Short Introduction to Dynamical Systems

March 31, 2021

Introduction to Dynamical

Systems

• Ordinary differential equations (ODEs) are ubiquitous in a wide variety of fields

$$\dot{x} = F(x)$$

 Ordinary differential equations (ODEs) are ubiquitous in a wide variety of fields

$$\dot{x} = F(x)$$

Sometimes we can find analytical solutions for our system of interest

$$\dot{x} = cx$$
 $x(t) = Ce^{ct}$

 Ordinary differential equations (ODEs) are ubiquitous in a wide variety of fields

$$\dot{x} = F(x)$$

Sometimes we can find analytical solutions for our system of interest

$$\dot{x} = cx$$
 $x(t) = Ce^{ct}$

 But in general, analytical solutions for ODE systems, can not be found

$$\begin{split} C_m \dot{V} &= -I_L(V) - I_{Na}(V) - I_K(V,n) + I_{app}, \\ \dot{n} &= \frac{n_{\infty}(V) - n}{\tau_n(V)}, \end{split}$$

 Ordinary differential equations (ODEs) are ubiquitous in a wide variety of fields

$$\dot{x} = F(x)$$

Sometimes we can find analytical solutions for our system of interest

$$\dot{x} = cx$$
 $x(t) = Ce^{ct}$

 But in general, analytical solutions for ODE systems, can not be found

$$C_m \dot{V} = -I_L(V) - I_{Na}(V) - I_K(V, n) + I_{app},$$

$$\dot{n} = \frac{n_{\infty}(V) - n}{\tau_n(V)},$$

• Nevertheless, Dynamical Systems show which is the asymptotic $(t \to \infty)$ behavior of systems in the form $\dot{x} = F(x)$

• Consider the system $\dot{x} = F(x)$

$$\dot{x} = F(x)$$
 $x \in \mathbb{R}^n$

• Consider the system $\dot{x} = F(x)$

$$\dot{x} = F(x)$$
 $x \in \mathbb{R}^n$

• Example in \mathbb{R}^2 , $x = (x_1, x_2) \in \mathbb{R}^2$

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} F_{x_1} \\ F_{x_2} \end{pmatrix} = \begin{pmatrix} \beta x_1 - x_2 - x_1 (x_1^2 + x_2^2) \\ x_1 + \beta x_2 - x_2 (x_1^2 + x_2^2) \end{pmatrix}$$

• Consider the system $\dot{x} = F(x)$

$$\begin{pmatrix} \dot{x_1} \\ \dot{x_2} \end{pmatrix} = \begin{pmatrix} F_{x_1} \\ F_{x_2} \end{pmatrix} = \begin{pmatrix} \beta x_1 - x_2 - x_1(x_1^2 + x_2^2) \\ x_1 + \beta x_2 - x_2(x_1^2 + x_2^2) \end{pmatrix}$$

• Consider the system $\dot{x} = F(x)$

$$\begin{pmatrix} \dot{x_1} \\ \dot{x_2} \end{pmatrix} = \begin{pmatrix} F_{x_1} \\ F_{x_2} \end{pmatrix} = \begin{pmatrix} \beta x_1 - x_2 - x_1(x_1^2 + x_2^2) \\ x_1 + \beta x_2 - x_2(x_1^2 + x_2^2) \end{pmatrix}$$

• Consider $\beta = -1$, take x = (1, 1)

• Consider the system $\dot{x} = F(x)$

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} F_{x_1} \\ F_{x_2} \end{pmatrix} = \begin{pmatrix} \beta x_1 - x_2 - x_1 (x_1^2 + x_2^2) \\ x_1 + \beta x_2 - x_2 (x_1^2 + x_2^2) \end{pmatrix}$$

• Consider $\beta = -1$, take $x = (1,1) \to F(1,1) = (-4,-2)$

• Consider the system $\dot{x} = F(x)$

$$\begin{pmatrix} \dot{x_1} \\ \dot{x_2} \end{pmatrix} = \begin{pmatrix} F_{x_1} \\ F_{x_2} \end{pmatrix} = \begin{pmatrix} \beta x_1 - x_2 - x_1(x_1^2 + x_2^2) \\ x_1 + \beta x_2 - x_2(x_1^2 + x_2^2) \end{pmatrix}$$

• Consider $\beta = -1$

• Consider the system $\dot{x} = F(x)$

$$\begin{pmatrix} \dot{x_1} \\ \dot{x_2} \end{pmatrix} = \begin{pmatrix} F_{x_1} \\ F_{x_2} \end{pmatrix} = \begin{pmatrix} \beta x_1 - x_2 - x_1(x_1^2 + x_2^2) \\ x_1 + \beta x_2 - x_2(x_1^2 + x_2^2) \end{pmatrix}$$

• Consider $\beta = -1$

• Consider the system $\dot{x} = F(x)$

$$\begin{pmatrix} \dot{x_1} \\ \dot{x_2} \end{pmatrix} = \begin{pmatrix} F_{x_1} \\ F_{x_2} \end{pmatrix} = \begin{pmatrix} \beta x_1 - x_2 - x_1(x_1^2 + x_2^2) \\ x_1 + \beta x_2 - x_2(x_1^2 + x_2^2) \end{pmatrix}$$

• Consider $\beta = -1$

the trajectory of a given point x corresponds to the flow $\phi_t(x)$ generated by the vector field F(x)

• Although we not solve $\dot{x} = F(x)$ we obtain the asymptotic behavior

• Although we not solve $\dot{x} = F(x)$ we obtain the asymptotic behavior

• Although we not solve $\dot{x} = F(x)$ we obtain the asymptotic behavior

• Why points in \mathcal{M} approach $x^* = (0,0)$?

$$\dot{x} = \begin{pmatrix} F_{x_1} \\ F_{x_2} \end{pmatrix} \bigg|_{(x_1, x_2) = 0} = \begin{pmatrix} \beta x_1 - x_2 - x_1 (x_1^2 + x_2^2) \\ x_1 + \beta x_2 - x_2 (x_1^2 + x_2^2) \end{pmatrix} \bigg|_{(x_1, x_2) = 0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

• Although we not solve $\dot{x} = F(x)$ we obtain the asymptotic behavior

• Why points in \mathcal{M} approach $x^* = (0,0)$?

$$\dot{x} = \begin{pmatrix} F_{x_1} \\ F_{x_2} \end{pmatrix} \bigg|_{(x_1, x_2) = 0} = \begin{pmatrix} \beta x_1 - x_2 - x_1 (x_1^2 + x_2^2) \\ x_1 + \beta x_2 - x_2 (x_1^2 + x_2^2) \end{pmatrix} \bigg|_{(x_1, x_2) = 0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

• $x^* = (0,0)$ it is an equilibrium

Л

• Although we not solve $\dot{x} = F(x)$ we obtain the asymptotic behavior

• Why points in \mathcal{M} approach $x^* = (0,0)$?

$$\dot{x} = \begin{pmatrix} F_{x_1} \\ F_{x_2} \end{pmatrix} \bigg|_{(x_1, x_2) = 0} = \begin{pmatrix} \beta x_1 - x_2 - x_1(x_1^2 + x_2^2) \\ x_1 + \beta x_2 - x_2(x_1^2 + x_2^2) \end{pmatrix} \bigg|_{(x_1, x_2) = 0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

- $x^* = (0,0)$ it is an equilibrium
- It is a stable equilibrium

• What does it mean that the attractor of our system is a point?

• What does it mean that the attractor of our system is a point?

• Lets take x = (1,1) and integrate it using an ODE solver

What does it mean that the attractor of our system is a point?

• Lets take x = (1,1) and integrate it using an ODE solver

The phase space is precisely the time projection of the trajectories

What does it mean that the attractor of our system is a point?

• Lets take x = (1,1) and integrate it using an ODE solver

Fixed points of ODEs correspond to trajectories approaching a constant value

• Lets come back to the system $\dot{x} = F(x)$

$$\begin{pmatrix} \dot{x_1} \\ \dot{x_2} \end{pmatrix} = \begin{pmatrix} F_{x_1} \\ F_{x_2} \end{pmatrix} = \begin{pmatrix} \beta x_1 - x_2 - x_1(x_1^2 + x_2^2) \\ x_1 + \beta x_2 - x_2(x_1^2 + x_2^2) \end{pmatrix}$$

• Lets come back to the system $\dot{x} = F(x)$

$$\begin{pmatrix} \dot{x_1} \\ \dot{x_2} \end{pmatrix} = \begin{pmatrix} F_{x_1} \\ F_{x_2} \end{pmatrix} = \begin{pmatrix} \beta x_1 - x_2 - x_1 (x_1^2 + x_2^2) \\ x_1 + \beta x_2 - x_2 (x_1^2 + x_2^2) \end{pmatrix}$$

• Now consider $\beta = 1$

• Lets come back to the system $\dot{x} = F(x)$

$$\begin{pmatrix} \dot{x_1} \\ \dot{x_2} \end{pmatrix} = \begin{pmatrix} F_{x_1} \\ F_{x_2} \end{pmatrix} = \begin{pmatrix} \beta x_1 - x_2 - x_1(x_1^2 + x_2^2) \\ x_1 + \beta x_2 - x_2(x_1^2 + x_2^2) \end{pmatrix}$$

• Consider $\beta = 1$

The portrait of the system dramatically changed

- x^* is an unstable equilibrium
- Trajectories approach a closed curve Γ

• What does it mean the attractor of our system is a closed curve Γ ?

What does it mean the attractor of our system is a closed curve Γ?

• Lets take some points and integrate them

the system has periodic dynamics

What does it mean the attractor of our system is a closed curve Γ?

Lets take some points and integrate them

different points approach Γ with different phases θ

ullet As different points on ${\mathcal M}$ approach the cycle Γ with different phases

• As different points on ${\mathcal M}$ approach the cycle Γ with different phases

we can assign a phase θ to each point of Γ

ullet As different points on ${\mathcal M}$ approach the cycle Γ with different phases

we can assign a phase θ to each point of Γ

• We can define a parameterization $x = \gamma(\theta)$ for $x \in \Gamma$

• As different points on ${\mathcal M}$ approach the cycle Γ with different phases

we can assign a phase θ to each point of Γ

- We can define a parameterization $x = \gamma(\theta)$ for $x \in \Gamma$
- Next slides will be devoted to explain the isochrons \to geometrical interpretation of the distribution of phases in $\mathcal M$

• We assign a phase θ to each point of Γ

• We assign a phase θ to each point of Γ

and extend the concept of phase heta to ${\mathcal M}$ by the isochrons ${\mathcal I}_{ heta}$

• The \mathcal{I}_{θ} are the sets of points reaching Γ with the same phase θ

• The \mathcal{I}_{θ} are the sets of points reaching Γ with the same phase θ

Therefore, the computation of the isochrons \mathcal{I}_{θ} illustrates the distribution of asymptotic phases for points in \mathcal{M}

• The \mathcal{I}_{θ} are the sets of points reaching Γ with the same phase θ

Therefore, the computation of the isochrons \mathcal{I}_{θ} illustrates the distribution of asymptotic phases for points in \mathcal{M}

• For the sake of illustraton just 8 different isochrons were plotted

• The \mathcal{I}_{θ} are the sets of points reaching Γ with the same phase θ

Therefore, the computation of the isochrons \mathcal{I}_{θ} illustrates the distribution of asymptotic phases for points in \mathcal{M}

- For the sake of illustraton just 8 different isochrons were plotted
- \bullet The complete set of Isochrons folliates the whole basin of attraction ${\cal M}$ of Γ

ullet The computation of $\mathcal{I}_{ heta}$ provides full understanding of the system under perturbations

perturbations produce a phase shift $\Delta\theta$ because they change trajectories from one isochron to other

 \bullet More importantly, \mathcal{I}_{θ} illustrate the phasic dependence of the system under perturbations

- \bullet More importantly, \mathcal{I}_{θ} illustrate the phasic dependence of the system under perturbations
- The same perturbation applied at different phases θ produce a different phase shift $\Delta\theta$

- More importantly, \mathcal{I}_{θ} illustrate the phasic dependence of the system under perturbations
- The same perturbation applied at different phases θ produce a different phase shift $\Delta\theta$

• That is exactly what the Phase Response Curves (PRCs) measure

• The Phase Response Curves (PRC) measure which is the dependency between the phase θ at which the perturbation is applied and the corresponding phase shift $\Delta\theta$

- Systems $\dot{x} = F(x)$
 - F(x) is a vector field defining a flow $\phi_t(x)$ (trajectories)
 - Trajectories are plotted in the phase space
 - Point and periodic attractors

- Systems $\dot{x} = F(x)$
 - F(x) is a vector field defining a flow $\phi_t(x)$ (trajectories)
 - Trajectories are plotted in the phase space
 - Point and periodic attractors
- ullet We studied the phase heta of the oscillation

- Systems $\dot{x} = F(x)$
 - F(x) is a vector field defining a flow $\phi_t(x)$ (trajectories)
 - Trajectories are plotted in the phase space
 - Point and periodic attractors
- ullet We studied the phase heta of the oscillation
- We linked the phase θ of the oscillation with isochrons \mathcal{I}_{θ} (sets of points with the same asymptotic phase)

- Systems $\dot{x} = F(x)$
 - F(x) is a vector field defining a flow $\phi_t(x)$ (trajectories)
 - Trajectories are plotted in the phase space
 - Point and periodic attractors
- ullet We studied the phase heta of the oscillation
- We linked the phase θ of the oscillation with isochrons \mathcal{I}_{θ} (sets of points with the same asymptotic phase)
- We have seen the relationship between the isochrons \mathcal{I}_{θ} and the phase shifts $\Delta \theta$ due to perturbations

- Systems $\dot{x} = F(x)$
 - F(x) is a vector field defining a flow $\phi_t(x)$ (trajectories)
 - Trajectories are plotted in the phase space
 - Point and periodic attractors
- We studied the phase θ of the oscillation
- We linked the phase θ of the oscillation with isochrons \mathcal{I}_{θ} (sets of points with the same asymptotic phase)
- We have seen the relationship between the isochrons \mathcal{I}_{θ} and the phase shifts $\Delta \theta$ due to perturbations
- Finally, we understood how this phasic dependence is illustrated by means of the PRCs