Tema9

Memorias y dispositivos programables

Contenidos

Memorias:

Concepto y jerarquía de memorias.

Principios de las memorias semiconductoras.

Memorias de acceso aleatorio (RAM).

Memorias de sólo lectura (ROM).

Expansión de memorias.

Tipos especiales de memorias.

Dispositivos programables: Arquitectura básica de una FPGA.

Memorias y dispositivos programables

Concepto y jerarquía de memorias

Concepto de memoria

- Una computadora requiere del almacenamiento permanente de una gran cantidad de datos binarios.
- Los sistemas basados en microprocesador necesitan dispositivos de memoria con objeto de almacenar los programas y mantener los datos generados durante el procesamiento.
- En informática, normalmente el término *memoria* hace referencia a las memorias RAM y ROM y el término *almacenamiento* hace referencia a los discos y demás dispositivos externos.

Clasificación de memorias

Característica		C inta	HDD	RAM	ROM	FIFO	DVD
Tecnología	Magnética	Х	Х				
	S emiconductor			Х	Х	Х	
	Óptica						Х
Acceso	Aleatorio			Х	Х		
	S ecuencial	Х	Х			Х	Х
Volatilidad	Volátil			Х		Х	
	No volátil	Х	Х		Х		Х

Clasificación de memorias

Velocidad y tiempo de acceso

Velocidad de acceso: Cantidad de bits que se transfieren por segundo (bits por segundo)

Tiempo de acceso (t_{access}): Intervalo de tiempo que transcurre entre la orden de acceso y el acceso al dato.

Ejemplo de acceso de lectura a ROM o RAM:

Jerarquía de memorias

Memorias y dispositivos programables

Principios de las memorias semiconductoras

Matriz de memoria básica

- •C ada elemento de almacenamiento de una memoria puede almacenar 1 bit y se denomina **celda**.
- •Las memorias están formadas por matrices de celdas.
- •C ada fila de esa matriz de memoria se denomina palabra y representa la información que puede leerse/escribirse en cada acceso a la misma.

Unidades de datos binarios

- •Una palabra de bits puede tener cualquier longitud aunque por defecto suele considerarse de 16 bits.
- •En cualquier caso, una palabra de bits puede descomponerse en las siguientes unidades:

Dirección y capacidad de las memorias

•La posición de una palabra en una memoria se denomina dirección.

•La capacidad de una memoria es el número total de bits que puede almacenar, 2ⁿxk.

Operaciones básicas de las memorias

Al tratarse de dispositivos de almacenamiento, las memorias cuentan con dos operaciones básicas:

Escritura (*write*): permite almacenar una palabra en una determinada dirección de la memoria.

Lectura (read):permite recuperar la palabra almacenada en una determinada dirección de la memoria.

Para la implementación de estas operaciones se necesitan dos buses:

Bus de direcciones (address bus): para indicar la dirección de lectura/escritura.

Bus de datos (data bus): para leer/escribir la palabra en sí.

Operación de escritura

Data Bus $\longrightarrow M(n)$

En el ejemplo:

 $01001011 \longrightarrow M(101)$

Operación de lectura

D = [M(n)]

En el ejemplo:

M(101) = 01001011

Las memorias RAM y ROM

Las dos principales categorías de memorias semiconductoras son:

ROM (Read-Only Memory): sólo poseen capacidad de lectura y son no volátiles.

RAM (Random-Access Memory): poseen capacidad de lectura y escritura y son volátiles.

Memorias y dispositivos programables

Memorias de sólo lectura (ROM)

Tecnologías de la ROM

- TTL y MOS
- Con metalización
- Con fusibles

ROM Módulos programados con máscaras por el fabricante;

sin posibilidad de modificar la informacion

Familia de memorias ROM

Memoria ROM

A ₂	A ₁	A_0	D_3) ₂ [) ₁ [0
	_		HI	HI	НΙ	<u>HI</u>
0	0	0	0	0	1	1
0	0	1	1	0	0	0
0	1	0	1	0	1	0
0	1	1	1	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	0	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0
	0 0 0	 0 0 0 0 0 1 0 1 1 0	0 0 1 0 1 0 0 1 1 1 0 0 1 0 1	HI 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1	HI HI 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 0	HI HI HI 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 0 1 0

En cada columna se realiza una función (cuando CS=1). P. ej.

$$D_0 = \Sigma (m_0, m_3, m_4, m_5) = \Pi (M_1, M_2, M_6, M_7)$$

Memoria ROM

Descripción de ROM en lenguaje Verilog


```
module rom8x4(
    input CS,
   input [2:0] A,
    output reg [3:0] D
    );
  al ways @(CS, A)
   if (CS)
      case (A)
               D = 'h3;
           D = 'h8;
                 D = 'hA;
                 D = 'hB;
                 D = 'h7;
               D = 'h5;
             D = 'hC;
        def aul t: D = 'h4;
      endcase
    el s e
      D = 'hZ;
endmodule // rom8x4
```


Operación de memoria ROM

Memorias y dispositivos programables

Memorias de acceso aleatorio (RAM)

Familia de memorias RAM

- •Las dos categorías principales de memorias RAM son:
 - **SRAM** (*Static* RAM): realizada con *flip-flops* (más rápida).
 - **DRAM** (*Dynamic* RAM): realizada con condensadores (más económica).

Descripción de memoria RAM

Puede tener las líneas de datos unidireccionales (entradas y salidas separadas) o bidireccionales.

Descripción de RAM 2ⁿ x k con líneas de datos bidireccionales:

RW	M ←	D =		
00	$M \leftarrow M$	HI		
01	$M(A) \leftarrow D$	[D in]		
10	$M \leftarrow M$	D = M(A)		
11	Prohibido			

Diseño de memoria RAM

RAM 2ⁿxk: Estructura interna básica

Descripción Verilog de RAM

Descripción de RAM en lenguaje Verilog

```
module ram8x4(
   input CS,
   input WE,
   input OE,
   input [2:0] A,
   inout [3:0] D
   );
 reg [3:0] mem [7:0];
 al ways @(CS, WE, A, D)
   if (CS && WE)
     mem[A] = D;
 mem[A] : 'hZ;
endmodule // ram8x4
```


Operación de memoria RAM

Memorias y dispositivos programables

Expansión de memorias

Expansión de longitud de palabra en memorias ROM

Conseguir una ROM 23 x 8 con dos ROM 23 x 4

Expansión de longitud de palabra en memorias RAM

Expansión de número de palabras en memorias ROM

Conseguir una ROM 24 x 4 con dos ROM 23 x 4

Expansión de número de palabras en memorias RAM

Memorias y dispositivos programables

Tipos especiales de memorias

Memorias secuenciales

Memorias LIFO (Last In-First Out)

PUSH

Escribe nuevo dato

PULLo POP

Leer /y extraer

último dato

PILA VACÍA: Cuando no se ha escrito ningún dato

PILA LLENA: Cuando están escritos D datos

PILA OCIOSA: Cuando no hay Pull ni Push

Memorias LIFO (Last In-First Out)

- •Push (Escritura): se escribe en la cabecera de la pila (siguiente posición libre).
- •Pull (Lectura): se lee el dato más nuevo y se libera la posición.

Descripción funcional

Push Pull	$R_x \leftarrow$	Dout =	
0 0	$R_x \leftarrow R_x$	Dout = HI	
01	$R_x \leftarrow R_{(x+1)}; R_{(D-1)} \leftarrow 0$	Dout = [R0]	
10	$R_x \leftarrow R(x-1) R_0 \leftarrow D_{in}$	Dout = HI	
11	Prohibida		

Memorias FIFO (First In-First Out)

Memorias de doble puerto

•Cuentan con 2 puertos independientes por lo que permiten simultanear:

- 2 Lecturas
- 2 Escrituras
- 1 Lectura + 1 Escritura

Memorias con bus de direcciones multiplexado

- •Se ahorran líneas de conexión utilizando un bus más estrecho que el necesario para suministrar la dirección.
- •Son más lentas ya que hay que suministrar la dirección por partes.

Memorias NVRAM (Non-Volatile RAM)

Pueden implementarse siguiendo varias estrategias diferentes:

SRAM + Pila de litio (configuración BIOS)

SRAM + Batería (videoconsolas portátiles)

RAM + EEPROM: ante un pulso de retención, el contenido de la RAM se vuelca en la EEPROM en paralelo (PDA).

