# Análisis de eficiencia de algoritmos

**ALGORÍTMICA** 



# ÍNDICE

# l Introducción

## II Desarrollo

## 1. Algoritmo de selección

- 1.1 Eficiencia teórica
- 1.2 Eficiencia empírica
- 1.3 Eficiencia híbrida
- 1.4 Peor vs mejor

## 2. Algoritmo de inserción

- 2.1 Eficiencia teórica
- 2.2 Eficiencia empírica
- 2.3 Eficiencia híbrida
- 2.4 Peor vs mejor

## 3. Algoritmo de heapsort

- 3.1 Eficiencia teórica
- 3.2 Eficiencia empírica
- 3.3 Eficiencia híbrida

## 4. Algoritmo de quicksort

- 4.1 Eficiencia teórica
- 4.2 Eficiencia empírica
- 4.3 Eficiencia híbrida

## 5.Algoritmo de Floyd

- 5.1 Eficiencia teórica
- 5.2 Eficiencia empírica
- 5.3 Eficiencia híbrida

## 6.Algoritmo de Hanoi

- 6.1 Eficiencia teórica
- 6.2 Eficiencia empírica
- 6.3 Eficiencia híbrida

## III Comparaciones

## IV Conclusión

# INTRODUCCIÓN

Esta práctica consiste en la ejecución de varios algoritmos de distinto orden de eficiencia. En concreto:

- Algoritmo de inserción
- Algoritmo de selección
- Algoritmo de heapsort
- Algoritmo de quicksort
- Algoritmo de Floyd
- Algoritmo de Hanoi

**Análisis teórico:** Utilizando las técnicas de resolución de recurrencias vistas en clase, hemos analizado los códigos de los algoritmos para obtener las funciones de eficiencia.

**Análisis empírico:** Hemos modificado los códigos de los algoritmos y, utilizando la biblioteca ctime, medimos el tiempo que tarda en ejecutarse cada uno de ellos. Para evitar errores, hemos añadido un bucle que ejecuta el algoritmo 15 veces, para obtener una media del tiempo en lugar de un sólo valor. Hemos elegido distintos rangos de tamaños dependiendo de la eficiencia de cada algoritmo.

Por otro lado, hemos ejecutado cada algoritmo en ordenadores con distintas propiedades, sistemas operativos y optimizaciones.

**Análisis híbrido:** Hemos introducido en gnuplot las ecuaciones teóricas que nos dan el orden de eficiencia de los algoritmos, y ajustado dicha ecuación a los tiempos obtenidos para cada tamaño, para sacar las constantes ocultas.

Para terminar con el desarrollo, comparamos los componentes de los ordenadores utilizados en la práctica. Como se puede ver, los valores son bastante parecidos, por los que los resultados debrían ser bastante parecidos.

|                  | Laura          | Joaquín        | Álvaro         | Cristóbal      |
|------------------|----------------|----------------|----------------|----------------|
| Arquitectura:    | x86_64         | x86_64         | x86_64         | x86_64         |
| modo(s) de ope   | 32-bit, 64-bit | 32-bit, 64-bit | 32-bit, 64-bit | 32-bit, 64-bit |
| Orden de los by  | Little Endian  | Little Endian  | Little Endian  | Little Endian  |
| CPU(s):          | 8              | 12             | 8              | 12             |
| Hilo(s) de proce | 2              | 2              | 2              | 2              |
| Núcleo(s) por «s | 4              | 6              | 4              | 6              |
| «Socket(s)»      | 1              | 1              | 1              | 1              |
| Caché L1d:       | 128 KiB        | 192 KiB        | 192 KiB        | 192 KiB        |
| Caché L1i:       | 128 KiB        | 192 KiB        | 128 KiB        | 192 KiB        |
| Caché L2:        | 1 MiB          | 1,5 MiB        | 2 MiB          | 1,5 MiB        |
| Caché L3:        | 8 MiB          | 12 MiB         | 8 MiB          | 12 MiB         |

## 1. Algoritmo de selección:

```
1.1 Eficiencia teórica
void seleccion(int T[], int num_elem)
 seleccion_lims(T, 0, num_elem);
}
static void seleccion_lims(int T[], int inicial, int final)
{
                                                   El for externo podemos expresarlo como la
 int i, j, indice_menor;
                                                   suma desde i=inicial hasta final-2 del bucle
 int menor, aux;
                                                   interior. Tomando inicial=0, se nos queda suma
for (i = inicial; i < final - 1; i++) {
                                                   desde i=0 hasta final-2 del bucle interior.
  indice_menor = i;
                                          El for interno podemos expresarlo como la suma desde
  menor = T[i];
                                          j=i hasta final-1 de a. Tomando final=n, tenemos la suma
  for (j = i; j < final; j++)
                                          desde j=i hasta n de a.
   if (T[j] < menor) {
    indice_menor = j;
                                    > El interior del bucle podemos agruparlo en una constante a,
    menor = T[j];
                                       pues son de operaciones de asignación, de orden O(1).
   }
  aux = T[i];
  T[i] = T[indice_menor];
  T[indice_menor] = aux;
};
}
```

Resolviendo los sumatorios anteriores, obtenemos la función polinómica an $^2/2 + an/2 - a$ . Por lo tanto tenemos que  $T(n) \in O(n^2)$ .

#### 1.2 Eficiencia empírica

Este algoritmo lo hemos ejecutado para 27 tamaños en el rango de 20.000 a 200.000 y hemos obtenido tiempos desde 0'29 hasta 43'51 segundos.

Estos son los datos obtenidos para cada uno de los miembros del grupo:

| Tamanio | Tiempo L | Tiempo J | Tiempo A | Tiempo C |
|---------|----------|----------|----------|----------|
| 20000   | 0.290498 | 0.343629 | 0.439405 | 0.387053 |
| 26900   | 0.550093 | 0.598174 | 0.793031 | 0.693869 |
| 33800   | 0.850534 | 0.97914  | 1.24969  | 1.09476  |
| 40700   | 1.38592  | 1.36509  | 1.80915  | 1.58699  |
| 47600   | 1.94285  | 1.86493  | 2.47525  | 2.17016  |
| 54500   | 2.59248  | 2.44371  | 3.24633  | 2.85217  |
| 61400   | 3.23435  | 3.22685  | 4.11715  | 3.61086  |
| 68300   | 4.05006  | 3.896    | 5.09411  | 4.51218  |
| 75200   | 5.0023   | 4.65117  | 6.17491  | 5.41793  |
| 82100   | 6.06335  | 5.64024  | 7.35076  | 6.68123  |
| 89000   | 7.18832  | 6.63441  | 8.65639  | 7.58453  |
| 95900   | 8.41395  | 7.69666  | 10.0553  | 9.26192  |
| 102800  | 9.86142  | 8.86055  | 11.561   | 10.1168  |
| 109700  | 11.0719  | 10.0871  | 13.1492  | 12.0241  |
| 116600  | 12.5759  | 11.3772  | 14.9677  | 13.0673  |
| 123500  | 14.2642  | 13.0384  | 16.6705  | 15.4181  |
| 130400  | 16.4293  | 14.5355  | 18.5351  | 16.5698  |
| 137300  | 18.3911  | 16.2632  | 20.6087  | 19.5277  |
| 144200  | 20.2137  | 17.7741  | 22.7093  | 22.8955  |
| 151100  | 22.0993  | 19.1447  | 24.937   | 25.4309  |
| 158000  | 24.5306  | 20.9741  | 27.2732  | 25.6865  |
| 164900  | 26.7327  | 23.2599  | 29.8998  | 26.0058  |
| 171800  | 29.0702  | 25.2522  | 32.2329  | 28.3782  |
| 178700  | 30.4603  | 26.5561  | 34.9133  | 31.6436  |
| 185600  | 33.8792  | 29.4597  | 37.6527  | 32.9421  |
| 192500  | 36.6598  | 31.1243  | 40.553   | 36.0959  |
| 199400  | 39.0573  | 34.0273  | 43.507   | 38.1098  |



Se puede apreciar en la gráfica que las cuatro gráficas están muy cerca de ser iguales, corroborando la eficiencia de este algoritmo, mostrando además que tenemos unos ordenadores con componentes bastante parecidos.

#### 1.3 Eficiencia híbrida

Para la eficiencia híbrida nos hemos ayudado de gnuplot. Primero hemos introducido los datos conseguidos del algoritmo y, ajustando con la ecuación cuadrática, conseguimos las variables ocultas. Hemos utilizado los valores de la gráfica A, y así conseguimos que las variables ocultas de la ecuación cuadrática (a +bx +cx^2) son a=6.95E-03, b=2.76E-07 y c=1.1E-09. A continuación se presenta la gráfica comparativa de este ajuste con otros, siendo estos el logarítmico y el lineal.



En la gráfica podemos ver que el ajuste que hemos escogido (el cuádratico) es el idóneo, y otros erróneos que hemos escogido para ilustrarlo, claramente no concuerda con las expectaticas, por lo que no son correctos.

## seleccion empírica vs híbrida



Además, hemos comparado la eficiencia empírica con la híbrida y, como podemos observar, son bastante similares, demostrando que la eficiencia del programa se ajusta a la que debería ser.

## 2. Algoritmo de inserción:

```
2.1 Eficiencia teórica
inline static void insercion(int T[], int num_elem)
 insercion_lims(T, 0, num_elem);
}
static void insercion_lims(int T[], int inicial, int final)
{
                                                      El for podemos expresarlo como la suma
 int i, j;
                                                      desde i=inicial+1 hasta final-1 del bucle
 int aux;
                                                      interior. Tomando inicial=0, se nos queda
 for (i = inicial + 1; i < final; i++) {
                                                      suma desde i=1 hasta final-1 del bucle interior.
 j = i;
  while ((T[j] < T[j-1]) && (j > 0)) {
                                                      El while podemos expresarlo como la suma
   aux = T[j];
                                                      desde j=1 hasta i de a, ya que este sería el
   T[j] = T[j-1];
                                                      peor caso.
   T[j-1] = aux;
   j--;
                                  El interior del bucle podemos agruparlo en una constante a, pues
  };
                                  son de operaciones de asignación, de orden O(1).
};
```

Resolviendo los sumatorios anteriores, obtenemos la función polinómica an $^2/2$  - an/2. Por lo tanto tenemos que  $T(n) \in O(n^2)$ .

#### 2.2 Eficiencia empírica

Este algoritmo lo hemos ejecutado para 27 tamaños en el rango de 20.000 a 200.000 y hemos obtenido tiempos desde 0'28 hasta 32'42 segundos.

| Tamanio | Tiempo L | Tiempo J | Tiempo A | Tiempo C  |
|---------|----------|----------|----------|-----------|
| 20000   | 0.301599 | 0.278072 | 0.318581 | 0.320694  |
| 26900   | 0.548447 | 0.481997 | 0.574314 | 0.584418  |
| 33800   | 0.860261 | 0.785912 | 0.909523 | 0.936840  |
| 40700   | 1.24357  | 1.1216   | 1.31544  | 1.299140  |
| 47600   | 1.71462  | 1.56355  | 1.79921  | 1.864620  |
| 54500   | 2.29191  | 2.03808  | 2.35629  | 2.300820  |
| 61400   | 2.91343  | 2.62213  | 3.00266  | 3.094580  |
| 68300   | 3.5285   | 3.26257  | 3.71053  | 3.624810  |
| 75200   | 4.33791  | 3.88334  | 4.48068  | 4.658170  |
| 82100   | 5.13381  | 4.71848  | 5.33961  | 5.248800  |
| 89000   | 5.99073  | 5.46298  | 6.2856   | 6.538950  |
| 95900   | 7.00642  | 6.47303  | 7.29162  | 7.201120  |
| 102800  | 8.05786  | 7.44979  | 8.41463  | 8.755050  |
| 109700  | 9.14771  | 8.16025  | 9.5637   | 9.473700  |
| 116600  | 10.4899  | 9.61018  | 10.7936  | 11.227100 |
| 123500  | 11.6591  | 10.355   | 12.1549  | 11.867600 |
| 130400  | 13.1571  | 11.6386  | 13.5178  | 14.136400 |
| 137300  | 14.6865  | 13.3131  | 14.996   | 14.757200 |
| 144200  | 16.217   | 14.7131  | 16.4757  | 17.218600 |
| 151100  | 18.1614  | 16.1187  | 18.163   | 18.135500 |
| 158000  | 19.618   | 17.1587  | 19.8945  | 20.502900 |
| 164900  | 21.5898  | 19.2066  | 21.5848  | 21.214000 |
| 171800  | 24.3502  | 20.8897  | 23.4863  | 24.058900 |
| 178700  | 26.0664  | 22.5417  | 25.3759  | 24.952200 |
| 185600  | 27.9036  | 24.3555  | 27.4577  | 28.035700 |
| 192500  | 30.432   | 26.2573  | 29.5027  | 29.006600 |
| 199400  | 32.3792  | 28.183   | 31.6392  | 32.419500 |



#### 2.3 Eficiencia híbrida

Para la eficiencia híbrida nos hemos ayudado de gnuplot. Primero hemos introducido los datos conseguidos del algoritmo, y ajustando con la ecuación cuadrática conseguimos las variables ocultas. Hemos utilizado los valores de la gráfica A, y así conseguimos que las variables ocultas de la ecuación cuadrática (a +bx +cx^2) son a=0.169, b=-6.04E-07 y c=7.99E-02. A continuación se presenta la gráfica comparativa de este ajuste con otros, siendo estos el logarítmico y el lineal.



En la gráfica podemos ver que el ajuste que hemos escogido (el cuádratico) es el idóneo, y otros erróneos que hemos escogido para ilustrarlo, claramente no concuerda con las expectaticas, por lo que no son correctos.

#### inserción empírica vs híbrida



Hemos comparado la eficiencia empírica con la híbrida y, como podemos observar, son bastante similares, demostrando que la eficiencia del programa se ajusta a la que debería ser.

#### 3.Algoritmo de heapsort:

```
3.1 Eficiencia teórica
```

```
static void heapsort(int T[], int num_elem)
                                                   Este for es la suma desde i=0 hasta num_elem/2
                                                   de reajustar. Tomando num_elem como n,
 int i;
                                                   tenemos la suma desde i=0 hasta n/2, que nos
 for (i = num_elem/2; i >= 0; i--)
                                                   da(n+2)/2 * log(n).
  reajustar(T, num_elem, i);
 for (i = num_elem - 1; i >= 1; i--)
                                                    Este for es la suma desde i=1 hasta n-1 de
  {
                                                    a*log(n). Esto nos da (n-1)*log(n).
   int aux = T[0];
   T[0] = T[i]; \quad \bullet
                                 Las tres instrucciones anteriores a reajustar podemos tomarlas
   T[i] = aux;
                                 como una constante a1.
   reajustar(T, i, 0);
  }
}
static void reajustar(int T[], int num_elem, int k)
{
 int j;
 int v;
 v = T[k];
 bool esAPO = false;
 while ((k < num_elem/2) && !esAPO)
                                                         Este bucle while es de orden O(log(n)),
  {
                                                         pues en cada vuelta, k pasa a ser 2k+1,
   j = k + k + 1;
                                                         por lo tanto recorre num elem/2
   if ((j < (num_elem - 1)) && (T[j] < T[j+1]))
                                                         elementos pero no de 1 en 1, sino de
j++;
                                                         forma logarítmica.
   if (v \ge T[i])
esAPO = true;
   T[k] = T[i];
   k = j;
  }
 T[k] = v;
```

Resolviendo los sumatorios anteriores, obtenemos la función 3n/2 \* log(n). Por lo tanto tenemos que  $T(n) \in O(nlog(n))$ .

#### 3.2 Eficiencia empírica

Este algoritmo lo hemos ejecutado para 27 tamaños en el rango de 20.000 a 1.000.000 y hemos obtenido tiempos desde 0'0024 hasta 0'20 segundos.

| Tamanio | Tiempo L   | Tiempo J   | Tiempo A  | Tiempo C   |
|---------|------------|------------|-----------|------------|
| 20000   | 0.00301493 | 0.0023532  | 0.0029864 | 0.00240867 |
| 57500   | 0.0087846  | 0.00721673 | 0.0077228 | 0.00774693 |
| 95000   | 0.0132101  | 0.0121781  | 0.0131655 | 0.0135409  |
| 132500  | 0.0188517  | 0.0177228  | 0.019074  | 0.0196246  |
| 170000  | 0.0246943  | 0.0232321  | 0.0257967 | 0.0259009  |
| 207500  | 0.0308806  | 0.0291134  | 0.0311007 | 0.0322879  |
| 245000  | 0.0375922  | 0.0336276  | 0.0376542 | 0.0389052  |
| 282500  | 0.043334   | 0.0412245  | 0.044358  | 0.0455075  |
| 320000  | 0.0498258  | 0.0475629  | 0.0511535 | 0.0529631  |
| 357500  | 0.0564683  | 0.0531944  | 0.0578393 | 0.0591946  |
| 395000  | 0.0632343  | 0.0594537  | 0.0654277 | 0.0669481  |
| 432500  | 0.0695085  | 0.0656189  | 0.0724561 | 0.0729267  |
| 470000  | 0.0780311  | 0.0718825  | 0.0840601 | 0.0806055  |
| 507500  | 0.0828549  | 0.0783795  | 0.0931705 | 0.0882319  |
| 545000  | 0.0909889  | 0.0848305  | 0.100574  | 0.0941709  |
| 582500  | 0.097854   | 0.0911869  | 0.106586  | 0.102462   |
| 620000  | 0.103022   | 0.0980629  | 0.10933   | 0.108623   |
| 657500  | 0.109643   | 0.103986   | 0.120026  | 0.120299   |
| 695000  | 0.116515   | 0.110765   | 0.124693  | 0.123205   |
| 732500  | 0.123405   | 0.117344   | 0.136234  | 0.13161    |
| 770000  | 0.130494   | 0.123953   | 0.139266  | 0.137629   |
| 807500  | 0.13752    | 0.130639   | 0.150585  | 0.150222   |
| 845000  | 0.144771   | 0.137424   | 0.152288  | 0.164017   |
| 882500  | 0.154829   | 0.143888   | 0.163297  | 0.16377    |
| 920000  | 0.158828   | 0.150732   | 0.166954  | 0.168127   |
| 957500  | 0.1658     | 0.157752   | 0.174289  | 0.18258    |
| 995000  | 0.174768   | 0.16427    | 0.181656  | 0.185831   |



#### 3.3 Eficiencia híbrida

Para la eficiencia híbrida nos hemos ayudado de gnuplot. Primero hemos introducido la fórmula teórica que nos da el orden de eficiencia de este algoritmo. luego hemos introducido los datos conseguidos del algoritmo, y ajustando con la ecuación n\_logarítmica conseguimos las variables ocultas. Hemos utilizado los valores de la gráfica A, y así conseguimos que las variables ocultas de la ecuación n\_logarítmica (axlog(x) +b) son a=1.33752e-08 y c=3.12312e-5. A continuación se presenta la gráfica comparativa de este ajuste con otros, siendo estos el cuádratico y el lineal.



En la gráfica podemos ver que el ajuste que hemos escogido (el n\_logarítmico) es el idóneo, en este caso no se aprecia mucha diferencia con los erróneos ya que al ser tan pequeñs los valores, todas las gráficas acaban solapando.

#### heapsort empírica vs híbrida



Además, hemos comparado la eficiencia empírica con la híbrida y, como podemos observar, son bastante similares, demostrando que la eficiencia del programa se ajusta a la que debería ser.

## 4. Algoritmo de quicksort:

```
4.1 Eficiencia teórica
```

```
static void dividir_qs(int T[], int inicial, int final, int & pp)
 int pivote, aux;
 int k, l;
 pivote = T[inicial];
                            En el peor caso, el vector está ordenador de mayor a menor, por tanto
 k = inicial;
                            este bucle va desde k=inicial hasta k=final-1. Tomando inicial como 0 y
 I = final;
                            final como n, tenemos que es de orden O(n).
 do {
  k++;
 } while ((T[k] <= pivote) && (k < final-1));</pre>
 do {
  I--;
                                En dicho peor caso, este bucle va desde l=final hasta l=inicial,
 } while (T[l] > pivote);
                                     por lo que tenemos que es de orden O(n).
 while (k < l) {
                               🔰 En el peor caso, no se entraría en este bucle, pues l quedaría en
  aux = T[k];
                                   la posición inicial y k en la final-1.
  T[k] = T[l];
  T[l] = aux;
  do k++; while (T[k] <= pivote);
  do I--; while (T[l] > pivote);
 };
                                    Estas operaciones son de orden O(1), por lo que el método en
 aux = T[inicial];
                                    sí, sería de orden O(n) en el peor caso.
 T[inicial] = T[l];
 T[l] = aux;
 pp = I;
};
```

doble.

```
inline void quicksort(int T[], int num_elem)
 quicksort_lims(T, 0, num_elem);
}
static void quicksort_lims(int T[], int inicial, int final)
{
 int k;
                                                  En este else, tenemos un algoritmo de orden O(n) y
 if (final - inicial < UMBRAL_QS) {</pre>
                                                  dos llamadas recurrentes al propio método, que
  insercion lims(T, inicial, final);
                                                  ordenan n/2 elementos.
 } else {
  dividir qs(T, inicial, final, k);
  quicksort_lims(T, inicial, k);
  quicksort_lims(T, k + 1, final);
                                                    O(n)
};
}
static void insercion_lims(int T[], int inicial, int final) •
{
 int i, j;
                                                       Este método es el mismo que se utiliza en el
 int aux;
 for (i = inicial + 1; i < final; i++) {
                                                       algoritmo de inserción, que como ya hemos
                                                       visto, es de orden O(n²).
  j = i;
  while ((T[j] < T[j-1]) && (j > 0)) {
   aux = T[j];
   T[j] = T[j-1];
   T[j-1] = aux;
   j--;
  };
 };
En el caso en que n>=UMBRAL QS, utilizamos la fórmula de recurrencia, obteniendo: T(n) =
n+2(T(n/2)).
Haciendo el cambio de variable: n = 2^m, tenemos T(2^m) = 2^m + 2T(2^{m-1}), si m > = log 2(UMBRAL QS).
```

Operando llegamos a tener  $T_m$  -  $2T(_{m}-1) = 2^m$ , donde la constante b=2 y p(n)=1. Sacamos la ecuación característica de nuestra recurrencia no homogénea, que es: (x-2)(x-2)=0, por lo que el 2 es raíz

Tenemos  $T_m = c1*2^m + c2*m*2^m$ , y deshaciendo el cambio de variable: T(n)=c1\*n+c2\*n\*log2(n).

#### 4.2 Eficiencia empírica

Este algoritmo lo hemos ejecutado para 27 tamaños en el rango de 20.000 a 1.000.000 y hemos obtenido tiempos desde 0'0018 hasta 0'13 segundos.

| Tamanio | Tiempo L   | Tiempo J   | Tiempo A   | Tiempo C   |
|---------|------------|------------|------------|------------|
| 20000   | 0.0025096  | 0.0017786  | 0.002042   | 0.00177667 |
| 57500   | 0.00576307 | 0.00519227 | 0.00627387 | 0.00552653 |
| 95000   | 0.00942633 | 0.00893793 | 0.0104625  | 0.00966033 |
| 132500  | 0.0131791  | 0.0123411  | 0.0152     | 0.0135806  |
| 170000  | 0.0173298  | 0.0162187  | 0.019706   | 0.0178679  |
| 207500  | 0.0216701  | 0.0193439  | 0.0245244  | 0.0220659  |
| 245000  | 0.0258111  | 0.0240567  | 0.0294941  | 0.0266742  |
| 282500  | 0.0299367  | 0.0279946  | 0.0339822  | 0.0307427  |
| 320000  | 0.034001   | 0.0320465  | 0.0385838  | 0.0353873  |
| 357500  | 0.0385256  | 0.0360812  | 0.0435092  | 0.0401142  |
| 395000  | 0.0428881  | 0.0401525  | 0.0486824  | 0.0442753  |
| 432500  | 0.0469161  | 0.043763   | 0.0537028  | 0.049206   |
| 470000  | 0.0512508  | 0.047897   | 0.0596074  | 0.0533071  |
| 507500  | 0.0553668  | 0.0523335  | 0.0633293  | 0.0581102  |
| 545000  | 0.0604378  | 0.0567571  | 0.0687465  | 0.0632529  |
| 582500  | 0.0646449  | 0.0601965  | 0.0741323  | 0.0676179  |
| 620000  | 0.0688848  | 0.0624616  | 0.0794037  | 0.0716318  |
| 657500  | 0.0732006  | 0.0693719  | 0.0839329  | 0.077982   |
| 695000  | 0.0787838  | 0.0731093  | 0.0897564  | 0.0814543  |
| 732500  | 0.0832715  | 0.0766734  | 0.0939017  | 0.0863909  |
| 770000  | 0.0882021  | 0.0815045  | 0.0996819  | 0.0906719  |
| 807500  | 0.0926757  | 0.0850987  | 0.104273   | 0.0963509  |
| 845000  | 0.0975901  | 0.0890966  | 0.109765   | 0.0998927  |
| 882500  | 0.103136   | 0.0945858  | 0.115012   | 0.105933   |
| 920000  | 0.107145   | 0.0980822  | 0.119299   | 0.10998    |
| 957500  | 0.112381   | 0.102547   | 0.126046   | 0.115443   |
| 995000  | 0.116295   | 0.106273   | 0.130986   | 0.119146   |



#### 4.3 Eficiencia híbrida

Para la eficiencia híbrida nos hemos ayudado de gnuplot. Primero hemos introducido la fórmula teórica que nos da el orden de eficiencia de este algoritmo. luego hemos introducido los datos conseguidos del algoritmo, y ajustando con la ecuación n\_logarítmica conseguimos las variables ocultas. Hemos utilizado los valores de la gráfica A, y así conseguimos que las variables ocultas de la ecuación n\_logarítmica (axlog(x) +b) son a=9.53554e-09 y c=4.12312e-06. A continuación se presenta la gráfica comparativa de este ajuste con otros, siendo estos el cuádratico y el lineal.



En la gráfica podemos ver que el ajuste que hemos escogido (el n\_logarítmico) es el idóneo, en este caso no se aprecia mucha diferencia con los erróneos ya que al ser tan pequeñs los valores, todas las gráficas acaban solapando.



Además, hemos comparado la eficiencia empírica con la híbrida y, como podemos observar, son bastante similares, demostrando que la eficiencia del programa se ajusta a la que debería ser.

## 5. Algoritmo de Floyd:

5.1 Eficiencia teórica

```
void Floyd(int **M, int dim)
{
  for (int k = 0; k < dim; k++)
    for (int i = 0; i < dim;i++)
    for (int j = 0; j < dim;j++)
      {
      int sum = M[i][k] + M[k][j];
      M[i][j] = (M[i][j] > sum) ? sum : M[i][j];
    }
}
El interior
```

Tenemos 3 bucles anidados, los cuales se pueden expresar como la suma desde i=0 hasta dim-1. Luego cada uno de ellos es de orden O(n).

El interior del bucle podemos agruparlo en una constante a, pues son de operaciones de asignación, de orden O(1).

Resolviendo los sumatorios anteriores, obtenemos la función polinómica an³. Por lo tanto tenemos que  $T(n) \in O(n^3)$ .

#### 5.2 Eficiencia empírica

Este algoritmo lo hemos ejecutado para 29 tamaños en el rango de 100 a 1.500 y hemos obtenido tiempos desde 0'004 hasta 15'93 segundos.

| Tamanio | Tiempo L   | Tiempo J   | Tiempo A  | Tiempo C |
|---------|------------|------------|-----------|----------|
| 100     | 0.00591527 | 0.00412613 | 0.0042422 | 4.95E-03 |
| 150     | 0.0159097  | 0.0131253  | 0.0135397 | 1.35E-02 |
| 200     | 0.0361424  | 0.0282329  | 0.0316015 | 3.25E-02 |
| 250     | 0.0707361  | 0.0549193  | 0.0631014 | 6.36E-02 |
| 300     | 0.122718   | 0.0944375  | 0.109288  | 1.08E-01 |
| 350     | 0.193656   | 0.155449   | 0.171967  | 1.71E-0  |
| 400     | 0.304055   | 0.228613   | 0.253529  | 0.25510  |
| 450     | 0.434619   | 0.328178   | 0.364059  | 0.360566 |
| 500     | 0.584113   | 0.448897   | 0.492907  | 0.492583 |
| 550     | 0.773383   | 0.597088   | 0.661187  | 0.66275  |
| 600     | 1.01452    | 0.77342    | 0.858421  | 0.86317  |
| 650     | 1.34711    | 0.98263    | 1.0898    | 1.0955   |
| 700     | 1.60119    | 1.22735    | 1.34993   | 1.37133  |
| 750     | 2.04279    | 1.54127    | 1.67723   | 1.68606  |
| 800     | 2.48851    | 1.79436    | 2.02666   | 2.04314  |
| 850     | 2.88539    | 2.19434    | 2.42931   | 2.45308  |
| 900     | 3.40224    | 2.64458    | 2.8622    | 2.92508  |
| 950     | 4.01064    | 2.98971    | 3.38604   | 3.49565  |
| 1000    | 4.85129    | 3.49904    | 3.92764   | 3.98226  |
| 1050    | 5.62023    | 4.13973    | 4.57013   | 4.73894  |
| 1100    | 6.46328    | 4.66231    | 5.25261   | 5.36227  |
| 1150    | 7.38432    | 5.53939    | 6.01307   | 6.33794  |
| 1200    | 8.07171    | 6.23215    | 6.85778   | 7.16257  |
| 1250    | 9.51634    | 6.86325    | 7.72299   | 8.19994  |
| 1300    | 10.3231    | 7.68149    | 8.70321   | 9.3549   |
| 1350    | 12.0649    | 8.60936    | 9.75737   | 10.42    |
| 1400    | 13.1955    | 9.58565    | 10.9137   | 11.6603  |
| 1450    | 14.3529    | 10.6687    | 12.1364   | 12.9463  |
| 1500    | 15.9312    | 11.8135    | 13.4753   | 14.34    |



#### 5.3 Eficiencia híbrida

Para la eficiencia híbrida nos hemos ayudado de gnuplot. Primero hemos introducido los datos conseguidos del algoritmo, y ajustando con la ecuación cuadrática conseguimos las variables ocultas. Hemos utilizado los valores de la gráfica A, y así conseguimos que las variables ocultas de la ecuación cuadrática (a +bx +cx^2) son a=1.06, b=-6.5E-03x y c=9.61E-06. A continuación se presenta la gráfica comparativa de este ajuste con otros, siendo estos el logarítmico y el lineal.



En la gráfica podemos ver que el ajuste que hemos escogido (el cuádratico) es el idóneo, y otros erróneos que hemos escogido para ilustrarlo, claramente no concuerda con las expectaticas, por lo que no son correctos.

#### floyd empírica vs híbrida



Además hemos comparado la eficiencia empírica con la híbrida y, como podemos observar, son bastante similares, demostrando que la eficiencia del programa se ajusta a la que debería ser.

#### 6.Algoritmo de Hanoi:

6.1 Eficiencia teórica

```
void hanoi (int M, int i, int j)
{
   if (M > 0)
      {
       hanoi(M-1, i, 6-i-j);
       //cout << i << " -> " << j << endl;
       hanoi (M-1, 6-i-j, j);
   }
}</pre>
```

Para este método, utilizamos la fórmula para recurrencias. Vemos que se llama 2 veces a un método de orden n. Tenemos T(n)-2T(n)=0. Obtenemos la ecuación característica:  $x^2-2x=0$ , con lo que el 2 y el 0 son raíces, y se nos queda:  $c1*2^n$ . Por lo tanto tenemos que  $T(n) \in O(2^n)$ .

#### 6.2 Eficiencia empírica

Este algoritmo lo hemos ejecutado para 26 tamaños en el rango de 8 a 33 y hemos obtenido tiempos desde 0'0000013 hasta 39'27 segundos.

| Tamanio | Tiempo L    | Tiempo J    | Tiempo A    | Tiempo C    |
|---------|-------------|-------------|-------------|-------------|
| 8       | 8.13E-06    | 6.87E-06    | 1.40E-06    | 1.33E-06    |
| 9       | 4.47E-06    | 2.20E-06    | 2.13E-06    | 2.53E-06    |
| 10      | 9.67E-06    | 4.13E-06    | 4.33E-06    | 4.93E-06    |
| 11      | 1.89E-05    | 8.27E-06    | 9.27E-06    | 9.27E-06    |
| 12      | 4.01E-05    | 1.62E-05    | 1.97E-05    | 1.85E-05    |
| 13      | 8.62E-05    | 3.42E-05    | 3.35E-05    | 3.67E-05    |
| 14      | 0.0001726   | 7.84E-05    | 6.75E-05    | 7.32E-05    |
| 15      | 0.000335933 | 0.0001594   | 0.000163867 | 0.0001466   |
| 16      | 0.0003758   | 0.000283867 | 0.000290333 | 0.000292467 |
| 17      | 0.000751133 | 0.000525933 | 0.0006296   | 0.000584933 |
| 18      | 0.00141293  | 0.00106393  | 0.00113267  | 0.00117013  |
| 19      | 0.0023494   | 0.00216953  | 0.002146    | 0.0023383   |
| 20      | 0.00470253  | 0.004419    | 0.00429733  | 0.00467433  |
| 21      | 0.0091522   | 0.00882973  | 0.0083758   | 0.0093485   |
| 22      | 0.0182772   | 0.0161823   | 0.0168065   | 0.0186939   |
| 23      | 0.0365451   | 0.0335385   | 0.0336234   | 0.0374174   |
| 24      | 0.0731529   | 0.0646779   | 0.0673519   | 0.0747874   |
| 25      | 0.146489    | 0.134183    | 0.133931    | 0.1498      |
| 26      | 0.302123    | 0.258518    | 0.267701    | 0.299274    |
| 27      | 0.587849    | 0.519062    | 0.534666    | 0.598559    |
| 28      | 1.1841      | 1.4867      | 1.6887      | 1.20378     |
| 29      | 2.36388     | 2.08613     | 2.13805     | 2.3931      |
| 30      | 4.80955     | 4.2826      | 4.27761     | 4.7866      |
| 31      | 9.56683     | 8.40774     | 8.60882     | 9.57596     |
| 32      | 19.1624     | 16.8145     | 17.1047     | 19.2778     |
| 33      | 39.2685     | 33.6576     | 34.2296     | 38.305      |



#### 6.3 Eficiencia híbrida

Para la eficiencia híbrida nos hemos ayudado de gnuplot. Primero hemos introducido los datos conseguidos del algoritmo, y ajustando con la ecuación cuadrática conseguimos las variables ocultas. Hemos utilizado los valores de la gráfica A, y así conseguimos que las variables ocultas de la ecuación exponecial (a\*2^x +b) son a=3.81258e-09 y b=1. A continuación se presenta la gráfica comparativa de este ajuste con otros, siendo estos el cuadrático y el lineal.



En la gráfica podemos ver que el ajuste que hemos escogido (el exponecial) es el idóneo, y otros erróneos que hemos escogido para ilustrarlo, claramente no concuerda con las expectaticas, por lo que no son correctos.



Además, hemos comparado la eficiencia empírica con la híbrida y, como podemos observar, son bastante similares, demostrando que la eficiencia del programa se ajusta a la que debería ser.

## 1.Mejor vs Peor Caso

#### 1.1 Algoritmo de Inserción

En este caso, podemos observar que la diferencia entre el mejor y el peor caso es abismal, siendo el caso mejor únicamente el tiempo necesario para recorrer completamente el vector.



#### 1.2 Algoritmo de Selección

Por otro lado, en este caso podemos ver que la diferencia es escasa, ya que en cualquiera de los casos acaba recorriendo el vector el mismo número de veces.



## 2. Optimización

En esta comparación se puede apreciar la gran utilidad que aporta el compilador con las herramientas para aumentar la eficiencia del código, ya que como se puede apreciar los tiempos de ejecución, aun siguiendo los mismos órdenes de eficiencia, reducen su tiempo en gran manera, convirtiéndose en un gran aliado a la hora de ejecutar grandes cantidades de código, pero todo sin sobreponerse al propio orden de eficiencia.

- Algoritmo de selección:



- Algoritmo de inserción:



- Algoritmo de quicksort:



- Algoritmo de heapsort:



- Algoritmo de Floyd:



- Algoritmo de Hanoi:



#### 3.Windows vs Ubuntu

Tras ejecutar los algoritmos en distintos sistemas operativos, Windows y Ubuntu en este caso, podemos observar que no hay practicamente diferencia entre los tiempos resultantes.

- Algoritmo de selección:



- Algoritmo de inserción:



- Algoritmo de quicksort:



- Algoritmo de heapsort:



- Algoritmo de Floyd:



- Algoritmo de Hanoi:



## 4.Algoritmos

Como se puede observar en la gráfica, hay una diferencia abismal entre los dos algoritmos cuadráticos y los dos algoritmos n-logarítmicos, ya que, comparados con los tiempos de los primeros, los tiempos de los segundos son poco más que cero, y no se aprecia siquiera su forma.



Para observar mejor las diferencias entre los algoritmos hemos optado también por usar una gráfica en escala logarítmica en el eje y, que representa estas de una forma más diferenciada



# CONCLUSIÓN

Para terminar con el trabajo, vamos a describir una breve conclusión.

Cabe entonces destacar la similitud entre los componentes de los ordenadores utilizados para este proyecto. Como esperábamos los datos obtenidos son bastante parecidos entre sí.

Además, comparando el análisis teórico elaborado con el análisis empírico obtenido a través de los diversos ordenadores, vemos que, además de coincidir entre ellos, también comparten la misma eficiencia de los algoritmos.

Haber estudiado la eficiencia desde el mismo ordenador, pero distinto sistema operativo nos presenta una gran similitud entre los tiempos obtenidos, además de presentar la misma eficacia, tal y como cabía esperar.

Nos hemos dado cuenta también que en los algorítmicos n\_logarítmicos, la recopilación de datos mayores nos hubiera dado una mayor visibilidad a la hora de diferenciar con los diferentes ajustes, como el cuadrático y el lineal, y además la grafíca tendría más forma de logaritmo.

El estudio elaborado sobre los mejores y peores casos en los algoritmos de búsqueda cuadráticos (insercion y selección) nos aporta información bastante interesante:

- Selección: en este caso podemos observar la minúscula diferencia entre el peor caso y el mejor, debido a que se recorre el vector las mismas veces en ambos casos.
- -Inserción: a diferencia del algoritmo de selección, la diferencia entre el peor y el mejor caso es abismal, ya que el mejor caso es lineal y casi instantánea, mientras que el peor caso toma forma polinómica.

La práctica además nos ha ayudado a comprender como funcionan los algoritmos empleados, y el por qué de la eficacia asociada, comprendiendo que a veces la diferencia entre el peor y el mayor de los casos puede puede ser bastante significativa para determinar la eficacia de ellos.

Por último, cabe destacar la importancia de la eficiencia constante que se presenta en los distintos ordenadores, aunque tengan propiedades del hardware diferentes, distintos sistemas operativos, o incluso si se han compilado con diferentes optimizaciones. Esto nos lleva a la reflexionar sobre la importancia de la eficiencia de los algoritmos .