### UNIVERSIDAD CENTROAMERICANA JOSE SIMEON CAÑAS

#### Programación declarativa

Taller 1



Alumno:

Mauricio Alejandro Contreras Montoya

Código:

00000422

#### Contenido

| 1. ¿Qué elementos componen tu base de conocimiento (hechos, relaciones y reglas)? 3    |
|----------------------------------------------------------------------------------------|
| 2. Escribe una regla en forma de Cláusula de Horn y explica su propósito4              |
| 3. Muestra una consulta con variable libre y otra con variable ligada5                 |
| 4. Representa o describe el árbol de resolución de una de tus consultas6               |
| 5. Explica el caso trivial y el caso general del ejemplo recursivo que desarrollaste 6 |
| 6. Describe cómo aplicaste los predicados \+, ! y fail y cuál fue su efecto 7          |
| 7. Reflexiona: ¿de qué manera tu base de conocimiento puede considerarse un            |
| sistema inteligente lógico?8                                                           |

#### Preguntas de Análisis y Reflexión

## 1. ¿Qué elementos componen tu base de conocimiento (hechos, relaciones y reglas)? Hechos

• Tipo/Rol: es(a,b).

• Conocimiento: sabe(a,b).

• Amistad: amigo\_de(a,b).

• Enseñanza: enseña (a,b)

• Ayuda: ayuda\_en(a,b).

#### Reglas

| R1: Sabio        | sabio(X):-sabe(X,_),enseña(X,_).                   | X es sabio si<br>sabe algo y<br>enseña a<br>alguien                   |
|------------------|----------------------------------------------------|-----------------------------------------------------------------------|
| R2:<br>Estudioso | estudioso(X):-<br>es(X,aprendiz),sabe(X,_).        | X es<br>estudioso si<br>es aprendiz<br>Y sabe algo.                   |
| R3:<br>Aliado    | aliado(X,Y):-<br>ayuda_en(X,Z),ayuda_en(Y,Z),X\=Y. | X es aliado<br>de si ayudan<br>en la misma<br>tarea (Z) X<br>no es Y. |
| R4:<br>Conocedor | conocedor(X):-<br>sabe(X,A),sabe(X,B), A\=B.       | X es<br>conocedor si<br>sabe dos<br>cosas<br>distintas (a y<br>b).    |
| R5:<br>Maestro   | maestro(X):- enseña(X,_),\+<br>es(X,aprendiz).     | X es maestro<br>si enseña a<br>alguien Y no<br>es aprendiz.           |
| Recursividad     | maestro_indirecto(X,Y):-<br>enseña(X,Y).           | Define una<br>relación de<br>enseñanza                                |

|       | maestro_indirecto(X,Y):- enseña(X,Z), maestro_indirecto(Z,Y).                                                                     | que puede<br>ser directa<br>(caso base)<br>o<br>encadenada<br>a través de<br>varios<br>aprendices<br>(caso<br>general). |
|-------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Corte | consejo_principal(X):- es(X, mago), !. consejo_principal(X):- es(X, aprendiz), !. consejo_principal(X):- es(X, bibliotecaria), !. | Define una prioridad, donde la respuesta se restringe al primer rol encontrado, gracias al operador de corte (!).       |
| Fallo | mostrar_personajes :- es(X, _), write('Personaje: '), write(X), nl, fail. mostrar_personajes.                                     | Usa el predicado fail para forzar la iteración a través de todos los personajes y realizar una acción de escritura.     |

2. Escribe una regla en forma de Cláusula de Horn y explica su propósito.

Esta regla establece que para que un individuo sea considerado un sabio, deben cumplirse las siguientes dos condiciones en la base de conocimiento:

- El individuo tiene un registro de poseer algún conocimiento o habilidad.
- El individuo tiene un registro de enseñar o transmitir conocimiento a alguien más.

Se infiere que es un sabio, si sabe algo y enseña algo.

3. Muestra una consulta con variable libre y otra con variable ligada.

#### Variable libre:

#### enseña(Maestro, Aprendiz).

Buscará todas las combinaciones posibles donde el predicado enseña/2 sea verdadero.

#### Variable Instanciada:

#### enseña(merlon, X).

Te dirá a quién enseña Merlón.

4. Representa o describe el árbol de resolución de una de tus consultas.

```
Consulta: sabio(merlon)?

├── regla: sabio(X) :- sabe(X,_), enseña(X,_)

├── sustituyendo X = merlon

├── Subobjetivo 1: sabe(merlon, _)

├── hecho: sabe(merlon, razonamiento_simbolico)

├── satisface el primer subobjetivo

├── Subobjetivo 2: enseña(merlon, _)

├── hecho: enseña(merlon, aldara)

├── satisface el segundo subobjetivo
```

Resultado True

5. Explica el caso trivial y el caso general del ejemplo recursivo que desarrollaste.

#### El caso trivial o caso base:

Es la condición más simple y directa que detiene la recursión. En este caso, define la relación sin necesidad de volver a llamarse a sí misma.

#### maestro\_indirecto(X,Y):-enseña(X,Y).

Establece que X es un maestro indirecto de Y si X le enseña directamente a Y .Se resuelve la consulta sin necesidad de buscar un intermediario, evitando el bucle.

#### Caso Recursivo:

Define la relación en términos de una versión más pequeña o simple de sí misma. Es el que permite la expansión de la cadena.

Establece que X es un maestro indirecto de Y si X le enseña a Z que es un maestro indirecto de Y. La definición se llama a sí mismo. La recursión continua hasta que la ultima llamada encuentra el caso base Z enseña a Y

## 6. Describe cómo aplicaste los predicados \+, ! y fail y cuál fue su efecto.

| Predicado | Regla donde se aplico | Propósito                                                                        | Efecto                                                                                                                                                                                       |
|-----------|-----------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| \+        | R5 Maestro            | Definir a un<br>maestro<br>como alguien<br>que enseña<br>Y no es un<br>aprendiz. | El predicado \+ es(X,aprendiz) solo tiene éxito si la meta interna es(X,aprendiz) falla. Esto asegura que, aunque Merlon enseña, no será considerado maestro si su rol fuera el de aprendiz. |

| i    | consejo_principal(X) | Establecer<br>una prioridad<br>estricta para<br>la elección<br>del<br>consejero,<br>basándose<br>en el orden<br>de las reglas. | Una vez que se encuentra la primera solución (es(X, mago)) y se ejecuta el corte, Prolog descarta irreversiblemente las opciones subsiguientes (es(X, aprendiz) y es(X, bibliotecaria)), sin permitir retroceso a ellas. |
|------|----------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fail | mostrar_personajes   | Obligar a Prolog a retroceder y encontrar todas las soluciones para es(X,_) de forma secuencial, imprimiendo cada una.         | El fail en el cuerpo de la primera cláusula fuerza al motor de inferencia a reintentar la meta anterior, es(X,_), una y otra vez hasta agotar todos los personajes, logrando un ciclo de impresión.                      |

# 7. Reflexiona: ¿de qué manera tu base de conocimiento puede considerarse un sistema inteligente lógico?

Se puede considerar un sistema inteligente lógico porque utiliza la lógica de primer orden a través de cláusulas de horn para realizar inferencias y retornar nuevos conocimientos que no están explícitos declarados.

La base encapsula conocimiento de dos maneras esenciales.

Hechos: Conocimiento explicito y seguro.

 Reglas: Conocimiento inferencial y abstracto. Permite que el sistema razone un poco más allá de los datos brutos

Además, puede llegar a conclusiones validas a partir de ellos por medio de deducciones o búsqueda(backtracking). Es capaz de utilizar el conocimiento para responder a consultas que son esencialmente problemas que se presentan de verificación o generación de soluciones

```
1 ?- ensena(Maestro,Aprendiz).
 Maestro = merlon,
 Aprendiz = aldara.
      2 ?- ensena(merlon,X).
      X = aldara.
            ?- aliado(X,Y).
            = gorik,
             = lyra .
    ?- ensena(merlon,X),sabe(X, ).
     = aldara.
     ?- sabio(X),ayuda_en(X,Tarea).
   area = leyes_basicas ;
    = merlon,
   area = leyes_basicas ;
5 ?- maestro indirecto(merlon,aldara).
```

6 ?- maestro\_indirecto(merlon,aprendiz2).
false.

7 ?- maestro\_indirecto(aldara,aprendiz2).
false.

8 ?- consejo\_principal(X).
X = merlon.

9 ?- mostrar\_personajes

.

Personaje: merlon Personaje: aldara Personaje: gorik Personaje: lyra

true.