TFIP-AI – Advanced Machine Learning

Unit 2 Clustering (K-Means)

Clustering

- Cluster
 - Collection of data objects that are similar to one another within the same cluster and are dissimilar to the objects in other clusters
- Clustering Analysis
 - Birds of a feather flock together

What is Clustering

Clustering:

The process of grouping a set of objects into classes of similar objects

- -high intra-class similarity
- -low inter-class similarity
- -It is the commonest form of unsupervised learning

Clustering is subjective

Simpson's Family

School Employees

Females

Males

Clustering Criterion

The existence of lungs

The environment to live

What is Similarity?

Hard to define! But we know it when we see it

The real meaning of similarity is a philosophical question. We will take a more pragmatic approach: think in terms of a **distance** (rather than similarity) between random variables.

Clustering Similarity

- Numerical
 - Euclidean distance
 - Manhattan distance
 - Minkowski distance
 - ...
- Binary, Nominal, Ordinal etc.
 - Jaccard coefficient
 - $sim(p_i, p_j) = |p_i \cap p_j| / |p_i \cup p_j|$
- Mixed

Typical Application

- Business: CRM
- Biology: Gene
- Identification of groups of ...

- Image processing
- Gain distribution of data
- Web for information discovery
- Preprocessing step

Clustering – input and result

To find structure from the training data set

$$\begin{bmatrix} x_{11}x_{12}...x_{1n} \\ x_{21}x_{22}...x_{2n} \\ ... \\ x_{m1}x_{m2}...x_{mn} \end{bmatrix}$$

Objective function

- Given
 - *n* objects
 - *k* represents number of clusters
 - objective function
- Gain
 - n objects are organized into k cluster
 - the formed clusters optimize the *objective function*

$$E = \frac{Total\ Distance(intraCluster)}{Total\ Distance(interCluster)}$$

Collection of data objects that are similar to one another within the same cluster and are dissimilar to the objects in other clusters

Clustering – 1-d example

Collection of data objects that are similar to one another within the same cluster and are dissimilar to the objects in other clusters

$$D = \{01, 02, 03, 04, 05\} = \{3, 1, 9, 10, 2\}, K = 2$$

Clustering1:
$$\{3,1,9\}$$
, $\{10,2\}$ $E1 = \frac{[d(3,1) + d(3,9) + d(1,9)] + [d(10,2)]}{d(3,10) + d(3,2) + d(1,10) + d(1,2) + d(9,10) + d(9,2)}$

$$E2 = \frac{[d(3,1) + d(3,2) + d(1,2)] + [d(9,10)]}{d(3,10) + d(3,9) + d(1,10) + d(1,9) + d(2,10) + d(2,9)}$$

ClusteringN: ...

$$EN = \cdots$$

$$E = \frac{\sum_{m=1}^{K} \sum_{O_{i,O_{j} \in C_{m}}} d(O_{i}, O_{j})}{\sum_{m=1}^{K} \sum_{n=1}^{K} \sum_{O_{i} \in C_{m}, O_{j} \in C_{n}} d(O_{i}, O_{j})}$$

When the size of D grows \rightarrow combination explosion

Clustering – 1-d example

 $D = \{01, 02, 03, 04, 05\} = \{3, 1, 9, 10, 2\}, K=2$

K-centroid

 centroid: an actual object, representative object centrally located in a cluster

$$E = \sum_{i=1}^{K} \sum_{O \in C_i} d(o, centroid_i)$$

$$E = \frac{1}{n} \sum_{i=1}^{K} \sum_{O \in C_i} d(o, centroid_i)$$

- Groups n objects into k clusters by minimizing the E
- Find k centroids that minimize E
 - Brute-force algorithm exhaustive search

K-medoid – exhaustive search

$$D = \{01, 02, 03, 04, 05\} = \{3, 1, 9, 10, 2\}, K = 2$$

Iteration	Centroids	Clustering	E
1	3, 1	C1={ 3 ,9,10} C2={ 1 ,2}	13+1=14
2	3, 9	C1={ 3 ,1,2} C2={ 9 ,10}	3+1=4
3	3,10	C1={ 3 ,1,2} C2={ 10 ,9}	3+1=4
4	3, 2		
10			

 $O(C_n^k k(n-k))$ Global minimum

- Step1: Randomly select 2 centroids
- Step2: Assign each sample into the class represented by the closest centroids
- Step3: Update centroids as mean of the cluster
- Step4: Repeat step2 and step3 until convergence

5	8
4 8	7
8	9
6 8	9 8
8	2
7	1
5	2

Randomly generate two medoids

5	8
4 8	7
8	9
6 8	9 8
8	2
7	1
5	2

5	8
5 4	7
8	9 8
6	8
6 8	2
7	1
5	2

Different initial values K-means (k=2)

Randomly generate two medoids

5	8
4	7
8	9
6 8	8
8	2
7	1
5	2

5	8
4	7
8 6 8	9 8
6	8
8	2
7	1
5	2

5 8 4 7 8 9 6 8 8 2 7 1 5 2		
8 9 6 8 8 2 7 1	5	8
7 1	4	7
7 1	8	9
7 1	6	8
	8	2
5 2	7	1
	5	2

5	8
4	7
8	9 8
6 8	8
8	2
7	1
5	2

8
7
9 8
8
2
1
2

5	8
4	7
8	9 8
8 6 8	8
8	2
7	1
5	2

5	8
4 8	7
8	9
6 8	9 8
8	2
7	1
5	2

K-Means Clustering Algorithm

Algorithm

Input

Data + Desired number of clusters, K

Initialize

the K cluster centers (randomly if necessary)

Iterate

- 1. Decide the class memberships of the n objects by assigning them to the nearest cluster centers
- 2. Re-estimate the K cluster centers (aka the centroid or mean), by assuming the memberships found above are correct.

Termination

- If none of the n objects changed membership in the last iteration, exit.

Otherwise go to 1.

K-means - summary

- K is user-defined
- Clustering is to find optimal solution. It is a NP hard problem
- K-means finds local optimal solution.
- Visualization:
- https://www.naftaliharris.com/blog/visualiz ing-k-means-clustering/

Seed Selection

The results of the K- means Algorithm can vary based on random seed selection.

- □ Some seeds can result in **poor convergence rate**, or convergence to **sub-optimal** clustering.
- ☐ K-means algorithm can get stuck easily in **local minima.**
 - Select good seeds using a heuristic (e.g., object least similar to any existing mean)
 - Try out multiple starting points (very important!!!)
 - Initialize with the results of another method.

K-means Algorithm (more formally)

□ Randomly initialize k centers

$$\mu^0 = (\mu_1^0, \dots, \mu_K^0)$$

Classify: At iteration t, assign each point $j \in \{1,...,n\}$ to nearest center:

$$C^t(j) \leftarrow \arg\min_i \|\mu_i^t - x_j\|^2$$
 Classification at iteration t

Recenter: μ_i is the centroid of the new sets:

$$\mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:C^t(j)=i} \|\mu - x_j\|^2$$
 Re-assign new cluster

centers at iteration t

What is K-means optimizing?

 $lue{}$ Define the following potential function F of centers μ and point allocation C

$$\mu = (\mu_1, \dots, \mu_K)$$

$$C = (C(1), \dots, C(n))$$

$$F(\mu, C) = \sum_{j=1}^{n} \|\mu_{C(j)} - x_j\|^2$$

$$= \sum_{i=1}^{K} \sum_{j:C(j)=i} \|\mu_i - x_j\|^2$$
Two equivalent versions

☐ Optimal solution of the K-means problem:

$$\min_{\mu,C} F(\mu,C)$$

K-means Algorithm

Optimize the potential function:

$$\min_{\mu,C} F(\mu,C) = \min_{\mu,C} \sum_{j=1}^{n} \|\mu_{C(j)} - x_j\|^2 = \min_{\mu,C} \sum_{i=1}^{K} \sum_{j:C(j)=i} \|\mu_i - x_j\|^2$$

K-means algorithm:

(1) Fix μ , Optimize C

$$\min_{C(1),C(2),...,C(n)} \sum_{j=1}^{n} \|\mu_{C(j)} - x_j\|^2 = \sum_{j=1}^{n} \min_{C(j)} \|\mu_{C(j)} - x_j\|^2$$

Exactly first step

Assign each point to the nearest cluster center

(2) Fix C, Optimize μ

$$\min_{\mu_1, \dots, \mu_K} \sum_{i=1}^K \sum_{j: C(j)=i} \|\mu_i - x_j\|^2 = \sum_{i=1}^K \min_{\mu_i} \sum_{j: C(j)=i} \|\mu_i - x_j\|^2$$

Exactly 2nd step (re-center)

K-means Algorithm cont...

Optimize the potential function:

$$\min_{\mu,C} F(\mu,C) = \min_{\mu,C} \sum_{j=1}^{n} \|\mu_{C(j)} - x_j\|^2$$

K-means algorithm: (coordinate descent on F)

- (1) Fix μ , Optimize C Expectation step
- (2) Fix C, Optimize μ Maximization step

Today, we will see a generalization of this approach:

EM algorithm

From a Bayes Network perspective

Χ	Υ	С
5	8	?
4	7	?
8	9	?
6	8	?
8	2	?
7	1	?
5	2	?

- Clustering is a Bayes Network Problem
- Known structure, partly observed data

K-means under Bayes Network

X	Υ	С
5	8	1
4	7	1
8	9	1
6	8	0
8	2	0
7	1	0
5	2	0

- Randomly generate two centroids
- The two centroids give a label to each sample
- Each iteration, it gives a 0 or 1 to variable C

$$p(C = 1|X = 5, Y = 8) = 1$$

To measure probability of C value

Χ	Υ	С
5	8	?
4	7	?
8	9	?
6	8	?
8	2	?
7	1	?
5	2	?

- It's natural that measuring it using a real number [0..1]
- Major Problem, to compute

$$p(C = 1|X = 5, Y = 8)$$

Need to know

$$p(X = 5, Y = 8 | C = 1)$$

- But C values are missing in training set
- Minor Problem, features are continuous number