Introdução à Física Computacional 1S/2018

Projeto 5 — Dinâmica populacional

Início: 21 de Maio de 2018

Prof.: Eric C. Andrade

Data da entrega do relatório: 11 de Junho de 2018

Descrição:

Discutiremos nesse problema o mapa logístico e o conceito de caos determinístico. Como motivação para o problema, vamos discutir o o crescimento populacional de uma espécie isolada e na ausência de predadores. Nesse modelo idealizado, faremos duas hipóteses

- 1. Mais animais implica em um mais descendentes;
- 2. Existe um limite superior para o número de animais que podem habitar o ambiente de forma sustentável;

O primeiro modelo que podemos utilizar é o seguinte

$$\frac{dN\left(t\right)}{dt} = \alpha N\left(t\right),\tag{1}$$

onde $N\left(t\right)$ é o número de animais em um determinado tempo t e α é relacionada com a taxa de reprodução. Na verdade, não queremos uma solução contínua no tempo, mas sim em intervalos discretos, digamos em tempos correspondentes à diferença de idade entre duas gerações ajacentes,

$$N_{i+1} = (1 + \alpha \Delta t) N_i = rN_i, \tag{2}$$

onde N_i é o número de animais na geração i e definimos uma nova constante $r=1+\alpha\Delta t$. Sabemos que a solução para esse problema é $N\left(t\right)=N_0e^{\alpha t}$, onde $N_0=N\left(t=0\right)$. Essa modelo contempla nossa hipótese 1, mas não fornece um limite um limite superior para o número de animais, violando a hipótese 2. A modificação que propomos é a seguinte

$$N_{i+1} = rN_i \left(1 - \frac{N_i}{N_{max}} \right), \tag{3}$$

onde explicitamente introduzimos um N_{max} acima do qual a população de animais não pode mais crescer. Se agora definimos $x_i \equiv N_i/N_{max}$ temos

$$x_{i+1} = rx_i \left(1 - x_i \right), \tag{4}$$

com a nova variável $x_i \in [0,1]$. Essa equação é conhecida como o mapa logístico e descreve o crescimento populacional respeitando as duas hipóteses acima.

Podemos reescrever a equação (4) como

$$x_{i+1} = G\left(x_i\right),\tag{5}$$

onde definimos o mapa $G(x_i)$ como

$$G(x_i) \equiv rx_i (1 - x_i). \tag{6}$$

Na linguagem de nosso modelo, podemos então procurar pelo valor máximo da população para uma dado valor da taxa de reprodução r. Esse valor é conhecido como ponto fixo do mapa x^* (a população não aumenta mais com o passar do tempo)

$$x^* = G\left(u^*\right) = rx^*\left(1 - x^*\right),\tag{7}$$

com as soluções óbvias $x^* = 0$ e $x^* = 1 - 1/r$. Como $r \ge 1$, garantimos que $x^* \in [0, 1]$. Vemos assim que agora nosso modelo contempla a hipótese 2.

Sugestão de execução:

Exercício 1: Aula 11. Exercício 2: Aulas 11 e 12. Exercício 3: Aulas 12 e 13

1) Ponto fixo de período um

- (a) Calcule graficamente a solução da equação do ponto fixo para r=1, 2 e 2.5 e compare com o resultado esperado. Para tal, você deve graficar simultaneamente duas curvas: f(x)=x e g(x)=rx(1-x) e procurar pelo ponto no qual elas se cruzam. Lembre-se que $x \in [0,1]$.
- (b) Implemente agora a o mapa logístico, Eq. (4), por meio de um código FORTRAN. Faça agora um gráfico de $x_i \times i$, para r = 1, 2 e 2.5 considerando três diferentes valores iniciais de $x_0 \neq 0$ em cada um dos casos. Discuta seus resultados e os compare com aqueles obtidos em (a).
- (c) No item (b) vimos que o ponto fixo do mapa não depende do valor de x_0 . Podemos formalizar esse ponto calculando a distância

$$d_{i} = \left| G^{(i)}(\tilde{x}_{0}) - G^{(i)}(x_{0}) \right|, \tag{8}$$

onde $\tilde{x}_0 = x_0 + \varepsilon$ e $G^{(i)}(x_0) = G(G^{(i-1)}(x_0)) = \cdots$ quer dizer que aplicamos o mapa (6) i vezes a partir do ponto x_0 . Considere r = 2.5, cinco valores de x_0 e um pequeno valor de ε . Faça os gráficos de $d_i \times i$ e confirme que d_i decai exponencialmente com i em todos os casos. Calcule o exponente da curva $m\acute{e}dia$. Discuta seus resultados.

(d) Uma maneira de formalizar esse decaimento exponencial de d_i é por meio do expoente de Lyapunov

$$\lambda = \frac{1}{n} \sum_{j=0}^{n-1} \ln |G'(x_j)|,$$
 (9)

onde $G'(x_j)$ quer dizer que aplicamos a derivada do mapa (6) ao ponto x_j , com $x_j = G^{(j)}(x_0)$. Considere novamente r = 2.5 e cinco valores de x_0 e calcule λ para cada um deles. Certifique-se de que sua escolha de n produza o resultado assintótico correto. Compare o valor $m\acute{e}dio$ de λ com o expoente obtido graficamente em (c). Discuta seus resultados.

2) Dobras de período e caos

Até agora, o mapa logístico tem se comportado exemplarmente e nada dramático parece acontecer. A situação fica mais interessante quanto $r \geq 3$. Isso é porque, nesse caso, temos soluções não triviais para pontos fixos de período dois e superiores. Um ponto fixo de período dois é definido como

$$x^{\star} = G^2(x^{\star}). \tag{10}$$

- (a) Mostre graficamente que, para r = 3.2, temos agora duas soluções possíveis para a equação (10). Compare seus resultados gráficos com aqueles obtidos diretamente da aplicação do mapa.
- (b) Para explorarmos em mais detalhes essas dobras de período, vamos construir o chamado diagrama de bifurcação, Fig. 1, que é a figura clássica desse mapa. Esse diagrama mostra o valor dos pontos fixos x^* como função de r e podemos observar as seguidas dobras de período que, inexoravelmente, levam ao caos. Para escolhas razoáveis de parâmetros, grafique o diagrama de bifurcação, como na Fig. 1.
- (c) Com os resultados do item anterior, encontre o valor de r_2 , onde o período $2^2 = 4$ se inicia, e r_3 , onde o período $2^3 = 8$ começa. Utilize esses valores para estimar a constante de Feigenbaum

$$\delta = \frac{r_2 - r_1}{r_3 - r_2}. (11)$$

Discuta seus resultados.

(d) Acima de r=3.569946, acessamos a região do chamado caos determinístico. Para um valor de r>3.6 grafique $x_i \times i$ para diferentes valores de x_0 . Faça também um gráfico da distância $d_i \times i$, Eq. (8), para um dado ε , bem como estime o valor do expoente de Lyapunov λ nesse caso. Discuta cuidadosamente seus resultados.

Figura 1: Diagrama de bifurcação para o mapa logístico.

3) Modelo predador-presa

Podemos incrementar nosso modelo ecológico adicionando uma segunda espécie ao problema. Admitimos que essa segunda espécie interage com a primeira espécie mudando seu número. O modelo mais simples a ser considerado é o modelo predador-presa ou Lotka-Volterra. As populações das duas espécies obedecem às seguintes equações diferenciais

$$\frac{dx}{dt} = ax - bxy, (12)$$

$$\frac{dx}{dt} = ax - bxy,$$

$$\frac{dy}{dt} = -cy + dxy,$$
(12)

onde x é o número de presas (por exemplo, lebre) em um dado tempo t, y é o número de predadores (por exemplo, lince), dx(y)/dt é a taxa de variação temporal da quantidade de espécimes e a, b, c e d são constantes caracterizando o acoplamento (interação) entre as duas populações. Embora pareça um pouco mais realístico que o mapa logístico, o modelo dado pelas equações (12) e (13) possui uma série de hipóteses restringentes

- Sempre há comida para as presas;
- Os predadores nunca se saciam e alimentam-se a apenas das presas;
- As taxas de mudanças das populações só dependem do seu tamanho. Interações com e/ou mudanças do meio ambiente são desprezadas.

Consideraremos, inicialmente, o seguinte conjunto de parâmetros em nossa discussão a = 2/3, b = 4/3 e c = d = 1.

- (a) Discuta brevemente qual é a interpretação de cada um dos parâmetros a, b, c e d dentro desse modelo. Quais são suas unidades?
- (b) Escreva um programa que resolva as equações (12) e (13) por meio do método de Euler-Cromer. Em sua discussão no relatório, você deve apresentar explicitamente a versão discreta dessas equações.
- (c) Para um Δt cuidadosamente escolhido e diferentes condições iniciais x_0 e y_0 , calcule como as populações da presa e do predador evoluem no tempo. Discuta seus resultados e contraste-os com aqueles esperados pelo mapa logístico (populações independentes).
- (d) Construa o espaço de fase desse modelo, isso é grafique a "trajetória" $y(t) \times x(t)$, para as curvas obtidas em (b). Qual é o ponto fixo nesse caso? Discuta seus resultados e explique porque utilizamos o método de Euler-Cromer para esse problema.

(e) Considere agora a tabela abaixo com a população de lebres e linces no Canadá no início do século XX, obtidas por meio de dados do comércio de suas peles. Compare esses dados com as predições do modelo predador-presa para $a=0.481,\,b=0.025,\,c=0.927$ e d=0.028. Naturalmente, você deve considerar $x_0=30$ e $y_0=4$ e trabalhar com as poluções em milhares. Grafique tanto as populações como função do tempo quanto a trajetória. Determine qual é o ponto fixo do modelo nesse caso. Você considera o modelo predador-presa descrito pelas equações (12) e (13) como um bom modelo para esse problema?

Ano	Lebre $(\times 10^3)$	Lince $(\times 10^3)$	Ano	Lebre $(\times 10^3)$	Lince $(\times 10^3)$
1900	30	4	1911	40.3	8
1901	47.2	6.1	1912	57	12.3
1902	70.2	9.8	1913	76.6	19.5
1903	77.4	35.2	1914	52.3	45.7
1904	36.3	59.4	1915	19.5	51.1
1905	20.6	41.7	1916	11.2	29.7
1906	18.1	19	1917	7.6	15.8
1907	21.4	13	1918	14.6	9.7
1908	22	8.3	1919	16.2	10.1
1909	25.4	9.1	1920	24.7	8.6
1910	27.1	7.4	_	-	-

Breve discussão sobre a execução dos problemas

• Ponto fixo de ordem 2

Definimos $x^* = G^2(x^*)$ como na Eq. (10). Da definição do mapa, temos que

$$x^* = G(rx^*(1-x^*)) = r[rx^*(1-x^*)](1-rx^*(1-x^*)).$$

Descartando agora a solução trivial $x^* = 0$, vem que

$$rx^{*3} - 2rx^{*2} + (r-1)x^* + \frac{1}{r^2} - 1 = 0,$$

com soluções

$$x^* = 1 - \frac{1}{r} e x_{2a(b)}^* = \frac{1}{2r} \left(1 + r \pm \sqrt{-3 - 2r - r^2} \right).$$
 (14)

A primeira solução corresponde, naturalmente, à solução de período um. As outra soluções $x_{2a(b)}^{\star}$ são as soluções não triviais de período dois que aparecem para r > 3, ponto a partir do qual a raiz quadrada fica real.

• Derivação simples do expoente de Lyapunov.

Começamos pela definição da distância d_i definida na equação (8). Assumimos então que para $i \to \infty$ temos que $d = \varepsilon e^{i\lambda}$, donde vem que

$$\lambda = \frac{1}{i} \ln \left[\frac{\left| G^{(i)} \left(x_0 + \varepsilon \right) - G^{(i)} \left(x_0 \right) \right|}{\varepsilon} \right],$$

$$\approx \frac{1}{i} \ln \left| \frac{d}{dx} G^{(i)} \left(x \right) \right|_{x = x_0} \right|. \tag{15}$$

Precisamos agora avaliar a derivada da i-ésima aplicação do mapa. Faremos isso por meio do método da indução. Começamos com o caso i=2

$$\frac{d}{dx}G^{(2)}(x)\Big|_{x=x_0} = \frac{d}{dx}G(G(x))\Big|_{x=x_0},$$

$$= G'(G(x_0))G'(x_0) = G'(x_1)G'(x_0), \tag{16}$$

onde invocamos a definição $x_1 \equiv G(x_0)$. Vamos agora assumir que esse resultado seja válido para um i genérico

$$\frac{d}{dx}G^{(i)}(x)\Big|_{x=x_0} = \prod_{j=0}^{i-1} G'(x_j),$$
(17)

novamente com $x_j \equiv G^{(j)}(x_0)$. O próximo passo é provar que o resultado em (17) seja válido para i+1

$$\frac{d}{dx}G^{(i+1)}(x)\Big|_{x=x_0} = \frac{d}{dx}G(G^{(i)}(x))\Big|_{x=x_0},$$

$$= G'(x_i)\frac{d}{dx}G^{(i)}(x)\Big|_{x=x_0},$$

$$= G'(x_i)\prod_{j=0}^{i-1}G'(x_j),$$

$$= \prod_{i=0}^{i}G'(x_j).$$
(18)

Estabelecemos assim a igualdade (17) de forma genérica. Combinando agora as equações (15) e (17) escrevemos

$$\lambda = \frac{1}{i} \ln \left| \prod_{j=0}^{i-1} G'(x_j) \right| = \frac{1}{i} \sum_{j=0}^{i-1} \ln |G'(x_j)|,$$

que nada mais é que a equação (9). Naturalmente, os valores de λ podem ser encontrados por meio de cálculos numéricos como discutimos nesses projeto. Contudo, como para o mapa logístico G'(x) = r(1-2x), podemos também escrever uma estimativa teórica para o expoente de Lyapunov considerando seus diferentes pontos fixos

- 0 < r < 1: $\lambda = \ln r$;
- 1 < r < 3: $\lambda = \ln|2 r|$;
- $3 < r < 1 + \sqrt{6}$: $\lambda = \frac{1}{2} \ln |r (1 2x_{2a}^{\star})| + \frac{1}{2} \ln |r (1 2x_{2b}^{\star})|$, onde x_{2a}^{\star} e x_{2b}^{\star} são os pontos fixos de período 2;
- r = 4: $\lambda = \ln 2$.