Práctica 1: Representación de la información Caracteres

Organización del Computador I DC - UBA

Verano 2018

Representación de caracteres

- La memoria contiene bits, ceros y unos dispuestos en algún orden que se pueden interpretar de múltiples formas.
- ¿Cómo hacemos para guardar en memoria la cadena de caracteres orga1?

ASCII

Respuesta 1: ASCII (American Standard for Information Interchange – 1963)

						US	ASCII	code	chart				
В ₇ Б В	5 -					°°°	°0 ,	0,0	٥,	¹ o o	۱۰,	110	1 1
9,1	b ₄	b 3	b ₂	b	Row	0	1	2	3	4	5	6	7
•	0	0	0	0	0	NUL .	DLE	SP	0	0	P	```	P
	0	0	٥	-		SOH	DC1	!	1	Α.	Q	0	q
	0	0	-	0	2	STX	DC2	"	2	В	R	А	,
	0	0	-	-	3	ETX	DC3	#	3	C	S	С	8
	0	1	0	0	4	EOT	DC4	1	4	D	Т	đ	1
	0	1	0	1	5	ENQ	NAK	%	5	Ε	U	e	U
	0	1	1	0	6	ACK	SYN	8	6	F	٧	f	٧
	0	Ī	1	1	7	BEL	ETB	<u>'</u>	7	G	w	g	w
	Ŀ	0	0	0	8	BS	CAN	(8	н	X	h	×
		0	0	1	9	нт	EM)	9	1	Y	i	у
	LĪ	0	1	0	10	LF	SUB	*	<u> </u>	J	Z	j	z
	1	0	-	1	11	VT	ESC	+		к	C	k	
		ī	0	0	12	FF	FS	,	<	L	\	1	
		1	0		13	CR	GS	-	=	М)	m	}
	Ŀ	I	1	0	14	so	RS		>	N	^	n	>
	$\Gamma \Gamma$	Ti	l ī	Ιī	15	SI	LIS	/	?	0			DEL

EBCDIC

Respuesta 1 bis: EBCDIC (Extended Binary Coded Decimal Interchange Code - 1963, IBM)

EBCDIC

Respuesta 1 bis: EBCDIC (Extended Binary Coded Decimal Interchange Code – 1963, IBM)

Problema: ¿y si quiero representar Organización del Computador I?

ISO-8859-1 (Latin-1)

Respuesta 2: Latin-1

	_0	_1	_2	_3	_4	_5	_6	_7	_8	_9	_A	_B	_c	_D	_E	_F
0_																
1_																
2_		!	"	#	\$	%	&		()	rk	+	,	-		1
3_	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4_	@	Α	В	С	D	Е	F	G	н	I	3	K	L	М	N	0
5_	Р	Q	R	S	Т	U	٧	W	х	Υ	z	Ε	\]	٨	_
6_	,	a	b	c	d	e	f	g	h	i	j	k	1	m	n	0
7_	р	q	r	s	t	u	V	w	x	У	z	{	T	}	?	
8_	€		,	f	,,		t	‡	^	%	š	<	Œ		ž	
9_		-	,	66	"	•	-	-	~	TM	š	>	œ		ž	Ÿ
A _		i	C	£	п	¥	1	§	**	0	a	«	-		0	-
В_	۰	±	2	3	•	μ	1			1	0	»	1/4	1/2	3/4	ż
c _	À	Á	Â	Ã	Ä	Å	Æ	Ç	È	É	Ê	Ë	Ì	Í	Î	Ϊ
D_	Đ	Ñ	Ò	Ó	ô	õ	Ö	×	Ø	Ù	Ú	Û	Ü	Ý	Þ	ß
E_	à	á	â	ã	ä	å	æ	ç	è	é	ê	ë	ì	í	î	ï
F_	ð	ñ	ò	ó	ô	õ	ö	÷	ø	ù	ú	û	ü	ý	þ	ÿ

ISO-8859-1 (Latin-1)

Respuesta 2: Latin-1

	_0	_1	_2	_3	_4	_5	_6	_7	_8	_9	_A	_B	_c	_D	_E	F
0_																
1_																
2_		!	"	#	\$	%	&		()	rk	+	,	-		1
3_	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4_	@	Α	В	С	D	E	F	G	Н	1	3	K	L	М	N	0
5_	Р	Q	R	S	Т	U	V	W	х	Υ	z	Ε	1]	٨	<u></u>
6_	,	a	b	c	d	e	f	g	h	i	j	k	1	m	n	0
7_	р	q	r	s	t	u	V	w	х	У	z	{	T	}	~	
8_	€		,	f	,,		t	‡	^	%	š	<	Œ		ž	
9_			,	**	"	٠	-	-	~	TM	š	>	œ		ž	Ÿ
A _		i	C	£	п	¥	1	§	**	0	a	«	-		0	-
В_	۰	±	2	3	•	μ	1			1	0	»	1/4	1/2	34	ż
c _	À	Á	Â	Ã	Ä	Å	Æ	Ç	È	É	Ê	Ë	Ì	Í	î	Ϊ
D_	Đ	Ñ	ò	ó	ô	Õ	Ö	×	Ø	Ù	Ú	Û	Ü	Ý	Þ	ß
E_	à	á	â	ã	ä	å	æ	ç	è	é	ê	ë	ì	í	î	ï
F_	ð	ñ	ò	ó	ô	õ	ö	÷	ø	ù	ú	û	ü	ý	þ	ÿ

¿Y ahora si quiero codificar 你什么名字?

Para unificar la codificación de caracteres en todas las lenguas del mundo se definió un standard, llamado **Unicode**, que establece una numeración uniforme para 136.690 caracteres (versión 10.0, Junio 2017) en 139 scripts diferentes

- Para unificar la codificación de caracteres en todas las lenguas del mundo se definió un standard, llamado **Unicode**, que establece una numeración uniforme para 136.690 caracteres (versión 10.0, Junio 2017) en 139 scripts diferentes
- A esta lista de caracteres se la conoce como UCS (Universal Character Set)

- Para unificar la codificación de caracteres en todas las lenguas del mundo se definió un standard, llamado **Unicode**, que establece una numeración uniforme para 136.690 caracteres (versión 10.0, Junio 2017) en 139 scripts diferentes
- A esta lista de caracteres se la conoce como UCS (Universal Character Set)
- Algunos scripts incluidos: Árabe, Armenio, Bengalí, Bopomofo, Cirílico, Devanagari, Georgiano, Griego, Gujarati, Gurmukhi, Hangul, Hebreo, Hiragana, Kannada, Katakana, Lao, Latín, Malayo, Oriya, Tamil, Telugu, Thai, Tibetano, CJK (chino, japonés y coreano), Sánscrito védico, Javanés, Khmer, Mongol, Tibetano, Braille, Runas, Klingon, etc.

- Para unificar la codificación de caracteres en todas las lenguas del mundo se definió un standard, llamado **Unicode**, que establece una numeración uniforme para 136.690 caracteres (versión 10.0, Junio 2017) en 139 scripts diferentes
- A esta lista de caracteres se la conoce como UCS (Universal Character Set)
- Algunos scripts incluidos: Árabe, Armenio, Bengalí, Bopomofo, Cirílico, Devanagari, Georgiano, Griego, Gujarati, Gurmukhi, Hangul, Hebreo, Hiragana, Kannada, Katakana, Lao, Latín, Malayo, Oriya, Tamil, Telugu, Thai, Tibetano, CJK (chino, japonés y coreano), Sánscrito védico, Javanés, Khmer, Mongol, Tibetano, Braille, Runas, Klingon, etc.
- Unicode establece el mapa de caracteres, pero no cómo se codifican.

- ▶ UCS define una manera de codificar los caracteres, utilizando el número del mismo en el mapa. Para esto necesitamos al menos 17 bits $(2^{17} = 131072)$.
- Las codificaciones de UCS son de longitud fija, se indica en el nombre la cantidad de bytes de la codificación.

- ▶ UCS define una manera de codificar los caracteres, utilizando el número del mismo en el mapa. Para esto necesitamos al menos 17 bits $(2^{17} = 131072)$.
- Las codificaciones de UCS son de longitud fija, se indica en el nombre la cantidad de bytes de la codificación.
- ▶ Inicialmente UCS-2, luego UCS-4.

- ▶ UCS define una manera de codificar los caracteres, utilizando el número del mismo en el mapa. Para esto necesitamos al menos 17 bits $(2^{17} = 131072)$.
- Las codificaciones de UCS son de longitud fija, se indica en el nombre la cantidad de bytes de la codificación.
- Inicialmente UCS-2, luego UCS-4.
- ▶ Problema: el texto "hola mundo" se codificaría en UCS-4 como:

```
00 00 00 68 | 00 00 00 6F | 00 00 00 6C | 00 00 00 61 00 00 00 20 | 00 00 00 6D | 00 00 00 75 | 00 00 00 6E 00 00 00 64 | 00 00 00 6F
```

- ▶ UCS define una manera de codificar los caracteres, utilizando el número del mismo en el mapa. Para esto necesitamos al menos 17 bits $(2^{17} = 131072)$.
- Las codificaciones de UCS son de longitud fija, se indica en el nombre la cantidad de bytes de la codificación.
- Inicialmente UCS-2, luego UCS-4.
- ▶ Problema: el texto "hola mundo" se codificaría en UCS-4 como:

```
00 00 00 68 | 00 00 00 6F | 00 00 00 6C | 00 00 00 61 00 00 00 00 6D | 00 00 00 75 | 00 00 00 6E 00 00 00 64 | 00 00 00 6F
```

Mientras que en ASCII la codificación es:

```
68 6F 6C 61 | 20 6D 75 6E | 64 6F
```

- ▶ UCS define una manera de codificar los caracteres, utilizando el número del mismo en el mapa. Para esto necesitamos al menos 17 bits $(2^{17} = 131072)$.
- Las codificaciones de UCS son de longitud fija, se indica en el nombre la cantidad de bytes de la codificación.
- ▶ Inicialmente UCS-2, luego UCS-4.
- ▶ Problema: el texto "hola mundo" se codificaría en UCS-4 como:

```
00 00 00 68 | 00 00 00 6F | 00 00 00 6C | 00 00 00 61 00 00 00 00 6D | 00 00 00 75 | 00 00 00 6E 00 00 00 64 | 00 00 00 6F
```

Mientras que en ASCII la codificación es:

```
68 6F 6C 61 | 20 6D 75 6E | 64 6F
```

► **Solución**: usar codificaciones de longitud variable (UTF = UCS Transformation Format)

UTF define diversos sistemas de transformación del código de un caracter a su representación en memoria. Para indicar el tipo, se suele utilizar un número que representa la cantidad de **bits** que tiene cada *unidad de código* (code unit) del formato.

Los formatos UTF más utilizados son UTF-32, UTF-16 y UTF-8.

UTF define diversos sistemas de transformación del código de un caracter a su representación en memoria. Para indicar el tipo, se suele utilizar un número que representa la cantidad de **bits** que tiene cada *unidad de código* (code unit) del formato.

Los formatos UTF más utilizados son UTF-32, UTF-16 y UTF-8.

UTF-32 equivalente a UCS-4.

UTF define diversos sistemas de transformación del código de un caracter a su representación en memoria. Para indicar el tipo, se suele utilizar un número que representa la cantidad de **bits** que tiene cada *unidad de código* (code unit) del formato.

Los formatos UTF más utilizados son UTF-32, UTF-16 y UTF-8.

UTF-32 equivalente a UCS-4.

UTF-16 toma como base UCS-2, utiliza 2 code units de 16 bits para codificar caracteres cuyo código tiene un valor superior a U+10000.

UTF define diversos sistemas de transformación del código de un caracter a su representación en memoria. Para indicar el tipo, se suele utilizar un número que representa la cantidad de **bits** que tiene cada *unidad de código* (code unit) del formato.

Los formatos UTF más utilizados son UTF-32, UTF-16 y UTF-8.

- UTF-32 equivalente a UCS-4.
- UTF-16 toma como base UCS-2, utiliza 2 code units de 16 bits para codificar caracteres cuyo código tiene un valor superior a U+10000.
 - UTF-8 toma como base ASCII, codificación de longitud variable entre 1 y 4 code units de 8 bits.

Codificación en UTF-8

En UTF-8 se utiliza la siguiente tabla para codificar caracteres Unicode:

Bits	Inicio	Fin	Byte 1	Byte 2	Byte 3	Byte 4
1–7	U+0000	U+007F	0xxxxxxx			
8–11	U+0080	U+07FF	110xxxxx	10xxxxxx		
12-16	U+0800	U+FFFF	1110xxxx	10xxxxxx	10xxxxxx	
17–21	U+10000	U+10FFFF	11110 <mark>xxx</mark>	10xxxxxx	10xxxxxx	10xxxxxx

Vamos a codificar el texto 名字, que corresponde a los caracteres Unicode II+540D II+5857¹

¹http://www.fileformat.info/info/unicode/char/search.htm

Primero escribimos ambos números en binario:

Primero escribimos ambos números en binario:

```
540D = 0101 \ 0100 \ 0000 \ 1101 5B57 = 0101 \ 1011 \ 0101 \ 0111
```

Primero escribimos ambos números en binario:

```
540D = 0101 \ 0100 \ 0000 \ 1101
5B57 = 0101 \ 1011 \ 0101 \ 0111
```

Como ocupan 15 bits, tenemos que usar la codificación de 3 bytes. La escribimos:

Primero escribimos ambos números en binario:

```
540D = 0101 \ 0100 \ 0000 \ 1101
5B57 = 0101 \ 1011 \ 0101 \ 0111
```

Como ocupan 15 bits, tenemos que usar la codificación de 3 bytes. La escribimos:

```
540D \Rightarrow 1110 \ 0101 \ 1001 \ 0000 \ 1000 \ 1101 \Rightarrow E5 \ 90 \ 8D 5B57 \Rightarrow 1110 \ 0101 \ 1010 \ 1101 \ 1001 \ 0111 \Rightarrow E5 \ AD \ 97
```

Supongamos que tenemos la siguiente cadena de bytes y la queremos interpretar como UTF-8:

Supongamos que tenemos la siguiente cadena de bytes y la queremos interpretar como UTF-8:

63 C3 B6 E4 BA 9C F0 9D 84 9E

▶ 63, en binario 0110 0011 ⇒ U+0063

Supongamos que tenemos la siguiente cadena de bytes y la queremos interpretar como UTF-8:

- ▶ 63, en binario 0110 0011 ⇒ U+0063
- C3, en binario 1100 0011.

Supongamos que tenemos la siguiente cadena de bytes y la queremos interpretar como UTF-8:

- ▶ 63, en binario 0110 0011 ⇒ U+0063
- ▶ C3, en binario 1100 0011. Tenemos que leer 1 byte más.

Supongamos que tenemos la siguiente cadena de bytes y la queremos interpretar como UTF-8:

- ▶ 63, en binario 0110 0011 ⇒ U+0063
- ▶ C3, en binario 1100 0011. Tenemos que leer 1 byte más.
- ▶ B6, en binario 1011 0110 ⇒ U+00F6

Supongamos que tenemos la siguiente cadena de bytes y la queremos interpretar como UTF-8:

- ▶ 63, en binario 0110 0011 ⇒ U+0063
- ▶ C3, en binario 1100 0011. Tenemos que leer 1 byte más.
- ▶ B6, en binario 1011 0110 ⇒ U+00F6
- ▶ E4, en binario 1110 0100. Tenemos que leer 2 bytes más.

Supongamos que tenemos la siguiente cadena de bytes y la queremos interpretar como UTF-8:

- ▶ 63, en binario 0110 0011 ⇒ U+0063
- ▶ C3, en binario 1100 0011. Tenemos que leer 1 byte más.
- ▶ B6, en binario 1011 0110 ⇒ U+00F6
- ▶ E4, en binario 1110 0100. Tenemos que leer 2 bytes más.
- ▶ BA 9C, en binario 1011 1010 1001 1100 ⇒ U+4E9C

Supongamos que tenemos la siguiente cadena de bytes y la queremos interpretar como UTF-8:

- ▶ 63, en binario 0110 0011 ⇒ U+0063
- ▶ C3, en binario 1100 0011. Tenemos que leer 1 byte más.
- ▶ B6, en binario 1011 0110 ⇒ U+00F6
- ▶ E4, en binario 1110 0100. Tenemos que leer 2 bytes más.
- ▶ BA 9C, en binario 1011 1010 1001 1100 ⇒ U+4E9C
- ▶ F0, en binario 1111 0000. Tenemos que leer 3 bytes más.

Supongamos que tenemos la siguiente cadena de bytes y la queremos interpretar como UTF-8:

- ▶ 63, en binario 0110 0011 ⇒ U+0063
- ▶ C3, en binario 1100 0011. Tenemos que leer 1 byte más.
- ▶ B6, en binario 1011 0110 ⇒ U+00F6
- ▶ E4, en binario 1110 0100. Tenemos que leer 2 bytes más.
- ▶ BA 9C, en binario 1011 1010 1001 1100 ⇒ U+4E9C
- ▶ F0, en binario 1111 0000. Tenemos que leer 3 bytes más.
- ▶ 9D 84 9E, en binario 1001 1101 1000 0100 1001 1110 ⇒ U+1D11E

Buscando en la tablita

Ahora que tenemos los caracteres en Unicode, hay que buscar en la tabla qué quieren decir. Nos quedó:

U+0063 U+00F6 U+4E9C U+1D11E

Buscando en la tablita

Ahora que tenemos los caracteres en Unicode, hay que buscar en la tabla qué quieren decir. Nos quedó:

U+0063 U+00F6 U+4E9C U+1D11E

Una página que permite buscar caracteres fácilmente teniendo el code point es http://codepoints.net/

U+0063 LATIN SMALL LETTER C
U+00F6 LATIN SMALL LETTER O WITH DIAERESIS
U+4E9C CJK UNIFIED IDEOGRAPH-4E9C
U+1D11E MUSICAL SYMBOL G CLEF

Buscando en la tablita

Ahora que tenemos los caracteres en Unicode, hay que buscar en la tabla qué quieren decir. Nos quedó:

U+0063 U+00F6 U+4E9C U+1D11E

Una página que permite buscar caracteres fácilmente teniendo el code point es http://codepoints.net/

U+0063 LATIN SMALL LETTER C U+00F6 LATIN SMALL LETTER O WITH DIAERESIS U+4E9C CJK UNIFIED IDEOGRAPH-4E9C U+1D11E MUSICAL SYMBOL G CLEF

El texto final es: cö∰∳

Unicode en la vida computacional

- ► El uso más preponderante de UTF-8 se encuentra en la web.
- ► En Marzo de 2015, el 83,3 % de las páginas web se encontraban codificadas en UTF-8.

Unicode en la vida computacional

- ▶ El uso más preponderante de UTF-8 se encuentra en la web.
- ► En Marzo de 2015, el 83,3 % de las páginas web se encontraban codificadas en UTF-8.
- A pesar de esto, todavía hay ocasiones en las que la codificación de un texto no queda claro cuál es.

Unicode en la vida computacional

- ▶ El uso más preponderante de UTF-8 se encuentra en la web.
- ► En Marzo de 2015, el 83,3 % de las páginas web se encontraban codificadas en UTF-8.
- A pesar de esto, todavía hay ocasiones en las que la codificación de un texto no queda claro cuál es.
- UTF-32 se utiliza para guardar cadenas de caracteres en memoria, UTF-8 para almacenar y transferir por Internet (en Windows se usa UTF-16 también).

as im∲genes y fotograf∳as de la presente p∳gina son de nuestra autor∲a, aunque algunas las hemos solicitado,