Computer Number Systems Worksheet Created by Sam Craig and the West Lafayette ACSL Club of 2014–2015

A subscript after a number designates what base it is in. For example, 20_{10} is 20 in base ten, but usually base ten is assumed and left out. 10_{16} is 10 in base 16, or 16 in base ten. A **bit** is a **bin**ary digit.

Questions

- 1. Convert 5250_{10} to hexadecimal.
- 2. Convert 2036_{10} to binary.
- 3. Convert $15F_{16}$ to octal.
- 4. Convert 101000100011_2 to hexadecimal.
- 5. Evaluate $21A7_{16} 110_{16}$ in hexadecimal.
- 6. Evaluate $10531_8 + 12414_8$ in octal.
- 7. Evaluate $1101111_2 111011_2$ in binary.
- 8. Evaluate $3C0_{16} + 340_8$ in hexadecimal.
- 9. In the ACSL computer, each "word" of memory contains 20 bits representing 3 pieces of information. The most significant 6 bits represent Field A; the next 11 bits, Field B; and the last 3 bits represent Field C. For example, the 20 bits comprising the "word" 18149₁₆ has fields with values of 6₁₆, 29₁₆, and 1₁₆. What is Field B in E1B7D₁₆? (Express your answer as a base 16 number.)

Answers

- 1. 1482_{16}
- $2. \ 111111110100_2$
- $3.\ 537_{8}$
- 4. A23₁₆
- $5. 2097_{16}$
- $6. 23145_8$
- $7. 110100_2$
- $8. 2240_8$
- 9. $36F_{16}$