DSA Study Notes Day 1

Created by Munawar Johan

How to Study This Series?

- **Understand the Concepts**: Before diving into code, ensure you understand the underlying concepts.
- **Practice Regularly**: Regular practice is essential for mastering DSA.
- Follow the Flow: Start with simple problems and gradually move to more complex ones.
- Analyze Your Code: Always consider the time and space complexity of your solutions.
- **Solve Multiple Problems**: Approach problems from different angles and solve them using various methods.

How to Solve Problems?

- 1. **Understand the Problem**: Make sure you clearly understand the problem before attempting to solve it.
- 2. **Plan Your Solution**: Use flowcharts and pseudocode to outline your approach before coding.
- 3. **Implement the Code**: Translate your pseudocode into the programming language of your choice.
- 4. **Test Your Solution**: Run your code with various inputs to ensure its correctness and efficiency.

Flowchart and Pseudocode Examples

Flowchart

A flowchart is a diagram that represents the steps involved in solving a problem. It visually organizes the solution and helps in understanding the process flow.

Example:

- **Problem**: Sum of two numbers
- Flowchart:
 - o Start
 - o Input a & b
 - o sum = a + b
 - o Print sum
 - Exit

Pseudocode

Pseudocode is a plain language description of the steps in an algorithm. It helps in converting the problem-solving logic into actual code.

Example:

- **Problem**: Sum of two numbers
- Pseudocode:
 - 1. **Input** a & b
 - 2. sum = a + b
 - 3. Print sum
 - 4. Exit

Sample Problems and Solutions

Problem 1: Area of a Square

- Flowchart:
 - o Start
 - o Input a
 - o area = a * a
 - o Print area
 - o Exit
- Pseudocode:
 - 1. Input a
 - 2. area = a * a
 - 3. Print area
 - 4. Exit

Problem 2: Minimum of Two Numbers

- Flowchart:
 - o Start
 - o Input a & b
 - o Decision: a < b
 - Yes: Print a
 - No: Print b
 - o Exit
- Pseudocode:
 - 1. **Input** a & b
 - 2. If a < b
 - Print a

- Print b
- 3. Exit

Problem 3: Check if a Number is Odd or Even

- Flowchart:
 - o Start
 - o Input n
 - o **Decision:** n % 2 == 0
 - Yes: Print Even
 - No: Print odd
 - o Exit
- Pseudocode:
 - 1. **Input** n
 - 2. If n % 2 == 0
 - Print Even

Else

- Print odd
- 3. Exit

Problem 4: Sum of Numbers from 1 to N

- Flowchart:
 - Start
 - o **Input** n
 - o Initialize sum = 0, count = 1
 - o Loop: While count <= n
 - sum = sum + count
 - Increment count
 - o Print sum
 - o Exit
- Pseudocode:
 - 1. **Input** n
 - 2. Initialize count = 1, sum = 0
 - 3. While count <= n
 - sum = sum + count
 - Increment count
 - 4. Print sum

Problem 5: Check if a Number is Prime

```
• Flowchart:
```

```
o Start
```

- o **Input** n
- o Initialize i = 2
- o Loop: While i <= n 1
 - **Decision:** n % i == 0
 - Yes: Print Not Prime, Exit
 - No: Increment i
- o Print Prime
- o Exit

• Pseudocode:

- 1. **Input** n
- 2. Initialize i = 2
- 3. While $i \le n 1$
 - If n % i == 0
 - Print Not Prime
 - Exit
 - Else
 - Increment i
- 4. Print Prime
- 5. Exit

Homework Problems

Q1: Calculate Simple Interest

• Flowchart:

- o Start
- o Input p, r, t
- o interest = p * r * t
- o **Print** interest
- Exit

• Pseudocode:

- 1. **Input** p, r, t
- 2. interest = p * r * t
- 3. Print interest
- 4. Exit

Q2: Calculate Maximum of Two Numbers

- Flowchart:
 - o Start
 - o Input a & b
 - o Decision: a > b
 - Yes: Print a
 - No: Print b
 - o Exit
- Pseudocode:
 - 1. **Input** a & b
 - 2. If a > b
 - Print a Else
 - Print b
 - 3. Exit

Q3: Calculate the Factorial of a Number

- Flowchart:
 - o Start
 - o **Input** n
 - o Loop: While n > 1
 - n = n * (n 1)
 - Decrement n
 - o Print n
 - Exit
- Pseudocode:
 - 1. **Input** n
 - 2. While n > 1
 - n = n * (n 1)
 - Decrement n
 - 3. Print n
 - 4. Exit

Q4: Determine Eligibility for a Driving License

- Flowchart:
 - o Start
 - o Input age
 - o Decision: age >= 18

- Yes: Print You can drive
- No: Print You cannot drive
- o Exit
- Pseudocode:
 - 1. Input age
 - 2. If age >= 18
 - Print You can drive

Else

- Print You cannot drive
- 3. Exit

How Does Code Run?

- Editor or Software: Write code in a code editor like Visual Studio Code.
- **Translation**: The code is translated by a compiler (e.g., C++ compiler) into machine language (01) that the computer can execute.

What to Install?

- 1. **Visual Studio Code**: A versatile code editor suitable for various programming languages.
- 2. **Set Up C++**:
 - o Windows: Install MinGW or Visual Studio Community.
 - o Mac: Install Xcode or use Homebrew to set up GCC.

Day 1 Notes

Prepared by Munawar Johar