	_		
NOM :	INTERROGATION N° 13	MPSI-2 19-20	Note:

A.Un filtre de vitesse comporte un champ électrique $\vec{E} = E \overrightarrow{e_y}$ et un champ magnétique $\vec{B} = B \overrightarrow{e_z}$ tous deux uniformes.

magnétique $\overrightarrow{B} = B\overrightarrow{e_z}$ tous deux uniformes. Des ions Mg^{2+} , de charges q = +2e, pénètrent dans le filtre par la fente F_1 de centre O_1 avec des vecteurs vitesses ayant des normes différentes, mais ayant tous la même direction O_1x .

- 1. Donner l'expression de la force s'exerçant sur un ion de charge q.
- 2. Des ions ayant un vecteur vitesse que nous appellerons $\overrightarrow{v_0}$ sortent par la fente F_2 de centre O_2 en n'ayant subi aucune déviation. Quelle relation existe-t-il entre E, B et v_0 ? Que deviennent les ions ayant une vitesse $v_1 > v_0$ et ceux ayant une vitesse $v_2 < v_0$.
- **B.** On considère le pendule simple ci-contre. A l'aide du bras de levier calculer le moment des forces par rapport à O. (On ne fera pas le plan mécanique)

C. Le produit de solubilité de l'iodure de plomb ($PbI_{2(S)}$) est $pK_s = 9$. Donner l'expression littérale de sa solubilité dans l'eau pure.