最优化方法(1月4日上午8:00-10:00)

姓名	学号	成绩	

- 一、填空题:下面有陈述和填空两类题。对于陈述题,若正确,则在后面的括号内打√,若不正确,则打×。对于填空题,则将答案填在横线处。(44分)
- (1) 若 X 是某线性规划问题的最优解,则 X 必为该线性规划问题可行域的某一个极点。
- (2) $f(x) = x_1^2 4x_1x_2 + x_2^2 x_1 x_2$ 为 R^2 上的凸函数。 ()
- (3) 已知非线性规划问题

min
$$f(x) = x_1^2 + x_2^2 - x_1 x_2 - 2x_1 - 3x_2$$

s.t. $-x_1 - x_2 \ge -2$
 $-x_1 - 5x_2 \ge -5$
 $x_1, x_2 \ge 0$,

- (5) 给定线性规划:

min
$$2x_1 - x_2$$

s.t. $x_1 + x_3 + x_4 = 7$
 $-2x_1 + x_2 + 3x_4 = 1$
 $x_1, x_2, x_3, x_4 \ge 0$

则 $(x_1, x_2, x_3, x_4)^T = (4, 0, 0, 3)^T$ 是一个基本可行解,但不是最优解。 ()

$$(x_1, x_2, x_3, x_4)^T = \left(-\frac{1}{2}, 0, \frac{15}{2}, 0\right)^T$$
 是一个对偶可行的基本解。 ()

二. $(16 \, \mathcal{G})$ 下面的单纯形表是某个线性规划问题的最优表,其中 x_4, x_5 是松弛变量,所有约束的类型均为" \leq ".

	x_1	x_2	x_3	x_4	x_5	
x_3	0	$\frac{1}{2}$	1	$\frac{1}{2}$	0	$\frac{5}{2}$
x_1	1	$-\frac{1}{2}$	0	$-\frac{1}{6}$	$\frac{1}{3}$	$\frac{5}{2}$
	0	-4	0	-4	-2	-40

- (1) 写出原问题; (5分)
- (2) 写出原问题的对偶问题并用互补松弛原理求出对偶问题的最优解;(5分)
- (3) 原问题中,若 b_2 变为 $b_2' = 1$,则原最优基是否发生了变化? 如果发生变化,求出新的最优解。(6分)
- 三. (10分)用 KKT 条件求解下列约束问题:

$$\min x_1^2 - x_2 + 3x_3$$
s.t. $x_1 + x_2 + x_3 \ge 0$

$$x_1^2 + 2x_2 - x_3 = 0$$

四. (10分)考虑以下的非线性规划问题;

$$\min_{x \in A} f(x)$$

$$s.t. \quad Ax = b$$

其中 f(x) 是连续可微函数,A 为 $m \times n$ (m < n) 阶矩阵,且 r(A) = m 。设 \overline{x} 是该问题的可

行解,H为 $n \times n$ 阶正定对称矩阵,令 $d = -P\nabla f(\overline{x})$,其中

$$P = H - HA^{T} \left(AHA^{T} \right)^{-1} AH$$

证明: (1) 当 $P\nabla f(\overline{x}) = 0$ 时, \overline{x} 是原问题的 KKT 点;

(2) 当 $P\nabla f(\overline{x}) \neq 0$ 时, $d = -P\nabla f(\overline{x})$ 为下降可行方向。

后面有题

五. (10 分)设 x_0 是 $Ax = b, x \ge 0$ 的一个基本可行解,证明:存在一个向量c,使 x_0 是下述线性规划问题的唯一最优解: $\min\{cx \mid Ax = b, x \ge 0\}$ 。

六. (10分)设有非线性规划问题:

$$\min f_1(x_1) + f_2(x_2) + \dots + f_n(x_n)$$
s.t. $x_1 + x_2 + \dots + x_n = 1$
 $x_j \ge 0, j = 1, 2, \dots, n$

其中 $f_j(x_j)$ 为可微函数。证明,若可行解 $\overline{x}=\left(\overline{x}_1,\overline{x}_2,...,\overline{x}_n\right)^T$ 是局部最优解,则存在数 \overline{v} ,使得: 当 $\overline{x}_j>0$ 时, $f_j'(\overline{x}_j)=\overline{v}$;当 $\overline{x}_j=0$ 时, $f_j'(\overline{x}_j)\geq\overline{v}$ 。