

FACULDADE DE ENGENHARIA DEPARTAMENTO DE CADEIRAS GERAIS

TEÓRIA DE ERROS

Unidade curricular: Física II Ano: 2023 1º Semestre

1. Conceitos fundamentais sobre medições

- 1.1. Entende-se por **grandeza**, tudo o que é susceptível de ser medido.
- 1.2.Medir uma gradeza, é determinar o número de vezes que essa grandeza contém outra da mesma espécie, seleccionada como padrão, portanto é um conjunto de operações.

Existem dois tipos de medições

- (a) Medição directa;
- (b) Medição indirecta.
- **1.3. Medição directa** é aquela em que a gradeza que se pretende medir obtém-se como resultado da aplicação directa do instrumento de medição, compara-se a grandeza a medir com uma unidade da mesma espécie, usam-se aparelhos, instrumetos, máquinas, dispositivos, etc indicadores que foram graduados previamente por comparação com a unidade da mesma espécie; por exemplo: para medir o comprimento de um livro usando uma régua graduada.
- **1.4. Medição indirecta** aplica-se uma fórmula que relacione a grandeza a medir com outras grandezas. Por exemplo: Para determinar a intensidade da corrente eléctrica, para determinar a densidade duma substância, para determinar a energia cinética de um corpo, etc.

Como é obvio, uma vez realizada a medição espera-se um resultado.

Por **Resultado de uma medição**, entende-se o valor atribuido a um mensurando obtido por medição.

Existem dois tipos de resultados

- (a) Resultado não corrigido;
- (b) Resultado corrigido.
- **1.5. Resultado não corrigido** é um resultado de uma medição, antes da correcção, devida aos erros sistemáticos
- **1.6. Resultado corrigido** é o resultado de uma medição, após a correcção, devida aos erros sistemáticos.

Sempre que se realiza-se uma medição, esta, é feita na base de uma comparação com uma unidade da mesma espécie denominada padrão.

1.7. Padrão – é a medida materializada, instrumento de medição, material de referência ou sistema destinado a definir, realizar, conservar ou reproduzir uma unidade ou um ou mais valores de uma grandeza para servir como referência.

1.8. Erros nas medições

Ao medir uma grandeza, não se pode categoricamente afirmar que o valor encontrado é o valor exato. Na medição de uma grandeza física cometem-se erros e interessa conhecer o erro de que pode vir a ser afectada a medida.

O conhecimento mais rigoroso da medida ocorre quando ao valor aproximado da grandeza medida acrescentamos a indicação do erro de que vem afectado esse valor.

Quanto a origem dos erros, podem ser considerados dois tipos:

- (a) Erros sistemáticos;
- (b) Erros acidentais.
- **1.8.1.** Erros sistemáticos este tipo de erros são impossíveis de eliminar totalmente; o máximo que se pode fazer e minimiza-los. Por sua vez podem ser de dois tipos: instrumentais e pessoais.
- **1.8.1.1. Erros sitemáticos instrumentais** são aqueles inerentes ao instrumento de medição. A introdução de um aparelho de medida traz consigo erros devido a alteração produzida no circuito, neste caso, o valor lido é inferior ao verdadeiro valor da intensidade da corrente, logicamente sempre esta presente o erro de escala.
- **1.8.1.2.** Erros sistemáticos pessoais são os provocados pelo observador que realiza a medição, o qual tende a viciar o processo pela influência de factores dependentes dele. Por exemplo, os erros devido a dilatação térmica dos instrumentos causada pela temperatura do corpo humano.
- **1.8.2.** Erros acidentais Quando o observador realiza uma série de medições da mesma grandeza com o mesmo aparelho, usando o mesmo processo, obtém-se em regra, valores diferentes, pouco afastados uns aos outros. Erros deste teor são erros acidentais, como consequência dos erros acidentaais, as medidas oscilam para um e outro lado do valor da grandeza.

2. Quantidades aproximadas e seus erros

2.1. Erro absoluto – Determina-se a diferença existente entre o valor estimado e o verdadeiro valor. Se X_0 é o verdadeiro valor, X valor estimado, o erro absoluto é,

$$\Delta X = X - X_0$$

Se $\Delta X > 0$, o erro cometido denomina-se "por excesso", caso contrário ($\Delta X < 0$) o erro e "por defeito".

2.2. Erro relativo – com o erro absoluto não e suficiente para expressar o tamaho do erro, pois o seu valor depende de unidade de medida empregue, define-se o erro relativo como,

$$\delta = \frac{\Delta X}{X_0}$$

O erro relativo é uma quantidade adimensional, e geralmente expressa-se em percentagem. Se se conhece o erro absoluto (ΔX) da aproximação X a X_0 , poderia se achar o valor exacto por: $X_0 = X - \Delta X$. Ao fazer isto, teria se corrigido o erro existente em X.

A prática, sem excepção, geralmente sabe-se so que o valor modular do erro absoluto não é superior a certa quantiddae (U) que se conhece como incerteza ou margem de erro (por abreviar, Error).

Um dos problemas central que enfrenta a teoria de erros, consite em estabelecer os métoos de cálculo de erro das medições, com o critério que seja o mais pequenos possíveis, e que ao mesmo tempo contém o erro com uma confiabilidade alta e conhecida.

Quando $|X - X_0| \le U$, pode-se encontrar o valor verdadeiro no intervalo (intervalo de confiança) definido por:

$$X - U \le X_0 \le X + U$$

O qual se expressa abreviadamente:

$$X_0 = \overline{X} \pm U_{X_0}$$

Pels mesmas razões explicadas, ao definir o erro relativo, introduz-se a margem de erro relativo por:

$$\delta_c = \frac{U}{X_0} \approx \frac{U}{X}$$

- 3. Procedimento a seguir para o cálculo de erro (U)
- 3.1. Em medições directas

O erro com que se mede uma grandeza física calcula-se em geral mediante a soma quadrática de todos os erros não corrigíveis:

$$U = \sqrt{\sum_{i=1}^{n} U_1^2}$$

Em geral nos nossos laboratórios de física, encontramos três tipos de erros de medição não corrigíveis,

- 1- O erro aleatório (U_a);
- 2- O erro de escala (U_e) ;
- 3- O erro de calibração (U_c) .

Então podemos escrever a equação (1) assim,

$$U = \sqrt{U_a + U_e + U_c}$$

3.1.1. Avaliação de erro aleatório

Apartir de um conjunto X_1,X_2,X_3,\dots,X_n (amostra), de observações experimentais repetidas (realizadas com um mesmo sistema de medição)

Calculam-se

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

 \overline{X} , é média da amostra.

$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}}$$

S, é desvio tipico da amostra.

$$U_a = \frac{E.S}{\sqrt{n}}$$

O erro aleatório, U_a .

Sendo E um parametro que depende do nível de confiança ou confiabilidade (P_k) eleito: Usualmente, se escolhe entre 0.90; 0.95; 0.99 ou 0.999, Ver tabela.

Tabela – Distribuição T student. Valores de E.

Números de	Níveis de confianca (P_k)				
medições	0.90	0.95	0.99	0.999	
2	6.314	12.71	63.66	636.6	
3	2.920	4.303	9.925	31.60	
4	2.353	3.182	5.841	12.94	
5	2.132	2.776	4.604	8.610	
6	2.015	2.571	4.032	6.859	
7	1.943	2.447	3.707	5.405	
8	1.895	2.365	3.499	5.041	
9	1.860	2.306	3.455	4.781	
10	1.833	2.262	3.250	4.587	
11	1.812	2.228	3.169	4.437	
12	1.796	2.201	3.106	4.318	
13	1.782	2.179	3.055	4.221	
14	1.771	2.160	3.012	4.140	
15	1.761	2.145	2.977	4.073	
16	1.753	2.131	2.947	4.015	
17	1.746	2.120	2.921	3.965	
18	1.740	2.110	2.898	3.922	
19	1.734	2.101	2.878	3.883	
20	1.729	2.093	2.861	3.850	
21	1.725	2.096	2.845	3.819	
22	1.721	2.080	2.831	3.792	
23	1.717	2.074	2.819	3.767	

24	1.714	2.069	2.807	3.745
25	1.711	2.064	2.797	3.659
25	1.699	2.045	2.756	3.291
α	1.645	1.960	2576	

3.2. Em medições indirectas

Se a grandeza a medir depende de mais grandezas x_i medidas directamente:

$$y = f(x_i)$$
, então

$$\langle Y \rangle = f(\langle x_i \rangle),$$

De onde $\langle Y \rangle$ é a média de Y e $\langle x_i \rangle$ é a de x_i .

A incerteza de Y será (desprezando as possíveis correlações entre as grandezas medidas):

$$U = \sqrt{\sum_{i}^{m} \left(\frac{\partial f}{\partial x_{i}} U_{x_{i}} \right)}$$

4. Bibliografia

- 1 Introduccion al laboratorio de Fiisca. Fundamentos de la teoria de errores. Oscar cartaya Saiz;
- 2 Practicas de laboratorio de fiisca i para Engenaria. Colectivo de autores. UCLV. Cuba;
- 3 Incertidumbre. Documento em suporte magnetico realizado por rolando cardenas. UCLV. Cuba.