Project planning: From design to paper and data release

Shravan Vasishth

November 14, 2019

Research/teaching interests in my lab

- Experimental psycholinguistics
- Computational modeling (sentence processing)
- Disseminating statistical methods (principally, Bayesian) in psycholinguistics (courses and tutorial articles)
- Open and transparent science

Materials from this workshop are available on github

Github source: https://github.com/vasishth/MPILeipzig2019

Web page: https://vasishth.github.io/MPILeipzig2019/

Motivation

Important problems in all areas of science

Too often, "findings" in published papers are:

non-replicable

Replication attempt of Dillon et al 2013 (JML): https://osf.io/reavs/Replication attempt of Levy and Keller 2013 (JML): https://osf.io/evphi/

non-reproducible

https://royalsocietypublishing.org/doi/full/10.1098/rsos.180448 "... suboptimal data curation, unclear analysis specification and reporting errors can impede analytic reproducibility, undermining the utility of data sharing and the credibility of scientific findings."

contain (serious) mistakes

https://www.frontiersin.org/articles/10.3389/fpsyg.2019.02210/full

impossible to use for meta-analysis

https://osf.io/dcbfz/ https://osf.io/g5ndw/

Motivation

The underlying causes of these problems

- lack of statistical training in psych/ling
- experiments are run without checks or planning
- the result is a chaotic research process
- there is a culture of not releasing data with the paper

Actual data release statements:

- "Aggregate measures are available to qualified researchers upon written request"
- "The raw data supporting the conclusions of this manuscript will be made available to any qualified researcher upon request."
- errors in analyses and coding waste researcher's time and energy

Example: Subject and object relatives in Mandarin Chinese

- The research question is whether object relatives (ORs) are easier to process than subject relatives (SRs), in Mandarin Chinese.
- In English, SRs are easier to process than ORs:

SR: The senator who interviewed the journalist resigned.

OR: The senator who the journalist interviewed resigned.

• Gibson and Wu 2013, and Hsiao and Gibson 2003, have argued that Chinese shows the opposite pattern (ORs easier). (Some background here: https://tinyurl.com/y69nqnyt).

Example: Subject and object relatives in Mandarin Chinese

Existing data on Chinese relative clauses: Gibson and Wu 2013.

```
## load and preprocess data:
chineseRC<-read.table("data/gibsonwu2012data.txt")
crit<-subset(chineseRC,region=="headnoun")
crit$region<-factor(crit$region)
crit<-crit[,c(1,2,3,7)]</pre>
```

Example: Subject and object relatives in Mandarin Chinese

```
## the data frame:
head(crit)
      subj item type
##
                         rt
## 94 1
            13 obj-ext 1561
## 221 1 6 subj-ext 959
## 341 1 5 obj-ext 582
## 461 1 9 obj-ext 294
## 621 1 14 subj-ext 438
## 753
             4 subj-ext 286
## slight imbalance in design:
head(xtabs(~subj+type,crit),n=2)
##
      type
## subj obj-ext subj-ext
##
```

##

Example: Subject and object relatives in Mandarin Chinese

```
## partially crossed, Latin square:
head(xtabs(~subj+item,crit),n=2)

## item
## subj 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 2 1 1 1 1 1 1 1 1 1 1 1 1
```

Example: Subject and object relatives in Mandarin Chinese

Example: Subject and object relatives in Mandarin Chinese

```
Results:
```

```
Random effects:
```

```
Groups Name Variance Std.Dev. Corr subj (Intercept) 5.99e-02 0.244814 so 3.54e-03 0.059512 -1.00 item (Intercept) 3.32e-02 0.182104 so 4.74e-08 0.000218 0.85 Residual 2.65e-01 0.514322 Number of obs: 547, groups: subj, 37; item, 15
```

Fixed effects:

```
Estimate Std. Error t value (Intercept) 6.0618 0.0657 92.2 so -0.0362 0.0242 -1.5
```

Example: Subject and object relatives in Mandarin Chinese Underlying model:

$$y_{kj} \sim LogNormal(\alpha + u_{0j} + w_{0k} + (\beta + u_{1j} + w_{1k}) * so_{kj}, \sigma)$$
 (1)

where we have variance components: σ and

$$\Sigma_{u} = \begin{pmatrix} \sigma_{u0}^{2} & \rho_{u}\sigma_{u0}\sigma_{u1} \\ \rho_{u}\sigma_{u0}\sigma_{u1} & \sigma_{u1}^{2} \end{pmatrix} \quad \Sigma_{w} = \begin{pmatrix} \sigma_{w0}^{2} & \rho_{w}\sigma_{w0}\sigma_{w1} \\ \rho_{w}\sigma_{w0}\sigma_{w1} & \sigma_{w1}^{2} \end{pmatrix} \quad (2)$$

$$\begin{pmatrix} u_0 \\ u_1 \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \Sigma_u \right), \quad \begin{pmatrix} w_0 \\ w_1 \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \Sigma_w \right) \tag{3}$$

Example: Subject and object relatives in Mandarin Chinese

Generate fake data to compute power:

```
## load fake data simulation code:
source("R/gen_fake_lnorm.R")
```

```
## extract estimates of fixed-effects parameters:
beta <- summary (m) $ coefficients [,1]
## extract standard deviation estimate:
sigma e<-attr(VarCorr(m), "sc")</pre>
## assemble variance covariance matrix for subjects:
subj_ranefsd<-attr(VarCorr(m)$subj,"stddev")</pre>
subj ranefcorr<-attr(VarCorr(m)$subj,"corr")</pre>
## choose some intermediate values for correlations:
corr matrix<-(diag(2) + matrix(rep(1,4),ncol=2))/2
Sigma u<-SIN::sdcor2cov(stddev=subj ranefsd,
                         corr=corr matrix)
```

```
nsim < -100
tvals<-c()
for(i in 1:nsim){
fakedat <- gen fake lnorm (nitem=16, nsubj=40,
                 alpha=beta[1],beta=beta[2],
                 Sigma u=Sigma u,Sigma w=Sigma w,
                 sigma e=sigma e)
m < -lmer(log(rt) \sim so + (1+so | subj) + (1+so | item),
         fakedat.
         control=lmerControl(calc.derivs=FALSE))
tvals[i] <- summary(m) $ coefficients[2,3]
```

```
## prospective power for nsubj=40, nitem=16:
mean(abs(tvals)>2)
```

```
## [1] 0.25
```

Example: power calculation

Write a function for computing power:

```
compute power<-function(nsim=100,b=-0.03625,
                           nsubj=40,nitem=16){
  tvals<-c()
for(i in 1:nsim){
fakedat <- gen_fake_lnorm(nitem=nitem, nsubj=nsubj,
                 alpha=beta[1],beta=b,
                 Sigma_u=Sigma_u,Sigma_w=Sigma_w,sigma_e=sigma_e
m < -lmer(log(rt) \sim so + (1 + so \mid subj) + (1 + so \mid item),
         fakedat,
         control=lmerControl(calc.derivs=FALSE))
tvals[i] <- summary(m) $ coefficients[2,3]
mean(abs(tvals)>2)
}
```

- Conclusion: If we were to run a new experiment on Chinese RCs with 40 subjects and 16 items, our prospective power is approximately 30%.
- This assumes that the parameter estimates from the original data are the true values.
- Note that we are uncertain about the effect estimate (and also the variance components).

Example: power calculation

Statistical power depends on

- sample size (subjects and items)
- standard deviations (of residual and of random effects)
- true effect size

For a full analysis, we should take these uncertainties into account. See appendix in Jäger et al., 2017 (in the folder readings).

Example: power calculation

How to take uncertainty about the effect into account? An example:

If we have ± 1 sum coding, with OR coded +1 and SR -1, then:

- Mean SR processing time (log ms): $\mu_1 = \beta_0 \beta_1$
- Mean OR processing time (log ms): $\mu_2 = \beta_0 + \beta_1$
- Since the model is on the log scale, we can go back to the ms scale by exponentiating:

Mean difference in ms in OR vs SR: $\exp(\mu_2) - \exp(\mu_1)$

Example: power calculation

Here is the model again:

```
## estimated OR-SR difference in ms:
exp(beta[1]+beta[2])-exp(beta[1]-beta[2])
## (Intercept)
## -31.12
```

Example: Subject and object relatives in Mandarin Chinese

```
## what is the slope for an effect of 20 ms?
exp(beta[1]+(-0.024))-exp(beta[1]-(-0.024))

## (Intercept)
## -20.601

## what is the slope for an effect of 50 ms?
exp(beta[1]+(-0.06))-exp(beta[1]-(-0.06))

## (Intercept)
## -51.528
```

Example: Subject and object relatives in Mandarin Chinese

Minimum power:

```
## there will be random fluctuation
compute_power(b=-0.024)
## [1] 0.12
compute_power(b=-0.024)
## [1] 0.14
```

Example: Subject and object relatives in Mandarin Chinese

Maximum power:

```
## there will be random fluctuation
compute_power(b=-0.06)
## [1] 0.72
compute_power(b=-0.06)
## [1] 0.73
```

Example: Subject and object relatives in Mandarin Chinese

We are now in a position to figure out, for a given effect size, what sample size we need (number of subjects/items) to obtain 80% power or higher. Let's take the minimum effect size to compute a power curve.

Example: Subject and object relatives in Mandarin Chinese

Exercise

Compute power curve as a function of different effect sizes

Exercise

Compute power curve as a function of different effect sizes

Pre-registering the analysis

In 2000, ClinicalTrials.gov made it mandatory to pre-register primary outcomes.

"17 of 30 studies (57%) published prior to 2000 showed a significant benefit of intervention on the primary outcome in comparison to only 2 among the 25 (8%) trials published after 2000 (χ^2 =12.2,df= 1, p=0.0005).

Pre-registration in clinical trials.gov was strongly associated with the trend toward null findings."

See readings: https://doi.org/10.1371/journal.pone.0132382

Pre-registering the analysis

What is a pre-registration for?

[See: https://www.bayesianspectacles.org/a-breakdown-of-preregistration-is-redundant-at-best/]

Pre-registering the analysis

What a pre-registration is for (based on a twitter thread by Christina Bergmann):

- It allows the researcher, to clearly specify their research hypothesis in advance
- It creates documentation of the steps to be taken
- It can improve data management
- Makes a clear distinction between exploratory and confirmatory analyses
- Allows for improvements in design before the experiment is run

Pre-registering the analysis

What a pre-registration is **not** for (again echoing Bergmann):

- It doesn't improve theory (the Garbage-in-garbage-out, GIGO, principle)
- It doesn't guarantee that the study was of a high quality
- It doesn't prevent exploration or p-hacking

Pre-registering the analysis

Confirmatory analysis: Define the following in advance:

- the dependent variable(s) (in eyetracking, we have many choices)
- the region of interest/time window
- exclusion criteria
- the statistical model
- expected results using fake-data simulation

None of this prevents you from doing an exploratory analysis. See: - $\label{eq:https://osf.io/mmr7s/-https://psyarxiv.com/2atrh/} https://psyarxiv.com/2atrh/$

Pre-registering the analysis

Example pre-registration: Expt 7 in

https://osf.io/eyphj/

One can also submit one's pre-registration at: aspredicted.org

Defining the analysis plan using simulated data

Pre-registering the analysis

Switch to slides on pre-registration.

Check that your experiment software actually collects the data you need and back-up your data

- Many people do not check whether their experimental software is actually collecting data.
- The software repeatedly crashes during live experimental runs
- They only find out after the experiment was done.
- Solution: Before running the experiment for real, run the study once with one subject per group (in a Latin square design), and analyze the data fully.


```
p3 <- qplot(crit$type,log(crit$rt),geom="boxplot")</pre>
```


Workflow checklist

Before collecting any data:

- conduct power analysis using simulated data
- pre-register an analysis plan and time-stamp it (on osf.io or aspredicted.org)
- run the entire experiment at least once per group and analyze data to check for software errors

After collecting data:

- create a data repository (using github/bitbucket/osf)
- data analysis:
 - visualize the data first present the pre-registered analysis first then do a separate exploratory analysis
- write code using R Markdown
- release all code and data during review and after publication
- ideally: the paper itself should be the documentation (Rmd or Rnw).

some high-level coding suggestions

- write functions for common tasks and figure types
- never hard-code variables, this will make code non-robust to changes (e.g., don't write num_rows<-500)
- take the time to document code
- refactor code (simplify, write modular code using customized functions)

Using R Markdown for writing papers

From RMarkdown directory, open:

- apatemplatepapaja.Rmd
- apatemplate.Rmd

Creating an R package or vignette

```
Read this short book: http://r-pkgs.had.co.nz/
```

Creating a package:

```
usethis::create_package("VasishthEtAl2019")
```

Package structure

- DESCRIPTION
- R/
- man/
- docs/
- vignettes/
- data/
- NAMESPACE

Data repositories: osf and github

- osf.io
- github.com