算法实现题 6-4 无向图的最大割问题 (习题 6-14)

★问题描述:

给定一个无向图 G=(V, E),设 $U\subseteq V$ 是 G 的顶点集。对任意 $(u, v)\in E$,若有 $u\in U$ 且 $v\in V$ -U,就称(u, v)为关于顶点集 U 的一条割边。顶点集 U 的所有割边构成图 G 的一个割。 G 的最大割是指 G 中所含边数最多的割。

★编程任务:

对于给定的无向图 G,设计一个优先队列式分支限界法,计算 G 的最大割。

★数据输入:

由文件 input.txt 给出输入数据。第 1 行有 2 个正整数 n 和 m,表示给定的图 G 有 n 个 顶点和 m 条边,顶点编号为 1,2,…,n。接下来的 m 行中,每行有 2 个正整数 u,v,表示图 G 的一条边(u,v)。

★结果输出:

程序运行结束时,将计算出的最大割的边数和顶点集 U 输出到文件 output.txt 中。文件的第 1 行是最大割的边数,文件的第 2 行是表示顶点集 U 的向量, x_i , $1 \le i \le n$, x_i =0 表示顶点 i 不在顶点集 U 中, x_i =1 表示顶点 i 在顶点集 U 中。

输入文件示例	输出文件示例
input.txt	output.txt
7 18	12
1 4	1 1 1 0 1 0 0
1 5	
1 6	
1 7	
2 3	
2 4	
2 5	
2 6	
2 7	
3 4	
3 5	
3 6	
3 7	
4 5	
4 6	
5 6	
5 7	
6 7	

★评分:

未按照题目要求用优先队列式分支限界法解题,则所得分数减半。