Icosahedral Quantum Codes from Twisted Unitary t-groups

Eric Kubischta and Ian Teixeira University of Maryland MathQuantum Symposium 2025

Based on the following papers

Family of Quantum Codes with Exotic Transversal Gates. Physical Review Letters, Dec 2023

Quantum Codes from Twisted Unitary *t***-groups**. *Physical Review Letters, July* 2024

Setup

- Let C be code subspace of physical Hilbert space ${\mathcal H}$
- Let P_C be projector onto C
- Define logical error map $\Pi : L(\mathcal{H}) \to L(C)$
 - $\Pi(E) = P_C E P_C$
 - maps physical errors to logical errors
- Let G be transversal gate group for C
 - Π is G-linear
 - We can use Schur's Lemma

Mapping Physical Errors to Logical Errors

Icosahedral Quantum Codes

Binary Icosahedral group

Size	1	1	30	20	20	12	12	12	12
π_1	1	1	1	1	1	1	1	1	1
π_2	2	-2	0	1	-1	φ	$arphi^{\text{-}1}$	$-\varphi^{-1}$	-φ
$\overline{m{\pi}_2}$	2	-2	0	1	-1	$-\varphi^{-1}$	$-\varphi$	φ	$\varphi^{\text{-}1}$
π_3	3	3	-1	0	0	φ	$-\varphi^{-1}$	- $\varphi^{ ext{-}1}$	φ
$\overline{m{\pi}_3}$	3	3	-1	0	0	$-\varphi^{-1}$	φ	φ	$-\varphi^{-1}$
$oldsymbol{\pi}_4$	4	-4	0	-1	1	1	-1	1	-1
$\pi_{4'}$	4	4	0	1	1	-1	-1	-1	-1
π_5	5	5	1	-1	-1	0	0	0	0
π_6	6	-6	0	0	0	-1	1	-1	1
$\varphi = (1 + \sqrt{5})/2$ is the golden ratio									

C: $\lambda = \pi_2$

 $L(C): \pi_1 \oplus \pi_3$

Logical Error Map for $\lambda = \pi_2$

Icosahedral Quantum Codes

Binary Icosahedral group

Size	1	1	30	20	20	12	12	12	12
π_1	1	1	1	1	1		1	1	1
π_2	2	-2	0	1	-1		$\varphi^{\text{-}1}$	$-\varphi^{-1}$	-φ
$\overline{m{\pi}_2}$	2	-2	0	1	-1	$-\varphi^{-1}$	-φ	φ	$\varphi^{\text{-}1}$
π_3	3	3	-1	0	0	φ	- $arphi^{-1}$	- $\varphi^{ ext{-}1}$	φ
$\overline{\pi_3}$	3	3	-1	0	0	$-\varphi^{-1}$	φ	φ	- $\varphi^{\text{-}1}$
π_4	4	-4				1	-1	1	-1
$\pi_{4'}$	4	4	0	1	1	-1	-1	-1	-1
π_5	5	5	1	-1	-1	0	0	0	0
π_6	6	-6	0	0	0	-1	1	-1	1

 $\varphi = (1 + \sqrt{5})/2$ is the golden ratio

C: $\lambda = \overline{\pi}_2$

L(C): $\pi_1 \oplus \overline{\pi_3}$

Logical Error Map for $\lambda = \overline{\pi_2}$

$$\implies$$
 All $\lambda = \overline{\pi_2}$ codes have $d = 3$ automatically!

The smallest 2I code

- Smallest 2I transversal code is in 7 qubits
- Codewords:

$$\begin{split} & \left| \overline{0} \right\rangle = \frac{\sqrt{15}}{8} \left| D_0^7 \right\rangle + \frac{\sqrt{7}}{8} \left| D_2^7 \right\rangle + \frac{\sqrt{21}}{8} \left| D_4^7 \right\rangle - \frac{\sqrt{21}}{8} \left| D_6^7 \right\rangle \\ & \left| \overline{1} \right\rangle = -\frac{\sqrt{21}}{8} \left| D_1^7 \right\rangle + \frac{\sqrt{21}}{8} \left| D_3^7 \right\rangle + \frac{\sqrt{7}}{8} \left| D_5^7 \right\rangle + \frac{\sqrt{15}}{8} \left| D_7^7 \right\rangle \end{split}$$

• $|D_w^n\rangle$ is a Dicke state

$$|D_w^n\rangle = \frac{1}{\sqrt{\binom{n}{w}}} \sum_{wt(s)=w} |s\rangle$$

- sum is over all length n bit strings of Hamming weight w

Why is 2I important?

- Super golden gate sets*
 - Single-qubit (SU(2)) universal gate sets $\mathscr{U} = G + \tau$ with optimal navigation properties, minimizing expensive τ gates

- $\mathcal{U}_1 = 2O + T$
 - » Most standard universal gate set (Clifford)
 - » Many stabilizer codes implement 2O transversally
- $\mathcal{U}_2 = 2I + \tau_{60}$
 - » Icosahedral gate set
 - » Most efficient (single qubit) universal gate set
 - » Need codes that implement 2I transversally

^{*} O. Parzanchevski and P. Sarnak, Super-golden-gates for PU(2), Advances in Mathematics, (2018)

Unitary t-Groups and Representation Theory

The following are equivalent:

(1) $G \subset U(q)$ is a unitary t-group

(2)
$$\frac{1}{|G|} \sum_{g \in G} \left(\mathbf{F}^{\downarrow} \otimes \mathbf{F}^{\downarrow}^{*} \right)^{\otimes t} (g) = \int_{\mathrm{U}(q)} \left(\mathbf{F} \otimes \mathbf{F}^{*} \right)^{\otimes t} (g) \, dg$$

(3)
$$\frac{1}{|G|} \sum_{g \in G} (1 \oplus Ad^{\downarrow})^{\otimes t}(g) = \int_{U(q)} (1 \oplus Ad)^{\otimes t}(g) dg$$

(4)
$$\frac{1}{|G|} \sum_{g \in G} \mathbf{R}^{\downarrow}(g) = \int_{U(g)} \mathbf{R}(g) \, dg, \quad \forall \mathbf{R} \in \mathscr{E}_{t}$$

(5)
$$\frac{1}{|G|} \sum_{g \in G} R^{\downarrow}(g) = 0$$
, $\forall R \in \mathcal{E}_t, R \neq 1$

(6)
$$\langle 1, R^{\downarrow} \rangle = 0$$
, $\forall \mathbf{R} \in \mathscr{E}_t, \mathbf{R} \neq \mathbf{1}$

λ -Twisted Unitary *t*-Groups

The following are equivalent:

(1) $G \subset U(q)$ is a λ -twisted unitary t-group

(2)
$$\frac{1}{|G|} \sum_{g \in G} |\lambda(g)|^2 \left(\mathsf{F}^{\downarrow} \otimes \mathsf{F}^{\downarrow *} \right)^{\otimes t} (g) = \int_{U(q)} (\mathsf{F} \otimes \mathsf{F}^*)^{\otimes t} (g) \, dg$$

(3)
$$\frac{1}{|\mathsf{G}|} \sum_{g \in \mathsf{G}} |\lambda(g)|^2 (1 \oplus \mathsf{Ad}^{\downarrow})^{\otimes t}(g) = \int_{\mathsf{U}(q)} (1 \oplus \mathsf{Ad})^{\otimes t}(g) \, dg$$

(4)
$$\frac{1}{|G|} \sum_{g \in G} |\lambda(g)|^2 \mathbf{R}^{\downarrow}(g) = \int_{U(q)} \mathbf{R}(g) dg$$
, $\forall \mathbf{R} \in \mathscr{E}_t$

(5)
$$\frac{1}{|G|} \sum_{g \in G} |\lambda(g)|^2 R^{\downarrow}(g) = 0$$
, $\forall R \in \mathcal{E}_t, R \neq 1$

(6)
$$\langle \lambda^* \lambda, R^{\downarrow} \rangle = \langle 1 + \omega, R^{\downarrow} \rangle = 0, \quad \forall \mathbf{R} \in \mathcal{E}_t, \mathbf{R} \neq \mathbf{1}$$

Main Results

Theorem

If G is a λ -twisted unitary t-group then every subspace of $(\mathbf{F}^{\downarrow})^{\otimes n}$ that transforms in λ is a $|\lambda|$ -dimensional quantum code with distance $d \geq t + 1$ and transversal gate group $\lambda(G)$.

Main Results

Theorem

If G is a λ -twisted unitary t-group then every subspace of $(\mathbf{F}^{\downarrow})^{\otimes n}$ that transforms in λ is a $|\lambda|$ -dimensional quantum code with distance $d \geq t + 1$ and transversal gate group $\lambda(G)$.

Corollary

 $2I \subset SU(2)$ is a $\overline{\pi}_2$ -twisted unitary 2-group thus every $\overline{\pi}_2$ subspace of $\mathbf{F}^{\downarrow \otimes n}$ is a 2-dimensional quantum code with $d \geq 3$ and transversal gate group 2I.

Main Results

Theorem

If G is a λ -twisted unitary t-group then every subspace of $(\mathbf{F}^{\downarrow})^{\otimes n}$ that transforms in λ is a $|\lambda|$ -dimensional quantum code with distance $d \geq t + 1$ and transversal gate group $\lambda(G)$.

Corollary

 $2I \subset SU(2)$ is a $\overline{\pi}_2$ -twisted unitary 2-group thus every $\overline{\pi}_2$ subspace of $\mathbf{F}^{\downarrow \otimes n}$ is a 2-dimensional quantum code with $d \geq 3$ and transversal gate group 2I.

Corollary

 $\Sigma(360\phi) \subset SU(3)$ is a $\overline{\chi}_4$ -twisted unitary 1-group thus every $\overline{\chi}_4$ subspace of $\mathbf{F}^{\downarrow \otimes n}$ is a 3-dimensional quantum code with $d \geq 2$ and transversal gate group $\Sigma(360\phi)$.

Thank you

Questions?