Big Data Course Project

Topic given: Data Science and Machine Learning Project Task given: Apply ML Algorithm to Dataset

Task chosen: Recognize Handwriting using CNN + RNN with Keras and TensorFlow pagkage

Presentation by,

Name: Surya Narayanan S

Reg No: 121015098

Dept: Information Technology

Year: 4th year

Index

- Problem Statement
- Tech Stack
- Methodology
 - Visualize dataset
 - Pre-process Images
 - Model Pipeline
 - Training, Testing, Evaluation of Model
- Result and Analysis
- GUI (Graphical User Interface)
- Conclusion

Problem Statement

- Task chosen: Recognize Handwriting using CNN + RNN with Keras and TensorFlow package
- Dataset: https://www.kaggle.com/landlord/handwriting-recognition
- Dataset size: 1.3 GB
- No of Images: 3.72 Lakhs
- A CRNN (Convolutional + Recurrent Neural Network) Machine Learning Model is built to recognize and convert Handwritten Images to text using TensorFlow and Keras package in python.
- Where is it used ?
 - To digitalize physical forms (Name, Age etc., details from physical form can be recognized and converted to text)
 - Handwriting virtual Keyboard (In mobile phones, we can write in the screen using stylus or hand touch. Which is then converted to text)

Tech Stack

- OpenCV (for Image Processing)
- Matplotlib, Seaborn (for plotting graphs)
- Numpy and Pandas (to store Image and Table)
- Tensorflow-GPU (for training and Testing the model)
- Keras (contains ML Models like Convolution and LSTM)
- Sklearn package (for evaluation metrics)
- Jupyter Notebook (To present the code and output)

What data do we have?

- Sample 6 Images
- Dataset Consists of 3.3 lakhs Images
- 1 lakhs unique labels
- Handwritten Text Images
- Inference:
 - ► Black and White Image
 - Characters are black
 - Characters are very thin
 - Image has some prefix like (Prenom and Nom (other than handwritten))

Visualize the Image Distribution

- Histogram of a sample Image
- Inference:
 - Pixel values are between 0 and 255
 - Towards zero (0) is black colour.
 - Foreground (Character) is black and very few pixels less than 1000) contribute to character.
 - ► Towards 255 is white colour.
 - Background is white and more than 8000 pixels contribute to background
 - In-between 0 and 255, all the pixels contribute noise to image

Pre-processing Dataset (Excel file)

- Remove rows with No Labels (NaN) (Null Cells).
- Remove rows that has labelled as 'UNREADABLE'.
- Convert all Labels to Upper Case Characters.
- Map all characters to Numbers between 0 and 25 to construct the model easily.

Pre-process Image

- Convert image to Grayscale (Black and White),
- Make High contrast (Threshold and Invert). This makes the Image have more foreground pixels which makes the model predict easily.
- Convert all the images to a fixed size (Height and Width). This makes the Input for the Model Uniform
- Rotate Image to 90 degree. This makes the model predict the first character, first.
- Before Pre-processing (Sample Image):
 PRENOM: MARTIN
- After Pre-processing Image (Sample Image) (Black Image) :

HENOM: IT HIN I IN

After Pre-processing, Histogram

- Histogram of processed Sample Image.
- The Noisy pixels are eliminated by converting them either to pure black or pure white pixels.
- Now, White pixels are Characters.
- Black pixels are Background.
- The Number of Pixels that represent Character is increased to more than 1000 pixels from less than 1000 pixels. This makes the prediction more accurate.

Pipeline of Model

Summary of Model

Layer (type)	Output Shape	Param #
input (InputLayer)	[(None, 256, 64, 1)]	0
conv1 (Conv2D)	(None, 256, 64, 32)	320
batch_normalization (BatchNo	(None, 256, 64, 32)	128
activation (Activation)	(None, 256, 64, 32)	0
max1 (MaxPooling2D)	(None, 128, 32, 32)	0
conv2 (Conv2D)	(None, 128, 32, 64)	18496
batch_normalization_1 (Batch	(None, 128, 32, 64)	256
activation_1 (Activation)	(None, 128, 32, 64)	0
max2 (MaxPooling2D)	(None, 64, 16, 64)	0
dropout (Dropout)	(None, 64, 16, 64)	0
conv3 (Conv2D)	(None, 64, 16, 128)	73856
batch_normalization_2 (Batch	(None, 64, 16, 128)	512
activation_2 (Activation)	(None, 64, 16, 128)	0
max3 (MaxPooling2D)	(None, 64, 8, 128)	0
dropout_1 (Dropout)	(None, 64, 8, 128)	0
reshape (Reshape)	(None, 64, 1024)	0
dense1 (Dense)	(None, 64, 64)	65600
lstm1 (Bidirectional)	(None, 64, 512)	657408
lstm2 (Bidirectional)	(None, 64, 512)	1574912
dense2 (Dense)	(None, 64, 30)	15390
softmax (Activation)	(None, 64, 30)	0
Total params: 2,406,878 Trainable params: 2,406,430 Non-trainable params: 448		

Convolution + Pooling Explained

- Convolution is a Feature Extraction process. They use Filter Kernels to extract important features in the image.
- Pooling is a Dimensionality Reduction Process. It reduces the Dimension, yet conserving important features.
 - Here, a sample image is convolved and pooled for example.

LSTM - RNN

- LSTM Long Short Term Memory Recurrent Neural network
- A RNN multiple copies of the same network, each passing a message to a successor.
- LSTM capable of learning long-term dependencies.
- Remembering information for long periods of time

CTC Loss Output

- CTC Connectionist Temporal Classification
- 1. train: calculate the loss value to train the NN
- 2. infer: decode the matrix to get the text contained in the input image
- we only have to tell the CTC loss function the text that occurs in the image. Therefore we ignore both the position and width of the characters in the image.

Evaluation of CRNN Model

- Fitted with 30K Images.
- It took nearly 5 hours to train the model.
- 60 epochs, each 30K images.
- Made use of GPU for Image processing.
- Tested with 3K Images.
- Without High Contrast, the model gave an accuracy of 85% of character prediction accuracy
- With using High Contrast colours, it gave 91% character prediction accuracy

Classification Report (3000 Images)

	In [25]: prin	t(classific				l_char))
		precision	recall	f1-score	support	
		0.76	0.67	0.71	84	
		0.00	0.00	0.00	2	
		0.66	0.75	0.70	51	
	A	0.94	0.94	0.94	2433	
	В	0.94	0.85	0.90	446	
	C	0.92	0.91	0.91	623	
	D	0.92	0.88	0.90	588	
	E	0.95	0.95	0.95	2399	
	F	0.94	0.86	0.90	166	
	G	0.90	0.94	0.92	362	
	Н	0.88	0.86	0.87	513	
	I	0.94	0.95	0.94	1587	
	J	0.86	0.90	0.88	140	
	K	0.85	0.80	0.82	119	
	L	0.95	0.95	0.95	1439	
	M	0.90	0.86	0.88	740	
	N	0.93	0.94	0.93	1506	
	0	0.90	0.94	0.92	1240	
	P	0.88	0.82	0.85	251	
	Q	0.88	0.88	0.88	48	
	R	0.93	0.94	0.93	1314	
/	S	0.94	0.93	0.93	805	
7	T	0.94	0.94	0.94	914	
	U	0.89	0.95	0.92	869	
	V	0.93	0.91	0.92	225	
	W	0.76	0.60	0.67	48	
	X	0.96	0.87	0.92	118	
	Y	0.88	0.87	0.87	267	
	Z	0.90	0.85	0.87	113	
	accuracy			0.93	19410	
	macro avg	0.86	0.84	0.85	19410	
	weighted avg	0.93	0.93	0.92	19410	

Correct characters predicted : 91.25% Correct words predicted : 75.17%

Similarity, Error Metrics

Mean Squared Error: CRNNPredicted 11.183153013910356 Similarity Score between True Label and Predicted Label: CRNNPredicted

	CRNNPredicted	IDENTITY	SIMILARITY_SCORE
0	BILEL	BILEL	1.000000
1	LAUMONIER	LAUMIONIER	0.946667
2	LEA	LEA	1.000000
3	JEAN-ROCH	JEAN-ROCH	1.000000
4	RUPP	RUPP	1.000000
5	PICHON	PICHON	1.000000
6	DANIEL	DANIEL	1.000000
7	JEREMY	JEREMY	1.000000
8	JEAN-MICHEL	JEAN-MICHEL	1.000000
9	JULIEN	JULIEN	1.000000

Histogram of Similarity: CRNNPredicted

Sample Predicted Output

SIMON PRENOM PRENOM: ANTOINE SIMON LOULWENN DATE DE MALLEMENT OLACCE BESNARD CRISTIAN CRISTIAN BESNARD ELEMENT BIAULET ANTON ANTON PRENOM: CARLA BIAULET TOUMERT TIMOTHEE FRENOM: TIMOTHEE PRENOM: TYFFAINE TOVNERT

PRENOM: PAULINE
PRENOM: PAULINE
PRENOM: PAULINE

MATTHEY

MATTHEY

PRENOM: ANAIO

BRUNET

ANAIO

BRUNET

ANAIO

BRUNET

HANDI

HANDI

HANDI

HANDI

LAVIGNE

HA (N))

CLEMENT

LEVY

CADOT

NOM: CADOT

NOM: CADOT

Comparison (RNN vs CNN vs CRNN)

- Likewise, Created RNN Model, CNN Model (Individually).
- Trained all these three models with same 30K images.
- Tested it on 3.3 Lakhs Images.

How do these models (CNN, RNN) look like ?

CNN Model Model: "model_1"		
Layer (type)	Output Shape	Param #
input (InputLayer)	[(None, 256, 64, 1)]	0
conv1 (Conv2D)	(None, 256, 64, 32)	320
batch_normalization_3 (Batch	(None, 256, 64, 32)	128
activation_3 (Activation)	(None, 256, 64, 32)	0
max1 (MaxPooling2D)	(None, 128, 32, 32)	0
conv2 (Conv2D)	(None, 128, 32, 64)	18496
batch_normalization_4 (Batch	(None, 128, 32, 64)	256
activation_4 (Activation)	(None, 128, 32, 64)	0
max2 (MaxPooling2D)	(None, 64, 16, 64)	0
dropout_2 (Dropout)	(None, 64, 16, 64)	0
conv3 (Conv2D)	(None, 64, 16, 128)	73856
batch_normalization_5 (Batch	(None, 64, 16, 128)	512
activation_5 (Activation)	(None, 64, 16, 128)	0
max3 (MaxPooling2D)	(None, 64, 8, 128)	0
dropout_3 (Dropout)	(None, 64, 8, 128)	0
reshape (Reshape)	(None, 64, 1024)	0
dense2 (Dense)	(None, 64, 30)	30750
softmax (Activation)	(None, 64, 30)	0
Total params: 124,318 Trainable params: 123,870 Non-trainable params: 448		

RNN Model Model: "model_4"		
Layer (type)	Output Shape	Param #
input_4 (InputLayer)	[(None, 16384)]	0
reshape_2 (Reshape)	(None, 64, 256)	0
dense_3 (Dense)	(None, 64, 64)	16448
lstm_4 (LSTM)	(None, 64, 256)	328704
lstm_5 (LSTM)	(None, 64, 256)	525312
dense_4 (Dense)	(None, 64, 30)	7710
activation_2 (Activation)	(None, 64, 30)	0

Total params: 878,174 Trainable params: 878,174 Non-trainable params: 0

How do the predictions look like?

	Index	FILENAME	IDENTITY	CRNNPredicted	CNNPredicted	RNNPredicted
0	0	TRAIN_00001.jpg	BALTHAZAR	BALTHAZAR	BALTHAZAR	BLALTHAIAR
1	1	TRAIN_00002.jpg	SIMON	SIMON	SIMON	BLIMON
2	2	TRAIN_00003.jpg	BENES	BENES	BENES	BVENES
3	3	TRAIN_00004.jpg	LA LOVE	LALOUE	LALOUE	BLALOUE
4	4	TRAIN_00005.jpg	DAPHNE	DAPHNE	DAPHNE	CMAPHNE

	Index	FILENAME	IDENTITY	CRNNPredicted	CNNPredicted	RNNPredicted
330287	330287	TRAIN_330957.jpg	LENNY	LENNY	LENNY	BLENNY
330288	330288	TRAIN_330958.jpg	TIFFANY	TIFFANY	TIEEANY	BLIEFANY
330289	330289	TRAIN_330959.jpg	COUTINHO DESA	COUTINHO DESA	COUTINHODESA	BCOUTINO DEA
330290	330290	TRAIN_330960.jpg	MOURAD	MOURAD	AOURAD	BAOURAD
330291	330291	TRAIN_330961.jpg	HELOISE	HELOISE	HELOISE	BLELOISE

No of Images Tested with 330292

What have we found in the Comparison?

Prediction Result for CRNNPredicted
No of Images 330292
No of Characters over all Images 2134747
Correct characters predicted: 92.98%
Correct words predicted: 75.56%
Classification Report: CRNNPredicted
precision recall f1-sco

Classificatio	n Report: C	KNNFredict	ea	
	precision	recall	f1-score	support
	0.76	0.63	0.69	10100
#	0.00	0.00	0.00	1
	0.61	0.22	0.32	230
_	0.66	0.72	0.69	6493
?	0.00	0.00	0.00	0
A	0.95	0.95	0.95	266965
В	0.93	0.88	0.91	45634
C	0.91	0.93	0.92	67580
D	0.91	0.89	0.90	59587
E	0.95	0.96	0.95	266361
F	0.93	0.88	0.90	18135
G	0.90	0.90	0.90	38807
H	0.90	0.89	0.89	61232
I	0.95	0.95	0.95	171683
J	0.90	0.89	0.90	15745
K	0.91	0.86	0.88	13880
L	0.95	0.95	0.95	159677
M	0.90	0.86	0.88	83273
N	0.93	0.94	0.94	164645
0	0.92	0.94	0.93	134912
P	0.90	0.86	0.88	29106
Q	0.88	0.80	0.84	5131
R	0.94	0.93	0.94	146178
S	0.95	0.95	0.95	89762
T	0.93	0.94	0.94	99376
Ū	0.90	0.95	0.93	95253
V	0.91	0.87	0.89	24865
W	0.85	0.71	0.78	5464
X	0.94	0.90	0.92	11116
Y	0.88	0.86	0.87	29630
Z	0.92	0.88	0.90	13925
*	0.00	0.00	0.00	1
accuracy			0.93	2134747
macro avg	0.81	0.78	0.79	2134747
weighted avg	0.93	0.93	0.93	2134747

Prediction Result for CNNPredicted
No of Images 330292
No of Characters over all Images 2090486
Correct characters predicted: 84.25%
Correct words predicted : 59.54%
Classification Report: CNNPredicted

	precision	recall	f1-score	support	
	0.01	0.00	0.00	9874	
#	0.00	0.00	0.00	1	
	0.00	0.00	0.00	217	
-	0.58	0.51	0.55	6406	
A	0.86	0.88	0.87	262418	
В	0.85	0.82	0.83	45311	
C	0.83	0.84	0.84	66669	
D	0.83	0.77	0.80	58235	
E	0.87	0.88	0.88	258264	
F	0.82	0.79	0.81	17890	
G	0.85	0.81	0.83	38457	
H	0.77	0.79	0.78	60455	
I	0.84	0.86	0.85	168646	
J	0.86	0.75	0.80	15684	
K	0.84	0.78	0.81	13612	
L	0.89	0.89	0.89	157627	
M	0.80	0.77	0.78	81691	
N	0.84	0.85	0.84	159273	
0	0.80	0.86	0.83	132511	
P	0.84	0.80	0.82	28657	
Q	0.77	0.39	0.51	5065	
R	0.84	0.85	0.85	143343	
S	0.87	0.88	0.87	86890	
T	0.88	0.88	0.88	96796	
Ū	0.79	0.86	0.82	93805	
V	0.79	0.73	0.76	24637	
W	0.57	0.04	0.08	5405	
X	0.84	0.83	0.84	10624	
Y	0.84	0.78	0.81	28490	
Z	0.85	0.79		13532	
·	0.00	0.00	0.00	1	
accuracy			0.84	2090486	
macro avg	0.71	0.67		2090486	
weighted avg	0.84	0.84	0.84	2090486	

Prediction Result for RNNPredicted No of Images 330292 No of Characters over all Images 2144334 Correct characters predicted : 69.81% Correct words predicted : 0.26% Classification Report: RNNPredicted

Correct words				
Classification	n Report: 1	RNNPredicte	ed	
	precision	recall	f1-score	support
	0.56	0.42	0.48	9877
#	0.00	0.00	0.00	1
•	0.45	0.10	0.16	216
-	0.40	0.44	0.42	6474
?	0.00	0.00	0.00	1
A	0.84	0.77	0.81	266860
В	0.12	0.72	0.20	45613
C	0.52	0.45	0.48	67799
D	0.73	0.48	0.58	60078
E	0.87	0.82	0.85	268372
F	0.24	0.33		18198
G	0.64	0.37	0.47	38919
H	0.73	0.63	0.67	61191
I	0.87	0.85	0.86	172547
J	0.27	0.08	0.13	15759
K	0.59	0.30	0.39	14022
L	0.83	0.68	0.74	160140
M	0.60	0.39		82771
N	0.84	0.79	0.81	166194
0	0.83	0.81	0.82	134731
P	0.47	0.29	0.36	29025
Q	0.56	0.33	0.41	5134
R	0.79		0.75	146995
S	0.78	0.69		90876
T	0.75	0.74	0.74	
Ū	0.83	0.83	0.83	95309
V	0.56		0.48	
W	0.57	0.31	0.40	
X	0.82	0.71	0.76	
Y	0.78		0.69	
Z	0.69			14072
•	0.00	0.00	0.00	1
accuracy			0.70	
macro avg	0.58			2144334
weighted avg	0.76	0.70	0.72	2144334

Confusion Matrix

Loss & Similarity

Mean Squared Error: CRNNPredicted 10.623822869876383 Similarity Score between True Label and Predicted Label: CRNNPredicted

	CRNNPredicted	IDENTITY	SIMILARITY_SCORE
0	BALTHAZAR	BALTHAZAR	1.000000
1	SIMON	SIMON	1.000000
2	BENES	BENES	1.000000
3	LALOUE	LALOVE	0.933333
4	DAPHNE	DAPHNE	1.000000
5	LUCIE	LUCIE	1.000000
6	NASSIM	NASSIM	1.000000
7	ASSRAOUI	ASSRAOUI	1.000000
8	VLAVIAN	LAVIAN	0.869048
9	MAEVA	MAEVA	1.000000

Histogram of Similarity: CRNNPredicted

Mean Squared Error: CNNPredicted 25.33519956603393 Similarity Score between True Label and Predicted Label: CNNPredicted

	CNNPredicted	IDENTITY	SIMILARITY_SCORE
0	BALTHAZAR	BALTHAZAR	1.000000
1	SIMON	SIMON	1.000000
2	BENES	BENES	1.000000
3	LALOUE	LALOVE	0.933333
4	DAPHNE	DAPHNE	1.000000
5	LUCIE	LUCIE	1.000000
6	NASSIM	NASSIM	1.000000
7	ASSRAOUI	ASSRAOUI	1.000000
8	MLAVIAN	LAVIAN	0.952381
9	MAEVA	MAEVA	1.000000

Histogram of Similarity: CNNPredicted

Mean Squared Error: RNNPredicted 41.535935166816365 Similarity Score between True Label and Predicted Label: RNNPredicted

	RNNPredicted	IDENTITY	SIMILARITY_SCORE
0	BLALTHAIAR	BALTHAZAR	0.869167
1	BLIMON	SIMON	0.822222
2	BVENES	BENES	0.950000
3	BLALOUE	LALOVE	0.849206
4	CMAPHNE	DAPHNE	0.849206
5	BLUCIE	LUCIE	0.944444
6	BCMASSIM	NASSIM	0.652778
7	TFBSSRAOUI	ASSRAOUI	0.858333
8	BALAVRAN	LAVIAN	0.686111
9	BLAEVA	MAEVA	0.822222

Histogram of Similarity: RNNPredicted

Histogram of Similarity

F1-score Plot

Handwritten Image Recognizer (GUI)

Handwriting Virtual Keyboard (GUI)

Conclusion

- Hence, it is concluded that CRNN performs better than CNN & RNN.
- Pre-processing has effects on prediction.
- Choosing a proper model layers has its effects on prediction.
- Fitting(Training) of images has its effects. (Over fitting etc).
- Plot Evaluation of Prediction gives more information.
- Two GUI is built for use with the best model (CRNN) found.

References

- <u>https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53</u>
- https://colah.github.io/posts/2015-08-Understanding-LSTMs/
- <u>https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86c</u>
- https://www.kaggle.com/landlord/handwriting-recognition

Thank You