1b. Einführung Modellierung

Optimierung SoSe 2020 Dr. Alexey Agaltsov

Plan

- Anwendungsprobleme
- Beispiel: Farbenaustauschspiel
- Beispiel: Problem des Handlungsreisenden
- Beispiel: Euklids Problem
- Beispiel: Transportproblem

Mathematisches Programm und Anwendungen

Minimiere
$$f(x)$$
 über $x \in \mathcal{B}$ u.d.N. $g_i(x) \leq 0$, $i=1,\ldots,m_U$ $h_j(x)=0$, $j=1,\ldots,m_G$

- Die Grundmenge \mathcal{B} ist die Menge der Wahlmöglichkeiten oder der vorhandenen Entscheidungen
- Die Zielfunktion f rangiert verschiedene Alternative, Entscheidungen mir kleinerer f werden bevorzugt
- g_i , h_j formalisieren die Restriktionen

Anwendungsprobleme: Beispiele

Wirtschaft:

- Optimalen Transportplan entwickeln
- Optimale Losgröße bestimmen (das Zeitungsjunge-Problem)
- Portfolio-Optimierung (Optimales Aktienportfolio erstellen)

Beispiel: Portfolio-Optimierung

Wir haben €1 000 000 und es gibt mehrere Anlagemöglichkeiten:

Allianz, Bayer, Adidas, Vonovia, ...

Wie sollen wir das Geld verteilen?

Der Anlagehorizont ist 1 Jahr

Maximiere den erwarteten Gewinn Minimiere das Risiko

finde einen geeigneten Ausgleich

Anwendungsprobleme: Beispiele

Industrie:

- Fluglärm reduzieren
- Aerodynamische Oberflächengestaltung
- Bestimmung einer optimalen Gerätegröße

Beispiel: Optimierung der Gerätegröße

Optimierungsziel. Minimiere den Strombedarf eines Gerätes in einer elektronischen Schaltung

Was sollen die Länge und die Breite der Geräte sein?

Beschränkungen:

- Flächeninhalt der Platte
- Herstellungsbeschränkungen
- Zeitliche Anforderungen

Vom Anwendungsproblem zum Programm

Formulierung eines Problems benötigt Kreativität

Mehrere Anwendungsprobleme in Industrie und Wirtschaft sind vage und schwer zu konzipieren

Modellierung: Schritte

- Was sind die Entscheidungsvariablen?
- Was sind die Nebenbedingungen?
- Was ist das Optimalitätskriterium (Zielfunktion)?

Plan

- Anwendungsprobleme
- Beispiel: Farbenaustauschspiel
- Beispiel: Problem des Handlungsreisenden
- Beispiel: Euklids Problem
- Beispiel: Transportproblem

Farbenaustauschspiel

Klicke auf einer Position um die Farben in dieser Position sowie die Farben der vertikalen und horizontalen Nachbarn zu wechseln

Farbenaustauschspiel

Klicke auf einer Position um die Farben in dieser Position sowie die Farben der vertikalen und horizontalen Nachbarn zu wechseln

Farbenaustauschspiel

Klicke auf einer Position um die Farben in dieser Position sowie die Farben der vertikalen und horizontalen Nachbarn zu wechseln

Ziel. Mache das Brett rot

Was ist die wenigste benötigte Anzahl von Klicks?

Entscheidungsvariablen

$$x_i = \begin{cases} 1 : \text{es wird auf der Position } i \text{ geklickt} \\ 0 : \text{sonst} \end{cases}$$

Parameter

 N_i : horizontale und vertikale Nachbarn von i

Nebenbedingungen

Die Farbe in Position i ist blau, wenn die Gesamtanzahl von Klicks auf Position i und auf die benachbarten Positionen ungerade ist:

$$x_i + \sum_{j \in N_i} x_j$$
 ist ungerad $\forall i$

Nebenbedingungen

Die Farbe in Position i ist grün, wenn die totale Anzahl von Klicks auf Position i und auf benachbarten Positionen ungerade ist:

$$x_i + \sum_{j \in N_i} x_j = 2y_i + 1 \ \forall i$$

 $y_i \in \{0,1,2\}$

Mathematisches Programm

Minimiere die Gesamtanzahl von Klicks:

Minimiere
$$\sum_i x_i$$
 u.d.N. $x_i + \sum_{j \in N_i} x_j = 2y_i + 1 \quad \forall i$ $x_i \in \{0,1\}, y_i \in \{0,1,2\}$

Plan

- Anwendungsprobleme
- Beispiel: Farbenaustauschspiel
- Beispiel: Problem des Handlungsreisenden
- Beispiel: Euklids Problem
- Beispiel: Transportproblem

Problem des Handlungsreisenden (TSP)

Die paarweise Abstände zwischen den Städten sind bekannt

Finde den kürzesten geschlossenen Weg, der alle Städte genau einmal besucht

In der englischen Literatur wird dieses Problem als *Traveling Salesman Problem (TSP)* bezeichnet

Sofia

TSP: Paarweise Abstände

	Berlin	Helsinki	London	Minsk	Moskau	Paris	Rom	Sofia	Warschau
Helsinki	1105								
London	932	1821							
Minsk	952	715	1872						
Moskau	1608	892	2501	676					
Paris	878	1909	343	1825	2486				
Rom	1184	2202	1434	1737	2376	1106			
Sofia	1319	1946	2015	1284	1777	1758	895		
Warschau	437	915	1448	474	1151	1366	1317	1075	
Wien	524	1439	1235	1003	1670	1034	766	818	556

Abstände in km

TSP: Optimale Lösung

Hilfsparameter:

Punkte
$$i = 1, 2, ..., N$$

Länge c_{ij} der Kante (i, j)

Entscheidungsvariablen:

$$x_{ij} = \begin{cases} 1, & \text{Kante } (i,j) \text{ gehört dem optimalen Weg} \\ 0, & \text{sonst} \end{cases}$$

Zielfunktion:

Minimiere die Pfadlänge
$$\sum_{i,j} c_{ij} x_{ij}$$

Nebenbedingungen:

Jeder Knoten i ist der Startknoten genau einer Kante des Weges:

$$\sum_{i} x_{ij} = 1 \ \forall i$$

Jeder Knoten j ist der Endknoten genau einer Kante des Weges:

$$\sum_{i} x_{ij} = 1 \ \forall j$$

• Subtour Elimination-Bedingung eliminiert disjunkte Schlingen:

$$\sum_{i,j\in S} x_{ij} \le |S| - 1 \quad \forall S \subsetneq \{1,\dots,N\}$$

Mathematisches Programm

Minimiere
$$\sum_{i,j} c_{ij} x_{ij}$$

u.d.N. $\sum_{i} x_{ij} = 1$, $j = 1, ..., N$
 $\sum_{j} x_{ij} = 1$, $i = 1, ..., N$
 $\sum_{i,j \in S} x_{ij} \le |S| - 1 \quad \forall S \subsetneq \{1, ..., N\}$
 $x_{ij} \in \{0,1\}, \ i,j = 1, ..., N$

Plan

- Anwendungsprobleme
- Beispiel: Farbenaustauschspiel
- Beispiel: Problem des Handlungsreisenden
- Beispiel: Euklids Problem
- Beispiel: Transportproblem

Euklids Elemente, Buch VI, Theorem 27

Finde E auf \overline{BC} , so dass das Parallelogramm

ADEF maximalen Flächeninhalt hat

Entscheidungsvariable:

$$x = EC$$

Nebenbedingungen:

$$0 \le x \le BC$$

Euklids Problem

Nach dem Strahlensatz:

$$\frac{x}{BC} = \frac{h}{h_{\Delta}} = \frac{AC - AF}{AC}$$

Zielfunktion:

$$f(x) = |ADEF|$$

$$= h \cdot AF$$

$$= \frac{x}{BC} h_{\Delta} \cdot AC \left(1 - \frac{x}{BC}\right)$$

Euklids Problem: Lösung

Maximiere
$$f(x) = \frac{x}{BC} h_{\Delta} \cdot AC \left(1 - \frac{x}{BC}\right)$$

u.d.N. $0 \le x \le BC$

$$f'(x) = \frac{h_{\Delta}AC}{BC} \left(1 - \frac{2x}{BC} \right) = 0 \qquad \Longrightarrow x = \frac{1}{2}BC$$

$$f''(x) = -\frac{2h_{\Delta}AC}{BC^2} < 0 \implies \text{Maximum}$$

⇒ E ist der Mittelpunkt der Strecke BC

Plan

- Anwendungsprobleme
- Beispiel: Farbenaustauschspiel
- Beispiel: Problem des Handlungsreisenden
- Beispiel: Euklids Problem
- Beispiel: Transportproblem

Es gibt Angebotsorte Q_1, \dots, Q_m und Nachfrageorte S_1, \dots, S_n

Angebotsort Q_i kann produzieren bis zu q_i Einheiten des Produktes

Nachfrageort S_j hat einen Bedarf von S_j Einheiten des Produktes

Transportkosten w_{ij} pro Einheit von Q_i nach S_i sind bekannt (in \mathfrak{E}):

von \ nach	Berlin	Frankfurt	München
Hamburg	4	7	9
Köln	6	3	8
Stuttgart	7	3	4

Bestimme wie viele Einheiten x_{ij} von Q_i nach S_j transportiert werden sollen $\forall i, j$, so dass:

- 1. Alle Bedarfe gedeckt sind
- 2. Die Transportkosten sind minimal

Entscheidungsvariablen:

 x_{ij} = Einheiten transportiert von Q_i nach S_j

Nebenbedingungen:

$$\sum_{j} x_{ij} \leq q_i$$
, $i=1,\ldots,m$ (Vorratsbeschränkung) $\sum_{i} x_{ij} = s_j$, $j=1,\ldots,n$ (Bedarfe sind gedeckt) $x_{ij} \geq 0$, $\forall i,j$

Zielfunktion:

Transportkosten =
$$\sum_{i,j} w_{ij} x_{ij}$$

Mathematisches Programm

Minimiere
$$\sum_{i,j} w_{ij} x_{ij}$$
 u.d.N. $\sum_{j} x_{ij} \leq q_i$, $i=1,\ldots,m$ $\sum_{i} x_{ij} = s_j$, $j=1,\ldots,n$ $x_{ij} \geq 0$, $\forall i,j$

Plan

- Anwendungsprobleme
- Beispiel: Farbenaustauschspiel
- Beispiel: Problem des Handlungsreisenden
- Beispiel: Euklids Problem
- Beispiel: Transportproblem

Nächstes Video

• 2a. Grundlagen: Existenz von Lösungen