6. Funzioni composte

Definizione

Sono date le funzioni

$$f: E_f \to C_f$$
 e $g: E_g \to C_g$

e sia.

La funzione

$$t: E_f \to C_g$$

che fa corrispondere a ogni elemento $x \in E_f$ l'elemento $g(f(x)) \in C_g$ si dice **funzione composta** di $f \in g$ e si indica con $g \circ f$ (g composto f).

Se il codominio C_f della f non è contenuto nel dominio E_g della g è possibile ancora definire la funzione composta $g \circ f$ purché si possa determinare un sottoinsieme

 $E'_f \subseteq E_f$ in modo tale che il codominio $f(E'_f) \subseteq E_a$.

Per esempio, date le funzioni

$$f: \mathbb{R} \to \mathbb{R}/x \to x^3$$
 $g: \mathbb{R}^+ \to \mathbb{R}/x \to \sqrt{x}$

osserviamo che sui valori negativi del codominio $\mathbb R$ di f non è definita la g. In tal caso è sufficiente restringere a $\mathbb R^+$ il dominio della f per poter definire la funzione composta $g \circ f$.

In generale, pur essendo ben definite le funzioni $g \circ f \in f \circ g$, per l'ordine di composizione non vale la proprietà commutativa, cioè

$$g \circ f \neq f \circ g$$

Esempio

Consideriamo le funzioni

$$f: \mathbb{R} \to \mathbb{R}/x \to x^2$$
 e $g: \mathbb{R} \to \mathbb{R}/x \to 3x - 1$

Il codominio della funzione f è $\mathcal{C}_f=[0;+\infty)$; poiché esso è contenuto nel dominio \mathbb{R} della funzione g è possibile definire la funzione composta $g\circ f$ e risulta :

$$g(f(x)) = 3x^2 - 1.$$

E' possibile definire anche la funzione $f \circ g$ che consiste nell'applicare su x prima

la funzione g e, sul risultato, la f e risulta :

$$f(g(x)) = (3x - 1)^2$$

Esercizi

(gli esercizi con asterisco sono avviati)

Date le funzioni f(x) e g(x) determinare le funzioni f(g(x)) e g(f(x)) con i

rispettivi domini

$$1) f(x) = x - 2$$
 $g(x) = x^2 + x$

$$2)f(x) = \sqrt[3]{x}$$
 $g(x) = x + 4$

3)
$$f(x) = \sqrt[3]{4 - 2x}$$
 $g(x) = \frac{1}{x}$

$$4) f(x) = \sqrt{x-4}$$
 $g(x) = x^2$

$$5)f(x) = \sqrt{x}$$
 $g(x) = log x$

$$6)f(x) = 3^x$$
 $g(x) = x^2 + 4$

7)
$$f(x) = \frac{1}{x-1}$$
 $g(x) = e^x$

$$8)f(x) = sin x$$
 $g(x) = x^3 - 1$

*9)
$$f(x) = log x$$
 $g(x) = -x^2 - 4$

10)
$$f(x) = e^{2x}$$
 $g(x) = log(x - 1)$

$$11)f(x) = arcsinx \quad g(x) = x^4$$

*12)
$$f(x) = arcsinx$$
 $g(x) = x^2 + 2$

Soluzioni

1. S.
$$f(g(x)) = x^2 + x - 2$$
; $E = \mathbb{R}$; $g(f(x)) = (x - 2)^2 + x - 2$; $E = \mathbb{R}$;

2. S.
$$f(g(x)) = \sqrt[3]{x+4}$$
, $E = \mathbb{R}$; $g(f(x)) = \sqrt[3]{x} + 4$, $E = \mathbb{R}$

3. S.
$$f(g(x)) = \sqrt[3]{4 - \frac{2}{x}}$$
; $E = \mathbb{R} - \{0\}$; $g(f(x)) = \frac{1}{\sqrt[3]{4 - 2x}}$; $E = \mathbb{R} - \{2\}$;

4. S.
$$f(g(x)) = \sqrt{x^2 - 4}$$
; $E = (-\infty; -2] \cup [2; +\infty)$; $g(f(x)) = x - 4$; $E = [4; +\infty)$;

5. S.
$$f(g(x)) = \sqrt{\log x}$$
, $E = [1; +\infty)$; $g(f(x)) = \log \sqrt{x}$, $E = (0; +\infty)$;

6.S.
$$f(g(x)) = 3^{x^2+4}$$
 , $E = \mathbb{R}$; $g(f(x)) = 3^{2x} + 4$, $E = \mathbb{R}$;

7. S.
$$f(g(x)) = \frac{1}{e^{x}-1}$$
, $E = R - \{0\}$; $g(f(x)) = e^{\frac{1}{x-1}}E = \mathbb{R} - \{1\}$;

8.S.
$$f(g(x)) = \sin(x^3 - 1)$$
, $E = \mathbb{R}$; $g(f(x)) = \sin^3 x - 1$, $E = \mathbb{R}$;

*9.S. g(x) è definita in \mathbb{R} e ha codominio $C_g = (-\infty; -4]$ mentre f(x) esiste solo per valori positivi dell'argomento del logaritmo, quindi $f(g(x)) = \log(-x^2 - 4)$ non esiste.

La funzione f(x), definita in $(0; +\infty)$, ha codominio \mathbb{R} , in cui è definita la funzione g(x), cioè $\mathcal{C}_f = E_g$ pertanto esiste in $E = (0; +\infty)$ $g(f(x)) = -log^2x - 4$;

10. S.
$$f(g(x)) = e^{2log(x-1)} = (x-1)^2$$
, $E = (1; +\infty)$; $g(f(x)) = log(e^{2x} - 1)$, $E = (0; +\infty)$;

11. S.
$$f(g(x)) = arcsinx^4$$
; $E = [-1; 1]$; $g(f(x)) = (arcsinx)^4$; $E = [-1; 1]$;

*12. S. g(x) è definita in \mathbb{R} e ha codominio $C_g=[2;+\infty)$ mentre f(x) esiste solo in [-1;1], quindi $f(g(x))=\arcsin(x^2+2)$ non esiste. La funzione f(x), definita in $E_f=[-1;1]$, ha codominio $C_f=\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$, la funzione g(x) è definita in $E_g=\mathbb{R}$, quindi $C_f\subseteq E_g$ pertanto esiste in [-1;1] $g(f(x))=(arcsinx)^2+2$.