

Robotics for Future Industrial Applications

Fundamentals of Robot Learning and Control Theory

Philipp Ennen, M.Sc.

Content

Introduction

- Optimal Control
- Shooting vs Collocation

II. Shooting Method

- Linear Dynamic
- Costfunction
- Linear-quadratic Regulator
- Iterativer linear-quadratic Regulator
- Differentiell Dynamic Programming
- Modellpredictive Control
- When to use iLQR/DDP?

III. Dynamic Model for Rigid Multi-Body Systems

IV. Demonstration

- Reinforcement Learning
- Scenario

Closed-Loop vs Open-Loop

Closed-Loop

• u = u(x)

• In discrete cases: Markov-Decision Process

Open-Loop

• u = u(t)

- · Local methods and solutions
- Good for high-dimensional problems

Problem Formulation: Forward Shooting Method

Forward shooting method: optimize only over actions

$$\min_{\mathbf{u}_1,\dots,\mathbf{u}_T} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \qquad \text{s.t.} \quad \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1})$$

Sensitive for initial conditions

 $- \mathbf{u}_1, \dots, \mathbf{u}_T$ $- c(\mathbf{x}_t, \mathbf{u}_t)$ $- f(\mathbf{x}_{t-1}, \mathbf{u}_{t-1})$

sequence of actions costs for state x_t and actions u_t deterministic (forward-)dynamicmodell

Problem Formulation: Forward Shooting Method

Forward shooting method: optimize only over actions

$$\min_{\mathbf{u}_1,\dots,\mathbf{u}_T} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \qquad \text{s.t.} \quad \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1})$$

$$\min_{\mathbf{u}_1,\dots,\mathbf{u}_T} c(\mathbf{x}_1,\mathbf{u}_1) + c(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2) + \dots + c(f(f(\dots)\dots),\mathbf{u}_T)$$

• Each state depends on all previous actions

Sensitive for initial conditions

Problem Formulation: Collocation

Collocation method: optimize over states and actions with constraints

$$\min_{\mathbf{u}_1,\dots,\mathbf{u}_T, \mathbf{x}_1,\dots,\mathbf{x}_T} \sum_{t=1}^T c(\mathbf{x}_t, \mathbf{u}_t) \qquad \text{s.t.} \qquad \mathbf{x}_t = f(\mathbf{x}_{t-1}, \mathbf{u}_{t-1})$$

- $-\mathbf{x}_1,\ldots,\mathbf{x}_T$
- $-c(\mathbf{x}_t,\mathbf{u}_t)$
- $f(\mathbf{x}_{t-1}, \mathbf{u}_{t-1})$

sequence of states costs for state x_t and actions u_t deterministic dynamic modell

Problem Formulation: Collocation

Direct collocation method: optimize over states with constraints

$$\min_{\mathbf{x}_1,\dots,\mathbf{x}_T} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \qquad \text{s.t.} \quad \mathbf{u}_{t-1} = f^{-1}(\mathbf{x}_{t-1},\mathbf{x}_t)$$

- Direct collocation: Alternative Alternative consideration of the general collocation
 - Optimizes only over states
 - Actions result implicity
 - Uses inverses dynamikmodel $f^{-1}(\mathbf{x}_{t-1},\mathbf{x}_t)$

Problem Formulation: Collocation

• Direct collocation method: optimize over states with constraints

$$\min_{\mathbf{x}_{1},...,\mathbf{x}_{T}} \sum_{t=1}^{T} c(\mathbf{x}_{t}, \mathbf{u}_{t})$$
 s.t. $\mathbf{u}_{t-1} = f^{-1}(\mathbf{x}_{t-1}, \mathbf{x}_{t})$

Each action depends only on neighboured states

No instability due to forward integration

Forward Shooting vs Direct Collocation

Forward Shooting

$$\min_{\mathbf{u}_1,\dots,\mathbf{u}_T} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \qquad \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1})$$

- Optimizes over actions
- State trajectory results implicit
- Dynamics are an implicit constraint (always fulfilled)
- Direct Collocation

$$\min_{\mathbf{x}_{1},...,\mathbf{x}_{T}} \sum_{t=1}^{T} c(\mathbf{x}_{t}, \mathbf{u}_{t}) \qquad \mathbf{u}_{t-1} = f^{-1}(\mathbf{x}_{t-1}, \mathbf{x}_{t})$$

- Optimizes over states
- Action trajectory results implicit
- Dynamics are an explicit constraint (can be "soft")

Content

I. Introduction

- Optimal Control
- Shooting vs Collocation

II. Shooting Method

- Linear Dynamic
- Costfunction
- Linear-quadratic Regulator
- Iterativer linear-quadratic Regulator
- Differentiell Dynamic Programming
- Modellpredictive Control
- When to use iLQR/DDP?

III. Dynamic Model for Rigid Multi-Body Systems

V. Demonstration

- Reinforcement Learning
- Scenario

Trajectory Optimization

Problem Formulation: Forward Shooting Method

$$\min_{\mathbf{u}_1,\dots,\mathbf{u}_T} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \qquad \text{s.t.} \quad \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1})$$

$$\lim_{\mathbf{u}_1,\dots,\mathbf{u}_T} c(\mathbf{x}_1,\mathbf{u}_1) + c(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2) + \dots + c(f(f(\dots)\dots),\mathbf{u}_T)$$

- $\mathbf{u}_1, ..., \mathbf{u}_T$ sequence of actions $c(\mathbf{x}_t, \mathbf{u}_t)$ costs for state x_t and actions u_t
- $f(\mathbf{x}_{t-1}, \mathbf{u}_{t-1})$ deterministic (forward-) dynamic m

Shooting Methode: LQR

Linear Quadratic Regulator

- Special case: Systems with
 - Linear dynamics
 - Quadratic costs
- LQR provides an exact solution

Example: Linear Dynamics

Ball in Zero-Gravity

- Linear dynamics: $f(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{F}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \mathbf{f}_t$
- (Newton) dynamic of the zero-gravity ball:

$$\begin{bmatrix} \mathbf{x}_{t+1} \\ \mathbf{y}_{t+1} \\ \dot{\mathbf{x}}_{t+1} \\ \dot{\mathbf{y}}_{t+1} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_t + \Delta t \dot{\mathbf{x}}_t + 0.5 \ \Delta t \ \mathbf{u}_x \\ \mathbf{y}_t + \Delta t \dot{\mathbf{y}}_t + 0.5 \ \Delta t \ \mathbf{u}_y \\ \dot{\mathbf{x}}_t + \Delta t \ \mathbf{u}_x \\ \dot{\mathbf{y}}_t + \Delta t \ \mathbf{u}_y \end{bmatrix}$$

$$\mathbf{F}_{t} = \begin{bmatrix} 1 & 0 & \Delta t & 0 & 0.5 \, \Delta t & 0 \\ 0 & 1 & 0 & \Delta t & 0 & 0.5 \, \Delta t \\ 0 & 0 & 1 & 0 & \Delta t & 0 \\ 0 & 0 & 0 & 1 & 0 & \Delta t \end{bmatrix}$$

Example: Manipulation

State Space

- In robotics, the state space contains (very) often:
 - Joint position and velocity

Object position and velocity

- Detection of joint states
 - Joint encoder are reliable
 - Easy
- Perception of object states
 - Often a camera is used
 - Complicated

Example: Manipulation

Costs

- Costfunction:
 - Costs contain often a distance term $\|\mathbf{x}_t \mathbf{x}^*\|$ and an energy term $\beta \|\mathbf{u}_t\|$

$$c(\mathbf{x}_t, \mathbf{u}_t) = \|\mathbf{x}_t - \mathbf{x}^*\| + \beta \|\mathbf{u}_t\|$$
 \mathbf{x}^* : Targetstate

• Higher weighting of costs in the final time step t = T:

$$c(\mathbf{x}_T, \mathbf{u}_T) = 2(\|\mathbf{x}_T - \mathbf{x}^*\| + \beta \|\mathbf{u}_T\|)$$

- For manipulation tasks, x* usually contains:
 - Target pose of end effector
 - Target pose of object

Definition

$$\min_{\mathbf{u}_1, \dots, \mathbf{u}_T} c(\mathbf{x}_1, \mathbf{u}_1) + c(f(\mathbf{x}_1, \mathbf{u}_1), \mathbf{u}_2) + \dots + c(f(f(\dots) \dots), \mathbf{u}_T)$$

$$c(\mathbf{x}_t, \mathbf{u}_t) = \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{C}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{c}_t$$

$$f(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{F}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \mathbf{f}_t$$

Terminology:

- $Q(\mathbf{x}_t, \mathbf{u}_t)$: expected **cost-to-go** from state \mathbf{x}_t and with action \mathbf{u}_t
- $V(\mathbf{x}_t)$: expected **cost-to-go** from state \mathbf{x}_t
- $V(\mathbf{x}_t) = \min_{\mathbf{u}_t} Q(\mathbf{x}_t, \mathbf{u}_t)$

Backward Propagation

$$\min_{\mathbf{u}_1,\dots,\mathbf{u}_T} c(\mathbf{x}_1,\mathbf{u}_1) + c(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2) + \dots + c(f(f(\dots)\dots),\mathbf{u}_T)$$

$$c(\mathbf{x}_t,\mathbf{u}_t) = \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{C}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{c}_t$$
 Only term that depends on \mathbf{u}_T only
$$f(\mathbf{x}_t,\mathbf{u}_t) = \mathbf{F}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \mathbf{f}_t$$

 \mathbf{x}_T (unknown)

- Backward Propagation
 - Start at \mathbf{u}_T (base case)
 - Backward calculation of the actions $\mathbf{u}_{T-1} \dots \mathbf{u}_0$

Backward Propagation: Calculate \mathbf{u}_T (base case)

• Costs in timestep t = T

$$Q(\mathbf{x}_T, \mathbf{u}_T) = \text{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_T \\ \mathbf{u}_T \end{bmatrix}^T \mathbf{C}_T \begin{bmatrix} \mathbf{x}_T \\ \mathbf{u}_T \end{bmatrix} + \begin{bmatrix} \mathbf{x}_T \\ \mathbf{u}_T \end{bmatrix}^T \mathbf{c}_T$$

Action with minimal costs:

$$\nabla_{u_T} Q(\mathbf{x}_T, \mathbf{u}_T) = \mathbf{C}_{\mathbf{u}_T, \mathbf{x}_T} \mathbf{x}_T + \mathbf{C}_{\mathbf{u}_T, \mathbf{u}_T} \mathbf{u}_T + \mathbf{c}_{\mathbf{u}_T}^T = 0$$

$$\mathbf{u}_T = \mathbf{K}_T \mathbf{x}_T + \mathbf{k}_T$$
 [Linear-Feedback Policy]
$$\mathbf{K}_T = -\mathbf{C}_{\mathbf{u}_T,\mathbf{u}_T}^{-1} \ \mathbf{C}_{\mathbf{u}_T,\mathbf{x}_T}$$
 $\mathbf{k}_T = -\mathbf{C}_{\mathbf{u}_T,\mathbf{u}_T}^{-1} \mathbf{c}_{\mathbf{u}_T}$

Cost matrices in last timestep

$$\mathbf{C}_T = \begin{bmatrix} \mathbf{C}_{\mathbf{x}_T, \mathbf{x}_T} & \mathbf{C}_{\mathbf{x}_T, \mathbf{u}_T} \\ \mathbf{C}_{u_T, x_T} & \mathbf{C}_{\mathbf{u}_T, \mathbf{u}_T} \end{bmatrix}$$

$$\mathbf{c}_T = \begin{bmatrix} \mathbf{c}_{\mathbf{x}_T} \\ \mathbf{c}_{\mathbf{u}_T} \end{bmatrix}$$

Backward Propagation: Calculate $V(\mathbf{x}_T)$ (base case)

- Goal: Eliminate \mathbf{u}_T in $Q(\mathbf{x}_t, \mathbf{u}_t)$
- Remember: $V(\mathbf{x}_t) = \min_{\mathbf{u}_t} Q(\mathbf{x}_t, \mathbf{u}_t)$
- Get $V(\mathbf{x}_t)$ through substitution of optimal action \mathbf{u}_T in $Q(\mathbf{x}_t, \mathbf{u}_t)$

$$V(\mathbf{x}_T) = \text{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_T \\ \mathbf{K}_T \mathbf{x}_T + \mathbf{k}_T \end{bmatrix}^T \mathbf{C}_T \begin{bmatrix} \mathbf{x}_T \\ \mathbf{K}_T \mathbf{x}_T + \mathbf{k}_T \end{bmatrix} + \begin{bmatrix} \mathbf{x}_T \\ \mathbf{K}_T \mathbf{x}_T + \mathbf{k}_T \end{bmatrix}^T \mathbf{c}_T$$

• Use of costs in $V(\mathbf{x}_t)$

$$V(\mathbf{x}_T) = \frac{1}{2} \mathbf{x}_T^T \mathbf{C}_{\mathbf{x}_T, \mathbf{x}_T} + \frac{1}{2} \mathbf{x}_T^T \mathbf{C}_{\mathbf{x}_T, \mathbf{u}_T} \mathbf{K}_T \mathbf{x}_T + \frac{1}{2} \mathbf{x}_T^T \mathbf{K}_T^T \mathbf{C}_{\mathbf{u}_T, \mathbf{x}_T} \mathbf{x}_T + \frac{1}{2} \mathbf{x}_T^T \mathbf{K}_T^T \mathbf{C}_{\mathbf{u}_T, \mathbf{u}_T} \mathbf{K}_T \mathbf{x}_T$$
$$+ \mathbf{x}_T^T \mathbf{K}_T^T \mathbf{C}_{\mathbf{u}_T, \mathbf{u}_T} \mathbf{k}_T + \frac{1}{2} \mathbf{x}_T^T \mathbf{C}_{\mathbf{x}_T, \mathbf{u}_T} \mathbf{k}_T + \mathbf{x}_T^T \mathbf{C}_{\mathbf{x}_T} + \mathbf{x}_T^T \mathbf{K}_T^T \mathbf{C}_{\mathbf{u}_T} + \text{const}$$

$$V(\mathbf{x}_T) = \text{const} + \frac{1}{2} \mathbf{x}_T^T \mathbf{V}_T \mathbf{x}_T + \mathbf{x}_T^T \mathbf{v}_T \quad \text{[cost-to-go as a function of the final state]}$$

$$\mathbf{V}_T = \mathbf{C}_{\mathbf{x}_T, \mathbf{x}_T} + \mathbf{C}_{\mathbf{x}_T, \mathbf{u}_T} \mathbf{K}_T + \mathbf{K}_T^T \mathbf{C}_{\mathbf{u}_T, \mathbf{x}_T} \mathbf{x}_T + \mathbf{K}_T^T \mathbf{C}_{\mathbf{u}_T, \mathbf{u}_T} \mathbf{K}_T$$

$$\mathbf{v}_T = \mathbf{K}_T^T \mathbf{C}_{\mathbf{u}_T, \mathbf{u}_T} \mathbf{k}_T + \mathbf{C}_{\mathbf{x}_T, \mathbf{u}_T} \mathbf{k}_T + \mathbf{c}_{\mathbf{x}_T} + \mathbf{K}_T^T \mathbf{c}_{\mathbf{u}_T}$$

Backward Propagation: Timestep T-1

- Now: Solve \mathbf{u}_{T-1} in dependence of \mathbf{x}_{T-1}
- \mathbf{u}_{T-1} affect \mathbf{x}_T

$$f(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = \mathbf{x}_T = \mathbf{F}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \mathbf{f}_{T-1}$$

Costs in considered timestep

Optimal cost-to-go through dynamic model

$$Q(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{C}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{c}_{T-1} + V(f(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}))$$

• Eliminate \mathbf{x}_T (cf. cost-to-go) through dynamic model

$$V(\mathbf{x}_T) = \text{const} + \frac{1}{2} \mathbf{x}_T^T \mathbf{V}_T \mathbf{x}_T + \mathbf{x}_T^T \mathbf{v}_T$$

$$V(\mathbf{x}_T) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{F}_{T-1}^T \mathbf{V}_T \mathbf{F}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{F}_{T-1}^T \mathbf{V}_T \mathbf{f}_{T-1} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{F}_{T-1}^T \mathbf{v}_T \dots$$

Backward Propagation: Timestep T-1

Substitution of quadratic and linear terms:

$$Q(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{Q}_{T-1} \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T-1} \\ \mathbf{u}_{T-1} \end{bmatrix}^T \mathbf{q}_{T-1}$$

$$\mathbf{Q}_{T-1} = \mathbf{C}_{T-1} + \mathbf{F}_{T-1}^T \mathbf{V}_T \mathbf{F}_{T-1}$$

$$\mathbf{q}_{T-1} = \mathbf{c}_{T-1} + \mathbf{F}_{T-1}^T \mathbf{V}_T \mathbf{f}_{T-1} + \mathbf{F}_{T-1}^T \mathbf{v}_T$$

Backward Propagation: Calculate $\mathbf{u}_{T-1} \dots \mathbf{u}_0$

Action with minimal costs

$$\nabla_{\mathbf{u}_{T-1}} Q(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) = Q_{\mathbf{u}_{T-1}, \mathbf{x}_{T-1}} \mathbf{x}_{T-1} + Q_{\mathbf{u}_{T-1}, \mathbf{u}_{T-1}} \mathbf{u}_{T-1} + \mathbf{q}_{\mathbf{u}_{T-1}}^T = 0$$

$${f u}_{T-1} = {f K}_{T-1} {f x}_{T-1} + {f k}_{T-1}$$
 [Linear-Feedback Policy]
$${f K}_{T-1} = -{f Q}_{{f u}_{T-1}, {f u}_{T-1}}^{-1} \ {f Q}_{{f u}_{T-1}, {f x}_{T-1}}$$
 ${f k}_{T-1} = -{f Q}_{{f u}_{T-1}, {f u}_{T-1}}^{-1} {f q}_{{f u}_{T-1}}$

Are there any questions?

Pseudocode Algorithm

Backward recursion (Get linear equations for **u**)

for
$$t = T$$
 to 1:

$$\mathbf{Q}_t = \mathbf{C}_t + \mathbf{F}_t^T \mathbf{V}_{t+1} \mathbf{F}_t$$

$$\mathbf{q}_t = \mathbf{c}_t + \mathbf{F}_t^T \mathbf{V}_{t+1} \mathbf{f}_t + \mathbf{F}_t^T \mathbf{v}_{t+1}$$

$$Q(\mathbf{x}_t, \mathbf{u}_t) = \text{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{Q}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{q}_t$$

$$\mathbf{u}_t \leftarrow \arg\min_{\mathbf{u}_t} Q(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t$$

$$\mathbf{K}_t = -\mathbf{Q}_{\mathbf{u}_t, \mathbf{u}_t}^{-1} \mathbf{Q}_{\mathbf{u}_t, \mathbf{x}_t}$$

$$\mathbf{k}_t = -\mathbf{Q}_{\mathbf{u}_t, \mathbf{u}_t}^{-1} \mathbf{Q}_{\mathbf{u}_t}$$

$$\mathbf{v}_t = \mathbf{Q}_{\mathbf{x}_t, \mathbf{x}_t} + \mathbf{Q}_{\mathbf{x}_t, \mathbf{u}_t} \mathbf{K}_t + \mathbf{K}_t^T \mathbf{Q}_{\mathbf{u}_t, \mathbf{x}_t} \mathbf{x}_t + \mathbf{K}_t^T \mathbf{Q}_{\mathbf{u}_t, \mathbf{u}_t} \mathbf{K}_t$$

$$\mathbf{v}_t = \mathbf{K}_t^T \mathbf{Q}_{\mathbf{u}_t, \mathbf{u}_t} \mathbf{k}_t + \mathbf{Q}_{\mathbf{x}_t, \mathbf{u}_t} \mathbf{k}_t + \mathbf{q}_{\mathbf{x}_t} + \mathbf{K}_t^T \mathbf{q}_{\mathbf{u}_t}$$

$$V(\mathbf{x}_t) = \text{const} + \frac{1}{2} \mathbf{x}_t^T \mathbf{V}_t \mathbf{x}_t + \mathbf{x}_t^T \mathbf{v}_t$$

Forward recursion (Use known initial state to get values for **u**)

for
$$t = 1$$
 to T :

$$\mathbf{u}_t = \mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t$$

$$\mathbf{x}_{t+1} = f(\mathbf{x}_{t,t} \mathbf{u}_t)$$

Stochastic Dynamic

With Gaussian dynamics

$$f(\mathbf{x}_{t}, \mathbf{u}_{t}) = \mathbf{F}_{t} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix} + \mathbf{f}_{t}$$

$$\mathbf{x}_{t+1} \sim p(\mathbf{x}_{t+1} | \mathbf{x}_{t}, \mathbf{u}_{t})$$

$$p(\mathbf{x}_{t+1} | \mathbf{x}_{t}, \mathbf{u}_{t}) = \mathcal{N}(\mathbf{F}_{t} \begin{bmatrix} \mathbf{x}_{t} \\ \mathbf{u}_{t} \end{bmatrix} + \mathbf{f}_{t}, \mathbf{\Sigma}_{t})$$

- Solution: Choose actions according to $\mathbf{u}_t = \mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t$
- Nothing changes at the algorithm! Can ignore Σ_t due to symmetry of Gaussians

Non-linear System: DDP/iterativer LQR

Approach

So far: linear-quadratic assumptions

$$f(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{F}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \mathbf{f}_t$$
 [dynamic]

$$c(\mathbf{x}_t, \mathbf{u}_t) = \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{C}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{c}_t$$
 [costs]

- Can we approximate a nonlinear system as a linear-quadratic system?
 - Yes, we can! Taylor series expansion of the dynamics and the costs

Nonlinear dynamics and costs: iterative approximation

• First order taylor expansion of the **dynamics** at trajectory \hat{x}_t , \hat{u}_t , $t = 1 \dots T$

$$f(\mathbf{x}_t, \mathbf{u}_t) = f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) + \nabla_{\mathbf{x}_t, \mathbf{u}_t} f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix}$$

• Second order taylor expansion of the **costs** at trajectory \hat{x}_t , \hat{u}_t , $t = 1 \dots T$

$$c(\mathbf{x}_t, \mathbf{u}_t) = c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) + \nabla_{\mathbf{x}_t, \mathbf{u}_t} c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix}^T + \nabla_{\mathbf{x}_t, \mathbf{u}_t}^2 c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \mathbf{x}_t - \hat{\mathbf{x}}_t \\ \mathbf{u}_t - \hat{\mathbf{u}}_t \end{bmatrix}$$

$$\bar{f}(\delta \mathbf{x}_{t}, \delta \mathbf{u}_{t}) = \mathbf{F}_{t} \begin{bmatrix} \delta \mathbf{x}_{t} \\ \delta \mathbf{u}_{t} \end{bmatrix} \qquad \bar{c}(\delta \mathbf{x}_{t}, \delta \mathbf{u}_{t}) = \frac{1}{2} \begin{bmatrix} \delta \mathbf{x}_{t} \\ \delta \mathbf{u}_{t} \end{bmatrix}^{T} \mathbf{C}_{t} \begin{bmatrix} \delta \mathbf{x}_{t} \\ \delta \mathbf{u}_{t} \end{bmatrix} + \begin{bmatrix} \delta \mathbf{x}_{t} \\ \delta \mathbf{u}_{t} \end{bmatrix}^{T} \mathbf{c}_{t}$$

$$\nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} f(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \qquad \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \qquad \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t})$$

Now we can run LQR with dynamics \bar{f} , cost \bar{c} , state $\delta x_t = x_t - \hat{x}_t$ and action $\delta u_t = x_t - \hat{x}_t$

Iterative Linear Quadratic Regulator (i-LQR)

Pseudocode

- Initialize:
 - $-\hat{\mathbf{x}}_0$ is given
 - Choose random sequence of actions $\hat{\mathbf{u}}_0 \dots \hat{\mathbf{u}}_T$
 - Calculate (using dynamic model) sequence of states $\hat{\mathbf{x}}_0 \dots \hat{\mathbf{x}}_T$

until convergence:

$$\mathbf{F}_{t} = \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} f(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \ \forall t$$

$$\mathbf{c}_{t} = \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}} c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \ \forall t$$

$$\mathbf{C}_{t} = \nabla_{\mathbf{x}_{t}, \mathbf{u}_{t}}^{2} c(\hat{\mathbf{x}}_{t}, \hat{\mathbf{u}}_{t}) \ \forall t$$

Linear approximation at $\hat{\mathbf{x}}$, $\hat{\mathbf{u}}$

Solve $\delta \mathbf{u}_t$, $t = 1 \dots T$, so that $\hat{\mathbf{u}}_t + \delta \mathbf{u}_t$ minimizes the linear approximation

Run LQR backward pass on state $\delta \mathbf{x}_t = \mathbf{x}_t - \hat{\mathbf{x}}_t$ and action $\delta \mathbf{u}_t = \mathbf{u}_t - \hat{\mathbf{u}}_t \ \forall t$

Run forward pass with real nonlinear dynamics and $\delta u_t = \hat{u}_t + K_t(x_t - \hat{x}_T) + k_t \ \forall t$

Update $\hat{\mathbf{x}}_t$ and $\hat{\mathbf{u}}_t$ based on states and actions in forward pass $\forall t$

Update step: $\hat{x}_t' = \hat{x}_t + \delta x_t$ and $\hat{u}_t' = \hat{u}_t + \delta u_t$

Newtonmethod

• Why does this work? i-LQR is similar to Newton method:

$$\min_{\mathbf{u}_1,...,\mathbf{u}_T} c(\mathbf{x}_1,\mathbf{u}_1) + c(f(\mathbf{x}_1,\mathbf{u}_1),\mathbf{u}_2) + \cdots + c(f(f(...)...),\mathbf{u}_T)$$

Compare to Newton's method for computing $\min_{\mathbf{x}} g(\mathbf{x})$:

until convergence:

$$\begin{aligned} \mathbf{g} &= \nabla_{\mathbf{x}} g(\hat{\mathbf{x}}) \\ \mathbf{H} &= \nabla_{\mathbf{x}}^2 g(\hat{\mathbf{x}}) \end{aligned} \quad \text{Approximate g(x) with gradient and hessian matrix} \\ \hat{\mathbf{x}} &\leftarrow \arg\min_{\mathbf{x}} \frac{1}{2} (\mathbf{x} - \hat{\mathbf{x}})^T \mathbf{H} (\mathbf{x} - \hat{\mathbf{x}}) + \mathbf{g}^T (\mathbf{x} - \hat{\mathbf{x}}) \end{aligned} \quad \text{Minimize quadratic function}$$

- → iLQR is the same idea: locally approximate a complex nonlinear function via Taylor expansion
- → What would the iLQR look like if the Newton method was implemented exactly?

Differential Dynamic Programming

Newton method for trajectory optimization

• To get Newton's method, need to use **second order** dynamics approximation

$$f(\mathbf{x}_t, \mathbf{u}_t) \approx f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) + \nabla_{\mathbf{x}_t, \mathbf{u}_t} f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix} + \frac{1}{2} \left(\nabla_{\mathbf{x}_t, \mathbf{u}_t}^2 f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t) \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix} \right) \begin{bmatrix} \delta \mathbf{x}_t \\ \delta \mathbf{u}_t \end{bmatrix}$$

• Is referred to as differential dynamic programming

• For reading: Jacobson and Maye, "Differential dynamic programming", 1970

Nonlinear dynamics: DDP/i-LQR

Problem

Analog to the Newton method

$$\hat{\mathbf{x}} \leftarrow \arg\min_{\mathbf{x}} \frac{1}{2} (\mathbf{x} - \hat{\mathbf{x}})^T \mathbf{H} (\mathbf{x} - \hat{\mathbf{x}}) + \mathbf{g}^T (\mathbf{x} - \hat{\mathbf{x}})$$
didea?

- Why is this a bad idea?
- Improved iLQR:

until convergence:

$$\mathbf{F}_t = \nabla_{\mathbf{x}_t, \mathbf{u}_t} f(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t)$$

$$\mathbf{c}_t = \nabla_{\mathbf{x}_t, \mathbf{u}_t} c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t)$$

$$\mathbf{C}_t = \nabla^2_{\mathbf{x}_t, \mathbf{u}_t} c(\hat{\mathbf{x}}_t, \hat{\mathbf{u}}_t)$$

Search over α until improvement achieved (Line-Search)

Run LQR backward pass on state $\delta \mathbf{x}_t = \mathbf{x}_t - \hat{\mathbf{x}}_t$ and action $\delta \mathbf{u}_t = \mathbf{u}_t - \hat{\mathbf{u}}_t$ Run forward pass with real nonlinear dynamics and $\delta u_t = \hat{u}_t + K_t(x_t - \hat{x}_T) + \alpha k_t$

Update $\hat{\mathbf{x}}_t$ and $\hat{\mathbf{u}}_t$ based on states and actions in forward pass

Nonlinear dynamics: DDP/i-LQR

Further Reading

- Mayne, Jacobson (1970). Differential Dynamic Programming
 - Original algorithm
- Tassa, Yuval, Tom Erez, and Emanuel Todorov (2012). Synthesis and stabilization of complex behaviors through online trajectory optimization.
 - Practical implementation notes for the nonlinear iLQR
- Levine, S., & Abbeel, P. (2014). Learning neural network policies with guided policy search under unknown dynamics.
 - Probabilistic formularization of Line Search to get the stepsize α

Nonlinear dynamics: DDP/i-LQR

Summary DDP/i-LQR

- Plan a sequence of actions (i.e. for 100 timesteps)
- "Hope that the dynamic model is precise enough"
- If it converges: linearized (timedependent) trajectory $\mathbf{u}_t = \mathbf{K}_t \mathbf{x}_t + \mathbf{k}_t$
- In practice: Often the system is not on this trajectory (i.e. x_0 is wrong, dynamic model is wrong)
- Are there strategies that deals with this noise?

Modelpredictive Control

- Yes! If we close the loop! → Modelpredictive Control
- Solution: In timestep t use iLQR/DDP for the upcoming timesteps t to T

```
every time step:

observe the state \mathbf{x}_t

use iLQR to plan \mathbf{u}_t, \dots, \mathbf{u}_T to minimize \sum_{t'=t}^{t+T} c(\mathbf{x}_{t'}, \mathbf{u}_{t'})

execute action \mathbf{u}_t, discard \mathbf{u}_{t+1}, \dots, \mathbf{u}_{t+T}
```

Synthesis of Complex Behaviors with
Online Trajectory Optimization

Yuval Tassa, Tom Erez & Emo Todorov

IEEE International Conference on Intelligent Robots and Systems 2012

When does DDP/i-LQR work?

Cost:
$$||x_t - x^*||$$

When does DDP/i-LQR not work?

Cost:
$$||x_t - x^*||$$

- Local search does not find a solution in complex contact situations!
- Solution: Initialize trajectory with the help of a human demonstration (instead of random)

Content

I. Introduction

- Optimal Control
- Shooting vs Collocation

II. Shooting Method

- Linear Dynamic
- Costfunction
- Linear-quadratic Regulator
- Iterativer linear-quadratic Regulator
- Differentiell Dynamic Programming
- Modellpredictive Control
- When to use iLQR/DDP?

III. Dynamic Model for Rigid Multi-Body Systems

IV. Demonstration

- Reinforcement Learning
- Scenario

Forward Shooting vs Direct Collocation

Forward Shooting

$$\min_{\mathbf{u}_1,\dots,\mathbf{u}_T} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t) \qquad \mathbf{x}_t = f(\mathbf{x}_{t-1},\mathbf{u}_{t-1})$$

- Optimizes over actions
- State trajectory results implicit
- Dynamics are an implicit constraint (always fulfilled)
- Direct Collocation

$$\min_{\mathbf{x}_1, \dots, \mathbf{x}_T} \sum_{t=1}^T c(\mathbf{x}_t, \mathbf{u}_t)$$

$$\mathbf{u}_{t-1} = f^{-1}(\mathbf{x}_{t-1,}\mathbf{x}_t)$$

Inverse dynamic model: How to get it?

- Optimizes over states
- Action trajectory results implicit
- Dynamics are an explicit constraint (can be "soft")

Dynamic model

Inverse dynamic model

$$\mathbf{u}_{t-1} = f^{-1}(\mathbf{x}_{t-1}, \mathbf{x}_t)$$

- Describes what controls and forces you apply when transitioning from \mathbf{x}_{t-1} zu \mathbf{x}_t
- Can be learned from data

- Training data
 - Input: \mathbf{x}_{t-1} , \mathbf{x}_t
 - Target Output: \mathbf{u}_{t-1}
- For rigid multi-body dynamics, we can do better when we know system parameters (most robots)

Dynamic model

Generalized coordinates

$$\mathbf{x}_t = \mathbf{q}_t$$
 $\dot{\mathbf{q}}_t = \frac{\mathbf{q}_{t-1} - \mathbf{q}_t}{2\delta t}$ $\ddot{\mathbf{q}}_t = \frac{\mathbf{q}_{t-1} - 2\mathbf{q}_t + \mathbf{q}_{t+1}}{\delta t^2}$

- Calculate velocities and accelerations from nearby states
- Dynamics equation: Generalization of f = ma

$$M(\mathbf{q})\ddot{\mathbf{q}} + C(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} = B\mathbf{u} + J(\mathbf{q})^T\mathbf{f}$$
 $-M(\mathbf{q})$ und $C(\mathbf{q}, \dot{\mathbf{q}})$ Mass and Coriolis Matrices

 $-B$ Actuation Matrix (Diagonal matrix: 1 for controllable DoF, 0 if not controllable)

 $-\mathbf{f}$ Constraint forces (i.e. 3D contact forces)

 $-J(\mathbf{q})^T$ Jacobimatrix that maps \mathbf{f} on the generalized coordinates

Further reading

Springer Handbook of Robotics

- Volume 1 (2008): 1611 pages

- Volume 2 (2016): 2227 pages

• Chapter 2 and 3

Dynamic model

Generalized coordinates

$$\mathbf{x}_t = \mathbf{q}_t$$
 $\dot{\mathbf{q}}_t = \frac{\mathbf{q}_{t-1} - \mathbf{q}_t}{2\delta t}$ $\ddot{\mathbf{q}}_t = \frac{\mathbf{q}_{t-1} - 2\mathbf{q}_t + \mathbf{q}_{t+1}}{\delta t^2}$

Dynamic model: Generalization of f = ma

$$M(\mathbf{q})\ddot{\mathbf{q}} + C(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} = B\mathbf{u} + J(\mathbf{q})^T\mathbf{f}$$

• Inverse dynamic equations:

$$f^{-1}(\mathbf{x}_{t-1}, \mathbf{x}_t, \mathbf{x}_{t+1}) = \underset{\mathbf{u} \ \mathbf{f}}{\operatorname{arg min}} \|^2$$

- Searched: Best contact forces + actions that are consistent with the dynamics
- Can be solved numerically, and analytically [Todorov 14]

Simple example (a particle with a mass)

- Dynamics: $\mathbf{u} \mathbf{g} = m\ddot{\mathbf{x}}$
- Inverse dynamics:

$$f^{-1}(\mathbf{x}_{t-1}, \mathbf{x}_t, \mathbf{x}_{t+1}) = \mathbf{u_t} = \frac{m(\mathbf{x}_{t-1} - 2\mathbf{x}_t + \mathbf{x}_{t+1})}{\delta t^2} + \mathbf{g}$$

- Costs: $C(\mathbf{x}) = ||\mathbf{x}||^2$ [particle should stand still]
- Known paramters

initial state: \mathbf{x}_0 system parameter: m external force: \mathbf{g}

- Optimization unknowns (direct collocation): $x_0, ..., x_T$
- Solution:

States: $\mathbf{x}_0, ..., \mathbf{x}_T = 0$ Implicit controls: $\mathbf{u}_0, ..., \mathbf{u}_T = \mathbf{g}$

Optimal control for contact rich motion tasks

Optimization Progress

Stage 1

Optimal Control for contact rich motion tasks

What is wrong with known dynamics?

• Next time: learning the dynamics model

Thanks for your attention!

