# Enabling High Performance Debugging for Variational Quantum Algorithms using Compressed Sensing

Kun Liu\*
CMU → Yale

Tianyi Hao\*
UW-Madison

Swamit Tannu
UW-Madison



#### Quantum Computing

Provide speed up using properties of qubits



 $15 = 3 \times 5$ Find prime factors
exponential speedup



#### Noisy and limited in number of qubits



Noisy Intermediate Scale Quantum Computers (NISQ)

→ No Error Correction, learn to live with errors

#### Variational Quantum Algorithms (VQAs)

VQAs use parametric quantum circuits to calculate average cost and use optimization loop to tune the circuit parameters



## Debugging Classical Programs

```
variable = ...
print(variable)
```

We cannot easily transfer these to the quantum world!



#### Challenges in Debugging Quantum Circuits



#### **Destructive reads**

Reading qubit destroys the state



#### No cloning theorem

Copying qubit state not allowed



#### **Hardware errors**

Hardware errors introduce uncertainty

Source: <a href="https://pennylane.ai/images/qml/whatisqml/quantum">https://pennylane.ai/images/qml/whatisqml/quantum</a> computing neural network.svg, modified

#### Challenges in debugging VQA workflows



For a successful VQA run, we need:

- 1. Right initialization for circuit parameters
- 2. Appropriate noise mitigation methods
- 3. Suitable classical optimizer configurations

So, if there is a problem, it is hard to know the cause.

What's worse, debugging VQAs is challenging due to its quantum nature.

### VQA cost landscapes can help



## Landscape: A bird's eye view



#### Deriving landscapes is inefficient



 For every point on the landscape, we need to execute the quantum circuit thousands of times

Executing quantum circuits is slow and expensive

• Grid has  $10^4$  pixels  $\rightarrow 10^7$  runs  $\rightarrow $1000^*$ 

## Can we debug VQAs by efficiently reconstructing VQA landscapes?

#### OSCAR: compressed Sensing based Cost landscape Reconstruction



With 5%-10% of cost values on the parameters, we could reconstruct the full landscape.

#### Reconstruct Landscapes on Google's Device<sup>[1]</sup>

Original landscapes:

Reconstructed landscapes:



<sup>[1]</sup> Harrigan, et. al. "Quantum approximate optimization of non-planar graph problems on a planar superconducting processor"

### Figure of merit



 Sampling fraction: fraction of random points to perform compressed sensing

 NRMSE: Normalized Reduced Mean Square Error; measure the difference between the original and the reconstructed landscapes

#### Reconstruct simulation landscapes



• Simulate circuits with 4 parameters

#### Parallel Reconstruction of Landscape



Random parameters are independent  $\rightarrow$  Embarrassingly Parallelizable

#### Use Case 1: Configure Optimizers

Which optimizer?
Learning rate
Other hyperparameters

•••



We can reduce the cost of configuration with reconstructed landscapes!

#### Optimize on interpolated, reconstructed landscapes



(A) Optimize on the reconstructed landscape by ADAM. (B) Optimize by circuit simulation by ADAM.

Optimize on the reconstructed landscape by ADAM and COBYLA.

#### Evaluate



#### Evaluate



#### Use Case 2: Benchmark Error Mitigation Methods

- Deciding which mitigation method to use is not straightforward and efficient
- Reconstructed landscapes can help!



### Example



Richardson and Linear: two mitigation methods

Reconstructed landscapes preserve features of the original ones

#### Recon. landscapes preserve features of the original's



## Debugging is time consuming and expensive

It can be exponentially frustrating for quantum programs

OSCAR can help



# Enabling High Performance Debugging for Variational Quantum Algorithms using Compressed Sensing

Kun Liu\*
CMU → Yale

Tianyi Hao\*
UW-Madison

Swamit Tannu
UW-Madison

