

FCC PART 15.231

TEST REPORT

For

HANGZHOU HAMATON TYRE VALVES CO.,LTD.

12 East Zhenxing Road, Linping, Yuhang, Hangzhou, China

FCC ID: Z27HTS1A315

Report Type: Product Type: Original Report TPMS Sensor **Test Engineer:** Ares Liu **Report Number:** R1SH121029051-00 **Report Date:** 2012-11-08 Ivan Cao **Reviewed By:** EMC Engineer **Test Laboratory:** Bay Area Compliance Laboratories Corp. (Dongguan) No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan).

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
OBJECTIVE	3
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	3
TEST FACILITY	3
SYSTEM TEST CONFIGURATION	4
JUSTIFICATION	4
EQUIPMENT MODIFICATIONS	
BLOCK DIAGRAM OF TEST SETUP	4
SUMMARY OF TEST RESULTS	5
FCC §15.203 - ANTENNA REQUIREMENT	6
APPLICABLE STANDARD	
FCC §15.205, §15.209, §15.231 (E) - RADIATED EMISSIONS	7
MEASUREMENT UNCERTAINTY	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST EQUIPMENT LIST AND DETAILS	8
TEST PROCEDURE	8
APPLICABLE STANDARD	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	9
FCC §15.231(C) – 20 DB BANDWIDTH TESTING	14
Requirement	14
TEST EQUIPMENT LIST AND DETAILS	14
TEST PROCEDURE	14
Test Data	
Environmental Conditions	14
FCC §15.231(E) - DEACTIVATION TESTING	16
APPLICABLE STANDARD	16
EUT Setup	16
TEST EQUIPMENT LIST AND DETAILS	16
Test Data	17

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *HANGZHOU HAMATON TYRE VALVES CO.,LTD*.'s product, model number: *HTS1A315 (FCC ID: Z27HTS1A315)* (the "EUT") in this report is a *TPMS Sensor*, which was measured approximately: 6.5 cm (L) x 5.5 cm (W) x 1.5 cm (H), rated input voltage: DC 3V from battery.

Report No.: R1SH121029051-00

All measurement and test data in this report was gathered from production sample serial number: 121029051 (Assigned by BACL, Dongguan). The EUT was received on 2012-10-30.

Objective

This document is a test report based on the Electromagnetic Interference (EMI) tests performed on the EUT. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4-2009.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209, 15.35(c) and 15.231 rules.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4 - 2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Dongguan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Test site at Bay Area Compliance Laboratories Corp. (Dongguan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 02, 2012. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part15.231 Page 3 of 18

Justification

The system was configured in testing mode which was provided by manufacturer.

Report No.: R1SH121029051-00

Equipment Modifications

No modifications were made to the unit tested.

Block Diagram of Test Setup

FCC Part15.231 Page 4 of 18

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207 (a)	Conducted Emissions	N/A*
§15.205, §15.209, §15.231 (e)	Radiated Emissions	Compliance
§15.231 (c)	20dB Band Width Testing	Compliance
§15.231 (e)	Deactivation Testing	Compliance

Report No.: R1SH121029051-00

Note: N/A * The EUT is powered by battery only.

FCC Part15.231 Page 5 of 18

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No.: R1SH121029051-00

Result: Compliant.

The EUT has an internal antenna soldered on the PCB, which complied with 15.203. Please refer to the EUT Internal photos.

FCC Part15.231 Page 6 of 18

FCC §15.205, §15.209, §15.231 (e) - RADIATED EMISSIONS

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors dfcontributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Report No.: R1SH121029051-00

Based on CISPR 16-4-4, The Treatment of Uncertainty in EMC Measurements and the best estimate of the uncertainty of a radiation emission measurement at Bay Area Compliance Laboratories Corp. (Dongguan) is 4.0 dB. (k=2, 95% level of confidence)

EUT Setup

Below 1 GHz:

Above 1 GHz:

FCC Part15.231 Page 7 of 18

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.4 - 2009. The specification used was the FCC 15 § 15.209, 15.205 and 15.231.

Report No.: R1SH121029051-00

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver Setup

The system was investigated from 30 MHz to 4 GHz.

During the radiated emission test, the test receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	Detector
30MHz – 1000 MHz	100 kHz	300 kHz	PK
1000 MHz - 4000 MHz	1 MHz	3 MHz	PK

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	101121	2012-10-8	2013-10-7
Sunol Sciences	Hybrid Antennas	ЈВ3	A060611-1	2011-9-6	2013-9-5
HP	Pre-amplifier	8447E	2434A02181	2012-10-8	2013-10-7
R&S	Spectrum Analyzer	FSEM 30	1079 8500	2012-10-9	2013-10-8
Dayang	Horn Antenna	OMCDH10180	10279001B	2010-7-30	2015-7-29
Mini-Circuits	Wideband Amplifier	ZVA-183-S+	96901149	N/A	N/A

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

According to §15.231, Intentional radiators operating under the provisions of this Section shall demonstrate compliance with the limits on the field strength of emissions, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector

FCC Part15.231 Page 8 of 18

Applicable Standard

According to §15.231 (e), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Report No.: R1SH121029051-00

Fundamental frequency (MHz)	Field Strength of Fundamental (Microvolts /meter)	Field Strength of spurious emissions ((Microvolts /meter)
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,500 *	50 to 150 *
174-260	1,500	150
260-470	1,500 to 5,000*	150 to 500*
Above 470	5,000	500

^{*}Linear interpolations.

The above field strength limits are specified at a distance of 3-meters the tighter limits apply at the band edges.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Loss + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 5.8 dB means the emission is 5.8 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit –Corrected Amplitude

Test Results Summary

According to the data in the following table, the EUT complied with the <u>CFR47 §15.205</u>, §15.209, §15.231 (e), with the worst margin reading of:

5.58 dB at 1260 MHz in the Horizontal polarization

Test Data

Environmental Conditions

Temperature:	25.8 ° C
Relative Humidity:	58 %
ATM Pressure:	101.0kPa

The testing was performed by Ares Liu on 2012-11-05.

FCC Part15.231 Page 9 of 18

Test mode: Transmitting

Field Strength(Peak)

Report No.: R1SH121029051-00

Frequency	Re	eceiver	Rx A	ntenna	Cable	Amplifier	Corrected	15.231/1	5.209
(MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)
			Oper	ating Frequ	ency:315	MHz			
315	85.24	PK	Н	14.42	2.19	21.56	80.29	87.70	7.41
315	73.24	PK	V	14.42	2.19	21.56	68.29	87.70	19.41
630	42.98	PK	V	20.02	3.06	22.28	43.78	67.70	23.92
945	54.29	PK	Н	23.18	3.72	22.10	59.09	67.70	8.61
1260	60.59	PK	Н	25.26	2.68	27.20	61.32	67.70	6.38
1575	50.22	PK	Н	26.00	3.11	27.45	51.88	74.00	22.13
1890	52.29	PK	V	28.07	3.41	27.61	56.17	67.70	11.53
2205	44.55	PK	Н	29.95	3.47	27.68	50.29	74.00	23.71
2520	45.00	PK	Н	31.57	3.77	27.87	52.48	67.70	15.22
2835	44.38	PK	Н	31.13	4.70	27.57	52.65	74.00	21.35
3150	46.95	PK	Н	31.14	4.91	27.66	55.34	67.70	12.36

Field Strength(Average)

_	Peak		Duty Cycle	Average	15.231/1	5.209
Frequency (MHz)	Measurement @ 3m (dBμV/m)	Polar (H/V)	Correction Factor (dB)	Amp. (dBμV/m)	Limit (dBµV/m)	Margin (dB)
		Operati	ng Frequency:315	MHz		
315	80.29	Н	-19.20	61.09	67.70	6.61
315	68.29	V	-19.20	49.09	67.70	18.61
630	43.78	V	-19.20	24.58	47.70	23.12
945	59.09	Н	-19.20	39.89	47.70	7.81
1260	61.32	Н	-19.20	42.12	47.70	5.58
1575	51.88	Н	-19.20	32.68	54.00	21.32
1890	56.17	V	-19.20	36.97	47.70	10.73
2205	50.29	Н	-19.20	31.09	54.00	22.91
2520	52.48	Н	-19.20	33.28	47.70	14.42
2835	52.65	Н	-19.20	33.45	54.00	20.55
3150	55.34	Н	-19.20	36.14	47.70	11.56

Note:

Calculate Average value based on Duty Cycle Correction Factor: Duty cycle= $T_{ON}/100ms$ =(15.44-18*0.16-8*0.2)ms/100 ms=10.96% Duty cycle correction factor = 20*log (duty cycle) =20*log(10.96%) = -19.20dB

Please refer to following plot.

FCC Part15.231 Page 10 of 18

Report No.: R1SH121029051-00

$T_{on} + T_{off} < 100 ms$

FCC Part15.231 Page 11 of 18

 $T_{on} + T_{off} = 15.44 ms$

Report No.: R1SH121029051-00

18 pcs 160us Toff

FCC Part15.231 Page 12 of 18

8 pcs 200us Toff

Report No.: R1SH121029051-00

FCC Part15.231 Page 13 of 18

FCC §15.231(c) – 20 dB BANDWIDTH TESTING

Requirement

Per 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Report No.: R1SH121029051-00

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM 30	1079 8500	2012-10-9	2013-10-8

Test Procedure

With the EUT's antenna attached, the waveform was received by the test antenna which was connected to the spectrum analyzer, plot the 20 dB bandwidth.

Test Data

Environmental Conditions

Temperature:	25.8° C
Relative Humidity:	45%
ATM Pressure:	101.1kPa

The testing was performed by Ares Liu on 2012-11-01.

Test Mode: Transmitting

Please refer to following table and plot.

Channel Frequency	20 dB Bandwidth	Limit	Result
(MHz)	(kHz)	(kHz)	
315	118.24	787.5	Pass

Note: Limit = 0.25% * Center Frequency = 0.25% * 315 MHz = 0.7875 MHz

FCC Part15.231 Page 14 of 18

20 dB Bandwidth

Report No.: R1SH121029051-00

FCC Part15.231 Page 15 of 18

FCC §15.231(e) - DEACTIVATION TESTING

Applicable Standard

Per 15.231(e), devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

Report No.: R1SH121029051-00

EUT Setup

The deactivation test was performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.4 - 2009. The specification used was the FCC 15.231(e) limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	101121	2012-10-8	2013-10-7
Sunol Sciences	Hybrid Antennas	JB3	A060611-1	2011-9-6	2013-9-5
HP	Pre-amplifier	8447E	2434A02181	2012-10-8	2013-10-7

FCC Part15.231 Page 16 of 18

Test Data

Environmental Conditions

Temperature:	25.3 ° C
Relative Humidity:	59 %
ATM Pressure:	100.2 kPa

The testing was performed by Ares Liu on 2012-11-5.

Test Mode: Transmitting

Test Result: Compliance. Please refer to following plot.

Period time	Duration time	Silent time	Silent time Limit	Result
64.700s	15.44ms	64.68456s	>10s and >30* Duration time	Pass

Report No.: R1SH121029051-00

Note: Silent time= Period time- Duration time

Period time:64.70ms

FCC Part15.231 Page 17 of 18

Duration time:15.44ms

Report No.: R1SH121029051-00

*****END OF REPORT****

FCC Part15.231 Page 18 of 18