DIGI'	TAL	DATA	ACQ	UIS'	TION
	& N	IEDIA	BASI	CS	

LECTURE SUBTOPICS

Issues in Digitizing a Signal

- Signal Sampling
- Quantization
- Bit Rate

What do you lose in the digitization process? Why do you lose it? What can you do to avoid (minimize) the loss.

Filtering and Subsampling

Acquisition of media and formats

Video Progressive and Interlaced

Digital Component Video Formats

Aspect ratios

SAMPLING

For a signal x(t), $x_s(n)=x(nT)$ where T is the sampling period F=1/T is the sampling frequency.

The inverse transformation is called Interpolation x(t) from $x_s(n)$

Issues

- If the sampled signal is interpolated, how do you ensure that you get back the original signal
- How fast should we sample

QUANTIZATION

The value at every sampled location is digitized.

The digital domain has a finite bit representation

The sampled value is approximated to the nearest digital value.

OR Formally -

 $x_q(n)=Q(x_s(n))$, where Q is a rounding function which maps the values of $x_s(n)$ into N levels with a quantization step Δ .

Typically, $N=2^b$ so that we need b bits to represent one quantized sample.

Issues

What is the correct quantization step? **Quantization errors may result!**

QUANTIZATION EXAMPLE IN 1D

QUANTIZATION EXAMPLE IN 2D (1)

6 bits

5 bits

QUANTIZATION EXAMPLE IN 2D (2)

4 bits

3 bits

QUANTIZATION EXAMPLE IN 2D (3)

2 bits 1 bits

COLOR QUANTIZATION IN IMAGES

24 bit RGB Color (8 bits per channel)

16 Colors

BIT RATE

How many bits do you get per second?

Bit rate = (number of samples per second) x

(bits per sample)

Bit rate relates to the network through put

Examples of bitrate

Audio – CD Bitrate
 Sampling frequency: F= 44.1 KHz
 Quantization with 16 bits
 Bit-rate = 705.6 Kb/s (per channel)

As sampling rate increases, bit rate increases

As quantization bits used increase, bit rate increases

BIT RATE

Signal	Sampling	Quantization	Bit Rate	
	Rate			
Speech	8 KHz	8 bits per sample	64Kbps	
Audio CD	44.1 KHz	16 bits per sample	706 Kbps (mono)	
			1.4 Mbps (stereo)	
Teleconferencing	16 KHz	16 bits per sample	256 Kbps	
AM Radio	11 KHz	8 bits per sample	88 Kbps	
FM Radio	22 KHz	16 bits per sample	352 Kbps (mono)	
			704 Kbps (stereo)	
NTSC TV image	Width – 486	16 bits per sample	5.6 Mbits per frame	
frame	Height – 720			
HDTV (1080i)	Width – 1920	12 bits per pixel	24.88 Mbits per	
	Height – 1080	on average	frame	

SOME THEORY

Linear Time Invariant Systems

- Can be completely characterized by impulse response
- Impulse Response Vs Transfer Function
- Time Domain View: The output of the system is the convolution of the input with the system's impulse response
- Frequency Domain View: The frequency transform output of the system is the product of the transfer function and the frequency transform of the input

TIME DOMAIN VS FREQUENCY DOMAIN

Time domain

Frequency domain

WHAT'S THE CORRECT SAMPLING RATE?

If F is too large (T is too small), we obtain too high a bitrate

If F is too small (T is too large), too much information is lost in the sampling process

We want to capture as much information as necessary to represent the signal correctly

the *minimum sampling rate* for "correct" sampling depends on the frequency characteristics of the signal

NYQUIST'S SAMPLING THEOREM

Let x(t) have a maximum frequency F. Then we can "perfectly" interpolate the signal x(t) from its sampled version $x_s(n)=x(nT)$ only if the sampling period T is less than 1/(2F)

In other words, the sampling frequency should be at least 2F for a signal whose maximum frequency is F - Otherwise – aliasing

ALIASING EXAMPLES

Spatial Aliasing in one dimension

Example of a sinusoidal function in 1D

Audio aliasing (single frequency)

Audio without aliasing -

and with aliasing aliastpt2.au

Spatial Aliasing in two dimensions

Spatial Aliasing

Spatial Aliasing - moiré lines

Temporal Aliasing
Revolving Light
A real example

OTHER EXAMPLES

Convolution – http://www.jhu.edu/signals/lecture1/frames.html

Fourier Transform -

http://www.jhu.edu/signals/sampling/index.html

BANDLIMITED SIGNALS AND FILTERS

Fourier Transform X(f) of a signal x(t): describes how the "energy" of x(t) distributes among frequencies f

If the highest frequency in X(f) is B, we say x(t) is Band Limited to B

A "filter" is an operator characterized by its frequency response H(f):

- The Fourier transform of y(t) is Y(f)=H(f)X(f)
- Therefore, the band B_y of y(t) is < the band B_h of the filter
- Filters can be low-pass, band-pass or high-pass

Original

Low-pass filtered

High-pass filtered

EXAMPLES USING FILTERS IN COMPRESSION

Audio Filtering Example

Cut-off frequency of microphone is 100KHz. We should sample at 200KHz. If Quantized at 16 bits per sample -> 3 Mbs!

Our hearing system can only detect frequencies up to ~20KHz.

Prefilter the signal

Use a low-pass filter with cut-off frequency B=20KHz. Then, we sample the signal at 40KHz producing only 640 Kb/s

SUBSAMPLING (DECIMATION)

Given x(n), subsampling by M means generating a signal y(n) = x(Mn).

SUBSAMPLING EXAMPLE

Example: A continuous signal x(t), band-limited to B=4KHz is sampled without aliasing with F=10 KHz. Suppose now we subsample the resulting signal by 2.

This is equivalent to sampling the original signal with rate F=5KHz (which gives *aliasing*)

Solution: digital low-pass filter before subsampling.

STATISTICAL DEFINITIONS

Mean or Expectation of the signal x (n), for a large sample space M is defined as

$$\mu_{x} = \left(\sum_{n=1}^{n=M} x(n)\right) / M$$

The Variance of the signal x(n) is defined as

$$\sigma_{\mathcal{X}}^{2} = \left(\sum_{n=1}^{n=M} \left(x(n) - \mu_{\mathcal{X}} \right)^{2} \right) / M$$

The power of the quantization error, σ_e^2 is the variance of the signal $e(n) = x_q(n) - x(n)$

The signal-to-quantization noise ratio (measured in dB) SNR = 10 $\log_{10} (\sigma_x^2 / \sigma_e^2)$

ORIGINAL IMAGE

SUBSAMPLED BY 2

Without prefiltering

With prefiltering

SUBSAMPLED BY 4

Without prefiltering

With prefiltering

MEDIA REPRESENTATIONS

Audio Signals – Time Varying Signals (amp @ t)

Images – 2D Signal (color @ x, y)

Video Signals – 3D Signals (color @ x, y, t)

Graphics –

- Inherently Digital
- 2D graphics objects
- 3D graphical objects

VIDEO SIGNALS

Video is obtained via *raster scanning*, which transforms a 3-D color signal (function of x, y and t) into a one-dimensional signal for transmission

Scanning is a sampling operation:

Samples in time: *Frames*

Samples along y (vertical direction): Lines

Samples along x (horizontal direction): Pixels

Scanning is done using two formats

- Progressive Scanning
- Interlaced Scanning

ANALOG VIDEO

History of Television and Analog Video

PROGRESSIVE SCANNING

Rows are scanned left to right and top to bottom

INTERLACED SCANNING

Each frame is scanned twice (two fields)
First, scan all even lines
then, scan all odd lines

- Slow-moving objects can be perceived with high spatial resolution
- fast-moving objects can be perceived at high frame rate

INTERLACED SCANNING EXAMPLE

lower field

LUMINANCE AND CHROMINANCE

In color video, we have 3 signals:

1 signal of *luminance*

2 signals of chrominance

The three signals are composed together to form a color image.

If only the *luminance* signal is received: grayscale image

CHROMINANCE SUBSAMPLING SCHEMES

Human visual system is less sensitive to the Chrominance channels than to Luminance channel

We can *subsample* the chrominance channels without noticeable loss of detail

Color subsampling schemes:

- 4:2:0 (a.k.a. 4:1:1): 1 sample of each chrominance channel every 4 samples of luminance
- 4:2:2: 1 sample of each chrominance channel every 2 samples of luminance

4:2:0 SUBSAMPLING SCHEME

Interlaced scanning

Field 1

Field 2

4:2:2 SUBSAMPLING SCHEME

EQUIVALENT BITS/PIXEL

Assume luminance and the two channels of chrominance are quantized with 8 bits/sample

4:2:0 - For every 4 pixels, we have 4 samples of luminance and 1 sample each of chrominance.

- Overall, 4-8+8+8=48 bits per 4 pixels.
- On average, 48/4=12 bits per pixel.

4:2:2 - For every 2 pixels, we have 2 samples of luminance and 1 sample each of chrominance.

- Overall, 2-8+8+8=32 bits per 2 pixels.
- On average, 32/2=16 bits per pixel.

IMAGE ASPECT RATIOS

Image Aspect Ratio: ratio of width to height in the image

- Typically 4:3 for standard TV
- HDTV has 16:9
- Cinemascope has 47:20!

PIXEL ASPECT RATIOS

Pixel Aspect Ratio: ratio width to height of a pixel, assuming it is a rectangle

- Computers have square pixels, ratio = 1
- NTSC Wide Screen 16:9, ratio = 1.2

Example:

Image Aspect Ratio = 4:3; N_1 =486; N_p =720; Then Pixel Aspect Ratio = (4/3)(486/720)=0.9

SEAM CARVING

http://www.youtube.com/watch?v=qadw0BRKeMk

STILL IMAGE FORMATS

Format name	Lines/frame	Pixels/line	Bits/Pixel	
FAX	2200	1700	1	
VGA	480	640	8	
XVGA	768	1024	24	

VIDEO FORMATS

Format Name	Lines per Frame	Pixels per Line	Frames per Second	Interlaced?	Sub sampling scheme	Image Aspect Ratio
CIF	288	352		N	4:2:0	4:3
QCIF	144	176		N	4:2:0	4:3
SQCIF	96	128		N	4:2:0	4:3
4CIF	576	704		N	4:2:0	4:3
SIF-525	240	352	30	N	4:2:0	4:3
SIF-625	288	352	25	N	4:2:0	4:3
CCIR 601 NTSC (DV, DVB, DTV)	480	720	29.97	Y	4:2:2	4:3
CCIR 601 PAL/SECAM	576	720	25	Y	4:2:0	4:3
EDTV (576p)	480 / 576	720	29.97	N	4:2:0	4:3 / 16:9
HDTV (720p)	720	1280	29.97	N	4:2:0	16:9
HDTV (1080i)	1080	1920	59.94 (field rate)	Y	4:2:0	16:9
HDTV (1080p)	1080	1920	29.97	N	4:2:0	16:9
Digital Cinema (2K)	1080	2048	24	N	4:4:4	47:20
Digital Cinema (4K)	2160	4096	24	N	4:4:4	47:20

VIDEO FORMATS – BIT RATE COMPUTATION

Bit-rate for interlaced HDTV format is calculated as

N = 1080 lines per frame,

N_p=1920 pixels per line,

N_{FPS}=29.97 frames/second

P = 12 bits per pixels (luminance + chrominance)

 $N_1N_2N_{PS}$ -12 = 745,749,504 bits/s.

GRAPHICS

Representation - vector and raster

Graphical object in 2D/3D

