Introdução à Arquitetura de Computadores

- Hardware e software
- Organização de um computador:
 - Processador: registradores, ALU, unidade de controle
 - Memórias
 - Dispositivos de E/S
 - Barramentos
- Linguagens de programação
- Geração de um programa executável
- Carga e execução de programa
- Instruções de máquina
- Ciclo de execução de instrução

Sistema Computacional

- Principais componentes de um sistema computacional:
 - Computador
 - Periféricos:
 - Dispositivos de entrada e saída (E/S)

Sistema Computacional

- Principais componentes de um sistema computacional:
 - Computador
 - Processador
 - Memórias
 - Portas de E/S
 - Barramentos
 - Periféricos:
 - Dispositivos de E/S

Organização de um Computador

- Principais componentes de um computador:
 - Processador
 - Memórias
 - Portas de E/S: conexões de E/S para periféricos
 - Barramentos

Placa Mãe (Motherboard)

Placa Mãe (Motherboard)

Componentes

• Chip do processador:

• Interfaces:

Processador

- CPU: Central Processing Unit
- Executa programas armazenados na memória:
 - Busca instruções na memória
 - Decodifica instruções
 - Executa instruções

- Composto por:
 - Unidade de controle (UC) (Control Unit)
 - Datapath (via de dados, caminho de dados):
 - Unidade lógico-aritmética (ULA)
 - Conjunto de registradores

Unidade de Controle

- Comanda datapath, memória e dispositivos de E/S sobre o que fazer, de acordo com instruções do programa
- Controla execução das instruções no processador:
 - Comanda busca na memória da próxima instrução a ser executada, trazendo-a para o processador
 - Decodifica instrução (determina que operação ela representa)
 - Comanda operação a ser realizada pelo datapath

Datapath

- Realiza a execução das instruções
- Executa operações comandadas pela UC
- Composto por:
 - Unidade lógico-aritmética
 - Conjunto de registradores
- Unidade lógico-aritmética (ULA):
 - Realiza operações lógicas e aritméticas (comparação, soma, subtração, and, ...)

Conjunto de Registradores 9 ALU PC IRUnidade de Controle

Processador

• Exemplo:

- UC busca na memória instrução a executar (por exemplo: add A, B)
- ALU realiza soma dos 2 operandos, produzindo um resultado

Datapath

Registradores:

- Pequenas unidades capazes de guardar informações (dados, endereços, instruções)
- Dispositivos de armazenamento de rápido acesso ⇒
 Custo elevado ⇒ Processador tem poucos registradores
- Meio de armazenamento volátil
- Registradores de propósito específico e de uso geral
- Variam de um tipo de processador para outro
- Quase todos os processadores têm registradores para:
 - Endereço da próxima instrução a executar (PC Program Counter)
 - Próxima instrução a executar (IR Instruction Register)
 - Endereço do dado que está no topo da pilha de execução (SP – Stack Pointer)
 - Uso geral: realização de operações lógico-aritméticas

Sistema de Memórias

- Sistema de memória organizado em níveis ⇒ Hierarquia de Memórias
 - Registradores
 - Memória cache
 - Memória principal (MP)
 - Disco (memória virtual)

Memória Principal

- Memória Principal ou memória primária:
 - Armazena instruções e dados dos programas sendo executados
- Memória RAM (Random-Access Memory):
 - Qualquer posição pode ser acessada com mesmo tempo de acesso
- Acesso mais lento que registradores ⇒
 Menor custo ⇒
 Maior capacidade de armazenamento
- Meio de armazenamento volátil

Memória Principal

- Pode ser vista como estrutura unidimensional:
 - Cada posição é uma célula onde pode-se armazenar uma informação
 - Todas as células têm mesmo nº de bits
 - Cada célula possui um endereço pelo qual é acessada

Memória Cache

• Nível da hierarquia de memórias entre memória principal (MP) e processador

- Mais rápida que MP ⇒
 Maior custo ⇒
 Menor capacidade de armazenamento
- Meio de armazenamento volátil
- Situada mais próxima ao processador que MP
- Funciona como um buffer da MP

Processador

Cache

MP

Sistema Computacional

- Principais componentes:
 - Computador
 - Dispositivos de E/S

Dispositivos de Entrada e Saída

- Dispositivos para comunicação entre usuário e computador:
 - Permitem que usuário forneça e receba dados ao/do computador
 - Exemplos:
 - Teclado, vídeo, mouse, impressora
- Dispositivos de armazenamento secundário:
 - Permitem que informações sejam armazenadas em um meio não volátil
 - Exemplos:
 - Disco magnético, fita magnética, disco ótico
 - Denominados memória secundária em contraposição à MP
 - Mais lentos que MP ⇒

Menor custo \Rightarrow

Maior capacidade de armazenamento

Dispositivos de Entrada e Saída

- Compostos de 2 partes:
 - Parte mecânica: Dispositivo de E/S realmente
 - Parte eletrônica: Controlador de E/S
 - Circuito que controla operação do dispositivo de E/S
 - Controlador fica conectado ao barramento
 - Dispositivo é ligado ao controlador por um cabo

Barramentos

- Conjunto de fios por onde trafegam informações do processador para memória e para dispositivos de E/S e vice-versa
- Informações podem ser:
 - Dados
 - Endereços de memória
 - Sinais de controle

Interface Hardware/Software

High-level language

- Closer to human language
- Portable

Assembly language

- English-like terms representing binary code
- Machine dependent

Machine language

- Binary code (1s and 0s)
- Machine dependent

Computer hardware (the "machine")

- CPU
- Memory (RAM, ROM)
- Disk drives
- Input/Output

Interface Hw/Sw

High-level language program (in C)

- Linguagem alto nível
 - Tradutor: Compilador

- Linguagem de montagem
 - Tradutor: Montador

Assembly language program (for MIPS)

• Linguagem de máquina

Binary machine language program (for MIPS)

Geração do Programa Executável

Geração do Programa Executável

A partir do programa fonte em uma linguagem alto nível (por exemplo C):

Passos:

- Compilação
- Montagem
- Link-edição

Passos para Geração do Programa Executável

Compilação:

- Realizada pelo programa compilador
- Traduz programa fonte da linguagem alto nível para programa em linguagem de montagem
- Pode gerar diretamente programa em linguagem de máquina:
 - Módulo objeto (ainda não é o programa executável)

Montagem:

- Realizada pelo programa montador (assembler)
- Traduz programa fonte da linguagem de montagem (assembly language)
 para programa em linguagem de máquina, gerando módulo objeto

• Link-edição:

- Realizada pelo programa linker (link-editor ou ligador)
- Une vários módulos objeto e bibliotecas, gerando programa executável

Independência de Máquinado Programa em Linguagem Alto Nível

Execução do Programa

- Programa armazenado em memória:
 - Programa precisa ser carregado na memória para ser executado
 - Instruções de máquina e dados do programa são armazenados na memória,
 da onde são lidos para registradores do processador quando necessário
- Carga do programa executável na memória realizada pelo programa loader

- Execução do programa:
 - Programa é executado através da execução das suas instruções de máquina, uma a uma
 - Para cada instrução do programa a ser executada,
 processador realiza ciclo de execução de uma instrução

Ciclo de Execução de uma Instrução

- Processador realiza os passos:
 - Busca instrução: UC lê da memória próxima instrução a executar (cujo endereço está em PC) e copia-a para IR
 - Decodifica instrução: UC determina qual é a instrução, investigando conteúdo de IR
 - Busca operandos: UC lê operandos da instrução (de registradores ou da memória), se necessário
 - Executa instrução: ALU executa operação indicada pela instrução, utilizando operandos e gerando resultado
 - Escreve resultado: UC escreve resultado em registrador ou na memória (se necessário)
 - Atualiza PC: UC atualiza PC, para apontar para próxima instrução a executar

Instruções de Máquina

- Instrução de máquina:
 - Codificada como sequencia de bits
 - Representa comando que é interpretado e executado pelo processador

Exemplo 1:

- Em C:
 - Comando: a = b + c;
 - a, b, c são variáveis do programa
- Em linguagem de montagem:
 - Instrução: add R8, R9, R10
 - R8, R9, R10 **são registradores do processador**
- Em linguagem de máquina:

 - Instrução de máquina dividida em campos que indicam operação e operandos

Exemplo 2: Execução de um Programa

• Em C:

```
b = a + a ;
```

store

R9

- Supondo que compilador associou variáveis a e b aos endereços 200 e 204
- Em linguagem de montagem:

```
load R8, 200 % R8 := Mem[200]
add R9, R8, R8 % R9 := R8 + R8
store R9, 204 % Mem[204] := R9
```

Em linguagem de máquina (de um processador hipotético):

204

Exemplo 2: Computador

Exemplo 2: Programa carregado na memória

Exemplo 2: Instrução load - Busca instrução

Exemplo 2: Instrução load - Executa instrução

Exemplo 2: Instrução load – Atualiza PC

Exemplo 2: Instrução add – Busca instrução

Exemplo 2: Instrução add – Executa instrução

Exemplo 2: Instrução add – Atualiza PC

Exemplo 2: Instrução store - Busca instrução

Exemplo 2: Instrução store - Executa instrução

Exemplo 2: Instrução store - Atualiza PC

