Context

"naturalistic"

"ecologically valid"

Lab2Land Big Music Data

Current Opinion in Behavioral Sciences

Volume 18, December 2017, Pages 50-56

Music and big data: a new frontier

David M Greenberg ^{1, 2} , Peter J Rentfrow ³

Big Music Data

BioPsychoSocial DNA Testing Genetics Genetics Heart rate GSR Personality Values Intelligence Demographics Physical activity Sociability Mobility

Streaming Services - Listening History) - Habits Surveys & Digital Footprints - Preferences - Engagement

Audio Analysis & Feature Extraction (based on MI) Human ratings • Genre and subgenre tags • Emotion-oriented attributes • Sonic-oriented attributes

New Insights

Short-Term Effects

Short-term effects of music on:

- Attitudes
- Emotion
- Happiness
- Mood
- Motivation

Long-Term Effects

Long-term effects of music on:

- Etiology
- Lifespan & personality development
- · Physical and mental health
- Symptomatology

Global Variation

- Mapping the geographic and cultural variation of the uses and effects of music
- Tracking cultural, political, and social trends (and events) that imapact musical behavior on the macro-level

Applications

Mental Health

Develop evidence-based music treatments utilized by:

- Psychologists & Psychiatrists
- Music therapists
- Other mental health professionals

Medical

Develop music-based protocols to supplement:

- Pharmaceutical medications
- · Recovery after surgery

Industry

Develop mobile apps that use music to:

- · Alleviate symptomatology
- Increase endurance during fitness programs
- Improve health and wellness

Current Opinion in Behavioral Sciences

What can it reveal? Big Music Data

Multimodal representation of music consumption

Lab2Land Big Music Data

Last.fm-1K users dataset

http://ocelma.net/MusicRecommendationDataset/index.html

each entry:user ID, song title, artist name, and timestamps

Context

- Hour-of-day histogram: 24-D histogram that simply counts the number of songs a user listens to in each hour of a day. Normalize so that it sums to one.
- Hour-of-day entropy: Entropy of the hour-of-day histogram.
- Working-hour ratio: Percentage of songs that are listened to from 8 to 19 o'clock in a day.
- Day-of-week histogram: 7-D histogram that simply counts the number of songs a user listens to in each day of a week. Normalize so that it sums to one.
- Day-of-week entropy.
- Working-day ratio: Percentage of songs that are listened to from Monday to Friday in a week.
- Month-of-year histogram: 12-D histogram that simply counts the number of songs a user listens to in each month of a year. Normalize so that it sums to one.
- Month-of-year entropy.
- Working-month ratio: Percentage of songs that are listened to in the "working months" (excluding July and August) in a year.

Song Histogram

top 50/user w.r.t top 10000 of all

Artist Histogram

Song Tag Histogram

top 100 tags/song or artist

Artist Tag Histogram

Content

- Danceability: The ease with which a person could dance to a song, over the course of the whole song [22].
- Loudness: Perceived intensity of a sound.
- Key: The estimated overall key of a track (ranges from 0 to 11 and corresponds to one of the 12 keys: C, C#, D to B).
- Mode: The estimated mode; 0 (minor) or 1 (major).
- **Tempo**: The overall estimated tempo of a track in beats per minute (BPM).
- Pitch: Frame-by-frame chromavector, corresponding to the 12 pitch classes [24]. We take the mean and standard deviation (SD) for temporal integration [16].
- Timbre: Frame-by-frame MFCC-like feature vector, corresponding to the 12 basis functions that are loosely related to perceptual qualities such as brightness, flatness, and attack strength [7]. We also take the mean and SD for temporal integration.

top 15 songs/user

n = 144,142

which features gave better accuracy?

F = 382

M = 502

Context

Content

Feature	Age	Gender
Hour-of-day histogram	55.7%	57.0%
Hour-of-day entropy	45.7%	57.1%
Working-hour ratio	47.5%	48.4%
Day-of-week histogram	58.9%	47.2%
Day-of-week entropy	61.4%	48.9%
Working-day ratio	61.1%	47.0%
Month-of-year histogram	50.4%	47.5%
Month-of-year entropy	49.3%	50.4%
Working-month ratio	50.0%	50.4%

Feature	Age	Gender
	71.1%	65.8%
	60.0%	62.2%
	64.6%	66.1%
	58.9%	63.6%
	46.4%	52.2%
	50.4%	49.7%
	50.4%	46.6%
	52.1%	52.8%
	46.4%	50%
	52.9%	54.3%
	59.3%	53.7%

What are the problems with this approach?

Song title and artist name	Count
Female	
Wings of Words by Chemistry	3112
Heartbeats by the Knife	2632
Street Lights by Kanye West	2006
Staring at the Sun by TV on the Radio	1891
Such Great Heights by the Postal Service	1855
Male	en en
The Good, the Bad, the Queen	3149
Gimme More by Britney Spears	3111
Love Lockdown by Kanye West	2812
Heartless by Kanye West	2492
Welcome to Heartbreak by Kanye West	2357
Adolescent	
Wings of Words by Chemistry	3112
Love Lockdown by Kanye West	2265
Heartless by Kanye West	2211
Paranoid by Kanye West	2136
Amazing by Kanye West	2122
Adult	
Hung Up by Madonna	927
Bright Lights by Matchbox Twenty	894
Better Alone by Melanie C	835
Downfall by Matchbox Twenty	743
Enjoy the Silence by Depeche Mode	701

Table 3: Top listened songs for different groups

Project Idea: 2 <u>last.fm</u> datasets -> improve accuracy

n = 93 35 sad 25 non-sad

60 Chinese popular songs (25-30 secs)

- -> gender and Big Five personality factors on the preference for sad music in the Chinese social environment
 - -> constructed sad music preference prediction models using audio features and individual features as inputs

- males prefer sad music more than females
- significant interaction effect between gender and the extraversion factor is observed
- perceived relaxation and happiness of music play an important role in the prediction of sad music preferences
- poor model accuracy

GitHub repo

data: https://github.com/xl2218066/PredictSadMusic

Project Idea: Redo in India - but also add empathy

UMAP 2017 Short Paper

UMAP'17, July 9-12, 2017, Bratislava, Slovakia

Personality Traits and Music Genres: What Do People Prefer to Listen To?

Bruce Ferwerda
Department of Computational
Perception
Johannes Kepler University
Altenberger Strasse 69
4040, Linz, Austria
bruce.ferwerda@jku.at

Marko Tkalcic Faculty of Computer Science Free University of Bozen-Bolzano Piazza Domenicani 3 I-39100, Bozen-Bolzano, Italy marko.tkalcic@unibz.it Markus Schedl
Department of Computational
Perception
Johannes Kepler University
Altenberger Strasse 69
4040, Linz, Austria
markus.schedl@jku.at

Genre tags 18 genres

Personality Traits and Music Genres: What Do People Prefer to Listen To?

Bruce Ferwerda
Department of Computatio
Perception
Johannes Kepler Universit
Altenberger Strasse 69
4040, Linz, Austria

Marko Tkalcic Faculty of Computer Science Free University of Bozen-Bolza Piazza Domenicani 3 1-39100, Bozen-Bokzano, Italy marko tkalcic@unibz.it

Markus Schedl
Department of Computation
Perception
Johannes Kepler Universit
Altenberger Strasse 69
4040, Linz, Austria

Musical Preferences & Personality

	Ο	C	\mathbf{E}	Α	N
R&B	002	.026	.103	.021	012
Rap	019	017	.129	.008	049
Electronic	.077	029	.034	033	002
Rock	055	016	072	017	.057
New Age	.101	.008	067	019	031
Classical	.136	037	064	032	.000
Reggae	.017	042	.061	.009	041
Blues	.120	011	.023	011	044
Country	.106	049	002	.104	012
World	.134	021	006	028	020
Folk	.214	115	044	.104	.002
Easy Listening	.041	.010	.018	027	012
Jazz	.139	007	.042	.031	061
Vocal (a cappella)	.120	020	.006	021	.006
Punk	.002	061	020	.001	.030
Alternative	.115	104	031	.060	.101
Pop	034	.035	.056	.056	030
Heavy Metal	031	023	076	069	001

	0	С	Ε	Α	N	
Reflective & Complex	.41	06	02	.03	.04	
Intense & Rebellious	.15	03	.08	.01	01	
Upbeat & Conventional	08	.18	.15	.24	04	
Energetic & Rhythmic	.04	03	.19	.09	01	

Table 2: Correlations between music attributes and personality traits of prior work of Rentfrow & Gosling [20]: (O)penness to experience, (C)onscientiousness, (E)xtraversion, (A)greeableness, and (N)euroticism. Significant correlations are shown in boldface.

Reflective & Complex	Classical	Jazz	Blues	Folk
Intense & Re- bellious	Alternative	Rock	Heavy Metal	
Upbeat & Conventional	Country	Pop	Religious	Sound Tracks
Energetic & Rhythmic	Rap & Hip- Hop	Soul & Funk	Electronica & Dance	

Table 3: Mapping of music attributes and genres of the work of Rentfrow & Gosling [20].

genre?!

what is the problem with this approach?

n = 5808 (3 months)

acoustic features

Table 1. Pearson Product-Moment Correlations (Averaged Across 10-Folds) Between Predicted Values From Regression and Actual Values for Each Trait and Product Pair.

Openness	Conscientiousness	Extraversion	Agreeableness	Emotional Stability
.309	.363	.294	.262	.374
95% CI [.285, .332]	95% CI [.340, .385]	95% CI [.270, .317]	95% CI [.238, .286]	95% CI [.351, .396]

Note. CI = confidence interval.

What are the problems with this approach?

- 3 months
- 66 genres
- 25 moods
- genre x mood?

Musical Preferences, Personality & Musical Expertise

n = 297

user experience, musical expertise, personality,

and demographics

Musical Preferences, Personality & Musical Expertise

activity

- •choice of a taxonomy (mood, activity, or genre) to browse for music, is related to their personality
 - •eg: O \rightarrow mood, C \rightarrow activity, N \rightarrow genre, activity
- •over choice is moderated by music expertise
 - emotion experts (e.g., those who easily identify with emotions in music) had more difficulties making a decision with an increased choice set (i.e., a negative relationship with expertise).
 o c e A N

HEALTHY-UNHEALTHY MUSIC SCALE

Psychological Distress Score At-Risk

No-Risk

17 data-driven genre clusters

resulting genre clusters

Genre Clusters that exhibit Significant Correlations ($p < 0.05$) with Personality Traits							
Top Tracks	О	С	Е	A	N		
500	Swing/Jazz*, Chillout-, Easy Listening	Neo-pop/Dream- pop/Shoegaze (-)*	Techno/House*, Hip-hop and Rap**,		Neo-pop/Dream- pop/Shoegaze*, World Music(-)*,		
250	Chillout-, Easy Listening Jazz*		Hip-hop and Rap*, World Music**		Trance (-)*		
100			Hip-hop and Rap**, World Music*	Hard Rock (-)**	Neo-pop/Dream- pop/Shoegaze*, Punk*,		

chamber poppsychedelic popper poppsychedelic popper screamo Shoegaze

emotion from tags

What are the problems with this approach?

Musical Platforms

