Hash Functions

- The performance of a hashtable depends significantly on how often keys collide.
 - More collisions → poorer efficiency.
- Poorly designed hash functions often map similar keys to the same bucket.
 - A correct but extremely poor hash function:

```
int Hash(char *s, int nBuckets) {
   return 0;
}
```

Hash Functions

- A good hash function should
 - reduce the number of collisions;
 - evenly distributes the keys into buckets;
 - quick to compute.

Deciding the Number of Buckets

• The *load factor* λ is the average length of each bucket chain.

$$\lambda = \frac{N_{entries}}{N_{buckets}}$$

- For good performance, the value of λ should remain relatively small.
 - λ too large (too few buckets) \rightarrow collision inevitable.
 - λ too small (too many buckets) \rightarrow waste memory.
- N_{buckets} is usually *prime* to improve performance. (Again, too advanced to explain.)

Resolving Collisions

- Besides chaining, other methods exist to resolve collisions.
 - Linear Probing
 - Quadratic Probing
 - Double Hashing
 - Rehashing
 - ..

Open Addressing

• In *open addressing*, an entry is stored within the table.

```
typedef struct {
   char *key;
   void *value;
} entryT;

struct hashtableCDT {
   entryT buckets[101];
};
```

• λ is *always* < 1.0.

Open Addressing

• When collision occurs, we simply *probe* another bucket in the hashtable.

Linear Probing

- Let $h_0 = Hash(key, N_{buckets})$
- If h₀ collides,
 - probe $h_1 = (h_0 + F(1)) \% N_{buckets}$.
- If h₁ collides,
 - probe $h_2 = (h_0 + F(2)) \% N_{buckets}$.
- If h₂ collides,
 - probe $h_3 = (h_0 + F(3)) \% N_{buckets}$.
- ...
- F(i) is a **linear** function. Typically, F(i) = i.

F is the collision resolution strategy.

 $[h_0, h_1, h_2, ...]$ is called a **probing sequence**.

Linear Probing: Enter

- Let F(i) = i.
- Probe $h_0 = Hash(key, N_{buckets})$.
- Probe $h_1 = (h_0 + 1) \% N_{buckets}$.
- Probe $h_2 = (h_0 + 2) \% N_{buckets}$.
- Probe $h_3 = (h_0 + 3) \% N_{buckets}$.
- •
- Until an empty bucket is found.
- Insert the entry at the empty bucket.

Linear Probing: Enter

- Let F(i) = i.
- Probe $h_0 = Hash(key, N_{buckets})$.
- Probe $h_1 = (h_0 + 1) \% N_{buckets}$.
- Probe $h_2 = (h_0 + 2) \% N_{buckets}$.
- Probe $h_3 = (h_0 + 3) \% N_{buckets}$.
- ...
- Until an empty bucket is found.
- Insert the entry at the empty bucket.

Linear Probing: Lookup

• Let F(i) = i.

- Probe $h_0 = Hash(key, N_{buckets})$.
- Probe $h_1 = (h_0 + 1) \% N_{buckets}$.
- Probe $h_2 = (h_0 + 2) \% N_{buckets}$.
- ...
- Until the key is matched.
- Return the corresponding value of the bucket.

	buckets
0	
1	
2	
3	
4	
5	
6	
7	
8	18
9	89

$$h_0 = Hash(49)=9.$$

 $h_1 = (h_0 + 1) \% 10 = 0.$

	buckets
0	49
1	
2	
3	
4	
5	
6	
7	
8	18
9	89

$$h_0 = Hash(58) = 8.$$

 $h_1 = (h_0 + 1) \% 10 = 9.$
 $h_2 = (h_0 + 2) \% 10 = 0.$
 $h_3 = (h_0 + 3) \% 10 = 1.$

	buckets
0	49
1	58
2	
3	
4	
5	
6	
7	
8	18
9	89

$$h_0 = Hash(69) = 9.$$

 $h_1 = (h_0 + 1) \% 10 = 0.$
 $h_2 = (h_0 + 2) \% 10 = 1.$
 $h_3 = (h_0 + 3) \% 10 = 2.$

	buckets
)	49
1	58
2	69
3	
4	
5	
6	
7	
3	18
9	89

Primary Clustering in Linear Probing

- Linear probing tends to create long sequences of filled buckets in a hash table.
- This effect is called *primary clustering*.
- Primary clustering degrades the performance of a hash table.
- **Quadratic probing** can be used to address the primary clustering problem.

Quadratic Probing

- Quadratic probing is mostly the same as linear probing.
- Let $h_0 = Hash(key, N_{buckets})$
- If h_0 collides, probe $h_1 = (h_0 + F(1)) \% N_{buckets}$.
- If h_1 collides, probe $h_2 = (h_0 + F(2)) \% N_{buckets}$.
- If h_2 collides, probe $h_3 = (h_0 + F(3)) \% N_{buckets}$.
- ...
- F(i) is a *quadratic* function. Typically, $F(i) = i^2$.

Quadratic Probing

• Let $F(i) = i^2$.

- Probe $h_0 = Hash(key, N_{buckets})$.
- Probe $h_1 = (h_0 + 1) \% N_{buckets}$.
- Probe $h_2 = (h_0 + 4) \% N_{buckets}$.
- Probe $h_3 = (h_0 + 9) \% N_{buckets}$.
- Probe $h_4 = (h_0 + 16) \% N_{buckets}$.

50

	buckets
0	
1	
2	
3	
4	
5	
6	
7	
8	18
9	89

$$h_0 = Hash(49)=9.$$

 $h_1 = (h_0 + 1^2) \% 10 = 0.$

	buckets
0	49
1	
2	
3	
4	
5	
6	
7	
8	18
9	89

$$h_0 = Hash(58)=8.$$

 $h_1 = (h_0 + 1^2) \% 10 = 9.$
 $h_2 = (h_0 + 2^2) \% 10 = 2.$

	buckets
0	49
1	
2	58
3	
4	
5	
6	
7	
8	18
9	89

$$h_0 = Hash(69)=9.$$

 $h_1 = (h_0 + 1^2) \% 10 = 0.$
 $h_2 = (h_0 + 2^2) \% 10 = 3.$

	buckets
0	49
1	
2	58
3	69
4	
5	
6	
7	
8	18
9	89

Quadratic Probing

- While quadratic probing eliminates the primary clustering problem, it has its drawback as well.
- There is *no* guarantee of finding an empty bucket once the table gets more than half full (i.e., $\lambda > 0.5$).

Load Factor Restriction: an Example

- Let $N_{buckets} = 7$, $h_0 = 0$, and $F(i) = i^2$.
 - $h_0 = 0$
 - $h_1 = (0 + 1) \% 7 = 1$
 - $h_2 = (0 + 4) \% 7 = 4$
 - $h_3 = (0 + 9) \% 7 = 2$
 - $h_4 = (0 + 16) \% 7 = 2$
 - $h_5 = (0 + 25) \% 7 = 4$
 - $h_6 = (0 + 36) \% 7 = 1$

•
$$h_7 = (0 + 49) \% 7 = 0$$

•
$$h_8 = (0 + 64) \% 7 = 1$$

•
$$h_9 = (0 + 81) \% 7 = 4$$

•
$$h_{10} = (0 + 100) \% 7 = 2$$

•
$$h_{11} = (0 + 121) \% 7 = 2$$

•
$$h_{12} = (0 + 144) \% 7 = 4$$

•
$$h_{13} = (0 + 169) \% 7 = 1$$

•
$$h_{14} = (0 + 196) \% 7 = 0$$

• ...

The buckets 3, 5, and 6 are *never* probed, even if they are empty.

Double Hashing

 To eliminate the load factor restriction, we can use a second hash function Hash₂ and

$$F(i) = i \times Hash_2(key, N_{buckets})$$

- $h_0 = Hash(key, N_{buckets})$
- $h_1 = (h_0 + 1 \times Hash_2(key, N_{buckets})) \% N_{buckets}$
- $h_2 = (h_0 + 2 \times Hash_2(key, N_{buckets})) \% N_{buckets}$
- $h_3 = (h_0 + 3 \times Hash_2(key, N_{buckets})) \% N_{buckets}$
- ...

Hash₂ should return an integer in [1, N_{buckets} − 1].

• The idea is that even if two keys hash to the same code using *Hash*, they will have different codes using *Hash*₂.

Second Hash Function

One possible second hash function

```
int Hash2(char *s, int nBuckets) {
  int i;
  unsigned long hashCode;

hashCode = 0;
  for (i = 0; s[i] != '\0'; i++)
     hashCode = hashCode * MULTIPLIER + s[i];
  return (hashCode % (nBuckets - 1) + 1);
}
```

```
int Hash2 (char *s, int nBuckets) { • h_0 = Hash(key, N_{buckets})
   int i;
                                             • h_1 = (h_0 + 1 \times Hash_2(key, N_{buckets})) \% N_{buckets}
   unsigned long hashCode;
                                             • h_2 = (h_0 + 2 \times Hash_2(key, N_{buckets})) \% N_{buckets}
   hashCode = 0;
   for (i = 0; s[i] != '\0'; i++)
       hashCode = hashCode * MULTIPLIER + s[i];
   return (hashCode % (nBuckets - 1) + 1);
                                                         Returns an integer in the
                                                         range [1, nBuckets - 1].
int Hash(char *s, int nBuckets) {
   int i;
   unsigned long hashCode;
   hashCode = 0:
   for (i = 0; s[i] != '\0'; i++)
       hashCode = hashCode * MULTIPLIER + s[i];
                                                          Returns an integer in the
   return (hashCode % nBuckets);____
                                                           range [0, nBuckets - 1].
}
```

Rehashing

- No matter what collision resolution scheme is used, the performance of an open addressing hash table degrades when λ approaches 1 (i.e., the table is becoming full).
- We can dynamically increase $N_{buckets}$ when λ increases above a certain threshold.

Rehashing

- When $N_{buckets}$ is changed, the hash function has to be changed also. (Why?)
- All entries in the hash table have to be re-entered using the new hash function.
- This process is called rehashing.
- Note: rehashing is rarely necessary for most applications.