CS915/435 Advanced Computer Security - Elementary Cryptography

Public Key Encryption

Roadmap

- Symmetric cryptography
 - Classical cryptographic
 - Stream cipher
 - Block cipher I, II
 - Hash
 - MAC
- Asymmetric cryptography
 - Key agreement
 - Public key encryption
 - Digital signature

Public key encryption

Bob: generate a pair of keys (PK, SK), where PK is a public key and SK is a private key. He gives PK to Alice.

Public key encryption

<u>Def</u>: a public-key encryption system consists of 3 algs. (G, E, D)

- •G(): randomised alg. outputs a key pair (pk, sk)
- •E(pk, m): randomised alg. that takes m∈M and outputs c ∈C
- •D(sk,c): dec. alg. that takes $c \in C$ and outputs $m \in M$ or \bot

Consistency: $\forall (pk, sk)$ output by G:

 $\forall m \in M$: D(sk, E(pk, m)) = m

RSA

- Invented in 1977
- By Ron Rivest, Adi Shamir, Leonard Adleman
- The first widely used public key system
 - SSL/TLS TLS 1.2 TLS 1.3
 - Secure email and file systems
 - many others

How great was this invention?

Imagine someone designs a lock

- 1. One key to lock it and another key to unlock it.
- Given the lock and one of the key, you are unable to manufacture the second key.

One-way function

One-way function

- We already saw one example of such functions
 The **DH protocol**:
 - 1. Given x, g, and p, we compute $g^x \mod p = y$
 - 2. Given y, g, and p, it is hard to compute x
- RSA is based on the difficulty of factoring a prime number:
 - 1. Given p and q, it is easy to compute $n = p \times q$
 - 2. Factorizing n is hard (still an open problem)

Fermat's little theorem

Example: let a = 4, p = 3

For any prime p not dividing a, we have

$$a^{p-1} = 1 \mod p$$
 $4^{3-1} = 4^2 = 1 \mod 3$

Proof (sketch)

• Given the set {1, 2, ..., p-1}, we multiply it by a:

- The 2nd set has (p-1) distinct elements in [1, p-1], hence it's a permutation of the first set. Multiplying all elements in each set, we get: (p-1)! = (p-1)!a^{p-1} mod p.
- Therefore, $1 = a^{p-1} \mod p$.

Euler's theorem

Example: let n = 9 $\phi(n) = 6$ Set of coprimes $\{1, 2, 4, 5, 7, 8\}$

- Euler's phi (or totient) function: φ(n) is the number of positive integers less than n with which it has no divisor in common.
 - E.g., $\phi(n) = (p-1)(q-1)$ if n=pq
- Euler's theorem (more general than Fermat's): for any modulus n and any integer a coprime to n, we have

$$a^{\phi(n)} = 1 \mod n$$

The Euclidean Algorithm

```
Algorithm 5.1: EUCLIDEAN ALGORITHM(a, b)
                                                                       GCD(a,b) = GCD(b, a mod b)
 r_0 \leftarrow a
 r_1 \leftarrow b
 m \leftarrow 1
                                                                       a = 40, b = 15
 while r_m \neq 0
                                                                       40 = 2 \times 15 + 10
   \mathbf{do} \begin{cases} q_m \leftarrow \lfloor \frac{r_{m-1}}{r_m} \rfloor \\ r_{m+1} \leftarrow r_{m-1} - q_m r_m \\ m \leftarrow m+1 \end{cases}
                                                                       Gcd(40, 15) = gcd(15, 10)
                                                                        Gcd(15, 10) = gcd(10, 5) = 5
 m \leftarrow m-1
 return (q_1, \ldots, q_m; r_m)
 comment: r_m = \gcd(a, b)
```

Chapter 5 "The RSA Cryptosystem and Factoring Integers", Cryptography - Theory and Practice, 3rd edition, 2006 by Doug Stinson.

Extended Euclidean Algorithm

```
Algorithm 5.2: EXTENDED EUCLIDEAN ALGORITHM(a, b)
a_0 \leftarrow a
                                       40 = 2 \times 15 + 10
                                       15 = 1 \times 10 + 5
                                       10 = 2 \times 5 + 0
while r > 0
                                       15 = 1 \times 10 + 5
        temp \leftarrow t_0 - qt
                                      15 - 1 \times 10 = 5
                             40 = 2 \times 15 + 10
                                       Or 10 = 40 - 2 \times 15
                                       So 15 - 1 \times 10 = 5
                                       is 15 - 1 \times (40 - 2 \times 15) = 5
                              Finally -1 \times 40 + 3 \times 15 = 5
r \leftarrow b_0
 return (r, s, t)
 comment: r = \gcd(a, b) and sa + tb = r
```

Extended Euclidean Algorithm

- We are interested in the special case where r = 1
- So, sa + bt = 1 in this case
- In other words, sa = 1 bt
- And $sa = 1 \mod b$

Computing the inverse of a

Given an element \mathbf{a} in Z_N where \mathbf{a} is relatively prime to N, we can compute its inverse \mathbf{a}^{-1}

$$a \times a^{-1} = 1 \mod N$$

Hint: use Extended Euclidean Algorithm with a and N as inputs: $s \times a + t \times N = GCD(a,N) = 1$. We have $s \times a = 1 \mod N$. Obviously, $a^{-1} = s$.

Summary: arithmetic mod composites

Let $N = p \times q$ where p, q are primes

$$Z_N = \{0, 1, 2, ..., N-1\};$$

 $Z_N^* = \{\text{invertible elements in } Z_N \}$

Facts: (1) $x \in Z_N$ is invertible \iff gcd(x, N) = 1

(2) Number of elements in Z_N^* is $\phi(N) = (p-1)(q-1)$

Euler's theorem: $\forall a \in Z_N^*$: $a^{\phi(N)} = 1 \mod N$

Chinese Remainder Theorem

A method of solving systems of congruences.

$$x\equiv a_1\pmod{m_1}$$
 A special case: $x\equiv a_1\pmod{m_2}$ $x\equiv a \mod p$ $x\equiv a_2\pmod{m_2}$ We must have $x\equiv a_r\pmod{m_r}$.

One possible solution: x = 23 (general solution is x = 23 + 105k)

There is a unique solution mod $(m_1 \times m_2 \times ... \times m_r)$

RSA Key Generation

 $GenRSA(1^n)$

Input:

key length n

Miller-Rabin primality test

Generate two large n-bit **distinct primes** p and q Compute $N = p \cdot q$ and $\varphi(N) = (p-1) \cdot (q-1)$ Choose a random integer e, $\gcd(e, \varphi(N)) = 1$ Compute e's inverse d: $d \cdot e = 1$ (**mod** $\varphi(N)$)

Output:

$$pk = (N, e), sk = (N, d)$$

Textbook RSA encryption

KeyGen: pk=(N, e), sk=(N, d)

Enc: Given pk=(N, e) and message $m \in Z_N$: [0, N-1]

$$c = m^e \pmod{N}$$

Dec: Given sk=(d, N) and ciphertext c:

$$m = c^d$$
 (mod N)

Correctness

Need to show:

$$\mathbf{Dec}_{sk}(\mathbf{Enc}_{pk}(m)) = m$$

Key: $gcd(e, \varphi(N)) = 1$ and $ed = 1 \pmod{\varphi(N)}$

Case 1: If m is relatively prime to N, i.e.,
$$m \in Z_N^*$$

 $c^d = (m^e)^d = m^{de} = \underline{m^{de \mod \phi(N)}} = \underline{m} \mod N$

Case 2: Else (i.e., $m \in Z_N \setminus Z_N^*$)

$$c^{d} = (m^{e})^{d} = m^{de} = m^{de \mod (p-1)} = m \mod p$$
 $c^{d} = (m^{e})^{d} = m^{de} = m^{de \mod (q-1)} = m \mod q$

Hence $c^d = m \mod p \times q$ (Chinese Remainder Theorem)

RSA Example - Key Setup

- 1. Select primes: p=17 and q=11
- 2. Compute $n = pq = 17 \times 11 = 187$
- 3. Compute $\phi(n) = (p-1)(q-1) = 16 \times 10 = 160$
- 4. Select e: gcd(e, 160) = 1; choose e = 7
- 5. Determine d: d.e \equiv 1 mod 160 and d < 160
 - 1. Use Euclid's Inverse algorithm
 - 2. Value is $\mathbf{d} = 23$ since 23 \times 7=161= 10 \times 160+1
- 6. Publish public key $PU = \{7, 187\}$
- 7. Keep secret private key $PR = \{23, 187\}$

RSA Example - En/Decryption

- Given a message M = 88 (with 88 < 187)
- Its encryption is:

$$C = 88^7 \mod 187 = 11$$

Its decryption is:

$$M = 11^{23} \mod 187 = 88$$

Square and multiply algorithm

How Secure is Textbook RSA?

Security definition

- Semantic security: ciphertext indistinguishable from random data
- But textbook RSA is not semantically secure; many attacks exist

A meet-in-the-middle attack on textbook RSA

Suppose k is 64 bits: $k \in \{0,...,2^{64}\}$. Eve sees $c = k^e$ in Z_N If $k = k_1 * k_2$ where k_1 , $k_2 < 2^{34}$ (prob=20%) then $c = (k_1 k_2)^e$ $c = (k_1 k_2)^e$

Step 1: build table: $c/1^e$, $c/2^e$, ..., $c/2^{34e}$. Time 2^{34}

Step 2: for $k_2 = 0,...,2^{34}$ test if k_2^e is in table. Time 2^{34}

Output matching $(c/k_1, k_2)$

Mangling Ciphertexts

Example: Alice sends bid m=1000 in an auction.

$$c = m^e \pmod{N}$$

$$c^* = 2^e \cdot c \text{ (mod N)}$$

 $(c^*)^d = (2^e \cdot m^e)^d = (2 \cdot m)^{de} = 2 \cdot m = 2000$

Common modulus attack

Assume organisation uses **common modulus** *N* for all employees.

Each employee receives key pair (pk=e, sk=d) What can go wrong?

Knowledge of d ⇔ factorization of N

RSA with padding

Padding is to randomize the encryption

- PKCS #1 v1.5
- RSA OAEP

RSA with PKCS #1 v1.5 Padding

Encryption:

Choose random byte-string r (k-D-3>8 bytes).

16 bit	, ,	8 bit	
2	Random padding r	0	m

(00000000||00000010||r||00000000||m)e (mod N)

Decryption:

As usual, check that the padding is ok!

Idea: Prefix D-byte message m with random padding

RSA OAEP

PKCS1 v2.0

H and G are hash function

RSA in Practice: Hybrid with padding

Choose unique N for each user and fresh random k