

DATA LAB

GUARDA AVANTI

Big Data, nuove competenze per nuove professioni.

"Anticipare la crescita con le nuove competenze sui Big Data" Operazione Rif. PA 2023-19167/RER approvata con DGR n° 843 del 29 maggio 2023 e co-finanziata dal Fondo Sociale Europeo Plus 2021-2027 Regione Emilia-Romagna

Stimare i Parametri della Popolazione

- La media del gruppo (campione) è una stima puntuale del parametro della popolazione
- Ogni media di gruppo fornisce una diversa stima connessa alle fluttuazioni casuali dovute al campionamento
 - La stima puntuale non da indicazioni sulla variabilità della stima
 - Costruisco un intervallo centrato intorno alla media di gruppo sul quale ho una certa confidenza che il parametro della popolazione cada nell'intervallo
 - L'intervallo di confidenza è la stima intervallare del parametro della popolazione

Intervallo di Confidenza e Parametro

- Gli intervalli di confidenza sono definiti come un intervallo di valori costruito a partire dai dati
- All'interno dell'intervallo ho una certa probabilità (tipicamente 95%) che sia compreso il parametro della popolazione

Intervallo di Confidenza

- Gli intervalli di confidenza sono definiti come un intervallo di valori costruito a partire dai dati
- All'interno dell'intervallo ho una certa probabilità (tipicamente 95%) che sia compreso il parametro della popolazione
- Per calcolare l'intervallo utilizzo le proprietà della distribuzione di campionamento delle medie

$$\Pr\left\{\overline{X} - 1.96 * \sqrt[5]{\sqrt{n}} \le \mu \le \overline{X} + 1.96 * \sqrt[5]{\sqrt{n}}\right\} = 0.95$$

Esempio di Calcolo dell'Intervallo di Confidenza al 95%

$$\Pr\left\{\overline{X} - 1.96 * \sigma / \sqrt{n} \le \mu \le \overline{X} + 1.96 * \sigma / \sqrt{n}\right\} = 0.95$$

Informazioni

Limite Inferiore

Limite Superiore

Intervallo di Confidenza

Proprietà

- Maggiore è l'ampiezza dell' Intervallo di Confidenza minore è la precisione della stima
- La sua ampiezza, e quindi la precisione della stima, varia con la numerosità dello studio e il grado di confidenza desiderato
 - All'aumentare della numerosità l'ampiezza diminuisce e la precisione aumenta
 - All'aumentare del grado di confidenza (es. 99% invece di 95%)
 l'ampiezza aumenta e la precisione diminuisce

Se o è sconosciuta?

Problema

Se la varianza della popolazione σ^2 non è nota ? (NB se μ non è nota, è probabile che anche σ^2 non sia nota)

Soluzione

Utilizzo la varianza campionaria s^2 come stima di σ^2 (NB nella formula della varianza divido per (n-1): i gradi di libertà)

La distribuzione t di Student

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

$$t = \frac{\overline{X} - \mu}{s / \sqrt{n}}$$

Il nuovo rapporto standardizzato non ha una distribuzione normale standardizzata perché devo tener conto anche della variabilità di s che sarà maggiore quando *n* è piccolo.

Questo rapporto è distribuito come una *t* di Student con *n-1* gradi di libertà

Percentili della distribuzione t di Student

	PROBABILITA' (2 code)					PROB			
GL	0,1	0,05	0,02	0,01		0,05	0,025	0,01	0,00 5
1	6,31	12,71	31,82	63,66		6,31	12,71	31,82	63,66
2	2,92	4,30	6,96	9,92		2,92	4,30	6,96	9,92
3	2,35	3,18	4,54	5,84		2,35	3,18	4,54	5,84
4	2,13	2,78	3,75	4,60		2,13	2,78	3,75	4,60
5	2,02	2,57	3,36	4,03		2,02	2,57	3,36	4,03
6	1,94	2,45	3,14	3,71		1,94	2,45	3,14	3,71
7	1,89	2,36	3,00	3,50		1,89	2,36	3,00	3,50
8	1,86	2,31	2,90	3,36		1,86	2,31	2,90	3,36
9	1,83	2,26	2,82	3,25		1,83	2,26	2,82	3,25
10	1,81	2,23	2,76	3,17		1,81	2,23	2,76	3,17
11	1,80	2,20	2,72	3,11		1,80	2,20	2,72	3,11
12	1,78	2,18	2,68	3,05		1,78	2,18	2,68	3,05
13	1,77	2,16	2,65	3,01		1,77	2,16	2,65	3,01
14	1,76	2,14	2,62	2,98		1,76	2,14	2,62	2,98
15	1,75	2,13	2,60	2,95		1,75	2,13	2,60	2,95
16	1,75	2,12	2,58	2,92		1,75	2,12	2,58	2,92
17	1,74	2,11	2,57	2,90		1,74	2,11	2,57	2,90
18	1,73	2,10	2,55	2,88		1,73	2,10	2,55	2,88
19	1,73	2,09	2,54	2,86		1,73	2,09	2,54	2,86
20	1,72	2,09	2,53	2,85		1,72	2,09	2,53	2,85
21	1,72	2,08	2,52	2,83		1,72	2,08	2,52	2,83
22	1,72	2,07	2,51	2,82		1,72	2,07	2,51	2,82
23	1,71	2,07	2,50	2,81		1,71	2,07	2,50	2,81
24	1,71	2,06	2,49	2,80		1,71	2,06	2,49	2,80
25	1,71	2,06	2,49	2,79		1,71	2,06	2,49	2,79
26	1,71	2,06	2,48	2,78		1,71	2,06	2,48	2,78
27	1,70	2,05	2,47	2,77		1,70	2,05	2,47	2,77
28	1,70	2,05	2,47	2,76		1,70	2,05	2,47	2,76
29	1,70	2,05	2,46	2,76		1,70	2,05	2,46	2,76
30	1,70	2,04	2,46	2,75		1,70	2,04	2,46	2,75
တ	1,64	1,96	2,05	2,33		1,64	1,96	2,05	2,33

La distribuzione t di Student

Caratteristiche

- 1.È una distribuzione continua
- 2. È simmetrica rispetto alla media: µ
- 3. Media, mediana e moda coincidono
- 4. È una distribuzione di probabilità
- 5. Se n è basso i valori nelle code sono più probabili
- 6. Al crescere di n la distribuzione approssima la gaussiana standardizzata

Distribuzione t di Student e Intervallo di Confidenza

Consideriamo i dati sull'altezza raccolti da un gruppo di studenti

$$n = 20$$

 $x = 172.0$
 $s = 10.0$

Qual è l'intervallo di confidenza al 95% della media?

Distribuzione t di Student e Intervallo di Confidenza

Occorre modificare la formula precedente

GUARDA AVANTI

Big Data, nuove competenze per nuove professioni.

www.bigdata-lab.it

