DEPARTMENT OF CHEMISTRY

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY B.TECH (2018-2019)

Subject/Code: Chemistry/ 18CYB101J

Semester-

MCQ

Module I

- 1. If the sign of the wave function is unchanged when the orbital is reflected about its centre, the orbital is
 - a) Gerade
 - b) Ungerade
 - c) Gerade as well as Ungerade
 - d) Anti-Symmetric

[Explanation: If the sign of the wave function is unchanged when the orbital is reflected about its center (i.e., x, y and z are replaced by -x, -y and -z), the orbital is **gerade**.]

- 2. Which of the following molecules are aromatic?
- $\begin{array}{c|c} & & \\ & & \\ a) & & \\ \end{array} \quad \begin{array}{c|c} & & \\ b. & & \\ \end{array} \quad \begin{array}{c|c} & & \\ c. & & \\ \end{array} \quad \begin{array}{c|c} & \\ d. & \\ \end{array} \quad \begin{array}{c|c} \\ \end{array}$
- 3. The filling up of Molecular orbital takes place according to
- a) Huckel's rule b) Hund's rule c) Fajan's rule d) Cahn Ingold Prelog rule
- 4. Bond Order of O₂, F₂, N₂ respectively are

a)
$$+1$$
, $+2$, $+3$

b)
$$+2$$
, $+3$, $+1$

$$c) +2, +1, +3$$

$$d) +3, +2, +1$$

- 5. Arrange the following molecules in decreasing bond length.
 - a) $O_2 > O_2^- > O_2^+ > O_2^{2-}$
 - b) $O_2^2 > O_2^- > O_2^+$
 - c) $O_2^2 > O_2^- > O_2^+ > O_2$
 - d) O_2 ^{->} O_2 ^{+>} O_2 ^{2->} O_2 [Explanation: The bond length is inversely proportional to the bond order. Therefore, the correct is: O_2 ^{2->} O_2 > O_2 -> O_2 -.]
- 6. Arrange the following molecules in the order of increasing stability.
 - a) $N_2^+ < N_2 < N_2^- < N_2^{2-}$
 - b) $N_2^2 < N_2^- < N_2 < N_2^+$
 - c) $N_2^2 < N_2^- = N_2^+ < N_2$
 - d) $N_2 < N_2^+ = N_2^- < N_2^{2-}$ [Explanation: The order of stability is directly proportional to the bond order. Therefore, the correct order of stability is $N_2^{2-} < N_2^- = N_2^+ < N_2$.]
- 7. On the basis of molecular orbital theory, select the most appropriate option.
 - a) The bond order of O₂ is 2.5 and it is paramagnetic
 - b) The bond order of O₂ is 1.5 and it is paramagnetic
 - c) The bond order of O₂ is 2 and it is diamagnetic
 - d) The bond order of O2 is 2 and it is paramagnetic
- 8. Which of the following molecule does not exist due to its zero bond order?
 - a) H_{2}^{+}
 - b) He₂+
 - c) He₂
 - d) H_2^- [Explanation: Molecular orbital electronic configuration of He_2 molecule = $(\sigma_{1s})^2 (\sigma^*_{1s})^2$.. Bond order = 0, so He_2 molecule does not exist.]
- 9. The relative energies of molecular orbitals in increasing order have been found to be as follows:


```
b) 1s^2 2s^2 \sigma_{spx}^2 \left[2_{px}^2 2_{py}^2\right] \sigma_{spx}^*
```

c)
$$1s^2 2s^2 \sigma_{spx}^2 [2_{px}^2 2_{pz}^2] \sigma_{spx}^*$$

- d) $1s^2 2s^2 \sigma_{spx}^2 [2_{px}^4] \sigma_{spx}^*$ [Explanation: HF molecule has 10 electrons and its electronic configuration is $1s^2 2s^2 \sigma_{spx}^2 [2_{py}^2 2_{pz}^2] \sigma_{spx}^*$.]
- 14. From the following options, choose the heteronuclear diatomic molecules which are paramagnetic in nature?
 - a) HF and NO
 - b) HF and O₂
 - c) NO and O₂
 - d) Only NO
- 15. The combination of H (1s1) and F (2px1) gives
 - a) Bonding orbital
 - b) Anti-bonding orbital
 - c) Both bonding and anti-bonding orbital
 - d) Non-bonding orbital

[Explanation: The combination of H (1s1) and F (2px1) gives both bonding (σ_{spx}) and antibonding (σ_{spx} *) orbitals.]

- 16. Choose the **incorrect option** from the following.
 - a) Valence bond theory does not explain the paramagnetic nature of O₂
 - b) Molecular orbital theory explains the extra stability of O₂+cation over O₂
 - c) Valence bond theory explains the ionization or gain of electrons, giving ${\bf O_2}^{\scriptscriptstyle +}$ and ${\bf O_2}^{\scriptscriptstyle -}$ ions, if ${\bf O_2}$ has the stable octet
 - d) Resonance has no role in Molecular orbital theory
- 17. The interaction will be attractive between the ----- orbital [Provided x is the principal axis]

- a) 2p_y-2p_zb) 1s-2s
- c) $2p_x-2p_y$
- d) 2s-2p_x
- 18. Identify the incorrect statement regarding aromaticity
 - a) It is the extra stability possessed by a molecule
 - b) p-orbitals must be planar and overlap
 - c) Cyclic delocalization takes place
 - d) It does not follow Huckel's rule
- 19. According to Heisenberg the product of uncertainty in the position & moment run of the body is
 - a) Equal to h/p
 - b) Equal to E-V
 - c) $\geq h/4 \pi$
 - d) $\geq E-V$
- 20. CO has 10 bonding electrons and 4 anti-bonding electrons and its bond order is
 - a) 3 b)7 c)1 d) 5/2

- 21. Which of the following is known as the Schrödinger equation
 - a) $E = mc^2$
- b) $\lambda = h/p$
- $_{\mathbf{c})}\widehat{H}\boldsymbol{\psi}=\boldsymbol{E}\boldsymbol{\psi}$
- d) $\frac{\hbar^2}{2m} \nabla^2$

- 22. The CFSE for a high spin d⁴ octahedral complex is
 - a) $-0.6 \Delta_{\text{oct}}$
- b) -1.8 Δ_{oct}
- c) $-1.6 \Delta_{oct} + P$
- d) -1.2 Δ_{oct}
- 24. Two electrons occupying the same orbital are distinguished by

- a) azimuthal quantum number b) **spin quantum number** c) Magnetic quantum number d) orbital quantum number
- 25. Organic compounds which contain more than one benzene rings are termed a) arenes b) Aryls c) acyls d) benzenes
- 26. The de- broglie hypothesis is associated with
 - a) wave nature of electrons only
 - b) wave nature of protons only
 - c) wave nature of radiation
 - d) wave nature of all material particles
- 27. For a homonuclear diatomic molecule the bonding orbital is
 - a) σg of lowest energy b) σu of second lowest energy c) πg of lowest energy d) πu of lowest energy
- 28. The crystal field splitting energy for octahedral and tetrahedral complexes is related as a) $\Delta t \approx 4/9 \Delta o$ b) $\Delta t \approx 1/2 \Delta o$ c) $\Delta o \approx 2 \Delta t$ d) $\Delta o \approx 4/9 \Delta t$