§6 ЦЕЛОЧИСЛЕННОЕ ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

Задача линейного программирования, в которой некоторые или все переменные должны быть целыми, называется задачей целочисленного линейного программирования (ЦЛП). Эффективный алгоритм решения задач ЦЛП в общем случае до сих пор не известен. Один из подходов приближённого решения таких задач заключается в сведении (релаксации) их к задачам линейного программирования, в которых отсутствуют условия целочисленности. После решения релаксированной задачи полученное решение покомпонентно округляют (согласно выбранной процедуре) для удовлетворения условия целочисленности. Отметим, что найденный вектор, вообще говоря, может не быть допустимым.

Пример 6.1 (Задача о покрытии множества). Пусть $S = \{S_1, S_2, \dots, S_n\}$ — семейство подмножеств конечного множества $V = \{v_1, v_2, \dots, v_m\}$, при этом для каждого подмножества S_i определён его вес $\omega_i \geq 0$. Набор подмножеств $T \subset S$ называется покрывающим, если $V = \bigcup_{S_i \in T} S_i$. Необходимо построить покрывающий набор T минимального

веса $\omega(T) \stackrel{\text{def}}{=} \sum_{S_i \in T} \omega_i$. Без нарушения общности будем считать, что само семейство S является покрывающим, иначе рассматриваемая задача не имеет смысла.

Рассмотрим произвольный покрывающий набор T. Каждому подмножеству $S_i \in S$ поставим в соответствие переменную $x_i \in \{0,1\}$, такую что $x_i = 1$, если и только если S_i входит в набор T. Так как набор T покрывающих, то для любого элемента $v_j \in V$ найдётся подмножество $S_i \in T$, такое что $v_j \in S_i$, а значит, справедливо неравенство $\sum_{v_j \in S_i} x_i \geq 1$. Таким образом, для построения оптимального набора T необходимо решить задачу целочисленного линейного программирования (6.1).

$$\begin{cases} \sum_{i=1}^{n} \omega_{i} x_{i} \to \min; \\ \sum_{v_{j} \in S_{i}} x_{i} \geq 1, \quad 1 \leq j \leq m; \\ x_{i} \in \{0, 1\}, \quad 1 \leq i \leq n. \end{cases}$$

$$(6.1)$$

$$\begin{cases} \sum_{i=1}^{n} \omega_{i} y_{i} \to \min; \\ \sum_{v_{j} \in S_{i}} y_{i} \geq 1, \quad 1 \leq j \leq m; \\ 0 \leq y_{j} \leq 1, \quad 1 \leq i \leq n. \end{cases}$$

$$(6.2)$$

Для произвольного вектора $x\in\mathbb{R}^n$ обозначим $\omega(x)\stackrel{\mathrm{def}}{=}\sum_{i=1}^n\omega_ix_i$. Если x — бинарный вектор, то $\omega(x)$ равно весу соответствующего набора. Пусть x^* и y^* — решения задачи (6.1) и (6.2), соответственно. Справедливо неравенство $\omega(x^*)\geq \omega(y^*)$, так как x^* — допустимый вектор задачи (6.2). Предположим, что для каждого элемента $v_j\in V$ количество подмножеств S_i , его содержащих, не больше k. Используя решение y^* , определим бинарный вектор $z\in\{0,1\}^n$, такой что $z_i=1$, если и только если $y_i^*\geq\frac{1}{k}$. Тогда набор, соответствующий вектору z является покрывающим. Действительно, выберем произвольный элемент $v_j\in V$. Так как k $\max_{v_j\in S_i}y_i^*\geq \sum_{v_j\in S_i}y_i^*\geq 1$, то $\sum_{v_j\in S_i}z_i\geq 1$. Более того, так как $z_i\leq ky_i^*$, то справедлива цепочка неравенств

$$\omega(z) = \sum_{i=1}^{n} \omega_i z_i \le \sum_{i=1}^{n} k \omega_i y_i^* = k \omega(y^*) \le k \omega(x^*).$$

Оказывается, что в некоторых случаях можно гарантировать существование целочисленного решения у релаксированной задачи. Рассмотрим один из таких случаев, в котором используется понятие вполне унимодулярной матрицы.

Опр. 6.1. Квадратная матрица с целыми коэффициентами называется унимодулярной, если её определитель равен ± 1 . Прямоугольная матрица с целыми коэффициентами называется вполне унимодулярной, если все её миноры принимают значения из множества $\{-1,0,1\}$.

Пусть матрица A вполне унимодулярная. Очевидно, что матрица полученная из A перестановкой строк (столбцов) также является вполне унимодулярной. Если из матрицы A вычеркнуть строку (столбец), то матрица останется вполне унимодулярной. Более того, если к матрице A добавить строку (столбец), все элементы которой нулевые за исключением быть может одного, равного ± 1 , то полученная матрица будет вполне унимодулярной.

Рассмотрим произвольный граф G=(V,E), где $V=\{v_1,v_2,\ldots,v_n\}$ — множество вершин, а $E=\{e_1,e_2,\ldots,e_m\}$ — множество рёбер. Напомним, что матрицей инцидентности неориентированного графа G называется такая матрица $A=(a_{i,j})_{i,j=1}^{n,m}$, состоящая из 0 и 1, у которой элемент a_{ij} , стоящий на пересечении строки i и столбца j, равен 1 тогда и только тогда, когда вершина v_i инцидентна ребру e_j .

Лемма 6.1. Матрица инцидентности A произвольного двудольного графа G вполне унимодулярна.

ightharpoonup Рассмотрим произвольную квадратную подматрицу A' матрицы A порядка k и докажем индукцией по k, что $\det A' \in \{-1,0,1\}$. База индукции k=1 следует из определения матрицы инцидентности. Предположим, что утверждение доказано для всех подматриц размера $k \times k$. Пусть B — квадратная подматрица порядка k+1. Если некоторый столбец матрицы B состоит, полностью из 0, то $\det B = 0$. Если же некоторый столбец содержит ровно одну единицу, то, раскладывая определитель по этому столбцу, получим $\det B \in \{-1,0,1\}$ (по предположению индукции). Предположим теперь, что каждый столбец матрицы B содержит ровно две единицы. Без нарушения общности будем считать, что первые $r, 1 \le r \le k$, строк матрицы B соответствуют вершинам первой доли графа G, а остальные строки — вершинам второй доли. Сумма первых r строк матрицы B равна строке, полностью состоящей из единиц. Аналогично, сумма строк, соответствующих вершинам второй доли, также равна этой строке. Следовательно, $\det B = 0$. \lhd

Пусть G — ориентированный граф. Элементы матрицы инцидентности A определяются следующим образом: $a_{ij}=0$, если $v_i \notin e_j$, $a_{ij}=1$, если $e_j=(v_k,v_i)$ для некоторой вершины v_k , и $a_{ij}=-1$ иначе, т.е. $e_j=(v_i,v_k)$. Аналогично лемме 6.1 доказывается следующее утверждение.

Лемма 6.2. Матрица инцидентности произвольного ориентированного графа унимодулярна.

Для доказательства того, что произвольная разрешимая задача линейного

программирования с вполне унимодулярной матрицей ограничений и целочисленным вектором из правой части имеет целочисленное решение, нам понадобится следующая лемма.

Пемма 6.3. Для разрешимой задачи линейного программирования

$$\begin{cases} c^{\mathsf{T}}x \to \min; \\ A^{\mathsf{T}}x \ge b, \end{cases} \tag{6.3}$$

существует такой набор столбцов $\{a_i : i \in I\}$ матрицы ограничений A, что множество $\{x : a_i^\mathsf{T} x = b_i, i \in I\}$ не пусто и произвольный его элемент является решением задачи (6.3).

ightharpoonup Пусть x^* — решение задачи (6.3), $I=I(x^*)$ — множество индексов активных ограничений, т.е. множество индексов всех тех столбцов матрицы A, для которых $a_i^\mathsf{T} x^* = b_i$ при $i \in I$. Рассмотрим подпространство $V = \{v \colon a_i^\mathsf{T} v = 0, i \in I\}$. Так как $x^* + tv$, $v \in V$, — допустимый вектор для задачи (6.3) при достаточно малом $t \geq 0$, то $c \in V^\perp$ и $x^* + tv$ — решение задачи (6.3). Если все столбцы матрицы A принадлежат V^\perp , то набор $\{a_i \colon i \in I\}$, очевидно, искомый. Предположим обратное, тогда найдётся такой вектор $v \in V$ и индекс $j \notin I$, что $\widetilde{x} = x^* + v$ — решение задачи (6.3) и $a_j^\mathsf{T} \widetilde{x} = b_j$ при $i \in I \cup \{j\}$. Добавим индекс j в множество I. Продолжая описанный процесс, построим искомый набор столбцов. \lhd

Аналогичным образом доказывается следующая теорема.

Теорема 6.1. Пусть разрешима задача (4.1). Тогда существует такие подмножества индексов $\widetilde{J}_1 \subset J_1$ и $\widetilde{I}_1 \subset I_1$, что множество

$$\{x : \sum_{i=1}^{n} a_{ij} x_i = b_j, j \in \widetilde{J}_1 \sqcup J_2\} \cap \{x : x_i = 0, i \in \widetilde{I}_1\}$$
(6.4)

не пусто и состоит из решений задачи (4.1).

Если система линейных уравнений Ax=b совместна, матрица A является вполне унимодулярной, а вектор b целочисленный, то решая эту систему стандартным методом выделения наибольшего ненулевого минора, несложно отыскать у неё целочисленное решение. Таким образом, если в задаче (4.1) матрица ограничений A вполне унимодулярна и вектор b целочисленный, то множество (6.4) содержит целочисленное решение.

Пример 6.2 (Теорема Кёнига). Рассмотрим двудольный граф G=(V,E) и пусть даны два целочисленных вектора $b\in\mathbb{N}_0^{|V|},\ c\in\mathbb{N}_0^{|E|}.$ Через A обозначим матрицу инцидентности графа G.

Опр. 6.2. Произвольное отображение $x\colon E\to \mathbb{N}_0$ называется b-паросочетанием, если $\sum\limits_{e\colon v\in e} x(e)\le b_v$ для любой вершины $v\in V$.

Опр. 6.3. Произвольное отображение $y \colon V \to \mathbb{N}_0$ называется с-вершиным покрытием, если $y_u + y_v \ge c_e$ для любого ребра $e = (u, v) \in E$.

Задача максимального c-взвешенного b-паросочетания состоит в отыскании такого b-паросочетания x, для которого сумма $\sum_{e \in E} c_e x(e)$ максимальна. Так как согласно лемме 6.1 матрица A вполне унимодулярна, то решение этой задачи содержится во множестве решений задачи (6.5).

$$\begin{cases} c^{\mathsf{T}}x \to \max; \\ Ax \le b; \\ x \ge \mathbf{0}. \end{cases}$$
 (6.5)
$$\begin{cases} b^{\mathsf{T}}y \to \min; \\ A^{\mathsf{T}}y \ge c; \\ y \ge \mathbf{0}. \end{cases}$$
 (6.6)

Задача минимального b-взвешенного c-вершиного покрытия состоит в отыскании такого c-вершиного покрытия y, для которого сумма $\sum_{v \in V} b_v y(v)$ минимальна. Очевидно, что решение этой задачи является решением задачи (6.6). Так как задачи (6.5) и (6.6) двойствены, то справедлива следующая обобщённая теорема Кёнига.

Теорема 6.2. Для произвольных целочисленных векторов $b \in \mathbb{N}_0^{|V|}$, $c \in \mathbb{N}_0^{|E|}$ и двудольного графа G = (V, E) максимальное с-взвешенное b-паросочетание равно минимальному b-взвешенному с-вершиному покрытию.

Пример 6.3 (Максимальный поток). Пусть G=(V,E) — взвешенный ориентированный граф с неотрицательными весами $c_e \geq 0, e \in E$, которые будем называть пропускными способностями рёбер. Выберем две вершины s, называемую «источник», и t, называемую «сток». Для произвольной вершины $v \in V$ через $E_{out}^v \stackrel{\text{def}}{=} \{e \colon e = (v,u) \in E\}$ обозначим множество выходящих рёбер, а через $E_{in}^v \stackrel{\text{def}}{=} \{e \colon e = (u,v) \in E\}$ — множество входящих рёбер.

Опр. 6.4. Потоком в ориентированном графе G называется функция $x \colon E \to \mathbb{R}$, такая что $0 \le x(e) \le c_e$ для любого ребра $e \in E$, и для любого вершины $v \in V \setminus \{s,t\}$ верно равенство $\sum_{e \in E_{in}^v} x(e) = \sum_{e \in E_{out}^v} x(e)$. Величиной потока называется число

$$\sum_{e \in E^s_{out}} x(e) - \sum_{e \in E^s_{in}} x(e) = \sum_{e \in E^t_{in}} x(e) - \sum_{e \in E^t_{out}} x(e).$$

Задача максимального потока заключается в отыскании потока максимальной величины. Пусть A — матрица инцидентности графа G. Через \widetilde{A} обозначим матрицу, полученную из A вычёркиванием строк, соответствующих вершинам s и t. Пусть a — строка матрицы A, которая соответствует вершине t. Не сложно видеть, что задача максимального потока равносильна следующей задачи линейного программирования

$$\begin{cases}
ax \to \max; \\
\widetilde{A}x = \mathbf{0}; \\
\mathbf{0} \le x \le c.
\end{cases}$$
(6.7)

Из леммы 6.2 следует, что задача (6.7) имеет целочисленное решение, если вектор пропускных способностей c целочисленный.

Упражнения

18. Матрица A называется интервальной, если любая её строка имеет следующий вид

$$(0,0,\ldots,0,1,1,\ldots,1,0,0,\ldots,0).$$

Докажите, что произвольная интервальная матрица вполне унимодулярна.