A Study of Branching Heuristics for the Car-Sequencing Problem

M. Siala, E. Hebrard, M.J, Huguet

Laboratory of Analysis and Architecture of Systems (LAAS-CNRS)

MOGISA Team http://www.laas.fr/MOGISA

May 2012

Outline

The Car-sequencing Problem

- *n* vehicles, *k* classes, *m* options.
- Demand constraints : Each class $c \in \{1, \dots, k\}$ is associated with a demand D_c .
- Capacity constraints: for each option, we associate two integers p and q, such that no subsequence of size q may contain more than p vehicles requiring this option (i.e. a chain of Atmost(p,q) constraints).

Example

n = 10, m = 5, k = 6

 $\mathsf{ATMost}(1,2),\ \mathsf{ATMost}(2,3),\ \mathsf{ATMost}(1,3),\ \mathsf{ATMost}(2,5),\ \mathsf{ATMost}(1,5)$

(1,0)			
Class's id	# card	Class's specification	
0	#1	10110	
1	#1	00010	
2	#2	01001	
3	#2	01010	
4	#2	10100	
5	#2	11000	

Example

n = 10, m = 5, k = 6

 $\mathsf{ATMost}(1,2),\ \mathsf{ATMost}(2,3),\ \mathsf{ATMost}(1,3),\ \mathsf{ATMost}(2,5),\ \mathsf{ATMost}(1,5)$

Class's id	# card	Class's specification
0	#1	10110
1	#1	00010
2	#2	0 1 0 0 1
3	#2	0 1 0 1 0
4	#2	10100
5	#2	11000

 \rightarrow A possible Solution: 0, 1, 5, 2, 4, 3, 3, 4, 2, 5

Model description

Variables

- *n* integer variables $\{x_1, \ldots, x_n\}$ taking values in $\{1, \ldots, k\}$
- nm Boolean variables $\{y_1^1, \ldots, y_n^m\}$, where y_i^j stands for whether the vehicle in the i^{th} slot requires option j.

Constraints

- Demand constraints: Sum, GCC.
- Capacity constraints: Sum, GSC.

Resolution process

Resolution process

→ Fail first strategy, [Smith, 96]

Resolution process

- → Fail first strategy, [Smith, 96]
- → How to choose the most constrained class or option?

• max option

- max option
- It's much harder to satisfy AtMost(1,7) than AtMost(1,4)

- max option
- It's much harder to satisfy AtMost(1,7) than AtMost(1,4) \rightarrow The capacity $\frac{q}{p}$

- max option
- It's much harder to satisfy AtMost(1,7) than AtMost(1,4) \rightarrow The capacity $\frac{q}{p}$
- The demand

- max option
- It's much harder to satisfy AtMost(1,7) than AtMost(1,4) \rightarrow The capacity $\frac{q}{p}$
- The demand
- Example: $d_1 = 3$, AtMost(1,7) and $d_2 = 5$, AtMost(6,8).

- max option
- It's much harder to satisfy AtMost(1,7) than AtMost(1,4) \rightarrow The capacity $\frac{q}{p}$
- The demand
- Example: $d_1 = 3$, AtMost(1,7) and $d_2 = 5$, AtMost(6,8). To satisfy d_1 , we need more than 14 slots.

- max option
- It's much harder to satisfy AtMost(1,7) than AtMost(1,4) \rightarrow The capacity $\frac{q}{p}$
- The demand
- Example: $d_1 = 3$, AtMost(1,7) and $d_2 = 5$, AtMost(6,8). To satisfy d_1 , we need more than 14 slots. To satisfy d_2 , 5 slots could be enough.

- max option
- It's much harder to satisfy AtMost(1,7) than AtMost(1,4) \rightarrow The capacity $\frac{q}{p}$
- The demand
- Example: $d_1 = 3$, AtMost(1,7) and $d_2 = 5$, AtMost(6,8). To satisfy d_1 , we need more than 14 slots. To satisfy d_2 , 5 slots could be enough. It's much harder to satisfy option 1's demand although $d_1 < d_2$.

- max option
- It's much harder to satisfy AtMost(1,7) than AtMost(1,4) \rightarrow The capacity $\frac{q}{p}$
- The demand
- Example: $d_1 = 3$, AtMost(1,7) and $d_2 = 5$, AtMost(6,8). To satisfy d_1 , we need more than 14 slots. To satisfy d_2 , 5 slots could be enough. It's much harder to satisfy option 1's demand although $d_1 < d_2$.

The load δ combines the demand with the capacity $\frac{q}{p}$. $\rightarrow \delta = \frac{dq}{p}$.

- max option
- It's much harder to satisfy AtMost(1,7) than AtMost(1,4) \rightarrow The capacity $\frac{q}{p}$
- The demand
- Example: $d_1 = 3$, AtMost(1,7) and $d_2 = 5$, AtMost(6,8). To satisfy d_1 , we need more than 14 slots. To satisfy d_2 , 5 slots could be enough.

It's much harder to satisfy option 1's demand although $d_1 < d_2$.

The load δ combines the demand with the capacity $\frac{q}{p}$. $\rightarrow \delta = \frac{dq}{p}$.

The load represents approximately to the number of slots required to mount *d* times the specific option

- max option
- It's much harder to satisfy AtMost(1,7) than AtMost(1,4) \rightarrow The capacity $\frac{q}{p}$
- The demand
- Example: $d_1 = 3$, AtMost(1,7) and $d_2 = 5$, AtMost(6,8). To satisfy d_1 , we need more than 14 slots. To satisfy d_2 , 5 slots could be enough.

It's much harder to satisfy option 1's demand although $d_1 < d_2$.

The load δ combines the demand with the capacity $\frac{q}{p}$. $\rightarrow \delta = \frac{dq}{p}$.

The load represents approximately to the number of slots required to mount d times the specific option $\rightarrow \delta_1 = 21$, $\delta_2 = 6.66$.

 Exploration: lexicographical order (lex), from middle to sides (mid).

- Exploration: lexicographical order (lex), from middle to sides (mid).
- Branching: *class*, *opt*.

- Exploration: lexicographical order (lex), from middle to sides (mid).
- Branching: class, opt.
- Selection:
 - p/q
 - d
 - $\delta = \frac{dq}{p}$ $\rho = \frac{\delta}{p}$
 - $\sigma = n \delta$.

- Exploration: lexicographical order (lex), from middle to sides (mid).
- Branching: class, opt.
- Selection:
 - p/q
 - d
 - $\delta = \frac{dq}{p}$ $\rho = \frac{\delta}{p}$
 - $\sigma = n \delta$.
- Aggregation:
 - $\bullet \leq \Sigma$
 - ≤_{Euc}
 - ≤_{lex}

- Exploration: lexicographical order (lex), from middle to sides (mid).
- Branching: class, opt.
- Selection:
 - p/q
 - d
 - $\delta = \frac{dq}{p}$ $\rho = \frac{\delta}{p}$
 - $\sigma = n \delta$.
- Aggregation:
 - $\bullet \leq \Sigma$
 - < Fuc
 - < lex
- $\rightarrow \langle \{lex, mid\}, \{class, opt\}, \{q/p, d, \delta, n-\sigma, \rho\}, \{\leq_{\Sigma}, \leq_{Euc}, \leq_{lex}\} \rangle$

 $\begin{pmatrix} c_1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$

c₁ Evaluation

$c_1 \qquad \begin{array}{c} \textbf{Evaluation} \\ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} \textbf{Evaluate opt}_1 \\ 0 \\ \textbf{Evaluate opt}_3 \\ 0 \\ \textbf{Evaluate opt}_5 \end{pmatrix}$

$$\begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} Evaluate \ opt_1 \\ 0 \\ Evaluate \ opt_3 \\ 0 \\ Evaluate \ opt_5 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ Evaluate \ opt_2 \\ 0 \\ Evaluate \ opt_4 \\ Evaluate \ opt_5 \end{pmatrix}$$

$$\rightarrow \leq_{\sum}$$

$$\begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} Evaluate \ opt_1 \\ 0 \\ Evaluate \ opt_3 \\ 0 \\ Evaluate \ opt_5 \end{pmatrix} \quad \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ Evaluate \ opt_2 \\ 0 \\ Evaluate \ opt_4 \\ Evaluate \ opt_5 \end{pmatrix}$$

$$ightarrow \leq_{\sum}$$
 , \leq_{Euc}

$$\begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} Evaluate \ opt_1 \\ 0 \\ Evaluate \ opt_3 \\ 0 \\ Evaluate \ opt_5 \end{pmatrix} \quad \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ Evaluate \ opt_2 \\ 0 \\ Evaluate \ opt_4 \\ Evaluate \ opt_5 \end{pmatrix}$$

$$ightarrow \leq_{\sum}$$
 , \leq_{Euc} and \leq_{lex} .

The load $\delta_j=\frac{d_jq_j}{p_j}$ is tied to the number of slots required to mount d_j times option j.

Example: $d_j=3$; $p_j=1$; $q_j=3$; $\rightarrow \delta_j=\frac{d_jq_j}{p_j}=9$.

The load $\delta_j=\frac{d_jq_j}{p_j}$ is tied to the number of slots required to mount d_j times option j.

Example: $d_j=3$; $p_j=1$; $q_j=3$; $\rightarrow \delta_j=\frac{d_jq_j}{p_j}=9$.

The exact formula of the load?

The load $\delta_j = \frac{d_j q_j}{p_j}$ is tied to the number of slots required to mount d_j times option j.

Example:
$$d_j = 3$$
; $p_j = 1$; $q_j = 3$; $\to \delta_j = \frac{d_j q_j}{p_j} = 9$.

The exact formula of the load?

 \rightarrow Alternative definition for the load of an option:

$$\delta_j' = q_j(\lceil d_j/p_j \rceil - 1) + \left\{ egin{array}{ll} p_j & ext{if } d_j mod p_j = 0 \ d_i mod p_j & ext{otherwise} \end{array}
ight.$$

The load $\delta_j = \frac{d_j q_j}{p_j}$ is tied to the number of slots required to mount d_j times option j.

Example:
$$d_j = 3$$
; $p_j = 1$; $q_j = 3$; $\rightarrow \delta_j = \frac{d_j q_j}{p_j} = 9$.

The exact formula of the load?

 \rightarrow Alternative definition for the load of an option:

$$\delta_j' = q_j(\lceil d_j/p_j \rceil - 1) + \left\{ egin{array}{ll} p_j & ext{if } d_j mod p_j = 0 \ d_j mod p_j & ext{otherwise} \end{array}
ight.$$

For each option j, δ'_j is a lower bound on the number of required slots

The load $\delta_j = \frac{a_j q_j}{p_j}$ is tied to the number of slots required to mount d_j times option j.

Example:
$$d_j=3$$
; $p_j=1$; $q_j=3$; $\rightarrow \delta_j=\frac{d_jq_j}{p_j}=9$.

The exact formula of the load?

 \rightarrow Alternative definition for the load of an option:

$$\delta_j' = q_j(\lceil d_j/p_j \rceil - 1) + \left\{ egin{array}{ll} p_j & ext{if } d_j mod p_j = 0 \ d_j mod p_j & ext{otherwise} \end{array}
ight.$$

For each option j, δ'_j is a lower bound on the number of required slots

Example: $d_j = 3$; $p_j = 1$; $q_j = 3$; $\to \delta'_j = 7$.

The load $\delta_j = \frac{d_j q_j}{p_j}$ is tied to the number of slots required to mount d_j times option j.

Example:
$$d_j=3$$
; $p_j=1$; $q_j=3$; $\rightarrow \delta_j=\frac{d_jq_j}{p_j}=9$.

The exact formula of the load?

 \rightarrow Alternative definition for the load of an option:

$$\delta_j' = q_j(\lceil d_j/p_j \rceil - 1) + \left\{ egin{array}{ll} p_j & ext{if } d_j mod p_j = 0 \ d_j mod p_j & ext{otherwise} \end{array}
ight.$$

For each option j, δ'_j is a lower bound on the number of required slots

Example: $d_j = 3$; $p_j = 1$; $q_j = 3$; $\rightarrow \delta'_j = 7$.

ightarrow new slack σ' and new usage rate ρ' .

New filtering rule

Suppose that all variables up to a rank i-1 are ground.

Theorem

In the case of lexicographical branching:

- If $\delta' > n i + 1$, then we should fail.
- When $\delta' = n i + 1$, we can filter out some values.
 - If $d \mod p = 0$, we impose $y_i = 1$ for all i such that $i \mod q < p$.
 - If $d \mod p \neq 0$, we impose $y_i = 1$ for all i such that $i \mod q < (d \mod p)$.

Pruning rule

Figure: Filtering when $d \mod p = 0$

Figure: Filtering when $d \mod p \neq 0$

Filtering Rule

Mistral results on the first set (70 sat)

		Basic	model	Filteri	ng rule
Eval.	Aggr.	% sol	time	% sol	time
1	-	52	41.15	94	23.46
	\leq_{Σ}	34	7	100	0.01
q/p	≤Euc	38	43.67	97	0.01
	\leq_{lex}	38	55.38	97	0.01
	\leq_{Σ}	85	17.38	100	0.01
d	≤Euc	81	0.01	100	0.01
	\leq_{lex}	75	0.03	100	0.03
	$\leq \Sigma$	100	0.01	100	0.01
ρ	≤Euc	100	0.01	100	0.01
	\leq_{lex}	100	0.03	100	0.02
	\leq_{Σ}	100	0.03	100	0.01
ho'	≤Euc	100	0.01	100	0.01
	≤ _{lex}	100	0.03	100	0.03

Filtering Rule

Mistral results on the first set (70 sat)

		Basic	model	Filteri	ng rule
Eval.	Aggr.	% sol	time	% sol	time
1	-	52	41.15	94	23.46
	\leq_{Σ}	34	7	100	0.01
q/p	≤Euc	38	43.67	97	0.01
	≤lex	38	55.38	97	0.01
	\leq_{Σ}	85	17.38	100	0.01
d	≤Euc	81	0.01	100	0.01
	\leq_{lex}	75	0.03	100	0.03
	\leq_{Σ}	100	0.01	100	0.01
ρ	≤Euc	100	0.01	100	0.01
	\leq_{lex}	100	0.03	100	0.02
	$\leq \Sigma$	100	0.03	100	0.01
ρ'	≤Euc	100	0.01	100	0.01
	\leq_{lex}	100	0.03	100	0.03

			Е	Basic	mode	I	Filtering rule					
Eval.	Aggr.	c.b	lds	lds-b	prlds	prlds-b	c.b	lds	lds-b	prlds	prlds-b	
1	_	0	25	25	25	25	25	100	100	100	100	
	\leq_{Σ}	0	50	25	50	25	25	100	100	100	100	
q/p	≤Euc	0	50	25	50	25	25	100	100	100	100	
	\leq_{lex}	0	25	25	25	25	0	100	100	100	100	
	\leq_{Σ}	25	100	75	100	75	50	100	100	100	100	
d	≤Euc	25	100	75	75	75	50	100	100	100	100	
	\leq_{lex}	0	75	75	75	75	50	100	100	100	100	
	\leq_{Σ}	25	100	100	100	100	50	100	100	100	100	
ρ	≤Euc	25	100	100	100	100	50	100	100	100	100	
	\leq_{lex}	50	100	100	100	100	50	100	100	100	100	
	\leq_{Σ}	25	100	100	100	100	25	100	100	100	100	
ρ'	≤Euc	25	100	100	100	100	25	100	100	100	100	
	\leq_{lex}	75	100	100	100	100	75	100	100	100	100	

			Е	Basic	mode		Filtering rule						
Eval.	Aggr.	c.b	lds	lds-b	prlds	prlds-b	c.b	lds	lds-b	prlds	prlds-b		
1	_	0	25	25	25	25	25	100	100	100	100		
	\leq_{Σ}	0	50	25	50	25	25	100	100	100	100		
q/p	≤Euc	0	50	25	50	25	25	100	100	100	100		
	≤lex	0	25	25	25	25	0	100	100	100	100		
	\leq_{Σ}	25	100	75	100	75	50	100	100	100	100		
d	≤Euc	25	100	75	75	75	50	100	100	100	100		
	\leq_{lex}	0	75	75	75	75	50	100	100	100	100		
	$\leq \Sigma$	25	100	100	100	100	50	100	100	100	100		
ρ	≤Euc	25	100	100	100	100	50	100	100	100	100		
	\leq_{lex}	50	100	100	100	100	50	100	100	100	100		
	\leq_{Σ}	25	100	100	100	100	25	100	100	100	100		
ρ'	≤Euc	25	100	100	100	100	25	100	100	100	100		
	≤ _{lex}	75	100	100	100	100	75	100	100	100	100		

			Е	Basic	mode	I	Filtering rule					
Eval.	Aggr.	c.b	lds	lds-b	prlds	prlds-b	c.b	lds	lds-b	prlds	prlds-b	
1	_	0	25	25	25	25	25	100	100	100	100	
	\leq_{Σ}	0	50	25	50	25	25	100	100	100	100	
q/p	≤Euc	0	50	25	50	25	25	100	100	100	100	
	≤lex	0	25	25	25	25	0	100	100	100	100	
	\leq_{Σ}	25	100	75	100	75	50	100	100	100	100	
d	≤Euc	25	100	75	75	75	50	100	100	100	100	
	\leq_{lex}	0	75	75	75	75	50	100	100	100	100	
	$\leq \Sigma$	25	100	100	100	100	50	100	100	100	100	
ρ	≤Euc	25	100	100	100	100	50	100	100	100	100	
	\leq_{lex}	50	100	100	100	100	50	100	100	100	100	
	\leq_{Σ}	25	100	100	100	100	25	100	100	100	100	
ρ'	≤Euc	25	100	100	100	100	25	100	100	100	100	
	\leq_{lex}	75	100	100	100	100	75	100	100	100	100	

			Е	Basic	mode	I		F	ilterir	ng rul	e
Eval.	Aggr.	c.b	lds	lds-b	prlds	prlds-b	c.b	lds	lds-b	prlds	prlds-b
1	_	0	25	25	25	25	25	100	100	100	100
	\leq_{Σ}	0	50	25	50	25	25	100	100	100	100
q/p	≤Euc	0	50	25	50	25	25	100	100	100	100
	≤lex	0	25	25	25	25	0	100	100	100	100
	\leq_{Σ}	25	100	75	100	75	50	100	100	100	100
d	≤Euc	25	100	75	75	75	50	100	100	100	100
	\leq_{lex}	0	75	75	75	75	50	100	100	100	100
	\leq_{Σ}	25	100	100	100	100	50	100	100	100	100
ρ	≤Euc	25	100	100	100	100	50	100	100	100	100
	\leq_{lex}	50	100	100	100	100	50	100	100	100	100
	\leq_{Σ}	25	100	100	100	100	25	100	100	100	100
ho'	≤Euc	25	100	100	100	100	25	100	100	100	100
	≤ _{lex}	75	100	100	100	100	75	100	100	100	100

			1		Inst	ances		
Eval.	Aρ	gr.	set 1	(70 sat)			lset 3	(7 sat)
Ord.		Exp.	%sol	time	%sol		%sol	time
		Lex.	100	17.08	100	211.55	0	
1	Clas	Mid.	98	52.55	25	0.20	0	-
	O	Lex.	75	44.93	0	-	0	-
	Opt	Mid.	80	9.35	0	-	0	-
q/p	Clas	Lex.	98	15.45	0	-	0	-
	Clas	Mid.	98	1.01	25	182.12	0	-
	O	Lex.	88	2.78	75	128.32	0	-
d	Opt	Mid.	90	17.74	25	0.22	14	962.88
l a	Clas	Lex.	100	1.20	50	64.96	57	630.76
	Clas	Mid.	100	1.08	100	129.07	57	606.10
	Opt	Lex.	44	29.47	75	803.88	0	-
l	Opt	Mid.	51	57.95	25	262.18	0	-
$n-\sigma$	Clas	Lex.	100	1.19	50	31.98	42	484.37
	Clas	Mid.	100	1.05	75	263.61	42	642.65
	Opt	Lex.	98	16.60	75	58.16	14	875.62
	Opt	Mid.	100	28.26	25		14	267.53
ρ	Clas	Lex.	100	1.19	50	31.98	42	484.56
	Cias	Mid.	100	1.05	75	218.22	42	607.49

					Inst	ances		
Eval.	Ag	gr.	set 1	(70 sat)	set 2	(4 sat)	set 3	(7 sat)
Ord.		Exp.	%sol	time	%sol		%sol	time
1	Clar	Lex.	100	17.08	100	211.55	0	-
1	Clas	Mid.	98	52.55	25	0.20	0	-
	0-4	Lex.	75	44.93	0	-	0	-
/	Opt	Mid.	80	9.35	0	-	0	-
q/p	Clas	Lex.	98	15.45	0	-	0	-
	Clas	Mid.	98	1.01	25	182.12	0	-
	0-4	Lex.	88	2.78	75	128.32	0	-
d	Opt	Mid.	90	17.74	25	0.22	14	962.88
l a	Clas	Lex.	100	1.20	50	64.96	57	630.76
	Clas	Mid.	100	1.08	100	129.07	57	606.10
	0-4	Lex.	44	29.47	75	803.88	0	-
l	Opt	Mid.	51	57.95	25	262.18	0	-
$n-\sigma$	Clas	Lex.	100	1.19	50	31.98	42	484.37
	Clas	Mid.	100	1.05	75	263.61	42	642.65
	Opt	Lex.	98	16.60	75	58.16	14	875.62
	Орг	Mid.	100	28.26	25	0.81	14	267.53
ρ	Clas	Lex.	100	1.19	50	31.98	42	484.56
	Clas	Mid.	100	1.05	75	218.22	42	607.49

					Inst	ances		
Eval.	Ag	gr.	set 1	(70 sat)			set 3	(7 sat)
Ord.		Exp.	%sol	time	%sol		%sol	time
		Lex.	100	17.08	100	211.55	0	
1	Clas	Mid.	98	52.55	25	0.20	0	-
	O	Lex.	75	44.93	0	-	0	-
	Opt	Mid.	80	9.35	0	-	0	-
q/p	Clas	Lex.	98	15.45	0	-	0	-
	Clas	Mid.	98	1.01	25	182.12	0	-
	0-4	Lex.	88	2.78	75	128.32	0	-
d	Opt	Mid.	90	17.74	25	0.22	14	962.88
l u	Clas	Lex.	100	1.20	50	64.96	57	630.76
	Clas	Mid.	100	1.08	100	129.07	57	606.10
	Opt	Lex.	44	29.47	75	803.88	0	-
	Opt	Mid.	51	57.95	25	262.18	0	-
$n-\sigma$	Clas	Lex.	100	1.19	50		42	484.37
	Clas	Mid.	100	1.05	75	263.61	42	642.65
	Opt	Lex.	98	16.60	75	58.16	14	875.62
	Opt	Mid.	100	28.26	25	0.81	14	267.53
ρ	Clas	Lex.	100	1.19	50	31.98	42	484.56
	Clas	Mid.	100	1.05	75	218.22	42	607.49

					Inst	ances		
Eval.	Aρ	gr.	set 1	(70 sat)			lset 3	(7 sat)
Ord.		Exp.	%sol	time	%sol			time
		Lex.	100	17.08	100	211.55	0	
1	Clas	Mid.	98	52.55	25	0.20	0	-
	<u> </u>	Lex.	75	44.93	0	-	0	-
١,	Opt	Mid.	80	9.35	0	-	0	-
q/p	C1	Lex.	98	15.45	0	-	0	-
	Clas	Mid.	98	1.01	25	182.12	0	-
	0	Lex.	88	2.78	75	128.32	0	-
	Opt	Mid.	90	17.74	25	0.22	14	962.88
d	C1	Lex.	100	1.20	50	64.96	57	630.76
	Clas	Mid.	100	1.08	100	129.07	57	606.10
	0-4	Lex.	44	29.47	75	803.88	0	-
	Opt	Mid.	51	57.95	25	262.18	0	-
$n-\sigma$	Clas	Lex.	100	1.19	50	31.98	42	484.37
	Cias	Mid.	100	1.05	75	263.61	42	642.65
	Opt	Lex.	98	16.60	75	58.16	14	875.62
	Орг	Mid.	100	28.26	25	0.81	14	267.53
ρ	Clas	Lex.	100	1.19	50	31.98	42	484.56
	Clas	Mid.	100	1.05	75	218.22	42	607.49

			Instances set 1 (70 sat) set 2 (4 sat) set 3 (7 sat)								
Eval.	Ag	gr.	set 1	(70 sat)	set 2	(4 sat)	set 3	(7 sat)			
Ord.	Br.	Exp.	%sol	time	%sol	time	%sol	time			
1	Clas	Lex.	100	17.08	100	211.55	0	-			
1	Clas	Mid.	98	52.55	25	0.20	0	-			
	Opt	Lex.	75	44.93	0	-	0	-			
-/-	Opt	Mid.	80	9.35	0	-	0	-			
q/p	Clas	Lex.	98	15.45	0	-	0	-			
	Clas	Mid.	98	1.01	25	182.12	0	-			
	0-4	Lex.	88	2.78	75	128.32	0	-			
d	Opt	Mid.	90	17.74	25	0.22	14	962.88			
l a	Clas	Lex.	100	1.20	50	64.96	57	630.76			
	Clas	Mid.	100	1.08	100	129.07	57	606.10			
	0-4	Lex.	44	29.47	75	803.88	0	-			
l	Opt	Mid.	51	57.95	25	262.18	0	-			
$n-\sigma$	Clas	Lex.	100	1.19	50	31.98	42	484.37			
	Clas	Mid.	100	1.05	75	263.61	42	642.65			
	0-4	Lex.	98	16.60	75	58.16	14	875.62			
_	Opt	Mid.	100	28.26	25	0.81	14	267.53			
ρ	Clas	Lex.	100	1.19	50	31.98	42	484.56			
	Clas	Mid.	100	1.05	75	218.22	42	607.49			

Comparison with existing methods

	FC %sol time		cREG		Lſ	NS	II	_OG	Mis	stral
	%sol	time	%sol	time	%sol	time	%sol	time	%sol	time
Set 1 (70 sat)										
Set 2 (4 sat)	75	12,66s	100	0, 55s	100	206s	100	129.07s	100	< 1 <i>s</i>
Set 3 (7 sat)	N.A	N.A	N.A	N.A	N.A	N.A	57	606.10s	42	0,03s

Conclusion

- We revisited the most common heuristics for this problem.
- New structure for the heuristics.
- A simple but very useful filtering rule
- Interested results with untested combination of heuristics.
- The new filtering algorithm, combined with discrepancy search methods, outperforms existing CP approaches.

Future Research

- [Submitted paper] An Optimal Arc Consistency Algorithm for a Chain of Atmost Constraints with Cardinality, CP'12
- Using filtering techniques in SMT-Solvers.

Thank you for your attention!

Questions?