6.215/6.255J/15.093J/IDS.200J Optimization Methods

Lecture 5: Duality Theory I

September 23, 2021

Today's Lecture

Outline

- Motivation of duality
- General form of the dual
- Weak and strong duality
- Relations between primal and dual
- Duality economic interpretation
- Complementary slackness

Motivating Duality

Checking optimality

min
$$x_1 + x_2 + \dots + x_{300}$$

s.t. $x_1 + 2x_2 + \dots + 300x_{300} \ge 1$
 $300x_1 + 299x_2 + \dots + x_{300} \ge 10$

A friend claims to have found an optimal solution x^* with an optimal value 11/301. How to check this?

6.255J © 2021 (MIT)

An idea from Lagrange

Consider the LOP, called the **primal** with optimal solution x^*

min
$$c^T x$$

s.t. $Ax = b$
 $x \ge 0$

An idea from Lagrange

Consider the LOP, called the **primal** with optimal solution x^*

min
$$c^T x$$

s.t. $Ax = b$
 $x \ge 0$

Relax the equality constraint

$$g(\mathbf{p}) = \min_{\text{s.t.}} \mathbf{c}^{\mathsf{T}} \mathbf{x} + \mathbf{p}^{\mathsf{T}} (\mathbf{b} - \mathbf{A} \mathbf{x})$$

An idea from Lagrange

Consider the LOP, called the **primal** with optimal solution x^*

min
$$c^T x$$

s.t. $Ax = b$
 $x \ge 0$

Relax the equality constraint

$$g(\mathbf{p}) = \min_{\text{s.t.}} \mathbf{c}^{\mathsf{T}} \mathbf{x} + \mathbf{p}^{\mathsf{T}} (\mathbf{b} - \mathbf{A} \mathbf{x})$$

$$\Rightarrow g(\mathbf{p}) \leq \mathbf{c}^{\mathsf{T}} \mathbf{x}^* + \mathbf{p}^{\mathsf{T}} (\mathbf{b} - \mathbf{A} \mathbf{x}^*) = \mathbf{c}^{\mathsf{T}} \mathbf{x}^*$$

An idea from Lagrange

Get the tightest lower bound, i.e., $\max g(\mathbf{p})$ over all possible \mathbf{p} . Let us rewrite $g(\mathbf{p})$:

$$g(\mathbf{p}) = \min_{\mathbf{x} \geq 0} \left[\mathbf{c}^T \mathbf{x} + \mathbf{p}^T (\mathbf{b} - \mathbf{A} \mathbf{x}) \right]$$
$$= \mathbf{p}^T \mathbf{b} + \min_{\mathbf{x} \geq 0} (\mathbf{c}^T - \mathbf{p}^T \mathbf{A}) \mathbf{x}$$

An idea from Lagrange

Get the tightest lower bound, i.e., $\max g(\mathbf{p})$ over all possible \mathbf{p} . Let us rewrite $g(\mathbf{p})$:

$$g(\mathbf{p}) = \min_{\mathbf{x} \geq 0} \left[\mathbf{c}^T \mathbf{x} + \mathbf{p}^T (\mathbf{b} - \mathbf{A} \mathbf{x}) \right]$$
$$= \mathbf{p}^T \mathbf{b} + \min_{\mathbf{x} \geq 0} (\mathbf{c}^T - \mathbf{p}^T \mathbf{A}) \mathbf{x}$$

Note that

$$\min_{\mathbf{X} \geq 0} (\mathbf{c}^{\mathsf{T}} - \mathbf{p}^{\mathsf{T}} \mathbf{A}) \mathbf{x} = \begin{cases} 0 & \text{if } \mathbf{c}^{\mathsf{T}} - \mathbf{p}^{\mathsf{T}} \mathbf{A} \geq 0^{\mathsf{T}}, \\ -\infty & \text{otherwise.} \end{cases}$$

An idea from Lagrange

Get the tightest lower bound, i.e., $\max g(\mathbf{p})$ over all possible \mathbf{p} . Let us rewrite $g(\mathbf{p})$:

$$g(\mathbf{p}) = \min_{\mathbf{x} \geq 0} \left[\mathbf{c}^T \mathbf{x} + \mathbf{p}^T (\mathbf{b} - \mathbf{A} \mathbf{x}) \right]$$
$$= \mathbf{p}^T \mathbf{b} + \min_{\mathbf{x} \geq 0} (\mathbf{c}^T - \mathbf{p}^T \mathbf{A}) \mathbf{x}$$

Note that

$$\min_{\mathbf{X} \geq 0} (\mathbf{c}^{\mathsf{T}} - \mathbf{p}^{\mathsf{T}} \mathbf{A}) \mathbf{x} = \begin{cases} 0 & \text{if } \mathbf{c}^{\mathsf{T}} - \mathbf{p}^{\mathsf{T}} \mathbf{A} \geq 0^{\mathsf{T}}, \\ -\infty & \text{otherwise.} \end{cases}$$

So we have

dual:
$$\max_{\boldsymbol{p}} g(\boldsymbol{p}) \Leftrightarrow \max_{s.t.} \boldsymbol{p}^T \boldsymbol{b}$$

s.t. $\boldsymbol{p}^T \boldsymbol{A} < \boldsymbol{c}^T$

Primal min $c^T x$ s.t. $a_i^T x \ge b_i$ $i \in M_1$ $a_i^T x \le b_i$ $i \in M_2$ $a_i^T x = b_i$ $i \in M_3$ $x_j \ge 0$ $j \in N_1$ $x_j \le 0$ $j \in N_2$ x_j free $j \in N_3$

Dual $\max \quad \boldsymbol{p}^{T}\boldsymbol{b}$ s.t. $p_{i} \geq 0 \qquad i \in M_{1}$ $p_{i} \leq 0 \qquad i \in M_{2}$ $p_{i} \text{ free} \qquad i \in M_{3}$ $\boldsymbol{p}^{T}\boldsymbol{A}_{j} \leq c_{j} \quad j \in N_{1}$ $\boldsymbol{p}^{T}\boldsymbol{A}_{j} \geq c_{j} \quad j \in N_{2}$ $\boldsymbol{p}^{T}\boldsymbol{A}_{i} = c_{i} \quad j \in N_{3}$

Example

$$\begin{array}{ll} \min & x_1 + 2x_2 + 3x_3 \\ \text{s.t.} & -x_1 + 3x_2 & = 5 \\ 2x_1 - x_2 + 3x_3 \ge 6 \\ & x_3 \le 4 \\ & x_1 \ge 0 \\ & x_2 \le 0 \\ & x_3 \text{ free,} \end{array}$$

$$\begin{array}{ll} \max & 5p_1 + 6p_2 + 4p_3 \\ \text{s.t.} & p_1 \text{ free} \\ & p_2 \ge 0 \\ & p_3 \le 0 \\ & -p_1 + 2p_2 & \le 1 \\ & 3p_1 - p_2 & \ge 2 \\ & 3p_2 + p_3 = 3. \end{array}$$

Summary

primal	min	max	dual
constraints	$\geq b_i$	≥ 0	
	$\leq b_i$	≤ 0	variables
	$ =b_i $	free	
variables	≥ 0	$\leq c_j$	
	_ ≤ 0	$\geq c_j$	constraints
	free	$= c_j$	

Note: The dual of the dual is the primal

The dual of the dual is the primal

Example

 X_1

 $-3x_{1}$

 $-2x_{2}$

 $3x_2$

 $x_3 = -3$

 $p_1 \geq 0$

 $p_{2} \leq 0$

 p_3 free

Compactly, in matrix notation, some pairs of primal-dual

min
$$c^T x$$

s.t. $Ax = b$
 $x \ge 0$

$$\begin{array}{ll}
\text{max} & \boldsymbol{p^T b} \\
\text{s.t.} & \boldsymbol{p^T A} \leq \boldsymbol{c^T}
\end{array}$$

min
$$c^T x$$

s.t. $Ax \ge b$

Weak duality

Theorem

If x is primal feasible and p is dual feasible then $p^Tb \le c^Tx$

Proof: If the primal is in standard form: $p^Tb = p^TAx \le c^Tx$

Corollary

If x is primal feasible, p is dual feasible, and $p^Tb = c^Tx$, then x is optimal in the primal and p is optimal in the dual.

Strong duality

Theorem

If the primal has an optimal solution, then so does the dual, and the optimal costs are equal.

Proof:

min
$$c^T x$$

s.t. $Ax = b$
 $x \ge 0$

Apply (with any anticycling rule) simplex method; get optimal BFS x, and corresponding final optimal basis B, then:

$$\boldsymbol{c}^{\mathsf{T}} - \boldsymbol{c}_B^T \boldsymbol{B}^{-1} \boldsymbol{A} \geq 0$$

Strong duality

Define
$$\mathbf{p}^T = \mathbf{c}_R^T \mathbf{B}^{-1} \Rightarrow \mathbf{p}^T \mathbf{A} \leq \mathbf{c}^T$$

 $\Rightarrow p$ dual feasible for

$$\max \quad \boldsymbol{p^T b}$$

s.t.
$$\boldsymbol{p^T A} \leq \boldsymbol{c^T}$$

Moreover,

$$\boldsymbol{p}^{\mathsf{T}}\boldsymbol{b} = \boldsymbol{c}_B^{\mathsf{T}}\boldsymbol{B}^{-1}\boldsymbol{b} = \boldsymbol{c}_B^{\mathsf{T}}\boldsymbol{x}_B = \boldsymbol{c}^{\mathsf{T}}\boldsymbol{x}$$

 $\Rightarrow x, p$ are primal and dual optimal

Relations between primal and dual

	Finite opt.	Unbounded	Infeasible
Finite opt.	*		
Unbounded			*
Infeasible		*	*

Duality

Economic interpretation

- Let \boldsymbol{x} optimal nondegenerate solution: $\boldsymbol{B}^{-1}\boldsymbol{b} > 0$
- Suppose **b** changes to $\mathbf{b} + \epsilon$ for some small ϵ
- How is the optimal cost affected?

Duality

Economic interpretation

- Let \boldsymbol{x} optimal nondegenerate solution: $\boldsymbol{B}^{-1}\boldsymbol{b} > 0$
- Suppose **b** changes to $\mathbf{b} + \epsilon$ for some small ϵ
- How is the optimal cost affected?
- For small ϵ :
 - · feasibilty unaffected
 - optimality conditions unaffected

Duality

Economic interpretation

- Let \boldsymbol{x} optimal nondegenerate solution: $\boldsymbol{B}^{-1}\boldsymbol{b} > 0$
- ullet Suppose $oldsymbol{b}$ changes to $oldsymbol{b}+\epsilon$ for some small ϵ
- How is the optimal cost affected?
- For small ϵ :
 - · feasibilty unaffected
 - optimality conditions unaffected
- New cost $c_B^T B^{-1}(b+\epsilon) = p^T(b+\epsilon)$
- If resource i changes by ϵ_i , cost changes by $p_i\epsilon_i$: "marginal cost"

Primal			Dual		
min	$c^T x$		max	$p^T b$	
s.t.	$\mathbf{a}_i^T \mathbf{x} \geq b_i$	$i \in M_1$	s.t.	$p_i \geq 0$	$i \in M_1$
	$\mathbf{a}_i^T \mathbf{x} \leq b_i$	$i \in M_2$		$p_i \leq 0$	$i \in M_2$
	$\mathbf{a}_i^T \mathbf{x} = \mathbf{b}_i$	$i \in M_3$		p_i free	$i \in M_3$
	$x_j \geq 0$	$j \in N_1$		$p^T A_i \leq c_i$	$j \in N_1$
	$x_i \leq 0$	$j \in N_2$		$p^T A_i \geq c_i$	$j \in N_2$
	x_i free	$j \in N_3$		$p^T A_i = c_i$	$j \in N_3$

Theorem

Let x primal feasible and p dual feasible. Then x, p optimal if and only if

$$p_i(\boldsymbol{a}_i^T \boldsymbol{x} - b_i) = 0, \quad \forall i$$

 $(c_j - \boldsymbol{p}^T \boldsymbol{A}_j) x_j = 0, \quad \forall j$

Proof:

- If \mathbf{x} primal feasible and \mathbf{p} dual feasible, we have $u_i = p_i(\mathbf{a}_i^T \mathbf{x} b_i) \ge 0$ and $v_j = (c_j \mathbf{p}^T \mathbf{A}_j) x_j \ge 0$ for all i and j.
- Also $\boldsymbol{c}^{\mathsf{T}}\boldsymbol{x} \boldsymbol{p}^{\mathsf{T}}\boldsymbol{b} = \sum_{i} u_{i} + \sum_{j} v_{j}$.
- By the strong duality theorem, if x and p are optimal, then $c^T x = p^T b \Rightarrow u_i = v_j = 0$ for all i, j.
- Conversely, if $u_i = v_j = 0$ for all i, j, then $c^T x = p^T b$, $\Rightarrow x$ and p are optimal.

Example

min
$$13x_1 + 10x_2 + 6x_3$$

s.t. $5x_1 + x_2 + 3x_3 = 8$
 $3x_1 + x_2 = 3$
 $x_1, x_2, x_3 \ge 0$

$$\begin{array}{ll} \max & 8p_1 \, + \, 3p_2 \\ \mathrm{s.t.} & 5p_1 \, + \, 3p_2 \, \leq \, 13 \\ & p_1 \, + \, p_2 \, \leq \, 10 \\ & 3p_1 & \leq \, 6 \end{array}$$

Is
$$\mathbf{x}^* = (1, 0, 1)^T$$
 optimal?

Example

Is $\mathbf{x}^* = (1, 0, 1)^T$ optimal?

$$5p_1 + 3p_2 = 13, \quad 3p_1 = 6$$

$$\Rightarrow p_1 = 2, \quad p_2 = 1$$

It satisfies $p_1 + p_2 \le 10$, so dual feasible.

Objective=2*8+3*1=19 = 13+6 = 19, so yes x^* optimal.

4 D > 4 A > 4 E > 4 E > E 9 9 9