

华中科技大学 2019~2020 学年第一学期

"模拟电路与数字系统(二)/数字电路与逻辑设计"考试试卷(A卷)

考ì	式方式	d: <u>闭</u> 着	差 考	试日期	: <u>202</u>	0.1.4	<u>下午</u>	考试时	长: _	<u>150</u>	分钟	
院(系):					专业	尘班级:					
学	号:											
;	题号			三	四	五	六	七	八	总统	分	
	分数											
分数评卷人					(20 分 冬必须均		支对应 (立置中	,填写	在题	目中视为	
<u>效)</u> (1)				(2)				(3)				
(4)				(5)			(6)					
(7)				(8)			(9)					
(10)				(11)			(12)					
(13)				(14)			(15)					
(16)			1	(17)			(18)					
(19)			1	(20)								
1. 带符号 <u>(2)</u> 。	;二进	制补码	01011	001 和	110100)11 所え	- 長示的-	十进制	数分别	为	(1)	
2. 二进制	码 11	01 转抄	免为格言	雷码为_	(3)	,	表示为	S 8421	BCD 存	马为 <u>(</u>	4)	
3. 用 4 位	二进制	訓补码-	计算-5	-3 时,	结果(是、否	(5)产	生溢出	。若	出现溢品	
解决的办法	法是进	生行	(6)	o								
4. 某逻辑	函数的	的最小	项表达	式为F	(A, B, C, A)	$D) = \sum_{i} D_{i}$	m(1,2,3,6,	7,8,9,10,1	1,12,13,1	4,15),	其反函	
最小项表达	式为_	(7))	0								
5. CMOS	与非广]的一~	个输入	端通过	10kΩ É	的电阻:	接地,	则输出	为(8	3)_	电平。	

6. 用 PROM 实现 4 位二进制乘法运算,需要_(9)__根地址线,_(10)__根数据线, 其存储容量应为__(11)___。

7.如果令D触发器的 $D = \overline{Q}$,则D触发器可以完成 (12) 触发器的逻辑功能。

- 8.8 位移位寄存器串行输入时经<u>(13)</u>个 *CP* 脉冲后,8 位数码全部移入寄存器。若该寄存器已存满8位数,欲将其串行输出,则需要经<u>(14)</u>个 *CP* 脉冲后数码才能全部移出。
- 9. 单稳态触发器从稳态翻转到暂稳态取决于(15),从暂稳态翻转到稳态取决(16)。 10. 双积分式 A/D 转换器对 RC 元件的稳定性要求 (17) 。
- 11.8 位单极性 D/A 转换器的最小输出电压增量为 0.04V,若输入数字量为 11001000B,则对应的模拟输出电压为____(18)___V。
- 12.可编程逻辑器件 CPLD 编程基于<u>(19)</u>技术,可编程逻辑器件 FPGA 编程基于 (20) 技术

二、化简题(10分)

1. 用代数法求逻辑函数 L 的"最简与或式"(备注:无推导步骤,不给分)

$$L(A,B) = \overline{\overline{A+B}} + \overline{\overline{A+B}} + \overline{\overline{(A+B)}(A+B)}$$

2. 用卡诺图化简,求逻辑函数 L 的"最简与或式"(备注: A 是最高有效位,D 是最低有效位。不画圈,不给分)。

$$L(A, B, C, D) = \sum m(0, 2, 5, 8, 10, 13, 15) + \sum d(4, 7, 14)$$

分数 评卷人

三、画波形图(4分)

1、试画出图1所示电路的输出(Q~Q)波形。

分数 评卷人

四、已知组合电路如下图所示,试写出 *L* 的逻辑表达式,并列出真值表,分析该电路的逻辑功能。(10 分)

(1) 写出 L 的逻辑表达式,要求为与或非表达式

(2) 列出 L 的真值表

	输入 B	输出	
A	В	C	L

(3) 描述该电路的逻辑功能

分 数	
评卷人	

五、请设计一个组合逻辑电路对 4 位无符号二进制数 $A(A_3A_2A_1A_0)$ 进行判断: 当A为质数时,电路输出F

为 1; 否则, 电路输出 F 为 0。 (10 分)

(1) 填充完成如下真值表

A_3	A_2	A_1	A_0	F	A_3	A_2	A_1	A_0	F

(2) 写出 F 的最简与或表达式(写出化简步骤,无步骤不给分)

(3) 如果只使用与非门,请写出能够实现同样功能的F 表达式(写出逻辑变换的步骤,无步骤不给分)

分数 评卷人

六、试分析下述 Verilog 描述的电路功能(15分)

 $module \ xFF (output \ reg \ Q, \ input \ E, \ R, \ C);$

always @(posedge C, negedge R)

if(\sim R) Q = 0; else if(E) Q = \sim Q;

endmodule

module TOP(output Y, output[1:0] Q, input X, R, C);

wire[1:0] E;

assign Y = Q[1] & Q[0] assign $E[1] = Q[1] | \sim X & Q[0] | X & \sim Q[0];$

assign $E[0] = \sim Q[0] \mid X \& \sim Q[1] \mid \sim X \& Q[1];$

xFF ff0(Q[0], E[0], R, C);

xFF ff1(Q[1], E[1], R, C);

endmodule

(1) 画出 xFF 模块的状态图,并简述其功能。

(2) 写出 TOP 电路的输出方程组和激励方程组。

输出方程组: Y=_____

(3) 填写 TOP 电路的状态表,画出状态图,并简述其功能。

$Q_1^nQ_0^n$	Q_1^{n+1}	Y	
	X=0	X=1	
00			
01			
10			
11			

(4) 分析 TOP 电路是否具有自启动能力?

分数 评卷人

七、设计下图所示状态转换图的时序逻辑电路。(15分)

状态转换图

(1) 根据状态转换图填写状态转换表

$Q_2^nQ_1^n$	$Q_2^{n+1}Q_1^{n+1}/Y$								
$Q_2 Q_1$	X=0	X=1							
00									
01									
11									
10									

(2) 采用两个 D 触发器,利用卡诺图,化简得到两个触发器的激励方程 D_1 , D_2 和输出信号 Y 的最简与或表达式

(4) 在以下电路图上补充完成实现状态转换图对应功能的电路

(5) 补充完善以下具有异步复位功能的 Verilog HDL 代码,实现以上电路的功能 module doubleClick(input clk, input rst, input X, ____Y); parameter s0 = 2'b00, s1 = 2'b01, s2 = 2'b11, s3=2'b10; reg [1:0] state; always @(*) begin if(!rst) Y=else case (state) s0: Y=0;s1: if(X) Y=1;else Y=0; s2: if(X) Y=1; else Y=0; s3:if(X) Y=1;else Y=0; default: Y=0; endcase end always @(_____or negedge rst) begin if(_ state<=s0; else case (state) s0: $if(X) \underline{state \leq =}$ else state<=s0; $s1:if(X) state \le s0;$ else <u>state<=</u> $s2:if(X) state \le s0;$ else <u>state<=</u>

s3:<u>state<=</u>

default:state<=s0;
endcase</pre>

end

endmodule

八、综合题(16分)

1. 下图所示是一个脉冲计数电路,基本功能是测量在被测信号 W_1 的一个周期内包含了多少个 CP_1 信号的周期。被测信号 W_1 为占空比不确定的周期性方波。信号 CP_1 为 10MHz 的输入时钟信号, CP_2 为 1KHz 的测试用时钟信号。模块 C 是计数器电路,计数结果将显示在两位数码管上。请回答如下问题:

(1) 请从(单稳触发器、施密特触发器、移位寄存器、计数器、编码器、加法器、显示译码器、比较器)中为模块 A、B、D 选择合适的功能电路,使该电路能够实现脉冲计数功能。

模块 A 是	;
模块 B 是	;
精 中 D 县	

值范围可能为_____

(4) 下图为两片 74HC161 构成的模块 C 电路,图中 $Q_{c3}Q_{c2}Q_{c1}Q_{c0}$ 为测量结果的个位输出, $Q_{s3}Q_{s2}Q_{s1}Q_{s0}$ 为测量结果的十位输出。请将电路补充完整,使其能够实现本题目要求的功能。

2. 根据以下描述,画出满足鼠标"单击"、"双击"操作检测要求的状态转换图

鼠标操作中,在短暂的间隔时间内连续两次点击鼠标会被认为是"双击",若间隔时间较长则不认为是双击。要求用同步时序电路状态机设计"鼠标双击"检测电路,电路的输入信号为上升沿有效的时钟信号 CP 和鼠标按键信号 X(X) 与时钟上升沿同步),输出信号 Y 为检测结果。电路具体要求如下:

X信号平时为低电平,每次按下鼠标按键将产生持续时间为 1 个时钟周期的高电平。如果两次按键间隔小于或等于 2 个时钟周期时,则认为是"双击"操作, Y将输出 1 个时钟周期的高电平。如果两次按键间隔大于 2 个时钟周期,则 Y输出低电平。

提示 1: 一次鼠标按键只有"单击"和"双击"两种操作,且任意两次操作之间的间隔远超 2 个时钟周期,因此不必考虑鼠标"多击"的情况。

提示 2: 状态机总共 4 个状态。

(1) 逻辑抽象, 定义状态机中4个状态各个状态的含义

原始状态	状态含义
S_0	
S_1	
S_2	
S_3	

(2) 补充完成以下状态图, 描述各个状态之间的转换关系

附录

74HC194 的功能表

输入										输	出			
清零		訓信 号	串行	串行输 日		并行输入								
CR	S_1	S_0	右 移 D _{SR}	左 移 D _{SL}	钟 CP	DI_0	DI_1	DI_2	DI_3	Q_0^{n+1}	Q_1^{n+}	${}^{1}Q_{2}^{n+1}$	Q_3^{n+1}	行
L	×	×	×	×	×	×	X	×	×	L	L	\mathbf{L}	L	1
H	L	L	×	×	×	×	X	\times	×	Q_0^n	Q_1^n	Q_2^n	Q_3^n	2
H	L	H	L	×	↑	×	X	\times	×	L	Q_0^n	Q_1^n	Q_2^n	3
H	L	\mathbf{H}	Н	×	↑	×	X	\times	×	H	Q_0^n	Q_1^n	Q_2^n	4
H	Н	\mathbf{L}	×	L	↑	×	X	×	×	Q_1^n	Q_2^n	Q_3^n	\mathbf{L}	5
Н	Н	L	×	Н	1	×	×	×	×	Q_1^n	O_2^n	Q_3^n	H	6
H	Н	H	×	×	↑	DI_0^*	DI_1	* <i>DI</i> ₂ *	DI_3 *		\tilde{D}_1^2	D_2	D_3	7

74HC161 的功能表

输 入										3	输	出	
清零	预置	使 能 时钟				预置数:					进位		
\overline{CR}	\overline{PE}	CEP	CET	CP	D_3	D_2	D_1	D_0	Q_3	Q_2	Q_1	Q_0	TC
L	×	×	×	×	×	×	×	×	L	L	L	L	L
Η	L	×	×	†	D_3 *	D_2 *	D_1 *	D_0 *	D_3	D_2	D_1	D_0	#
Н	Н	L	×	×	×	×	×	×		保	持		#
Н	Н	×	L	×	×	×	×	×		保	持		L
Н	Н	Н	Н	†	×	×	×	×		计	数		#

注: D_N *表示 CP 脉冲上升沿之前瞬间 D_N 的电平。

#表示只有当 $Q_3Q_2Q_1Q_0\cdot CET=1$ (正逻辑体系)时,TC输出为高电平,其余均为低电平。

CR
PE
D₀
D₁
D₂
D₃
CP
CEP
CET
Q₀
Q₁
Q₂
Q₃
TC
12 13 14 15 0 1 2
计数 禁止计数

复位清零;置数: 1100; 计数: 1101→1110→1111→0000→0001→0010; 禁止计数 74HC161 的典型时序图

注意:考试之前可以撕下,考完必须和试卷一起提交,否则算舞弊

草稿纸