Theory of Automata and Formal Language

Lecture-32

Dharmendra Kumar (Associate Professor)

Department of Computer Science and Engineering United College of Engineering and Research, Prayagraj March 30, 2021

Unit-5

Turing Machine

What is Turing machine?

- A **Turing machine** is a mathematical model of computation that defines an abstract **machine**, which manipulates symbols on a strip of tape according to a table of rules.
- It is a generalized machine which can accept all the type of languages i.e. regular, context free, context sensitive, recursive and recursive enumerable languages.
- There are two purposes for a **Turing machine**: deciding formal languages and solving mathematical functions.

Model of Turing Machine

Mathematical Definition of Turing Machine (TM)

A Turing machine is described by a 7-tuple $M=(Q, \Sigma, \Gamma, \delta, q_o, B, F)$ where,

- Q is the finite set of states,
- $\Sigma \subseteq \Gamma$ is the set of input symbols
- Γ is the set of tape symbols,
- $q_0 \in Q$ is the initial state,
- B \in Γ is a blank symbol
- F is the set of final states, and
- δ is a transition function which is defined as following:-
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ where,

L represents left direction and R represents right direction.

Instantaneous Description(ID)

An instantaneous description of TM is a string of the following form:-

 $\alpha q \beta$

Where, $\alpha, \beta \in \Gamma^*$, $q \in Q$.

 $\alpha\beta$ denotes the whole contents of the tape.

q is a current state.

R/W head of machine will be at the leftmost symbol of β .

Initial ID will be $q_o w$. where $w \in \Sigma^*$

Move relation

This relation exist between two consecutives ID's. It is dented by $\downarrow_{\overline{M}}$.

Consider an ID of a TM at any instant is

$$a_1 a_2 a_3 \dots a_{i-1} q a_i a_{i+1} \dots a_n$$

(1) If $\delta(q, a_i) = (p, y, R)$ then move of machine will be

$$a_{1}a_{2}a_{3}$$
..... $a_{i-1}qa_{i}a_{i+1}$ $a_{n} \mid_{M} a_{1}a_{2}a_{3}$ a_{i-1} ypa_{i+1} a_{n}

(2) If $\delta(q, a_i) = (p, y, L)$ then move of machine will be

$$a_{i}a_{2}a_{3}.....a_{i-1}qa_{i}a_{i+1}.....a_{n} \hspace{0.2cm} \bigg|_{\overline{M}} a_{i}a_{2}a_{3}......pa_{i-1} \hspace{0.1cm} ya_{i+1}.....a_{n}$$

Language accepted by TM

The language accepted by Turing machine M is defined as following:-

```
L(M) = \{ w \mid q_o w \mid_{\pmb{M}}^* \alpha p \beta \text{ where } w \in \Sigma^*, p \in F \text{ and } \alpha, \beta \in \Gamma^* \text{ and machine halts on the final state.} \}
```

Representation of TM

Two representations are used for TM.

(1) By transition table (2) By transition diagram

By transition table

δ	Tape symbols				
States	0	1	X	y	В
\longrightarrow q_o	(q_1, x, R)			(q ₃ , y, R)	
$\mathbf{q}_{\scriptscriptstyle 1}$	$(q_1, 0, R)$	(q ₂ , y, L)		(q ₁ , y, R)	
$\mathbf{q}_{\scriptscriptstyle 2}$	$(q_2, 0, L)$		(q_o, x, R)	(q ₂ , y, L)	
q_3				(q ₃ , y, R)	(q ₄ , B, R)
q_4					

Representation of TM(continue)

By transition diagram

Processing or working of TM

Ex. Check the acceptability of following strings

 $(1) 0011 \qquad (2) 011$

(3) 00101

by the TM in the previous example.

Solution:

(1) <u>For string 0011</u>

 $q_00011 \vdash xq_1011 \vdash x0q_111 \vdash xq_20y1 \vdash q_2x0y1 \vdash xq_00y1 \vdash xxq_1y1 \vdash xxyq_11 \vdash xxq_2yy \vdash xq_2xyy \vdash xxq_0yy \vdash xxyq_3y \vdash xxyyq_3B \vdash xxyyBq_4B$ (machine halts at final state)

Since machine halts at final state, therefore this string is accepted by TM.

Processing or working of TM(continue)

(2) For string 011

 $q_0011 \vdash xq_111 \vdash q_2xy1 \vdash xq_0y1 \vdash xyq_31$ (machine halts at non-final state)

Since machine halts at non-final state, therefore this string is not accepted by TM.

(3) For string 00101

 $q_000101 \vdash xq_10101 \vdash x0q_1101 \vdash xq_20y01 \vdash q_2x0y01 \vdash xq_00y01 \vdash xxq_1y01 \vdash xxyq_101 \vdash xxy0q_11 \vdash xxyq_20y \vdash xxq_2y0y \vdash xq_2xy0y \vdash xxq_0y0y \vdash xxyq_30y$ (machine halts at non-final state)

Since machine halts at non-final state, therefore this string is not accepted by TM.