2a Avaluació	Tecnologia industrial	1r Batxillerat
Propietats i assaigs		Data:
Nom i cognoms:		Qualificació:

Instruccions: Feu els exercicis a l'espai que se us proporciona. Feu servir la cara posterior si necessiteu més espai, indiqueu-ho clarament en aquest cas. Heu d'identificar clarament les respostes i mostrar el procés per tal d'aconseguir la màxima puntuació. La puntuació dels exercicis es dona entre parèntesis.

- 1. Considereu un cable d'acer de secció $4,9\,mm^2$ i longitud $L_0=3\,m$ del qual es penja una massa $m=300\,kg$. Sabent que s'allarga $1\,mm$ es demana:
 - (a) (1 pt) Calculeu l'esforç aplicat sobre el cable.
 - (b) (1 pt) Calculeu la deformació unitària que pateix.
 - (c) (1 pt) Calculeu el mòdul de Young d'aquest acer.
 - (d) (1 pt) Suposant que el límit elàstic val $450 \, MPa$ i l'esforç de trencament val $\sigma_r = 650 \, MPa$, discutiu el comportament del cable.

2. (2 pts) Un tancament fet amb PVC té una àrea total de $12 m^2$. Les finestres estan fabricades amb un vidre triple Kömmerling[©] amb càmera, de conductivitat $\lambda_f = 0,87 W/(mK)$, ocupen el 90% i la resta està format pel marc de PVC, de conductivitat $\lambda_m = 0,16 W/(mK)$. Suposant que el gruix del tancament és de 40 mm i la diferència de temperatura entre l'exterior i l'interior és de $25^{\circ} C$, calculeu la potència tèrmica transmesa a través de les finestres i la transmesa a través del marc de PVC.

3. (1.5 pts) Calculeu quant s'escurça un cable d'alta tensió d'alumini que mesurava $30\,m$ un migdia d'hivern a $T_1=7^{\circ}\,C$ quan estem a la matinada a $T_2=-15^{\circ}\,C$. (Dada: Coeficient de dilatació lineal de l'alumini, $\alpha=2,3\cdot 10^{-5}\cdot C^{-1}$)

4. (4 pts) Considereu la següent estructura triangulada (North light roof truss)

i suposeu que està feta amb acer de densitat $\rho=7800\,kg/m^3$ de secció $10\,cm^2$. Calculeu la massa d'aquesta estructura.