בשאלות 1,2 סמן לכל אחת מהטענות הבאות רק את הסעיפים הנכונים בטבלה בסוף העמוד

בשאלות הנ"ל יתכן ויש כמה טענות נכונות או אין בכלל טענות נכונות או כל הטענות נכונות.

שאלה 1:

$$C \subseteq B \setminus A$$
 אז , $C \not\subset A$ וכן $C \subseteq B$ אם (3%) א.

$$C \cap A = \Phi$$
 אז , $C \subseteq B \oplus (A \setminus B)$ ב. (3%) ב.

$$C \cap A \neq \Phi$$
 אז $C \neq \Phi$ וכן $C \subseteq P(A)$ אם (3%) ג.

$$C\cap A
eq \Phi$$
 אז $C
eq \Phi$ וכן $C
eq \Phi$ אז $C
eq C$

:2 שאלה

A imes B באופן הבא . $B = \{3,4\}$ באופן הבא . $A = \{1,2\}$

. שימו לב כי ב-
$$R$$
 זוגות של זוגות איברים, $R = \begin{pmatrix} (1,3) & (2,3) & (1,4) & (2,4) & (1,3) \\ (1,3) & (2,3) & (1,4) & (2,4) & (2,4) \end{pmatrix}$

:2.1 שאלה

- R (3%) רפלקסיבית.
 - ב. (3%) R סימטרית.
- R (3%) אנטיסימטרית.
 - ד. R (3%) טרנזיטיבית

A imes B מעל A imes B בצורה הבאה. נגדיר רלציה בשאלה, נגדיר ההתחלה בשאלה, בצורה הבאה $T = R \oplus [(A imes B) imes (A imes B)]$

$$|T| = 11$$
 (3%) .x

- ב. (3%) בילות שקילות שקילות, ומספר מחלקות השקילות שלה הוא 3. בילות השקילות בילות שלה הוא 3.
 - ג. (3%) $T \cup T^{-1}$ רלצית סדר חלקי.

$$\left|T\setminus T^{-1}\right|=1$$
 (3%) .T

שאלה 3:

 $A \cup (B \setminus C) \subseteq (A \cup B) \oplus (A \cup C)$: הוכח או הפרך את הטענה (14%)

אם הטענה נכונה, הוכח אותה עייי שימוש במושג השייכות של איברים (לא עייי אלגברה של קבוצות ולא בדיאגראמות ון) . אם הטענה לא נכונה, הבא דוגמא נגדית.

הפרכה: במקרה זה מאוד קל לבנות דוגמא נגדית. הסיבה, אם איבר נמצא בקבוצה A אזי יהיה שייך לאגף שמאל, ויהיה שייך לשני הביטויים שבינם מבצעים הפרש סימטרי באגף ימין, לכן לא יהיה באגף ימין.

:4 שאלה

סמן לכל אחת מהטענות הבאות רק את הסעיפים הנכונים בטבלה בסוף השאלה

א. (5%)אם מחברים בקטע של ישר כל זוג מתוך 10 נקודות במישור (שאף 3 מהן לא על אותו ישר), כל קטע צובעים באחד מתוך 3 צבעים, אזי בהכרח מנקודה מסוימת יצאו לפחות 4 ישרים בצבע זהה.

$$\sum_{i=0}^{71} {i+3 \choose i} = {75 \choose 71}$$
 (5%) ...

- .7 אווה $\left(2x^2 + \frac{3}{x^2} + 1\right)^3$ שווה בפיתוח (5%) איבר החופשי
- ר. (5%) מספר השלמים החיוביים הקטנים וזרים ל-67 שווה למספר השלמים החיוביים הקטנים וזרים ל-68.

שאלה 5:

: א. (7%) מצא את מספר הפתרונות בשלמים של המשוואה - את מספר הפתרונות בשלמים של המשוואה $x_1+x_2+x_3+x_4=41$. (ניתן להשאיר את התשובה כביטוי קומבינטורי). $x_i \geq -3$. i=1,2,3,4

D(4,53) :תשובה

: ב. $x_1+x_2+x_3+x_4=41$ - מצא את מספר הפתרונות בשלמים של המשוואה - מספר הפתרונות מספר הפתרונות בשלמים את $x_1+x_2+x_3+x_4=41$ - מניתן להשאיר את התשובה כביטוי קומבינטורי). $x_1+x_2\neq 12$ - $x_3+x_4\neq 12$ - $x_i\geq 0$ - i=1,2,3,4

תשובה: נגדיר

 $x_1 + x_2 = 12$ קבוצת כל הפתרונות בהם - A_1

 $x_3 + x_4 = 12$ קבוצת כל הפתרונות בהם - A_2

ברור כי $\left|A_1\cap A_3\right|=0$ כי אז סכום כל 4 האיברים הוא 24 ולא 24. נשארנו עם מקרה קל של הכלה והפרדה, וכל ברור כי $\left|A_1\cap A_3\right|=0$ כי אז סכום כל 4 האיברים הוא לינו לחשב הוא את $\left|A_1\right|$ (שכמובן, מסימטריות, שווה ל- $\left|A_2\right|$). כאן למעשה מקבלים מערכת של 2 משוואות

, ובסהייכ מספר הפתרונות המבוקש , D(2,12)D(2,29) , ומספר הפתרונות המבוקש , $\begin{cases} x_1+x_2=12\\ x_3+x_4=29 \end{cases}$

$$D(4,41) - 2D(2,12)D(2,29)$$

שאלה 6:

א. (8%) מצא יחס רקורסיה עבור מספר הסדרות הבינאריות באורך n, שאין בהן את הרצף 201.

f(n-1) אחריה להשלים אחריה ב-1, ניתן להשלים אחריה באורך n-n אם סדרה באורך להשלים אחריה פחלים על סדרה סדרות חוקיות. אם הסדרה מתחילה ב-0 אז צריך להסתכל על האיבר השני n-n סדרות חוקיות. אם הסדרה אפסים), ואם האיבר השני הוא 1 אז ניתן להשלים אחריה n-1 סדרות חוקיות.

$$f(0) = 1$$
 $f(1) = 2$ ותנאי התחלה $f(n) = f(n-1) + 1 + f(n-2)$ בסהייכ

 $a_n = 14a_{n-1} - 45a_{n-2}, \qquad a_0 = 2, \qquad a_1 = 14$:ב. (8%) פתור יחס רקורסיבי

מכאן נקבל . $\alpha_1=5$ $\alpha_2=9$ נקבל , $\alpha^2-14\alpha+45=0$ מפתרון מפתרו: מפתרו זהו יחס רקורסיבי לינארי: מפתרון

.
$$f(n) = 5^n + 9^n$$
 , $A = B = 1$ נמתנאי ההתחלה נקבל , $f(n) = A \cdot 5^n + B \cdot 9^n$