Math 1LS3 Week 12: Integral Applications

Owen Baker

McMaster University

Nov. 26-30, 2012

Week 12: Sections 6.6,6.7 (the last section we'll cover in the course) Monday will be the last day of class. No new material then. Come prepared with questions.

- Area
- 2 Area of Lake Ontario
- 3 Other Riemann Sums: Average Value and Mass
- Riemann Sums: Volume of a Heart Chamber
- Improper Integrals
- 6 Euler's Method

Area Between Curves

If y = f(x) is on top of y = g(x), the area between f and g over [a, b] is

$$\int_a^b (f(x) - g(x)) dx.$$

Why? Two reasons:

- \bullet (area under f) (area under g)
- 2 Riemann Sum (this reason generalizes to other applications)

Area Between Curves: Example 1

Problem

Find the area between x and x^2 above [1,2].

Solution

Which curve is on top? x^2 , so evaluate:

$$\int_{1}^{2} (x^{2} - x) dx = \left(\frac{x^{3}}{3} - \frac{x^{2}}{2} \right) \Big|_{1}^{2} = \left(\frac{2^{3}}{3} - \frac{2^{2}}{2} \right) - \left(\frac{1^{3}}{3} - \frac{1^{2}}{2} \right) = \boxed{\frac{5}{6}}$$

Area Between Curves: Example 2

Problem

Find the area **bounded** between the parabolas $1 - x^2$ and x^2 .

Solution

First find limits of integration.

$$1 - x^2 = x^2 \implies 2x^2 = 1 \implies x = \pm \frac{1}{\sqrt{2}}$$

$$\int_{-1/\sqrt{2}}^{1/\sqrt{2}} (1-x^2) - x^2 dx = \boxed{\frac{2\sqrt{2}}{3}}$$

Area Between Curves: Example 3

Problem

Find the area between sin(x) and cos(x) over 1 period.

Solution

$$\int_{0}^{\pi/4} \cos(x) - \sin(x) dx + \int_{\pi/4}^{5\pi/4} \sin(x) - \cos(x) dx + \int_{5\pi/4}^{2\pi} \cos(x) - \sin(x) dx$$

Slicker solution:

$$2\int_{\pi/4}^{5\pi/4} \sin(x) - \cos(x) dx = 4\sqrt{2}$$

Area of Lake Ontario

estimate of the surface area of lake ontario

aerial distance hamilton - kingston approx. 290 km

aerial distance hamilton - kingston = 290km
represents approximately 38km

aerial distance hamilton - kingston = 290km
represents approximately 38km

aerial distance hamilton - kingston = 290km
represents approximately 38km

area = 38*41=1558 km^2

area = 38*55.3=2101.4 km^2

area = 38*58.2=2211.6 km^2

area = 38*63.0=2394.0 km^2

total area = 38*41.0+ 38*55.3+ 38*58.2+ 38*64.9+ 38*82.0+ 38*70.6+ 38*97.3+ 38*63.0= 20,227.4 km^2

represents approximately 17km

area = 17.2*61.0=1050.1 km^2

total area = 19,233.5

average of the two estimates = (20,227.4 + 19,233.5)/2= 19,730.5 km²

our estimate = $19,730.5 \text{ km}^2$

New York Times Almanac ... 19,500 km^2

NOAA (National Oceanographic and Atmospheric Administration, U.S.) ... 19,009 km^2

EPA (Environmental Protection Agency) ... 18,960 km^2

Britannica Online ... 19,011km^2

Average Value

How should we define the average value of a function?

Define the average of f(x) on [a, b] to be the number f_{avg} such that

Area under f = Area under f_{avg}

Since the area of the rectangle is (width)·(height)= $(b-a) \cdot f_{avg}$:

$$f_{\text{avg}} := \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Average value of sin(x) on $[0, \pi]$

Problem

What is the average value of sin(x) on $[0, \pi]$?

Solution

Average Value
$$=\frac{1}{\pi-0}\int_0^{\pi}\sin(x)dx = \frac{1}{\pi}(-\cos(x))|_0^{\pi} = \frac{1+1}{\pi} = \boxed{\frac{2}{\pi}}$$

Multiplication vs. Integration

- Multiplication is repeated addition of the same amount.
- Integration is like repeated addition of variable amounts.
- This lets us generalize quantities you usually compute with multiplication!

$$\boxed{ \text{Mass} = \text{Density} \ \times \ \text{Length} } \Rightarrow \boxed{ \text{Mass} = \int \text{ of Density w.r.t. Length} }$$

$$\boxed{ \text{Volume} = \text{Area} \ \times \ \text{Height} } \Rightarrow \boxed{ \text{Volume} = \int \text{ of Area w.r.t. Height} }$$

Let's see this is a little more detail...

One-Dimenensional Density

One-Dimensional Density
$$\rho = \frac{\text{Mass}}{\text{Length}}$$

A rod of variable density $\rho(x)$ (placed at [a, b] on x-axis):

The expression on the right is a Riemann Sum, so

Mass of rod =
$$\int_a^b \rho(x) dx$$

Density Example

Problem (6.6.8)

A certain 100cm vertical bar is denser near the ground. Find its mass if $\rho(z) = e^{-0.01z}$ g/cm.

Solution

$$Mass = \int_0^{100} density \ dz = \int_0^{100} e^{-0.01z} dz$$
$$= \frac{e^{-0.01z}}{-0.01} \Big|_0^{100} = -100(e^{-1} - 1) = \boxed{100(1 - 1/e) \approx 63.21}$$

Volume of a Heart Chamber

estimate of the volume of a heart chamber from echocardiogram

echocardiogram (ECHO, cardiac ultrasound) is a sonogram of the heart

ECHO uses standard ultrasound techniques to image two-dimensional slices of the heart

latest ultrasound systems now employ 3D real-time imaging

ECHO uses standard ultrasound techniques to image two-dimensional slices of the heart

latest ultrasound systems now employ 3D real-time imaging

uses of ECHO

- (a) creating 2D picture of the cardiovascular system (shape of the heart)
- (b) assessment of quality of cardiac tissue (damage, thickening of walls within the heart)
- (c) estimate of the velocity of blood

uses of ECHO

- (d) investigate features of blood flow
- functioning of cardiac valves
- detection of abnormal communication between the left and right side of the heart
- leaking of blood through the valves
- strength at which blood is pumped out of heart (cardiac output)

1.00 cm

0.335 cm

volume = $p(1)^2 0.335 =$ $1.052 cm^3$

1.25 cm

0.335 cm

volume =

$$p(1.25)^20.335 =$$

 $1.644 \ cm^3$

1.50 cm

0.335 cm

volume = $p(1.50)^20.335 =$

1.61 cm

0.335 cm

 $volume = p (1.61)^2 0.335 =$

 $2.728 cm^3$

1.07 cm

0.335 cm

volume =

$$p(1.07)^20.335 =$$

 $1.205 \ cm^3$

volume of heart chamber =

$$1.052 + 1.644 + 2.368 + 2.728 + ... + 1.205$$

= 50.342 cm^3

all diameters, from bottom to top: all in cm

2.00, 2.50, 3.00, 3.21, 3.43, 3.57, 3.93, 4.07, 4.29, 4.29, 4.29, 4.14, 4.07, 3.43, 2.14

height: 5.02/15 cm

Improper Integrals

The graph of an **unbounded function** or of a function on an **unbounded domain** can sometimes enclose finite area!

Area under $\frac{1}{\sqrt{x}}$ over [0,1] is 2. (unbounded function)

Area under e^{-x^2} on $(-\infty, \infty)$ is $\sqrt{\pi}$ (unbounded domain)

Caution: Area under $\frac{1}{\sqrt{x}}$ over $[1, \infty)$ is infinite.

Improper Integrals: Unbounded Domain Interval

Problem

Find the area $\int_1^\infty \frac{1}{x^3} dx$ under $\frac{1}{x^3}$ over $[1, \infty)$.

Solution

Improper integral. Take area under curve on [1, b] and let $b \to \infty$.

$$\int_{1}^{\infty} \frac{1}{x^{3}} dx := \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^{3}} dx = \lim_{b \to \infty} \frac{1}{-2x^{2}} \Big|_{1}^{b}$$
$$= \lim_{b \to \infty} \frac{1}{-2b^{2}} + \frac{1}{2} = 0 + \frac{1}{2} = \boxed{\frac{1}{2}}$$

Improper Integrals: Unbounded Function

Problem

Find the area $\int_0^1 \frac{1}{\sqrt{x}} dx$ under $\frac{1}{\sqrt{x}}$ over (0,1].

Solution

Improper integral. Take area on [a, 1] and let $a \rightarrow 0^+$.

$$\int_{0}^{1} \frac{1}{\sqrt{x}} dx := \lim_{a \to 0^{+}} \int_{a}^{1} \frac{1}{\sqrt{x}} dx = \lim_{a \to 0^{+}} \frac{1}{\frac{1}{2}} x^{1/2} \Big|_{a}^{1}$$
$$= \lim_{a \to 0^{+}} 2\sqrt{x} \Big|_{a}^{1} = \lim_{a \to 0^{+}} 2\sqrt{1} - 2\sqrt{a} = \boxed{2}$$

A Divergent Improper Integral

Problem

Find the area $\int_1^\infty \frac{1}{\sqrt{x}} dx$ under $\frac{1}{\sqrt{x}}$ over $[1, \infty)$.

Solution

Improper integral. Take area on [1, b] and let $b \to \infty$.

$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx := \lim_{b \to \infty} \int_{1}^{b} \frac{1}{\sqrt{x}} dx = \lim_{b \to \infty} \frac{1}{\frac{1}{2}} x^{1/2} \Big|_{1}^{b}$$
$$= \lim_{b \to \infty} 2\sqrt{x} \Big|_{1}^{b} = \lim_{b \to \infty} 2\sqrt{b} - 2\sqrt{1} = \boxed{\infty}$$

There is infinite area under the graph.

Convergence/Divergence

An improper integral involving finite area converges.

An improper integral involving infinite area diverges.

Simplifying assumption: function ≥ 0 , so we don't have to deal with signed area.

Area under $1/x^p$

р	$\int_0^1 \frac{1}{x^p} dx$	$\int_{1}^{\infty} \frac{1}{x^{p}} dx$
p < 1	$\frac{1}{1-p}$	∞
p=1	∞	∞
p>1	∞	$\frac{1}{p-1}$

- Homework: verify this table (compute as in last three slides).
- Memorize this table for use in comparisons (next few slides).

Leading Behaviour

Suppose f is continuous on $[2, \infty)$ (say).

Recall: f_{∞} is leading behaviour at infinity.

$$\int_{2}^{\infty} f(x)dx \text{ converges } \iff \int_{2}^{\infty} f_{\infty}(x)dx \text{ converges}$$

(To see if the tail contains ∞ area, only the largest term matters.)

Example

Does
$$\int_3^\infty \frac{2}{x^2} + e^{-x} dx$$
 converge? $f_\infty(x) = \frac{2}{x^2}$, so:

$$\int_{3}^{\infty} f(x)dx \text{ converges } \iff \int_{3}^{\infty} \frac{2}{x^2} dx \text{ converges}$$

From our study of $\frac{1}{x^p}$, it **does** (p=2>1).

Note: use leading behaviour at vertical asymptote(s) instead of at ∞ for **unbounded** functions.

The Comparison Test

Suppose
$$f(x) \ge g(x) \ge 0$$
 on $[a, \infty)$.

- If $\int_a^\infty f(x)dx$ converges then $\int_a^\infty g(x)dx$ converges (less area).
- If $\int_a^\infty g(x)dx$ diverges then $\int_a^\infty f(x)dx$ diverges (more area).

If $\int_a^\infty f(x)dx$ diverges, must $\int_a^\infty g(x)dx$ diverge? No! Exercise: formulate the analogue for unbounded improper integrals.

The Comparison Test: Example

Problem

Does $\int_0^\infty e^{-x^2}$ converge?

Solution

- As $x \to \infty$, $e^{x^2} \gg e^x$, so $e^{-x^2} \ll e^{-x}$.
- $\int_0^\infty e^{-x} dx = -e^{-x} \Big|_0^\infty = -e^{-\infty} + e^{-0} = 1.$
- So $\int_0^\infty e^{-x} dx$ converges.
- By the comparison test, $\int_0^\infty e^{-x^2} dx$ therefore converges.

Factoid: $\int_0^\infty e^{-x^2} dx = \sqrt{\pi}/2$.

Slope Fields

Goal: solve
$$\frac{dy}{dx} = x + y$$

Observation: we can already tell what the tangent lines to solutions must look like!

- If a solution passes through (2, -1), what's the slope there? 1
- If a solution passes through (1,1), what's the slope there? 2
- If a solution passes through (1, -1), what's the slope there? 0

Slope Fields and Euler's Method

Euler's Method

Given:

- DiffEq describing y'(t) in terms of t, y(t).
- Initial value $y(t_0)$.
- Step size Δt .

To approximate the solution, compute:

$$y(t_0 + \Delta t) \approx y(t_0) + y'(t_0) \cdot \Delta t,$$

$$y(t_0 + 2\Delta t) \approx y(t_0 + \Delta t) + y'(t_0 + \Delta t) \cdot \Delta t,$$

$$y(t_0 + 3\Delta t) \approx y(t_0 + 2\Delta t) + y'(t_0 + 2\Delta t) \cdot \Delta t,$$
 etc.

- Each step above just recalculates the current tangent line.
- Shorter $\Delta t \longrightarrow$ more accurate approximate solution.
- No need to compute entire slope field in advance.