

Capblancq & Forester (2021) Methods Ecol. Evol.

Anne Chambers & Anusha Bishop (2024)

What questions can we answer using GEA?

Bay et al. (2018) Science

What questions can we answer using GEA?

Bay et al. (2018) Science

What questions can we answer using GEA?

Bay et al. (2018) Science

Different types of GEA

- BayEnv/BayPASS/BayeScEnv
- Redundancy analysis (RDA)
- Latent factor mixed models (LFMM)
- GLMM
- Gradient or random forest
- SAM/SamBada
- Weighted Z-analysis (WZA)

Different types of GEA

Method	Spatially explicit?	Accounts for neutral structure?	Individual- or population-based sampling?	Other tags
BayEnv/BayPASS	No	Yes	Population	Slow, Bayesian, linear
RDA	Optional	Optional	Both	Fast, ordination, linear
LFMM	No	Optional	Both	Fast, linear
GLMM	No	Optional	Both	Slow, linear
Gradient or random forest	Yes	No	Both	Nonlinear, map, machine learning
SAM/SamBada	No	No	Individual	Logistic

Table: Anusha P. Bishop

Some considerations:

- May want to minimize **missing data** so as not to bias results

Some considerations:

- May want to minimize **missing data** so as not to bias results
- Prune out sites that are in linkage disequilibrium

Some considerations:

- May want to minimize **missing data** so as not to bias results
- Prune out sites that are in linkage disequilibrium
- Set a reasonable MAF threshold

Some considerations:

- May want to minimize missing data so as not to bias results; if lots of data are imputed double-check the relationship between the strength of the association and % missingness (per site)
- Prune out sites that are in linkage disequilibrium
- Set a reasonable MAF threshold
- **Environmental data**: use realistic layers that you think are affecting your study species!

Today's methods Redundancy analysis (RDA)

Simple redundancy analysis (RDA)

Redundancy analysis (RDA)

Redundancy analysis (RDA)

Redundancy analysis (RDA)

Latent factor mixed models (LFMM)

Capblancq & Forester (2021) Methods Ecol. Evol.; Frichot et al. (2013) Mol. Biol. Evol.

Variable selection is specified using the **model = "best"** and **model = "full"** syntax in algatr

Today's methods: RDA outlier detection

Set a number of standard deviations to identify outliers from extreme loadings:

Z-scores method

Transform RDA loadings into p-values and adjust based on FDR: p-value method using the rdadapt function

Redundancy analysis (RDA)

r	p-value	SNP	Variable
-0.22	0.02	chrom1_SNP5476	Enviro. PC1
0.22	0.02	chrom10_SNP66	Enviro. PC1
-0.24	0.01	chrom13_SNP337	Enviro. PC1
-0.19	0.04	chrom2_SNP779	Enviro. PC1
-0.19	0.04	chrom1_SNP3165	Enviro. PC2

Latent factor mixed models (LFMM)

Redundancy analysis (RDA) Latent factor mixed models (LFMM) Enviro. Enviro. PC1 variable Enviro. PC2 Neutral -log₁₀(p) Outlier Enviro. Enviro. PC3 variable 2 RDA1

100

150

Position

200

250

These methods can't accept missing data! Two choices with different tradeoffs...

Median-based

Median-based

Median-based

Present Absent

Structure-based

Median-based

Present Absent

Structure-based

EXERCISE 1: RDA

Run structure-based imputation using Process input data str_impute() and see how this changes your RDA results! # Simple imputation of missing values gen <- simple_impute(liz_dosage,</pre> Dosage matrix (with NAs) FUN = median)**FUN** = imputation method # Standardize environmental variables Environmental variables. env <- scale(env, < extracted for sampling localities center = TRUE, scale = TRUE)**center** = transform such that mean=0 env <- data.frame(env)</pre> scale = transform such that SD=1 Turn environmental variables into a data frame

Run simple RDA

```
mod_full <- rda_run(gen, model = "full")

Environmental variables, extracted for sampling localities

model = whether to run with ("best")
without variable selection ("full")
```

Run a simple RDA with variable selection by specifying **model** = **"best"**

Run a partial RDA

How would you run a partial RDA with population structure (i.e., PCs) as a covariable?

Interpreting RDA results

Interpreting RDA results

Interpreting RDA results

mod_full colsum tot.chi Ybar method call pCCA CCA CA inertia regularization terms terminfo

RsquareAdj(mod_full)

Identifying candidate SNPs from RDA

See what happens when you set **plot = TRUE**.

Identifying candidate SNPs from RDA

How many significant outliers were detected using each of these methods?

Identifying candidate SNPs from RDA

```
rda_sig_p
                        list [3]
                                                rda_snps = significant SNPs
                        character [108]
    rda_snps
 pvalues
                        double [1000]
 rdadapt
                        list [1000 x 2] (S3:
     p.values
                        double [1000]
                                                 pvalues = p-values for all SNPs inputted
                        double [1000]
     q.values
             rdadapt = p- and q-values
```

How does the resulting object differ from the one you produced using the Z-scores method?

biplot_axes = which pairs of RDA axes
to plot in RDA biplot


```
# Extract genotypes for outlier SNPs
rda_snps <- rda_sig_p$rda_snps
rda_gen <- gen[, rda_snps]</pre>
```

Do the top 5 most significantly associated SNPs differ depending on whether you use the Z-scores or *p*-values outlier method?

r	р	snp	var
0.27	0.02	Locus_125	CA_rPCA3
0.39	0.00	Locus_166	CA_rPCA3
0.29	0.01	Locus_249	CA_rPCA2
-0.24	0.03	Locus_263	CA_rPCA1
0.27	0.02	Locus_263	CA_rPCA3

Exercise 1: RDA

- 1. Load the example dataset
- 2. Process genetic data:
 - a. Impute missing values in dosage matrix using structure-based imputation using str_impute()
- 3. Process environmental data:
 - a. Scale extracted environmental values and make into data frame
- 4. Run simple RDA using rda_run()
- 5. Run partial RDA, correcting for geodist using four PCs using rda_run()
- 6. Get outliers using rda_getoutliers()
- 7. Interpret RDA results using rda_plot() and rda_table()

EXERCISE 2: LFMM

Run LFMM K selection

Run LFMM K selection

max.pc = maximum percentage of
variance to capture before the elbow

low = threshold that defines whether a principal component explains 'much' of the variance (between 0 and 1)

Run LFMM K selection

PC

See what happens when you use the **"find_clusters"** *K* selection method.

Run LFMM

lfmm_method = method for estimating parameters of LFMM model (based on penalties for minimizing a least-squares problem)

snp	variable	B ¹	z- score	p- value	calibrated z- score	calibrated p- value	adjusted p- value
Locus_2338	CA_rPCA3	-0.40	-5.25	0	25.50	0	0.00
Locus_2947	CA_rPCA2	-0.34	-7.49	0	38.03	0	0.00
Locus_1524	CA_rPCA2	-0.31	-4.84	0	15.89	0	0.00
Locus_249	CA_rPCA2	0.31	5.92	0	23.78	0	0.00
Locus_2338	CA_rPCA2	-0.30	-4.00	0	10.84	0	0.03

¹ LFMM effect size

Does the **ridge** or **lasso** method produce more LFMM outliers?

lfmm_qqplot(ridge_results\$df)

https://library.virginia.edu/data/articles/understanding-q-q-plots

lfmm_qqplot(ridge_results\$df)

Exercise 2: LFMM

- 1. Use same input data from your RDA analysis
- 2. Perform two types of *K* selection to determine how many latent factors you want to use with select_K()
- 3. Run LFMM using lfmm_run()
- 4. Get summary statistics with lfmm_table()
- 5. Make a Manhattan plot of the results using lfmm_manhattanplot()