

Modellieren mit SysML und für AUTOSAR – Ein Vergleich

Andreas Korff
ARTiSAN Software Tools GmbH

Gliederung

- Die OMG SyML™ im Überblick
- Modellieren mit SysML im Beispiel
- AUTOSAR-Diagramme auf Basis der UML
- Kombinierte Modellierung mit SysML und AUTOSAR
- Fazit

Was ist die SysML?

- Eine grafische Modellierungssprache ensprechend des UML for Systems Engineering RfP, entwickelt von der OMG, INCOSE, und AP233
 - ein UML Profil, das eine Untermenge der UML 2 um Systemaspekte erweitert
- SysML unterstützt die Spezifikation, Analyse, Design, Verifikation und Validierung von Systemen, die Hardware, Software, Daten, Personal, Verfahren und Anlagen enthalten
- Ermöglicht Modell- und Datenaustausch via XMI und dem zukünftigen AP233 Standard

UML/SysML Status

- UML V2.0
 - Angepasste Version der UML, die signifikante Verbesserungen zur Systemmodellierung im Vergleich zu früheren Versionen enthält
 - 2005 Finalisiert (OMG-Dokument formal/05-07-04)
 - Jetziger Stand: UML 2.1.1
- UML for Systems Engineering (SE) RfP
 - Beschreibt die Anforderungen an eine Systemmodellierungssprache
 - Veröffentlicht durch die OMG im März 2003
- SysML
 - Stellungnahme durch die Industrie auf das UML for SE RfP
 - Adressiert die meisten Anforderungen im RFP
 - Version 1.0 wurde von der OMG im Mai 2006 angenommen und im Juli veröffentlicht
 - Jetzt in Finalisierungsphase Ols GmbH All Rights Reserved

Sprachliche Architektur der SysML

Beziehung zwischen SysML und UML

Vier Säulen der SysML – ABS Beispiel

3. Anforderungen It © 1998-2007 ARTISAN Software Tools GmbH

4. Parametrisch

Beispielmodellierung

Hybrid SUV aus der SysML-Spezifikation

Anforderungen am Entwicklungsstart

Anforderungsanalyse mit SysML

Systemstruktur im SysML IBD

Verhaltensmodellierung in SysML

HybridSUV

Parametrisches Diagramm

- Kleine Quadrate entsprechen
 Parametern und die daran gebundenen
 Eigenschaften
- Linke Rechtecke zeigen die Item Flows
- Das Constraint kann in einem Compartment oder in einer verbundenen Notiz gezeigt werden

Systemtopologie mit AUTOSAR

Copyright © 1998-2007 ARTiSAN Software Tools GmbH $\,$ All Rights Reserved

SysML und AUTOSAR

AUTOSAR Datentypen

AR Types Project Datatypes

«RealType»	«OpaqueType»
Float	Opaque
allowNaN	nrOfBits
FALSE	18
encodingReal	lowerLimit
single	0
	upperLimit 0

«BooleanType» Boolean

«IntegerType»	«IntegerType»
SInt8	SInt16
lowerLimit	lowerLimit
0	0
upperLimit	upperLimit
0	0

«IntegerType» SInt32 **lowerLimit** upperLimit

«IntegerType»
UInt1
lowerLimit
0
upperLimit
U

«IntegerType»	«IntegerType
UInt2	UInt3
lowerLimit 0	lowerLimit 0
upperLimit 0	upperLimit 0

«IntegerType» UInt4
lowerLimit 0
upperLimit 0

«IntegerType» UInt5
lowerLimit 0
upperLimit 0

«IntegerType» UInt6	«IntegerType» UInt7
lowerLimit 0	lowerLimit 0
upperLimit 0	upperLimit 0

UInt7
lowerLimit 0
upperLimit 0

«IntegerType»	«IntegerType»
UInt8	UInt16
lowerLimit	lowerLimit
0	0
upperLimit	upperLimit
0	0

«IntegerType» UInt32
lowerLimit 0
upperLimit

Interfaces

AR SWCIF Interfaces

«senderReceiverInterface» **IDouble**

«dataElementPrototype» value : Float

«clientServerInterface» IService

«operationPrototype» Connect ()

Composition Diagram

Fazit

- SysML enthält alle Perspektiven für das Systems Engineering
- Für Automotive Systeme sind diese auch sehr gut geeignet
- Sie schliessen Lücken im AUTOSAR-Metamodell
 - **z.B.** Anforderungen oder Parametrische Diagramme
- SysML und AUTOSAR können zusammen in einem Modell verwendet werden
 - Weil die Metamodelle auf UML 2 beruhen

Fragen?

Copyright © 1998-2007 ARTiSAN Software Tools GmbH All Rights Reserved