Exercises for Module 8: Linear Algebra II

1. A square matrix is called *nilpotent* if $\exists k \in \mathbb{N}$ such that $A^k = 0$. Show that for a nilpotent matrix A, |A| = 0.

Suppose A is nilpotent, i.e.
$$\exists k \in \mathbb{N}$$
 s.t $A^k = 0$.
Then $\det(A^k) = 0 \Rightarrow \det(A \cap A) = 0$
 $\Rightarrow \det(A) = 0$ by properties of determinant
 $\Rightarrow \det(A) = 0$

2. A real square matrix Q is called orthogonal if $Q^TQ = I$. Prove that if Q is orthogonal, then $|Q| = \pm 1$.

$$I = Q^{T}Q$$

$$= I$$

$$= dot(Q^{T}Q) = dot(I)$$

$$= dot(Q^{T})dot(Q) = I$$

$$= dot(Q) dot(Q) = I$$

$$= dot(Q) = I$$

$$= dot(Q) = I$$

$$= dot(Q) = I$$

3. An $n \times n$ matrix is called *antisymmetric* if $A^T = -A$. Prove that if A is antisymmetric and n is odd, then |A| = 0.

$$A^{T} = -A$$

$$= |det(A^{T})| = |det(A^{T})|$$

$$= |det(A^{T})|$$

4. Let V be an inner product space, U a vector space and $S \colon U \to V$, $S \colon U \to V$ be linear maps . Show that $\langle S\mathbf{u}, \mathbf{v} \rangle = \langle T\mathbf{u}, \mathbf{v} \rangle$ for all $\mathbf{u} \in U$ and $\mathbf{v} \in V$ implies S = T.

Proof

Suppose
$$\langle Su, v \rangle = \langle Tu, v \rangle$$
 Huell, vel

 $\Rightarrow \langle Su, v \rangle - \langle Tu, v \rangle = 0$
 $\Rightarrow \langle Su - Tu, v \rangle = 0$ by linearity in 1th argument

 $\Rightarrow Su - Tu = 0$ by proposition 5.57

 $\Rightarrow Su = Tu$ Huell

 $\Rightarrow S = T$

5. Let V be an inner product space and $\mathbf{x}_1, \dots, \mathbf{x}_n$ be an orthonormal basis and $\mathbf{y} \in V$. Then, \mathbf{x} has a unique representation $\mathbf{y} = \sum_{i=1}^n \alpha_i \mathbf{x}_i$. Show that $\alpha_i = \langle \mathbf{y}, \mathbf{x}_i \rangle$ for all $i = 1, \dots, n$.

$$\langle y, x_i \rangle = \langle \sum_{j=1}^{n} \alpha_j x_j, x_i \rangle$$

= $\sum_{j=1}^{n} \alpha_j \langle x_j, x_i \rangle$ by linearity in 1st argument
= $\alpha_i \leq \sum_{j=1}^{n} \alpha_j \langle x_j, x_j \rangle = 1$ if $i=j$ & O otherwise

6. Let V be an inner product space and $U \subseteq V$ a subset. Show that U^{\perp} is a subspace of V.

We must show U is a subspace of V.

First of all, DEU+ since <0, w =0 tuel.

Let $x,y \in U^{+}$. Then $\langle x+y,u \rangle = \langle x,u \rangle + \langle y,u \rangle$ by linearity in 1st argument =0 so $x+y \in U^{+}$.

Also, if $d \in \mathbb{F}$, $x \in U^{+}$, then $\langle dx,u \rangle = d\langle x,u \rangle = 0$, so $dx \in U^{+}$.

: Ut = V is a subspace.

- 7. Let U, V, W be inner product spaces and $S, T \in \mathcal{L}(U, V)$ and $R \in \mathcal{L}(V, W)$. Show that the following holds
 - 1. $(S + \alpha T)^* = S^* + \overline{\alpha} T^*$ for all $\alpha \in \mathbb{F}$
 - $2. (S^*)^* = S$
 - 3. $(RS)^* = S^*R^*$
 - 4. $I^* = I$, where $I: U \to U$ is the identity operator on U

1. Let uell, vel.

L. Let u=v, v=v. $\langle u, (S+aT)^*v \rangle = \langle (S+aT)u, v \rangle$ by defin of adjoint $= \langle Su+aTu, v \rangle$ by def of linear map $= \langle Su, v \rangle + a \langle Tu, v \rangle$ by lin. of 1st arg. $=\langle u, S^* u \rangle + \lambda \langle u, T^* v \rangle$ = (u,S*u) + (u, aT*u) by linearity
theory dynametry = <u, (s*+ = T*),>

 $\therefore (S+aT)^* = S^* + aT^*_3 \text{ by exercise } 4$

$$\langle u, (S^*)^*v \rangle = \langle S^*u, v \rangle$$

$$= \langle v, S^*u \rangle \quad \text{by conjugate symmetry}$$

$$= \langle Sv, u \rangle \quad \text{by det of adjoint}$$

$$= \langle u, Sv \rangle \quad \text{by conjugate symmetry}$$

$$\therefore (S^*)^* = S \quad \text{by exercise } \forall$$

$$\langle u, (RS)^*w \rangle = \langle RSu, w \rangle$$

 $= \langle Su, R^*w \rangle$
 $= \langle u, S^*R^*w \rangle$
 $: (RS)^* = S^*R^*$

Then
$$\langle u, I^*u_a \rangle = \langle Iu, u_a \rangle$$

 $= \langle u, u_a \rangle$
 $= \langle u, Ju_a \rangle$
 $\vdots I = I^*$