Introduction to Data Science - Python ENSISA CPB2

Ali Fl Hadi Ismail Fawaz

ENSISA, Université Haute-Alsace

November 14, 2024

Une école d'ingénieurs de l'Université de Haute-Alsace

What is Data Science?

• Extracting information from a given dataset.

- Extracting information from a given dataset.
- These information are often used in domains susch as:

- Extracting information from a given dataset.
- These information are often used in domains susch as:
 - Artificial Intelligence
 - Machine Learning
 - Deep Learning
 - Data Mining
 - Big Data

- Extracting information from a given dataset.
- These information are often used in domains susch as:
 - Artificial Intelligence
 - Machine Learning
 - Deep Learning
 - Data Mining
 - Big Data
 - ...

What is Data Science?

- Extracting information from a given dataset.
- These information are often used in domains susch as:
 - Artificial Intelligence
 - Machine Learning
 - Deep Learning
 - Data Mining
 - Big Data
 - ...

Data Science can also be used in: Business Intelligence, Data Analytics, Visualization etc.

Data Science

Data Science

Data Science

Data Science

Data Science

Data Science

Data Science

Data Science

Originated in the late 90s

 Its a collection of algorithms used in order to analyse, understand, process some data

Data Science

- Its a collection of algorithms used in order to analyse, understand, process some data
- Its a rapidly evolving science

Most common domains that use Data Science:

• Artificial Intelligence:

- Artificial Intelligence:
 - Simulate the human intelligence

- Artificial Intelligence:
 - Simulate the human intelligence
 - It is found in robotics, game bots, chat bots, etc.

- Artificial Intelligence:
 - Simulate the human intelligence
 - It is found in robotics, game bots, chat bots, etc.
- Machine Learning:

- Artificial Intelligence:
 - Simulate the human intelligence
 - It is found in robotics, game bots, chat bots, etc.
- Machine Learning:
 - The concept of training a machine to achieve a given task

- Artificial Intelligence:
 - Simulate the human intelligence
 - It is found in robotics, game bots, chat bots, etc.
- Machine Learning:
 - The concept of training a machine to achieve a given task
 - It is constrained on having examples to learn from, i.e. data

- Artificial Intelligence:
 - Simulate the human intelligence
 - It is found in robotics, game bots, chat bots, etc.
- Machine Learning:
 - The concept of training a machine to achieve a given task
 - It is constrained on having examples to learn from, i.e. data
- Deep Learning:

- Artificial Intelligence:
 - Simulate the human intelligence
 - It is found in robotics, game bots, chat bots, etc.
- Machine Learning:
 - The concept of training a machine to achieve a given task
 - It is constrained on having examples to learn from, i.e. data
- Deep Learning:
 - A learning approach that is adapted to neural networks

- Artificial Intelligence:
 - Simulate the human intelligence
 - It is found in robotics, game bots, chat bots, etc.
- Machine Learning:
 - The concept of training a machine to achieve a given task
 - It is constrained on having examples to learn from, i.e. data
- Deep Learning:
 - A learning approach that is adapted to neural networks
 - It is constrained on having a lot of examples, i.e. large amount of data

Data Mining - Big Data

• Data Mining:

- Data Mining:
 - Extracting information from datasets

- Data Mining:
 - Extracting information from datasets
 - Use Machine Learning tools to analyse the data

- Data Mining:
 - Extracting information from datasets
 - Use Machine Learning tools to analyse the data
- Big Data:

- Data Mining:
 - Extracting information from datasets
 - Use Machine Learning tools to analyse the data
- Big Data:
 - · A current definition of massive amount of data

Data Mining - Big Data

- Data Mining:
 - Extracting information from datasets
 - Use Machine Learning tools to analyse the data
- Big Data:
 - · A current definition of massive amount of data
 - Raises a question for the usage of existing learning methods

Data Mining - Big Data

- Data Mining:
 - Extracting information from datasets
 - Use Machine Learning tools to analyse the data
- Big Data:
 - A current definition of massive amount of data
 - Raises a question for the usage of existing learning methods
 - The more we have data the better models we can learn

Categories of Data Science

Categories of Data Science

Most recently domains

Most recently domains

 Machine Learning, Big Data, Al, Data Science, Deep Learning: used a lot in industry and the news

Most recently domains

- Machine Learning, Big Data, Al, Data Science, Deep Learning: used a lot in industry and the news
- Can be easily over hyped

Most recently domains

- Machine Learning, Big Data, Al, Data Science, Deep Learning: used a lot in industry and the news
- Can be easily over hyped
- Can be easily bashed for no reason

- Most recently domains
 - Machine Learning, Big Data, Al, Data Science, Deep Learning: used a lot in industry and the news
 - Can be easily over hyped
 - Can be easily bashed for no reason
- Be careful of fake news

Most recently domains

- Machine Learning, Big Data, AI, Data Science, Deep Learning: used a lot in industry and the news
- Can be easily over hyped
- Can be easily bashed for no reason

Be careful of fake news

- How Big Data will help feeding 9 billion person
- Al can now foresee cancer years before it develops
- Checkout how AI models can generate a Breaking Bad episode
- Become a billionaire with Big Data ?

Types of Data:

Types of Data: Structured vs Unstructured Data

Types of Data: Structured vs Unstructured Data

• Structured Data: easy to look for, highly organized with a specific format.

Types of Data: Structured vs Unstructured Data

- Structured Data: easy to look for, highly organized with a specific format.
- Unstructured Data: unorganized with no specific format, very hard to search for: images, text, video etc.

Types of Data: Structured vs Unstructured Data

- Structured Data: easy to look for, highly organized with a specific format.
- Unstructured Data: unorganized with no specific format, very hard to search for: images, text, video etc.

Example of structured data:

	Attribute 1	Attribute 2	Attribute 3
Instance 1	1.1	dog	True
Instance 2	2.1	cat	False
Instance 3	3.0	lion	True

Types of Data: Structured vs Unstructured Data

- Structured Data: easy to look for, highly organized with a specific format.
- Unstructured Data: unorganized with no specific format, very hard to search for: images, text, video etc.

Example of structured data:

	Attribute 1	Attribute 2	Attribute 3
Instance 1	1.1	dog	True
Instance 2	2.1	cat	False
Instance 3	3.0	lion	True

• Types of data can be real, integer, character, string, boolean etc.

Types of Data: Structured vs Unstructured Data

- Structured Data: easy to look for, highly organized with a specific format.
- Unstructured Data: unorganized with no specific format, very hard to search for: images, text, video etc.

Example of structured data:

	Attribute 1	Attribute 2	Attribute 3
Instance 1	1.1	dog	True
Instance 2	2.1	cat	False
Instance 3	3.0	lion	True

- Types of data can be real, integer, character, string, boolean etc.
- Can be found in databses, clouds etc.

Dataset Example: IRIS

Dataset Example: IRIS

• IRIS samples: given the length and width of sepal and petal of an IRIS

Dataset Example: IRIS

- IRIS samples: given the length and width of sepal and petal of an IRIS
- $\bullet \xrightarrow{goal}$ predict the iris type

Dataset Example: IRIS

- IRIS samples: given the length and width of sepal and petal of an IRIS
- \xrightarrow{goal} predict the iris type

Some IRIS samples:

Some IRIS samples:

sepal length	sepal width	petal length	petal width	iris type
5.1	3.5	1.4	0.2	setosa
4.9	3	1.4	0.2	setosa
7	3.2	4.7	1.4	versicolor
6.4	3.2	4.5	1.5	versicolor
7.3	2.9	6.3	1.8	virginica

Some IRIS samples:

sepal length	sepal width	petal length	petal width	iris type
5.1	3.5	1.4	0.2	setosa
4.9	3	1.4	0.2	setosa
7	3.2	4.7	1.4	versicolor
6.4	3.2	4.5	1.5	versicolor
7.3	2.9	6.3	1.8	virginica
7.7	2.6	6.9	2.3	?

Understanding the data starts by visualizing it:

Understanding the data starts by visualizing it:

Data Example 2: Pokemon Types

Data Example 2: Pokemon Types

Pokemon Example

Pokemon Example

Pokemon Name	Height	Weight	Туре
Bulbasaur	0.7	6.9	Grass
Charmander	0.6	8.5	Fire
Squirtle	0.5	9.0	Water
Caterpie	0.3	2.9	Bug

Pokemon Example

Pokemon Name	Height	Weight	Type
Bulbasaur	0.7	6.9	Grass
Charmander	0.6	8.5	Fire
Squirtle	0.5	9.0	Water
Caterpie	0.3	2.9	Bug
Charizard	1.7	90.5	?

 $\label{thm:condition} \textbf{Visualization of types: Ground, Psychic and Poison.}$

Visualization of types: Ground, Psychic and Poison.

Visualization of types: Ground, Psychic and Poison.

Different tasks to solve in Data Mining

Different tasks to solve in Data Mining

• Classification: predict the discrete value of the class label

Different tasks to solve in Data Mining

- Classification: predict the discrete value of the class label
- Regression: predict the continuous value of the label

Different tasks to solve in Data Mining

- Classification: predict the discrete value of the class label
- Regression: predict the continuous value of the label
- Clustering: discover partitions without having the labels

Different tasks to solve in Data Mining

- Classification: predict the discrete value of the class label
- Regression: predict the continuous value of the label
- Clustering: discover partitions without having the labels

source: https://scikit-learn.org/ classification scikit-learn algorithm cheat-sheet START more data >50 regression <100K category Regresso labeled <100K should be data quantity categories clustering <10K Randomized PCA looking <10K MeanShift <10K dimensionality tough reduction structure

Where to find data?

Where to find data?

• Specialized websites: https://www.kaggle.com/

Where to find data?

- Specialized websites: https://www.kaggle.com/
- Open data websites: https://www.data.gouv.fr/fr/

Where to find data?

- Specialized websites: https://www.kaggle.com/
- Open data websites: https://www.data.gouv.fr/fr/
- Research data: https://datasetsearch.research.google.com/

Where to find data?

- Specialized websites: https://www.kaggle.com/
- Open data websites: https://www.data.gouv.fr/fr/
- Research data: https://datasetsearch.research.google.com/

source. https://www.kaggie.com/datasets/calebreigada/pokemor

