LEARNING MULTI-LEVEL REPRESENTATIONS FOR HIERARCHICAL MUSIC STRUCTURE ANALYSIS

Morgan Buisson^{1,4}, Brian McFee^{2,3}, Slim Essid¹, Hélène C. Crayencour⁴

- ¹ LTCI, Télécom Paris, Institut Polytechnique de Paris, France
- ² Music and Audio Research Laboratory, New York University, USA
- ³ Center of Data Science, New York University, USA
- ⁴ L2S, CNRS-Univ.Paris-Sud-CentraleSupélec, France

Contributions

- Multi-level triplet mining method requiring no structural annotations.
- Disentangled representation learning to extract deep features at different levels of granularity.
- Method competitive against related work for both **single-level** and **multi-level** music segmentation.
- Good **generalization** across annotators, segmentation levels and various datasets for multi-level segmentation.

Learning audio representations from triplets

For a triplet of frames $\mathcal{T} = (x_a, x_p, x_n)$, the triplet loss is expressed as:

$$\mathcal{L}(\mathcal{T}) = [d(f(x_a), f(x_p)) - d(f(x_a), f(x_n)) + \alpha]_+,$$

where d(x,y) is a distance metric, $[.]_+$ the Hinge loss, α the margin parameter and f(x) the projection of x into the embedding space by a deep neural network.

Sampling triplets without annotations

A first triplet mining method approach has recently been proposed [1]:

The method introduced here can be viewed as its **multi-level extension**:

For a randomly sampled anchor index at level $\ell=0$, a complete triplet (x_a,x_p,x_n) is built only using time proximity as a proxy. For each level $\ell\in\{1;\ldots;L-1\}$, the positive example is sampled closer and closer to the same anchor, whereas the negative is obtained by selecting the positive example from level $\ell-1$.

Disentangling hierarchy levels

Triplets sampled at different hierarchy levels used to train sub-regions of the output embeddings [2]. A set of L masking functions $m_{\ell} \in \{0,1\}^n$ that are applied to the embedding space of size n is defined. For a given triplet (x_a, x_p, x_n) at level ℓ , the training objective becomes:

$$\mathcal{L}(x_a, x_p, x_n) = [D_{\ell}(x_a, x_p) - D_{\ell}(x_a, x_n) + \alpha]_{+},$$

where:

$$D_{\ell}(x_i, x_i) = \parallel m_{\ell} \circ [f(x_i) - f(x_i)] \parallel_2^2$$

Details:

- L is fixed beforehand.
- Mining step done offline.
- Masks initialized with fixed and equal length.
- $\forall \ell \in \{0; ...; L-2\}, \alpha_{\ell} > \alpha_{\ell+1}.$

Figure 1: Training pipeline for a triplet of frames at level ℓ .

Experiments

- Training data: 23,725 non annotated tracks spanning various musical genres.
- **Testing data**: BeatlesTUT, RWC-Pop, RWC-Jazz, JAAH and a doubly annotated subset of SALAMI. Hierarchy expansion has been applied to all datasets [3].
- **Metrics**: We report the F-measure of the trimmed boundary detection hit-rate with a 3-second tolerance window (F_3), the F-measure of frame pairwise clustering (F_{pairwise}) and the L-measure [4] for multi-level segmentation.

Results

Level	lower	lower upper						combined					
Method	LSD	FE_0	HE_0	FE_1	HE_1	SNF	LSD	FE_0	HE_0	FE_1	HE ₁	HE_0	HE_1
$\overline{F_3}$	0.525	0.624	0.611	0.611	0.600	0.456	0.579	0.568	0.597	0.559	0.595	0.665	0.662
$F_{ranimorias}$	0.561	0.561	0.580	0.563	0.581	0.567	0.652	0 694	0.714	0.697	0.718	0.730	0.731

Table 1: Boundary detection and section grouping results on SALAMI. FE: flat embeddings [1]. HE: hierarchical embeddings (ours).

- Boundary detection improved at *upper* level for both annotators.
- Frame-wise assignment performance increased for both annotators at both level of granularity.

Method	Inter-annot	LSD	SNF	DEF	FE_0	HE_0	FE_1	HE_1
L-Precision	0.664	0.419	0.431	0.435	0.412	0.413	0.413	0.418
L-Recall	0.664	0.636	0.668	0.673	0.677	0.680	0.663	0.671
L-Measure	0.654	0.498	0.517	0.520	0.505	0.507	0.503	0.509

 Table 2: Multi-level segmentation results on SALAMI. Inter-annot denotes the inter-annotator agreement.

- Evaluation focused on L-Recall values: representing how much of the reference hierarchy is retrieved by the predicted one.
- Reference hierarchies better retrieved by hierarchical representations than baselines employing multiple features or operating at only one level of granularity.

Dataset	\mid F_3	F_{pairwise}	L-P	L-R	L-M
BeatlesTUT					
RWC-Pop					
RWC-Jazz	55.05	58.51	32.89	81.80	45.76
JAAH	55.57	76.72	46.49	81.18	58.55

Table 3: Boundary detection, section grouping and multi-level segmentation results on additional datasets (in percentage) with the whole embedding matrix. L-P: L-precision, L-R: L-recall, L-M: L-measure.

- Mixed performance in terms of boundary detection and section grouping: due to varying annotation levels and music genres.
- The L-recall values obtained across datasets remain within the same range: most of the reference structure hierarchies are captured.

References

- [1] Matthew C McCallum. "Unsupervised learning of deep features for music segmentation". In: *ICASSP*. 2019.
- [2] Andreas Veit, Serge Belongie, and Theofanis Karaletsos. "Conditional similarity networks". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
- [3] Brian McFee and Katherine M Kinnaird. "Improving structure evaluation through automatic hierarchy expansion". In: *ISMIR*. 2019.
- [4] Brian McFee et al. "Evaluating hierarchical structure in music annotations". In: *Frontiers in psy-chology* (2017).