

Supervised Belief Propagation: Scalable Supervised Inference on Attributed Networks

Jaemin Yoo, Saehan Jo, and U Kang Seoul National University

Outline

- 1. Introduction
- 2. Proposed Method
- 3. Experiments
- 4. Conclusion

Network of Political Blogs

- We are given a network of political blogs
- Each blog is either Liberal or Conservative
- Only some blogs have been observed

Node Classification

- How can we classify unobserved nodes?
- This problem is called node classification

- Real-world applications:
- Fraud detection in auction networks
- User labeling in social networks
- Malware detection in file-machine networks

Loopy Belief Propagation

- Widely used method for node classification
- Uses an affinity table to model the network
- For any pair of connected nodes
 - the probability of having a same label is ϵ
 - the probability of having different labels is $1-\epsilon$

	Label 1	Label 2
Label 1	ϵ	$1-\epsilon$
Label 2	$1-\epsilon$	ϵ

LBP in the Network of Blogs

- LBP propagates information when $\epsilon > 0.5$
- This is called the property of homophily
- Nodes 3 and 4 as liberal, 5 as conservative

Two Assumptions of LBP

- LBP assumes homophily and uniformity
- Homophily ($\epsilon > 0.5$):
 - Adjacent nodes are likely to have a same label
 - This is called *guilt-by-association* in literature
- Uniformity (ϵ is globally applied):
 - All edges have a same propagation strength

Attributed Network

- Let's say the network is attributed:
 - Each edge (i,j) is attached with a feature vector θ_{ij}
- Then, these assumptions may break

Node 1	Node 2	Features			
1	3	(15,3,0)			
1	3 (5, -1,0)				
•••					
5	7	(0,0,10)			

LBP in Attributed Networks

- Edges have distinct and different features
- Are the edges uniform?
 - No. Their strengths depend on their features
- Do the nodes represent homophily?
 - Not sure. Some can even represent heterophily
- Moreover, it is difficult to choose a proper ε
- Not appropriate for attributed networks!

Research Question

- Question. How can we classify nodes in an attributed network with high accuracy?
- Challenges:
 - Domain knowledge is not given
 - Different values of ϵ should be modeled
 - Edges may follow the heterophily

We propose Supervised belief propagation!

Outline

- 1. Introduction
- 2. Proposed Method
- 3. Experiments
- 4. Conclusion

Supervised Belief Propagation

- Node classification method for attr. networks
- Learns the weight vector w as a parameter
- Alternates the following steps until w converges:
 - Propagation step
 - Weight update step
- Then, uses the optimal w in final classification

Flowchart of SBP

Alternating Updates

- The process is similar to an EM algorithm
- In the propagation step:
 - SBP uses the current w in classification
 - This is similar to the **expectation** in EM
- In the weight update step:
 - SBP updates w toward a local optimum
 - This is similar to the **maximization** in EM

Return Values of SBP

- We assume a network of binary labels
 - Name one label as pos., the other as neg.
- SBP returns the belief b_i of every node i:
 - The probability of node *i* for being positive
- Then we classify node i based on b_i :

Label of node
$$i = \begin{cases} \text{pos.} & \text{if } b_i > 0.5 \\ \text{neg.} & \text{if } b_i < 0.5 \end{cases}$$

Key Ideas of SBP

- Idea 1. Model learnable prop. strengths
- Idea 2. Introduce a differentiable loss
- Idea 3. Iteratively update the parameter

Idea 1. Prop. Strength

• To model the strength ϵ_{ij} as a function:

$$\epsilon_{ij} = \left(1 + \exp(-\theta_{ij}^{\mathrm{T}} w)\right)^{-1}$$

where

- θ_{ij} is the feature vector of edge (i,j)
- w is the weight vector to be optimized

Idea 2. Differentiable Loss

• To use a differentiable loss E(w):

$$E(w) = \lambda ||w||_2^2 + \sum_p \sum_n h(b_n - b_p)$$

where

- $h = (1 + \exp(-x/d))^{-1}$ is an increasing func.
- p and n are positive and negative nodes, resp.
- b_i is the belief of node i for being positive

Idea 3. Gradient Update

To update w with the gradient descent:

$$w \leftarrow w - \operatorname{clip}\left(\alpha \frac{\partial E(w)}{\partial w}; \beta\right)$$

where

- α is a step size parameter
- $clip(\cdot; \beta)$ restricts the size of each update to β

Outline

- 1. Introduction
- 2. Proposed Method
- 3. Experiments
- 4. Conclusion

Experimental Settings

- MovieLens is a user-movie bipartite network
- Each edge has an integer rating of 1-5
- We classify the movies into "recomm." and not

Dataset	Nodes	Edges	Attributes
Epinions-R ² Epinions-S ³ MovieLens ⁴	189,028 131,828 9,940	1,152,005 841,372 1,000,209	ratings and trusts signs (trusts or distrusts) ratings (1 to 5)

Experimental Questions

- **Q1.** How sensitive are previous methods to ϵ ?
- Q2. How accurately does SBP classify nodes?
- Q3. How does E(w) change during iterations?
- Q4. How does the running time scale?

Sensitivity to Prop. Strength

- **Q1.** How sensitive are previous methods to ϵ ?
- Ans. Previous methods highly depend on its val.

Classification Accuracy

- **Q2.** How accurately does SBP classify nodes?
- Ans. SBP shows the best AUC, MAP, and P@20

Cost Minimization

- Q3. How does E(w) change during iterations?
- Ans. It is minimized for both train. and test sets

Linear Scalability

- Q4. How does the running time scale?
- Ans. It scales linearly with the number of edges

Outline

- 1. Introduction
- 2. Proposed Method
- 3. Experiments
- 4. Conclusion

Conclusion

- Method: Supervised belief propagation
- Key ideas:
 - Consider rich feature vectors in propagation
 - Learn the propagation strength of each edge

Contributions:

- Generalize previous LBP-based methods
- Provide up to 15.6% higher AUC
- Linearly scalable with the number of edges

Thank you!

Jaemin Yoo, Saehan Jo, and U Kang

https://datalab.snu.ac.kr/sbp/