m15w06, Quiz 1 Name: Section:

Answer ALL questions. Unless instructed otherwise, you should show ALL your work and simplify your final answer as much as possible. Please box your final answer to each part.

Problem 1: [8 pts] A metal sheet is bent into the shape described by rotating the curve $z=x^2$ with $0 \le x \le \sqrt{2}$ all the way around the z-axis. The metal has density $\rho(x,y,z)=3$ kg/m^2 . Find the total mass of the sheet.

Problem 2: [8 pts] Find the flux of the vector field $\vec{F} = \begin{pmatrix} z^2x \\ \frac{1}{3}y^3 + \tan z \\ x^2z + y^2 \end{pmatrix}$ across the surface $x^2 + y^2 + z^2 = 1$, $z \ge 0$ oriented upwards.

Problem 3: [9 pts] An infinite cylinder filling the region $x^2 + z^2 \le 9$ has charge density $q(x, y, z) = \sqrt{x^2 + z^2}$. Find the electric field generated by this cylinder.

Some useful identities in cylindrical coordinates (r, θ, y)

$$\begin{split} \nabla f &= \frac{\partial f}{\partial r} \hat{e}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{e}_\theta + \frac{\partial f}{\partial y} \vec{j} \\ \operatorname{div} \vec{F} &= \frac{1}{r} \frac{\partial}{\partial r} \left(\frac{1}{r} F_r \right) + \frac{1}{r} \frac{\partial F_\theta}{\partial \theta} + \frac{\partial F_y}{\partial y} \\ \nabla^2 f &= \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial y^2}. \end{split}$$