Machine learning Logistic Regression

Logo

기호적인회귀

회귀 Regression

•미션: 특정 부품 진동 값을 추정 target - Vibration: 특정 무품 (너무 진동수가 높을 것 예상 되면 RPM을 낮출 수 있죠)

ID	RPM	VIBRATION
1	568	585
2	586	565
3	609	536
4	616	492
5	632	465
6	652	528
7	655	496
8	660	471
9	688	408
10	696	399
11	708	387
12	701	434
13	715	506
14	732	485
15	731	395
16	749	398
17	759	512
18	773	431
19	782	456
20	797	476
21	794	421
22	824	452
23	835	441
24	862	372
25	879	340
26	892	370
27	913	373
28	933	330

feat1 - RPM: Revolutions (Revolve) Per Minute

target - Vibration: 특정 부품 1동 값

Revolver Kit

범주 분류 문제 Classification Problem

•미션: 발전기의 상태를 알아야 한다!

feat1 - RPM: Revolutions (Revolve) Per Minute

feat2 - Vibration: 특정 부품

Label = Status: good

vs faulty

농 상태

words Paintb

Revolver Kit

ID	RPM	VIBRATION	STATUS	ID	RPM	VIBRATION	STATUS
1	568	585	good	29	562	309	faulty
2	586	565	good	30	578	346	faulty
3	609	536	good	31	593	357	faulty
4	616	492	good	32	626	341	faulty
5	632	465	good	33	635	252	faulty
6	652	528	good	34	658	235	faulty
7	655	496	good	35	663	299	faulty
8	660	471	good	36	677	223	faulty
9	688	408	good	37	685	303	faulty
10	696	399	good	38	698	197	faulty
11	708	387	good	39	699	311	faulty
12	701	434	good	40	712	257	faulty
13	715	506	good	41	722	193	faulty
14	732	485	good	42	735	259	faulty
15	731	395	good	43	738	314	faulty
16	749	398	good	44	753	113	faulty
17	759	512	good	45	767	286	faulty
18	773	431	good	46	771	264	faulty
19	782	456	good	47	780	137	faulty
20	797	476	good	48	784	131	faulty
21	794	421	good	49	798	132	faulty
22	824	452	good	50	820	152	faulty
23	835	441	good	51	834	157	faulty
24	862	372	good	52	858	163	faulty
25	879	340	good	53	888	91	faulty
26	892	370	good	54	891	156	faulty
27	913	373	good	55	911	79	faulty
28	933	330	good	56	939	99	faulty

[1] 회귀 미션 Regression Mission

[2] 범주 분류 Classification Mission

[2] 범주 분류 Classification Mission

Vibration = 830 - 0.667*RPM

새 측정 Vibration, RPM 조합이 '회귀선' 기준으로 아래 범위 좌표에 있으면

label = faulty일 것 이라는 분류 추정이 가능

RPM

- •우리는 label을 색상으로 보고 알았음.
- •컴퓨터에겐 0 또는 1 숫자로 알려줘야하는 것이 포인트

- •우리는 label을 색상으로 보고 알았음,
- •컴퓨터에겐 0 또는 1 숫자로 알려줘야하는 것이 포인트
- •선형 회귀와 연결하느라 feature 2개로 label 분류 예제
- feature가 x-axis (RPM) 1개 뿐이고, label을 Y = 1 or 0으로!

- •우리는 label을 색상으로 보고 알았음,
- •컴퓨터에겐 0 또는 1 숫자로 알려줘야하는 것이 포인트
- •선형 회귀와 연결하느라 feature 2개로 label 분류 예제
- feature가 x-axis (RPM) 1개 뿐이고, label을 Y = 1 or 0으로!

- •혹시 어색하셔도 당연
- •왜냐, 범주 나누는 것 자체가 컴퓨터에 어색.

70점이 Pass 기준이면, 30점 fail과 60점 fail을 동일하게 보는 것이 사회 기준,

Confusing words in Categorical 분류

Logit

Logistic Unit

Logistic Regression

Sigmoid

Odds

범주를 분류하기 위한 함수

어떤 사건이 일어날 확률 (0과 1사이로)

시험 Pass 일어날 확률

질병 확진

1 - P(X)

일어나지 않을 확률

$$0 \le P(X) \le 1$$

우리는 안 쓰던 Odds란 말을 영어권은 이렇게 쓰더군요

Odds

From Wikipedia, the free encyclopedia

This article is about the gambling and statistical term.

Odds To Win 2018 FIFA World Cup	
COUNTRY	ODDS TO WIN
Germany	9-2
Brazil	5-1
France	11-2
Spain	7-1

https://www.espn.com/chalk/story/_/id/20991480/soccer-odds-win-2018-fifa-world-cup

Odds Ratio = 오즈비

• 오즈비 = Odds / Odds

Odds Ratio = 오즈비 = 숭산?비 (승리의 발견율 비)

● 특정 조건의 승산(승리발견율) / 다른 조건에서 승산(승리발견율)의 비율

예) 클럽o, 확진자 확률 Odds 0.01/0.99

 $\frac{P(X)}{1-P(X)}$ Odds (클럽o 조건) $\frac{P(X)}{}$ Odds (클럽x 조건)

클럽x, 확진자 확률 Odds 0.04/0.96

Odds Ratio= OR =
$$\frac{P(disease | exposed) / [1 - P(disease | exposed)]}{P(disease | unexposed) / [1 - P(disease | unexposed)]}$$

Odds Ratio = 오즈비 = 숭산?비 (승리의 발견율 비)

● 특정 조건의 승산(승리발견율) / 다른 조건에서 승산(승리발견율)의 비율

[1] 환자-대조군 연구

이미 <mark>질환이 발생한</mark> 환자군과 질환이 발생하지 않은 대조군을 모집 후, 위험인자 노출 여부(특정 시점에서의 결과)를 <mark>후향적</mark>으로 조사하여 위험인자와 질환 발생 간의 연관성 추정.

이러한 경우에는 위험인자에 노출된 전체 모집단과 노출되지 않은 전체 모집단을 파악할 수가 없으므로 (특정 시점에서의 집단 수만 파악할 수 있기 때문에) 승산비를 사용할 수밖에 없다.

Odds Ratio= OR =
$$\frac{P(disease | exposed)/[1 - P(disease | exposed)]}{P(disease | unexposed)/[1 - P(disease | unexposed)]}$$

Odds Ratio V. Relative Risk(Risk Ratio)

[1] 환자-대조군 연구

이미 질환이 발생한 환자군과 질환이 발생하지 않은 대조군을 모집한 후 위험인자 노출 여부(특정 시점에서의 결과)를 <mark>후향적</mark>으로 조사하여 위험인자와 질환 발생 간의 연관성 추정. 이러한 경우에는 위험인자에 노출된 전체 모집단과 노출되지 않은 전체 모집단을 파악할 수가 없으므로 (특정 시점에서의 집단 수만 파악할 수 있기 때문에) 승산비를 사용할 수밖에 없다.

[2] 코호트(Cohort) 연구

아직 질환이 발생되지 않은 모집단을 위험인자에 노출된 집단과 노출되지 않은 집단으로 구분하여 추적 관찰(시간적 개념 포함). 모집단을 파악 가능 → 위험인자(클럽 노출)와 질병 발생 간의 연관성을 추정.

상대적 위험도(Relative Risk, RR)

위험인자에 노출o 질병 발생 확률 / 위험인자에 노출x 질병 발생 확률로 나눈 값

Odds Ratio = 오즈비 = 승산비

만약, 어떤 확률이 계속 증가한다면 Odds 오즈는 어떻게 될까요?

$$\frac{P(X)}{1 - P(X)}$$

Logit link F. = Logistic unit link F.

- = Log-odds link F_{\bullet} = Logit is a transformation
- •Q: 뭐가 기호적이라는걸까요? A: 바로 그래프 모양 -무한, +무한

$$logit(p(y=1|x)) = log_e\left(\frac{p}{1-p}\right)$$

$$\log_e\left(\frac{p}{1-p}\right)$$

$$\log_e\left(\frac{p}{1-p}\right)$$

$$\log_e\left(\frac{p}{1-p}\right)$$

$$\log_e\left(\frac{p}{1-p}\right)$$

$$\log_e\left(\frac{p}{1-p}\right)$$

$$\log_e\left(\frac{p}{1-p}\right)$$

$$\log_e\left(\frac{p}{1-p}\right)$$

•Logit의 역함수 = Logistic Sigmoid vs 다른 S 모양은?

Logistic Sigmoid

•Logit의 역함수 = Logistic Sigmoid = S 모양의 로지스틱 함수

vs tanh

•Logit의 역함수 = Logistic Sigmoid = S 모양의 로지스틱 함수

vs tanh

2019. 3. 12. - tanh: sigmoid function의 가중치 학습시 역전파된 gradient의 방향에 제약이 가해 져 학습속도가 늦거나 수렴이 어렵게 되는 문제를 해결한 함수.

•Logit의 역함수 = Logistic Sigmoid = S 모양의 로지스틱 함수

vs *tanh*Sigmoid

S 모양의 하이퍼볼릭 탄젠트 함수

www.datamar

2019. 3. 12. - tanh: sigmoid function의 가중치 학습시 역전파된 gradient의 방향에 제약이 가해 져 학습속도가 늦거나 수렴이 어렵게 되는 문제를 해결한 함수.

np 지원 그래프 plt.plot해보기

```
return 1 / (1 + np.exp(-x))
                                                               [차트 - Sigmoid계열]
                                                                        --- Soft step (= Logistic)
# 그래프 출력
                                                                             TanH
                                                                 1.5
plt.plot(x, softstep func(x), linestyle='--', label="Soft step (=
                                                                            ArcTan

    Softsign

                                                                 1.0
def tanh func(x): # TanH 함수
   return np.tanh(x)
                                                                 0.5
   # return 2 / (1 + np.exp(-2*x)) - 1 # same
                                                                 0.0
# 그래프 출력
plt.plot(x, tanh func(x), linestyle='--', label="TanH")
                                                                -0.5
                                                               -1.0
def arctan func(x): # ArcTan 함수
   return np.arctan(x)
                                                                -1.5
# 그래프 출력
                                                                -2.0
plt.plot(x, arctan_func(x), linestyle='--', label="ArcTan")
```

Logistic Regression에서 Weight 학습하기

Iris 아이리스, 붓꽃

Iris setosa Iris versicolor Iris virginica

꽃 세가지 종류(Versicolor, Setosa, Virginica)의 꽃을 4가지 숫자 cm: Sepal(꽃받침) 길이, 폭, Petal(꽃잎) 길이, 폭

https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data

Sir Ronald Aylmer Fisher (1936)

Cost Function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost Function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}\left(h_{\theta}(x^{(i)}), y^{(i)}\right)$$

$$= -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))]$$
미션! find θ , where $\min_{\theta} J(\theta)$ $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T} \mathbf{x}}}$

Partial derivation of cost function

$$= -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))]$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[-y^{i} (\log(1 + e^{-\theta x^{i}})) + (1 - y^{i})(-\theta x^{i} - \log(1 + e^{-\theta x^{i}})) \right]$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y_{i}\theta x^{i} - \theta x^{i} - \log(1 + e^{-\theta x^{i}}) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y_{i}\theta x^{i} - \log(1 + e^{\theta x^{i}}) \right]$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y_{i}\theta x^{i} - \log(1 + e^{\theta x^{i}}) \right]$$

$$= -\log(1 + e^{\theta x^{i}}).$$

Partial derivation of cost function

$$-rac{1}{m}\sum_{i=1}^{m}\left[y_{i} heta x^{i}-\log(1+e^{ heta x^{i}})
ight]$$
 $z=w_{0}x_{0}+w_{1}x_{1}+\cdots+w_{n}x_{n}}$ $oldsymbol{ heta}$ 에 관하여 미분하면 $rac{\partial}{\partial heta_{j}}y_{i} heta x^{i}=y_{i}x_{j}^{i}$ $rac{\partial}{\partial heta_{j}}\log(1+e^{ heta x^{i}})=rac{x_{j}^{i}e^{ heta x^{i}}}{1+e^{ heta x^{i}}}=x_{j}^{i}h_{ heta}(x^{i}),$

Partial derivation of cost function

$$-\frac{1}{m} \sum_{i=1}^{m} \left[y_i \theta x^i - \log(1 + e^{\theta x^i}) \right]$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T \mathbf{x}}}$$

$$\frac{\partial}{\partial \theta_j} y_i \theta x^i = y_i x_j^i \quad \frac{\partial}{\partial \theta_j} \log(1 + e^{\theta x^i}) = \frac{x_j^i e^{\theta x^i}}{1 + e^{\theta x^i}} = x_j^i h_{\theta}(x^i),$$

$$rac{\partial}{\partial heta_j} J(heta) = rac{1}{m} \sum_{i=1}^m (h_ heta(x^i) - y^i) x_j^i$$

Weight update

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^i) - y^i) x_j^i$$

$$heta_j := heta_j - lpha rac{\partial}{\partial heta_j} J(heta)$$
 모든 $heta_j$ 동시에 업데이트

$$:= \theta_j - \alpha \sum_{i=1}^{n} (h_{\theta}(x^i) - y^i) x_j^i$$

첨부) Logit의 역함수 = Logistic 도출 세부 수식

Logit link F. = Logistic unit link F. = Log-odds link F.

•Q: 뭐가 기호적이라는걸까요? A: 바로 그래프 모양 -무한, +무한

$$logit(p(y = 1|x)) = log_{e}\left(\frac{p}{1-p}\right)$$

$$= log_{e}(p) - log_{e}(1-p)$$

$$= -log_{e}\left(\frac{1}{p}-1\right)$$

$$= -log_{e}\left(\frac{1}{p}-1\right)$$

$$logit(P(Y = 1|x_{1},...,x_{k})) = \beta_{0} + \beta_{1}x_{1} + \cdots + \beta_{n}x_{n}$$

Inverse Logit = Logistic Sigmoid Function

• Logit 함수의 역함수로 z에 관한 확률을 산출

$$f(z)=y=-log_e\left(rac{1}{z}-1
ight)$$
 역함수로 바꾸면 $z=-log_e\left(rac{1}{y}-1
ight)$ y에 관한 정리

Logistic Sigmoid Function

•Logit 함수의 역함수로 z에 관한 확률을 산출

$$z = -log_e\left(rac{1}{y} - 1
ight)$$
 y에 관한 정리

$$e^{-z} = \frac{1-y}{y}$$

$$y * e^{-z} + y = 1$$

$$y(e^{-z}+1)=1$$

$$y = \frac{1}{1 + e^{-z}}$$

 $y = \frac{1}{1 + e^{-z}}$ Logistic Function = Inverse of logit function

Logistic Sigmoid Function

• Sigmoid function 으로 변환

$$p = \sigma(z) = \frac{1}{1 + e^{-z}}, \quad \frac{p}{1 - p} = \frac{\frac{1}{1 + e^{-z}}}{\frac{e^{-z}}{1 + e^{-z}}} = \frac{1}{e^{-z}} = e^{z}$$

$$log_e \frac{p}{1 - p} = z$$

$$log_e \frac{p}{1 - p} = z = w_0 x_0 + w_1 x_1 + \dots + w_n x_n$$