빅데이터 분석기사 실기 2021년 제2회 기출문제 해설

작업형 2-1

다음은 Boston Housing 데이터셋이다. crim 항목의 상위에서 10번째 값 (즉, 상위 10번째 값 중에서 가장 작은 값)으로 상위 10개의 값을 변환하고 age 80 이상인 값에 대하여 crim 평균을 구하시오

< housing.csv >

변수	설명
crim	도시별 1인당 범죄율
zn	25,000 평방피트 이상의 부지로 구획된 주거용 토지의 비율
Indus	도시 당 비소매업 에이커 비율
chas	Charles River에 대한 더미 변수 (강의 경계에 위치한 경우는 1, 아니면 0)
nox	산화질소 농도 (1천만분의 1)
rm	가구당 평균 방의 개수
age	1940년 이전에 건축된 소유주택의 비율

변수	설명
dis	5개의 보스턴 고용센터까지의 가중 거리
rad	방사형 고속도로 접근성 지수
tax	USD10,000 당 재산세율
pratio	도시별 학생 – 교사 비율
b	1000(B - 0.63)² 여기서 B는 도시별 흑인 비율
Istat	모집단의 하위계층의 비율(%)
medv	소유자가 거주하는 주택의 중앙값(단위:USD1,000)

작업형 2-1

```
import pandas as pd
data=pd.read_csv('housing.csv')
# print(data.sort_values(by='crim', ascending=False))
data_sort=data.sort_values(by='crim', ascending=False)
# print(data_sort.head(12))
def recode(series):
   if series>=25.9406:
      return 25.9406
   else:
      return series
data_sort['re_crim']=data_sort['crim'].apply(recode)
# print(data_sort.head(20))
data_80 = data_sort[data_sort['age'] >=80]
# print(data_80.head(50))
print(data 80['crim'].mean())
```


작업형 2-2

주어진 데이터의 첫 번째 행부터 순서대로 80%까지의 데이터를 훈련 데이터로 추출 후 'total_bedrooms' 변수의 결측값(NA)을 'total_bedrooms' 변수의 중앙값으로 대체하고 대체 전의 'total_bedrooms'변수 표준편차 값의 차이의 절댓값을 구하시오

<California Housing Prices 데이터셋>

변수	설명
longitude	경도
latitude	위도
housing_median_age	주택 나이(중앙값)
total_rooms	전체 방 개수
total_bedrooms	전체 침실 개수
population	인구
households	세대
median_income	소득(중앙값)
Median_house_value	주택가치(중앙값)
Ocean_proximity	바다근접도

작업형 2-2

```
import pandas as pd
data=pd.read_csv('california_housing.csv')
# print(data.info())
data_80=data[:16512]
# print(len(data_80))
pre_std=data_80['total_bedrooms'].std()
print(pre_std)
data_80_fill=data_80.fillna(data_80.median())
post_std=data_80_fill['total_bedrooms'].std()
print(post_std)
print(abs(pre_std-post_std))
```


작업형 2-3

다음은 Insurance 데이터셋이다. charges 항목의 이상값의 합을 구하시오 (이상값은 평균에서 1.5표준편차 이상인 값)

< Insurance 데이터셋>

변수	설명
age	나이
sex	성별(male, female)
bmi	체질량 지수
children	어린이(0,1)
smoker	흡연(yes,no)
region	지역
charges	요금

작업형 2-3

```
import pandas as pd
data=pd.read_csv('insurance.csv')
# print(data.info())
# print(data['charges'].describe())
mean=data['charges'].mean()
std=data['charges'].std()
# print(mean)
# print(std)
re_data=data[(data['charges']>=mean+1.5*std)|(data['charges']<=mean-1.5*std)]
print(re_data['charges'].sum())
```


작업형 3

아래 E-Commerce Shipping Data의 train set을 참조하여 고객이 주문한 물품의 정시 도착 여부를 예측하시오. (ID와 예측치를 csv 파일로 저장하여 제출하시오)

< E-commerce Shipping Data train 데이터셋>

변수	설명
ID	고객의 ID 번호
Warehouse_block	창고의 블록 단위 구역 (A,B,C,D,F)
Mode_of_Shipment	제품 배송 방법
Customer_care_calls	문의 전화 수
Customer_rating	고객의 등급 (1:가장 낮음 5:가장 높음)
Cost_of_the_Product	제품의 비용(달러 기준)
Prior_purchases	사전 구매 수량
Product_importance	제품의 중요도(high, medium, low)
Gender	성별(F: 여성, M: 남성)
Discount_offered	할인혜택
Weight_in_gms	그램 단위 무게
Reached.on.Time_Y.N	정시 도착 여부 (1: 정시에 도착하지 않음 0: 정시 도착)

작업형 3

```
import pandas as pd
test = pd.read_csv("X_test.csv")
X = pd.read csv("X train.csv")
y = pd.read_csv("y_train.csv")
X_num = X[['Customer_care_calls', 'Customer_rating', 'Cost_of_the_Product', 'Prior_purchases', 'Discount_offered', 'Weight_in_gms']]
X cat = X[['Warehouse block', 'Mode of Shipment', 'Product importance', 'Gender']]
X cat=pd.get dummies(X cat)
test num = test[['Customer care calls', 'Customer rating', 'Cost of the Product', 'Prior purchases', 'Discount offered', 'Weight in gms']]
test cat = test[['Warehouse block', 'Mode of Shipment', 'Product importance', 'Gender']]
test cat = pd.get dummies(test cat)
X_cat, test_cat = X_cat.align(test_cat, join='inner', axis=1)
from sklearn.preprocessing import MinMaxScaler
minmax=MinMaxScaler()
minmax.fit(X num)
X_scaled=minmax.transform(X_num)
test scaled=minmax.transform(test num)
```


작업형 3

```
X_final = pd.concat([pd.DataFrame(X_scaled), X_cat], axis=1)
test_final = pd.concat([pd.DataFrame(test_scaled), test_cat], axis=1)

y = y['Reached.on.Time_Y.N']

from sklearn.linear_model import LogisticRegression
model=LogisticRegression()
model.fit(X_final, y)

pred_test=model.predict_proba(test_final)
pred_test_prob = pd.DataFrame(pred_test[:, 1], columns = ['predict_prob'])
final_predict = pd.concat([test['ID'], pred_test_prob], axis=1)
print(final_predict)
final_predict.to_csv("20211204.csv", index=False)
```