

Impact of Aging on EM Side-Channel Analysis of FPGA based Matrix Multiplier

Ojas Kulkarni ^{1, 2}, Manoj Vutukuru ², Rashmi Jha ²

¹Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, 84112 ²Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, OH, 45219

Introduction

- CMOS devices undergo damage as they naturally age
- Causes increase in threshold voltage leading to increased switching times
- EM Side-Channel Analysis exploits EM leakage to extract sensitive information
- Matrix Multipliers are widespread as AI/ML Acceleration techniques

Objective

Test the impact of AGING on MATRIX MUTIPLIERS using EM SIDE CHANNEL analysis

Methodology

Initial Results & Control

6) EM Analysis - HEAVILY

AGED

Experimental Results

10% Difference

30% Difference

MODERATELY AGED

10% Difference

30% Difference

HEAVILY AGED

10% Difference

30% Difference

Acknowledgements

This work was supported by NSF Award ID #CNS-2150086 under the Research Experience for Undergraduate in Hardware

