10/551654

明細**JC20 Rec'd PCT/PTO** 29 SEP 2009

殺菌剤製造用組成物および有機過酸の製造方法

技術分野

本発明は、殺菌剤製造用組成物、殺菌剤組成物及び殺菌方法に関する。 また本発明は、殺菌剤、漂白剤等に使用される有機過酸の製造方法、殺菌剤組成物の製造方法に関する。

背景技術

現在、漂白や殺菌、消毒等の作用を示す薬剤はさまざまなものが知られているが、特に塩素系殺菌剤として次亜塩素酸ナトリウム等の次亜塩素酸塩、酸素系殺菌剤として過酸化水素や水中で過酸化水素を発生する過炭酸ナトリウム、過ホウ酸ナトリウム等が主として使用されている。しかしながら、これらの殺菌剤は様々な課題を有しており、例えば次亜塩素酸塩は金属等に対する腐食の問題や誤使用による塩素ガス発生の問題があり、過酸化水素は高度の殺菌効果を得るためには高濃度での使用や長時間の接触を要するといった問題がある。過酸化水素を使用する場合、これらの問題を解消するために、活性化剤を併用して使用時に有機過酸を発生させることで殺菌効果を高める等の対応がとられている。そのような殺菌剤組成物として、JP-A 6-305920では、無機過酸化物、多価アルコールの有機酸不完全エステル、アルカリ土類金属塩を含有する殺菌剤組成物が開示されている。また、殺菌剤として有機過酸を適用する方法としては、JP-A(

W) 8-500843, JP-A 8-311495 が挙げられる。 更に、 JP-A 5-25497では有機過酸発生系においてpHを調整し漂白効果を向上させる方法を提案している。 また、WO-A 01/70030には、過酸化水素、カルボン酸、及び過酸化水素に対して特定比率の過カルボン酸を含有する組成物が、芽胞ないし芽胞形成微生物に対して抗菌作用を示すことが開示されている。

有機過酸は、例えば、過酢酸の場合、過酸化水素と酢酸を酸性下で反応させることで連続的に製造され、過酢酸、酢酸、過酸化水素及び水を含む平衡混合物として得られる。また、過酢酸は、アセトアルデヒドを気相で部分酸化して製造することや、アセトアルデヒドを触媒下で酸化し、中間体のアセトアルデヒドモノパーアセテートを生成させ、これを溶剤中で分解して製造することもできる。また、 JP-A 52-25011 には、過酢酸もしくは酢酸と、過酸化水素と、水等とを含有する、殺菌に適した濃縮物が開示されている。

発明の開示

本発明は、(A) 多価アルコールと水酸基を有していても良い炭化水素基を有する有機酸とのエステル及び(B1) 過酸化水素を含有し、水分含有量が1~25重量%である殺菌剤製造用組成物(以下、第1の殺菌剤製造用組成物という)に関する。

また、本発明は、(A) 多価アルコールと水酸基を有していても良い炭化水素 基を有する有機酸とのエステル、及び(B1) 過酸化水素又は(B2) 水中で過 酸化水素を放出する無機過酸化物を、(A)と(B1)又は(A)と(B2)か ら発生する(B1)のモル比が(A)/(B1)=1/10~20/1で含有する殺菌剤製造用組成物であって、pHを8~12とした後、pHを1以上7未満として調製された水溶液として用いられる殺菌剤製造用組成物(以下、第2の殺菌剤製造用組成物という)に関する。

また、本発明は、(A) 多価アルコールと水酸基を有していても良い炭化水素基を有する有機酸とのエステル、及び(B1) 過酸化水素又は(B2) 水中で過酸化水素を放出する無機過酸化物を、(A) と(B1) 又は(A) と(B2) から発生する(B1) のモル比が(A) / (B1) = 1/10~20/1で配合して得られる殺菌剤製造用組成物であって、pHを8~12とした後、pHを1以上7未満として調製された水溶液として用いられる殺菌剤製造用組成物(以下、第3の殺菌剤製造用組成物という)に関する。

また、本発明は、(A) 多価アルコールと水酸基を有していても良い炭化水素基を有する有機酸とのエステルと(B1) 過酸化水素とを、水中で、(A) / (B1) = 1 / 10 ~ 20 / 1のモル比で、且つ $pH8 \sim 12$ で反応させて得られた有機過酸、並びに水を含有し、25 ℃におけるpHが1以上7未満である殺菌剤組成物(以下、第1の殺菌剤組成物という)に関する。

また、本発明は、(A) 多価アルコールと水酸基を有していても良い炭化水素基を有する有機酸とのエステルと(B1)過酸化水素とを、(A) / (B1) = 1/10~20/1のモル比で、水中でpH8~12で反応させ、次いで当該反応系をpH1以上7未満として得られた、有機過酸を含有する水溶液を、被殺菌物と接触させる殺菌方法に関する。

本発明は、(A)多価アルコールと水酸基を有していても良い炭化水素基を有

する有機酸とのエステルと(B 1)過酸化水素とを、(A) / (B 1) = 1/1 0 \sim 2 0 / 1 のモル比で、水中でp H 8 \sim 1 2 で反応させ、次いで当該反応系を p H 1 以上 7 未満とする工程を有する、有機過酸の製造方法に関する。

本発明は、(A) 多価アルコールと水酸基を有していても良い炭化水素基を有する有機酸とのエステルと(B1)過酸化水素とを、(A) / (B1) = 1/10~20/1のモル比で、水中でpH8~12で反応させ、次いで当該反応系をpH1以上7未満とする工程を有する、有機過酸を含有する殺菌剤組成物の製造方法を提供する。

本発明は、上記いずれかの殺菌剤製造用組成物を殺菌剤製造に用いる用途と上 記いずれか殺菌剤組成物を殺菌剤に用いる用途に関する。

発明の詳細な説明

JP-A 6-305920では、pH7未満での使用の記載はなく、薬品耐性のより高い芽胞、カビ胞子についての殺菌効果は更に改善の余地がある。 JP-A(W) 8-500843, JP-A 8-311495は殺菌剤組成物として過酢酸と酢酸と過酸化水素の濃厚な併用が基本となっており、強い刺激臭を伴い取り扱いにくいものである。 JP-A 5-25497では薬品耐性のより高い芽胞、カビ胞子についての殺菌力の向上は期待できない。 また、WO-A 01/70030も、JP-A(W) 8-500843、JP-A 8-311495 同様、刺激臭を伴うものであり、取り扱い性に問題がある。

これまでの有機過酸を用いた殺菌剤等においては、その製造方法において適切な原料バランスを考慮し、残存する過酸化水素量を制御することは十分になされ

ているとは言い難い。また、上記の通り、酢酸と過酸化水素とを反応させる場合、反応生成物が過酸化水素を含む平衡混合物として得られるため、過酸化水素濃度の比率が相対的に高くなる。従って、従来の方法で製造された有機過酸水溶液は、未反応の過酸化水素成分の含有量が多くなる傾向があった。単位量あたりの過酸化水素の濃度が高くなると有機過酸の濃度が低くなるため、より高度な殺菌には不利となる。また、今日、環境に対する負荷を軽減することは大きな課題であるが、過酸化水素を過剰に含有する殺菌剤等は、排出前に中和、分解等の処理が必要となり、その処理コストが大きな負担となる。

本発明は、高濃度の有機過酸を使用時に効率よく安定に発生させ、高い殺菌力 を示す殺菌剤組成物が得られる殺菌剤製造用組成物、及び高い殺菌力を示す殺菌 剤組成物を提供する。

以下、(A)多価アルコールと水酸基を有していても良い炭化水素基を有する 有機酸とのエステルを(A)成分として、(B1)過酸化水素を(B1)成分と して、(B2)水中で過酸化水素を放出する無機過酸化物を(B2)成分とし、 (B1)成分と(B2)成分を合わせて(B)成分として説明する。

なお、(B) 成分のうち、(B2) 成分から発生する過酸化水素のモル数とは、過マンガン酸滴定法により求められる(B2) 成分中の過酸化水素濃度(重量%)に、組成物中の(B2) 成分の配合量(g) を乗じて、過酸化水素の分子量である34で除することにより求められる値である。

一般細菌のみならず、薬品耐性の高い芽胞やカビ胞子にも高い殺菌力を示す殺菌剤が得られる殺菌剤製造用組成物を提供する。

本発明の殺菌剤製造用組成物により得られた殺菌剤組成物もしくは本発明の殺

菌剤組成物は、殺菌効果が高くしかもその持続性にも優れている。本発明によって、食品工場等の工業的な殺菌から家庭内での殺菌まで幅広い分野において優れた殺菌効果を示す殺菌方法が提供される。

< (A) 成分>

- (A) 成分の多価アルコールと水酸基を有していても良い炭化水素基を有する 有機酸とのエステルは、過酸化水素と反応して有機過酸を生じるものである。
- (A) 成分を構成するための多価アルコールとしては、炭素数 2~12のものが好ましく、グリセリン、ジグリセリン、トリグリセリン等のグリセリン類、グルコース、ショ糖、果糖、ソルビトール、ペンタエリスリトール、アルキルポリグリコシド、アルキルフラノシド等の糖類が挙げられる。

また、(A) 成分を構成するための有機酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、オクタン酸等の脂肪族モノカルボン酸、シュウ酸、マロン酸、コハク酸、マレイン酸、フマル酸等の脂肪族ジカルボン酸、クエン酸、酒石酸、リンゴ酸等の水酸基を有するヒドロキシカルボン酸等が挙げられるが、好ましくは炭素数1~8の飽和又は不飽和の脂肪族モノ又はジカルボン酸が挙げられ、より好ましくは炭素数1~8の飽和又は不飽和の脂肪族モノカルボン酸が挙げられ、更に好ましくは炭素数1~8の脂肪酸が挙げられ、特に好ましくは炭素数2~8の脂肪酸が挙げられる。(A) 成分のエステル化度は限定されない。

具体的な(A)成分としては、グリセリンと炭素数1~8の脂肪族モノカルボン酸のエステルが好ましく、なかでもトリアセチンが好ましい。

< (B) 成分>

(B) 成分は、(B1) 成分の過酸化水素、又は(B2) 成分の水中で過酸化

水素を放出する無機過酸化物であり、組成物が液状の場合は過酸化水素が、粒状、粉状等、固体状の場合は、過炭酸塩、過ホウ酸塩が好ましく、特に過炭酸ナトリウム、過ホウ酸ナトリウムが好ましい。

<第1の殺菌剤製造用組成物>

本発明の第1の殺菌剤製造用組成物は、(A)成分と(B1)成分とを含有するが、貯蔵中の(A)成分と(B1)成分の反応を抑制して組成物の安定性を維持する点から、組成物中の水分含有量は1~25重量%であり、更に5~20重量%、特に5~15重量%が好ましい。

本発明の第1の殺菌剤製造用組成物は、有機過酸を得るための成分を含有する 1 液型の液状組成物であるので、例えば、後述する本発明の第1の殺菌剤組成物 や本発明の殺菌方法で用いる殺菌用水溶液の製造に好適である。第1の殺菌剤製造用組成物中の(A)成分の含有量は、20~90重量%、更に30~90重量%、特に40~80重量%が好ましく、(B1)成分の含有量は、1~30重量%、更に5~25重量%、特に10~25重量%が好ましい。また、(A)成分と(B1)成分のモル比は、(A)/(B1)=1/10~20/1、更に1/10~10/1、特に1/5~10/1であることが好ましい。また、(A)成分のエステル基1個あたりの(B1)成分のモル比は、効率的に有機過酸を生成し、かつ未反応の過酸化水素を低減させる観点から、2倍モル以下が好ましく、特に0.3~2倍モルが好ましい。

また、第1の殺菌剤製造用組成物は、必要に応じて、キレート剤、pH調整剤、溶剤等を含有することができる。FeやCr等の金属イオンの微量混入による 触媒的分解を抑制するためにキレート剤は有用である。第1の殺菌剤製造用組成 物の原液 p H (20℃) は、貯蔵安定性の点から、0.5~6が好ましく、さらに1~5が好ましく、特に1~4が好ましい。p H 調整剤としての作用とキレート剤としての作用を兼ね備えたものが好ましく、具体的には、リン酸、重合リン酸、有機ホスホン酸、アミノカルボン酸、ヒドロキシカルボン酸、若しくはこれらの塩が好ましい。中でも、有機ホスホン酸若しくはその塩が好ましい。溶剤としては、多価アルコール溶剤が好ましく、プロピレングリコール等のグリコール溶剤が特に好ましい。

<第2の殺菌剤製造用組成物>

本発明の第2の殺菌剤製造用組成物は、(A)成分と(B)成分を含有するが、両者の比率は、(B1)成分と(A)成分が効率的に反応する範囲であることが好ましく、有機過酸生成効率、殺菌効果、製剤安定性等を考慮すると、(A)成分と(B1)成分とのモル比が、(A)/(B1)=1/10~20/1であり、1/10~10/1、更に1/5~10/1であることが好ましい。また、(A)成分のエステル基1個あたりの(B1)成分のモル比は、効率的に有機過酸を生成し、かつ未反応の過酸化水素を低減させる観点から、2倍モル以下が好ましく、特に0.3~2倍モルが好ましい。(B2)成分を用いる場合も、上記範囲の(B1)成分を発生する量で配合することが好ましい。

好ましくはこのモル比を満たした上で、本発明の第2の殺菌剤製造用組成物は、(A)成分を0.1~90重量%、更に0.5~70重量%、特に1~50重量%、(B)成分を、(B1)成分として、0.1~50重量%、更に0.1~30重量%、特に0.1~20重量%含有することが好ましい。

本発明の第2の殺菌剤製造用組成物は、使用時には、pHを8~12、好まし

くは9~11とし(第一工程)、次いでpH1以上7未満、好ましくは1~6、より好ましくは1~5とすることで(第二工程)、殺菌剤組成物である水溶液が調製される。第一工程では、アルカリ性のpH調整剤を、第二工程では酸性のpH調整剤を用いるのが好ましい。このpHは、使用時のものでよいが、好ましくは25℃において上記pHを満たすことである。なお、上記した本発明の第1の殺菌剤製造用組成物も同様に使用することができる。

アルカリ性のpH調整剤としては、水酸化ナトリウム、水酸化カリウム、水酸 化カルシウム、水酸化バリウム等のアルカリ金属水酸化物又はアルカリ土類金属 水酸化物、ケイ酸ナトリウム、ケイ酸カリウム等のケイ酸アルカリ金属塩、リン 酸3ナトリウム等のアルカリ性を呈するリン酸アルカリ金属塩、炭酸ナトリウム 、炭酸カリウム等の炭酸アルカリ金属塩が挙げられるが、アルカリ度や水溶性の 観点より水酸化ナトリウムや水酸化カリウム等のアルカリ金属水酸化物、リン酸 3ナトリウムやリン酸3カリウム等のリン酸アルカリ金属塩、炭酸ナトリウムや 炭酸カリウム等の炭酸アルカリ金属塩が好ましい。また、酸性のpH調整剤とし ては、塩酸、硫酸、リン酸等の無機酸、ギ酸、酢酸、クエン酸、コハク酸、グル コン酸等の有機酸が挙げられるが、酸度や水溶性の観点より硫酸やリン酸等の液 体無機酸やクエン酸や酢酸等の高水溶性有機酸が好ましい。これらは単独である いは2種以上を組み合わせて用いることができる。また、これらpH調整剤は、 そのまま本発明の第2の殺菌剤製造用組成物中に存在してよい。なお、上記した 本発明の第1の殺菌剤製造用組成物にもこれらpH調整剤を存在させることがで きる。

本発明の第2の殺菌剤製造用組成物は、(A)成分、(B)成分以外にも、界

面活性剤、無機又は有機の塩類、キレート剤、香料、顔料、染料等を含有することができる。なお、上記した本発明の第1の殺菌剤製造用組成物にもこれら成分を存在させることができる。

界面活性剤としては、非イオン性界面活性剤、陰イオン性界面活性剤、陽イオ ン性界面活性剤及び両性界面活性剤が挙げられる。非イオン性界面活性剤として は、ポリオキシエチレン(以下、POEと記す)アルキルエーテル、POEアル キルフェニルエーテル、ポリオキシプロピレン・POE(ブロック又はランダム)アルキルエーテル、POEアリールフェニルエーテル、POEスチレン化フェ ニルエーテル、POEトリベンジルフェニルエーテル等の1価アルコール誘導体 型非イオン性界面活性剤;(ポリ)グリセリン脂肪酸エステル、ショ糖脂肪酸エ ステル、ソルビタン脂肪酸エステル、アルキルポリグリコシド等の多価アルコー ル誘導体型非イオン性界面活性剤等が挙げられる。陰イオン性界面活性剤として は、リグニンスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルスルホン 酸塩、POEアルキルスルホン酸塩、POEアルキルフェニルエーテルスルホン 酸塩、POEアルキルフェニルエーテルリン酸エステル塩、POEアリールフェ ニルエーテルスルホン酸塩、POEアリールフェニルエーテルリン酸エステル塩 、ナフタレンスルホン酸塩、ナフタレンスルホン酸ホルマリン縮合物、POEト リベンジルフェニルエーテルスルホン酸塩、POEトリベンジルフェニルエーテ ルリン酸エステル塩等が挙げられる。陽イオン性界面活性剤としては、モノ長鎖 アルキル(炭素数8~18)トリメチルアンモニウムクロライド、ジ長鎖アルキ ル(炭素数8~18)ジメチルアンモニウムクロライド、塩化ベンザルコニウム 、塩化ベンゼトニウム等が挙げられる。両性界面活性剤としては、アルキルアミ

ノトリメチルグリシン、アルキルジメチルアミンオキシド、アルキルジアミノエチルグリシン塩酸塩等が挙げられる。これらは単独であるいは2種以上を組み合わせて用いることができる。界面活性剤としては、非イオン性界面活性剤が好ましく、多価アルコール誘導体型非イオン性界面活性剤がより好ましい。また、界面活性剤は、本発明の第2の殺菌剤製造用組成物中に0~20重量%、更に0~10重量%含有されることが好ましい。

塩類は、pH調整剤として用いられる他に、主として殺菌薬剤の安定化の目的で用いられ、具体的には、コハク酸、マロン酸、クエン酸、グルコン酸、グルタル酸等のカルボン酸金属塩等の有機塩、トリポリリン酸、ヘキサメタリン酸、リン酸等のリン酸化合物金属塩、硫酸ナトリウム、硫酸カリウム等の硫酸塩等の無機塩が挙げられる。これらは単独であるいは2種以上を組み合わせて用いることができる。

キレート剤としては、エチレンジアミン四酢酸、ニトリロトリ酢酸、トリポリリン酸、ポリヒドロキシアクリル酸、有機ホスホン酸等又はこれらの塩が挙げられる。

本発明の第2の殺菌剤製造用組成物はさまざまな形態をとることができるが、 液状の場合、流動性の高いものが好ましく、水溶液の他、流動性のあるスラリー 、ゲル、ペースト状等であってもよい。また、固体状の場合、粒状、粉状、顆粒 状、ペレット状等の形状が挙げられる。

本発明の第2の殺菌剤製造用組成物は、配合成分のすべてをまとめて包装した ものでもよいが、安定性の観点から、(A)成分と(B)成分とを別々に包装し た複数剤型のものが好ましい。例えば、(A)成分を含む組成物の包装体(1) と、(B)成分を含む組成物の包装体(2)と、最終的にpHを1以上7未満とするためのpH調整剤(クエン酸等の酸性pH調整剤)を含む組成物の包装体(3)とからなる三剤型の殺菌剤製造用組成物とすることができる。この場合、包装体(2)にアルカリ剤を配合しておき、包装体(1)と包装体(2)の混合物がpH8~12となるように調整することが好ましい。また、特に粉末の組成物の場合、(A)成分と(B)成分が1つの包装体中に共存することも可能であり、例えば、(A)成分と(B)成分とpHを8~12に調整するためのアルカリ剤とを含む組成物の包装体(I)と、最終的にpHを1以上7未満とするためのpH調整剤(クエン酸等の酸性pH調整剤)を含む組成物の包装体(II)とからなる二剤型の殺菌剤製造用組成物とすることができる。

本発明の第2の殺菌剤製造用組成物は、使用時には、先の第一工程、第二工程によりpHを調整することで、有機過酸を含有する殺菌剤組成物である水溶液が調製される。当該水溶液中の有機過酸濃度は、10~20,000ppm(重量比、以下同様)、更に10~10,000ppmであることが好ましい。また、当該水溶液中の過酸化水素含有量は0.5重量%以下、更に0.3重量%以下、特に0.2重量%以下であることが、殺菌効果の点で好ましい。これらの知見は、上記した本発明の第1の殺菌剤製造用組成物においても同様である。

<第3の殺菌剤製造用組成物>

本発明の第3の殺菌剤製造用組成物は、上記本発明の(A)成分と(B)成分とを配合して得られるものであり、第2の殺菌剤製造用組成物同様、(A)成分と(B)成分由来の(B1)成分とのモル比が、(A)/(B1)=1/10~20/1であり、pHを8~12とした後、pHを1以上7未満として調製され

た水溶液として用いられるものである。(A)成分、(B)成分の具体的な化合物や、好ましい(A)/(B1)のモル比も第2の殺菌剤製造用組成物と同様である。また、第3の殺菌剤製造用組成物にも、前記した界面活性剤、無機又は有機の塩類、キレート剤、香料、顔料、染料等を含有することができ、包装の態様も同様とすることができる。

<第1の殺菌剤組成物>

本発明の第1の殺菌剤組成物は、(A)成分と(B1)成分とを、水中で、(A) / (B1) = 1 / 1 0 ~ 2 0 / 1 のモル比で、且つ p H 8 ~ 1 2 で反応させ て得られた有機過酸、並びに水を含有し、25℃におけるpHが1以上7未満の ものである。本発明の第1の殺菌剤組成物は、上記の通り、(A)成分と(B1)成分とを、水中で、特定のモル比で、且つpH8~12で反応させ、次いでp H & 1 以上 7 未満、好ましくは $1 \sim 6$, より好ましくは $1 \sim 5$ に調整してなるも のである。(A)成分、(B)成分の具体的な化合物や、好ましい(A)/(B 1)のモル比は、上記した本発明の第2の殺菌剤製造用組成物と同様である。ま た、第1の殺菌剤組成物にも、前記した界面活性剤、無機又は有機の塩類、キレ ート剤、香料、顔料、染料等を含有することができる。水の量は、組成物中、5 0 重量%以上100重量%未満、更に60重量%以上100重量%未満、特に7 0 重量%以上100 重量%未満が好ましい。上記本発明の殺菌剤製造用組成物か ら得られた水溶液同様、本発明の第1の殺菌剤組成物は、有機過酸を含有する水 溶液であり、当該水溶液中の有機過酸濃度は、10~20,000ppm、更に 10~10,000ppmであることが好ましい。また、本発明の第1の殺菌剤 組成物は、過酸化水素含有量が0.5重量%以下、更に0.3重量%以下、特に

0.2重量%以下であることが、殺菌効果の点で好ましい。この過酸化水素含有量は、当該組成物の調製直後、更には使用時に達成されることが好ましい。

<殺菌方法>

本発明の殺菌方法は、(A)成分と(B1)成分とを、(A)/(B1)=1/10~20/1のモル比で、水中でpH8~12で反応させ、次いで当該反応系をpH1以上7未満、好ましくはpH1~6、より好ましくはpH1~5として得られた、有機過酸を含有する水溶液(以下、殺菌用水溶液という)を、被殺菌物と接触させるものであり、これには上記した本発明の殺菌剤組成物もしくは本発明の殺菌剤製造用組成物から得られた水溶液が好適に用いられる。

本発明の殺菌方法は、

- (I) (A) 成分と(B1) 成分とを、(A) / (B1) = 1/10~20/1 のモル比で、水中でpH8~12で反応させて有機過酸を含有する水溶液を得る工程
- (II) 次いで当該水溶液のpHを1以上7未満、好ましくはpH1~6、より好ましくはpH1~5として殺菌用水溶液を得る工程
- (III) 殺菌用水溶液を被殺菌物と接触させる工程を含むことができる。

上記(I)の工程は、例えば $5\sim50$ $\mathbb C$ の水中に、所定量の(A)成分、(B 1)成分、 $pH8\sim12$ を与えるpH調整剤(アルカリ剤)を添加し(A)成分と(B 1)成分とを反応させて行うことができる。上記(II)の工程は、かかる混合系にpH1 以上 7 未満を与えるpH 調整剤(酸剤)を添加して行うことができる。

殺菌用水溶液を被殺菌物と接触させる方法としては、当該水溶液を散布、浸漬、充填、塗布する等の方法が挙げられる。散布する場合は噴霧することが好ましい。また、適当な担体に当該水溶液を含浸させて対象物をふき取っても良い。接触時間は限定されないが、被殺菌物によっては30り以内、特に10り短時間でも十分な効果が得られる。また、接触させる際の当該水溶液の温度も限定されないが、 $10\sim90$ でが好ましく、 $15\sim80$ でがより好ましい。

本発明の殺菌剤組成物もしくは殺菌剤製造用組成物から得られた殺菌剤(殺菌用水溶液)や殺菌方法は、高い殺菌効果を有するために、種々の微生物が存在する様々な被殺菌物を殺菌対象とすることができる。例えば、細菌類では大腸菌、サルモネラ菌、黄色ブドウ球菌、緑濃菌等の食中毒や院内感染等の起因菌、黒コウジカビ、カンジダ菌等の真菌類、更には殺菌剤に強い耐性を有する枯草菌等の細菌芽胞や黒コウジカビ等の真菌胞子が挙げられる。このうち、細菌芽胞とは、増殖に適さない環境において作られる耐久性を有する休眠細胞であり、菌体の外側には多重の層状外殻を有している。このような細菌芽胞は薬剤や熱などに対する耐久性が非常に高く、一般的な殺菌では完全に死滅させることは困難である。しかし、本発明の殺菌剤組成物や殺菌方法によれば、このような細菌芽胞に対しても十分な殺菌効果が得られる。

このように、本発明の殺菌剤組成物もしくは殺菌剤製造用組成物から得られた 殺菌剤(殺菌用水溶液)や殺菌方法は、殺菌スペクトルが広く、細菌類のみなら ず、真菌類や芽胞に対する効果も高いため、幅広い分野での殺菌に有用である。 例えば、病院、養護施設、食品加工工場、クリーニング施設、厨房等の壁、床、 窓等あるいはそれらで用いられる器具、備品、及び製品用(例えば飲料用)容器 等の殺菌に用いられる。

<殺菌剤キット>

本発明の殺菌剤組成物を得るための好適な殺菌剤キットは、本発明の殺菌剤製造用組成物と、該組成物によってもたらされる(A)成分と(B1)成分の反応を開始させる反応開始剤〔以下、(C)成分という〕と、pH調整剤〔以下、(D)成分という〕とを含んで構成される。また、殺菌剤キットは、(A)成分、(B)成分、(C)成分及び(D)成分を含んで構成されることもできる。

本発明の殺菌剤組成物を得るための殺菌剤キットは、有機過酸製造時の簡便性を考慮して、配合成分の全てをまとめて包装した1剤型でもよいが、貯蔵時の安定性を考慮して、(A)成分と(B)成分と(C)成分と(D)成分とを個別に包装した複数剤型であってもよい。好ましい殺菌剤キットの剤型としては、有機過酸製造時の簡便性と製造用組成物の貯蔵安定性との両観点を考慮して、(A)~(D)成分のうち2成分以上を含む組成物を包装した包装体を含む2剤型、若しくは3剤型等の複数剤型である。

(A) 成分と(B1) 成分は、水中ではアルカリ条件(水温5~50が好適)で反応して有機過酸を生成するため、(C) 成分として、このようなpHを与える成分が使用できる。具体的には、アルカリ性のpH調整剤として例示した水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム等のアルカリ金属水酸化物又はアルカリ土類金属水酸化物、ケイ酸ナトリウム、ケイ酸カリウム等のケイ酸アルカリ金属塩、リン酸3ナトリウム等のアルカリ性を呈するリン酸アルカリ金属塩、炭酸ナトリウム、炭酸カリウム等の炭酸アルカリ金属塩が挙げられるが、アルカリ度や水溶性の観点より水酸化ナトリウムや水酸化カリウ

ム等のアルカリ金属水酸化物、リン酸3ナトリウムやリン酸3カリウム等のリン酸アルカリ金属塩、炭酸ナトリウムや炭酸カリウム等の炭酸アルカリ金属塩が好ましい。

一方、有機過酸を含有する殺菌剤は、酸性であることが殺菌効果の点で好ましいため、(D)成分は(C)成分によりアルカリ領域にあったpHを酸性領域にできる成分が使用される。具体的には、酸性のpH調整剤として例示した塩酸、硫酸、リン酸等の無機酸、ギ酸、酢酸、クエン酸、コハク酸、グルコン酸等の有機酸が挙げられるが、酸度や水溶性の観点より硫酸やリン酸等の液体無機酸やクエン酸や酢酸等の高水溶性有機酸が好ましい。

殺菌剤キットの具体的な剤型としては、

- (I) (A) 成分と(B) 成分とを含有する殺菌剤製造用組成物の包装体(X1)、(C) 成分を含有する組成物の包装体(X2)、(D) 成分を含有する組成物の包装体(X3)を含む3型以上の剤型
- (II) (A) 成分を含有する組成物の包装体(Y1)、(B) 成分と(C) 成分とを含有する組成物の包装体(Y2)、(D) 成分を含有する組成物の包装体(X3)を含む3型以上の剤型
- (III) (A) 成分と(B) 成分と(C) 成分とを含有する組成物の包装体(Z1)、(D) 成分を含有する組成物の包装体(Z2)を含む2剤型以上の剤型が挙げられる。
- (I)の剤型では、殺菌剤製造用組成物の形態は、粉末状、固体状、液状等、限定されるものではないが、簡便性の観点から液状がより好ましい。液状の形態をとる場合、貯蔵中の(A)成分と(B)成分の反応を抑制して安定性を維持す

るために、当該液状組成物中の水分含有量は1~25重量%が好ましく、より好ましくは5~20重量%であり、5~15重量%がさらにより好ましい。また、必要に応じて、当該液状組成物にキレート剤、溶剤を添加することができる。FeやCr等の金属イオンの微量混入による触媒的分解を抑制するためにキレート剤は有用である。また、当該液状組成物の原液pH(20℃)は、貯蔵安定性に関与するため、0.5~6が好ましく、より好ましくは1~5で、1~4がさらにより好ましい。前記の通り、pH調整剤としての作用とキレート剤としての作用を兼ね備えた成分を用いることが好ましく、具体的には、リン酸、重合リン酸、有機ホスホン酸、アミノカルボン酸、ヒドロキシカルボン酸、若しくはこれらの塩が好ましい。中でも、有機ホスホン酸若しくはその塩が好ましい。溶剤としては、多価アルコール溶剤が好ましく、プロピレングリコール等のグリコール溶剤が特に好ましい。

また、(I)の剤型で殺菌剤製造用組成物が粉末、固形状の形態をとる場合は、(B)成分として過炭酸ナトリウムや過硼酸ナトリウム等を用いることが好ましい。同様に、(II)の剤型や(III)の剤型でも、貯蔵安定性の観点から、(B)成分を含む組成物は、(B)成分として過炭酸ナトリウムや過硼酸ナトリウム等を用いた粉末、固形状の形態が好適である。

これら各剤型における(A)~(D)成分の含有量は、前記した本発明の第1~第3の殺菌剤製造用組成物の用法に基づき、それぞれに適した範囲を選定することができる。また、(A)~(D)成分以外の成分は、これら(A)~(D)成分を含む何れかの包装体に配合しても、他の包装体に配合しても、何れでも良い。

本発明は、高い安定性と殺菌力を示し、殺菌剤等として好適な有機過酸を、過酸化水素を過剰に使用せずに製造できる方法を提供する。 以下製造方法について説明する。

本発明によれば、殺菌剤等として効果が高い有機過酸を過剰な過酸化水素の使用なしに効率よく製造することができる。このため過酸化水素の含有量の低い有機過酸水溶液を得ることができるため、例えば殺菌剤として用いた場合も、環境への排水負荷を軽減できる。

< (A) 成分>

上記組成物の(A)成分と同じように使用できる。

<(B)成分>

(B)成分は、過酸化水素(B1)であり、水中で過酸化水素を放出する無機 過酸化物を水に溶解させて用いてもよい。当該無機過酸化物としては、過炭酸塩、なかでも過ホウ酸塩が好ましく、特に過炭酸ナトリウム、過ホウ酸ナトリウムが好ましい。

<製造方法>

本発明の製造方法は、(A) 成分と(B1) 成分とを反応させる際に、両者の モル比を特定比率とし、かつ反応系のpHを二段階で変化させるものである。本 発明の製造方法は、酢酸と過酸化水素とを反応させる従来の方法と異なり、(A) 成分と(B1) 成分の反応が不可逆反応であるため、系中に過酸化水素が蓄積 せず、所望の濃度の有機過酸を含有する水溶液を製造する場合に有利である。す なわち、本発明によれば、(A) 成分と(B1) 成分とを上記特定のモル比で、 水中でpH8~12で反応させ、次いで当該反応系をpH1以上7未満とする工 程を有する、有機過酸を含有する水溶液の製造方法を提供することができる。

(A) 成分と(B1) 成分のモル比は、(A) / (B1) = $1/10\sim20/1$ 1であり、 $1/10\sim10/1$ 、特に $1/5\sim10/1$ であることが、有機過酸の生成効率と安定性の点から、好ましい。また、(A) 成分のエステル基1 個あたりの(B1) 成分のモル比は、効率的に有機過酸を生成し、かつ未反応の過酸化水素を低減させる観点から、2 倍モル以下が好ましく、特に0. $3\sim2$ 倍モルが好ましい。

また、(A) 成分と(B1) 成分と水の比率は、重量比で〔(A) + (B1)〕

/水=1/10000~1/1が好ましく、1/1000~1/2が好ましい。

上記モル比ないし重量比を満たした上で、反応系中、(A) 成分を0.1~9

0重量%、更に0.5~70重量%、特に1~50重量%、(B1) 成分を0.

1~50重量%、更に0.1~30重量%、特に0.1~20重量%を仕込むことが好ましい。

本発明の製造方法には、(A)成分と(B1)成分とを含有し水分含有量が1~25重量%である液状組成物を用いることが好ましい。すなわち、本発明の製造方法において、(A)成分と(B1)成分は、(A)成分と(B1)成分とを含有し水分含有量が1~25重量%である液状組成物としてもたらされることが好ましい。該液状組成物中の(A)成分の含有量は、20~90重量%、更に30~90重量%、特に40~80重量%が好ましく、(B1)成分の含有量は、1~30重量%、更に5~25重量%、特に10~25重量%が好ましい。また、(A)成分と(B1)成分のモル比は、(A)/(B1)=1/10~20/1、更に1/10~10/1、特に1/5~10/1であることが好ましい。ま

た、(A)成分のエステル基1個あたりの(B1)成分のモル比は、効率的に有機過酸を生成し、かつ未反応の過酸化水素を低減させる観点から、2倍モル以下が好ましく、特に0.3~2倍モルが好ましい。

また、該液状組成物は、必要に応じて、キレート剤、pH調整剤、溶剤等を含有することができる。FeやCr等の金属イオンの微量混入による触媒的分解を抑制するためにキレート剤は有用である。該液状組成物の原液pH(20℃)は、貯蔵安定性の点から、0.5~6が好ましく、さらに1~5が好ましく、特に1~4が好ましい。pH調整剤としての作用とキレート剤としての作用を兼ね備えたものが好ましく、具体的には、リン酸、重合リン酸、有機ホスホン酸、アミノカルボン酸、ヒドロキシカルボン酸、若しくはこれらの塩が好ましい。中でも、有機ホスホン酸若しくはその塩が好ましい。溶剤としては、多価アルコール溶剤が好ましく、プロピレングリコール等のグリコール溶剤が特に好ましい。

なお、(B)成分は、水中で過酸化水素を放出する無機過酸化物、例えば過炭酸塩、過ホウ酸塩、特に過炭酸ナトリウム、過ホウ酸ナトリウムを含有する粒状、粉状等、固体状の組成物から得られたものを使用することもできる。

本発明では、(A) 成分と(B) 成分とを混合後、反応系のpHを8~12、 好ましくは9~11とし(第一工程)、次いでpH1以上7未満、好ましくは1 ~6、より好ましくは1~5とする(第二工程)。 第一工程では、アルカリ性 のpH調整剤を、第二工程では酸性のpH調整剤を用いるのが好ましい。このp Hは、反応時のものであるが、好ましくは反応後の最終生成物が25℃において 上記第二工程のpHを満たすことである。

上記第一工程は、有機過酸を発生させるための工程であり、時間は限定されな

いが、理論値の50%の有機過酸が発生するまではpHを8 \sim 12に保持することが好ましい。第一工程の好ましい反応時間は、 $1\sim$ 120分である。また、第一工程における反応温度は $5\sim$ 50 \sim が好ましい。

また、二工程は、発生した有機過酸を安定化させるための工程であり、基本的にpHを1以上7未満とするためのpH調整剤を反応系中に添加することで行われる。すなわち、pHが所定の数値となったときは第二工程の終了である。第二工程における反応温度は $5\sim50$ \mathbb{C} が好ましい。

本発明の製造方法によれば、有機過酸は水溶液中に存在する形態で得ることができるが、当該水溶液中の残存過酸化水素の濃度は、過酸化水素の蓄積防止と有機過酸の安定性の観点から、過酸化水素の初期仕込み量の60重量%以下が好ましく、50重量%以下がより好ましく、0.1~50重量%が特に好ましい。

アルカリ性のpH調整剤は上記組成物の同じように使用できる。 pH調整剤は、そのまま本発明で製造された有機過酸を含有する水溶液中に存在してよい。

本発明では、(A)成分、(B)成分以外にも、界面活性剤、無機又は有機の塩類、キレート剤、香料、顔料、染料等を反応系中に仕込むことができる。これにより、殺菌剤や漂白剤等が容易に得られる。

界面活性剤は上記組成物と同様に使用できる。 界面活性剤は、本発明における反応系中に0~20重量%、更に0~10重量%含有されることが好ましい。 塩類とキレート剤も上記組成物と同様に使用できる。

本発明により得られた有機過酸を含む水溶液は、さまざまな形態をとることができるが、液状の場合、流動性の高いものが好ましく、水溶液の他、流動性のあるスラリー、ゲル、ペースト状等であってもよい。

本発明により製造された有機過酸を含有する水溶液は、有機過酸濃度が、10~100,000ppm(重量比、以下同様)、更に10~50,000ppmであることが好ましい。

例えば、殺菌剤の場合、使用時に本発明の製造方法が実施されるように配合成分を用いることで、必要な濃度の有機過酸が簡便に得られるため、有用である。

また、殺菌剤の場合、本発明により製造された有機過酸を含有する水溶液は、そのまま使用してもよいが、経済性の観点から、適宜水で希釈し、有機過酸濃度が、 $10\sim20$, 000 p p m、更に $10\sim10$, 000 p p mの水溶液として用いることが好ましい。

本発明の製造方法により得られた有機過酸を殺菌剤として用いる場合、有機過酸を含有する水溶液(以下、殺菌用水溶液という)を、被殺菌物と接触させる。

殺菌用水溶液を被殺菌物と接触させる方法は上記組成物と同様である。

このような殺菌用水溶液は、殺菌剤組成物であり、当該組成物中の過酸化水素 含有量は0.5重量%以下、更に0.3重量%以下、特に0.2重量%以下が好ましい。

本発明により製造された有機過酸は、高い殺菌効果を有するために、種々の微生物が存在する様々な被殺菌物を殺菌対象とすることができることは上記組成物と同様である。

このように、本発明により製造された有機過酸は、上記組成物と同様に、殺菌スペクトルが広く、細菌類のみならず、真菌類や芽胞に対する効果も高いため、幅広い分野での殺菌に有用である。

実施例

実施例1

表1~5に示す量の(A)成分、(B)成分及び50gのイオン交換水と適量のアルカリ性pH調整剤〔炭酸ナトリウム〕とを、200mLビーカー内で20分間攪拌混合した。その際のpHは8~12となるようにした。その後、更に酸性pH調整剤〔クエン酸〕を用いて目的のpHに調整し、殺菌剤組成物を得た。その際の経時的な有機過酸濃度の変化を測定した。有機過酸濃度は、以下の方法で測定した。結果を表1~5に示す。

(1) 有機過酸濃度の測定方法

(1-1)過酸化水素の定量

200 mLのコニカルビーカーに、殺菌剤組成物 w_1 g(目安として $1\sim50$ g)を精秤し、20%硫酸水溶液10 mLと氷片 $2\sim3$ 個を加えて溶液を冷却し、触媒として飽和硫酸マンガン水溶液を $1\sim2$ 滴加えた後、0.1 mol/L(1/2 規定) 過マンガン酸カリウム水溶液で滴定する。溶液が淡いピンク色を $1\sim10$ 秒間呈するところを終点とする。過酸化水素濃度は下記式(1-1)により算出される。

過酸化水素濃度(重量%) =
$$\frac{0.85 \times T_1 \times F_1}{w_1}$$
 (1-1)

T₁: 0. 1 m o l / L 過マンガン酸カリウム水溶液の滴定所要量 (m L)

F,: 0. 1 m o l / L 過マンガン酸カリウム水溶液のファクター

w,:殺菌剤組成物の重量(g)

(1-2) 有機過酸の定量

300 m L 共栓付三角フラスコに、殺菌剤組成物 w_2 g(目安として $1\sim50$ g)を精秤し、20%硫酸水溶液10 m L、純水20 m L 及び飽和ヨウ化カリウム水溶液2 m L を加えて密栓した後、フラスコを軽く振盪する。これを冷暗所に5 分間静置した後、0.2 m o 1 / L (1/5 規定)チオ硫酸ナトリウム水溶液で滴定する。溶液が淡黄色を示したところで2% 粉水溶液を数滴加えて滴定を続ける。溶液の青紫色が消失したところを終点とする。有機過酸濃度は下記式(1-2)により算出される。

有機過酸分子量
$$\times$$
 $\left(\begin{array}{cccc} T_2 \times F_2 & H \\ \hline 100 \times w_2 & 34 \\ \end{array}\right)$ 有機過酸濃度 $=$ $\begin{array}{ccccc} 100 \times w_2 & 34 \\ \hline 1分子内の過かがきシル数 & \end{array}$ (1-2)

 $T_2:0.2mol/L$ チオ硫酸ナトリウム水溶液の滴定所要量 (mL)

 $F_2: 0.2mol/L$ チオ硫酸ナトリウム水溶液のファクター

H: (1-1) 式で求めた過酸化水素濃度(重量%)

w₂:殺菌剤組成物の重量(g)

有機過酸濃度 pH調整30分後 6800 17000 9600 20300 4500 (ppm) Limpsolc/第 6600 16800 0100 19600 7300
oH調整120分後 6200 15200 8200 17500
000 000 000
有機過酸残存率(%) 89.9 89.4 82.0 76.4 86.7

米1

(注)配合成分の()内の数値はモル数であり、(B)成分の()内のモル数は、過酸化水素としての量である(以下同様)。(A)/(B)モル比は、(A)成分と過酸化水素のモル比である(以下同様)。また、有機過酸残存率は、(pH調整直後の有機過酸濃度)/(pH調整120分後の有機過酸濃度)×100により算出されるものである(以下同様)。また、(A)成分のうち、グリセリン脂肪酸エステル〔商品名:ホモテックスPT、花王(株)製〕の脂肪酸は、炭素数8のものである(以下同様)。なお、過炭酸ナトリウムは、過酸化水素を22重量%含有し、過ホウ酸ナトリウムは、過酸化水素を20重量%含有していた。

表2

	1-20						5g (0.0128)		2.86g (0.0294)			0.44	3.8	33500	32000	30600	28100	83.9
	1–19					5g (0.0164)			2.86g (0.0294) (C			0.56	3.8	9300	90098	7800	7200	77.4
	1–18				5g (0.0229)				2.86g (0.0294)		·	0.78	3.8	31700	29900	27600	25800	81.4
	1-17			5g (0.0284)					2.86g (0.0294)		_	0.97	3.8	23200	22200	21000	20300	87.5
明品	1-16		5g (0.0342)						2.86g (0.0294)			1.16	3.8	22000	20500	18800	17800	80.9
本発明品	1–15	5g (0.0481)							2.86g (0.0294)			1.64	3.8	12300	11700	10500	10000	81.3
	1-14							3g (0.0138)	2.86g (0.0294)			0.47	4.9	4100	3900	3700	3500	85.4
	1-13						3g (0.0077)		2.86g (0.0294)			0.26	4.9	28700	27400	26800	24900	8.98
	1-12					3g (0.0099)			2.86g (0.0294)			0.34	4.9	0089	6100	5700	2000	73.5
	1-11				3g (0.0138)				2.86g (0.0294)			0.47	4.9	25400	24300	23600	20500	80.7
		エチレンク・リコールモノアセテート	エチレング・リコールジ・アセテート	シアセチン	(A) トリアセチン	ヘンタエリスリトールテトラアセテート	ペンタアセチルーβ-Dーグルコース	ケリセリン脂肪酸エステル	過酸化水素水(35重量%)	(B)過炭酸ナバウム	過ホウ酸ナトリウム	(A)/(B)毛ル比	pH(25°C)	pH調整直後	買	(ppm) pH調整60分後	pH調整120分後	有機過酸残存率(%)
					_ર્	問和	松分			(B)					有機让	ੌ ਜ		

ď	٠
Irt	١
111	١

							本発明品	明品				
			1-21	1-22	1–23	1-24	1-25	1-26	1-27	1–28	1–29	1–30
	エチレン	エチレングリコールモノアセテート	2g (0.0192)									
	エチレン	エチレンク・リコールシ・アセテート		2g (0.0137)						3g (0.0205)		
	ジアセチン	チン			2g (0.0114)							
	(A) HJ7セチン	チン				2g (0.0092)					3g (0.0138)	
配合	ペンタ	へ^クエリスリトールテトラアセテート					2g (0.0066)					
成分	ヘンタブ	ペンタアセチル- β -D-グルコース		-				2g (0.0051)				3g (0.0077)
	7.1141	グリセリン脂肪酸エステル							2g (0.0092)			
	過酸	過酸化水素水(35重量%)										, -
	(B) 過炭	(B) 過炭酸ナドリウム	4.55g (0.0294)			• • • • • • • • • • • • • • • • • • •						
	過ホウ	過ホウ酸ナトリウム								5.00g (0.0294)	5.00g (0.0294)	5.00g (0.0294)
		(A)/(B)モル比	0.65	0.47	0.39	0.31	0.22	0.17	0.31	0.70	0.47	0.26
		рН(25℃)	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.5	4.5	4.5
		pH調整直後	7000	17500	11500	23100	4600	00297.	2900	23000	23600	26700
極	有機過酸濃度	度 pH調整30分後	6900	17000	9800	21500	4400	25100	2800	21600	21500	24300
	(mdd)	pH調整60分後	0089	16200	9300	19800	4300	22500	2600	20100	19700	23900
		pH調整120分後	6200	15000	8500	18600	3800	20000	2200	19200	18300	21300
	有機	有機過酸残存率(%)	88.6	85.7	73.9	80.5	82.6	76.3	75.9	83.5	77.5	79.8

表4

	比較品	1-9 1-10 3 3 (0.0077) 2.86g 2.86g (0.0294) (0.0294) 0.26 0.47 9.5 9.5 28700 4100 21400 3200 16300 2700	1-8 3g (0.0099) (0.0294) 0.34 9.5 6800 4800	2g (0.0092) 2.86g (0.0294) 0.31 9.5 22900 11000	2g 2g 2f	上事 1-5 1-5 (0.0137) (0.0294) 0.47 9.5 17000 15100	1-4 0.02g (0.0007) (0.0294) (0.0294) 4.0 4.0 <1000	1-3 0.02g (0.0009) (0.0294) (0.0294) 4.0 1600 <1000	1-2 0.2g (0.0011) 2.86g (0.0294) 0.04 4.0 <1000 <1000	1-1 0.2g (0.0019) (0.00294) 2.86g (0.0294) 4.0 <1000 <1000	
pH調整120分後 <1000 <1000 <1000 <1000 4300 4300 1300	1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-	_	000	0007	000	2600	/1000	/1000	/1000	/1000	nH調整120分後
2024 0006 0001 0001 0001	1ートナイナート 0.2g 1ータノアセナート 0.2g 1ーター・フェート・ファート・ファート・ファート・ファート・ファート・ファート・ファート・ファ								֡		
	1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-	10300 1600	1300	4200	4300	2000	0001	71000	0001	2001	A1 (/>-; =r.m.; -/-
	1ールナイヤート 0.2g 1ーメノヤナート 1ータール・ファナート 1ーター		0051	4500	4300	2000	2001	0001	0001	2001	く! こくく コード・マート
	1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 3-μ-/	16	3600	11000	6200	10100	<1000	<1000	<1000	<1000	pH調整60分
pH調整60分後 <1000 <1000 <1000 <1000 1000 6200 11000	プレモート 0.2g 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 プレート 0.02g 2g (0.0137) 2g (0.0114) 2g (0.0014) (0.0014) 0.2g (0.0014) (0.0014) 0.0g (0.0014) (0.0014) 0.0009 0.000 0.0009 0.0g 0.000 0.0009 0.0g 0.0009	21400	4800	15600	8500	15100	<1000	<1000	<1000	<1000	pH調整30分
PH調整30分後 <1000 <1000 <1000 <1000 1500 15100 8500 15600 4800 PH調整60分後 <1000 <1000 <1000 <1000 3600	プチモート 0.2g 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 プチェート (0.0019) 0.2g (0.0137) 2g (0.0114) 2g (0.0014) (0.0016) 0.2g (0.0017) (0.0009) 0.2g (0.0014) (0.0009) 3g (0.0009) (0.0009) (0.0009) 3g (0.0009) (0.0009) (0.0009) (0.0009)	28700	0089	22900	10000	17000	<1000	1600	<1000	<1000	pH調整直後
pH調整直後<1000<1000100010001000229006800pH調整0分後<1000	プサモート 0.2g (0.0019) 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 プサモート 0.02g (0.0011) 2g (0.0011) 2g (0.0012) 2g (0.0014) 2g (0.0014) 2g (0.0017) 2g (0.0009) 3g (0.0099) 2g (0.0009) 3g (0.0099) 3g (0.0099) 3g (0.0077) コステル コステル 2.86g (3.5重量%) 2.86g (0.0294)	9.5	9.5	9.5	9.2	9.5	4.0	4.0	4.0	4.0	pH(25°C)
H(25°C)4.04.04.04.09.59.59.59.59.5pH調整直後<1000	プレモート 0.2g (0.0019) 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 プレート 0.2g (0.0011) 2g (0.0013) 2g (0.0014) 2g (0.0014) 2g (0.0014) 2g (0.0014) 2g (0.0092) 2g (0.0092) 2g (0.0092) 2g (0.0092) 2g (0.0092) 2g (0.0093)	0.26	0.34	0.31	0.39	0.47	0.02	0.03	0.04	0.06	(A)/(B)モル比
/(B) 刊 比0.060.040.030.020.470.390.310.34H(25°C)4.04.04.04.09.59.59.59.5PH調整直後<1000	$77 \bar{\tau} \bar{\tau} - \bar{\tau} - \bar{\tau}$		•								ðホウ酸ナトリウム
Prl/DAPrl/DA0.060.040.030.020.470.390.310.34H(25°C)4.04.04.04.09.59.59.59.5PH調整直後<1000	77 + 7 - 1 - 1 - 2										1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
トリウムCOO60.040.030.020.470.390.310.34H(25°C)4.04.04.04.04.09.59.59.59.5H間整直後(1000(1000(1000(1000(1000(1000229006800中開整60分後(1000(1000(1000(1000(1000(10003600	1-1 1-2 1-4 1-5 1-6 1-7 1-8 1-9 1-										ð 炭酸ナリウム
トリウムトリウム0.060.040.030.020.470.390.310.34イ(B)モル比4.04.04.04.04.09.59.59.59.5日村調整直後く1000く1000く1000く1000く1000151008500156004800日村調整60分後く1000く1000く1000く1000く1000く1000く1000101006200110003600	1-1 1-2 1-4 1-5 1-6 1-7 1-8 1-9 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-ルデアセテート	 -	_	(0.0294)	(0.0294)	(0.0294)	(0.0294)	(0.0294)	(0.0294)	(0.0294)]胺1L小糸小(33里里%)
トリウム トリウム トリウム トリウム トリウム トリウム (800294) (0.029	1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1コールシアセテート 0.2g (0.0011) 2g (0.0011) 2g (0.0014) 2g (0.0014) 3g (0.0092) 3g (0.0099) チルーβ - Dーゲルコース 0.2g (0.0007) 0.2g (0.0007) 3g (0.0007) 3g (0.0007)	2.86g	2.86g	2.86g	2.86g	2.86g	2.86g	2.86g	2.86g	2.86g	
(素) (本) (本) (本) (4) (4) (5) (5) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										リセリン脂肪酸エステル
shb酸 エステル2.86gドリケムトリケム0.060.040.030.020.470.390.310.34H(25°C)4.04.04.04.04.09.59.59.59.5PH調整直後く1000<	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	عو (0.00)									ンタアセチルー β -D-ケルコース
引・DーターDーブルコース 1Dー 용 -Dーブルコース 1Dー 8 -Dーブルコーム 1Dー 8 -Dープルコーム 1Dー 8 -Dープルコーム 1Dー	1-1 1-2 1-4 1-5 1-6 1-7 1-8 13 1-4 1-5 1-6 1-7 1-8 13 1-4 1-5 1-6 1-7 1-8 13 13 13 13 13 13 13		+;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	:			***************************************			-	
35 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3g (0.0099)				0.2g (0.0007)				ンタエリスリトールテトラアセテート
リトルテトラアセテート 0.2g 0.2g 3g リレーターレプルコース 0.0gの07) 0.0007) 0.0g 3g 明本 アラーケルコース 2.86g 2.86g <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td></td> <td></td> <td>2g (0.0092)</td> <td></td> <td></td> <td></td> <td>0.2g (0.0009)</td> <td></td> <td></td> <td>アセチン</td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2g (0.0092)				0.2g (0.0009)			アセチン
リールテトアセテート 0.2g 0.2g 0.0092) リールテトアセテート 0.0007) 0.2g 0.0093) ・ルー 名 ーレ・ブルコース 0.0024 0.0007) 0.00091 自財酸エステル 2.86g	1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-0.2g 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-2g 1-2g 1-2g 1-2g 1-3 1-8			,	2g (0.0114)				0.2g (0.0011)		アセチン
(0.0011) 0.2g (0.00114) 2g (0.0009) 0.2g (0.00092) (0.0009) 0.2g (0.00092) (0.0007) 0.2g (0.00093) (0.0017) 0.2g (0.00093) (0.0017) 0.2g (0.00093) (0.0017) 0.0007 0.0007 (本水(35重量%) (0.0294) </td <td>1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 0.2g (0.0019)</td> <td></td> <td></td> <td></td> <td></td> <td>2g (0.0137)</td> <td></td> <td></td> <td></td> <td></td> <td>チレング・リコールジ・アセテート</td>	1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 0.2g (0.0019)					2g (0.0137)					チレング・リコールジ・アセテート
コールジアセテート 0.02g 0.00g	1-2 1-3 1-4 1-5 1-6 1-7 1-8									0.2g (0.0019)	<i>トレンヴリ</i> コールモノアセテート
コールチアセテート 0.2g (0.0011) 0.2g (0.0011) 0.2g (0.0011) 0.2g (0.0001) 0.2g (0.0002) 0.0g (0.0002) 0.0g (0.0002) <td></td> <td>1-9</td> <td>1-8</td> <td>1-7</td> <td>1–6</td> <td>1-5</td> <td>1-4</td> <td>1-3</td> <td>1-2</td> <td>1-1</td> <td></td>		1-9	1-8	1-7	1–6	1-5	1-4	1-3	1-2	1-1	

表5

	1-20					<u> </u>	3g (0.0077)				5.00g (0.0294)	0.26	9.0	26700	21000	15900	10100	0.50
	1-19					3g (0.000)					5.00g (0.0294)	0.34	9.0	7000	2000	3500	1200	;
	1-18				3g (0.0138)						5.00g (0.0294)	0.47	9.0	23600	15200	10500	4300	0 0
	1-17				2g (0.0092)					4.55g (0.0294)		0.31	9.5	23100	15700	11100	4700	5
交品	1–16			2g (0.0114)						4.55g (0.0294)		0.39	9.2	11500	9100	8300	4600	9
比較品	1-15		2g (0.0137)							4.55g (0.0294)		0.47	9.5	17500	15500	11000	5700	000
	1-14					0.2g (0.0007)					5.00g (0.0294)	0.02	4.2	<1000	<1000	<1000	<1000	
	1-13				0.2g (0.0009)					1	5.00g (0.0294)	0.03	4.2	1500	1000	<1000	<1000	
	1-12			0.2g (0.0011)						4.55g (0.0294)		0.04	4.0	<1000	<1000	<1000	<1000	
	1-11	0.2g (0.0019)								4.55g (0.0294)		90.0	4.0	<1000	<1000	<1000	<1000	
		エチレングリコールモノアセテート	エチレングリコールジ・アセテート	ジアセチン	セチン	へ^クタエリスリトールテトラアセテート	ペンタアセチルー <i>β-</i> Dーグルコース	グリセリン脂肪酸エステル	過酸化水素水(35重量%)	(B) 過炭酸ナハウム	過ホウ酸ナトリウム	(A)/(B)モル比	pH(25°C)	pH調整直後	濃度 pH調整30分後	pH調整60分後	pH調整120分後	右榫:温酸肆左率(%)
		IFL	17.	ゲン	(A) HJ7 セチン	ेर	Ś	7,11	嚠	(8)	粤				有機過酸濃度	(mdd)		早
						配包	成分								有			

実施例2

表6~9に示す量の(A)成分、(B)成分及び50gのイオン交換水と適量のアルカリ性pH調整剤〔炭酸ナトリウム〕とを、200mLビーカー内で20分間攪拌混合した。その際のpHは8~12となるようにした。その後、更に酸性pH調整剤〔クエン酸〕を用いて目的のpHに調整し、殺菌剤組成物を得た。得られた殺菌剤組成物を用いて、以下の方法で殺菌効果を測定した。結果を表6~9に示す。

(1)細菌芽胞の殺滅効果

芽胞形成細菌である、枯草菌(Bacillus subtilis var. niger)とサーキュランス菌(Bacillus circulans IFO3967)とを、それぞれSCD寒天培地(日本製薬(株)製)に30℃で約4週間前培養した後、寒天培地上に形成されたコロニーを適量かきとって1mLの滅菌水に懸濁し、検鏡して細菌芽胞(以下、芽胞という)の形成を確認した。この懸濁液を2回遠心洗浄後、適量の滅菌水で約10°~10°cell/mLの菌濃度に調整した(芽胞液1)。この芽胞液1の0.1mlを、表6~9の殺菌剤組成物2mLに接種し、25℃にて120秒間作用させた。その後、直ちに、芽胞液1を含む殺菌剤組成物の0.1mLを、1.0%チオ硫酸ナトリウムを加えたSCDLP培地(日本製薬(株))中に添加して、殺菌剤組成物を不活性化した(芽胞液2)。芽胞液2を、直径9cmの標準寒天培地に0.2mL塗抹して、35℃で36時間培養して、培地上に形成されたコロニー数をカウントすることで残菌数を確認した。

(2)カビ胞子の殺滅効果

黒コウジカビ (Aspergillus niger IFO6341) を、ポテトデキストロース寒天培

地(日本製薬(株))に25℃で約4週間前培養した。培地上に発生した菌体をかき取って5mlの滅菌水に懸濁し、ガラスホモジナイザーを用いて懸濁菌液を均一にした。本懸濁液を2回遠心洗浄後、適量の滅菌水で約10°~10°cell/mLの菌濃度に調整した(胞子液1)。この胞子液1の0.1mLを、表6~9の殺菌剤組成物2mlに接種し、25℃にて120秒作用させた。その後、直ちに、胞子液1を含む殺菌剤組成物の0.1mlを、1.0%チオ硫酸ナトリウムを加えたSCDLP培地(日本製薬(株))中に添加して、殺菌剤組成物を不活性化した(胞子液2)。胞子液2を、直径9cmのポテトデキストロース寒天培地に0.2mL塗抹して、25℃で3~4日間培養して、培地上に形成されたコロニー数をカウントすることで残菌数を確認した。

表6

		,	C	C		本発明品	明品	7	c	G	ç
		2-1	2-2	2-3	2-4	22	26	2-7	2-8	2-9	2-10
「チレンク" _!	エチレンク・リコールモノアセテート	2g (0.0192)					1		3g (0.0288)	0 0 0 0 0 0	2 2 3 4 4
にチレング ・	エチレング・リコールジ・アセテート	·	2g (0.0137)						,	, , , , , , , , , , , , , , , , , , ,	• • • • • • • • • • • • • • • • • • •
ジアセチン				2g (0.0114)							
(A) NJ7セチン	_				2g (0.0092)					5g (0.0229)	
パンタエリ	へごタエリスリトールテトラアセテート					5g (0.0164)				-	
、シタアセ	ペンタアセチルーβ-D-グルコース						2g (0.0051)				5g (0.0128)
ゲリセリン	グリセリン脂肪酸エステル		-					5g (0.0229)			
過酸化	過酸化水素水(35重量%)	2.86g (0.0294)	2.86g (0.0294)								
過炭酸	(8) 過炭酸ナハウム										
過木ウ酸	過ホウ酸ナトリウム										
3	(A)/(B)毛ル比	0.65	0.47	0.39	0.31	0.56	0.17	0.78	0.98	0.78	0.44
ā	pH(25°C)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.9	3.8	3.8
有機過	有機過酸濃度(ppm)	2000	2000	4000	4000	4000	4000	4000	4000	4000	4000
#	異章料	<50	<50	<50	<50	<50	<50	150	<20	<50	<50
残困数 CFU/mL) [-	残断数 (CFU/mL) [サーキュランス菌	<50	<50	<50	<50	<50	<50	200	<50	<50	<50
<u> </u>	黒コウジカビ	<50	<50	<50	<50	<50	<50	150	<50	<50	<50

表7

								本発明品	明品				
				2-11	2-12	2-13	2-14	2-15	2-16	2-17	2–18	2-19	2-20
		1.71	エチレング・リコールモノアセテート	2g (0.0192)							3g (0.0288)		
		ιξι	エチレンク・リコールジ・アセテート		2g (0.0137)								
		7.7	ジアセチン			2g (0.0114)					-		
	3	(A) HJ72Fン	セチン				2g (0.0092)					5g (0.0229)	
陌令		·?	へ^クエリスリトールテトラアセテート					5g (0.0164)					
成分		<u>ئ</u>	^° <i>ኃ∮</i> アセチル−β −D−グルコ−ス				/		2g (0.0051)				5g (0.0128)
		<i>7.</i> 1H	グリセリン脂肪酸エステル							5g (0.0229)			
		迴	過酸化水素水(35重量%)				-			•			
	(B)	過	(B) 過炭酸ナドリウム	4.55g (0.0294)			, , , , , , , , , , , , , , , , , , ,						
		响	過ホウ酸ナトリウム								5.00g (0.0294)	5.00g (0.0294)	5.00g (0.0294)
			(A)/(B)モル比	0.65	0.47	0.39	0.31	92.0	0.17	82.0	86.0	0.78	0.44
			pH(25°C)	4.2	4.2	4.2	4.2	3.9	4.2	3.9	4.5	3.9	3.9
		有樣	有機過酸濃度(ppm)	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000
14	拉	1米!	枯草菌	<50	05>	<20	<50	0 2>	<50	200	<50	<50	<50
"ပ	次图数 CFU/mL	海南教 (CFU/mL)		<50	<50	<50	<50	<50	<50	200	<50	<50	<50
		İ	黒コウジカビ	<50	<50	<50	<50	<50	<50	250	<50	<50	<50

茶8

	2-10							3g (0.0138)	2.86g (0.0294)			0.47	9.5	4000	3.3×10^7	2.1×10^7	8.0×10^{7}
	2													4	_		_
•	6-7						3g (0.0077)		2.86g (0.0294)			0.26	9.5	4000	2.1×10	2.3×10^7	7.5 × 10
	2-8					3g (0.009)			2.86g (0.0294)			0.34	9.5	4000	$3.8 \times 10^7 \ 2.1 \times 10^7$	$1.5 \times 10^7 \ 2.1 \times 10^7$	$7.7 \times 10^7 7.5 \times 10^7$
	2-7				2g (0.0092)				2.86g (0.0294)			0.31	9.5	4000	$2.9 \times 10^7 2.5 \times 10^7$	1.5×10^7	7.5×10^7
比較品	2–6			2g (0.0114)					2.86g (0.0294)			0.39	9.5	4000	2.9×10^7	2.6×10^7	7.1×10^{7}
比真	5-2		2g (0.0137)						2.86g (0.0294)			0.47	9.5	4000	3.2×10^7	3.0×10^7	8.1×10^{7}
	7-7					2g (0.0066)			2.86g (0.0294)			0.22	7.8	4000	6.8×10^6	1.9×10^7	8.3×10^5
	2-3				2g (0.0092)				2.86g (0.0294)			0.31	7.8	4000	8.5×10^{6}	1.3×10^7	5.9×10^{5}
	7-7			2g (0.0114)					2.86g (0.0294)			0.39	7.8	2000	2.8×10^{5}	5.6×10^5	1.0×10^5
	2-1	2g (0.0192)							2.86g (0.0294)			0.65	7.8	2000	2.3×10^5	6.2×10^{5}	5.6×10^4
		エチレンク・リコールモノアセテート	エチレングリコールジ・アセテート	チン	<u>ゥ</u> チン	へ^クエリスリトールテトラアセテート	ペンタアセチルーβ-Dーグルコース	グリセリン脂肪酸エステル	過酸化水素水(35重量%)	(B) 過炭酸ナリウム	過ホウ酸ナトリウム	(A)/(B)モル比	pH(25°C)	有機過酸濃度(ppm)	枯草菌	サーキュランス菌	黒コウジカビ
		エチレン	エチレン	ジアセチン	(A) HJ7セチン	٧٠,	گر`^	1,14	過酸	3) 過炭	高市			有機	非	後周数 (CFU/mL)	: i
					<u> </u>	配包	成分	_	L	<u> </u>					#	(CF)	

表9

l								比重	比較品				
				2-11	2-12	2-13	2-14	2-15	2-16	2-17	2-18	2-19	2–20
		エチレン	エチレング・リコールモノアセテート	2g (0.0192)									
		ぼん	エチレンク・リコールジ・アセテート					2g (0.0137)					
		ジアセチン	チン		2g (0.0114)				2g (0.0114)				
		(A) HJ7 セチン	チン			2g (0.0092)				2g (0.0092)			
陌包		ペンタコ	へ^ンタエリスリトールテトラアセテート				2g (0.0066)				3g (0.0099)		
成分		ペンタフ	へ°ンタアセチル- β -D-ケルコース									3g (0.0077)	
		7.11	グリセリン脂肪酸エステル										3g (0.0138)
		過酸1	過酸化水素水(35重量%)										
	(B)	圖派	(B) 過炭酸ナリウム	4.55g (0.0294)	4.55g (0.0294)			4.55g (0.0294)	4.55g (0.0294)	4.55g (0.0294)			
		適本ウ	過ホウ酸ナトリウム			5.00g (0.0294)	5.00g (0.0294)				5.00g (0.0294)	5.00g (0.0294)	5.00g (0.0294)
		₹	(A)/(B)モル比	0.65	0.39	0.31	0.22	0.47	0.39	0.31	0.34	0.26	0.47
		1	рН(25°С)	7.8	7.8	7.9	7.9	9.5	9.2	9.2	9.0	9.0	9.0
		有機迫	有機過酸濃度(ppm)	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000
, ,	担	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2.1×10^5	2.5×10^5	1.2×10^5	5.6×10^5	6.2×10^7	5.4×10^7	4.9×10^7	5.6×10^7	6.2×10^7	6.8×10^7
^ ပ	E E	/mL)	ス菌	6.1×10^{5}	5.9×10^{5}	6.9×10^5	5.9×10^{5}	3.6×10^7	2.8×10^7	3.0×10^7	3.9×10^7	3.2×10^7	3.2×10^7
			黒コウジカビ	7.3×10^4	7.6×10^5	5.8×10^5	6.1×10^5	6.9×10^7	7.6×10^7	7.6×10^7	7.4×10^7	7.5×10^7	8.6×10^7

表10に示す重量の(A)成分、(B)成分、有機ホスホン酸〔商品名:ディクエスト2010(ソルーシアジャパン(株)製)〕、アルカリ性p日調整剤に、イオン交換水を加えて全重量を100gとした。これを200mLビーカー内で約10分間攪拌混合した。その際のpHは8~12であった。その後、速やかに表10に示す重量の酸性p日調整剤を用いて目的のpHに調整し、さらにイオン交換水を添加して全量を110gにした。この時点(調製直後とする)での有機過酸濃度および過酸化水素濃度を測定するとともに、攪拌から約30分後の殺菌用水溶液を有機過酸濃度として3000ppmに調整して殺菌効果を確認した。なお、過酸化水素濃度及び有機過酸濃度の測定方法は実施例1の有機過酸濃度の測定方法に従った。また、殺菌試験方法は実施例2の細菌芽胞の殺滅効果に従ったが、本例では殺菌用水溶液と菌の接触温度および接触時間を60℃20秒間とし、対象菌としてBacillus cereus IFO13494ならびにBacillus subtilis var. nigerを用いた。結果を表10に示す。

まって

							本発明品	明品				
			3-1	3-2	3-3	3-4	3-5	3-6	3-7	3-8	3–9	3-10
		┤ ─゙゙゙゙゙゙゙゙゙゙゙゙゚゚゙゙゙゙゙゙゙゠゚゙゚゙゚゙゚゚゙゚゚゙゚゚゚゚゙゚゙゚゚゙゚	5g (0.0342)	5g (0.0342)				·				
	3	トリアセチン			5g (0.0229)	5g (0.0229)	5g (0.0229)	5g (0.0229)	5g (0.0229)	5g (0.0229)		
		ペンタアセチルー <i>β-</i> Dーグルコース									5g (0.0128)	5g (0.0128)
配合成	(B)	過酸化水素水(35重量%)	4.3g (0.0443)									
次	キレート剤 (純分)	有機ホスホン酸	0.1g									
	アルカリ性	水酸化ナリウム	2g		2g			2g			2g	
	pH調整剤	炭酸ナリウム				6g			6g			
	(第分)	リン酸3ナドリウム	1	4g			4g			4g		4g
	酸性	硫酸(純度98%)	2.1g	2.1g	1	١	_	2.1g	2.1g	2.1g	2.1g	2.1g
	pH調整剤	pH調整剤 小酸(純度85%)	0.5g	0.5g	5.0g	5.0g	5.0g	0.5g	0.5g	0.5g	0.5g	0.5g
€	(A)/(B)モル比		0.77	0.77	0.52	0.52	0.52	0.52	0.52	0.52	0.29	0.29
鰮	製直後の有物	調製直後の有機過酸濃度(ppm)	25,000	24,000	27,000	22,000	26,000	27,000	22,000	26,000	30,000	29,500
篇	製直後の過	調製直後の過酸化水素濃度(ppm)	1,500	1,650	1,050	1,900	1,350	1,050	1,850	1,300	006	950
粱	殺菌用水溶液のpH(25°C)	ЉpH(25℃)	3.5	2.8	3.7	1.5	3.0	3.5	1.2	2.8	3.5	2.8
	残菌数	Bacillus cereus IFO13494	<20	<50	<20	<20	<20	05>	<50	<50	05>	<50
	CFU/mL)	Bacillus subtilis var. niger	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50

表11に示す組成の殺菌剤製造用組成物を調製し、以下の方法で貯蔵安定性を評価した。結果を表11に示す。

< 貯蔵安定性試験方法>

殺菌剤製造用組成物 1 5 0 m l を容量 2 0 0 m l のガラス瓶 (無色透明) に充填し、蓋をして 5 0 ℃にて保存する。 4 週間経過した後、組成物中の過酸化水素濃度を、実施例 1 の有機過酸濃度の測定方法に準じて測定して、保存後の過酸化水素濃度とする。過酸化水素残存率を次式にて求め、貯蔵安定性の指標とした。なお、調整直後の過酸化水素濃度は、過酸化水素の仕込み量に基づく組成物中の濃度を採用できる。

過酸化水素残存率 (%) = 〔(保存後の過酸化水素濃度)÷(調製直後の過酸化水素濃度)〕×100

表11

						'`	本発明品						比較品	
			4-1	4-2	4-3	4-4	4-5	4-6	4-7	4-8	4-9	4-1	4-2	4-3
		トリアセチン	66.7			20				50	20	20	20	
	3	ジアセチン		66.7			50							50
	<u></u>	エチレング・リコールジ・アセテート			66.7			50						
翠也		グリセリン脂肪酸エステル ^{※1}				•			50	• • • • • • • • • • • • • • • • • • •				• • • • •
爻 ((B)	(B) 過酸化水素	20	20	20	15	15	15	15	15	15	15	15	15
重量%	-	1-ヒドロキシエチリデン -1,1-ジホスホン酸 ^{※2}								0.50				
(5		NaOH*3								0.17				
		プロピ゚レンゲリコール				25	22	25	25	24	15		5	
	,	水	13.3	13.3	13.3	10	10	10	10	10.33	20	35	30	35
		合計	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	<table-cell></table-cell>	配合状態(目視)	0	0	0	0	0	0	0	0	0	** ×	0	0
	Ω	pH(原液、20°C)	3.0	3.3	4.5	3.1	3.5	4.7	3.8	3.1	2.8	l	2.9	3.4
安克	貯蔵 安定性	過酸化水素残存率(%)	82.6	9.99	86.5	9.69	53.6	81.2	84.1	57.3	53.1	I	43.5	30.4

※1 商品名: ホモテックスPT(花王㈱製)、グリセリンと炭素数8の脂肪酸とのエステル

※4 分離状態

^{※2} 商品名:ディクエスト2010(ソルーシアジャパン㈱製)、有効分60重量%、水40重量%

^{※3} 有効分48重量%、水52重量%

実施例5及び比較例5

表12~17に示す量の(A)成分、(B)成分及びイオン交換水〔表中、(C)の記号を付す〕と適量のアルカリ性pH調整剤〔炭酸ナトリウム〕を使用した他は実施例1と同様に製造した。 結果を表12~17に示す。

また、表18に示す量の(A)成分、(B)成分及びイオン交換水〔表中、(C)の記号を付す〕と適量の酸性pH調整剤〔クエン酸〕とを、200mLビーカー内で20分間攪拌混合した。その際のpHは、3~5となるようにした。その際の有機過酸濃度を測定したが、有機過酸の発生は認められなかった。なお、本例は、第一工程のpHを3~5とし、第二工程を特に設けない例に相当する。結果を表18に示す。

(1) 有機過酸濃度の測定方法において、(1-1)過酸化水素の定量と(1-2)有機過酸の定量は実施例 1 と同様に実施した。 但し、 w_1 :第二工程後の有機過酸含有水溶液の重量(g)、 w_2 :第二工程後の有機過酸含有水溶液の重量(g)である。

表12

			·					実施例	E 例				
				5-1	5-2	5–3	5-4	5-2	2-6	2-7	2-8	5-9	5-10
			エチレングリコールジアセテート	2g (0.0137)	3g (0.0205)	5g (0.0342)							
		€	トリアセチン				2g (0.0092)	3g (0.0138)	5g (0.0229)				
		} 	ペンタアセチル <i>– β –</i> D <i>–ヴ</i> ルコース							2g (0.0051)	3g (0.0077)		
	士 法		ク・リセリン脂肪酸エステル									5g 8g (0.0229)(0.0367)	8g (0.0367)
製油			過酸化水素水(35重量%)	2.86g (0.0294)	2.86g (0.0294)	0.29g (0.0030)	0.29g (0.0030)						
※ 华		<u>@</u>	過炭酸ナリウム							P 1 2 4 6 6 9 9			
=			過ホウ酸ナトリウム				:						•
		(C)	水	48g	48g	55g	48g	48g	55g	48g	55g	55g	60g
		(A)/(B	(A)/(B)モル比	0.47	0.70	1.16	0.31	0.47	0.78	0.17	0.26	7.63	12.23
		(A)+(E	[(A)+(B)]/(C)重量比	0.063	0.083	0.109	0.063	0.083	0.109	0.063	0.073	0.093	0.135
]	```	部门1	第二工程でのpH(25°C)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
—— 社	九装运装制币		第二工程直後	18300	22100	23600	22300	26100	33700	26900	29900	4500	5500
— 正 系	ر (ppm) (ppm)		第二工程の30分後	17500	21300	21600	21000	25100	30200	25800	27900	4200	5100
			第二工程の60分後	16300	19800	20500	19300	24300	28700	24600	25800	4000	4800
柜	機過	後残存	有機過酸残存率(%)	89.1	9.68	86.9	86.5	93.1	85.2	91.4	86.3	88.9	87.3
剽	酸化力	火素残	過酸化水素残存率(%)	48.3	41.8	39.9	41.2	28.7	1.8	38.2	25.3	28.7	19.9

(注)配合成分の()内の数値はモル数であり、(B)成分の()内のモル数は、過酸化水素としての量である(以下同様)。また、(A) / (B1)モル比は、(A)成分と過酸化水素のモル比である(以下同様)。また、有機過酸濃度における第二工程直後とは、系中のpHが所定の値となった直後を意味し、有機過酸残存率は、〔(第二工程直後の有機過酸濃度) / (第二工程の60分後の有機過酸濃度)〕×100により算出されるものである(以下同様)。また、過酸化水素残存率は、前記式(1-1)から算出された過酸化水素濃度から系内の全過酸化水素重量を求め、これを初期の投入全過酸化水素重量で除すことにより算出されるものである(以下同様)。また、(A)成分のうち、グリセリン脂肪酸エステル〔商品名:ホモテックスPT、花王(株)製〕の脂肪酸は、炭素数8のものである(以下同様)。なお、過炭酸ナトリウムは、過酸化水素を22重量%含有し、過ホウ酸ナトリウムは、過酸化水素を20重量%含有していた。

ď	
-	
₩	

						14 14 14 14 14 14 14 14 14 14 14 14 14 1	· 市特色				
						Ř [[[]				
		5-11	5-12	5-13	5-14	5-15	5-16	5-17	5-18	5-19	5-20
	エチレングリコールジアセテート	2g (0.0137)	3g (0.0205)	5g (0.0342)							
(トリアセチン				2g (0.0092)	3g (0.0138)	5g (0.0229)				
<u> </u>	ペンタアセチル- <i>β -</i> D-ケ´ルコース							2g (0.0051)	3g (0.0077)		•
	グリセリン脂肪酸エステル									5g (0.0229)	8g (0.0367)
	過酸化水素水(35重量%)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)				0.29g (0.0030)
<u>@</u>	過炭酸ナリウム										
	過ホウ酸ナトリウム		, , , , , ,		; ; ; ;						
(2)	水	48g	48g	55g	48g	48g	55g	48g	55g	55g	80g
(A)/(B))モル比	0.47	0.70	1.16	0.31	0.47	0.78	0.17	0.26	7.63	12.23
[(A)+(E	3)]/(C)重量比	0.063	0.083	0.109	0.063	0.083	0.109	0.063	0.073	0.093	0.135
第二1	こ程でのpH(25℃)	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9
	第二工程直後	18300	22100	23600	22300	26100	33700	26900	29900	4500	5500
	第二工程の30分後	16900	20700	20700	20500	23300	29500	23800	26700	4000	5100
	第二工程の60分後	15800	18600	19200	18400	20100	27200	22400	23900	3800	4600
]酸残存	[率(%)	6.98	84.2	81.4	82.5	77.0	80.7	83.3	79.9	84.4	86.3
,水素残	? 存率(%)	47.2	40.9	39.2	40.3	23.4	7.5	32.8	23.1	7.72	18.3
	(A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	1チレンケリコール ペンタアセチルー ケリセリン脂肪 過味酸ナトリケ 過水ウ酸ナトリケ 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	エチレングリコールジアセテート トリアセチン ペンタアセチルー B ーDーグルコース カリセリン脂肪酸エステル 過酸化水素水 (35重量%) 過水砂子ドリウム 過水砂子ドリウム 温水ウ酸ナトリウム 第二工程でのpH(25°C) 第二工程でのpH(25°C) 第二工程の00分後 第二工程の60分後	エチレンゲリコールジアセテート 2g 3g	エチレング・リュールジアセテート 2g 3g 5g 5g 3g 5g 5g 3g 5g	エチレング・リュールジアセテート 2g 3g 5g 5g 3g 5g 5g 3g 5g	キリアセチート 2g 3g 5g 5g 5g 3g 5g	キートンケリコール・テセテート 2g 3g 5g 5g 3g	15-11 5-12 5-13 5-14 5-15 5-16	1.1 1.	17レンケリコールジアセテート 28

表14

				;				実施例	E 例			[
				5-21	5-22	5-23	5-24	5–25	5–26	5-27	5-28	5–29	5-30
			エチレング・リコールジ・アセテート	2g (0.0137)	3g (0.0205)	5g (0.0342)							
		3	レリアセチン				2g (0.0092)	3g (0.0138)	5g (0.0229)				
		}	ペンタアセチルーβ-Dーグルコース							2g (0.0051)	3g (0.0077)		
	往法		グリセリン脂肪酸エステル									5g (0.0229)	8g (0.0367)
製油			過酸化水素水(35重量%)								,		
然		(B)	過炭酸ナハウム	4.55g (0.0294)	4.55g (0.0294)	4.55g (0.0294)	4.55g 4.55g 4.55g (0.0294) (0.0294)	4.55g (0.0294)	4.55g (0.0294)		1 1 1 1 1 1		: : : : :
·. ·. •			過ホウ酸ナトリウム							5.00g (0.0294)	5.00g 0.5g (0.0294) (0.0029)	0.5g (0.0029)	0.5g (0.0029)
		<u>ට</u>	关	55g	55g	55g	55g	55g	55g	55g	25g	55g	55g
	$ \check{\ } $	A)/(B	(A)/(B)モル比	0.47	0.70	1.16	0.31	0.47	0.78	0.17	0.26	7.90	12.66
		(A)+(E	[(A)+(B)]/(C)重量比	0.055	0.073	0.109	0.055	0.073	0.109	0.055	0.073	0.093	0.147
	4141	第二工	第二工程でのpH(25°C)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
*	**************************************	ļ	第二工程直後	18500	22000	23000	22100	27300	33500	26400	30100	4500	5300
血葱、	布 統固器派成 (pom)		第二工程の30分後	17200	21000	22300	21600	25400	30800	24100	28300	4300	5300
			第二工程の60分後	15800	19900	21500	20900	23200	29600	22500	25100	4100	5000
单	機過費	後残存	有機過酸残存率(%)	85.4	90.5	93.5	94.6	85.0	88.4	85.2	83.4	91.1	94.3
阌	酸化力	K素残	過酸化水素残存率(%)	46.2	38.6	35.6	37.2	20.8	6.9	30.9	21.1	25.9	17.4

LC.	١
-	
шÞ	
ΠÞ	Ī

L								五	比較例				
				5-1	5-2	5-3	5-4	2-2	2–6	2-7	2-8	5-9	5-10
			エチレンク・リコールジ・アセテート	0.2g (0.0014)				3g (0.0205)					
		3	トリアセチン		0.2g (0.0009)				3g (0.0138)			5g (0.0229)	
		3	ペンタアセチルーβ-Dーグルコース			0.2g (0.0005)				3g (0.0077)			5g (0.0128)
	士 :		グリセリン脂肪酸エステル				0.2g (0.0009)				5g (0.0229)		
製造	に量		過酸化水素水(35重量%)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	2.86g (0.0294)	0.29g (0.0030)	2.86g (0.0294)	2.86g (0.0294)
条件		(B)	過炭酸ナハウム										
			過ホウ酸ナトリウム		; ; ; ; ; ;			1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 4 6 6	; ; ; ; ; ;	1	, , , ,
		(C)	关	48g	48g	48g	55g	48g	48g	55g	55g	55g	55g
	٥	A)/(B	(A)/(B)モル比	0.05	0.03	0.02	0.03	0.70	0.47	0.26	7.63	0.78	0.44
)]	(A)+(E	[(A)+(B)]/(C)重量比	0.025	0.025	0.025	0.022	0.083	0.083	0.073	0.093	0.109	0.109
	和工	育二工	第二工程でのpH(25°C)	4.2	4.2	4.2	4.2	9.7	9.7	9.7	9.7	8.3	8.3
#	4年世		第二工程直後	<1000	1800	2200	<1000	22100	26100	29900	4500	33700	29900
丘 徳	布核過器減吸 (ppm)		第二工程の30分後	<1000	1200	1500	<1000	15300	17600	18600	2200	25500	24800
			第二工程の60分後	<1000	<1000	<1000	<1000	8600	12900	13500	<1000	15600	13800
有	機過酶	线残存	有機過酸残存率(%)	1	1	I	1	38.9	49.4	45.2	1	46.3	46.2
蚂	酸化水	く素残	過酸化水素残存率(%)	87.3	92.4	82.5	94.2	14.3	13.2	10.3	7.9	5.3	5.1

(C	
<u>~</u>	
nb	

								比車	比較例				
				5-11	5-12	5-13	5-14	5-15	5-16	2-17	5-18	5-19	5-20
			エチレングリコールジアセテート	0.2g (0.0014)				3g (0.0205)					
		(8)	トリアセチン		0.2g (0.0009)		_		3g (0.0138)	٠		5g (0.0229)	· · · · · · · · · · · · · · · · · · ·
		} 	ヘ°ンタアセチル- β -D-ケ″ルコース			0.2g (0.0005)				3g (0.0077)		• • • • • • • •	5g (0.0128)
:	仕な		グリセリン脂肪酸エステル				0.2g (0.0009)				5g (0.0229)	2 2 3 4 6 6 6	
製造			過酸化水素水(35重量%)										
张		(B)	過炭酸ナハウム	4.55g (0.0294)	4.55g (0.0294)			4.55g (0.0294)	4.55g (0.0294)			4.55g (0.0294)	
		:	過ホウ酸ナトリウム			5.00g (0.0294)	5.00g (0.0294)			5.00g (0.0294)	0.5g (0.0029)		5.00g (0.0294)
		(C)	水	55g 55g	55g								
		A)/(B	(A)/(B)モル比	0.05	0.03	0.02	0.03	0.70	0.47	0.26	7.90	0.78	0.44
		(A)+(E	[(A)+(B)]/(C)重量比	0.022	0.022	0.022	0.022	0.073	0.073	0.073	0.093	0.109	0.109
	7141	新二二	第二工程でのpH(25°C)	4.5	4.5	4.5	4.5	9.2	9.2	9.0	9.0	9.2	9.0
# #	· 分里 四:%		第二工程直後	<1000	1500	1800	<1000	22000	27300	30100	4500	33500	35000
Ĺ.	有核過酸液皮 (ppm)		第二工程の30分後	<1000	1000	1200	<1000	16300	16300	20500	2000	24000	26400
			第二工程の60分後	<1000	<1000	<1000	<1000	8500	11800	13700	<1000	14900	16300
世	機過	後残存	有機過酸残存率(%)	ı	ı	ı	1	38.6	43.2	45.5	ı	44.5	46.6
剽	酸化力	k素残	過酸化水素残存率(%)	87.3	9.88	86.3	91.8	15.0	12.9	11.6	8.6	6.9	7.1

٢	•
т	_
#	۲

								比較例	交例				
				5-21	5-22	5-23	5-24	5-25	5-26	5-27	5-28	5-29	5-30
			エチレングリコールジアセテート	2g (0.0137)	5g (0.0342)				2g (0.0137)	5g (0.0342)			
		(1)	トリアセチン			2g (0.0092)	·				2g (0.0092)		
		<u> </u>	ヘ°ンタアセチル- β -D-ケ″ルコース				2g (0.0051)					2g (0.0051)	
	往法		グリセリン脂肪酸エステル					8g (0.0367)					8g (0.0367)
製造			過酸化水素水(35重量%)	2.86g (0.0294)	2.86g (0.0294)	2.86g 2.86g (0.0294) (0.0294)	2.86g (0.0294)	0.29g (0.0030)					
条件		(B)	過炭酸ナリウム						4.55g (0.0294)	4.55g (0.0294)	4.55g (0.0294)	-	
			過ホウ酸ナトリウム									5.00g (0.0294)	0.5g (0.0029)
		(C)	水	48g	55g	48g	48g	g09	55g	55g	55g	55g	, 55g
		(A)/(B	(A)/(B)モル比	0.47	1.16	0.31	0.17	12.23	0.47	1.16	0.31	0.17	12.66
		(A)+(E	[(A)+(B)]/(C)重量比	0.063	0.109	0.063	0.063	0.135	0.055	0.109	0.055	0.055	0.147
	~-·	第二工	第二工程でのpH(25°C)	9.5	9.5	9.5	8.6	8.6	9.2	9.2	9.5	9.0	9.0
4	E E	t H	第二工程直後	18300	23600	22300	26900	2200	18500	23000	22100	26400	5300
É Ž	有核過酸液反 (ppm)	 	第二工程の30分後	10600	17700	17500	19900	3100	11000	17500	18400	20900	3600
			第二工程の60分後	6800	10100	10300	13100	1900	6700	10600	11000	12700	2000
有	機過	餕残存	有機過酸残存率(%)	37.2	42.8	46.2	48.7	34.5	36.2	46.1	49.8	48.1	37.7
闿	酸化7	水素残	過酸化水素残存率(%)	43.2	21.6	39.5	28.4	6.7	38.7	21.7	42.1	27.6	7.7

表18

		エチレング・リコールジ・アセテート	トリアセチン	へごクアセチルー β -D-ケルコース	仕 ケリセリン脂肪酸エステル	製	条 (B) 過炭酸ナハウム	過ホウ酸ナリウム	★ (0)	(A)/(B)モル比	[(A)+(B)]/(C)重量比	反応時のpH(25°C)	調製直後	有機道酸濃度 調製30分後 (pom)	調製60分後	有機過酸残存率(%)	温聚/少学群化 (04)
	2-			א–ביו					4	0	0.0	3.	>				
	5-31	2g (0.0137) ((2.86g (0.0294) ((48g	0.47	0.063	3~5	<1000	<u> </u>	<u> </u>		
	5-32	3g 5.0205)				2.86g (0.0294)			48g	0.70	0.083	3~5	<1000			1	
	5-33	3g 5g (0.0205) (0.0342)				2.86g (0.0294)			55g	1.16	0.109	3~5	<1000		1	1	
	5-34		2g (0.0092)			2.86g (0.0294)			48g	0.31	0.063	3~5	<1000	l	ı	ı	
比	5-35		3g (0.0138)			2.86g (0.0294)		1 1 1 1 1 1 1	48g	0.47	0.083	3~5	<1000	ı	ı		
比較例	5-36		2g 3g 5g (0.0092) (0.0138) (0.0229)						55g	0.78	0.109	3~5	<1000	ı	ı	I	
	5-37))) (1	2g (0.0051)		2.86g 2.86g (0.0294) (0.0294)		1 1 1 1 1 1 1	48g	0.17	0.063	3~5	<1000	ı	ı	ı	
	5-38			3g (0.0077)		2.86g 0.29g 0.29g (0.0294) (0.0030) (0.0030)			55g	0.26	0.073	3~5	<1000	ı	ı	ı	
	5-39		• • • • •		5g (0.0229)	0.29g (0.0030)	• • • • •		55g	7.63	0.093	3~5	<1000	١	ı	1	
	5-40		• • • • •	; ; ; ; ; ;	5g 8g (0.0229) (0.0367)	0.29g (0.0030)			60g	12.23	0.135	3~5	<1000		1	i	

実施例5a 及び比較例5a

実施例5及び比較例5で製造された有機過酸を表19~22に示す濃度で含有し、表19~22のpHを有する殺菌用水溶液を調製し、以下の方法で殺菌効果を測定した。結果を表19~22に示す。

(1)細菌芽胞の殺滅効果

芽胞形成細菌である、枯草菌(Bacillus subtilis var. niger)とサーキュランス菌(Bacillus circulans IFO3967)とを、それぞれSCD寒天培地(日本製薬(株)製)に30℃で約4週間前培養した後、寒天培地上に形成されたコロニーを適量かきとって1mLの滅菌水に懸濁し、検鏡して細菌芽胞(以下、芽胞という)の形成を確認した。この懸濁液を2回遠心洗浄後、適量の滅菌水で約10°~10°cell/mLの菌濃度に調整した(芽胞液1)。この芽胞液1の0.1mlを、表19~22の殺菌用水溶液2mLに接種し、25℃にて120秒間作用させた。その後、直ちに、芽胞液1を含む殺菌用水溶液の0.1mLを、1.0%チオ硫酸ナトリウムを加えたSCDLP培地(日本製薬(株))中に添加して、殺菌用水溶液を不活性化した(芽胞液2)。芽胞液2を、直径9cmの標準寒天培地に0.2mL塗抹して、35℃で36時間培養して、培地上に形成されたコロニー数をカウントすることで残菌数を確認した。

(2)カビ胞子の殺滅効果

黒コウジカビ(Aspergillus niger IFO6341)を、ポテトデキストロース寒天培地 (日本製薬 (株)) に 25 で で 約 4 週間 前 培養 した。 培地上に発生した菌体をかき取って 5 m 1 の滅菌水に懸濁し、ガラスホモジナイザーを用いて懸濁菌液を均一にした。本懸濁液を 2 回遠心洗浄後、適量の滅菌水で約 1 0 % \sim 1 0 % cell /

mLの菌濃度に調整した(胞子液 1)。この胞子液 1 の 0.1 m L を、表 8~1 1 の 殺菌用水溶液 2 m l に接種し、 25 $\mathbb C$ に τ 1 τ 2 0 秒作用させた。その後、直ちに、胞子液 1 を含む殺菌用水溶液の 0.1 m l を、 1.0 % チオ硫酸ナトリウムを加えた τ 3 C D L P 培地(日本製薬(株))中に添加して、殺菌用水溶液を不活性化した(胞子液 2)。胞子液 2 を、直径 9 c m のポテトデキストロース寒天培地に 0.2 m L 塗抹して、 τ 2 5 τ 3~4 日間培養して、培地上に形成されたコロニー数をカウントすることで残菌数を確認した。

表19

							実施例	5例				
			5a-1	5a-2	5a-3	5a-4	5a-5	5a-6	5a-7	5a-8	5a-9	5a-10
	有機渦酸	製造方法	実施例 5-1	実施例 5-2	実施例 5-3	実施例 5-4	実施例 5-5	実施例 5-6	実施例 5-7	実施例 5-8	実施例 5-9	実施例 5-10
殺國 不溶液		濃度(ppm)	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000
	pH(25°C))	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
		料草菌	<50	<50	<50	05>	<50	<50	<50	<50	50	<50
残 (CFL	残菌数 (CFU/mL)	サーキュランス菌	<50	<50	<50	<50	<50	<50	<50	<50	200	150
		黒コウジルご	<50	<50	<50	<50	<50	<50	<50	<50	250	100

表20

							実施例	五例				
			5a-11	5a-12	5a-13	5a-14	5a-15	5a-16	5a-17	5a-18	5a-19	5a-20
	有機過酸	製造方法	実施例 5-21	実施例 5-22	実施例 5-23	実施例 5-24	実施例 5-25	実施例 5-26	実施例 5-27	実施例 5-28	実施例 5-29	実施例 5-30
殺 水 浴 浴 液		濃度(ppm)	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000
	pH(25°C)	(4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2
		枯草菌	¢20	<50	<50	<50	<50	<50	<20	<50	100	150
残 (CFU	残菌数 (CFU/mL)	サーキュランス菌	<50	<50	<50	<50	<50	<50	<50	<50	250	200
		黒コウジルご	<50	<50	<50	<50	<50	<50	<50	<50	150	150

表21

							比較例	交例				
			5a-1	5a-2	5a-3	5a-4	5a-5	5a-6	5a-7	5a-8	5a-9	5a-10
	有機過酸	製造方法	比較例 5-5	比較例 5-6	比較例 5-7	比較例 5-8	比較例 5-9	比較例 5-15	比較例 5-16	比較例 5-17	比較例 5-18	比較例 5-19
殺		濃度(ppm)	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000
	pH(25°C)	(9.5	9.5	8.6	8.6	9.5	9.5	9.5	9.0	9.0	9.2
		枯草菌	6.7 × 10 ⁷	$6.7 \times 10^7 \ 6.2 \times 10^7 \ 7.4 \times 10^6 \ 9.8 \times 10^6 \ 6.1 \times 10^7 \ 7.9 \times 10^7 \ 6.8 \times 10^7 \ 4.3 \times 10^6 \ 9.1 \times 10^6 \ 7.2 \times 10^7$	7.4 × 10 ⁶	9.8 × 10 ⁶	6.1 × 10 ⁷	7.9 × 10 ⁷	6.8×10^7	4.3 × 10 ⁶	9.1 × 10 ⁶	7.2 × 10 ⁷
展 (CFI	残菌数 (CFU/mL)	サーキュランス菌	5.3 × 10 ⁷	$5.3 \times 10^7 \ 4.8 \times 10^7 \ 1.1 \times 10^7 \ 1.0 \times 10^7 \ 4.3 \times 10^7 \ 6.1 \times 10^7 \ 5.7 \times 10^7 \ 9.7 \times 10^6 \ 1.6 \times 10^7 \ 5.9 \times 10^7$	1.1 × 10 ⁷	1.0 × 10 ⁷	4.3 × 10 ⁷	6.1 × 10 ⁷	5.7 × 10 ⁷	9.7 × 10 ⁶	1.6 × 10 ⁷	5.9 × 10 ⁷
		黒コウジルご	8.7 × 10 ⁷	8.7×10^7 1.6×10^7 6.9×10^5 7.7×10^5 7.1×10^7 3.8×10^7 4.3×10^7 3.8×10^7 1.7×10^7 4.1×10^7	6.9×10^{5}	7.7 × 10 ⁵	7.1 × 10 ⁷	3.8 × 10 ⁷	4.3 × 10 ⁷	3.8×10^7	1.7 × 10 ⁷	4.1 × 10 ⁷

表22

						比較例	交例				
		5a-11	5a-12	5a-13	5a-14	5a-15	5a-16	5a-17	5a-18	5a-19	5a-20
有機渦酸	製造方法	比較例 5-21	比較例 5-22	比較例 5-23	比較例 5-24	比較例 5~25	比較例 5-26	比較例 5-27	比較例 5-28	比較例 5-29	比較例 5-30
	濃度(ppm)	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000
pH(25°C)	((9.5	9.5	9.2	8.6	8.6	9.5	9.2	9.2	9.0	9.0
	枯草菌	6.8×10^7	$6.8 \times 10^7 5.9 \times 10^7 6.1 \times 10^7 8.6 \times 10^8 1.0 \times 10^7 7.1 \times 10^7 7.2 \times 10^7 6.9 \times 10^7 4.3 \times 10^6 1.5 \times 10^7 4.3	6.1 × 10 ⁷	8.6 × 10 ⁸	1.0 × 10 ⁷	7.1 × 10 ⁷	7.2 × 10 ⁷	6.9×10^7	4.3 × 10 ⁶	1.5 × 10 ⁷
残菌数 (CFU/mL)	サーキュランス菌	5.1 × 10 ⁷	5.1×10^7 5.0×10^7 4.2×10^7 9.9×10^6 1.3×10^7 6.3×10^7 5.3×10^7 5.4×10^7 1.6×10^7 1.1×10^7	4.2 × 10 ⁷	9.9 × 10 ⁶	1.3 × 10 ⁷	$0^7 = 6.3 \times 10^7 = 5.3 \times 10^7$	5.3 × 10 ⁷	5.4 × 10 ⁷	1.6 × 10 ⁷	1.1 × 10 ⁷
	黒コウジル	1.6×10^7	$1.6 \times 10^7 9.1 \times 10^7 7.2 \times 10^7 8.5 \times 10^5 7.8 \times 10^5 2.5 \times 10^7 1.9 \times 10^7 5.6 \times 10^7 2.2 \times 10^7 2.1 \times 10^7$	7.2×10^7	8.5×10^5	7.8×10^{5}	2.5×10^7	1.9 × 10 ⁷	5.6×10^7	2.2 × 10 ⁷	2.1 × 10 ⁷

表23に示す重量の(A)成分、(B)成分、有機ホスホン酸〔商品名:ディクエスト2010(ソルーシアジャパン(株)製)〕、アルカリ性pH調整剤に、イオン交換水を加えて全重量を100gとした(第一工程)。これを200mLビーカー内で約10分間攪拌混合した。その際のpHは、8~12であった。その後、速やかに表21に示す重量の酸性pH調整剤を用いて目的のpHに調整し、さらにイオン交換水を添加して全量を110gにした(第二工程)。この時点(調製直後とする)での有機過酸濃度および過酸化水素濃度を測定するとともに、有機過酸濃度の経時変化(調製直後から30分後、60分後、120分後)を測定した。120分経時した殺菌用水溶液は有機過酸濃度として3000ppmに調整して殺菌効果を確認した。なお、過酸化水素濃度及び有機過酸濃度の測定方法は実施例5の有機過酸濃度の測定方法に従った。また、殺菌試験方法は実施例5aの細菌芽胞の殺滅効果に従ったが、本例では殺菌用水溶液と菌の接触温度および接触時間を60℃20秒間とし、対象菌としてBacillus cereus IFO13494ならびにBacillus circulans IFO3967を供した。

表23

							寒	実施例				
			6-1	6-2	6-3	6-4	6-5	9-9	6-7	8-9	6-9	6-10
		エチレンクリコールジアセテート	5g (0.0342)	5g (0.0342)								
	€	トリアセチン			5g (0.0229)	5g (0.0229)	5g (0.0229)	5g (0.0229)	5g (0.0229)	5g (0.0229)		
		ペンタアセチルーβ-D-グルコース									5g (0.0128)	5g (0.0128)
配合成	(B)	過酸化水素水(35重量%)	4.3g (0.0443)									
尔	キレート剤 (純分)	有機ホスホン酸	0.1g									
	アルカリ性	水酸化ナリウム	2g		2g			2g			2g	
	pH調整剤	pH調整剤 炭酸ナトリウム				бд			6g			
	(第分)	リン酸3ナトリウム		4g			4g			4g		4g
	酸性	硫酸(純度98%)	2.1g	2.1g	1	1	1	2.1g	2.1g	2.1g	2.1g	2.1g
	pH調整剤	pH調整剤 小酸 (純度85%)	0.5g	0.5g	5.0g	5.0g	5.0g	0.5g	0.5g	0.5g	0.5g	0.5g
(A)	(A)/(B)モル比		0.77	0.77	0.52	0.52	0.52	0.52	0.52	0.52	0.29	0.29
		調製直後	25,000	24,000	27,000	22,000	26,000	27,000	22,000	26,000	30,000	29,500
有	農	30分後	25,000	23,500	26,500	20,000	25,500	26,000	20,000	25,500	28,000	28,000
	(mdd)	60分後	24,500	23,000	26,500	19,000	25,000	25,500	19,000	24,000	27,000	27,000
		120分後	24,000	22,000	25,000	18,000	24,000	25,000	18,000	23,500	25,500	25,500
調集	製直後の過	調製直後の過酸化水素濃度(ppm)	1,500	1,650	1,050	1,900	1,350	1,050	1,850	1,300	006	950
殺直	殺菌用水溶液のpH(25℃)	ЉpH(25℃)	3.5	2.8	3.7	1.5	3.0	3.5	1.2	2.8	3.5	2.8
	残菌数	Bacillus cereus IFO13494	<50	<20	<20	<50	<50	05>	<50	<20	<50	<50
ت	(CFU/mL)	Bacillus subtilis var. niger	<50	<50	<50	<50	<50	<20	<50	<50	<50	<50

表24に示す組成の液状組成物を調製し、以下の方法で有機過酸生成の安定性 を評価した。結果を表24に示す。

<有機過酸生成安定性試験方法>

表 24の液状組成物 X g と、有機ホスホン酸 0. 1 g と、N a O H 2 g に、イオン交換水を加えて全量が 1 0 0 g となるよう、1 0 0 m L ビーカー中にて調製した。 5 分間撹拌混合した後に、生成した有機過酸濃度(%)(調製直後の有機過酸生成濃度)を、実施例 5 の有機過酸濃度の測定方法に準じて測定した。ここで、実施例 $7-1\sim7-3$ は X=7. 5 (g) とし、実施例 $7-4\sim7-9$ 、比較例 $7-1\sim7-2$ は X=1 0 (g) とした。

また、表24の液状組成物150mlを容量200mlのガラス瓶(無色透明)に充填し、蓋をして50℃にて保存する。4週間経過した後、上記と同様に有機過酸生成を行い、同様に保存後の有機過酸生成濃度(%)を測定した。有機過酸生成安定率を次式にて求めた。

有機過酸生成安定率(%)= 〔(保存後の有機過酸生成濃度)÷調整直後の有機過酸生成濃度〕×100

表24

<u> </u>								実施例					比較例	交例
				7-1	7-2	2-2	7-4	7-5	9-2	L-L	7-8	7–9	1-1	7-2
			トリアセチン	2.99			20				20	20	20	
		3	ゾアセチン		66.7			20						50
		<u>}</u>	エチレンク・リコールシ・アセテート			66.7			50			: :		
	架出		グリセリン脂肪酸エステル ^{※1}							50				
匝	₹ ((B)	過酸化水素	70	20	70	91	15	15	15	15	15	15	15
禁用器	軍量%		1-ヒドロキシエチリテ`ン -1,1-ジホスホン酸 ^{※2}								0.50			
定	₹)		NaOH*3								0.17			
<u>\$</u>			プロピレングリュール				25	25	25	25	24	15	5	
			水	13.3	13.3	13.3	10	10	10	10	10.33	20	30	35
			合計	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
			配合状態(目視)	0	0	0	0	0.	0	0	0	0	0	0
			pH(原液、20°C)	3.0	3.3	4.5	3.1	3.5	4.7	3.8	3.1	2.8	2.9	3.4
有土	右 森 高 明 中 明	整件	調製直後(保存前)	31350	27360	28310	31350	27360	28310	7200	31350	29830	30400	29830
۳.	(mdd)	ۆر 2	保存後	28880	16340	22800	21280	13680	20900	5600	16340	13680	6460	7220
		有機	有機過酸生成安定率(%)	85	09	81	89	20	74	78	52	46	21	24

^{※1} 商品名:ホモテックスPT(花王㈱製)、ケリセリンと炭素数8の脂肪酸とのエステル※2 商品名:ディクエスト2010(ソルーシアジャパン㈱製)、有効分60重量%、水40重量%※3 有効分48重量%、水52重量%

請求の範囲

- 1. (A)多価アルコールと水酸基を有していても良い炭化水素基を有する有機酸とのエステル及び(B1)過酸化水素を含有し、水分含有量が1~25重量%である殺菌剤製造用組成物。
- 2. (A) 多価アルコールと水酸基を有していても良い炭化水素基を有する有機酸とのエステル、及び(B1) 過酸化水素又は(B2) 水中で過酸化水素を放出する無機過酸化物を、(A)と(B1)又は(A)と(B2)から発生する(B1)のモル比が(A)/(B1)=1/10~20/1で含有する殺菌剤製造用組成物であって、pHを8~12とした後、pHを1以上7未満として調製された水溶液として用いられる殺菌剤製造用組成物。
- 3. (A) 多価アルコールと水酸基を有していても良い炭化水素基を有する有機酸とのエステル、及び(B1) 過酸化水素又は(B2) 水中で過酸化水素を放出する無機過酸化物を、(A) と(B1) 又は(A) と(B2) から発生する(B1) のモル比が(A) / (B1) = $1/10\sim20/1$ で配合して得られる殺菌剤製造用組成物であって、 $pHを8\sim12$ とした後、pHを1 以上7未満として調製された水溶液として用いられる殺菌剤製造用組成物。
- 5. 請求項1記載の殺菌剤製造用組成物を用いて得られた請求項4記載の殺菌

剤組成物。

- 6. 過酸化水素含有量が 0.5 重量 % 以下である請求項 4 又は 5 記載の殺菌剤 組成物。
- 7. (A) を構成する多価アルコールが炭素数 2 ~ 1 2 の多価アルコールである 請求項 1 ~ 6 の何れか 1 項記載の組成物。
- 8. (A) を構成する有機酸が、炭素数 1 ~ 8 の脂肪酸である請求項 1 ~ 7 の何れか 1 項記載の組成物。
- 9. (B2)が、過炭酸ナトリウム及び過ホウ酸ナトリウムから選ばれる無機過酸化物である請求項2、3、7及び8の何れか1項記載の組成物。
- 10. (A) 多価アルコールと水酸基を有していても良い炭化水素基を有する有機酸とのエステルと(B1)過酸化水素とを、(A)/(B1)=1/10~20/1のモル比で、水中でpH8~12で反応させ、次いで当該反応系をpH1以上7未満として得られた、有機過酸を含有する水溶液を、被殺菌物と接触させる殺菌方法。
- 11. 請求項1~9の何れか1項記載の組成物を用いて前記水溶液を得る請求項 9記載の殺菌方法。
- 12. 過酸化水素含有量が0.5重量%以下である請求項10又は11記載の殺菌方法。
- 13. (A) 多価アルコールと水酸基を有していても良い炭化水素基を有する有機酸とのエステルと(B1) 過酸化水素とを、(A) / (B1) $=1/10\sim2$ 0/1のモル比で、水中で $pH8\sim12$ で反応させ、次いで当該反応系をpH1 以上7未満とする工程を有する、有機過酸の製造方法。

- 14. (A) 多価アルコールと水酸基を有していても良い炭化水素基を有する有機酸とのエステルと(B1) 過酸化水素とを、(A) / (B1) = 1/1 0 \sim 2 0/1 のモル比で、水中でp H 8 \sim 1 2 で反応させ、次いで当該反応系をp H 1 以上 7 未満とする工程を有する、殺菌剤組成物の製造方法。
- 15. (A)と(B1)が、(A)と(B1)とを含有し水分含有量が1~2 5重量%である液状組成物としてもたらされる請求項13又は14記載の製造方法。
- 16. 殺菌剤組成物中の過酸化水素含有量が0.5重量%以下である請求項14又は15記載の製造方法。
- 17. (A) を構成する多価アルコールが炭素数 2~12の多価アルコールである請求項13~16の何れか1項記載の製造方法。
- 18. (A) を構成する有機酸が、炭素数 1~8の脂肪酸である請求項13~1 17の何れか1項記載の製造方法。
- 19. (A)と(B1)との水中でのpH8~12での反応を、5~50℃で 1~120分間行う請求項13~18の何れか1項記載の製造方法。
- 20. 請求項1~3の何れか1項記載の殺菌剤製造用組成物を殺菌剤製造に用いる用途。
- 21. 請求項4~6の何れか1項記載の殺菌剤組成物を殺菌剤に用いる用途。

要約書

(A) 多価アルコールと水酸基を有していても良い炭化水素基を有する有機酸とのエステル及び(B1) 過酸化水素を含有し、水分含有量が1~25重量%である殺菌剤製造用組成物。該組成物から、有機過酸を含有する水溶液として殺菌剤が得られる。