Day 11 of #100daysofmathandstats: Exploration of binary and categorical data (Contd...)

Outline

- Correlation introduction
- Correlation coefficient
- Correlation matrix
- Scatterplot

Correlation Introduction

- Exploratory data analysis in many modeling projects involves examining correlation among predictors, and between predictors and a target variable.
- Variables X and Y (each with measured data) are said to be positively
 correlated if high values of X go with high values of Y, and low values of X go with low values of Y
- If **high values of X** go with **low values of Y**, and vice versa, the variables are negatively correlated.

Correlation coefficient

- A metric that measures the extent to which numeric variables are associated with one another (ranges from −1 to +1).
- To compute **Pearson's correlation coefficient**, we multiply deviations from the mean for variable 1 times those for variable 2, and divide by the product of the standard deviations:

$$r = rac{\sum_{i=1}^{n} \left(x_i - \overline{x}
ight) \left(y_i - \overline{y}
ight)}{(n-1)s_x s_y}$$

Real examples of correlation coefficient

Positive correlations

- The more money you save, the more financially secure you feel.
- As the temperature goes up, ice cream sales also go up.
- The more gasoline you put in your car, the farther it can go.

Negative correlations

- Time Spent Watching TV vs. Exam Scores
- Time Spent Running vs. Body Fat
- Less study time vs chance of getting high scores

Correlation matrix

- A **table** where the variables are **shown on both rows and columns**, and the cell values are the correlations between the variables.
- Variables can have an association that is not linear, in which case the correlation coefficient may not be a useful metric.

Example of correlation matrix

T	CTL	FTR	VZ	LVLT		•	Table show correlation	s the
T	1.000	0.475	0.328	0.678	0.279		between daily return telecommun	
CTL	0.475	1.000	0.420	0.417	0.287		on stocks July	
FTR	0.328	0.420	1.000	0.287	0.260		through 2015.	June
VZ	0.678	0.417	0.287	1.000	0.242			
LVLT	0.279	0.287	0.260	0.242	1.000			

Scatter Plot

- A plot in which the x-axis is the value of one variable, and the y-axis the value of another.
- The x-axis represents one variable and the y-axis another, and each point on the graph is a record
- This is very useful when we wants to see some relations between features.

Real example of scatter plot

This is a scatter plot showing the amount of sleep needed per day by age.

Careers that use scatter plot a lot

- Economist
- Operations research analyst
- Market research analyst
- Management analyst
- Data Scientist

Thank you

Github Link: https://github.com/harsh9898/100daysofstatandmath

Don't forget to post your queries or feedbacks on the post.

Share or like for the benefit of others.