Análise dos resultados obtidos através do uso de multiprocessamento para filtro de mediana

Por Lucas Trentin e Marcello Fabrizio

O trabalho

O trabalho proposto tem como finalidade a implementação de um filtro de mediana para imagens do tipo **BMP**, utilizando multiprocessamento. Esta parte foi desenvolvida na linguagem C e o código, junto com todas as imagens utilizadas para teste, está disponível no <u>Github</u>.

O filtro de mediana

O filtro de mediana é uma técnica de filtragem digital que é geralmente utilizada para remoção de ruídos em uma imagem, sendo esta uma importante parte no pré-processamento para outros tipos de análises.

A ideia do algoritmo é percorrer a imagem pixel por pixel e substituir seu valor com a mediana dos seus vizinhos. Esse valor é obtido aplicando uma máscara, ou seja, uma matriz *NxN*, sendo *N* o tamanho da máscara e tendo o pixel como seu centro.

				:
123	125	126	130	140
 122	124	126	127	135
 118	120	150	125	134
 119	115	119	123	133
 111	116	110	120	130

Já que o maior tempo e esforço computacional está em percorrer pixel por pixel e aplicando a máscara, imagens muito grandes ou máscaras muito grandes irão deixar o algoritmo mais lento.

O filtro de mediana foi implementado baseando-se na implementação do algoritmo disponível na <u>página da Wikipedia</u>.

Os resultados

Como indicado na descrição do trabalho, foram feitas análises com as máscaras de tamanhos 3x3, 5x5 e 7x7 e processadas com até 8 processos. Para testes, foram utilizadas imagens de menor tamanho para facilitar no desenvolvimento. O funcionamento do filtro foi como o esperado.

Seguem as comparações entre os resultados para o filtro com máscara de 3x3, 5x5 e 7x7.

Para filtro com máscara 3x3:

Para filtro com máscara 5x5:

Para filtro com máscara 7x7:

É perceptível que quanto maior a área de análise da máscara, mais "borrada" ficará a imagem.

Para a análise de desempenho, foi utilizada uma das imagens BMP utilizada para compor a famosa <u>"fotografia" do buraco negro</u>, capturada pela NASA. A imagem está disponível em um <u>acervo</u> online. A seguir, estão os gráficos dos resultados obtidos.

Gráficos para máscara 3x3

Tempo(segundos) versus N. processos para máscara 3x3

Gráfico de speedup para máscara 3x3

Gráfico de eficiência para máscara 3x3

Gráficos para máscara 5x5

Tempo(segundos) versus N. processos para máscara 5x5

Gráfico de speedup para máscara 5x5

Gráfico de eficiência para máscara 5x5

Gráficos para máscara 7x7

Aqui foram obtidos os maiores tempos de processamento devido ao tamanho da máscara.

Tempo versus N. processos para máscara 7x7

Gráfico de speedup para máscara 7x7

Gráfico de eficiência para máscara 7x7

