DEEP LEARNING FOR COMPUTER VISION

2nd Summer School UPC TelecomBCN, 21 - 27 June 2017

Instructors

Organizers

+ info: http://bit.ly/dlcv2017

[course site]

Day 3 Lecture 2

Life-long/incremental Learning

Ramon Morros

ramon.morros@upc.edu

Associate Professor

Universitat Politecnica de Catalunya Technical University of Catalonia

'Classical' approach to ML

- Isolated, single task learning:
 - Well defined tasks.
 - Knowledge is not retained or accumulated. Learning is performed w.o. considering past learned knowledge in other tasks
- Data given prior to training
 - Model selection & meta-parameter optimization based on full data set
 - Large number of training data needed
- Batch mode.
 - Examples are used at the same time, irrespective of their (temporal) order
- Assumption that data and its underlying structure is static
 - Restricted environment

Challenges

Data not available priorly, but exemples arrive over time

- Memory resources may be limited
 - LML has to rely on a compact/implicit representation of the already observed signals
 - NN models provide a good implicit representation!

- Adaptive model complexity
 - Impossible to determine model complexity in advance
 - Complexity may be bounded by available resources → intelligent reallocation
 - Meta-parameters such as learning rate or regularization strength can not be determined prior to training → They turn into model parameters!

Challenges

- Concept drift: Changes in data distribution occurs with time
 - For instance, model evolution, changes in appearance, aging, etc.

Source: https://www.youtube.com/watch?v=HMaWYBlo2Vc

- Stability -plasticity dilemma: When and how to adapt to the current model
 - Quick update enables rapid adaptation, but old information is forgotten
 - Slower adaptation allows to retain old information but the reactivity of the system is decreased
 - Failure to deal with this dilemma may lead to catastrophic forgetting

Lifelong Machine Learning (LML)

[Silver2013, Gepperth2016, Chen2016b]

Learn, retain, use knowledge over an extended period of time

- Data streams, constantly arriving, not static → Incremental learning
- Multiple tasks with multiple learning/mining algorithms
- Retain/accumulate learned knowledge in the past & use it to help future learning
 - Use past knowledge for inductive transfer when learning new tasks
- Mimics human way of learning

Related learning approaches

Transfer learning (finetuning):

- Data in the source domain help learning the target domain
- Less data are needed in the target domain

Multi-task learning:

- Co-learn multiple, related tasks simultaneously
- All tasks have labeled data and are treated equally
- Goal: optimize learning/performance across all tasks through shared knowledge

Related learning approaches

Transfer learning (finetuning):

- Unidirectional: source → target
- Not continuous
- No retention/accumulation of knowledge
- Tasks must be similar

Multi-task learning:

- Simultaneous learning
- All tasks data are needed for training

LWF: Learning without Forgetting [Li2016]

Goal:

Add **new prediction tasks** based on adapting shared parameters **without access to training data for previously learned tasks**

Solution:

Using only examples for the new task, optimize for :

- High accuracy on the new task
- <u>Preservation of responses</u> on existing tasks from the original network (distillation, Hinton2015)
- Storage does not grow with time. Old samples are not kept

Preserves performance on old task (even if images in new task provide a poor sampling of old task)

LWF: Learning without Forgetting [Li2016]

LWF: Learning without Forgetting [Li2016]

LEARNINGWITHOUTFORGETTING: Start with: θ_s : shared parameters θ_o : task specific parameters for each old task X_n, Y_n : training data and ground truth on the new task Initialize: $Y_o \leftarrow \text{Cnn}(X_n, \theta_s, \theta_o)$ // compute output of old tasks for new data $\theta_n \leftarrow \text{RANDINIT}(|\theta_n|)$ // randomly initialize new parameters Train: Define $\hat{Y}_o \equiv \text{Cnn}(X_n, \hat{\theta}_s, \hat{\theta}_o)$ // old task output Define $\hat{Y}_n \equiv \text{CNN}(X_n, \hat{\theta}_s, \hat{\theta}_n)$ // new task output $\theta_s^*, \ \theta_o^*, \ \theta_n^* \leftarrow \underset{\hat{\hat{n}} = \hat{\hat{n}}}{\operatorname{argmin}} \left(\mathcal{L}_{old}(Y_o, \hat{Y}_o) + \mathcal{L}_{new}(Y_n, \hat{Y}_n) + \mathcal{R}(\hat{\theta}_s, \hat{\theta}_o, \hat{\theta}_n) \right)$ Multinomial logistic loss Weight decay of 0.0005 $\mathcal{L}_{new}(\mathbf{y}_n, \hat{\mathbf{y}}_n) = -\mathbf{y}_n \cdot \log \hat{\mathbf{y}}_n$ Weight decay of $\mathcal{L}_{old}(\mathbf{y}_o, \hat{\mathbf{y}}_o) = -H(\mathbf{y}_o', \hat{\mathbf{y}}_o') = -\sum_{i=1}^l y_o'^{(i)} \log \hat{y}_o'^{(i)}$ $y_o'^{(i)} = \frac{(y_o^{(i)})^{1/T}}{\sum_j (y_o^{(j)})^{1/T}}, \quad \hat{y}_o'^{(i)} = \frac{(\hat{y}_o^{(i)})^{1/T}}{\sum_j (\hat{y}_o^{(j)})^{1/T}}.$

Distillation loss

Learning without Forgetting Input: Target: model (a)'s response for old tasks new task new task

iCaRL

Goal:

Add new classes based on adapting shared parameters with restricted access to training data for previously learned classes.

data

data

class-incremental learner

Solution:

- A subset of training samples (exemplar set) from previous classes is stored.
- Combination of classification loss for new samples and distillation loss for old samples.
- The size of the exemplar set is kept constant. As new classes arrive, some examples from old classes are removed.

iCaRL: Incremental Classifier and Representation learning

Algorithm 2 iCaRL INCREMENTALTRAIN **input** X^s, \ldots, X^t // training examples in per-class sets input K// memory size require ⊖ // current model parameters require $\mathcal{P} = (P_1, \dots, P_{s-1})$ // current exemplar sets $\Theta \leftarrow \text{UpdateRepresentation}(X^s, \dots, X^t; \mathcal{P}, \Theta)$ $m \leftarrow K/t$ // number of exemplars per class for y = 1, ..., s - 1 do $P_u \leftarrow \text{REDUCEEXEMPLARSET}(P_u, m)$ end for for $y = s, \dots, t$ do $P_{y} \leftarrow \text{ConstructExemplarSet}(X_{y}, m, \Theta)$ end for $\mathcal{P} \leftarrow (P_1, \dots, P_t)$ // new exemplar sets Exemplar set (old classes)

New training data (new class)

Algorithm 3 iCaRL UPDATEREPRESENTATION

input X^s, \dots, X^t // training images of classes s, \dots, t require $P = (P_1, ..., P_{s-1})$ // exemplar sets require ⊖ // current model parameters

// form combined training set:

$$\mathcal{D} \leftarrow \bigcup_{y=s,\dots,t} \{(x,y) : x \in X^y\} \cup \bigcup_{y=1,\dots,s-1} \{(x,y) : x \in P^y\}$$

store network outputs with pre-update parameters:

$$\begin{array}{ll} \textbf{for } y = 1, \ldots, s-1 \textbf{ do} \\ q_i^y \leftarrow g_y(x_i) & \text{for all } (x_i, \cdot) \in \mathcal{D} \\ \textbf{end for} \end{array}$$

run network training (e.g. BackProp) with loss function

iCaRL: Incremental Classifier and Representation learning

Algorithm 2 iCaRL INCREMENTALTRAIN **input** X^s, \ldots, X^t // training examples in per-class sets input K // memory size require Θ // current model parameters **require** $\mathcal{P} = (P_1, \dots, P_{s-1})$ // current exemplar sets $\Theta \leftarrow \text{UPDATEREPRESENTATION}(X^s, \dots, X^t; \mathcal{P}, \Theta)$ $m \leftarrow K/t$ // number of exemplars per class for y = 1, ..., s - 1 do $P_y \leftarrow \text{ReduceExemplarSet}(P_y, m)$ end for for $y = s, \dots, t$ do $P_y \leftarrow \text{ConstructExemplarSet}(X_y, m, \Theta)$ end for $\mathcal{P} \leftarrow (P_1, \dots, P_t)$ // new exemplar sets

Results on face recognition

Preliminary results on face recognition from Eric Presas TFG (co-directed with

iCaRL

LWF

Progressive Neural Networks

Goal:

Learn a series of tasks in sequence, using knowledge from previous tasks to improve convergence speed

Solution:

- Instantiate a new NN for each task being solved, with lateral connections to features of previously learned columns
- Previous tasks training data is not stored. Implicit representation as NN weights.
- Complexity of the model grows with each task
- Task labels needed at test time

$$h_i^{(k)} = f\left(W_i^{(k)}h_{i-1}^{(k)} + \sum_{j < k} U_i^{(k:j)}h_{i-1}^{(j)}\right)$$

Summary

	Task labels needed?	Old training data needed?	Constant data size	Increase in model complexity	Туре	Mechanism
iCaRL	No	Yes	Yes	Very small (neurons in output layer)	Class incremental	Distillation
LFW	Yes	No	Yes	Small (output layer)	Task incremental	Distillation
PNN	Yes	No	Yes	Linear (new network)	Task incremental	New network with lateral connections to old ones

References

[Chen2016a] Z. Chen, Google, B. Liu, "Lifelong Machine Learning for Natural Language Processing", *EMNLP-2016 Tutorial*, 2016 [Chen2016b] Z. Chen and B. Liu, "Lifelong Machine Learning", Morgan & Claypool Publishers, November 2016. [Gepperth2016] A. Gepperth, B. Hammer, "Incremental learning algorithms and applications", ESANN 2016

[Hinton2015] Hinton, G., Vinyals, O., & Dean, J. "Distilling the Knowledge in a Neural Network". *NIPS 2014 DL Workshop*, 1–9. [Li2016] Li, Z., & Hoiem, D. "Learning without forgetting". In vol. 9908 LNCS, 2016.

[Rebuffi2016] Rebuffi, S.-A., Kolesnikov, A., & Lampert, C. H. "iCaRL: Incremental Classifier and Representation Learning". 2016 arXiv:1611.07725

[Rusu2016] Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., ... Hadsell, R. "*Progressive Neural Networks*". 2016 *CoRR. arXiv:1606.04671*.

[Silver2013] D.L.Silver, et al, "Lifelong machine learning systems: Beyond learning algorithms", 2013 AAAI Spring Symposium

Questions?