STOR 565 Final Project: Predicting Fake Job Postings

Leowell Bacudio Michael Muller Rui Wu

Problem of Interest

Most job postings today are made online. There have been cases of fake postings meant to collect personal information to sell and distribute to other companies. We would like to investigate online job postings and determine if it's possible to predict if a posting is legitimate or fake.

Dataset Description

About

This dataset (from Kaggle) contains 18,000 job descriptions out of which about 800 are fake.

The data consists of both textual information and meta-information about the jobs.

Goal

Create classification models that uses text data features and meta-features to predict which job descriptions are fraudulent or real.

Important Variables

- title
- company_profile
- description
- requirements
- benefits
- location
- fraudulent (0 or 1)

Data Preparation

Reducing Dataset

Transformations

Extraction

Utilize only 4000 job postings from the dataset:

- Random sample of 3134 legitimate postings
- All 866 fraudulent postings

NA values:

 Replace with empty strings

Text Descriptions:

- Strip all punctuations
- Change to lowercase characters

Obtain length of text descriptions for certain variables. (5 new columns)

Obtain country of job posting based on location column. (1 new column)

Check if city for each job posting is one of top 5 cities in our sampled dataset, else "Other". (1 new column)

Natural Language Processing

Step 1

List of Words TO Numeric Array

Step 2

Numeric Array TO Single Numeric Value

NLP Step 1: Words to array of numbers

Goal

- Each text observation is a document.
- Each document contains many words.
- We need to assign a number to each word.

TF-IDF values

- Term Frequency: How many times a words appears in the document.
- Inverse Document Frequency: 1 / proportion of documents that contain the word

Result

Text turns into array of numbers.

NLP Step 2: Array to singular value

Goal

- Each observation is now array of numbers.
- Want to convert to a singular, numeric score.

Naive Bayes Classifier

- Make a classifier that uses the scores for each text observation to predict if text is
 of fraudulent class.
- NB Method allows access to raw percentage scores for each class.

Result

Array of numbers for each observation turns into a percentage value.

Text

job_id	title	location	company_profile	description	requirements	benefits
6817	product in	DE, BE, Be	babbel enables any	we are looking fo	requirementsy	we offer youpoter
16825	java tech le	US, CT, Ha	esolutions inc is a ta	titleÂÂÂÂÂÂÂÂ	requisition deta	ilskey responsibilit
7530	sheffield e	GB, , Sheff	established on the p	under the nation	1618 year olds	career prospects
12534	it trainee	GR, I, Athe	urlc379aa631173e	who are wetrave	what are we loo	why travelplanet2
4278	graphic ar	US, DC, W	applied memetics II	the graphic artis	the graphic arti	st shall be skilled in
8311	english tea	US, TX, Da	we help teachers ge	jobs in china am	university degre	see job description
7755	support w	GB, EDH, E	social care alba is th	social care alba i	key accountabil	this is your chance
14001	process er	US, CA, Ba	ÂÂÂÂÂÂÂ	we are a fullserv	experience pref	erredpe registratio
13645	executive a	US, FL, Boo	marc bell capital pa	job descriptionÂ	must have exce	2014 employee be
708	bdc agent	US, TX, Did	professional succes	as one of our live	45 plus words	per minute compu
7351	growth ha	US, FL, tan	npa	this is an opport	skills excel and	word excellent writ
17705	admin assi	US, MI, Gr	and Rapids	job descriptiona	dministrative as	sistantdescriptiona
741	health saf	US, CA, Ba	ÂÂÂÂÂÂÂÂ	health amp safet	duties and resp	what is offeredcor
8489	utc lead te	US, CA, Ba	jaco oil and refined	qualified candi	responsibilities	competitive comp
14319	developer	GB, LND, L	cloud 66 helps devs	cloud 66 is a tecl	nstars company	building the best a
1578	executive a	US, CA, Irv	happyfox is a young	happyfox is a sta	be absolutely m	competitive payÂ
17811	business o	US,,		we have the den	nand we are lool	king for people tha
11387	senior dev	DK, 84, KÃ	at founders we crea	be part of building	need to haveha	the adventure we
12940	application	US, CA, Re	our passion for imp	the company est	the ideal candid	our culture is anyt
17658	data entry	US, CA, LO	S ANGELES	immediate open	some clerical ar	vacations holiday
13103	parttime w	AU, NSW,	Sydney	parttime work fr	om your placefl	exible schedule 65
5585	structural	US, TX, Ho	uston	why choose aeco	minimum requi	rements qualificat
1383	van forem	US, IL, Eas	federal has been in	driver career op	job requiremen	all drivers receive
15137	executive a	GR, I, Athe	optimal business ac	on behalf of our	excellent verbal	and written comm
15252	print desig	US, PA,	printfresh is a lead	the ideal applica	nt will have 35 y	ears of experience
1190	carersenio	GB, NYK, F	inception recruitme	must have previ	the ideal candid	ate will have a stro

Likelihood Text is Fraudulent

P1 1 221 6 1	121 1 61 6 1	111 1 1 6 1	191 1 6 1	P1 1 1 6 1
likely_title_fraud	likely_profile_fraud	likely_desc_fraud	likely_req_fraud	likely_ben_fraud
0.003669685	1.16E-48	9.11E-27	7.41E-15	2.11E-14
0.006502364	4.29E-10	2.22E-13	2.65E-22	0.000319338
6.93E-09	1.03E-84	1.91E-21	2.86E-10	1.14E-05
0.001046579	4.10E-08	1.63E-19	9.14E-17	8.72E-12
0.058667216	1.29E-89	1.06E-13	8.32E-10	0.000319338
7.95E-07	0.999952257	6.32E-22	4.94E-16	2.43E-05
0.012579502	2.11E-42	3.16E-21	1.73E-29	1.06E-16
0.348779284	1	1	0.999999203	0.000283497
0.025376563	3.69E-13	1.42E-10	1.23E-05	2.97E-05
0.065540173	5.73E-12	5.30E-15	3.92E-12	0.000283497
0.005054239	1	2.28E-27	9.80E-17	0.000369926
0.124901442	1	0.99999984	0.000231041	0.000369926
0.246587435	1	0.999984586	1	1
0.631574045	1	0.62362458	1	1
0.007588341	0.277880008	7.28E-39	0.000231041	0.000369926
0.024655447	1.64E-17	2.74E-19	9.95E-09	6.14E-05
0.072274837	1	1	0.000187605	0.000279675
0.001999583	7.60E-16	1.27E-25	3.08E-18	7.21E-10
0.001262796	3.90E-28	1.83E-26	2.63E-11	1.78E-28
0.991379653	1	0.859114837	1.67E-10	0.000556078
0.955950358	1	7.89E-11	0.000199722	0.000285007
0.302630912	1	0.004219086	3.37E-06	0.000285007
0.070815315	8.95E-11	1.18E-16	1.13E-06	0.009372286
0.025062998	8.53E-83	8.17E-18	2.81E-05	0.000285007
0.002947776	7.89E-14	8.15E-17	0.000199722	0.000285007
0.285959929	0.001883282	7.06E-17	5.28E-08	0.000328407

Modeling

Model 1

Logistic Regression

Most Impactful Statistically Significant Variables

Not Fraudulent

- Bachelor's Requirement
- Management Jobs
- Executive experience requirement
- Customer Service
 Jobs

Fraudulent

- Benefits fraud %
- Requirements fraud%
- Description fraud %
- Accounting / Auditing Jobs

Summary

First model built to test for simplicity.

Full model: 91.8% test accuracy.

Feature selected model: 91.8% test accuracy.

Model 2

SVM

Rbf Kernel

Test Accuracy: 76.5%

SVC with all features = not good

Linear Kernel

Test Accuracy: 70.6%

Just guessing non-fraudulent would get higher than 80%!

Rbf Kernel

Reduced to 20 features.

Test Accuracy: 91.1%

Linear Kernel

Reduced to 20 features.

Test Accuracy: 91.8%

Model 3

Random Forest

RESULTS

Best tree depth = 16

Validation accuracy: 95.0%

Test accuracy: 93.6%

BEST MODEL!

ANALYSIS

NLP related columns had most weight as expected

Description and profile had more weight than requirements, title or benefits.

Notable predictor: Has company logo

Conclusion

Most Important Predictors

NLP Columns	Non-NLP Columns		
Description + Company profile very	No company logo? Probably fake		
importantUnique to each job	Required education		
Hard to fake	 If listed, then probably in the clear 		
Requirements + Title + Benefits not as important	Accounting and auditing jobs more likely to be fraudulent!		
 Requirements are often similar Title has few words Benefits not commonly included in dataset 			

Questions?