

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 855 444 A2

(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 29.07.1998 Bulletin 1998/31
- (21) Application number: 98300573.7
- (22) Date of filing: 27.01.1998

- (51) Int CI.6: **C12N 15/57**, C12N 9/64, C12N 1/21, C12N 5/10, C07K 16/40, A61K 48/00, A61K 39/395, A61K 31/70, A61K 38/48, C12Q 1/68, C12Q 1/37
- (84) Designated Contracting States:

 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

 NL PT SE
- (30) Priority: 28.01.1997 GB 9701684
- (71) Applicants:
 - SMITHKLINE BEECHAM PLC Brentford, Middlesex TW8 9EP (GB)
 - SMITHKLINE BEECHAM CORPORATION Philadelphia Pennsylvania 19103 (US)
- (72) Inventors:
 - Powell, David J.,
 c/o SmithKline Beecham Pharm.
 King of Prussia, PA 19460 (US)

- Smith, Trudi S., c/o SmithKline Beecham Pharm.
 King of Prussia, PA 19460 (US)
- Chapman, Conrad G.,
 c/o SmithKline Beecham Pharm.
 Harlow, Essex CM19 5AW (GB)
- Murphy, Kay SmithKline Beecham Pharm.
 Harlow Essex CM19 5AW (GB)
- (74) Representative: Crump, Julian Richard John et al fJ Cleveland,
 40-43 Chancery Lane London WC2A 1JQ (GB)

(54) Aspartic proteinase 2 (ASP2)

(57) ASP2 polypeptides and polynucleotides and methods for producing such polypeptides by recombinant techniques are disclosed. Also disclosed are methods for utilizing ASP2 polypeptides and polynucle-

otides in the design of protocols for the treatment of Alzheimer's Disease, cancer, and prohormone processing, among others, and diagnostic assays for such conditions.

Description

This application claims the benefit of U.K. Application No. 9701684.4, filed January 28, 1997, which is herein incorporated by reference in its entirety.

FIELD OF INVENTION

This invention relates to newly identified polynucleotides, polypeptides encoded by them and to the use of such polynucleotides and polypeptides, and to their production. More particularly, the polynucleotides and polypeptides of the present invention relate to Aspartic Proteinase family, hereinafter referred to as ASP2. The invention also relates to inhibiting or activating the action of such polynucleotides and polypeptides.

BACKGROUND OF THE INVENTION

There are currently five known human aspartic proteases, namely, pepsin, gastricsin, cathespin D, cathespin E and renin, and these have widely varying functions. Pepsin and gastricsin are involved in nutritive processes in the stomach, cathepsin D is involved in protein turnover in many cell types, and renin has the highly specific function of angiotensin production from its precursor form, angiotensinogen. The precise role of cathepsin E remains to be confirmed, although its location in some epithelial cells types has indicated a role in antigen processing. It may also be involved in certain inflammatory conditions, such as *Helicobacter pylori* infection in the stomach. This indicates that the Aspartic Proteinase family has an established, proven history as therapeutic targets. Clearly there is a need for identification and characterization of further members of Aspartic Proteinase family which can play a role in preventing, ameliorating or correcting dysfunctions or diseases, including, but not limited to, Alzheimer's Disease, cancer, and prohormone processing.

SUMMARY OF THE INVENTION

In one aspect, the invention relates to ASP2 polypeptides and recombinant materials and methods for their production. Another aspect of the invention relates to methods for using such ASP2 polypeptides and polynucleotides. Such uses include the treatment of Alzheimer's Disease, cancer, and prohormone processing, among others. In still another aspect, the invention relates to methods to identify agonists and antagonists using the materials provided by the invention, and treating conditions associated with ASP2 imbalance with the identified compounds. Yet another aspect of the invention relates to diagnostic assays for detecting diseases associated with inappropriate ASP2 activity or levels.

DESCRIPTION OF THE INVENTION

Definitions

The following definitions are provided to facilitate understanding of certain terms used frequently herein.

"ASP2" refers, among others, generally to a polypeptide having the amino acid sequence set forth in SEQ ID NO: 2 or an allelic variant thereof.

"ASP2 activity or ASP2 polypeptide activity" or "biological activity of the ASP2 or ASP2 polypeptide" refers to the metabolic or physiologic function of said ASP2 including similar activities or improved activities or these activities with decreased undesirable side-effects. Also included are antigenic and immunogenic activities of said ASP2.

"ASP2 gene" refers to a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 1 or allelic variants thereof and/or their complements.

"Antibodies" as used herein includes polyclonal and monoclonal antibodies, chimeric, single chain, and humanized antibodies, as well as Fab fragments, including the products of an Fab or other immunoglobulin expression library.

"Isolated" means altered "by the hand of man" from the natural state. If an "isolated" composition or substance occurs in nature, it has been changed or removed from its original environment, or both. For example, a polynucleotide or a polypeptide naturally present in a living animal is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein.

"Polynucleotide" generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. "Polynucleotides" include, without limitation single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, "polynucleotide"

30

35

40

45

50

55

20

5

10

refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The term polynucleotide also includes DNAs or RNAs containing one or more modified bases and DNAs or RNAs with backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications has been made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically or metabolically modified forms of polynucleotides as typically found in nature, as well as the chemical forms of DNA and RNA characteristic of viruses and cells. "Polynucleotide" also embraces relatively short polynucleotides, often referred to as oligonucleotides.

"Polypeptide" refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres. "Polypeptide" refers to both short chains, commonly referred to as peptides, oligopeptides or oligomers, and to longer chains, generally referred to as proteins. Polypeptides may contain amino acids other than the 20 gene-encoded amino acids. "Polypeptides" include amino acid sequences modified either by natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cystine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selencylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York, 1993 and Wold, F., Posttranslational Protein Modifications: Perspectives and Prospects, pgs. 1-12 in POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, 1983; Seifter et al., "Analysis for protein modifications and nonprotein cofactors", Meth Enzymol (1990) 182:626-646 and Rattan et al., "Protein Synthesis: Posttranslational Modifications and Aging", Ann NYAcad Sci (1992) 663:48-62.

20

25

30

"Variant" as the term is used herein, is a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide respectively, but retains essential properties. A typical variant of a polynucleotide differs in nucleotide sequence from another, reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below. A typical variant of a polypeptide differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions in any combination. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. A variant of a polynucleotide or polypeptide may be a naturally occurring such as an allelic variant, or it may be a variant that is not known to occur naturally. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques or by direct synthesis.

"Identity, as known in the art, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings of such sequences. "Identity and "similarity can be readily calculated by known methods, including but not limited to those described in (Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; and Carillo, H., and Lipman, D., SIAM J. Applied Math., 48: 1073 (1988). Preferred methods to determine identity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Preferred computer program methods to determine identity and similarity between two sequences include, but are not limited to, the GCG program package (Devereux, J., et al., Nucleic Acids Research 12(1): 387 (1984)), BLASTP, BLASTN, and FASTA (Atschul, S.F. et al., J. Molec. Biol. 215: 403-410 (1990). The BLAST X program is publicly available from NCBI

and other sources (BLAST Manual, Altschul, S., et al., NCBI NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215: 403-410 (1990). The well known Smith Waterman algorithm may also be used to determine identity.

Preferred parameters for polypeptide sequence comparison include the following:

1) Algorithm: Needleman and Wunsch, J. Mol Biol. 48: 443453 (1970)

Comparison matrix: BLOSSUM62 from Hentikoff and Hentikoff, Proc. Natl. Acad. Sci. USA.

89:10915-10919 (1992)

Gap Penalty: 12

Gap Length Penalty: 4

A program useful with these parameters is publicly available as the "gap" program from Genetics Computer Group, Madison WI. The aforementioned parameters are the default parameters for polypeptide comparisons (along with no penalty for end gaps).

Preferred parameters for polynucleotide comparison include the following:

1) Algorithm: Needleman and Wunsch, J. Mol Biol. 48: 443-453 (1970)

Comparison matrix: matches = +10, mismatch = 0

Gap Penalty: 50

Gap Length Penalty: 3

A program useful with these parameters is publicly available as the "gap" program from Genetics Computer Group, Madison WI. The aforementioned parameters are the default parameters for polynucleotide comparisons.

Preferred polynucleotide embodiments further include an isolated polynucleotide comprising a polynucleotide having at least a 50,60, 70, 80, 85, 90, 95, 97 or 100% identity to a polynucleotide reference sequence of SEQ ID NO:1, wherein said reference sequence may be identical to the sequence of SEQ ID NO: 1 or may include up to a certain integer number of nucleotide alterations as compared to the reference sequence, wherein said alterations are selected from the group consisting of at least one nucleotide deletion, substitution, including transition and transversion, or insertion, and wherein said alterations may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among the nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence, and wherein said number of nucleotide alterations is determined by multiplying the total number of nucleotides in SEQ ID NO: 1 by the numerical percent of the respective percent identity and subtracting that product from said total number of nucleotides in SEQ ID NO:1, or:

30

40

45

10

15

20

$$n_n \le x_n - (x_n \bullet y),$$

wherein \mathbf{n}_n is the number of nucleotide alterations, \mathbf{x}_n is the total number of nucleotides in SEQ ID NO:1, and \mathbf{y} is 0.50 for 50%, 0.60 for 60%, 0.70 for 70%, 0.80 for 80%, 0.85 for 85%, 0.90 for 90%, 0.95 for 95%, 0.97 for 97% or 1.00 for 100%, and wherein any non-integer product of \mathbf{x}_n and \mathbf{y} is rounded down to the nearest integer prior to subtracting it from \mathbf{x}_n . Alterations of a polynucleotide sequence encoding the polypeptide of SEQ ID NO:2 may create nonsense, missense or frameshift mutations in this coding sequence and thereby alter the polypeptide encoded by the polynucleotide following such alterations.

Preferred polypeptide embodiments further include an isolated polypeptide comprising a polypeptide having at least a 50,60, 70, 80, 85, 90, 95, 97 or 100% identity to a polypeptide reference sequence of SEQ ID NO:2, wherein said reference sequence may be identical to the sequence of SEQ ID NO:2 or may include up to a certain integer number of amino acid alterations as compared to the reference sequence, wherein said alterations are selected from the group consisting of at least one amino acid deletion, substitution, including conservative and non-conservative substitution, or insertion, and wherein said alterations may occur at the amino- or carboxy-terminal positions of the reference polypeptide sequence or anywhere between those terminal positions, interspersed either individually among the amino acids in the reference sequence or in one or more contiguous groups within the reference sequence, and wherein said number of amino acid alterations is determined by multiplying the total number of amino acids in SEQ ID NO:2 by the numerical percent of the respective percent identity and subtracting that product from said total number of amino acids in SEQ ID NO:2, or:

50

55

$$n_a \le x_a - (x_a \cdot y),$$

wherein $\mathbf{n_a}$ is the number of amino acid alterations, $\mathbf{x_a}$ is the total number of amino acids in SEQ ID NO:2, and y is 0.50 for 50%, 0.60 for 60%, 0.70 for 70%, 0.80 for 80%, 0.85 for 85 %, 0.90 for 90%, 0.95 for 95%, 0.97 for 97% or 1.00 for 100%, and wherein any non-integer product of $\mathbf{x_a}$ and \mathbf{y} is rounded down to the nearest integer prior to subtracting it from $\mathbf{x_a}$.

Polypeptides of the Invention

10

15

25

30

35

In one aspect, the present invention relates to ASP2 polypeptides (or ASP2 proteins). The ASP2 polypeptides include the polypeptide of SEQ ID NOS:2 and 4; as well as polypeptides comprising the amino acid sequence of SEQ ID NO: 2; and polypeptides comprising the amino acid sequence which have at least 80% identity to that of SEQ ID NO:2 over its entire length, and still more preferably at least 90% identity, and even still more preferably at least 95% identity to SEQ ID NO: 2. Furthermore, those with at least 97-99% are highly preferred. Also included within ASP2 polypeptides are polypeptides having the amino acid sequence which have at least 80% identity to the polypeptide having the amino acid sequence of SEQ ID NO:2 over its entire length, and still more preferably at least 90% identity, and still more preferably at least 95% identity to SEQ ID NO:2. Furthermore, those with at least 97-99% are highly preferred. Preferably ASP2 polypeptide exhibit at least one biological activity of ASP2.

The ASP2 polypeptides may be in the form of the "mature" protein or may be a part of a larger protein such as a fusion protein. It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification such as multiple histidine residues, or an additional sequence for stability during recombinant production.

Fragments of the ASP2 polypeptides are also included in the invention. A fragment is a polypeptide having an amino acid sequence that entirely is the same as part, but not all, of the amino acid sequence of the aforementioned ASP2 polypeptides. As with ASP2 polypeptides, fragments may be "free-standing," or comprised within a larger polypeptide of which they form a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the invention, include, for example, fragments from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, and 101 to the end of ASP2 polypeptide. In this context "about" includes the particularly recited ranges larger or smaller by several, 5, 4, 3, 2 or 1 amino acid at either extreme or at both extremes.

Preferred fragments include, for example, truncation polypeptides having the amino acid sequence of ASP2 polypeptides, except for deletion of a continuous series of residues that includes the carboxyl terminus or deletion of two continuous series of residues, one including the amino terminus and one including the carboxyl terminus. Also preferred are fragments characterized by structural or functional attributes such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions. Other preferred fragments are biologically active fragments. Biologically active fragments are those that mediate ASP2 activity, including those with a similar activity or an improved activity, or with a decreased undesirable activity. Also included are those that are antigenic or immunogenic in an animal, especially in a human.

Preferably, all of these polypeptide fragments retain the biological activity of the ASP2, including antigenic activity. Among the most preferred fragment is that having the amino acid sequence of SEQID NO: 4. Variants of the defined sequence and fragments also form part of the present invention. Preferred variants are those that vary from the referents by conservative amino acid substitutions -- i.e., those that substitute a residue with another of like characteristics. Typical such substitutions are among Ala, Val, Leu and IIe; among Ser and Thr; among the acidic residues Asp and Glu; among Asn and Gln; and among the basic residues Lys and Arg; or aromatic residues Phe and Tyr. Particularly preferred are variants in which several, 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination.

The ASP2 polypeptides of the invention can be prepared in any suitable manner. Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.

Polynucleotides of the Invention

Another aspect of the invention relates to ASP2 polynucleotides. ASP2 polynucleotides include isolated polynucleotides which encode the ASP2 polypeptides and fragments, and polynucleotides closely related thereto. More specifically, ASP2 polynucleotide of the invention include a polynucleotide comprising the nucleotide sequence contained in SEQ ID NO:1 encoding a ASP2 polypeptide of SEQ ID NO:2, and polynucleotides having the particular sequences of SEQ ID NOS: 1 and 3. ASP2 polynucleotides further include a polynucleotide comprising a nucleotide sequence that has at least 80% identity over its entire length to a nucleotide sequence encoding the ASP2 polypeptide of SEQ ID NO:2, and a polynucleotide comprising a nucleotide sequence that is at least 80% identical to that of SEQ ID NO: 1 over its entire length. In this regard, polynucleotides at least 90% identical are particularly preferred, and those with at least 95% are especially preferred. Furthermore, those with at least 97% are highly preferred and those with at least 98-99% are most highly preferred, with at least 99% being the most preferred. Also included under ASP2 polynucle-

otides are a nucleotide sequence which has sufficient identity to a nucleotide sequence contained in SEQ ID NO:1 to hybridize under conditions useable for amplification or for use as a probe or marker. The invention also provides polynucleotides which are complementary to such ASP2 polynucleotides.

ASP2 of the invention is structurally related to other proteins of the Aspartic Proteinase family, as shown by the results of sequencing the cDNA encoding human ASP2. The cDNA sequence of SEQ ID NO:1 contains an open reading frame (nucleotide number 1 to 1503) encoding a polypeptide of 501 amino acids of SEQ ID NO:2. The amino acid sequence of Table 1 (SEQ ID NO:2) has about 48.7% identity (using FASTA (GCG)) in 460 amino acid residues with ASP1, Novel Aspartic Proteinase, (U.S. Serial No. Unassigned, Attorney Docket Number GH70262, filed October 6, 1997). The nucleotide sequence of Table 1 (SEQ ID NO:1) has about 59.2% identity (using FASTA (GCG)) in 1516 nucleotide residues with ASP1 Novel Aspartic Proteinase (U.S. Serial No. Unassigned, Attorney Docket number GH70262, filed October 6, 1997). Thus, ASP2 polypeptides and polynucleotides of the present invention are expected to have, inter alia, similar biological functions/properties to their homologous polypeptides and polynucleotides, and their utility is obvious to anyone skilled in the art.

15

20

25

30

35

40

45

50

55

Table 1ª

CACGGCAT COGGCTGCCCCTGCGCAGCCGCCTGGGGGGCCCCCCCTGGGGCTGCCCCCCGGGAG ACCGACGAGAGCCCCGAGGAGCCCCGCCGGAGGGGCCAGCTTTGTGGAGATGGTGGACAACCTGAGGGGC AAGT CGGGGCAGGG CT ACT A CGTGGAGAT GA CCGT GGG CAG CCCCCCG CAG A CG CT CAA CAT CCT GGT G CAGCT GT CCAG CA CAT A COGGGA CCT COGG A AGGGGT GT GT GT GAG CCCT A CA CCCAGGG CA AGT GGG A A G CCAT CACT GAAT CAGA CAAGTT CTT CAT CAA CGG CT CCAACT GGGAAGG CAT CCT GGGG CT GG CCT AT CCCAACCT CTT CT CCCTG CAG CTTTGTGGTG CTGG CTT CCCCCT CAACCAGT CTGAAGTG CTGG CCT CT GT CGGAGGGAG CAT GAT CATT GGAGGT AT CGACCACT CG CT GT ACACAGG CAGT CT CT GGT AT ACACCC AT COGG OGGGAGT GCT ATT ATGAGGTGAT CATT GTG CGGGTGGAGAT CAAT GGA CAGGAT CTG AAAATG GACTGCAAGGAGTACAACTATGACAAGAGCATTGTGGACAGTGGCACCAACCTTCGTTTGCCCAAG AAAGTGTTTGAAGCTGCAGTCAAATCCATCAAGGCAGCCTCCTCCACGGAGAAGTTCCCTGATGGTTTC TGGCT AGGAGAG CAG CT GGT GT GCTGG CAAG CAGG CA CCCCCTTGGAA CATTTT CCCAGT CAT CT CA CT CT ACCT AAT GGGT GAGGTT ACCAA CCAGT CCTT CCG CAT CACCAT CCTT CCG CAG CAAT ACCTG CGG CCAGT GGAAGAT GT GG CCACGT CCCAAGA CGACT GTT A CAAGT TT G CCAT CT CA CAGT CAT CCA CGGGC ACTGTT AT GGGAG CTGTT AT CATGGAGGG CTT CT ACGTTGT CTTT GAT CGGG CCCGAAAA CGAATTGG C TTTGCTGT CAG OG CTTG CCATGTG CACGATGAGTT CAGGA OGG CAG OGGTGGA AGG CCCTTTTGT CACC GT CATGGCTG CCAT CTG CGCCCT CTT CATG CTG CCACT CTG CCT CATGGTGTGT CAGTGG CGCTG CCT C OG CT GCCT GCG CCAG CAT GAT GA CTTT GCT GAT GA CAT CT CCCT GCT GAAGT GAGGAGG CCCAT GG GAGAAAGAT AGAGATT CCCCTGGGACCACACCT CCGTGGTT CACTTTGGT CACAAGT AGGAGA CACAGA T GG CACCT GT GG CCAGAG CACCT CAGGACCCT CCCCACCCAAAT G CCT CT G CCTT GAT GG AGAAGG AAAAGG CT GG CAAGGT GGGTT CCAGGGACT GT A CCT GT AGGAAA CAGAAAAG AGAAG AAG AAG CA CT C TG CTGC GGGGAAT ACT CTTGGT CACCT CAAATTT AAGT CGGGAAATT CTG CTG CTTGAAACTT CAG CCC TGAA CCTTTGT CCA CCATT CCTTT AAATT CT CCAA CCCAAAGT ATT CTT CTTTT CTT AGTTT CAGAAGT GTTT CCCT GCTGG CCAAAGT CAGT AGGAGAGGAT G CACAGTTTG CT ATTTG CTTT AGAGA CAGGGACT

^a A nucleotide sequence of a human ASP2 (SEQ ID NO: 1).

15

20

25

30

35

40

45

50

5

10

Table 2h

MAQALPWLLLWMGAGVLPAHGTQHGI RLPL RSGLGGAPLGL RLP RETDEEPEEPG RRG SFVEMVD NL RG
K SGQGYYVEMTVG SPPQTLNILVDTG SSNFAVGAAPHPFLH RYYQ RQL SSTY RDL RKGVYEPYTQGKWE
GELGTDLV SIPHGP NVTV RANI AAITE SDKFFI NG SNWEGILGLAYAEI A RPDD SLEPFFD SLVKQTHV
P NLF SLQLCGAGFPLNQ SEVLA SVGG SMI IGGIDH SLYTG SLWYTPI RREWYYEVIIV RVEI NGQD LKM
D CKEY NYDK SIVD SGTT NL RLPKKVFEAAVK SIKAASSTEK FPDGFWLGEQLV CWQAGTTPWNIFPVI S
LYLMGEVT NQ SF RIT ILPQQYL RPVEDVAT SQDD CYKFAI SQ SSTGTVMGAVI MEGFYVVFD RARK RIG
FAV SACHVHDEF RT AAVEGPFVTLD MED CGY NIPQTDE STLMT I AYVMAAI CALFMLPL CLMV CQW RCL
RCL RQQHDD FADD I SLLK

An amino acid sequence of a human ASP2 (SEQ ID NO: 2).

One polynucleotide of the present invention encoding ASP2 may be obtained using standard cloning and screening, from a cDNA library derived from mRNA in cells of human pancreas and brain, using the expressed sequence tag (EST) analysis (Adams, M.D., et al., Science (1991) 252:1651-1656; Adams, M.D. et al., Nature, (1992) 355:632-634; Adams, M.D., et al., Nature (1995) 377 Supp:3-174). Polynucleotides of the invention can also be obtained from natural sources such as genomic DNA libraries or can be synthesized using well known and commercially available techniques.

The nucleotide sequence encoding ASP2 polypeptide of SEQ ID NO:2 may be identical to the polypeptide encoding sequence contained in Table 1 (nucleotide number 1 to 1503 of SEQ ID NO:1), or it may be a sequence, which as a result of the redundancy (degeneracy) of the genetic code, also encodes the polypeptide of SEQ ID NO:2.

When the polynucleotides of the invention are used for the recombinant production of ASP2 polypeptide, the polynucleotide may include the coding sequence for the mature polypeptide or a fragment thereof, by itself; the coding sequence for the mature polypeptide or fragment in reading frame with other coding sequences, such as those encoding a leader or secretory sequence, a pre-, or pro- or prepro- protein sequence, or other fusion peptide portions. For example, a marker sequence which facilitates purification of the fused polypeptide can be encoded. In certain preferred embodiments of this aspect of the invention, the marker sequence is a hexa-histidine peptide, as provided in the pQE vector (Qiagen, Inc.) and described in Gentz et al., Proc NatlAcad Sci USA (1989) 86:821-824, or is an HA tag. The polynucleotide may also contain non-coding 5' and 3' sequences, such as transcribed, non-translated sequences, splicing and polyadenylation signals, ribosome binding sites and sequences that stabilize mRNA.

Further preferred embodiments are polynucleotides encoding ASP2 variants comprising the amino acid sequence of ASP2 polypeptide of Table 2 (SEQ ID NO:2) in which several, 5-10, 1-5, 1-3, 1-2 or 1 amino acid residues are substituted, deleted or added, in any combination. Among the preferred polynucleotides of the present invention is contained in Table 3 (SEQ ID NO: 3) encoding the amino acid sequence of Table 4 (SEQ ID NO: 4).

Table 3c

GTGGGCAGCCCCCCGCAGACGCTCAACATCCTGGTGGATACAGGCAGCAGTAACTTTGCAGTGGGTGCT G CCCCCCACCCCTT CCT G CAT CGCT A CT A CCAGAGG CAGCT GT CCAG CA CAT A CCGGGACCT CCGGAAG GGT GT GT AT GAG CCCT A CACCCAGGG CAAGT GGGAAGGGGAG CT GGG CA CCGA CCT GGT AAG CAT CCCC CATGGCCCCAACGT CACTGTGCGTGCCAACATTGCTGCCAT CACTGAAT CAGACAAGTTCTTCATCAAC GGCT CCAACTGGGAAGGCAT CCTGGGGCTGGCCTATGCTGAGATTGCCAGGCCTGACGACTCCCTGGAG CCTTT CTTTGACT CT CTGGT AAAG CAGACCCA CGTT CCCAACCT CTT CT CCCTG CAG CTTTGT GGT GCT GGCTT CCCCCT CAACCAGT CTGAAGTGCT GGCCT CTGT CGGAGGGAG CATGAT CATTGGAGGT AT CGAC CACT CG CTGT ACACAGG CAGT CT CTGGT AT ACACCCAT CCGG CGGGAGTGGT ATT AT GAGGTGAT CATT GTG CGGGTGGAGAT CAATGGACAGGAT CT GAAAATGGACTG CAAGGAGT A CAA CT AT GACAAGAG CAT T GTGGACAGTGGCACCACCAACCTTCGTTTGCCCAAGAAAGTGTTTGAAGCTGCAGTCAAATCCATCAAG GCAGCCT CT CCACGGGAGAAGTT CCCTGATGGTTT CTGGCTAGGAGAGCAGCTGGTGTGCTGG CAAGCA GGCACCACCCCTTGGAACATTTT CCCAGT CAT CT CACT CT ACCT AATGGGTGAGGTT ACCAACCAGT CC TT COG CAT CACCAT CCTT COG CAG CAAT A CCT G OGG CCAGT GGAAGAT GT GG CCAOGT CCCAAGA OGA C TGTTACAAGTTTGCCAT CT CACAGT CAT CCACGGGCACTGTT AT GGGAG CTGTT AT CATGGAGGG CTT C TACGTTGT CTTTGAT CGGG CCCGAAAACGAATTGG CTTTG CTGT CAG CGCTTG CCATGTGCACGATGAG TT CAGGA CGG CAG CGGT GGAAGG CCCTTTTGT CACCTT GGACAT GGAAGACTGT GG CT ACAA CATT CCA CAGACAGAT GAGT CAACCCT CAT GACCAT AGCCT AT GT CAT GG CT GCCAT CT G CG CCCT CTT CAT G CT G CCACT CT GCCT CATGGT GT CAGT GG CCT G CCT CCG CT G CCT GCG CCAGACAAT GGAT GACT TT GCT GAT GACAT CT CCCT GCT GAAGT GAGGAGG CCCAT GGGAAAAGAT AGAGAT T CCCCT GGGACCACCCT COGTGGTT CACTTTGGT CACAAGT AGGAGACACAGAT GGCACCTGTGGCCAGAGCACCT CAGGACCCTC CCCACCCACAAATGCCT CTGCCTTGATGGAGAAAGGAAAAGGCTGGCAAGGTGGGTTCCAGGGACTGTA

*5*5

5

10

15

20

25

30

35

40

45

CCTGTAGGAAACAGAAAAGAGAAGAAGAAGAAGCACT CTGCTGG GGGGAATACT CTTGGT CACCT CAAATT
TAAGT GGGGAAATT CTGCTGCTTGAAACTT CAGCCCTGAACCTTTGT CCACCATT CCTTT AAATT CT CC
AACCCAAAGT ATT CTT CTTTT CTT AGTTT CAGAAGT ACTGGCAT CACA GG CAGGTT ACCTTGG CGT GTG
T CCCTGTGGT ACCGGG CAGAGAAGAGAGACCAAG CTT GTTT CCCTG CTGGCCAAAGT CAGT AGGAGAGGA
TG CACAGTTTG CTATTTG CTTT AGAGACAGGGACTGT AT AAACAAG CCT AACATTGGT G CAAAGATTGC
CT CTTGAATT AAAAAAAAAAAACT AGATTGACT ATTT AT ACAAATGGGGGCGG CTGGAAAGAGAGAGAGAG
AGAGGGAGT ACAAAGACAGGGAAT AGTGGGAT CAAAGCT AGGAAAGG CAGAAACACAACCACT CACCAG
T CCT AGTTTT AGACCT CAT CT CCAAGAT AG CAT CCCAT CT CAGAAGAT GGGTGTTTTTT CAATGTTTT
AG CT CT CTTAAATGAAGTGCCCACT AAGGAAGTT CCACTTGAACACTT CT CTTTTTT
T CTGTGGTTG CAG CCTGACCAAAAGT GAGATGT CCACTTGAACACAT GGAATTT CT GCCAT ATT AATT
T CCATTGT CT CT AT CTGGAACCACCCCTTT AAT CT CT ACAT AT GATT AGGT CCAG CACTTGAAAAT ATT C
CT AACCNNAATTTGNCTTGGGGGCTTTG CNGNCCAGGTGCT AAAAGGGNTTGGGT AGGNGNCCNCTT NT
AT NT NAT NCCT NAAAAGGTT ANNG

A partial nucleotide sequence of a human ASP2 (SEQ ID NO: 3).

5

10

15

20

25

30

35

40

45

50

Table 4^d

G SFVEMVD NL RGK SGQGYYVEMT VG SPPQTL NILVDTG SSNFAVGAAP HPFLH RYYQ RQL SSTY RDL RK
GVYEPYTQGKWEGELGTDLV SIPHGP NVTV RANI AAITE SDKFFING SNWEGILGLAYAEIA RPDD SLE
PFFD SLVKQTHVP NLF SLQL CGAGFPLNQ SEVLA SVGG SMI IGGIDH SLYTG SLWYTPI RREWYYEVII
V RVEI NGQDLKMD CKEY NYDK SIVD SGTT NL RLPKKVFEAAVK SIKAA SP REKFPDGFWLGEQLV CWQA
GTTPWNI FPVI SLYLMGEVT NQ SF RITILPQQYL RPVEDVAT SQDD CYKFAI SQ SST GTVMGAVIMEGF
YVVFD RARK RIGFAV SACHVHD EF RT AAVEGP FVT LDMED CGYNIPQTDE STLMT I AYVMAAI CALFML
PLCLMV CQW RCL RCL RQT MDD FADDI SLLK. GGPWEKD RD SPGTTPPWFT LVT SRRH RWHLWPEHL RT L
PTHQMPLP. W RRK RLA RWVPGT VPVGNRKEKKEAL CW REY SW SPQI. VGKF CCLKLQP. T FVHH SFKF S
NPKY SSFL SF RSTGIT RRLPW RV SLWYPG REETKLV SLLAKV SRRG CTV CYLL. RQGLYKQA. HWCKD C
LLN. KKKLD. LFIQMGAAGK RRRRG STKTGNSGIKA RKG RNTTTHQS. F. T SSP R HPI SEDGCCFQCF
LFCGCSLTK SEMG RAYLAKELFF SSLK. SAH. G SST. THGI SAILI SIV SIWNHPLI ST YD. VQHLKIF
LTXIXLGGFAXQVLKGXG. XXXXXXXXLK RLX

The present invention further relates to polynucleotides that hybridize to the herein above-described sequences. In this regard, the present invention especially relates to polynucleotides which hybridize under stringent conditions to the herein above-described polynucleotides. As herein used, the term "stringent conditions" means hybridization will occur only if there is at least 80%, and preferably at least 90%, and more preferably at least 95%, yet even more preferably 97-99% identity between the sequences.

Polynucleotides of the invention, which are identical or sufficiently identical to a nucleotide sequence contained in SEQ ID NO:1 or a fragment thereof (including that of SEQ ID NO:3), may be used as hybridization probes for cDNA and genomic DNA, to isolate full-length cDNAs and genomic clones encoding ASP2 polypeptide and to isolate cDNA and genomic clones of other genes (including genes encoding homologs and orthologs from species other than human) that have a high sequence similarity to the ASP2 gene. Such hybridization techniques are known to those of skill in

A partial amino acid sequence of a human ASP2 (SEQ ID NO: 4).

the art. Typically these nucleotide sequences are 80% identical, preferably 90% identical, more preferably 95% identical to that of the referent. The probes generally will comprise at least 15 nucleotides. Preferably, such probes will have at least 30 nucleotides and may have at least 50 nucleotides. Particularly preferred probes will range between 30 and 50 nucleotides.

In one embodiment, to obtain a polynucleotide encoding ASP2 polypeptide, including homologs and orthologs from species other than human, comprises the steps of screening an appropriate library under stingent hybridization conditions with a labeled probe having the SEQ ID NO: 1 or a fragment thereof (including that of SEQ ID NO: 3), and isolating full-length cDNA and genomic clones containing said polynucleotide sequence. Such hybridization techniques are well known to those of skill in the art. Thus in another aspect, ASP2 polynucleotides of the present invention further include a nucleotide sequence comprising a nucleotide sequence that hybridize under stringent condition to a nucleotide sequence having SEQ ID NO: 1 or a fragment thereof (including that of SEQ ID NO:3). Also included with ASP2 polypeptides are polypeptide comprising amino acid sequence encoded by nucleotide sequence obtained by the above hybridization condition. Stringent hybridization conditions are as defined above or, alternatively, conditions under overnight incubation at 42°C in a solution comprising: 50% formamide, 5xSSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's solution, 10 % dextran sulfate, and 20 microgram/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65°C.

The polynucleotides and polypeptides of the present invention may be employed as research reagents and materials for discovery of treatments and diagnostics to animal and human disease.

Vectors, Host Cells, Expression

10

15

20

25

35

50

55

The present invention also relates to vectors which comprise a polynucleotide or polynucleotides of the present invention, and host cells which are genetically engineered with vectors of the invention and to the production of polypeptides of the invention by recombinant techniques. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention.

For recombinant production, host cells can be genetically engineered to incorporate expression systems or portions thereof for polynucleotides of the present invention. Introduction of polynucleotides into host cells can be effected by methods described in many standard laboratory manuals, such as Davis et al., BASIC METHODS IN MOLECULAR BIOLOGY (1986) and Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989) such as calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction or infection.

Representative examples of appropriate hosts include bacterial cells, such as streptococci, staphylococci, *E. coli, Streptomyces* and *Bacillus subtilis* cells; fungal cells, such as yeast cells and *Aspergillus* cells; insect cells such as *Drosophila* S2 and *Spodoptera* Sf9 cells; animal cells such as CHO, COS, HeLa, C127,3T3, BHK, HEK 293 and Bowes melanoma cells; and plant cells.

A great variety of expression systems can be used. Such systems include, among others, chromosomal, episomal and virus-derived systems, e.g., vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids. The expression systems may contain control regions that regulate as well as engender expression. Generally, any system or vector suitable to maintain, propagate or express polynucleotides to produce a polypeptide in a host may be used. The appropriate nucleotide sequence may be inserted into an expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL (supra).

For secretion of the translated protein into the lumen of the endoplasmic reticulum, into the periplasmic space or into the extracellular environment, appropriate secretion signals may be incorporated into the desired polypeptide. These signals may be endogenous to the polypeptide or they may be heterologous signals.

If the ASP2 polypeptide is to be expressed for use in screening assays, generally, it is preferred that the polypeptide be produced at the surface of the cell. In this event, the cells may be harvested prior to use in the screening assay. If ASP2 polypeptide is secreted into the medium, the medium can be recovered in order to recover and purify the polypeptide; if produced intracellularly, the cells must first be lysed before the polypeptide is recovered.

ASP2 polypeptides can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography is employed for purification. Well known techniques for refolding proteins may be employed to regenerate active conformation when the polypeptide

is denatured during isolation and or purification.

Diagnostic Assays

5

10

20

25

30

35

40

45

55

This invention also relates to the use of ASP2 polynucleotides for use as diagnostic reagents. Detection of a mutated form of ASP2 gene associated with a dysfunction will provide a diagnostic tool that can add to or define a diagnosis of a disease or susceptibility to a disease which results from under-expression, over-expression or altered expression of ASP2. Individuals carrying mutations in the ASP2 gene may be detected at the DNA level by a variety of techniques.

Nucleic acids for diagnosis may be obtained from a subject's cells, such as from blood, urine, saliva, tissue biopsy or autopsy material. The genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR or other amplification techniques prior to analysis. RNA or cDNA may also be used in similar fashion. Deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype. Point mutations can be identified by hybridizing amplified DNA to labeled ASP2 nucleotide sequences. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase digestion or by differences in melting temperatures. DNA sequence differences may also be detected by alterations in electrophoretic mobility of DNA fragments in gels, with or without denaturing agents, or by direct DNA sequencing. See, e.g., Myers et al., Science (1985) 230:1242. Sequence changes at specific locations may also be revealed by nuclease protection assays, such as RNase and S1 protection or the chemical cleavage method. See Cotton et al., Proc Natl Acad Sci USA (1985) 85: 4397-4401. In another embodiment, an array of oligonucleotides probes comprising ASP2 nucleotide sequence or fragments thereof can be constructed to conduct efficient screening of e.g., genetic mutations. Array technology methods are well known and have general applicability and can be used to address a variety of questions in molecular genetics including gene expression, genetic linkage, and genetic variability. (See for example: M.Chee et al., Science, Vol 274, pp 610-613 (1996)).

The diagnostic assays offer a process for diagnosing or determining a susceptibility to Alzheimer's Disease, cancer, and prohormone processing through detection of mutation in the ASP2 gene by the methods described.

In addition, Alzheimer's Disease, cancer, and prohormone processing, can be diagnosed by methods comprising determining from a sample derived from a subject an abnormally decreased or increased level of ASP2 polypeptide or ASP2 mRNA. Decreased or increased expression can be measured at the RNA level using any of the methods well known in the art for the quantitation of polynucleotides, such as, for example, PCR, RT-PCR, RNase protection, Northern blotting and other hybridization methods. Assay techniques that can be used to determine levels of a protein, such as an ASP2 polypeptide, in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis and ELISA assays.

Thus in another aspect, the present invention relates to a diagonostic kit for a disease or suspectability to a disease, particularly Alzheimer's Disease, cancer, and prohormone processing, which comprises:

- (a) a ASP2 polynucleotide, preferably the nucleotide sequence of SEQ ID NO: 1, or a fragment thereof;
- (b) a nucleotide sequence complementary to that of (a);
- (c) a ASP2 polypeptide, preferably the polypeptide of SEQ ID NO: 2, or a fragment thereof; or
- (d) an antibody to a ASP2 polypeptide, preferably to the polypeptide of SEQ ID NO: 2. It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component:

Chromosome Assays

The nucleotide sequences of the present invention are also valuable for chromosome identification. The sequence is specifically targeted to and can hybridize with a particular location on an individual human chromosome. The mapping of relevant sequences to chromosomes according to the present invention is an important first step in correlating those sequences with gene associated disease. Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library). The relationship between genes and diseases that have been mapped to the same chromosomal region are then identified through linkage analysis (coinheritance of physically adjacent genes). The differences in the cDNA or genomic sequence between affected and unaffected individuals can also be determined. If a mutation is observed in some or all of the affected individuals but not in any normal individuals, then the mutation is likely to be the causative agent of the disease.

A chromosomal loci of 11q22 has been inferred for ASP2 by homology (99% in 210 nucleotides) with Genbank Locus G24698 (Human STS WI-14206).

Antibodies

10

15

20

25

30

35

40

45

55

The polypeptides of the invention or their fragments or analogs thereof, or cells expressing them can also be used as immunogens to produce antibodies immunospecific for the ASP2 polypeptides. The term "immunospecific" means that the antibodies have substantiall greater affinity for the polypeptides of the invention than their affinity for other related polypeptides in the prior art.

Antibodies generated against the ASP2 polypeptides can be obtained by administering the polypeptides or epitope-bearing fragments, analogs or cells to an animal, preferably a nonhuman, using routine protocols. For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler, G. and Milstein, C., *Nature* (1975) 256:495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor *et al.*, *Immunology Today* (1983) 4:72) and the EBV-hybridoma technique (Cole *et al.*, MONOCLONAL ANTIBODIES AND CANCER THERAPY, pp. 77-96, Alan R. Liss, Inc., 1985).

Techniques for the production of single chain antibodies (U.S. Patent No. 4,946,778) can also be adapted to produce single chain antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms including other mammals, may be used to express humanized antibodies.

The above-described antibodies may be employed to isolate or to identify clones expressing the polypeptide or to purify the polypeptides by affinity chromatography.

Antibodies against ASP2 polypeptides may also be employed to treat Alzheimer's Disease, cancer, and prohormone processing, among others.

Vaccines

Another aspect of the invention relates to a method for inducing an immunological response in a mammal which comprises inoculating the mammal with ASP2 polypeptide, or a fragment thereof, adequate to produce antibody and/ or T cell immune response to protect said animal from Alzheimer's Disease, cancer, and prohormone processing, among others. Yet another aspect of the invention relates to a method of inducing immunological response in a mammal which comprises, delivering ASP2 polypeptide via a vector directing expression of ASP2 polynucleotide *in vivo* in order to induce such an immunological response to produce antibody to protect said animal from diseases.

Further aspect of the invention relates to an immunological/vaccine formulation (composition) which, when introduced into a mammalian host, induces an immunological response in that mammal to a ASP2 polypeptide wherein the composition comprises a ASP2 polypeptide or ASP2 gene. The vaccine formulation may further comprise a suitable carrier. Since ASP2 polypeptide may be broken down in the stomach, it is preferably administered parenterally (including subcutaneous, intramuscular, intravenous, intradermal etc. injection). Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain antioxidants, buffers, bacteriostats and solutes which render the formulation instonic with the blood of the recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents or thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampoules and vials and may be stored in a freeze-dried condition requiring only the addition of the sterile liquid carrier immediately prior to use. The vaccine formulation may also include adjuvant systems for enhancing the immunogenicity of the formulation, such as oil-in water systems and other systems known in the art. The dosage will depend on the specific activity of the vaccine and can be readily determined by routine experimentation.

Screening Assays

The ASP2 polypeptide of the present invention may be employed in a screening process for compounds which activate (agonists) or inhibit activation of (antagonists, or otherwise called inhibitors) the ASP2 polypeptide of the present invention. Thus, polypeptides of the invention may also be used to assess identify agonist or antagonists from, for example, cells, cell-free preparations, chemical libraries, and natural product mixtures. These agonists or antagonists may be natural or modified substrates, ligands, enzymes, receptors, etc., as the case may be, of the polypeptide of the present invention; or may be structural or functional mimetics of the polypeptide of the present invention. See Coligan et al., Current Protocols in Immunology 1(2):Chapter 5 (1991).

ASP2 polypeptides are responsible for many biological functions, including many pathologies. Accordingly, it is desirous to find compounds and drugs which stimulate ASP2 polypeptide on the one hand and which can inhibit the function of ASP2 polypeptide on the other hand. In general, agonists are employed for therapeutic and prophylactic purposes for such conditions as Alzheimer's Disease, cancer, and prohormone processing. Antagonists may be employed for a variety of therapeutic and prophylactic purposes for such conditions as Alzheimer's Disease, cancer, and prohormone processing.

In general, such screening procedures may involve using appropriate cells which express the ASP2 polypeptide

or respond to ASP2 polypeptide of the present invention. Such cells include cells from mammals, yeast, *Drosophila* or *E. coli*. Cells which express the ASP2 polypeptide (or cell membrane containing the expressed polypeptide) or respond to ASP2 polypeptide are then contacted with a test compound to observe binding, or stimulation or inhibition of a functional response. The ability of the cells which were contacted with the candidate compounds is compared with the same cells which were not contacted for ASP2 activity. In addition, all aspartic proteinases are inhibited by pepstatin. Therefore, pepstatin inhibitory assays may also be employed with the present invention as a method of detection or as a screening assay.

The assays may simply test binding of a candidate compound wherein adherence to the cells bearing the ASP2 polypeptide is detected by means of a label directly or indirectly associated with the candidate compound or in an assay involving competition with a labeled competitor. Further, these assays may test whether the candidate compound results in a signal generated by activation of the ASP2 polypeptide, using detection systems appropriate to the cells bearing the ASP2 polypeptide. Inhibitors of activation are generally assayed in the presence of a known agonist and the effect on activation by the agonist by the presence of the candidate compound is observed.

Further, the assays may simply comprise the steps of mixing a candidate compound with a solution containing a ASP2 polypeptide to form a mixture, measuring ASP2 activity in the mixture, and comparing the ASP2 activity of the mixture to a standard.

The ASP2 cDNA, protein and antibodies to the protein may also be used to configure assays for detecting the effect of added compounds on the production of ASP2 mRNA and protein in cells. For example, an ELISA may be constructed for measuring secreted or cell associated levels of ASP2 protein using monoclonal and polyclonal antibodies by standard methods known in the art, and this can be used to discover agents which may inhibit or enhance the production of ASP2 (also called antagonist or agonist, respectively) from suitably manipulated cells or tissues.

The ASP2 protein may be used to identify membrane bound or soluble receptors, if any, through standard receptor binding techniques known in the art. These include, but are not limited to, ligand binding and crosslinking assays in which the ASP2 is labeled with a radioactive isotope (eg 125l), chemically modified (eg biotinylated), or fused to a peptide sequence suitable for detection or purification, and incubated with a source of the putative receptor (cells, cell membranes, cell supernatants, tissue extracts, bodily fluids). Other methods include biophysical techniques such as surface plasmon resonance and spectroscopy. In addition to being used for purification and cloning of the receptor, these binding assays can be used to identify agonists and antagonists of ASP2 which compete with the binding of ASP2 to its receptors, if any. Standard methods for conducting screening assays are well understood in the art.

Examples of potential ASP2 polypeptide antagonists include antibodies or, in some cases, oligonucleotides or proteins which are closely related to the ligands, substrates, enzymes, receptors, etc., as the case may be, of the ASP2 polypeptide, e.g., a fragment of the ligands, substrates, enzymes, receptors, etc.; or small molecules which bind to the polypeptide of the present invention but do not elicit a response, so that the activity of the polypeptide is prevented.

Thus in another aspect, the present invention relates to a screening kit for identifying agonists, antagonists, ligands, receptors, substrates, enzymes, etc. for ASP2 polypeptides; or compounds which decrease or enhance the production of ASP2 polypeptides, which comprises:

- (a) a ASP2 polypeptide, preferably that of SEQ ID NO:2;
- (b) a recombinant cell expressing a ASP2 polypeptide, preferably that of SEQ ID NO:2;
- (c) a cell membrane expressing a ASP2 polypeptide; preferably that of SEQ ID NO: 2; or
- (d) antibody to a ASP2 polypeptide, preferably that of SEQ ID NO: 2.

It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component.

45 Prophylactic and Therapeutic Methods

20

25

30

35

40

50

This invention provides methods of treating abnormal conditions such as, Alzheimer's Disease, cancer, and prohormone processing, related to both an excess of and insufficient amounts of ASP2 polypeptide activity.

If the activity of ASP2 polypeptide is in excess, several approaches are available. One approach comprises administering to a subject an inhibitor compound (antagonist) as hereinabove described along with a pharmaceutically acceptable carrier in an amount effective to inhibit the function of the ASP2 polypeptide, such as, for example, by blocking the binding of ligands, substrates, enzymes, receptors, etc., or by inhibiting a second signal, and thereby alleviating the abnormal condition. In another approach, soluble forms of ASP2 polypeptides still capable of binding the ligand, substrate, enzymes, receptors, etc. in competition with endogenous ASP2 polypeptide may be administered. Typical embodiments of such competitors comprise fragments of the ASP2 polypeptide.

In another approach, soluble forms of ASP2 polypeptides still capable of binding the ligand in competition with endogenous ASP2 polypeptide may be administered. Typical embodiments of such competitors comprise fragments of the ASP2 polypeptide.

In still another approach, expression of the gene encoding endogenous ASP2 polypeptide can be inhibited using expression blocking techniques. Known such techniques involve the use of antisense sequences, either internally generated or separately administered. See, for example, O'Connor, *J Neurochem* (1991) 56:560 in Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988). Alternatively, oligonucleotides which form triple helices with the gene can be supplied. See, for example, Lee et al., Nucleic Acids Res (1979) 6:3073; Cooney et al., Science (1988) 241:456; Dervan et al., Science (1991) 251:1360. These oligomers can be administered per se or the relevant oligomers can be expressed in vivo.

For treating abnormal conditions related to an under-expression of ASP2 and its activity, several approaches are also available. One approach comprises administering to a subject a therapeutically effective amount of a compound which activates ASP2 polypeptide, i.e., an agonist as described above, in combination with a pharmaceutically acceptable carrier, to thereby alleviate the abnormal condition. Alternatively, gene therapy may be employed to effect the endogenous production of ASP2 by the relevant cells in the subject. For example, a polynucleotide of the invention may be engineered for expression in a replication defective retroviral vector, as discussed above. The retroviral expression construct may then be isolated and introduced into a packaging cell transduced with a retroviral plasmid vector containing RNA encoding a polypeptide of the present invention such that the packaging cell now produces infectious viral particles containing the gene of interest. These producer cells may be administered to a subject for engineering cells in vivo and expression of the polypeptide in vivo. For overview of gene therapy, see Chapter 20, Gene Therapy and other Molecular Genetic-based Therapeutic Approaches, (and references cited therein) in Human Molecular Genetics, T Strachan and A P Read, BIOS Scientific Publishers Ltd (1996). Another approach is to administer a therapeutic amount of ASP2 polypeptides in combination with a suitable pharmaceutical carrier.

Formulation and Administration

10

20

25

30

35

40

45

50

55

Peptides, such as the soluble form of ASP2 polypeptides, and agonists and antagonist peptides or small molecules, may be formulated in combination with a suitable pharmaceutical carrier. Such formulations comprise a therapeutically effective amount of the polypeptide or compound, and a pharmaceutically acceptable carrier or excipient. Such carriers include but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. Formulation should suit the mode of administration, and is well within the skill of the art. The invention further relates to pharmaceutical packs and kits comprising one or more containers filled with one or more of the ingredients of the aforementioned compositions of the invention.

Polypeptides and other compounds of the present invention may be employed alone or in conjunction with other compounds, such as therapeutic compounds.

Preferred forms of systemic administration of the pharmaceutical compositions include injection, typically by intravenous injection. Other injection routes, such as subcutaneous, intramuscular, or intraperitoneal, can be used. Alternative means for systemic administration include transmucosal and transdermal administration using penetrants such as bile salts or fusidic acids or other detergents. In addition, if properly formulated in enteric or encapsulated formulations, oral administration may also be possible. Administration of these compounds may also be topical and/or localized, in the form of salves, pastes, gels and the like.

The dosage range required depends on the choice of peptide, the route of administration, the nature of the formulation, the nature of the subject's condition, and the judgment of the attending practitioner. Suitable dosages, however, are in the range of $0.1-100~\mu g/kg$ of subject. Wide variations in the needed dosage, however, are to be expected in view of the variety of compounds available and the differing efficiencies of various routes of administration. For example, oral administration would be expected to require higher dosages than administration by intravenous injection. Variations in these dosage levels can be adjusted using standard empirical routines for optimization, as is well understood in the art.

Polypeptides used in treatment can also be generated endogenously in the subject, in treatment modalities often referred to as "gene therapy" as described above. Thus, for example, cells from a subject may be engineered with a polynucleotide, such as a DNA or RNA, to encode a polypeptide ex vivo, and for example, by the use of a retroviral plasmid vector. The cells are then introduced into the subject.

Examples

The examples below are carried out using standard techniques, which are well known and routine to those of skill in the art, except where otherwise described in detail. The examples illustrate, but do not limit the invention.

Cloning:

Rapid amplification of cDNA ends polymerase chain reaction technology (RACE PCR) was used to identify the

missing 5' cDNA sequence of the aspartyl protease 2 gene. The source of cDNA template for the amplification reactions was a range of Marathon-Ready CDNA preparations (Clontech Laboratories, Inc., 1020 East Meadow Circle, Palo Alto, CA 94303-4230, USA.). These Marathon-Ready cDNAs are essentially cDNA libraries which have oligonucleotide adaptors ligated onto them. This allows the researcher to perform 5' RACE PCR using two primers, one complementary to a region of known sequence in the gene of interest and the other complementary to the ligated adaptor; resulting in an extension to the known sequence at the 5'end. PCR was performed using AmpliTaq® Gold DNA polymerase (Perkin-Elmer Corp).

It was found to be necessary to include 5% Dimethylsulphoxide in the reaction buffer for successful amplification, probably due to the high GC nucleotide content of this region of DNA.

The DNA sequence was cloned and a region of DNA was confirmed (nucleotides 1-273 in Table 1) at the 5' end of the Asp2 gene as extending from the start codon to overlap with the previously identified EST sequences. This novel sequence was identified in cDNA templates from seven human tissues, heart, leukocyte, mammary gland, spleen, skeletal muscle, thymus and aorta.

Northern Analysis:

15

20

25

30

35

40

45

50

A human Multiple Tissue Northern blot (MTN catalogue number 7760-1) (Clontech) was hybridized with an Asp-2 specific probe (of 325 nucleotides in length) generated by PCR, using the specific oligonucleotides 5' GATGAGT-TCAGGACGCAG 3' (SEQ ID NO:5) and 5' GGTGCCATATGTGTCTCC 3' (SEQ ID NO:6). The probe was radiolabelled by incorporation of ³²P-dCTP during PCR amplification, and the labelled PCR product was subsequently purified using the Qiagen PCR Purification Kit. After a 1 hour prehybridization, hybridization was carried out for 2 hours using ExpressHyb buffer (Clontech) at 68°C, and the labelled probe was added to a final concentration of 1×10⁶ cpm/ml. After hybridization, the membrane was washed twice in 2×SSC/ 0.05% SDS for 20 minutes, and twice in 0.1×SSC/ 0.1% SDS at 50°C for 20 minutes. The membrane was then wrapped in plastic wrap and exposed to X-ray film at -70°C with two intensifying screens. This revealed that the highest expression (tissues examined were heart, brain, placenta, lung, liver, skeletal muscle, kidney and pancreas) of Asp2 was in the pancreas, followed by the brain.

All publications, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference as if each individual publication were specifically and individually indicated to be incorporated by reference herein as though fully set forth.

15

SEQUENCE LISTING

5	(1) GENERAL INFORMATION
10	(i) APPLICANT: SmithKline Beecham p.l.c. and SmithKline Beecham Corporation
	(ii) TITLE OF THE INVENTION: ASP2
15	(iii) NUMBER OF SEQUENCES: 6
	(iv) CORRESPONDENCE ADDRESS:
20	(A) ADDRESSEE: F J Cleveland & Company
	(B) STREET: 40/43 Chancery Lane
	(C) CITY: London
	(D) COUNTY:
25	(E) COUNTRY: United Kingdom
	(F) POST CODE: WC2A 1JQ
	(v) COMPUTER READABLE FORM:
30	(A) MEDIUM TYPE: Diskette
	(B) COMPUTER: IBM Compatible
	(C) OPERATING SYSTEM: DOS
35	(D) SOFTWARE: FastSEQ for Windows Version 2.0
	(vi) CURRENT APPLICATION DATA:
	(A) APPLICATION NUMBER: TO BE ASSIGNED
	(B) FILING DATE: 20-JAN-1998
40	(C) CLASSIFICATION: UNKNOWN
	(vii) PRIOR APPLICATION DATA:
45	(A) APPLICATION NUMBER: UK 9701684.4
	(B) FILING DATE: 28-JAN-1997
50	
	(viii) ATTORNEY/AGENT INFORMATION:
	(A) NAME: CRUMP, Julian Richard John
	(B) GENERAL AUTHORISATION NUMBER: 37129
<i>55</i>	(C) REFERENCE/DOCKET NUMBER: GH-70368

(ix) TELECOMMUNICATION INFORMATION:

	(A) TELEPHONE: +44 171 405 5875													
5	(B) TELEFAX: +44 171 831 0749													
J	(C) TELEX:													
10	(2) INFORMATION FOR SEQ ID NO:1:													
	(i) SEQUENCE CHARACTERISTICS:													
	(A) LENGTH: 2541 base pairs													
15	(B) TYPE: nucleic acid													
	(C) STRANDEDNESS: single													
	(D) TOPOLOGY: linear													
20														
	(ii) MOLECULE TYPE: cDNA													
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:													
25	ATGGCCCAAG CCCTGCCCTG GCTCCTGCTG TGGATGGGCG CGGGAGTGCT GCCTGCCCAC													
	GGCACCCAGC ACGGCATCCG GCTGCCCCTG CGCAGCGGCC TGGGGGGCGC CCCCCTGGGG	60												
	CTGCGGCTGC CCCGGGAGAC CGACGAAGAG CCCGAGGAGC CCCCCTGGGG	120												
	GTGGAGATGG TGGACAACCT GAGGGGCAAG TCGGGGCAGG GCTACTACGT GGAGATGACC	180												
30	GTGGGCAGCC CCCCGCAGAC GCTCAACATC CTGGTGGATA CAGGCAGCAG TAACTTTGCA	300												
	GTGGGTGCTG CCCCCACCC CTTCCTGCAT CGCTACTACC AGAGGCAGCT GTCCAGCACA	360												
	TACCGGGACC TCCGGAAGGG TGTGTATGAG CCCTACACCC AGGGCAAGTG GGAAGGGGAG	420												
35	CTGGGCACCG ACCTGGTAAG CATCCCCCAT GGCCCCAACG TCACTGTGCG TGCCAACATT	480												
	GCTGCCATCA CTGAATCAGA CAAGTTCTTC ATCAACGGCT CCAACTGGGA AGGCATCCTG	540												
	GGGCTGGCCT ATGCTGAGAT TGCCAGGCCT GACGACTCCC TGGAGCCTTT CTTTGACTCT	600												
	CTGGTAAAGC AGACCCACGT TCCCAACCTC TTCTCCCTGC AGCTTTGTGG TGCTGGCTTC	660												
40	CCCCTCAACC AGTCTGAAGT GCTGGCCTCT GTCGGAGGGA GCATGATCAT TGGAGGTATC	720												
	GACCACTCGC TGTACACAGG CAGTCTCTGG TATACACCCA TCCGGCGGGA GTGGTATTAT	780												
	GAGGTGATCA TTGTGCGGGT GGAGATCAAT GGACAGGATC TGAAAATGGA CTGCAAGGAG	840												
	TACAACTATG ACAAGAGCAT TGTGGACAGT GGCACCACCA ACCTTCGTTT GCCCAAGAAA	900												
45	GTGTTTGAAG CTGCAGTCAA ATCCATCAAG GCAGCCTCCT CCACGGAGAA GTTCCCTGAT	960												
	GGTTTCTGGC TAGGAGAGCA GCTGGTGTGC TGGCAAGCAG GCACCACCCC TTGGAACATT	1020												
	TTCCCAGTCA TCTCACTCTA CCTAATGGGT GAGGTTACCA ACCAGTCCTT CCGCATCACC	1080												
<i>5</i> 0	ATCCTTCCGC AGCAATACCT GCGGCCAGTG GAAGATGTGG CCACGTCCCA AGACGACTGT	1140												
50	TACAAGTTTG CCATCTCACA GTCATCCACG GGCACTGTTA TGGGAGCTGT TATCATGGAG	1200												
	GGCTTCTACG TTGTCTTTGA TCGGGCCCGA AAACGAATTG GCTTTGCTGT CAGCGCTTGC	1260												
	CATGTGCACG ATGAGTTCAG GACGGCAGCG GTGGAAGGCC CTTTTGTCAC CTTGGACATG	1320												
<i>55</i>	GAAGACTGTG GCTACAACAT TCCACAGACA GATGAGTCAA CCCTCATGAC CATAGCCTAT	1380												
	GTCATGGCTG CCATCTGCGC CCTCTTCATG CTGCCACTCT GCCTCATGGT GTGTCAGTGG	1440												

	CGCTGCCTCC	GCTGCCTGCG	CCAGCAGCAT	GATGACTTTG	CTGATGACAT	CTCCCTGCTG	1500
	AAGTGAGGAG	GCCCATGGGA	GAAAGATAGA	GATTCCCCTG	GGACCACACC	TCCGTGGTTC	1560
5	ACTTTGGTCA	CAAGTAGGAG	ACACAGATGG	CACCTGTGGC	CAGAGCACCT	CAGGACCCTC	1620
	CCCACCCACC	AAATGCCTCT	GCCTTGATGG	AGAAGGAAAA	GGCTGGCAAG	GTGGGTTCCA	1680
	GGGACTGTAC	CTGTAGGAAA	CAGAAAAGAG	AAGAAAGAAG	CACTCTGCTG	GCGGGAATAC	1740
	TCTTGGTCAC	CTCAAATTTA	AGTCGGGAAA	TTCTGCTGCT	TGAAACTTCA	GCCCTGAACC	1800
10	TTTGTCCACC	ATTCCTTTAA	ATTCTCCAAC	CCAAAGTATT	CTTCTTTTCT	TAGTTTCAGA	1860
	AGTACTGGCA	TCACACGCAG	GTTACCTTGG	CGTGTGTCCC	TGTGGTACCC	GGGCAGAGAA	1920
	GAGACCAAGC	TTGTTTCCCT	GCTGGCCAAA	GTCAGTAGGA	GAGGATGCAC	AGTTTGCTAT	1980
	TTGCTTTAGA	GACAGGGACT	GTATAAACAA	GCCTAACATT	GGTGCAAAGA	TTGCCTCTTG	2040
15	AATTAAAAA	AAAAACTAGA	TTGACTATTT	ATACAAATGG	GGGCGGCTGG	AAAGAGGAGA	2100
	AGGAGAGGGA	GTACAAAGAC	AGGGAATAGT	GGGATCAAAG	CTAGGAAAGG	CAGAAACACA	2160
	ACCACTCACC	AGTCCTAGTT	TTAGACCTCA	TCTCCAAGAT	AGCATCCCAT	CTCAGAAGAT	2220
	GGGTGTTGTT	TTCAATGTTT	TCTTTTCTGT	GGTTGCAGCC	TGACCAAAAG	TGAGATGGGA	2280
20	AGGGCTTATC	TAGCCAAAGA	GCTCTTTTTT	AGCTCTCTTA	AATGAAGTGC	CCACTAAGGA	2340
	AGTTCCACTT	GAACACATGG	AATTTCTGCC	ATATTAATTT	CCATTGTCTC	TATCTGGAAC	2400
	CACCCTTTAA	TCTCTACATA	TGATTAGGTC	CAGCACTTGA	AAATATTCCT	AACCNNAATT	2460
ne.	TGNCTTGGGG	GCTTTGCNGN	CCAGGTGCTA	AAAGGGNTTG	GGTAGGNGNC	CNCTTNTATN	2520
25	TNATNCCTNA	AAAGGTTANN	G				2541
	(2) INFORMAT	ION FOR SEQ	ID NO:2:			
30	(2)	COTTON OF COM	AD & COMBD T COTT	ne.			
	• •	-	ARACTERISTIO				
	• •	TYPE: amii		Lus			
	(8)	TIPE: AULI	TO WILL				

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

35

40

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

					85					90					95	
	Ser	Asn	Phe	Ala	Val	Gly	Ala	Ala	Pro	His	Pro	Phe	Leu	His	Arg	Tyr
5				100					105					110		
	Tyr	Gln	Arg	Gln	Leu	Ser	Ser	Thr	Tyr	Arg	Asp	Leu	Arg	Lys	Gly	Val
			115					120					125			
	Tyr	Glu	Pro	Tyr	Thr	Gln	Gly	Lys	Trp	Glu	Gly	Glu	Leu	Gly	Thr	Asp
10		130					135					140				
	Leu	Val	Ser	Ile	Pro	His	Gly	Pro	Asn	Val	Thr	Val	Arg	Ala	Asn	Ile
	145					150					155					160
15	Ala	Ala	Ile	Thr	Glu	Ser	Asp	Lys	Phe	Phe	Ile	Asn	Gly	Ser	Asn	Trp
15					165					170					175	
	Glu	Gly	Ile	Leu	Gly	Leu	Ala	Tyr	Ala	Glu	Ile	Ala	Arg	Pro	Asp	Asp
				180					185					190		
20	Ser	Leu	Glu	Pro	Phe	Phe	Asp	Ser	Leu	Val	Lys	Gln	Thr	His	Val	Pro
			195					200	_				205			
	Asn		Phe	Ser	Leu	Gln		Cys	Gly	Ala	Gly	Phe	Pro	Leu	Asn	Gln
	_	210	-	_		_	215			_		220				
25		GIU	Val	Leu	Ala		Val	GIY	GIY	Ser		Ile	Ile	Gly	Gly	
	225	***	.	*	m	230	0 3	0	•		235		_		_	240
	qaA	HIS	Ser	Leu	245	THE	GIÀ	ser	Leu	_	Tyr	Thr	Pro	IIe	_	Arg
	Gl.		Tyr	There		17-1	Tla	Tle	17 a 1	250	37-1	~7	T10	7.00	255	C] ~
30	GIU	пр	LYL	260	Giu	Val	TIE	TIE	265	ALG	Vai	GIU	116	270	GTÅ	GIII
	Δen	Tæ11	Lys		Agn	Cva	T.ve	Glu		λen	Туг	Acn	T.ve		Tle	t/a1
	· Lup		275			Cyb	_,5	280	-7-	72311	-7-	p	285	Jez	110	Val
	Asp	Ser	Gly	Thr	Thr	Asn	Leu		Leu	Pro	Lvs	Lvs		Phe	Glu	Ala
35		290					295					300				
	Ala	Val	Lys	Ser	Ile	Lys	Ala	Ala	Ser	Ser	Thr	Glu	Lys	Phe	Pro	Asp
	305					310					315		-			320
40	Gly	Phe	Trp	Leu	Gly	Glu	Gln	Leu	Val	Cys	Trp	Gln	Ala	Gly	Thr	Thr
~					325					330					335	
	Pro	Trp	Asn	Ile	Phe	Pro	Val	Ile	Ser	Leu	Tyr	Leu	Met	Gly	Glu	Val
				340					345					350		
45	Thr	Asn	Gln	Ser	Phe	Arg	Ile	Thr	Ile	Leu	Pro	Gln	Gln	Tyr	Leu	Arg
			355					360					365			
	Pro	Val	Glu	Asp	Val	Ala	Thr	Ser	Gln	Asp	Asp	Cys	Tyr	Lys	Phe	Ala
		370					375					380				
50		Ser	Gln	Ser	Ser		Gly	Thr	Val	Met		Ala	Val	Ile	Met	Glu
	385					390		_	_ =	_	395				_	400
	Gly	Phe	Tyr	Val		Phe	qaA	Arg	Ala	•	Lys	Arg	Ile	Gly		Ala
			• • •		405			•	۵,	410	_				415	
<i>55</i>	Val	Ser	Ala		His	Val	His	qaA		Phe	Arg	Thr	Ala		Val	Glu
				420					425					430		

	Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro	
	435 440 445	
5	Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala	
	450 455 460	
	Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys Gln Trp	
	465 470 475 480	
10	Arg Cys Leu Arg Cys Leu Arg Gln Gln His Asp Asp Phe Ala Asp Asp	
	485 490 495	
	Ile Ser Leu Leu Lys	
15	500	
15		
	(2) INFORMATION FOR SEQ ID NO:3:	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2370 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: CDNA	
	(with apparentage programmers and the second	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
	GGCAGCTTTG TGGAGATGGT GGACAACCTG AGGGGCAAGT CGGGGCAGGG CTACTACGTG	
	GAGATGACCG TGGGCAGCCC CCCGCAGACG CTCAACATCC TGGTGGATAC AGGCAGCAGT	60
	AACTITGCAG TGGGTGCTGC CCCCCACCC TTCCTGCATC GCTACTACCA GAGGCAGCTG	120
35	TCCAGCACAT ACCGGGACCT CCGGAAGGGT GTGTATGAGC CCTACACCCA GGGCAAGTGG	180
	GAAGGGGAGC TGGGCACCGA CCTGGTAAGC ATCCCCCATG GCCCCAACGT CACTGTGCGT	240 300
	GCCAACATTG CTGCCATCAC TGAATCAGAC AAGTTCTTCA TCAACGGCTC CAACTGGGAA	360
	GGCATCCTGG GGCTGGCCTA TGCTGAGATT GCCAGGCCTG ACGACTCCCT GGAGCCTTTC	420
40	TTTGACTCTC TGGTAAAGCA GACCCACGTT CCCAACCTCT TCTCCCTGCA GCTTTGTGGT	480
	GCTGGCTTCC CCCTCAACCA GTCTGAAGTG CTGGCCTCTG TCGGAGGGAG CATGATCATT	540
	GGAGGTATCG ACCACTCGCT GTACACAGGC AGTCTCTGGT ATACACCCAT CCGGCGGGAG	600
	MAGNITURE DA LAGRALDA DE MAGNICA DE LA CONTRACTOR DE LA C	660
45	MACHINE AND	720
	COOLIGATION DESCRIPTION OF THE PROPERTY OF THE	780
		840
E0	MAGNICA MICHAEL MICHAE	900
50	0.001 0.001 0.0000 0.0001 0.0001 0.0000 0.0000	960
	CLOCK CROWN LOLL CONTROL CLOCKER CLOCKER CO. C.	.020
	ATCATGGAGG GCTTCTACGT TGTCTTTGAT CGGGCCCGAA AACGAATTGG CTTTGCTGTC 1	.080
55	AGCGCTTGCC ATGTGCACGA TGAGTTCAGG ACGGCAGCGG TGGAAGGCCC TTTTGTCACC 1	140
	TTGGACATGG AAGACTGTGG CTACAACATT CCACAGACAG ATGAGTCAAC CCTCATGACC	200

	ATAGCCTATG TCATGGCTGC CATCTGCGCC CTCTTCATGC TGCCACTCTG CCTCATGGTG	1260												
	TGTCAGTGGC GCTGCCTCCG CTGCCTGCGC CAGACAATGG ATGACTTTGC TGATGACATC	1320												
5	TCCCTGCTGA AGTGAGGAGG CCCATGGGAG AAAGATAGAG ATTCCCCTGG GACCACCT	1380												
	CCGTGGTTCA CTTTGGTCAC AAGTAGGAGA CACAGATGGC ACCTGTGGCC AGAGCACCTC	1440												
	AGGACCCTCC CCACCCACCA AATGCCTCTG CCTTGATGGA GAAGGAAAAG GCTGGCAAGG	1500												
	TGGGTTCCAG GGACTGTACC TGTAGGAAAC AGAAAAGAGA AGAAAGAAGC ACTCTGCTGG	1560												
10	CGGGAATACT CTTGGTCACC TCAAATTTAA GTCGGGAAAT TCTGCTGCTT GAAACTTCAG	1620												
	CCCTGAACCT TTGTCCACCA TTCCTTTAAA TTCTCCAACC CAAAGTATTC TTCTTTTCTT	1680												
	AGTTTCAGAA GTACTGGCAT CACACGCAGG TTACCTTGGC GTGTGTCCCT GTGGTACCCG	1740												
15	GGCAGAGAAG AGACCAAGCT TGTTTCCCTG CTGGCCAAAG TCAGTAGGAG AGGATGCACA	1800												
15	GTTTGCTATT TGCTTTAGAG ACAGGGACTG TATAAACAAG CCTAACATTG GTGCAAAGAT	1860												
	TGCCTCTTGA ATTAAAAAA AAAACTAGAT TGACTATTTA TACAAATGGG GGCGGCTGGA	1920												
	AAGAGGAGAA GGAGAGGGAG TACAAAGACA GGGAATAGTG GGATCAAAGC TAGGAAAGGC	1980												
20	AGAAACACAA CCACTCACCA GTCCTAGTTT TAGACCTCAT CTCCAAGATA GCATCCCATC	2040												
20	TCAGAAGATG GGTGTTGTTT TCAATGTTTT CTTTTCTGTG GTTGCAGCCT GACCAAAAGT	2100												
	GAGATGGGAA GGGCTTATCT AGCCAAAGAG CTCTTTTTTA GCTCTCTTAA ATGAAGTGCC	2160												
	CACTAAGGAA GTTCCACTTG AACACATGGA ATTTCTGCCA TATTAATTTC CATTGTCTCT	2220												
25	ATCTGGAACC ACCCTTTAAT CTCTACATAT GATTAGGTCC AGCACTTGAA AATATTCCTA	2280												
	ACCNNAATTT GNCTTGGGGG CTTTGCNGNC CAGGTGCTAA AAGGGNTTGG GTAGGNGNCC	2340												
	NCTINTAINT NAINCCINAA AAGGITANNG	2370												
30	(2) INFORMATION FOR SEQ ID NO:4:													
	41)													
	(i) SEQUENCE CHARACTERISTICS:													
	(A) LENGTH: 774 amino acids													
35	(B) TYPE: amino acid													
	(C) STRANDEDNESS: single													
	(D) TOPOLOGY: linear													
	(44) MOT POW D. MUDD													
40	(ii) MOLECULE TYPE: protein													
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:													
	(AL) DESCRIPTION: DEG ID NO:4:													
	Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln													
45	1 5 · 10 15													
	Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn													
	20 25 30													
50	Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro													
30	35 40 45													
	His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr													
	50 55 60													
<i>55</i>	Arg Asp Leu Arg Lys Gly Val Tyr Glu Pro Tyr Thr Gln Gly Lys Trp													
	65 70 75 80													

	Glu	Gly	Glu	Leu	Gly 85	Thr	Asp	Leu	Val	Ser 90	Ile	Pro	His	Gly	Pro 95	Asn
5	Val	Thr	Val	Arg	Ala	Asn	Ile	Ala	Ala		Thr	Glu	Ser	Asp		Phe
				100					105					110	•	
	Phe	Ile	Asn	Gly	Ser	Asn	Trp	Glu	Gly	Ile	Leu	Gly	Leu	Ala	Tyr	Ala
			115					120					125			
10	Glu	Ile	Ala	Arg	Pro	Asp	qaA	Ser	Leu	Glu	Pro	Phe	Phe	Asp	Ser	Leu
		130					135					140				
	Val	Lys	Gln	Thr	His	Val	Pro	Asn	Leu	Phe	Ser	Leu	Gln	Leu	Cys	Gly
15	145					150					155					160
	Ala	Gly	Phe	Pro		Asn	Gln	Ser	Glu	Val	Leu	Ala	Ser	Val	Gly	Gly
					165		-	_		170					175	
	ser	Met	He		GIÀ	GIY	Ile	Asp		Ser	Leu	Tyr	Thr	-	Ser	Leu
20	·	Пъ осс	mb	180	T1.	3	3	~1	185			~ 3			_,	
	LLP	TÄT	195	PIO	TIE	Arg	Arg	200	TEP	TYE	ıyr	GIU		116	iie	vaı
	Ara	Val		Tle	Agn	G] v	Gln		T.en:	T.ve	Mot	Acn		Tare	Gl.	Tree
		210					215	- Gen	Deu	шys	MEC		cys	цуѕ	GIU	TYL
25	Asn		Asp	Lvs	Ser	Ile		Asp	Ser	Glv	Thr		Asn	Tæ11	Ara	Len
	225	•				230				1				200		
	Pro	Lys	Lys	Val	Phe	Glu	Ala	Ala	Val	Lys		Ile	Lys	Ala	Ala	
					245					250			-		255	
30	Pro	Arg	Glu	Lys	Phe	Pro	Asp	Gly	Phe	Trp	Leu	Gly	Glu	Gln	Leu	Val
				260					265					270		
	Cys	Trp	Gln	Ala	Gly	Thr	Thr	Pro	Trp	Asn	Ile	Phe	Pro	Val	Ile	Ser
<i>35</i>			275					280					285			
	Leu		Leu	Met	Gly	Glu	Val	Thr	Asn	Gln	Ser	Phe	Arg	Ile	Thr	Ile
		290					295					300				
		Pro	Gln	Gln	Tyr		Arg	Pro	Val	Glu		Val	Ala	Thr	Ser	Gln
40	305		~			310			_			_	_			e Val u Tyr g Leu 240 a Ser 5 u Val e Ser r Ile r Gln 320 r Val 5 g Ala p Glu t Glu t Thr 400
	Asp	Asp	cys	ıyr		Pne	Ala	ш	Ser		Ser	Ser	Thr	Gly		Val
	Mot	Glar	7 T -	บอโ	325	Wat	~1	۳٦	Dha	330	**- T	**- 7	Db -	•		
	MCC	GIY	ALG	340	116	HEC	GIU	Gry	345	IÀL	VAI	vaı	Pne		Arg	ALA
45	Ara	Lvs	Arg		Glv	Phe	Ala	Val		Δla	Cve	Wie	Val		Agn	GI 11
	3	-2-	355		,			360			- 70				voħ	GIU
	Phe	Arg		Ala	Ala	Val	Glu		Pro	Phe	Val	Thr		asa	Met	Glu
50		370					375	_				380		•		
50	Asp	Cys	Gly	Tyr	Asn	Ile	Pro	Gln	Thr	Asp	al Leu Ala Ser Val Gly G 70	Thr				
	385					390				=						
	Ile	Ala	Tyr	Val	Met	Ala	Ala	Ile	Cys	Ala	Leu	Phe	Met	Leu	Pro	Leu
<i>55</i>		٠			405					410					415	
	Cys	Leu	Met	Val	Cys	Gln	Trp	Arg	Cys	Leu	Arg	Cys	Leu	Arg	Gln	Thr

				420					425					430		
	Met	Asp	Asp	Phe	Ala	Asp	Asp	Ile	Ser	Leu	Leu	Lys	Gly	Gly	Pro	Trp
5			435					440					445			
	Glu	Lys	Asp	Arg	Asp	Ser	Pro	Gly	Thr	Thr	Pro	Pro	Trp	Phe	Thr	Leu
		450					455					460				
	Val	Thr	Ser	Arg	Arg	His	Arg	Trp	His	Leu	Trp	Pro	Glu	His	Leu	Arg
10	465					470					475					480
	Thr	Leu	Pro	Thr	His	Gln	Met	Pro	Leu	Pro	Trp	Arg	Arg	Lys	Arg	Leu
					485					490					495	
	Ala	Arg	Trp	Val	Pro	Gly	Thr	Val	Pro	Val	Gly	Asn	Arg	Lys	Glu	Lys
15				500					505				_	510		_
	Lys	Glu	Ala	Leu	Cys	Trp	Arg	Glu	Tyr	Ser	Trp	Ser	Pro	Gln	Ile	Val
	_		515					520					525			
	Gly	Lys	Phe	Сув	Cys	Leu	Lys	Leu	Gln	Pro	Thr	Phe	Val	His	His	Ser
20		530					535					540				
	Phe	Lys	Phe	Ser	Asn	Pro	Lys	Tyr	Ser	Ser	Phe	Leu	Ser	Phe	Arg	Ser
	545					550					555					560
	Thr	Gly	Ile	Thr	Arg	Arg	Leu	Pro	Trp	Arg	Val	Ser	Leu	Trp	Tyr	Pro
25					565					570					575	•
	Gly	Arg	Glu	Glu	Thr	Lys	Leu	Val	Ser	Leu	Leu	Ala	Lys	Val	Ser	Arg
				580					585					590		
	Arg	Gly	Сув	Thr	Val	Сув	Tyr	Leu	Leu	Arg	Gln	Gly	Leu	Tyr	Lys	Gln
30			5 9 5					600					605			
	Ala	His	Trp	Cys	Lys	Asp	Cys	Leu	Leu	Asn	Lys	Lys	Lys	Leu	qaA	Leu
		610					615					620				
25	Phe	Ile	Gln	Met	Gly	Ala	Ala	Gly	Lys	Arg	Arg	Arg	Arg	Gly	Ser	Thr
35	625					630					635					640
	Lys	Thr	Gly	Asn	Ser	Glу	Ile	Lys	Ala	Arg	Lys	Gly	Arg	Asn	Thr	Thr
					645					650					655	
40	Thr	His	Gln	Ser	Phe	Thr	Ser	Ser	Pro	Arg	His	Pro	Ile	Ser	Glu	qaA
40				660					665					670		
	Gly	Cys	Cys	Phe	Gln	Cys	Phe	Leu	Phe	Сув	Gly	Cys	Ser	Leu	Thr	Lys
			675					680					685			
45	Ser	Glu	Met	Gly	Arg	Ala	Tyr	Leu	Ala	Lys	Glu	Leu	Phe	Phe	Ser	Ser
		690					695					700				
	Leu	Lys	Ser	Ala	His	Gly	Ser	Ser	Thr	Thr	His	Gly	Ile	Ser	Ala	Ile
	705					710					715					720
50	Leu	Ile	Ser	Ile	Val	Ser	Ile	Trp	Asn	His	Pro	Leu	Ile	Ser	Thr	Tyr
					725					730					735	
	Asp	Val	Gln	His	Leu	Lys	Ile	Phe	Leu	Thr	Xaa	Ile	Xaa	Leu	Gly	Gly
				740					745					750		
<i>55</i>	Phe	Ala	Xaa		Val	Leu	Lys	Gly	Xaa	Gly	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa
			755					760					765			

5	Xaa Leu Lys Arg Leu Xaa 770	
	(2) INFORMATION FOR SEQ ID NO:5:	
10	(i) SEQUENCE CHARACTERISTICS:	
,,	(A) LENGTH: 19 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
15	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: CDNA	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
	GATGAGTTCA GGACGGCAG	19
25	(2) INFORMATION FOR SEQ ID NO:6:	
	(i) SEQUENCE CHARACTERISTICS:	•
	(A) LENGTH: 18 base pairs	
	(B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
40	GGTGCCATAT GTGTCTCC	18
45	Claims	
50	 An isolated polynucleotide comprising a nucleotide sequence that has at least 80% to a nucleotide sequence encoding the ASP2 polypeptide of SEQ ID NO:2; or a nucleotide tary to said isolated polynucleotide. 	
	The polynucleotide of claim 1 wherein said polynucleotide comprises the nucleotide ID NO:1 encoding the ASP2 polypeptide of SEQ ID NO2.	sequence contained in SEQ
<i>55</i>	3. The polynucleotide of claim 1 wherein said polynucleotide comprises a nucleotide s identical to that of SEQ ID NO: 1 over its entire length.	sequence that is at least 80%

4. The polynucleotide of claim 3 which is polynucleotide of SEQ ID NO: 1.

5. The polynucleotide of claim 1 which is DNA or RNA.

5

15

20

25

30

35

40

45

- 6. A DNA or RNA molecule comprising an expression system, wherein said expression system is capable of producing a ASP2 polypeptide comprising an amino acid sequence, which has at least 80% identity with the polypeptide of SEQ ID NO:2 when said expression system is present in a compatible host cell.
- 7. A host cell comprising the expression system of claim 6.
- 8. A process for producing a ASP2 polypeptide comprising culturing a host of claim 7 under conditions sufficient for the production of said polypeptide and recovering the polypeptide from the culture.
 - 9. A process for producing a cell which produces a ASP2 polypeptide thereof comprising transforming or transfecting a host cell with the expression system of claim 6 such that the host cell, under appropriate culture conditions, produces a ASP2 polypeptide.
 - 10. A ASP2 polypeptide comprising an amino acid sequence which is at least 80% identical to the amino acid sequence of SEQ ID NO:2 over its entire length.
 - 11. The polypeptide of claim 10 which comprises the amino acid sequence of SEQ ID NO:2.
 - 12. An antibody immunospecific for the ASP2 polypeptide of claim 10.
 - 13. A method for the treatment of a subject in need of enhanced activity or expression of ASP2 polypeptide of claim 10 comprising:
 - (a) administering to the subject a therapeutically effective amount of an agonist to said polypeptide; and/or (b) providing to the subject an isolated polynucleotide comprising a nucleotide sequence that has at least 80% identity to a nucleotide sequence encoding the ASP2 polypeptide of SEQ ID NO:2 over its entire length; or a nucleotide sequence complementary to said nucleotide sequence in a form so as to effect production of said polypeptide activity *in vivo*.
 - 14. A method for the treatment of a subject having need to inhibit activity or expression of ASP2 polypeptide of claim 10 comprising:
 - (a) administering to the subject a therapeutically effective amount of an antagonist to said polypeptide; and/or (b) administering to the subject a nucleic acid molecule that inhibits the expression of the nucleotide sequence encoding said polypeptide; and/or
 - (c) administering to the subject a therapeutically effective amount of a polypeptide that competes with said polypeptide for its ligand, substrate, or receptor.
 - 15. A process for diagnosing a disease or a susceptibility to a disease in a subject related to expression or activity of ASP2 polypeptide of claim 10 in a subject comprising:
 - (a) determining the presence or absence of a mutation in the nucleotide sequence encoding said ASP2 polypeptide in the genome of said subject; and/or
 - (b) analyzing for the presence or amount of the ASP2 polypeptide expression in a sample derived from said subject.
- **16.** A method for identifying compounds which inhibit (antagonize) or agonize the ASP2 polypeptide of claim 10 which comprises:
 - (a) contacting a candidate compound with cells which express the ASP2 polypeptide (or cell membrane expressing ASP2 polypeptide) or respond to ASP2 polypeptide; and
 - (b) observing the binding, or stimulation or inhibition of a functional response; or comparing the ability of the cells (or cell membrane) which were contacted with the candidate compounds with the same cells which were not contacted for ASP2 polypeptide activity.
 - 17. An agonist identified by the method of claim 16.

	18. An antagonist identified by the method of claim 16.
	19. A recombinant host cell produced by a method of Claim 9 or a membrane thereof expressing a ASP2 polypeptide.
5	
10	
15	
20	
	•
25	
30	
35	
40	
45	
50	
EE	