MSOC Oct. 30, 2020

A HLS Solution for Edge Detection in Driver Assistance Application

Presenter: Ting-Yung Chen, Yu-Cheng Lin, I-Hsuan Liu

Team#: 1

Outline

- Introduction
- Design Overview
 - Our Solution for Edge Detection
 - Synth. repo
- FPGA implementation
 - Video Demo on FPGA
 - Host Program

Introduction

- Driver Assistance Application
 - Edge detection
 - Lane Keeping Aid (LKA)
- Hardware accelerator
 - Real time

Design Overview

- OpenCV-based testbenches (non-synthesizable)
 - Read/Write input frames with OpenCV application
 - OpenCV2AXIvideo, AXIvideo2OpenCV
 - hls::IplImage2AXIvideo, hls::AXIvideo2IplImage
- Synthesizable block
 - AXIvideo2Mat, Mat2AXIvideo
 - hls::AXIvideo2Mat, hls::Mat2AXIvideo

Our Solution for Edge Detection

Blur and Filter Function Design

Blur function

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Sobel filter

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

Blurring

Sobel

Decision Boundary

```
if ((row <= rows-10 && col <= cols-10)&&(row >= 120) && ( (pin0.val[0]>80 ) && (pin0.val[1]>80 )
pout.val[0] = 0; // B
 pout.val[1] = 0; // G
 pout.val[2] = 255; // R
 else if ((row <= rows-10 && col <= cols-10)&&(row >= 120) && (pin1.val[0]>255) && (pin1.val[1]>255)
&& (pin1.val[2]>255) )) { // horizontal edges
 pout.val[0] = 0;
 pout.val[1] = 0;
 pout.val[2] = 255;
} else {
 pout.val[0] = pin2.val[0];
 pout.val[1] = pin2.val[1];
 pout.val[2] = pin2.val[2];
```

Filters

```
const COEF_T coef_v1[KS][KS]= { //pr
    \{1.0/9, 1.0/9, 1.0/9\},\
    \{1.0/9, 1.0/9, 1.0/9\},\
    {1.0/9, 1.0/9, 1.0/9}
const COEF_T coef_v2[KS][KS] = { //
    \{1,0,-1\},\
        \{2,0,-2\},\
          {1,0,-1}
```

Synth. Report

FPS:1666 (220*220)

■ Summary

	-				
Clock	Target	Estimated	Uncertainty		
ap_clk	6.00 ns	5.250 ns	0.75 ns		

■ Latency

■ Summary

Latency (cycles)		Latency (absolute)	Interval		
min max		min	max	min	max	Type
100573	100573	0.603 ms	0.603 ms	100561	100561	dataflow

Detail

■ Instance

			(cycles)	Latency (absolute)	Interval (cycles)		
Instance	Module	min	max	min	max	min	max	
grad_vertical_prepro_U0	grad_vertical_prepro	100560	100560	0.603 ms	0.603 ms	100560	100560	
grad_horizontal_prep_U0	grad_horizontal_prep	100560	100560	0.603 ms	0.603 ms	100560	100560	
grad_vertical_edge_d_U0	grad_vertical_edge_d	100560	100560	0.603 ms	0.603 ms	100560	100560	
grad_horizontal_edge_U0	grad_horizontal_edge	100560	100560	0.603 ms	0.603 ms	100560	100560	
add_with_color_U0	add_with_color	48400	48401	0.290 ms	0.290 ms	48400	48400	loop
AXIvideo2Mat_U0	AXIvideo2Mat	49503	49503	0.297 ms	0.297 ms	49503	49503	
Mat2AXIvideo_U0	Mat2AXIvideo	49281	49281	0.296 ms	0.296 ms	49281	49281	
replicate_by2_U0	replicate_by2	48399	48400	0.290 ms	0.290 ms	48399	48400	

■ Loop

N/A

FPS:40 (1920*1080)

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	6.00 ns	5.250 ns	0.75 ns

∃ Latency

■ Summary

Latency (cycles)		Latency (absolute)	Interval (cycles)		
min max		min	max	min	max	Туре
4166191	4166191	24.997 ms	24.997 ms	4166180	4166180	dataflow

Detail

■ Instance

		Latency (cycles)		Latency (absolute)		Interval (cycles)	
Instance	Module	min	max	min	max	min	max
grad_vertical_prepro_U0	grad_vertical_prepro	4166179	4166179	24.997 ms	24.997 ms	4166179	4166179
grad_horizontal_prep_U0	grad_horizontal_prep	4166179	4166179	24.997 ms	24.997 ms	4166179	4166179
grad_vertical_Mat_U0	grad_vertical_Mat_s	4166179	4166179	24.997 ms	24.997 ms	4166179	4166179
grad_horizontal_U0	grad_horizontal	4166179	4166179	24.997 ms	24.997 ms	4166179	4166179
add_with_color96_U0	add_with_color96	2073600	2073601	12.442 ms	12.442 ms	2073600	2073600
AXIvideo2Mat_U0	AXIvideo2Mat	2079003	2079003	12.474 ms	12.474 ms	2079003	2079003
Mat2AXIvideo_U0	Mat2AXIvideo	2077921	2077921	12.468 ms	12.468 ms	2077921	2077921
replicate_by293_U0	replicate_by293	2073599	2073600	12.442 ms	12.442 ms	2073599	2073600
passthru_color94_U0	passthru_color94	2073599	2073600	12.442 ms	12.442 ms	2073599	2073600
passthru_color95_U0	passthru_color95	2073599	2073600	12.442 ms	12.442 ms	2073599	2073600

Loop

Block Diagram

- The IO of this project is similar to Lab2-2 (except the AXILiteS control signal)
- The PYNQ program is similar to Lab2-2 (except mmio)
- But, ...

Block diagram of this project

Block diagram of lab 2-2

Solutions

- The hls::AXIvideo2Mat function handles the data transfer in AXI interface, and transform into hls::Mat datatype
- However, the data transfer format cannot be support by PYNQ host program

Insights

Interface:

Stream TLAST TUSER

Datatype:

ap_axiu<32,1,1,1> hls::Mat<T> hls::AXIvideo2Mat()

Wire connection

MMIO:

Write(0x14,rows) Write(0x1C,cols)

XInk: allocate

Overlay:

recvchannel()

#pragma

offset bundle ap_stable

Host Program

```
# ol = Overlay("/home/xilinx/IPBitFile/yclin/FIRN11Stream.bit")
# ipFIRN11 = ol.fir n11 strm 0
ol = Overlay("/home/xilinx/IPBitFile/yclin/design 1.bit")
ipvideo edge = ol.image filter 0
ipDMAIn = ol.axi dma 0
ipDMAOut = ol.axi dma 1
# ipDMAIn = ol.axi vdma 0
# ipDMAOut = ol.axi vdma 1
n row = 220
n col = 220
\# n channel = 3
# numSamples = n row*n col
image = io.imread('car_view.png')[:n_row,:n_col,:]
# image = np.stack([np.eye(220), np.eye(220), np.eye(220)], axis=2)
# image_cat = image[:,:,0] + image[:,:,1]*256 + image[:,:,2]*(256**2) + 255*(256**
image cat = np.concatenate([image, np.ones((n row, n col,1))*255], axis=2)
print("Shape of image cat", image cat.shape)
plt.imshow(image)
plt.title('Input image')
plt.show()
xlnk = Xlnk()
inBuffer0 = xlnk.cma array(shape=(n row, n col, 4), dtype=np.uint8)
outBuffer0 = xlnk.cma array(shape=(n_row, n_col, 4), dtype=np.uint8)
#for i in range(n row):
    #inBuffer0[i] = image reshape[i]
    #print(inBuffer0[i])
inBuffer0[:,:,:] = image[:,:,:]
# ipFIRN11.write(0x80, numSamples*4)
# ipFIRN11.write(0x00, 0x01)
# ipvideo edge.write(0x14, n row)
# ipvideo edge.write(0x1C, n col)
start = time()
ipvideo edge.write(0x00, 0x01)
ipDMAIn.sendchannel.transfer(inBuffer0)
ipDMAOut.recvchannel.transfer(outBuffer0)
ipDMAIn.sendchannel.wait()
ipDMAOut.recvchannel.wait()
end = time()
```

```
Input image

25 -
50 -
75 -
100 -
125 -
150 -
175 -
200 -
0 50 100 150 200
```

```
plt.imshow(outBuffer0)
plt.plot()
```


Video Demo on FPGA

Original

Lane detection

