§ 3.2 边缘分布及随机变量的独立性

- 一、边缘分布函数
- 二、离散型随机变量的边缘分布律
- 三、连续型随机变量的边缘概率密度函数
- 四、随机变量的独立性

一、边缘分布函数

对于二维随机变量(X,Y),随机变量X和Y各自的 分布函数称为(X,Y)关于X和Y的边缘分布函数

记为 $F_{y}(x), F_{y}(y)$

故边缘分布函数 $F_{Y}(x), F_{Y}(y)$

若二维随机变量(X,Y)的可由(X,Y)的分布函数所确定

$$F(x,y) = P\{X \le x, Y \le y\}.$$

$$F_X(x) = P\{X \le x\} = P\{X \le x, Y < +\infty\}$$
$$= F(x, +\infty) = \lim_{y \to +\infty} F(x, y)$$

同理
$$F_Y(y) = \lim_{x \to +\infty} F(x, y) = F(+\infty, y)$$

例3.1.2 设二维随机变量 (X,Y) 具有概率密度函数 (续)

$$f(x,y) = \begin{cases} Ae^{-(2x+y)}, & x > 0, y > 0, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

- (1) 求常数A:
- (2) 求联合分布函数 F(x,y);
- (3) 求 $P(X \leq Y)$;
- (4) 求X和Y的边缘分布函数.

(4)
$$F(x,y) = \begin{cases} (1-e^{-2x})(1-e^{-y}), & x > 0, y > 0. \\ 0, & \text{ i.e.} \end{cases}$$

$$F_{X}(x) = \lim_{y \to +\infty} F(x, y)$$

$$= \begin{cases} \lim_{y \to +\infty} (1 - e^{-2x})(1 - e^{-y}), x > 0 \\ \lim_{y \to +\infty} 0, \end{cases} = \begin{cases} 1 - e^{-2x}, & x > 0 \\ 0 & \text{ i.e.} \end{cases}$$

$$F_{Y}(y) = \lim_{x \to +\infty} F(x, y)$$

$$= \begin{cases} \lim_{x \to +\infty} (1 - e^{-2x})(1 - e^{-y}), y > 0 \\ \lim_{x \to +\infty} 0, \end{cases} = \begin{cases} 1 - e^{-y}, & y > 0 \\ 0 & \text{ i.e.} \end{cases}$$

二、离散型随机变量的边缘分布律

定义 设离散型随机变量X和Y的联合分布律

为
$$P\{X = x_i, Y = y_j\} = p_{ij}, i, j = 1, 2, \cdots$$

记
$$p_{i\bullet} = \sum_{j=1}^{\infty} p_{ij} = P\{X = x_i\}, \quad i = 1, 2, \dots,$$

$$p_{\bullet j} = \sum_{i=1}^{\infty} p_{ij} = P\{Y = y_j\}, \quad j = 1, 2, \cdots,$$

分别称 $p_{i\bullet}$ ($i=1,2,\cdots$) 和 $p_{\bullet j}$ ($j=1,2,\cdots$) 为 (X,Y) 关于 X 和关于 Y 的边缘分布律.

XY	\boldsymbol{y}_1	<i>y</i> ₂		y_{j}	
\boldsymbol{x}_1	p_{11}	p_{12}		p_{1j}	
$\boldsymbol{x_2}$	p_{21}	p_{22}	•••	p_{2j}	
\boldsymbol{x}_{i}	p_{i1}	p_{i2}	• • •	p_{ij}	•••
				•	

$$P\{X = x_i\} = \sum_{j=1}^{\infty} p_{ij}, i = 1,2,\dots;$$

$$P{Y = y_j} = \sum_{i=1}^{\infty} p_{ij}, j = 1, 2, \cdots$$

补例1 已知下列联合分布律求其边缘分布律.

XY	0	1	N
0	$\frac{2}{7}$	$\frac{2}{7}$	
1	$\frac{2}{7}$	$\frac{1}{7}$	

解

X Y	0		1	D:	$= P\{Z$	$\overline{X} = x_i$
11	2		2	I l	4	
U	$\frac{2}{7}$	+	$\frac{-}{7}$		7	
	+		+		3	
1	$\frac{2}{7}$	+	$\frac{1}{7}$		7	
p = P(V - v)	4		3		1	
$p_{\bullet j} = P\{Y = y_j\}$	7		7	A		

X和Y的边缘分布律可由(X,Y)的分布律确定

补例2把两封信随机地投入已经编好号的3个邮筒内,设 X,Y分别表示投入第1,2个邮筒内信的数目,求(X,Y) 的分布律及边缘分布律.

解 X, Y各自的取值为0, 1, 2. 且 $X + Y \le 2$

再由古典概率计算得:

$$P\{X = 0, Y = 0\} = \frac{1}{3^2} = \frac{1}{9} \qquad P\{X = 0, Y = 1\} = \frac{2}{3^2} = \frac{2}{9}$$
$$P\{X = 0, Y = 2\} = \frac{1}{3^2} = \frac{1}{9} \qquad P\{X = 1, Y = 1\} = \frac{2}{3^2} = \frac{2}{9}$$

 $P{X=1,Y=0}, P{X=2,Y=0}$ 可由对称性求得

所有计算结果列表如下:

(X,Y)关于Y的 边缘分布律

\vee v_1				
Y	0	1	2	$p_{\bullet j}$
0	$\frac{1}{9}$	2 9	$\frac{1}{9}$	$\frac{4}{9}$
1	2 9	$\frac{2}{9}$	0	4 9
2	$\frac{1}{9}$	0	0	$\frac{1}{9}$
$p_{i\bullet}$	4	$\frac{4}{0}$	$\frac{1}{0}$	(VV)

(X,Y)关于X的 边缘分布律

补例3将2只红球和2只白球随机地投入已经编好号的3个盒子中去,设X表示落入第1个盒子内红球的数目, Y表示落入第2个盒子内白球的数目, 求(X,Y)的分布律及边缘分布律.

M X,Y各自的取值为0,1,2.

$$P\{X=1, Y=1\} = \frac{\binom{2}{1} \cdot 2 \cdot \binom{2}{1} \cdot 2}{3^4} = \frac{16}{81}$$

类似地计算出其他结果:

1 2 3

$\setminus X$				
Y	0	1	2	$p_{\cdot j}$
	16	16	4	4
0	81	81	81	9
1	16	16	4	4
	81	81	81	9
2	4	4	1	1
	81	81	81	9
$p_{i\cdot}$	4	4	1	
	9	9	9	

比较发现,补例2与补例3两者有完全相同的边缘分布,而联合分布却是不相同的.

注意 联合分布

边缘分布

三、连续型随机变量的边缘概率密度函数

定义 对于连续型随机变量 (X,Y), 设它的概率密度 函数为 f(x,y), 由于

$$F_X(x) = F(x,\infty) = \int_{-\infty}^x \left[\int_{-\infty}^\infty f(x,y) \, \mathrm{d} y \right] \, \mathrm{d} x,$$

记

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d} y,$$

称其为随机变量(X,Y)关于X的边缘概率密度函数.

同理可得Y的边缘分布函数

$$F_{Y}(y) = F(\infty, y) = \int_{-\infty}^{y} \left[\int_{-\infty}^{+\infty} f(x, y) dx \right] dy,$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$$

Y 的边缘概率密度函数.

例3. 2. 3 设(X,Y) 在区域 $G = \{(x,y) | 0 \le x \le 1, x^2 \le y \le x\}$ 上服从均匀分布,求边缘概率密度函数 $f_X(x), f_Y(y)$.

$$\mathbf{\tilde{H}}: : S_G = \int_0^1 \left(x - x^2\right) dx = \frac{x^2}{2} - \frac{x^3}{3} \Big|_0^1 = \frac{1}{6}$$

:. 联合概率密度函数为

$$f(x,y) = \begin{cases} 6, & x^2 \le y \le x, \\ 0, & 其他. \end{cases}$$

例3. 2. 3 设(X,Y) 在区域 $G = \{(x,y) | 0 \le x \le 1, x^2 \le y \le x\}$

上服从均匀分布,求边缘概率密度函数 $f_X(x), f_Y(y)$.

解: 联合概率密度函数 $f(x,y) = \begin{cases} 6, & 0 \le x \le 1, x^2 \le y \le x, \\ 0, & \text{其他.} \end{cases}$

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d} y$$

$$\int_{-\infty}^{+\infty} 0 \, \mathrm{d} y = 0, \qquad x < 0 \, \text{ } \exists x > 1$$

联合概率密度函数:

$$f(x,y) = \begin{cases} 6, & x^2 \le y \le x, \\ 0, & 其他. \end{cases}$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d} x$$

$$= \begin{cases} \int_{y}^{\sqrt{y}} 6 \, dx = 6(\sqrt{y} - y), & 0 \le y \le 1 \\ \int_{-\infty}^{+\infty} 0 \, dx = 0, & y < 0 \ \text{\vec{x}} \ y > 1 \end{cases}$$

练习 设随机变量 X 和 Y 具有联合概率密度函数

$$f(x,y) = \begin{cases} 4.8y(2-x), & 0 \le x \le 1, 0 \le y \le x, \\ 0, & 其他. \end{cases}$$

求边缘概率密度函数 $f_X(x), f_Y(y)$.

补例4 设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

$$\cdot \exp \left\{ \frac{-1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right\}$$

$$-\infty < x < +\infty, -\infty < y < +\infty,$$

其中 $\mu_1, \mu_2, \sigma_1, \sigma_2, \rho$ 都是常数,且 $\sigma_1 > 0, \sigma_2 > 0$, $-1 < \rho < 1$.

试求二维正态随机变量 的边缘概率密度.

解
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

曲于
$$\frac{(y-\mu_2)^2}{\sigma_2^2} - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}$$

$$= \left[\frac{y-\mu_2}{\sigma_2} - \rho \frac{x-\mu_1}{\sigma_1}\right]^2 - \rho^2 \frac{(x-\mu_1)^2}{\sigma_1^2},$$

$$f_X(x) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} \int_{-\infty}^{+\infty} e^{\frac{-1}{2(1-\rho^2)} \left[\frac{y-\mu_2}{\sigma_2} - \rho\frac{x-\mu_1}{\sigma_1}\right]^2} dy,$$

$$\Leftrightarrow t = \frac{1}{\sqrt{1-\rho^2}} \left(\frac{y-\mu_2}{\sigma_2} - \rho \frac{x-\mu_1}{\sigma_1} \right),$$

则有
$$f_X(x) = \frac{1}{2\pi\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} \int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt$$

即
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}, \quad -\infty < x < +\infty.$$

同理可得

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma_2}} e^{-\frac{(y-\mu_2)^2}{2\sigma_2^2}}, -\infty < y < +\infty.$$

二维正态分布的两个边缘分布都是一维正态分布,并且都不依赖于参数 ρ .

四、随机变量的独立性

1.定义3.2.2

设F(x,y)及 $F_X(x)$, $F_Y(y)$ 分别是二维随机变量 (X,Y)的联合分布函数及边缘分布函数.

若对于所有 $x, y \in R$,

有
$$P\{X \le x, Y \le y\} = P\{X \le x\}P\{Y \le y\},$$

即
$$F(x,y) = F_X(x)F_Y(y),$$

则称随机变量 X 和 Y 是相互独立的.

2.说明(命题3.2.1,定理3.2.1)

(1) 若离散型随机变量 (X,Y)的联合分布律为

$$P\{X = x_i, Y = y_j\} = p_{ij}, i, j = 1, 2, \cdots$$

X和Y相互独立

$$P{X = x_i, Y = y_i} = P{X = x_i}P{Y = y_i},$$

即
$$p_{ij} = p_{i \bullet} \cdot p_{\bullet j}$$
 $i, j = 1, 2, \cdots$

(2) 设连续型随机变量 (X,Y)的联合概率密度为 f(x,y),边缘概率密度分别为 $f_X(x)$, $f_Y(y)$,则有

X和 Y相互独立 $\Leftrightarrow f(x,y) = f_X(x)f_Y(y), x,y \in R$.

(3) X 和 Y 相互独立, $h(\cdot)$ 和 $g(\cdot)$ 都是R上的连续函数,则h(X)和g(Y)也相互独立. (定理3.2.1)

注

问题

- (1) 如何判断两个随机变量是否相互独立?
- (2) 如何由相互独立的随机变量的边缘分布求它们的联合分布?

注意 联合分布 独立性+

例3.1.2(续)(5)判断X和Y是否相互独立。

$$F(x,y) = \begin{cases} (1-e^{-2x})(1-e^{-y}), & x > 0, y > 0. \\ 0, & \text{ i.e.} \end{cases}$$

$$F_X(x) = \lim_{y \to +\infty} F(x, y) = \begin{cases} 1 - e^{-2x}, & x > 0 \\ 0 & \text{ #...} \end{cases}$$

$$F_{Y}(y) = \lim_{x \to +\infty} F(x,y) = \begin{cases} 1 - e^{-y}, & y > 0 \\ 0 & \text{ i.e.} \end{cases}$$

$$::F(x,y)=F_X(x)\cdot F_Y(y)$$
 故 X 与 Y 相互独立.

补例3:

X	0	1	2	
0	$\frac{16}{81}$	$\frac{16}{81}$	$\frac{4}{81}$	4 9
1	$\frac{16}{81}$	$\frac{16}{81}$	$\frac{4}{81}$	$\frac{4}{9}$
2	4 81	$\frac{4}{81}$	$\frac{1}{81}$	19
$p_{i\cdot}$	$\frac{4}{9}$	4 9	<u>1</u> 9	

$$P\{X=i,Y=j\}=P\{X=i\}P\{Y=j\}, i,j=0,1,2$$

故X与Y相互独立.

补例2:

X	0	1	2	$p_{ullet j}$
0	<u>1</u> 9	$\frac{2}{9}$	$\frac{1}{9}$	4 9
1	$\frac{2}{9}$	$\frac{2}{9}$	0	4 9
2	<u>1</u> 9	0	0	<u>1</u> 9
$p_{i\bullet}$	4 9	$\frac{4}{9}$	$\frac{1}{9}$	

$$P\{X=0,Y=0\} = \frac{1}{9} \neq \frac{16}{81} = P\{X=0\}P\{Y=0\}$$

故X与Y不独立.

例3.2.3(续)

$$f(x,y) = \begin{cases} 6, & x^2 \le y \le x, \\ 0, & 其他. \end{cases}$$

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} 6(x - x^2), & 0 \le x \le 1, \\ 0, & \text{ i.e.} \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x,y)dx = \begin{cases} 6(\sqrt{y} - y), & 0 \le y \le 1, \\ 0, & \text{ i.e.} \end{cases}$$

$$\therefore f(x,y) \neq f_X(x) \cdot f_Y(y)$$
 故 $X = Y$ 不独立.

例3. 2. 5
$$(X,Y) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho),$$

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

$$\cdot \exp \left\{ \frac{-1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right\}$$

(1) X与Y的边缘密度函数是一元正态分布;

$$X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$$

(2) X与Y相互独立的充要条件是 $\rho = 0$.

补例5 设两个独立的随机变量 X 与 Y 的分布律为

求随机变量 (X, Y) 的分布律.

m 因为X与Y相互独立,所以

$$P{X=x_i,Y=y_j}=P{X=x_i}P{Y=y_j}.$$

$$P{X=1,Y=2}=P{X=1}P{Y=2}=0.3\times0.6=0.18,$$

$$P{X=1,Y=4}=P{X=1}P{Y=4}=0.3\times0.4=0.12,$$

$$P{X=3,Y=2}=P{X=3}P{Y=2}=0.7\times0.6=0.42,$$

$$P{X=3,Y=4}=P{X=3}P{Y=4}=0.7\times0.4=0.28.$$

因此(X,Y)的联合分布律为

X^{Y}	2	4
1	0.18	0.12
3	0.42	0.28

注意 联合分布律

求行和、列和

边缘分布律

独立性+

补例6 设随机变量 X和 Y相互独立,并且 X 服从 $N(a,\sigma^2)$, Y 在 [-b,b] 上服从均匀分布,求 (X,Y) 的联合概率密度.

m 由于X与Y相互独立,

所以
$$f(x,y) = f_X(x) \cdot f_Y(y)$$

$$X f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-a)^2}{2\sigma^2}}, -\infty < x < \infty;$$

$$f_Y(y) = \begin{cases} \frac{1}{2b}, & -b \leq y \leq b, \\ 0, & 其他. \end{cases}$$

得
$$f(x,y) = \frac{1}{2b} \cdot \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-a)^2}{2\sigma^2}},$$

其中
$$-\infty < x < \infty$$
, $-b \le y \le b$.

当
$$|y| > b$$
时, $f(x,y) = 0$.

例3.2.4 已知 (X,Y) 的分布律为

X	-1	0	1
	1	1	1
	6	9	18
2	$\frac{1}{3}$	α	β

- (1) 求 α 与 β 应满足的条件;
- (2) 若 X 与 Y 相互独立,求 α 与 β 的值.

解 (1)由分布律的性质知 $\alpha \geq 0, \beta \geq 0, \alpha + \beta = \frac{1}{3}$.

解 (2)先求X, Y的边缘分布律

X	1	2	3	$p_{i\bullet} = P\{X = x_i\}$
	1	1	1	1
	6	9	18	3
2	$\frac{1}{3}$	α	β	$\frac{1}{3} + \alpha + \beta$
$p_{\bullet j} = P\{Y = y_j\}$	1 2	$\frac{1}{9} + \alpha$	$\frac{1}{18} + \beta$	$\frac{2}{3} + \alpha + \beta$

(2) 因为X与Y相互独立,所以有

$$p_{ij} = p_{i \cdot} \cdot p_{\cdot j}, \quad (i = 1, 2; j = 1, 2, 3)$$

特别有

$$p_{12} = p_{1 \cdot} \cdot p_{\cdot 2} \Rightarrow \frac{1}{9} = \frac{1}{3} \left(\frac{1}{9} + \alpha \right) \Rightarrow \alpha = \frac{2}{9},$$

又
$$\alpha+\beta=\frac{1}{3}$$
, 得 $\beta=\frac{1}{9}$.

练习册P15 二、计算题

1. 设随机变量 X_1, X_2 相互独立且具有相同的分布, $X_1 \sim \begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}$, (其中 0),

随机变量
$$X_3 = \begin{cases} 0, \ \exists \ X_1 + X_2 \text{为奇数} \\ 1, \ \ \exists \ X_1 + X_2 \text{为偶数} \end{cases}$$
 p 为何值时,随机变量 X_1, X_3 相互独立?

二维随机变量的推广

1.分布函数

n 维随机变量 (X_1, X_2, \dots, X_n) 的分布函数

$$F(x_1, x_2, \dots, x_n) = P\{X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n\},$$

其中 x_1, x_2, \dots, x_n 为任意实数.

2.概率密度函数

若存在非负函数 $f(x_1,x_2,\dots,x_n)$, 使对于任意 实数 x_1,x_2,\dots,x_n 有

$$F(x_1, x_2, \dots, x_n)$$

$$= \int_{-\infty}^{x_n} \int_{-\infty}^{x_{n-1}} \dots \int_{-\infty}^{x_1} f(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n,$$

则称 $f(x_1, x_2, \dots, x_n)$ 为 (X_1, X_2, \dots, X_n) 的概率密度函数.

3.边缘分布函数

$$F_{X_1}(x_1) = F(x_1, \infty, \infty, \cdots, \infty)$$

称为n维随机变量 (X_1, X_2, \dots, X_n) 关于 X_1 的边缘分布函数.

4.边缘概率密度函数

若 $f(x_1, x_2, \dots, x_n)$ 是 (X_1, X_2, \dots, X_n) 的概率密度,

则 (X_1,X_2,\cdots,X_n) 关于 X_1 的边缘概率密度函数为

$$f_{X_1}(x_1) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} f(x_1, x_2, \dots, x_n) dx_2 dx_3 \cdots dx_n,$$

5. 相互独立性

称 X_1, X_2, \dots, X_n 是相互独立的, 若对于所有的 x_1, x_2, \dots, x_n 有

(1)
$$F(x_1, x_2, \dots, x_n) = F_{X_1}(x_1) F_{X_2}(x_2) \dots F_{X_n}(x_n),$$

(2) 若均为离散型r.v.,则它们的联合分布律为

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = P(X_1 = x_1)P(X_2 = x_2) \dots P(X_n = x_n)$$

(3) 若均为连续型r.v.,则它们的联合概率密度函数为

$$f(x_1, x_2, \dots, x_n) = f_{X_1}(x_1) f_{X_2}(x_2) \dots f_{X_n}(x_n)$$

6.重要结论

定理 设 (X_1, X_2, \dots, X_m) 和 (Y_1, Y_2, \dots, Y_n) 相互独立,则 $X_i(1,2,\dots,m)$ 和 $Y_j(j=1,2,\dots,n)$ 相互独立.又若 h,g是连续函数,则 $h(X_1,X_2,\dots,X_m)$ 和 $g(Y_1,Y_2,\dots,Y_n)$ 相互独立.

