Noisy channel generative model

Emily Kellison-Linn, Tim O'Donnell, Elias Stengel-Eskin

1 Model hyperparameters

We define a set of top-level PLUs U_T , a set of bottom-level PLUs U_B , a number of HMM states per bottom PLU n_h , a number of Gaussian components per HMM state n_q , and a dimensionality for the Gaussian distributions n_d .

2 Model parameters

1. Draw distributions E over edit operations conditioned on the next top level PLU q for each top PLU from a Dirichlet distribution with parameters α_q :

$$E_q \sim D(\boldsymbol{\alpha_q}) \ \forall q \in U_T$$

2. Draw distributions C over Gaussian component selection for each HMM state s for each bottom-level PLU from a Dirichlet distribution with parameters α_s :

$$C_s \sim D(\alpha_s) \ \forall s \in all_HMM_states$$

3. Draw n_d -dimensional Gaussian distributions with mean μ and covariance matrix Σ for each Gaussian component c for each HMM state for each bottom-level PLU from a Normal-Gamma distribution:

$$\mu_c, \Sigma_c \sim NormalGamma(\mu'_c, \lambda_c, \alpha_c, \beta_c)$$

3 Generative process

- 1. Start with a given sequence of top-level PLUs, $a_1, a_2, ... a_{N_{top}}$, where $a_i \in U_T \forall i$.
- 2. For i in range $1...N_{top}$:
 - (a) Sample an edit operation e from E_{a_i} .
 - (b) If $e = insert_bottom(r)$ for some $r \in U_B$, append r to the list of bottom PLUs.
 - (c) if $e = insert_top(a_i)$, set i = i + 1.
 - (d) If $e = substitute(a_i, r)$ for some $r \in U_B$, append r to the list of bottom PLUs and set i = i + 1.

The result is a sequence of bottom-level PLUs $b_1, ... b_{N_{bot}}$ where $b_i \in U_B \forall i$.

- 3. For each bottom PLU b_i in the bottom-level sequence:
 - (a) Sample an HMM state sequence $s_1, ... s_{N_s tates}$ through b_i with all initial probability on the first state s=1 and transition matrix M, where $m_{x,y}=P(s_{t+1}=y|s_t=x)$ and $|M|=(n_h,n_h)$:

$$M_{x,x} = 0.5$$

$$M_{x,x+1} = 0.5$$

- 4. For each HMM state s in the HMM state sequence:
 - (a) Sample a Gaussian component c from C_s
 - (b) Sample an n_d -dimensional vector from the Gaussian distribution with mean μ_c and covariance matrix Σ_c .