Exercice 1 - Identité remarquable

Soit $A, B \in M_2(R)$ les matrices définies par $A = \begin{pmatrix} 3 & -1 \\ -2 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 01 \\ 32 \end{pmatrix}$. Comparer les deux matrices $(A + B)^2$

Exercice 2 - Produit non commutatif

Déterminer deux éléments A et B de $\mathcal{M}_2(R)$ tels que : AB = 0 et $BA \neq 0$.

Exercice 3 - Matrices stochastiques

Soit $A, B \in \mathcal{M}_n(R)$ deux matrices telles que la somme des coefficients sur chaque colonne de A et sur chaque colon

Exercice 4 - Puissance n-ième - avec la formule du binôme

Soit

Calculer B^n pour tout $n \in \mathbb{N}$. En déduire A^n .

Exercice 5 - Puissance n-ième - avec un polynôme annulateur

Pour $n \geq 2$, déterminer le reste de la division euclidienne de X^n par $X^2 - 3X + 2$.

-12 - 1

1-12. Déduire de la question précédente la valeur de A^n , pour $n \geq 2$.

Exercice 6 - Produit et somme de matrices nilpotentes

On dit qu'une matrice $A \in \mathcal{M}_n(K)$ est nilpotente s'il existe $p \in N$ tel que $A^p = 0$. Démontrer que si $A, B \in \mathcal{M}_n(K)$

Exercice 7 - Matrices symétriques et anti-symétriques

Montrer que l'ensemble des matrices symétriques $(A = {}^tA)$ et l'ensemble des matrices anti-symétriques $(A = -{}^tA)$

EXERCICE 8 - Produit et trace

Soient $A, B \in \mathcal{M}_n(R)$.

On suppose que $\operatorname{tr}(AA^T) = 0$. Que dire de la matrice A? On suppose que, pour tout $X \in \mathcal{M}_n(R)$, on a $\operatorname{tr}(AX) = \operatorname{tr}(BX)$. Démontrer que A = B.

EXERCICE 9 - Centre de $\mathcal{M}_n(R)$.

Déterminer le centre de $\mathcal{M}_n(R)$, c'est-à-dire l'ensemble des matrices $A \in \mathcal{M}_n(R)$ telle que, pour tout $M \in \mathcal{M}_n(R)$,

Exercice 10 - Inverse avec calculs!

Dire si les matrices suivantes sont inversibles et, le cas échéant, calculer leur inverse :

Exercice 11 - Sans problèmes

Résoudre les systèmes linéaires suivants :

Exercice 12 - Trop d'inconnues ou d'équations

Résoudre les systèmes suivants :

EXERCICE 13 - Paramètre dans le second membre

Discuter suivant la valeur du paramètre $m \in R$ le système :

Exercice 14 - Discussion suivant deux valeurs