S09 T02: Aprenentatge Supervisat - Regressions

Descripció:

Anem a practicar i a familiaritzar-nos amb regressions

NIVELL 1

Exercici 1

Crea almenys tres models de regressió diferents per intentar predir el millor possible l'endarreriment dels vols (ArrDelay) de DelayedFlights.csv.

```
In [1]:
# Crido a les llibreries necessàries
# Faig entrar l'arxiu CSV gràcies a pandas

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

delayedFlightsAmbNaN = pd.read_csv(r'C:\Users\Anna\DataScience\SPRINTS\SPRINT 9\DelayedFlight
# Elimino els NaN per fer el dataset algo més petit
delayedFlights = delayedFlightsAmbNaN.dropna()
display(delayedFlights)
```

	Unnamed: 0	Year	Month	DayofMonth	DayOfWeek	DepTime	CRSDepTime	ArrTime	CRSArrTime	Uniqu
3	4	2008	1	3	4	1829.0	1755	1959.0	1925	
5	6	2008	1	3	4	1937.0	1830	2037.0	1940	
7	11	2008	1	3	4	1644.0	1510	1845.0	1725	
9	16	2008	1	3	4	1452.0	1425	1640.0	1625	
11	18	2008	1	3	4	1323.0	1255	1526.0	1510	
•••										
1936751	7009705	2008	12	13	6	921.0	830	1112.0	1008	
1936752	7009709	2008	12	13	6	1552.0	1520	1735.0	1718	
1936753	7009710	2008	12	13	6	1250.0	1220	1617.0	1552	
1936754	7009717	2008	12	13	6	657.0	600	904.0	749	
1936755	7009718	2008	12	13	6	1007.0	847	1149.0	1010	

1247486 rows × 30 columns

```
In [2]: delayedFlights.count()
```

Unnamed: 0 1247486

Out[2]:	Year	1247486
	Month	1247486
	DayofMonth	1247486
	DayOfWeek	1247486
	DepTime	1247486
	CRSDepTime	1247486
	ArrTime	1247486
	CRSArrTime	1247486
	UniqueCarrier	1247486
	FlightNum	1247486
	TailNum	1247486
	ActualElapsedTime	1247486
	CRSElapsedTime	1247486
	AirTime	1247486
	ArrDelay	1247486
	DepDelay	1247486
	Origin	1247486
	Dest	1247486
	Distance	1247486
	TaxiIn	1247486
	TaxiOut	1247486
	Cancelled	1247486
	CancellationCode	1247486
	Diverted	1247486
	CarrierDelay	1247486
	WeatherDelay	1247486
	NASDelay	1247486
	SecurityDelay	1247486
	LateAircraftDelay	1247486
	dtype: int64	

In [3]: delayedFlights.shape

(1247486, 30) Out[3]:

In [4]:

delayedFlights.describe()

Out[4]:		Unnamed: 0	Year	Month	DayofMonth	DayOfWeek	DepTime	CRSDepTime	ArrTin
	count	1.247486e+06	1247486.0	1.247486e+06	1.247486e+06	1.247486e+06	1.247486e+06	1.247486e+06	1.247486e+
	mean	3.319515e+06	2008.0	6.065399e+00	1.572542e+01	3.980082e+00	1.558832e+03	1.487949e+03	1.616749e+
	std	2.079531e+06	0.0	3.508937e+00	8.793008e+00	1.993270e+00	4.543300e+02	4.211782e+02	5.839416e+
	min	4.000000e+00	2008.0	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	0.000000e+00	1.000000e+
	25%	1.484624e+06	2008.0	3.000000e+00	8.000000e+00	2.000000e+00	1.232000e+03	1.150000e+03	1.326000e+
	50%	3.224052e+06	2008.0	6.000000e+00	1.600000e+01	4.000000e+00	1.618000e+03	1.529000e+03	1.737000e+
	75%	4.921396e+06	2008.0	9.000000e+00	2.300000e+01	6.000000e+00	1.924000e+03	1.830000e+03	2.048000e+
	max	7.009718e+06	2008.0	1.200000e+01	3.100000e+01	7.000000e+00	2.400000e+03	2.359000e+03	2.400000e+

8 rows × 25 columns

In [5]: delayedFlights.dtypes

Unnamed: 0 int64 Out[5]: Year int64 Month int64 DayofMonth int64

DayOfWeek	int64
DepTime	float64
CRSDepTime	int64
ArrTime	float64
CRSArrTime	int64
UniqueCarrier	object
FlightNum	int64
TailNum	object
ActualElapsedTime	float64
CRSElapsedTime	float64
AirTime	float64
ArrDelay	float64
DepDelay	float64
Origin	object
Dest	object
Distance	int64
TaxiIn	float64
TaxiOut	float64
Cancelled	int64
CancellationCode	object
Diverted	int64
CarrierDelay	float64
WeatherDelay	float64
NASDelay	float64
SecurityDelay	float64
LateAircraftDelay	float64
dtype: object	

```
In [6]:
```

```
#Primer elimino els atributs que no són numèrics, per facilitar l'estudi de les regression
numerics = delayedFlights
numerics.drop(["Unnamed: 0","UniqueCarrier", "TailNum", "Origin", "Dest", "CancellationCoc
print(numerics)
```

 $\label{libsite-packages pandas core frame.py: 4906: Setting With Copy Warning: } \\$

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: $https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy$

return super().drop(

	_	_						
	Year	Month	DayofMonth	DayOfWeek	DepTime	CRSDepTime	ArrTime	\
3	2008	1	3	4	1829.0	1755	1959.0	
5	2008	1	3	4	1937.0	1830	2037.0	
7	2008	1	3	4	1644.0	1510	1845.0	
9	2008	1	3	4	1452.0	1425	1640.0	
11	2008	1	3	4	1323.0	1255	1526.0	
1936751	2008	12	13	6	921.0	830	1112.0	
1936752	2008	12	13	6	1552.0	1520	1735.0	
1936753	2008	12	13	6	1250.0	1220	1617.0	
1936754	2008	12	13	6	657.0	600	904.0	
1936755	2008	12	13	6	1007.0	847	1149.0	

	CRSArrTime	FlightNum	ActualElapsedTime	 Distance	TaxiIn	\
3	1925	3920	90.0	 515	3.0	
5	1940	509	240.0	 1591	3.0	
7	1725	1333	121.0	 828	6.0	
9	1625	675	228.0	 1489	7.0	
11	1510	4	123.0	 838	4.0	
1936751	1008	1616	111.0	 545	8.0	
1936752	1718	1620	43.0	 151	9.0	
1936753	1552	1621	147.0	 906	9.0	
1936754	749	1631	127.0	 481	15.0	

```
TaxiOut Cancelled Diverted CarrierDelay WeatherDelay NASDelay
                 10.0 0 0
                                                 2.0
                                                             0.0
                                                                       0.0
                  7.0
                             0
                                      0
                                                             0.0
       5
                                                10.0
                                                                       0.0
       7
                             0
                                                             0.0
                  8.0
                                      0
                                                 8.0
                                                                       0.0
                                                             0.0
                  8.0
                             0
                                      0
                                                 3.0
                                                                       0.0
                             0
       11
                  9.0
                                     0
                                                 0.0
                                                             0.0
                                                                       0.0
                  . . .
                            . . .
                                                 . . .
                                                              . . .
                                                                       . . .
                                     0
       1936751 21.0
                                                51.0
                            0
                                                             0.0
                                                                     13.0
                                      0
       1936752
                  7.0
                             0
                                                 0.0
                                                             0.0
                                                                      0.0
                 18.0
                             0
                                                              0.0
       1936753
                                      0
                                                  3.0
                                                                       0.0
                                                            0.0 0.0
57.0 18.0
0.0 19.0
                             0
                                      0
                                                 0.0
       1936754
                 34.0
                 32.0
                             0
                                                 1.0
       1936755
               SecurityDelay LateAircraftDelay
       3
                       0.0
                        0.0
                                        47.0
       7
                        0.0
                                        72.0
       9
                        0.0
                                        12.0
       11
                        0.0
                                        16.0
                                         . . .
                                        0.0
       1936751
                       0.0
                       0.0
                                        17.0
       1936752
                       0.0
                                       22.0
       1936753
                       0.0
       1936754
                                        0.0
                        0.0
                                        79.0
       1936755
       [1247486 rows x 24 columns]
       CREACIÓ TRAIN TEST
In [7]:
       from sklearn.model selection import train test split
        numerics = numerics.sample(100000, random state=0)
In [8]:
       # Indico quin vull que sigui el meu target o input o y
        y = np.array(numerics["ArrDelay"])
        x = np.array(numerics)
        #Creo el train test
        X train, X test, y train, y test = train test split(x, y, test size = 0.2, random state=0)
       REGRESSIÓ LINEAL MÚLTIPLE
In [9]:
        #Primer faré una regressió lineal múltiple, importo la llibreria
        from sklearn.linear model import LinearRegression
In [10]:
        # Creo el model de regressió
        model = LinearRegression(n jobs=-1).fit(X train, y train)
        r sq = model.score(X test, y test)
        print(f"coefficient of determination: {r sq}")
        print(f"intercept: {model.intercept }")
        print(f"coefficients: {model.coef }")
       coefficient of determination: 1.0
       intercept: 8.526512829121202e-14
```

coefficients: [0.00000000e+00 2.25514052e-15 4.52383356e-17 3.14819615e-15

162.0 ...

689

1010

1631

1936755

```
5.81395349e-02 0.00000000e+00 -2.77555756e-17 1.27906977e-01
           1.27906977e-01 1.27906977e-01 1.27906977e-01 1.27906977e-01]
In [11]:
         prediccioLineal = model.predict(X test)
         print(prediccioLineal)
         [122. 39. 27. ... 43. 36. 83.]
In [12]:
         # Comparació X-test amb la predicció
         pred lineal = pd.DataFrame(("Actual":y test, "Predicted":prediccioLineal))
         pred lineal
          #No entenc perquè em surt igual
Out[12]:
               Actual Predicted
               122.0
                         122.0
             1
                 39.0
                          39.0
             2
                 27.0
                          27.0
             3
                 42.0
                          42.0
                 52.0
                          52.0
             4
            •••
                          ...
         19995
                 45.0
                          45.0
         19996
                 18.0
                          18.0
         19997
                 43.0
                          43.0
         19998
                          36.0
                 36.0
         19999
                 83.0
                          83.0
        20000 rows × 2 columns
        REGRESSIÓ POLINOMINAL
In [13]:
          # Importo les llibreries
         from sklearn.linear model import LinearRegression
         from sklearn.preprocessing import PolynomialFeatures
          # Els outputs x i inputs y seran els mateixos que l'anterior regressió
          #Creo la instancia necessària
         transformer = PolynomialFeatures (degree=2, include bias=False)
         X = transformer.fit transform(x)
         X.reshape((-1,1))
         #Creo el train test de nou amb la X correcte
         X train, X test, y train, y test = train test split(X, y, test size = 0.2, random state=0)
In [14]:
         # Creo el model de regressió i l'aplico
         model = LinearRegression(n jobs=-1).fit(X train, y train)
         r sq = model.score(X test, y test)
         print(f"coefficient of determination: {r sq}")
```

-8.37004077e-17 -5.11743425e-17 3.12250226e-17 1.33140027e-16 -9.71445147e-17 1.74418605e-01 -2.32558140e-01 5.81395349e-02 6.39534884e-01 2.32558140e-01 1.11455983e-16 5.81395349e-02

```
print(f"intercept: {model.intercept }")
print(f"coefficients: {model.coef }")
coefficient of determination: 1.0
intercept: 9.741540907270974e-12
coefficients: [ 1.22421090e-19  2.03820373e-16  1.42432613e-16  3.27200357e-17
  5.40237614e-17 -1.13739584e-17 2.13875819e-17 3.49705493e-18
 -3.68798145e-18 4.32578851e-08 -5.76771802e-08 1.44192951e-08
 1.58612246e-07 5.76771802e-08 1.63107726e-17 1.44192950e-08
 1.44192950e-08 2.12774676e-18 1.75505227e-18 3.17224491e-08
  3.17224491e-08 3.17224491e-08 3.17224491e-08 3.17224491e-08
 -2.08708918e-18 6.03934822e-18 6.40965713e-18 3.99508384e-18
 -3.09336432e-18 2.34448132e-18 2.38651533e-19 -3.05143619e-19
  6.77626358e-21 8.68618334e-05 -1.15815778e-04 2.89539445e-05
  3.18493389e-04 1.15815778e-04 6.85673171e-19 2.89539445e-05
  2.89539445e-05 3.04931861e-20 0.0000000e+00 6.36986778e-05
  6.36986778e-05 6.36986778e-05 6.36986778e-05 6.36986778e-05
 2.82208518e-17 2.05455733e-17 -1.38575807e-16 -4.37608984e-18
 -2.53881748e-18 -5.65164702e-18 -9.35471790e-19 -8.49904918e-19
 -5.38234896e-18 1.11995861e-18 -2.65719983e-17 -9.28677700e-18
 -3.07133733e-18 1.20582155e-17 1.81504146e-17 3.12244262e-18
 -4.74338450e-20 -1.62630326e-19 -5.77870620e-18 2.28248299e-18
 4.33836131e-18 -1.59581453e-17 5.66076544e-18 2.72553241e-17
 -1.50784231e-17 -1.42645642e-19 -5.20109993e-18 -2.49149447e-18
 1.50888332e-18 1.14142984e-18 -2.53824490e-17 1.27352851e-17
  8.50603059e-18 -1.75125964e-17 2.05959469e-17 -1.08409629e-18
 -1.94103622e-17 -1.44414063e-17 -4.06575815e-20 -6.77626358e-21
  4.71785792e-18 -1.39794543e-17 -1.31269096e-18 -8.32183961e-18
 1.47599296e-18 1.67586496e-16 -2.88807067e-17 -8.76882918e-18
 -9.60273311e-18 1.91851639e-18 9.48403600e-18 -3.52015664e-17
 -2.17893543e-17 -6.98386833e-18 1.42651701e-17 2.76868609e-17
 1.43206802e-17 -1.62187754e-17 -1.19628147e-17 1.01643954e-20
 -2.03287907e-20 -2.16487069e-17 -1.61201723e-17 -2.06184489e-17
  3.36960845e-17 3.90262411e-17 1.08843734e-18 1.14974135e-18
 -4.56339000e-19 9.37665473e-19 8.47032947e-21 3.43683618e-18
 2.34151670e-19 -2.77297411e-19 -2.94333361e-18 -1.38320480e-18
 -1.56701095e-20 -1.16167922e-18 3.82162737e-18 -5.92923063e-21
  9.31736242e-21 -2.16586325e-18 1.94993602e-18 2.11610006e-18
 -7.46268876e-18 2.63109609e-19 -2.13918171e-18 -9.59264813e-20
 1.18203448e-18 1.55854062e-19 1.14137690e-19 3.72043340e-18
  3.56389113e-19 4.85138121e-19 1.02745097e-18 -1.06768503e-18
  7.51709977e-18 \quad -3.39924910e-18 \quad 3.81164826e-21 \quad 1.27054942e-21
 2.16300451e-18 -3.16890907e-18 -3.54398585e-18 8.26756393e-18
 -5.33990746e-18 \quad -2.70203510e-19 \quad 4.62056473e-19 \quad 6.35274710e-20
  3.89486925e-18 -3.44620649e-18 -3.55383261e-18 -9.24430583e-19
 3.81831865e-18 3.47283508e-19 3.43994638e-18 9.45182890e-19
 -8.47032947e-22 1.05879118e-22 2.79536754e-18 -5.33491790e-19
  1.63540886e-18 -3.01124938e-18 -1.82916765e-18 -1.29087821e-18
 -2.08634803e-19 1.74107622e-18 -2.43746965e-18 -7.82076108e-19
 3.00273180e-19 2.07205435e-19 1.33831206e-19 1.01743215e-18
 -1.90476534e-19 -2.11758237e-22 -4.23516474e-22 1.41510089e-18
 -1.87167812e-19 5.31544938e-18 -2.21330929e-18 -2.49408851e-18
 -1.27054942e-20 -3.91223343e-18 3.91572744e-18 2.02276762e-18
 -8.56456189e-19 -4.01493617e-19 -2.57074499e-19 -4.79281682e-19
 4.37098118e-18 0.00000000e+00 0.00000000e+00 -1.03843592e-18
  1.53499575e-18 8.44280090e-19 2.52222878e-19 6.30510150e-19
 -3.88944956e-18 7.21672071e-18 -8.29059967e-19 -5.90084179e-19
 1.04241896e-17 -1.04269756e-18 1.48870590e-18 -3.28707679e-18
  0.00000000e+00 0.00000000e+00 1.43036402e-18 8.91704588e-18
 -3.69816570e-18 -1.23817974e-18 -5.66796067e-18 -1.72605595e-17
 1.18610619e-17 1.40848013e-17 -1.12414838e-17 7.76199817e-19
 1.30676215e-18 -5.37796438e-18 0.0000000e+00 0.0000000e+00
  1.13340742e-17 -2.34789882e-18 7.53155227e-18 -4.74958704e-18
```

```
3.09541573e-18 -5.61449172e-18 -4.34478933e-18 8.67766726e-18
          2.54480461e-18 4.75210133e-18 -5.66165425e-19 0.00000000e+00
          0.000000000e+00 2.91338058e-18 -1.28887313e-18 -6.48781246e-18
          7.96039939e-18 -7.19541254e-18 1.58271415e-18 1.58652050e-17
         -1.58686329e-19 8.07144499e-18 -4.10293578e-18 0.000000000e+00
          0.000000000e+00 -1.37020285e-17 1.98412596e-17 -1.40121815e-17
          1.83866432e-17 -9.22547258e-18 -4.91460427e-18 -8.30939321e-19
          7.82879363e-18 -6.20154635e-18 0.00000000e+00 0.00000000e+00
         -3.28141226e-18 8.38103243e-18 -3.03330770e-18 1.48833878e-17
         -1.11313364e-18 -8.55503277e-20 -4.73173284e-18 2.50139417e-21
          0.00000000e+00 0.00000000e+00 -4.45900643e-18 -1.93054691e-18
         -1.64935844e-18 5.47258588e-18 3.50878104e-18 -3.10566926e-18
         -1.69357786e-19 0.00000000e+00 0.0000000e+00 1.03092504e-17
         1.21893057e-17 -2.90364652e-18 -1.50653308e-17 3.54804772e-18
         -2.61318598e-18 0.00000000e+00 0.0000000e+00 -1.16946460e-17
         -2.05857844e-18 5.65819994e-18 5.86578763e-18 -1.92041105e-18
          0.000000000e+00 \quad 0.00000000e+00 \quad 0.00000000e+00 \quad 0.0000000e+00
          0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
          0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
          -2.27282661e-17 8.94398839e-18 -3.83768989e-17 -1.99661479e-17
          1.08454145e-16 -1.33826426e-17 4.35599597e-18 -2.20583961e-17
          1.24413961e-17 -2.47035736e-17 -2.05806277e-17 3.44470433e-18]
In [15]:
         prediccioPolinominal = model.predict(X test)
         print(f"predicted response:\n{prediccioPolinominal}")
        predicted response:
        [122. 39. 27. ... 43. 36. 83.]
In [16]:
         # Comparació X-test amb la predicció
         pred polinominal = pd.DataFrame({"Actual":y test, "Predicted":prediccioPolinominal})
         pred polinominal
         #No entenc perquè em surt iqual
Ou+[16].
              Actual Prodicted
```

	Actual	Predicted
0	122.0	122.0
1	39.0	39.0
2	27.0	27.0
3	42.0	42.0
4	52.0	52.0
•••		
19995	45.0	45.0
19996	18.0	18.0
19997	43.0	43.0
19998	36.0	36.0
	1 2 3 4 19995 19996 19997	 0 122.0 1 39.0 2 27.0 3 42.0 4 52.0 19995 45.0 19996 18.0 19997 43.0

20000 rows × 2 columns

83.0

83.0

DECISION TREE REGRESSOR

In [17]: # Importo les llibreries

19999

```
#Creo la instancia necessària
         regressor = DecisionTreeRegressor(random state=0)
         regressor.fit(X train,y train)
Out[17]:
                DecisionTreeRegressor
        DecisionTreeRegressor(random_state=0)
In [18]:
         prediccioTree = regressor.predict(X test)
         print(f"predicted response:\n{prediccioTree}")
        predicted response:
         [122. 39. 27. ... 43. 36. 83.]
In [19]:
         # Comparació X-test amb la predicció
         pred Tree = pd.DataFrame({"Actual":y_test, "Predicted":prediccioTree})
         pred Tree
         #No entenc perquè em surt igual
Out[19]:
               Actual Predicted
```

Els outputs x i inputs y seran els mateixos que l'anterior regressió

from sklearn.tree import DecisionTreeRegressor

122.0 122.0 1 39.0 39.0 2 27.0 27.0 3 42.0 42.0 52.0 52.0 19995 45.0 45.0 19996 18.0 18.0 19997 43.0 43.0 36.0 19998 36.0 19999 83.0 83.0

20000 rows × 2 columns

Exercici 2

Compara'ls en base al MSE i al R2.

```
In [20]:
    import statsmodels.api as sm
    from sklearn import metrics
```

```
In [21]: print("REGRESSIÓ LINEAL")
    print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, prediccioLineal))
    print('Mean Squared Error:', metrics.mean_squared_error(y_test, prediccioLineal))
    print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, prediccioLineal))
```

```
REGRESSIÓ LINEAL
        Mean Absolute Error: 1.7859509426898511e-13
        Mean Squared Error: 4.907812483092654e-26
        Root Mean Squared Error: 2.2153583193453502e-13
In [22]:
         print("REGRESSIÓ POLINOMINAL")
         print('Mean Absolute Error:', metrics.mean absolute error(y test, prediccioPolinominal))
         print('Mean Squared Error:', metrics.mean squared error(y test, prediccioPolinominal))
         print ('Root Mean Squared Error:', np.sqrt (metrics.mean squared error (y test, prediccioPoli
        REGRESSIÓ POLINOMINAL
        Mean Absolute Error: 3.4243665680833146e-13
        Mean Squared Error: 2.746917523940014e-25
        Root Mean Squared Error: 5.241104391194678e-13
In [23]:
         print("DECISION TREE REGRESSOR")
         print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, prediccioTree))
         print('Mean Squared Error:', metrics.mean squared error(y test, prediccioTree))
         print('Root Mean Squared Error:', np.sqrt(metrics.mean squared error(y test, prediccioTree
        DECISION TREE REGRESSOR
        Mean Absolute Error: 0.01635
        Mean Squared Error: 0.41935
        Root Mean Squared Error: 0.6475723897758459
        Exercici 3
        Entrena'ls utilitzant els diferents paràmetres que admeten.
        CANVIEM PARÀMETRES DE LA REGRESSIÓ LINEAL
In [24]:
         # Creo el model de regressió
         model = LinearRegression(fit intercept = False, normalize=True, n jobs=-1).fit(X train, y
         r sq = model.score(X test, y test)
         print(f"coefficient of determination: {r sq}")
         print(f"intercept: {model.intercept }")
         print(f"coefficients: {model.coef }")
        C:\Users\Anna\anaconda3\lib\site-packages\sklearn\linear model\ base.py:141: FutureWarnin
        g: 'normalize' was deprecated in version 1.0 and will be removed in 1.2.
        If you wish to scale the data, use Pipeline with a StandardScaler in a preprocessing stag
        e. To reproduce the previous behavior:
        from sklearn.pipeline import make pipeline
        model = make pipeline(StandardScaler(with mean=False), LinearRegression())
```

If you wish to pass a sample weight parameter, you need to pass it as a fit parameter to e

 $kwargs = {s[0] + ' sample weight': sample weight for s in model.steps}$

1.42077538e-07 -1.71605380e-07 -1.85155991e-07 1.47736012e-10

coefficients: [-4.84628442e-12 -2.48677398e-08 -2.04300821e-07 -1.19744257e-07

ach step of the pipeline as follows:

coefficient of determination: 1.0

model.fit(X, y, **kwargs)

warnings.warn(

intercept: 0.0

```
-2.31554081e-07 -2.14349746e-07 1.49193218e-07 -5.25919096e-08
 2.20749683e-07 -2.74822614e-07 1.17568035e-07 -9.41946106e-09
 4.29526142e-08 -7.08787719e-08 -2.68606276e-09 3.13684329e-08
 1.71670345e-08 2.55645243e-08 3.26464843e-08 3.30702208e-08
 2.41393802e-15 1.23842642e-11 1.01743443e-10 5.96335962e-11
-7.07557453e-11 8.54608426e-11 9.22091605e-11 -7.35736473e-14
1.15315777e-10 8.68244811e-05 -1.15745099e-04 2.89206761e-05
 3.18574500e-04 1.15745161e-04 -5.85498175e-11 2.89206546e-05
2.89206285e-05 4.68126480e-10 -2.19455400e-09 6.36883181e-05
 6.36883252e-05 6.36883210e-05 6.36883175e-05 6.36883173e-05
 7.28355358e-16 4.49678964e-16 6.30406246e-16 1.85881943e-17
 1.79464940e-17 9.05300708e-18 4.14002408e-17 5.92506164e-19
1.38699192e-10 -5.69000202e-11 -8.17995070e-11 -4.36870553e-11
 5.69000691e-11 2.35197359e-17 -8.17990497e-11 -8.17992213e-11
 3.50041170e-10 -2.91553600e-10 -1.32132715e-11 -1.32132260e-11
-1.32131972e-11 -1.32128794e-11 -1.32131207e-11 -1.01499353e-17
-1.31957096e-15 \quad 1.09192142e-17 \quad -4.54467124e-17 \quad 2.00463847e-17
 1.38258276e-17 4.48940697e-18 1.87193843e-10 -2.61276527e-10
 7.40822240e-11 -3.73267487e-10 2.61276281e-10 6.77896184e-17
7.40822339e-11 7.40821544e-11 -1.10928571e-10 2.26747870e-11
1.11991101e-10 1.11991145e-10 1.11991226e-10 1.11991189e-10
 1.11991087e-10 -2.34380393e-15 8.91995028e-17 -3.53917480e-17
-3.53097513e-17 -1.40590429e-17 1.17515895e-17 4.90264964e-11
-2.97813764e-11 -1.92460535e-11 -8.58231367e-11 2.97807562e-11
1.52860918e-16 -1.92460178e-11 -1.92454928e-11 1.03605603e-10
 1.13426630e-11 5.60420425e-11 5.60422612e-11 5.60422184e-11
5.60426605e-11 5.60421307e-11 9.01878331e-19 -7.14895807e-19
-1.27838448e-18 -1.35991140e-18 1.11278953e-19 1.20256913e-08
1.85673336e-08 -3.05930249e-08 1.51259467e-08 -1.85673336e-08
 3.01861367e-18 -3.05930249e-08 -3.05930249e-08 -1.22083109e-11
1.38996097e-11 3.44138685e-09 3.44138685e-09 3.44138685e-09
3.44138671e-09 3.44138685e-09 2.54914565e-18 -1.68136040e-19
1.15143541e-19 -3.00114361e-19 -2.05464368e-08 3.35166432e-08
-1.29702063e-08 3.42254682e-08 -3.35166432e-08 -5.51693734e-18
-1.29702063e-08 -1.29702063e-08 1.00287797e-11 -3.35850167e-11
-7.08825007e-10 -7.08825038e-10 -7.08825027e-10 -7.08824890e-10
-7.08825008e-10 -2.25946039e-19 5.21984054e-19 -1.95241094e-19
1.85870949e-08 -8.12833412e-09 -1.04587608e-08 -5.95469704e-09
8.12833412e-09 -1.30866590e-18 -1.04587608e-08 -1.04587608e-08
7.78148622e-12 -4.18300832e-13 -2.17363708e-09 -2.17363708e-09
-2.17363708e-09 -2.17363708e-09 -2.17363708e-09 4.41092407e-19
2.63003730e-19 2.81308094e-08 3.52677583e-08 -6.33985677e-08
3.07299661e-08 -3.52677583e-08 7.41789104e-19 -6.33985677e-08
-6.33985677e-08 -9.32932560e-13 -2.05205568e-12 4.53779221e-09
 4.53779224e-09 4.53779222e-09 4.53779218e-09 4.53779221e-09
 4.34104385e-21 1.03338350e-08 3.17994449e-08 -4.21332799e-08
 4.05394047e-08 -3.17994449e-08 -5.63276910e-19 -4.21332799e-08
-4.21332799e-08 0.00000000e+00 0.0000000e+00 -8.73995980e-09
-8.73995980e-09 -8.73995979e-09 -8.73995981e-09 -8.73995980e-09
3.42989000e-09 -2.25063584e-09 2.73781279e-09 -2.17858523e-09
1.13434994e-09 3.11887719e-08 -8.89631876e-10 -9.32566838e-10
 0.00000000e+00 0.00000000e+00 -3.13095991e-10 1.79645619e-10
-1.67522196e-10 -1.26729713e-11 -3.35898660e-10 -2.18565149e-09
 3.86733656e-09 -2.37586021e-09 3.52219700e-09 -3.35652587e-08
 6.15424301e-10 7.60550625e-10 0.00000000e+00 0.00000000e+00
-5.97316461e-11 -5.04627588e-10 -7.43891254e-10 -4.36179224e-10
1.43697042e-10 -5.59875214e-09 2.04592364e-09 -1.90194499e-09
2.37648680e-09 -4.31814751e-09 -4.42033846e-09 0.00000000e+00
 0.00000000e+00 1.26747459e-10 7.89017981e-11 6.65333071e-10
 2.02771825e-10 -5.38785163e-11 -4.15807123e-10 2.46920373e-09
-2.95641756e-08 -8.52561912e-10 -7.76932002e-10 0.00000000e+00
0.00000000e+00 \quad 3.68590904e-11 \quad -1.36957073e-10 \quad -7.46981759e-10
-9.10872421e-11 6.77211639e-11 -1.33654586e-09 3.35652587e-08
1.34996711e-09 1.20484102e-09 0.00000000e+00 0.00000000e+00
-8.82717328e-10 -4.37821406e-10 -1.98557687e-10 -5.06269744e-10
-1.08614608e-09 -1.91852963e-18 2.37648684e-09 2.37648678e-09
```

```
0.00000000e+00 \quad 0.00000000e+00 \quad -4.00108310e-09 \quad -4.00108311e-09
         -4.00108309e-09 -4.00108312e-09 -4.00108311e-09 1.28060454e-09
         2.45901806e-09 0.00000000e+00 0.0000000e+00 -2.26679189e-10
         -2.74524818e-10 3.11906653e-10 -1.50654856e-10 -4.07305178e-10
         1.17841364e-09 0.00000000e+00 0.00000000e+00 -1.57183022e-10
         -2.05028701 \\ e - 10 \\ 3.81402779 \\ e - 10 \\ -8.11583573 \\ e - 11 \\ -3.37809107 \\ e - 10 \\
         0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
         0.00000000e+00 1.29007492e-10 -1.30647781e-11 3.57696252e-10
         9.51391937e-12 4.30581667e-10 -1.42072265e-10 8.66164939e-11
         -2.61564835e-10 1.59501890e-10 2.28688713e-10 1.09195085e-10
         5.30262915e-10 -1.19493701e-10 1.82080375e-10 3.01574154e-10]
In [25]:
        prediccioLineal = model.predict(X test)
        print(prediccioLineal)
        [122. 39. 27. ... 43. 36. 83.]
In [26]:
         # Comparació X-test amb la predicció
        pred lineal = pd.DataFrame({"Actual":y test, "Predicted":prediccioLineal})
        pred lineal
         #No entenc perquè em surt igual
Out[26]:
             Actual Predicted
```

122.0 122.0 39.0 1 39.0 2 27.0 27.0 42.0 42.0 4 52.0 52.0 19995 45.0 45.0 19996 18.0 18.0 19997 43.0 43.0 19998 36.0 36.0 19999 83.0 83.0

20000 rows × 2 columns

CANVIEM PARÀMETRES DE LA REGRESSIÓ POLINOMINAL

model = LinearRegression(n jobs=-1).fit(X train, y train)

```
In [27]: #Creo la instancia necessària
    transformer = PolynomialFeatures(degree=3, include_bias=True, interaction_only=True)
    X = transformer.fit_transform(x)
    X.reshape((-1,1))
    #Creo el train test de nou amb la X correcte
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=0)
In [28]: # Creo el model de regressió i l'aplico
```

```
r sq = model.score(X test, y test)
         print(f"coefficient of determination: {r sq}")
         print(f"intercept: {model.intercept }")
         print(f"coefficients: {model.coef }")
        coefficient of determination: 1.0
        intercept: 0.00016865601577364941
        coefficients: [-7.17138572e-17 -8.39919234e-08 4.53184445e-08 ... -3.44700174e-16
          0.00000000e+00 3.77823947e-15]
In [29]:
         prediccioPolinominal = model.predict(X test)
         print(f"predicted response:\n{prediccioPolinominal}")
        predicted response:
        [122. 39. 27. ... 43. 36. 83.]
In [30]:
         # Comparació X-test amb la predicció
         pred polinominal = pd.DataFrame({"Actual":y test, "Predicted":prediccioPolinominal})
         pred polinominal
         #No entenc perquè em surt igual
```

Out[30]:		Actual	Predicted
	0	122.0	122.0
	1	39.0	39.0
	2	27.0	27.0
	3	42.0	42.0
	4	52.0	52.0
	•••		
	19995	45.0	45.0
	19996	18.0	18.0
	19997	43.0	43.0
	19998	36.0	36.0

20000 rows × 2 columns

83.0

83.0

CANVIEM PARÀMETRES DE LA REGRESSIÓ D'ARBRE (DECISION TREE REGRESSION)

In []:

Exercici 4

19999

Compara el seu rendiment utilitzant l'aproximació traint/test o utilitzant totes les dades (validació interna)

```
REGRESSIÓ LINEAL MÚLTIPLE
```

```
In [31]: # Creo el model de regressió
model = LinearRegression(n_jobs=-1).fit(x, y)
```

```
r_sq = model.score(x, y)
         print(f"coefficient of determination: {r sq}")
         print(f"intercept: {model.intercept }")
         print(f"coefficients: {model.coef }")
        coefficient of determination: 1.0
        intercept: 5.826450433232822e-13
        coefficients: [ 0.00000000e+00 1.27051147e-14 1.39862080e-15 -3.82415318e-14
         -3.03576608e-16 1.01915004e-16 -1.90819582e-16 1.26634814e-16
          0.00000000e+00 1.74418605e-01 -2.32558140e-01 5.81395349e-02
          6.39534884e-01 2.32558140e-01 2.79290480e-16 5.81395349e-02
          5.81395349e-02 -1.21430643e-17 2.77555756e-17 1.27906977e-01
          1.27906977e-01 1.27906977e-01 1.27906977e-01 1.27906977e-01]
In [32]:
         prediccioLineal = model.predict(x)
         print(prediccioLineal)
        [ 16. 99. 29. ... 110. 54. 18.]
In [33]:
         # Comparació X-test amb la predicció
         pred lineal = pd.DataFrame(("Actual":y, "Predicted":prediccioLineal))
         pred lineal
         #No entenc perquè em surt igual
              Actual Predicted
Out[33]:
```

0 16.0 16.0 1 99.0 99.0 29.0 2 29.0 3 32.0 32.0 23.0 23.0 99995 23.0 23.0 99996 26.0 26.0 99997 110.0 110.0 99998 54.0 54.0 99999 18.0 18.0

100000 rows × 2 columns

Mean Absolute Error: 1.5488041071876069e-13 Mean Squared Error: 4.109286176381836e-26 Root Mean Squared Error: 2.0271374340142397e-13

REGRESSIÓ POLINOMINAL

```
#Creo la instancia necessària
In [35]:
         transformer = PolynomialFeatures (degree=2, include bias=False)
         X = transformer.fit transform(x)
         X.reshape((-1,1))
        array([[2.008e+03],
Out[35]:
               [2.000e+00],
               [2.600e+01],
               [0.000e+00],
               [0.000e+00],
               [1.690e+02]])
In [36]:
         # Creo el model de regressió i l'aplico
         model = LinearRegression(n jobs=-1).fit(X, y)
         r sq = model.score(X, y)
         print(f"coefficient of determination: {r sq}")
         print(f"intercept: {model.intercept }")
         print(f"coefficients: {model.coef }")
        coefficient of determination: 1.0
        intercept: 6.181721801112872e-13
        coefficients: [-6.93341280e-20 -4.04747918e-16 1.34813764e-17 3.03989960e-16
         -5.40949121e-17 -1.23267011e-16 1.11930322e-16 5.73644593e-17
         -3.87305815e-17 4.32578851e-08 -5.76771802e-08 1.44192951e-08
          1.58612246e-07 5.76771802e-08 2.92375259e-17 1.44192951e-08
          1.44192951e-08 2.76471554e-18 -7.18283939e-18 3.17224491e-08
          3.17224491e-08 3.17224491e-08 3.17224491e-08 3.17224491e-08
         -3.59141970e-19 1.69347297e-17 -6.29091370e-18 -3.07197674e-18
          1.45350854e-18 -1.18923426e-18 -7.42000862e-19 -5.09913834e-19
          6.09863722e-20 8.68618334e-05 -1.15815778e-04 2.89539445e-05
          3.18493389e-04 1.15815778e-04 -3.37119113e-19 2.89539445e-05
          2.89539445e-05 1.86347248e-19 -1.67712524e-19 6.36986778e-05
          6.36986778e-05 6.36986778e-05 6.36986778e-05 6.36986778e-05
          8.81399787e-17 2.96756868e-17 -5.67131835e-16 4.24448210e-18
          3.23905399e-18 6.48191963e-19 1.60131579e-18 -5.78099987e-19
          5.08510936e-18 1.53552780e-17 -6.41548048e-18 -1.06271798e-17
         -4.30517730e-19 -3.36843827e-18 1.33053077e-17 -1.72733179e-18
         -3.55753838e-20 9.48676901e-20 6.88929615e-18 2.21084384e-17
          1.97428160e-19 -3.66663344e-17 -2.63361072e-18 -4.82837897e-18
         -6.32664956e-18 -3.24667729e-18 -1.01474547e-18 1.99052743e-19
          1.22396261e-18 2.75031598e-18 2.76662136e-19 1.52571810e-19
         -1.78872183e-18 -6.75085259e-19 -1.20851418e-18 -2.83756037e-19
         -6.55927756e-19 2.99978042e-18 -3.72694497e-20 -1.49077799e-19
         -1.67780021e-18 5.38908169e-20 -3.59071825e-18 5.77838913e-18
         -1.04172645e-18 -1.82383532e-16 -2.81214938e-19 1.93557616e-18
         -1.57526952e-18 -1.70317150e-18 4.73618472e-18 -5.93206290e-18
          1.46300457e-17 9.62319425e-18 -1.07470085e-17 9.71882957e-18
         -3.32640426e-18 -2.30296078e-17 7.53706626e-18 0.00000000e+00
         -3.38813179e-20 -1.34122903e-17 -1.46349803e-17 9.64857546e-18
          1.29302377e-17 -5.35444598e-18 6.03087458e-19 -1.19939865e-18
         -1.55854062e-19 -1.35525272e-20 -1.32137140e-19 -1.94912869e-18
          9.41900637e-19 -1.39336920e-18 3.21872520e-19 -3.22296036e-18
         -5.28548559e-19 -9.58523659e-19 -5.50359657e-19 -4.23516474e-21
          0.0000000000+00 2.09217138e-19 9.52488549e-19 1.82959117e-19
         -2.78223192e-18 -2.64274280e-19 8.23316025e-19 -3.09167026e-19
         -2.93073400e-19 8.47032947e-22 -6.44592073e-19 1.01898064e-18
         -5.48877350e-19 1.70761842e-18 -3.38813179e-21 6.50521303e-19
         -1.23243294e-18 -3.23143069e-19 -7.94093388e-22 -8.47032947e-22
          2.58345049e-19 -4.13775595e-19 -8.77526133e-19 2.48336164e-18
          9.19030748e-20 3.77776694e-19 -5.69206141e-19 -2.79520873e-20
          1.51788304e-18 -2.63935466e-18 -6.80802731e-20 -1.76352260e-18
```

```
1.53651777e-18 -1.44842634e-19 1.75441699e-19 1.80841534e-19
          8.99972506e-22 -5.29395592e-23 -1.32645360e-18 -1.51830656e-19
         -7.62329653e-19 -8.20139651e-19 4.40457133e-20 4.47233396e-19
          1.23666810e-19 -3.33540399e-18 3.16536212e-18 1.72037686e-18
          1.93123512e-19 -7.11507676e-19 9.69852725e-20 1.53360609e-18
          9.06325254e-19 -7.94093388e-23 5.29395592e-22 2.01847951e-18
          2.34924588e-18 2.13791116e-18 1.68078468e-18 1.45096744e-18
         -1.93229391e-20 1.62884436e-18 -1.62905612e-18 -2.96461532e-21
         -1.19177536e-18 2.05405490e-18 7.11507676e-20 -3.26213564e-19
         -4.94667241e-19 0.00000000e+00 0.00000000e+00 -1.40438063e-18
         -1.75844040e-18 -8.88114045e-19 -1.24641560e-18 -6.87578995e-19
         -2.40387950e-18 -1.00648690e-18 -1.58162227e-18 -2.24781368e-18
         -1.01548662e-18 -5.95464162e-19 -1.81713465e-18 -5.04619878e-19
          0.00000000000+00 0.0000000000+00 3.43694206e-18 -1.74793190e-18
          4.84989890e-18 -1.25982411e-17 4.19429540e-18 7.01766797e-19
         -2.35464571e-18 -3.32036915e-18 9.88593329e-19 7.87740641e-20
          3.21752744e-18 -2.85542747e-18 0.00000000e+00 0.0000000e+00
         -5.55526558e-18 3.97614471e-18 -4.93401986e-18 7.74852009e-18
         -3.98285480e-18 -2.37402159e-18 3.49062278e-18 1.68411326e-18
          2.54787511e-18 -6.86561563e-19 2.86847708e-18 0.00000000e+00
          0.000000000e+00 -1.91101221e-18 -6.37746988e-18 -2.53321085e-18
          1.68652929e-17 -2.65237780e-18 -1.00352228e-18 -2.40705588e-18
         -1.29426634e-18 -6.28835937e-18 9.09131050e-19 0.00000000e+00
          0.00000000e+00 \quad 1.10902818e-17 \quad -1.57370648e-17 \quad 1.13212306e-17
         -1.79509509e-17 9.99827103e-18 -4.33045594e-20 -3.15096256e-19
         -1.22447215e-18 -1.20368676e-18 0.00000000e+00 0.00000000e+00
          2.04883373e-18 -9.95853989e-18 1.12779790e-18 2.41378520e-18
          1.62365628e-18 -4.06575815e-20 1.08896673e-18 2.47206566e-18
          0.00000000e+00 0.00000000e+00 1.22735074e-18 2.12658209e-18
          1.93843490e-18 -1.46215754e-19 1.93843490e-18 9.76106210e-19
         -2.18885721e-18 0.00000000e+00 0.00000000e+00 3.40917196e-18
          5.02481037e-18 4.57604587e-18 -2.29027454e-17 3.64615258e-18
         -1.28619306e-18 0.00000000e+00 0.00000000e+00 2.07508514e-18
         -4.66576188e-19 2.92669736e-18 -6.56432202e-18 3.04160267e-18
          0.000000000e+00 \quad 0.00000000e+00 \quad 0.00000000e+00 \quad 0.00000000e+00
          0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
          0.000000000e+00 -7.91687285e-18 \quad 2.27926845e-17 -1.47270111e-17
          2.52788183e-17 -1.39593644e-17 3.11622429e-17 1.91683060e-17
         -1.13057515e-16 2.42270572e-17 -8.96782898e-18 3.00478952e-17
         -1.45487967e-17 2.09414392e-17 1.88373528e-17 -4.69256253e-18]
In [37]:
         prediccioPolinominal = model.predict(X)
         print(f"predicted response:\n{prediccioPolinominal}")
        predicted response:
        [ 16. 99. 29. ... 110. 54. 18.]
In [38]:
         # Comparació X-test amb la predicció
         pred polinominal = pd.DataFrame(("Actual":y, "Predicted":prediccioPolinominal))
         pred polinominal
         #No entenc perquè em surt igual
             Actual Predicted
```

Out[38]:		Actual	Predicted
	0	16.0	16.0
	1	99.0	99.0
	2	29.0	29.0
	3	32.0	32.0
	4	23.0	23.0

	•••	•••	•••							
	99995	23.0	23.0							
	99996	26.0	26.0							
	99997	110.0	110.0							
	99998	54.0	54.0							
	99999	18.0	18.0							
	100000 r	ows × 2	columns							
In [39]:	print ('Mean A	SSIÓ POLINOMIN Absolute Error Squared Error: Mean Squared E	:', metrics', metrics.r	mean_squar	ed_error	(y, predi	ccioPoli	nominal))	
	REGRESSIÓ POLINOMINAL Mean Absolute Error: 2.3955818662102503e-13 Mean Squared Error: 1.0287020560438499e-25 Root Mean Squared Error: 3.207338547836586e-13									
	DECISION	N TREE R	EGRESSOR							
In [40]:	#Creo la instancia necessària regressor = DecisionTreeRegressor(random_state=0) regressor.fit(x,y)									
Out[40]:			ionTreeRegres							
				/						
In [41]:	_		e = regressor. icted response	_	ioTree}")					
		ted responded to the second re	ponse: 9 110. 5	54. 18.]						
In [42]:		ree = p	X-test amb la od.DataFrame({		"Predicte	ed":predi	.ccioTree})		
	#No er	ntenc pe	erquè em surt	igual						
Out[42]:		Actual P	redicted							
	0	16.0	16.0							

Actual Predicted

99.0

29.0

32.0

23.0

1

2

3

99.0

29.0

32.0

23.0

	Actual	Predicted
99995	23.0	23.0
99996	26.0	26.0
99997	110.0	110.0
99998	54.0	54.0
99999	18.0	18.0

100000 rows × 2 columns

Root Mean Squared Error: 0.0

```
In [43]: print("DECISION TREE REGRESSOR")
print('Mean Absolute Error:', metrics.mean_absolute_error(y, prediccioTree))
print('Mean Squared Error:', metrics.mean_squared_error(y, prediccioTree))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y, prediccioTree)))

DECISION TREE REGRESSOR
Mean Absolute Error: 0.0
Mean Squared Error: 0.0
```

NIVELL 2

Exercici 5

Realitza algun procés d'enginyeria de variables per millorar-ne la predicció

```
In [ ]:
```

NIVELL 3

Exercici 6

No utilitzis la variable DepDelay a l'hora de fer prediccions

```
In [ ]:
```