CEPHALOPOD CAMOUFLAGE IMAGE COLORIZATION PROJECT

University of Chicago

Ping-Jung Liu

Adviser: Professor Rick Stevens

MOTIVATION

https://www.youtube.com/watch?v=1VjxvrXGEHk

MOTIVATION

- Cephalopod Paradox
 - Near perfect camouflage
 - Color blind
- Possible Explanation
 - U shaped pupils
 - Embedded colorization systems

DATASET

- 1405 underwater natural photos, 1124 used for training
- 128 X 128 X 3
- Converged to grayscale (from opency.org)
 0.299*red + 0.587*green + 0.114*blue

BASE CASE

Autoencoder

- MSE + Adam
- Blurry but was able to learn color patterns

BASE CASE

SUPER PIXEL

- Vague boundaries in base case
- Felzenszwalb image segmentation
- Minimum pixel per superpixel = 3
- Fill in average color for each superpixel
- Better boundaries, less texture

SUPER PIXEL

SUPER PIXEL + LUMINANCE

- Combine pure chromatic predictions from super pixel with luminance from base grayscale images
- For each color pixel, scale the color channels to match original grayscale values.
- Perfectly maintain texture

SUPER PIXEL + LUMINANCE

Ground Truth

DISCUSSION + SECOND HALF QUARTER

- Possible for cephalopods to add predicted color to their black/white visions
- More hyperparameter optimization
- Better measure for difference between images
- More studies on the actual mechanisms of cephalopods' eyes and pupils

Q/A