Numerical Optimization with Python (2024B)

Dry HW 02

- 1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by: $f(x) = 2x_1^2 + 4x_2^2 + 6x_1x_2$.
 - a. Write f as a quadratic function in matrix form, namely find a symmetric matrix Q such that f is given by: $f(x) = \frac{1}{2}x^TQx$.
 - b. Compute ∇f at the point $x = [1,1]^T$
 - c. Compute $\nabla^2 f$
 - d. Compute $\frac{\partial f}{\partial v}$ at the point $x=[-2,0]^T$ in the direction $v=\left[-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right]^T$
 - e. Compute $\frac{\partial^2 f}{\partial v^2}$ for $v = \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]^T$
- 2. Prove that the intersection of any number (can be infinite, and need not be countable) of convex sets is a convex set. Does the same claim hold for unions of convex sets? Prove or give a counter example.
- 3. Consider $S_+^n \subset \mathbb{R}^{n \times n}$: the set of all symmetric, positive semidefinite matrices.
 - a. Prove that S_+^n is a convex set.
 - b. Explain why in fact S_+^n is a cone: for any $A, B \in S_+^n$, and any $\alpha, \beta \ge 0$ (not necessarily that sum to one, as we require for convex combinations).
- 4. Let $A \in \mathbb{R}^{m \times n}$ be a matrix and $b \in \mathbb{R}^m$ a vector.
 - a. Denote by $S \subset \mathbb{R}^n$ the set of solutions of Ax = b. Show that S is a convex set.
 - b. Explain why in fact S is an affine set: for any $x_1, x_2 \in S$, the entire line supported by x_1, x_2 is also in S (not just the line segment, as we required in convex sets).
- 5. A sub-level set of a function $f: \mathcal{D} \subset \mathbb{R}^n \to \mathbb{R}$ is defined as follows: $\{x \in \mathcal{D}: f(x) \leq c\}$ where c is a constant scalar.
 - a. Sketch the sublevel sets of $f(x, y) = 4x^2 + y^2$ for c = 1, 2.
 - b. Prove that sub-level sets of convex functions are convex sets
- 6. Let $f: \mathcal{D} \subset \mathbb{R}^n \to \mathbb{R}$ be a convex function and let $h: \mathbb{R} \to \mathbb{R}$ be convex and monotone increasing.
 - a. Prove that the composition $h \circ g : \mathcal{D} \subset \mathbb{R}^n \to \mathbb{R}$ is convex.
 - b. Provide a counter example if we drop only the monotonic requirement on h.
 - c. Provide another counter example if we drop only the convexity requirement on h.
- 7. For a number $a \in \mathbb{R}$ we know that $a^2 \ge 0$, and if a > 0 then $a^2 > 0$. In this question we discuss the analogue for matrices: let $A \in \mathbb{R}^{m \times n}$ be any matrix.
 - a. Show that A^TA is positive semi-definite.

- b. Show that if, in addition, we assume $\dim Ker(A) = 0$ then A^TA is positive definite.
- 8. Consider $f(x_1, x_2) = 2 + 6x_1 + 2x_2 + 3x_1^2 1x_2^2$.
 - a. Write f in vector form, that is: represent $f(x) = \frac{1}{2}x^TQx + q^Tx + c$ for appropriate matrix, vector and scalar Q, q and c, respectively.
 - b. Show that f has only one stationary point, and that it is neither a max nor a min, but a saddle.
 - c. Provide a rough sketch of the contour lines of f.
- 9. Define the Rosenbrock function: $f(x) = 100(x_2 x_1^2)^2 + (1 x_1)^2$.
 - a. Compute $\nabla f(x)$ and $\nabla^2 f(x)$
 - b. Show that $x^* = (1,1)^T$ is the only local minimizer of f, and that the Hessian is positive definite at that point.