Сходимости

По вероятности

Определение 2.1. $X_n \to X$ по вероятности, если для любого $\varepsilon > 0$ $\lim_{n\to\infty} \mathbf{P}\left(|X_n - X| > \varepsilon\right) = 0.$

Средне квадратическая

Определение 2.2. $X_n \to X$ в среднем квадратическом, если $\lim_{n\to\infty} \mathbf{M}\big\{|X_n-X|^2\big\}=0.$

Почти наверное

Определение 2.3. $X_n \to X$ почти наверное (с вероятностью 1), если $\mathbf{P}\left(\omega \in \Omega \colon \lim_{n \to \infty} X_n(\omega) = X(\omega)\right) = 1.$

Свойства сходящихся последовательностей

Перечислим некоторые свойства сходящихся последовательностей.

- 1) Если $X_n \xrightarrow{\Pi.H.} X$ или $X_n \xrightarrow{C.K.} X, n \to \infty$, то $X_n \xrightarrow{p} X, n \to \infty$.
 2) Если $X_n \xrightarrow{\Pi.H.} X, Y_n \xrightarrow{\Pi.H.} Y, n \to \infty, a,b = \text{const}, \text{тогда}$ $aX_n + bY_n \xrightarrow{\Pi.H.} aX + bY, n \to \infty$.
 3) Пусть g(x) произвольная борелевская функция, заданная на пря-
- мой \mathbb{R}^1 , а A множество точек разрыва функции g(x). Если $X_n \xrightarrow{\Pi.H.} X$, $n \to \infty$, причем $\mathbf{P}(X \in A) = 0$, то $g(X_n) \xrightarrow{\Pi.H.} g(X), \ n \to \infty$.
- 4) Если $X_n \sim \mathcal{N}(m_n; D_n)$ и $X_n \xrightarrow{\text{с.к.}} X, n \to \infty$, то $X \sim \mathcal{N}(m_X; D_X)$, где $m_X = \lim_{n \to \infty} m_n$, $D_X = \lim_{n \to \infty} D_n$, причем пределы существуют и конечны
- Свойства 2) и 3) справедливы для сходимости по вероятности, а свойство 2) — для с.к.-сходимости.

Неравенство Чебышева

Tе орем а 2.1. Для любых $\varepsilon > 0$ выполнено неравенство Чебышева

$$P(|\xi_n| > \varepsilon) \leqslant \frac{M\{\xi_n^2\}}{\varepsilon^2}.$$
 (2.1)

Борель-Кантелли

Теорема 2.2 (Борель-Кантелли). Пусть $\{A_1,A_2,\ldots,A_n,\ldots\}$ бесконечная последовательность случайных событий, а B = $=\bigcap_{n\geqslant 1}\bigcup_{k\geqslant n}A_k$ — событие, состоящее в том, что произойдет бесконечно

много событий {А:}. Тогда

1)
$$ecnu \sum_{k=1}^{\infty} \mathbf{P}(A_k) < \infty$$
, mo $\mathbf{P}(B) = 0$;

2) если
$$\{A_1,A_2,\ldots,A_n,\ldots\}$$
 независимы и $\sum\limits_{k=1}^{\infty}{\bf P}(A_k)=\infty$, то ${\bf P}(B)=1$.

Пример 2.1. Пусть
$$X_n \xrightarrow{p} X, Y_n \xrightarrow{p} Y, n \to \infty$$
. Показать, что $X_n + Y_n \xrightarrow{p} X + Y, n \to \infty$.

Центральная предельная теорема

Сходимость по распределению

Определение 3.1. Последовательность $\{X_n, n=1,2,\dots\}$ сходится по распределению к случайной величине X, если для любого B такого, что $P(X \in \partial B) = 0$, выполнено

$$P(X_n \in B) \to P(X \in B), \quad n \to \infty.$$
 (3.1)

Слабая сходимость

Сходимость по распределению, которую также называют слабой сходимостью, будем обозначать

$$X_n \xrightarrow{d} X, \quad n \to \infty.$$
 (3.2)

Теорема

Пусть $\boldsymbol{F}_n(x)$ и $\boldsymbol{F}_X(x)$ — функции распределения, соответственно, \boldsymbol{X}_n иX.

Теорема 3.1. Следующие три утверждения эквивалентны:

- 1) $X_n \xrightarrow{\mathrm{d}} X$, $n \to \infty$; 2) $F_n(x) \to F_X(x)$, $n \to \infty$ для любой точки непрерывности функции
- (3) $\mathbf{M}\{g(X_n)\} o \mathbf{M}\{g(X)\},\ n o \infty$ для любой непрерывной и ограниченной на \mathbb{R}^1 функции g(x).

Теорема 3.2. *Если*
$$X_n \xrightarrow{p} X$$
, $n \to \infty$, mo $X_n \xrightarrow{d} X$, $n \to \infty$.

Связь сходимостей

Таким образом, слабая сходимость случайной последовательности следует из сходимости по вероятности, а, следовательно, из сходимости почти наверное и сходимости в среднем квадратическом.

В одном важном частном случае сходимость по распределению и сходимость по вероятности эквивалентны: если $X_n \xrightarrow{\operatorname{d}} a, \ n \to \infty$, где a = const, to $X_n \xrightarrow{\mathbf{p}} a$, $n \to \infty$.

Сходимость, характеристические функции

Tеорема 3.3. Пусть $\Psi_n(\lambda)$ и $\Psi(\lambda)$ — характеристические функции, соответственно, X_n и X. Пусть также для любого $\lambda \in \mathbb{R}^1$

$$\Psi_n(\lambda) \to \Psi(\lambda), \quad n \to \infty.$$

Тогда $X_n \xrightarrow{d} X$, $n \to \infty$.

Асимптотически нормальная последовательность

Определение 3.2. Последовательность $\{X_n, n=1,2,\ldots\}$ называется асимптотически нормальной с параметрами $(m; \sigma^2)$, если

$$X_n \xrightarrow{d} X$$
, $n \to \infty$, где $X \sim \mathcal{N}(m; \sigma^2)$. (3.3)

Из определения 3.2 и теоремы 3.1 следует, что для любого $x \in \mathbb{R}^1$

$$F_n(x) \to \Phi\left(\frac{x-m}{\sigma}\right), \quad n \to \infty.$$
 (3.4)

Стандартизированная сумма

Пусть теперь $\{\xi_k, k=1,2,...\}$ — последовательность независимых случайных величин с параметрами

$$M\{\xi_k\} = a; \quad D\{\xi_k\} = \sigma^2 > 0.$$

Рассмотрим случайную последовательность сумм этих величин:

$$X_n = \sum_{k=1}^n \xi_k, \quad n = 1, 2, \dots$$
 (3.5)

Очевидно, $\mathbf{M}\{X_n\}=na,\,\mathbf{D}\{X_n\}=n\sigma^2.$ Введем стандартизованную сумму

$$\widetilde{X}_n = \frac{X_n - na}{\sigma\sqrt{n}}, \quad n = 1, 2, \dots$$
(3.6)

Нетрудно проверить, что $\mathbf{M}\left\{\widetilde{X}_{n}\right\}=0$, $\mathbf{D}\left\{\widetilde{X}_{n}\right\}=1$.

Центральная предельная теорема для одинаково распределенных слагаемых

Теорема 3.4 (ЦПТ для одинаково распределенных слагаемых). Пусть случайные величины $\{\xi_k, k=1,2,\ldots\}$ одинаково распределены, тогда последовательность $\{\widetilde{\boldsymbol{X}}_n,\, n=1,2,\,\dots\}$ асимптотически нормальна с параметрами (0; 1).

Следствие 3.1. Для любых чисел $a \leq b$ выполнено

$$\mathbf{P}(a \leqslant \widetilde{X}_n \leqslant b) \to \Phi(b) - \Phi(a), \quad n \to \infty.$$
 (3.7)

Интегральная теорема Муавра-Лапласа

Следствие 3.2 (Интегральная теорема Муавра-Лапласа). Пусть X_n — число успехов в серии из n испытаний Бернулли, a p — вероятность успеха в одном испытании. Тогда при $n o \infty$

$$\frac{X_n - np}{\sqrt{np(1-p)}} \xrightarrow{d} X \sim \mathcal{N}(0;1).$$
 (3.8)

Если слагаемые $\{\xi_k, k=1,2,...\}$ распределены не одинаково, то утверждение, аналогичное ЦПТ, останется в силе при некоторых дополнительных ограничениях.

Теорема Ляпунова

Если слагаемые $\{\xi_k, k=1,2,\ldots\}$ распределены не одинаково, то утверждение, аналогичное ЦПТ, останется в силе при некоторых дополнительных ограничениях.

Пусть
$$\mathbf{M}\{\xi_k\}=a_k,\,\mathbf{D}\{\xi_k\}=\sigma_k^2,\,\mathbf{M}\{|\xi_k-a_k|^3\}=c_k^3.$$
 Обозначим $A_n=\mathbf{M}\{X_n\}=\sum_{k=1}^n a_k,\,D_n^2=\mathbf{D}\{X_n\}=\sum_{k=1}^n \sigma_k^2,\,C_n^3=\sum_{k=1}^n c_k^3.$

 Теорема 3.5 (Ляпунов). Пусть A_n , D_n , C_n конечны при всех $n\geqslant 1$, причем $rac{C_n}{D_n} o 0,\, n o \infty.$ Тогда последовательность $\{\widetilde{X}_n,\, n=1,2,\,\dots\},$

Закон больших чисел

Законом больших чисел называется совокупность утверждений о поведении последовательности $\{X_n, n=1,2,\ldots\}$ выборочных средних при

 ${
m Teopema}$ 4.1. Если $\{X_k, k=1,2,\ldots\}$ одинаково распределены и $\mathbf{M}\{X_k\}=a$ конечно, то $\overline{X}_n\stackrel{\mathrm{H.H.}}{\longrightarrow} a,\,n\to\infty.$ Теорема 4.1 называется "Усиленный закон больших чисел А.Н. Кол-

могорова".

Выборка и ее основные характеристики

Однородная выборка объема п

Определение 5.1. Совокупность $\{X_k, k=1,\ldots,n\}$ независимых случайных величин, имеющих одинаковые функции распределения $F_{X_k}(x) = F(x)$, называется однородной выборкой объема n, соответствующей функции распределения F(x).

Гауссовская выборка

Определение 5.2. Выборка $\{X_k,\,k=1,\,\ldots,n\}$ называется гауссовской, если Z_n-n -мерный гауссовский вектор.

Неоднородная выборка

Определение 5.3. Выборка Z_n называется neoднородной, если законы распределения $F_{X_k}(x)$ ее элементов неодинаковы.

Реализация выборки

Определение 5.4. Реализацией выборки Z_n называется неслучайный вектор $z_n = \{x_1, \dots, x_n\}^\top$, компонентами которого являются реализации соответствующих элементов выборки.

Порядковая статистика

Определение 5.5. СВ $X_{(k)}$, реализацией которой для каждой z_n является число $x_{(k)}$, называется k-й порядковой статистикой, $k=1,\ldots,n$. Случайный вектор $Z_{(n)}=\{X_{(1)},\ldots,X_{(n)}\}^{\top}$ называется вариационным рядом выборки.

СВ $X_{(1)}$ и $X_{(n)}$ (т.е. крайние элементы вариационного ряда) называются экстремальными статистиками.

Статистика

Определение 5.6. СВ $Y = \varphi(X_1, \dots, X_n)$, где $\varphi(x_1, \dots, x_n)$ — произвольная (борелевская) функция на \mathbb{R}^n , называется *статистикой*.

Основные понятия

Выборочное среднее

1)
$$\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k$$
 называется выборочным средним.

Выборочная дисперсия

$$2)\ \overline{S}_n^2 = \frac{1}{n}\sum_{k=1}^n (X_k - \overline{X}_n)^2$$
 называется выборочной дисперсией.

Выборочный начальный момент

3) $\overline{\nu}_r(n)=rac{1}{n}\sum_{k=1}^n(X_k)^r,\ r=1,2,\ldots,$ называется выборочным начальным моментом r-го порядка.

Выборочный центральный момент r-ого порядка

$$4)\ \overline{\mu}_r(n)=rac{1}{n}\sum_{k=1}^n(X_k-\overline{X}_n)^r,\ r=1,2,\ldots,$$
 называется выборочным центральным моментом r-го порядка.

Теорема

Теорема 5.1. При неограниченном увеличении объема выборки п выборочные моменты $\overline{\nu}_r(n)$ и $\overline{\mu}_r(n)$, $r=1,2,\ldots$ почти наверное сходятся к теоретическим моментам ν_r и μ_r соответственно.

Следствие 5.1. Если $m_X=\mathbf{M}\{X_k\}$ существует, то $\overline{X}_n\xrightarrow{\mathrm{\Pi.H.}} m_X$, $n\to\infty$. Если ν_2 существует, то $\overline{S}_n^2\xrightarrow{\mathrm{\Pi.H.}} D_X$, $n\to\infty$.

Определение 5.8. Случайная функция $\widehat{F}_n(x) = \frac{M_n(x)}{n}$, $x \in \mathbb{R}^1$, называется выборочной (эмпирической) функцией распределения СВ X.

При достаточно больших n функция $\widehat{F}_n(x)$ весьма точно аппроксимирует функцию распределения F(x), которой соответствует выборка, о чем свидетельствуют следующие утверждения.

Теорема 5.3 (Гливенко-Кантелли). $\widehat{F}_n(x)$ сходится κ F(x) почти наверное равномерно по x при $n \to \infty$, т.е.

$$\sup_{x\in\mathbb{R}^1}|\widehat{F}_n(x)-F(x)|\xrightarrow{\text{ II.H. }}0,\quad n\to\infty.$$

Теорема 5.4. При любом $x \in \mathbb{R}^1$ последовательность $\{\widehat{F}_n(x), n = 1, 2, \dots\}$ асимптотически нормальна:

$$\sqrt{n}\left(\widehat{F}_n(x) - F(x)\right) \xrightarrow{d} \xi \sim \mathcal{N}\left(0; F(x)(1 - F(x))\right), \quad n \to \infty.$$

Пусть двумерная выборка $\{(X_k,Y_k), k=1,\ldots,n\}$ порождена случайным вектором $\xi=\{X,Y\}^\top$. Обозначим через $k_{XY}=\mathbf{M}\{(X-m_X)(Y-m_Y)\}=\mathbf{M}\{XY\}-m_Xm_Y$ ковариацию случайных величин X и Y.

Определение 5.9. Статистика $\hat{k}_{XY}(n)=rac{1}{n}\sum_{k=1}^n X_k Y_k - \overline{X}_n \overline{Y}_n$ называется выборочной ковариацией случайных величин X и Y.

Теорема 5.5. Если СВ Х и У имеют конечные дисперсии, то

1)
$$\mathbf{M}\left\{\hat{k}_{XY}(n)\right\} = \frac{n-1}{n}k_{XY};$$

2)
$$\hat{k}_{XY}(n) \xrightarrow{\Pi.H.} k_{XY}, n \to \infty;$$

$$\begin{array}{l} 2) \ \widehat{k}_{XY}(n) \xrightarrow{\text{II.H.}} k_{XY}, \, n \rightarrow \infty; \\ 3) \ ecnu \ \mathbf{M} \big\{ |X|^4 + |Y|^4 \big\} < \infty, \ mo \end{array}$$

$$\sqrt{n}\left(\widehat{k}_{XY}(n)-k_{XY}\right) \xrightarrow{\mathbf{d}} \eta \sim \mathcal{N}\left(0; \boldsymbol{\mu}_{22}-k_{XY}^2\right), \quad n \to \infty,$$

где
$$\boldsymbol{\mu}_{22} = \mathbf{M} \big\{ (\boldsymbol{X} - \boldsymbol{m}_{\boldsymbol{X}})^2 (\boldsymbol{Y} - \boldsymbol{m}_{\boldsymbol{Y}})^2 \big\}.$$

Точечные оценки и их свойства