Package 'tidyHeatmap'

May 20, 2022

```
Version 1.8.1
Maintainer Stefano Mangiola <mangiolastefano@gmail.com>
Description This is a tidy implementation for heatmap. At the
      moment it is based on the (great) package 'ComplexHeatmap'. The goal
     of this package is to interface a tidy data frame with this powerful
     tool. Some of the advantages are: Row and/or columns colour
      annotations are easy to integrate just specifying one parameter
     (column names). Custom grouping of rows is easy to specify providing
      a grouped tbl. For example: df %>% group_by(...). Labels size
      adjusted by row and column total number. Default use of Brewer and
      Viridis palettes.
License GPL-3
URL https://www.r-project.org,
     https://github.com/stemangiola/tidyHeatmap
BugReports https://github.com/stemangiola/tidyHeatmap
Depends R (>= 3.6)
Imports methods,
     stats,
     utils,
     dplyr (>= 0.8.5),
     magrittr (>= 1.5),
     tidyr (>= 1.0.3),
     rlang (>= 0.4.5),
     purrr (>= 0.3.3),
     tibble,
     ComplexHeatmap (>= 2.2.0),
     viridis (>= 0.5.1),
     circlize (>= 0.4.8),
     RColorBrewer (>= 1.1),
      grid,
     grDevices,
     lifecycle (>= 0.2.0),
      dendextend,
      patchwork
```

Type Package

Title A Tidy Implementation of Heatmap

2 R topics documented:

Suggests spelling,
testthat,
vdiffr,
BiocManager,
knitr,
rmarkdown,
qpdf,
covr,
roxygen2,
forcats,
ggplot2
VignetteBuilder knitr
RdMacros lifecycle
Biarch true
biocViews AssayDomain, Infrastructure
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
Language en-US

${\sf R}$ topics documented:

add_annotation 3

	layer_arrow_down	22
	layer_arrow_up	
	layer_diamond	
	layer_point	25
	layer_square	
	N52	27
	parse_formula	27
	pasilla	
	prepend	
	quo_names	
	save_pdf	
	save_pdf,Heatmap-method	
	save_pdf,InputHeatmap-method	
	scale_design	
	scale_robust	
	select_closest_pairs	
	split_rows	
	wrap_heatmap	
Index		35
244	annotation add annotation	
auu_	_aiiiotatioii uuu_uunouuon	

Description

add_annotation() takes a tbl object and easily produces a ComplexHeatmap plot, with integration with tibble and dplyr frameworks.

Usage

```
add_annotation(
  my_input_heatmap,
  annotation,
  type = rep("tile", length(quo_names(annotation))),
  palette_discrete = list(),
  palette_continuous = list(),
  size = NULL,
  ...
)
```

Arguments

A list of character vectors. This is the list of palettes that will be used for horizontal and vertical discrete annotations. The discrete classification of annotations depends on the column type of your input tibble (e.g., character and factor).

4 add_attr

palette_continuous

A list of character vectors. This is the list of palettes that will be used for horizontal and vertical continuous annotations. The continuous classification of annotations depends on the column type of your input tibble (e.g., integer, nu-

merical, double).

A grid::unit object, e.g. unit(2, "cm"). This is the height or width of the annotasize

tion depending on the orientation.

The arguments that will be passed to top_annotation or left_annotation of the . . .

ComplexHeatmap container

Details

To be added.

Value

A 'ComplexHeatmap' object

add_attr

Add attribute to abject

Description

Add attribute to abject

Usage

```
add_attr(var, attribute, name)
```

Arguments

A tibble var

attribute An object

A character name of the attribute name

Value

A tibble with an additional attribute

add_bar 5

add_bar	Adds a bar annotation layer to a 'InputHeatmap', that on evaluation creates a 'ComplexHeatmap'

Description

add_bar() from a 'InputHeatmap' object, adds a bar annotation layer.

Usage

```
add_bar(.data, .column, palette = NULL, size = NULL, ...)
## S4 method for signature 'InputHeatmap'
add_bar(.data, .column, palette = NULL, size = NULL, ...)
```

Arguments

.data	A 'tbl_df' formatted as <element> <feature> <value> <> </value></feature></element>
.column	Vector of quotes
palette	A character vector of colors, or a function such as colorRamp2 (see examples).
size	A grid::unit object, e.g. unit(2, "cm"). This is the height or width of the annotation depending on the orientation.
• • •	The arguments that will be passed to top_annotation or left_annotation of the ComplexHeatmap container

Details

[Maturing]

It uses 'ComplexHeatmap' as visualisation tool.

Value

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

```
library(dplyr)
hm =
  tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
    .value = `read count normalised log`
)
hm %>% add_bar(inflection)
```

6 add_line

add	class
aaa_	

Add class to abject

Description

Add class to abject

Usage

```
add_class(var, name)
```

Arguments

var A tibble

name A character name of the attribute

Value

A tibble with an additional attribute

add_line Adds a line annotation layer to a 'InputHeatmap', that on evaluation creates a 'ComplexHeatmap'

Description

add_line() from a 'InputHeatmap' object, adds a line annotation layer.

Usage

```
add_line(.data, .column, palette = NULL, size = NULL, ...)
## S4 method for signature 'InputHeatmap'
add_line(.data, .column, palette = NULL, size = NULL, ...)
```

Arguments

.data	A 'tbl_df' formatted as <element> <feature> <value> <> </value></feature></element>
.column	Vector of quotes
palette	A character vector of colors, or a function such as colorRamp2 (see examples).
size	A grid::unit object, e.g. unit(2, "cm"). This is the height or width of the annotation depending on the orientation.
•••	The arguments that will be passed to top_annotation or left_annotation of the ComplexHeatmap container

Details

[Maturing]

It uses 'ComplexHeatmap' as visualisation tool.

add_point 7

Value

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

Examples

```
library(dplyr)
hm =
  tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
    .value = `read count normalised log`
)
hm %>% add_line(inflection)
```

add_point

Adds a point annotation layer to a 'InputHeatmap', that on evaluation creates a 'ComplexHeatmap'

Description

add_point() from a 'InputHeatmap' object, adds a point annotation layer.

Usage

```
add_point(.data, .column, palette = NULL, size = NULL, ...)
## S4 method for signature 'InputHeatmap'
add_point(.data, .column, palette = NULL, size = NULL, ...)
```

Arguments

.data	A 'tbl_df' formatted as <element> <feature> <value> <> </value></feature></element>
.column	Vector of quotes
palette	A character vector of colors, or a function such as colorRamp2 (see examples).
size	A grid::unit object, e.g. unit(2, "cm"). This is the height or width of the annotation depending on the orientation.
	The arguments that will be passed to top_annotation or left_annotation of the ComplexHeatmap container

Details

[Maturing]

It uses 'ComplexHeatmap' as visualisation tool.

8 add_tile

Value

- A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'
- A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

Examples

```
library(dplyr)
hm =
   tidyHeatmap::N52 %>%
   tidyHeatmap::heatmap(
        .row = symbol_ct,
        .column = UBR,
        .value = `read count normalised log`)
hm %>% add_point(inflection)
```

add_tile

Adds a tile annotation layer to a 'InputHeatmap', that on evaluation creates a 'ComplexHeatmap'

Description

add_tile() from a 'InputHeatmap' object, adds a tile annotation layer.

Usage

```
add_tile(.data, .column, palette = NULL, size = NULL, ...)
## S4 method for signature 'InputHeatmap'
add_tile(.data, .column, palette = NULL, size = NULL, ...)
```

Arguments

.data	A 'tbl_df' formatted as <element> <feature> <value> <> </value></feature></element>
.column	Vector of quotes
palette	A character vector of colors, or a function such as colorRamp2 (see examples).
size	A grid::unit object, e.g. unit(2, "cm"). This is the height or width of the annotation depending on the orientation.
	The arguments that will be passed to top_annotation or left_annotation of the ComplexHeatmap container

Details

[Maturing]

It uses 'ComplexHeatmap' as visualisation tool.

annot_to_list

Value

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

Examples

library(dplyr)

```
hm =
  tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
    .value = `read count normalised log`
)
hm %>% add_tile(CAPRA_TOTAL)

hm %>% add_tile(inflection, palette = circlize::colorRamp2(c(0, 3,10), c("white", "green"))
```

annot_to_list

annot_to_list

Description

```
annot_to_list
```

Usage

```
annot_to_list(.data)
```

Arguments

.data A data frame

Value

A list

10 as_matrix

Description

as_ComplexHeatmap() takes a 'InputHeatmap' object and produces a 'Heatmap' object

Usage

```
as_ComplexHeatmap(tidyHeatmap)
## S4 method for signature 'InputHeatmap'
as_ComplexHeatmap(tidyHeatmap)
```

Arguments

tidyHeatmap A 'InputHeatmap' object from tidyHeatmap::heatmap() call

Details

[Maturing]

Value

A 'ComplexHeatmap'

Examples

```
tidyHeatmap::N52 |>
tidyHeatmap::heatmap(
   .row = symbol_ct,
   .column = UBR,
   .value = `read count normalised log`,
) |>
as_ComplexHeatmap()
```

as_matrix

Get matrix from tibble

Description

Get matrix from tibble

Usage

```
as_matrix(tbl, rownames = NULL, do_check = TRUE)
```

check_if_counts_is_na 11

Arguments

tbl A tibble

rownames A character string of the rownames

do_check A boolean

Value

A matrix

```
check_if_counts_is_na
```

Check whether there are NA counts

Description

Check whether there are NA counts

Usage

```
check_if_counts_is_na(.data, .abundance)
```

Arguments

.data A tibble of read counts

. abundance A character name of the read count column

Value

A tbl

```
check_if_duplicated_genes
```

Check whether there are duplicated genes/transcripts

Description

Check whether there are duplicated genes/transcripts

Usage

```
check_if_duplicated_genes(.data, .sample, .transcript, .abundance)
```

Arguments

.data A tibble of read counts

 $.\, {\tt sample} \qquad \quad A\, {\tt character}\, \, {\tt name} \, \, {\tt of} \, \, {\tt the} \, \, {\tt sample} \, \, {\tt column}$

.transcript A character name of the transcript/gene column .abundance A character name of the read count column

Value

A tbl

12 drop_class

```
check_if_wrong_input
```

Check whether there are NA counts

Description

Check whether there are NA counts

Usage

```
check_if_wrong_input(.data, list_input, expected_type)
```

Arguments

```
\begin{array}{ll} \texttt{.data} & A \text{ tibble of read counts} \\ \texttt{list\_input} & A \text{ list} \\ \texttt{expected\_type} & \\ & A \text{ character string} \end{array}
```

Value

A tbl

drop_class

Remove class to abject

Description

Remove class to abject

Usage

```
drop_class(var, name)
```

Arguments

var A tibble

name A character name of the class

Value

A tibble with an additional attribute

```
error_if_log_transformed
```

Check whether a numeric vector has been log transformed

Description

Check whether a numeric vector has been log transformed

Usage

```
error_if_log_transformed(x, .abundance)
```

Arguments

x A numeric vector

. abundance A character name of the transcript/gene abundance column

Value

NA

```
get_abundance_norm_if_exists
```

Get column names either from user or from attributes

Description

Get column names either from user or from attributes

Usage

```
get_abundance_norm_if_exists(.data, .abundance)
```

Arguments

.data A tibble

. abundance A character name of the abundance column

Value

get_elements

Get column names either from user or from attributes

Description

Get column names either from user or from attributes

Usage

```
get_elements(.data, .element, of_samples = TRUE)
```

Arguments

.data A tibble

 $. \verb|element| A character name of the sample column|$

of_samples A boolean

Value

A list of column enquo or error

```
get_elements_features
```

Get column names either from user or from attributes

Description

Get column names either from user or from attributes

Usage

```
get_elements_features(.data, .element, .feature, of_samples = TRUE)
```

Arguments

.data A tibble

.element A character name of the sample column

.feature A character name of the transcript/gene column

of_samples A boolean

Value

```
get_elements_features_abundance
```

Get column names either from user or from attributes

Description

Get column names either from user or from attributes

Usage

```
get_elements_features_abundance(
   .data,
   .element,
   .feature,
   .abundance,
   of_samples = TRUE
)
```

Arguments

.data A tibble

.element A character name of the sample column

feature A character name of the transcript/gene column
 abundance A character name of the read count column

of_samples A boolean

Value

A list of column enquo or error

```
get_sample_counts Get column names either from user or from attributes
```

Description

Get column names either from user or from attributes

Usage

```
get_sample_counts(.data, .sample, .abundance)
```

Arguments

.data A tibble

.sample A character name of the sample column.abundance A character name of the read count column

Value

```
get_sample_transcript
```

Get column names either from user or from attributes

Description

Get column names either from user or from attributes

Usage

```
get_sample_transcript(.data, .sample, .transcript)
```

Arguments

.data A tibble

 $. \, {\tt sample} \qquad \quad A \, {\tt character} \, {\tt name} \, {\tt of} \, {\tt the} \, {\tt sample} \, {\tt column}$

.transcript A character name of the transcript/gene column

Value

A list of column enquo or error

```
get_sample_transcript_counts
```

Get column names either from user or from attributes

Description

Get column names either from user or from attributes

Usage

```
get_sample_transcript_counts(.data, .sample, .transcript, .abundance)
```

Arguments

.data A tibble

.sample A character name of the sample column

.transcript A character name of the transcript/gene column
 .abundance A character name of the read count column

Value

```
\begin{tabular}{ll} \tt get\_x\_y\_annotation\_columns \\ & \it get\_x\_y\_annotation\_columns \\ \end{tabular}
```

Description

```
get_x_y_annotation_columns
```

Usage

```
get_x_y_annotation_columns(.data, .column, .row, .abundance)
```

Arguments

.data	A 'tbl' formatted as <sample> <transcript> <count> <> </count></transcript></sample>
.column	The name of the column horizontally presented in the heatmap
.row	The name of the column vertically presented in the heatmap
.abundance	The name of the transcript/gene abundance column

Value

A list

heatmap Creates a 'InputHeatmap' object from 'tbl_df' on evaluation creates a 'ComplexHeatmap'

Description

heatmap() takes a tbl object and easily produces a ComplexHeatmap plot, with integration with tibble and dplyr frameworks.

Usage

```
heatmap(
    .data,
    .row,
    .column,
    .value,
    transform = NULL,
    scale = "none",
    palette_value = c("#440154FF", "#21908CFF", "#fefada"),
    palette_grouping = list(),
    .scale = NULL,
    ...
)
heatmap_(
    .data,
```

18 heatmap

```
.row,
  .column,
  .value,
  transform = NULL,
  scale = "none",
  palette_value = c("#440154FF", "#21908CFF", "#fefada"),
  palette_grouping = list(),
  .scale = NULL,
)
## S4 method for signature 'tbl'
heatmap(
  .data,
  .row,
  .column,
  .value,
  transform = NULL,
  scale = "none",
  palette_value = c("#440154FF", "#21908CFF", "#fefada"),
 palette grouping = list(),
  .scale = NULL,
)
## S4 method for signature 'tbl_df'
heatmap(
  .data,
  .row,
  .column,
  .value,
  transform = NULL,
  scale = "none",
  palette_value = c("#440154FF", "#21908CFF", "#fefada"),
 palette_grouping = list(),
  .scale = NULL,
)
```

Arguments

A character vector This is the palette that will be used as gradient for .value. For example c("red", "white", "blue"). For higher flexibility you can use circlize::colorRamp2\(c\(-2, -1, 0, 1, 2\), viridis::magma\(5\)\)

ifelse2_pipe 19

```
A list of character vectors. This is the list of palettes that will be used for grouping. For example list(RColorBrewer::brewer.pal(8, "Accent")) or list(c("#B3E2CD", "#FDCDAC", "#CBD5E8")) or list(c("black", "red"))

.scale DEPRECATED. please use scale instead \(\) with no dot prefix \(\).

... The arguments that will be passed to the Heatmap function of ComplexHeatmap backend
```

Details

[Maturing]

This function takes a tbl as an input and creates a 'ComplexHeatmap' plot. The information is stored in a 'InputHeatmap' object that is updated along the pipe statement, for example adding annotation layers.

Value

```
A 'InputHeatmap' objects that gets evaluated to a 'ComplexHeatmap' object
```

A 'InputHeatmap' object

A 'InputHeatmap' object

A 'InputHeatmap' object

Examples

```
library(dplyr)

tidyHeatmap::N52 %>%
group_by( `Cell type`) %>%
tidyHeatmap::heatmap(
    row = symbol_ct,
         column = UBR,
         value = `read count normalised log`,
)
```

ifelse2_pipe

This is a generalisation of ifelse that accepts an object and return an objects

Description

This is a generalisation of ifelse that accepts an object and return an objects

Usage

```
ifelse2\_pipe(.x, .p1, .p2, .f1, .f2, .f3 = NULL)
```

20 ifelse_pipe

Arguments

. X	A tibble
.p1	A boolean
.p2	ELSE IF condition
.f1	A function
.f2	A function

A function

Value

A tibble

.f3

ifelse_pipe This is a generalisation of ifelse that accepts an object and return an objects

Description

This is a generalisation of ifelse that accepts an object and return an objects

Usage

```
ifelse_pipe(.x, .p, .f1, .f2 = NULL)
```

Arguments

. X	A tibble
.p	A boolean
.f1	A function
.f2	A function

Value

A tibble

input_heatmap 21

input_heatmap

input_heatmap

Description

input_heatmap() takes a tbl object and easily produces a ComplexHeatmap plot, with integration with tibble and dplyr frameworks.

Usage

```
input_heatmap(
   .data,
   .horizontal,
   .vertical,
   .abundance,
   transform = NULL,
   scale = "none",
   palette_value = c("#440154FF", "#21908CFF", "#fefada"),
   palette_grouping = list(),
   ...
)
```

Arguments

A character vector, or a function for higher customisation (colorRamp2). This is the palette that will be used as gradient for abundance. If palette_value is a vector of hexadecimal colours, it should have 3 values. If you want more customisation, you can pass to palette_value a function, that is derived as for example 'colorRamp2(c(-2, 0, 2), palette_value)'

palette_grouping

A list of character vectors. This is the list of palettes that will be used for grouping

... Further arguments to be passed to ComplexHeatmap::Heatmap

Details

To be added.

Value

A 'ComplexHeatmap' object

22 layer_arrow_down

layer_arrow_down

Adds a layers of symbols above the heatmap tiles to a 'InputHeatmap', that on evaluation creates a 'ComplexHeatmap'

Description

layer_arrow_down() from a 'InputHeatmap' object, adds a bar annotation layer.

Usage

```
layer_arrow_down(.data, ...)
## S4 method for signature 'InputHeatmap'
layer_arrow_down(.data, ...)
```

Arguments

.data A 'InputHeatmap'

Expressions that return a logical value, and are defined in terms of the variables in .data. If multiple expressions are included, they are combined with the & operator. Only rows for which all conditions evaluate to TRUE are kept.

Details

[Maturing]

It uses 'ComplexHeatmap' as visualisation tool.

Value

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

```
library(dplyr)
hm =
  tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
    .value = `read count normalised log`
)
hm %>% layer_arrow_down()
```

layer_arrow_up 23

```
layer_arrow_up
```

Adds a layers of symbols above the heatmap tiles to a 'InputHeatmap', that on evaluation creates a 'ComplexHeatmap'

Description

layer_arrow_up() from a 'InputHeatmap' object, adds a bar annotation layer.

Usage

```
layer_arrow_up(.data, ...)
## S4 method for signature 'InputHeatmap'
layer_arrow_up(.data, ...)
```

Arguments

.data A 'InputHeatmap'

Expressions that return a logical value, and are defined in terms of the variables in .data. If multiple expressions are included, they are combined with the & operator. Only rows for which all conditions evaluate to TRUE are kept.

Details

[Maturing]

It uses 'ComplexHeatmap' as visualisation tool.

Value

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

```
library(dplyr)
hm =
  tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
    .value = `read count normalised log`)
hm %>% layer_arrow_up()
```

24 layer_diamond

layer_diamond

Adds a layers of symbols above the heatmap tiles to a 'InputHeatmap', that on evaluation creates a 'ComplexHeatmap'

Description

layer_diamond() from a 'InputHeatmap' object, adds a bar annotation layer.

Usage

```
layer_diamond(.data, ...)
## S4 method for signature 'InputHeatmap'
layer_diamond(.data, ...)
```

Arguments

.data A 'InputHeatmap'

Expressions that return a logical value, and are defined in terms of the variables in .data. If multiple expressions are included, they are combined with the & operator. Only rows for which all conditions evaluate to TRUE are kept.

Details

[Maturing]

It uses 'ComplexHeatmap' as visualisation tool.

Value

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

```
library(dplyr)
hm =
  tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
    .value = `read count normalised log`)
hm %>% layer_diamond()
```

layer_point 25

layer_point

Adds a layers of symbols above the heatmap tiles to a 'InputHeatmap', that on evaluation creates a 'ComplexHeatmap'

Description

layer_point() from a 'InputHeatmap' object, adds a bar annotation layer.

Usage

```
layer_point(.data, ...)
## S4 method for signature 'InputHeatmap'
layer_point(.data, ...)
```

Arguments

.data A 'InputHeatmap'

Expressions that return a logical value, and are defined in terms of the variables in .data. If multiple expressions are included, they are combined with the & operator. Only rows for which all conditions evaluate to TRUE are kept.

Details

[Maturing]

It uses 'ComplexHeatmap' as visualisation tool.

Value

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

```
library(dplyr)
hm =
  tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
    .value = `read count normalised log`)
hm %>% layer_point()
```

26 layer_square

layer_square

Adds a layers of symbols above the heatmap tiles to a 'InputHeatmap', that on evaluation creates a 'ComplexHeatmap'

Description

layer_square() from a 'InputHeatmap' object, adds a bar annotation layer.

Usage

```
layer_square(.data, ...)
## S4 method for signature 'InputHeatmap'
layer_square(.data, ...)
```

Arguments

.data A 'InputHeatmap'

Expressions that return a logical value, and are defined in terms of the variables in .data. If multiple expressions are included, they are combined with the & operator. Only rows for which all conditions evaluate to TRUE are kept.

Details

[Maturing]

It uses 'ComplexHeatmap' as visualisation tool.

Value

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

```
library(dplyr)
hm =
  tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
    .value = `read count normalised log`)
hm %>% layer_square()
```

N52

N52

Example data set N52

Description

Example data set N52

Usage

N52

Format

An object of class tbl_df (inherits from tbl, data.frame) with 520 rows and 15 columns.

parse_formula

.formula parser

Description

.formula parser

Usage

```
parse_formula(fm)
```

Arguments

fm

a formula

Value

A character vector

pasilla

Example data set Pasilla

Description

Example data set Pasilla

Usage

pasilla

Format

An object of class tbl_df (inherits from tbl, data.frame) with 504 rows and 8 columns.

quo_names

prepend

From rlang deprecated

Description

From rlang deprecated

Usage

```
prepend(x, values, before = 1)
```

Arguments

x An arrayvalues An arraybefore A boolean

Value

An array

quo_names

Convert array of quosure (e.g. $c(col_a, col_b)$) into character vector

Description

Convert array of quosure (e.g. c(col_a, col_b)) into character vector

Usage

```
quo_names(v)
```

Arguments

V

A array of quosures (e.g. c(col_a, col_b))

Value

A character vector

save_pdf 29

save_pdf

Save plot on PDF file

Description

save_pdf() takes as input a Heatmap from ComplexHeatmap and save it to PDF file

Usage

```
save_pdf(
   .heatmap,
   filename,
   width = NULL,
   height = NULL,
   units = c("in", "cm", "mm")
)
```

Arguments

```
.heatmap A 'Heatmap'
filename A character string. The name of the output file/path
width A 'double'. Plot width
height A 'double'. Plot height
units A character string. units ("in", "cm", or "mm")
```

Details

[Maturing]

It simply save an 'Heatmap' to a PDF file use pdf() function in the back end

Value

NA

```
library(dplyr)
tidyHeatmap::heatmap(
  dplyr::group_by(tidyHeatmap::pasilla,location, type),
    .column = sample,
    .row = symbol,
    .value = `count normalised adjusted`,
) %>%
save_pdf(tempfile())
```

```
{\tt save\_pdf, Heatmap-method} \\ {\tt save\_pdf}
```

Description

save_pdf

Usage

```
## S4 method for signature 'Heatmap'
save_pdf(
   .heatmap,
   filename,
   width = NULL,
   height = NULL,
   units = c("in", "cm", "mm")
)
```

Arguments

```
.heatmap A 'Heatmap'
filename A character string. The name of the output file/path
width A 'double'. Plot width
height A 'double'. Plot height
units A character string. units ("in", "cm", or "mm")
```

Description

save_pdf

Usage

```
## S4 method for signature 'InputHeatmap'
save_pdf(
   .heatmap,
   filename,
   width = NULL,
   height = NULL,
   units = c("in", "cm", "mm")
)
```

scale_design 31

Arguments

.heatmap A 'Heatmap'

filename A character string. The name of the output file/path

width A 'double'. Plot width height A 'double'. Plot height

units A character string. units ("in", "cm", or "mm")

scale_design Scale design matrix

Description

Scale design matrix

Usage

```
scale_design(df, .formula)
```

Arguments

df A tibble .formula a formula

Value

A tibble

scale_robust

Scale counts in a robust way against sd == 0

Description

Scale counts in a robust way against sd == 0

Usage

```
scale_robust(y)
```

Arguments

y A numerical array

Value

A scaled and centred numerical array

32 split_rows

```
select_closest_pairs
```

Sub function of remove_redundancy_elements_though_reduced_dimensions

Description

Sub function of remove_redundancy_elements_though_reduced_dimensions

Usage

```
select_closest_pairs(df)
```

Arguments

df

A tibble

Value

A tibble with pairs to drop

split_rows

Split the heatmap row-wise depending on the biggest branches in the cladogram.

Description

```
split_rows() from a 'InputHeatmap' object, split the row cladogram.
split_columns() from a 'InputHeatmap' object, split the column cladogram.
```

Usage

```
split_rows(.data, number_of_groups)
## S4 method for signature 'InputHeatmap'
split_rows(.data, number_of_groups)
split_columns(.data, number_of_groups)
## S4 method for signature 'InputHeatmap'
split_columns(.data, number_of_groups)
```

Arguments

An integer. The number of groups to split the cladogram into.

wrap_heatmap 33

Details

[Maturing]

It uses 'ComplexHeatmap' as visualisation tool.

[Maturing]

It uses 'ComplexHeatmap' as visualisation tool.

Value

- A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'
- A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'
- A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'
- A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

Examples

```
library(dplyr)
 tidyHeatmap::N52 %>%
 tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR.
    .value = `read count normalised log`
hm %>% split_rows(2)
library(dplyr)
hm =
 tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
    .value = `read count normalised log`
)
hm %>% split_columns(2)
```

wrap_heatmap

Wrap tidyHeatmap (ComplexHeatmap) in a patchwork-compliant patch

Description

In order to add tidyHeatmap (ComplexHeatmap) element to a patchwork they can be converted to a compliant representation using the 'wrap_heatmap()' function. This allows you to position either grobs, ggplot objects, patchwork objects, or even base graphics (if passed as a formula) in either the full area, the full plotting area (anything between and including the axis label), or the panel area (only the actual area where data is drawn).

34 wrap_heatmap

Usage

```
wrap_heatmap(
  panel = NULL,
  plot = NULL,
  full = NULL,
  clip = TRUE,
  ignore_tag = FALSE
)

## S4 method for signature 'InputHeatmap'
wrap_heatmap(
  panel = NULL,
  plot = NULL,
  full = NULL,
  clip = TRUE,
  ignore_tag = FALSE
)
```

Arguments

panel, plot, full

A grob, ggplot, patchwork, formula, raster, or nativeRaster object to add to the respective area.

clip

Should the grobs be clipped if expanding outside its area

ignore_tag

Should tags be ignored for this patch. This is relevant when using automatic tagging of plots and the content of the patch does not qualify for a tag.

Value

A wrapped_patch object

A wrapped_patch object

```
tidyHeatmap::N52 |>
tidyHeatmap::heatmap(
   .row = symbol_ct,
   .column = UBR,
   .value = `read count normalised log`,
) |>
wrap_heatmap()
```

Index

* datasets N52, 27	heatmap, tbl_df-method(heatmap), 17
pasilla, 27	heatmap_(heatmap), 17
add_annotation, 3	ifelse2_pipe, 19
add_attr,4	ifelse_pipe, 20
add_bar,5	input_heatmap, 21
add_bar, InputHeatmap-method	1 — 1/
(add_bar), 5	layer_arrow_down, 22
add_class, 6	layer_arrow_down, InputHeatmap-method
add_line, 6	(layer_arrow_down), 22
add_line, InputHeatmap-method	layer_arrow_up, 23
(add_line), 6	layer_arrow_up, InputHeatmap-method
add_point, 7	(layer_arrow_up), 23
add_point, InputHeatmap-method	layer_diamond, 24
(add_point),7	layer_diamond, InputHeatmap-method
add_tile, 8	(layer_diamond), 24
add_tile, InputHeatmap-method	layer_point, 25
(add_tile),8	layer_point, InputHeatmap-method
annot_to_list,9	(layer_point), 25
as_ComplexHeatmap, 10	layer_square, 26
as_ComplexHeatmap, InputHeatmap-method	layer square Input Heatman-method
(as_ComplexHeatmap), 10	(layer_square), 26
as_matrix, 10	(14) 01_5 quare), 2 0
	N52, 27
check_if_counts_is_na,11	1,02,27
<pre>check_if_duplicated_genes, 11</pre>	parse_formula,27
check_if_wrong_input, 12	pasilla, 27
	prepend, 28
drop_class, 12	rr
error_if_log_transformed, 13	quo_names, 28
	16.00
<pre>get_abundance_norm_if_exists, 13</pre>	save_pdf, 29
get_elements, 14	save_pdf, Heatmap-method, 30
get_elements_features, 14	save_pdf, InputHeatmap-method, 30
<pre>get_elements_features_abundance,</pre>	scale_design, 31
15	scale_robust, 31
<pre>get_sample_counts, 15</pre>	select_closest_pairs,32
<pre>get_sample_transcript, 16</pre>	split_columns(split_rows), 32
<pre>get_sample_transcript_counts, 16</pre>	split_columns, InputHeatmap-method
<pre>get_x_y_annotation_columns, 17</pre>	(split_rows), 32
	split_rows, 32
heatmap, 17	split_rows, InputHeatmap-method
heatmap,tbl-method(heatmap),17	$(split_rows), 32$

36 INDEX

```
wrap_heatmap, 33
wrap_heatmap, InputHeatmap-method
    (wrap_heatmap), 33
```