MTH 416: Lecture 20

Cliff Sun

November 7, 2024

Lecture Span

• Criteria for Diagonalizability

Recall: 2 things can prevent diagonalizability:

- 1. Not enough eigenvalues
- 2. Not enough eigenvectors

Theorem 0.1. Fundamental Theorem of Algebra: Every non-zero polynomial with complex number coefficients splits completely over the Complex Numbers. In other words,

$$f(t) = c(t - a_1)(t - a_2)\dots$$
 (1)

Note, this is not true of \mathbb{R} , e.g. $f(t) = t^2 + 1$

Theorem 0.2. Let $A \in M_{n \times n}(F)$ where F is some field, then if A is diagonalizable, then the characteristic polynomial of A splits completely in F.

Proof. Let $A \in M_{n \times n}$ be diagonalizable, then A is similar to some diagonal matrix D. Then

$$\operatorname{char} \operatorname{poly}(A) = \operatorname{char} \operatorname{poly}(D)$$

$$= \det(D) \iff (\lambda_1 - t)(\lambda_2 - t)\dots \tag{2}$$

This completely splits F.

Is this an iff statement? NO For example,

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \tag{3}$$

Then

$$char(A) = (t-1)^2 \tag{4}$$

In other to diagonalize the matrix, we need a basis of \mathbb{R}^2 eigenvectors, which we don't have.

Definition 0.3. Suppose λ is an eigenvalue of A

- 1. The algebraic multiplicity of λ is the number of times $(t \lambda)$ divides the polynomial.
- 2. The geometric multiplicity of λ is the dimension of the Eigenspace associated with λ .

Main facts about algebraic & geometric multiplicity:

Theorem 0.4. For any λ ,

$$geo \ multi \leq alg \ multi$$

Theorem 0.5. A matrix $A \in M_{n \times n}(\mathbb{R})$ is diagonalizable iff the follow are true:

- 1. Its characteristic polynomial splits completely
- 2. For every eigenvalue, the geometric multiplicity and algebraic multiplicity are equal.

Corollary 0.6. If $A \in M_{n \times n}$ has n distinct real eigenvalues, then it is diagonalizable.

Note that the converse is false.

Proof. Let $M \in M_{n \times n}(\mathbb{R})$ and let λ be an eigenvalue of A. Then, we prove that

If $\lambda = 1$ has geo multi = k, then $\dim(E_{\lambda}) = k$. Then we choose a basis for E_{λ} , then we extend this to a basis $\beta = \{v_1, \ldots, v_n\}$ for all \mathbb{R}^n . Then we write L_A in β coordinates. Then we have that the right hand corner of this matrix is a diagonal line of λ 's. Then

$$\operatorname{char} \operatorname{poly}(A) = \operatorname{char} \operatorname{poly}([L]_{\beta})$$

Then char poly($[L]_{\beta}$) has at least k repititions of λ , thus

geo multi
$$\leq$$
 alg multi

Proof. We now prove theorem 0.5, then we first proceed in the \implies direction. We've already proved that char poly(A) splits completely. We now note that $A \sim D$ where D is some diagonal matrix. Then for any λ , alg multi $\lambda = \#$ of times λ appears on D. Claim: the geo multi of λ is the same as

$$= \dim(E_{\lambda}) \tag{5}$$

$$= \dim N(A - \lambda I) \tag{6}$$

$$\dim N(D - \lambda I) \tag{7}$$

$$=$$
 # of times λ appears on diagonal (8)

= alg multi of
$$\lambda$$

(\Leftarrow) Suppose that char poly(A) splits and all λ have geo multi = alg multi.

$$charpoly(A) = (-1)^n (t - \lambda_1)^{m_1} \dots (9)$$

Where λ_i are all distinct and real numbers, and m_i are the algebraic multiplicity of each λ_i . The degree of this polynomial is

$$m_1 + \dots + m_k = n \tag{10}$$

But since $m_i = \text{geo multi of } \lambda_i$ which is the dimension of E_{λ_i} . Let

$$\beta_i = \text{a basis for } E_{\lambda_i}$$
 (11)

This contains m_i vectors. Let

$$\beta = \beta_1 \cup \dots \cup \beta_k \tag{12}$$

This is a set of n linearly independent vectors. But how do we know this?? To complete the proof, we need the following lemma

Lemma 0.7. If β_i is a linearly independent set in E_{λ_i} for various distinct eigenvalues $\lambda_1, \ldots, \lambda_k$, then

$$\beta = \beta_1 \cup \dots \cup \beta_k \tag{13}$$

Is another linearly independent set.