Analysis

Textbook: Elementary Analysis

FRED YUAN

Fall 2023

Homework -> Selected Exercises from Ross.

1 Chapter 1 & 2

Exercise 1.1 (Exercise 1.1). *Prove* $1^2 + 2^2 + ... + n^2 = \frac{1}{6}n(n+1)(2n+1)$ *for all positive integers n*

Proof. This holds for n = 1. (1 = 1)

Assuming this holds for n, it holds for n + 1.

$$1^{2} + 2^{2} + \dots + n^{2} + (n+1)^{2} = \frac{1}{6}n(n+1)(2n+1) + (n+1)^{2} = \frac{1}{6}(n+1)(n+2)(2n+3)$$

Exercise 1.2 (Exercise 1.12). Verify the binomial theorem for a. n = 1, 2, 3. b. Show that $\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$

Proof. • This holds for n = 1, 2, 3.

$$(a+b)^1 = a+b, (a+b)^2 = a^2+2ab+b^2, (a+b)^3 = a^3+3a^2b+3ab^2+b^3$$

• The trick is to do this: $= \frac{n!}{(n-k)!(k)!} \cdot \frac{(n-k+1)}{(n-k+1)} + \frac{n!}{(n-k+1)!(k-1)!} \cdot \frac{k}{k}$

Exercise 1.3 (Exercise 2.1). Show why $\sqrt{3}$ is not a rational number.

Proof. By contradiction, suppose $\sqrt{3} = \frac{m}{n} \implies 3n^2 = m^2$. But these can't have a common factor, proving that $\sqrt{3}$ is irrational.

Exercise 1.4 (Exercise 3.6). *Prove* $|a + b + c| \le |a| + |b| + |c|$ *for all a, b, c.*

Proof. Using the triangle inequality twice,

$$|a + b + c| \le |a + b| + |c| \le |a| + |b| + |c|$$

And using induction, this works for all a_n .

Exercise 1.5 (Exercise 3.7). *a)* Show |b| < a if and only if -a < b < a

- b) Show |a-b| < c if and only if b-c < a < b+c
- c) Show $|a-b| \le c$ if and only if $b-c \le a \le b+c$

Proof. a) By definition, if b > 0, |b| = b and b < a.

b) If
$$|a - b| > 0$$
, $|a - b| = a - b \implies a < b + c$

If
$$|a - b| < 0$$
, $|a - b| = b - a \implies b - a < c \implies -a < c - b \implies a > b - c$

c) Same as b except instead of < use ≤

Exercise 1.6 (Exercise 4.7). Let S and T be nonempty bounded subsets of \mathbb{R}

- a) Prove that if $S \subseteq T$, then inf $T \le \inf S \le \sup S \le \sup T$.
- b) Prove $\sup(S \cup T) = \max\{\sup S, \sup T\}$.

Proof. We can look at $\inf(S) := \{s : s \le M \ \forall \ M \in S\}$. Since $S \subseteq T$, either $\inf(T) = \{s : s \le M \ \forall \ M \in T\}$ or there is another element in T such that t < s, meaning $\inf(T) = \min(s, T \cap S)$. Thus, $\inf(T) \le \inf(S)$. $\inf(S) \le \sup(S)$ by definition, and by the same logic $\sup(T) \ge \sup(S)$

b) Note: $S \nsubseteq T$, so we have 2 cases:

C1: there exists an element $s \in S$ such that $s \ge \sup(T)$. Then $\sup(S \bigcup T) = \sup(S)$. Do the same for C2.

Exercise 1.7 (Exercise 4.8). Let S and T be nonempty subsets of \mathbb{R} with the following property: $s \le t$ for all $s \in S$ and $t \in T$

- (a) Observe S is bounded above and T is bounded below.
- (b) Prove $\sup(S) \leq \inf T$
- (c) Give an example of such sets S and T where $S \cap T$ is nonempty
- (d) Give an example of sets S and T where sup $S = \inf T$ and $S \cap T$ is the empty set.

Proof. (a) Because $s \le t$, we can take any element $t \in T$ and t bounds S above. Additionally, we can take any $s \in S$ and that bounds T from below.

- (b) From (a), we can define a to be the inf of T. And since $a \in T$, $t \ge all \ s \in S$.
- (c) $s = \{-1, 0\}, t := \{0, 1\}$
- (d) $s := \lim_{n \to \infty} \{-\infty, -\frac{1}{n}\}$ which has $\sup(S) = 0$. $t := \{\frac{1}{n} \forall n \in \mathbb{N}\}$ which has $\inf(T) = 0$.

Exercise 1.8 (Exercise 4.14). Let A and B be nonempty bounded subsets of \mathbb{R} , and let A + B be the set of all sums a + b where $a \in A$ and $b \in B$.

- (a) Prove sup(A + B) = sup(A) + sup(B)
- (b) Prove inf(A + B) = inf(A) + inf(B)
- Proof. (a) Define $a + b \in S$. Then we have $a + b \le \sup(S)$. This gives $a \le \sup(S) b$. $\implies \sup(A) \le \sup(S) b$. We also get $\sup(B) \le \sup(S) \sup(A)$, giving us $\sup(A) + \sup(B) \le \sup(S)$. We can show that $\sup(A) \ge a$, $\sup(B) \ge b$, so $\sup(A) + \sup(B) \ge \sup(S)$.
 - (b) Replace sup with inf.

Exercise 1.9 (Assigned Problem). Let A and B be nonempty bounded subsets of \mathbb{R} and let AB be the set of all products ab where $a \in A$ and $b \in B$. Is it always true that sup(AB) = sup(A)sup(B)? Why or why not?

Proof. No.

Counterexample: $a := \{-2, -1\}, b := \{-1, 1\}. \sup(AB) = 2 \neq \sup(A)\sup(B) = -1$

2 Chapter 3

Exercise 2.1 (Exercise 4.16). *Show sup* $\{r \in \mathbb{Q} : r < a\} = a$ *for each* $a \in \mathbb{R}$

Proof. By definition, r < a. However, this set contains every element up to a, meaning $\sup(s) = a$. We can prove this by contradiction.

C1: Suppose the sup is $a + \epsilon$, well then I say that a is the real sup.

C2: Suppose $\sup(s) = a - \epsilon$. By the archemedian property we can find some $\frac{m}{n}$ such that $a - \epsilon < \frac{m}{n} < a$.

Exercise 2.2 (Exercise 7.4). *Give examples of*

- (a) A sequence (x_n) of irrational numbers having a limit $\lim x_n$ that is a rational number.
- (b) A sequence (r_n) of rational numbers having a limit lim r_n that is an irrational number.
- *Proof.* (a) We can have a sequence be defined as $X_n \lim_{n\to\infty} = \sqrt{2-\frac{1}{x}} \sqrt{2}$ which converges to 0.
 - (b) Our sequence of numbers can be 3, 3.1, 3.14, 3.141, 3.1415 and this will converge to π

Exercise 2.3 (Exercise 8.1). (a) Prove $\lim_{n \to \infty} \frac{1}{n^{\frac{1}{3}}} = 0$

Proof. We call this sequence X_n . We want to find some value n > N such that for all $|X_n - 0| < \epsilon$ for any $\epsilon > 0$

Let
$$N = \frac{1}{\epsilon^3}$$
, then we have $|X_n - 0| < \epsilon \implies \frac{1}{n^{\frac{1}{3}}} < \epsilon$

Exercise 2.4 (Exercise 8.2). What is the limit of $c_n = \frac{4n+3}{7n-5}$

Proof. Let
$$n > \frac{1}{7}(\frac{41}{7\epsilon} + 5)$$

Set $\epsilon > 0$, $|c_n - \frac{4}{7}| < \epsilon \implies \frac{41}{7(7n-5)} < \epsilon$. Since $n > N$, $\frac{41}{7(7n-5)} < \frac{41}{\frac{41}{7}} < \epsilon$

Exercise 2.5 (Exercise 8.4). Let t_n be a bounded sequence, i.e. there exists M such that $|t_n| \le M$ for all n, and let s_n be a sequence such that $\lim s_n = 0$. Prove $\lim (s_n t_n) = 0$

Proof.
$$|s_n t_n| = |s_n| |t_n| \le |s_n| M < \epsilon \implies |s_n| < \frac{\epsilon}{M}$$

with $n > N$, $|s_n| M < \frac{\epsilon}{M} M = \epsilon$

Exercise 2.6 (Exercise 8.5). (a) Consider three sequences a_n , b_n , and s_n such that $a_n \le s_n \le b_n$ for all n and $lim\ a_n = lim\ b_n = s$. Prove that $lim\ s_n = s$.

- (b) Suppose s_n and t_n are sequences such that $|s_n| \le t_n |$ for all n and $lim\ t_n = 0$. Prove $lim\ s_n = 0$.
- *Proof.* (a) By definition, for some $\epsilon > 0$, $|a_n s| < \epsilon$ meaning $a_n > s \epsilon$. Since b_n converges to s, there is $N_2 \in \mathbb{N}$ such that for $n > N_2$, $b_n < s + \epsilon$. Let n = the max of these N's. Then we get $s \epsilon < s_n < s + \epsilon$. This means s_n converges to s!

Exercise 2.7 (Exercise 8.7). Show that the following does not converge $sin(\frac{n\pi}{3})$

Proof. Lets assume this sequence a_n converges to a. Therefore, $|a_n - a| < \epsilon$ given $\epsilon > 0$. Let's consider the cases for n:

If n % 6 == 0, then this sequence is equal to 0. Therefore, $|-a| < \epsilon$ so $-\epsilon < a < \epsilon$. Additionally,

If n % 6 == 1, then this sequence is
$$\frac{\sqrt{3}}{2}$$
 so $-\epsilon < a - \frac{\sqrt{3}}{2} < \epsilon$
Finally, we have $a < \epsilon < \frac{\sqrt{3}}{2} < a$.

Exercise 2.8 (Exercise 8.8). *Prove lim* $\sqrt{n^2 + 1} - n = 0$

Proof.
$$|\sqrt{n^2+1}-n-0| < \epsilon \implies n^2+1 < (\epsilon+n)^2 = n^2+2\epsilon n + \epsilon^2 \implies 1-2\epsilon n < \epsilon^2$$
 $n > \frac{1-\epsilon^2}{2\epsilon}$
Formal statement: Let $\epsilon > 0$, $n > N$ where $N = \frac{1-\epsilon^2}{2\epsilon}$

 $n^2 + 1 < (\epsilon + n)^2 \implies 1 - 2\epsilon n < \epsilon^2$. This simplifies to being less than epsilon. \Box

Exercise 2.9 (Exercise 8.9). Let s_n be a sequence that converges

- (a) Show that if $s_n \ge a$ for all but finitely many n, then $\lim s_n \ge a$
- (b) Show that if $s_n \le b$ for all but finitely many n, then $\lim s_n \le b$
- (c) conclude that if all but finitely many s_n belong to [a,b], then $\lim s_n$ belongs to [a,b].
- *Proof.* (a) There is a finite term, M such that for all n > M, s_n will converge to s. $lims_n s < \epsilon \implies |s lims_n| < \epsilon \implies s < \epsilon + s_n \implies s_n > s \epsilon$. So as long as we take n > N, $s_n \ge a$ meaning s > a. (Since ϵ converges to 0.

- (b) Same as above
- (c) If there's an infinite amount of terms belonging to [a,b], we do the same as (a). Choose some n > N such that the limit is within d(a+b/2, r), and then the limit has to be within [a,b]

Exercise 2.10 (Exercise 8.10). Let s_n be a converging sequence, and suppose $\lim s_n > a$. Prove there exists a number N such that n > N implies $s_n > a$.

Proof. Let s_n converge to s > a. By definition, this means $|s_n - s| < \epsilon \implies -\epsilon < s_n - s < \epsilon \implies s_n > s - \epsilon$. We know s > a, and setting $\epsilon > 0$ such that $s - \epsilon \ge a$ we get $s_n > s - \epsilon \ge a$

Exercise 2.11 (Additional Exercise). *Prove that if* s_n *converges to* s, then $|s_n|$ *converges to* |s|.

b) Is the converse also true?

Proof. a)
$$|s_n - s| < \epsilon \implies -\epsilon < s_n - s < \epsilon$$

$$||s_n| - s| \le |s_n - s| \le \varepsilon$$
 By triangle inequality

b) We have the sequence $s_n = \{-1, 1\}$. $|s_n|$ converges to |1| or |-1|. However, s_n DNC.

3 Chapter 4

Exercise 3.1 (Exercise 9.1). (a) $\frac{n+1}{n} - 1 = 0$

(b) $\frac{3n+7}{6n-5} - \frac{1}{2}$

Proof. (a) $\frac{n+1}{n} - 1 < \epsilon \implies n+1 < (\epsilon+1)n \implies 1 + \frac{1}{n} < \epsilon+1 \implies n > \frac{1}{\epsilon}$

For all n > N,

$$\frac{n+1}{n} - 1 = 1 + \frac{1}{n} < 1 + \frac{1}{\frac{1}{\epsilon}} - 1 = \epsilon$$

(b) $\left|\frac{3n+7}{6n-5} - \frac{1}{2}\right| < \epsilon \implies \frac{6n+14}{2(6n-5)} - \frac{6n-5}{2(6n-5)} < \epsilon \implies \frac{9}{2(6n-5)} < \epsilon \implies \left(\frac{9}{2\epsilon} + 5\right)\frac{1}{6} < n$ The rest is trivial

Exercise 3.2 (Exercise 9.9). Suppose there exists N_0 such that $s_n \le t_n$ for all $n > N_0$.

- (a) Prove that if $\lim s_n = \infty$, then $\lim t_n = \infty$
- (b) prove that if $\lim t_n = -\infty$, then $\lim s_n = -\infty$

Proof. (a) Since $t_n \ge s_n$ for all $n > N_0$, $s_n = \infty \le t_n = \infty$

(b)
$$s_n = -\infty \le t_n = -\infty$$

Exercise 3.3 (Exercise 9.11). Show that if $\lim s_n = \infty$ and t_n is a bounded sequence, then $\lim (s_n + t_n) = \infty$.

Proof. Since t_n is bounded, $t_n \neq -\infty$. Lets assume t_n converges to t for all n > N. There exists some M such that $s_n > M - t \implies s_n + t_n > M - t + t > M$

Exercise 3.4 (Exercise 9.12). Assume all $s_n \neq 0$ and that the limit $L = \lim_{n \to \infty} \frac{s_n + 1}{s_n}$ exists.

- a) Show that if L < 1, then $\lim s_n = 0$.
- b) Show that if L > 1, then $\lim |s_n| = \infty$

Proof. a) Select a such that L < a < 1. We can let $\epsilon = a - L$. By definition, $-\epsilon < \frac{s_{n+1}}{s_n} < \epsilon \implies \frac{s_n+1}{s_n} < a \implies |s_n+1| < a|s_n|$. Step 2: Proving $|s_n| < a^{n-N}|s_N|$ for some n > N

case 1: n = N + 1. This simplifies and solves easily. case 2: This holds for all n.

$$|s_{n+1}| < a|s_n| < a^{n-N+1}|s_N|$$

And because $0 \le |s_n| \le a^{n-N} |s_N|$ but as n > N and $n \to \infty$, $a^n = 0$. Therefore, by the squeeze theorem, $|s_n| = 0$

- b) L > 1. Let $t_n = \frac{1}{|s_n|}$ then $\left|\frac{s_{n+1}}{s_n}\right| \to L \implies \frac{t_{n+1}}{t_n} \to \frac{1}{L}$ Our goal is to show that $\frac{1}{L} = 0 \implies L \to \infty$ Because $\frac{1}{L}$ < 1, from a) we know that $\lim t_n = 0$. And from 9.10, this means $|s_n| = \infty$
- c) Theorem 9.10: $\lim s_n = \infty$ if and only if $\lim \frac{1}{s_n} = 0$

Proof. Suppose $s_n \to \infty$. Defining $M = \frac{1}{\epsilon}$ for all n > N, $\epsilon > \frac{1}{s_n} > 0 \implies \frac{1}{s_n} \to 0$. Proving the other way. $\lim \frac{1}{s_n} = 0$. Let M > 0, $\epsilon = \frac{1}{M}$. There is a n > N s.t. $\left| \frac{1}{s_n} - 0 \right| < \epsilon = \frac{1}{M} \implies \frac{1}{s_n} < \frac{1}{M} \implies s_n > M$. Since this is true for all M, $s_n \to \infty$

Exercise 3.5 (Exercise 9.15). Show that $\lim_{n\to\infty} \frac{a^n}{n!} = 0$ For all $a \in \mathbb{R}$

Proof. Let's split up $\frac{a^n}{n!}$ into $\frac{a^a a^{n-a}}{a!(n-a)!}$ We know $\frac{a^a}{a!} = M$ for some M > 0. That leaves us with $\frac{a^{n-a}}{(n-a)!} \to 0$. We know that

 $(n-a)! > (a+1)^{n-a}$. Since a is arbitrary and $n \to \infty$, define N := (n-a). This leaves $\frac{a^{n-a}}{(n-a)!} > \left(\frac{a}{a+1}\right)^N$. Since $\frac{a}{a+1} < 1$, $\left(\frac{a}{a+1}\right)^n \to 0$ Because $M < \infty$, 0M = 0.

Exercise 3.6 (Exercise Problem 1). *Show directly through the definition of a limit that*

$$\lim_{n\to\infty} a^n = \infty \text{ if } a > 1.$$

Proof. since a > 1: $a := 1 + \frac{1}{h}$. Let $b := \frac{1}{h}$

 $\implies a^n = (1+b)^n$ for some b > 0.

 $\implies (1+b)^n \le 1+nb$. However, by the archemedian property, nb > M for any M > 0. Let $n > \frac{M}{h}$

Therefore,
$$a^n > nb > M$$

Exercise 3.7 (Exercise Problem 2). Suppose $s_n = \infty$ and t_n is a sequence of positive numbers bounded above. Show that $\frac{s_n}{t_n} = \infty$

Proof. t_n is bounded above by some C > 0.

$$\frac{s_n}{t_n} \ge \frac{s_n}{C} > M \implies s_n > CM$$
Therefore, $\frac{s_n}{t_n} > \frac{CM}{t_n} > M$

Exercise 3.8 (Exercise 10.8). Let s_n be an increasing sequence of positive numbers and define $\sigma_n = \frac{1}{n}(s_1 + s_2 + ... s_n)$. Prove σ_n is an increasing sequence.

Proof. Our goal is to show that $\sigma_n < \sigma_{n+1} \implies \sigma_{n+1} - \sigma_n > 0$

$$\implies \frac{1}{n+1}(s_1+s_2+...s_n+s_{n+1}) - \frac{1}{n}(s_1+s_2+...s_n) = \frac{n}{n(n+1)}(s_1+s_2+...s_n+s_{n+1}) - \frac{n+1}{n(n+1)}(s_1+s_2+...s_n)$$

$$\implies n(s_{n+1}) - (s_1 + s_2 + ...s_n) \frac{1}{n(n+1)}$$

Because $s_{n+1} > s_n > s_{n-1} ... \ge s_1 \implies n(s_{n+1}) - (s_1 + s_2 + ... s_n) > 0$

Exercise 3.9 (Additional Problem 3). *Define* s_n *by* $s_1 = 1$ *and*

$$s_{n+1} = \sqrt{s_n + 1}$$

Show that s_n converges and find its limit.

Proof. From Cauchy, $|s_n - s_m| < \epsilon \implies$ convergence.

$$n := m + 1$$

$$|\sqrt{s_n+1}-\sqrt{s_n}|<\epsilon \implies s_n+1<(\epsilon+\sqrt{s_n})^2=s_n+\epsilon^2+2\epsilon\sqrt{s_n}$$

$$1 < \epsilon^2 + 2\epsilon \sqrt{s_n} \implies (\frac{1 - \epsilon^2}{2\epsilon})^2 < s_n$$

From this, we know that this sequence converges. Now, since it converges, that means $s_{n+1} = s_n - \epsilon$ for some $\epsilon > 0$.

Solving $x^2 = x + 1$ gives the golden ratio.

Exercise 3.10 (Additional Problem 4). *Define* t_n *by* $t_1 = 1$ *and*

$$t_{n+1} = \left(\frac{n}{n+2}\right)t_n$$

Show that t_n converges.

Proof. By induction, t_n is a decreasing sequence. $t_2 = \frac{1}{3} < t_1$ $t_n = \frac{n-1}{n+1}t_{n-1} > t_{n+1} = At_n$ where A < 1

We also note that $0 < \frac{n}{n+2} < 1$ so this sequence is bounded below by 0. Since this sequence is decreasing and bounded below, t_n converges by monotone convergence.

Exercise 3.11 (Additional Problem 5). Prove that if s_n is decreasing and bounded below then s_n decreases. [Monotone Convergence]

Proof. There exists some $C \le \{s : n \in \mathbb{N}\}$

Our claim is that s_n converges to C. Since C is the minimum bound, $C + \epsilon$ is not a lower bound. We define $C < s_N < C + \epsilon$. Since our sequence is decreasing, we have $s_n \le s_N$ for all $n > N \implies s_N$ converges to C.

Exercise 3.12 (Babylonian Square Root). *a)* Let a > 0 and $b > \sqrt{a}$ be given. Define a sequence s_n by $s_1 = b$ and

$$s_{n+1} = \frac{1}{2} \left(s_n + \frac{a}{s_n} \right)$$

Show that s_n is a decreasing sequence that converges to \sqrt{a}

b) Let a = 2, b = 2. Calculus $s_2, s_3, ...$ and compare this to $\sqrt{2}$

Proof. a) To show this is decreasing, $s_n \ge \sqrt{a}$ for all n. This is true through induction.

We also need to show this is decreasing. $s_n - s_{n+1} > 0 \implies \frac{1}{2}(-s_n + \frac{a}{s_n}) \ge 0$ $s_n \ge \sqrt{a} \implies -s_n^2 + a < 0$. We have proved the s_n is a decreasing sequence.

Because this is bounded by \sqrt{a} and is a decreasing sequence, we know this converges.

$$s = \frac{1}{2}(s + \frac{a}{s}) \implies s = \sqrt{a} \tag{1}$$

4 Week 5

Exercise 4.1 (Additional exercise 1). Show that \mathbb{Z} is complete and that any Cauchy sequence in \mathbb{Z} converges.

Proof. By definition, we have $|s_n - s_m| < \epsilon$ for some n > m. and $\epsilon > 0$. Because we are in \mathbb{Z} , the only way for this sequence to converge is if for some n > m, $s_n = s_m$.

Exercise 4.2 (Additional Exercise 2). *Construction of* \mathbb{Q} *without cuts or decimal expansions.*

Define $p_n \sim q_n$ if and only if $\lim_{n\to\infty} p_n - q_n = 0$ Show that \sim is an equivalence relation on the set of sequences in \mathbb{Q}

Proof. • Does $p_n \sim p_n$ hold? Yes

- $p_n \sim q_n \implies q_n \sim p_n$ Yes
- Holds due to transitivity as well. Suppose $p_n \sim q_n$ and $q_n \sim r_n$

$$\lim_{n \to \infty} p_n - r_n = p_n - q_n + q_n - r_n = 0$$
 (2)

Exercise 4.3 (Exercise 11.8). *Prove lim inf* $s_n = -\lim \sup(-s_n)$ *for every sequence* s_n

Proof. -S := {−
$$s$$
 : s ∈ S } and inf(S) = -sup(-S). Let S_N := { s_n : n > N } Using the that fact, we can apply the limit and it works as well xd.

Exercise 4.4 (Exercise 11.9). Show that the interval [a,b] is a closed set. Is there a sequecence s_n such that (0,1) is its set of subsequential limits?

Proof. a) The interval [a,b] is a closed set. We can say a sequence s_n will converge to s. Because $s_n \in [a,b]s_n$ has to converge to some value within [a,b]

b) Because (0,1) is not a closed set: We can have the subsequence $\frac{1}{n}$ which is would converge to 0.

Exercise 4.5 (Exercise 11.11). Let S be a bounded set. Prove there is an increasing subsequence s_n of points in S such that $\lim s_n = \sup S$.

Proof. Assuming $\sup(S) \notin S$.

By definition, S is bounded by $\sup(S) := C$. There exists n > N such that $s_n \le C$. If we can construct an increasing sequence $\sup(S) - \frac{1}{n} < s_n < \sup(S)$.

Exercise 4.6 (Exercise 3). Suppose s_n is a sequence with the property that every subsequence has a further subsequence that converges to s.

Prove that s_n converges to s.

Proof. Because every subsequence of s_n has another subsequence that converges to s, suppose we have some s_n that doesn't converge to s.

$$|s_n - s| > \epsilon$$
 for some $\epsilon > 0$ and $n > N$.

Exercise 4.7 (Exercise 4). Find an unbounded sequence s_n where every convergent subsequences converges to s but not every s_n converges to s.

Proof. The sequence 0,2,0,4,0,6 ... has every converging subsequence converging to 0 but s_n does not converge to 0.

Exercise 4.8 (Exercise 12.4). Show that $\limsup (s_n + t_n) \le \limsup s_n + \limsup t_n$ for bounded sequences s_n and t_n .

Proof.
$$s_n + t_n \le sup(s_n : n > N) + sup(t_n : n > N) \implies sup(s_n + t_n) \le sup(s_n : n > N) + sup(t_n : n > N)$$

 $limsup(s_n+t_n) = limsup(s_n+t_n: n > N) \leq limsup(s_n: n > N) + sup(t_n: n > N) = limsup(s_n) + limsup(t_n) \leq limsup(s_n+t_n) \leq limsup(s$

5 Week 6

Exercise 5.1 (Exercise 12.8). Let s_n and t_n be bounded sequences of non-negative numbers. Prove $\limsup s_n t_n \leq \limsup(s_n) \limsup(t_n)$

Proof. limsup $s_n := limsup\{s_n : n > N\}$ and $s_n \le sup(s_n : n > N)$ Applying this to t_n as well we get

$$s_n t_n \leq \sup(s_n: n > N) \sup(t_n: n > N) \implies \sup(s_n t_n) \leq \sup(s_n: n > N \sup(t_n: n > N).$$

Then taking the limit gives us our desired answer.

Exercise 5.2 (Exercise 12.12). Let s_n be a sequence of non-negative numbers. Define $\sigma_n(s_1 + s_2 + ...s_n)$

a) Show

 $liminf s_n \leq liminf \sigma_n \leq limsup_n \leq limsups_n$

b)