云南大学数学与统计学院 实验报告

实验课名称:	随机过程实验			
指导教师:	韩博 王晓波			
专业(年级):_	统计学 2021 级			
学生姓名:	<u>枫叶</u> 学号:			
实验名称:	复合泊松过程的随机模拟			
实验成绩:				

《随机过程实验》实验报告 6

实验名称	复合泊松过程的隔	实验成绩			
学号			姓名	枫叶	
实验时间	2024年4月22日	实验地点	格物楼 3508	指导教师	韩博 王晓波

一、实验目的

学习使用 R 软件对复合泊松过程进行模拟和计算。

二、实验要求

- 1. 对所使用的方法与所得到的结果进行适当的文字描述。
- 2. 在实验结果的相应部分附上完整的代码与适当的注释。
- 3. 采用一定的可视化方法体现出对应计算结果。

三、实验内容

- 1、设游客以每小时 50 人的平均速率走进拉斯维加斯的一家赌场,这一过程可以用 Poisson 过程来描述。其中 10%的游客不会参与赌博,且每位游客是否参与赌博互不 影响,也与进入赌场的游客数无关。假设每位参与赌博的游客在赌场损失的金额服 从均匀分布 U[0, \$1500],且每位游客损失的金额是独立的。
- (1) 假定从营业开始,有 20 位游客进入赌场,请进行一次模拟实验计算截止到第 20 位游客到达,赌场的总收益是多少,并绘制该复合 Poisson 过程的样本路径(横轴位顾客到达时间 t,纵轴为赌场在(0,t]时间内的收益);
- (2) 写出 12 小时内在该赌场赌博游客数的均值,并通过 1000 次模拟实验得到经验均值,随后进行比较;

- (3) 写出赌场 12 小时内的平均收益以及收益的方差,并通过 1000 次模拟实验得到经验均值和经验方差,随后进行比较。
- 2、到达加油站的汽车数目可以用参数为 λ 的泊松过程来描述。设每个司机购买汽油的行为是独立的,购买汽油的金额价格服从 Gamma 分布 $\Gamma(\alpha, \beta)$,花费的金额和汽车的数量是独立的。汽车到达时刻(分钟)和花费金额的数据见下表:

Arrival	Amount	Arrival	Amount	Arrival	Amount
Time	Spent, in \$	Time	Spent, in \$	Time	Spent, in \$
0.15	23. 67	28.81	69.67	47.94	20. 38
3.81	25. 55	32. 36	25. 39	49.73	34. 95
5. 67	38. 54	32. 76	30.86	50.72	29. 23
6.61	31. 31	32.92	50. 53	50.86	36. 51
13. 14	74. 20	33. 22	24.93	51.99	37. 77
13. 57	32. 78	33. 51	27. 49	52.36	34. 41
15. 68	29. 70	34.40	22. 56	52.89	23. 35
22.83	35.83	35. 76	21.38	53.64	32. 95
23. 35	22. 17	39.08	45. 53	55.03	21. 27
23. 77	34. 96	41.03	39. 14	55. 29	37. 32
23. 77	24. 20	42.05	26.02	56.82	20. 30
24. 69	26.01	42.38	21.35	63.02	32. 59
26. 94	24. 07	45.66	33.88		

- (1) 该加油站的营业额可以用复合 Poisson 过程来描述,请写出建模过程,并给出每个参数/符号的解释;
 - (2) 将表中数据带入模型,估计模型中的未知参数λ,α,β;
 - (3) 绘制时间间隔的直方图和拟合的分布曲线。

四、 实验软件

R语言

五、 实验结果

```
加载包
library(dplyr)
library(purrr)
library(ggplot2)
library(readx1)
第一题
第一问
#沿用上次实验的函数
poisson_gen <- function(n=1,lambda=10,maxtime=10,set_seed=NA){</pre>
  maxperson <- 2*lambda*maxtime</pre>
  if(!is.na(set_seed)) set.seed(set_seed)
  data.frame(id = n,
            Time = rexp(maxperson,lambda) %>% cumsum(),
            persons = 1:maxperson) %>%
   filter(Time <= maxtime)</pre>
data <- poisson_gen(n = 1,lambda = 50,maxtime = 1) %>%
  filter(persons<=20) %>%
  mutate(involve=sample(c(1,0),20,T,c(0.9,0.1)),
        loss=involve*runif(20,0,1500),
        casino income=cumsum(loss))
ggplot(data) +
  geom_step(aes(x=Time,y=casino_income)) +
  xlab("到达时刻") +
 ylab("赌场收益") +
 theme bw()
```


某次模拟中得到赌场收益为 14807.71, 该复合 Poisson 过程的样本路径见上图

第二问

```
map(1:1000,poisson_gen,lambda = 50,maxtime = 12) %>%
  list_rbind() %>%
  group_by(id) %>%
  summarise(persons=max(persons)) %>%
  summarise(mean_persons=mean(persons)) %>%
  .$mean_persons -> mean_persons
```

理论均值为 600 人,一千次模拟实验的均值为 599.41,与理论均值相差 0.59,这里为了比较差异,保留了模拟均值的小数

第三问

```
final_data <- map(1:1000,poisson_gen,lambda = 50,maxtime = 12) %>%
    list_rbind() %>%
    group_by(id) %>%
    mutate(involve=sample(c(1,0),max(persons),T,c(0.9,0.1)),
        loss=involve*runif(max(persons),0,1500),
        casino_income=cumsum(loss)) %>%
    summarise(casino_income=max(casino_income)) %>%
    ungroup() %>%
    summarise(mean_income=mean(casino_income),
        var_income=var(casino_income))
```

理论平均收益为 405000,模拟得到的经验平均收益为 403813.27,二者相差 0.293%

理论方差为 405000000,模拟得到的经验方差为 401549790,二者相差 0.852%

第二题

第一问

t 时刻总共达到加油站的汽车数记为N(t),其为 Poisson 过程,再记第 i 个司机购买汽油的金额为 Y_i ,则营业额为 $X(t) = \sum_{i=1}^{N(t)} Y_i$

第二问

```
data <- read_xlsx("D:/预删除文件夹/大三下/随机过程/随机过程实验 6 数据.xlsx")
lambda <- mean(c(0.15,diff(data$AT)))
alpha <- mean(data$AS)^2/var(data$AS)
beta <- mean(data$AS)/var(data$AS)
```

矩估计结果为 $\lambda = 1.6584211$, $\alpha = 7.2928754$, $\beta = 0.2266443$,其中为了充分利用样本信息,基于时间间隔的指数分布进行 λ 的矩估计

第三问

```
diff_time <- data.frame(diff_time=c(0.15,diff(data$AT)))
ggplot(diff_time) +
    geom_histogram(aes(x=diff_time,y=after_stat(density)),fill="lightblue") +
    geom_density(aes(x=diff_time)) +
    xlab("时间间隔") +
    theme_bw()
```


样本的密度曲线大致与指数分布的理论密度曲线相近

六、 教师点评