Assignment 4: Wireshark

Student number 22203536

GOOGLE DRIVE LINK FOR PCAP FILE

https://drive.google.com/file/d/1uB_wpkKT7t-Te2_RP9XyGLL_coQitK36/view?usp=share_link

1. So to find my IP address I typed in filters that were relevant to the network activities I performed such as icmp or http and then found which source address was consistent across the activities. The ip address was found to be 192.168.0.3. An example image is shown below

```
568 324.649152
                   192.168.0.3
 684 380.690837 192.168.0.3
 746 380.882632 192.168.0.3
 1713 886.858623
                   192.168.0.3
 1715 886.863221 192.168.0.3
 2255 897.721022 192.168.0.3
 2549 919.992011
                  192.168.0.3
3102 941.652816 192.168.0.3
 3976 1052.684557 192.168.0.3
 4061 1063.851847
                   192.168.0.3
 4838 1135.455275 192.168.0.3
6548 1142.933316
                   192.168.0.3
 7677 1152.951072 192.168.0.3
 126... 1186.164329
                   192.168.0.3
Frame 1713: 70 bytes on wire (560 bits),
Ethernet II, Src: Apple_1b:94:16 (d4:61:9
Internet Protocol Version 4, Src: 192.168
```

In the wire shark capture file properties I am able to view the relevant statistics from the image below

Statistics			
Measurement	Captured	Displayed	Marked
Packets	19841	19841 (100.0%)	_
Time span, s	1294.956	1294.956	_
Average pps	15.3	15.3	_
Average packet size, B	795	795	_
Bytes	15776912	15776912 (100.0%)	0
Average bytes/s	12 k	12 k	_
Average bits/s	97 k	97 k	_
		•	

So filling out the table

Time span , s = 1295 seconds (to nearest second)

Total packets= 19841 packets

Bytes MiB = 15776912 / 1048576 = 15.05 MiB

Average packet size, B = 795 bytes

Average packets per second, pps = 15.3 pps

Average bits/second = 97000 bits per second

a) ip.dst == 192.168.0.3 (image below)

Ip.ast:	p.dst== 192.168.0.3						
No.	Time	Source	Destination	Protocol I	Length Info		
167	1 886.584867	172.253.116.139	192.168.0.3	TLSv1	414 Applica	ation Data	
167	2 886.584873	172.253.116.139	192.168.0.3	TLSv1	1466 Applica	ntion Data	
167	3 886.584875	172.253.116.139	192.168.0.3	TLSv1	1046 Applica	ation Data	
167	4 886.584876	172.253.116.139	192.168.0.3	TLSv1	281 Applica	ntion Data	
167	5 886.584878	172.253.116.139	192.168.0.3	TCP	281 [TCP Re	etransmiss:	
168	3 886.611509	172.253.116.139	192.168.0.3	TCP	66 443 → 5	0319 [ACK	
169	0 886.772738	172.253.116.139	192.168.0.3	QUIC	1292 Initia	, SCID=fc	
169	1 886.772990	172.253.116.139	192.168.0.3	QUIC	1292 Handsha	ke, SCID=	
169	2 886.774049	172.253.116.139	192.168.0.3	QUIC	1292 Handsha	ke, SCID=	
169	3 886.774422	172.253.116.139	192.168.0.3	TCP	66 443 → 5	0319 [ACK	
169	5 886.784173	172.253.116.139	192.168.0.3	TCP	66 443 → 5	0319 [ACK	
169	6 886.795249	172.253.116.139	192.168.0.3	TCP	66 443 → 5	0319 [ACK	
169	7 886.808377	172.253.116.139	192.168.0.3	QUIC	1292 Handsha	ke, SCID=	
169	8 886.809084	172.253.116.139	192.168.0.3	QUIC	896 Protect	ed Payloa	
170	0 886.832347	172.253.116.139	192.168.0.3	QUIC	993 Protect	ed Payloa	
170	1 886.832588	172.253.116.139	192.168.0.3	QUIC	163 Protect	ed Payloa	
170	7 886.837789	192.168.0.1	192.168.0.3	DNS	95 Standar	d query r	
170	8 886.843085	192.168.0.1	192.168.0.3	DNS	170 Standar	rd query r	
171	1 886.856192	172.253.116.139	192.168.0.3	QUIC	66 Protect	ed Payloa	
171	2 886.858521	192.168.0.1	192.168.0.3	DNS	129 Standar	rd query r	
171	2 006 050622	102 169 0 2	102 169 0 1	TCMP	70 Destina	tion unroacha	

b) ip.src == 192.168.0.3 (image is shown below)

4.

- a) Ping command is used to test if host is reachable on IP network and it also measures the packets round trip time
- b) ICMP
- c) icmp
- d) I can see 31 packets total (note that these 2 images below overlap somewhat but there are in fact 31 total)

IC	:mp									Ŀ	X 🖃 🗅
No.	icmp		Source	Destination	Protocol	Length	Info				
	icmp	77898	8.8.8.8	192.168.0.3	ICMP	98	Echo	(ping)	reply	id=0xf06a,	seq=1
	358	224.864347	192.168.0.3	8.8.8.8	ICMP	98	Echo	(ping)	request	id=0xf06a,	seq=2
	359	224.882415	8.8.8.8	192.168.0.3	ICMP	98	Echo	(ping)	reply	id=0xf06a,	seq=2
	362	225.869632	192.168.0.3	8.8.8.8	ICMP	98	Echo	(ping)	request	id=0xf06a,	seq=3
	363	225.887944	8.8.8.8	192.168.0.3	ICMP	98	Echo	(ping)	reply	id=0xf06a,	seq=3
	367	226.874878	192.168.0.3	8.8.8.8	ICMP	98	Echo	(ping)	request	id=0xf06a,	seq=4
	368	226.893181	8.8.8.8	192.168.0.3	ICMP	98	Echo	(ping)	reply	id=0xf06a,	seq=4
	370	227.878071	192.168.0.3	8.8.8.8	ICMP	98	Echo	(ping)	request	id=0xf06a,	seq=5
	373	227.896081	8.8.8.8	192.168.0.3	ICMP	98	Echo	(ping)	reply	id=0xf06a,	seq=5
	375	228.878598	192.168.0.3	8.8.8.8	ICMP	98	Echo	(ping)	request	id=0xf06a,	seq=6
	376	228.896894	8.8.8.8	192.168.0.3	ICMP	98	Echo	(ping)	reply	id=0xf06a,	seq=6
	379	229.883883	192.168.0.3	8.8.8.8	ICMP	98	Echo	(ping)	request	id=0xf06a,	seq=7
	380	229.902427	8.8.8.8	192.168.0.3	ICMP	98	Echo	(ping)	reply	id=0xf06a,	seq=7
	382	230.885212	192.168.0.3	8.8.8.8	ICMP	98	Echo	(ping)	request	id=0xf06a,	seq=8
	383	230.904259	8.8.8.8	192.168.0.3	ICMP	98	Echo	(ping)	reply	id=0xf06a,	seq=8
	385	231.888823	192.168.0.3	8.8.8.8	ICMP	98	Echo	(ping)	request	id=0xf06a,	seq=9
	386	231.907708	8.8.8.8	192.168.0.3	ICMP	98	Echo	(ping)	reply	id=0xf06a,	seq=9
	568	324.649152	192.168.0.3	192.168.0.1	ICMP	70	Desti	ination	unreacha	ble (Port u	ınreach
	684	380.690837	192.168.0.3	192.168.0.1	ICMP	70	Desti	ination	unreacha	ble (Port u	inreach
	746	380.882632	192.168.0.3	192.168.0.1	ICMP	70	Desti	ination	unreacha	ble (Port u	ınreach
	1713	886.858623	192.168.0.3	192.168.0.1	ICMP	70	Desti	ination	unreacha	ble (Port u	inreach

568	324.649152	192.168.0.3	192.168.0.1	ICMP	70	Destinat:
684	380.690837	192.168.0.3	192.168.0.1	ICMP	70	Destinat:
746	380.882632	192.168.0.3	192.168.0.1	ICMP	70	Destinat:
1713	886.858623	192.168.0.3	192.168.0.1	ICMP	70	Destinat:
1715	886.863221	192.168.0.3	192.168.0.1	ICMP	70	Destinat:
2255	897.721022	192.168.0.3	192.168.0.1	ICMP	70	Destinat:
2549	919.992011	192.168.0.3	192.168.0.1	ICMP	70	Destinat:
3102	941.652816	192.168.0.3	192.168.0.1	ICMP	70	Destinat:
3976	1052.684557	192.168.0.3	192.168.0.1	ICMP	70	Destinat:
4061	1063.851847	192.168.0.3	192.168.0.1	ICMP	70	Destinat:
4838	1135.455275	192.168.0.3	192.168.0.1	ICMP	70	Destinat:
6548	1142.933316	192.168.0.3	192.168.0.1	ICMP	70	Destinat :
7677	1152.951072	192.168.0.3	192.168.0.1	ICMP	70	Destinat:
126	1186.164329	192.168.0.3	192.168.0.1	ICMP	70	Destinat:

- e) Because you also see ICMP replies in addition to ICMP requests and destination unreached
- f) You can filter by using icmp.type == 8 (image shown below)

Question 5

- a) nslookup is used to query the DNS servers for in order to get info about domain names and IP addresses
- b) dns.qry.name == www.ucd.ie

Question 6.

- a) Ftp command transfers files between a client and a server using the FTP protocol.
- b) Ftp
- c) From the image I can see 3 packets.

Question 7.

a) You filter using http as shown in the image below

b)

192.168.0.3	HTTP	1445 HTTP/1.1 200 OK (PNG)
185.53.177.54	HTTP	656 GET /track.php?domain=respondto.it&caf=1&toggle=answerc
192.168.0.3	HTTP	960 HTTP/1.1 201 Created (text/javascript)

From the image the ip address of the respondto.it is 185.53.177.54

c) from the following image

```
FGET / HTTP/1.1\r\n
Host: respondto.it\r\n
Connection: keep-alive\r\n
Upgrade-Insecure-Requests: 1\r\n
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/112.0.0.0 Safari/537.36\r\n
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7\r\n
Accept-Encoding: gzip, deflate\r\n
Accept-Language: en-US,en-GB;q=0.9,en;q=0.8\r\n
\r\n
[Full request URI: http://respondto.it/]
[HTTP request 1/3]
[Response in frame: 2545]
[Next request in frame: 2620]
```

I can see the url in the HTTP header

d) the methods are GET requests based on the image below

e) DNS protocol

Question 8.

a) Yes I can see TCP frames when I apply the tcp filter shown in the image below.

	<u>, </u>							
٧o.		Time	Source	Destination	Protocol	Length	Info	
	234	169.256149	192.168.0.3	17.248.255.52	TCP	78	50308 → 443	[SYN]
	235	169.274961	17.248.255.52	192.168.0.3	TCP	74	443 → 50308	[SYN
	236	169.275096	192.168.0.3	17.248.255.52	TCP	66	50308 → 443	[ACK
	237	169.276153	192.168.0.3	17.248.255.52	TLSv1	583	Client Hello	
	240	169.297875	17.248.255.52	192.168.0.3	TCP	66	443 → 50308	[ACK]
	241	169.299954	17.248.255.52	192.168.0.3	TLSv1	1500	Server Hello,	, Ch≔
	242	169.300864	17.248.255.52	192.168.0.3	TCP	1500	443 → 50308	[PSH
	243	169.300929	192.168.0.3	17.248.255.52	TCP	66	50308 → 443	[ACK
	244	169.302827	17.248.255.52	192.168.0.3	TCP	1294	443 → 50308	[PSH
	245	169.302883	192.168.0.3	17.248.255.52	TCP	66	50308 → 443	[ACK
	246	169.303176	17.248.255.52	192.168.0.3	TCP	1500	443 → 50308	[ACK
	247	169.304571	17.248.255.52	192.168.0.3	TLSv1	700	Application [Data
	248	169.304625	192.168.0.3	17.248.255.52	TCP	66	50308 → 443	[ACK
	249	169.316907	192.168.0.3	17.248.255.52	TLSv1	130	Change Cipher	r Sp
	250	169.328311	192.168.0.3	17.248.255.52	TLSv1	112	Application [Data
	251	169.328390	192.168.0.3	17.248.255.52	TLSv1	109	Application [Data

- b) A 3 way handshake is a process that is used to create a connection between a client and a server. It consists of an ACK packet from the client side, a SYN packet from the client side and a SYN-ACK packet from the server.
- c) The filter required is tcp.flags.syn == 1
- d) data-text-lines contains "vbsca"
- e) In the packet details pane go to the HTTP section then the form data subsection to see username and password.

An image of the implementation is shown below on the next page

9.

a)

Use filter tcp contains "youtube" Image below

Continued on next page

- b) the protocol shown in the image above for that packet is TLSv1.3
- c) one way SSL is a security process where the client verifies the servers identity using the servers public key certificate.

Two way SSL both the client and the server verify each others identity via their public key certificates. Authentication is "2 way " and mutual so this will give a higher level of security than one way SSL.

Continued on next page

