MATS132 Lineaariset Lien ryhmät demo 2 (24.01.2018)

1. Kvaternioiden kompleksinen matriisiesitys $\mathbb{H} \hookrightarrow \mathcal{M}_2(\mathbb{C})$ saatiin matriiseilla

$$\mathbf{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{i} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{j} = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix} \quad \text{ja} \quad \mathbf{k} = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}.$$

- (a) Tarkista kvaternioiden matriisiesitykselle relaatiot $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1$.
- (b) Osoita kvaternion $0 \neq q \in \mathbb{H}$ käänteisalkion kaava $q^{-1} = \bar{q}/|q|^2$.
- **2.** Olkoon $\Psi: \mathrm{GL}(n,\mathbb{C}) \hookrightarrow \mathrm{GL}(2n,\mathbb{R})$ Lauseen 2.15 blokkimatriisiupotus.
- (a) Osoita, että kaikille $A \in GL(n, \mathbb{C}), \Psi(A^*) = \Psi(A)^T$.
- (b) Osoita, että $\Psi(U(n)) \subset O(2n)$.
- (c) Onko $\Psi(U(n)) = O(2n)$?
- **3.** Todista Lause 3.8: Olkoot $x_1, \ldots, x_n \in \mathbb{K}^n$ lineaarisesti riippumattomia vektoreita ja $A = \begin{bmatrix} x_1 & \ldots & x_n \end{bmatrix} \in \operatorname{GL}(n, \mathbb{K})$ niistä muodostettu matriisi. Osoita, että

$$A \in \begin{cases} \mathrm{O}(n), & \mathrm{jos} \ \mathbb{K} = \mathbb{R} \\ \mathrm{U}(n), & \mathrm{jos} \ \mathbb{K} = \mathbb{C} \end{cases} \quad \Longleftrightarrow \quad \begin{array}{c} \mathrm{vektorit} \ x_1, \dots, x_n \ \in \ \mathbb{K}^n \ \mathrm{muodostavat} \\ \mathrm{ortonormaalin} \ \mathrm{kannan} \end{cases}.$$

4. Olkoot $G,\ N \triangleleft G,\ H < G$ ja K < G ryhmiä. Osoita, että jos $G = N \rtimes H$ ja $K = (N \cap K)(H \cap K),$ niin

$$K = (N \cap K) \rtimes (H \cap K).$$

- 5. Tulkitaan $\mathrm{O}(1)<\mathrm{O}(n)$ blokkiupotuksen $\mathrm{GL}(1,\mathbb{R})\hookrightarrow\mathrm{GL}(n,\mathbb{R})$ kautta.
- (a) Osoita, että $O(n) = SO(n) \rtimes O(1)$
- (b) Osoita, että O(1) ei ole normaali aliryhmä $\mathrm{O}(n){:}\mathrm{lle}.$

Tarkastellaan ortogonaaliryhmän toimintoa $\varphi: O(n) \times \mathbb{R}^n \to \mathbb{R}^n, \varphi(A, x) = Ax$ (katso 1. demojen tehtävät 5-8).

- **6.** Määritä kaikkien vektorien $x \in \mathbb{R}^n$ radat $Orb(x) = \varphi(O(n), x)$.
- 7. Olkoon $x \in \mathbb{R}^n \setminus \{0\}$. Osoita topologisten ryhmien isomorfismi $\operatorname{Stab}(x) \simeq \operatorname{O}(n-1)$.