# HajjSense: Visualizing Pilgrim Experience, Safety, and AR Engagement During Hajj

CSCI 181DV – High-Performance Visualization Project

# 1. Project Definition & Scope (10 points)

#### Problem Statement

Hajj and Umrah involve the movement of millions of pilgrims within confined spaces, leading to high crowd density, health risks, and logistical complexity. Managing these factors in real-time is challenging, and traditional systems do not provide adequate insight into pilgrim well-being or crowd dynamics. With the growing role of AR technology, there's an opportunity to visualize these experiences more meaningfully.

Goal: Create a lightweight visualization system to explore pilgrim behavior, fatigue, AR engagement, and incident patterns using simulated data, providing insights for improved safety, navigation, and experience.

## Target Users & Use Cases

- Hajj Organizers: Monitor crowd conditions, safety alerts, and AR effectiveness
- Public Health Officers: Track fatigue, stress, and medical risks in crowded zones
- AR Developers: Improve navigation assistance by understanding usage and success rates
- Researchers: Analyze behavior patterns and crowd morale across locations

## Expected Insights & Outcomes

- Identify high-risk zones for crowding, fatigue, and incidents
- Understand correlations between stress, environmental factors, and safety ratings
- Track AR guidance system adoption and satisfaction
- Visualize emotional and physical state distributions across space and time

#### Real-World Problems Addressed

- Overcrowding at Ritual Sites: Identify peak congestion areas using heatmaps to prevent stampedes and optimize flow
- Inefficient Crowd Flow: Analyze movement speed and spacing to adjust routes and signage
- Fatigue and Stress Hotspots: Track fatigue/stress in relation to temperature and density to improve scheduling and rest areas
- Medical Emergencies in Heat: Correlate health conditions with environmental factors for early intervention planning
- Low AR Engagement: Understand which groups underuse AR navigation and why
- Emergency Event Mapping: Visualize incidents to guide emergency team placement
- Long Wait Times: Analyze delays at transport and security to reduce queues and improve flow
- Low Satisfaction by Demographic: Compare ratings across age and nationality to personalize services
- Perceived Safety Mismatch: Match low perceived safety areas to actual risks for targeted improvements

## Project Boundaries & Constraints

- Based on simulated dataset from Kaggle (10,000 records)
- No real-time streaming or geolocation integration
- Focused on exploratory and descriptive visualization only
- Implemented entirely with local CSV and in-memory Python tools

# 2. Technical Design (10 points)



# Technology Stack

| Layer           | Tool/Library                  | Justification                                     |
|-----------------|-------------------------------|---------------------------------------------------|
| Backend         | Python + Streamlit            | Simplifies interaction without server setup       |
| Data Processing | Pandas                        | Ideal for CSV and tabular simulation data         |
| Storage         | CSV files                     | No database required; easy for testing            |
| Frontend        | Altair / Plotly via Streamlit | Interactive visual exploration with minimal setup |
| Deployment      | Localhost / Streamlit Cloud   | Easy sharing and running with small files         |

## **Data Flow Pipeline**

- 1. Load and clean CSV into memory using Pandas
- 2. Generate derived features (e.g., crowd zones, AR usage success)
- 3. Visualize data using Streamlit dashboard widgets and charts

### Performance Strategies

- Use @st.cache to cache loading and filtered views
- Apply pre-filtering (e.g., by time block or location) to reduce chart load
- Limit visuals to relevant slices (e.g., 1 hour or 1 site at a time)

# 3. Data Strategy (8 points)

#### Dataset

#### Kaggle Dataset: AI Crowd Management Hajj and Umrah (Simulated)

Includes: Location, timestamp, activity, crowd density, stress/fatigue, AR system status, incidents, health condition, satisfaction, and more.

## Cleaning & Preprocessing

- Convert timestamps to datetime objects and extract time blocks
- Normalize categorical values (e.g., fatigue, stress levels)
- Derive crowd zones or map coordinates (if visualizing on a map)
- Handle missing or simulated anomalies

## **Storage Strategy**

- Single CSV file loaded with Pandas
- Use filters and slices for subsetting in-memory data

#### Maintenance Plan

- Versioning new simulations by filename
- Document assumptions for simulations in code and markdown cells
- Extend or update data manually as new formats are tested

## 4. Visualization Design (7 points)

## Mockups (Key Visuals)

- Crowd Heatmap: Geographic scatterplot showing Crowd\_Density across Location\_Lat and Location\_Long
- Fatigue/Stress Over Time: Line or area chart comparing Fatigue\_Level, Stress\_Level by hour or temperature
- AR Usage Bar Graph: Compare AR\_System\_Interaction across Age\_Group, Activity\_Type, or nationality
- Incident Frequency Chart: Horizontal bar chart of Incident\_Type occurrence by crowd level or AR status
- Satisfaction
  Safety Matrix: Scatterplot of Satisfaction\_Rating vs. Perceived\_Safety\_Rating
  grouped by experience

## Interaction Design

- Dropdown filters for activity type, age group, nationality, AR usage, and incident type
- Sliders for time window and temperature range
- Tooltips with exact values, crowd levels, and incident summaries
- Tabs or collapsible sections for separating health, tech, and satisfaction views

## Color & Encoding

| Element        | Encoding                          | Rationale                        |
|----------------|-----------------------------------|----------------------------------|
| Crowd Density  | Red-Green categorical or gradient | Instantly shows risk levels      |
| Fatigue/Stress | Warm tones (yellow-orange-red)    | Reflects urgency and discomfort  |
| AR Interaction | Icon or shape encoding            | Distinguishes use stages quickly |
| Incidents      | Color by severity/type            | Helps triage attention visually  |

## **Accessibility Considerations**

- Use colorblind-friendly palettes (e.g., ColorBrewer)
- Descriptive tooltips and ARIA labels in charts
- Adjustable font sizes and responsive Streamlit layout
- Icons and patterns as alternatives to color when needed