

TFT LCD Approval Specification

MODEL NO.: V562D1-L04

Customer: _____

Approved by: _____

Note

Approved By	TV Product Marketing & Management Div
	Chao-Chun Chung

Reviewed By	QA Dept.	Product Development Div.
	Hsin-nan Chen	WT Lin

Prepared By	LCD TV Marketing and Product Management Div.	
	Denise Shieh	Michell Tsung

CONTENTS

REVISION HISTORY	4
1. GENERAL DESCRIPTION	5
1.1. OVERVIEW	5
1.2. FEATURES	5
1.3. APPLICATION	5
1.4. GENERAL SPECIFICATIONS	5
1.5. MECHANICAL SPECIFICATIONS	6
2. ABSOLUTE MAXIMUM RATINGS	7
2.1. ABSOLUTE RATINGS OF ENVIRONMENT	7
2.2. RATINGS OF IMAGE STICKING	8
3. ELECTRICAL MAXIMUM RATINGS	9
3.1. TFT LCD MODULE	9
3.2. BACKLIGHT UNIT	9
4. ELECTRICAL CHARACTERISTICS	10
4.1. TFT LCD MODULE	10
4.2. BACKLIGHT UNIT	13
4.2.1. CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS	13
4.2.2. INVERTER CHARACTERISTICS	13
4.2.3. INVERTER INTERFACE CHARACTERISTICS	15
5. BLOCK DIAGRAM	17
5.1. TFT LCD MODULE	17
6. LCD INPUT TERMINAL PIN ASSIGNMENT	18
6.1. TFT LCD MODULE L.V.D.S. INPUT	18
6.2. TFT LCD MODULE POWER INPUT	20
6.3. BACKLIGHT UNIT	21
6.4. INVERTER UNIT	22
6.5. BLOCK DIAGRAM OF IMAGE SIGNAL	24
6.6. BLOCK DIAGRAM OF L.V.D.S.	25
6.7. L.V.D.S. INTERFACE	27
6.8. COLOR DATA INPUT ASSIGNMENT	28

7.	TIMING REQUIREMENTS OF IMAGE SIGNAL	29
7.1.	INPUT SIGNAL TIMING SPECIFICATIONS.....	29
7.2.	POWER ON/OFF SEQUENCE	31
8.	OPTICAL CHARACTERISTICS	32
8.1.	TEST CONDITIONS.....	32
8.2.	OPTICAL SPECIFICATIONS.....	32
9.	PRECAUTIONS	36
9.1.	ASSEMBLY AND HANDLING PRECAUTIONS.....	36
9.2.	SAFETY PRECAUTIONS.....	36
9.3.	SAFETY STANDARDS.....	36
10.	DEFINITION OF LABELS	37
10.1.	CMO MODULE LABEL.....	37
10.2.	WARRANTY LABEL	38
11.	PACKAGING	39
11.1.	PACKING SPECIFICATIONS	39
11.2.	PACKING METHOD	39
12.	MECHANICAL CHARACTERISTIC	41

REVISION HISTORY

Version	Date	Page(New)	Section	Description
Ver 2.0	Setp.23,'09	All	All	Approval Specification is first issued.
Ver 2.1	Feb.23,'10	5 23 37	1.4 6.5 11.1	Add Note 2. Modify Note 2. Modify 11.1
Ver 2.2	Mar.15.2010	5 10 12 15 29 31 33 35 38 41	1.2 4.1 4.1 4.2.3 7.1 8.2 8.2 8.2 10.2 12	Modify 1.2 FEATURES Add 4.1 Differential Input Voltage (single-end) Add Note 4. Modify 4.2.3 INVERTER INTERFACE CHARACTERISTICS Modify Note 3. Modify 8.2 OPTICAL SPECIFICATIONS Contrast Ratio Typ. 1500 → 1200 Min. 1100 → 900 Modify Note 3. Modify Note 6. Add 10.2 WARRANTY LABEL Modify 12.MECHANICAL CHARACTERISTIC
Ver 2.3	Apr.16.2010	40	11.2	Modify 11.2. PACKING METHOD

1. GENERAL DESCRIPTION

1.1. OVERVIEW

V562D1-L04 is a 56" Thin-Film-Transistor Liquid-Crystal (TFT-LCD) module with one 32-CCFL backlight unit and 8ch-LVDS interface utilization. This module supports 3840 x 2160 Quad Full High Definition (QFHD) TV format and can display 1G colors (10-bit). The inverter module for backlight is also built-in.

1.2. FEATURES

- Ultra Wide Viewing Angle (176(H)/ 176(V) for CR>30)
- High Brightness (450 nits)
- High Contrast Ratio (1200:1)
- Ultra Fast Response Time (Gray to gray average 6.5 ms)
- High Color Saturation (NTSC 100%)
- Contrasty Image (Gamma 2.5)
- QFHD (3840 x 2160 pixels) Resolution
- 8ch-LVDS (Low Voltage Differential Signaling) Interface
- RoHS Compliance

1.3. APPLICATION

- Luxurious Living Room TVs
- Public Display
- Home Theater
- Satellite Communication
- Medical Analyses/ Instruction
- Security and Monitoring
- Industrial Design
- 3D Display
- Digital Museum
- Multi-Media Display

1.4. GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	1244.16 (H) x 699.84 (V) (56.2" diagonal)	mm	(2)
Bezel Opening Area	1252.1 (H) x 707.8 (V)	mm	
Driver Element	a-si TFT active matrix	-	-
Pixel Number	3840x R.G.B. x 2160	pixel	-
Pixel Pitch(Sub Pixel)	0.108 (H) x 0.324 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	1G colors (10-bit)	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Anti-Glare coating (Haze 25%). Hardness 3H.	-	(1)

Note (1) The specifications of the surface treatment are temporarily for this phase. CMO reserves the rights to change this feature.

Note (2) V562D1-L04 CCFL module use V562D1-P01 cell.

1.5. MECHANICAL SPECIFICATIONS

Item	Min.	Typ.	Max.	Unit	Note
Module Size	Horizontal(H)	1309	1309.5	mm	
	Vertical(V)	766.5	767	mm	
	Depth(D)	57.2	58.5	mm	To PCB cover
	Depth(D)	61.9	63.2	mm	To inverter cover
Weight	23000	23500	24000	g	

2. ABSOLUTE MAXIMUM RATINGS

2.1. ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Value		Unit	Note
		Min.	Max.		
Storage Temperature	T_{ST}	-20	+55	°C	(1)
Operating Ambient Temperature	T_{OP}	0	45	°C	(1), (2)
Shock (Non-Operating)	S_{NOP}	X, Y axis	-	G	(3), (5)
		Z axis	-	G	(3), (5)
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. ($T_a \leq 40$ °C).
- (b) Wet-bulb temperature should be 39 °C Max. ($T_a > 40$ °C).
- (c) No condensation.

Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in your product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in your product design.

Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, and $\pm Z$.

Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.

Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture. The module would not be twisted or bent by the fixture.

2.2. RATINGS OF IMAGE STICKING

Item	Symbol	Value	Unit	Note
Room Temperature Image Sticking	RT IS	Invisibility	6% ND (%)	(1)(3)
High Temperature Image Sticking	HT IS	Invisibility	6% ND (%)	(2)(3)

Note (1) Room temperature image sticking test is at 25 ± 3 °C environment and fix the pattern A (checker pattern) for 12 hours.

Note (2) High temperature image sticking test is at 50 ± 3 °C environment and fix the pattern A for 12 hours.

Note (3) Inspection condition is at pattern B (512grade) after 5 mins from pattern A.

A. Pattern A (checker pattern)

B. Pattern B (512grade)

3. ELECTRICAL MAXIMUM RATINGS

3.1. TFT LCD MODULE

Item	Symbol	Value		Unit	Note
		Min.	Max.		
Power Supply Voltage	V_{CC1}	-0.3	20	V	(1)
	V_{CC2}	-0.3	6	V	
	V_{IN}	-0.3	3.6	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under normal operating conditions.

3.2. BACKLIGHT UNIT

Item	Symbol	Value		Unit	Note
		Min.	Max.		
Lamp Voltage	V_W	—	5000	V_{RMS}	
Power Supply Voltage	V_{BL}	0	30	V	(1)
Control Signal Level	—	-0.3	7	V	(2), (3)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) No moisture condensation or freezing.

Note (3) The control signals include On/Off Control, Internal PWM Control, External PWM Control and Internal/External PWM Selection.

4. ELECTRICAL CHARACTERISTICS

4.1. TFT LCD MODULE

Parameter	Symbol	Value			Unit	Note	
		Min.	Typ.	Max.			
Power Supply Voltage	V_{CC1}	17.1	18	18.9	V	(1)	
	V_{CC2}	4.5	5	5.5	V		
Power Supply Ripple Voltage	V_{RP1}	-	-	400	mV		
	V_{RP2}	-	-	200	mV		
Rush Current	I_{RUSH1}	-	-	8	A	(2)	
	I_{RUSH2}	-	-	7.5	A		
Power Supply Current	I_{CC1}	-	4.2	4.7	A	(3)	
		-	1.8	-	A		
		-	3.5	-	A		
	I_{CC2}	-	5	-	A		
		-	4.9	-	A		
		-	5.4	5.9	A		
LVDS Interface	Differential Input High Threshold Voltage	V_{LVTH}	-	-	+100	mV	(4)
	Differential Input Low Threshold Voltage	V_{LVTL}	-100	-	-	mV	
	Common Input Voltage	V_{CM}	1.125	1.25	1.375	V	
	Differential Input Voltage (single-end)	$ V_{ID} $	200	-	600	mV	
	Terminating Resistor	R_T	-	100	-	ohm	
CMOS Interface	Input High Threshold Voltage	V_{IH}	2.7	-	3.3	V	
	Input Low Threshold Voltage	V_{IL}	0	-	0.7	V	

Note (1) The module should be always operated within the above ranges.

Note (2) Measurement conditions:

Vcc rising time is at least 470μs

Note (3) The specified power supply current is under the conditions at $V_{cc1} = 18$ V, $V_{cc2} = 5$ V, $T_a = 25 \pm 2$ °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

a. White Pattern

b. Black Pattern

c. Vertical Stripe Pattern

Active Area

Active Area

Note (4) LVDS input signal waveform

4.2. BACKLIGHT UNIT

4.2.1. CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS

(Ta=25±2 °C)

Parameter	Symbol	Value			Unit	Note
		Min.	Typ.	Max.		
Lamp Voltage	V _W	-	1728	-	VRMS	IL = 6.0mA
Lamp Current	I _L	5.5	6.0	6.5	mARMS	(1)
Lamp Starting Voltage	V _S	-	-	2550	VRMS	(2), Ta = 0 °C
		-	-	2350	VRMS	(2), Ta = 25 °C
Operating Frequency	F _O	40	60	80	KHz	(3)
Lamp Life Time	L _{BL}	-	50000	-	Hrs	(4)

4.2.2. INVERTER CHARACTERISTICS

(Ta=25±2 °C)

Parameter	Symbol	Value			Unit	Note
		Min.	Typ.	Max.		
Power Consumption	P _{BL}	-	315	330	W	(5), I _L = 6.0mA
Power Supply Voltage	V _{BL}	22.8	24.0	25.2	V _{DC}	
Power Supply Current	I _{BL}	-	13.13	13.75	A	Non Dimming
Input Ripple Noise	-	-	-	912	mV _{P-P}	V _{BL} =22.8V
Oscillating Frequency	F _W	47	50	53	kHz	
Dimming frequency	F _B	150	160	180	Hz	
Minimum Duty Ratio	D _{MIN}	-	20	-	%	

Note (1) Lamp current is measured by utilizing AC current probe and its value is average by measuring master and slave board

Note (2) The lamp starting voltage VS should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.

Note (3) The lamp frequency may produce interference with horizontal synchronous frequency of the display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.

Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point of lamp.) as the time in which it continues to operate under the condition at Ta = 25 ±2 °C and IL = 5.5 ~ 6.5mA rms.

Note (5) The power supply capacity should be higher than the total inverter power consumption PBL. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when inverter dimming.

Note (6) The measurement condition of Max. value is based on 56" backlight unit under input voltage 24V, average lamp current 6.3 mA and lighting 30 minutes later.

4.2.3. INVERTER INTERFACE CHARACTERISTICS

Parameter	Symbol	Test Condition	Value			Unit	Note
			Min.	Typ.	Max.		
On/Off Control Voltage	V _{BLON}	—	2.0	—	5.0	V	
			—	0	—	V	
Internal/External PWM Select Voltage	V _{SEL}	—	2.0	—	5.0	V	
			—	0	—	V	
Internal PWM Control Voltage	V _{IPWM}	V _{SEL} = L	3.15	3.3	3.45	V	Note (5)
			—	0	—	V	minimum duty ratio
External PWM Control Voltage	V _{EPWM}	V _{SEL} = H	2.0	—	5.0	V	duty on
			0	—	0.8	V	duty off
VBL Rising Time	Tr1	—	30	—	—	ms	
VBL Falling Time	Tf1	—	30	—	—	ms	
Control Signal Rising Time	Tr	—	—	—	100	ms	
Control Signal Falling Time	Tf	—	—	—	100	ms	
PWM Signal Rising Time	T _{PWMR}	—	—	—	50	us	
PWM Signal Falling Time	T _{PWMF}	—	—	—	50	us	
Input impedance	R _{IN}	—	1	—	—	MΩ	
PWM Delay Time	T _{PWM}	—	100	—	—	mS	
BLON Delay Time	T _{on}	—	300	—	—	ms	
	T _{on1}	—	300	—	—	ms	
BLON Off Time	T _{off}	—	300	—	—	ms	

Note (1) The SEL signal should be valid before backlight turns on by BLON signal. It is inhibited to change the internal/external PWM selection (SEL) during backlight turn on period.

Note (2) The power sequence and control signal timing are shown in the following figure.

Note (3) The power sequence and control signal timing must follow the figure below. For a certain reason, the inverter has a possibility to be damaged with wrong power sequence and control signal timing.

Note (4) Abnormal operation may occur if these maximum values of control signal are exceeded.

Note (5) The range of VIPWM for dimming brightness should be constrained from 0V to 2.85V (i.e., 2.85V is the start dimming point) except the Max. value of VIPWM mentioned here is only for the maximum brightness useful. In other words, 2.85V~3.15V is not suggested for using to prevent from possibly abnormal phenomenon.

Note (6) While system is turned ON or OFF, the power sequences must follow as below descriptions:

Turn ON sequence: VBL → PWM signal → BLON

Turn OFF sequence: BLOFF → PWM signal → VBL

5. BLOCK DIAGRAM

5.1. TFT LCD MODULE

6. LCD INPUT TERMINAL PIN ASSIGNMENT

6.1. TFT LCD MODULE L.V.D.S. INPUT

CN6 Connector Pin Assignment

Pin No.	Name	Description	Note
1	GND	Ground.	
2	2B_FRX0-	Negative transmission data of First pixel 0.	
3	2B_FRX0+	Positive transmission data of First pixel 0.	
4	2B_FRX1-	Negative transmission data of First pixel 1.	
5	2B_FRX1+	Positive transmission data of First pixel 1.	
6	2B_FRX2-	Negative transmission data of First pixel 2.	
7	2B_FRX2+	Positive transmission data of First pixel 2.	
8	2B_FCLK-	Negative of First clock.	
9	2B_FCLK+	Positive of First clock.	
10	2B_FRX3-	Negative transmission data of First pixel 3.	
11	2B_FRX3+	Positive transmission data of First pixel 3.	
12	2B_FRX4-	Negative transmission data of First pixel 4.	
13	2B_FRX4+	Positive transmission data of First pixel 4.	
14	2B_SRX0-	Negative transmission data of Second pixel 0.	
15	2B_SRX0+	Positive transmission data of Second pixel 0.	
16	2B_SRX1-	Negative transmission data of Second pixel 1.	
17	2B_SRX1+	Positive transmission data of Second pixel 1.	
18	2B_SRX2-	Negative transmission data of Second pixel 2.	
19	2B_SRX2+	Positive transmission data of Second pixel 2.	
20	2B_SCLK-	Negative of Second clock.	
21	2B_SCLK+	Positive of Second clock.	
22	2B_SRX3-	Negative transmission data of Second pixel 3.	
23	2B_SRX3+	Positive transmission data of Second pixel 3.	
24	2B_SRX4-	Negative transmission data of Second pixel 4.	
25	2B_SRX4+	Positive transmission data of Second pixel 4.	
26	GND	Ground.	
27	2A_FRX0-	Negative transmission data of First pixel 0.	
28	2A_FRX0+	Positive transmission data of First pixel 0.	
29	2A_FRX1-	Negative transmission data of First pixel 1.	
30	2A_FRX1+	Positive transmission data of First pixel 1.	
31	2A_FRX2-	Negative transmission data of First pixel 2.	
32	2A_FRX2+	Positive transmission data of First pixel 2.	
33	2A_FCLK-	Negative of First clock.	
34	2A_FCLK+	Positive of First clock.	
35	2A_FRX3-	Negative transmission data of First pixel 3.	
36	2A_FRX3+	Positive transmission data of First pixel 3.	
37	2A_FRX4-	Negative transmission data of First pixel 4.	
38	2A_FRX4+	Positive transmission data of First pixel 4.	
39	2A_SRX0-	Negative transmission data of Second pixel 0.	
40	2A_SRX0+	Positive transmission data of Second pixel 0.	
41	2A_SRX1-	Negative transmission data of Second pixel 1.	
42	2A_SRX1+	Positive transmission data of Second pixel 1.	
43	2A_SRX2-	Negative transmission data of Second pixel 2.	
44	2A_SRX2+	Positive transmission data of Second pixel 2.	
45	2A_SCLK-	Negative of Second clock.	
46	2A_SCLK+	Positive of Second clock.	

47	2A_SRX3-	Negative transmission data of Second pixel 3.	
48	2A_SRX3+	Positive transmission data of Second pixel 3.	
49	2A_SRX4-	Negative transmission data of Second pixel 4.	
50	2A_SRX4+	Positive transmission data of Second pixel 4.	
51	GND	Ground.	

CN7 Connector Pin Assignment

Pin No.	Name	Description	Note
1	GND	Ground.	
2	1B_FRX0-	Negative transmission data of First pixel 0.	
3	1B_FRX0+	Positive transmission data of First pixel 0.	
4	1B_FRX1-	Negative transmission data of First pixel 1.	
5	1B_FRX1+	Positive transmission data of First pixel 1.	
6	1B_FRX2-	Negative transmission data of First pixel 2.	
7	1B_FRX2+	Positive transmission data of First pixel 2.	
8	1B_FCLK-	Negative of First clock.	
9	1B_FCLK+	Positive of First clock.	
10	1B_FRX3-	Negative transmission data of First pixel 3.	
11	1B_FRX3+	Positive transmission data of First pixel 3.	
12	1B_FRX4-	Negative transmission data of First pixel 4.	
13	1B_FRX4+	Positive transmission data of First pixel 4.	
14	1B_SRX0-	Negative transmission data of Second pixel 0.	
15	1B_SRX0+	Positive transmission data of Second pixel 0.	
16	1B_SRX1-	Negative transmission data of Second pixel 1.	
17	1B_SRX1+	Positive transmission data of Second pixel 1.	
18	1B_SRX2-	Negative transmission data of Second pixel 2.	
19	1B_SRX2+	Positive transmission data of Second pixel 2.	
20	1B_SCLK-	Negative of Second clock.	
21	1B_SCLK+	Positive of Second clock.	
22	1B_SRX3-	Negative transmission data of Second pixel 3.	
23	1B_SRX3+	Positive transmission data of Second pixel 3.	
24	1B_SRX4-	Negative transmission data of Second pixel 4.	
25	1B_SRX4+	Positive transmission data of Second pixel 4.	
26	GND	Ground.	
27	1A_FRX0-	Negative transmission data of First pixel 0.	
28	1A_FRX0+	Positive transmission data of First pixel 0.	
29	1A_FRX1-	Negative transmission data of First pixel 1.	
30	1A_FRX1+	Positive transmission data of First pixel 1.	
31	1A_FRX2-	Negative transmission data of First pixel 2.	
32	1A_FRX2+	Positive transmission data of First pixel 2.	
33	1A_FCLK-	Negative of First clock.	
34	1A_FCLK+	Positive of First clock.	
35	1A_FRX3-	Negative transmission data of First pixel 3.	
36	1A_FRX3+	Positive transmission data of First pixel 3.	
37	1A_FRX4-	Negative transmission data of First pixel 4.	
38	1A_FRX4+	Positive transmission data of First pixel 4.	
39	1A_SRX0-	Negative transmission data of Second pixel 0.	
40	1A_SRX0+	Positive transmission data of Second pixel 0.	
41	1A_SRX1-	Negative transmission data of Second pixel 1.	
42	1A_SRX1+	Positive transmission data of Second pixel 1.	
43	1A_SRX2-	Negative transmission data of Second pixel 2.	

44	1A_SRX2+	Positive transmission data of Second pixel 2.	
45	1A_SCLK-	Negative of Second clock.	
46	1A_SCLK+	Positive of Second clock.	
47	1A_SRX3-	Negative transmission data of Second pixel 3.	
48	1A_SRX3+	Positive transmission data of Second pixel 3.	
49	1A_SRX4-	Negative transmission data of Second pixel 4.	
50	1A_SRX4+	Positive transmission data of Second pixel 4.	
51	GND	Ground.	

Note (1) CN6&CN7 connector part no.: B-FI-RE51S-HF,JAE Taiwan.

6.2. TFT LCD MODULE POWER INPUT

CN3 Connector Pin Assignment

Pin No.	Symbol	Description	Note
1	VIN	+18.0V power supply	
2	VIN	+18.0V power supply	
3	V5VC	+5.0V power supply	
4	V5VC	+5.0V power supply	
5	V5VC	+5.0V power supply	
6	NC	Not connection	
7	V5VC	+5.0V power supply	
8	NC	Not connection	
9	V5VC	+5.0V power supply	
10	NC	Not connection	
11	GND	Ground	
12	NC	Not connection	
13	GND	Ground	
14	NC	Not connection	
15	GND	Ground	
16	ODSEL	Overdrive Lookup Table Selection	(2)(3)
17	GND	Ground	
18	GND	Ground	
19	GND	Ground	
20	GND	Ground	

Note (1) CN3 connector part no.: S20B-PHDSS-B(LF)(SN), JST(日本壓著端子),德通端子 or equivalent.

Note (2) ODSEL (Overdrive Lookup Table Selection). The overdrive lookup table should be selected in accordance to the frame rate to optimize image quality.

ODSEL	Note
L	Lookup table was optimized for 60Hz frame rate.
H	Lookup table was optimized for 50Hz frame rate.

Note (3) "L" and "H" operation in (3) could follow "CMOS Interface" in Section 4.1

6.3. BACKLIGHT UNIT

The pin configuration for the housing and the leader wire is shown in the table below.

CN8-CN23: BHR-04VS-1 (JST).

Pin	Name	Description	Wire Color
1	HV	High Voltage	Pink
2	HV	High Voltage	White

Note (1) The backlight interface housing for high voltage side is a model BHR-04VS-1, manufactured by JST and the mating header on inverter part number is SM02 (12.0) B-BHS-1-TB (LF).

6.4. INVERTER UNIT

CN1 (Master, Header): S14B-PH-SM4-TB (D)(LF)(JST) or equivalent

Pin No.	Symbol	Description
1	VBL	+24V _{DC} power input
2		
3		
4		
5		
6	GND	GND
7		
8		
9		
10		
11	SEL	Internal/External PWM selection High : external dimming Low : internal dimming
12	E_PWM	External PWM control signal
13	I_PWM	Internal PWM Control Signal
14	BLON	Backlight on/off control

CN2 (Slave, Header): S12B-PH-SM4-TB (D)(LF)(JST) or equivalent

Pin No.	Symbol	Description
1	VBL	+24V _{DC} power input
2		
3		
4		
5		
6	GND	GND
7		
8		
9		
10		
11	NC	NC
12	NC	NC

CN8-CN15 (Master, Header), CN16-CN23 (Slave, Header): SM02 (12.0) B-BHS-1-TB (LF)(JST) or equivalent

Pin No.	Symbol	Description
1	CCFL HOT	CCFL high voltage
2	CCFL HOT	CCFL high voltage

CN3-CN4 (Master, Header), CN5-CN7 (Slave, Header): 528521070 (Molex)

Pin No.	Symbol	Description
1	Control Signal	Board to Board
2		Board to Board
3		Board to Board
4		Board to Board
5		Board to Board
6		Board to Board
7		Board to Board
8		Board to Board
9		Board to Board
10		Board to Board

Note (1) Floating of any control signal is not allowed.

6.5. BLOCK DIAGRAM OF IMAGE SIGNAL

The video picture (3840x2160) should be divided into four parts: the left up side (1920x1080), the left down side (1920x1080), the right up side (1920x1080) and the right down side (1920x1080). Signals of these four parts should be delivered into the module individually through each 2-channel LVDS interface. But it must be "synchronous" mutually between signals from these four 2-channel LVDS interfaces. And the protocol is specified in the LVDS interface specification.

Note (1) It must be "synchronous" mutually between signals from CN6(2A) and CN6(2B).

Note (2) It must be "synchronous" mutually between signals from CN7(1A) and CN7(1B).

Note (3) It exists 1/3 frame buffer (i.e. buffer =1/3 x 1920 x1080 pixels) between CN6 and CN7.

6.6. BLOCK DIAGRAM OF L.V.D.S.

FR0~FR9 : First pixel R data
FG0~FG9 : First pixel G data
FB0~FB9 : First pixel B data
SR0~SR9 : Second pixel R data
SG0~SG9 : Second pixel G data
SB0~SB9 : Second pixel B data
DE : Data enable signal
DCLK : Data clock signal

Note (1) The driving system must have the transmitter to drive the module.

Note (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

Note (3) Two pixel data are sent into the module for every clock cycle.

6.7. L.V.D.S. INTERFACE

R0~R9 : Pixel R Data (9; MSB, 0; LSB)

G0~G9 : Pixel G Data (9; MSB, 0; LSB)

B0~B9 : Pixel B Data (9; MSB, 0; LSB)

DE : Data enable signal

RCLK : Data clock signal

Note (1) RSVD (reserved)pins on the transmitter shall be "H" or "L".

6.8. COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color.

The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

Color	Data Signal																													
	Red										Green										Blue									
	R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
Basic Colors	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Green	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	
	Cyan	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Gray Scale Of Red	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red (1)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red (2)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		
	Red (1021)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red (1022)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red (1023)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Gray Scale Of Green	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	0	1	0	0	0	0	0	0	0	0	
	Green (1021)	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	
	Green (1022)	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
	Green (1023)	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
Gray Scale Of Blue	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	0	1	1	1	1	1	1	1	1	1	
	Blue (1021)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	1
	Blue (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0
	Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

7. TIMING REQUIREMENTS OF IMAGE SIGNAL

7.1. INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Typ.	Max.	Unit	Note
LVDS Receiver Clock (1-CH LVDS)	Frequency	1/Tc	60	74	75	MHz	(1)
	Input cycle to cycle jitter	Trcl	-	-	200	ps	
LVDS Receiver Data	Setup Time	Tlvsu	600	-	-	ps	
	Hold Time	Tlvhds	600	-	-	ps	
Vertical Active Display Term (2-CH LVDS, 1920X1080 Active Area)	Frame Rate	Fr5	47	50	53	Hz	(2)
		Fr6	57	60	60	Hz	(3)
	Total	Tv	1115	1125	1139	Th	$Tv=Tvd+Tvb$
	Display	Tvd	-	1080	-	Th	
	Blank	Tvb	35	45	55	Th	
Horizontal Active Display Term (2-CH LVDS, 1920x1080 Active Area)	Total	Th	2190	2200	2300	Tc	$Th=Thd+Thb$
	Display	Thd	-	1920	-	Tc	
	Blank	Thb	270	280	380	Tc	

Note (1) Since this module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

Note (2) (ODSEL) = (H). Please refer to Section 6.2 for detail information.

Note (3) (ODSEL) = (L). Please refer to Section 6.2 for detail information.

INPUT SIGNAL TIMING DIAGRAM

LVDS RECEIVER TIMING DIAGRAM

7.2. POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be followed as the diagram below.

Note (1) The supplied voltage of the external system for the module input should follow the definition of Vcc1,2.

Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.

Note (3) In case of Vcc1,2 is in off level, please keep the level of input signals on the low and avoid floating.

Note (4) T4 should be measured after the module being fully discharged between power off and on period.

Note (5) Interface signal shall not be kept at high impedance when the power is on.

8. OPTICAL CHARACTERISTICS

8.1. TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	T _a	25±2	°C
Ambient Humidity	H _a	50±10	%RH
Supply Voltage	V _{CC}	5.0	V
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"		
Frame Rate	F _r	60	Hz

8.2. OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 8.2 Notes. The following items should be measured under the test conditions described in 8.1 and stable environment shown in Note (6).

Item	Symbol	Condition	Min.	Typ.	Max.	Unit	Note
Contrast Ratio	CR	$\theta_x=0^\circ, \theta_y=0^\circ$ Viewing angle at normal direction	900	1200		-	Note (2)
Response Time	Gray to gray			6.5	12	ms	Note (3)
Center Luminance of White	L _C		400	450		cd/m ²	Note (4)
Average Luminance of White	L _{AVE}		400	450	-	cd/m ²	Note (4)
White Variation	δW				1.6	-	Note (7)
Cross Talk	CT				2	%	Note (5)
Color Chromaticity	Red		0.663	Typ. -0.03		-	Note (6)
	Ry		0.330			-	
	Green		0.184			-	
	Gy		0.691			-	
	Blue		0.149			-	
	Bx		0.050			-	
	By		0.313			-	
Viewing Angle	White		0.329			-	
	Wx		95	Typ. +0.03	100	%	NTSC
	Wy						
	Color Gamut						
	C.G						
Viewing Angle	Horizontal	$CR \geq 30$	80	Deg.	88	Note (1)	
	θ_x+		80		88		
	θ_x-		80		88		
	θ_y+		80		88		
	θ_y-		80		88		

Note (1) Definition of Viewing Angle (θ_x , θ_y):

Viewing angles are measured by Autronic Conoscope Cono-80

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

$$\text{Contrast Ratio (CR)} = L_{1023} / L_0$$

L_{1023} : Luminance of gray level 1023

L_0 : Luminance of gray level 0

$CR = CR (7)$, where $CR (X)$ is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Gray to Gray Switching Time:

The driving signal means the signal of gray level 0, 124, 252, 380, 508, 636, 764, 892, and 1023. Gray to gray. Average time means the average switching time of gray level 0, 124, 252, 380, 508, 636, 764, 892, and 1023 to each other.

Note (4) Definition of Luminance of White (LC, LAVE):

Measure the luminance of gray level 1023 at center point and 5 points

$$L_C = L(7)$$

$$L_{AVE} = [L(4) + L(5) + L(7) + L(9) + L(10)] / 5$$

Where $L(x)$ is corresponding to the luminance of the point X at the figure in Note (7).

Note (5) Definition of Cross Talk (CT):

$$CT = |Y_B - Y_A| / Y_A \times 100 (\%)$$

Where:

Y_A = Luminance of measured location without gray level 1023 pattern (cd/m^2)

Y_B = Luminance of measured location with gray level 1023 pattern (cd/m^2)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 512 at 13 points

$$\delta W = \text{Maximum} [L(1), L(2), L(3), L(4), \dots, L(13)] / \text{Minimum} [L(1), L(2), L(3), L(4), \dots, L(13)]$$

9. PRECAUTIONS

9.1. ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) When storing modules as spares for a long time, the following precaution is necessary.
 - a. Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35 °C at normal humidity without condensation.
 - b. The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.
- (10) When ambient temperature is lower than 10 °C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

9.2. SAFETY PRECAUTIONS

- (1) The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

9.3. SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.
- (3) UL60065 or updated standard.
- (4) IEC60065 or updated standard.

10. DEFINITION OF LABELS

10.1. CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

1. Model Name: V562D1-L04
2. Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.
3. Serial ID: XXX XXX XXX Y M D L N N N

Serial ID includes the information as below:

- (a) Manufactured Date: Year: 0~9, for 2000~2009
Month: 1~9, A~C, for Jan. ~ Dec.
Day: 1~9, A~Y, for 1st to 31st, exclude I, O, and U.
- (b) Revision Code: Cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

10.2. WARRANTY LABEL

Warranty labels are pasted on the rear of the BLU. This warranty label is defined to recognize if the module ever disassembled or not. If the module was dismounted, then it will be out of warranty. When remove the warranty label, there are prints will remain on the surface of the BLU. If the label was removed or it has the imprint by tearing, it will be treated as disassembled.

11. PACKAGING

11.1. PACKING SPECIFICATIONS

- (1) 2 LCD TV modules / 1 Box
- (2) Box dimensions : 1448(L) X 372 (W) X 901 (H)
- (3) Weight : approximately 56Kg (2 modules per box)
- (4) One protective film is attached on the LCD TV

11.2. PACKING METHOD

Figures 11-1 and 11-2 are the packing method

Figure.11-1 packing method

⚠ Sea / Land Transportation
(40ft / 40ft HQ Container)

⚠ Air Transportation

Figure.11-2 Packing method

12. MECHANICAL CHARACTERISTIC

