Tecnologia em Análise e Desenvolvimento de Sistemas - TADS

Redes de Computadores

Prof. Luciano Vargas Gonçalves

E-mail: luciano.goncalves@riogrande.ifrs.edu.br

Aula 6 –Camada de Rede / Internet Sub-Rede

Classes:

- Projetistas definiram que o espaço de endereçamento IP deveria ser dividido em cinco diferentes Classe.
 - Classes A, B, C, D e E.
 - Cada uma destas classes estabelece o limite entre o prefixo de Rede e o sufixo de Host dentro do endereço de 32 bits.
 - Somente as Classes A,B,C são usadas para endereçamento de Redes e Host, atualmente.

- Classes / Divisão em:
 - Endereço de Rede (Network ID)
 - Endereço de Host (Host ID).

Divisão

- Classes A,B,C Divisão em:
 - Endereço de Rede (Rede)
 - Endereço de Host (Máquina).

Grande número de hosts Em cada rede

Primeiro Octeto

- A divisão em classe A,B,C...
 - Causou um grande desperdício de endereços IP, levando atualmente a quase extinção;
 - Por que da extinção?
 - Vamos analisar uma situação.
 - Um empresa que necessite endereçar 1000 Host, precisará contratar uma faixa IP classe A, B ou C?
 - Se contratar uma classe B, pode ter conectado a ela 65534 host;
 - Se contratar uma classe C, pode ter conectado a ela 254 host;
 - Logo, a classe contratada será B, com uma sobra de <u>64534</u> IP;
 - Um grande desperdício!!!

- A divisão em classe A,B,C...
 - Causou um grande desperdício de endereços IP, levando atualmente a quase extinção;

https://ipv4.potaroo.net/

- Solução reduzir o consumo de endereços:
 - Fim da divisão em Classes A,B,C
 - Uso de NAT (Network Address Translation)
 - Endereços IP internos (falsos) e externos(verdadeiros) diferentes
 - Divisão em blocos menores notação CIDR
 - Antes /8, /16 e /24
 - Surge a divisão em qualquer posição
 - /10, */12, /22*

• Solução Reduzir o consumo de endereços:

Soluções paliativas: Queda de apenas 14%

- A Notação CIDR usa máscaras de comprimento variável, o VLSM (de Variable Length Subnet Masks) para *alocar* endereços IP em sub-redes de acordo com as necessidades individuais e não nas regras de uso generalizado em toda a rede(classes).
 - Assim a divisão de rede/host pode ocorrer em qualquer fronteira de bits no endereço. Porque as distinções de classes normais são ignoradas, o novo sistema foi chamado de *Routing sem classes*. Isto levou a que o sistema original passasse a ser chamado de *Routing de classes*.

- Notação CIDR faz contagem de Bits para parte de REDE;
 - Notação padrão com Classes!!

- Exemplos de Endereço IPs e notação CIDR
 - Formato a.b.c.d / x

Octeto 1 (a)	Octeto2 (b)	Octeto3 (c)	Octeto 4 (d)	CIDR (x)	Rede parte
101	10	20	30	/8	a
101	10	20	30	/16	a,b
101	10	20	30	/24	a,b,c

Endereço de Rede e Host

- Exemplos de Endereço IPs e notação CIDR
 - Redes /8, 8 bits para o endereço de Rede e 24 bits para Host (~16milhões)
 - Redes /16, 16 bits para o endereço de Rede e 16 bits para Host(~65mil)
 - Redes /24, 24 bits para o endereço de Rede 8 bits para Host (256)

Faixa de Endereço de Rede e Host

Exemplo rede Classe A

Uma rede IP: 10.0.0.0 /8 Máscara 255.0.0.0

Rede 10.0.0.0/8

IP_Rede: 10.0.0.0 IP Inicial 10.0.0.1

IP_Final: 10.255.255.254

IP_BroadCast: 10.255.255.255

Divisão em duas Redes (Máscara 255.128.0.0) ou /9

Rede1: 10.0.0.0

Rede2: 10.128.0.0


```
Exemplo 1:
```

Rede 10.0.0.0 CIDR = /8

IP Inicial: 10.0.0.1

IP_final: 10.255.255.255

Total de endereços: ~16milhões

Rede 10.0.0.0

Foi dividida em duas redes com o uso de 1 bits de Host para Sub-REDE

Rede 10.0.0.0/8 10.0.0.0/9

10.128.0.0/9

Rede 1 = 10.0.0.0 CIDR = /9 IP_ Inicial: 10.0.0.1 IP final: 10.127.255.255

Total de endereços: ~8milhões

Rede 2 = 10.128.0.0 CIDR = /9
IP Inicial: 10.128.0.1

IP_final: 10.255.255.255

Total de endereços: ~8milhões

2 Redes com ~8 milhões de hosts

• Definir as sub-rede para rede 10.0.0.0/9 Msc: 255.128.0.0

CIDR	Bits sub_re de	N° sub_redes	Octeto 1 Rede	Octeto 2 Host	Octeto 3 Host	Octeto 4 Host	Máscara
/9	1	2	1111 1111	1 000 0000	0000 0000	0000 0000	255.128.0.0

N° sub_r edes	Octeto 1 Rede	Octeto 2 Host	Octeto 3 Host	Octeto 4 Host	IP_REDE sub-rede	IP_Inicial	IP_Final	IP_Broadcast
0	0000 1010	0000 0000	0000 0000	0000 0000	10.0.0.0	10.0.0.1	10.127.255.254	10.127.255.255
1	0000 1010	1 000 0000	0000 0000	0000 0000	10 .128.0.0	10.128.0.1	10.255.255.254	10.255.255.255

Divisão em duas Redes (Máscara 255.128.0.0) ou /9

Rede1: 10.0.0.0

Rede2: 10.128.0.0

Subdivisões a partir de uma rede classe A ou /8

Exemplo 2:

Dividir em 4 Sub-redes

CIDR	Rede	Host	Máscara	N° F	Redes
\8	8bits	24bits	255.0.0.0	1	20
\9	9bits	23bits	255.128.0.0	2	21
\10	10bits	22bits	255.192.0.0	4	2 ²
\11	11bits	21bits	255.224.0.0	8	2 ³
\12	12bits	20bits	255.240.0.0	16	24
\13	13bits	19bits	255.248.0.0	32	2 ⁵
\14	14bits	18bits	255.252.0.0	64	2 ⁶
\15	15bits	17bits	255.254.0.0	128	27
\16	16bits	16bits	255.255.0.0	256	28

Divisão em 4 Redes (Máscara 255.192.0.0) ou /10, dois bits (2² = 4sub-redes)

Rede1: 10.0.0.0

Rede2: 10.64.0.0

Rede3: 10.128.0.0

Rede4: 10.192.0.0

Definir a Máscara de sub-rede para rede 10.0.0.0/8

	CIDR	Bits sub_r ede	N° sub_rede s	Octeto 1 Rede	Octeto 2 Host	Octeto 3 Host	Octeto 4 Host	Máscara
,	/8	0	0	1111 1111	0000 0000	0000 0000	0000 0000	255.0.0.0
	/9	1	2	1111 1111	1 000 0000	0000 0000	0000 0000	255.128.0.0
,	/10	2	4	1111 1111	11 00 0000	0000 0000	0000 0000	255.192.0.0
	/11	3	8	1111 1111	111 0 0000	0000 0000	0000 0000	255.224.0.0
4	/12	4	16	1111 1111	1111 0000	0000 0000	0000 0000	255.240.0.0
4	/13	5	32	1111 1111	1111 1 000	0000 0000	0000 0000	255.248.0.0
	/14	6	64	1111 1111	1111 11 00	0000 0000	0000 0000	255.252.0.0
	/15	7	128	1111 1111	1111 111 0	0000 0000	0000 0000	255.254.0.0
	/16	8	256	1111 1111	1111 1111	0000 0000	0000 0000	255.255.0.0
4	/17	9	512	1111 1111	1111 1111	1 000 0000	0000 0000	255.255.128.0

Definir em 4 sub-rede a rede 10.0.0.0/10 Msc: 255.192.0.0

CIDR	Bits sub_r ede	N° sub_rede s	Octeto 1 Rede	Octeto 2 Host	Octeto 3 Host	Octeto 4 Host	Máscara
/10	2	4	1111 1111	11 00 0000	0000 0000	0000 0000	255.192.0.0

N° sub_ redes	Octeto 1 Rede	Octeto 2 Host	Octeto 3 Host	Octeto 4 Host	IP_REDE sub-rede	IP_Inicial	IP_Final	IP_Broadcast
0	0000 1010	0000 0000	0000 0000	0000 0000	10.0.0.0	10.0.0.1	10.63.255.254	10.63.255.255
1	0000 1010	01 00 0000	0000 0000	0000 0000	10 .64.0.0	10.64.0.1	10.127.255.254	10.127.255.255
2	0000 1010	10 00 0000	0000 0000	0000 0000	10 .128.0.0	10.128.0.1	10.191.255.254	10.191.255.255
3	0000 1010	11 00 0000	0000 0000	0000 0000	10 .192.0.0	10.192.0.1	10.255.255.254	10.255.255.255

Divisão em 4 Redes (Máscara 255.192.0.0) ou /10, dois bits (2² = 4sub-redes)

Rede1: 10.0.0.0

Rede2: 10.64.0.0

Rede3: 10.128.0.0

Rede4: 10.192.0.0

Definir em 8 sub-rede a rede 10.0.0.0/11 Msc: 255.224.0.0

CIDR	Bits sub_r ede	N° sub_rede s	Octeto 1 Rede	Octeto 2 Host	Octeto 3 Host	Octeto 4 Host	Máscara
/11	3	8	1111 1111	111 0 0000	0000 0000	0000 0000	255.224.0.0

N° sub_ redes	Octeto 1 Rede	Octeto 2 Host	Octeto 3 Host	Octeto 4 Host	IP_REDE sub-rede	IP_Inicial	IP_Final	IP_Broadcast
0	0000 1010	0000 0000	0000 0000	0000 0000	10.0.0.0	10.0.0.1	10.31.255.254	10.31.255.255
1	0000 1010	0010 0000	0000 0000	0000 0000	10.32.0.0	10.32.0.1	10.63.255.254	10.63.255.255
2	0000 1010	010 0 0000	0000 0000	0000 0000	10.64.0.0	10.64.0.1	10.95.255.254	10.95.255.255
6	0000 1010	110 0 0000	0000 0000	0000 0000	10.192.0.0	10.192.0.1	10.223.255.254	10.223.255.255
7	0000 1010	111 0 0000	0000 0000	0000 0000	10.224.0.0	10.224.0.1	10.255.255.254	10.255.255.255

Divisão em 8 Redes (Máscara 255.192.0.0) ou /11, dois bits (23 = 8 sub-redes)

Rede1: 10.0.0.0

Rede2: 10.32.0.0

Rede3: 10.64.0.0

Rede4: 10.96.0.0

Rede5: 10.128.0.0

Rede6: 10.160.0.0

Rede7: 10.192.0.0

Rede8: 10.224.0.0

• Uma determinada escola pediu uma faixa de números para ter acesso a Internet. Após fazer o pedido ao órgão responsável por distribuir estes números, no caso do Brasil a Fapesp (Funadação de Amparo a Pesquisa do Estado de São Paulo), recebeu a classe C com a seguinte faixa de números: 193.1.1.0. Com isto, esta escola pode endereçar cerca de 254 hosts. Mas a escola é dividida em 5 laboratórios, e para evitar que o tráfego de um laboratório interfira no outro, o administrador de rede da escola resolveu dividir esta faixa de números em sub_redes.

Especificações:

- Endereço Rede = 193.1.1.0 /24
- Range de endereços para host = 193.1.1.1 à 193.1.1.254
- Endereço Broadcast = 193.1.1.255
- Divisão da rede em 5 partes no mínimo.

- Rede = 193.1.1.0 /24 ou 255.255.255.0
 - Dividir em 5 Sub_Redes
- Calcular: Número de Bits para Sub_redes (NS)
 - NS = 5
 - 5<= 2ⁿ 2 =>
 - 5 <= 2³ 2 =>
 - n = 3 bits para sub_redes
 - Calcular a Mascará de Sub_REDE

- Rede = 193.1.1.0 /24 ou 255.255.255.0
 - Dividir em 5 Sub_Redes = 3bits
- Calcular a Mascará de Sub_REDE

- Exemplo:
 - IP = 193.1.1.0 /24 MR: 255.255.255.0 N° sub_redes = 5
- Primeiro Passo:
 - Converte MR para Binário:

255	255	255	0
1111 1111	1111 1111	1111 1111	0000 0000

• Converter 5 em binário é = (101) precisamos de 3 bits

1111 1111	1111 1111	1111 1111	1110 0000
255	255	255	224

 Assim temos a nova máscara de rede para no máximo 6 sub redes, conforme a fórmula:

2ⁿ -2 = sub_redes

ex: 2³ -2 = 6 sub_redes possíveis

Exemplo de uso em Redes Internas

IP = 193.1.1.0 /24 MR: 255.255.255.0 - Classe C 5 sub_redes MSR 255.255.255.224

ID_Sub_Rede	ID_Sub_Rede	IP_MIM	IP_MAX
193. 1 . 1 .0000 0000	193.1.1.0	REDE	REDE
193. 1 . 1 .0010 0000	193.1.1.32	193.1.1.33	193.1.1.62
193. 1 . 1 . <mark>010</mark> 0 0000	193.1.1.64	193.1.1.65	193.1.1.94
193. 1 . 1 . <mark>011</mark> 0 0000	193.1.1.96	193.1.1.97	193.1.1.126
193. 1 . 1 .1000 0000	193.1.1.128	193.1.1.129	193.1.1.158
193. 1 . 1 .1010 0000	193.1.1.160	193.1.1.161	193.1.1.190
193. 1 . 1 .1100 0000	193.1.1.192	193.1.1.193	193.1.1.222
193. 1 . 1 .1110 0000	193.1.1.224	Inválido	Inválido

MR - Máscara de Rede MSR - Máscara de <u>Sub_Rede</u> ID_SR - Identificador de <u>Sub_Rede</u>

Exercício

 Um determinada escola recebeu da Fapesp a faixa de endereços IP (220.32.44.0/24) classe C, para distribuir em sua rede interna. Na escola existem 12 laboratórios com hosts que precisam ser endereçados, o administrador da rede resolveu dividir a rede em Sub_redes, uma para cada laboratório.

Perguntas:

- 1) Qual a mascará para implementar sub_rede que permite criar uma rede com no mínimo 12 sub_redes, separando o tráfego de cada laboratório.
- 2) Apresente um endereço IP com a notação CIDR,
- 3) Qual o número máximo de Sub_redes possíveis. Não esqueça de descontar as inválidas.
- 4) Qual o número máximo de hosts podem ser endereçados em cada sub_rede (laboratório);
- 5) Defina o endereço da Sub_rede, o IP inicial, o IP final e o IP de BROADCAST de cada sub_rede.

Exemplo

• Resumo da Classe B:

Número de bits	Sub-redes	Hosts	Nova máscara de sub-rede
2	2	16382	255.255.192.0
3	6	8190	255.255.224.0
4	14	4094	255.255.240.0
5	30	2046	255.255.248.0
6	62	1022	255.255.252.0
7	126	510	255.255.254.0
8	254	254	255.255.255.0
9	510	126	255.255.255.128
10	1022	62	255.255.255.192
11	2046	30	255.255.255.224
12	4094	14	255.255.255.240
7 13	8190 <	6 1	255.255.255.248

n=

2ⁿ -2 =

2¹⁶⁻ⁿ -2 =

Dúvidas??

