start(df)	when first recor	d was made	deltat(df)	time increment btw records		
end(df)	when last recor	d was made	time(df)	calculate vector of time indices for observations		
frequency(df)	num of records	per unit time	cycle(df)	position in cycle of each observation		
diff(, lag = period)	•	seasonal diff transformation	n: remove periodic tre	ends		
ts.plot(cbind(df1, df2))		2 plots on same graph	diff(log())	generate log returns		
Autoregressive		$Y_t = c + \phi * Y_{t-1} + \epsilon_t$				
Mean-centred version				ive values of ϕ = oscillatory time series		
$\phi \in (-1,1)$		If μ = 0 and ϕ = 1, then Y_t =	$=Y_{t-1}+\epsilon_t$, which is a	random walk. Then $\{Y_t\}$ is not stationary		
arima.sim(model = list(ar = ph	i), n = 50)	Simulate AR model				
Persistence = high correlation	btw obs and its lag	Anti-persistence = large var	iation btw obs and its	lag		
$AR \leftarrow arima(df, order = c(1,0,0))$) <i>))</i>	Fit data to AR model (on R,	ar1 = $\hat{\phi}$, intercept = $\hat{\mu}$, sigma^2 = $\widehat{\sigma_{\epsilon}^2}$)		
arima.sim(model = list(ma = ti	heta), n = 50)	Simulate MA model				
$MA \leftarrow arima(df, order = c(0,0,$	1))	Fit data to MA model (on R,	ma1 = $\hat{\theta}$. intercept =	$\hat{\mu}$, sigma^2 = $\widehat{\sigma_c^2}$)		
fitted <- df - residuals(MA)		$\hat{Y}_t = \hat{\mu} + \hat{\theta}\hat{\epsilon}_{t-1}$. Residuals =		177-0		
MA(1) (e.g. $Y_t = \epsilon_t + \theta \epsilon_{t-1}$)		arima.sim(model = list(orde		n = 100)		
AR(2) (e.g. $Y_t = \phi * Y_{t-2} + \epsilon_t$)		arima.sim(model = list(orde		•		
acf2(df)		Calculate ACF and PACF pair	rs .			
sarima(df, p =, d =, q =)		Fit data to model				
sarima.for(df, n.ahead =, p,	d, q)	Forecasting				
acf2(df, max.lag = 60)						
sarima(df, 0, 0, 0, P =, D =,	Q =, S =)					
Mixed seasonal model		SARIMA(p, d, q) \times (P, D, Q) _s model				
$lx \leftarrow log(x)$. $dlx \leftarrow diff(lx)$. $ddlx$	<- diff(dlx, 12)	Log to standardise var. diff to remove trend (but still have seasonal behavior). diff again to get				
		stationary. All 3 = {d = 1, D = 1}				
sarima.for(df, n.ahead =, p,	d, q, P, D, Q, S)	Forecasting				
Simple exponential smoothing	,	Use all obs for forecast with more recent obs having higher weights				
$\hat{y}_{t+h t} = \alpha y_t + \alpha (1 - \alpha) y_{t-1}$	$_1 + \alpha (1 - \alpha)^2 y_{t-2}$	fc <- ses(df, h = 5)				
+		summary(fc)Choose α and l_0 by minimizing SSE = $\sum_{t=1}^{T} (y_t - \hat{y}_{t t-1})^2$				
Holt's linear trend		Small β^* = slope hardly change, so linear trend. High β^* = slope change rapidly \Rightarrow nonlinear trend				
df %>% holt(h = 5) %>% autop	lot	Choose α , β^* , l_0 , b_0 by minimizing SSE				
Damped trend method		$\hat{y}_{t+h t} = l_t + (\phi + \phi^2 + \dots + \phi^h)b_t. l_t = \alpha y_t + (1 - \alpha)(l_{t-1} + \phi b_{t-1}).$				
- allows trend to dampen over	r time, s.t. it levels	$b_t = \beta^*(l_t = l_t - 1) + (1 - \beta^*)\phi b_{t-1}$. Damping param: $0 < \phi < 1$				
off to a constant value		Larger ϕ = less damping \Rightarrow short run forecasts are trended, long run forecasts are constant				
holt(df, damped = TRUE, h = 5))					
BoxCox.lambda(df). ets(df, la	•	Find estimate of lambda to				
ARIMA(p, d, q, include.consta	nt = TRUE)	• • • • • • • • • • • • • • • • • • • •	0,	es ts needs to be differenced to make it stationary		
auto.arima(df)		Selects p and q by minimizing AIC _c value. Select d via unit root tests. Estimate params using MLE				
- auto.arima based on Hyndm	an-Khandakar algo			class (ARIMA/ETS only), & same amt of differencing		
ARIMA(p, d, q, P, D, Q, M)			_	g-1 diff. P/Q = num of seasonal AR/MA lags		
		D = num of seasonal diff. m = num of obs per year. lambda for Box-Cox transformation. stepwise = FALSE (to search for more models). stationary = TRUE				
auto.arima(df, lambda, stepw			· ·			

ls1 < - list(A = seq(1, 5, by = 2), B = sec	ls1 <- list(A = seq(1, 5, by = 2), B = seq(1, 5, length = 4)) ls1\$A[2]				```{r}	R markdown
x <- c(1,2,3), y <- c("1", "2", "3"). df <	df[c(3,2),]				Code chunks	
read.csv(). head(). tail(). summary().	ls(). length(). seq(). mean(). mediai	n(). sd(). var().	common fu	nctions	***	
library(tidyverse); tbl <- as_tibble(d)	f)		tibble			
filter(tbl, condition1, condition2,).	rename(new = old, new2 = old2)		filter, renam	ne		
select(tbl, col2: col4). select(tbl, !c(co	l2: col4)). select(tbl, last_col(offset	: = 1):last_col())	select, muta	ate, arrange		
?function. or help(function)			Get R docui	mentation		
tbl %>% filter(cond1) %>% select(col2	2:col4)		piping			
ggplot(tbl) + geom_point(mapping=c	aes(x = col1, y = col2)					
X, Y indep: E(XY) = E(X)E(Y)	$Var(X) = E(X - \mu)^2$. $E(X) = \mu$	If a is a constant, (Cov(a, X) = 0	Cov(X, X) = Var	r(X) Cov(aX, b)	() = abCov(X, Y)
$Corr(X, Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$	If X, Y indep, then $Cov(X, Y) = 0$	Let $U = \sum_{i=1}^{m} a_i$	$u_i X_i$, $V = \sum_{j=1}^r$	$b_j Y_j$, then Cov(L	$J, V) = \sum_{i=1}^{m} \sum_{j=1}^{r} a_{i}$	$a_i b_j Cov(X_i Y_j)$
$Cov(X, Y) = Cov(Y, X) = E[(X - \mu_X)(Y -$	$[\mu_Y]$] = E(XY) - $\mu_X \mu_Y = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{n-1}$	$Var(\sum_{i=1}^{n} X_i) =$	$\sum_{i=1}^{n} Var(X_i)$	$)+2\sum_{i< j}\sum Cor$	$v(X_i, X_j)$	
$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$ Gaussian dist pdf. X ~ N(μ , σ^2). If both X, Y are jointly Gaussian, then they are indep iff Cov(X, Y) = 0						
Taylor series expansion $f(x) = f(x)$	$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots$					
e ^x 1+x+ ²	$\frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$ $\ln(1+x) = x - \frac{x}{2!}$	$\frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$	$\frac{1}{1-x} = 1 + x$	$+ x^2 + x^3 + \cdots$		

```
ts <- tsibble(
                                                                       Create tibble w time component
 year = 2015:2019, y = c(123,39,23,32,11)
                                                                       Types of col in Tsibble: 1. measurement/obs/record, 2. Index, 3. Key
 index = year)
q <- seq(as.Date("2016-01-01"), as.Date(2016-12-31"), by = "1 day")
                                                                       Creates datetime seq. by = day/week/month/quarter/year
By Year: Use integers in R
                                                                       For Index column. Also have Monthly: yearmonth(),
Quarter: yearquarter(q)
filter(ts, col1 %in% c("123", "456")) %>%
                                                                       Weekly: yearweek(). Daily: as_date(), ymd(). Sub-daily as_datetime(), ymd_hms()
 autoplot(.vars=y) + geom_point() +
                                                                       Must only have 1 index col in tsibble. Can have multiple measurement/key cols
 scale_color_discrete(labels=c("key1", "key2 ")) +
 labs(title = "", y = "", x = "")
Time Series Patterns
                                                   Trend: trend exists when there is a long-term incr/decr in data. Does not have to be linear
```


	Track data per person or per 1000 people	
	autoplot(covid_data, .vars = patients_per_million) + labs(x = , y =) +	
21-12-31")))	scale_color_discrete(labels = c("key1", "key2"))	
Remove effec	t of num of days in month, weekend effects, to make data simpler	
See that obs a	are lower in months w < 31 days. This causes jagged pattern at troughs on graph	
To rectify diff	rectify diff in obs due to num of days in month	
Due to changi	ue to changing num of times each day of the week occurs in a mth	
Due to presen	nce/absence of a holiday in a mth	
	$_{t}$ = T _t + S _t + C _t + e _t (trend effect + seasonal effect + trading day effect + noise)	
where $C_t = \sum_{i}^{7}$	$d_{i=1} \alpha_i d_{it}$, where $\sum_{i=1}^7 \alpha_i = 0$ and $d_{it} = 1$ fraction of mth t that is day i * 30.4375	
	f_t : 1) Decompose y_t' into $y_t' = T_t + S_t + e_t'$. Obtain $w_t = y_t' - \hat{T}_t - \hat{S}_t$	
	See that obs a To rectify diff Due to changing Due to preser We assume y' where $C_t = \sum_{i=1}^{t} C_i$	

Let $y'_t = (y_t / \text{num of days in mth t}) * 30.4375$		1375	2) Regress w_t on d_{1t} , d_{2t} ,, d_{7t} . Obtain estimates $\hat{\alpha}_1$,, $\hat{\alpha}_7$			
(from 365.25/12)				3) Calendar adjusted time series is $\mathbf{y''}_t = \mathbf{y'}_t - \sum_{i=1}^7 \hat{\alpha}_i d_{it}$		
Inflation adjustme		no incless C		Price index for year t_1 relative to year $t_2 = \frac{price\ of\ set\ of\ items\ in\ year\ t_1}{price\ of\ same\ set\ of\ items\ in\ year\ t_2} * 100$		
In SG, we have a n Price Index (CPI)	monthly pric	ce index, Co	nsumer	Adj price at time t_1 relative to time $t_2 = \frac{unadjusted price in year t_1}{CPI for year t_1 relative to year t_2} * 100$		
Transformations				Use if TS has diff variation/variance at diff levels of the TS		
$w_t = \sqrt{y_t}, w_t = \sqrt[3]{y_t}, w_t = \log(y_t)$			Log transformation are more interpretable: if log_{10} is used, an increase of 1 on log scale = multiplication of 10 on original scale			
Box-Cox Transforn	mations					
Suppose $y_t > 0 \forall t$				$w_t = \begin{cases} log(y_t) & \lambda = 0 \\ (sign(y_t) y_t ^{\lambda} - 1)/\lambda & \lambda \neq 0 \end{cases}, \lambda = 1, 1/2, 1/3, 0, -1 \text{ (linear transformation, square root + linear, cube root + linear, natural log, inverse transformation)}$		
Using L'Hopital's r	rule			<u>.</u>		
Let $g(\lambda) = (y_t^{\lambda} - 1)$	L)/λ			$\lim_{\lambda \to 0} g(\lambda) = \lim_{\lambda \to 0} \frac{\frac{d}{d\lambda}(y_t^{\lambda} - 1)}{\frac{d}{d\lambda}\lambda} = \lim_{\lambda \to 0} \frac{\frac{d}{d\lambda}(e^{\log y_t^{\lambda}} - 1)}{1} = \lim_{\lambda \to 0} \frac{d}{d\lambda}(e^{\lambda \log y_t}) = \lim_{\lambda \to 0} \log y_t * (e^{\lambda \log y_t}) = \log y_t$		
I1 <- guerrero(ts\$c	-			Compute optimal value of λ to use		
mutate(ts, transfo autoplot(.vars = tr			%>%	Intuitive understanding: $w = h(y)$, $Var(w) = Var(h(y)) \approx [h'(E(y))]^2 * Var(Y)$ (which we want to find a λ for $Var(w)$ to be constant)		
Back-transforming	g	Want to e	estimate E	$E(y_t)$ and no transformation used. We use \hat{y}_t to estimate $E(y_t)$ and estimator is unbiased, i.e. $E(\hat{y}_t) = E(y_t)$		
Forecasts				ansformations is that the back-transformed forecast ≠ the mean, but the median of the forecast dist.		
$y_t = \begin{cases} exp(w_t) \\ (\lambda w_t + 1)^1 \end{cases}$	$\lambda = 0$ $1/\lambda \lambda \neq 0$			ansformation \mathbf{w}_t = log(\mathbf{y}_t). So we expect \mathbf{y}_t = exp \mathbf{w}_t . Then using estimate, \widehat{w}_t , and get \widehat{y}_t = exp \widehat{w}_t . Insion, $\mathbf{h}(\mathbf{w}) = \mathbf{h}(\mathbf{a}) + \mathbf{h}'(\mathbf{a})(\mathbf{w} - \mathbf{a}) + \mathbf{h}''(\mathbf{a}) \frac{(w - a)^2}{2!} +, e^w = e^{\mu_w} + e^{\mu_w}(w - \mu_w) + e^{\mu_w} \frac{(w - \mu_w)^2}{2!} +$		
To reverse transfo	ormations			e^{w}) = $\int e^{w}f(w) dw \approx \int \left[e^{\mu_{w}} + e^{\mu_{w}}(w - \mu_{w}) + e^{\mu_{w}} \frac{(w - \mu_{w})^{2}}{2!} \right] f(w) dw = \int e^{\mu_{w}} f(w) dw + \frac{1}{2!} \int e^{\mu_{w}} f(w) dw$		
to obtain forecast				$ v) dw + \int e^{\mu_w} \frac{(w - \mu_w)^2}{2!} f(w) dw = e^{\mu_w} + 0 + \frac{1}{2} e^{\mu_w} \int (w - \mu_w)^2 f(w) = e^{\mu_w} + \frac{1}{2} e^{\mu_w} \sigma_w^2 = e^{\mu_w} \left[1 + \frac{1}{2} \sigma_w^2 \right] $		
original scale						
f(w) is pdf of w), i.e the back-transformed estimate is biased. u_w , then formula below estimates $E(y_t)$ for $\lambda=0$. (proof above only shows for $\lambda=0$)		
$\mu_w = E(w)$						
$\int f(w) dw = 1$ $\int w * f(w) dw = E(v)$ $\int (w - \mu_w)^2 f(w) dw$		To adjust	for this bi	ias, use back transformation: $y_t = \begin{cases} e^{w_t} \left[1 + \frac{\sigma^2}{2} \right] & \lambda = 0 \\ (\lambda w_t + 1)^{1/\lambda} \left[1 + \frac{\sigma^2(1-\lambda)}{2(\lambda w_t + 1)^2} \right] & \lambda \neq 0 \end{cases}$ where σ^2 is the var of w_t .		
$\mu_w)^2$] = Var(w)	VV — L[(VV	For $\lambda \neq 0$)· let w =	$\frac{1}{2}(y^{\lambda}-1)$. Then (naive) back-transform = $y=h(w)=(\lambda w+1)^{1/\lambda}$		
1-W/ 1 - (/				$\frac{(\lambda w + 1)^{1/\lambda - 1}}{(\lambda w + 1)^{1/\lambda - 1}} = (\lambda w + 1)^{1/\lambda - 1}. h'(w) = (1/\lambda - 1)(\lambda)(\lambda w + 1)^{1/\lambda - 2} = (1 - \lambda)(\lambda w + 1)^{1/\lambda - 2}$		
				$(\lambda w + 1)^{1/\lambda} \approx (\lambda \mu_w + 1)^{1/\lambda} + (\lambda \mu_w + 1)^{1/\lambda - 1} (w - \mu_w) + (1 - \lambda)(\lambda \mu_w + 1)^{1/\lambda - 2} \frac{(w - \mu_w)^2}{2!} + \cdots$		
				$ (\lambda \mu_w + 1)^{1/\lambda} \approx (\lambda \mu_w + 1)^{1/\lambda} + (\lambda \mu_w + 1)^{1/\lambda} + (\lambda \mu_w + 1)^{1/\lambda - 1} (w - \mu_w) + (1 - \lambda)(\lambda \mu_w + 1)^{1/\lambda} + \cdots $ $ = 1)^{1/\lambda} f(w) dw \approx \int [(\lambda \mu_w + 1)^{1/\lambda} + (\lambda \mu_w + 1)^{1/\lambda - 1} (w - \mu_w) + (1 - \lambda)(\lambda \mu_w + 1)^{1/\lambda - 1} (w - $		
		$(1)^{1/n-2}$		$ (w) \ dw = (\lambda \mu_w + 1)^{1/\lambda} + 0 + \frac{1}{2} (1 - \lambda) (\lambda \mu_w + 1)^{1/\lambda - 2} \sigma_w^2 = (\lambda \mu_w + 1)^{1/\lambda} \left[1 + \frac{(1 - \lambda) \sigma_w^2}{2(\lambda \mu_w + 1)^2} \right] $ Quick comparison btw multiple TS		
Summary statistic Tiled statistics: fec feature_set(tags= Roll statistics: feat feature_set(tags=	atures(ts, ob ="tile")) tures(ts, obs	os, features	= T: w	Quantiles for indication of spread and symmetry of nums S is divided into non-overlapping windows. Mean and var are computed for each window. Var of window means = how "stable" series is. Var of window var = how "lumpy" series is coll statistics computed using overlapping windows. Used to identify where TS had sharp changes in evel, variability and distribution. hift_level_index = index in TS w largest shift in level. Shift_var_index = index in TS w largest shift in var		
				N IV I IV		
Benchmark Foreca Mtds				exact of all future values = mean of historical data, i.e. $\hat{y}_{T+h T} = \frac{y_1 + y_2 + \dots + y_T}{T}$		
h = forecasting ho				(ts, avg = MEAN(y)); report(mtd) # look at model summaries (also have others on LHS)		
library(fpp3)	_			$h = 10)$ %>% autoplot(data = ts, level=NULL) # level for prediction intervals st = most recent observation, i.e. $\hat{y}_{T+h T} = y_T$, where $e_t \sim WN(0, \sigma_e^2)$ and $y_0 = 0$		
report(mtd)				model(ts, avg = MEAN(y), naive = NAIVE(y)) # This creates a tibble w 2 models, MEAN & NAIVE		
glance(mtd)				ce by RW(): random walk w/o drift, since $y_t = y_{t-1} + e_t$, or $y_{T+h} = y_T + \sum_{k=1}^h e_{T+k}$. So $E(y_{T+h} y_1,,y_T) = y_T$		
tidy(mtd)		forecast(me	ean_and_	naive, h=10) %>% autoplot(data = ts, level=NULL) # will product 2 forecasts		
Use these mtds as				rift: Constant diff btw successive observations apart from the random noise, i.e. $y_t = \delta + y_{t-1} + e_t$ for $t \ge 1$,		
benchmarks to co	Jiiipai C) and $y_0 = 0$. OR $y_{T+h} = h\delta + y_T + \sum_{k=1}^{h} e_{T+k}$. Since $E(y_{T+h} y_1,, y_T) = h\delta + y_T$		
w better models				te δ is to use average of diffs btw lag 1 obs, i.e. $\hat{\delta} = \frac{1}{T-1} \sum_{t=2}^{T} (y_t - y_{t-1}) = \frac{y_T - y_1}{T-1}$		
				$T = y_T + h\left(\frac{y_T - y_1}{T - 1}\right)$		
				= RW(y ~ drift())); forecast(rwf, h=10) %>% autoplot(data = ts, level=NULL)		
				td: Forecast = last observed value from the same season of the previous year $\frac{1h-11}{h}$		
# show_gap conne obs w forecast				me series is m, e.g. m = 12 for monthly data. Then forecast, $\hat{y}_{T+h T} = y_{T+h-km}$, where $k = \left\lfloor \frac{h-1}{m} \right\rfloor + 1$ (SNAIVE(y)); forecast(sn, h=10) %>% autoplot(data = ts, level=NULL, show_gap=FALSE)		
Residuals $e_t = \frac{1}{2}$	$y_t - \overline{\hat{y}_{t t-1}} =$			based on 1-step ahead forecasts.		
	ippose we u			residuals = residuals on the transformed scale Residuals aka training errors aka Response residuals		
W _t	$t = log y_t$	w	y_{t} - \widehat{w}_{t}	y_t - \hat{y}_t , where \hat{y}_t is back-transform of \hat{w}_t w bias		
Extracting Posiders	alc and Fi++-	d Values	fitted ~~	adjustment factor		
Essential Propertion				d_resids <- augment(mean_mtd) # returns a tsibble prelated. If residuals are correlated: ARIMA model might be appropriate.		
Residuals				an 0. If mean ≠ 0: mean should be added to forecast to correct for the bias		
Desired Properties				nstant variance. 2. Residuals are normally distributed		
Residuals		These 2 pro	perties m	nake it easier to compute prediction intervals (using Normal Approx).		
				impossible to fix them. 1 sol ⁿ is to transform the data		
			-	esiduals + ACF + histogram		
If WN: Residuals time plot no autocorrelation. ACF all btw blue line. Histogram looks like Gaussian curve. Ljung Box test have p-value > 0.05.						

ts <- readRDS(""); I1 <- guererro(ts\$y); snaive <- model(ts, SNAIVE(box_cox(value, I1))) fcast <- forecast(snaive, h = 12, point forecast = list(.median=median, .mean=mean)) #OR .median=median(y) autoplot(fcast, data=filter(ts, index >= yearmonth("1990 Jan")), level=NULL, point forecast=list(mean=mean), show gap = FALSE) +labs("Bias-adjusted forecast of mean (in red)") + autolayer(fcast, level=NULL, point_forecast = list(median=median), color="red") Tests of Portmanteau tests: test whether the first h autocorrelations (taken tgt) are significantly diff from what is expected from a WN process. Autocorrelation 1) Box-Pierce test. 2) Ljung-Box test 1) Box-Pierce Test: Q = $T\sum_{k=1}^{h} r_k^2$, where r_k = autocorrelation, h is maximum lag being considered, T is num of obs If each r_k is close to 0, then Q will be small. If some r_k are large, then Q is large, then conclude that residuals are autocorrelated Rule-of thumb: Use h = 10 for non-seasonal data. Use h = 2m for seasonal data, where m = period of seasonality. However, if the h > T/5, then use T/5 instead 2) Ljung-Box test: $Q^* = T(T+2) \sum_{k=1}^{h} (T-k)^{-1} r_k^2$. Large value of Q^* suggests residuals are not from a WN series. For both Box-Pierce and Ljung-Box: H₀: $\rho_k=r_k=0~\forall~k$, i.e. residuals are uncorrelated Under H₀: both Q and Q* $\sim \chi^2$ dist w (h - K) degrees of freedom, where K = num of parameters in the model If test is computed based on raw data, then set K = 0 augment(mean_and_naive) %>% features(.innov, features=feature_set(tags="portmanteau"), lag=10) #Apply both tests to model Training data = to estimate the parameters of a model. Test data = evaluate its forecast accuracy. **Evaluating** Test set usually 20% of total sample. Test set should ideally be as large as maximum forecast horizon Forecast Forecast error = diff btw observed and its forecast = $e_{T+k} = y_{T+k} - \hat{y}_{T+k|T}$ Accuracy Training data = $\{y_1, ..., y_T\}$. Test data = $\{y_{T+1}, y_{T+2}, ...\}$. Note residuals based on training data, forecast error based on test data 1) Scale-Dependent Errors: computed values, e_{T+k} are on the same scale as the data MAE (Mean abs error) = $\frac{1}{h}\sum_{k=1}^{h}|e_{T+k}|$. - Any accuracy measure that is based only on e_{T+k} (instead of a standardisation of it). RMSE (root mean squared error) = $\sqrt{\frac{1}{h}}\sum_{k=1}^{h}e_{T+k}^{2}$ - Cannot be used to make comparisons btw series of diff scale 2) Scale-Independent error: To compare forecast errors across diff series w diff scale 2a) Percentage error = $p_{T+k} = 100 * \frac{e_{T+k}}{y_{T+k}}$ Mean abs percentage error, $\mathsf{MAPE} = \frac{1}{h} \sum_{k=1}^{h} |p_{T+k}|$ However, if $\mathbf{y}_{\mathrm{T+k}}$ is close to 0, then p_{T+k} will have extreme values, ∞ symmetric MAPE, p_{T+k} also tend to penalise -ve errors more than positive. If $\{y_T\}$ is a non-negative series, then for any obs, there is a max positive p_T but negative p_T is unbounded 2b) Scaled error: Errors are scaled using the training MAE from the naive mtd. (training MAE is acting as baseline) Scaled error < 1 if it is better than naive mtd forecast. Scaled error > 1 if worse than naive mtd forecast - scaled $MASE = \frac{1}{h} \sum_{k=1}^{h} |q_{T+k}|$ error = $\mathbf{q}_j = \frac{e_j}{\frac{1}{T-1}\sum_{t=2}^T |y_t - y_{t-1}|}$. For seasonal data, $\mathbf{q}_j = \frac{e_j}{\frac{1}{T-m}\sum_{t=m+1}^T |y_t - y_{t-m}|}$ (i.e. use seasonal naive for baseline) i.e. MAE/baseline MAE Both numerator and denominator are on the same scale, hence q_j is scale-indep train <- filter_index(ts, . ~ "Dec 2004"); test <- filter_index(ts, "Jan 2005" ~ .) models <- model(train, avg=MEAN(y), naive=NAIVE(y)) fc <- forecast(models, h=4); accuracy(fc, ts) Cross validation Multi-step cross validation stretched <- stretch tsibble(ts, .init = 20, .step=1) # generate multiple version of ts, each truncated at the next obs stretched %>% model(mean = MEAN(Quotes), naive=NAIVE(Quotes)) %>% forecast(h=1) %>% filter(Month <= yearmonth("2005 Apr")) %>% accuracy(insurance) For 95% prediction interval of the next obs = $\hat{y}_t \pm 1.96\hat{\sigma}_h$, where $\hat{\sigma}_h$ is an estimate of the SD of the forecast Prediction Intervals When forecasting one step ahead, the SD of the forecast dist \approx SD of the residuals. , i.e. $\hat{\sigma}_1 \approx \hat{\sigma}$ (PI) When there are no parameters estimated, the two SD are identical. When parameters are estimated, then the SD of the forecast distribution is slightly larger than the residual SD. As the forecast horizon increases, the prediction intervals generally increase in width. (further ahead, more uncertainty) Mean Seasonal naive Random Walk w Drift $\hat{\sigma}_h = \hat{\sigma}\sqrt{1 + 1/T}$ $\hat{y}_{T+h|T} = \bar{y}$, where $\bar{y} = \frac{1}{\tau} \sum_{t=1}^{T} y_t$. \bar{y} is our estimate of μ But since we estimate μ , our prediction has var = $\text{var}(\bar{y} + e_{T+h}) = \text{var}(\bar{y}) + \text{var}(e_{T+h})$ (indep) = $\frac{T\sigma^2}{T^2} + \sigma^2 = \sigma^2 \left(1 + \frac{1}{T}\right)$ 2) Naive model assumes $y_{T+h} = y_T + \sum_{k=1}^h e_{T+k}$. Note y_T is fixed constant here, not a parameter Variance of prediction = $\text{var}(\hat{y}_{T+h}) = \text{var}(y_T + \sum_{k=1}^h e_{T+k}) = \text{var}(\sum_{k=1}^h e_{T+k}) = \text{h}\sigma^2$ If a transformation has been used, then the prediction interval should be computed on the transformed scale. End-points of PI should be back-transformed to give a PI on the original scale. The new intervals will have the same coverage, but they will no longer be symmetric. autoplot(fcast, data=filter(ts, index >= yearmonth("1990 Jan")), level=c(80, 95), #point_forecast=list(mean=mean), show_gap = FALSE) # level for 80 & 95% PI # mean=bias adjusted, median = w/o bias adjustment ## Simulating from the residuals. (if residuals not normal) In contrast to calculating $\hat{\sigma}$, the estimate of SD of forecast fc2 <- eggs_mdl %>% forecast(h = 50, bootstrap = TRUE) %>% mutate(.median = median(eggs)) Time series can have diff patterns: trends, cycles and seasonal effects Decomposition Can decompose TS into 3 components: trend-cycle component, seasonal component, remainder component (unable to explain) $y_t = S_t + T_t + R_t$, where S_t = seasonal component, T_t = trend-cycle component, R_t = remainder component Additive Decomposition Model is appropriate if seasonal variation does not change w level of TS Multiplicative $y_t = S_t * T_t * R_t$

Model is appropriate if variation around the trend-cycle appears to be proportional to level of TS

Decomposition

	Can also $\log y_t = \log S_t + \log S_t$	$g T_t + log R_t$ to transform multiplicative mo					
E.g. To	dcmp <- TS %>% model(stl	= STL(y))	In table, value = y_t , trend = \hat{T}_t , season_year = \hat{S}_t , remainder = \hat{R}_t ,				
interpret	components(dcmp)		season_adjust = $\mathbf{y_t} - \hat{S}_t$ = $\hat{T}_t + \hat{R}_t$				
additive decomposition		s_tsibble() %>% autoplot(y, e(aes(y=trend), colour="red")	See season_adjusted line overlaid on TS				
decomposition	components(dcmp) %>% a	, .	120 M				
	From top to bottom: y_t , \hat{T}_t ,		100- II AMMINAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMA				
	Grey bar on left are of sam		80- 2 Mahahan Asah sah sah sah sah sah sah sah sah sah				
	i.e. Trend and seasonality	explains a larger proportion of the series,	110-				
	and remainder explaining l		100-				
	Note remainder is largest a	at around spikes/dips in the trend	80-				
	If coaconal variaion is not a	of primary interest, we should fesus on th	o 10- Tankandandandandandandandandandandandandanda				
	seasonally adjusted series,	of primary interest, we should focus on th					
		\hat{S}_t . For multiplicative model: y_t / \hat{S}_t	8				
		data still contain remainder component, it	1 March march and a south and a south all the				
	will not be smooth		2 March Miles MA MM MAN ALLO MA MILES				
		s_tsibble() %>% autoplot(y, colour="gray') + 1995 Jan 2000 Jan 2005 Jan 2010 Jan				
	geom_line(aes(y=season_d						
Decomposition	Strength of trend = $F_t = mc$	$ax\left(0,1-\frac{var(R_t)}{Var(T_t+R_t)}\right)$. Small value of F_t (clo	ose to 0) indicates $Var(R_t) \approx Var(T_t + R_t)$, i.e. trend is not the "driving				
Features		al noise. If Ft close to 1, then trend is very					
	Strength of seasonality = F	$S = max \left(0.1 - \frac{Var(R_t)}{Var(R_t)} \right)$					
			$gth = F_t$, seasonal_strength_year = F_s . Also have other values below				
	seasonal peak year	timing of peaks within a season	10 seasonar_strength_year 13.7 list have other values selow				
	seasonal_trough_year	timing of throughs within a season					
	spikiness	= = =	composition = var of leave-one-out variances of Rt				
	linearity		Based on coefficient of a Linear Regression applied to T _t				
	curvature	-	d on coeff from an orthogonal quadratic regression applied to T _t				
Moving		is to estimate trend-cycle. Use Moving Av					
Average Filters	MA of order m is a special cas	se of a linear filter: $\sum_{j=-k}^{k} \frac{1}{m} y_{t+j}$, where r	n = 2k+1 is an odd num. This operator aka m-MA				
riiters	m-MA is a simple mtd to estimate trend-cycle component. $\hat{T}_t = \sum_{j=-k}^k \frac{1}{m} y_{t+j}$. It averages nearby values to return smoothed version of						
	m = known seasonal period, so as to remove seasonal variation. This happens if sum of seasonal components for each period = 0						
		nite order linear filter / time invariant line					
E.g. computing	• •	slide_dbl(y, mean, .before=2, .after=2, .co	•				
MA			ninor fluctuations. Larger m = smoother curve				
Computations when m is Ever	If m is even, convention is	s to take one obs more from the future th	an the past. E.g. m = 2k. Then filter = $\sum_{j=-(k-1)}^{k} \frac{1}{m} y_{t+j}$				
Wileii III is Evel	ts <- mutate(ts, 4-MA =	slide_dbl(y, mean, .before=1, .after=2, .co					
		i-iviA operation is symmetric: k earlier & । before and after middle one)	ater obs & middle obs. Each obs multiplied by 1/, (symmetric in				
			MA filter can yield a filter w the symmetry properties we had.				
			bbs from future. 2) Apply 2-MA to the new col w an extra obs from				
			$y_t' = \frac{1}{2}(y_{t-1}^R + y_t^R) = \frac{1}{8}y_{t-2} + \frac{1}{4}y_{t-1} + \frac{1}{4}y_t + \frac{1}{4}y_{t+1} + \frac{1}{8}y_{t+2}$				
			points same dist from t but on opp sides are the same				
		= slide_dbl(`4-MA`, mean, .before=1, .aft	·				
	2 × m - MA aka centred r	noving average of order m. Note, odd ord	er MA don't have to be centered – already symmetric				
		trend cycle from seasonal data, by remo					
Removing			ntred around the trend-cycle component.				
Seasonal		me seasonal components sum to 0	It The appropriate filter to use is the 2 × 4 844				
Variation using a Filter			t. The appropriate filter to use is the 2 \times 4-MA				
a i iiiCi		$\hat{T}_{t} = \frac{1}{8}y_{t-2} + \frac{1}{4}y_{t-1} + \frac{1}{4}y_{t} + \frac{1}{4}y_{t+1} + \frac{1}{8}y_{t+2} = \frac{1}{8}(T_{t-2} + R_{t-2}) + \frac{1}{4}(T_{t-1} + R_{t-1}) + \frac{1}{4}(T_{t} + R_{t}) + \frac{1}{4}(T_{t+1} + R_{t+1}) + \frac{1}{8}(T_{t+2} + R_{t+1}) + \frac{1}{8}(T_{$					
	R_{t+2} + $\frac{1}{8}S_{t-2}$ + $\frac{1}{4}S_{t-1}$ +	$\frac{1}{4}S_t + \frac{1}{4}S_{t+1} + \frac{1}{8}S_{t+2} = \frac{1}{8}(T_{t-2} + R_{t-2})$	$+\frac{1}{4}(T_{t-1}+R_{t-1})+\frac{1}{4}(T_t+R_t)+\frac{1}{4}(T_{t+1}+R_{t+1})+\frac{1}{8}(T_{t+2}+T_{t+1})$				
	R_{t+2}) + $\frac{1}{4}\sum_{i=0}^{3} S_{t+i} = \frac{1}{2}(T_t)$	$T_{t-2} + R_{t-2} + \frac{1}{4} (T_{t-1} + R_{t-1}) + \frac{1}{4} (T_t + R_{t-1})$	$(R_t) + \frac{1}{4}(T_{t+1} + R_{t+1}) + \frac{1}{8}(T_{t+2} + R_{t+2})$				
Guidelines		y date and 7-MA for daily data	<u>* 8 * * * * * * * * * * * * * * * * * *</u>				
Weighted		$=-k a_j y_{t+j}$, where $k = (m-1)/2$					
Moving	,		another special case, w weights 1/8, 1/4, 1/4, 1/4, 1/8				
Averages	Weighted MA yield smootl	her estimates than simple MA since weigh	its are slowly \uparrow and \downarrow , instead of abruptly including/excluding them				
		By choosing appropriate weights, can design filter to remove higher-order terms that are likely noise					
	_		that window by minimising least squares error. Replace obs in the				
	middle of that window w p		andratic trand MIOC can consider points st. 2. 4. 0. 4. 2				
		or a.2, a.1, a0, a1, a2 (i.e. m = 5) by fitting qu $(a_2) = \sum_{t=-2}^2 (y_t - b_0 - b_1 t - b_2 t^2)^2$. Only	nadratic trend. WLOG, can consider points at t = -2, -1, 0, 1, 2				
			need to estimat b_0 b_0 , we get $\sum y_t = 5b_0 + 10b_2$. $\sum ty_t = 10b_1$. $\sum t^2y_t = 10b_0 + 34b_2$				
		$y_1 + \frac{24}{70}y_{-1} + \frac{17}{35}y_0 + \frac{24}{70}y_1 - \frac{6}{70}y_2$. Weigh					
	. 0	70 70 70	2 /0 /0 00 /0 /01				
		[74,67,46,21,3,-5,-6,-3]					
E.g. Weighted	Creating TS w quadratic tre	e()					
			. (=0				
MA		ts::filter(y\$value, c(-6/70, 24/70, 17/35, 2					
	Series is unmodified by filt						

Decomposition 1) If m is even, use a 2 \times m-MA (if m is odd, use simple m-MA) to compute \hat{T}_t algos 2) Calculate the de-trended series, $y_t - \hat{T}_t$ 3) Estimate the seasonal component: a) Average the de-trended values for each month. E.g., average all de-trended March values to obtain the estimate of the effect of the March season. b) Adjust the seasonal component so that they sum to 0 to get \hat{S}_t c) This last step ensures that there is no confounding of the seasonal effects with the level of the time series, and allows us to view the seasonal effects as deviations from the trend-cycle. 4) Calculate the remainder component using $\hat{R}_t = y_t - \hat{T}_t - \hat{S}_t$ Suppose additive model is appropriate for our series, $y_t = \hat{T}_t + \hat{S}_t + \hat{R}_t$ Whatever we estimate for the trend-cycle and seasonal components, we could always add/subtract an arbitrary value δ to each of them, i.e. $\hat{y}_t = \hat{T}_t + \hat{S}_t = (\hat{T}_t + \delta) + (\hat{S}_t - \delta)$ To avoid this non-identifiability, constraint our seasonal effects to sum to 0. Also allows us to interpret the average seasonal effect as 0. Suppose we have our initial estimates of the seasonal effects, $\hat{S}_1^0, \hat{S}_2^0, \dots, \hat{S}_m^0$ Then can adjust these by setting $\hat{S}_t = \hat{S}_t^0 - \frac{1}{m} \sum_{k=1}^m \hat{S}_k^0$ for t = 1, ..., m Classical Multiplicative Decomp. Assume seasonal effect is same for all t 1) If m is even, use a 2 \times m-MA (if m is odd, use simple m-MA) to compute \hat{T}_t 2) Calculate the de-trended series, y_t/\hat{T}_t 3) Estimate the seasonal component: a) Average the de-trended values for each month. b) Adjust the seasonal component so that they sum to m to get \hat{S}_t c) This ensures that the average of the seasonal effects = 1; each is then a multiplicative deviation from the trend-cycle 4) Calculate the remainder component using $\hat{R}_t = \frac{y_t}{\hat{T}_t \hat{S}_t}$ To constraint our seasonal effects to sum to m. Suppose we have our initial estimates of the seasonal effects, $\hat{S}_1^0, \hat{S}_2^0, ..., \hat{S}_m^0$ Then can adjust these by setting $\hat{S}_t = \frac{\hat{S}_t^0}{\frac{1}{m} \sum_{k=1}^m \hat{S}_k^0}$ for t = 1, ..., m E.g. ts_dc <- model(ts, class_add = classical_decomposition(y, "additive")) # OR multiplicative components(ts_dc) %>% autoplot() Cons of classical: Since we are using MA filters, we are unable to estimate the trend-cycle for the beginning and end of the series. The classical approach assumes that the seasonal variation is the same over time. It is also not robust to outliers. X11 Decomp: based on classical decomp, but has some improvements: ts_dc <- model(ts, - By using one-sided linear filters, it obtains trend-cycle estimates for all class_add = classical_decomposition(y, "additive"), class_mult = classical_decomposition(y, "multiplicative"), time points. $x11 = X_13ARIMA_SEATS(y \sim x11())$) - Allows seasonal effect to vary over time. - Includes use of a regression model for the remainder component - Annual holidays are included in the seasonal components. select(ts dc, class mult) %>% - The process iterates the algo to achieve smoother estimates. components() %>% autoplot() X11-ARIMA, X12-ARIMA and X13-ARIMA are all improvements on X11 select(ts_dc, x11) %>% OR y ~ regression(variables='td', aictest=null) #td = trading day variation components() %>% autoplot() "Loess" refers to a locally weighted regression model. This is used in place of a moving average filter for estimating the trend-cycle. Seasonal and Trend In comparison to the ordinary linear regression model, loess is able to estimate nonlinear relationships. decomposition Advantages of STL Disadvantages of STL using LOESS - Unlike X11, STL can handle any type of seasonality (fixed pattern) - Can only handle additive models. (STL) - Like X11, it allows seasonal component to change over time - This shortcoming can be somewhat overcome by transforming (same pattern, but value of pattern changes) model first. - Smoothness of the trend cycle can be controlled by the user. - There are several parameters for this approach. - There are defaults for several of them except one. - Can be made robust to outliers, so that occasional unusual observations will not affect estimates of the trend cycle. Loess Fitting. Suppose x_i and y_i are measurements of an indep and dependent variables. Loess regression curve, $\hat{g}(x)$ is a smoothing of y given x that can be computed for any values of x. To compute \hat{g} : 1) Choose a value q>0, that will serve as the span. 2) The q values of x_i that are closest to x will be given a weight, based on how far they are from x, typically through a kernel function. 3) x_i values that are closer to x will receive a larger weight. 4) Perform a weighted least squares regression using the above weights. geom_smooth(span=%ofpoints, method="loess", method.args=list(degree=0)) STL algo consists of two loops: - Outer loop for robustness to outliers in the time series. (If sure no outliers, no need outer loop; usually 5-10 iterations) - Inner loop to estimate trend and seasonal components. Recall that seasonal component can vary over time. (usually 1-2 iterations) - The loess algo is repeatedly used as the smoother, except in one portion of the procedure. In the outer loop: { 1) The remainder component is estimated. 2) They are assigned a robustness weight (points w larger "residuals" given lower weight), which is used in the inner loop. } In inner loop, w a given set of robustness weights and an initial trend-cycle estimate: { 1) Series is detrended using $\hat{T}_t^{(k)}$ 2) Individual subseries are smoothed using loess (s.window) to get $\hat{S}_t^{(k)}$. E.g. if data has monthly freq, 12 smoothings are carried out 3) Combine smoothed subseries into 1, apply MA filter twice. Estimate loess (*l.window*) smoothing for this combined series, $\hat{T}_t^{\prime(k)}$. (to identify and extracts any residual trend) 4) $\hat{S}_t^{(k+1)} = \hat{S}_t^{(k)} - \hat{T}_t^{\prime(k)}$, to yield an estimate of the seasonal component. 5) New series, $y_t - \hat{S}_t^{(k+1)}$ is smoothed by a loess smoother (*t.window*) to obtain a new trend-cycle estimate, $\hat{T}_t^{(k+1)}$. } model(ts, stl1 = STL(Y ~ trend(window=, degree=1) + season(window=) + lowpass()) t.window, s.window, l.window Usually, just use default for trend and lowpass dc_stl <- model(ts, t.window: trend cycle window stl1 = STL(value ~ trend(window=13), robust=TRUE), s.window: seasonal window

	stl2 = STL(value ~ trend(window=10) + season(window="periodic"), robust=TR	RIIF))	s.window = "periodic" : assume seasonal
	select(dcmp stl, stl2) %>%	.02//	component don't change.
	components() %>% autoplot()		robust: model not influenced by outliers much
	select(dcmp_stl, stl2) %>% components() %>% as_tsibble() %>% mutate(raw_mi	th =	For all subseries, check if s.window needs to
	Month(index, label=TRUE) + ggplot(aes(x=index)) + geom_line(aes(y=season_y)		be change or not. If line underfit, decr
	+ geom_point(aes(y=Y-trend)) + facet_wrap(~raw_mth, nrow=4)	,,	window. Overfit = incr window
	season(window = Inf) : seasonality effect same		
Forecasting w	fit_dcmp <- model(ts, dcmp_fc = decomposition_model(In dec	omposition_model, specify:
decomp	STL(value ~ trend(window=13) + season(window="periodic"), robust=TRUE),	- deco	mposition method,
	NAIVE(season_adjust), SNAIVE(season_year)))	- fored	casting mtd for the seasonally adjusted series,
	forecast(fit_dcmp, h=12) %>% autoplot(elecequip)		casting mtd for the season effect.
Tut	Suppose TS is $y_t = f(t) + e_t$, where f is a smooth and cts fn of t, and $e_t \sim WN(0)$), σ^2).	
	Can use m-MA to estimate f(t), w m = 2k + 1: $\hat{f}(t) = \frac{1}{2k+1} \sum_{j=-k}^{k} y_{t+j}$, t = k+1,	, n-k.	i.e. Larger m = smaller var, higher bias
	Taylor expansion of f about t: $f(t+j) \approx f(t) + f'(t)(t+j-t) + \frac{1}{2}f''(t)(t+j-t)$	$-j-t)^2$	$f^2 + \dots = f(t) + f'(t) \cdot j + \frac{1}{2}f''(t) \cdot j^2 + \dots$
	Then, $\hat{f}(t) = \frac{1}{2k+1} \sum_{j=-k}^{k} f(t+j) + \frac{1}{2k+1} \sum_{j=-k}^{k} e_{t+j}$. Bias = $E[\hat{f}(t)] - f(t) =$	$\frac{k(k+1)}{6}$	f''(t)
	$E[\hat{f}(t)] \approx f(t) + \frac{1}{2k+1}f'(t)\sum_{j=-k}^{k} j + \frac{1}{2(2k+1)}f''(t)\sum_{j=-k}^{k} j^2 = f(t) + 0 + \frac{1}{2(2k+1)}f''(t)\sum_{j=-k}^{k} j^2 = f(t) + 0 + \frac{1}{2(2k+1)}f''(t)$	$\frac{1}{k+1}f''$	$f''(t) = \frac{k(k+1)(2k+1)}{6} = f(t) + \frac{k(k+1)}{6}f''(t)$
	$var[\hat{f}(t)] = var\left[\frac{1}{2k+1}\sum_{j=-k}^{k} e_{t+j}\right] = \frac{1}{2k+1}\sigma^{2}$		
	Symmetric MA {a _j }, j = -q,, 0,, q passes an arbitrary polynomial of deg k w/o	distort	ion,
	i.e. $m_t = \sum_{j=-q}^q a_j m_{t+j} \ \forall \ k^{th} \ deg \ polynomial \ m_t = c_0 + c_1 t + + c_k t^k \ iff \sum_j a_j = 1$	and $\sum_j j$	$a_{j}^{r} a_{j} = 0$ for r = 1,, k
	Proof: $m_t = \sum_{i=0}^k c_i t^i$, and $m_{t+j} = \sum_{i=0}^k c_i (t+j)^i$. Note since MA is symmetric, $a_j = \sum_{i=0}^k c_i t^i$	= a _{-j}	
	RHS = $\sum_{j=-q}^{q} a_j m_{t+j} = \sum_j a_j \sum_{i=0}^{k} c_i (t+j)^i = \sum_{i=0}^{k} c_i \sum_j a_j (t+j)^i$. Now need	d to sho	$w \sum_{i=0}^{k} c_i \sum_{j} a_j (t+j)^i = \sum_{i=0}^{k} c_i t^i = m_t$
	So just need to show $\sum_{j} a_{j} (t+j)^{i} = t^{i}$. Using binomial expansion, $(t+j)^{i} = \sum_{j} a_{j} (t+j)^{j}$	$\sum_{n=0}^{i} {i \choose n}$	$t^n j^{i-n}$
	$\sum_{j} a_{j} (t+j)^{i} = \sum_{j} a_{j} \sum_{n=0}^{i} {i \choose n} t^{n} j^{i-n} = \sum_{n=0}^{i} {i \choose n} t^{n} \sum_{j} a_{j} j^{i-n} = \sum_{n=0}^{i-1} {i \choose n} t^{n} \sum_{j} a_{j} j^{i-n} = \sum_{n=0}^{i} {i \choose n} t^{n} \sum_{j} a_{j} j^{i-n} $		
	$= \sum_{n=0}^{i-1} {i \choose n} t^n \sum_j a_j j^{i-n} + t^i \sum_j a_j = \sum_{n=0}^{i-1} {i \choose n} t^n * 0 + t^i * 1 = t^i \text{ (using 2 conc}$	ditions a	bove)

Methods vs	Forecasting mtd = algo that provides a point pred in future. Statistical model = process that generates data - probability dist for future							
Models		- Point forecast can then be obtained by taking mean/median of that probability dist						
	Note $\hat{y}_{t+h} = \hat{y}_t$	Note $\hat{y}_{t+h} = \hat{y}_{t+h t}$ = forecast of y_{t+h} given y_1 ,, y_t (in-sample). $\hat{y}_{T+h T}$ = forecast of y_{T+h} , given y_1 ,, y_T (out-of-sample)						
	Mtd e.g. $\hat{y}_{t+h t}$	$= \bar{y}$ for all	h (Mean mtd used to	generate forecast	s w/o any further	assumptions)		
	Model e.g. $y_t =$	Model e.g. $y_t = \mu + e_t$, where $e_t \sim GWN(0, \sigma^2)$. Model implies $y_{t+h t} \sim N(\mu, \sigma^2)$ for all h. Once we estimate μ and σ^2 , we can use the						
	mean of the est	mean of the estimated dist to forecast y_{t+h} : $\hat{y}_{t+h t} = \hat{\mu}$. Can also forecast that w Prob 0.95, $y_{t+1} \in (\hat{\mu} - 1.96 * \hat{\sigma}, \hat{\mu} + 1.96 * \hat{\sigma})$						
	Model allows u	s to comput	e prediction intervals	(PI). But requires	making distribution	onal assumptions		
			data generating proc					
State space			ontaining unmeasured					
models	Then a linear in	novations s	tate space can be wri	tten as $y_t = w'x_t$	$_{-1}+e_{t}$ – (measure	ement eqn). And x	$c_t = F x$	$x_{t-1} + ge_t$
	, ,		nere e _t is a WN proces	, 0				
			ctors could contain p			d, but don't involv	e state	X _{t-1}
			ations formula = assu		•			
			s 1 error for the mea					
			matrices, can also ge			$(a_1)e_t$ and $x_t = f(x_t)$	$(t_{t-1}) +$	$g(x_{t-1})e_t$, where
F			ector and return scala					
Exponential		O.	view trend as a comb			•		
Smoothing			time periods ahead,	, , , , , , , , , , , ,	· · · · ·			Baultinlingting damen a
(ETS)	Trend type	None	Additive	Additive dampe		Multiplicative		Multiplicative damped
	Formula		$T_h = l + bh$			$T_h = lb^h$		$T_h = lb^{(\phi + \phi^2 + \dots + \phi^h)}$
	_		• • • • • • • • • • • • • • • • • • • •		•			ditively or multiplicatively.
			mtds, type of error o					
		ror compon	ents, there are 15 bas	sic exponential sm		s model (Error, Tre		
	Trend		Seasonal None		Seasonal Add			onal Mult
	N (None)		N,N (SES)	. 1\			N,M	(2.6. 1.1.1.1.2.6.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
	A (Additive)	\	A,N (Holt's linear m	•	, ,	oit-winters mta)		(Mult Holt-Winters mtd)
	A _d (Additive d	ampea)	A _d ,N (Additive dam	· · · · · · · · · · · · · · · · · · ·	A _d ,A		A _d ,M	
	M (Mult)	1\	M,N (Exp trend mto	•	M,A		M,M	
	M _d (Mult dam	<u> </u>	M _d ,N (Mult Holt-Wi	•	M _d ,A	-46	M _d ,N	
CEC (NI NI)								int forecasts, but diff PI
SES (N,N) – Simple			$(y_t - y_t) = \text{adjusting}$ $(\alpha)\hat{y}_t = \text{weighted avg}$				evious p	period, where $\alpha \in [0,1]$
exponential			$\alpha_t y_t = \text{weighted ave}$ $\alpha_t + \alpha(1-\alpha)^2 y_{t-2} = 0$				of all r	aast obs
smoothing			now values of α and				; Or all p	Dast Obs
Sillootillig			use = initialisation pro		inines impact or y	1 on forecast		
			$(l_{t-1}, \hat{y}_{t+1} = l_t)$ Via \hat{y}_{t+1}		nponents (only co	nsider level of seri	es. <i>l</i> .) a	and b) forecast fn.
			transition eqn and b				00, 1, 1	
			longer forecast horiz	-	•			
			have been $\widehat{y}_{t+h t} = \widehat{y}_{t+h t}$	•			nal co	mponent
	For defn 2: can	show that s	um of weights = 1.	$\hat{y}_{t+1} = \sum_{k=0}^{t-1} \alpha(1 - 1)^{k}$	$(-\alpha)^k v_t + (1-\alpha)^k v_t$	$(\hat{v}_1)^t \hat{v}_1$		
			$\alpha)^t = \frac{\alpha(1 - (1 - \alpha)^t)}{1 - (1 - \alpha)} +$				ani _	$\alpha(1-r^n)$
Holt's Linear			there is a linear tren				estimat	te $lpha,eta^*,l_0,b_0$
Mtd (A,N)	2 smoothing eq	ns for each	component. l_t and b	$_t$. Forecast eqn: \hat{y}_t	$t_{t+h t} = l_t + hb_t$ (1)	inear fn of h)		

•	l_t is an estimate of level at time t	= weighted avg of y _t and the one	e-step-ahead forecast ($l_{t-1} + b_{t-1}$)			
	b_t is an estimate of trend at time	t = weighted avg of b_{t-1} and the	e current tred, estimated by $l_t - l_{t-1}$			
	α = smoothing param for the leve	I, while $oldsymbol{eta}^*$ = smoothing param f	for the trend. Both $lpha$ and $eta^* \in [0,1]$			
	Holt's linear mtd assume data foll	ow a constant trend indefinitely	into future. Empirical evidence shot mtd tend to over-forecast			
Additive	Damped trend mtd introduces a p	aram that weakens/softens the	trend to a flat line some time in the future			
Damped Trend	Effect of trend is damped each tin	ne it enters the forecast and leve	el fns. And $\hat{y}_{t+h t} = l_t + (\phi + \phi^2 + \cdots + \phi^h)b_t$			
(A _d ,N)	Since $\phi \in [0,1]$, $\lim_{h \to \infty} \hat{y}_{t+h t} = l_t$	$+rac{\phi}{1-\phi}b_t$. This means in short te	erm, forecasts have a trend but in long run, they are constant			
			nce it has a strong effect. Usually $\phi \in [0.8,0.98]$			
Holt-Winters	Holt-Winters seasonal models cor	ntains 3 components: trend b _t , le	evel I _t , and the seasonal component s _t .			
Seasonal Mtds	Corresponding smoothing params	$s = \alpha, \beta^*, \gamma$. Freq of seasonality =	: m (for quartely data, m = 4)			
	If seasonal variations roughly con	stant in series: Use Additive mtd	I. In this model, seasonal component add up to ≈ 0 within each year			
	If seasonal variations prop to leve	l of series: Use Mult mtd. In this	s model, seasonal components add up to ≈ m within each year			
	Additive seasonality (A,A). $\hat{y}_{t+h t}$	$= l_t + hb_t + s_{t-m+h_m^*}$, where h	$\iota_m^* = \lfloor (h-1) \bmod m \rfloor + 1$			
	Level eqn = weighted avg btw sea	sonally adjusted obs $(y_t - s_{t-m})$	$(l_{t-1}+b_{t-1})$ and the non-seasonal forecast $(l_{t-1}+b_{t-1})$			
	Seasonal eqn = weighted avg btw	current seasonal index $(y_t - l_t)$	$oxed{b_{t-1}}-b_{t-1}$ and seasonal index of the same season in the previous year			
	Equivalent formulation for seasor	ial component is $s_t = \gamma^*(y_t - l_t)$	$s_t) + (1 - \gamma^*) s_{t-m}$, where $\gamma = \gamma^* (1 - \alpha)$			
	"Proof": Using level eqn, $s_t = \gamma^*$ ($(y_t - l_t) + (1 - \gamma^*)s_{t-m} = \gamma^*$	$(y_t - \alpha(y_t - s_{t-m}) - (1 - \alpha)(l_{t-1} + b_{t-1})] + (1 - \gamma^*)s_{t-m} = 0$			
	$\gamma^*[(1-\alpha)(y_t-l_{t-1}-b_{t-1})+a]$	$(xs_{t-m}] + (1 - \gamma^*)s_{t-m} = \gamma^*(1)$	$-\alpha)(y_t - l_{t-1} - b_{t-1}) + (\gamma^*\alpha + 1 - \gamma^*)s_{t-m} = \gamma(y_t - l_{t-1} - 1)$			
	$b_{t-1}) + (1 - (1 - \alpha)\gamma^*)s_{t-m} = \gamma(y_t - l_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m}$					
	Mult Seasonality (A,M). $\hat{y}_{t+h t} =$	$(l_t + hb_t)s_{t-m+h_m^*}$, where h_m^* =	$= \lfloor (h-1) \bmod m \rfloor + 1$			
Summary Not	te h-1 = km + $\lfloor (h-1) \mod m \rfloor$, where	ere $k \in \mathbb{Z}$. So $t + h - m(k+1)$	$=t-m+h_m^*$ (i.e. h - km = h_m^*). Let $\phi_h=\phi+\phi^2+\cdots+\phi^h$			
Sc	eason N	Α	M			

У	Note h-1 =	km + $\lfloor (h-1) \mod m \rfloor$, where k $\in \mathbb{Z}$. So	$t + h - m(k + 1) = t - m + h_m^*$ (i.e. h - km = h	$_{m}^{*}$). Let $\phi_{h} = \phi + \phi^{2} + \cdots + \phi^{h}$
	Season	N	A	M
	Trend			
	N	$\hat{y}_{t+h t} = l_t$	$\hat{y}_{t+h t} = l_t + s_{t-m+h_m^*}$	$\hat{y}_{t+h t} = l_t s_{t-m+h_m^*}$
		$l_t = \alpha y_t + (1 - \alpha)l_{t-1}$	$l_t = \alpha(y_t - s_{t-m}) + (1 - \alpha)l_{t-1}$	$l_t = \alpha(y_t/s_{t-m}) + (1-\alpha)l_{t-1}$
			$s_t = \gamma (y_t - l_{t-1}) + (1 - \gamma) s_{t-m}$	$s_t = \gamma(y_t/l_{t-1}) + (1 - \gamma)s_{t-m}$
	Α	$\hat{y}_{t+h t} = l_t + hb_t$	$\hat{y}_{t+h t} = l_t + hb_t + s_{t-m+h_m^*}$	$\hat{y}_{t+h t} = (l_t + hb_t)s_{t-m+h_m^*}$
		$l_t = \alpha y_t + (1 - \alpha)(l_{t-1} + b_{t-1})$	$l_t = \alpha(y_t - s_{t-m}) + (1 - \alpha)(l_{t-1} + b_{t-1})$	$l_t = \alpha \frac{y_t}{s_{t-m}} + (1 - \alpha)(l_{t-1} + b_{t-1})$
		$b_t = \beta^*(l_t - l_{t-1}) + (1 - \beta^*)b_{t-1}$	$b_t = \beta^*(l_t - l_{t-1}) + (1 - \beta^*)b_{t-1}$	$b_t = \beta^* (l_t - l_{t-1}) + (1 - \beta^*) b_{t-1}$
			$s_{t} = \gamma(y_{t} - l_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m}$	$s_t = \gamma \frac{y_t}{l_{t-1} + b_{t-1}} + (1 - \gamma) s_{t-m}$
	A _d	$\hat{y}_{t+h t} = l_t + \phi_h b_t$	$\hat{y}_{t+h t} = l_t + \phi_h b_t + s_{t-m+h_m^*}$	$\hat{y}_{t+h t} = (l_t + \phi_h b_t) s_{t-m+h_m^*}$
		$l_t = \alpha y_t + (1 - \alpha)(l_{t-1} + \phi b_{t-1})$	$l_t = \alpha(y_t - s_{t-m}) + (1 - \alpha)(l_{t-1} + \phi b_{t-1})$	$l_t = \alpha \frac{y_t}{s} + (1 - \alpha)(l_{t-1} + \phi b_{t-1})$
		$b_t = \beta^* (l_t - l_{t-1}) + (1 - \beta^*) \phi b_{t-1}$	$b_t = \beta^*(l_t - l_{t-1}) + (1 - \beta^*)\phi b_{t-1}$	$b_t = \beta^* (l_t - l_{t-1}) + (1 - \beta^*) \phi b_{t-1}$
			$s_t = \gamma(y_t - l_{t-1} - \phi b_{t-1}) + (1 - \gamma)s_{t-m}$	$s_t = \gamma \frac{y_t}{t_{t-1} + \phi b_{t-1}} + (1 - \gamma) s_{t-m}$
	М	$\hat{y}_{t+h t} = l_t b_t^h$		
		$l_t = \alpha y_t + (1 - \alpha)l_{t-1}b_{t-1}$		
		$b_t = \beta^*(l_t/l_{t-1}) + (1 - \beta^*)b_{t-1}$		

State Space Models For each mtd above, there are 2 state space models - 1 w additive errors, 1 w multiplicative errors

For state space model, have to identify 1) state vector and 2) source of error that appears in both state and measurement eqn ETS(A,M,N):

Trend		Seasonal		ETS(A,M,N): $y_t = l_{t-1}b_{t-1} + e$
Trena	N	A	M	$l_t = l_{t-1}b_{t-1} + \alpha$ $l_t = l_{t-1}b_{t-1} + \alpha$
N	$y_t = \ell_{t-1} + \varepsilon_t$ $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$	$y_t = \ell_{t-1} + s_{t-m} + \varepsilon_t$ $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$ $s_t = s_{t-m} + \gamma \varepsilon_t$	$y_t = \ell_{t-1} s_{t-m} + \varepsilon_t$ $\ell_t = \ell_{t-1} + \alpha \varepsilon_t / s_{t-m}$ $s_t = s_{t-m} + \gamma \varepsilon_t / \ell_{t-1}$	$b_t = b_{t-1} + \beta e_t / l$
A	$y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$ $\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$ $b_t = b_{t-1} + \beta \varepsilon_t$	$y_{t} = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_{t}$ $\ell_{t} = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_{t}$ $b_{t} = b_{t-1} + \beta \varepsilon_{t}$ $s_{t} = s_{t-m} + \gamma \varepsilon_{t}$	$\begin{aligned} y_t &= (\ell_{t-1} + b_{t-1}) s_{t-m} + \varepsilon_t \\ \ell_t &= \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t / s_{t-m} \\ b_t &= b_{t-1} + \beta \varepsilon_t / s_{t-m} \\ s_t &= s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + b_{t-1}) \end{aligned}$	
A_d	$y_t = \ell_{t-1} + \phi b_{t-1} + \varepsilon_t$ $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$ $b_t = \phi b_{t-1} + \beta \varepsilon_t$	$y_t = \ell_{t-1} + \phi b_{t-1} + s_{t-m} + \varepsilon_t$ $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$ $b_t = \phi b_{t-1} + \beta \varepsilon_t$ $s_t = s_{t-m} + \gamma \varepsilon_t$	$y_{t} = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} + \varepsilon_{t}$ $\ell_{t} = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_{t} / s_{t-m}$ $b_{t} = \phi b_{t-1} + \beta \varepsilon_{t} / s_{t-m}$ $s_{t} = s_{t-m} + \gamma \varepsilon_{t} / (\ell_{t-1} + \phi b_{t-1})$	

MULTIPLICATIVE ERROR MODELS

Trend		Seasonal	
	N	Α	M
N	$y_t = \ell_{t-1}(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = \ell_{t-1} s_{t-m} (1 + \varepsilon_t)$
	$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + \alpha(\ell_{t-1} + s_{t-m})\varepsilon_t$	$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$
		$s_t = s_{t-m} + \gamma (\ell_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$
	$y_t = (\ell_{t-1} + b_{t-1})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + b_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + b_{t-1})s_{t-m}(1+\varepsilon_t)$
A	$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t$	$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$
	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$	$b_{t} = b_{t-1} + \beta(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_{t}$ $s_{t} = s_{t-m} + \gamma(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_{t}$	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$ $s_t = s_{t-m}(1 + \gamma\varepsilon_t)$
240	$y_t = (\ell_{t-1} + \phi b_{t-1})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + \phi b_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} (1 + \varepsilon_t)$
A_d	$\ell_t = (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_t$	$\ell_t = (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_t)$
	$b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_t$		$b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon$
		$s_t = s_{t-m} + \gamma (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$

```
We know e_t = y_t - \hat{y}_t. And for (A,A,N), y_t = \hat{y}_t + e_t = l_{t-1} + b_{t-1} + e_t = \begin{bmatrix} 1 & 1 \end{bmatrix} x_{t-1} + e_t (for 1-step ahead forecast)
                            \begin{aligned} &l_t = \alpha y_t + (1-\alpha)(l_{t-1} + b_{t-1}) = l_{t-1} + b_{t-1} + \alpha(y_t - l_{t-1} - b_{t-1}) = l_{t-1} + b_{t-1} + \alpha(y_t - \hat{y}_t) = \begin{bmatrix} 1 & 1 \end{bmatrix} x_{t-1} + \alpha e_t \\ &b_t = \beta^*(l_t - l_{t-1}) + (1-\beta^*)b_{t-1} = b_{t-1} + \beta^*(l_t - l_{t-1} - b_{t-1}) = b_{t-1} + \beta^*\alpha e_t = \begin{bmatrix} 0 & 1 \end{bmatrix} x_{t-1} + \beta e_t, \text{ where } \beta = \beta^*\alpha \\ &\text{So } y_t = \begin{bmatrix} 1 & 1 \end{bmatrix} x_{t-1} + e_t. \ x_t = \begin{bmatrix} l_t \\ b_t \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x_{t-1} + \begin{bmatrix} \alpha \\ \beta \end{bmatrix} e_t. \text{ Since } \mu_{t+h|t} = E(y_{t+h}|x_t) \end{aligned}
                             Suppose e_t \sim GWN(0, \sigma^2), then \mu_{t|t-1} = E(y_t|x_{t-1}) = E([1 \quad 1]x_{t-1} + e_t) = l_{t-1} + b_{t-1} = forecast from Holt's linear mtd
                             For most models, \mu_{t+h|t} = \hat{y}_{t+h|t}. But will not hold for models w multiplicative trend or multiplicative seasonality for h \ge 2
                            \mathsf{ETS}(\mathsf{M},\mathsf{A},\mathsf{N}).\ l_t = \alpha y_t + (1-\alpha)(l_{t-1}+b_{t-1}) \ \mathsf{and} \ b_t = \beta^*(l_t-l_{t-1}) + (1-\beta^*)b_{t-1} \ \mathsf{and} \ \hat{y}_{t+h|t} = l_t + hb_t.\ \hat{y}_t = l_{t-1} + b_{t-1}
                            However, now relative error = e_t = \frac{y_t - \hat{y}_t}{\hat{y}_t}. So y_t = e_t \hat{y}_t + \hat{y}_t = \hat{y}_t (1 + e_t) = (l_{t-1} + b_{t-1})(1 + e_t) And x_t = \begin{bmatrix} l_t \\ b_t \end{bmatrix}
                           In general, y_t = w(x_{t-1}) + r(x_{t-1})e_t and x_t = f(x_{t-1}) + g(x_{t-1})e_t. Full model list in lect 6
                             For additive models, r(x_{t-1}) = 1, e_t = y_t - \hat{y}_t. For multiplicative models, e_t = \frac{y_t - y_t}{\hat{y}_t}
                             The models with multiplicative error/trend/seasonality could involve division by 0, and so are numerically unstable.
                             The multiplicative error models are unstable when the data values contain zeros or negative values.
                             If the data are not strictly positive, use only the 6 fully additive models.
Computations
                                             With the state space models, and given x_0, y_1. We can compute \hat{y}_1, e_1, x_1, ...
Residuals &
                                             For forecast package, 1-step forecasts defined as y_t - \hat{y}_t. The residuals are the estimates of the innovation (forecast) errors.
Forecast errors
                                             For the state space models with additive errors, residuals = one-step forecast (innovation) errors.
                                             For models with multiplicative errors, residuals = y_t - \hat{y}_t. Forecast/innovations = \frac{y_t - y_t}{\hat{y}_t}
                                             y_t = w'x_{t-1} + e_t – (measurement eqn), w'x_{t-1} describes effect of past on y_t. And x_t = Fx_{t-1} + ge_t – (transition eqn)
Linear
Innovations
                                             y_t denotes observed values, x_t is state vector containing info on level, growth and seasonal patterns.
                                             Error term, e_t \sim GWN(0, \sigma^2) and is the only source of noise in model; also known as the innovation in the model
State Space
                                             F is transition matrix. Fx_{t-1} describes effect of past on current state x_t. Vector g determines extent of effect of innovation on state
models
                                             Vectors w, g and matrix F is fixed over time (in this course). And are parameters we need to estimate
                                             Given the initial state vector, the pdf for \mathbf{y} = p(\mathbf{y}|x_0) = p(y_1, ..., y_n|x_0) = p(y_n|y_1, ..., y_{n-1}, x_0) \times p(y_{n-1}|y_1, ..., y_{n-2}, x_0) \times ... \times p(y_n|y_n, ..., y_n|x_n) = p(y_n|y_n, ..., y_n|x_n) \times p(y_n|x_n) \times p(y_n|x_n)
                                             p(y_1|x_0) = p(y_n|x_{n-1})p(y_{n-1}|x_{n-2}) \dots p(y_1|x_0) = \prod_{t=1}^n p(y_t|x_{t-1}) = \prod_{t=1}^n p(e_t)
                                            Since assume e_t are Gaussian, p(y|x_0) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n exp\left(-\frac{1}{2\sigma^2}\sum_{t=1}^n e_t^2\right) ETS(A,N,N). y_t = l_{t-1} + e_t. l_t = l_{t-1} + \alpha e_t. Where x_t = l_t, w = 1, F = 1, g = \alpha
                                             When \alpha = 0, local levels l_t dont change at all: y_t = l + e_t
                                             When \alpha = 0, model is a random walk model: y_t = y_{t-1} + e_t
                                             Conditional expectation for 1-step forecast is \mu_{t+1} = E(y_{t+1}|x_t) = E(l_t + e_{t+1}|x_t) = l_t = l_{t-1} + \alpha e_t = l_{t-1} + \alpha (y_t - l_{t-1}) = (1 - e_{t+1}|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_{t+1}|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_{t+1}|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_{t+1}|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_{t+1}|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_{t+1}|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_{t+1}|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_{t+1}|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_{t+1}|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_{t+1}|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_{t+1}|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_{t+1}|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_{t+1}|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_{t+1}|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_{t+1}|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_{t+1}|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_t|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_t|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_t|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_t|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_t|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_t|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_t|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_t|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_t|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_t|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_t|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_t|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_t|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_t|x_t) = l_t = l_t + \alpha (y_t - l_t) = (1 - e_t|x_t) = l_t = l_t + \alpha (y_t - l_t|x_t) = l_t = l_t + \alpha (y_t - l_t|x_t) = l_t = l_t + \alpha (y_t - l_t|x_t) = l_t = l_t + \alpha (y_t - l_t|x_t) = l_t = l_t + \alpha (y_t - l_t|x_t) = l_t = l_t + \alpha (y_t - l_t|x_t) = l_t = l_t + \alpha (y_t - l_t|x_t) = l_t = l_t + \alpha (y_t - l_t|x_t) = l_t = l_t + \alpha (y_t - l_t|x_t) = l_t = l_t + \alpha (y_t - l_t|x_t) = l_t = l_t + \alpha (y_t - l_t|x_t) = l_t = l_t + \alpha (y_t - l_t|x_t) = l_t = l_t + \alpha (y_t - l_t|x_t) = l_t = l_t + \alpha (y_t - l_t|x_t) = l_t + \alpha (y_t - l_t|x_t) = l_t + \alpha (y_t - l_t|
                                             (\alpha)l_{t-1} + \alpha y_t = \dots = (1 - \alpha)^t l_0 + \alpha \sum_{j=0}^{t-1} (1 - \alpha)^j y_{t-j}
                                             Conditional var Var(y_t|x_{t-1}) = Var(l_t + e_{t+1}|x_{t-1}) = \sigma^2
                                             If 0 < (1 - \alpha) < 1, then forecast can be interpreted as a weighted avg of previous values, wolder values being assigned less weight.
                                             For this model, stability condition is satisfied if 0 < \alpha < 2
                                             Note that y_t = l_0 + e_t + \alpha \sum_{j=1}^{t-1} e_j
                                            \mathsf{ETS}(\mathsf{A},\!\mathsf{A},\!\mathsf{N}).\ y_t = l_{t-1} + b_{t-1} + e_t. \ \ l_t = l_{t-1} + b_{t-1} + \alpha e_t. \ \ b_t = b_{t-1} + \beta e_t \ \mathsf{Where}\ x_t = \begin{bmatrix} l_t \\ h_t \end{bmatrix}, \ w = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ F = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \ g = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}
                                             When \alpha > 0, \beta > 0 and 2\alpha + \beta < 4, then model is stable
                                             However, in practice, restrictions 0 < \alpha < 1 and 0 < \beta < \alpha are usually applied. Corresponding exponential smoothing mtd is (A,N).
                                             \mathsf{ETS}(\mathsf{A},\!\mathsf{A},\!\mathsf{A}).\ y_t = l_{t-1} + b_{t-1} + s_{t-m} + e_t. \quad l_t = l_{t-1} + b_{t-1} + \alpha e_t. \quad b_t = b_{t-1} + \beta e_t. \quad s_t = \overline{s_{t-m} + \gamma e_t}
                                           x_t = \begin{bmatrix} l_t \\ b_t \\ s_t \\ s_{t-1} \\ \vdots \end{bmatrix}, w = \begin{bmatrix} 1 \\ 1 \\ 0 \\ \vdots \\ 1 \end{bmatrix}, F = \begin{bmatrix} 1 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 1 & 0 & \ddots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \end{bmatrix}, g = \begin{bmatrix} \alpha \\ \beta \\ \gamma \\ 0 \\ \vdots \end{bmatrix}
                                             Seasonal components are normalised to prevent confounding w the level.
                                             The usual parameter space are 0 < \alpha < 1 and 0 < \beta < \alpha and 0 < \gamma < 1 - \alpha
                                             y_t = w(x_{t-1}) + r(x_{t-1})e_t and x_t = f(x_{t-1}) + g(x_{t-1})e_t, where functions w and \overline{r} take in vector and return scalar, while fns f and g
Nonlinear
innovations
                                             returns a vector, et is a WN process.
                                             Joint dist of variables: p(y|x_0) = \prod_{t=1}^n p(y_t|x_{t-1}) = \prod_{t=1}^n p(e_t) / |r(x_{t-1})|
State Space
                                            Assume \mathbf{e_t} follow Gaussian dist, p(\mathbf{y}|x_0) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n |\prod_{t=1}^n r(x_{t-1})|^{-1} exp\left(-\frac{1}{2\sigma^2}\sum_{t=1}^n e_t^2\right) 
 ETS(M,N,N). y_t = l_{t-1}(1+e_t). l_t = l_{t-1}(1+\alpha e_t). So y_t = l_{t-2}(1+\alpha e_{t-1})(1+e_t) = \cdots = l_0(1+e_t)\prod_{j=1}^{t-1}(1+\alpha e_j)
Models
                                             Where state vector x_t = l_t. w(x_{t-1}) = r(x_{t-1}) = f(x_{t-1}) = l_{t-1}. g(x_{t-1}) = \alpha l_{t-1}
                                             \mu_{t|t-1} = E(y_t|x_{t-1}) = E(l_{t-1} + l_{t-1}e_t|x_t) = l_{t-1} + l_{t-1}E[e_t|x_t] = l_{t-1} + l_{t-1}(0) = l_{t-1} = \hat{y}_t \text{ (same as ETS(A,N,N))}
                                             But conditional var Var(y_t|x_{t-1}) = Var(l_{t-1} + l_{t-1}e_t|x_t) = Var(l_{t-1}e_t|x_t) = l_{t-1}^2\sigma^2 (diff from ETS(A,N,N))
                                             So forecast var will depend on level of process (leading to diff PI)
                                             When \alpha = 0, state does not change; i.e. identical to additive model except for a parametrisation
                                            When \alpha=1, model is y_t=y_{t-1}(1+e_t) ETS(M,A,N). y_t=(l_{t-1}+b_{t-1})(1+e_t). l_t=(l_{t-1}+b_{t-1})(1+\alpha e_t). b_t=b_{t-1}+\beta(l_{t-1}+b_{t-1})e_t Where x_t=\begin{bmatrix} l_t\\b_t\end{bmatrix}, w(x_{t-1})=r(x_{t-1})=l_{t-1}+b_{t-1}, f(x_{t-1})=\begin{bmatrix} l_{t-1}+b_{t-1}\\b_{t-1}\end{bmatrix}, g=\begin{bmatrix} \alpha(l_{t-1}+b_{t-1})\\\beta(l_{t-1}+b_{t-1})\end{bmatrix} Special cases: \beta=0 \equiv global trend. \beta=0, \alpha=1 \equiv random walk w drift. \beta=0, \alpha=0 \equiv fixed level and trend
                                             Initial state x<sub>0</sub>, and params are unknown and have to be estimated from data
                                             - Smoothing params, e.g. lpha and eta for ETS(A,A,N) model. Refer to these as a vector 	heta
```

Estimation in State Space models

- Initial state x_0 . - Innovations var σ^2

MLE: Likelihood fn for generatl state space model is $p(y|\theta, x_0, \sigma^2) = \prod_{t=1}^n \frac{p(e_t)}{|r(x_{t-1})|}$

Assuming Gaussian innovations, likelihood can be written as $L(\theta, x_0, \sigma^2) = (2\pi\sigma^2)^{-n/2} |\prod_{t=1}^n r(x_{t-1})|^{-1} exp\left(-\frac{1}{2\sigma^2}\sum_{t=1}^n e_t^2\right)$

 $\text{Log-likelihood, } l(\theta,x_0,\sigma^2) = -\tfrac{n}{2}log(2\pi\sigma^2) - \textstyle\sum_{t=1}^n log|r(x_{t-1})| - \frac{1}{2\sigma^2}\textstyle\sum_{t=1}^n e_t^2$

To maximise log-likelihood: $\frac{\partial l}{\partial \sigma^2} = -\frac{n}{2} \frac{2\pi}{2\pi\sigma^2} - \frac{1}{2} (-1)(\sigma^2)^{-2} \sum_{t=1}^n e_t^2 = 0$ to get $\hat{\sigma}^2 = \frac{1}{n} \sum_{t=1}^n e_t^2$

Then log-likelihood becomes $l(\theta, x_0, \sigma^2) = -\frac{n}{2}log(2\pi\hat{\sigma}^2) - \sum_{t=1}^n log|r(x_{t-1})| - \frac{1}{2\hat{\sigma}^2}\sum_{t=1}^n e_t^2 = -\frac{n}{2}log(\hat{\sigma}^2) - \frac{n}{2}log(2\pi) - \frac{n}{2}log(2\pi)$

 $\textstyle \sum_{t=1}^{n} log|r(x_{t-1})| - \frac{n}{2} = -\frac{n}{2}log(\hat{\sigma}^2) - \frac{n}{2}log(2\pi e) - \sum_{t=1}^{n} log|r(x_{t-1})|$

Equivalent to min $S(\theta, x_0) = |\prod_{t=1}^n r(x_{t-1})|^{2/n} \sum_{t=1}^n e_t^2$ aka augmented sum of squares criterion (power to 2/n L(), ignore constant?) Instead of using the likelihood function, we could target to find the parameters θ , x_0 by minimising the one-step MSE, MAE or some other error metric. Yet another method is to minimise the residual variance.

Num of parameters. Suppose we have weekly data, i.e. m = 52. And we wish to fit an ETS(A,A,A) model, we would then have to estimate 52 + 2 = 54 seed states (l_0 , b_0) and 3 smoothing parameters (α , β , γ)

Huge num = hard to compute. Solution: use heuristic methods of estimation OR assume certain weeks have same effects

Initial values of x₀. 1) For initial seasonal component, perform a classical decomposition of the process

- 2) For the initial level component, perform a linear regression of the first y_t values on 1,2,...,10 and use intercept term as l_0
- 3) For initial growh component, use slop estimated from 2) as b_0 if it is additive trend. If multiplicative trend, use $b_0 = 1 + b/a$, where b is slope from 2) and a is intercept

Prediction Intervals

When forecasting TS, sources of uncertainty are 1) model choice, 2) future innovations e_{t+1} , e_{t+2} , ..., 3) Parameters estimates In practice, we only consider 2) the uncertainty in future innovations

Prediction dist = dist of future values, given the model, its estimated parameters and x_t . So $y_{t+h|t} \equiv y_{t+h|x_t}$

Forecast mean is $\mu_{t+h|t} = E(y_{t+h}|x_t)$. Forecast variance is $v_{t+h|t} = Var(y_{t+h}|x_t)$.

Analytical expressions for the forecast var are only available for some of the models

Class 1: easy to derive

Class 2 and 3: can derive, but involve making a few further assumptions

Class 4 and 5: cannot derive, use simulation to obtain prediction intervals

ETS(A,N,N). $y_t=x_{t-1}+e_t$. $x_t=x_{t-1}+\alpha e_t$. Where $x_t=l_t$, w=1, F=1, $g=\alpha$

One-step conditional mean is $\mu_{t+1} = E(y_{t+1}|x_t) = E(x_t + e_{t+1}|x_t) = l_t$

Prediction error, or var of this forecast = $Var(y_{t+1}|x_t) = Var(x_t + e_{t+1}|x_t) = \sigma^2$

When h = 2, $E(y_{t+2}|x_t) = E(x_{t+1} + e_{t+2}|x_t) = E(x_{t+1}|x_t) = E(x_t + \alpha e_{t+1}|x_t) = x_t$

Prediction error, or var of this forecast = $Var(y_{t+2}|x_t) = Var(x_{t+1} + e_{t+2}|x_t) = \sigma^2 + Var(x_{t+1}|x_t) = \sigma^2 + Var(x_t + \alpha e_{t+1}|x_t) = \sigma^2 + Var(x_t$ $\alpha^2 \sigma^2 = \sigma^2 (1 + \alpha^2)$

In general, $\hat{y}_{t+h|t} = w'F^{h-1}x_t = l_t$. And $v_{t+h|t} = var(y_{t+h|t}|x_t) = \cdots = \alpha^2(h-1)\sigma^2 + \sigma^2$ In general for class 1 models, $y_t = w'x_{t-1} + e_t$. $x_t = Fx_{t-1} + ge_t$

$$\text{E.g. for ETS(A,N,A), } x_t = \begin{bmatrix} l_t \\ s_t \\ s_{t-1} \\ \vdots \\ s_{t-(m-1)} \end{bmatrix}, w = \begin{bmatrix} 1 \\ 0_{m-1} \\ 1 \end{bmatrix}, F = \begin{bmatrix} 1 & 0'_{m-1} & 0 \\ 0 & 0'_{m-1} & 1 \\ 0_{m-1} & I_{m-1} & 0_{m-1} \end{bmatrix}, g = \begin{bmatrix} \alpha \\ \beta \\ 0_{m-1} \end{bmatrix}$$

Then $\hat{y}_{t+h|t} = E(y_{t+h}|x_t) = w'E(x_{t+h-1}|x_t) = w'E(Fx_{t+h-2} + ge_{t+h-1}|x_t) = w'FE(x_{t+h-2}|x_t) = \cdots = w'F^{h-1}x_t$

Forecast var = $v_{t+h|t} = w'Var(x_{t+h-1}|x_t)w + \sigma^2$. Which can be simplified to $v_{T+h|T} = \begin{cases} \sigma^2 & \text{if } h = 1\\ \sigma^2 \lceil 1 + \sum_{t=1}^{h-1} c_t^2 \rceil & \text{if } h > 2 \end{cases}$ ($c_j = w'F^{j-1}g$)

		$(\circ (\bot \)))) $ $(\circ (\bot \)))) $
Model	Forecast var σ_h^2	$c_j = w' F^{j-1} g$
(A,N,N)	$\sigma_h^2 = \sigma^2 [1 + \alpha^2 (h - 1)]$	α
(A,A,N)	$\sigma_h^2 = \sigma^2 [1 + (h-1)\{\alpha^2 + \alpha\beta h + \frac{1}{6}\beta^2 h(2h-1)\}]$	$\alpha + \beta j$. $F^h = \begin{bmatrix} 1 & h \\ 0 & 1 \end{bmatrix}$
(A,A _d ,N)	$\sigma_h^2 = \sigma^2 \left[1 + \alpha^2 (h - 1) + \frac{\beta \phi h}{(1 - \phi)^2} \left\{ 2\alpha (1 - \phi) + \beta \phi \right\} - \frac{\beta \phi h}{(1 - \phi)^2} \left\{ 2\alpha (1 - \phi) + \beta \phi \right\} \right]$	$\frac{\beta\phi(1-\phi^h)}{(1-\phi)^2(1-\phi^2)} \left\{ 2\alpha(1-\phi^2) + \beta\phi(1+2\phi-\phi^h) \right\}$
(A,N,A)	$\sigma_h^2 = \sigma^2[1 + \alpha^2(h-1) + \gamma k(2\alpha + \gamma)]$	
(A,A,A)	$\sigma_h^2 = \sigma^2 \left[1 + (h-1)\{\alpha^2 + \alpha\beta h + \frac{1}{6}\beta^2 h(2h-1)\} + \gamma \right]$	$2k\{2\alpha + \gamma + \beta m(k+1)\}$
(A,A _d ,A)	$\sigma_h^2 = \sigma^2 \left[1 + \alpha^2 (h - 1) + \gamma k (2\alpha + \gamma) + \frac{\beta \phi h}{(1 - \phi)^2} \{ 2\alpha (1 + \alpha) + \frac{\beta \phi h}{(1 - \phi)^2} \} \right]$	$(-\phi) + \beta\phi\} - \frac{\beta\phi(1-\phi^h)}{(1-\phi)^2(1-\phi^2)} \{2\alpha(1-\phi^2) + \beta\phi(1+\phi^2)\}$
	$2\phi - \phi^h$) + $\frac{\beta\gamma\phi}{(1-\phi)(1-\phi^m)}$ { $k(1-\phi^m) - \phi^m(1-\phi^{mk})$ }	0}]

Intervals via Simulation. Suppose required forecast horizon is h w model conditional on most recent state x_T . Then for i = 1,...,M,

- 1) Generate obs $y_{T+1}^i, y_{T+2}^i, \dots, y_{T+h}^i$, starting w x_T, from the fitted model
- 2a) Each e_{T+k} valus is obtained from a random num generator assuming a Gaussian or other appropriate dist OR
- 2b) Bootstrap to resample from historical values of et if unsure about innovations dist (bootstrap also appropriate when et are Gaussian but yt are not, due to it being a non-linear model)

Usually take M = 5000. Then take mean of simulated values at each h as the point forecast. E.g. h = 1, take mean of $\{y_{T+1}^1, y_{T+1}^2, \dots, y_{T+1}^M\}$

Can use quantiles to obtain PI. E.g. for 95% PI for h = 3, take 0.025 and .975 quantiles of $\{y_{T+3}^1, y_{T+3}^2, \dots, y_{T+3}^M\}$

 $mtd4 \leftarrow model(TS, add = ETS(Y \sim error("A") + trend(method="A") + season("A")))$

mtd4_fc <- forecast(mtd4, h=16); autoplot(mtd4_fc, data=TS, level=95) + labs(title = "Prediction intervals")

Model Selection

- 1. Split the time series into a training and test set
- Fit each model using the training set (via MLE).

	3. Assess the forecast accuracy of each model using the test set.						
	4. Choose the model with the lowest forecast accuracy. 4. Choose the model with the lowest forecast accuracy.						
	5. Refit the chosen model to the full time series and use these new parameters for forecasting future observations.						
	6. An alternative was to use cross-validation to select the best model.						
	Sometimes, test set is too small to draw reliable conclusions or diff to decide which error metric to use						
	Instead, can use penalized likelihood method. This fits model to entire data, and compute likelihood for that data						
	Model w highest likelihood is chosen. However, likelihood is penalised for num of params used.						
	$AIC = -L(\theta, x_0) + 2q$, where q = num of params in θ + num of free states in x_0 OR $BIC = -L(\theta, x_0) + qlog(T)$						
	$mtd5 \leftarrow model(TS, ets1 = ETS(Y)) \# will fit best ETS model. report(mtd5); gg_tsresiduals(mtd5)$						
Tut 7	Theta Decomposition						
	stl_seas_adj <- model(ts, stl_robust2 = STL(Y ~ season(window=5), robust=TRUE)) %>% components() %>% as_tsibble()						
	$ses1 \leftarrow select(stl_seas_adj, season_adjust) \%>\% model(ses_model1 = ETS(season_adjust \sim error("A") + trend("N") + season("N")))$						
	report(ses1) # For SES model, can see α and $\hat{y}_1 = l_0$ w optimal α (RMSE)						
	$ses2 \leftarrow select(stl_seas_adj, season_adjust) \%>\% model(opt_alpha = ETS(season_adjust \sim error("A") + trend("N") + season("N")),$						
	fixed_alpha = ETS(season_adjust ~ error("A") + trend("N", alpha=0.1) + season("N")))						
autoplot(augment(ses2), .vars= season_adjust, col="gray") + geom_line(aes(y=.fitted, col=.model))							
accuracy(ses2)							
Stationarity	A strictly stationary TS is one for which the joint dist of $\{y_{t_1}, y_{t_2}, \dots, y_{t_k}\}$ is identical to the dist of $\{y_{t_1+h}, y_{t_2+h}, \dots, y_{t_k+h}\}$ for all k, all time						
,	points t_1 , t_2 ,, t_k and all $h = 0$, ± 1 , ± 2 ,						
	Strict stationarity implies $E(y_s) = E(y_t) = \mu$ for all s,t. And ACVF = $\gamma_{s,t} = \text{cov}(y_s, y_t) = \gamma_{s+h, t+h}$ for all s,t and h						
	A weakly stationary TS is a finite variance process s.t. 1) μ_t is a constant (don't depend on t) & 2) $\gamma_{s,t}$ depends on s and t only through s - t						
	For this course, stationary = weakly stationary. Let μ denote mean and h = s - t and ACVF = $\gamma_{s,t} = \gamma_{s-t,0} = \gamma_h$						
	E.g. 3-MA filter on WN process $\mathbf{e_t} \sim \text{WN}(0, \sigma^2)$. $y_t = \frac{e_{t-1} + e_t + e_{t+1}}{3}$ $ \text{ACVF} = \gamma_{s,t} = \begin{cases} 3\sigma^2/9 & s = t \\ 2\sigma^2/9 & s-t = 1 \\ \sigma^2/9 & s-t = 2 \end{cases} $ Since $\mathbf{E}(\mathbf{y_t}) = 0 = \text{constant}$, and ACVF depends on s-t, $\mathbf{y_t}$ is stationary $ \begin{aligned} 0 & s-t \geq 3 \\ 0 & s-t \geq 3 \end{aligned} $ E.g. 2: $\mathbf{y_t} = \beta_0 + \beta_1 t + \mathbf{e_t}$. $\mathbf{E}(\mathbf{y_t}) = \beta_0 + \beta_1 t \text{ which is not indep of t, so } \mathbf{y_t} \text{ is not stationary} $						
	$\int 3\sigma^2/9 \qquad s = t$						
	$\begin{vmatrix} ACVF = v_{c,t} = \frac{1}{2\sigma^2/9} \begin{vmatrix} s-t = 1 \\ ACVF = v_{c,t} = \frac{1}{2\sigma^2/9} \begin{vmatrix} s-t = 1 \\ s-t = \frac{1}{2\sigma^2/9} \begin{vmatrix} s-t = 1 \\ s-t = \frac{1}{2\sigma^2/9} \end{vmatrix}$. Since $E(v_t) = 0$ = constant, and ACVF depends on s-t, v_t is stationary						
	$ \sigma^2/9 s-t = 2^{-5 - 100} = 2^{-7 + 100}$						
	$ s-t \ge 3 $						
	E.g. 2: $y_t = \beta_0 + \beta_1 t + e_t$. $E(y_t) = \beta_0 + \beta_1 t$ which is not indep of t, so y_t is not stationary						
	E.g. 3: $y_t = y_{t-1} + e_t$. $y_0 = 0$. $Cov(y_1, y_2) = cov(y_0 + e_1, y_1 + e_2) = cov(y_0 + e_1, y_0 + e_1 + e_2) = \sigma^2$						
	But $cov(y_2, y_3) = cov(y_0 + e_1 + e_2, y_0 + e_1 + e_2 + e_3) = 2\sigma^2$. So even though s - t is the same, ACVF is diff, so y_t is not stationary						
	Properties of stationary processes: 1) $\gamma_0 = \text{var}(y_t)$. 2) $ \gamma_h \le \gamma_0$ (can be proved using Cauchy-Schwarz inequality). 3) $\gamma_h = \gamma_{-h}$						
	If {y _t } is a stationary TS, then for all s, the joint dist of (y _t ,, y _{t+s}) don't depend on t						
	A stationary series is - roughly horizontal, - has constant var, - has no predictable patterns in long-term,						
	- a series w trend and/or seasonality is not stationary due to its changing mean						
	For a stationary series: - ACF drops to 0 relatively quickly						
	For non stationary data: - ACF decreases slowly, value of r is often large and positive for many lags						
	To have stationary TS, can use transformations to stabilize var OR to difference the data						
Differencing	A single differencing stabilizes the mean of a TS by removing changes in the level of a TS. $y'_t = y_t - y_{t-1}$						
	The differenced series will have only T-1 values.						
	mutate(df, diff1 = difference(Y)) %>% gg_tsdisplay(diff1, plot_type = 'histogram')						
	mutate(df, diff1 = difference(Y)) %>% features(diff1, feature_set(tags='portmanteau')						
	Occasionally, differenced data will not appear stationary, and may be necessary to difference data a second time.						
	$y_t'' = y_t' - y_{t-1}' = y_t - y_{t-1} - (y_{t-1} - y_{t-2}) = y_t - 2y_{t-1} + y_{t-2}$. In practice, shouldn't be necessary to go beyond 2 nd order difference						
	Seasonal differencing. $y_t' = y_t - y_{t-m}$, where m = num of seasons. For monthly data, m = 12						
	The new series = "lag-m differences". If seasonal differenced data appears to be WN, then an appropriate model would be $y_t = y_{t-m} + e_t = \frac{1}{2}$						
	seasonal naive						
	Twice differenced series. E.g do both seasonal and a first difference						
	$y_t'' = y_t' - y_{t-1}' = y_t - y_{t-m} - (y_{t-1} - y_{t-m-1}) = y_t - y_{t-1} - y_{t-m} + y_{t-m-1}$ When both seasonal and first diff are applied, doesn't matter which is done first						
	However, if there is a strong seasonal pattern, seasonal differencing should be done first. This is because, sometimes, the seasonally						
	differenced series alone is close enough to stationarity - there might be no need to do the first differencing as well. If we performed the						
	first differencing first, the strong seasonality would compel us to perform the second (seasonal) differencing too.						
	First differences are the change from one obs and the next. Seasonal differences are the change between one year and the next.						
	Higher order differencing should be avoided as they are difficult to intrepret.						
	Unit Root Tests. The Kwaitkowski-Phillips-Schmidt-Shin (KPSS) test can be used to test if a series is stationary						
	H ₀ : data is stationary and non-seasonal. H ₁ : data is not stationary						
	KPSS test can be repeatedly applied to successive differencing to determine num of differencings that should be carried out.						
	features(TS, Y, list(unitroot_ndiffs)). # Use unitroot_nsdiffs to determine optimal num of seasonal differencing						
	Backshift Notation. By _t = y_{t-1} . i.e. shift data back one period. B(By _t) = $B^2y_t = y_{t-2}$. Note Bc = c (where c is a constant)						
	For monthly data, to denote same month last year, $B^{12}y_t = y_{t-12}$						
	First difference: $y'_t = y_t - y_{t-1} = y_t - By_t = (1 - B)y_t$. Second order diff: $y''_t = y_t - 2y_{t-1} + y_{t-2} = (1 - B)^2 y_t$						
	In general, a dth order diff can be written as $(1 - B)^d y_t$. Second order diff. $y_t = y_t - 2y_{t-1} + y_{t-2} - (1 - B)^d y_t$						
Auto-	Seasonal diff followed by a first diff: $(1 - B)(1 - B^m)y_t = (1 - B - B^m + B^{m+1})y_t = y_t - y_{t-1} - y_{t-m} + y_{t-m-1}$ $AR(p) = y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + e_t, \text{ where } e_t \text{ is GWN. } \phi_1, \phi_2, \dots, \phi_p \text{ are constants, w } \phi_p \neq 0$						
regressive	When $E(y_t) = 0$, $y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_p y_{t-p} + e_t$						
Models (AR)	When $E(y_t) = 0$, $y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_p y_{t-p} + e_t$ When $E(y_t) = \mu \neq 0$, then $y_t - \mu = \phi_1(y_{t-1} - \mu) + \phi_2(y_{t-2} - \mu) + \cdots + \phi_p(y_{t-p} - \mu) + e_t$						
	So $y_t = (\mu - \phi_1 \mu - \phi_2 \mu - \dots - \phi_p \mu) + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + e_t$						
	So $y_t = (\mu - \phi_1 \mu - \phi_2 \mu - \cdots - \phi_p \mu) + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_p y_{t-p} + e_t$ This is a multiple linear regression w lagged values of y_t as predictors						
	This is a multiple linear regression w lagged values of y_t as predictors ϕ_t parameters results in diff TS patterns. Var of error term e_t will only change scale of series, not the patterns						
	The definition don't guarantee process is stationary. Need to impose conditions on ϕ_k so that process is stationary						
	Consider AR(1) model, $y_t = c + \phi_1 y_{t-1} + e_t$						

```
If \phi_1=c=0, y_t=WN. If \phi_1=1 and c=0, y_t=r random walk. If \phi_1=1 and c\neq 0, y_t=r random walk w drift.
                                 If \phi_1 < 0, y_t tend to oscillate btw +ve and -ve values
                                 Autoregressive Operator. y_t - \phi_1 y_{t-1} - \phi_2 y_{t-2} - \dots - \phi_p y_{t-p} = e_t. y_t - \phi_1 B y_t - \phi_2 B^2 y_t - \dots - \phi_p B^p y_t = e_t
                                 (1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p)y_t = e_t. So \tau(B)y_t = e_t, where \tau(B) is a polynomial in B = autoregressive operator
                                 AR(p) is stationary if the (complex) roots of the polynomial \tau(z) falls outside the unit circle
                                 Thrm: A linear process y_t is defined to be a linear WN e_t and is given by y_t = \mu + \sum_{i=-\infty}^{\infty} \psi_i e_{t-i}, where \sum_{i=-\infty}^{\infty} |\psi_i| < \infty
                                 For a linear process, the autocovariance fn \gamma_h=\sigma^2\sum_{j=-\infty}^\infty\psi_{j+h}\psi_j
                                 For AR(1), y_t = \phi y_{t-1} + e_t, \tau(B) = 1 - \phi B. So (1 - \phi B)y_t = e_t, y_t = \frac{1}{1 - \phi B}e_t
                                 From thrm, y_t = \sum_{j=-\infty}^{\infty} \psi_j e_{t-j} = \psi_0 e_t + \psi_1 e_{t-1} + \psi_2 e_{t-2} + \cdots = \psi_0 e_t + \psi_1 B e_t + \psi_2 B^2 e_t + \cdots = (\psi_0 + \psi_1 B + \psi_2 B^2 + \cdots) e_t
                                 (1 - \phi B)(\psi_0 + \psi_1 B + \psi_2 B^2 + \cdots)e_t = e_t. So comparing coeff of B, \psi_0 = 1, \psi_1 - \psi_0 \phi = 0 \Rightarrow \psi_1 = \phi, \psi_2 - \psi_1 \phi = 0 \Rightarrow \psi_2 = \phi^2
                                 In general, \psi_j = \phi^j. So y_t = \sum_{j=-\infty}^{\infty} \psi_j e_{t-j} = \sum_{j=-\infty}^{\infty} \phi^j e_{t-j}
                                So \gamma_h = \sigma^2 \sum_{j=-\infty}^{\infty} \psi_{j+h} \psi_j = \sigma^2 \sum_{j=-\infty}^{\infty} \phi^{j+h} \phi^j = \sigma^2 \phi^h \sum_{j=-\infty}^{\infty} \phi^j \phi^j = \sigma^2 \phi^h \sum_{j=-\infty}^{\infty} \phi^{2j} = \sigma^2 \phi^h \frac{1}{1-\phi^2}
                                 (using result if |x| < 1, then \frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots and replace x with \phi^2)
                                 If |\phi| < 1, then Taylor expansion of RHS yields: y_t = (1+\phi B+\phi B^2+\cdots)e_t = \sum_{j=0}^{\infty}\phi^j e_{t-j}
                                \gamma_h = cov(y_{t+h}, y_t) = E\left[\left(\sum_{j=0}^{\infty} \phi^j e_{t+h-j}\right) \left(\sum_{k=0}^{\infty} \phi^j e_{t-k}\right)\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^{h+1} \cdot \phi) e_{t-1}^2 + \cdots\right] = \sum_{j=0}^{\infty} E(\phi^{h+j} \phi^j e_{t-j}^2) = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^{h+1} \cdot \phi) e_{t-1}^2 + \cdots\right] = \sum_{j=0}^{\infty} E(\phi^{h+j} \phi^j e_{t-j}^2) = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^{h+1} \cdot \phi) e_{t-1}^2 + \cdots\right] = \sum_{j=0}^{\infty} E(\phi^{h+j} \phi^j e_{t-j}^2) = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^{h+1} \cdot \phi) e_{t-1}^2 + \cdots\right] = \sum_{j=0}^{\infty} E(\phi^{h+j} \phi^j e_{t-j}^2) = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^{h+1} \cdot \phi) e_{t-1}^2 + \cdots\right] = \sum_{j=0}^{\infty} E(\phi^{h+j} \phi^j e_{t-j}^2) = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^{h+1} \cdot \phi) e_{t-1}^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = E\left[(\phi^h \cdot 1) e_t^2 + (\phi^h \cdot 1) e_t^2 + \cdots\right] = 
                                 \sigma^2 \phi^h \sum_{j=0}^{\infty} \phi^{2j} = \sigma^2 \phi^h \frac{1}{1-\phi^2} (using result Cov(X,Y) = E(XY) - E(X)E(Y), but both mean = 0 for this case)
                                 So \gamma_0 = \sigma^2/(1-\phi^2) and \rho_h=\gamma_h/\gamma_0=\phi^h
                                Also \rho_h = \begin{cases} 1 & h = 0 \\ \phi^h & h > 0 \end{cases}
                                 Also, y_t = \phi y_{t-1} + e_t \Rightarrow y_t \cdot y_{t-h} = \phi y_{t-1} \cdot y_{t-h} + e_t \cdot y_{t-h} \Rightarrow E(y_t \cdot y_{t-h}) = \phi E(y_{t-1} \cdot y_{t-h}) + E(e_t \cdot y_{t-h}) \Rightarrow \gamma_h = \phi \gamma_{h-1} + 0
                                 So \gamma_h - \phi \gamma_{h-1} = 0. (1 - \phi B)\gamma_h = 0
                                 Stationarity Conditions: For AR(1) model, require -1 < \phi_1 < 1.
                                 Need \tau(z) = 1 - \phi_1 z to be outside unit circle. So 1 - \phi_1 z = 0 to get z = 1/\phi_1. For |z| > 1, -1 < \phi_1 < 1
                                 For AR(2) model, -1<\phi_2<1 AND \phi_1+\phi_2<1 AND \phi_2-\phi_1<1. Use quadratic formula to find |\operatorname{roots}|>1
                                 Causal AR process. Still possible to have a stationary AR(1) process where \phi_1 > 1
                                 y_{t} = \phi y_{t-1} + e_{t} \Rightarrow y_{t+1} = \phi y_{t} + e_{t+1} \Rightarrow y_{t} = \phi^{-1} y_{t+1} - \phi^{-1} e_{t+1} = \phi^{-1} (\phi^{-1} y_{t+2} - \phi^{-1} e_{t+2}) - \phi^{-1} e_{t+1} = \dots = \phi^{-k} y_{t+k} - \phi^{-k} e_{t+1} = \dots = \phi^{-k} y_{t+k} - \phi
                                 \sum_{j=1}^{k-1}\phi^{-j}e_{t+j} . So comparing to linear form, \psi_j=\phi^{-j} and \sum_{j=-\infty}^{\infty}|\psi_j|<\infty
                                 So y_t = \sum_{i=1}^{k-1} \phi^{-i} e_{t+i} since \phi^{-k} tend to 0. And y_t is a linear process, hence stationary. But not casual as it is in terms of future e_t
                                 \mathsf{MA}(\mathsf{q}) = y_t = c + e_t + \theta_1 e_{t-1} + \theta_2 e_{t-2} + \dots + \theta_q e_{t-q}, \text{ where } e_t \text{ is WN. Each value of } \mathsf{y}_t \text{ as weighted MA of past few forecast errors}
Moving
Average
                                 Past forecast errors are used as predictors, although past errors et are not observed
Models
                                 Same as AR(p) models, changing values of parameters changes behaviour of TS. Var of et only changes scale of series
(MA)
                                 MA model here used for forecasting future values, while MA filter is to estimate trend-cycle of past values
                                 Moving Average Operator. Using backshift operator: y_t = (1 + \theta_1 B + \theta_2 B^2 + \dots + \theta_q B^q)e_t = \kappa(B)e_t, where \kappa(B) = MA operator
                                 Consider MA(1) model w mean 0: y_t = e_t + \theta e_{t-1}. E(y_t) = \mu_t = 0.
                                 \text{Var}(y_t) = E(y_t^2) - [E(y_t)]^2 = \theta^2 E(x_{t-1}^2) + E(x_t^2) - 0 = \sigma^2 (1 + \theta^2). \quad \text{So } \gamma_h = \begin{cases} (1 + \theta^2)\sigma^2 & h = 0 \\ \theta \sigma^2 & h = 1. \\ 0 & h > 1 \end{cases} \\ \text{letter a unimorated the AD(x) was taken in the following properties.} 
                                 Just as we inverted the AR(p) model earlier, we can bring the MA operator to the other side to yield (when |\theta| < 1):
                                 e_t = (1+\theta)^{-1}y_t = \sum_{j=0}^{\infty} (-\theta)^j y_{t-j} = aka infinite AR representation
                                 Non uniqueness of MA(q) Models: Consider y_t = 5e_{t-1} + e_t and y_t = 0.2e_{t-1} + e_t. Both have same ACF
                                 To prevent this, use MA(q) models w an infinite AR representation = invertible models
                                 General condition for invertibility is that the complex roots of 1 + \theta_1 z + \theta_2 z^2 + \dots + \theta_q z^q lie outside the unit circle on the complex plane
                                 For MA(1) model: -1 < \theta_1 < 1
                                 For MA(2) model, -1 < \theta_2 < 1 AND \theta_1 + \theta_2 > -1 AND \theta_1 - \theta_2 < 1
                                 Note MA model always stationary as its form is already the same as form for linear process
                                 ARMA models combine AR(p) and MA(q) models: y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + e_t + \theta_1 e_{t-1} + \theta_2 e_{t-2} + \dots + \theta_q e_{t-q}
ARIMA
Models
                                 Suppose E(y_t) = \mu. Then (y_t - \mu) = \phi_1(y_{t-1} - \mu) + \dots + \phi_p(y_{t-p} - \mu) + e_t + \theta_1e_{t-1} + \dots + \theta_qe_{t-q}. So c = \mu(1 - \phi_1 - \dots - \phi_p)
                                 Predictors include both lagged values of yt and lagged errors. Have to impose conditions on the coeff to ensure stationarity & invertibility
                                 Using backshift operator: \tau(B)y_t = c + \kappa(B)e_t
                                 Model is stationary if roots of \tau(B) are outside unit circle. Model is invertible if roots of \kappa(B) are outside unit circle
                                 ARIMA = AutoRegressive Integrated Moving Average. Combine ARMA models w differencing
                                 y_t' = c + \phi_1 y_{t-1}' + \phi_2 y_{t-2}' + \dots + \phi_p y_{t-p}' + e_t + \theta_1 e_{t-1} + \theta_2 e_{t-2} + \dots + \theta_q e_{t-q}, where y_t' is the differenced series
                                 In backshift notation, if (1-B)^d y_t follows an ARMA model, then y_t is an ARIMA process. (1-B)^d \tau(B) y_t = c + \kappa(B) e_t
                                 Specify ARIMA model by ARIMA(p,d,q). p = order of AR part. q = order of MA part. d = degree of first differencing involved
                                 ARIMA(0,0,0) = WN. ARIMA(0,1,0) \le 0 = RW. ARIMA(0,1,0) \le 0 = RW which C = 0 = RW with C = 0 = RW where C = 0 = RW is C = 0 = RW. ARIMA(0,0,0) = AR(p). ARIMA(0,0,0) = AR(p).
                                 Alternative form: (1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p)(1 - B)^d y_t = c + (1 + \theta_1 B + \theta_2 B^2 + \dots + \theta_q B^q) e_t
                                 E.g. for ARIMA(1,1,1): (1-\phi_1 B)(1-B)^d y_t = c + (1+\theta_1 B)e_t. (1-\phi_1 B) = AR(1) part. (1-B) = first \ diff \ part. (1+\theta_1 B) = MA(1) part.
                                 ACF shows autocorrelations which measures r/s btw y_t and y_{t-k} for diff values of k
                                 However, if y_t and y_{t-1} are correlated, then y_{t-1} and y_{t-2} are also correlated. So y_t and y_{t-2} could be correlated simply because both are
                                 correlated to y<sub>t-1</sub>. So how to measure what new info there is in y<sub>t-2</sub>, that could be used in forecasting y<sub>t</sub>
                                 Consider AR(1) process: y_t = \phi y_{t-1} + e_t. From earlier: \gamma_2 = cov(y_t, y_{t-2}) = \phi^2 \gamma_0. In fact, covariances at any positive lag h will be
                                 positive (although smaller as h incr). ACF = \rho(h) = \phi^h. And \gamma(h) = cov(y_t, y_{t-h}) = E(y_t y_{t-h}) - E(y_t)E(y_{t-h}) = E(y_t y_{t-h})
                                y_{t-1} = \phi y_{t-2} + e_{t-1}. And y_t = \phi y_{t-1} + e_t. And y_{t-2} = \frac{1}{\phi}(y_{t-1} - e_{t-1}). And \gamma(h)/\gamma(0) = \rho(h) = \phi^h for AR(1)
                                 For y_t^{1,b}, find \beta that minimises E(y_t - \beta y_{t-1})^2 = E(y_t^2 - 2\beta y_t y_{t-1} + \beta^2 y_{t-1}^2) = \gamma(0) - 2\beta \gamma(1) + \beta^2 \gamma(0). y_t^{1,b} = \beta y_{t-1}
                                 Taking derivative and setting to 0, can get 2\gamma(1)=2\beta\gamma(0). So \beta=\gamma(1)/\gamma(0)=\rho(1)=\phi. y_t^{1,b}=\phi y_{t-1}
                                 Similarly for y_{t-2}^{1,f}, find \beta that minimises E(y_{t-2}-\beta y_{t-1})^2 to get \beta=\phi. y_{t-2}^{1,f}=\phi y_{t-1}
                                 So, PACF for lag 2 = \phi_{22} = corr(y_t - y_t^{1,b}, y_{t-2} - y_{t-2}^{1,f}) = cov(y_t - \phi y_{t-1}, y_{t-2} - \phi y_{t-1}) = cov(e_t, y_{t-2} - \phi y_{t-1}) = 0
```

```
\mathsf{OR}\ cov(y_t - \phi \overline{y_{t-1}}, y_{t-2} - \phi y_{t-1}) = cov(y_t, y_{t-2}) - cov(y_t, \phi y_{t-1}) - cov(\phi y_{t-1}, y_{t-2}) + cov(\phi y_{t-1}, \phi y_{t-1}) = \gamma(2) - \phi \gamma(1) - cov(\phi y_{t-1}, \phi y_{t-1}) = \gamma(2) - \phi \gamma(1) - cov(\phi y_{t-1}, \phi y_{t-1}) = \gamma(2) - \phi \gamma(1) - cov(\phi y_{t-1}, \phi y_{t-1}) = \gamma(2) - \phi \gamma(1) - cov(\phi y_{t-1}, \phi y_{t-1}) = \gamma(2) - \phi \gamma(1) - cov(\phi y_{t-1}, \phi y_{t-1}) = \gamma(2) - \phi \gamma(1) - cov(\phi y_{t-1}, \phi y_{t-1}) = \gamma(2) - \phi \gamma(1) - cov(\phi y_{t-1}, \phi y_{t-1}) = \gamma(2) - \phi \gamma(1) - cov(\phi y_{t-1}, \phi y_{t-1}) = \gamma(2) - \phi \gamma(1) - cov(\phi y_{t-1}, \phi y_{t-1}) = \gamma(2) - \phi \gamma(1) - cov(\phi y_{t-1}, \phi y_{t-1}) = \gamma(2) - \phi \gamma(1) - cov(\phi y_{t-1}, \phi y_{t-1}) = \gamma(2) - \phi \gamma(1) - cov(\phi y_{t-1}, \phi y_{t-1}) = \gamma(2) - cov(\phi y_{t-1}, \phi y_{t-1}) = \gamma
                                   \phi \gamma(1) + \phi^2 \gamma_0 = \phi^2 \gamma_0 - 2\phi^2 \gamma_0 + \phi^2 \gamma_0 = 0
                                   We have 'partialed out' the dependence on y_{t\cdot 1}. Correlation btw y_t and y_{t\cdot 2}, after accounting for effect of y_{t\cdot 1} is 0
                                   \text{Let } y_t^{h-1,b} = \text{regression of } y_t \text{ on } y_{t-1}, y_{t-2}, \dots, y_{t-h+1}. \quad \text{Let } y_{t-h}^{h-1,f} = \text{regression of } y_{t-h} \text{ on } y_{t-h+1}, y_{t-h+2}, \dots, y_{t-1}, \dots, y_{t-h+1}, \dots
                                   Find \beta_1, ..., \beta_{h-1} s.t. E(y_t - \beta_1 y_{t-1} - \beta_2 y_{t-2} - \cdots - \beta_{h-1} y_{t-h+1})^2 is minimized
                                   PACF of y_t is denoted \phi_{hh} for h = 1,2,... where \phi_{11} = corr(y_t, y_{t-1}). And \phi_{hh} = corr(y_t - y_t^{h-1,b}, y_{t-h} - y_{t-h}^{h-1,f})
                                   Partial Autocorrelations measures r/s btw y_t and y_{t-k}, when effects of other time lags \{1,2,3,...,k-1\} are removed
                                   Partial autocorrelation at lag k = \alpha_k. Partial autocorrelation fn (PACF) = plot \alpha_k for all k
                                   \alpha_k is computed as the estimate of \phi_k in the AR model, y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_k y_{t-k} + e_t
                                   lpha_k is effect of the y_{t-k}, given that all other terms are already in the model
                                   Note that \alpha_k = \rho_1. For confidence bands when plotting PACF, use same critical values of \pm 1.96/\sqrt{T} (same as ACF)
                                                                                                                                                                                                                                \sum_{j=0}^{q-h} \theta_j \theta_{j+h}
                                                                                                                                                                                                                            \frac{\sum_{j=0}^{r} \frac{\theta_j \theta_{j+h}}{\theta_1^2 + \theta_2^2 + \dots + \theta_q^2}}{1 + \theta_1^2 + \theta_2^2 + \dots + \theta_q^2} \quad 1 \le h \le q 
otherwise, i.e. cuts off after lag q
                                   MA(q) ACF. MA(q) process w finite q is always stationary, and has an ACF = \rho_h =
                                  ACF and PACF behaviour
                                   ARIMA(p,d,0) if differenced data show ACF exponentially decaying or sinusoidal AND PACF has sig spike at lag p but not beyond lag p
                                   ARIMA(0,d,q) if differenced data show PACF exponentially decaying or sinusoidal AND ACF has sig spike at lag q but not beyond lag q
                                                                                                                   AR(p)
                                                                                                                                                                                                 MA(q)
                                                                                                                                                                                                                                                                               ARMA(p,q)
                                                                                                                   Tails off
                                                                                                                                                                                                 Cuts off at lag q
                                                                                                                                                                                                                                                                               Tails off
                                     PACF
                                                                                                                   Cuts off at lag p
                                                                                                                                                                                                 Tails off
                                                                                                                                                                                                                                                                               Tails off
                                   E.g. gg_tsdisplay(TS, Y, 'partial') # Plot time plot, ACF, PACF. If line above blue dashed line = lag is significant
                                   If plots suggest ARIMA(3,0,0): arima\_mods <- model(TS, arima300 = ARIMA(Y \sim pdq(3,0,0) + PDQ(0,0,0))); report(arima\_mods)
                                  Should also consider "nearby" candidate models. arima_mods <- model(TS, arima300 = ..., arima201 = ...);
                                  fc1 <- forecast(arima mods, h = 8);
                                  fcast table <- pivot wider(fc1, 'Quarter', names from = '.model', values from = '.mean') %>% mutate(across(c(2,3,), ~round(.x, digits=4)))
                                   datatable(fcast_table)
Estimation
                                  For given values of p,d,q, R will find estimates for the parameters, c, \phi_1,
                                                                                                                                                                                                                                                                            1. Plot the data. Identify
                                                                                                                                                                                                                                                                               unusual observations
and Order
                                   ..., \phi_p, \theta_1, ..., \theta_q by maximising log-likelihood
                                                                                                                                                                                                                                                                               Understand patterns
Selection
                                                                                                                                                                                                                                         Select model
                                                                                                                                                                                                                                                                                                                              Use automated algorithm.
                                   ARIMA() in R uses a unit root tests, AIC minimisation and MLE to obtain an
                                                                                                                                                                                                                                         order voursel
                                                                                                                                                                                                                                                                             to stabilise the variance
                                   ARIMA model.
                                   Default is to search through models in a step-wise manner, i.e. some
                                   models might be skipped. Can override by setting stepwise=FALSE
                                                                                                                                                                                                                                                                                                                      Use ARIMA() to automatically find the best ARIMA
                                                                                                                                                                                                                                  the data until it appear
                                   1) Determine 0 \le d \le 2 using repeated KPSS tests
                                                                                                                                                                                                                                  stationary. Use unit-root
                                                                                                                                                                                                                                                                                                                      model for your time series
                                   2) Include constant c unless d = 2.
                                                                                                                                                                                                                                  tests if you are unsure.
                                   3) Select p and q by minimising AICc. Instead of searching through all
                                                                                                                                                                                                                                  4. Plot the ACF/PACF of the differenced data
                                   possible models
                                                        1. Fit 4 initial model: ARIMA(2,d,2), ARIMA(0,d,0), ARIMA(1,d,0),
                                                                                                                                                                                                                                    and try to determ
                                                                                                                                                                                                                                    ssible candidate models
                                                        ARIMA(0,d,1). If d \le 1, fit extra model: ARIMA(0,d,0) w/o c
                                                        2. Best model (smallest AICc value) fitted in 1. is set to be the
                                                                                                                                                                                                                              5. Try your chosen model(
                                                                                                                                                                                                                                        d use the AICc to
                                                                                                                                                                                                                                search for a better model
                                                        3. Consider variations on the current model: Vary p and/or q by
                                                                                                                                                                                                                                                                              6. Check the residuals
                                                        \pm 1 OR include/exclude c from the current model
                                                                                                                                                                                                                                                                              rom your chosen mode
                                                                                                                                                                                                                                                                                by plotting the ACF of the residuals, and
                                   4) Repeat step 3.3 until no lower AICc can be found
                                                                                                                                                                                                                                                                               doing a portmantea
                                                                                                                                                                                                                                                                                test of the residuals
                                   ARIMA Modeling Procedure.
                                  If not using automated algo, can use the steps on the right
                                                                                                                                                                                                                                                                               Do the residuals lo
                                                                                                                                                                                                                                                                               7. Calculate forecasts
Point and
                                   Point Forecasts. 1) Expand ARIMA eqn s.t. yt is on the LHS and all other terms on RHS. 2) Rewrite eqn by replacing t w T+h
Interval
                                   3) On RHS, replace future obs by their forecasts, future errors by 0, and past errors by the corresponding residuals
                                   Start w h = 1, and repeat for h = 2, 3, ... until all required forecasts have been computed
Forecasts
                                   E.g. Forecasts for ARIMA(3,1,1): (1 - \hat{\phi}_1 B - \hat{\phi}_2 B^2 - \hat{\phi}_3 B^3)(1 - B)y_t = (1 + \hat{\theta}_1 B)e_t
                                   Then expand backshift operator on LHS to get y_t - (1 + \hat{\phi}_1)y_{t-1} + (\hat{\phi}_1 - \hat{\phi}_2)y_{t-2} + (\hat{\phi}_2 - \hat{\phi}_3)y_{t-3} + \hat{\phi}_3y_{t-4} = e_t + \hat{\theta}_1e_{t-1}
                                   Then, y_t = (1 + \hat{\phi}_1)y_{t-1} - (\hat{\phi}_1 - \hat{\phi}_2)y_{t-2} - (\hat{\phi}_2 - \hat{\phi}_3)y_{t-3} - \hat{\phi}_3y_{t-4} + e_t + \hat{\theta}_1e_{t-1}
                                   For h = 1, we replace t by T + 1: y_{T+1} = (1 + \hat{\phi}_1)y_T - (\hat{\phi}_1 - \hat{\phi}_2)y_{T-1} - (\hat{\phi}_2 - \hat{\phi}_3)y_{T-2} - \hat{\phi}_3y_{T-3} + e_{T+1} + \hat{\theta}_1e_T
                                   Then replace \mathbf{e}_{\mathsf{T}+1} by 0 and \mathbf{e}_{\mathsf{T}} by \hat{e}_T: \hat{y}_{T+1} = (1+\hat{\phi}_1)y_T - (\hat{\phi}_1-\hat{\phi}_2)y_{T-1} - (\hat{\phi}_2-\hat{\phi}_3)y_{T-2} - \hat{\phi}_3y_{T-3} + \hat{\theta}_1\hat{e}_T
                                   For h = 2, forecast would be: \hat{y}_{T+2|T} = (1 + \hat{\phi}_1)y_{T+1|T} - (\hat{\phi}_1 - \hat{\phi}_2)y_T - (\hat{\phi}_2 - \hat{\phi}_3)y_{T-1} - \hat{\phi}_3y_{T-2}
                                   Note for point forecast: \hat{y}_{T+h|T} = E(y_{T+h}|y_1, y_2, ..., y_T)
                                   Computing Residuals. Consider MA(1) process: y_t = 6 + e_t + 0.23e_{t-1}. Suppose y_1 = 5.2, y_2 = 6.1, y_3 = 6
                                   Set all innovations before t = 1 to be 0. Then y_1 = 6 + e_1 + 0.23e_0. Then \hat{y}_1 = E(6 + e_1 + 0.23e_0) = 6 + 0 + 0.23E(0) = 6. So e_1 = y_1 - \hat{y}_1 = -0.9
                                   y_2 = 6 + e_2 + 0.23e_1. \hat{y}_2 = 6 + 0 + 0.23(-0.9) = 5.793. e_2 = y_2 - \hat{y}_2 = 0.307
                                   Forecast Intervals. Consider MA(q) model: y_{T+h} = \mu + e_{T+h} + \theta_1 e_{T+h-1} + \theta_2 e_{T+h-2} + \dots + \theta_q e_{T+h-q}
                                   When we condition on y_1, ..., y_T, all innovations up to and including time T are know. They don't contribute to the variance of y_{T+h|T}
                                   Hence, var(y_{T+h|T}) = \sigma^2(1 + \sum_{i=1}^{h-1} \theta_i^2), where we take \theta_i = 0 for i > q
                                   A 95% forecast interval for ARIMA forecasts is: \hat{y}_{T+h|T} \pm 1.96\sqrt{v_{T+h|T}}, where v_{T+h|T} = estimated forecast var
```

C	1	A second ADIMA words		:	ADIA	440 mandalar ADINAA	(- d -)(DD O)					
Seasona ARIMA	I		el is formed by including additional seasonal te				., , , , , , , , , , , , , , , , , , ,					
ARIMA - (p,d,q) = non-seasonal part of model. (P,D,Q) _m = seasonal part of model. m = num of obs or periods in a season models SARIMA: $(1 - B^{12})^D \tau(B) y_t = c + \kappa(B) e_t \equiv$												
		$(1 - \phi_1 B - \dots - \phi_p B^p)(1 - \phi_1 B^{12} - \dots - \phi_p B^{12P})(1 - B^{12})^D y_t = c + (1 + \theta_1 B + \dots + \theta_q B^q)(1 + \Theta_1 B + \dots + \Theta_q B^{12Q})e_t$										
			AR or MA model can be seen in the seasonal			SAR(P) _m	SMA(Q) _m	•	SARMA(P, Q) _m			
		lags of the PACF and ACF		AC	:F*	Tails off	Cuts off lag	Qm	Tails off			
		* Values at nonseasonal		PA	CF*	Cuts off lag Pm	Tails off		Tails off			
			$y_{t-13} = e_t + \theta e_{t-1} + \Theta e_{t-12} + \theta \Theta e_{t-13}$		E.g. SARIMA(1,1,1)(1,1,1) ₁₂ :							
		$(1-B)y_t - (1-B)B^{12}$	$(1 - \phi_1 B)(1 - \Phi_1 B^{12})(1 - B)(1 - B^{12})y_t = (1 + B^{12})$									
ETC			$\frac{(1+\theta B)(1+\Theta B^{12})e_t}{ARIMA}$: SARIMA(0,1,1)(0,1,1)12								
ETS vs ARIMA		ETS ETS(A,N,N)		Parameters $\theta_1 = \alpha - 1$								
7		ETS(A,A,N)	ARIMA(0,1,1) ARIMA(0,2,2)		$\theta_1 = \alpha + \beta - 2$. $\theta_2 = 1 - \alpha$							
		ETS(A,A _d ,N)	ARIMA(1,1,2)		$\phi_1 = \phi \cdot \theta_1 = \alpha + \phi \beta - 1 - \phi \cdot \theta_2 = (1 - \alpha)\phi$							
		ETS(A,N,A)	ARIMA(0,1,m)(0,1,0) _m		71 7 1 2 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7							
		ETS(A,A,A)	ARIMA(0,1,m+1)(0,1,0) _m									
		ETS(A,A _d ,A)	ARIMA(1,0,m+1)(0,1,0) _m									
		ETS(A,N,N) and ARIMA(0,1,1)				TS models		AR	IMA models			
		$y_t = l_{t-1} + e_t$. $l_t = l_{t-1} + \alpha e_t \Rightarrow (1 - B)l_t = \alpha e_t$										
		$(1-B)y_t = (1-B)l_{t-1}$										
		For invertibility, $ \alpha - 1 $	$e - e_{t-1} = e_t + (\alpha - 1)e_{t-1} = ARIMA(0,1,1)$ < 1 \Rightarrow 0 < \alpha < 2			Combination			odelling			
		ETS(A,A,N) and ARIMA(0		/		of components		auto	correlations			
		$y_t = l_{t-1} + b_{t-1} + e_t.$				/			\			
			$\Rightarrow (1-B)l_t = b_{t-1} + \alpha e_t$			/	1					
		$b_t = b_{t-1} + \beta e_t \Rightarrow (1 - \beta)^2$				FS models with tiplicative errors	6 fully additive	Po	tentially ∞ models			
			$P([(1-B)l_{t-1} + (1-B)b_{t-1} + (1-B)e_t]$	1	mate	inplicative criois	ETS models					
			$(e_{t-2} + \alpha e_{t-1} + \beta e_{t-1} + (1 - B)e_t]$ $(1 - B)[(\alpha + \beta)e_{t-1} + e_t - e_{t-1}]$			3 ETS models with						
			$(a + \beta)e_{t-1} + e_t - (\alpha + \beta - 1)e_{t-2} - e_{t-1}$	1		additive errors and	\	l static	onary models			
			$(\alpha + \beta - 2)e_{t-1} + (1 - \alpha)e_{t-2}$			multiplicative			arge models			
						seasonality						
Tut 10	Let e_t be a WN process w var σ^2 and let $ \phi < 1$ be a constant. Consider the process $y_1 = e_1$ and $y_t = \phi y_{t-1} + e_t$, $t = 2, 3,$											
	Note	Note $y_t = \sum_{i=0}^{t-1} \phi^i e_{t-i}$, $t = 1, 2,$ So $E(y_t) = 0$ and $var(y_t) = \sigma^2 \sum_{i=1}^t \phi^{2(i-1)} = \sigma^2 \left[1 + \phi^2 + \phi^4 + \cdots + \phi^{2(t-1)} \right] = \sigma^2 \left[\frac{1(1-\phi^{2t})}{1-\phi^2} \right]$										
			function of t), this is not a stationary process		-		- 1	$1-\varphi$	-]			
	Show for h \geq 0: $corr(y_t, y_{t-h}) = \phi^h \left[\frac{var(y_{t-h})}{var(y_t)} \right]^{1/2}$. Note $y_t = \sum_{i=0}^{t-1} \phi^i e_{t-i}$ and $y_{t-h} = \sum_{i=0}^{t-h-1} \phi^i e_{t-h-i}$. Observe $y_t = \sum_{i=0}^{t-1} \phi^i e_{t-i} = \sum_{i=0}^{h-1} \phi^i e_{t-i} + \sum_{i=h}^{t-1} \phi^i e_{t-i} = \sum_{i=0}^{h-1} \phi^i e_{t-i} + \sum_{i=h}^{t-h-1} \phi^i e_{t-i} + \sum_{i=0}^{t-h-1} \phi^i e_{t-i} + \sum_{i=0}^{h-1} \phi^i e_{t-i} + \phi^h y_{t-h}$. So $cov(y_t, y_{t-h}) = cov(\sum_{i=0}^{h-1} \phi^i e_{t-i} + \phi^h y_{t-h}, y_{t-h}) = cov(\phi^h y_{t-h}, y_{t-h}) = \phi^h var(y_{t-h})$											
	So $corr(y_t, y_{t-h}) = \frac{cov(y_t, y_{t-h})}{\sqrt{var(y_t)var(y_{t-h})}} = \frac{\phi^h var(y_{t-h})}{\sqrt{var(y_t)var(y_{t-h})}} = \phi^h \left[\frac{var(y_{t-h})}{var(y_t)}\right]^{1/2}$ Argue that for large t, $var(y_t) \approx \frac{\sigma^2}{1-\phi^2}$ and $corr(y_t, y_{t-h}) \approx \phi^h$, $h \ge 0$. So in a sense, y_t is asymptotically stationary											
			$t \to \infty$. Hence in ARIMA derivations, we work					~ +i~	0 970000			
			$t \to \infty$. Hence in Akilwia derivations, we work t	vith a	in inn	nite history. By run	ning it for a lor	ig tim	e, process			
ŀ	becomes stationary Let y_t be a stationary TS w mean 0 and ACVF γ . Let a and b be constants. Suppose $x_t = a + bt + s_t + y_t$, where $s_t = s_{t-12}$ for all t Show $(1 - B)(1 - B^{12})x_t$ is stationary by finding its autocovariance function in terms of γ Let $z_t = (1 - B)(1 - B^{12})x_t$. Then $z_t = (1 - B)(x_t - x_{t-12}) = (1 - B)(a + bt + s_t + y_t - a - b(t - 12) - s_{t-12} - y_{t-12}) = (1 - B)(12b + y_t + y_{t-12}) = y_t - y_{t-12} + y_{t-12}$											
			= $Cov(y_{t+h} - y_{t+h-1} = y_{t+h-12} + y_{t+h-13}, y_t - y_{t-1} - y_{t-12} - y_{t-12})$	+ y t-13)) = 4γ	(h) - 2γ (h+1) + γ (h+	+11) -2γ(h+12)	+ γ(h	ı+13) - 2γ(h-1) +			
		11) - 2γ (h-12) + γ (h-13)	h (and not t) and harries record to see the	io	Ha	ve						
			h (and not t) and because mean is constant, z_t				1 gives 7 = 10/2	<u></u>				
	1. $y_t = 0.3y_{t-1} + e_t$, ARIMA(1,0,0) / AR(1) with autoregressive operator $\tau(B) = 1 - 0.3B$. Setting 1 - 0.3z = 0 gives z = 10/3 > 1 Since root of $\tau(B)$ is outside unit circle, this is a stationary model. To write it as an infinite MA process:											
				uii		p. 50055						
	$y_t = \frac{1}{1 - 0.3B} e_t = (1 + 0.3B + 0.3^2 B^2 + \cdots) e_t = \sum_{j=0}^{\infty} 0.3^j e_{t-j}$ 2. $y_t = e_t - 1.3e_{t-1} + 0.4e_{t-2}$. ARIMA(0,0,2) / MA(2) w MA operator $\kappa(B) = 1 - 1.3B + 0.4B^2$											
It is also invertible since $-1 < \theta_2 < 1$; $\theta_1 + \theta_2 = -0.9 > -1$ and $\theta_1 - \theta_2 = -1.7 < 1$. OR $1 - 1.3z + 0.4z^2 = 0$. so $z = 1.25$, 2 and outs												
									itside unit circle.			
	3. $y_t = 0.5y_{t-1} + e_t - 1.3e_{t-1} + 0.4e_{t-2}$. ARIMA(1,0,2) w $\tau(B) = 1 - 0.3B$ and $\kappa(B) = 1 - 1.3B + 0.4B^2$. Since roots of both operators outside											
circle, it is stationary and invertible Stationary process x_t has ACVF γ_h^x . Define new stationary series $y_t = x_t - x_{t-1}$ ACVF of $y_t = \gamma_h^y = Cov(y_{t+h}, y_t) = Cov(x_{t+h} - x_{t+h-1}, x_t - x_{t-1}) = Cov(x_{t+h}, x_t) - Cov(x_{t+h}, x_{t-1}) - Cov(x_{t+h-1}, x_t)$												
				c_{t+h} ,	x_t) —	$cov(x_{t+h}, x_{t-1})$ –	$cov(x_{t+h-1},$	$(x_t) +$				
}	COV	$(x_{t+h-1}, x_t) = \gamma_h - \gamma_{h+1}$	$-\gamma_{h-1}^{x} + \gamma_{h}^{x} = 2\gamma_{h}^{x} - \gamma_{h+1}^{x} - \gamma_{h-1}^{x}$. le : '		ration defined 5000	. /		1,b 1.f \			
	Consider AR(1) process w $ \phi < 1$ and mean 0: $y_t = \phi y_{t-1} + e_t$. Derive PACF for lag h = 2 using defin of PACF: $\phi_{22} = corr(y_t - y_t^{1,b}, y_{t-2} - y_{t-1}^{1,b})$											
	For $y_t^{1,b}$, have to find β that minimises $E(y_t - \beta y_{t-1})^2 = E(y_t^2 - 2\beta y_t y_{t-1} + \beta^2 y_{t-1}^2)$. Taking derivative and setting to 0 and since this is an AR(1)											
	process, $\beta = \gamma(1)/\gamma(0) = \rho(1) = \phi$ Similarly for $y_{t-2}^{1,f}$, minimise $E(y_{t-2} - \beta y_{t-1})^2$ to obtain $\beta = \phi$											
Similarly for y_{t-2}^{*} , minimise $E(y_{t-2} - \beta y_{t-1})^2$ to obtain $\beta = \phi$ Now PACF = $cov(y_t - \phi y_{t-1}, y_{t-2} - \phi y_{t-1}) = \gamma(2) - \phi \gamma(1) - \phi \gamma(1) + \phi^2 \gamma(0) = 0$ (since for AR(1), $\gamma(h)/\gamma(0) = \phi$												
Tut												
iut	to the distribution of the											
			%>% report(); states <- ets_models\$ets_auto									
	ets_after_transform <- model(train_set, ets_boxcox = ETS(box_cox(Y, 0.110))); forecast(ets_after_transform, h=18) %>% accuracy(TS)											
						·						

Decomposition model: ETS on season and RW w drift on seasonally adjusted series model(train_set, stl1 = STL(box_cox(Y, 0.110))) %>% components %>% autoplot() stl_models <- model(train_set, stl1 = decomposition_model(STL(box_cox(Y, 0.110)), ETS(season_year), RW(season_adjust ~ drift()))) forecast(stl models, h=18) %>% accuracy(TS)

Suppose y_t is a mean 0, weakly stationary process with $y_t = \Phi y_{t-12} + e_t + \theta e_{t-1}$, $|\Phi| < 1$, $|\theta| < 1$

Then, $var(y_t) = var(\Phi y_{t-12} + e_t + \theta e_{t-1}) = \Phi^2 var(y_t) + \sigma^2 + \theta^2 \sigma^2$. So autocovariance at lag $0 = \gamma(0) = var(y_t) = \frac{1+\theta^2}{1-\Phi^2}\sigma^2$

Also, $(1-B^{12}\Phi)y_t=(1+\theta B)e_t$. SARIMA(0,0,1)(1,0,0)₁₂. And $y_t=(1-B^{12}\Phi)^{-1}(1+\theta B)e_t$

Taylor's expansion: $(1 - B^{12}\Phi)^{-1}(1 + \theta B) = (1 + \theta B)(1 + B^{12}\Phi + B^{24}\Phi^2 + \cdots) = 1 + \theta B + B^{12}\Phi + \theta \Phi B^{13} + B^{24}\Phi^2 + B^{25}\Phi^2\theta + \cdots$

Figure 8 expansion:
$$(1 - B^{22}\Phi)^{-1}(1 + \theta B) = (1 + \theta B)(1 + B^{22}\Phi + B^{22}\Phi)^{-1}(1 + \theta B) = (1 + \theta B)(1 + B^{22}\Phi + B^{22}\Phi)^{-1}(1 + \theta B) = (1 + \theta B)(1 + B^{22}\Phi + B^{22}\Phi)^{-1}(1 + \theta B) = (1 + \theta B)(1 + B^{22}\Phi + B^{22}\Phi)^{-1}(1 + \theta B)(1 + B^{22}\Phi)^{-1}(1 + \theta$$

Since y_t is a linear process, $\gamma(h) = \sigma^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+h}$. For lag 1, $\gamma(1) = \sigma^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+1} = \sigma^2 (1(\theta) + \Phi^2(\theta) + \Phi^4(\theta) + \cdots) = \sigma^2 \frac{\theta}{1-\Phi^2}$. So autocorrelation with lag 1 = $\rho(1) = \frac{\gamma(1)}{\gamma(0)} = \left(\sigma^2 \frac{\theta}{1-\Phi^2}\right) / \left(\frac{1+\theta^2}{1-\Phi^2}\sigma^2\right) = \frac{\theta}{1+\theta^2}$.

Can also find $ho(12)=\Phi^h$, h = 1, 2, ... And ho(12h+1)=0

ST3233

Page 12 of 13

2017/12/07

5. (6 points) Yearly water levels of a lake have been recorded from 1922 until 1972. The time plot, ACF and PACF plots for this data are given below. (Please turn to the next page for the question.)

Figure 6: Lake water levels: time plot, ACF and PACF.

Suggest one ARIMA model to fit to this data

- ACF is decaying sinusoidally
- PACF cutss off after lag 10 (or 1)
- Postulate AR(1) or AR(10)