Partielle Differentialgleichungen I – Prof. Hieber SS16

Fabian Gabel

2. Oktober 2016

Inhaltsverzeichnis

1	Die Transportgieichung und Methode der Charakteristik	2
2		5
3		5
4		5
5		5
6	Elliptische Randwertprobleme: Der Fall $n=1$	6
7	Sovolevräume und Randwertprobleme II	11
8	Der Raum der Testfunktionen $D(\Omega)$ und der Raum der Distributionen $D'(\Omega)$	16
9	Fundamentallösungen	25
10	Distributionen mit kompaktem Träger und Faltung	25
11	Faltung von Distributionen mit kompaktem Träger	26
12	Fouriertransformation auf $\mathcal{S}(\mathbb{R}^n)$	28
13	Temperierte Distributionen und Fouriertransformation	33
14	Nichtlineare Randwertprobleme	38
15	Hopfsches Maximumsprinzip	46
16	Das Maximumsprinzin für parabolische Gleichungen	49

Lineare Grundtypen

Die Transportgleichung und Methode der Charakteristik

Physikalische Interpretation 1.1

u = u(t, x) "Dichte" eines Stoffes in "Röhre" mit Querschnitt A.

 $\phi = \phi(t, x)$ Fluss an Stelle X zur Zeit t.

Bilanzgleichung:

$$\underbrace{A\phi(t,a)}_{\text{Zufluss}} - \underbrace{A\phi(t,b)}_{\text{Abfluss}} = \frac{d}{dt} \int_a^b u(t,x) A dx$$

Bestimmung des Flusses: $\phi = \phi(t, x, u)$

- a) lineare Konvektion: $\phi = bu$, d.h. $u_t + bu_x = 0$.
- b) nichtlineare Konvektion: $\phi = \phi(u)$

$$\rightsquigarrow u_t + (\phi(u))_x = 0$$

$$\rightsquigarrow u_t + \phi'(u)u_r = 0$$

Lineare Konvektion

 $\phi = au, a \in \mathbb{R}.$

Betrachte: $u_t + au_x = 0, t > 0, x \in \mathbb{R}$

Setze: $\omega \colon \mathbb{R} \to \mathbb{R}, w(s) := u(t+s, x+sa).$

$$\implies \omega'(s) = u_t(t+s, x+sa) + u_x(t+s, x+sa)a = 0$$
 für alle s.

 $\implies \omega$ konstant, d.h. uist auf der Geraden durch (t,x)mit Steigung (1,a)konstant!

Betrachte (AWP): T > 0

(*)
$$\begin{cases} u_t + a(t, x)u_x &= 0, x \in \mathbb{R}, t \in (0, T) \\ u(0, x) &= u_0(x) \end{cases}$$

Sei $u_0: \mathbb{R} \to \mathbb{R}$ stetig, $a: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ in C^1 .

<u>Idee:</u> Suche Kurve in $\mathbb{R} \times \mathbb{R}$ derart, dass auf dieser jede Lösung von (*) konstant ist. Eine solche Kurve heißt <u>Charakteristik</u> von (*).

Hierzu sei $\Gamma: J \to \mathbb{R}^n$ Kurve der Form $\Gamma(s) = (s, \gamma(s))$ mit $J \subset \mathbb{R}$ offenes Intervall, $\gamma \in C^1$.

Also: Γ Charakteristik $\iff 0 = \frac{d}{ds}u(s,\gamma(s)) = u_t(s,\gamma(s)) + \gamma'(s)u_x(s,\gamma(s))$ für alle Lösungen u.

also: Γ Charakteristig, falls $\underbrace{\gamma'(s) \stackrel{(*)}{=} a(s, \gamma(s)), s \in J}_{(1)}$

PL \Longrightarrow (1) besitzt genau eine Lösung $\gamma \in C^1(J)$ mit $\gamma(t) = x$.

Ist $0 \in J$, so haben wir bewiesen:

$$u(t,x) = u(t,\gamma(t)) = u(0,\gamma(0)) = u_0(\gamma(0))$$

1.3 Satz

Sei $u \in C^1([0,T] \times \mathbb{R})$ Lösung von (*) und $\gamma \in C^1$. Lösung von $\gamma'(s) = a(s,\gamma(s)), \gamma(t) = x$ (Also Kurve durch (t,x)). Dann:

 $u(t,x) = u_0(\gamma(0))$ und u konstant entlang Γ .

1.4 Beispiel: lineare Transportgleichung

$$\begin{cases} u_t + au_x & = 0, x \in \mathbb{R}, t > 0 \\ u(0, x) = u_0(x), a \in \mathbb{R} \end{cases}$$

obige ODE: $\gamma'(s) = a \implies \gamma(s) = c + as$

Gerade durch (t, x) ist gegeben durch

$$\gamma(s) = x + a(s - t)$$

$$\overset{\text{Satz 1.3}}{\Longrightarrow} u(t,x) = u_0(\gamma(0)) = u_0(x-at), u_0 \in C^1$$

1.5 Beispiel: Transport mit variablem Koeffizienten

$$\begin{cases} u_t + xu_x &= 0, t > 0, x \in \mathbb{R} \\ u(0, x) = u_0(x) \end{cases}$$

Dann gilt $\gamma'(s) = \gamma(s)$, Lösung $\gamma(s) = ce^s$.

Mit $x = ce^t folgt \gamma(s) = xe^{-t+s}$ und $\gamma(0) = xe^{-t}$.

Also gilt: $u(t,x) = u_0(xe^{-t})$.

$$G_c = \{(x, t) = xe^{-t} = c\}, t = \log(\frac{x}{c}).$$

1.6 Beispiel: Burgers Gleichung

Sei $\phi(u) = \frac{1}{2}u^2$ und betrachte die Gleichung

$$\Rightarrow \begin{cases} u_t + uu_x &= 0\\ u(0, x) = u_0(x) \end{cases}$$

Betrachte

(*)
$$\begin{cases} \gamma'(s) &= u(s, \gamma(s)) \\ \gamma(t) = x \end{cases}$$

Weitere Ableitung liefert

$$\gamma''(s) = u_t + \gamma'(s)u_x \stackrel{(*)}{=} u_t + u \cdot u_x \stackrel{\text{PDE}}{=} 0$$

 \implies Charakteristiken sind Geraden (durch Steigung γ' und Punkt ($\gamma(t) = x$) festgelegt) und

$$\gamma(s) = \gamma'(t)(s-t) + x = u(t,x)(s-t) + x$$

 \implies (*) besitzt Lösung für $s \ge 0$.

Rechne: $\frac{d}{ds}u(s,\gamma(s)) = u_t + \gamma'(s)u_x = u_t + uu_x = 0$ und es gilt:

$$u(t,x) = u(t,\gamma(t)) = u(0,\gamma(0)) = u_0(\gamma(0)) = u_0(x - tu(t,x))$$

Bemerkung. Dies ist eine implizite Gleichung für u. Betrachte spezielles $u_0(x) = \alpha x, \alpha \neq 0$.

Dann ist $u(t,x) = \alpha x - \alpha t u(t,x)$

$$\implies u(t,x) = \frac{\alpha x}{1+\alpha t}.$$

Betrachte:

1) $\alpha>0$: $1+\alpha t>0 \implies t=\frac{x}{x}-\frac{1}{\alpha}$ ist implizite Parametrisierung der Niveaulinie zu c

$$G_c = \{(t, x) : t \ge 0, x \in \mathbb{R}, u(t, x) = c\}$$

2)
$$\alpha < 0$$
: N.R: $t = 0 \implies x = \frac{c}{\alpha}, x = 0 \implies t = \frac{1}{|\alpha|}$

Schwache Lösungstheorie in Sobolevräumen

6 Elliptische Randwertprobleme: Der Fall n = 1

Dirichlet
problem
$$\begin{cases} -u'' = f \text{ auf } [0,1], f \in ([0,1]) \\ u(0) = u(1) = 0 \end{cases}$$

klassische Lösung: $u \in C^2([0,1])$, welches (DP) erfüllt.

Zugang in 4 Schritten

- (A) Einführung einer schwachen Lösung → Sobolevraum
- (B) Existenz und Eindeutigkeit einer schwachen Lösung
- (C) Reularität der schwachen Lösung
- (D) Rückkehr zur klassischen Lösung

$$I=(a,b)\subseteq\mathbb{R}, -\infty\leq a< b\leq\infty$$
 Sei $u\in C^1(\overline{I}), \varphi\in C^\infty_c(I)$

$$\int_I u' \varphi dx = \underbrace{u \varphi|_a^b}_{=0 \text{ wegen kompaktem Träger}} - \int_I u \varphi' dx$$

6.1 Definition

Wir definieren <u>Sobolevraum</u> $H_1(I)$ via

$$H^1(I) := \left\{ u \in L^2(\Omega) \colon \text{ es existiert } g \in L^2(I) \text{ mit } \int_I u \varphi' dx = - \int_I g \varphi dy \text{ für alle } \varphi \in C_c^\infty(I) \right\}$$

Für $u \in H^1(I)$ heißt Du := g die schwache Ableitung von u.

Bemerkung. Die Funktion g ist eindeutig bestimmt (Fundamentallemma).

Beispiel. $u(x) = \frac{1}{2}(|x| + x)$

$$\implies u \in H^{1}(I) \ und \ Du = H \ mit \ H(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & -1 < x < 0 \end{cases}$$

Versehe $H^1(I)$ mit Skalarprodukt:

$$(u,v)_{H^1} := (u,v)_{L^2} + (u',v')_{L^1}$$

und Norm

$$||u||_{H^1} := (||u||_{L^2}^2 + ||u'||_{L^2}^2)^{\frac{1}{2}}$$

6.2 Lemma

 $H^1(I)$ ist ein Hilbertraum. Übungsaufgabe.

6.3 Satz

Sei $u \in H^1(I)$. Dann existiert $\tilde{u} \in C(\overline{I})$ mit $\tilde{u} = u$ fast überall auf I und

$$\tilde{u}(x) - \tilde{u}(y) = \int_{y}^{x} u'(s)ds, \quad x, y \in \overline{I}.$$

Beweis: Übungsaufgabe

6.4 Satz

Sei $-\infty < a < b < \infty$. Dann ist die Einbettung

$$H^1(a,b) \hookrightarrow C([a,b])$$

kompakt.

Beweis. Zu besprechen

6.5 Korollar (partielle Integration in H^1)

Seien $u, v \in H^1(a, b)$. Dann $u \cdot v \in H^1(a, b)$ und es gilt:

$$(uv)' = u'v + uv'$$
 sowie $\int_y^x u'v = uv|_y^x - \int_y^x uv'$

für $x, y \in [a, b]$.

6.6 Satz

Sei $-\infty < a < b < \infty, u \in L^2(a,b)$. Dann

$$u \in H^1(a,b) \iff \text{es existiert } C > 0 \text{ mit } |\int_a^b u\varphi'| \le C \|\varphi\|_{L^2}$$

für alle $\varphi \in C_c^{\infty}(a, b)$.

Beweis. \Rightarrow :

⇐: Betrachten Abbildung

$$f \colon C_c^{\infty}(I) \ni \varphi \mapsto -\int_a^b u\varphi' dx$$

Dann ist f Linearform, definiert auf dichtem Teilraum von L^2

 \implies es existiert stetige Fortsetzung auf $L^2(a,b)$.

 $\stackrel{\text{R.F.}}{\Longrightarrow} \text{ es existiert genau ein } g \in L^2(a,b) \text{ mit } f(\varphi) = (g,\varphi), \varphi \in L^2.$

Insb. $-\int u\varphi' = \int g\varphi$ für alle $\varphi \in C_c^{\infty}(I)$.

$$\stackrel{\mathrm{Def.}}{\Longrightarrow} \ u \in H^1(a,b)$$

Definition 6.7

Seien $\infty < a < b < \infty$. Setze

$$H_0^1(a,b) := \overline{C_c^{\infty}(a,b)}_{\|\cdot\|_{H^1(a,b)}}$$

und versehe $H_0^1(a,b)$ mit der induzierten Topologie.

Bemerkung. Dann ist auch $H^1_0(a,b)$ ein Hilbertraum.

6.8 Satz

Sei $u \in H^1(a, b)$ mit $-\infty < a < b < \infty$. Dann

$$u \in H_0^1(a, b) \iff u(a) = u(b) = 0.$$

Beweis Übungsaufgabe.

6.9 Satz (Poincare)

Seien $-\infty < a < b < \infty$. Dann existiert C > 0 mit $\|u\|_{L^2(a,b)} \le C\|u'\|_{L^2(a,b)}$ für $u \in H^1_0(a,b)$.

Beweis. Sei $u \in H^1_0(a, b)$, a < x < b. $u(x) \stackrel{6.8}{=} u(x) - u(a) \int_a 1 \cdot u'(x) ds$

$$u(x) \stackrel{6.8}{=} u(x) - u(a) \int_{-1}^{6.3^x} 1 \cdot u'(x) ds$$

$$|u(x)|^{2} \stackrel{\text{C.S.}}{\leq} \left(\int_{a}^{x} 1 ds \right) \left(\int_{a}^{x} |u'(s)|^{2} ds \right) \leq (b-a) \|u'\|_{2}^{2}$$

$$\implies \|u\|_{2}^{2} \leq (b-a)^{2} \|u'\|_{L^{2}}^{2} \implies \|u\|_{2} \leq (b-a) \|u'\|_{2}$$

6.10 Definition

Sei $m \geq 2$. Setze $H^m(I) := \{u \in H^{m-1}(I) \colon u' \in H^{m-1}(I)\}$

Bemerkung. $u \in H^m(I) \iff \text{es gibt } g_1, \dots, g_m \in L^2(I) \text{ mit}$

$$\int_{I} uD^{j}\varphi = (-1)^{j} \int_{I} g_{j}\varphi, \quad \varphi \in C_{c}^{\infty}(I), j = 1, \dots, m$$

Notation. $D^2u := u'' := (u')', D^mu$ analog.

Bemerkung. Versehen mit Skalarprodukt

$$(u,v)_{H^m} := (u,v)_{L^2} + \sum_{j=1}^m (D^j u, D^j v)_{L^2}$$

und zugehöriger Norm

$$||u||_{H^m} := \left(\sum_{j \le m} ||D^j u||_{L^2}^2\right)^{\frac{1}{2}}$$

ist $H^m(I)$ ein Hilbertraum.

6.11 Lemma (Fundamentallemma der Variationsrechnung)

Sei $\Omega \subseteq \mathbb{R}^n$ offen, $f \in L^1_{loc}(\Omega)$. Falls

$$\int_{\Omega} f\varphi = 0 \quad \text{für } \varphi \in C_c^{\infty}(\Omega),$$

dann: f = 0 fast überall in Ω .

Beweis findet sich in Alt Funktionalanalysis.

Zurück zum Dirichletproblem

6.12 Definition

Eine schwache Lösung des (DP) ist eine Funktion $u \in H^1_0(a,b)$ mit

$$\int u'v' = \int fv, \quad v \in H_0^1(a,b).$$

Schritt A: klassische Lösung \implies schwache Lösung

Sei
$$v \in H_0^1(a,b), f \in L^2(a,b)$$
. Dann
$$\stackrel{6.5}{\Longrightarrow} - \int u''v = -u'v|_a^b + \int u'v' = \int fv$$

Schritt B: Existenz und Eindeutigkeit einer schwachen Lösung

Z.z.: Für $f \in L^2(a,b)$ existiert genau ein $u \in H^1_0(a,b)$ mit

$$\int u'v' = \int fv \tag{*}$$

Beweis. Definiere $a(u,v) := \int_I u'v', u,v \in H_0^1(a,b).$

Dann ist a stetige und koerzive Bilinearform auf H_0^1 , denn

$$|a(u,v)|^2 \stackrel{\text{H\"older}}{\leq} (\int (u')^2)(\int (v')^2) \leq ||u||_{H^1}^2 ||v||_{H^1}^2 \implies a \text{ stetig.}$$

a koerziv, denn

$$\begin{array}{l} a(u,u) = \int_a^b |u'|^2 = \frac{1}{2} \int |u'|^2 + \frac{1}{2} \int |u'|^2 \\ \geq \frac{1}{2} \int |u'|^2 + \frac{1}{2c} \int_a^b |u|^2 \geq \tilde{C} \|u\|_{H^1}^2, u \in H^1_0(I). \end{array}$$

Also ist a stetige, koerzive Bilinearform.

Betrachte rechte Seite von (*): Linearform $\varphi \colon v \mapsto \int fv$.

 $\text{Lax-Milgram} \implies \text{es existiert genau ein } u \in H^1_0(a,b) \text{ mit } a(u,v) = \varphi(v) \text{ für alle } v \in H^1_0(a,b).$

D.h.:
$$\int_a^b u'v' = \int fv, v \in H_0^1(a,b)$$
, also schwache Lösung des (DP).

Schritt C: Regularität

Zeige: $f \in L^1(a,b), u \in H^1_0(a,b)$ schwache Lösung $\implies u \in H^2(a,b)$.

Denn: $\int u'v = \int fv, v \in C_c^{\infty}(a, b)$.

$$\overset{\text{Satz 6.6} \, + \, \text{H\"{o}lder}}{\Longrightarrow} \, u' \in H^1(a,b) \implies u \in H^2(a,b)$$

Weiter $f \in L^2(a,b) \cap C[a,b] \implies u \in C^2[a,b]$, denn:

$$u' \in H^1 \implies \int_a^b u'v' = u'v|_a^b - \int_a^b u''v = \int_a^b fv$$

$$\implies \int_a^b (f + u'')v = 0, v \in C_c^{\infty}(a, b)$$

Fundamentallemma -u'' = f fast überall und da f stetig folgt $u \in C^2([a, b])$.

Schritt D: Rückkehr zur klassischen Lösung

Sei $u \in C^2(\overline{I})$ schwache Lösung des (DP) $\implies u$ klassische Lösung von (DP)

Beweis. Da $u \in H_0^1(a, b)$ gilt nach Satz 6.8: u(a) = u(b) = 0 und

$$\int u'v' = \int fv, v \in C_c^{\infty}(a,b) \stackrel{\text{part. Int}}{\Longrightarrow} \int (-u'' - f)v = 0, v \in C_c^{\infty}(a,b)$$

Fundamentallemma -u'' - f = 0 fast überall.

$$u \in C^2[a,b] \implies -u'' = f$$

Zusammenfassend gilt:

6.13 Theorem

- a) für alle $f \in L^2(a,b)$ existiert genau eine schwache Lösung des (DP)
- b) ist f zusätzlich stetig, so existiert genau eine klassische Lösung des (DP)

7 Sovolevräume und Randwertprobleme II

Sei $\Omega \subseteq \mathbb{R}^n$ offen.

7.1 Definition

Der Sobolevraum $H^1(\Omega)$ ist definiert durch

Bemerkung. a) Das Fundamentallemma impliziert, dass die g_i eindeutig bestimmt sind.

b) Für $u \in H^1(\Omega)$ definiert man $\frac{\partial u}{\partial x_i} := g_i$ und $\nabla u := (\frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n}) = \operatorname{grad} u$.

Wir versehen $H^1(\Omega)$ mit dem Skalarprodukt

$$(u,v)_{H^1} := (u,v)_{L^2} + \sum_{i=1}^n \left(\frac{\partial u}{\partial x_i}, \frac{\partial v}{\partial x_i}\right)_{L^2}$$

und der zugehörigen Norm

$$||u||_{H^1(\Omega)} = \left(||u||_{L^2}^2 + \sum_{i=1}^n ||\frac{\partial u}{\partial x_i}||_{L^2}^2\right)^{\frac{1}{2}}.$$

7.2 Satz

Der Raum $H^1(\Omega)$ ist ein Hilbertraum.

Beweis Übung.

Sei $m \geq 2$. Der Raum $H^m(\Omega)$ sei definiert durch

Mit Skalalprodukt

$$(u,v)_{H^m(\Omega)} := \sum_{|\alpha| \le m} (D^{\alpha}u, D^{\alpha}v)_{L^2}$$

ist $H^m(\Omega)$ ein Hilbertraum.

7.3 Definition

Wir definieren den Raum $H_0^1(\Omega)$ durch

$$H_0^1(\Omega) := \overline{C_c^{\infty}}_{\|\cdot\|_{H^1(\Omega)}}.$$

Bemerkung.a) Mit der von H^1 induzierten Norm ist $H^1_0(\Omega)$ ein Hilbertraum.

b) Im Allgemeinen gilt $H_0^1(\Omega) \neq H^1(\Omega)$.

7.4 Dirichlet-Problem

Sei $\Omega \subseteq \mathbb{R}^n$ offen, beschränkt. Finde $u \colon \overline{\Omega} \to \mathbb{R}$ mit

(DP)
$$\begin{cases} -Deltau &= f \text{ in } \Omega \\ u = 0 \text{ auf } \partial \Omega \end{cases}$$

wobei $\Delta u := \sum_{i=1}^n \frac{\partial^2 u}{\partial x_i^2}$ der Laplace-Operator angewand auf u sei. Die Bedingung $u|_{\partial\Omega} = 0$ heißt Dirichlet-Randbedingung.

Notation. Eine klassische Lösung von (DP) ist eine Funktion $u \in C^2(\overline{\Omega})$, die (DP) löst. Eine schwache Lösung von (DP) ist eine Funktion $u \in H^1_0(\Omega)$ mit

$$\int_{\Omega} \nabla u \nabla v = \int_{\Omega} f v \quad \text{ für } v \in H_0^1(\Omega).$$

Schritt A: klassische Lösung \implies schwache Lösung

7.5 Lemma

Sei $\Omega \subseteq \mathbb{R}^n$ mit glattem Rand, $u \in H^1(\Omega) \cap C(\overline{\mathbb{R}})$. Dann gilt:

$$u \in H_0^1(\Omega) \iff u = 0 \text{ auf } \partial\Omega$$

Beweis. Siehe Evans S.273.

Sei u klassische Lösung. Dann $u \in H^1(\Omega) \cap C(\overline{\Omega}) \stackrel{7.5}{\Longrightarrow} u \in H^1_0(\Omega)$.

Ferner: Für $v\subseteq C_c^\infty(\Omega)$ gilt nach Divergenz-Satz (z.B. Evans S.712):

$$0 = \int_{\partial\Omega} v \frac{\partial u}{\partial \nu} d\sigma = \int_{\Omega} \operatorname{div} (v \nabla u) = \int_{\Omega} \nabla v \nabla u + \int_{\Omega} v \Delta u$$

$$\implies \text{ für } v \in C_c^{\infty}(\Omega) \colon \int_{\Omega} \nabla v \nabla u = \int_{\Omega} fv$$

 $\stackrel{\text{Dichtheit}}{\Longrightarrow} u$ schwache Lösung von (DP).

Schritt B: Dirichletsches Prinzip

Für $f\in L^2(\Omega)$ existziert genau ein $u\in H^1_0(\Omega):u$ schwache Lösung von (DP). zum Beweis:

7.6 Satz (Poincaresche Ungleichung)

Sei $\Omega \subseteq \mathbb{R}^n$ offen, beschränkt. Dann existiert $C = C(\Omega) > 0$, sodass für $u \in H_0^1(\Omega)$ gilt

$$||u||_{L^2(\Omega)} \le C||\nabla u||_{L^2}.$$

Beweis. Siehe Übung 6

Betrachte auf H_0^1 die Bilinearform $a(u,v) := \int_{\Omega} \nabla u \nabla v$ und die Linearform $\varphi(v) := \int_{\Omega} fv$.

Dann: a, φ stetig: klar (Hölder)

a koerzitiv:

$$\begin{split} a(u,u) &= \int_{\Omega} |\nabla u|^2 = \frac{1}{2} \int |\nabla u|^2 + \frac{1}{2} \int |\nabla u|^2 \\ & \overset{\text{Poincare}}{\geq} \frac{1}{2} \int |\nabla u|^2 + \frac{1}{2C^2} |u|^2 \geq \text{const} \cdot \|u\|_{H^1}^2 \quad \text{ für alle } u \in H^1_0 \end{split}$$

Mit Lax-Milgram folgt: Es existiert genau ein $u \in H^1_0(\Omega)$ mit $a(u,v) = \varphi(v)$ für alle $v \in H^1_0(\Omega)$.

Schritt C: Regularität der schwachen Lösung

ohne Beweis: Sei $f \in L^2$ und u schwache Lösung von (DP), $\partial \Omega$ glatt. Dann

- a) Sei $f \in H^m(\Omega)$. Dann $u \in H^{m+2}$ und $||u||_{H^{m+2}} \le c||f||_{H^m}$.
- b) Sei $m>\frac{n}{2}$. Dann $H^{m+2}(\Omega)\hookrightarrow L^2(\Omega)$ (Sobolevsche Einbettungssätze).

Schritt D: Rückkehr zur klassischen Lösung

Sei $f \in H^m$ mit $m > \frac{n}{2} \stackrel{\text{Bew. (*)}}{\Longrightarrow}$ schwache Lösung $u \in H_0^1(\Omega) \cap C^2(\overline{\Omega}) \stackrel{\text{Lemma 7.5}}{\Longrightarrow} u = 0$ auf $\partial\Omega$.

Weiter: für $v \in C_c^{\infty}(\Omega)$: $\int -\Delta u = \int fv$.

 $\stackrel{\text{Fundamental lemma}}{\Longrightarrow} -\Delta u = f \text{ fast "uberall" in } \Omega$

 $\stackrel{u \in C^2}{\Longrightarrow} -\Delta u = f$, d.h. u ist klassische Lösung von (DP).

Beweis von (*):

Lemma (Lemma von Sobolev). Sei $\Omega \subseteq \mathbb{R}^n$ offen, $m > \frac{n}{2} + k$, $u \in H^m(\Omega)$, dann existiert $g \in C^k(\Omega)$ mit g = u fast überall. Mit anderen Worten: $H^m(\Omega) \hookrightarrow C^k(\Omega)$, falls $m > \frac{n}{2} + k$.

Beweis. Für $\Omega = \mathbb{R}^n$ via Fourier-Trafo:

Bekannt: $g \in L^1(\mathbb{R}^n)$, $x^{\alpha}g \in L^1(\mathbb{R}^n)$ für $|\alpha| \leq k$, dann $\hat{g} \in C^k(\mathbb{R}^n)$ (**).

Idee: Zeige $f \in H^m(\mathbb{R}^n) \stackrel{!}{\Longrightarrow} \xi^{\alpha} \hat{f} \in L^1(\mathbb{R}^n) (\Longrightarrow f \in C^k(\mathbb{R}^n)).$

$$\begin{split} \int_{\mathbb{R}^n} |\xi^{\alpha} \hat{f}(\xi)| d\xi &\leq \int_{\mathbb{R}^n} (1 + |\xi|^2)^{\frac{|\alpha|}{2}} |\hat{f}(\xi)| d\xi \\ &= \int_{\mathbb{R}^n} (1 + |\xi|^2)^{\frac{m}{2}} |\hat{f}(\xi)| \frac{1}{(1 + |\xi|^2)^{\frac{m-|\alpha|}{2}}} d\xi \\ &= \left(\int_{\mathbb{R}^n} (1 + |\xi|^2)^m |\hat{f}(\xi)|^2 d\xi \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^n} \frac{1}{(1 + |\xi|^2)^{m-|\alpha|}} d\xi \right)^{\frac{1}{2}} \end{split}$$

Also gilt $\xi^{\alpha} \hat{f} \in L^1(\mathbb{R}^n) \stackrel{(**)}{\Longrightarrow} f \in C^k(\mathbb{R}^n)$.

Für $\Omega \subseteq \mathbb{R}^n$ setze f glatt auf \mathbb{R}^n fort.

7.7 Störung niedriger Ordnung

Sei $\Omega \subseteq \mathbb{R}^n$ offen, beschränkt. Finde $u \colon \overline{\Omega} \to \mathbb{R}$ mit

(P)
$$\begin{cases} -\Delta u + \lambda u = f \text{ in } \Omega \\ u = 0 \text{ auf } \partial \Omega \end{cases}$$

für ein $\lambda \in \mathbb{R}$.

Eine schwache Lösung von (P) ist $u \in H_0^1(\Omega)$ mit

$$\int_{\Omega} \nabla u \nabla v + \int_{\Omega} \lambda u v = \int_{\Omega} f v \text{ für alle } v \in H_0^1(\Omega).$$

Wie erhält man eine schwache Lösung?

$$a(u,v):=\int_{\Omega}\nabla u\nabla v+\int_{\Omega}\lambda uv,\quad \varphi(v)=\int_{\Omega}fv,\quad u,v\in H^1_0, f\in L^2.$$

 a, φ stetig auf $H_0^1(\Omega)$: nachrachnen \checkmark a koerziv:

$$\begin{split} a(u,u) &= \int_{\Omega} |\nabla u|^2 + \lambda \int_{\Omega} |u|^2 \\ &= \|nablau\|_2^2 + \lambda \|u\|_2^2 + \varepsilon \left(\int u^2 + \int |\nabla u|^2 - \int u^2 - \int |\nabla u|^2 \right) \quad (0 < \varepsilon < 1) \\ &= \varepsilon \|u\|_{H^n}^2 + (1 - \varepsilon) \|\nabla u\|_2^2 + (\lambda - \varepsilon) \|u\|_2^2 \\ &\stackrel{\text{Poincare}}{\geq} \varepsilon \|u\|_{H^1}^2 + \frac{1 - \varepsilon}{c^2} \|u\|_2^2 + (\lambda - \varepsilon) \|u\|_2^2 \\ &= \varepsilon \|u\|_{H^1}^2 + \left[\frac{1}{c^2} + \lambda - \varepsilon (1 + \frac{1}{c^2}) \right] \|u\|_2^2. \end{split}$$

d.h., falls $\frac{1}{c^2} > -\lambda$ (betrachte den Vorfaktor vor der Norm), so ist für hinreichend kleine ε die Bilinearform koerziv. $\frac{1}{c^2} > -\lambda \implies \frac{1}{c^2} + \lambda > 0$

Wir haben gezeigt:

7.8 Lemma

Falls $\frac{1}{c^2} > -\lambda$, so ist a koerzive, stetige Bilinearform auf $H_0^1(\Omega)$.

Mit Lax-Milgram: $\frac{1}{c^2} > -\lambda \implies$ es existiert genau ein $u \in H^1_0(\Omega)$, schwache Lösung von (P). Fixiere nun $\lambda_0 > -\frac{1}{c^2}$ und $a_{\lambda_0} := \int_{\Omega} \nabla u \nabla v + \lambda_0 \int uv$. Dan gibt es für jedes $f \in L^2$ ($\implies \varphi$ stetige Linearform) eine eindeutige schwache Lösung $u^* \in H^1_0(\Omega)$ von (P), d.h.

$$a_{\lambda_0}(u^*, v) = (f, v)_{L^2}$$

Die Abbildung $f \mapsto u^*$ induziert einen Operator $R_{\lambda_0} \colon L^2(\Omega) \to H^1_0(\Omega)$ mit folgenden Eigenschaften:

i) für
$$f\in L^2(\Omega), v\in H^1_0(\Omega)$$
 gilt $a_{\lambda_0}(R_{\lambda_0}f,v)=(f,v)_{L^2}$

ii) $R_{\lambda_0} \colon L^2(\Omega) \to H^1_0(\Omega)$ ist linear und stetig.

iii) $R_{\lambda_0} \colon L^2(\Omega) \to L^2(\Omega)$ ist kompakt.

Beweis. i) nach Definition

ii) Linearität: Seien $\alpha_1, \alpha_2 \in \mathbb{C}, f_1, f_2 \in L^2, v \in H_0^1$. Dann

$$a_{\lambda_0}(R_{\lambda_0}(\alpha_1 f_1 + \alpha_2 f_2) - \alpha_1 R_{\lambda_0}(f_1) - \alpha_2 R_{\lambda_0}(f_2), v)$$

$$\stackrel{\text{i)}}{=} (\alpha_1 f_1 + \alpha_2 f_2, v) - \alpha_1(f_1, v) - \alpha_2(f_2, v) = 0$$

Stetigkeit: z.z: $||R_{\lambda_0}f||_{H_0^1} \leq \text{const.} \cdot ||f||_{L^2}$

 $a_{\lambda_0} \text{ koerziv, d.h. es ex } \varepsilon_0 > 0 \text{: } \alpha_{\lambda_0}(w,w) \geq \varepsilon_0 \|w\|_{H^1_0}^2 \text{ für } w \in H^1_0.$

$$\implies \|R_{\lambda_0} f\|_{H_0^1}^2 \leq \frac{1}{\varepsilon_0} a_{\lambda_0} (R_{\lambda_0} f, R_{\lambda_0} f) \stackrel{\mathrm{i}}{=} \frac{1}{\varepsilon_0} (f, R_{\lambda_0} f)_{L^2} \stackrel{\mathrm{C.S.}}{\leq} \frac{1}{\varepsilon_0} \|f\|_{L^2} \|R_{\lambda_0} f\|_{L^2} \leq \frac{1}{\varepsilon} \|f\|_{L^2} \|R_{\lambda_0} f\|_{H_0^1}$$

$$\implies \text{für } f \in L^2, \|P_{\lambda_0} f\|_{L^2} \leq \frac{1}{\varepsilon} \|f\|_{L^2} \|R_{\lambda_0} f\|_{H_0^1}$$

 $\implies \text{ für } f \in L^2 \colon \|R_{\lambda_0} f\|_{H^1_0} \leq \tfrac{1}{\varepsilon} \|f\|_{L^2}$

 $\implies R_{\lambda_0}$ stetig.

(iii) Es gilt:

$$L^2(\Omega) \overset{R_{\lambda_0}}{\underset{\text{stetig}}{\longrightarrow}} H^1_0(\Omega) \overset{\text{kompakt}}{\underset{7.10}{\longleftrightarrow}} L^2(\Omega)$$

7.9 Satz (Rellich)

Sei $\Omega \subseteq \mathbb{R}^n$ offen, beschränkt. Dann ist $H_0^1(\Omega) \hookrightarrow L^2(\Omega)$ kompakt.

Beweis: Literatur.

8 Der Raum der Testfunktionen $D(\Omega)$ und der Raum der Distributionen $D'(\Omega)$

In diesem Abschnitt sei $\Omega \subseteq \mathbb{R}^n$ offen. Wir setzen $D(\Omega) := C_c^{\infty}(\Omega)$.

Beispiel.

$$\varphi(x) := \begin{cases} e^{-\frac{1}{1-|x|^2}} & : |x| < 1\\ 0 & : sonst \end{cases}$$

Dann gilt $\varphi \in D(\mathbb{R}^n)$.

8.1 Definition

Seien $(\varphi_j) \subseteq D(\mathbb{R}^n)$, $\varphi \in D(\Omega)$. Wir sagen $\varphi \to \varphi$ in $D(\Omega)$, fall

i) es existiert $K \subseteq \Omega$ kompakt mit supp $\varphi_j \subseteq K$ für alle $j \in \mathbb{N}$.

ii) $\lim_{j\to\infty} \|D^{\alpha}\varphi_j - D^{\alpha}\varphi\|_{\infty} = 0$ für alle Multiindizes α .

Bemerkung. $D(\Omega)$ mit diesem Konvergenzbegriff <u>nicht</u> metrisierbar.

8.2 Satz

Seien $\varphi_i \to \varphi$, $\psi_i \to \psi$ in $D(\Omega)$. Dann:

i) für $\beta_1, \beta_2 \in \mathbb{R}$ gilt:

$$\beta_1 \varphi_j + \beta_2 \psi_j \to \beta_1 \varphi + \beta_2 \psi.$$

ii) $D^{\alpha}\varphi \to D^{\alpha}\varphi$ in $D(\Omega)$ für alle Multiindices α , mit anderen Worten: D^{α} sit stetige Abbildung auf $D(\Omega)$

8.3 Defintion

Wir setzen $D'(\Omega) := \{T : D(\Omega) \to \mathbb{C} \text{ stetig, linear}\}$. Die Elemente von $D'(\Omega)$ heißen <u>Distributionen</u>.

Notation. $\langle \varphi, T \rangle := T(\varphi) \text{ für } \varphi \in D(\Omega).$

8.4 Satz

Sei $T: D(\Omega) \to \mathbb{C}$ linear. Dann sind äquivalent:

- i) $T \in D'(\Omega)$, d.h. T stetig.
- ii) für $K \subseteq \Omega$ kompakt gibt es $C \ge 0$, N = N(K,T), sodass für $\varphi \in D(\Omega)$ mit supp $\varphi \subseteq K$ gilt:

$$|T(\varphi)| \le C \sum_{|\alpha| \le N} ||D^{\alpha} \varphi||_{\infty}$$
 (*)

Beweis. ii) \Rightarrow i) \checkmark

i) \Rightarrow ii): Ang. Beh. falsch. Dann gibt es $K \subseteq \mathbb{R}^n$ kompakt, sodass für alle $N \in \mathbb{N}$ ein $\varphi_N \in D(\Omega)$ ex. mit supp $\varphi_N \subseteq K$ und $|T\varphi_N > N \sum_{|\alpha| \le N} \|D^\alpha \varphi_N\|_{\infty}$. Sei $\phi_j := \frac{\varphi_j}{|T\varphi_j|}$. Dann $\phi_j \to 0$ in $D(\Omega)$ aber $|T\phi_j| = 1$. Widerspruch.

Denn für alle Multiindices α gilt $\|D^\alpha \phi_j\|_{\infty} < \frac{1}{j}$, falls $\|D^\alpha (\varphi_j)\|_{\infty} \neq 0$.

8.5 Definition

Falls (*) gilt, so heißt \underline{T} von Ordnung N auf K. Falls T für alle kompakten $K \subseteq \Omega$ von Ordnung N auf K ist, so heißt \underline{T} von Ordnung N auf K. Falls K von Ordnung K auf K ist, so heißt K von endlicher Ordnung auf K.

8.6 Die Diracsche Distribution δ_a

Sei $a \in \Omega$. Wir setzen $\langle \varphi, \delta_y \rangle := \varphi(a)$ für $\varphi inD(\Omega)$. dann ist $\delta_a \in D'(\Omega)$, denn: Sei $\varphi_j \to \varphi inD(\Omega)$, dann $|langle\varphi_j, \delta_a\rangle| = |\varphi_j(a) - \varphi(a)| \le ||\varphi_j - \varphi||_{\infty} \stackrel{\alpha = \emptyset}{\to} 0$.

Notation. $\delta := \delta_0$

8.7 Der Cauchysche Hauptwert

Sei $\Omega = \mathbb{R}$. Dann $f(x) = \frac{1}{x} \in L^1_{loc}(\mathbb{R} \setminus \{0\}, \text{ aber } \int_{\mathbb{R}} \frac{\varphi(x)}{x} dx$ existiert nicht für alle $\varphi \in D(\mathbb{R})$. Man setze:

$$\langle \varphi, \operatorname{pv} \frac{1}{x} \rangle := \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \frac{\varphi(x)}{x} dx, \quad \varphi \in D(\mathbb{R}).$$

Dann ist pv $\frac{1}{x} \in D'(\mathbb{R})$, denn:

Sei $\varphi_j \to 0$ in $D(\mathbb{R})$. Dann ex. a > 0, sodass für $j \in \mathbb{N}$ gilt : supp $\varphi_j \in [-a, a]$. Nun:

$$\lim_{\varepsilon \to 0} \int_{|x| \ge \varepsilon} \frac{\varphi_j(x)}{x} dx = \lim_{\varepsilon \to 0} \left[\varphi_j(0) \underbrace{\int_{\varepsilon \le |x| \le a} \frac{1}{x} dx}_{=0 \text{ Symmetrie}} + \int_{\varepsilon \le |x| \le a} \frac{\varphi_j(x) - \varphi_j(0)}{x} dx \right]$$
$$= \int_{-a}^{a} \frac{\varphi_j(x) - \varphi_j(0)}{x} dx,$$

denn $\left|\frac{\varphi_j(x)-\varphi_j(0)}{x}\right| \le \|\varphi_j'\|_{C([-a,a])}$.

Da pv $\frac{1}{x}$: $D(\mathbb{R}) \to \mathbb{C}$ linear folgt aus

$$|\lim_{\varepsilon} \to 0 \int_{|x|>\varepsilon} \frac{\varphi_j(x)}{x} dx |M\widetilde{W}S2a||\varphi_j'||_{\infty} \to 0,$$

dass pv $\frac{1}{x}$ stetig und somit Distribution ist.

8.8 Weiteres Beispiel

$$\langle \varphi, \frac{1}{x \pm i0} \rangle := \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} \frac{1}{x \pm i\varepsilon} \varphi(x) dx, \quad \varphi \in D(\mathbb{R})$$

Dann $\frac{1}{x \pm i0} \in D'(\mathbb{R})$ und $\frac{1}{x \pm i0} = \text{pv } \frac{1}{x} \pm i\pi \delta$.

Beweis siehe Übung 9.

8.9 Satz

Sei $f \in L^1_{loc}(\Omega)$.

a) Dann def. die Abbildung $T_f : D(\Omega) \to \mathbb{C}$ gegeben durch:

$$\langle \varphi, T_f \rangle := \int_{\Omega} f \varphi dx$$

eine Distribution T_f in $D'(\Omega)$.

b) $T_f = 0$ in $D'(\Omega) \iff f = 0$ f.ü.

Beweis. a) Sei $\varphi_j \to \varphi$ in $D(\Omega)$. Dann ex. $K \subseteq \Omega$ kompakt, sodass supp $\varphi_j \subseteq K$ für $j \in \mathbb{N}$, supp $\varphi \subseteq K$ und $\|\varphi_j - \varphi\|_{\infty} \to 0$.

$$\implies |\langle \varphi_j - \varphi, T_f \rangle| = |\int_{\Omega} (\varphi_j - \varphi)f| \le ||\varphi_j - \varphi|| \int_K f dx \to 0.$$

b) Fundamentallemma.

8.10 Lemma

Sei $f \in L^1_{loc}(\Omega)$ mit $\int_{\psi} f = 0$ für alle $\psi \in C_c(\Omega)$. Dann f = 0 f.ü.

8.11 Definition

Seien $T_j, T \in D'(\Omega)$ für $j \in \mathbb{N}$. dann $T_j \to T$ in $D'(\Omega)$, falls $T_j(\varphi) \to T(\varphi)$ für $\varphi \in D(\Omega)$. Der Konvergenzbegriff auf $D'(\Omega)$ ist also der der schwach-*-Konvergenz.

8.12 Beispiele

a) Sei $(f_j) \subseteq C(\mathbb{R}^n)$ mit $f_j \to f$ gleichmäßig auf allen $K \subseteq \mathbb{R}^n$ kompakt. Dann:

$$\lim_{j} \int_{\mathbb{R}^{n}} f_{j}(x)\varphi(x)dx = \int_{\mathbb{R}^{n}} f(x)\varphi(x)dx$$

für alle $\varphi \in D(\mathbb{R}^n)$, d.h. $T_{f_j} \to T_f$ in $D'(\mathbb{R}^n)$.

b) Sei $f \in L^1(\mathbb{R})$ mit $||f||_{L^1} = 1$ und $f \ge 0$. Für $\varepsilon > 0$ setze $\varphi_{\varepsilon}(x) = \frac{1}{\varepsilon^n} f(\frac{x}{\varepsilon})$. Dann

$$T_{f_{\varepsilon}} \to \delta$$

in $D(\mathbb{R}^n)$.

c) expliziges Beispile: Gauß Kern

$$K(x) = \frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{|x|^2}{2}}$$

$$Dann ||K||_{L^1} = 1 \text{ und}$$

$$\frac{1}{\varepsilon^n} \frac{1}{(2\pi)^{fracn2}} e^{-\frac{|x|^2}{2\varepsilon}} \to \delta$$

d)

$$\langle \varphi, T_j \rangle := \int_{|x| > \frac{1}{i}} \frac{\varphi(x)}{x} dx.$$

Dann $T_j \to \operatorname{pv} \frac{1}{x}$ in $D'(\Omega)$. (Trick wie in 8.7 benutzen)

8.13 Elementare Operationen mit Distributionen: Multiplikation mit einer Funktion

Sei $a \in C^{\infty}(\Omega), T \in D'(\Omega)$. Man setzt:

$$\langle aT, \varphi \rangle := \langle T, a\varphi \rangle \quad \text{für } \varphi \in D(\Omega).$$

Beispiel. i) $(a\delta) = a(0)\delta$ für alle $a \in C^{\infty}(\mathbb{R}^n)$, denn:

$$\langle a\delta, \varphi \rangle = \langle \delta, a\varphi \rangle = a(0)\varphi(0) = a(0)\langle \delta, \varphi \rangle.$$

 $ii) x pv \frac{1}{x} = 1, denn$

$$\langle x \operatorname{pv} \frac{1}{x}, \varphi \rangle = \langle \operatorname{pv} \frac{1}{x}, x \varphi \rangle = \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \frac{x \varphi(x)}{x} dx = \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \varphi(x) dx = \int_{\mathbb{R}} \varphi(x) dx = \langle 1, \varphi \rangle,$$

für alle $\varphi \in D(\mathbb{R})$.

8.14 Ableitung einer Distribution

Sei $f \in C^1(\mathbb{R}^n) \implies T_f \in D'(\mathbb{R}^n)$. Also für $\varphi \in D(\mathbb{R}^n)$:

$$\langle T_{D_j f}, \varphi \rangle \stackrel{\text{Def}}{=} \int_{\mathbb{R}^n} (D_j f) \varphi dx = - \int_{\mathbb{R}^n} f D_j \varphi ds = - \langle T_f, D_j \varphi \rangle$$

Allgemein: $f \in C^k(\mathbb{R}^n), |\alpha| \leq k$. Dann

$$\langle T_{D^{\alpha}f}, \varphi \rangle = \int_{\mathbb{R}^n} (D^{\alpha}f)\varphi dx = (-1)^{|\alpha|} \int_{\mathbb{R}^n} fD^{\alpha}\varphi dx = (-1)^{|\alpha|} \langle T_f, D^{\alpha}\varphi \rangle.$$

Daher ist folgende Definition natürlich:

8.15 Definition

Sei $T \in D'(\Omega)$. Dann ist $D\alpha T$ definiert durch

$$\langle D^{\alpha}T, \varphi \rangle := (-1)^{|\alpha|} \langle T, D^{\alpha}\varphi \rangle \quad , \varphi \in D(\Omega), \alpha \text{ Multiindex.}$$

8.16 Bemerkung

- a) $T \in D'(\Omega)$, dann $D^{\alpha}T \in D'(\Omega)$ für jedes α , denn:
 - $D^{\alpha}T$ linear \checkmark
 - $D^{\alpha}T$ stetig. Z.z.: $\varphi_j \to \varphi$ in $D(\Omega) \implies D^{\alpha}\varphi_j \to D^{\alpha}\varphi$ in $D(\Omega)$. T stetig $\implies (-1)^{|\alpha|}\langle T, D^{\alpha}\varphi_j \rangle \to (-1)^{|\alpha|}\langle T, D^{\alpha}\varphi \rangle$ $\implies \langle D^{\alpha}T, \varphi_j \rangle \to \langle D^{\alpha}T, \varphi \rangle$
- b) Leibniz-Regel/Produktregel:

Seien $a \in C^{\infty}(\Omega), T \in D'(\Omega)$. Dann $aT \in D'(\Omega)$ (8.13) und

$$D^{\alpha}(aT) = \sum_{\beta \subseteq \alpha} {\alpha \choose \beta} D^{\beta} a D^{\alpha - \beta} T$$

Beweis Übungsaufgabe.

c) Sei $f \in C^k(\Omega)$ und $|\alpha| \leq k$. Dann stimmt $D^{\alpha}f$ im distributionellen Sinne mit der klassischen Ableintung $f^{(\alpha)}$ überein, denn

$$\langle T_{D^{\alpha}f}, \varphi \rangle = \int_{\mathbb{R}^n} (D^{\alpha}f)\varphi dx = \int_{\mathbb{R}^n} f^{(\alpha)}\varphi = \langle T_{f(\alpha)}, \varphi \rangle.$$

8.17 Beispiele

a) Die Heavyside-Funktion ist gegeben durch

$$H(x) = \begin{cases} 1, x > 0 \\ 0, x \le 0 \end{cases}.$$

Dann $H \in D'(\mathbb{R})$

$$\implies \langle H', \varphi \rangle \stackrel{\mathrm{Def}}{=} - \langle H, \varphi' \rangle = - \int_0^\infty \varphi'(x) dx = \varphi(0) = \langle \delta, \varphi \rangle,$$

für alle $\varphi \in D(\Omega) \implies H' = \delta$

b)
$$\langle D^{\alpha} \delta, \varphi \rangle = (-1)^{|\alpha|} \langle \delta, D^{\alpha} \varphi \rangle = (-1)^{|\alpha|} D^{\alpha} \varphi(0)$$

c) $D(\ln(|x|)) = \operatorname{pv}(\frac{1}{x})$, denn:

$$\begin{split} \langle D(\ln|x|), \varphi \rangle &= -\langle \ln|x|, D\varphi \rangle = -\int_{\mathbb{R}} \ln|x| \varphi'(x) dx \\ &= -\lim_{\varepsilon \to 0} \left[\varphi(-\varepsilon) \ln(\varepsilon) - \int_{-\infty}^{-\varepsilon} \frac{\varphi(x)}{x} dx - \ln(\varepsilon) \varphi(\varepsilon) - \int_{\varepsilon}^{\infty} \frac{\varphi(x)}{x} dx \right] \\ &= \lim_{\varepsilon \to 0} \left[-\underbrace{(\varphi(\varepsilon) - \varphi(-\varepsilon)) \ln(\varepsilon)}_{\to 0} + \int_{\infty}^{-\varepsilon} \frac{\varphi(x)}{x} dx + \int_{\varepsilon}^{\infty} \frac{\varphi(x)}{x} dx \right] \\ &= \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \frac{\varphi(x)}{x} dx = \langle \operatorname{pv} \frac{1}{x}, \varphi \rangle, \quad \varphi \in D(\mathbb{R}). \end{split}$$

Der vorletzte Schritt folgt aus Mittelwertsatz und l'Hospital, denn

$$\frac{2\varepsilon(\varphi(\varepsilon)-\varphi(-\varepsilon))}{2\varepsilon}\ln(\varepsilon)\leq 2\sup_{x\in[-\varepsilon,\varepsilon]}|\varphi'(x)|\varepsilon\ln(\varepsilon)\to 0$$

8.18 Der adjungierte Operator

Sei $A := \sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}$ ein Differentialoperator mit konstanten Koeffizienten $a_{\alpha} \in \mathbb{C}$. Sei $T \in D'(\Omega)$. Dann:

$$\langle AT, \varphi \rangle = \langle \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha} T, \varphi \rangle \stackrel{8.10, 8.13}{=} \sum_{|\alpha| \le m} (-1)^{|\alpha|} a_{\alpha} \langle T, D^{\alpha} \varphi \rangle$$
$$= \langle T, \sum_{|\alpha| \le m} (-1)^{|\alpha|} a_{\alpha} D^{\alpha} \varphi \rangle = \langle T, A^* \varphi \rangle$$

mit $A^* := \sum_{|\alpha| \leq m} (-1)^{|\alpha|} a_{\alpha} D^{\alpha}$ Adjungierte von A. Also $\langle AT, \varphi \rangle = \langle T, A^* \varphi \rangle$ für $\varphi \in D(\Omega)$.

Beispiel. Δ . Dann $\Delta * = \Delta$.

8.19 Translation

Für $a \in \mathbb{R}^n, T \in D'(\mathbb{R}^n)$ sei τ_a gegeben durch $\tau_a \varphi(x) := \varphi(x-a), \varphi \in D(\mathbb{R}^n)$. Definiere daher die <u>Translation von T</u> via

$$\langle \tau_a T, \varphi \rangle := \langle T, \tau_{-a} \varphi \rangle, \quad \varphi \in D(\mathbb{R}^n)$$

Zur Motivation betrachte $f \in L^1_{\text{loc}}$. Dann gilt mit der Substitution y = x - a:

$$\langle \tau_a T_f, \varphi \rangle = \int_{\mathbb{R}} \tau_a f(x) \varphi(x) dx = \int_{\mathbb{R}} f(y) \varphi(y+a) dy = \langle f, \tau_{-a} \varphi \rangle dx = \int_{\mathbb{R}} f(y) \varphi(y+a) dy = \langle f, \tau_{-a} \varphi \rangle dy = \langle f, \tau_{-a} \varphi \rangle$$

8.20 Spiegelung

Sei $\varphi \colon \mathbb{R}^n \to \mathbb{C}$ und $\tilde{\varphi}(x) := \varphi(-x)$. Setze dann

$$\langle \tilde{T}, \varphi \rangle := \langle T, \tilde{\varphi} \rangle \quad \varphi D(\mathbb{R}^n), T \in D'(\mathbb{R}^n)$$

Motivation analog zu Translation

Sei $f \in L^1_{loc}(\mathbb{R}^n), g \in D(\mathbb{R}^n)$. Setze h(y) := f(y)g(x-y). Falls $h \in L^1(\mathbb{R}^n)$, so ist

$$(f * g)(x) = \int_{\mathbb{R}^n} g(x - y) f(y) dy$$

wohldefiniert.

Betrachte $\varphi \mapsto \langle T_f, \varphi \rangle = \int f(y)\varphi(y)dy$. Dann $(f * g)(x) = T_f(\tilde{\tau}_x g)$ mit $\tilde{\tau}_x g(y) = g(x - y)$. Daher ist die folgende Definition natürlich:

8.21 Definition

Sei $T \in D'(\mathbb{R}^n), \varphi \in D(\mathbb{R}^n)$. Definiere $T * \varphi$ durch

$$(T * \varphi)(x) := \langle T, \tilde{\tau}_x \varphi \rangle, \quad x \in \mathbb{R}^n$$

8.22 Beispiel (Faltung mit δ)

$$(\delta * \varphi) \stackrel{\text{Def}}{=} \langle \delta, \tilde{\tau}_x \varphi \rangle = (\tilde{\tau}_x \varphi)(0) = \varphi(x),$$

das heißt $\delta * \varphi = \varphi$. Mit anderen Worten: δ ist Identität bezüglich *.

8.23 Satz

Seien $T \in D'(\mathbb{R}^n), \varphi \in D(\mathbb{R}^n)$. Dann $T * \varphi \in C^{\infty}(\mathbb{R}^n)$ und

$$D_j(T * \varphi) = (D_j T) * \varphi = T * (D_j \varphi).$$

Beweis. a) $T * \varphi$ stetig:

$$(\tilde{\tau}_{x'}\varphi)(y) - (\tilde{\tau}_x\varphi)(y) = \varphi(x'-y) - \varphi(x-y)$$

$$\implies \tilde{\tau}_{x'}\varphi \to \tilde{\tau}_x\varphi \text{ in } D(\mathbb{R}^n) \text{ für } x' \to x$$

$$\stackrel{\text{T Dist.}}{\Longrightarrow} \langle T, \tilde{\tau}_{x'}\varphi \rangle \to \langle T, \tilde{\tau}_x\varphi \rangle,$$

das heißt $\lim_{x'\to x} (T*\varphi)(x') = (T*\varphi)(x)$. Zur Stetigkeit der Abbildung $x\mapsto \tau_x\varphi$ vergleiche Roch S.83

b) Sei $h \in \mathbb{R} \setminus \{0\}$. Dann

$$\frac{1}{h}(\tilde{\tau}_{x+he_i}\varphi - \tilde{\tau}_x\varphi)(y) = \frac{1}{h}(\varphi(x+he_i-y) - \varphi(x-y))$$

$$= \frac{1}{h}(\varphi(x-y+he_i) - \varphi(x-y)) \to (\frac{\partial}{\partial_i}\varphi)(x-y)$$

$$\implies \frac{1}{h}(\tilde{\tau}_{x+he_i}\varphi - \tilde{\tau}_x\varphi) \to \tilde{\tau}_x(\frac{\partial}{\partial_i}\varphi) \text{ in } D(\mathbb{R})$$

$$\implies D_i(T * \varphi)(x) = \lim_{h \to 0} \frac{1}{h}(\langle T, \tilde{\tau}_{x+he_i}\varphi - \tilde{\tau}_x\varphi \rangle)$$

$$= \lim_{h \to 0} \langle T, \frac{1}{h}(\tilde{\tau}_{x+he_i}\varphi - \tilde{\tau}_x\varphi) \rangle \stackrel{T \text{ stetig}}{=} \langle T, \tilde{\tau}_x \frac{\partial}{\partial_i}\varphi \rangle$$

$$\stackrel{\text{Def}}{=} (T * \frac{\partial}{\partial_i}\varphi)(x)$$

 $\implies (T * \varphi)$ besitzt pratielle Ableitung und

$$\frac{\partial}{\partial_i}(T * \varphi) = T * (\frac{\partial}{\partial_i}\varphi)$$

Iteriere

$$\frac{\partial}{\partial x_j} \frac{\partial}{\partial x_i} (T * \varphi) = T * (\partial_j \partial_i \varphi) \implies T * \varphi \in C^{\infty}(\mathbb{R}^n)$$

und damit

$$\begin{split} \frac{\partial}{\partial_i} (T * \varphi)(x) &= (T * \frac{\partial}{\partial_i} \varphi)(x) \stackrel{\text{Def}}{=} \langle T, \tilde{\tau}_x (\frac{\partial}{\partial_i} \varphi) \rangle \\ &= \langle T, -\frac{\partial}{\partial_i} (\tilde{\tau}_x \varphi) \rangle \stackrel{\text{Def Abl}}{=} \langle \frac{\partial}{\partial_i} T, \tilde{\tau}_x \varphi \rangle = (\frac{\partial}{\partial_i} T * \varphi)(x) \end{split}$$

Zusammenfassend gilt

8.24 Theorem

Sei $A = \sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}$ ein Differentialoperator mit konstanten Koeffizienten $a_{\alpha} \in \mathbb{C}$. Sei $T \in D'(\mathbb{R}^n)$ mit $AT = \delta$ und sei $f \in D(\mathbb{R}^n)$. Dann ist die Funktion

$$u := T * f \in C^{\infty}(\mathbb{R}^n)$$

und eine Lösung der Gleichung Au = f im Sinne von Distributionen.

Beweis.

$$Au = A(T * f) \stackrel{8.23}{=} AT * f \stackrel{\text{Vor.}}{=} \delta * f \stackrel{8.22}{=} f \quad \Box$$

8.25 Definition

Sei $A = \sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}$, $\alpha \in \mathbb{C}$ ein Differentialoperator. Dann heißt $T \in D'(\mathbb{R}^n)$ mit Eigenschaft $AT = \delta$ Fundamentallösung von A.

Beispiel. i) $A = \Delta$

- $ii) A = \partial_t \Delta$
- iii) $A = \partial_{tt} \Delta = \square$
- iv) $A = \partial_t i\Delta$

9 Fundamentallösungen

10 Distributionen mit kompaktem Träger und Faltung

10.1 Definition

Sei $T \in D'(\Omega)$, $\Omega \subseteq \mathbb{R}^n$ offen. Für $\omega \subseteq \Omega$ definitieren wir die Einschränktung T_ω von T auf $D(\omega)$ via

$$\langle T_{\omega}, \varphi \rangle := \langle T, \varphi \rangle$$
 für alle $\varphi \in D(\omega)$.

Setze

$$O_T := \{x \in \Omega : \text{ ex ex. offene Umg. } V \text{ von } x \text{ mit } T_V = 0\}$$

Alternativ lässt sich O_T auch als Vereinigung aller Umgebungen schreiben, auf denen die Einschränktung von T verschwindet. (Z.B. Rudin S.164)

Dann heißt

$$\operatorname{supp} T := \Omega \setminus O_T$$

der Träger von T.

Bemerkung. supp T ist (relativ) abgeschlossen in Ω .

10.2 Satz

Sei $\varphi \in D(\Omega)$, $T \in D'(\Omega)$ mit supp $\varphi \cap \text{supp } T = \emptyset$. Dann gilt $\langle T, \varphi \rangle = 0$.

10.3 Bemerkung

a) Sei $f \in L^1_{loc}(\Omega)$. Dann gilt supp $T_f := \text{supp } f$.

b) supp $\delta_a = \{a\}$ supp $D^{\alpha} = \{a\}$ supp $H = [0, \infty)$

10.4 Definition

Setze $\mathcal{E}:=C^{\infty}(\Omega)$ versehen mit der folgenden Konvergenz: $\varphi_j\to\varphi \text{ in } \mathcal{E}(\Omega) \iff \text{für } K\subset\Omega \text{ kompakt, } \alpha \text{ Multiindex: } \|D^{\alpha}\varphi_j-D^{\alpha}\varphi\|_{L^{\infty}(K)}\to0 \text{ für } j\to\infty.$

10.5 Lemma

- a) $D(\Omega)$ ist dicht in $\mathcal{E}(\Omega)$.
- b) Die Einbettung $D(\Omega) \hookrightarrow \text{ist stetig.}$

Beweis. b) trivial

a) Sei $\psi \in \mathcal{E}(\Omega)$. Wähle $w_n \subset \Omega$ mit $w_n \subset w_{n+1}$ und $\bigcup_{n \in \mathbb{N}} = \Omega$. Sei weiterhin $\varphi_n \in D(\Omega)$ mit $\varphi_n|_{w_n} = 1$.

$$\varphi_n \psi \in D(\Omega), \varphi_n \psi \to \psi \text{ in } \mathcal{E}(\Omega).$$

10.6 Satz

Sei $T \in D'(\Omega)$ mit supp T kompakt. Dann existiert genau ein $\tilde{T} \in \mathcal{E}'(\Omega)$ mit $\langle \tilde{T}, \varphi \rangle = \langle T, \varphi \rangle$ für alle $\varphi \in D(\Omega)$.

10.7 Satz

Sei $\tilde{T} \in \mathcal{E}'(\Omega)$ und $T \in D'(\Omega)$ Einschränkung von \tilde{T} auf $D'(\Omega)$. Dann ist supp T kompakt.

10.8 Bemerkung

Die letzten beiden Sätze besagen, dass wir $\mathcal{E}'(\Omega)$ mit dem Raum der Distributionen mit kompaktem Träger identifizieren können.

11 Faltung von Distributionen mit kompaktem Träger

In diesem Abschnitt: $\Omega = \mathbb{R}^n, D = D(\mathbb{R}^n), D' = D'(\mathbb{R}^n).$ Faltng von $T \in D'$ mit $\varphi \in D$:

$$(T * \varphi)(x) = \langle T, \tilde{\tau}_r \varphi \rangle, \quad x \in \mathbb{R}^n.$$

Ziel: Ausdehnung obiger Definition auf große Klasse!

11.1 Beispiele (Vorsicht)

Sei H Heaviside-Funktio, dann:

a)
$$(H * \varphi)(x) = \int_{-\infty}^{x} \varphi(s) ds$$
, $\varphi \in D$

b)
$$\delta' * H = \delta$$

c)
$$1 * \delta' = 0$$

d)
$$1 * (\delta' * H) = 1\delta = 1$$

e)
$$(1 * \delta') * H = 0 * H = 0$$

also ist * nicht assoziativ.

11.2 Lemma

Sei $T \in D', \varphi, \varphi_1, \varphi_2 \in D$.

a)
$$\tau_x(T * \varphi) = (\tau_x T) * \varphi = T * (\tau_x \varphi)$$

b)
$$T * (\varphi_1 * \varphi_2) = (T * \varphi_1) * \varphi_2$$
.

Beweis Übungsaufgabe.

11.3 Definition

Sei $T \in D'$ mit kompaktem Träger. Nach 10.6 existiert eine eindeutige Fortsetzung zu stetiger Linearform auf C^{∞} , ebenfalls bezeichnet mit T. Setze:

$$(T * \varphi)(x) := T(\tilde{\tau}_x \varphi), \quad \varphi \in C^{\infty}(\mathbb{R}^n), \quad x \in \mathbb{R}^n.$$

11.4 Satz (Eigenschaften)

Sei $T \in D'$ mit supp T kompakt, $\varphi \in C^{\infty}(\mathbb{R}^n)$. Dann

a)
$$\tau_x(T * \varphi) = (\tau_x T) * \varphi = T * (\tau_x \varphi)$$

b)
$$T * \varphi \in C^{\infty}$$
 und $D^{\alpha}(T * \varphi) = (D^{\alpha}T) * \varphi = T * (D^{\alpha}\varphi)$

c)
$$\varphi \in D \implies T * \varphi \in D$$

d)
$$\varphi_1 \in D \implies T * (\varphi * \varphi_1) = (T * \varphi) * \varphi_1 = (T * \varphi) * \varphi$$

11.5 Definition

Seien $S, T \in D'$ und mindestens eine habe kompakten Träger. Setze

$$\langle S * T, \varphi \rangle := (S * (T * \tilde{\varphi}))(0), \quad \varphi \in D$$

Übungsaufgabe: Faltung ist wohldefiniert.

11.6 Theorem

Seiein $R, S, T \in D'$. Dann:

- a) Falls mindestens eine der Distributionen R und S kompakten Träger hat, so gilt R*S = S*R.
- b) Falls mindestens eine der Distributionen R und S kompakten Träger hat, so gilt supp $(R*S) \subset \text{supp } R + \text{supp } S$.
- c) Falls midestens 2 der Distributionen R, S, T kompakten Träger hat, so gilt: (R * S) * T = R * (S * T).
- d) $D^{\alpha}T = (D^{\alpha}\delta) * T$.
- e) Falls mindestens eine der Distributionen R, S kompakten Träger hat, gilt:

$$D^{\alpha}(R * S) = (D^{\alpha}R) * S = R * (D^{\alpha}S)$$

Beweis Übung.

12 Fouriertransformation auf $\mathcal{S}(\mathbb{R}^n)$

12.1 Definition

Der Raum $\mathcal{S}(\mathbb{R}^n)$ ist definiert durch

$$\mathcal{S} = \mathcal{S}(\mathbb{R}^n) = \left\{ f \in C^{\infty}(\mathbb{R}^n) \colon |f|_{\alpha,\beta} = \sup_{x \in \mathbb{R}^n} |x^{\beta} D^{\alpha} f(x)| \leq \infty \text{ für alle } \alpha,\beta \right\}$$

und heißt Raum der schnell fallenden Funktionen.

Notation. $|f|_m := \sup |\alpha| \le m, |\beta| \le m|f|_{\alpha,\beta}$

12.2 Definition

Eine Folge $(F_j)\subseteq \mathcal{S}$ konvergiert gegen $f\in S, f_j\to f$ in \mathcal{S} , falls $|f_n-f|_m\to 0$ für alle $m\in\mathbb{N}$.

Bemerkung. a) $\mathcal{S}(\mathbb{R}^n)$ ist Frechet-Raum.

- b) $D(\mathbb{R}^n) \subset \mathcal{S}(\mathbb{R}^n)$.
- c) $x \mapsto e^{-|x|^2} \in \mathcal{S} \setminus D$.

12.3 Definition

Sei $u \in \mathcal{S}$. Die Fouriertrafo von u ist definiert durch

$$\hat{u}(\xi)\mathcal{F}u(\xi) := \int_{\mathbb{R}^n} e^{-i\langle x,\xi\rangle} u(x) dx, \xi \in \mathbb{R}^n$$

12.4 Lemma (Eigenschafen)

- a) \mathcal{F} ist lineare, stetige Abbildung von \mathcal{S} nach \mathcal{S} .
- b) $(D^{\alpha})(\xi) = (i\xi)^{\alpha}\hat{u}(\xi), \xi \in \mathbb{R}^n, u \in \mathcal{S}.$
- c) $((-ix)^{\alpha}u)(\xi) = D^{\alpha}\hat{u}(\xi), u \in \mathcal{S}, x, y \in \mathbb{R}^n.$

Beweis: Übungsaufgabe.

12.5 Beispiel

Sei $f(x) := e^{-\frac{|x|^2}{2}}, x \in \mathbb{R}^n$. Dann:

$$\hat{f}(\xi) = (2\pi)^{\frac{n}{2}} e^{-\frac{|\xi|^2}{2}}, \xi \in \mathbb{R}^n$$

Mit anderen Worten: $(2\pi)^{\frac{n}{2}}$ ist Eigenwert der Fouriertransformation zum Eigenvektor f. Beweis Übungsaufgabe.

12.6 Lemma

Seien $f, g \in \mathcal{S}(\mathbb{R}^n)$. Wir definieren

$$\tau_y f(x) := f(x - y)$$

$$m_y f(x) := e^{i\langle x, y \rangle}$$

$$d_a f(x) := f(ax)$$

Dann gilt

i)
$$(\tau_y f)(\xi) = (m_{-y}\hat{f})(\xi)$$

ii)
$$(m_y f) = (\tau_y \hat{f})(\xi)$$

iii)
$$(d_a f)(\xi) = |a|^{-n} (d_{\frac{1}{a}} \hat{f})(\xi)$$

iv)
$$\int \hat{f}(x)g(x) = \int f(x)\hat{g}(x)$$

Beweis Übungsaufgabe.

Definition (inverse Fouriertransformation) 12.7

Für $f \in \mathcal{S}(\mathbb{R}^n)$ definieren wir die inverse Fouriertransformation via

$$(\mathcal{F}^{-1}(f))(x) = \check{f}(x) := \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i\langle x,\xi\rangle} f(\xi) d\xi.$$

12.8 Theorem

Die Fouriertransformation ist ein Isomorphismus von $\mathcal S$ nach $\mathcal S$ Mit anderen Worten $(\hat{f}) = f$ f+r alle $f \in S(\mathbb{R}^n)$.

Beweis.
$$(\hat{f})(x) := \frac{1}{(2\pi)^n} \int e^{i\langle x,\xi\rangle} \hat{f}(\xi) d\xi \stackrel{!}{=} f(x).$$

Für $\varepsilon > 0$ definieren wir:

Für
$$\varepsilon > 0$$
 definieren wir:

$$I_{\varepsilon}(x) := \frac{1}{(2\pi)^n} \int e^{i\langle x,\xi\rangle} e^{-\frac{\varepsilon^2 |\xi|^2}{2}} \hat{f}(\xi) d\xi = \frac{1}{(2\pi)^n} \int g(\xi) \hat{f}(\xi) d\xi$$
Mit $g(\xi) = (m_x d_{\varepsilon} \varphi)(\xi)$ mit $\varphi(\xi) = e^{-\frac{|\xi|^2}{2}}$.

$$\stackrel{\text{Lemma}}{\Longrightarrow} \hat{g}(\eta) = \varepsilon^{-n} (2\pi)^{\frac{n}{2}} e^{-\frac{|\eta-x|^2}{2\varepsilon^2}}$$
Beispiel 12.5

Mit
$$g(\xi) = (m_x d_{\varepsilon} \varphi)(\xi)$$
 mit $\varphi(\xi) = e^{-\frac{|\xi|^2}{2}}$

$$\underset{\text{Beigniol 12.5}}{\overset{\text{Lemma}}{\Longrightarrow}} \hat{g}(\eta) = \varepsilon^{-n} (2\pi)^{\frac{n}{2}} e^{-\frac{|\eta - x|^2}{2\varepsilon^2}}$$

$$\begin{split} I_{\varepsilon}(x) &= \frac{1}{(2\pi)^n} \int g(\xi) \hat{f}(\xi) d\xi = \frac{1}{(2\pi)^n} \int \hat{g}(\xi) f(\xi) d\xi \\ &= \varepsilon^{-n} \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{-\frac{|\xi - x|^2}{2\varepsilon^2}} f(\xi) d\xi \\ &= \frac{1}{(2\pi)^{\frac{n}{2}}} (f * \varphi_{\varepsilon})(x), \quad \varphi(x) = \frac{1}{\varepsilon^n} \varphi(\frac{x}{\varepsilon}), \varphi(x) = e^{-\frac{|x|^2}{2}} \end{split}$$

 (φ_{ε}) Mollifier, d.h. $I_{\varepsilon} \to f$ in $p(\mathbb{R}^n)$.

 \implies es existiert $(\varepsilon_l) \subset \mathbb{R}_+ : I_{\varepsilon_l}(x) \to f(x)$ fast überall.

$$\stackrel{\text{Lebesgue}}{\Longrightarrow} I_{\varepsilon}(x) \to \frac{1}{(2\pi)^n} \int e^{i\langle x,\xi\rangle} \hat{f}(\xi) d\xi \implies \text{Behauptung.}$$

12.9 Bemerkung

Sei \tilde{f} gegeben durch $\tilde{f}(x) = f(-x), f \in \mathcal{S}(\mathbb{R}^n)$. Dann:

$$\hat{\hat{f}} = (2\pi)^n \tilde{f}.$$

12.10Theorem

- (i) Seien $f, g \in \mathcal{S}$, dann $f * g \in \mathcal{S}$ mit $(f * g) = \hat{f} \cdot \hat{g}$.
- (ii) $(f \cdot q) = \hat{f} * \hat{q}$
- (iii) $\int f\overline{g}dx = (2\pi)^{-n} \in \hat{f}\overline{\hat{g}}d\xi$ (Parseval/Plancherel)

Beweis. (i) $f * g \in \mathcal{S}$ (Übungsaufgabe)

$$(f * g)(\xi) = \int_{\mathbb{R}^n} e^{-i\langle x, \xi \rangle} \int_{\mathbb{R}^n} f(x - y) g(y) dy dx$$
$$= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{-i\langle (x - y), \xi \rangle} f(x - y) dx e^{-i\langle y, \xi \rangle} g(x) dy$$
$$= \hat{f} \cdot \hat{g}(\xi)$$

(ii) Aus (i):
$$(\hat{f} * \hat{g}) = \hat{f} \cdot \hat{g} \implies \hat{f} * \hat{g} = (\tilde{f} \cdot \tilde{g})(2\pi)^{2n} = (2\pi)^{2n}(f \cdot g)$$

(iii) Soi $h = (2\pi)^{-n} \hat{g} \implies \hat{h}(\xi) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{-i\langle x, \xi \rangle} \hat{g}(x) dx$

(iii) Sei
$$h = (2\pi)^{-n} \overline{\hat{g}} \implies \hat{h}(\xi) = (2\pi)^{-n} \int e^{-i\langle x,\xi\rangle} \overline{\hat{g}}(x) dx$$

$$\implies \overline{\hat{h}} = g(\xi)$$

$$\implies \int f\overline{g}dx = \int f\hat{h} = \int \hat{f} \cdot h = (2\pi)^{-n} \int f\overline{\hat{g}}$$

Beispiel: Wärmeleitungsgleichung

a) Sei
$$K_t(x) := \frac{1}{(4\pi t)^{\frac{n}{2}}} e^{-\frac{|x|^2}{4t}} \implies \hat{K}_t(\xi) = e^{-t|\xi|^2}.$$

b) Betrachte

(WLG)
$$\begin{cases} u_t(t,x) - \Delta u(t,x) = 0 & \text{für } t > 0, x \in \mathbb{R}^n \\ u(0,x) = u_0(x) & \text{für } x \in \mathbb{R}^n \end{cases}$$

Sei $u_0 \in L^2(\mathbb{R}^n), 1 \leq p < \infty$. Wir definieren $u(t,x) = K_t * u_0$.

Dann gilt

1.
$$(t,x) \mapsto u(t,x) \in C^{\infty}(\mathbb{R}^n \times (0,\infty), \mathbb{C})$$

2.
$$(\partial_t - \Delta)u = 0$$

3.
$$u(t,\cdot) \stackrel{t\to 0}{\to} u_0$$
 in L^p .

- 4. Definiere für t > 0: $T(t): L^p \to L^p$ durch $(T(t)u_0)(x) = u(t,x)$. Dann löst $T(\cdot)u_0$ (WLG).
- 5. $K_s * K_t = K_{s+t}$ für alle s, t > 0.
- 6. T(t)T(s) = T(t+s) für alle s, t > 0 (Halbgruppeneigenschaft).
- 7. $u_0 \in BUC(\mathbb{R}^n) \implies u \in BUC([0,\infty) \times \mathbb{R}^n) \text{ und } u(0,x) = u_0(x).$

12.12 Satz

Die inverse Fouriertrafo der Funktion $\xi \to e^{-t|\xi|} (t>0, \xi \in \mathbb{R}^n)$ ist gegeben durch:

$$P_t(x) = \frac{\Gamma(n + \frac{1}{2})}{\pi^{\frac{n+1}{2}}} \cdot \frac{t}{(t^2 + |x|^2)^{\frac{n+1}{2}}}, \quad t > 0, x \in \mathbb{R}^n$$

Beweis. 1. Schritt: $e^{-\beta} = \int_0^\infty \frac{e^{-s}}{\sqrt{\pi s}} e^{-\frac{\beta^2}{4s}} ds (\beta > 0)$

2. Schritt:

$$\begin{split} (e^{-t|\xi|})\check{}(x) &= (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i\langle \xi, x \rangle} e^{-t|\xi|} d\xi \\ &= (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i\langle \xi, x \rangle} \int_0^\infty \frac{e^{-s}}{\sqrt{\pi s}} e^{-\frac{t^2|\xi|^2}{4s}} ds d\xi \\ &= \int_0^\infty \frac{e^{-s}}{\sqrt{4\pi s}} (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i\langle x, \xi \rangle} e^{-\frac{|\xi|^2 t^2}{4s}} d\xi ds \\ &= \int_0^\infty \frac{e^{-s}}{\sqrt{\pi s}} \frac{s^{\frac{n}{2}}}{(\pi t)^{\frac{n}{2}}} e^{-\frac{|x|^2 s}{t^2}} ds \\ &= \frac{1}{\pi^{\frac{n+1}{2}}} \frac{1}{t^{\frac{n}{2}}} \int_0^\infty s^{\frac{n-1}{2}} e^{-s(1+\frac{|x|^2}{t^2})} ds \\ &= P_t(x), \quad \text{mit } \int_0^\infty e^{-\lambda t} t^\alpha dt = \frac{\Gamma(\alpha+1)}{\lambda^{\alpha+1}} \end{split}$$

12.13 Beispiel (Dirichlet-Problem im Halbraum)

Wir setzen $\mathbb{R}^{n+1}_+ := \{(x,t) \in \mathbb{R}^n \times \mathbb{R}, t > 0\}.$

Dirichlet-Problem: Sei $f \in \mathcal{S}(\mathbb{R}^n)$. Finde u mit

$$\begin{cases} (\Delta_x + \partial_t^2)u = 0, (x, t) \in \mathbb{R}^{n+1} \\ u(x, 0) = f(x) \end{cases}.$$

Fouriertrafo bezgl. x liefert:

$$\begin{cases} -|\xi|^2 \hat{u}(\xi,t) + \partial_t^2 \hat{u}(\xi,t) &= 0\\ \hat{(}\xi,0) &= \hat{f}(\xi) \end{cases}.$$

Eine Lösung ist gegeben durch $\hat{u}(\xi,t) = \hat{f}(\xi)[c - e^{-|\xi|t} + (1-c)e^{|xi|t}]$

Wälen c=1 um Rücktrafo anwenden zu können.

 \implies Lösung von (DP) ist

$$u(x,t) = (P_t * f)(x).$$

12.14 Folgerung

- a) Für $f \in \mathcal{S}(\mathbb{R}^n)$ ist $u(x,t) := (P_t * f)(x), (t,x) \in \mathbb{R}^{n+1}_+$, eine Lösung von $(\Delta_x + \partial_t^2)u = 0$.
- b) Ferner gilt $u(x,0) = f(x), x \in \mathbb{R}^n$ (d.h. u löst (DP)).
- c) Es gilt $\hat{P}_t \cdot \hat{P}_s = \hat{P}_{t+s} \implies P(t+s) = P(t)P(s), s, t > 0$ mit $P(t)f = p_t * f$).

Beweis. zu b)
$$p_t(x) = \frac{1}{t^n} p_1(\frac{x}{t})$$
 und $\int_{\mathbb{R}^n} p_t(x) dx = 1$, d.h. (p_t) ist Mollifier.

13 Temperierte Distributionen und Fouriertransformation

13.1 Definition

Eine temperierte Distribution ist eine stetige Linearform auf $\mathcal{S}(\mathbb{R}^n)$.

Wir setzen

$$\mathcal{S}'(\mathbb{R}^n) := \{T : \mathcal{S} \to \mathbb{C}, T \text{ temperierte Distribution}\}.$$

13.2 Satz

Es sei $T: \mathcal{S} \to \mathbb{C}$ linear. Äquivalent:

- 1. $T \in \mathcal{S}'(\mathbb{R}^n)$
- 2. Es existiert $m \in \mathbb{N}, C > 0$, sodass $|\langle T, \varphi \rangle| \leq C \|\varphi\|_m$, wobei

$$\|\varphi\|_m = \sup_{|\alpha|, |\beta| \le m} \sup_{x \in \mathbb{R}^n} |x^{\alpha} D^{\beta} \varphi(x)|$$

Beweis. (a) \Rightarrow (b): Angenommen Behauptung falsch, d.h. für alle $m \in \mathbb{N}$ existiert $\varphi_m \in \mathcal{S}$: $\|\varphi_m\|_m \leq \frac{1}{m} \text{ und } |\langle T, \varphi_m \rangle| = 1.$

 $\implies \varphi_m \to 0 \text{ in } \mathcal{S}(\mathbb{R}^n), \langle T, \varphi_m \rangle \not\to 0. \text{ Widerspruch.}$

(b)
$$\Rightarrow$$
 (a): klar.

13.3 Definition (schwache Topologie in S')

Seien $T \in \mathcal{S}(\mathbb{R}^n), (T_i) \subset \mathcal{S}'(\mathbb{R}^n)$. Wir setzen

$$T_i \to T \text{ in } \mathcal{S}'(\mathbb{R}^n) \colon \iff \text{ für alle } \varphi \in \mathcal{S}(\mathbb{R}^n) \colon \langle T_i, \varphi \rangle \to \langle T, \varphi \rangle.$$

13.4 Satz

Sei $1 \le p \le \infty$. Dann

$$D(\mathbb{R}^n) \underset{\text{dight.}}{\hookrightarrow} \mathcal{S}(\mathbb{R}^n) \hookrightarrow L^p(\mathbb{R}^n) \hookrightarrow \mathcal{S}'(\mathbb{R}^n) \hookrightarrow D'(\mathbb{R}^n)$$

und $\mathcal{E}'(\mathbb{R}^n) \hookrightarrow \mathcal{S}'(\mathbb{R}^n)$.

Beweis. a) $D \hookrightarrow \mathcal{S}$ klar. Dichtheit:

Sei $\varphi \in \mathcal{S}$. Definiere zu $\psi \in D$ mit $\psi \equiv 1$ in einer Umgebung von 0 die Funktion $\psi_n(x) = \psi(\frac{x}{n})$. $\Longrightarrow \varphi \psi_n \to \phi$ in \mathcal{S} .

b) $S \hookrightarrow L^1$.

Sei $f \in \mathcal{S}$ und K > n. Dann ist

$$\int_{\mathbb{R}^{n}} (1+|x|^{K})^{-1} dx < \infty$$

$$\implies \int_{\mathbb{R}^{n}} |f(x) dx = \int_{R^{n}} (1+|x|^{K})^{-1} (1+|x|^{K}) (f(x)) dx$$

$$\leq \sup_{x \in \mathbb{R}^{n}} (1+|x|^{K}) |f(x)| \underbrace{\int_{\mathbb{R}^{n}} (1+|x|^{K})^{-1} dx}_{<\infty} \implies ||f||_{L^{1}} \leq C \cdot ||f||_{K}$$

 $||f||_{L^{\infty}} \leq C||f||_K \text{ klar.}$

c) $S \hookrightarrow L^1 \cap L^\infty \hookrightarrow L^p$, denn:

$$\int |f|^p dx \le \sup_{x \in \mathbb{R}^n} |f(x)|^{p-1} ||f||_{L^1} < \infty$$

d)
$$S \hookrightarrow L^p \stackrel{textFA}{\Longrightarrow} L^{p\prime} = L^q \hookrightarrow \mathcal{S}', 1$$

e)
$$L^1 \hookrightarrow \mathcal{S}'$$
: Sei $f \in L^1 \implies \text{für } \varphi \in \mathcal{S}(\mathbb{R}^n) : |\int f\varphi| \le \|\varphi\|_{\infty} \cdot \|f\|_{L^1}$

f)
$$D \hookrightarrow \mathcal{S} \implies \mathcal{S}' \hookrightarrow D', \quad \mathcal{S} \hookrightarrow \mathcal{E} \implies \mathcal{E}' \hookrightarrow \mathcal{S}'$$

13.5 Beispiele

a) $\delta \in \mathcal{S}'(\mathbb{R}^n)$

- b) $x \mapsto e^x \in D'(\mathbb{R}^n) \setminus \mathcal{S}'(\mathbb{R}^n)$
- c) Sei $m \in \mathbb{N}$ und $f : \mathbb{R}^n \to \mathbb{C}$ derart, dass

$$\int (1+|x|^2)^{-m}|f(x)|dx < \infty$$

Dann definiert T_f auf \mathcal{S} durch

$$\langle T_f, \varphi \rangle := \int f \cdot \varphi dx$$

eine temperierte Distribution, d.h. es ist $T_f \in \mathcal{S}'$.

d) Sei $u \in L^1_{\text{loc}}(\mathbb{R}^n)$ derart, dass es $M>0, m \in \mathbb{N}$ gibt:

$$|u(x)| \le M(1+|x|^2)^m$$
 für alle $x \in \mathbb{R}^n$.

Dann $u \in \mathcal{S}'(\mathbb{R}^n)$.

13.6 Definition und Bemerkung

Seien $T \in \mathcal{S}', p$ Polynom und $\psi \in \mathcal{S}$. Wir definieren $D^{\alpha}T, pT, \psi T \in \mathcal{S}'$ durch

$$\langle D^{\alpha}t, \varphi \rangle := (-1)^{|\alpha|} \langle T, D^{\alpha}\varphi \rangle$$

$$\langle pT, \varphi \rangle := \langle T, p\varphi \rangle$$

$$\langle \psi T, \varphi \rangle := \langle T, \psi \varphi \rangle$$

13.7 Definition

Sei $T \in \mathcal{S}'$. Dann definiert man \hat{T} oder $\mathcal{F}(T)$ durch

$$\langle \hat{T}, \varphi \rangle := \langle T, \varphi \rangle$$

Da $\varphi \in \mathcal{S}$, ist $\hat{\varphi} \in \mathcal{S}$ und somit $\langle T, \hat{\varphi} \rangle$ wohldefiniert.

13.8 Satz

Die Abbildung $\mathcal{F} \colon \mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$ ist stetig.

Beweis.
$$T_n \to T$$
 in \mathcal{S}' , dann $\langle \hat{T}_n - \hat{T}, \varphi \rangle = \langle T_n - T, \hat{\varphi} \rangle \to 0 \implies \hat{T}_n \to \hat{T}$

13.9 Theorem

Die Fouriertransformation ist ein Isomorphismus auf $\mathcal{S}'(\mathbb{R}^n)$. Die inverse Fouriertransformation \mathcal{F}^{-1} oder $\check{\cdot}$ ist gegeben durch

$$\langle \check{T}, \varphi \rangle = \langle T, \check{\varphi} \rangle, T \in \mathcal{S}', \varphi \in S$$

Es gilt: $\mathcal{F}^{-1}(T) = (2\pi)^{-n} \mathcal{F} \tilde{T}$ und $\hat{T} = (2\pi)^n \tilde{T}$ mit $\langle \tilde{T}, \varphi \rangle = \langle T, \tilde{\varphi} \rangle$.

Beweis. Sei $T \in \mathcal{S}'(\mathbb{R}^n)$. Dann

$$\langle \mathcal{F}\mathcal{F}^{-1}T, \varphi \rangle = \langle \mathcal{F}^{-1}T, \mathcal{F}\varphi \rangle = \langle T, \mathcal{F}^{-1}\mathcal{F}\varphi \rangle = \langle T, \varphi \rangle,$$

$$\langle \mathcal{F}^{-1}\mathcal{F}T, \varphi \rangle = \langle T, \varphi \rangle$$
, d.h. \mathcal{F} ist Isomorphismus.

13.10 Satz

Sei $T \in \mathcal{S}'(\mathbb{R}^n)$. Dann gilt:

- a) $\mathcal{F}(D^{\alpha}T) := (ix)^{\alpha}\mathcal{F}(T)$
- b) $\mathcal{F}((-iy)^{\beta}T) = D^{\beta}\mathcal{F}(T)$
- c) Falls $T \in \mathcal{S}(\mathbb{R}^n)$, so stimmen die beiden Definitionen der Fouriertransformation überein.
- d) $R \in S'(\mathbb{R}^n)$ mit kompaktem Träger $\implies T * T \in \mathcal{S}'$ und $(T * R)^{\hat{}} = \hat{T} \cdot \hat{R}$. (Da Träger von R kompakt, ist \hat{R} glatte Funktion.

Beweis. a) + b) Eigenschaften der Fouriertransformation auf S.

- c) klar
- d) wir ausgespart. \Box

13.11 Beispiele (Fouriertransformation der Dirac-Distribution und von Polynomen)

a) Sei $\varphi \in \mathcal{S}$.

$$\langle \hat{\delta}, \varphi \rangle = \langle \delta, \hat{\varphi} \rangle = \hat{\varphi}(0) = \int e^{-i0x} \varphi(x) dx = \int \varphi = \langle 1, \varphi \rangle.$$

$$\implies \mathcal{F}(\delta = 1 \text{ und } \mathcal{F}(1) = \mathcal{F}^2(\delta) = (2\pi)^n \tilde{\delta} = (2\pi)^n \delta.$$

b) Sei $p(x) = \sum_{|\alpha| \le m} a_{\alpha} x^{\alpha}, a_{\alpha} \in \mathbb{C}$. Dann:

$$\hat{p} = \sum_{|\alpha| \le m} a_{\alpha}(x^{\alpha}1) = \sum_{\alpha \le m} i^{|\alpha|} a_{\alpha} D^{\alpha} \delta$$

13.12 Fundamentallösung und Fouriertransformation

Sei $A = \sum_{|a| \leq m} a_{\alpha} D^{\alpha}$ Differential
operator mit $a_{\alpha} \in \mathbb{C}$. Finde Fundamentallösung T für A, d.h.
 $AT = \delta$.

Satz 13.10 und Bsp. 13.11 $\implies 1 = \hat{\delta} = (AT) = p(i\xi)\hat{T}$ (*).

Ist (*) lösbar, so ist $T = \mathcal{F}^{-1}$ eine Fundamentallösung.

Beispliel: Wärmeleitungsgleichung.

Sei
$$(t,x) \in \mathbb{R}^{n+1}$$
 und $g(t,x) = t_+^{\frac{n}{2}} e^{-\frac{|x|^2}{nt}}$, wobei $t_+ = \begin{cases} t, t > 0 \\ 0, \text{ sonst} \end{cases}$.

$$\implies \hat{g}(\tau,\xi) = \int_{\mathbb{R}} e^{-i\tau t} t_+^{-\frac{n}{2}} \int_{\mathbb{R}^n} e^{-ix\xi} e^{-\frac{|x|^2}{4t}} dx dt$$

$$= \int_{\mathbb{R}} e^{-i\tau t} t_+^{-\frac{n}{2}} (4\pi t)^{\frac{n}{2}} e^{-t|\xi|^2} dt = (4\pi)^{\frac{n}{2}} \int_0^{\infty} e^{-t(i\tau + |\xi|^2)} dt$$

Für $A = \partial_t - \Delta$ gilt $p(i\tau, i\xi) = i\tau + |\xi|^2$, d.h.

$$\hat{T}(\tau,\xi) = \frac{1}{i\tau + |\xi|^2} = \frac{\hat{g}(\tau,\xi)}{(4\pi)^{\frac{n}{2}}}$$

$$\implies T(t,x) = (4\pi t_+)^{-\frac{n}{2}} e^{-\frac{|x|^2}{4t}}$$

Bemerkung. T stimmt mit der früher gefundenen Fundamentallösung überein.

13.13 Theorem (Plancherel)

Sei $f \in L^2(\mathbb{R}^n)$. Dann $\hat{f} \in L^2(\mathbb{R}^n)$ nd es gilt $\langle \hat{f}, \hat{g} \rangle = (2\pi)^n \langle f, g \rangle$.

Beweis. Sei $f \in L^2(\mathbb{R}^n) \implies$ es existiert $(f_k) \subseteq C_c^{\infty}(\mathbb{R}^n)$ mit $f_k \to f$ in L^2 .

Plancherel $\|\hat{f}_k - \hat{f}_m\|_{L^2} \to 0 \implies$ es existiert $F \in L^2 \colon \hat{f}_k \to F$ in $L^2 \subseteq \mathcal{S}'$.

Ferner $\mathcal{F} \colon \mathcal{S}' \to \mathcal{S}'$ ist stetig $\implies \mathcal{F}f = \hat{f} = F$ und

$$\langle f, g \rangle = \lim_{k \to \infty} \langle f_k, g_k \rangle = \lim_{k \to \infty} (2\pi)^{-n} \langle \hat{f}_k, \hat{g}_l \rangle = (2\pi)^{-n} \langle \hat{f}, \hat{g} \rangle$$

13.14 Beispiel

a) Sei $f = \chi_{[-a,a]}, a > 0$ und n = 1. Dann ist

$$\hat{f}(\xi) = \int_{-a}^{a} e^{-i\xi x} dx = 2 \frac{\sin(a\xi)}{\xi}$$

und $||f||_{L^2}^2 = 2a$.

Plancherel: $\int_{-\infty}^{\infty} (\frac{\sin(ax)}{ax})^2 dx = \frac{\pi}{a}$

b) Sei
$$f: \mathbb{R} \to \mathbb{R}$$
 definiert durch $f(x) = e^{-|x|}$

$$\implies \hat{f}(\xi) = \int e^{-|x|} e^{-ix\xi} dx = \int_0^\infty e^x (e^{-ix\xi} + e^{ix\xi}) dx = \frac{1}{1+\xi^2}$$

13.15 Die Wellengleichung

Finde Fkt. $u: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ mit

$$\begin{cases} (\partial_t^2 - \Delta)u &= 0\\ u(0, x) &= u_0(x)\\ u_t(0, x) &= u_1(x) \end{cases}$$

$$\hat{u}(t,\xi) = \cos(|\xi t)\hat{u}_0(\xi) + \frac{\sin(t|\xi|}{|\xi|}\hat{u}_1(\xi)$$
, also

$$u = \partial_t \omega * u_0 + \omega * u_1,$$

wobei
$$\omega(t,x) = \mathcal{F}^{-1}\left(\frac{\sin(t|\xi|)}{|\xi|}\right)$$
.

a)
$$n = 1$$
: $\omega(t, x) = \frac{1}{2}\chi_{[-x, x]}(t)$

b) n > 1: kompliziert.

14 Nichtlineare Randwertprobleme

Problem: $\{-\Delta u = f(u) \text{ in } D'(\Omega), "u|_{\partial\Omega} = 0".$

 $\Omega \subseteq \mathbb{R}^n$ beschränktes Gebiet

 $f: \mathbb{R} \to \mathbb{R}$ stetig

Problem II:

$$\begin{cases}
-\Delta u + \mu u &= b(\nabla u) \text{ in } \Omega \\
u &= 0
\end{cases}$$

mit Wachstumsbedingung an b.

14.1 Satz

Sei $\Omega \subseteq \mathbb{R}^n$ beschränkt, offen, $f : \mathbb{R} \to \mathbb{R}$ stetig (womöglich sogar Lipschitz), es existiere M > 0 mit $|f(t)| \le M, t \in \mathbb{R}$. Dann existiert $u \in H^1_0(\Omega) : -\Delta u = f(u)$ in $D'(\Omega)$.

Zum Beweis verwenden wir

Satz (Fixpunktsatz von Schauder). X Banachraum, $C \subseteq X$ konvex, kompakt, $C \neq \infty, T \colon C \to C$ stetig.

Dann besitzt T einen Fixpunkt.

In unserer Situation:

$$X := L^2(\Omega)$$

 $C := \{u \in H_0^1(\Omega) \colon \|\nabla u\| \le M_0\}$ mit noch zu bestimmender Konstante M_0 .

$$T: C \to C$$
 via $v \mapsto u$, wobei $u \in H_0^1(\Omega)$ mit $-\Delta u = f(v)$ in $D'(\Omega)$.

T wohldefiniert, da nach Lax-Milgram eindeutige Lösung von $-\Delta u = f(v)$ existiert $(|f(v)| \leq M)$ und Gebiet beschränkt $\implies f(v) \in L^2$.

T stetig, da

$$v \stackrel{T_1}{\mapsto} f(v) \stackrel{T_2}{\mapsto} u$$

 T_1 stetig nach Voraussetzung.

 T_2 stetig nach Lax-Milgram, siehe unten.

$$\implies T = T_2 \circ T_1 \text{ stetig von } C \to C.$$

Bleibt zu zeigen: $C \neq 0$, konvex, kompakt.

- $C \neq 0$, da $0 \in C$
- Bestimmung von M_0 :

Lax-Milgram: Für $v \in H_0^1(\Omega)$ existiert genau ein $u \in H_0^1(\Omega)$:

$$\int \nabla u \nabla w = a(u,w) = \int f(v)w, \quad w \in H^1_0(\Omega).$$

Insbesondere w = 1 liefert:

$$\|\nabla u\|_2^2 = \int |\nabla u|^2 dx \leq M \int 1 \cdot |u| dx \overset{\text{H\"older}}{\leq} M \|u\|_2 |\Omega|^{\frac{1}{2}} \overset{\text{Poincare}}{\leq} \underbrace{MC^{\frac{1}{2}|\Omega|^{\frac{1}{2}}}}_{=:M_0} \|\nabla u\|_2$$

 $\implies T$ would efiniert.

Bleibt zu zeigen C konvex, C kompakt.

• C konvex: Z.z.: $u_1, u_2 \in C, t \in [0, 1] \implies tu_1 + (1 - t)u_2 \in C$.

Für $u_1, u_2 \in C$ setze $w := tu_1 + (1 - t)u_2 \in H_0^1(\Omega)$.

 $\|\nabla w\|_{L^2} \leq M_0$ wegen Dreiecksungleichung.

• C kompakt: Z.z. Jede Folge $(x_n) \subseteq C$ besitzt konvergente Teilfolge.

Sei $(x_n) \subseteq C$. $\|\nabla x_n\|_2 \le M_0 \stackrel{\text{Poincare}}{\Longrightarrow} (x_n)$ beschränkt in $H_0^1(\Omega)$.

Mit Banach-Alaoglu und Riesz-Frechet \implies (x_n) besitzt schwach konvergente Teilfolge (x'_n) in $H^1_0(\Omega)$ mit $x'_n \to x$.

Weiter: $H_0^1(\Omega) \stackrel{\text{kompakt}}{\hookrightarrow} L^2(\Omega) \implies x'_n \to x \text{ in } L^2(\Omega).$

Frage: $x \in \mathbb{C}$?

 $x_n \to x \text{ schwach} \xrightarrow{\text{math.SE Q.631110}} \|x\|_{H_0^1(\Omega)} \le \liminf \|x_n'\|_{H_0^1}$

Nun: Schauder \implies Behauptung.

Um Fixpunktsatz von Schauder zu zeigen, beginne mit

14.2 Theorem (Brouwer)

Sei $B := \{x \in \mathbb{R}^n \colon ||x|| \le 1\}$ und $T \colon B \to B$ stetig. Dann besitzt T einen Fixpunkt.

Beweis: Übungsaufgabe.

Ausdehnung des Browerschen Fixpunktsatzes auf Banachräume via Kompaktheit.

14.3 Theorem (Schauder)

Sei X Banachraum, $K\subseteq X$ kompakt, konvex, nicht-leer. Fall $T\implies K\to K$ stetig, so besitzt T einen Fixpunkt.

Beweis. Für $\varepsilon > 0$ wähle endlich viele PUnkte $u_1, \ldots, u_{N_{\varepsilon}}$ in K, sodass $K \subseteq \bigcup_{j=1}^{N_{\varepsilon}} B_{\varepsilon}(x_j)(*)$. Sei $K_{\varepsilon} = \text{konv}\{u_1, \ldots, u_{N_{\varepsilon}}\}$.

Definiere Abbildung $S_{\varepsilon} \colon K \to K_{\varepsilon}$ via

$$S_{\varepsilon}(u) := \frac{\sum_{i=1}^{N_{\varepsilon}} \operatorname{dist}(u, K \setminus B_{\varepsilon}(u_i)) u_i}{\sum_{i=1}^{N_{\varepsilon}} \operatorname{dist}(u, K \setminus B_{\varepsilon}(u_i))}$$

Ferner S_{ε} stetig und für alle $u \in K$ gilt:

$$||S_{\varepsilon}(u) - u|| \le \frac{\sum_{i=1}^{N_{\varepsilon}} \operatorname{dist}(u, K \setminus B_{\varepsilon}(u_{i})) ||u_{i} - u||}{\sum_{i=1}^{N_{\varepsilon}} \operatorname{dist}(u, K \setminus B_{\varepsilon}(u_{i}))} \stackrel{(*)}{\le \varepsilon}$$

 $\text{Denn ist } u \in B_{\varepsilon}(u_i) \text{ für ein } i \text{ so ist } \operatorname{dist}(u, K \setminus B_{\varepsilon}(u_i)) > 0 \text{ und } \|u_i - u\| \leq \varepsilon. \text{ Andernfalls ist } \operatorname{dist}(u, K \setminus B_{\varepsilon}(u_i)) = 0.$

Betrachte $T_{\varepsilon} \colon K_{\varepsilon} \to K_{\varepsilon}$ gegeben durch

$$T_{\varepsilon}(u) := S_{\varepsilon}(Tu)$$

Da K_{ε} homö
omorph zur abgeschlossenen Einheitskugel in $\mathbb{R}^{M_{\varepsilon}}$ für ein $M_{\varepsilon} \leq N_{\varepsilon}$ folgt aus Satz von Brouwer.

Es existiert $u_{\varepsilon} \in K_{\varepsilon} \colon T_{\varepsilon} u_{\varepsilon} = u_{\varepsilon}$.

Weiter: T stetig, d.h. es existiert Teilfolge $(\varepsilon_j) \to 0$ und $u \in K$ mit $u_{\varepsilon_j} \to u$ in X. u ist Fixpunkt von T, da

$$||u_{\varepsilon_j} - Tu_{\varepsilon_j}|| = ||T_{\varepsilon_j}u_{\varepsilon_j} - Tu_{\varepsilon_j}|| = ||S_{\varepsilon_j}Tu_{\varepsilon_j} - Tu_{\varepsilon_j}|| \stackrel{(*)}{\leq} \varepsilon_j \implies u = Tu.$$

Als Anwendung betrachten wir

14.4 Satz

Sei $T: X \to X$ stetig und kompakt (Bilder beschränkter Folgen sind präkompakt).

Die Menge $\{u \in X : u = \alpha Tu \text{ für ein } \alpha \in [0,1] \}$ sei beschränkt.

Dann besitzt T einen Fixpunkt.

Bemerkung. Im Gegensatz zu Schauder benötigen wir keine explizite kompakte konvexe Menge.

Beweis. Wähle M > 0, sodass ||u|| < M (*), fall $u = \alpha Tu$ für ein $\alpha \in [0, 1]$ (Die Menge solcher u ist nach Voraussetzung beschränkt).

Definiere

$$\tilde{T}u := \begin{cases} Tu, & \text{falls} ||Tu|| \subseteq M \\ \frac{MTu}{||Tu||}, & \text{sonst} \end{cases}$$

Dann $\tilde{T} : \overline{B_M(o)} \to \overline{B_M(0)}$.

Sei K abgeschlossene konvexe Hülle von $\tilde{T}(\overline{B_M(0)})$.

Da T und somit \tilde{T} kompakt, folgt K kompakte Teilmenge von X. Betrachte nun $\tilde{T} \colon K \to K$ Schauder \implies es existiert $u \in K \colon \tilde{T}u = u$

Behauptung: u Fixpunkt von T.

Angenommen Behauptung falsch, dann ||Tu|| > M und $u = \alpha Tu$ mit $\alpha = \frac{M}{||Tu||} < 1$, aber $||u|| = ||\tilde{T}u|| = M$.

Widerspruch, da nach (*) gelten müsste ||u|| < M.

Zurück zu Problem II:

14.5 Anwendung auf semilineare Randwertprobleme

Betrachte

(*)
$$\begin{cases} -\Delta u + \mu u &= -b(\nabla u) \text{ in } \Omega \\ u &= 0 \text{ auf } \partial \Omega \end{cases}$$

wobei $\Omega \subseteq \mathbb{R}^n$ beschränktes Gebiet, $\partial \Omega$ glatt und $b \colon \mathbb{R}^n \to \mathbb{R}$ Lipschitz und es gelte

$$|b(p)| \le c(|p|+1), \quad p \in \mathbb{R}^n.$$

14.6 Satz

Für $\mu > 0$ genügend groß existiert eine Funktion $u \in H^2(\Omega) \cap H^1_0(\Omega)$, welche (*) löst.

Beweis. Schritt 1:

Für $u \in H_0^1(\Omega)$ setze $f(x) := -b(\nabla u(x))$.

Wachstumsbedingung an $b \implies f \in L^2(\Omega)$.

Sei w die eindeutige schwache Lösung des linearen Randwertproblems

$$\begin{cases}
-\Delta w + \mu w &= f \text{ in } \Omega \\
w &= 0 \text{ auf } \partial \Omega
\end{cases}$$

Weiter: $\partial\Omega$ glatt $\implies w \in H^2(\Omega)$ und $\|w\|_{H^2} \le C' \|f\|_2$ (6.3.2 Theorem 4, Evans)

Setze Tu := w. Dann $||Tu||_{H^2} \le C' ||f||_2 (\le) C''(||u||_{H^1} + 1)$ (*).

Schritt 2: $T \colon H^1_0(\Omega) \to H^1_0(\Omega)$ stetig und kompakt.

a) T stetig:

Sei $u_j \to u$ in $H - 0^1(\Omega)$

$$\stackrel{(*)}{\Longrightarrow} \sup_{j} ||w_{j}||_{H^{2}} < \infty \text{ mit } w_{j} = Tu_{j}$$

 \implies es existiert Teilfolge (w_j) und $w \in H_0^1(\Omega)$ mit $w_j \to w$ in $H_0^1(\Omega)$ schwach.

Weiter $\int_{\Omega} \nabla w_j \nabla v + \mu \int_{\Omega} w_j v = -\int_{\Omega} b(\nabla u_j) v, \ v \in H_0^1(\Omega)$

$$\implies \textstyle \int_{\Omega} \nabla w \nabla v + \mu \int_{\Omega} w v = - \int_{\Omega} b(\nabla u) v, \, v \in H^1_0(\Omega)$$

$$\implies Tu = w,$$
d.h. $Tu_j \to Tu,$ d.h. T stetig.

b) $T:H^1_0(\Omega)\to H^1_0(\Omega)$ kompakt: Übungsaufgabe.

Schritt 3: Zeige

$$\{u \in H_0^1(\Omega) \colon u = \alpha Tu \text{ für ein } \alpha \in [0,1]\}$$

ist beschränkt falls μ groß.

Sei
$$u \in H_0^1(\Omega)$$
 mit $u = \alpha T u, \ \alpha \in (0,1]$

$$\implies \frac{u}{\alpha}$$

 $\overset{\text{Schritt 1}}{\Longrightarrow} u \in H^2(\Omega) \cap H^1_0(\Omega) \text{ und } -\Delta u + \mu u = -\alpha b(\nabla u).$

$$\implies \int_{\Omega} |\nabla u|^2 + \mu \int u^2 dx = -\alpha \int_{\Omega} b(\nabla u) u \leq C \int_{\Omega} (|\nabla u| + 1) |u| \leq \tfrac{1}{2} \int_{\Omega} |\nabla u|^2 dx + C \int_{\Omega} |u|^2 + 1 dx$$

 \implies Falls μ groß genug, so gilt: $||u||_{H_0^1(\Omega)} \leq C$ unabhängig von α' .

Schritt 4: Anwenden von Satz 14.4 auf $X = H_0^1(\Omega)$ impliziert: T hat Fixpunkt $u \in H_0^1(\Omega) \cap H^2(\Omega)$, welcher Problem II löst.

14.7 Methode der Ober- und Unterlösungen

Betrachte (*)
$$\begin{cases} -\Delta u &= f(u) \text{ in } \Omega \\ u &= 0 \text{ auf } \partial \Omega \end{cases}$$

Idee: Finde "Unterlösung" \underline{u} bzw. "Oberlösung" \overline{u} eines Randwertproblems mit $\underline{u} \leq \overline{u}$. Dann existiert Lösung u mit $\underline{u} \leq u \leq \overline{u}$.

Voraussetzung: $f: \mathbb{R} \to \mathbb{R}$ glatt und $|f'(x)| \leq C$ für alle $x \in \mathbb{R}$.

Erinnerung: Eine Funktion $u \in H_0^1(\Omega)$ heißt schwache Lösung von (*), falls

$$\int_{\Omega} \nabla u \nabla v = \int_{\Omega} f(u)v, \quad v \in H_0^1(\Omega).$$

14.8 Definition

a) Eine Funktion $\overline{u} \in H^1(\Omega)$ heißt schwache Oberlösung von (*), falls

$$\int_{\Omega} \nabla \overline{u} \nabla v \geq \int_{\Omega} f(\overline{u}) v, \quad v \in H^1_0(\Omega), v \geq 0, \quad \text{ fast "überall}$$

b) Eine Funktion $\underline{u} \in H^1(\Omega)$ heißt schwache Unterlösung von (*), falls

$$\int_{\Omega} \nabla \underline{u} \nabla v \leq \int_{\Omega} f(\overline{u}) v, \quad v \in H_0^1(\Omega), v \geq 0, \quad \text{fast "überall"}$$

14.9 Satz (Existenz einer Schwachen Lösung)

Es existieren schwache Oberlösung \overline{u} bzw. schwache Unterlösung u von (*) mit

- $\underline{u} \leq \overline{u}$ fast überall in Ω
- $\underline{u} \le 0, \overline{u} \ge 0$ auf $\partial \Omega$ im Sinne von "Spur von u" (Übungsaufgabe).

Dann existiert schwache Lösung von (*) mit $\underline{u} \leq u \leq \overline{u}$ fast überall in Ω .

Beweis. Wähle $\alpha > 0$ so groß, dass $x \mapsto f(x) + \alpha x$ monoton wachsend. (Vorzeichen Abl. positiv machen)

Setze $u_0 := \underline{u}$ mit \underline{u} gegebenen Unterlösung und definiere $u_1 \in H_0^1(\Omega)$ als eindeutige schwache Lösung des Randwertproblem

$$\begin{cases}
-\Delta u_1 + \alpha u_1 &= f(u_0) + \alpha u_0 \text{ in } \Omega \\
u_1 &= 0 \text{ auf } \partial \Omega
\end{cases}$$

Behauptung: $\underline{u} = u_0 \le u_1 \le u_2 \le \cdots$ fast überall in Ω .

Schritt 1: k = 0. Dann:

$$-\int_{\Omega} \nabla u_1 \nabla v + \alpha u_1 v = -\int_{\Omega} (f(u_0) + \alpha u_0) v, \quad v \in H_0^1(\Omega)$$

Voraussetzung: $\int \nabla u_0 \nabla v \leq \int f(u_0)v, v \in H_0^1(\Omega), v \geq 0.$

Wähle $v := (u_0 - u_1)^+ \in H_0^1(\Omega)$.

$$\implies \int (\nabla (u_0 - u_1) \nabla (u_0 - u_1)^+ + \alpha (u_0 - u_1) (u_0 - u_1)^+ \le 0$$

Da

$$\nabla (u_0 - u_1)^+ \underset{\text{Ü.A.}}{=} \begin{cases} \nabla (u_0 - u_1) & \text{auf}\{u_0 \ge u_1\} \\ 0 & \text{sonst} \end{cases}$$

folgt

$$\int_{\{u_0 \ge u_1\}} |\nabla (u_0 - u_1)|^2 + \alpha (u_0 - u_1)^2 \le 0$$

 $\implies u_0 \le u_1$ fast überall in Ω .

Schritt 2: $u_k \leq u_{k+1}$ für alle k (Ü.A.)

Schritt 3: $u_k \leq \overline{u}$ fast überall in Ω für alle k.

Voraussetzung aus dem Satz: $u_0 = \underline{u} \leq \overline{u}$, d.h. Behauptung OK für k = 0.

Es gelte $u_k \leq \overline{u}$, für ein k

$$\overline{u}$$
 Oberlösung: $\int \nabla \overline{u} \nabla v \geq \int f(\overline{u})v, v := (v_{k+1} - \overline{u})^+$

und
$$\int \nabla u_{k+1} \nabla v + \alpha u_{k+1} v \stackrel{(**)}{=} \int (f(u_k) + \alpha u_k) v$$

$$\implies \int_{\{u_{k+1} \ge \overline{u}\}} \nabla (u_{k+1} - \overline{u}) \nabla (u_{k+1} - \overline{u}) + \alpha (u_{k+1} - \overline{u})^2 dx$$

$$\leq \int \underbrace{\left[(f(u_k) + \alpha u_k) - f(\overline{u}) + \alpha \overline{u} \right]}_{\leq 0, \text{ da } x \mapsto f(x) + \alpha x \text{ monoton wachsend und } u_k \leq \overline{u}}_{\leq 0, \text{ da } x \mapsto f(x) + \alpha x \text{ monoton wachsend und } u_k \leq \overline{u}$$

$$\implies u_{k+1} \leq \overline{u} \text{ fast "überall in } \Omega.$$

Schritt 4: Konvergenz

gezeigt:
$$\underline{u} = u_0 \le u_1 \le \cdots \le \overline{u}$$

Setze $u(x) := \lim_{k \to \infty} u_k(x)$ fast überall

$$\stackrel{\text{Lebesgue}}{\Longrightarrow} u_k \to u \text{ in } L^2(\Omega).$$

Weiter:

•
$$||f(u_k)||_{L^2} \stackrel{\text{Ü.A.}}{\leq}$$

•
$$\sup_{k} ||u_k||_{H_0^1(\Omega)} < \infty$$

 \implies es existiert schwach konvergente Teilfolge (u_k) in $H_0^1(\Omega)$ it Grenzwert $u \in H_0^1(\Omega)$.

Schritt 5: u löst (*) im Schwachen Sinne

$$v \in H_0^1(\Omega) \stackrel{(**)}{\Longrightarrow}$$

$$\int \nabla u_k \nabla v + \alpha u_k = \int (f(u_k) + \alpha u_k) v$$

$$\rightarrow \int \nabla u \nabla v + \alpha u v = \int f(u)v + \alpha u v$$

14.10 Beispiel für Nichtexistenz

Betrachte die semilineare Wärmeleitungsgleichung

(*)
$$\begin{cases} u_t - \nabla u &= u^2 \text{ in } (0, T) \times \Omega \\ u &= 0 \text{ auf } (0, T) \times \partial \Omega \\ u(0) &= u_0 \text{ in } \Omega \end{cases}$$

Ziele: Zeige, dass für $u_0 \ge 0$ "genügend groß" keine glatte Lösung von (*) für T groß existiert.

Betrachte hierzu
$$\begin{cases} -\Delta w &= \lambda w \text{ in } \Omega(\text{ beschränkt, } \partial \Omega \in C^{\infty}) \\ w &= 0 \text{ auf } \partial \Omega \end{cases}$$
Es gibt $\sigma_p(\Delta) = \sigma(\Delta) = (\lambda_j)_{j \in \mathbb{N}} \subseteq \mathbb{R} \text{ mit } 0 < \lambda_1 \leq \lambda_2 \leq \cdots \rightarrow \infty$

Es gibt
$$\sigma_p(\Delta) = \sigma(\Delta) = (\lambda_j)_{j \in \mathbb{N}} \subseteq \mathbb{R} \text{ mit } 0 < \lambda_1 \le \lambda_2 \le \cdots \to \infty$$

 $\lambda_1>0$ heißt Haupteigenwert (principal value), die zugehörige Eigenfunktion w_1 erfüllt $w_1\in$ $C^{\infty}, w_1 \geq 0$, sowie $\int w_1 dx = 1$.

Sei nun u eine glatte Lösung von (*) mit $u_0 \ge 0, u_0 \ne 0$.

$$\implies u > 0 \text{ in } (0,T) \times \Omega.$$

Setze
$$h(t) = \int_{\Omega} u(t, x) w_1(x) dx$$

Setze
$$h(t) = \int_{\Omega} u(t, x) w_1(x) dx$$

 $\implies h'(t) = \int (\Delta u + u^2) w_1 dx = \int u \Delta w_1 + \int u^2 w_1 = -\lambda_1 h(t) + \int u^2 w_1$
Außerdem: $h(t) = \int u(t, x) w_1^{\frac{1}{2}}(x) w_1^{\frac{1}{2}}(x) dx \stackrel{\text{H\"older}}{\leq} (\int u^2(t, x) w_1(x))^{\frac{1}{2}} (\int w_1)^{\frac{1}{2}}$

$$\implies h^2(t) \leq \int u^2(t,x) w_(x) dx$$
 und damit $h'(t) \geq -\lambda_1 h(t) + h^2(t)$

Setze nun $g(t) = e^{\lambda_1 t} h(t)$. Dann

$$g'(t) = \dots \ge e^{-\lambda_1 t} g^2(t)$$

$$\implies \left(\frac{-1}{g(t)}\right)' = \frac{g'(t)}{g^2(t)} \ge e^{-\lambda_1 t}$$

$$\implies \left(\frac{-1}{g(t)}\right)' = \frac{g'(t)}{g^2(t)} \ge e^{-\lambda_1 t}$$

$$\implies g(t) \ge \frac{\lambda_1 g(0)}{\lambda_1 - g(0)(1 - e^{-lambda_1 t}}$$

Ist nun $h(0) = g(0) > \lambda_1$, so kann keine glatte Lösung von (*) existieren, genauer:

$$\lim_{t \to T^*} \int u(t, x) w_1(x) dx = \infty \text{ mit } T^* = -\frac{1}{\lambda_1} \ln(\frac{h(0) - \lambda_1}{h(0)}).$$

Genannt wir dieses Phänomen "blow-up" zur Zeit T^* .

14.11 Satz

Die semilineare Wärmeleitungsgleichung (*) besitzt für $u_0 \neq 0$ mit $\int u_0 w_1 dx > \lambda_1$ keine glatte Lösung für t hinreichend groß.

15 Hopfsches Maximumsprinzip

Betrachte hier elliptische Operatoren 2. Ordnung, d.h. Operatoren der Form

1)
$$Au = -\sum_{i,j=1}^{n} \partial_{j} \left(a_{ij}(x) \partial_{i} u(x) \right) + \sum_{j=1}^{n} b_{i}(x) \partial_{i} u(x) + c(x) u(x)$$

2)
$$Au = -\sum_{i,j=1}^{n} a_{ij}(x)\partial_j\partial_i u(x) + \sum_{i=1}^{n} b_i(x)\partial_i u(x) + x(x)u(x)$$
.

mit gegebenen Funktionen a_{ij}, b_{ij}, c auf einem Gebiet Ω .

Operatoren der Form 1) heißen Operatoren in Divergenzform, währen Operatoren der Form 2) Operatoren in Nicht-Divergenz-Form heißen.

Wir nehmen Symmetrie an, $a_{ij} = a_{ji}$.

15.1 Definition

Der Operator A heißt gleichmäßig elliptisch, falls ein $\mu > 0$ existiert mit

$$\sum_{i,j=1}^{n} a_{ij}(x)\xi_i\xi_j \ge \mu|\xi|^2$$

für alle $x \in \Omega, \xi \in \mathbb{R}^n$.

Anmberkung

- a) Obige Definition besagt, dass die symmetrische Matrix $(a_{ij}) =: A$ positiv definit ist mit kleinstem Eigenwert $\geq \mu$.
- b) $a_{ij} = \delta_{ij}, b_i = c = 0, \text{ dann } A = -\Delta.$
- c) Existieren schwache Lösungen von $\begin{cases} Au=f \text{ in } \Omega\\ u=0 \text{ auf } \partial\Omega \end{cases}$ folgt wie zuvor für Δ .

Weitere Eigenschaften sind schwieriger (höhere Regularität notwendig).

Wenden uns num dem Maximumsprinzip zu:

Betrachte Operatoren in Nicht-Divergenzform mit c = 0, d.h.

$$Au = -\sum_{i,j=1}^{n} a_{ij}(x)\partial_i\partial_j u(x) + \sum_{i=1}^{n} b_i(x)\partial_i u(x)$$

mit

- stetigen Koeffizienten a_{ij}, b_i
- A glm. elliptisch
- $a_{ij} = a_{ji}$
- $\Omega \subseteq \mathbb{R}^n$ offen, beschränkt.

15.2 Satz (schwaches Maximumsprinzip)

Sei $u \in L^2(\Omega) \cap C^0(\overline{\Omega})$ so, dass $Au \leq 0$ in Ω . Dann $\max_{x \in \overline{\Omega}} u(x) = \max_{x \in \partial \Omega} u(x)$.

Bemerkung. Eine Funktion u mit $Au \leq 0$ in Ω heißt Unterlösung; analog: u mit $Au \geq 0$ heißt Oberlösung.

Beweis. 1. Fall: Es gelte die strikte Ungleichung Au < 0 in Ω .

Angenommen es existiert $x_0 \in \Omega$ mit $u(x_0) = \max_{x \in \overline{\Omega}} u(x)$

$$\implies \nabla u(x_0) = 0, (\partial_i \partial_j u)(x_0)$$
 ist negativ semi-definit.

Da $A := (a_{ij}(x_0))$ symmetrisch und positiv definit, existiert orthogonale Matrix O mit $OAO^T = \operatorname{diag}(d_1, \ldots, d_n), d_i > 0.$

Für $g = x_0 + O(x - x_0)$ gilt: $x - x_0 = O^T(y - x_0)$, daher folgt

$$\partial_{x_i} u = \sum_{k=1}^n \partial_{y_k} u O O_{ik}$$

$$\partial_{x_i} \partial_{x_j} u = \sum_{k,l=1}^n \partial_{y_k} \partial_{y_l} u O_{i_k} O_{j_l}, \quad \text{also}$$

$$\sum_{i,j=1}^n a_{ij}(x_0) \partial_{x_i} \partial_{x_j} u = \sum_{k,l=1}^n \sum_{i,j=1}^n a_{ij}(x_0) \partial_{y_k} \partial_{y_l} u O_{i_k} O_{j_l}$$

$$= \sum_{k=1}^n d_k \partial_{y_k} \partial_{y_k} u \le 0$$

$$\implies Au(x_0) \ge 0,$$

ein Widerspruch.

Fall 2: Es gelte $Au \leq 0$ in Ω

Setze
$$u_{\varepsilon}(x) := u(x) + \varepsilon e^{\lambda x_1}, x \in \Omega, \varepsilon > 0, \lambda > 0.$$

Damit ist

$$Au_{\varepsilon} = Au + \varepsilon A(e^{\lambda x_1}) = Au + \varepsilon e^{\lambda x_1}(-\lambda^2 a_1 1 + \lambda b_1)$$

$$\leq Au + \varepsilon e^{\lambda x_1}(-\lambda^2 \mu + \lambda ||b_1||_{\infty}) < 0$$

für λ hinreichend groß.

$$\stackrel{\text{Fall } 1}{\Longrightarrow} \max x \in \overline{\Omega} u_{\varepsilon}(x) = \max_{x \in \partial \Omega} u_{\varepsilon}(x).$$

$$\stackrel{\varepsilon \to 0}{\Longrightarrow} \ \max_{x \in \overline{\Omega}} u(x) = \max x \in \partial \Omega u(x). \ \Box$$

Verstärken die Aussage jetzt noch dahingehend, dass eine Unterlösung kein Maximum im Inneren annehmen kann, solange sie nicht konstant ist.

15.3 Lemma (Hopf)

Sei $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ so, dass $Au \leq 0$ in Ω und es existiert $x_0 \in \partial \Omega$ mit $u(x_0) > u(x), x \in \Omega$. Weiterhin existiert eine offene Kugel $K \subseteq \Omega$ mit $x_0 \in \partial K$ (innere Kugelbedingung).

 $\implies \frac{\partial u}{\partial \nu}(x_0) > 0$, wobei ν die äußere Normale an K in x_0 ist.

Beweis. Setze $v(x) = e^{-\lambda |x|^2} - e^{-\lambda r^2}$, mit $K = B(0, r), \lambda > 0$. Dann

$$Av = e^{-\lambda|x|^2} \sum_{i,j=1}^n a_{ij} (-u\lambda^2 x_i x_j + 2\lambda \delta_{ij}) - e^{-\lambda|x|^2} \sum_{i=1}^n b_i 2\lambda x_i$$

$$\leq e^{-\lambda|x|^2} (-u\lambda^2 \mu|x|^2 + 2\lambda \operatorname{Spur}(A) + 2\lambda|b||x|)$$

Betrachte nun den Kreisring $R := B(0, r) \setminus B(0, \frac{r}{2})$.

 $\implies Av \leq 0$ in R, wenn λ genügend groß.

Aus $u(x_0) > u(x)$ folgt:

$$u(x_0) \ge u(x) + \varepsilon v(x), x \in \partial B(0, \frac{v}{2})$$
$$u(x_0) \ge u(x) + \varepsilon \underbrace{v(x)}_{=0}, x \in \partial B(0, r).$$

für ε klein genug.

Damit folgt zum Einen:

$$A(u + \varepsilon v - u(x_0)) \le 0 \text{ in } R.$$

Zum Anderen ist

$$u + \varepsilon v - u(x_0) \le 0$$
 auf ∂R .

$$\stackrel{15.2}{\Longrightarrow} u + \varepsilon v - u(x_0) \le 0 \text{ in } R.$$

Wegen $u(x_0) + \varepsilon v(x_0) - u(x_0) = 0$ folgt

$$\frac{\partial u}{\partial \nu}(x_0) + \frac{\partial v}{\partial \nu}(x_0) \ge 0,$$

also

$$\frac{\partial u}{\partial \nu}(x_0) \ge -\varepsilon \frac{\partial v}{\partial \nu}(x_0) = \varepsilon \nabla v(x_0) \frac{x_0}{r} = 2\lambda \varepsilon r e^{-\lambda r^2} > 0$$

15.4 Theorem (starkes Maximumsprinzip)

Sei $u \in C^2(\Omega) \cap C(\overline{\Omega})$. Fall $Au \leq 0$ in Ω und $\max_{x \in \overline{\Omega}} u(x)$ in einem inneren Punkt von Ω angenommen wird, so ist u konstant in Ω .

Beweis: Übungsaufgabe.

16 Das Maximumsprinzip für parabolische Gleichungen