DIGITÁLIS MÉRÉSTECHNIKA

Hangfeldolgozás 1 jegyzőkönyv

Mérést végezte: Koroknai Botond (AT5M0G) Mérés időpontja: 2023.11.16

Jegyzőkönyv leadásának időpontja: 2023.11.21

1. A hangkártya bementi karakterisztikájának meghatározása

A feladat során 15 különböző frekvencián kelett megmérni a hangkártya által rögzített jel amplitudóját. A frekvenciákat a 20-20 kHz tartományról válaszottam, hisz ezek az emberi fül számára hallható hangok. A mért adatok, a következők lettek:

1. kép. A hangkártya által rögzített amplitudók a frekvencia függvényében

Látszódik, hogy a 20 kHz-et megközelítve az amplitudó csökkenésnek indul, sajnos nem mértem még nagyobb frekvencia melett, hogy tisztán látszódjon a levágás.

2. Hangfájl rögzítése

A számítógépbe épített mikrofon segítségével rögzítettem egy mondatot: "Én Koroknai Botond vagyok".

2. kép. Az eredeti hangfájl

Ezt követően a következő manipulációkat hajtottam rajta végre:

2.1. Halkítás

Az amplitudókat 0.1-el szoroztam, ezzel halkítva a hangfile-t.

3. kép. A halkított hangfájl

2.2. Normálás

A normálás elvégzéséhez az értékeket leosztottam az abszolút legnagyobb ampliutudóval.

4. kép. A normált hangfájl

2.3. Visszafelé játszás

A megfordítás eléréséhez irtam egy for ciklust ami a hangfájl hosszának feléig iterál, és minden lépésben megcseréli az indexhez és a hossz - indexhez tartozó elemeket.

5. kép. A visszafelé játszott hangfájl

3. Hangminta generálása

A feladat során 3 különböző hangmintát generálunk a scipy.signal csomag segítségével:

3.1. Chirp

6. kép. Chirp - 100-5000 Hz-ig

Csak egy kis részletet ábrázoltam, hogy látszódjon a frekvencia változás.

3.2. Sawtooth

7. kép. Sawtooth

3.3. Square

8. kép. Square

4. Gyors Fourier-transzformáció

A feladat során azzal a hangfájllal dolgoztam, amin a nevemet rögzítettem. Előszőr elvégeztem az FFT-t a numpy.fft.rfft függvény segítségével, majd a hanglab.plotspec fügvénnyel ábrázoltam azt.

9. kép. A hangom spektruma

10. kép. A hangom spektrogramja

Ezt követően a numpy.fft.irfft függvénnyel vissza állítottam a spektrumból a hangot, és meghallgatam. Véleményem szerint tökéletesen, vagy legalábbis az én fülem számára nem hallható romlással sikerült visszaállítani a spektrumból az eredeti hangot.

5. Hangfájl újramintavételezése

A feladat során új időtengelyeket készítettem, és a mintavételezés sűrűségét egy paraméter segítségével állítgattam, majd az így elkészített időtengelyekre az eredeti jel segítségével interpoláltam.

11. kép. A lassított hangfile

12. kép. A gyorsított hangfile

6. FFT-szűrő készítés

Ebben a feladatban egy egyszerű bandpass szűrőt készítettem, ami csak az 1000 és 3000 hz közti frekvenciákat engedi át.

6.1. név.wav

13. kép. A szűrt és visszatranszformált nevem

14. kép. A visszatranszformált hang spektruma

6.2. chrip.wav

15. kép. A szűrt és visszatranszformált chirp

16. kép. A visszatranszformált hang spektruma

6.3. negyzet.wav

17. kép. A szűrt és visszatranszformált chirp

18. kép. A visszatranszformált hang spektruma

A chirp-signalt leszámítva, a másik két hang eltompult.

7. Késleltetés megvalósítása FIR-szűrővel

A feladat megoldásához egy kissebb módosítást végeztem az előre megadott függvényen. A visszhang amplitudóját egy 0.4 - es faktorral csökkentettem.

19. kép. Az eredeti hang

20. kép. A hang késleltetéssel, azaz visszhangal

Jól észrevehető a két ábra közti különbség, a visszahangos hang sokkal jobban egybe van folyva, "zajosabb"

8. Visszhangosítás IIR-szűrővel

Ebben a feladatban többszörös visszhangot valósítottam meg egy IIR szűrő segítségével.

21. kép. Többszörös visszhang

9. Hangfelismerés

A feladathoz 4-szer rögzítettem a teljes nevem és mind a négy minta esetén megvizsgáltam a minták és a keresztnév spektrogrammjának korrelációját. A korreláció kiszámításához a spektrogrammokat 1D-s tömbökké alakítottam és scipy.signal.correlate függvényt hívtam segítségül.

22. kép. Korrelációk

Mind a négy eset hasonló mintázatot mutat, a legmagasabb korrelációk hangfileok vége fele jelentkeznek, ahogy annak lennie is kell.

Megjegyzés: A 2D-s konvolúciót nem sikerült működésre bírnom, hosszú percekig futtattam, és csak meghalt tőle notebook kernelje.