## Sprawozdanie z laboratorium nr 3

# Inteligentne Metody Optymalizacji

Autorzy: Jakub Gołąb, Mariusz Hybiak

#### Wprowadzenie

Celem zadania była poprawa efektywności algorytmów lokalnego przeszukiwania z poprzedniego zadania. W celu poprawy efektywności czasowe wykorzystano oceny ruchów z poprzednich iteracji i ruchów kandydackich.

## Algorytmy

```
// Algorytm oparty o ruchy kandydackie
candidate_moves_algorithm(cycle1, cycle2, dist_mat, k):
    k_closest_set = compute_closest_cities(dist_mat, k)
    while true
        best delta = 0
        best_move = NULL
        for node_a in all_cities:
            for node_b in k_closest_set[node_a]:
                c1, pos1 = find(node_a, cycle1, cycle2)
                c2, pos2 = find(node_b, cycle1, cycle2)
                if c1 == c2:
                    move = swap_edge(node_a, succesor(node_a)) + swap_edge(node_b,
succesor(node b))
                else
                    move = swap_nodes(node_a, node_b)
                delta = compute delta(move)
                if delta > best delta:
                    best delta = delta
                    best move = move
        if best move is NULL:
            break
        apply_move(best_move)
    return (cycle1, cycle2)
```

```
// algorytm oparty o oceny ruchów z poprzednich iteracji

Wygeneruj rozwiązanie startowe

Zainicjuj listę LM ruchów przynoszących poprawę

Dodaj do listy ruchów wszystkie międzytrasowe wymiany wierzchołków i

wewnątrztrasowe wymiany krawędzi przynoszące poprawę

Posortuj listę
```

```
powtarzaj
```

Przeglądaj ruchy m z LM od najlepszego do znalezienia aplikowalnego ruchu Jeżeli ruch jest aplikowalny, to zapamiętaj go W przeciwnym wypadku usuń

Jeżeli znaleziono aplikowalny ruch M to Zaaplikuj ruch M Dodaj do LM nowe ruchy i posortuj listę dopóki nie znaleziono aplikowalnego ruchu M po przejrzeniu całej listy LM

Zwróć zmodyfikowane rozwiązanie

## Wyniki eksperymentu obliczeniowego

W tabeli przedstawiono sumy długości cykli dla każdej z metod dla obu instancji problemu.

| Instancja | Metoda                | Średnia (min – max) [jednostki odległości] |
|-----------|-----------------------|--------------------------------------------|
| kroA200   | random                | 343397.4 (325622 - 367592)                 |
| kroA200   | heuristic             | 85294.2 (82006 - 87980)                    |
| kroA200   | local_search_steepest | 84107.5 (73714 - 103386)                   |
| kroA200   | candidate_moves       | 119163.6 (97614 - 136954)                  |
| kroA200   | cache_moves           | 102248.9 (99820 - 121120)                  |
| kroB200   | random                | 337828.5 (326222 - 361247)                 |
| kroB200   | heuristic             | 84166.0 (81742 - 87420)                    |
| kroB200   | local_search_steepest | 81853.3 (74057 - 88471)                    |
| kroB200   | candidate_moves       | 134144.1 (109662 - 169742)                 |
| kroB200   | cache_moves           | 120300.5 (111480 - 141315)                 |

### Czas działania algorytmu

W tabeli przedstawiono średni czas działania algorytmu.

| Instancja | Metoda                | Średnia (min – max) [milisekundy] |
|-----------|-----------------------|-----------------------------------|
| kroA200   | heuristic             | 276280.9 (257958 - 369437)        |
| kroA200   | local_search_steepest | 25743204.7 (19735387 - 29716978)  |
| kroA200   | candidate_moves       | 3738071.4 (2645683 - 5224432)     |
| kroA200   | cache_moves           | 110838.1 (72426 - 199158)         |
| kroB200   | heuristic             | 267744.6 (260291 - 311365)        |
| kroB200   | local_search_steepest | 26044757.9 (19782866 - 32359997)  |
|           |                       | _                                 |

| Instancja | Metoda          | Średnia (min – max) [milisekundy] |
|-----------|-----------------|-----------------------------------|
| kroB200   | candidate_moves | 3275410.4 (2526119 - 4147063)     |
| kroB200   | cache_moves     | 87820.4 (64392 - 115929)          |

Wizualizacje najlepszych rozwiązań

| Metoda                | KroA100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KroB100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| random                | Visualization of Cycles  2000  1750  1300  1250  2000  2000  2500  3000  3500  4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Visualization of Cycles  2000  1750  1500  770  500  1000  1500  2000  X coordinate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| heuristic             | Visualization of Cycles  Visualization of Cycles  1750  1250  1750  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500 | Visualization of Cycles  2000  1750  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500 |
| local_search_steepest | Visualization of Cycles  Visualization of Cycles  1750  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000 | Visualization of Cycles  2000  1750  1500  750  1000  1500  2000  2500  1000  1500  2000  2500  3000  3500  4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| candidate_moves       | Visualization of Cycles  1750  1500  1750  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  1500  | Visualization of Cycles  2000  1750  1500  250  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  1000  |



### Wnioski

- Wprowadzenie ocen ruchów z poprzednich iteracji przyspieszyło proces przeszukiwania przestrzeni rozwiązań. Dzięki temu algorytmy lokalnego przeszukiwania mogą szybciej zbliżać się do optymalnego rozwiązania, eliminując zbędne iteracje.
- Wśród testowanych strategii, algorytm korzystający z ocen ruchów z poprzednich iteracji wykazał się najlepszą wydajnością. Oznacza to, że uwzględnienie historii ocen pozwala lepiej kierować procesem przeszukiwania, wybierając bardziej obiecujące ruchy.

## Kod Programu

Kod programu znajduje się pod tym linkiem w pliku cpp.