Stanisław Wilczyński*

Pracownia z analizy numerycznej

Sprawozdanie do zadania P.3.3

Wrocław, 21 stycznia 2016

Spis treści

1.	Wstęp	1
	Definicje oraz twierdzenia	
	2.1. Wielomiany Czebyszewa	3
3.	Aproksymacja	7
4.	Podsumowanie	8
Li	teratura	8

1. Wstęp

Wielomiany ortogonalne są niezwykle ważne ze względu na ich szerokie zastosowania w metodach numerycznych. Ich szczególnie ciekawym rodzajem są powszechnie znane wielomiany Czebyszewa. Wykorzystuje się je nie tylko w aproksymacji średniokwadratowej, ale również w aproksymacji jednostajnej czy przy obliczaniu całek. Kwadratura Gaussa-Czebyszewa jest przecież kwadraturą bardzo wysokiego rzędu, a jest to nic innego jak całka z wielomianu interpolacyjnego Czebyszewa. Tematem poniższej pracy będzie zastosowanie wielomianów interpolacyjnych Czebyszewa w aproksymacji jednostajnej funkcji oraz próba poprawienia wyniku aproksymacji przez niewielkie modyfikacje tych wielomianów.

2. Definicje oraz twierdzenia

W tym rozdziale przedstawimy podstawowe pojęcia niezbędne do zrozumienia tematu niniejszego sprawozdania. Większość poniższych definicji zostało wziętych z [1].

Definicja 1. Iloczyn skalarny

Na przestrzeni liniowej V definiujemy funkcję zwaną iloczynem skalarnym, która każdej parze elementów $f,g \in V$ przyporządkowuje liczbę rzeczywistą $\langle f,g \rangle$ i spełnia następujące warunki:

$$-\langle f, f \rangle \geqslant 0; \langle f, f \rangle = 0 \text{ wtedy } i \text{ tylko wtedy, } gdy f = 0$$

 $^{- \}langle f, g \rangle = \langle g, f \rangle$

^{*} E-mail: opos1@onet.eu

$$-\langle \alpha f + \beta g, h \rangle = \alpha \langle f, h \rangle + \beta \langle g, h \rangle$$

$$dla \ download f, g, h \in V \ i \ \alpha, \beta \in \mathbb{R}.$$

Definicja 2. Przestrzeń unitarna

Przestrzenią unitarną nazywamy przestrzeń liniową wyposażoną w iloczyn skalarny.

Definicja 3. Ortogonalność

Mówimy, że w przestrzeni unitarnej V elementy f, g są ortogonalne, jeśli $\langle f, g \rangle = 0$.

Definicja 4. Przestrzeń $l_{p,r}^2$

Przestrzeń unitarna $l_{p,r}^2$ to przestrzeń funkcji, których dziedziną jest \mathbb{R} , a przeciwdziedziną podzbiór \mathbb{R} z iloczynem skalarnym określonym wzorem:

$$\langle f, g \rangle = \sum_{i=0}^{r} f(x_i)g(x_i)p(x_i),$$

gdzie $\{x_0, x_1, \dots, x_r\}$ jest wyróżnionym zbiorem punktów, a p nieujemną funkcją zwaną funkcją wagową.

Definicja 5. Norma

Normą średniokwadratową w $l_{p,r}^2$ funkcji f nazywamy wartość $||f||_2 = \sqrt{\langle f, f \rangle}$. Normą jednostajną w $l_{p,r}^2$ nazywamy $||f||_{\infty} = \sup_{x \in X} |f(x)|, gdzie X$ jest wyróżnionym zbiorem punktów naszej przestrzeni.

Definicja 6. Wielomian optymalny

Niech π_n oznacza przestrzeń wielomianów stopnia nie większego niż n. n-tym wielomianem optymalnym względem pewnej normy $||\cdot||$ nazywamy wielomian $w_n \in \pi_n$ spełniający

$$||f - w_n|| = inf_{p \in \pi_n} ||f - p||.$$

Definicja 7. Ciąg wielomianów ortogonalnych

Ciąg P_0, P_1, \ldots, P_n , gdzie P_k jest wielomianem stopnia dokładnie k nazywamy ciągiem wielomianów ortogonalnych na zbiorze dyskretnym $\{x_0, x_1, \ldots, x_r\}$, z wagą p, jeśli tworzą one układ ortogonalny w przestrzeni $l_{p,r}^2$, tzn.

$$\langle P_k, P_l \rangle = 0$$

$$dla \ k \neq l, \ k, l = 0, 1, \dots, n(n \leqslant r).$$

Na danej przestrzeni ciąg wielomianów ortogonalnych jest wyznaczony jednoznacznie z dokładnością do mnożników liczbowych([1, strona 93])

Potrzebne będą również dwa twierdzenia o wielomianach optymalnych:

Twierdzenie 1. (o n-tym wielomianie optymalny względem normy średniokwadratowej)¹ Jeśli $\{P_k\}_{k=0}^n$ jest ciągiem wielomianów ortogonalnych to dla dowolnej funkcji ciągłej $f:[a,b] \to \mathbb{R}$ n-ty wielomian optymalny w sensie normy średniokwadratowej jest jedyny i wyraża się wzorem:

$$w_n = \sum_{k=0}^n \frac{\langle f, P_k \rangle}{\langle P_k, P_k \rangle} \cdot P_k.$$

¹ dowód tego twierdzenia można znaleźć w [4, strona 91]

Twierdzenie 2. (Czebyszewa o alternansie)²

Wielomian w_n jest n-tym wielomianem optymalnym względem normy jednostajnej dla funkcji ciągłej $f: [a,b] \to \mathbb{R}$ wtedy i tylko wtedy, gdy istnieje alternans, czyli zbiór n+2-punktowy $\{x_0, x_1, \ldots, x_{n+1}\} \subset [a,b]$ o własnościach:

1.
$$e_n(x_k) = -e_n(x_{k-1})$$
 dla $k = 1, 2, ..., n+1$

2.
$$|e_n(x_k)| = ||e_n||_{\infty} dla \ k = 0, 1, 2, \dots, n+1,$$

 $gdzie \ e_n = f - w_n.$

2.1. Wielomiany Czebyszewa

Definicja 8. Wielomiany Czebyszewa

Wielomianami Czebyszewa nazywamy ciąg wielomianów $\{T_k\}$, gdzie

$$T_k(x) = \cos(k \cdot \arccos x)$$

Wielomiany te spełniają zależność rekurencyjną

$$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x), \quad k = 2, 3, \dots$$

$$T_1(x) = x$$

$$T_0(x) = 1$$

W [1, strony 98-99] podane są dwie ważne własności wielomianów Czebyszewa:

— T_k $(k \neq 0)$ ma zera z_i jednokrotne rzeczywiste, leżące w przedziale (-1,1) i równe

$$t_{k,j} = \cos\frac{(2j-1)\pi}{2k}, \quad j = 1, 2, \dots, k$$

— T_k $(k \neq 0)$ ma k+1 punktów ekstremalnych u_i :

$$u_{k,j} = \cos \frac{j\pi}{k}, \quad j = 0, 1, \dots, k.$$

Co więcej $T_k(u_{k,j}) = (-1)^j$.

Pokażemy kilka przydatnych twierdzeń o wielomianach Czebyszewa:

Lemat 1. Dla każdych $n, k, j \in \mathbb{N}$ zachodzi $T_k(u_{n,j}) = T_j(u_{n,k})$.

Dowód. Weźmy dowolne $n, k, j \in \mathbb{N}$. Wtedy

$$T_k(u_{n_j}) = \cos(k \cdot \frac{j}{n}\pi) = \cos(j \cdot \frac{k}{n}\pi) = T_j(u_{n,k})$$

Twierdzenie 3. T_0, \ldots, T_N tworzą układ ortogonalny w przestrzeni $l_{p,N}^2$, gdzie funkcja wagowa jest stale równa 1, a zbiór punktów to pierwiastki T_{N+1} . Ponadto $\langle T_n, T_n \rangle = \frac{N+1}{2}$ dla $n \neq 0$ oraz $\langle T_0, T_0 \rangle = N+1$.

Dowód. Do pokazania powyższego twierdzenia będzie potrzebny lemat zawarty w [3]:

Lemat 2. Jeśli $\alpha, \theta \in \mathbb{R}, \theta \neq 0$ oraz $N \in \mathbb{N}$ mamy:

$$\sum_{k=0}^{N} \cos(\alpha + k\theta) = \frac{\sin(\frac{N+1}{2}\theta)}{\sin(\frac{\theta}{2})} \cdot \cos(\alpha + \frac{N}{2}\theta).$$

² [4, strona 122]

Weźmy dowolne $n, m \in \{0, 1, \dots, N\}$. Wtedy

$$\langle T_n, T_m \rangle = \sum_{k=0}^{N} T_n(t_{N+1,k}) \cdot T_m(t_{N+1,k}) = \sum_{k=0}^{N} \cos\left(n \cdot \frac{2k+1}{2N+2}\pi\right) \cdot \cos\left(m \cdot \frac{2k+1}{2N+2}\pi\right) = \frac{1}{2} \cdot \sum_{k=0}^{N} \left[\cos\left((n+m) \cdot \frac{2k+1}{2N+2}\pi\right) + \cos\left((n-m) \cdot \frac{2k+1}{2N+2}\pi\right)\right]$$

W powyższej równości skorzystaliśmy z tożsamości trygonometrycznej:

$$cos(x) \cdot cos(y) = \frac{1}{2}(cos(x+y) + cos(x-y)).$$

Oznaczmy $\theta_1 = (n+m)\frac{\pi}{N+1}$ wtedy $(n+m)\frac{2k+1}{2N+2}\pi = k\theta_1 + \frac{1}{2}\theta_1$. Oznaczmy $\theta_2 = (n-m)\frac{\pi}{N+1}$ wtedy $(n-m)\frac{2k+1}{2N+2}\pi = k\theta_2 + \frac{1}{2}\theta_2$. Używając tych oznaczeń dostajemy:

$$\langle T_n, T_m \rangle = \frac{1}{2} \cdot \sum_{k=0}^{N} \left[\cos(k\theta_1 + \frac{1}{2}\theta_1) + \cos(k\theta_2 + \frac{1}{2}\theta_2) \right]$$
 (1)

Jeśli $n \neq m$ z lematu 2. otrzymujemy:

$$\langle T_n, T_m \rangle = \frac{1}{2} \cdot \left[\frac{\sin((N+1)/2 \cdot \theta_1)}{\sin(\theta_1/2)} \cdot \cos(\theta_1/2 + N\theta_1/2) \right]$$

$$+ \frac{1}{2} \cdot \left[\frac{\sin((N+1)/2 \cdot \theta_2)}{\sin(\theta_2/2)} \cdot \cos(\theta_2/2 + N\theta_2/2) \right] =$$

$$= \frac{1}{2} \cdot \left[\frac{\sin((N+1)/2 \cdot \theta_1)}{\sin(\theta_1/2)} \cdot \cos((N+1)\theta_1/2) + \frac{\sin((N+1)/2 \cdot \theta_2)}{\sin(\theta_2/2)} \cdot \cos((N+1)\theta_2/2) \right]$$

Zauważmy, że

$$\sin((N+1)/2 \cdot \theta_1) \cdot \cos((N+1)\theta_1/2) = \frac{1}{2}\sin((N+1) \cdot \theta_1 = \sin((n+m)\pi) = 0.$$

Analogicznie $\sin((N+1)/2 \cdot \theta_2) \cdot \cos((N+1)\theta_2/2) = 0$. Otrzymujemy, więc $\langle T_n, T_m \rangle = 0$ dla $n \neq m$. Dla n = m podstawiając do 1 dostajemy:

$$\langle T_n, T_n \rangle = \frac{1}{2} \cdot \sum_{k=0}^{N} [\cos(k\theta_1 + \frac{1}{2}\theta_1) + \cos(0)] =$$

$$= \frac{N+1}{2} + \frac{1}{2} \cdot \sum_{k=0}^{N} \cos(k\theta_1 + \frac{1}{2}\theta_1)$$

Jeśli $2n \neq 0$ korzystamy z lematu 2. i podobnie jak poprzednio otrzymujemy $\sum_{k=0}^{N} \cos(k\theta_1 + \frac{1}{2}\theta_1) = 0$, a więc dla $n \neq 0$ mamy $\langle T_n, T_n \rangle = \frac{N+1}{2}$. Natomiast dla n = 0

$$\frac{1}{2} \cdot \sum_{k=0}^{N} \cos(k\theta_1 + \frac{1}{2}\theta_1) = \frac{1}{2} \cdot \sum_{k=0}^{N} \cos(0) = \frac{N+1}{2}.$$

W takim razie $\langle T_0, T_0 \rangle = N + 1$

Twierdzenie 4. T_0, \ldots, T_N tworzą układ ortogonalny w przestrzeni $l_{p,N}^2$, gdzie zbiór punktów $\{u_{N,i}\}_0^N$ to ekstrema T_N oraz $p(u_{N,i}) = 1$ dla $i \neq 0, N$ oraz $p(u_{N,0}) = p(u_{N,N}) = \frac{1}{2}$. Ponadto $\langle T_n, T_n \rangle = \frac{N}{2}$ dla $n \neq 0, n \neq N$ oraz $\langle T_0, T_0 \rangle = \langle T_N, T_N \rangle = N$.

Dowód. Weźmy dowolne $n, m \in \{0, 1, ..., N\}$. Wtedy

$$\langle T_n, T_m \rangle = \sum_{k=0}^{N} {}'' T_n(u_{N,k}) \cdot T_m(u_{N,k}) = \sum_{k=0}^{N} {}'' \cos\left(n \cdot \frac{k}{N}\pi\right) \cdot \cos\left(m \cdot \frac{k}{N}\pi\right) =$$

$$= \frac{1}{2} \cdot \sum_{k=0}^{N} {}'' \left[\cos\left((n+m) \cdot \frac{k}{N}\pi\right) + \cos\left((n-m) \cdot \frac{k}{N}\pi\right)\right]$$

W powyższej równości skorzystaliśmy z tożsamości trygonometrycznej:

$$cos(x) \cdot cos(y) = \frac{1}{2}(cos(x+y) + cos(x-y)).$$

Oznaczmy $\theta_1 = (n+m)\frac{\pi}{N}$ wtedy $(n+m)\frac{k}{N}\pi = k\theta_1$. Oznaczmy $\theta_2 = (n-m)\frac{\pi}{N}$ wtedy $(n-m)\frac{k}{N}\pi = k\theta_2$. Używając tych oznaczeń dostajemy:

$$\langle T_n, T_m \rangle = \frac{1}{2} \cdot \sum_{k=0}^{N} "[\cos(k\theta_1) + \cos(k\theta_2)]$$
 (2)

Jeśli $n \neq 0$ i $m \neq 0$ z lematu 2. otrzymujemy:

$$\begin{split} \sum_{k=0}^{N} \cos(k\theta_{1}) &= \frac{\sin((N+1)/2 \cdot \theta_{1})}{\sin(\theta_{1}/2)} \cdot \cos(N\theta_{1}/2) = \\ &= \frac{\sin(N/2 \cdot \theta_{1})}{\sin(\theta_{1}/2)} \cdot \cos(\theta_{1}/2) \cdot \cos(N\theta_{1}/2) + \frac{\sin(\theta_{1}/2)}{\sin(\theta_{1}/2)} \cdot \cos(N\theta_{1}/2) \cdot \cos(N\theta_{1}/2) = \\ &= \frac{1}{2} \cdot \frac{\sin(N\theta_{1})}{\sin(\theta_{1}/2)} \cdot \cos(\theta_{1}/2) + \cos^{2}(N\theta_{1}/2) = \\ &= \frac{1}{2} \left[\frac{\sin((n+m)\pi)}{\sin(\theta_{1}/2)} \cdot \cos(\theta_{1}/2) + \cos(N\theta_{1}) + 1 \right] = \frac{1}{2} \left[\cos(N\theta_{1}) + 1 \right] \end{split}$$

W powyższym rachunku wykorzystaliśmy tożsamości trygonometryczne:

- $-\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$
- $-\cos(2x) = 2\cos^2(x) 1$

Podobnie, jeśli $n \neq m$ dostajemy $\sum_{k=0}^{N} \cos(k\theta_2) = \frac{1}{2} [\cos(N\theta_2) + 1]$. Podstawiając do 2 otrzymane wyniki dostajemy:

$$\langle T_n, T_m \rangle = \frac{1}{2} \cdot \sum_{k=0}^{N} \left[\cos(k\theta_1) + \cos(k\theta_2) \right] - \frac{1}{4} \left[\cos(0) + \cos(N\theta_1) + \cos(0) + \cos(N\theta_2) \right] =$$

$$= \frac{1}{4} \left[\cos(N\theta_1) + 1 - \cos(0) - \cos(N\theta_1) + \cos(N\theta_2) + 1 - \cos(0) - \cos(N\theta_2) \right] = 0.$$

Z powyższego rachunku widzimy, że jeśli $\theta_1 \neq 0$ (analogicznie dla θ_2) to

$$\sum_{k=0}^{N} "\cos(k\theta_1) = 0.$$

W takim razie dla n = m ale $n \neq 0, N$ dostajemy:

$$\langle T_n, T_n \rangle = \frac{1}{2} \cdot \sum_{k=0}^{N} "\cos(0) = \frac{N}{2}$$

. Natomiast dla n=m=0 lub n=m=N mamy

$$\langle T_n, T_n \rangle = \frac{1}{2} \cdot \sum_{k=0}^{N} {''} \cos(0) + \cos(0) = N$$

Twierdzenie 5. Wielomian I_n n-tego stopnia interpolujący funkcję f w zerach T_{n+1} ma postać:

$$I_n(x) = \frac{2}{n+1} \cdot \sum_{k=0}^{n} {}' \left(\sum_{j=0}^{n} f(t_{n+1,j}) T_k(t_{n+1,j}) \right) T_k(x)$$

Dowód. Zauważmy, że na zbiorze dyskretnym n+1 punktów wielomian I_n jest optymalny względem normy średniokwadratowej, gdyż

$$||f - I_n||_{\infty} = \sup_{x \in \{t_{n+1,1},\dots,t_{n+1,n+1}\}} |f(x) - I_n(x)| = 0,$$

a z definicji normy jednostajnej dla każdej funkcji jest ona większa lub równa 0. W takim razie z twierdzenia 1. mamy:

$$I_{n} = \sum_{k=0}^{n} \frac{\langle f, T_{k} \rangle}{\langle T_{k}, T_{k} \rangle} \cdot T_{k} =$$

$$= \frac{2}{n+1} \sum_{k=0}^{n} \langle f, T_{k} \rangle \cdot T_{k} =$$

$$= \frac{2}{n+1} \sum_{k=0}^{n} \langle \left(\sum_{j=0}^{n} f(t_{n+1,j}) T_{k}(t_{n+1,j}) \right) \cdot T_{k}$$

Przeprowadzając analogiczne do powyższego rozumowanie udowadnia się:

Twierdzenie 6. Wielomian J_n n-tego stopnia interpolujący funkcję f w ekstremach T_n ma postać:

$$J_n(x) = \frac{2}{n} \cdot \sum_{k=0}^{n} {"} \left(\sum_{j=0}^{n} {"} f(u_{n,j}) T_k(u_{n,j}) \right) T_k(x)$$

Twierdzenie 7. Wielomian K_n podany wzorem:

$$K_n(x) = \frac{2}{n+1} \cdot \sum_{k=0}^{n} \left(\sum_{j=0}^{n+1} f(u_{n+1,j}) T_k(u_{n+1,j}) \right) T_k(x)$$

jest n-tym wielomianem optymalnym w sensie normy jednostajnej dla funkcji ciąglej f na zbiorze dyskretnym $U = \{u_{n+1,0}, u_{n+1,1}, \dots, u_{n+1,n+1}\}.$

Dowód. Z twierdzenia 2 wystarczy pokazać, że U jest alternansem. Niech $e(x) = f(x) - K_n(x)$. Zauważmy, że dla $x \in U$ $f(x) = J_{n+1}(x)$. W takim razie dla $x \in U$ $e(x) = J_{n+1}(x) - K_n(x)$. Dla k = 0, 1, ..., n + 1 mamy(dla skrócenia zapisu będziemy używać u_k zamiast $u_{n+1,k}$):

$$e(u_k) = J_{n+1}(u_k) - K_n(u_k) = \frac{2}{n+1} \cdot \left[\frac{1}{2} \cdot \left(\sum_{j=0}^{n+1} {}'' f(u_j) T_{n+1}(u_j) \right) \right] T_{n+1}(u_k) =$$

$$= \frac{1}{n+1} \cdot \langle f, T_{n+1} \rangle T_{n+1}(u_k) = \frac{\langle f, T_{n+1} \rangle}{n+1} \cdot (-1)^k,$$

więc dla k = 1, ..., n + 1 mamy $e(u_k) = -e(u_{k-1})$ oraz $|e(u_k)| = ||e||_{\infty}$ dla k = 0, 1, ..., n + 1, a z tego wynika, że U jest alternansem, co na mocy twierdzenia 2. pociąga za sobą tezę.

3. Aproksymacja

Teraz zajmiemy się obliczaniem przybliżonego błędu aproksymacji jednostajnej funkcji przy użyciu K_n, I_n, J_n . Do obliczania wartości wielomianu zapisanego w bazie wielomianów Czebyszewa użyjemy algorytmu Clenshawa ([2, strona 275]). W załączonym programie program.jl przeprowadzamy rachunki w następujący sposób:

- Obliczanie $I_n(x)$: obliczamy współczynniki zewnętrznej sumy używając funkcji skalarf zwykły iloczyn skalarny. Następnie wykorzystując algorytm Clenshawa (funckja wielomian C) obliczamy wartość wielomianu w x.
- Obliczanie $J_n(x)$ i $K_n(x)$ można ulepszyć, gdyż korzystając z lematu 1. możemy wewnętrzne sumy również zapisać jako kombinację liniową wielomianów Czebyszewa, a więc dwukrotnie wykorzystamy tu algorytm Clenshawa.
- Obliczanie przybliżonego błędu: dla każdego z wielomianów liczymy wartości błędu aproksymacji $(|f(x) - I_n(x)|, |f(x) - J_n(x)|, |f(x) - K_n(x)|)$ w punktach $x_0, x_1, \dots, x_{1000}$, gdzie $x_i = -1 + \frac{i}{1000}$ i spośród nich wybieramy największą wartość.
- Wszystkie obliczenia wykonujemy w arytmetyce DOUBLE.

Obliczenia wykonamy dla funkcji

- 1. $f_1 = x^2 + \sin x$
- $2. \quad f_2 = x^4 \cdot \cos x$
- 3. $f_3 = (log(\sin x + 10))^3$ 4. $f_4 = \frac{x^2}{\sin(x) + 1.1} \cdot e^x$

oraz dla n = 5, 10, 20, 30, 40, 50. Oznaczmy przez $e_I(f, n), e_J(f, n), e_K(f, n)$ odpowiednio znalezione przez nas największe wartości błędów aproksymacji odpowiednio wielomianami I_n, J_n, K_n dla funkcji f.³

n	$e_I(f_1,n)$	$e_J(f_1,n)$	$e_K(f_1,n)$	$e_I(f_2,n)$	$e_J(f_2,n)$	$e_K(f_2,n)$
5	$6 \cdot 10^{-6}$	$6 \cdot 10^{-6}$	$6 \cdot 10^{-6}$	$1 \cdot 10^{-2}$	$3 \cdot 10^{-2}$	$1 \cdot 10^{-2}$
10	$2 \cdot 10^{-11}$	$5 \cdot 10^{-11}$	$2 \cdot 10^{-11}$	$2 \cdot 10^{-8}$	$2 \cdot 10^{-8}$	$2 \cdot 10^{-8}$
20	$7 \cdot 10^{-11}$	$1 \cdot 10^{-15}$	$1 \cdot 10^{-15}$	$1 \cdot 10^{-11}$	$1 \cdot 10^{-15}$	$1 \cdot 10^{-15}$
30	$1 \cdot 10^{-6}$	$1 \cdot 10^{-15}$	$1 \cdot 10^{-15}$	$6 \cdot 10^{-7}$	$3 \cdot 10^{-15}$	$3 \cdot 10^{-15}$
40	$5 \cdot 10^{-3}$	$5 \cdot 10^{-15}$	$2 \cdot 10^{-15}$	$2 \cdot 10^{-3}$	$3 \cdot 10^{-15}$	$2 \cdot 10^{-15}$
50	$9 \cdot 10^{0}$	$1 \cdot 10^{-15}$	$2\cdot 10^{-15}$	$2 \cdot 10^0$	$7 \cdot 10^{-15}$	$1 \cdot 10^{-15}$

Wykresy naszych wielomianów i aproksymowanych funkcji można zobaczyć na samym końcu załączonego programu program.jl

n	$e_I(f_3,n)$	$e_J(f_3,n)$	$e_K(f_3,n)$	$e_I(f_4,n)$	$e_J(f_4,n)$	$e_K(f_4,n)$
5	$1 \cdot 10^{-5}$	$3 \cdot 10^{-5}$	$2 \cdot 10^{-5}$	$6 \cdot 10^{-3}$	$8 \cdot 10^{-3}$	$4 \cdot 10^{-3}$
10	$5 \cdot 10^{-10}$	$6 \cdot 10^{-10}$	$4 \cdot 10^{-10}$	$3 \cdot 10^{-5}$	$4 \cdot 10^{-5}$	$2 \cdot 10^{-5}$
20	$5 \cdot 10^{-10}$	$9 \cdot 10^{-14}$	$6 \cdot 10^{-14}$	$7 \cdot 10^{-10}$	$7 \cdot 10^{-10}$	$4 \cdot 10^{-10}$
30	$1 \cdot 10^{-5}$	$6 \cdot 10^{-14}$	$1 \cdot 10^{-13}$	$2 \cdot 10^{-6}$	$2 \cdot 10^{-14}$	$1 \cdot 10^{-14}$
40	$6 \cdot 10^{-2}$	$1 \cdot 10^{-13}$	$1 \cdot 10^{-13}$	$7 \cdot 10^{-3}$	$1 \cdot 10^{-14}$	$9 \cdot 10^{-15}$
50	$7 \cdot 10^1$	$3\cdot 10^{-13}$	$2 \cdot 10^{-13}$	$6 \cdot 10^{1}$	$9 \cdot 10^{-15}$	$1 \cdot 10^{-14}$

Patrząc ma tabelki, możemy zauważyć,że:

- aproksymacja wielomianem K_n osiąga przeważnie najmniejszą wartość błędu
- aproksymacja I_n dla $n \ge 30$ jest nieskuteczna
- błędy aproksymacji K_n i J_n maleją wraz ze wzrostem n aż do $n \leq 30$, a dla większych n nie zauważamy znaczącej poprawy wyniku
- dla $n \ge 30$ aproksymacja zarówno J_n jak i K_n jest bardzo dobra, gdyż ich błędy są rzędu 10^{-13} albo nawet mniejszego

Nieskuteczność I_n bierze się ze względu na numeryczne kłopoty podczas jego obliczania, a dokładnie z powodu funkcji skalarf - standardowe obliczanie iloczyny skalarnego jest niestabilne ze względu na kumulujący się w czasie dodawania błąd - liczba tych operacji jest dość duża z powodu potrzeby obliczania wartości wielomianu Czebyszewa w punkcie za pomocą schematu Hornera. W algorytmie Clenshawa liczba tych operacji jest zdecydowanie mniejsza i zjawisko kumulacji błędu podczas dodawania nie ma takiego wpływu na wynik.

4. Podsumowanie

Z przeprowadzonych obliczeń możemy wywnioskować ze wielomiany I_n, J_n, K_n są bardzo dobrymi narzędziami do aproksymowania funkcji względem normy jednostajnej. Już dla 20 punktów, a więc wielomianów 19 stopnia, których obliczenie nie jest dla komputera żadnym wyzwaniem otrzymujemy bardzo dobre wyniki - przybliżony błąd jest dla testowanych przez nas funkcji rzędu nie większego niż 10^{-8} . Wnioskujemy również, że ze względu na numeryczne własności lepiej nie stosować interpolacji I_n , mimo że zgonie z [4, strony 105-106] błąd ten powinien być najmniejszy ze wszystkich wielomianów interpolacyjnych tego samego stopnia(tzw. twierdzenie o optymalnym doborze węzłów). Stwierdzamy, że aproksymacja wielomianami J_n i K_n jest bardzo skuteczna, ale nie warto przesadzać ze stopniem znajdowanego przez nas wielomianu ze względu na brak poprawy wyniku dla $n \geq 30$.

Literatura

- [1] J. i M Jankowscy, Przegląd metod numerycznych część 1, Wydawnictwo Naukowo-Techniczne, Warszawa, 1988.
- [2] S. Paszkowski, Zastosowania numeryczne wielomianów i szeregów Czebyszewa, Państwowe Wydawnictwo Naukowe, Warszawa, 1975
- [3] Michael P. Knapp, Sines and Cosines of Angles in Arithmetic Progression, Loyola University Maryland, Baltimore, MD 21210-2699. http://evergreen.loyola.edu/mpknapp/www/papers/knapp-sv.pdf
- [4] Ake Bjorck, Germund Dahlquist, Metody numeryczne, Polskie Wydawnictwo Naukowe, Warszawa, 1987.