

SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Jiapeng Tang^{1,4} Jiabao Lei ¹ Dan Xu² Feiying Ma⁴ Kui Jia¹ Lei Zhang^{3,4}

¹ South China University of Technology

² The Hong Kong University of Sciences and Technology

³ The Hong Kong Polytechnic University

⁴ DAMO Academy, Alibaba Group

Task: Surface Reconstruction

Un-oriented Point clouds

Surface Meshes

Related Works

Neural Implicit Representation

• represent a 3D shape as the continuous decision boundary of a binary classifier.

□ surface reconstruction with infinite resolution and arbitrary topology

Improve the generality to novel shapes

single forward pass

test-time optimization

□ Further optimize network parameters during inference to find a better solution

Improve the scalability to large-scale scenes

Part auto-encoder

Training object parts

Test: scalable to large scenes

- □ Pros: local shape modeling for 3D scenes
- □ Cons: require accurate oriented normals to enforce global consistency

Improve the applicability to real-world scans

initialize the SDF decoder to represent a signed field

learn SDF by unsigned distance loss

- □ Pros: not require oriented normals
- □ Cons: struggle to recover fine-grained scene surfaces

Approach

Sign-Agnostic Optimization of Convolutional Occupancy Networks

- Middle: local implicit fields conditioned on convolutional features from a 3D U-Net.
- Top: network pre-training on 3D datasets by binary cross-entropy (BCE) loss.
- Bottom: sign-agnostic, test-time optimization via unsigned cross entropy (UCE) loss.

Motivations

• Characteristic 1: Pre-trained occupancy field prediction networks provide signed fields as initialization for the test-time optimization.

sign-agnostic, test -time optimization

• Characteristic 2: 3D U-Net aggregates both local and global shape features

- □ local shape features: preserve scene surface details.
- □ global shape priors: enforce global consistency between local fields.

Unsigned Cross Entropy

$$\mathcal{L}_{uce} = \sum_{\mathbf{q} \in \mathcal{Q}} \text{BCE}\left(\mathbf{O}^{\dagger}(\mathbf{q}), \hat{\mathbf{O}}^{\dagger}(\mathbf{q})\right)$$

$$\mathbf{Q}_{\hat{\mathcal{S}}}$$
pred $\mathbf{O}^{\dagger}(\mathbf{q}) = \text{sigmoid}\left(\left|g(\mathbf{q}, \mathbf{f}_{\mathbf{q}})\right|\right) \in [0.5, 1)$

$$\mathcal{Q}_{\backslash \hat{\mathcal{S}}}$$
target $\hat{\mathbf{O}}^{\dagger}(\mathbf{q}) = \begin{cases} 0.5, \text{ for } \mathbf{q} \in \mathcal{Q}_{\hat{\mathcal{S}}} \\ 1.0, \text{ for } \mathbf{q} \in \mathcal{Q}_{\backslash \hat{\mathcal{S}}} \end{cases}$

 $Q_{\hat{S}}$: a point set obtained from the *observed surface*.

 $Q_{\hat{S}}$: a point set sampled from *non-surface volume*.

Work Condition Summary

Methods	Without normals	Optimization of network parameters	Local geometry modeling
SPSR [26]	×	✓	✓
ONet [30]	✓	×	×
SAL [2]	✓	×	×
IGR [16]	✓	\checkmark	×
CONet [33]	✓	×	✓
LIG [23]	×	\checkmark	\checkmark
Ours	√	✓	✓

Our method is the first to maximize the three reconstruction objectives in a unified framework: *scale well to large scenes, generalize well to novel shapes, and robust to real-world scans.*

Ablation Studies

Effect of network pre-training

• Without pre-trained shape priors: fail to reconstruct reasonable geometries

Sensitivity to the iteration number of test-time optimization

after about 600 iterations, the results become stable.

Object-level Reconstruction

ShapeNet-chair

Novel categories generalization

Scene-level Reconstruction

Synthetic indoor rooms

Real-world Scenes

ScanNet

Matterport3D

THANK YOU!

The code is available at

https://github.com/tangjiapeng/SA-ConvNet

