Smoke kills storage space

Michael Sklar Chess
Christophe Joseph Rimann
Nigel Schuster

Project Idea

- Smoke is an efficient lineage engine
 - Lineage is the process of identifying the source of an aggregate result
 - Fotis built this awesome engine
- Lineage requires significant storage cost
 - Reverse List compression
 - Bitmap compression

Hypothesis

- Zipf Distribution:
 - Primary research:
 - Inverted List:
 - Size reduced by 8x
 - » Wang 2017
 - Time remains similar
 - Stretch goal:
 - Bitmap:
 - Consistent performance

Work to be done

- Build a test harness to benchmark functionality with Smoke test data (Zipf Distribution, TPC-C)
- Use this harness to test compression algorithm
 - SIMDPforDelta
 - SIMD BP128
 - - ...
 - We will each test a selection of the compression algorithms outlined by the Wang 2017 paper
- Integrate into Smoke

Necessary Resources

- Smoke source code
- Computing Resources for testing purposes:
 - Server-class machine (Ubuntu 14.04, 64GiB 2133MHz DDR4, 3.1GHz Intel Xeon E5-1607 v4)
 - We will likely need google cloud credit for this
 - MacBook Pro (macOS Sierra 10.12.3, 8GiB 1600MHz DDR3, 2.9GHz Intel Core i7)
 - We will attempt to approximate this hardware using our own machines
 - These machines are the same used in the original Smoke paper

Works Cited

http://db.ucsd.edu/wp-content/uploads/2017/03/sidm338-wangA.pdf

http://www.cs.columbia.edu/~fotis/pubs/techr/sm
oke extended.pdf

https://github.com/lemire/SIMDCompressionAnd Intersection

