1 Shape Optimization of a Photo Gun

1.1 Geometry

- latest geometry in Figure 1
- corresponding electric field for p=3, $n_{\rm sub}=16$, $V_{\rm el}=-300$ kV and $V_{\rm ar}=1$ kV
- (patches 32...35 are not correct, missing the correct high voltage adapter)

Figure 1: initial geometry and electric field

1.2 Optimization

- optimized geometry in Figure 2
- · cost function only takes into account electric field
- only the upper electrode shape is optimized (volume constrained could be kept as before at 625 cm³)
- corresponding electric field for p=3, $n_{\rm sub}=16$, $V_{\rm el}=-300$ kV and $V_{\rm ar}=1$ kV
- magnitude of E-field remains large in patch 14

Figure 2: optimized geometry and electric field

1.3 Tracking

- general settings: Q = 100 fC, temporal bunch length $\tau_{\rm b} = 30$ ps
- initial distribution: Gaussian with $\sigma = 400~\mu m$, see Figure 3 for comparison with laser measurement (probe particles at 0.5σ , σ , 1.5σ in red)

Figure 3: initial distribution (1000 particles) and laser measurement

• convergence of time integrator: error of normalized transversal emmitance ϵ is shown in Figure 4 ($H=2^{-11}$ ns used later on)

Figure 4: Normalized transversal emmitance and absolute error in l_{∞} -norm.

- **convergence of field map**: look at convergence in transversal n_x , n_y and longitudinal n_z direction with number of interpolation points given by 2^n
- Figure 5 looks at convergence of n_x , n_y for n_z large and fixed
- Figure 6 looks at convergence of n_z for $n_x = n_y = 4$ fixed
- $n_x = n_y = 4$ and $n_z = 6$ used later on

Figure 5: Normalized transversal emmitance and absolute error in l_{∞} -norm for $n_z=64$ and $n_x=n_y$ variable.

Figure 6: Normalized transversal emmitance and absolute error in l_{∞} -norm for n_z variable and $n_x = n_y = 16$.

- convergence of space charge: look at convergence of grid n_r , n_l and number of particles n_l separately with number of grid cells or particles given by 2^n
- Figure 7 looks at convergence of n_r , n_l for $n_l = 10$ large and fixed
- n_r seems to have a more profound impact, but neither seem to affect the solution too much for $n \ge 8$
- Figure 9 looks at convergence of n_I for $n_r = n_l = 4$
- $n_r = n_l = 4$ and $n_I = 10$ seem sufficient

Figure 7: Normalized transversal emmitance and absolute error in l_{∞} -norm for $n_I=2^{10}$ and n_I,n_r variable.

Figure 8: Normalized transversal emmitance and absolute error in l_{∞} -norm for n_I variable and $n_I = n_r = 16$.

TODO: include plot of initial, optimized tracking and refine plots

- remarks: the convergence studies also looked at x_{rms} and the behavior was almost identical to ϵ
- to minimize the electric field on the entire electrode surface all curves could be taken into account
- also anode ring shape, position and voltage
- include tracking to include constraint on $x_{\rm rms} \le 1.5$ mm, also optimize or constrain $\epsilon \le 1$ mrad mm?