1

GATE ECE 2023

Karyampudi Meghana Sai EE23BTECH11031

Consider a discrete-time signal with period N=8. Let the discrete-time Fourier series (DTFS) representation be $x[n]=\sum\limits_{k=0}^{7}a_ke^{\frac{jk2\pi n}{8}}$, where $a_0=1$, $a_1=3j$, $a_2=2j$, $a_3=-2j$, $a_4=-3j$. The value of the sum $\sum\limits_{n=0}^{7}x[n]\sin\left(\frac{4\pi n}{8}\right)$ is

Solution:

Parameter	Value	Description
N	8	Time period
x[n]	$\sum_{k=0}^{7} a_k e^{\frac{jk2\pi n}{8}}$	DTFS representation
a_0	1	DTFS coefficients
a_1	3 <i>j</i>	
a_2	2 <i>j</i>	
a_3	-2j	
a_4	-3j	

TABLE I Input Parameters

$$\sum_{n=0}^{7} x(n) \sin\left(\frac{4\pi n}{8}\right) = \sum_{n=0}^{7} x[n] \left[\frac{e^{\frac{j4\pi n}{8}} - e^{\frac{-j4\pi n}{8}}}{2j}\right]$$
(1)

$$=\frac{1}{2j}\left[\sum_{n=0}^{7}x[n]e^{\frac{j2\pi(2)n}{8}}-\sum_{n=0}^{7}x[n]e^{\frac{-j2\pi(2)n}{8}}\right]$$
(2)

DFTS coefficient is given by,

$$a_k = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{\frac{-j2\pi kn}{N}}$$
 (3)

Given that time period of x(n) is N=5 sec.

$$a_k = \frac{1}{5} \sum_{n=0}^{7} x(n) e^{\frac{-j2\pi kn}{8}}$$
 (4)

$$\sum_{n=0}^{7} x(n)e^{\frac{-j2\pi kn}{8}} = 8a_k \tag{5}$$

Referencing from equation(5), equation(2) can be written as:

$$\sum_{n=0}^{7} x(n) \sin\left(\frac{4\pi n}{8}\right) = \frac{1}{2j} \left[8a_{-2} - 8a_2\right] \tag{6}$$

From the property of discrete Fourier series.

$$a_k = a_{k+N} \tag{7}$$

So, equation(6) becomes,

$$\sum_{n=0}^{7} x(n) \sin\left(\frac{4\pi n}{8}\right) = \frac{1}{2j} \left[8a_6 - 8a_2\right]$$

$$\sum_{n=0}^{7} x(n) \sin\left(\frac{4\pi n}{8}\right) = -8$$
(9)

$$\sum_{n=0}^{7} x(n) \sin\left(\frac{4\pi n}{8}\right) = -8\tag{9}$$