コンピュータグラフィックス

第3回:線を描く

デジタル画像の生成

走査変換(スキャンコンバージョン)

- ●ベクトルデータのデジタル画像化(ラスタライズ)
 - ■線分を描く
 - ■円を描く
 - ■台形を塗りつぶす
 - ■三角形を塗りつぶす
 - 任意の多角形を塗りつぶす

線分を描く

●2点 (x₀, y₀), (x₁, y₁) を結ぶ線分の生成

直線の方程式

水平線を描く

傾きを累積して斜線を描く

傾きの代わりに誤差を用いる

誤差の初期値をずらす

処理の整数化

- ●次に打つべき点の位置の候補は次の2つ
 - \blacksquare (x + 1, y + 1)
 - $\blacksquare (x+1,y)$

- ●上のいずれかを選択する
 - e に対する加減算の後, 符号判定により判断できる
 - eに関する処理に正の定数をかけても結果は同じ
- $\bullet e$ に関する処理を $2(x_1 x_0)$ 倍する

e に関する処理を $2(x_1 - x_0)$ 倍

始点と終点の変位

線分を生成する8分の1象限

象限ごとの処理

x の増分計算

 $dx \ge 0$ なら: $x \leftarrow x + 1$ それ以外なら: $x \leftarrow x - 1$

yの増分計算

 $dy \ge 0$ なら: $y \leftarrow y + 1$ それ以外なら: $y \leftarrow y - 1$

増分方向の決定

|dx|≧|dy| なら 右を |dx|+1回 繰り返し

それ以外なら 右を |*dy*|+1回 繰り返し

- x の増分計算
- y 方向の誤差 判定に基づくy の増分計算
- *y* の増分計算
- x 方向の誤差 判定に基づくx の増分計算

Bresenham のアルゴリズム (1)

Bresenham のアルゴリズム (2)

Bresenham のアルゴリズム (3)

Bresenham のアルゴリズム (4)

Bresenham のアルゴリズム (5)

円を描く

真の円との二乗誤差による判定

絶対値を使わずに判別する

- \bullet $d_{i+1} = E_q + E_r$ とおく
- 真の線が
 - Aを通るコース(Qを選ぶ)
 - $E_q < 0, E_r < 0 \Rightarrow d_{i+1} < 0$
 - Cを通るコース(Rを選ぶ)
 - $E_q > 0, E_r > 0 \Rightarrow d_{i+1} > 0$
 - Bを通るコース
 - $E_q > 0, E_r < 0$
 - Qを選ぶべきコースなら
 - $|E_q| < |E_r| \Rightarrow d_{i+1} < 0$
 - ・ Rを選ぶべきコースなら
 - $|E_q| > |E_r| \Rightarrow d_{i+1} > 0$

d_{i+1}を漸化式で表す

$$d_{i+1} = E_q + E_r = \{ (x_i + 1)^2 + y_i^2 - r^2 \} + \{ (x_i + 1)^2 + (y_i - 1)^2 - r^2 \}$$

$$d_i = \{ (x_{i-1} + 1)^2 + y_{i-1}^2 - r^2 \} + \{ (x_{i-1} + 1)^2 + (y_{i-1} - 1)^2 - r^2 \}$$

$$d_{i+1} - d_i = \{ (x_i + 1)^2 + y_i^2 - r^2 \} + \{ (x_i + 1)^2 + (y_i - 1)^2 - r^2 \}$$
$$- \{ (x_{i-1} + 1)^2 + y_{i-1}^2 - r^2 \} + \{ (x_{i-1} + 1)^2 + (y_{i-1} - 1)^2 - r^2 \}$$

d_i < 0 のとき

●この場合はQを選択

$$\begin{cases} x_i = x_{i-1} + 1 \\ y_i = y_{i-1} \end{cases}$$

●これを代入すれば

$$d_{i+1} - d_i = 4x_{i-1} + 6$$
$$d_{i+1} = d_i + 4x_{i-1} + 6$$

$d_i \ge 0$ のとき

●この場合は R を選択

$$\begin{cases} x_i = x_{i-1} + 1 \\ y_i = y_{i-1} - 1 \end{cases}$$

●これを代入すれば

$$d_{i+1} - d_i = 4(x_{i-1} - y_{i-1}) + 10$$

$$d_{i+1} = d_i + 4(x_{i-1} - y_{i-1}) + 10$$

起点(真上)では

Michener のアルゴリズム (1)

Michener のアルゴリズム (2)

Michener のアルゴリズム (3)

Michener のアルゴリズム (4)

おわり