Matrices and Linear Systems

Unit 2

Linear Systems

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$
 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_n$

Linear Systems

$$a_{11}x_1 + a_{12}x_2 + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{2n}x_n = b_2$$

$$a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_n$$

$$Ax = b, \quad A \in \mathbf{R}^{m \times n}, \quad x \in \mathbf{R}^{n \times 1}, \quad b \in \mathbf{R}^{n \times 1}$$

Linear Systems

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$
 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_n$

$$Ax = b, \quad A \in \mathbf{R}^{m \times n}, \quad x \in \mathbf{R}^{n \times 1}, \quad b \in \mathbf{R}^{n \times 1}$$

Overdetermined, underdetermined, square, homogeneous, number of solutions

• Column space span(A)

- Column space span(A)
- Null space ker(A)

- Column space span(A)
- Null space ker(A)
- Rank rank(A)

- Column space span(A)
- Null space ker(A)
- Rank rank(A)
- Nullity null(A)

- Column space span(A)
- Null space ker(A)
- Rank rank(A)
- Nullity null(A)
- Nonsingular square matrix $A \in \mathbf{R}^{n \times n}$

$$A \in \mathbf{R}^{m imes p}, \quad B \in \mathbf{R}^{p imes n}, \quad C = AB \in \mathbf{R}^{n imes m}$$
 $c_{ij} = \sum_{k=1}^p a_{ik} b_{kj}$

$$A \in \mathbf{R}^{m imes p}, \quad B \in \mathbf{R}^{p imes n}, \quad C = AB \in \mathbf{R}^{n imes m}$$
 $c_{ij} = \sum_{k=1}^p a_{ik} b_{kj}$ $AB \neq BA$

$$A \in \mathbf{R}^{m \times p}, \quad B \in \mathbf{R}^{p \times n}, \quad C = AB \in \mathbf{R}^{n \times m}$$

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$$

$$AB \neq BA$$

 $A(BC) = (AB)C, \qquad A(B+C) = AB + AC.$

$$A \in \mathbf{R}^{m \times p}, \quad B \in \mathbf{R}^{p \times n}, \quad C = AB \in \mathbf{R}^{n \times m}$$

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$$

$$AB \neq BA$$

A(BC) = (AB)C, A(B+C) = AB + AC.

Noncommutative ring

Multiplication count

$$A \in \mathbf{R}^{m \times p}, \quad B \in \mathbf{R}^{p \times n}, \quad C \in \mathbf{R}^{n \times q}$$

 $A(BC) \quad \text{vs} \quad A(BC)$

Multiplication count

$$A \in \mathbf{R}^{m \times p}, \quad B \in \mathbf{R}^{p \times n}, \quad C \in \mathbf{R}^{n \times q}$$

 $A(BC)$ vs $A(BC)$

$$A \in \mathbf{R}^{m \times p}, \quad B \in \mathbf{R}^{p \times n}, \quad C = AB \in \mathbf{R}^{n \times m}$$

Flop is typically one floating-point operation. How many flops for *C*?

Multiplication count

$$A \in \mathbf{R}^{m \times p}, \quad B \in \mathbf{R}^{p \times n}, \quad C \in \mathbf{R}^{n \times q}$$

 $A(BC)$ vs $A(BC)$

$$A \in \mathbf{R}^{m \times p}, \quad B \in \mathbf{R}^{p \times n}, \quad C = AB \in \mathbf{R}^{n \times m}$$

Flop is typically one floating-point operation. How many flops for *C*?

Strassen, n^3 down to $n^{2.81}$, smart block matrix multiplication

Multiplication count

$$A \in \mathbf{R}^{m \times p}, \quad B \in \mathbf{R}^{p \times n}, \quad C \in \mathbf{R}^{n \times q}$$

 $A(BC)$ vs $A(BC)$

$$A \in \mathbf{R}^{m \times p}$$
, $B \in \mathbf{R}^{p \times n}$, $C = AB \in \mathbf{R}^{n \times m}$

Flop is typically one floating-point operation. How many flops for *C*?

Strassen, n^3 down to $n^{2.81}$, smart block matrix multiplication Coppersmith, Winograd, down to $n^{2.376}$

Potential use of group theory, Robinson

Block Multiplication

- Exercise 2.5
- If each product in the blocks can be formed, then block multiplication works

Diagonally Dominant

 $A \in \mathbf{R}^{n \times n}$ is strictly row diagonally dominant if $\sigma > 0$, where

$$\sigma := \min_{i=1,\dots,n} \sigma_i, \ \text{ and } \ \sigma_i = |a_{ii}| - \sum_{j \neq i} |a_{ij}| > 0$$

Diagonally Dominant

 $A \in \mathbf{R}^{n \times n}$ is strictly row diagonally dominant if $\sigma > 0$, where

$$\sigma := \min_{i=1,\dots,n} \sigma_i, \quad \text{and} \quad \sigma_i = |a_{ii}| - \sum_{j \neq i} |a_{ij}| > 0$$

Then A is nonsingular, Ax = b has a unique solution, Gaussian elimination is stable, and

$$||x|| \le \frac{||b||}{\sigma}$$

Diagonally Dominant

 $A \in \mathbf{R}^{n \times n}$ is strictly row diagonally dominant if $\sigma > 0$, where

$$\sigma := \min_{i=1,\dots,n} \sigma_i, \quad \text{and} \quad \sigma_i = |a_{ii}| - \sum_{j \neq i} |a_{ij}| > 0$$

Then A is nonsingular, Ax = b has a unique solution, Gaussian elimination is stable, and

$$||x|| \le \frac{||b||}{\sigma}$$

Show the bound

$$\begin{pmatrix} d_1 & c_1 & 0 \\ a_2 & d_2 & c_2 \\ 0 & a_3 & d_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ l_2 & 1 & 0 \\ 0 & l_3 & 1 \end{pmatrix} \begin{pmatrix} u_1 & c_1 & 0 \\ 0 & u_2 & c_2 \\ 0 & 0 & u_3 \end{pmatrix}$$

This is known as Doolittle's factorization (unit lower triangular) as opposed to Crout's factorization (unit upper triangular)

$$\begin{pmatrix} d_1 & c_1 & 0 \\ a_2 & d_2 & c_2 \\ 0 & a_3 & d_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ l_2 & 1 & 0 \\ 0 & l_3 & 1 \end{pmatrix} \begin{pmatrix} u_1 & c_1 & 0 \\ 0 & u_2 & c_2 \\ 0 & 0 & u_3 \end{pmatrix}$$

This is known as Doolittle's factorization (unit lower triangular) as opposed to Crout's factorization (unit upper triangular)

Prove for 3×3 , Exercise 2.9

$$\begin{pmatrix} d_1 & c_1 & 0 \\ a_2 & d_2 & c_2 \\ 0 & a_3 & d_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ l_2 & 1 & 0 \\ 0 & l_3 & 1 \end{pmatrix} \begin{pmatrix} u_1 & c_1 & 0 \\ 0 & u_2 & c_2 \\ 0 & 0 & u_3 \end{pmatrix}$$

This is known as Doolittle's factorization (unit lower triangular) as opposed to Crout's factorization (unit upper triangular)

Prove for 3×3 , Exercise 2.9

Solve
$$u_1 =?$$
, $l_2 =?$, $l_3 =?$, $u_2 =?$, $u_3 =?$

$$\begin{pmatrix} d_1 & c_1 & 0 \\ a_2 & d_2 & c_2 \\ 0 & a_3 & d_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ l_2 & 1 & 0 \\ 0 & l_3 & 1 \end{pmatrix} \begin{pmatrix} u_1 & c_1 & 0 \\ 0 & u_2 & c_2 \\ 0 & 0 & u_3 \end{pmatrix}$$

This is known as Doolittle's factorization (unit lower triangular) as opposed to Crout's factorization (unit upper triangular)

Prove for 3×3 , Exercise 2.9

Solve
$$u_1 =?$$
, $l_2 =?$, $l_3 =?$, $u_2 =?$, $u_3 =?$

Solve Ax = b by solving Ly = b, and then Ux = y

$$\begin{pmatrix} d_1 & c_1 & 0 \\ a_2 & d_2 & c_2 \\ 0 & a_3 & d_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ l_2 & 1 & 0 \\ 0 & l_3 & 1 \end{pmatrix} \begin{pmatrix} u_1 & c_1 & 0 \\ 0 & u_2 & c_2 \\ 0 & 0 & u_3 \end{pmatrix}$$

This is known as Doolittle's factorization (unit lower triangular) as opposed to Crout's factorization (unit upper triangular)

Prove for 3×3 , Exercise 2.9

Solve
$$u_1 =?$$
, $l_2 =?$, $l_3 =?$, $u_2 =?$, $u_3 =?$

Solve
$$Ax = b$$
 by solving $Ly = b$, and then $Ux = y$

Show that
$$|u_1| > |c_1|$$
, $|u_2| > |c_2|$, $|u_3| > 0$

 $A \in \mathbf{R}^{n \times n}$ is symmetric if $A = A^T$.

 $A \in \mathbf{R}^{n \times n}$ is symmetric if $A = A^T$.

A is positive definite if is $x^T A x > 0$ for all nonzero $x \in \mathbf{R}^{n \times 1}$.

 $A \in \mathbf{R}^{n \times n}$ is symmetric if $A = A^T$.

A is positive definite if is $x^T A x > 0$ for all nonzero $x \in \mathbf{R}^{n \times 1}$.

 $A = LL^T$ is Cholestky factorization if $L \in \mathbf{R}^{n \times n}$ is lower triangular (with positive diagonal entries, in our text).

 $A \in \mathbf{R}^{n \times n}$ is symmetric if $A = A^T$.

A is positive definite if is $x^T A x > 0$ for all nonzero $x \in \mathbf{R}^{n \times 1}$.

 $A = LL^T$ is Cholestky factorization if $L \in \mathbf{R}^{n \times n}$ is lower triangular (with positive diagonal entries, in our text).

A has Choletsky factorization if and only if it is symmetric definite positive.

 $A \in \mathbf{R}^{n \times n}$ is symmetric if $A = A^T$.

A is positive definite if is $x^T A x > 0$ for all nonzero $x \in \mathbf{R}^{n \times 1}$.

 $A = LL^T$ is Cholestky factorization if $L \in \mathbf{R}^{n \times n}$ is lower triangular (with positive diagonal entries, in our text).

A has Choletsky factorization if and only if it is symmetric definite positive.

Exercise 2.10