

Page 8, lines 8-10, delete current paragraph and insert therefor:

The 11th aspect of the invention is the image-forming process described in the aspect 4 described above. When the toner amount on the recording paper is 0.50 mg/cm² and the glossiness (75 degree gloss) is from 40 to 60, and preferably 40 to 50.

Page 23, line 21 to page 24, line 3, delete current paragraph and insert therefor:

The image-forming process of the invention is an image-forming process including a latent image-forming step of forming an electrostatic latent image on a latent image holding member, a developing step of forming a toner image by developing the electrostatic latent image with a toner, a transfer step of transferring the toner image onto a transfer material to form a transfer image, and a fixing step of fixing the transfer image using a fixing apparatus comprising, for example, a heat roller and a press roller, wherein the above-described toner is the toner of the invention, the surfaces of the above-described heat roller and press roller are formed with a releasing resin such as, for example, a fluorine resin, and a releasing liquid is not substantially supplied to the surfaces.

Page 26, lines 5-18, delete current paragraph and insert therefor:

In the image-forming process of the invention, fixed images having a high glossiness can be obtained. Because the glossiness of a fixed image largely depends upon the structure of the fixing apparatus and the fixing condition, it is difficult to obtain a high gloss by satisfying all the conditions but in the present invention, a high glossiness can be obtained by the following conditions. That is, in the invention, in the state of substantially not supplying a releasing liquid to the surface of the heat roller, using a recording paper having a basis weight of from 50 to 120 g/m² as the recording material, and when the toner image is fixed to the recording paper by heat-pressing under the conditions that the surface temperatures of the heat roller and the press roller are from 150 to 180°C and the peripheral speed of the heat

roller and the press roller is from 70 to 120 mm/second, a fixed image having a glossiness (75 degree gloss) of from 40 to 60, preferably 40 to 50, can be formed when the toner carried amount formed on the recording paper is 0.50 mg/cm^2 . The image having such a high glossiness is suitable for a pictorial image and an OHP image and gives a full color image having a high quality.

JP

9
Page 36, delete current Table 6 and insert therefor:

Table 6

	Contents of Wax	Melting Point (°C)	Melt Viscosity at 110°C (mPa•s)
Wax C	Granular purified carnauba wax	83	50
Wax D	Microcrystalline wax	85	110
Wax E	Heptatriacontane oxalate	103	150

Page 45, line 20 to page 46, line 9 , delete current paragraphs and insert therefor:

In the toner of Comparative Example 6, the value of the differential molecular weight distribution of the above-described molecular weight of 5×10^3 is not larger than 0.55%, but because the above-described molecular weight is also distributed in the range of at least 1×10^6 , and the value of the differential molecular weight distribution of the above-described molecular weight of 1×10^5 is larger than 0.15, although the anti-offset property may be satisfied, the OHP transparency is insufficient and the low-temperature fixing property cannot be satisfied.

In the toner of Comparative Example 7, the value of the differential molecular weight distribution of the above-described molecular weight of 5×10^3 is not larger than 0.55%, but because the above-described molecular weight is also distributed in the range of at least 1×10^6 , and the value of the differential molecular weight distribution of the above-described molecular weight of 1×10^5 is larger than 0.15 and also the melt viscosity of the wax is too