Suites récurrentes : application des accroissements finis

Rappels : convergence des suites récurrentes 1

Théorème 1 (du point fixe)

Soit $f: I \to \mathbb{R}$ une fonction et (u_n) une suite vérifiant la relation $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$

- On suppose que la fonction f est continue sur I.
 - la suite (u_n) converge et sa limite ℓ appartient à I.
- ▶ Alors la limite ℓ de (u_n) est un point fixe de f, soit l'équation $f(\ell) = \ell$.

Remarque : pas un critère de convergence

Ce théorème n'est pas un critère de convergence, car sa formulation n'est pas

« si (u_n) vérifie (hypothèse), alors (u_n) converge, et sa limite vérifie (propriété) »

mais seulement une propriété des suites récurrentes convergentes, qui permet de restreindre fortement les valeurs ℓ possibles pour leur limite.

Théorème 2 (de convergence par majoration de l'erreur)

Soit (u_n) une suite et $\ell \in \mathbb{R}$ un réel

- ▶ On suppose que → l'on a une inégalité de la forme $\forall n \in \mathbb{N}, |u_n \ell| \leq \epsilon_n$
 - pour une suite $(\epsilon_n) \to 0$.
- ▶ Alors → la suite (u_n) converge
 - $\lim(u_n) = \ell.$

Démonstration: On a $\forall n \in \mathbb{N}, |u_n - \ell| \leq \epsilon_n$, soit: $\forall n \in \mathbb{N}, \ell - \epsilon_n \leq u_n \leq \ell + \epsilon_n$.

Par le critère de convergence par encadrement (th. « des gendarmes »), on a donc $\lim(u_n) = \ell$.

Vocabulaire : vitesse de convergence

- 1. On dit que la suite (ϵ_n) est une estimation de l'erreur de ℓ par u_n
- **2.** Supposons de plus (ϵ_n) géométrique, (soit $\forall n \in \mathbb{N}, \ \epsilon_n = \epsilon_0 \ q^n$, où 0 < q < 1) alors on dit que la vitesse de convergence de (u_n) vers ℓ est $(au\ moins)$ géométrique de raison q.

Dans chaque diagramme, combien de valeurs de la suite parvient-on à distinguer avant qu'elles soient trop proches de la limite?

FIGURE 1 – Convergences géométriques de raison q = 95% (g.), q = 70% (m.) et q = 30% (d.)

2 Application

Théorème 3 (Inégalité des accroissements finis)

Soit $f: I \to \mathbb{R}$ une fonction dérivable.

• On suppose que

$$\forall x \in I, \ |f'(x)| \leqslant k$$

pour une constante $k \geqslant 0$.

▶ Alors pour $a, b \in I$, avec $a \neq b$

on a
$$\left| \frac{f(b) - f(a)}{b - a} \right| \leqslant k$$

soit
$$|f(b) - f(a)| \le k |b - a|$$

Interprétation graphique

La courbe de f reste dans le cône laissé blanc et n'entre pas dans la zone colorée.

- 1. Montrer que toutes les valeurs de la suite sont dans un certain intervalle $J \subseteq I$.
- **2.** Trouver un point fixe ℓ de f $(\ell \in J, r\'esolu explicitement ou avec le th\'eor\`eme de la bijection).$
- **3.** Obtenir sur J, une majoration, avec 0 < k < 1, de la forme $\forall x \in J, |f'(x)| \leq k$
- 4. Appliquer l'inégalité des accroissements finis entre $b=u_n$ et $a=\ell.$ Il vient :

$$\forall n \in \mathbb{N}, \quad \underbrace{\left| f\left(u_n\right) - f(\ell) \right|}_{=|u_{n+1} - \ell|} \leqslant k \left| u_n - \ell \right|$$

5. Par récurrence, on obtient donc l'encadrement de l'erreur : $\forall n \in \mathbb{N}, |u_n - \ell| \leqslant \underbrace{k^n |u_0 - \ell|}_{\text{estim. géom. de l'erreur}}$