October 16, 2017

1. Construct a pushdown automata that recognizes $\{w \mid w \text{ is an element of } \{0,1\}^* \text{ and } w \text{ has more 0's than 1's }\}$.

2. Convert the following CFG into an equivalent CFG in Chomsky normal form, using the procedure given in Theorem 2.9.

$$\begin{array}{l} A \rightarrow BAB \mid B \mid \epsilon \\ B \rightarrow 00 \mid \epsilon \end{array}$$

$$\begin{split} S &\rightarrow BC \mid AB \mid BA \mid BB \mid DD \mid \epsilon \\ A &\rightarrow BC \mid AB \mid BA \mid BB \mid DD \\ B &\rightarrow DD \\ C &\rightarrow AB \\ D &\rightarrow 0 \end{split}$$

3. Show that the class of context-free languages is closed under the union operation (construction and proof). The construction should be quite simple.

Proof. Define two context-free languages: $G_1 = (V_1, \Sigma, R_1, S_1)$ and $G_2 = (V_2, \Sigma, R_2, S_2)$ and also the language $G_U = (V_1 \cup V_2 \cup \{S\}, \Sigma, R_1 \cup R_2 \cup \{S \to S_1 \mid S_2\}, S)$ which is the union of G_1 and G_2 as the start variable of G_U points to both start variables of G_1 and G_2 . Additionally the rules and variables are shared (assuming the rules and variables are disjoint). After the start variable of G_U , subsequent steps use rules exclusively from G_1 or G_2 , not both. therefore all productions of G_U must be in the languages G_1 or G_2 .

4. Show that the class of context-free languages is closed under the concatenation operation (construction and proof). The construction should be quite simple.

Proof. Define two context-free languages: $G_1 = (V_1, \Sigma, R_1, S_1)$ and $G_2 = (V_2, \Sigma, R_2, S_2)$ and also the language $G_C = (V_1 \cup V_2 \cup \{S\}, \Sigma, R_1 \cup R_2 \cup \{S \to S_1S_2\}, S)$ which is the concatenation of G_1 and G_2 ad the start variable of G_C concatenates both the start variables of G_1 and G_2 . So G_C produces words that start with G_1 and end with G_2 , thus all productions of G_C must be concatenations of G_1 and G_2 .

5. Show that the class of context-free languages is closed under the star operation (construction and proof). The construction should be quite simple.

Proof. Define the context-free language $G_1 = (V, \Sigma, R, S)$. The star of this language would have to be able to generate Σ or a countably infinite amount of copies. So the start state would have to $S_0 \to \epsilon \mid S_0 S$. Therefore the language $G_S = (V, \Sigma, R \cup \{S_0 \to \epsilon \mid S_0 S\}, S_0)$ generates either ϵ or a sequence of many words in G_1 .

- 6. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA and define CFG $G = (V, \Sigma, R, S)$ as follows:
 - V = Q;
 - For each $q \in Q$ and $a \in \Sigma$, define rule $q \to aq'$ where $q' = \delta(q, a)$;
 - For $q \in F$ define rule $q \to \epsilon$;
 - $S = q_0$.

Prove L(M) = L(G).

Proof. A language is regular if a DFA accepts it, so L(M) is a regular language. By Corollary 2.32, the language must also be context-free. In order for L(M) = L(G), the construction of G must be a direct translation of a DFA to GFA. G converts the states of a DFA to variables, defines rules that function similarly to the transition functions and uses a rule that moves to ϵ instead of using accept states. This construction successfully translates a DFA into a CFG.

- 7. Let $L = \{0^n 1^m 0^n 1^m \mid n, m \ge 0\}$. Show L is not context-free.
- 8. Let $L = \{w \mid w \text{ is in } \{a, b, c, d\}^*$, with the number of a's = number of b's and the number of c's = the number of d's $\}$. Show L is not context-free.
- 9. Let A and B be languages. We define $A \approx B = \{ab \mid a \text{ is an element of } A \text{ and } b \text{ is an element of } B \text{ and } |a| > |b| \}$. Show that if A and B are regular languages, then $A \approx B$ is a context free language.
- 10. Show $L = \{w \mid w \text{ is an element of } \{a, b, c, d, e, f\}^* \text{ such that the number of a's} + \text{number of b's} = \text{number of c's} + \text{number of d's} = \text{number of e's} + \text{number of f's} \} \text{ is not context-free.}$