Интегрирование быстро осцилирующих функций

Варнавский Вадим, Степанов Игорь 17 декабря 2014 г.

1 Постановка задачи

Дан интеграл

$$\int_{a}^{b} f(x)\sin(\omega x)dx,\tag{1}$$

где f(x) - гладкая функция, $\omega(b-a)\gg 1$. Предложить метод для вычисления данного интеграла и найти значение этого интеграла.

2 Метод вычисления

Зададимся узлами интегрирования

$$x_j = \frac{b+a}{2} + \frac{b-a}{2}d_j, \quad j = 1, 2, 3$$

Приблизим заданную функцию f(x) интерполяционным многочленом в форме Лагранжа $L_n(x)$, где многочлен имеет вид

$$L_N(x) = \sum_{n=0}^{N} f_n \varphi_n^N(x), \tag{2}$$

$$\varphi_n^N = \prod_{i=0}^N \frac{x - x_i}{x_n - x_i} (i \neq n) \tag{3}$$

Здесь N - количество интервалов, на которые делится отрезок интегрирования узлами (в нашем случае N=2). Поэтому

$$L_3(x) = P_1(x)f(x_1) + P_2(x)f(x_2) + P_3(x)f(x_3)$$

Интеграл $\int_a^b L_n(x)e^{i\omega x}dx$ может быть вычислен непосредственно

$$\int_{a}^{b} L_{n}(x)e^{i\omega x}dx = S_{n}^{\omega}(f) =$$

$$= \frac{b-a}{2} \exp\left(i\omega \frac{b+a}{2}\right) \sum_{j=1}^{n} D_{j}\left(\omega \frac{b-a}{2}\right) f(x_{j}),$$

где
$$D_j(p) = \int_{-1}^1 \left(\prod_{i \neq j} \frac{\xi - d_k}{d_j - d_k} \right) \exp(ip\xi) d\xi.$$
 (4)

Получилась квадратурная формула

$$\int_{a}^{b} f(x) \exp(i\omega x) dx \approx S_{n}^{\omega}(f) \tag{5}$$

Оценка погрешности полностью совпадает с оценкой погрешности квадратурной формулы Симпсона для интеграла лишь от одной функции f(x), без быстро осцилирующего множителя:

$$|R(f)| = \left| \int_{a}^{b} (f(x) - L_{3}(x)) \exp(i\omega x) dx \right| \le$$

$$\le \int_{a}^{b} |f(x) - L_{3}(x)| dx \le \max_{[a,b]} |f^{(4)}(x)| \frac{(b-a)^{5}}{2880}$$
 (6)

Из формулы (4) коэффициенты

$$D_1(p) = p^{-3} [2p\cos(p) - \sin(p)(2 - p^2) + i(p^2\cos(p) - p\sin(p))], \quad (7)$$

$$D_2(p) = p^{-3} [4\sin(p) - 4p\cos(p)], \tag{8}$$

$$D_3(p) = p^{-3}[2p\cos(p) + \sin(p)(p^2 - 2) + i(p\sin(p) - p^2\cos(p))].$$
 (9)

Очевидно, для интегрирования функции нашего вида, необходимо взять мнимую часть этих коэффициентов.

3 Результат

 $a=1,\,b=5$ и отрезок для метода трапеций делиться на N=100 частей. Ошибка для метода Филона составляет 0.003413, для метода трапеций $-2.13\cdot 10^{-5}.$

Таблица 1: Функция $f(x) = \ln(x)$ от 1 до 5

$N_{\overline{0}}$	ω	Метод Филона	Метод трапеций	Matlab		
1	50	-0.007725	-0.004935	-0.007722		
2	100	0.014255	-0.012825	0.014267		
3	150	0.007182	-0.135609	0.007195		
4	200	-0.004508	-0.014904	-0.004500		
5	250	-0.006029	0.009323	-0.006024		
6	300	0.000598	-0.008134	0.000600		

7	350	0.004563	0.037469	0.004565
8	400	0.001483	-0.001315	0.001485
9	450	-0.002909	0.059888	-0.002908
10	500	-0.002445	-0.037305	-0.002444
11	550	0.001311	-0.000048	0.001311
12	600	0.002617	-0.049350	0.002617
13	650	0.000055	0.001230	0.000055
14	700	-0.002219	-0.004488	-0.002219
15	750	-0.001047	0.017476	-0.001048
16	800	0.001467	0.073089	0.001467
17	850	0.001588	0.007355	0.001588
18	900	-0.000583	0.008637	-0.000583
19	950	-0.001688	-0.227555	-0.001689
20	1000	-0.000250	-0.002715	-0.000250

4 Обработка результатов

Из приведенной таблицы можно видеть, что результаты вычисления по формуле Филона очень близки к точным значениям интеграла, посчитанным с помощью MATLAB.