KINETICS I: DETERMINATION OF A RATE LAW SMART WORKSHEET

PART A: CONCENTRATIONS OF STOCK SOLUTIONS

	Concentration			Units		
H_2O_2 stock solution = $\left[H_2O_2\right]_{BM}$	_	0.880	~	_	mol L ⁻¹	
KI stock solution = $[KI]_{\rm BM}$		0.500	~	<u></u>	mol L ⁻¹	(

RUNS 1 TO 3

	Run 1		Run 2	Run 3		Units
Volume of H_2O_2 stock solution	10.00	~	15.00	20.00	~	<u>mL</u>
Data check (H_2O_2 volume)	Hydrogen per	oxide v	olumes for runs 1 to	3 are different as expo	ected	
Volume of \overline{KI} stock solution	5.00	~	5.00	5.00	~	<u>mL</u>
Volume of $ m H_2O$	45.00 ———	~	40.00	35.00	~	<u>mL</u>
1. $[H_2O_2]_{AM}$ unrounded	0.146667	\bigcirc	0.220000	0.293333	\bigcirc	mol L ⁻¹
$[\mathrm{H_2O_2}]_\mathrm{AM}$ rounded	0.147	\bigcirc	0.220	0.293	\bigcirc	
2. $[\mathrm{KI}]_\mathrm{AM}$ unrounded	0.0416667	\bigcirc	0.0416667	0.0416667	\bigcirc	mol L ⁻¹
$[KI]_{\mathrm{AM}}$ rounded	0.0417	\bigcirc	0.0417	0.0417	\bigcirc	
3. $\ln\!\left([\mathrm{H_2O_2}]_\mathrm{AM} ight)$ unrounded	-1.91959	\bigcirc	-1.51413	-1.22645	\bigcirc	unitless 🗸
$\ln([\mathrm{H_2O_2}]_\mathrm{AM})$ rounded	-1.920	(-1.514	-1.226	(√)	
4. $\ln(\mathrm{[KI]_{AM}})$ unrounded	-3.17805	\bigcirc	-3.17805	-3.17805	\bigcirc	unitless 🕢
$\ln(\mathrm{[KI]_{AM}})$ rounded	-3.178	\bigcirc	-3.178	-3.178	(✓)	
Reaction rate (slope from LabQuest)	0.043560	~	0.142610	0.14542	~	kPa s⁻¹ €
5. $\ln(\mathrm{rate})$ unrounded	-3.13362	\bigcirc	-1.94764	-1.92813	\bigcirc	unitless 🕏
$\ln(\mathrm{rate})$ rounded	-3.134	\bigcirc	-1.948	-1.928	⊘	

RUNS 4 TO 7

	Run 4	Run 5	Run 6	Run 7	Units
Volume of H_2O_2 stock solution	5.00	5.00	5.00	10.00	<u>mL</u>
Volume of \overline{KI} stock solution	10.00	15.00	20.00	5.00	mL 🗸

Data check (KI volume) Potassium iodide volumes for runs 4 to 6 are different as expected					
Volume of ${ m H_2O}$	45.00	40.00	35.00	44.00	<u>mL</u>
Volume $FeCl_3\left(aq\right) \text{ in}$ mL (20 drops = 1.00 mL)				1.00	
6. $[\mathrm{H_2O_2}]_{\mathrm{AM}}$ unrounded	0.0733333	0.0733333	0.0733333	0.146667	mol L ^{−1}
$[H_2O_2]_{AM} \\ \text{rounded}$	0.0733	0.0733	0.0733	0.147	
7. $[{ m KI}]_{ m AM}$ unrounded	0.0833333	0.125000	0.166667	0.0416667	mol L ⁻¹
$[KI]_{AM} \\ \text{rounded}$	0.0833	0.125	0.167	0.0417	
8. $\ln([\mathrm{H_2O_2}]_\mathrm{AM})$ unrounded	-2.61274	-2.61274	-2.61274	-1.91959	unitless 🗸
$\frac{\ln([H_2O_2]_{AM})}{\text{rounded}}$	-2.613	-2.613	-2.613	-1.920	
9. $\ln(\mathrm{[KI]_{AM}})$ unrounded	-2.48490	-2.07944	-1.79176	-3.17805	
$\ln([\mathrm{KI}]_{\mathrm{AM}})$ rounded	-2.485	-2.079	-1.792	-3.178	
Reaction rate (slope from LabQuest)	0.063789 ✓	0.092874	0.114750	0.21274 ✓	kPa s⁻¹ ✔
10. $\ln(\mathrm{rate})$ unrounded	-2.75217	-2.37651	-2.16499	-1.54768	unitless 😯
ln(rate) rounded	-2.752	-2.377	-2.165	-1.548	

CORRECT POINTS AWARDED7 / 407 **AUTOSOLVED** 0/89 NOT FINISHED 0 / 120 **89** / 89

PART B: ANALYSIS OF REACTION ORDERS

