SUCCESSIVE DIFFERENTIATION

Standard Formulae

Function of x	n th derivative w.r.t. x
$y=(ax+b)^m$	$y_n = \frac{m!}{(m-n)!} a^n (ax + b)^{m-n} \text{ if m>n}$ $= n! a^n \text{ if m=n}$ $= 0 \text{ if n>m}$
$y = \frac{1}{(ax+b)^m}$	$y_n = \frac{(-1)^n (m+n-1)! a^n}{(m-1)! (ax+b)^{m+n}}$
$y = \frac{1}{(ax+b)}$	$y_n = \frac{(-1)^n n! a^n}{(ax + b)^{n+1}}$
y=log (ax+ b)	$y_n = \frac{(-1)^n n! a^n}{(ax+b)^{n+1}}$ $y_n = \frac{(-1)^{n-1} (n-1)! a^n}{(ax+b)^n}$
y=a ^{mx}	$y_n = m^n a^{mx} (\log a)^n$
y=e ^{mx}	$y_n = m^n e^{mx}$
y= cos (ax+ b)	$y_n = a^n \cos(ax + b + \frac{n\pi}{2})$
y=sin(ax+ b)	$y_n = a^n \sin(ax + b + \frac{n\pi}{2})$
$y=e^{ax}\cos(bx+c)$	$y_n = r^n e^{ax} \cos(bx + c + n\theta)$
	where $r=\sqrt{a^2+b^2}$ & $\theta=\tan^{-1}(\frac{b}{a})$
$y=e^{ax} s in(bx + c)$	$y_n = r^n e^{ax} \sin(bx + c + n\theta)$
	where $r=\sqrt{a^2+b^2}$ & $\theta=\tan^{-1}(\frac{b}{a})$

Problems

01. Find the nth derivative w. r. t. x of the following

(a)
$$\frac{x}{(x-1)(x-2)(x-3)}$$
 (M-16) (b) $\frac{8x}{x^3-2x^2-4x+8}$ (D - 07)

(c)
$$y = \frac{x^3}{(x+1)(x-2)}$$
 (D-17) (d) $\frac{x^2+4}{(x-1)^2(2x+3)}$ (D-12)

02. Find the nth order derivative of the following

(a)
$$\frac{1}{x^2+a^2}$$
 (b) $\tan^{-1}x$ (c) $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$ (d) $\cos^{-1}\left(\frac{x-x^{-1}}{x+x^{-1}}\right)$

03.(a) If
$$y = (x-1)^n$$
 show that $y + \frac{y_1}{1!} + \frac{y_2}{2!} + L + \frac{y_n}{n!} = x^n$

(b) If
$$y = x \log \left(\frac{x-1}{x+1} \right)$$
 S.T. $y_n = (-1)^{n-2} (n-2)! \left[\frac{x-n}{(x-1)^n} - \frac{x+n}{(x+1)^n} \right]$

04. Find the nth derivative of

(a)
$$\cos^4 x$$
 (b) $\sin^5 x$ (c) $\sin x \sin x \sin 3x$ (D – 14)

(d)
$$e^{x} \cos x \cos 2x$$
 (M-16) (d) $e^{2x} \sin \frac{x}{2} \cos \frac{x}{2} \sin 3x$ (D-17)

Homework

05. Find the nth derivative w. r. t. x of (a)
$$\frac{x}{x^2+a^2}$$
 (D-07) (b) $\frac{1}{x^3+x^2+x+1}$ (M-09) (c) \tan^{-1}

$$\left(\frac{2x}{1-x^2}\right) (d)\cos^3 x \sin^2 x \quad (M-19)$$

06. If
$$I_n = \frac{d^n}{dx^n} (x^n \log x)$$
 show that $I_n = (n-1)! + n I_{n-1}$ and hence

$$I_n = n! \left(\log x + 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right)$$

07. Find the nth derivative of

(a)
$$\cos 5x \cos 3x \cos x$$
 (M-17,M-13) (b) $2^{x} \cos x \sin^{2} x$ (D-16,D-13)

$$(c)2^{x}\cos^{9}x (M-09) (d)\sin px + \cos px \cos p^{n}[1+(-1)^{n}\sin 2px]^{1/2}$$
 (D-15,M-14)

Leibnitz's Theorem

$$(uv)_n = {}^{n}C_0u_nv + {}^{n}C_1u_{n-1}v_1 + {}^{n}C_1u_{n-2}v_2 + \cdots + {}^{n}C_nuv_n$$

08. Find the nth derivative w. r. t. x of the following

(a)
$$x^3e^{2x}$$

(b)
$$x^3 \cos^2 x$$

09. If
$$y = x \log(x+1)$$
 show that $y_n = \frac{(-1)^{n-2}(n-2)!(x+n)}{(x+1)^n}$

10.If $y = e^{m \sin^{-1} x}$ show that **(M-08)**

(a)
$$(1 - x^2)y_2 - xy_1 - m^2y = 0$$

(b)
$$(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} - (n^2 + m^2)y_n = 0$$

11. If $y = log(x + \sqrt{x^2 + 1})$ then show that

(a)
$$(1 + x^2)y_2 + xy_1 = 0$$

(b)
$$(1 + x^2)y_{n+2} + (2n + 1)xy_{n+1} + n^2y_n = 0$$

(c)
$$y_n(0) = 0$$
, and $y_{2n+1}(0) = (-1)^n [1^2 \cdot 3^2 \cdot 5^2 \cdot \dots \cdot (2n-1)^2]$

12. If
$$y = \cos(m\sin^{-1}x)$$
 S T. $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2+m^2)y_n = 0$ (D – 13 (D-17)

13. If $y = \sin[\log(x^2 + 2x + 1)]$ then show that

$$(x+1)^2y_{n+2} + (2n+1)(x+1)y_{n+1} + (n^2+4)y_n = 0$$
 (M-15, M-12)

14. If
$$y = \frac{\sin h^{-1}x}{\sqrt{1+x^2}} = a_0 + a_1x + a_2x^2 + \cdots$$
 then show that

(a)
$$(1 + x^2)y_1 + xy = 1$$

(b)
$$(1 + x^2)y_{n+2} + (2n + 3)xy_{n+1} + (n + 1)^2y_n = 0$$

(c)
$$y_{2n}(0) = 0$$
 and $y_{2n+1}(0) = (-1)^n 2^2 \cdot 4^2 \cdot \dots \cdot (2n)^2$

(d)
$$(n+2)a_{n+2} + (n+1)a_n = 0$$

15. If
$$y = (\sin^{-1} x)^2$$
 obtain $y_n(0)$ **(D-12)**

Homework

15. (a)
$$e^{x \cos \alpha} \cos(x \sin \alpha)$$
 (b) $x^3 \cosh^2 x$ (c) $x^2 e^{3x} \cos^3 x$

16.By forming the nth derivative of $^{\rm X}^{\rm 2n}$ in 2 ways show that

$$1 + \frac{n^2}{1^2} + \frac{n^2(n-1)^2}{1^2 \cdot 2^2} + \frac{n^2(n-1)^2(n-2)^2}{1^2 \cdot 2^2 \cdot 3^2} + \dots = \frac{(2n)!}{(n!)^2}$$

17. (a) If
$$y = \frac{\log x}{x}$$
 show that $y_5 = \frac{5!}{x^6} \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + -\log x \right)$ (M-10)

(b) If
$$y = x^n \log x$$
 show that $y_{n+1} = \frac{n!}{x}$ (D-08)

6. If
$$x = \cos\left(\frac{1}{m}\log y\right)$$
 s.t. $(x^2 - 1) y_{n+2} + (2n+1)xy_{n+1} + (n^2 + m^2)y_n = 0$ **(D-15)**

17.If $y = (x + \sqrt{x^2 - 1})$ then show that

$$(x^2 - 1)y_{n+2} + (2n + 1)xy_{n+1} + (n^2 - m)y_n = 0$$
 (D-16)

18. If
$$y^{\frac{1}{m}} - y^{\frac{-1}{m}} = 2x$$
 show that

(a)
$$(1 + x^2)y_2 + xy_1 - m^2y = 0$$

(b)
$$(1 + x^2)y_{n+2} + (2n + 1)xy_{n+1} + (n^2 - m^2)y_n = 0$$
 (M-13, D-10)

(c)
$$y = 1 + \frac{mx}{1!} + \frac{m^2x^2}{2!} + \frac{m(m^2 - 1^2)x^3}{3!} + \cdots$$

19. If
$$y = \frac{\sin^{-1}x}{\sqrt{1-x^2}}$$
 then s.t $(1-x^2)y_{n+1} - (2n+1)xy_n - n^2y_{n-1} = 0$

and find $y_n(0)$ (D-14, M-14)

20. If
$$y = e^{\tan^{-1}x} = a_0 + a_1x + a_2x^2 + \cdots$$
 show that

(a)
$$(1 + x^2)y_1 = y$$

(b)
$$(1+x^2)y_{n+2} + [(2(n+1)x-1]y_{n+1} - n(n+1) y_n = 0 \text{ (M-17,M-16)}$$

(c)
$$(n+2)a_{n+2} + na_n = a_{n+1}$$

21. If $y = a\cos(\log x) + b\sin(\log x)$ then show that

$$x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$$
 (M-19)

Expansion of Functions in Series

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \dots$$
 (Maclaurin Series)

01. Derive the following standard expansions

(a)
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$$
 (b) $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots$

(c)
$$\tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 \cdots$$
 (d) $e^x = 1 + x + \frac{x^2}{2!} + \cdots$

(e)
$$\log (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$
 $|x| < 1$

(f)
$$(1+x)^n = 1 + \frac{nx}{1!} + \frac{n(n-1)x^2}{2!} + \cdots |x| < 1$$

02. Show that
$$\log \sec \left(\frac{\pi}{4} + x\right) = \frac{1}{2}\log 2 + x + \frac{x^2}{1} + \frac{2x^3}{3} + \cdots$$
 (D-11)

03. Show that

(a)
$$\tan h x = x - \frac{x^3}{3} + \frac{2}{15}x^5 - \cdots$$
 (b) $x \csc x = 1 + \frac{x^2}{2} + \frac{7}{360}x^4 - \cdots$ (D-17)

(c)
$$\frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} - \frac{1}{720}x^{4} - \cdots$$
 and hence deduce $\frac{x}{2} \left(\frac{e^{x}+1}{e^{x}-1} \right) = 1 + \frac{1}{12}x^{2} - \frac{1}{720}x^{4} - \cdots$ (M-14)

04. Expand in ascending powers of x upto the term x^4 the following functions

(a)
$$(1 + x)^x$$
 (b) $e^{x \sin x}$ (c) $\sin (e^x - 1)$ (D-16)(d) $\sec^2 x$ (M-16) (e) $e^x \log(1 + x)$

05. Show that

(a)
$$\log \left[\log(1+x)^{\frac{1}{x}} \right] = -\frac{x}{2} + \frac{5x^2}{24} - \frac{x^3}{8} + \frac{251}{2880}x^4 - \cdots$$

(b)
$$\log (1+\tan x) = x - \frac{x^2}{2} + \frac{2x^3}{3} - \cdots$$

(c)
$$\log \left(\frac{\sinh x}{x} \right) = \frac{x^2}{6} - \frac{x^4}{180} + \frac{x^6}{2835} - \cdots$$

06. Show that

(a)
$$\sin^{-1} x = x + \frac{1}{2} \frac{x^3}{3} + \frac{1}{2} \frac{3}{4} \frac{x^5}{5} + \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{x^7}{7} + \cdots$$
 and hence

(b)
$$(\sin^{-1} x)^2 = x^2 + \frac{1}{3}x^4 + \frac{8}{45}x^6 \cdots$$
 (c) $\frac{\sin^{-1} x}{\sqrt{1-x^2}} = x + \frac{2}{3}x^3 + \frac{8}{15}x^5 \cdots$

(d)
$$\sin^{-1}(3x - 4x^3) = 3\sin^{-1}x$$
 (e) $\sec^{-1}\left(\frac{1}{1 - 2x^2}\right) = 2\sin^{-1}x$

(f)
$$e^{\theta} = 1 + \sin \theta + \frac{1}{2!} \sin^2 \theta + \cdots$$
 (g) $e^{\cos^{-1}x} = e^{\frac{\pi}{2}} \left(1 - x + \frac{x^2}{2} - \frac{x^3}{3} \cdots \right)$ (D-08)

07. S.T. (a)
$$\log \sec x = \frac{x^2}{2} + \frac{x^4}{12} + \frac{x^6}{45} \cdots (\mathbf{D} - \mathbf{15}, \mathbf{D} - \mathbf{14}, \mathbf{M} - \mathbf{09})$$

(b)
$$\log (x + \sqrt{1 + x^2}) = x - \frac{x^3}{6} + \frac{3x^5}{40} - \cdots$$

Taylor Series

$$f(x + h) = f(h) + x \frac{f'(h)}{1!} + x^2 \frac{f''(h)}{2!} + x^3 \frac{f'''(h)}{3!} + \cdots$$
 in ascending powers of x.

- 08. Using Taylor series
- (a) Find the first 4 terms of $\tan(\frac{\pi}{4} + x)$ in ascending powers of x and hence find the value of $(\tan 46^{\circ}30')$ correct to 4 decimal places.
- (b)Arrange $7 + (x + 2) + 3(x + 2)^3 + (x + 2)^4 (x + 2)^5$ in ascending powers of x.(D-13)

$$f(x)=f(a)+(x-a)\frac{f'(a)}{1!}+(x-a)^2\frac{f''(a)}{2!}+(x-a)^3\frac{f'''(a)}{3!}+\cdots$$
 in ascending powers of (x-a).

- 09. (a) Expand $2x^3 + 7x^2 + x 6$ in ascending powers of (x-2) (M-17,D-16).
 - (b) Expand $\tan^{-1}x$ in powers of (x-1) and hence find $\tan^{-1}(1.003)$ (M-15)
 - (c) Expand $\tan^{-1} x$ in powers of $(x \frac{\pi}{4})$ (M-19)

Homework

- 10. Show that (a)log $\tan\left(\frac{\pi}{4} + x\right) = 2x + \frac{4x^3}{3} + \frac{4x^5}{3} + \cdots$ (b)log $(1+e^x) = \log 2 + \frac{x}{2} + \frac{x^2}{8} - \frac{x^4}{192} + \cdots$ (c) $\sec^2 x = 1 + x^2 + \frac{2x^4}{3} + \cdots$ (D-08)
- 11. Derive the Maclaurin's series expansion for log (1+x) **(M-14)**; hence find the series expansion of $\log\left(\frac{1+x}{1-x}\right)$ and the value of log sec $\left(\frac{11}{9}\right)$; also find the expansion of $\tanh^{-1}x$ and $\log\left(1+x+x^2+x^3\right)$ **(M-13)** and $\log\left(1-x+x^2\right)$ **(D-13)**
- 12. Show that $\sin h x = x + \frac{x^3}{3!} + \frac{1}{5!}x^5 \cdots$ (M-15)
- 13. Expand in ascending powers of x upto the term x^4 the following functions
 - (a) e^{e^x} (b) $e^{x \cos x}$ (M-10) (c) $\log (1 + \cos x)$ (d) $\log (1 + \sin x)$ (D 12)
- 14. Show that $\log \left(\frac{xe^x}{e^x 1} \right) = \frac{x}{2} \frac{x^2}{24} + \frac{x^4}{2880} \cdots$
- 15. Show that $\tan^{-1}x = x \frac{x^3}{3} + \frac{x^5}{5} \frac{x^7}{7} + \cdots$ (M-17) and hence find expansions of
 - (a) $\log (1 + x^2)$ **(D-10)** (b) $\sin^{-1} \left(\frac{2x}{1+x^2}\right)$
 - (c) $\cos^{-1} \left[\tanh(\log x) \right]$ (D-17) (d) $\tan^{-1} \left(\frac{\sqrt{1+x^2}-1}{x} \right)$ (M-10)
 - (e) $e^{\theta} = 1 + \tan \theta + \frac{1}{2!} \tan^2 \theta \frac{1}{3!} \tan^3 \theta + \frac{7}{4!} \tan^4 \theta \cdots$

16. Show that
$$\log \cos x = -\frac{x^2}{2} - \frac{x^4}{12} - \frac{x^6}{45} - \cdots$$

Indeterminate Forms

L'Hospitals Rule for indeterminate forms $\frac{0}{0}$ and $\frac{\infty}{\infty}$

If
$$\lim_{x \to a} f(x) = 0$$
 and $\lim_{x \to a} g(x) = 0$ then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

If
$$\lim_{x \to a} f(x) = \infty$$
 and $\lim_{x \to a} g(x) = \infty$ then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

Problems

01. Evaluate the following $\frac{0}{0}$ indeterminate forms

(a)
$$\lim_{x \to 1} \frac{x^x - x}{x - 1 - \log x}$$
 (M-13) (b) $\lim_{x \to 0} \frac{\tan x - \sin x}{\sin^3 x}$

(b)
$$\lim_{x\to 0} \frac{\tan x - \sin x}{\sin^3 x}$$

02. Find the values of the constants a, b, c if (a) $\lim_{x\to 0} \frac{ae^x - b\cos x + ce^{-x}}{x\sin x} = 2$ (M-08)

(b)
$$\lim_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^3} = 1$$
 (M-16) (c) $\lim_{x\to 0} \frac{ae^x-be^{-x}-cx}{x-\sin x} = 4$ (D-15,D-10)

03. Show that

(a)
$$\lim_{x\to 0} \frac{\tan x \tan^{-1} x - x^2}{x^6} = \frac{2}{9}$$

(a)
$$\lim_{x\to 0} \frac{\tan x \tan^{-1} x - x^2}{x^6} = \frac{2}{9}$$
 (b) $\lim_{x\to 0} \frac{e^{x \sin x} - \cosh(\sqrt{2}x)}{x^4} = \frac{1}{6}$

(c)
$$\lim_{x\to 0} \frac{(1+x)^{\frac{1}{x}} - e + \frac{1}{2}ex}{x^2} = \frac{11}{24}e$$
 (d) $\lim_{x\to 0} \frac{e^{2x} - (1+x)^2}{x\log(1+x)}$ (D-16)

(d)
$$\lim_{x\to 0} \frac{e^{2x} - (1+x)^2}{x \log(1+x)}$$
 (D-16)

04. Evaluate the indeterminate forms

(a)
$$\lim_{x\to 0} \log_{\tan x} (\tan 2x)$$
 (D-08) (b) $\lim_{x\to \infty} \frac{\sinh^{-1} x}{\cosh^{-1} x}$ (c) $\lim_{x\to 0} \frac{\log_{\sin x} (\cos x)}{\log_{\sin \frac{x}{2}} (\cos \frac{x}{2})}$

05. Evaluate the following $\infty - \infty$ indeterminate forms

(a)
$$\lim_{x\to 0} \left[\frac{a}{x} - \cot \frac{x}{a} \right]$$
 (M-11)

(b)
$$\lim_{x \to 3} \left[\frac{1}{x-3} - \frac{1}{\log(x-2)} \right] (M-19)$$

06. Evaluate the following $0.\infty$ indeterminate forms

(a)
$$\lim_{x\to 0} \log(1-x)\cot\frac{\pi x}{2}$$

(b)
$$\lim_{x\to 1} \log(1-x)\cot\frac{\pi x}{2}$$

07. Evaluate the following $0^0, \infty^0, 1^\infty$ indeterminate forms

(a)
$$\lim_{x \to 1} (1 - x^2)^{\frac{1}{\log(1 - x)}}$$
 (b) $\lim_{x \to 0} (1 + \tan x)^{\cot x}$ (M-14) (c) $\lim_{x \to 0} (\cot x)^{\sin x}$ (D-17)

(c)
$$\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}$$
 (d) $\lim_{x\to 0} \left(\frac{1^x+2^x+3^x+4^x}{4}\right)^{\frac{1}{x}}$ (M-12) (e) $\lim_{x\to \infty} \left(\frac{\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}}{3}\right)^{3x}$

Homework

08. Evaluate

(a)
$$\lim_{x\to 0} \frac{\sin x - x + \frac{1}{6}x^3}{x^5}$$
 (b) $\lim_{x\to 0} \frac{\log_{\sec \frac{x}{2}}(\cos x)}{\log_{\sec x}(\cos \frac{x}{2})}$ (c) $\lim_{x\to 0} \frac{\sin x \sin^{-1} x - x^2}{x^6}$ (M-15)

$$\text{(d) } \lim_{x \to 0} \left[\frac{1}{x^2} - \cot^2 x \right] \text{ (D-12) (e) } \lim_{x \to 0} \frac{\log_{\sin x} (\cos x)}{\log_{\sin \frac{x}{2}} \left(\cos \frac{x}{2}\right)} \text{ (f) } \lim_{x \to \infty} \frac{\sinh^{-1} x}{\cosh^{-1} x}$$

(g)
$$\lim_{x\to 0} \frac{e^x \sin x - x - x^2}{x^2 + x \log(1-x)}$$
 (D-11) (h) $\lim_{x\to 0} \frac{x \sin(\sin x) - \sin^2 x}{x^6}$ (i) $\lim_{x\to 0} (\csc x)^{\tan^2 x}$

$$(j) \lim_{x \to a} \sin^{-1} \sqrt{\frac{a - x}{a + x}} \operatorname{cosec} \sqrt{a^2 - x^2} \qquad \text{(D-07)} \qquad (k) \lim_{x \to 0} \frac{1 - x^{\sin x}}{x \log x}$$

09. Find the values of a and b if (a)
$$\lim_{x\to 0} \frac{a \sinh x + b \sin x}{x^3} = \frac{5}{3}$$
 (D-14, M-09)

(b)
$$\lim_{x\to 0} \frac{a\sin^2 x + b\log\cos x}{x^4} = \frac{1}{2}$$
 (D-09)

10. Find the expansion of $\sin^{-1} x$ and hence obtain $\lim_{x\to 0} \frac{\sin^{-1} x - x}{x^3}$
