SCC0202 – Algoritmos e Estruturas de Dados I

Introdução a Árvores

Prof.: Dr. Rudinei Goularte

(rudinei@icmc.usp.br)

Instituto de Ciências Matemáticas e de Computação - ICMC Sala 4-229

Conteúdo

- Introdução
- Fundamentos e Terminologia
- Representações Gráficas
- Exercícios

Introdução

- Estrutura de listas: organização linear dos dados, onde sua propriedade básica é a relação sequencial mantida entre seus elementos
- Estrutura de árvores: organização dos dados de forma não-linear mantendo um relacionamento hierárquico entre seus elementos

Listas Lineares

TAluno

Nome

Curso

Departamento

A1 | A2 | A3 | A4 | A5 | A6 | A7 | ... | An

- Complexidade de tempo para os problemas
 - Listar os alunos do departamento Dx? O(n)
 - Listar os alunos do curso Cx? O(n)
 - Idade média dos alunos do curso Cx? O(n)
 - Ordenar por Curso e, dentro de cada Curso, por Nome? ??

Estrutura de árvore: exemplos

- Algumas situações onde é necessária um representação baseada na relação hierárquica entre os elementos
 - Árvores genealógicas
 - Organização de um livro
 - Representação da estrutura organizacional de uma instituição

Estrutura de árvore: exemplo de árvore genealógica

Estrutura de árvore: exemplo de organização de um livro

```
1. Livro XYZ
1. 1 Cap. 1
1.1.1 Seção 1
1.1.2 Seção 2
...
1.1.n Seção n
1.2 Cap. 2
...
1.m Cap. m
```

- Qual a complexidade?
 - Chegar a seção x do capítulo l...

Justificativas/vantagens

- Representatividade no relacionamento entre os dados
- Facilidades na manipulação computacional dos dados
- Utilizando essa abordagem para representar a Estrutura Organizacional da USP, teríamos maior facilidade na extração de informações como
 - Total de professores de um departamento
 - Total de salário dos funcionários de setor específico
 - Os diretores de cada centro/unidade
 - Entre outras...

Justificativas/vantagens

- Observe que para extrair informações específicas de uma determinada ramificação da árvore não é necessário o percurso por toda a estrutura de informação, uma vez que o relacionamento entre os dados nos permite uma consulta seletiva em regiões específicas da árvore!
 - Isso implica: possibilidade de unir vantagem da implementação encadeada com busca binária (em árvores binárias)!!

Definição

- Uma árvore enraizada T é um conjunto finito de elementos denominados **nós** ou vértices tais que
 - $T = \emptyset$, a árvore é dita vazia
 - $T = \{r\} \cup \{T_1\} \cup \{T_2\} \cup \{T_3\} \cup ... \cup \{T_n\}$
- Um nó especial da árvore, r, é chamado de raiz da árvore
- Os restantes constituem um único conjunto vazio ou são divididos em n ≥ 1 conjuntos disjuntos não vazios, T₁, T₂, T₃, . . . , Tₙ, as **subárvores** de r, cada qual por sua vez uma árvore

Definição

- Assim para denotar uma árvore T usamos
- □ $T = \{T_1, T_2, T_3, \dots, T_n\}$, com r a raiz da árvore e T_v a subárvore T com raiz em v
- Note que a definição apresentada é recursiva!

Representações gráficas para árvores

- A estrutura de árvore pode ser representada graficamente de diversas maneiras, dentre elas temos
 - conjuntos aninhados
 - indentação
 - grafos, sendo esta última a mais utilizada

Representação em conjuntos aninhados

Representação com indentação

D	
E	
F	
G	
H	
	.
J	
	. K
	. L
M	_

Representação utilizando grafos

Representação Aninhada

- Exemplo
 - □ Ta = {A}
 - □ Tb = {B, {C}}
 - □ Tc = {D, {E, {F}}, {G, {H, {I}}, {J, {K}, {L}}, {M}}}

Representação Aninhada

Exercícios

```
T_d = \{2, \{1\}, \{3\}\}
```

- \blacksquare T_e = {4, {2, {1}, {3}}, {6, {5}, {7}}}
- □ T_f = {Joao, {Daniel, {Andres}, {Fernanda}}, {Maria, {Marcos}, {Rafael}}}

- Considerando a árvore Tc e a definição dada de árvores anteriormente vejamos algumas terminologias básicas
 - O grau de um nó é o número de sub-árvores relacionadas àquele nó. Por exemplo: em Tc o grau do nó D é 2, de G é 3 e dos nós K, L, I, F e M é 0 (zero)
 - Nós com grau igual a zero não possuem sub-árvores, portanto são chamados nós folhas ou terminais
 - Se cada nó de uma árvore possui um grau máximo e todos os nós possuem o mesmo grau máximo, podemos definir este grau como o grau da árvore

- Para identificar os nós na estrutura, usamos denominações da relação hierárquica existente em uma árvore genealógica
 - Cada raiz ri da sub-árvore Ti é chamada filho de r. O termo neto é usado de forma análoga
 - O nó raiz r da árvore T é o pai de todas as raízes r, das sub-árvores T,. O termo avô é definido de forma análoga
 - Duas raízes r_i e r_j das sub-árvores T_i e T_j de T são ditas **irmãs**

Definição

- Outras definições importantes são obtidas a partir da distância de um nó em relação aos outros nós da árvore
 - **Caminho**: sequência não vazia de nós, $P = \{r_1, r_2, ..., r_k\}$, onde o i-ésimo nó r_i da sequência é pai de r_{i+1}
 - Comprimento: tomando a definição de caminho, o comprimento de um caminho P é igual a k 1

Definição

- Altura de um nó: a altura de um nó r_i é o comprimento do caminho mais longo do nó r_i a uma folha
 - As folhas têm altura 0 (zero)
- □ **Altura de uma árvore**: é igual a altura da raiz *r* de *T*
- □ **Profundidade**: a profundidade de um nó r_i de uma árvore T é o comprimento do único caminho em T entre a raiz r e o nó r_i
 - Qual é a maior profundidade entre todos os nós de uma árvore?
- Nível: um conjunto de nós com a mesma profundidade é denominado nível da árvore
 - A raiz está no nível 0 (zero)

- □ **Ascendência e descendência**: considerando dois nós r_i e r_j , o nó r_i é um ancestral de r_j se existe um caminho em T de r_i a r_j , tal que, o comprimento de P entre r_i e r_j seja diferente de 0 (zero)
 - De forma análoga se define o descendente de um nó

Exercícios

Considere a seguinte árvore:

$$T_e = \{a, \{b, \{c, \{d\}\}, \{e, \{f\}, \{g\}\}\}, \{h, \{i\}\}\}\}$$

- Obtenha as representações por conjunto, indentação e grafos
- Encontre o grau, altura e profundidade de cada nó
- Encontre todos os caminhos possíveis a partir da raiz com seus respectivos comprimentos

- Material baseado nos originais produzidos pelos professores:
 - Gustavo E. de A. P. A. Batista
 - Fernando V. Paulovich
 - Maria das Graças Volpe Nunes
- Referências (material parcialmente baseado em):
 - SZWARCFITER, J. L.; MARKENZON, L. Estruturas de Dados e seus Algoritmos, Livros Técnicos e Científicos, 1994.
 - TENEMBAUM, A.M., e outros Data Structures Using C, Prentice-Hall, 1990.