Билет 10-01

Шифр	
	(

1. Систему из бруска массой $m_1 = m$ и доски массой $m_2 = 2m$, находящихся на горизонтальном столе, приводят в движение, прикладывая к доске горизонтальную силу F (см. рис.). Коэффициент трения между столом и доской и между

горизонтальной поверхностью доски и бруском равен μ . Массой горизонтально натянутой нити, массой блока и трением в его оси пренебречь.

- 1) Найти ускорение a_1 доски, если бы не было трения.
- 2) Найти ускорение a_2 доски, если есть трение и параметры F, m, μ подобраны так, что есть движение.
- **2.** Пустую стеклянную бутылку опускают в цилиндрический сосуд с водой с вертикальными стенками. Бутылка стала плавать, а уровень воды в сосуде поднялся на H_1 =3 см. Затем в бутылку медленно наливают воду. Когда масса налитой воды достигает некоторой величины, бутылка начинает тонуть. Уровень воды в сосуде за время наливания поднялся ещё на H_2 =1 см. Плотность стекла ρ_0 = 3 г/см³, плотность воды ρ =1 г/см³. Площадь внутреннего сечения сосуда S=250 см².
 - 1) Найти массу пустой бутылки.

Класс 10

- 2) Найти массу воды, налитой в бутылку.
- 3) Найти вместимость пустой бутылки.
- **3.** Ракета стартует вертикально. К $t_1 = 30$ секунде полёта вес выводимого на орбиту спутника увеличился в $k_1 = 1,5$ раза (относительно веса перед стартом), к $t_2 = 60$ секунде полёта вес спутника был уже в $k_2 = 2,0$ раза больше, чем перед стартом. Считать массовый расход топлива постоянным. Сопротивлением воздуха и изменением ускорения свободного падения с высотой пренебречь. Принять $g = 10 \text{ м/c}^2$.
 - 1) Найти ускорение ракеты в момент времени t_1 .
- 2) Определите скорость u вытекания продуктов сгорания относительно сопла, считая её постоянной.
- **4.** В цилиндре под поршнем находятся в равновесии воздух, водяной пар и вода. Отношение масс жидкости и пара α =1/2. В медленном изотермическом процессе объём влажного воздуха увеличивается в k=3 раза.
 - 1) Найти относительную влажность воздуха φ_1 в цилиндре в начале процесса.
 - 2) Найти относительную влажность воздуха φ_2 в цилиндре в конечном состоянии.
- **5.** Одноатомный идеальный газ нагревается в изохорическом процессе 1-2, затем расширяется в адиабатическом процессе 2-3 и сжимается в изобарическом процессе 3-1 (см. рис.). Отношение работы газа A_{23} в процессе 2-3 к работе над газом A_{31} (A_{31} >0) в процессе 3-1 $\frac{A_{23}}{A_{31}} = \frac{36}{7}$. В процессе сжатия объём газа уменьшается в 8 раз.

- 1) Найти отношение температур T_2/T_3 в состояниях 2 и 3.
- 2) Найти КПД цикла.

Билет 10-02

Шифр	
	(

1. Систему из бруска массой $m_1 = m$ и доски массой $m_2 = 3m$, находящихся на горизонтальном столе, приводят в движение, прикладывая к доске горизонтальную силу F (см. рис.). Коэффициент трения между столом и доской и между

горизонтальной поверхностью доски и бруском равен μ . Массой горизонтально натянутой нити, массой блока и трением в его оси пренебречь.

- 1) Найти ускорение a_1 доски, если бы не было трения.
- 2) Найти ускорение a_2 доски, если есть трение и параметры F, m, μ подобраны так, что есть движение.
- **2.** Пустую стеклянную бутылку вместимостью V=0,8 л опускают в цилиндрический сосуд с водой с вертикальными стенками. Бутылка стала плавать, а уровень воды в сосуде поднялся на H_1 =2 см. Затем в бутылку медленно наливают воду. Когда масса налитой воды достигает некоторой величины, бутылка начинает тонуть. Уровень воды в сосуде за время наливания поднялся ещё на H_2 . Плотность стекла ρ_0 = 2,5 г/см³, плотность воды ρ =1 г/см³. Площадь внутреннего сечения сосуда S=250 см².
 - 1) Найти массу пустой бутылки.
 - 2) Найти массу воды, налитой в бутылку.
 - 3) Найти *H*₂.

Класс 10

- **3.** Ракета стартует вертикально. К $t_1 = 10$ секунде полёта вес выводимого на орбиту прибора увеличился в $k_1 = 1,2$ раза (относительно веса перед стартом), к $t_2 = 30$ секунде полёта вес прибора был уже в $k_2 = 1,4$ раза больше, чем перед стартом. Считать массовый расход топлива постоянным. Сопротивлением воздуха и изменением ускорения свободного падения с высотой пренебречь. Принять $g = 10 \text{ м/c}^2$.
 - 1) Найти ускорение ракеты в момент времени t_2 .
- 2) Определите скорость u вытекания продуктов сгорания относительно сопла, считая её постоянной.
- **4.** В цилиндре под поршнем находятся в равновесии воздух, водяной пар и вода. Отношение масс жидкости и пара α =3/4. В медленном изотермическом процессе объём влажного воздуха увеличивается в k=7 раз.
 - 1) Найти относительную влажность воздуха φ_1 в цилиндре в начале процесса.
 - 2) Найти относительную влажность воздуха φ_2 в цилиндре в конечном состоянии.
- **5.** Одноатомный идеальный газ нагревается в изохорическом процессе 1-2, затем расширяется в адиабатическом процессе 2-3 и сжимается в изобарическом процессе 3-1 (см. рис.). Отношение работы газа A_{23} в процессе 2-3 к количеству отведенной от газа теплоты Q_{31} (Q_{31} >0) в процессе 3-1 $\frac{A_{23}}{Q_{31}} = \frac{72}{35}$

- . В процессе сжатия объём газа уменьшается в 8 раз.
 - 1) Найти отношение температур T_2/T_3 в состояниях 2 и 3.
- 2) Найти отношение количества теплоты Q_{12} , подведенной к газу в процессе 1-2, к Q_{31} .

Билет 10-03

Шифр	
	(")

1. Систему из бруска массой $m_1 = 2m$ и доски массой $m_2 = m$, находящихся на горизонтальном столе, приводят в движение, прикладывая к бруску горизонтальную силу F (см. рис.). Коэффициент трения между столом и доской и между горизонтальной поверхностью доски и бруском равен μ . Массой горизонтально натянутой нити, массой блока и трением в его оси пренебречь.

- 1) Найти ускорение a_1 доски, если бы не было трения.
- 2) Найти ускорение a_2 доски, если есть трение и параметры F, m, μ подобраны так, что есть движение.
- **2.** Пустую стеклянную колбу массой $m_0 = 750$ г и вместимостью V = 0.8 л опускают в цилиндрический сосуд с водой. Стенки сосуда вертикальны. Колба стала плавать, а уровень воды в сосуде поднялся на некоторую высоту H_1 . Затем в колбу медленно наливают воду. Когда масса налитой воды достигает m = 250 г, колба начинает тонуть. Уровень воды в сосуде за время наливания поднялся ещё на H_2 . Плотность воды $\rho = 1$ г/см³. Площадь внутреннего сечения сосуда S = 250 см².
 - 1) Найти *H*₁.

Класс 10

- 2) Найти *H*₂.
- 3) Найти плотность стекла колбы.
- **3.** Два коаксиальных цилиндра разного радиуса $R_1 = 10$ см и $R_2 = 20$ см помещены в вакуум. Вдоль образующей внутреннего цилиндра имеется узкая щель. Вдоль оси системы натянута платиновая проволочка, покрытая тонким слоем серебра. Если проволочку с помощью электротока раскалить, то образуется налёт в виде полосы на боковой поверхности внешнего цилиндра напротив щели. Цилиндры приводят во вращение вокруг их общей оси с угловой скоростью $\omega = 2000$ с⁻¹. В результате на боковой поверхности внешнего цилиндра образуется ещё одна полоса налёта, смещённая относительно первой на S = 8 см (расстояние отсчитывается вдоль боковой поверхности). Относительную атомную массу серебра считать A = 100.
 - 1) Найти среднее время пролета атомом промежутка между цилиндрами.
 - 2) Найти среднюю скорость атомов серебра.
 - 3) Найти температуру нити.
- **4.** Два сосуда соединены короткой трубкой с закрытым краном. В одном сосуде объёмом $V_1 = 3$ л находится влажный воздух с относительной влажностью $\varphi_1 = 50\%$ при температуре T. В другом сосуде объёмом $V_2 = 2$ л находится влажный воздух с относительной влажностью $\varphi_2 = 75\%$ при той же температуре. Кран открывают, и влажный воздух в сосудах перемешивается. В сосудах устанавливается та же температура T. Найти относительную влажность φ воздуха в сосудах.
- **5.** Одноатомный идеальный газ расширяется в изобарическом процессе 1-2, затем охлаждается в изохорическом процессе 2-3 и сжимается в адиабатическом процессе 3-1 (см. рис.). Отношение работы газа A_{12} в процессе 1-2 к работе над газом A_{31} (A_{31} >0) в процессе 3-1 равно $\frac{A_{12}}{A_{31}} = \frac{56}{9}$. В процессе расширения объём газа увеличивается в 8 раз.

- процессе расширения объём газа увеличивается в 8 раз. 1) Найти отношение температур T_1/T_3 в состояниях 1 и 3.
 - 2) Найти КПД цикла.

Билет 10-04

Шифр	
	(20TO THEOTOE COMPOTORSM)

1. Систему из бруска массой $m_1 = 3m$ и доски массой $m_2 = m$, находящихся на горизонтальном столе, приводят в движение, прикладывая к бруску горизонтальную силу F (см. рис.). Коэффициент трения между столом и доской и между горизонтальной поверхностью доски и бруском равен μ . Массой

горизонтально натянутой нити, массой блока и трением в его оси пренебречь.

- 1) Найти ускорение a_1 бруска, если бы не было трения.
- 2) Найти ускорение a_2 бруска, если есть трение и параметры F, m, μ подобраны так, что есть движение.
- **2.** Пустую стеклянную колбу массой $m_0 = 500$ г опускают в цилиндрический сосуд с водой. Стенки сосуда вертикальны. Колба стала плавать, а уровень воды в сосуде поднялся на некоторую высоту H_1 . Затем в колбу медленно наливают воду. Когда масса налитой воды достигает m = 500 г, колба начинает тонуть. Уровень воды в сосуде за время наливания поднялся ещё на H_2 . Плотность воды $\rho = 1$ г/см³, плотность стекла $\rho_0 = 2.5$ г/см³. Площадь внутреннего сечения сосуда S = 250 см².
 - 1) Найти *H*₁.

Класс 10

- 2) Найти *H*₂.
- 3) Найти вместимость пустой колбы.
- **3.** Два коаксиальных цилиндра разного радиуса $R_1 = 5$ см и $R_2 = 25$ см помещены в вакуум. Вдоль образующей внутреннего цилиндра имеется узкая щель. Вдоль оси системы натянута платиновая проволочка, покрытая тонким слоем серебра. Если проволочку с помощью электротока раскалить до температуры T = 1000 K, то образуется налёт в виде полосы на боковой поверхности внешнего цилиндра напротив щели. Цилиндры приводят во вращение вокруг их общей оси с некоторой угловой скоростью ω . В результате на боковой поверхности внешнего цилиндра образуется ещё одна полоса налёта, смещённая относительно первой на S = 7 см (расстояние отсчитывается вдоль боковой поверхности). Относительную атомную массу серебра считать A = 100.
 - 1) Найти среднюю скорость атомов серебра.
 - 2) Найти среднее время пролета атомом промежутка между цилиндрами.
 - 3) Найти угловую скорость ω системы.
- **4.** Два сосуда соединены короткой трубкой с закрытым краном. В одном сосуде объёмом $V_1=3,5\,$ л находится влажный воздух с относительной влажностью $\varphi_1=40\%$ при температуре T. В другом сосуде объёмом $V_2=2,5\,$ л находится влажный воздух с относительной влажностью $\varphi_2=60\%$ при той же температуре. Кран открывают, и влажный воздух в сосудах перемешивается. В сосудах устанавливается та же температура T. Найти относительную влажность φ воздуха в сосудах.
- **5.** Одноатомный идеальный газ расширяется в изобарическом процессе 1-2, затем охлаждается в изохорическом процессе 2-3 и сжимается в адиабатическом процессе 3-1 (см. рис.). Отношение работы над газом A_{31} (A_{31} >0) в процессе 3-1 к количеству теплоты Q_{12} , полученной газом в процессе

1-2, равно $\frac{A_{31}}{Q_{12}} = \frac{9}{140}$. В процессе расширения объём газа увеличивается в 8 раз.

- 1) Найти отношение температур T_1/T_3 в состояниях 1 и 3.
- 2) Найти отношение количества теплоты Q_{12} , подведенной к газу в процессе 1-2, к количеству теплоты Q_{23} (Q_{23} >0), отведенной от газа в процессе 2-3.

1.1)
$$a_1 = \frac{F}{m_1 + m_2} = \boxed{\frac{F}{3m}}$$
.

2) По второму закону Ньютона $F-\mu \left(m_1+m_2\right)g-\mu m_1g-T=m_2a_2$, $T-\mu m_1g=m_1a_2$. Отсюда $a_2=\frac{F-\mu \left(3m_1+m_2\right)g}{m_1+m_2}=\boxed{\frac{F-5\mu mg}{3m}}\,.$

- **2.** Пусть m_0 масса пустой бутылки, m масса налитой воды, V вместимость бутылки.
 - **1**) $m_0 g = \rho g H_1 S$. $m_0 = \rho H_1 S = 750$ г.
 - **2)** $mg = \rho g H_2 S$. $m_0 = \rho H_2 S = 250$ г.

3)
$$\rho \left(V + \frac{m_0}{\rho_0}\right) g = \left(m_0 + m\right) g$$
. $V = \frac{m_0 + m}{\rho} - \frac{m_0}{\rho_0} = S\left(\frac{\rho_0 - \rho}{\rho_0} H_1 + H_2\right) = 750$ cm³.

- **3. 1**) Пусть m_C масса спутника, a_1 ускорение в момент t_1 . Вес спутника до старта $P_0 = m_C g$. Вес к моменту t_1 , когда ускорение a_1 , $P_1 = m_C \left(a_1 + g \right)$. По условию $P_1 = k_1 P_0$. Отсюда $a_1 = \left(k_1 1 \right) g = 5$ м/с².
- **2**) Пусть m_0 начальная масса ракеты. Тогда $m=m_0-\mu t$ масса в момент t . Здесь $\mu=-\frac{\Delta m}{\Delta t}$ массовый расход топлива. За малое время $\Delta t=-mg\Delta t=m\Delta V-u(-\Delta m)$. Отсюда $-mg=m\frac{\Delta V}{\Delta t}+u\frac{\Delta m}{\Delta t}$. Здесь $\frac{\Delta V}{\Delta t}=a$ ускорение. Имеем $(m_0-\mu t)(g+a)=\mu u$. Если к моменту времени t , когда ускорение a , вес увеличился в k раз, то $km_Cg=(a+g)m_C$. Из последних двух уравнений $(m_0-\mu t)kg=\mu u$. Для моментов t_1 и t_2 имеем $(m_0-\mu t_1)k_1g=\mu u$, $(m_0-\mu t_2)k_2g=\mu u$. Отсюда $u=\frac{k_1k_2g(t_2-t_1)}{k_2-k_1}=1800$ м/с.
- **4. 1)** $\varphi_1 = 1(100\%)$.
- **2)** Пусть вначале m масса пара, V объем влажного воздуха. Пусть P_H давление насыщенного пара, T температура, μ молярная масса воды. Предположим, что вся вода испарилась. Тогда $P_H V = \frac{m}{\mu} RT \;, \;\; \varphi_2 P_H \; 3V = \frac{3}{2} \frac{m}{\mu} RT \;. \;\; \text{Отсюда} \;\; \varphi_2 = \frac{1}{2} \;, \;\; \text{то есть пар ненасыщенный.} \;\; \text{Предположение}$ правильное. Итак, $\boxed{\varphi_2 = \frac{1}{2} \left(50\%\right)}$.
- **5. 1**) ЗСЭ в процессе 2-3: $0 = \nu C_{\nu} \left(T_3 T_2\right) + A_{23}$. $A_{31} = P_1 \left(V_3 V_1\right) = \nu R \left(T_3 T_1\right)$. $\frac{T_3}{T_1} = \frac{V_3}{V_1} = 8$. $\frac{A_{23}}{A_{31}} = \frac{36}{7}$. Из записанных уравнений $\frac{T_2}{T_3} = 4$.

2)
$$\eta = \frac{Q_{12} + Q_{23} + Q_{31}}{Q_{12}} = 1 + \frac{Q_{31}}{Q_{12}} = 1 - \frac{vC_P(T_3 - T_1)}{vC_V(T_2 - T_1)} = \boxed{\frac{58}{93}}$$
.

1.1)
$$a_1 = \frac{F}{m_1 + m_2} = \boxed{\frac{F}{4m}}$$
.

2) По второму закону Ньютона $F - \mu \left(m_1 + m_2\right) g - \mu m_1 g - T = m_2 a_2$, $T - \mu m_1 g = m_1 a_2$. Отсюда

$$a_2 = \frac{F - \mu(3m_1 + m_2)g}{m_1 + m_2} = \boxed{\frac{F - 6\mu mg}{4m}}.$$

2. Пусть m_0 - масса пустой бутылки, m - масса налитой воды.

1)
$$m_0 g = \rho g H_1 S$$
. $m_0 = \rho H_1 S = 500$ г.

2)
$$\rho \left(V + \frac{m_0}{\rho_0}\right) g = \left(m_0 + m\right) g$$
. $m = \rho \left(V + \frac{m_0}{\rho_0}\right) - m_0 = \rho \left(V - H_1 S \frac{\rho_0 - \rho}{\rho_0}\right) = 500$ Γ .

3)
$$mg = \rho g H_2 S$$
. $\left| H_2 = \frac{m}{\rho S} = \frac{V}{S} - H_1 \frac{\rho_0 - \rho}{\rho_0} = 2 \right|$ cm.

- **3. 1)** Пусть m_C масса прибора, a_2 ускорение в момент t_2 . Вес прибора до старта $P_0 = m_C g$. Вес к моменту t_2 , когда ускорение a_2 , $P_2 = m_C \left(a_2 + g\right)$. По условию $P_2 = k_2 P_0$. Отсюда $a_2 = \left(k_2 1\right)g = 4$ м/с².
- 2) Пусть m_0 начальная масса ракеты. Тогда $m=m_0-\mu t$ масса в момент t . Здесь $\mu=-\frac{\Delta m}{\Delta t}$ массовый расход топлива. За малое время $\Delta t=m\Delta V-u(-\Delta m)$. Отсюда $-mg=m\frac{\Delta V}{\Delta t}+u\frac{\Delta m}{\Delta t}$. Здесь $\frac{\Delta V}{\Delta t}=a$ ускорение. Имеем $(m_0-\mu t)(g+a)=\mu u$. Если к моменту времени t , когда ускорение a , вес увеличился в k раз, то $km_Cg=(a+g)m_C$. Из последних двух уравнений $(m_0-\mu t)kg=\mu u$. Для моментов t_1 и t_2 имеем $(m_0-\mu t_1)k_1g=\mu u$, $(m_0-\mu t_2)k_2g=\mu u$. Отсюда $u=\frac{k_1k_2g(t_2-t_1)}{k_2-k_1}=1680$ м/с.

4. 1)
$$\varphi_1 = 1(100\%)$$
.

- **2)** Пусть вначале m масса пара, V объем влажного воздуха. Пусть P_H давление насыщенного пара, T температура, μ молярная масса воды. Предположим, что вся вода испарилась. Тогда $P_H V = \frac{m}{\mu} RT \;, \;\; \varphi_2 P_H \; 7V = \frac{7}{4} \frac{m}{\mu} RT \;. \;\; \text{Отсюда} \;\; \varphi_2 = \frac{1}{4} \;, \;\; \text{то есть пар ненасыщенный.} \;\; \text{Предположение}$ правильное. Итак, $\boxed{\varphi_2 = \frac{1}{4} \left(25\%\right)}$.
- **5. 1**) ЗСЭ в процессе 2-3: $0 = vC_V\left(T_3 T_2\right) + A_{23}$. $-Q_{31} = vC_PR\left(T_1 T_3\right)$. $\frac{T_3}{T_1} = \frac{V_3}{V_1} = 8$. $\frac{A_{23}}{Q_{31}} = \frac{72}{35}$. Из записанных уравнений $\boxed{\frac{T_2}{T_3} = 4}$.

2)
$$\frac{Q_{12}}{Q_{31}} = \frac{vC_V(T_2 - T_1)}{vC_P(T_3 - T_1)} = \boxed{\frac{93}{35}}.$$

1. 1)
$$a_1 = \frac{F}{m_1 + m_2} = \boxed{\frac{F}{3m}}$$
.

2) По второму закону Ньютона $T - \mu (m_1 + m_2) g - \mu m_1 g = m_2 a_2$, $F - \mu m_1 g - T = m_1 a_2$. Отсюда

$$a_2 = \frac{F - \mu (3m_1 + m_2)g}{m_1 + m_2} = \boxed{\frac{F - 7\mu mg}{3m}}.$$

2. Пусть ρ_0 - плотность стекла колбы.

1)
$$m_0 g = \rho g H_1 S$$
. $H_1 = \frac{m_0}{\rho S} = 3$ cm.

2)
$$mg = \rho g H_2 S$$
. $H_2 = \frac{m}{\rho S} = 1$ cm.

3)
$$\rho \left(V + \frac{m_0}{\rho_0}\right) g = \left(m_0 + m\right) g$$
. $\rho_0 = \frac{\rho m_0}{m_0 + m - \rho V} = 3,75$ Γ/cm^3 .

3. 1)
$$S = \omega R_2 t$$
. $t = \frac{S}{\omega R_2} = 0,2$ Mc.

2)
$$V = \frac{R_2 - R_1}{t} = \frac{(R_2 - R_1)\omega R_2}{S} = 500$$
 m/c.

3)
$$\frac{1}{2}m_0V^2 = \frac{3}{2}kT$$
. $T = \frac{1}{3}\frac{m_0}{k}V^2 = \boxed{\frac{1}{3}\frac{\mu}{R}V^2 = \frac{1}{3}\frac{\mu}{R}\left(\frac{\left(R_2 - R_1\right)\omega R_2}{S}\right)^2 = 1000}$ К. Здесь $\mu = 100$ г/моль.

4. Пусть P_{H} -давление насыщенного пара. $m_{1}=\frac{\mu}{RT}\varphi_{1}P_{H}V_{1}, \quad m_{2}=\frac{\mu}{RT}\varphi_{2}P_{H}V_{2}, \quad m_{1}+m_{2}=\frac{\mu}{RT}\varphi P_{H}\left(V_{1}+V_{2}\right).$

$$\varphi = \frac{\varphi_1 V_1 + \varphi_2 V_2}{V_1 + V_2} = 0, 6, \ \varphi = 60\%$$

5. 1) 3C9 в процессе 3-1: $0 = \nu C_V (T_1 - T_3) + (-A_{31})$. $A_{12} = P_1 (V_2 - V_1) = \nu R (T_2 - T_1)$. $\frac{T_2}{T_1} = \frac{V_2}{V_1} = 8$. $\frac{A_{12}}{A_{31}} = \frac{56}{9}$.

Из записанных уравнений $\left| \frac{T_1}{T_3} = 4 \right|$.

2)
$$T_1 = 4T_3$$
, $T_2 = 8T_1 = 32T_3$. $\eta = \frac{Q_{12} + Q_{23} + Q_{31}}{Q_{12}} = 1 + \frac{Q_{23}}{Q_{12}} = 1 + \frac{vC_v(T_3 - T_2)}{vC_P(T_2 - T_1)} = \boxed{\frac{47}{140}}$.

1.1)
$$a_1 = \frac{F}{m_1 + m_2} = \boxed{\frac{F}{4m}}$$
.

2) По второму закону Ньютона $T - \mu (m_1 + m_2) g - \mu m_1 g = m_2 a_2$, $F - \mu m_1 g - T = m_1 a_2$. Отсюда

$$a_2 = \frac{F - \mu (3m_1 + m_2)g}{m_1 + m_2} = \boxed{\frac{F - 10\mu mg}{4m}}.$$

2. Пусть V - вместимость колбы.

1)
$$m_0 g = \rho g H_1 S$$
. $H_1 = \frac{m_0}{\rho S} = 2$ cm.

2)
$$mg = \rho g H_2 S$$
. $H_2 = \frac{m}{\rho S} = 2$ cm.

3)
$$\rho \left(V + \frac{m_0}{\rho_0}\right) g = \left(m_0 + m\right) g$$
. $V = \frac{m_0 + m}{\rho} - \frac{m_0}{\rho_0} = 800$ cm³.

3. 1)
$$\frac{1}{2}m_0V^2 = \frac{3}{2}kT$$
. $V = \sqrt{\frac{3kT}{m_0}} = \sqrt{\frac{3RT}{\mu}} = 500$ м/с. Здесь $\mu = 100$ г/моль.

2)
$$t = \frac{R_2 - R_1}{V} = \frac{R_2 - R_1}{\sqrt{3RT/\mu}} = 0,4$$
 Mc.

3)
$$S = \omega R_2 t$$
. $\omega = \frac{S}{R_2 t} = \frac{S\sqrt{3RT/\mu}}{(R_2 - R_1)R_2} = 700$ c^{-1} .

4. Пусть P_H -давление насыщенного пара. $m_1 = \frac{\mu}{RT} \varphi_1 P_H V_1$, $m_2 = \frac{\mu}{RT} \varphi_2 P_H V_2$, $m_1 + m_2 = \frac{\mu}{RT} \varphi P_H \left(V_1 + V_2 \right)$.

$$\varphi = \frac{\varphi_1 V_1 + \varphi_2 V_2}{V_1 + V_2} = \frac{29}{60} \approx 0,48, \ \varphi \approx 48\%$$

5. 1) 3C9 в процессе 3-1: $0 = \nu C_V (T_1 - T_3) + (-A_{31})$. $Q_{12} = \nu C_P (T_2 - T_1) = \nu \frac{5}{2} R(T_2 - T_1)$. $\frac{T_2}{T_1} = \frac{V_2}{V_1} = 8$.

$$\frac{A_{31}}{Q_{12}} = \frac{9}{140}$$
 . Из записанных уравнений $\boxed{\frac{T_1}{T_3} = 4}$.

2)
$$T_1 = 4T_3$$
, $T_2 = 8T_1 = 32T_3$. $x = \frac{Q_{12}}{Q_{23}} = \frac{vC_P(T_2 - T_1)}{-vC_V(T_3 - T_2)} = \boxed{\frac{140}{93}}$.

Критерии оценивания. Ол-да «Физтех». 2018 г. Билеты 10-01, 10-02

Задача 1. (10 очков) [В.И. Чивилёв]		
1) Ответ на 1-й вопрос		
2) Ответ на 2-й вопрос		
Задача 2. (10 очков) [А.А. Шеронов]		
1) Ответ на 1-й вопрос		
2) Ответ на 2-й вопрос Б10-01		
Ответ на 2-й вопрос Б10-02		
3) Ответ на 3-й вопрос Б10-01		
Ответ на 3-й вопрос Б10-02		
Задача 3. (10 очков) [В.А. Бабинцев] 1) Ответ на 1-й вопрос 3 очка 2) Ответ на 2-й вопрос 7 очков		
Задача 4. (10 очков) [А.А. Шеронов]		
1) Ответ на 1-й вопрос		
2) Ответ на 2-й вопрос		
Задача 5. (10 очков) [А.А. Шеронов] 1) Отрет на 1 й родрос 5 одков		
1) Ответ на 1-й вопрос		
2) Ответ на 2-й вопрос		

Критерии оценивания. Ол-да «Физтех». 2018 г. Билет 10-03

Задача 1. (10 очков) [В.И. Чивилёв]	
1) Ответ на 1-й вопрос	іка
2) Ответ на 2-й вопрос	ЮВ
Задача 2. (10 очков) [А.А. Шеронов]	
1) Ответ на 1-й вопрос	ка
2) Ответ на 2-й вопрос	ка
3) Ответ на 3-й вопрос	
Задача 3. (10 очков) [В.А. Бабинцев]	
1) Правильная связь между s , ω , R_2 и t	Іка
Ответ на 1-й вопрос 1 оч	КО
2) Правильная связь между $R_2 - R_1$, V и t	ка
Ответ на 2-й вопрос	КО
3) Правильная связь между <i>v</i> и <i>т</i>	іка
Ответ на 3-й вопрос	КО
Задача 4. (10 очков) [А.А. Шеронов]	
Правильно записаны все необходимые ур-я	
Аналитический ответ	
Численный ответ 2 оч	ка
Задача 5. (10 очков) [А.А. Шеронов] 1) Ответ на 1-й вопрос	OR.
2) Ответ на 2-й вопрос	
2) Orber na 2 n bompoe	מטי

Критерии оценивания. Ол-да «Физтех». 2018 г. Билет 10-04

Задача 1. (10 очков) [В.И. Чивилёв]	
1) Ответ на 1-й вопрос	ка
2) Ответ на 2-й вопрос	ЭВ
Задача 2. (10 очков) [А.А. Шеронов]	
1) Ответ на 1-й вопрос 3 очн	ка
2) Ответ на 2-й вопрос	ка
3) Ответ на 3-й вопрос	
Задача 3. (10 очков) [В.А. Бабинцев]	
1) Правильная связь между <i>v</i> и <i>т</i>	ка
Ответ на 1-й вопрос	ΚO
2) Правильная связь между $R_2 - R_1$, V и t	ca
Ответ на 2-й вопрос	SO
3) Правильная связь между s, ω , R_2 и t	
Ответ на 1-й вопрос	
Задача 4. (10 очков) [А.А. Шеронов]	
Правильно записаны все необходимые ур-я 4 очн	ка
Аналитический ответ	ка
Численный ответ	ка
Задача 5. (10 очков) [А.А. Шеронов]	
1) Ответ на 1-й вопрос 5 очко	ЭВ
2) Ответ на 2-й вопрос	