1	2	3	4	5

APELLIDO Y NOMBRE:

No. de libreta:

Carrera:

ALGEBRA - FINAL (19/03/04)

1.— Sea \Re la relación en $A:=\{2,3,4,5,\ldots,999,1000\}$ definida por

$$n \Re m \iff (n:m) \neq 1.$$

- (i) Estudiar si \Re es reflexiva, simétrica, antisimétrica y/o transitiva.
- (ii) Determinar la cantidad de $m \in A$ que verifican que $12 \Re m$.
- **2.** Determinar todos los $a \in \mathbb{Z}$ tales que $7a^9 \equiv 1 \pmod{10}$.
- **3.** Probar que

$$w = \frac{\sqrt{2 + \sqrt{2}}}{2} + \frac{\sqrt{2 - \sqrt{2}}}{2}i$$

es una raíz de orden $\,16\,$ de la unidad, que además es primitiva.

4.— Sea g un polinomio que verifica que $g(0) \neq 0$ y sea $(f_n)_{n \in \mathbb{N}}$ la sucesión de polinomios definida por:

$$f_1 := X^2 g(X)$$
 , $f_{n+1} = (X f'_n(X))^2$ $\forall n \in \mathbb{N}$.

Determinar y probar una fórmula para la multiplicidad exacta de 0 como raíz de f_n , para todo $n \in \mathbb{N}$.

5.— Factorizar en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$ el polinomio $X^4+3\,X^3+5\,X^2+4\,X+2$ sabiendo que tiene una raíz en común con el polinomio $X^6+3\,X^5+6\,X^4+7\,X^3+8\,X^2+6\,X+4$.

Se considerarán sólo las respuestas debidamente justificadas.