Package 'IVCor'

January 9, 2025

Type Package
Title A Robust Integrated Variance Correlation
Version 0.1.0
Description A integrated variance correlation is proposed to measure the dependence between a categorical or continuous random variable and a continuous random variable or vector. This package is designed to estimate the new correlation coefficient with parametric and non-parametric approaches. Test of independence for different problems can also be implemented via the new correlation coefficient with this package.
License GPL-3
Encoding UTF-8
Imports splines, quantreg, BwQuant, quantdr, stats
RoxygenNote 7.2.3
Suggests knitr, mytnorm, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation no
Author Wei Xiong [aut], Han Pan [aut, cre], Hengjian Cui [aut]
Maintainer Han Pan <scott_pan@163.com></scott_pan@163.com>
Repository CRAN
Date/Publication 2025-01-09 18:00:02 UTC
Contents
IVC

2 IVC

	IVCT		 							 									6
	IVCTLLQ		 							 									7
	IVCT_Interval	١	 							 									8
	IVC_crit		 							 									9
	IVC_Interval		 							 									10
Index																			12
-																			

IVC

Integrated Variance Correlation

Description

This function is used to calculate the integrated variance correlation between two random variables or between a random variable and a multivariate random variable

Usage

```
IVC(y, x, K, NN = 3, type)
```

Arguments

У	is a numeric vector
x	is a numeric vector or a data matrix
K	is the number of quantile levels
NN	is the number of B spline basis, default is 3
type	is an indicator for measuring linear or nonlinear correlation, "linear" represents linear correlation and "nonlinear" represents linear or nonlinear correlation using B splines $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left$

Value

The value of the corresponding sample statistic

```
# linear model
n=100
x=rnorm(n)
y=3*x+rnorm(n)

IVC(y,x,K=5,type="linear")
# nonlinear model
n=100
p=3
x=matrix(NA,nrow=n,ncol=p)
for(i in 1:p){
x[,i]=rnorm(n)
```

IVCCA 3

```
}
y=cos(x[,1]+x[,2])+x[,3]^2+rnorm(n)
IVC(y,x,K=5,type="nonlinear")
```

IVCCA

Integrated Variance Correlation with Discrete Response Variable

Description

This function is used to calculate the integrated variance correlation between a discrete response variable and a continuous random variable

Usage

```
IVCCA(y, x, K)
```

Arguments

y is the categorical response vector

x is a numeric vector

K is the number of quantile levels

Value

The value of the corresponding sample statistic

```
n=100
y=sample(rep(1:3), n, replace = TRUE, prob = c(1/3,1/3,1/3))
x=c()
for(i in 1:n){
    x[i]=rnorm(1,mean=2*y[i],sd=1)
}
IVCCA(y,x,K=5)
```

IVCCAT

IVCCAT

Integrated Variance Correlation Based Hypothesis Test for Discrete Response

Description

This function is used to test independence between a categorical variable and a continuous variable using integrated variance correlation

Usage

```
IVCCAT(y, x, K, num_per, type)
```

Arguments

y is a categorical response vector

x is a numeric vector

K is the number of quantile levels num_per is the number of permutation times

type is an indicator for fixed number of categories or infinity number of categories,

"fixed" represents number of categories is fixed, then a permutation test is used, "infinity" represents number of categories is infinite, then an asymptotic normal

distribution is used to calculate p values

Value

The p-value of the corresponding hypothesis test

```
# small R
n=100
x=runif(n,0,1)
y=sample(rep(1:3), n, replace = TRUE, prob = c(1/3,1/3,1/3))

IVCCAT(y,x,K=5,num_per=20,type = "fixed")
# large R
n=200
y=sample(rep(1:20), n, replace = TRUE, prob = rep(1/20,20))
mu_x=sample(c(1,2,3,4),20,replace = TRUE,prob = c(1/4,1/4,1/4,1/4))
x=c()
for (i in 1:n) {
    x[i]=2*mu_x[y[i]]+rcauchy(1)
}

IVCCAT(y,x,K=10,type = "infinity")
```

IVCCA_crit 5

IVCCA_crit	Critical Values for Integrated Variance Correlation Based Hypothesis Test with Discrete Response
	1

Description

This function is used to calculate the critical values for integrated variance correlation test with discrete response at significance level 0.1, 0.05 and 0.01

Usage

```
IVCCA_crit(R, N = 500, realizations)
```

Arguments

R is the number of categories

N is a integer as large as possible, default is 500

realizations is the the number of replication times for simulating the distribution under the

null hypothesis

Value

The critical values at significance level 0.1, 0.05 and 0.01

Examples

```
IVCCA_crit(R=5,N=500,realizations=100)
```

IVCLLQ	Integrated Variance Correlation with Local Linear Estimation	

Description

This function is used to calculate the integrated variance correlation between two random variables with local linear estimation

Usage

```
IVCLLQ(y, x, K)
```

Arguments

У	is a numeric vector
X	is a numeric vector

K is the number of quantile levels

6 IVCT

Value

The value of the corresponding sample statistic

Examples

```
n=100
x=rnorm(n)
y=exp(x)+rnorm(n)
IVCLLQ(y,x,K=4)
```

IVCT

Integrated Variance Correlation Based Hypothesis Test

Description

This function is used to test significance of linear or nonlinear correlation using integrated variance correlation

Usage

```
IVCT(y, x, K, num\_per, NN = 3, type)
```

Arguments

у	is the response vector
X	is a numeric vector or a data matrix
K	is the number of quantile levels
num_per	is the number of permutation times

is the number of B spline basis, default is 3 NN

is an indicator for measuring linear or nonlinear correlation, "linear" represents type

linear correlation and "nonlinear" represents linear or nonlinear correlation us-

ing B splines

Value

The p-value of the corresponding hypothesis test

```
# linear model
n=100
x=rnorm(n)
y=rnorm(n)
IVCT(y,x,K=5,num_per=20,type = "linear")
# nonlinear model
```

IVCTLLQ 7

```
n=100
p=4
x=matrix(NA,nrow=n,ncol=p)
for(i in 1:p){
    x[,i]=runif(n,0,1)
}
y=3*ifelse(x[,1]>0.5,1,0)*x[,2]+3*cos(x[,3])^2*x[,1]+3*(x[,4]^2-1)*x[,1]+rnorm(n)
IVCT(y,x,K=5,num_per=20,type = "nonlinear")
```

IVCTLLQ

Integrated Variance Correlation Based Hypothesis Test with Local Linear Estimation

Description

This function is used to test significance using integrated variance correlation with local linear estimation

Usage

```
IVCTLLQ(y, x, K, num_per)
```

Arguments

y is a numeric vector

x is a numeric vector

K is the number of quantile levels

num_per is the number of permutation times

Value

The p-value of the corresponding hypothesis test

```
n=100
x=runif(n,-1,1)
y=2*cos(2*x)+rnorm(n)

IVCTLLQ(y,x,K=5,num_per=100)
```

8 IVCT_Interval

IVCT_Interval	Integrated Variance	Correlation	Based	Interval	Independence H	łу-
	pothesis Test					

Description

This function is used to test interval independence using integrated variance correlation

Usage

```
IVCT_Interval(y, x, tau1, tau2, K, num_per, NN = 3, type)
```

Arguments

У	is the response vector
x	is a numeric vector or a data matrix
tau1	is the minimum quantile level
tau2	is the maximum quantile level
K	is the number of quantile levels
num_per	is the number of permutation times
NN	is the number of B spline basis, default is 3
type	is an indicator for measuring linear or nonlinear correlation, "linear" represents linear correlation and "nonlinear" represents linear or nonlinear correlation using B splines

Value

The p-value of the corresponding hypothesis test

```
require("mvtnorm")
n=100
p=3
pho1=0.5
mean_x=rep(0,p)
sigma_x=matrix(NA,nrow = p,ncol = p)
for (i in 1:p) {
   for (j in 1:p) {
      sigma_x[i,j]=pho1^(abs(i-j))
   }
}
x=rmvnorm(n, mean = mean_x, sigma = sigma_x,method = "chol")
y=rnorm(n)

IVCT_Interval(y,x,tau1=0.5,tau2=0.75,K=5,num_per=20,type = "linear")
```

IVC_crit 9

```
n=100
x_til=runif(n,min=-1,max=1)
y_til=rnorm(n)
epsilon=rnorm(n)
x=x_til+2*epsilon*ifelse(x_til<=-0.5&y_til<=-0.675,1,0)
y=y_til+2*epsilon*ifelse(x_til<=-0.5&y_til<=-0.675,1,0)
IVCT_Interval(y,x,tau1=0.6,tau2=0.8,K=5,num_per=20,type = "nonlinear")</pre>
```

IVC_crit

Critical Values for Integrated Variance Correlation Based Hypothesis Test

Description

This function is used to calculate the critical values for integrated variance correlation test at significance level 0.1, 0.05 and 0.01

Usage

```
IVC_crit(N = 500, realizations)
```

Arguments

N is a integer as large as possible, default is 500

realizations is the the number of replication times for simulating the distribution under the

null hypothesis

Value

The critical values at significance level 0.1, 0.05 and 0.01

```
IVC_crit(N=500,realizations=100)
```

10 IVC_Interval

IVC_Interval

Integrated Variance Correlation for Interval Independence

Description

This function is used to calculate the integrated variance correlation to measure interval independence

Usage

```
IVC_Interval(y, x, K, tau1, tau2, NN = 3, type)
```

Arguments

У	is a numeric vector
x	is a numeric vector or a data matrix
K	is the number of quantile levels
tau1	is the minimum quantile level
tau2	is the maximum quantile level
NN	is the number of B spline basis, default is 3
type	is an indicator for measuring linear or nonlinear correlation, "linear" represents linear correlation and "nonlinear" represents linear or nonlinear correlation using B splines

Value

The value of the corresponding sample statistic for interval independence

```
# linear model
require("mvtnorm")
n=100
p=3
pho1=0.5
mean_x=rep(0,p)
sigma_x=matrix(NA,nrow = p,ncol = p)
for (i in 1:p) {
   for (j in 1:p) {
      sigma_x[i,j]=pho1^(abs(i-j))
   }
}
x=rmvnorm(n, mean = mean_x, sigma = sigma_x,method = "chol")
y=2*(x[,1]+x[,2]+x[,3])+rnorm(n)

IVC_Interval(y,x,K=5,tau1=0.4,tau2=0.6,type="linear")
# nonlinear model
```

IVC_Interval

```
n=100
x=runif(n,min=-2,max=2)
y=exp(x^2)*rnorm(n)

IVC_Interval(y,x,K=5,tau1=0.4,tau2=0.6,type="nonlinear")
```

Index

```
IVC, 2
IVC_crit, 9
IVC_Interval, 10
IVCCA, 3
IVCCA_crit, 5
IVCCAT, 4
IVCLLQ, 5
IVCT, 6
IVCT_Interval, 8
IVCTLLQ, 7
```