

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛ

ФАКУЛ	ЬТЕТ «ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕ	«RNH
КАФЕДРА	\ «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОНІ	НЫЕ ТЕХНОЛОГИИ»
	ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБО ПО ДИСЦИПЛИНЕ: ТИПЫ И СТРУКТУРЫ ДАННЫХ	TE №8
	Графы	
	Вариант 4	
Студент	Ильченко Е. А.	
Группа	ИУ7-34Б	
Названи	е предприятия НУК ИУ МГТУ им. Н. Э. Баумана	ì
Студент	Т	Ильченко Е. А.
П		

Студент	Ильченко Е. А.
Преполаватель	Силантьева А. В

Описание условия задачи

Найти все вершины графа, к которым от заданной вершины можно добраться по пути не длиннее А.

Описание ТЗ

1. Описание исходных данных и результатов работы программы

Входные данные:

Пользовательская команда из доступных и необходимые аргументы определенного сценария:

- 1: Ввести граф вручную
- 2: Ввести граф из файла
- 3: Вывести матрицу смежности графа
- 4: Вывести граф
- 5: Найти все вершины графа, к которым от заданной вершины можно добраться по пути не длиннее А
- 6: Меню
- 0: Выход

Также программа принимает на вход текстовый файл, содержащий целочисленные значения, если пользователь вводит граф из файла. При ручном вводе программа принимает количество вершин в графе и для каждого ребра: первую вершину, вторую вершину, вес ребра. На основе этих данных создается граф в виде матрицы. При поиске всех вершин, к которым от заданной вершины можно добраться по пути не длиннее А программа принимает на вход начальную вершину и максимальное расстояние.

Выходные данные:

Граф, измененный в соответствии с выбранной операцией; матрица смежности графа; png и dot файл с графом; вершины графа, к которым можно добраться от заданной вершины по пути не длиннее A.

2. Описание задачи, реализуемой в программе

Реализовать алгоритмы обработки графовых структур: поиск различных путей, проверка связности, построение остовых деревьев минимальной стоимости.

3. Способ обращения к программе

Запуск исполняемого файла

```
./app.exe
```

Далее выбирается, какой пункт меню выполнить

4. Описание возможных аварийных ситуаций и ошибок пользователя

- 1. Неверный ввод пункта меню: "Неверная команда"
- 2. Ошибка ввода названия файла: "Ошибка ввода файла"
- 3. Ошибка открытия файла: "Ошибка открытия файла"
- 4. Ошибка ввода начальной вершины: "Ошибка ввода начальной вершины"
- 5. Ошибка ввода максимального расстояния: "Ошибка ввода максимального расстояния"
- 6. Ошибка ввода количества вершин графа: "Ошибка ввода"
- 7. Ошибка ввода данных ребра: "Ошибка: некорректные данные"
- 8. Ошибка чтения данных из файла: "Ошибка: некорректные данные в файле"

5. Описание внутренних структур данных

```
typedef int **graph_t;
```

Тип данных, представляющий граф в виде матрицы смежности.

Каждый элемент массива graph_t[i][j] хранит вес пути из города і в город j.

Если путь между городами отсутствует, то значение равно INF. Между городами с одинаковым индексом (graph t[i][i]) значение пути 0.

6. Описание функций

```
int **input_graph(int *n);
```

Ручной ввод графа

```
int **read_graph_from_file(FILE *file, int *n);
```

Чтение графа из файла

```
void print_adjacency_matrix(graph_t graph, int n);
```

Вывод матрицы смежности из графа

```
void save_to_png_from_graphviz(graph_t graph, int n);
```

Coxpанение графа в png

void find_reachable_vertices(graph_t graph, int n, int start, int
max_distance);

Поиск всех вершин графа, к котором от заданной вершины можно добраться по пути не менее А

void free_graph(graph_t graph, int n);

Освобождение памяти из под графа

7. Описание алгоритмов

Алгоритм поиска всех вершин графа, к котором от заданной вершины можно добраться по пути не менее А

Инициализация начальных данных:

- 1. Выделяется память для двух массивов:
 - а. dist: хранит минимальные расстояния от начальной вершины до каждой из остальных вершин, изначально заполнен значением INF (бесконечность), кроме начальной вершины, расстояние до которой равно 0.
 - b. visited: хранит флаги, показывающие, посещена ли вершина, изначально заполнен нулями (все вершины не посещены).

Поиск ближайшей непосещённой вершины:

- 1. Для каждой итерации выбирается вершина u, минимальное расстояние до которой меньше всех остальных среди непосещённых.
- 2. Если все непосещённые вершины недостижимы (расстояние равно INF), алгоритм завершает выполнение.

Обход соседей текущей вершины:

- 1. Все соседи вершины u (по данным графа graph) проверяются на достижимость:
 - а. Если расстояние до соседа v через u меньше, чем текущее записанное в dist[v], то расстояние обновляется.
- 2. После проверки всех соседей вершина и отмечается как посещённая.

Вывод достижимых вершин:

- 1. Алгоритм проверяет каждую вершину графа.
- 2. Если расстояние до вершины не превышает max_distance и вершина не является стартовой, она считается достижимой.
- 3. Для каждой такой вершины выводится её номер и расстояние.

Завершение:

1. Освобождается память, выделенная для массивов dist и visited, чтобы избежать утечек.

Тесты

Тест	Входные данные	Выходные данные
Ввод графа вручную	Количество вершин: 4 Рёбра графа: 1 2 5 2 3 3 3 4 2 4 1 1 -1 -1 -1	Успешно введенный граф
Ввод графа из файла	Имя файла: test_graph.txt	Успешно считанный граф
Поиск достижимых вершин	Количество вершин: 4 Рёбра графа: 1 2 2 2 3 3 3 4 4 1 4 10 -1 -1 -1 Начальная вершина: 1 Максимальное расстояние: 5	Вершины, достижимые от вершины 1 с длиной пути <= 5: Вершина 2 (расстояние: 2) Вершина 3 (расстояние: 5)
Вывести граф	Количество вершин: 4 Рёбра графа: 1 2 5 2 3 3 3 4 2 4 1 1 -1 -1 -1	2 2 3 10 3 4
Вывести матрицу смежности графа	Количество вершин: 4 Рёбра графа: 1 2 5 2 3 3 3 4 2 4 1 1 -1 -1 -1	1 2 3 4 1 0 2 INF 10 2 2 0 3 INF 3 INF 3 0 4 4 10 INF 4 0

Ошибка ввода данных ребра	Количество вершин: 3 Рёбра графа: 1 5 10 1 -1 3 -1 -1 -1	Ошибка: некорректные данные
Ввод неверной команды	Команда: "а"	Неверная команда
Ошибка ввода количества вершин	Количество вершин: -1	Ошибка ввода

Ответы на контрольные вопросы

1. Что такое граф?

Граф — это конечное множество вершин и ребер, соединяющих их, т. е.: $G = \langle V, E \rangle$, где V — конечное непустое множество вершин; E — множество ребер (пар вершин).

2. Как представляются графы в памяти?

- Список смежности: Для каждой вершины хранится список соседних вершин.
- Матрица смежности: Двумерный массив, где элемент [i][j] равен весу ребра между вершинами i и j или 1 если связь есть, иначе 0.
- Матрица инцидентности: двумерная матрица, где строки вершины, а столбцы рёбра, 1 если вершина инцидентна ребру, иначе 0.

3. Какие операции возможны над графами?

- Добавление/удаление вершин
- Добавление/удаление ребер
- Поиск кратчайшего пути
- Проверка связности графа
- Поиск пути между вершинами
- Поиск минимального остовного дерева
- Обход графа

4. Какие способы обхода графов существуют?

- Поиск в глубину DFS
- Поиск в ширину BFS

5. Где используются графовые структуры?

Графовые структуры данных широко используются в областях науки и техники, для моделирования сложных взаимосвязей и зависимостей

- Сетевые технологии
- Алгоритмы и оптимизация

- Социальные сети
- Логистика и транспорт
- Искусственный интеллект

6. Какие пути в графе Вы знаете?

- Простой путь путь, в котором все вершины уникальны.
- Эйлеров путь проходит через каждое ребро графа ровно один раз.
- Эйлеров цикл Эйлеров путь, который начинается и заканчивается в одной вершине.
- Гамильтонов путь проходит через каждую вершину ровно один раз.
- Гамильтонов цикл Гамильтонов путь с возвращением в начальную вершину.
- Кратчайший путь путь с минимальной суммарной стоимостью рёбер.

7. Что такое каркасы графа?

Каркас графа (минимальное остовное дерево) — это подграф, соединяющий все вершины исходного графа минимальным числом рёбер без образования циклов.