Analyse Discriminante Linéaire - OVO

Analyse Discriminante Linéaire (LDA) - One-Versus-One (OVO)

Théorie

L'Analyse Discriminante Linéaire (LDA) est une technique de classification qui cherche à trouver une combinaison linéaire de caractéristiques maximisant la séparation entre les classes.

L'approche One-Versus-One (OVO) consiste à entraîner un modèle pour chaque paire de classes, ce qui est utile lorsque les classes sont bien séparées.

Hyperparamètres

Nous allons tester les hyperparamètres suivants : - Régularisation (shrinkage) : contrôle la variance de la covariance estimée (valeurs entre 0 et 1). - Standardisation des données : normalisation des features avant l'entraînement.

Exemple en Python

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.multiclass import OneVsOneClassifier
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# Chargement des ensembles de données
```

```
train_data = pd.read_csv('covertype_train.csv')
val_data = pd.read_csv('covertype_val.csv')
test_data = pd.read_csv('covertype_test.csv')
# Préparation des données
X_train = train_data.drop('Cover_Type', axis=1)
y_train = train_data['Cover_Type']
X_val = val_data.drop('Cover_Type', axis=1)
y_val = val_data['Cover_Type']
X_test = test_data.drop('Cover_Type', axis=1)
y_test = test_data['Cover_Type']
# Standardisation des données
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_val = scaler.transform(X_val)
X_test = scaler.transform(X_test)
# Recherche des meilleurs hyperparamètres
shrinkage_values = np.linspace(0, 1, 10)
train_accuracies = []
val_accuracies = []
for shrinkage in shrinkage_values:
    lda_ovo = OneVsOneClassifier(LinearDiscriminantAnalysis(solver='lsqr', shrinkage=shrinka
    lda_ovo.fit(X_train, y_train)
   y_train_pred = lda_ovo.predict(X_train)
    y_val_pred = lda_ovo.predict(X_val)
   train_accuracies.append(accuracy_score(y_train, y_train_pred))
    val_accuracies.append(accuracy_score(y_val, y_val_pred))
# Sélection du meilleur shrinkage
best_shrinkage = shrinkage_values[val_accuracies.index(max(val_accuracies))]
print(f"Meilleur shrinkage LDA (OVO): {best_shrinkage}")
# Affichage du graphique
plt.figure(figsize=(8, 6))
plt.plot(shrinkage_values, train_accuracies, marker='o', linestyle='dashed', label='Train Ac
```

```
plt.plot(shrinkage_values, val_accuracies, marker='s', linestyle='dashed', label='Validation
plt.xlabel("Shrinkage")
plt.ylabel("Précision")
plt.title("Impact du shrinkage sur la performance de LDA (OVO)")
plt.legend()
plt.show()
# Modèle final avec le meilleur shrinkage
lda_ovo = OneVsOneClassifier(LinearDiscriminantAnalysis(solver='lsqr', shrinkage=best_shrinkage)
lda_ovo.fit(X_train, y_train)
y_test_pred = lda_ovo.predict(X_test)
# Affichage de la matrice de confusion
conf_matrix = confusion_matrix(y_test, y_test_pred)
print("\nMatrice de confusion (OVO) :")
print(conf_matrix)
print("\nÉvaluation sur l'ensemble de test")
print(classification_report(y_test, y_test_pred))
```


Matrice	de (confusion	L	(000) :	
[[1085	501	2	0	3	
Г 000			_		

[[1	1085	501	2	0	3	3	114]
[388	1777	62	0	10	14	10]
[0	23	229	13	0	16	0]
[0	0	4	12	0	5	0]
[2	59	12	0	1	0	0]
[0	39	89	1	0	15	0]
Γ	30	0	0	0	0	0	129]]

Évaluation sur l'ensemble de test

	pre	ecision	recall	f1-score	support
1		0.72	0.64	0.68	1708
2	2	0.74	0.79	0.76	2261
.3	3	0.58	0.81	0.67	281

4	0.46	0.57	0.51	21
5	0.07	0.01	0.02	74
6	0.28	0.10	0.15	144
7	0.51	0.81	0.63	159
accuracy			0.70	4648
macro avg	0.48	0.53	0.49	4648
weighted avg	0.69	0.70	0.69	4648