Fitting Network and Energy Evaluation

Sandip Kumar Sah

Fitting Network and Energy Evaluation

After obtaining the per-atom descriptors \mathcal{D}_i from the descriptor formation stage, the next step is to compute the corresponding atomic energies E_i using a **fitting (energy) network**. Each atomic species (center type) t_c has its own neural network with parameters extracted from the trained DeepMD model.

The total potential energy of the configuration is then

$$E_{\text{total}} = \sum_{i=1}^{N_{\text{loc}}} E_i.$$

Since only a single configuration (frame) is simulated in HALMD at a time, the computation proceeds per atom in that configuration.

Network Inputs and Structure

For each atom i:

• Input descriptor: $\mathbf{\mathcal{D}}_i \in \mathbb{R}^{M_1 M_2}$

• Atom type: $t_c(i) \in \{0, \dots, T-1\}$

• Fitting network parameters for type t_c :

$$\{\mathbf{W}^{(l,t_c)},\mathbf{b}^{(l,t_c)},\mathtt{idt}^{(l,t_c)}\}_{l=0}^{L_t}$$

• Optional per-type bias: b_{tc}

Each fitting network $f_{\text{fit}}^{(t_c)}: \mathbb{R}^{M_1 M_2} \to \mathbb{R}$ maps the local descriptor to a scalar energy value.

Feedforward Computation with Residual Timestep Connections

Let $\mathbf{x}^{(0)} = \mathcal{D}_i$. The network consists of L hidden layers and one final output layer. For each hidden layer $l = 0, 1, \dots, L - 1$:

1. Linear transformation:

$$\mathbf{z}^{(l)} = \mathbf{x}^{(l)} \mathbf{W}^{(l)} + \mathbf{b}^{(l)}$$

2. Nonlinear activation:

$$\phi(\mathbf{z}^{(l)}) = \tanh(\mathbf{z}^{(l)})$$

3. Residual—dt update rule: The updated hidden state depends on whether the layer contains a learnable residual timestep parameter idt:

$$\mathbf{x}^{(l+1)} = \begin{cases} \mathbf{x}^{(l)} + \mathrm{idt}^{(l)} \odot \tanh(\mathbf{z}^{(l)}), & \text{if } \mathrm{idt}^{(l)} \text{ exists,} \\ \tanh(\mathbf{z}^{(l)}), & \text{otherwise.} \end{cases}$$

Here, \odot denotes element-wise multiplication.

This formulation, known as the **ResNet-dt mechanism**, allows each layer to take a small, learnable "step" in function space, effectively improving training stability and convergence.

Output Layer

The final (linear) layer produces the scalar atomic energy:

$$E_i^{\star} = \mathbf{x}^{(L)} \mathbf{W}^{(\text{final})} + \mathbf{b}^{(\text{final})},$$

where $\mathbf{W}^{(\text{final})} \in \mathbb{R}^{d_L \times 1}$ and $\mathbf{b}^{(\text{final})} \in \mathbb{R}$.

If the model includes a per-type atomic energy bias, the final energy for atom i becomes

$$E_i = E_i^{\star} + b_{t_c(i)}.$$

Total Energy Evaluation

Once the individual atomic energies are obtained, the total potential energy of the configuration is simply

$$E_{\text{total}} = \sum_{i=1}^{N_{\text{loc}}} E_i.$$

In HALMD, this sum is performed across all local atoms after evaluating the network for each atom type.

2

Implementation Notes

The computation follows exactly the logic of the following pseudocode:

```
x = D_i # descriptor
for layer in layers:
    z = x @ W + b
    if "idt" in layer:
        x = x + layer["idt"] * np.tanh(z)
    else:
        x = np.tanh(z)

E_i = x @ W_final + b_final
if bias_atom_e is not None:
    E_i += bias_atom_e[t_c]

E_total += E_i
```

The weight matrices \mathbf{W} are stored in row-major order, so the dot product $\mathbf{x} \in \mathbb{W}$ corresponds to the operation $\mathbf{x} \mathbf{W}$ in the mathematical expressions above.

Shape of Variables

Quantity	Symbol	Shape	Description
Descriptor vector	\mathcal{D}_i	$(M_1M_2,)$	Input to fitting network
Hidden activations	$\mathbf{x}^{(l)}$	$(d_l,)$	Layer activations
Weight matrix	$\mathbf{W}^{(l)}$	(d_l, d_{l+1})	Network weights
Bias vector	$\mathbf{b}^{(l)}$	$(d_{l+1},)$	Network biases
Residual step	$\mathtt{idt}^{(l)}$	$(d_{l+1},)$	Learnable residual scaling (if any)
Atomic energy	E_i	Scalar	Energy contribution of atom i
Total energy	$E_{\rm total}$	Scalar	System potential energy

Intuitive Explanation

The descriptor \mathcal{D}_i encodes the structural and chemical environment of atom i. The fitting network performs a nonlinear regression from this descriptor space to the corresponding atomic energy contribution E_i . By summing over all atoms, the total potential energy approximates the potential energy surface of the system:

$$E_{ ext{total}} = \sum_i f_{ ext{fit}}^{(t_c(i))}(\boldsymbol{\mathcal{D}}_i).$$

The residual timestep connections (idt) act like a learnable "integration step," ensuring that information flows smoothly through deeper networks and reducing vanishing gradient effects.