3.3.5 (4.11A). ЭФФЕКТ ХОЛЛА В МЕТАЛЛАХ ДОПОЛНИТЕЛЬНОЕ ОПИСАНИЕ 30-VI

30-VIII-2016 г.

В работе используются: электромагнит с источником питания, источник постоянного тока, микровольтметр $\Phi 116/1$, амперметры, измеритель магнитной индукции Ш1-10, образцы из меди, серебра и цинка.

Элементарная теория эффекта Холла изложена во введении к теме. Приведенное там выражение (3.26) для ЭДС Холла было получено для случая, когда поперечная составляющая тока в образце отсутствует. Поэтому измерять разность потенциалов между гранями образца следует при минимальном (в идеале — при нулевом) поперечном токе. Большая концентрация носителей тока в металлах ($n \simeq 10^{23} \, \mathrm{cm}^{-3}$) приводит к очень малым значениям ЭДС Холла. Оба эти обстоятельства сильно затрудняют измерения: высокая чувствительность по напряжению должна сочетаться с малой величиной тока, потребляемого измерительной схемой. В нашей работе для измерений используется микровольтмикроамперметр Ф116/1, который удовлетворяет этим требованиям: минимальный предел измерения напряжения составляет 1,5 мкВ, а потребляемый ток всего 10^{-8} А.

Экспериментальная установка. Электрическая схема установки для измерения ЭДС Холла представлена на рис. 1.

Рис. 1. Схема установки для исследования эффекта Холла в металлах

В зазоре электромагнита (рис. 1а) создаётся постоянное магнитное поле, величину которого можно менять с помощью регуляторов тока источника питания. Ток питания электромагнита измеряется амперметром источника A_1 . Разъём K_1 позволяет менять направление тока в обмотках электромагнита.

Градуировка магнита проводится с помощью измерителя магнитной индукции (описание прибора расположено на установке).

Металлические образцы в форме тонких пластинок, смонтированные в специальных держателях, подключаются к блоку питания через разъём (рис. 16). Ток через образец регулируется ручками источника и измеряется амперметром источника A_2 .

В образце с током, помещённом в зазор электромагнита, между контактами 2 и 4 возникает холловская разность потенциалов, которая измеряется с помощью микровольтметра $\Phi 116/1$, если переключатель K_3 подключён к точке 2 образца. При подключении K_3 к точке 3 микровольтметр измеряет омическое падение напряжения U_{34} , вызванное основным током через образец. При нейтральном положении ключа входная цепь микровольтметра разомкнута.

Kлюч K_2 позволяет менять полярность напряжения, поступающего на вход микровольтметра.

Иногда контакты 2 и 4 вследствие неточности подпайки не лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец. Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при другом — их разности. В этом случае ЭДС Холла $\mathcal{E}_{\mathbf{x}}$ может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 2 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остаётся неизменным. От него следует (с учётом знака) отсчитывать величину ЭДС Холла: $\mathcal{E}_{\mathbf{x}} = U_{24} \pm U_0$. При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку \mathcal{E}_x можно определить характер проводимости — электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{34} между контактами 3 и 4 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по очевидной формуле:

$$\sigma = I \cdot L_{34} / (U_{34} \cdot a \cdot l), \tag{2}$$

где L_{34} — расстояние между контактами 3 и 4, a — толщина образца, l — его ширина.

ЗАДАНИЕ

В работе предлагается исследовать зависимость ЭДС Холла от величины магнитного поля при различных токах через образец для определения константы Холла; определить знак носителей заряда и проводимость различных металлических образцов. Образец из меди ИЛИ серебра исследуется подробно; образец из цинка — по нескольким параметрам.

I. Подготовка приборов к работе

- 1. Перед началом измерений отключите микровольтметр от измерительной цепи, установив ключ K_3 на блоке управления в нейтральное положение. Переключатель микровольтметра «РОД РАБОТЫ» поставьте в положение «Нуль», переключатель «ПРЕДЕЛЫ ИЗМЕРЕНИЯ» на 3 мкВ. Включите прибор в сеть и дайте ему прогреться.
- 2. Пока микровольтметр выходит на стационарный режим, проверьте работу цепи питания образца.

Установите все 4 регулировочных ручки источника SPS-3610 на минимум тока (крайнее левое положение) и включите прибор в сеть.

Ручку «FINE» регулятора тока «CARRENT» установите на максимум, ручкой «FINE» «VOLTAGE» установите напряжение $V=0.8\,$ В. Поверните ручку «FINE» «CARRENT» влево до упора.

Определите максимальный ток через образец: для этого подключите к разъёму блока управления один из образцов — медный ИЛИ серебряный, НЕ трогая ручек «VOLTAGE», ручками «CARRENT», сначала «FINE» (точно), затем «COARSE» — грубо, определите предельное значение тока. Если ток > 1,2 A, уменьшите его ручкой «FINE» «VOLTAGE». Ток не должен превышать 1,2 A. В дальнейшем регулируйте ток только ручками «CARRENT» (пользуйтесь ручкой «COARSE» только, когда «FINE») установлена на максимум).

- 3. Проверьте работу цепи магнита: поставьте разъём K_1 на источнике питания магнита в положение I; убедитесь, что все регуляторы источника выведены на минимум (крайнее левое положение) и включите источник в сеть; пользуясь сначала ручкой «FINE», затем «COARSE», установите ток и напряжение на максимум; определите предельное значение силы тока через электромагнит и уберите ток до нуля сначала ручкой регулировки тока «COARSE», затем «FINE», при этом регуляторы напряжения остаются на максимуме.
- 4. После 10-минутного прогрева установите стрелку микровольтметра на нуль с помощью корректора K_0 , расположенного на боковой стенке прибора (ключ K_3 в среднем положении).

II. Градуировка электромагнита

- 5. Ознакомьтесь с устройством и принципом работы измерителя магнитной индукции Ш1-10 (описание расположено на установке).
- 6. С помощью прибора Ш1-10 исследуйте зависимость индукции B магнитного поля в зазоре электромагнита от тока через магнит.

Проведите измерения магнитной индукции B для 6–8 значений тока через электромагнит $I_{\rm M}$ (вплоть до максимального $I_{\rm M}$).

Закончив градуировку, уберите ток $I_{
m M}$ до минимума.

7. Вставьте держатель с образцом в зазор электромагнита.

Переведите переключатель «РОД РАБОТЫ» микровольтметра в положение «U» (режим измерения напряжений). Поставьте ключ K_3 в положение «ЭДС», а ключи K_1 и K_2 — в положение I.

Установите по амперметру A_2 минимальное значение тока через образец ($\simeq 0,2$ A). При правильной работе установки в отсутствие магнитного поля стрелка микровольтметра должна находиться вблизи нуля (в пределах 10-ти малых делений на шкале 3 мкВ). Это напряжение U_0 , вызванное несовершенством контактов 2,4 и наводками, при фиксированном токе через образец остаётся неизменным. Значение U_0 с учётом знака следует принять за нулевое. При отклонении стрелки вправо полярность подаваемого на вольтметр напряжения соответствует полярности, указанной на входных клеммах вольтметра (см. рис. 1).

8. Снимите зависимость напряжения U_{24} (включая U_0) от тока $I_{\rm M}$ через обмотки магнита при фиксированном (минимальном) токе через образец.

Измерения следует проводить при *медленном* увеличении магнитного поля. Резкие изменения магнитного поля наводят ЭДС индукции в подводящих проводах и вызывают большие отклонения стрелки микровольтметра. Отсчёт следует производить только после успокоения стрелки. Положение ключа K_2 всегда следует выбирать так, чтобы стрелка прибора отклонялась вправо.

Закончив измерения при выбранном токе через образец, плавно уменьшайте ток через электромагнит до минимума.

- 9. Повторите измерения $U = f(I_{\rm M})$ при постоянном токе через образец (всего 6–8 серий для токов в интервале 0,2–1,2 A). При каждом новом значении тока через образец величина U_0 будет иметь своё значение.
- 10. При максимальном токе через образец проведите измерения $U = f(I_{\rm M})$ при другом направлении магнитного поля (разъём K_1 в положении II).
- 11. Для образца из цинка снимите зависимость $U = f(I_{\rm M})$ при одном значении тока через образец $(I \simeq 1~{\rm A})$.

IV. Определение характера проводимости

12. Для определения знака носителей необходимо знать направление тока через образец, направление магнитного поля и знак ЭДС Холла.

Направление тока в образце показано знаками «+» и «-» на рис. 1. Направление тока в обмотках электромагнита — при установке разъёма K_1 в положение I — показано стрелкой на торце магнита.

Зарисуйте в тетради образец. Укажите на рисунке направление тока, магнитного поля (положение разъёма K_1) и положение ключа K_2 (I или II) при отклонении стрелки вольтметра вправо .

Определите (по правилам векторного произведения) номер клеммы, к которой движутся холловские частицы. Для определения знака носителей проследите по рис. 1 путь от выбранной клеммы до входа в микровольтметр.

Определите знак носителей заряда для каждого из двух исследованных образцов.

V. Определение удельной проводимости

- 13. Выключите источник питания электромагнита и удалите держатель с образцом из зазора. Установите переключатель микровольтметра «ПРЕДЕЛЫ ИЗМЕРЕНИЯ» на 750 мкВ. Ключ K_3 поставьте в положение U_{34} .
- 14. При токе через образец $\simeq 1$ A измерьте падение напряжения между контактами 3 и 4 для каждого из двух образцов.
- 15. Запишите характеристики приборов и параметры образцов L_{34}, a, l , указанные на держателях.

Обработка результатов

- 1. Постройте график зависимости индукции магнитного поля от тока через магнит: $B = f(I_{\mathrm{M}}).$
- 2. Рассчитайте ЭДС Холла и постройте на одном листе семейство характеристик $\mathcal{E}_{\mathbf{x}} = f(B)$ при разных значениях тока I через образец (для меди или серебра). Определите угловые коэффициенты $\mathbf{K}(I) = \Delta \mathcal{E}/\Delta B$ полученных прямых.

Постройте график = f(I). Рассчитайте угловой коэффициент прямой и определите величину постоянной Холла $R_{\rm x}$.

- 3. Для цинка изобразите на графике зависимость $\mathcal{E}_{\mathbf{x}} = f(B)$ и по наклону прямой рассчитайте постоянную Холла.
- 4. Для обоих образцов рассчитайте концентрацию n носителей тока. Оцените погрешности и сравните результаты с табличными.
- 5. Рассчитайте удельную проводимость σ материала образцов.
- 6. Используя найденные значения концентрации n и проводимости σ , рассчитайте подвижность b носителей тока в общепринятых для этой величины внесистемных единицах: размерность напряжённости электрического поля [E] = [U/L] = B/см, размерность скорости [v] = см/с, поэтому размерность подвижности $[b] = \text{см}^2/(\text{B}\cdot\text{c})$.
- 7. Оцените погрешности и сведите результаты измерений в таблицу:

Металл	$R_X \pm \Delta R_X$	Табл. R , $10^{-10} \text{ м}^3/\text{K}$ л		$\sigma \pm \Delta \sigma \\ (O_{M} \cdot M)^{-1}$	$b, \\ c M^2/(B \cdot c)$

Сравните результаты со справочными.

Исправлено: 30-VIII-2016 г.