WHAT IS CLAIMED IS:

- 1. A composition comprising a cyclodextrin and a glycopeptide antibiotic, or a pharmaceutically acceptable salt thereof.
 - 2. The composition of claim 1 which further comprises water.
 - 3. The composition of claim 1 which is a powder.
 - 4. The composition of claim 1 which is a lyophilized powder.
- 5. A pharmaceutical composition comprising an aqueous cyclodextrin carrier and a therapeutically effective amount of a glycopeptide antibiotic, or a pharmaceutically acceptable salt thereof.
- 6. The pharmaceutical composition of Claim 5, wherein the pharmaceutical composition comprises:
 - (a) a therapeutically effective amount of a glycopeptide antibiotic, or a pharmaceutically acceptable salt thereof;
 - (b) 1 to 40 weight percent of a cyclodextrin; and
 - (c) 60 to 99 weight percent of water, provided that the components of the composition total 100 weight percent.
- 7. The pharmaceutical composition of Claim 5, wherein the cyclodextrin is hydroxypropyl-β-cyclodextrin or sulfobutyl ether β-cyclodextrin.
- 8. The pharmaceutical composition of Claim 7, wherein the cyclodextrin is hydroxypropyl-β-cyclodextrin.

- 9. The pharmaceutical composition of Claim 6, wherein the cyclodextrin comprises about 5 to 35 weight percent of the composition.
- 10. The pharmaceutical composition of Claim 9, wherein the cyclodextrin comprises about 10 to 30 weight percent of the composition.
- 11. The pharmaceutical composition of Claim 6, wherein the glycopeptide antibiotic is a lipidated glycopeptide antibiotic.
- 12. The pharmaceutical composition of Claim 1, wherein the glycopeptide antibiotic is a compound of formula I:

wherein:

R¹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heterocyclic and

(I)

 $-R^a-Y-R^b-(Z)_x$; or R^1 is a saccharide group optionally substituted with

$$-R^{a}-Y-R^{b}-(Z)_{x}$$
, R^{f} , $-C(O)R^{f}$, or $-C(O)-R^{a}-Y-R^{b}-(Z)_{x}$;

R² is hydrogen or a saccharide group optionally substituted with

$$-R^{a}-Y-R^{b}-(Z)_{x}$$
, R^{f} , $-C(O)R^{f}$, or $-C(O)-R^{a}-Y-R^{b}-(Z)_{x}$;

 R^3 is $-OR^c$, $-NR^cR^c$, $-O-R^a-Y-R^b-(Z)_x$, $-NR^c-R^a-Y-R^b-(Z)_x$, $-NR^cR^e$, or $-O-R^e$; or R^3 is a nitrogen-linked, oxygen-linked, or sulfur-linked substituent that comprises one or more phosphono groups;

 R^4 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$, R^f , $-C(O)R^f$, or $-C(O)-R^a-Y-R^b-(Z)_x$;

 R^5 is selected from the group consisting of hydrogen, halo, $-CH(R^c)-NR^cR^c$, $-CH(R^c)-NR^cR^e$, $-CH(R^c)-NR^c-R^a-Y-R^b-(Z)_x$, $-CH(R^c)-R^x$,

 $-CH(R^c)-NR^c-R^a-C(=O)-R^x$, and a substituent that comprises one or more phosphono groups;

 R^6 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and a saccharide group optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$, or R^5 and R^6 can be joined, together with the atoms to which they are attached, form a heterocyclic ring optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$;

 R^7 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, and $-C(O)R^d$;

R⁸ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R⁹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R¹⁰ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; or R⁸ and R¹⁰ are joined to form -Ar¹-O-Ar²-, where Ar¹ and Ar² are independently arylene or heteroarylene;

R¹¹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic, or R¹⁰ and R¹¹ are joined, together with the carbon and nitrogen atoms to which they are attached, to form a heterocyclic ring;

 R^{12} is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, $-C(O)R^d$, $-C(NH)R^d$, $-C(O)NR^cR^c$, $-C(O)OR^d$, $-C(NH)NR^cR^c$ and $-R^a-Y-R^b-(Z)_x$, or R^{11} and R^{12} are joined, together with the nitrogen atom to which they are attached, to form a heterocyclic ring;

R¹³ is selected from the group consisting of hydrogen or -OR¹⁴;

R¹⁴ is selected from hydrogen, -C(O)R^d and a saccharide group;
each R^a is independently selected from the group consisting of alkylene,
substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene;

each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen;

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, substituted alkynyl, substituted cycloalkyl, substituted cycloalkenyl, substituted cycloalkenyl, aryl, heterocyclic and $-C(O)R^d$;

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

Re is a saccharide group;

each R^f is independently alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, or heterocyclic;

 $R^x \text{ is an N-linked amino saccharide or an N-linked heterocycle;} \\ X^1, X^2 \text{ and } X^3 \text{ are independently selected from hydrogen or chloro;} \\ \text{ each Y is independently selected from the group consisting of oxygen, sulfur,} \\ -S-S-, -NR^c-, -S(O)-, -SO_2-, -NR^cC(O)-, -OSO_2-, -OC(O)-, -NR^cSO_2-, \\ -C(O)NR^c-, -C(O)O-, -SO_2NR^c-, -SO_2O-, -P(O)(OR^c)O-, -P(O)(OR^c)NR^c-, \\ -OP(O)(OR^c)O-, -OP(O)(OR^c)NR^c-, -OC(O)O-, -NR^cC(O)O-, -NR^cC(O)NR^c-, \\ -OC(O)NR^c-, -C(=O)-, \text{ and } -NR^cSO_2NR^c-; \\ \end{aligned}$

each Z is independently selected from hydrogen, aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocyclic;

n is 0, 1 or 2; and x is 1 or 2;

or a pharmaceutically acceptable salt, stereoisomer, or prodrug thereof.

13. The pharmaceutical composition of Claim 1, wherein the glycopeptide antibiotic has formula II:

HO NH CI OH OH
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3

wherein:

R¹⁹ is hydrogen;

 $R^{20} \text{ is } -R^a - Y - R^b - (Z)_x, \ R^f, -C(O)R^f, \text{ or } -C(O) - R^a - Y - R^b - (Z)_x; \text{ and}$ $R^a, \ Y, \ R^b, \ Z, \ x, \ R^f, \ R^3, \text{ and } \ R^5 \text{ are as defined in Claim 7;}$ or a pharmaceutically acceptable salt, stereoisomer, or prodrug thereof.

- 14. A method of treating a mammal having a bacterial disease, the method comprising administering to the mammal a pharmaceutical composition of claim 1.
- 15. A method of treating a bacterial disease in a mammal, the method comprising administering to the mammal a therapeutically effective amount of a glycopeptide antibiotic in combination with a cyclodextrin.

- 16. A method for reducing tissue accumulation of a glycopeptide antibiotic when administered to a mammal, the method comprising administering the glycopeptide antibiotic to the mammal in a pharmaceutical composition comprising a cyclodextrin and a therapeutically effective amount of the glycopeptide antibiotic or a pharmaceutically acceptable salt thereof.
- 17. A method for reducing nephrotoxicity produced by a glycopeptide antibiotic when administered to a mammal, the method comprising administering the glycopeptide antibiotic to the mammal in a pharmaceutical composition comprising a cyclodextrin and a therapeutically effective amount of the glycopeptide antibiotic or a pharmaceutically acceptable salt thereof.
- 18. A method for reducing histamine release produced by a glycopeptide antibiotic when administered to a mammal, the method comprising administering the glycopeptide antibiotic to the mammal in a pharmaceutical composition comprising a cyclodextrin and a therapeutically effective amount of the glycopeptide antibiotic or a pharmaceutically acceptable salt thereof.
- 19. A method for reducing vascular irritation produced by a glycopeptide antibiotic when administered to a mammal, the method comprising administering the glycopeptide antibiotic to the mammal in a pharmaceutical composition comprising a cyclodextrin and a therapeutically effective amount of the glycopeptide antibiotic or a pharmaceutically acceptable salt thereof.