

Quantitative Prediction of Grasp Impairment Following Peripheral Neuropathies of the Hand

Josh Inouye¹, Jason Kutch¹, Francisco J. Valero-Cuevas^{1,2}

¹Department of Biomedical Engineering, ²Division of Biokinesiology & Physical Therapy, University of Southern California

Introduction

- Grasping is a fundamental hand function that is impaired or eliminated following peripheral neuropathies of the hand [1].
- While finger force deficits subsequent to muscle dysfunction have been analyzed [2,3], there has been no framework for analyzing grasp dysfunction.

• We developed [4] and applied a computational framework for predicting grasp quality for different degrees of simulated peripheral neuropathies.

Methods

- We used the technique illustrated above to calculate grasp quality for healthy hands and impaired hands [4].
- We simulated nerve pathologies by progressively weakening innervation groups (shown below) individually and calculating the resulting grasp quality [5,6]

Finger	Muscle	Innervation group
Index	Flexor digitorum profundus (FDP)	М
	Flexor digitorum superficialis (FDS)	М
	Extensor indicis proprius (EIP)	R
	Extensor digitorum communis (EDC)	R
	First lumbrical (LUM)	M,CTS
	First dorsal interosseous (FDI)	U
	First palmar interosseous (FPI)	U

Finger	Muscle	Innervation group
Thumb	Abductor pollicis brevis (AbPB)	M,CTS
	Abductor pollicis longus (AbPL)	R
	Adductor pollicis oblique (ADDo)	U
	Adductor pollicis transverse (ADDt)	U
	First dorsal interosseous (DIO)	U
	Extensor pollicis brevis (EPB)	R
	Extensor pollicis longus (EPL)	R
	Flexor pollicis brevis (FPB)	M,CTS
	Flexor pollicis longus (FPL)	М
	Opponens pollicis (OPP)	M,CTS

Muscles in each nerve pathology group. M: median, R: radial, U: ulnar, CTS: Carpal Tunnel Syndrome (modeled as low median nerve palsy not affecting extrinsic muscles [7])

Results

Predictions of Grasp Deterioration:

- Low median nerve palsy compromises grasp most severely.
- Complete loss of any innervation group makes grasp impossible.

Conclusions and future work

- Low median nerve palsy affects grasp quality most severely.
- Modest levels of low median and low ulnar nerve palsies affect grasp quality disproportionately when compared with low radial nerve palsy and Carpal Tunnel Syndrome.
- Although low radial nerve palsy affects the extensors of the fingers, they, counterintuitively, are necessary for grasp [8].
- Our ability to predict grasp quality enables a rigorous comparison of functional deficits across peripheral neuropathies.
- Comparison of patient outcomes with these quantitative predictions will enable development of effi-

References

1. Riordan DC. J Bone Joint Surgery 50B, 441, 1968. **2.** Brand PW, et al. *Clinical Mechanics of the Hand*, 1993 **3.** Kutch JJ, Valero-Cuevas FJ, J Biomechanics, 44, 1264-1270, 2011. **4.** Inouye JM, et al. Proceedings of ASB, Long Beach, CA, 2011. **5.** Pearlman JL, et al. J Ortho Res, 22, 306-312, 2004. **6.** Valero-Cuevas FJ, et al. J Biomech, 33, 1601-1609, 2000. **7.** Katz JN, et al. N Engl J Med, 346, 1807-1812, 2002. **8.** Valero-Cuevas FJ, et al. J Biomech, 31, 693-703, 1998.

Introduction figure from http://techconi.blogspot.com.

Acknowledgements:

NSF EFRI 0836042 and NIH AR050520 and AR052345 to FVC. Thanks to Sudarshan Dayanidhi for helpful discussions.