Ashfield 2021-2022 XRD analyses

Sample lists

```
## --+-- Random powder XRD sample list --+--
          filename objectname
             S14.csv
## 1
## 2
             S15.csv
             S16.csv
## 3
                            S16
            S17.csv
                            S17
            S22.csv
            S24.csv
                            S24
            S25.csv
                             S25
## 8
             S31.csv
                             S31
## 9 Sample_01.csv
                          S 01
## 10 Sample_3_G4.csv
                        S 3 G4
## 11 Sample_4_G4.csv
                         S_4_G4
## 12 Sample_A.csv
## 13 Sample_B.csv
                             S A
        Sample_D.csv
## 14
##
## --+-- Oriented clay XRD sample list --+--
##
                         filename objectname
             ENVT4461 S-01 Mg.csv
                                      S01 Mg
         ENVT4461 S-01 Mg+Gly.csv S01 Mg+Gly
## 2
## 3 ENVT4461 S-12 Heated-400.csv S12 Heat400
## 4 ENVT4461 S-12 Heated-550.csv S12_Heat550
## 5
             ENVT4461 S-12 Mg.csv
## 6 ENVT4461 S-12 Mg+Gly.csv S12_Mg+Gly
## 7 ENVT4461 S-13 Heated-400.csv S13_Heat400
## 8 ENVT4461 S-13 Heated-550.csv S13_Heat550
             ENVT4461 S-13 Mg.csv S13 Mg
         ENVT4461 S-13 Mg+Gly.csv S13 Mg+Gly
## 10
## 11
        ENVT4461 S-14 Mg.csv S14 Mg
ENVT4461 S-14 Mg+Gly.csv S14 Mg+Gly
## 13 ENVT4461 S-15 Heated-400.csv S15 Heat400
## 14 ENVT4461 S-15 Heated-550.csv S15_Heat550
## 15
            ENVT4461 S-15 Mg.csv
## 16
         ENVT4461 S-15 Mg+Gly.csv S15 Mg+Gly
## 17 ENVT4461 S-16 Heated-400.csv S16 Heat400
## 18 ENVT4461 S-16 Heated-550.csv S16 Heat550
## 19
             ENVT4461 S-16 Mg.csv
                                       S16 Mg
          ENVT4461 S-16 Mg+Gly.csv S16 Mg+Gly
```

Random powder data object list

```
## [1] "S_01_pXRD" "S_3_G4_pXRD" "S_4_G4_pXRD" "S_A_pXRD" "S_B_pXRD"
## [6] "S_D_pXRD" "S14_pXRD" "S15_pXRD" "S16_pXRD" "S17_pXRD"
## [11] "S22_pXRD" "S24_pXRD" "S25_pXRD" "S31_pXRD"
```


Figure 1: Random powder XRD patterns for selected Ashfield Flats samples. [Samples containing pyrite: S_4_G4 , S_22 , and S_31 ; vertical dotted lines are main pyrite peak angles with Co K_71 x-rays.]

Figure 2: Map of locations for samples containing pyrite detectable by XRD at Ashfield Flats 2021-2022

List of clay plate data objects

```
## [1] "CP_S01_Mg" "CP_S01_Mg+Gly" "CP_S12_Heat400" "CP_S12_Heat550"
## [5] "CP_S12_Mg" "CP_S12_Mg+Gly" "CP_S13_Heat400" "CP_S13_Heat550"
## [9] "CP_S13_Mg" "CP_S13_Mg+Gly" "CP_S14_Mg" "CP_S14_Mg+Gly"
## [13] "CP_S15_Heat400" "CP_S15_Heat550" "CP_S15_Mg" "CP_S15_Mg+Gly"
## [17] "CP_S16_Heat400" "CP_S16_Heat550" "CP_S16_Mg" "CP_S16_Mg+Gly"
```


Figure 3: Oriented clay plate XRD patterns for selected samples from Ashfield Flats 2022, showing changes with standard sample treatments.

		0 0 ()	1	,,,,,,		/					
Sample	Kaolinite	IIIte	Vermiculite	Smectite	Boehmite	Gibbsite	Jarosite	Quartz	Heulandite	Calcite	Albite
S12	S	S	S	-	-	-	-	-	-	-	-
S13	S	S	M	-	-	-	-	-	-	-	-
S14	S	M	-	-	-	-	-	-	-	-	-
S15	S	S	M	M	-	-	-	-	-	-	-
S16	S	S	S	-	-	-	-	-	-	-	-
S17	S	W	M	-	-	-	-	-	-	-	-
S22	S	S	-	-	-	-	-	-	-	-	-
S23	S	M	р	-	-	-	-	-	-	-	-
S24	S	W	-	-	M	M	M	S	M	-	-
S25	W	-	-	-	S	W	-	M	M	M	W
S26	S	M	-	р	-	-	-	-	-	-	-
S01	M	W	-	-	S	W	-	W	M	W	-
S29	S	S	р	-	S	M	-	-	-	-	-
S30	W	-	-	-	-	-	-	-	-	-	-
S31	S	S	S	-	-	-	-	-	-	-	-
S_A	S	M	-	-	-	-	-	-	-	-	-
S_B S_C	S	M	-	-	-	-	-	-	-	-	-
S_C	S	M	-	р	-	-	-	-	-	-	-
S_D S_E	S	M	М	-	W	-	W	-	-	-	-
S_E	S	S	S	-	-	-	-	-	-	-	-

Table 2: Summary of random powder XRD for Ashfield Flats samples 2022. (Y = present, t = trace, - = absent)

		۵	ţ						a	υ						cite	4)	de
Sample	Type	Depth_top	Depth_bot	Quartz	Halite	Kaolinite	Albite	Sanidine	Microcline	Muscovite	Gypsum	Pyrite	Jarosite	Illite	Calcite	Palygorskite	Halloysite	Hornblende
2022_G1	Surface	0	10	Υ	t	Υ	Υ	-	-	-	t	-	-	Υ	-	-	-	-
2022_G2	Surface	0	10	Υ	Υ	Υ	Υ	Υ	-	Υ	t	t	-	-	t	-	-	-
2022_G7	Surface	0	10	Υ	Υ	Υ	Υ	-	-	Υ	t	-	-	-	-	-	-	-
2022_G8	Surface	0	10	Υ	Υ	Υ	t	-	-	Υ	t	-	-	-	-	-	-	-
2022_G9	Surface	0	10	Υ	Υ	Υ	-	-	-	Υ	t	-	-	-	-	-	-	-
2022_G10	Surface	0	10	Υ	t	Υ	t	-	-	Υ	Υ	t	-	-	-	-	-	-
2022_G11	Surface	0	10	Υ	Υ	Υ	Υ	-	-	Υ	Υ	Υ	-	-	-	-	-	-
B03_1.5m_H2 Core		150	200	Υ	Υ	Υ	Υ	-	-	-	t	-	-	Υ	-	-	-	-
B03_4.5m_H1 Core		450	500	Υ	Υ	Υ	Υ	-	Υ	-	t	Υ	Υ	Υ	-	Υ	Υ	-
B03_7.5m_H1 Core		750	800	Υ	-	Υ	Υ	-	Υ	-	-	-	-	Υ	-	Υ	-	Υ
B13_3.0m_H3	3 Core	400	450	Υ	t	Υ	Υ	-	-	-	t	-	-	Υ	-	-	-	Υ
B13_4.5m_H ²	1 Core	450	500	Υ	-	Υ	Υ	-	-	-	Υ	-	-	Υ	-	-	-	t
B13_4.5m_H2 Core		500	550	Υ	-	Υ	Υ	-	Υ	-	t	-	Υ	Υ	-	-	-	Υ
B13_4.5m_H3 Core		550	600	Υ	-	Υ	Υ	-	Υ	-	Υ	-	Υ	Υ	-	-	-	t
B13_6.0_h1 Core		600	650	Υ	-	Υ	Υ	-	Υ	-	Υ	-	-	Υ	-	-	-	Т

That's it so far