

BLM 2425 ALGORİTMA ANALİZİ

ÖDEV 1

Asymptotic Analysis, Mathematical Analysis of Non-Recursive and Recursive Problems

Öğrenci Adı: Sinem SARAK Öğrenci Numarası: 22011647

Dersin Eğitmeni: M. Elif KARSLIGİL

1- Master Theorem

Master Teoreminin formülü aşağıdaki gibidir:

Verilmiş olan bir T(n) rekürans bağıntısında

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$
 ve $T(1) = c$

 $a \ge 1$, b > 1 ve c > 0 değerleri için $d \ge 0$ durumunda $f(n) \in \Theta(n^d)$ olmak üzere:

$$T(n) \in \begin{cases} \Theta(n^{4}) & \text{if } a < b^{4} \\ \Theta(n^{4} \log n) & \text{if } a = b^{4} \\ \Theta(n^{\log n}) & \text{if } a > b^{4} \end{cases}$$

şeklinde incelenir. Bu formül kullanılarak verilen sorular alt başlıklarda incelenecektir.

a. $T(n) = 9 T(n/4) + n^2$

Verilen sorudaki bağıntıda yer alan değerler formüldeki yerlerine konulduğunda a = 9, b = 4 ve d = 2 olduğu görülür. Buna göre b^d ile a arasındaki ilişki incelendiğinde:

$$b = 4 = 16$$
 Ve $a = 9$ olduziona göre $b > a$ dir.

Bu durumda case 1 geçerli olmaktadır.

$$T(n) \in \Theta(n^2)$$

b. T(n) = 3 T(n/3) + log(n)

Verilen sorudaki bağıntıda yer alan değerler formüldeki yerlerine konulduğunda a = 3 ve b = 3 olduğu görülür. f(n) ifadesi log(n) olduğundan d değeri için tam sayı bir ifade kullanılamaz. Ancak d değerinin aralık değerleri kullanılarak master teoremi uygulanabilir:

 $n^d = \log(n) < n$ ifadesi yazılabilir. $n^d < n$ olduğuna göre d < 1 denilebilir. Buna göre: $b^d = 3^d < 3$ olduğu söylenebilir. a = 3 olduğuna göre $b^d < a$ olur ve case 3'e karşılık gelir.

c. T(n) = 3 T(n/2) + n

Verilen sorudaki bağıntıdaki değerler formüldeki yerlerine konulduğunda a = 3, b = 2 ve d = 1 olduğu görülür. Buna göre b^d ile a arasındaki ilişki incelendiğinde:

Bu durumda case 3 geçerli olmaktadır.

$$\log_{b} a = \log_{2} 3 \longrightarrow T(n) \in \Theta(n^{\log_{2} 3})$$

2- Karmaşıklıkları Big-Oh Cinsinden İfade Etme

1. f1()

```
Veriler Fonksisonn bosic operation',
              \begin{array}{lll} N) \ \{ & & & \\ t \ x = 0; \\ \text{for (int } i = 0; \ i < N; \ i + +) \\ & & & \\ & & & \\ x + +; \end{array} \\ \end{array} \begin{array}{lll} \text{$n$ defa} & \text{$d$ onen $b$ is $d$ dönen $k$ light } \\ & & & \\ \hline \text{$FI() \in O(n)$} \\ \text{$a$ slarek if ade edilis.} \end{array}
 int f1(int N) {
return x;
 }
2. f2()
         int f2(int N) {
 return x;
                                                     islemi ger cele leşti. Buna göre toplam işlem seyisi \sum_{i=0}^{n} \sum_{b=0}^{i} \sum_{k=0}^{i} | = \frac{1}{6} \cdot (n+1) \cdot (n+2) \cdot (n+3) \text{ olarak hesaplamin.}
\boxed{ +2() \in O(n^3) \text{ olarak buluur.}}
3. f3()
  int f3(int N) {
                                          Recursive bir şekilde çalışan bu fonksiyon için rekürans bağıntısı şu
         if (N == 0) return 1;
                                          şekilde yazılır:
                                                                T(n) = n. T(n-1)
dongisher keynobli, fonksison kendini n kere cessur
          for (int i = 0; i < N; i++)
            x += f3(N-1);
     T(n) = n \cdot T(n-1) = n(n-1) \cdot T(n-2) = n \cdot (n-1) \cdot (n-2) \cdot T(n-3)
      T(n-1) = (n-1). T(n-2)
     T(n-2) =(n-2). T(n-3)
```

4. f4() int f4(int N) {

if (N == 0) return 0;
return
$$f4(N/2) + f1(N) + f1(N) + f1(N)$$

 $f4(N/2);$ $f(N/2)$

Recursive bir şekilde çalışan bu fonksiyon için rekürans bağıntısı şu şekilde yazılır:

$$T(n) = 2T(\frac{n}{2}) + 3n = 4T(\frac{n}{4}) + 6n = 8T(\frac{n}{8}) + 9n$$

$$T(\frac{n}{2}) = 2T(\frac{n}{4}) + 3\frac{n}{4}$$

$$T(n) = 2^{\frac{1}{2}}T(\frac{n}{2}) + 3\frac{n}{4}$$

$$T(n) = 2^{\frac{1}{2}}T(\frac{n}{2}) + 3\frac{n}{4}$$

$$= n \cdot T(1) + 3 \cdot n \cdot \log_{2} n$$

$$= n \cdot T(1) + 3 \cdot n \cdot \log_{2} n$$

$$= n \cdot T(1) + 3 \cdot n \cdot \log_{2} n$$

$$= n \cdot T(1) + 3 \cdot n \cdot \log_{2} n$$

$$= n \cdot T(1) + 3 \cdot n \cdot \log_{2} n$$

3-Tablo

N; ≤ C, (n+1) N;

1 £ C1. (04)

1 4 N+1

No=1 C1=1

isin exitlik soglanar

E(") = O(8("))

c2.(4+1).vi & vi

C2. (0+1) &1

11161

U > 00 olgandor co un

bition soulv dear levial according

				12 (4.2.4)	((1))	2) f(n) e ? (_% (م))	
کصری	Corob	f(n)	g(n)	$f(n) \in f(n) \leq f(n) \leq g(n) c_n$			$g(n), C_1 \leq F(n) \leq g(n), C_1$ $1 \qquad n \cdot c_1 \leq n \log n \leq n \cdot c_1$		
1	0	n ²	n ³						
2	√	n lg n	n	n³. c₂ ≤ n²			C2 & lagn	اهم م خ د،	
3	Θ	1	3 + sin n	Nosore Coso Sosponamos	$N^2 \leq N^3$. C, $N \geq 1$ ve $C_1 = 2$ idin Si	islamr		O -9 00 Garamango pa etitlik sužpavovos	
4	√	3 ⁿ	2 ⁿ	1	$P(n) \in O(g(n))$		<i>E</i> (v) €	$\mathcal{V}^{(\theta(\omega))}$	
5	θ	4 ⁿ⁺⁴	2 ²ⁿ⁺²	3) $F(n) \in ?(s(n))$ $g(n) \cdot c_2 \leq F(n) \leq g(n) \cdot c_1$ $c_2(3+sin(n)) \leq 1 \leq c_1(3+sin(n))$			(4) f(n) e ? (8(n))		
6	0	n lg n	n ^{105/100}) g(n).c, ≤ f(n) ≤ g(n).c,		
7	θ	lg √10n	lg n³				2.02 = 3 = 2.0		
8	0	n!	(n+1)!	$3 + \sin(n) \leq \frac{c_2}{1}$	$\frac{1}{c_1} \leq 3 + \sin(n)$ $\frac{1}{c_1} - 3 \leq \sin(n_0)$	į	2 <3° ca'nin	2 ² < 3 ² a)bugundan Sa gl anama2	
5) $F(n) \in \mathcal{I}(y(n))$ $y(n).c_1 \leq F(n) \leq y(n).c_1$ $y(n).c_2 \leq f(n) \leq y(n).c_2$ $y(n).c_3 \leq f(n) \leq y(n).c_4$				$ Sin(n) \leq \frac{1}{c_2} - 3$ $ N_0 = 90 \forall c_2 = \frac{1}{4}$ $ Sin(n) \leq \frac{1}{c_2} + \frac{1}{c_1} + \frac{1}{c_2$			horhangi bir dusari i kin regionir.		
$2^{(n+1)} 2 \cdot C_{2} \leq L_{n+1}$ $4^{(n+1)} \leq 2^{(n+1)} \leq L_{n+1} $				$c_2 \cdot g(n) \leq P(n) \leq c_1 \cdot g(n)$, c ₂	$(3, 1) \in (3, 1)$ $(3, 1) \in ($		
$(a_1(u+1)) \neq (u) \neq (a_1(u+1))$ $(a_2(u+1)) \neq (u) \neq (a_1(u+1))$ $(a_2(u+1)) \neq (u) \neq (a_1(u+1))$				C2. N. Nº ≤ N. log N C2. 1/N ≤ log N Polinom Fooks youther log don high Bright. Sunsuado L. Efillik saghan	log n Ec, 42/n polinom Fonksymber log don hizh bûyûr: sonsazdo i estlik swihnir	c	$\frac{1}{6} \log n \leq \frac{1}{2} \log n$ $\frac{1}{6} \log n \leq \frac{1}{6} \log n + \frac{1}{6} \log n$ $\frac{1}{6} \log n \leq \frac{1}{6} \log n + \frac{1}{6} \log n$	$\frac{1}{2} \log 0 \cap a \leq 3c_1 \log_2 h$ $\frac{1}{6} \log a + \frac{\log h}{6} \leq c_1 \log h$ $\frac{\log a }{6} \leq \left(\left(\left(\left(\frac{1}{6} \right) \right) \right) \log h$	

N=2 61=5 degarlus izin esittik seglemr.

(g(n))

desurbition esittik maturi.

4- Big-Theta Çözümü ve İspatı

a.
$$\frac{1 \cdot \text{SOTU}}{n} \cdot F(n) = 2^{n+1} + 3^{n-1} = 2 \cdot 2^n + \frac{3^n}{3}$$
 $n \cdot \text{in sonsuso gittig'} distinities into substitute below the solid point of the solid p$

b.
$$2 \cdot \text{SORU}$$
: $2 \cap \log_1(n+2)^2 + (n+2)^2 \log_2(\frac{n}{2})$

$$= 4 \cap \log_1(n+2) + (n+2)^2 (\log_1(n+2)^2 + (n+2)^2 \log_2(n+2) + (n+2)^2 \log$$

İspot:

5-Big – Oh Asimptotik Notasyonu ile Yazma

$$\sum_{i=1}^{n} \binom{i+1}{2^{i-1}} = \sum_{i=1}^{n} \binom{i+1}{2^{i}} = \frac{1}{2} \sum_{i=1}^{n} \binom{i+1}{2^{i}} \cdot 2^{i} = \frac{1}{2} \sum_{i=1}^{n} \binom{i+1}{2^{i}} \cdot 2^{i} = \frac{1}{2} \left(\sum_{i=1}^{n} \binom{i+1}{2^{i}} + \sum_{i=1}^{n}$$

6- Backward Substitution (Sociala base case verlindiginder 7(0)=0 states versaintmistic)

$$T(n) = T(n-2) + 2n = T(n-4) + 4n - 4 = T(n-6) + 6n - 12$$

$$T(n-2) = T(n-2i) + 2n - 4$$

$$T(n-2) = T(n-6) + 2n - 8$$

$$T(n) = T(n-2i) + 2in - 2i(\frac{2i}{2} - 1)$$

$$= T(n-2i) + 2in - 2i^{2}$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i(n-1)$$

$$= T(n-2i) + 2i$$