Суперкомпьютерное моделирование и технологии

Отчет

Задача для трехмерного гиперболического уравнения в прямоугольном параллелепипеде

Лазарев Владимир Александрович

2 вариант

Оглавление

Математическая постановка задачи	3
Численный метод решения задачи	3
Программная реализация	5
Результаты запусков программ на различных кластерах	9
Выводы	.13

Математическая постановка задачи

В трехмерной замкнутой области

$$\Omega = [0 \le x \le L_x] \times [0 \le y \le L_y] \times [0 \le z \le L_z]$$

для $0 \le t \le T$ требуется найти решение u(x,y,z,t) уравнения в частных производных $\frac{\partial^2 u}{\partial t^2} = \Delta u$ с начальными условиями

$$u(t = 0) = \phi(x, y, z)$$

$$\frac{\partial u}{\partial t}(t = 0) = 0$$

$$u(0, y, z, t) = 0$$

$$u(L_x, y, z, t) = 0$$

$$u(x, 0, z, t) = 0$$

$$u(x, L_y, z, t) = 0$$

$$u(x, y, 0, t) = u(x, y, L_z, t)$$

$$u_z(x, y, 0, t) = u_z(x, y, L_z, t)$$

Численный метод решения задачи

Введем на
$$\Omega$$
 сетку $\omega_{h\tau}=\overline{\omega_h}\times\omega_{\tau}$, где $T=T_0$,
$$L_x=L_{x0}, L_y=L_{y0}, L_z=L_{z0},$$

$$\overline{\omega_h}=\big\{\big(x_i=ih_x,y_j=jh_y,z_k=kh_z\big), i,j,k=\overline{0,N},h_xN=L_x,h_yN=L_y,h_zN=L_z\big\},$$

$$\omega_{\tau}=\{t_n=n\tau,n=\overline{0,K},\tau K=T\}$$

Через ω_h обозначим множество внутренних, а через γ_h – множество граничных узлов сетки $\overline{\omega_h}$.

Для аппроксимации исходного уравнения воспользуемся следующей системой уравнений:

$$\frac{u_{i,j,k}^{n+1} - 2u_{i,j,k}^n + u_{i,j,k}^{n-1}}{\tau^2} = \Delta_h u^n, (x_i, y_i, z_i) \in \omega_h, n = \overline{1, K - 1}$$

Здесь Δ_h – семиточечный разностный аналог оператора Лапласа:

$$\Delta_h u^n = \frac{u_{i-1,j,k}^n - 2u_{i,j,k}^n + u_{i+1,j,k}^n}{h^2} + \frac{u_{i,j-1,k}^n - 2u_{i,j,k}^n + u_{i,j+1,k}^n}{h^2} + \frac{u_{i,j,k-1}^n - 2u_{i,j,k}^n + u_{i,j,k+1}^n}{h^2}$$

Приведенная выше разностная схема является явной — значения $u_{i,j,k}^{n+1}$ на (n+1)-ом шаге можно явным образом выразить через значения на предыдущих слоях.

Для начала счета должны быть заданы значения $u_{i,j,k}^0, u_{i,j,k}^1, (x_i, y_i, z_i) \in \omega_h$:

$$u_{i,j,k}^{0} = \phi(x_{i}, y_{i}, z_{i}), (x_{i}, y_{i}, z_{i}) \in \omega_{h}$$

$$u_{i,j,k}^{1} = u_{i,j,k}^{0} + \frac{\tau^{2}}{2} \Delta_{h} \phi(x_{i}, y_{i}, z_{i})$$

$$u_{i,j,0}^{n+1} = u_{i,j,N}^{n+1}$$

$$u_{i,j,1}^{n+1} = u_{i,j,N+1}^{n+1}$$

$$i, j, k = \overline{0, N}$$

Программная реализация

Реализована гибридная параллельная программа (MPI + OpenMP). Принимает входные данные в виде аргументов командной строки. Используются следующие аргументы:

- -Lx = длина параллелепипеда вдоль оси X (по умолчанию 1);
- -Ly = длина параллелепипеда вдоль оси Y (по умолчанию 1);
- -Lz = длина параллелепипеда вдоль оси Z (по умолчанию 1);
- -T = конечное время сетки (по умолчанию 1);
- -N= количество точек пространственной сетки (по умолчанию 128);
- -K= количество точек временной сетки (по умолчанию 2000);
- -*steps*= количество шагов для решения (по умолчанию 5);
- -*omp*= количество OpenMP нитей (по умолчанию 1).

Для распараллеливания вся сетка разбивается на области в количестве используемых процессов по следующему алгоритму:

• Начинается разбиение с параллелепипеда $[0, N] \times [0, N] \times [0, N]$, выбирается X как начальная ось;

- Если оставшееся количество областей для разбиения равно 1, возвращается обрабатываемый параллелепипед;
- Если размер нечетный, то по текущей оси выбирается область $\frac{1}{countOfProcesses}$ и делается из нее параллелепипед, также продолжается разбиваться область $1 \frac{1}{countOfProcesses}$;
- По выбранной оси делим область пополам и рекурсивно запускаем для этих подобластей переходя на следующую ось $X \to Y, Y \to Z, Z \to X$).

График аналитического и полученного решений

Решение при $L_x = L_y = L_z = 1$

Рисунок 1. Аналитическое решение

Рисунок 2 Погрешность

Рисунок 3 Полученное решение

Решение при $L_x = L_y = L_z = \pi$

Рисунок 4 Аналитическое решение

Рисунок 5 Погрешность

Рисунок 6 Полученное решение

Результаты запусков программ на различных кластерах

Таблица 1. Результаты расчетов на Blue Gene/P

$$Lx = Ly = Lz = 1, N = 128, K = 2000$$

Число	MPI			MPI + OpenMP			Ускорение
MPI-	Время решения	Ускорение	Погрешность	Время	Ускорение	Погрешность	
процессов	(c)			решения (с)			
64	0.88109	1	2.7637e-08	0.664207	1	2.7637e-08	1.3265
128	0.458035	1.9236	2.7637e-08	0.357409	1.8583	2.7637e-08	1.28154
256	0.243407	3.6198	2.7637e-08	0.203291	3.2672	2.7637e-08	1.19733

$$Lx = Ly = Lz = 1, N = 256, K = 2000$$

Число	MPI			MPI + OpenMP			Ускорение
MPI-	Время решения	Ускорение	Погрешность	Время	Ускорение	Погрешность	
процессов	(c)			решения (с)			
64	6.92044	1	6.73841e-09	4.95551	1	6.73841e-09	1.3965
128	3.55399	1.9472	6.73841e-09	2.55715	1.9376	6.73841e-09	1.3898
256	1.84311	3.7547	6.73841e-09	1.33835	3.7027	6.73841e-09	1.37715

$$Lx = Ly = Lz = 1, N = 512, K = 2000$$

Число	MPI			MPI + OpenMP			Ускорение
MPI-	Время решения	Ускорение	Погрешность	Время	Ускорение	Погрешность	
процессов	(c)			решения (с)			
64	54.9187	1	1.51341e-09	38.4149	1	1.51341e-09	1.4296
128	28.0821	1.9556	1.51341e-09	19.7548	1.9426	1.51341e-09	1.4215
256	14.4007	3.9136	1.51341e-09	10.2014	3.7656	1.51341e-09	1.4116

$Lx = Ly = Lz = \pi$, N = 128, K = 2000

Число	MPI			MPI + OpenMP			Ускорение
MPI-	Время решения	Ускорение	Погрешность	Время	Ускорение	Погрешность	
процессов	(c)			решения (с)			
64	0.906653	1	2.82401e-09	0.687626	1	2.82401e-09	1.3185
128	0.471202	1.924	2.82401e-09	0.369249	1.862	2.82401e-09	1.276
256	0.249691	3.6311	2.82401e-09	0.209644	3.2799	2.82401e-09	1.191

$Lx = Ly = Lz = \pi$, N = 256, K = 2000

Число	MPI			MPI + OpenMP			Ускорение
MPI-	Время решения	Ускорение	Погрешность	Время	Ускорение	Погрешность	
процессов	(c)			решения (с)			
64	7.13104	1	7.0428e-10	5.14782	1	7.0428e-10	1.3852
128	3.66111	1.9477	7.0428e-10	2.65251	1.9407	7.0428e-10	1.3802
256	1.89584	3.7614	7.0428e-10	1.38544	3.71565	7.0428e-10	1.3684

$Lx = Ly = Lz = \pi$, N = 512, K = 2000

Число	MPI			MPI + OpenMP			Ускорение
MPI-	Время решения	Ускорение	Погрешность	Время	Ускорение	Погрешность	
процессов	(c)			решения (с)			
64	56.5957	1	1.74311e-10	39.9214	1	1.74311e-10	1.4176
128	28.9268	1.9565	1.74311e-10	20.5028	1.9471	1.74311e-10	1.4108
256	14.8168	3.8196	1.74311e-10	10.572	3.7761	1.74311e-10	1.4015

Таблица 2. Результаты расчетов на Polus

$$Lx = Ly = Lz = 1, N = 128, K = 2000$$

Число	MPI					
MPI-	Время решения	Ускорение	Погрешность			
процессов	(c)					
10	0.389413	1	2.7637e-08			
20	0.156115	2.4943	2.7637e-08			
40	0.183659	2.1203	2.7637e-08			

Lx = Ly = Lz = 1, N = 256, K = 2000

Число	MPI						
MPI-	Время решения Ускорение Погрешности						
процессов	(c)						
10	1.23209	1	6.73841e-09				
20	0.878508	1.4024	6.73841e-09				
40	0.811804	1.5177	6.73841e-09				

Lx = Ly = Lz = 1, N = 512, K = 2000

Число	MPI							
MPI-	Время решения	Время решения Ускорение Погрешност						
процессов	(c)							
10	8.5587	1	1.51341e-09					
20	5.54305	1.54404	1.51341e-09					
40	4.44931	1.9236	1.51341e-09					

$Lx = Ly = Lz = \pi$, N = 128, K = 2000

Число	MPI						
MPI-	Время решения Ускорение Погрешность						
процессов	(c)						
10	0.192021	1	2.82401e-09				
20	0.137538	1.396	2.82401e-09				
40	0.21486	0.885	2.82401e-09				

$Lx = Ly = Lz = \pi$, N = 256, K = 2000

Число	MPI						
MPI-	Время решения Ускорение Погрешность						
процессов	(c)						
10	1.04726	1	7.0428e-10				
20	0.852743	1.2281	7.0428e-10				
40	0.739732	1.41572	7.0428e-10				

$Lx = Ly = Lz = \pi$, N = 512, K = 2000

Число	MPI		
MPI-	Время решения	Ускорение	Погрешность
процессов	(c)		
10	7.16041	1	1.74311e-10
20	4.92263	1.4545	1.74311e-10
40	3.83267	1.87314	1.74311e-10

Выводы

Как следует из приведенных выше таблиц, задача для трехмерного гиперболического уравнения отлично подходит для распараллеливания. В результате получены программные средства, решающую поставленную задачами гибридным способом при использовании средств MPI и OpenMP. Важную роль в MPI при задачи сеточного способ распараллеливании метода играет блоки. Тонким разбиения на моментом, которое является «бутылочным горлышком», является передача данных и работа с памятью. При замерах на Polus использование 64 процессов было невозможно в силу технических проблем на кластере.