# Nomogramme

für den Versuch

## Kennwertermittlung

Approximation von Regelstrecken, deren Übergangsfunktion h(t) - experimentell aufgenommen - vorliegt.

## 1 Stetig lineare, nichtschwingende, proportionale Regelstrecke mit Verzögerungen n-ter Ordnung (P-T<sub>n</sub>-Strecken)

#### 1.1 Wendetangentenverfahren



### 1.1.1 Approximation an eine P-T<sub>1</sub>-T<sub>t</sub>-Strecke

#### a) Einfache Form:

#### Vorgehensweise:

Verstärkung Ks ermitteln

$$K_S = \frac{\Delta x_a}{\Delta x_e}$$

Tu und Ta mittels Wendetangente bestimmen

$$\mathscr{F} T_t := T_u$$

$$\mathscr{F} T_1 := T_a$$

$$G(s) = \frac{K_S \cdot e^{-sT_t}}{1 + sT_1}$$

$$h(t) = \begin{cases} 0 & \text{; für } t < T_t \\ K_S \cdot \left(1 - e^{-\frac{t - T_t}{T_1}}\right) & \text{; für } t \ge T_t \end{cases}$$

#### b) Analytische Form:

#### Vorgehensweise:

- Wahl zweier Punkte  $P_1 = \{t_1; h(t_1)\}$  und  $P_1 = \{t_2; h(t_2)\}$ , für die die Approximation exakt sein soll
- Berechnung:

$$\begin{split} T_1 &= \frac{t_1 - t_2}{\ln\left(1 - \frac{h(t_2)}{K_S}\right) - \ln\left(1 - \frac{h(t_1)}{K_S}\right)} \\ T_t &= t_1 + T_1 \cdot \ln\left(1 - \frac{h(t_1)}{K_S}\right) \quad oder \quad t_2 + T_1 \cdot \ln\left(1 - \frac{h(t_2)}{K_S}\right) \end{split}$$

G(s) bzw. h(t): siehe oben

#### 1.1.2 Approximation an eine P-T<sub>n</sub>-Strecke mit gleichen Zeitkonstanten

#### Vorgehensweise:

- Verstärkung Ks ermitteln
- $\mathcal{F}_{T_u}$  mittels Wendetangente bestimmen
- Grad der Verzögerung **n** aus folgender Tabelle ermitteln:

| $\frac{T_a}{T_u}$ | 8 | 9,65 | 4,59 | 3,13 | 2,44 | 2,03 | 1,75 | 1,56 | 1,41 | 1,29 |
|-------------------|---|------|------|------|------|------|------|------|------|------|
| n                 | 1 | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |

 $\mathcal{F} \frac{T_a}{T_1}$  aus Tabelle entnehmen:

| n                 | 1 | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|-------------------|---|------|------|------|------|------|------|------|------|------|
| $\frac{T_a}{T_1}$ | 1 | 2,72 | 3,69 | 4,45 | 5,12 | 5,70 | 6,23 | 6,71 | 7,16 | 7,59 |

T<sub>1</sub> berechnen

$$\begin{split} G(s) &= \frac{K_S}{(1+sT_1)^n} \\ h(t) &= \begin{cases} 0 & \text{; für } t < T_t \\ K_S \cdot \left\{1 - e^{-\frac{t}{T_1}} \cdot \sum_{k=0}^{n-1} \left[\frac{1}{k!} \cdot \left(\frac{t}{T_1}\right)^k\right] \right\} & \text{; für } t \ge T_t \end{cases}^{-1} \end{split}$$

<sup>&</sup>lt;sup>1</sup> k! bedeutet Fakultät von k.

#### 1.1.3 Approximation an P-T<sub>n</sub>-Strecke mit verschiedenen Zeitkonstanten

## a) P-T<sub>2</sub>-Strecke (geeignet für $T_a/T_u > 9,65$ )



#### Vorgehensweise:

Verstärkung Ks ermitteln

 $\mathcal{T}_{\mathbf{u}}$  mittels Wendetangente bestimmen

 $\begin{tabular}{ll} \hline \begin{tabular}{ll} \hline \end{tabular} \hline \end{tabular} \end{tabul$ 

 $\ensuremath{\text{@}}$  mit b aus rechtem Nomogramm  $\frac{T_a}{T}$  ermitteln

T berechnen

 $\mathfrak{F} T_1 = T$ 

 $\mathbf{T_2} = \mathbf{b} \cdot \mathbf{T}$ 

$$G(s) = \frac{K_S}{(1+sT_1)\cdot(1+sT_2)}$$

$$h(t) = \begin{cases} 0 & \text{; für } t < T_t \\ K_S \cdot \left(1 - \frac{b}{b-1} \cdot e^{-\frac{t}{T_2}} + \frac{1}{b-1} \cdot e^{-\frac{t}{T_1}}\right) & \text{; für } t \ge T_t \end{cases}$$

## **b)** P-T<sub>3</sub>-Strecke (geeignet für $4,59 < T_a/T_u < 7,25$ )





#### Vorgehensweise:

- Verstärkung Ks ermitteln
- $\mathcal{T}_{\mathbf{u}}$  mittels Wendetangente bestimmen
- Arr mit  $\frac{T_a}{T_u}$  aus linkem Nomogramm Faktor **b** ermitteln:
- $\mathcal{F}$  mit **b** aus rechtem Nomogramm  $\frac{T_a}{T}$  ermitteln
- T berechnen

$$\mathfrak{F}$$
  $\mathbf{T_1} = \mathbf{T}$ ;  $\mathbf{T_2} = \mathbf{b} \cdot \mathbf{T}$ 

$$\begin{split} & \text{$^{\circ}$} \ \, T_1 = T; \qquad T_2 = b \cdot T \\ & G(s) = \frac{K_S}{(1 + sT_1) \cdot (1 + sT_2)^2} \\ & h(t) = \begin{cases} 0 & \text{; } (t < T_t) \\ K_S \cdot \left\{1 - \frac{1}{(b-1)^2} \cdot e^{-\frac{t}{T_1}} - \left[\frac{b \cdot (b-2)}{(b-1)^2} + \frac{t}{T_1 \cdot (b-1)}\right] \cdot e^{-\frac{t}{b \cdot T_2}} \right\} & \text{; } (t \ge T_t) \end{cases} \end{split}$$

### 1.2 Zeitprozentkennwertverfahren



#### Vorgehensweise:

- K<sub>S</sub> ermitteln
- Zeitkonstanten aus Sprungantwort bestimmen (T<sub>10</sub>, T<sub>30</sub>, T<sub>50</sub>, T<sub>70</sub> bzw. T<sub>90</sub>)
- Quotienten bilden (z.B. T<sub>10</sub>/ T<sub>90</sub>)
- Mit Hilfe der Nomogramme auf den folgenden Seiten bestimmen:
  - bei gleichen Zeitkonstanten: n (Ordnung der Verzögerung)
  - bei verschiedenen Zeitkonstanten: b (Quotient aus T<sub>2</sub> und T<sub>1</sub>)
- Mit n bzw. b aus zweitem Nomogramm T<sub>i</sub>/T bestimmen
- Zeitkonstanten berechnen

#### 1.2.1 Approximation an P-T<sub>n</sub>-Strecke mit gleichen Zeitkonstanten



$$\mathscr{F} \mathsf{T}_1 := \mathsf{T}$$

$$G(s) = \frac{K_S}{(1+sT_1)^n}$$

$$h(t) = \begin{cases} 0 & \text{; für } t < T_t \\ K_S \cdot \left\{1 - e^{-\frac{t}{T_1}} \cdot \sum_{k=0}^{n-1} \left[\frac{1}{k!} \cdot \left(\frac{t}{T_1}\right)^k\right] \right\} & \text{; für } t \ge T_t \end{cases}^3$$

 $<sup>^2</sup>$  n gibt die Anzahl der Verzögerungsglieder der Regelstrecke (Speicher) wieder und muss folglich immer ganzzahlig sein! Praktisch bedeutet dies, dass, sollte der Quotient  $T_i/T_j$  nicht auf einem der Punkte der Kurve im linken Nomogramm liegen, Sie sich für den nächstliegenden Punkt auf der Kurve und damit einen ganzzahligen Wert für n entscheiden müssen.

<sup>&</sup>lt;sup>3</sup> k! bedeutet Fakultät von k.

#### 1.2.2 Approximation an P-T<sub>2</sub>-Strecke mit verschiedenen Zeitkonstanten



$${\mathfrak F} T_1 := T$$

$$\mathcal{F} \mathbf{T}_2 := \mathbf{b} \cdot \mathbf{T}$$

$$G(s) = \frac{K_S}{(1+sT_1)\cdot(1+sT_2)}$$

$$h(t) = \begin{cases} 0 & \text{; für } t < T_t \\ K_S \cdot \left(1 - \frac{b}{b-1} \cdot e^{-\frac{t}{T_2}} + \frac{1}{b-1} \cdot e^{-\frac{t}{T_1}} \right) & \text{; für } t \ge T_t \end{cases}$$