

Single Channel: HCPL0452 HCPL0453 HCPL0500 HCPL0501 Dual Channel: HCPL0530 HCPL0531 HCPL0534

DESCRIPTION

The HCPL05XX, and HCPL04XX optocouplers consist of an AlGaAs LED optically coupled to a high speed photodetector transistor housed in a compact 8-pin small outline package.

A separate connection for the bias of the photodiode improves the speed by several orders of magnitude over conventional phototransistor optocouplers by reducing the base-collector capacitance of the input transistor. The HCPL04XX devices do not have the base bonded out to a lead for additional noise margin. The HCPL053X devices have two channels per package for optimum mounting density.

FEATURES

- High speed 1 MBit/s
- 15kV/µs minimum commone mode transient immunity at V_{CM}=1500V (HCPL0453/0534)
- Open collector output
- Guaranteed performance over temperature: 0°C to 70°C
- U.L. recognized (File # E90700)
- VDE0884 recognized (file#136616)
 - approval pending for HCPL0530/0531/0453
 - ordering option V, e.g., HCPL0500V
- BSI recognized (file# 8661, 8662)
 HCPL0452/0500/0501 only

APPLICATIONS

- Line receivers
- · Pulse transformer replacement
- Output interface to CMOS-LSTTL-TTL
- Wide bandwidth analog coupling

TRUTH TABLE (positive logic)

LED	v _o
ON	LOW
OFF	HIGH

Single Channel: Dual Channel: **HCPL0452 HCPL0453 HCPL0500 HCPL0501**

HCPL0530 HCPL0534 HCPL0531

Parameter	Symbol	Value	Units
Storage Temperature	T _{STG}	-40 to +125	°C
Operating Temperature	T _{OPR}	-40 to +85	°C
Reflow Temperature Profile (Refer to page 9)			
EMITTER			
DC/Average Forward Input Current	I _F (avg)	25	mA
Peak Forward Input Current (50% duty cycle, 1 ms P.W.)	I _F (pk)	50	mA
Peak Transient Input Current - ([≤1 μs P.W., 300 pps)	I _F (trans)	1.0	Α
Reverse Input Voltage	V _R	5	V
Input Power Dissipation	P _D	45	mW
DETECTOR			
Average Output Current (Pin 6)	I _O (avg)	8	mA
Peak Output Current	I _O (pk)	16	mA
Emitter-Base Reverse Voltage (HCPL0500/HCPL0501 only)	V _{EBR}	5	V
Supply Voltage	V _{CC}	-0.5 to 30	V
Output Voltage	V _O	-0.5 to 20	V
Base Current (HCPL0500/HCPL0501 only)	I _B	5	mA
Output power dissipation	P _D	100	mW

ELECTRICAL CHARACTERISTICS	$(T_{\Delta} = 0 \text{ to } 70^{\circ}\text{C Unless otherwise specified})$
----------------------------	--

INDIVIDUAL COMPONENT CHARACTERISTICS

Parameter	Test Conditions		Symbol	Device	Min	Тур**	Max	Unit
EMITTER		$(I_F = 16 \text{ mA}, T_A = 25^{\circ}\text{C})$	V _F	All		1.45	1.7	V
Input Forward Voltage	_	(I _F = 16 mA)	-				1.8	
Input Reverse Breakdown V	oltage	(I _R = 10 μA)	BV _R	All	5.0			V
Temperature coefficient of forward voltage (I _F = 16 mA		(I _F = 16 mA)	$(\Delta V_F/\Delta T_A)$	All		-1.6		mV/°C
DETECTOR								
	(I _F = 0	mA, $V_O = V_{CC} = 5.5$ V) $(T_A = 25^{\circ}C)$		All		0.001	0.5	
Logic high output current	(I _F = 0 m	$NA, V_O = V_{CC} = 15 V$ $(T_A = 25^{\circ}C)$	I _{OH}	All		0.005	1	μA
(I _F = 0 r		$A, V_O = V_{CC} = 15 V$		All			50	
Logic low supply current	(I _F =	= 16 mA, V _O = Open) (V _{CC} = 15 V)	I _{CCL}	HCPL0452/3/ 0500/1/4		120	200	μA
		(ACC = 12 A)		HCPL0530/1			400	

Single Channel: Dual Channel: **HCPL0452 HCPL0453 HCPL0500 HCPL0501**

HCPL0530 HCPL0534 HCPL0531

ELECTRICAL CHARACTERISTICS ($T_A = 0$ to 70° C Unless otherwise specified) (Continued)

INDIVIDUAL COMPONENT CHARACTERISTICS

Parameter	rameter Test Conditions Symbol Device		Device	Min	Typ**	Max	Unit
Logic high supply current	$(I_F = 0 \text{ mA}, V_O = \text{Open}, V_{CC} = 15 \text{ V}) (T_A = 25^{\circ}\text{C})$		All		0.01	1	
	$(I_F = 0 \text{ mA}, V_O = \text{Open})$	I _{CCH}	HCPL0452/3/ 0500/1			2	μΑ
	$(V_{CC} = 15 V)$		HCPL0530/1/4			4	

TRANSFER CHARACTERISTICS (T_A = 0 to 70°C Unless otherwise specified)

Parameter	Test Conditions	Symbol	Device	Min	Тур**	Max	Unit
COUPLED	4		HCPL0500/0530	7	27	50	
	$(I_F = 16 \text{ mA}, V_O = 0.4 \text{ V})$ $(V_{CC} = 4.5 \text{ V}, T_\Delta = 25^{\circ}\text{C})$		HCPL0452/3	19	27	50]
	(VCC = 4.3 V, 1A =23 O)	CTR	HCPL0501/0531	19	21	50	%
Current transfer ratio (Note 1)	(1 40 4) (0 5) (CIR	HCPL0500	5	30		70
(Note 1)	$(I_F = 16 \text{ mA}, V_O = 0.5 \text{ V})$ $(V_{CC} = 4.5 \text{ V})$		HCPL0452/3	15	30]
			HCPL0501/0534	15			
	$(I_F = 16 \text{ mA}, I_O = 1.1 \text{ mA})$		HCPL0500		0.18	0.4	
	$(V_{CC} = 4.5 \text{ V}, T_A = 25^{\circ}\text{C})$	V _{OL}	HCPL0530			0.5]
	$(I_F = 16 \text{ mA}, I_O = 3 \text{ mA})$ $(V_{CC} = 4.5 \text{ V}, T_A = 25^{\circ}\text{C})$		HCPL0452/3		0.25	0.4	
Logic low output voltage			HCPL0501/0531/4				V
output voltage	$(I_F = 16 \text{ mA}, I_O = 0.8 \text{ mA})$ $(V_{CC} = 4.5 \text{ V})$	VOL	HCPL0500 HCPL0530		0.13	0.5	
	$(I_F = 16 \text{ mA}, I_O = 2.4 \text{ mA})$	1	HCPL0452/3		0.00	0.5]
	$(V_{CC} = 4.5 \text{ V})$		HCPL0501/0531/4		0.23	0.5	

^{**} All typicals at $T_A = 25$ °C

Single Channel: HCPL0452 HCPL0453 HCPL0500 HCPL0501 Dual Channel: HCPL0530 HCPL0531 HCPL0534

Parameter	Test Conditions	Symbol	Device	Min	Typ**	Max	Unit
	$T_A = 25^{\circ}C$, $(R_L = 4.1 \text{ k}\Omega, I_F = 16 \text{ mA})$ (Note 2) (Fig. 9)		HCPL0500/0530		0.45	1.5	
	$(R_I = 1.9 \text{ k}\Omega, I_F = 16 \text{ mA}) \text{ (Note 3) (Fig. 9)}$		HCPL0452/3		0.45	0.0	
Propagation	$T_A = 25$ °C	_	HCPL0501/0531/4		0.45	0.8	
delay time to logic low	$(R_L = 4.1 \text{ k}\Omega, I_F = 16 \text{ mA})$ (Note 2) (Fig. 9)	T _{PHL}	HCPL0500/0530			2.0	μs
Ü	$(R_I = 1.9 \text{ k}\Omega, I_F = 16 \text{ mA}) \text{ (Note 3) (Fig. 9)}$		HCPL0452/3			1.0	
	$(n_L = 1.9 \text{ K}22, 1_F = 10 \text{ IIIA}) \text{ (Note 3) (Fig. 9)}$		HCPL0501/0531/4			1.0	
	$T_A = 25$ °C, ($R_L = 4.1 \text{ k}\Omega$, $I_F = 16 \text{ mA}$) (Note 2) (Fig. 9)		HCPL0500/0530		0.5	1.5	
	$(R_L = 1.9 \text{ k}\Omega, I_F = 16 \text{ mA}) \text{ (Note 3) (Fig. 9)}$		HCPL0452/3		0.3	0.8	
Propagation delay time to logic high	T _A = 25°C	Т	HCPL0501/0531/4		0.5	0.0	116
	$(R_L = 4.1 \text{ k}\Omega, I_F = 16 \text{ mA}) \text{ (Note 2) (Fig. 9)}$	T _{PLH}	HCPL0500/0530			2.0	μs
	$(R_L = 1.9 \text{ k}\Omega, I_F = 16 \text{ mA}) \text{ (Note 3) (Fig. 9)}$		HCPL0452/3			1.0	
			HCPL0501/0531/4				
	$(I_F = 0 \text{ mA}, V_{CM} = 10 V_{P-P}, R_L = 4.1 \text{ kV})$		HCPL0500	1,000	10,000		
Common	(Note 4) (Fig. 10) T _A = 25°C		HCPL0530	1,000			
mode	$(I_F = 0 \text{ mA}, V_{CM} = 10 V_{P-P})$	ICM _H I	HCPL0452	1,000	10,000		
transient immunity at	$T_A = 25^{\circ}C, (R_L = 1.9 \text{ k}\Omega)$		HCPL0501/31	1,000	10,000		V/µs
logic high	(Note 4) (Fig. 10)		HCPL0534	15,000	40,000		
	$(I_F = 16 \text{ mA}, V_{CM} = 1500 \text{ V}_{P\text{-}P}, R_L = 1.9\Omega, T_A = 25^{\circ}\text{C})$ (note 4) (Fig. 10)		HCPL0453	15,000	40,000		
	$(I_F = 16 \text{ mA}, V_{CM} = 10 V_{P-P}, R_L = 4.1 \text{ k}\Omega)$		HCPL0500	1,000	10,000		
Common mode	(Note 4) (Fig. 10) T _A = 25°C		HCPL0530	1,000	10,000		
	$(I_F = 16 \text{ mA}, V_{CM} = 10 V_{P-P})$		HCPL0452	1,000	10,000		
transient	$(T_A = 25^{\circ}C, R_L = 1.9 \text{ k}\Omega)$	ICM _L I	HCPL0501/31	1,000	10,000		V/µs
immunity at logic low	(Note 4) (Fig. 10)		HCPL0534	15,000	40,000		
3	$(I_F = 16 \text{ mA}, T_A = 25^{\circ}\text{C}, V_{CM} = 1500 V_{P-P}, C_L = 15pF)$ (Note 4) (Fig. 10)		HCPL0453	15,000	40,000		

ISOLATION CHARACTERISTICS (T _A = 0°C to +70°C Unless otherwise specified.)						
Characteristics	Test Conditions	Symbol	Min	Typ**	Max	Unit
Input-Output Isolation Voltage	(note 5, 6) (f = 60 Hz, t = 1.0 min)	V _{ISO}	2500	_	_	Vac _{RMS}
Isolation Resistance	(note 5) $(V_{I-O} = 500 \text{ V})^{(9)}$	R _{ISO}	10 ¹¹	_	_	Ω
Isolation Capacitance	(note 5) $(V_{I-O} = 0, f = 1.0 \text{ MHz})^{(9)}$	C _{ISO}	_	0.2	_	pF

^{**} All typicals at T_A = 25°C

Single Channel: HCPL0452 HCPL0453 HCPL0500 HCPL0501 Dual Channel: HCPL0530 HCPL0531 HCPL0534

NOTES

- 1. Current Transfer Ratio is defined as a ratio of output collector current, I_O , to the forward LED input current, I_F times 100%.
- 2. The 4.1 k Ω load represents 1 LSTTL unit load of 0.36 mA and 6.1k Ω pull-up resistor.
- 3. The 1.9 k Ω load represents 1 TTL unit load of 1.6 mA and 5.6 k Ω pull-up resistor.
- 4. Common mode transient immunity in logic high level is the maximum tolerable (positive) dV_{cm}/dt on the leading edge of the common mode pulse signal V_{CM}, to assure that the output will remain in a logic high state (i.e., V_O>2.0 V). Common mode transient immunity in logic low level is the maximum tolerable (negative) dV_{cm}/dt on the trailing edge of the common mode pulse signal, VCM, to assure that the output will remain in a logic low state (i.e., V_O<0.8 V).</p>
- 5. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
- 6. 2500 VAC RMS for 1 minute duration is equivalent to 3000 VAC RMS for 1 second duration.

Single Channel: Dual Channel: **HCPL0452 HCPL0453 HCPL0500 HCPL0501**

HCPL0530 HCPL0534 HCPL0531

TYPICAL PERFORMANCE CURVES

IF - FORWARD CURRENT (mA)

Fig. 2 Normalized CTR vs. Temperature 1.2 1.0 NORMALIZED CTR 0.8 0.6 0.4 I_F = 16mA V_{CC} = 5 V V_O = 0.4 V Normalized to: T_A = 25°C 0.2 0.0 -40 20 60 80 -60 100 T_A - TEMPERATURE (°C)

Fig. 3 Output Current vs. Output Voltage T_A = 25°C V_{CC} = 5 V I_E = 40 mA 14 Io - OUTPUT CURRENT (mA) 12 10 12 16 18 20 VO - OUTPUT VOLTAGE (V)

Single Channel: HCPL0452 HCPL0453 HCPL0500 HCPL0501 Dual Channel: HCPL0530 HCPL0531 HCPL0534

Fig. 7 Switching Time Test Circuit

Fig. 8 Common Mode Immunity Test Circuit

Single Channel: Dual Channel: **HCPL0452 HCPL0453 HCPL0500 HCPL0501**

HCPL0530 HCPL0534 HCPL0531

ORDERING INFORMATION

Option	Order Entry Identifier	Description
V	V	VDE 0884 (approval pending for HCPL0530, HCPL0531 & HCPL0534)
R1	R1	Tape and reel (500 units per reel)
R1V	R1V	VDE 0884 (approval pending for HCPL0530, HCPL0531 & HCPL0534), Tape and reel (500 units per reel)
R2	R2	Tape and reel (2500 units per reel)
R2V	R2V	VDE 0884 (approval pending for HCPL0530, HCPL0531 & HCPL0534), Tape and reel (2500 units per reel)

MARKING INFORMATION

Definiti	Definitions					
1	Fairchild logo					
2	Device number					
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)					
4	One digit year code, e.g., '3'					
5	Two digit work week ranging from '01' to '53'					
6	Assembly package code					

HCPL0452 HCPL0453 HCPL0500 HCPL0501

Single Channel: Dual Channel: **HCPL0530 HCPL0534 HCPL0531**

Single Channel: HCPL0452 HCPL0453 HCPL0500 HCPL0501 Dual Channel: HCPL0530 HCPL0531 HCPL0534

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.