Hindi Vidya Prachar Samiti's Ramniranjan Jhunjhunwala College of Arts, Science and Commerce(Autonomous)

Programme: MSc. (Statistics) Part-1 Semester-1

Practical- 1.1.2 Generating & Visualizing Standard Continuous Date:

Probability Distributions

- Q.1. Generate 1000 random observations, uniformly distributed between -1 and 1 plot the results as a histogram. Further repeat the same using an increased sample size of 10000.
- Q.2. Consider x follows exponential distribution with parameter $\lambda = 0.5$.
- (i) Draw a graph of the probability distribution of x.
- (ii) Draw a graph of cdf of x.
- Q.3. Plot graph of pdf of gamma distribution for the following values of parameters (a=shape,b=scale)

a=1,b=2

a=2,b=2

a=3,b=2

a=5,b=1

a=9,b=0.5

- Q.4. Draw 1000 random samples from $X \sim \text{Exp}(\lambda=6)$ using R function rexp and transform the variable by its own cdf $F_X(x)=1-e^{-\lambda x}$, s.t. $Y=F_X(x)$. Comment on the distribution of Y.
- Q.5. Draw 1000 samples from a Y~exp (λ = 1) distribution, using the samples drawn from X~U(0,1) with the R function runif() using probability integral transformation.

(Hint:

- First draw 1000 samples from X~U(0,1)
- Transform Y = $F_X^{-1}(x)$ with the inverse CDF $F_X^{-1}(x) = -(1/\lambda) \ln(1 x)$
- Now Y has the same distribution as $F_Y^{-1}(y) = 1 e^{-\lambda y}$)

Q.6. U \sim U(0,1) distribution. Show that both -log U and -log(1-U) are exponential random variables. (use set.seed(1001))

Q.7. A statistics class takes two exams X (Exam 1) and Y (Exam 2) where the scores follow a bivariate normal distribution with parameters:

 μx = 70 and μy = 60 are the marginal means and σx = 10 and σy = 15 are the marginal standard deviations, ρ = 0.6 is the correlation coefficient.

Suppose we select a student at random. What is the probability that -

- (a) the student scores over 75 on Exam 2?
- (b) the student scores over 75 on Exam 2, given that the student scored X = 80 on Exam 1?
- (c) the sum of his/her Exam 1 and Exam 2 scores is over 150?
- (d) P (5X 4Y > 150)?

Q.8. Generate 200 random samples from Bivariate Normal distribution having μ_1 =1, μ_2 =1, σ_1 =2, σ_2 =8 and having population correlation between the variables as 0.6 .(Set seed:123. Use mvrnorm() function.)

Q.9. Generate 100 observations from log normal distribution with $\mu=9$ and $\sigma=2$. Hence plot the graph of p.d.f and c.d.f.