NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON

Faglig kontakt under eksamen:

Navn: Bojana Gajić

Tlf.: 92490623

EKSAMEN I EMNE TTT4110 INFORMASJONS- OG SIGNALTEORI

Dato: tirsdag 7. juni 2011

Tid: kl. 9:00 - 13:00

Hjelpemidler: D–Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.

INFORMASJON

- Eksamen består av 4 oppgaver. Maksimalt antall poeng for hver deloppgave er angitt i parentes.
- Noen viktige formler finnes i vedlegget.
- Faglærer vil gå rundt to ganger, første gang ca. kl. 10 og andre gang ca. kl. 12.
- Sensurfrist er 3 uker etter eksamensdato.

Lykke til!

Oppgave 1 (3+2+3+2+2+3=15)

Et tidsdiskret system er gitt med sin frekvensrespons

$$H(\hat{\omega}) = \frac{1}{2 - e^{j\hat{\omega}}}.$$

- 1a) Hvilken type filter er dette (LP, HP, BP eller BS)? Begrunn svaret.
- **1b)** Finn en differensligning som beskriver filteret.
- 1c) Tegn opp direkte form 1- og direkte form 2-struktur for filteret. Hvorfor er det fordelaktig å bruke direkte form 2-strukturen?
- 1d) Finn enhetspulsresponsen til filteret.
- 1e) Er dette et FIR- eller IIR-filter?Er dette et kausalt filter?Begrunn svarene.
- 1f) Et tidsdiskret signal, gitt ved sitt spektrum

$$X(\hat{\omega}) = \frac{1}{1 + \frac{1}{2}e^{j\hat{\omega}}},$$

sendes gjennom systemet.

Finn utgangssignalet y[n].

Oppgave 2 (2+2+2+6=12)

2a) Et firkantsignal $x_1(t)$ er vist i figuren under.

Vis at spekteret til signalet er gitt ved

$$X_1(\omega) = 4 \frac{\sin(2\omega)}{2\omega}.$$

2b) Følgende figur viser signalet $x_2(t)$ som er en periodisk utvidelse av signalet $x_1(t)$.

Finn spekteret til $x_2(t)$.

2c) Hva er sammenhengen mellom signalene $x_1(t)$ og $x_2(t)$ i tidsdomenet (uttrykk $x_2(t)$ som en funksjon av $x_1(t)$)?

Hva er sammenhengen mellom spektra til de to signalene?

2d) Vi ønsker nå å punktprøve signalet $x_1(t)$ med punktprøvingsfrekvens $f_s = 0,5$ Hz. For å unngå aliasing bruker vi et antialiasingfilter som vist i følgende figur.

$$x_1(t)$$
 $H_a(\omega)$
 $x'(t)$
 $f_s = 0.5 \text{Hz}$
 $x_s[n]$

Skisser amplitudespekteret til signalet $x_1(t)$.

Skisser amplituderesponsen til filteret, $|H_a(\omega)|$, slik at aliasing unngås helt, samtidig som mest mulig av signaleffekten bevares.

Skisser amplitudespekteret til signalet x'(t) på utgangen av filteret.

Skisser amplitudespekteret til det samplede signalet $x_s[n]$ for $\hat{\omega} \in [-3\pi, 3\pi]$.

Oppgave 3 (3+5+3+2+2=15)

Figur 1 viser sannsynlighetstetthetsfunksjonen til et tidsdiskret signal x(n) med uavhengige punktprøver. Signalet skal kvantiseres med en uniform kvantiserer med 8 nivåer slik at overstyringsstøy ikke oppstår.

Figur 1: Sannsynlighetstetthetsfunksjonen til x(n)

- 3a) Finn desisjonsgrensene og representasjonsverdiene til kvantisereren.
 Hva er den største mulige verdien til kvantiseringsfeilen for denne kvantisereren?
- **3b)** Beregn signal-til-kvantiseringsstøy-forholdet (SQNR) for kvantisereren og uttrykk det i desibel.
- **3c)** Finn entropien til det kvantiserte signalet.

Vi ønsker å representere det kvantiserte signalet med en binær kode ved å tilordne et kodeord til hver representasjonsverdi.

- **3d)** Hva er den minste kodeordlengden vi må bruke hvis alle kodeordene skal være like lange. Foreslå en slik kode.
- **3e)** Er det mulig å designe en entydig dekodbar kode som har gjennomsnittlig kodeordlengde mindre enn i forrige deloppgave. Begrunn svaret.

Hvis det er mulig, foreslå en slik kode og beregn gjennomsnittlig kodeordlengde.

Oppgave 4 (4+4=8)

En modell av en digital overføringskanal er vist i figur 2, der

$$x(t) = \sum_{k} x_k h_s(t - kT),$$

T er avstanden mellom sendte kanalsymboler x_k , Δt er den totale forsinkelsen på kanalen (inkludert sender- og mottakerfilter), og w(t) er Gaussisk hvit støy på kanalen.

Figur 2: Modell for en digital overføringskanal

Den totale frekvensresponsen til overføringskanalen $G(f) = H_s(f) \cdot H(f) \cdot H_m(f)$ er vist i figur 3.

Figur 3: Den totale frekvensresponsen til overføringskanalen

4a) Er overføring over denne kanalen uten intersymbolinterferens (ISI) er mulig? Begrunn svaret.

Hvis det er mulig, finn den maksimale signaleringshastigheten, dvs. maksimalt antall kanalsymboler per sekund, for ISI-fri transmisjon.

4b) Finn nedre grense for signal-til-støy-forholdet på mottakeren som muligjør feilfri overføring av signalet x(n) fra forrige oppgave? Anta at x(n) ble generert ved å punktprøve et kontinuerlig signal med punktprøvingsfrekvens $f_s = 8$ kHz.