

UNIVERSITÉ DE GENÈVE

Département d'informatique

Imagerie Numérique

DSP and Complex Numbers

TP Class Nº 7

February 18, 2021

Exercise 1. The Dirac comb (3 points)

The Dirac comb or train of impulses is the following "function":

$$III_T(t) = \sum_{k \in \mathbb{Z}} \delta(t - k \cdot T)$$

(a) In Python, implement a function

$$\operatorname{sha}(t,T) = \left\{ \begin{array}{ll} 1 & \text{if t is a multiple of T} \\ 0 & \text{otherwise.} \end{array} \right.$$

Using np.linspace() and plt.scatter(), represent sha(t, 1), sha(t, 0.5) and sha(t, 2) on a range $t \in [-10, 10]$.

Remark: Use num = 201 in np.linspace(). Why is this value important?

- (b) Explain why sampling a function at rate 1/T is equivalent to multiplying it with $\coprod_T(t)$.
- (c) Illustrate this fact by sampling $f(t) = \sin(t + \pi/4)$ with T = 1, 2, 0.5. Display the results on separate graphs. On each graph, plot the original function f(t) using plt.plot() and the sampled version using plt.scatter(). Comment the results.
- (d) Implement the two functions Even(S) and Odd(S), that compute the even and odd parts of a signal S. Apply them to the signal f(t) and visualise Even(S), Odd(S) and Even(S) + Odd(S) on three different graphs. Comment the results.
- (e) Using trigonometric formulas, compute by hand the odd and even parts of f(t). Compare your results with part (d).

Exercise 2. Complex function visualization (3 points)

In this exercise, you will visualize a complex polynomial function using complex numpy arrays. Consider

$$f(z) = z^3 - 1$$

- (a) Show that 1, $e^{j2\pi/3}$ and $e^{j4\pi/3}$ are the complex roots of f by computing by hand. Write them in rectangular coordinates.
- (b) Create a numpy complex matrix z of size 100×100 whose entries range from [-2, 2] both in real and imaginary parts.

Hint: Use np.linspace(), np.meshgrid() and define z = xx + yy * 1j

- (c) Apply the function f to the matrix z, using pointwise operations, giving you a new complex matrix w of same size.
- (d) Use the function np.abs() on w and visualize the result as an image, with its colorbar. **Hint**: To have interpretable coordinates, use parameter extent of plt.imshow(). We also recommand to use the 'hsv' colormap which has stronger constrast than the default one.

- (e) To further enhance the visualization, we will use a logarithmic scale. Instead of visualizing directly |w|, first apply the transformation $m = \log(1 + |w|)$ and do plt.imshow() on m. This trick will come very often when we will investigate the magnitude of complex images. Comment the resulting image.
- (f) Visualise now the real and imaginary parts of w on two different plots. When is f(z) a real number?
- (g) Prove point (f) by computing explicitly the development of f(a + jb) and finding a relation between a and b.
- (h) Finally, visualise the phase of w using np.angle() and plot the colorbar as well. Give a new interpretation on when is f(z) a real number based on the value of the phase.

Submission

Please archive your report and codes in "Name_Surname.zip" (replace "Name" and "Surname" with your real name), and upload to "Assignments/TP7: DSP and Complex Numbers" on https://moodle.unige.ch before Thursday, March 11, 2021, 23:59 PM. Note, the assessment is based not only on your code, but also on your report, which should include your answers to all questions and the experimental results.