EE2210 Electric Circuits Fall 2023

Quiz 3 (Total 100 points)

It is a closed-book, closed-note quiz. Cheating leads to 0% score.

Calculator is allowed. Please show the process of thinking/calculation. Indicate your final answers clearly. Unit is needed if applicable.

1. Show the relationship of the output voltage, v_0 , to the input voltage, v_i , of the circuit in Figure 1. (15%)

Figure 1.

2. An ideal voltmeter (v_m) is used to measure the output voltage of the circuit in Figure 2. What is the reading of the voltmeter? (15%)

Figure 2.

3. Find v_0 in Figure 3. (15%)

Figure 3.

4. Design the operational amplifier in Figure 4 such that $i_{out} = 0.002*v_{in}$. (15%)

Figure 4.

- 5. Consider the circuit in the following figure. The input $v_i = 10t \text{ V}$ when t > 0 and $v_i = 0 \text{ V}$ when $t \le 0$
- 0. Derive and plot the current of the inductor, *i* for $t \ge 0$. (20%)

Figure 5.

6. Consider the circuit in Figure 6 with the voltage source $v_i = 20*u(t-5)$ where u(t) represents a unit step function. Derive and plot v_o for $t \ge 0$. (20%)

Figure 6.

Reference materials

(a) Inverting amplifier

$$v_{\text{out}} = -\left(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \dots + \frac{R_f}{R_n}v_n\right)$$

(d) Summing amplifier

(b) Noninverting amplifier

(c) Voltage follower (buffer amplifier)

(e) Noninverting summing amplifier

(f) Difference amplifier

(g) Current-to-voltage converter

(h) Negative resistance convertor

(i) Voltage-controlled current source (VCCS)

(j) Bridge amplifier