6.7900 Machine Learning (Fall 2024)

Lecture II: learning neural networks

(supporting early release slides)

Recall: composing complex models (MLP)

- A linear model $f(x;\theta) = w^T x + b$ $\theta = \{w, b\}$
- A linear model with features $f(x;\theta) = w^T \phi(x) + b$ $\theta = \{w,b\}$
- A linear model with learnable linear features... still just a linear model!!

$$f(x;\theta) = w^{T}(W^{(1)}x + b^{(1)}) + b_{1x1} \qquad \theta = \{w, b, W^{(1)}, b^{(1)}\}$$

One hidden layer model (linear + non-linear + linear)

$$f(x;\theta) = w^T \tanh(W^{(1)}x + b^{(1)}) + b \qquad \theta = \{w, b, W^{(1)}, b^{(1)}\}\$$

A multi-layer neural perceptron (MLP, multiple linear +non-linear steps), e.g.,

$$f(x;\theta) = w^{T} \tanh_{1x1} \left(W^{(2)} \tanh_{kxm} (W^{(1)} x + b^{(1)}) + b^{(2)} \right) + b \qquad \theta = \{w, b, W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)} \}$$

Recall: randomly initialized parameters

 A large number of randomly initialized hidden units gives a meaningful feature expansion

(10 randomly initialized units)

The points are now linearly separable in the resulting 10 dimensional space!

Recall: randomly initialized parameters

 A large number of randomly initialized hidden units gives a meaningful feature expansion

(10 randomly initialized units)

This is a 2d linear projection of the 10 dimensional features space (obtained how?)

Learning neural networks

 We can use stochastic gradient descent (SGD) to try to minimize the empirical risk (squared errors for regression, cross-entropy losses for classification, etc)

$$\frac{1}{N} \sum_{i=1}^{N} L(y^i, f(x^i; \theta)) + \lambda ||\theta||^2$$

In response to each randomly chosen data point, we update $\theta \leftarrow \theta - \eta \nabla_{\theta} L(y^i, f(x^i; \theta))$

Learning neural networks

 We can use stochastic gradient descent (SGD) to try to minimize the empirical risk (squared errors for regression, cross-entropy losses for classification, etc)

$$\frac{1}{N} \sum_{i=1}^{N} L(y^{i}, f(x^{i}; \theta)) + \lambda \|\theta\|^{2}$$

- In response to each randomly chosen data point, we update $\theta \leftarrow \theta \eta \nabla_{\theta} L(y^i, f(x^i; \theta))$
- The challenge is that the empirical risk / per example losses are no longer convex...
- Initialization matters! (and zero initialization is terrible!)

[figure from P. Agrawal]

Initialization, learning rate, loss landscapes

- There are many suggested initialization schemes for weight matrices, e.g., controlling fan-in variance: for a $d \times m$ matrix W where m is the output dimension, we could initialize $W_{ij} \sim N(0, \sigma^2 I)$, $\sigma^2 = 1/d$ (e.g.)
- Many choices for learning rate schedules, often adaptive (e.g., Adam optimizer, etc). Optimization parameters are left as "hyper-parameters", to be adjusted based on validation performance

Initialization, learning rate, loss landscapes

- There are many suggested initialization schemes for weight matrices, e.g., controlling fan-in variance: for a $d \times m$ matrix W where m is the output dimension, we could initialize $W_{ij} \sim N(0, \sigma^2 I)$, $\sigma^2 = 1/d$ (e.g.)
- Many choices for learning rate schedules, often adaptive (e.g., Adam optimizer, etc). Optimization parameters are left as "hyper-parameters", to be adjusted based on validation performance
- A simple multi-layer perceptron already has a large number of equivalent solutions in terms of weight matrices
 - e.g., we can permute nodes in each hidden layer while keeping the associated weights connected; the matrices would change as a result but the overall mapping would not
- Aspects of the high dimensional loss landscape are not well captured by these low dimensional figures
 - E.g., local minima obtained with different initializations may be "connected" via low loss paths

2 hidden units: training

An epoch = one pass through the examples (random order)

(full disclosure: loss here was hinge loss $\max\{0, 1 - yf(x; \theta)\}, y \in \{-1,1\}$)

2 hidden units: training

After ~10 passes through the data

10 hidden units

Randomly initialized weights (zero offset) for the hidden units

10 hidden units

 , After ~ 10 epochs the hidden units are arranged in a manner sufficient for the task (but not otherwise perfect)

Decisions (and a harder task)

2 hidden units can no longer solve this task

Decisions (and a harder task)

2 hidden units can no longer solve this task

Decisions (and a harder task)

Decision boundaries

Effects of initialization can persist... good initialization is important

100 hidden units (with zero offset initialization)

100 hidden units (with random offset initialization)

Size, optimization

- Many recent architectures use ReLU units (cheap to evaluate, sparsity)
- Easier to learn as large models...

10 hidden units (should be sufficient but hard to find a good solution)

Size, optimization

- Many recent architectures use ReLU units (cheap to evaluate, sparsity)
- Easier to learn as large models...

100 hidden units (substantial overcapacity)

Size, optimization

- Many recent architectures use ReLU units (cheap to evaluate, sparsity)
- Easier to learn as large models...

500 hidden units (substantial overcapacity)

Computation graph, backpropagation

• The remaining question is how we actually evaluate the gradient with respect to all the parameters for a complicated model

$$\theta \leftarrow \theta - \eta \nabla_{\theta} L(y^i, f(x^i; \theta))$$

where, e.g.,

$$f(x;\theta) = w^{T} \tanh \left(W^{(2)} \tanh \left(W^{(1)} x + b^{(1)} \right) + b^{(2)} \right) + b \qquad \theta = \{w, b, W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)} \}$$

$$x \longrightarrow W^{(1)}, b^{(1)} \longrightarrow 0 \longrightarrow W^{(2)}, b^{(2)} \longrightarrow 0 \longrightarrow w, b \longrightarrow f$$

$$\tanh() \qquad \tanh()$$

 We'll explain this in the context of a recurrent neural network (RNN) and its associated "computation graph"

$$P(x_t | x_{t-1}, ..., x_1) = P(x_t | x_{t-1}, s_{t-1}) = P(x_t | s_t)$$

- V = vocabulary size
- m = state (summary) dimension

Learning recurrent neural networks (RNNs)

When learning the model from data, e.g., observed sequence $\hat{x}_1, \hat{x}_2, \hat{x}_3, ...$, we introduce losses at the outputs (log-likelihood) and "teacher" force its inputs

$$L(\hat{x}_1, p_1) + L(\hat{x}_2, p_2) + L(\hat{x}_3, p_3) +$$

$$L(\hat{x}_t, p_t) = -\log p_t(\hat{x}_t)$$

$$= -\log P(\hat{x}_t | \hat{x}_{t-1}, \dots, \hat{x}_1; \theta)$$

 Consider a simple RNN parameterization (so as to discuss how we learn its associated parameters)

$$P(x_t | x_{t-1}, ..., x_1) = P(x_t | x_{t-1}, s_{t-1}) = P(x_t | s_t)$$

(Offsets omitted for clarity)

Elementary computation graph

 We can decompose the model into simple transformations, either linear (with parameters) or non-linear (no parameters)

$$\begin{aligned} s_t &= \tanh \left(W^s s_{t-1} + W^x x_{t-1} \right) \\ p_t &= \operatorname{softmax} \left(W^o s_t \right) \\ v_{x1} &\qquad v_{xm} m_{x1} \end{aligned}$$

$$\theta = \{ W^s, W^x, W^o \}$$

If we know s_{t-1}, x_{t-1} , we can evaluate the vector activations in the forward direction

Gradient steps within the computation graph

 We can decompose the model into simple transformations, either linear (with parameters) or non-linear (no parameters)

$$\begin{aligned} s_t &= \tanh \left(W^s s_{t-1} + W^x x_{t-1} \right) \\ p_t &= \operatorname{softmax} \left(W^o s_t \right) \\ v_{x1} & v_{xm} m_{x1} \end{aligned}$$

$$\theta = \{ W^s, W^x, W^o \}$$

If we know s_{t-1}, x_{t-1} , we can evaluate the vector activations in the forward direction

And then try to adjust the linear transformations in response to the desired output \hat{x}_t

 $L(\hat{x}_t, p_t)$

(1) Updating a generic linear transformation

Let x,z be generic inputs and outputs of any linear transformation in the model

We have x and z (forward computation); we can update the weights if we also have access to ∂L gradient of the loss

 ∂Z

the linear transformation

wrt the output of

(1) Updating a generic linear transformation

Let x,z be generic inputs and outputs of any linear transformation in the model

- We have x and z (forward computation); we can update the weights if we also have access to ∂L
 - $\frac{\partial L}{\partial z}$ gradient of the loss wrt the output of the linear transformation

By chain rule

$$\frac{\partial L}{\partial W_{ij}} = \sum_{k=1}^{m} \frac{\partial z_k}{\partial W_{ij}} \frac{\partial L}{\partial z_k} = x_j \frac{\partial L}{\partial z_i}$$

or in terms of matrices

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial z} x^{T}$$

$$\frac{\partial W}{\partial z}$$

$$\frac{\partial Z}{\partial x}$$

$$\frac{mxd}{z}$$

$$\frac{1xd}{z}$$

 $^{\bullet}$ which is the gradient we need to update W

(2) One step backpropagation

Let x,z be generic inputs and outputs of any linear transformation in the model

We have x and z (forward computation); we can push the gradient

$$\frac{\partial L}{\partial z} \qquad \text{gradient of the loss} \\ \text{wrt the output of} \\ \text{the linear transformation}$$

one step further back (to be wrt inputs) by again evoking the chain rule

$$\frac{\partial L}{\partial x} = \frac{\partial z}{\partial x} \frac{\partial L}{\partial z} = J^T \frac{\partial L}{\partial z} = W^T \frac{\partial L}{\partial z}$$
 gradient of the loss wrt the input of the linear transformation

• where $J_{ij} = \partial z_i / \partial x_j = W_{ij}$ is the Jacobian matrix of the linear transformation

(2) One step backpropagation

· Let x,z be generic inputs and outputs of any linear transformation in the model

We have x and z (forward computation); we can push the gradient

$$\frac{\partial L}{\partial z} \qquad \text{gradient of the loss} \\ \text{wrt the output of} \\ \text{the linear transformation}$$

one step further back (to be wrt inputs) by again evoking the chain rule

$$\frac{\partial L}{\partial x} = \frac{\partial z}{\partial x} \frac{\partial L}{\partial z} = J^T \frac{\partial L}{\partial z} = W^T \frac{\partial L}{\partial z}$$
 gradient of the loss wrt the input of the linear transformation

• where $J_{ij} = \partial z_i/\partial x_j = W_{ij}$ is the Jacobian matrix of the linear transformation. Any non-linear transformation acts the same, just has a different Jacobian

$$L(\hat{x}_t, p_t) = -\log p_t(\hat{x}_t), \ p_t(y) = \frac{\exp(z_y)}{\sum_{j} \exp(z_j)}$$

$$L(\hat{x}_t, p_t) = -\log p_t(\hat{x}_t), \quad p_t(y) = \frac{\exp(z_y)}{\sum_j \exp(z_j)}$$

$$\frac{\partial L}{\partial z} = -(I(\hat{x}_t) - p_t)$$

$$\frac{\partial Vx1}{\partial z} \quad \text{one-hot}$$

vector

$$L(\hat{x}_t, p_t) = -\log p_t(\hat{x}_t), \ p_t(y) = \frac{\exp(z_y)}{\sum_j \exp(z_j)}$$

$$\frac{\partial L}{\partial z} = -\left(I(\hat{x}_t) - p_t\right)$$

$$\frac{\partial Z}{\partial z} = Vx1 \quad Vx1$$

Vx1

one-hot vector

$$\frac{\partial L}{\partial s_t} = (W^o)^T \frac{\partial L}{\partial z}$$

$$\frac{\partial W^o}{\partial z}$$

$$\frac{\partial W^o}{\partial z}$$

$$L(\hat{x}_t, p_t) = -\log p_t(\hat{x}_t), \ p_t(y) = \frac{\exp(z_y)}{\sum_j \exp(z_j)}$$

$$\frac{\partial L}{\partial z} = -\left(I(\hat{x}_t) - p_t\right)$$

$$\frac{\partial Z}{\partial z} = Vx1 \quad Vx1$$

Vx1

one-hot vector

$$\frac{\partial L}{\partial s_t} = (W^o)^T \frac{\partial L}{\partial z}$$

$$\frac{mx1}{mxV} \frac{\partial L}{\partial z}$$

$$L(\hat{x}_t, p_t) = -\log p_t(\hat{x}_t), \quad p_t(y) = \frac{\exp(z_y)}{\sum_j \exp(z_j)}$$

$$\frac{\partial L}{\partial z} = -(I(\hat{x}_t) - p_t)$$

$$\frac{\partial Vx1}{Vx1} \quad \text{one-hot vector}$$

$$\frac{\partial L}{\partial s_t} = (W^o)^T \frac{\partial L}{\partial z}$$

$$\frac{\partial L}{\partial s_t} = W^o Vx1$$

$$\frac{\partial L}{\partial a_t} = \text{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial x_t}$$

$$\frac{\partial R}{\partial x_t}$$

$$L(\hat{x}_t, p_t) = -\log p_t(\hat{x}_t), \ p_t(y) = \frac{\exp(z_y)}{\sum_j \exp(z_j)}$$

$$\frac{\partial L}{\partial z} = -(I(\hat{x}_t) - p_t)$$

$$\frac{\partial L}{\partial s_t} = (W^o)^T \frac{\partial L}{\partial z}$$

$$\frac{\partial L}{\partial a_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial a_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial a_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial a_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial a_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial s_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial s_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial s_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial s_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial s_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial s_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial s_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial s_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial s_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial s_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial s_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial s_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial s_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial s_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial s_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial s_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial s_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial s_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial s_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial s_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

$$\frac{\partial L}{\partial s_t} = \operatorname{diag}(1 - \tanh^2(a_t)) \frac{\partial L}{\partial s_t}$$

 x_{t-1}

we can now update all the linear transformations!