

UNIDAD III:

TRADUCTORES – TRADUCTORES A PILA (TP)

ING. SANDRA RODRIGUEZ AVILA 2023-II

INTRODUCCION

- Los Traductores a Pila o TP, pertenecen a la clasificación de Maquinas Traductoras que nos permitirán reconocer y traducir lenguajes basados en las gramáticas del tipo 2.
- Recordaremos a los AP, a los que se le ha adicionado la función de traducción, por lo tanto el resultado de estos dispositivos es un Conjunto Traducción formado por (t, s).

CONTENIDO

- > TRADUCTOR A PILA o TP
 - Definición formal de un TP
 - Configuración
 - Conjunto traducción de un TP
- > EJEMPLO TP PARSE IZQUIERDO
- ➢ EJEMPLO TP − PARSE DERECHO

• AP más una cinta de salida donde se va a almacenar la traducción de la tira o cadena de entrada.

CINTA DE SALIDA

Definición formal de un TP

TP = (Q, Te, Ts, Tp, δ , q1,Zo, F)

donde:

Q = {conjunto finito de estados}

Te y Ts = Alfabeto de entrada y de salida.

Tp: Alfabeto de la pila

δ: Q x Te U{λ} x Tp → P(Q x Tp* x Ts*) función de

transición-traducción

q1 E Q estado inicial, Zo símbolo inicial de la pila, Zo E Tp

F C Q: es el conjunto de estados finales

Configuración: (q, w, α, s)

q: estado actual, w: cadena que queda por leer y traducir.

α: contenido de la pila, en ese instante

- s: cadena de salida emitida-traducida de la cadena de entrada
- Configuración inicial: (q1,t,Zo,λ)
- Configuración final: (qi, λ, α, s)
- Movimiento: tránsito entre 2 configuraciones $(q,aw, Z\gamma, y) \rightarrow (q',w, \alpha\gamma, yz)$ y se debe de cumplir que $\delta(q, a, Z)=(q', \alpha, z)$.

Conjunto traducción de un TP

Se puede definir de dos formas :

a) Cuando reconoce y traduce una cadena de entrada a una de salida y el TP alcanza una configuración final :

$$Tr(TP) = \{(t,s)/t \in Te^*, s \in Ts^* \ y \ (q1,t, Zo, \lambda) \rightarrow (qi,\lambda, \alpha,s), qi \in F\}$$

b) El traductor reconoce y traduce la cadena de entrada a una de salida cuando la pila queda vacía:

$$Tr(TP) = \{(t,s)/t \in Te^*, s \in Ts^* \ y \ (q1,t, Zo, \lambda) \rightarrow (q,\lambda,\lambda,s)\}$$

EJEMPLO TPizq – PARSE IZQUIERDO

Sea la gramática G=(N,T,P,S) siendo N={S,R} y T={x,(,), , }.

```
P:S \rightarrow x 1

S \rightarrow (SR \quad 2

R \rightarrow ,SR \quad 3

R \rightarrow ) 4
```

- Determinar el lenguaje que genera y construir el TP para encontrar el parse (izquierdo).
- Reconocer y traducir una cadena del lenguaje a su parse.

EJEMPLO TPizq – PARSE IZQUIERDO

Solución: TP=(Q, Te, Tp, Ts, δ , q0, z0, F) donde Q = {q} Te = T={x, (,), ,} Tp = T U N = {x, (,), , , S, R} Ts = {1,2,3,4}

Zo = S

 $F = \{\emptyset\}$

q0 = q

EJEMPLO TPizq – PARSE IZQUIERDO

δ:

- a) Símbolos terminales
- 1. $\delta(q, x, x) \rightarrow (q, \lambda, \lambda)$
- 2. $\delta(q, (, () \rightarrow (q, \lambda, \lambda))$
- 3. $\delta(q,),) \rightarrow (q, \lambda, \lambda)$
- 4. $\delta(q, , , ,) \rightarrow (q, \lambda, \lambda)$

b) Reglas de producción

5.
$$\delta(q,\lambda,S) \rightarrow (q,x,1)$$

6.
$$\delta(q,\lambda,S) \rightarrow (q,(SR, 2))$$

7.
$$\delta(q,\lambda,R) \rightarrow (q, SR, 3)$$

8.
$$\delta(q,\lambda,R) \rightarrow (q,), 4)$$

Reconocer y traducir 2 tiras de entrada $(q, (x,x), S, \lambda) \rightarrow n$ mov $(q, \lambda, \lambda, 2313)$

EJEMPLO TPder – PARSE DERECHO

 Sea la gramática G=(N,T,P,S) siendo N={S,R} y T={x,(,), , }.

P:
$$S \rightarrow x$$
 1
 $S \rightarrow (SR \quad 2$
 $R \rightarrow ,SR \quad 3$
 $R \rightarrow)$ 4

- Determinar el lenguaje que genera y construir el TP para encontrar el parse (derecho).
- Reconocer y traducir una cadena del lenguaje a su parse.

EJEMPLO TPder – PARSE DERECHO

```
Solución: TPdrcha=(Q, Te, Tp, Ts, \delta, q0, Zo, F)

Donde:

Q = {q}

Te = T= {x, (,), ,}

Tp =T U N U Zo= {x, (,), , , S, R, Zo}

Ts = {1,2,3,4}

q0 = q Zo F = \{\emptyset\}
```

EJEMPLO TPder-PARSE DERECHO

a P:
$$S \rightarrow x$$
 1

$$S \rightarrow (SR \quad 2)$$

$$R \rightarrow SR$$
 3

$$(A. R \rightarrow)$$

λ. el elemento mas a la delecha de la pila puede ser cualquiera.

5.
$$\delta(q,\lambda_x) \rightarrow (q,S,1)$$

6.
$$\delta(q,\lambda,(SR) \rightarrow (q, S, 2)$$

7.
$$\delta(q,\lambda, SR) \rightarrow (q, R, 3)$$

8.
$$\delta(q,\lambda,)) \rightarrow (q, R, 4)$$

c) Para vaciado de pila

9.
$$\delta(q,\lambda,ZoS) \rightarrow (q,\lambda,\lambda)$$

U

a [']) Síml	oolo	s tei	rmi	nal	es
u	,		,5 tC		IIGI	CJ

- 1. $\delta(q, x, \lambda) \rightarrow (q, x, \lambda)$
- 2. $\delta(q, (, \lambda)) \rightarrow (q, (, \lambda))$
- 3. $\delta(q,), \lambda) \rightarrow (q,), \lambda)$
- 4. $\delta(q, , , \lambda) \rightarrow (q, , , \lambda)$

λ: el elemento mas a la derecha de la pila puede ser cualquiera.

- b) Reglas de producción
- 5. $\delta(q,\lambda_{\iota}x) \rightarrow (q,S,1)$
- 6. $\delta(q,\lambda,(SR) \rightarrow (q, S, 2)$
- 7. $\delta(q,\lambda,SR) \rightarrow (q,R,3)$
- 8. $\delta(q,\lambda,)) \rightarrow (q, R, 4)$
- c) Para vaciado de pila
- 9. $\delta(q,\lambda,ZoS) \rightarrow (q,\lambda,\lambda)$

PAS O	te	PILA	SALIDA	δ
1	(x,x)	Zo	λ	2
2	x,x)	Zo(λ	1
3	,x)	Zo(x	λ	5
4	,x)	Zo(S	1	4
5	x)	Zo(S,	1	1
6)	Zo(S,x	1	5
7)	Zo(S,S	11	3
8	λ	Zo(S,S)	11	8
9	λ	Zo(S,SR	114	7
10	λ	Zo(SR	1143	6
11	λ	ZoS	11432	9
12	λ	λ	11432	

CONCLUSIONES

- Los Traductores a Pila o TP reconocen y traducen lenguajes definidos por una Gramática del Tipo 2 o de Contexto Libre.
- Los Traductores a Pila o TP basados en una Gramatica de Contexto Libre nos permiten reconocer y determinar el parse izquierdo o derecho de una secuencia de símbolos terminales.

BIBLIOGRAFIA

• SANCHIS F. J., GALAN C. *Compiladores. Teoría y Construcción.* 1986. Madrid. Editorial Paraninfo.

RECURSOS GRAFICOS

Pixabay

Pexels

TEOLEN Ing. Sandra C. Rodríguez Avila