How to represent part-whole hierarchies in a neural network Geoffrey Hinton

Minho Park

What's wrong with CNN?

• Invariance

What's wrong with CNN?

Equivariance

 $Z_1 \neq Z_2$ but keeps the relationship $Z_2 = T_g^2 Z_1 = T_g^2 \Phi(X_1) = \Phi(T_g^1 X_1)$

: Invariance is special case of equivariance where T_g^2 is the identity.

CNN cause invariance

- Because of pooling and fc-layer
- For translation invariance,
 we use data augmentation

CNN cause invariance

As a result, CNN recognizes both pictures as human faces

Capsule

- A group of neurons (Vector)
 - Even the same object can have different properties
- Length: Probability of the entity
- Direction(Vector elements): Properties of the entity
- Ex. CapsNet (Dynamic Routing)

Overview of the idea

- Goal: Represent part-whole hierarchies in a neural network
- Why?: Strong psychological evidence
 - People parse visual scenes into part-whole hierarchies
 - and model the viewpoint-invariant spatial relationship between a part and a whole

Overview of the idea

GLOM architecture

• Columns (autoencoders)

Columns share weight

- Bottom-up encoder
 - from Feature Extractor (e.g. CNN)
- Top-down decoder
 - from Neural Fields
- Previous time and Consensus attention
 - from BERT

Columns share weight

Every column share the same weight.

Attention in the same level

• Softmax $(XX^T)X$ at the same level in nearby columns at the previous time

Discuss design decisions

- How many levels are there?
 - The paper's choice is 5 (biological reason)
- How fine grained are the locations?
 - Pixels or image patches
 - Grid of locations does not have to remain at all levels
- Does the bottom-up net look at nearby location?
 - It can, but it is not pure version of GLOM

Discuss design decisions

- How does the attention work?
- The visual input
 - The output of convolution net could be used the primary

Color and texture

- Imagine answer the color example
 - The color of a part is straightforward, but what color is the whole object?

Color and texture

- This is one of the motivation for GLOM
 - The whole object has a compound color which might be called "red-green-or-blue"

Learning Islands

- Assume that GLOM is trained to reconstruct
 - if the regions are sufficiently large, top level will be helpful

Learning Islands

- Contrastive learning
 - An embedding at one location is free to choose which embeddings at other locations, it should resemble

Discuss

- The part-whole hierarchies seems to be a good representation
- Is the representation too large?
- Does it learn exactly the representation we want?
 - We want an interpretable representation
 - Any ideas?

Reference

- CapsNet, GLOM arxiv paper
- Invariance vs. Equivariance: https://www.slideshare.net/ssuser06e0c5/brief-intro-invariance-invariance-invariance
- Yannic Kilcher, CapsNet: https://youtu.be/nXGHJTtFYRU
- Jaejun Yoo, CapsNet: https://youtu.be/ YT 8CT2w Q
- Yannic Kilcher, GLOM: https://youtu.be/cllFzkvrYmE