TP4 Aero - Menini	Pt		Α	в С	D	Note	
I. Modélisation							
1 Donner le nom de la grandeur réglante.	1	Α				1	
2 Donner le nom d'une perturbation.	1	Α				1	
3 Compléter le schéma TI pour faire apparaître la boucle de régulation.	1	Α				1	
4 Proposer un schéma fonctionnel de la régulation en faisant apparaître la perturbation.	1	Α				1	
Déterminer un modèle du premier ordre (Broïda sans retard) du procédé en utilisant la méthode de simple, pour un échelon de commande de 50% à 90%.	1	С				0,35	
6 Donner la fonction de transfert du procédé H(p).	1	С				0,35	
II. Détermination d'un correcteur							
1 Exprimer la fonction de transfert C(p) en fonction du gain A.	1	С				0,35	Attention aux parenthèses !!
2 Exprimer la fonction de transfert en boucle ouverte T(p) en fonction de A.	1	С				0,35	Attention aux parentneses ::
3 Exprimer la fonction de transfert en boucle fermée F(p) en fonction de A.	2	В				1,5	
4 Quelle est la valeur du gain statique de la boucle fermée F(0) ?	1	Α				1	
5 En déduire la valeur de l'erreur statique.	1	D				0,05	
6 Déterminer x(t), la réponse à un échelon de consigne de 10%.	1	D				0,05	
7 En déduire la valeur de A pour avoir un temps de réponse à ±5% égale à τ/10.	1	D				0,05	
III. Performances							
1 Quelle est la valeur de la bande proportionnelle correspondante à la réponse II.7 ?	1	С				0,35	
2 Donner le sens d'action à régler sur votre régulateur. Justifier votre réponse.	1	Α				1	
3 Procéder au réglage de votre régulateur conformément au paragraphe II.	1					0	
Relever la réponse à un échelon de consigne de 10%. Choisir une consigne proche des températures obtenues à la question I.5.	1					0	
Donner alors le temps de réponse à ±5 %, l'erreur statique, ainsi que le premier dépassement. On fera apparaître toutes les constructions.	1					0	
6 Commenter les différences par rapport à la réponse indicielle attendue.	1					0	
		Note: 9,4/20					

I. Modélisation

- 1)La grandeur réglante est la puissance du gradateur.
- 2)L'une des perturbations est la température ambiante.

3)

II. Détermination d'un correcteur

1)C(p)=A($1+\tau P/\tau P$) parce que on a Td=0s sur le correcteur PI en série.

2)T(p)=A((1+
$$\tau$$
P)/ τ P)*(K/1+ τ P)

```
3)F(P)=1/(1+\tauP/AK)

4)F(0)=1

5)Erreur Statique=x(p)/w(p) et vu que F(0)=1 alors Es =1/1=1

6)x(p)=10/p(AK/\tau)/(AK/\tau+P)

x(t)=1-e(AK/t)*t *10

7)1-e(AK/t)*t *10=0,95

AK= -ln(0,905)/t

A= -\tau*ln(0,905)/t*K
```

III. Performances

1)Xp=100/A

2)La température augmente quand on augmente la commande donc le procédé est en sens d'action directe et par conséquent le régulateur est en sens d'action inverse.