Routing Protocols for Wireless Sensor Networks

Routing protocol survey

- Traditional technique
- Flooding
- Gossiping
- Routing technique
- Flat-routing
- Hierarchical-routing
- Location-based routing

[1]Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci Georgia Institute of Technology" A Survey on Sensor Networks" IEEE Communications Magazine • August 2002

Flooding(1/2)

 A classical mechanisms to relay data in sensor networks without the need for any routing algorithms and topology maintenance.

- drawbacks:
 - Implosion
 - Overlap
 - Resource blindness

A Simple Solution: Flooding

Suffers from 3 deficiencies:

 Implosion: Resources wasted by sending duplicate copies of the same data.

Flooding (Problems)

 Overlap: Common pieces of data are gathered and sent.

Resource Blindness:
 Flooding does not
 modify its activities
 based on amount of
 energy available.

Gossiping

- A slightly enhanced version of flooding where the receiving node sends the packet to a randomly selected neighbor which picks another neighbor to forward the packet to and so on.
- Advantage: avoid the implosion
- Drawback: Transmission delay

Gossiping

- A slightly enhanced version of flooding where the receiving node sends the packet to a randomly selected neighbor which picks another neighbor to forward the packet to and so on.
- Advantage: avoid the implosion
- Drawback: Transmission delay

Router protocol survey

- Traditional routing technique
 - Flooding
 - Gossiping

- Current routing technique[1]
 - Flat-routing
 - Hierarchical-routing
 - Location-based routing

[1]JAMAL N. AL-KARAKI, AHMED E. KAMAL," ROUTING TECHNIQUES IN WIRELESS SENSOR NETWORKS: A SURVEY", IEEE Wireless Communications • December 2004

51

Flat-routing

- SPIN (Sensor Protocols for Information via Negotiation)
- DD (Directed diffusion)
- Rumor routing

SPIN's Approach

- 2 key innovations introduced:
- Negotiation

To solve implosion and resource overlap, SPIN nodes *negotiate* before sending data. Use of descriptors called *meta-data* to name/describe data.

Resource Adaptation

Each node has a *resource manager* that keeps track of resources at the node. Probed by applications.

4 variants of SPIN

- 1. A wireless Point to Point Network with no queuing delays or dropping of packets.
- SPIN-PP and SPIN-EC

- 2. Realistic network with unreliable broadcast channel.
- SPIN-BC and SPIN-RL

SPIN Overview

2 basic ideas:

- Exchanging sensor data might be expensive but exchanging data about sensor data need not be.
- Nodes must monitor and adapt to changes in their own energy resources.

SPIN features

Application level control
 Pursues the principles of Application Level Framing (ALF). Common data naming followed between transmission protocol and application.

Propose to make *routing decisions* in application controlled and application specific ways using knowledge of topology, resources, data layout.

SPIN features (contd.)

Meta-Data

Used to describe data collected.

Must be shorter than the data, and if two pieces of data are the same then they should have the same meta-data.

Application-specific: Example a camera sensor could take (x,y,O) as metadata where x,y are coordinates and O is orientation.

SPIN Resource Management
 SPIN applications poll their resources to find out how much energy is available.
 Make informed decisions by obtaining this information from a specified interface.

SPIN Message types

- ADV new data advertisement. Contains the meta-data.
- REQ request for data. Sent when a node wants a data.
- DATA data message. Contains the actual data.

SPIN Protocols

1. SPIN – PP

Optimized for a point-to-point link where A and B can talk to each other without interfering with other nodes. To send to n-neighbors, cost is n times that of sending to one neighbor.

3 stages : ADV-REQ-DATA

2. SPIN-EC

When a node observes that its energy is below a threshold it reduces its participation. Only starts a stage of the protocol that it can finish.

Figure 3: The SPIN-PP Protocol. Node A starts by advertising its data to node B (1). Node B responds by sending a request to node A (2). After receiving the requested data (3), node B then sends out advertisements to its neighbors (4), who in turn send requests back to B (5,6).

SPIN

- Topological changes are localized
- provides more energy savings than flooding, and metadata negotiation almost halves the redundant data.
- Drawback: SPIN's data advertisement mechanism cannot guarantee delivery of data.

Router protocol survey

- Traditional routing technique
- Flooding
- Gossiping
- Current routing technique
- Flat-routing
- Hierarchical-routing
- Location-based routing

Hierarchical-routing

- <u>LEACH (Low Energy Adaptive</u> <u>Clustering Hierarchy)</u>
- PEGASIS (Power-Efficient Gathering in Sensor Information Systems)
- TEEN(APTEEN) (Threshold-Sensitive Energy Efficient Protocols)

LEACH[1]

- LEACH is a cluster-based protocol
- Setup phase
- Steady state phase

[1]. Heinzelman, A. Chandrakasan and H. Balakrishnan, "Energy-Efficient Communic Protocol for Wireless Microsensor Networks," *Proc. 33rd Hawaii Int'l. Conf. Sys. Sci*

<u>Assumptions about sensor nodes</u>

- All nodes can transmit with enough power to reach the BS.
- All nodes have the computational power to support different MAC protocols.

LEACH

- Nodes organized into local clusters.
- One node acting as the cluster head.
- All non-cluster head nodes transmit their data to the cluster head
- Cluster head receive data from all the members perform data aggregation and transmit data to remote BS.
- Cluster head node needs more energy compared to cluster members.
- To avoid draining the battery of any node cluster heads are randomly chosen on rotation basis.

Leach operation

- Set-up phase: Clusters are organized
- Steady-state phase: Data are transferred from nodes to the cluster head and on to the BS.

Cluster-Head Selection Algorithm

LEACH

LEACH: Operation

- Periodic process
- Three phases per round:
 - Advertisement
 - Election and membership
 - Setup
 - Schedule creation
 - Steady-State
 - Data transmission

LEACH: Advertisement

- Cluster head self-election
 - Status advertised to nearby nodes
- Non-cluster heads must listen to the medium
 - Choose membership based on signal strength
 - RSSI
 - E_b/N_0

LEACH: Setup

- Nodes broadcast membership status
 - CSMA-CA
- Cluster heads must listen to the medium
- TDMA schedule created
 - Dynamic number of time slots

LEACH: Data Transmission

- Nodes sleep until its time slots
- Cluster heads must listen to each slot
- Cluster heads aggregate/compress and transmit to Sink
- Phase continues until the end of the round

Low-Energy Adaptive Clustering Hierarchy (LEACH)

- Adaptive Clustering
 - Distributed
- Randomized Rotation
 - Biased to balance energy loss
- Heads perform compression
 - Also aggregation
- In-cluster TDMA

LEACH: Adaptive Clustering

- Periodic independent self-election
 - Probabilistic
- CSMA CA used to advertise
- Nodes select advertisement with strongest signal strength
- Dynamic TDMA time slots

LEACH: Adaptive Clustering

- Periodic independent self-election
 - Probabilistic
- CSMA CA used to advertise
- Nodes select advertisement with strongest signal strength
- Dynamic TDMA time slots

LEACH: Randomized Rotation

- Cluster heads elected every round
 - Recent cluster heads disqualified
 - Optimal number not guaranteed
- Residual energy considered
- P= Desired cluster head percentage
- r = Current Round
- G = Set of nodes which have not been cluster heads in 1/P rounds

$$T(n) = \begin{cases} \frac{P}{1 - P * (r \mod \frac{1}{P})} & \text{if } n \in G\\ 0 & \text{otherwise} \end{cases}$$

LEACH: Hierarchical Clustering

- Not currently implemented
- Efficient when network diameters are large

LEACH

Drawbacks

- It is not applicable to networks deployed in large regions
- The idea of dynamic clustering brings extra overhead
- The protocol assumes that all nodes begin with the same amount of energy capacity in each election round, assuming that being a CH consumes approximately the same amount of energy fore ach node

Performance: Parameters

- MATLAB Simulator
- 100-node random network
- $E_{elec} = 50$ nj/bit
- $\varepsilon_{amp} = 100 \text{pJ/bit/m2}$
- k = 2000 bits

Comparison between SPIN LEACH and directed diffusion[1]

	SPIN	LEACH	Directed diffusion
Optimal route	No	No	Yes
Network lifetime	Good	Very good	Good
Resource awareness	Yes	Yes	Yes
Use of meta-data	Yes	No	Yes

[1]W. Heinzelman, A. Chandrakasan and H. Balakrishnan, "Energy-Efficient Communication Protocol for Wireless Microsensor Networks," *Proc. 33rd Hawaii Int'l. Conf. Sys. Sci.*, Jan. 2000.