Logistic Regression: Interaction Terms

Interactions in Logistic Regression

- ▶ For linear regression, with predictors X_1 and X_2 we saw that an interaction model is a model where the interpretation of the effect of X_1 depends on the value of X_2 and *vice versa*.
- ► Exactly the same is true for logistic regression.
- ► The simplest interaction models includes a predictor variable formed by multiplying two ordinary predictors:

$$logit(\mathbb{P}(Y=1)) = \beta_0 + \beta_1 \times X_1 + \beta_2 \times X_2 + \beta_3 \times X_1 \times X_2$$

► Interaction term

Interactions in Logistic Regression

We will look at the interpretation of interactions in 3 cases:

- 1 Interaction between two dummy variables.
- 2 Interaction between a dummy and a continuous variable.
- 3 Interaction between two continuous variables.

Interaction Between 2 Dummy Variables

Consider a logistic model for the risk of suffering a heart attack over a year in terms gender and smoking status:

$$logit \mathbb{P}(Y = 1) = \beta_0 + \beta_1 sex + \beta_2 smoke + \beta_3 (sex \times smoke)$$

- ► sex indicates gender (male=1, female=0)
- ▶ smoke indicates smoking status (smokes=1, does not=0).

Interpreting the Intercept

$$logit \mathbb{P}(Y = 1) = \frac{\beta_0}{\beta_0} + \beta_1 sex + \beta_2 smoke + \beta_3 (sex \times smoke)$$

- ▶ In order to interpret β_0 we need to find a situation in which the final three terms in the equation vanish.
- ► This happens when an observation corresponds to a female non-smoker, for then sex=0 and smoke=0.

$$\begin{aligned} \log it \, \mathbb{P}(Y = 1) &= \beta_0 + \beta_1 \times 0 + \beta_2 \times 0 + \beta_3 (0 \times 0) \\ &= \beta_0 \quad \text{female} \quad \text{shows } \quad \text{in the problem of } \quad \text{for all } \quad \text{the problem of }$$

► Consequently, β_0 is the log odds in favour of a female non-smoker suffering from a heart attack.

Interpretations of Other Quantities Involving β_0

We can also give interpretations on the odds scale and on the probability scale:

- $ightharpoonup \exp(\beta_0)$ is the odds in favour of a female non-smoker suffering from a heart attack.
- ▶ $\frac{\exp(\beta_0)}{1+\exp(\beta_0)}$ is the probability of a female non-smoker suffering from a heart attack.

Interpreting β_1 and β_2

$$logit P(Y = 1) = \beta_0 + \frac{\beta_1}{\text{sex}} + \beta_2 \text{smoke} + \beta_3 (\text{sex} \times \text{smoke})$$

- ▶ We would know how to interpret β_1 if the interaction term was not there.
- Since in that case would just have an ordinary multivariate logistic model.
- ► This happens when an observation corresponds to a non-smoker, for then smoke=0.

$$logit P(Y = 1) = \beta_0 + \beta_1 \times sex + \beta_2 \times 0 + \beta_3 (sex \times 0)$$

$$= \beta_0 + \beta_1 \times sex$$
Non smoker

Interpreting β_1 and β_2

Se x.5 moke (=1.0

Amongst non-smokers

$$logit \mathbb{P}(Y = 1) = \beta_0 + \beta_1 \times sex$$

- ▶ We know how to interpret β_1 in this case as its a univariate logistic model.
- \triangleright β_1 is the log-odds ratio comparing males and females amongst non-smokers.
- $ightharpoonup \exp(\beta_1)$ is the odds ratio comparing males and females amongst non-smokers.

Interpreting β_1 and β_2

$$logit P(Y = 1) = \beta_0 + \beta_1 sex + \beta_2 smoke + \beta_3 (sex \times smoke)$$

- ► To interpret β_2 we need to get rid of the interaction term without getting rid of the β_2 smoke term.
- Same argument as before but now set sex=0 (female): $logit \mathbb{P}(Y=1) = \beta_0 + \beta_1 \times 0 + \beta_2 \times smoke + \beta_3(0 \times smoke) = \beta_0 + \beta_2 \times smoke$

 \triangleright β_2 is the log-odds ratio comparing smokers with non-smokers **amongst females**.

01=0.

Interpreting β_3

$$logit \mathbb{P}(Y = 1) = \beta_0 + \beta_1 sex + \beta_2 smoke + \beta_3 (sex \times smoke)$$

▶ To interpret β_3 rewrite the regression equation:

$$logit \mathbb{P}(Y = 1) = \beta_0 + [\beta_1 + \beta_3 smoke] sex + \beta_2 smoke$$

- ► This looks like a multivariate regression model with sex and smoke as predictors where:
 - $\beta_1 + \beta_3$ smoke is the log-odds ratio for males vs. females;
 - \triangleright β_2 is the log odds ratio for smokers vs. non-smokers.
- β₃ is the difference between the log-odds ratio comparing males vs females in smokers and the log-odds ratio comparing males vs. females in non-smokers.

Interpreting
$$\beta_3$$

$$\log it \mathbb{P}(Y=1) = \beta_0 + \beta_1 \text{sex} + \beta_2 \text{smoke} + \beta_3 (\text{sex} \times \text{smoke})$$

▶ We could just as well have rewritten the equation this way:

$$logit \mathbb{P}(Y = 1) = \beta_0 + \beta_1 sex + [\beta_2 + \beta_3 sex] smoke$$

- Arr is the difference between the log-odds ratio comparing smokers vs non-smokers in males and the log-odds ratio comparing smokers vs. non-smokers in females.
- ▶ So we have two ways of thinking about β_3 :
 - 1 either as modification of the effect of smoke by sex
 - **2** or the modification of the effect of sex by smoke.

Quick Lookup Table

We can draw up a table for the 4 types of observation:

	-		- 1
	sex	smoke	$logit(\mathbb{P}(Y=1))$
1	Male	Yes	$\beta_0 + \beta_1 + \beta_2 + \beta_3$
2	Male	No	$\beta_0 + \beta_1$
3	Female	Yes	$\beta_0 + \beta_2$
4	Female	No	β_0

- ► This allows us to find the function of the parameters corresponding to a log-odds ratio and vice versa.
- ► e.g. 3 4 shows us that the log-odds ratio for smokers vs. non-smokers amongst females is β_2
- ▶ e.g. 1 2 shows us that the log-odds ratio for smokers vs. non-smokers amongst males is $\beta_2 + \beta_3$

► Consider a logistic model where the main predictors are sex (a dummy coded as before) and age (in years)

$$logit P(Y = 1) = \beta_0 + \beta_1 sex + \beta_2 age + \beta_3 (sex \times age)$$

 $ightharpoonup \beta_0$ is the log-odds in favour of a female age 0 suffering from a heart attack.

► Consider a logistic model where the main predictors are sex (a dummy coded as before) and age (in years)

logit
$$\mathbb{P}(Y = 1) = \beta_0 + \beta_1 \operatorname{sex} + \beta_2 \operatorname{age} + \beta_3 (\operatorname{sex} \times \operatorname{age})$$

 $ightharpoonup eta_1$ is the log-odds ratio for males vs. females amongst people of age 0.

► Consider a logistic model where the main predictors are sex (a dummy coded as before) and age (in years)

logit
$$\mathbb{P}(Y = 1) = \beta_0 + \beta_1 \operatorname{sex} + \beta_2 \operatorname{age} + \beta_3 (\operatorname{sex} \times \operatorname{age})$$

s the log-odds ratio corresponding to an increase in

 \triangleright β_2 is the log-odds ratio corresponding to an increase in age by 1 year amongst females.

 Consider a logistic model where the main predictors are sex (a dummy coded as before) and age (in years)

$$logit P(Y = 1) = \beta_0 + \beta_1 sex + \beta_2 age + \beta_3 (sex \times age)$$

- ▶ β₃ is the difference between the log-odds ratio corresponding to a change in age by 1 year amongst males and the the log-odds ratio corresponding to an increase in age by 1 year amongst females.
- β₃ is also difference between the log-odds ratios for males vs. females in two age homogenous groups which differ by 1 year.

Quick Lookup Table

Again we can draw up a table, this time considering groups of individuals aged z and z+1

	sex	age	$logit(\mathbb{P}(Y=1))$
1	Male	z+1	$\beta_0 + \beta_1 + \beta_2(z+1) + \beta_3(z+1)$
2	Male	z	$\beta_0 + \beta_1 + \beta_2 z + \beta_3 z$
3	Female	z+1	$\beta_0 + \beta_2(z+1)$
4	Female	z	$\beta_0 + \beta_2 z$

- e.g. 3 4 shows us that the log-odds ratio corresponding to an increase in age by 1 year amongst females is β₂
- e.g. 2 4 shows us that the log-odds ratio for males vs. females amongst people aged z is $\beta_1 + \beta_3 z$

► Consider a logistic model where the main predictors are BP (blood pressure in mmHg) and age (in years)

$$logit \mathbb{P}(Y = 1) = \frac{\beta_0}{\beta_0} + \beta_1 \mathsf{BP} + \beta_2 \mathsf{age} + \beta_3 (\mathsf{BP} \times \mathsf{age})$$

- β₀ is the log-odds in favour of a person with a BP of 0mmHg and age 0 suffering from a heart attack.
- ► Ridiculous interpretation (model can't apply when age or BP are close to 0, but we hope it is good for the ranges we are interested in.)

► Consider a logistic model where the main predictors are BP (blood pressure in mmHg) and age (in years)

$$logit \mathbb{P}(Y = 1) = \beta_0 + \frac{\beta_1}{\beta_1}BP + \beta_2 age + \beta_3(BP \times age)$$

 \blacktriangleright β_1 is the log-odds ratio corresponding to an increase in BP by 1mmHg amongst people aged 0.

► Consider a logistic model where the main predictors are BP (blood pressure in mmHg) and age (in years)

$$logit \mathbb{P}(Y = 1) = \beta_0 + \beta_1 \mathsf{BP} + \beta_2 \mathsf{age} + \beta_3 (\mathsf{BP} \times \mathsf{age})$$

 \blacktriangleright β_2 is the log-odds ratio corresponding to an increase in age by 1 year amongst people with a BP of 0mmHg.

► Consider a logistic model where the main predictors are BP (blood pressure in mmHg) and age (in years)

$$logit \mathbb{P}(Y = 1) = \beta_0 + \beta_1 \mathsf{BP} + \beta_2 \mathsf{age} + \frac{\beta_3}{(\mathsf{BP} \times \mathsf{age})}$$

- β₃ is the difference between the log-odds ratios corresponding to an increase in age of 1 year for two BP homogenous groups which differ by 1 mmHg.
- β₃ is also difference between the difference between the log-odds ratios corresponding to an increase in BP of 1 mmHg for two age homogenous groups which differ by 1 year.

Quick Lookup Table

Again we can draw up a table, this time considering individuals with BP w and w+1 and aged z and z+1

	BP	age	$logit(\mathbb{P}(Y=1))$
1	w+1	z+1	$\beta_0 + \beta_1(w+1) + \beta_2(z+1) + \beta_3(w+1)(z+1)$
2	w+1	z	$\beta_0 + \beta_1(w+1) + \beta_2 z + \beta_3(w+1)z$
3	w	z+1	$\beta_0 + \beta_1 w + \beta_2 (z+1) + \beta_3 w (z+1)$
4	w	z	$\beta_0 + \beta_1 w + \beta_2 z + \beta_3 w z$

- ▶ e.g. 3 4 shows us that the log-odds ratio corresponding to an increase in age by 1 year amongst those of BP w is $\beta_2 + \beta_3 w$.
- e.g. 2 4 shows us that the log-odds ratio

Final Comment on Interpretation

- ► Remember whenever you give an interpretation of a quantity γ in terms of a log-odds ratio there is always an equivalent interpretation of $\exp(\gamma)$ as an odds-ratio.
- Whenever you give an interpretation of a quantity γ as the log-odds in favour of an event you can always give two equivalent interpretations
 - **1** of $exp(\gamma)$ as the odds in favour of the event,
 - 2 of $\frac{\exp(\gamma)}{1+\exp(\gamma)}$ as the probability of the event.