

PROJECT 1: Navigator

Artificial Intelligence

Universitat Autònoma de Barcelona

Goal: To make a Navigation application, where the user give origin and destination and selects the preference criterion for the path search strategy.

It can be very complex!!! \rightarrow We will simplify it

Simplifications:

- We only consider Metro Maps
- Origin and destination will be given by the names of the stations or in cartesian coordinates, no use of street names and house numbers.
- The path between origins and destinations are provided in cartesian coordinates, and the distance between user and metro stations will be assumed as a **straight line**.
- The **preference criteria** can be the following, considered separately:
 - <u>Time</u>, this is to arrive as soon as possible (<u>Minimum time</u>)
 - <u>Distance</u>, ensure not to be doing unnecessary ways (<u>Minimum distance</u>)
 - <u>Line-Changes</u>, we do not want to move around a lot. (Minimum number of line changes)
 - Other criteria ...

Note: The concept of **STOP** can be ambiguous!!!, we define it like this:

Definition: A stop is a trip between two stations or a change of line.

Example: Let us assume the route

Fontana L3 \rightarrow Diagonal L3 \rightarrow Diagonal L4 \rightarrow Verdaguer L4

STOP

(*) To unify a change of line is considered as a STOP

Problems to be solved to implement a Navigator:

Problems to be solved to implement a Navigator:

Navigator Defining a Representation for City Data Defining the Search Algorithms for the best route Defining the Optimality Criteria

How we do represent the metro map?

We need to represent **3 elements:**

- Stations
- Connections
- Line-Changes

Navigator Defining a Representation for City Data Defining the Search Algorithms for the best route Defining the Optimality Criteria

How we do represent the metro map?

Stations

- Name
- Line where it belongs to
- **Coordinates** (position in the map)

How we do represent the metro map?

Station's Table

Name - Line - Coordinates

Station	Line(s)	X	Y
Masséna	1	67	79
Charpennes	1,2,3	140	56
République	1	167	64
Le Tonkin	2	140	27
Collège Bellecombe	2	140	115
Thiers-Lafayette	2	140	157
Part-Dieu	2,3,4	108	206
Part-Dieu Servient	2	82	217
Brotteaux	3	108	134
Dauphiné Lacassagne	4	152	230

Navigator Defining a Representation for City Data Defining the Search Algorithms for the best route Defining the Optimality Criteria

How we do represent the metro map?

We need to represent **3 elements:**

- Stations \checkmark Connections
- Line-Changes

How we do represent the metro map?

Connections:

Adjacency Matrix

Navigator Defining a Representation for City Data Defining the Search Algorithms for the best route Defining the Optimality Criteria

Example of adjacency matrix

Adjacency Matrix

Navigator Defining a Representation for City Data Defining the Search Algorithms for the best route Defining the Optimality Criteria

How we do represent the metro map?

Connections

- Costs
 - 1. Time
 - 2. Distance
 - 3. #Line-Changes
 - 4. #Stops

Example of a time cost matrix (it will always be given)

Folder: CityInformation

File: Time.txt

Navigator Defining a Representation for City Data Defining the Search Algorithms for the best route Defining the Optimality Criteria Defining the Route

Cost Matrix (Time)

Masséna	0									
Charpennes	9	0								
République		4	0							
Le Tonkin		5		0						
Collège Bellecombe		7			0					
Thiers – La fayette					4	0				
Part-Dieu						6	0			
Part-Dieu Servient							2	0		
Brotteaux		2					2		0	
Dauphiné L.								21		0
'	Т	S	u		u	, a	⊐	ıt	×	

Masséna Charpennes République Le Tonkin

Collège Bellcombe Thiers-Lafayette Part-Dieu Serv.ient

Brotteaux

Assumptions to compute costs:

Each line goes always at a constant speed

Folder: CityInformation

File: Infovelocity.txt

- The railways connecting between two stations are not always straight.
- We will always have the Cartesian coordinates of all the station positions.

Navigator Defining a Representation for City Data Defining the Search Algorithms for the best route Defining the Optimality Criteria

How we do represent the metro map?

We need to represent **3 elements:**

Previous examples, adjacency matrix and cost matrix

How do we represent the Line-Change?

There are two: Charpennes (3 lines) and Part-Dieu (3 lines)

We said Line-Changes would be regarded as **STOPS**

Navigator

Defining a Representation for City Data

Defining the Search
Algorithms for the best route

Defining the Optimality Criteria

Solution: Repeat stations belonging to more than

one line

Example: Adjacency matrix

Masséna	0									
Charpennes	1	0								
République		1	0							
Le Tonkin		1		0						
Collège Bellecombe		1			0					
Thiers – La fayette					1	0				
Part-Dieu						1	0			
Part-Dieu Servient							1	0		
Brotteaux		1						1	0	
Dauphiné							1			0
	Masséna	Charpennes	République	Le Tonkin	Collège Bellcombe	Thiers-Lafayette	Part-Dieu	Part-Dieu Serv. Servient Brotteaux		Dauphiné

Masséna L1 Charpennes L1 Repúblique L1 1 0 Le Tonkin L2 Charpennes L2 0 Collège Bellecombe L2 1 0 Thiers Lafayette L2 1 Part-Dieu L2 0 1 Part-Dieu Servient L2 1 Charpennes L3 Brotteaux L3 1 Part-Dieu L3 Part-Dieu L4 Dauphiné Lacassagne L4 Charpennes L2 Part-Dieu L2 Repúblicque L1 collège Bellecombe L2 Thiers Lafayette L2

Result: Move from a 10x10 matrix to a 14x14 matrix

(Charpennes x 3) i (Part-Dieu x 3)

Navigator

Defining a Representation for City Data

Defining the Search
Algorithms for the best route

Defining the Optimality Criteria

Solution: Repeat stations belonging to more than

one line

Example: Cost Matrix

Masséna	0										
Charpennes	10	0									
République		10	0								
Le Tonkin		5		0							
Collège Bellecombe		5			0						
Thiers – La fayette					5	0					
Part-Dieu						5	0				
Part-Dieu Servient							5	0			
Brotteaux		20						20	0		
Dauphiné							15			0	
	Masséna	Charpennes	République	Le Tonkin	Collège	Bellcombe Thiers-Lafayette	Part-Dieu	Part-Dieu Serv.	Servient Brotteaux	Dauphiné	

Masséna L1 Charpennes L1 Repúblique L1 0 4 Le Tonkin L2 Charpennes L2 20 0 Collège Bellecombe L2 7 0 Thiers Lafayette L2 Part-Dieu L2 6 0 2 Part-Dieu Servient L2 Charpennes L3 15 18 0 Brotteaux L3 2 Part-Dieu L3 12 6 15 Part-Dieu L4 Dauphiné L. L4 Part-Dieu L4 Part-Dieu L2 Charpennes L2 collège Bellecombe L2 Repúblicque L1 Thiers Lafayette L2 Part-Dieu Servient

Result: Move from a 10x10 matrix to a 14x14 matrix

(Charpennes x 3) i (Part-Dieu x 3)

Important Note: the cost matrices we provide you have already duplicated the stations of different lines

Folder: CityInformation

File: Infovelocity.txt

Problems to be solved to implement a Navigator:

Which algorithm do we have to apply, to implement a Navigator?

Search Algorithms, allow to find the path between an origin and a destination

Which are the differences between them?

Problems to be solved to implement a Navigator:

How do we apply each criterion?

- Time criterion
 - What the cost is?
 - Which heuristic?
- Distance criterion
 - What is the cost?
 - Which heuristic?
- Number of Line-Change criterion
 - What is the cost?
 - Which heuristic?
- Number of Stops criterion
 - What is the cost?
 - Which heuristic?

Remember:

- We know the time between all stops in all metro lines
- Each line has constant speed
- We know the position coordinates of all stations
- Railways between stations are not straight lines

PROJECT 1: Navigator

Artificial Intelligence

Universitat Autònoma de Barcelona