## GATE PSUs

State Engg. Exams

# WORKDOOK 2025



**Detailed Explanations of Try Yourself Questions** 

## **Computer Science & IT**

Programming and Data Structures



1

## **Programming**



### Detailed Explanation

of

Try Yourself Questions

#### T1: Solution

```
\begin{aligned} & [\mathbf{O}(n^2)] \\ & \mathsf{A}(n) \\ & \{ & \text{for } (i=1 \text{ to n}) \\ & \{ & \text{if } (n \text{ mod } i==0) \\ & \{ & \text{for } (j=1 \text{ to n}) \\ & & \text{printf}(j) \\ & \} \\ & \} \\ & \} \\ & \text{Time complexity} & = \mathsf{O}(n) \times \mathsf{O}(n) = \mathsf{O}(n^2) \end{aligned}
```

#### T2: Solution

Since i = 3 so switch (3) will go to case 3 and run the program only one time. So time complexity = O(1).



#### T3: Solution

- Const int \*P; declare P as pointer to const integer.
- 2. int \* const P; declare P as constant pointer to integer

#### **T4**: Solution

- (i) Char (\*(\*x ( ))[ ])(); declare x as a function returning pointer to array of pointer to function returning char.
- (ii) Char (\*(x[3])() [5]; declare x as array 3 of pointer to function returning pointer to array 5 of char.
- (iii) Void (\*b\*int, void (\*f)(int))) (int);
  Syntac error
- (iv) Void (\*ptr)(int (\*)[2], int(\*)(void)); Syntax error

#### T5: Solution

#### (b)

Char\0

if (0) ::: Printf(% S", a) = Null = 0

So condition false

So answer is else part string is not empty.

#### **T6: Solution**

(a)

Since variable d of integer type is static so memory is allocated to it compile time only and same memory is used every time. Therefore, every time old value of d (which is update in previous iteration) is used. So, output is 312213444.



#### **T7: Solution**

(d)

a 31 globally initialize.

1. m(3)

1. 
$$a = 1/2/4$$
  
2.  $a = 3 - 1 = 2$   
 $n(a)$ ;  
 $n(2)$   
 $x = x * a$ ;  
 $= 2 * 2$  (here a is taken from global variable)  
 $= 4$ 

Printf(4); = 4

3. Printf(a) = 4 since dynamic scoping is used. So, take value of inner variable 'a'. So answer will be 4, 4.

#### T8: Solution

(c)

Take random value of X and Y i.e., X = 5 and Y = 3.

X = 5, Y = 3, res = 1, a = X and b = YInitially

 $X^Y = a^b$ Option (a):

 $X^{Y} = a^{b} \equiv 5^{3} = 5^{3} \equiv 125 = 125$ 

After iteration 1

res = 5; a = 5; b = 2; X = 5; Y = 3  

$$X^{Y} = a^{b} \equiv 5^{3} \neq 5^{2} \equiv 125 \neq 25$$

So, case fail. Option (a) cannot be answer.

 $(res*a)^Y = (res*X)^b$ Option (b):

 $(1 \times 5)^3 = (1 \times 5)^3 \equiv 125 = 125$ 

After iteration 1

res = 5; 
$$a$$
 = 5;  $b$  = 2;  $X$  = 5;  $Y$  = 3

 $(res * a)^Y = (res * X)^b = (5 \times 5)^3 = (5 \times 5)^2$ 

15625 ≠ 625 So, case fail. Option (b) cannot be answer.

Option (d):  $X^Y = (res * a)^b$ 

 $5^3 = (1 \times 5)^3 \equiv 125 = 125$ 

After iteration 1

res = 5; 
$$a$$
 = 5;  $b$  = 2;  $X$  = 5;  $Y$  = 3  
 $X^Y$  = (res \*  $a$ ) $^b$  =  $5^3$  =  $(5 \times 5)^2$ 

125 ≠ 625 So, case fail.

Option (d) cannot be answer.



Option (c): 
$$X^Y = res * a^b$$

$$5^3 = 1 \times 5^3 \equiv 125 = 125$$

After iteration 1

res = 5; 
$$a$$
 = 5;  $b$  = 2;  $X$  = 5;  $Y$  = 3

$$X^{Y} = \text{res} * a^{b} \equiv 5^{3} = 5 \times 5^{2} \equiv 125 = 125$$

#### After iteration 2

res = 25; 
$$a = 5$$
;  $b = 1$ ;  $X = 5$ ;  $Y = 3$ 

$$X^{Y} = \text{res} * a^{b} \equiv 5^{3} = 25 \times 5^{1} \equiv 125 = 125$$

So, all cases are passes.

So option (c) will the answer.

#### **T9**: Solution

a 3 5 2 6 4

- 1. f(a, 5) is a function contain 2 parameter one contain starting address of array and second parameter tell number of element in the array.
- 2. Every time 'n' value compare with 1 when it is less than equal to 1 return 0 and stop the program otherwise continue with recursive function call.
- 1. f(a, 5)
  - \*P = a; P pointed to same address pointed by 'a'.
  - n = 5; n value greater than 1.
  - So, max (f(P + 1, 5 1), 3 5); or
  - $\max (f(P + 1, 4) 2);$
- 2. f(P+1,4)
  - \*P = P + 1; P is pointed to next element of array i.e., 5.
  - n = 4; n value greater than 1.
  - So, max (max(f(P + 1, 4 1), 5 2), -2) or
  - $\max(\max(f(P+1)3), 3), -2)$
- 3. f(P+1,3)
  - \*P = P + 1; P is pointed to next element of array i.e., 2.
  - n = 3; n value greater than 1.
  - So,  $\max(\max(f(P+1, 3-1), 2-6), 3)-2)$  or  $\max(\max(\max(f(P+1, 2), -4), 3)-2)$ ;
- 4. f(P+1, 2);
  - \*P = P + 1; P is pointed to next element of array i.e., 6.
  - n = 2; n value greater than 1.
  - So,  $\max(\max(\max(f(P+1, 2-1), 2), -4), 3), -2)$  or
  - $\max(\max(\max(f(P+1, 1), 2), -4), 3), -2)$
- 5. f(P+1, 1);
  - \*P = P + 1; P is pointed to next element of array i.e., 4.
  - n = 1; n value equal to 1 so, return 0.
  - So max(max(max(0, 2), -4), 3), -2)
  - $\max(\max(\max(2, -4), 3), -2)$
  - $\max(\max(2,3),-2)$
  - max(3, -2) = 3

So the value printed by given code is 3.



2

# Linked List, Stack, Queue and Hashing

5

4

3

#### T1: Solution

Implementation of stack using single link list:

Inserting sequence: 1, 2, 3, 4, 5, 6

Insertion take 0(1) time

Link list representation:

$$2. \rightarrow \boxed{2} \rightarrow \boxed{1}/$$

$$3. \rightarrow \boxed{3} \rightarrow \boxed{2} \rightarrow \boxed{1}/$$

4.

5.

6. Insertion takes 0(1) time.

Deletion in stack (Pop)

Remove top element every time so 0(1)

Deletion in link list

Remove 1st node every time with making second node to head.

#### T2: Solution



enqueue operation takes O(1) time

dequeue operation takes O(n) time [visits last node]



#### T3: Solution

#### **T4**: Solution

(a)

Number of push operations = n(insert) + m(delete) = n + m

So,  $n + m \le x$  but there are maximum 2n insert operations so  $n + m \le x \le 2n$  ...(1)

Number of pop operations = n + m

But there are 2m delete operations which are less than no. of pop operations, hence

$$2m \le n + m \qquad \dots (2)$$

From (1) and (2):  $n + m \le x \le 2n$  and  $2m \le n + m$ 

#### T5 : Solution

#### (22079)

```
Formula to find location of a[20] [20] [30] = 10 + {[(20 - 1) (30 - 1) (40 - 1)] + (20 - 1) (30 - 1) + (30 - 1)}

= [10 + (19 × 29 × 39) + (19 × 29) + (29)]

= 10 + 21489 + 551 + 29

= 10 + 22069

= 22079
```



#### **T6**: Solution

(5)



(Uniqueue heights are 1, 2, 3, 4, 5) where 1, 3, 5 are repeated two times each. Maximum size of stack is 5.

#### **T7: Solution**

(0.7324)

Expected number of probes in a unsuccessful =  $\frac{1}{(1-\alpha)}$ 

$$\frac{1}{1-\alpha} = 3$$

$$1 = 3(1-\alpha)$$

$$1 = 3-3\alpha$$

$$-2 = -3\alpha$$

$$\alpha = \frac{2}{3}$$

Expected number of probes in a unsuccessful = 1/  $\alpha$  log<sub>e</sub> 1/(1- $\alpha$ )

$$\frac{3}{2}\log_{\rm e} 3 = 0.7324$$

#### **T8: Solution**

(b)



We need to traverse both the linked list of size *m* and *n*.

So it will take O(m + n).

#### **T9: Solution**

(b)

By using BSF (Breadth First Search) traversal we can set the twin pointer in each entry in each adjacency list. So it will take  $\Theta(m+n)$  times (since adjacency list are using).