Homework2

12432670 Zitong Huang

Question 1

Solution:

Consider g'(x) = 6x - 2

Let
$$|g'(x)| < 1$$
, then $|6x-2| < 1$

we have the fixed point should located in $(\frac{1}{6},\frac{1}{2})$, to use the fixed point iteration method.

Solve function g(x) = x:

Let

$$h(x) = g(x) - x$$

Let h'(x)=0, we have $x=\frac{1}{2}$, so h(x) has a local minimum at $x=\frac{1}{2}$.

Since

$$h(a) < 0, h(b) < 0, h(x_0) < 0$$

where (a,b) is the interval of $(\frac{1}{6},\frac{1}{2})$, and x_0 is the local minimum.

we can have h(x) < 0 in $(\frac{1}{6}, \frac{1}{2})$.

So the function g(x)=x have no solution in $(\frac{1}{6},\frac{1}{2})$, which means the fixed point iteration method will not converge.

Question 2

Apply the Mean Value Theorem to g on the interval between p_0 and p_1 . There exists ξ between p_0 and p_1 such that:

$$g'(\xi) = rac{g(p_1) - g(p_0)}{p_1 - p_0}.$$

Given $p_2=g(p_1)$ and $p_1=g(p_0)$, we have:

$$g(p_1) - g(p_0) = p_2 - p_1,$$

so:

$$g'(\xi) = rac{p_2 - p_1}{p_1 - p_0}.$$

Since $|g'(\xi)| < K$:

$$\left|rac{p_2-p_1}{p_1-p_0}
ight| < K.$$

Then

$$|p_2 - p_1| < K|p_1 - p_0|,$$

which is the desired inequality.

Question 3

see question3.ipynb

the answer is we have

 $c_0 = 1.2701241482595913$ $c_1 = 1.283232912796939$

 $c_2 = 1.2834259276134252$

 $c_3 = 1.283428701320108$

Question 4

see question4.ipynb

The answer is "Cannot find answer" for (a) and "Can find answer" for (b)

Question 5

Proof:

Given $rac{|b-a|}{2^{n+1}}<\delta$,

Take natural logarithms: $\ln\left(rac{|b-a|}{\delta}
ight) < \ln(2^{n+1})$,

Using logarithm properties: $\ln(|b-a|) - \ln(\delta) < (n+1)\ln(2)$,

Solve for n+1: $n+1>rac{\ln(|b-a|)-\ln(\delta)}{\ln(2)}$

Thus, $n>rac{\ln(|b-a|)-\ln(\delta)}{\ln(2)}-1$,

Since N is the smallest integer number of iterations, $N = \left\lceil rac{\ln(b-a) - \ln(\delta)}{\ln(2)}
ight
ceil$,

Given the problem's form, $N=\inf\left(\frac{\ln(b-a)-\ln(\delta)}{\ln(2)}\right)$, which approximates the ceiling for practical iteration count.

Q.E.D.

Question 6

see question6.ipynb

the answer is 0.7390851974487305

Question 7

(a) formula
$$g(x) = x - sin(x)/cos(x) = x - tan(x)$$

(b) No.
$$p_0=1$$
 will find root $x=0$

Or, function
$$\frac{|f(x)\cdot f''(x)|}{(f'(x))^2}$$

has value larger then 1 in the interval $(1,\pi+1)$

(c) Yes. The function $\frac{|f(x)\cdot f''(x)|}{(f'(x))^2}$ is smaller than 1 in the interval $(3,2*\pi-3)$

Here is the image:

Question 8

see question8.py

the answer is

