Soluções da Ficha2

1.

a)
$$2x\cos x^2 e^{\sin x^2}$$

b)
$$\frac{3\sqrt{x}}{2} + 5\left(3x^3 - e^{x^2} + \cos\sqrt{x}\right)^4 \left(9x^2 - 2xe^{x^2} - \frac{1}{2\sqrt{x}}\sin\sqrt{x}\right)$$

c)
$$e^y + ey^{e-1}$$

d)
$$6y \sin 2y + 6y^2 \cos 2y + \cos \frac{y}{2} - \frac{y}{2} \sin \frac{y}{2}$$

e)
$$-\left(2u + \frac{1}{u \ln 10}\right) e^{u^2 + \log u} \sin(e^{u^2 + \log u})$$

$$f) \frac{-2u + \sin u}{2\sqrt{(u^2 + \cos u)^3}}$$

$$g) \frac{1}{4\sqrt{1+\sqrt{z}}\sqrt{z}}$$

h)
$$\frac{2\sin z\cos z + 2z\cos z^2}{\sin^2 z + \sin z^2} \frac{1}{\ln 10}$$

2.

a)
$$f$$
 é derivável em $R \setminus \{3\}$. As derivadas laterais no ponto $x = 3$: $f'(3^+) = 3$ e $f'(3^-) = 6$.

b)
$$g$$
 é derivável em $R \setminus \{0\}$. As derivadas laterais no ponto $x = 0$: não existe $f'(0^+) = +\infty$; existe $f'(0^-) = 0$.

3.

a) funções deriváveis em todos os pontos:
$$f, h$$

b) funções não deriváveis em mais do que num ponto: k funções não deriváveis em apenas num ponto: i, j

4.

- não existe f'(b); em b não existe nenhuma das derivadas laterais;
- não existe f'(0); existe $f'(0^-)$ e é positiva; existe $f'(0^+)$ e é negativa;
- não existe f'(c); existe $f'(c^-)$ e é negativa; não existe $f'(c^+)$;
- não existe f'(e); existe $f'(e^{-})$ e é positiva; existe $f'(e^{+}) = 0$;

7.
$$g'(2) = 2$$

8.
$$g'(1) = -\frac{3}{2}$$

9. a)
$$h'(2) = \sqrt{2}\pi$$
 b) $h'(2) = 7e$ c) $h'(2) = \pi e$

10.
$$a)4$$
 $b)2$ $c)\frac{1}{2}$

17. a) 0 b) 2 c) + ∞ d) 1 e) 1 f) 1 g) $\frac{1}{2}$ h) 1

a)
$$P_{50,0}(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^{50}}{50!}$$

b)
$$P_{7,0}(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$$

c)
$$P_{8,0}(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!}$$

d)
$$P_{5,1}(x) = (x-1) - \frac{(x-1)^2}{2!} + \frac{2(x-1)^3}{3!} - \frac{6(x-1)^4}{4!} + \frac{24(x-1)^5}{5!}$$

19.

$$f(0) = 0;$$
 $f'(0) = 3;$ $f''(0) = 0;$ $f'''(0) = -24;$ $f^{(4)}(0) = 0;$ $f^{(5)}(0) = 0;$ $f^{(6)}(0) = 3600$

$$f(0) = 1;$$
 $f'(0) = 2;$ $g(1) = 3;$ $g'(1) = 2;$ $g''(1) = 0$

$$P_{2,1}(x) = 1 + 12(x-1) + \frac{18(x-1)^2}{2!} = 9x^2 - 6x - 2$$

$$P_{2,3}(x) = 1 - 2(x-3) + \frac{3(x-3)^2}{2!}$$

$$P_{3,3}(x) = 1 - 2(x-3) + \frac{3(x-3)^2}{2!} - \frac{5(x-3)^3}{3!}$$

$$P_{2,3}(x) = 1 - 2(x - 3) + \frac{3(x - 3)^2}{2!}$$

$$P_{3,3}(x) = 1 - 2(x - 3) + \frac{3(x - 3)^2}{2!} - \frac{5(x - 3)^3}{3!}$$

$$f(2.9) \simeq P_{2,3}(2.9) = 1.215; \ f(2.9) \simeq P_{3,3}(2.9) = 1.214$$

23.

$$P_{3,5}(x) = 5 + \frac{6(x-5)^3}{3!}$$

$$P_{3,3}(x) = 3 + 3(x-3) + \frac{3(x-3)^2}{2!} + \frac{3(x-3)^3}{3!}$$

$$|R_{7,0}(x)| \le \frac{\sqrt{2}}{2} \left(\frac{\pi}{4}\right)^8 \frac{1}{8!}$$