PadhAl: 6 Jars of Sigmoid Neuron

One Fourth Labs

Error Surfaces for learning

Can we connect this to the loss function?

- 1. So far, we have iteratively modified w and b till we reached the values which yielded minimum loss
- 2. However, instead of a smooth descent from initial value to the minimum, the loss fluctuates each iteration.
- 3. For eg, for the previously used dataset, loss over each iteration was

Iteration	w	b	loss	Increase/decrease
1	0	0	0.1609	-
2	1	0	0.1064	decrease
3	2	0	0.1210	increase
4	3	0	0.1217	increase
5	3	-2	0.1215	decrease
6	3	-9	0.0209	decrease
7	2	-9	0.0696	increase
final	2	-7	0	decrease

- 4. Now, this erratic fluctuation is undesirable. We need to use an algorithm that <u>ensures that the</u> <u>loss decreases on every iteration</u> or at the very least, doesn't increase.
- 5. The following image shows the plot of the loss wrt w and b. The lowest point refers to the minimum loss which corresponds to the ideal parameters of w(2) and b(-7).

