Count Strongly Connected Component using Kosaraju's Algorithm CodeStudio

You are given an unweighted directed graph having 'V' vertices and 'E' edges. Your task is to count the number of strongly connected components (SCCs) present in the graph.

A directed graph is said to be strongly connected if every vertex is reachable from every other vertex. The strongly connected components of a graph are the subgraphs which are themselves strongly connected.

Example:

Output: 2 ({{1, 0, 4}, {2, 3}})

Approach 1: Function to find strongly connected components using Kosaraju's Algorithm

• Explanation:

- The algorithm consists of three steps:
 - 1. Perform DFS traversal and fill finish times in a stack.
 - 2. Create the transpose of the graph.
 - 3. Perform reverse DFS traversal on the transpose graph and find strongly connected components.

Time Complexity:

- The algorithm performs DFS traversal, transpose creation, and reverse DFS traversal.
- Overall time complexity: O(V + E), where V is the number of vertices and E is the number of edges.

- Space Complexity:
 - Additional space for the finish times stack: O(V)
 - Additional space for the transpose graph: O(E)
 - Overall space complexity: O(V + E)