Дифференциалы высоких порядков

Дифференциалы *m*-го порядка

Опр: 1. Пусть $f: \mathbb{R}^n \to \mathbb{R}$ *m*-раз дифференцируема в точке a, тогда выражение:

$$d^{m}f(a,h) = \sum_{i_{1},\dots,i_{m}} \frac{\partial^{m}f}{\partial x_{i_{1}}\dots\partial x_{i_{m}}}(a)\cdot h_{i_{1}}\cdot\dots\cdot h_{i_{m}}, i_{j} \in \{1,\dots,n\}, \forall j = \overline{1,m}$$

называется дифференциалом m-го порядка в точке a на векторе h.

Утв. 1. Пусть $f: \mathbb{R}^n \to \mathbb{R}$ *m*-раз дифференцируема в точке a, тогда верно следующее равенство:

$$d^m f(a,h) = d(d^{m-1}f(x,h))(a,h)$$

□ По определению:

$$d\left(\underbrace{d^{m-1}f(x,h)}_{g(x)}\right)(a,h) = \sum_{i_m=1}^n \frac{\partial g}{\partial x_{i_m}}(a) \cdot h_{i_m} = \sum_{i_m=1}^n \frac{\partial}{\partial x_{i_m}} \left(\sum_{i_1 \dots i_{m-1}} \frac{\partial^{m-1}f}{\partial x_{i_1} \dots \partial x_{i_{m-1}}}(x) \cdot h_{i_1} \cdot \dots \cdot h_{i_{m-1}}\right) \Big|_{x=a} \cdot h_{i_m} = \sum_{i_m=1}^n \sum_{i_1 \dots i_{m-1}} \frac{\partial^m f}{\partial x_{i_1} \dots \partial x_{i_m}}(a) h_{i_1} \cdot \dots \cdot h_{i_m} = d^m f(a,h)$$

Лемма 1. Пусть f m-раз дифференцируема в окрестности точки a. Возьмем функцию $\varphi(t) = f(a+th)$. Тогда она m раз дифференцируема в окрестности нуля и m-ая производная равна:

$$\varphi^{(m)}(t) = d^m f(a + th, h)$$

В частности, в нуле она равна значению m-го дифференциала в точке a на векторе h:

$$\varphi^{(m)}(0) = d^m f(a, h)$$

<u>Смысл m-го дифференциала $\varphi(t)$ </u>: Пусть есть точка a и есть вектор h, возьмем прямую натянутую на этот вектор h и ограничим на неё функцию $f \Rightarrow$ функцией f на этой прямой будет $\varphi(t)$.

Рис. 1: Функция $\varphi(t)$ на прямой, натянутой на вектор h.

Следовательно, мы получили функцию одной переменной и если хотим понимать как она ведет себя на этой прямой, то для многих вопросов нам важно знать как устроены дифференциалы f. Например:

$$\varphi'(0) = df(a, h), \ \varphi''(0) = d^2 f(a, h), \ \dots$$

То есть выражая производные φ через производные f мы получаем m-ые дифференциалы в квадратичной форме (ещё одна причина, почему используются не полилинейные формы, а квадратичные).

 \square Возьмем функцию $\varphi(t) = f(a+th)$, докажем утверждение индукцей по m: База: $m=1 \Rightarrow$ продифференцируем $\varphi(t)$ как сложную функцию:

$$\varphi'(t) = \frac{\partial f}{\partial x_1}(a+th) \cdot \frac{\partial x_1}{\partial t} + \ldots + \frac{\partial f}{\partial x_n}(a+th) \cdot \frac{\partial x_n}{\partial t} =$$

$$= \frac{\partial f}{\partial x_1}(a+th)\cdot h_1 + \ldots + \frac{\partial f}{\partial x_n}(a+th)\cdot h_n = df(a+th,h)$$

где последнее равенство выполняется по определению. Таким образом $\varphi'(t) = df(a+th,h)$. Это также можно было найти, применив правило дифференцирования сложной функции:

$$d\varphi = df \circ d(a+th) = df(a+th,h\cdot dt) = df(a+th,h)\cdot dt = \varphi'(t)\cdot dt$$

Учитывая, что $d(a+th)(t_0,v)=a+(t_0+v)\cdot h-a-t_0\cdot h=h\cdot v=h\cdot dt(t_0,v)$ мы можем записать выражение выше детальнее:

$$d\varphi(t_0, v) = (df \circ d(a+th))(t_0, v) = df(a+t_0h, d(a+th)(t_0, v)) = df(a+t_0h, h) \cdot dt(t_0, v)$$

Таким образом $d\varphi(v) = df(a + t_0h, h) \cdot dt(v)$ и если не записываем в конкретной точке, то оно будет иметь следующий вид:

$$d\varphi = df(a + th, h) \cdot dt = \varphi'(t) \cdot dt$$

Шаг: Предположим, что для m верно, докажем для m+1:

$$\varphi^{(m+1)}(t) = (\varphi^{(m)}(t))' = (d^m f(a+th,h))' = (g(a+th))'$$

где $g(x) = d^m f(x, h)$, тогда в терминах функции g(x), используя случай m = 1 и применяя предыдущее утверждение мы получим следующее:

$$(g(a+th))' = dg(a+th,h) = d^{m+1}f(a+th,h)$$

Таким образом, требуемое выполнено.

Формула Тейлора

Теорема 1. (формула Тейлора с остаточным членом в виде Лагранжа) Пусть f(m+1)-раз дифференцируема в шаре B(a,r). Тогда $\forall h \in B(0,r), \exists c \in (0,1)$ такой, что:

$$f(a+h) = f(a) + df(a,h) + \frac{d^2f(a,h)}{2!} + \dots + \frac{d^mf(a,h)}{m!} + \frac{d^{m+1}f(a+ch,h)}{(m+1)!}$$

Rm: 1. Нужно заметить, что c зависит от h, то есть: c = c(h).

 \Box Рассмотрим функцию $\varphi(t) = f(a+th)$, она (m+1)-раз дифференцируема на отрезке [0,1] по предыдущей лемме, поскольку по условию верно следующее:

$$||h|| < r \Rightarrow a + th \in B(a, r), \forall t \in [0, 1]$$

Применим формулу Тейлора для функции одной переменной φ на отрезке [0,1] и возьмем t=1:

$$\varphi(1) = \varphi(0) + \varphi'(0) \cdot 1 + \frac{\varphi''(0) \cdot 1^2}{2!} + \dots + \frac{\varphi^{m+1}(c)}{(m+1)!}, c \in (0,1)$$

Подставим сюда выражение для f и воспользуемся предыдущей леммой:

$$f(a+h) = f(a) + df(a,h) + \ldots + \frac{d^m f(a,h)}{m!} + \frac{d^{m+1} f(a+ch,h)}{(m+1)!}, c \in (0,1)$$

Теорема 2. (формула Тейлора с остаточным членом в виде Пеано) Пусть f m-раз дифференцируема в окрестности точки a и её производные m-го порядка непрерывны в точке a. Тогда:

$$f(a+h) = f(a) + df(a,h) + \frac{d^2 f(a,h)}{2!} + \dots + \frac{d^m f(a,h)}{m!} + \overline{o}(\|h\|^m)$$

 \mathbf{Rm} : 2. Утверждение верно без требований к непрерывности производных и без дифференцируемости в окрестности точки a, но без этих условий доказательство становится сложнее.

 \square Функция f m-раз дифференцируема в окрестности точки $a\Rightarrow$ для достаточно малых h имеем следующее равенство:

$$f(a+h) = f(a) + df(a,h) + \ldots + \frac{d^{m-1}f(a,h)}{(m-1)!} + \frac{d^m f(a+ch,h)}{m!}, c = c(h) \in (0,1)$$

Перепишем последнее слагаемое в виде:

$$\frac{d^m f(a+ch,h)}{m!} = \frac{d^m f(a,h)}{m!} + \frac{d^m f(a+ch,h) - d^m f(a,h)}{m!} = \frac{d^m f(a,h)}{m!} + R$$

Мы хотим проверить, что $R = \overline{o}(\|h\|^m)$. Распишем выражение m!R подробнее:

$$m!R = \sum_{i_1...i_m} \left(\frac{\partial^m f(a+ch)}{\partial x_{i_1} \dots \partial x_{i_m}} - \frac{\partial^m f(a)}{\partial x_{i_1} \dots \partial x_{i_m}} \right) \cdot h_{i_1} \cdot \dots \cdot h_{i_m} =$$

$$= \|h\|^m \cdot \sum_{i_1...i_m} \left(\frac{\partial^m f(a+ch)}{\partial x_{i_1} \dots \partial x_{i_m}} - \frac{\partial^m f(a)}{\partial x_{i_1} \dots \partial x_{i_m}} \right) \cdot \frac{h_{i_1}}{\|h\|} \cdot \dots \cdot \frac{h_{i_m}}{\|h\|}$$

Чтобы доказать утверждение, нужно проверить стремится ли к нулю полученное выражение. Сумма это конечное число слагаемых и если каждое из слагаемых стремится к нулю, то и вся сумма будет стремится к нулю. По условию, производные порядка m - непрерывны, тогда:

$$\lim_{h \to 0} \left(\frac{\partial^m f(a+ch)}{\partial x_{i_1} \dots \partial x_{i_m}} - \frac{\partial^m f(a)}{\partial x_{i_1} \dots \partial x_{i_m}} \right) = 0$$

Поскольку по модулю $\frac{h_k}{\|h\|} \le 1$ (отдельная координата всегда не больше, чем длина вектора), то все эти дроби меньше либо равны 1 и мы получили ограниченные функции, тогда:

$$\lim_{h \to 0} \left(\sum_{i_1 \dots i_m} \left(\frac{\partial^m f(a+ch)}{\partial x_{i_1} \dots \partial x_{i_m}} - \frac{\partial^m f(a)}{\partial x_{i_1} \dots \partial x_{i_m}} \right) \cdot \frac{h_{i_1}}{\|h\|} \cdot \dots \cdot \frac{h_{i_m}}{\|h\|} \right) = 0$$

Отсюда получаем требуемое:

$$m!R = ||h||^m \cdot \overline{o}(1) = \overline{o}(||h||^m) \Rightarrow R = \overline{o}(||h||^m)$$

Упр. 1. Доказать формулу Тейлора с остаточным членом в форме Пеано без дополнительных ограничений. Указание: попробовать доказать в одномерном случае без правила Лопиталя и воспользоваться индукцией для многомерного случая.

Теорема 3. (формула Тейлора с остаточным членом в виде Пеано) Пусть f m-раз дифференцируема в точке a. Тогда:

$$f(a+h) = f(a) + df(a,h) + \frac{d^2 f(a,h)}{2!} + \ldots + \frac{d^m f(a,h)}{m!} + \overline{o}(\|h\|^m)$$

□ Докажем по индукции.

База: $m=1\Rightarrow$ по определению дифференцируемой в точке a функции будет верно:

$$f(a+h) - f(a) - df(a,h) = \overline{o}(\|h\|) \Rightarrow f(a+h) = f(a) + df(a,h) + \overline{o}(\|h\|), \lim_{h \to 0} \overline{o}(1) = 0$$

<u>Шаг</u>: Предположим, что для $(m-1) \ge 1$ верно, тогда для (m-1)-раз дифференцируемой в точке a функции f будет выполняться:

$$f(a+h) = f(a) + df(a,h) + \frac{d^2 f(a,h)}{2!} + \ldots + \frac{d^{m-1} f(a,h)}{(m-1)!} + \overline{o}(\|h\|^{m-1})$$

Рассмотрим функцию g(v), определенную следующим образом:

$$g(v) = f(a+v) - f(a) - df(a,v) - \frac{d^2 f(a,v)}{2!} - \dots - \frac{d^m f(a,v)}{m!}$$

Возьмем частную производную функции g(v) по i-му аргументу в $u \in B(0,r)$:

$$\frac{\partial g(u)}{\partial v_i} = \frac{\partial f(a+u)}{\partial x_i} \cdot 1 - \frac{\partial}{\partial v_i} \left(\sum_{i_1=1}^n \frac{\partial f(a)}{\partial x_{i_1}} \cdot v_i \right) \bigg|_{v=u} - \dots - \frac{\partial}{\partial v_i} \left(\frac{1}{m!} \sum_{i_1 \dots i_m} \frac{\partial^m f}{\partial x_{i_1} \dots \partial x_{i_m}} (a) \cdot v_{i_1} \cdot \dots \cdot v_{i_m} \right) \bigg|_{v=u} = 0$$

$$= \frac{\partial f(a+u)}{\partial x_i} - \frac{\partial f(a)}{\partial x_{i_1}} - \dots - \frac{m}{m!} \sum_{i_1 \dots i_{m-1}} \frac{\partial^m f}{\partial x_{i_1} \dots \partial x_{i_m}} (a) \cdot u_{i_1} \cdot \dots \cdot u_{i_{m-1}}$$

Таким образом, если взять функцию $\gamma_i(v) = \frac{\partial f(v)}{\partial x_i}$, то она (m-1)-раз дифференцируема в точке a (по условию) и мы можем применить к ней предположение индукции:

$$\gamma_i(a+u) = \gamma_i(a) + d\gamma_i(a,u) + \frac{d^2\gamma_i(a,u)}{2!} + \ldots + \frac{d^{m-1}\gamma_i(a,u)}{(m-1)!} + \overline{o}(\|u\|^{m-1})$$

Тогда мы получим следующее:

$$\frac{\partial g(u)}{\partial v_i} = \gamma_i(a+u) - \gamma_i(a) - d\gamma_i(a,u) - \frac{d^2\gamma_i(a,u)}{2!} - \dots - \frac{d^{m-1}\gamma_i(a,u)}{(m-1)!} = \overline{o}(\|u\|^{m-1})$$

Заметим, что поскольку $m-1 \ge 1 \Rightarrow m \ge 2 \Rightarrow$ функция f как минимум дифференцируема два раза в точке $a \Rightarrow$ дифференцируема хотя бы один раз в окрестности точки $a \Rightarrow g(v)$ дифференцируема хотя бы раз в окрестности нуля: f(a+v) дифференцируема в окрестности a и все дифференциалы, как линейные функции от v, также дифференцируемы в окрестности нуля. Тогда можно применить формулу Тейлора с остаточным членом в форме Лагранжа:

$$g(h) = g(0) + df(ch, h) = 0 + \sum_{i=1}^{n} \frac{\partial g(ch)}{\partial v_i} \cdot h_i = \sum_{i=1}^{n} \overline{o}(\|ch\|^{m-1}) \cdot h_i$$

где $c = c(h) \in (0,1) \Rightarrow$ ограниченное значение, по модулю $\frac{h_k}{\|h\|} \le 1$ (отдельная координата всегда не больше, чем длина вектора) и все эти дроби меньше либо равны $1 \Rightarrow$ мы получили ограниченные функции. Тогда:

$$g(h) = \sum_{i=1}^{n} \overline{o}(\|ch\|^{m-1}) \cdot h_i = \overline{o}(|c|^{m-1} \cdot \|h\|^{m-1}) \cdot \sum_{i=1}^{n} h_i = \overline{o}(\|h\|^{m-1}) \cdot \|h\| \cdot \sum_{i=1}^{n} \frac{h_i}{\|h\|} = \overline{o}(\|h\|^m)$$

Локальный экстремум

Пусть мы рассматриваем следующую функцию $f: \mathbb{R}^n \to \mathbb{R}$.

Опр: 2. Точка a называется точкой локального максимума, если $\exists \mathcal{U}(a)$ такая, что f опеределена в $\mathcal{U}(a)$ и $f(x) \leq f(a), \forall x \in \mathcal{U}(a)$.

Опр: 3. Точка a называется точкой строгого локального максимума, если $\exists \mathcal{U}(a)$ такая, что f опеределена в $\mathcal{U}(a)$ и f(x) < f(a), $\forall x \in \mathcal{U}'(a)$.

Опр: 4. Точка a называется точкой локального минимума, если $\exists \mathcal{U}(a)$ такая, что f опеределена в $\mathcal{U}(a)$ и $f(x) \geq f(a), \forall x \in \mathcal{U}(a)$.

Опр: 5. Точка a называется точкой строгого локального минимума, если $\exists \mathcal{U}(a)$ такая, что f опеределена в $\mathcal{U}(a)$ и f(x) > f(a), $\forall x \in \mathcal{U}'(a)$.

Опр: 6. Точки локального максимума и минимума называются точками локального экстремума.

Теорема 4. (необходимое условие локального экстремума) Если f дифференцируема в точке a и a - точка локального экстремума, то $df(a,h)=0, \ \forall h$ (в частности $\frac{\partial f}{\partial x_i}(a)=0, \ \forall i$).

Рассмотрим функцию $\varphi(t)=f(a+th)$. Точка t=0 - точка локального экстремума функции φ , поскольку у f в точке a - локальный экстремум.

Если локальный максимум:

$$\varphi(0) = f(a) \Rightarrow \forall t \in B(0, r), \, \varphi(t) \le \varphi(0)$$

Если локальный минимум:

$$\varphi(0) = f(a) \Rightarrow \forall t \in B(0, r), \, \varphi(t) \ge \varphi(0)$$

Таким образом в целой окрестности точки a значения больше (локальный минимум) или меньше (локальный максимум), чем в самой точке. Это же будет верно для всех точек прямой (в каком бы направлении она ни была проведена) внутри этой окрестности.

Рис. 2: a - локальный экстремум на прямой внутри окрестности $\mathcal{U}(a)$.

Следовательно, для одномерных функций мы знаем, что из этого следует $\varphi'(0) = 0 \Rightarrow df(a,h) = 0$

Теорема 5. (достаточное условие локального экстремума) Пусть f дважды дифференцируема в окрестности точки a и её вторые производные непрерывны в точке a. Предположим, что df(a,h) = 0, $\forall h$. Тогда будет верно следующее:

- (1) Если $d^2 f(a,h) > 0$, $\forall h \neq 0$, то a точка строгого локального минимума;
- (2) Если $d^2f(a,h)<0,\,\forall h\neq 0,$ то a точка строгого локального максимума;
- (3) Если $\exists\, h,v\colon d^2f(a,v)<0 \land d^2f(a,h)>0,$ то a не является точкой локального экстремума;

Rm: 3. Непрерывность вторых производных - избыточное требование.

 \mathbf{Rm} : 4. Подход сведения ситуации к прямым не верен при исследовании экстремумов (провести через точку a прямую и на этой прямой - одномерная функция, для неё мы знаем как определять тип экстремума). Далее, мы посмотрим пример почему это не так: есть строгий экстремум по каждой прямой, но при этом нет экстремума по совокупности переменных в этой точке.

Пример: Рассмотрим функцию $f(x,y)=x^4+y^2$, очевидно что (0,0) - точка строгого локального минимума, второй дифференциал:

$$d^2 f(0,0) = 2(dy)^2$$

Он не относится ни к одному из случаев, поскольку подставляя h в дифференциал получим:

$$d^2f(h) = 2h_2^2$$

Следовательно нельзя утверждать, что на всех векторах это положительное значение (например, если вторая координата равна нулю: $h_2 = 0 \Rightarrow d^2 f(h) = 0$), нет двух разнознаковых направлений \Rightarrow не подпадает ни под один из случаев и второй дифференциал даже не занулился, то есть он просто выродился. При этом есть точка строгого локального минимума.

Пример: Рассмотрим функцию $f(x,y) = x^3 + y^2$, точка (0,0) теперь перестала быть точкой строгого локального минимума, но при этом $d^2f = 2(dy)^2$.

(1) По условию $d^2 f(a,h) > 0$, $\forall h \neq 0$. Разложим исходную функцию по формуле Тейлора:

$$f(a+h) = f(a) + df(a,h) + \frac{d^2 f(a,h)}{2} + \overline{o}(\|h\|^2) = f(a) + 0 + \frac{d^2 f(a,h)}{2} + \overline{o}(\|h\|^2)$$

Распишем подробнее остаточный член. Поскольку $d^2f(a,h)$ - квадратичное выражение, то вынесем за скобки $\|h\|^2$ и получим:

$$\frac{d^2 f(a,h)}{2} + \overline{o}(\|h\|^2) = \|h\|^2 \cdot \left(\frac{1}{2} \cdot d^2 f\left(a, \frac{h}{\|h\|}\right) + \overline{o}(1)\right), \ \frac{h}{\|h\|} \in \{v \colon \|v\| = 1\}$$

Рассмотрим следующее отображение: $v \mapsto d^2(a,v)$, оно непрерывно как квадратичная форма. Отметим также, что $\{v \colon \|v\|=1\}$ это компакт (ограниченное и замкнутое). Тогда на этом компакте непрерывная функция достигает своего минимума. Пусть:

$$m = \min_{\|v\|=1} d^2 f(a, v) \Rightarrow \forall h \neq 0, \ d^2 f\left(a, \frac{h}{\|h\|}\right) \geq m$$

Поскольку он достигается по теореме Вейрштрасса и $d^2 f(a,h) > 0$, $\forall h \neq 0$ по условию, то m > 0. Тогда, при достаточно малых h, получим:

$$f(a+h) - f(a) \ge ||h||^2 \cdot \left(\frac{m}{2} + \overline{o}(1)\right) > 0, \lim_{h \to 0} \overline{o}(1) = 0$$

(2) По условию $d^2f(a,h) < 0$, $\forall h \neq 0$. Аналогично первому пункту, на компакте непрерывная функция достигнет своего максимума. Пусть:

$$M = \max_{\|v\|=1} d^2 f(a, v) \Rightarrow \forall h \neq 0, d^2 f\left(a, \frac{h}{\|h\|}\right) \leq M$$

Поскольку он достигается по теореме Вейрштрасса и $d^2f(a,h) < 0$, $\forall h \neq 0$ по условию, то M < 0. Тогда, при достаточно малых h, получим:

$$f(a+h) - f(a) \le ||h||^2 \cdot \left(\frac{M}{2} + \overline{o}(1)\right) < 0, \lim_{h \to 0} \overline{o}(1) = 0$$

(3) Пусть $\exists h, v \colon d^2f(a,v) < 0, \ d^2f(a,h) > 0.$ Рассмотрим функции $\varphi_1(t) = f(a+tv)$ и $\varphi_2(t) = f(a+th)$:

Рис. 3: Функции $\varphi_1(t)$ и $\varphi_2(t)$ по направлениям v и h.

Мы знаем, что для $\varphi_1(t)$:

$$\varphi_1'(0) = df(a, v) = 0, \ \varphi_1''(0) = d^2f(a, v) < 0$$

Следовательно, точка 0 для $\varphi_1(t)$ это точка строгого локального максимума. Аналогично для $\varphi_2(t)$:

$$\varphi_2'(0) = df(a, h) = 0, \ \varphi_2''(0) = d^2f(a, h) > 0$$

Следовательно, точка 0 для $\varphi_2(t)$ это точка строгого локального минимума. Таким образом, в окрестности точки a мы найдем как точки в которых значения строго меньше, чем значение в точке a, так и точки в которых значения строго больше, чем значение в точке a. Значит эта точка не является точкой экстремума.

Как уже упомянали, ограничение на прямую в функциях многих переменных для поиска экстремумов является не верным подходом. Рассмотрим иллюстрирующий пример.

Пример: Обозначим через h(x,y) знакомую нам функцию: $h(x,y) = \begin{cases} -1, & y = x^2 \land x \ge 0 \\ 0, & y \ne x^2 \lor x < 0 \end{cases}$. И рассмотрим функцию $f(x,y) = x^2 + y^2 + h(x,y)$. Посмотрим, что у этой функции в точке (0,0).

Рис. 4: Функции h(x,y) и окрестность точки (0,0) функции f(x,y).

Какую бы проходящую через ноль прямую мы не взяли, найдется окрестность, где $h(x,y)=0\Rightarrow$ на этой окрестности $f(x,y)=x^2+y^2$, которая в (0,0) будет иметь строгий локальный минимум. Но по совокупности двух переменных это не так: если мы возьмем точки вдоль $y=x^2$, то точки x^2+y^2 будут стремиться к нулю, а $h(x,y)=-1\Rightarrow$ сколь угодно близко к нулю есть точки, где f(x,y)<0.

Таким образом в любой окрестности нуля есть как точки с f(x,y) > 0, так и точки с f(x,y) < 0. У функции f(x,y) по каждой прямой в (0,0) - строгий локальный минимум, но при этом настоящего локального минимума по совокупности переменных нет.

 ${\bf Rm: 5.}$ В качестве h(x,y) можно взять сглаженную функцию и тогда получим гладкую функцию для которой данное наблюдение останется верным.

Условный экстремум

Задача (летний кинотеатр): На высоте h от уровня обзора висит экран шириной H. Где лучше сесть вдоль линии обзора, чтобы был максимальным угол φ под которым видим этот экран?

Рис. 5: Задача про летний кинотеатр: поиск места с лучшим углом обзора φ .

Перед нами стоит задача $\varphi \to \max$. Поймем для начала, откуда угол обзора будет одинаковым. Из школы известно, что вписанные углы, опирающиеся на одну и ту же хорду равны.

Рис. 6: Вписанные углы, опирающиеся на одну и ту же хорду равны.

В частности, угол в точке a на рисунке также будет равен φ . Но из точек на линии обзора (т.е. которые опираются на ту же дугу внутри круга) углы будет больше.

Хотим понять, в каком случае невозможно будет увеличить угол под которым видим экран? Только тогда, когда не будет точек внутри круга на линии обзора \Rightarrow нужно взять окружность, которая будет опираться на хорду экрана и касаться линии обзора.

Рис. 7: Максимальный угол обзора в точке b.

Расстояние до искомой точки b от экрана по теореме о секущей и касательной будет равно $\sqrt{(h+H)h}$.

Что мы делали, когда начали смотреть на эти окружности?

Рис. 8: Задача на условный экстремум.

Была функция $\varphi(x,y)$ которая в точке (x,y) сообщает нам угол под которым мы видим экран. Мы искали экстремум (максимум) этой функции, при условии что точки (x,y) лежат на некотором множестве (в данном случае это прямая) l:

$$\begin{cases} \varphi(x,y) \to \text{extr!} \\ (x,y) \in l \end{cases}$$

То есть, мы получили стандартную задачу на условный экстремум: ищем экстремум функции, но при этом разрешается брать не любые точки, а удовлетворяющие некоему условию. Чтобы решить эту задачу мы начали рисовать множества уровняей функции: $\varphi(x,y) = \varphi_0$. И мы нашли решение в точке, где линия уровня φ коснулась линии, которая задает нам условие.

<u>Идея</u>: Ищем экстремумы в тех точках, в которых линии уровня исследуемой функции касаются линии задающей условия.

Задача: Еще одной типичной задачей на условный экстремум является поиск экстремума на единичной окружности:

$$\begin{cases} x+y \to \text{extr!} \\ x^2 + y^2 = 1 \end{cases}$$

В этом случае рисуем окружность, проводим линии уровня и исследуем точки соприкосновения.