浙江大学2018 - 2019学年春夏学期

求是数学班《高等代数(II)》测验III

2019.05.31

1. 求下面线性方程组的"解":

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 2, \\ x_1 - 2x_3 + x_4 = -1, \\ x_1 - x_2 + x_3 + x_4 = 2. \end{cases}$$

- 2. 设 A 是正定阵, $A = U\Sigma V^*$ 是 A 的奇异值分解, 证明: U = V.
- 3. 设 $A \in \mathbb{R}$ 阶正定阵, 向量组 β_1, \dots, β_s 满足 $\beta_i^T A \beta_j = 0 (1 \le i < j \le s)$. 试问向量组 β_1, \dots, β_s 的秩可能是多少? 证明你的结论.
 - 4. 设 A, B 为同阶正定阵, 若 A > B (即 A B 是正定阵), 试问是否一定有 $A^2 > B^2$? 为什么?
- 5. 设实二次型 $f(X) = X^T A X$, λ 是 A 的特征值. 证明: 存在非零向量 $\alpha = (k_1, \dots, k_n)^T$, 使得 $f(\alpha) = \lambda (k_1^2 + \dots + k_n^2)$.
 - 6. 设 f 是双线性型, 且对任意的 x,y,z 有

$$f(x,y)f(z,x) = f(y,x)f(x,z).$$

证明: f 是对称的或者反对称的.

7. 设 $M_{2r+1}(\mathbb{F})$ 是数域 \mathbb{F} 上的全体 2r+1 阶方阵组成的集合, 记

$$M = \left(\begin{array}{ccc} 2 & O & O \\ O & O & I_r \\ O & I_r & O \end{array}\right)$$

是分块矩阵, 其中 I_r 是 r 阶单位阵. 设

$$W = \{ X \in M_{2r+1}(\mathbb{F}) | X^T M + M X = O \}.$$

对
$$X \in W$$
, 设 $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$. 已知: $e^X \in M_{2r+1}(\mathbb{F})$.

- (1)求 dim W 和 W 的一组基;
- (2)证明: 对任意的 $X \in W$ 都有 det $(e^X) = 1$;
- (3)设列向量空间 \mathbb{F}^{2r+1} 上的一个双线性型 f 关于标准基 $\{e_1,\cdots,e_{2r+1}\}$ 的矩阵表示为上述 M, 证明: 对任意的 $X\in W$ 和列向量 $\alpha,\beta\in\mathbb{F}^{2r+1}$, 都有

$$f(e^X \alpha, e^X \beta) = f(\alpha, \beta).$$