LightNVM: The Linux Open-Channel SSD Subsystem

Matias Bjørling, Javier González, and Philippe Bonnet

IT UNIVERSITY OF CPH

I/O Predictability and Isolation

0% writes and latency is consistent

I/O Performance is

unpredictable due

to writes being

buffered

20% writes makes big impact on read latency

50% writes can make SSDs as slow as spinning drives...

Log-on-log, Indirection, and Narrow I/O

Even if Writes and Reads does not collide from application **Indirection** and loss of information due to a **Narrow I/O interface**

Log-on-Log

Write Indirection & Lost State

Writes Decoupled from Reads

Read/Write Interface makes Data placement + Buffering = **Best Effort**

Host does not know SSD state due to the narrow I/O Interface

Solid-State Drives and Non-Volatile Media

New Storage Interface that provides

- Predictable I/O
- I/O Isolation
- Reduces Write Amplication
- Removal of multiple log-structured data structures
- Intelligent data placement and I/O scheduling decisions
- Make the host aware of the SSD state to make those decisions

Contributions

- 1. Physical Page Addressing (PPA) I/O Interface
- 2. The LightNVM Subsystem
- 3. pblk: A host-side Flash Translation Layer for Open-Channel SSDs
- 4. Demonstrate the effectiveness of this interface

Physical Page Addressing (PPA) Interface

- Expose geometry of the SSD
 - Logical/Physical geometry
 - Performance
 - Media-specific metadata (if needed)
 - Controller functionalities
- Hierarchical Address Space
 - Encode geometry into the address space
- Vector I/Os
 - Read/Write/Erase

Up to the SSD vendor

Encode parallel units into the address space

Efficient access to the given this new address space

Encode Geometry in Address Space

Channels -> Parallel Units -> Planes -> Blocks -> Pages -> Sectors

Vector I/O Access

- Obtain higher throughput through parallel units
- Large overhead if I/Os is separately issued
- Introduce vector I/O interface to enable host to submit I/Os to multiple PUs using one command
- Vector Read/Write/Erase using scatter/gather address list

#	LBA
0	CH ₀ , PU ₀ , Sector 120
1	CH ₀ , PU ₃ , Sector 64
2	CH ₀ , PU ₁ , Sector 212

LightNVM Architecture

1. NVMe Device Driver

- Detection of OCSSD
- Implements PPA interface

2. LightNVM Subsystem

- Generic layer
- Core functionality
- Target management (e.g., pblk)

3. High-level I/O Interface

- Block device using pblk
- Application integration with liblightnym

Host-side Flash Translation Layer - pblk

- Mapping table
 - Sector-granularity
- Write buffering
 - Lockless circular buffer
 - Multiple producers
 - Single consumer (Write Thread)
- Error Handling
 - Media write/erase errors
- Garbage Collection
 - Refresh data
 - Rewrite blocks

Experimental Evaluation

- CNEX Labs Open-Channel SSD
 - NVMe
 - PCle Gen3x8
 - 2TB MLC NAND
- Geometry
 - 16 channels
 - 8 PUs per channel (Total: 128 PUs)
- Parallel Unit Characteristics
 - Page size: 16K + 64B user OOB
 - Planes: 4, Blocks: 1.067, Block Size: 256 Pages
- Performance:
 - Write: Single PU 47MB/s
 - Read: Single 108MB/s, 280MB/s (64K)

Evaluation

- Sanity check & Base
- Interface Flexibility
 - Limit # Active Parallel Write Units
 - Predictable Latency

Base Performance using Vector I/O

Limit # Active Writers

- A priori knowledge of workload. E.g., limit to 400MB/s Write
- Limit number of Active PU Writers, and achieve better read latency

Predictable Latency

- 4K reads during 64K concurrent writes
- Consistent low latency at 99.99, 99.999, 99.9999

Lessons Learned

- 1. Warranty to end-users Users has direct access to media
- 2. Media characterization is complex and performed for each type of NAND memory Abstract the media to a "clean" interface.
- **3. Write buffering** For MLC/TLC media, write buffering is required. Decide if in host or in device.
- **4. Application-agnostic wear leveling is mandatory** Enable statistics for host to make appropriate decisions.

Conclusion

- Contributions
 - Physical Page Addressing (PPA) I/O Interface
 - The LightNVM Subsystem
 - pblk: A host-side Flash Translation Layer for Open-Channel SSDs
 - Demonstrate the effectiveness of the interface
- Linux kernel subsystem for Open-Channel SSDs
 - Initial release in Linux kernel 4.4.
 - User-space library (liblightnym) support with Linux kernel 4.11.
 - Pblk upstream with Linux kernel 4.12.
- Physical Page Addressing Specification is available
- The right time to dive into Open-Channel SSDs
 - More information available at: http://lightnvm.io