Associative Networks

Outline

- Introduction
- Conceptual dependency
- Propositional Networks
- Causal Networks

Introducción

- Associative Nets: Knowledge representation paradigm where ideas are expressed by means of nodes and arcs (graphs)
- Initially, they were oriented for natural language processing (Semantic networks)
- Nowadays, they are employed in many different applications

Characteristics

- Common characteristics:
 - Nodes often stand for concepts, entities, attributes, events or states
 - Several Nodes may stand for the same concept
 - Arcs create connections between nodes (relations)
- Differing characteristics:
 - Node and Arc semantics
 - Inference capacities
 - Notation

Outline

- Introduction
- Conceptual dependency
- Propositional Networks
- Causal Networks

Conceptual Dependency

 Schank, 1972, 1975. Proposed to tackle the natural language processing problem.

- Characterístics:
 - It does not depend on the language, in contrast to other models
 - It represents concepts instead of terms

Model

- It constructs sentences by means of:
 - Six Conceptual Categories:
 - Physical object
 - Action
 - Attributes of objects (adjectives)
 - Attributes of actions (adverbs)
 - Time of a conceptualization
 - Location of a conceptualization
 - 16 realization rules that links the elements of a sentence
 - A set of *primitives* (12 primitives are enough to represent most of natural language)

Basic primitives

- PTRANS: Transfer of the physical location of an object (go, move an object...)
- ATRANS: Transfer of an abstract relationship (give, lend...)
- MTRANS: Transfer of mental information (tell, teach...)
- PROPEL: Application of a physical force to an object (push)
- MOVE: Movement of a body part by owner (kick)
- GRASP: Actor grasping an object (clutch)
- INGEST: Actor ingesting an object (eat)
- Etc.

Example: Juan drinks water

Ejemplo: Juan compró un libro

Advantages

- Sentences are divided in elements that do not depend on the language
- A limited set of primitives allow us to:
 - associate knowledge and representation in just one way
 - design an interpreter that performs inferences
- Inferences capacities:
 - It affirms conditions: Juan exists and filete exists
 - It may guess causes / intentions: "Juan pidió el libro a Marta" ⇒ "Marta tenía un libro" y "Juan quería ese libro".

Drawbacks

- More primitives lead to an efficiency reduction
- Critiques to using primitives:
 - The meaning of a phrase depends on the language it is formulated
 - The graphs represent a too detailed situation.
 Simple sentences ⇒ Complex graphs
 - How to determine the number and meaning of the primitives needed?
 - It focus the attention on verbs

Drawbacks of Relational Graphs

- There are sentences that can be represented by logic, but not by relational graphs
 - You can not represent the universal quantifier
- It is difficult to represent the interaction of propositions:
 - Night comes and temperature falls (two actions at the same time)
 - If it is night and foggy, it is dangerous to drive (It can not be represented)

Outline

- Introduction
- Conceptual dependency
- Propositional Networks
- Causal Networks

Sowa's Conceptual Structures

 They can draw contextual situations gathering up nodes in rectangles

Linear Notation

 Shapiro's nets and conceptual structures can be expressed in a linear notation:

```
[PENSAR] -

→ (AGT) → [PERS: Antonio]

→ (OBJ) → [PROPOSICION: [LEER] -

→ (AGT) → [PERS: Luisa]

→ (OBJ) → [LIBRO]]
```

Linear Notation Examples

```
[RÍO: *] \equiv [RÍO]
• Un río:
                               [RÍO] → (ATR) → [CAUDALOSO]

    Un río caudaloso:

                               [RÍO: {*}]

    Algunos ríos:

                               [RÍO: {*}@3]
Tres ríos:
                               [RÍO: #]
• El río (uno específico):
                               [RÍO: ?]
• ¿Qué río?:
                               [RÍO: Ebro]
• El río Ebro:
                               [RÍO: {Duero, Tajo}]

    Los ríos Duero y Tajo:

                             [RÍO: ∀]

    Todo río, todos los ríos:

    Cinco litros de agua:

        [AGUA] \rightarrow (MEDIDA) \rightarrow [CANTIDAD: 5L.]
```

Linear Notation Examples

- Las 10 de la mañana: [HORA: 10 a.m.]
- Todos los seres humanos son mortales:
 [PERS: ∀] → (ATR) → [MORTAL]
- Algún ser humano es mortal:
 [PERS] → (ATR) → [MORTAL]
- Él no ha venido:
 (NEG) ← [PROPOSICIÓN: [VENIR]

```
\rightarrow (AGT) \rightarrow [HOMBRE: #]
```

→ (PASADO)]

Linear Notation Examples

Probablemente iré mañana:

```
[PROBABLE] ← (MOD) ← [PROPOSICIÓN: [IR]]

→ (AGT) → [PERS: #yo]

→ (TIEMPO) → [DÍA: #mañana]
```

- ¿Quién es el profesor de Luis?:
 [PERS: ?] → (PROFESOR-DE) → [PERS: Luis]
- ¿Dónde está tu libro?:
 [LUGAR: ?] ← (LOC) ← [LIBRO: #] → (POS) → [PERS: #tú]

Variables

CONDICIONAL

[CONDICIONAL:

- (SI) → [PROPOSICION: [POSEER]
 - \rightarrow (AGT) \rightarrow [PERS: *x]
 - \rightarrow (OBJ) \rightarrow [CONCHE: *y]]
- (ENT) → [PROPOSICIÓN: [UTILIZAR]
 - \rightarrow (AGT) \rightarrow [T: *x]
 - \rightarrow (OBJ) \rightarrow [T: *y]]]

Variables

```
[DECIR]
    \rightarrow (AGT) \rightarrow [PERS: Ana]
    \rightarrow (RCP) \rightarrow [PERS: #él]
    → (OBJ) → [PROPOSICIÓN: [SUSPENDER]
               \rightarrow (OBJ) \rightarrow [CLASE: #] *y]
    → (PASADO)
[COMENTAR]
    → (AGT) → [#él]
    \rightarrow (RCP) \rightarrow [PERS: Luis]
    \rightarrow (OBJ) \rightarrow [*y]
    → (PASADO)
```

Summary

Conceptual Structures consist of three types of elements:

- Generic concepts: BOOK, PERSON, THINK
- Individual concepts: [PERSON: #me]
- Conceptual relations:
 - Unit: PAST, NEG, etc
 - Binary: AGT, OBJ, RCV, ATTR, LOC, MEASURE, MOD, TEMP, THEACHER-OF etc
 - Ternary: BETWEEN

Inference Engine

- Specialization: To obtain a particular proposition from a general one by specializing some elements.
- Generalization: Opposite to specialization.
- Union and simplification: It is similar to the resolution principle in logic

Inference Examples

```
G1: [PERS:\forall] \leftarrow (AGT) \leftarrow [BEBER] \rightarrow (OBJ) \rightarrow [AGUA] specialization
G2: [PERS: Marta] \leftarrow (AGT) \leftarrow [BEBER] \rightarrow (OBJ) \rightarrow [AGUA] G3: [NIÑA] \leftarrow (AGT) \leftarrow [BEBER] \rightarrow (OBJ) \rightarrow [AGUA] specialization
```

G4: [NIÑA: Marta] \leftarrow (AGT) \leftarrow [BEBER] \rightarrow (OBJ) \rightarrow [AGUA]

G5: [NIÑA:Marta] \leftarrow (AGT) \leftarrow [BEBER] \rightarrow (INSTR) \rightarrow [VASO] union and simplification

G6: [BEBER]

- \rightarrow (AGT) \rightarrow [NIÑA: Marta]
- \rightarrow (OBJ) \rightarrow [AGUA]
- \rightarrow (INSTR) \rightarrow [VASO]

Outline

- Introduction
- Conceptual dependency
- Propositional Networks
- Causal Networks

Causal Networks

- They consist of:
 - Nodes = variables
 - Links = influence relations between variables
- Often used in diagnostic problems

CASNET

- Casual Associational NETwork, 1970.
- Objective: to help when diagnosing and treating glaucoma and eye diseases
- Advantages over other expert systems:
 - Temporal reasoning: it takes into account the evolution of the disease
 - Multiple diagnostic
 - It explains its conclusions

Diagnostic Network

- Nodes are placed in three levels:
 - Observations:
 - Symptoms (whatever patient feels)
 - Signs (whatever doctor perceives)
 - Results of laboratory tests
 - Pathological states: disfunction of organs
 - Illness states: structured by means of a taxonomic tree
- Inter-level and Intra-level links with associated causal factors

CASNET

Diagnosis and Therapy

- There are two types of diagnosis:
 - Pathological states (simple).
 - Illness
- It also offer therapeutic recommendations in another plane where nodes are therapies and links can relate:
 - therapies with pathological or illness estates
 - therapies among them (interactions, toxicity and temporal dependencies)

Bayesian Networks: Model

- It is a connex acyclic directed graph with an associated probability distribution on its variables, which fulfils graphical property of directed-separation.
- For each node, designer has to provide the probabilities of its values conditioned to the values of its parent nodes

$$P(x_i)$$
 $P(x_i | \{parents(x)\})$

Example

 Let it be the following network with the following probabilities P(O), P(S), P(A | O, S), P(F | A), P(G | A)

- Conditional independence ⇒ P(F | A, O, S, G) = P(F | A)
- P(O,S,A,F,G) = P(O) P(S) P(A | O, S) P(F | A) P(G | A)

Directed Separation Property

- If two sets of nodes X and Y are d-separated in the graph by a third set Z, then, they are independent given the values of nodes in Z
- A path (undirected) is d-separated by set Z if:
 - it contains a chain i->m->j and m is in Z, or
 - a chain i<-m<-j and m is in Z
 - a chain i<-m->j and m is in Z
 - a chain i->m<-j and no descendant of m is in Z, neither m
- It allows to work with probabilities without the necessity of exponential amounts of information³

Bayes' Theorem (1)

• Given the *a priori* probability of one hypothesis P(B_i) and the conditional hypothesis P(A|B_i), we can obtain the probability of the following hypothesis:

$$P(B_{i}|A) = \frac{P(A|B_{i}) \cdot P(B_{i})}{P(A)} = \frac{P(A|B_{i}) \cdot P(B_{i})}{\sum_{j=1}^{n} P(A|B_{j}) \cdot P(B_{j})}$$

- If we have P(Flu) y P(Fever | Flu), P(Fever | Constipation) ..., we can infer P(Flu | Fever).
- $\{B_i \mid j = 1, ..., n\}$ forms a partition of the event space

Bayesian Networks: Advantages

- They hold the advantages derived from the classic probabilistic model
- They efficiently computes probabilities
- They did not include rare suppositions
- They present a high modularity level, which allow them to locally compute probabilities

DIAVAL Expert System

- First Spanish Expert System
- It diagnoses heart diseases
- It takes into account:
 - Patient data
 - Antecedents
 - Symptoms and signs
 - Clinic tests' results (echocardiogram).
- It consist of 300 nodes

The Bayesian Network

Inference

 It consists in fixing the value of some nodes (observations) and computing the probability of the interesting variables (diagnostics)

Example

Advantages of DIAVAL

- It stores a deep knowledge of the internal processes
- It can explain the causal chain of anomalies from the diagnosed illness to the observations
- It can perform three types of reasoning:
 - Adductive: To diagnose from observations (upward).
 - Deductive: It takes into account inheritable diseases (downward).
 - Intercausal: It looks for some causes from another ones (horizontal).
- It is based on a solid probability theory

Drawbacks of Bayesian Networks

Limited range of applications:

- They are good diagnosing
- They do not fit well planning, control or design problems
- They still a huge amount of information (probabilities)
- Loops complicate computing. Researchers propose stochastic simulation methods

Associative Networks

Carlos García Martínez

Outline

- Introduction
- Conceptual dependency
- Propositional Networks
- Causal Networks

Introducción

- Associative Nets: Knowledge representation paradigm where ideas are expressed by means of nodes and arcs (graphs)
- Initially, they were oriented for natural language processing (Semantic networks)
- Nowadays, they are employed in many different applications

Characteristics

- Common characteristics:
 - Nodes often stand for concepts, entities, attributes, events or states
 - Several Nodes may stand for the same concept
 - Arcs create connections between nodes (relations)
- Differing characteristics:
 - Node and Arc semantics
 - Inference capacities
 - Notation

Outline

- Introduction
- Conceptual dependency
- Propositional Networks
- Causal Networks

Conceptual Dependency

- Schank, 1972, 1975. Proposed to tackle the natural language processing problem.
- Characterístics:
 - It does not depend on the language, in contrast to other models
 - It represents concepts instead of terms

Model

- It constructs sentences by means of:
 - Six Conceptual Categories:
 - Physical object
 - Action
 - Attributes of objects (adjectives)
 - Attributes of actions (adverbs)
 - Time of a conceptualization
 - Location of a conceptualization
 - 16 realization rules that links the elements of a sentence
 - A set of *primitives* (12 primitives are enough to represent most of natural language)

Basic primitives

- PTRANS: Transfer of the physical location of an object (go, move an object...)
- ATRANS: Transfer of an abstract relationship (give, lend...)
- MTRANS: Transfer of mental information (tell, teach...)
- PROPEL: Application of a physical force to an object (push)
- MOVE: Movement of a body part by owner (kick)
- GRASP: Actor grasping an object (clutch)
- INGEST: Actor ingesting an object (eat)
- Etc.

Example: Juan drinks water

Advantages

- Sentences are divided in elements that do not depend on the language
- A limited set of primitives allow us to:
 - associate knowledge and representation in just one way
 - design an interpreter that performs inferences
- Inferences capacities:
 - It affirms conditions: Juan exists and filete exists
 - It may guess causes / intentions: "Juan pidió el libro a Marta" ⇒ "Marta tenía un libro" y "Juan quería ese libro".

Drawbacks

- More primitives lead to an efficiency reduction
- Critiques to using primitives:
 - The meaning of a phrase depends on the language it is formulated
 - The graphs represent a too detailed situation.
 Simple sentences ⇒ Complex graphs
 - How to determine the number and meaning of the primitives needed?
 - It focus the attention on verbs

Drawbacks of Relational Graphs

- There are sentences that can be represented by logic, but not by relational graphs
 - You can not represent the universal quantifier
- It is difficult to represent the interaction of propositions:
 - Night comes and temperature falls (two actions at the same time)
 - If it is night and foggy, it is dangerous to drive (It can not be represented)

Outline

- Introduction
- Conceptual dependency
- Propositional Networks
- Causal Networks

Sowa's Conceptual Structures

 They can draw contextual situations gathering up nodes in rectangles

Linear Notation

• Shapiro's nets and conceptual structures can be expressed in a linear notation:

```
\begin{split} \text{[PENSAR] -} \\ & \to \text{(AGT)} \to \text{[PERS: Antonio]} \\ & \to \text{(OBJ)} \to \text{[PROPOSICION: [LEER] -} \\ & \to \text{(AGT)} \to \text{[PERS: Luisa]} \\ & \to \text{(OBJ)} \to \text{[LIBRO]]} \end{split}
```

Linear Notation Examples

• Un río: $[RÍO: *] \equiv [RÍO]$

• Un río caudaloso: $[RÍO] \rightarrow (ATR) \rightarrow [CAUDALOSO]$

Algunos ríos: [RÍO: {*}]
 Tres ríos: [RÍO: {*}@3]
 El río (uno específico): [RÍO: #]
 ¿Qué río?: [RÍO: ?]
 El río Ebro: [RÍO: Ebro]

• Los ríos Duero y Tajo: [RÍO: {Duero, Tajo}]

• Todo río, todos los ríos: [RÍO: ∀]

• Cinco litros de agua:

[AGUA] → (MEDIDA) → [CANTIDAD: 5L.]

Linear Notation Examples

- Las 10 de la mañana: [HORA: 10 a.m.]
- Todos los seres humanos son mortales:
 [PERS: ∀] → (ATR) → [MORTAL]
- Algún ser humano es mortal:
 [PERS] → (ATR) → [MORTAL]
- Él no ha venido:

```
(NEG) ← [PROPOSICIÓN: [VENIR]

→ (AGT) → [HOMBRE: #]

→ (PASADO)]
```

Linear Notation Examples

• Probablemente iré mañana:

```
[PROBABLE] ← (MOD) ← [PROPOSICIÓN: [IR]

\rightarrow (AGT) \rightarrow [PERS: #yo]

\rightarrow (TIEMPO) \rightarrow [DÍA: #mañana]
```

- ¿Quién es el profesor de Luis?:
 [PERS: ?] → (PROFESOR-DE) → [PERS: Luis]
- ¿Dónde está tu libro?:
 [LUGAR: ?] ← (LOC) ← [LIBRO: #] → (POS) → [PERS: #tú]

Variables

CONDICIONAL

[CONDICIONAL:

(SI) → [PROPOSICION: [POSEER]

 \rightarrow (AGT) \rightarrow [PERS: *x]

 \rightarrow (OBJ) \rightarrow [CONCHE: *y]]

(ENT) → [PROPOSICIÓN: [UTILIZAR]

 \rightarrow (AGT) \rightarrow [T: *x]

 \rightarrow (OBJ) \rightarrow [T: *y]]]

Variables

[DECIR] → (AGT) → [PERS: Ana] → (RCP) → [PERS: #él] → (OBJ) → [PROPOSICIÓN: [SUSPENDER] → (OBJ) → [CLASE: #] *y] → (PASADO) [COMENTAR] → (AGT) → [#él] → (RCP) → [PERS: Luis] → (OBJ) → [*y] → (PASADO)

Summary

Conceptual Structures consist of three types of elements:

- Generic concepts: BOOK, PERSON, THINK
- Individual concepts: [PERSON: #me]
- Conceptual relations:
 - Unit: PAST, NEG, etc
 - Binary: AGT, OBJ, RCV, ATTR, LOC, MEASURE, MOD, TEMP, THEACHER-OF etc
 - Ternary: BETWEEN

Inference Engine

- Specialization: To obtain a particular proposition from a general one by specializing some elements.
- Generalization: Opposite to specialization.
- Union and simplification: It is similar to the resolution principle in logic

Inference Examples

G1: [PERS: \forall] \leftarrow (AGT) \leftarrow [BEBER] \rightarrow (OBJ) \rightarrow [AGUA] specialization

G2: [PERS: Marta] \leftarrow (AGT) \leftarrow [BEBER] \rightarrow (OBJ) \rightarrow [AGUA]

G3: $[NI\tilde{N}A] \leftarrow (AGT) \leftarrow [BEBER] \rightarrow (OBJ) \rightarrow [AGUA]$

specialization

G4: [NIÑA: Marta] \leftarrow (AGT) \leftarrow [BEBER] \rightarrow (OBJ) \rightarrow [AGUA]

G5: [NIÑA:Marta] \leftarrow (AGT) \leftarrow [BEBER] \rightarrow (INSTR) \rightarrow [VASO] union and simplification

G6: [BEBER]

 \rightarrow (AGT) \rightarrow [NIÑA: Marta]

 \rightarrow (OBJ) \rightarrow [AGUA]

 \rightarrow (INSTR) \rightarrow [VASO]

Outline

- Introduction
- Conceptual dependency
- Propositional Networks
- Causal Networks

Causal Networks

- They consist of:
 - Nodes = variables
 - Links = *influence relations* between variables
- Often used in diagnostic problems

CASNET

- Casual Associational NETwork, 1970.
- Objective: to help when diagnosing and treating glaucoma and eye diseases
- Advantages over other expert systems:
 - Temporal reasoning: it takes into account the evolution of the disease
 - Multiple diagnostic
 - It explains its conclusions

Diagnostic Network

- Nodes are placed in three levels:
 - Observations:
 - Symptoms (whatever patient feels)
 - Signs (whatever doctor perceives)
 - Results of laboratory tests
 - Pathological states: disfunction of organs
 - Illness states: structured by means of a taxonomic tree
- Inter-level and Intra-level links with associated causal factors

Diagnosis and Therapy

- There are two types of diagnosis:
 - Pathological states (simple).
 - Illness
- It also offer *therapeutic recommendations* in another plane where nodes are therapies and links can relate:
 - therapies with pathological or illness estates
 - therapies among them (interactions, toxicity and temporal dependencies)

Bayesian Networks: Model

- It is a connex acyclic directed graph with an associated probability distribution on its variables, which fulfils graphical property of directed-separation.
- For each node, designer has to provide the probabilities of its values conditioned to the values of its parent nodes

$$P(x_i) = P(x_i | \{parents(x)\})$$

Example

• Let it be the following network with the following probabilities P(O), P(S), P(A | O, S), P(F | A), P(G | A)

- Conditional independence \Rightarrow P(F | A, O, S, G) = P(F | A)
- $P(O,S,A,F,G) = P(O) P(S) P(A \mid O, S) P(F \mid A) P(G \mid A)$ 32

Directed Separation Property

- If two sets of nodes X and Y are d-separated in the graph by a third set Z, then, they are independent given the values of nodes in Z
- A path (undirected) is d-separated by set Z if:
 - it contains a chain i->m->j and m is in Z, or
 - a chain i<-m<-j and m is in Z
 - a chain i<-m->j and m is in Z
 - a chain i->m<-j and no descendant of m is in Z, neither m
- It allows to work with probabilities without the necessity of exponential amounts of information³

Bayes' Theorem (1)

• Given the *a priori* probability of one hypothesis P(B_i) and the conditional hypothesis P(A|B_i), we can obtain the probability of the following hypothesis:

$$P(B_{i}|A) = \frac{P(A|B_{i}) \cdot P(B_{i})}{P(A)} = \frac{P(A|B_{i}) \cdot P(B_{i})}{\sum_{j=1}^{n} P(A|B_{j}) \cdot P(B_{j})}$$

- If we have P(Flu) y P(Fever | Flu), P(Fever | Constipation) ..., we can infer P(Flu | Fever).
- $\{B_i \mid j = 1, ..., n\}$ forms a partition of the event space

Bayesian Networks: Advantages

- They hold the advantages derived from the classic probabilistic model
- They efficiently computes probabilities
- They did not include rare suppositions
- They present a high modularity level, which allow them to locally compute probabilities

DIAVAL Expert System

- First Spanish Expert System
- It diagnoses heart diseases
- It takes into account:
 - Patient data
 - Antecedents
 - Symptoms and signs
 - Clinic tests' results (echocardiogram).
- It consist of 300 nodes

Inference

- It consists in fixing the value of some nodes (observations) and computing the probability of the interesting variables (diagnostics)
- Example

Advantages of DIAVAL

- It stores a deep knowledge of the internal processes
- It can *explain the causal chain of anomalies* from the diagnosed illness to the observations
- It can perform three types of reasoning:
 - Adductive: To diagnose from observations (upward).
 - Deductive: It takes into account inheritable diseases (downward).
 - Intercausal: It looks for some causes from another ones (horizontal).
- · It is based on a solid probability theory

Drawbacks of Bayesian Networks

• Limited range of applications:

- They are good diagnosing
- They do not fit well planning, control or design problems
- They still a huge amount of information (probabilities)
- Loops complicate computing. Researchers propose stochastic simulation methods