial forms. *Journal of Biological Chemistry* **263** (1988) Nr. 28, S. 14433- 14440.
- K. Turgay, M. Krause, and M. A. Marahiel (1992) 4 Homologous Domains in the Primary Structure of GrsB Are Related to Domains in a Superfamily of Adenylate-Forming Enzymes *Molecular Microbiol.* 6, 4, 529-546
- R. Weckermann, R. Fuerbass and M. A. Marahiel (1988) Complete nucleotide sequence of the tycA gene encoding the tyrocidine synthetase 1 from Bacillus brevis *Nucleic Acids Res.* 16, 11841
- P. H. Yu (1983) Specific Photoactivated Covalent Binding of S-Adenosyl-Methionine to Phenylethanolamine-N-Methyl Transferase *Biochim. Biophys. Acta* 742, 517
- R. Zocher, T. Nihira, E. Paul, N. Madry, H. Peeters, H. Kleinkauf and U. Keller (1986). Biosynthesis of Cyclosporin A: Partial Purification and Properties of a Multifunctional Enzyme from Tolypocladium inflatum. *Biochemistry* 25, 550-553

45

5

20

5	SEQUENCE LISTING	
	(1) GENERAL INFORMATION:	
10	(i) APPLICANT: (A) NAME: Sandoz Ltd (B) STREET: Lichtstrasse 35 (C) CITY: Basel (E) COUNTRY: Switzerland (F) POSTAL CODE (ZIP): CH-4002 (G) TELEPHONE: 41-61-324 4395 (H) TELEFAX: 41-61-322 7532	
15	 (A) NAME: Sandoz-Patent-GmbH (B) STREET: Humboldstr. 3 (C) CITY: Loerrach (E) COUNTRY: Germany (F) POSTAL CODE (ZIP): D~7850 	
20	 (A) NAME: Sandoz-Erfindungen Verwaltungsgesellschaft mbH (B) STREET: Brunnerstr 59 (C) CITY: Vienna (E) COUNTRY: Austria (F) POSTAL CODE (ZIP): A-1235 	
25	(ii) TITLE OF INVENTION: Cyclosporin Synthetase	
	(iii) NUMBER OF SEQUENCES: 7	
30	<pre>(iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)</pre>	
	(2) INFORMATION FOR SEQ ID NO: 1:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 46899 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: DNA (genomic)	
40	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
45	(vi) ORIGINAL SOURCE:(A) ORGANISM: Tolypocladium niveum(B) STRAIN: ATCC 34921	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	GAATTCAGTA TCGGGCAAAT CTTCATGGTG ATGTGAATCT AGCGAGATGA ATGCAGGAGA	6
50	ATCGGCTGGG ATGGCCTCCA GATATACACC CTTCTAGCAT CACAAATCCC GCCGATGTAC	12
	AAGCCCCACG ACGAACGTTC TTATTGGCTT AACCGCTACT AGTATTTTTA TATAGTAGTT	18
	TATATGCGTA GGTACTCTCT TCTGTTAATG TCAGAGGATC TATTGCGATG GGCAGGCTGC	240

	AGCAATGCCT	CGATCTTGAT	GGAGGGATAG	TIGITIGCTG	ATGAGTATAG	GTACTTATTC	300
5	TATTAGTAAC	TCTATGCTTG	TTTTAAGGTA	CCGATACTCG	TACGTCGATC	GTGGGGGGTG	360
	TAAGCCACGT	GGTCCACAGT	CTGACGAAGT	TTCGAACCCT	TCAGGGATTA	TTAACAAGGT	420
	AATACGGAGT	AAAGGAGTAG	TATCATAGCT	TGGAATATGT	GGAAACCCCG	AGGAGGCAAT	480
10	CCCCTTGGCT	GTCAGATTAC	CTTACAAGTC	TCCATCTACT	GACCACGAAC	TGAACTCAGT	540
	TCCTTCAGTC	GCTTACTATT	TACTGGAACA	TCTCCTCGAA	TTTGGAAAAA	GAAAAAAGCA	600
	ССААСААААА	CTCAGGAGAT	CCACTCTTTA	TCGGACACAA	ATAGCTACTT	GCTTTCTGTG	660
45	CCGTGCAACG	ATACTGTCGG	AAAGCTCGAC	CTACGAGCCA	CTTACACCTG	TGGTAGCAGC	720
15	ACAAAGCCGG	ACTCGCCACA	ACTCAGCAAC	TAGCCATTCG	AAATCGCAAA	CTACAGCAGC	780
	TACACGAACT	TCATGAGATG	GATTGTACAT	ACTGACTACA	CTAGGTTTAC	TAACAGATAG	840
	ACAACCATTG	CCAGATTATA	GAGCCTTTTG	CTTTCTTGGT	CAACATGGGC	GCCATCGGGC	900
20	AAGACATGGC	ATATGATCGC	CTTGCCAACC	CGTCTCGGGC	GAGTTCCATC	TCTTCGAACC	960
	GATACTCCGA	ACCTGTCGAG	CAATCCTTTG	CCCAGGGCAG	ACTGTGGTTC	CTGCACCAGC	1020
	TGAAGCTCGG	TGCGAGCTGG	GACATTACGC	CGGCCGCGAT	CCGACTTCGG	GGCCATCTCG	1080
25	ACATCGATGC	GCTGAACGCT	GCCTCGCGCG	CTCTGACGCA	GCGCCACGAG	ACGCTCCGAA	1140
	CGACGTTCAA	GGAGCAGGAT	GGCGTGGGCG	TACAGGTTGT	GCACGCCTCG	GGCCTCGAAA	1200
	GAGGGTTGAG	GATTGTTGAT	GCCTCGAGCC	GCGATTTGGC	CCAGCTCCTG	GCAGAGGAAC	1260
30	AAACCATGAA	GTTCGACCTA	GAGTCTGAGC	CAGCTTGGAG	AGTTGCATTG	TTGAAGGTGG	1320
	CCGAGGATCA	CCATATTCTT	TCCATTGTTG	TACACCATAT	CATCTCAGAC	AGCCGGTCTC	1380
	TCGACATTAT	TCAGCAGGAG	CTTGGAGAAC	TCTACACGGC	CGCCTCGCAG	GGGAAATCGA	1440
	TTTCGGCTTG	TCCCTTGGGT	CCAATTCCCA	TTCAATACCG	TGACTTGACG	ACTTGGCAGA	1500
35	ACCAGGACGA	GCAGGTCGCT	GAGCAGGAAA	GGCAGCTCGG	ATACTGGATC	GAGCAGCTCG	1560
	ATAACAACAC	ACCGGCCGAG	CTCCTCACAG	AGCTTCCCCG	GCCAGCTATC	CCATCTGGCG	1620
	AAACTGGCAA	GATCTCCTTC	CAGATCGATG	GATCGGTACA	CAAAGAACTC	CTGGCCTTCT	1680
40	GCCGCTCCCA	GCAAGTAACC	GCCTACGCCG	TGCTGCTGGC	AGCGTTTCGC	GTGGCGCACT	1740
	TTCGCCTCAC	TGGAGCCGAG	GATGCAACCA	TCGGAGCGCC	CGTTGCCAAC	CGCGACCGGC	1800
	CGGAGCTGGA	GAACATGGTG	GCTCCCTTGG	CCACTCTGCA	GTGCATGCGA	GTCGTGCTCG	1860
45	ACGAGGACGA	CACCTTCGAG	TCGGTGCTGC	GGCAGATCAT	GTCCGTCATG	ACAGAGGCAC	1920
	ATGCCAACCG	CGACGTCCCC	TTTGAGCGCA	TCGTGTCTGC	GTTGCTGCCC	GGGTCGACAG	1980
	ACACATCACG	ACACCCGCTT	GTGCAGCTCA	TGTTTGCTTT	GCATCCCGCG	CAGGATACGG	2040
50	GCCGAGCCCG	GTGGGGGTTC	CTCGAGGCTG	AGACTCTGCA	GAGTGCGGCC	CCGACACGAT	2100
50	TCGACATGGA	GATGCACCTG	TTTGAGGGAG	ACGACCGGTT	CGATGCAAAC	GTGCTGTTCT	2160
	CCACGGGCCT	TTTCGACGCA	GAGGCCATCC	GCAGCGTGGT	TTCTATCTTT	CGGGAAGTCC	2220
	TGCGCCGTGG	CATCTCGGAG	CCTGCGGTGC	ATGTGAAGAC	GATGCCGCTC	ACCGATGGGC	2280

5	TCGCCGCGAT	CCGGGACATG	GGCTTGCTGG	ATATCGGGAC	CACCGACTAC	CCCCGCGAGG	2340
	CGAGCGTGGT	TGATATGTTC	CAAGAGCAGG	TGGCCTTGAA	TCCAAGCGCC	ACCGCCGTGG	2400
	CCGATGCTTC	GTCCAGATTG	AGCTACTCTG	AGTTGGATCA	CAAGTCAGAT	CAGCTGGCCG	2460
	CGTGGCTGCG	CAGACGGCAG	CTCAAGCCCG	AGACCTTGAT	TGGCGTGTTG	TCTCCTCCGT	2520
10	CTTGCGAGAC	CATGGTTTCC	TTCCTCGGTA	TCCTCAAGGC	TCATCTGGCT	TATCTGCCTC	2580
	TCGATATCAA	CGTTCCCTTG	GCACGCATCG	AATCAATCCT	TTCGGCCGTG	GACGGGCACA	2640
	AGCTCGTCCT	GCTTGGGAGC	AACGTGCCCC	AACCCAAGGT	GGATGTACCC	GATGTTGAGT	2700
15	TGCTGCGGAT	CAGCGATGCC	CTGAACGGGT	CTCAGGTGAA	TGGGCTTGCA	GGGAAACAGG	2760
	CGACTGCAAA	GCCCTCGGCG	ACGGACCTGG	CCTACGTCAT	CTTCACCTCG	GGATCGACTG	2820
	GCAAGCCGAA	GGGTGTCATG	ATCGAGCATC	GGGGCATCGT	ACGCCTCGTG	AAAGGAACAA	2880
20	ACATTATTTC	GCCCGCCCAG	GCAGCAGTGC	CGACAGCTCA	CCTGGCCAAC	ATCGCTTTCG	2940
	ACCTCTCAAC	ATGGGAGATC	TATACCCCTA	TCCTTAATGG	CGGCACTCTT	GTCTGTATCG	3000
	AACACTCTGT	CACGCTAGAT	AGCAAGGCAC	TAGAAGCTGT	ATTCACCAAG	GAGGGCATTC	3060
25	GTGTGGCCTT	CCTTGCTCCT	GCTCTGATCA	AGCAGTGTCT	CGCCGACAGA	CCGGCGATCT	3120
25	TTGCGGGCCT	GGATAGCCTG	TACGCTATTG	GCGATCGCTT	CGACCGACGT	GACGCCCTCC	3180
	ATGCAAAGTC	CTTGGTGAAG	CATGGCGTTT	ATAATGCCTA	TGGTCCAACC	GAGAATTCCG	3240
	TCGTCAGTAC	CATCTACAGC	GTCTCCGAGG	CTTCACCGTT	TGTCACGGGG	GTGCCCGTTG	3300
30	GCCGGGCCAT	CAGCAACTCG	GGCGCCTATG	TAATGGATCA	GGATCAGCAA	TTGGTCTCTC	3360
	CCGGGGTGAT	GGGGGAGCTT	GTGGTTTCTG	GAGATGGCCT	AGCTCGAGGA	TATACCGATT	3420
	CGGCTCTGGA	TAAGAACCGA	TTTGTCGTGG	TGCAGATTGA	CGGCGAGTCA	ATCCGGGGCT	3480
35	ATCGTACGGG	AGACCGGGCC	CGATACAGCC	TCAAGGGTGG	CCAGATTGAG	TTCTTTGGCC	3540
	GCATGGATCA	GCAGGTCAAG	ATCCGTGGCC	ATCGTATCGA	GCCAGCCGAG	GTAGAGCACG	3600
	CTTTACTCAA	CAGCGACCAA	GTACGCGATG	CAGCAGTGGT	TATCCGGAGA	CAGGAGGAGG	3660
40	AAGAGCCTGC	GATGATTGCC	TTCGTTACGA	CGCAGGGTAC	GCTCCCTGAT	CACCTCGTCA	3720
	ACATCAACGG	CAACGGCCAC	GTTCCCGACG	GCAACGGCAG	CAAGAACGAC	CAATTCGCCG	3780
	TTCACGTCGA	GAGCGAACTG	CGCCGGCGCT	TGCAGATGTT	GCTGCCCTCC	TACATGATGC	3840
	CGGCCCGCAT	CGTGGTGCTT	GACCATCTCC	CTCTCAACCC	CAACGGCAAA	GTCGACCGGA	3900
45	AGGCGCTGGG	TCAGTCGGCC	AAGACTGTGC	AGAAGAGCAA	GCTGGTCTCA	CAGCGCGTCG	3960
	CCCCACGCAA	TGAGATCGAG	GCCGTGCTTT	GCGAGGAGTA	CAGGAGTGTG	CTTGGTGTCG	4020
	AGGTTGGCAT	CACCGATAAC	TTCTTCGACC	TGGGTGGTCA	TTCCTTGACG	GCCATGAAGC	4080
50	TCGCGGCACG	GATCAGCCAG	AGGCTCGACA	TTCAAGCATC	CGTAGCAACT	GTCTTTGAGC	4140
	AGCCGATGCT	CGCTGACCTC	GCCGCCACGA	TCCAGCGCGG	CTCGACTCTG	TATAGCGTCA	4200
	TCCCTACGAC	AGAATACACG	GGACCGGTGG	AGCAATCATT	TGCCCAAGGC	CGTCTGTGGT	4260

	TCCTTGAGCA	GCTGAATACC	GGCGCCTCAT	GGTATAATGI	GATGCTCACC	GTACGACTAC	4320
5	GAGGCCACCT	CGACGTGGAT	GCGCTGGGAA	CGGCCCTGCT	CGCCCTGGAG	AAACGGCACG	4380
	AGACTCTTCG	GACAACCTTT	GAGGAACGGG	ACGGGGTTGG	CATGCAGGTA	GTCCACAGCA	4440
	GCCTCATGGG	GGAGCTGCGG	CTGATTGATA	TATCAGAGAA	ATCTGGCACT	GCCGCGCATG	4500
10	AGGCACTGAT	GAAGGAGCAG	TCAACCCGCT	TCGACCTGAC	TCGCGAGCCA	GGTTGGAGAG	4560
,,,	TGGCGCTGCT	GAAGTTGGCA	GACCACCACA	TCTTCTCGAT	CGTCATGCAC	CACATTGTAT	4620
	CGGATGGATG	GTCTCTCGAC	CTCCTACGAC	ACGAGCTGGG	CCAACTCTAC	TCGGCAGCTC	4680
	TGCGCGGCCA	GGACCCATTG	TCGCGCCTTG	AGCCACTCCC	GATCCAATAC	CGCGACTTTG	4740
15	CGGTCTGGCA	GAAGCAAGAC	AGCCAGCAGA	AAGCAGCGCA	CCAGAGGCAA	TTGGAGTACT	4800
	GGACCAAGCA	GCTTGCAGAC	AGCACGCCTG	CAGAGCTCTT	GACAGACTTC	CCGCGGCCCT	4860
	CGATTCTATC	CGGAAAGGCT	GGAAAGGTCC	CCGTTGCCAT	CGAGGGGTCT	CTATACGACA	4920
20	CGCTTCAAGT	CTTCAGCCGC	ACCCATCAAG	TCACGTCGTT	TGCTGTCCTA	CTCGCAGCCT	4980
	TCCGTGCAGC	ACATTTCCGG	CTTACGGGAT	CTGATAATGC	GACTATTGGT	GTCCCCAGCG	5040
	CGAACCGGAA	TCGACCTGAG	CTTGAGAACG	TGATCGGCTT	CTTCGTGAAC	ACACAATGTA	5100
25	TACGTATCAC	GATCGATGAA	AACGATAACT	TTGAATCGTT	GGTCCGGCAG	GTCCGGTCGA	5160
	CGACTACAGC	CGCACAGGAC	AATCAGGATG	TCCCGTTCGA	ACAGGTCGTT	TCCAGCCTCA	5220
	TGCCGAGCAG	CTCGAGAGAT	GCATCCCGGA	ACCCTCTGGT	GCAGCTCATG	TTTGCACTGC	5280
30	ACGGCCAGCA	GGATCTGTTC	AAGATCCAAC	TGGAAGGGAC	CGAAGAGGAG	GTGATCCCAA	5340
30	CAGAAGAAGT	GACGAGGTTC	GACATCGAGT	TCCATCTCTA	CCAAGGCGCC	AGCAAGCTGA	5400
	GCGGTGATAT	CATATTCGCT	GCCGACTTAT	TCGAAGCCGA	AACTATTCGT	GGCGTCGTCA	5460
	GCGTCTTTCA	GGAGGTTCTG	AGGCGCGGAT	TGCAACAGCC	GCAGACCCCG	ATCATGACAA	5520
35	TGCCACTCAC (CGACGGCATT	CCAGAGTTGG	AGAGGATGGG	CTTGTTGCAC	ATGGTCAAGA	5580
	CCGACTACCC (CCGCAACATG	TCTGTGGTAG	ACGTATTCCA	ACAACAAGTT	CGTCTCAGCG	5640
	CCGAGGCTAC I	AGCTGTTATC	GACTCATCTT	CGCGGATGAG	TTACGCCGAA	CTGGACCAGA	5700
40	GGTCCGATCA (GGTGGCAGCG	TGGCTTCGCC	AGCGACAACT	GCCAGCCGAA	ACCTTTGTGG	5760
	CAGTGCTCGC 1	ACCACGCTCG	TGCGAGGCCG	TCATTGCTCT	CTTCGGCATC	TTGAAGGCTG	5820
	GTCATGCCTA (CCTACCGCTC	GACGTCAATG	TGCCAGCAGC	GCGTCTTCGC	GCCATCTTGG	5880
45	CCGAGGTGAA (GGGCGAGAAG	CTGGTTCTCC	TAGGAGCAGG	TGAGCCATCA	CCGGAAGGCC	5940
	AGTCGCCAGA (GTCTCGATC	GTGAGGATTG	CCGATGCCAC	GAGCCCTGCT	GGCCATGCCA	6000
	GCTTGCGTGA 1	rggcaagtcc	AAGCCAACCG	CAGGCAGCCT	CGCCTATGTC	ATCTTCACTT	6060
50	CCGGATCCAC 1	rggtaaaccc	AAGGGTGTGA	TGATCGAGCA	CCGCGGAGTC	TTGCGCCTTG	6120
30	TGAAGCAGAC (CAACATTCTA	TCCAGTCTAC	CGCCGGCGCA	GACCTTCCGA	ATGGCTCACA	6180
	TGTCCAACCT T	GCGTTCGAT	GCATCGATAT	GGGAGGTCTT	CACGGCCCTT	CTCAACGGAG	6240
	GCTCTCTTGT A	ATGCATTGAC	AGGTTTACCA	TCTTGGATGC	TCAAGCGTTG	GAGGCACTAT	6300
55							

5	TCCTCAGGGA	GCACATCAAT	ATTGCACTGT	TCCCACCCGC	CCTGTTGAAG	CAATGCCTCA	636
	CGGATGCAGC	TGCTACCATC	AAGTCTCTTG	ACCTCCTATA	CGTAGGAGGA	GACCGGTTAG	642
	ACACAGCGGA	CGCAGCTCTG	GCCAAAGCTC	TGGTCAAGTC	AGAGGTCTAC	AATGCCTACG	648
	GCCCAACGGA	AAATACGGTC	ATGAGCACTT	TATACTCGAT	TGCTGACACA	GAACGATTTG	654
10	TTAATGGTGT	GCCAATTGGA	AGAGCCGTTA	GCAACTCTGG	GGTCTACGTG	ATGGACCAGA	660
	ATCAGCAGCT	TGTGCCGTTG	GGCGTGATGG	GAGAGCTGGT	AGTCACTGGA	GATGGTTTGG	6660
	CTCGTGGCTA	CACCAACCCG	GCTCTTGATT	CCGACCGGTT	CGTGGATGTC	ATTGCTCGAG	6720
15	GCCAACTTCT	CAGGGCCTAT	CGCACAGGCG	ACCGAGCTCG	TTACCGGCCC	AAGGATGGCC	6780
	AGGTTGAGTT	CTTTGGTCGG	ATGGATCACC	AGGTCAAGGT	CCGAGGGCAC	CGCATCGAGC	6840
	TCGCCGAAGT	AGAACACGCT	TTGTTAAGCA	GTGCCGGTGT	GCACGATGCC	GTTGTCGTTT	6900
20	CAAACTCGCA	GGAAGACAAT	CAGGGAGTCG	AGATGGTGGC	CTTCATCACC	GCCCAAGACA	6960
	ACGAGACTCT	CCAGGAAGCA	CAGTCGAGCA	ACCAAGTCCA	GGAATGGGAG	AGCCATTTCG	7020
	AGACCACGGC	CTACGCGGAC	ATCACGGCCA	TTGATCAAAA	CACGCTCGGC	CGAGACTTTA	7080
	CATCCTGGAC	CTCTATGTAC	GATGGAACGC	TTATTGACAA	GAGGGAGATG	CAGGAATGGC	7140
25	TCGACGATAC	TATGCGCACT	TTCCTTGACG	GTCAAGCAGC	TGGCCACGTG	CTTGAAATCG	7200
	GTACCGGCAC	CGGTATGGTT	CTATTCAATC	TCGGTCAAGC	TGGGCTGAAG	AGCTACATTG	7260
	GACTGGAACC	TTCCCAATCC	GCGGTTCAAT	TCGTCAACAA	GGCAGCCCAA	ACGTTCCCAG	7320
30	GGCTTGAGGG	AAAGGCCCAA	GTACATGTCG	GCACGGCGAT	GGATACGGGC	CGGCTCAGCG	7380
	CTTTGAGCCC	GGATCTGATC	GTCATCAACT	CCGTGGCCCA	GTATTTCCCG	AGCCGAGAAT	7440
	ACCTCGCCGA	GGTGGTTGAG	GCCCTGGTCC	GGATTCCAGG	CGTTCGCCGT	ATCTTCTTCG	7500
35	GAGACATGAG	AACCTATGCC	ACCCACAAAG	ACTTCCTTGT	TGCACGGGCG	GTCCACACAA	7560
•	ACGGGAGCAA	GGTGACGAGA	TCTAAAGTGC	AACAGGAGGT	GGCCCGGTTA	GAGGAACTGG	7620
	AGGAGGAATT	GCTTGTCGAC	CCTGCCTTCT	TCACAAGTCT	CAAGGAATCT	CTATCGGAAG	7680
	AAATAGAGCA	TGTTGAGATC	CTGCCGAAGA	ACATGAAGGT	GAACAACGAG	CTCAGCTCAT	7740
40	ACCGGTACGG	CGCGGTTCTG	CACATCCGTA	ACCACAACCA	GAATCAAAGC	AGGTCGATTC	7800
	ACAAGATCAA	TGCAGAGTCC	TGGATCGACT	TCGCCTCAAG	CCAGATGGAT	AGACAGGGTC	7860
	TTGCTAGGCT	GTTGAAAGAG	AACAAAGATG	CCGAAAGTAT	CGCTGTGTTC	AACATCCCTT	7920
45	ACAGCAAGAC	TATCGTGGAA	CGGCACATCG	CCAAGTCTTT	GGCCGATGAC	CACGACGGCG	7980
	ATGATACACA	TAGCTCAATC	GATGGAGTCG	CCTGGATCTC	AGCCGCGCGC	GAGAAGGCGA	8040
	GCCAGTGTCC	ATCTCTTGAT	GTGCATGACC	TCGTGCAGTT	GGCCGAGGAC	GCTGGGTTCC	8100
5 0	GCGTCGAGGT	CAGCTGGGCC	CGCCAAAGGT	CCCAGAACGG	CGCTCTCGAT	GTTTTCTTCC	8160
50	ATCACTTCCA	GCCTACCGAG	AACGAAAGCC	GCGCGCTCGT	CGATTTCCCC	ACCGACTACA	8220
	AGGGCCAACA	AGCCAGAAGC	CTGACGAACC	GGCCCCTGCA	GCGGGTTGAG	AGCCGTCGAA	8280

	TCGAAGCACA	GGTCCGAGAG	CAGCTCCAAG	TATTGCTCCC	GGCATACATG	ATCCCAGCCC	8340
5	GGATTGTGGT	TCTCCAGAAC	ATGCCGCTGA	ACACGAGCGG	CAAGGTAGAT	CGCAAGGAGC	8400
	TCACCCTTCG	AGCCAAGGTC	ACCGCCGCAC	GTACGCCGAG	CTCCGAACTC	GTGGCTCCTC	8460
	GTGATTCTAT	TGAAGCCATC	ATCTGCAAGG	AATTCAAGGA	TGTTCTCGGC	GTCGAAGTGG	8520
10	GTATTACAGA	CAACTTCTTT	AATGTCGGAG	GACACTCTCT	TTTGGCCACG	AAGCTCGCAG	8580
	CACGCCTGAG	CCGACAACTC	AATGCCCAGA	TCGCAGTCAA	AGACATCTTC	GACCGGCCAG	8640
	TTATCGCCGA	TCTGGCAGCC	ACAATCCAGC	AGGATACCAC	GGAGCACAAC	CCTATCCTAC	8700
15	CGACTTCTTA	TACGGGTCCA	GTCGAACAAT	CGTTCGCCCA	AGGCCGACTC	TGGTTCCTCG	8760
	ATCAACTGAA	TGTCGGCGCC	ACATGGTATC	TCATGCCCTT	CGCAGTCCGG	CTGCGAGGGC	8820
	CTTTGGTTGT	TTCTGCTCTC	GCTGCCGCTC	TTCTGGCCCT	AGAGGAGCGC	CACGAGACAC	8880
	TGCGAACAAC	CTTTATCGAA	CAGGAAGGCA	TCGGCATGCA	GGTCATCCAT	CCGTTTGCCC	8940
20	CTAAGGAACT	GAGGGTGATC	GATGTCTCGG	GCGAGGAAGA	GAGCACTATC	CAGAAGATAC	9000
	TGGAAAAGGA	ACAGACAACA	CCCTTCAATC	TCGCTTCCGA	GCCCGGTTTC	AGACTAGCAT	9060
	TACTGAAGAC	AGGAGAGGAC	GAACACATTC	TCTCGACAGT	AATGCACCAT	GCAATCTCTG	9120
25	ATGGCTGGTC	TGTCGATATC	TTCCAACAAG	AAATCGGCCA	ATTCTACTCG	GCAATCCTCC	9180
	GCGGACACGA	TCCTTTGGCC	CAGATCGCAC	CGCTCTCGAT	CCAGTATCGC	GATTTCGCGA	9240
	CTTGGCAGAG	GCAGATATTC	CAAGTCGCAG	AGCACCGGCG	GCAGCTTGCA	TACTGGACTA	9300
30	AACAGCTTGC	ССАТААТААА	CCAGCCGAGC	TGCTGACCGA	TTTCAAGCGA	CCGCCTATGC	9360
	TCTCCGGCCG	CGCGGGCGAG	ATCCCGGTGG	TCGTCGACGG	CTTGATCTAT	GAGAAGCTTC	9420
	AGGACTTCTG	TCGAATCCGC	CAGGTGACCG	CCTTTACCGT	GTTGCTGGCT	GCTTTCCGCG	9480
35	CAGCGCACTA	TCGTATGACC	GGGACTGAGG	ATGCGACGAT	TGGAACACCT	ATCGCGAACC	9540
•	GTAACCGGCC	GGAGCTTGAG	GGCTTGATCG	GCTTCTTCGT	CAACACACAG	TGCATGCGTA	9600
	TCACCGTCGA	TGTAGAGGAT	TCGTTCGAAA	CGTTGGTTCA	CCAGGTTCGA	GAAACGACGC	9660
	TGGCTGCACA	TGCCAACCAG	GATGTTCCTT	TCGAACAGAT	TGTCTCAAAC	ATCTTGCCCG	9720
40	GATCGAGCGA	CACTTCTCGG	AATCCGCTGG	TACAGCTCAT	GTTTGCTCTA	CATTCGCAGC	9780
	AGAACCTTGG	CAAGGTCCGC	CTCGAGGGTA	TCGAGGAGGA	GATCATCTCC	ATTGCTGAGA	9840
	CCACGAGATT	TGATATCGAG	TTCCATCTGT	ACCAAGAGGC	TGAGAGGCTG	AACGGTAGTA	9900
45	TCGTCTATGC	AGCTGATCTC	TTCGTGCCCG	AGACTATACA	GAGCGTCATC	ACCATCTTCC	9960
	AAGGCATCCT	ACAGAAAGGC	CTCGGCGAGC	CGGATATGCC	CGTCGCCTCT	ATGGCGCTTG	10020
	ATGGTGGGCT	GGAGTCCCTC	CGAAGCACAG	GACTGCTGCA	CCCTCAACAA	ACTGATTATC	10080
50	CGTGCGATGC	TTCAGTGGTG	CAGATCTTCA	AACAGCAGGT	GGCAGTCAAC	CCGGATGTCA	10140
	TCGCGGTGAG	AGATGAATCA	ACACGGCTGA	GCTATGCCGA	CTTGGATCGG	AAGTCGGATC	10200
	AAGTGGCTTG	CTGGCTATCT	CGGCGAGGTA	TCGCTCCTGA	GACGTTCGTG	GCGATCCTGG	10260
er	CACCACGCTC	GTGCGAGACA	ATCGTGGCCA	TCCTCGGTGT	GTTGAAGGCC	AACCTTGCAT	10320
55							

_	ATCTGCCTCT	TGATGTCAAT	GTTCCTGCGT	CCCGGCTCGA	GGCCATCCTT	TCGGAGGTGT	10380
5	CGGGATCGAT	GTTGGTCCTI	GTGGGCGCAG	AGACCCCGAT	TCCGGAGGG	ATGGCTGAAG	10440
	CGGAGACGAT	CCGGATCACG	GAGATTCTCG	CCGACGCAAA	GACCGACGAC	ATCAACGGGC	10500
	TGGCCGCGAG	TCAGCCCACT	GCAGCAAGCC	TTGCGTATGI	GATCTTTACG	TCTGGATCGA	10560
10	CTGGTCGACC	AAAGGGCGTC	ATGGTCGAGC	ATCGCGGAAT	CGTTCGTCTT	ACAAAGCAGA	10620
	CCAACATCAC	ATCCAAGCTG	CCAGAGTCTT	TCCACATGGC	CCACATATCG	AATCTTGCCT	10680
	TCGATGCCTC	CGTGTGGGAA	GTGTTCACGA	CGCTTCTCAA	TGGAGGCACG	TTGGTGTGTA	10740
15	TCGACTATTT	CACTCTCTTG	GAGAGCACAG	CGCTCGAGAA	GGTCTTCTTC	GACCAACGCG	10800
	TCAATGTTGC	TCTGCTCCCT	CCAGCCTTGC	TGAAACAGTG	CCTTGACAAC	TCACCCGCTC	10860
	TGGTCAAAAC	TCTCAGCGTT	CTCTATATTG	GTGGTGATAG	GCTAGATGCT	TCTGATGCTG	10920
20	CCAAAGCAAG	GGGGCTCGTC	CAGACGCAAG	CTTTCAATGC	GTACGGCCCA	ACGGAAAACA	10980
20	CAGTCATGAG	CACAATCTAT	CCCATTGCCG	AAGACCCCTT	CATCAATGGT	GTGCCCATCG	11040
	GTCATGCTGT	CAGTAACTCG	GGAGCTTTTG	TCATGGACCA	GAATCAGCAA	ATCACCCCCC	11100
	CTGGTGCAAT	GGGAGAACTC	ATCGTGACTG	GAGACGGTCT	TGCTCGAGGC	TACACTACTT	11160
25	CCTCTCTCAA	CACTGGTCGA	TTTATCAACG	TTGATATCGA	TGGCGAGCAA	GTCAGGGCAT	11220
	ACCGCACAGG	AGATCGAGTG	CGCTACCGAC	CAAAAGACCT	CCAGATCGAA	TTCTTCGGCC	11280
	GTATCGATCA	CCAGGTCAAG	ATCCGCGGCC	ACCGCATCGA	ACCAGCTGAG	GTCGAGTATG	11340
30	CTCTTCTAAG	CCACGACCTG	GTCACTGATG	CGGCAGTCGT	CACCCACTCT	CAAGAAAATC	11400
	AAGACCTGGA	GATGGTTGGA	TTCGTGGCCG	CCCGAGTCGC	TGATGTTAGA	GAGGATGAGT	11460
	CCAGCAACCA	GGTCCAAGAA	TGGCAGACTC	ACTTCGACAG	CATCGCATAC	GCAGATATCA	11520
35	CCACAATCGA	TCAGCAAAGC	CTTGGACGGG	ACTTCATGTC	ATGGACCTCC	ATGTACGATG	11580
	GCAGCCTGAT	CAAGAAGAGC	CAGATGCAGG	AGTGGCTCGA	TGACACCATG	CGGTCACTCC	11640
	TGGATTCCCA	GCCCCTGGT	CACGTACTCG	AAGTTGGTAC	AGGGACTGGC	ATGGTTCTGT	11700
40	TCAACCTCGG	CAGAGAAGGG	GGTCTGCAAA	GCTACGTTGG	CCTAGAGCCA	TCGCCATCCG	11760
40	CAACCGCGTT	TGTCAACAAG	GCCGCCAAGT	CATTCCCTGG	GCTTGAGGAT	AGGATCCGGG	11820
	TTGAAGTTGG	AACAGCAACT	GATATCGACC	GGCTTGGAGA	CGATCTGCAC	GCAGGTCTTG	11880
	TCGTCGTCAA	CTCGGTCGCT	CAATACTTCC	CGAGTCAAGA	CTATCTCGCC	CAGTTGGTCA	11940
45	GAGATCTTAC	CAAGGTCCCT	GGCGTGGAGC	GTATCTTCTT	TGGTGATATG	AGGTCGCACG	12000
	CCATCAACAG	GGATTTCCTT	GTCGCTCGCG	CAGTTCATGC	ACTGGGCGAT	AAGGCAACAA	12060
	AGGCCGAGAT	TCAACGGGAG	GTTGTTCGAA	TGGAAGAGTC	TGAAGACGAA	CTGCTCGTTG	12120
50	ATCCGGCCTT	TTTCACCTCC	CTGACGACGC	AAGTAGAGAA	TATCAAGCAC	GTGGAGATTC	12180
	TCCCCAAGAG	AATGCGAGCC	ACGAACGAGC	TGAGCTCGTA	TCGGTATGCT	GCTGTTCTGC	12240
	ACGTCAATGA	TCTGGCGAAA	CCGGCACACA	AAGTCAGTCC	TGGCGCCTGG	GTTGATTTTG	12300

	CCGCGACGA	GATGGATCG	GATGCCCTG	A TCCGTCTGCT	CAGGGGCAC	AAAATTTCCG	12360
5	ACCACATTGO	AATCGCCAA1	T ATTCCCAAC	A GCAAGACAAT	CGTCGAGCG	A ACCATCTGCG	12420
	AATCGGTTTA	CGACCTTGGC	GGAGACGCC	A AAGACTCGAA	CGACAGAGTO	CTCATGGCTTT	12480
	CGGCTGCTCG	ATCGAATGCC	GTGAAAGTG	CTTCCCTCTC	CGCGATCGAT	CTCGTTGATA	12540
10	TTGCACAAGA	GGCAGGCTTC	CGGGTCGAG	TCAGCTGCGC	GCGGCAGTGG	TCTCAGAATG	12600
	GCGCGTTGGA	CGCCGTATTC	CACCACCTT	GCCCATCACC	ACAGTCGTCT	CATGTGTTGA	12660
	TTGACTTCTT	GACCGACCAC	CAAGGTCGAC	CAGAAGAAGC	CCTGACGAAC	CACCCGCTGC	12720
15	ACCGAGCACA	GTCTCGACGC	GTCGAGAGGC	AGATCCGCGA	GAGACTCCAG	ACTCTCCTGC	12780
15	CGGCCTACAT	GATCCCGGCC	CAGATCATGO	TTCTTGACAA	GCTACCTCTC	AACGCGAATG	12840
	GAAAGGTCGA	CCGGAAGCAG	TTGACGCAAC	GGGCCCAGAC	GGTACCCAAG	GCCAAGCAAG	12900
	TGTCTGCTCC	TGTGGCCCCG	CGCACAGAGA	TCGAAAGGGT	GCTCTGCCAG	GAGTTCTCCG	12960
20	ACGTCCTAGG	GGTTGATATC	GGGATAATGG	AAAACTTCTT	CGATCTCGGT	GGCCACTCGC	13020
	TCATGGCAAC	AAAGCTAGCC	GCACGCATCA	GCCGCCGACT	AGAGACTCAC	GTCTCCGTCA	13080
	AGGAGATCTT	TGACCATCCG	CGAGTCTGCG	ATCTTGTTCT	CATAGTACAG	CAGGGATCAG	13140
25	CGCCTCATGA	CCCCATCGTT	TCGACCAAAT	ACACCGGGCC	AGTGCCTCAG	TCGTTTGCCC	13200
	AGGGTCGTCT	TTGGTTCCTC	GACCAGCTCA	ACTTTGGCGC	AACATGGTAT	CTCATGCCCC	13260
	TTGCCGTCCG	TCTTCGCGGT	GCCATGAACG	TTCATGCTCT	TACCGCGGCC	TTGTTGGCCC	13320
30	TCGAGAGGCG	TCACGAGCTC	CTCCGCACCA	CGTTCTACGA	ACAAAACGGC	GTCGGTATGC	13380
30	AAAAGGTCAA	TCCAGTTGTC	ACCGAGACCC	TGAGGATCAT	TGATCTCTCC	AACGGCGACG	13440
	GCGACTATCT	CCCGACATTG	AAGAAGGAGC	AAACTGCTCC	GTTCCACCTG	GAAACCGAGC	13500
	CCGGATGGCG	CGTGGCTCTA	CTGCGCCTCG	GGCCAGGCGA	CTACATCTTA	TCTGTCGTCA	13560
35	TGCATCACAT	CATTTCCGAC	GGCTGGTCTG	TGGATGTTCT	CTTCCAAGAG	CTGGGCCAGT	13620
	TCTATTCCAC	GGCTGTCAAA	GGCCACGATC	CCCTATCGCA	GACCACACCC	CTCCCGATCC	13680
	ATTATCGCGA	TTTTGCTCTG	TGGCAGAAGA	AGCCAACCCA	AGAAAGCGAA	CACGAGCGTC	13740
40	AGCTGCAATA	CTGGGTCGAG	CAACTTGTAG	ATAGTGCCCC	GGCCGAGCTA	CTCACGGATC	13800
	TGCCGCGGCC	TTCGATCCTC	TCTGGTCAGG	CTGGGGAGAT	GTCGGTCACG	ATCGAGGGAG	13860
	CACTATACAA	GAACTTGGAG	GAATTCTGCC	GGGTCCATCG	CGTTACCTCC	TTCGTGGTAC	13920
45	TGCTTGCGGC	CCTACGCGCA	GCCCATTATC	GCCTCACAGG	TTCCGAAGAC	GCAACTATAG	13980
45	GGACACCAAT	CGCCAATCGT	AACCGACCTG	AACTTGAGCA	GATAATCGGC	TTCTTCGTCA	14040
	ATACGCAATG	TATACGCATT	ACCGTCAACG	AGGACGAGAC	CTTTGAGTCA	CTAGTGCAGC	14100
	AGGTCCGGTC	AACGGCGACA	GCTGCATTCG	CCCATCAGGA	CGTCCCGTTC	GAGAAGATCG	14160
50	TCTCTACTCT	TTTGCCCGGT	TCTCGAGATG	CATCCCGAAA	CCCACTTGTG	CAGCTCATGT	14220
	TTGCGGTGCA	TTCGCAGAAG	AACCTCGGTG	AGCTGAAGCT	GGAAAACGCT	CACAGCGAGG	14280
	TTGTTCCCAC	GGAGATCACG	ACCCGGTTCG	ATTTGGAATT	CCACCTGTTC	CAGCAAGATG	14340

5	ACAAGCTTGA GGGCTCCATC CTCTATTCAA CCGATCTCTT CGAAGCAGTC TCGGTCCAAA	14400
J	GTCTTCTTTC AGTATTCCAG GAAATTCTGC GCCGGGGTTT GAACGGTCCG GACGTGCCCA	14460
	TCAGCACCCT ACCACTTCAG GATGGAATCG TCGACCTACA AAGACAGGGC CTGTTGGATG	14520
	TCCAGAAGAC GGAATATCCT CGTGATTCCT CTGTGGTTGA TGTGTTCCAT GAGCAGGTCT	14580
10	CGATCAACCC CGATTCCATT GCACTGATAC ATGGCTCGGA GAAGCTCAGC TACGCCCAGC	14640
	TCGACAGGGA ATCTGACAGG GTCGCTCGCT GGCTCCGTCA CCGTTCTTTC AGCTCCGACA	14700
	CGTTAATCGC GGTGTTGGCG CCACGGTCTT GCGAGACGAT CATCGCGTTC CTCGGAATCC	14760
15	TCAAGGCAAA CCTTGCGTAC CTACCTCTGG ATGTCAAGGC TCCTGCTGCC CGCATTGATG	14820
	CCATTGTATC GTCGCTACCC GGGAACAAGC TCATCCTGCT GGGCGCAAAC GTTACGCCGC	14880
	CCAAGCTTCA GGAAGCGGCC ATCGATTTCG TGCCCATCCG TGATACCTTC ACTACACTCA	14940
20	CTGACGGCAC ACTTCAAGAT GGGCCTACCA TCGAGCGACC CTCTGCGCAA AGCCTAGCGT	15000
20	ACGCCATGTT CACGTCTGGT TCTACCGGAC GACCGAAGGG TGTTATGGTC CAGCACCGCA	15060
	ACATCGTCCG CTTGGTGAAG AACAGTAACG TCGTCGCTAA GCAGCCCGCA GCAGCTCGCA	15120
	TAGCACATAT ATCCAATTTG GCGTTTGACG CCTCGTCTTG GGAGATCTAT GCCCCGCTGC	15180
25	TCAACGGCGG CGCAATTGTG TGTGCCGACT ACTTCACAAC GATTGATCCA CAGGCTCTTC	15240
	AAGAAACCTT CCAGGAACAC GAGATCCGCG GTGCTATGCT GCCGCCCTCG CTCCTCAAGC	15300
	AGTGCCTGGT TCAGGCCCCA GACATGATCA GCAGGCTTGA CATCTTATTT GCTGCTGGTG	15360
30	ATCGCTTCAG TAGCGTGGAT GCTCTCCAGG CCCAACGTCT CGTTGGCTCG GGCGTCTTCA	15420
	ATGCGTATGG CCCTACGGAG AATACGATTC TGAGCACTAT CTATAACGTT GCTGAAAACG	15480
	ACTCCTTCGT TAACGGCGTT CCCATAGGCA GTGCTGTGAG CAACTCCGGA GCCTACATCA	15540
35	TGGATAAGAA CCAGCAGCTC GTGCCAGCTG GAGTTATGGG AGAACTGGTT GTTACTGGTG	15600
•	ACGGTCTCGC CCGCGGCTAT ATGGATCCAA AGCTAGATGC AGACCGCTTT ATCCAACTGA	15660
	CAGTCAACGG CAGCGAGCAA GTCAGGGCAT ATCGCACCGG CGACCGTGTG CGATACCGAC	15720
	CAAAGGACTT CCAGATCGAG TTCTTCGGTC GTATGGACCA GCAAATCAAG ATCCGCGGCC	15780
40	ACCGTATCGA GCCGGCCGAG GTAGAGCAGG CCTTCCTGAA TGATGGCTTC GTCGAGGACG	15840
		15900
		15960
45		16020
		16080
		16140
50		16200
		16260
	AGTCATTCCC GGGTCTCGCG GGCAGGGCCG AAGTTCACGT CGGCACCGCC GCAGATGTCG	16320

	GTACCCTGCA	AGGCCTGACC	TCAGATATGG	CCGTCATCAA	CTCGGTGGCG	CAGTACTTCC	16380
5	CAACGCCAGA	GTACCTGGCC	GAGACGATCA	AATÇACTTGT	CCAAGTCCCG	GGCATGAAGC	16440
	GCATATACCT	CGGCGATATG	CGGTCCTGGG	CCATGAACAG	GGACTTTGCT	GCCGCTCGCG	16500
	CCGCCTATTC	ACTGGCCGAT	AATGCCAGCA	AAGACCGCGT	GAGACAGAAG	ATGATGGAAT	16560
10	TGGAGGAGAA	GGAGGAAGAA	TTACTCGTTG	ACCCGGCCTT	CTTCACTGCC	TTGGCGAGCC	16620
	AGCTGCAAGA	CAGGATCCAA	CACGTGGAGA	TCCTACCCAA	GCGAATGAAG	GCTACAAATG	16680
	AGCTAAGCTC	GTACCGATAT	GCCGCCGTGC	TGCACATCTC	CGACGAGCCC	CTTCCTATCT	16740
15	ACAAGATTGA	TCCCGAAGCT	TGGATCAACT	TTGAGGGGTC	TCGATTGACC	CGAGAGGCGC	16800
15	TTGCACAAGT	ACTCAAGGAG	AATGAGAACG	CCGAGAGTGT	GGCCATCAGC	AACATTCCTT	16860
	ATAGCAAGAC	CGTTGTAGAA	CGTCACATTG	TGCGGTCGCT	TGACCAGGAA	GACGCCAATG	16920
	CCCTGAGGA	ATCGATGGAT	GGCAGCGACT	GGATCTCGGC	CGTGCGCACA	AGAGCTCAGC	16980
20	AGTGCCACAC	TCTCTCCGCA	AGTGACCTGT	TCGACATTGC	AGAAGATGCT	GGGTTCCGTG	17040
	TTGAGGTCAG	CTGGGCCCGT	CAACATTCGC	AGCACGGTGC	CCTGGATGCC	GTGTTCCACC	17100
	ACCTGAAGCC	CGCTACGGAG	GACAGTCGCG	TTTTGATCAA	GTTCCCTACA	GATCACCAAG	17160
25	GCCGGCCGCT	CAAGAGCTTG	ACGAATCAAC	CGCTCCTGCC	AGCCCAGAGT	CGCCGAGCCG	17220
	AGCTCTTGAT	CCGCGAGGGG	CTGCAAACCC	TGCTGCCTCC	CTACATGATC	CCCTCGCAAA	17280
	TCACGCTTAT	CGACCGGATG	CCACTCAATG	CTAACGGCAA	AGTCGACCGG	AGAGAACTCG	17340
30	CCCGTCGGGC	CAAAATCACA	CAGAAGAGCA	AGCCGGTTGA	GGACATCGTT	CCCCCTCGGA	17400
30	ACAGCGTCGA	GGCTACGGTC	TGCAAGGGCT	TCACTGACGT	GCTGGGCGTT	GAAGTTGGGA	17460
	TAACAGACAA	TTTCTTCAAT	CTGGGCGGTC	ATTCACTGAT	GGCAACGAAG	TTGGCGGCGC	17520
	GTCTAGGCCG	TCAACTCAAT	ACACGTATCT	CGGTGAGAGA	CGTCTTCGAT	CAACCAGTCG	17580
35	TTGCTGATCT	CGCCGCTGTG	ATCCAACGCA	ACTCGGCACC	TCACGAGCCG	ATCAAGCCAG	17640
	CAGACTACAC	AGGGCCCGTT	CCCCAGTCAT	TCGCACAGGG	CCGCCTTTGG	TTCCTCGATC	17700
	AACTTAATGT	CGGGGCGACG	TGGTATCTTA	TGCCCCTTGG	TATCCGCCTT	CACGGATCTC	17760
40	TCCGGGTTGA	TGCCCTCGCT	ACCGCGATAT	CAGCCCTGGA	GCAACGTCAC	GAGCCTCTCC	17820
	GTACGACATT	CCACGAGGAA	GATGGCGTCG	GTGTTCAAGT	CGTGCAAGAC	CACCGGCCCA	17880
	AGGATCTGAG	AATCATCGAC	CTGTCCACTC	AGCCAAAGGA	CGCCTATCTT	GCCGTGTTGA	17940
45	AGCATGAGCA	GACCACGCTC	TTCGACCTCG	CAACCGAGCC	CGGTTGGCGC	GTCGCTCTGA	18000
	TCAGGCTTGG	AGAAGAAGAG	CATATACTTI	CCATTGTTAT	GCACCATATC	ATATCTGACG	18060
	GCTGGTCAGT	AGAGGTTCTG	TTTGATGAGA	TGCACCGGTT	CTACTCGAGT	GCGCTTAGGC	18120
	AACAGGATCC	TATGGAGCAA	ATCTTGCCTC	TACCGATCCA	GTACCGCGAC	TTTGCAGCAT	18180
50	GGCAAAAGAC	TGAAGAGCAG	GTTGCCGAGC	ATCAGCGGCA	GTTGGACTAC	TGGACGGAGC	18240
	ACCTTGCCGA	CAGTACCCCT	GCGGAGCTGT	TAACTGACCT	CCCTCGACCT	TCTATCTTGT	18300
	cceccecec	CAATGAGCTA	CCCCTTACCA	TCGAGGGGCG	TCTTCATGAT	AAATTGCGCG	18360

	CTTTCTGCCG	AGTTCACCAA	GCCACGCCGT	TCGTCATTCT	CCTTGCGGCC	CTGAGGGCAG	18420
5	CACATTACCG	TCTTACAGGG	GCTGAAGATG	CCACGCTTGG	AACGCCAATT	GCTAACCGTA	18480
	ACCGACCGGA	ACTTGAGAAC	ATGATCGGCT	TCTTTGTTAA	CACGCAGTGT	ATGCGTATTG	18540
	CTATTGAGGA	GAATGATAAC	TTCGAGTCCC	TCGTCCGCCG	AGTACGATCG	ACTGCAACAT	18600
10	CCGCTTTCGC	GAACCAAGAC	GTTCCATTTG	AATCCATTGT	CTCGTCTCTT	CTGCCTGGAT	18660
	CCAGGGACGC	CTCGCGCAAT	CCATTAGTGC	AGGTCATTCT	GGCTGTTCAC	TCTCAGCAGG	18720
	ATTTGGGTAA	ACTCACCTTA	GAAGGCCTCA	GAGATGAAGC	TGTTGACTCG	GCTATCTCAA	18780
15	CCCGCTTCGA	TGTGGAGTTT	CATCTTTTCG	AGCACGCAGA	CAGGCTCAGC	GGTAGCGTGC	18840
	TTTACGCAAA	GGAACTGTTC	AAGCTGCGCA	CGATCGAATC	AGTGGTCTCC	GTTTTCCTGG	18900
	AGACTCTGCG	GCGGGCTCTC	GACCAGCCAC	TGACTCCTCT	CGCTGTCTTG	CCGCTGACTG	18960
20	ATGGAGTCGG	GGAGATCGCA	AGCAAGGGGC	TCCTTGATGT	GCCCAGGACA	GACTATCCAC	19020
20	GAGATGCAAA	TATCGTTGAG	GTCTTCCAAC	AGCACGTTCG	CGCTACCCCG	GACGCCATCG	19080
	CCGTCAAGGA	CGCTACTTCC	ATACTGACGT	ATGCTCAGCT	AGATCAGCAG	TCTGATCGAC	19140
	TTGCTATCTG	GTTGAGTCGC	CGGCACATGA	TGCCCGAAAC	GCTGGTGGGT	GTCCTTGCGC	19200
25	CGCGGTCATG	CGAGACCATT	ATCGCAATGT	TTGGCATTAT	GAAGGCCAAC	CTCGCCTACT	19260
	TGCCTTTGGA	TATAAACTCG	CCTGCTGCTC	GACTCCGCAG	CATTCTCTCA	GCCGTAGATG	19320
	GGAACAAGCT	TGTTTTGCTC	GGCAGTGGTG	TCACAGCCCC	CGAGCAAGAG	AACCCCGAGG	19380
30	TGGAAGCTGT	TGGTATTCAA	GAGATCTTGG	CCGGCACTGG	ACTGGACAAG	ACACAAGGCA	19440
	GCAACGCCCG	ACCCTCGGCA	ACGAGCCTTG	CTTATGTTAT	CTTCACCTCT	GGTTCAACCG	19500
	GCAAGCCCAA	GGGCGTCATG	GTCGAACATC	GTAGCGTTAC	GAGATTGGCA	AAGCCCAGCA	19560
35	ACGTTATCTC	CAAGCTACCA	CAAGGAGCCA	GGGTGGCGCA	CCTCGCCAAC	ATTGCCTTCG	19620
	ATGCCTCGAT	CTGGGAAATT	GCCACAACTC	TTCTGAATGG	AGCCACGCTT	GTTTGTCTCG	19680
	ACTATCACAC	CGTTCTCGAC	TGCAGGACTC	TCAAAGAAGT	CTTCGAAAGG	GAAAGCATTA	19740
40	CGGTTGTCAC	ACTGATGCCT	GCGCTCCTCA	AGCAGTGCGT	GGCCGAAATA	CCCGAGACCC	19800
	TCGCACACCT	CGACCTCCTG	TACACCGGTG	GAGATCGAGT	GGGTGGTCAC	GATGCTATGC	19860
	GGGCTCGCTC	GCTAGTCAAG	ATCGGCATGT	TCAGCGGTTA	CGGCCCTACG	GAGAACACCG	19920
0.2	TCATCAGCAC	CATCTACGAA	GTTGATGCAG	ACGAGATGTT	TGTGAATGGT	GTGCCTATCG	19980
45	GCAAGACTGT	AAGCAACTCT	GGGGCATATG	TTATGGACAG	GAATCAGCAG	CTGGTGCCTA	20040
	GTGGCGTGGT	AGGTGAGCTT	GTGGTCACTG	GCGATGGCCT	TGCTCGCGGA	TACACTGATC	20100
	CATCCCTAAA	CAAGAACCGC	TTCATTTACA	TCACTGTCAA	TGGAGAGAGT	ATCAGGGCAT	20160
50	ATCGGACTGG	CGATCGGGTG	AGGTACCGGC	CTCATGATCT	GCAGATTGAA	TTCTTTGGCC	20220
	GCATGGACCA	GCAGGTCAAG	ATCCGTGGCC	ATCGAATCGA	GCCGGGAGAG	GTGGAGAGCG	20280
	CATTGCTCAG	TCACAACTCG	GTACAAGACG	CCGCGGTCGT	CATTTGCGCG	CCAGCAGATC	20340

		20400
5	AAGACTCAGG CGCGGAAATG GTGGCATTCG TTGCCGCCCG GAATACCGAA GACGAAGACA	20400
	CCCAGGAGGA AGAAGCAGTC GATCAGGTTC AAGGGTGGGA GACGCACTTC GAAACGGCCG	20460
	CATATTCAGA AGTCAAGGAC ATTCGACAGT CAGAAGTCGG TAACGACTTC ATGGGCTGGA	20520
	CTTCTATGTA TGACGGCAGC GAGATCGACA AGACAGATAT GCACGAGTGG CTCAACGACA	20580
10	CCATGCGTAT GATACTCGAC GCCAGAGAGC CGGGCCACGT ACTGGAGATC GGTACCGGCA	20640
	CCGGCATGGT CATGTTCAAC CTTGCCAAGT GTCCTGGTCT GCAGGGCTAC GTCGGTTTCG	20700
	AGCCTTCAAA GTCGGCAGCC CAATTCGTCA ATGATGCAGC CCAGTCATTC CCGGCTCTGA	20760
15	AGGATGGCCG GTCAATAGTC CATGTGGGCA CGGCGACAGA CATCAACAAG GCTGGGCCGA	20820
	TTCAACCACG CCTCGTCGTT ATCAACTCAG TAGCGCAGTA TTTCCCCACG CCAGAGTACC	20880
	TCTTCAGGGT TGTGGAGGCC CTTGTACAGA TCCCAAGCGT GGAACGCATC GTCTTTGGTG	20940
	ACATGAGAAC CAACGCCATC AACAGAGACT TCGTCGCAAG CCGAGCATTG CACACCCTCG	21000
20	GCGAGAAGGC AAACAAGCGC CTGGTCCGCC AGATGATCTA TGAGCTCGAA GCCAACGAAG	21060
	AGGAACTTCT GACGGACCCT GCATTCTTTA CATCTTTGCG TACGCGCTTG GGTGAGAAGA	21120
	TCAAGCACGT CGAAATTCTC CCCAAGACCA TGAAGGCTAC CAACGAGCTC AGCAAGTACC	21180
25	GATATGCCGC AGTACTACAT GTGCGTGGCT CGAGAGAACA ATCAACTATA CACCAAGTCT	21240
	CTCCCAACGC CTGGATAGAC TTTGCGGCAG ACGGTCTCGA CCGGCAGACC CTCATCAACT	21300
	TGCTGAAGGA GCACAAGGAT GCCGGGACCG TCGCTATCGG TAATATCCCG TACAGCAAGA	21360
	CCATTGTTGA GCGGTTTGTC AACAAGTCAC TGAGCGAGGA TGATATGGAG GAAGGCCAGA	21420
30	ACTCACTGGA CGGATCAGCT TGGGTTGCAG CCGTCCGGAT GGCCGCTCAA AGCTGCCCAT	21480
	CACTCGATGC AATGGATGTC AAGGAGATTG CTCAGGAGGC GGGATACCAG GTCGAAGTCA	21540
	GTTGGGCGCG TCAATGGTCC CAGAATGGTG CGCTCGATGC CATCTTCCAT CACTTCGAAC	21600
35	CGCCCAAGGA GGGTGCTCGC ACACTTATTG AGTTCCCGAC GGATTACGAA GGCCGGAATG	21660
	TGAACACCTT AACGAACCGT CCCCTGAACA GCATTCAAAG CCGCCGTCTT GGGACGCAGA	21720
	TCCGCGAGAA GCTGCAGACC CTCCTGCCGC CTTACATGAT CCCATCGCGC ATCATGGTCC	21780
40	TTGATCAGAT GCCTGTCAAC AACAACGGCA AGATTGACCG CAAGGAGCTT GTGCGGAGAG	21840
•	CTATCGTGGC CCCGAAGCCA AGGTCAGCGG CTACTCGGGT AGCCCCCCGC AATGAGATCG	21900
	AGGCTATTCT GAGAGACGAA TTCGAGGACG TGCTCGGAAC AGAAGTCAGC GTGCTGGATA	21960
	ACTICITIGA TOTOGGOGG CACTOACTIA TGGCCACGAA GOTOGCOGCO CGCGTTAGCO	22020
45	GCCGCCTTGA TGCCCATATT TCCATCAAAG ATGTCTTTGA TCAGCCGGTG CTGGCGGATC	22080
	TIGCGGCGTC CATCCAGAGA GAATCGGCTC CTCATGAACC GATTCCGCAA AGGCCTTACA	22140
	CCGGGCCGGC TGAACAGTCA TTTGCCCAAG GTCGCCTATG GTTCCTTGAC CAGCTTAACC	22200
50	TTGGCGCGAC CTGGTACCTG ATGCCTTTAG CCATCCGTAT CCGTGGCCAG TTGAGGGTAG	22260
	CTGCGTTGTC TGCCGCACTC TTCGCCTTGG AGAGACGACA TGAGACCTTG AGAACCACCT	22320
	TTGAAGAAAG CGACGGCGTT GGCGTGCAAA TTGTTGGAGA GGCTCGCAAC TCAGACCTTC	22380
	TIGNAGAMA CONCOCCIT GOOGICO.	

	GGGTTCATGA	CGTTTCTACC	GGAGACGACG	GGGAGTACCT	TGAGGTACTC	AGGAGGGAAC	22440
5	AGACTGTGCC	CTTCGACCTC	TCGTCAGAGC	CTGGCTGGAG	GGTTTGCCTG	GTCAAAACGG	22500
	GCGAAGAGGA	TCATGTACTA	TCCATCGTCA	TGCACCATAT	TATTTACGAC	GGCTGGTCCG	22560
	TGGACATTCT	CCGCGGAGAG	TTGGGTCAAT	TCTATTCCGC	TGCCCTACGC	GGCCAGGACC	22620
10	CCTTGCTGCA	CGCCAACCCC	CTTCCTATTC	AATACCGGGA	TTTCGCAGCG	TGGCAAAGGG	22680
	AGGCAAAACA	GGTCGAAGAG	CATCAACGTC	AACTTGGGTA	CTGGTCGAAA	CAGCTCGTTG	22740
	ACAGCACTCC	AGCTGAGCTC	TTGACGGATC	TGCCTCGCCC	GTCTATCTTG	TCCGGTCGTG	22800
	CCGGGTCGGT	GGATGTCACG	ATCGAAGGCT	CTGTTTACGG	AGCCCTTCAG	TCATTCTGCC	22860
15	GCACGCGTTC	GGTAACCACA	TTCGTTGTGC	TTCTGACTGT	GTTCCGGATT	GCGCATTTCC	22920
	GTCTCACTGC	CGTCGATGAC	GCGACTATCG	GCACGCCTAT	CGCAAACCGT	AACCGTCCTG	22980
	AGCTGGAGAC	GTTGGTTGGC	TGCTTTGTAA	ACACGCAATG	TATGCGTATC	AGCATAGCCG	23040
20	ACGACGATAA	CTTTGAAGGT	CTTGTGCGAC	AGGTGCGTAA	TGTTGCAACG	GCAGCTTACG	23100
	CGAACCAAGA	TGTTCCTTTC	GAACGAATCG	TGTCCGCCCT	AGTTCCAGGG	TCGAGAAACA	23160
	CATCCCGCAA	CCCCTGGTT	CAGCTCATGT	TTGCTGTCCA	GTCCGTGGAA	GATTATGACC	23220
25	AGGTCCGACT	CGAGGGCTTG	GAGAGTGTCA	TGATGCCTGG	AGAAGCCTCC	ACACGCTTTG	23280
	ATATGGAATT	CCACCTCGTC	CCCGGCGATC	AGAAGCTTAC	GGGCAGCGTT	CTTTACTCCT	23340
	CAGACCTTTT	TGAGCAAGGC	ACTATCCAGA	ACTTCGTCGA	CATCTTCCAA	GAATGTCTTC	23400
20	GCTCCGTCCT	GGACCAGCCA	TTGACCCCGA	TCTCCGTTCT	TCCCTTCAGC	AACGCCATTT	23460
30	CAAACCTCGA	GAGCTTGGAT	CTCCTGGAGA	TGCCGACCTC	AGACTACCCC	CGCGATCGGA	23520
	CAGTCGTTGA	TCTCTTCCGA	GAGCAAGCGG	CAATCTGCCC	CGACAGCATC	GCCGTCAAAG	23580
	ACTCATCGTC	GCAACTGACA	TATGCTCAAC	TGGATGAGCA	ATCCGACCGT	GTTGCCGCCT	23640
35	GGCTGCACGA	GCGCCACATG	CCGGCGGAGT	CTTTGGTCGG	TGTACTGTCG	CCACGGTCGT	23700
	GCGAGACTAT	CATCGCGTAC	TTTGGCATCA	TGAAGGCAAA	CCTGGCTTAC	CTGCCGTTGG	23760
	ATGTTTATGC	GCCAGATGCC	CGTCTGGCGG	CTATCCTGGA	TACAGTCGAA	GGCGAAAGAC	23820
40	TGCTTCTGTT	GGGCGCAGGT	GTCCCTCAGC	CCGGCATCCA	GATCCCTCGC	CTGTCAACAG	23880
	CATACATCGC	GGAAGCACTG	AGCCATGCCA	CGACCGTCGA	TGTCACTTCC	ATCCCACAGC	23940
	CCTCGGCCAC	CAGCCTTGCG	TACGTCATTT	TCACTTCGGG	ATCTACTGGC	AAGCCCAAGG	24000
45	GTGTCATGAT	CGAGCATCGC	GGCATCGTGC	GCCTGGTTAG	AGATACCAAC	GTCAACGTGT	24060
	TCCCGGAATC	GGGATCAGCT	TTGCCTGTCT	CTCACTTCTC	CAACCTCGCC	TGGGATGCGG	24120
	CGACTTGGGA	GATCTACACT	GCCGTGCTCA	ATGGAGGGAC	CGTTGTGTGC	ATTGACCGAG	24180
	ACACCATGCT	GGACATAGCC	GCGTTGAACT	CAACATTCCG	GAAGGAGAAC	GTTCGGGCTG	24240
50	CCTTCTTCAC	CCCTGCCTTC	CTGAAGCAAT	GCCTTGCCGA	GACGCCAGAG	CTGGTCGCCA	24300
	ACCTAGAGAT	CCTTCACACG	GCAGGCGATC	GTCTCGATCC	TGGAGATGCC	AACCTGGCTG	24360

	GAAAGACAGC CAAGGGTGGT ATCTTCAACG TCCTGGGTCA CACAGAGAAC ACTGCCTATA	24420
5	GTACCTTCTA CCCTGTGGTT GGTGAGGAGA CGTTCGTCAA TGGTGTCCCC GTCGGTCGCG	24480
	GCATCAGCAA CTCCCATGCA TATATCATCG ACCGACACCA GAAGCTCGTA CCCGCAGGTG	24540
	TCATGGGAGA GCTTATTCTC ACTGGCGACG GTGTTGCGCG AGGTTACACC GACTCTGCGC	24600
10	TGAACAAGGA TCGATTCGTT TACATCGATA TCAACGGCAA AAGCACATGG TCGTACCGCA	24660
	CAGGCGATAA GGCACGTTAT CGACCAAGGG ACGGCCAGCT GGAATTCTTT GGCCGCATGG	24720
	ACCAAATGGT CAAGATCCGT GGTGTTCGAA TCGAACCCGG CGAAGTTGAG CTCACCCTGC	24780
45	TCGACCATAA GTCCGTCCTG GCCGCGACTG TGGTGGTCAG AAGACCACCC AATGGCGACC	24840
15	CGGAGATGAT TGCCTTCATC ACCATCGACG CTGAAGACGA CGTGCAAACT CACAAGGCCA	24900
	TTTACAAGCA CCTCCAGGGT ATCTTGCCCG CGTACATGAT TCCCTCACAC CTTGTCATCC	24960
	TTGACCAGAT GCCGGTCACC GACAACGGTA AGGTCGATCG CAAGGATCTC GCACTCAGAG	25020
20	CGCAGACAGT ACAGAAACGC AGGTCTACCG CTGCAAGGGT ACCACCTCGT GACGAGGTGG	25080
	AGGCTGTTCT TTGCGAAGAG TACAGCAACT TACTTGAAGT TGAGGTTGGC ATTACCGACG	25140
	GATTCTTCGA CCTGGGTGGA CATTCGCTCC TCGCCACCAA GCTTGCGGCC CGCCTAAGCC	25200
25	GACAACTCAA CACTCGCGTG TCTGTCAAGG ACGTCTTTGA CCAGCCAATA CTCGCTGACC	25260
	TCGCTGATAT CATCCGCCGC GGTTCCCATC GCCACGATCC GATTCCTGCC ACTCCATACA	25320
	CGGGCCCTGT CGAACAGTCG TTCGCTCAGG GCCGCCTGTG GTTCTTGGAA CAACTGAACC	25380
30	TAGGTGCCAG CTGGTACTTG ATGCCCTTCG CGATCCGGAT GCGTGGGCCC CTCCAGACAA	25440
	AGGCGCTGGC TGTCGCACTG AACGCCTTGG TGCACCGGCA CGAGGCGTTG CGGACGACTT	25500
	TCGAGGACCA CGATGGGGTT GGTGTTCAGG TCATTCAACC AAAGTCAAGC CAAGACCTGC	25560
O.F.	GGATCATCGA CCTATCAGAC GCTGTAGATG ATACTGCCTA TCTCGCCGCG CTCAAGAGGG	25620
35	AACAGACAAC AGCCTTCGAC CTGACCTCTG AACCAGGGTG GAGAGTGTCA CTCTTACGCC	25680
	TAGGTGACGA TGATTACATC CTTTCTATCG TTATGCACCA CATTATCTCT GATGGCTGGA	25740
	CTGTTGATGT GCTACGACAA GAACTCGGCC AGTTCTATTC AGCTGCGATC AGGGGTCAGG	25800
40	AGCCTTTATC GCAGGCCAAG TCCCTCCCTA TTCAATACCG CGACTTTGCT GTTTGGCAGA	25860
	GGCAGGAGAA CCAGATCAAG GAGCAAGCGA AGCAGCTCAA GTATTGGTCA CAGCAGCTCG	25920
	CAGATAGCAC CCCCTGCGAG TTCCTAACGG ACCTCCCTCG GCCCTCTATC CTGTCTGGTG	25980
45	AAGCTGACGC CGTTCCTATG GTGATTGATG GCACGGTGTA TCAGCTCCTT ACTGATTTCT	26040
	GCCGGACGCA CCAAGTCACA TCGTTCTCAG TCCTGCTCGC AGCCTTCCGC ACTGCCCACT	26100
	ACCGCCTTAC CGGGACACTC GACGCGACGG TTGGCACACC AATCGCTAAC CGGAACCGGC	26160
50	CAGAGTTGGA AGGTCTGATC GGTTTCTTCG TTAACACGCA GTGTATGAGG ATGGCAATCA	26220
	GTGAGACTGA AACCTTTGAG TCACTAGTCC AGCAGGTTCG CTTGACTACG ACAGAAGCCT	26280
	TTGCGAACCA AGATGTGCCG TTTGAGCAGA TTGTGTCAAC CCTTCTTCCT GGGTCACGAG	26340
	ATACGTCAAG GAACCCGCTT GTGCAGGTCA TGTTTGCCCT GCAATCACAG CAAGACCTCG	26400
55		

	GAAGAATCCA	GCTGGAAGGT	ATGACGGACG	AAGCTCTGGA	AACGCCGCTG	TCGACGAGAC	26460
5	TCGACCTTGA	GGTTCACCTC	TTCCAGGAGG	TTGGAAAGCT	GAGCGGCAGC	CTCTTGTACT	26520
	CCACGGACCT	CTTCGAGGTC	GAGACGATTC	GTGGAATCGT	TGATGTGTTC	CTGGAGATCT	26580
	TGCGCCGCGG	CCTTGAGCAA	CCCAAGCAGC	GACTGATGGC	CATGCCAATT	ACCGATGGCA	26640
10	TCACAAAGCT	ACGCGACCAG	GGTCTCCTAA	CAGTGGCGAA	ACCAGCCTAC	CCTCGCGAAT	26700
	CGAGTGTCAT	AGATCTGTTC	AGACAGCAGG	TTGCCGCCGC	ACCGGATGCC	ATCGCTGTGT	26760
	GGGATTCCTC	CTCAACATTG	ACCTATGCCG	ACCTCGATGG	GCAATCGAAC	AAGCTCGCCC	26820
15	ACTGGCTGTG	CCAGCGCAAT	ATGGCCCCAG	AGACCTTGGT	AGCTGTATTC	GCGCCACGCT	26880
	CATGCCTCAC	CATCGTCGCA	TTCCTCGGTG	TTTTGAAGGC	TAATCTGGCC	TACCTGCCCT	26940
	TGGATGTCAA	TGCGCCTGCT	GCTCGTATCG	AGGCTATCCT	GTCAGCAGTA	CCAGGCCACA	27000
	AGCTGGTCCT	GGTGCAGGCT	CATGGGCCCG	AGCTTGGCCT	GACGATGGCT	GATACTGAAC	27060
20	TGGTGCAGAT	CGACGAGGCA	CTTGCATCCA	GTTCATCCGG	TGACCATGAG	CAGATCCATG	27120
	CGTCCGGCCC	TACTGCCACA	AGTCTTGCCT	ACGTGATGTT	TACGTCAGGG	TCTACTGGGA	27180
	AACCAAAGGG	TGTCATGATC	GACCACCGCA	GCATCATTCG	ACTTGTCAAG	AACAGCGATG	27240
25	TTGTTGCCAC	TCTGCCTACG	CCAGTCCGGA	TGGCGAATGT	ATCAAACCTT	GCCTTCGACA	27300
	TCTCGGTGCA	AGAAATCTAC	ACGGCGCTCC	TAAACGGTGG	CACTCTGGTC	TGCTTGGACT	27360
	ATCTGACGCT	ATTGGACAGC	AAAATTCTTT	ATAACGTTTT	TGTGGAAGCA	CAGGTCAACG	27420
30	CCGCCATGTT	CACGCCGGTT	CTCCTCAAGC	AATGTCTTGG	AAACATGCCC	GCCATCATCA	27480
	GTCGCCTGAG	TGTTCTCTTT	AACGTTGGTG	ACAGGCTGGA	TGCCCACGAT	GCTGTGGCTG	27540
	CATCAGGCCT	GATCCAAGAC	GCCGTATACA	ACGCCTACGG	TCCCACGGAG	AACGGCATGC	27600
35	AGAGTACGAT	GTACAAGGTC	GACGTCAATG	AGCCTTTCGT	CAACGGCGTC	CCGATCGGTC	27660
	GATCCATCAC	CAACTCTGGG	GCTTACGTCA	TGGACGGCAA	TCAACAGCTC	GTATCTCCTG	27720
	GTGTGATGGG	AGAAATTGTC	GTTACCGGTG	ATGGTCTTGC	CCGTGGCTAT	ACAGACTCAG	27780
40	CCCTAGACGA	GGACCGGTTT	GTTCACGTCA	CGATCGATGG	TGAGGAAAAT	ATCAAGGCAT	27840
40	ACCGAACCGG	TGATCGAGTC	CGCTACCGGC	CCAAGGACTT	TGAGATTGAA	TTCTTCGGCC	27900
	GTATGGATCA	ACAGGTGAAG	ATTCGTGGTC	ACCGCATTGA	GCCAGCAGAA	GTGGAACATG	27960
	CACTGCTCGG	CCACGACTTG	GTTCACGATG	CAGCTGTCGT	GCTTCGAAAG	CCAGCAAATC	28020
45	AAGAACCAGA	GATGATTGCT	TTCATCACCA	GCCAGGAAGA	CGAGACTATC	GAGCAGCATG	28080
	AGTCAAACAA	GCAGGTCCAA	GGCTGGGGAG	AGCATTTCGA	CGTAAGCAGG	TATGCTGATA	28140
	TCAAGGATCT	CGACACTTCT	ACCTTTGGTC	ACGACTTTTT	GGGATGGACA	TCTATGTATG	28200
50	ACGGAGTTGA	CATTCCTGTC	AACGAGATGA	AAGAGTGGCT	TGATGAAACT	ACGGCCTCCC	28260
	TCCTAGACAA	CCGCCCACCT	GGTCATATCC	TCGAGATCGG	AGCCGGAACT	GGCATGATTC	28320
	TATCTAACCT	GGGCAAAGTC	GACGGCCTAC	AGAAGTATGT	CGGTCTTGAC	CCGGCTCCCT	28380

	CAGCCGCAAT	CTTTGTCAAC	GAAGCCGTCA	AGTCTCTGCC	AAGTCTAGCC	GGTAAGGCCC	28440
5	GGGTACTTGT	TGGAACTGCC	CTGGATATCG	GTTCTCTGGA	CAAGAATGAG	ATCCAACCTG	28500
	AGCTTGTGGT	TATCAACTCC	GTGGCCCAGT	ACTTCCCCAC	ATCAGAGTAC	TTGATCAAGG	28560
	TGGTCAAAGC	TGTTGTGGAA	GTGCCCAGCG	TCAAGCGTGT	TTTCTTTGGC	GATATCAGAT	28620
	CCCAGGCCCT	TAACAGGGAC	TTCCTTGCAG	CTCGTGCCGT	TCGTGCGTTG	GGTGACAATG	28680
10	CTAGCAAAGA	GCAGATCCGG	GAAAAGATCG	CAGAGCTCGA	AGAGAGCGAA	GAAGAACTTC	28740
	TCGTGGACCC	AGCCTTCTTC	GTGAGCTTGA	GAAGCCAGCT	GCCCAACATC	AAGCACGTTG	28800
	AGGTCCTGCC	CAAGCTGATG	AAGGCCACCA	ACGAGCTGAG	CTCGTACAGA	TATGCTGCGG	28860
15	TTCTACACAT	CAGCCACAAC	GAAGAGGAGC	AGCTGCTCAT	ACAGGATATC	GATCCCACAG	28920
	CATGGGTTGA	CTTTGCAGCA	ACGCAAAAGG	ACTCTCAAGG	TCTGAGAAAC	CTTCTACAAC	28980
	AAGGACGAGA	TGATGTGATG	ATCGCGGTCG	GGAACATCCC	GTACAGCAAG	ACCATAGTGG	29040
20	AGCGACACAT	TATGAACTCT	CTTGACCAAG	ATCACGTCAA	CTCACTCGAC	GGGACATCCT	29100
	GGATCTCAGA	TGCTCGATCA	GCCGCTGCAA	TCTGCACTTC	GTTCGACGCA	CCCGCCCTCA	29160
	CGCAGTTGGC	CAAGGAGGAG	GGATTCCGGG	TAGAGTTGAG	CTGGGCGCGA	CAGAGATCTC	29220
25	AAAACGGCGC	CCTCGATGCC	GTTTTCCACC	GTCTTGCAAC	CGATGCAAAT	TGCGAGCGCA	29280
	GTCGTGTCCT	GGTACACTTC	CCTACCGACC	ATCAAGGTCG	ACAACTTCGA	ACCCTGACGA	29340
	ACCGGCCACT	CCAGCGAGCT	CAGAGCCGCC	GTATCGAGTC	ACAAGTCTTC	GAGGCACTGC	29400
20	AGACAGCACT	GCCGGCCTAC	ATGATCCCAT	CGCGCATTAT	CGTGCTCCCG	CAGATGCCGA	29460
30	CCAACGCCAA	CGGCAAAGTG	GACAGGAAAC	AGCTCGCTCG	CCGCGCGCAG	GTTGTGGCCA	29520
	AGAGAAAGGC	AGTGTCAGCG	CGCGTTGCGC	CTCGTAATGA	CACCGAGATA	GTTCTTTGCG	29580
	AGGAATACGC	AGATATCCTA	GGAACTGAAG	TTGGCATCAC	GGACAACTTC	TTCGACATGG	29640
35	GCGGGCATTC	ACTCATGGCT	ACGAAGCTCG	CAGCCCGACT	AAGCCGGCGA	CTAGATACCC	29700
	GGGTTACGGT	CAAGGAGGTG	TTCGATAAAC	CCGTCCTGGC	TGACCTCGCT	GCTTCGATCG	29760
	AACAGGGCTC	GACACCTCAT	CTGCCTATTG	CCTCATCGGT	GTATTCCGGA	CCGGTGGAGC	29820
40	AGTCGTACGC	CCAAGGTCGC	TTGTGGTTCT	TGGATCAGTT	CAACCTCAAC	GCGACGTGGT	29880
	ATCACATGTC	GCTGGCGATG	AGGCTGCTCG	GGCCGCTCAA	CATGGACGCG	CTGGACGTGG	29940
	CCTTACGGGC	GCTGGAGCAG	CGACACGAGA	CGCTTCGCAC	AACCTTTGAG	GCTCAAAAGG	30000
45	ACATCGGCGT	CCAGGTCGTT	CATGAGGCCG	GAATGAAGAG	GCTCAAGGTC	CTTGACCTAT	30060
	CAGACAAGAA	CGAGAAGGAG	CACATGGCCG	TGCTAGAGAA	TGAACAGATG	AGACCGTTCA	30120
	CTCTTGCTTC	AGAGCCAGGC	TGGAAGGGTC	ATCTTGCTCG	CCTTGGCCCC	ACGGAGTATA	30180
	TCCTCTCCCT	CGTCATGCAT	CACATGTTCT	CAGACGGCTG	GTCCGTTGAT	ATCCTGAGAC	30240
50						TCTCAGGTCA	30300
	AGCCCCTCCC	AATACAATAT	CGTGACTTTG	CGGCTTGGCA	GAAGGAAGCT	GCCCAAGTTG	30360
	CCGAGCATGA	GAGGCAGCTC	GCGTACTGGG	AGAACCAGTT	AGCTGACAGT	ACTCCCGGTG	30420

_	AGCTTCTGAC	CGACTTTCCC	CGCCCACAGT	TCCTGAGTGG	GAAGGCTGGT	GTCATCCCGG	30480
5	TCACCATTGA	GGGGCCGGTC	TACGAGAAGO	TTCTGAAGTT	CTCCAAGGAG	CGCCAGGTAA	30540
	CTCTGTTCTC	GGTGCTATTA	ACAGCGTTCC	GGGCCACACA	CTTTCGTCTC	ACTGGTGCAG	30600
	AGGATGCTAC	GATCGGTACC	CCAATTGCAA	ATCGCAACCG	GCCAGAACTC	GAGCATATCA	30660
10	TTGGATTCTT	CGTCAACACC	CAATGCATGC	GTCTTCTCCT	CGATACCGGC	AGCACATTCG	30720
	AATCCCTAGT	CCAGCATGTT	CGGTCCGTGG	CTACAGATGC	CTATTCCAAT	CAGGATATTC	30780
	CCTTCGAACG	GATCGTCTCG	GCACTTCTCC	CTGGCTCGAG	AGATGCCTCA	CGAAGCCCAC	30840
15	TAATCCAGCT	TATGTTTGCC	TTGCACTCAC	AGCCAGATCT	CGGGAACATT	ACTCTCGAAG	30900
	GACTCGAGCA	TGAGCGCCTG	CCAACAAGCG	TCGCAACACG	TTTCGACATG	GAGTTCCACC	30960
	TGTTCCAAGA	GCCTAACAAG	CTGAGTGGTT	CAATACTCTT	TGCCGATGAG	CTCTTCCAGC	31020
	CTGAAACAAT	CAACAGCGTC	GTGACTGTGT	TCCAGGAGAT	ACTCCGACGC	GGCCTCGACC	31080
20	AACCCCAAGT	CTCCATTTCT	ACTATGCCCC	TGACTGATGG	GTTGATTGAT	CTCGAGAAAC	31140
	TGGGCTTGCT	GGAAATCGAG	AGCAGCAACT	TCCCTCGCGA	CTACTCGGTT	GTCGACGTCT	31200
	TCCGACAGCA	GGTGGCTGCC	AATCCAAATG	CGCCCGCTGT	CGTGGATTCG	GAGACATCCA	31260
25	TGAGCTACAC	CTCGCTAGAT	CAGAAGTCTG	AGCAGATTGC	TGCCTGGTTA	CACGCTCAAG	31320
	GCCTCCGCCC	TGAGTCATTG	ATCTGCGTGA	TGGCGCCACG	ATCTTTCGAA	ACGATCGTCT	31380
	CCTTATTCGG	TATCTTGAAG	GCTGGCTACG	CCTACCTGCC	TCTGGATGTG	AATTCCCCTG	31440
30	CAGCTCGAAT	CCAACCGATC	CTATCCGAGG	TTGAAGGAAA	AAGACTGGTA	CTGCTAGGAT	31500
	CAGGGATAGA	CATGCCTCAA	AGCGACCGAA	TGGATGTTGA	AACCGCTCGA	ATTCAGGACA	31560
	TCCTAACGAA	CACAAAGGTC	GAGAGATCTG	ATCCCATGAG	CAGGCCATCG	GCAACTAGCC	31620
35	TTGCCTATGT	CATCTTCACC	TCCGGGTCAA	CTGGCCGTCC	CAAGGGCGTG	ATGATCGAGC	31680
35	ATCGCAATAT	TCTGCGCCTT	GTCAAGCAGT	CTAATGTTAC	GTCTCAGCTG	CCGCAGGATC	31740
	TGCGCATGGC	ACATATCTCC	AACCTAGCCT	TTGACGCGTC	CATCTGGGAG	ATATTCACGG	31800
	CAATTTTGAA	TGGCGGCGCC	CTTATTTGCA	TTGATTACTT	CACTTTGCTG	GATAGTCAAG	31860
40	CCCTCCGGAC	GACATTCGAA	AAAGCCAGGG	TCAATGCTAC	CCTATTCGCG	CCGGCCTTGC	31920
	TCAAAGAATG	CCTCAATCAC	GCGCCGACCT	TGTTTGAGGA	TCTCAAAGTG	CTCTATATCG	31980
	GTGGCGACCG	ACTCGATGCC	ACCGACGCGG	CCAAAATACA	AGCCCTTGTG	AAGGGCACGG	32040
45		GTACGGGCCG					32100
		TTATGCTAAC					32160
		CCAAAAGCAG					32220
E 0		CCTCGCCCGT					32280
50		CAACGATCAA					32340
	GGCCCAAGGA	TGGTAGCATC (GAGTTCTTCG	GCCGTATGGA	TCAGCAAGTT	AAAATCCGTG	32400

	GTCATCGAGT	TGAGCCGGC	GAGGTCGAGG	AAGCCATGC	CGGCAATAAG	GCTATCCATG	32460
5	ATGCAGCAGT	TGTTGTTCAC	GCGGTGGAT	GCCAGGAAA	GGAGATGATC	GGCTTTGTTT	32520
,	CCATGGCCAG	CGACAGATTC	AGCGAAGGG	G AGGAGGAGAT	CACCAACCAA	GTCCAGGAGT	32580
	GGGAAGACCA	CTTCGAAAGC	ACCGCCTACG	CTGGCATTG	A GGCCATCGAC	CAGGCTACCC	32640
10	TGGGACGCGA	TTTCACTTCA	TGGACCTCGA	TGTACAACGG	CAACTTGATT	GACAAAGCCG	32700
	AAATGGAGGA	GTGGCTTGAC	GATACAATGO	AATCCCTCCT	TGATAAGGAG	GATGCCAGGC	32760
	CGTGTGCTGA	GATCGGAACA	GGTACCGGCA	TGGTTCTATT	CAATTTGCCC	AAGAACGATG	32820
15	GCCTTGAGAG	CTATGTCGGT	ATAGAGCCTT	CACGGTCTGC	AGCCTTGTTC	GTCGACAAAG	32880
	CAGCCCAAGA	TTTCCCAGGT	CTGCAAGGAA	AGACGCAAAT	CCTTGTCGGC	ACAGCCGAGG	32940
	ACATCAAGCT	GGTCAAGGAC	TTCCACCCTG	ACGTGGTTGT	CATTAACTCG	GTAGCCCAAT	33000
	ATTTCCCGAG	CCGGAGCTAC	CTTGTACAGA	TAGCGAGCGA	ACTGATTCAC	ATGACCAGCG	33060
20	TCAAGACGAT	CTTCTTTGGA	GATATGCGAT	CCTGGGCCAC	CAACAGGGAT	TTCCTCGTGT	33120
	CCCGAGCTCT	TTACACGCTA	GGTGACAAGG	CTACAAAGGA	TCAGATTCGC	CAGGAGGTTG	33180
	CCCGACTTGA	GGAGAATGAA	GACGAGTTGC	TTGTTGACCC	AGCATTCTTC	ACCTCTTTGA	33240
25	CCAGCCAATG	GCCCGGCAAG	GTCAAGCATG	TTGAGATCTT	GCCGAAGCGG	ATGAGGACGA	33300
	GCAATGAACT	AAGCTCGTAC	CGATATGCTG	CGGTGCTACA	CATCTGCAGG	GATGGGGAGG	33360
	GTAGGAACAG	ATATGGCAGG	CGTGTCCACT	CAGTGGAAGA	GAACGCCTGG	ATCGACTTCG	33420
30	CGTCGTCTGG	CATGGATCGT	CACGCCCTCG	TTCAGATGCT	CGATGAACGT	AGAGACGCCA	33480
	AGACTGTCGC	CATCGGCAAC	ATCCCTCACA	GCAACACGAT	CAACGAGCGA	CACTTTACGA	33540
	CATCCCTGGA	TACTGAGGGA	GAAGGCATTG	CCCAAGATTC	ACTGGATGGA	TCCGCCTGGC	33600
35	AATCGGCTAC	GAAGGCAATG	GCCGCGCGCT	GTCCTTGCCT	TTCCGTCACC	GAACTGGTCG	33660
	AGATCGGCCA	AGCGGCAGGA	TTCAGGGTCG	AGGTCAGCTG	GGCTCGTCAA	CGATCCCAAC	33720
	ATGGTGCACT	GGACGTCGTC	TTCCATCATC	TTGAAGATGA	CAGAGTAGGC	CGCGTCTTGA	33780
	TCAACTTCCC	CACAGACTTC	GAGCGTCTAC	CCCCTAGCAC	CGGCCTGACC	AGTCGGCCGC	33840
40	TGCAGCGCAT	CCAGAACCGT	CGGTTCGAGT	CGCAGATCCG	CGAACAGCTG	CAAACACTGC	33900
	TGCCACCTTA	TATGGTTCCA	TCACGGATCG	TCGTGTTGGA	GCGGATGCCT	CTCAACGCAA	33960
	ACAGCAAAGT	CGACCGTAAA	GAATTGGCAA	GGAAGGCGAG	GACCCTACAA	ACCATCAAGC	34020
45	CTTCTGCAAC	GCGCGTGGCT	CCTCGCAACG	ATATTGAAGC	CGTCTTGTGC	GACGAGTTCC	34080
	AGGCAGTTCT	TGGTGTTACA	GTCGGAGTCA	TGGATAACTT	TTTCGAGTTG	GGCGGACACT	34140
	CCCTGATGGC	TACGAAACTG	GCCGCCCGTC	TCAGTCGCCG	CCTCGACACC	CGCGTCTCTG	34200
50	TGAAGGATAT	CTTCAACCAA	CCAATCCTTC	AAGATCTCGC	GGACGTGGTC	CAGACTGGCT	34260
	CCGCTCCTCA	TGAAGCTATT	CCCTCCACGC	CCTACTCTGG	TCCCGTGGAG	CAATCCTTCT	34320
	CTCAGGGCCG	TCTATGGTTC	TTGGATCAGC	TGAATCTCAA	TGCATCGTGG	TACCACATGC	34380
55	CATTAGCGAG	TCGCTTGCGA	GGCCCGCTTC	GGATCGAGGC	GCTGCAGTCA	GCCCTGGCTA	34440
~							

	CGATTGAGGC	GCGGCACGAG	TCCCTGCGCA	CCACATTCGA	GGAGCAAGAT	GGTGTTCCCG	34500
5	TTCAGATTGT	ACGCGCTGCG	CGCAACAAGC	AGCTGAGGAT	CATCGACGTG	TCGGGCACCG	34560
	AGGATGCGTA	TCTCGCAGCA	TTGAAGCAAG	AGCAAGACGC	CGCATTCGAT	CTGACTGCTG	34620
	AGCCAGGCTG	GCGAGTAGCA	CTGTTGCGCT	TGGGACCGGA	TGATCATGTC	CTGTCTATCG	34680
10	TCATGCACCA	CATCATATCT	GACGGATGGT	CGGTTGATAT	CCTGCGACAA	GAACTCGGGC	34740
	AGCTCTACTC	GAATGCCTCA	TCGCAGCCCG	CTCCTCTTCC	GATTCAATAC	CGAGATTTCG	34800
	CCATCTGGCA	GAAGCAGGAT	AGTCAGATCG	CTGAGCACCA	AAAGCAGCTG	AACTACTGGA	34860
15	AGAGACAACT	GGTCAACAGC	AAGCCGGCTG	AGCTCCTGGC	GGACTTCACT	CGTCCGAAGG	34920
	CGTTATCTGG	CGATGCTGAT	GTCATACCGA	TAGAGATTGA	TGACCAGGTA	TATCAGAACC	34980
	TCCGCTCGTT	TTGTCGCGCT	CGGCATGTCA	CCAGCTTTGT	TGCACTCTTA	GCAGCTTTCC	35040
20	GGGCTGCTCA	CTACCGCCTA	ACTGGGGCCG	AAGATGCAAC	TATCGGCTCT	CCAATCGCCA	35100
20	ACAGAAATCG	ACCTGAGCTT	GAAGGCCTCA	TTGGATGCTT	TGTTAACACC	CAGTGTCTCC	35160
	GAATTCCTGT	TAAGAGCGAG	GACACATTTG	ACACGTTGGT	TAAACAGGCA	CGAGAAACGG	35220
	CGACCGAGGC	CCAGGACAAC	CAAGATGTCC	CGTTCGAGAG	GATCGTTTCT	TCCATGGTTG	35280
25	CTAGCTCGCG	AGATACCTCG	CGAAATCCAC	TCGTTCAGGT	CATGTTTGCT	GTGCACTCTC	35340
	AGCACGACCT	TGGTAACATT	CGTCTCGAAG	GTGTTGAGGG	GAAGCCCGTT	TCGATGGCAG	35400
	CGTCCACACG	CTTTGACGCG	GAAATGCACC	TATTTGAGGA	CCAAGGGATG	CTCGGCGGCA	35460
30	ACGTCGTCTT	TTCGAAGGAT	CTGTTCGAAT	CCGAGACGAT	CCGCAGTGTT	GTGGCCGTGT	35520
	TCCAGGAGAC	CCTGAGGCGT	GGCCTAGCCA	ATCCTCACGC	AAATCTCGCA	ACACTTCCTC	35580
	TTACCGATGG	ATTGCCCAGT	CTTCGAAGCC	TGTGTCTTCA	AGTCAATCAG	CCTGACTACC	35640
35	CCCGAGATGC	CTCCGTGATC	GACGTTTTCA	GAGAGCAGGT	AGCATCGATA	CCCAAGTCTA	35700
	TCGCCGTTAT	CGATGCTTCT	TCACAGCTCA	CCTACACCGA	GCTCGACGAG	AGATCTAGCC	35760
	AGCTCGCCAC	GTGGCTACGC	CGACAAGTCA	CAGTCCCTGA	GGAGCTGGTC	GGCGTCCTCG	35820
40	CTCCACGGTC	CTGTGAGACA	ATCATCGCTT	TCCTCGGCAT	CATCAAAGCG	AATCTCGCCT	35880
	ATCTGCCACT	TGACGTCAAC	GCACCCGCTG	GTCGGATCGA	GACAATCCTG	TCATCTCTAC	35940
	CAGGAAACAG	GCTTATTTTA	CTTGGATCAG	ATACGCAGGC	GGTCAAGCTT	CACGCAAACA	36000
	GCGTTCGATT	CACCCGGATC	AGCGACGCCC	TCGTCGAGAG	CGGCAGTCCC	CCTACCGAAG	36060
45	AACTTTCCAC	ACGGCCGACT	GCACAAAGCC	TTGCCTATGT	CATGTTCACA	TCAGGCTCAA	36120
	CTGGCGTCCC	GAAGGGTGTC	ATGGTAGAGC	ACCGGGGTAT	CACACGTCTC	GTGAAAAACA	36180
	GCAACGTGGT	CGCAAAGCAA	CCGGCAGCAG	CTGCTATCGC	TCATCTTTCG	AACATTGCTT	36240
50	TCGACGCCTC	TTCCTGGGAG	ATATACGCTC	CTCTCCTTAA	CGGCGGTACA	GTCGTCTGCA	36300
	TTGATTACTA	CACCACGATC	GATATCAAAG	CCCTCGAGGC	GGTATTCAAA	CAGCACCACA	36360
	TCCGCGGAGC	AATGCTTCCA	CCAGCACTTC	TCAAACAGTG	TCTGGTCTCT	GCCCCTACTA	36420

	ТСАТСАССТС	тстевавата	C でででで C CCC	CCGCCGATCG	GTTGAGCAGC	CAAGATGCCA	36480
						ACTGAGAACA	36540
5						GGCGTTCCCA	
							36600
						CAGCTGGTCT	36660
10						GGATACACAG	36720
						CGGGTCAGAG	36780
	CTTACCGCAC	GGGCGACCGT	GTCAGGCACC	GGCCTAAGGA	TGGGCAAATT	GAGTTCTTCG	36840
15	GGCGAATGGA	TCAGCAGATC	AAGATCCGTG	GTCATCGCAT	CGAGCCAGCA	GAGGTGGAGC	36900
10	AGGCTCTCGC	CCGTGACCCG	GCCATCAGCG	ATTCGGCTGT	TATCACTCAG	CTCACGGATG	36960
	AAGAGGAGCC	GGAACTGGTG	GCTTTCTTCT	CATTGAAGGG	GAATGCCAAC	GGCACCAACG	37020
	GTGTCAACGG	TGTGAGCGAT	CAAGAGAAGA	TCGACGGCGA	TGAGCAACAT	GCTCTGCTGA	37080
20	TGGAGAACAA	GATCCGTCAC	AACCTACAGG	CGCTGCTGCC	CACTTACATG	ATCCCCTCGC	37140
	GGATCATCCA	TGTCGATCAG	CTGCCGGTCA	ATGCCAACGG	TAAGATTGAC	CGCAATGAGC	37200
	TGGCTGTTCG	AGCCCAGGCA	ACGCCAAGGA	CCAGTTCAGT	GTCAACCTAC	GTGGCCCCTC	37260
25	GCAACGATAT	CGAAACCATC	ATCTGTAAGG	AATTCGCAGA	TATCCTCAGC	GTTCGAGTCG	37320
	GAATCACAGA	CAACTTCTTC	GACCTGGGTG	GACACTCACT	TATAGCCACC	AAGCTAGCCG	37380
	CCCGCCTTAG	CCGTCGACTA	GATACTCGCG	TGTCTGTTAG	GGACGTCTTT	GACACTCCCG	37440
30	TGGTAGGCCA	ATTGGCGGCT	TCTATCCAGC	AAGGCTCGAC	CCCTCATGAA	GCTATTCCGG	37500
•	CGTTATCACA	CTCGGGACCT	GTGCAACAGT	CCTTTGCTCA	AGGCCGTCTT	TGGTTCCTGG	37560
	ACCGTTTCAA	TCTCAACGCT	GCCTGGTACA	TCATGCCATT	CGGCGTTCGT	CTTCGCGGAC	37620
	CTCTCCGAGT	CGATGCACTT	CAGACTGCAT	TGAGGGCTCT	CGAAGAACGG	CACGAGTTGC	37680
35	TACGCACCAC	GTTCGAAGAA	CAGGATGGCG	TTGGTATGCA	AATCGTTCAC	TCGCCCCGAA	37740
	TGAGGGACAT	CTGCGTCGTA	GACATCTCTG	GCGCCAATGA	GGATCTTGCG	AAGCTGAAGG	37800
	AGGAGCAGCA	AGCTCCTTTC	AATCTCTCTA	CTGAAGTCGC	TTGGAGGGTA	GCACTCTTCA	37860
40	AGGCTGGAGA	GAACCACCAC	ATCCTCTCTA	TCGTCATGCA	TCACATAATT	TCAGATGGCT	37920
	GGTCAGTTGA	CATCTTCCAG	CAGGAGCTTG	CCCAATTCTA	CTCGGTAGCT	GTACGAGGGC	37980
	ATGACCCCCT	TTCCCAGGTC	AAACCGCTCC	CCATTCACTA	CCGCGATTTT	GCTGTCTGGC	38040
45	AGAGACAAGA	TAAGCAAGTT	GCCGTTCACG	AAAGCCAACT	TCAGTACTGG	ATAGAGCAGC	38100
	TCGCGGATAG	CACGCCAGCC	GAGATCCTAT	CTGATTTTAA	CCGACCGGAG	GTCTTGTCCG	38160
		TACAGTTCCC					38220
		TCATCAGGTC					38280
50	·	AACTGGGGCA					38340
		TGAGGACTTG					38400
		CGATAATTTC					38460
55		_ 3					70 F D C

	CCTTCGAAAA	CCAGGATGTG	CCATTCGAGC	GCCTTGTATC	TGCACTTCTG	CCCGGCTCTA	38520
5	GAGATGCCTC	CCGGAATCCC	CTCGTTCAAC	CTCATGTTTGT	CGTCCACTCC	CAGCGAAATC	38580
	TCGGTAAACI	GCAACTGGAG	GGCTTGGAAG	GCGAACCAAC	CCCGTACACC	GCGACGACCC	38640
	GCTTCGATGT	TGAGTTCCAC	CTCTTCGAAC	AAGACAAAGG	CCTCGCCGGA	AATGTTGTCT	38700
10	TCGCAGCAGA	CTTGTTCGAG	GCTGCCACTA	TCCGCAGCGT	TGTTGAAGTC	TTCCACGAGA	38760
	TCCTCCGTCG	TGGTCTCGAC	CAGCCAGATA	TCGCAATTTC	CACCATGCCA	CTTGTCGATG	38820
	GCCTGGCGGC	GCTCAACAGC	CGTAACTTAC	CCGCAGTTGA	AGACATCGAA	CCTGACTTCG	38880
15	CCACCGAGGC	CTCGGTGGTT	GATGTCTTCC	AGACACAAGT	GGTCGCTAAC	CCAGATGCCC	38940
	TGGCTGTGAC	CGACACATCC	ACAAAGCTTA	CATATGCGGA	GCTGGATCAA	CAATCCGATC	39000
	ATGTCGCGGC	TTGGCTGTCC	AAACAGAAGC	TACCAGCAGA	GAGCATCGTC	GTTGTTCTTG	39060
20	CGCCACGATC	CTCTGAGACT	ATCGTAGCAT	GCATTGGCAT	CCTCAAAGCG	AACCTCGCAT	39120
	ATCTCCCCAT	GGATTCCAAC	GTCCCCGAAG	CCCGTCGCCA	AGCAATTCTT	TCGGAGATTC	39180
	CAGGGGAGAA	GTTCGTTTTG	CTTGGAGCAG	GAGTGCCTAT	TCCTGACAAC	AAGACAGCTG	39240
	ATGTCAGGAT	GGTCTTCATC	AGCGATATCG	TCGCCAGCAA	GACAGACAAG	TCCTACTCAC	39300
25	CCGGCACTCG	GCCATCTGCA	TCAAGCCTTG	CCTATGTTAT	CTTCACATCA	GGCTCGACAG	39360
	GTCGGCCAAA	GGGTGTCATG	GTCGAGCATC	GGGGTGTTAT	TTCTTTGGTG	AAGCAGAACG	39420
	CTTCAAGAAT	ACCACAAAGT	CTGCGGATGG	CACATGTTTC	CAATCTCGCA	TTCGATGCTT	39480
30	CCGTGTGGGA	GATATTCACC	ACGCTGCTCA	ATGGAGGAAC	GCTTTTCTGT	ATCAGCTACT	39540
	TTACTGTCTT	GGACAGCAAA	GCACTTTCTG	CCGCTTTCTC	CGATCATCGC	ATTAACATCA	39600
	CCCTGCTCCC	ACCGGCCTTG	CTCAAGCAAT	GTCTTGCAGA	CGCGCCATCT	GTCCTGAGCT	39660
35	CCCTCGAGTC	TCTGTACATT	GGAGGCGACC	GCCTTGATGG	AGCTGATGCA	ACCAAGGTGA	39720
	AGGACCTCGT	CAAAGGCAAG	GCCTACAATG	CCTACGGTCC	CACCGAGAAT	TCCGTCATGA	39780
	GCACGATCTA	TACCATCGAA	CACGAGACTT	TTGCGAATGG	CGTTCCCATC	GGCACATCTT	39840
40	TAGGCCCCAA	GTCCAAGGCC	TACATTATGG	ACCAGGATCA	GCAGCTCGTA	CCAGCAGGCG	39900
	TGATGGGAGA	GCTTGTCGTT	GCTGGCGATG	GTCTCGCACG	AGGGTATACC	GATCCATCAC	39960
	TGAACACGGG	CCGGTTCATC	CACATCACGA	TCGATGGCAA	ACAAGTTCAG	GCATACCGGA	40020
45	CCGGCGATCG	AGTCAGATAC	CGACCTAGGG	ACTACCAAAT	CGAGTTCTTT	GGCCGTTTAG	40080
40	ATCAGCAGAT	CAAGATTCGC	GGTCATCGCA	TCGAGCCAGC	TGAAGTGGAG	CAGGCTCTTC	40140
	TCAGCGACTC	ATCGATCAAC	GATGCCGTTG	TTGTGTCGGC	ACAAAACAAG	GAGGGACTCG	40200
	AAATGGTTGG	TTACATCACG	ACCCAGGCTG	CACAATCCGT	CGACAAGGAG	GAAGCCAGCA	40260
50	ACAAGGTGCA	GGAGTGGGAG	GCTCATTTCG	ACTCAACTGC	ATATGCCAAC	ATCGGGGGTA	40320
	TTGATCGCGA	TGCCCTCGGA	CAGGACTTCT	TATCCTGGAC	ATCTATGTAC	GACGGCTCAT	40380
	TGATTCCCCG	TGAAGAGATG	CAGGAATGGC	TCAACGACAC	TATGCGCTCA	CTCCTCGACA	40440

	ACCAACCACC	CGGAAAAGTG	CTCGAGATCG	GAACTGGTAC	CGGTATGGTG	CTGTTCAATC	40500
5	TCGGCAAGGT	TGAGGGACTA	CAGAGCTATG	CCGGTCTTGA	GCCCTCGCGC	TCCGTCACCG	40560
	CCTGGGTTAA	CAAGGCAATC	GAAACTTTCC	CAAGCCTGGC	AGGAAGCGCC	CGAGTCCACG	40620
	TTGGAACCGC	CGAGGATATC	AGCTCCATTG	ATGGACTTCG	TTCCGATCTC	GTTGTGATCA	40680
10	ACTCAGTCGC	CCAATACTTC	CCAAGTCGAG	AATATCTCGC	TGAGCTGACG	GCCAACTTGA	40740
10	TTCGACTGCC	CGGCGTTAAG	CGTATTTTCT	TCGGTGACAT	GAGAACGTAT	GCTACCAATA	40800
	AGGACTTCTT	GGTGGCACGA	GCAGTCCATA	CCCTAGGGTC	CAATGCATCG	AAGGCCATGG	40860
	TTCGACAACA	AGTGGCCAAG	CTTGAAGATG	ACGAGGAAGA	GTTGCTTGTT	GACCCTGCCT	40920
15	TCTTCACCAG	CCTGAGCGAC	CAGTTCCCTG	ACGAAATCAA	GCATGTCGAA	ATTCTGCCAA	40980
	AGAGGATGGC	CGCGACCAAC	GAACTCAGCT	CTTACAGATA	TGCTGCTGTC	ATTCATGTGG	41040
	GAGGCCACCA	GATGCCGAAT	GGGGAGGATG	AGGATAAGCA	ATGGGCTGTC	AAGGATATCA	41100
20	ATCCGAAGGC	CTGGGTGGAC	TTTGCTGGCA	CGAGGATGGA	CCGTCAGGCT	CTCTTGCAGC	41160
	TCCTTCAGGA	CCGCCAACGT	GGCGATGACG	TTGTTGCCGT	CAGTAACATC	CCATACAGCA	41220
	AGACCATCAT	GGAGCGCCAT	CTGTCTCAGT	CACTTGATGA	TGACGAGGAC	GGCACTTCAG	41280
25	CGGTAGACGG	AACGGCCTGG	ATATCGCGTA	CGCAATCACG	GGCGAAGGAA	TGCCCTGCTC	41340
	TCTCAGTGGC	CGACCTGATT	GAGATTGGTA	AGGGGATCGG	CTTCGAAGTT	GAGGCCAGCT	41400
	GGGCTCGACA	ACACTCCCAG	CGCGGCGGAC	TCGATGCTGT	TTTCCACCGA	TTCGAACCAC	41460
20	CAAGACACTC	AGGTCATGTC	ATGTTCAGGT	TCCCGACTGA	ACACAAGGGC	CGGTCTTCGA	41520
30	GCAGTCTCAC	GAATCGCCCG	CTACACCTGC	TTCAGAGCCG	CCGACTGGAG	GCAAAGGTCC	41580
	GCGAGCGGCT	GCAATCACTG	CTTCCACCGT	ACATGATTCC	GTCTCGGATC	ACGTTGCTCG	41640
	ATCAGATGCC	TCTCACGTCC	AACGGCAAGG	TGGATCGCAA	GAAGCTTGCT	CGACAAGCCC	41700
35	GGGTCATCCC	AAGAAGTGCG	GCAAGCACGT	TGGACTTTGT	GGCGCCACGC	ACGGAAATCG	41760
	AAGTCGTCCT	CTGCGAAGAA	TTTACCGATC	TACTAGGCGT	CAAGGTTGGC	ATCACAGACA	41820
	ACTTCTTCGA	GTTGGGCGGC	CATTCGCTGC	TGGCCACGAA	ACTGAGCGCA	CGTCTAAGTC	41880
40	GCAGACTGGA	CGCCGGTATC	ACTGTGAAGC	AGGTCTTTGA	CCAGCCAGTA	CTTGCTGATC	41940
	TTGCTGCTTC	TATTCTTCAA	GGCTCGTCTC	GTCACAGGTC	TATCCCGTCT	TTACCCTACG	42000
	AAGGACCCGT	GGAGCAGTCC	TTTGCCCAGG	GGCGCCTGTG	GTTCCTCGAC	CAGTTCAACA	42060
45	TCGATGCCTT	GTGGTACCTT	ATTCCATTTG	CACTCCGCAT	GCGCGGGCCG	CTGCAAGTTG	42120
	ACGCCCTCGC	TGCTGCCCTG	GTGGCACTTG	AAGAGCGTCA	TGAATCTCTG	CGCACAACGT	42180
	TTGAGGAACG	AGACGGAGTC	GGCATCCAAG	TGGTGCAACC	CCTCCGCACG	ACCAAGGATA	42240
50	TCCGGATCAT	CGACGTGTCA	GGCATGCGAG	ACGACGACGC	CTACCTCGAG	CCATTGCAGA	42300
<i>30</i>	AAGAACAGCA	GACTCCTTTC	GACCTTGCTT	CAGAGCCTGG	CTGGAGGGTA	GCACTGCTGA	42360
	AGCTTGGAAA	GGATGACCAC	ATCCTCTCTA	TTGTCATGCA	CCACATCATC	TCTGACGGGT	42420
	GGTCTACTGA	AGTCTTGCAA	AGGGAACTCG	GTCAATTCTA	CTTGGCAGCG	AAATCCGGGA	42480

	AAGCCCCCTT ATCGCAGGTT GCCCCGCTTC CTATTCAGTA TCGCGATTTT GCTGTTTGGC	42540
5	AGAGACAAGA GGAACAGGTC GCTGAGAGTC AAAGGCAGCT CGACTACTGG AAGAAGCAGC	42600
	TTGCGGACAG TAGCCCGGCT GAGCTCTTGG CTGACTACAC CAGGCCGAAC GTACTGTCTG	42660
	GAGAGGCAGG CAGCGTGTCT TTCGTGATCA ACGATTCGGT TTACAAGAGC CTCGTCTCCT	42720
10	TCTGCCGGTC TCGCCAAGTA ACCACCTTTA CGACTTTACT GGCAGCGTTT CGCGCCGCTC	42780
	ACTATCGAAT GACCGGGTCA GACGACGCAA CTATTGGCAC GCCAATTGCC AATCGCAACA	42840
	GGCCTGAGCT TGAAAACTTG ATCGGCTGCT TCGTCAATAC CCAGTGCATG CGTATCACTA	42900
15	TCGGCGACGA TGAGACGTTT GAATCACTGG TACAACAGGT ACGGTCTACC ACCGCGACAG	42960
,,	CCTTCGAGAA TCAAGACGTT CCGTTTGAAC GAATCGTTTC CACCCTCAGT GCCGGGTCCA	43020
	GGGATACGTC CCGAAACCCC CTAGTACAGC TTCTCTTTGC GGTTCATTCT CAACAAGGCC	43080
	TGGGCAGGAT CCAGCTCGAC GGTGTCGTCG ATGAGCCGGT TCTGTCGACC GTTTCGACTC	43140
20	GGTTCGATCT CGAATTCCAC GCCTTCCAAG AGGCCGACCG GCTCAATGGA AGTGTCATGT	43200
	TTGCCACGGA CCTGTTCCAG CCCGAGACCA TCCAAGGTTT CGTTGCGGTT GTCGAAGAGG	43260
	TTCTACAGCG TGGCCTGGAG CAGCCGCAGA GTCCCATCGC AACCATGCCG CTGGCCGAAG	43320
25	GCATCGCTCA GCTCCGAGAT GCCGGCGCGC TGCAGATGCC AAAGTCTGAT TACCCTCGCA	43380
	ACGCGTCCCT CGTCGATGTC TTCCAGCAGC AGGCTATGGC CAGCCCGTCA ACTGTCGCCG	43440
	TCACTGACTC GACCTCCAAG CTGACGTATG CCGAGCTGGA TCGACTCTCC GATCAAGCTG	43500
<i>30</i>	CTTCCTATCT GCGTCGGCAG CAACTCCCGG CGGAGACAAT GGTGGCCGTT CTCGCACCGC	43560
	GCTCTTGTGA GACCATCATC GCGTTCCTAG CTATTCTCAA AGCAAATCTT GCCTACATGC	43620
	CTCTCGACGT CAACACGCCA TCTGCTCGCA TGGAAGCCAT CATATCGTCC GTCCCAGGGC	43680
	GTAGGCTCAT CTTGGTTGGC TCGGGCGTCC GCCATGCTGA TATCAACGTA CCGAACGCAA	43740
35	AGACGATGCT GATCAGCGAC ACGGTTACCG GGACTGATGC TATTGGCACT CCCGAACCTC	43800
	TGGTTGTCCG ACCCAGTGCT ACAAGTCTCG CATATGTCAT CTTCACTTCA	43860
		43920
40		43980
		44040
		44100
45		44160
		44220
		44280
E 0		44340
50		44400
	CCGGTGTGAT GGGAGAGCTG GTTGTTACAG GAGAGGGTGT AGCTCGCGGC TATACCGACG 4	4460

	CAAGTCTCGA	TACGGACCGC	TTCGTCACCG	TCACGATCGA	TGGCCAGCGC	CAGAGGGCGT	44520
5	ACCGCACGGG	TGACCGGGTG	CGATATCGAC	CAAAGGGATT	CCAGATAGAG	TTCTTCGGCC	44580
	GCCTGGACCA	GCAGGCCAAG	ATTCGCGGCC	ACCGTGTTGA	ACTGGGCGAG	GTCGAACATG	44640
	CTCTGCTCAG	CGAGAATTCA	GTCACGGATG	CGGCTGTCGT	ACTCCGCACC	ATGGAAGAGG	44700
10	AGGACCCGCA	ACTGGTTGCC	TTTGTGACTA	CTGATCACGA	ATATCGCTCG	GGTTCGAGCA	44760
	ACGAAGAGGA	GGATCCGTAC	GCCACACAGG	CAGCAGGCGA	TATGCGCAAG	CGACTCCGGT	44820
	CGCTTCTGCC	ATACTACATG	GTCCCGTCCC	GGGTCACAAT	ACTCAGGCAA	ATGCCTCTCA	44880
15	ACGCCAACGG	CAAGGTGGAC	CGAAAAGACC	TCGCTCGGCG	GGCCCAGATG	ACTCCGACAG	44940
15	CAAGCAGCTC	GGGCCCCGTG	CATGTGGCTC	CTCGCAACGA	GACTGAGGCA	GCAATTTGCG	45000
	ACGAGTTCGA	GACTATACTC	GGAGTCAAGG	TGGGAATCAC	AGACAACTTC	TTCGAACTAG	45060
	GCGGGCACTC	ACTCCTGGCC	ACCAAACTCG	CTGCTCGGCT	CAGCCGCCGG	ATGGGCCTTC	45120
20	GCATATCCGT	CAAGGATCTG	TTTGACGATC	CTGTTCCTGT	TTCTCTCGCC	GGCAAGCTGG	45180
	AACAACAGCA	GGGGTTCTCG	GGAGAAGATG	AAAGCTCGAC	AGTTGGTATT	GTCCCCTTCC	45240
	AACTCCTCCC	CGCGGAAATG	TCGAGAGAGA	TCATCCAGCG	CGATGTTGTA	CCTCAGATTG	45300
25	AGAACGGTCA	CAGCACACCC	CTGGACATGT	ATCCAGCCAC	GCAGACGCAG	ATCTTCTTCC	45360
	TGCACGACAA	AGCGACGGGC	CACCCAGCCA	CGCCGCCACT	GTTCTCCTTG	GACTTCCCCG	45420
	AGACCGCCGA	CTGCCGTCGT	CTGGCAAGCG	CCTGCGCCGC	TCTCGTCCAG	CACTTTGACA	45480
30	TATTCAGAAC	CGTGTTCGTG	TCAAGAGGCG	GCCGCTTCTA	CCAAGTTGTT	CTTGCTCATC	45540
	TCGATGTACC	TGTCGAGGTC	ATCGAGACCG	AGCAAGAGTT	GGATGAGGTT	GCTCTCGCGC	45600
	TGCATGAAGC	AGACAAGCAG	CAGCCCCTAC	GTCTGGGACG	TGCGATGCTG	CGGATCGCCA	45660
	TCCTCAAGAG	ACCGGGAGCC	AAGATGCGAC	TTGTTCTCCG	AATGTCTCAT	TCCCTGTACG	45720
35	ACGGCTTGAG	TCTTGAACAC	ATCGTCAACG	CTCTACATGC	CTTGTACAGT	GATAAGCACC	45780
	TTGCGCAAGC	ACCCAAGTTT	GGTCTCTACA	TGCATCACAT	GGCTAGCCGA	CGTGCAGAGG	45840
	GCTACAATTT	CTGGCGATCT	ATTCTTCAGG	GCTCTTCAAT	GACATCCCTG	AAGCGCTCTG	45900
40	TCGGCGCCCT	CGAGGCCATG	ACGCCGTCTG	CCGGTACATG	GCAGACGTCA	AAGTCCATCA	45960
	GGATCCCTCC	TGCGGCACTC	AAGAACGGCA	TTACGCAGGC	GACCCTCTTC	ACCGCCGCCG	46020
	TCTCTCTCTT	GCTCGCCAAG	CATACCAAGT	CGACAGACGT	CGTCTTCGGC	CGCGTCGTAT	46080
45	CTGGACGACA	GGATCTCTCC	ATAAACTGCC	AAGACATCGT	GGGACCTTGC	ATCAACGAGG	46140
	TGCCTGTGCG	CGTTCGGATC	GACGAGGGCG	ACGACATGGG	TGGTCTGCTG	CGCGCCATTC	46200
	AAGACCAGTA	CACCAGCAGC	TTCCGGCACG	G AGACCTTGGG	CTTGCAAGAA	GTGAAGGAGA	46260
	ACTGCACGGA	CTGGACTGAT	GCGACCAAGG	AGTTCAGTTG	CTGCATTGCC	TTCCAGAACC	46320
50	TCAACCTGC	A TCCTGAGGCC	GAGATTGAAG	GGCAGCAGAT	TCGCCTGGAG	GGTTTGCCAG	46380
	CAAAGGATCA	AGCACGCCAG	GCCAATGGTC	ATGCCCCAAA	TGGCACGAAC	GGCACGAATG	46440
	GCACGAATGO	G CACGAATGGC	GCGAACGGC	A CGAATGGCAC	GAATGGCACG	AATGGTACCC	46500

	ATGCCAA	CGG :	PATC	AATG	GT AC	GCAA(CGGT	G TC	AATG	CCG	CGA'	FAGC	AAC (GTGG'	TTTC	AG	46560
5	CCGCTGG	CGA :	CAAC	CTC	CT G	rtca(CGAT	TGC	GACA	rtgt	TGG	SATT	CCG (GAGC	CCGA	CG	46620
	GCAGCGT	CAA (SATTO	GCA	rt Go	STGC	GAGCO	GGG	CAGA	CCT	TGG	AGAG	AAG (GTCG:	rggg	CA	46680
	GCATGCT	CAA 1	rgaa(CTTTC	GC GA	AGACO	CATGO	TCC	CTT	rgag	CAG	AACA:	rag (CAGC	rttt	CC	46740
10	AGGGAGA	rtg (STTGG	ATGO	SA CA	AGAT	TCTC	TTC	CAATT	TATG	GAG	GTTG(GCA :	rgag(CAAC	CA	46800
	GGAGGAC	rac 1	GACI	TTTC	CA TO	STTT	TTGG	GG1	TTTT	TGG	GGT	TTC	TTT	rtcci	TTC	ΑT	46860
	CTTTACTT	rga 1	'GCGC	GAT	T CI	GCTI	rtcci	CTA	GAAI	TTC							46899
15	(2) INFO	ORMAT	CION	FOR	SEQ	ID N	10: 2	:									
	(i)	(£	UENC L) LE L) TY L) ST L) TO	NGTH PE: RAND	: 15 amin EDNE	281 o ac SS:	amin id sing	o ac	ids								
20	(ii)	MOL	ECUL	E TY	PE:	prot	ein										
	(iii)	нур	OTHE	TICA	L: N	0											
	(iii)	ANT	i-se	NSE:	NO												
25	(vi)		GINA) OR) ST	GANI	SM:	Toly			m ni	veum	ı						
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 2:							
30	Met 1	Gly	Ala	Ile	Gly 5	Gln	Asp	Met	Ala	Tyr 10	Asp	Arg	Leu	Ala	Asn 15	Pro	
	Ser	Arg	Ala	Ser 20	Ser	Ile	Ser	Ser	Asn 25	Arg	Tyr	Ser	Glu	Pro 30	Val	Glu	
35	Gln	Ser	Phe 35	Ala	Gln	Gly	Arg	Leu 40	Trp	Phe	Leu	His	Gln 45	Leu	Lys	Leu	
		Ala 50					55					60					
40	Leu 65	qeA	Ile	Asp	Ala	Leu 70	Asn	Ala	Ala	Ser	Arg 75	Ala	Leu	Thr	Gln	Arg 80	
		Glu			85					90					95		
4 5	Gln	Val	Val	His 100	Ala	Ser	Gly	Leu	Glu 105	Arg	Gly	Leu	Arg	Ile 110	Val	Asp	
	Ala	Ser	Ser 115	Arg	Asp	Leu	Ala	Gln 120	Leu	Leu	Ala	Glu	Glu 125	Gln	Thr	Met	
50	Lys	Phe 130	Asp	Leu	Glu	Ser	Glu 135	Pro	Ala	Trp	Arg	Val 140	Ala	Leu	Leu	Lys	
	Val 145	Ala	Glu	Asp	His	His 150	Ile	Leu	Ser	Ile	Val 155	Val	His	His	Ile	Ile 160	
	Ser	qeA	Ser	Arg	Ser	Leu	Asp	Ile	Ile	Gln	Gln	Glu	Leu	Gly	Glu	Leu	

					16	5				. 17	0				17	5
5	Ту	r Th	r Al	a Ala 180	a Se.	r Gl	n Gl	у Lу	s Se 18	r Il 5	e Se	r Al	а Су	s Pr 19		u Gly
	Pr	o Il	e Pr 19	o Ile 5	e Gl	n Ty	r Ar	g As 20	p Le 0	u Th	r Th	r Tr	P G1:	n As: 5	n Gl	n Asp
	G1	u Gl 21	n Va O	l Ala	Gl:	u Gl	n Gl	u Ar	g G1	n Le	u Gl	у Ту 22		o Ile	e Gl	u Gln
10	Le:	u As 5	p As	n Asr	Thi	230	o Ala	a Gl	ı Le	n re	u Th:	r Gl	u Lei	ı Pro	o Ar	g Pro 240
	Ala	a Il	e Pr	o Ser	Gly 245	g Glu	ı Thi	c Gly	y Ly:	8 Ile 25	e Sei	c Phe	e Glr	ı Ile	e Ası 25	o Gly
15	Sei	r Vai	l His	E Lys 260	Glu	ı Leı	ı Lev	a Alá	Phe 265	e Cys	s Arg	g Sei	Glr	Glr 270		l Thr
	Ala	а Ту	r Ala 275	a Val	Leu	Leu	a Ala	Ala 280	Phe	e Ar	y Val	. Ala	His 285	Phe	Arg	J Leu
20	Thr	Gl _y 290	y Ala)	Glu	Азр	Ala	Thr 295	Ile	Gly	/ Ala	Pro	Val	Ala	Asn	Arg	, Asp
	Arg 305	Pro	Glu	Leu	Glu	Asn 310	Met	Val	Ala	Pro	Leu 315	Ala	Thr	Leu	Gln	Cys 320
25	Met	Arg	y Val	Val	Leu 325	Asp	Glu	Азр	Asp	Thr 330	Phe	Glu	Ser	Val	Leu 335	Arg
	Gln	Ile	Met	Ser 340	Val	Met	Thr	Glu	Ala 345	His	Ala	Asn	Arg	Asp 350	Val	Pro
30	Phe	Glu	Arg 355	Ile	Val	Ser	Ala	Leu 360	Leu	Pro	Gly	Ser	Thr 365	Asp	Thr	Ser
	Arg	His 370	Pro	Leu	Val	Gln	Leu 375	Met	Phe	Ala	Leu	His 380	Pro	Ala	Gln	Asp
35	Thr 385	Gly	Arg	Ala	Arg	Trp 390	Gly	Phe	Leu	Glu	Ala 395	Glu	Thr	Leu	Gln	Ser 400
	Ala	Ala	Pro	Thr	Arg 405	Phe	Asp	Met	Glu	Met 410	His	Leu	Phe	Glu	Gly 415	Asp
40	Asp	Arg	Phe	Asp 420	Ala	Asn	Val	Leu	Phe 425	Ser	Thr	Gly	Leu	Phe 430	Asp	Ala
	Glu	Ala	Ile 435	Arg	Ser	Val	Val	Ser 440	Ile	Phe	Arg	Glu	Val 445	Leu	Arg	Arg
45	Gly	Ile 450	Ser	Glu	Pro	Ala	Val 455	His	Val	Lys	Thr	Met 460	Pro	Leu	Thr	Asp
	Gly 465	Leu	Ala	Ala	Ile .	Arg 470	Asp	Met	Gly	Leu	Leu 475	Asp	Ile	Gly		Thr 480
50	Asp	Tyr	Pro	Arg	Glu . 485	Ala	Ser	Val	Val	Asp 490	Met	Phe	Gln (Glu	Gln 495	Val
	Ala	Leu	Asn	Pro :	Ser /	Ala	Thr .	Ala	Val 505	Ala	Asp .	Ala	Ser :	Ser .	Arg	Leu
55	Ser	Tyr	Ser 515	Glu 1	Leu I	Asp	His :	Lys : 520	Ser .	Asp	Gln :	Leu /	Ala 1 525	Ala :	Trp	Leu

	Arg	530		Gln	Leu	Lys	9ro 535		Thr	Leu	ı Ile	Gly 540		Leu	Ser	Pro
5	Pro 545		: Суз	Glu	Thr	Met 550		Ser	Phe	Leu	Gly 555		. Lev	Lys	Ala	His 560
	Leu	Ala	Tyr	Leu	Pro 565		Asp	Ile	Asn	Val 570		Leu	Ala	Arg	1le 575	Glu
10	Ser	Ile	Leu	Ser 580	Ala	Val	Asp	Gly	His 585		Leu	Val	Leu	Leu 590	_	Ser
	Asn	Val	Pro 595		Pro	Lys	Val	Asp 600		Pro	Asp	Val	Glu 605		Leu	Arg
15	Ile	Ser 610	Asp	Ala	Leu	Asn	Gly 615	Ser	Gln	Val	Asn	Gly 620		Ala	Gly	Lys
	Gln 625	Ala	Thr	Ala	Lys	Pro 630	Ser	Ala	Thr	Asp	Leu 635		Tyr	Val	Ile	Phe 640
20	Thr	Ser	Gly	Ser	Thr 645	Gly	Lys	Pro	Lys	Gly 650		Met	Ile	Glu	His 655	Arg
	Gly	Ile	Val	Arg 660	Leu	Val	Lys	Gly	Thr 665		Ile	Ile	Ser	Pro 670	Ala	Gln
25	Ala	Ala	Val 675	Pro	Thr	Ala	His	Leu 680	Ala	Asn	Ile	Ala	Phe 685	_	Leu	Ser
	Thr	Trp 690	Glu	Ile	Tyr	Thr	Pro 695	Ile	Leu	Asn	Gly	Gly 700	Thr	Leu	Val	Cys
30	Ile 705	Glu	His	Ser	Val	Thr 710	Leu	Asp	Ser	Lys	Ala 715	Leu	Glu	Ala	Val	Phe 720
	Thr	Lys	Glu	Gly	11e 725	Arg	Val	Ala	Phe	Leu 730	Ala	Pro	Ala	Leu	Ile 735	Lys
35	Gln	Суз	Leu	Ala 740	Asp	Arg	Pro	Ala	Ile 745	Phe	Ala	Gly	Leu	Asp 750	Ser	Leu
	Tyr	Ala	11e 755	Gly	Asp	Arg	Phe	760	Arg	Arg	Asp	Ala	Leu 765	His	Ala	Lys
40	Ser	Leu 770	Val	Lys	His	Gly	Val 775	Tyr	Asn	Ala	Tyr	Gly 780	Pro	Thr	Glu	Asn
	Ser 785	Val	Val	Ser	Thr	11e 790	Tyr	Ser	Val	Ser	Glu 795	Ala	Ser	Pro	Phe	Val 800
45	Thr	Gly	Val	Pro	Val 805	Gly	Arg	Ala	Ile	Ser 810	Asn	Ser	Gly	Ala	Tyr 815	Val
	Met	Азр	Gln	Asp 820	Gln	Gln	Leu	Val	Ser 825	Pro	Gly	Val	Met	Gly 830	Glu	Leu
50	Val	Val	Ser 835	Gly	Asp	Gly	Leu	Ala 840	Arg	Gly	Tyr	Thr	Asp 845	Ser	Ala	Leu
	Asp	Lys 850	Asn	Arg	Phe	Val	Val 855	Val	Gln	Ile	Asp	Gly 860	Glu	Ser	Ile	Arg
55	Gly 865	Tyr	Arg	Thr	Gly	Asp 870	Arg	Ala	Arg	Tyr	Ser 875	Leu	Lys	Gly	Gly	Gln 880

	Il€	e Glu	ı Phe	e Phe	e Gly 885	Arg	g Met	: Ası	o Gl	n Gla		L Ly:	s Ile	e Arg	g G1 89	y His 5
5	Arg	Ile	Glu	900	Ala	Glu	ı Val	Glı	90		a Leu	ı Leı	ı Asr	910		p Gln
v	Val	. Arg	915	Ala	a Ala	Val	Val	. Ile 920	e Arq	g Ar	g Glr	ı Glu	925		ı Glı	u Pro
40	Ala	Met 930	Ile	Ala	Phe	Val	Thr 935	Thr	Glr	n Gly	y Thr	Let 940		Asp	Hi:	s Leu
10	Val 945	Asn	Ile	Asn	Gly	Asn 950	Gly	His	Va]	l Pro	955		/ Asn	Gly	' Se	Lys 960
4.5	Asn	Asp	Gln	Phe	Ala 965	Val	His	Val	Glu	Ser 970	Glu	Leu	Arg	Arg	Arg 975	J Leu
15	Gln	Met	Leu	Leu 980	Pro	Ser	Tyr	Met	Met 985	Pro	Ala	Arg	Ile	Val 990		Leu
	Asp	His	Leu 995	Pro	Leu	Asn	Pro	Asn 100	Gly 0	Lys	Val	Asp	Arg 100		Ala	Leu
20	Gly	Gln 101	Ser 0	Ala	Lys	Thr	Val 101	Gln 5	Lys	Ser	Lys	Leu 102		Ser	Gln	Arg
	Val 102	Ala 5	Pro	Arg	Asn	Glu 103	Ile O	Glu	Ala	Val	Leu 103	Cys 5	Glu	Glu	Туг	Arg 1040
25	Ser	Val	Leu	Gly	Val 1045	Glu 5	Val	Gly	Ile	Thr 105	Asp 0	Asn	Phe	Phe	Asp 105	Leu 5
	Gly	Gly	His	Ser 106	Leu 0	Thr	Ala	Met	Lys 106	Leu 5	Ala	Ala	Arg	Ile 1070		Gln
30	Arg	Leu	Asp 1075	Ile	Gln	Ala	Ser	Val 108	Ala O	Thr	Val	Phe	Glu 108		Pro	Met
	Leu	Ala 1090	Asp)	Leu	Ala	Ala	Thr 1095	Ile	Gln	Arg	Gly	Ser 110		Leu	Tyr	Ser
35	Val 1105	Ile	Pro	Thr	Thr	Glu 111(Tyr)	Thr	Gly	Pro	Val 1115	Glu	Gln	Ser	Phe	Ala 1120
	Gln	Gly	Arg	Leu	Trp 1125	Phe	Leu	Glu	Gln	Leu 1130	Asn O	Thr	Gly	Ala	Ser 113	Trp 5
40	Tyr	Asn	Val	Met 1140	Leu)	Thr	Val	Arg	Leu 1145	Arg	Gly	His	Leu	Asp 1150		Asp
	Ala	Leu	Gly 1155	Thr	Ala	Leu	Leu	Ala 1160	Leu	Glu	Lys	Arg	His 1165		Thr	Leu
45	Arg	Thr 1170	Thr	Phe	Glu	Glu	Arg 1175	Asp	Gly	Val	Gly	Met 1180		Val	Val	His
	Ser 1185	Ser	Leu	Met	Gly	Glu 1190	Leu	Arg	Leu	Ile	Asp 1195	Ile	Ser	Glu	Lys	Ser 1200
50	Gly	Thr .	Ala	Ala	His 1205	Glu	Ala	Leu	Met	Lys 1210	Glu	Gln	Ser		Arg 1215	
	Asp :	Leu '	Thr	Arg 1220	Glu 1	Pro	Gly	Trp	Arg 1225	Val	Ala	Leu		Lys 1230	Leu	Ala
55	Asp I	His I	His	Ile	Phe :	Ser	Ile '	Val	Met	His	His	Ile	Val	Ser 2	Asp	Gly

		1235			124	0				124	5		
	Trp Ser 125	Leu Asp 0	Leu	Leu Arg 125		Glu	Leu	Gly	Gln 126		Tyr	Ser	Ala
5	Ala Leu 1265	Arg Gly		Asp Pro	Leu	Ser	Arg	Leu 1275		Pro	Leu	Pro	Ile 1280
	Gln Tyr	Arg Asp	Phe 1285		Trp	Gln	Lys 1290		Asp	Ser	Gln	Gln 129	_
10	Ala Ala	His Gln 130	_	Gln Leu	Glu	Tyr 1305	_	Thr	Lys	Gln	Leu 1310		Asp
	Ser Thr	Pro Ala 1315	Glu	Leu Leu	Thr 132	_	Phe	Pro	Arg	Pro 1325		Ile	Leu
15	Ser Gly 133	Lys Ala O	Gly	Lys Val 133		Val	Ala	Ile	Glu 1340	_	Ser	Leu	Tyr
	Asp Thr 1345	Leu Gln		Phe Ser 1350	Arg	Thr	His	Gln 1355		Thr	Ser	Phe	Ala 1360
20	Val Leu	Leu Ala	Ala 1365	_	Ala	Ala	His 1370		Arg	Leu	Thr	Gly 1375	
	Asp Asn	Ala Thr 138		Gly Val	Pro	Ser 1385		Asn	Arg	Asn	Arg 1390		Glu
25	Leu Glu	Asn Val 1395	Ile	Gly Phe	Phe 1400		Asn	Thr	Gln	Cys 1405		Arg	Ile
	Thr Ile	Asp Glu 0	Asn .	Asp Asn 141		Glu	Ser	Leu	Val 1420	_	Gln	Val	Arg
30	Ser Thr 1425	Thr Thr		Ala Gln 1430	Asp	Asn	Gln	Asp 1435		Pro	Phe	Glu	Gln 1440
	Val Val	Ser Ser	Leu 1 1445		Ser	Ser	Ser 1450	_	qeA	Ala	Ser	Arg 1455	
35	Pro Leu	Val Gln 146		Met Phe	Ala	Leu 1465		Gly	Gln	Gln	Asp 1470		Phe
	Lys Ile	Gln Leu 1475	Glu	Gly Thr	Glu 1480		Glu	Val	Ile	Pro 1485		Glu	Glu
40	Val Thr 149	Arg Phe	Asp	Ile Glu 149		His	Leu	Tyr	Gln 1500	_	Ala	Ser	Lys
	Leu Ser 1505	Gly Asp		Ile Phe 1510	Ala	Ala	Asp	Leu 1515		Glu	Ala	Glu	Thr 1520
45	Ile Arg	Gly Val	Val 1525		Phe	Gln	Glu 1530		Leu	Arg	Arg	Gly 1535	
	Gln Gln	Pro Gln 1540		Pro Ile	Met	Thr 1545		Pro	Leu	Thr	Asp 1550	_	Ile
50	Pro Glu	Leu Glu 1555	Arg 1	Met Gly	Leu 1560		His	Met	Val	Lys 1565		Asp	Tyr
	Pro Arg 1570	Asn Met	Ser '	Val Val 157	_	Val	Phe	Gln	Gln 1580		Val	Arg	Leu
55	Ser Ala 1585	Glu Ala		Ala Val 1590	Ile	Asp		Ser 1595		Arg	Met	Ser	Tyr 1600

	Ala	Glu	Leu	Asp	Gln 160	_	Ser	qeA	Gln	Val 1610		Ala	Trp	Leu	Arg 161	Gln 5
5	Arg	Gln	Leu	Pro 1620		Glu	Thr	Phe	Val 1625		Val	Leu	Ala	Pro 163	_	Ser
	Суз	Glu	Ala 163		Ile	Ala	Leu	Phe 1640	_	Ile	Leu	Lys	Ala 164	_	His	Ala
10	Tyr	Leu 1650		Leu	Asp	Val	Asn 1655		Pro	Ala	Ala	Arg 166		Arg	Ala	Ile
	Leu 1665		Glu	Val	Lys	Gly 1670		Lys	Leu	Val	Leu 1675		Gly	Ala	Gly	Glu 1680
15	Pro	Ser	Pro	Glu	Gly 1685		Ser	Pro	Glu	Val 1690		Ile	Val	Arg	Ile 1699	
	Asp	Ala	Thr	Ser 1700		Ala	Gly	His	Ala 1705		Leu	Arg	Asp	Gly 171		Ser
20	Lys	Pro	Thr 1715	Ala 5	Gly	Ser	Leu	Ala 1720	_	Val	Ile	Phe	Thr 172		Gly	Ser
	Thr	Gly 1730	_	Pro	Lys	Gly	Val 1735		Ile	Glu	His	Arg 1740	_	Val	Leu	Arg
25	Leu 1745		Lys	Gln	Thr	Asn 1750		Leu	Ser	Ser	Leu 1755		Pro	Ala	Gln	Thr 1760
	Phe	Arg	Met	Ala	His 1765		Ser	Asn	Leu	Ala 1770		Asp	Ala	Ser	Ile 1775	_
30	Glu	Val	Phe	Thr 1780		Leu	Leu	Asn	Gly 1785	_	Ser	Leu	Val	Cys 1790		Asp
	Arg	Phe	Thr 1795	Ile	Leu	Asp	Ala	Gln 1800		Leu	Glu	Ala	Leu 1805		Leu	Arg
35	Glu	His 1810		Asn	Ile	Ala	Leu 1815		Pro	Pro	Ala	Leu 1820		Lys	Gln	Суз
	Leu 1825		Asp	Ala	Ala	Ala 1830		Ile	Lys	Ser	Leu 1835		Leu	Leu	Tyr	Val 1840
40	Gly	Gly	Asp	Arg	Leu 1845	_	Thr	Ala	Asp	Ala 1850		Leu	Ala	Lys	Ala 1855	
	Val	Lys	Ser	Glu 1860		Tyr	Asn	Ala	Tyr 1865	_	Pro	Thr	Glu	Asn 1870		Val
45	Met	Ser	Thr 1875	Leu	Tyr	Ser	Ile	Ala 1880		Thr	Glu	Arg	Phe 1885		Asn	Gly
	Val	Pro 1890		Gly	Arg	Ala	Val 1895		Asn	Ser	_	Val 1900	_	Val	Met	Asp
50	Gln 1905		Gln	Gln	Leu	Val 1910		Leu	Gly	Val	Met 1915	_	Glu	Leu	Val	Val 1920
	Thr	Gly	Asp	Gly	Leu 1925		Arg	Gly	_	Thr 1930		Pro	Ala	Leu	Asp 1935	
55	Asp	Arg	Phe	Val 1940		Val	Ile	Ala	Arg 1945	_	Gln	Leu	Leu	Arg 1950		Tyr

	Arg	Thr	Gly 195		Arg	Ala	Arg	Tyr 196	_	Pro	Lys	Asp	Gly 196		Val	Glu
5	Phe	Phe 197		Arg	Met	Asp	His 197		Val	Lys	Val	Arg	-	His	Arg	Ile
5 10 15 15 20 25 1 30 1 35 1 40	Glu 198		Ala	Glu	Val	Glu 199		Ala	Leu	Leu	Ser 199		Ala	Gly	Val	His 2000
10	Asp	Ala	Val	Val	Val 200		Asn	Ser	Gln	Glu 201		Asn	Gln	Gly	Val 201	Glu 5
	Met	Val	Ala	Phe 202		Thr	Ala	Gln	Asp 202		Glu	Thr	Leu	Gln 203		Ala
15	Gln	Ser	Ser 203	Asn 5	Gln	Val	Gln	Glu 204		Glu	Ser	His	Phe 204		Thr	Thr
	Ala	Tyr 205		Asp	Ile	Thr	Ala 205		Asp	Gln	Asn	Thr 206		Gly	Arg	Asp
20	Phe 206	Thr 5	Ser	Trp	Thr	Ser 207		Tyr	Asp	Gly	Thr 207		Ile	Asp	Lys	Arg 2080
	Glu	Met	Gln	Glu	Trp 208		Asp	Asp	Thr	Met 209	_	Thr	Phe	Leu	Asp 209	Gly 5
25	Gln	Ala	Ala	Gly 210		Val	Leu	Glu	Ile 210		Thr	Gly	Thr	Gly 211		Val
	Leu	Phe	Asn 2115		Gly	Gln	Ala	Gly 212		Lys	Ser	Tyr	Ile 212	_	Leu	Glu
30	Pro	Ser 2130	Gln)	Ser	Ala	Val	Gln 2135		Val	Asn	Lys	Ala 2140		Gln	Thr	Phe
	Pro 2145	Gly 5	Leu	Glu	Gly	Lys 2150		Gln	Val	His	Val 215		Thr	Ala	Met	Asp 2160
35	Thr	Gly	Arg	Leu	Ser 2165	Ala	Leu	Ser	Pro	Asp 217(Ile	Val	Ile	Asn 2175	
	Val	Ala	Gln	Tyr 2180	Phe	Pro	Ser	Arg	Glu 2185		Leu	Ala	Glu	Val 2190		Glu
40	Ala	Leu	Val 2195	Arg	Ile	Pro	Gly	Val 2200	Arg)	Arg	Ile	Phe	Phe 2205	_	Asp	Met
	Arg	Thr 2210	Tyr)	Ala	Thr	His	Lys 2215	Азр	Phe	Leu	Val	Ala 2220		Ala	Val	His
45	Thr 2225	Asn	Gly	Ser	Lys	Val 2230	Thr	Arg	Ser	Lys	Val 2235		Gln	Glu	Val	Ala 2240
	Arg	Leu	Glu	Glu	Leu 2245	Glu	Glu	Glu	Leu	Leu 2250		Ąsp	Pro	Ala	Phe 2255	
50	Thr	Ser		Lys 2260		Ser	Leu	Ser	Glu 2265		Ile	Glu	His	Val 2270		Ile
	Leu	Pro	Lys 2275	Asn	Met	Lys		Asn 2280	Asn	Glu	Leu	Ser	Ser 2285		Arg	Tyr
55	Gly	Ala 2290	Val	Leu	His	Ile	Arg 2295	Asn	His	Asn	Gln	Asn 2300		Ser	Arg	Ser
	Ile	His	Lys	Ile	Asn	Ala	Glu	Ser	Trp	Ile	Asp	Ph	Ala	Ser	Ser	Gln

	2305	2310	2315	2320
	Met Asp Arg G]	n Gly Leu Ala Arg 2325	Leu Leu Lys Glu Asn Ly 2330	ys Asp Ala 2335
5	Glu Ser Ile Al 23	a Val Phe Asn Ile	Pro Tyr Ser Lys Thr II	le Val Glu 350
	Arg His Ile Al 2355	a Lys Ser Leu Ala 2360	Asp Asp His Asp Gly As 2365	sp Asp Thr
10	His Ser Ser Il 2370	e Asp Gly Val Ala 2375	Trp Ile Ser Ala Ala Ar 2380	rg Glu Lys
	2000	2390	Val His Asp Leu Val Gl 2395	2400
15		2405	Val Ser Trp Ala Arg Gl 2410	2415
	23.	20		30
20	2433	2440	Phe Pro Thr Asp Tyr Ly 2445	
	2450	2455	Pro Leu Gln Arg Val Gla 2460	_
25	- 100	2470	Gln Leu Gln Val Leu Leu 2475	2480
	Tyr Met Ile Pro	Ala Arg Ile Val V 2485	/al Leu Gln Asn Met Pro 2490	O Leu Asn 2495
30	Thr Ser Gly Lys 250	Val Asp Arg Lys G	Slu Leu Thr Leu Arg Ala 2505 251	
	2313	2520	Glu Leu Val Ala Pro Arg 2525	
35	2550	2535	he Lys Asp Val Leu Gly 2540	
		2330	sn Val Gly Gly His Ser 2555	2560
40		2303	er Arg Gln Leu Asn Ala 2570	2575
	2500	2:	ro Val Ile Ala Asp Leu 585 259	0
45	2070	2600	is Asn Pro Ile Leu Pro 2605	
	2010	2015	he Ala Gln Gly Arg Leu 2620	
50		2030	or Trp Tyr Leu Met Pro 2635	2640
		2045	al Ser Ala Leu Ala Ala 2650	2655
55	Leu Ala Leu Glu 2660	Glu Arg His Glu Th 26	er Leu Arg Thr Thr Phe 65 2670	

	Gln	Glu	Gly 267		Gly	Met	Gln	Val 2680		His	Pro	Phe	Ala 268		Lys	Glu
5	Leu	Arg 269		Ile	Asp	Val	Ser 2695	_	Glu	Glu	Glu	Ser 270		Ile	Gln	Lys
	Ile 270		Glu	Lys	Glu	Gln 271		Thr	Pro	Phe	Asn 271		Ala	Ser	Glu	Pro 2720
10	Gly	Phe	Arg	Leu	Ala 2725		Leu	Lys	Thr	Gly 2730		Asp	Glu	His	Ile 273	
	Ser	Thr	Val	Met 2740	His)	His	Ala	Ile	Ser 2745	_	Gly	Trp	Ser	Val 2750	-	Ile
15	Phe	Gln	Gln 2755		Ile	Gly	Gln	Phe 2760		Ser	Ala	Ile	Leu 276	_	Gly	His
	Asp	Pro 2770		Ala	Gln	Ile	Ala 2775		Leu	Ser	Ile	Gln 2780	_	Arg	Asp	Phe
20	Ala 2785		Trp	Gln	Arg	Gln 2790		Phe	Gln	Val	Ala 2795		His	Arg	Arg	Gln 2800
	Leu	Ala	Tyr	Trp	Thr 2805		Gln	Leu	Ala	Asp 2810		Lys	Pro	Ala	Glu 2815	
25	Leu	Thr	Asp	Phe 2820	Lys)	Arg	Pro	Pro	Met 2825		Ser	Gly	Arg	Ala 2830	_	Glu
	Ile	Pro	Val 2835		Val	Asp	Gly	Leu 2840		Tyr	Glu	Lys	Leu 2845		Asp	Phe
30	Суз	Arg 2850		Arg	Gln	Val	Thr 2855		Phe	Thr	Val	Leu 2860		Ala	Ala	Phe
	Arg 2865		Ala	His	Tyr	Arg 2870		Thr	Gly	Thr	Glu 2875	_	Ala	Thr	Ile	Gly 2880
35	Thr	Pro	Ile	Ala	As n 2885		Asn	Arg	Pro	Glu 2890		Glu	Gly	Leu	Ile 2895	_
	Phe	Phe	Val	Asn 2900	Thr	Gln	Суз	Met	Arg 2905		Thr	Val	qsA	Val 2910		Asp
40	Ser	Phe	Glu 2915		Leu	Val	His	Gln 2920		Arg	Glu	Thr	Thr 2925		Ala	Ala
	His	Ala 2930		Gln	Ąsp	Val	Pro 2935		Glu	Gln	Ile	Val 2940		Asn	Ile	Leu
45	Pro 2945		Ser	Ser	Asp	Thr 2950		Arg	Asn		Leu 2955		Gln	Leu	Met	Phe 2960
	Ala	Leu	His	Ser	Gln 2965	Gln	Asn	Leu		Lys 2970		Arg	Leu		Gly 2975	
50	Glu	Glu		Ile 2980	Ilė	Ser	Ile		Glu 2985		Thr	Arg	Phe	Asp 2990		Glu
	Phe		Leu 2995		Gln	Glu		Glu 3000		Leu	Asn		Ser 3005		Val	Tyr
EE	Ala	Ala 3010		Leu	Phe		Pro 3015		Thr	Ile		Ser 3020		Ile	Thr	Ile

	Phe 302!		Gly	Ile	Leu	Gln 3030	_	Gly	Leu	Gly	Glu 303		Asp	Met	Pro	Val 3040
5	Ala	Ser	Met	Ala	Leu 3045	_	Gly	Gly	Leu	Glu 305		Leu	Arg	Ser	Thr 305	_
	Leu	Leu	His	Pro 3060		Gln	Thr	Asp	Tyr 3065		Суз	Asp	Ala	Ser 307		Val
10	Gln	Ile	Phe 3075	_	Gln	Gln	Val	Ala 3080		Asn	Pro	Asp	Val 3085		Ala	Val
	Arg	Asp 3090	Glu)	Ser	Thr	Arg	Leu 3095		Tyr	Ala	Asp	Leu 310(_	Arg	Lys	Ser
15	Asp 3105		Val	Ala	Суз	Trp 3110		Ser	Arg	Arg	Gly 3115		Ala	Pro	Glu	Thr 3120
	Phe	Val	Ala	Ile	Leu 3125		Pro	Arg	Ser	Cys 3130		Thr	Ile	Val	Ala 3135	
20	Leu	Gly	Val	Leu 3140	_	Ala	Asn	Leu	Ala 3145	_	Leu	Pro	Leu	Asp 3150		Asn
	Val	Pro	Ala 3155		Arg	Leu	Glu	Ala 3160		Leu	Ser	Glu	Val 3165		Gly	Ser
25	Met	Leu 3170		Leu	Val	Gly	Ala 3175		Thr	Pro	Ile	Pro 3180		Gly	Met	Ala
	Glu 3185		Glu	Thr	Ile	Arg 3190		Thr	Glu	Ile	Leu 3195		Asp	Ala	Lys	Thr 3200
30	Asp	Asp	Ile	Asn	Gly 3205		Ala	Ala	Ser	Gln 3210		Thr	Ala	Ala	Ser 3215	
	Ala	Tyr	Val	Ile 3220		Thr	Ser	Gly	Ser 3225		Gly	Arg	Pro	Lys 3230	_	Val
35	Met	Val	Glu 3235		Arg	Gly	Ile	Val 3240	_	Leu	Thr	Lys	Gln 3245		Asn	Ile
	Thr	Ser 3250	Lys)	Leu	Pro	Glu	Ser 3255		His	Met	Ala	His 3260		Ser	Asn	Leu
40	Ala 3265		Asp	Ala	Ser	Val 3270	_	Glu	Val	Phe	Thr 3275		Leu	Leu	Asn	Gly 3280
	Gly	Thr	Leu	Val	Cys 3285		qeA	Tyr	Phe	Thr 3290		Leu	Glu	Ser	Thr 3295	
45	Leu	Glu	Lys	Val 3300		Phe	Ąsp	Gln	Arg 3305		Asn	Val	Ala	Leu 3310		Pro
	Pro	Ala	Leu 3315		Lys	Gln	Суз	Leu 3320		Asn	Ser	Pro	Ala 3325		Val	Lys
50	Thr	Leu 3330	Ser	Val	Leu	Tyr	Ile 3335	_	Gly	Asp	Arg	Leu 3340	-	Ala	Ser	Asp
w.	Ala 3345		Lys	Ala	Arg	Gly 3350		Val	Gln	Thr	Gln 3355		Phe	Asn	Ala	Tyr 3360
<i>c</i>	Gly	Pro	Thr	Glu	Asn 3365		Val	Met	Ser	Thr 3370		Tyr	Pro	Ile	Ala 3375	
55	Asp	Pro	Phe	Ile	Asn	Gly	Val	Pro	Ile	Gly	His	Ala	Val	Ser	Asn	Ser

				338	0				338	5				339	0	
	Gly	Ala	Phe 339	Val	Met	ĄsĄ	Gln	Asn 340	Gln 0	Gln	Ile	Thr	9rc 340		Gly	Ala
5	Met	Gly 341	Glu 0	Leu	Ile	Val	Thr 341	Gly 5	Asp	Gly	Leu	Ala 342		Gly	Туг	Thr
	Thr 342	Ser 5	Ser	Leu	Asn	Thr 343	Gly	Arg	Phe	Ile	Asn 343		Asp	Ile	Asp	Gly 3440
10	Glu	Gln	Val	Arg	Ala 344	Tyr 5	Arg	Thr	Gly	Asp 345	Arg 0	Val	Arg	Tyr	Arg 345	Pro 5
	Lys	Asp	Leu	Gln 346	Ile 0	Glu	Phe	Phe	Gly 346	Arg 5	Ile	Asp	His	Gln 347		Lys
15	Ile	Arg	Gly 347	His 5	Arg	Ile	Glu	Pro 348	Ala O	Glu	Val	Glu	Tyr 348		Leu	Leu
	Ser	His 349	Asp 0	Leu	Val	Thr	Asp 349		Ala	Val	Val	Thr 350		Ser	Gln	Glu
20	Asn 350	Gln 5	Asp	Leu	Glu	Met 351	Val 0	Gly	Phe	Val	Ala 351		Arg	Val	Ala	Asp 3520
	Val	Arg	Glu	Asp	Glu 352	Ser 5	Ser	Asn	Gln	Val 353	Gln 0	Glu	Trp	Gln	Thr 353	His 5
25	Phe	Asp	Ser	11e 354	Ala O	Tyr	Ala	Asp	Ile 354		Thr	Ile	Asp	Gln 3550		Ser
	Leu	Gly	Arg 3555	Asp	Phe	Met	Ser	Trp 3560	Thr)	Ser	Met	Tyr	Asp 356		Ser	Leu
30	Ile	Lys 357	Lys)	Ser	Gln	Met	Gln 3575	Glu	Trp	Leu	Ąsp	Asp 3580		Met	Arg	Ser
	Leu 3585	Leu	Asp	Ser	Gln	Pro 359	Pro)	Gly	His	Val	Leu 3595		Val	Gly	Thr	Gly 3600
35	Thr	Gly	Met	Val	Leu 3605	Phe	Asn	Leu	Gly	Arg 3610		Gly	Gly	Leu	Gln 3615	
	Tyr	Val	Gly	Leu 3620	Glu)	Pro	Ser	Pro	Ser 3625	Ala	Thr	Ala	Phe	Val 3630		Lys
40	Ala	Ala	Lys 3635	Ser	Phe	Pro	Gly	Leu 3640	Glu	qeA	Arg	Ile	Arg 3645		Glu	Val
	Gly	Thr 3650	Ala	Thr	Asp	Ile	Asp 3655	Arg	Leu	Gly	Asp	Asp 3660		His	Ala	Gly
45	Leu 3665	Val	Val	Val	Asn	Ser 3670	Val	Ala	Gln	Tyr	Phe 3675		Ser	Gln	Asp	Tyr 3680
	Leu	Ala	Gln	Leu	Val 3685	Arg	Asp	Leu	Thr	L y s 3690		Pro	Gly		Glu 3695	
50	Ile	Phe	Phe	Gly 3700	Asp	Met	Arg	Ser	His 3705	Ala	Ile	Asn	Arg	Asp 3710		Leu
	Val	Ala	Arg 3715	Ala	Val	His	Ala	Leu 3720	Gly	Asp	Lys		Thr 3725		Ala	Glu
55	Ile	Gln 3730	Arg	Glu	Val	Val	Arg 3	Met	Glu	Glu		Glu 3740	qeA	Glu :	Leu	Leu

	Val 374	_	Pro	Ala	Phe	Phe 375(Ser	Leu	Thr	Thr 3755		Val	Glu	Asn	11e 3760
5	Lys	His	Val	Glu	Ile 3765		Pro	Lys	Arg	Met 377	_	Ala	Thr	Asn	Glu 3775	
	Ser	Ser	Tyr	Arg 3780	_	Ala	Ala	Val	Leu 3785		Val	Asn	Asp	Leu 3790		Lys
10	Pro	Ala	His 3795	_	Val	Ser	Pro	Gly 3800		Trp	Val	Asp	Phe 3805		Ala	Thr
	Lys	Met 381	_	Arg	Asp	Ala	Leu 3815		Arg	Leu	Leu	Arg 3820		Thr	Lys	Ile
15	Ser 3825	_	His	Ile	Ala	Ile 3830		Asn	Ile	Pro	Asn 3835		Lys	Thr	Ile	Val 3840
	Glu	Arg	Thr	Ile	Cys 3845		Ser	Val	Tyr	Asp 3850		Gly	Gly	Asp	Ala 3855	
20	Asp	Ser	Asn	Asp 3860	_	Val	Ser	Trp	Leu 3865		Ala	Ala	Arg	Ser 387(_	Ala
	Val	Lys	Val 3875		Ser	Leu	Ser	Ala 3880		Asp	Leu	Val	Asp 3885		Ala	Gln
25	Glu	Ala 3890	_	Phe	Arg	Val	Glu 3895		Ser	Cys	Ala	Arg 3900		Trp	Ser	Gln
	Asn 3905	_	Ala	Leu	Азр	Ala 3910		Phe	His	His	Leu 3915	_	Pro	Ser	Pro	Gln 3920
30	Ser	Ser	His	Val	Leu 3925		Asp	Phe	Leu	Thr 3930		His	Gln	Gly	Arg 3935	
	Glu	Glu	Ala	Leu 3940		Asn	His	Pro	Leu 3945		Arg	Ala	Gln	Ser 3950		Arg
35	Val	Glu	Arg 3955		Ile	Arg	Glu	Arg 3960		Gln	Thr	Leu	Leu 3965		Ala	Tyr
	Met	Ile 3970	Pro)	Ala	Gln	Ile	Met 3975		Leu	Asp	Lys	Leu 3980		Leu	Asn	Ala
40	Asn 3985	_	Lys	Val	qeA	Arg 3990	_	Gln	Leu	Thr	Gln 3995	_	Ala	Gln	Thr	Val 4000
	Pro	Lys	Ala	Lys	Gln 4005		Ser	Ala	Pro	Val 4010		Pro	Arg	Thr	Glu 4015	
45	Glu	Arg	Val	Leu 4020	_	Gln	Glu	Phe	Ser 4025	_	Val	Leu	Gly	Val 4030	_	Ile
	GLy	Ile	Met 4035		neA	Phe	Phe	Asp 4040		Gly	Gly	His	Ser 4045		Met	Ala
50	Thr	Lys 4050	Leu)	Ala	Ala	Arg	Ile 4055		Arg	Arg	Leu	Glu 4060		His	Val	Ser
	Val 4065	_	Glu	Ile	Phe	Asp 4070		Pro	Arg	Val	Cys 4075	-	Leu	Val	Leu	Ile 4080
55	Val	Gln	Gln	Gly	Ser 4085		Pro	His	Asp	Pro. 4090		Val	Ser	Thr	Lys 4095	_

	Thr	Gly	Pro	Val 410		Gln	Ser	Phe	Ala 410		Gly	Arg	J Leu	1 Trp		Leu
5	Asp	Gln	Leu 411		Phe	Gly	Ala	Thr 412		Tyr	Leu	Met	Pro 412		Ala	Val
	Arg	Leu 413	Arg 0	Gly	Ala	Met	Asn 413		His	Ala	Leu	Th:		Ala	Leu	Leu
10	Ala 414	Leu 5	Glu	Arg	Arg	His 415		Leu	Leu	Arg	Thr 415		Phe	Туг	Glu	Gln 4160
	Asn	Gly	Val	Gly	Met 4165		Lys	Val	Asn	Pro 417		Val	Thr	Glu	Thr 417	Leu 5
15	Arg	Ile	Ile	Asp 418	Leu)	Ser	Asn	Gly	Asp 418		Asp	Tyr	Leu	Pro 419		Leu
10	Lys	Lys	Glu 4195	Gln	Thr	Ala	Pro	Phe 4200		Leu	Glu	Thr	Glu 420		Gly	Trp
20	Arg	Val 4210	Ala)	Leu	Leu	Arg	Leu 4215	Gly 5	Pro	Gly	qeA	Tyr 422		Leu	Ser	Val
20	Val 4225	Met 5	His	His	Ile	Ile 4230	Ser	Asp	Gly	Trp	Ser 423		Asp	Val	Leu	Phe 4240
25	Gln	Glu	Leu	Gly	Gln 4245	Phe	Tyr	Ser	Thr	Ala 4250		Lys	Gly	His	Asp 425	
23	Leu	Ser	Gln	Thr 4260	Thr	Pro	Leu	Pro	Ile 4265	His 5	Tyr	Arg	Asp	Phe 427		Leu
20	Trp	Gln	Lys 4275	Lys	Pro	Thr	Gln	Glu 4280		Glu	His	Glu	Arg 428	Gln 5	Leu	Gln
30	Tyr	Trp 4290	Val	Glu	Gln	Leu	Val 4295	Asp	Ser	Ala	Pro	Ala 430		Leu	Leu	Thr
05	Asp 4305	Leu	Pro	Arg	Pro	Ser 4310	Ile	Leu	Ser	Gly	Gln 4315		Gly	Glu	Met	Ser 4320
35	Val	Thr	Ile	Glu	Gly 4325	Ala	Leu	Tyr	Lys	Asn 4330		Glu	Glu	Phe	Cys 4335	-
-	Val	His	Arg	Val. 4340	Thr	Ser	Phe	Val	Val 4345		Leu	Ala	Ala	Leu 4350	_	Ala
40	Ala	His	Tyr 4355	Arg	Leu	Thr	Gly	Ser 4360	Glu	Asp	Ala	Thr	Ile 4365	Gly	Thr	Pro
	Ile	Ala 4370	Asn	Arg	Asn	Arg	Pro 4375	Glu	Leu	Glų	Gln	Ile 4380		Gly	Phe	Phe
45	Val 4385	Asn	Thr	Gln	Суз	Ile 4390	Arg	Ile	Thr		Asn 4395		Asp	Glu	Thr	Phe 4400
	Glu	Ser	Leu	Val	Gln 4405	Gln	Val	Arg		Thr 4410		Thr	Ala	Ala	Phe 4415	
50	His	Gln	Asp	Val 4420	Pro 1	Phe	Glu	Lys	Ile 4425	Val	Ser	Thr	Leu	Leu 4430		Gly
	Ser	Arg	Asp 4435	Ala	Ser i	Arg	Asn	Pro 4440	Leu	Val	Gln	Leu	Met 4445		Ala	Val
55	His	Ser	Gln :	Lys	Asn :	Leu (Gly	Glu :	Leu	Lys	Leu	Glu	Asn	Ala	His	Ser

		445	0				445	5				446	0			
5	Glu 446	Val	. Val	Pro	Thr	Glu 447		Thr	Thr	Arg	Phe 447		Leu	Glu	Phe	His 4480
	Leu	Phe	Gln	Gln	Asp 448		Lys	Leu	Glu	Gly 449		Ile	Leu	Туг	Ser 449	
10	Asp	Leu	Phe	Glu 450	Ala O	Val	Ser	Val	Gln 450		Leu	Leu	Ser	Val 451		Gln
			451	5				452	0				452	5	Ser	
15		453	0				453	5				454	0		Leu	
	454	5				455	0				455	5				Val 4560
20					4569	5				457	0				Ile 457	5
				4580)				458	5				459		
25			459	5				4600)				460	5	Leu	
		461	0				4615	5				4620)		Leu	_
30	4625	5				4630)				4635	5			Ala	4640
					4645	5				4650)				Lys 4655	5
35				4660					4665	5				4670		
			4675	5				4680	1				4685	5	Asp	_
40		4690)				4695	5				4700			Gly	
	4705	•				4710)				4715				Asn	4720
					4725					4730					4735 Asn	
				4740					4745	•				4750		
			4755	•				4760					4765		Gln	_
		4770					4775					4780			Leu	
	4/85					4790					4795					4800
. =					4805		•			4810					4815	

	Arg	Leu	Asp	Ile 4820		Phe	Ala	Ala	Gly 4825	_	Arg	Phe	Ser	Ser 4830		Asp
5	Ala	Leu	Gln 4835	Ala 5	Gln	Arg	Leu	Val 4840	_	Ser	Gly	Val	Phe 4845		Ala	Tyr
	Gly	Pro 485		Glu	Asn	Thr	Ile 4855		Ser	Thr	Ile	Tyr 4860		Val	Ala	Glu
10	Asn 4865	_	Ser	Phe	Val	Asn 4870	_	Val	Pro	Ile	Gly 4875		Ala	Val	Ser	Asn 4880
	Ser	Gly	Ala	Tyr	Ile 4885		Asp	Lys	Asn	Gln 4890		Leu	Val	Pro	Ala 4895	-
15	Val	Met	Gly	Glu 4900		Val	Val	Thr	Gly 4905	•	Gly	Leu	Ala	Arg 4910	_	Tyr
	Met	Asp	Pro 4915	Lys	Leu	Asp	Ala	Asp 4920	_	Phe	Ile	Gln	Leu 4925		Val	Asn
20	Gly	Ser 4930		Gln	Val	Arg	Ala 4935	_	Arg	Thr	Gly	Asp 4940	-	Val	Arg	Tyr
	Arg 4945		Lys	Asp	Phe	Gln 4950		Glu	Phe	Phe	Gly 4955	_	Met	Asp	Gln	Gln 4960
25	Ile	Lys	Ile	Arg	Gly 4965		Arg	Ile	Glu	Pro 4970		Glu	Val	Glu	Gln 4975	
	Phe	Leu	Asn	Asp 4980		Phe	Val	Glu	Asp 4985		Ala	Ile	Val	Ile 4990	_	Thr
30	Pro	Glu	Asn 4995	Gln	Glu	Pro	Glu	Met 5000		Ala	Phe	Val	Thr 5005		Lys	Gly
	qeA	Asn 5010		Ala	Arg	Glu	Glu 5015		Ala	Thr	Thr	Gln 5020		Glu	Gly	Trp
35	Glu 5025		His	Phe	Glu	Gly 5030		Ala	Tyr	Ala	Asn 5035		Glu	Glu	Ile	Glu 5040
	Ser	Glu	Ala	Leu	Gly 5045		Asp	Phe	Met	Gly 5050		Thr	Ser	Met	Tyr 5055	
40	Gly	Thr	Glu	Ile 5060		Lys	Asp	Glu	Met 5065	_	Glu	Trp	Leu	Asn 5070	_	Thr
	Met	Arg	Ser 5075	Leu	Leu	Asp	Gly	Lys 5080		Ala	Gly	Arg	Val 5085		Glu	Val
45	Gly	Thr 5090		Thr	Gly	Met	Ile 5095		Phe	Asn		Gly 5100		Ser	Gln	Gly
	Leu 5105		Arg	Tyr		Gly 5110		Glu	Pro		Pro 5115		Ala	Ala	Glu	Phe 5120
50	Val	Asn	Asn	Ala	Ala 5125		Ser	Phe		Gly 5130	Leu	Ala	Gly	Arg	Ala 5135	
	Val	His		Gly 5140		Ala	Ala	Asp	Val 5145		Thr	Leu		Gly 5150		Thr
55	Ser	Asp	Met 5155	Ala	Val	Ile		Ser 5160		Ala	Gln	_	Phe 5165		Thr	Pro

	Glu	Tyr 5170		Ala	Glu	Thr	Ile 5175	_	Ser	Leu	Val	Gln 5180		Pro	Gly	Met
5	Lys 5185	_	Ile	Tyr	Leu	Gly 5190		Met	Arg	Ser	Trp 5195		Met	Asn	Arg	Asp 5200
	Phe	Ala	Ala	Ala	Arg 5205		Ala	Tyr	Ser	Leu 5210		Asp	Asn	Ala	Ser 5215	_
10	Asp	Arg	Val	Arg 5220	Gln	Lys	Met	Met	Glu 5225		Glu	Glu	Lys	Glu 5230		Glu
	Leu	Leu	Val 5235	_	Pro	Ala	Phe	Phe 5240		Ala	Leu	Ala	Ser 5245		Leu	Gln
15	Asp	Arg 5250		Gln	His	Val	Glu 5255		Leu	Pro	Lys	Arg 5260		Lys	Ala	Thr
	Asn 5265		Leu	Ser	Ser	Tyr 5270	_	Tyr	Ala	Ala	Val 5275		His	Ile	Ser	Asp 5280
20	Glu	Pro	Leu	Pro	Ile 5285	_	Lys	Ile	Asp	Pro 5290		Ala	Trp	Ile	Asn 5295	
	Glu	Gly	Ser	Arg 5300	Leu)	Thr	Arg	Glu	Ala 5305		Ala	Gln	Val	Leu 5310	_	Glu
25	Asn	Glu	Asn 5315		Glu	Ser	Val	Ala 5320		Ser	Asn	Ile	Pro 5325		Ser	Lys
	Thr	Val 5330		Glu	Arg	His	Ile 5335		Arg	Ser	Leu	Asp 5340		Glu	qeA	Ala
30	Asn 5345		Pro	Glu	Glu	Ser 5350		Asp	Gly	Ser	Asp 5355	_	Ile	Ser	Ala	Val 5360
	Arg	Thr	Arg	Ala	Gln 5365		Cys	His	Thr	Leu 5370		Ala	Ser	Asp	Leu 5375	
35	Asp	Ile	Ala	Glu 5380	qeA	Ala	Gly	Phe	Arg 5385		Glu	Val	Ser	Trp 5390		Arg
	Gln	His	Ser 5395		His	Gly	Ala	Leu 5400	-	Ala	Val	Phe	His 5405		Leu	Lys
40	Pro	Ala 5410		Glu	Asp	Ser	Arg 5415		Leu	Ile	Lys	Phe 5420		Thr	Asp	His
	Gln 5425	_	Arg	Pro	Leu	Lys 5430		Leu	Thr	Asn	Gln 5435		Leu	Leu	Pro	Ala 5440
45	Gln	Ser	Arg	Arg	Ala 5445		Leu	Leu	Ile	Arg 5450		Gly	Leu	Gln	Thr 5455	
45	Leu	Pro	Pro	Tyr 5460	Met	Ile	Pro	Ser	Gln 5465		Thr	Leu	Ile	Asp 5470	_	Met
_	Pro	Leu	Asn 5475		Asn	Gly	Lys	Val 5480	_	Arg	Arg	Glu	Leu 5485		Arg	Arg
50	Ala	Lys 5490		Thr	Gln	Lys	Ser 5495	_	Pro	Val	Glu	Asp 5500		Val	Pro	Pro
	Arg 5505		Ser	Val	Glu	Ala 5510		Val	Суз	Lys	Gl y 5515		Thr	Asp	Val	Leu 5520
5 5	Gly	Val	Glu	Val	Gly	Ile	Thr	Asp	Asn	Phe	Phe	Asn	Leu	Gly	Gly	His

					5525	5				5530)				5535	5
	Ser	Leu	Met	Ala 5540		Lys	Leu	Ala	Ala 5545	_	Leu	Gly	Arg	Gln 5550		Asn
5	Thr	Arg	Ile 5555		Val	Arg	Asp	Val 5560		Asp	Gln	Pro	Val 5565		Ala	Asp
	Leu	Ala 5570		Val	Ile	Gln	Arg 5575		Ser	Ala	Pro	His 5580	Glu)	Pro	Ile	Lys
10	Pro 5585		Asp	Tyr	Thr	Gl y 5590		Val	Pro	Gln	Ser 5595		Ala	Gln	Gly	Arg 5600
	Leu	Trp	Phe	Leu	Asp 5605		Leu	Asn	Val	Gly 561(Thr	Trp	Tyr	Leu 561	
15	Pro	Leu	Gly	Ile 5620	_	Leu	His	Gly	Ser 5625		Arg	Val	Asp	Ala 5630		Ala
	Thr	Ala	Ile 5635		Ala	Leu	Glu	Gln 5640	-	His	Glu	Pro	Leu 5645	_	Thr	Thr
20	Phe	His 5650		Glu	Asp	Gly	Val 5655	_	Val	Gln	Val	Val 5660	Gln)	Asp	His	Arg
	Pro 5665		qeA	Leu	Arg	Ile 5670	Ile)	Asp	Leu	Ser	Thr 5675	Gln	Pro	Lys	Asp	Ala 5680
25	Tyr	Leu	Ala	Val	Leu 5685	_	His	Glu	Gln	Thr 5690		Leu	Phe	Asp	Leu 5695	
	Thr	Glu	Pro	Gly 5700	_	Arg	Val	Ala	Leu 5705		Arg	Leu	Gly	Glu 5710		Glu
30	His	Ile	Leu 5715		Ile	Val	Met	His 5720		Ile	Ile	Ser	Asp 5725	_	Trp	Ser
	Val	Glu 5730		Leu	Phe	Asp	Glu 5735		His	Arg	Phe	Tyr 5740	Ser	Ser	Ala	Leu
35	Arg 5745		Gln	Ąsp	Pro	Met 5750		Gln	Ile	Leu	Pro 5755		Pro	Ile	Gln	Tyr 5760
	Arg	qsA	Phe	Ala	Ala 5765	-	Gln	Lys	Thr	Glu 5770		Gln	Val	Ala	Glu 5775	
40	Gln	Arg	Gln	Leu 5780	_	Tyr	Trp	Thr	Glu 5785		Leu	Ala	qeA	Ser 5790		Pro
	Ala	Glu	Leu 5795		Thr	qeA	Leu	Pro 5800		Pro	Ser	Ile	Leu 5805		Gly	Arg
45	Ala	Asn 5810		Leu	Pro	Leu	Thr 5815		Glu	Gly	Arg	Leu 5820	His)	Asp	Lys	Leu
	Arg 5825		Phe	Суз	Arg	Val 5830		Gln	Ala	Thr	Pro 5835		Val	Ile	Leu	Leu 5840
50	Ala	Ala	Leu	Arg	Ala 5845		His	Tyr	Arg	Leu 5850		Gly	Ala	Glu	Asp 5855	
	Thr	Leu	Gly	Thr 5860		Ile	Ala	Asn	Arg 5865		Arg	Pro	Glu	Leu 5870		Asn
55	Met	Ile	Gly 5875		Phe	Val	Asn	Thr 5880		Суз	Met	Arg	Ile 5885		Ile	Glu

	Glu	589	n Asp 0	Asn	Phe	Glu	Ser 589	Leu 5	Val	. Arg	Arg	Val 590		Ser	Thr	Ala
5	Thr 590	Ser 5	Ala	Phe	Ala	Asn 591	Gln 0	Asp	Val	. Pro	Phe 591		Ser	Ile	Val	Ser 5920
	Ser	Leu	Leu	Pro	Gly 592	Ser 5	Arg	Asp	Ala	Ser 593		Asn	Pro	Leu	Val 593	Gln 5
10	Val	Ile	. Leu	Ala 594	Val 0	His	Ser	Gln	Gln 594	Asp 5	Leu	Gly	Lys	Leu 595		Leu
	Glu	Gly	Leu 595	Arg 5	Asp	Glu	Ala	Val 596	Asp 0	Ser	Ala	Ile	Ser 596		Arg	Phe
15	Asp	Val 597	Glu 0	Phe	His	Leu	Phe 597	Glu 5	His	Ala	Asp	Arg 598		Ser	Gly	Ser
	Val 598	Leu 5	Tyr	Ala	Lys	Glu 599	Leu 0	Phe	Lys	Leu	Arg 599		Ile	Glu	Ser	Val 6000
20	Val	Ser	Val	Phe	Leu 600	Glu 5	Thr	Leu	Arg	Arg 601		Leu	Asp	Gln	Pro 601	
	Thr	Pro	Leu	Ala 6020	Val	Leu	Pro	Leu	Thr 602	Asp 5	Gly	Val	Gly	Glu 6030		Ala
25	Ser	Lys	Gly 603	Leu 5	Leu	Asp	Val	Pro 6040	Arg	Thr	Asp	Tyr	Pro 6045		Asp	Ala
	Asn	11e 605	Val 0	Glu	Val	Phe	Gln 605	Gln 5	His	Val	Arg	Ala 6060		Pro	Asp	Ala
30	Ile 606	Ala 5	Val	Lys	Asp	Ala 6070	Thr)	Ser	Ile	Leu	Thr 6075	Tyr	Ala	Gln	Leu	Asp 6080
	Gln	Gln	Ser	Asp	Arg 6085	Leu	Ala	Ile	Trp	Leu 6090		Arg	Arg	His	Met 6095	
35	Pro	Glu	Thr	Leu 6100	Val	Gly	Val	Leu	Ala 6105	Pro	Arg	Ser	Суз	Glu 6110		Ile
	Ile	Ala	Met 6115	Phe	Gly	Ile	Met	Lys 6120	Ala	Asn	Leu	Ala	Tyr 6125	Leu	Pro	Leu
40	Asp	Ile 6130	Asn)	Ser	Pro	Ala	Ala 6135	Arg	Leu	Arg	Ser	Ile 6140		Ser	Ala	Val
	Asp 6145	Gly	Asn	Lys	Leu	Val 6150	Leu	Leu	Gly	Ser	Gly 6155		Thr	Ala	Pro	Glu 6160
45	Gln	Glu	Asn	Pro	Glu 6165	Val	Glu	Ala	Val	Gly 6170		Gln	Glu		Leu 6175	
	Gly	Thr	Gly	Leu 6180	Asp	Lys	Thr	Gln	Gly 6185	Ser	Asn .	Ala .		Pro :	Ser	Ala
50	Thr	Ser	Leu 6195	Ala	Tyr	Val	Ile	Phe 6200	Thr	Ser	Gly		Thr 6205	Gly 1	L y s	Pro
	Lys	Gly 6210	Val	Met	Val (Glu	His 6215	Arg	Ser	Val		Arg :	Leu /	Ala 1	Lys :	Pro
55	Ser 6225	Asn	Val	Ile	Ser :	Lys 6230	Leu	Pro (Gln (Ala 2 6235	Arg '	Val 1	Ala E		Leu 6240
~ -																

	Ala	a Asr	ı Ile	e Ala	Phe 624	Asp 5) Ala	Ser	: Ile	625		Ile	Ala	Thr	625	Leu 5
5	Leu	Asr	ı Gly	Ala 626	Thr	Lev	val	Cys	626		Tyr	His	Thr	Val 627		Asp
	Cys	Arg	Thr 627	Leu 5	Lys	Glu	Val	Phe 628		Arg	, Glu	Ser	Ile 628		Val	Val
10	Thr	Leu 629	Met 0	Pro	Ala	Leu	Leu 629	L y s 5	Gln	C y s	. Val	Ala 630		Ile	Pro	Glu
	Thr 630	Leu 5	Ala	His	Leu	Asp 631	Leu 0	Leu	Tyr	Thr	Gly 631		Asp	Arg	Val	Gly 6320
15	Gly	His	Asp	Ala	Met 632	Arg 5	Ala	Arg	Ser	Leu 633	Val	Lys	Ile	Gly	Met 633	Phe 5
	Ser	Gly	Tyr	Gly 634	Pro 0	Thr	Glu	Asn	Thr 634		Ile	Ser	Thr	Ile 635	_	Glu
20	Val	Asp	Ala 635	Asp 5	Glu	Met	Phe	Val 636	Asn 0	Gly	Val	Pro	Ile 636		Lys	Thr
	Val	Ser 637	Asn 0	Ser	Gly	Ala	Tyr 637	Val 5	Met	Asp	Arg	Asn 638		Gln	Leu	Val
25	Pro 638	Ser 5	Gly	Val	Val	Gly 639	Glu 0	Leu	Val	Val	Thr 639	Gly	Asp	Gly	Leu	Ala 6400
	Arg	Gly	Tyr	Thr	Asp 6405	Pro 5	Ser	Leu	Asn	Lys 641	Asn 0	Arg	Phe	Ile	Tyr 641	
30	Thr	Val	Asn	Gly 6420	Glu)	Ser	Ile	Arg	Ala 642	Tyr 5	Arg	Thr	Gly	Asp 6430		Val
	Arg	Tyr	Arg 643	Pro 5	His	Asp	Leu	Gln 644	lle)	Glu	Phe	Phe	Gly 644		Met	Asp
35	Gln	Gln 645	Val O	Lys	Ile	Arg	Gly 6455	His	Arg	Ile	Glu	Pro 6460		Glu	Val	Glu
	Ser 6465	Ala	Leu	Leu	Ser	His 647(Asn)	Ser	Val	Gln	Asp 6475		Ala	Val	Val	Ile 6480
40	Cys	Ala	Pro	Ala	Asp 6485	Gln	Asp	Ser	Gly	Ala 6490	Glu)	Met	Val	Ala	Phe 6495	
•	Ala	Ala	Arg	Asn 6500	Thr	Glu	Asp	Glu	Asp 6505	Thr	Gln	Glu	Glu	Glu 6510		Val
45	Asp	Gln	Val 6515	Gln	Gly	Trp	Glu	Thr 6520	His	Phe	Glu	Thr	Al a 6525		Tyr	Ser
45	Glu	Val 6530	Lys)	Asp	Ile	Arg	Gln 6535	Ser	Glu	Val		Asn 6540		Phe	Met	Gly
	Trp 6545	Thr	Ser	Met	Tyr	Asp 6550	Gly	Ser	Glu	Ile	Asp 6555	Lys	Thr	Asp	Met	His 6560
50	Glu	Trp	Leu	Asn	Asp 6565	Thr	Met	Arg	Met	Ile 6570		Asp	Ala		Glu 6575	
	Gly	His	Val	Leu 6580	Glu	Ile	Gly	Thr	Gly 6585	Thr	Gly i	Met '	Val	Met 6590	Phe	Asn
55	Leu .	Ala	Lys	Cys	Pro	Gly	Leu	Gln	Gly	Tyr	Val (Gly 1	Phe	Glu :	Pro	Ser

			6595	5				660	D				660	5		
5	Lys	Ser 6610		Ala	Gln	Phe	Val 661		Asp	Ala	Ala	Gln 662		Phe	Pro	Ala
	Leu 6625		Asp	Gly	Arg	Ser 6630		Val	His	Val	Gly 663		Ala	Thr	Asp	Ile 6640
10	Asn	Lys	Ala	Gly	Pro 6645		Gln	Pro	Arg	Leu 6650		Val	Ile	Asn	Ser 6655	
	Ala	Gln	Tyr	Phe 6660		Thr	Pro	Glu	Tyr 6665		Phe	Arg	Val	Val 6670		Ala
15	Leu	Val	Gln 6675		Pro	Ser	Val	Glu 6680	_	Ile	Val	Phe	Gly 668	•	Met	Arg
	Thr	Asn 6690		Ile	Asn	Arg	Asp 6695		Val	Ala	Ser	Arg 6700		Leu	His	Thr
20	Leu 6705	_	Glu	Lys	Ala	Asn 6710	_	Arg	Leu	Val	Arg 6715		Met	Ile	Tyr	Glu 6720
	Leu	Glu	Ala	Asn	Glu 6725		Glu	Leu	Leu	Thr 6730		Pro	Ala	Phe	Phe 6735	
25		Leu		6740	1				6745	5	_			6750)	
	Pro	Lys	Thr 6755		Lys	Ala	Thr	Asn 6760		Leu	Ser	Lys	Tyr 6765	_	Tyr	Ala
30	Ala	Val 6770		His	Val	Arg	Gly 6775		Arg	Glu	Gln	Ser 6780		Ile	His	Gln
<i></i>	Val 6785	Ser	Pro	Asn	Ala	Trp 6790		Asp	Phe	Ala	Ala 6795	_	Gly	Leu	Asp	Arg 6800
35		Thr			6805	•				6810)			_	6815	•
30		Ile		6820					6825	5				6830	1	
40			6835					6840				_	6845	5		
40		Gly 6850					6855	•				6860	1			_
	6865					6870					6875					6880
45		Gln			6885					6890					6895	
		Asp .		6900					6905	•				6910		
50			6915					6920					6925			
		Thr 6930					6935					6940				
55	Gln 6945	Ile /	Arg (Glu :	Lys	Leu 6950	Gln	Thr	Leu		Pro 6955		Tyr	Met		Pro 6960

	Ser	Arg	, Ile	e Met	Val 696	Leu 5	Asp	Glr	Met	Pro 697		Asn	Asn	Asn	Gly 697	Lys 5
5	Ile	Asp	Arg	698	Glu 0	Leu	Val	. Arg	Arg 698	, Ala 15	Ile	Val	Ala	Pro 699		Pro
	Arg	Ser	Ala 699	Ala 5	Thr	Arg	Val	Ala 700	Pro	Arg	Asn	Glu	Ile 700		Ala	Ile
10	Leu	Arg 701	Asp 0	Glu	Phe	Glu	701	Val 5	Leu	Gly	Thr	Glu 702		Ser	Val	Leu
	Asp 702	Asn 5	Phe	Phe	Asp	Leu 703	Gly 0	Gly	His	Ser	Leu 703		Ala	Thr	Lys	Leu 7040
15	Ala	Ala	Arg	Val	Ser 704	Arg 5	Arg	Leu	Asp	Ala 705	His O	Ile	Ser	Ile	Lys 705	Asp 5
	Val	Phe	Asp	Gln 706	Pro 0	Val	Leu	Ala	Asp 706	Leu 5	Ala	Ala	Ser	Ile 707		Arg
20	Glu	Ser	Ala 707	Pro 5	His	Glu	Pro	Ile 708	Pro 0	Gln	Arg	Pro	Tyr 708		Gly	Pro
	Ala	Glu 709	Gln 0	Ser	Phe	Ala	Gln 709	Gly 5	Arg	Leu	Trp	Phe 710		Asp	Gln	Leu
25	Asn 7105	Leu	Gly	Ala	Thr	Trp 7110	Tyr 0	Leu	Met	Pro	Leu 7115		Ile	Arg	Ile	Arg 7120
	Gly	Gln	Leu	Arg	Val 7125	Ala	Ala	Leu	Ser	Ala 7130		Leu	Phe	Ala	Leu 7135	
30	Arg	Arg	His	Glu 714	Thr)	Leu	Arg	Thr	Thr 714	Phe 5	Glu	Glu	Ser	Asp 7150	_	Val
	Gly	Val	Gln 715	Ile	Val	Gly	Glu	Ala 7160	Arg	Asn	Ser	Asp	Leu 7165		Val	His
35	qeA	Val 7170	Ser)	Thr	Gly	Asp	Asp 7175	Gly	Glu	Tyr	Leu	Glu 7180		Leu	Arg	Arg
	Glu 7185	Gln	Thr	Val	Pro	Phe 7190	Asp)	Leu	Ser	Ser	Glu 7195		Gly	Trp	Arg	Val 7200
40	Суз	Leu	Val	Lys	Thr 7205	Gly	Glu	Glu	Asp	His 7210	Val	Leu	Ser	Ile	Val 7215	
	His	His	Ile	Ile 7220	Tyr	Asp	Gly	Trp	Ser 7225	Val	Азр	Ile	Leu	Arg 7230		Glu
45	Leu	Gly	Gln 7235	Phe	Tyr	Ser	Ala	Ala 7240	Leu	Arg	Gly		Asp 7245		Leu	Leu
	His	Ala 7250	Asn	Pro	Leu	Pro	Ile 7255	Gln	Tyr	Arg	Asp	Phe 7260	Ala	Ala	Trp	Gln
50	Arg (7265	Glu	Ala	Lys	Gln	Val 7270	Glu	Glu	His		Arg (Gln	Leu	Gly		Trp 7280
	Ser	Lys	Gln	Leu	Val 7285	Asp	Ser	Thr	Pro	Ala 7290	Glu :	Leu :	Leu		Asp : 7295	Leu
55	Pro 1	Arg 1	Pro	Ser 7300	Ile :	Leu	Ser	Gly	Arg . 7305	Ala (Gly :	Ser '		Asp '	Val '	Thr

	Il	e Gl	u Gly 73	y Sei 15	val	l Tyr	Gly	7 Ala 732	a Leu 20	Glr	ı Sei	Phe	2 Cy:		Th:	Arg
5	Se	r Va 73	1 Th:	r Thr	Phe	e Val	Va]	L Lei 35	ı Lev	Thi	· Val	Phe 734		J Ile	e Ala	a His
	Phe 734	a Ar 45	g Lei	ı Thr	Ala	Val 735	Asp 0	Asp	Ala	Thr	735		Th	r Pro	Ile	Ala 7360
10	Ası	n Ar	g Asr	n Arg	736	Glu 55	Leu	Glu	1 Thr	Leu 737		Gly	y Cys	Phe	Val 737	. Asn 5
	Thi	Glı	n Cys	738	Arg	Ile	Ser	Ile	Ala 738	Asp 5	Asp	Asp) Asr	Phe 739		Gly
15	Lev	va:	1 Arg 739	Gln	Val	Arg	Asn	Val 740	Ala 0	Thr	Ala	Ala	Ty:		Asn	Gln
	ĄsĄ	741	l Pro lO	Phe	Glu	Arg	Ile 741	Val	Ser	Ala	Leu	Val 742		Gly	Ser	Arg
20	Asn 742	Thi	: Ser	Arg	Asn	Pro 743	Leu 0	Val	Gln	Leu	Met 743		Ala	Val	Gln	Ser 7440
	Val	. Glu	a Asp	Tyr	Asp 744	Gln 5	Val	Arg	Leu	Glu 745	Gl y 0	Leu	Glu	Ser	Val 745	
25	Met	Pro	Gly	Glu 746	Ala 0	Ser	Thr	Arg	Phe 746	Asp 5	Met	Glu	Phe	His 747	Leu 0	Val
	Pro	Gly	747	Gln 5	Lys	Leu	Thr	Gly 748	Ser 0	Val	Leu	Tyr	Ser 748		Asp	Leu
30	Phe	Glu 749	Gln 0	Gly	Thr	Ile	Gln 749	Asn 5	Phe	Val	Asp	Ile 750		Gln	Glu	Суз
	Leu 750	Arg 5	Ser	Val	Leu	Asp 751	Gln)	Pro	Leu	Thr	Pro 751	Ile 5	Ser	Val	Leu	Pro 7520
35	Phe	Ser	Asn	Ala	Ile 7525	Ser 5	Asn	Leu	Glu	Ser 7530	Leu)	qeA	Leu	Leu	Glu 7535	
	Pro	Thr	Ser	Asp 754(Tyr)	Pro	Arg	Asp	Arg 7545	Thr	Val	Val	Asp	Leu 755(Arg
40	Glu	Gln	Ala 755	Ala 5	Ile	Суз	Pro	Asp 7560	Ser	Ile	Ala	Val	Lys 756		Ser	Ser
	Ser	Gln 757	Leu 0	Thr	Tyr	Ala	Gln 7575	Leu	Asp	Glu	Gln	Ser 7580		Arg	Val	Ala
45	Ala 7585	Trp	Leu	His	Glu	Arg 7590	His	Met	Pro	Ala	Glu 7595	Ser	Leu	Val	Gly	Val 7600
	Leu	Ser	Pro	Arg	Ser 7605	Cys	Glu	Thr	Ile	Ile 7610	Ala	Tyr	Phe	Gly	Ile 7615	
50	Lys	Ala	Asn	Leu 7620	Ala	Tyr	Leu	Pro	Leu 7625	Asp	Val	Tyr	Ala	Pro 7630		Ala
•	Arg	Leu	Ala 7635	Ala	Ile	Leu	Asp	Thr 7640	Val	Glu	Gly	Glu	Arg 7645	Leu	Leu	Leu
<i>55</i>	Leu	Gly 7650	Ala	Gly	Val	Pro	Gln 7655	Pro	Gly	Ile	Gln	Ile 7660	Pro	Arg	Leu	Ser
55	Thr	Ala	Tyr	Ile	Ala	Glu .	Ala	Leu	Ser	His	Ala	Thr	Thr	Val	Asn '	Va 1

	766	5				767	0				767	5				7680
5	Thr	Ser	Ile	Pro	Gln 768		Ser	Ala	Thr	Ser 769		Ala	Tyr	. Val	11e 769	Phe 5
	Thr	Ser	Gly	Ser 770	Thr 0	Gly	Lys	Pro	Lys 770		v Val	Met	Ile	Glu 771		Arg
10	Gly	Ile	Val 771	Arg 5	Leu	Val	Arg	Asp 772		Asn	Val	Asn	Val 772		Pro	Glu
	Ser	Gly 773	Ser 0	Ala	Leu	Pro	Val 773		His	Phe	Ser	Asn 774		Ala	Trp	Asp
15	Ala 774	Ala 5	Thr	Trp	Glu	11e 775		Thr	Ala	Val	Leu 775		Gly	Gly	Thr	Val 7760
	Val	Cys	Ile	Asp	Arg 7765		Thr	Met	Leu	Asp 777		Ala	Ala	Leu	Asn 777	
20	Thr	Phe	Arg	Lys 778(Glu)	Asn	Val	Arg	Ala 778		Phe	Phe	Thr	Pro 779		Phe
20	Leu	Lys	Gln 779	Cys 5	Leu	Ala	Glu	Thr 780		Glu	Leu	Val	Ala 780		Leu	Glu
25	Ile	Leu 781	His O	Thr	Ala	Gly	Asp 781	Arg 5	Leu	Asp	Pro	Gly 782	Asp 0	Ala	Asn	Leu
23	Ala 782	Gly 5	Lys	Thr	Ala	Lys 7830		Gly	Ile	Phe	As n 783		Leu	Gly	His	Thr 7840
	Glu	Asn	Thr	Ala	Tyr 7845	Ser	Thr	Phe	Tyr	Pro 785		Val	Gly	Glu	Glu 785	
30	Phe	Val	Asn	Gly 7860	Val	Pro	Val	Gly	Arg 7865	Gly	Ile	Ser	Asn	Ser 787		Ala
	Tyr	Ile	Ile 7875	Asp	Arg	His	Gln	Lys 7880		Val	Pro	Ala	Gly 7885		Met	Gly
35	Glu	Leu 789(Ile	Leu	Thr	Gly	Asp 7895		Val	Ala	Arg	Gly 7900		Thr	Asp	Ser
	Ala 7905	Leu	Asn	Lys	Asp	Arg 7910	Phe	Val	Tyr	Ile	Asp 7915		Asn	Gly	Lys	Ser 7920
40	Thr	Trp	Ser	Туг	Arg 7925	Thr	Gly	Ąsp	Lys	Ala 7930		Tyr	Arg	Pro	Arg 7935	
	Gly	Gln	Leu	Glu 7940	Phe	Phe	Gly	Arg	Met 7945	Asp	Gln	Met	Val	Lys 7950		Arg
45	Gly	Val	Arg 7955	Ile	Glu	Pro	Gly	Glu 7960		Glu	Leu	Thr	Leu 7965		Asp	His
	Lys	Ser 7970	Val	Leu	Ala	Ala	Thr 7975	Val	Val	Val	Arg	Arg 7980		Pro	Asn	Gly '
50	Asp 7985	Pro	Glu	Met	Ile	Ala 7990	Phe	Ile	Thr	Ile	Asp 7995		Glu	Asp	Asp	Val 8000
	Gln	Thr	His	Lys	Ala 8005	Ile	Tyr	Lys		Leu 8010		Gly	Ile		Pro 8015	
55	Tyr	Met	Ile	Pro 8020	Ser	His	Leu		Ile 8025		Asp	Gln		Pro 8030		Thr

	Asp	Asn	Gly 803	Lys 5	Val	Asp	Arg	Lys 804	Asp 0	Leu	Ala	Lev	Arg 804		Gln	Thr
5	Val	Gln 805	Lys 0	Arg	Arg	Ser	Thr 805	Ala 5	Ala	Arg	Val	Pro 806		Arg	Asp	Glu
	Val 806	Glu 5	Ala	Val	Leu	Cys 807	Glu 0	Glu	Tyr	Ser	Asn 807		Leu	Glu	Val	Glu 8080
10	Val	Gly	Ile	Thr	qeA !808	Gly 5	Phe	Phe	Asp	Leu 809		Gly	His	Ser	Leu 809	Leu 5
	Ala	Thr	Lys	Leu 810	Ala O	Ala	Arg	Leu	Ser 810	Arg 5	Gln	Leu	Asn	Thr 811		Val
15	Ser	Val	Lys 811	qeA 5	Val	Phe	Asp	Gln 812	Pro 0	Ile	Leu	Ala	Asp 812		Ala	Asp
	Ile	Ile 8130	Arg	Arg	Gly	Ser	His 813	Arg 5	His	Asp	Pro	Ile 814		Ala	Thr	Pro
20	Tyr 814	Thr 5	Gly	Pro	Val	Glu 815(Gln)	Ser	Phe	Ala	Gln 815		Arg	Leu	Trp	Phe 8160
	Leu	Glu	Gln	Leu	Asn 8165	Leu	Gly	Ala	Ser	Trp 817	Tyr 0	Leu	Met	Pro	Phe 817	
25	Ile	Arg	Met	Arg 8180	Gly	Pro	Leu	Gln	Thr 818	Lys 5	Ala	Leu	Ala	Val 8190		Leu
	Asn	Ala	Leu 8195	Val	His	Arg	His	Glu 8200	Ala)	Leu	Arg	Thr	Thr 8205		Glu	Asp
30	His	Asp 8210	Gly	Val	Gly	Val	Gln 8215	Val	Ile	Gln	Pro	Lys 822		Ser	Gln	Asp
	Leu 8225	Arg	Ile	Ile	Asp	Leu 8230	Ser	qeA	Ala	Val	Asp 8235		Thr	Ala	Tyr	Leu 8240
35	Ala	Ala	Leu	Lys	Arg 8245	Glu	Gln	Thr	Thr	Ala 8250		Asp	Leu	Thr	Ser 8255	
	Pro	Gly	Trp	Arg 8260	Val	Ser	Leu	Leu	Arg 8265	Leu	Gly	Asp	Asp	Asp 8270		Ile
40	Leu	Ser	Ile 8275	Val .	Met 1	His	His	Ile 8280	Ile	Ser	qeA	Gly	Trp 8285		Val	Asp
	Val	Leu 8290	Arg	Gln (Glu :	Leu	Gl y 8295	Gln	Phe	Tyr	Ser	Ala 8300		Ile	Arg	Gly
45	Gln 8305	Glu :	Pro	Leu	Ser (Gln 8310	Ala	Lys	Ser	Leu	Pro 8315		Gln	Tyr	_	Asp 8320
	Phe	Ala	Val	Trp	Gln <i>1</i> 8325	Arg (Gln	Glu	Asn	Gln 8330	Ile	Lys	Glu		Ala 8335	
50	Gln	Leu :	Lys '	Tyr '	Trp S	Ser (Gln	Gln	Leu 8345	Ala	Asp	Ser		Pro 8350	Cys	Glu
	Phe :	Leu '	Thr 2 8355	Asp 1	Leu I	Pro A	Arg 1	Pro 8360	Ser	Ile	Leu		Gly 8365	Glu /	Ala .	Asp
55	Ala	Val 1 8370	Pro 1	Met V	/al 1	lle i	Asp (Gly '	Thr	Val		Gln 8380	Leu :	Leu '	Thr i	Asp

	Phe 838	Cys	a Arg	J Thi	His	83!	n Val 90	. Thr	Ser	Phe	839	• Va]	l Lei	ı Lev	a Ala	8400
5	Phe	e Arç	Thr	Ala	His 840	Ty 1	r Arg	r Leu	Thr	Gly 841		Lev	a Asp	Ala	Th: 841	val
	Gly	Thr	Pro	842	Ala 0	Asr	n Arg	Asn	Arg 842	Pro	Glu	Leu	ı Glu	Gly 843		ı Ile
10	Gly	Phe	Phe 843	Val	. Asn	Thi	Gln	Cys 844	Met 0	Arg	Met	Ala	11e 844		Glu	Thr
	Glu	Thr 845	Phe 0	Glu	Ser	Leu	Val 845	Gln 5	Gln	Val	Arg	Leu 846		Thr	Thr	Glu
15	Ala 846	Phe 5	Ala	Asn	Gln	Asp 847	Val	Pro	Phe	Glu	Gln 847		Val	Ser	Thr	Leu 8480
	Leu	Pro	Gly	Ser	Arg 848	Asp 5	Thr	Ser	Arg	Asn 849		Leu	Val	Gln	Val 849	Met 5
20	Phe	Ala	Leu	Gln 850	Ser 0	Gln	Gln	Asp	Leu 850	Gly 5	Arg	Ile	Gln	Leu 851		Gly
	Met	Thr	Asp 851	Glu 5	Ala	Leu	Glu	Thr 852	Pro 0	Leu	Ser	Thr	Arg 852		Asp	Leu
25	Glu	Val 853	His O	Leu	Phe	Gln	Glu 853	Val 5	Gly	Lys	Leu	Ser 854		Ser	Leu	Leu
	Tyr 854	Ser 5	Thr	Asp	Leu	Phe 855	Glu O	Val	Glu	Thr	Ile 8555		Gly	Ile	Val	Asp 8560
30	Val	Phe	Leu	Glu	Ile 856	Leu 5	Arg	Arg	Gly	Leu 8570		Gln	Pro	Lys	Gln 857	_
	Leu	Met	Ala	Met 858	Pro 0	Ile	Thr	Asp	Gly 858		Thr	Lys	Leu	Arg 859	-	Gln
35	Gly	Leu	Leu 8595	Thr 5	Val	Ala	Lys	Pro 8600	Ala	Tyr	Pro	Arg	Glu 860		Ser	Val
	Ile	Asp 8610	Leu)	Phe	Arg	Gln	Gln 8615	Val	Ala	Ala	Ala	Pro 8620		Ala	Ile	Ala
40	Val 8625	Trp	Asp	Ser	Ser	Ser 863	Thr	Leu	Thr	Tyr	Ala 8635	Asp	Leu	Asp	Gly	Gln 8640
	Ser	Asn	Lys	Leu	Ala 8645	His	Trp	Leu	Суз	Gln 8650		Asn	Met	Ala	Pro 8655	
45	Thr	Leu	Val	Ala 8660	Val	Phe	Ala	Pro	Arg 8665	Ser	Суз	Leu	Thr	Ile 8670		Ala
	Phe	Leu	Gly 8675	Val	Leu	Lys	Ala	Asn 8680	Leu	Ala	Tyr	Leu	Pro 8685		Asp	Val
50	Asn	Ala 8690	Pro	Ala	Ala	Arg	Ile 8695	Glu	Ala	Ile		Ser 8700		Val	Pro	Gly
	His 8705	Lys	Leu	Val	Leu	Val 8710	Gln)	Ala	His		Pro 8715	Glu	Leu	Gly	Leu	Thr 8720
55	Met	Ala	Asp	Thr	Glu 8725	Leu	Val	Gln	Ile	Asp 8730	Glu .	Ala	Leu		Ser 8735	
	Ser	Ser	Gly	Asp	His	Glu	Gln	Ile	His	Ala	Ser (Gly	Pro	Thr	Ala	Thr

				874	0				874	5				875	0	
_	Ser	Leu	Ala 875		Val	Met	Phe	Thr 876		Gly	Ser	Thr	Gly 876	_	Pro	Lys
5	Gly	Val 877		Ile	Asp	His	Arg 877		Ile	Ile	Arg	Leu 878		Lys	Asn	Ser
	Asp 8785		Val	Ala	Thr	Leu 879		Thr	Pro	Val	Arg 879		Ala	Asn	Val	Ser 8800
10	Asn	Leu	Ala	Phe	Asp 980		Ser	Val	Gln	Glu 881		Tyr	Thr	Ala	Leu 881	Leu 5
	Asn	Gly	Gly	Thr 882		Val	Суз	Leu	Asp 882		Leu	Thr	Leu	Leu 883	_	Ser
15	Lys	Ile	Leu 8835	_	Asn	Val	Phe	Val 884		Ala	Gln	Val	Asn 884		Ala	Met
	Phe	Thr 8850		Val	Leu	Leu	Lys 8855		Суз	Leu	Gly	Asn 886		Pro	Ala	Ile
20	Ile 8865	Ser	Arg	Leu	Ser	Val 887	Leu 0	Phe	Asn	Val	Gly 887		Arg	Leu	qeA	Ala 8880
	His	Asp	Ala	Val	Ala 8885	Ala	Ser	Gly	Leu	Ile 8890	Gln	Asp	Ala	Val	Tyr 889	Asn
25	Ala	Tyr	Gly	Pro 8900		Glu	Asn	Gly	Met 8905		Ser	Thr	Met	Tyr 8910	_	Val
	Asp	Val	Asn 8915		Pro	Phe	Val	Asn 8920		Val	Pro	Ile	Gly 8925	_	Ser	Ile
30	Thr	Asn 8930		Gly	Ala	Tyr	Val 8935		Asp	Gly	Asn	Gln 8940		Leu	Val	Ser
	Pro 8945		Val	Met	Gly	Glu 8950	Ile)	Val	Val	Thr	Gly 8955		Gly	Leu	Ala	Arg 8960
35	Gly	Tyr	Thr	qsA	Ser 8965		Leu	qeÆ	Glu	Asp 8970	-	Phe	Val	His	Val 8975	
	Ile	Asp		Glu 8980		Asn	Ile	Lys	Ala 8985		Arg	Thr	Gly	Asp 8990		Val
40	Arg	Tyr	Arg 8995		Lys	Asp	Phe	Glu 9000		Glu	Phe	Phe	Gly 9005		Met	Asp
	Gln	Gln 9010		Lys	Ile	Arg	Gly 9015		Arg	Ile	Glu	Pro 9020		Glu	Val	Glu
45	His 9025		Leu	Leu	Gly	His 9030	Asp)	Leu	Val		Asp 9035		Ala	Val	Val	Leu 9040
	Arg	Lys	Pro	Ala	Asn 9045		Glu	Pro	Glu	Met 9050		Ala	Phe	Ile	Thr 9055	
50	Gln	Glu	Asp	Glu 9060	Thr	Ile	Glu	Gln	His 9065		Ser	Asn	Lys	Gln 9070		Gln
	Gly	Trp	Gly 9075	Glu	His	Phe		Val 9080		Arg	Tyr		Asp 9085		Lys	Asp
55	Leu	Asp 9090	Thr	Ser	Thr	Phe	Gly 9095		Asp	Phe	Leu	Gly 9100		Thr	Ser	Met

	Tyr 9105	-	Gly	Val	Asp	Ile 9110		Val	Asn	Glu	Met 9115		Glu	Trp	Leu	9120
5	Glu	Thr	Thr	Ala	Ser 9125	Leu	Leu	qeA	Asn	Arg 9130	Pro	Pro	Gly	His	Ile 9135	Leu
	Glu	Ile	Gly	Ala 9140		Thr	Gly	Met	Ile 9145		Ser	Asn	Leu	Gly 9150		Val
10	Asp	Gly	Leu 9155		Lys	Tyr	Val	Gly 9160		Asp	Pro	Ala	Pro 9165		Ala	Ala
	Ile	Phe 9170		Asn	Glu	Ala	Val 9175		Ser	Leu	Pro	Ser 9180		Ala	Gly	Lys
15	Ala 9185	_	Val	Leu	Val	Gly 9190		Ala	Leu	Asp	Ile 9195		Ser	Leu	Asp	Lys 9200
	Asn	Glu	Ile	Gln	Pro 9205	Glu	Leu	Val	Val	Ile 9210		Ser	Val	Ala	Gln 9215	
20	Phe	Pro	Thr	Ser 9220		Tyr	Leu	Ile	Lys 9225		Val	Lys	Ala	Val 9230		Glu
	Val	Pro	Ser 9235		Lys	Arg	Val	Phe 9240		Gly	Asp	Ile	Arg 9245		Gln	Ala
25	Leu	Asn 9250		Asp	Phe	Leu	Ala 9255		Arg	Ala	Val	Arg 9260		Leu	Gly	Asp
	Asn 9265		Ser	Lys	Glu	Gln 9270		Arg	Glu	Lys	Ile 9275		Glu	Leu	Glu	Glu 9280
30	Ser	Glu	Glu	Glu	Leu 9285	Leu	Val	Asp	Pro	Ala 9290		Phe	Val	Ser	Leu 9295	
	Ser	Gln	Leu	Pro 9300		Ile	Lys	His	Val 9305		Val	Leu	Pro	Lys 9310		Met
35	Lys	Ala	Thr 9315		Glu	Leu	Ser	Ser 9320	-	Arg	Tyr	Ala	Ala 9325		Leu	His
	Ile	Ser 9330		Asn	Glu	Glu	Glu 9335		Leu	Leu	Ile	Gln 9340		Ile	qsA	Pro
40	Thr 9345		Trp	Val	qzA	Phe 9350		Ala	Thr	Gln	Lys 9355	_	Ser	Gln	Gly	Leu 9360
	Arg	Asn	Leu	Leu	Gln 9365	Gln	Gly	Arg	Asp	Asp 9370		Met	Ile	Ala	Val 9375	_
45	Asn	Ile	Pro	Tyr 9380		Lys	Thr	Ile	Val 9385		Arg	His	Ile	Met 9390		Ser
	Leu	qeA	Gln 9395	Asp	His	Val	Asn	Ser 9400	Leu	qeA	Gly	Thr	Ser 9405	Trp	Ile	Ser
50	qeA	Ala 9410	_	Ser	Ala	Ala	Ala 9415		Суз	Thr	Ser	Phe 9420	-	Ala	Pro	Ala
	Leu 9425		Gln	Leu	Ala	Lys 9430		Glu	Gly	Phe	Arg 9435		Glu	Leu	Ser	Trp 9440
55	Ala	Arg	Gln	Arg	Ser 9445	Gln	Asn	Gly	Ala	Leu 9450	_	Ala	Val	Phe	His 9455	_

	Lei	u Ala	a Thi	940	Ala 50	ne <i>A</i>	ı Cys	s Glı	94		c Arg	y Val	l Lei	u Val 947		s Phe
5	Pro	o Thi	947	His	Gln	Gly	Arg	g Gl: 948	n Lei 30	u Arg	g Thr	Lev	Th:		Arg	g Pro
	Leu	3 Glr 949	n Arg	, Ala	Gln	Ser	949	y Arq 95	j Ile	e Glu	ser	Glr 950		l Phe	Glu	a Ala
10	Let 950	ı Glr)5	1 Thr	Ala	Leu	Pro 951	Ala .0	Туг	Met	: Ile	Pro 951		Arg	J Ile	: Ile	Val 9520
	Leu	Pro	Gln	Met	Pro 952	Thr 5	Asn	Ala	Asr	n Gly 953	Lys 0	Val	. Asp	Arg	Lys 953	Gln
15	Leu	Ala	Arg	Arg 954	Ala 0	Gln	Val	Val	. Ala	Lys 15	Arg	Lys	Ala	Val 955		Ala
	Arg	val	Ala 955	Pro	Arg	Asn	Азр	Thr 956	Glu 0	Ile	Val	Leu	Cys 956		Glu	Tyr
20	Ala	Азр 957	lle 0	Leu	Gly	Thr	Glu 957	Val	Gly	Ile	Thr	Asp 958		Phe	Phe	Asp
	Met 958	Gly 5	Gly	His	Ser	Leu 959	Met 0	Ala	Thr	Lys	Leu 959	Ala 5	Ala	Arg	Leu	Ser 9600
25	Arg	Arg	Leu	Asp	Thr 960	Arg 5	Val	Thr	Val	Lys 961		Val	Phe	Ąsp	Lys 961	Pro 5
	Val	Leu	Ala	Asp 962	Leu 0	Ala	Ala	Ser	Ile 962	Glu 5	Gln	Gly	Ser	Thr 963		His
30	Leu	Pro	11e 963	Ala 5	Ser	Ser	Val	Tyr 964	Ser 0	Gly	Pro	Val	Glu 964		Ser	Tyr
	Ala	Gln 965	Gly 0	Arg	Leu	Trp	Phe 965	Leu 5	Asp	Gln	Phe	Asn 9660		Asn	Ala	Thr
35	Trp 966	Tyr 5	His	Met	Ser	Leu 9670	Ala)	Met	Arg	Leu	Leu 9675	Gly 5	Pro	Leu	Asn	Met 9680
	Asp	Ala	Leu	Asp	Val 9685	Ala	Leu	Arg	Ala	Leu 9690	Glu)	Gln	Arg	His	Glu 969	
40	Leu	Arg	Thr	Thr 9700	Phe	Glu	Ala	Gln	Lys 970	Asp 5	Ile	Gly	Val	Gln 9710		Val
4 0	His	Glu	Ala 9715	Gly 5	Met	Lys	Arg	Leu 9720	Lys)	Val	Leu	qeA	Leu 9725	Ser	Asp	Lys
45	Asn	Glu 9730	Lys)	Glu	His	Met	Ala 9735	Val	Leu	Glu	Asn	Glu 9740		Met	Arg	Pro
45	Phe 9745	Thr	Leu	Ala	Ser	Glu 9750	Pro	Gly	Trp	Lys	Gl y 9755	His	Leu	Ala	Arg	Leu 9760
	Gly	Pro	Thr	Glu	Tyr 9765	Ile	Leu	Ser	Leu	Val 9770	Met	His	His	Met	Phe 9775	
50	Asp	Gly	Trp	Ser 9780	Val	Asp	Ile	Leu	Arg 9785	Gln	Glu	Leu	Gly	Gln 9790		Tyr
	Ser	Ala	Ala 9795	Leu	Arg (Gly	Arg	Asp 9800	Pro	Leu	Ser		Val 9805		Pro	Leu
55	Pro	Ile	Gln	Tyr	Arg	Asp	Phe	Ala	Ala	Trp	Gln :	Lys	Glu	Ala .	Ala	Gln

	9810		9815	9820	
_	Val Ala Glu 9825	His Glu Arg 983		Tyr Trp Glu Asn 9835	Gln Leu Ala 9840
5	Asp Ser Thi	Pro Gly Glu 9845	Leu Leu Thr	Asp Phe Pro Arg 9850	Pro Gln Phe 9855
	Leu Ser Gly	Lys Ala Gly 9860	Val Ile Pro 986	Val Thr Ile Glu 5	Gly Pro Val 9870
10	Tyr Glu Lys	-	Phe Ser Lys 9880	Glu Arg Gln Val 988	
	Ser Val Leu 9890	Leu Thr Ala	Phe Arg Ala 9895	Thr His Phe Arg	Leu Thr Gly
15	Ala Glu Asp 9905	Ala Thr Ile	_	Ile Ala Asn Arg 9915	Asn Arg Pro 9920
	Glu Leu Glu	His Ile Ile 9925	Gly Phe Phe	Val Asn Thr Gln 9930	Cys Met Arg 9935
20	Leu Leu Leu	Asp Thr Gly 9940	Ser Thr Phe	Glu Ser Leu Val	Gln His Val 9950
	Arg Ser Val	_	Ala Tyr Ser 9960	Asn Gln Asp Ile 996	
25	Arg Ile Val	. Ser Ala Leu	Leu Pro Gly 9975	Ser Arg Asp Ala 9980	Ser Arg Ser
	Pro Leu Ile 9985	Gln Leu Met 9990		His Ser Gln Pro 9995	Asp Leu Gly 10000
30	Asn Ile Thr	Leu Glu Gly 10005	Leu Glu His	Glu Arg Leu Pro 10010	Thr Ser Val 10015
	Ala Thr Arg	Phe Asp Met 10020	Glu Phe His	Leu Phe Gln Glu	Pro Asn Lys 10030
35	Leu Ser Gly		Phe Ala Asp 10040	Glu Leu Phe Gln	
	Ile Asn Ser 10050	Val Val Thr	Val Phe Gln 10055	Glu Ile Leu Arg 10060	Arg Gly Leu
40	Asp Gln Pro	Gln Val Ser 1007		Met Pro Leu Thr 10075	Asp Gly Leu 10080
	Ile Asp Leu	Glu Lys Leu 10085	Gly Leu Leu	Glu Ile Glu Ser 10090	Ser Asn Phe 10095
45	Pro Arg Asp	Tyr Ser Val	Val Asp Val	Phe Arg Gln Gln	Val Ala Ala 10110
	Asn Pro Asn 101		Val Val Asp 10120	Ser Glu Thr Ser	
50	Thr Ser Leu 10130	Asp Gln Lys	Ser Glu Gln 10135	Ile Ala Ala Trp 10140	Leu His Ala
	Gln Gly Leu 10145	Arg Pro Glu 1015		Cys Val Met Ala 10155	Pro Arg Ser 10160
55	Phe Glu Thr	Ile Val Ser 10165		Ile Leu Lys Ala 10170	Gly Tyr Ala 10175

	Tyr	Leu	Pro	Leu 101		Val	Asn	Ser	Pro 101		Ala	Arg	Ile	Gln 101		Ile
5	Leu	Ser	Glu 101	Val 95	Glu	Gly	Lys	Arg 102		val	. Leu	Leu	Gly 102		Gly	Ile
	Asp	Met 102	Pro 10	Gln	Ser	Asp	Arg 102	Met 15	Asp	Val	. Glu	Thr 102		Arg	Ile	Gln
10	Asp 102	Ile 25	Leu	Thr	Asn	Thr 102	Lys 30	Val	Glu	Arg	Ser 102		Pro	Met	Ser	Arg 10240
	Pro	Ser	Ala	Thr	Ser 102	Leu 45	Ala	Tyr	Val	Ile 102		Thr	Ser	Gly	Ser 102	Thr 55
15	Gly	Arg	Pro	Lys 102	Gly 60	Val	Met	Ile	Glu 102		Arg	Asn	Ile	Leu 102	_	Leu
	Val	Lys	Gln 102	Ser 75	Asn	Val	Thr	Ser 102	Gln 80	Leu	Pro	Gln	Asp 102		Arg	Met
20	Ala	His 102	Ile 90	Ser	Asn	Leu	Ala 102	Phe 95	Asp	Ala	Ser	Ile 103		Glu	Ile	Phe
	Thr 1030	Ala 05	Ile	Leu	Asn	Gly 103	Gly Gly	Ala	Leu	Ile	Cys 103		Asp	Tyr	Phe	Thr 10320
25	Leu	Leu	Asp	Ser	Gln 1032	Ala 25	Leu	Arg	Thr	Thr 103	Phe 30	Glu	Lys	Ala	Arg 103:	
	Asn	Ala	Thr	Leu 1034	Phe 10	Ala	Pro	Ala	Leu 103		Lys	Glu	Суз	Leu 103		His
30	Ala	Pro	Thr 1035	Leu 55	Phe	Glu	Asp	Leu 103		Val	Leu	Tyr	Ile 103		Gly	Asp
	Arg	Leu 1037	Asp 70	Ala	Thr	Asp	Ala 1037		Lys	Ile	Gln	Ala 1038		Val	Lys	Gly
35	Thr 1038	Val	Tyr	Asn	Ala	Tyr 1039	Gly 0	Pro	Thr	Glu	Asn 1039		Val	Met	Ser	Thr 10400
	Ile	Tyr	Arg	Leu	Thr 1040	Asp 5	Gly	Glu	Ser	Tyr 1041	Ala LO	Asn	Gly	Val	Pro 1041	
40	Gly	Asn	Ala	Val 1042	Ser 0	Ser	Ser	Gly	Ala 1042		Ile	Met	Asp	Gln 1043	_	Gln
	Arg	Leu	Val 1043	Pro 5	Pro	Gly	Val	Met 1044	Gly 0	Glu	Leu	Val	Val 1044		Gly	Asp
45	Gly	Leu 1045	Ala 0	Arg	Gly	Tyr	Thr 1045	Asn 5	Ser	Thr	Leu	Asn 1046		Asp	Arg	Phe
	Val 1046	Asp 5	Ile	Val	Ile	Asn 1047	Asp 0	Gln	Lys	Ala	Arg 1047		Tyr	Arg	Thr	Gly 10480
50	Asp	Arg	Thr	Arg	Tyr 1048	Arg 5	Pro	Lys	Asp	Gly 1049		Ile	Glu	Phe	Phe 1049	_
	Arg	Met	Asp	Gln 1050	Gln 0	Val	Lys		Arg 1050		His	Arg		Glu 1051		Ala
55	Glu	Val	Glu 1051	Gln 5	Ala	Met	Leu	Gly 1052	Asn 0	Lys	Ala		His 1052		Ala	Ala

	Va	l Va 10	1 Va 530	l Gl	n Ala	a Val	105	61 ₅ 535	y Gl	n Gl	u Th	r Glu 10	u Met 540	t Ile	Gly	y Phe
5	Va. 10	1 Se 545	r Me	t Ala	a Sei	Asp 105	Arc	g Phe	e Se:	r Gl	u Gl	y Gl: 555	ı Glu	ı Glu	Ile	Thr 10560
	Ası	n Gl	n Val	l Glr	1 Glu 105	Trp	Glu	a Asp	His	B Pho 10:	e Gli 570	u Sei	Th:	c Ala	Ty:	Ala 75
10	Gly	y Ile	e Glu	105	Ile 80	e Asp	Gln	Ala	Th:	r Lei 585	u Gly	y Arg	y Asp	Phe 105		Ser
	Trp	Th:	Ser 105	r Met 595	Tyr	: Asn	Gly	Asn 106	Let 100	ı Ile	e Asp	Lys	Ala 106		Met	Glu
15	Glu	Trp 106	Leu 510	ı Asp	Asp	Thr	Met 106	Gln 15	Ser	Let	ı Lev	106	Lys 20	Glu	Asp	Ala
	Arg 106	Pro 25	суз	3 Ala	Glu	Ile 106	Gly 30	Thr	Gly	Thi	Gly 106	Met	Val	Leu	Phe	Asn 10640
20	Leu	Pro	Lys	Asn	106	Gly 45	Leu	Glu	Ser	Tyr 106	.Val	Gly	Ile	Glu	Pro 106	
				106	60				106	65				Phe 1067	70	-
25			TOP	/5				106	80				106			
		100	90				T068	95				107	00	Ser		
30	107	05				10/1	LO				107	15		Ser		10720
					10/2	25				107	30			Met	1073	35
35				10/4	10				1074	45				Tyr 1075	0	
			1073	00				1076	50				1076			
40		107	70				10/7	5				1078	0	Phe		
***	1070	,,				10/9	U				1079	95		Ile		10800
4-					1080	5				1081	.0				1081	5
45				1002	U				1082	5				Tyr (0	
			1003	3				1084	U				1084			
50		1000	U				1085	5				1086	0	Arg /		
	1000	J				109/(J				1087	5		Thr 1	;	10880
55	Glu .	Arg	His	Phe '	Thr !	Thr S	Ser 1	Leu 1	Asp '	Thr	Glu (Glv (Glu (Glv T	le z	Ma

					108	85				108	90				108	95
5	Gln	Asp	Ser	Leu 109	Asp	Gly	Ser	Ala	Trp		Ser	Ala	Thr	Lys 109		Met
•	Ala	Ala	Arg 109	Суз 15	Pro	Суз	Leu	Ser 109		Thr	Glu	Leu	Val 109		Ile	Gly
10	Gln	Ala 109	Ala 30	Gly	Phe	Arg	Val 109	. Glu 35	Val	Ser	Trp	Ala 109		Gln	Arg	Ser
	Gln 109	His 45	Gly	Ala	Leu	109	Val 50	. Val	Phe	His	His 109		Glu	qeA	Asp	Arg 10960
15	Val	Gly	Arg	Val	Leu 109		Asn	Phe	Pro	Thr 109		Phe	Glu	Arg	Leu 109	
	Pro	Ser	Thr	Gly 109	Leu 80	Thr	Ser	Arg	Pro 109		Gln	Arg	Ile	Gln 109		Arg
20	Arg	Phe	Glu 109	Ser 95	Gln	Ile	Arg	Glu 110	Gln 00	Leu	Gln	Thr	Leu 110		Pro	Pro
	Tyr	Met 110	Val 10	Pro	Ser	Arg	Ile 110	Val 15	Val	Leu	Glu	Arg 110		Pro	Leu	Asn
25	Ala 1102	Asn 25	Ser	Lys	Val	Asp 110	Arg 30	L y s	Glu	Leu	Ala 110		Lys	Ala	Arg	Thr 11040
	Leu	Gln	Thr	Ile	Lys 110		Ser	Ala	Thr	Arg 110		Ala	Pro	Arg	Asn 1105	_
30	Ile	Glu	Ala	Val 110	Leu 60	Суз	Asp	Glu	Phe 110		Ala	Val	Leu	Gly 110		Thr
SU	Val	Gly	Val 1107	Met 75	Asp	Asn	Phe	Phe 1108	Glu 30	Leu	Gly	Gly	His 110		Leu	Met
05	Ala	Thr 110	Lys 90	Leu	Ala	Ala	Arg 110	Leu 95	Ser	Arg	Arg	Leu 1110		Thr	Arg	Val
35	Ser 1110	Val)5	Lys	Asp	Ile	Phe 1111	Asn L0	Gln	Pro	Ile	Leu 111:		Asp	Leu	Ala	Asp 11120
	Val	Val	Gln	Thr	Gly 1112	Ser 25	Ala	Pro	His	Glu 1113		Ile	Pro	Ser	Thr 1113	
40	Tyr	Ser	Gly	Pro 1114	Val 10	Glu	Gln	Ser	Phe 1114		Gln	Gly	Arg	Leu 1115	•	Phe
	Leu	Азр	Gln 1115	Leu 5	Asn	Leu	Asn	Ala 1116		Trp	Tyr	His	Met 1116		Leu	Ala
45	Ser	Arg 1117	Leu 70	Arg	Gly	Pro	Leu 1117	Arg 75	Ile	Glu	Ala	Leu 1118		Ser	Ala	Leu
	Ala 1118	Thr 5	Ile	Glu	Ala	Arg 1119	His O	Glu	Ser	Leu	Arg 1119		Thr	Phe		Glu 11200
50	Gln	Asp	Gly	Val	Pro 1120	Val	Gln	Ile	Val	Arg 1121		Ala	Arg	Asn	Lys 1121	
				1122	20				1122	5				1123	0	
55	Leu	Lys	Gln 1123	Glu 5	Gln	Asp	Ala	Ala 1124	Phe 0	Asp	Leu	Thr	Ala 1124		Pro (Gly

	Trp	Arg 1125		Ala	Leu	Leu	Arg 1125		Gly	Pro	Asp	Asp 112	His 60	Val	Leu	Ser
5	Ile 1126		Met	His	His	Ile 1127		Ser	Азр	Gly	Trp 112		Val	Asp	Ile	Leu 11280
	Arg	Gln	Glu	Leu	Gly 1128		Leu	Tyr	Ser	Asn 1129		Ser	Ser	Gln	Pro 1129	
10	Pro	Leu	Pro	Ile 1130		Tyr	Arg	Asp	Phe 1130		Ile	Trp	Gln	Lys 1131		Asp
	Ser	Gln	Ile 1131		Glu	His	Gln	Lys 1132		Leu	Asn	Tyr	Trp 1132	_	Arg	Gln
15	Leu	Val 1133		Ser	Lys	Pro	Ala 1133		Leu	Leu	Ala	Asp 1134	Phe 10	Thr	Arg	Pro
	Lys 1134		Leu	Ser	Gly	Asp 1135		Ąsp	Val	Ile	Pro 1135		Glu	Ile	Asp	Asp 11360
20	Gln	Val	Tyr	Gln	Asn 1136		Arg	Ser	Phe	Cys 1137	_	Ala	Arg	His	Val 1137	
	Ser	Phe	Val	Ala 1138		Leu	Ala	Ala	Phe 1138	-	Ala	Ala	His	Tyr 1139	_	Leu
25	Thr	Gly	Ala 1139		qeA	Ala	Thr	Ile 1140		Ser	Pro	Ile	Ala 1140		Arg	Asn
	Arg	Pro 1141		Leu	Glu	Gly	Leu 1141		Gly	Суз	Phe	Val 1142	Asn 20	Thr	Gln	Cys
30	Leu 1142	_	Ile	Pro	Val	Lys 1143		Glu	Asp	Thr	Phe 1143	-	Thr	Leu	Val	Lys 11440
	Gln	Ala	Arg	Glu	Thr 1144		Thr	Glu	Ala	Gln 1145	_	Asn	Gln	Asp	Val 1145	
35	Phe	Glu	Arg	Ile 1146		Ser	Ser	Met	Val 1146		Ser	Ser	Arg	Asp 1147		Ser
	Arg	Asn	Pro 1147		Val	Gln	Val	Met 1148		Ala	Val	His	Ser 1148		His	Asp
40	Leu	Gly 1149		Ile	Arg	Leu	Glu 1149	_	Val	Glu	Gly	Lys 1150	Pro	Val	Ser	Met
	Ala 1150		Ser	Thr	Arg	Phe 1151		Ala	Glu	Met	His 1151		Phe	Glu	Asp	Gln 11520
45	Gly	Met	Leu	Gly	Gly 1152		Val	Val	Phe	Ser 1153	_	Asp	Leu	Phe	Glu 1153	
	Glu	Thr	Ile	Arg 1154		Val	Val	Ala	Val 1154		Gln	Glu	Thr	Leu 1155	_	Arg
50	Gly	Leu	Ala 1155		Pro	His	Ala	Asn 1156		Ala	Thr	Leu	Pro 1156		Thr	Asp
	Gly	Leu 1157		Ser	Leu		Ser 1157		Cys	Leu	Gln	Val 1158	Asn 0	Gln	Pro	Asp
55	Tyr 1158		Arg	Asp	Ala	Ser 1159		Ile	Asp	Val	Phe 1159	_	Glu	Gln	Val	Ala 11600
- A- J																

	Ser	: Ile	Pro	Lys	Ser 116	Ile 05	Ala	Val	Ile	116		Ser	Ser	Gln	116	Thr 15
5	Tyr	Thr	Glu	Leu 116	A sp 20	Glu	Arg	Ser	Ser 116		Leu	Ala	Thr	Trp		Arg
	Arg	Gln	Val	Thr 35	Val	Pro	Glu	Glu 116		Val	Gly	Val	Leu 116		Pro	Arg
10	Ser	Cys 116		Thr	Ile	Ile	Ala 116		Leu	Gly	Ile	Ile 116		Ala	Asn	Leu
	Ala 116		Leu	Pro	Leu	Asp 116		Asn	Ala	Pro	Ala 116		Arg	Ile	Glu	Thr 11680
15	Ile	Leu	Ser	Ser	Leu 116		Gly	Asn	Arg	Leu 116		Leu	Leu	Gly	Ser 116	-
	Thr	Gln	Ala	Val 117		Leu	His	Ala	Asn 117		Val	Arg	Phe	Thr 117	_	Ile
20	Ser	Asp	Ala 117	Leu 15	Val	Glu	Ser	Gly 117		Pro	Pro	Thr	Glu 117		Leu	Ser
	Thr	Arg 117	Pro 30	Thr	Ala	Gln	Ser 117		Ala	Tyr	Val	Met 117		Thr	Ser	Gly
<i>2</i> 5	Ser 117	Thr 45	Gly	Val	Pro	Lys 117	Gly 50	Val	Met	Val	Glu 1175		Arg	Gly	Ile	Thr 11760
	Arg	Leu	Val	Lys	Asn 1176	Ser 65	Asn	Val	Val	Ala 117		Gln	Pro	Ala	Ala 117	
30	Ala	Ile	Ala	His 1178	Leu 80	Ser	Asn	Ile	Ala 1178		Asp	Ala	Ser	Ser 117		Glu
	Ile	Tyr	Ala 117	Pro 95	Leu	Leu	Asn	Gly 118		Thr	Val	Val	Cys 118		Asp	Tyr
35	Tyr	Thr 1181	Thr 10	Ile	Asp	Ile	Lys 118:		Leu	Glu	Ala	Val 1182		Lys	Gln	His
	His 1182	Ile 25	Arg	Gly	Ala	Met 1183	Leu 30	Pro	Pro	Ala	Leu 1183		Lys	Gln	Суз	Leu 11840
40	Val	Ser	Ala	Pro	Thr 1184	Met 5	Ile	Ser	Ser	Leu 1185		Ile	Leu	Phe	Ala 1185	
	Gly	Asp	Arg	Leu 1186	Ser 0	Ser	Gln	Asp	Ala 1186		Leu	Ala	Arg	Arg 1187		Val
45	Gly	Ser	Gly 1187	Val 75	Tyr	Asn	Ala	Tyr 1188	Gly 0	Pro	Thr	Glu	Asn 1188		Val	Leu
•	Ser	Thr 1189	Ile 0	His	Asn	Ile	Gly 1189		Asn	Glu	Ala	Phe 1190		Asn	Gly	Val
50	Pro 1190	Ile 5	Gly	Asn	Ala	Val 1191	Ser 0	Asn	Ser	Gly	Ala 1191		Val	Met	Asp	Gln 11920
50	Asn	Gln	Gln	Leu	Val 1192		Ala	Gly		Ile 1193		Glu	Leu	Val	Val 1193	
	Gly	Asp	Gly	Leu 1194	Ala O	Arg	Gly	Tyr	Thr 1194		Ser	Lys	Leu	Arg 1195		Asp
55	Arg	Phe	Ile	Tyr	Ile	Thr	Leu	Asp	Gly	Asn	Arg	Val	Arg	Ala	Tyr	Arg

		119	55				119	60				119	65		
_		ly Asp 1970	Arg '	Val	Arg	His 119	_	Pro	Lys	Asp	Gly 119		Ile	Glu	Phe
5	Phe G 11985	ly Arg	Met i	_	Gln 1199		Ile	Lys	Ile	Arg 119	-	His	Arg	Ile	Glu 12000
	Pro A	la Glu		Glu 1200		Ala	Leu	Ala	Arg 120	_	Pro	Ala	Ile	Ser 120	_
10	Ser A	la Val	Ile :		Gln	Leu	Thr	Asp 1202		Glu	Glu	Pro	Glu 120		Val
	Ala Pl	he Phe 120:		Leu	Lys	Gly	Asn 120		Asn	Gly	Thr	Asn 1204	-	Val	Asn
15	_	al Ser 2050	Asp (Gln	Glu	Lys 1205		Asp	Gly	Asp	Glu 120		His	Ala	Leu
	Leu Me 12065	et Glu	Asn l	_	Ile 1207	_	His	Asn	Leu	Gln 1207		Leu	Leu	Pro	Thr 12080
20	Tyr Me	et Ile		Ser 1208		Ile	Ile	His	Val 1209		Gln	Leu	Pro	Val 1209	
	Ala As	sn Gly	Lys 1		Asp	Arg	Asn	Glu 1210		Ala	Val	Arg	Ala 121		Ala
25	Thr P	ro Arg 1211		Ser	Ser	Val	Ser 1212		Tyr	Val	Ala	Pro 1212	_	Asn	Азр
		lu Thr 2130	Ile 1	Ile (Суз	Lys 1213		Phe	Ala	Asp	Ile 1214		Ser	Val	Arg
30	Val G1 12145	ly Ile	Thr A		Asn 1215		Phe	qeA	Leu	Gly 1215	_	His	Ser	Leu	Ile 12160
	Ala Ti	hr Lys		Ala 1216		Arg	Leu	Ser	Arg 1217	_	Leu	Asp	Thr	Arg 1217	
35	Ser Va	al Arg	Asp V		Phe	Asp	Thr	Pro 1218		Val	Gly	Gln	Leu 1219		Ala
	Ser I	le Gln 1219		Gly :	Ser	Thr	Pro 1220		Glu	Ala	Ile	Pro 1220		Leu	Ser
40		er Gly 2210	Pro V	Val (Gln 1221		Phe	Ala	Gln	Gly 1222		Leu	Trp	Phe
	Leu As 12225	sp Arg	Phe A		Leu 1223		Ala	Ala	Trp	Tyr 1223		Met	Pro	Phe	Gly 12240
45	Val Ar	rg Leu		3ly 1 1224:		Leu	Arg	Val	Asp 1225		Leu	Gln	Thr	Ala 1225	
	Arg Al	la Leu	Glu 6 12260		Arg	His	Glu	Leu 1226		Arg	Thr	Thr	Phe 1227		Glu
50	Gln As	3p Gly 1227		Sly !	Met	Gln	Ile 1228		His	Ser	Pro	Arg 1228		Arg	Asp
		ys Val 2290	Val A	lsp :		Ser 1229		Ala	Asn	Glu	Asp 1230		Ala	Lys	Leu
5 5	Lys G1 12305	lu Glu	Gln G		Ala 1231		Phe	Asn	Leu	Ser 1231		Glu	Val		Trp 12320

	Arg	Va l	. Ala	a Leu	Phe 123	Lys 325	a Ala	a Gly	y Glu	123	His	His	s Ile	e Lei		Ile 335
5	Val	Met	. His	123	Ile 340	: Ile	s Se	r Asp	Gl ₃ 123	7 Trp 345	Ser	Va]	L As _I	123		Gln
	Gln	Glu	Leu 123	a Ala 855	Gln	Phe	туз	Ser 123	Val	Ala	Val	Arg	Gly 123		a Asp	Pro
10	Leu	Ser 123	Gln 70	Val	Lys	Pro	Leu 123	Pro	Ile	His	Tyr	Arg 123		Phe	: Ala	Val
	Trp 1238	Gln 85	Arg	Gln	Asp	Lys 123	Glr 90	Val	. Ala	Val	His 123		Ser	Gln	Leu	Gln 12400
15	Tyr	Trp	Ile	Glu	Gln 124	Leu 05	Ala	Asp	Ser	Thr 124	Pro 10	Ala	Glu	Ile	Leu 124	Ser 15
	Asp	Phe	Asn	Arg 124	Pro 20	Glu	Val	Leu	Ser 124	Gly 25	Glu	Ala	Gly	Thr 124		Pro
20	Ile	Val	Ile 124	Glu 35	Asp	Glu	Val	Tyr 124	Glu 40	Lys	Leu	Ser	Leu 124		Суз	Arg
	Asn	His 124	Gln 50	Val	Thr	Ser	Phe 124	Val	Val	Leu	Leu	Ala 124		Phe	Arg	Val
25	Ala 1246	His 5	Tyr	Arg	Leu	Thr 124	Gly 70	Ala	Glu	Asp	Ala 1247		Ile	Gly	Thr	Pro 12480
	Ile	Ala	Asn	Arg	Asn 124	Arg 85	Pro	Glu	Leu	Glu 124	Asp 00	Leu	Ile	Gly	Phe 124	
30	Val	Asn	Thr	Gln 1250	Cys 00	Met	Arg	Ile	Ala 125	Leu 05	Glu	Glu	His	Asp 125		Phe
	Leu	Ser	Val 125	Val 15	Arg	Arg	Val	Arg 1252	Ser 20	Thr	Ala	Ala	Ser 125		Phe	Glu
35	Asn	Gln 1253	Asp 0	Val	Pro	Phe	Glu 125	Arg 35	Leu	Val	Ser	Ala 1254		Leu	Pro	Gly
	Ser 1254	Arg 5	Asp	Ala	Ser	Arg 1255	Asn 0	Pro	Leu	Val	Gln 1255	Leu 5	Met	Phe	Val	Val 12560
40	His S	Ser	Gln	Arg	Asn 1256	Leu 5	Gly	Lys	Leu	Gln 1257	Leu '0	Glu	Gly	Leu	Glu 1257	
	Glu I	Pro	Thr	Pro 1258	Tyr 0	Thr	Ala	Thr	Thr 1258	Arg 5	Phe	Asp	Val	Glu 1259		His
45	Leu I	Phe	Glu 1259	Gln 5	Asp	Lys	Gly	Leu 1260	Ala 0	Gly	Asn	Val	Val 1260		Ala	Ala
	Asp I	Leu 1261	Phe 0	Glu	Ala	Ala	Thr 1261	Ile .5	Arg	Ser	Val	Val 1262	Glu 0	Val	Phe	His
50	Glu 1 12625	lle :	Leu	Arg	Arg	Gly 1263	Leu 0	Asp	Gln	Pro	Asp :	Ile 5	Ala	Ile		Thr 12640
	Met P	Pro :	Leu	Val.	Asp 1264	Gl y 5	Leu	Ala	Ala	Leu 1265	Asn :	Ser	Arg		Leu 1265	
55	Ala V	Val (Glu .	Asp 1266	Ile (Glu	Pro	Asp	Phe . 1266	Ala ' 5	Thr (Glu .		Ser 1267		Val

	Asp	Val	Phe 126	Gln 75	Thr	Gln	Val	. Val 126		Asn	Pro	qeA	126		Ala	Val
5	Thr	126	Thr	Ser	Thr	Lys	Leu 126	Thr	Tyr	Ala	Glu	Leu 127		Gln	Gln	Ser
	Asp 127	His 05	Val	Ala	Ala	Trp 127	Leu 10	Ser	Lys	Gln	Lys 127		Pro	Ala	Glu	Ser 12720
10	Ile	Val	Val	Val	Leu 127		Pro	Arg	Ser	Ser 127		Thr	Ile	. Val	Ala 127	Cys 35
10	Ile	Gly	Ile	Leu 127	Lys 40	Ala	Asn	Leu	Ala 127	Tyr 45	Leu	Pro	Met	Asp 127		Asn
45	Val	Pro	Glu 127	Ala 55	Arg	Arg	Gln	Ala 127	Ile 60	Leu	Ser	Glu	Ile 127		Gly	Glu
15	Lys	Phe 127	Val	Leu	Leu	Gly	Ala 127		Val	Pro	Ile	Pro 127		Asn	Lys	Thr
	Ala 127	Asp 85	Val	Arg	Met	Val 127	Phe 90	Ile	Ser	Asp	Ile 127		Ala	Ser	Lys	Thr 12800
20	Asp	Lys	Ser	Tyr	Ser 128	Pro 05	Gly	Thr	Arg	Pro 128	Ser 10	Ala	Ser	Ser	Leu 128	
	Tyr	Val	Ile	Phe 1282	Thr 20	Ser	Gly	Ser	Thr 1282	Gly 25	Arg	Pro	Lys	Gly 128		Met
25	Val	Glu	His 1283	Arg 35	Gly	Val	Ile	Ser 128	Leu 40	Val	Lys	Gln	Asn 128		Ser	Arg
	Ile	Pro 128	Gln 50	Ser	Leu	Arg	Met 128	Ala 55	His	Val	Ser	Asn 128		Ala	Phe	Asp
30	Ala 1286	Ser 65	Val	Trp	Glu	Ile 1287	Phe 70	Thr	Thr	Leu	Leu 1287		Gly	Gly	Thr	Leu 12880
	Phe	Суз	Ile	Ser	Tyr 1288	Phe	Thr	Val	Leu	Asp 1289	Ser 90	Lys	Ala	Leu	Ser 1289	
35	Ala	Phe	Ser	Asp 1290	His 0	Arg	Ile	Asn	Ile 1290		Leu	Leu	Pro	Pro 1291		Leu
	Leu	Lys	Gln 1291	С уз .5	Leu	Ala	Asp	Ala 1292	Pro	Ser	Val	Leu	Ser 1292		Leu	Glu
40	Ser	Leu 1293	Tyr 30	Ile	Gly	Gly	Asp 1293	Arg 35	Leu	Asp	Gly	Ala 1294		Ala	Thr	Lys
	Val 1294	Lys 15	Asp	Leu	Val	Lys 1295	Gly 0	Lys	Ala	Tyr	Asn 1295		Tyr	Gly	Pro	Thr 12960
45	Glu	Asn	Ser	Val	Met 1296	Ser 5	Thr	Ile	Tyr	Thr 1297	Ile 0	Glu	His	Glu	Thr 1297	
	Ala	Asn	Gly	Val 1298	Pro 0	Ile	Gly	Thr	Ser 1298	Leu 5	Gly	Pro	Lys	Ser 1299		Ala
50	Tyr	Ile	Met 1299	Asp 5	Gln	Азр	Gln	Gln 1300	Leu 0	Val	Pro	Ala	Gly 1300		Met	Gly
	Glu	Leu 1301	Val	Val	Ala	Gly	Asp 1301	Gly .5	Leu	Ala		Gly 1302		Thr	Asp	Pro
55	Ser	Leu	Asn	Thr	Gly	Arg	Phe	Ile	His	Ile	Thr	Ile	Asp	Glv	Lvs	Gln

	13025		13030	13035	13040
	Val Gln	Ala Tyr Arg 1304	Thr Gly Asp	Arg Val Arg Tyr A	rg Pro Arg Asp 13055
5	Tyr Gln	Ile Glu Phe 13060	Phe Gly Arg	Leu Asp Gln Gln I	le Lys Ile Arg 13070
	Gly His	Arg Ile Glu 13075	Pro Ala Glu 130	Val Glu Gln Ala Le 80 13	eu Leu Ser Asp 3085
10	Ser Ser 1309	Ile Asn Asp	Ala Val Val 13095	Val Ser Ala Gln As 13100	n Lys Glu Gly
45	13102		13110	Thr Gln Ala Ala Gl 13115	13120
15		1312.	5	Gln Glu Trp Glu Al 13130	13135
20		13140		Gly Ile Asp Arg As 13145	13150
20		13133	1310	10	165
05	131/	U	13175	Asn Asp Thr Met Ar 13180	
25	13185]	13190	Leu Glu Ile Gly Th 13195	13200
	met val	13205	Leu Gly Lys	Val Glu Gly Leu Gl 13210	n Ser Tyr Ala 13215
30	Gly Leu	Glu Pro Ser A 13220	Arg Ser Val	Thr Ala Trp Val As: 13225	n Lys Ala Ile 13230
		13235	1324	25.	245
35	1325	U	13255	Gly Leu Arg Ser Ası 13260	
	13263	1	.3270	Pro Ser Arg Glu Ty: 13275	13280
40		13285		Pro Gly Val Lys Arg 13290	13295
		13300		Asn Lys Asp Phe Leu 13305	13310
45		13315	1332		325
	13330	,	13335	Glu Glu Glu Leu Leu 13340	
50	13343	1.	3350	Gln Phe Pro Asp Glu 13355	13360
		13365		Ala Ala Thr Asn Glu 13370	13375
55	ryr Arg T	yr Ala Ala Va 13380	al Ile His ([al Gly Gly His Gln .3385	Met Pro Asn 13390

	Gly	y Glu	133	Glu 395	a Asp	Lys	3 Glr	134	Ala 100	a Val	Lys	a Asp	134		Pro	Lys
5	Ala	134	val 110	. Asp	Phe	e Ala	Gly 134	7 Thi	r Arg	y Met	. Asp	Arg 134		Ala	Leu	Leu
	Gln 134	ı Leu 125	ı Lev	Gln	Asp	134	Gln	Arç	g Gly	Asp	Asp 134	Val 35	. Val	Ala	Val	Ser 13440
10	Asn	ıle	Pro	Tyr	Ser 134	Lys 45	Thr	Ile	. Met	Glu 134	Arg	His	Leu	Ser	Gln 134	Ser 55
	Leu	Asp	Asp	134	Glu 60	qeA	Gly	Thr	Ser 134	Ala 65	Val	Asp	Gly	Thr 134		Trp
15	Ile	e Ser	134	Thr 75	Gln	Ser	Arg	Ala 134	L ys	Glu	Суз	Pro	Ala 134		Ser	Val
	Ala	Asp 134	Leu 90	Ile	Glu	Ile	Gly 134	Lys 95	Gly	Ile	Gly	Phe 135	Glu 00	Val	Glu	Ala
20	Ser 135	Trp 05	Ala	Arg	Gln	His 135	Ser 10	Gln	Arg	Gly	Gly 135	Leu 15	Asp	Ala	Val	Phe 13520
	His	Arg	Phe	Glu	Pro 135	Pro 25	Arg	His	Ser	Gly 135	His 30	Val	Met	Phe	Arg 135	
25	Pro	Thr	Glu	His 135	Lуз 40	Gly	Arg	Ser	Ser 135	Ser 45	Ser	Leu	Thr	Asn 135		Pro
	Leu	His	Leu 135	Leu 55	Gln	Ser	Arg	Arg 135	Leu 60	Glu	Ala	Lys	Val 135		Glu	Arg
30		135	70				135	75	Met			1358	30			
	135	85				135	90		Asn		1359	95				13600
35					1360	15			Pro	1361	LO				1361	.5
				1362	20				Ile 1362	25				1363	80	
40			1363	35				1364	_				1364	5		
		1365	0				1365	5	Ala			1366	0			
45	1300	33				1367	0		Thr		1367	5				13680
					1368	5			Ser	1369	0				1369	5
50	His			1370	0				1370	5				1371	0	
	Phe		13/1	5				1372	0				1372	5		
55	Leu	Trp 1373	Tyr 0	Leu	Ile	Pro	Phe 1373	Ala 5	Leu	Arg	Met .	Arg (Gly 1	Pro :	Leu (Gln

	Val 137	. Asp 45	Ala	Leu	Ala	137	Ala 750	a Leu	val	Ala	137		Glu	Arç	y His	Glu 13760
5	Ser	Leu	Arg	Thr	Thr 137	Phe 65	Glu	ı Glu	Arg	137		Val	. Gly	, Ile	e Gln 137	Val 75
	Val	Gln	Pro	Leu 137	Arg 80	Thr	Thr	Lys	137		e Arg	Ile	: Ile	137		Ser
10	Gly	Met	Arg 137	Asp 95	Asp	Asp	Ala	Tyr 138		Glu	Pro	Leu	Gln 138		Glu	Gln
	Gln	Thr 138	Pro 10	Phe	Asp	Leu	Ala 138	Ser	Glu	Pro	Gly	Trp		Val	. Ala	Leu
15	Leu 138	Lys 25	Leu	Gly	Lys	Asp 138	Asp 30	His	Ile	Leu	Ser 138		Val	Met	His	His 13840
	Ile	Ile	Ser	Asp	Gly 138	Trp 45	\$er	Thr	Glu	Val 138		Gln	Arg	Glu	Leu 138	_
20	Gln	Phe	Tyr	Leu 138	Ala 60	Ala	Lys	Ser	Gly 138		Ala	Pro	Leu	Ser 138	Gln 70	Val
	Ala	Pro	Leu 138	Pro 75	Ile	Gln	Туr	Arg 138		Phe	Ala	Val	Trp 138		Arg	Gln
25	Glu	Glu 138	Gln 90	Val	Ala	Glu	Ser 138	Gln 95	Arg	Gln	Leu	Asp 139		Trp	Lys	Lys
_	Gln 139	Leu 05	Ala	Asp	Ser	Ser 139	Pro 10	Ala	Glu	Leu	Leu 139		Asp	Tyr	Thr	Arg 13920
<i>30</i>	Pro	Asn	Val	Leu	Ser 1392	Gly 25	Glu	Ala	Gly	Ser 139		Ser	Phe	Val	Ile 139	
	Asp	Ser	Val	Tyr 139	Lys 40	Ser	Leu	Val	Ser 139	Phe 45	Суз	Arg	Ser	Arg 139	Gln 50	Val
35	Thr	Thr	Phe 1395	Thr 55	Thr	Leu	Leu	Ala 139	Ala 60	Phe	Arg	Ala	Ala 139		Tyr	Arg
30	Met	Thr 1397	Gly 70	Ser	Asp	Asp	Ala 139	Thr 75	Ile	Gly	Thr	Pro 1398		Ala	Asn	Arg
	Asn 1398	Arg 35	Pro	Glu	Leu	Glu 1399	neA 00	Leu	Ile	Gly	Cys 1399		Val	Asn	Thr	Gln 14000
40	Cys	Met	Arg	Ile	Thr 1400	Ile 5	Gly	Asp	Asp	Glu 1401		Phe	Glu	Ser	Leu 1401	
	Gln	Gln	Val	Arg 1402	Ser 20	Thr	Thr	Ala	Thr 1402	Ala 25	Phe	Glu	Asn	Gln 1403	Asp 30	Val
45	Pro	Phe	Glu 1403	Arg 5	Ile	Val	Ser	Thr 1404	Leu 10	Ser	Ala	Gly	Ser 1404		Asp	Thr
	Ser	Arg 1405	Asn 0	Pro	Leu	Val	Gln 1405		Leu	Phe	Ala	Val 1406		Ser	Gln	Gln
50	Gly 1406	Leu 5	Gly	Arg	Ile	Gln 1407	Leu '0	qeA	Gly	Val	Val 1407		Glu	Pro	Val	Leu 14080
	Ser	Thr	Val	Ser	Thr 1408	Arg 5	Phe	Asp	Leu	Glu 1409		His	Ala	Phe	Gln 1409	
55	Ala	ĄsĄ	Arg	Leu	Asn	Gly	Ser	Val	Met	Phe	Ala	Thr	qeA	Leu	Phe	Gln

				141	.00				141	.05				141	110	
	Pro	Glu	Thr 141	Ile	Gln	Gly	Phe	Val 141	Ala 20	(Va)	L Vai	l Glu		va] 125	L Le	ı Gln
5	Arç	Gly 141	Leu .30	Glu	Gln	Pro	Gln 141	Ser 35	Pro	Ile	e Ala	141		Pro) Lev	ı Ala
	Glu 141	Gly .45	Ile	Ala	Gln	Leu 141	Arg	Asp	Ala	Gly	7 Ala 141		Glr	Met	Pro	Lys 14160
10	Ser	Asp	Tyr	Pro	Arg 141	Asn 65	Ala	Ser	Leu	Val 141		Val	Phe	Gln	Glr 141	Gln 175
	Ala	Met	Ala	Ser 141	Pro 80	Ser	Thr	Val	Ala 141	Val 85	Thr	Asp	Ser	Thr 141		Lys
15	Leu	Thr	Tyr 141	Ala 95	Glu	Leu	Asp	Arg 142	Leu 00	Ser	Asp	Gln	Ala 142		Ser	Tyr
	Leu	Arg 142	Arg 10	Gln	Gln	Leu	Pro 142	Ala 15	Glu	Thr	Met	Val 142		Val	Leu	Ala
20	Pro 142	Arg 25	Ser	Суз	Glu	Thr 142	Ile 30	Ile	Ala	Phe	Leu 142		·Ile	Leu	Lys	Ala 14240
	Asn	Leu	Ala	Tyr	Met 142	Pro 45	Leu	Asp	Val	Asn 142	Thr 50	Pro	Ser	Ala	Arg 142	Met 55
25	Glu	Ala	Ile	Ile 142	Ser 60	Ser	Val	Pro	Gly 142	Arg 65	Arg	Leu	Ile	Leu 142		Gly
	Ser	Gly	Val 142	Arg 75	His	Ala	Asp	Ile 1428	Asn 30	Val	Pro	Asn	Ala 142		Thr	Met
30	Leu	Ile 142	Ser 90	Asp	Thr	Val	Thr 1429	Gly 95	Thr	Asp	Ala	Ile 143		Thr	Pro	Glu
	Pro 143	Leu 05	Val	Val	Arg	Pro 1431	Ser 10	Ala	Thr	Ser	Leu 143	Ala 15	туг	Val	Ile	Phe 14320
35	Thr	Ser	Gly	Ser	Thr 1432	Gly 5	Lys	Pro	Lуз	Gly 143		Met	Val	Glu	His 143	_
	Ala	Ile	Met	Arg 1434	Leu 10	Val	Lys	Asp	Ser 1434	Asn 15	Val	Val	Thr	His 143		Pro
40	Pro	Ala	Thr 1435	Arg 55	Met	Ala	His	Val 1436	Thr 0	Asn	Ile	Ala	Phe 143		Val	Ser
	Leu	Phe 1437	Glu 0	Met	Суз	Ala	Thr 1437	Leu 5	Leu	Asn	Gly	Gly 1438		Leu	Val	Суз
45	Ile 1438	Asp 35	Tyr	Leu	Thr	Leu 1439	Leu 0	qeA	Ser	Thr	Met 1439	Leu 95	Arg	Glu	Thr	Phe 14400
	Glu	Arg	Glu	Gln	Val 1440	Arg 5	Ala	Ala	Ile	Phe 1441		Pro	Ala	Leu	Leu 1441	_
50	Gln	Суз	Leu	Val 1442	Asn 0	Met	Pro	Asp	Ala 1442	Ile 5	Gly	Met	Leu	Glu 1443		Val
	Tyr	Val	Ala 1443	Gly 5	qeA	Arg	Phe	His 1444	Ser 0	Arg	Asp	Ala	Arg 1444		Thr	Gln
55	Ala	Leu 1445	Ala 0	Gly	Pro .	Arg	Val 1445	Tyr . 5	Asn	Ala	Tyr	Gly		Thr	Glu	Asn

	Ala 144		Leu	Ser	Thr	Ile 144	_	Asn	Ile	Asp	Lys 144		Asp	Pro	Tyr	Val 14480
5	neA	Gly	Val	Pro	Ile 144	Gly 85	Ser	Ala	Val	Ser 144		Ser	Gly	Ala	Tyr 144	
	Met	Asp	Arg	Asn 145		Gln	Leu	Leu	Pro 145		Gly	Val	Met	Gly 145		Leu
10	Val	Val	Thr 1451	_	Glu	Gly	Val	Ala 1452	_	Gly	Tyr	Thr	Asp 1452		Ser	Leu
	qeA	Thr 1453	-	Arg	Phe	Val	Thr 1453		Thr	Ile	Asp	Gly 145		Arg	Gln	Arg
15	Ala 145	_	Arg	Thr	Gly	Asp 1455	_	Val	Arg	Tyr	Arg 1455		Lys	Gly	Phe	Gln 14560
	Ile	Glu	Phe	Phe	Gly 145	Arg 55	Leu	Asp	Gln	Gln 145		Lys	Ile	Arg	Gly 1457	
20	Arg	Val	Glu	Leu 1458	_	Glu	Val	Glu	His 1458		Leu	Leu	Ser	Glu 145		Ser
	Val	Thr	Asp 1459		Ala	Val	Val	Leu 1460	_	Thr	Met	Glu	Glu 1460		Asp	Pro
25	Gln	Leu 1461		Ala	Phe	Val	Thr 1461		Asp	His	Glu	Tyr 1462	_	Ser	Gly	Ser
	Ser 1462		Glu	Glu	Glu	Asp 1463		Tyr	Ala	Thr	Gln 1463		Ala	Gly	Asp	Met 14640
30	Arg	Lys	Arg	Leu	Arg 1464	Ser 15	Leu	Leu	Pro	Tyr 1465	_	Met	Val	Pro	Ser 1465	_
	Val	Thr	Ile	Leu 1466	_	Gln	Met	Pro	Leu 1466		Ala	Asn	Gly	Lys 1467		Asp
35	Arg	Lys	Asp 1467		Ala	Arg	Arg	Ala 1468		Met	Thr	Pro	Thr 1468		Ser	Ser
	Ser	Gly 1469		Val	His	Val	Ala 1469		Arg	Asn	Glu	Thr 1470		Ala	Ala	Ile
40	Cys 147(Glu	Phe	Glu	Thr 1471		Leu	Gly	Val	Lys 1471		Gly	Ile	Thr	Asp 14720
	Asn	Phe	Phe	Glu	Leu 1472	Gl y !5	Gly	His	Ser	Leu 1473		Ala	Thr	Lys	Leu 1473	
45				1474	10	Arg			1474	15				1475	0	
	Phe	Asp	Asp 1475		Val	Pro	Val	Ser 1476		Ala	Gly	Lys	Leu 1476		Gln	Gln
50	Gln	Gly 1477		Ser	Gly	Glu	Asp 1477		Ser	Ser	Thr	Val 1478	_	Ile	Val	Pro
	Phe 1478		Leu	Leu	Pro	Ala 1479		Met	Ser	Arg	Glu 1479		Ile	Gln	Arg	Asp 14800
55	Val	Val	Pro	Gln	Ile 1480	Glu 5	Asn	Gly		Ser 1481		Pro	Leu	Asp	Met 1481	_

	Pro	Ala	Thr	Gln 1482		Gln	Ile	Phe	Phe 1482		His	qeA	Lys	Ala 1483	Thr 30	Gly
5	His	Pro	Ala 1483		Pro	Pro	Leu	Phe 1484		Leu	Asp	Phe	Pro 1484	Glu I5	Thr	Ala
	Asp	Cys 1485		Arg	Leu	Ala	Ser 1485		Суз	Ala	Ala	Leu 1486		Gln	His	Phe
10	Asp 1486		Phe	Arg	Thr	Val 1487		Val	Ser	Arg	Gly 1487		Arg	Phe	Tyr	Gln 14880
	Val	Val	Leu	Ala	His 1488	Leu 5	Asp	Val	Pro	Val 1489		Val	Ile	Glu	Thr 1489	
15	Gln	Glu	Leu	Asp 1490		Val	Ala	Leu	Ala 1490		His	Glu	Ala	Asp 1491		Gln
	Gln	Pro	Leu 1491		Leu	Gly	Arg	Ala 1492		Leu	Arg	Ile	Ala 1492		Leu	Lys
20	Arg	Pro 1493	_	Ala	Lys	Met	Arg 1493		Val	Leu	Arg	Met 1494		His	Ser	Leu
	Tyr 1494		Gly	Leu	Ser	Leu 1495		His	Ile	Val	Asn 1495		Leu	His	Ala	Leu 14960
25	Tyr	Ser	qeA	Lys	His 1496	Leu 5	Ala	Gln	Ala	Pro 1497		Phe	Gly	Leu	Tyr 1497	
	His	His	Met	Ala 1498		Arg	Arg	Ala	Glu 1498		Tyr	Asn	Phe	Trp 1499		Ser
30	Ile	Leu	Gln 1499	_	Ser	Ser	Met	Thr 1500		Leu	Lys	Arg	Ser 1500		Gly	Ala
	Leu	Glu 1501		Met	Thr	Pro	Ser 1501		Gly	Thr	Trp	Gln 1502		Ser	Lys	Ser
35	Ile 1502		Ile	Pro	Pro	Ala 1503		Leu	Lys	Asn	Gly 1503		Thr	Gln	Ala	Thr 15040
	Leu	Phe	Thr	Ala	Ala 1504	Val I5	Ser	Leu	Leu	Leu 1505		Lys	His	Thr	Lys 1505	
40	Thr	Asp	Val	Val 1506		Gly	Arg	Val	Val 1506		Gly	Arg	Gln	Asp 1507		Ser
	Ile	Asn	Cys 1507		Asp	Ile	Val	Gly 1508		Суз	Ile	Asn	Glu 1508		Pro	Val
45	Arg	Val 1509	-	Ile	Asp	Glu	Gly 1509		qeA	Met	Gly	Gly 1510		Leu	Arg	Ala
	Ile 1510		Asp	Gln	_	Thr 1511		Ser	Phe		His 1511		Thr	Leu	Gly	Leu 15120
50	Gln	Glu	Val	Lуз	Glu 1512	Asn 25	Суз	Thr	Asp	Trp 1513		Asp	Ala	Thr	Lys 1513	
<i>30</i>	Phe	Ser	Суз	Cys 1514		Ala	Phe	Gln	Asn 1514		Asn	Leu	His	Pro 1515		Ala
	Glu	Ile	Glu 1515	_	Gln	Gln	Ile	Arg 1516		Glu	Gly	Leu	Pro 1516		Lys	Asp
5 5	Gln	Ala	Arg	Gln	Ala	Asn	Gly	His	Ala	Pro	Asn	Gly	Thr	Asn	Gly	Thr

5		151	70				151	75				151	80				
	As: 15:	n Gly 185	Thr	Asn	Gly	Thr 151	Asn 90	Gly	Ala	Asn	Gly 151	Thr 95	Asn	Gly	Thr	Asn 1520	00
	Gly	y Thr	Asn	Gly	Thr 1520	His O5	Ala	Asn	Gly	Ile 152	Asn 10	Gly	Ser	Asn	Gly 152		
10	Asr	Gly	Arg	Asp 1522	Ser 20	Asn	Val	Val	Ser 1522	Ala 25	Ala	Gly	Asp	Gln 1523		Pro	
	Val	. His	Asp 1523	Leu 35	Asp	Ile	Val	Gly 1524	Ile		Glu	Pro	Asp 1524	Gly		Val	
15	Lys	Ile 152	Gly 50	Ile	Gly	Ala	Ser 1525	Arg	Gln	Ile	Leu	Gly 1526	Glu		Val	Val	
	Gly 152	Ser	Met	Leu	Asn	Glu 1527	Leu		Glu	Thr	Met 1527	Leu		Leu	Ser	_	0
	Thr	•									132	J				1528	U
20	(2) INFO	RMATI	ON F	OR S	EQ I	D NO	: 3:										
25		SEQU (A)	ENCE LEN TYP STR	CHA GTH: E: n	RACT 178 ucle DNES	ERIS bas	TICS e pa cid ingl	: irs									
	(ii)	MOLE	CULE	TYP	E: D	NA (geno	mic)									
	(iii)	нуро	THET	ICAL	: NO												
30	(iii)																
	(Vi)	ORIG (A)	INAL ORG			olypo	ocla	dium	geo	ies							
35	(xi)	SEQU	ENCE	DESC	CRIP	rion:	: SE	Q ID	NO:	3:							
	ATGCAACTA																60
	GCTGTTTTC																120
40	ATTTGATTG							CCGAC	GCC1	T G	AGCAC	CAAC	ATA	ATCCI	T		178
	(2) INFOR																
45	(1)	(B) (C)	LENG TYPE STRA TOPO	TH: : nu NDED	1713 clei NESS	bas .c ac : si	se pa sid .ngle	irs									
	(ii)	MOLEC	ULE	TYPE	: DN	A (g	enon	ic)									
	(iii)																
50	(iii)																
	(vi)		NAL ORGA			ocos	mosp	ora	vasi	nfec	ta						

	(x1) S	EQUENCE DES	CRIPTION: S	EQ ID NO: 4	:		
5	ACATCGGGGG	TATTGATCGC	GATGCCCTCG	GACAGGACTT	CTTATCCTGG	ACATCCATGT	60
	ACGACGGCTC	ATTGATTCCC	CGGGAAGAGA	TGCAGGAATG	GCTCAGCGAC	ACTATGCACT	120
10	CACTCCTCGA	CAACCAGCCA	CCCGGAAGAG	TGCTCGAGAT	CGGAACTGGT	ACCGGTATGG	180
	TGCTTTTCAA	TCTCGGCAAG	GTTGAGGGAC	TACAGAGCTA	TGCCGGTCTT	GAGCCCTCGC	240
	GCTCCGTCAC	TGCCTGGGTT	AACAAGGCAA	TCGAAACTTT	CCCAAGCCTG	GCAGGAAGCG	300
	CCCGAGTCCA	CGTTGGAACC	GCCGAGGATG	TCAGCTCCAT	CAATGGACTG	CGTGCCGATC	360
15	TCGTTGTGAT	CAACTCGGTC	GCCCAATACT	TCCCAAGTCG	AGAATATCTC	GCTGAGCTGA	420
	CGGCCAACTT	GATTCGACTG	CCCGGCGTCA	AGCGTATTTT	CTTCGGCGAC	ATGAGAACCT	480
	ATGCCACCAA	TAAGGACTTC	TTGGTGGCAC	GAGCAGTCCA	TACCCTAGGG	TCCAATGCAT	540
••	CTAAGGCCAT	GGTTCGACAA	CAGGTGGCCA	AGCTTGAAGA	TGACGAGGAA	GAGTTGCTTG	600
20	TTGACCCTGC	CTTCTTCACC	AGCCTGAGCG	ACCAGTTCCC	TGACGAAATC	AAGCACGTCG	660
	AGATTCTGCC	AAAGAGGATG	GCCGCGACCA	ACGAACTCAG	CTCTTACCGA	TATGCTGCTG	720
	TTATTCATGT	GGGAGGCCAC	GAGATGCCGA	ATGGGGAGGA	TGAGGATAAG	CAATGGGCTG	780
25	TCAAGGATAT	CGATCCGAAG	GCCTGGGTGG	ACTTCGCCGG	CACGAGGATG	GACCGTCAGG	840
	CTCTCTTGCA	GCTCCTCCAG	GACCGCCAAC	GTGGCGATGA	CGTTGTTGCC	GTCAGTAACA	900
	TCCCATACAG	CAAGACCATC	ATGGAGCGCC	ATCTGTCTCA	GTCACTTGAC	GATGACGAGG	960
30	ACGGCACTTC	AGATGCAGAC	GGAACGGCCT	GGATATCGGC	CACTCAATCA	CGGGCGAAGG	1020
	AATGCCCTGC	TCTCTCAGTG	GCCGACCTGA	TTGAGATTGG	TAAGGGGATC	GGCTTCCAAG	1080
	TTGAGACCAG	CTGGGCTCGA	CAACACTCCC	AGCGCGGCGG	ACTCGATGCT	GTTTTCCACC	1140
35	GATTCGAAAA	ACCAAGACAC	TCGGGTCATG	TCATGTTCAG	GTTCCCAACT	GAACACAAGG	1200
~	GGCCGGTCTT	CGAGCAGTCT	CACGAATCGC	CCGCTACACC	TGGTTCAGAG	CCGCCGGCTG	1260
	GAGGCAAAGG	TCCGCGAGCG	GCTGCAATCG	CTGCTTCCAT	CGTACATGAT	TCCCTCTCGG	1320
	ATCATGTTGC	TCGATCAGAT	GCCTCTCACG	TCCAACGGCA	AGGTGGATCG	CAAGAAGCTC	1380
40	GCTCGACAAG	CCCGGGTCAT	CCCAACAATT	GCCGCAAGCA	CGTTGGACTT	TGTGGCGCGC	1440
	ACGCACGGAA	ATCGAGGTCG	GTTCTCTGCG	AAGAATTTAC	CGATCTACTA	GGCGTCAAGG	1500
	TCGGCATTAC	AGACAACTTC	TTCGAGTTGG	GCGGCCATTC	GCTGCTGGCC	ACGAAACTGA	1560
4 5	GCGCACGTCT	AAGTCGCAGA	CTGGACGCCG	GTGTCACTGT	GAAGCAGATC	TTTGACCAGC	1620
	CAGTACTTGC	TGATCTTGCT	GCTTCTATTC	GTCAAGGCTC	GTCCCGTCAC	AGGTCTATCC	1680
	CGTCTTTACC	CTACGAAGGA	CCCGTGGAGC	AGT			1713
	/21 THEODIS	MIANI SAR AS	A				

(2) INFORMATION FOR SEQ ID NO: 5:

50

(i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 655 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: unknown

55

	(ii) MOLECULE TYPE: cDNA					
5	(iii) HYPOTHETICAL: NO					
	(iii) ANTI-SENSE: NO					
10	(vi) ORIGINAL SOURCE:(A) ORGANISM: Tolypocladium niveum(B) STRAIN: ATCC 34921					
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:					
	CATCAGCAAT CATGGGCAAC AAAGTCTTCT TCGACATTGA GTGGGAGGGC CCCGTCATGC	60				
15	AGGGTTGCAA GCCTACCTCT ACCGTCAAAG AGCAGTCTGG TCGCATCAAC TTCAAGCTGT	120				
	ACGATGACGT CGTCCCCAAG ACCGCCGAGA ACTTCCGCGC TCTCTGCACC GGCGAGAAGG	180				
	GCTTCGGCTA CGAGGGCTCG TCCTTCCACC GTATCATCCC CGAGTTCATG CTCCAGGGCG	240				
20	GCGACTTCAC CCGCGGTAAC GGCACTGGCG GCAAGTCCAT CTACGGCGAG AAGTTTGCCG	300				
	ATGAGAACTT CCAGCTGAAG CACGACCGCC CCGGTCTGCT GTCCATGGCT AACGCTGGCC	360				
	CCAACACCAA CGGCTCCCAG TTCTTCGTCA CCACCGTCGT CACCTCGTGG CTCAACGGCC	420				
25	ACCACGTCGT CTTCGGCGAG GTCGCTGACC AGGAGTCCCT GGACGTCGTC AAGGCCCTTG	480				
23	AGGCCACTGG CTCTGGTAGC GGCGCTGTCA AGTACAACAA GCGCGCCACC ATTGTCAAGT	540				
	CTGGCGAGCT GTAAGCTATG GCATCTGTGT ATCTTGCGAT TTCCTGCACC CAATTCGGAC	600				
	GGACAAAAGA GGCGCTGCCC ACAGCAAGGA CCTTTGGTTC ACGGGACGGC TTGAA	655				
30	(2) INFORMATION FOR SEQ ID NO: 6:					
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown 					
	(ii) MOLECULE TYPE: cDNA					
	(iii) HYPOTHETICAL: NO					
40	(iii) ANTI-SENSE: NO					
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:					
45	GGGATATCGT GAATTGTAAT ACGACTCACT ATA					
	(2) INFORMATION FOR SEQ ID NO: 7:					
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2157 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown 					
	(ii) MOLECULE TYPE: cDNA					
	(iii) HYPOTHETICAL: NO					

(iii) ANTI-SENSE: NO

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

10	GGATCCGTGA	ATTGTAATAC	GACTCACTAT	AGGGCGAATT	CGCTCGACGT	CACCTAGGAG	60
	ATCAGCCAGC	TCCTTGGCCC	TGTTCCGCAC	GTTGATGCCC	TGGTCTTTGC	CGTTTGGATC	120
	GATGAAGTGG	AACTGGCGCA	GCATCTTCAA	AAGTGTGATG	TGTCCCCGAG	CGTCATCAAT	180
15	CACACGCTCA	GAGCCATGCT	TGACGAGGAA	CTCGAGCAGT	TGCAGAGCCT	TGTAGATCTG	240
	GCGCCACTCC	TCGGCCGACT	TCTCCGTGAA	CCGTCGATAT	ATCATCGGCA	TGATCTCGTT	300
	GAGGGTTTGG	CTGGTTCTGT	TAGCTGAAGC	CGGGCTGTTC	AGTCGTCGAA	CCGCGTACTA	360
	GTTGAAGGTG	CCATTGGCAA	TCTCCTGCAT	AATACTGGAC	GATGCTCCCC	ATGGCTCGTT	420
	GTTCGTTGCC	TCTCGGACCT	AGTACACGGA	GTTAGCCACC	GTGTTAACAA	ACCGTCGCGG	480
20	CCGCAGACTA	ACCTTGGACT	CCATCTCGGT	ATAGTTCATA	ACAGCTACAT	GCCAGGTCAG	540
	CATTGGACGC	GCCAGGGCTG	AGGTCAGGCC	TGGTACCATT	TTGCGCCTTT	CGGAACCCAG	600
	CCTTGAGGTC	GTACAAGGTC	AGGTTGGAGA	CIGIGITCIT	GATGTCGTTC	AAGTCCATTT	660
25	TGGCAGATTC	GACTTAGCGA	GACCGGCCGG	GAGCGGCAGA	GGAGTTGTCG	ATTCAGCACG	720
	AGTCGCTGAT	GAGCGATGGT	TGTGGTGCAA	GTCGATGGTC	CGAGGGCGGG	TGGTAGAGGT	780
	GCTTGTCGCG	ATGGACAGCT	GGACTTTCGG	GCCGCCAGCG	ACACCTACCC	GGCCTTGATG	840
30	GGTCAGAGGG	ATGATCACGT	GATATGGGTC	GGAGTCGCAT	CGTACTTCGT	ACCAGCATCA	900
	TCTCCAAGCC	AGAGGCAGCA	GAGATTATAT	GACTGCAAAT	GTGAAACGAA	ATAAACCGTC	960
	AATATGGTAT	TTATGTTGGC	AATTGCATGA	TGCATCCCGG	TGGAATTGAA	CTAGAACGTC	1020
35	GAGGGCTTGC	ATACCAGAGG	CTGCGGGTGC	ATCGTGGGCA	GCGGTACCTG	AGACTTCAGG	1080
33	CCAGAACGAC	TGCTAATAAG	CCGCGACGGA	GCCAAAACTT	TTCCCCTTTC	CAGAGGCTCT	1140
	CAGCTTTCGA	CTCAGCCATT	TGAACTTGCG	ACTCAAGCCC	GTTCATAACA	CTTCATCTCT	1200
	TGTACTTCTA	CCGCATTACC	TCCTGTACGA	ATTGTAATCC	CAGGTATGTC	TATTTTCCTG	1260
40	TTGTTCTCGT	CACATGCCCT	CCCCAGCATG	CGCAATGTCT	TTGGACAACG	CAGCTCCTCT	1320
	CGACACATCA	CAAAGGCTTC	ACCCAGCAGA	GCACGCGAGA	GCCTGCGCGC	GACAGCCTGC	1380
	GAGCGACATG	CAGCGCTTCC	CTGGAAGCCA	ACTGCACCAG	CCTGGAAAGT	TGCGCAGTTT	1440
45	GCCAGGGGGC	CTCCGTCCCC	CAGAATGGAT	GGCACTCCTC	GGCTTGACCT	GGAGCGCTGC	1500
	TCCCGATCAA	GCCAGAGCCC	GCCGGCGATG	GGGACTGGCC	GCGCCAGCCT	CTGCACATGA	1560
	GTGTGCTGGT	TGGCTGGAGG	TGGGTGGCCT	TTGGCCTCCC	AACCAGTCCC	CACCATTTGC	1620
50	TGGAAGCTGC	TGCAGCTGGT	CGGAACGCAC	CCAAGCCGTT	GAGCTCAGCG	CTCTGTCGGG	1680
	TCGAGCGCCC	ATTGGGGTTC	CCGCGAAGGT	CCTTTGACTG	GCCGGGGCC	ACTCGTCTTG	1740
	CCGGCCAGAG	CTGAGCTCGC	TGGTCTGGCA	GCGACAGCAG	CCGGGAGCTC	CGTTGTCTAG	1800

	GCGATGAGCG	CAGCGGCCAG	AGCTCCGGGC	CGGATCGGTG	ACCTCACAGC	CGTGGAAGCT	1860
5	CCTGGGCCCC	CGAATCAAGG	ACCGCAATTC	CACGTGACTG	GCCGGTTGCT	CCCCTTCCGG	1920
	CATTGCCCGC	CCCGCTATTA	CACCCCTTTG	CGCGCCCTGG	TTGGTTCAAA	GTCCCACCGC	1980
	TAACTTTTAA	CCCCTCCAGC	AGCCTTCAAA	ATGAAGTCAA	CGCTCCTTCG	ACCCCTCCTA	2040
	CCCCGCTATA	AGCTCTGCTC	CCCCGGGTCA	AGATCTTTCC	CTCTTCCACA	ACTTGCATCA	2100
10	GCTTCCAACA	CATTCCGAGC	TGCTCGATTC	TTCTCCGCAA	CATCAGCAAT	CATCGAT	2157

15 Claims

30

40

45

50

- 1. An isolated DNA sequence which codes for an enzyme having cyclosporin synthetase-like activity.
- 2. A DNA sequence according to claim 1 which codes for cyclosporin synthetase or an enzyme that is at least 70% homologous thereto and that has cyclosporin synthetase-like activity.
 - A DNA sequence according to claim 1 or claim 2 which codes for an enzyme that has cyclosporin synthetase-like activity and in which at least one amino-acid recognition unit is different from that of cyclosporin synthetase.
- 4. A DNA sequence according to any of claims 1 to 3 which includes the 2890 bp Sall restriction fragment containing sequences 40239 to 43129 of Seq Id 1, or a sequence which hybridizes thereto.
 - A DNA sequence according to any of claims 1 to 3 which includes the 2482 bp Sall restriction fragment containing sequences 37781 to 40244 of Seq Id 1, or a sequence which hybridizes thereto.
 - 6. A DNA sequence according to claim 1 which includes the sequence of Seq Id 1, or a sequence that hybridizes thereto.
- 7. A DNA sequence according to claim 1 which codes for an enzyme having an amino acid sequence as given in Seq Id 2.
 - 8. A recombinant vector containing a DNA sequence as defined in any one of claims 1 to 7.
 - A recombinant vector according to claim 8 which has a restriction map as set out in any one of figures 2 to 5.
 - 10. A host cell carrying a vector according to claim 8 or claim 9.
 - 11. A process for the production of cyclosporin or a cyclosporin derivative, comprising cultivating a host cell according to claim 10 and causing the host cell to produce the cyclosporin or cyclosporin derivative.
 - 12. A method for the production of a cyclosporin derivative, comprising altering the DNA sequence coding for cyclosporin synthetase so that the enzyme causes the production of the cyclosporin derivative, placing the altered DNA sequence in a vector, transforming a host cell with the vector, and causing the host cell to produce the cyclosporin derivative.
 - 13. A method according to claim 11 in which the DNA sequence coding for cyclosporin synthetase is altered by changing the fragments that code for amino acid recognition units.

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

