

Vedant Mahangade, Lucia Sanchez, Matthew Mollerus

PUBH 8885: Computational Biology

Milken Institute School of Public Health

THE GEORGE WASHINGTON UNIVERSITY

Outline

- 1. Motivation
- 2. Our Objectives
- Reproducing Existing SotA Model
- 4. DNA Language Model
- 5. Ablation Testing

AMR - Global Threat

Why is it a problem?

THE GEORGE

WASHINGTON

Significant PH Burden

- Number of Deaths by 2050: 10 million annually
- Cost by 2050: 100 trillion USD globally

Importance of ARGs

- Antimicrobial Resistance Genes (ARGs) are pivotal in the development of antibiotic resistance
- ARG detection enables scientists and public health officials to identify
 where and how resistance genes are spreading in bacterial populations,
 both within healthcare settings and the environment
- Studying ARGs helps researchers uncover the molecular mechanisms by which bacteria resist antibiotics
 - this is important for developing new antibiotics or alternative treatments that can bypass or inhibit these resistance pathways.

DeepARG Overview

Milken Institute School of Public Health

THE GEORGE WASHINGTON UNIVERSITY

DeepARG Overview

Data

- Collected ARGs from ARG specific databases (CARD, ARDB), plus those annotated in general protein database (UNIPROT)
- QC on annotations and removed duplicates
- Used ARGs from ARG specific databases as reference

DeepARG Overview

Models

- Aligned UNIPROT genes with reference genes via DIAMOND to create feature vector of normalized bitscore (characterization)
- Trained MLP with 4 hidden layers
- Two models, one for long reads (entire genes) and one for short (100bp)

Amino acid sequences ≠ genes!

- Amino acid sequences ≠ genes!
- Incomplete/inaccurate public data

- Amino acid sequences ≠ genes!
- Incomplete/inaccurate public data
- Lack of detail on method (even in code)

- Amino acid sequences ≠ genes!
- Incomplete/inaccurate public data
- Lack of detail on method (even in code)
- Minimal ablation testing

Our Reproduction

 Use dataset closest to that discussed in paper, but track down as many associated DNA sequences as possible

Our Reproduction

- Use dataset closest to that discussed in paper, but track down as many associated DNA sequences as possible
- Train four models: AA long read and short read (their method), plus DNA long read and short read (still using AA sequences for reference ARGs)

Our Reproduction

- Use dataset closest to that discussed in paper, but track down as many associated DNA sequences as possible
- Train four models: AA long read and short read (their method, plus DNA long read and short read (still using AA sequences for reference ARGs)
- More extensive ablation testing

Amino Acid Model Results

DeepARG

Reproduction

Amino Acid Model Results

DeepARG

Reproduction

Milken Institute School of Public Health

THE GEORGE WASHINGTON UNIVERSITY

DNA Model Results

DeepARG

Reproduction

DNA Model Results

DeepARG

Reproduction

Milken Institute School of Public Health

THE GEORGE WASHINGTON UNIVERSITY

Ablation Testing

- Removes complexity to model to determine if complexity is justified and which portions of the model contribute to performance
- Last layer of MLP is just logistic regression, so here we trained a logistic regression model on the input feature vector
- MLP is ~12M parameters and uninterpretable; logistic regression is ~150k and highly interpretable

DeepARG Model Ablation Testing

- Trained logistic regression models on just the input feature vector of alignment bit scores to reference sequences
- With amino acids, the logistic model performed as well or better than our reproduction of the MLP model

Milken Institute School of Public Health

DeepARG Model Ablation Testing

- Logistic models performed even better compared to the DNA-based MLP models
- Takeaway: deep learning may add unnecessary complexity to alignment-based methods of detecting ARGs

Milken Institute School of Public Health

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Nucleotide Transformer

Why use a Transformer based approach?

- Long range dependencies in DNA sequences are modeled effectively
- Pre-training provides deep understanding of patterns across multiple species

Pretrained Model

- The pretrained model used here was <u>InstaDeepAl/nucleotide-transformer-v2-100m-multi-species</u>
- Pretrained on collection of 850 genomes, representing a total of 174B nucleotides

Nucleotide Transformer Architecture

Training Considerations

Limitations:

- The maximum token length the pretrained model could handle was 2048.
- The maximum sequence length in dataset for long reads was 3594.
- The fine-tuning was performed on A100 GPU with 40 GB memory.
- Although the memory is enough, the system could only handle token length of 1024.

To overcome these limitations 3 steps were taken:

- Mixed precision training fp16
- Effective Batch Size: 64
 - Using batch size of 8 and
 - Gradient accumulation steps of 8 for each iteration
- Sequence splitting and batch processing
 - max_length of 1024 with
 - o overlap of 512

Fine-tuning

Long Reads

F1	Recall	Precision
0.892495	0.891986	0.894948

Short Reads

F1	Recall	Precision
0.82574	0.82755	0.8256

Milken Institute School of Public Health

WASHINGTON UNIVERSITY
WASHINGTON, DC

THE GEORGE

Testing on Long Reads

- # of Samples: 2018
- Consistent scores across metrics indicate that model generalizes well
- Class 12 (non resistant) also gets high accuracy
- Highly Scalable with more data
- Confusions could also be linked to biologically similar sequences

F1	Recall	Precision	Accuracy
0.88099	0.88177	0.88225	0.88177

Testing on Short Reads

- # of Samples: 9615
- Performance of model for dominant classes is consistent with that of long reads
- Misclassification here is higher than observed in the long read model
- Short reads have max length of 100 which might not be enough for model to learn biological patterns.

F1	Recall	Precision	Accuracy
0.830177	0.831979	0.829460	0.831979

Feature Importance

Long Reads

Short Reads

Milken Institute School of Public Health

THE GEORGE WASHINGTON UNIVERSITY

Language Model Ablation Using Logistic Regression Head

- We extract embedding from the pretrained model using tokenized data
- These CLS embedding serve as an input to Logistic Regression Model
- The logistic regression model is trained for 1000 iterations to classify sequences

For Long Reads

For Short Reads

Milken Institute School of Public Health

THE GEORGE WASHINGTON UNIVERSITY

Neuron and Layer Ablation

Neuron Ablation

Layer-Wise Sensitivity

Milken Institute School of Public Health

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Metric	DeepARG -SR	DeepARG -LR	Repro-AA- SR	Repro-AA- LR	Repro-DNA -SR	Repro-DNA- LR	NT-SR	NT-LR
Precision	0.97	0.99	0.87	0.97	0.70	0.84	0.83	0.89
Recall	0.91	0.99	0.80	0.98	0.69	0.87	0.83	0.89
F1	0.91	0.99	0.80	0.97	0.66	0.86	0.83	0.89

Metric	DeepARG -SR	DeepARG -LR	Repro-AA- SR	Repro-AA- LR	Repro-DNA -SR	Repro-DNA- LR	NT-SR	NT-LR
Precision	0.97	0.99	0.87	0.97	0.70	0.84	0.83	0.89
Recall	0.91	0.99	0.80	0.98	0.69	0.87	0.83	0.89
F1	0.91	0.99	0.80	0.97	0.66	0.86	0.83	0.89

 Takeaway #1: DNA-based models always perform worse than amino acid-based models, but may be more useful in real-world analysis

Metric	DeepARG -SR	DeepARG -LR	Repro-AA- SR	Repro-AA- LR	Repro-DNA -SR	Repro-DNA- LR	NT-SR	NT-LR
Precision	0.97	0.99	0.87	0.97	0.70	0.84	0.83	0.89
Recall	0.91	0.99	0.80	0.98	0.69	0.87	0.83	0.89
F1	0.91	0.99	0.80	0.97	0.66	0.86	0.83	0.89

- Takeaway #1: DNA-based models always perform worse than amino acid-based models, but may be more useful in real-world analysis
- Takeaway #2: when comparing apples-to-apples, DNA language models outperform DNA-based alignment models

Metric	DeepARG -SR	DeepARG -LR	Repro-AA- SR	Repro-AA- LR	Repro-DNA -SR	Repro-DNA- LR	NT-SR	NT-LR
Precision	0.97	0.99	0.87	0.97	0.70	0.84	0.83	0.89
Recall	0.91	0.99	0.80	0.98	0.69	0.87	0.83	0.89
F1	0.91	0.99	0.80	0.97	0.66	0.86	0.83	0.89

- Takeaway #1: DNA-based models always perform worse than amino acid-based models, but may be more useful in real-world analysis
- Takeaway #2: when comparing apples-to-apples, DNA language models outperform DNA-based alignment models
- Takeaway #3: deep learning may not be needed for alignment-based approaches

Conclusion

- Reproduced DeepARG Results
- Transitioning from alignment-based and deep learning methods to DNA language models improved ARG detection performance in the short read sequence data
- Leveraging DNA sequences, rather than amino acid sequences alone, can potentially show new patterns and insights into resistance evolution
- DeepARG: 654 citations, but still problems with reproducibility and clarity

Links

- Short Reads Model
- 1. Long Reads Model
- 2. Demo App

Milken Institute School of Public Health

THE GEORGE WASHINGTON UNIVERSITY

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC