

Introduction to Deep Learning

Démarrage 9h10

Vincent Havard,

Enseignant-chercheur, CESI LINEACT,

Rouen

2022

© Alexander Amini and Ava Soleimany MIT 6.S191: Introduction to Deep Learning

Outline

- 1. What and Why Deep Learning?
- 2. The Perceptron
- 3. Going Deep
- 4. Applying Neural Networks
- **5. Training Neural Networks**
- 6. Backpropagation
- 7. Neural Networks in Practice
- 8. Mini Batches
- 9. Conclusion

What is deep Learning?

Artificial Intelligence

Any technique that enables computers to mimic human behaviour

Machine Learning

Ability to learn without explicitly being programmed

Deep Learning

Extract patterns from data using neural networks

Why deep Learning?

Hand engineered features are time consuming, not robust, and not scalable in practice.

Can we learn the **underlying features** directly from the data?

Low level features Mid level features High level features Lines & edges Eyes, Nose, Ears Facial structure

Why deep Learning?

Rule-based programmation paradigm

Machine learning / Deep learning paradigm

Why now?

2017

Stochastic Gradient Descent

Perceptron

Learnable weights

Backpropagation

Multi-layer perceptron

Deep Convolutional NN

Digit recognition

Tensorflow

1st release

Neural networks date back decades, so why the resurgence?

1. Big Data

- Larger datasets
- Easier collection and storage

2. Hardware

- Graphics
 Processing Units
 (GPUs)
- Massively Parrallelizable

3. Software

- Improved Techniques
- New Models
- Toolboxes

$$\hat{y} = g\left(w0 + \sum_{i=1}^{m} x_i \cdot w_i\right)$$

$$\hat{y} = g(w0 + X^T W)$$

where
$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$
 and $W = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}$

where
$$X^T = \begin{bmatrix} x_1 & ... & x_m \end{bmatrix}$$

$$\hat{y} = g\left(w0 + \sum_{i=1}^{m} x_i \cdot w_i\right)$$

With,
$$\mathbf{z} = \mathbf{w0} + \mathbf{X}^T \mathbf{W}$$

 $\hat{y} = g(z)$

where
$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$
 and $W = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}$

Activation functions

$$\hat{y} = g(w0 + X^T W) = g(z)$$

Example of the sigmoid function

$$g(z) = \sigma(z) = \frac{1}{1 + e^{-z}} \in]0,1[$$

$$g'^{(z)} = \sigma(z) \cdot (1 - \sigma(z))$$

Common Activation Functions

Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}} \in]0,1[$$

$$g'(z) = g(z) \cdot (1 - g(z))$$

Hyperbolic Tangent (tanh)

$$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}} \in]-1,1[$$

$$g'(z) = g(z) \cdot (1 - g(z))$$

All activation functions are non-linear

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z) \in [0, +\infty[$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & otherwise \end{cases}$$

Importance of Activation Functions

The purpose of activations functions is to introduce **non-linearities** into the network

How to split red points with green ones with a neural network Linear problem: How to split points with a straight line?

In this example, we have:

where
$$w_0 = 1$$
 and $W = \begin{bmatrix} w_1 = 3 \\ w_2 = -2 \end{bmatrix}$

$$\hat{y} = g(z) = g(1 + 3x_1 - 2x_2) = g(1 + 3 * (-1) - 2 * 2) = g(-6) \hat{y} \approx 0.002$$

$$\hat{y} = g(1 + 3x_1 - 2x_2)$$

Importance of Activation Functions

The purpose of activations functions is to introduce **non-linearities** into the network

Without Activation Function

x₁
x₂
x_m
x₂
x₄
x₄
x₄
x₄
x₅
x₄
x₄
x₄
x₄
x₄
x₅
x₄
x₄
x₄
x₅
x₄
x₅
x₄
x₅
x₆
x₇
x₈
x₈
x₁

With Activation Function

Demo from https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Importance of Activation Functions

Simple data No activation function can solve linear problem

```
layer defs = [];
layer defs.push({type:'input', out sx:1, out sy:1, out depth:2});
layer defs.push({type:'fc', num neurons:2});
layer defs.push({type:'fc', num neurons:2});
layer defs.push({type:'softmax', num classes:2});
net = new convnet();
net.makeLayers(layer defs);
trainer = new convnetjs.SGDTrainer(net, {learning rate:0.01, momentum:0.1,
batch size:10, l2 decay:0.001});
```

Simple data with sigmoid activation function can solve non linear problem

```
layer defs = [];
layer defs.push({type:'input', out sx:1, out sy:1, out depth:2});
layer defs.push({type:'fc', num neurons:2, activation: 'sigmoid'});
layer defs.push({type:'softmax', num classes:2});
net = new convnetjs.Net();
net.makeLayers(layer defs);
trainer = new convnetjs.SGDTrainer(net, {learning rate:0.01, momentum:0.1,
batch size:10, l2 decay:0.001});
```


Demo from https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

The Perceptron: detailed and...

The Perceptron: ...simplified representation

$$z = w0 + X^T W$$

Multi Output Perceptron

Because all inputs are densely connected to all outputs, these layers are called **Dense** layers

Dense Layer in Tensorflow

```
class MydenseLayer(tf.keras.layers.Layer):
   def __init__(self, input_dim, output_dim):
        super(MydenseLayer, self).__init__()
       #initialize weights and bias
       self.W = self.add_weight([input_dim, output_dim])
       self.b = self.add_weight([1, output_dim])
   def call(self, inputs):
       #Forward propagate the inputs
        z = tf.matmul(inputs, self.W) + self.b
       # Feed through a non-linear activation function
       output = tf.math.sigmoid(z)
       return output
```


Multi Output Perceptron

Because all inputs are densely connected to all outputes, these layers are called **Dense** layers

import tensorflow as tf
 tf.keras.layers.Dense(
 units=2,
 activation='sigmoid')

$$z_2 = w_{0,2}^{(1)} + \sum_{j=1}^{m} x_j w_{j,2}^{(1)} = w_{0,2}^{(1)} + x_1 * w_{1,2}^{(1)} + x_2 * w_{2,2}^{(1)} + \dots + x_m * w_{m,2}^{(1)}$$

$$g(z_2) = g\left(w_{0,2}^{(1)} + \sum_{j=1}^{m} x_j w_{j,2}^{(1)} = w_{0,2}^{(1)} + x_1 * w_{1,2}^{(1)} + x_2 * w_{2,2}^{(1)} + \dots + x_m * w_{m,2}^{(1)}\right)$$

$$\hat{y}_1 = g\left(w_{0,k}^{(2)} + \sum_{j=1}^{d_1} g(z_j)w_{j,k}^{(2)}\right) = g\left(w_{0,2}^{(2)} + w_{1,2}^{(2)} * g(z_1) + w_{2,2}^{(2)} * g(z_2) + w_{3,2}^{(2)} * g(z_3) + w_{d_1,2}^{(2)} * g(z_{d_1})\right)$$

Deep Neural Network

Example problems

Will I pass this class? (yes, no)

- x₁=Number of lectures you attend
- *x*₂=Hours spent on the final project

Should I go to a kitesurfing session? (yes, no)

- x_1 =Kite dimension
- x_2 =Wind Force

Should I buy this car? (yes, no)

- x_1 = number of options
- x_2 = ecological ranking

Definitions

- \hat{y} Network prediction
- y Ground truth

Example problem: Will I pass this class?

Example problem: Will I pass this class?

Example problem: Will I pass this class?

The **loss** of our network measures the cost incurred from incorrect predictions

Quantifying Loss

The **loss** of our network measures the cost incurred from incorrect predictions

 Z_2

 Z_3

 z_1

 \widehat{y}_1

Predicted: 0.1

Actual or Ground Truth: 1

$$\mathcal{L}(f(x^{(i)}, W), y^{(i)})$$

$$\mathcal{L}(\underbrace{\hat{y}^{(i)}, y^{(i)}}_{\text{Predicted}} \underbrace{y^{(i)}}_{\text{Actual}})$$

Empirical Loss

The **empirical loss** measure the total loss over our entire dataset

$$X = \begin{bmatrix} 4, & 5 \\ 2, & 1 \\ 5, & 8 \\ \vdots & \vdots \end{bmatrix} \qquad \begin{array}{c} x_1 \\ x_2 \\ \hline \end{array} \qquad \begin{array}{c} x_1 \\ \hline \end{array} \qquad \begin{array}{c} f(x) \\ \hat{y} \\ \hline \end{array} \qquad \begin{array}{c} y \\ \hline \\ 0.8 \\ 0.6 \\ \vdots \end{array} \begin{array}{c} \begin{bmatrix} 0.9 \\ 0.8 \\ 0.6 \\ \vdots \end{bmatrix} \\ \hline \end{array} \qquad \begin{array}{c} x \\ \hline \end{bmatrix} \qquad \begin{array}{c} f(x) \\ \hat{y} \\ \hline \end{array} \qquad \begin{array}{c} y \\ \hline \\ 1 \\ \vdots \\ \hline \end{array}$$

Called:

- Empirical risk

alled:
• Objective function
• Cost function
•
$$J(W) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\underline{f(x^{(i)}, W)}, \underline{y^{(i)}})$$

Binary Cross Entropy Loss

Cross entropy loss for model that output a probability between 0 and 1

$$X = \begin{bmatrix} 4, & 5 \\ 2, & 1 \\ 5, & 8 \\ \vdots & \vdots \end{bmatrix} \qquad \begin{array}{c} x_1 \\ \times \\ x_2 \end{array} \qquad \begin{array}{c} x_1 \\ \times \\ x_2 \end{array} \qquad \begin{array}{c} x_1 \\ \times \\ x_3 \end{array} \qquad \begin{array}{c} f(x) \\ y \\ \times \\ x_4 \end{array} \qquad \begin{array}{c} y \\ 0.8 \\ 0.6 \\ \vdots \end{array}$$

$$J(W) = -\frac{1}{n} \sum_{i=1}^{n} \underline{y^{(i)}} \cdot \log(\underline{\hat{y}^{(i)}}) + \underline{(1 - y^{(i)})} \cdot \log(1 - \underline{\hat{y}^{(i)}})$$

Actual

Predicted

Actual

Predicted

$$\log(x) = \begin{cases} <0, si \ x < 1\\ 0, si \ x = 1\\ >0, si \ x > 1 \end{cases}$$

Binary Cross Entropy Loss

Cross entropy loss for model that output a probability between 0 and 1

$$J(W) = -\frac{1}{n} \sum_{i=1}^{n} \underline{y^{(i)}} \cdot \log(\underline{\hat{y}^{(i)}}) + \underline{(1 - y^{(i)})} \cdot \log(1 - \underline{\hat{y}^{(i)}})$$

Actual

Predicted

Actual

Predicted

Reminder:

$$\log(x) = \begin{cases} <0, si \ x < 1\\ 0, si \ x = 1\\ >0, si \ x > 1 \end{cases}$$

Binary Cross Entropy Loss

Cross entropy loss for model that output a probability between 0 and 1

 Z_3

$$X = \begin{bmatrix} 4, & 5 \\ 2, & 1 \\ 5, & 8 \\ \vdots & \vdots \end{bmatrix}$$

$$x_{1}$$

$$x_{2}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{2}$$

$$x_{5}$$

$$x_{1}$$

$$x_{2}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{1}$$

$$x_{2}$$

$$x_{5}$$

$$x_{1}$$

$$x_{2}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{1}$$

$$x_{2}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{1}$$

$$x_{2}$$

$$x_{5}$$

$$x_{1}$$

$$x_{2}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{2}$$

$$x_{5}$$

$$x_{1}$$

$$x_{2}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x$$

$$J(\boldsymbol{W}) = -\frac{1}{n} \sum_{i=1}^{n} y^{(i)} \cdot \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \cdot \log(1 - \hat{y}^{(i)})$$

$$\log(x) = \begin{cases} < 0, si \ x < 1 \\ 0, si \ x = 1 \\ > 0, si \ x > 1 \end{cases}$$
Actual Predicted Actual Predicted

I(W)

Mean Squared Error (MSE) Loss

Mean squared error loss can be used with regression models that output continuous real numbers

$$X = \begin{bmatrix} 4, & 5 \\ 2, & 1 \\ 5, & 8 \\ \vdots & \vdots \end{bmatrix}$$

 x_1

 x_2

 z_1

 Z_2

 Z_3

Х

 \hat{y}_1

$$\begin{bmatrix}
30 \\
80 \\
85 \\
\vdots
\end{bmatrix}$$
 \times

$$\begin{bmatrix}
90 \\
20 \\
95 \\
\vdots
\end{bmatrix}$$

$$J(W) = \frac{1}{n} \sum_{i=1}^{n} (\underline{y^{(i)}} - \underline{\hat{y}^{(i)}})^{2}$$

Actual Predicted

We want to find the network weights that achieve the lowest lost

$$\boldsymbol{W}^* = \underset{\boldsymbol{W}}{\operatorname{argmin}} \boldsymbol{J}(\boldsymbol{W})$$

$$\boldsymbol{W}^* = \underset{\boldsymbol{W}}{\operatorname{argmin}} \left(\frac{1}{n} \sum_{i=1}^n \mathcal{L}(f(\boldsymbol{x}^{(i)}, \boldsymbol{W}), \boldsymbol{y}^{(i)})\right)$$
Predicted Actual
$$\boldsymbol{W} = \{\boldsymbol{W}^{(0)}, \boldsymbol{W}^{(1)}, \dots, \boldsymbol{W}^{(d)}\}$$

Randomly pick an initial value of (w_0, w_1)

Randomly pick an initial value of (w_0, w_1)

Compute the gradient $\frac{\partial J(W)}{\partial W}$

Take a small step in the opposite direction

Take a small step in the opposite direction

Repeat until convergence

Gradient Descent

Algorithm

- 1. Initialize the weights randomly $\mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$
- 4. Update weights, $W = W \eta \frac{\partial J(W)}{\partial W}$
- 5. Return weight

Gradient Descent

Algorithm

- 1. Initialize the weights randomly $\mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$
- 4. Update weights, $W = W \eta \frac{\partial J(W)}{\partial W}$
- 5. Return weight

```
import tensorflow as tf

lr = 0.001
weight = tf.Variable([tf.random.normal()])

while True: # must be replace by a convergence condition
    with tf.GradientTape() as g:
        loss = compute_loss(weights)
        gradient = g.gradient(loss, weights)

weights = weights - lr * gradient
```


How does a small change in one weight (ex. w_2) affect the final loss J(W)?

It is represented by
$$\frac{\partial J(W)}{\partial w_2} = \nearrow or \searrow$$

$$\frac{\partial J(W)}{\partial w_2} = \frac{\partial J(W)}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_2}$$

$$\frac{\partial J(W)}{\partial w_1} = \frac{\partial J(W)}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_1}$$

$$\frac{\partial J(W)}{\partial w_1} = \frac{\partial J(W)}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_2} * \frac{\partial w_2}{\partial z_1} * \frac{\partial z_1}{\partial w_1}$$

Training Neural Networks is Difficult

Loss function can be difficult to optimize

Remember that optimization is done thanks to gradient descent algorithm

$$W = W - \frac{\eta}{\partial W}$$

Small learning rates converge slowly and/or get stick in local minima

Large learning rates overshoot, become unstable and diverge

Stable learning rates converge smoothly and avoid local minima

How to smartly Choose the Learning Rate η

Idea 1 (empirically):

Try a lots of different learning rates and choose the more efficient one

Idea 2 (adaptive one):

Design an adaptive learning rate that « adapts » to the landscape

Don't use a fixed learning rate over the training

Choose depending on:

- How large the gradient is
- How fast the learning is occuring
- Size of a particular weights
- ...

Gradient Descent Algorithms

Algorithm

SGD (Stochastic Gradient Descent)

Adam

Adadelta

Adagrad

RMSProp

Tensorflow

tf.keras.optimizers.SGD

tf.keras.optimizers.Adam

tf.keras.optimizers.Adadelta

tf.keras.optimizers.Adagrad

tf.keras.optimizers.RMSProp

Reference

Kiefer, J., & Wolfowitz, J. (1952). Stochastic estimation of the maximum of a regression function. The Annals of Mathematical Statistics, 23(3), 462-466.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research, 12(7).

Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2), 26-31.

Gradient Descent in Tensorflow

```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import numpy as np
# model to define
model = model = tf.keras.Sequential([
   tf.keras.layers.Dense(units=64, activation='sigmoid'),
   tf.keras.layers.Dense(units=10, activation='sigmoid')
 Instantiate an optimizer and the loss function to use (pointer on function)
optimizer = tf.keras.optimizers.SGD(learning rate=1e-3)
compute loss = tf.keras.losses.SparseCategoricalCrossentropy(from logits=True)
# train
for epoch in range(500):
    # Open a GradientTape to record the operations for computing gradient
   with tf.GradientTape() as tape:
        # Run the forward pass of the layer.
       prediction = model(x train, training=True) # Logits for this minibatch
        # Compute the loss value for this minibatch.
       loss value = compute loss(y train, prediction)
    # update the weights using the gradient
   grads = tape.gradient(loss value, model.trainable weights)
   optimizer.apply_gradients(zip(grads, model.trainable_weights))
```


Training, validation and test sets

Among the whole label data, we need to define several sets

Basic approach

Whole Labeled Dataset

Training set 70%

Test set 30%

Training set: used to train the algorithm

Test set: used to evaluate your algorithm performance

Each set MUST HAVE the **same distribution** as the Whole Labelled Dataset

Training, validation and test sets

Among the whole label data, we need to define several sets

Advanced approach (for testing several Neural Network architectures or hyper parameters)

Whole Labeled Dataset

Training set 60%

Validation set 20%

Test set 20%

Training set: used to train the algorithm

Validation set: used to tune networks hyperparameters or select among several networks architecture

Test set: used to evaluate your algorithm performance

Each set MUST HAVE the **same distribution** as the Whole Labelled Dataset

Gradient Descent

Algorithm

- 1. Initialize the weights randomly $\mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$
- 4. Update weights, $W = W \eta \frac{\partial J(W)}{\partial W}$
- 5. Return weights

Labelled Data

Stochastic Gradient Descent

Algorithm

- 1. Initialize the weights randomly $\mathcal{N}(0, \sigma^2)$
- Loop until convergence:
- 3. Pick only 1 sample
- Compute gradient, $\frac{\partial J(W)}{\partial W}$
- Update weights, $W = W \eta \frac{\partial J(W)}{\partial W}$ 5.
- Return weights

Easy to compute but **Very noisy** (too stochastic)

Labelled Data

Stochastic Gradient Descent

Algorithm

- 1. Initialize the weights randomly $\mathcal{N}(0, \sigma^2)$
- Loop until convergence:
- 3. Pick a batch of B samples
- Compute gradient, $\frac{\partial J(W)}{\partial W} = \frac{1}{B} \sum_{i=1}^{B} \frac{\partial J_i(W)}{\partial W}$
- Update weights, $W = W \eta \frac{\partial J(W)}{\partial W}$ 5.
- Return weights

More accurate estimation of gradient **Smoother convergence** Allows larger learning rates Parrallelizable on GPUs Scalable to huge data

Labelled Data

The Problem of Overfitting

Underfitting = High bias

Model does not have capacity to fully learn the data

Ideal fit

Overfitting = <u>High variance</u>

Learn by heart Model does not have capacity to generalize well

Too complex representation / too many parameters

Regularization

The **regularization** is a technique that constraints our optimization problem to **discourage too complex models**.

Why do we need it?

Improve our generalization of our model on unseen data

Regularization I: Dropout

During training, randomly set activations to 0

Regularization I: Dropout

During training, randomly set activations to 0

• Typically, drop 50% of activations layer

• Forces network to not rely on 1 specialised node

tf.keras.layers.Dropout(p=0.5)

Regularization I: Dropout

During training, randomly set activations to 0

• Typically, drop 50% of activations layer

Forces network to not rely on 1 specialised node

Conclusion about Neural Networks

The Perceptron

- Structural building blocks
- Nonlinear activation functions

Neural Networks (NN)

- Stacking Perceptrons to form Deep Neural networks
- Optimization through Backpropagation

Training NN in Practice

- Stochastic Gradient Descent
- Adaptive learning rate
- Mini-Batching
- Regularization

Next topics

Recurrent neural networks

- Adapted for time series
- Gated Recurrent Unit (GRU),
- Long Short Term Memory (LSTM)

Convolutional neural network (CNN)

- Adapted to computer vision
- AlexNet
- resNet
- Inception v3, v4

The Neural network Zoo, Van Veen, F. & Leijnen, S. (2019).

A mostly complete chart of Neural Networks Input Cell Deep Feed Forward (DFF) Backfed Input Cell ©2019 Fjodor van Veen & Stefan Leijnen asimovinstitute.org Noisy Input Cell Feed Forward (FF) Radial Basis Network (RBF) Perceptron (P) Hidden Cell Probablistic Hidden Cell Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN) Spiking Hidden Cell Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU) Capsule Cell Output Cell Match Input Output Cell Recurrent Cell Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE) Deep Residual Network (DRN) Differentiable Neural Computer (DNC) Neural Turing Machine (NTM) Memory Cell Gated Memory Cell Convolution or Pool Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN) Markov Chain (MC) Capsule Network (CN) Attention Network (AN) Kohonen Network (KN) Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

Références

© Alexander Amini and Ava Soleimany, MIT 6.S191: Introduction to Deep Learning

Van Veen, F. & Leijnen, S. (2019). The Neural Network Zoo. Retrieved from https://www.asimovinstitute.org/neural-network-zoo

A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, "A Survey of the Recent Architectures of Deep Convolutional Neural Networks," *Artif Intell Rev*, vol. 53, no. 8, pp. 5455–5516, Dec. 2020, doi: 10.1007/s10462-020-09825-6.

"Anatomy and Physiology" by the US National Cancer Institute's Surveillance, Epidemiology and End Results (SEER) Program . Neuron description, Licence CC BY-SA 3.0

H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, "Visualizing the Loss Landscape of Neural Nets," in *Advances in Neural Information Processing Systems*, 2018, vol. 31, pp. 6389–6399, [Online]. Available: https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf.

Références

Datasets:

A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov, M. Malloci, A. Kolesnikov, T. Duerig, and V. Ferrari. The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale. IJCV, 2020.

R. Benenson, S. Popov, and V. Ferrari. Large-scale interactive object segmentation with human annotators. CVPR, 2019.

Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. (* = equal contribution) **ImageNet Large Scale Visual Recognition Challenge**. *IJCV*, 2015

J. Carreira, E. Noland, C. Hillier, and A. Zisserman, A Short Note on the Kinetics-700 Human Action Dataset. 2019.

Ambika Choudhury, 10 Open Datasets You Can Use For Computer Vision Projects, available at https://analyticsindiamag.com/10-open-datasets-you-can-use-for-computer-vision-projects/

- J. Fritsch, T. Kuehnl, and A. Geiger, "A New Performance Measure and Evaluation Benchmark for Road Detection Algorithms," 2013.
- A. Geiger, P. Lenz, and R. Urtasun, "Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite," 2012.
- M. Menze and A. Geiger, "Object Scene Flow for Autonomous Vehicles," 2015.
- A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, "Vision meets Robotics: The KITTI Dataset," *International Journal of Robotics Research (IJRR)*, 2013.

Google Research, available at https://research.google/tools/datasets/, access on Nov. 10, 2019

