

D- Type positive edge triggered flip flop

Explanation:

- •Two latches respond to the external D (data) and Clk (clock) inputs.
- •The third latch provides the outputs for the flipflop.
- •CASE 1: The S and R inputs of the output latch are maintained at the logic-1 level
 - when Clk = 0.
 - This causes the output to remain in its present state. Input D may be equal to 0 or 1.

- •CASE 2: If D = 0 when Clk becomes 1(0 to 1 transition), R changes to 0.
 - This causes the flip-flop to go to the reset state, making Q = 0. hence Q' = 1
 - If there is a change in the D input while Clk = 1, terminal R remains at 0 because Q is 0.
 Thus, the flip-flop is locked out and is unresponsive to further changes in the input.

- •CASE 3: When the clock returns to 0 (From 1 to 0), R goes to 1,placing the output latch in the quiescent condition with out changing the output.
- •CASE 4: Similarly, if D = 1 when Clk goes from 0 to 1
 - S changes to 0 (because R is 1 from preverse) case, hence the bottom latch with D input will have output as 0 \, then this 0 is input for top latch which gives output 1. This 1 is feedback and clk 1 input gives S = 0.
 - This causes the circuit to go to the set state,

- In sum, when the input clock in the positive-edgetriggered flip-flop makes a positive transition, the value of D is transferred to Q.
- •A negative transition of the clock (i.e., from 1 to 0) does not affect the output, nor is the output affected by changes in D when Clk is in the steady logic-1 level or the logic-0 level.
- Hence, this type of flip-flop responds to the transition from 0 to 1 and nothing else.

.SETUP Time:

 Minimum time called the setup time during which the D input must be maintained at a constant value prior to the occurrence of the clock transition

.HOLD Time:

 Minimum time during which the D input must not change after the application of the positive transition of the clock.

•Propagation delay:

 Propogation delay time of the flip-flop is defined as the intervalbetween the trigger edge and the stabilization of the output to a new state

FLIP-FLOP NAME	FLIP-FLOP SYMBOL	CHARACTERISTIC TABLE				CHARACTERISTIC EQUATION	EXCITATION TABLE			
SR	S Q CIk R Q'	S	R	Q(next)			Q	Q(next)	S	R
		0	0	Q		$Q_{(next)} = S + R'Q$ SR = 0	0	0	0	X
		0	1	0			0	1	1	0
		1	0	1			1	0	0	1
		1	1	?			1	1	X	0
JК	J Q CIK K Q'	J	K	Q(next)		Q _(next) = JQ' + K'Q	Q	Q(next)	J	K
		0	0	Q			0	0	0	X
		0	1	0			0	1	1	X
		1	0	1			1	0	Χ	1
		1	1	Q'			1	1	X	0
D	D Q CIk Q'					Q	Q(nex	kt)	D	
		0 1		Q(next)	Q(next) = D		0	0		0
				0		0	1		1	
				1			1	0		0
							1	1		1
Т	T Q	T Q(next)				O TOU.	Q	Q(nex	kt)	T
							0	0		0
		0		Q		$Q_{(next)} = TQ' + T'Q$	0	1		1
		1 Q']	. 4	1	0		1
							1	1		0