

Nearest Neighbour Method

1

G V V Sharma*

1

1

CONTENTS

1 Problem Statement

2 Algorithm

Abstract—This manual introduces the nearest neighbour method.

1 Problem Statement

- 1.1 Let $\{x_i\}_{i=0}^N$ be the marks obtained by students in a class. The objective is to award grades ranging from A (highest) to D (lowest) to the students. This is done by mapping a set of marks (which are closer to each other in some sense) to a cluster.
- 1.2 Table 1.2 shows the equivalence of each grade to a cluster. Thus, the objective is to map x_i to

Cluster	C_6	C_5	C_4	C_3	C_2	C_1	C_0
Grade	A	A-	В	B-	С	C-	D

TABLE 1.2

 C_j .

2 Algorithm

- 2.1 Let *m* be the iteration number.
- 2.2 *Initialization:m* = 0. Compute the mean value of the cluster C_i as

$$\mu_j^0 = \frac{j}{K - 1} \max_{0 \le i \le N - 1} x_i \tag{2.1}$$

2.3 Fitting: For x_i , let

$$\left|\mu_k^m - x_i\right| < \left|\mu_j^m - x_i\right| \,\forall j \tag{2.2}$$

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Assign x_i to the cluster C_k .

2.4 Let $x_{i,k}$ be the set of all x_i assigned to cluster C_k in the *m*th iteration. Let N_k be the number of such elements. Revise the mean value of C_k as

$$\mu_k^m = \frac{1}{N_k} \sum x_{i,k} \tag{2.3}$$

2.5 Repeat the above process till $\mu_k^m = \mu_k^{m+1}$, i.e. the algorithm converges.