# ENTITYCS: IMPROVING ZERO-SHOT CROSS-LINGUAL TRANSFER WITH ENTITY-CENTRIC CODE SWITCHING



Chenxi Whitehouse<sup>1,2</sup>, Fenia Christopoulou<sup>2</sup>, Ignacio Iacobacci<sup>2</sup>

<sup>1</sup> City, University of London <sup>2</sup> Huawei Noah's Ark Lab, London, UK



#### Introduction

- Code-Switching (CS) has proven to be an effective data augmentation method for improving cross-lingual transfer
  - Existing natural CS data usually contain only one pair of languages [6]
  - Most automatic methods use dictionaries or alignment tools which are expensive and can introduce noise [5, 8]
- We propose EntityCS, a method that focuses on Entity-level Code-Switching to capture fine-grained cross-lingual semantics without corrupting syntax
- We construct and release an EntityCS corpus with 93 languages based on English Wikipedia and Wikidata
- We design novel masking strategies for entity prediction
- We train an XLM on the constructed EntityCS corpus with the proposed masking strategies, which shows consistent improvement on entity-centric downstream tasks

## **ENTITYCS Corpus**

She was studying [[ computer science ]] and [[ electrical engineering ]] .



| Statistics                   | Count |
|------------------------------|-------|
| Languages                    | 93    |
| English Sentences            | 54M   |
| English Entities             | 105M  |
| Ave. Sentence Length         | 23.4  |
| Ave. Entities per Sentence   | 2     |
| CS Sentences per EN Sentence | <=5   |
| CS Sentences                 | 231M  |
| CS Entities                  | 421M  |
|                              |       |

She was studying <e>计算机科学</e> and <e>电气工程学</e>.

She was studying <e>कम्प्यूटर विज्ञान </e> and <e>विद्युत अभियान्त्रिकी </e>.

She was studying <e>Informatique </e> and <e>Électrotechnique </e>.

She was studying *<e>*computer science *</e>* and *<e>*electrical engineering *</e>*.

## **Masking Strategies for Entity Prediction**



| Masking           | Entity (%) |      |             | Masking      | Entity (%)              |    |      |     | Non-Entity (%) |    |      |     |              |
|-------------------|------------|------|-------------|--------------|-------------------------|----|------|-----|----------------|----|------|-----|--------------|
| Strategy          | p          | Mask | <b>R</b> nd | <b>S</b> ame | Strategy                | p  | Mask | Rnd | <b>S</b> ame   | p  | Mask | Rnd | <b>S</b> ame |
|                   |            |      |             |              | MLM                     | 15 | 80   | 10  | 10             | 15 | 80   | 10  | 10           |
| WEP               | 100        | 80   | 0           | 20           | WEP+MLM                 | 50 | 80   | 0   | 20             | 15 | 80   | 10  | 10           |
| $PEP_{MRS}$       | 100        | 80   | 10          | 10           | PEP <sub>MRS</sub> +MLM | 50 | 80   | 10  | 10             | 15 | 80   | 10  | 10           |
| PEP <sub>MS</sub> | 100        | 80   | 0           | 10           | PEP <sub>MS</sub> +MLM  | 50 | 80   | 0   | 10             | 15 | 80   | 10  | 10           |
| $PEP_M$           | 100        | 80   | 0           | 0            | PEP <sub>M</sub> +MLM   | 50 | 80   | 0   | 0              | 15 | 80   | 10  | 10           |

- We propose WEP (predict every subword in an entity), PEP (predict partial) subwords in an entity) and their combination with Masked Language Modelling (MLM)
- WEP is useful for predicting entire entities (single-token entity prediction),
  PEP benefits multi-token entity prediction, MLM helps especially when context is important
- p: probability of choosing candidate items (entity/non-entity subwords) for masking. When combining WEP/PEP with MLM, we lower  $\hat{p}$  to 50%

#### **Main Results**

| Model                  | NER (F1)<br>WikiAnn [4]     |     | ct Retr. (Acc.)<br>-FACTR [3] | Slot                        | WSD (Acc.)<br>XL-WiC [1]                                  |                                          |  |
|------------------------|-----------------------------|-----|-------------------------------|-----------------------------|-----------------------------------------------------------|------------------------------------------|--|
|                        |                             |     | single mult                   |                             | SF / Intent                                               | , (= , , , , , , , , , , , , , , , , , , |  |
| XLM-R <sup>PRIOR</sup> | 61.8 [2]                    | 3.5 | 9.4 2.6                       | <br>B] <b>-</b>             | <del>_</del>                                              | 58.0 [1]                                 |  |
| XLM-R <sup>OURS</sup>  | 61.6 <sub>0.28</sub>        | 3.5 | 9.4 2.6                       | 71.8 <sub>1.96</sub>        | 73.0 <sub>0.70</sub> / 89.1 <sub>1.04</sub>               | 59.1 <sub>1.52</sub>                     |  |
| MLM                    | 63.5 <sub>0.50</sub>        | 2.5 | 6.4 1.7                       | 72.1 <sub>2.34</sub>        | 74.0 <sub>0.69</sub> / 89.6 <sub>1.43</sub>               | 59.3 <sub>0.44</sub>                     |  |
| WEP                    | 62.4 <sub>0.68</sub>        | 6.1 | <b>19.4</b> 3.0               | 71.6 <sub>1.20</sub>        | 71.7 <sub>0.82</sub> / 89.7 <sub>1.25</sub>               | <b>60.4</b> <sub>0.97</sub>              |  |
| PEP <sub>MS</sub>      | 63.3 <sub>0.70</sub>        | 6.0 | 15.0 <b>4.3</b>               | 73.4 <sub>1.70</sub>        | <b>74.4</b> <sub>0.67</sub> / <b>90.0</b> <sub>0.90</sub> | 60.2 <sub>0.85</sub>                     |  |
| PEP <sub>MS</sub> +MLM | <b>64.4</b> <sub>0.50</sub> | 5.7 | 13.9 3.9                      | <b>74.2</b> <sub>0.43</sub> | 74.3 <sub>0.82</sub> / 89.0 <sub>0.87</sub>               | 59.8 <sub>0.75</sub>                     |  |

- Average performance across languages on entity-centric tasks
  - PEP<sub>MS</sub>+MLM shows the best performance on NER and Slot Filling
  - WEP is mostly beneficial for single-token fact retrieval (+10%)

| MultiATIS++            | Latin Script |      |      |      |      |             |      | Non Latin Script |      |             |  |
|------------------------|--------------|------|------|------|------|-------------|------|------------------|------|-------------|--|
|                        | ES           | DE   | FR   | PT   | TR   | avg         | ZH   | JA               | HI   | avg         |  |
| XLM-R <sup>OURS</sup>  | 81.5         | 79.8 | 74.8 | 76.5 | 43.0 | 71.1        | 77.2 | 56.8             | 50.6 | 61.5        |  |
| MLM                    |              | 78.0 |      |      |      |             |      |                  |      |             |  |
| PEP <sub>MS</sub>      | 79.3         | 79.7 | 75.3 | 76.2 | 45.3 | 71.1        | 77.8 | 69.0             | 62.9 | 69.9        |  |
| PEP <sub>MS</sub> +MLM | 81.3         | 81.4 | 78.2 | 76.1 | 42.1 | <u>71.8</u> | 78.8 | 68.8             | 65.8 | <u>71.1</u> |  |

- Improvement over Latin vs. Non-Latin Script
  - We compare the performance on MultiATIS++ for demonstration
  - On average, non-Latin script languages show more improvement

## **Comparing Training Objectives in NER**



- F1-score comparison on WikiAnn test set as a function of the number of training steps (in 10K) with various masking objectives
  - Random token replacement hurts performance
  - MLM is essential for improving NER (Left: Entity Prediction (EP) only strategies; Right: EP+MLM strategies)

#### Conclusions

- Our constructed EntityCS corpus and the proposed intermediate training objectives can improve zero-shot cross-lingual transfer of XLMs on entity-centric downstream tasks
- Our approach demonstrates salient improvement on languages with Non-Latin script compared with Latin script
- Different masking strategies are optimal under different entity prediction tasks and settings

#### References

- Raganato Alessandro et al. "XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization". In: EMNLP. 2020.
- Chi Zewen et al. "Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word Alignment". In: ACL-IJNLP. 2021.
- Jiang Zhengbao et al. "X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained Language Models". In: EMNLP. 2020. Pan Xiaoman et al. "Cross-lingual Name Tagging and Linking for 282 Languages". In: ACL. 2017.
- Qin Libo et al. "CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot Cross-Lingual NLP". In: IJCAI. 2020.
- Xiang Rong et al. "Sina Mandarin Alphabetical Words: A Web-driven Code-mixing Lexical Resource". In: AACL-IJNLP. 2020.
- Xu Weijia et al. "End-to-End Slot Alignment and Recognition for Cross-Lingual NLU". In: EMNLP. 2020. Yang Jian et al. "Alternating Language Modeling for Cross-Lingual Pre-Training". In: AAAI. 2020.

