	Wilbert Aristo Guntoro (1003742)	Date
I.	Randomly initialize the weight: W= -1	
	Using perceptron algorithm: [2]	
	r-s7	
	When $x_i = \begin{bmatrix} -3 \\ 3 \\ 3 \end{bmatrix}$, $y_i = +1$	
	- 2 T	
	When $x_2 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}, y_2 = -1$	•
	רוזה-דו	
	$y_1(w_2x_1) = (1)(\begin{bmatrix} -\frac{1}{2} & \frac{-5}{3} \\ -\frac{1}{3} & \frac{1}{3} \end{bmatrix}) = (1)(-5-1+6-1) = -1 < 0$	1
	[-1][1]	
	Up date weight:	
	$w_i = w_0 + y_1 \times_i$	
	2 7 3	
	[-4]	
	5	12 2
	$\frac{1}{3} \left(\frac{4}{3} \left(\frac{2}{3} \right) - \frac{4}{3} \right) = (-1)(-8 - 15) = 23 > 0$	
		don't ued update!
	Γ-47	spaate:
	:- The weights for this linear classifier = 5	
_		

CS Scanned with CamScanner

3. (1)
$$s(a) = \frac{\exp(a)}{1 + \exp(a)} = \frac{1}{\exp(-a) + 1}$$

$$log(s(a)) = log(\exp(-a) + 1)$$

$$= -log(\exp(-a) + 1)$$

$$\frac{1}{2}log(s(a)) = \frac{3(-\log(\exp(-a) + 1))}{3(a)}$$

$$\frac{1}{2}log(s(a)) = \frac{3(-a + 1)}{3(a)}$$

$$= \frac{1}{2a(e^{-a})} + \frac{3}{2a}(1)$$

$$= \frac{3}{2a(e^{-a})} + \frac{3}{2a}(1)$$

$$= e^{-a} + 1$$

$$= e^{-a} + \frac{1}{2a(a)}$$

$$= e^{-a} + 1$$

$$= -e^{-a} = e^{-a}$$

$$= e^{-a} + 1$$

$$= 1 - \frac{1}{e^{-a} + 1}$$

$$= 1 - s(a)$$

$$= log(e^{-a}) - log(e^{-a} + 1)$$

$$= log(e^{-a}) - log(e^{-a} + 1)$$

$$= log(e^{-a}) - log(e^{-a} + 1)$$

$$= log(e^{-a}) + (1 - s(a))$$

$$= \frac{3}{2a}$$

$$= -1 + 1 - s(a)$$

$$= -s(a)$$

$$= -s(a)$$

$$= -s(a)$$

$$= (PROVEN)$$

C5 Scanned with CamScanner

3 (a)
$$L = (-1) \cdot \frac{2}{6} \frac{y_1}{y_1} \frac{y_1}{y_1} (k(x_1)) + (1-y_1) l_{x_1} (1-k(x_1))$$

$$= (-1) \cdot \frac{2}{6} \frac{y_1}{y_1} \frac{y_1}{y_1} (s(x_1)) + (1-y_1) l_{x_1} (1-k(x_1))$$

$$= (-1) \cdot \frac{2}{6} \frac{y_1}{y_1} \frac{y_1}{y_1} (s(x_1)) + (1-y_1) l_{x_1} (1-x_1) l_{x_1} (1-x_1)$$

$$= \sum_{i=1}^{n} \frac{y_i}{y_i} \left[-x_i(1-s(x_1)) + (1-y_1) l_{x_1} (1-x_1) l_{x_1} (1-x_1) l_{x_1} (1-x_1) l_{x_1} \right]$$

$$= \sum_{i=1}^{n} \frac{y_i}{y_i} \left[-x_i(1-s(x_1)) + (1-y_1) l_{x_1} (1-x_1) l_{x_1} (1-$$

Matrix-Vector Multiplication

→ torch. einsum ('ijk,i → jk', [a,b])

(ii) Aik = 5 Aijkl

Column / Row Sum

Aik = Aijkl

torch. einsum ('ijkl → ik', [a])

(iii) Aki = Z Aijhl

Column / Row Sum

Ari = Aijhl

torch. einsum ('ijkl -> ki', [a])

Ci = St Airk Airk

Matrix - Matrix Multiplication

G = Aijk Aijk -> torch.einsum ('ijk,ijk >i', [a,a])

[= AGTB] → torch. einsum ('de, fe, fl > dl', [a,q,b])

Matrix - Matrix Multiplication