This paper is not to be removed from the Examination Halls

UNIVERSITY OF LONDON

ST104A ZB (279 004A)

BSc degrees and Diplomas for Graduates in Economics, Management, Finance and the Social Sciences, the Diplomas in Economics and Social Sciences and Access Route

Statistics 1 (half unit)

Friday, 4 May 2012: 10.00am to 12.00pm

Candidates should answer **THREE** of the following **FOUR** questions: **QUESTION 1** of Section A (50 marks) and **TWO** questions from Section B (25 marks each). **Candidates are strongly advised to divide their time accordingly.**

A list of formulae and extracts from statistical tables are given after the final question on this paper.

Graph paper is provided at the end of this question paper. If used, it must be detached and fastened securely inside the answer book.

A calculator may be used when answering questions on this paper and it must comply in all respects with the specification given with your Admission Notice. The make and type of machine must be clearly stated on the front cover of the answer book.

SECTION A

Answer all parts of Question 1 (50 marks in total).

- 1. (a) The following data represent different types of variables. Classify each one of them as measurable (continuous) or categorical. If a variable is categorical, further classify it as nominal or ordinal. Justify your answer. (Note that no marks will be awarded without justification.)
 - i. The amount of time it takes each of 15 telephone installers to hook up a wall phone.
 - ii. The style of music preferred by each of 30 randomly selected radio listeners.
 - iii. The lengths of 50 randomly selected cars.
 - iv. The classification of a student (First, Upper Second, Lower Second, Third, Pass, Fail) in the course 04a: Statistics 1.

(8 marks)

(b) The number of raisins in each of 16 mini boxes for two brands are shown below:

Brand A: 22	27	20	29	24	31	25	26
Brand B: 26	29	25	33	24	35	31	27

- i. Find the mean and the mode for each brand.
- ii. Find the upper quartile of Brand A and the lower quartile of Brand B.
- iii. The mini boxes were made in 8 different machines corresponding to each column in the table above. Calculate the Spearman rank correlation coefficient and interpret its value.

(13 marks)

- (c) A test is taken by some students, their marks are recorded and we are interested in the properties of the sample mean. Under the assumption that the marks follow a Normal distribution with exact mean 65 and variance 144, calculate the probability that the mark of a randomly selected student
 - i. is greater than 67.5 exactly; and
 - ii. lies between 63 and 67 exactly.

(4 marks)

(d) A sample of 160 students was taken and each student was questioned regarding their preferences for a number of courses. The course in Economics was chosen by 75 students. Calculate a 95% confidence interval for the proportion of students in favour of Economics in the population.

(3 marks)

(e) Suppose that $x_1 = 3$, $x_2 = 2$, $x_3 = 0$, $x_4 = 4$, $x_5 = 1$, and $y_1 = 1$, $y_2 = 0$, $y_3 = 2$, $y_4 = 3$, $y_5 = 2$. Calculate the following quantities:

i.
$$\sum_{i=1}^{i=4} 2(x_i - 2)$$
 ii. $\sum_{i=3}^{i=5} (x_i + y_i)$ iii. $\sum_{i=4}^{i=5} x_i(y_i - 3)$

(6 marks)

(f) The probability distribution of a variable X is given below.

- i. Find the probability that X is an odd number.
- ii. Find the expected value of X, E(X).

(4 marks)

- (g) Two fair dice are thrown.
 - i. Suppose that D is the absolute difference between the scores on the two dice. State the probability distribution of D.
 - ii. You are told that the sum of the scores on the two dice is at least 10. What is the probability of at least one score being 6?

(4 marks)

- (h) State whether the following are true or false and give a brief explanation. (Note that no marks will be awarded for a simple true/false answer.)
 - i. A 95% confidence interval for the mean is wider than a 99% one when obtained from the same data.
 - ii. A p-value is the probability of not rejecting the null hypothesis.
 - iii. As the value of a chi-squared test statistic becomes larger, the associated p-value becomes smaller.

(6 marks)

(i) Provide an example where selection bias may occur. Be brief in explaining why selection bias may occur.

(2 marks)

SECTION B

Answer **two** questions from this section (25 marks each).

2. (a) An experiment was conducted in order to determine whether contacting people by phone or by letter before sending them a survey will increase the response rate. Specifically, one group of people received a letter before getting the survey; one group received a phone call before receiving the survey; and one group did not receive any information before the survey arrived. For this study, a response was defined as returning the survey within 2 weeks.

	no contact	letter	phone
Number of people who responded	10	17	37
Number of people who did not respond	31	22	12

- i. Test for an association between the method of contact prior to the survey and response at two appropriate significance levels. State the null and alternative hypotheses clearly.
- ii. Comment on your results describing potential associations in detail. Discuss the potential differences in response rates for different methods of contact.

(13 marks)

- (b) You work for a market research company and your boss has asked you to carry out a random sample survey for a mobile phone company to identify whether a recently launched mobile phone is attractive to younger people. Limited time and money resources are available at your disposal. You are being asked to prepare a brief summary containing the items below. (Note you are not supposed to provide a lengthy answer. You are in danger of losing marks should you do so.)
 - i. Choose an appropriate probability sampling scheme. Provide a brief justification for your answer.
 - ii. Describe the sampling frame and the method of contact you will use. Briefly explain the reasons for your choices.
 - iii. Provide an example in which response bias may occur. State an action that you would take to address this issue.
 - iv. State the main research question of the survey. Identify the variables associated with this question.

(12 marks)

3. (a) We are interested in assessing the potential impact of the growth rate (X) of the Gross National Product (GNP) on the birth rate (Y) of a country. The table below provides data for these quantities for 12 countries:

Country	Birth rate (y)	GNP growth rate (x)
Brazil	30	5.1
Colombia	29	3.2
Costa Rica	30	3.0
India	35	1.4
Mexico	36	3.8
Peru	36	1.0
Philippines	34	2.8
Senegal	48	-0.3
South Korea	24	6.9
Sri Lanka	27	2.5
Taiwan	21	6.2
Thailand	30	4.6

The summary statistics for these data are:

Sum of x data: 40.2	Sum of the squares of x data: 184.04
Sum of y data: 380	Sum of the squares of y data: 12,564
Sum of the pro	oducts of x and y data: 1,139.7

- i. Draw a scatter diagram of these data on the graph paper provided. Label the diagram carefully.
- ii. Calculate the correlation coefficient. Interpret your findings.
- iii. Calculate the least squares line of y on x and draw the line on the scatter diagram.
- iv. Obtain the predicted birth rate value of a country with a GNP growth rate of 5.0 according to the equation in (iii.). Would you use this value to predict the birth rate of this country? Justify your answer.

(13 marks)

(b) A transport company operates two types of trucks (A and B) and wants to compare them in terms of fuel consumption. An experiment is conducted and the kilometers per litre (kpl) rates of various type A and type B trucks are recorded and summarised in the following table:

	Sample size	Average kpl	Sample standard deviation
Type A	33	31.0	7.6
Type B	40	32.2	1.8

- i. You are asked to consider an appropriate hypothesis test to determine whether the mean distances per litre, covered by each of the two types of trucks, are different. Test at two appropriate significance levels and comment on your findings. Specify the test statistic you use and its distribution under the null hypothesis.
- ii. State clearly any other assumptions you make.
- iii. Give a 98% confidence interval for the mean kpl rate for the type A trucks.

(12 marks)

4. (a) The following figures are the hottest daily temperatures (in degrees Celsius) for 15 days of June at two coastal resorts:

```
19
    20
         21
               21
                    22
22
    22
         22
               23
                    23
23
    23
         23
               23
                    24
                    25
24
    24
         24
               24
25
    25
         25
               25
                    26
26
    26
         27
               27
                    28
```

- i. Carefully construct, draw and label a histogram of these data on the graph paper provided.
- ii. Find the mean, the median, the interquartile range and the modal group.
- iii. Comment on the data given the shape of the histogram and the measures you have calculated.

(13 marks)

- (b) i. A pharmaceutical company is conducting an experiment to test whether a new type of pain reliever is effective. The pain reliever was given to 30 patients and it reduced the pain for 16 of them. You are asked to use an appropriate hypothesis test to determine whether the pain reliever is effective. State the test hypotheses, and specify your test statistic and its distribution under the null hypothesis. Comment on your findings.
 - ii. A second experiment followed where a placebo pill was given to another group of 40 patients. A placebo pill contains no medication and is prescribed so that the patient will expect to get well. In some situations, this expectation is enough for the patient to recover. This effect, also known as the placebo effect, occurred to some extent in the second experiment where the pain was reduced for 13 of the patients. You are asked to consider an appropriate hypothesis test to incorporate this new evidence with the previous data and re-assess the effectiveness of the pain reliever.

(12 marks)

END OF PAPER

ST104a Statistics 1

Examination Formula Sheet

Expected value of a discrete random variable:

$$\mu = E[X] = \sum_{i=1}^{N} p_i x_i$$

The transformation formula:

$$Z = \frac{X - \mu}{\sigma}$$

Finding Z for the sampling distribution of the sample proportion:

$$Z = \frac{P - \pi}{\sqrt{\frac{\pi(1 - \pi)}{n}}}$$

Confidence interval endpoints for a single mean (σ unknown):

$$\bar{x} \pm t_{n-1} \frac{s}{\sqrt{n}}$$

Sample size determination for a mean:

$$n \ge \frac{Z^2 \sigma^2}{e^2}$$

Z-test of hypothesis for a single mean (σ known):

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Standard deviation of a discrete random variable:

$$\sigma = \sqrt{\sigma^2} = \sqrt{\sum_{i=1}^{N} p_i (x_i - \mu)^2}$$

Finding Z for the sampling distribution of the sample mean:

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Confidence interval endpoints for a single mean (σ known):

$$\bar{x} \pm z \frac{\sigma}{\sqrt{n}}$$

Confidence interval endpoints for a single proportion:

$$p \pm z \sqrt{\frac{p(1-p)}{n}}$$

Sample size determination for a proportion:

$$n \ge \frac{Z^2 p(1-p)}{e^2}$$

t-test of hypothesis for a single mean (σ unknown):

$$t = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Z-test of hypothesis for a single proportion:

$$Z \cong \frac{p - \pi}{\sqrt{\frac{\pi(1 - \pi)}{n}}}$$

t-test for the difference between two means (variances unknown):

$$t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Pooled variance estimator:

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

Confidence interval endpoints for the difference in means in paired samples:

$$\bar{x}_d \pm t_{n-1} \frac{s_d}{\sqrt{n}}$$

Pooled proportion estimator:

$$P = \frac{R_1 + R_2}{n_1 + n_2}$$

 χ^2 test of association:

$$\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

Spearman rank correlation:

$$r_s = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)}$$

Z-test for the difference between two means (variances known):

$$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Confidence interval endpoints for the difference between two means:

$$(\bar{x}_1 - \bar{x}_2) \pm t_{n_1 + n_2 - 2} \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

t-test for the difference in means in paired samples:

$$t = \frac{\bar{X}_d - \mu_d}{S_d / \sqrt{n}}$$

Z-test for the difference between two proportions:

$$Z = \frac{(P_1 - P_2) - (\pi_1 - \pi_2)}{\sqrt{P(1 - P)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Confidence interval endpoints for the difference between two proportions:

$$(p_1 - p_2) \pm z \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

Sample correlation coefficient:

$$r = \frac{\sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}}{\sqrt{\left(\sum_{i=1}^{n} x_i^2 - n\bar{x}^2\right)\left(\sum_{i=1}^{n} y_i^2 - n\bar{y}^2\right)}}$$

Simple linear regression line estimates:

$$b = \frac{\sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}}{\sum_{i=1}^{n} x_i^2 - n\bar{x}^2}$$

$$a = \bar{y} - b\bar{x}$$

TABLE 4. THE NORMAL DISTRIBUTION FUNCTION

The function tabulated is $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt$. $\Phi(x)$ is

the probability that a random variable, normally distributed with zero mean and unit variance, will be less than or equal to x. When x < 0 use $\Phi(x) = \mathbf{1} - \Phi(-x)$, as the normal distribution with zero mean and unit variance is symmetric about zero.

x	$\Phi(x)$	æ	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$
0.00	0.5000	0.40	0.6554	o·80	o·7881	1.20	0.8849	1.60	0.9452	2.00	0.97725
·o1	.5040	·41	·6591	·81	·791 0	.31	·8869	·61	.9463	.oı	.97778
.02	5080	.42	.6628	·8 2	.7939	.22	.8888	·6 2	.9474	.03	·97831
.03	5120	.43	·6664	83	.7967	.23	·89 0 7	·63	9484	.03	·97882
·04	.5160	·44	·6700	·84	.7995	.24	.8925	·64	.9495	·04	.97932
-	Ū		•	_		-					
0.02	0.2199	0.45	0.6736	o·85	0.8023	1.25	0.8944	1.65	0.9502	2.05	0.97982
·06	5239	·46	6772	·86	·8051	.26	·8962	.66	.9515	.06	·98030
.07	.5279	·47	·68 o 8	·8 ₇	·8o78	.27	∙8980	·6 ₇	9525	.07	.98077
·08	.2319	·48	·6844	⋅88	·8106	·28	·8997	.68	.9535	.08	.98124
.09	.2359	· 49	·6879	.89	.8133	.29	.9012	.69	·9545	.09	.98169
0.10	0.5398	0.20	0.6915	0.90	0.8159	1.30	0.9032	1.40	0.9554	2.10	0.98214
·II	.5438	.21	·69 50	.91	·8186	.31	.9049	.41	·9564	·II	.98257
.13	·5478	.52	·6985	·92	.8212	.32	·9 o 66	.72	.9573	·12	·98300
.13	.5517	·53	.7019	.93	·8238	.33	·9 0 82	.73	·9 5 82	.13	.98341
·14	.5557	·5 4	.7054	·9 4	·8264	.34	.9099	·74	.9591	.14	·98382
0.12	0.5596	0.55	0.7088	0.95	0.8289	1.35	0.9112	1.75	0.9599	2.15	0.98422
·16	•5636	·56	.7123	·96	·8315	·36	.9131	· 7 6	.9608	.16	·98461
·17	•5675	·57	.7157	·9 7	·8340	.37	9147	.77	.9616	.17	·98500
٠18	.5714	·58	.7190	·98	·836 5	.38	·9162	·78	.9625	81٠	·9 ⁸ 537
.19	.5753	.59	.7224	.99	·8389	.39	.9177	·79	.9633	.19	·9 ⁸ 574
0.30	0.5793	0.60	0.7257	1.00	0.8413	1.40	0.9192	1.80	0.9641	2.30	0.98610
.21	·5832	·61	.7291	·o1	·8 43 8	·4I	.9207	·81	.9649	.31	·98645
.22	·5871	·6 2	.7324	.02	·8461	.42	.9222	·82	·9656	.22	.98679
.53	.5910	·63	.7357	.03	.8485	·43	·9236	.83	·9664	.53	.98713
·24	.5948	·6 4	.7389	·0 4	·8508	·44	.9251	.84	·9671	·24	·9 ⁸ 745
0.25	0.5987	o·65	0.7422	1.05	0.8531	1.45	0.9265	r·85	0.9678	2.25	0.98778
26	.6026	.66	.7454	·06	·8554	·46	.9279	.86	.9686	·26	.98809
.27	.6064	·6 7	.7486	.07	·8577	47	9292	·8 ₇	.9693	.27	·9884 0
·28	6103	.68	·7517	·08	.8599	·48	·9306	.88	.9699	·28	·98870
· 2 9	.6141	.69	7549	.09	.8621	.49	.9319	.89	·97 0 6	·29	·98899
0.30	0.6179	0.40	0.7580	1.10	0.8643	1.20	0.9332	1.90	0.9713	2:30	0.98928
.31	6217	·71	7611	·ıı	·8665	.21	.9345	.91	.9719	.31	·989 56
.32	.6255	.72	7642	·12	·8686	.52	.9357	·92	.9726	.32	·9898 3
.33	.6293	.73	.7673	.13	·87 0 8	.53	.9370	.93	.9732	.33	.99010
.34	.6331	.74	.7704	.14	.8729	·5 4	·938 2	·94	.9738	·34	·99036
0.32	o·6368	0.75	0.7734	1.12	0.8749	1.55	0.9394	1.95	0.9744	2.35	0.99061
.36	.6406	·76	.7764	·16	·8770	·56	.9406	·96	.9750	·36	·99 0 86
.37	.6443	·77	7794	·17	·879 0	·57	·9418	·97	·9756	·37	.99111
.38	·648o	·78	.7823	·18	·8810	·58	.9429	·98	·9761	.38	.99134
.39	.6517	.79	.7852	.19	·8830	.29	.9441	.99	.9767	.39	.99158
0.40	0.6554	o·8o	0.7881	1.30	o·8849	1 ·60	0.9452	2.00	0.9772	2.40	0.99180

TABLE 4. THE NORMAL DISTRIBUTION FUNCTION

\boldsymbol{x}	$\Phi(x)$	x	$\Phi(x)$	\boldsymbol{x}	$\Phi(x)$	\boldsymbol{x}	$\Phi(x)$	\boldsymbol{x}	$\Phi(x)$	\boldsymbol{x}	$\Phi(x)$
2.40	0.99180	2.55	0.99461	2.70	0.99653	2.85	0.99781	3.00	0.99865	3.12	0.99918
·41	.99202	•56	99477	.71	·99664	.86	.99788	.oı	•99869	.1ę	99921
.42	.99224	·57	.99492	.72	.99674	·8 ₇	.99795	.02	.99874	.17	99924
·43	.99245	· 5 8	·99506	.73	•99683	-88	·99801	.03	.99878	81٠	99926
·44	·99266	.29	.99520	.74	•99693	∙89	.99807	·04	99882	.19	99929
2.45	0.99286	2.60	0.99534	2.75	0.99702	2.90	0.99813	3.05	0.99886	3.30	0.99931
·46	.99305	·61	.99547	.76	99711	.01	.99819	·06	.99889	.21	99934
·47	.99324	·62	·99560	.77	.99720	.92	.99825	.07	.99893	.22	.99936
·48	.99343	·63	.99573	·78	.99728	.93	.99831	.08	.99896	.23	.99938
· 4 9	.99361	·6 4	·995 ⁸ 5	.79	.99736	·94	.99836	.09	.99900	.24	.99940
2.20	0.99379	2.65	0.99598	2.80	0.99744	2.95	0.99841	3.10	0.99903	3.25	0.99942
.21	•99396	∙66	•99609	·81	99752	.96	•99846	·11	.99906	26	99944
.52	.99413	·6 7	·99621	·82	.99760	.97	.99851	.13	.99910	.27	.99946
.53	·99430	.68	.99632	.83	.99767	.98	.99856	.13	.99913	.28	.99948
·54	·99446	.69	.99643	·8 ₄	99774	.99	·99861	.14	.99916	.29	.99950
2.55	0.99461	2.70	0.99653	2.85	0.99781	3.00	0.99865	3.12	0.99918	3.30	0.99952

The critical table below gives on the left the range of values of x for which $\Phi(x)$ takes the value on the right, correct to the last figure given; in critical cases, take the upper of the two values of $\Phi(x)$ indicated.

3:075	3.320 0.9994 0.9995	3.731 0.99990 3.759 0.99991 3.791 0.99993 3.826 0.99993	2:016 0:99995
3.102 0.9990	3 203 0.9995	3 /31 0.99991	3 910 0.99996
3 103 0.0991	3 320 0.9996	3 759 0.99992	3.970 0.99997
3 130 0.9992	3.389 0.9996 3.480 0.9997	3.791 0.99993	4.055 o.ggag8
3.174 0.9993	3.480 0.9998	3.826	4.173 0.00000
3.075 3.105 3.138 0.9992 3.174 0.9993 3.215 0.9994	3.615 0.9999 0.99998	3.867 0.99994	3.916 0.99995 3.976 0.99996 4.055 0.99998 4.173 0.99999 4.417 1.00000

When x > 3.3 the formula $1 - \Phi(x) = \frac{e^{-\frac{1}{4}x^2}}{x\sqrt{2\pi}} \left[1 - \frac{1}{x^2} + \frac{3}{x^4} - \frac{15}{x^6} + \frac{105}{x^8} \right]$ is very accurate, with relative error less than $945/x^{10}$.

TABLE 5. PERCENTAGE POINTS OF THE NORMAL DISTRIBUTION

This table gives percentage points x(P) defined by the equation

$$\frac{P}{100} = \frac{1}{\sqrt{2\pi}} \int_{x(P)}^{\infty} e^{-\frac{1}{2}t^2} dt.$$

If X is a variable, normally distributed with zero mean and unit variance, P/100 is the probability that $X \ge x(P)$. The lower P per cent points are given by symmetry as -x(P), and the probability that $|X| \ge x(P)$ is 2P/100.

P	x(P)	P	x(P)	\boldsymbol{P}	x(P)	\boldsymbol{P}	x(P)	\boldsymbol{P}	x(P)	P	x(P)
50	0.0000	5·0	1.6449	3.0	1.8808	2.0	2.0537	1.0	2.3263	0.10	3.0902
45	0.1257	4.8	1.6646	2.9	1.8957	1.0	2.0749	0.0	2.3656	0.00	3.1214
40	0.2533	4.6	1.6849	2.8	1.9110	1.8	2.0969	0.8	2.4089	0.08	3.1220
35	0.3853	4.4	1.7060	2.7	1.9268	1.7	2.1201	0.2	2.4573	0.02	3.1947
30	0.2244	4.3	1.7279	2.6	1.9431	1.6	2.1444	o·6	2.2121	o·06	3.2389
25	0.6745	4.0	1.7507	2.5	1.9600	1.2	2.1701	0.2	2.5758	0.02	3.2905
20	0.8416	3.8	1.7744	2.4	1.9774	1.4	2.1973	0.4	2.6521	0.01	3.7190
15	1.0364	3.6	1.7991	2.3	1.9954	1.3	2.2262	0.3	2.7478	0.002	3.8906
10	1.5816	3.4	1.8250	2.2	2.0141	1.3	2.2571	0.3	2.8782	0.001	4.2649
5	1.6449	3.5	1.8522	2·I	2.0335	1.I	2.2904	0.1	3.0902	0.0002	4.4172

TABLE 7. THE χ^2 -DISTRIBUTION FUNCTION

The function tabulated is

$$F_{\nu}(x) = \frac{1}{2^{\nu/2} \Gamma(\frac{\nu}{2})} \int_{0}^{x} t^{\frac{1}{2}\nu - 1} e^{-\frac{1}{2}t} dt$$

for integer $\nu \leq 25$. $F_{\nu}(x)$ is the probability that a random variable X, distributed as χ^2 with ν degrees of freedom, will be less than or equal to x. Note that $F_1(x) = 2\Phi(x^{\frac{1}{2}}) - 1$ (cf. Table 4). For certain values of x and $\nu > 25$ use may be made of the following relation between the χ^2 - and Poisson distributions:

$$F_{\nu}(x) = I - F(\frac{1}{2}\nu - I|\frac{1}{2}x)$$

where $F(r|\mu)$ is the Poisson distribution function (see Table 2). If $\nu > 25$, X is approximately normally distributed

(The above shape applies for $\nu \geqslant 3$ only. When $\nu < 3$ the mode is at the origin.)

with mean ν and variance 2ν . A better approximation is usually obtained by using the formula

$$F_{\nu}(x) \doteq \Phi(\sqrt{2x} - \sqrt{2\nu - 1})$$

where $\Phi(s)$ is the normal distribution function (see Table 4). Omitted entries to the left and right of tabulated values are 1 and 0 respectively (to four decimal places).

$\nu =$	I	$\nu =$	I	v =	2	$\nu =$	2	$\nu =$	3	$\nu =$	3
x = 0.0	0.0000	x = 4.0	0.9545	x = 0.0	0.0000	x = 4.0	0.8647	$ x = \mathbf{o} \cdot \mathbf{o} $	0.0000	x = 4.0	0.7385
.I	.2482	·I	.9571	·r	·0488	ı	8713	·r	.0082	.2	.7593
.2	.3453	.2	·9 5 96	.2	.0952	.3	.8775	.2	.0224	·4	.7786
.3	·4161	.3	•9619	.3	.1393	.3	.8835	.3	·0400	· 6	7965
4	·4729	·4	·9641	4		4	.8892	.4	.0598	.8	.8130
					_	•	-				3
0.2	0.5205	4.2	0.9661	0.2	0.2212	4.5	o·8946	0.2	0.0811	5.0	0.8282
.6	.5614	.6	·968o	.6	.2592	.6	.8997	.6	.1036	.2	.8423
.7	5972	.7	•9698	7	2953	.7	.9046	.7	.1268	.4	.8553
.8	6289	.8	.9715	.8	.3297	-8	.9093	.8	.1505	٠6	.8672
.9	6572	.9	.9731	.9	3624	.6	.9137	.9	1746	.8	.8782
1.0	0.6827	5.0	0.9747	1.0	0.3932	5.0	0.0120	1.0	0.1987	6∙o	o·8884
·I	.7057	·ı	·9761	·r	·423I	·I	9219	·r	2229	.2	.8977
.3	•7267	.3	.9774	.2	.4512	.3	9257	.2	·2470	·4	.9063
.3	.7458	.3	·9787	.3	·478o	.3	.9293	.3	.2709	· 6	.9142
· 4	.7633	·4	.9799	·4	.5034	·4	.9328	4	•2945	.8	.9214
1.2	0.7793	5.2	0.9810	1.2	0.5276	5.2	0.9361	1.2	0.3177	7.0	0.9281
·6	77941	·6	.9820	·6	.5507	·6	.9392	.6	.3406	, o .2	
.7	·8 0 77	.7	.9830	.7	.5726	.7	9392	.7	.3631	·4	·9342 ·9398
.8	·8203	.8	.9840	.8	.5934	· 8	9450	.8	.3821	·6	19450
.9	.8319	.9	.9849	.9	.6133	.9	19477	9.9	·4066	.8	9497
					33	,	7711		4000		9497
2.0	0.8427	6∙o	0.9857	2.0	0.6321	6∙o	0.9502	2.0	0.4276	8·o	0.9540
·I	.8527	.1	·9865	·I	·6501	.2	·9550	.1	·4481	•2	.9579
.2	·862 0	.3	.9872	.2	∙6671	·4	.9592	.2	·4681	·4	.9616
.3	.8706	.3	.9879	.3	·6834	.6	·9631	.3	·4875	.6	·9649
· 4	·8787	·4	·9886	.4	•6988	.8	·9666	·4	.5064	.8	·9679
2.5	0.8862	6.5	0.9892	2.5	0.7135	7.0	0.9698	2.2	0.5247	9.0	0.9707
.6	·8931	.6	.9898	.6	.7275	•2	9727	∥ .ĕ	.5425	·2	.9733
.7	·8997	.7	.9904	.7	.7408	·4	.9753	.7	.5598	•4	.9756
.8	.9057	⋅8	9909	.8	.7534	.6	.9776	.8	.5765	.6	.9777
.9	·9114	.9	9914	.9	.7654	.8	.9798	.9	.5927	.8	.9797
3.0	0.9167	7.0	0.9918	3.0	0.7769	8·o	0.9817	3.0	0.6084	10.0	0.9814
·r	.9217	·I	.9923	·r	.7878	.2	.9834	·ı	6235	•2	.9831
.3	·9264	.2	.9927	.2	·7981	·4	.9850	.2	.6382	•4	.9845
.3	.9307	.3	.9931	.3	·8080	·Ġ	·9864	.3	.6524	.6	.9859
·4	·9348	·4	.9935	·4	·8173	⋅8	.9877	·4	·666o	⋅8	.9871
3.2	0.9386	7.5	0.9938	3.2	0.8262	9.0	0.9889	3.2	0.6792	11.0	0.9883
.6	.9422	·6	9942	.6	.8347	•2	.9899	.6	·6920	·2	.9893
.7	9456	.7	9945	.7	·8428	·4	.9909	.7	.7043	·4	.9903
٠.8	9487	.8	.9948	.8	.8504	· 6	.9918	.8	·7161	·6	.0011
•9	.9517	.9	.9951	.9	.8577	.8	.9926	.9	7275	.8	.9919
4.0	0.9545	8·o	0.9953	4.0	0.8647	10.0	0.9933	4.0	0.7385	12.0	0.9926

TABLE 7. THE χ^2 -DISTRIBUTION FUNCTION

$\nu =$	4	5	6	7	8	9	10	11	12	13	14
x = 0.5	0.0265	0.0079	0.0022	0.0006	0.0001						
1.0	.0902	.0374	.0144	.0052	.0018	0.0006	0.0003	0.0001			
1.2	1734	.0869	.0402	.0177	.0073	.0029	.0011	.0004	0.0001		
2.0	.2642	.1209	.0803	.0402	.0190	.0085	.0032	.0015	.0006	0.0002	0.0001
2.5	0.3554	0.2235	0.1312	0.0729	0.0383	0.0131	0.0001	0.0042	0.0018	0.0008	0.0003
3.0	4422	.3000	.1913	.1120	·0656	.0357	·0186	.0093	.0045	.0021	.0009
3.2	.5221	•3766	•2560	•1648	.1008	.0589	.0329	.0177	.0001	.0046	.0022
4.0	•5940	•4506	.3233	.2202	.1429	∙0886	.0527	.0301	.0166	.0088	.0042
4.2	•6575	.5201	.3907	.2793	.1906	1245	·0780	.0471	.0274	.0124	.0084
5.0	0.7127	0.5841	0.4562	0.3400	0.2424	0.1657	o·1088	o·o688	0.0420	0.0248	0.0142
5 [.] 5	•7603	.6421	.5185	.4008	.2970	.2113	•1446	.0954	•0608	.0375	.0224
6·o	.8009	.6938	.5768	•4603	.3528	.2601	.1847	·1266	·o839	.0538	.0335
6.2	.8352	.7394	.6304	.5173	·4086	.3110	.2283	·1620	.1112	.0739	.0477
7.0	·8641	· 7 794	.6792	.5711	·4634	.3629	2746	2009	1424	.0978	.0653
7.5	0.8883	0.8140	0.7229	0.6213	0.2162	0.4148	0.3225	0.2427	0.1771	0.1254	o·0863
8·o	·9084	.8438	.7619	.6674	.5665	4659	.3712	.2867	.2149	·1564	.1102
8.5	.9251	·869 3	.7963	·7094	·6138	.5154	·4199	.3321	.2551	1904	.1383
9.0	.9389	.8909	·8264	.7473	.6577	.5627	•4679	.3781	.2971	.2271	•1689
9.5	.9503	.9093	.8527	.7813	·6981	.6075	.5146	4242	.3403	.2658	.2022
10.0	0.9596	0.9248	0.8753	o·8114	0.7350	0.6495	0.5595	0 ·4696	0.3840	0.3061	0.2378
10.2	·9672	.9378	·8949	·838 o	•7683	·688 5	.6022	5140	·4278	.3474	.2752
11.0	.9734	·9486	.9116	·8614	.7983	.7243	.6425	.5567	.4711	•3892	.3140
11.2	·978 5	·957 7	.9259	·8818	·8251	.7570	·6801	.5976	.2134	.4310	.3536
12.0	·9826	·9652	-9380	·8994	·8 ₄ 88	.7867	.7149	•6364	·5543	·4724	.3937
12.5	0.9860	0.9712	0.9483	0.9147	o·8697	0.8134	0.7470	0.6727	0.5936	0.2129	0.4338
13.0	·9887	·9766	.9570	.9279	·888 2	·8374	•7763	.7067	•6310	.5522	4735
13.2	.9909	·9809	·9643	.9392	.9042	·8587	·803 0	.7381	·666 2	.5900	.2124
14.0	.9927	·9844	.9704	•9488	·9182	·8777	·8270	.7670	•6993	6262	.2203
14.2	.9941	.9873	9755	.9570	.9304	·8944	·8486	.7935	.7301	·6604	•5868
15.0	0.9953	0.9896	o·9797	0.9640	0.9409	0.9091	0.8679	0.8175	0.7586	0.6926	0.6218
15.2	.9962	.9916	.9833	-9699	.9499	.9219	·8851	.8393	•7848	.7228	.6551
1 6∙0	.9970	.9932	·9862	.9749	.9576	.9331	·9004	·8589	·8o88	.7509	∙6866
16.2	.9976	·9944	.9887	.9791	.9642	.9429	.9138	·8764	·8306	·7768	.7162
17.0	.9981	.9955	.9907	·9826	·9699	.9513	·9256	.8921	·8504 .	.8007	.7438
17:5	0.9985	0.9964	0.9924	0.9856	0.9747	0.9586	0.9360	0.9061	o·8683	0.8226	0.7695
18·0	.9988	.9971	.9938	·9880	.9788	.9648	.9450	.9184	·8843	·8425	.7932
18.2	.9990	9976	.9949	.0001	9822	.9702	.9529	.9293	.8987	·86o6	·8151
19.0	.9992	.9981	.9958	.9918	.9851	.9748	.9597	.9389	.9115	·8769	·8351
19.2	.9994	.9984	·9966	.9932	.9876	.9787	.9656	·9473	·9228	.8916	.8533
20	0.9995	o·9988	0.9972	0.9944	o·9897	0.9821	0.9707	0.9547	0.9329	0.9048	0.8699
21	.9997	·99 92	.9982	·996 2	.9929	.9873	.9789	·9666	·9496	.9271	·898 4
22	.9998	.9995	•9988	.9975	.9921	.9911	·9849	.9756	·962 5	·9446	.9214
23	.9999	.9997	.9992	.9983	•9966	-9938	·9893	.9823	.9723	.9583	.9397
24	.9999	.9998	.9995	.9989	·9977	9957	·9924	.9873	·9797	·9689	.9542
25	0.9999	0.9999	0.9997	0.9992	0.9984	0.9970	o·9947	0.9909	0.9852	0.9769	0.9654
26		.9999	.9998	.9995	.9989	·998 o	.9963	.9935	•9893	·983 o	·974I
27		.9999	.9999	.9997	.9993	·9986	·9974	·9954	.9923	·9876	·98 0 7
28			.9999	.9998	.9995	·999 o	.9982	.9968	.9945	.9910	·98 5 8
29			.9999	.9999	9997	·9994	·9988	.9977	.9961	·9935	.9895
30				o ·9999	0.9998	o ·9996	0.9991	0.9984	0.9972	0.9953	0.9924

TABLE 7. THE χ^2 -DISTRIBUTION FUNCTION

$\nu =$	15	16	17	18	19	20	21	22	23	24	25
x = 3	0.0004	0.0003	0.0001								
4	.0023	.0011	.0002	0.0002	0.0001						
5	0.0079	0.0042	0.0022	0.0011	0.0006	0.0003	0.0001	0.0001			
6	.0203	.0110	.0068	.0038	.0021	.0011	.0006	.0003	0.0001	0.0001	
7 8	.0424	.0267	.0162	.0099	.0058	.0033	.0019	.0010	.0002	-0003	0.0001
	.0762	·0866	.0335	.0214	.0133	.0081	.0049	.0028	.0019	-0009	.0002
9	.1225	0000	.0597	.0403	.0265	.0171	.0108	.0067	.0040	.0024	.0014
10	0.1803	0.1334	0.0964	0.0681	0.0471	0.0318	0.0211	0.0132	0.0087	0.0055	0.0033
II	·2474	.1902	1434	•1056	.0762	.0538	.0372	.0253	.0168	.0110	.0071
12	.3210	•2560	.1999	•1528	1144	.0839	.0604	.0426	.0295	.0201	.0134
13	'3977	.3272	•2638	.2084	•1614	1226	.0914	•0668	•0480	.0339	.0235
14	·4745	.4013	.3329	.2709	•2163	.1692	.1304	.0985	.0731	.0233	.0383
15	o·5486	0.4754	0.4045	0.3380	0.2774	0.2236	0.1770	0.1378	0.1024	0.0792	0.0586
16	.6179	.5470	4762	.4075	.3427	2834	.2303	1841	1447	.1119	.0852
17	·6811	.6144	.5456	·4769	.4101	.3470	.2889	·2366	1907	.1213	·1182
18	.7373	·676 1	.6112	•5443	•4776	·4126	.3510	•2940	.2425	.1970	•1576
19	.7863	.7313	6715	·6082	.5432	.4782	.4149	3547	·2988	·248o	.2029
20	0.8281	0 ·7798	0.7258	0.6672	0.6054	0.2421	0.4787	0.4170	0.3281	010000	0.0400
21	.8632	·8215	7737	•7206	.6632	.6029	.2411	0·4170 ·4793	·4189	0·3032 ·3613	0.2532
22	.8922	·8568	.8153	·768o	.7157	_	.6005	·5401	·4797	4207	·3074 ·3643
23	.9159	.8863	8507	.8094	.7627	.7112	.6560	.5983	.5392	.4802	·4224
24	9349	.9105	8806	8450	·8o38	.7576	.7069	.6528	5962	.5384	·4806
•	,,,,	, ,		10	J		•	3	3,74-4	3394	4000
25	0.9201	0.9302	0.9023	0.8751	0.8395	o·7986	0.7528	0.7029	0.6497	0.5942	0.5376
26	·962 0	·946 o	.9255	.9002	.8698	.8342	•7936	•7483	·6991	·6468	.5924
27	.9713	.9585	.9419	.9210	.8953	·8647	8291	·7888	.7440	•6955	•6441
28	·9784	•9684	.9551	.9379	.9166	·89o6	.8598	.8243	.7842	.7400	6921
29	•9839	·976 1	.9655	.9516	.9340	.9122	∙8860	.8551	·819 7	.7799	•7361
30	0.9881	0.9820	0.9737	0.9626	0.9482	0.9301	0.9080	0.8812	0.8506	0.8152	0.7757
31	.9912	·986 5	•9800	.9712	·9 5 96	•9448	.9263	19039	.8772	·8462	.8110
32	•9936	.9900	•9850	.9780	·9687	·9567	9414	·9226	.8999	.8730	·8420
33	.9953	9926	.9887	.9833	.9760	•9663	.9538	.9381	.9189	·89 <u>5</u> 9	•8689
34	•9966	·9946	.9916	·9874	.9816	.9739	·9638	.9509	.9348	.9153	·8921
35	0.9975	0.9960	0.9938	0.9902	0.9860	o ·9799	0.9718	0.9613	0.9480	0.9316	0.9118
36	.9982	.9971	19954	19929	·9894	·9846	.9781	.9696	.9587	.9451	.9284
37	·998 7	.9979	•9966	.9948	.9921	·988 3	.9832	.9763	.9675	9562	.9423
38	.9991	·998 5	.9975	·9961	·9941	.9911	·9871	9817	.9745	.9653	.9537
39	. 9994	.9989	·9982	·9972	·9956	.9933	19902	·98 5 9	·98 02	.9727	.9632
40	0.9992	0.9992	0.9987	0.9979	0.9967	0.9950	0.9926	0.9892	0.9846	0.9786	0.9708
41	19997	·9994	.9991	.9985	.9976	.9963	9944	.9918	·9882	.9833	.9770
42	.9998	.9996	.9993	.9989	.9982	.9972	.9958	.9937	.9909	·9871	.9820
43	•9998	.9997	.9995	.9992	.9987	·9980	.9969	.9953	.9931	.9901	·986o
44	.9999	•9998	9997	.9994	.9991	-9985	.9977	.9965	9947	.9924	9892
45	0.9999	0.9999	0.9998	0.9996	0.9993	0.9989	0.9983	0:0073	0.0060	0.00.10	0.00-6
45 46	.9999	.9999	·9998	·9990	9993	19999	·9987	••9980 •9980	o∙996o ∙9970	0·9942 ·9956	0·9916
47	フプフフ	.9999	.9999	.9998	·9996	·9994	.9991	.9985	·9978	.9950	·9936 ·9951
48		フラフフ	.9999	.9998	·9997	·999 4	.9993	.9989	·9978	·9907	.9963
49			.9999	.9999	.9998	9997	19995	19992	.9988	·9981	9903
))) -	77==)))) I =
50				0.9999	0.9999	0 ·9998	0.9996	0.9994	0.9991	o·9986	0.9979

TABLE 8. PERCENTAGE POINTS OF THE χ^2 -DISTRIBUTION

This table gives percentage points $\chi^2_{\nu}(P)$ defined by the equation

$$\frac{P}{100} = \frac{1}{2^{\nu/2} \Gamma(\frac{\nu}{2})} \int_{\chi^2_{\nu}(P)}^{\infty} x^{\frac{1}{2}\nu - 1} e^{-\frac{1}{2}x} dx.$$

If X is a variable distributed as χ^2 with ν degrees of freedom, P/100 is the probability that $X \geqslant \chi^2_{\nu}(P)$.

For $\nu > 100$, $\sqrt{2X}$ is approximately normally distributed with mean $\sqrt{2\nu - 1}$ and unit variance.

(The above shape applies for $\nu \ge 3$ only. When $\nu < 3$ the mode is at the origin.)

P	99:95	99.9	99.5	99	97:5	95	90	80	70	6о
		_					-	2.26.20	·	0.0550
$\nu = \mathbf{I}$	0.063927	0.021221	0.043927		0.039821	0.003932	0.01579	0.06418	0·1485 0·7133	0·2750 1·022
2	0.001000	0.002001	0.01003	0.02010	0.02064	0.1026	0·2107 0·5844	0·4463 1·005	1.424	1.869
3	0.01528	0.02430	0.07172	0.1148	0.2128	0.3218	1.064	1.649	2.195	
4	0.06392	0.09080	0.2070	0.2971	0.4844	0.2102	1 004	1 049	4 195	2.753
5	0.1281	0.2102	0.4117	0.5543	0.8312	1.145	1.610	2:343	3.000	3.655
6	0.2994	0.3811	0.6757	0.8721	1.237	1.635	2.204	3.070	3.828	4.570
7	0.4849	0.5985	0.9893	1.239	1.690	2.167	2.833	3.822	4.671	5.493
8	0.7104	0.8571	1.344	1.646	2.180	2.733	3.490	4.294	5.527	6.423
9	0·9717	1.12	1.735	2.088	2.700	3.325	4.168	5.380	6.393	7.357
•		· ·		,						_
10	1.265	1.479	2.156	2.558	3.247	3.940	4.865	6.179	7.267	8.295
rr	1.587	1.834	2.603	3.023	3·816 °	4.575	5.578	6.989	8.148	9.237
12	1.934	2.214	3.074	3.221	4.404	5.226	6.304	7.807	9.034	10.18
13	2.302	2.617	3.262	4.102	5.009	5.892	7.042	8.634	9.926	11.13
14	2.697	3.041	4.075	4.660	5.629	6.571	7.790	9.467	10.82	12.08
15	3.108	3.483	4.601	5.229	6.262	7.261	8.547	10.31	11.72	13.03
16	3.536	3 4°3 3.942	5.142	5.812	6.908	7.962	9.312	11.12	12.62	13.98
17	3.980	3 942 4·416	5.697	6.408	7.564	8.672	10.00	12.00	13.23	14.94
18	4.439	4.905	6.265	7.015	8.531	9.390	10.86	12.86	14.44	15.89
19	4.912	5.407	6.844	7.633	8.907	10.13	11.65	13.72	15.35	16.85
_ _	· y	5 1-7		, 55	•			• •		-
20	5.398	5.921	7.434	8.260	9.591	10.85	12.44	14.58	16.27	17.81
21	5.896	6.447	8.034	8.897	10.28	11.20	13.54	15.44	17.18	18.77
22	6.404	6.983	8.643	9.542	10.08	12.34	14.04	16.31	18.10	19.73
23	6.924	7.529	9.260	10.30	11.69	13.09	14.85	17.19	19.02	20.69
24	7.453	8.085	9.886	10.86	12.40	13.85	15.66	18.06	19.94	21.65
25	7.991	8.649	10.2	11.52	13.12	14.61	16.47	18.94	20.87	22.62
-3 26	8.538	9.222	11.16	13.30	13.84	15.38	17.29	19.82	21.79	23.28
27	9.093	9.803	11.81	12.88	14.57	16.12	18.11	20.70	22.72	24.54
28	9.656	10.39	12.46	13.26	15.31	16.93	18.94	21.59	23.65	25.21
29	10.53	10.99	13.15	14.26	16.02	17.71	19.77	22.48	24.28	26.48
							(-			
30	10.80	11.20	13.79	14.95	16.79	18.49	20.60	23.36	25.21	27.44
32	11.08	12.81	15.13	16.36	18.29	20.07	22.27	25.12	27:37	29.38
34	13.18	14.06	16.20	17.79	19.81	21.66	23.95	26.94	29.24	31.31
36	14.40	15.32	17.89	19.23	21·34 22·88	23.27	25.64	28.73	35.66 31.15	33.52
38	15.64	16.61	19.29	20.69	22.00	24.88	27:34	30.24	34 99	35.19
40	16.91	17.92	20.71	22.16	24.43	26.21	29.05	32.34	34.87	37.13
50	23.46	24.67	27·99	29.71	32.36	34.76	37.69	41.45	44.31	46.86
6 0	30.34	31.74	35.23	37.48	40.48	43.19	46.46	50.64	53.81	56.62
70	37· 4 7	39.04	43.58	45.44	48.76	51.74	55.33	59.90	63.35	66.40
8o	44.79	46.52	51.17	53.54	57.15	60.39	64.28	69.21	72.92	76.19
	0	(6	6 6	60.70	Haias	mQ.=6	80.5	85,00
90	52.28	54.16	59.20	61.75	65.65	69.13	73.29	78·56	82.21	85.99
100	59.90	61.92	67.33	70.06	74.22	77.93	82.36	87.95	92.13	95.81

TABLE 8. PERCENTAGE POINTS OF THE χ^2 -DISTRIBUTION

This table gives percentage points $\chi^2_{\nu}(P)$ defined by the equation

$$\frac{P}{{\rm Ioo}} = \frac{{\rm I}}{{\rm 2}^{\nu/2}\;\Gamma(\frac{\nu}{2})} \int_{\chi^2_{\nu}(P)}^{\infty} x^{\frac{1}{2}\nu-1} \; e^{-\frac{1}{2}x} \; dx.$$

If X is a variable distributed as χ^2 with ν degrees of freedom, P/roo is the probability that $X \geqslant \chi^2_{\nu}(P)$.

For $\nu > 100$, $\sqrt{2X}$ is approximately normally distributed with mean $\sqrt{2\nu - 1}$ and unit variance.

(The above shape applies for $\nu \geqslant 3$ only. When $\nu < 3$ the mode is at the origin.)

P	50	40	30	20	10	5	2.2	r	0.2	0.I	0.02
$\nu = \mathbf{r}$	0.454	9 0.708	3 1.074	1.642	2.706	3.841	5.024	6.635	7.879	10.83	12.12
2	1.386			-	•		- :			13.82	15.20
3	2.366							-	12.84	16.27	17.73
4	3.357				_			13.58	14.86	18.47	20.00
				• , ,			•		•	• • •	
5	4.321	5.132	6.064	7:289	9.236	11.07	12.83	15.00	16.75	20.52	22.11
6	5.348	6.211	7.231	8.558	10.64	12.59	14.45	16.81	18.55	22:46	24.10
7	6.346	7.283				14.07	16.01	18.48	20.28	24.32	26.02
8	7:344	8.351	9.524	11.03	13.36	15.21	17:53	20.09	21.95	26.12	27.87
9	8.343	9.414	10.66	12.24	14.68	16.92	19.02	21.67	23.29	27.88	29.67
10	9:342	10.47	11.78	13:44	15.99	18.31	20.48	23.51	25.19	29.59	31.42
II	10.34	11.23	12.90	14.63	17.28	19.68	21.92	24.72	26.76	31.26	33.14
12	11.34	12.58	14.01	15.81	18.55	21.03	23.34	26.22	28.30	32.91	34.82
13	12.34	13.64	15.12	16.98	19·8 1	22.36	24.74	27.69	29.82	34.23	36.48
14	13.34	14.69	16.22	18.12	21.06	23.68	26.13	29.14	31.32	36.13	38.11
15	14.34	15.73	17:32	19.31	22.31	25.00	27.49	30.58	32.80	37.70	39.72
16	15.34	16.78	18.42	20.47	23.24	26.30	28.85	32.00	34.27	39.25	41.31
17	16.34	17·82	19.51	21.61	24.77	27.59	30.10	33.41	35.72	40.79	42.88
18	17:34	18.87	20.60	22.76	25.99	28.87	31.23	34·81	37.16	42.31	44.43
19	18.34	19.91	21.69	23.90	27.20	30.14	32.85	36.19	38.58	43.82	45.97
20	19.34	20.95	22.77	25.04	28.41	31.41	34.17	37.57	40.00	45.31	47:50
21	20.34	21.99	23.86	26.17	29.62	32.67	35.48	38.93	41.40	46·80	49.01
22	21.34	23.03	24.94	27:30	30.81	33.92	36.78	40.29	42.80	48.27	50.21
23	22.34	24.07	26.02	28.43	32.01	35.17	38.08	41.64	44.18	49.73	52.00
24	23.34	25.11	27.10	29.55	33.50	36.42	39.36	42.98	45.26	51.18	53.48
		,	•								
25	24.34	26.14	28.17	30.68	34.38	37.65	40.65	44.31	46.93	52.62	54.95
26	25.34	27.18	29.25	31.79	35.26	38.89	41.92	45.64	48.29	54.05	56.41
27	26.34	28.21	30.35	32.91	36.74	40.11	43.19	46.96	49.64	55.48	57.86
28	27:34	29.25	31.30	34.03	37.92	41.34	44.46	48.28	20.99	56.89	59.30
29	28.34	30.58	32.46	35.14	39.09	42.56	45.72	49.59	52.34	58.30	60.73
								. 0			
30	29.34	31.32	33.23	36.25	40.26	43.77	46.98	50.89	53.67	59.70	62.16
32	31.34	33.38	35.66	38.47	42.58	46.19	49.48	53.49	26.33	62.49	65.00
34	33.34	35.44	37.80	40.68	44.90	48·6o	51.97	56.06	58.96	65.25	67.80
36	35.34	37.50	39.92	42.88	47.21	51.00	54.44	58.62	61.28	67.99	70.29
38	37:34	39.56	42.05	45.08	49.21	53.38	56.90	61.16	64.18	70.70	73.35
40	20124	41.62	44.76	15.05	 0.		50.6 4	60.60	66		-6
40 50	39.34	51.89	44.16	47.27	51.81	55.76	59.34	63.69	66.77	73.40	76.09
50 60	49.33	7. *	54.72	58·16	63.17	67.50	71.42	76.15	79.49	86.66	89.56
	59.33	62.13	65.23	68.97	74.40	79.08	83.30	88.38	91.95	99.61	102.7
70° 80	69.33	72.36	75·69 86:12	79.71	85.23	90.23	95.02	100.4	104.2	112.3	115.6
00	79:33	82.57	00:12	90.41	96.28	101.9	106.6	112.3	116.3	124.8	128.3
90	89.33	92.76	96.52	101.1	107.6	113.1	118.1	124.1	128.3	137.2	T 40:Q
100	99.33	102.0	106.0	111.7	118.5	124.3	129.6	135.8	-		140.8
200	77 33	-04 9	100 9	/	1103	-44 3	149 0	1350	140.3	149.4	153.2

TABLE 9. THE t-DISTRIBUTION FUNCTION

The function tabulated is

$$F_{\nu}(t) = \frac{1}{\sqrt{\nu\pi}} \frac{\Gamma(\frac{1}{2}\nu + \frac{1}{2})}{\Gamma(\frac{1}{2}\nu)} \int_{-\infty}^{t} \frac{ds}{(1 + s^{2}/\nu)^{\frac{1}{2}(\nu + 1)}}.$$

 $F_{\nu}(t)$ is the probability that a random variable, distributed as t with ν degrees of freedom, will be less than or equal to t. When t < 0 use $F_{\nu}(t) = \mathbf{1} - F_{\nu}(-t)$, the t distribution being symmetric about zero.

The limiting distribution of t as ν tends to infinity is the normal distribution with zero mean and unit variance (see Table 4). When ν is large interpolation in ν should be harmonic.

Omitted entries to the right of tabulated values are I (to four decimal places).

ν =	1	$\nu =$	I	v =	2	ν =	2)) v =	3	ν =	3
				1						4 - 4.0	0.9860
t = 0.0	0.2000	t = 4.0	0.9220	t = 0.0	0.2000	t = 4.0	0.9714	t = 0.0	0.2000	t = 4.0	·9869
.I	.5317	4.3	.9256	I.	.5353	·I	9727	ı.ı	.5367	·2	·9877
.3	.5628	4.4	.9289	.2	.5700	.2	9739	'2	·5729 ·6081	.3	·9884
.3	.5928	4.6	.9319	.3	.6038	.3	·9750	3	6420	-	·9891
·4	.6211	4.8	.9346	4	·6361	·4	·976 0	'4	0420	4	9091
0.2	0.6476	5·0	0.9372	0.2	0.6667	4.2	0.9770	0.2	0.6743	4.2	0.9898
.6	·6720	5.2	·9428	⊩ •6	•6953	.6	.9779	6	•7046	.6	.9903
.7	•6944	6∙o	·9474	.7	.7218	.7	.9788	.7	.7328	.7	.9909
.8	·7148	6.2	.9514	·8	•7462	.8	•9796	.8	.7589	.8	.9914
.9	.7333	7.0	·9548	.9	.7684	.9	·98 0 4	.9	.7828	.9	.9919
1.0	0.7500	7.5	0.9578	1.0	0.7887	5.0	0.9811	1.0	0.8045	5.0	0.9923
•1	·7651	8.0	.9604	·I	.8070	·I	.9818	.I.	.8242	·I	.9927
.2	.7789	8.5	.9627	.2	8235	.3	.9825	.2	·8419	.3	.9931
.3	.7913	9.0	.9648	.3	·8384	.3	·9831	.3	·8578	.3	.9934
·4	·8o26	9.5	·9666	·4	.8518	· 4	.9837	.4	·8720	· 4	.9938
1.2	0.8128	10.0	0.9683	1.2	0.8638	5.2	0.9842	1.2	0.8847	5·5 '	0.9941
.6	.8222	10.2	.9698	−.ĕ	·8746		9848	.6	·896 o	· 6	·9944
.7	.8307	11.0	.0711	.7	·8844	.7	9853	7	.9062	.7	.9946
.8	·8386	11.2	.9724	⋅8	.8932	.8	.9858	.8	9152	·8	.9949
.9	·8458	12.0	9735	.9	.9011	.9	.9862	.9	.9232	.9	.9951
2.0	0.8524	12.5	0.9746	2.0	0.9082	6∙0	0.9867	2.0	0.9303	6∙0	0.9954
·1	·8585	13.0	.9756	·I	9147	.1	.9871	·r	.9367	·1	.9956
·2	·8642	13.2	.9765	.2	.9206	•2	.9875	.2	.9424	.2	.9958
.3	·8695	14.0	·97°3	.3	.9259	.3	.9879	.3	9475	.3	.9960
4	·8743	14.5	·9781	.4	.9308	·4	.9882	.4	.9521	·4	·9961
7	0/43	-43		1	75 -	_					
2.2	0.8789	15	o·9788	2.5	0.9352	6.5	0.9886	2.5	0.9561	6.2	0.9963
.6	·8831	16	·9801	.6	.9392	.6	·9889	.6	.9598	6	.9965
.7	·8871	17	.9813	.7	.9429	.7	.9892	.7	.9631	.7	·9966
.8	·89 0 8	18	.9823	.8	•9463	.8	.9895	.8	·9661	·8	.9967
.9	.8943	19	.9833	.9	·9494	.9	·9898	.9	·968 7	.9	•9969
3.0	0.8976	20	0.9841	3.0	0.9523	7.0	0.9901	3.0	0.9712	7.0	0.9970
·1	19007	21	·9849	·r	.9549	·I	.9904	.I	.9734	·ı	·997I
.3	.9036	22	.9855	.2	.9573	.3	·9906	.2	.9753	.3	.9972
.3	.9063	23	·986 2	.3	·9596	.3	.9909	.3	.9771	.3	.9973
·4	.9089	24	·9867	·4	.9617	·4	.9911	.4	·9788	·4	·99 74
3.2	0.9114	25	0.9873	3.2	0.9636	7.5	0.9913	3.2	0.9803	7.5	0.9975
.6	9138	30	.9894	6	.9654	.6	.9916	.6	.9816	.6	·9976
.7	.9160	35	.9909	.7	.9670	.7	.9918	.7	.9829	.7	.9977
.8	.9181	40	.9920	.8	·9686	.8	.9920	.8	·9840	.8	·9978
.9	.9201	45	9929	9	.9701	.9	.9922	.9	.9850	.6	.9979
4.0	0.9220	50	0.9936	4.0	0.9714	8·o	0.9924	4.0	0.9860	8.0	0.9980

TABLE 9. THE t-DISTRIBUTION FUNCTION

$\nu =$	4	5	6	7	8	9	10	ıı	12	13	14
t = 0.0	0.5000	0.2000	0.2000	0.2000	0.2000	0.5000	0.2000	0.2000	0.2000	0.2000	0.5000
·I	.5374	.5379	.5382	.5384	.5386	.5387	.5388	.5389	.5390	.2391	.2391
.2	.5744	5753	.5760	.5764	.5768	.5770	:5773	.5774	.5776	:5777	.5778
.3	.6104	.6119	.6129	6136	.6141	.6145	.6148	.6151	6153	.6155	.6157
·4	.6452	.6472	.6485	.6495	.6502	.6508	6512	.6516	.6519	.6522	.6524
7	۰	×1/-	9493	°793	0,504		0,124	0,10	0319	0,144	0324
0.2	0.6783	0.6809	0.6826	o·6838	0.6847	0.6855	0.6861	o·6865	o·6869	0.6873	0.6876
.6	•7096	.7127	.7148	.7163	.7174	.7183	.7191	.7197	.7202	•7206	.7210
.7	-7387	.7424	·7449	•7467	.7481	.7492	.7501	.7508	.7514	.7519	.7523
⋅8	.7657	.7700	.7729	.7750	•7766	·7778	.7788	.7797	.7804	.7810	.7815
.9	.7905	.7953	.7986	.8010	.8028	.8042	.8054	.8063	.8071	·8o78	.8083
1.0	0.8130	0.8184	0.8220	0.8247	0.8267	0.8283	0.8296	0.8306	0.8315	0.8322	0.8329
·I	.8335	8393	.8433	·8461	.8483	·8501	.8514	·8526	.8535	.8544	.8551
.2	.8518	·8581	.8623	·8654	.8678	·8696	.8711	.8723	.8734	8742	.8750
.3	.8683	.8748	.8793	·8826	.8851	.8870	·8886	.8899	-8910	·8919	.8927
·4	.8829	·8898	·8945	·8979	.9005	.9025	·9041	9055	·9066		.9084
4	0029	0090	0943	0979	9003	9023	9041	9055	9000	.9075	9004
1.2	0.8960	0.0030	0.9079	0.9114	0.0140	0.0161	0.9177	0.0101	0.9203	0.9212	0.9221
·6	·9076	.9148	.9196	.9232	.9259	·9280	9297	.9310	.9322	.9332	.9340
.7	.9178	9251	.9300	9335	.9362	.9383	.9400	.9414	9426	.9435	·9444
.8	.9269	.9341	.9390	.9426	9452	9473	.9490	.9503	.9515	9525	.9233
.9	.9349	·942I	•9469	.9504	.9530	.9551	.9567	.9580	.9591	.9601	.9609
2.0	0.9419	0.9490	0.9538	0.9572	0.9597	0.9617	0.9633	o·9646	0.9657	o ·9666	0.9674
·ı	·948 2	.9551	•9598	.9631	.9655	.9674	.9690	.9702	.9712	.9721	.9728
.3	.9537	·9605	•9649	∙9681	.9705	.9723	.9738	.9750	.9759	·9768	.9774
.3	9585	.9651	•9694	.9725	.9748	.9765	.9779	·979 o	.9799	·98 07	.9813
·4	·9628	·969 2	·9734	.9763	·9784	.9801	.9813	.9824	.9832	·9840	·9846
2.2	0.9666	0.9728	0.9767	0.9795	0.9815	0.9831	0.9843	0.9852	0.9860	0.9867	0.9873
.6	.9700	9759	.9797	.9823	.9842	.9856	9868	.9877	.9884	.9890	.9895
.7	.9730	.9786	9822	.9847	9865	.9878	•9888	.9897	.9903	.9909	.9914
· 8	.9756	.9810	.9844	.9867	.9884	.9896	.9906	9914	9920	.9925	·9929
.9	.9779	·9831	9863	.9885	.9901	.9912	.9921	.9928	.9933	.9938	·9942
,			, ,	,3	,,	,,- -	<i>y</i>	9940	9933	9930	99 7~
3.0	0.9800	0.9850	o.988o	0.9900	0.9912	0.9925	0.9933	0.9940	0.9945	o ·9949	0.9952
·ı	.9819	·9866	·9894	.9913	.9927	•9936	.9944	9949	.9954	·9958	·9961
•2	.9835	·988o	.9907	9925	.9937	·9946	.9953	-9958	.9962	·996 5	•9968
.3	·9850	.9893	.9918	.9934	·9946	·9954	·996 o	·996 5	•9968	·9971	·9974
·4	·9864	.9904	·9928	.9943	.9953	.9961	•9966	.9970	·99 7 4	.9976	·99 7 8
3.2	0.9876	0.9914	0.9936	0.9950	0.9960	0.9966	0.9971	0.9975	0.9978	0.9980	0.9982
.6	·9886	.9922	'9943	·99 5 6	·996 5	·9971	·99 7 6	.9979	·9982	·9984	•9986
.7	·9896	.9930	.9950	·9962	.9970	.9975	.9979	.9982	.9985	9987	.9988
⋅8	.9904	.9937	.9955	•9966	.9974	.9979	.9983	.9985	.9987	.9989	.9990
.9	.9912	.9943	·996 0	.9971	.9977	.9982	.9985	.9988	.9989	.9991	.9992
4.0	0.9919	0.9948	0.9964	0.9974	0.9980	0.9984	0.9987	0.9990	0.9991	0.9992	0.9993
·I	.9926	9953	.9968	9977	.9983	9987	.9989	9991	.9993	19994	.9992
•2	.9932	.9958	9972	.9980	.9985	.9988	.9991	.9993	·9994	.9992	.9999
.3	.9937	.9961	·99 75	.9982	.9987	.9990	.9992	·9994	9995	.9996	.9996
·4	.9942	.9965	.9977	.9984	.9989	.9991	.9993	.9995	.9996	·9996	9997
4.5	0.9946	0.9968	0.9979	0.9986	0.9990	0:0003	0.9994	0:0007	0:0006	0:0007	0,000
4⁺5 ·6	.9950	·9971	·9982	·9988		0.9993		0.9992	0.9996	0.9997	0.9998
			·9983	·9989	.9991	·9994	.9995	·9996	·9997	.9998	.9998
·7 ·8	9953	·9973	·9985		·9992	·9994	·9996	9997	·9997	.9998	.9998
	·9957	·9976 ·9978	·9986	.9990	·9993	·9995	·9996	·9997	.9998	.9998	.9999
.9	·996 o	9970	9900	.9991	·999 4	·9996	·999 7	-9998	.9998	.9999	.9999
5.0	0.9963	0.9979	o ·9988	0.9992	0.9992	0.9996	0.9997	0.9998	0.9998	0.9999	0.9999

TABLE 9. THE t-DISTRIBUTION FUNCTION

$\nu =$	15	16	17	18	19	20	24	30	40	60	∞
t = 0.0	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000
·ı	.5392	.5392	5392	5393	•5393	.5393	.5394	.5395	.5396	.5397	.5398
.2	.5779	.5780	.5781	.5781	.5782	.5782	.5784	.5786	5788	.5789	.5793
.3	.6159	6160	.6161	.6162	.6163	.6164	.6166	.6169	6171	.6174	.6179
	• •	.6528	.6529	.6531	.6532	.6533	.6537	.6540	.6544	.6547	.6554
4	.6526	0520	0529	0531	0534	0533	0337	0340	V344	V347	°33∓
0.2	o·6878	0.6881	0.6883	o·6884	o·6886	o·6887	0.6892	o·6896	0.6901	0.6902	0.6912
.6	.7213	.7215	.7218	•7220	.7222	.7224	.7229	.7235	.7241	.7246	.7257
·7	.7527	.7530	.7533	.7536	.7538	.7540	.7547	.7553	•7560	.7567	·7580
.8	.7819	.7823	.7826	.7829	.7832	.7834	.7842	•7850	•7858	·7866	.7881
و.	·8o88	.8093	.8097	.8100	.8103	.8106	·8115	·8124	.8132	·8141	·8159
										0	0
1.0	0.8334	0.8339	0.8343	0.8347	0.8351	0.8354	0.8364	0.8373	0.8383	0.8393	0.8413
·I	·8557	•8562	·8567	·8571	·8575	·8 57 8	·8589	·860 0	·8610	.8621	·8643
· 2	·8756	8762	·8767	·8772	·8776	·8779	·8791	·88 02	·8814	·88 2 6	·8849
.3	.8934	·894 0	·894 5	·8950	.8954	.8958	·8970	·898 2	·899 5	.9007	.9032
•4	.0001	.9097	.0103	.9107	.9112	.9116	.9128	.0141	.9154	·9167	.9192
7	<i>y-y-</i>	<i>9-91</i>	<i>y</i> 3	<i>)1</i>	,				,		
1.2	0.9228	0.9232	0.9240	0.9242	0.9250	0.9254	0.9267	0.9280	0.0203	0.9306	0.9332
.6	.9348	9354	·9360	.9365	.9370	.9374	.9387	·94 00	.9413	9426	.9452
·7	·9451	·9458	.9463	•9468	.9473	9477	.9490	.9503	.9516	.9528	·9 <u>5</u> 54
.8	.9540	·9546	.9552	9557	·9561	·9565	·9 5 78	.9590	9603	.9616	·9641
.0	•9616	·9622	·9627	·9632	•9636	·964 0	.9652	·966 5	.9677	·9689	.9713
2.0	0.9680	0.9686	0.9691	0.9696	0.9700	0.9704	0.9715	0.9727	0.9738	0.9750	0.9772
·I	9735	.9740	9745	.9750	.9753	.9757	.9768	.9779	·979 0	.9800	.9821
·2	·9733	.9786	·97 4 3	9730	·9798	.9801	.9812	.9822	.9832	·9842	·9861
	.9819	·9824	·9828	·9832	.9835	.9838	·9848	.9857	·9866	.9875	.9893
.3			-		·9866	·9869	·9877	·9886	·9894	.9902	.9918
·4	.9851	.9855	.9859	·9863	9000	9009	90//	9000	9094	9902	99.0
2.2	0.9877	0.9882	0.9885	0.9888	0.9891	0•9894	0.9902	0.9909	0.9917	0.9924	0.9938
.6	•9900	.9903	.9907	.9910	.9912	.9914	.9921	·9928	.9935	·994I	.9953
.7	.9918	.9921	.9924	·99 27	.9929	.9931	.9937	·9944	·9949	.9955	·996 5
.8	.9933	.9936	.9938	.9941	.9943	·9945	.9950	·9956	·996 1	•9966	·9974
.9	9945	.9948	.9950	.9952	·99 5 4	·99 5 6	.9961	·996 5	.9970	·9974	.9981
2.0	0.0044	0.9958	0.9960	0.9962	0.0063	0.9965	0.9969	0.9973	0.9977	0.9980	0.9987
3.0	0.9955				,, ,		·9976	9973	.9982	.9985	.9990
.I	.9963	.9966	.9967	.9969	·9971	·9972			·998 7	.9989	.9993
.2	.9970	9972	.9974	9975	•9976	.9978	.9981	·9984			
.3	·99 7 6	.9977	.9979	·998 o	.9981	.9982	.9985	.9988	.9990	.9992	.9995
·4	.9980	.9982	.9983	.9984	.9985	•9986	.9988	.9990	.9992	·9994	·999 7
3.2	0.9984	0.9985	0.9986	0.9987	0.9988	0.9989	0.9991	0.9993	0.9994	0.9996	0.9998
·6	.9987	.9988	.9989	.9990	.9990	.9991	.9993	.9994	•9996	.9997	•9998
·7	.9989	.9990	1000.	.9992	.9992	.9993	.9994	.9996	.9997	.9998	.9999
.8	.9991	19992	.9993	.9993	.9994	.9994	.9996	.9997	•9998	•9998	.9999
	.9993	·9994	·9994	.9992	.9995	9996	.9997	.9997	.9998	.9999	
.9	9993	9994	999 4	9993	7773	777	7 771	2771	777~	,,,,	
4.0	0.9994	0.9995	0.9992	0.9996	0.9996	0.9996	0.9997	0.9998	0.9999	0.9999	
·I	.9995	•9996	•9996	·999 7	.9997	·999 <u>7</u>	.9998	.9999	.9999	.9999	
.3	•9996	·999 7	.9997	.9997	.9998	•9998	.9998	.9999	•9999		
.3	.9997	9997	•9998	•9998	•9998	•9998	.9999	.9999	.9999		
·4	.9997	.9998	.9998	.9998	-9998	.9999	.9999	.9999			
4.5	0.9998	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999				
4.2	9990	9990	- 3330	~ >>>>	~ >>>>	- ラブブブ	- 2777				

TABLE 10. PERCENTAGE POINTS OF THE t-DISTRIBUTION

This table gives percentage points $t_{\nu}(P)$ defined by the equation

$$\frac{P}{\mathrm{100}} = \frac{\mathrm{I}}{\sqrt{\nu n}} \frac{\Gamma(\frac{1}{2}\nu + \frac{1}{2})}{\Gamma(\frac{1}{2}\nu)} \int_{t_{\nu}(P)}^{\infty} \frac{dt}{(\mathrm{I} + t^2/\nu)^{\frac{1}{2}(\nu + 1)}}.$$

Let X_1 and X_2 be independent random variables having a normal distribution with zero mean and unit variance and a χ^2 -distribution with ν degrees of freedom respectively; then $t=X_1/\sqrt{X_2/\nu}$ has Student's t-distribution with ν degrees of freedom, and the probability that $t\geqslant t_{\nu}(P)$ is P/100. The lower percentage points are given by symmetry as $-t_{\nu}(P)$, and the probability that $|t|\geqslant t_{\nu}(P)$ is 2P/100.

The limiting distribution of t as ν tends to infinity is the normal distribution with zero mean and unit variance. When ν is large interpolation in ν should be harmonic.

P	40	30	25	20	15	10	5	2.2	r	0.2	0.1	0.02
$\nu = \mathbf{r}$	0.3249	0.7265	1.0000	1.3764	1.963	3.078	6.314	12.71	31.82	63.66	318.3	636.6
2	0.2887	0.6172	0.8165	1.0607	1.386	1.886	2.920	4.303	6.965	9.925	22.33	31.60
3	0.2767	0.5844	0.7649	0.9785	1.250	1.638	2.353	3.185	4.241	5.841	10.31	12.92
4	0.2707	0.5686	0.7407	0.9410	1.190	1.233	2.132	2.776	3.747	4.604	7.173	8.610
-												
5	0.2672	0.5594	0.7267	0.9195	1.126	1.476	2.012	2.571	3.362	4.032	5.893	6.869
6	0.2648	0.5534	0.7176	0.9057	1.134	1.440	1.943	2.447	3.143	3.707	5.308	5.959
7	0.2632	0.5491	0.7111	0.8960	1.119	1.412	1.892	2.362	2.998	3.499	4.785	5·408
8	0.2619	0.5459	0.7064	0.8889	1.108	1.397	1.860	2:306	2.896	3.355	4.201	5.041
9	0.2610	0.5435	0.7027	0.8834	1.100	1.383	1.833	2.565	2.821	3.520	4.297	4.781
		•					_	_	_			_
10	0.2602	0.2412	0.6998	0.8791	1.003	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.2596	0.2399	0.6974	0.8755	1.088	1.363	1.796	2.301	2.718	3.106	4.022	4.437
12	0.520	0.5386	0.6955	0.8726	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.2586	0.5375	0.6938	0.8702	1.079	1.320	1.771	2.190	2.650	3.013	3.852	4.551
14	0.2282	0.2366	0.6924	0.8681	1.076	1.342	1.761	2.142	2.624	2.977	3.787	4.140
				044					,			
15	0.2579	0.5357	0.6912	0.8662	1.074	1.341	1.753	5.131	2.602	2.947	3.733	4.073
16	0.2576	0.2320	0.6901	0.8647	1.071	1.337	1.746	2.120	2.283	2.921	3.686	4.012
17	0.2573	0.2344	0.6892	0.8633	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.2571	0.2338	0.6884	0.8620	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.2569	0.2333	0.6876	0.8610	1.066	1.328	1.729	2.093	2.239	2.861	3.579	3.883
20	0.2567	0.5329	0.6870	0.8600	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
	0.2566	0 5329	0.6864	0.8591	1.063	1.323	1.721	2.080	2.518	2.831	3 527	3.819
2I 22	0.2564	0.2321	0.6858	0.8283	1.001	1.321	1.212	2.074	2.508	2.819	3.202	3.792
23	0.2563	0.5317	0.6853	0.8575	1.060	1.310	1.714	2.069	2.500	2.807	3.485	3.768
23 24	0.2562	0.5314	0.6848	0.8569	1.020	1.318	1.711	2.064	2.492	2.797	3.467	3.745
~4	0 2302	0 3314	0 0040	0 0 0 0 0 9	1 -39	1 320	- /		~ 47-	- 151	3 407	3 773
25	0.2561	0.2312	0.6844	0.8562	1.028	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.2560	0.5309	o·684 o	0.8557	1.028	1.312	1.406	2.056	2.479	2.779	3.435	3.404
27	0.2559	0.5306	0.6837	0.8551	1.057	1.314	1.403	2.052	2.473	2.771	3.421	3·69 0
28	0.2558	0.5304	0.6834	0.8546	1.026	1.313	1.401	2.048	2·467	2.763	3·4 0 8	3.674
29	0.2557	0.2302	0.6830	0.8542	1.022	1.311	1.699	2.045	2.462	2.756	3.396	3.659
											_	
30	0.2556	0.2300	0.6828	0.8538	1.022	1.310	1.697	2.042	2.457	2.750	3.382	3.646
32	0.2555	0.5297	0.6822	0.8530	1.024	1.309	1.694	2.037	2.449	2.738	3.362	3.622
34	0.5253	0.294	0.6818	0.8523	1.023	1.302	1.691	2.032	2.441	2.728	3.348	3.601
36	0.2552	0.2201	0.6814	0.8517	1.025	1.306	1.688	2.028	2.434	2.419	3.333	3.285
38	0.5221	0.288	0.6810	0.8512	1.021	1.304	1.686	2.024	2.429	2.712	3.319	3.566
		06	60	0.040=	*.0#0	*****	1.684	01007	0.100	21504	2:205	01557
40	0.2550	0.5286	0.6807	0.8507	1.020	1.303		2.021	2.423	2.704	3.302	3.221
50 60	0.2547	0.5278	0.6794	0.8489	1.042	1.500	1·676 1·671	2.009	2.403	2·678 2·660	3.561	3.496
60	0.2545	0.2272	0.6786	0.8477	1.042	1.396	1.658	2.000	2·390 2·358	2.617	3.535	3·460
120	0.2539	0.5258	0.6765	0.8446	1.041	1.589	1.020	1.980	2.350	2017	3.190	3.373
œ	0.2533	0.5244	0.6745	0.8416	1.036	1.282	1.645	1.960	2·326	2.576	3.090	3.291

TABLE 13. PERCENTAGE POINTS OF THE CORRELATION COEFFICIENT r WHEN $\rho=0$

The function tabulated is $r(P) = r(P|\nu)$ defined by the equation

$$\frac{\Gamma\left(\frac{\nu-1}{2}\right)}{\sqrt{\pi}\,\Gamma\left(\frac{\nu-2}{2}\right)}\int_{r(P)}^{1}(1-r^2)^{\frac{\nu-4}{2}}dr=P/100.$$

Let r be a partial correlation coefficient, after s variables have been eliminated, in a sample of size n from a multivariate normal population with corresponding true partial correlation coefficient $\rho = 0$, and let $\nu = n - s$. This table gives upper P per cent points of r; the corresponding lower P per cent points are given by -r(P), and the tabulated values are also upper 2P per cent points of |r|. For s = 0 we have $\nu = n$ and r is the ordinary correlation coefficient. When $\nu > 130$ use the results that r is approximately normally distributed with zero mean and variance $\frac{1}{\nu-1}$, or (more accurately) that $z = \tanh^{-1} r$ is approximately normally distributed with zero mean and variance $\frac{1}{\nu-1}$ (cf. Tables 16 and 17).

(This shape applies for $\nu \ge 5$ only. When $\nu = 4$ the distribution is uniform and when $\nu = 3$ the probability density function is U-shaped.)

Tables of the distribution of r for various values of ρ are given by, for example, F. N. David, Tables of the Ordinates and Probability Integral of the Distribution of the Correlation Coefficient in Small Samples, Cambridge University Press (1954), and R. E. Odeh, 'Critical values of the sample product-moment correlation coefficient in the bivariate normal distribution', Commun. Statist. – Simula Computa. II (1) (1982), pp. 1–26. The z-transformation may also be used (cf. Tables 16 and 17).

		, ,						• ,			
\boldsymbol{P}	5	2.2	I	0.2	0.1	P	5	2.2	I	0.2	0.1
$\nu = 3$	0.9877	0.9969	0.9992	0.9999	0.999995	$\nu = 40$	0.2638	0.3120	0.3665	0.4026	0.4741
4	.9000	.9500	.9800	.9900	.9980	42	.2573	.3044	.3578	.3932	•4633
7	-		•			44	.2512	.2973	•3496	·3843	.4533
5	0.8054	0.8783	0.9343	0.9587	0.9859	46	.2455	.2907	.3420	·3761	.4439
6	.7293	·8114	.8822	.9172	·9633	48	.2403	.2845	.3348	·3683	.4351
7	.6694	.7545	.8329	·874 5	9350			0.2787	0.3281	0.3610	0.4267
8	.6215	.7067	.7887	·8343	•9049	50	0.2353		.3218	3542	4188
9	.5822	·6664	.7498	.7977	·8751	52	•2306	·2732 ·2681	.3158	33 4 2 3477	4114
10	0.5494	0.6319	0.7155	0.7646	0.8467	54	.2262		3150	.3417	4043
11	.214	.6021	.6851	.7348	.8199	56	·2221 ·2181	·2632 ·2586	3102	34-3	.3976
12	4973	.5760	·6581	.7079	.7950	58	12101	2500	3040	3357	
13	.4762	.5529	.6339	.6835	7717	6o	0.2144	0.2542	0.2997	0.3301	0.3913
-3 14	4575	.5324	.6120	.6614	.7501	62	.2108	.2500	·2948	·3248	·3850
_				•		64	.2075	•2461	2902	.3198	3792
15	0.4409	0.2140	0.2923	0.6411	0.7301	66	.2042	.2423	·2858	-3150	.3736
16	4259	.4973	.5742	.6226	7114	68	.2012	.2387	·2816	.3104	·3683
17	4124	.4821	.5577	.6055	.6940		0 -		0.2776	0.3060	0.3632
18	·4000	•4683	.5425	.5897	.6777	70	0.1982	0.2352		.3017	.3583
19	.3887	°4555	.5285	·5751	·6624	72	1954	.2319	.2737	_	.3536
20	0.3783	0.4438	0.5155	0.5614	0.6481	74	.1927	.2287	·2700	·2977	·3490
21	.3687	'4329	.5034	.5487	6346	76	.1901	.2257	•2664	•2938	3447
22	.3598	4227	4921	.5368	6219	78	·1876	.2227	2630	•2900	3447
23	.3512	4132	.4815	.5256	.6099	8o	0.1852	0.2199	0.2597	0.2864	0.3402
24	.3438	·4044	.4716	.2121	·5986	82	.1829	.2172	·2565	·2830	·3364
-						84	1807	.2146	.2535	·2796	.3325
25	0.3362	0.3961	0.4622	0.202	0.5879	86	1786	.2120	.2505	·2764	.3287
26	.3297	.3882	·4534	.4958	.5776	88	1765	·2096	.2477	.2732	.3251
27	.3233	•3809	.4421	•4869	.5679				0:0440	0.2702	0.3212
28	.3172	.3739	4372	·4785	.5587	90	0.1745	0.2072	0.2449	.2673	.3181
29	.3112	.3673	.4297	4705	·5499	92	.1726	2050	.2422	·2645	.3148
30	0.3061	0.3610	0.4226	0.4629	0.2412	94	.1707	•2028	•2396	·2617	.3116
31	.3009	.3550	4158	.4556	.5334	96	•1689	.2006	.2371	·259I	.3085
32	.2960	·3494	.4093	.4487	5257	98	.1671	.1986	*2347	2391	3003
33	.2913	3440	4032	·442I	.5184	100	0.1654	0.1966	0.2324	0.2565	0.3024
34	2869	.3388	3972	4357	.5113	105	.1614	•1918	·2268	.2504	.2983
	-					110	.1576	·1874	.2216	·2446	.2915
35	0.2826	0.3338	0.3916	0.4296	0.2042	115	1541	.1832	·2167	.2393	.2853
36	.2785	.3291	.3862	.4238	.4979	120	.1209	.1793	2122	.2343	2794
37	•2746	·3246	.3810	·4182	.4916				012070	0.2296	0.2738
38	.2709	.3202	•3760	.4128	·4856	125	0.1478	0.1757	0.2079	-	·2686
39	.2673	-3160	.3712	·4076	·4797	130	1449	.1723	2039	.2252	4000

 $Dennis\ V.\ Lindley,\ William\ F.\ Scott,\ New\ Cambridge\ Statistical\ Tables,\ (1995)\ \textcircled{\o}\ Cambridge\ University\ Press,\ reproduced\ with\ permission.}$

TABLE 14. PERCENTAGE POINTS OF SPEARMAN'S S TABLE 15. PERCENTAGE POINTS OF KENDALL'S K

Spearman's S and Kendall's K are both used to measure the degree of association between two rankings of n objects. Let d_i ($1 \le i \le n$) be the difference in the ranks of the ith object;

Spearman's S is defined as $\sum_{i=1}^{n} d_i^2$. To define Kendall's K, re-

order the pairs of ranks so that the first set is in natural order from left to right, and let m_i ($1 \le i \le n$) be the number of ranks greater than i in the second ranking which are to the

right of rank *i*. Kendall's K is defined as $\sum_{i=1}^{n} m_i$.

For Table 14 the tabulated value x(P) is the lower percentage point, i.e. the largest value x such that, in independent rankings, $\Pr(S \leq x) \leq P/\text{100}$; in Table 15, K replaces S and the upper percentage point is given. A dash indicates that there is no value with the required property. The distributions are symmetric about means $\frac{1}{6}(n^3-n)$ for S and $\frac{1}{4}n(n-1)$ for K, with maxima equal to twice the means; hence the upper percentage points of S are $\frac{1}{3}(n^3-n)-x(P)$ and the lower percentage points of K are $\frac{1}{2}n(n-1)-x(P)$. The variances are

 $\frac{1}{36}n^2(n+1)^2 \ (n-1) \text{ for } S \text{ and } \frac{1}{72}n(n-1)(2n+5) \text{ for } K, \text{ and } \text{when } n > 40 \text{ both statistics are approximately normally distributed; more accurately, the distribution function of } X = \frac{[S - \frac{1}{6}(n^3 - n)]/[\frac{1}{6}n(n+1)\sqrt{n-1}]}{[\frac{1}{6}n^2(n+1)\sqrt{n-1}]} \text{ is approximately equal to } \Phi(x) - \frac{\gamma}{24\sqrt{2}\pi} e^{-\frac{1}{4}x^2} (x^3 - 3x), \text{ where } \gamma = \frac{-0.04(19n^2 + 5n - 36)}{\frac{1}{6}(n^3 - n)}$

and $\Phi(x)$ is the normal distribution function (see Table 4). A test of the null hypothesis of independent rankings is provided by rejecting at the P per cent level if $S \leq x(P)$, or $K \geq x(P)$, when the alternative is contrary rankings. The other points are similarly used when the alternative is similar rankings. To cover both alternatives reject at the 2P per cent level if S, or K, lies in either tail. Spearman's rank correlation coefficient r_S is defined as $1 - 6S/(n^3 - n)$, and has upper and lower P per cent points $1 - 6x(P)/(n^3 - n)$ and $-[1 - 6x(P)/(n^3 - n)]$ respectively. Kendall's rank correlation coefficient r_K is defined as 4K/[n(n-1)]-1, and has upper and lower P per cent points 4x(P)/[n(n-1)]-1 and $-\{4x(P)/[n(n-1)]-1\}$ respectively.

		SPI	EARMAN	V'S S		KENDALL'S K							
\boldsymbol{P}	5	2.5	1	0.2	0.1	$\tfrac{1}{6}(n^3-n)$	P	5	2.2	I	0.2	0.1	$\frac{1}{4}n(n-1)$
n = 4	0					10	n=4	6		_			3
5	2	0	0			20	5	9	10	10		_	5
6	6	4	2	0		35	6	13	14	14	15		7.5
7	16	12	6	4	0	56	7	17	18	19	20	21	10.2
8	30	22	14	10	4	84	8	22	23	24	25	26	14
9	48	36	26	20	10	120	9	27	28	30	31	33	18
10	72	58	42	34	20	165	10	33	34	36	37	40	22.5
11	102	84	64	54	34	220	II	39	4I	43	44	47	27·5
12	142	118	92	78 	52	286	12	46	48 ~6	51	52 61	55 64	33
13	188	160	128	108	76	364	13	53	56	59 67	69	64	39 45:5
14	244	210	170	146	104	455	14	62	64	67	09	73	45.2
15	310	268	222	194	140	560	15	70	73	77	79	83	52.2
16	388	338	284	248	184	68o	16	79	83	86	89	94	6o
17	478	418	354	312	236	816	17	89	93	97	100	105	68
18	580	512	436	388	298	969	18	99	103	108	III	117	76.5
19	694	616	530	474	370	1140	19	110	114	119	123	129	85.2
20	824	736	636	572	452	1330	20	121	126	131	135	142	95
21	970	868	756	684	544	1540	21	133	138	144	148	156	105
22	1132	1018	890	808	650	1771	22	146	151	157	161	170	115.5
23	1310	1182	1040	948	768	2024	23	159	164	171	176	184	126.5
24	1508	1364	1206	1102	900	2300	24	172	178	185	190	200	138
25	1724	1566	1388	1272	1048	2600	25	186	193	200	205	216	150
26	1958	1784	1588	1460	1210	2925	26	201	208	216	22I	232	162.5
27	2214	2022	1806	1664	1388	3276	27	216	223	232	238	249	175.5
28	2492	2282	2044	1888	1584	3654	28	232	239	248	254	267	189
29	2794	2564	2304	2132	1796	4060	29	248	256	266	272	285	203
30	3118	2866	2584	2396	2028	4495	30	265	273	283	290	303	217.5
31	3466	3194	2884	2682	2280	4960	31	282	291	301	308	323	232.5
32	384 0	3544	3210	2988	2552	5456	32	300	309	320	328	342	248
33	4240	3920	3558	3318	2844	5984	33	318	328	340	347	363	264
34	4666	4322	3930	3672	3160	6545	34	337	347	359	368	384	280.5
35	5120	4750	4330	4050	3498	7140	35	356	367	380	388	405	297.5
36	5604	5206	4754	4454	3858	7770	36	376	388	401	410	428	315
37	6118	5692	5206	4884	4244	8436	37	397	409	422	432	450	333
38	6662	6206	5686	5342	4656	9139	38	418	430	444	454	473	351.5
39	7238	6750	6196	5826	5092	9880	39	440	452	467	477	497	370.5
40	7846	7326	6736	6342	5556	10660	40	462	475	490	501	522	390

Dennis V. Lindley, William F. Scott, New Cambridge Statistical Tables, (1995) © Cambridge University Press, reproduced with permission.

UL12/0218

D01