12. előadás Improprius integrál

Improprius integrál

- Az improprius integrál motivációja
- Az improprius integrál értelmezése
- Az improprius integrálra vonatkozó alapvető tételek
- Wégtelen sorokra vonatkozó integrálkritérium

Improprius integrál

- Az improprius integrál motivációja
- 2 Az improprius integrál értelmezése
- 3 Az improprius integrálra vonatkozó alapvető tételek
- 4 Végtelen sorokra vonatkozó integrálkritérium

1. Az improprius integrál motivációja

A Riemann-integrál értelmezésénél a kiindulópontunk az volt, hogy csak olyan $f \in \mathbb{R} \to \mathbb{R}$ függvényeket tekintettünk, amelyekre a következő két feltétel teljesül:

- (a) f értelmezési tartománya egy korlátos és zárt [a, b] intervallum,
- (b) az f függvény **korlátos** [a, b]-n.

Röviden ezt úgy fejeztük ki, hogy $f\in K[a,b]$. Az eddigiekben bizonyos K[a,b]-beli f függvényekhez hozzárendeltünk egy, az $\int\limits_a^b f$ szimbólummal jelölt valós számot. Ezt az f függvény [a,b]-vett Riemann-integráljának vagy határozott integráljának neveztük.

Az (a) és (b) megszorítások néha túl szigorúnak bizonyulnak. Felvethető tehát az a **probléma**, hogy ezeket a feltételeket nem kielégítő függvényekre vajon értelmezhető-e az integrál fogalma. **Egyfajta** kiterjesztést teszik lehetővé az ún. **improprius integrálok**.

A következő példákon "érzékeltetjük", hogy ezt a kiterjesztést "elég természetes" módon meg tudjuk tenni.

$oxedsymbol{f A}$ $oxedsymbol{f A}$ $oxedsymbol{f A}$ integrandus értelmezési tartománya nem korlátos intervallum

Ha pl.
$$f(x) := \frac{1}{x^2}$$
 és $g(x) := \frac{1}{x} (x \in [1, +\infty))$, akkor

Ekkor

$$\lim_{t \to +\infty} \int_{1}^{t} \frac{1}{x^{2}} dx = \lim_{t \to +\infty} \left[-\frac{1}{x} \right]_{1}^{t} = \lim_{t \to +\infty} \left(-\frac{1}{t} - (-1) \right) = 1,$$

ugyanakkor

$$\lim_{t \to +\infty} \int_{1}^{t} \frac{1}{x} dx = \lim_{t \to +\infty} \left[\ln x \right]_{1}^{t} = \lim_{t \to +\infty} \left(\ln t - \ln 1 \right) = +\infty.$$

Azt fogjuk mondnai, hogy az $\int_1^{+\infty} f$ improprius integrál **konvergens**, és $\int_1^{+\infty} \frac{1}{x^2} dx = 1$, az $\int_1^{+\infty} \frac{1}{x} dx$ pedig **divergens**.

B Az integrandus nem korlátos, de az ÉT-a korlátos

Ha pl. $f(x) := \frac{1}{\sqrt{x}}$ és $g(x) := \frac{1}{x} (x \in (0,1])$, akkor

Ugyanakkor

$$\lim_{t \to 0+0} \int_{t}^{1} \frac{1}{\sqrt{x}} dx = \lim_{t \to 0+0} \left[2\sqrt{x} \right]_{t}^{1} = \lim_{t \to 0+0} \left(2 - 2\sqrt{t} \right) = 2,$$

$$\lim_{t \to 0+0} \int_{t}^{1} \frac{1}{x} dx = \lim_{t \to 0+0} \left[\ln x \right]_{t}^{1} = \lim_{t \to 0+0} \left(\ln 1 - \ln t \right) = +\infty.$$

Azt fogjuk mondnai, hogy a $\int_{0}^{1} f$ improprius integrál **konvergens**,

és
$$\int_{0}^{1} \frac{1}{\sqrt{x}} dx = 2$$
, a $\int_{0}^{1} \frac{1}{x} dx$ pedig **divergens**.

Improprius integrál

- Az improprius integrál motivációja
- Az improprius integrál értelmezése
- 3 Az improprius integrálra vonatkozó alapvető tételek
- Végtelen sorokra vonatkozó integrálkritérium

2. Az improprius integrál értelmezése

A Az integrandus ÉT-a nem korlátos intervallum Definíció.

1º Legyen $a \in \mathbb{R}$. T.f.h. $f:[a,+\infty) \to \mathbb{R}$ és $f \in R[a,t]$ minden t > a-ra. Ha a

$$\lim_{t \to +\infty} \int_{a}^{b} f(x) \, dx =: I$$

határérték létezik és véges, akkor a.m.h. az f függvény $[a, +\infty)$ beli improprius integrálja konvergens és értéke I (jelben $\int_{a}^{+\infty} f = I$). Egyéb esetekben az $\int_{a}^{+\infty} f$ improprius integrál divergens.

2° A.m.h. az $\int_a^{\cdot} f$ improprius integrál **létezik** (vagy f impropriusan integrálható $[a, +\infty)$ -n), ha konvergens vagy pedig a fenti I határérték $+\infty$ vagy $-\infty$.

Példa. Mutassuk meg, hogy

$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx = \begin{cases} \frac{1}{\alpha - 1}, & ha \ \alpha \in (1, +\infty) \\ +\infty, & ha \ \alpha \in (-\infty, 1]. \end{cases}$$

Megoldás. Ha $\alpha \neq 1$ valós, akkor

$$\int\limits_{1}^{+\infty}\frac{1}{x^{\alpha}}\,dx=\lim_{t\to+\infty}\int\limits_{1}^{t}x^{-\alpha}\,dx=\lim_{t\to+\infty}\left[\frac{x^{-\alpha+1}}{-\alpha+1}\right]_{1}^{t}=\lim_{t\to+\infty}\left(\frac{t^{1-\alpha}}{-\alpha+1}-\frac{1}{-\alpha+1}\right).$$

Mivel

$$\lim_{t \to +\infty} t^{1-\alpha} = \begin{cases} 0, & \text{ha } \alpha \in (1, +\infty) \\ +\infty, & \text{ha } \alpha \in (-\infty, 1), \end{cases}$$

ezért $\alpha \neq 1$ esetben az állítás igaz. Másrészt láttuk azt, hogy

$$\int_{1}^{+\infty} \frac{1}{x} dx = +\infty,$$

ezért az állítás $\alpha = 1$ esetén is igaz.

Az értelemszerű módosításokkal értelmezzük a $\int\limits_{-\infty}^{} f$ improprius integrál konvergenciáját, divergenciáját, valamint a létezését akkor, ha $f:(-\infty,a]\to\mathbb{R}$ és $f\in R[t,a]$ minden t< a esetén.

Az improprius integrál fogalmát a $(-\infty, +\infty)$ intervallumon értelmezett függvényekre is kiterjeszthetjük.

Definíció. T.f.h. $f: \mathbb{R} \to \mathbb{R}$ és $\forall u, v \in \mathbb{R}$, u < v esetén $f \in R[u,v]$, továbbá $z \in \mathbb{R}$ egy tetszőleges pont. A.m.h. az f függvény impropriusan integrálható $(-\infty, +\infty)$ -n, ha

$$a\int_{-\infty}^{z} f \in \overline{\mathbb{R}}$$
 és $a\int_{z}^{+\infty} f \in \overline{\mathbb{R}}$

improprius integrálok léteznek és az összegük értelmezve van. Ekkor az f függvény **improprius integrálján** a szóban forgó összeget értjük:

$$\int_{-\infty}^{+\infty} f(x) \, dx := \int_{-\infty}^{z} f(x) \, dx + \int_{z}^{+\infty} f(x) \, dx \in \overline{\mathbb{R}}.$$

Megjegyzés. Könnyű meggondolni, hogy a definícó fügetlen a z pont megválasztásától.

Példa. Mutassuk meg, hogy

$$\int_{-\infty}^{+\infty} \frac{1}{1+x^2} \, dx = \pi.$$

Megoldás. Legyen az előző definícióban szereplő z pont (például) 0. Ekkor

$$\int_{0}^{+\infty} \frac{1}{1+x^2} dx = \lim_{t \to +\infty} \int_{0}^{t} \frac{1}{1+x^2} dx = \lim_{t \to +\infty} \left[\operatorname{arc} \operatorname{tg} x \right]_{0}^{t} = \lim_{t \to +\infty} \left(\operatorname{arc} \operatorname{tg} t - \operatorname{arc} \operatorname{tg} 0 \right) = \frac{\pi}{2} - 0 = \frac{\pi}{2}.$$

Ugyanígy adódik az, hogy

$$\int_{-\infty}^{0} \frac{1}{1+x^2} \, dx = \frac{\pi}{2}.$$

Ezért a szóban forgó improprius integrál konvergens, és

$$\int_{-\infty}^{+\infty} \frac{1}{1+x^2} \, dx = \int_{-\infty}^{0} \frac{1}{1+x^2} \, dx + \int_{0}^{+\infty} \frac{1}{1+x^2} \, dx = \frac{\pi}{2} + \frac{\pi}{2} = \pi.$$

Az előzőek alapján bizonyos **nem korlátos síkidomok területét** is értelmezhetjük. Tekintsük például az alábbi ábrán szemléltetett A síkidomot:

Mivel a $\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx$ improprius integrál konvergens, ezért célszerű azt mondani, hogy A-nak van területe, és az egyenlő a szóban forgó improprius integrállal:

$$T(A) := \int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx = \pi.$$

B Az integrandus nem korlátos, de az ÉT-a korlátos Definíció.

1º Legyen $-\infty < a < b < +\infty$. T.f.h. $f:(a,b] \to \mathbb{R}$ és $f \in R[t,b]$ minden $t \in (a,b)$ esetén. Ha a

$$\lim_{t \to a+0} \int_{t}^{b} f(x) \, dx =: I$$

határérték létezik és véges, akkor a.m.h. az f függvény improprius integrálja **konvergens** és értéke I (jelben $\int_a^b f = I$). Egyéb esetekben az $\int_a^b f$ improprius integrál **divergens**.

2º A.m.h. $az \int_{a}^{b} f$ improprius integrál **létezik** (vagy f impropriusan integrálható (a,b]-n), ha konvergens vagy pedig a fenti I határérték $+\infty$ vagy $-\infty$.

Példa. Mutassuk meg, hogy

$$\int_{0}^{1} \frac{1}{x^{\alpha}} dx = \begin{cases} \frac{1}{1-\alpha}, & ha \ \alpha \in (-\infty, 1) \\ +\infty, & ha \ \alpha \in [1, +\infty). \end{cases}$$

Megoldás. Ha $\alpha \neq 1$ valós, akkor

$$\int_{0}^{1} \frac{1}{x^{\alpha}} dx = \lim_{t \to 0+0} \int_{t}^{1} x^{-\alpha} dx = \lim_{t \to 0+0} \left[\frac{x^{-\alpha+1}}{-\alpha+1} \right]_{t}^{1} = \lim_{t \to 0+0} \left(\frac{1}{1-\alpha} - \frac{t^{1-\alpha}}{1-\alpha} \right).$$

Mivel

$$\lim_{t \to 0+0} t^{1-\alpha} = \begin{cases} 0, & \text{ha } \alpha \in (-\infty, 1) \\ +\infty, & \text{ha } \alpha \in (1, +\infty), \end{cases}$$

ezért $\alpha \neq 1$ esetben az állítás igaz. Másrészt

$$\int_{0}^{1} \frac{1}{x} dx = \lim_{t \to 0+0} \left[\ln x \right]_{t}^{1} = \lim_{t \to 0+0} (\ln 1 - \ln t) = +\infty,$$

ezért az állítás $\alpha = 1$ esetén is igaz.

Az értelemszerű módosításokkal értelmezzük az $\int_a^b f$ improprius integrál konvergenciáját, divergenciáját, valamint a létezését akkor, ha $f:[a,b)\to\mathbb{R}$ és $f\in R[a,t]$ minden $t\in (a,b)$ esetén. Ekkor előfordulhat, hogy az f függvény a b pont környezetében nem korlátos.

Az is lehetséges, hogy a függvény mindkét végpont környezetében nem korlátos.

Definíció. Legyen $-\infty < a < b < +\infty$. T.f.h. $f:(a,b) \to \mathbb{R}$ és $\forall u,v \in (a,b),\ u < v$ esetén $f \in R[u,v]$, továbbá $z \in (a,b)$ egy tetszőleges pont. A.m.h. az f függvény impropriusan integrálható (a,b)-n, ha

$$az \int_{a}^{z} f \in \overline{\mathbb{R}} \quad \text{\'es } a \int_{z}^{b} f \in \overline{\mathbb{R}}$$

improprius integrálok léteznek és az összegük értelmezve van. Ekkor az f függvény **improprius integrálján** a szóban forgó összeget értjük:

$$\int_{a}^{b} f := \int_{a}^{z} f + \int_{z}^{b} f \in \overline{\mathbb{R}}.$$

Megjegyzés. Könnyű meggondolni, hogy a definícó fügetlen a z pont megválasztásától.

Példa. Mutassuk meg, hogy

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \, dx = \pi.$$

Megoldás. Vegyük észre, hogy az $f(x) := \frac{1}{\sqrt{1-x^2}}$ (|x| < 1) integrandus **nem korlátos**, de $f \in$ R[u,v] minden -1 < u < v < 1 esetén. Legyen

$$z := 0. \text{ Ekkor}$$

$$\int_{0}^{1} \frac{1}{\sqrt{1-x^2}} dx = \lim_{t \to 1-0} \int_{0}^{t} \frac{1}{\sqrt{1-x^2}} dx = \lim_{t \to 1-0} \left[\arcsin x \right]_{0}^{t} = \lim_{t \to 1} \left(\arcsin t - \arcsin 0 \right) = \arcsin 1 - 0 = \frac{\pi}{2}.$$

Hasonlóan (vagy az integrandus párosságára hivatkozva) kapjuk azt, hogy

$$\int_{-1}^{0} \frac{1}{\sqrt{1-x^2}} \, dx = \frac{\pi}{2}.$$

Így f impropriusan integrálható (-1,1)-en és

oropriusan integralhato (-1, 1)-en es
$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx = \int_{-1}^{0} \frac{1}{\sqrt{1-x^2}} dx + \int_{0}^{1} \frac{1}{\sqrt{1-x^2}} dx = \frac{\pi}{2} + \frac{\pi}{2} = \pi.$$

Példa. Bizonyítsuk be, hogy a tg függvény impropriusan nem integrálható a $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ intervallumon.

Megoldás. A tg függvény **nem korlátos** $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ -en, de tg $\in R[u, v]$ minden $-\frac{\pi}{2} < u < v < \frac{\pi}{2}$ esetén. Legyen z := 0. Ekkor

$$\int_{0}^{\frac{\pi}{2}} \operatorname{tg} x \, dx = \lim_{t \to \frac{\pi}{2} - 0} - \int_{0}^{t} \frac{-\sin x}{\cos x} \, dx = -\lim_{t \to \frac{\pi}{2} - 0} \left[\ln \cos x \right]_{0}^{t} =$$

$$= -\lim_{t \to \frac{\pi}{2} - 0} \left(\ln \cos t - \ln \cos 0 \right) = -(-\infty - 0) = +\infty.$$

Hasonlóan kapjuk azt, hogy

$$\int_{-\frac{\pi}{2}}^{0} \operatorname{tg} x \, dx = \lim_{t \to -\frac{\pi}{2} + 0} - \int_{t}^{0} \frac{-\sin x}{\cos x} \, dx = -\lim_{t \to -\frac{\pi}{2} + 0} \left(\ln 0 - \ln \cos t \right) = -\infty.$$

Mivel a $(+\infty) + (-\infty)$ összeg nincs értelmezve, ezért a tg függvény nem impropriusan integrálható a $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ intervallumon.

Megjegyzés. Ha $f \in R[a, b]$, akkor az

$$\int_{a}^{b} f(x) \, dx$$

szimbólumot egyrészt az f függvény [a,b]-n vett Riemannintegrálját, másrészt f-nek az (a,b)-n vett improprius integrálját jelöli. Könnyű meggondolni, hogy ezek a valós számok megegyeznek, vagyis az improprius integrál fogalma a Riemannintegrál fogalmának a kiterjesztése.

Az improprius integrál fogalmát olyan függvényekre is értelmezhetjük, amelyek az (a,b) intervallum egy belső pontjának a környezetében nem korlátosak.

Példa. Tekintsük a

$$\int_{0}^{3} \frac{1}{(x-1)^{2/3}} \, dx$$

integrált!

Világos, hogy a $c=1\in(0,3)$ pont környezetében az $f(x):=\frac{1}{(x-1)^{2/3}}$ $(1\neq x\in\mathbb{R})$ integrandus nem korlátos:

Ezért improprius integrálról van szó.

Egyrészt

$$\int_{0}^{1} f(x) dx = \lim_{t \to 1-0} \int_{0}^{t} (x-1)^{-2/3} dx = \lim_{t \to 1-0} \left[\frac{(x-1)^{1/3}}{1/3} \right]_{0}^{t} =$$

$$= \lim_{t \to 1-0} \left(\frac{(t-1)^{1/3}}{1/3} - \frac{(-1)^{1/3}}{1/3} \right) = 0 + 3 = 3.$$

Másrészt

$$\int_{1}^{3} f(x) dx = \lim_{s \to 1+0} \int_{s}^{3} (x-1)^{-2/3} dx = \lim_{s \to 1+0} \left[\frac{(x-1)^{1/3}}{1/3} \right]_{s}^{3} = \lim_{s \to 1+0} \left(\frac{2^{1/3}}{1/3} - \frac{(s-1)^{1/3}}{1/3} \right) = 3 \cdot \sqrt[3]{2}.$$

Így

$$\int_{0}^{3} \frac{1}{(x-1)^{2/3}} dx = \int_{0}^{1} \frac{1}{(x-1)^{2/3}} dx + \int_{0}^{3} \frac{1}{(x-1)^{2/3}} dx = 3 + 3 \cdot \sqrt[3]{2}.$$

Példa: Nem korlátos síkidom területe.

$$\int_{1}^{+\infty} \frac{1}{x^{2}} dx = \lim_{t \to +\infty} \int_{1}^{t} \frac{1}{x^{2}} dx = \lim_{t \to +\infty} \left[-\frac{1}{x} \right]_{1}^{t} = \lim_{t \to +\infty} \left(-\frac{1}{t} + 1 \right) = 0 + 1 = 1 \implies$$

$$T(B) := \frac{1}{2} + \int_{1}^{+\infty} \frac{1}{x^{2}} dx = \frac{1}{2} + 1 = \frac{3}{2}.$$

$$\int_{0}^{1} \frac{1}{x^{2}} dx = \lim_{t \to 0+0} \int_{t}^{1} \frac{1}{x^{2}} dx = \lim_{t \to 0+0} \left[-\frac{1}{x} \right]_{t}^{1} = \lim_{t \to 0+0} \left(-1 + \frac{1}{t} \right) = -1 + \infty = +\infty \implies$$

$$T(A) := \int_{0}^{1} \frac{1}{x^{2}} dx - \frac{1}{2} = +\infty - \frac{1}{2} = +\infty.$$

Improprius integrál

- Az improprius integrál motivációja
- 2 Az improprius integrál értelmezése
- 3 Az improprius integrálra vonatkozó alapvető tételek
- Végtelen sorokra vonatkozó integrálkritérium

3. Az improprius integrálra vonatkozó alapvető tételek

A Riemann-integrálokra vonatkozó alapvető tulajdonságok csaknem változtatás nélkül érvényesek az improprius integrálokra is. Ebben a szakaszban végig feltesszük, hogy $a,b \in \overline{\mathbb{R}},\ a < b,\ f,g:$ $(a,b) \to \mathbb{R},$ továbbá $f,g \in R[u,v]$ minden a < u < v < b esetén.

A továbbiakban az $\int_a^b f$ és az $\int_a^b g$ konvergens improprius integrálokra vonatkozó alapvető eredményeket soroljuk fel.

Megjegyzés. Az improprius integrálok alkalmazása során a legfontosabb kérdés az, hogy az adott integrál konvergens-e vagy sem; a konvergencia esetén az integrál pontos meghatározása gyakran csak másodlagos (vagy eleve reménytelen). ■

Tétel. Ha az $\int_a^b f$ és az $\int_a^b g$ iproprius integrálok konvergensek, akkor minden $\lambda_1, \lambda_2 \in \mathbb{R}$ esetén az $\int_a^b (\lambda_1 f + \lambda_2 g)$ iproprius integrál is konvergens, és

$$\int_{a}^{b} (\lambda_1 f + \lambda_2 g) = \lambda_1 \int_{a}^{b} f + \lambda_2 \int_{a}^{b} g.$$

Tétel: Összehasonlító kritériumok. T.f.h. $0 \le f \le g$ az (a, b) intervallumon. Ekkor:

- 1º Majoráns kritérium: ha az $\int_a^b g$ improprius integrál $konvergens \Longrightarrow \int_a^b f$ is konvergens.
- **2º** Minoráns kritérium: ha az $\int_a^b f$ improprius integrál divergens $\Longrightarrow \int_a^b g$ is divergens.

Példa. Mutassuk meg, hogy a

$$\int\limits_{0}^{+\infty}e^{-x^{2}}\,dx$$

improprius integrál konvergens!

Megoldás. A $\int_0^{+\infty} e^{-x^2} dx = \int_0^1 e^{-x^2} dx + \int_1^{+\infty} e^{-x^2} dx$ egyenlőség alapján elég megmutatni azt, hogy a második tag konvergens.

Mivel

$$\int_{1}^{+\infty} e^{-x^2} dx = \lim_{t \to +\infty} \int_{1}^{t} e^{-x^2} dx \le \lim_{t \to +\infty} \int_{1}^{t} e^{-x} dx =$$

$$= \lim_{t \to +\infty} \left[-e^{-x} \right]_{1}^{t} = -\lim_{t \to +\infty} \left(\frac{1}{e^t} - \frac{1}{e} \right) = \frac{1}{e},$$

ezért az $\int_1^{+\infty} e^{-x^2} dx$ improprius integrál a majoráns kritérium szerint valóban konvergens.

Megjegyzés. Az integrandusnak van primitív függvénye (ui. folytonos), de az nem elemi függvény. Ezért az integrál értékét a definícióból a Newton—

Leibniz-tétel alkalmazásával nem tudjuk meghatározni.

Megjegyzés. Igazolható, hogy

$$\int_{0}^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

Ezt az állítást később igazolni fogjuk.

Definíció. $Az \int_a^b f$ improprius integrál **abszolút konvergens**, ha az $\int_a^b |f|$ improprius integrál konvergens.

Tétel. Ha az $\int_a^b f$ improprius integrál abszolút konvergens, akkor konvergens is, és

$$\left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f|.$$

Megjegyzés. Igazolható, hogy például az

$$\int_{1}^{+\infty} \frac{\sin x}{x} \, dx$$

improprius integrál konvergens, de nem abszolút konvergens.

A Newton–Leibniz-tétel kis módosításokkal alkalmazható improprius integrálok kiszámítására is.

Tétel. Legyen $a, b \in \overline{\mathbb{R}}$, a < b, és t.f.h.

- (a) $f \in R[u,v]$ minden a < u < v < b esetén, továbbá
- (b) f-nek van primitív függvénye (a,b)-n, és $legyen F: (a,b) \to \mathbb{R}$ az f egy primitív függvénye.

 $Az \int_a^b f$ improprius integrál akkor és csak akkor konvergens, ha a $\lim_{a\to 0} F$ és $\lim_{b\to 0} F$ véges határértékek léteznek, és ekkor

$$\int_{a}^{b} f(x) dx = \lim_{b \to 0} F - \lim_{a \to 0} F =: \left[F(x) \right]_{a}^{b}.$$

Például

$$\int_{1}^{+\infty} \frac{1}{x^2} dx = \lim_{x \to +\infty} \left(-\frac{1}{x}\right) - \lim_{x \to 1+0} \left(-\frac{1}{x}\right) = 1,$$

$$\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx =$$

$$= \lim_{x \to +\infty} \operatorname{arc} \operatorname{tg} x - \lim_{x \to -\infty} \operatorname{arc} \operatorname{tg} x = \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) = \pi,$$

viszont

$$\int_{1}^{+\infty} \frac{1}{x} \, dx$$

divergens, mert

$$\lim \ln x = +\infty.$$

 $x \rightarrow +\infty$

Improprius integrál

- Az improprius integrál motivációja
- Az improprius integrál értelmezése
- 3 Az improprius integrálra vonatkozó alapvető tételek
- 4 Végtelen sorokra vonatkozó integrálkritérium

4. Végtelen sorokra vonatkozó integrálkritérium

Tétel. T.f.h. $az\ f:[0,+\infty)\to\mathbb{R}$ függvény \searrow és ≥ 0 $a\ [0,+\infty)$ intervallumon. Legyen $a_k:=f(k)\ (k\in\mathbb{N})$. Ekkor

$$\sum_{k=0}^{\infty} a_k \quad konvergens \iff \int_0^{+\infty} f(x) \, dx \quad konvergens.$$

Bizonyítás. Legyen $n \in \mathbb{N}^+$ és $\tau_n := \{0, 1, \dots, n\} \in \mathcal{F}[0, n]$.

 \Longrightarrow T.f.h. a $\sum_{k=0}^{n} a_k$ végtelen sor konvergens. Ekkor a részletösszegek $s_n=a_0+\cdots+a_n$ $(n\in\mathbb{N})$ sorozata korlátos, azaz

$$\exists M > 0: \ 0 \le s_n \le M \ (n \in \mathbb{N}).$$

Mivel
$$f \searrow [0, n]$$
-en, ezért minden $k = 1, ..., n - 1$ indexre
$$f(x) \le f(k - 1) = a_{k-1} \ (x \in [k - 1, k]).$$

Így

$$\int_{0}^{n} f(x) dx = \sum_{k=1}^{n} \int_{k-1}^{k} f(x) dx \le \sum_{k=1}^{n} a_{k-1} = s_{n-1} \le M \quad (n \in \mathbb{N}^{+}).$$

Ugyanakkor $f \geq 0$ a $[0, +\infty)$ -n \Longrightarrow a $t \mapsto \int_0^t f(t \geq 0)$ függvény \nearrow , és az előzőek miatt felülről korlátos. Ezért a

$$\lim_{t \to +\infty} \int_{0}^{t} f(x) \, dx$$

határérték létezik és véges. Ez azt jelenti, hogy a $\int_0^\infty f(x) dx$ improprius integrál konvergens.

— T.f.h. a $\int\limits_0^{\cdot} f(x)\,dx$ improprius integrál konvergens. Ebből következik, hogy a

$$\lim_{n \to +\infty} \int_{0}^{n} f(x) \, dx = \lim_{n \to +\infty} \sum_{k=1}^{n} \int_{k-1}^{k} f(x) \, dx =: I$$

határérték létezik és véges. Ugyanakkor $\forall \, k=1,2,\ldots,n-1$ indexre

$$a_k = f(k) \le f(x) \quad (x \in [k, k+1]), \quad \text{ez\'ert}$$

$$a_1 + a_2 + \dots + a_n = s_n - a_0 \le \int_0^n f(x) \, dx \le I \in \mathbb{R} \quad (n \in \mathbb{N}^+).$$

Ebből következik, hogy az (s_n) sorozat korlátos. Mivel (s_n) monoton növekedő is, ezért konvergens.

Tétel. Legyen $M \in \mathbb{Z}$ tetszőleges. T.f.h. az $f : [M, +\infty) \to \mathbb{R}$ függvény \searrow és ≥ 0 az $[M, +\infty)$ intervallumon. Legyen $a_k := f(k)$ $(M \leq k \in \mathbb{Z})$. Ekkor

$$\sum_{k=M} a_k \quad konvergens \iff \int_{M}^{+\infty} f(x) \, dx \quad konvergens.$$

Példa. Mutassuk meg, hogy ha $\alpha \in \mathbb{R}$, akkor a

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = 1 + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \frac{1}{4^{\alpha}} + \cdots$$

 $hiperharmonikus\ sor\ akkor\ \acute{e}s\ csak\ akkor\ konvergens,\ ha\ \alpha>1.$

Megoldás. Az előző tétel az $M=1, f(x)=\frac{1}{x^{\alpha}} \ (x\geq 1), \ a_n=f(n) \ (1\leq n\in\mathbb{N})$ szereposztással alkalmazható, és azt már korábban igazoltuk, hogy az $\int\limits_{1}^{+\infty}\frac{1}{x^{\alpha}}\ dx$ improprius integrál akkor és csak akkor konvergens, ha $\alpha>1$.

Megjegyzés. Ezt az állítást az Analízis I. kurzus 6. előadásán (más módszerrel) már igazoltuk. ■