# Laboratorium Podstawy Informatyki

Sieci stanowisk M/M/1

Autor: Jonatan Dragon,

Informatyka, sem. 2, gr. 6

Prowadzący: dr inż. Ewa Płuciennik-Psota

## 1. Stanowisko M/M/1

# 1.1 Zależność średniej liczby zgłoszeń od ρ.

| ln  | λ  | μ  | ρ   | Średnia ilość zgłoszeń |             |  |
|-----|----|----|-----|------------------------|-------------|--|
| lp. |    |    |     | w symulacji            | analityczna |  |
| 1   | 2  | 10 | 0,2 | 0,262                  | 0,111       |  |
| 2   | 4  | 10 | 0,4 | 0,751                  | 0,667       |  |
| 3   | 6  | 10 | 0,6 | 1,453                  | 1,500       |  |
| 4   | 8  | 10 | 0,8 | 3,309                  | 4,000       |  |
| 5   | 15 | 10 | 1,5 | 2530,693               | (-3,000)    |  |
| 6   | 20 | 10 | 2,0 | 4966,117               | (-2,000)    |  |

W przeprowadzonych testach parametr  $\mu$ , odpowiedzialny za liczbę możliwych do przyjęcia zgłoszeń ustaliłem na 10. Zmieniałem natomiast parametr  $\lambda$ , obrazujący liczbę zgłoszeń w jednostce czasu. Dzięki tym zabiegom uzyskałem zmianę parametru  $\rho$  dla kolejnych testów. Przyjąłem też, że oczekiwaną średnią ilość zgłoszeń mogę obliczyć ze wzoru  $E(n)=\frac{\rho}{1-\rho}$ .

Analizując przeprowadzone testy można zauważyć, że dla  $\rho$  < 1 ilość zgłoszeń w testach jest bliska ilości zgłoszeń uzyskanej analitycznie. Dla  $\rho$  > 1 wynik ten jest inny. Stanowisko nie jest w stanie obsłużyć przychodzących zgłoszeń, co powoduje jego zatykanie.

# 1.2 Zależność czasu pobytu zgłoszenia w systemie od ρ.

| In  | λ  | μ  | ρ   | Średni czas pobytu w systemie |              |  |
|-----|----|----|-----|-------------------------------|--------------|--|
| lp. |    |    |     | w symulacji                   | analitycznie |  |
| 1   | 2  | 10 | 0,2 | 0,130                         | 0,125        |  |
| 2   | 4  | 10 | 0,4 | 0,185                         | 0,167        |  |
| 3   | 6  | 10 | 0,6 | 0,241                         | 0,250        |  |
| 4   | 8  | 10 | 0,8 | 0,412                         | 0,500        |  |
| 5   | 15 | 10 | 1,5 | 167,796                       | (-0,200)     |  |
| 6   | 20 | 10 | 2,0 | 248,444                       | (-0,100)     |  |

Testując czas pobytu zgłoszenia w systemie, wartości parametrów  $\lambda$ ,  $\mu$  oraz  $\rho$  przyjąłem takie jak w poprzednich testach. Oczekiwany średni czas pobytu na stanowisku obliczyłem ze wzoru  $E(\tau)=\frac{1}{\mu(1-\rho)}$ .

Jak już wcześniej można było zauważyć, czas pobytu w systemie według symulacji ma podobną wartości do czasu pobytu obliczonego ze wzoru gdy parametr  $\rho$  ma wartość z przedziału 0 do 1. Dla  $\rho > 1$ , stanowisko jest zatykane, co wiąże się z dłuższym czasem pobytu.

# 2. Stanowisko M/M/1/RNT

#### 2.1 Zależność czasu czekania od µ.

| ln  | λ  | μ  | ρ     | Średni czas pobytu w systemie |              |  |
|-----|----|----|-------|-------------------------------|--------------|--|
| lp. |    |    |       | w symulacji                   | analitycznie |  |
| 1   | 10 | 4  | 2,500 | 293.468                       | (-0,416)     |  |
| 2   | 10 | 8  | 1,250 | 99.011                        | (-0,625)     |  |
| 3   | 10 | 16 | 0,625 | 0.105                         | 0,104        |  |
| 4   | 10 | 24 | 0,417 | 0.030                         | 0,029        |  |
| 5   | 10 | 34 | 0,294 | 0.012                         | 0,012        |  |
| 6   | 10 | 46 | 0,217 | 0.011                         | 0,006        |  |

Analizując powyższe dane możemy zauważyć, że parametr  $\mu$  ma duży wpływ na czas czekania zgłoszenia. Dla rosnących wartości  $\mu$ , czas czekania w symulacji znacznie maleje. Dla  $\rho$  mniejszego od 1, wartości obliczone analitycznie są w przybliżeniu równe tym uzyskanym w symulacji.

### 2.1 Zależność czasu pobytu zgłoszenia w systemie od $\rho$ i $\theta$ .

| lp. | θ<br>(tylko dla | λ  | μ  | ρ   | Średni czas pobytu w<br>systemie dla symulacji |         |
|-----|-----------------|----|----|-----|------------------------------------------------|---------|
| •   | M/M/1/RNT)      |    | •  | •   | M/M/1/RNT                                      | M/M/1   |
| 1   | 0,2             | 2  | 10 | 0,2 | 0,123                                          | 0,130   |
| 2   |                 | 4  | 10 | 0,4 | 0,182                                          | 0,185   |
| 3   |                 | 6  | 10 | 0,6 | 0,268                                          | 0,241   |
| 4   |                 | 8  | 10 | 0,8 | 0,421                                          | 0,412   |
| 5   |                 | 15 | 10 | 1,5 | 179,141                                        | 167,796 |
| 6   |                 | 20 | 10 | 2,0 | 240,080                                        | 248,444 |
| 7   | 0,6             | 2  | 10 | 0,2 | 0,123                                          | 0,130   |
| 8   |                 | 4  | 10 | 0,4 | 0,161                                          | 0,185   |
| 9   |                 | 6  | 10 | 0,6 | 0,237                                          | 0,241   |
| 10  |                 | 8  | 10 | 0,8 | 0,473                                          | 0,412   |
| 11  |                 | 15 | 10 | 1,5 | 158,001                                        | 167,796 |
| 12  |                 | 20 | 10 | 2,0 | 234,498                                        | 248,444 |
| 13  | 1,2             | 2  | 10 | 0,2 | 0,124                                          | 0,130   |
| 14  |                 | 4  | 10 | 0,4 | 0,156                                          | 0,185   |
| 15  |                 | 6  | 10 | 0,6 | 0,233                                          | 0,241   |
| 16  |                 | 8  | 10 | 0,8 | 0,522                                          | 0,412   |
| 17  |                 | 15 | 10 | 1,5 | 174,707                                        | 167,796 |
| 18  |                 | 20 | 10 | 2,0 | 245,941                                        | 248,444 |

Średni czas pobytu zgłoszenia w systemie M/M/1/RNT wydaje się być krótszy niż w systemie M/M/1. Nie dla wszystkich jednak przypadków możemy zauważyć taką tendencję. W związku ze zbyt małą ilością prób, nie mogę stwierdzić czy to reguła, czy też różnice te wynikają z przypadku.

# 3. Sieci stanowisk M/M/1

W związku z brakiem możliwości uruchomienia symulatora, przedstawiam tylko teoretyczną analizę sieci stanowisk M/M/1.

# 3.1 Średnia liczba klientów dla różnych wartości prawdopodobieństwa.



#### 3.2 Sieć



• Średnia liczba klientów w systemie:

Rozwiązując układ równań, otrzymałem następujące wyniki:

$$\lambda_1 = 12$$

$$\lambda_2 = 10$$

$$\lambda_3 = 20$$

Średnia długość kolejek przed każdym ze stanowisk:

Najpierw obliczam wartość ρ:

$$\rho_1 = \frac{\lambda_1}{\mu_1} = \frac{1}{2}$$
  $\rho_2 = \frac{\lambda_2}{\mu_2} = \frac{2}{3}$   $\rho_3 = \frac{\lambda_{03}}{\mu_3} = \frac{5}{6}$ 

Następnie wstawiając do wzoru, otrzymuję następujące wyniki:

$$E(k) = \frac{\rho^2}{(1-\rho)}$$

$$E(k_1) = 0.5$$

$$E(k_2) = 1,28$$

$$E(k_3) = 4,17$$

• Łączny średni czas pobytu zadania w kolejce:

$$E(\tau) = \frac{\rho}{\mu(1-\rho)}$$

$$E(\tau_1) = 0.041$$

$$E(\tau_2) = 0,129$$

$$E(\tau_3) = 0.208$$

• Średni czas pobytu zadania w systemie:

$$E(n_1) = \frac{\rho_1}{(1 - \rho_1)} = 1$$
  $E(n_2) = \frac{\rho_2}{(1 - \rho_2)} = 1,94$   $E(n_3) = \frac{\rho_3}{(1 - \rho_2)} = 5$ 

$$E(n) = \frac{E(k_1) + E(k_2) + E(k_3)}{\lambda_{01} + \lambda_{02}} = 0.57$$

• Maksymalny strumień wejściowy dla SO<sub>1</sub>, aby układ pozostał stabilny:

$$\rho_3 \leq 1$$

$$\lambda_{02} \leq 16$$