Sources of genetic variation: Why the simple single gene/ 2 allele model is insufficient

- More than one gene controls trait
 - True for almost every phenotype
 - Fictional example: alleles at 6 genes control height

Fictional (simplified) example: 6 genes for women's "height"

			Pe	rson			
	1	2	3	4	5	6	7
Gene 1	AA	aa	Aa	Aa	aa	Aa	AA
Gene 2	Bb	Bb	BB	Bb	Bb	bb	BB
Gene 3	CC	CC	Cc	CC	Cc	Cc	CC
Gene 4	Dd	Dd	Dd	Dd	Dd	DD	DD
Gene 5	Ee	ee	Ee	EE	Ee	Ee	Ee
Gene 6	ff	ff	ff	Ff	FF	Ff	Ff
Height							

Height in inches = 5'0" + number capital letter alleles Hence, range 5'0" - 6'0"

Fictional (simplified) example: 6 genes for women's "height"

	Person						
	1	2	3	4	5	6	7
Gene 1	AA	aa	Aa	Aa	aa	Aa	AA
Gene 2	Bb	Bb	BB	Bb	Bb	bb	BB
Gene 3	CC	CC	Cc	CC	Cc	Cc	CC
Gene 4	Dd	Dd	Dd	Dd	Dd	DD	DD
Gene 5	Ee	ee	Ee	EE	Ee	Ee	Ee
Gene 6	ff	ff	ff	Ff	FF	Ff	Ff
Height	5'7 "	5'2"	5'6"	5'8"	5'6"	5'6"	5'10 "

Height in inches = 5'0" + number capital letter alleles Hence, range 5'0" - 6'0"

Principles observed: Fictional (simplified) example: 6 genes for women's "height"

We used this formula:

Height in inches = 5'0" + number capital letter alleles Hence, range was 5'0" to 6'0"

- •Only one way to get 5'0" or 6'0"
- •Many ways to get 5' 6"
 - •Just like test scores! (0 100%)

- "Continuous variation" from many genes
 - •Despite Mendelian inheritance of each gene involved

Variation becomes apparent in F2 crosses: if 1 gene for "height"

Start with homozygous tall AA (6') having kids with homozygous short aa
 (5')

- Offspring all heterozygous (5' 6" tall): Aa
- What happens in F2?
 - Aa x Aa:
 - ¼ AA, ½ Aa, ¼ aa

Freeman & Herron Figure 9.2

Variation becomes apparent in F2 crosses: if 2 genes for "height"

• Start with homozygous tall AABB (6') having kids with homozygous short

aabb (5')

- Offspring all heterozygous (5' 6" tall): AaBb
- What happens in F2?
 If unlinked:
 - Aa x Aa:
 - ¼ AA, ½ Aa, ¼ aa
 - Bb x Bb:
 - ¼ BB, ½ Bb, ¼ bb
 - Get more intermediates:

Freeman & Herron Figure 9.2

Variation becomes apparent in F2 crosses: if 6 genes for "height"

- Start with homozygous all capitals (6' tall person) having kids with homozygous all lower-case (5' tall person)
- Offspring all heterozygous (5' 6" tall): Aa Bb Cc Dd Ee Ff
- What happens in F2?
 - Aa Bb Cc Dd Ee Ff x Aa Bb Cc Dd Ee Ff :
 - If unlinked:
 - MANY possibilities
- Became continuous and bell-shaped

Freeman & Herron Figure 9.2

- More than one gene controls trait
 - True for almost every phenotype
- Variable "penetrance"
 - Mutant forms may "sometimes" affect phenotype but not always do so.

eyeless mutation in Drosophila

- This mutation has "variable penetrance" in that, some individuals with the mutation, have a normal or nearly-normal phenotype
 - Say the mutation is "not fully penetrant"

Regular

Eyeless

BRCA1 breast cancer susceptibility

- In most of population (BB or Bb), low (12%) risk of breast cancer.
- If have 2 mutant alleles at *BRCA1* (bb), 60% risk of breast cancer.
- Therefore, BRCA1 breast cancer phenotype is not fully penetrant- you CAN be "bb" and still have all non-cancerous cells in breast.

- More than one gene controls trait
 - True for almost every phenotype
- Variable "penetrance"
 - Mutant forms may "sometimes" affect phenotype but not always do so.
- Interactions among genes: "epistasis"
 - Effect of genotype at one gene modifies effects of genotype at another gene.

In this example, effects of alleles at different genes was "additive": sum the effects of A, B, C, etc.

Person							
	1	2	3	4	5	6	7
Gene 1	AA						
Gene 2	Bb						
Gene 3	CC						
Gene 4	Dd						
Gene 5	Ee						
Gene 6	ff						
Height	5'7"	5'2"	5'6"	5'8"	5'6"	5'6"	5'10"

Height in inches = 5'0" + number capital letter alleles Hence, range 5'0" - 6'0"

Example in Pea Flower Color

Pathway with two genes

Blocking process at either place results in white peas

Homozygous cc OR pp nonfunctional

		Female Gan				
		CP	Ср	cP	ср	
Male Gametes	CP	CCPP	CCPp	CcPP	CcPp	
	Ср	ССРр	ССрр	СсРр	Ссрр	
	сP	CcPP	СсРр	ccPP	ссРр	
	ср	СсРр	Ссрр	ccPp	ссрр	

Bateson described 9:7 phenotypic ratio

Example in mouse coat color

• A dominant over a; B dominant over b

A - B - color agouti

A – bb color albino

aa B – color black

aa bb color albino (again)

 AA vs aa may be agouti vs. black, OR modified by "bb" to albino

How does epistasis happen?

- One possibility: 2 genes
 - Gene 1 (B) is a "switch" that turns on gene 2
 - 2 variants: ON (B-) vs. OFF (bb)
 - Gene 2 (A) affects deposition of coat color
 - 2 variants: one causes deposit of black, other brown
- AA vs. aa cause deposition of black vs. brown
 - BUT, if bb, then no deposition at all
 - Genotype at B modifies effect of genotype at A (and sometimes eliminates its effect)

- More than one gene controls height
 - True for almost every phenotype
- Variable "penetrance"
 - Mutant forms may "sometimes" affect phenotype but not always do so.
- Interactions among genes: "epistasis"
 - Effect of genotype at one gene modifies effects of genotype at another gene.
- There can be >2 alleles at a locus!

Classic example: ABO blood types

- Gene located on chromosome 9 in humans
- Three alleles, A and B are dominant over O
 - A and B create specific antigens, O doesn't
- Blood phenotypes: A, B, AB, or O
- Blood genotypes: AA, AO, BB, BO, AB, OO

- O blood is best to donate
- AB best to receive blood transfusion

Classic example: ABO blood types

- Three alleles, A and B are dominant over O
 - A and B create specific antigens, O doesn't
- Blood phenotypes: A, B, AB, or O
- Blood genotypes: AA, AO, BB, BO, AB, OO

	A	0
В	AB	ВО
0	AO	00

- More than one gene controls trait
- Variable "penetrance"
- Interactions among genes: "epistasis"
- There can be >2 alleles at a locus
- Environment, and interactions with it.
 - We will begin "heritability" soon...

Environment can affect phenotypes (duh!)

- Can affect directly, or can interact with genotype
- Example- sun tanning
 - In absence of sun, don't tan
 - (Environmental effect)
 - Some people naturally tan easier than others
 - (Interaction of environment with genetics)

Image Credits, Unit 6-2

- Bell curve, © 2008 Qwfp/Pbroks13, CC by-SA 3.0, en.wikipedia.org.
- Drosophila ey-/-, © 2009 Singh A., Dayton, OH: Department of Biology, University of Dayton, CC by 2.5, www.plosbiology.org.
- Pink ribbon, © 2007 MesserWoland, CC by-SA 3.0, en.wikipedia.org.
- Pink pea plant flower, © Alison Bowden, all rights reserved, <u>www.photoxpress.com</u>
- White pea plant flower, © Vasiliy Koval, all rights reserved, www.photoxpress.com
- Albino mice, © 2003 Aaron Logan, CC by 1.0, en.wikipedia.org.
- Mouse on graduated cylinder, © Danielle Bonardelle, all rights reserved, www.photoxpress.com
- Elephants supporting globe © Molly Eckler, CC by-NC-ND 1.0, http://www.cartoonfreeamerica.com/
- Suntan, © 2007 Onetwo1, CC by-SA 3.0, en.wikipedia.org.