

Product Reference Manual SKU: TPX00095-TPX00096-TPX00097





## **Description**

The Arduino GIGA R1 WiFi brings the power of the STM32H7 to the Mega form factor, being the first Mega board to include onboard Wi-Fi® and Bluetooth® connectivity. The board provides 76 digital inputs/outputs (13 with PWM capability), 14 analog inputs and 2 analog outputs (DAC) all easily accessible via pin file:///home/jcarolinares/featured.png headers. The STM32 microprocessor with dual-core Cortex® M7 and Cortex® M4, together with onboard memory and audio jack enables you to perform machine learning and signal processing on the edge.

### Target Areas

3D printing, Signal Processing, Maker, Robotics



# **Contents**

| 1 Application Examples                                    | 5  |
|-----------------------------------------------------------|----|
| 2 Features                                                | 5  |
| 2.1 General Specifications Overview                       | 5  |
| 2.2 Microcontroller                                       | 6  |
| 2.3 Inputs                                                | 6  |
| 2.4 Outputs                                               | 6  |
| 2.5 Communication                                         | 7  |
| 2.6 Security                                              | 7  |
| 3 Accessories ( <included included="" not="">)</included> | 7  |
| 4 Related Products                                        | 8  |
| 5 Rating                                                  | 8  |
| 5.1 Recommended Operating Conditions                      | 8  |
| 5.2 Power Specification                                   | 8  |
| 5.3 Current Consumption                                   | 8  |
| 6 Functional Overview                                     | 9  |
| 6.1 Pinout                                                | 9  |
| 6.2 Full Pinout Table                                     | 9  |
| 6.2.1 16-Pin Header (J6)                                  | 9  |
| 6.2.2 Power Block CAN Bus (J9)                            | 10 |
| 6.3 Block Diagram                                         | 11 |
| 6.4 Power Supply                                          | 11 |
| 6.5 Product Topology                                      | 11 |
| 6.5.1 High-Density Connectors (J1-J2)                     | 12 |
| 6.5.2 JTAG Connector (J3)                                 | 12 |
| 6.5.3 USB-A (J4)                                          | 12 |
| 6.5.4 40-Pin Header Connector (J5)                        | 12 |
| 6.5.5 MicroSD Card Slot (J7)                              | 13 |
| 7 Device Operation                                        | 13 |
| 7.1 Getting Started - IDE                                 | 13 |
| 7.2 Getting Started - Arduino Web Editor                  | 13 |
| 7.3 Getting Started - Arduino Cloud                       | 13 |
| 7.4 Online Resources                                      | 13 |
| 7.5 Board Recovery                                        | 14 |



| 8 Mechanical Information                                        | 14 |
|-----------------------------------------------------------------|----|
| 8.1 Board Dimensions                                            | 14 |
| 8.2 Board Connectors                                            | 14 |
| 8.3 Board Peripherals and Actuators                             | 14 |
| 9 Certifications                                                | 15 |
| 9.1 Certifications Summary                                      | 15 |
| 9.2 Declaration of Conformity CE DoC (EU)                       | 15 |
| 9.3 Declaration of Conformity to EU RoHS & REACH 211 01/19/2021 | 15 |
| 9.4 Conflict Minerals Declaration                               | 16 |
| 9.5 FCC Caution                                                 | 16 |
| 10 Revision History                                             | 18 |



## 1 Application Examples

The GIGA R1 WiFi combines the best of the Portenta H7 and the Mega 2560. A generous amount of I/O easily accessible via pins allows for easy and fast testing of new ideas and solutions. The STM32H7 has ample power to handle machine-learning tasks. Your IoT projects can even benefit from the Arduino Cloud with the help of the onboard secure element and its wireless connectivity.

- **3D Printing:** The Mega form factor has been very popular for creating 3D printers. Connect sensors to the high-resolution ADC interfaces for high-performance sensing of the 3D printing process. Together with the dual-core computing power, controls the printing process like never before. Monitor filament usage and print status locally over Bluetooth® or from anywhere in the world with the Arduino Cloud, or any other third-party service, and its Wi-Fi® features.
- Audio Processing: The GIGA R1 WiFi provides a 3.5 mm audio input/output to easily interact with audio signals in the environment. Analyse and create audio signals directly on the board. Connect a microphone and control a wide range of digital and analog devices. Create your own musical instrument and change the note through the various inputs. Create an online concert with the Arduino Cloud or any other third-party service and connect with people all over the world.
- **Data acquisition device:** Thanks to the numerous analog inputs, including the jack connector (J15) and the two DAC outputs with a resolution of up to 12 bits, you can create your own data acquisition device. Make your own multimeter or even an oscilloscope and create an online dashboard with the Arduino Cloud or any other third-party service. Design your own electrochemical experiments, apply custom current/voltage waveforms and check the status of your experiment from the comfort of your home.

#### 2 Features

#### 2.1 General Specifications Overview

The Portenta C33 is a powerful microcontroller board designed for low-cost IoT applications. Based on the high-performance R7FA6M5BH2CBG microcontroller from Renesas®, it offers a range of key features and a low-power design that make it well-suited for a variety of applications. The board has been designed with the same form factor as the Portenta H7 and is backward compatible, making it fully compatible with all Portenta family shields and carriers through its MKR-styled and high-density connectors. The following table summarizes the board's main features.

| Feature         | Description                                                                             |
|-----------------|-----------------------------------------------------------------------------------------|
| Microcontroller | Dual-core <b>STM32H747XIH6</b> 32-bit Arm® Cortex®-M7 and 32-bit Arm® 32-bit Cortex®-M4 |
| Memory          | STM32H747XI 2 MB Flash / 1 MB RAM                                                       |
| Digital Inputs  | Digital Inputs 5 V compatible (x76)                                                     |
| Analog Inputs   | Analog inputs with a voltage range of 3,3.8 V (x12)                                     |
| PWM Pins        | PWM Pins with 8 bits resolution (x13)                                                   |
| Secure Element  | ATECC608A-MAHDA-T Module (x1)                                                           |
| Communication   | UART (x4), I2C (x3), SPI (x2), CAN (external transceiver required) (x1)                 |



| Feature                  | Description                                                |
|--------------------------|------------------------------------------------------------|
| Camera                   | 20 pin Arducam camera connector                            |
| Display                  | D1N, D0N, D1P, D0P, CKN, CKP, D68-D75                      |
| Audio                    | 3-pins Audio Jack Connector                                |
| Power                    | Input voltage (VIN): 6-24 V / DC Current per I/O Pin: 8 mA |
| Dimensions               | 114 mm x 86.5 mm                                           |
| Weight                   | 67 g                                                       |
| Operating<br>Temperature | -40 °C to +85 °C                                           |
| Certifications           | CE, FCC, IC, RoHS, REACH, UKCA, WEEE, Japan (No Radio)     |

#### 2.2 Microcontroller

| Component          | Details                                                                       |
|--------------------|-------------------------------------------------------------------------------|
| ST STM32H747XI     | Dual-core Arm® Cortex®-M7 core at up to 480 MHz + Arm® 32-bit Cortex®-M4 core |
| Processor          | at up to 240 MHz                                                              |
| Flash Memory       | 2 MB of Flash Memory with read-while-write support                            |
| Programming Memory | 1 MB of RAM                                                                   |

## 2.3 Inputs

| Characteristics               | Details                  |
|-------------------------------|--------------------------|
| Number of inputs              | 8x Analog/Digital inputs |
| Inputs overvoltage protection | yes                      |
| Antipolarity protection       | yes                      |
| Input impedance               | 8.9 kΩ                   |

### 2.4 Outputs

| Characteristics                       | Details                    |
|---------------------------------------|----------------------------|
| Number of outputs                     | 4x relays (NO)             |
| Max current per relay                 | 10 A                       |
| Max peak current per relay            | 15 A                       |
| Continuous current per terminal       | 10 A                       |
| Short-circuit protection              | No, external fuse required |
| Relay rated voltage                   | 250 VAC                    |
| Relay Max voltage                     | 400 VAC                    |
| Rated load AC1                        | 2500 VA                    |
| Rated load AC15 (230 VAC)             | 500 VA                     |
| Breaking capacity DC1: 24/30/110/220V | 10/4/0.3/0.12 A            |
| Minimum switching load                | 300 mW (5 V/5 mA)          |
| Max output line length (unshielded)   | 100 m                      |
| Relay response time from state 0 to 1 | 6 ms for relay output      |
| Relay response time from state 1 to 0 | 4 ms for relay output      |
| Bounce time NO                        | 3 ms                       |
| Bounce time NC                        | 6 ms                       |



| Characteristics             | Details                                          |  |  |
|-----------------------------|--------------------------------------------------|--|--|
| Relay mechanical durability | 10 million cycles                                |  |  |
| Relay electrical durability | 10 thousand cycles with a resistive load of 10 A |  |  |

#### 2.5 Communication

| Interfaces            | Туре                                       | Protocols/Technologies supported                     |  |  |
|-----------------------|--------------------------------------------|------------------------------------------------------|--|--|
| Ethernet              | 10/100BASE-T Port                          | TCP/IP, MODBUS TCP                                   |  |  |
| RS-485                | Half-duplex without termination resistance | MODBUS RTU, Custom serial communication              |  |  |
| Wireless connectivity | Wi-Fi®                                     | 2.4 GHz                                              |  |  |
| Wireless connectivity | Bluetooth® Low Energy                      | 4.2 supported by firmware, 5.1 supported by hardware |  |  |

## 2.6 Security

| Component                   | Details                                                           |
|-----------------------------|-------------------------------------------------------------------|
| ATECC608B Crypto Microchip® | Cryptographic co-processor with secure hardware-based key storage |
|                             | Protected storage for up to 16 Keys, certificates, or data        |
|                             | Networking key management support                                 |
|                             | Secure boot support                                               |
|                             | Guaranteed unique 72-bit serial number                            |

# 3 Accessories (<included / not included>)

- Micro UFL antenna (Included)
- USB-C® cable (Not included)
- USB 2.0 Type-A cable (Not included)



## 4 Related Products

- Arduino Mega Proto Shield Rev3 (A000080)
- Arduino 4 Relays Shield (A000110)
- Arduino Motor Shield Rev3 (A000079)

## 5 Rating

#### **5.1 Recommended Operating Conditions**

| Description                 | Value                     |
|-----------------------------|---------------------------|
| Temperature Operating Range | -2050 °C                  |
| Protection degree rating    | IP20                      |
| Pollution degree            | 2 conforming to IEC 61010 |

**Note:**  $V_{DD}$  controls the logic level and is connected to the 3.3V power rail.  $V_{AREF}$  is for the analog logic.

### **5.2 Power Specification**

| Property                | Min  | Тур | Max  | Unit |
|-------------------------|------|-----|------|------|
| Supply voltage          | 12   | -   | 24   | V    |
| Permissible range       | 10.2 | -   | 27.6 | ٧    |
| Power consumption (12V) | 0.6  | -   | 2    | W    |
| Power consumption (24V) | 0.6  | -   | 2.2  | W    |

#### **5.3 Current Consumption**

| Parameter                                        | Symbol          | Min | Тур | Max | Unit |
|--------------------------------------------------|-----------------|-----|-----|-----|------|
| Deep Sleep Mode Current Consumption <sup>1</sup> | I <sub>DS</sub> | -   | 86  | -   | μΑ   |
| Normal Mode Current Consumption <sup>2</sup>     | I <sub>NM</sub> | -   | 180 | -   | mA   |



## 6 Functional Overview

#### 6.1 Pinout

The Portent Hat Carrier pinout is shown in the following figure.

Portenta Hat Carrier pinout

Portenta Hat Carrier pinout

**Safety Note:** Disconnect power before board modifications. Avoid short-circuiting. Refer to the full guide for more safety tips.

#### 6.2 Full Pinout Table

The full pinout of the Portenta Hat Carrier is available in the following tables sorted by element/connector.

#### 6.2.1 16-Pin Header (J6)

| Pin<br>number | Silkscreen | Power Net     | Portenta HD<br>Standard Pin | High-Density Pin                                                        | Interface           |
|---------------|------------|---------------|-----------------------------|-------------------------------------------------------------------------|---------------------|
| 1             | A0         |               | ANALOG_A0                   | J2-73                                                                   |                     |
| 2             | A1         |               | ANALOG_A1                   | J2-75                                                                   |                     |
| 3             | A2         |               | ANALOG_A2                   | J2-77                                                                   |                     |
| 4             | A3         |               | ANALOG_A3                   | J2-79                                                                   |                     |
| 5             | A4         |               | ANALOG_A4                   | J2-74                                                                   |                     |
| 6             | A5         |               | ANALOG_A5                   | J2-76                                                                   |                     |
| 7             | A6         |               | ANALOG_A6                   | J2-78                                                                   |                     |
| 8             | A7         |               | ANALOG_A7                   | J2-80                                                                   |                     |
| 9             | PWM7       |               | PWM_7                       | J2-64                                                                   |                     |
| 10            | PWM8       |               | PWM_8                       | J2-66                                                                   |                     |
| 11            | LICELL     |               | LICELL                      | J2-7                                                                    | RTC Power<br>Source |
| 12            | PWM4       |               | GPIO_0                      | J2-46                                                                   |                     |
| 13            | 3V3        | +3V3_PORTENTA | VCC                         | J2-23, J2-34, J2-43, J2-69                                              |                     |
| 14            | TX2        |               | SERIAL2_TX                  | J2-26                                                                   | UART 2 TX           |
| 15            | GND        | GND           | GND                         | J1-22, J1-31, J1-42, J1-47, J1-54,<br>J2-24, J2-33, J2-44, J2-57, J2-70 |                     |
| 16            | RX2        |               | SERIAL2_RX                  | J2-28                                                                   | UART 2 RX           |

Table 6: 16-Pin Header (J6) pinout



## 6.2.2 Power Block CAN Bus (J9)

| Pin<br>number | Silkscreen      | Power Net        | Portenta HD<br>Standard Pin | High-Density Pin                                                     | Interface         |
|---------------|-----------------|------------------|-----------------------------|----------------------------------------------------------------------|-------------------|
| 1             | VIN 7-<br>32VDC | INPUT_7V-<br>32V |                             |                                                                      |                   |
| 2             | GND             | GND              | GND                         | J1-22, J1-31, J1-42, J1-47, J1-54, J2-24, J2-33, J2-44, J2-57, J2-70 |                   |
| 3             | GND             | GND              | GND                         | J1-22, J1-31, J1-42, J1-47, J1-54, J2-24, J2-33, J2-44, J2-57, J2-70 |                   |
| 4             | 5V              | +5V              | VIN                         | J1-21, J1-24, J1-32, J1-41, J1-48                                    |                   |
| 5             | CANH            |                  |                             | J1-49 (Through U1)                                                   | CAN BUS -<br>CANH |
| 6             | CANL            |                  |                             | J1-51 (Through U1)                                                   | CAN BUS -<br>CANL |

Table 7: Power Block CAN Bus (J9) pinout



#### 6.3 Block Diagram

The block diagram with the main parts of the product can be checked in the following image:

Arduino GIGA R1 WiFi Block Diagram

Arduino GIGA R1 WiFi Block Diagram

#### 6.4 Power Supply

The Portenta C33 can be powered through one of these interfaces:

- USB-C® port
- 3.7 V single-cell lithium-ion/lithium-polymer battery, connected through the onboard battery connector
- External 5 V power supply connected through the MKR-styled pins

The recommended minimum battery capacity is 700 mAh. The battery is connected to the board via a disconnectable crimp-style connector as shown in Figure 3. The battery connector part number is BM03B-ACHSS-GAN-TF(LF)(SN).

The following diagram shows the power options available on the Portenta C33 and illustrates the main system power architecture.

Power architecture of the Portenta C33

Power architecture of the Portenta C33

#### 6.5 Product Topology

Top View of Arduino GIGA R1 WiFi

Top View of Arduino GIGA R1 WiFi

| Ref.     | Description                             | Ref.    | Description                         |
|----------|-----------------------------------------|---------|-------------------------------------|
| U1       | STM32H7 Dual Core Microcontroller IC    | U8      | AT25SF128A-MHB-T 16 MB Flash IC     |
| U3       | AS4C4M16SA 8MB SDRAM IC                 | U4      | ATECC608A-MAHDA-T Secure Element IC |
| U5       | LBEE5KL1DX-883 Wi-Fi®/Bluetooth® Module | U6      | MP2322GQH Buck Converter 3.3V IC    |
| U7       | MP2269GD-Z Buck Converter 5V IC         | JANALOG | Analog input/output headers         |
| JDIGITAL | Digital input/output headers            | JSIDE   | Digital input/output headers        |
| SPI      | SPI headers                             | JTAG    | JTAG Headers                        |
| J2       | USB 2.0 A Host                          | J15     | 3.5 mm audio in/out                 |
| PB1      | RESET Button                            | PB2     | BOOT0 button                        |
| J14      | Micro UFL connector                     | J5      | Camera                              |
| J6       | Camera                                  | DL1     | Power LED                           |
| DL2      | RGB SMLP34RGB2W3 Common anode LED       | J12     | CX90B-16P USB-C® connector          |



#### 6.5.1 High-Density Connectors (J1-J2)

The High-Density connectors (J1-J2) provide connectivity with the Portenta family boards. For detailed information, refer to the Portenta Hat Carrier pinout and the respective documentation for the Portenta family boards. In the following image, the Portenta X8 board High-Density connectors pinout is shown as an example.

Portenta X8 High-Density connectors pinout

Portenta X8 High-Density connectors pinout

#### 6.5.2 JTAG Connector (J3)

Debugging capabilities are integrated directly into the Portenta Hat Carrier and are accessible via the 10-pin JTAG connector (J3) shown in Figure 7.

#### 6.5.3 USB-A (J4)

The onboard USB-A connector (female), shown in Figure 7, is integrated into the Portenta Hat Carrier for multiple purposes, including:

- Connecting external peripherals such as mouse devices, keyboards, USB cameras, hubs, and hard drives.
- Data logging using a USB memory stick.

TAG and USB-A connectors of the Portenta Hat Carrier

JTAG and USB-A connectors of the Portenta Hat Carrier

#### 6.5.4 40-Pin Header Connector (J5)

The Portenta Hat Carrier features a 40-pin header connector as shown in Figure 8, making it compatible with most of the Raspberry Pi® Hats available on the market.

Raspberry Pi®-compatible 40-pin header connector

Raspberry Pi®-compatible 40-pin header connector

The main interfaces and general-purpose pins available through this connector include:

- SPI (x1)
- I2S (x1)
- SAI (x1)
- 5 VDC (x2)
- 3.3 VDC (x2)
- I2C (x2)
- UART (without flow control) (x2)
- PWM (x7)
- GND (x8)
- GPIO (x26)



#### 6.5.5 MicroSD Card Slot (J7)

The onboard microSD card slot can be used for:

- Data logging operations
- Media purposes



MicroSD card slot of the Portenta Hat Carrier

## 7 Device Operation

#### 7.1 Getting Started - IDE

If you want to program your while offline you need to install the Arduino® Desktop IDE [1]. To connect the to your computer, you will need a cable, which can also provide power to the board, as indicated by the LED (DL1).

#### 7.2 Getting Started - Arduino Web Editor

All Arduino boards, including this one, work out-of-the-box on the Arduino® Web Editor [2], by just installing a simple plugin.

The Arduino Web Editor is hosted online, therefore it will always be up-to-date with the latest features and support for all boards. Follow [3] to start coding on the browser and upload your sketches onto your board.

#### 7.3 Getting Started - Arduino Cloud

All Arduino IoT enabled products are supported on Arduino Cloud which allows you to log, graph and analyze sensor data, trigger events, and automate your home or business.

#### 7.4 Online Resources

Now that you have gone through the basics of what you can do with the board you can explore the endless possibilities it provides by checking exciting projects on ProjectHub [4], the Arduino Library Reference [5], and the online store [6]; where you will be able to complement your board with sensors, actuators and more.



### 7.5 Board Recovery

All Arduino boards have a built-in bootloader which allows flashing the board via USB. In case a sketch locks up the processor and the board is not reachable anymore via USB, it is possible to enter bootloader mode by double-tapping the reset button right after the power-up.

#### 8 Mechanical Information

The Nano Matter is a double-sided 18 mm x 45 mm board with a USB-C® port overhanging the top edge and dual castellated/through-hole pins around the two long edges; the onboard wireless antenna is located in the center of the bottom edge of the board.

#### 8.1 Board Dimensions

The Nano Matter board outline and mounting holes dimensions are shown in the figure below; all the dimensions are in mm.

The Nano Matter has four 1.65 mm drilled mounting holes for mechanical fixing.

#### 8.2 Board Connectors

Connectors of the Nano Matter are placed on the top side of the board; their placement is shown in the figure below; all the dimensions are in mm.

The Nano Matter was designed to be usable as a surface-mount module and presents a dual inline package (DIP) format with the Nano-styled header connectors on a 2.54 mm pitch grid with 1 mm holes.

#### 8.3 Board Peripherals and Actuators

The Nano Matter has one push button and one RGB LED available for the user; both the push button and the RGB LED are placed on the top side of the board. Their placement is shown in the figure below; all the dimensions are in mm.

The Nano Matter is designed to be usable as a surface-mount module and presents a dual inline package (DIP) format with the Nano-styled header connectors on a 2.54 mm pitch grid with 1 mm holes.



#### 9 Certifications

#### 9.1 Certifications Summary

| Certification     | Status |
|-------------------|--------|
| CE/RED (Europe)   | Yes    |
| UKCA (UK)         | Yes    |
| FCC (USA)         | Yes    |
| IC (Canada)       | Yes    |
| MIC/Telec (Japan) | Yes    |
| RCM (Australia)   | Yes    |
| RoHS              | Yes    |
| REACH             | Yes    |
| WEEE              | Yes    |

#### 9.2 Declaration of Conformity CE DoC (EU)

We declare under our sole responsibility that the products above are in conformity with the essential requirements of the following EU Directives and therefore qualify for free movement within markets comprising the European Union (EU) and European Economic Area (EEA).

#### 9.3 Declaration of Conformity to EU RoHS & REACH 211 01/19/2021

Arduino boards are in compliance with RoHS 2 Directive 2011/65/EU of the European Parliament and RoHS 3 Directive 2015/863/EU of the Council of 4 June 2015 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

| Substance                              | Maximum limit (ppm) |
|----------------------------------------|---------------------|
| Lead (Pb)                              | 1000                |
|                                        |                     |
| 02/11/2023                             | 2                   |
| 25/10/2023                             | 1                   |
| Poly Brominated Biphenyls (PBB)        | 1000                |
| Poly Brominated Diphenyl ethers (PBDE) | 1000                |
| Bis(2-Ethylhexyl) phthalate (DEHP)     | 1000                |
| Benzyl butyl phthalate (BBP)           | 1000                |
| Dibutyl phthalate (DBP)                | 1000                |
| Diisobutyl phthalate (DIBP)            | 1000                |

Exemptions: No exemptions are claimed.

Arduino Boards are fully compliant with the related requirements of European Union Regulation (EC) 1907 /2006 concerning the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH). We declare none of the SVHCs (https://echa.europa.eu/web/guest/candidate-list-table), the Candidate List of Substances of Very High Concern for authorization currently released by ECHA, is present in all products (and also package) in quantities totaling in a concentration equal or above 0.1%. To the best of our knowledge, we also declare that our products do



not contain any of the substances listed on the "Authorization List" (Annex XIV of the REACH regulations) and Substances of Very High Concern (SVHC) in any significant amounts as specified by the Annex XVII of Candidate list published by ECHA (European Chemical Agency) 1907 /2006/EC.

#### 9.4 Conflict Minerals Declaration

As a global supplier of electronic and electrical components, Arduino is aware of our obligations with regard to laws and regulations regarding Conflict Minerals, specifically the Dodd-Frank Wall Street Reform and Consumer Protection Act, Section 1502. Arduino does not directly source or process conflict minerals such as Tin, Tantalum, Tungsten, or Gold. Conflict minerals are contained in our products in the form of solder or as a component in metal alloys. As part of our reasonable due diligence, Arduino has contacted component suppliers within our supply chain to verify their continued compliance with the regulations. Based on the information received thus far we declare that our products contain Conflict Minerals sourced from conflict-free areas.

#### 9.5 FCC Caution

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference
- (2) this device must accept any interference received, including interference that may cause undesired operation.

#### **FCC RF Radiation Exposure Statement:**

- 1. This Transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.
- 2. This equipment complies with RF radiation exposure limits set forth for an uncontrolled environment.
- 3. This equipment should be installed and operated with a minimum distance of 20 cm between the radiator & your body.

**Note:** This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

English: User manuals for license-exempt radio apparatus shall contain the following or equivalent notice in a conspicuous location in the user manual or alternatively on the device or both. This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions:

(1) this device may not cause interference



(2) this device must accept any interference, including interference that may cause undesired operation of the device.

French: Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

- (1) l'appareil nedoit pas produire de brouillage
- (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

#### **IC SAR Warning:**

English: This equipment should be installed and operated with a minimum distance of 20 cm between the radiator and your body.

French: Lors de l'installation et de l'exploitation de ce dispositif, la distance entre le radiateur et le corps est d'au moins 20 cm.

Important: The operating temperature of the EUT can't exceed 85°C and shouldn't be lower than -40°C.

Hereby, Arduino S.r.l. declares that this product is in compliance with essential requirements and other relevant provisions of Directive 2014/53/EU. This product is allowed to be used in all EU member states.

# **Company Information**

| Company name    | Arduino SRL                                 |
|-----------------|---------------------------------------------|
| Company Address | Via Andrea Appiani, 25 - 20900 MONZA(Italy) |

## Reference Documentation

| Ref                   | Link                                                                                    |
|-----------------------|-----------------------------------------------------------------------------------------|
| Arduino IDE (Desktop) | https://www.arduino.cc/en/Main/Software                                                 |
| Arduino IDE (Cloud)   | https://create.arduino.cc/editor                                                        |
| Cloud IDE Getting     | https://docs.arduino.cc/cloud/web-editor/tutorials/getting-started/getting-started-web- |
| Started               | editor                                                                                  |
| Project Hub           | https://create.arduino.cc/projecthub?by=part∂_id=11332&sort=trending                    |
| Library Reference     | https://github.com/arduino-libraries/                                                   |
| Online Store          | https://store.arduino.cc/                                                               |



# **10 Revision History**

| Date       | Revision | Changes                                                |
|------------|----------|--------------------------------------------------------|
| 23/01/2024 | 7        | Updated Interfaces section                             |
| 14/12/2023 | 6        | Updated Related Product section                        |
| 14/11/2023 | 5        | FCC and Block Diagram Updates                          |
| 30/10/2023 | 4        | I2C ports information section added                    |
| 20/06/2023 | 3        | Power tree added, related products information updated |
| 09/06/2023 | 2        | Board's power consumption information added            |
| 14/03/2023 | 1        | First release                                          |