실험 문제

문제 1B

시약 및 기구 (문제 1B)

I. 시약 및 시료 (표의 굵은 글씨는 시약병의 라벨 표기와 동일함)

	안전 규약 ^a
Solution A (KIO ₃ 10.7042 g in5.00 dm ³), 60 cm ³ ,	Н272-Н315-Н319-Н335
플라스틱 용기 안	
Solution B (포화 Ca(IO ₃) ₂ 용액), 50 cm ³ , 플라스틱	Н272-Н315-Н319-Н335
용기 안	
Solution C (미지의 묽은 KIO₃ 용액에 포화된	H272-H315-H319-H335
Ca(IO ₃) ₂), 50 cm ³ , 플라스틱 용기 안	
Na ₂ S ₂ O ₃ 용액 200 cm ³ , 플라스틱 용기 안	
KI 10% (w/v) , 100 cm³, 플라스틱 용기 안	H300+H330-H312-H315-
	Н319-Н335
HCl 1 mol dm⁻³ , 100 cm ³ , 플라스틱 용기 안	H290-H314-H335
Starch solution 0.1% (w/v), 30 cm³ 유리적하병	
(dropping glass bottle)	
Distilled water, 500 cm³, 세척병	
Distilled water, 1000 cm³ 플라스틱 갤런(gallon) 통 안	

^a 안전에 관한 규약(Statements)은 34 쪽에 있다.

II. 초자 및 기구

개인 초자 및 기구	수량
비커, 100 cm ³	2
비커, 250 cm³	1
삼각플라스크, 125 cm³	9
피펫, 5.00 cm ³	2
피펫, 10.00 cm³	1
눈금실린더, 10.0 cm³	1
눈금실린더, 25.0 cm³	2
파스퇴르피펫	1
파스퇴르피펫용 고무 벌브	1
유리깔대기, 직경 7.5 cm	2
플라스틱깔대기, 직경 5.5 cm	1
지퍼백 안에 든 거름종이	3
뷰렛, 50.0 cm ³	1
뷰렛 스탠드와 클램프	1
클램프(bosshead)가 달린 O-ring	2

문제 1B 13%		a			b			c		총합
	a1	a2	a3	b1	b2	b3	c1	c2	с3	
배점	1	5	1	6	1	2	6	1	3	26
점수										

전체점수 중 13%에 해당하는 문제

문제 1B: 아이오딘산 칼슘(Calcium iodate)

아이오딘산 칼슘은 칼슘 이온과 아이오딘산 이온으로 구성된 무기염이다. $Ca(IO_3)_2$ 는 물에 소량 녹는다. 용해되지 않은 염과 포화용액은 아래와 같은 평형을 이룬다.

$$Ca(IO_3)_2(s) \iff Ca^{2+}_{(aq)} + 2IO_3^{-}_{(aq)}$$

적정실험을 통해 포화 $Ca(IO_3)_2$ 용액의 아이오딘산 이온의 농도를 결정하고, $Ca(IO_3)_2$ 의 K_{sp} 값을 구할 것이다.

아이오딘산 이온의 농도는 아이오딘화 포타슘(KI) 존재하의 시료를 표준 싸이오황산 소듐($Na_2S_2O_3$) 용액으로 적정하여 측정한다. 이때 녹말을 지시약으로 사용한다.

Part a 에서는 $Na_2S_2O_3$ 를 표준화한다. Part b 에서는 $Ca(IO_3)_2$ 의 K_{sp} 를 측정한다.

Part c 에서는, 고체 Ca(IO₃)₂를 농도를 모르는 묽은 KIO₃ 용액에 녹인 후, 3 일간 방치하여 용해되지 않은 염과 포화 용액 사이에 평형이 이루어지게 하였다. 동일한 적정방법을 이용하여 아이오딘산 이온의 농도를 측정한 후, 묽은 KIO₃ 용액의 미지농도를 구한다.

Part a

Na₂S₂O₃의 표준화

- 1. Na₂S₂O₃ 용액으로 뷰렛을 채운다.
- 2. 피펫을 이용하여 표준 KIO₃ 용액 (라벨에 solution A (KIO₃ 10.7042 g in 5.00 dm³)로 표기) 10.00 cm³를 삼각플라스크에 넣는다. 10%(w/v) KI 용액 10 cm³ 와 1 mol dm⁻³ HCl 10 cm³를 삼각플라스크에 넣는다. I₂ 가 형성되면서 어두운 갈색(dark brown)으로 변할 것이다.
- 3. 용액이 옅은 노란색(pale yellow)이 관찰될 때까지, $Na_2S_2O_3$ 용액으로 적정한다. 녹말용액(0.1%(w/v) starch solution) 2 cm³ 를 첨가한다. 용액은 남색(dark blue)이 될 것이다. 무색인 종말점까지 적정한다. 소모된 $Na_2S_2O_3$ 용액의 부피를 기록한다.

a1) 아래 균형화학반응식의 계수를 적어라.

IO ₃ -(aq) +	$I^{\bullet}(aq) + \underline{\qquad} H_3O^{+}(aq) \rightarrow \underline{\qquad}$	$I_{2(aq)} + I_{2}O_{(1)}$
I _{2 (aq)} +	$S_2O_3^{2-}(aq) \rightarrow \underline{\qquad} I^{-}(aq) + \underline{\qquad}$	$_{}$ S4O6 2 -(aq)

a2) 소모된 Na₂S₂O₃ 용액의 부피를 기록하라.

(표의 실험 횟수 전체를 채우지 않아도 됨.)

	실험 횟수		
	1	2	3
Na ₂ S ₂ O ₃ 용액 뷰렛 초기 부피, cm ³			
Na ₂ S ₂ O ₃ 용액 뷰렛 나중 부피, cm ³			
소모된 Na ₂ S ₂ O ₃ 용액의 부피, cm ³			

채택한 실험값, cm^3 ; V1 =

(Accepted volume)

a3) Na₂S₂O₃ 용액의 농도를 계산하라.

Na ₂ S ₂ O ₃ 농도, mol dm ⁻³ :	(소수점 이하 4 자리까지)

 $(Na_2S_2O_3 \ 8$ 액의 농도를 계산하지 못했다면, 이후 문제들은 농도를 $0.0700 \ mol \ dm^{-3}$ 로 가정하고 풀어라.)

Part b

$Ca(IO_3)_2$ 의 K_{sp} 값 결정

- 1. Solution B 는 포화 Ca(IO₃)₂을 거른 후 얻은 여과액(filtrate)이다.
- 2. 피펫을 이용하여 여과액(solution B) 5.00 cm³ 를 삼각플라스크에 넣는다. 10%(w/v) KI 용액 10 cm³ 와 1 mol dm⁻³ HCl 10 cm³ 를 삼각플라스크에 첨가한다.
- 3. 용액이 옅은 노란색(pale yellow)이 될 때까지, $Na_2S_2O_3$ 용액으로 적정한다. 녹말용액(0.1%(w/v) starch solution) 2 cm³ 를 첨가한다. 용액은 남색(dark blue)이 될 것이다. 무색인 종말점까지 적정한다. 소모된 $Na_2S_2O_3$ 용액의 부피를 기록한다.
- b1) 소모된 Na₂S₂O₃ 용액의 부피를 기록하라.

(표의 실험 횟수 전체를 채우지 않아도 됨.)

	실험 횟수		
	1	2	3
Na ₂ S ₂ O ₃ 용액 뷰렛 초기 부피, cm ³			
Na ₂ S ₂ O ₃ 용액 뷰렛 나중 부피, cm ³			
소모된 Na ₂ S ₂ O ₃ 용액의 부피, cm ³			

채택한 실험값, cm³; V2 = (Accepted volume)

b2) Solution B 의 IO₃-용액의 농도를 계산하라.

IO3 농도, mol dm ⁻³ :	(소수점 이하 4 자리까지)	

b3)	Ca	$(IO_3)_2$	의	K_{sn}	값을	계산	하라.
-------------	----	------------	---	----------	----	----	-----

$Ca(IO_3)_2 \supseteq K_{sp} = $	_(유효숫자 3 자리)

 $(K_{sp} = \Lambda V)$ 계 무했다면, 이후 문제에서는 7×10^{-7} 으로 가정하고 풀어라.)

Part c 묽은 KIO₃ 용액의 농도 결정

- 1. Solution C는 농도를 모르는 묽은 KIO₃ 용액에 포화된 Ca(IO₃)₂를 거른 후 얻은 여과액(filtrate)이다.
- 2. 피펫을 이용하여 여과액 (Solution C) 5.00 cm³ 를 삼각플라스크에 넣는다. 10%(w/v) KI 용액 10 cm³ 와 1 mol dm-³ HCl 10 cm³ 를 삼각플라스크에 첨가한다.
- 3. 용액이 옅은 노란색(pale yellow)이 될 때까지, Na₂S₂O₃ 용액으로 적정한다. 녹말용액(0.1%(w/v) starch solution) 2 cm³ 를 첨가한다. 용액은 남색(dark blue)이 될 것이다. 무색인 종말점까지 적정한다. 소모된 Na₂S₂O₃ 용액의 부피를 기록한다.

c1) 소모된 Na₂S₂O₃ 용액의 부피를 기록하라.

(표의 실험 횟수 전체를 채우지 않아도 됨.)

	실험 횟수		
	1	2	3
Na ₂ S ₂ O ₃ 용액 뷰렛 초기 부피, cm ³			
Na ₂ S ₂ O ₃ 용액 뷰렛 나중 부피, cm ³			
소모된 Na ₂ S ₂ O ₃ 용액의 부피, cm ³			

채택한 실험값, cm³; V3 =

(Accepted volume)

c2) Solution C 에 존재하는 IO₃⁻의 농도를 계산하라.

IO ₃ -의 농도, mol dm ⁻³ :	(소수점 아래 4 자리까지
103 コ ラエ, moi um :	(꼬구급 어디 4시니까지

c3) 묽은 KIO₃ 미지시료의 농도를 계산하라.
KIO ₃ 의 농도, mol dm ⁻³ : (소수점 아래 4 자리까지)