

데이터 분석 기반 Al 시스템 개발자 양성 과정 06.인공지능 구현 with python

조창제

강의자료

2025.08.

목차

CONTENTS

데이터의 분포적 특성을 파악하는

탐색적 자료분석

결측치 대체 및 데이터 변환

데이터 전처리

적합한 모델 선정 및 모델 검증

I

탐색적 자료분석

01. 개요

1.워크플로우

- ① 데이터 수집
 - 다양하고 균형있는 데이터 수집이 중요
 - 일관된 형식을 유지하는 것이 중요
- ② 데이터 탐색
 - 이상치 탐지 및 데이터 분포 특성 파악
- ③ 데이터 전처리
 - 결측치에 대한 적절한 처리
- ④ 모델 선택 및 학습
 - 모델 최적화 및 다양한 모델 비교
- ⑤ 모델 평가
 - 적합한 평가 지표 선택

모델 평가

탐색적 자료분석

01. 개요

1.정의

- 1) 탐색적자료분석(Exploratory data analysis, EDA)
 - ① 주어진 데이터셋에 대해 시각화하거나 통계적 요약을 통해 패턴, 특성, 구조를 파악하는 초기 분석 과정
 - 중심 경향과 산포정도 파악 필요
 - 이상치 및 누락된 값을 식별 및 해결 필요
 - ② 데이터 구조 파악
 - 기초통계량
 - 데이터의 분포와 패턴 파악 용이
 - 데이터 변동성 및 데이터의 대칭성 파악
 - ③ 이상치 탐지 및 처리
 - 분위수(Quantile)
 - 사분위범위(Interquartile Range, IQR)

대시보드 시각화 예시

Ι

탐색적 자료분석

01. 개요

1.정의

- 1) 탐색적자료분석(Exploratory data analysis, EDA)
 - ① 시각화
 - 변수 간 관계
 - 상관행렬(Correlation matrix)
 - ② 분포 시각화
 - 히스토그램(Histogram)
 - 연속형 데이터를 구간별로 나누어 데이터의 빈도나 수를 시각적으로 나타낸 그래프
 - 상자그림(Box plot)
 - 사분위수를 기반으로 데이터를 요약하여 보여주는 그래프
 - 이상치 탐지에 용이
 - 산점도(Scatter plot)
 - 두 개 이상의 변수 사이의 관계를 시각적으로 표현하는 그래프
 - 변수 간 상관성이나 분포를 직관적으로 파악 가능

대시보드 시각화 예시

П

데이터 전처리

01. 개요

1.정의

1) 변수변환

- ① 데이터의 분포나 범위를 변경하는 과정을 의미
 - 정규화: 0~1사이 범위로 변환하는 과정
 - 표준화: 평균이 0 표준편차가 1인 분포로 변환하는 과정
 - 로그변환, boxcox변환: 비정규 분포를 가질 때, 정규분포에 가깝게 변환

2) 결측값 처리

- ① 결측보간: 관측되지 않거나 누락된 값을 채워넣는 기법
 - 결측보간보다 해당 데이터를 제거하는 것이 더 좋을 수도 있음

3) 파생변수 생성

- ① 기존 변수를 활용하여 다양한 방식 변수를 생성
 - 예시 키, 몸무게를 활용하여 BMI 변수 생성
 - 예시 날짜 및 시간을 sin, cos 등의 주기를 고려한 변수 생성

Ш

모델 생성 및 검증

01. 개요

1.정의

- 1) 알고리즘 선택
 - ① 데이터 불균형
 - SMOTE 방식 활용
 - 작은 레이블의 데이터 비중을 늘려 비율이 유사하게 만들어 내는 기법
 - Class Weight 적용
 - 학습 시 loss 계산에서 레이블에 대한 가중치를 적용

2) 목적함수

- ① 성능평가지표
 - 적합한 성능평가 지표 설정 필요
 - 시계열 모델의 검증에서 MAE나 MSE는 부적합 할 수도 있음
 - 이미지 모델 성능평가에서 MAE 또한 부적합 할 수 있음

Dynamic time warping 예시

Ш

모델 생성 및 검증

01. 개요

1.정의

- 1) 하이퍼 파라미터 최적화
 - ① 효율적인 최적화 방식 적용 필요
- 2) 검증 방식
 - ① 교차검증
 - K fold cross validation
 - Hold out cross validation
 - leave one out cross validation

Hyper parameter tuning 종류

K fold cross validation

Thank You

Email: qkdrk777777@naver.com