Benders decomposition for choice-based optimization problems with discrete upper-level variables

Stefano Bortolomiol

Michel Bierlaire Virginie Lurkin Claudia Bongiovanni

Transport and Mobility Laboratory (TRANSP-OR) École Polytechnique Fédérale de Lausanne

21st Swiss Transport Research Conference Ascona, 14 September 2021

 In many transportation problems suppliers can benefit from a disaggregate model of demand to capture observed and unobserved heterogeneity.

- In many transportation problems suppliers can benefit from a disaggregate model of demand to capture observed and unobserved heterogeneity.
- Many classes of discrete choice models cannot be easily integrated in mixed integer optimization models → choice-based optimization

- In many transportation problems suppliers can benefit from a disaggregate model of demand to capture observed and unobserved heterogeneity.
- Many classes of discrete choice models cannot be easily integrated in mixed integer optimization models → choice-based optimization
- The majority of the works in the literature sacrifice complexity either at **demand level** or at supply level for the sake of tractability.

- In many transportation problems suppliers can benefit from a disaggregate model of demand to capture observed and unobserved heterogeneity.
- Many classes of discrete choice models cannot be easily integrated in mixed integer optimization models → choice-based optimization
- The majority of the works in the literature sacrifice complexity either at demand level or at supply level for the sake of tractability.
- Alternative approach: trying to circumvent issues related to non-linearity and non-convexity of the demand function using simulation.

Simulation-based linearization of choice probabilities¹

- Let I be the universal choice set and N be the set of heterogeneous customers.
- Random utility models:

$$U_{in} = V_{in} + \epsilon_{in}$$
 $\forall i \in I, \forall n \in N.$

Choice probabilities:

$$P_{in} = \Pr[V_{in} + \epsilon_{in} = \max_{j \in I} (V_{jn} + \epsilon_{jn})].$$

¹Pacheco Paneque et al., "Integrating advanced discrete choice models in mixed integer linear optimization" (2021).

Simulation-based linearization of choice probabilities¹

- Let I be the universal choice set and N be the set of heterogeneous customers.
- Random utility models:

$$U_{in} = V_{in} + \epsilon_{in}$$
 $\forall i \in I, \forall n \in N.$

Choice probabilities:

$$P_{in} = \Pr[V_{in} + \epsilon_{in} = \max_{j \in I} (V_{jn} + \varepsilon_{jn})].$$

Linearization:

$$\begin{aligned} U_{inr} &= V_{in} + \xi_{inr} & \forall i \in I, \forall n \in N, \forall r \in R, \\ x_{inr} &= \begin{cases} 1 \text{ if } U_{inr} = \max_{j \in I} U_{jnr}, \\ 0 \text{ otherwise} \end{cases} & \forall i \in I, \forall n \in N, \forall r \in R, \\ P_{in} &= \frac{1}{|R|} \sum x_{inr} & \forall i \in I, \forall n \in N. \end{aligned}$$

¹Pacheco Paneque et al., "Integrating advanced discrete choice models in mixed integer linear optimization" (2021).

Previous research

Applications:

- Optimizing prices for uncapacitated and capacitated services.²
- Computing approximate equilibrium solutions for competitive markets.³
- Determining optimal price-based regulation of transport markets.⁴

Open questions:

- Scalability.
- Extension to variables other than prices.

²Pacheco Paneque et al., "Integrating advanced discrete choice models in mixed integer linear optimization" (2021).

³Bortolomiol, Lurkin, and Bierlaire, "A simulation-based heuristic to find approximate equilibria with disaggregate demand models" (2021).

⁴Bortolomiol, Lurkin, and Bierlaire, "Price-based regulation of oligopolistic markets under discrete choice models of demand" (2021).

Continuous Pricing Problem (CPP)

- A supplier wants to maximize profits obtained by controlling alternatives $I_k \subset I$.
- The utilities of the customers are price-dependent variables:

$$U_{inr} = \beta_{p,inr} \mathbf{p}_i + \hat{\mathbf{q}}_{inr} + \xi_{inr} \qquad \forall i \in I, \forall n \in N, \forall r \in R.$$

Continuous Pricing Problem (CPP)

- A supplier wants to maximize profits obtained by controlling alternatives $I_k \subset I$.
- The utilities of the customers are price-dependent variables:

$$U_{inr} = \beta_{p,inr} \frac{\mathbf{p}_i}{\mathbf{p}_i} + \hat{\mathbf{q}}_{inr} + \xi_{inr} \qquad \forall i \in I, \forall n \in N, \forall r \in R.$$

$$\max_{p} \quad \pi = \sum_{i \in I_{k}} \sum_{n \in N} \sum_{r \in R} \frac{1}{|R|} \theta_{n} \rho_{i} \times_{inr}, \tag{1}$$

s.t.
$$\sum_{i \in I} x_{inr} = 1 \qquad \forall n \in N, \forall r \in R,$$
 (2)

$$\sum_{i \in I} U_{jnr} \times_{jnr} \ge U_{inr} \qquad \forall i \in I, \forall n \in N, \forall r \in R,$$
(3)

$$0 \le p_i \le M_i^p \qquad \forall i \in I, \tag{4}$$

$$x_{inr} \in \{0,1\} \qquad \forall i \in I, \forall n \in \mathbb{N}, \forall r \in \mathbb{R}.$$
 (5)

Continuous Pricing Problem (CPP)

- A supplier wants to maximize profits obtained by controlling alternatives $I_k \subset I$.
- The utilities of the customers are price-dependent variables:

$$U_{inr} = \beta_{p,inr} p_i + \hat{q}_{inr} + \xi_{inr} \qquad \forall i \in I, \forall n \in N, \forall r \in R.$$

$$\max_{p} \quad \pi = \sum_{i \in I_{k}} \sum_{n \in N} \sum_{r \in R} \frac{1}{|R|} \theta_{n} \rho_{i} \times_{inr}, \tag{1}$$

s.t.
$$\sum_{i \in I} x_{inr} = 1$$
 $\forall n \in N, \forall r \in R,$ (2)

$$\sum_{i \in I} U_{jnr} \times_{jnr} \ge U_{inr} \qquad \forall i \in I, \forall n \in N, \forall r \in R,$$
(3)

$$0 \le p_i \le M_i^p \qquad \forall i \in I, \tag{4}$$

$$x_{inr} \in \{0,1\} \qquad \forall i \in I, \forall n \in N, \forall r \in R.$$
 (5)

• The linearization of the product $p_i \cdot x_{inr}$ (continuous and binary) can be done using big-M constraints.

Discrete Pricing Problem (DPP)

- ullet For each alternative $i \in I_k$ we constrain prices p_i to the set $Q_i = \{p_i^1, p_i^2, ..., p_i^{|Q|}\}$.
- Utilities become parameters of the optimization model: $\hat{U}_{inr} = \beta_{p,inr}\hat{p}_i + \hat{q}_{inr} + \xi_{inr}$.

Discrete Pricing Problem (DPP)

- ullet For each alternative $i \in I_k$ we constrain prices p_i to the set $Q_i = \{p_i^1, p_i^2, ..., p_i^{|Q|}\}$.
- Utilities become parameters of the optimization model: $\hat{U}_{inr} = \beta_{p,inr}\hat{p}_i + \hat{q}_{inr} + \xi_{inr}$.

$$\max_{y} \quad \pi = \sum_{i \in I_{p}^{exp}} \sum_{n \in N} \sum_{r \in R} \frac{1}{|R|} \theta_{n} \hat{\rho}_{i} x_{inr}, \tag{6}$$

s.t.
$$\sum_{j \in I_i^{exp}} y_j = 1 \qquad \forall i \in I, \tag{7}$$

$$\sum_{i \in PRN} x_{inr} = 1 \qquad \forall n \in N, \forall r \in R, \tag{8}$$

$$x_{inr} \le y_i \qquad \forall i \in I^{exp}, \forall n \in N, \forall r \in R, \tag{9}$$

$$\sum_{i \in I^{exp}} \hat{U}_{jnr} x_{jnr} \ge \hat{U}_{inr} y_i \qquad \forall i \in I^{exp}, \forall n \in N, \forall r \in R,$$
 (10)

$$x_{inr} \in \{0,1\}$$
 $\forall i \in I^{exp}, \forall n \in N, \forall r \in R,$ (11)

$$y_i \in \{0, 1\} \qquad \forall i \in I^{\text{exp}}. \tag{12}$$

Numerical experiments

<i>R</i>	CPP		DPP			Gap
	Time	Opt	$ I_i^{exp} $	Time	Opt	oup
20	0.45	71774.95	21 51 101	1.42 7.18 8.89	70390.50 71316.20 71379.90	1.93% 0.64% 0.55%
50	10.46	72423.71	21 51 101	14.59 31.51 89.91	71889.00 72106.36 72185.30	0.74% 0.44% 0.33%
100	101.64	66452.18	21 51 101	34.48 161.03 395.86	66118.40 66255.90 66341.32	0.50% 0.30% 0.17%
200	288.89	70788.17	21 51 101	139.17 415.90 1829.24	69859.60 70489.95 70571.67	1.31% 0.42% 0.31%

Table: High-speed rail pricing: solving CPP and DPP to optimality with CPLEX.

7 / 16

Assortment and Continuous Pricing Problem (ACPP)

- We include the decision about whether or not to offer any given product $i \in I_k$ to the customers
- The actual utility for the customer is $U_{inr}^a = U_{inr} \cdot y_i$.

Assortment and Continuous Pricing Problem (ACPP)

- We include the decision about whether or not to offer any given product $i \in I_k$ to the customers.
- The actual utility for the customer is $U_{inr}^a = U_{inr} \cdot y_i$.
- Customers must choose the alternative with the highest utility among those that are made available by the supplier:

$$U_{inr} = \beta_{p,inr}p_i + q_{inr} + \xi_{inr} \qquad \forall i \in I, \forall n \in N, \forall r \in R,$$
(13)

$$U_{inr}^{a} \leq U_{inr} \qquad \forall i \in I, \forall n \in N, \forall r \in R, \tag{14}$$

$$U_{inr} \le U_{inr}^a + M_{inr}^U(1 - y_i) \qquad \forall i \in I, \forall n \in \mathbb{N}, \forall r \in \mathbb{R}, \tag{15}$$

$$U_{inr}^{a} \leq M_{inr}^{U} y_{i} \qquad \forall i \in I, \forall n \in N, \forall r \in R, \tag{16}$$

Assortment and Discrete Pricing Problem (ADPP)

• The formulation of the DPP **still applies**, with a small change:

$$\max_{y} \quad \pi = \sum_{i \in I_{i}^{exp}} \sum_{n \in N} \sum_{r \in R} \frac{1}{|R|} \theta_{n} \hat{p}_{i} x_{inr}, \tag{17}$$

s.t.
$$\sum_{j \in \mathcal{I}_{i}^{ND}} y_{j} = 1$$

$$\sum_{j \in \mathcal{I}_{i}^{ND}} x_{inr} = 1$$

$$\forall n \in \mathbb{N}, \forall r \in \mathbb{R}, \quad (19)$$

$$\sum_{i \in lexp} x_{inr} = 1 \qquad \forall n \in N, \forall r \in R, \qquad (19)$$

$$x_{inr} \le y_i \qquad \forall i \in I^{exp}, \forall n \in N, \forall r \in R, \qquad (20)$$

$$\sum_{i \in I^{exp}} \hat{U}_{jnr} x_{jnr} \ge \hat{U}_{inr} y_i \qquad \forall i \in I^{exp}, \forall n \in \mathbb{N}, \forall r \in \mathbb{R}, \tag{21}$$

$$x_{inr} \in \{0,1\}$$
 $\forall i \in I^{exp}, \forall n \in N, \forall r \in R,$ (22)

$$y_i \in \{0,1\} \qquad \qquad \forall i \in I^{\text{exp}}. \tag{23}$$

Numerical experiments

<i>R</i>	ACPP		ADPP			Gap
11	Time	Opt	$ I_i^{exp} $	Time	Opt	
10	11706	907.8	16 31	132 800	864.0 876.0	4.82% 3.50%
20	129600*	877.0*	16 31	429 2778	842.0 862.5	3.99% 1.65%
50	129600*	842.8*	16 31	837 12191	816.4 830.4	3.13% 1.47%
100	129600*	844.0*	16 31	3419 39425	828.2 831.8	1.87% 1.45%

Table: Parking assortment and pricing: solving ACPP and ADPP to optimality with CPLEX.

What about Benders and discrete supply variables?

- Let's fix the discrete supply variables of the supplier to **y***.
- The lower-level utility maximization problem for a single customer n and scenario r is as follows:

$$\max_{x} \quad U = \sum_{i \in I} \hat{U}_{i} x_{i}, \tag{24}$$

$$s.t. \quad \sum_{i \in I} x_i = 1, \tag{25}$$

$$x_i \le y_i^* \qquad \forall i \in I, \tag{26}$$

$$x_i \ge 0 \qquad \forall i \in I. \tag{27}$$

ullet This is a continuous knapsack problem, where the knapsack's capacity is equal to 1 and each item (alternative) i has a weight of 1 and a value of \hat{U}_{inr} .

1 Initialize $UB = \infty$ and $LB = -\infty$ of the master problem (MP).

- **1** Initialize $UB = \infty$ and $LB = -\infty$ of the master problem (MP).
- 2 Initialize the restricted master problem (RMP):

$$\min_{y,z} z \tag{28}$$

s.t. Domain constraints on the y variables (29)

$$z \ge LB_z$$
. (30)

- **1** Initialize $UB = \infty$ and $LB = -\infty$ of the master problem (MP).
- 2 Initialize the restricted master problem (RMP):

$$\min_{y,z} z \tag{28}$$

$$z \ge LB_z$$
. (30)

3 Solve current RMP. Save the solution y^*, z^* . Let $f(y^*, z^*)$ be the optimal objective value. Update $LB = f(y^*, z^*)$.

- 1 Initialize $UB = \infty$ and $LB = -\infty$ of the master problem (MP).
- Initialize the restricted master problem (RMP):

$$\min_{y,z} z \tag{28}$$

$$z \ge LB_z$$
. (30)

- ③ Solve current RMP. Save the solution y^*, z^* . Let $f(y^*, z^*)$ be the optimal objective value. Update $LB = f(y^*, z^*)$.
- **3** Given y^* , compute $f(y^*)^{ADPP}$ for the original problem by deriving the choices for all customers and scenarios. Update $UB = \min\{UB, f(y^*)^{ADPP}\}$.

- 1 Initialize $UB = \infty$ and $LB = -\infty$ of the master problem (MP).
- 2 Initialize the restricted master problem (RMP):

$$\min_{y,z} \qquad z \tag{28}$$

$$z \ge LB_z$$
. (30)

- ③ Solve current RMP. Save the solution y^*, z^* . Let $f(y^*, z^*)$ be the optimal objective value. Update $LB = f(y^*, z^*)$.
- **4** Given y^* , compute $f(y^*)^{ADPP}$ for the original problem by deriving the choices for all customers and scenarios. Update $UB = \min\{UB, f(y^*)^{ADPP}\}$.
- **5** If $UB LB \le \epsilon$, then stop. Else, solve the dual worker problem for $y = y^*$. Using the optimal dual variables, add to the master problem an optimality cut of the following form:

$$z \ge \sum_{n \in \mathbb{N}} \sum_{i \in \mathbb{N}} \left(\sum_{i \in I} m_i y_i + q \right) \tag{31}$$

and go to step 3.

Branch-and-Benders-cut

- Solving the master problem at each iteration is inefficient.
- Benders cuts can be inserted while processing the branch-and-bound tree of the master problem.⁵

⁵Fischetti, Ljubić, and Sinnl, "Redesigning Benders decomposition for large-scale facility location" (2017).

Preliminary results

R	$ I_i^{exp} $	Opt	CPLEX	ВВС
5	3	2399.20	13.20	42.81
5	6	2526.20	165.68	230.17
5	12	2641.60	3685.49	1793.00
10	3	2330.20	87.79	106.40
10	6	2727.20	703.47	587.74
10	12	2795.10	10931.09	7627.22
20	3	2333.90	363.22	256.94
20	6	2585.15	1066.06	1669.50
20	12	2638.08	54336.94	27043.61

Table: Parking assortment and pricing, |N| = 80, $|I_k| = 12$: solving ADPP to optimality with CPLEX and BBC algorithm (single-thread).

Enhancements and future work

- Classical Benders cuts provide slow convergence → efficient cuts are key to the success of this approach:
 - Pareto-optimal cuts;⁶
 - minimal infeasible subset cuts;
 - partial Benders decomposition.⁷

 $^{^6}$ Magnanti and Wong, "Accelerating Benders decomposition: Algorithmic enhancement and model selection criteria" (1981).

⁷Crainic et al., "Partial benders decomposition: general methodology and application to stochastic network design" (2021).

Summary

- Supply problems with advanced discrete choice models of demand can be written as stochastic optimization problems by relying on simulation.
- Choice-based optimization problems with discrete upper-level variables exhibit a block-diagonal structure which make them particularly suitable to the use of decomposition techniques such as Benders.
- We are working on efficient enhancements for our Benders approach to generate tighter cuts and reduce computational times.
- The **trade-off** between the increased realism of the demand model and the computational complexity of the resulting optimization/equilibrium problem must be evaluated on a case-by-case basis.