

Lecture 19:

Euler's Method

CS 111: Intro to Computational Science
Spring 2023

Ziad Matni, Ph.D.

Dept. of Computer Science, UCSB

Administrative

Final Exam Review (optional):

Friday, June 9th

PHELP 2510

10:00 AM - 11:45 AM

Euler Method

A numerical method to approximate an ODE solution

Comes from the identity: $\frac{dy}{dt} = f(t, y)$

Which can be expressed as: $\frac{y_{n+1} - y_n}{h_n} = f(t_n, y_n)$

$$\frac{y_{n+1} - y_n}{h_n} = f(t_n, y_n)$$

h is some small number

A basis for an iterative method!

Euler Method

 Let's see how we can use discretization approximation methods to solve an ODE

- We'll do the case of dy/dt = y with y(0) = 1
 - We know that this solution should be: $y(t) = e^t$

To the blackboard!!...

Euler's Method

- It's prone to giving larger errors if the step size isn't small enough
 - i.e. the **error** is *proportional* to the **step size**

- It's called an "explicit method" because it only uses information at time $\mathbf{t_n}$ to advance the solution to time $\mathbf{t_{n+1}}$
 - This has implications for **stability** of this method

Developing Algorithms for Euler's Method

- We'll develop function ode1(fun, t_span, y0, h) as our "Forward Euler Method" and use it to solve ODEs
 - We'll analyze its effectiveness

- We'll then develop ode2(fun, t_span, y0, h) that will utilize 2 slopes instead of 1 to give a better approximation
 - This is akin to a higher-order polynomial approach which is what the Runge-Kutta Methods use!

We Will Demo...

- y' = 0.5 y; y(0) = 1
 - Note: this has a solution of $y = e^{0.5t}$

- y'' = 1 y
 - This has a general solution of $y = A.\sin(\omega_0.t) + B.\cos(\omega_0.t) + C$
 - When you graph this, it just looks like a generic sinusoidal wave
 - Also known as an undamped harmonic oscillator

Quick! To the Python-mobile!

Your To-Dos

• Study for the Final Exam! ©

Good luck with all your Exams!

Have a Great Summer Break!

