Отчёт по лабораторной работе №11

Модель системы массовогообслуживания М|М|1

Ощепков Дмитрий Владимирович НФИбд-01-22

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	14

Список иллюстраций

3.1	граф системы	7
	генератор заявок	8
		8
	Параметры элементов основного графа системы обработки заявок	
	в очереди	9
3.5	Параметры элементов генератора заявок системы	10
3.6	Параметры элементов обработчика заявок системы	10
3.7	Запуск системы обработки заявок в очереди	11
3.8	График изменения задержки в очереди	12
3.9	Периоды времени, когда значения задержки в очереди превышали	
	заданное значение	13

Список таблиц

1 Цель работы

Реализовать Модель системы массового обслуживания М|М|1

2 Задание

В систему поступает поток заявок двух типов, распределённый по пуассоновскому закону. Заявки поступают в очередь сервера на обработку. Дисциплина очереди - FIFO. Если сервер находится в режиме ожидания (нет заявок на сервере), то заявка поступает на обработку сервером.

3 Выполнение лабораторной работы

Будем использовать три отдельных листа: на первом листе опишем граф системы, на втором — генератор заявок, на третьем — сервер обработки заявок.

Рис. 3.1: граф системы

Рис. 3.2: генератор заявок

Рис. 3.3: сервер обработки заявок

Определим декларации

```
Time: 0
 Options
 ▶ History
 ▼Declarations
   Standard declarations
   ▼colset UNIT = unit timed;
   ▼ colset INT = int;
   ▼colset Server = with server timed;
   ▼colset JobType = with A | B;
   ▼colset Job = record jobType: JobType * AT : INT;
   ▼colset Jobs = list Job;
   ▼colset ServerxJob = product Server * Job timed;
   var proctime: INT;
   var job: Job;

▼var jobs: jobs;

   fun newJob() = {jobType = JobType.ran(),
     AT = intTime());
    vfun intTime() = IntInf.toInt (time());
    ▼fun expTime (mean: int) =
     val realMean = Real.fromInt mean
     val rv = exponential ((1.0/realMean)
     floor (rv+0.5)
     end;
 Monitors
 New Page
   Arrival
   Server
                                                  Binder 2
▼New net.cpn
                                                   New Page
   Step: 0
   Time: 0
```


Рис. 3.4: Параметры элементов основного графа системы обработки заявок в очереди

Рис. 3.5: Параметры элементов генератора заявок системы

Рис. 3.6: Параметры элементов обработчика заявок системы

Мониторинг параметров моделируемой системы

Рис. 3.7: Запуск системы обработки заявок в очереди

Добавили функцию

fun obs (bindelem) = let fun obsBindElem (Server'Start (1, {job, jobs, proctime})) = (intTime() - (#AT job)) | obsBindElem _ = ~1 in obsBindElem bindelem end

Рис. 3.8: График изменения задержки в очереди

Функцию Observer изменим следующим образом: fun obs (bindelem) = if IntInf.tiInt(Queue_Delay.last())>=(!longdelaytime) then 1 else 0

Рис. 3.9: Периоды времени, когда значения задержки в очереди превышали заданное значение

4 Выводы

Реализовал Модель системы массового обслуживания М|М|1