

Hardvertervezési szeminárium

2024. szeptember 13.

Balogh Attila, Gótzy Márton, Nagy Ákos, Kiss Domokos

Az autó mechanikai felépítése

Főbb paraméterek:

- Hosszúság: 380 mm
- Szélesség: 310 mm
- Tengelytáv: 275 mm
- Alaplemez szélesség: 125 mm
- Kerékátmérő: 105 mm
- Kerék vastagság: 50 mm
- Hasmagasság:
 - Változtatható
 - Rugózása kimerevíthető

Az autó mechanikai felépítése

Főbb paraméterek:

• Hosszúság: 380 mm

• Szélesség: 310 mm

Tengelytáv: 275 mm

Alaplemez szélesség: 125 mm

Kerékátmérő: 105 mm

Kerék vastagság: 50 mm

- Hasmagasság:
 - Változtatható
 - Rugózása kimerevíthető

Az autó mechanikai felépítése

Főbb paraméterek:

- Hosszúság: 380 mm
- Szélesség: 310 mm
- Tengelytáv: 275 mm
- Alaplemez szélesség: 125 mm
- Kerékátmérő: 105 mm
- Kerék vastagság: 50 mm
- Hasmagasság:
 - Változtatható
 - Rugózása kimerevíthető

Az autó funkcionális felépítése

- Felmerülő mechanikai kérdések:
 - > Alaplemez felépítése
 - "Szimmetrikus" kialakítás
 - > Hátsó kormányzás előkészítése
 - > Lengéscsillapítás
 - > 3D nyomtatási lehetőség a csapatoknak
 - PLA 10Ft/cm3
 - Stratasys ABS/ASA 57Ft/cm3
 - Vegyszerrel oldható támaszanyag 57Ft/cm3

Megoldandó feladatok

Beavatkozás

- Motorvezérlés
- Modellszervó(k)

Érzékelés

- Vonalérzékelés
- Inerciális szenzorok
- Távolságmérés
- Sebességmérés

Kommunikáció

- Rádiós indítás, kapukhoz
- Fejlesztéshez

Gyári főáramkör

Mért motor adatok

- $R = 106 \text{ m}\Omega$; $L = 51,3 \text{ }\mu\text{H}$
- $I_{\text{start-elm\'elet}} = 68 \text{ A}$
- $I_{reverz-elmélet} = 136 A$
- $I_{\text{start-valós}} = 52 \text{ A (NiMH akku)}$
- $I_{reverz-valós} = 104 A$

Mért vezérlési adatok

- $f_{kapcs} = 961 \text{ Hz}$
- $T_{be-FFT} = 1 \mu s$

Mért félvezető adatok

- $U_{d0} = 0.5 \text{ V}$; $r_{d} = 35 \text{m}\Omega$
- $r_{dson} = 55 \text{ m}\Omega$

Motor direkt indítás 1

Maximális indítóáram: 53A

Motor direkt indítás 2

Akkumulátor feszültsége: 7.2V → 4,7V

Gyári áramkör modulációja, kis sebesség

- Felső FET irány kijelölés, alsó FET PWM
- Kis U_h esetén a diódák hosszú ideig vezetnek, sok a disszipáció

Gyári áramkör modulációja, nagy sebesség

- Felső FET irány kijelölés, alsó FET PWM
- Nagy U_b esetén a diódák rövid ideig vezetnek, kevés a disszipáció

Saját régi motorvezérlő elektronika

PWM 1.hídág (10-30kHz) PWM 2.hídág (10-30kHz) Engedélyezés (0-3,3V)

Állapot visszajelzés (0-3,3V)

Motoráram (0-3,3V)

Akku feszültség (0-3,3V)

Akkumulátor Motorhoz

Saját új motorvezérlő elektronika

PWM 1.hídág (10-30kHz) PWM 2.hídág (10-30kHz) Engedélyezés (0-3,3V)

Állapot visszajelzés (0-3,3V) Motoráram (0-3,3V) Akku feszültség (0-3,3V)

Akkumulátor Motorhoz

Saját motorvezérlő elektronika

- Hídkapcsolású főáramkör
- Integrált Bootstrap félvezető meghajtó áramkör
- UVLO (Régi:7V, Új:9V)
- Összegyújtás elleni védelem (500ns holtidő)
- Főáramköri olvadóbiztosító (20A)
- Akkumulátor feszültségmérés (MH-18,8V)
- Motoráram mérés

Régi: 1,66V±8,86mV/A

Új: 1,66V±14,56mV/A

Saját motorvezérlő elektronika

- Külső engedélyező jel (magas aktív)
- Állapot visszajelzés (OV-Nem aktív)
- 2 PWM csatorna
- CBC áramkorlátozás @ 60A
 - ☐ PWM letiltása 1 periódusra (áram csökken)
 - ☐ Külső PWM felfutó él visszaengedélyez (áram nő)
- Nincs hűtőborda -> 30A tartós áram a megengedett!
- Nincs DC köri ELKO -> Tápegységről üzemelni tilos!
- Kapcsolási rajz és NYÁK terv elérhető.
- Fékezési megoldások
- NiMH <---> Li akkumulátor

Saját motorvezérlő elektronika

Ellenütemű vagy eltolt vezérlés megvalósítható a 2 PWM-el

fmotor = fsw (20-30kHz) Álló állapotban AC-t kap a motor!

$$U_{mAVG} = U_{akku}^*$$
 (2d-1), $d=t_{be}/T$

fmotor = 2*fsw (40-60kHz) Közel DC áram, egyenletes járás!

Bootstrap: 0,05 < d < 0,95 !!!

Modellszervók

- Saját belső pozíció visszacsatolás (Potméter)
- Nem feltétlenül van adatlapjuk
- 5–6V tápfeszültség, kb. 120°-os szögtartomány (6V-on nagyobb nyomaték és beállási sebesség)

Modellszervók

RC PWM

- Kb. 1-2 ms-os impulzushossz
- Analóg szervó
 - 20 ms-os frissítési idő
- Digitális szervó
 - Akár 3 ms-os frissítési idő
- TTL jelszintről megy
 - 3,3 V jellel is vezérelhető
- Kézzel lehetőleg ne forgassuk:
 - Műanyag fogaskerekesek könnyen megadják magukat
- Általános PWM-mel ne vezéreljük!

Modellszervók

SRT BH922S szervó

- Ingyen biztosítjuk
- Digitális, fém fogaskerekes
- Brushless motor
- 3 ms frissítési idő (330 Hz)
- Tápfeszültség: 6.0 V 8.4 V
- Beállási idő:
 - 6.0 V: 80 ms/60°
 - 7.4 V: 60 ms/60°
 - 8.4 V: 55 ms/60°

Hogyan érzékeljük az előírt pályát?

Kamera

- Működőképes
- Messzebb lehet látni, mint egy reflexiós szenzorsorral
- Kamerás tapasztalat szükséges

Reflexiós szenzorsor

- 16-48 szenzor, érdemes többet
- Mechanikai elhelyezés, felütközés
- Feldolgozás (külső AD/uC/MUX)

Reflexiós szenzorsor

Tanszék által fejlesztett szenzorsor:

- 32 db TCRT5000, 32 db visszajelző LED
- Dedikált 4 db ADC (ST ADC120)
- 2 db SPI kapcsolat: érzékelés, LED meghajtás (infra, visszajelző)
- Tápfeszültség: 5 15 V
- Első, hátsó szenzorsorhoz is alkalmas (orientáció becslés)

Top view

19156 1

Reflexiós szenzor működés

Analóg érzékelés

- $R_C = 15 \text{ k}\Omega$
- $I_F = 20 \text{ mA} (I_{Fmax} = 60 \text{ mA})$
- $V_{CC} = 3.3 \text{ V}$
- Távolság függvényében hogy alakul a mért jel
- Fekete szigetelőszalag, fényes fa felület, fehér lap

Távolság [mm]	V _{out} [V] (fekete)	V _{out} [V] (fa)	V _{out} [V] (fehér)
10	2,4	0,3	0,13
15	1,6	0,15	0,14
20	2,6	0,18	0,16
25	2,8	0,7	0,2
30	2,85	1,7	0,8

Analóg érzékelés

- $R_C = 15 \text{ k}\Omega$
- $I_F = 20 \text{ mA}$
- $V_{CC} = 3.3 \text{ V}$

Távolság [mm]	V _{out} [V] (fekete)	V _{out} [V] (fa)	V _{out} [V] (fehér)
10	2,4	0,3	0,13
15	1,6	0,15	0,14
20	2,6	0,18	0,16
25	2,8	0,7	0,2
30	2,85	1,7	0,8

R_C meghatározása

- R_C hatása:
 - Befolyásolja a jelszintet ($V_{OUT} = V_{CE} = V_{CC} R_C^* I_C$)
 - Felfutási, lefutási időkre is hatással van (t_R, t_F)
- R_C csökkentése:
 - Jelszint csökken
 - t_R, t_F csökken
- R_C növelése:
 - Jelszint nő
 - t_R, t_F nő

LED meghajtó

STP08DP05TTR

- Ennél a típusnál alul nincs PAD
 - TSSOP16
- Kaszkádosítható
 - Shift-regiszter
- Áramkorlát (1 ellenállás)
- Logikai táp: 3,3 V vagy 5 V
- Kimeneteket földre húzza le
- OE bemenet:
 - PWM-mel vezérelhető
 (pl. visszajelző LED sorhoz)

TSSOP16

LED meghajtó

STP08DP05TTR

- Görbe alapján áramkorlát
- Max. 100 mA csatornánként
- TSSOP, termál pad nélkül: Max. 125°C

Table 10. Output current-R_{FXT} resistor

Output current (mA)	3	5	10	20	50	80	130
Rext (Ω)	6740	3930	1913	963	386	241	124

Table 5. Thermal data

Symbol	Parameter	DIP-16	SO-16	TSSOP-16	TSSOP-16 ⁽¹⁾ (exposed pad)	Unit
R _{thJA}	Thermal resistance junction-ambient	90	125	140	37.5	°C/W

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DD}	Supply voltage I _{GND}	0 to 7	V
Vo	Output voltage	-0.5 to 20	V
Io	Output current	100	mA
I _{GND}	GND terminal current	800	mA
f _{CLK}	Clock frequency	50	MHz
T _{OPR}	Operating temperature range	-40 to +125	°C
T _{STG}	Storage temperature range	-55 to +150	°C

LED meghajtó

STP08DP05TTR

$$P_D = V_{DD} \cdot I_{DD} + \sum V_{o,i} \cdot I_{CH,i}$$

$$V_{DD} = 3.3 V$$

$$I_{DD} = 5 \, mA \, (max)$$

$$I_{CH,i} = 20 \, mA$$

$$V_{LED} = 3.3 V$$

$$V_F = 1,1 V \text{ (ld. ábra)}$$

$$V_{o,i} = V_{LED} - V_F = 2.2 V$$

8 LED-re:

$$P_D = 3.3 \ V \cdot 5 \ mA + 8 \cdot 2.2 \ V \cdot 20 \ mA = 368.5 \ mW$$

$$\Delta T = \theta_{ja} \cdot P_D = 140 \frac{^{\circ}C}{W} \cdot 0.3685 W = \mathbf{51}, \mathbf{59}^{\circ}C$$

Fig. 4 - Forward Current vs. Forward Voltage

TCRT5000

Felváltva világítás

Felváltva világító LED-ek

TCRT5000 szenzoros példa

AD átalakító tulajdonságai – ADC120

- 8 csatorna összesen
- 12 bit
- SPI interfész, SPI CLK ütemezi a konverziót
- Mintavétel 50 ksps és 1 Msps között (órajel 0.8 MHz és 16 MHz között)
- Konverzió 16 órajel, max. 20 μs

32 db szenzor - TCRT5000

- $t_R = 140 \ \mu s$
- $t_F = 140 \ \mu s$

TCRT5000 szenzoros példa

LED meghajtó – STP08DP05TTR

- $t_{PLH1} = 50 \text{ ns}$
- t_{CLK} = 4 * 8 * 1 μs =
 32 μs (kaszkádosítás)
- $t_{DRV} = t_{PHL1} + t_{CLK} = 32 \mu s$

Figure 9: Clock, serial-in, latch, enable, outputs

TCRT5000 szenzoros példa

LED meghajtó - STP08DP05TTR

• $t_{drv} = 32 \, \mu s$

Szenzor - TCRT5000

• $t_f = 140 \ \mu s$

A/D konverter

• $t_{conv} = 2 \cdot 20 \ \mu s$

Szenzorok beolvasása egyesével

$$t_p = 32 \cdot (t_{drv} + t_f + t_{conv})$$

 $\approx 6.5 \, ms$

Szenzorok beolvasása négyesével

$$t_p = 8 \cdot (t_{drv} + t_f) + 32 \cdot t_{conv}$$

 $\approx 2.7 \text{ ms}$

Vonalérzékelés

Összefoglalva:

- Ciklusidőt ellenőrizzétek
- Adaptív küszöbözés
- Mechanikai rögzítés, védelem (bumpert biztosítunk)
- Mechanika megfelelő kimerevítése
 - Az autó gyorsulás közben változtatja a hasmagasságát!

Inerciális modul

Pontos típus - X-NUCLEO-IKS01A3

- Rátehető a Nucleo kártyára
- Számtalan MEMS szenzor (IMU, magnetométer, nyomás, hőmérséklet, pára)
- I2C interfész

LSM6DSO giroszkóp, gyorsulásmérő

- Ügyességi feladatok: relatív lokalizáció, libikóka
- Gyorsasági pályán kisodródás detektálásra is jó lehet
- Integrálás kumulatív hiba!
 - Bekapcsoláskor kalibrálás az offset-re sok minta átlagából (több sec)
 - Megfelelő helyen újrakalibrálás

Sharp infravörös távolságszenzor

Többféle változat (analóg szenzorok):

- GP2Y0A02YK0F: 20 150 cm
- GP2Y0A41SK0F: 4 30 cm
- GP2Y0A60SZLF: 10 150 cm (nehezebben beszerezhető)
- Ingyen biztosítunk 2 + 2 db-ot

Nehézségek:

- Íves, fényes akadályok megzavarják
- Visszaforduló karakterisztika
- Számít a szenzor orientációja

Ultrahangos távolságszenzor

Parallax PING:

- Méréshatár: 2 cm 3 m
- Digitális kimenet (impulzus)

Nehézségek:

- Reflexiók miatt hibás mérések
- Eredeti szenzor drága (~ 15 ezer Ft)

• Kínai változat (HC-SR04) 500 Ft, hivatalos

adatlap nincs

ST távolságszenzor

VL53L1X/VL51L0X Time-of-Flight szenzor:

- I2C interfész (0x52-es cím, változtatható)
- API elérhető
- Mérési távolság:
 - VL53L1X: max. 4 m
 - VL53L0X: max. 2 m
- Hosszú kábellel lehetnek problémák
- I2C és mérési problémák
- Más típusú eszköz ne legyen az I2C buszon

Inkrementális adók

Optikai enkóder

- Fototranzisztor + LED
- Akár régi egérből is kiszedhető
- Elhelyezés: motor vagy főtengely
- Nehéz robusztusra megcsinálni

Kapacitív enkóder

- AMT103
- Átmenő tengelyes -> főtengelyre
- ~10 ezer Ft

Mágneses enkóder

- Radiális (diametrikus) mágnes + szenzor
- Motortengelyre
- Következőket biztosítjuk:
 - Allegro A1333LLETR-T 15 bites szenzor
 - Adapter nyák
 - Mágnes

Szenzorok összefoglalása

Távolságszenzor

- Kalóz robot miatt: nem szabad ütközni vele
- Safety car miatt: követés, előzés, érzékelés (előttem van a Safety car?)
- Forgatni vagy előre 3 szenzort rakni

Inkrementális adó

- Sebességvisszacsatolás szükséges
- Megfelelő felbontás (enkóderes példa RRT előadáson lesz)
- Mechanikai rögzítés

Rádiós modul

- 2 db előre programozott Silicon Labs xG24-DK2601B
- Vevő az autó indításához, kalóz robot helyzetéhez
- Adó teszteléshez: gombokon vagy USB-n
- UART kommunikáció a robot felé

Pontos protokoll, lábkiosztás a szabályzatban

Felügyeleti kommunikáció

Bluetooth SPP

- SPP (Serial Port Profile) profil
 - PC-n virtuális soros portként
 - Eszköznél UART-on
 - -> Egyszerűen használható
- Saját antennás modul, pl. BTM-112
- Pár ezer Ft
- Class 1 esetén a legnagyobb a hatótáv

Bluetooth LE

- SPP kezd eltűnni
- Bonyolultabb kommunikáció
- PC-n is bonyolultabb
- SPP-szerű megoldások (pl. Silabs LE Cable Replacement)

Felügyeleti kommunikáció

WiFi megoldás

- Használata:
 - Kapcsolódni kell: Station vagy Access Point mód
 - TCP vagy UDP kapcsolat szükséges
- Saját antennás modul, pl. ESP-01
- Nagyobb áramigény: 400 mA felett (Bluetooth 30 mA)
- Pár ezer Ft
- AT parancsok a konfigurációhoz, adatátvitelhez
- ESP modulokhoz rengeteg leírás, példa

Hardvertervezési, beszerzési tudnivalók

- Nincs közös beszerzési kör, de érdemes tartani az ütemtervet:
 - Kiegészíto kártya gyártásba leadva: 2024. október 21.
 - Mentorral konzultálni a beszerzésekről és gyártásról
- Szabadon felhasználható költségkeret:
 - Max. 80 eFt
 - Utófinanszírozás, feltétele a Q2 és Q3 teljesítése
- Hardvertervezési segédlet:
 - Ajánlott beszállítók (Lomex, Chipcad, Farnell, ingyenes gyártói minták)
 - Tervezési szabályok, tanácsok (kapcsolási rajz, nyomtatott áramkör)
 - Tervezési segédanyagok
 - Laborfoglalás menete

Tanszéki holnap, részletes versenyleírás

Tanszéki honlap:

- Segédletek:
 - HW tervezés
 - UART üzentek csomagolása
- Szeminárium anyagai
- Dokumentációk
- Szabályzat

Szabályzat:

- Mindenki olvassa el!
- Versenyfeladatok
- Pontozás, időpontok
- Rádiós kommunikáció
- Műszaki rajzok

