Non-deterministic finite automata

A non-deterministic finite automaton (NFA) has the same definition as a DFA except that δ returns a set of states instead of one state.

Consider

There are two out-going edges from state q_0 which are labeled 0, hence two states can be reached when 0 is input: q_0 (loop) and q_1 . This NFA recognises the language of words on the binary alphabet whose suffix is 01.

Non-deterministic finite automata (cont)

Before describing formally what is a recognisable language by a NFA, let us consider as an example the previous NFA and the input 00101. Let us represent each transition for this input by an edge in a tree where nodes are states of the NFA.

NFA/Formal definitions

A NFA is represented essentially like a DFA: $\mathcal{N}=(Q_N,\Sigma,\delta_N,q_0,F_N)$ where the names have the same interpretation as for DFA, except δ_N which returns a subset of Q — not an element of Q.

For example, the NFA whose transition diagram is page 141 can be specified formally as

$$\mathcal{N} = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta_N, q_0, \{q_2\})$$

where the transition function δ_N is given by the transition table:

\mathcal{N}	0	1
$\rightarrow q_0$	$\{q_0,q_1\}$	$\{q_0\}$
q_1	Ø	$\{q_2\}$
$\#q_2$	Ø	Ø

NFA/Formal definitions (cont)

Note that, in the transition table of a NFA, all the cells are filled: there is no transition between two states if and only if the corresponding cell contains \varnothing .

In case of a DFA, the cell would remain empty.

It is common also to set that in case of the empty word input, ε , both for the DFA and NFA, the state remains the same:

- for DFA: $\forall q \in Q.\delta_D(q,\varepsilon) = q$
- for NFA: $\forall q \in Q.\delta_N(q, \varepsilon) = \{q\}$

NFA/Formal definitions (cont)

As we did for the DFAs, we can extend the transition function δ_N to accept words and not just letters (labels). The extended function is noted $\hat{\delta}_N$ and defined as

- for all state $q \in Q$, let $\hat{\delta}_N(q, \varepsilon) = \{q\}$
- for all state $q \in Q$, all words $w \in \Sigma^*$, all input $a \in \Sigma$, let

$$\hat{\delta}_{N}(q, wa) = \bigcup_{q' \in \hat{\delta}_{N}(q, w)} \delta_{N}(q', a)$$

The language $L(\mathcal{N})$ recognised by a NFA \mathcal{N} is defined as

$$L(\mathcal{N}) = \{ w \in \Sigma^* \mid \hat{\delta}_N(q_0, w) \cap F \neq \emptyset \}$$

which means that the processing of the input stops successfully as soon as at least one current state belongs to F.

NFA/Example

Let us use $\hat{\delta}_{\it N}$ to describe the processing of the input 00101 by the NFA page 141:

- 1. $\hat{\delta}_N(q_0,\varepsilon)=q_0$
- 2. $\hat{\delta}_N(q_0,0) = \delta_N(q_0,0) = \{q_0,q_1\}$
- 3. $\hat{\delta}_N(q_0,00) = \delta_N(q_0,0) \cup \delta_N(q_1,0) = \{q_0,q_1\} \cup \emptyset = \{q_0,q_1\}$
- 4. $\hat{\delta}_N(q_0,001) = \delta_N(q_0,1) \cup \delta_N(q_1,1) = \{q_0\} \cup \{q_2\} = \{q_0,q_2\}$
- 5. $\hat{\delta}_N(q_0,0010) = \delta_N(q_0,0) \cup \delta_N(q_2,0) = \{q_0,q_1\} \cup \emptyset = \{q_0,q_1\}$
- 6. $\hat{\delta}_N(q_0,00101) = \delta_N(q_0,1) \cup \delta_N(q_1,1) = \{q_0\} \cup \{q_2\} = \{q_0,q_2\} \ni q_2$

Because q_2 is a final state, actually $F = \{q_2\}$, we get $\hat{\delta}_N(q_0,00101) \cap F \neq \emptyset$ thus the string 00101 is recognised by the NFA.