class 14: RNA-Seq analysis

Chloe Wong (PID: A16893383)

Today we will complete an RNASeq analysis from counts to pathways.

We will work with data on differential analysis of lung fibroblasts in response to loss of the developmental transcription factor HOXA1.

Data Import

```
metaFile <- "GSE37704 metadata.csv"
countFile <- "GSE37704 featurecounts.csv"
# Import metadata and take a peak
colData = read.csv(metaFile, row.names=1)
head(colData)
              condition
SRR493366 control sirna
SRR493367 control_sirna
SRR493368 control sirna
SRR493369
               hoxa1_kd
SRR493370
               hoxa1_kd
SRR493371
               hoxa1_kd
# Import countdata
countData = read.csv(countFile, row.names=1)
head(countData)
```

	Length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0

ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	O	O	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR493371					
ENSG00000186092	O					
ENSG00000279928	0					
ENSG00000279457	46					
ENSG00000278566	0					
ENSG00000273547	0					
ENSG00000187634	258					

Q. How many genes do we have?

nrow(countData)

[1] 19808

And a wee peak

head(countData)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	O	0	0	O
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

Q. Complete the code below to remove the troublesome first column from count-Data

```
# Note we need to remove the odd first $length col
countData <- as.matrix(countData[,2:7])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	O	0	0	O	O	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	O	O	0	O	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

nrow(countData)

[1] 19808

Q. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

Tip: What will rowSums() of countData return and how could you use it in this context?

There are tons of zero count genes that we can get rid of

```
countData = countData[rowSums(countData) >0, ]
head(countData)
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Q. How many genes do we have left?

DESeq setup

library(DESeq2)

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices': windows

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Warning: package 'matrixStats' was built under R version 4.4.2

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedMedians, rowWeightedMedians, rowWeightedMedians, rowWeightedWars

Loading required package: Biobase

```
Welcome to Bioconductor
```

```
Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
    rowMedians
The following objects are masked from 'package:matrixStats':
    anyMissing, rowMedians
dds = DESeqDataSetFromMatrix(countData=countData,
                             colData=colData,
                             design=~condition)
Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
design formula are characters, converting to factors
dds = DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
```

```
res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
```

Q. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

summary (res)

```
out of 15975 with nonzero total read count
adjusted p-value < 0.1

LFC > 0 (up) : 4349, 27%

LFC < 0 (down) : 4396, 28%

outliers [1] : 0, 0%

low counts [2] : 1237, 7.7%

(mean count < 0)

[1] see 'cooksCutoff' argument of ?results

[2] see 'independentFiltering' argument of ?results
```

DESeq analysis

```
using pre-existing size factors
estimating dispersions

found already estimated dispersions, replacing these
gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing
```

```
res <- results(dds)
```

And a wee peak:

head(res)

```
log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns
```

```
baseMean log2FoldChange
                                             lfcSE
                                                         stat
                                                                   pvalue
                <numeric>
                                                                <numeric>
                               <numeric> <numeric>
                                                    <numeric>
ENSG00000279457
                  29.9136
                               0.1792571 0.3248216
                                                     0.551863 5.81042e-01
ENSG00000187634 183.2296
                               0.4264571 0.1402658
                                                     3.040350 2.36304e-03
ENSG00000188976 1651.1881
                              -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000187961
                209.6379
                               0.7297556 0.1318599
                                                     5.534326 3.12428e-08
ENSG00000187583
                  47.2551
                               0.0405765 0.2718928
                                                     0.149237 8.81366e-01
ENSG00000187642
                  11.9798
                               0.5428105 0.5215598
                                                     1.040744 2.97994e-01
                       padj
                  <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
ENSG00000187642 4.03379e-01
```

Result visualization

```
plot( res$log2FoldChange, -log(res$padj) )
```


Q. Improve this plot by completing the below code, which adds color and axis labels

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01

# and absolute fold change more than 2
inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col= mycols, xlab="Log2(FoldChange)", ylab="-Log(Paber)"</pre>
```


Add annotation

Q. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

columns(org.Hs.eg.db)

[1]	"ACCNUM"	"ALIAS"	"ENSEMBL"	"ENSEMBLPROT"	"ENSEMBLTRANS"
[6]	"ENTREZID"	"ENZYME"	"EVIDENCE"	"EVIDENCEALL"	"GENENAME"
[11]	"GENETYPE"	"GO"	"GOALL"	"IPI"	"MAP"
[16]	"OMIM"	"ONTOLOGY"	"ONTOLOGYALL"	"PATH"	"PFAM"
[21]	"PMID"	"PROSITE"	"REFSEQ"	"SYMBOL"	"UCSCKG"
[26]	"UNIPROT"				

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

```
head(res, 10)
```

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 10 rows and 9 columns

		${\tt baseMean}$	${\tt log2FoldChange}$	1 fcSE	stat	pvalue
		<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
33	ENSG00000279457	29.913579	0.1792571	0.3248216	0.551863	5.81042e-01
18	ENSG00000187634	183.229650	0.4264571	0.1402658	3.040350	2.36304e-03
33	ENSG00000188976	1651.188076	-0.6927205	0.0548465	-12.630158	1.43990e-36
5000	ENSG00000187961	209.637938	0.7297556	0.1318599	5.534326	3.12428e-08
33	ENSG00000187583	47.255123	0.0405765	0.2718928	0.149237	8.81366e-01
2000	ENSG00000187642	11.979750	0.5428105	0.5215598	1.040744	2.97994e-01
33	ENSG00000188290	108.922128	2.0570638	0.1969053	10.446970	1.51282e-25
	ENSG00000187608	350.716868	0.2573837	0.1027266	2.505522	1.22271e-02

ENSG00000188157	9128.439422	0.3899088	3 0.0467163	8.346304 7.04321e-17
ENSG00000237330	0.158192	0.7859552	2 4.0804729	0.192614 8.47261e-01
	padj	symbol	entrez	\mathbf{na} me
	<numeric></numeric>	<character> <c< td=""><td>character></td><td><character></character></td></c<></character>	character>	<character></character>
ENSG00000279457	6.86555e-01	NA	NA	NA
ENSG00000187634	5.15718e-03	SAMD11	148398	sterile alpha motif
ENSG00000188976	1.76549e-35	NOC2L	26155	NOC2 like nucleolar
ENSG00000187961	1.13413e-07	KLHL17	339451	kelch like family me
ENSG00000187583	9.19031e-01	PLEKHN1	84069	pleckstrin homology
ENSG00000187642	4.03379e-01	PERM1	84808	PPARGC1 and ESRR ind
ENSG00000188290	1.30538e-24	HES4	57801	hes family bHLH tran
ENSG00000187608	2.37452e-02	ISG15	9636	ISG15 ubiquitin like
ENSG00000188157	4.21963e-16	AGRN	375790	agrin
ENSG00000237330	NA	RNF223	401934	ring finger protein

Q. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
```

Pathway Analysis

```
library(pathview)
```

```
library(gage)
```

```
library(gageData)
data(kegg.sets.hs)
data(sigmet.idx.hs)
# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
# Examine the first 3 pathways
head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
            "1544" "1548" "1549" "1553" "7498" "9"
[1] "10"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
               "1066"
                        "10720"
                                  "10941"
                                            "151531" "1548"
                                                               "1549"
                                                                         "1551"
 [9] "1553"
               "1576"
                         "1577"
                                  "1806"
                                            "1807"
                                                               "221223" "2990"
                                                     "1890"
[17] "3251"
               "3614"
                        "3615"
                                  "3704"
                                            "51733"
                                                     "54490"
                                                               "54575"
                                                                         "54576"
[25] "54577"
               "54578"
                        "54579"
                                  "54600"
                                            "54657"
                                                     "54658"
                                                               "54659"
                                                                         "54963"
[33] "574537" "64816"
                        "7083"
                                  "7084"
                                            "7172"
                                                     "7363"
                                                               "7364"
                                                                         "7365"
[41] "7366"
               "7367"
                         "7371"
                                  "7372"
                                            "7378"
                                                     "7498"
                                                               "79799"
                                                                         "83549"
[49] "8824"
               "8833"
                         11911
                                  "978"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                          "10606"
                                   "10621"
                                             "10622"
                                                      "10623"
                                                                "107"
                                                                          "10714"
                          "109"
                                   "111"
                                                                          "113"
  [9] "108"
                "10846"
                                             "11128"
                                                       "11164"
                                                                "112"
                                                                          "159"
 [17] "114"
                "115"
                          "122481" "122622" "124583" "132"
                                                                "158"
                "171568" "1716"
                                   "196883" "203"
                                                                "205"
                                                                          "221823"
 [25] "1633"
                                                       "204"
 [33] "2272"
                "22978"
                          "23649"
                                   "246721" "25885"
                                                      "2618"
                                                                "26289"
                                                                          "270"
                "27115"
                         "272"
                                   "2766"
                                             "2977"
                                                                "2983"
                                                                          "2984"
 [41] "271"
                                                      "2982"
 [49] "2986"
                "2987"
                          "29922"
                                   "3000"
                                             "30833"
                                                      "30834"
                                                                "318"
                                                                          "3251"
 [57] "353"
                "3614"
                          "3615"
                                   "3704"
                                             "377841" "471"
                                                                "4830"
                                                                          "4831"
 [65] "4832"
                "4833"
                          "4860"
                                   "4881"
                                             "4882"
                                                       "4907"
                                                                "50484"
                                                                          "50940"
 [73] "51082"
                "51251"
                         "51292"
                                   "5136"
                                             "5137"
                                                      "5138"
                                                                "5139"
                                                                          "5140"
 [81] "5141"
                "5142"
                          "5143"
                                   "5144"
                                             "5145"
                                                       "5146"
                                                                "5147"
                                                                          "5148"
 [89] "5149"
                "5150"
                          "5151"
                                   "5152"
                                             "5153"
                                                      "5158"
                                                                "5167"
                                                                          "5169"
 [97] "51728"
                "5198"
                          "5236"
                                   "5313"
                                             "5315"
                                                      "53343"
                                                                "54107"
                                                                          "5422"
                                                       "5431"
[105] "5424"
                "5425"
                          "5426"
                                   "5427"
                                             "5430"
                                                                "5432"
                                                                          "5433"
                                   "5437"
                                             "5438"
                                                       "5439"
                                                                "5440"
[113] "5434"
                "5435"
                          "5436"
                                                                          "5441"
[121] "5471"
                "548644" "55276"
                                   "5557"
                                             "5558"
                                                       "55703"
                                                                "55811"
                                                                          "55821"
[129] "5631"
                "5634"
                          "56655"
                                   "56953"
                                             "56985"
                                                      "57804"
                                                                "58497"
                                                                          "6240"
[137] "6241"
                "64425"
                          "646625" "654364" "661"
                                                       "7498"
                                                                "8382"
                                                                          "84172"
```

```
[145] "84265"
               "84284" "84618"
                                 "8622"
                                          "8654"
                                                    "87178"
                                                             11883311
                                                                      "9060"
[153] "9061"
                        "953"
                                          "954"
                                                                      "957"
               "93034"
                                 "9533"
                                                    "955"
                                                             "956"
[161] "9583"
               "9615"
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)
     1266
              54855
                         1465
                                  51232
                                             2034
                                                        2317
-2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
# Get the results
keggres = gage(foldchanges, gsets=kegg.sets.hs)
attributes(keggres)
$names
[1] "greater" "less"
                        "stats"
# Look at the first few down (less) pathways
head(keggres$less)
                                         p.geomean stat.mean
                                                                     p.val
hsa04110 Cell cycle
                                      8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                      9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                      1.375901e-03 -3.028500 1.375901e-03
                                      3.066756e-03 -2.852899 3.066756e-03
hsa03440 Homologous recombination
hsa04114 Oocyte meiosis
                                      3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                            q.val set.size
hsa04110 Cell cycle
                                      0.001448312
                                                       121 8.995727e-06
hsa03030 DNA replication
                                      0.007586381
                                                        36 9.424076e-05
hsa03013 RNA transport
                                      0.073840037
                                                       144 1.375901e-03
hsa03440 Homologous recombination
                                      0.121861535
                                                        28 3.066756e-03
hsa04114 Oocyte meiosis
                                      0.121861535
                                                       102 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                        53 8.961413e-03
```

pathview(gene.data=foldchanges, pathway.id="hsa04110")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/chloe/OneDrive/Desktop/BIMM143/class 14

Info: Writing image file hsa04110.pathview.png

Figure 1: pathway figure data from KEGG + results

```
# A different PDF based output of the same data
pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)
```

'select()' returned 1:1 mapping between keys and columns

Warning: reconcile groups sharing member nodes!

```
[,1] [,2]
[1,] "9" "300"
[2,] "9" "306"
```

Info: Working in directory C:/Users/chloe/OneDrive/Desktop/BIMM143/class 14

Info: Writing image file hsa04110.pathview.pdf

```
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$greater)[1:5]</pre>
# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids
[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/chloe/OneDrive/Desktop/BIMM143/class 14
Info: Writing image file hsa04640.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/chloe/OneDrive/Desktop/BIMM143/class 14
Info: Writing image file hsa04630.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/chloe/OneDrive/Desktop/BIMM143/class 14
Info: Writing image file hsa00140.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/chloe/OneDrive/Desktop/BIMM143/class 14
Info: Writing image file hsa04142.pathview.png
'select()' returned 1:1 mapping between keys and columns
```

Info: Working in directory C:/Users/chloe/OneDrive/Desktop/BIMM143/class 14

Info: Writing image file hsa04330.pathview.png

Figure 2: pathways

Figure 3: pathways

Figure 4: pathways

Figure 5: pathways

Q. Can you do the same procedure as above to plot the pathview figures for the top 5 down-reguled pathways?

```
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$less)[1:5]</pre>
# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids
[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/chloe/OneDrive/Desktop/BIMM143/class 14
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/chloe/OneDrive/Desktop/BIMM143/class 14
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/chloe/OneDrive/Desktop/BIMM143/class 14
Info: Writing image file hsa03013.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/chloe/OneDrive/Desktop/BIMM143/class 14
Info: Writing image file hsa03440.pathview.png
'select()' returned 1:1 mapping between keys and columns
```

Info: Working in directory C:/Users/chloe/OneDrive/Desktop/BIMM143/class 14

Info: Writing image file hsa04114.pathview.png

Figure 6: pathways

Figure 7: pathways

Figure 8: pathways

Figure 9: pathways

Save Results

```
write.csv(res, file = "results_annotated.csv")
```

Gene Ontology

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

		p.geomean	${\tt stat.mean}$	p.val
GO:0007156	homophilic cell adhesion	8.519724e-05	3.824205	8.519724e-05
GO:0002009	${\tt morphogenesis} \ {\tt of} \ {\tt an} \ {\tt epithelium}$	1.396681e-04	3.653886	1.396681e-04
GO:0048729	tissue morphogenesis	1.432451e-04	3.643242	1.432451e-04
GO:0007610	behavior	1.925222e-04	3.565432	1.925222e-04
GO:0060562	epithelial tube morphogenesis	5.932837e-04	3.261376	5.932837e-04
GO:0035295	tube development	5.953254e-04	3.253665	5.953254e-04
		q.val set	.size	exp1
GO:0007156	homophilic cell adhesion	0.1951953	113 8.51	19724e-05
GO:0002009	${\tt morphogenesis} \ \ {\tt of} \ \ {\tt an} \ \ {\tt epithelium}$	0.1951953	339 1.39	96681e-04
GO:0048729	tissue morphogenesis	0.1951953	424 1.43	32451e-04
GO:0007610	behavior	0.1967577	426 1.92	25222e-04
GO:0060562	epithelial tube morphogenesis	0.3565320	257 5.93	32837e-04
GO:0035295	tube development	0.3565320	391 5.98	53254e-04

\$less

```
p.geomean stat.mean p.val
G0:0048285 organelle fission 1.536227e-15 -8.063910 1.536227e-15
G0:0000280 nuclear division 4.286961e-15 -7.939217 4.286961e-15
G0:0007067 mitosis 4.286961e-15 -7.939217 4.286961e-15
G0:000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
G0:0007059 chromosome segregation 2.028624e-11 -6.878340 2.028624e-11
```

```
GO:0000236 mitotic prometaphase
                                         1.729553e-10 -6.695966 1.729553e-10
                                                q.val set.size
                                                                        exp1
GO:0048285 organelle fission
                                         5.841698e-12
                                                           376 1.536227e-15
GO:0000280 nuclear division
                                         5.841698e-12
                                                           352 4.286961e-15
GO:0007067 mitosis
                                         5.841698e-12
                                                           352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                           362 1.169934e-14
GO:0007059 chromosome segregation
                                         1.658603e-08
                                                           142 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.178402e-07
                                                            84 1.729553e-10
```

\$stats

		stat.mean	exp1
GO:0007156	homophilic cell adhesion	3.824205	3.824205
GO:0002009	morphogenesis of an epithelium	3.653886	3.653886
GO:0048729	tissue morphogenesis	3.643242	3.643242
GO:0007610	behavior	3.565432	3.565432
GO:0060562	epithelial tube morphogenesis	3.261376	3.261376
GO:0035295	tube development	3.253665	3.253665

Reactome Analysis

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quote
```

Q: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

The pathway that has the most significant "Entities p-value" is the pathway with the smallest p-value. In our case, this would be hsa04110. The most significant pathways listed do match my previous KEGG results. Differences between the two methods could be human error.

Save final results

```
write.csv(res, file = "myresults.csv")
```