Technical Team

Nature of Invention: Process Flow Diagram and Mass Balance

Applicant: QuantiVEX

Inventors: Bipin Kumar Jaiswal, Nonit Gupta, Peeyush Sahu, Sarthak Singh

Chemical Formula: (R-C6H4-SO3Na)

Chemical Name: Linear alkyl benzene sulphonate

Process Title: Production of Linear alkyl benzene sulphonate from linear alkyl benzene

Process Description:

a. Process Flow Diagram:

where; A -> Falling Film Reactor B - Cooling Tower C - Separator D -> Cyclone E -> Electrostatic Precipitatos F -> Bleaching Tower 9 - Dilution Tank H -> Neutralization Vessel M1) Static Mixer
M2) Static Mixer
M3

1 Reaction information

1.1 Main Reaction

$$C_6H_5 - R + SO_3 + NaOH \xrightarrow{H^+} C_6H_4 - R - SO_3Na + H_2O$$

Here, we have taken the alkyl group -R as C-12: $-(CH_2)_{11}CH_3$

1.2 Molecular Weights

Compound	Formula	Molecular Weight (kg/kmol)
Sulfonating Agent	SO_3	80.06
Linear Alkyl Benzene	$\mathrm{C_6H_5}-\mathrm{R}$	246.42
Linear Alkyl Benzene Sulfonic Acid	$C_6H_4-R-SO_3H$	326.48
Linear Alkyl Benzene Sulfonate	$C_6H_4-R-SO_3Na \\$	348.45

Table 1: Molecular Weights of LAB and its Sulfonation Products

2 Basis Calculations

We take the production of Linear Alkyl Benzene Sulfonate (LABS) as **1000 kg/day** with an **overall molar conversion of 90%**.

2.1 Calculation of Molar and Mass Flow Rates

Step 1: Calculate LABS Molar Flow Rate

The molar flow rate of LABS in kmol/hr:

$$\dot{n}_{\rm LABS} = \frac{\rm Mass~Flow~Rate}{\rm Molecular~Weight} = \frac{1000~kg/day}{348.45~kg/kmol} \times \frac{1}{24~hr/day}$$

$$\dot{n}_{\rm LABS} = 0.12 \ kmol/hr$$

Step 2: Calculate Molar Flow Rate of LAB and SO₃ in Feed Stream

Since the overall molar conversion is 90%, the required molar flow rates of reactants are:

$$\begin{split} \dot{n}_{\rm C_6H_5 - R} &= \frac{\dot{n}_{\rm LABS}}{\rm Conversion} = \frac{0.12}{0.90} = 0.13~kmol/hr \\ \\ \dot{n}_{\rm SO_3} &= \dot{n}_{\rm C_6H_5 - R} = 0.13~kmol/hr \end{split}$$

Step 3: Calculate Mass Flow Rates of All Components

Using mass flow rate formula:

$$\begin{split} \dot{m} &= \dot{n} \times M \\ \dot{m}_{\rm C_6H_5-R} &= 0.13 \times 246.42 = 32.03 \ kg/hr \\ \dot{m}_{\rm SO_3} &= 0.13 \times 80.06 = 10.41 \ kg/hr \\ \dot{m}_{\rm LABS} &= 0.12 \times 348.45 = 41.81 \ kg/hr \end{split}$$

2.2 Final Flow Rate Table

Component	Formula	Molar Flow Rate kmol/hr	Mass Flow Rate kg/hr
Linear Alkyl Benzene (LAB)	$\mathrm{C_6H_5}-\mathrm{R}$	0.13	32.03
Sulfonating Agent	SO_3	0.13	10.41
Linear Alkyl Benzene Sulfonic Acid (LABSA)	$C_6H_4-R-SO_3H$	0.12	41.81

Table 2: Molar and Mass Flow Rates of Reactants and Products

3 Mass Flow Balances

3.1 Falling-Film Reactor

Key Assumptions:

• Overall Production Basis: 1000 kg LABS/day, which is equivalent to:

$$41.81 \text{ kg/hr} = 0.12 \text{ kmol/hr LABS salt}$$

- Single-Pass Conversion (η): 90% (based on total LAB feed).
- Recycle Efficiency (r): 90% of unreacted LAB is recovered and recycled.

3.1.1 Step 1: Determine Required LAB Reaction to Meet Final Product

• From the stoichiometry, we assume:

Moles of LABS salt produced = Moles of LABSA produced = Moles of LAB consumed

• Hence, for 100% conversion, the total LAB required:

$$F_{\text{total}} = 0.12 \text{ kmol/hr}$$

 \bullet Given that the single-pass conversion of LAB in the Falling-Film Reactor (FFR) is 90%:

$$F_{\text{total}} = \frac{0.12}{0.9} = 0.133 \text{ kmol/hr}$$

3.1.2 Step 2: Determine Unreacted LAB and Recycle Stream

• The molar flow rate of unreacted LAB:

$$F_{\text{unreacted}} = (1 - \eta) \times F_{\text{total}} = 0.1 \times 0.133 = 0.013 \text{ kmol/hr}$$

• With a 95% recovery efficiency, the recycled LAB stream:

$$R = 0.9 \times F_{\text{unreacted}} = 0.9 \times 0.013 = 0.0117 \text{ kmol/hr}$$

3.1.3 Step 3: Determine the Required Fresh LAB Feed

- Using the mass balance equation: $F_{\text{total}} = F_{\text{fresh}} + R$
- Solving for F_{fresh} : $F_{\text{fresh}} = 0.133 0.0117 = 0.1213 \text{ kmol/hr}$

3.1.4 Step 4: SO₃ Requirement in the Reactor

- The reaction follows a 1:1 molar ratio.
- Hence, the molar flow rate of SO₃ reacted:

$$F_{SO_3} = F_{total} \times \eta = 0.133 \times 0.9 = 0.1197 \text{ kmol/hr}$$

Summary of Molar and Mass Flow Rates

Compound Name	$\begin{array}{c} \text{In Mass Flow} \\ \text{(kg/hr)} \end{array}$	$rac{ m Out~Mass~Flow}{ m (kg/hr)}$
Linear Alkyl Benzene Sulfonic Acid (LABSA)	-	39.18
Linear Alkyl Benzene (LAB)	32.77	3.2
Sulfur Trioxide (SO_3)	9.58	-
Total	42.35	42.38

Table 3: Summary of Mass Flow Rates in the Reactor

3.2 Bleaching

Reaction:

 $LABSA \, (dark \, coloured) + H_2O_2 \longrightarrow LABSA \, (light \, coloured)$

- Key Consideration: The LABS itself remains chemically unchanged.
- During the bleaching process, impurities present in Linear Alkyl Benzene Sulfonic Acid (LABSA) react with a bleaching agent, such as hydrogen peroxide (H₂O₂) or sodium hypochlorite (NaOCl).
- This oxidation effectively removes color impurities without chemically altering the LABSA. Hence, mass flow rate of LABSA remains almost same.

3.3 Neutralization

Reaction:

 $LABSA + NaOH \longrightarrow LABS + H_2O$

• LABSA Neutralization:

- Input molar flow rate of LABSA = 0.12 kmol/hr
- The reaction follows a 1:1 molar ratio. Hence, Molar flow rate of pure NaOH = 0.12 kmol/hr

• NaOH Requirements:

- Mass flow rate of pure NaOH = $0.12 \times 39.997 = 4.8 \text{ kg/hr}$
- Given that typical NaOH aqueous solution is 30% w/w, Mass flow rate of NaOH solution = $\frac{4.8}{0.3}$ = 16 kg/hr

• Water Contributions:

- Water content from NaOH solution = 16 4.8 = 11.2 kg/hr
- Water content from NaOH solution in molar terms = $\frac{11.2}{18} = 0.62$ kmol/hr
- Water generated by the neutralization reaction = 0.12 kmol/hr

• Total Water Output:

- Total water output = 0.62 + 0.12 = 0.74 kmol/hr
- Mass flow rate = $0.74 \times 18 = 13.32 \text{ kg/hr}$

Summary of Mass Flows

Compound Name	In Mass Flow (kg/hr)	Out Mass Flow (kg/hr)
Linear Alkyl Benzene Sulfonate (LABS)	-	41.81
Linear Alkyl Benzene Sulfonic Acid (LABSA)	39.18	-
Sodium Hydroxide (NaOH)	4.8	-
Water (H ₂ O)	11.2	13.32
Total	55.18	55.13

Table 4: Mass Flow Summary of Compounds

4 Energy Balance

4.1 Falling-Film Reactor

Mass Flow Rates:

- Amount of SO₃ reacting: $\dot{m}_{SO_3} = 9.58 \text{ kg/hour}$
- Amount of LAB reacting: $\dot{m}_{\rm LAB} = 29.57 \text{ kg/hour}$
- Amount of LABSA produced: $\dot{m}_{\rm LABSA} = 39.18 \text{ kg/hour}$

Heat of Formation:

- SO₃: $\Delta H_{f,SO_3} = -4.936 \text{ kJ/kg}$
- LAB: $\Delta H_{f,LAB} = 0.97 \text{ kJ/kg}$
- LABSA: $\Delta H_{f,LABSA} = -0.53 \text{ kJ/kg}$

Heat of Reaction:

- $\Delta H_{rxn} = \dot{m}_{LABSA} \times \Delta H_{f,LABSA} + (\dot{m}_{SO_3} \times \Delta H_{f,SO_3} + \dot{m}_{LAB} \times \Delta H_{f,LAB})$
- Calculation:

$$\implies 39.18 \times -0.53 + (9.58 \times -4.936 + 29.57 \times 0.97) = -39.37 \text{ kJ/hr}$$

4.2 Heater

Mass Flow Rates:

- Mass flow rate of unreacted LAB: 0.32 kg/hr
- Mass flow rate of LABSA: 39.18 kg/hr

Specific Heat Capacity:

- LAB: 2.034 kJ/(kg.K)
- LABSA: 1.6 kJ/(kg.K)

Temperature Change:

- Inlet stream temperature: 30°C
- Outlet stream temperature: 40°C

Heat Input:

- $\dot{Q}_{in} = \dot{m}_{LAB} \times C_{P,LAB} \times \Delta T + \dot{m}_{LABSA} \times C_{P,LABSA} \times \Delta T$
- Calculation: $\implies 0.32 \times 2.034 \times 10 + 39.18 \times 1.6 \times 10 = 633.39 \text{ kJ/hr}$

4.3 Neutralization

Heat of Reaction:

• Heat of neutralization: 55.9 kJ/mol

Molar Flow Rate:

• LABSA: 0.12 kmol/hr

Total Heat Released:

• $\Delta H_{neutralization} = 0.12 \times 1000 \times 55.9 = 6708 \text{ kJ/hr}$

4.4 Overall Balance

- $\dot{Q}_{net} = \Delta H_{rxn} + \dot{Q}_{in} + \Delta H_{neutralization}$
- Calculation:

$$\implies$$
 -39.37 + 633.39 + 6708 = 7302.02 kJ/hr

Capital cost (only for the reactor):

Design	No. of	Cost/unit (\$ for	Total Cost (\$ for
Capacity	units	year 2014)	year 2014)
(gallons)			
1800	1	64100	64100
39.63	1	38200	38200
	Capacity (gallons) 1800	Capacity units (gallons) 1800 1	Capacity (gallons) units year 2014) 1800 1 64100

References: Provided reference for a research paper or an actual patent.

- 1. http://www.matche.com/equipcost/Reactor.html
- 2. https://labsaco.com/labs-formula/ LABSA properties (bleaching)
- 3. https://patents.google.com/patent/EP3146034A1/en Neutralization of LABSA to form LABS.
- 4. https://iitk-my.sharepoint.com/:w:/g/personal/shubhamsg23 iitk ac in/EVMhAlWPa7dNvKlfeeYHF qABeJ6-Gd8LeL-QBXm8tM8qcw?e=Nr6U5Y

List the contributions of each author:

• Process flow diagram: Sarthak Singh

• Material Balance: Bipin Kumar Jaiswal, Nonit Gupta, Peeyush Sahu

• Energy Balance: Bipin Kumar Jaiswal, Nonit Gupta, Peeyush Sahu

• Capital Cost: Bipin Kumar Jaiswal

Sign the pdf and upload.

Name	Roll No	Signature
Nithin TM (CEO)	230709	Nithraly

Bipin Kumar Jaiswal	230300	Bipin
Nonit Gupta	230712	Peupta
Peeyush Sahu	230750	Leagush
Sarthak Singh	230930	Hortrak