"By Chain Completeness"...? Proofs on Infinite Lists Week 2 MT25

Tadayoshi Kamegai

Oxford Compsoc

October 23, 2025

Outline

1 Introduction

Chains

3 Admissible Predicates

Motivation

In the Functional Programming course, you will / have learned how to write proofs regarding infinite lists.

Motivation

In the Functional Programming course, you will / have learned how to write proofs regarding infinite lists.

 \rightarrow But... much of the background regarding this was skipped.

Motivation

In the Functional Programming course, you will / have learned how to write proofs regarding infinite lists.

 \rightarrow But... much of the background regarding this was skipped.

Aim: Give a better background of how the proof works!

Outline

Introduction

2 Chains

3 Admissible Predicates

Definition

A **Poset** or a **Partially ordered set** (P, \sqsubseteq) is a base set P equipped with a binary relation \sqsubseteq that is reflexive, antisymmetric, transitive.

Definition

A **Poset** or a **Partially ordered set** (P, \sqsubseteq) is a base set P equipped with a binary relation \sqsubseteq that is reflexive, antisymmetric, transitive.

Example

• Any total order is a poset. For example, (\mathbb{N},\leq) , (\mathbb{Z},\leq) , (\mathbb{R},\leq)

Definition

A **Poset** or a **Partially ordered set** (P, \sqsubseteq) is a base set P equipped with a binary relation \sqsubseteq that is reflexive, antisymmetric, transitive.

- Any total order is a poset. For example, (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{R}, \leq)
- Given a base set X, $(\mathcal{P}(X),\subseteq)$, the power set ordered by inclusion

Definition

A **Poset** or a **Partially ordered set** (P, \sqsubseteq) is a base set P equipped with a binary relation \sqsubseteq that is reflexive, antisymmetric, transitive.

- Any total order is a poset. For example, (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{R}, \leq)
- Given a base set X, $(\mathcal{P}(X),\subseteq)$, the power set ordered by inclusion
- ($\mathbb{N}_{\geq 1}$, |), divisibility order

Definition

A **Poset** or a **Partially ordered set** (P, \sqsubseteq) is a base set P equipped with a binary relation \sqsubseteq that is reflexive, antisymmetric, transitive.

- Any total order is a poset. For example, (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{R}, \leq)
- Given a base set X, $(\mathcal{P}(X),\subseteq)$, the power set ordered by inclusion
- $(\mathbb{N}_{>1}, |)$, divisibility order
- Strings by prefix: $u \leq v$ if u is a prefix of v

Definition

A **Poset** or a **Partially ordered set** (P, \sqsubseteq) is a base set P equipped with a binary relation \sqsubseteq that is reflexive, antisymmetric, transitive.

- Any total order is a poset. For example, (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{R}, \leq)
- Given a base set X, $(\mathcal{P}(X),\subseteq)$, the power set ordered by inclusion
- (N_{>1}, |), divisibility order
- Strings by prefix: $u \leq v$ if u is a prefix of v
- DAGs by reachability

Definition

A **Poset** or a **Partially ordered set** (P, \sqsubseteq) is a base set P equipped with a binary relation \sqsubseteq that is reflexive, antisymmetric, transitive.

- Any total order is a poset. For example, (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{R}, \leq)
- Given a base set X, $(\mathcal{P}(X),\subseteq)$, the power set ordered by inclusion
- $(\mathbb{N}_{>1}, |)$, divisibility order
- Strings by prefix: $u \leq v$ if u is a prefix of v
- DAGs by reachability
- Abstract interpretation: $a \subseteq b$ if a is less precise than b

Definition

A **Poset** or a **Partially ordered set** (P, \sqsubseteq) is a base set P equipped with a binary relation \sqsubseteq that is reflexive, antisymmetric, transitive.

- Any total order is a poset. For example, (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{R}, \leq)
- Given a base set X, $(\mathcal{P}(X),\subseteq)$, the power set ordered by inclusion
- $(\mathbb{N}_{>1}, |)$, divisibility order
- Strings by prefix: $u \leq v$ if u is a prefix of v
- DAGs by reachability
- Abstract interpretation: $a \subseteq b$ if a is less precise than b
- For a base set X and a poset D, D^X with $f \leq g \iff \forall x. f(x) \leq g(x)$

Definition

A **Poset** or a **Partially ordered set** (P, \sqsubseteq) is a base set P equipped with a binary relation \sqsubseteq that is reflexive, antisymmetric, transitive.

- Any total order is a poset. For example, (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{R}, \leq)
- Given a base set X, $(\mathcal{P}(X),\subseteq)$, the power set ordered by inclusion
- $(\mathbb{N}_{>1}, |)$, divisibility order
- Strings by prefix: $u \leq v$ if u is a prefix of v
- DAGs by reachability
- Abstract interpretation: $a \subseteq b$ if a is less precise than b
- For a base set X and a poset D, D^X with $f \leq g \iff \forall x. f(x) \leq g(x)$

Definition

Given a poset (P, \sqsubseteq) , a **chain** C is a subset of P such that every element in C is comparable (totally ordered).

Definition

Given a poset (P, \sqsubseteq) , a **chain** C is a subset of P such that every element in C is comparable (totally ordered).

Definition

The **supremum** of a chain C written $\bigcup C$ is the least upper bound (lub) of C in P (if it exists).

Definition

Given a poset (P, \sqsubseteq) , a **chain** C is a subset of P such that every element in C is comparable (totally ordered).

Definition

The **supremum** of a chain C written $\bigcup C$ is the least upper bound (lub) of C in P (if it exists).

Definition

The **bottom** element written \perp is the least element of a poset (if it exists).

Definition

Given a poset (P, \sqsubseteq) , a **chain** C is a subset of P such that every element in C is comparable (totally ordered).

Definition

The **supremum** of a chain C written $\bigcup C$ is the least upper bound (lub) of C in P (if it exists).

Definition

The **bottom** element written \bot is the least element of a poset (if it exists).

Definition

A chain-complete poset (ccpo) is a poset such that every non-empty chain has a least upper bound.

Definition

Given a poset (P, \sqsubseteq) , a **chain** C is a subset of P such that every element in C is comparable (totally ordered).

Definition

The **supremum** of a chain C written $\bigcup C$ is the least upper bound (lub) of C in P (if it exists).

Definition

The **bottom** element written \bot is the least element of a poset (if it exists).

Definition

A chain-complete poset (ccpo) is a poset such that every non-empty chain has a least upper bound.

 \rightarrow Lists form a ccpo with bottom.

Fix a set A of elements. Consider the poset L of partial lists over A ordered by information content:

Fix a set A of elements. Consider the poset L of partial lists over A ordered by information content:

ullet \perp is the totally undefined list

Fix a set A of elements. Consider the poset L of partial lists over A ordered by information content:

- ullet \perp is the totally undefined list
- A finite list is below any list that has it as a prefix: $x : xs \sqsubseteq y : ys$ iff $x \sqsubseteq y$ and $xs \sqsubseteq ys$

Fix a set A of elements. Consider the poset L of partial lists over A ordered by information content:

- ullet \perp is the totally undefined list
- A finite list is below any list that has it as a prefix: $x : xs \sqsubseteq y : ys$ iff $x \sqsubseteq y$ and $xs \sqsubseteq ys$

For example,

$$\bot \sqsubseteq 0 : \bot \sqsubseteq 0 : 1 : \bot \sqsubseteq 0 : 1 : 2 : \bot \sqsubseteq \cdots$$

Fix a set A of elements. Consider the poset L of partial lists over A ordered by information content:

- ullet \perp is the totally undefined list
- A finite list is below any list that has it as a prefix: $x : xs \sqsubseteq y : ys$ iff $x \sqsubseteq y$ and $xs \sqsubseteq ys$

For example,

$$\bot \sqsubseteq 0 : \bot \sqsubseteq 0 : 1 : \bot \sqsubseteq 0 : 1 : 2 : \bot \sqsubseteq \cdots$$

The \perp acts like an unknown tail, which might terminate or go on forever.

Fix a set A of elements. Consider the poset L of partial lists over A ordered by information content:

- \bullet \perp is the totally undefined list
- A finite list is below any list that has it as a prefix: $x : xs \sqsubseteq y : ys$ iff $x \sqsubseteq y$ and $xs \sqsubseteq ys$

For example,

$$\bot \sqsubseteq 0 : \bot \sqsubseteq 0 : 1 : \bot \sqsubseteq 0 : 1 : 2 : \bot \sqsubseteq \cdots$$

The \perp acts like an unknown tail, which might terminate or go on forever. With this chain, the supremum is just [0..].

Fix a set A of elements. Consider the poset L of partial lists over A ordered by information content:

- \bullet \perp is the totally undefined list
- A finite list is below any list that has it as a prefix: $x : xs \sqsubseteq y : ys$ iff $x \sqsubseteq y$ and $xs \sqsubseteq ys$

For example,

$$\bot \sqsubseteq 0 : \bot \sqsubseteq 0 : 1 : \bot \sqsubseteq 0 : 1 : 2 : \bot \sqsubseteq \cdots$$

The \perp acts like an unknown tail, which might terminate or go on forever. With this chain, the supremum is just [0..]. But

$$\mathsf{nil} \not\sqsubseteq \mathsf{0} : \mathsf{nil} \not\sqsubseteq \mathsf{0} : \mathsf{1} : \mathsf{nil} \not\sqsubseteq \cdots$$

Fix a set A of elements. Consider the poset L of partial lists over A ordered by information content:

- \bullet \perp is the totally undefined list
- A finite list is below any list that has it as a prefix: $x : xs \sqsubseteq y : ys$ iff $x \sqsubseteq y$ and $xs \sqsubseteq ys$

For example,

$$\bot \Box 0: \bot \Box 0: 1: \bot \Box 0: 1: 2: \bot \Box \cdots$$

The \perp acts like an unknown tail, which might terminate or go on forever. With this chain, the supremum is just [0..]. But

$$\mathsf{nil} \not\sqsubseteq \mathsf{0} : \mathsf{nil} \not\sqsubseteq \mathsf{0} : \mathsf{1} : \mathsf{nil} \not\sqsubseteq \cdots$$

because finite lists contain the information about termination.

Definition

Given a poset (P, \sqsubseteq) , a function $F: P \to P$ is **monotone** if $x \sqsubseteq y$ implies that $F(x) \sqsubseteq F(y)$

Functions

Definition

Given a poset (P, \sqsubseteq) , a function $F: P \to P$ is **monotone** if $x \sqsubseteq y$ implies that $F(x) \sqsubseteq F(y)$

Definition

A function F is **Scott continuous** if it is monotone and preserves least upper bound of chains. That is, given a chain C, we have

$$F(\bigsqcup_{c \in C} c) = \bigsqcup_{c \in C} F(c)$$

Functions

Definition

Given a poset (P, \sqsubseteq) , a function $F: P \to P$ is **monotone** if $x \sqsubseteq y$ implies that $F(x) \sqsubseteq F(y)$

Definition

A function F is **Scott continuous** if it is monotone and preserves least upper bound of chains. That is, given a chain C, we have

$$F(\bigsqcup_{c \in C} c) = \bigsqcup_{c \in C} F(c)$$

Aside

This is a continuity based on a topology on posets. In the scott topology, $C \subseteq P$ is closed if

- C is lower: $y \in C$ and $x \sqsubseteq y$ implies $x \in C$
- closed under directed (chain) suprema: when $D \subseteq C$ is directed and $\bigsqcup D$ exists, $\mid D \in C$

Functions - continued

Definition

Given a function $F: P \to P$, $x \in P$ is a **fixed point** if F(x) = x.

Functions - continued

Definition

Given a function $F: P \to P$, $x \in P$ is a **fixed point** if F(x) = x.

Definition

The least fixed point of F, written lfp(F) is the \sqsubseteq -least among fixed points.

Functions - continued

Definition

Given a function $F: P \to P$, $x \in P$ is a **fixed point** if F(x) = x.

Definition

The least fixed point of F, written lfp(F) is the \sqsubseteq -least among fixed points.

Theorem (Kleene)

Given a chain complete poset P with bottom and a continuous function $F:P\to P$,

$$\mathsf{lfp}(F) = \bigsqcup_{n \in \mathbb{N}} F^n(\bot)$$

Proofs on Partial Lists

If we consider partial lists that end in \bot , there is a clear bijection with lists by sending the bottom element to nil.

Proofs on Partial Lists

If we consider partial lists that end in \perp , there is a clear bijection with lists by sending the bottom element to nil. Concretely, setting $S = \{\bot, a_1 : \bot, a_1 : a_2 : \bot, \cdots \mid a_i \in A\}$ we have an order preserving isomorphism between S and $List_{fin}(A)$ by

If we consider partial lists that end in \bot , there is a clear bijection with lists by sending the bottom element to nil. Concretely, setting $S = \{\bot, a_1 : \bot, a_1 : a_2 : \bot, \cdots \mid a_i \in A\}$ we have an order preserving isomorphism between S and List $_{fin}(A)$ by

- $f: \mathsf{List}_{\mathsf{fin}}(A) \to S \mathsf{ by } f([]) = \bot, \ f(a:xs) = a:f(xs)$
- $g: S \to \mathsf{List}_\mathsf{fin}(A)$ by $g(\bot) = []$, g(a: xs) = a: g(xs)

If we consider partial lists that end in \bot , there is a clear bijection with lists by sending the bottom element to nil. Concretely, setting $S = \{\bot, a_1 : \bot, a_1 : a_2 : \bot, \cdots \mid a_i \in A\}$ we have an order preserving isomorphism between S and List $_{fin}(A)$ by

- $f: \mathsf{List}_{\mathsf{fin}}(A) \to S \mathsf{\ by\ } f([]) = \bot, \ f(a:xs) = a:f(xs)$
- $g: S \to \mathsf{List}_\mathsf{fin}(A)$ by $g(\bot) = [], \ g(a:xs) = a:g(xs)$

So, we can prove properties about finite partial lists with a similar induction scheme to finite lists.

If we consider partial lists that end in \bot , there is a clear bijection with lists by sending the bottom element to nil. Concretely, setting $S = \{\bot, a_1 : \bot, a_1 : a_2 : \bot, \cdots \mid a_i \in A\}$ we have an order preserving isomorphism between S and List $_{fin}(A)$ by

•
$$f: \mathsf{List}_{\mathsf{fin}}(A) \to S \mathsf{ by } f([]) = \bot, \ f(a:xs) = a:f(xs)$$

•
$$g: S \to \mathsf{List}_\mathsf{fin}(A)$$
 by $g(\bot) = [], \ g(a:xs) = a:g(xs)$

So, we can prove properties about finite partial lists with a similar induction scheme to finite lists.

Specifically, we just need

- Base: P(⊥)
- Step: for all x and xs, $P(xs) \implies P(x:xs)$

If we consider partial lists that end in \bot , there is a clear bijection with lists by sending the bottom element to nil. Concretely, setting $S = \{\bot, a_1 : \bot, a_1 : a_2 : \bot, \cdots \mid a_i \in A\}$ we have an order preserving isomorphism between S and List $_{fin}(A)$ by

- $f: \mathsf{List}_{\mathsf{fin}}(A) \to S \mathsf{\ by\ } f([]) = \bot, \ f(a:xs) = a:f(xs)$
- $g: S \to \mathsf{List}_\mathsf{fin}(A)$ by $g(\bot) = [], \ g(a:xs) = a:g(xs)$

So, we can prove properties about finite partial lists with a similar induction scheme to finite lists.

Specifically, we just need

- Base: *P*(⊥)
- Step: for all x and xs, $P(xs) \implies P(x:xs)$

Then, for all $xs \in S$, P(xs).

If we consider partial lists that end in \bot , there is a clear bijection with lists by sending the bottom element to nil. Concretely, setting $S = \{\bot, a_1 : \bot, a_1 : a_2 : \bot, \cdots \mid a_i \in A\}$ we have an order preserving isomorphism between S and List $_{fin}(A)$ by

- $f: \mathsf{List}_{\mathsf{fin}}(A) \to S \mathsf{\ by\ } f([]) = \bot, \ f(a:xs) = a:f(xs)$
- $g: S \to \mathsf{List}_\mathsf{fin}(A)$ by $g(\bot) = [], \ g(a:xs) = a:g(xs)$

So, we can prove properties about finite partial lists with a similar induction scheme to finite lists.

Specifically, we just need

- Base: P(⊥)
- Step: for all x and xs, $P(xs) \implies P(x:xs)$

Then, for all $xs \in S$, P(xs). However, this doesn't give any properties about total infinite lists, as they live outside of S.

If we consider partial lists that end in \bot , there is a clear bijection with lists by sending the bottom element to nil. Concretely, setting $S = \{\bot, a_1 : \bot, a_1 : a_2 : \bot, \cdots \mid a_i \in A\}$ we have an order preserving isomorphism between S and List $_{fin}(A)$ by

- $f: \mathsf{List}_{\mathsf{fin}}(A) \to S \mathsf{\ by\ } f([]) = \bot, \ f(a:xs) = a:f(xs)$
- $g: S \to \mathsf{List}_\mathsf{fin}(A)$ by $g(\bot) = [], \ g(a:xs) = a:g(xs)$

So, we can prove properties about finite partial lists with a similar induction scheme to finite lists.

Specifically, we just need

- Base: *P*(⊥)
- Step: for all x and xs, $P(xs) \implies P(x:xs)$

Then, for all $xs \in S$, P(xs). However, this doesn't give any properties about total infinite lists, as they live outside of S.

To do this, we introduce the notion of admissible predicates.

Admissibility

Definition

A predicate $P: L \to \{\text{true}, \text{false}\}$ is admissible if it is closed under least upper bounds of chains. That is, if

- $x_0 \sqsubseteq x_1 \sqsubseteq \cdots$
- for all n, $P(x_n)$

implies that $P(\bigsqcup_n x_n)$

Admissibility

Definition

A predicate $P: L \to \{\text{true}, \text{false}\}$ is **admissible** if it is closed under least upper bounds of chains. That is, if

- $x_0 \sqsubseteq x_1 \sqsubseteq \cdots$
- for all n, $P(x_n)$

implies that $P(\bigsqcup_n x_n)$

Intuition: if every finite approximation satisfies P, then the limit (possibly infinite) also satisfies P.

We give a method to prove propositions on infinite lists.

We give a method to prove propositions on infinite lists.

Suppose that P is an admissible predicate.

We give a method to prove propositions on infinite lists.

Suppose that P is an admissible predicate. Let xs be an infinite list, and write

$$xs := x_0 : x_1 : x_2 : \cdots$$

We give a method to prove propositions on infinite lists.

Suppose that P is an admissible predicate. Let xs be an infinite list, and write

$$xs := x_0 : x_1 : x_2 : \cdots$$

Then define a chain C by,

$$\bot \sqsubseteq x_0 : \bot \sqsubseteq x_0 : x_1 : \bot \sqsubseteq \cdots$$

We give a method to prove propositions on infinite lists.

Suppose that P is an admissible predicate. Let xs be an infinite list, and write

$$xs := x_0 : x_1 : x_2 : \cdots$$

Then define a chain C by,

$$\bot \sqsubseteq x_0 : \bot \sqsubseteq x_0 : x_1 : \bot \sqsubseteq \cdots$$

By construction,
$$\bigsqcup C = x_0 : x_1 : \cdots = xs$$

We give a method to prove propositions on infinite lists.

Suppose that P is an admissible predicate. Let xs be an infinite list, and write

$$xs := x_0 : x_1 : x_2 : \cdots$$

Then define a chain C by,

$$\bot \sqsubseteq x_0 : \bot \sqsubseteq x_0 : x_1 : \bot \sqsubseteq \cdots$$

By construction,
$$\coprod C = x_0 : x_1 : \cdots = xs$$

As P is admissible, to prove a predicate about xs, it suffices to prove it is the case for every element in C.

We give a method to prove propositions on infinite lists.

Suppose that P is an admissible predicate. Let xs be an infinite list, and write

$$xs := x_0 : x_1 : x_2 : \cdots$$

Then define a chain C by,

$$\bot \sqsubseteq x_0 : \bot \sqsubseteq x_0 : x_1 : \bot \sqsubseteq \cdots$$

By construction, $\coprod C = x_0 : x_1 : \cdots = xs$

As P is admissible, to prove a predicate about xs, it suffices to prove it is the case for every element in C. As elements in C are finite partial lists, we can use the proof scheme from before.

Outline

Introduction

2 Chains

3 Admissible Predicates

Although we have a scheme to prove properties about infinite lists now, we still need to show that P is admissible.

Although we have a scheme to prove properties about infinite lists now, we still need to show that ${\cal P}$ is admissible.

ightarrow Feels like we just moved the problem backwards.

Although we have a scheme to prove properties about infinite lists now, we still need to show that P is admissible.

 \rightarrow Feels like we just moved the problem backwards.

Some questions remain...

Although we have a scheme to prove properties about infinite lists now, we still need to show that P is admissible.

 \rightarrow Feels like we just moved the problem backwards.

Some questions remain...

• What do admissible predicates look like?

Although we have a scheme to prove properties about infinite lists now, we still need to show that P is admissible.

 \rightarrow Feels like we just moved the problem backwards.

Some questions remain...

- What do admissible predicates look like?
- Is the proposition I want to prove admissible?

Recall,

Definition

A predicate $P: L \rightarrow \{\mathsf{true}, \mathsf{false}\}$ is admissible if

- for any chain $x_0 \sqsubseteq x_1 \sqsubseteq \cdots$
- if we can show for all n, $P(x_n)$

implies that $P(\bigsqcup_n x_n)$

Recall,

Definition

A predicate $P: L \rightarrow \{\text{true}, \text{false}\}\$ is **admissible** if

- for any chain $x_0 \sqsubseteq x_1 \sqsubseteq \cdots$
- if we can show for all n, $P(x_n)$

implies that $P(\bigsqcup_n x_n)$

Some properties about lists aren't admissible.

Recall,

Definition

A predicate $P: L \rightarrow \{\text{true}, \text{false}\}\$ is **admissible** if

- for any chain $x_0 \sqsubseteq x_1 \sqsubseteq \cdots$
- if we can show for all n, $P(x_n)$

implies that $P(\bigsqcup_n x_n)$

Some properties about lists aren't admissible. For example,

• xs is finite

Recall,

Definition

A predicate $P: L \rightarrow \{\mathsf{true}, \mathsf{false}\}\ \mathsf{is}\ \mathsf{admissible}\ \mathsf{if}$

- for any chain $x_0 \sqsubseteq x_1 \sqsubseteq \cdots$
- if we can show for all n, $P(x_n)$

implies that $P(\bigsqcup_n x_n)$

Some properties about lists aren't admissible. For example,

- xs is finite
- $\exists n.\mathsf{drop}\ n\ xs = \bot$

Recall,

Definition

A predicate $P: L \rightarrow \{\text{true}, \text{false}\}\$ is admissible if

- for any chain $x_0 \sqsubseteq x_1 \sqsubseteq \cdots$
- if we can show for all n, $P(x_n)$

implies that $P(\bigsqcup_n x_n)$

Some properties about lists aren't admissible. For example,

- xs is finite
- $\exists n.\mathsf{drop}\ n\ xs = \bot$

These are examples of 'limit-fragile' propositions.

A safety property say that 'bad things never happen'.

A safety property say that 'bad things never happen'. A property is **safe** if having all finite prefixes of a list x lie in P implies that $x \in P$.

A safety property say that 'bad things never happen'. A property is **safe** if having all finite prefixes of a list x lie in P implies that $x \in P$. Equivalently, if $x \notin P$, there exists a finite prefix $y \sqsubseteq x$ with $y \notin P$ (a finite counterexample).

A safety property say that 'bad things never happen'. A property is **safe** if having all finite prefixes of a list x lie in P implies that $x \in P$. Equivalently, if $x \notin P$, there exists a finite prefix $y \sqsubseteq x$ with $y \notin P$ (a finite counterexample). There are many examples of safety properties on lists.

A safety property say that 'bad things never happen'. A property is **safe** if having all finite prefixes of a list x lie in P implies that $x \in P$. Equivalently, if $x \notin P$, there exists a finite prefix $y \sqsubseteq x$ with $y \notin P$ (a finite counterexample).

There are many examples of safety properties on lists.

A safety property say that 'bad things never happen'. A property is safe if having all finite prefixes of a list x lie in P implies that $x \in P$. Equivalently, if $x \notin P$, there exists a finite prefix $y \sqsubseteq x$ with $y \notin P$ (a finite counterexample). There are many examples of safety properties on lists.

For example, where we ban certain patterns:

No 1 ever occurs

A safety property say that 'bad things never happen'. A property is **safe** if having all finite prefixes of a list x lie in P implies that $x \in P$. Equivalently, if $x \notin P$, there exists a finite prefix $y \sqsubseteq x$ with $y \notin P$ (a finite counterexample).

There are many examples of safety properties on lists.

- No 1 ever occurs
- No two consecutive 1s

A safety property say that 'bad things never happen'. A property is **safe** if having all finite prefixes of a list x lie in P implies that $x \in P$. Equivalently, if $x \notin P$, there exists a finite prefix $y \sqsubseteq x$ with $y \notin P$ (a finite counterexample).

There are many examples of safety properties on lists.

- No 1 ever occurs
- No two consecutive 1s
- All elements are less than 10

A safety property say that 'bad things never happen'. A property is **safe** if having all finite prefixes of a list x lie in P implies that $x \in P$. Equivalently, if $x \notin P$, there exists a finite prefix $y \sqsubseteq x$ with $y \notin P$ (a finite counterexample).

There are many examples of safety properties on lists.

- No 1 ever occurs
- No two consecutive 1s
- All elements are less than 10
- We never see "010"

A safety property say that 'bad things never happen'. A property is **safe** if having all finite prefixes of a list x lie in P implies that $x \in P$. Equivalently, if $x \notin P$, there exists a finite prefix $y \sqsubseteq x$ with $y \notin P$ (a finite counterexample).

There are many examples of safety properties on lists.

For example, where we ban certain patterns:

- No 1 ever occurs
- No two consecutive 1s
- All elements are less than 10
- We never see "010"

Or when the proposition is prefix-invariant (bad patterns can be checked with a finite prefix):

Safety Properties are Admissible

A safety property say that 'bad things never happen'. A property is **safe** if having all finite prefixes of a list x lie in P implies that $x \in P$. Equivalently, if $x \notin P$, there exists a finite prefix $y \sqsubseteq x$ with $y \notin P$ (a finite counterexample).

There are many examples of safety properties on lists.

For example, where we ban certain patterns:

- No 1 ever occurs
- No two consecutive 1s
- All elements are less than 10
- We never see "010"

Or when the proposition is prefix-invariant (bad patterns can be checked with a finite prefix):

At most 1 in any prefix

Safety Properties are Admissible

A safety property say that 'bad things never happen'. A property is **safe** if having all finite prefixes of a list x lie in P implies that $x \in P$. Equivalently, if $x \notin P$, there exists a finite prefix $y \sqsubseteq x$ with $y \notin P$ (a finite counterexample).

There are many examples of safety properties on lists.

For example, where we ban certain patterns:

- No 1 ever occurs
- No two consecutive 1s
- All elements are less than 10
- We never see "010"

Or when the proposition is prefix-invariant (bad patterns can be checked with a finite prefix):

- At most 1 in any prefix
- Nondecreasing list of numbers

Safety Properties are Admissible

A safety property say that 'bad things never happen'. A property is **safe** if having all finite prefixes of a list x lie in P implies that $x \in P$. Equivalently, if $x \notin P$, there exists a finite prefix $y \sqsubseteq x$ with $y \notin P$ (a finite counterexample).

There are many examples of safety properties on lists.

For example, where we ban certain patterns:

- No 1 ever occurs
- No two consecutive 1s
- All elements are less than 10
- We never see "010"

Or when the proposition is prefix-invariant (bad patterns can be checked with a finite prefix):

- At most 1 in any prefix
- Nondecreasing list of numbers
- Every 1 is immediately followed by a 0

Recall,

Definition

 $C \subseteq P$ is scott-closed if

- C is lower: $y \in C$ and $x \sqsubseteq y$ implies $x \in C$
- closed under directed (chain) suprema: when $D \subseteq C$ is directed and $\bigsqcup D$ exists, $\mid D \in C$

Recall,

Definition

 $C \subseteq P$ is scott-closed if

- C is lower: $y \in C$ and $x \sqsubseteq y$ implies $x \in C$
- closed under directed (chain) suprema: when $D \subseteq C$ is directed and $\bigsqcup D$ exists, $\mid D \in C$

Let $C \subseteq E$ be Scott-closed and $f: D \to E$ be a Scott-continuous function.

Recall,

Definition

 $C \subseteq P$ is scott-closed if

- C is lower: $y \in C$ and $x \sqsubseteq y$ implies $x \in C$
- closed under directed (chain) suprema: when $D\subseteq C$ is directed and $\bigsqcup D$ exists, $\mid D \in C$

Let $C \subseteq E$ be Scott-closed and $f: D \to E$ be a Scott-continuous function. If we define a property P by $P(x) \iff f(x) \in C$ then by continuity, the preimage $f^{-1}(C) = \{x \mid f(x) \in C\} = \{x \mid P(x)\}$ is Scott-closed.

Recall,

Definition

 $C \subseteq P$ is scott-closed if

- C is lower: $y \in C$ and $x \sqsubseteq y$ implies $x \in C$
- closed under directed (chain) suprema: when $D \subseteq C$ is directed and $\bigsqcup D$ exists, $\mid D \in C$

Let $C \subseteq E$ be Scott-closed and $f: D \to E$ be a Scott-continuous function. If we define a property P by $P(x) \iff f(x) \in C$ then by continuity, the preimage $f^{-1}(C) = \{x \mid f(x) \in C\} = \{x \mid P(x)\}$ is Scott-closed. Hence, to show P is admissible, it suffices to realize P as a preimage of a closed set along a Scott-continuous map.

Recall,

Definition

 $C \subseteq P$ is scott-closed if

- C is lower: $y \in C$ and $x \sqsubseteq y$ implies $x \in C$
- closed under directed (chain) suprema: when $D\subseteq C$ is directed and $\bigcup D$ exists, $\mid D \in C$

Let $C \subseteq E$ be Scott-closed and $f: D \to E$ be a Scott-continuous function. If we define a property P by $P(x) \iff f(x) \in C$ then by continuity, the preimage $f^{-1}(C) = \{x \mid f(x) \in C\} = \{x \mid P(x)\}$ is Scott-closed. Hence, to show P is admissible, it suffices to realize P as a preimage of a closed set along a Scott-continuous map.

To then find continuous maps f, we note that

- Composition of continuous constructors
- Composition of continuous folds
- Products
- Evaluation of definable expressions

are all Scott-continuous.

• When we say 'positive', we mean propositions built using continuous things with \forall and \land but no \exists or \lor .

- When we say 'positive', we mean propositions built using continuous things with ∀ and ∧ but no ∃ or ∨.
- Universal quantification and conjunctions correspond to intersections of Scott-closed sets, and the property of closedness is preserved under arbitrary intersection.

- When we say 'positive', we mean propositions built using continuous things with ∀ and ∧ but no ∃ or ∨.
- Universal quantification and conjunctions correspond to intersections of Scott-closed sets, and the property of closedness is preserved under arbitrary intersection.
- For example, $\forall i.P_i$ has truth set $\bigcap_i C_{P_i}$, and this remains closed.

- When we say 'positive', we mean propositions built using continuous things with \forall and \land but no \exists or \lor .
- Universal quantification and conjunctions correspond to intersections of Scott-closed sets, and the property of closedness is preserved under arbitrary intersection.
- For example, $\forall i.P_i$ has truth set $\bigcap_i C_{P_i}$, and this remains closed.
- ∃i.P_i corresponds to ⋃_i C_{P_i}, but unions of Scott-closed sets need not be Scott-closed.

- When we say 'positive', we mean propositions built using continuous things with \forall and \land but no \exists or \lor .
- Universal quantification and conjunctions correspond to intersections of Scott-closed sets, and the property of closedness is preserved under arbitrary intersection.
- For example, $\forall i.P_i$ has truth set $\bigcap_i C_{P_i}$, and this remains closed.
- ∃i.P_i corresponds to ⋃_i C_{Pi}, but unions of Scott-closed sets need not be Scott-closed.
- When we have P(xs)
 ⇔ ∃n.drop n xs = ⊥, the basic disjunct is closed, but the union is not closed under limits.

• Lists form a ccpo with a bottom element.

- Lists form a ccpo with a bottom element.
- Given an admissible predicate, we can prove properties about infinite lists.

- Lists form a ccpo with a bottom element.
- Given an admissible predicate, we can prove properties about infinite lists.
- Many properties about lists are indeed admissible.

- Lists form a ccpo with a bottom element.
- Given an admissible predicate, we can prove properties about infinite lists.
- Many properties about lists are indeed admissible.

Further...

- Lists form a ccpo with a bottom element.
- Given an admissible predicate, we can prove properties about infinite lists.
- Many properties about lists are indeed admissible.

Further...

 We can generalize this to other algebraic objects, not just lists (and we can generate the inductive scheme given a suitable functor that describes it)

Questions?

