DS-1	
shrutika.jantre6@gmail.com Switch accounts	
② Draft saved	
*Required	
Email *	
shrutika.jantre6@gmail.com	
Student ID *	1 point
220340520093	
Given a sequence of number below:50,60,40,70,45,55,30,80,65,35,25,75,85When creating a bir search tree, what is the height of the tree?	1 point
O 3	
4	
O 5	
O 6	
	Clear selection

What are the 3 depth traversals for a tree data structure?	1 point
Pre-, In- and Post-order	
Pro-, In- and Past-order	
Pre-, Out- and Post-order	
Pre-, In- and New-order	
	Clear selection
Which of these tree traversal methods is used to output the conbinary tree in ascending order?	tents of a 1 point
O Pre-Order	
● In-Order	
O Post-Order	
Monastic Orders	
	Clear selection
Root	1 point
data structure similar to a graph, with no loops.	
an object in a graph also known as a vertex	
a join of relationship between nodes - also know as an arc	
the starting node in a rooted tree structure from which all other node	es branch off
	Clear selection

A Kind of tree where every node in a tree can have at most two children.	point
Binary Tree	
Binary Expression Tree	
○ Tree	
Binary Search Tree	
Clear select	ion
Which of the following trait of a hash function is most desirable?	point
it should cause less collisions	
it should cause more collisions	
it should occupy less space	
it should be easy to implement	
Clear select	ion
What is the advantage of using a doubly linked list for chaining over singly linked list?	point
it takes less memory	
it is easy to implement	
it makes the process of insertion and deletion faster	
it causes less collisions	
Clear select	ion

What is the worst case search time of a hashing using separate chaining 1 point algorithm?
O(N log N)
O(N)
O(N^2)
O(N^3)
Clear selection
Which of the following is not a collision resolution technique? 1 point
Separate chaining
C Linear probing
Quadratic probing
Hashing
Clear selection
The case in which a key other than the desired one is kept at the identified 1 point location is called?
O Hashing
Collision
Chaining
Open addressing
Clear selection

What is the load factor?	
Average array size	
Average key size	
Average chain length	
Average hash table length	
Clear selection	
Which data structure uses hashing to store information with constant 1 point lookup time?	
Hash table	
O 1D Array	
C Linked List	
O 2D Array	
○ Stack	
Clear selection	
Advantages of linked list representation of binary trees over arrays? * 1 point	
a) dynamic size	
b) ease of insertion/deletion	
C) ease in randomly accessing a node	
d) both dynamic size and ease in insertion/deletion	

Disadvantages of linked list representation of binary trees over arrays? * 1 po	nt
a) Randomly accessing is not possible	
b) Extra memory for a pointer is needed with every element in the list	
c) Difficulty in deletion	
(a) Random access is not possible and extra memory with every element	
A linear collection of data elements where the linear node is given by * 1 po	int
means of pointer is called?	
a) Linked list	
b) Node list	
C) Primitive list	
d) Unordered list	
The concatenation of two lists can be performed in O(1) time. Which of * 1 po the following variation of the linked list can be used?	nt
a) Singly linked list	
b) Doubly linked list	
c) Circular doubly linked list	
d) Array implementation of list	

In a stack, if a user tries to remove an element from an empty stack it is * 1 poi called	nt
a) Underflow	
b) Empty collection	
O c) Overflow	
d) Garbage Collection	
Entries in a stack are "ordered". What is the meaning of this statement? * 1 poi	int
a) A collection of stacks is sortable	
b) Stack entries may be compared with the '<' operation	
c) The entries are stored in a linked list	
(a) There is a Sequential entry that is one by one	
Which of the following is not the application of stack? * 1 poi	nt
a) A parentheses balancing program	
b) Tracking of local variables at run time	
C) Compiler Syntax Analyzer	
d) Data Transfer between two asynchronous process	

Here is an infix expression: $4 + 3*(6*3-12)$. Suppose that we are using the usual stack algorithm to convert the expression from infix to postfix notation. The maximum number of symbols that will appear on the stack AT ONE TIME during the conversion of this expression?	* 1 point
(a) 1	
O b) 2	
O c) 3	
(a) 4	
What kind of linked list is best to answer questions like "What is the item at position n?"	* 1 point
a) Singly linked list	
b) Doubly linked list	
c) Circular linked list	
d) Array implementation of linked list	
Linked list is considered as an example of type of memory allocation.	* 1 point
a) Dynamic	
b) Static	
C) Compile time	
O d) Heap	

In Linked List implementation, a node carries information regarding * 1 point
a) Data
O b) Link
c) Data and Link
O d) Node
Linked list data structure offers considerable saving in* 1 point
a) Computational Time
b) Space Utilization
c) Space Utilization and Computational Time
d) Speed Utilization
Which of the following application makes use of a circular linked list? * 1 point
a) Undo operation in a text editor
b) Recursive function calls
c) Allocating CPU to resources
d) Implement Hash Tables

Which of the following is false about a circular linked list? *	1 point
a) Every node has a successor	
b) Time complexity of inserting a new node at the head of the list is O(1)	
o c) Time complexity for deleting the last node is O(n)	
d) We can traverse the whole circular linked list by starting from any point	
In postorder traversal of binary tree right subtree is traversed before visiting root.	* 1 point
a) True	
) b) False	
What is the possible number of binary trees that can be created with 3 nodes, giving the sequence N, M, L when traversed in post-order.	* 1 point
(a) 15	
O b) 3	
o c) 5	
O d) 8	

A binary search tree contains values 7, 8, 13, 26, 35, 40, 70, 75. Which one * 1 point of the following is a valid post-order sequence of the tree provided the pre-order sequence as 35, 13, 7, 8, 26, 70, 40 and 75?
a) 7, 8, 26, 13, 75, 40, 70, 35
b) 26, 13, 7, 8, 70, 75, 40, 35
c) 7, 8, 13, 26, 35, 40, 70, 75
(a) 8, 7, 26, 13, 40, 75, 70, 35
A full binary tree can be generated using* 1 point
a) post-order and pre-order traversal
b) pre-order traversal
c) post-order traversal
d) in-order traversal
The steps for finding post-order traversal are traverse the right subtree, * 1 point traverse the left subtree or visit the current node.
a) True
(b) False

The pre-order and in-order are traversals of a binary tree are TMLNPO * 1 point Q and LMNTOPQ. Which of following is post-order traversal of the tree?
a) L N M O Q P T
O b) N M O P O L T
C) L M N O P Q T
O d) O P L M N Q T

Submit Clear form

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Google Forms