#7

SEQUENCE LISTING

off g 2007 sold al.

<120> Hypohydrotic ectodermal dysplasia genes and proteins

```
<120> Hyponydroti
<130> 55924
<140> 09/729,658
<141> 2000-12-04
<150> 09/342,681
<151> 1999-06-29
<150> 60/092,279
<151> 1998-07-09
```

<150> 60/112,366 <151> 1998-12-15

<160> 122

<170> PatentIn Ver. 2.1

<210> 1 <211> 1574 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (242)..(1417)

<400> 1

Met Gly Tyr Pro Glu Val Glu Arg Arg Glu Leu Leu Pro Ala Ala Ala

1 5 10 15

ccg cgg gag cga ggg agc cag ggc tgc ggg tgt ggc ggg gcc cct gcc 337
Pro Arg Glu Arg Gly Ser Gln Gly Cys Gly Cys Gly Gly Ala Pro Ala
20 25 30

cgg gcg ggc gaa ggg aac agc tgc ctg ctc ttc ctg ggt ttc ttt ggc 385 Arg Ala Gly Glu Gly Asn Ser Cys Leu Leu Phe Leu Gly Phe Phe Gly 35 40

ctc tcg ctg gcc ctc cac ctg ctg acg ttg tgc tgc tac cta gag ttg
Leu Ser Leu Ala Leu His Leu Leu Thr Leu Cys Cys Tyr Leu Glu Leu
50 55 60

cgc tcg gag ttg cgg cgg gaa cgt gga gcc gag tcc cgc ctt ggc ggc 481 Arg Ser Glu Leu Arg Arg Glu Arg Gly Ala Glu Ser Arg Leu Gly Gly 75 80
tcg ggc acc cct ggc acc tct ggc acc cta agc agc ctc ggt ggc ctc 529 Ser Gly Thr Pro Gly Thr Ser Gly Thr Leu Ser Ser Leu Gly Gly Leu 85 90 95
gac cct gac agc ccc atc acc agt cac ctt ggg cag ccg tca cct aag 577 Asp Pro Asp Ser Pro Ile Thr Ser His Leu Gly Gln Pro Ser Pro Lys 100 110
cag cag cca ttg gaa ccg gga gaa gcc gca ctc cac tct gac tcc cag 625 Gln Gln Pro Leu Glu Pro Gly Glu Ala Ala Leu His Ser Asp Ser Gln 115 120 125
gac ggg cac cag atg gcc cta ttg aat ttc ttc ttc cct gat gaa aag 673 Asp Gly His Gln Met Ala Leu Leu Asn Phe Phe Phe Pro Asp Glu Lys 130 135
cca tac tct gaa gaa gaa agt agg cgt gtt cgc cgc aat aaa aga agc 721 Pro Tyr Ser Glu Glu Glu Ser Arg Arg Val Arg Arg Asn Lys Arg Ser 150 155 160
aaa agc aat gaa gga gca gat ggc cca gtt aaa aac aag aaa aag gga 769 Lys Ser Asn Glu Gly Ala Asp Gly Pro Val Lys Asn Lys Lys Gly 165 170 175
aag aaa gca gga cct cct gga ccc aat ggc cct cca gga ccc cca gga 817 Lys Lys Ala Gly Pro Pro Gly Pro Asn Gly Pro Pro Gly Pro Pro Gly 180 185 190
cct cca gga ccc cag gga ccc cca gga att cca ggg att cct gga att 865 Pro Pro Gly Pro Gly Pro Pro Gly Ile Pro Gly Ile 195 200 205
CCa gga aca act gtt atg gga cca cct ggt cct cca ggt cct cct ggt 913 Pro Gly Thr Thr Val Met Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly 215 220
cct caa gga ccc cct ggc ctc cag gga cct tct ggt gct gct gat aaa 961 Pro Gln Gly Pro Pro Gly Leu Gln Gly Pro Ser Gly Ala Ala Asp Lys 235 240
gct gga act cga gaa aac cag cca gct gtg gtg cat cta cag ggc caa 1009 Ala Gly Thr Arg Glu Asn Gln Pro Ala Val Val His Leu Gln Gly Gln 245 250
ggg tca gca att caa gtc aag aat gat ctt tca ggt gga gtg ctc aat 1057 Gly Ser Ala Ile Gln Val Lys Asn Asp Leu Ser Gly Gly Val Leu Asn 260 265
gac tgg tct cgc atc act atg aac ccc aag gtg ttt aag cta cat ccc 1105 Asp Trp Ser Arg Ile Thr Met Asn Pro Lys Val Phe Lys Leu His Pro 275 280 285

Arg Ser Gly (Glu V			Asp Gly					1153
agt cag gta (Ser Gln Val (305						_	_	_		1201
gag gtg gtg g Glu Val Val			_	Phe L		_	_	_		1249
gag acg ggc of Glu Thr Gly										1297
ctc ctc aag (Leu Leu Lys 2 355							His			1345
atc tcc atc a Ile Ser Ile a 370		Ser I								1393
ctg ggt gaa g Leu Gly Glu i 385				attcc	cccat t	ttgccto	etg to	ccgtg	jcccc	1447
ttccctgggt t	gggagc	ca gga	actcccaa	a aacc	tctaag	tgctgct	gtg g	gagto	gaggtg	1507
tattggtgtt g	cageege	ag aga	aatgcc	c catt	gttatt	tattcc	cag t	tgact	ccagg	1567
gtgacaa										1574
<210> 2										
~211× 201										
<211> 391 <212> PRT <213> Homo sa	apiens									
<212> PRT <213> Homo sa	apiens									
<212> PRT		Val G	Slu Arg	_	lu Leu 10	Leu Pro	o Ala	Ala 15	Ala	
<212> PRT <213> Homo sa <400> 2 Met Gly Tyr I	Pro Glu 5		_	_	10			15		
<212> PRT <213> Homo sa <400> 2 Met Gly Tyr I	Pro Glu 5 Arg Gly 20	Ser G	In Gly	Cys G	10 Sly Cys	Gly Gly	Ala 30 Phe	15 Pro	Ala	
<212> PRT <213> Homo sa <400> 2 Met Gly Tyr I 1 Pro Arg Glu A Arg Ala Gly G	Pro Glu 5 Arg Gly 20 Glu Gly	Ser G	Sln Gly Ser Cys 40	Cys G 25 Leu L	10 Ely Cys eu Phe	Gly Gl _y Leu Gl _y 45	Ala 30 Phe	15 Pro Phe	Ala Gly	
<212> PRT <213> Homo sa <400> 2 Met Gly Tyr I 1 Pro Arg Glu A Arg Ala Gly G 35 Leu Ser Leu A	Pro Glu 5 Arg Gly 20 Blu Gly	Ser G Asn S His L	Ser Cys 40 Leu Leu 55	Cys G 25 Leu L Thr L	10 Ely Cys eu Phe eu Cys	Gly Gly Leu Gly 45 Cys Tyr 60	Ala 30 Phe Leu	15 Pro Phe Glu	Ala Gly Leu Gly	
<212> PRT <213> Homo sa <400> 2 Met Gly Tyr I	Pro Glu 5 Arg Gly 20 Glu Gly Ala Leu Leu Arg	Ser G Asn S His L Arg G	Gln Gly Ger Cys 40 Leu Leu 55 Glu Arg	Cys G 25 Leu L Thr L Gly A	10 Sly Cys Seu Phe Seu Cys Sla Glu 75 Seu Ser	Gly Gly Leu Gly 45 Cys Tyr 60 Ser Arg	Ala 30 Phe Leu	15 Pro Phe Glu Gly Gly	Ala Gly Leu Gly 80	
<pre><212> PRT <213> Homo sa <400> 2 Met Gly Tyr I</pre>	Pro Glu 5 Arg Gly 20 Glu Gly Ala Leu Leu Arg Pro Gly 85	Ser G Asn S His L Arg G 70 Thr S	Ger Cys 40 Leu Leu 55 Glu Arg	Cys G 25 Leu L Thr L Gly A	10 Sly Cys Seu Phe Seu Cys Sla Glu 75 Seu Ser 90	Gly Gly Leu Gly 45 Cys Tyr 60 Ser Arg	Ala 30 Phe Leu Leu	15 Pro Phe Glu Gly Gly 95	Ala Gly Leu Gly 80 Leu	

Asp Gly His Gln Met Ala Leu Leu Asn Phe Phe Pro Asp Glu Lys 135 140 Pro Tyr Ser Glu Glu Glu Ser Arg Arg Val Arg Arg Asn Lys Arg Ser 155 150 Lys Ser Asn Glu Gly Ala Asp Gly Pro Val Lys Asn Lys Lys Lys Gly 170 Lys Lys Ala Gly Pro Pro Gly Pro Asn Gly Pro Pro Gly Pro Pro Gly 185 Pro Pro Gly Pro Gln Gly Pro Pro Gly Ile Pro Gly Ile Pro Gly Ile 200 195 Pro Gly Thr Thr Val Met Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly 215 Pro Gln Gly Pro Pro Gly Leu Gln Gly Pro Ser Gly Ala Ala Asp Lys 235 230 Ala Gly Thr Arg Glu Asn Gln Pro Ala Val Val His Leu Gln Gly Gln 250 Gly Ser Ala Ile Gln Val Lys Asn Asp Leu Ser Gly Gly Val Leu Asn 265 260 Asp Trp Ser Arg Ile Thr Met Asn Pro Lys Val Phe Lys Leu His Pro 285 280 Arg Ser Gly Glu Leu Glu Val Leu Val Asp Gly Thr Tyr Phe Ile Tyr 295 Ser Gln Val Glu Val Tyr Tyr Ile Asn Phe Thr Asp Phe Ala Ser Tyr 310 315 Glu Val Val Val Asp Glu Lys Pro Phe Leu Gln Cys Thr Arg Ser Ile 330 325 Glu Thr Gly Lys Thr Asn Tyr Asn Thr Cys Tyr Thr Ala Gly Val Cys 350 345 Leu Leu Lys Ala Arg Gln Lys Ile Ala Val Lys Met Val His Ala Asp 360 Ile Ser Ile Asn Met Ser Lys His Thr Thr Phe Phe Gly Ala Ile Arg 375 380 Leu Gly Glu Ala Pro Ala Ser 390 <210> 3 <211> 1661 <212> DNA <213> Mus musculus

				13												
tgt Cys	cgc Arg	ggg Gly	gcc Ala 30	cct Pro	gct Ala	cgg Arg	gcg Ala	ggc Gly 35	gaa Glu	ggg Gly	aac Asn	agc Ser	tgc Cys 40	cgg Arg	ctc Leu	267
ttc Phe	ctg Leu	ggt Gly 45	ttc Phe	ttt Phe	ggc Gly	ctc Leu	tcg Ser 50	ctg Leu	gcc Ala	ctc Leu	cac His	ctg Leu 55	ctg Leu	acg Thr	ctg Leu	315
tgc Cys	tgc Cys 60	tac Tyr	cta Leu	gag Glu	ttg Leu	cgg Arg 65	tcc Ser	gaa Glu	ttg Leu	cgg Arg	cgg Arg 70	gaa Glu	cgg Arg	gga Gly	acc Thr	363
gag Glu 75	tcc Ser	cgc Arg	ctc Leu	ggt Gly	ggc Gly 80	ccg Pro	ggt Gly	gct Ala	cct Pro	ggc Gly 85	acc Thr	tct Ser	ggc Gly	acc Thr	cta Leu 90	411
agc Ser	agc Ser	cct Pro	Gly 999	agc Ser 95	ctc Leu	gac Asp	ccg Pro	gtg Val	ggt Gly 100	ccc Pro	atc Ile	acc Thr	cgc Arg	cac His 105	ctg Leu	459
ggg Gly	cag Gln	ccg Pro	tcc Ser 110	ttt Phe	caa Gln	cag Gln	cag Gln	cct Pro 115	ttg Leu	gaa Glu	ccg Pro	gga Gly	gaa Glu 120	gat Asp	cca Pro	507
ctc Leu	ccc Pro	cct Pro 125	gag Glu	tcc Ser	cag Gln	gac Asp	cgg Arg 130	cac His	cag Gln	atg Met	gcc Ala	ctc Leu 135	ctg Leu	aat Asn	ttc Phe	555
ttc Phe	ttt Phe 140	cct Pro	gat Asp	gaa Glu	aag Lys	gca Ala 145	tat Tyr	tct Ser	gaa Glu	gag Glu	gaa Glu 150	agt Ser	agg Arg	cgt Arg	gtt Val	603
cgc Arg 155	cgc Arg	aat Asn	aag Lys	aga Arg	agc Ser 160	aaa Lys	agt Ser	ggt Gly	gaa Glu	gga Gly 165	Ala	gat Asp	ggt Gly	cct Pro	gtt Val 170	651
aaa Lys	Asn	aag Lys	Lys	Lys	Gly	Lys	Lys	Ala	Gly	Pro	cct Pro	gly	ccc Pro	aac Asn 185	ggc Gly	699
ccc Pro	cca Pro	gga Gly	cct Pro 190	Pro	gga Gly	cct Pro	ccg Pro	gga Gly 195	ccc Pro	cag Gln	gga Gly	cct Pro	cca Pro 200	Gly	att Ile	747
cca Pro	gga Gly	att Ile 205	cct Pro	ggg Gly	att Ile	cca Pro	gga Gly 210	Thr	act Thr	gtt Val	atg Met	gga Gly 215	Pro	cct Pro	ggc Gly	795
cca Pro	cct Pro 220	Gly	cct	cct Pro	ggt Gly	cct Pro 225	Gln	gga Gly	ccc Pro	cct Pro	ggc Gly 230	Leu	caa Gln	gga Gly	cct	843
tct Ser 235	Gly	gct Ala	gct Ala	gat Asp	aaa Lys 240	Thr	gga Gly	act Thr	cgg Arg	gaa Glu 245	ı Asn	cag Gln	cca Pro	gct Ala	gtg Val 250	891

gtg cat ctg cag ggc (Val His Leu Gln Gly (255)	caa ggg tca g Gln Gly Ser A	gca att caa g Ala Ile Gln V 260	gtc aaa aat gat Val Lys Asn Asp 265	ctt 939 Leu
tca ggt gga gtg ctc Ser Gly Gly Val Leu 270	Asn Asp Trp S	cct cgc atc a Ser Arg Ile 1 275	act atg aac cct Thr Met Asn Pro 280	aag 987 Lys
gtg ttt aaa cta cat Val Phe Lys Leu His 285	ccc cgc agc g Pro Arg Ser 0 290	ggg gag ctg g Gly Glu Leu (gag gtc tac tac Glu Val Tyr Tyr 295	atc 1035 Ile
aac ttc act gac ttt Asn Phe Thr Asp Phe 300	gcc agc tac g Ala Ser Tyr 0 305	Glu Val Val V	gtg gat gag aag Val Asp Glu Lys 310	ccc 1083 Pro
ttc ctg cag tgc acc Phe Leu Gln Cys Thr 315	cgc agc att g Arg Ser Ile 0 320	gag aca ggg a Glu Thr Gly 1 325	aag acc aac tac Lys Thr Asn Tyr	aac 1131 Asn 330
act tgc tat act gca Thr Cys Tyr Thr Ala 335	ggc gtg tgc o Gly Val Cys I	ctc ctc aag o Leu Leu Lys 2 340	gcc agg cag aaa Ala Arg Gln Lys 345	atc 1179 Ile
gcc gtg aag atg gtg Ala Val Lys Met Val 350	His Ala Asp	atc tct atc a Ile Ser Ile 2 355	aat atg agc aag Asn Met Ser Lys 360	cac 1227 His
acc acc ttc ttc ggg Thr Thr Phe Phe Gly 365	gcc atc agg o Ala Ile Arg I 370	ctg ggc gaa g Leu Gly Glu	gcc cct gca tcc Ala Pro Ala Ser 375	tag 1275
attotoccat tocatoctg	gg cccatgcccc	tgccccaggt	ttgggagcca ggact	cccag 1335
aacctctaag tgctgctgt	g tgtggaatga	ggtatactgg	cgttgcagcc acaaa	agagaa 1395
atgccccatg ctatttatt	c cccagtgact	ccaggatgac	aaggcctatg tgact	ttccca 1455
gaaagacctt gagttgcca	ag gacagttgac	ggagccccag	ggttgtcaag aagca	agaacc 1515
ttcttaggct ccctgctga	ac tggcttatgg	tgactcctca	accettaggt cecto	catcag 1575
atgtatcatt tgttgcact	a aaatgaggat	ccaagacagt	aggccacaaa aagaa	aaaggt 1635
gcactccaga ttctagggg	gt gatccg			1661

<210> 4

<211> 377

<212> PRT

<213> Mus musculus

<400> 4

Met Gly Tyr Pro Glu Val Glu Arg Arg Glu Pro Leu Pro Ala Ala Ala 1 5 10 15
Pro Arg Glu Arg Gly Ser Gln Gly Cys Gly Cys Arg Gly Ala Pro Ala

```
25
             20
Arg Ala Gly Glu Gly Asn Ser Cys Arg Leu Phe Leu Gly Phe Phe Gly
                             40
Leu Ser Leu Ala Leu His Leu Leu Thr Leu Cys Cys Tyr Leu Glu Leu
                         55
Arg Ser Glu Leu Arg Arg Glu Arg Gly Thr Glu Ser Arg Leu Gly Gly
Pro Gly Ala Pro Gly Thr Ser Gly Thr Leu Ser Ser Pro Gly Ser Leu
                                    90
Asp Pro Val Gly Pro Ile Thr Arg His Leu Gly Gln Pro Ser Phe Gln
                               105
           100
Gln Gln Pro Leu Glu Pro Gly Glu Asp Pro Leu Pro Pro Glu Ser Gln
                           120
       115
Asp Arg His Gln Met Ala Leu Leu Asn Phe Phe Pro Asp Glu Lys
                                            140
                        135
Ala Tyr Ser Glu Glu Glu Ser Arg Arg Val Arg Arg Asn Lys Arg Ser
                                       155
Lys Ser Gly Glu Gly Ala Asp Gly Pro Val Lys Asn Lys Lys Lys Gly
                                    170
                165
Lys Lys Ala Gly Pro Pro Gly Pro Asn Gly Pro Pro Gly Pro Pro Gly
                                185
Pro Pro Gly Pro Gln Gly Pro Pro Gly Ile Pro Gly Ile Pro Gly Ile
                            200
Pro Gly Thr Thr Val Met Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly
                                            220
                       215
Pro Gln Gly Pro Pro Gly Leu Gln Gly Pro Ser Gly Ala Ala Asp Lys
                                        235
                    230
Thr Gly Thr Arg Glu Asn Gln Pro Ala Val Val His Leu Gln Gly Gln
                                    250
                245
Gly Ser Ala Ile Gln Val Lys Asn Asp Leu Ser Gly Gly Val Leu Asn
                                265
            260
Asp Trp Ser Arg Ile Thr Met Asn Pro Lys Val Phe Lys Leu His Pro
                            280
                                                285
Arg Ser Gly Glu Leu Glu Val Tyr Tyr Ile Asn Phe Thr Asp Phe Ala
                                            300
                        295
Ser Tyr Glu Val Val Val Asp Glu Lys Pro Phe Leu Gln Cys Thr Arg
                                        315
                    310
Ser Ile Glu Thr Gly Lys Thr Asn Tyr Asn Thr Cys Tyr Thr Ala Gly
                                    330
               325
Val Cys Leu Leu Lys Ala Arg Gln Lys Ile Ala Val Lys Met Val His
                               345
Ala Asp Ile Ser Ile Asn Met Ser Lys His Thr Thr Phe Phe Gly Ala
                           360
Ile Arq Leu Gly Glu Ala Pro Ala Ser
    370
                        375
```

```
<210> 5
<211> 630
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (65)
<223> n represents a, c, t, or g
```

```
<400> 5
acagtggggg ggaagatggg ctcagggttt agacacatca aacttaaggt acaggtagac 60
tgtgntatgg aaagatggtt ttttatgttg gctatgactg agtggggtca acctttgact 120
gatgtacttg taatttttac agatggccct attgaatttc ttcttccctg atgaaaagcc 180
atactctgaa gaagaaagta ggcgtgttcg ccgcaataaa agaagcaaaa gcaatgaagg 240
agcagatggt aagtctactc agttgatcct ttatcacttc tgaattattt gttagtaaaa 300
gtatcctttt aagaactacc ttcttggtag ggcatggtgg ctcacgcctg taatcctagc 360
aacatggtga aaccctgtct ctactaaaaa tacaaaaaaa attagccggg cctagtccca 480
gctgcttggg agactaaggc aggagaatcg cttgaaactg ggaggtagag gttgcagtga 540
gctgagactg tgccactgca ctccagcctg ggtgacagtg cgagactcca tctcaaaaaa 600
caaaaacaaa caaaaaaaaa cactaccttt
<210> 6
<211> 549
<212> DNA
<213> Homo sapiens
<400> 6
acccattccc tcaccccaaa gactgaagta gagagatttt tctccctagg gaagaatctt 60
ccttgaaact tttgtggcct caggagtcag aagacagaat ggggaggttt gatagttgga 120
teettgecaa aageetgaee ettggetgtg agaeteeete aaatttgeag tgtettgggg 180
atccctccta gtgactatct tagaaaataa acattttctg ttcatttcca atgacttaat 240
tatctatttt atttttctta taggcccagt taaaaacaag aaaaagggta agttcctgac 300
tttataaaat tgctgtcttg tcatatattt tctaaagtta gaagaaaaaa acaagagtgc 360
gatttttgta ttatattctt tcagcattgt ctgtctgtta ttttattcaa tcatatgtta 420
tcttcttgag tattgtagtt tctgaagaac aagaaatcat tcttcagtga tgattcacct 480
ctttcattct tccttgttct tctccctgcc cttcttttta ttctttttt tttttttt 540
                                                                549
ttttttt
<210> 7
<211> 821
<212> DNA
<213> Homo sapiens
<400> 7
aatcccagca ttttgggagg ctgaggcagg cagatcaccc gaagtcagga gtttgagacc 60
aacctggccg acatggtgaa accccgtttt tactaaaaat acaaaaatta gcaggttgcg 120
gtggcaagcg cctgtaatcc cagttaatcc agaggctgag gcaggagaat tgcttgaacc 180
cgggaggtgg aggttgcagt gagccgagat tgtgccactg aactccagcc tgggcaacag 240
agcaggactc cgtctcaaaa aaaaaagtaa cactgatcct atttttcagg aaagaaagca 300
ggacctcctg gacccaatgg ccctccagga cccccaggac ctccaggacc ccagggaccc 360
ccaggaattc cagggattcc tggaattcca ggaacaactg ttatgggacc acctggtcct 420
ccaggtcctc ctggtcctca aggaccccct ggcctccagg gaccttctgg tgagttcccc 480
tgtctctcca ccccaccagg tgcctttaaa gtactttagg agagcaggag tgggtgatcc 540
tgagagcagt ttcaaacggt ggagatgggg ttggtggca ataagggatg cagatctcct 600
agcccagtgt aaaactagga attggacaag ccagtagggc ctggcctgct ctagcttctt 660
atatctacca aactgtcaag gacaggccac ctgttcttgc cccatctcaa cccttctgtt 720
acaagccctc cctgactctt ggcctccctg tagtggacca gtaaaactca tatgagccag 780
agacagaggc cctggtggtt cacagggagt tccagtgggg a
<210> 8
```

<211> 977

```
<212> DNA
<213> Homo sapiens
<400> 8
ttcacacagg gctcagcagt gttaccatgg ccacaagaga tggagttaga gattttttt 60
caaccaatca ttccttaaat attgagcact ttctgtatac aaagagatat attgatacat 120
ggtccctttt cttatagagt ttatctccta gaggaagaga gaacaaagaa acaagatatt 180
tacaaatagc agtgggctct atgaagaaaa ttaatagaaa gggagcaaaa cactagagaa 240
gccaatgcca ttgcctcagg gtcacacagt gatgggaatg ctctctcatt gttctccatg 300
ggtgcccggt ggggcttgcc ttgggctaat attggccaga ggcaatactc agaagtttcc 360
ctgctgggtg ctgggcccac tgaagatgaa ggtcagggca ggaaacagaa ggggtgcact 420
ctgactette etceagetet gageeetgga gaataaaget cagacaggge tggetgcagg 480
gagcatggct caccaccact agctgctcag gtgaggggaa aaggaagtca aaagattatg 540
ccctctgatt gtcctatcct attttgcagg tgctgctgat aaagctggaa ctcgagaaaa 600
ccaggttggc tgggggattgc tctcttcctg ggtaggaggg aaagccacag gctagagcca 660
cetttaaatt agettettat tagattteet gagetttatt teatgagaac acceeggaga 720
ttctgacggt tttcactcac agccccctcc catctctatg aatagaaaag ctttgcccca 780
gggcatgttt ttagctaagg aaagggtgtc ttgccaggat catttttcct cattccacag 840
gagaccccag gttcaccata gccaggccca gtagtcagct gaaataagct gccagtcaga 900
cetatteace tgageeteca acteeceaac caceceagae acettgeegg eteteagace 960
                                                                   977
acctgggatc cggagct
<210> 9
<211> 1048
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (754)
<223> n represents a, c, t, or g
<400> 9
cggttctcag accacctggg atccggagct gaagagttga agagtatgtc cttgaaaaac 60
agccaaccag ctccaggccc agcctagcct gggcgtctgc cttaatggcc tgaagagctc 120
ctcccagtct ttgagcttcc taatctgtct ctattggcag gttctactgc cttgccttgt 180
 ctcatctcag cctcccttgc tacagctgtg tggccacagt gataaatcta cacagctgca 240
 cagtgcttga cggcttgcag ggcaatttta tatccatcac ctcatttgat cttcagacat 300
 ccctgtgaga gaggccagac attcttataa tccccatttt acagttaggg aaatgaggct 360
 cagaggcatt acatttggtt gaggtcacat agctaggaag cggtagagct acaaaatcat 420
 attaccetet agtagaaatg tagteagtaa cateecaaga caggggagag ggateagaat 480
 tggattacaa tagaagacta gaaaccagga tggaaacatg ggactggtgg ctgagcaagc 540
 agccattact catagtgact atctctatcc ttctcatcct gccagccagc tgtggtgcat 600
 ctacagggcc aagggtcagc aattcaagtc aagaatggta agaatcaaaa taggctctct 660
 cccaaagagg agetteteee etgeeteete eccageetee aaataateae ecageetagt 720
 tecteccagg cegetgaggt accepttggca tacnaagtea ttetttgete cateatgece 780
 tctactggct gtcctgagca attgctggca tcaagaccag ttgctacacc caaattgctt 840
 tagaatcact gatgacggag ctgaaaggga cttgagacat catctagccc aggcattctc 900
 aggggatgga ggttatatca gagccaccat ggagatatgt gtagttagat taatattttc 960
 acaatacaaa ttatagaaag taaaactatg taaaattaaa tttttcttgt ctgatctaca 1020
 caggtgggca gacaggctgc atctctca
 <210> 10
 <211> 831
```

<212> DNA

```
<213> Homo sapiens
<400> 10
attttgcctg tgcaggcccc ataacaacaa agaaaatagg gcagcatgcc cactctcatc 60
ctccaccggc aaattccagc taggaggtat tggttaaaga cccttccaga tgcaagggtc 120
aagaaaggaa ggataaagac agacaggcag agcccaggag ccctgaagca ggcctggcag 180
ctgctttaca aacagaacag cttctctgct ttcaaatgct cttcttaaag tttggccttc 240
taggctaccc tggttgcact gggatagggg tggggggttgt gaactccttg gtatttattt 300
tetgttgeet egattattet gacatgtact gagtgactge etteteteat actgagatet 360
ttcaggtgga gtgctcaatg actggtctcg catcactatg aaccccaagg tgtttaagct 420
acateceege ageggggage tggaggtaet ggtggaegge acetaettea tetatagtea 480
ggtagaagtg agtacggtct taggcctaac tcttcttata tccagaatgc agatccggtg 540
caggccacat aggggcactg tggagccagc caagaccatc caatggctaa cttcctgctt 600
tgggtgaggg ggtgggggga ccgcactggg agggagttga aaggaggaaa gagagggg 660
gccagcttct tttgttttgt tttgttttgt ttttccctac ccaaatatta ttgaaaaact 720
gtgaaaaaga ccctcccaca ccctgccatc tgattccctc ctgcagggcc tcaggcccct 780
gtttaccctc tgagctgttt ggctgcactg ccaaacttga acttggtctc a
<210> 11
<211> 743
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (302)
<223> n represents a, c, t, or g
<400> 11
gcttcatgtc agggctgggg caggggtggg cggggggaaca ggggcacggt gaagctgcaa 60
atagggcatg gttcttagcc ttacagagtt tgcgacaagt gtgctgttgt aagaaaagtt 120
tgctcagcca gctgagcccc atggactagg ggaagaacaa tgcctgtcac ctgtcctttc 180
ctgttggcca gctagcacgc cttcacatgg cactgcccca tccatggggt atactaacag 240
ctcatctgag aagattctgt caattcacca cagggagggc cccccaccct ctctttcctc 300
tnttccccaa tcccttcttg ttgcctctca tcaggtatac tacatcaact tcactgactt 360
tgccagctat gaggtggtgg tggatgagaa gcccttcctg cagtgcacac gcagcatcga 420
gacgggcaag accaactaca acacttgcta taccgcaggc gtctgcctcc tcaaggcccg 480
gcagaagatc gccgtcaaga tggtgcacgc tgacatctcc atcaacatga gcaagcacac 540
cacgttettt ggggceatea ggetgggtga ageceetgea teetagatte ecceattttg 600
cetetgteeg tgeecettee etgggtttgg gagecaggae teceaaaace tetaagtget 660
gctgtggagt gaggtgtatt ggtgttgcag ccgcagagaa atgccccatt gttatttatt 720
ccccagtgac tccagggtga caa
 <210> 12
 <211> 3720
 <212> DNA
 <213> Mus musculus
 <220>
 <221> CDS
 <222> (260)..(1606)
 <220>
 <221> misc_feature
 <222> (2961)..(3673)
```

<223> n represents a, c, t, or g

<400> 12)												
cagtccag		gaacagt	caaga	gcgag	, ttc	ccgg	gag	ccct	tcaa	aa t	agaa	agtta	60
gttgcgct	gg cag	cagaggt	gtgcc	tggcc	gct	gtca	ccc	ggct	ggcc	сс а	ggat	tgtgg	120
agctctg	ett ttg	agaggad	c accga	cggac	gcc	tgtg	jaag	cctg	lccc	сс а	tccc	ttacc	180
tgctcgc	ctt ctc	cgtagac	c ccatc	ttatg	g ctg	ggaa	aag	ctaa	cctc	at t	cggg	tacca	240
ggtgtact	tc caa	gagatc	atg gc Met Al 1	c cac a His	gto Val	ggg Gly	/ Asp	tgc Cys	aaa Lys	tgg Trp	atg Met 10	Ser	292
tgg ctc Trp Leu	cca gt Pro Va 1	l Leu V	gtg gtg Val Val	tct Ser	ctg Leu 20	atg Met	tgc Cys	tca Ser	gcc Ala	aag Lys 25	gcg Ala	gag Glu	340
gac tcc Asp Ser	aac tg Asn Cy 30	t ggt g s Gly (gag aac Glu Asn	gaa Glu 35	tac Tyr	cac His	aac Asn	cag Gln	act Thr 40	acc Thr	gly ggg	ctg Leu	388
tgc cag Cys Gln 45	cag tg Gln Cy	t cct o s Pro I	cca tgc Pro Cys 50	aga Arg	cca Pro	gly ggg	gag Glu	gag Glu 55	ccc Pro	tac Tyr	atg Met	tcc Ser	436
tgt gga Cys Gly 60	tac gg Tyr Gl	c act a y Thr I	aaa gac Lys Asp 65	gac Asp	gac Asp	tat Tyr	ggc Gly 70	tgt Cys	gtg Val	ccc Pro	tgc Cys	cct Pro 75	484
gca gag Ala Glu	aag tt Lys Ph	c tcc a e Ser 1 80	aaa gga Lys Gly	ggt Gly	tat Tyr	cag Gln 85	ata Ile	tgc Cys	agg Arg	cgc Arg	cac His 90	aaa Lys	532
gac tgt Asp Cys	Glu Gl	c ttc (y Phe 1	ttc cgg Phe Arg	gcc Ala	act Thr 100	gtg Val	ctg Leu	aca Thr	cca Pro	gga Gly 105	gac Asp	atg Met	580
gaa aac Glu Asn	gac gc Asp Al 110	t gag 1 a Glu 0	tgt ggd Cys Gly	cca Pro 115	tgt Cys	ctc Leu	cct Pro	ggc Gly	tac Tyr 120	tac Tyr	atg Met	ctg Leu	628
gaa aac Glu Asn 125	Arg Pr	c agg a	aac ato Asn Ile 130	Tyr	ggc Gly	atg Met	gtc Val	tgc Cys 135	tac Tyr	tcc Ser	tgt Cys	ctc Leu	676
ttg gca Leu Ala 140	cct cc Pro Pr	o Asn	acc aag Thr Lys 145	gaa Glu	tgt Cys	gtg Val	gga Gly 150	gcc Ala	act Thr	tct Ser	ggg Gly	gtt Val 155	724
tca gca Ser Ala	cac to His Se	a tcc r Ser 160	agc act Ser Thr	tcc Ser	ggt Gly	ggc Gly 165	agc Ser	acc Thr	ttg Leu	tct Ser	ccc Pro 170	ttc Phe	772
cag cat Gln His	gct ca Ala Hi	c aaa s Lys	gag cto Glu Lev	tca Ser	ggc Gly	caa Gln	gga Gly	cac His	ctg Leu	gcc Ala	acc Thr	gcc Ala	820

175 180 18	5
------------	---

ctg Leu	att Ile	att Ile 190	gcc Ala	atg Met	tct Ser	acg Thr	atc Ile 195	ttc Phe	atc Ile	atg Met	gcc Ala	att Ile 200	gcc Ala	atc Ile	gtc Val	868
ctc Leu	atc Ile 205	atc Ile	atg Met	ttc Phe	tac Tyr	atc Ile 210	atg Met	aag Lys	act Thr	aag Lys	ccg Pro 215	tca Ser	gct Ala	cca Pro	gcc Ala	916
tgc Cys 220	tgt Cys	agc Ser	agt Ser	ccc Pro	cca Pro 225	gga Gly	aag Lys	agc Ser	gca Ala	gaa Glu 230	gcc Ala	cca Pro	gct Ala	aac Asn	aca Thr 235	964
cac His	gag Glu	gag Glu	aaa Lys	aaa Lys 240	gag Glu	gcc Ala	cca Pro	gac Asp	agt Ser 245	gtg Val	gtg Val	acg Thr	ttc Phe	cct Pro 250	gag Glu	1012
aat Asn	ggt Gly	gag Glu	ttc Phe 255	cag Gln	aag Lys	ctg Leu	aca Thr	gca Ala 260	aca Thr	ccc Pro	aca Thr	aag Lys	acc Thr 265	ccc Pro	aaa Lys	1060
agt Ser	gag Glu	aat Asn 270	gat Asp	gcc Ala	tcc Ser	tct Ser	gag Glu 275	aac Asn	gag Glu	cag Gln	ttg Leu	cta Leu 280	agt Ser	cgc Arg	agt Ser	1108
gtg Val	gac Asp 285	agt Ser	gat Asp	gaa Glu	gag Glu	cca Pro 290	gcc Ala	ccg Pro	gac Asp	aag Lys	cag Gln 295	Gly 999	tcc Ser	cca Pro	gag Glu	1156
cta Leu 300	tgt Cys	ctg Leu	ctg Leu	tcg Ser	cta Leu 305	gtt Val	cac His	ctg Leu	gcc Ala	agg Arg 310	gag Glu	aag Lys	tct Ser	gtg Val	acc Thr 315	1204
Ser	Asn	Lys	Ser	gct Ala 320	Gly	Ile	Gln	Ser	Arg 325	Arg	Lys	Lys	Ile	Leu 330	Asp	1252
Val	Tyr	Ala	Asn 335	gtg Val	Сув	Gly	Val	Val 340	Glu	Gly	Leu	Ser	Pro 345	Thr	Glu	1300
Leu	Pro	Phe 350	Asp	tgc Cys	Leu	Glu	Lys 355	Thr	Ser	Arg	Met	Leu 360	Ser	Ser	Thr	1348
Tyr	Asn 365	Ser	Glu	aag Lys	Ala	Val 370	Val	Lys	Thr	Trp	Arg 375	His	Leu	Ala	Glu	1396
agc Ser 380	ttt Phe	gga Gly	ctg Leu	aag Lys	agg Arg 385	gat Asp	gag Glu	att Ile	Gly	ggc 390	atg Met	act Thr	gat Asp	ggc Gly	atg Met 395	1444
cag Gln	ctc Leu	ttt Phe	gac Asp	cgc Arg 400	Ile	agc Ser	acc Thr	gcg Ala	ggc Gly 405	Tyr	agc Ser	atc Ile	cca Pro	gag Glu 410	ctg Leu	1492

ctc aca aag ttg gtg cag atc gag cgg ctg gat gct gtg gag tcc ttg 1540 Leu Thr Lys Leu Val Gln Ile Glu Arg Leu Asp Ala Val Glu Ser Leu 415 tgt gca gac ata ttg gag tgg gct ggg gtt gta cca cct gcc tcc cca 1588 Cys Ala Asp Ile Leu Glu Trp Ala Gly Val Val Pro Pro Ala Ser Pro 440 430 1636 ccc cca gct gcg tcc tga agagttgtct tggactgtct tccctgggac Pro Pro Ala Ala Ser 445 cagctgggga tccaatgaag tcacgaccga cagctgtgag tgatgctatc agactgccaa 1696 aactcaaggc atttcctggt gggtcactgt attccttagg ctgccctaag tagttcattg 1756 agcactcaaa tgaaccaaac catgtgggaa ggacacaggt gaagaatctg atcctgtctt 1816 ttaaggaggc acttagtgag agatgggagc atggtataga ccgtgttacc aaaacatcac 1876 ctaggcaaat gaagggatgc ttttttaaaa agtagcaaaa gttataaggg tgatagagtc 1936 tcaaggggtt gaaagtggga acatcctaat gaagaaaata acttcaaggt tttagtaaaa 1996 cggttacaaa gtacaggcat cccacatcct tcatggcctc agacagagca tggtttgctg 2056 gcatgcccta tggtttcaga ggtaactcga cctgtgtttg cagtcacaca ccatggtata 2116 agcettgeag teactagtgg aagaacteae catgtgteae tgacatacaa ggegtgtgte 2176 tgtccagtca caagtgtggg cagatctggc ctccagcacc actcgcagcc acagcagtta 2236 caatgtcagg cttgtcttgc ttcaaaggga cgtgcgtcct atctagagaa ggaaatggtg 2296 acttgctcag agtttgacca tgcctgattc ctgggtgagg ctcgagtgag ttcaggcaca 2356 acatcctgag ccagtgaggg gtggtgcagc ccgagacgca gtacagagct ggggtctgag 2416 gtcctgggca ctgggagagt cattcaaagt gtctgtctcc tccagactta gcttctctta 2476 ggtgagagag gttggtattc acatctgtag tcaggaatgt tgaggctcca gtgagcgaaa 2536 gggtgagtga aagaacacgg aggcagaaga gaagaggcca gaggagcctc catggggtaa 2596 atacagtgtg ggtggccaca aaaaatgaga gtcaagggaa acgcagccgc cattctcata 2656 taagggcaac tgtaggactg agcgtttaca gggcttataa acagccattg ctcttggcat 2716 attetettae tgcacetgta actgccagga aatgggagee aaggaaaett eeceggeagg 2776 gggttaatgc caagctggct gctgggctcc ctcccagagc gctgactgca gagaatgctt 2836 cctttcagta aagctctggt ttagaaggcg gttgggtttt tttgttttac aaggcctatg 2896

actgaacaaa ggctttggag agcaatcagt ggtgtgttta aaaccatcaa gccatttccc 2956

<210> 13 <211> 1347 <212> DNA <213> Mus musculus <220> <221> CDS

<222> (1)..(1347)

<400> 13 atg gcc cac gtc ggg gac tgc aaa tgg atg tcc tgg ctc cca gtg ctg 48 Met Ala His Val Gly Asp Cys Lys Trp Met Ser Trp Leu Pro Val Leu

gtg gtg tct ctg atg tgc tca gcc aag gcg gag gac tcc aac tgt ggt 96 Val Val Ser Leu Met Cys Ser Ala Lys Ala Glu Asp Ser Asn Cys Gly 20 25 30

gag aac gaa tac cac aac cag act acc ggg ctg tgc cag cag tgt cct 144 Glu Asn Glu Tyr His Asn Gln Thr Thr Gly Leu Cys Gln Gln Cys Pro 35 40 45

cca tgc aga cca ggg gag gag ccc tac atg tcc tgt gga tac ggc act 192
Pro Cys Arg Pro Gly Glu Glu Pro Tyr Met Ser Cys Gly Tyr Gly Thr
50 55 60

aaa gac gac gac tat ggc tgt gtg ccc tgc cct gca gag aag ttc tcc 240 Lys Asp Asp Tyr Gly Cys Val Pro Cys Pro Ala Glu Lys Phe Ser 65 70 75 80

aaa g Lys G																288
ttc c	egg Arg	gcc Ala	act Thr 100	gtg Val	ctg Leu	aca Thr	cca Pro	gga Gly 105	gac Asp	atg Met	gaa Glu	aac Asn	gac Asp 110	gct Ala	gag Glu	336
tgt g Cys G																384
aac a Asn I 1	atc Ile 130	tat Tyr	ggc Gly	atg Met	gtc Val	tgc Cys 135	tac Tyr	tcc Ser	tgt Cys	ctc Leu	ttg Leu 140	gca Ala	cct Pro	ccc Pro	aac Asn	432
acc a Thr I 145	aag Lys	gaa Glu	tgt Cys	gtg Val	gga Gly 150	gcc Ala	act Thr	tct Ser	gly aaa	gtt Val 155	tca Ser	gca Ala	cac His	tca Ser	tcc Ser 160	480
agc a Ser T	Thr	Ser	Gly	Gly 165	Ser	Thr	Leu	Ser	Pro 170	Phe	Gln	His	Ala	His 175	Lys	528
gag o Glu I	Leu	Ser	Gly 180	Gln	Gly	His	Leu	Ala 185	Thr	Ala	Leu	Ile	Ile 190	Ala	Met	576
tct a Ser T	Thr	Ile 195	Phe	Ile	Met	Ala	Ile 200	Ala	Ile	Val	Leu	Ile 205	Ile	Met	Phe	624
tac a Tyr 1	atc Ile 210	atg Met	aag Lys	act Thr	aag Lys	ccg Pro 215	tca Ser	gct Ala	cca Pro	gcc Ala	tgc Cys 220	tgt Cys	agc Ser	agt Ser	ccc Pro	672
cca g Pro 0 225	Gly	Lys	Ser	Ala	Glu 230	Ala	Pro	Ala	Asn	Thr 235	His	Glu	Glu	Lys	Lys 240	720
gag g Glu <i>I</i>	gcc Ala	cca Pro	gac Asp	agt Ser 245	gtg Val	gtg Val	acg Thr	ttc Phe	cct Pro 250	gag Glu	aat Asn	ggt Gly	gag Glu	ttc Phe 255	cag Gln	768
aag d Lys I	ctg Leu	aca Thr	gca Ala 260	aca Thr	ccc Pro	aca Thr	aag Lys	acc Thr 265	ccc Pro	aaa Lys	agt Ser	gag Glu	aat Asn 270	gat Asp	gcc Ala	816
tcc t Ser S	tct Ser	gag Glu 275	aac Asn	gag Glu	cag Gln	ttg Leu	cta Leu 280	agt Ser	cgc Arg	agt Ser	gtg Val	gac Asp 285	agt Ser	gat Asp	gaa Glu	864
gag d Glu I	cca Pro 290	gcc Ala	ccg Pro	gac Asp	aag Lys	cag Gln 295	gly ggg	tcc Ser	cca Pro	gag Glu	cta Leu 300	tgt Cys	ctg Leu	ctg Leu	tcg Ser	912
cta 🤉	gtt	cac	ctg	gcc	agg	gag	aag	tct	gtg	acc	agt	aac	aag	tct	gct	960

Leu Val His Leu Ala 305	Arg Glu Lys 9	Ser Val Thr Ser A 315	sn Lys Ser Ala 320
ggg atc cag agc cgg Gly Ile Gln Ser Arg 325	Arg Lys Lys		
tgt ggt gtt gtt gaa Cys Gly Val Val Glu 340	Gly Leu Ser		
ctt gag aag aca ago Leu Glu Lys Thr Ser 355		Ser Ser Thr Tyr A	
gcg gtc gtg aaa aca Ala Val Val Lys Thr 370			
agg gat gag att ggg Arg Asp Glu Ile Gly 385			
atc agc acc gcg ggc Ile Ser Thr Ala Gly 405	Tyr Ser Ile		
cag atc gag cgg ctg Gln Ile Glu Arg Let 420	Asp Ala Val		
gag tgg gct ggg gtt Glu Trp Ala Gly Val 435		Ala Ser Pro Pro P	
tga			· 1347
<210> 14 <211> 1176 <212> DNA <213> Homo sapiens			
<220> <221> CDS <222> (1)(1176)			
<400> 14 atg ggc tac ccg gag	gtg gag cgc a	agg gaa ctc ctq c	ct gca gca gcg 48
Met Gly Tyr Pro Gli	Val Glu Arg		
ccg cgg gag cga ggg Pro Arg Glu Arg Gly 20			

cgg Arg	gcg Ala	ggc Gly 35	gaa Glu	Gly 999	aac Asn	agc Ser	tgc Cys 40	ctg Leu	ctc Leu	ttc Phe	ctg Leu	ggt Gly 45	ttc Phe	ttt Phe	ggc Gly	144
ctc Leu	tcg Ser 50	ctg Leu	gcc Ala	ctc Leu	cac His	ctg Leu 55	ctg Leu	acg Thr	ttg Leu	tgc Cys	tgc Cys 60	tac Tyr	cta Leu	gag Glu	ttg Leu	192
cgc Arg 65	tcg Ser	gag Glu	ttg Leu	cgg Arg	cgg Arg 70	gaa Glu	cgt Arg	gga Gly	gcc Ala	gag Glu 75	tcc Ser	cgc Arg	ctt Leu	ggc Gly	ggc Gly 80	240
tcg Ser	ggc Gly	acc Thr	cct Pro	ggc Gly 85	acc Thr	tct Ser	ggc Gly	acc Thr	cta Leu 90	agc Ser	agc Ser	ctc Leu	ggt Gly	ggc Gly 95	ctc Leu	288
gac Asp	cct Pro	gac Asp	agc Ser 100	ccc Pro	atc Ile	acc Thr	agt Ser	cac His 105	ctt Leu	ggg Gly	cag Gln	ccg Pro	tca Ser 110	cct Pro	aag Lys	336
cag Gln	cag Gln	cca Pro 115	ttg Leu	gaa Glu	ccg Pro	gga Gly	gaa Glu 120	gcc Ala	gca Ala	ctc Leu	cac His	tct Ser 125	gac Asp	tcc Ser	cag Gln	384
Asp	Gly 130	His	Gln	Met	Ala	Leu 135	Leu	Asn	Phe	Phe	ttc Phe 140	Pro	Asp	Glu	Lys	432
Pro 145	Tyr	Ser	Glu	Glu	Glu 150	Ser	Arg	Arg	Val	Arg 155	cgc Arg	Asn	Lys	Arg	Ser 160	480
Lys	Ser	Asn	Glu	Gly 165	Ala	Asp	Gly	Pro	Val 170	Lys	aac Asn	Lys	Lys	Lys 175	Gly	528
Lys	Lys	Ala	Gly 180	Pro	Pro	Gly	Pro	Asn 185	Gly	Pro	cca Pro	Gly	Pro 190	Pro	Gly	576
Pro	Pro	Gly 195	Pro	Gln	Gly	Pro	Pro 200	Gly	Ile	Pro	gly	Ile 205	Pro	Gly	Ile	624
cca Pro	gga Gly 210	aca Thr	act Thr	gtt Val	atg Met	gga Gly 215	cca Pro	cct Pro	ggt Gly	cct Pro	cca Pro 220	ggt Gly	cct Pro	cct Pro	ggt Gly	672
cct Pro 225	Gln	gga Gly	ccc	cct Pro	ggc Gly 230	ctc Leu	cag Gln	gga Gly	cct Pro	tct Ser 235	Gly	gct Ala	gct Ala	gat Asp	aaa Lys 240	720
gct Ala	gga Gly	act Thr	cga Arg	gaa Glu 245	Asn	cag Gln	cca Pro	gct Ala	gtg Val 250	Val	cat His	cta Leu	cag Gln	ggc Gly 255	caa Gln	768
999	tca	gca	att	caa	gtc	aag	aat	gat	ctt	tca	ggt	gga	gtg	cto	aat	816

Gly Ser Ala	Ile Gln Val 260	Lys Asn Asp 265	Leu Ser Gly Gl	y Val Leu Asn 270	
gac tgg tct Asp Trp Ser 275	cgc atc act Arg Ile Thr	atg aac ccc Met Asn Pro 280	aag gtg ttt aa Lys Val Phe Ly 28	s Leu His Pro	864
cgc agc ggg Arg Ser Gly 290	gag ctg gag Glu Leu Glu	gta ctg gtg Val Leu Val 295	gac ggc acc ta Asp Gly Thr Ty 300	c ttc atc tat r Phe Ile Tyr	912
agt cag gta Ser Gln Val 305	gaa gta tac Glu Val Tyr 310	tac atc aac Tyr Ile Asn	ttc act gac tt Phe Thr Asp Ph 315	t gcc agc tat e Ala Ser Tyr 320	960
gag gtg gtg Glu Val Val	gtg gat gag Val Asp Glu 325	aag ccc ttc Lys Pro Phe	ctg cag tgc ac Leu Gln Cys Th 330	a cgc agc atc r Arg Ser Ile 335	1008
gag acg ggc Glu Thr Gly	aag acc aac Lys Thr Asn 340	tac aac act Tyr Asn Thr 345	tgc tat acc gc Cys Tyr Thr Al	a ggc gtc tgc a Gly Val Cys 350	1056
ctc ctc aag Leu Leu Lys 355	gcc cgg cag Ala Arg Gln	aag atc gcc Lys Ile Ala 360	gtc aag atg gt Val Lys Met Va 36	l His Ala Asp	1104
atc tcc atc Ile Ser Ile 370	aac atg agc Asn Met Ser	aag cac acc Lys His Thr 375	acg ttc ttt gg Thr Phe Phe Gl 380	g gcc atc agg y Ala Ile Arg	1152
	gcc cct gca Ala Pro Ala 390	Ser			1176
<210> 15 <211> 1134 <212> DNA <213> Mus m	usculus				
<220> <221> CDS <222> (1)	(1134)				
<400> 15 atg ggc tac Met Gly Tyr 1	cca gag gta Pro Glu Val 5	ı gag cgc agg . Glu Arg Arg	gaa ccc ctg co Glu Pro Leu P: 10	et geg gea geg co Ala Ala Ala 15	48
cca agg gag Pro Arg Glu	cgg ggc ago Arg Gly Ser 20	c cag ggc tgc Gln Gly Cys 25	ggc tgt cgc gg Gly Cys Arg G	gg gcc cct gct Ly Ala Pro Ala 30	96
cgg gcg ggc Arg Ala Gly 35	Glu Gly Asr	e agc tgc cgg n Ser Cys Arg 40	ctc ttc ctg go Leu Phe Leu G	gt ttc ttt ggc ly Phe Phe Gly 45	144

ctc Leu	tcg Ser 50	ctg Leu	gcc Ala	ctc Leu	cac His	ctg Leu 55	ctg Leu	acg Thr	ctg Leu	tgc Cys	tgc Cys 60	tac Tyr	cta Leu	gag Glu	ttg Leu	192
cgg Arg 65	tcc Ser	gaa Glu	ttg Leu	cgg Arg	cgg Arg 70	gaa Glu	cgg Arg	gga Gly	acc Thr	gag Glu 75	tcc Ser	cgc Arg	ctc Leu	ggt Gly	ggc Gly 80	240
ccg Pro	ggt Gly	gct Ala	cct Pro	ggc Gly 85	acc Thr	tct Ser	ggc Gly	acc Thr	cta Leu 90	agc Ser	agc Ser	cct Pro	ggg Gly	agc Ser 95	ctc Leu	288
gac Asp	ccg Pro	gtg Val	ggt Gly 100	ccc Pro	atc Ile	acc Thr	cgc Arg	cac His 105	ctg Leu	ggg Gly	cag Gln	ccg Pro	tcc Ser 110	ttt Phe	caa Gln	336
cag Gln	cag Gln	cct Pro 115	ttg Leu	gaa Glu	ccg Pro	gga Gly	gaa Glu 120	gat Asp	cca Pro	ctc Leu	ccc Pro	cct Pro 125	gag Glu	tcc Ser	cag Gln	384
gac Asp	cgg Arg 130	cac His	cag Gln	atg Met	gcc Ala	ctc Leu 135	ctg Leu	aat Asn	ttc Phe	ttc Phe	ttt Phe 140	cct Pro	gat Asp	gaa Glu	aag Lys	432
gca Ala 145	tat Tyr	tct Ser	gaa Glu	gag Glu	gaa Glu 150	agt Ser	agg Arg	cgt Arg	gtt Val	cgc Arg 155	cgc Arg	aat Asn	aag Lys	aga Arg	agc Ser 160	480
aaa Lys	agt Ser	ggt Gly	gaa Glu	gga Gly 165	gca Ala	gat Asp	ggt Gly	cct Pro	gtt Val 170	aaa Lys	aac Asn	aag Lys	aaa Lys	aag Lys 175	gga Gly	528
aag Lys	aag Lys	gca Ala	999 Gly 180	Pro	cct Pro	gly ggg	ccc Pro	aac Asn 185	ggc Gly	ccc Pro	cca Pro	gga Gly	cct Pro 190	cca Pro	gga Gly	576
cct Pro	ccg Pro	gga Gly 195	Pro	cag Gln	gga Gly	cct Pro	cca Pro 200	Gly	att Ile	cca Pro	gga Gly	att Ile 205	Pro	ggg Gly	att Ile	624
Pro	Gly 210	Thr	Thr	· Val	Met	Gly 215	Pro	Prc	Gly	Pro	220	GIY	Pro) Pro	ggt Gly	672
ect Pro 225	Glr	gga Gly	ccc Pro	cct Pro	ggc Gly 230	Leu	caa Glr	gga Gly	cct Pro	tct Ser 235	Gly	gct Ala	gct Ala	gat Asp	aaa Lys 240	720
act Thi	gga Gly	act Thi	cgg Arg	g gaa g Glu 245	ı Asr	cag Glr	g cca n Pro	gct Ala	gtg Val 250	l Val	g cat L His	ctg Leu	g cag Glr	g ggc n Gly 255	caa Gln	768
ggg Gly	g tca / Sei	a gca Ala	a att a Ile 260	e Glr	gto Val	aaa Lys	a aat s Asr	gat n Asp 265) Let	t tca ı Sen	a ggt c Gly	gga Gly	gtg Val 270	т гет	aat Asn	816

gac tgg tct cgc atc act atg aac cct aag gtg ttt aaa cta cat ccc Asp Trp Ser Arg Ile Thr Met Asn Pro Lys Val Phe Lys Leu His Pro 275 280 285	864
cgc agc ggg gag ctg gag gtc tac tac atc aac ttc act gac ttt gcc Arg Ser Gly Glu Leu Glu Val Tyr Tyr Ile Asn Phe Thr Asp Phe Ala 290 295 300	912
agc tac gag gtg gtg gtg gat gag aag ccc ttc ctg cag tgc acc cgc Ser Tyr Glu Val Val Val Asp Glu Lys Pro Phe Leu Gln Cys Thr Arg 305 310 315 320	960
agc att gag aca ggg aag acc aac tac aac act tgc tat act gca ggc Ser Ile Glu Thr Gly Lys Thr Asn Tyr Asn Thr Cys Tyr Thr Ala Gly 325 330 335	1008
gtg tgc ctc ctc aag gcc agg cag aaa atc gcc gtg aag atg gtg cac Val Cys Leu Leu Lys Ala Arg Gln Lys Ile Ala Val Lys Met Val His 340 345 350	1056
gct gac atc tct atc aat atg agc aag cac acc acc ttc ttc ggg gcc Ala Asp Ile Ser Ile Asn Met Ser Lys His Thr Thr Phe Phe Gly Ala 355 360 365	1104
atc agg ctg ggc gaa gcc cct gca tcc tag Ile Arg Leu Gly Glu Ala Pro Ala Ser 370 375	1134
<210> 16 <211> 1347 <212> DNA <213> Homo sapiens	
<211> 1347 <212> DNA	
<211> 1347 <212> DNA <213> Homo sapiens <220> <221> CDS	48
<pre><211> 1347 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)(1347) <400> 16 atg gcc cat gtg ggg gac tgc acg cag acg ccc tgg ctc ccc gtc ctg Met Ala His Val Gly Asp Cys Thr Gln Thr Pro Trp Leu Pro Val Leu</pre>	48
<pre><211> 1347 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)(1347) <400> 16 atg gcc cat gtg ggg gac tgc acg cag acg ccc tgg ctc ccc gtc ctg Met Ala His Val Gly Asp Cys Thr Gln Thr Pro Trp Leu Pro Val Leu</pre>	
<pre><211> 1347 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)(1347) <400> 16 atg gcc cat gtg ggg gac tgc acg cag acg ccc tgg ctc ccc gtc ctg Met Ala His Val Gly Asp Cys Thr Gln Thr Pro Trp Leu Pro Val Leu 1</pre>	96

_	_		_	_		gag Glu	_		_		_		_		-	960
						aaa Lys										1008
_		_		_		ctt Leu	_		_		_			_	_	1056
						atg Met										1104
						cgc Arg 375										1152
	_					atg Met		_		_				_	_	1200
	_	_	_			agc Ser								_		1248
_				-	-	gct Ala				_	_	_	_		_	1296
				_		cca Pro		_		_			_	_		1344
tga																1347

<210> 17

<211> 448

<212> PRT

<213> Homo sapiens

<400> 17

 Met
 Ala
 His
 Val
 Gly
 Asp
 Cys
 Thr
 Gln
 Thr
 Pro
 Trp
 Leu
 Pro
 Val
 Leu
 Leu
 Met
 Cys
 Ser
 Ala
 Arg
 Ala
 Glu
 Tyr
 Ser
 Asn
 Cys
 Gly
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30</td

```
Lys Gly Gly Tyr Gln Ile Cys Arg Arg His Lys Asp Cys Glu Gly Phe
                                    90
Phe Arq Ala Thr Val Leu Thr Pro Gly Asp Met Glu Asn Asp Ala Glu
           100
                               105
Cys Gly Pro Cys Leu Pro Gly Tyr Tyr Met Leu Glu Asn Arg Pro Arg
                           120
Asn Ile Tyr Gly Met Val Cys Tyr Ser Cys Leu Leu Ala Pro Pro Asn
                       135
Thr Lys Glu Cys Val Gly Ala Thr Ser Gly Ala Ser Ala Asn Phe Pro
                   150
                                      155
Gly Thr Ser Gly Ser Ser Thr Leu Ser Pro Phe Gln His Ala His Lys
                                   170
               165
Glu Leu Ser Gly Gln Gly His Leu Ala Thr Ala Leu Ile Ile Ala Met
                               185
Ser Thr Ile Phe Ile Met Ala Ile Ala Ile Val Leu Ile Ile Met Phe
                           200
                                               205
Tyr Ile Leu Lys Thr Lys Pro Ser Ala Pro Ala Cys Cys Thr Ser His
                       215
                                           220
Pro Gly Lys Ser Val Glu Ala Gln Val Ser Lys Asp Glu Glu Lys Lys
                   230
                                       235
Glu Ala Pro Asp Asn Val Val Met Phe Ser Glu Lys Asp Glu Phe Glu
               245
                                   250
Lys Leu Thr Ala Thr Pro Ala Lys Pro Thr Lys Ser Glu Asn Asp Ala
                               265
Ser Ser Glu Asn Glu Gln Leu Leu Ser Arg Ser Val Asp Ser Asp Glu
                           280
       275
Glu Pro Ala Pro Asp Lys Gln Gly Ser Pro Glu Leu Cys Leu Leu Ser
                       295
Leu Val His Leu Ala Arg Glu Lys Ser Ala Thr Ser Asn Lys Ser Ala
                   310
                                       315
Gly Ile Gln Ser Arg Arg Lys Lys Ile Leu Asp Val Tyr Ala Asn Val
                                   330
               325
Cys Gly Val Val Glu Gly Leu Ser Pro Thr Glu Leu Pro Phe Asp Cys
                                345
Leu Glu Lys Thr Ser Arg Met Leu Ser Ser Thr Tyr Asn Ser Glu Lys
       355
                           360
Ala Val Val Lys Thr Trp Arg His Leu Ala Glu Ser Phe Gly Leu Lys
                       375
Arg Asp Glu Ile Gly Gly Met Thr Asp Gly Met Gln Leu Phe Asp Arg
                   390
                                       395
Ile Ser Thr Ala Gly Tyr Ser Ile Pro Glu Leu Leu Thr Lys Leu Val
               405
                                   410
Gln Ile Glu Arg Leu Asp Ala Val Glu Ser Leu Cys Ala Asp Ile Leu
           420
                               425
Glu Trp Ala Gly Val Val Pro Pro Ala Ser Gln Pro His Ala Ala Ser
       435
                            440
```

```
<210> 18
<211> 4235
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (433)..(1779)
```

	ggca		ggcc	gaag	ag c	caggi	tgtgd	c ca	ggga	ccta	tgg	cagc	agg (gctga	aacgtg	60
ccc	gctc	cag (cctc	tcca	gt go	ctgg	gagag	gac	ctct	agat	ggt	gcag	gtg a	agtti	tgcaat	120
gag	ggaa	agc (ccct	cggc	aa g	gact	gagtt	t to	caaa	cttg	caga	acag	ggc a	aggga	agcggt	180
caa	ggaag	gag	ttcc	cggg	aa go	ccct	ttaaa	a cg	gaaa	ggaa	gcg	gggc	tag	tgtc	agagag	240
gtg	tgcca	agg 1	tece	aggc	ag c	cctg	ctgad	c cc	ctaa	ggac	atag	gagta	acc	tgcti	tctgag	300
agg	gctg	cca (cggt	ggcc	ac ct	tgtga	aagco	tg!	tcac	ccag	aact	tgga	tgg '	tacci	tgactt	360
tct	tcata	aga (cccat	tctt	ct go	ctgg	gacto	g aaq	gctg	acct	ccaa	acaga	aag	ccag	gtgagc	420
ccti	tggga	aga 🤉				-	-			_		ln Tl			gg ctc rp Leu	471
							atg Met									519
							tac Tyr									567
							gga Gly									615
							tac Tyr									663
_							cag Gln 85		_		_			_	_	711
							gtg Val									759
							ctc Leu									807
							atg Met									855
							gtg Val									903
220	ttc	cct	aac	200	tca	aac	200	200	200	cta	tat	000	tta	cac	cac	951

Asn	Phe	Pro 160	Gly	Thr	Ser	Gly	Ser 165	Ser	Thr	Leu	Ser	Pro 170	Phe	Gln	His	
	cac His 175															999
	gca Ala	_														1047
	atg Met				_	_		_			_		-	_	_	1095
	agc Ser															1143
	aag Lys			_												1191
_	ttt Phe 255		_	_		_			_	_					_	1239
	gat Asp															1287
_	gat Asp				_		_	_	_							1335
	ctg Leu															1383
_	tca Ser	_				_				_			_			1431
	aac Asn 335															1479
	gat Asp	_			-		_	_	-							1527
	gag Glu															1575
	ctg Leu															1623

385 390 395	
ttt gac cgc atc agc acg gca ggc tac agc atc cct gag cta ctc aca 16 Phe Asp Arg Ile Ser Thr Ala Gly Tyr Ser Ile Pro Glu Leu Leu Thr 400 405 410	571
aaa ctg gtg cag att gag cgg ctg gat gct gtg gag tcc ttg tgt gca 17 Lys Leu Val Gln Ile Glu Arg Leu Asp Ala Val Glu Ser Leu Cys Ala 415 420 425	19
gac ata ctg gag tgg gcg ggg gtt gtg cca cct gcc tcc cag cca cat Asp Ile Leu Glu Trp Ala Gly Val Val Pro Pro Ala Ser Gln Pro His 430 435 440 445	67
gct gca tcc tga aaagcatgcc tgtgggctgt cctcccagga caagccaagg 18 Ala Ala Ser	119
atccaacgag ggctctggag ctgtgagtgg tgccaaaaga ctgccaagaa tcaaggcttt 18	79
tgtgatatgt caccgtatgc cttaggatgt tcaaggagcc agacgaaata aggcctgtct 19	39
tccaatttaa ccaaagataa aggactagag ccgggatact ttcagatgct cgcctgtacc 19	99
tcaccaggca gagtaaatat ctactcactc atacagccag cccaccagcc caccattaac 20	59
tcactgaaca atgagacaat gttgaggact caaatgaatc aaaccccgtg ggaatgacag 21	19
aagtgaagaa tetggteeet gtetttaagg agtttgeact eeagtagaag acagaaggaa 21	79
cgtatgttta caaaccactt cactggaaga cgtcaaacaa gctgaatgaa ggggcgctta 22	39
gaaaacgtta atagaagttc taagcgggag atgactccct actgggatga tgaaggatgg 22	99
catcctagtg aagaagcagc tcaaacattt tgataaaatg gcaacaaaat gcagacaccc 23	59
tgctccaggt attatttcag gtttagtaca agtctgttaa taccctatgt ggtttcatta 24	19
ggataacttt ttacctatcc ttgaggtcat ccatattctt acaggccttc cagtcaataa 24	79
tggaagaget cactetatae aaaaccaata tgcaaggeat gtgtttgtee aagcaattgg 25	39
atgtgtgcag tagccaattt catttactgc attactcttt ggcctgggaa ccctgtggtc 25	99
tgcactacat gtgaatggcc ttccacttca gtcttaggca gatttgacct tttaggggca 26	59
gcaatgctga aggacacagc aatttaaatt ataatgtgtc aggctgtgtt ttcacttcaa 27	19
acatgtatga gtagtcagct gtaattagag aaatgatgac ttcctaagag ttcagccacg 27	79
cataattcta gatttcaaga gcatctaaga cttgtggatt agcctcatgg catgagagtt 28	39
tcagactcag cettetgage cagtcaggga aagtggagtt etgeagegea aatgagagee 28	99
tgggcttggt gtcgagggag ctggcttcta gttgtgccac cttgggcctt gtctttcct 299	59
ctctctgcct cagtttctcg tctgccaatg agatgttagt tagtgattct ataattgggg 30	19

caggtagggt tcaggtgagc aaaaagaaag tggagctata ggaaatgcca ggcctttgag 3079 gtgctctatg gaagtcaaca cagtgtggtt tgtccattta aatgggaata aaaacagaaa 3139 aactcagact tggcattttc acaataactg caatggtttg acataacatt tataqqcaqa 3199 aagttaataa actggcattg ttcttggcat attattgtac tatccctgta actgccaaga 3259 gctcaggagc caggctagtg atcacaccag gggttagagt tcactgctga actccctgat 3319 ggcaggtctg tgtttattac tacattaaaa caaagtctct gacttataaa gcgaggtcgt 3379 aaaaattaca agttgcatga ctgaaaaaat gctttagggg gaaaatcagt catatcttta 3439 acaccaacaa gcaatttccc accaacgaat gtagtacata ctgtgagagg atcataatga 3499 ggtcctgaat atttaatatc atcatttact gtgtctgttt gctgctgttt ttcgaaccta 3559 tttggtttac cctgcaagct aaatactcca cggcagagct taattatcct tttaattcct 3619 ctttgaaatc ctgtggtgcc cccttccccc tgccttgtga tgatgatgag tgagtctccc 3679 cttaattaga ctgcaaatgt cacttgtgat gagtgtgcca ttccaggata acagcttgca 3739 ccctcctcag aatgttttca gcgaaagagt ggggtggctg ttctctgctc ctggtgcttt 3799 ggcctcattt cacactatta gaattctggg gctgtaaggc cagccagtgt cagctcatgt 3859 tccattggct ctccacctgc catttttagg gagctattcc ttatatagtt acaaattccc 3919 ttgtcattta cttatttgga aacatgggat ttactctgac aagctttagc ctatgttatg 3979 ggattcagaa caatgagatc ataataattc tcactgacca aagctgggac tccatcctgc 4039 catttttgtg tggagatatt cataattctg caatacttta aaacatttag aaaacacccc 4099 agggtaggtc tgtggccctt agacagtgaa gtcttaattg tcaatattat ttttgtctaa 4159 ttotgtatat atataactta ttatatttta taatotoaat aaacacatta ataaaaaaaa 4219 aaaaaaaaa aaaaaa 4235

<400> 19

 Met
 Ala
 His
 Val
 Gly
 Asp
 Cys
 Thr
 Gln
 Thr
 Pro
 Trp
 Leu
 Pro
 Val
 Leu
 Leu
 Met
 Cys
 Ser
 Ala
 Arg
 Ala
 Glu
 Tyr
 Ser
 Asn
 Cys
 Gly
 25
 30
 30
 Cys
 Gly
 Pro

 Glu
 Asn
 Glu
 Tyr
 Asn
 Gln
 Thr
 Thr
 Gly
 Leu
 Cys
 Gln
 Glu
 Cys
 Pro

 Pro
 Cys
 Gly
 Pro
 Gly
 Glu
 Glu
 Pro
 Tyr
 Leu
 Ser
 Cys
 Gly
 Tyr
 Gly
 Thr

 Fo
 Cys
 Gly
 Pro
 Gly
 Glu
 Glu
 Pro
 Tyr
 Leu
 Ser
 Cys
 Gly
 Tyr
 Gly
 Thr

 Fo
 Cys
 Gly
 Pro
 Gly
 Gly
 Fro
 Tyr
 Leu
 Ser
 Cys
 Gly
 Tyr
 Gly
 Tyr
 Tyr
 Gly
 Tyr
 Tyr
 Tyr
 Gly</t

<210> 19

<211> 448

<212> PRT

<213> Homo sapiens

```
Lys Asp Glu Asp Tyr Gly Cys Val Pro Cys Pro Ala Glu Lys Phe Ser
 Lys Gly Gly Tyr Gln Ile Cys Arg Arg His Lys Asp Cys Glu Gly Phe
 Phe Arg Ala Thr Val Leu Thr Pro Gly Asp Met Glu Asn Asp Ala Glu
                                 105
 Cys Gly Pro Cys Leu Pro Gly Tyr Tyr Met Leu Glu Asn Arg Pro Arg
                             120
 Asn Ile Tyr Gly Met Val Cys Tyr Ser Cys Leu Leu Ala Pro Pro Asn
                         135
                                             140
 Thr Lys Glu Cys Val Gly Ala Thr Ser Gly Ala Ser Ala Asn Phe Pro
                     150
                                         155
 Gly Thr Ser Gly Ser Ser Thr Leu Ser Pro Phe Gln His Ala His Lys
                                     170
Glu Leu Ser Gly Gln Gly His Leu Ala Thr Ala Leu Ile Ile Ala Met
                                 185
Ser Thr Ile Phe Ile Met Ala Ile Ala Ile Val Leu Ile Ile Met Phe
        195
                             200
Tyr Ile Leu Lys Thr Lys Pro Ser Ala Pro Ala Cys Cys Thr Ser His
                        215
Pro Gly Lys Ser Val Glu Ala Gln Val Ser Lys Asp Glu Glu Lys Lys
                    230
                                         235
Glu Ala Pro Asp Asn Val Val Met Phe Ser Glu Lys Asp Glu Phe Glu
                245
                                    250
Lys Leu Thr Ala Thr Pro Ala Lys Pro Thr Lys Ser Glu Asn Asp Ala
            260
                                265
Ser Ser Glu Asn Glu Gln Leu Leu Ser Arg Ser Val Asp Ser Asp Glu
                             280
Glu Pro Ala Pro Asp Lys Gln Gly Ser Pro Glu Leu Cys Leu Leu Ser
                                            300
Leu Val His Leu Ala Arg Glu Lys Ser Ala Thr Ser Asn Lys Ser Ala
                    310
                                        315
Gly Ile Gln Ser Arg Arg Lys Lys Ile Leu Asp Val Tyr Ala Asn Val
                325
                                    330
Cys Gly Val Val Glu Gly Leu Ser Pro Thr Glu Leu Pro Phe Asp Cys
                                345
Leu Glu Lys Thr Ser Arg Met Leu Ser Ser Thr Tyr Asn Ser Glu Lys
                            360
                                                365
Ala Val Val Lys Thr Trp Arg His Leu Ala Glu Ser Phe Gly Leu Lys
                        375
Arg Asp Glu Ile Gly Gly Met Thr Asp Gly Met Gln Leu Phe Asp Arg
                    390
                                        395
Ile Ser Thr Ala Gly Tyr Ser Ile Pro Glu Leu Leu Thr Lys Leu Val
                                    410
Gln Ile Glu Arg Leu Asp Ala Val Glu Ser Leu Cys Ala Asp Ile Leu
Glu Trp Ala Gly Val Val Pro Pro Ala Ser Gln Pro His Ala Ala Ser
       435
                            440
```

```
<210> 20
```

<220>

<211> 19

<212> DNA

<213> Artificial Sequence

```
<223> Description of Artificial Sequence:
      Oligonucleotide primers used to amplify exon 5 of
      EDA1-II.
<400> 20
agaaagcagg acctcctgg
                                                                    19
<210> 21
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      Oligonucleotide primers used to amplify exon 5 of
      EDA1-II.
<400> 21
ctctcaggat cacccactc
                                                                    19
<210> 22
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      Oligonucleotide primers that can be used to
      diagnose ED.
<400> 22
tatgttggct atgactgact gagtgg
                                                                    26
<210> 23
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      Oligonucleotide primers that can be used to
      diagnose ED.
<400> 23
ccctaccaag aaggtagttc
                                                                    20
<210> 24
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
```

diagnose ED. <400> 24 ctctcaggat cacccactcc tg 22 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Oligonucleotide primers that can be used to diagnose ED. <400> 25 tgtcaattca ccacagggag 20 <210> 26 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Oligonucleotide primers that can be used to diagnos ED. <400> 26 gaatctagga tgcaggggc 19 <210> 27 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Oligonucleotide primers that can be used to diagnose ED. <400> 27 tattgcggcg aacacg 16 <210> 28 <211> 16 <212> DNA <213> Artificial Sequence <220>

Oligonucleotide primers that can be used to

<223> Description of Artificial Sequence:

Oligonucleotide primers that can be used to

diagnose ED.

<400> tattg	28 cagcg aacacg	16
<210><211><211><212><213>	17	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that can be used to diagnose ED.	
<400>	29	
tattg	cggca aaacacg	17
<210> <211>		
<211>		
	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Oligonucleotide primers used to screen a BAC library.	
<400>	30	
atcat	ggctg tgcactctag	20
<210>	31	
<211>		
<212><213>	DNA Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Oligonucleotide primers used to screen a BAC library.	
<400>		
acctac	ctgca tgtctgtgga	20
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Oligonucleotide primers used to screen a BAC library.	

<400> cacat	> 32 :gctca gtgttgtcca	20
<210><211><211><212><213>	· 20	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers used to screen a BAC library.	
<400> acaca	33 ggctc agtcatgcgg	20
<210><211><211><212><213>	25	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers used to clone a murine dl gene.	
<400> gcggt		25
<220>	11	
<400> gaatto	gene. 35	11
<210><211><212><213>	21	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers used to clone a murine dl gene.	

```
<400> 36
 ctgagcggaa ttcgtgagac c
                                                                     21
 <210> 37
 <211> 23
 <212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      Oligonucleotide primers used to clone a murine dl
      gene.
<400> 37
ggtctcacga attccgctca gtt
                                                                     23
<210> 38
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      Oligonucleotide primers used to clone a murine dl
      gene.
<400> 38
agtgagaatg atgcctcc
                                                                     18
<210> 39
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      Oligonucleotide primers used to clone a murine dl
      gene.
<400> 39
gcctttgttc agtcatagg
                                                                    19
<210> 40
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      Oligonucleotide primers used to clone a murine dl
      gene.
<400> 40
```

cctga	gagct ctttgtgag	19
<210><211><212><212><213>	29	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers used to clone a murine dl gene.	
<400> cggga	41 tcctc gaggggggg gggggggh	29
<210><211><211><212><213>	18	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers used to clone a murine dl gene.	
<400> aagcag	42 gaget ceacaate	18
<210><211><211><212><213>	39	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers used to clone a murine dl gene.	
<222>	<pre>misc_feature (38)(39) n represents a, c, t, or g; v represents a, g, or c</pre>	
<400> ggccgc		39
<210><211><212><212><213>	20	
<220>		

```
<223> Description of Artificial Sequence:
       Oligonucleotide primers used to clone a murine dl
       gene.
 <400> 44
 ggaacagtca agagcgagtt
                                                                     20
 <210> 45
 <211> 30
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:
       Oligonucleotide primers used to clone a murine dl
       gene.
 <400> 45
 gcggatccag gccgctctgg acaggatatg
                                                                     30
 <210> 46
 <211> 17
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Description of Artificial Sequence:
      Oligonucleotide primers that were used to clone
      human DL.
<400> 46
tggtgtctct gatgtgc
                                                                     17
<210> 47
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      Oligonucleotide primers that were used to clone
      human DL.
<400> 47
acagtggccc ggaagaag
                                                                    18
<210> 48
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
```

<400> 48 ctgcggtgag aacgagtac 19 <210> 49 <211> 18 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL. <400> 49 ggcaaggtgg cgccatgt 18 <210> 50 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL. <400> 50 ggcaccaaag acgaggacta 20 <210> 51 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL. <400> 51 tcagcgtcat tctccatgtc 20 <210> 52 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:

Oligonucleotide primers that were used to clone

human DL.

Oligonucleotide primers that were used to clone

human DL.

<400> ctagad	52 ctcga gaattcgcgg ccgcactagt ttttttttt ttttt	46
<210><211><212><213>	20	
	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> tctggt	53 cagcc tcctttggaa	20
<210><211><211><212><213>	17	
(Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> !	54 tcga gaattcg	17
<210> 9 <211> 2 <212> I <213> P	20	
C	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> 5	55 tegt etttggtgee	20
<210> 5 <211> 1 <212> D <213> A	18	
0	Description of Artificial Sequence: Digonucleotide primers that were used to clone	

<400> 56 gagaattege ggeegeae	18
<210> 57 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> 57 agccccgtag tctggttgta	20
<210> 58 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> 58 gcgtcgacag tgatgagga	19
<210> 59 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> 59 cagtettttg geaceactea	20
<210> 60 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	

< 40	0> 60	
acg	tgtgtgg agtcgtgga	
_	- 5 55 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 ·	19
<21	0> 61	
<21	1> 19	
	2> DNA	
	3> Artificial Sequence	
	ov merriciar sequence	
<22	05	
	3> Description of Artificial Sequence:	
	Oligonucleotide primers that were used to clone human DL.	
	maman bu.	
<400)> 61	
	gttggat cettggett	
0005	geoggae colleggelt	19
<210	> 62	
	> 20	
	> DNA	
~213	> Artificial Sequence	
<220		
\223	> Description of Artificial Sequence:	
	Oligonucleotide primers that were used to clone	
	human DL.	
<400	. (2	
caca	tgctgg agaacagacc	20
<210:	. (2	
<211:		
	> DNA	
(213)	Artificial Sequence	
<220>		
(223)	Description of Artificial Sequence:	
	Oligonucleotide primers that were used to clone	
	human DL.	
<400>		
uluca	aagga ggctaccaga	20
<210>	64	
<211>		
<211>		
~ 413>	Artificial Sequence	
<220>		
	Doggadati	
~223>	Description of Artificial Sequence:	
	Oligonucleotide primers that were used to globe	
	human DL.	
-100		
<400>	04	

ttggcagaag ctcctgaagt	20
<210> 65	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:	
Oligonucleotide primers that were used to clone human DL.	
<400> 65	
tgctcgagat gtgatgaagg	20
	20
<210> 66	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:	
Oligonucleotide primers that were used to clone	
human DL.	
<400> 66	
aagcagatgg ccacagaact	
	20
-210. 67	
<210> 67 <211> 19	
<211> 19 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:	
Oligonucleotide primers that were used to clone human DL.	
<400> 67	
ggagaggatg gcccatgtg	19
<210> 68	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:	
Oligonucleotide primers that were used to clone	
human DL.	
<400> 68	
cagaccatgc catagatgtt c	
	21

```
<210> 69
  <211> 20
  <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence:
       Oligonucleotide primers that were used to clone
       human DL.
 <400> 69
 acttcaggag cttctgccaa
                                                                     20
 <210> 70
 <211> 19
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:
       Oligonucleotide primers that were used to clone
       human DL.
 <400> 70
 tcgtccttgc tcacttggg
                                                                     19
 <210> 71
 <211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      Oligonucleotide primers that were used to clone
      human DL.
<400> 71
ggatgaattt gagaagctga c
                                                                    21
<210> 72
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      Oligonucleotide primers that were used to clone
      human DL.
<400> 72
ctgacttgtt cgtggtggc
                                                                    19
```

<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> 73	
tccacgactc cacacacgt	19
<210> 74	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> 74	
aaataaaggt agccagaccc	20
<210> 75	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> 75	
gtaaggggct cagaccact	19
	~~
<210> 76	
<211> 21	•
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> 76	
catgtgtttc taaggaggta c	21

<210> 73 <211> 19 <212> DNA

```
<210> 77
  <211> 20
  <212> DNA
  <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:
       Oligonucleotide primers that can be used for
       mutation screening of human DL.
 <400> 77
 caacaatgcc acaagcagga
                                                                     20
 <210> 78
 <211> 19
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:
       Oligonucleotide primers that can be used for
       mutation screening of human DL.
 <400> 78
 gtccgtatgg tttggctgc
                                                                     19
 <210> 79
 <211> 18
 <212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:
      Oligonucleotide primers that can be used for
      mutation screening of human DL.
<400> 79
gccagggttt gccaggag
                                                                    18
<210> 80
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      Oligonucleotide primers that can be used for
      mutation screening of human DL.
<400> 80
gtccagctca cctgtctct
                                                                    19
```

<210> 81

<212	2> 19 2> DNA 3> Artificial Sequence	
<220 <223	<pre>>> Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.</pre>	
	> 81 gctctt tcctacacc	19
<212	> 82 > 21 > DNA > Artificial Sequence	
<220 <223	<pre>> > Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.</pre>	
<400; tggag	> 82 gcttct ctggatcatt t	21
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> aacto	ecaggt gatcgatacc	20
<210><211><212><212><213>	20	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> ctggg	84 tcatt catgccttct	20
<210><211>		

```
<212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence:
       Oligonucleotide primers that can be used for
       mutation screening of human DL.
 <400> 85
 atggtgtgtg gaagccctg
                                                                     19
 <210> 86
 <211> 21
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:
       Oligonucleotide primers that can be used for
       mutation screening of human DL.
 <400> 86
 catgagccaa ttctaactcc t
                                                                     21
 <210> 87
<211> 19
 <212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      Oligonucleotide primers that can be used for
      mutation screening of human DL.
<400> 87
caggacccca gttcagctt
                                                                    19
<210> 88
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      Oligonucleotide primers that can be used for
      mutation screening of human DL.
<400> 88
cccaggcact gctaatgac
                                                                    19
<210> 89
<211> 20
<212> DNA
```

<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> 89	
ccacatetea cageteatea	20
<210> 90	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> 90	
tttctactgt tgcccctttc t	21
<210> 91	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> 91	
cccagccctt catgtcagt	19
	19
<210> 92	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> 92	
tctattgact gtgacttgca	20
	20
<210> 93	
<211> 19	
<212> DNA	
<213> Artificial Sequence	

```
<220>
  <223> Description of Artificial Sequence:
        Oligonucleotide primers that can be used for
        mutation screening of human DL.
  <400> 93
  ctcgttggat ccttggctt
                                                                     19
  <210> 94
  <211> 425
  <212> DNA
  <213> Homo sapiens
  <400> 94
  ttttttttt tgggggcaga cggccgaaga gccaggtgtg ccaaggtcat atggcagcag 60
 ggctgaacgt gcccgctcca gcctctccag tgctggaaga gacctctaga tggagcaggt 120
 gagtttgcaa ttagggaaag cccctcggca aggactgagt ttccaaactt gcagacaggg 180
 cagggagegg teaaggaaga gtteeeggga ageeetttaa aeggaaagga ageggggeta 240
 gtgtcagaga ggtgtgacag gtcccagtca gccctgctgg cccctaagga catagagtac 300
 ctgcttctga gagggctgcc acggtggcca cctgtgaagc ctgtcaccca gaactggatg 360
 gtacctgact ttcttcatag acccatcttc tgctgggact gaagctgacc tccaacagaa 420
 gccaq
 <210> 95
 <211> 434
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (1) .. (434)
 <223> n represents a, c, t, or g
 <400> 95
gtaagccctg gtcctttcct ctggttttct aaactcttca gctgtggccg agacggaggt 60
gtcatgggct gggagagagg ctgggtgcat ttttgaaatg catgtcattt ttgggttgcg 120
tttgaaggtt tcnccaaacc ctctgagcac gagaaacaca atcactancc tcgggtttaa 180
cettgggece teegtgtget cetageetee thteaggete ceteceagge atggetgena 240
ggctgggaag gccccagagt cagcccaagt ggcatgggtn cagcttcagc ttcatgtctg 300
cttttctttt aggatgtata gtttcccctc tgtttgctgg aaggcacctt atatccagtg 360
gggttaaata aaggtagcca gaccccggc tggggtgcta ccgccagtgc ccagctaatg 420
acgcatnnnt tcag
                                                                   434
<210> 96
<211> 70
<212> DNA
<213> Homo sapiens
<400> 96
gtgagcccct tgggagagga tggcccatgt gggggactgc acgcagacgc cctggctccc 60
cgtcctggtg
```

```
<210> 97
   <211> 722
   <212> DNA
   <213> Homo sapiens
   <220>
  <221> misc_feature
  <222> (1)..(722)
  <223> n is a, c, t or g
  <400> 97
  gtaagtggtc tgagcccctt acccccacag caccctcatc ctcatgatgg ttggactgtt 60
  tettggeete tteagetgta aaatgggaat getgateata gteeeteete cacagggtte 120
  ttctgagggt gaaatgaaac caggcctgca aagcacagaa ctctgcccca ggctgaagtt 180
  acattgattt cgttggtagc tcccttcata gggtctcatg gatataaacg ttcttgattg 240
  cttgtttgtg gtgtgataca cacagccctg tgtctatgtg atgagctcat gcttgggggc 300
  cgcgcagcta agaaagactt ggaagactca gacccctacc cccatcctcc tggacacgcc 360
  ggtgttctga ggagccactg tattagaggc tcagtggggg acaggggcgc ctcctccatg 420
  accttggcaa gtgcgttgat gaggagaact canagcaggc cttgatggtg ggatggggct 480
  tggccagcag gggtgaaggc agggtggttc tagtgggggc tggccgtgcc cangtggatc 540
  aaccaggagc cactggagac ttaacagcag tgagcactna caagcggcac cttcccagac 600
 cgagccccca gcagagcccc caccgcaggg cacccccttc ctatgtcaac cttggggtct 660
  tgcaggagtc acatgtgttt ctaaggaggt acggaggcca caacaccccc ctttgttggc 720
 aq
 <210> 98
 <211> 123
 <212> DNA
 <213> Homo sapiens
 <400> 98
 gtgtctctga tgtgctcagc ccgagcggaa tactcaaact gcggtgagaa cgagtactac 60
 aaccagacta cggggctgtg ccaggagtgc cccccgtgtg ggccgggaga ggagccctac 120
 <210> 99
 <211> 740
 <212> DNA
 <213> Homo sapiens
<400> 99
gtaaggaccc agccctcctg gagcctggtg cgctctcagg ggaggcctcc tgcttgtggc 60
attgttgccc tgagcctgcc ttgctgtgtg aggggatgcc agggtatatc aaaccagccg 120
gtcacgctcc ctggacgttg agattgatgg caagagctgc cgtgagccca ggaatggcac 180
tcaccagcta agcattcata aacagatttt tcaggagttc tgaaatgttt ttaaaggatc 240
actttcccac tctaccctga ttaaatgagc gtcagatcat ctgattggaa gcaggattga 300
aatattctcc agtactagta cattttttcc tgagtgctgc atctccctcc gcctctgggc 360
aagctaagcc tgagtgttct gttcagcact aagggaaacc tccggggttt cagtgtccgg 420
ttcttgtagc aagctgagga aagtcagatg ccaagtgcta cctgcactgc ctgggcattc 480
cagcagctcg ctgaattcat ctcggggagg ctcagaaaag gggcagcatc tggagcctga 540
gagtggcgag gagagggca agcccagagc atgagctggt tcctgggggg ttttgcagtt 600
aggacaactc aggaaaccaa ggcccggcaa gagtagcttc tggagacagc tggcacgtca 660
ctgcccaagg actgtgggcc gagtccgtat ggtttggctg ctgcactcac ctgtgtcccc 720
tgtcctcttt ccctggacag
                                                                  740
```

```
<210> 100
  <211> 182
  <212> DNA
  <213> Homo sapiens
  <400> 100
  teetgtgget aeggeaceaa agaegaggae taeggetgeg teecetgeee ggeggagaag 60
  ttttccaaag gaggctacca gatatgcagg cgtcacaaag actgtgaggg cttcttccgg 120
  gccaccgtgc tgacaccagg ggacatggag aatgacgctg agtgtggccc ttgcctccct 180
  gg
                                                                    182
  <210> 101
  <211> 1169
  <212> DNA
  <213> Homo sapiens
 <220>
 <221> misc feature
 <222> (1)..(1169)
 <223> n represents a, c, t, or g
 <400> 101
 gtaagcacag gccctcctgg caaaccctgg catgctttct gcagaaaacc ccgaggggct 60
 acgggcaagg accttgggaa caggggtcat ggatactgca ggcctcggtg cagccgcaca 120
 cctggccttg gtcccatccc acaaggagca gcatccagga cggagagtcc tggccctcc 180
 ggtggacagg cagcccatca ggctctgcct ctgtgtctcc taagtggcca ttaaccatca 240
 taatatette tgaccaccaa aaggaaacaa attgettgaa taettacagt geagtageee 300
 atgtgaaaca ctttgggaaa aagaaaactn naatttnatg caaaaagcag tattttnagt 360
 attctggnaa cactctggnn aanctactaa taanntanat ntgagaaaag aaatatnant 420
gangagatta tgannncgaa gnnaagnnan gnanaancan annaggntnn agaaaatgag 480
gttgnnaang antnataana tagnacanng ntgatatnca tnggaaagta aacngcntga 540
gnannagtga tttgtgatng ccagggtatt cntngaggga aaacangact attggancag 600
anngtgngga aaggnacaaa cgntgtntna ncataganaa nntagagttg ntgggtgggc 660
attnnaanna genggtaaag aatagettgn aagtngneaa ggggtneeag aggeaannnt 720
aatgeetata nateeeataa gnntgeagge tantggngan ggtgetnaca aagageatgt 780
tectecteca ggaaggtetg geettngttg gtgtnacece tggggggeta ancaggeent 840
acatgtgggg gcacagggat atttctggtg natgatgtga tggcacacac actaaacaca 900
gccaccagag agaggaacca gaaagggct gagatcaaaa gaaaggccca cgttggcagc 960
tcaatattgt taaaagaatg ctccatttca agacaggctg aaaccccaag gaaactgagt 1020
ggacagagca ggtgactgag tgggcgtggc ctcatgcccg acttgattgt gggcctgcag 1080
actggccacc gtgctctctg caccagtccc tgcctgtgtg ctgtccagct cacctgtcta 1140
ctgttttgtc cttgtgctct ccnccgtag
<210> 102
<211> 86
<212> DNA
<213> Homo sapiens
<400> 102
ctactacatg ctggagaaca gaccgaggaa catctatggc atggtctgct actcctgcct 60
cctggcaccc cccaacacca aggaat
```

<210> 103

```
<211> 484
  <212> DNA
  <213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (1)..(484)
 <223> n represents a, c, t, or g
 <400> 103
 gtgagtgtct ttgtccttcc accagcacgg tatttgttca ggcacggatc tctttcacta 60
 cagagggtgt aggaaagagc cggtcctggc acctggacaa ggtgaatcac agtaacagca 120
 ctagtgaaag tgctcctgtg gcctgtccag gcaggtctat gaagggaggg gcgtttgcca 180
 catctgagcc ttgagtcaga ggctgaggtt ctagtgcagg ttggccacca gctacctgac 240
 aagtcactta acctccatga gcctcggttt tctcatcggt aatatggggg tgaagaaagn 300
 acaatancga tgactcttta gggttcatta aacagtctaa gaaatacaaa tatttagctc 360
 ccctcagcca tcactgcctc aggcccattc atgatcatga atccagatcc atgagctctg 420
 tggcagcgtg ctttgaaggt ggagcttctc tggatcattt gagggactct attttgcctt 480
 gcag
 <210> 104
 <211> 87
 <212> DNA
 <213> Homo sapiens
 <400> 104
gtgtgggagc cacttcagga gcttctgcca acttccctgg cacctcgggc agcagcaccc 60
 tgtctccctt ccagcacgcc cacaaag
<210> 105
<211> 799
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)..(799)
<223> n represents a, c, t, or g
<400> 105
gtgaggaggg tgctcaggta tcgatcacct ggagttaggt ggtactcgga tgaaagctca 60
gaagaggaga ggaaatgatc atgagtgatg attatggtgc gcttccccac ctggcctcac 120
ctccctaatg taattgaatg acatgttgcc ccccgtgcag gaagtcatta tatctgcaat 180
cagagttgat ccctctatgg gtgtcctggg accgctggga ggtgctggtg gtgaaggcgg 240
gggcatagcg gcaggtggac agcacaggca gctgcaagcc cggccaggag gagagaccag 300
gcgtcctggg ctttggtttg gccgngagtt aacagcaatt ctatcactgg ttttcatata 360
aacatgctga ccatagcact ttaatattaa cttgcanaan gtncattttc attctncctt 420
aaccagggaa gangggatcg nggaggaccc caangtttan tntgcctctc acanttagnc 480
ccccacntgg cttgncntna aggttgccaa agcagtagna gcgagaagca agctccctta 540
ggaacaatna ggtancccca gaaaaagtct gganaggcca agtctgaggg cagcgagcag 600
gggttgtggg cagtcctggt ctggcagcca aaaccagcgc gnaggatttg gttctcagtc 660
taagcaagca cctcagattt cagggttccc tgaaagcatc ccaggggcag ggccattgct 720
tccaggggcc ggagtcctgg agggaagacc agcagggatc ctgagctctg ggtcattcat 780
gccttctctc cacccacag
                                                                   799
```

```
<210> 106
  <211> 126
  <212> DNA
  <213> Homo sapiens
  <400> 106
  aactctcagg ccaaggacac ctggccactg ccctgatcat tgcaatgtcc accatcttca 60
  tcatggccat cgccatcgtc ctcatcatca tgttctacat cctgaagaca aagccctctg 120
  <210> 107
  <211> 96
  <212> DNA
  <213> Homo sapiens
 <400> 107
 gtgacggccc ccatgcgccg gtgccctgcc tcctggactc tccgtcaact cccctgtcg 60
 gagageetgg etgeteacte ceteetete ecceag
 <210> 108
 <211> 75
 <212> DNA
 <213> Homo sapiens
 <400> 108
 cctgttgcac cagccacccg gggaagagcg tggaggccca agtgagcaag gacgaggaga 60
 agaaagaggc cccag
                                                                    75
 <210> 109
 <211> 243
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
<222> (1)..(243)
<223> n represents a, c, t, or g
<400> 109
gtctgtgaac cagggcttcc acacaccatg tgcacggtgc ccatctctgg gtggagggcg 60
ttcccagaag cagcctcctc gctgcttctg ctctcacatg ctgaaccata ctgtgcttac 120
cgtggggtgg tgccacacag acaccgggca gctctgccca acaggaagag cagggttggg 180
ctgagcgcan agccatgagc caattctaac tcctatctcc ccaacctccc catttccctg 240
cag
<210> 110
<211> 73
<212> DNA
<213> Homo sapiens
<400> 110
acaacgtggt gatgttctcc gagaaggatg aatttgagaa gctgacagca acttcagcaa 60
```

```
<210> 111
   <211> 1174
   <212> DNA
   <213> Homo sapiens
   <220>
   <221> misc_feature
   <222> (1)..(1174)
  <223> n represents a, c, t, or g
  <400> 111
  gtatgtggaa gcccccacac caagctgaac tggggtcctg tggatcctga gcagggaggg 60
  gttnccaggg tgcagccgag tgaactgaca ggctagcctg ggacactatg gggacgttcg 120
  gcgacagaca gtccccacca cctctttgct gactggcagg ggtcaggtgg tgtgaggagc 180
  ctgtggaaac agctgcctgc tgctctcggg tcaggcccct gtccctgcat cctgccaaat 240
  teeetgggee tteeteetta acateegaat teeteatgee eetteteeag actgggaggg 300
  cagaacataa agccaaggat gcatgcctgt tgcggccaac acaccagtac cacccgtgcc 360
  ggtgccagta ctgctgccac cgtaatgctg gtaacaaccg tggtgatgac ggctaacagc 420
  atttggtgcc tactgcccac caagtgctgg gctagggctg tgaacacatc ctnccttcca 480
  ccagcccang agcaaggtgc ttggaatcat ccctggttat aggaatacca cactgaggta 540
  tggaagttgt cactcgccca aagtcacaca ctagtgaaca canggcttgg ggtccgaagt 600
  ccangetece aangageeac atggngntaa anaggtnagn cagggteace eccetaagtt 660
 ccaagagggg ggcttttcna ggcacaaagg gttccattna ggttcccttt tcaatgnctt 720
 ccagagagcc agcatggatt tcagcgccag cngcatccaa tctgtttgct ttaacatgaa 780
 gacaccagtt gaacttgggt gcttactggg attaaataca gagatctagg acatattcaa 840
 tgaaccttca cggagcatcc attgtgtgtc aggtagcagg gaaggagagg cccgtggatg 900
 cctcccaccc gcagtggcag ccccagcccc ttagacgcct gcaggtcacc caccacggac 960
 ttgtttgttt ggaaagaagc aggaagccac cggtgtatgt ctcgtctcat gtcccctggt 1020
 cccgtgccca caaggtgccc agtaaacacc tgaaaaacaa gtcattgccc cccactgtcc 1080
 acagctgggc aatggacaag ttcaccacag gagaacttgt cagggctgca gccccccag 1140
 gcactgctaa tgaccatcgc tcttgttttt gcag
                                                                    1174
 <210> 112
 <211> 160
 <212> DNA
 <213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(160)
<223> n represents a, c, t, or g
<400> 112
cgagaacgat gcctcatcng agaatgagca gctgctgagc cggagcgtcg acagtgatga 60
ggagcccgcc cctgacaagc agggctcccc ggagctgtgc ctgctgtcgc tggttcacct 120
ggccagggag aagtetgeca ccagcaacaa gtcagccggg
<210> 113
<211> 226
<212> DNA
<213> Homo sapiens
```

```
<220>
   <221> misc_feature
   <222> (1)..(226)
   <223> n represents a, c, t, or g
   <400> 113
   gtgaggctcc tgcaggtgcc atgatgagct gtgagatgtg gctccctcac agccgcaagg 60
   actaaaactt tettattgaa teagetetee tgeaagaegg ggtgtttete eeagaagtee 120
   aagataggag acctggacag tgacaagttc acagcaagat agtcaaaagg gaaaaaaacc 180
   ctttcgtttt tgagttttgt ttttttttn ggngatgana gnctng
   <210> 114
   <211> 61
   <212> DNA
  <213> Homo sapiens
  <400> 114
  attcaaagcc ggaggaaaaa gatcctcgat gtgtatgcca acgtgtgtgg agtcgtggaa 60
  <210> 115
  <211> 309
  <212> DNA
  <213> Homo sapiens
  <220>
  <221> misc_feature
  <222> (1)..(309)
 <223> n represents a, c, t, or g
 <400> 115
 agagtggnng aagagngaag ggaggngaaa agggggngag ngagggaagg aggngggaan 60
 nnggagtgag gggggaagg ggnagagng gnggnagngn gnggngagng gganagngaa 120
 agnagtgaga ngggaaggna nagngagnag gggnnangag aaagngggag ngtaggnggc 180
 gatgngnnng gtngaaatat tnanagaaat tttttcaaat aatttttatt tcatttaaat 240
 aatttttcag tgttgacctt ctattgactg tgacttgcaa catctaactg tggccattgg 300
 <210> 116
 <211> 2781
 <212> DNA
 <213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(2781)
<223> n represents a, c, t, or g
<400> 116
gtcttagccc cacggagctg ccatttgatt gcctcgagaa gactagccga atgctcagct 60
ccacgtacaa ctctgagaag gctgttgtga aaacgtggcg ccacctcgcc gagagcttcg 120
gcctgaagag ggatgagatt gggggcatga cagacggcat gcaactcttt gaccgcatca 180
gcacggcagg ctacagcatc cctgagctac tcacaaaact ggtgcagatt gagcggctgg 240
atgctgtgga gtccttgtgt gcagacatac tggagtgggc gggggttgtg ccacctgcct 300
```

```
cccagccaca tgctgcatcc tgaaaagcat gcctgtgggc tgtcctccca ggacaagcca 360
  aggatccaac gagggctctg gagctgtgag tggtgccaaa agactgccaa gaatcaaggc 420
  ttttgtgata tgtcaccgta tgccttagga tgttcaagga gccagacgaa ataaggcctg 480
 tcttccaatt taaccaaaga taaaggacta gagccgggat actttcanat gctcgcctgt 540
 acctcaccag gcagagtaaa tatctactca ctcatacagc cagcccacca gcccaccatt 600
 aactcactga acaatgagac aatgtngagg actcaaatga atcaaacccc gtgggaatga 660
 cagantgaag aatctggtcc ctgtctttaa ggagtttgca ctccagtaga agacagaagg 720
 aacgtatgtt tacaaaccac ttcactggaa gacgtcaaac aagctgaatg aaggggcgct 780
 tagaaaacgt taatagaagt tctaagcggg agatgactcc ctactgggat gatgaaggat 840
 ggcatcctag tgaagaagca gctcaaacat tttgataaaa tggcaacaaa atgcagacac 900
 cctgctccag gtattatttc aggtttagta caagtctgtt aataccctat gtggtttcat 960
 taggataact ttttacctat ccttgaggtc atccatattc ttacaggcct tccagtcaat 1020
 aatggaagag ctcactctat acaaaaccaa tatgcaaggc atgtgtttgt ccaagcaatt 1080
 ggatgtgtgc agtagccaat ttcatttact gcattactct ttggcctggg aaccctgtgg 1140
 totgcactac atgtgaatgg cottocactt caagtottag goagatttga cottttaggg 1200
 gcagcaatgc tgaaggacac agcaatttaa attataatgt gtcaggctgt gttttcactt 1260
 caaacatgta tgagtagtca gctgtaatta gagaaatgat gacttcctaa gagttcagcc 1320
 acgcataatt ctagatttca agagcatcta agacttgtgg attagcctca tggcatgaga 1380
 gtttcagact cagccttctg agccagtcag ggaaagtgga gttctgcagc gcaaatgaga 1440
 gcctgggctt ggtgtcgagg gagctggctt ctagttgtgc caccttgggc cttgtctttt 1500
 cctctctctg cctcagtttc tcgtctgcca atgagatgtt agttagtgat tctataattg 1560
 gggcaggtag ggttcaggtg agcaaaaaga aagtggagct ataggaaatg ccaggccttt 1620
gaggtgctct atggaagtca acacagtgtg gtttgtccat ttaaatggga ataaaaacag 1680
aaaaactcag acttggcatt ttcacaataa ctgcaatggt ttgacataac atttataggc 1740
agaaagttaa taaactggca ttgttcttgg catattattg tactatccct gtaactgcca 1800
agageteagg agecaggeta gtgateacae caggggttag agtteactge tgaacteect 1860
gatggcaggt ctgtgtttat tactacatta aaacaaagtc tctgacttat aaagcgaggt 1920
cgtaaaaatt acaagttgca tgactgaaaa aatgctttag ggggaaaatc agtcatatct 1980
ttaacaccaa caagcaattt cccaccaacg aatgtagtac atactgtgag aggatcataa 2040
tgaggtcctg aatatttaat atcatcattt actgtgtctg tttgctgctg tttttcgaac 2100
ctatttggtt taccctgcaa gctaaatact ccacggcaga ncttaattat ccttttaatt 2160
cctctttgaa atcctgtggt gcccccttcc ccctgccttg tgatgatgat gagtgagtct 2220
ccccttaatt agactgcaaa tgtcacttgt gatgagtgtg ccattccagg ataacagctt 2280
gcaccctcct cagaatgttt tcagcgaaag agtggggtgg ctgttctctg ctcctggtgc 2340
tttggcctca tttcacacta ttagaattct ggggctgtaa ggccagccag tgtcagctca 2400
tgttccattg gctctccacc tgccattttt agggagctat tccttatata gttacaaatt 2460
cccttgtcat ttacttattt ggaaacatgg gatttactct gacaagcttt agcctatgtt 2520
atgggattca gaacaatgag atcataataa ttctcactga ccaaagctgg gactccatcc 2580
tgccattttt gtgtggagat attcataatt ctgcaatact ttaaaacatt tagaaaacac 2640
cccagggtag gtctgtggcc cttanacagt gaaagtctta attggcaata ttatttttgc 2700
taattctgga tatatataac nnattatatt tataaatctc aataaacccc atttantaaa 2760
aaaaaaaaa aaaaaaaaa a
                                                                  2781
<210> 117
<211> 23
<212> DNA
```

```
<210> 117
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
    Oligonucleotide primers that can be used to diagnosis ED.
<400> 117
```

<400> 117
aaaaagtaac actgatccta ttt

```
<210> 118
   <211> 19
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Description of Artificial Sequence:
         Oligonucleotide primers that can be used to
         diagnosis ED.
   <400> 118
   agaaagcagg acctcctgg
                                                                       19
  <210> 119
  <211> 24
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Description of Artificial Sequence:
        Oligonucleotide primer that can be used to amplify
        TNF homology domain of mouse dl.
  <400> 119
 ggattccagg aacaactgtt atgg
                                                                      24
 <210> 120
 <211> 25
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:
       Oligonucleotide primer that can be used to amplify
       TNF homology domain of mouse dl.
 <400> 120
 cctacacaca gcaagcacct tagag
                                                                     25
<210> 121
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      Oligonucleotide primer that can be used to amplify
      TNF homology domain of mouse dl.
<400> 121
gtcgacgaaa atcagccagc tg
                                                                    22
```

```
<210> 122
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
        Oligonucleotide primer that can be used to amplify
        TNF homology domain of mouse dl.
<400> 122
aagcttctag gatgcagggg c
```