TP: CALCUL DIFFERENTIELS DANS \mathbb{R} PROJET 2: RECHERCHE DE ZERO D'UNE FONCTION

Exercice 1

On considère la fonction $f(x) = x^2 - 3x + 1$ définie sur l'intervalle [2; 4]. On cherche la solution de l'équation f(x) = 0 par l'algorithme de dichotomie.

- 1. Écrire votre fonction dans votre calculatrice et la représenter.
- 2. On cherche une solution dans un intervalle d'amplitude 0,01.
- 3. Remplir le tableau suivant:

Borne a	Borne b	Amplitude (b-a)	Centre	Image du centre
:	:	:	•	:

Exercice 2

Lors des TDs, nous avons obtenu que la tension u suivait la loi :

$$u(t) = A\left(e^{r_2t} - e^{r_1t}\right)$$

avec
$$r_1 = -327 \ s^{-1}$$
 et $r_2 = -48 \ s^{-1}$.

On cherche à quelle date t_m la tension est maximale.

- 1. Tracer la courbe u(t) en nommant l'axe des abscisses "temps t en s" et celle des ordonnées "tension u(t)".
- 2. Quelle équation doit-on résoudre pour déterminer t_m ? Chercher "à la main" la date t_m .
- 3. Déterminer par dichotomie la date t_{an} qui annule la fonction $f(t) = r_2 e^{r_2 t} r_1 e^{r_1 t}$ sur l'intervalle [0; 0.2]. On donne la précision $p = 10^{-4}$.
- 4. Utiliser Newton-Raphson pour retrouver la date t_{an} . On donne la précision $p = 10^{-4}$ et $x_0 = 0$.

Exercice 3

Soit n un entier naturel non nul, x un nombre réel. On définit la fonction f_n où n est un paramètre tel que:

$$f_n: \mathbb{R} \to \mathbb{R}; \quad x \mapsto f_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$$

avec $k! = k * (k-1) * \cdots * 2 * 1$ le factoriel de k.

- 1. Écrire en python fonction les fonctions **factoriel(k)** et $S(x, n) = f_n(x)$ en complétant > def factoriel(k):
 - > n=k > if n>=0: > if n==.... or n==0: > return > else: > return*factoriel(n-1) > else:> return NaN
- 2. Tracer dans une même graphique $f_2(x)$, $f_3(x)$ et $f_4(x)$ pour $x \in [0; 10]$. Comparer les représentations de $f_{10}(x)$ et de exp(x).