Random-reshuffled SARAH does not need full gradient computations

Aleksandr Beznosikov^{1,2,3}, Martin Takáč³

¹ MIPT, Russia ² MBZUAI, UAE

Problem

Minimizing a finite-sum problem of the form

$$\min_{w \in \mathbb{R}^d} \left\{ P(w) := \frac{1}{n} \sum_{i=1}^n f_i(w) \right\},\tag{1}$$

Problems of this form are very common in e.g., supervised learning. Let a training dataset consists of n pairs, i.e., $\{(x_i, y_i)\}_{i=1}^n$, where $x_i \in \mathbb{R}^d$ is a feature vector for a datapoint i and y_i is the corresponding label. Then for example, the least squares regression problem corresponds to (1) with $f_i(w) = \frac{1}{2}(x_i^T w - y_i)^2$. If $y_i \in \{-1, 1\}$ would indicate a class, then a logistic regression is obtained by choosing $f_i(w) = \log(1 + \exp(-y_i x_i^T w))$.

• **SARAH.** SARAH [2] is a classical variance reduction method with recursive update of "gradient":

$$v_t = \nabla f_i(w_t) - \nabla f_i(w_{t-1}) + v_{t-1}, \quad w_{t+1} = w_t - \eta_t v_t.$$

• Random Reshuffle. Not to choose functions f_i randomly with replacement, but make a data permutation/shuffling and choose the f_i s in a cyclic fashion. In [1] a few basic shuffling are discussed, including Random Reshuffling (RR), Shuffle-Once (SO), Incremental Gradient (IG).

Assumptions

For problem (1) the following hold:

① Each $f_i: \mathcal{R}^d \to \mathcal{R}$ is convex and twice differentiable, with L-smooth gradient:

$$\|\nabla f_i(w_1) - \nabla f_i(w_2)\| \le L\|w_1 - w_2\|,$$

for all $w_1, w_2 \in \mathcal{R}^d$;

- **3** Each f_i is δ -similar with P, i.e. for all $w \in \mathbb{R}^d$ it holds that

$$\|\nabla^2 f_i(w) - \nabla^2 P(w)\| \le \delta/2.$$

The last assumption means the similarity of $\{f_i\}$. For example, this effect is observed when the data is divided uniformly across batches f_i , then with a high probability we have $\delta \sim \frac{L}{\sqrt{b}}$, where b is a size of local batch f_i (number of data points in f_i)

Method

Algorithm: Shuffled-SARAH 1 **Input:** $0 < \eta$ step-size 2 choose $w^- \in \mathbb{R}^d$ $w = w^{-}$ 4 $v_0=\mathbf{0}\in\mathbb{R}^d$ 5 $\tilde{v} = \&(v_0)$ // $ilde{v}$ will point to v_0 $\Delta = \mathbf{0} \in \mathbb{R}^d$ 7 for $s = 0, 1, 2, \dots$ do define $w_s := w$ $w = w - \eta v_s$ obtain permutation $\pi_s = (\pi_s^1, \dots, \pi_s^n)$ of [n] by some rule for i = 1, 2, ..., n do $\tilde{v} = \frac{i-1}{i}\tilde{v} + \frac{1}{i}\nabla f_{\pi_s^i}(w)$ $\Delta = \Delta + \nabla f_{\pi_s^i}(w) - \nabla f_{\pi_s^i}(w^-)$ $w = w - \eta(v_s + \Delta)$ end $v_{s+1} = \tilde{v}$ $\tilde{v} = \mathbf{0} \in \mathbb{R}^d$ $\Delta = \mathbf{0} \in \mathbb{R}^d$ 22 Return: w

Theorem. Suppose that Assumptions hold. Consider **Shuffled-SARAH** with the choice of η such that

$$\eta \le \min \left[\frac{1}{8nL}; \frac{1}{8n^2 \delta} \right]. \tag{2}$$

Then, we have convergence of $V_s := P(w_s) - P^* + \frac{\eta(n+1)}{16} ||v_{s-1}||^2$ in the following form:

$$V_{s+1} \le \left(1 - \frac{\eta \mu(n+1)}{2}\right) V_s.$$

Corollary

Corollary. Fix ε , and let us run **Shuffled-SARAH** with η from (2). Then we can obtain an ε -accuracy solution on f after

$$S = \mathcal{O}\left[\max\left[\frac{L}{\mu}; \frac{\delta n}{\mu}\right]\log\frac{1}{\varepsilon}\right]$$
 iterations.

Experiments

Trajectories. Compare the trajectories of the classical SARAH (two random and average), the average trajectory of the RR-SARAH, and the random trajectory **Shuffled-SARAH** with Random Reshuffling.

Logistic regression. Next, we consider the logistic regression problem with ℓ_2 -regularization for binary classification with

Figure 1:Trajectories on quadratic.

$$f_i(w) = \frac{1}{b} \sum_{k=1}^b \log (1 + \exp(-y_k \cdot (X_b w)_k)) + \frac{\lambda}{2} ||w||^2,$$

where $X_b \in \mathbb{R}^{b \times d}$ is a matrix of objects, $y_1, \ldots, y_b \in \{-1, 1\}$ are labels for these objects, b is the size of the local datasets and $w \in \mathbb{R}^d$ is a vector of weights. We optimize this problem for mushrooms, a9a, w8a datasets from LIBSVM.

Figure 2:Convergence of SARAH-type methods on various LiBSVM datasets.

Figure 3: $||v_s - \nabla P(w_s)||^2$ changes.

References

- [1] Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Random reshuffling: Simple analysis with vast improvements.
- [2] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. SARAH: a novel method for machine learning problems using stochastic recursive gradient.