(EMNLP, 2019) Learning to Learn and Predict: A Meta-Learning Approach for Multi-Label Classification

Jiawei Wu and Wenhan Xiong and William Yang Wang
Department of Computer Science

University of California, Santa Barbara Santa Barbara, CA 93106 USA

{jiawei_wu,xwhan,william}@cs.ucsb.edu

Problem Definition: Multi-Label Classification

Test: Binary classification for each class (threshold=0.5)

Train: N-class cross-entropy loss with multiple labels

$$L = -\frac{1}{N} \sum_{i} [y_i \cdot log(p_i) + (1 - y_i) \cdot log(1 - p_i)]$$

Label: [1.0, 0.0, 0.0, 1.0, 0.0]

Prediction: [0.8, 0.6, 0.2, 0.3, 0.7]

Evaluation:

- Strict accuracy
- Loose micro-F1, calculate precision, recall, f1 globally
- Loose macro-F1, calculate F1 per class, and average over them

Motivation: explicit & implicit dependencies between labels

Related Work

Multi-Label Classification

- Optimal <u>Prediction</u> Policy: Select thresholds for each category separately
- Hierarchy-Aware <u>Training</u> Policy: Different level, Different weight

Meta-Learning

- Learning a meta-policy to update model parameters
- Learning a good parameter initialization for fast adaptation

Contribution of this paper

- Learning training & prediction policy for each category dynamically
- model-agnostic method

Method

As a RL Framework

Figure 2: The meta-learning framework for multi-label classification.

Classifier

- Classifier *C*
- *N*-class multi-label classification
- training policy $\mathbf{w} = (w^{(1)}, w^{(2)}, \dots, w^{(N)})$, standard: $(\frac{1}{N}, \frac{1}{N}, \dots, \frac{1}{N})$
- prediction policy $\boldsymbol{p} = \left(p^{(1)}, p^{(2)}, \cdots, p^{(N)}\right)$, standard: $(0.5, 0.5, \cdots, 0.5)$

$$L(\theta_t^C) = -\sum_{i}^{B_t} \sum_{j}^{N} \underline{w_t^{(j)}} N \left\{ y_i^{*(j)} \log y_i^{(j)} + \left(1 - y_i^{*(j)} \right) \log \left(1 - y_i^{(j)} \right) \right\}$$

Meta-Learner

State:
$$s_t = GRU\left(s_{t-1}, \begin{bmatrix} p_{t-1} \\ w_{t-1} \end{bmatrix}\right)$$

Action:

- $w_t = \operatorname{softmax}(W_w s_t + b_w)$
- $p_t = \operatorname{sigmoid}(W_p s_t + b_p)$

Reward:
$$r_t = \sum_{i=1}^{B_t} \sum_{j=1}^{N} (-1)^{y_i^{*(j)}} \frac{p_t^{(j)} - y_i^{(j)}}{p_t^{(j)}}$$

- How much is <u>prediction</u> closer to <u>ground truth</u> than <u>threshold(%)?</u>
- ground truth is 1, threshold should be close to 0.
- ground truth is 0, threshold should be close to 1.

Figure 3: A example about the computation process of reward (one sample with class N=4).

Training Procedure

$$J(\theta_{meta}) = \mathbb{E}_{\pi} \left[\sum_{t=1}^{T} r_t \right]$$

Algorithm 1: The algorithm of our metalearning framework.

```
1 Given a set of labeled training data U
 2 Given a untrained classifier C
 3 for episode \leftarrow 1 to M do
         Initialize w_0 \leftarrow (\frac{1}{N}, \frac{1}{N}, \cdots, \frac{1}{N}) \in \mathbb{R}^N
         Initialize p_0 \leftarrow (0.5, 0.5, \cdots, 0.5) \in \mathbb{R}^N
         for time step t \leftarrow 1 to T do
           s_t \leftarrow \mathsf{GRU}(s_{t-1}, \begin{bmatrix} p_{t-1} \\ w_{t-1} \end{bmatrix})
             w_t \leftarrow \operatorname{softmax}(W_w s_t + b_w)
 8
             p_t \leftarrow \operatorname{sigmoid}(W_p s_t + b_p)
               Sample a batch B_t from U
10
               Update C using B_t with w_t-based
11
                 objective function in Equation 1
               Compute reward r_t with p_t in
12
                 Equation 6
          Update \theta_{meta} using g \propto \nabla_{\theta} J(\theta_{meta})
```

Before and during Test

- 1. Rerun for one more episode, but using the whole training set as a batch at each time step.
- 2. The generated policies w_T and p_T is chosen as the final policies.
- 3. Train a classifier with the w_T -weighted cross-entropy objective function
- 4. Test based on the prediction policy p_T .

Experiment: Fine-grained Entity Typing

Datasets	FIGER			OntoNotes			BBN		
Metrics	Acc.	Macro	Micro	Acc.	Macro	Micro	Acc.	Macro	Micro
SOTA	0.659	0.807	0.770	0.521	0.686	0.626	0.655	0.729	0.751
SOTA+Hier-Training	0.661	0.812	0.773	0.532	0.690	0.640	0.657	0.735	0.754
SOTA+Meta-Training	0.670	0.817	0.779	0.539	0.702	0.648	0.662	0.736	0.761
SOTA+ScutFBR-Prediction	0.662	0.814	0.782	0.542	0.695	0.650	0.661	0.736	0.758
SOTA+ODR-Prediction	0.669	0.818	0.782	0.537	0.703	0.648	0.664	0.738	0.764
SOTA+Meta-Prediction	0.674	0.823	0.786	0.544	0.709	0.657	0.671	0.744	0.769
Predictions-as-Features	0.663	0.816	0.785	0.544	0.699	0.655	0.663	0.738	0.761
Subset Maximization	0.678	0.827	0.790	0.546	0.713	0.661	0.673	0.748	0.772
SOTA+Meta-Training-Prediction	0.685	0.829	0.794	0.552	0.719	0.661	0.678	0.752	0.775

Table 2: The experimental results on fine-grained entity typing datasets. Acc.: Accuracy.

- Predictions-as-Features: Train a classifier for each label, take predictions produced by the former classifiers as features
- Subset Maximization: View the problem as classifier chains, and use RNN

Experiment: Text Classification

Datasets	F	Reuters-21578		RCV1-V2			
Metrics	Accuracy	Macro-F1	Micro-F1	Accuracy	Macro-F1	Micro-F1	
CNN	0.537	0.472	0.841	0.616	0.642	0.838	
CNN+Meta-Training	0.542	0.476	0.843	0.631	0.655	0.852	
CNN+ScutFBR-Prediction	0.549	0.477	0.849	0.634	0.651	0.856	
CNN+ODR-Prediction	0.541	0.475	0.848	0.630	0.653	0.849	
CNN+Meta-Prediction	0.549	0.479	0.851	0.639	0.658	0.857	
Predictions-as-Features	0.539	0.476	0.845	0.621	0.644	0.847	
Subset Maximization	0.543	0.478	0.849	0.632	0.660	0.859	
CNN+Meta-Training-Prediction	0.556	0.483	0.854	0.647	0.669	0.864	

Table 5: The experimental results on text classification datasets.

