第五章 整除性与最大公因数

欧几里得算法:要计算两个整数a与b的最大公因数,先令 $r_{-1}=a$ 且 $r_0=b$,然后计算相继的商和余数

$$r_{i-1} = q_{i+1} imes r_i + r_{i+1} (i=0,1,2,\dots)$$

直到某余数 r_{n+1} 为0。最后的非零余数 r_n 就是a与b的最大公因数。

习题

- 5.1 应用欧几里得算法计算下述最大公因数。
 - *(a)* gcd(12345, 67890)
 - *(b)* gcd(54321, 9876)

(a) $61890 = 5 \times 12345 + 6165$ (b) $54321 = 5 \times 9816 + 4941$ $12345 = 2 \times 6165 + 15$ $6165 = 411 \times 15 + 0$ $9616 = 1 \times 4941 + 4935$ $4941 = 1 \times 4935 + 6$ $961612345 \cdot 67890) = 15$ $4935 = 822 \times 6 + 3$ $6 = 2 \times 3 + 0$ 961634321, 9816) = 3

• 5.2 编写程序计算两个整数a与b的最大公因数gcd(a,b)。即使a与b中的一个等于零,程序也应该运行,但要确保a与b都是0时不会出现死循环。

```
import (
    "fmt"
)

func gcd(a, b int) int {
    if a == 0 {
        return abs(b)
    }
    if b == 0 {
        return abs(a)
    }

    for b != 0 {
        a, b = b, a%b
    }
    return abs(a)
}

func abs(x int) int {
```

```
if x < 0 {
    return -x
}
return x
}

func main() {
  var a, b int
  fmt.Println("请输入两个整数:")
    _, err := fmt.Scan(&a, &b)
  if err != nil {
    return
}

result := gcd(a, b)
  fmt.Printf("最大公因数是: %d\n", result)
}</pre>
```

• 5.3 设 $b = r_0, r_1, r_2, \ldots$ 是将欧几里得算法应用于a与b得到的相继余数,证明每两步会缩小余数至少一半。换句话说,验证

$$r_{i+2} < rac{1}{2} r_i (i=0,1,2,\dots)$$

53, ri = qi+2 x riti + ri+2 = ri- qi+2 x riti

の当かけくさい時かれくさい恒民立

- 5.4
 - (a) 求下述最小公倍数: (i) LCM(8, 12), (ii) LCM(20, 30), (iii) LCM(51, 68), (iv) LCM(23, 18)。
 - (b) 对于在(a)中计算的每个LCM,比较LCM(m,n)与m,n,gcd(m,n)的值,试找出它们之间的关系。
 - (c) 证明你所发现的关系对所有m与n成立。
 - (d) 用(b)中的结果计算LCM(301337, 307829)。
 - (e) 假设gcd(m, n) = 18且LCM(m, n) = 720,求m与n。存在一种以上的可能性吗?如果存在,求出所有的m与n。

(a) (i) LCM(8,12) = 24 (i) LCM(20,30) = 60 (iii) LCM(51.68) = 204

	IV) LC/	1(25,18) -	717		
ر ط	m	n	LCM(m,n)	gcdlmin)	
	8	12	24	4	
	20	30	60	10	
	51	68	204	17	
	23	18	414	1	
	LLM	min) gidl	(m,n)= mn		
(L)	设M=	xgcd cmin), n= ygidimin)		
	LLMI	nin) = X	ygcd(min). \$/17 1	.cncmin)g(dlmin)=xyga	diminigidimini
				= MN	
	3078	$7.9 = 1 \times 30$	01337+6492		

301337 = 46x 6492 + 2705 6492 = 2 x 2705 + 6082 2705 = 2 x lob2 + 541 1082 = 2x541 to

BAIL ged (3013)7,307829) =541

木及捉山ン得しCM (301337, 307829)=301337 X307829/54|=17|460753 e)根据(1) LCM(min)/g(d(min)=xy=40

又因者 gcd(x,y)=1, がは人(m,n)=(18,720),(90,144),(144,90),(720,18)

• 5.5

- (a) 对n的下述每一个开始值,求3n+1算法的长度与终止值: (i) n=21, (ii) n=13, (iii) n=31 o
- (b) 做进一步的实验,试确定3n+1算法是否总是终止,如果终止的话,它在何值处 终止?
- (c) 假定算法在1处终止,设L(n)是开始值为n的算法长度。证明 $n=8k+4(k\geq 1)$ 时 L(n) = L(n+1)

• 5.6 编写程序来运行上题叙述的3n + 1算法。用户输入n,程序就会给出3n + 1算法的长度 L(n)与终止值T(n)。用你的程序制作一个表格,给出所有开始值 $1 \le n \le 100$ 的算法长度与终止值。

```
package main
import (
  "fmt"
func calculation(n int) (int, int) {
  length := 1
  for n != 1 {
     if n%2 == 0 {
       n /= 2
     } else {
        n = 3*n + 1
     length++
  }
  return length, 1
}
func main() {
  fmt.Printf("| n | Length L(n) | Termination T(n) |\n")
  fmt.Printf("|----|
  for n := 1; n <= 100; n++ {
     length, termination := calculation(n)
     fmt.Printf("| %3d | %11d | %16d |\n", n, length, termination)
```

}