

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Publication number:

0 174 726
B1

⑫

EUROPEAN PATENT SPECIFICATION

⑯ Date of publication of patent specification: **26.04.89**

⑮ Int. Cl.⁴: **C 07 D 401/12, A 61 K 31/44**

㉑ Application number: **85305458.3**

㉒ Date of filing: **31.07.85**

㉔ Pyridine derivatives and their production.

㉓ Priority: **16.08.84 JP 171069/84**

㉕ Proprietor: **Takeda Chemical Industries, Ltd.**
27, Doshomachi 2-chome Higashi-ku
Osaka-shi Osaka, 541 (JP)

㉖ Date of publication of application:
19.03.86 Bulletin 86/12

㉗ Inventor: **Nohara, Akira**
15-12, Oharano-Kamisatotorimicho
Nishikyo-Ku Kyoto 610-11 (JP)
Inventor: **Maki, Yoshitaka**
5-17, Oharano-Kamisatotorimicho
Nishikyo-Ku Kyoto 610-11 (JP)

㉘ Publication of the grant of the patent:
26.04.89 Bulletin 89/17

㉙ Designated Contracting States:
AT BE CH DE FR GB IT LI LU NL SE

㉚ Representative: **Lewin, John Harvey et al**
ELKINGTON AND FIFE Beacon House
113 Kingsway
London WC2B 6PP (GB)

㉛ References cited:
EP-A-0 005 129
EP-A-0 080 602
BE-A- 898 880

EP 0 174 726 B1

The file contains technical information
submitted after the application was filed and
not included in this specification

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).

Description

This invention relates to pyridine derivatives useful as e.g. anti-ulcer agents and to a method of preparing them.

5 As the pyridine derivatives having anti-ulcer activity, those disclosed in US—A—4,225,431 equivalent to EP—A—5129 (Japanese Unexamined Patent Laid-open No. 141783/79) and US—A—4,472,409 equivalent to EP—A—80602 (Japanese Unexamined Patent Laid-open No. 135881/83) etc. have been known. Similar compounds are also known from BE—A—898 880.

10 However, while these known compounds have an acid-secretion-inhibiting action, their gastric mucous membrane protecting action is insufficient, thus being hardly considered satisfactory as anti-ulcer agents. Besides, these compounds are possessed of such drawbacks in the physico-chemical properties as being unstable and readily decomposed.

15 It is considered that gastrointestinal ulcer is induced by unbalance between aggressive factors, e.g. hydrochloric acid, pepsin, and defensive factors, e.g. mucus secretion and mucosal blood flow. Therefore, a medicine having both an action of inhibiting gastric acid secretion and an action of enhancing protection of gastric mucosa has been desired.

20 The present inventors diligently studied with the purpose of preparing an anti-ulcer agent having excellent actions of inhibiting gastric acid secretion, of protecting gastric mucosa and of anti-ulceration. They found that a certain type of pyridine derivatives meet the said purpose, and they conducted further study to accomplish the present invention.

The present invention relates to

(1) pyridine derivatives of the formula (I)

25

I

30

wherein R¹ is hydrogen, methoxy or trifluoromethyl, R² and R³ are independently hydrogen or methyl, R⁴ is a C₁₋₄ fluorinated alkyl, and n denotes 0 or 1, or their pharmacologically acceptable salts and

35 (2) a method for preparing a compound (II) or its pharmacologically acceptable salt, which comprises allowing a compound of the formula (II)

40

II

wherein R¹ is of the same meaning as defined above, to react with a compound of the formula (III)

45

III

50

wherein R², R³ and R⁴ are of the same meaning as defined above, one of X¹ and X² is SH and the other is a leaving group and, when necessary, by subjecting the reaction product to oxidation.

In the above formulae, the —CH₂R⁴-group is exemplified by 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, 2,2,3,3-tetrafluoropropyl, 2,2,3,3,4,4-heptafluorobutyl and 2,2,3,3,4,4,5,5-octafluoropentyl.

55

Examples of the leaving groups X¹ and X² in the above formulae are halogen, preferably chlorine, bromine or iodine, or a reactive esterified hydroxy group, e.g. an arylsulfonyloxy, for example, phenylsulfonyloxy or tosyloxy, or a C₁₋₄ alkylsulfonyloxy, for example, methanesulfonyloxy, or an organic phosphoryloxy, for example, diphenylphosphoryloxy, dibenzylphosphoryloxy or di-C₁₋₄ alkylphosphoryloxy (e.g. dimethylphosphoryloxy).

60

R¹ may be located at 4- or 5-position, and preferably at 5-position.

A sulfide derivative (I) (n = 0), among the object compounds of this invention, can be prepared by allowing a compound (II) to react with a compound (III). It is convenient to conduct this reaction in the presence of a base. The base is exemplified by alkali metal hydride e.g. sodium hydride and potassium hydride; alkali metal e.g. metallic sodium; sodium alcoholate e.g. sodium methoxide and sodium ethoxide; alkali metal carbonate e.g. potassium carbonate and sodium carbonate; and organic amines e.g.

triethylamine. The solvent used for the reaction is exemplified by alcohols e.g. methanol and ethanol, as well as dimethylformamide. The amount of a base used for the reaction is usually in a little excess to the equivalent, but it may be in a large excess. Specifically, it is 1—10 equivalents, more preferably 1—4 equivalents. The reaction temperature ranges usually from about 0°C to about the boiling point of the solvent then used, more preferably from 20°C to 80°C. The reaction time ranges from about 0.2 to about 24 hours, more preferably from about 0.5 to about 2 hours.

A sulfinyl derivative (I) ($n = 1$), which is also among the object compounds of this invention, can be prepared by subjecting a compound (I) ($n = 0$) to oxidation. The oxidizing agent to be employed here is exemplified by peracid e.g. m-chloroperbenzoic acid, peracetic acid, trifluoroperacetic acid and permaleic acid, or sodium bromite or sodium hypochlorite or hydrogen peroxide. The solvent used for the reaction is exemplified by halogenated hydrocarbon e.g. chloroform and dichloromethane, ethers e.g. tetrahydrofuran and dioxane, amides e.g. dimethylformamide, alcohols, e.g. methanol, ethanol, propanol, and t-butanol or water, and these solvents may be used singly or in admixture. The oxidizing agent is used preferably in approximately equivalent or a little excess amount relative to the compound (I) ($n = 0$). Specifically, it is 1 to 3 equivalents, more preferably 1—1.5 equivalent. The reaction temperature ranges from that under ice-cooling to about the boiling point of the solvent then employed, usually from that under ice-cooling to room temperature, more preferably from 0°C to 10°C. The reaction time usually ranges from 0.1 to 24 hours, more preferably from 0.1 to 4 hours.

The object compound (I) produced by the above reaction can be isolated and purified by conventional means e.g. recrystallisation and chromatography.

The compound (I) of this invention may be led to pharmacologically acceptable salts thereof by *per se* conventional means, the salts being exemplified by hydrochloride, hydrobromide, hydroiodide, phosphate, nitrate, sulfate, acetate and citrate.

Among the compounds (I), those of $n = 0$ give stable salts, while those of $n = 1$ may exist as an aqueous solution though unstable.

The process of preparing the starting material (III) is described as follows.

Process 1)

A nitro compound of the formula (IV) [wherein R^2 and R^3 are of the same meaning as defined above] is allowed to react with an alcohol derivative $R^4\text{CH}_2-\text{OH}$ (V) [wherein R^4 is of the same meaning as defined above] in the presence of a base to give an alkoxy derivative of the formula (VI) [wherein R^2 , R^3 and R^4 are of the same meaning as defined above]. The base is exemplified by alkali metal e.g. lithium, sodium and potassium; alkali metal hydride e.g. sodium hydride and potassium hydride; alcoholate e.g. potassium t-butoxide and sodium propoxide; alkali metal carbonate or hydrogen carbonate e.g. potassium carbonate, lithium carbonate, sodium carbonate, potassium hydrogen carbonate and sodium hydrogen carbonate; or alkali hydroxide e.g. sodium hydroxide and potassium hydroxide. The solvent used for the reaction is exemplified by, besides $R^4\text{CH}_2\text{OH}$ itself, ethers such as tetrahydrofuran and dioxane as well as ketones such as acetone and methyl ethyl ketone, acetonitrile, dimethylformamide and hexamethylphosphoric acid triamide. The reaction temperature is suitably selected within the range from those under ice-cooling to those near the boiling point of the solvent used. The reaction time ranges usually from 1 to 48 hours.

The thus-obtained compound (VI) is subject to heating (80 to 120°C) in the presence of acetic anhydride singly or together with a mineral acid e.g. sulfuric acid and perchloric acid to give a 2-acetoxymethyl-pyridine derivative of the formula (VII) [wherein R^2 , R^3 and R^4 are of the same meaning as defined above]. The reaction time ranges usually from 0.1 to 10 hours.

Then, the compound (VII) is subjected to alkali-hydrolysis to give a 2-hydroxymethyl pyridine derivative of the formula (VIII) [wherein R^2 , R^3 and R^4 are of the same meaning as defined above]. The alkali is exemplified by sodium hydroxide, potassium hydroxide, potassium carbonate and sodium carbonate. The solvent used for the reaction is exemplified by methanol, ethanol and water. The reaction temperature

ranges usually from 20°C to 60°C. The reaction time is within the range of from 0.1 to 2 hours.

The compound (VIII) is further subjected to reaction with a chlorinating agent such as thionyl chloride, or an esterifying agent, e.g. an organic sulfonic acid chloride such as methanesulfonyl chloride or p-toluenesulfonyl chloride, or an organic phosphoric acid chloride such as diphenylphosphoryl chloride to give the compound (III). The amount of the chlorinating agent used for the reaction is usually in equivalent to a large excess relative to the compound (VIII). The solvent used for the reaction is exemplified by chloroform, dichloromethane and tetrachloroethane. The reaction temperature is usually within the range of from 20°C to 80°C, and the reaction time is 0.1 to 2 hours.

10 The amount of the organic sulfonic acid chloride or organic phosphoric acid chloride used for the reaction is usually in equivalent to a little excess, and the reaction is usually conducted in the presence of a base. The base is exemplified by organic base e.g. triethylamine and tributylamine, or inorganic base e.g. sodium carbonate, potassium carbonate and sodium hydrogen carbonate. The amount of a base used for the reaction is usually in equivalent to a little excess. The solvent used for the reaction is exemplified by chloroform, dichloromethane carbon tetrachloride or acetonitrile. The reaction temperature ranges usually from the under ice-cooling to about the boiling point of the solvent then used. The reaction time ranges usually from a few minutes to a few hours. It is usually preferable to use the thus-produced compound (III) immediately for the reaction with a compound (II).

Process 2)

By a reaction similar to the above-described process (1), a compound of the formula (IX) [wherein R² and R³ are of the same meaning as defined above] is led to a compound of the formula (X) [wherein R², R³ and R⁴ are of the same meaning as defined above].

35 Then, the compound (X) is subjected to methylation with dimethyl sulfate to give a compound of the formula (XI) [wherein R², R³ and R⁴ are of the same meaning as defined above]. The reaction can be conducted usually without solvent. The reaction temperature ranges from 100°C to 120°C, and the reaction time is within the range of from 0.1 to 4 hours.

Further, the compound (XI) is allowed to react with a radical source such as ammonium persulfate or any other persulfate in methanol to give the above-mentioned compound (VIII). The reaction temperature is within the range of from 20°C to 80°C, and the reaction ranges from 0.5 to 4 hours.

Pharmacological actions of the compounds of the present invention are described as follows.

As the models of gastrointestinal ulcers, restraint and water-immersion stress-induced ulcer, indomethacin-induced ulcer and ethanol-induced gastric mucosal lesions have been used. However, as a model mimicking human gastric ulcer, indomethacin-induced gastric antral ulcer was reported in "Gastroenterology" (Satoh et al. 81, p. 719, 1981), which is considered to be of value as an experimental model. Therefore, the following are data of anti-ulcer actions of the object compounds (I) and of some representable known compounds, on the ulcer model in the above-mentioned literature reference.

Experimental Method:

Male Sprague-Dawley rats of 7-weeks old were fasted for 24 hours. These animals were administered test compounds into stomach by using a gastric tube. After 30 minutes, indomethacin, 30 mg/kg subcutaneously, was administered. During 30—90 minutes after the administration of indomethacin, these animals had free access to chow pellets (Japan Clea, CE-2). At 5 hours after the administration of indomethacin, 1 ml of 1% Evans blue was injected to the animals via the tail vein, followed by sacrificing these animals with carbon dioxide gas. The stomach was removed together with the lower part of esophagus and the duodenum. The esophagus was clipped, 10 ml of 1% formalin solution was instilled into stomach from the duodenum, and then the duodenum was clipped. The whole stomach was immersed in 1% formalin solution. About 15 minutes later, the stomachs were opened along the greater curvature. Area of the lesions occurred in the gastric antral mucosa was measured under a dissecting microscope with a square-grid eye piece ($\times 10$). The sum total of the individual lesions in each animal was measured, and the average value per group was calculated. Based on the difference between the average value of each group and that of the control group, the inhibition rate was determined. The test compound on indomethacin was suspended in a 5% gum arabic solution, and administered in a volume of 2 ml/kg.

Experimental Results:

10

	R¹	R²	R³	R⁴	n	Anti-ulcer action ^{a)} ID ₅₀ (mg/kg, p.o.)
15	H	H	H	CF ₃	1	2.4
	H	CH ₃	H	CF ₃	1	<1.0
	H	H	H	CF ₂ CF ₃	1	1.3
20	H	CH ₃	H	CF ₂ CF ₃	1	<1.0
	H	H	H	CF ₂ CF ₂ H	1	1.3
	H	CH ₃	H	CF ₂ CF ₂ H	1	<1.0
25	H	CH ₃	H	CF ₂ CF ₃	0	3.7
	5-OCH ₃	CH ₃	CH ₃	H ₃ ^{*1}		21.0
30	5-CF ₃	CH ₃	H	H ₃ ^{*2}		5.5

*1 The compound disclosed in Example 23 of US-A-4,255,431 (Japanese Unexamined Patent Laid-open No. 141783/1979) ≡ EP-A-5129.

*2 The compound disclosed in Example 3 of US-A-4,472,409 (Japanese Unexamined Patent Laid-open No. 135881/1983) ≡ EP-A-80602.

a) Using 6 rats per group, each of the test compounds was administered in a dose of 1, 3, 10 and 30 mg/kg to determine ID₅₀.

40 As shown by the above data, the compounds of this invention have superior anti-ulcer action as compared with known compounds by about 1.5—20 times or more. Besides, the compound (I) of this invention shows excellent actions of inhibiting gastric acid secretion, protecting gastric mucous membrane and preventing ulceration.

Stating about the toxicity of the compound (I) of this invention, oral administration of the compound employed for the experiment of anti-ulceration (compound of R¹ = H, R² = CH₃, R³ = H, R⁴ = CF₂CF₃, n = 1) to mice even in a dose of 2000 mg/kg caused no fatal effect, thus the compound (I) being low in toxicity.

45 As described in the foregoing, the compound (I) of this invention has an anti-ulcer action, a gastric acid secretion controlling action and a mucous membrane protecting action, furthermore is of low toxicity and is relatively stable as a chemical substance. The compound (I) of this invention can thus be used for prophylaxis and therapy of digestive ulcers (e.g. gastric ulcer, duodenal ulcer) and gastritis in mammalian animals (e.g. mouse, rat, rabbit, dog, cat and man).

50 When the compound (I) of this invention is used as an anti-ulcer agent for the therapy of digestive ulcers in mammalian animals, it can be administered orally in a dosage form of capsules, tablets, granules, etc. by formulating with a pharmacologically acceptable carrier, excipient, diluent, etc. The daily dose is 0.01—30 mg/kg, more preferably 0.1—3 mg/kg.

55 Incidentally, the compound of this invention (I) (n = 0) is useful as a starting material for preparing the compound (I) (n = 1).

The processes of producing the starting compounds to be employed in the method of this invention as well as those of producing the compound (I) of this invention are specifically explained by the following Reference Examples and Working Examples.

60

Reference Example 1

In 2,2,3,3-tetrafluoropropanol (10 ml) was dissolved 2,3-dimethyl-4-nitropyridine-1-oxide (2 g). To the solution was added potassium t-butoxide (1.6 g) little by little at room temperature. The mixture was then heated at 80—90°C for 22 hours. The reaction solution was diluted with water, which was subjected to extraction with chloroform. The extract was dried on magnesium sulfate, and then concentrated. The

EP 0 174 726 B1

concentrate was chromatographed on a column of silica gel (70 g). Elution was conducted with methanol-chloroform (1:10), and then subjected to recrystallization from ethyl acetate-hexane to yield 2.6 g of 2,3-dimethyl-4-(2,2,3,3-tetrafluoropropoxy)pyridine-1-oxide as colorless needles, m.p. 138—139°C.

After the manner similar to the above, compounds (VI) were prepared from compounds (IV).

5

Compound (VI)			
	R ²	R ³	Melting point (°C)
10	H	H	CF ₃
	CH ₃	CH ₃	CF ₃

15

Reference Example 2

A mixture of 2,3-dimethyl-4-nitropyridine-1-oxide (2.0 g), methyl ethyl ketone (30 ml), 2,2,3,3,3-pentafluoropropanol (3.05 ml), anhydrous potassium carbonate (3.29 g) and hexamethyl phosphoric acid triamide (2.07 g) was heated at 70—80°C for 4.5 days under stirring, then insolubles were filtered off. The filtrate was concentrated, to which was added water. The mixture was subjected to extraction with ethyl acetate. The extract solution was dried on magnesium sulfate, followed by removing the solvent by evaporation. The residue was chromatographed on a column of silica gel (50 g), eluted with chloroform-methanol (10:1), and recrystallized from ethyl acetate-hexane to yield 2.4 g of 2,3-dimethyl-4-(2,2,3,3,3-pentafluoropropoxy)pyridine-1-oxide as colorless needles, m.p. 148—149°C.

20

After the manner similar to the above, compounds (VI) were prepared from starting compounds (IV).

Compound (VI)			
	R ²	R ³	Melting point (°C)
30	CH ₃	H	CF ₃
	H	CH ₃	CF ₃
	H	H	CF ₂ CF ₃
	H	CH ₃	CF ₂ CF ₃
35	H	H	CF ₂ CF ₂ H
	H	CH ₃	CF ₂ CF ₂ H
	CH ₃	H	CF ₂ CF ₂ H
40			131.0—131.5
			153—154
45			79—81
			140—142
			Oily
			143.5—144.5
			138—139

Reference Example 3

Concentrated sulfuric acid (two drops) was added to a solution of 2,3-dimethyl-4-(2,2,3,3-tetrafluoropropoxy)pyridine-1-oxide (2.6 g) in acetic anhydride (8 ml). The mixture was stirred at 110°C for 4 hours, which was then concentrated. The residue was dissolved in methanol (20 ml), to which was added sodium hydroxide (1.2 g) dissolved in water (5 ml). The mixture was stirred at room temperature for 30 minutes, which was concentrated. To the residue was added water, and the mixture was subjected to extraction with ethyl acetate. The extract was dried on magnesium sulfate, followed by removal of the solvent by evaporation. The residue was chromatographed on a column of silica gel (50 g), eluted with chloroform-methanol (10:1), and recrystallized from isopropyl ether to yield 1.6 g of 2-hydroxymethyl-3-methyl-4-(2,2,3,3-tetrafluoropropoxy)pyridine as yellow crystals, m.p. 67—68°C.

50
55
55 After the manner similar to the above, compounds (VIII) were prepared from compounds (VI).

60

65

EP 0 174 726 B1

Compound (VIII)				
	R ²	R ³	R ⁴	
5	H	H	CF ₃	Oily
	CH ₃	H	CF ₃	93.5—94.0
10	H	H	CF ₂ CF ₃	Oily
	CH ₃	H	CF ₂ CF ₃	Oily
15	H	CH ₃	CF ₂ CF ₃	87—89
	H	H	CF ₂ CF ₂ H	88—89
	H	CH ₃	CF ₂ CF ₂ H	98—99
20	CH ₃	H	CF ₂ CF ₂ H	67—68

Reference Example 4

To a solution of 3,5-dimethyl-4-nitropyridine-1-oxide (2.0 g) in 2,2,3,3,3-pentafluoropropanol (10 g) was added at 0°C little by little potassium t-butoxide (2 g) over 15 minutes. The mixture was stirred at 60°C for 18 hours. To the reaction mixture was added chloroform, which was subjected to filtration with celite. The filtrate was chromatographed on a column of silica gel (80 g), eluted with ethyl acetate-hexane (1:1), then with 20% methanol-ethyl acetate, and recrystallized from ether-hexane to yield 2.6 g of 3,5-dimethyl-4-(2,2,3,3,3-pentafluoropropoxy)pyridine-1-oxide as crystals, m.p. 89—91°C.

After the manner similar to the above, compounds (X) were prepared from compounds (IX).

Compound (X)				
	R ²	R ³	R ⁴	
35	CH ₃	H	CF ₃	82—94
	CH ₃	CH ₃	CF ₃	138—139

Reference Example 5

A mixture of 3,5-dimethyl-4-(2,2,3,3,3-pentafluoropropoxy)pyridine-1-oxide (2.5 g) and dimethyl sulfate (1 ml) was heated at 120°C for 30 minutes, to which was then added methanol (12.5 ml). To the mixture was added dropwise at 80°C ammonium persulfate (4.3 g) dissolved in water (20 ml)-methanol (10 ml) over 30 minutes, which was stirred for further 30 minutes. The resultant solution was concentrated. To the residue was added ice, which was neutralized with sodium carbonate, followed by extraction with chloroform. The extract was dried on sodium sulfate, followed by removing the solvent by evaporation to give 2.2 g of 3,5-dimethyl-2-hydroxymethyl-4-(2,2,3,3,3-pentafluoropropoxy)pyridine as an oily substance.

After the manner similar to the above, compounds (VIII) were prepared from compounds (X).

Compound (VIII)				
	R ²	R ³	R ⁴	
55	H	CH ₃	CF ₃	116—119
	CH ₃	CH ₃	CF ₃	62—63

Example 1

To a solution of 2-hydroxymethyl-3-methyl-4-(2,2,3,3,3-pentafluoropropoxy)pyridine (350 mg) in chloroform (10 ml) was added thionyl chloride (0.2 ml). The mixture was refluxed for 30 minutes, which was then concentrated. The residue was dissolved in methanol (5 ml). The solution was added to a mixture

EP 0 174 726 B1

of 2-mercaptobenzimidazole (200 mg), 28% sodium methoxide solution (1 ml) and methanol (6 ml), which was refluxed for 30 minutes. From the resultant was removed methanol by evaporation. To the residue was added water, which was subjected to extraction with ethyl acetate. The extract was washed with a dilute sodium hydroxide solution, followed by drying on magnesium sulfate. From the resultant was removed the solvent by evaporation. The residue was then chromatographed on a column of silica gel (20 g), eluted with ethyl acetate-hexane (2:1), and then recrystallized from ethyl acetate-hexane to yield 370 mg of 2-[3-methyl-4-(2,2,3,3,3-pentafluoropropoxy)pyrid-2-yl]methylthiobenzimidazole · $\frac{1}{2}$ hydrate as colorless plates, m.p. 145—146°C.

After the manner similar to the above, compounds (I) ($n = 0$) were prepared by allowing compounds (II) with compounds (III).

		Compound (I) ($n = 0$)				
		R ¹	R ²	R ³	R ⁴	Melting point (°C)
15		H	H	H	CF ₃	138—139
		H	CH ₃	H	CF ₃	149—150
		H	H	CH ₃	CF ₃	168—170
		H	CH ₃	CH ₃	CF ₃	151.5—152.0
20		H	H	H	CF ₂ CF ₃	125—126
		H	H	CH ₃	CF ₂ CF ₃	151—152
		H	H	H	CF ₂ CF ₂ H	Oily * ³
		H	CH ₃	H	CF ₂ CF ₂ H	134—135
25		H	H	CH ₃	CF ₂ CF ₂ H	148—149
		H	CH ₃	CH ₃	CF ₂ CF ₃	158—160
		* ⁴ 5-CF ₃	CH ₃	H	CF ₃	92—93
		5-OCH ₃	CH ₃	H	CF ₃	159—160
30		5-OCH ₃	H	H	CF ₃	152—153
35						
40						

*³ NMR spectrum (CDCl₃) δ : 4.35 (S), 4.39 (t, t, J=1.5 and 12Hz), 5.98 (1H, t, t, J=52.5 and 4Hz), 6.81 (1H, d, d, J=2 and 6Hz), 6.95 (1H, d, J=2Hz), 7.1—7.3 (2H, m), 7.4—7.7 (2H, m), 8.50 (1H, d, J=6Hz)

*⁴ 4 H₂O (crystal water)

Example 2

To a solution of 2-[3-methyl-4-(2,2,3,3,3-pentafluoropropoxy)pyrid-2-yl]methylthiobenzimidazole (2.2 g) in chloroform (20 ml) was added dropwise under ice-cooling over a period of 30 minutes m-chloroperbenzoic acid (1.3 g) dissolved in chloroform (15 ml). The solution was washed with a saturated aqueous solution of sodium hydrogen carbonate, then dried on magnesium sulfate, and concentrated. The residue was chromatographed on a column of silica gel (50 g), eluted with ethyl acetate, and then recrystallized from acetone-isopropyl ether to give 1.78 g of 2-[3-methyl-4-(2,2,3,3,3-pentafluoropropoxy)pyrid-2-yl]-methylsulfinylbenzimidazole as pale yellow prisms, m.p. 161—163°C (decomp.).

After the manner similar to the above, compounds (I) ($n = 1$) were prepared from compounds (I) ($n = 0$).

EP 0 174 726 B1

Compound (I) (n = 1)				
	R ¹	R ²	R ³	Melting point (°C)
5	H	H	H	CF ₃
				176—177
10	H	CH ₃	H	CF ₃
				178—182(d)
15	H	H	CH ₃	CF ₃
				175—177(d)
20	H	CH ₃	CH ₃	CF ₃
				177—178(d)
25	H	H	H	CF ₂ CF ₃
				148—150(d)
30	H	H	CH ₃	CF ₂ CF ₃
				145—148(d)
	H	H	H	CF ₂ CF ₂ H
				132—133
	H	CH ₃	H	CF ₂ CF ₂ H
				147—148(d)
	H	H	CH ₃	CF ₂ CF ₂ H
				136—139(d)
	H	CH ₃	CH ₃	CF ₂ CF ₃
				157—159
	5-CF ₃	CH ₃	H	CF ₃
				161—162(d)
	5-OCH ₃	CH ₃	H	CF ₃
				140.5—142(d)
	5-OCH ₃	H	H	CF ₃
				162—163(d)

(Note) (d): decomposition

Claims for the Contracting States: BE CH DE FR GB IT LI LU NL SE

- 35 1. A compound of the formula (I)

- 45 wherein R¹ is hydrogen, methoxy or trifluoromethyl, R² and R³ are independently hydrogen or methyl, R⁴ is a C_{1—4} fluorinated alkyl and n denotes 0 or 1, and a pharmaceutically acceptable salt thereof.
2. A compound according to claim 1, wherein R¹ is hydrogen.
3. A compound according to claim 1 or claim 2, wherein R² is methyl.
- 50 4. A compound according to any of claims 1 to 3, wherein R³ is hydrogen.
5. A compound according to any of claims 1 to 4, wherein R⁴ is a C_{1—2} fluorinated alkyl.
6. A compound according to claim 1, wherein the compound is 2-[3-methyl-4-(2,2,2-trifluoroethoxy)-pyrid-2-yl]methylsulfinylbenzimidazole.
7. A compound according to claim 1, wherein the compound is 2-[3-methyl-4-([2,2,3,3-pentafluoro-propoxy]pyrid-2-yl)methylsulfinylbenzimidazole.
- 55 8. A compound according to claim 1, wherein the compound is 2-[3-methyl-4-(2,2,3,3-tetrafluoro-propoxy)pyrid-2-yl]methylsulfinylbenzimidazole.
9. A method for producing a pyridine derivative as claimed in claim 1, which comprises allowing a compound of the formula (II)

wherein R¹ is of the same meaning as defined in claim 1, to react with a compound of the formula (III)

5

III

- 10 wherein R², R³ and R⁴ are of the same meaning as defined in claim 1 and one of X¹ and X² is SH and the other is a leaving group, and when necessary, by subjecting the reaction product to oxidation.
 10. A method according to claim 9, wherein X¹ is SH and X² is halogen.
 11. A pharmaceutical composition for prophylaxis or therapy of digestive ulcers which comprises, as an active ingredient, an effective amount of a compound or its salt as defined in claim 1, and a pharmacologically acceptable carrier, excipient or diluent therefor.

Claims for the Contracting State: AT

- 20 1. A method for producing a pyridine derivative of the formula (I)

25

I

- 30 wherein R¹ is hydrogen, methoxy or trifluoromethyl, R² and R³ are independently hydrogen or methyl, R⁴ is a C₁₋₄ fluorinated alkyl and n denotes 0 or 1, or a pharmacologically acceptable salt thereof, which comprises allowing a compound of the formula (II)

35

II

wherein R¹ is of the same meaning as defined above, to react with a compound of the formula (III)

40

III

45

wherein R², R³ and R⁴ are of the same meaning as defined above, and one of X¹ and X² is SH and the other is a leaving group, and when necessary, by subjecting the reaction product to oxidation.

2. A method according to claim 1, wherein X¹ is SH and X² is halogen.

50

Patentansprüche für die Vertragsstaaten: BE CH DE FR GB IT LI LU NL SE

1. Verbindung der Formel (I)

55

I

60

- worin R¹ Wasserstoff, Methoxy oder Trifluormethyl ist, R² und R³ unabhängig voneinander Wasserstoff oder Methyl bedeuten, R⁴ ein C₁₋₄ fluoriertes Alkyl darstellt und n für 0 oder 1 steht, und ein pharmakologisch verträgliches Salz derselben.

EP 0 174 726 B1

2. Verbindung nach Anspruch 1, worin R¹ Wasserstoff bedeutet.
3. Verbindung nach Anspruch 1 oder 2, worin R² für Methyl steht.
4. Verbindung nach einem der Ansprüche 1 bis 3, worin R³ Wasserstoff darstellt.
5. Verbindung nach einem der Ansprüche 1 bis 4, worin R⁴ ein C₁₋₂ fluoriertes Alkyl ist.
6. Verbindung nach Anspruch 1, worin die Verbindung 2-[3-Methyl-4-(2,2,2-trifluoräthoxy)pyrid-2-yl]-methylsulfinylbenzimidazol darstellt.
7. Verbindung nach Anspruch 1, worin die Verbindung 2-[3-Methyl-4-(2,2,3,3,3-pentafluorpropoxy)pyrid-2-yl]-methylsulfinylbenzimidazol ist.
8. Verbindung nach Anspruch 1, worin die Verbindung 2-[3-Methyl-4-(2,2,3,3-tetrafluorpropoxy)pyrid-2-yl]methylsulfinylbenzimidazol ist.
9. Verfahren zur Herstellung eines Pyridinderivates nach Anspruch 1, das das Umsetzen einer Verbindung der Formel (II),

20 worin R¹ die in Anspruch 1 angeführte Bedeutung besitzt, mit einer Verbindung der Formel (III)

umfaßt, worin R², R³ und R⁴ die in Anspruch 1 angeführte Bedeutung besitzen und entweder X¹ oder X² für SH steht und das andere eine ausscheidende Gruppe ist und nach Bedarf das Unterwerfen des Reaktionsproduktes der Oxydation umfaßt.

10. Verfahren nach Anspruch 9, worin X¹ für SH und X² für Halogen steht.
11. Pharmazeutische Zusammensetzung für die Prophylaxe oder Therapie von Geschwüren des Verdauungssystems, die als Wirkstoff eine wirksame Menge einer Verbindung nach Anspruch 1 oder eines Salzes derselben und ein pharmakologisch verträgliches Trägermittel, Excipients oder Verdünnungsmittel dafür enthält.

Patentansprüche für den Vertragsstaat: AT

- 40 1. Verfahren zur Herstellung eines Pyridinderivates der Formel (I)

50 worin R¹ Wasserstoff, Methoxy oder Trifluormethyl bedeutet, R² und R³ unabhängig voneinander Wasserstoff oder Methyl sind, R⁴ ein C₁₋₄ fluoriertes Alkyl darstellt und n für 0 oder 1 steht, oder ein pharmakologisch verträgliches Salz derselben, das die Umsetzung einer Verbindung der Formel (II)

60 worin R¹ die vorstehend angeführte Bedeutung besitzt, mit einer Verbindung der Formel (III),

5

III

worin R², R³ und R⁴ die vorstehend angeführte Bedeutung besitzen und entweder X¹ oder X² für SH steht und das andere eine ausscheidende Gruppe ist, und nach Bedarf das Unterwerfen des Reaktionsprodukts der Oxydation umfaßt.

10 2. Verfahren nach Anspruch 1, worin X¹ SH bedeutet und X² für Halogen steht.

Revendications pour les Etats contractants: BE CH DE FR GB IT LI LU NL SE

15

1. Composé de formule (I)

20

I

25 dans laquelle R¹ est l'hydrogène, un groupe méthoxy ou trifluorométhyle, R² et R³, indépendamment l'un de l'autre, sont l'hydrogène ou le méthyle, R⁴ est un groupe alkyle fluoré en C₁₋₄ et n représente le chiffre 0 ou 1, et un sel pharmacologiquement acceptable de ce composé.

2. Composé selon la revendication 1, dans lequel R¹ est l'hydrogène.

3. Composé selon la revendication 1 ou 2, dans lequel R² est le méthyle.

30 4. Composé selon l'une quelconque des revendications 1 à 3, dans lequel R³ est l'hydrogène.

5. Composé selon l'une quelconque des revendications 1 à 4, dans lequel R⁴ est un groupe alkyle fluoré en C₁₋₂.

6. Composé selon la revendication 1, qui est le 2-(3-méthyl-4-(2,2,2-trifluoroéthoxy)-pyrid-2-yl)méthylsulfinylbenzimidazole.

35 7. Composé selon la revendication 1, qui est le 2-(3-méthyl-4-(2,2,3,3,3-pentafluoropropoxy)-pyrid-2-yl)méthylsulfinylbenzimidazole.

8. Composé selon la revendication 1, qui est le 2-(3-méthyl-4-(2,2,3,3-tétrafluoropropoxy)-pyrid-2-yl)méthylsulfinylbenzimidazole.

9. Procédé de préparation d'un dérivé de pyridine selon la revendication 1, caractérisé en ce que l'on fait réagir un composé de formule (II)

45

II

dans laquelle R¹ a la même signification qu'indiqué à la revendication 1, avec un composé de formule (III)

50

III

55

dans laquelle R², R³ et R⁴ ont la même signification qu'indiqué à la revendication 1 et l'un de X¹ et X² est SH et l'autre est un groupe qui peut être éliminé, et s'il s'avère nécessaire, ou soumet le produit réactionnel à une oxydation.

10. Procédé selon la revendication 9, dans lequel X¹ est SH et X² est un I¹ est SH et X² est un halogène.

60 11. Composition pharmaceutique pour la prévention ou le traitement thérapeutique d'ulcères du tractus digestif, qui comprend, comme substance active, une quantité efficace d'un composé ou de son sel, tels que défini à la revendication 1, et un véhicule, excipient ou diluant, pharmacologiquement acceptable pour celui-ci.

65

Revendications pour l'Etat contractant: AT

1. Procédé de préparation d'un dérivé de pyridine de formule (I):

5

10

I

dans laquelle R¹ est l'hydrogène, un groupe méthoxy ou trifluorométhyle, R² et R³, indépendamment l'un de l'autre, sont l'hydrogène ou le méthyle, R⁴ est un groupe alkyle fluoré en C₁₋₄ et n représente le chiffre 0 ou 1, et d'un sel pharmacologiquement acceptable de ce composé, caractérisé en ce que l'on fait réagir un composé de formule (II)

20

II

25

30

III

dans laquelle R², R³ et R⁴ ont la même signification qu'indiqué à la revendication 1 et l'un de X¹ et X² est SH et l'autre est un groupe qui peut être éliminé, et s'il s'avère nécessaire, on soumet le produit réctionnel à une oxydation.

2. Procédé selon la revendication 1, dans lequel X¹ est SH et X² est un halogène.

40

45

50

55

60

65