	$B_0g_a\mu_B + \frac{E_0g_{a+}\mu_N}{2} + \frac{E_0g_{a+}\mu_N}{2} + \frac{D_0}{2} -$	$-\frac{d}{d} + \frac{h^*(A_{a1}+A_{a2}+A_{b1}+A_{b2})}{}$	0	0	D_2	. 0	0	0	0	. 0	0	0	0	0	0	0	0	
	0		$\frac{H_{0}H_{0}HN}{H} + \frac{H_{0}H_{0}HN}{H} - \frac{2H_{1}}{2} - \frac{d}{2} + \frac{h^{2}(A_{11} - A_{12} + A_{11} - A_{12})}{2}$	0	0	1/24"(A ₁₀ + A ₁₀)	0	0	0	<u>√26*(-4,2+4,2)</u>	0	0	0	0	0	0	0	
	0		0	Bayes + Bayes + \$4 + \$51-bathy-bathy	0	a Charles and a state of the st	0	0	0	with trades to dead	0	0	0	0	0	0	0	
	Di		. 0	. 0	$-B_{0}g_{\nu}\mu_{H} + \frac{B_{0}g_{\nu}\mu_{H}}{2} + \frac{B_{0}g_{\nu}\mu_{H}}{2} + \frac{B_{0}}{2} - \frac{d}{2} - \frac{h^{2}(A_{0}+A_{0}+A_{0}+A_{0})}{2}$	0	villa (destado)	120° (April 1442)	0	. 0	Van Contratant	120°C-4400444	0	0	0	0	0	
	0		<u> 1866 (April 484)</u>	200°C4411-0112	0	$B_{kS_k\mu_H} + Bington - Bington + D_k - \frac{1}{2}$	0	0	D_2	6"(Aux 6 Aug - Aux - Aux)	0	0	0	0	0	0	0	
	0		0	0	$\frac{\sqrt{2}h^{2}(A_{22}+A_{23})}{2}$	0	Brayen - Brayen - 15 - 4	0	0	0	$A^{2}(A_{xx} - A_{xy} - A_{xx} + A_{xy})$	0	0	$\frac{\sqrt{2}h^{2}(A_{12}+A_{12})}{2}$	0	0	0	
	0		0	0	<u> 190°(A₂₀ + A₁₀)</u>	0	0	$\frac{P_{\rm integers}-P_{\rm integers}+2J}{2}$	0	0	0	A*(-A ₁₁ +A ₁₂ +A ₂₁ -A ₂₂)	0	<u>v84(A₁₁+A₁₁)</u>	0	0	0	
n	0		. 0	. 0	0	D_2	0	0	$-B_0g_a\mu_H + \frac{B_0g_{\pm 1}\mu_N}{2} - \frac{B_0g_{\pm 2}\mu_N}{2} + \frac{D_1}{2} - \frac{2}{4}$	0	0	0	$\frac{(a^2) - A_{ab} - A_{ab} + A_{bc} + A_{bc}}{2}$	0	<u> - (84 (4₂ + 4₂)</u>	<u> - (0.4(A₁₀ + A₁₀)</u>	0	
200 -	0		<u></u>	<u>√20°(-4₂₀+4₂₁)</u>	. 0	$h^{2}(A_{11}+A_{12}-A_{21}-A_{22})$. 0	0	0	$B_k g_\nu \mu_H - \frac{B_0 g_{\nu k} \mu_N}{2} + \frac{B_0 g_{\nu k} \mu_N}{2} + \frac{D_1}{2} - \frac{J}{4}$	0	0	D_2	. 0	0	0	0	
	0		0	0	$\frac{\sqrt{2}(1-A_{2,1}+A_{2,2})}{2}$	0	h"(A ₁₁ - A ₁₂ - A ₁₁ + A ₁₂)	. 0	0	0	$-\frac{H_0 g_{\alpha\beta} g_{\beta\beta}}{2} + \frac{H_0 g_{\alpha\beta} g_{\beta\beta}}{2} - \frac{2D_1}{2} - \frac{2}{4}$	0	0	$\frac{\sqrt{2}h^2(A_{12}-A_{12})}{2}$	0	0	0	
			0	0	No. Continue to March	0	0	6"(- Au 2 Aug 2 Au - Au)	0	0	0	- Battann + Battann + M	0	<u>s/Re*(Approduct</u>	0	0	0	
	0		0	0	0	0	0	0	A [®] Coder odek kde stderi	Du	0		$-B_{0,0,\mu,0} - \frac{B_{0,0,\mu,0,0}}{B_{0,0,\mu,0}} + \frac{B_{0,0}}{B_{0,0}} + \frac{B_{0,0}}{B_{0,0}} - \frac{d}{2}$	0	120° (days - day)	van (Autoritaria)	0	
	0		0	0	0	0	- Thirtings colour	Van care name	ō	0	"To" they make a	200° (44 million)	0	$B_{\alpha\beta\alpha\beta\beta\beta} - Bington - Bington + D_{\alpha} - \frac{1}{4} - \frac{4^{\alpha}(dext deg t dext des)}{2}$	ō .	ő .	D_2	
	0		0	0	0	0	0	0	<u> 184(A₂₁+A₂₂)</u>	0	0	0	<u> 1</u> 20°(A ₁₀ - A ₁₀)	0 -4	$\frac{B(a_{12}a_{2})}{a_{12}} - \frac{B(a_{12}a_{2})}{a_{12}} - \frac{2D_{1}}{a_{2}} - \frac{a}{a} + \frac{2^{2}(-A_{12} + A_{12} - A_{14} + A_{12})}{a_{12}}$	0	0	
	0		0	0	0	0	0	0	<u> Antagorasia</u>	0	0	0	200 (A ₁₀ - A ₁₀)	0		$-\frac{B_{1}B_{2}ppp}{2} = \frac{B_{2}B_{2}ppp}{2} + \frac{3p}{2} + \frac{2^{2}(A_{11} - A_{12} + A_{11} - A_{12})}{2}$	0	
	0		0	0	0	0	0		0	0	0		9	D_{i}	0	0	$-B_{cS,Aloc} - \frac{B_{cS_{c}Aloc}}{B_{cS_{c}Aloc}} - \frac{B_{cS_{c}Aloc}}{B_{cS_{c}Aloc}} + \frac{D_{c}}{2} - \frac{1}{4} + \frac{A^{2}(A_{cc} + A_{c}q + A_{cc} + A_{cq})}{A_{cc}}$	

 $\begin{array}{c} \left|1,1\right>\otimes\left|+\frac{1}{2},+\frac{1}{2}\right> \\ \left|1,0\right>\otimes\left|+\frac{1}{2},+\frac{1}{2}\right> \\ \left|0,0\right>\otimes\left|+\frac{1}{2},+\frac{1}{2}\right> \\ \left|1,-1\right>\otimes\left|+\frac{1}{2},+\frac{1}{2}\right> \\ \left|1,-1\right>\otimes\left|+\frac{1}{2},-\frac{1}{2}\right> \\ \left|1,0\right>\otimes\left|+\frac{1}{2},-\frac{1}{2}\right> \\ \left|1,0\right>\otimes\left|+\frac{1}{2},-\frac{1}{2}\right> \\ \left|1,0\right>\otimes\left|+\frac{1}{2},-\frac{1}{2}\right> \\ \left|1,-1\right>\otimes\left|+\frac{1}{2},-\frac{1}{2}\right> \\ \left|1,1\right>\otimes\left|-\frac{1}{2},+\frac{1}{2}\right> \\ \left|1,0\right>\otimes\left|-\frac{1}{2},+\frac{1}{2}\right> \\ \left|1,0\right>\otimes\left|-\frac{1}{2},+\frac{1}{2}\right> \\ \left|1,-1\right>\otimes\left|-\frac{1}{2},+\frac{1}{2}\right> \\ \left|1,1\right>\otimes\left|-\frac{1}{2},-\frac{1}{2}\right> \\ \left|1,0\right>\otimes\left|-\frac{1}{2},-\frac{1}{2}\right> \\ \left|1,0\right>\otimes\left|-\frac{1}{2},-\frac{1}{2}\right> \\ \left|0,0\right>\otimes\left|-\frac{1}{2},-\frac{1}{2}\right> \\ \left|1,0\right>\otimes\left|-\frac{1}{2},-\frac{1}{2}\right> \\ \left|1,-1\right>\otimes\left|-\frac{1}{2},-\frac{1}{2}\right> \\ \left|1,-1\right>\otimes\left|-\frac{1}{2},-\frac{1}{2}\right> \end{array}$