ET4330: THÔNG TIN DI ĐỘNG

CHƯƠNG 2

TRUYỀN SÓNG VÀ KÊNH THÔNG TIN DI ĐỘNG (Propagation and Channel Modelling)

TS. Trần Quang Vinh BM. Kỹ thuật Thông tin Viện Điện tử - Viễn thông Đại học Bách Khoa Hà Nội vinhtq@hust.edu.vn

Các phương thức truyền sóng

Sóng đất (Ground wave)

- f<3MHz; Sử dụng cho thông tin hàng hải; AM radio
- băng sóng dài (LF) và trung (MF) với tần số từ 15KHz đến 3MHz
- lan truyền tốt trong môi trường mặt biển
- cần ăng ten có kích thước lớn và công suất phát lớn

Mô hình lan truyền sóng đất

Các phương thức truyền sóng

Sóng không gian tự do

- truyền sóng theo tia với đường truyền dẫn trực tiếp và các đường truyền dẫn phản xạ mặt đất
- Sóng truyền trong tầm nhìn thẳng bị hạn chế bởi đường cong của quả đất
- f>100MHz, khoảng cách phát-thu<50km (phụ thuộc chiều cao anten phát-thu)

Mô hình lan truyền sóng không gian

Các phương thức truyền sóng

- Sóng trời (sóng điện ly) Sky wave (lonospheric wave)
 - được lan truyền giữa tầng điện ly (cách mặt đất từ 50 km đến 400 km) và mặt đất, f=30~85MHz
 - khả năng phản xạ của sóng trời phụ thuộc vào ngày và đêm
 - do sóng được truyền nhờ vào tính chất ion hóa của tầng điện ly

Mô hình lan truyền sóng trời

Phân loại các băng sóng

Tên băng tần	Dải tần	Các ứng dụng	
Băng tần thấp LF (Low frequency)	30 to 300kHz	Sử dụng cho các hệ thống định vị	
Băng sóng trung MF (Medium frequency)	300k to 3MHz	Thông tin hàng hải; định vị tàu thuyền, máy bay; hệ thống thông tin quảng bá AM	
Băng sóng cao tần HF (High frequency)	3 to 30MHz	Hệ thống quảng bá AM, sóng vô tuyến nghiệp dư, hệ thống thông tin quảng bá sóng ngắn	
Tần số rất cao VHF (Very high frequency)	30M to 300MHz	Hệ thống thông tin di động mặt đất, hệ thống truyền thông FM, sóng vô tuyến nghiệp dư	
Băng tần số siêu cao UHF (Utral high frequency)	300M to 3GHz	Hệ thống thông tin vô tuyến di động; mạng WLAN; mạng PAN	
Băng tần cực siêu cao SHF (Super high frequency), băng sóng milimét (millimetre-ware range)	3 to 30GHz	Thông tin vệ tinh, định vị rada, mạng WLAN, mạng thông tin di động 5G	

Kênh vô tuyến (Kênh thông tin di động)

Wireless Channel

- Môi trường truyền dẫn vật lý không dây
- kênh vô tuyến được định nghĩa và quy chuẩn tại giao diện vô tuyến của mạng thông tin di động

Kênh thông tin di động

Kênh tần số vô tuyến

Radio Frequency Channel – RFC

• Kênh tần số sóng mang được sử dụng cho truyền và/hoặc nhận

- Phân chia theo tần số (FDD: Frequency Division Duplex)
 - Phương thức FDD sử dụng kênh tần số ở hai băng tần khác nhau để mang thông tin theo hai hướng
 - Hướng xuống: Downlink ~ Hướng thuận:Forward Channel
 - Hướng lên: Uplink ~ hướng ngược : Reverse Channel

- Phân chia theo thời gian (TDD: Time Division Duplex)
 - Phương thức TDD sử dụng cùng một kênh tần số để mang thông tin theo hai hướng tại các khe thời gian luân phiên

Simplex

Băng tần

Quy định cấp phát kênh (GSM 900)

- Mỗi hệ thống thông tin di động được cấp phát một hoặc nhiều băng tần xác định
 - Trong mỗi băng tần, các kênh vô tuyến của hệ thống được ấn định

ARFCN

GSM 900	FI(n) = 890 + 0.2*n	1 ≤ n ≤ 124 Fu(n)	Fu(n) = Fl(n) + 45
E-GSM 900	FI(n) = 890 + 0.2*n	0 ≤ n ≤ 124 Fu(n)	Fu(n) = Fl(n) + 45
	FI(n) = 890 + 0.2*(n-1024)	975 ≤ n ≤ 1023	
DCS 1800	Fl(n) = 1710.2 + 0.2*(n-512)	512 ≤ n ≤ 885	Fu(n) = FI(n) + 95

Channels Assignment

Băng tần GSM 900

DL: 890 MHz - 915 MHz

UL: 935 MHz - 960 MHz

Băng tần

E-GSM Frequency = 890.0 + 0.2*(ARFCN-1024) MHz, 975 through 1023 = 935.0 + 0.2*(ARFCN-1024) MHz, 975 through 1023 plus the P-GSM frequencies

P-GSM Frequency = 890.0 + 0.2*ARFCN MHz, 1 through 124 = 935.0 + 0.2*ARFCN MHz, 1 through 124

ARFCN=Absolute Radio Frequency Channel Number Channel Width = 200 kHz

Tín hiệu

- ***** Tín hiệu: f (t) = A Sin(2πft + φ),
 - ✓ A = Amplitude
 - √ f = Frequency, Chu kỳ/s, Hz (Hertz)
 - $\checkmark \varphi = Phase$
 - √ Chu kỳ T = 1/f
- ❖ Bước sóng: $\lambda = v.T = v/f$
 - ✓ Ánh sáng: c = $3x10^8$ m/s ~ 300m/µs
- Phân biệt miền tần số, miền thời gian

Nhiễu nền (noise)

Nhiễu nền được tạo từ 3 nguồn chính:

- Nhiễu nhiệt (Thermal Noise): Tỉ lệ với nhiệt độ
 - ✓ Mật độ phổ công suất: N₀ = k_B T ; trong đó k_B là hằng số Boltzman's = 1.38× 10⁻²³ Joules/Kelvin
 - ✓ Với băng thông B:
 - ✓ Công suất nhiễu $P_n = N_0 B = -174 + 10 log_{10}(B) dBm tại nhiệt độ 300 K$
- Bức xạ từ các thiết bị khác: Đánh lửa xe hơi, xe máy, các thiết bị điện tử. Thường giảm ở tần số cao.
- Nhiễu của bộ thu/phát (Receiver Noise): Bộ khuyếch đại, trộn, lọc cũng làm tăng thêm noise

Nyquist – Băng thông kênh – Sampling

Gọi B là băng thông của kênh truyền

Theo Nyquist: Tốc độ dữ liệu ≤ 2 B

Mã hóa 2 mức: Tốc độ dữ liệu = 2B

Mã hóa M mức: Tốc độ dữ liệu = 2 B log₂ M

Định lý lấy mẫu: f_{sampling} >= 2(F_{data})

Claude E. Shannon (1948)

Kênh tạp âm trắng Gause, dung lượng kênh:

$$C = B \log_2 (1+S/N)$$

- C là dung lượng kênh truyền
- B_w là băng thông khả dụng của kênh truyền
- S: Công suất tín hiệu phát; N: Công suất tạp âm Gauss
- S/N là tỉ lệ tín hiệu trên nhiễu
- Gọi R là tốc độ truyền dữ liệu, ta có R <= C = B log₂ (1+S/N)
- → Với BW cho trước, muốn tăng R → phải tăng S/N

Mô hình suy hao kênh truyền vô tuyến

Mô hình tổng quát

$$y(t) = h(t,\tau) * x(t) + n(t)$$

Mô hình suy hao kênh truyền vô tuyến

Mô hình suy hao kênh vô tuyến di động

Vùng truyền sóng

Transmission range:

 Khu vực bộ thu nhận tín hiệu với
 BER thấp và dễ dàng thiếp lập kênh thông tin hai chiều giữa phát-thu

Detection range:

 Vùng có khả năng phát hiện và thu được tín hiệu phát. Công suất thu được trên mức nhiễu nền, BER cao

Interference range:

 Tín hiệu phát bị ảnh hưởng của t/h của kênh truyền khác, không có khả năng thu tín hiệu, gây ảnh hưởng đến các tín hiệu khác

Anten

Anten

- Vô hướng: Omni-directional anten
- Có hướng: Sectorized anten

Top view, 6 sector

Hệ thống đa anten

- Phân tập anten phát
- Phân tập anten thu
- MIMO
 - Multiple-Input and Multiple-Output

Các yếu tố ảnh hưởng đến mô hình truyền sóng

Hiệu ứng bóng râm (shadowing)

Đường chân trời

Phản xạ, tán xạ và nhiễu xạ

Reflection at large obstacles

 $E_r = \alpha E_i$, where α is the absorption coefficient < 1

Scattering at small obstacles

 $E_{r1} = \alpha E_i$ $E_{r2} = \alpha E_i$

Diffraction at edges

Đa đường (multi-path)

Delay spread

- Thông thường, delay spread ~ 3 μs (thành phố) và tối đa 12 μs. Trong GSM cho phép 16 μs (~5km)
- Ånh hưởng:
 - Dispersion: Trải dài (tán) xung
 - Distortion (méo) → Inter-symbol interference

Đa đường (multi-path)

Inter-symbol interference → Ånh hưởng lớn đến tốc độ truyền

Fading

Định nghĩa

- Là hiện tượng tín hiệu thay đổi ngẫu nhiên về cường độ hoặc pha hoặc cả hai tại điểm thu theo thời gian.
- Pha đinh xảy ra do sự dịch chuyển tương đối tại một khoảng cách xác định gây nên sự biến đổi đường truyền giữa trạm gốc BS và trạm di động MS

Fading

Phân loại

- Pha đinh diện rộng (Large-scale Fading)
 - Nguyên nhân:
 - + Suy hao đường truyền Path Loss,
 - + Che khuất Shadowing (due to obstructions)
 - Ånh hưởng:
 - + Cường độ tín hiệu thu trung bình cục bộ giảm dần khi MS di chuyển ra xa trạm gốc BS gây nên do suy hao đường truyền.

Fading

Pha đinh phạm vi hẹp (Small-scale Fading)

- Nguyên nhân:
 - + Pha đinh nhiều đường Multipath Fading
 - + Pha đinh nhanh (Fast Fading) Pha đinh chậm (Slow Fading), gây nên do hiệu ứng Doppler (frequency dispersion)
 - + Pha đinh không lựa chọn tần số (Flat Fading) Pha đinh lựa chọn tần số (Frequency Selective Fading), gây nên do hiện tượng trễ tín hiệu (time dispersion delay spread).
 - + Pha đinh Rayleigh (không tồn tại đường truyền LOS) Pha đinh Rician (tín hiệu thu bao hàm cả đường truyền LOS)

– Ånh hưởng:

- + Cường độ tín hiệu thu dao động nhanh khi MS dịch chuyển một khoảng cách nhỏ.
- + Với pha đinh nhanh, công suất tín hiệu thu có thể biến thiên từ 30 dB đến 40 dB khi MS dịch chuyển một khoảng λ/n (a fraction of the wavelength).

Băng thông tương hỗ và thời đoạn tương hỗ

Băng thông tương hỗ Bc và thời đoạn tương hỗ Tc

- Băng thông tương hỗ Coherence Bandwidth:
 - Là bề rộng độ ổn định về mặt tần số của kênh vô tuyến

$$B_c = (\Delta f)_c = \frac{1}{\tau_{\rm max}} \ (Hz) \quad \mbox{Hoặc} \qquad B_C = \frac{1}{5\sigma_\tau}$$
 – Thời đoạn tương hỗ - Coherence Duration

- - Là bề rộng độ ổn định về mặt thời gian của kênh vô tuyến

$$T_c = (\Delta t)_c = \frac{1}{2f_{D,\text{max}}} \quad (s)$$

Mối quan hệ giữa băng thông tương hỗ $\rm B_c$ và băng thông tín hiệu truyền $\rm B_s$

Fading chọn lọc tần số - Freq. Selective Fading

Fading không chọn lọc tần số - Freq. Flat Fading

Mối quan hệ giữa thời đoạn tương hỗ T_c và độ rộng bít tín hiệu T_s

Fading biến đổi nhanh - Fast Fading

Fading biến đổi chậm - Slow Fading

Dịch chuyển Dropler

Dịch chuyển Dropler: Hiện tượng dịch chuyển tần số khi TX/RX di chuyển. F_d = Dropler spread

Coherence time: Thời gian mà đặc tính kênh truyền Ko đối
Coherence time = 1/F_d

Giải pháp với fading

- Thay đổi bit rate > f_dropler
- Sử dụng feedback (bù) tần số để đồng bộ giữa phát-thu
- Sử dụng pilot sóng mang để đồng bộ và ước lượng kênh
- Theo dõi liên tục tín hiệu thu
- Điều khiển công suất phát/thu
- Thay đổi vị trí đặt trạm BTS

Definition of path loss

The path loss is the difference (in dB) between the transmitted power and the received power

- Represents signal level attenuation caused by free space propagation, reflection, diffraction and scattering
- → Necessary to calculate link budget

Definition of path loss models

- **Empirical models:** based on measurement data, simple (few parameters), use statistical properties, not very accurate
- Semi-deterministic models: based on empirical models + deterministic aspects
- **Deterministic models:** site-specific, require enormous number of geometry information about the cite, very important computational effort, accurate

Mô hình truyền dẫn vô tuyến tổng quát

 Tổng quát, cường độ tín hiệu nhận được qua môi trường vô tuyến sẽ tỷ lệ với d-n

$$L(d) \propto d^{-n}$$

Trong đó: n là hệ so suy hao đương truyền

- − n = 2 ~ 8 (phụ thuộc môi trường truyền dẫn)
- n = 4 thường được thiết lập khi nghiên cứu các hệ thống thông tin di động tế bào.

Mô hình truyền dẫn vô tuyến tổng quát

$$L(d) \propto \left(\frac{d}{d_0}\right)^n$$

$$L(dB) = L(d_0) + 10n \lg\left(\frac{d}{d_0}\right)$$

Trong đó: d₀ = khoảng cách tham chiếu

- Macro cell -> $d_0 = 1 \text{ km}$
- Micro cell -> d_0 = 100 m hoặc 1m

Path Loss Exponent for Different Environments

Environment	Path Loss Exponent, <i>n</i>
Free space	2
Urban area cellular radio	2.7 to 3.5
Shadowed urban cellular radio	3 to 5
In building line-of-sight	1.6 to 1.8
Obstructed in building	4 to 6
Obstructed in factories	2 to 3

Suy hao do khoảng cách truyền

Free Space Propagation Model

- The free space propagation model is used to predict received signal strength when the transmitter and receiver have a clear line-of-sight path between them.
 - satellite communication
 - microwave line-of-sight radio link
- Friis free space equation

$$P_r(d) = \frac{P_t G_t G_r^{\lambda^2}}{(4\pi)^2 d^2 L}$$

 P_i : transmitted power

 $P_{r}(d)$: received power

G, : transmitter antenna gain

G, : receiver antenna gain

d:T-R separation distance (m)

L : system loss

: wave length in meters

Tính suy hao theo mô hình LOS

$$L[dB] = 10\log_{10} \frac{P_r}{P_t}$$

$$= 10\log_{10} \left(\left(\frac{4\pi df}{c} \right)^2 \right)$$

$$= 20\log_{10}(d) + 20\log_{10}(f) - 147,55$$

$$L(dB) = 32,5 + 20 \log f (MHz) + 20 \log d (km)$$

Tính suy hao theo mô hình LOS

VÍ DỤ 1

- Trong 1 cell, 1 MS đang liên lạc với BTS tại kênh ARFCN = 10 thuộc băng tần GSM900. Hãy cho biết:
 - Suy hao đường truyền khi MS cách BTS 3 km.
 - Giả sử công suất BTS đang phát sóng là 20 W, hãy cho biết MS có liên lạc được với BTS đó không khi độ nhạy máy thu là -102 dBm?

$$L(dB) = 32.5 + 20 \log f (MHz) + 20 \log d (km)$$

GSM 900	Fl(n) = 890 + 0.2*n	1 ≤ n ≤ 124 Fu(n)	Fu(n) = Fl(n) + 45
E-GSM 900	Fl(n) = 890 + 0.2*n	0 ≤ n ≤ 124 Fu(n)	Fu(n) = Fl(n) + 45
	FI(n) = 890 + 0.2*(n-1024)	975 ≤ n ≤ 1023	
DCS 1800	Fl(n) = 1710.2 + 0.2*(n-512)	512 ≤ n ≤ 885	Fu(n) = FI(n) + 95

Tính suy hao theo mô hình đa đường

Tính suy hao theo mô hình 2 đường

VÍ DŲ 2

- Hãy thực hiện lại ví dụ 1 khi độ cao anten BTS là 30 mét và độ cao trung bình của anten MS là 1,5 mét
 - Suy hao đường truyền khi MS cách BTS 3 km?
 - Giả sử công suất BTS đang phát sóng là 20 W, hãy cho biết MS có liên lạc được với BTS đó không khi độ nhạy máy thu là -102 dBm?

$$L = 20\log(\frac{d^2}{h_b h_m})$$

❖ Mô hình thống kê Hata (1980) dựa trên kết quả đo của Okumura tại Tokyo va năm 1968,

Okumura-Hata model [1]

Most popular model

Based on measurements made in and around Tokyo in 1968

- between 150 MHz and 1500 MHz
- Predictions from series of graphs \implies approximate in a set of formulae (Hata)
- Output parameter : mean path loss (median path loss) L_{dB}
- Validity range of the model :
 - Frequency f between 150 MHz and 1500 Mhz
 - T_X height h_b between 30 and 200 m
 - R_x height h_m between 1 and 10 m
 - T_x R_x distance r between 1 and 10 km

Definition of parameters:

 h_m mobile station antenna height above local terrain height [m] d_m distance between the mobile and the building typically height of a building above local terrain height [m] hb base station antenna height above local terrain height [m] great circle distance between base station and mobile [m] $R=r \times 10^{-3}$ great circle distance between base station and mobile [km] carrier frequency [Hz] carrier frequency [MHz]

free space wavelength [m]

Tại vùng đô thị - URBAN

Lp (urb) =
$$69.55 + 26.16 * log(f) - 13.82*log(h_b) - a(h_m)$$

+ $(44.9 - 6.55 * log(h_b)) * log(d)$ [dB] (2.7)

a(h_m): Hệ số hiệu chỉnh độ cao anten MS

Diện tích thành phố nhỏ hoặc trung bình:

$$a(h_m) = (1.1*log f - 0.7)h_m - (1.56*log f - 0.8)$$
 [dB]

Diện tích thành phố lớn:

$$a(h_m) = 8.29 (log1.54h_m)^2 - 1.1 [dB], khi 150 <= f <= 200 [MHz] $a(h_m) = 3.2 (log11.75h_m)^2 - 4.97 [dB], khi 200 < f <= 1500 [MHz]$$$

Tại vùng ngoại ô - SUBURBAN

$$Lp(sub) = Lp(urb) - 2 * (log(f/28))^2 - 5.4$$
 [dB]

Tại vùng nông thôn - RURAL (OPEN AREAS):

$$Lp(open) = Lp(urb) - 4.78 * (log(f))^2 + 18.33*log(f) - 40.94$$
 [dB]

VÍ DŲ 3

- Giả sử tại một cell ở vùng ngoại ô, trạm gốc BS có độ cao 30 mét. Một trạm di động MS có độ cao anten trung bình là 1,5 mét, đang liên lạc với trạm gốc tại tần số 936 MHz. Hãy xác định:
 - Suy hao đường truyền khi MS cách BTS 3 km?
 - Giả sử công suất BTS đang phát sóng là 20 W, hãy cho biết MS có liên lạc được với BTS đó không khi độ nhạy máy thu là -102 dBm?

Lp (urb) =
$$69.55 + 26.16 * log(f) - 13.82*log(h_b) - a(h_m) + (44.9 - 6.55 * log(h_b)) * log(d)$$

 $a(h_m) = (1.1*log f - 0.7)h_m - (1.56*log f - 0.8)$

Ví du 3

```
* f = 936 \text{ MHz}, h_b = 30 \text{ m}, h_m = 1.5 \text{ m} d = 3000 \text{ m}
       a(h_m) = (1.1*log f - 0.7)hm - (1.56*log f - 0.8)
               = (1.1*log(936) - 0.7)*1.5 - 1.56*log(936) - 0.8)
               = (1.1 * 2.97 - 0.7) * 1.5 - (1.56 * 2.97 - 0.8)
               = 3.8505 - 3.8332 = 0.0173 \text{ (dB)}
Lp (urb) = 69.55 + 26.16 * log(936) - 13.82*log(30) - a(h<sub>m</sub>) +
             (44.9 - 6.55 * log(30)) * log(3 (km))
           \approx 69.55 + 26.16*2.97 - 13.82*1.477 - 0.0173 +
            (44.9 - 6.55*1.477)*0.477 \approx 143 \text{ (dB)}
```

Ví dụ 3

Tại vùng ngoại ô - SUBURBAN:

Lp(sub) = Lp(urb) - 2 *(log(f/28))² - 5.4
≈ 143 - 2 * (log (936 / 28))² - 5.4
≈ 143 - 2 * (log (936 / 28))2 - 5.4
≈ 143 - 2 * 2.3229 - 5.4
Lp(sub) ≈ 132.9 (dB)
*
$$P_t = 20 \text{ W} \sim 43 \text{ dBm}$$

Pr(dBm) = Pt (dBm) - L(dB) = 43 - 132.8
Pr = -89.9 (dBm) > -102 (dBm) → thu tốt

Mô hình COST 231

THAM Số:

Tần số làm việc
 f : 1500 - 2000 MHz

– Độ cao anten trạm gốc
 h_b: 30 - 200 m

Độ cao anten MS trung bình h_m: 1 - 10 m

Khoảng cách giữa MS và BS d: 1 - 20 km

COST 231 - HATA MODEL

$$Lp(urb) = 46.3 + 33.9*log(f) - 13.82*log(hb) - a(hm)+[44.9 - 6.55*log(hb)]*log(d) + Cm (dB)$$

Với a(h_m) tương tự như mô hình HATA

Tại thành phố cỡ trung bình hoặc trung tâm ngoại ô: Cm = 0 dB

Tại trung tâm đô thị (metropolitan areas): Cm = 3 dB

COST-231-Walfisch-Ikegami Model

- The Okumura-Hata model is not suitable for micro cells or small macro cells, due to its restrictions on distance (d > 1 km)
- The COST 231-Walfish-Ikegami model covers much smaller distances, is better suited for calculations on small cells and covers the 1800 MHz band as well

Frequency: 800 – 2000 MHz; Distance: 0.02 – 5 km;

Mobile station height: 1 - 3 m; Base station height: 4 - 50 m

Khoảng cách chân trời - Radio Horizon

$$D_{hrz} = 4.12 (h_b^{0.5} + h_m^{0.5})$$
 (km)

 h_b = height a.s.l of BTS's antenna in metres

 h_m = height a.s.l of MS's antenna in metres

a.s.l = above sea level

Suy hao do nhiễu xạ - Diffraction loss

Mô hình nhiễu xạ đơn (single) knife edge diffraction

Suy hao do nhiễu xạ - Diffraction loss

$$\nu = h_m \sqrt{\left(\frac{2}{\lambda}\right) \left(\frac{1}{d_T} + \frac{1}{d_R}\right)}$$

Trong đó:

 d_T và d_R là khoảng cách từ điểm phát, thu đến điểm nhiễu xạ Suy hao do nhiễu xạ được tổng hợp với suy hao không gian tự do theo đơn vị dB được tính xấp xỉ như sau:

$$A_{diff} = \begin{cases} 0 & v < 0 \\ 6 + 9v - 1.27v^2 & 0 < v < 2.4 \\ 13 + \log_{10} v & v > 2.4 \end{cases}$$

Che khuất - Shadowing

Shadowing ~ shadow fading

- Tín hiệu nhận được dao động quanh một giá trị trung bình với một khoảng biến thiên nhất định
- Gây nên do tín hiệu vô tuyến bị chặn bới các tòa nhà (outdoor), hoặc các bức tường (indoor), hay các vật chắn khác
- $-X_{sigma}$ [dB]: là Fading che khuất biến đổi ngẫu nhiên theo phân bố Gaussian (phân bố chuẩn) với giá trị trung bình bằng không và độ lệch chuẩn là s [dB]

$$L(d) = L_p(d) + X_{\sigma} [dB]$$

$$L(d) = L(d_0) + 10n \log(\frac{d}{d_0}) + X_{\sigma} [dB]$$

Che khuất - Shadowing

Signal attenuation of 2.4 GHz through	dB
Window in brick wall	2
Metal frame, glass wall into building	6
Office wall	6
Metal door in office wall	6
Cinder wall	4
Metal door in brick wall	12.4
Brick wall next to metal door	3

Suy hao đường truyền

- Mô hình suy hao đường truyền phụ thuộc vào vị trí của anten thu. Ví dụ, 5 vị trí thu trong hình trên được thể hiện như sau:
 - Vị trí 1, suy hao không gian tự do cho phép ước đoán chính xác suy hao đường truyền.
 - Ví trí 2, tồn tại đường truyền tín hiệu chủ yếu LOS, tuy nhiên tín hiệu phản xạ từ mặt đất cũng ảnh hưởng đáng kể đến suy hao đường truyền. trong trường hợp này, mô hình tính toán suy hao 2 đường (Plane Earth Model) được sử dụng là thích hợp.
 - Vị trí 3, suy hao hai đường cần được hiệu chỉnh do ảnh hưởng của nhiễu xạ gây nên bởi đám cây nằm giữa đường truyền LOS.
 - Ví trí 4, mô hình nhiễu xạ đơn được sử dụng cho phép ước đoán chính xác suy hao đường truyền.
 - Ví trí 5, việc ước đoán suy hao đường truyền khá khó khăn và khó tin cậy do liên quan đến nhiễu xạ nhiều chặng.

20 km 40 km

Sử dụng tần số trong thông tin di động

Bản đồ quy hoạch tần số các mạng di động ở Việt Nam

Đơn vị công suất

$$P(dBm) = 10 \cdot \log_{10}(1000 \cdot P(W) / 1W)$$

= $10 \cdot \log_{10}(P(W) / 1W) + 30$
 $\Rightarrow 1W = 30dBm$
 $P(dBm) = P(dB) + 30$
Example
Convert 20 watts to dBm:
 $P(dBm) = 10 \cdot \log_{10}(1000 \cdot 20W) = 43.0103dBm$

Đơn vị công suất

How to convert dBm to watts

$$1dBm = 0.001258925W$$

So the power conversion of dBm to watts is given by the formula:

$$P_{\text{(W)}} = 1 \text{W} \cdot 10^{(P_{\text{(dBm)}}/10)} / 1000 = 10^{((P_{\text{(dBm)}}-30)/10)}$$

Example

Convert 43dBm to watts:

$$P_{\text{(W)}} = 1\text{W} \cdot 10^{(43\text{dBm}/10)} / 1000 = 19.9526\text{W}$$

Bảng phân loại MS - GSM900

Loại class	Độ nhạy Sentivity	P _{max}	P _{min}	ΔΡ
	-3.03/4 (6/28/5)		70.186000	
2	-104 dBm	8w ⇔ 39 dBm	3,2 mw	18
3	104 dBm	5w ⇔ 37 dBm	(3,2 mw	17
4	-102 dBm	2,5w ⇔ 34 dBm	3,2 mw	15
5	-102dBm	0,8w ⇔ 29 dBm	3,2 mw	13

5 dBm

Bảng phân loại MS – DCS1800

Loại class	Độ nhạy Sentivity	P _{max}	P _{min}	ΔΡ
1	-100 dBm	1 w ⇔30 dBm	1 mw	16
2	-100 dBm	0,25 w⇔24 dBm	1 mw	13
3	-102 dBm	4 w ⇔ 36 dBm	1 mw	19

Bảng phân loại BTS - GSM900

Loại - class	P _{max} (w)	P _{max} (dBm)
1	320	55
2	160	52
3	80	49
4	40	46
5	20	(43)
6	10	40
7	5	37
8	2,5	34

Bảng phân loại BTS - DCS1800

Loại - class	P _{max} (w)	P _{max} (dBm)
1	20	43
2	10	40
3	5	37
4	2,5	34

HOMEWORK

MS đang liên lạc với BTS tại kênh ARFCN = 10 thuộc băng tần GSM900. Cho biết độ cao anten BTS là 30 mét và độ cao trung bình của anten MS là 1,5 mét.

- a) Tính suy hao đường truyền khi MS cách BTS 1 km sử dụng mô hình truyền sóng Hata
- b) Giả sử công suất BTS đang phát sóng là 20 W, hãy cho biết MS có liên lạc được với BTS đó không khi độ nhạy máy thu là -102 dBm?