1. Одно распределение

Название	Предпосылки	H_0	H_1	Статистика	Выводы	Python (numpy, scipy.stats)
Гипотеза о матожидании	1. $X \sim N(\mu, \sigma^2)$ 2. σ^2 - известно	$\mu = \mu_0$	$\mu \neq \mu_0$	$z_p = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$	Не отвергаем на уровне значимости α , если $1. \ z_p \in \left(-z_{1-\frac{\alpha}{2}}, z_{1-\frac{\alpha}{2}}\right),$ $2. \ \mu_0 \in \left(\overline{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$ $3. \ \text{p-value} > \alpha$	1. $z_{1-\frac{\alpha}{2}} = \text{norm.ppf}(q = 1 - \alpha/2),$ 2. $p\text{-value} = 1 - 2 \cdot \text{norm.cdf}(\text{abs}(z_p))$
Гипотеза о матожидании	1. $X \sim N(\mu, \sigma^2)$ 2. σ^2 - неизвестно	$\mu = \mu_0$	$\mu \neq \mu_0$	$t_p = t^{(n-1)} = \frac{\overline{X} - \mu_0}{S_0 / \sqrt{n}} \sim T_{n-1}$	Не отвергаем на уровне значимости α , если $1. \ t_p \in \left(-t_{1-\frac{\alpha}{2}}^{(n-1)}, t_{1-\frac{\alpha}{2}}^{(n-1)}\right),$ $2. \ \mu_0 \in \left(\overline{X} - t_{1-\frac{\alpha}{2}}^{(n-1)} \frac{S_0}{\sqrt{n}}, \overline{X} + t_{1-\frac{\alpha}{2}}^{(n-1)} \frac{S_0}{\sqrt{n}}\right)$ $3. \ \text{p-value} > \alpha$	1. $S_0^2 = \text{np.var}(x, ddof = 1)$ $\left(S_0 = \text{np.std}(x, ddof = 1)\right)$ 2. $t_{1-\frac{\alpha}{2}}^{(n-1)} = \text{t.ppf}(df = n-1, q = 1-\alpha/2),$ 3. p-value = $1-2 \cdot \text{t.cdf}(\text{abs}(t_p), df = n-1)$
Гипотеза о дисперсии	1. $X \sim N(\mu, \sigma^2)$ 2. μ - неизвестно	$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$C_p = C^{(n-1)} = \frac{S_0^2(n-1)}{\sigma_0^2} \sim \chi_{n-1}^2$	Не отвергаем на уровне значимости α , если $1. \ C_p \in \left(C_{\frac{\alpha}{2}}^{(n-1)}, C_{1-\frac{\alpha}{2}}^{(n-1)}\right),$ $2. \ \sigma_0^2 \in \left(\frac{(n-1)S_0^2}{C_{1-\frac{\alpha}{2}}^{(n-1)}}, \frac{(n-1)S_0^2}{C_{\frac{\alpha}{2}}^{(n-1)}}\right)$ $3. \ \text{p-value} > \alpha$	1. $S_0^2 = \text{np.var}(x, ddof = 1)$ 2. $C_{\frac{\alpha}{2}}^{(n-1)} = \text{chi2.ppf}(df = n - 1, q = \alpha/2),$ 3. $C_{1-\frac{\alpha}{2}}^{(n-1)} = \text{chi2.ppf}(df = n - 1, q = 1 - \alpha/2),$ 4. p-value = $2 \cdot \text{chi2.cdf}(C_p, df = n - 1)$
Гипотеза о дисперсии	1. $X \sim N(\mu, \sigma^2)$ 2. μ - известно	$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$C_p = C^{(n)} = \frac{\sum_{i=1}^n (x_i - \mu)^2}{\sigma_0^2} \sim \chi_n^2$	Не отвергаем на уровне значимости α , если $1. \ C_p \in \left(C_{\frac{\alpha}{2}}^{(n)}, C_{1-\frac{\alpha}{2}}^{(n)}\right),$ $2. \ \sigma_0^2 \in \left(\frac{\sum_{i=1}^n \left(x_i - \mu\right)^2}{C_{1-\frac{\alpha}{2}}^{(n-1)}}, \frac{\sum_{i=1}^n \left(x_i - \mu\right)^2}{C_{\frac{\alpha}{2}}^{(n-1)}}\right)$ $3. \ \text{p-value} > \alpha$	1. $C_{\frac{\alpha}{2}}^{(n-1)} = \text{chi2.ppf}(df = n - 1, q = \alpha/2),$ 2. $C_{1-\frac{\alpha}{2}}^{(n-1)} = \text{chi2.ppf}(df = n - 1, q = 1 - \alpha/2),$ 3. p-value = $2 \cdot \text{chi2.cdf}(C_p, df = n - 1)$
Асимптотическая гипотеза о матожидании	1. $X \sim \mathcal{F}$ 2. $D(x) = \sigma^2$ - известно 3. $n \to \infty \ (n \gg 0)$	$\mu = \mu_0$	$\mu \neq \mu_0$	$z_p = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \xrightarrow[n \to \infty]{d} N(0, 1)$	Не отвергаем на уровне значимости α , если $1. \ z_p \in \left(-z_{1-\frac{\alpha}{2}}, z_{1-\frac{\alpha}{2}}\right),$ $2. \ \mu_0 \in \left(\overline{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$ $3. \ \text{p-value} > \alpha$	1. $z_{1-\frac{\alpha}{2}} = \text{norm.ppf}(q=1-\alpha/2),$ 2. $p\text{-value} = 1-2 \cdot \text{norm.cdf}(\text{abs}(z_p))$
Асимптотическая гипотеза о матожидании	1. $X \sim \mathcal{F}$ 2. $D(x) = \sigma^2$ - неизвестно 3. $n \to \infty \ (n \gg 0)$	$\mu = \mu_0$	$\mu \neq \mu_0$	$z_p = \frac{\overline{X} - \mu_0}{S_0 / \sqrt{n}} \xrightarrow[n \to \infty]{d} N(0, 1)$	Не отвергаем на уровне значимости α , если 1. $z_p \in \left(-z_{1-\frac{\alpha}{2}}, z_{1-\frac{\alpha}{2}}\right)$, 2. $\mu_0 \in \left(\overline{X} - z_{1-\frac{\alpha}{2}} \frac{S_0}{\sqrt{n}}, \overline{X} + z_{1-\frac{\alpha}{2}} \frac{S_0}{\sqrt{n}}\right)$ 3. p-value $> \alpha$	1. $S_0^2 = \text{np.var}(x, ddof = 1)$ 2. $z_{1-\frac{\alpha}{2}} = \text{norm.ppf}(q = 1 - \alpha/2),$ 3. p-value = $1 - 2 \cdot \text{norm.cdf}(\text{abs}(z_p))$
Bootstrap	1. $X \sim \mathcal{F}$ 2. n - небольшое	$\mu=\mu_0$ или $\sigma^2=\sigma_0^2$	$\mu eq \mu_0$ или $\sigma^2 eq \sigma_0^2$	Генерируем много выборок из данной одинаковой длины. Считаем для каждой них нужную статистику $\left(\overline{X_i}\right)$ или $\hat{\sigma_i}$. Считаем квантили $q_{\frac{\alpha}{2}}, q_{1-\frac{\alpha}{2}}$ для выборки этих статистик.	1. $\mu_0\left(\sigma_0^2\right) \in \left(q_{\frac{\alpha}{2}}, q_{1-\frac{\alpha}{2}}\right)$	 scipy.stats.bootstrap numpy.random.choice

2. Два распределения

Название	Предпосылки	H_0	H_1	Статистика	Выводы	Python (numpy, scipy.stats)
Гипотеза о разности ма	ато-	$\mu_x - \mu_y = \mu_0$	$\mu_x - \mu_y \neq \mu_0$	$\Delta = \frac{X}{\Delta} - Y,$	Не отвергаем на уровне значимости α , если	
жиданий связанных пар	1. $X \sim N(\mu_x, \sigma_x^2)$			$z_p = \frac{\Delta - \mu_0}{D(\overline{\Delta})} \sim N(0, 1),$	1. $z_p \in \left(-z_{1-\frac{\alpha}{2}}, z_{1-\frac{\alpha}{2}}\right)$,	1. $z_{1-\frac{\alpha}{2}} = \text{norm.ppf}(q = 1 - \alpha/2),$
	$2. Y \sim N(\mu_y, \sigma_y^2)$			Статистика	1. $z_p \in \left(-z_{1-\frac{\alpha}{2}}, z_{1-\frac{\alpha}{2}}\right),$ 2. $\mu_0 \in \left(\overline{\Delta} - z_{1-\frac{\alpha}{2}}D(\overline{\Delta}), \overline{\Delta} + z_{1-\frac{\alpha}{2}}D(\overline{\Delta})\right)$	2. p-value = $1 - 2 \cdot \text{norm.cdf}(\text{abs}(z_p))$
	$3. \ n = n_x = n_y$			V n	3. p-value $> \alpha$	
	4. σ_x^2, σ_y^2 — известно					
Гипотеза о разности ма	ато-	$\mu_x - \mu_y = \mu_0$	$\mu_x - \mu_y \neq \mu_0$	$\Delta = X - Y,$	Не отвергаем на уровне значимости α , если	
жиданий связанных пар	1. $X \sim N(\mu_x, \sigma_x^2)$			$\begin{vmatrix} \Delta = X - Y, \\ z_p = \frac{\overline{\Delta} - \mu_0}{S_0(\Delta)/\sqrt{n}} \sim N(0, 1) \end{vmatrix}$	1. $z_p \in \left(-z_{1-\frac{\alpha}{2}}, z_{1-\frac{\alpha}{2}}\right)$,	1. $z_{1-\frac{\alpha}{2}} = \text{norm.ppf}(q = 1 - \alpha/2),$
	2. $Y \sim N(\mu_y, \sigma_y^2)$				1. $z_p \in \left(-z_{1-\frac{\alpha}{2}}, z_{1-\frac{\alpha}{2}}\right),$ 2. $\mu_0 \in \left(\overline{\Delta} - z_{1-\frac{\alpha}{2}} \frac{S_0(\Delta)}{\sqrt{n}}, \overline{\Delta} + z_{1-\frac{\alpha}{2}} \frac{S_0(\Delta)}{\sqrt{n}}\right)$	2. p-value = $1 - 2 \cdot \text{norm.cdf}(\text{abs}(z_p))$
	$3. \ n = n_x = n_y$				$2. \ \mu_0 \in \left(\Delta - z_{1-\frac{\alpha}{2}} \frac{1}{\sqrt{n}}, \Delta + z_{1-\frac{\alpha}{2}} \frac{1}{\sqrt{n}}\right)$	
	4. σ_x^2, σ_y^2 – неизвестно				3. p-value $> \alpha$	
Гипотеза о разности ма	ато-	$\mu_r - \mu_u = \mu_0$	$\mu_r - \mu_u \neq \mu_0$	$z_p = \frac{\overline{X} - \overline{Y} - (\mu_x - \mu_y)}{\sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}} \sim N(0, 1)$	Не отвергаем на уровне значимости α , если	
жиданий	1. $X \sim N(\mu_x, \sigma_x^2)$	F. 2. F. 9. F. 0		$\sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}$	1. $z_p \in \left(-z_{1-\frac{\alpha}{2}}, z_{1-\frac{\alpha}{2}}\right)$,	1. $z_{1-\frac{\alpha}{2}} = \text{norm.ppf}(q = 1 - \alpha/2),$
	2. $Y \sim N(\mu_y, \sigma_y^2)$					2. p-value = $1 - 2 \cdot \text{norm.cdf}(\text{abs}(z_p))$
	3. $n_x \neq n_y$				$2. (\mu_x - \mu_y) \in \left(\overline{X} - \overline{Y} \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}\right)$	
	3. $n_x \neq n_y$ 4. σ_x^2, σ_y^2 – известно				3. p-value $> \alpha$	

1

Название	Предпосылки	H_0	H_1	Статистика	Выводы	Python (numpy, scipy.stats)
Гипотеза о разности мато жиданий	1. $X \sim N(\mu_x, \sigma^2)$ 2. $Y \sim N(\mu_y, \sigma^2)$ 3. $n_x \neq n_y$ 4. $\sigma^2 = \sigma_x^2 = \sigma_y^2$ – неизвестно	$\mu_x - \mu_y = \mu_0$	$\mu_x - \mu_y \neq \mu_0$	$\widehat{\sigma^2} = \frac{S_0^2(X)(n_x - 1) + S_0^2(Y)(n_y - 1)}{n_x + n_y - 2}$ $t_p = \frac{\overline{X} - \overline{Y} - (\mu_x - \mu_y)}{\widehat{\sigma}\sqrt{\frac{1}{n_x} + \frac{1}{n_y}}} \sim T_{n_x + n_y - 2}$	Не отвергаем на уровне значимости α , если $1. \ t_p \in \left(-t_{1-\frac{\alpha}{2}}^{(n_x+n_y-2)}, t_{1-\frac{\alpha}{2}}^{(n_x+n_y-2)}\right),$ $2. \ (\mu_x-\mu_y) \in \left(\overline{X}-\overline{Y}\pm t_{1-\frac{\alpha}{2}}^{(n_x+n_y-2)}\hat{\sigma}\right)$ $3. \ \text{p-value} > \alpha$	1. $t_{1-\frac{\alpha}{2}}=\text{t.ppf}(q=1-\alpha/2,df=n_x+n_y-2),$ 2. p-value = $1-2\cdot\text{t.cdf}(\text{abs}(t_p),df=n_x+n_y-2)$ 3. scipy.stats.ttest_ind
Гипотеза о равенстве мато жиданий. Тест Уэлча	1. $X \sim N(\mu_x, \sigma_x^2)$ 2. $Y \sim N(\mu_y, \sigma_y^2)$ 3. $n_x \neq n_y$ 4. σ_x^2, σ_y^2 – неизвестно	$\mu_x - \mu_y = 0$	$\mu_x - \mu_y \neq 0$	$t_p = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\widehat{\sigma}_x^2}{n_x} + \frac{\widehat{\sigma}_y^2}{n_y}}} \sim T_{\widehat{d}}$ $\widehat{d} = \frac{\left(\frac{\widehat{\sigma}_x^2}{n_x} + \frac{\widehat{\sigma}_y^2}{n_y}\right)^2}{\frac{\widehat{\sigma}_x^4}{n_x^2(n_x - 1)} + \frac{\widehat{\sigma}_y^4}{n_y^2(n_y - 1)}}$	Не отвергаем на уровне значимости α , если $1. \ t_p \in \left(-t_{1-\frac{\alpha}{2}}^{(\widehat{d})}, t_{1-\frac{\alpha}{2}}^{(\widehat{d})}\right),$ $2. \ 0 \in \left(\overline{X} - \overline{Y} \pm t_{1-\frac{\alpha}{2}}^{(\widehat{d})} \sqrt{\frac{\widehat{\sigma}_x^2}{n_x} + \frac{\widehat{\sigma}_y^2}{n_y}}\right)$ $3. \ \text{p-value} > \alpha$	1. $t_{1-\frac{\alpha}{2}} = \text{t.ppf}(q = 1 - \alpha/2, df = d),$ 2. p-value = $1 - 2 \cdot \text{t.cdf}(\text{abs}(t_p), df = d)$ 3. scipy.stats.ttest_ind(equal_var=Flase)
Гипотеза об отношения дисперсий	1. $X \sim N(\mu_x, \sigma_x^2)$ 2. $Y \sim N(\mu_y, \sigma_y^2)$ 3. $n_x \neq n_y$ 4. σ_x^2, σ_y^2 – неизвестно	$\frac{\sigma_x^2}{\sigma_y^2} = 1$	$\frac{\sigma_x^2}{\sigma_y^2} \neq 1$	$f_p = \frac{\widehat{\sigma_x^2}}{\widehat{\sigma_y^2}} \sim F_{n_x - 1, n_y - 1}$	Не отвергаем на уровне значимости α , если $1. \ f_p \in \left(f_{\frac{\alpha}{2}}^{(n_x-1,n_y-1)}, f_{1-\frac{\alpha}{2}}^{(n_x-1,n_y-1)}\right),$ $2. \ \text{p-value} > \alpha$	1. $f_{\frac{\alpha}{2}}^{(n_x-1,n_y-1)} = \text{f.ppf}(dfn = n_x - 1, dfd = n_y - 1, q = a/2),$ 2. $f_{1-\frac{\alpha}{2}}^{(n_x-1,n_y-1)} = \text{f.ppf}(dfn = n_x - 1, dfd = n_y - 1, q = 1 - a/2),$

3. Критерии сравнения

Название	Предпосылки	H_0	H_1	Статистика	Выводы	Python (numpy, scipy.stats)
Критерий Пирсона (χ^2) с согласии	1. $X \sim \mathcal{F}_x$ 2. \mathcal{F}_0 – дискретное.	$\mathcal{F}_x = \mathcal{F}_0$	$\mathcal{F}_x eq \mathcal{F}_0$	Для каждого значения a_i имеем частоту/количество (ν_i) в данной выборке и теоретическую вероятность p_i . $\rho = \sum_{i=1}^k \frac{(\nu_i - np_i)^2}{np_i} \xrightarrow[n \to \infty]{H_0} \chi_{k-1}^2$	Hе отвергаем на уровне значимости α , если 1. p-value $> \alpha$	1. $\operatorname{p-value} = 2 \cdot \operatorname{chi2.cdf}(\rho, df = n - 1)$
Критерий Колмогорова с согласии	1. $X \sim \mathcal{F}_x$ 2. \mathcal{F}_0 – непрерывное.	$\mathcal{F}_x = \mathcal{F}_0$	$\mathcal{F}_x eq \mathcal{F}_0$	$\widehat{F}_n(x)$ – эмпирическая функция распределения, $F_0(x)$ – функция распределения \mathcal{F}_0 . $D_n = \sup_x \left \widehat{F}_n(x) - F_0(x) \right ,$ $k_p = \sqrt{n} D_n \xrightarrow[n \to \infty]{d} \eta \sim \mathcal{K}(y)$ – функция распределения Колмогорова.	Не отвергаем на уровне значимости α , если $1. \ k_p \leq K_{1-\alpha},$ $2. \ \text{p-value} > \alpha$	 scipy.stats.ksone scipy.stats.ks_1samp scipy.stats.kstest
Критерий Колмогорова- Смирнова об однородности		$\mathcal{F}_x = \mathcal{F}_y$	$\mathcal{F}_x eq \mathcal{F}_y$	$\widehat{F}_{n_x}(x), \widehat{F}_{n_y}(x)$ — эмпирические функции распределения. $ks_p = \sqrt{\frac{n_x n_y}{n_x + n_y}} \sup_x \left \widehat{F}_{n_x}(x) - \widehat{F}_{n_y}(x) \right \ ks_p \xrightarrow[n_x,n_y\to\infty]{d} \eta \sim \mathcal{K}(y)$ — функция распределения Колмогорова.	Не отвергаем на уровне значимости α , если $1.\ ks_p \leq K_{1-\alpha},$ $2.\ \text{p-value} > \alpha$	 scipy.stats.ksone scipy.stats.ks_2samp
Критерий Пирсона (χ^2) с независимости	Объекты имеют пары из категорий (x_i,y_i) . Всего X имеет s категорий, Y имеет k категорий.			$ u_{ij}$ - частоты пары категорий $(a_i,bj)\sim (X,Y)$. $n_{i\cdot} = \sum_{j=1}^k \nu_{ij}, \ n_{\cdot j} = \sum_{i=1}^s \nu_{ij}.$ $\gamma = \sum_{i=1}^s \sum_{j=1}^k \frac{\left(\nu_{ij} - \frac{n_i \cdot n_{\cdot j}}{n}\right)^2}{\frac{n_i \cdot n_{\cdot j}}{n}} \sim \chi^2_{(s-1)(k-1)}$	Не отвергаем на уровне значимости α , если $1. \ \gamma \in (0, C_{1-\alpha}^{(s-1)(k-1)}),$ $2. \ \text{p-value} > \alpha$	 scipy.stats.contingency.crosstab pandas.crosstab scipy.stats.chi2_contingency (correction = False)
Коэффициент корреляции Спирмена	Объекты имеют пары из порядковых (ранговых) переменных (r_i, k_i) .	X, Y - незави- симые	X, Y - зависи-	$S = \sum_{i=1}^{n} (r_i - k_i)^2 \in \left[0, \frac{n^3 - n}{3}\right]$ $\rho = 1 - \frac{6S}{n^3 - n} \in [-1, 1]$ $\rho_p = \sqrt{n - 1}\rho \xrightarrow[H_0]{n \to \infty} N(0, 1)$	Не отвергаем на уровне значимости α , если $1. \ \rho_p \in \left(-z_{1-\frac{\alpha}{2}}, z_{1-\frac{\alpha}{2}}\right),$ $2. \ \text{p-value} > \alpha$	1. scipy.stats.spearmanr