Extensions to Mendel

Today's question: Mendel was not aware of linkage. What other patterns of inheritance occur that he didn't describe?

- I. Genetic recombination
- II. Linkage mapping
- **III.** Co-dominance
- IV. Gene x gene and gene x environment interactions
- V. Pleiotropy, multiple allelism, etc. (cell phones off, please)

III. Linkage

A. Morgan's lab found a series of genes on the X chromosome (inheritance patterns like *white*)

B. Notation for linked genes

X-linked linked genes: X^{wY} (y = yellow body)

Autosomes: AC/ac or AC//ac; gametes as AC

I. The discovery of genetic recombination

Morgan's first cross with linked genes X^{γ} = normal body color; X^{γ} = yellow body color

Parental genotypes: X^{wY} X^{wY} x X^{wy} Y

F₁ females: F₁ males:

Let F₁s mate. What are the genotypes and phenotypes of F₂ MALE offspring?

What are the genotypes of the weird males?

Crossing over as a physical mechanism for genetic recombination.

II. Linkage mapping

Sturtevant's insight: The percentage of recombinants is proportional to the physical distance between genes.

Yellow is at 0

Yellow and white eye: 1.4% recombinants

Yellow and sable body: 43% recombinants

Sable and white eye 41.6%

Crossveinless wings and sable: 29.3% recombinants

Crossveinless wings and white: 12.3% recombinants

II. Co-dominance

All of the alleles that Mendel analyzed were completely dominant or completely recessive with respect to each other.

ABO blood types in humans

IA allele: Glycoprotein A on red blood cells

I^B allele: Glycoprotein B on red blood cells

i allele: no gene product on red blood cells

 $I^{A}I^{A}$ and $I^{A}i$ A blood type $I^{B}I^{B}$ and $I^{B}i$ B blood type $I^{A}I^{B}$ AB blood type ii O blood type

III. Gene x gene and gene x environment interactions

Implications for inheritance: When studying the effects of a gene, you need to control for "genetic background" (other genes present) and the physical environment.

Case 1: Inuit residents of Barrow, Alaska, where people over 35 had not attended American-style schools.

Age	% diagnosed myopic (sample size)
6-35	42 (348)
36-88	5 (160)

State whether these data are evidence of a gene x gene or a gene x environment interaction. Explain your logic.

Case 2: Genetically, Pima people from Mexico and the sw USA are indistinguishable.

Assume that if the black lines on different bars do not overlap, it indicates statistically significant differences.

- 1. Explain what the data in the left graph mean.
- 2. Explain what the data in the right graph mean.
- 3. Some researchers suggest that there is a connection between the two graphs. State this as a hypothesis.
- 4. State whether these data indicate a gene x gene or a gene x environment interaction, or both. Explain.