第二章 单变量线性回归

Training set of	Size in feet ² (x)	Price (\$) in 1000	's (y)
housing prices	>> 2104	460	
(Portland, OR)	1416	232	m=47
(> 1534	315	
	852	178	
	<u>.</u>		J
Notation:	C	~	
→ m = Number of train → x 's = "input" variable	1× (1) = 21	04	
y 's = "output" variab	$ e \times (2) = 14$	16	
(x,y) - one train (x(i) = i	y (1) = 4	160	
• • • • •			Andrew N

Andrew Ng

How do we represent h?

$$h_{e}(x) = \Theta_{0} + \Theta_{1} \times Shurtherd: h(x)$$

Linear regression with one variable. (x)
Univariate linear regression.

Andrew Ng

损失函数 (衡量一个模型的好坏)

Training Set	Size in feet ² (x)	Price (\$) in 1000's (y)	
	2104	460 7	
	1416	232 m=47	
	1534	315	
	852	178	
		<i>)</i>	

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$
 θ_{i} 's: Parameters

How to choose θ_i 's ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\frac{1}{2} \quad h(x) = 1.5 + 0.4$$

$$\frac{1}{2} \quad h(x) = 0.5 +$$

Andrew Ng

Idea: Choose $\underline{\theta_0}, \underline{\theta_1}$ so that $\underline{h_{\theta}(x)}$ is close to \underline{y} for our training examples $\underline{(x,y)}$

Miximize $J(\Theta_0, O_1)$ O_0, O_1 Cost function
equivel error faction

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal: minimize
$$J(\theta_0, \theta_1)$$

Simplified

$$h_{\theta}(x) = \underbrace{\theta_{1}x}_{\theta_{1}}$$

$$\theta_{1}$$

$$J(\theta_{1}) = \underbrace{\frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^{2}}_{\theta_{1}}$$

$$\min_{\theta_{1}} \underbrace{J(\theta_{1})}_{\theta_{1}} \otimes \underbrace{\chi^{(i)}}_{\phi_{1}}$$

Andrew Ng

注: 1/2m而不是1/m是为了方便计算(个人理解)。平方损失函数

 $h_{\theta}(x) = \theta_0 + \theta_1 x$ Hypothesis:

 θ_0, θ_1 Parameters:

 $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$ **Cost Function:**

 $\underset{\theta_0,\theta_1}{\text{minimize}} \ J(\theta_0,\theta_1)$ Goal:

Andrew Ng

$$J(heta_0, heta_1)$$

(function of the parameters θ_0, θ_1)

注:可采用梯度下降算法寻找最低点(即最小损失函数)

梯度下降算法寻找最小代价函数

当a过小或者过大的时候对梯度下降的影响

当代价函数处于局部最小时(即斜率为零)梯度下降不会改变原来参数的值

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ (for j = 1 and j = 0) }

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{2}{200 \int_{0}^{\infty} \frac{1}{2m} \sum_{i=1}^{\infty} \left(h_{0}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$= \frac{2}{200 \int_{0}^{\infty} \frac{1}{2m} \sum_{i=1}^{\infty} \left(h_{0}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\text{P}}{=} \left(h_{\bullet} \left(\chi^{(i)} \right) - y^{(i)} \right)$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\text{P}}{=} \left(h_{\bullet} \left(\chi^{(i)} \right) - y^{(i)} \right). \quad \chi^{(i)}$$

Gradient descent algorithm $\frac{\Im}{\partial \phi_0}\Im(\phi_0,\phi_1)$ repeat until convergence $\{$ $\theta_0:=\theta_0-\alpha \frac{1}{m}\sum_{i=1}^m \left(h_\theta(x^{(i)})-y^{(i)}\right)$ update $\theta_0 \text{ and } \theta_1$ $\theta_1:=\theta_1-\alpha \frac{1}{m}\sum_{i=1}^m \left(h_\theta(x^{(i)})-y^{(i)}\right)\cdot x^{(i)}$ simultaneously $\{$

. . .

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

