Module: Calcul Stochastique

Fiche de TD. Mouvement Brownien, Integrale d'Ito, EDS

Exercice 1 On définit un pont Brownien par

$$Z_t = B_t - tB_1, \ 0 \le t \le 1.$$

- 1. Montrer que Z est un processus gaussien indépendant de B₁. Préciser sa loi, c'est-à-dire sa moyenne et sa fonction de covariance.
- 2. Montrer que le processus \overline{Z} avec $\overline{Z}_t = Z_{1-t}$ a même loi que Z.
- 3. Montrer que le processus Y avec $Y_t = (1-t)B_{\frac{t}{t-1}}$, 0 < t < 1 a même loi que Z.
- 4. Montrer que $(Z_t = ^{loi}(B_t/B_1 = 0))$.

Exercice 2 Soit $B = (B_t)_{t \in R_+}$ un mouvement Brownien standard.

- 1. Calculer pour tout couple (t,s) les quantités $E(B_sB_t^2)$, $E(B_t/\mathcal{F}_s)$, $E(B_t/B_s)$, $E(B_t^2B_s^2)$, $E(e^{\lambda B_t}/\mathcal{F}_s)$, $E(B_tI_{\{B_t\leq a\}})$, $E(\int_0^t B_u \ du/B_s)$, $E(\int_0^t e^{B_u} \ du)$, $E(e^{\alpha B_t} \int_0^t e^{\lambda B_u} \ du)$ et $E(\int_0^t B_u \ du/\mathcal{F}_s)$ avec t>s.
- 2. Quelle est la loi de $B_t + B_s$?
- 3. Soit θ_s une variable alétoire bornée \mathcal{F}_s mesurable. Calculer pour $t \geq s$, $E(\theta_s(B_t B_s))$ et $E(\theta_s(B_t B_s)^2)$.

Exercice 3 Soit Θ une variable aléatoire de loi exponentielle de paramètre θ indépendante de B. Quelle est la loi de B_{Θ} .

Exercice 4 Calculer $E\left(\left(\lambda \int_0^1 B_u \ du + \mu B_1\right)^2\right)$ pour tous $\lambda, \mu \in R$.

Exercice 5 Soit $(X_n; n \in N)$ une suite de v.a. gaussiennes centrées qui converge en loi vers une v.a. X. Montrer que X est aussi une v.a. gaussienne centrée. En déduire que le processus $Y = (Y_t; t \ge 0)$ donné par $Y_t = \int_0^t B_u du$ est gaussien. Calculer son espérance et sa fonction de covariance.

Exercice 6 Parmi les processus suivants quels sont ceux qui sont des martingales

- 1. $M_t = B_t^3 3 \int_0^t B_s \, ds$.
- 2. $N_t = B_t^3 3tB_t$.
- 3. $X_t = tB_t \int_0^t B_s \, ds$
- 4. $Y_t = t^2 B_t 2 \int_0^t B_s \, ds$.

Exercise 7 Calculer $E(\sin(x+B_t))$ et $E(\exp(x+B_t))$.

Indication

$$E(f(x+B_t)) = f(x) + \frac{1}{2} \int_0^t E(f''(x+B_s))ds,$$

Exercice 8 Soient B, W deux m.b.s indépendant. On pose pour tout $t \in R_+$

$$X_t = (1-t) \int_0^t \frac{W_s}{(1-s)^2} ds + (1-t) \int_0^t \frac{1}{(1-s)} dB_s$$

— Montrer que

$$\int_0^t \frac{W_s}{(1-s)} ds - \int_0^t ds \int_0^s \frac{W_u}{(1-u)^2} du = (1-t) \int_0^t \frac{W_s}{(1-s)^2} ds$$

— En admettant que si f et g sont deux fonctions déterministes on peut intervertir le sens des intégrales dans $\int_0^t ds \ f(s)$ et $\int_0^t g(u)dB_u$, montrer que

$$B_t - \int_0^t ds \int_0^s \frac{dB_u}{(1-u)} = (1-t) \int_0^t \frac{1}{(1-s)} dB_s$$

Vérifier que X est une solution de

$$X_t = B_t + \int_0^t \frac{W_s - X_s}{(1-s)} ds.$$

— (sans utiliser ce qui précede) Montrer que

$$X_t = (1 - t) \int_0^t \frac{dB_s - dW_s}{(1 - s)} + W_t$$

- Calculer $E(X_tX_s)$

Exercice 9 Soient X et Y deux mouvements browniens réels indépendants et H un processus progressif, c'est à dire mesurable par rapport à la filtration de X et Y . On pose

$$B_t = \int_0^t \sin(H_s) \ dX_s + \int_0^t \cos(H_s) \ dY_s,$$

$$W_t = \int_0^t \cos(H_s) \ dX_s - \int_0^t \sin(H_s) \ dY_s.$$

Montrer que B et W sont deux mouvements browniens indépendants.

Exercice 10 Soit $Y_t = tB_t$. Calculer dY_t , l'espérance et la covariance de Y.

1. Montrer que la v.a. $X_t = \int_0^t (\sin s) dB_s$ est bien définie.

- 2. Montrer que X est un processus gaussien. Calculer son espérance et sa covariance.
- 3. Calculer $E[X_t|\mathcal{F}_s]$.
- 4. Montrer que $X_t = (\sin t)B_t \int_{s}^{t} (\cos s)B_s ds$

Exercice 12 Montrer que $(Y_t = \sin(B_t) + \frac{1}{2} \int_0^t \sin(B_s) ds; \ t \ge 0)$ est une martingale. Calculer son espérance et sa variance.

1. Montrer que le processus $(Y_t = \int_0^t \tan(s) dB_s, \ 0 \le t < \frac{\pi}{2})$ est défini. Exercice 13

- 2. Calculer $E(Y_t)$, $Cov(Y_t, Y_s)$ et $E(Y_t/\mathcal{F}_s)$.
- 3. Montrer que $Y_t = (\tan t)B_t \int_0^t \frac{B_s}{\cos^2 s} ds$.

Exercice 14 Montrer que si f est déterministe de carré intégrable

$$E\left(B_t \int_0^t f(s) \ dB_s\right) = \int_0^t f(s) \ ds.$$

Exercice 15 On admet que le système suivant admet une solution

$$X_t = x + \int_0^t Y_s \ dB_s$$

$$Y_t = y - \int_0^t X_s \ dB_s.$$

Montrer que $X_t^2 + Y_t^2 = (x^2 + y^2)e^t$.

Exercice 16 Soient $Y_t = \int_0^t e^s dB_s$ et $Z_t = \int_0^t Y_s dB_s$.

- i) Écrire l'EDS vérifiée par Z_t . ii) Calculer $E(Z_t)$, $E(Z_t^2)$ et $E(Z_tZ_s)$

Exercice 17 Soient σ un processus adapté continu de $L^2(\Omega \times R)$ et

$$X_t = \int_0^t \sigma_s \ dB_s - \frac{1}{2} \int_0^t \sigma_s^2 \ ds.$$

On pose $Y_t = \exp(X_t)$ et $Z_t = Y_t^{-1}$.

- 1. Expliciter la dynamique de Y (dY_t) .
- 2. Donner une condition sur σ pour Y soit une martingale. Calculer $E(Y_t)$ dans ce cas.
- 3. Expliciter les calculs quand $\sigma = 1$.
- 4. Calculer dZ_t .

Exercice 18 Intégration par parties $Soit Z_t = tX_tY_t$ avec

$$dX_t = f(t)dt + \sigma(t)dB_t$$

$$dY_t = \rho(t)dB_t$$

Calculer dZ_t .

Exercice 19 On considère l'équation différentielle stochastique

$$\begin{cases} dX_t = \frac{X_t}{1-t}dt + dB_t ; \ 0 \le t < 1 \\ X_0 = 0 \end{cases}$$

et l'on admet l'existence d'une solution.

1. Montrer que

$$X_t = (1-t) \int_0^t \frac{dB_s}{1-s} \; ; \; 0 \le t < 1.$$

- 2. Calculer son espérance et sa covariance.
- 3. Monter que $\lim_{t \to 1} X_t = 0$.

Exercice 20 On considère l'équation

$$dX_t = a(t)X_t dt + b(t)dt + c(t)dB_t$$

où a(t), b(t) et c(t) sont des processus adaptés.

- 1. Soit $\alpha(t) = \int_0^t a(s) \ ds$. Vérifier que $X_0 e^{\alpha(t)}$ est une solution de l'équation homogène c'est à dire b = c = 0.
- 2. Poser $Y_t = e^{-\alpha(t)} X_t$, calculer dY_t à l'aide de la formule d'Itô.
- 3. En déduire Y_t puis X_t sous forme intégrale.
- 4. Résoudre l'EDS

$$dX_t = \frac{b - X_t}{1 - t} dt + dB_t, \quad 0 \le t < 1, \quad X_0 = a.$$

5. Déterminer la variance de X_t . Calculer $\lim_{t\to 1} X_t$ dans L^2 .

Exercice 21 Soit l'EDS

$$dX_t = X_t dt + dB_t, \quad X_0 = x$$

- 1. On pose $Y_t = e^{-t}X_t$, calculer la dynamique de Y_t .
- 2. Exprimer Y_t sous la forme intégrale.
- 3. Calculer $E(Y_t)$ et $E(Y_t^2)$.
- 4. Exprimer Y_t pout t > s, sous la forme $Y_t = Y_s + \int_s^t g(u) dB_u$ où l'on explicitera la fonction g.
- 5. Calculer $E(Y_t/\mathcal{F}_s)$ et $Var(Y_t/\mathcal{F}_s)$.
- 6. En déduire $E(X_t/\mathcal{F}_s)$ et $Var(X_t/\mathcal{F}_s)$.

Exercice 22 Soit l'EDS

$$dX_t = \alpha X_t dt + b dB_t, \quad X_0 = x$$

- 1. On pose $Y_t = e^{-\alpha t} X_t$, calculer la dynamique de Y_t .
- 2. Exprimer Y_t sous la forme intégrale. En déduire la forme de X_t .
- 3. Calculer $E(Y_t)$ et $E(Y_t^2)$.
- 4. Exprimer Y_t pout t > s, sous la forme $Y_t = Y_s + \int_s^t g(u)dB_u$ où l'on explicitera la fonction g.
- 5. Calculer $E(Y_t/\mathcal{F}_s)$ et $Var(Y_t/\mathcal{F}_s)$.
- 6. En déduire $E(X_t/\mathcal{F}_s)$ et $Var(X_t/\mathcal{F}_s)$.

Exercice 23 Soit a, α, b, β quatre constantes réelles. On considère l'équation différentielle stochastique

$$dX_t = (a + \alpha X_t) dt + (b + \beta X_t) dB_t,$$

$$X_0 = x$$

- 1. Montrer que cette équation admet une solution unique.
- 2. On note $m(t) = E(X_t)$ et $M(t) = E(X_t^2)$.
 - (i) Montrer que m(t) est l'unique solution de l'équation différentielle ordinaire

$$y' - \alpha y = a$$
$$y(0) = x$$

(ii) Ecrire la formule d'Itô pour X_t^2 . En déduire que M(t) est l'unique solution de l'équation différentielle ordinaire

$$y' - (2\alpha + \beta^2)y = 2(a + b\beta)m(t) + b^2$$

 $y(0) = x^2$

(iii) En déduire $E(X_t)$, $Var(X_t)$ dans le cas $a = \beta = 0$.

Exercice 24 Soit $(X_t)_{t \in R_+}$ un processus stochastique vérifiant $dX_t = -a \ X_t \ dt + \sigma \ dB_t$ avec X_0 variable aléatoire gaussienne indépendante de B donnée.

- 1. Explicitez X_t .
- 2. Montrer que le processus X est gaussien.
- 3. Déterminer la loi de X_0 pour que la loi de X_t ne dépend pas par t.