1.1) Objectif

L'objectif de ce TP, va etre de créer un filtre numerique défini sur un signal echantilloné, dans le but de comparer ces derniers, pour voir leurs avantages et inconveniants.

1.2) Etude théorique

1.2.1) Filtre numérique LP du 1er ordre

1) La fonction de transfert d'un filtre analogique LP de 1er ordre est :

$$Han1(s) := \frac{K}{1 + \tau \cdot s}$$

Avec,

$$fc \coloneqq \frac{1}{2 \cdot \pi \cdot \tau}$$

2) Avec l'aide de la methode d'Euler, on pose $s\!\coloneqq\!fe\left(1-z^{-1}\right)$, ce qui nous donne :

$$Hn1(z) \coloneqq \frac{K}{1 + \tau \cdot fe(1 - z^{-1})}$$

$$Hn1(z) := \frac{1}{1 + \tau \cdot fe} \cdot \frac{K}{1 - \frac{\tau \cdot fe}{1 + \tau \cdot fe} \cdot z^{-1}}$$

Rappel:
$$\frac{b0}{1+a1 \cdot z^{-1}}$$

$$b0 \coloneqq \frac{1}{1 + \tau \cdot fe} \qquad a1 \coloneqq -\frac{\tau \cdot fe}{1 + \tau \cdot fe}$$

On a $fe \coloneqq 10000\,\mathrm{Hz}$ et $fc \coloneqq 300\,\mathrm{Hz}$, donc $\tau \coloneqq 5.3 \cdot 10^{-4}\mathrm{seconde}$.

Donc
$$b0 \coloneqq \frac{1}{1 + 5.3 \cdot 10^{-4} \cdot 10000} = 0.159$$
 et $a1 \coloneqq -\frac{5.3 \cdot 10^{-4} \cdot 10000}{1 + 5.3 \cdot 10^{-4} \cdot 10000} = -0.841$

4000 211 / 10 10 1

1.2.2) Filtre numérique LP du 2eme ordre

1) On nous donne sa frequence propre $f0 := 300\,\mathrm{Hz}$ et le facteur de surtension Q := 1. On peut en deduire que $\omega 0 := 2 \cdot \pi \cdot f0 = 1.885 \cdot 10^3$

$$Han2(s) := \frac{1}{1 + \frac{1}{Q} \cdot \frac{s}{\omega 0} + \left(\frac{s}{\omega 0}\right)^{2}}$$

2) Avec l'aide de la méthode d'Euler, on a :

$$Hn2\left(z\right)\coloneqq\frac{1}{1+\frac{1}{Q\boldsymbol{\cdot}\omega0}\boldsymbol{\cdot}fe\left(1-z^{-1}\right)+\frac{1}{\omega0^{2}}\boldsymbol{\cdot}\left(fe\left(1-z^{-1}\right)\right)^{2}}$$

$$Hn2(z) := \frac{1}{1 + \frac{fe}{Q \cdot \omega_0} + \frac{fe}{\omega_0^2}} \cdot \frac{1}{1 - \frac{\frac{fe}{Q \cdot \omega_0} + \frac{2 \cdot fe^2}{\omega_0^2}}{1 + \frac{fe}{Q \cdot \omega_0} + \frac{fe}{\omega_0^2}} \cdot z^{-1} + \frac{\frac{fe^2}{\omega_0^2}}{1 + \frac{fe}{Q \cdot \omega_0} + \frac{fe}{\omega_0^2}} \cdot z^{-2}}$$

Rappel:
$$\frac{b0}{1+a1\boldsymbol{\cdot} z^{-1}+a2\boldsymbol{\cdot} z^{-2}}$$

On a donc :
$$b0 \coloneqq \frac{1}{1 + \frac{fe}{Q \cdot \omega 0} + \frac{fe}{\omega 0^2}} = 0.159$$

$$a1 := -\frac{\frac{fe}{Q \cdot \omega_0} + \frac{2 \cdot fe^2}{\omega_0^2}}{1 + \frac{fe}{Q \cdot \omega_0} + \frac{fe}{\omega_0^2}} = -9.765$$

$$a2 \coloneqq \frac{\frac{fe^2}{\omega 0^2}}{1 + \frac{fe}{Q \cdot \omega 0} + \frac{fe}{\omega 0^2}} = 4.462$$