

Жидкокристаллический индикатор

буквенно-цифровой 4 строки по 20 символов

■ Общие сведения

Жидкокристаллический индикатор MT–20S4S состоит из БИС контроллера управления и ЖК панели. Контроллер управления ST7070, аналогичен HD44780 фирмы HITACHI и KS0066 фирмы SAMSUNG.

Индикатор выпускается со светодиодной подсветкой.

Индикатор позволяет отображать 4 строки по 20 символов. Символы отображаются в матрице 5х8 точек. Между символами имеются интервалы шириной в одну отображаемую точку.

Каждому отображаемому на ЖКИ символу соответствует его код в ячейке ОЗУ индикатора.

Индикатор содержит два вида памяти — кодов отображаемых символов и пользовательского знакогенератора, а также логику для управления ЖК панелью.

Внешний вид индикатора см. рис. 1

Габаритные размеры индикатора см. рис. 13.

Рис. 1.

Внимание! Недопустимо воздействие статического электричества больше 30 вольт.

■ Возможности индикатора

- индикатор позволяет отображать одновременно до 512 символов из двух страниц знакогенератора (алфавиты: русский и английский; см. табл. 5 и табл. 6).
- работать как по 8-ми, так и по 4-х битной шине данных (задаётся при инициализации);
- работать по 3-х или 4-х проводному последовательному интерфейсу (см. рис. 13);
- принимать команды с шины данных (перечень команд см. табл. 3);
- записывать данные в ОЗУ с шины данных;
- читать данные из ОЗУ на шину данных;
- читать статус состояния на шину данных (см. табл. 3);
- запоминать до 8-ми изображений символов, задаваемых пользователем;
- выводить не мигающий курсор;
- управлять контрастностью и подсветкой.

Таблица 1. Динамические характеристики индикатора.

Название	06	U _{cc}	=5B	U _{cc}	=3B	Единицы
пазвание	Обозначение	Мин.	Макс.	Мин.	Макс.	измерения
Время цикла чтения/записи	t _{CYCE}	500	_	1000	_	нс
Длительность импульса разрешения чтения/записи	PW _{EH}	230	-	450	-	нс
Время нарастания и спада	t _{Er} , t _{Ef} , t _r	-	20	_	25	НС
Время предустановки адреса	t _{AS}	40	-	60	_	нс
Время удержания адреса	t _{AH}	10	_	20	_	нс
Время выдачи данных	t _{DDR}	-	120	-	360	нс
Время задержки данных	t _{DHR}	5	_	5	_	нс
Время предустановки данных	t _{DSW}	80	_	195	_	нс
Время удержания данных	t _H	10	_	10	_	НС
Время цикла записи	t _{scyc}	800	_	2000	_	нс
Длительность импульса/паузы	t _{SHW, SLW}	40	_	950	_	НС
Время предустановки данных	t _{SDS}	10	_	10	_	нс
Время удержания данных	t _{SDH}	50	_	50	-	НС
Время предустановки сигнала CS	t _{css}	60	-	70	-	нс
Время удержания сигнала CS	t _{CSH}	135	_	210	_	НС

■ Управление контрастностью

Для 5В индикаторов вывод U_0 нужно подключать к выводу U_{CC} , а для 3В индикаторов вывод U_0 нужно оставлять неподключённым. Для изменения контрастности используется внешний переменный резистор R номиналом 10кОм.

Рис. 2.

■ Характеристики индикатора по постоянному току

Таблица 2. Характеристики индикатора по постоянному току.

			Обозна-	Ucc=5B			Ucc=3B			Единицы
Название			чение	Мин.	Ном.	Макс.	Мин.	Ном.	Макс.	измерения
Напряжение	логическ	oe	U _{cc} –GND	4,5	5,0	5,5	2,7	3,0	3,6	В
питания	ЖКИ		U _{CC} -U ₀	4,8	5,0	5,2	_	-	-	
Ток потребления	Ток потребления				1,1	1,3	0,8	0,9	1,1	мА
Входное напряже	ние высог	кого уровня при I _{IH} = 0,1 мА	U _{IH}	2,5	_	U _{cc}	0,7 U _{CC}	_	U _{cc}	В
Входное напряже	ние низко	го уровня при I _{IL} = 0,1 мА	U _{IL}	_0,3	_	0,6	_0,3	_	0,6	В
Выходное напряж	ение высо	кого уровня при I _{OH} = 0,1 мА	U _{OH}	3,9	_	U _{cc}	0,75 U _{CC}	-	U _{cc}	В
Выходное напрях	сение низк	ого уровня при I _{OL} = 0,1 мА	U _{OL}	_	_	0,4	_	_	0,2 U _{CC}	В
Ток подсветки янтарная, жёлто-зелёная			I _{LED}	112	134	160	100	122	158	мА
при напряжении питания под-	Боковая	голубая, белая	I _{LED}	53	67	82	10	19	35	мА
светки =U _{CC}	Нижняя	янтарная, жёлто-зелёная	I _{LED}	_	-	-	_	-	-	мА

■ Временные диаграммы

Рис. 3. Диаграмма чтения в параллельном интерфейсе

Рис. 4. Диаграмма записи в параллельном интерфейсе

Рис. 5. Диаграмма записи в последовательном интерфейсе.

■ Диаграммы обмена

Рис. 6. Диаграмма обмена по 4-х битному интерфейсу

Примечание. В каждом цикле обмена необходимо передавать (читать или писать) все 8 битов — два раза по 4 бита. Передача старших 4-х битов без последующей передачи младших 4-х битов не допускается.

Рис. 7. Диаграмма обмена по 8-ми битному интерфейсу

■ Диаграмма обмена по 4-х проводному последовательному интерфейсу

Рис. 8. Диаграмма обмена по 4-х проводному последовательному интерфейсу

■ Диаграмма обмена по 3-х проводному последовательному интерфейсу

Рис. 9. Диаграмма обмена по 3-х проводному последовательному интерфейсу

■ Начальная установка индикатора

Индикатор инициализируется в начальное состояние при подаче питания, а также по входу XRES с активным уровнем лог. 0: память индикатора очищается,

DL=1 (8-ми битный интерфейс),

D=0 (индикатор выключен), C=0 (курсор выключен),

Р=0 (нулевая страница знакогенератора),

ID=0 (инкремент),

SH=0 (сдвиг экрана запрещён),

ЕХТ=0 (основной набор команд).

Время инициализации по включению питания или сигналом XRES составляет 40 мс, на всё это время флаг BS=1.

Если инициализация по подаче питания не сработала (например из-за слишком медленного нарастания напряжения питания индикатора), то инициализацию индикатора можно провести в любой момент сигналом XRES или следующей последовательностью команд:

Рис. 10.

^{* —} перед этими командами флаг BS не проверять. Назначение битов см. табл. 3.

■ Использование двух страниц знакогенератора

Индикатор содержит две страницы знакогенератора с возможностью их одновременного использования. Для этого память DDRAM является 9-ти битовой и в 9-й бит при операциях записи байта записывается текущее состояние бита P (команда Display ON/OFF control). Прочитать 9-й бит из памяти DDRAM невозможно.

■ Распределение ОЗУ

Индикатор содержит ОЗУ размером 80 байтов по адресам 0h–27h и 40h–67h для хранения данных (DDRAM), выводимых на ЖКИ. Адреса отображаемых на индикаторе символов распределены следующим образом:

Рис. 11.

■ Время выполнения и флаг BS

Перед подачей команд индикатору необходимо убедиться, что индикатор готов к их приёму. Это делается опросом флага BS в байте статуса. Ни перед, ни после опроса выдерживать паузы не нужно.

Альтернатива: не опрашивать флаг BS, а ждать указанное в таблице 3 время после (или перед) каждой команды и каждого байта данных. Для последовательного интерфейса опрос флага BS невозможен и допустим только альтернативный вариант с выдержкой времени.

■ Последовательный интерфейс

8

Индикатор может управляться по 3-х или 4-х проводному последовательному интерфейсу: SCL (тактовый сигнал), SI (данные), CS (разрешение обращения к индикатору), A0 (выбор команда/данные, для 4-х проводного варианта). Цикл обращения начинается с установки CS в лог.0 и подачи после этого команд или данных последовательным кодом начиная со старших разрядов. Бит данных записывается в индикатор по фронту сигнала SCL.

Для 4-х проводного варианта подключения сигнал А0 нужно выставлять не позднее последнего (младшего) бита каждого байта. Для 3-х проводного варианта подключения для записи последовательности данных (до 80-ти байтов длиной) нужно подавать команду Function Set с установленным битом EXT=1, далее команду Set data length с количеством байтов данных, потом байты данных. Сразу после последовательности данных индикатор вновь переключается на приём команд, оставляя EXT=1. Рекомендуем после последовательности данных сразу же подать команду Function Set с битом EXT=0 для переключения индикатора к основному набору команд. По окончании записи всего блока команд и/или данных рекомендуем установить CS=1 для исключения «паразитных» обращений к индикатору.

Прочитать данные из индикатора по последовательному интерфейсу нельзя, как нельзя и опросить байт статуса и флаг BS. Это вынуждает выдерживать паузу между каждой командой и байтом данных не менее указанной в таблице 3. Во время этой паузы допустимо подавать биты следующей команды или байта данных, за исключением последнего (младшего, D0) — запись младшего бита запускает внутреннюю операцию записи в индикаторе.

■ Символы, программируемые пользователем

Индикатор содержит память для хранения изображений восьми символов, программируемых пользователем (CGRAM). Коды этих восьми символов показаны в табл. 5. Адреса строк изображений этих символов не зависят от адресов выводимых символов (расположены в отдельном адресном пространстве) и занимают адреса от 0h до 3Fh.

Каждый символ занимает 8 байтов (0h–7h, 8h–Fh, 10h–17h, ..., 30h–37h, 38h–3Fh). Нумерация байтов идёт в порядке отображения на модуле сверху вниз (первый байт самый верхний, восьмой байт самый нижний). Последняя, восьмая строка используется также для отображения курсора. В каждом байте используются только 5 младших битов (4, 3, 2, 1, 0), старшие 3 бита (7, 6, 5) могут быть любые, на отображение они не влияют. Бит 4 соответствует левому столбцу матрицы символа, бит 0 — правому столбцу. Пример см. ниже.

Код символа	Адрес в знакогенераторе	Значения в знакогенераторе	
7 6 5 4 3 2 1 0	5 4 3 2 1 0	7 6 5 4 3 2 1 0	
0000*000	0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 1 1 1	* * * * 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 1	Нзображение первого символа Позиция для курсора
0000*001	0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1	* * * * 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 1 0 0 1 1 1 1	Изображение второго символаПозиция для курсора
0 0 0 0 * 1 1 1	1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1	* * * *	

Рис. 12.

■ Описание команд индикатора

Таблица 3.

					Код ко	манды					_	Время
Команда	A0	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Описание	выполнения*
Clear Display	0	0	0	0	0	0	0	0	0	1	Очищает индикатор и помещает курсор в самую левую позицию	1.52 мс
Return Home	0	0	0	0	0	0	0	0	1	X*3	Перемещает курсор в левую по- зицию	0
Display ON/OFF	0	0	0	0	0	0	1	D	С	Р	Включает индикатор (D=1) и включает курсор (C=1) Р — страница знакогенератора	40 мкс
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	Х	х	Выполняет сдвиг дисплея или курсора (SC=0/1—курсор/дисплей, RL=0/1—влево/вправо)	40 мкс
Function Set	0	0	0	0	1	DL	1	EXT	х	х	Установка разрядности интерфейса (DL=0/1—4/8 бита), выбор расширенного режима (EXT)	40 мкс
Read BUSY flag and Address	0	1	BS	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Прочитать флаг занятости и содержимое счётчика адреса	0*2
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Запись данных в активную область	40 мкс
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Чтение данных из активной об- ласти	40 мкс
								EXT=	0			
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Установка направления сдвига курсора (ID=0/1—влево/вправо) и разрешение сдвига дисплея (SH=1) при записи в DDRAM	40 мкс
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Установка адреса для последую- щих операций и выбор области CGRAM	40 мкс
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Установка адреса для последую- щих операций и выбор области DDRAM	40 мкс
								EXT=	1			
Set display data length*4	0	0	1	L6	L5	L4	L3	L2	L1	L0*5	Установка длины последователь- ности данных	40 мкс

Примечания:

^{* —} указанное время выполнения команд является максимальным. Его не обязательно выдерживать при условии чтения флага занятости BS — как только флаг BS=0, так сразу можно писать следующую команду или данные. Если же флаг BS перед выдачей команд не проверяется — необходимо формировать паузу между командами не менее указанного времени для надёжной работы индикатора.

^{*2 –} при чтении байта статуса никакую паузу делать не надо.

^{*3 –} X — любое значение (0 или 1).

^{*4 –} данная команда применяется только в 3-х проводном последовательном интерфейсе.

^{*5 –} код в L6-L0 указывать на 1 меньше длины последовательности данных (00-79 для длины данных от 1 до 80).

Таблица 4. Назначение внешних выводов.

Вывод	Обозначение	Назначение вывода
1	GND	Общий вывод (0B)
2	U _{cc}	Напряжение питания (5В/3В)
3	U ₀	Управление контрастностью
4	A0	Адресный сигнал — выбор между передачей данных и команд управления /
4	AU	(используется в последовательном интерфейсе)
5	R/W	Выбор режима записи или чтения
6	E	Разрешение обращений к индикатору (а также строб данных)
7	DB0	Шина данных (8-ми битный режим)(младший бит в 8-ми битном режиме)
8	DB1	Шина данных (8-ми битный режим)
9	DB2	Шина данных (8-ми битный режим)
10	DB3	Шина данных (8-ми битный режим)
11	DB4	Шина данных (8-ми и 4-х битные режимы)(младший бит в 4-х битном режиме)
12	DB5/CS	Шина данных (8-ми и 4-х битные режимы)/(используется в последовательном интерфейсе)
13	DB6/SCL	Шина данных (8-ми и 4-х битные режимы)/(используется в последовательном интерфейсе)
14	DB7/SI	Шина данных (8-ми и 4-х битные режимы) (старший бит)/(используется в последовательном интерфейсе)
15	+LED	+ питания подсветки
16	_LED	– питания подсветки
17	XRES	Начальная инициализация
18	PSB	Выбор параллельного или последовательного интерфейса (параллельный PCB=U _{CC} ,
10	1 30	последовательный PCB=GND)

■ Габаритные размеры индикатора

Рис. 13.

Таблица 5. Страница 0 встроенного знакогенератора.

b7-b4	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
P3-P0	0000	0001	0010	0011	0100	0101	0110		1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)								•							
0001	(2)															
0010	(3)															
0011	(4)															
0100	(5)															
0101	(6)															
0110	(7)															
0111	(8)															
1000	(1)															
1001	(2)															
1010	(3)															
1011	(4)															
1100	(5)											HHH				
1101	(6)									*						
1110	(7)		••													
1111	(8)															

Таблица 6. Страница 1 встроенного знакогенератора.

b7-b4	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000													W			
0001																
0010																
0011																
0100																
0101																
0110																
0111																
1000																
1001																
1010																
1011									*							
1100				×												
1101																
1110																
1111																

■ Рекомендуемая схема включения

Рис. 14. 3-х проводной последовательный интерфейс.

Рис. 15. 4-х проводной последовательный интерфейс.

Рис. 16. 4-х битный параллельный интерфейс.

Рис. 17. 8-ми битный параллельный интерфейс.

■ Пример программы для работы с индикатором

1. 3-х проводной последовательный интерфейс

```
Main:
                                                                                   Byte:
  call
          Init20S4S
                                                                                             C,ACC.7
                                                                                     mov
  clr
          CS
                                                                                     clr
                                                                                             SCL
                     ;Set DDRAM address
  mov
          A,#80h
                                                                                     mov
                                                                                             SI,C
  call
                                                                                     setb
                                                                                             SCL
          A,#3Ch
                    ;Function set
                                                                                     mov
                                                                                             C,ACC.6
  mov
                    ;EXT=1
                                                                                             SCL
          Byte
  call
                                                                                     clr
          A,#83h
                    ;Set data length
                                                                                             SI,C
  mov
                                                                                     mov
  call
          Byte
                    ;Дальше будут 4 байта данных
                                                                                     setb
                                                                                             SCL
                                                                                             C,ACC.5
  mov
          A,#'M'
                                                                                     mov
          Byte
                                                                                             SCL
                    ;»M_
                                                                                     clr
  call
          A,#'E'
                                                                                     mov
                                                                                             SI,C
          Byte
                    ;»ME_
                                                                                             SCL
  call
                                                                                     setb
          A,#'L'
                                                                                             C,ACC.4
  mov
                                                                                     mov
  call
          Byte
                    ;»MEL_
                                                                                     clr
                                                                                             SCL
  mov
          A,#'T'
                                                                                     mov
                                                                                             SI,C
                    ;»MELT_
                                                                                             SCL
  call
          Byte
                                                                                     setb
                                                                                             C,ACC.3
          A,#38h
                    ;Function set
                                                                                     mov
  mov
                     ;ЕХТ=0 для последующих команд
                                                                                             SCL
  call
          Byte
                                                                                     clr
  mov
          A,#14h
                    ;Cursor or display shift
                                                                                     mov
                                                                                             SI,C
  call
          Byte
                     ;»MELT _
                                                                                     setb
                                                                                             SCL
          CS
                                                                                             C,ACC.2
  setb
                                                                                     mov
                                                                                     clr
                                                                                             SCL
  ...
                                                                                             SI,C
                                                                                     mov
                                                                                     setb
                                                                                             SCL
Init20S4S:
                                                                                             C,ACC.1
                                                                                     mov
  clr
          PSB
                     ;Последовательный интерфейс
                                                                                     clr
                                                                                             SCL
  call
          Delay40ms
                                                                                             SI,C
                                                                                     mov
                                                                                             SCL
  setb
          SCL
                    ;Начальное значение сигнала
                                                                                     setb
  clr
          CS
                     ;Начало последовательности команд
                                                                                             C,ACC.0
          A,#38h
                    ;Function set
                                                                                     clr
                                                                                             SCL
  mov
                    ;DL=1,EXT=0
                                                                                             SI,C
          Byte
  call
                                                                                     mov
                    ;Entry mode set
                                                                                     setb
                                                                                             SCL
  mov
          A,#06h
  call
                     ;I/D=1,SH=0
                                                                                   Wait40us:
                     ;Display ON/OFF control
          A,#0Eh
                                                                                     mov
                                                                                             A,#20
                                                                                                       ;Для 12МГц тактовой частоты
  mov
                               ;D=1,C=1,P=0
                                                                                             ACC,$
  call
          Byte
                                                                                     djnz
          A,#01h
  mov
                     ;Clear display
                                                                                     ret
  call
          Byte
          CS
  setb
                    ;Конец последовательности команд
                                                                                   Wait1.5ms:
  call
          Wait1.5ms
  ret
                                                                                     mov
                                                                                             R0,#38
                                                                                   $1:
                                                                                             Wait40us
                                                                                     call
                                                                                     djnz
                                                                                             R0,$1
                                                                                     ret
```

2. 4-х проводной последовательный интерфейс

Main:				Data:		
call	Init20S4	S		setb	A0	
clr	CS			sjmp	Byte	
mov	A,#80h	;Set DDRA	M address	Code:		
call	Code	;»_	«	clr	A0	
mov	A,#'M'			Byte:		
call	Data	;»M_	«	mov	C,ACC.7	
mov	A,#'E'			clr	SCL	
call	Data	;»ME_	«	mov	SI,C	
mov	A,#'L'			setb	SCL	
call	Data	;»MEL_	«	mov	C,ACC.6	
mov	A,#'T'			clr	SCL	
call	Data	;»MELT_	«	mov	SI,C	
mov	A,#14h	;Cursor or	display shift	setb	SCL	
call	Code	;»MELT_	«	mov	C,ACC.5	
setb	CS			clr	SCL	
				mov	SI,C	
				setb	SCL	
				mov	C,ACC.4	
Init20S4	S:			clr	SCL	
clr	PSB	;Последов	ательный интерфейс	mov	SI,C	
call	Delay40r	ns		setb	SCL	
setb	SCL	;Начально	е значение сигнала	mov	C,ACC.3	
clr	CS	;Начало п	оследовательности команд	clr	SCL	
mov	A,#38h	;Function	set	mov	SI,C	
call	Code	;DL=1,EXT=	=0	setb	SCL	
mov	A,#06h	;Entry mod	le set	mov	C,ACC.2	
call	Code	;I/D=1,SH=	=0	clr	SCL	
mov	A,#0Eh	;Display O	N/OFF control	mov	SI,C	
call	Code	;D=1,C=1,P	=0	setb	SCL	
mov	A,#01h	;Clear disp	lay	mov	C,ACC.1	
call	Code			clr	SCL	
setb	CS	;Конец по	следовательности команд	mov	SI,C	
call	Wait1.5n	15		setb	SCL	
ret				mov	C,ACC.0	
				clr	SCL	
				mov	SI,C	
Wait1.5m	ıs:			setb	SCL	
mov	R0,#38			Wait40us	:	
\$1:				mov	A,#20	;Для 12МГц тактовой частоты
call	Wait40us	5		djnz	ACC,\$	
djnz	R0,\$1			ret		
ret						

4. 4-х битный интерфейс

Main:				Code:		
call	Init20S4S			call	WaitBusy	
mov	A,#80h	;Set DDRAM	address	clr	RW	
call	Code	;»_	«	clr	A0	
mov	A,#'M'			setb	E	
call	Data	;»M_	«	mov	P1,A	;DBx
mov	A,#'E'			clr	E	
call	Data	;»ME_	«	swap	Α	
mov	A,#'L'			Code4NW	:	
call	Data	;»MEL_	«	clr	RW	
mov	A,#'T'			clr	A0	
call	Data	;»MELT_	«	setb	E	
mov	A,#14h	;Cursor or di	splay shift	mov	P1,A	;DBx
call	Code	;»MELT _	«	clr	E	
•••				ret		
Init20S4S	5:			Data:		
setb	PSB	;Параллельн	ный интерфейс	callWai	itBusy	
call	Delay40m:	S		clr	RW	
mov	A,#3Fh	;Function se	t	setb	Α0	
call	Code4NW	;Установка 8	3-бит интерфейса	setb	E	
call	Delay40us	;		mov	P1,A	;DBx
mov	A,#3Fh	;Function se	t	clr	E	
call	Code4NW	;Установка 8	3-бит интерфейса	swap	Α	
cal l	Delay40us	;		setb	E	
mov	A,#3Fh	;Function se	t	mov	P1,A	;DBx
call	Code4NW	;Установка 8	3-бит интерфейса	clr	E	
call	Delay40us	;		ret		
mov	A,#2Fh	;Function se	t			
call	Code4NW	;Установка 4	i-бит интерфейса	WaitBusy	:	
mov	A,#28h	;Function se	t	mov	P1,#FFh	;Переключить порт на ввод
call	Code	;DL=1,EXT=0		setb	RW	
mov	A,#06h	;Entry mode	set	clr	A0	
call	Code	;I/D=1,SH=0		setb	E	
mov	A,#0Eh	;Display ON/	OFF control	jb	P1.7,\$;DB7
call	Code	;D=1,C=1,P=0)	clr	E	
mov	A,#01h	;Clear displa	у	setb	E	;0бязательно получить
call	Code					;и младший полубайт статуса
ret				clr	E	
				ret		

;Переключить порт на ввод

;DB7

4. 8-ми битный интерфейс

Main:				Data:		
call	Init20S4	S		call	WaitBusy	
mov	A,#80h	;Set DDRAM	address	setb	A0	
call	Code	;»_	«	sjmp	Byte	
mov	A,#'M'			Code:		
call	Data	;»M_	«	call	WaitBusy	
mov	A,#'E'			CodeNW:		
call	Data	;»ME_	«	clr	A0	
mov	A,#'L'			Byte:		
call	Data	;»MEL_	«	clr	RW	
mov	A,#'T'			setb	E	
call	Data	;»MELT_	«	mov	P1,A	;DBx
mov	A,#14h	;Cursor or d	isplay shift	clr	E	
call	Code	;»MELT _	«	ret		

call

ret

Code

Init20S4S	:		WaitBusy:	
setb	PSB	;Параллельный интерфейс	mov	P1,#FFh
callD	Delay40ms	S	setb	RW
mov	A,#3Fh	;Function set	clr	A0
call	CodeNW	;Установка 8-бит интерфейса	setb	E
call	Delay40us		jb	P1.7,\$
mov	A,#3Fh	;Function set	clr	E
call	CodeNW	;Установка 8-бит интерфейса	ret	
call	Delay40us			
mov	A,#3Fh	;Function set		
call	CodeNW	;Установка 8-бит интерфейса		
mov	A,#38h	;Function set		
call	Code	;DL=1,EXT=0		
mov	A,#06h	;Entry mode set		
call	Code	;I/D=1,SH=0		
mov	A,#0Eh	;Display ON/OFF control		
call	Code	;D=1,C=1,P=0		
mov	A,#01h	;Clear display		
mov call	A,#0Eh Code	;Display ON/OFF control ;D=1,C=1,P=0		

www.melt.com.ru Версия документа 1.2

■ История изменений

Версия документа	Дата	Изменения	Страница
1.0	05/05/2010	Первая редакция документа	
1.1	22/07/2011	Display ON/OFF control на Function Set Рисунок 2	8 2
1.2	15/05/2017	Изменения в Рис.14 и Рис.15, п.п. «Рекомендуемая схема включения»	14

Компания МЭЛТ

Адрес: Москва, Андроновское шоссе, д. 26, корп. 5 тел./факс: (495) 662–44–14 (многоканальный)

e-mail: sales@melt.com.ru http://www.melt.com.ru

Авторские права © 2017 МЭЛТ. Все права защищены. Принципиальные схемы и топология печатных плат, описанных в этом документе, не могут быть скопированы или воспроизведены в любой форме или любыми средствами без предварительного письменного разрешения компании МЭЛТ.

Информация, содержащаяся в этом документе, может быть изменена без предварительного уведомления.

Компания МЭЛТ не несёт ответственности за любые ошибки, которые могут появиться в этом документе, ровно как и за прямые или косвенные убытки, связанные с поставкой или использованием настоящей информации.

Самые последние спецификации Вы всегда можете получить на нашем сервере в интернете по адресу http://www.melt.com.ru Компания МЭЛТ непрерывно работает над улучшением качества и надёжности наших изделий. Однако, изделия, содержащие полупроводники, могут частично или полностью потерять свою работоспособность вследствие воздействия статического электричества или механических нагрузок. Поэтому при использовании наших продуктов следует избегать ситуаций, в которых сбой или отказ изделий компании МЭЛТ, могут вызвать потерю человеческой жизни, а также ущерб или повреждение собственности.