Curso: Engenharia de Computação

Arquitetura de Computadores

Prof. Clayton J A Silva, MSc clayton.silva@professores.ibmec.edu.br

Nível de lógica digital

Circuitos digitais

1. COMBINACIONAIS

2. SEQUENCIAIS

Circuitos digitais

1. COMBINACIONAIS

2. SEQUENCIAIS

CIRCUITOS COMBINACIONAIS

- As saídas nas portas de um circuito combinacional em um instante qualquer são o resultado da combinação das suas entradas naquele instante.
- Não existe memória!

PORTAS E OPERAÇÕES LÓGICAS

OPERAÇÃO	OPERADOR
CONJUNÇÃO	•
DISJUNÇÃO	+
NEGAÇÃO	~

Álgebra booleana

CONJUNÇÃO

- ✓ Utiliza o operador *and*, representado por $(Xe^{Y}, X.Y, X∧Y)$
- ✓ A expressão resulta valor lógico 0 quando pelo menos um operando é 0.

		X		
		0	1	
V	0	0	0	VV
Y	1	0	1	X.Y

Porta AND

• Implementa a operação de conjunção

Álgebra booleana

DISJUNÇÃO

- ✓ Utiliza o operador *or*, representado por (XorY, X+Y, X∨Y)
- ✓ A expressão resulta valor lógico 1 quando pelo menos um operando é 1.

		λ	(
		0	1	
V	0	0	1	VıV
Y	1	1	1	X+Y

Porta OR

• Implementa a operação de disjunção

Α	В	X = A + B
0	0	0
0	1	1
1	0	1
1	1	1

Álgebra booleana

NEGAÇÃO

- ✓ Utiliza o operador *not*, representado por $(^{\sim}X, \overline{X})$.
- ✓ Inverte o valor lógico do operando.

X		
0	1	
1	0	~X

INVERSOR

• Implementa a operação de negação

A combinação de portas lógicas, organizadas em série e paralelo, constitui um circuito digital

Sobre circuitos...

- Entradas (A₄, A₃, A₂, A₁, A₀)
- Saídas (B_1, B_0)
- Expressão lógica (booleana) representa o circuito
- N entradas poderá gerar 2^N combinações de saída: para cada saída uma expressão diferente
- Barramento
- Posição relativa dos bits: bits mais significativos à esquerda

Expressão booleana do circuito

- A cada saída → expressão lógica, associada às operações lógicas das portas
- Várias expressões lógicas equivalentes
- Forma canônica: disjunção (operação 'or') dos termos da tabela-verdade que resultam valor lógico '1' (mintermos)

Tabela-verdade

- Propicia analisar o comportamento do circuito digital para todas as possíveis combinações de entradas
- Possui 2^N linhas, tal que N é o número de entradas
- Possui *M* colunas, tal que *M*=*N*+*S*, *S* é o número de saídas
- Cada saída corresponde a uma coluna

Tabelaverdade

Linhas	Entradas				Saídas		
	A0	A1	A2	<i>A3</i>	A4	B0	B1
1	0	0	0	0	0	0	1
2	0	0	0	0	1	0	1
3	0	0	0	1	0	0	1
4	0	0	0	1	1	0	1
5	0	0	1	0	0	0	1
6	0	0	1	0	1	0	1
•••	1	0	1	1	1	0	0
25	1	1	0	0	0	0	1
26	1	1	0	0	1	1	1
27	1	1	0	1	0	0	1
28	1	1	0	1	1	1	1
29	1	1	1	0	0	0	1
30	1	1	1	0	1	1	1
31	1	1	1	1	0	0	1
32	1	1	1	1	1	0	0

Análise de circuitos digitais combinacionais

- 1. Enumerar as portas
- 2. Identificar a expressão booleana na saída de cada porta
- 3. Identificar a expressão booleana na saída do circuito
- 4. Montar a tabela-verdade relativa ao circuito

Análise de circuitos digitais combinacionais

Projeto de circuitos digitais combinacionais

- 1. Montar uma tabela-verdade referente ao circuito para cada saída
- 2. Identificar a expressão booleana na forma canônica para cada saída
- 3. Minimizar a expressão booleana
- 4. Implementar o circuito

Circuitos combinacionais típicos

Circuitos combinacionais

Aritméticos – somadores, subtratores, multiplicadores

Lógicos – Comparadores

Multiplexadores/Demultiplexadores

Codificadores/Decodificadores

Somadores

- 1. Entrada $\mathbf{A}(A_{N-1}, A_{N-2}, ..., A_0)$, $\mathbf{B}(B_{N-1}, B_{N-2}, ..., B_0)$, com N bits cada
- 2. Saída representa a soma binária de N bits
- 3. Implementa bit a bit a soma binária, transportando carry

Somador de 1-bit

		SOMA		
A	В	<i>S</i> 1	<i>S0</i>	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

Comparador de 1-bit

A	В	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

Multiplexadores

- 1. Entrada $A(A_{N-1}, A_{N-2}, ..., A_0)$, com N bits
- 2. Saída com 1 bit
- 3. Entrada seletora de controle $C(C_{M-1}, C_{M-2}, ..., C_0)$ com M bits
- 4. $2^{M} \ge N$
- 5. A saída reflete uma das N entradas de acordo com C

Multiplexador — 2-bits

A1	A0	C	S
0	0	0	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Multiplexador — 2-bits

A1	A0	C	5
0	0	0	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Coder

- 1. Entrada $A(A_{M-1}, A_{N-2}, ..., A_0)$, com M bits
- 2. Saída $S(S_{N-1}, S_{N-2}, ..., S_0)$, com N bits
- 3. A saída é a palavra binária de um código das M entradas
- 4. 2^N≥M

IBMEC.BR

- f)/IBMEC
- in IBMEC
- @IBMEC_OFICIAL
- @@IBMEC

