# Discovering drug targets via network analysis

Mario L. Arrieta-Ortiz Institute for Systems Biology Baliga Laboratory



Introduction to network analysis

Tolerance networks of MTB to bedaquiline

R code overview



## **Networks are everywhere**



**Global communication** 



**Transportation** 



Networks can be represented as graphs: nodes, edges



# (TFs) and their target genes are represented as networks







E. coli's ArcA regulon





# **Environmental and Gene Regulatory Influence Network (EGRIN)**

- Global transcriptional networks are static representations and do not offer information about conditional regulation
- Biological networks are modular





Arrieta-Ortiz, Hafemeister, et al., MSB (2015)

# **Environmental and Gene Regulatory Influence Network (EGRIN)**

- 6
- Global transcriptional networks are static representations and do not offer information about conditional regulation
- Biological networks are modular
- EGRIN approach is based on bi-clustering (genes and conditions)
- Each bicluster represents a group of co-regulated genes in a specific set of conditions





no co-regulation

co-regulation

### Generating an EGRIN model with cMonkey

Input data
functional associations
genome sequence
transcriptome profiles
meta-data

cMonkey

environments

motifs

motifs

motif locations
in gene promoters



### cMonkey code availability

https://github.com/baliga-lab/cmonkey2 (Python version)





### The burden of tuberculosis (TB)

- #1 infection disease in terms of number of annual deaths (1.5 M)
- In need of new and shorter treatments (standard treatment includes four drugs for six months)
- Antimicrobial resistance on the rise → limited and longer therapy options
- Mycobacterium tuberculosis (MTB), the causal agent of TB, adapts to host's environment (immune response, low  $O_2$ , toxic compounds, nutrient depletion, low pH)



## Construction of *Mycobacterium tuberculosis*'s EGRIN model

10

co-regulation no co-regulation

Modular Organization of
Gene Regulatory Network





# Biclusters enriched with a given set of genes are identified with hypergeometric tests

11

 Hypergeometric test evaluates whether the observed overlap between two groups is statistically significant

Number of successes, drawn WITHOUT replacement, from a source that contains a certain number of successes and a certain number of failures

| Genes    | Differentially expressed? | In functional category "Metabolism/Respiration"? |
|----------|---------------------------|--------------------------------------------------|
| 'Rv0001' | 0                         | 0                                                |
| 'Rv0002' | 1                         | 0                                                |
| 'Rv0003' | 1                         | 0                                                |
| 'Rv0004' | 0                         | 1                                                |
| 'Rv0005' | 0                         | 0                                                |



### Validation of MTB's EGRIN model





TF overexpression-induced changes in 3,785 unique mRNA in 206 TFOE strains



3,922 genes organized in 598 biclusters based on conditional co-regulation across 14 environments



torial a



sion profiling by icroarray

Peterson et al., NAR (2014) Minch et al., Nat Comm (2014) Rustad et al., Genome Biol (2014) Turkarslan et al., Nature Sci Data (2015)



### MTB EGRIN model offered insights about the regulation of mycolic acid biosynthesis genes in intracellular conditions





# Case study: network analysis to accelerate TB drug synergy and to elucidate mechanisms of action







**ARTICLES** 

PUBLISHED: 6 JUNE 2016 | ARTICLE NUMBER: 16078 | DOI: 10.1038/NMICROBIOL.2016.78

# Network analysis identifies Rv0324 and Rv0880 as regulators of bedaquiline tolerance in *Mycobacterium tuberculosis*

Eliza J. R. Peterson<sup>1†</sup>, Shuyi Ma<sup>2†</sup>, David R. Sherman<sup>2,3</sup> and Nitin S. Baliga<sup>1,4,5</sup>\*



15

- First anti-TB drug approved by FDA in nearly 40 years
- Kills relatively slow

Regulatory mechanism pushes MTB into a tolerant state that resists BDQ

killing





- First anti-TB drug approved by FDA in nearly 40 years
- Kills relatively slow
- Regulatory mechanism pushes MTB into a tolerant state that resists BDQ killing



48-96 h untreated

48-96 h bedaquiline



### **BDQ** tolerance networks in MTB are driven by Rv0324 and Rv0880





## Disrupting tolerance networks increase killing by BDQ









# Pretomanid disrupts the tolerance network to potentiate killing by BDQ







## **Analyzing Drug Combinations- Drug synergy scoring**





- HAS: expected effect is the highest monotherapy effect  $(y_e = max (y_1, y_2))$
- Loewe: expected effect as if a drug is combined with itself  $(y_e = y_1(x_1 + x_2) = y_2(x_1+x_2))$
- Bliss: expected effect as if the two drugs are acting independently  $(y_e = y_1 + y_2 y_1y_2)$
- ZIP: both the assumptions of the Loewe and Bliss models are met

He et al., Methods Mol. Biol. (2018)



### R notebook overview

- Analyze and plot bedaquiline treated expression data
- Functional enrichment of differentially expressed genes
  - Hypergeometric test
- Network analysis of differentially expressed genes
- Identification of secondary drug to synergize with Bedaquiline
  - Analyze drug combination synergyfinder



### **Datasets**





### **Acknowledgements**

### Baliga Lab

- Nitin Baliga
- Eliza Peterson



Chris Plaisier

### **Funding**



### **ISB Summer Course**



https://systemsbiology.org/course/#anchor2

### **Collaborators**



