"PRIMER PRINCIPIO PARA SISTEMAS CERRADOS – CALOR Y TRABAJO" UNIDAD 3 A Y B

BIBLIOGRAFÍA:

- Cengel Y., Boles M., "Termodinámica"
- Calderón, Lisandro. Capítulos 2 y 3

UNIDAD 3:

PRIMER PRINCIPIO DE LA TERMODINAMICA PARA SISTEMAS CERRADOS

- **3.A. Calor. N**aturaleza, concepto, unidades. Capacidad calorífica. Calor específico verdadero o instantáneo, variabilidad de los calores específicos. Calores específicos principales. Tablas de calores específicos. Calor específico medio. Flujo calorífico cuasiestático. Foco calorífico. Cálculo del calor intercambiado entre sistema y medio. Convención de signos.
- **3.B. Trabajo.** Naturaleza, definición, concepto, signo. Cálculo del trabajo transferido entre sistema y medio. Trabajo de expansión o compresión cuasiestático o reversible. Diagrama P-V. Comparación entre calor y trabajo. Trabajo eléctrico. Equivalencia entre calor y trabajo.
- **3.C. Primer Principio de la Termodinámica.** Primer principio, su enunciación experimental. Formulación matemática para un sistema cerrado, transformación cerrada y abierta Primer principio como balance de energía.
- **3.D. Energía Interna.** Energía interna generalizada. Su naturaleza. Energía interna U como propiedad termodinámica. Experiencia de Joule. Ecuación energética de un Sistema Cerrado. Energía interna del gas ideal y no ideal.

Cuando un cuerpo se coloca en un medio que está a una temperatura diferente, la transferencia de energía tiene lugar entre el cuerpo y el medio hasta que se establece el equilibrio térmico, es decir, cuando ambos alcanzan la misma temperatura

La dirección de la transferencia de energía es siempre del cuerpo con mayor temperatura al de menor temperatura

En este proceso se afirma que la energía se transfiere en forma de CALOR.

Es la forma de <u>energía</u> que <u>se transfiere e</u>ntre dos sistemas, o entre un sistema y su entorno, debido a una diferencia de temperatura

El calor es energía en tránsito que se reconoce sólo cuando cruza el límite del sistema

1° Caso: Como consecuencia del ingreso de Q, el sistema alcanza una Tf >Ti. → "Calor Sensible".

2º Caso: Como consecuencia del ingreso de Q, el sistema no varía su T (Tf = Ti) sino que cambia de fase → "Calor Latente"

3º Caso: A pesar del ingreso de Q, el sistema disminuye su temperatura (Tf < Ti) \rightarrow El Calor absorbido es menor que el Trabajo W, que el sistema simultáneamente cede al medio ambiente (Ej: Expansión de un gas en un dispositivo cilindro émbolo)

Considerando el 1º Caso, (Calor Sensible), se definen las siguientes propiedades.

SISTEMA

C_m : Capacidad calorífica media;

 C_m : Capacidad calorífica media; $C_m = \frac{Q}{T_f - T_i}$ C: Capacidad calorífica instantánea; $C = \frac{dQ}{dT_i}$

$$C_{\rm m} = \frac{Q}{T_{\rm f} - T_{\rm i}}$$

$$\mathbf{C} = \frac{\mathbf{dQ}}{\mathbf{dT}}$$

SUSTANCIA

C_m : Calor específico medio;

$$c_{\rm m} = \frac{Q}{m(T_{\rm f} - T_{\rm i})}$$

$$c_{m} = \frac{Q}{n(T_{f} - T_{i})}$$

$$=\frac{dQ}{m dT}$$
 $c = \frac{dQ}{n}$

Según la definición de c_m : Calor específico medio

$$\mathbf{c_{m}} = \frac{\mathbf{Q}}{\mathbf{m}(\mathbf{T_{f}} - \mathbf{T_{i}})}$$

$$Q = m c_m (T_f - T_i)$$

Si
$$m = 1$$

$$(T_f - T_i) = 1^\circ$$

 $Q \approx c_{m}$

Entonces se puede interpretar que "c" es la cantidad de calor que debe intercambiar la masa unitaria de una sustancia para que su temperatura varíe en UN grado

HALLAZGO EXPERIMENTAL (A PRESIÓN CONSTANTE) :

EXPERIENCIA 1:											
SUSTANCIA	MASA (kg)	Ti (°C)	Tf (°C)	Qif (kJ)	c _m (kJ/kg °C)						
Hierro	1	20	30	4,5	0,45						
Agua	1	20	30	41,8	4,18						

> El calor específico depende de qué sustancia se trata

HALLAZGO EXPERIMENTAL (A PRESIONES BAJAS):

EXPERIENCIA 2:	SUSTANCIA: H			
TRANSFORMACIÓN	MASA (kg)	ΔT (°C))	Qif (kJ)	c (kJ/kg °C)
A Volumen ctte	1	1	3,12	3,12
A Presión ctte	1	1	5,19	5,19

➤ El calor específico depende del tipo de proceso o transformación que se lleva a cabo

HALLAZGO EXPERIMENTAL (A PRESIONES BAJAS):

EXPERIENCIA 3 :	SUSTANCIA: AIRE									
TRANSFORMAC.	MASA (kg)	Ti (°C)	Tf (°C)	Qif (kJ)	c (kJ/kg °C)					
A Volumen ctte	1	300	301	0,718	0,718					
A Volumen ctte	1	1000	1001	0,855	0,855					

> El calor específico depende de la temperatura

Calor específico, para cada sustancia, depende de:

✓ La transformación

✓ La temperatura

$$c = \frac{dQ}{mdT}$$

Puede ser negativo, nulo, positivo o infinito

Si un sistema de masa "m" incrementa su temperatura al recibir una cierta cantidad de calor, se cumple que:

$$c = \frac{dQ}{m dT} \longrightarrow Q = m \int_{T_i}^{T_f} c(T) dT = ?$$

Como el "c" depende del tipo de transformación que lleve al sistema desde T_i hasta T_{f_i} según sea ésta podrá obtenerse que:

$$Q_{1i\text{-}f} = m \int_{Ti}^{Tf} c_1(T) dT \qquad \acute{o} \qquad Q_{2i\text{-}f} = m \int_{Ti}^{Tf} c_2(T) dT \qquad \acute{o} \qquad Q_{ni\text{-}f} = m \int_{Ti}^{Tf} c_n(T) dT$$

Qi-f depende de la transformación

"Es función de línea"

NO ES PROPIEDAD!!

GRÁFICAMENTE:
$$q = 9/m = \int_{Ti}^{Tf} c(T) dT$$

$$q_{1 i-f} = Q_{1 i-f} / m > q_{2 i-f} = Q_{2 i-f} / m$$

Para sistemas simples compresibles, se denominan calores específicos

principales a:

$$c_p$$
; $c_p = f_1$ (T)
Transformación a presión constante

 c_v ; $c_v = f_2$ (T) Transformación a volumen constante Son
"propiedad
intensiva"
Están
tabulados

Ej. para HELIO

El Q_p debe ser suficiente para que, además de calentar el gas, haga subir al émbolo y así la presión no aumente.

En igualdad de condiciones, $Q_p > Q_v$

Por eso SIEMPRE los gases tienen: $c_p > c_v$

Para <u>sustancias incompresibles</u> (líquidos y sólidos) la diferencia entre los dos calores específicos es despreciable por lo que no hace falta hacer distinción entre c_n y c_v .

TABLA A-2

Calores específicos de gas ideal de varios gases comunes

a) A 300 K

Gas	Fórmula	Constante de gas, R kJ/kg · K	c _p kJ/kg⋅K	c, kJ/kg - K	k
Aire	_	0.2870	1.005	0.718	1,400
Argón	Ar	0.2081	0.5203	0.3122	1.667
Butano	C4H10	0.1433	1.7164	1.5734	1.091
Dióxido de carbono	CO ₂	0.1889	0.846	0.657	1.289
Etano	C ₂ Ĥ ₆	0.2765	1.7662	1.4897	1.186
Etileno	C2H4	0.2964	1.5482	1.2518	1.237
Helio	He	2.0769	5.1926	3.1156	1.667
Hidrógeno	H ₂	4.1240	14.307	10.183	1.405
Metano	CĤ ₄	0.5182	2.2537	1.7354	1.299
Monóxido de carbono	co	0.2968	1.040	0.744	1.400
Neón	Ne	0.4119	1.0299	0.6179	1.667
Nitrógeno	N ₂	0.2968	1.039	0.743	1,400
Octano	C ₈ H ₁₈	0.0729	1.7113	1.6385	1.044
Oxígeno	02	0.2598	0.918	0.658	1.395
Propano	C ₂ H ₈	0.1885	1.6794	1.4909	1.126
Vapor	H ₂ O	0.4615	1.8723	1.4108	1.327

Nota: La unidad kJ/kg - K es equivalente a kJ/kg - °C.

Fuente: Chemical and Process Thermodynamics 3a. ed., por Kyle, B.G., © 2000, Adaptado con permiso de Pearson Education, Inc., Upper Saddle River, Nueva Jersey.

TABLA A-2

Calores específicos de gas ideal de varios gases comunes (continuación)

b) A diversas temperaturas

Temperatura,	c _o kJ/kg · K	c, kJ/kg - K	k	c _p kJ/kg - K	c, kJ/kg - K	*	c _ρ kJ/kg ⋅ K	c, kJ/kg · K	k	
K		Aire		Dia	vido de carbo	no. CO.	Monóxido de carbono, CO			
250	1.003	0.716	1.401	0.791	0.602	1.314	1.039	0.743	1.400	
300	1.005	0.718	1.400	0.846	0.657	1.288	1.040	0.744	1.399	
350	1.008	0.721	1.398	0.895	0.706	1.268	1.043	0.746	1,398	
400	1.013	0.726	1.395	0.939	0.750	1.252	1.047	0.751	1.395	
450	1.020	0.733	1.391	0.978	0.790	1.239	1.054	0.757	1.392	
500	1.029	0.742	1.387	1.014	0.825	1.229	1.063	0.767	1.387	
550	1.040	0.753	1.381	1.046	0.857	1.220	1.075	0.778	1.382	
600	1.051	0.764	1.376	1.075	0.886	1.213	1.087	0.790	1.376	
650	1.063	0.776	1.370	1.102	0.913	1.207	1.100	0.803	1.370	
700	1.075	0.788	1.364	1.126	0.937	1.202	1.113	0.816	1.364	
750	1.087	0.800	1.359	1.148	0.959	1.197	1.126	0.829	1.358	
800	1.099	0.812	1.354	1.169	0.980	1.193	1.139	0.842	1,353	
900	1.121	0.834	1.344	1.204	1.015	1.186	1.163	0.866	1.343	
1000	1.142	0.855	1.336	1.234	1.045	1.181	1.185	0.888	1.335	
		Hidrogeno,	H_2		Nitrogeno	N ₂	Oxigeno, O ₂			
250	14.051	9.927	1.416	1.039	0.742	1.400	0.913	0.653	1.398	
300	14.307	10.183	1.405	1.039	0.743	1.400	0.918	0.658	1.395	
350	14.427	10.302	1.400	1.041	0.744	1.399	0.928	0.668	1.389	
400	14.476	10.352	1.398	1.044	0.747	1.397	0.941	0.681	1.382	
450	14,501	10.377	1.398	1.049	0.752	1.395	0.956	0.696	1.373	
500	14.513	10.389	1.397	1.056	0.759	1.391	0.972	0.712	1.365	
550	14.530	10.405	1.396	1.065	0.768	1.387	0.988	0.728	1.358	
600	14.546	10.422	1.396	1.075	0.778	1.382	1.003	0.743	1.350	
650	14.571	10,447	1.395	1.086	0.789	1.376	1.017	0.758	1.343	
700	14.604	10.480	1.394	1.098	0.801	1.371	1.031	0.771	1.337	
750	14.645	10.521	1.392	1.110	0.813	1.365	1.043	0.783	1.332	
800	14.695	10.570	1.390	1.121	0.825	1.360	1.054	0.794	1.327	
900	14.822	10.698	1.385	1.145	0.849	1.349	1.074	0.814	1.319	
1000	14.983	10.859	1.380	1.167	0.870	1.341	1.090	0.830	1.313	

Fuento: Kenneth Wark, Thermodynamics, 4s. ed., Nueva York, McGraw-Hill, 1983, p. 783, Tabla A-4M. Publicada originalmente en Tables of Thermal Properties of Gases, NBS Circular 564, 1955.

TABLA A-2

Calores específicos de gas ideal de varios gases comunes (conclusión)

c) Como una función de la temperatura

$$c_p = a + b T + c T^2 + d T^3$$

(7 en K, c. en kJ/kmal - K)

						Rango de	% de error		
Aire Amosiaco Azufre Benceno i-Butano o Butano	Formula	a	ь	c	d	temp., K	Máx.	Prom	
Acetiens	C ₂ H ₂	21.8	9.2143 × 10 ²	-6.527×10^{-6}	18.21×10^{-9}	273-1500	1.46	0.59	
Aire	_	28.11	0.1967 × 10 °	0.4802×10^{-6}	-1.966×10^{-9}	273-1800	0.72	0.33	
Amosiaco	NH.	27.568	2.5630 × 10 F	0.99072 × 10 ⁻⁶	-6.6909 × 10 9	273-1500	0.91	0.36	
Azufre	S.	27.21	2.218 × 10-2	-1.628×10^{-5}	3.986 × 10 ⁻⁹	273-1800	0.99	0.38	
Benceno	C _s H _e	-35.22	48.475 × 10 ⁻²	-31.57 × 10 °	77.62×10^{-9}	273-1500	0.34	0.20	
/-Butano	CaHis	-7.913	41.60 × 10 ⁻²	-23.01×10^{-9}	49,91 × 10 ⁻⁹	273-1500	0.25	0.13	
o Butano	C.H.	3.95	37.15 × 10-2	-18.34×10^{-5}	35.00×10^{-9}	273-1500	0.54	0.24	
Cloruro de	0.000								
	HCI	30.33	-0.7620×10^{-2}	1.327 × 10 5	-4.338×10^{-9}	273-1500	0.22	0.08	
	50	25.78	5.795×10^{-2}	-3.812×10^{-8}	8612 × 10 °	273-1800	0.45	0.24	
	001	and the		3,444	2000		630%		
	CO	22.25	5.981 × 10 ⁻²	-3.501×10^{-8}	7.469×10^{-9}	273-1800	0.67	0.22	
	401	No. of Street,	2000	21.77	V.34.		11.55	0.553.5	
	NO ₂	22.9	5.715×10^{-2}	-3.52 × 10 1	7.87 × 10 ⁻⁹	273-1500	0.46	0.18	
	C.H.	6.900	17.27 × 10-2	-6.406 × 10 5	7.285×10^{-9}	273-1500	0.83	0.28	
224000000000000000000000000000000000000	C.H.O	19.9	20.96 × 10 ⁻⁹	-10.38×10^{-5}	20.05×10^{-9}	273-1500	0.40	0.22	
DESCRIPTION OF THE PARTY OF THE	C.H.	3.95	15.64 × 10 ⁻²	-8.344×10^{-5}	17.67 × 10 ⁻⁹	273-1500	0.54	0.13	
	CaHia	6,938	55.22 × 10 *	-28,65 × 10 ⁻³	57.69×10^{-2}	273-1500	0.72	0.20	
	H ₂	29.11	-0.1916×10^{-9}	0.4003 × 10 ⁻¹	-0.8704×10^{-9}	273-1900	1.01	0.26	
C) 1 C) C) (1950)	CH.	19.89	5.024 × 10 ⁻²	1.269×10^{-1}	-11.01×10^{-9}	273-1500	1.33	0.57	
	CH ₄ 0	19.0	9.152×10^{-2}	-1.22×10^{-1}	-8.039×10^{-9}	273-1000	0.18	0.08	
						400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	315.5		
	CD	28.16	0.1675×10^{-2}	0.5372×10^{-1}	-2.222 × 10 °	273-1800	0.89	0.37	
Nitrogene	N _o	28,90	-0.1571×10^{-2}	0.8081 × 10 · 1	-2.873×10^{-9}	273-1800	0.59	0.34	
	NO	29.34	-0.09395×10^{-7}	0.9747 × 10 ⁻⁵	-4.187×10^{-9}	273-1500	0.97	0.36	
Óxido nitroso	N_0	24.11	5.8632 × 10 2	-3.562×10^{-5}	10.58×10^{-9}	273-1500	0.59	0.26	
Oxígeno	0,	25,48	1.520×10^{-2}	-0.7155×10^{-3}	1.312×10^{-9}	273-1800	1.19	0.28	
n-Pentano	C.H.,	6.774	45.43 × 10 ⁻⁹	-22,46 × 10-1	42.29 × 10 °	273-1500	0.56	0.21	
Propeno	C, H ₀	-4.04	30.48 × 10 2	-15.72×10^{-5}	31.74 × 10-9	273-1500	0.40	0.12	
Propileno Triáxido de	C ₂ H ₆	3.15	23.83×10^{-2}	-12.18×10^{-1}	24.62 × 10 9	273-1500	0.73	0.17	
azure	50,	15.40	14.58×10^{-2}	-11.20×10^{-3}	32.42 × 10 °	273-1300	0.29	0.13	
Agua (vapor)	H=0	32.24	0.1923 ⋈ 10-2	1.055 × 10 3	-3.595×10^{-9}	273-1900	0.53	0.24	

Firente, B. G. Kyle, Chemical and Process Thermodynamics, Englewood Cliffs, Nueva Jersey, Frentice Hall, 1984. Usada con permiso.

Calores específicos de gas ideal (presiones bajas) a presión constante para algunos gases

Se observa:

➤ Los c_p de moléculas complejas (con dos o más átomos) son más altos y se incrementan con la temperatura

 ➤ Los c_p de gases monoatómicos permanecen constantes con la temperatura

CALOR ESPECÍFICO MEDIO

$$q = \int c dT = c_m (T_2 - T_1)$$

Si
$$c = a + b T + c T^2$$

$$c_{m} = \frac{\int_{T_{1}}^{T_{2}} (a + bT + cT^{2})dT}{T_{2} - T_{1}}$$

(teorema del valor medio del cálculo integral) 21

Tabla 19. Capacidades caloríficas medias molares de gases entre 25 y t °C a P=ctte cal/(mol-g) (°K)

	 _	γ					 * * * 	3		ı	1	 -	,	1	
ť	H ₂	N ₂	CO.	Aire	02	МО	H ₁ O	CO ₂	HCl	CI2	CH.	802	C ₂ H ₄	80:	C.H.
25	6 804	6 961	6,965	6 072	7 017	7 134	8 024	8,884	8 06	9 12	Q 55	Q 54	10.45	19 11	12 63
		ľ	6,983	l:		. ·	1 '	9,251						1	
	1	1	7,017	i i		, .		9,701					•		-
	i .*	-	7,070	1 .	1 °	l '	, ,	10,108				-	, ,		
	1 -		7,136	•		i -	A-7/2	10,462						-	
	1		7,210			_		10,776	4 - 1						
	l i	: 1	7,289					11,053							
			7,365		l * i		•	11,303		• •				1	
	1	-	7,443	- 1	''			11,53			• 1	- 1			
			7,521	•	,			11,74							
	-		7,587			•		11,92							
			7,653					12,10		•			1		=
1			7,714	4		•		12,25	, ,	- 1		· ·			
1300	7,252	7,692	7,772	7,778	8,123	7,952	9,66	12;39		·	Ť		<u></u>	}	
1400	7,288	7,,738	7,818	7,824	8,166	7,994	9,77	12,50				1	[
1500	7,326	7,786	7,866	7,873	8,203	8,039	9,89	12,69			ł	ł	1	i	
1600	7,386	7,844	7,922	7,929	8,269	8,092	9,95	12,75			j	j	.]	j	'
1700	7,421	7,879	7,958	7,965	8,305	8,124	10,13	12,70		.	1			l	
				7 4		- 1		12,94	İ	ı	1		ł		:
1900	7,505	7,957	8,033	8,043	8,383	8,192	10,34	13,01	1	1				ł	
		1			•	-		13,10	[ł	1			ł	
								13,17			1	ł		ſ	
2200	7,624	8,054	8,127	8,144	8,491	8,277	10,61	13,24	1	- }	1			Ì	

FOCO CALORÍFICO

$$dQ = m c dT$$

$$dT = dQ / (m c)$$

Si un sistema tiene una masa muy elevada: $m \rightarrow \infty$

Luego,
$$dT \rightarrow 0 \Rightarrow T = ctte$$

Se denomina FOCO CALORÍFICO a un sistema que, por tener una masa muy grande, puede absorber calor (sumidero) o ceder calor (fuente) sin que su temperatura varíe

Ej: Océano ; lago ;

río ; atmósfera

Vimos que:

ESTADO DE EQUILIBRIO: No hay acción perturbadora que modifique al sistema. Propiedades UNIFORMES y con habilidad descriptiva

TEMPERATURA homogénea: EQUILIBRIO TÉRMICO

PRESIÓN homogénea: EQUILIBRIO MECÁNICO COMPOSICIÓN homogénea: EQUILIBRIO QUÍMICO

EQUILIBRIO TERMODINÁMICO

TERMODINÁMICA "CLÁSICA": T. DEL EQUILIBRIO

En una TRANSFORMACIÓN : Cambian las propiedades del sistema debido a una acción perturbadora

Una fuerza finita no equilibrada hace que el sistema pase por estados que no son de equilibrio

Si la fuerza no equilibrada resulta infinitesimal:

CUASIESTÁTICA

FLUJO DE CALOR CUASIESTÁTICO

TRABAJO:

Flujo de <u>energía</u> debido a fuerzas motrices distintas de la temperatura y que mediante un dispositivo apropiado puede ser convertido al equivalente de una fuerza que se mueve a través de una distancia

TRABAJO

TRABAJO MECÁNICO: Se mueve el sistema o alguno de sus límites como consecuencia de la aplicación de una fuerza

$$\mathbf{W} = \int \mathbf{F} \cos \alpha \, d\mathbf{x}$$

$$\mathbf{W} = \int \mathbf{F} \, d\mathbf{x}$$

F: Fuerza externa, que puede variar a medida que el bloque se desplaza

TRABAJO DE COMPRESIÓN – EXPANSIÓN Ó TRABAJO DE FRONTERA MÓVIL

(Sistema simple compresible en dispositivo cilindro-pistón):

$$\mathbf{W} = \int_{\mathbf{x}_1}^{\mathbf{x}_2} \mathbf{F}_{\mathbf{e}} \mathbf{dx}$$

$$\mathbf{F}_{\mathbf{e}} = \mathbf{P}_{\mathbf{e}} \mathbf{A}$$

Siendo "A" : Area del émbolo en contacto con el gas

$$\mathbf{W} = \int_{\mathbf{x}_1}^{\mathbf{x}_2} \mathbf{F_e} \mathbf{dx} = \int_{\mathbf{P_e}}^{\mathbf{P_e}} \mathbf{Adx} = \int_{\mathbf{V}_1}^{\mathbf{V}_2} \mathbf{P_e} \mathbf{dV}$$

Ejemplo: Este trabajo es el que se realiza en los motores de automóviles

TRABAJO DE COMPRESIÓN - EXPANSIÓN "CUASIESTÁTICO"

$$P_e = P_{sist} - dP$$

$$W = \int_{V_1}^{V_2} P_e dV = \int_{V_1}^{V_2} (P_{sist} - dP) dV = \int_{V_1}^{V_2} P_{sist} dV - \int_{V_1}^{V_2} dP dV = \int_{V_1}^{V_2} P_{sist} dV$$

$$\mathbf{W} = \int_{\mathbf{V}_1}^{\mathbf{V}_2} \mathbf{P}(\mathbf{V}) \, \mathbf{dV}$$

$$\mathbf{W} = \int_{\mathbf{V}_1}^{\mathbf{V}_2} \mathbf{P}(\mathbf{V}) \, \mathbf{dV}$$

$$\mathbf{W}_{\mathbf{A}1-2} = \int_{\mathbf{V}_1}^{\mathbf{V}_2} \mathbf{P}_{\mathbf{A}}(\mathbf{V}) \, \mathbf{dV}$$

$$\mathbf{W}_{\mathbf{B}1-2} = \int_{\mathbf{V_1}}^{\mathbf{V_2}} \mathbf{P}_{\mathbf{B}}(\mathbf{V}) \, \mathbf{dV}$$

$$\mathbf{W}_{\mathbf{A}1-2} \neq \mathbf{W}_{\mathbf{B}1-2}$$

W₁₋₂ depende de la transformación

COMPARACIÓN ENTRE CALOR Y TRABAJO

- Calor y Trabajo son, ambos, fenómenos transitorios. Los sistemas nunca tiene Calor o Trabajo, pero cualquiera o ambos cruzan el limite del sistema, cuando éste sufre un cambio de estado.
- b) Ambos, Calor y Trabajo, son fenómenos de límite. Ambos se observan solamente en los límites del sistema y ambos representan la energia que cruza el límite del sistema.

 c) Ambos, Calor, Trabajo, son funciones de travectoria o línea y sus diferenciales son inexactas.

CONVENCIÓN DE SIGNOS PARA CALOR Y TRABAJO

$$\mathbf{Q} = \mathbf{m} \int_{\mathrm{Ti}}^{\mathrm{Tf}} \mathbf{c}(\mathbf{T}) \, \mathbf{dT}$$

$$\mathbf{W} = \int_{\mathbf{V}_1}^{\mathbf{V}_2} \mathbf{P}(\mathbf{V}) \, \mathbf{dV}$$

TRABAJO ELÉCTRICO

En un campo eléctrico, los electrones de un alambre se mueven por el efecto de fuerzas electromotrices, por lo tanto realizan trabajo.

Los electrones que cruzan la frontera del sistema realizan trabajo eléctrico sobre éste.

Cuando N coulombs de carga eléctrica se mueven a través de una diferencia de potencial V, el trabajo eléctrico realizado es:

$$We = NV$$

Como I, intensidad de corriente eléctrica, es el número de cargas eléctricas que fluyen por unidad de tiempo, la Potencia eléctrica será:

$$We = VI$$

o también: We = V I Δt (kJ)

EQUIVALENCIA ENTRE CALOR Y TRABAJO

A principios del siglo XIX, se consideraba al calor como un fluido invisible llamado calórico que fluía de los cuerpos más calientes a los más fríos.

Las experiencias James Joule (1840), demostraron que el Trabajo Mecánico se puede convertir en Calor, y proporcionaron el factor de proporcionalidad entre ambos

EQUIVALENCIA ENTRE CALOR Y TRABAJO

$$\mathbf{W} = \int \mathbf{m}_{\mathbf{p}} \mathbf{g} \mathbf{dh} = \mathbf{m}_{\mathbf{p}} \mathbf{g} (\mathbf{h}_{2} - \mathbf{h}_{1}) = \Delta \mathbf{E} \mathbf{p}$$

1 kcal = 427 kgf m

1 kcal = 4180 kJ

Los experimentos de Joule indicaron que Calor y Trabajo se han de considerar como formas diferentes de otra magnitud más general, <u>la Energía</u>

JOULE (1840)

