Censored Semi-Bandits: A Framework for Resource Allocation with Censored Feedback

Arun Verma, IIT Bombay Manjesh K. Hanawal, IIT Bombay Arun Rajkumar, IIT Madras Raman Sankaran, LinkedIn

Resource Allocation Problem

Resource Allocation Problem

How to do resource allocation with stochastic loss function?

Motivation

Many real-world problems

- Stochastic Network Utility Maximization (Yi and Chiang, 2008)
- Police patrolling (Curtin et al., 2010)
- Advertisement budget allocation (Lattimore et al., 2014)
- Traffic regulations and enforcement (Adler et al., 2014; Rosenfeld and Kraus, 2017)
- Supplier selection (Abernethy et al., 2016)
- Poaching control (Nguyen et al., 2016; Gholami et al., 2018)

Outline

- Censored Semi-Bandits
 - Same Threshold Case
 - Different Threshold Case

Censored Semi-Bandits

Censored Semi-Bandits

- Amount of resources: Q
- Number of arms (activities): K
- Resource allocation: $\mathbf{a} \doteq \{a_i\}_{i=1}^K$, where a_i denotes the resource allocated to arm i.
- All feasible allocations: $A_Q \doteq \{a : \sum_{i=1}^K a_i \leq Q\}$
- Expected loss observed from arm i is:

$$\mathbb{E}\left[I(a_i)
ight] = egin{cases} \mu_i & ext{if } a_i < heta_i \ 0 & ext{otherwise} \end{cases}$$

where μ_i is the mean loss and θ_i is the associated threshold of arm i.

• Both $\mu = {\{\mu_i\}_{i=1}^K}$ and $\theta = {\{\theta_i\}_{i=1}^K}$ are unknown vectors.

Environment-Learner Interaction

In round *t*:

- 1. **Environment** generates a loss vector $X_t = (X_{t,1}, X_{t,2}, \dots, X_{t,K}) \in \{0,1\}^K$, where $\mathbb{E}[X_{t,i}] = \mu_i$ and sequence $(X_{t,i})_{t \geq 1}$ is i.i.d. for all $i \in [K]$.
- 2. **Learner** picks an allocation vector $\mathbf{a}_t \in \mathcal{A}_{\mathcal{Q}}$.
- 3. **Feedback:** The learner observes a random **censored** feedback $Y_t = \{Y_{t,i} : i \in [K]\}$, where $Y_{t,i} = X_{t,i} \mathbb{1}_{\{a_{t,i} < \theta_i\}}$.
- 4. Incurs Loss: $\sum_{i \in [K]} Y_{t,i}$.

Performance Measure

Optimal allocation

$$\mathbf{a}^{\star} \in \arg\min_{\mathbf{a} \in \mathcal{A}_{\mathcal{Q}}} \sum_{i=1}^{K} \mu_{i} \mathbb{1}_{\{\mathbf{a}_{i} < \theta_{i}\}}.$$

• Expected (pseudo) regret over a period of T for policy π :

$$\mathbb{E}\left[\mathcal{R}_{T}\right] = \sum_{t=1}^{T} \sum_{i=1}^{K} \mu_{i} \mathbb{1}_{\left\{a_{t,i}(\pi) < \theta_{i}\right\}} - T \sum_{i=1}^{K} \mu_{i} \mathbb{1}_{\left\{a_{i}^{\star} < \theta_{i}\right\}}$$

where $a_{t,i}(\pi)$ is the resources allocated to arm i by policy π in the round t.

• A good policy should have sub-linear expected regret, i.e.,

$$\lim_{T\to\infty}\frac{\mathbb{E}\left[\mathcal{R}_{T}\right]}{T}\to0.$$

5

Threshold Equivalence

Allocation Equivalent

The two threshold vectors heta and $\hat{ heta}$ are allocation equivalent if:

$$\min_{\mathbf{a} \in \mathcal{A}_{\mathcal{Q}}} \sum_{i=1}^{K} \mu_{i} \mathbb{1}_{\left\{\mathbf{a}_{i} < \theta_{i}\right\}} = \min_{\mathbf{a} \in \mathcal{A}_{\mathcal{Q}}} \sum_{i=1}^{K} \mu_{i} \mathbb{1}_{\left\{\mathbf{a}_{i} < \hat{\theta}_{i}\right\}}$$

where μ and Q are fixed.

Algorithm Idea

Algorithm has two phases:

- 1. Threshold Estimation Phase: Find an allocation equivalent to heta
- 2. **Regret Minimization Phase:** Select the subset of arms that minimizes the total expected loss

How does Algorithm work?

• $\pmb{\delta}-$ correct: $\hat{\pmb{\theta}}$ is an allocation equivalent to $\pmb{\theta}$ with probability at least $1-\delta$

How does Algorithm work?

 Selecting the best subset of arms using bandit Algorithms (MP-TS (Komiyama et al., 2015), CTS (Wang and Chen, 2018))

Same Threshold Case

Same Threshold Case

Setting:

• $\forall i \in [K] : \theta_i = \theta_c$ where $\theta_c \in \mathbb{R}^+$ and $Q \ge \theta_c$.

Optimal Allocation

Let $M = \min\{\lfloor Q/\theta_c \rfloor, K\}$. Then the optimal allocation allocates the θ_c fraction of resources to top M arms with highest mean loss.

Allocation Equivalent (Verma et al., 2019, Lemma 1)

Let $\hat{\theta}_c = Q/M$. Then the allocation equivalent of θ_c is $\hat{\theta}_c$. Further $\hat{\theta}_c \in \Theta = \{Q/K, Q/(K-1), \cdots, Q\}$.

Allocation Equivalent:

• Example: $K=5, Q=1, \theta_c=0.3$, and $\Theta=\{0.2, 0.25, 0.33, 0.5, 1\}$. Given problem, $\hat{\theta}_c=0.33$ is allocation equivalent to θ_c .

Threshold Estimation Phase

Let
$$\Theta=\{\theta_1,\theta_2,\theta_3,\theta_4,\theta_5,\theta_6,\theta_7,\theta_8,\theta_9\}$$
 and $\theta_c=\theta_6$

ullet Start a binary search to find allocation equivalent in Θ .

Threshold Estimation Phase

Let
$$\Theta = \{\theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6, \theta_7, \theta_8, \theta_9\}$$
 and $\theta_c = \theta_6$

- Select $\theta_i \in \Theta$ and allocate θ_i resources to randomly selected $\frac{Q}{\theta_i}$ arms
- If loss is observed, θ_i is underestimate of θ_c .

Threshold Estimation Phase

Let
$$\Theta = \{\theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6, \theta_7, \theta_8, \theta_9\}$$
 and $\theta_c = \theta_6$

• If loss is not observed for consecutive $N(\delta)$ rounds, θ_i is overestimate of θ_c .

Threshold Estimation Phase

Let
$$\Theta=\{\theta_1,\theta_2,\theta_3,\theta_4,\theta_5,\theta_6,\theta_7,\theta_8,\theta_9\}$$
 and $\theta_c=\theta_6$

• δ -correct allocation is found.

Number of Rounds (Verma et al., 2019, Lemma 2)

Let for all $i \in [K]$, $\mu_i \ge \epsilon > 0$. Then with probability at least $1 - \delta$, the number of rounds needed by CSB-ST to find an allocation equivalent to θ_c is bounded as

$$T_{ heta_s}(\delta) \leq rac{ extit{N}(\delta)}{ exttt{max}\{1, \lfloor Q
floor\}} \log_2 K$$

where
$$N(\delta) = \frac{\log(\frac{\log_2 K}{\delta})}{\log(1/(1-\epsilon))}$$
.

Regret Minimization Phase

• Once $\hat{\theta}_c$ is known, top $Q/\hat{\theta}_c$ arms are selected using Multiple-Play Thomson Sampling (MP-TS) algorithm (Komiyama et al., 2015) in subsequent rounds.

Regret Bounds

Lower Bound (Anantharam et al., 1987, Theorem 3.1)

$$\lim_{T \to \infty} \mathbb{P} \left\{ \frac{\mathbb{E}[\mathcal{R}_T]}{\log T} \ge \sum_{i \in [K] \setminus [K-M]} \frac{(1-o(1))(\mu_i - \mu_{K-M})}{d(\mu_{K-M}, \mu_i)} \right\} = 1,$$

where d(p, q) is the Kullback-Leibler (KL) divergence between two Bernoulli distributions with parameter p and q.

Upper Bound (Verma et al., 2019, Theorem 1)

Let $\mu_1 \leq \mu_2 \leq \ldots \leq \mu_{K-M} < \mu_{K-M+1} \leq \ldots \leq \mu_K$ and $\delta = 1/T$. Then the expected regret of CSB-ST over a period of T is given by

$$\mathbb{E}\left[\mathcal{R}_{T}\right] \leq O\left(\sum_{i \in [K] \setminus [K-M]} \frac{(\mu_{i} - \mu_{K-M}) \log T}{d(\mu_{K-M}, \mu_{i})}\right).$$

⇒ The regret of CSB-ST is asymptotically optimal.

Different Threshold Case

Different Threshold Case

Setting:

• Threshold may not be the same for all arms.

Optimal Allocation (Verma et al., 2019, Proposition 2)

The optimal allocation is the solution given by 0-1 knapsack having capacity Q and K items where item i has weight θ_i and value μ_i .

Allocation Equivalent:

- Let $r := \left(Q \sum_{a_i^* \ge \theta_i} \theta_i\right)$. If $r = 0 \implies$ 'hopeless problem'
- An allocation equivalent can be found if r > 0

Allocation Equivalent (Verma et al., 2019, Lemma 3)

Let $\gamma := r/K > 0$ and $\forall i \in [K] : \hat{\theta}_i \in [\theta_i, \theta_i + \gamma]$. Then $\hat{\theta}$ is an allocation equivalent to θ .

Algorithm for Different Threshold Case: CSB-DT

Threshold Estimation Phase

- Each $\hat{\theta}_i$ is estimated by using binary search in [0, Q] interval and keep track of lower bound $\theta_{l,i}$ and upper bound $\theta_{u,i}$.
- Stop search when $\theta_{u,i} \theta_{l,i} \leq \gamma$

Number of Rounds (Verma et al., 2019, Lemma 4)

Let $\gamma>0$ and for all $i\in[K]$, $\mu_i\geq\epsilon>0$. Then with probability at least $1-\delta$, the number of rounds needed by CSB-DT to find an allocation equivalent to θ is bounded as

$$T_{\theta_d}(\delta) \leq \frac{1}{\max\{1, \lfloor Q \rfloor\}} \frac{K \log \left(\frac{K \log_2(\lceil 1 + Q/\gamma \rceil)}{\delta}\right)}{\log \left(1/(1 - \epsilon)\right)} \log_2 \left(\left\lceil 1 + \frac{Q}{\gamma} \right\rceil\right).$$

Regret Minimization Phase

• Once $\hat{\theta}$ is known, a subset of arms is selected using Combinatorial Thomson Sampling (CTS) algorithm (Wang and Chen, 2018).

Regret Bounds

Upper Bound Verma et al. (2019, Theorem 2)

Let $\gamma>0$, $S_a=\{i:a_i<\theta_i\}$ for any feasible allocation a, and $\Delta_a=\sum_{i=1}^K\mu_i\big(\mathbbm{1}_{\{a_i<\theta_i\}}-\mathbbm{1}_{\left\{a_i^*<\theta_i\right\}}\big).$ Then for any η such that $\forall \pmb{a}\in\mathcal{A}_Q, \Delta_a>2(k^{\star 2}+2)\eta,$ the expected regret of CSB-DT over a period of T is given by

$$\mathbb{E}\left[\mathcal{R}_{\mathcal{T}}\right] \leq O\left(\sum_{i \in [K]} \max_{S_a: i \in S_a} \frac{8|S_a| \log T}{\Delta_a - 2(|S_{a^*}|^2 + 2)\eta}\right).$$

Empirical Results

- Instance I (Same Threshold Problem Instance): It has $K=20, Q=7, \theta_c=0.7, \delta=0.1$ and $\epsilon=0.1$. The mean loss of arm $i\in [K]$ is $\mu_i=0.25+(i-1)/50$.
- Instance II (Different Threshold Problem Instance): It has $K=5, Q=2, \delta=0.1, \epsilon=0.1, \gamma=10^{-3}$. The mean loss vector is $\mu=[0.9,0.89,0.87,0.58,0.3]$ and corresponding threshold vector is $\theta=[0.7,0.7,0.7,0.6,0.35]$.

Figure 1: Cumulative Regret of CSB-ST for different amount of resources in Instance I.

Figure 2: Cumulative Regret of CSB-ST for different thresholds in Instance I.

Figure 3: Cumulative Regret of CSB-DT and UCB based Algorithms for Instance II.

References

- Y. Yi and M. Chiang. Stochastic network utility maximisation—a tribute to kelly's paper published in this journal a decade ago. *European Transactions on Telecommunications*, 19(4):421–442, 2008.
- Kevin M Curtin, Karen Hayslett-McCall, and Fang Qiu. Determining optimal police patrol areas with maximal covering and backup covering location models. *Networks and Spatial Economics*, 10(1):125–145, 2010.
- Tor Lattimore, Koby Crammer, and Csaba Szepesvári. Optimal resource allocation with semi-bandit feedback. In Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence, pages 477–486. AUAI Press, 2014.
- Nicole Adler, Alfred Shalom Hakkert, Jonathan Kornbluth, Tal Raviv, and Mali Sher. Location-allocation models for traffic police patrol vehicles on an interurban network. Annals of Operations Research, 221(1):9–31, 2014.
- Ariel Rosenfeld and Sarit Kraus. When security games hit traffic: Optimal traffic enforcement under one sided uncertainty. In *IJCAI*, pages 3814–3822, 2017.
- Jacob D Abernethy, Kareem Amin, and Ruihao Zhu. Threshold bandits, with and without censored feedback. In Advances In Neural Information Processing Systems, pages 4889–4897, 2016.

References ii

- Thanh H Nguyen, Arunesh Sinha, Shahrzad Gholami, et al. Capture: A new predictive anti-poaching tool for wildlife protection. In *Proceedings of the 2016 International Conference* on Autonomous Agents & Multiagent Systems, pages 767–775, 2016.
- Shahrzad Gholami, Sara Mc Carthy, Bistra Dilkina, , et al. Adversary models account for imperfect crime data: Forecasting and planning against real-world poachers. In *Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems*, pages 823–831, 2018.
- Junpei Komiyama, Junya Honda, and Hiroshi Nakagawa. Optimal regret analysis of thompson sampling in stochastic multi-armed bandit problem with multiple plays. In *International* Conference on Machine Learning, pages 1152–1161, 2015.
- Siwei Wang and Wei Chen. Thompson sampling for combinatorial semi-bandits. In *International Conference on Machine Learning*, pages 5101–5109, 2018.
- Arun Verma, Manjesh K Hanawal, Arun Rajkumar, and Raman Sankaran. Censored semi-bandits: A framework for resource allocation with censored feedback. To appear in Advances In Neural Information Processing Systems, 2019.
- V. Anantharam, P. Varaiya, and J. Walrand. Asymptotically efficient allocation rules for the multiarmed bandit problem with multiple plays- part I. *IEEE Transactions on Automatic* Control, 32(11):968–976, 1987.
- Tor Lattimore, Koby Crammer, and Csaba Szepesvári. Linear multi-resource allocation with semi-bandit feedback. In *Advances in Neural Information Processing Systems*, pages 964–972, 2015.

References iii

- Yuval Dagan and Crammer Koby. A better resource allocation algorithm with semi-bandit feedback. In *Proceedings of Algorithmic Learning Theory*, pages 268–320, 2018.
- Xavier Fontaine, Shie Mannor, and Vianney Perchet. A problem-adaptive algorithm for resource allocation. arXiv preprint arXiv:1902.04376, 2019.