Package 'evinf'

May 18, 2024

Type Package

Title Inference with Extreme Value Inflated Count Data

Version 0.8.10

Description Allows users to model and draw inferences from extreme value in-

flated count data, and to evaluate these models and compare to non extreme-value inflated counterparts. The package is built to be compatible with standard presentation tools such as 'broom', 'tidy', and 'modelsummary'.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports dplyr, Rcpp, RcppArmadillo, foreach, doParallel, magrittr, doRNG, tibble, mistr, tidyr, purrr, MASS, pscl, MLmetrics, Rdpack, stringi, stringr, rlang, methods, stats, utils, parallel

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.2.3

RdMacros Rdpack

Depends generics, R (>= 2.10)

 ${\bf URL}\ {\it https://github.com/Doktorandahl/evinf}$

BugReports https://github.com/Doktorandahl/evinf/issues

NeedsCompilation yes

Author David Randahl [cre, aut], Johan Vegelius [aut]

Maintainer David Randahl < david.randahl@pcr.uu.se>

Repository CRAN

Date/Publication 2024-05-17 23:40:17 UTC

2 coefficient_extractor

R topics documented:

coefficient_extractor	2
coefficient_extractor.evinb	3
coefficient_extractor.evzinb	4
coefficient_extractor.nbboot	4
coefficient_extractor.zinbboot	5
compare_models	6
evinb	7
evzinb	9
6	12
genevzinb2	
glance.evinb	13
glance.evzinb	
glance.nbboot	
glance.zinbboot	15
gm_evzinb	16
hks	16
lr_test	17
oob_evaluation	
predict.evinb	19
predict.evzinb	
predict.zinbboot	
	23
print.evzinb	23
print.evzinbcomp	24
revinb_fit	
revzinb_fit	25
summary.evinb	26
summary.evzinb	27
tidy.evinb	28
tidy.evzinb	29
tidy.nbboot	31
tidy.zinbboot	32

34

 ${\tt coefficient_extractor} \ \ \textit{Bootstrap coefficient extractor}$

Description

Bootstrap coefficient extractor

Usage

Index

```
coefficient_extractor(object, ...)
```

Arguments

object a fitted model with bootstraps of class evzinb, evinb, nbboot, or zinbboot

Component to be extracted (not for nbboot). Alternatives are 'nb', 'zi', 'evinf', 'pareto', and 'all'

Value

A tibble with coefficient values, one row per bootstrap and component

Examples

```
data(genevzinb2)
  model <- evzinb(y~x1+x2+x3,data=genevzinb2, n_bootstraps = 10, multicore = TRUE, ncores = 2)
  coefficient_extractor(model, component = 'all')

coefficient_extractor.evinb
  Bootstrap coefficient extractor</pre>
```

Description

Bootstrap coefficient extractor

Usage

```
## $3 method for class 'evinb'
coefficient_extractor(
  object,
  component = c("nb", "evinf", "pareto", "all"),
  ...
)
```

Arguments

object A fitted evinb model with bootstraps component Which component should be extracted ... Not in use

Value

A tibble with coefficient values, one row per bootstrap and component

```
data(genevzinb2)
model <- evinb(y~x1+x2+x3,data=genevzinb2, n_bootstraps = 10, multicore = TRUE, ncores = 2)
coefficient_extractor(model, component = 'all')</pre>
```

```
coefficient_extractor.evzinb
```

Bootstrap coefficient extractor

Description

Bootstrap coefficient extractor

Usage

```
## S3 method for class 'evzinb'
coefficient_extractor(
  object,
  component = c("nb", "zi", "evinf", "pareto", "all"),
   ...
)
```

Arguments

object A fitted evzinb model with bootstraps component Which component should be extracted

... Not in use

Value

A tibble with coefficient values, one row per bootstrap and component

Examples

```
data(genevzinb2)
model <- evzinb(y~x1+x2+x3,data=genevzinb2, n_bootstraps = 10, multicore = TRUE, ncores = 2)
coefficient_extractor(model, component = 'all')</pre>
```

```
coefficient_extractor.nbboot
```

Bootstrap coefficient extractor

Description

Bootstrap coefficient extractor

```
## S3 method for class 'nbboot'
coefficient_extractor(object, ...)
```

Arguments

object A fitted nbboot model with bootstraps
... Not in use

Value

A tibble with coefficient value, one row per bootstrap

Examples

Description

Bootstrap coefficient extractor

Usage

```
## S3 method for class 'zinbboot'
coefficient_extractor(object, component = c("nb", "zi", "all"), ...)
```

Arguments

object A fitted evinb model with bootstraps component Which component should be extracted

... Not in use

Value

A tibble with coefficient values, one row per bootstrap and component

```
data(genevzinb2)
model <- evzinb(y~x1+x2+x3,data=genevzinb2, n_bootstraps=10)
zinb_comp <- compare_models(model)
coefficient_extractor(zinb_comp$zinb)</pre>
```

6 compare_models

compare_models

Function to compare evzinb or evinb models with zinb and nb models

Description

Function to compare evzinb or evinb models with zinb and nb models

Usage

```
compare_models(
  object,
  nb_comparison = TRUE,
  zinb_comparison = TRUE,
  winsorize = FALSE,
  razorize = FALSE,
  cutoff_value = 10,
  init_theta = NULL,
  multicore = FALSE,
  ncores = NULL
)
```

Arguments

object A fitted evzinb or evinb model object

nb_comparison Should comparison be made with a negative binomial model?

zinb_comparison

Should comparions be made with the zinb model?

winsorize Should winsorizing be done in the comparisons?

razorize Should razorizing (trimming) be done in the comparisons?

cutoff_value Integer: Which observation should be used as a basis for winsorizing/razorising.

E.g. 10 means that everything larger than the 10th observation will be win-

sorized/razorised

init_theta Optional initial value for theta in the NB specification

multicore Logical: should multiple cores be used ncores Number of cores if multicore is used

Value

A list with the original model as the first object and compared models as the following objects

```
data(genevzinb2)
model <- evzinb(y~x1+x2+x3,data=genevzinb2, n_bootstraps = 10, multicore = TRUE, ncores = 2)
compare_models(model)</pre>
```

evinb 7

evinb

Running an extreme value inflated negative binomial model with bootstrapping

Description

Running an extreme value inflated negative binomial model with bootstrapping

Usage

```
evinb(
  formula_nb,
  formula_evi = NULL,
  formula_pareto = NULL,
  data,
  bootstrap = TRUE,
  n_bootstraps = 100,
 multicore = FALSE,
 ncores = NULL,
 block = NULL,
 boot_seed = NULL,
 max.diff.par = 0.01,
 max.no.em.steps = 500,
 max.no.em.steps.warmup = 5,
  c.lim = c(50, 1000),
 max.upd.par.pl.multinomial = 0.5,
 max.upd.par.nb = 0.5,
 max.upd.par.pl = 0.5,
  no.m.bfgs.steps.multinomial = 3,
  no.m.bfgs.steps.nb = 3,
  no.m.bfgs.steps.pl = 3,
  pdf.pl.type = "approx",
  eta.int = c(-1, 1),
  init.Beta.multinom.PL = NULL,
  init.Beta.NB = NULL,
  init.Beta.PL = NULL,
  init.Alpha.NB = 0.01,
  init.C = 200,
  verbose = FALSE
)
```

Arguments

formula_nb Formula for the negative binomial (count) component of the model

formula_evi Formula for the extreme-value inflation component of the model. If NULL taken

as the same formula as nb

8 evinb

formula_pareto Formula for the pareto (extreme value) component of the model. If NULL taken as the same formula as nb data Data to run the model on Should bootstrapping be performed. Needed to obtain standard errors and pbootstrap Number of bootstraps to run. For use of bootstrapped p-values, at least 1,000 n_bootstraps bootstraps are recommended. For approximate p-values, a lower number can be sufficient multicore Should multiple cores be used? ncores Number of cores if multicore is used. Default (NULL) is one less than the available number of cores Optional string indicating a case-identifier variable when using block bootstrapblock ping Optional bootstrap seed to ensure reproducible results. boot_seed Tolerance for EM algorithm. Will be considered to have converged if the maximax.diff.par mum absolute difference in the parameter estimates are lower than this value max.no.em.steps Maximum number of EM steps to run. Will be considered to not have converged if this number is reached and convergence is not reached max.no.em.steps.warmup Number of EM steps in the warmup rounds c.lim Integer range defining the possible values of C max.upd.par.pl.multinomial Maximum parameter change step size in the extreme value inflation component max.upd.par.nb Maximum parameter change step size in the count component max.upd.par.pl Maximum parameter change step size in the pareto component no.m.bfgs.steps.multinomial Number of BFGS steps for the multinomial model no.m.bfgs.steps.nb Number of BFGS steps for the negative binomial model no.m.bfgs.steps.pl Number of BFGS steps for the pareto model pdf.pl.type Probability density function type for the pareto component. Either 'approx' or 'exact'. 'approx' is adviced in most cases eta.int Initial values for eta init.Beta.multinom.PL Initial values for beta parameters in the extreme value inflation component. Vector of same length as number of parameters in the extreme value inflation component or NULL (which gives starting values of 0)

Initial values for beta parameters in the count component. Vector of same length as number of parameters in the count component or NULL (which gives starting

init.Beta.NB

values of 0)

evzinb 9

init.Beta.PL Initial values for beta parameters in the pareto component. Vector of same length as number of parameters in the pareto component or NULL (which gives starting values of 0)

init.Alpha.NB Initial value of Alpha NB, integer or NULL (giving a starting value of 0)

init.C Initial value of C. Integer which should be within the C_lim range.

verbose Should progress be printed for the first run of evinb

Value

An object of class 'evinb'

Examples

```
data(genevzinb2)
model <- evinb(y~x1+x2+x3,data=genevzinb2, n_bootstraps = 10)</pre>
```

evzinb

Running an extreme value and zero inflated negative binomial model with bootstrapping

Description

Running an extreme value and zero inflated negative binomial model with bootstrapping

```
evzinb(
  formula_nb,
  formula_zi = NULL,
  formula_evi = NULL,
  formula_pareto = NULL,
  data,
 bootstrap = TRUE,
 n_{bootstraps} = 100,
 multicore = FALSE,
 ncores = NULL,
  block = NULL,
  boot_seed = NULL,
 max.diff.par = 0.01,
 max.no.em.steps = 500,
 max.no.em.steps.warmup = 5,
  c.lim = c(50, 1000),
 max.upd.par.zc.multinomial = 0.5,
 max.upd.par.pl.multinomial = 0.5,
 max.upd.par.nb = 0.5,
 max.upd.par.pl = 0.5,
```

10 evzinb

```
no.m.bfgs.steps.multinomial = 3,
no.m.bfgs.steps.nb = 3,
no.m.bfgs.steps.pl = 3,
pdf.pl.type = "approx",
eta.int = c(-1, 1),
init.Beta.multinom.ZC = NULL,
init.Beta.Multinom.PL = NULL,
init.Beta.NB = NULL,
init.Beta.PL = NULL,
init.Alpha.NB = 0.01,
init.C = 200,
verbose = FALSE
)
```

Arguments

c.lim

max.upd.par.zc.multinomial

Т			
	formula_nb	Formula for the negative binomial (count) component of the model	
	formula_zi	Formula for the zero-inflation component of the model. If NULL taken as the same formula as \ensuremath{nb}	
	formula_evi	Formula for the extreme-value inflation component of the model. If NULL taken as the same formula as \ensuremath{nb}	
	formula_pareto	Formula for the pareto (extreme value) component of the model. If NULL taken as the same formula as \ensuremath{nb}	
	data	data to run the model on	
	bootstrap	Should bootstrapping be performed. Needed to obtain standard errors and p-values	
	n_bootstraps	Number of bootstraps to run. For use of bootstrapped p-values, at least $1,000$ bootstraps are recommended. For approximate p-values, a lower number can be sufficient	
	multicore	Should multiple cores be used?	
	ncores	Number of cores if multicore is used. Default (NULL) is one less than the available number of cores $$	
	block	Optional string indicating a case-identifier variable when using block bootstrapping	
	boot_seed	Optional bootstrap seed to ensure reproducible results.	
	max.diff.par	Tolerance for EM algorithm. Will be considered to have converged if the maximum absolute difference in the parameter estimates are lower than this value	
	max.no.em.steps		
		Maximum number of EM steps to run. Will be considered to not have converged if this number is reached and convergence is not reached	
	max.no.em.steps	•	
		Number of EM steps in the warmup rounds	

Maximum parameter change step size in the zero inflation component

Integer range defining the possible values of C

evzinb 11

max.upd.par.pl.multinomial

Maximum parameter change step size in the extreme value inflation component

max.upd.par.nb Maximum parameter change step size in the count component

max.upd.par.pl Maximum parameter change step size in the pareto component

no.m.bfgs.steps.multinomial

Number of BFGS steps for the multinomial model

no.m.bfgs.steps.nb

Number of BFGS steps for the negative binomial model

no.m.bfgs.steps.pl

Number of BFGS steps for the pareto model

pdf.pl.type Probability density function type for the pareto component. Either 'approx' or

'exact'. 'approx' is adviced in most cases

eta.int Initial values for eta

init.Beta.multinom.ZC

Initial values for beta parameters in the zero value inflation component. Vector of same length as number of parameters in the zero value inflation component or NULL (which gives starting values of 0)

init.Beta.multinom.PL

Initial values for beta parameters in the extreme value inflation component. Vector of same length as number of parameters in the extreme value inflation component or NULL (which gives starting values of 0)

init.Beta.NB Initial values for beta parameters in the count component. Vector of same length as number of parameters in the count component or NULL (which gives starting

values of 0)

init.Beta.PL Initial values for beta parameters in the pareto component. Vector of same length

as number of parameters in the pareto component or NULL (which gives starting

values of 0)

init.Alpha.NB Initial value of Alpha NB, integer or NULL (giving a starting value of 0)

init.C Initial value of C. Integer which should be within the C_lim range.

verbose Logical: should progress of the full run of the model be tracked?

Value

An object of class 'evzinb'

```
data(genevzinb2)
model <- evzinb(y~x1+x2+x3,data=genevzinb2, n_bootstraps = 10)</pre>
```

12 genevzinb2

genevzinb

Simulated data from the EVZBINB distribution

Description

A simulated dataset of 1,000 observations with one dependent and three dependent variables generated using the EVZINB distribution

Usage

genevzinb

Format

'genevzinb' A tibble with 1,000 rows and 4 columns:

- y Dependent variable following EVZINB distribution
- x1, x2, x3 Continuous independent variables following the random normal distribution

genevzinb2

Simulated data from the EVZBINB distribution

Description

A simulated dataset of 100 observations with one dependent and three dependent variables generated using the EVZINB distribution

Usage

genevzinb2

Format

'genevzinb2' A tibble with 100 rows and 4 columns:

- y Dependent variable following EVZINB distribution
- x1, x2, x3 Continuous independent variables following the random normal distribution

glance.evinb 13

glance.evinb

EVZINB and EVINB glance functions

Description

EVZINB and EVINB glance functions

Usage

```
## S3 method for class 'evinb'
glance(x, ...)
```

Arguments

x An EVZINB or EVINB object

... Further arguments to be passed to glance()

Value

An EVZINB glance function

See Also

glance

Examples

```
data(genevzinb2)
model <- evinb(y~x1+x2+x3,data=genevzinb2, n_bootstraps = 10)
glance(model)</pre>
```

glance.evzinb

EVZINB and EVINB glance functions

Description

EVZINB and EVINB glance functions

```
## S3 method for class 'evzinb' glance(x, ...)
```

14 glance.nbboot

Arguments

x An EVZINB or EVINB object

... Further arguments to be passed to glance()

Value

An EVZINB glance function

See Also

```
glance
```

Examples

```
data(genevzinb2)
model <- evzinb(y~x1+x2+x3,data=genevzinb2, n_bootstraps = 10)
glance(model)</pre>
```

glance.nbboot

zinbboot and nboot glance functions

Description

zinbboot and nboot glance functions

Usage

```
## S3 method for class 'nbboot' glance(x, ...)
```

Arguments

x An nbboot or zinbboot object

... Further arguments to be passed to glance()

Value

An abboot glance function

See Also

glance

glance.zinbboot 15

Examples

```
\label{lem:data} $$ \data(genevzinb2) $$ model <- evzinb(y^x1+x2+x3,data=genevzinb2, n_bootstraps = 10, multicore = TRUE, ncores = 2) $$ zinb_comp <- compare_models(model) $$ glance(zinb_comp$nb) $$
```

 ${\tt glance.zinbboot}$

zinbboot and nboot glance functions

Description

zinbboot and nboot glance functions

Usage

```
## S3 method for class 'zinbboot' glance(x, ...)
```

Arguments

x An nbboot or zinbboot object

... Further arguments to be passed to glance()

Value

An abboot glance function

See Also

glance

```
\label{lem:data} $$ \data(genevzinb2) $$ model <- evzinb(y^x1+x2+x3,data=genevzinb2, n_bootstraps = 10, multicore = TRUE, ncores = 2) $$ zinb_comp <- compare_models(model) $$ glance(zinb_comp$zinb) $$
```

16 hks

gm_evzinb	A goodness-of-fit gof tibble for GOF metrics when using modelsum- mary

Description

A goodness-of-fit gof tibble for GOF metrics when using modelsummary. The GM tibble can be used to obtain correct table output when making regression tables with modelsummary

Usage

gm_evzinb

Format

'gm_evzinb' A tibble with 7 rows and 3 columns:

raw The modelsummary/broom internal name for the statistic

clean The table output for the statistic

fmt The number of decimals reported for each statistic by default (can be adapted)

hks	Replication data for Hultman, Kathman, and Shannon (2013) United
	Nations Peacekeeping and Civilian Protection in Civil War

Description

A reduced replication data set from Hultman et al. (2013) United Nations Peacekeeping and Civilian Protection in Civil War. Used to reproduce the the results from Randahl and Vegelius (2023). Note, to reproduce any other results from Hultman et al. (2013) please download the original replication dataset using the link under source.

Usage

hks

Format

A tibble with 3746 rows and 12 columns:

conflict_id The Uppsala Conflict Data Programme conflict ID for the conflict

osvAll The number of observed fatalities from one-sided violence against civilian in the specified conflict-month

troopLag The number of UN military troops in thousands of troops (lagged)

policeLag The number of UN police in thousands of troops (lagged)

lr_test 17

militaryobserversLag The number of UN military troops in thousands of troops (lagged)

epduration The number of months the current conflict-episode has been ongoing

Intpop The natural logarithm of the population of the country in which the conflict takes place

Inbrv_AllLag The natural logarithm of the total number of battle related deaths in the conflict in the previous month

osvAllLagDum A dummy variable taking the value 1 if any one-sided violence against civilians took place in the previous conflict month

incomp A dummy variable taking the value 1 if the conflict is about government and 0 otherwise

IntroopLag The log1p logarithm of troopLag

Inepdur The log1p logarithm of the episode duration

Source

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6EBCGA

References

Hultman L, Kathman J, Shannon M (2013). "United Nations peacekeeping and civilian protection in civil war." *American Journal of Political Science*, **57**(4), 875–891.

Randahl D, Vegelius J (2023). "Inference with Extremes: Accounting for Extreme Values in Count Regression Models." *International Studies Quarterly*, $\mathbf{x}(\mathbf{x})$, \mathbf{x} .

lr_test

Likelihood ratio test for individual variables of evzinb

Description

Likelihood ratio test for individual variables of evzinb

```
lr_test(
  object,
  vars,
  single = TRUE,
  bootstrap = FALSE,
  multicore = FALSE,
  ncores = NULL,
  verbose = FALSE
)
```

oob_evaluation

Arguments

object	EVZINB or EVZINB object to perform likelihood ratio test on
vars	Either a list of character vectors with variable names which to be restricted in the LR test or a character vector of variable names. If a list, each character vector of the list will be run separately, allowing for multiple variables to be restricted as once. If a character vector, parameter 'single' can be used to determine whether all variables in the vector should be restricted at once (single = FALSE) or if the variables should be restricted one by one (single = TRUE)
single	Logical. Determining whether variables in 'vars' should be restricted individually (single = TRUE) or all at once (single = FALSE)
bootstrap	Should LR tests be conducted on each bootstrapped sample or only on the original sample.
multicore	Logical. Should the function be run in parallel?
ncores	Number of cores to use if multicore = TRUE
verbose	Logical. Should the function be verbose?

Value

A tibble with one row per performed LR test

Examples

```
data(genevzinb2)
model <- evzinb(y~x1+x2+x3,data=genevzinb2, n_bootstraps = 10)
lr_test(model,'x1')</pre>
```

oob_evaluation

Out of bag predictive performance of EVZINB and EVINB models

Description

Out of bag predictive performance of EVZINB and EVINB models

```
oob_evaluation(
  object,
  predict_type = c("harmonic", "explog"),
  metric = c("rmsle", "rmse", "mse", "mae")
)
```

predict.evinb 19

Arguments

object A fitted evzinb or evinb with bootstraps on which to conduct out-of-bag evalua-

tion

predict_type What type of prediction should be made? Harmonic mean, or exp(log(prediction))?

metric What metric should be used for the out of bag evaluation? Default options in-

clude rmsle, rmse, mse, and mae. Can also take a user supplied function of the

form function(y_pred,y_true) which returns a single value

Value

A vector of oob evaluation metrics of the length of the number of bootstraps in the evzinb/evinb object.

Examples

```
data(genevzinb2)
model <- evzinb(y~x1+x2+x3,data=genevzinb2, n_bootstraps = 10)
oob_evaluation(model)</pre>
```

predict.evinb

Predictions from evinb object

Description

Predictions from evinb object

20 predict.evzinb

Arguments

object	An evinb object for which to produce predicted values
newdata	Optional new data (tibble) to produce predicted values from
type	Character string, 'harmonic' for the harmonic mean and 'explog' for exponentiated expected log, 'counts' for predicted count of the negative binomial component, 'pareto_alpha' for the predicted pareto alpha value, 'states' for the predicted component states (prior), 'count_state' for predicted probability of the count state, 'evinf' for predicted probability of the pareto state, 'all' for all predicted values, and 'quantile' for quantile prediction.
pred	Type of prediction to be used, defaults to the original prediction from the fitted model, with alternatives being the bootstrapped median or mean. Note that bootstrap mean may yield infinite values, especially when doing quantile prediction
quantile	Quantile for which to produce quantile prediction
confint	Should confidence intervals be made for the predictions? Note: only available for vector type predictions and not 'states' and 'all'.
conf_level	What confidence level should be used for confidence intervals
multicore	Should multicore be used when calculating quantile prediction? Often it is enough to run quantile prediction on a single core, but in cases of large data or very skewed distributions it may be useful to run multicore
ncores	Number of cores to be used for multicore.
	Other arguments passed to predict function

Value

A vector of predicted values for type 'harmonic', 'explog', 'counts', 'pareto_alpha', 'evinf', 'count_state', and 'quantile' or a tibble of predicted values for type 'states' and 'all' or if confint=T

Examples

```
data(genevzinb2)
model <- evinb(y~x1+x2+x3,data=genevzinb2, n_bootstraps = 10)
predict(model)
predict(model, type='all') # Getting all of the available predicted values</pre>
```

predict.evzinb Predictions from evzinb object

Description

Predictions from evzinb object

predict.evzinb 21

Usage

Arguments

object	An evzinb object for which to produce predicted values
newdata	Optional new data (tibble) to produce predicted values from
type	Character string, 'harmonic' for the harmonic mean and 'explog' for exponentiated expected log, 'counts' for predicted count of the negative binomial component, 'pareto_alpha' for the predicted pareto alpha value, 'states' for the predicted component states (prior), 'count_state' for predicted probability of the count state, 'evinf' for predicted probability of the pareto state,'zi' for the predicted probability of the zero state, 'all' for all predicted values, and 'quantile' for quantile prediction.
pred	Type of prediction to be used, defaults to the original prediction from the fitted model, with alternatives being the bootstrapped median or mean. Note that bootstrap mean may yield infinite values, especially when doing quantile prediction
quantile	Quantile for which to produce quantile prediction
confint	Should confidence intervals be made for the predictions? Note: only available for vector type predictions and not 'states' and 'all'.
conf_level	What confidence level should be used for confidence intervals
multicore	Should multicore be used when calculating quantile prediction? Often it is enough to run quantile prediction on a single core, but in cases of large data or very skewed distributions it may be useful to run multicore
ncores	Number of cores to be used for multicore.
	Other arguments passed to predict function

Value

A vector of predicted values for type 'harmonic', 'explog', 'counts', 'pareto_alpha','zi','evinf', 'count_state', and 'quantile' or a tibble of predicted values for type 'states' and 'all' or if confint=T

22 predict.zinbboot

Examples

```
data(genevzinb2)
model <- evzinb(y~x1+x2+x3,data=genevzinb2, n_bootstraps = 10)
predict(model)
predict(model, type='all') # Getting all of the available predicted values</pre>
```

predict.zinbboot

Prediction for zinbboot

Description

Prediction for zinbboot

Usage

Arguments

object a fitted zinbboot object newdata Data to make predictions on What prediction should be computed? type pred Prediction type, 'original', 'bootstra_median', or 'bootstrap_mean' Quantile for quantile prediction quantile confint Should confidence intervals be created? conf_level Confidence level when predicting with CIs Not used . . .

Value

Predictions from zinbboot

print.evinb 23

print.evinb

EVINB print function

Description

EVINB print function

Usage

```
## S3 method for class 'evinb'
print(x, ...)
```

Arguments

x A fitted evinb model

... Not used

Value

An evinb print function

Examples

```
data(genevzinb2)
model <- evinb(y~x1+x2+x3,data=genevzinb2, n_bootstraps = 10)
print(model)</pre>
```

print.evzinb

EVZINB print function

Description

EVZINB print function

Usage

```
## S3 method for class 'evzinb' print(x, ...)
```

Arguments

x A fitted evzinb model

... Not used

24 print.evzinbcomp

Value

An evzinb print function

Examples

```
data(genevzinb2)
model <- evzinb(y~x1+x2+x3,data=genevzinb2, n_bootstraps = 10)
print(model)</pre>
```

print.evzinbcomp

Compare_models print function

Description

Compare_models print function

Usage

```
## S3 method for class 'evzinbcomp' print(x, ...)
```

Arguments

x A fitted evinb model

... Not used

Value

An evinb print function

```
data(genevzinb2)
model <- evinb(y~x1+x2+x3,data=genevzinb2, n_bootstraps = 10)
print(model)</pre>
```

revinb_fit 25

		fit	

Random draws from a fitted evinb model

Description

Random draws from a fitted evinb model

Usage

```
revinb_fit(object, newdata = NULL, n_draws = 1)
```

Arguments

object A fitted EVINB object newdata Optional newdata

n_draws Number of random draws to make

Value

A vector of randomly drawn values from the fitted evinb if n_d raws == 1, or a list of length n_d raws with random drawn values if n_d raws > 1

Examples

```
data(genevzinb2)
model <- evinb(y~x1+x2+x3, data=genevzinb2, n_bootstraps = 10, multicore = TRUE, ncores = 2)
revinb_fit(model)</pre>
```

 $revzinb_fit$

Random draws from a fitted evzinb model

Description

Random draws from a fitted evzinb model

Usage

```
revzinb_fit(object, newdata = NULL, n_draws = 1)
```

Arguments

object A fitted EVZINB object

newdata Optional newdata

 26 summary.evinb

Value

A vector of randomly drawn values from the fitted evzinb if n_d are n_d a list of length n_d are with random drawn values if n_d are n_d

Examples

```
data(genevzinb2)
model <- evzinb(y~x1+x2+x3, data=genevzinb2, n_bootstraps = 10, multicore = TRUE, ncores = 2)
revzinb_fit(model)</pre>
```

summary.evinb

EVINB summary function

Description

EVINB summary function

Usage

```
## $3 method for class 'evinb'
summary(
  object,
  coef = c("original", "bootstrapped_mean", "bootstrapped_median"),
  standard_error = TRUE,
  p_value = c("bootstrapped", "approx", "both", "none"),
  bootstrapped_props = c("none", "mean", "median"),
  approx_t_value = TRUE,
  symmetric_bootstrap_p = TRUE,
  ...
)
```

Arguments

object an EVINB object with bootstraps

coef Type of coefficients. Original are the coefficient estimates from the non-bootstrapped

version of the model. 'bootstrapped_mean' are the mean coefficients across bootstraps, and 'bootstrapped_median' are the median coefficients across boot-

straps

standard_error Should standard errors be computed?

p_value What type of p_values should be computed? 'bootstrapped' are bootstrapped

p_values through confidence interval inversion. 'approx' are p-values based on

the t-value produced by dividing the coefficient with the standard error.

bootstrapped_props

Type of bootstrapped proportions of component proportions to be returned

approx_t_value Should approximate t-values be returned

summary.evzinb 27

```
symmetric_bootstrap_p
```

Should bootstrap p-values be computed as symmetric (leaving alpha/2 percent in each tail)? FALSE gives non-symmetric, but narrower, intervals. TRUE corresponds most closely to conventional p-values.

Additional arguments passed to the summary function

Value

An EVINB summary object

Examples

```
data(genevzinb2)
model <- evinb(y~x1+x2+x3,data=genevzinb2, n_bootstraps = 10, multicore = TRUE, ncores = 2)
summary(model)</pre>
```

summary.evzinb

EVZINB summary function

Description

EVZINB summary function

Usage

```
## S3 method for class 'evzinb'
summary(
  object,
  coef = c("original", "bootstrapped_mean", "bootstrapped_median"),
  standard_error = TRUE,
  p_value = c("bootstrapped", "approx", "both", "none"),
  bootstrapped_props = c("none", "mean", "median"),
  approx_t_value = TRUE,
  symmetric_bootstrap_p = TRUE,
  ...
)
```

Arguments

object an EVZINB object with bootstraps

coef Type of coefficients. Original are the coefficient estimates from the non-bootstrapped

version of the model. 'bootstrapped_mean' are the mean coefficients across bootstrapps, and 'bootstrapped_median' are the median coefficients across boot-

straps

standard_error Should standard errors be computed?

28 tidy.evinb

p_value

What type of p_values should be computed? 'bootstrapped' are bootstrapped p_values through confidence interval inversion. 'approx' are p-values based on the t-value produced by dividing the coefficient with the standard error.

bootstrapped_props

Type of bootstrapped proportions of component proportions to be returned

approx_t_value Should approximate t-values be returned
symmetric_bootstrap_p

Should bootstrap p-values be computed as symmetric (leaving alpha/2 percent in each tail)? FALSE gives non-symmetric, but narrower, intervals. TRUE corresponds most closely to conventional p-values.

. . . Additional arguments passed to the summary function

Value

An EVZINB summary object

Examples

```
\label{lem:data} $$ \data(genevzinb2) $$ model <- evzinb(y^x1+x2+x3,data=genevzinb2, n_bootstraps = 10, multicore = TRUE, ncores = 2) $$ \summary(model) $$
```

tidy.evinb

EVINB tidy function

Description

EVINB tidy function

```
## $3 method for class 'evinb'
tidy(
    X,
    component = c("evi", "count", "pareto", "all"),
    coef_type = c("original", "bootstrap_mean", "bootstrap_median"),
    standard_error = TRUE,
    p_value = c("bootstrapped", "approx", "none"),
    confint = c("none", "bootstrapped", "approx"),
    conf_level = 0.95,
    approx_t_value = TRUE,
    symmetric_bootstrap_p = TRUE,
    ...
)
```

tidy.evzinb 29

Arguments

x An evinb object

component Which component should be shown?

coef_type Type of coefficients. Original are the coefficient estimates from the non-bootstrapped

version of the model. 'bootstrapped_mean' are the mean coefficients across bootstraps, and 'bootstrapped_median' are the median coefficients across boot-

straps

standard_error Should standard errors be computed?

p_value What type of p_values should be computed? 'bootstrapped' are bootstrapped

p_values through confidence interval inversion. 'approx' are p-values based on

the t-value produced by dividing the coefficient with the standard error.

confint What type of confidence should be computed. Same options as p_value

conf_level What confidence level should be used for the confidence interval

approx_t_value Should approximate t-values be returned

symmetric_bootstrap_p

Should bootstrap p-values be computed as symmetric (leaving alpha/2 percent in each tail)? FALSE gives non-symmetric, but narrower, intervals. TRUE cor-

responds most closely to conventional p-values.

... Other arguments passsed to tidy function

Value

An EVINB tidy function

Examples

```
\label{lem:data} $$ \data(genevzinb2) $$ model <- evinb(y^x1+x2+x3, data=genevzinb2, n_bootstraps = 10, multicore = TRUE, ncores = 2) $$ tidy(model)
```

tidy.evzinb *EVZINB tidy function*

Description

EVZINB tidy function

30 tidy.evzinb

Usage

```
## S3 method for class 'evzinb'
tidy(
    x,
    component = c("zi", "evi", "count", "pareto", "all"),
    coef_type = c("original", "bootstrap_mean", "bootstrap_median"),
    standard_error = TRUE,
    p_value = c("bootstrapped", "approx", "none"),
    confint = c("none", "bootstrapped", "approx"),
    conf_level = 0.95,
    approx_t_value = TRUE,
    symmetric_bootstrap_p = TRUE,
    ...
)
```

Arguments

x An evzinb object

component Which component should be shown?

coef_type Type of coefficients. Original are the coefficient estimates from the non-bootstrapped

version of the model. 'bootstrapped_mean' are the mean coefficients across bootstraps, and 'bootstrapped_median' are the median coefficients across boot-

straps

standard_error Should standard errors be computed?

p_value What type of p_values should be computed? 'bootstrapped' are bootstrapped

p_values through confidence interval inversion. 'approx' are p-values based on

the t-value produced by dividing the coefficient with the standard error.

confint What type of confidence should be computed. Same options as p_value

conf_level What confidence level should be used for the confidence interval

approx_t_value Should approximate t-values be returned

symmetric_bootstrap_p

Should bootstrap p-values be computed as symmetric (leaving alpha/2 percent in each tail)? FALSE gives non-symmetric, but narrower, intervals. TRUE cor-

responds most closely to conventional p-values.

... Other arguments passsed to tidy function

Value

An EVZINB tidy function

```
data(genevzinb2)
model <- evzinb(y~x1+x2+x3,data=genevzinb2, n_bootstraps = 10, multicore = TRUE, ncores = 2)
tidy(model)</pre>
```

tidy.nbboot 31

tidy.nbboot

Tidy function for nbboot

Description

Tidy function for nbboot

Usage

```
## S3 method for class 'nbboot'
tidy(
    x,
    coef_type = c("original", "bootstrap_mean", "bootstrap_median"),
    standard_error = TRUE,
    p_value = c("bootstrapped", "approx", "none"),
    confint = c("none", "bootstrapped", "approx"),
    conf_level = 0.95,
    approx_t_value = TRUE,
    symmetric_bootstrap_p = TRUE,
    include_ylev = FALSE,
    ...
)
```

Arguments

X	A fitted bootstrapped zero-inflated model			
coef_type	What type of coefficient should be reported, original, bootstrapped mean, or bootstrapped median			
standard_error	Should bootstrapped standard errors be reported?			
p_value	What type of p-value should be reported? Bootstrapped p_values, approximate p-values, or none?			
confint	What type of confidence intervals should be reported? Bootstrapped p_values, approximate p-values, or none?			
conf_level	Confidence level for confidence intervals			
approx_t_value	Should approximate t_values be reported			
symmetric_bootstrap_p				
	Should bootstrap p-values be computed as symmetric (leaving alpha/2 percent in each tail)? FALSE gives non-symmetric, but narrower, intervals. TRUE corresponds most closely to conventional p-values.			
include_ylev	in each tail)? FALSE gives non-symmetric, but narrower, intervals. TRUE cor-			

Other arguments to be passed to tidy

32 tidy.zinbboot

Value

A tidy function for a bootstrapped nb model

Examples

```
\label{lem:data} $$ \data(genevzinb2) $$ model <- evzinb(y^x1+x2+x3,data=genevzinb2, n_bootstraps = 10, multicore = TRUE, ncores = 2) $$ zinb_comp <- compare_models(model) $$ tidy(zinb_comp$nb)
```

tidy.zinbboot

Tidy function for zinbboot

Description

Tidy function for zinbboot

Usage

```
## S3 method for class 'zinbboot'
tidy(
    x,
    component = c("zi", "count", "all"),
    coef_type = c("original", "bootstrap_mean", "bootstrap_median"),
    standard_error = TRUE,
    p_value = c("bootstrapped", "approx", "none"),
    confint = c("none", "bootstrapped", "approx"),
    conf_level = 0.95,
    approx_t_value = TRUE,
    symmetric_bootstrap_p = TRUE,
    ...
)
```

Arguments

X	A fitted bootstrapped zero-inflated model
component	Which component should be shown?
coef_type	What type of coefficient should be reported, original, bootstrapped mean, or bootstrapped median
standard_error	Should bootstrapped standard errors be reported?
p_value	What type of p-value should be reported? Bootstrapped p_values, approximate p-values, or none?
confint	What type of confidence intervals should be reported? Bootstrapped p_values, approximate p-values, or none?

tidy.zinbboot 33

```
conf_level Confidence level for confidence intervals

approx_t_value Should approximate t_values be reported

symmetric_bootstrap_p

Should bootstrap p-values be computed as symmetric (leaving alpha/2 percent in each tail)? FALSE gives non-symmetric, but narrower, intervals. TRUE corresponds most closely to conventional p-values.
```

. . . Other arguments to be passed to tidy

Value

A tidy function for a bootstrapped zinb model

```
\label{lem:data} $$ \data(genevzinb2) $$ model <- evzinb(y^x1+x2+x3,data=genevzinb2, n_bootstraps = 10, multicore = TRUE, ncores = 2) $$ zinb_comp <- compare_models(model) $$ tidy(zinb_comp$zinb) $$
```

Index

```
* datasets
                                                summary.evzinb, 27
    genevzinb, 12
                                                tidy.evinb, 28
    genevzinb2, 12
                                                tidy.evzinb, 29
    gm_evzinb, 16
                                                tidy.nbboot, 31
    hks, 16
                                                tidy.zinbboot, 32
coefficient_extractor, 2
coefficient_extractor.evinb, 3
coefficient_extractor.evzinb, 4
coefficient_extractor.nbboot, 4
coefficient_extractor.zinbboot, 5
compare\_models, 6
evinb, 7
evzinb, 9
genevzinb, 12
genevzinb2, 12
glance, 13–15
glance.evinb, 13
glance.evzinb, 13
glance.nbboot, 14
glance.zinbboot, 15
gm_evzinb, 16
hks, 16
1r_test, 17
oob_evaluation, 18
predict.evinb, 19
predict.evzinb, 20
predict.zinbboot, 22
print.evinb, 23
print.evzinb, 23
print.evzinbcomp, 24
revinb_fit, 25
revzinb_fit, 25
summary.evinb, 26
```