,(2), מבנים אלגבריים - 03 מתרון מטלה

2025 במאי 2

. שדות. מחת החת \gcd נשמר נראה ש $\gcd_{L[x]}(g,h)=\gcd_{F[x]}(g,h)$. נראה ש $gcd_{L[x]}(g,h)=\gcd_{F[x]}(g,h)$ נראה בתחבת שדות. נראה שלות.

אם $f=q\overline{f}+r$ אם עניח שמחלק את החיסור שלהם כשהם מתוקנים ונקבל פולינום קטן יותר שמחלק את החיסור עניקה את החיסור שלהם כשהם מתוקנים ונקבל פולינום קטן יותר שמחלק את $f=q\overline{f}-f$ אחרת ניקה אחרת עניח שי $f=q\overline{f}-f\in F[x]$ ונסיק שי $f=q\overline{f}-f\in F[x]$ נניח שם כך אחרת, אילו עניח שי $f=q\overline{f}-f\in F[x]$ ונסיק שי $f=q\overline{f}-f\in F[x]$ ונסיק שי $f=q\overline{f}-f\in F[x]$ וניח שי $f=q\overline{f}-f\in F[x]$ מתירה. נניח שי $f=q\overline{f}-f\in F[x]$

 $eta x^j$ יהי אם קיים על־כך, דהינו אם קיים המרכיב את מונום המרכיב את q המעיד על כלומר q אונניה גם כי זהו המונום הגדול ביותר המעיד על q המעיד על כך, כלומר q המעיד על ידי q המעיד על לפעולות אלה. נניה בלי על q הוא מונום המרכיב אותם במקום. לכל q האנו יודעים שq האנו יודעים שq הוא מונום של q הוא מונום של q מתוקנים שניהם. נבחין כי הדרגה של q קטנה מזו של q הוא q עבור q מתוקנים שניהם. נבחין כי הדרגה של q קטנה מזו של q הוגם שר q אונום של q אונום של q הוגם על אונום של q הוא מונום של q הוא מונום של q הוא של לונו של q הוא של לונו של q הוא של q הו

. שדה F יהי

'סעיף א

 $g,h\in F[x]$ ויהיו $c\in F$ יהי

i

(g+h)'=g'+h'נראה ש

אות, אז שוות, אז הפולינומים לא דרגות בניח כי נניח $n\in\mathbb{N}$, $\alpha_i,\beta_i\in F$ עבור $h=\sum_{i=0}^n\beta_ix^i$ שוות, אז $g=\sum_{i=0}^n\alpha_ix^i$ נניח ש $g=\sum_{i=0}^n\alpha_ix^i$ בחל מי $g=\sum_{i=0}^n\alpha_ix^i$ בחל מי $g=\sum_{i=0}^n\alpha_ix^i$ משמעות לעובדה זו בחישוב. עתה נבדוק את הזהות,

$$(g+h)' = \sum_{i=1}^{n} i(\alpha_i + \beta_i)x^{i-1} = \sum_{i=1}^{n} i\alpha_i x^{i-1} + \sum_{i=1}^{n} i\beta_i x^{i-1} = g' + h'$$

ולכן הזהות אכן חלה.

ii

 $(c\cdot g)'=c\cdot g'$ נראה ש

הוכחה. נבדוק,

$$(c \cdot g)' = \left(c \cdot \sum_{i=0}^{n} \alpha_i x^i\right)' = \left(\sum_{i=0}^{n} c\alpha_i x^i\right)' = \sum_{i=1}^{n} ic\alpha_i x^{i-1} = c \cdot \sum_{i=1}^{n} i\alpha_i x^{i-1} = c \cdot g'$$

וקיבלנו שאכן הזהות מתקיימת.

iii

 $g\cdot h'=g'\cdot h+g\cdot h'$ נראה שמתקיים,

הוכחה.

$$(g \cdot h)' = \left(g \cdot \sum_{i=0}^{n} \beta_{i} x^{i}\right)'$$

$$= \left(\sum_{i=0}^{n} g \cdot \beta_{i} x^{i}\right)'$$

$$= \sum_{i=0}^{n} \beta_{i} (g \cdot x^{i})'$$

$$= \sum_{i=0}^{n} \beta_{i} \sum_{j=1}^{n} \alpha_{j} (i+j) x^{i+j-1}$$

$$= \sum_{i=0}^{n} \beta_{i} \left(i x^{i-1} \sum_{j=1}^{n} \alpha_{j} x^{j} + x^{i} \sum_{j=1}^{n} \alpha_{j} j x^{j-1}\right)$$

$$= \sum_{i=0}^{n} \beta_{i} \left(i x^{i-1} g + x^{i} g'\right)$$

$$= g \sum_{i=0}^{n} \beta_{i} i x^{i-1} + g' \sum_{i=0}^{n} \beta_{i} x^{i}$$

$$= gh' + g'h$$

סעיף ב׳

g'(a) = h(a) אז $g(x) = h(x) \cdot (x-a)$ כך ש־ $g \in F[x]$ שורש של $a \in F$ אם לכלל לופיטל, אם מקרה הפרטי

הוכחה. מתקיים,

$$g'(x) = h'(x)(x-a) + h(x)$$

מהזהויות שמצאנו בסעיף הקודם. נציב ונקבל,

$$g'(a) = h'(a)(a-a) + h(a) = h(a)$$

ומצאנו כי אכן מתקיים השוויון שרצינו להראות.

. בכל סעיף נגדיר פולינום ונבדוק אם הוא ספרבילי מעל $\mathbb Q$, נמצא שורשים מריבוי גדול מאחד.

'סעיף א

$$f(x) = x^3 - 3x + 2$$
נגדיר

. שורש כפול. ש־1 שורש הוא א ספרבילי וש־1 שורש פולינום הוא לא ספרבילי וש־1 שורש פולינום הוא לא ספרבילי וש־1 שורש כפול. f(1)=0

סעיף ב׳

$$f(x) = x^3 - 7x + 6$$
 נגדיר

, פתרון עלינו לבדוק את (ב, ב, בקבל מחישוב ש- $x=\pm 1,\pm 2,\pm 3$ את לבדוק עלינו עלינו עלינו יקבל, נקבל מחישוב אוני אוני לבדוק את

$$f(x) = (x-1)(x-2)(x+3)$$

ולכן הפולינום הוא ספרבילי.

'סעיף ג

$$f(x) = x^4 - 4x^3 + 6x^2 - 4x + 1$$
 נגדיר

 $f(x)=(x-1)(x^3-3x^2+3x-1)=(x-1)^4$ פתרון הפעם נקבל החלוקת פולינומים נקבל בלבד, ונקבל $x=\pm 1$ את בלבד, הפעם עלינו לבדוק את בלבד, ונקבל $x=\pm 1$ הוא $x=\pm 1$ הוא בסיק אם כך שהפולינום לא ספרבילי והריבוי של $x=\pm 1$ הוא בלבד, ונקבל החלובת החלובת המים בלבד, הוא בלבד, ונקבל החלובת החלובת