

EXAMEN DE FIN D'ÉTUDES SECONDAIRES 2017

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE
Biologie		Durée de l'épreuve 3 heures
	С	Date de l'épreuve 13.06.2017
		Numéro du candidat

Question 1 : Évaluation d'un risque (20 points)

Le syndrome du chromosome X fragile est la cause la plus fréquente de retard mental héréditaire. Le retard mental, variable d'un individu à l'autre, est associé à des anomalies du visage plus ou moins prononcées. Le couple III-1/III-2, qui a déjà un enfant malade, attend un autre enfant et se pose la question de savoir s'il sera atteint ou non du syndrome du chromosome X fragile.

Document 1 : arbre généalogique de la famille en question

Le gène en cause, FMR1, est localisé sur le chromosome X. Les allèles à l'origine du phénotype malade sont caractérisés par une séquence de triplets CGG répétés plus de 200 fois. Les allèles dont le nombre de répétitions se situe entre 54 et 200 s'expriment normalement mais sont l'objet d'une instabilité importante lors de la gamétogenèse qui peut se traduire par une augmentation du nombre de triplets.

Document 2: les allèles du gène FMR1

De part et d'autre du gène se trouvent deux sites de restriction reconnus par l'enzyme de restriction EcoRI. Très proche du gène un autre site est reconnu par l'enzyme de restriction Eag 1. (document 3)

Document 3:

Pour des raisons complexes, ce site n'est plus reconnu par l'enzyme lorsque le nombre de répétitions du triplet CGG dépasse 200.

Une électrophorèse permet de révéler, pour différents membres de la famille, la présence ou non de tel fragment de restriction correspondant à la région du gène FMR1.

<u>Document 4: Résultats de l'électrophorèse après action des enzymes de restriction EcoRI et Eag1.</u>

- 1. Définissez la notion d'enzyme de restriction. (3)
- 2. Expliquez le principe d'une électrophorèse. (3)
- 3. Expliquez l'apparition des différentes bandes du document 4. (3)
- 4. Expliquez l'origine génétique de la maladie chez l'enfant IV_1 à l'aide des documents 2, 3 et 4. (3)
- Expliquez comment des parents sains (III₁ et III₂) ont pu avoir un enfant malade (IV₁). (5)
- 6. Évaluez le risque que l'enfant à naître soit sain ou malade. (3)

Question 2 : Immunologie et génétique (20 points)

Entre 3 et 18 mois, un enfant a été admis de très nombreuses fois à l'hôpital pour diverses infections bactériennes graves. Il a reçu tous les vaccins (tétanos, diphtérie, rougeole ...) prévus à l'âge de 2, 3 et 4 mois. Des analyses ont été réalisées et ont permis de déterminer qu'il était atteint d'une maladie héréditaire (la maladie de Bruton).

La maladie de Bruton touche 1 enfant sur 200 000 naissances. Elle se manifeste par des infections bactériennes récidivantes des voies respiratoires, dès l'âge de six mois, et prédispose au risque d'infections chroniques par des virus s'attaquant notamment aux voies digestives et au système nerveux. En l'absence de traitement, elle évolue généralement vers une insuffisance respiratoire et peut avoir des complications nerveuses graves. Cette maladie est provoquée par des mutations d'un gène codant pour une protéine : la tyrosine kinase *BTK*. On la soigne par des injections régulières d'immunoglobulines pour maintenir leur taux plasmatique à 8g/l. Dans le cas où un agent

infectieux est identifié chez le patient, on administre au patient des anticorps spécifiques contre cet agent infectieux.

Document 1 : Analyses cliniques de l'enfant :

Vaccins reçus	Dosage des anticorps spécifiques en réponse aux vaccinations	
Anatoxine tétanique	Pas d'anticorps spécifiques détectés	
	Pas d'anticorps spécifiques détectés	
Virus de la rougeole	Pas d'anticorps spécifiques détectés	

Document 2 : Dosage clinique de la présence d'anticorps chez l'enfant et un enfant sain :

	Dosage de	s anticorps	Valeur	normale	pour	un
	présents che	z l'enfant	enfant	de 18 moi	S	
Anticorps totaux	< 0.17 g/l		5,8 – 1	0,8 g/l		

Document 3 : Dosage des lymphocytes dans le sang :

	Dosage des lymphocytes	Valeur normale pour un
	trouvés chez l'enfant	enfant de 18 mois
Lymphocytes totaux	3.05*10 ⁷ par litre	2,5*10 ⁷ – 5*10 ⁷ par litre
Lymphocytes B	0.03*10 ⁷ par litre	0.1*10 ⁷ – 0.4*10 ⁷ par litre
Lymphocytes T	3.02*10 ⁷ par litre	1,5*10 ⁷ – 3*10 ⁷ par litre

- 1. Donnez les anomalies constatées dans les analyses de l'enfant. (2)
- 2. Expliquez pourquoi on n'a pas détecté d'anticorps spécifiques en réponse aux vaccinations (sans détaillez la fabrication des anticorps !). (2)
- 3. Expliquez l'utilité et le mode d'action du traitement en cas d'une infection détectée. (4)
- 4. Expliquez la réaction immunitaire conduisant à la production d'anticorps spécifiques, après une vaccination contre la rougeole (1 injection de virus de la rougeole), chez un enfant sain. (6)

Document 4 : arbre généalogique d'une famille comportant des membres atteints de la maladie de Bruton.

- 5. A l'aide d'une analyse du document 4, donnez le mode de transmission le plus probable de la maladie en discutant tous les cas théoriquement envisageables. (3)
- 6. Discutez le risque que l'enfant à naître soit atteint de la maladie (3)

Question 3 : Évolution et phylogénie (20 points)

La classification des êtres vivants a été fondamentalement remaniée au cours de ces dix dernières années par l'utilisation de nouvelles méthodes de la phylogénie. De nombreux groupes de l'ancienne classification ont disparu : c'est le cas de l'ancienne classe des *Reptiles*.

Document 1 : Deux classifications différentes d'espèces caractéristiques

1a : ancienne classification, classification phénétique:

1b : classification actuelle basée sur la phylogénie :

Cr:Crocodile

To:Tortue

0:Oiseaux

L:Lézards

S: Serpents

Di:Dinosaure du Crétacé

supérieur

Document 2 : Matrice des taxons et caractères (les états dérivés sont marqués en gras)

	Nombre de fenêtres temporales	Présence d'une cavité amniotique	Présence d'une fenêtre mandibulaire	Os du poignet en demi-lune
Serpent	2	Oui	Non	Non
Lézard	2	Oui	Non	Non
Tortue	0	Oui	Non	Non
Crocodile	2	Oui	Oui	Non
Dinosaure (Velociraptor)	2	Oui	Oui	Oui

Document 3 : Squelettes de 2 membres du groupe des Archosauriens

Velociraptor mongolensis, dinosaure du Crétacé supérieur

Oiseau actuel

Par ailleurs les oiseaux actuels possèdent une fenêtre temporale supérieure et une inférieure et font partie des amniotes.

- Donnez les différences entre les deux classifications des espèces présentées.
 (3)
- 2. Donnez le fondement scientifique sur lequel se basent respectivement les deux classifications et donnez la définition d'un nœud dans une classification phylogénétique. (4)
- 3. Reproduisez la matrice du document 2 en introduisant l'oiseau actuel. (3)
- Expliquez la classification du document 1b en utilisant la matrice établie et introduisez les innovations apparues au cours de l'évolution ayant conduit à ces espèces. (7)
- 5. Justifiez l'abandon de la classe des Reptiles dans les classifications actuelles (phylogénétiques) du règne animal. (3)