Exercice 3 p. 89

 \overline{f} est définie par f(x) = 10(x-5)(x+4). Elle est sous la forme $a(x-x_1)(x-x_2)$ comme dans le cours. Donc pour trouver les racines du trinôme, on résout x-5=0 qui donne x=5 et x+4=0 qui donne x=4.

Les racines du trinôme sont alors 5 et -4.

Or l'axe de symétrie de la parabole a une équation de la forme x=c où $c=\frac{x_1+x_2}{2}=\frac{5+(-4)}{2}=\frac{1}{2}$.

Donc l'axe de symétrie de cette courbe a pour équation $x = \frac{1}{2}$.

Exercice 6 p. 89

De la même façon, on détermine les racines de ce trinôme : on résout x + 8 = 0 qui donne x = -8 et x - 4 = 0 qui donne x = 4.

Les racines de ce trinôme sont alors -8 et 4.

Dans l'écriture $a(x-x_1)(x-x_2)$, le signe de a nous indique s'il s'agit d'un maximum ou un minimum.

Or ici, a = 3 > 0. Donc la fonction f admet un **minimum** atteint en $x = \frac{x_1 + x_2}{2} = \frac{-8 + 4}{2} = -2$.

De plus $f(-2) = 3(-2+8)(-2-4) = 3 \times 6 \times (-6) = -72$

Donc le minimum de cette fonction vaut -72.

Exercice 8 p. 89

- 1. Il suffit de calculer $f(-1): f(-1) = -2 \times (-1)^2 + 4 \times (-1) + 6 = -2 4 + 6 = 0$. Donc -1 est bien une racine de f(x).
- 2. x_1 et x_2 étant les racines du trinôme, la droite d'équation x = 1 étant un axe de symétrie de la courbe, on obtient : $1 = \frac{x_1 + x_2}{2}$ où $x_1 = -1$ d'après la question 1.

On obtient alors $1 = \frac{-1+x_2}{2}$ ce qui donne $2 = -1+x_2$ et $3 = x_2$.

Donc l'autre racine du trinôme vaut 3.

Exercice 11 p. 89

 $\overline{f(x)}$ est écrit sous forme développée $ax^2 + bx + c$ et on la veut sous forme factorisée, c'est-à-dire $a(x - x_1)(x - x_2)$ où a est le coefficient devant x^2 , x_1 et x_2 les racines du polynôme.

Donc on obtient f(x) = 2(x-1)(x-(-4)) = 2(x-1)(x+4).

Exercice 12 p. 89

L'argument premier est le même que pour l'exercice précédent sauf qu'il nous manque la deuxième racine.

On peut déjà écrire : $g(x) = 1(x - (-1))(x - x_2) = (x + 1)(x - x_2)$.

En développant cette expression, on doit retrouver $x^2 - 2x - 3$.

Or $(x+1)(x-x_2) = x^2 - xx_2 + x - x_2$. Or en identifiant le coefficient constant, on peut écrire $-x_2 = -3$ donc $x_2 = 3$.

Donc la forme factorisée de g(x) est (x-1)(x-3).

Exercice 37 p. 91

- 1. On résout x-2=0 qui donne x=2 et x+4=0 qui donne x=-4. Donc les racines de ce polynôme sont 2 et -4.
- 2. On résout t+2.5=0 qui donne t=-2.5 et $t-\frac{1}{3}=0$ qui donne $t=\frac{1}{3}$. Donc les racines de ce polynôme sont -2.5 et $\frac{1}{3}$.