Colle MP 8: Séries

19 novembre 2018

Colle 1

Réda (14) : petite erreur dans l'application du produit de Cauchy. Marouane (12) : erreurs dans le produit de Cauchy. Assez bien mais confus.

Exercice 1. Fubini.

Exercice 2. Convergence et calcul de $\sum_{n=0}^{\infty} \sum_{k\geq n}^{\infty} \frac{1}{k!}$ (=2e)?

Exercice 3. Convergence puis calcul de $\sum_{k=1}^{\infty} \frac{k}{2^k}$? (en utilisant produit de Cauchy et dérivée)

Colle 2

Etienne (16) : bien Nathan (14) : bien mais lent

Exercice 1. Q et D dénombrable.

Exercice 2. En utilisant le thm de sommation par paquet, déterminer pour quels $\alpha \in \mathbb{R}$ $(\frac{1}{(m+n)^{\alpha}})_{m,n}$ est sommable.

Colle 3

Julien (12) : ne connaît pas bien la preuve. Inverse mal deux sommes. Dit que ln est décroissante (!!).

Kévin (14) : petit oubli dans la preuve. Oubli du thm de Fubini. Bien sinon.

Exercice 1. Théorème de Cauchy.

Exercice 2.

1. Si $\alpha>1,$ trouver un équivalent de $\sum_{k=n}^{\infty}\frac{1}{k^{\alpha}}.$

- 2. Pour quelles valeurs $\sum_{n=0}^{\infty} \sum_{k=n+1}^{\infty} \frac{1}{k^{\alpha}}$ converge? 3. Montrer que $\sum_{n=0}^{\infty} \sum_{k=n}^{\infty} \frac{1}{k^{\alpha}} = \sum_{p \geq 1} \frac{1}{p^{\alpha-1}}$.

Exercice 3. Equivalent de $\ln(n!)$ quand $n \longrightarrow \infty$?