ANS 1.

ANS 2

$$\begin{split} F_1(A, B, C, D) &= \Sigma \ m(2, 12, 13) \\ F_2(A, B, C, D) &= \Sigma \ m(7, 8, 9, 10, 11, 12, 13, 14, 15) \\ F_3(A, B, C, D) &= \Sigma \ m(0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15) \\ F_4(A, B, C, D) &= \Sigma \ m(1, 2, 8, 12, 13). \end{split}$$

Solution

The K-maps for the above expressions, their minimization and the minimal expressions obtained from them are shown in Figure 8.11. Note that the function for F_4 has four product terms. The logical sum of two of these terms is equal to F_1 . By using F_1 it is possible to reduce the number of terms for F_4 from four to three. The implementation of the minimal logic expressions using PAL is shown in Figure 8.12b.

Ans 4 8 OR gates and each OR gate is having 32 inputs.

Solution The BCD to XS-3 code conversion table and the expressions for the XS-3 outputs are sh_{0y_0} or 11 10 00 SA

- 1		BCD Code					XS-3 Code				
Decimal		$\overline{B_3}$	B ₂	B ₁	B ₀		E ₃	E_2	E ₁	Eo	
0		0	0	0	0	0	0	0	1	1	
1		0	0	0	1		0	1	0	0	
2	•	0	0	1	0		0	1	0	1	$E_0 = \Sigma m(0, 2, 4, 6, 8)$
3		0	0	1	1		0	1	1	0	$E = \sum_{i=1}^{n} m(0, 2, 4, 3, 6)$
4		0	1	0	0		0	1	1	1	$E_1 = \Sigma m(0, 3, 4, 7, 8)$
5		0	1	0	1		1	0	0	0	$E_2 = \Sigma m(1, 2, 3, 4, 9)$
6		0	1	1	0		1	0	0	1)2.	$E_3 = \Sigma m(5, 6, 7, 8, 9)$
7		0	1	1	1		1	0	1	0	, , , , , , ,
8		1	0	0	0		1	0	1	1 _	The don't cares are
9		1	0	0	1		1	1	0	0	$d = \Sigma d(10, 11, 12, 13, 14, 15)$
(a) BCD to XS-3 conversion table									(b) Expressions for outputs		

Figure 8.22 Example 8.10: Conversion table and expressions for outputs.

Ans 6. 16K * 4 = 64K RAM is of 64K. So, 64 * 8 = 512K. Hence, 512/64 = 8.

ANS 7.

-			Output
Ir	put	C	F
A	В		0
0	0	0	0
0	0	ò	1
0	1	1	1
O	1	ò	0
1	0	1	1
1	0	ò	О
1	1	1	. 1
1			u table
	(a)	Tru	th table

Solution
From the truth table shown in Figure 8.29a, we observe that the logic function is $F = \Sigma m(2, 3, 5, 7) = \overline{AB}\overline{C} + \overline{ABC} + A\overline{BC} + ABC$

$$F = \Sigma m(2, 3, 5, 7) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

No simplification of the expression is to be done for realization with a PROM. Eight AND No simplification of the expression to gate (to obtain the SOP form of the single output) are gates (one for each minterm) and one OR gate (to obtain the SOP form of the single output) are gates (one for each minterin) and one of 8.29c shows the programmed PROM in the simplified required for its implementation. Figure 8.29c shows the programmed PROM in the simplified connection format of a PLA. To realize F, address lines 2, 3, 5 and 7 are connected to F. Logic log a 0 is stored at every address combination corresponding to a combination of the input variables for which the function equals a 1 or a 0. An 8 × 1 PROM means a PROM with 8 address lines and one output. So a 3×8 decoder is required as shown in Figure 8.29b.

The first step in the design is to derive the truth table of the combinational circuit. In most cases this is all that is needed. In other cases, we can use a partial truth table for the ROM by utilizing certain properties in the output variables. Table 8.2 is the truth table for the combinational circuit. Three inputs and six outputs are needed to accommodate all possible binary numbers. We note that output B_0 is always equal to input A_0 ; so there is no need to generate B_0 with a ROM since it is equal to an input variable. Moreover, output B_1 is always 0, so this output is a known constant. We actually need to generate only four outputs with the ROM; the other two are readily obtained. The minimum size ROM needed must have three inputs and four outputs. Three inputs specify eight words, so the ROM must be of size 8×4 . The ROM implementation is shown in Figure 8.4. The three inputs specify eight words of four bits each. The ROM truth table in Figure 8.4a specifies the information needed for programming the ROM. The block diagram of Figure 8.4b shows the required connections of the combinational circuit.

H	puts	S				Out	puts			Decimal	
A ₂	A ₁	A_0		B ₅	B_4	B ₃	B ₂	B_1	B ₀		
0	0	0		0	0	0	0	0	0	0	$B_5 = \Sigma m(6, 7)$
0	0	1		0	0	0	0	0	1	1	$B_4 = \Sigma m(4, 5, 7)$
0	1	0		0	0	0	1	0	0	4	$B_3 = \Sigma m(3, 5)$
0	1	1		0	0	1 -	0	0	1	9	$B_2 = \Sigma m(2, 6)$
1	0	0		0	1	0	0	0	0	16	$B_1 = 0$
1	0	1		0	1	1	0	0	1	25	$B_0 = \Sigma m(1, 3, 5, 7) =$
1	1	0		1	0	0	1	0	Ô	36	
1	1	1		1	1	0	0	0	10 4 10	49	
	A. 0	2 A ₁	A ₀	B ₅	B ₄	B ₃	B ₂ 0	A _o -	0 1.	I TOA	0 — B ₁
	0	1	0	0	0	0	1			on shin he	the the equipment and
1	0	1	1	0	0	1	0	A,-		04.001	B ₃
1 7	1	0	0	0	1	0	0	- 11		8 × 4 ROM	AND RESIDENCE AND RESIDENCE
-	1	1	0	1	0	0	1			La udunidano	B ₄
1	1	1	1	4	1	0	0	A2-	U CONTRACTOR OF THE PARTY OF TH	The state of the same	B ₅