# 1 Process Control System – Collection of data sheets

Sensors Analog Ultrasonic sensors

Flow sensors

Pressure sensor

Temperature sensor

Pressure gauge

Digital Capacitive proximity switch

Float switch

Float switch (overflow)

Actuators Analog Pump

Digital Proportional valve

Heating

2/2-way solenoid valve
Namur solenoid valve

Solenoid coil

Semi-rotary drives

Exhaust flow control valve
Limit switch attachment

Connection parts Interfaces Analog terminal

I/O-terminal

Signal converters PT100/voltage

Current/voltage

Frequency/voltage

Controlling units Industrial controller, Bürkert

Motor controller

Potentiometer

Passive elements Container

Pressure vessel

Fitting Pipe

Plexiglass pipe

Ball valve Service unit



Ultrasonic sensor

**Function** 

The operational principle of an ultrasonic sensor is based on the generation of acoustic waves and their detection following reflection on an object. Normally, atmospheric air acts as a carrier of the ultrasonic waves.

A sound generator is actuated for a short period of time and emits an ultrasonic pulse which is inaudible to the human ear. Following emission, the ultrasonic pulse is reflected on an object located within range and echoed back to the receiver. The duration of the ultrasonic pulse is evaluated electronically. Within a certain range, the output signal is proportional to the signal duration of the ultrasonic pulse. The object to be detected can be made of different materials. The shape or colour, solid, fluid or powdery condition do not have any or a very minimal effect on detection.

In the case of objects of smooth, even surface, the surface must be aligned vertically to the ultrasonic beam.

With this kind of sensor you are able to do two kinds of measurements: First you can measure the distance between the sensor and an object. The manufacturer setup of the sensor is ideal for this kind of measurement. Rising output signal at rising distance to the object.

But for measuring the filling level of a container a different setup is necessary because with a rising filling level the distance of the measured object (water surface) to the sensor is getting smaller.

Therefore the signal output was changed from rising to falling characteristics. Also the measurement range was changed so that we can get maximum output signal at maximum and the minimum output signal at minimum filling level.

See the explanations at pages 3 and 4 for detailed information.

# BE.SI.0193

# Ultrasonic sensor

# Technical data

| Parameter                                                                                              | Value                                                                       |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Protection class                                                                                       | IP 67                                                                       |
| Weight                                                                                                 | max. 67g                                                                    |
| Ambient temperature                                                                                    | -25 bis 70°C                                                                |
| Switching point error                                                                                  | ± 2,5 % (-25 to 70°C)                                                       |
| Rated operation voltage Ue                                                                             | 24 V DC                                                                     |
| Operation voltage range UB                                                                             | 2030 V DC (at 1220 V DC reduced sensitivity up to 20 %)                     |
| Permissible residual ripple                                                                            | 10%                                                                         |
| Idle current consuption I0                                                                             | < 50 mA                                                                     |
| Switch output (NC/NO) / Frequency output (FA) Rated operating current $\rm I_e$ Voltage drop $\rm U_d$ | 150 mA<br>3 V at 150 mA                                                     |
| Analog output (UA/IA)<br>Current range<br>Burden                                                       | 420 mA<br>0300                                                              |
| Sensor activ                                                                                           | Operating voltage or high impedance input current I <sub>E</sub> max. 16 mA |
| Sensor not activ                                                                                       | 03 V<br>Input current I <sub>E</sub> max 11 mA                              |
| Subject to change                                                                                      |                                                                             |

# Mounting & dimensions



figure of the sensor, all dimensions in mm

# Free space diagram



Free space

Free space at distance "x" around the sonic lobe axis has to be free of disturbing objects. Angular misalignment of 3° is for smooth surfaces.



There are two different setups of the sensors (manufacturer and Adiro). See the diagrams below for detailed information!

From April, 1<sup>st</sup>. 2004 all ultrasonic sensors, mounted in our products, will have the Adiro setup. Sensors with Adiro setup can be identified by a special label.

Switching range (manufacturer setup)



# BE.SI.0193

#### Ultrasonic sensor

# Switching range (Adiro setup)



# Adiro setup details

| Parameter              | Value                   |
|------------------------|-------------------------|
| Measurement range      | From: 50mm<br>To: 345mm |
| Max. measurement range | From: 46mm<br>To: 346mm |
| Output (current)       | 420 mA                  |
| Subject to change      |                         |

- A Beginning of switching range (programmable)
- E End of switching range

#### Connection

| 1: L+ 2030 V DC<br>3: L - 0 V |       |               |
|-------------------------------|-------|---------------|
|                               | 2     | 4             |
| 3RG623□-3□ <b>A</b>           | S _/L | ΧI            |
| 3RG623□-3□ <b>B</b>           | XI    | S             |
| 3RG623□-3□ <b>s</b>           | XI    | $U_A/I_A/F_A$ |

XI: Enable /sync

S: Output

U<sub>A</sub> / I<sub>A</sub> : Analog output

F<sub>A</sub>: Frequency output

# Pin assignment

- 1 24V (brown)
- 3 OV (blue)
- 4 analog output (black)

The connections are polarity-safe, short circuit proof and overload-proof. At occurrence of disturbances screened cables are recommended.



Synchronization by connection of the clamps XI (max. 10 BERO)

#### Analog ultrasonic sensor



Analog ultrasonic sensor



Schematic diagram of the analog ultrasonic sensor

- 1 Oscillator
- 2 Amplifier
- 3 Evaluating unit
- 4 Measuring transducer
- 5 External voltage
- 6 Internal constant power supply
- 7 Ultrasonic converter with active zone
- 8 Output: Current signal

#### **Function**

The operational principle of an ultrasonic sensor is based on the generation of acoustic waves and their detection following reflection on an object. Normally, atmospheric air acts as a carrier of the ultrasonic waves. A sound generator is actuated for a short period of time and emits an ultrasonic pulse which is inaudible to the human ear. Following emission, the ultrasonic pulse is reflected on an object located within range and echoed back to the receiver. The duration of the ultrasonic pulse is evaluated electronically. Within a certain range, the output signal is proportional to the signal duration of the ultrasonic pulse. The object to be detected can be made of different materials. The shape or colour, solid, fluid or powdery condition do not have any or a very minimal effect on detection. In the case of objects of smooth, even surface, the surface must be aligned vertically to the ultrasonic beam.

# 170710

#### Analog ultrasonic sensor

Design The ultrasonic sensor can be assembled on a mounting bracket using two connector

nuts. The sensor is of cylindrical design with a M30x1 thread.

Note During operation, please observe the polarity of the connected voltage. The

terminals are colour coded.

Operating voltage Positive terminal white

Negative terminal brown

Analogue output signal Current green

The sensor is protected against reverse polarity.

The sensor output supplies an impressed current and is loaded during short-circuit operation. Ideally, the output should be loaded with a resistance of  $R_L = 0 \ \Omega$ .

#### Technical data

| Parameter                                                       | Value                                  |
|-----------------------------------------------------------------|----------------------------------------|
| Permissible operating voltage                                   | 24 VDC                                 |
| Current consumption (without load)                              | < 35 mA                                |
| Load resistance                                                 | < 400                                  |
| Current output                                                  | 4 20 mA                                |
| Measuring range                                                 | 500 150 mm                             |
| Minimum distance between sensor and a laterally reflecting wall | > 75 mm                                |
| Resolution                                                      | 1 mm                                   |
| Operating/ambient temperature range                             | −20 +75 °C                             |
| Temperature drift                                               | 0,1%/°C                                |
| Linearity error                                                 | 0,2% FSD* (*FSD=full scale deflection) |
| Measuring pulse frequency                                       | 40 Hz                                  |
| Sound cone aperture angle                                       | Approx. 5°                             |
| Reverse polarity protection                                     | yes                                    |
| Degree of protection                                            | IP 65                                  |
| Materials (housing)                                             | Plastic                                |
| Weight                                                          | 0,250 kg                               |
| Subject to change                                               |                                        |



#### Characteristic curve

The oszillations at the beginning and the end of the characteristic curve are caused by the type of sensor construction. For the characteristic curve displayed, the distance between the sensor and the bottom of the container was adjusted to 330 mm.

Note

Please notice that the sensor is not linear over the whole measurement range. You should use this sensor only for measurements in the tank with filling levels between 80mm to 180mm. Outside this borders the sensor might differ from the characteristic curve.

Please see the figure below to see the connectivity between output signal and distance.

- A distance > 500 mm is not defined for measurement.
- A value of 20 mA is only theoretically measurable.

# 170710

# Analog ultrasonic sensor



Figure of distance an measurement range



Flow sensor, Type 3

Function

The transparent fluid admitted in the direction of the arrow is guided into a circular motion via the swirl plate in the measuring chamber and directed onto the lightweight triple vane rotor. The speed of the rotor is proportional to the flow rate and is detected without feedback via the built-in optoelectronic infrared system (diode and phototransistor).

The integrated amplifier supplies a steady square wave signal, whereby the signal level is dependent on the applied supply voltage (5 to 12 V DC).

Due to the particular design of the rotor, any gas bubbles (air bubbles) which may occur in the fluid, are not dissolved, but carried along with the fluid. Any assembly position is possible. The direction of flow is indicated by an arrow on the sensor housing. Stabilizing zones up or downstream of the measuring device are not necessary.

Flow rate fluctuations or pulsations do not have a negative influence on the resulting measurement.

A protective filter is fitted on the inlet side.

All parts of the measurement housing in contact with media are made of polyvinylidene fluoride (PVDF).

Design

The flow sensor is built into the pipework using adapters.

# 170711

# Flow sensor, Type 3

Note

During operation, please observe the polarity of the applied voltage. The terminals are colour coded.

| Operating voltage | Positive terminal     | white |
|-------------------|-----------------------|-------|
|                   | Negative terminal     | green |
| Output signal     | Square-wave<br>signal | brown |



# electrical schematic diagram

# Technical Data

| Parameter                                   | Value                         |
|---------------------------------------------|-------------------------------|
| Permissible operating voltage               | 5 12 VDC                      |
| Current consumption                         | 6 24 mA                       |
| Frequency range (output)                    | 26,66 800 Hz                  |
| Max. load                                   | 2,2 k                         |
| Signal tapping                              | Infrared (optoelectronic)     |
| K-Factor (pulse / dm <sup>3</sup> )         | 3200                          |
| Measuring range                             | 0,5 15,0 l/min                |
| Measurement reliability                     | ± 1% of meas. Value, at 20 °C |
| Linearity                                   | ± 1% at 20 °C                 |
| Viscosities                                 | Applicable up to 15 cST.      |
| Operating pressure                          | max. 6 bar at 80°C            |
| Standard-temperature range                  | 0°C +65 °C                    |
| Reverse polarity protection                 | yes                           |
| Materials: All media-contacting parts Seals | PVDF<br>Viton                 |
| Dimensions  Length  Connecting thread       | 47mm<br>M20x2                 |
| Electrical connection                       | Cable, 750 mm long            |
| Subject to change                           |                               |

Characteristic curves and dimensions



Measurement range



Leakage of pressure



Dimensions with B.S.P (British Standard Pipe) and N.P.T. (National Standard Taper Pipe type.

A: 12,7 mm L: 47 mm D: ½" d: 13 mm



Flow sensor, Type 2

**Function** 

The transparent fluid admitted in the direction of the arrow is guided into a circular motion via the swirl plate in the measuring chamber and directed onto the lightweight triple vane rotor. The speed of the rotor is proportional to the flow rate and is detected without feedback via the built-in optoelectronic infrared system (diode and phototransistor).

The integrated amplifier supplies a steady square wave signal, whereby the signal level is dependent on the applied supply voltage (5 to 12 V DC).

Due to the particular design of the rotor, any gas bubbles (air bubbles) which may occur in the fluid, are not dissolved, but carried along with the fluid. Any assembly position is possible. The direction of flow is indicated by an arrow on the sensor housing. Stabilizing zones up or downstream of the measuring device are not necessary.

Flow rate fluctuations or pulsations do not have a negative influence on the resulting measurement.

A protective filter is fitted on the inlet side.

All parts of the measurement housing in contact with media are made of polyvinylidene fluoride (PVDF).

Aufbau

The flow sensor is built into the pipework using adapters.

Hinweis

This design is: B.S.P. (British Standard Pipe)

# Flow sensor, Type 2

# Note

During operation, please observe the polarity of the applied voltage. The terminals are colour coded.

| Operating voltage | Positive terminal  | white |
|-------------------|--------------------|-------|
|                   | Negative Terminal  | green |
| Output signal     | Square-wave signal | brown |



# Electrical schematic diagram

#### Technical data

| Parameter                                   | Value                         |
|---------------------------------------------|-------------------------------|
| Permissible operating voltage               | 8 24 VDC                      |
| Current consumption                         | 18 30 mA                      |
| Frequency range (output)                    | 40 1200 Hz                    |
| Max. load                                   | 2,2 k                         |
| Signal tapping                              | Infrared (opto-electrical)    |
| K-Factor (pulse / dm <sup>3</sup> )         | 8000                          |
| Measuring range                             | 0,3 9,0 l/min                 |
| Measurement reliability                     | ± 1% f. meas. value, at 20 °C |
| Linearity                                   | ± 1% f. meas. value           |
| Viscosities                                 | Applicable up to 15 cSt       |
| Operating pressure                          | max. 10 bar                   |
| Standard-temperature range                  | -40 °C +85 °C                 |
| Reverse polarity protection                 | yes                           |
| Materials: All media-contacting parts Seals | PVDF<br>Viton                 |
| Dimensions  Length  Connecting thread       | 47mm<br>M20x2                 |
| Electrical connection                       | Cable                         |
| Subject to change                           | •                             |

Characteristic curves and dimensions



Measurement range



Leakage of pressure



Dimensions with B.S.P (British Standard Pipe) and N.P.T. (National Standard Taper Pipe type.

A: 12,7 mm L: 47 mm D: ½" d: 13 mm



Analog pressure sensor

Function

The piezoresistive analog pressure sensor with built-in amplifier and temperature compensator is fitted into a single aluminium housing. The pressure to be measured is transmitted to a piezoresistive element. The signal thus generated is amplified and output as voltage at the electrical connector.

Design

The analogue pressure sensor is fitted to the piping system via a G  $\frac{1}{2}$ " connector. The electrical connection is realized by means of a 3-pin socket.

Pin assignment



- 1 Supply voltage +24 VDC
- 2 Ground, 0 VDC
- 3 Voltage output: 0 VDC to 10 VDC

Installation

You have to consider the following during installation:

- In- and uninstall the sensor only unpressurized.
- Screw the sensor with a torque of 45Nm. The fitting position of the sensor is arbitrary.
- Avoid elektrostatic discharge! Connect to a ground wire!

The sensor is calibrated factory-made and is maintenance-free.

Note

Take care by connecting the sensor with the Bürkert-controller!

By switching the station off a vacuum can be produced temporarily. The analogue pressure sensor would deliver a negative output voltage. This situation would cause an error at the controller.

To avoid this error there has just a free wheeling diode to be installed to inhibit the negative voltage.

See the following connection diagram for details.



Connection diagram for installing the free wheeling diode.

Characteristic curve



Voltage output in dependence of the pressure

# **Technical Data**

| Parameter                                            | Value                                                       |
|------------------------------------------------------|-------------------------------------------------------------|
| Measuring range                                      | 0 mbar to 100 mbar                                          |
| Overload                                             | 2,5 bar                                                     |
| Supply voltage UB                                    | 13 VDC to 30 VDC                                            |
| Output signal                                        | 0 VDC to 10 VDC                                             |
| Current consumption                                  | max. 25 mA at current output<br>max. 5 mA at voltage output |
| Linearity error                                      | ±0,5% f. s.                                                 |
| Response time                                        | 1 ms                                                        |
| Repeatability                                        | ±0,1% v. f. s.                                              |
| Medium                                               | Water                                                       |
| Membrane                                             | Stainless steel                                             |
| Standard ambient temperature                         | 0 °C to +65 °C                                              |
| Electrical connection                                | 3-pin socket                                                |
| Process connection                                   | G ½" external screw thread, stainless steel                 |
| Weight                                               | 250 g                                                       |
| Temperature range<br>Media<br>Electronics<br>Storage | -25°C to +100°C<br>-25°C to +80°C<br>-40°C to +100°C        |
| Subject to change                                    |                                                             |



Dimension diagram

#### Pressure sensor



Pressure sensor

#### Schematic diagram

Function The pressure measurement transducer uses ceramic measurement cell as sensor.

The electronics transduces the measured signal into output signals of 4..20mA,

0..20mA or 0..10V.

Because of its robust design, this sensor is for use in rough industry environment as  $\frac{1}{2} \int_{\mathbb{R}^{n}} \frac{1}{2} \int_{\mathbb{R}^{n}} \frac{1}{$ 

well.

The maximum process temperature range must not exceed 100°C.

Design To protect the electronics against vibrations and humidity it is infused.

The zero point can be adjusted with an integrated potentiometer. It can be reached

by removing one housing screw.

The sensor can be connected with 2 wire or 3 wire technology.

The pressure compensation is realized by a hole at top of the sensor.

# BE.EL.0600

#### Pressure sensor

Note

Watch the polarity of connected voltage supply.

Pin assignment

| Parameter                        | Value                             |
|----------------------------------|-----------------------------------|
| 2-wire technology (420mA)        |                                   |
| 1                                | positive terminal                 |
| 2                                | negative terminal                 |
| 3                                | not used                          |
| Earthing                         | connected                         |
| 3-wire technology (020mA / 010V) |                                   |
| 1                                | output signal                     |
| 2                                | negative terminal / output signal |
| 3                                | positive terminal                 |
| Earthing                         | connected                         |
| Subject to change                |                                   |

# Technical diagram



# Technical data

| Parameter                                                                                                                                                              | Value                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Electrical connection                                                                                                                                                  | Push-in elbow connector to DIN 43650                |
| Protection class                                                                                                                                                       | IP 65                                               |
| Process connection                                                                                                                                                     | G 1/2                                               |
| Parts in contact with measured substance                                                                                                                               | Ceramic, stainless steel, NBR-sealing ring          |
| Measurement cell                                                                                                                                                       | Ceramic cell                                        |
| Temperature ranges Process temperature (at max. environment temperature of 50°C) Storage temperature permissible environment temperature compensated temperature range | -25°C+100°C<br>-40°C+85°C<br>-25°C85°C<br>-10°C55°C |
| Temperature influence<br>on zero point<br>on range                                                                                                                     | <0,25% f.E./10K<br><0,15% f.E./10K                  |
| Power supply nominal voltage voltage range max. permissible voltage supply                                                                                             | 24VDC<br>11VDC40VDC<br>40VDC                        |
| Signal output 2-wire technology 3-wire technology                                                                                                                      | 420mA<br>020mA or 010V                              |
| Current limiting at output signal                                                                                                                                      | At 110% of pressure range                           |
| Adjustment range                                                                                                                                                       | Zero point ± 10%                                    |
| Characteristic curve deviation<br>(Linearity, hysteresis, repeatability)                                                                                               | <0,5% f.E. (zero point adjustment)                  |
| Response time                                                                                                                                                          | <3ms                                                |
| Load R <sub>L</sub> max                                                                                                                                                | $(U_{\sup ply} - 11)/0,02$                          |
| Load at signal output 010V                                                                                                                                             | >2,5 k                                              |
| Weight                                                                                                                                                                 | approx. 300g                                        |
| Noise immunity                                                                                                                                                         | to DIN 50082                                        |
| Subject to change                                                                                                                                                      |                                                     |

#### Temperature sensor



Temperature sensor



Function

The temperature sensor contains a platinum resistance thermometer with interchangeable measuring element.

The sensor consists of a shield tube, a connection head and the measuring element. During installation, ensure as accurately as possible that the sensor accepts the temperature to be measured. Heat absorbed or given out by the sensor is to be avoided.

Design

The temperature sensor is screwed into a threaded hole in the container.

Resistance default value of platinum resistance thermometer Pt100 – as a function of temperature:

| Temperature [°C]       | -100,00 | 0,00   | 100,00 | 200,00 |
|------------------------|---------|--------|--------|--------|
| Basic value $[\Omega]$ | 60,25   | 100,00 | 138,50 | 175,84 |



Characteristic curve of the PT100- sensor from -100°C to +200°C

# **Temperature sensor**

Note

The permissible flow velocity for water is 3 m/s.

To disassemble the sensor there is no need to remove the whole element out of the container. Just remove the two grub screws (see figure below). After that you are able to remove the thermo element very easily.



# Disassembly of the sensor

- 1 Grub screw (2x)
- 2 Shield tube
- 3 Thermo element

| Parameter                                                        | Value                              |
|------------------------------------------------------------------|------------------------------------|
| Design                                                           | to DIN 43 763                      |
| Measurement range                                                | -50 °C +150 °C                     |
| Measurement resistor                                             | Pt 100                             |
| Tolerance<br>0°C<br>100°C                                        | +/- 0,12 Ω<br>+/- 0,30 Ω           |
| Materials:<br>Casing<br>Tube protector                           | stainless steel<br>stainless steel |
| Dimensions<br>Length<br>Measuring element length<br>Screw thread | 100 mm<br>145 mm<br>G ½"           |
| Electrical connection Subject to change                          | Cable, 750 mm long                 |

Pin assignment



Die nachfolgende Tabelle enthält die Darstellung des digitalisierten Messwertes für den Temperaturbereich Standard des Gebers.

Simatic S7 range of values

| Temperature range<br>Standard PT 100<br>850°C | decimal unit | hexadecimal unit  | Range            |
|-----------------------------------------------|--------------|-------------------|------------------|
| >1000,0                                       | 32767        | 7FFF <sub>H</sub> | Overflow         |
| 1000,0                                        | 10000        | 2710 <sub>H</sub> |                  |
| •                                             |              | •                 | Oversteer        |
| 850,1                                         | 8501         | 2135 <sub>н</sub> |                  |
| 850,0                                         | 8500         | 2134 <sub>H</sub> |                  |
|                                               |              |                   | Nominal range    |
| -200,0                                        | -2000        | F830 <sub>н</sub> |                  |
| -200,1                                        | -2001        | F82F <sub>H</sub> |                  |
|                                               |              |                   | Understeer range |
| -243,0                                        | -2430        | F682 <sub>н</sub> |                  |
| <-243 <b>,</b> 0                              | -32768       | 8000 <sub>H</sub> | Unterlauf        |

# Pressure gauge



Pressure gauge



Symbol

Description

This pressure gauge (to EN 837-1) is designed for pressure measurement and display in controls.

The maximum pressure at continuous operation (dead load) is at 3/4 of the full scale value. The Pressure gauge is free of paint-wetting impairment substances.

# 162844

# Pressure gauge

# Technical data

| Parameter                                                        | Value                                                         |
|------------------------------------------------------------------|---------------------------------------------------------------|
| Nominal diamenter                                                | 63 mm                                                         |
| Indicating range                                                 | 01 bar                                                        |
| Operating pressure                                               | 00,7 bar                                                      |
| Medium                                                           | Liquid and gaseous media (not permissible: oxygen, acetylene) |
| Design                                                           | Bourdon tube pressure gauge                                   |
| Connection                                                       | G1/4(Type MA-401/8-EN: R1/8)                                  |
| Anschlusslage                                                    | Rear side (centrically)                                       |
| Temperaturbereich                                                | -20°C+60°C                                                    |
| Measuring device class (DIN 16005/EN 837-1)                      | 2,5                                                           |
| Vibration resistance (DIN IEC 68-2-6/EN 837-1)                   | 5 m/s <sup>2</sup> at 10 150 Hz                               |
| Resistance to shocks<br>(DIN IEC 68-2-27/EN 837-1)               | 150 m/s <sup>2</sup> at 11 ms                                 |
| Protection class                                                 | IP 43                                                         |
| Materials Housing Window shield Dial Labelling Connection thread | PS, black SAN ABS white black, blue Brass                     |
| Subject to change                                                |                                                               |

#### Capacitive proximity sensor



Capacitive proximity sensor



graphical symbol

**Function** 

The operational principle of a capacitive proximity sensor is based on the evaluation of the change in capacitance of a capacitor in an RC resonant circuit. The capacitance increases, when an object approaches the proximity sensor. This leads to a change in the oscillating action of the RC circuit which can be evaluated. The change in capacitance largely depends on the distance, the dimensions and the dielectric constant of the respective material.

The proximity sensor has a PNP output, i.e. the signal line is switched to positive potential in the switched status. The switch is designed in the form of a normally open contact.

The load is connected between the sensor signal output and earth. A yellow light emitting diode (LED) indicates the switching status.

The capacitive proximity sensor cannot be flush fitted.

Design

The capacitive proximity sensor can be attached via an angle bracket and two lock nuts. The sensor is of cylindrical design with an M18x1 thread.

# Capacitive proximity sensor

Note

During operation, please observe the polarity of the applied voltage. The terminals are colour coded.

| Parameter                                                   | Value         |
|-------------------------------------------------------------|---------------|
| Operating voltage<br>Positive terminal<br>Negative terminal | brown<br>blue |
| Load output                                                 | black         |



# Schematic diagram

- 1 Oscillator
- 2 Demodulator
- 3 Trigger state
- 4 Switching status display
- 5 Output stage with protective circuit
- 6 External voltage
- 7 Internal constant voltage supply
- 8 Capacitor with active zone
- 9 Switch output

# Capacitive proximity sensor

# **Technical Data**

| Parameter                                           | Value                      |
|-----------------------------------------------------|----------------------------|
| Permissible operating voltage                       | 10 55 VDC                  |
| Switch output                                       | PNP, Normally open contact |
| Nominal switching distance                          | 2 8 mm                     |
| Hysteresis (at nominal switching distance)          | 3 15 %                     |
| Maximum switching current                           | 200 mA                     |
| Maximum switching frequency                         | 300 Hz                     |
| Current consumption during idling (at 55 V)         | 7 mA                       |
| Permissible ambient operating temperature           | 20 °C +70 °C               |
| Degree of protection                                | IP 65                      |
| Reverse polarity protection, short circuit strength | yes                        |
| Materials (housing)                                 | Thermoplast                |
| Weight                                              | 0,20 kg                    |
| Electrical Connection                               | Cable, 2000 mm long        |
| Subject to change                                   |                            |

#### Float switch



Float switch

**Function** 

This float switch is designed to be mounted lateral into compact containers. Because this sensor is made from versaplast, it can be used with temperatures up to 150°C. That are up to 50% more than sensors made from other plastics.

Versaplast is a special development of the sensor-manufacturer.

Versaplast is usable with water, oil and all chemicals where nylon could be used with, too.

This switches are ideal for the use in the food industry,

The switch is ideal for the use in food industry, medical technology, for motor oil and water treatment.

With a long life the sensor delivers exact and repeatable results in control of high, low and other levels.

The mounting is done with a  $\frac{1}{2}$ " NPT external thread. The switch works in a range of  $-40^{\circ}$  C to  $150^{\circ}$  C and a pressure 7 bar/20° C.

The method of operation is simple and is based on the level change of he liquid.

The magnet integrated into the floating body operates a Reed-switch hermetically closed into the housing.

Through rotation of the switch from 180° the Reed-switch is used as a normally open switch or a normally closed switch.

Arrows on the housing ease the mounting. The electrical connection is done with a 60 cm long cable.

The sensor is mounted from inside of the container.

# BE.PC.0028

#### Float switch

# Technical data

| Parameter                   | Value           |
|-----------------------------|-----------------|
| Materials                   |                 |
| Floating body               | Versaplast      |
|                             | Polypropylen**  |
|                             | Nylon*          |
| Cable                       | PVC             |
| Temperatures                |                 |
| Versaplast                  | -40°C bis 121°C |
| PP                          | -40°C bis 107°C |
| Nylon                       | -40°C bis 121°C |
| Min. density of liquids     |                 |
| Versaplast                  | 0,80            |
| PP                          | 0,55            |
| Nylon                       | 0,65            |
| Operating pressure          | 7 bar           |
| Reed-switch                 | 20 VA           |
| Cable (length approx. 0,6m) | 22 AWG          |
| Way of floating body        | 55 mm           |
| Protection to DIN 40050     | IP64            |
| Weight (approx.)            | 80g             |
| Subject to change           |                 |

<sup>\*</sup>Not appropriate for long use in water. \*\* Not appropriate for mineral oil.

#### Dimensons



Lg: 101,6 mm

L: 69,8 mm

1) 610 mm

2) Seal Buna ,N'

3) 5/8"

4) Lock nut, Nylon

# Mounting

By rotation of the floating body to 180 degree the switching function can be reversed. When the arrow on the housing points to the top, the switching function is normally opened.



If the floating body is sinking with the level of the liquid the switching function is normally opened.



If the floating body is rising with the level of the liquid the switching function is normally closed.

# Electrical pin assignment

| Parameter         | Value                |
|-------------------|----------------------|
| Positive terminal | red<br>plug-pin: 1   |
| Negative terminal | black<br>plug pin: 3 |
| Pin 2 is not used |                      |



Float switch

Function

This float switch is optimally usable for flat tanks or at a shortage of space. It is designed only for vertical mounting.

The measured medium pushes floating body upwards and activates a switch at a defined position.

Technical data

| Parameter                                          | Value                                               |
|----------------------------------------------------|-----------------------------------------------------|
| Materials<br>Switch pipe<br>Floating body          | Polysulfon<br>Polysulfon                            |
| Temperature<br>Cable<br>Standard wire              | -40°C+80°C<br>-40°C+107°C                           |
| Immersion depth of the floating body at density 1: | ~15 mm                                              |
| Operating pressure                                 | 3 bar                                               |
| Min. density of the liquid:                        | 0,75                                                |
| Reed- switch-Type:                                 | SPST 50 VA cable<br>SPST 20 VA wire                 |
| Electrical connection (Length approx. 0,6 m)       | Cable: 0,34 mm <sup>2</sup> PVC<br>Wire: AWG 22 PVC |
| Protection to DIN 40050                            | IP64                                                |
| Weight (approx.)                                   | 20g                                                 |
| Screw thread                                       | 1/8" NPT                                            |
| Subject to change                                  | •                                                   |

# BE.PC.0027

# Float switch (overflow)

#### Dimensions



 $L_1=$  Switch activation when the nominal level is reached (related to the specific Weight 1,0)

Polysulfon switch: 19,0 mm

# Electrical pin assigment

| Parameter               | Value                |
|-------------------------|----------------------|
| Positive terminal       | red<br>Plug-pin: 1   |
| Negative terminal       | black<br>Plug-pin: 3 |
| Plug pin-2 ist not used |                      |



Pump

Typical operational area

- Circulating pump for water, antifreezing mixture in heating installations in cars, boats, caravans etc.
- Circulating pump for cooling the freshwater in caravans.
- All-purpose-pump where no self-priming is needed.

Installation instruction

The pump is a self-priming centrifugal pump and has to be flooded before operation. Avoid the pump running dry. Running the pump dry for a short time doesn't damage the pump, if the time is shorter than 30 min. After 30 min. the pump will be useless. While running the pump dry, a special noise can be heard.

## Attention: The pump always has to run in the prescribed direction.

The motor is suitable for continuous operation. The pump must not be used for sea water or contaminated fluids.

The pump can be mounted horizontally or vertically. If mounted vertically, the motor must be mounted above the pump body. If mounted horizontally, the output of the pump must point upwards.

#### Pump

## Design

The pump is attached via a ring clamp, which is mounted on the profile plate by means of two screws and T-head nuts.



## Exploded view of the pump

- 1 Housing, ø 20
- 2 Blade wheel
- 3 O-ring seal
- 4 Screw
- 5 Engine mounting
- 6 Shim
- 7 Driveshaft
- 8 Seal
- 9 Solenoid housing

#### Note

During operation, please observe the polarity of the applied voltage. The terminals are colour coded.

| Operating voltage | Positive terminal | red   |
|-------------------|-------------------|-------|
|                   | Negative terminal | black |

The max. length of the cable is 44m at:

Cable: 1,0mm<sup>2</sup>

Voltage supply: 24V

## Technical data

| Parameter                              | Value                                          |
|----------------------------------------|------------------------------------------------|
| Pump housing                           | Plastic (PPA, GF 30%)                          |
| Driveshaft                             | Stainless steel                                |
| Wear plate                             | Stainless steel                                |
| O-ring seal                            | EPDM                                           |
| Blade wheel                            | Corpus: Plastic (PPS, GF 40%)  Magnet: Ferrite |
| Magnet housing                         | Plastic (PSU, GF 30%)                          |
| Motor flange                           | Plastic (PA66, GF 30%)                         |
| Motor housing                          | Stahl, eisenzinkbehandelt, schwarzchromatiert  |
| Motor cover                            | Plastic (PA 66, GF 30%)                        |
| Screws                                 | Steel                                          |
| Motor                                  | permanent magnet motor 12/24V                  |
| Motor mounting                         | Aluminium                                      |
| Protection class                       | IP67 (DIN 40050)                               |
| Connection                             | 20mm (¾4")                                     |
| Noise suppression                      | EN 55014                                       |
| Temperature ranges<br>Fluid<br>Ambient | -40°C bis + 100°C<br>-40°C bis +70°C           |
| Max. system pressure                   | 2,5 bar                                        |
| Voltage supply                         | 24 V                                           |
| Power                                  | 26 W                                           |

# Pump

# Pressure of power

| Pressure (bar)                                    | Flow(I/min) | Current at 24V (A) |
|---------------------------------------------------|-------------|--------------------|
| 0,1                                               | 26          | 1,1                |
| 0,2                                               | 19,5        | 1,0                |
| 0,3                                               | 9,0         | 0,75               |
| Measured values are at a connection of ¾" (20 mm) |             |                    |
| Subject to change                                 |             |                    |

#### Proportional valve



Proportional valve

Function

The proportional valve facilitates flow control of neutral gases and fluids. It can be used as a remote controllable final control element or in closed control loops.

The proportional valve is a directly actuated 2/2- way valve. The valve piston is lifted of its seat as a function of the solenoid coil current and releases the flow from connection 1 to connection 2. Once the valve is de-energised, it is closed via a reset spring.

Design

The proportional valve is mounted on an angle bracket and can be attached to an MPS profile plate using a screw and T-head nut.

# Proportional valve

## Technical data of the valve

| Parameter                                                              | Value                                       |
|------------------------------------------------------------------------|---------------------------------------------|
| Permissible operating voltage (to be connected to control electronics) | 24 VDC                                      |
| Power consumption (solenoid)                                           | 8 W                                         |
| Rated duty                                                             | Continuous operation                        |
| Degree of protection                                                   | IP 65f                                      |
| Nominal size                                                           | 6 mm                                        |
| Operating pressure                                                     | 0 to 0.5 bar                                |
| Ambient operating temperature                                          | max. +55 °C                                 |
| Response sensitivity                                                   | 0,5 % of final value                        |
| Repetition accuracy                                                    | 0,5 % of final value                        |
| Flow media                                                             | Neutral media<br>e.g. water, compressed air |
| Temperature of medium                                                  | 0 °C to +65 °C                              |
| Materials<br>Housing<br>Internal valve parts<br>Seal                   | Brass<br>Stainless steel<br>FPM             |
| Dimensions  Height with plugged in control electronics  Length         | 108 mm<br>46 mm                             |
| Pipe connection                                                        | G 1/4                                       |
| Electrical connection                                                  | Pins for the control electronics            |
| Subject to change                                                      |                                             |

Technical data of the control electronics

| Parameter                         | Value                                                  |
|-----------------------------------|--------------------------------------------------------|
| Permissible voltage supply        | 24 VDC bis max. 28 VDC                                 |
| Residual ripple                   | max. 10 %                                              |
| Input signal                      | 0 10 V, 0 20 mA, 4 20 mA                               |
| Input resistance                  | 16,8 kΩ                                                |
| Power consuption                  | 0,5 W                                                  |
| Current consumption at approx 24V | Approx. 18mA                                           |
| Ambient operating voltage         | max. +55 °C                                            |
| Material (Housing)                | Plastic                                                |
| Electrical connection             | Screwed cable connector 7mm screw terminals in housing |
| Subject to change                 | <u>-</u>                                               |

#### Proportional valve

#### Pin assignment



- 1 Protective earth (PE)
- 2 Voltage supply (24 28 VDC)
- 3 Common ground (blue)

(brown)

- 4 Nominal signal input (black)
- 5 Monitor output

#### Setup potentiometer

- R<sub>1</sub> minimal flow (point of origin)
- R<sub>2</sub> maximum flow (gain)
- R<sub>3</sub> Ramp time (ascending and descending equal)

## Switch and display

- S<sub>1</sub> Switch to interchange the triggering frequency
  - a (on) middle frequency
  - b (off) low frequency
- S<sub>2</sub> Switch to deactivate the point of origin-switching
  - a (on) point of origin deactivation inactive
  - b (off) point of origin deactivation active

#### LED display

Shines when the solenoid coil is energised

LED does not shine when:

- The voltage supply is missing
- Input signals are less 2 %
- Active point of origin deactivation is enabled

Notes

The point of origin deactivation guarantees the closing of the valve at input signals <2% of the maximum value.

Therefore the solenoid coil current is set to zero electronically, when the input signal is below 2% (e.g. 0,2 V at nominal signal input 0 .. 10 V) (See figure below) The point of origin deactivation can be activated by a DIP-switch.



Characteristic curve

Notes for installation

#### Closed loop flow control

- Setup of the switches S1 down (ON) S2 up (OFF)
- Setup of the potentiometers R1 with a Bürkert- controller connected

The container has to be filled to the lowest level. The setup of the controller has to be done already.

Switch on the pump and the valve.

Close the hand valve between pump and tank.

Setup Y(signal power out) 10%

Push button as long until Y appears in the upper line.

The button in the upper right corner should not shine, if it does please push again. After that setup Y with the arrow buttons.

Turn R1 CW carefully. Stop as soon as the water starts to flow. (Display

Flowmeter I at the controller)

After that turn CCW carefully.

#### Proportional valve

#### Pressure control

- Switch position
   S1 down (ON)
   S2 up (OFF)
- Setup of the R2 Potentiometer in St2:

Set Y to 90 %. Turn R2 CW, Stop as soon as the value of I doesn't rise anymore (max. flow approx. 2.5 m/s).

Precision adjustment: adjust CCW to exact point of reverse.

Control R1 once again!

The setup of R2 can change the value of R1 as well!

After this setup, setup the controller to remote mode.

Press ENTER and SELECT for min. 5 sec. At the same time, then press SELECT 6 times, the display shows extras.

Press  ${\sf ENTER}$  , the display shows speech. Press  ${\sf SELECT},$  serial is shown.

**ENTER Local SELECT** 

Remote ENTER and ENTER ENTER Serial SELECT\*7time. End a ENTER Exreas SELECT End a ENTER.

CW= clockwise

CCW= counterclockwise

#### Heating



Heating

Function The heating unit is operated using 230 VAC. The conducting connections are within

the earthed housing.

The heating unit is switched on and off via a relay. The control voltage of the relay is

24 VDC.

Design The heating unit is screwed into a 50 mm hole in the container by means of a

hexagon heat.

Note Do not use the heating unit unless the heating element is fully immersed in the fluid.

Technical data of the heating

| Parameter                                     | Value                                               |
|-----------------------------------------------|-----------------------------------------------------|
| Heating capacity                              | 1000 W / 230 VAC                                    |
| Control voltage                               | 24 VDC                                              |
| Dimensions<br>Heating element<br>Screw thread | 150 mm x Ø 20 mm<br>G 1 ½″                          |
| Materials (casing –heating element)           | Stainless steel                                     |
| Connection Heating unit Control connection    | Mains cable with plug, 2000 mm long<br>3-pin socket |
| Subject to change                             |                                                     |

## Heating

## Technical data of the relay

| Parameter                     | Value            |
|-------------------------------|------------------|
| Control voltage               | 24 VDC           |
| Max. coil temperature         | 140°C            |
| Max. coil capacity            | 2,8W             |
| Nominal operating temperature | -55°C+85°C       |
| Housing                       | Unsealed housing |
| Subject to change             |                  |

## Pin assignment

| Parameter                  | Value                |
|----------------------------|----------------------|
| Negative terminal          | blue<br>Plug-pin: 2  |
| Positive terminal (signal) | black<br>plug-pin: 3 |

#### Note

Pin 1 is not used

## Dimensions of the relay



#### 2/2-way solenoid valve



2/2-way solenoid valve



Graphical symbol

Function The 2/2-way solenoid valve is a direct controlled valve. If the coil is out of current,

the valve is closed by a spring.

Design The 2/2-way solenoid valve is mounted with plug connectors into the piping.

Mounting position The mounting position of the valve is arbitrary, preferably drive unit to the top.

Medium Neutral gases and liquids as e.g. compressed air, town gas, water, hydraulic oil,

steam, technical vacuum.

Electrical connection Plug vanes to DIN 43650 A for a connector socket Type 2508.

Note For a firm attachment, a pipe clamp may be fitted in front and behind the valve.

## 2/2-way solenoid valve

## Technical data

| Parameter                                                                                                                                    | Value                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Connection                                                                                                                                   | 15 mm                                        |
| Nominal size                                                                                                                                 | 6 mm                                         |
| Pressure range                                                                                                                               | 00,5 bar                                     |
| Temperture range (with plastic connectors)                                                                                                   | 0+65 °C                                      |
| Sealing materials                                                                                                                            | FPM, EPDM, PTFE/Graphit                      |
| Media temperatures<br>at FPM<br>at EPDM<br>at PTFE/Graphit                                                                                   | -10 to +100°C<br>-30 to + 120°C<br>to +180°C |
| Operating voltage                                                                                                                            | 24 VDC ±10%                                  |
| Switching time(Measured at the valve output at 6 bar and +20°C)  Opening, pressure built-up 0 to 90%  Coloding, pressure reducing 100 to 10% | 20 ms<br>30 ms                               |
| Switching frequency                                                                                                                          | Approx 1000/min.                             |
| Viscosity of usable media                                                                                                                    | max. 21 mm²/s                                |
| Powerconsumption                                                                                                                             | 8 W                                          |
| Kv-Value of water (Measurement at +20°C, 1 bar at the valve input and open (free) output                                                     | 0,55 m³/h                                    |
| Subject to change                                                                                                                            |                                              |



# Cutaway view



## Plug

## **Electrical connection**



- 1 24V (black)
- 2 Ground(black)
- 3 PE (green/yellow)



Solenoid valve

#### **Function**

Through electrical reversing the valve pressurises the following piping alternately or simultaneously.

- The solenoid vale is for controlling pneumatical actuators.
- Only use the valve with pressurised air of quality class 5 to ISO 8573-1. The usage of liquids and gases is not intended.
- The solenoid valves can be used with the specified operating conditions\*) and in dependance of the used explosion-proof solenoid coils in the zones 1 and 2 of hazardous gas-atmosphere.

#### Warning

The explosion-proof specified solenoid valves are only for the use with explosion-proof specificated solenoid coils in hazardous areas to the specified operating conditions\*)

If a valve of explosion-proof category 2 G is combined with a solenoid coil of explosion-proof category 3 GD the whole system has an explosion-proof category 3  $\,\mathrm{G}$ 

If a valve of explosion-proof category 2 G is combined with a solenoid coil of explosion-proof category 2 GD the whole system has an explosion-proof category 2 G

If a valve of any explosion-proof category is combined with a solenoid coil with no explosion-proof category the whole system has no explosion-proof category.

Note

The draw-in of air from explosion-proof areas is not intended.

Use the valve only in original status without own-done changes. If changes are not done by the manufacturer the certification is no longer valid.

Commissioning

Watch the specifications on the rating plate. Mounting and commissioning only by authorised persons to the instruction manual.

#### Solenoid valve

An electro static discharge can cause electrical sparks.

Use only piping with max Ø of 20mm.

For equipotential bounding connect all materials from metal and earth the whole system.

Comply with all national and international specifications. For manifold assembly use the specified common supply manifolds.

The mounting of the solenoid coils at the electrical controlled valves is done by spring washer and a knurled nut. The tightening torque is 1...1,5 Nm

Impacts on the valve (with corrodied metals or light metals) can cause electrical sparks. Never use tools with corridied surfaces. Protect the product from downfalling subjects. Only use specified accessories\*)

Avoid mechanical stress. Close unused connections with blanking plugs or slot covers.

Maintanence

Dust deposits on heated surfaces are simply inflammable Clean the product continuousliy. Maintenance the valve after 5 mill. cycles or 5 month.

| Parameter                                             | Wert                                                                                                                                                                                      |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Switching interrupts  Deceleration of switching times | Control the     swithing fuction of the valve if there     are fluctuations of the current     consumption , signal errorsor signal     delays.      Avoid the contamination of the valve |
|                                                       | with dirt paricles .  3. Exchange the valve                                                                                                                                               |
| Audible Leakage at the connections                    | Control the tightening of the connections                                                                                                                                                 |
| Incomplete pressurising of an outlet                  | Ensure a constant pressure in the system                                                                                                                                                  |
| Subject to change                                     |                                                                                                                                                                                           |

# Schematic diagrams



## Cutaway view

1: Supply ports

3,5: Exhausts

12: auxiliary pilot air connection

#### Solenoid valve



#### Dimension

- [1]: Solenoid coil 360° turnable
- [2]: Drilled hole for coding plug
- [3]: Manually operating switch, 180° turnable
- [4]: Connection plug, 180° turnable

## **Electrical connection**

The assignment of the two pins is interchangeable.

#### Solenoid coil



Solenoid coil

**Function** 

This solenoid coil is characterised by a less power consumption and a less heating. It is in compliance with VDE regulation 0580, insulation class F. They can be replaced without interrupting the pneumatic circuit.

The solenoid coils can be used for manifold mounting. The minimum clearance from coil to coil is 5mm.

Dimensions



- [1]: The solenoid coil can be rotated 360° on the armature tube.
- [2]: Plug pins
- [3]: Tightening torque for the securing nut: min. 100 Ncm, max. 150 Ncm

## Solenoid coil

#### Technical data

| Parameter                       | Value                                                                     |
|---------------------------------|---------------------------------------------------------------------------|
| Voltage supply                  | 24 VDC                                                                    |
| Permissible voltage fluctuation | ±10%                                                                      |
| Power consumption               | 5,65 W                                                                    |
| Duty cycle                      | 100%                                                                      |
| Protection class to EN 60 529   | IP 65 mit plug socket                                                     |
| Electrical connection           | Moulded-in cable 3x0,75 mm², 1 m or 5 m long (other lengths upon request) |
| Ambient temperature             | -5 +40 °C                                                                 |
| Temperature of medium           | -5 +40 °C                                                                 |
| Minimum pickup time             | 12 ms                                                                     |
| Materials                       | Steel, Cu, Al, epoxy resign                                               |
| Weight                          | 0,175 kg                                                                  |
| Subject to change               |                                                                           |

## Electrical connection

| Parameter             | Value       |
|-----------------------|-------------|
| Positive pin          | plug-Pin: 1 |
| Negative pin          | plug-Pin: 2 |
| Protective earth (PE) | plug-Pin: 3 |

The positive and the negative connection can be interchanged. The connection to protective earth depends on the application.



Copar quarter turn actuator



**Function** 

Festo Copar quarter turn actuators are ideally suited for use in water, sewage, industrial process water and silage technology, as well as the paper and bulk goods industry. Sturdy, but nevertheless accurate for high precision positioning, especially with ball valves and plug valves, as well as shut-off and butterfly valves.

- Direction of rotation can be optionally changed from clockwise to anticlockwise
- Torques graduated in accordance with ISO
- End-position sensor and limit switch module can be mounted directly to the drive
- Fast or slow valve actuation
- Suitable for manual on-site use, as well as automatic operation
- Resistant to overload and continuous loads
- Can be used as a variable-speed actuator in combination with an electropneumatic positioning controller
- Opening and closing are controlled with a flange-mounted solenoid valve with Namur port pattern
- Highly corrosion resistant
- Optionally adjustable end positions for sizes 8 ... 100, facilitating adjustment ranges of -4° ... +8° and 74° ... 98°
- Port pattern to Namur (VDI/ VDE 3845) for attaching solenoid valves



Port pattern to Namur

## Copar quarter turn actuator

Note There are various designs of actuators, so the figures above can differ to your

design.

Mounting The mounting position is arbitrary.

Connection options



- [1] End-position sensing attachment (see data sheet limit switch attachment)
- [2] Solenoid valves with port pattern to VDI/VDE 3845



Flange connection

#### Sizing information

#### Breakaway torque for the process valve

The torque required to facilitate reliable opening of the valve's shut-off device (disc in a butterfly valve, ball in a ball valve ...) under the specified operating conditions (medium, temperature, inline pressure, etc.).

The main operating conditions must be known before the breakaway torque can be specified by the valve manufacturer or correctly derived from existing tables:

- Medium
- Temperature, concentration, viscosity of the medium
- · Gas or liquid, lubricating or nonlubricating
- Presence of particles that form deposits or caking
- · Differential pressure at the process valve
- Required safety factor

If no safety factor is specified, a factor of at least approx. 1.2 (20% safety) should be taken into account when sizing the quarter turn actuator.

#### Compressed air supply

The minimum compressed air pressure available at all times at the valve to be sized forms the basis for sizing (worst-case analysis). This gives a minimum torque of 120 Nm for the quarter turn actuator. The torque tables for double-acting quarter turn actuators propose the actuator with the designation DRD-14-F05 from the Copar series. This actuator has a torque of 143 Nm at compressed air pressure of 6 bar.



Relationship of the actuator to the butterfly torque valve curve

 $0^{\circ}$  = Valve closed  $90^{\circ}$  = Valve open

Md1 = Breakaway torque Md2 = Closing torque

## Copar quarter turn actuator

This torque is constant across the entire swivel range (0°  $\dots$  90°) thanks to the rackand-pinion design and is therefore sufficient for the valve.

Type designation



#### Technical data

| Parameter                                                                               | Value                                                                        |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Design                                                                                  | Piston zylinder, double-acting                                               |
| Operating pressure                                                                      | 2,5 10 bar                                                                   |
| Temperature range                                                                       | –20 +80 °C (Einsatzbereich der<br>Näherungsschalter beachten)                |
| Materials Housing Front cap Shaft External screws Sales                                 | Aluminium, painted GFK Aluminium Stainless steel Polyurethane, Perbunan, POM |
| theo. torque [Nm] atoperating pressure  2 bar  3 bar  4 bar  5 bar  6 bar  7 bar  8 bar | 2,48<br>3,72<br>4,96<br>6,2<br>7,44<br>8,68<br>8,68                          |
| Weight                                                                                  | 600 g                                                                        |
| Consumption at 6 bar                                                                    | 0,72 l/stroke                                                                |
| Subject to change                                                                       |                                                                              |

## Semi rotary drive



Semi rotary drive

Symbol



Function

The DAPS Sypar is a semi-rotary drive which is entirely adapted to the requirements of the process industry. The Sypar semi-rotary drive is used to control process valves through which various media flow, and, thanks to its rugged design and torque gradations, is above all suitable for use in process industry equipment. The DAPS is used on valves, predominantly with angles of rotation restricted to 90 degrees such as ball valves and butterfly valves.

Mounting

The mounting of the actuator is arbitrary.

## Semi rotary drive

## Type designation



## • DAPS-0015-090-R-F03

| Parameter                                                 | Value                                                                                                                                                                                                |  |  |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Series (DAPS)                                             | D=Drives A=adapted constructions (Industry solution) P=Industry: Process automation S=Scotch-Yoke (as against: Rack-Pinion)                                                                          |  |  |
| Nominal torque (number, fout-digit)                       | Nominal torque [Nm].  The specification of the nominal torque is Die Angabe des Nennmomentes ist branchenüblich, daher steht hier nicht der Kolbendurchmesser.                                       |  |  |
| Swivel angle (number, fout-digit)                         | Swivel angle in degree. Hubgröße für alle<br>Rotationsantriebe.                                                                                                                                      |  |  |
| Direction of closing                                      | R: right closing<br>L: left closing                                                                                                                                                                  |  |  |
| Method of operation - S                                   | double acting S: Spring Return / single-acting                                                                                                                                                       |  |  |
| Spring force  1 2 3 4                                     | not at double-acting Spring force at connection pressure 2.8 bar Spring force at connection pressure 3.5 bar Spring force at connection pressure 4.2 bar Spring force at connection pressure 5.6 bar |  |  |
| Anschluss zur Armatur<br>Flange with pattern to ISO 5211. | Fxx One pattern Fxx/yy Two concentrically patterns                                                                                                                                                   |  |  |
| For xx and yy                                             | 03 flange-pattern F03 04 flange-pattern F04 05 flange-pattern F05 07 flange-pattern F07 10 flange-pattern F10 12 flange-pattern F12 14 flange-pattern F14 16 flange-pattern F16                      |  |  |
| Subject to change                                         |                                                                                                                                                                                                      |  |  |

## Technical data

| Parameter                                                | Value                                                                                                                                                              |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dimension (Profile cross section–rectangle rounded)      | 50 mm                                                                                                                                                              |
| Square                                                   | V11                                                                                                                                                                |
| Medium                                                   | Dried air, with or without oil, or gasses which are compatible with the actuator oil. If oiled the oil has to be compatible with NBR. (manufacturer specification) |
| Consumption (volume) for 1 cycle (Hubraum)               | 0,06 l/cycl.                                                                                                                                                       |
| Connection thread                                        | 1/8"                                                                                                                                                               |
| Switching times  Min. switching time, open  close  Cycle | 0,04 s<br>0,04 s<br>0,08 s                                                                                                                                         |
| Service life                                             | 1 Mio. cycles                                                                                                                                                      |
| Operating temperature                                    | -20°C bis +80°C                                                                                                                                                    |
| Corrosion resistance                                     | FN 940 070 Part 1, KBK3                                                                                                                                            |
| Weight                                                   | 0,75 kg                                                                                                                                                            |
| Subject to change                                        | •                                                                                                                                                                  |

## Semi rotary drive

Charcteristic pressure values

Definitions and conditions for measurements to FN 942 022:

Characteristic pressure values drive units short-time

Supplementary there are the following definitions to specifications respectively the factory standard of the manufacturer:

Through-travel pressure "drive unit long rest"

Opening and closing without load after 15 days rest

Through-travel pressure "drive unit warm"

Opening and closing

New test specimen without load after 2 hours continuous duty.

#### Bursting pressure:

Test of both chambers with oil pressure to crack initiation or cab open

Test value: "Maximum supply pressure allowed \* 3"

| Parameter                                       | Value     |
|-------------------------------------------------|-----------|
| Through-travel pressure "drive unit long rest"  | 0,4 bar   |
| Through-travel pressure "drive unit warm"       | 0,25 bar  |
| Min. operating pressure                         | 1 bar     |
| Nominal pressure (for torque specifiactions DW) | 5,6 bar   |
| Max. pressure                                   | 8,4 bar   |
| Busrting pressure                               | >25,2 bar |
| Subject to change                               |           |

Leakage

Definitions and conditions for measurement to FN 942 014: Measurement of small flows

Supplementary there are the following definitions to specifications respectively the factory standard of the manufacturer:

Method for measuring leakage:

Measured is the leakage from chamber A to chamber B and from chamber B to chamber A. Therefore the drive unit is dived and the pressure side pressurized. From the other side one outlet leads into water.

#### Test conditions:

6 bar at the pressure side, upper edge of the drive unit 20 mm under water, leakage outlet pipe 10 mm under water.

#### Measurement:

Counting the blebs per time at the outlet pipe, bleb-cross-section is 6mm. The specifications are as well blebs/10sec as in NL/h

Measurment time:

2h

Max permissible leakage [NI/h]: 0,04

Adjustable end stops

Only one of the two end stops is adjustable, normally the closing position will be adjusted. Therefore there are two adjusting screws in the side cabs which act on the both pistons.

| End position             | End position 0° | End position 90°     |
|--------------------------|-----------------|----------------------|
| End position adjustments | No adjustments  | Adjustment range ±5% |



| 1  | Cylinder                         | 15 | Washer                          |
|----|----------------------------------|----|---------------------------------|
| 2  | Piston                           | 16 | Circlip                         |
| 3  | Cab                              | 17 | Down shaft- o-ring (leak proof) |
| 4  | Shaft                            | 18 | Thread nut                      |
| 5  | Scotch Yoke                      | 19 | Cab- o-ring                     |
| 6  | Sleeve                           | 20 | Screw                           |
| 7  | Shaft sleeve                     | 21 | (not available)                 |
| 8  | Sleeve                           | 22 | (not available)                 |
| 9  | Spacing sleeve                   | 23 | (not available)                 |
| 10 | Dynamical seal                   | 24 | O-ring                          |
| 11 | Piston guide                     | 25 | External, elastic Yoke- pin     |
| 12 | Piston O-ring                    | 26 | Internal, elastic Yoke- pin     |
| 13 | Upper shaft- o-ring (leak proof) | 27 | Centering sleeve                |
| 14 | External O-ring                  | 28 | Stroke adjust screw             |

## Limit switch attachment



## Limit switch attachment

## Technical data

| Parameter                               | Value                   |
|-----------------------------------------|-------------------------|
| Switching element function              | Normally closed contact |
| Breaking capacity                       | 16A, 250VAC             |
| Voltage suppy                           | 030 VDC                 |
| Temperature range                       | -25 °C to +100 °C       |
| Protection class                        | Housing IP65            |
| Corrosion resistance classification CRC | 2                       |
| Cable secure screw                      | M20 x 1,5               |
| Display                                 | yes                     |
| Design                                  | round                   |
| Minimal durability (cycles)             | 2 x 10 <sup>5</sup>     |
| CE- Symbol                              | 73/23 EEC (low voltage) |
| Subject to change                       |                         |

# Electrical pin assignment



- 1 brown, 24V
- 2 black, Signal 1
- 3 blue, Signal 2



Analog terminal, top view

**Function** 

The analog terminal is an optimized terminal strip for the connection of sensors and actuators over SYSLINK to an industrial controller. An integrated 10 VDC voltage supply facilitates the connection of sensors or setpoint generators requiring this voltage.

Design

The analog terminal is mounted on a top-hat rail.

Technical data

| Parameter                     | Value              |
|-------------------------------|--------------------|
| Permissible operating voltage | 24VDC              |
| Analog inputs                 | 5                  |
| Digital inputs                | 1                  |
| Analog outputs                | 2                  |
| Digital outputs               | 4                  |
| Operating voltage display     | LED, green "24VDC" |
| Constant voltage display      | LED, green "10VDC" |
| Connection to controller      | 24-pin Centronics  |
| Subject to change             |                    |

Note

The function of the clamps are described in the circuit diagrams. Please follow the recommendations in the operating instruction of the connected controller!

## **Analog terminal**

| Clamp<br>XA2 | Connection designation | Function                                           | Pin<br>assignment<br>SYSLINK |
|--------------|------------------------|----------------------------------------------------|------------------------------|
| 1            | PT100 (1)              | 3-wire-connection                                  | 13 grey-pink                 |
| 2            | PT100 (2)              | for resistance-thermocouple,                       | 14 red-blue                  |
| 3            | PT100 (3)              | see the handbook of the controller for assignment  | 15 white-green               |
| 4            | Level (+)              | +24VDC                                             |                              |
| 5            | Level (5)              | 0/420mA current, controller input                  | 18 yebrown                   |
| 6            | Level (-)              | OVDC                                               |                              |
| 7            | Flow (+)               | +10VDC constant voltage                            |                              |
| 8            | Flow (∫)               | 01000Hz frequency, controller input                | 16 brgreen                   |
| 9            | Flow (-)               | OVDC                                               |                              |
| 10           | ext.SP (+)             | +10VDC constant voltage                            |                              |
| 11           | ext.SP (∫)             | 010V voltage; external setpoint                    | 19 white-grey                |
| 12           | ext.SP (-)             | OVDC                                               | 3 3                          |
| 13           | S.Funct. (+)           | +10VDC constant voltage                            |                              |
| 14           | S.Funct. ( )           | 010V voltage, controller input                     | 17 whyellow                  |
| 15           | S.Funct. (-)           | OVDC                                               |                              |
| 16           | InBin (+)              | +24VDC                                             |                              |
| 17           | InBin (∫)              | Switch signal, binary input controller             | 20 grey-brown                |
| 18           | InBin (-)              | OVDC                                               | 9 3                          |
| 19           | +                      | +24VDC                                             | 9 black                      |
| 20           | +                      | +24VDC                                             | 10                           |
| 21           | +                      | +24VDC                                             | 21 white-pink                |
| 22           | +                      | +24VDC                                             | 22                           |
| 23           | _                      | OVDC                                               |                              |
| 24           | OutB3 (∫)              | Switch signal, binary output controller            | 7 blue                       |
| 25           | -                      | OVDC                                               |                              |
| 26           | OutAlarm (nc)          | Normally close 1 (24VDC), Alarm-relay 3 controller | 5 grey                       |
| 27           | OutAlarm (no)          | Normally open 1 (24VDC), Alarm-relay 3 controller  | 6 pink                       |
| 28           | -                      | OVDC                                               | 8 red                        |
| 29           | -                      | OVDC                                               | 11 pink-brown                |
| 30           | -                      | OVDC                                               | 12 purple                    |
| 31           | -                      | OVDC                                               | 23 white-blue                |
| 32           | -                      | OVDC                                               | 24                           |
| 33           | OutU                   | 010V voltage, output controller                    | 1 white                      |
| 34           | -                      | OVDC                                               |                              |
| 35           | Outl                   | 0/420mA current, output controller                 | 2 green                      |
| 36           | -                      | OVDC                                               | -                            |
| 37           | OutB1 (∫)              | Normally open (24VDC), relais 1 binary output      | 3 yellow                     |
| 38           | -                      | OVDC                                               |                              |
| 39           | OutB2 (∫)              | Normally open (24VDC), relais 2 binary output      | 4                            |

PIN- and SYSLINK-assignment analog terminal

## Measuring transformer PT100/U



Measuring transformer PT100/U



graphical symbol

Function

The measuring transformer transforms the measures vale of the PT100 element into a voltage from 0 to 10V. The range of the transformer is from 0 to  $100^{\circ}$ C.

It is used by supplying it with a voltage of 24VDC.

It is pluggable on a terminal block and can be easily removed by pulling it out.

Technical data measuring transformer

| Parameter                                     | Value                       |
|-----------------------------------------------|-----------------------------|
| Temperature range                             | 0°C 100°C                   |
| Voltage supply                                | DC 24 V (+/-10 %)           |
| Nominal current                               | 30 A                        |
| Output                                        | 0 10 V                      |
| Burden                                        | 500 kOhm                    |
| Error output (positive switching)             | U <sub>b</sub> /max. 20 mA  |
| Transmission error (bezogen auf Endwert)      | 0,3%                        |
| Temperature coefficient                       | <0,02 %/K                   |
| Electromagnetic compatibility (IEC 801-2/4/5) | passed, EN 50082 T2 (E3.94) |
| Permissible ambient temperature               | 0 °C + 55 °C                |
| Weight                                        | 29,8 g                      |
| Color                                         | grey                        |
| Subject to change                             |                             |

# BE.EL.0546

## Measuring transformer PT100/U

Notes, terminal block

The terminal block offers the possibility of labelling at its side. It has 2-wire-claps. Front-wiring; Connectors: CAGE-CLAMP.



Measuring transformer PT100/U with terminal block

- 1) Measuring transformer (pluggable)
- 2) Terminal block
- 3) Label

#### **Electrical connection**



# Technical data terminal block

| Parameter                    | Value                |
|------------------------------|----------------------|
| Cross section from [mm²]     | 0,08 mm <sup>2</sup> |
| Cross section to [mm²]       | 2,5 mm²              |
| Cross section from [AWG]     | 28 AWG               |
| Cross section to [AWG]       | 14 AWG               |
| Allowable stress EN          | 400 V                |
| Allowable stress impulse     | 6 kV                 |
| Degree of pollution          | 3                    |
| Nominal current              | 10 A                 |
| Weight                       | 21,028 g             |
| Color                        | grey                 |
| Form of wiring               | Front-wiring         |
| Number of clamps             | 2                    |
| Number of electric potential | 2                    |
| Height [mm]                  | 28 mm                |
| Height [inch]                | 1,1 in               |
| Width [mm]                   | 22 mm                |
| Width [inch]                 | 0,866 in             |
| Depth [mm]                   | 50 mm                |
| Depth [inch]                 | 1,97 in              |
| Length of skinning from [mm] | 8 mm                 |
| Length of skinning to [mm]   | 9 mm                 |
| Length of skinning [inch]    | 0,33 in              |
| Subject to change            |                      |

# Measuring transformer current/voltage



Measuring transformer current/voltage

**Function** 

The measuring transformer transforms the measured value of the ultrasonic detector into an output voltage from 0 to 10V. Its voltage supply is 24VDC. It is pluggable on a terminal block and can be easily removed by pulling it out.

Technical data measuring transformer

| Parameter                                      | Value           |
|------------------------------------------------|-----------------|
| Input signal                                   | 420mA           |
| Input current                                  | 22 mA           |
| Input resistance                               | <400            |
| Line voltage drop, input, max.                 | <8V             |
| Output signal                                  | 010V            |
| Burden                                         | >2k             |
| Broken wire detection                          | LED green = off |
| Transmission error (based on final value)      | <0,15%/<0,1%    |
| Temperature coefficient (based on final value) | <0,02%/K        |
| Barrier frequency (sine)                       | 1 kHz           |
| Isolation voltage Input/Output                 | 4kV, 50Hz, 1min |
| Voltage supply RW <6%                          | DC 20V30V       |
| Permissible ambient temperature                | 0°C+55°C        |
| Color                                          | grey            |
| Subject to change                              |                 |

# BE.EL.0545

# Measuring transformer current/voltage

Notes, terminal Block

The terminal block offers the possibility of labelling at its side. It has 2-wire-claps. Front-wiring; Connectors: CAGE-CLAMP.



Measuring transformer with block terminal

- 1) Measuring transformer f/U (pluggable)
- 2) Terminal block
- 3) Label

# Technical data terminal block

| Parameter                    | Value                |
|------------------------------|----------------------|
| Cross section from [mm²]     | 0,08 mm <sup>2</sup> |
| Cross section to [mm²]       | 2,5 mm²              |
| Cross section from [AWG]     | 28 AWG               |
| Cross section to [AWG]       | 14 AWG               |
| Allowable stress EN          | 400 V                |
| Allowable stress impulse     | 6 kV                 |
| Degree of pollution          | 3                    |
| Nominal current              | 10 A                 |
| Weight                       | 21,028 g             |
| Color                        | grey                 |
| Form of wiring               | Front-wiring         |
| Number of clamps             | 2                    |
| Number of electric potential | 2                    |
| Height [mm]                  | 28 mm                |
| Height [inch]                | 1,1 in               |
| Width [mm]                   | 22 mm                |
| Width [inch]                 | 0,866 in             |
| Depth [mm]                   | 50 mm                |
| Depth [inch]                 | 1,97 in              |
| Length of skinning from [mm] | 8 mm                 |
| Length of skinning to [mm]   | 9 mm                 |
| Length of skinning [inch]    | 0,33 in              |
| Subject to change            |                      |



Measuring transformer frequency/voltage (similar figure)



graphical symbol

Function

This measuring transformer transforms the measured value of the flow rate sensor to a voltage output from 0 to 10V.

Its voltage supply is 24VDC.

It is pluggable on terminal block and can be simply removed by pulling it out.

Technical data measuring transformer

| Parameter                               | Value                                           |
|-----------------------------------------|-------------------------------------------------|
| Permissible ambient temperature         | 55°C                                            |
| Voltage supply                          | 20- 30 VDC                                      |
| Current consumption                     | 12mA                                            |
| Linearity error                         | <0,1%                                           |
| Transmission error                      | <0,1%                                           |
| Input Sqare wave generator Signal level | 0- 1kHz<br>6V <sub>SS</sub> - 30V <sub>SS</sub> |
| Output Output signal Burden             | 0- 10V<br>>2k                                   |
| Color                                   | grey                                            |
| Subject to change                       |                                                 |

# BE.EL.0544

# Measuring transformer frequency/voltage

Notes, terminal block

The terminal block offers the possibility of labelling at its side. It has 2-wire-claps. Front-wiring; Connectors: CAGE-CLAMP.



Measuring transformer with block terminal

- 1) Measuring transformer f/U (pluggable)
- 2) Terminal block
- 3) Label

#### **Electrical connection**



# Technical data terminal block

| Parameter                    | Value        |
|------------------------------|--------------|
| Cross section from [mm²]     | 0,08 mm²     |
| Cross section to [mm²]       | 2,5 mm²      |
| Cross section from [AWG]     | 28 AWG       |
| Cross section to [AWG]       | 14 AWG       |
| Allowable stress EN          | 400 V        |
| Allowable stress impulse     | 6 kV         |
| Degree of pollution          | 3            |
| Nominal current              | 10 A         |
| Weight                       | 21,028 g     |
| Color                        | grey         |
| Form of wiring               | Front-wiring |
| Number of clamps             | 2            |
| Number of electric potential | 2            |
| Height [mm]                  | 28 mm        |
| Height [inch]                | 1,1 in       |
| Width [mm]                   | 22 mm        |
| Width [inch]                 | 0,866 in     |
| Depth [mm]                   | 50 mm        |
| Depth [inch]                 | 1,97 in      |
| Length of skinning from [mm] | 8 mm         |
| Length of skinning to [mm]   | 9 mm         |
| Length of skinning [inch]    | 0,33 in      |
| Subject to change            |              |

#### Motor controller



Motor controller

Function

The motor controller enables you to vary the supply voltage and as such the speed of the pump.

An error can be reset by using the reset input (RESET). By clamping 0V at the reset input the error will be deleted.

Design

The motor controller is mounted on a top-hat rail.

Connection allocation



# 170698

#### Motor controller

Note

# • Adjustment of the controller

On the circuit board there is a potentiometer (see picture below). With a small screw driver you are able to adjust the controller. Aim of the adjustment is to have 0V at the output clamp at 0V at input clamp and 24 V at the output clamp at 10V at the input clamp.



Picture of the circuit board: The circle marks the potentiometer for the adjustment.

| Parameter                     | Value             |
|-------------------------------|-------------------|
| Permissible operating voltage | 24 VDC            |
| Input                         | -10 +10 VDC       |
| Output                        | -24 +24 VDC       |
| Output current                | max. 1 A          |
| Connections                   | Clamp with screws |
| Subject to change             |                   |



Potentiometer

# Description

The potentiometer can be used with a voltage supply of 10VDC or 24VDC.

By using a series resistance the voltage at the potentiometer can be divided in that way so that if you use 24VDC as input it is possible to reach an adjustable range of the set point from approx. 0...11 V.

Electrical connection with clamps, using screws.

The installation of the potentiometer is on a top hat rail.

| Parameter                  | Value                  |
|----------------------------|------------------------|
| Resistance                 | 10 k                   |
| Tolerance                  | ±20 %                  |
| Power of the potentiometer | 1 W                    |
| Power of the resistance    | 0,25 W                 |
| Temperature range          | 0+60°C                 |
| Installation               | Top hat rail, EN 50022 |
| Abmessungen H x B x T      | 75 x 45 x 65 mm        |
| Subject to change          |                        |

# BE.EL.0528

# Potentiometerbaustein

# Dimensions



# Basic circuit diagram



# Electrical pin assignment

| 24V | 10V | SW | OV |
|-----|-----|----|----|
|     |     |    |    |

Terminal strip, top view



Container

Function

Threaded connections are provided for inflow and outflow and for sensors with threaded connection. A hole is provided for the connection of a heating unit. Threaded holes which are not required, are to be fitted with end plugs.

Design

The container is mounted on the profile plate or attached to an MPS profile using four screws and T-head nuts.

Note

Tighten the mounting screws carefully.

| Parameter                                         | Value            |
|---------------------------------------------------|------------------|
| Permissible operating temperature                 | max. +65 °C      |
| Capacity                                          | approx. 12 l     |
| Dimensions (external measurements)  Width  Depth  | 240 mm<br>190 mm |
| Height  Dimensions (internal measurements)  Width | 380 mm           |
| Depth<br>Height                                   | 175 mm<br>370 mm |
| Materials                                         | Plastic          |
| Line connections: Screw connections               | 15 mm pipe-Ø     |
| Subject to change                                 |                  |



Pressure vessel

Function

The pressure vessel is used for storage of pressurized media.

Design

The pressure vessel is used for the storage of pressurized media.

Technical data

| Parameter         | Value                   |
|-------------------|-------------------------|
| Medium            | Water                   |
| Design            | Welded vessel           |
| Mounting          | Mounting bracket        |
| Connection        | G 1⁄2"                  |
| Volume            | 21                      |
| Pressure range *  | -0,95 bar to 16 bar     |
| Materials         | Steel (X 5 Cr Ni 18 10) |
| Weight            | 1,681 kg                |
| Subject to change |                         |



Note

<sup>\*</sup> If you use the pressure vessel within the pressure control station, the maximum operating pressure must not exceed 0,5 bar!



Fitting

#### Function

Pipework for the process engineering systems can be effected quickly, safely and leak- proof using the piping and push-in connection system. The individual tubing components are:

| • | Straight pipe piece (see above)           | (Order Nr. BE.PC.0001) |
|---|-------------------------------------------|------------------------|
|   | various length on request                 |                        |
| • | End plugs (see above)                     | (Order Nr. BE.PC.0015) |
| • | 90°-push-in connector (see above, left)   | (Order Nr. BE.PC.0009) |
| • | 90°- push-in connector (see above, right) | (Order Nr. BE.PC.0010) |
| • | T-push-in connector (see above)           | (Order Nr. BE.PC.0008) |
| • | Stop cocks (see above)                    | (Order Nr. BE.PC.0011) |

#### Design

The piping system consists of plastic pipes and push-in connectors.

# Assembly/Disassembly

- A pipe cutter is required to cut the pipes to size.
- The piping is assembled without the use of tools.
- Assembly: Pipes must be inserted in the push-in connector up to the Stopp.



# 170701, 170702, 170703

# Fitting

# • Disassembly:

To release the connection, the collect on the push-in connector must be pressed down and the pipe pulled out.



| Parameter                                                                                    | Value                                            |
|----------------------------------------------------------------------------------------------|--------------------------------------------------|
| Operating characteristics<br>Cold water system<br>Hot water system<br>Central heating system | 20 °C / 10 bar<br>65 °C / 7 bar<br>82 °C / 4 bar |
| Withdrawal force                                                                             | > 1200 N / 20 °C                                 |
| Burst pressure                                                                               | > 40 bar / 20 °C                                 |
| Flow media                                                                                   | Water, various gases                             |
| Operating pressure                                                                           | max. 6 bar at 80 °C                              |
| Material                                                                                     | Plastic                                          |
| Pipe diameter                                                                                | Ø eternal: 15 mm                                 |
| Subject to change                                                                            |                                                  |



Pipe

Function

With the pipe all connections are made. An exception is the connection with plexiglass-pipes.

| Parameter                                                             | Value                                                       |
|-----------------------------------------------------------------------|-------------------------------------------------------------|
| Temperature and pressure hot water cold water periodical with breaks* | 6 bar at 65°C<br>12 bar at 20°C<br>114°C                    |
| Expansion                                                             | 1% at the whole length (20°C 82°C)                          |
| Media                                                                 | Everything, but:<br>Gas, petrol, oil or compressed air      |
| Light                                                                 | Avoid ultraviolet Light. (insolation over a long time etc.) |
| Subject to change                                                     | •                                                           |

<sup>\*</sup>never use the pipe in combination with an uncontrolled heating source!



Plexiglass-pipe

Function

The plexiglass pipe is a transparent pipe with gives you the possibility check the flow of a medium.

| Parameter                | Value                                        |
|--------------------------|----------------------------------------------|
| Material                 | Acrylpolymere based on<br>Methylmethacrylate |
| Softening temperature    | >100°C                                       |
| Flashpoint               | >250°C (ASTM D1929-68)                       |
| Inflammation temperature | >400°C (ASTM D1929-68)                       |
| Density                  | 1,18g/cm³ bei 20°C                           |
| Thermal disruption       | >250°C                                       |
| Subject to change        | •                                            |



Ball valve

Function

Swivelling of the lever, causes the flow to be shut off completely in both directions.

Design

The ball valve is installed in the piping by means of quick push-pull connectors.

Note

The figure above shows the ball valve in closed position. If the lever is turned to  $90^{\circ}$  ball valve is opened completely.

| Parameter                                   | Value           |
|---------------------------------------------|-----------------|
| Connection                                  | 15 mm           |
| Nominal size                                | 15              |
| Pressure range                              | 0 7 bar         |
| Temperature range (with plastic connectors) | 0 +65 °C        |
| Actuating force                             | 5 Nm            |
| Weight                                      | Approx. 0,45 kg |
| Subject to change                           |                 |



Exhaust flow control valve

**Function** 

Exhaust air flow control valves are screwed into exhaust ports 3 and 5 of the control valves, and make it possible to control the piston speed of cylinders by means of exhaust port flow control.

Exhaust air restriction can be adjusted with the throttle screw. Exhaust air is discharged via the integrated silencer to reduce noise levels.

Design



Cutaway view of the valve

# 10352

#### **Exhaust flow control valve**

#### Technical data

| Parameter                        | Value                                 |
|----------------------------------|---------------------------------------|
| Threads                          | G¼                                    |
| Nominal width                    | 5 mm                                  |
| Flow*                            | 0 to 996 I/min                        |
| Pressure range                   | 0 to 10 bar                           |
| Temperature range                | -10 °C to 70 °C                       |
| Noise level**                    | 80 dB(A)                              |
| Materials Housing Silencer Sales | AI, Ms<br>Sintered bronze<br>Perbunan |
| Weight                           | 0,025 kg                              |
| Subject to change                | ,                                     |

<sup>\*</sup> at 6 bar against atmosphere

# Characteristic curve

# Nenndurchfluss [I/min]



See the curve with the designation GRE-1/4

<sup>\*\*</sup> measured at a distance of 1m

# Dimensions



D: G¼ D1(ø): 18,2 L: 34 L1: 8 **3** €: 22



Service unit



#### Function

Filter control valve with pressure gauge, start-up valve, quick push-pull connectors and quick couplings, mounted on a swivel support.

The filter with water separator removes dirt, pipe sinter, rust and condensed water. The pressure control valve regulates the supply air pressure to the set operating pressure and compensates pressure fluctuations. The filter bowl has a condensate drain valve.

The start-up valve/shutoff valve ventilates and vents the entire control. The 3/2-way valve is actuated by a rotary button.

# 152894

#### Service unit

Design

The control valve with manometer, start-up valve, push-in fittings and quick coupling plug is mounted on a swivel support. Over the filter bowl there is a metal bowl. The mounting of the unit is done by cheese head screws and nuts mounting variant "C". Added is one quick coupling socket with threaded bush and union nut for plastic tubing PUN 6 x 1.

Note

When mounting the valve you have to attend that it is mounted vertically. The pressure control valve has an adjustment button. By rotating this button you can adjust the wanted pressure. When this adjustment button is turned to the housing, the adjustment is fixed.

| Parameter                  | Value                                                                                             |
|----------------------------|---------------------------------------------------------------------------------------------------|
| Medium                     | Druckluft                                                                                         |
| Design                     | Sinterfilter mit Wasserabscheider,<br>Membranregelventil                                          |
| Mounting position          | senkrecht ±5°                                                                                     |
| Nominal flow rate*         | 750 l/min                                                                                         |
| Input pressure maximal     | 1600 kPa (16 bar)                                                                                 |
| Operating pressure maximal | 1200 kPa (12 bar)                                                                                 |
| Connection                 | Kupplungsstecker für Kupplungsdose G 1/8 S-<br>Steckanschluss für Kunststoffschlauch<br>PUN 6 x 1 |
| Subject to change          | ,                                                                                                 |

<sup>\*</sup> Input pressure: 1000 kPa (10 bar), Operating pressure: 600 kPa (6 bar), Differential pressure: 100 kPa (1 bar).