MA144 Methods of Mathematical Modelling 2, Assignment 1

Dyson Dyson

Question 1

Q1 (a)

The polar curve with equation $r = f(\theta)$ can be parametrised as $\underline{r}(\theta) = (f(\theta)\cos\theta, f(\theta)\sin\theta)$.

$$\frac{\mathrm{d}\underline{r}}{\mathrm{d}\theta} = \left(\frac{\mathrm{d}f}{\mathrm{d}\theta}(\theta)\cos\theta - f(\theta)\sin\theta, \frac{\mathrm{d}f}{\mathrm{d}\theta}(\theta)\sin\theta + f(\theta)\cos\theta\right)$$

Therefore

$$\|\underline{r}'(\theta)\| = \sqrt{(f'(\theta)\cos\theta - f(\theta)\sin\theta)^2 + (f'(\theta)\sin\theta + f(\theta)\cos\theta)^2}$$

$$= \sqrt{f'(\theta)^2\cos^2\theta - 2f(\theta)f'(\theta)\cos\theta\sin\theta + f(\theta)^2\sin^2\theta}$$

$$+f'(\theta)^2\sin^2 + 2f(\theta)f'(\theta)\cos\theta\sin\theta + f(\theta)^2\cos^2\theta$$

$$= \sqrt{f'(\theta)^2(\cos^2\theta + \sin^2\theta) + f(\theta)^2(\cos^2\theta + \sin^2\theta)}$$

$$= \sqrt{f'(\theta)^2 + f(\theta)^2}$$

$$= \sqrt{\left(\frac{\mathrm{d}f}{\mathrm{d}\theta}\right)^2 + f^2}$$

Therefore the arc length of the curve is

$$s = \int_{a}^{b} \sqrt{\left(\frac{\mathrm{d}f}{\mathrm{d}\theta}\right)^{2} + f^{2}} \, \mathrm{d}\theta$$

as required.

Q1 (b)

Let $r = 1 + \cos \theta$.

Figure 1: A sketch of $r = 1 + \cos \theta$

 $\frac{\mathrm{d}r}{\mathrm{d}\theta} = -\sin\theta$ so the arc length is

$$s = \int_0^{2\pi} \sqrt{\sin^2 \theta + (1 + \cos \theta)^2} d\theta$$
$$= \int_0^{2\pi} \sqrt{\sin^2 \theta + 1 + 2\cos \theta + \cos^2 \theta} d\theta$$
$$= \int_0^{2\pi} \sqrt{2 + 2\cos \theta} d\theta$$

I don't know how to do this integral but apparently it's 4π .

Q1 (c)

The curve given by $r = 1 + \cos k\theta$ is non-simple (self-intersecting) whenever k is not an integer.

Question 2

Consider the curve \mathcal{C} with equation

$$4y^2 - 9x^2 = 1, \quad y > 0$$

Q2 (a)

Since $\cosh^2 t - \sinh^2 t = 1$, we can let $y = \frac{1}{2}\cosh t$ and $x = \frac{1}{3}\sinh t$. Then we'll have the equation of \mathcal{C} . Therefore we can parametrise \mathcal{C} as $\underline{r}(t) = \left(\frac{1}{3}\sinh t, \frac{1}{2}\cosh t\right)$.

Since $\frac{1}{2}\cosh t > 0$ for all $t \in (-\infty, \infty)$, the requirement of y > 0 is satisfied by $t \in (-\infty, \infty)$, so that's the range of this parametrisation.

Q2 (b)

Figure 2: A sketch of $\underline{r}(t) = (\frac{1}{3}\sinh t, \frac{1}{2}\cosh t)$

There is a turning point at $(0, \frac{1}{2})$ and asymptotes are $y = \frac{3}{2}x$ and $y = -\frac{3}{2}x$.

Q2 (c)

To reparametrise with u such that the bounds on the parametrisation are $u \in (0,1)$, we want to adjust t in the old parametrisation. We want $u=\frac{1}{2}$ when $t=0,\,u\to 1$ as $t\to\infty$, and $u\to 0$ as $t\to\infty$. We want an increasing, sigmoid-shaped curve with horizontal asymptotes at y=0 and y=1. tanh almost fits this shape, but needs minor adjustments.

Let $u = \frac{1 + \tanh t}{2}$. Then $u = \frac{1}{2}$ when t = 0, $u \to 1$ as $t \to \infty$, and $u \to 0$ as $t \to \infty$, as required. We rearrange to get $t = \operatorname{artanh}(2u - 1)$ and plug this into the old parametrisation.

Therefore $\mathcal C$ can also be parametrised as

$$\left(\frac{1}{3}\sinh\left(\operatorname{artanh}(2u-1)\right),\frac{1}{2}\cosh\left(\operatorname{artanh}(2u-1)\right)\right)\quad u\in(0,1)$$

We can also remove the hyperbolic functions and write it as

$$\left(\frac{2u-1}{6\sqrt{u-u^2}},\frac{1}{4\sqrt{u-u^2}}\right)\quad u\in(0,1)$$

Question 3

Q3 (a)

Figure 3: Plots of hypocycloids for various values of r

Figure 4: The code used to generate the plots in Figure 3. The code can also be found on GitHub

Q3 (b)

I conjecture that for any $r \in \mathbb{R}$, the curve will be closed if and only if $r \in \mathbb{Q}$.