Київський національний університет імені Тараса Шевченка факультет радіофізики, електроніки та комп'ютерних систем

Лабораторна робота №3

Тема: Тригери

Роботу виконав студент 3 курсу мережевий адміністратор Цибульський Роман Мета роботи: Вивчити закони функціонування елементарних автоматів (тригерів), способи їх завдання; отримати навички складання таблиць переходів тригерних схем.

1. Введіть у Proteus схему рис. 3.1. Параметри вхідних імпульсів підберіть такими, щоб на виходах можна було спостерігати усі режими RS-тригера (встановлення 1, встановлення 0, зберігання, заборонений режим). Виведіть графік залежності вхідних та вихідних цифрових сигналів

тригера від часу та поясніть ці залежності.

2. Замініть у схемі рис. 3.1. елементи І-НЕ на елементи АБО-НЕ (в цьому випадку входи тригера стануть не інверсними, а прямими — S та R). За аналогічних вхідних сигналів проведіть

моделювання для цієї схеми. Виведіть відповідні графіки для вхідних та вихідних сигналів та поясніть ці залежності.

3. Введіть в Proteus схему синхронного RS-тригера (рис. 3.2). Вхідні пробні сигнали сконструюйте так, щоб на виходах можна було спостерігати усі режими RS-тригера (встановлення 1,

встановлення 0, зберігання, заборонений режим, зберігання при відсутності синхронізації). Виведіть графік залежності вхідних та вихідних цифрових сигналів цього тригера від часу та поясніть ці залежності.

4. Введіть у Proteus схему універсального JK-тригера (рис.3.3). Вхідні сигнали налаштуйте подібними до показаних на рис. 3.4, тобто так, щоб на виходах можна було спостерігати усі можливі режими тригера (скидання в нуль, лічильний режим, синхронне встановлення 1 та 0, зберігання, зберігання при відсутності синхронізації). Виведіть графік залежності вхідних та вихідних цифрових сигналів цього тригера від часу та поясніть ці залежності.

5. Повторіть моделювання п.4 для ЈК-тригера в

інтегральному виконанні 74107.

6. Згідно Вашого варіанту розробити схему тригера та промоделюйте його роботу

Номер варіанту 5814 = 1 0110 1011 0110, 10 1011 0110 за умовою

	h1	h2	h3	Тип тригера, що треба розробити	На основі схем
()	1	1	D	74111

H4	Сигнал реагування тригера
0	передній фронт

7. Розробити, згідно свого варіанту тригер

h6	h7	h8	Тип тригера, що треба розробити	тип
1	0	1	E	синхронний*

h9	Елементна база
0	3-I-Hi

Q_{t+1}	Qt C	0	1	1	0
	C	0	0	1	1
RS					
00		0	1	1	0
01		0	1	1	1
11		0	1	1	0
10		0	1	0	0

Qt+1 = QtnC+nRQt+QtS+CnRS = (Qt|nC)|(nR|Qt)|(Qt|S)|(C|nR|S)

$\overline{Qt+1}$	Qt	0	1	1	0
	Qt C	0	0	1	1
RS					
00		1	0	0	1
01		1	0	0	0
11		1	0	0	1
10		1	0	1	1

nQt + 1 = nQtnC + RnQ + nQtnS + CRnS = (nQt|nC) | (C|R|nS) | (R|nQt) | (nQt|nS)

Контрольні питання:

1. Призначення тригера.

Електронна логічна схема, яка має два стійкі стани, в яких може перебувати, доки не зміняться відповідним чином сигнали керування

2. Дайте визначення тригера типу T, D, JK, RS, R, S.

Т-тригер працює наступним чином: якщо на вхід Т подається сигнал «0», тригер зберігає свій внутрішній стан, якщо на вхід Т подається сигнал «1», тригер інвертує свій внутрішній стан.

Тригером типу D називається тригер з двома стійкими станами рівноваги і одним інформаційним входом D. Значення, що надходять на вхід D, записуються на вихід Q, тобто тригер працює як повторювач.

Тригером типу ЈК називається тригер з двома стійкими станами рівноваги і двома інформаційними входами. Вхід Ј (Јагк) служить для установки тригера в «1», вхід К (Кіll) для установки в «0». Активним значенням сигналу на вході є рівень 1. Одночасна подача двох активних сигналів на входи К і Ј не заборонена, при цьому на виході з'являється інверсне значення стану тригера. Подача двох нулів на входи тригера зберігає його внутрішній стан.

RS називається тригер з двома стійкими станами і двома інформаційними входами. Вхід S (Set) служить для встановлення тригера в «1», вхід R (Reset) для встановлення в «0». Одночасна подача двох активних сигналів на входи R і S заборонена (R \neq 1, S \neq 1). Подача двох нулів на входи тригера зберігає його внутрішній стан.

R називається тригер з двома стійкими станами і двома інформаційними входами. Вхід S (Set) служить для встановлення тригера в «1», вхід R (Reset) для встановлення в «0». Одночасна подача двох активних сигналів на входи R і S

встановлює тригера в «0». Подача двох нулів на входи тригера зберігає його внутрішній стан.

S називається тригер з двома стійкими станами і двома інформаційними входами. Вхід S (Set) служить для встановлення тригера в «1», вхід R (Reset) для встановлення в «0». Одночасна подача двох активних сигналів на входи R і S встановлює тригера в «1». Подача двох нулів на входи тригера зберігає його внутрішній стан.

3. У чому відмінність тригера ЈК від RS-тригера?

Одночасна подача двох активних сигналів на входи K і J не заборонена, при цьому на виході з'являється інверсне значення стану тригера.

4. Які ϵ типи синхронних тригерів та який принцип їхньої роботи?

Існує синхронізація за рівнем і по фронту

У разі статичного управління сприйнятливість tв тригера до вхідних сигналів обмежується часом

В випадку синхронізації по фронту тригер чутливий до зміни стану протягом короткого проміжку часу - в околицях фронту.

5. Напишіть таблицю переходів RS-, T-, D-, JK – тригерів.

R	S	Q(<i>t</i> +1)
0	0	Q(t)
0	1	1
1	0	0

1	1	Х
12	,	0(4.4)
K	J	Q(<i>t</i> +1)
0	0	Q(t)
0	1	1

 $\overline{Q(t)}$

	t	<i>t</i> +1	
D	Q	Q	
0	0	0	
0	1	0	
1	0	1	
1	1	1	1
	t	t+1	
T	Q	Q	
0	0	Q(t)	
0	1	Q(t)	
1	0	1	
1	1	0	

6. Як синхронний RS – тригер включити в режимі D-тригера?

Треба поставити інвертач вхід Reset щоб забезпечити вхідні сигнали завжди відрізнялись.

7. Як синхронний JK – тригер включити в режимі Т-Тригера? Треба вхід Т подати на обидва входи JK

8. Чим відрізняються синхронні тригери від асинхронних?

У синхронних тригерів ϵ додатковий вхід для імпульсу сихнронізації за виклика ϵ ться перехід в новий стан

Висновок: В даній лабораторній роботі було вивчено роботу різних типів тригерів.

Було побудовано схеми:

- RS-тригерів з прямими та оберненими входами в базисі Шефера та Пірса.
- Синхронний RS-тригер з оберненими входами в базисі Шефера,
- Універсальний ЈК-тригер в базисі Шефера.
- Інтегральний ЈК-тригер 74107
- -D тригер на основі інтегрального ЈК-тригера 74111.
- Синхронний Е-тригер на елементах 3-І-Не