Gait Recognition with Wii Balance Board

Biometric Systems Course

Professor De Marsico Maria

Faculty of Information Engineering, Informatics and Statistics Sapienza University of Rome

Academic Year 2022-2023

Group participants:

Ballanti Chiara
Barreca Federico
Bevilacqua Paolo Pio
De Sio Ilaria

Introduction

- Why Gait Recognition?
 - Soft biometric trait
 - Lack of permanence
 - High uniqueness
 - Both genotypic and behavioral

- Approaches
 - Floor sensor-based
 - Wearable sensor-based
 - Machine Vision-based
 - One more approach: Wii Balance Board

Objective

- Use cheap and reliable hardware
- Hard to spoof system
- Build accurate gait recognition system

Wii Balance Board and focus on the Hardware Sensors

- Videogame Wii Fit
 - Yoga, sport, games etc...
- Reliable sensors
 - Center of Pressure
- Cheap and Portable

Sampling

Software and Acquisition Interface

- Sample acquisition interface: Brainblox
- Libraries: Scikit-learn, TsFresh

Gait from 66 years old woman

Building the Dataset

- Attended and controlled settings
- Ten footsteps starting with right foot
- 24 identities collected
 - 30 samples each
 - 720 templates
- Wide age range
 - 11 to 66 years old

Gait from 26 years old gymnast

- Different physical conditions
 - Workers, athletes, sedentaries people
 - Resting, average tired, tired

Working with Time Series

- Computationally inexpensive
 - About 1 minute to extract features from 720 samples using parallelization
- Template size
 - About 30 Kb

Gait from 26 years old gymnast

Feature Extraction, Normalization and Filtering

- Feature Extraction
 - Provided by TsFresh
- MinMax features scaling
 - Provided by Scikit-learn

$$s_k' = \frac{s_k - \min}{\max - \min}$$

- Feature Selection
 - Provided by TsFresh

- Relevance Table
 - Provided by TsFresh
 - Selecting the k most relevant features

Different Approaches

- Feature similarities
 - Pairwise feature vectors euclidean distance
 - Distance matrix
- Classification model training
 - SVM, Logistic Regression, KNN
 - Requires lots of data

Verification Performance Evaluation

ALL-Against-ALL

Identification Performance Evaluation (1/3)

- ALL-Against-ALL
 - Open-set

Identification Performance Evaluation (2/3)

- ALL-Against-ALL
 - Open-set

Identification Performance Evaluation (3/3)

- ALL-Against-ALL
 - Closed-set

Doddington Zoo

Computed in verification

Doddington Zoo (close up)

Computed in verification

Conclusion

- Pros
 - Hard to spoof
 - Computationally inexpensive

- Cons
 - Easy to camouflage
 - Attended and controlled settings

- Future Works:
 - Continuous samples acquisition via integrated WBB driver
 - Possible sensor addition and integration (Wiimote controllers)
 - Possible medical and sport use
 - "Smart Carpet", a system that grants access to a public building, private office or home

Thank you for the attention!

