Homework 2

Elliott Yoon

October 2, 2023

1 9/25

- 1. Let $f = (a_1 \cdots a_k)$ be a cycle of length k in S_n . Write the inverse of f as a cycle.
 - f sends $a_1 \mapsto a_2, a_2 \mapsto a_3, \dots, a_{k-1} \mapsto a_k, a_k \mapsto a_1$. To invert f, we need to map $a_1 \mapsto a_k, a_k \mapsto a_{k-1}, \dots, a_2 \mapsto a_1$. The inverse of f can be written as $(a_1 a_k a_{k-1} \cdots a_2)$. \square
- 2. Let $f = (a_1 \cdots a_k)$ be a cycle of length k in S_n . Prove that f has order k.
 - Notice that for any $1 \le i \le k$,

$$f(a_i) = \begin{cases} a_{i+1} & i < k \\ a_1 & i = k \end{cases}.$$

Similarly,

$$f^n(a_i) = a_{1+(i+n-1 \mod k)}.$$

Since |f| is the smallest m > 0 such that $i - 1 \equiv i + m - 1 \mod k$ for all $1 \le i \le k$, we have that m = k. \square

- 3. Let $f = (a_1 \cdots a_k)$ be a cycle of length k in S_n . Fix $s \ge 1$. Find (and prove) necessary and sufficient conditions for f^s to be a cycle. Hint: first consider the case of s = 2.
 - We will show that f^s is a cycle exactly when either (a) k divides s or (b) gcd(k, s) = 1.
 - (a) Recall that $f^k = e$, where e is the identity in S_n . Suppose k|s. Then, we can write s = nk, where $n \in \mathbb{N}$, so

$$f^{s} = f^{nk} = (f^{k})^{n} = e^{n} = e,$$

which is by definition a cycle.

(b) Suppose gcd(k, s) = 1. For all $m, n \in \{1, ..., k\}$, m > n, suppose for contradiction that there exist $p, q \in \mathbb{N}$ such that

$$ms + 1 - kp = ns + 1 - kq.$$

Thus ms - ns = kp - kq = k(p - q), so k divides (m - n)s. Since k does not divide s by assumption, k must divide m - n. But $1 \le m \le k$ and $1 \le n \le k$, so $m - n \le k - n < k$ and thus m - n < k, a contradiction with k | m - n. Thus, it must be the case that

$$ms + 1 \mod k \neq ns + 1 \mod k$$

for all $m, n \in \{1, ..., k\}, m > n$. Thus $\{js + 1 \mod k \mid 1 \le j \le k\} = \{1, ..., k\}$ and

$${f^s(a_{js+1}) \mid 0 \le j < k} = {a_1, \dots, a_k}$$

(c) Finally, suppose that $1 < \gcd(k, s) < k$, denoting $m = \gcd(k, s)$, and suppose also that f^s is a cycle. Then

$$(f^{s})^{\frac{k}{m}} = f^{\frac{sk}{m}} = (f^{k})^{\frac{s}{m}} = e,$$

so if $f^s = \{b_1, \dots, b_l\}$, then $l \le \frac{k}{m}$. Thus, there are at most $\frac{k}{m}$ elements x of $\{a_1, \dots, a_k\}$ where $f^s(x) \ne x$. But all a_j satisfy $f^s(a_j) \ne a_j$ since $s \ne 0 \mod k$ for $1 \le j \le k$, a contradiction. So f^s is not a cycle.

- 4. Let $\mathbb{Z}/N = \{0, \dots, N-1\}$. Equip \mathbb{Z}/N with the binary operation given by multiplication modulo N, so that if $a, b \in \mathbb{Z}/N$, then $a \cdot_N b = r$ where ab = qN + r where $r \in \{0, \dots, N-1\}$. We write $ab \equiv r \mod N$. Let $(\mathbb{Z}/N)^{\times} \subseteq \mathbb{Z}/N$ be the subset of elements $a \in \mathbb{Z}/N$ such that there exists $b \in \mathbb{Z}/N$ with $ab \equiv ba \equiv 1 \mod N$.
 - (a) Show that this binary operation makes \mathbb{Z}/N into a commutative monoid with identity element 1.
 - (b) Show that $(\mathbb{Z}/N)^{\times}$ is an abelian group.
 - (c) Show that $(\mathbb{Z}/N)^{\times}$ consists of elements of \mathbb{Z}/N which are relatively prime to N.
 - (a) Unital: Fix b = 1. Then for $a \in \mathbb{Z}/N$,

$$ab = a = 0N + a \equiv a \mod N$$
.

Commutative: Let $a, b \in \mathbb{Z}/N$. Then

$$r \mod N \equiv aN + r = ab = ba = aN + r \equiv r \mod N$$
.

Associative: Let $a, b, c \in \mathbb{Z}/N$. From the division algorithm, $r_1, r_2, r_3, r_4, q_1, q_2, q_3, q_4 \in \mathbb{Z}$ such that

$$ab = q_1N + r_1$$

$$r_1c = q_2N + r_2$$

$$bc = q_3N + r_3$$

$$ar_3 = q_4N + r_4$$

We can then calculate $(a \cdot_N b) \cdot_N c = r_2$, and

$$(ab - q_1N)c = q_2N + r_2 \Rightarrow abc - (q_1c - q_2)N = r_2.$$

Similarly, we have $a \cdot_N (b \cdot_N c) = r_4$, and

$$abc - (q_3a + q_4)N = r_4.$$

Hence $r_4 \mod N \equiv abc \equiv r_2 \mod N$, as desired.

(b) Associativity and commutativity follow from (a) and the fact that $(\mathbb{Z}/N)^{\times} \subseteq \mathbb{Z}/N$. Note that $1 \cdot 1 \equiv 1 \mod N$, so $1 \in (\mathbb{Z}/N)^{\times}$. Now, let $a \in (\mathbb{Z}/N)^{\times}$. There exists some $b \in \mathbb{Z}/N$ such that

$$ab = ba = 1$$
,

so $b \in (\mathbb{Z}/N)^{\times}$ and thus $b = a^{-1} \in (\mathbb{Z}/N)^{\times}$. Finally, let $a, b \in (\mathbb{Z}/N)^{\times}$. The existence of inverses implies that $b^{-1} \cdot_N a^{-1} = (a \cdot b)^{-1} \in \mathbb{Z}/N$, and by associativity,

$$(a \cdot_N b) \cdot_N (b^{-1} \cdot_N a^{-1}) = a \cdot_N (b \cdot_N b^{-1}) \cdot_N a^{-1}$$

= $a \cdot_N a^{-1}$
- 1

(c) Let $a \in \mathbb{Z}/N$. Suppose gcd(a, N) = c > 1 and that there exists some b such that $ab \cong 1 \mod N$. Then

$$0 \equiv \frac{a}{c}Nb$$

$$\equiv ab\frac{N}{c}$$

$$\equiv 1\frac{N}{c}$$

$$\equiv 0 \mod N,$$

a contradiction. Now, suppose gcd(a, N) = 1, and consider the set $S = \{0, a \mod N, \dots, (N-1)a \mod N\}$. Since a and N are coprime, it follows from Bezout that $1 \in S$. Thus $a \in (\mathbb{Z}/N)^{\times}$.

2 9/27

- 1. Justify Example 4.7. Fix pairwise commuting elements f_1, \ldots, f_r of a group G, i.e. elements such that $f_i f_j = f_j f_i$ for all $1 \le i, j \le r$. Prove that if each f_i has finite order n_i , then $f = f_1 \cdots f_r$ has order dividing the least common multiple of f_1, \ldots, f_r . Show that if moreover f_1, \ldots, f_r are pairwise disjoint cycles in a symmetric group S_n , then the order of $f = f_1 \cdots f_r$ is exactly the least common multiple of f_1, \ldots, f_r .
 - Let $f = f_1 \cdots f_r$, where the f_i 's pairwise commute. It directly follows (with an induction argument) that $f^m = f_1^m \cdots f_r^m$ for $m \in \mathbb{N}$. Denote the order of each f_i by n_i , the order of f by a, and define $n = \text{lcm}_i\{n_i\}$. Note that

$$f^{a} = f_{1}^{a} \cdots f_{r}^{a}$$

$$= (f_{1}^{n_{1}})^{\frac{n}{n_{1}}} \cdots (f_{r}^{n_{r}})^{\frac{n}{n_{r}}}$$

$$= e^{\frac{n}{n_{1}}} \cdots e^{\frac{n}{n_{r}}}$$

$$= e.$$

Clearly, if a divides n, we're done. Suppose otherwise; thus, n < a since $f^a = e$. But, by the Euclidean division algorithm,

$$f^{n \mod a} = f^{n} \cdot (f^{pa})^{-1}$$
$$= f^{n} \cdot e$$
$$= e$$

for some $p \in \mathbb{Z}$. Since $n \mod a < a$, the order |f| < a, a contradiction.

• Let $\{f_i\}$ be pairwise disjoint cycles in a symmetric group S_n , each with length k_i , and similarly notate $k = \text{lcm}_i\{k_i\}$ and a to be the order of $f = f_1 \cdots f_r$. Suppose that $a \neq k$, or equivalently, that a < k. Thus, there exists an i such that k_i does not divide a, and thus an n such that $f_i^a(n) = n$. Since f_i are disjoint, they commute, and we have

$$f^{a}(n) = (f_{i}^{a} \cdot f_{1}^{a} \cdots f_{i-1}^{a} \cdot f_{i+1}^{a} \cdots f_{r}^{a})(n)$$
$$= f_{i}^{a}(n)$$
$$\neq n$$

since a is not divisible by k_i . Thus, $f^a \neq e$, a contradiction. \square

- 2. By Lemma 4.5, every element $f \in S_n$ can be written as a product of transpositions. Suppose that $f = g_1 \circ \cdots \circ g_k$, where g_1, \ldots, g_k are transpositions. We say that f is **even** if k is even and we say that f is **odd** if k is odd. Show that this is well-defined by proving that if $f = h_1 \circ \cdots \circ h_m$ is another way of writing f as a product of transpositions, then $k \equiv m \mod 2$.
 - Ran out of time: (I have a midterm at 9 am tomorrow morning so this question's going to be an L. A brief outline of what I had in mind is as follows: Define the sign of a permutation f to be the number of inversions modulo 2. The desired result follows from showing f ∘ (a_i a_j) changes the sign of f. Since e is even (with 0 inversions), f is odd if, and only if, the sign of f is odd. □
- 3. Let $f = (a_1 \cdots a_k)$ be a cycle. Show that f is even if k is odd and that f is odd if k is even.
 - Note that $f = (a_1 \cdots a_k) = (a_1 \ a_2) \circ (a_2 \ a_3) \circ \cdots \circ (a_{k-1} \ a_k)$ can be written as a product of k-1 transpositions. Thus if k is odd, then k-1, and so f, is even. Similarly, if k is even, then f is odd. \square
- 4. Write down the cycle decomposition of each element of S_4 and compute the order of each element.
 - See below. □

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 2 \\ 1 & 2 & 3 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 2 \\ 1 & 2 & 3 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 2 & 1 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 &$$

5. See Dummit-Foote, Exercise 1.3.2 for the definitions of f and g, two elements of S_{15} . Find cycle

decompositions for $f, g, f^2 f \circ g, g \circ f$, and $g^2 \circ f$.

•
$$f =$$

$$(1 \ 13 \ 5 \ 10) \circ (3 \ 15 \ 8) \circ (4 \ 14 \ 11 \ 7 \ 12 \ 9)$$
 $g =$

$$(1 \ 14) \circ (2 \ 9 \ 15 \ 13 \ 4) \circ (3 \ 10) \circ (5 \ 12 \ 7) \circ (8 \ 11)$$
 $f^2 =$

$$(1 \ 5) \circ (3 \ 8 \ 15) \ (4 \ 11 \ 12) \circ (7 \ 9 \ 14) \circ (10 \ 13)$$
 $f \circ g =$

$$(1 \ 11 \ 3) \circ (2 \ 4) \circ (5 \ 9 \ 8 \ 7 \ 10 \ 15) \circ (13 \ 14)$$
 $g \circ f =$

$$(1 \ 4) \circ (2 \ 9) \circ (3 \ 13 \ 12 \ 15 \ 11 \ 5) \circ (8 \ 10 \ 14)$$
 $g^2 \circ f =$

$$(1 \ 2 \ 15 \ 8 \ 3 \ 4 \ 14 \ 11 \ 12 \ 13 \ 7 \ 5 \ 10)$$

3 9/29

- 1. Prove that if $n \ge 3$, then S_n is not cyclic.
 - We will first show that \mathbb{Z}/N is abelian for $N \in \mathbb{N}$. Let $N \in \mathbb{N}, x, y \in \mathbb{Z}/N$. It follows from commutativity of the usual binary operation in $(\mathbb{Z}, +)$ that

$$x + y \equiv (x + y) \mod N = (y + x) \mod N \equiv y + x,$$

as desired. Now, let $n \ge 3$. By Proposition 3.8, we have that S_n is not abelian. However, if S_n is cyclic, then $S_n \cong \mathbb{Z}/N$ for some $N \in \mathbb{N}$, which we've shown to be abelian, a contradiction.

- 2. Recall that group $(\mathbb{Z}/N)^{\times}$ from Exercise 3.4. Let $\phi(N)$ be the number of elements of $(\mathbb{Z}/N)^{\times}$. The function ϕ is called the **Euler totient function.**
 - (a) Show that if $M, N \ge 1$ are relatively prime, then $\phi(MN) = \phi(M)\phi(N)$.
 - (b) Show that if $n \ge 1$, then for every prime number p we have $\phi(p^n) = p^{n-1}\phi(p)$.
 - (c) Show that $\phi(p) = p 1$ if p is prime.
 - (d) What is $\phi(3072)$?
 - (a) Let $M, N \ge 1$ be relatively prime. Recall from Problem 1.4c that $(\mathbb{Z}/N)^{\times}$ consists of elements of \mathbb{Z}/N which are relatively prime to N. Thus $= \phi(MN)$ is the size of the set

$$(\mathbb{Z}/N)^{\times} = \{x \in \mathbb{Z}/MN \mid x \text{ and } MN \text{ are relatively prime}\}.$$

- **Lemma 1**: x, MN are coprime \iff x and M are coprime or x and N are coprime. *Proof:* (\Rightarrow) Without loss of generality, assume x, N are not coprime. Then there exists some prime p such that p|x and p|N. Thus p|MN as well. (\Leftarrow) Suppose there exists some prime p such that p|x and p|MN. By Euclid, either p|M or p|N.
- Lemma 2: a and b are coprime $\iff a \mod b$ and b are coprime. *Proof:* This follows directly from Euclid's GCD algorithm.

Let's define the following system of equations

$$(\star) = \begin{cases} x \equiv m \mod M \\ x \equiv n \mod N \end{cases}, m \in (\mathbb{Z}/M)^{\times}, n \in (\mathbb{Z}/N)^{\times}$$

Thus, we have that

$$(\mathbb{Z}/N)^{\times} = \{x \in \mathbb{Z}/MN \mid x \text{ satisfies } (\star)\}.$$

Then, for each $m \in (\mathbb{Z}/M)^{\times}$, $n \in (\mathbb{Z}/N)^{\times}$, the Chinese Remainder Theorem gives a unique $a \in \{0, ..., MN - 1\}$ satisfying (\star) . There are $\phi(M)$ such elements m and $\phi(N)$ such elements n, so

$$\phi(MN) = \phi(M)\phi(N)$$
.

(b) Let $n \ge 1$. Notice that $\phi(p^n)$ is the size of the set

$$(\mathbb{Z}/p^n)^{\times} = \{x \in \mathbb{Z}/p^n \mid x \text{ and } p^n \text{ are relatively prime.}\}$$

– Lemma: p^n and a are coprime $\iff p$ and a are coprime. *Proof:* (\Rightarrow) If x|a and x|p, then $x|p^n$, so p^n and x are not coprime. (\Leftarrow) Suppose $x|p^n$. then the Fundamental Theorem of Algebra gives that x = p. If x|a, then p|a, a contradiction.

Thus, we have that

$$(\mathbb{Z}/p^n)^{\times} = \{x \in \mathbb{Z}/p^n \mid x \equiv p' \mod p, p' \in (\mathbb{Z}/p)^{\times}\}.$$

Then, for each $p' \in (\mathbb{Z}/p)^{\times}$, the Chinese Remainder Theorem gives a unique solution x up to p consecutive elements, i.e.

$$\phi(p^n) = \frac{p^n}{p}\phi(p) = p^{n-1}\phi(p).$$

- (c) Let p be prime. Notice that 0|p and p|p so $0 \notin (\mathbb{Z}/p)^{\times}$. If $1 \le x < p$, then x and p are coprime since p is prime. Thus $(\mathbb{Z}/p)^{\times} = \{1, \ldots, p-1\}$ so $\phi(p) = p-1$.
- (d) Notice that $3072 = 3 \cdot 2^{10}$. Then

$$\phi(3072) = \phi(3 \cdot 2^{10})$$

$$= \phi(3)\phi(2^{10}) \qquad (a)$$

$$= \phi(3) \cdot 2^{9} \cdot \phi(2) \qquad (b)$$

$$= 2 \cdot 512 \cdot 1 \qquad (c)$$

$$= 1024$$

- 3. Let $f: X \to Y$ be a bijection. Consider the permutation groups S_X and S_Y and the function $g: S_X \to S_Y$ defined by $g(h) = f \circ h \circ f^{-1}$ for $h \in S_X$. Prove that g is a group isomorphism.
 - Let $h_1, h_2 \in S_X$. Then by the associativity of functions,

$$g(h_{1} \circ h_{2}) = f \circ h_{1} \circ h_{2} \circ f^{-1}$$

$$= f \circ h_{1} \circ Id_{X \to X} \circ h_{1} \circ f^{-1}$$

$$= f \circ h_{1} \circ (f^{-1} \circ f) \circ h_{1} \circ f^{-1}$$

$$= (f \circ h_{1} \circ f^{-1}) \circ (f \circ h_{1} \circ f^{-1})$$

$$= g(h_{1}) \circ g(h_{2})$$

so g is a homomorphism. Moreover, each element of S_X is a bijection, so if $h \in S_X$, then $g(h) = f \circ h \circ f^{-1}$ is a composition of bijections, and thus also a bijection. \square