1. Let $A = \{1, 2, \dots, 19\}$.

(a). (3 points) Find the number α of different binary operations on A.

(b). (2 points) How many nonisomorphic groups can you define on A?

2. (a). (5 points) Show that the following abelian groups are isomorphic:

$$\mathbb{Z}_{21} \times \mathbb{Z}_{90} \simeq \mathbb{Z}_{15} \times \mathbb{Z}_{126}$$

(b). (5 points) Describe all possible homomorphisms of $\mathbb{Z}_5 \times \mathbb{Z}_4$ to S_5 .

3. (5 points) Let (G, \cdot, e) be a group, $H, K, L \leq G$ with $K \subseteq L$. Show that $L \cap (HK) = (L \cap H)K$.

4. Let G be a group of order 42.

(a). (3 points) Prove that G has a normal subgroup N of order 7 (hence G is not simple).

(b). (3 points) Let $g \in G$ of order 6. Consider the action of g on the set of left

N-cosets: $g \cdot xN := (gx)N$. Suppose there is an orbit of this action of length 6.

Describe the quotient group G/N.

(c). (4 points) Suppose $G = D_{21}$, will the fact in (b). still hold? If yes, prove it. If not, describe G/N under this condition.

5. (5 points) Let P be a Sylow p-subgroup of G. Prove that

$$|G:N_G(P)| \equiv 1 \mod p$$