1 目的

小球落下法により、高粘度の液体の粘性係数を求めること.

2 理論

算術平均の確率誤差

$$r_a = \pm 0.6745 \sqrt{\frac{[v^2]}{n(n-1)}} \tag{1}$$

$$[v^2] = \sum_{i=1}^n v_i^2 = \sum_{i=1}^n (q_i - \bar{q})^2$$
 (2)

$$Q = F(q_i, q_2, \dots) \tag{3}$$

 $Q:, q_1, q_2, ...$ の誤差をそれぞれ $r: r_1, r_2, ...$ として,

$$r^{2} = \left(\frac{\partial F}{\partial q_{1}}r_{1}\right)^{2} + \left(\frac{\partial F}{\partial q_{2}}r_{2}\right)^{2} + \dots \tag{4}$$

 q_i : 測定值, n: 測定回数, \bar{q} : 平均值

価値平均

確率誤差の違う測定値を平均する場合.

同一物理量を種々の方法で測定して, $X_i\pm E_i (i=1,2,3,\dots)$ を得た時,その最確値 X_0 確率誤差 E_0 は次のようにして求められる.

誤差の分布は、
$$f(x)=\frac{h}{\sqrt{\pi}}exp(-h^2x^2)$$
 で表される. $h_i=\frac{1}{E_i}, x_i=X_0-X_i$ とすると

$$x_i$$
の確率は、 $f(x_i) = \frac{h_i}{\sqrt{\pi}} exp(-h_i^2(X_0 - X_i)^2)$

したがって、これらの誤差が同時に起こる確率は、
$$f(x_1)\cdot f(x_2)\cdot \dots f(x_n)=\frac{h_1h_2\dots h_n}{\sqrt{\pi^n}}exp(-\sum_i^n h_i^2(X_0-X_i)^2).$$

これが最大となるには、 $\sum_{i=1}^{n} h_i^2 (X_0 - X_i)^2$ が最小となるので、

$$\frac{\partial \sum_{i=1}^{n} h_{i}^{2} (X_{0} - X_{i})^{2}}{\partial X_{0}} = 0 \Longrightarrow \frac{\partial (h_{1}^{2} (X_{0} - X_{1})^{2} + h_{2}^{2} (X_{0} - X_{2})^{2} + \dots + h_{n}^{2} (X_{0} - X_{n})^{2})}{\partial X_{0}} = 0$$

$$\iff 2h_1^2(X_0 - X_1) + 2h_2^2(X_0 - X_2) + \dots + 2h_n^2(X_0 - X_n) = 0$$

$$\iff (h_1^2 + h_2^2 + \dots + h_n^2)X_0 - (h_1^2X_1 + h_2^2X_2 + \dots h_n^2X_n) = 0$$

$$\therefore X_0 = \frac{h_1^2X_1 + h_2^2X_2 + \dots h_n^2X_n}{h_1^2 + h_2^2 + \dots + h_n^2} = \frac{\sum_i^n h_i^2X_i}{\sum_i^n h_i^2}$$

$$h_i = \frac{1}{E_i} \, \sharp \, \, \mathfrak{h} \, , \quad \text{最確値 } X_0 \, \sharp \, ,$$

$$X_0 = \frac{\sum_{i}^{n} \left(\frac{X_i}{E_i^2}\right)}{\sum_{i}^{n} \left(\frac{1}{E_i^2}\right)} \tag{5}$$

となる.

また、確率誤差 E_0 は誤差伝播の法則を用いて

$$E_0^2 = \sum_{i}^{n} \left(\frac{\partial X_0}{\partial X_i} E_i\right)^2 = \left(\frac{\partial X_0}{\partial X_1} E_1\right)^2 + \left(\frac{\partial X_0}{\partial X_2} E_2\right)^2 + \dots + \left(\frac{\partial X_0}{\partial X_n} E_n\right)^2$$

$$= \left(\frac{\left(\frac{1}{E_1^2}\right)}{\sum_{i}^{n} \left(\frac{1}{E_i^2}\right)} E_1\right)^2 + \left(\frac{\left(\frac{1}{E_2^2}\right)}{\sum_{i}^{n} \left(\frac{1}{E_i^2}\right)} E_2\right)^2 + \dots + \left(\frac{\left(\frac{1}{E_n^2}\right)}{\sum_{i}^{n} \left(\frac{1}{E_i^2}\right)} E_n\right)^2$$

$$= \frac{\sum_{i}^{n} \left(\frac{1}{E_i^2}\right)}{\left(\sum_{i}^{n} \left(\frac{1}{E_i^2}\right)\right)^2} = \frac{1}{\sum_{i}^{n} \left(\frac{1}{E_i^2}\right)}$$

したがって、確率誤差 E_0 は、

$$E_0 = \pm \sqrt{\frac{1}{\sum_{i}^{n} \left(\frac{1}{E_i^2}\right)}} \tag{6}$$

粘性係数の導出

粘性係数 η , 密度 ρ なる液体中を半径r, 密度 σ なる球が速度 ν で運動する場合,

球の受ける粘性抵抗力 (上向き)f は stokes の式に従い, r, η, ν に比例する.

即ち、 $f = 6\pi r \eta \nu$ となる. 今、液体中を球が重力によって落下するときの力 (下向き) f'は、

浮力を考慮すれば $f'=rac{4}{3}\pi r^3(\sigmaho)g(g:$ 重力加速度) となり、球が終速度で落下している時は

これらの 2 力は釣り合っている.即ち $6\pi r \eta \nu = \frac{4}{3}\pi r^3 (\sigma - \rho) g$ となる.

したがって粘性係数 η は、

$$\eta = \frac{2}{9}g\frac{r^2(\sigma - \rho)}{\nu} \qquad \left[\frac{g}{cm \cdot sec}\right] \tag{7}$$

なお,正確に粘性係数を求めるためには,管壁および管端による補正を入れるべきで,管の半径を R,測定距離 を H とすれば,補正後の粘性係数 η' の式は以下となる.

$$\eta' = \frac{2}{9}g \frac{r^2(\sigma - \rho)}{\nu\left(1 + 2.4\frac{r}{R}\right)\left(1 + 3.3\frac{r}{H}\right)} \approx \frac{2}{9}g \frac{r^2(\sigma - \rho)}{\nu}\left(1 - 2.4\frac{r}{R} - 3.3\frac{r}{H}\right) \qquad \left[\frac{g}{cm \cdot sec}\right] \tag{8}$$

3 実験方法

- 1. 小球 5 個の各々の直径 D=2r を 5 回ずつシックスネスゲージで測定し、小球を区別するために番号付けをする。例えば $D_1 \dots D_5$ とする。ゲージは目分量を含むと 0.000mm まで読める。外側の目盛板の長針が一周すると 1.000mm となり内側の目盛板の短針が「1」を指す。例えば小球の直径 D が約 1mm の場合、零点は 0.***mm となり小球を挟むと 1.***mm となり、小球の直径 D=1.***mm となる。必ず内側の目盛板の数値を忘れずに読む。
- 2. 小球をピンセットで挟み、メスシリンダ内の液体試料の液面近くで放ち液中を落下させる. 小球が一定速度を得る 160ml の目盛り線から 40ml の目盛り線を通過する時間をストップウォッチで測定する.
- 3. この小球をネットスプーンですくい上げて同じ測定を1つの小球に対して5度行う.
- 4. 2. と 3. を 5 個の小球につき順次行う. これは半径の異なる小球の落下速度 v が異なるためである.
- 5. 時間測定を行った目盛り線の間の距離をノギスで 5 回測定して、各小球の落下速度 $\nu_1 \dots \nu_5$ を算出する.
- 6. 液体試料に直接 hydrometer を挿入して液体試料の密度 ρ を求める. この時 hydrometer と管壁との摩擦 の影響を除くために hydrometer を静かに放ち液中を沈下して静止した時の液面の数値を読み,その静止した位置から僅かに hydrometer を押し沈めて浮上して静止した時の液面の数値とを平均する. これを 5 セット行う.
- 7. 測定した小球 5 個をなくさないように濾紙で拭き,5 個まとめた質量 M を電子天秤で 5 回測定する.
- 8. 半径から 5 個の小球の全体積 $V=\frac{4}{3}\pi(r_1^3+r_2^3+r_3^3+r_4^3+r_5^3)$ を求めて,これで 7. で求めた全質量 M を割ると小球の平均密度 $\sigma=\frac{M}{V}$ が求まる.
- 9. 以上の測定より、液体試料の測定中の液温における粘性係数 η は式 (1) で求められる。忘れずにアルコール棒温度計で液温を測定しておくこと。
- 10. 各小球ごとに粘性係数 η (最確値と確率誤差) を求めて、5 つの粘性係数の η を価値平均を使って 1 つの粘性係数 η にする.
- * 小球は測定中紛失しないように細心の注意を払う.

データ処理・結果

 sum

ave

			,		
n	Zero 点 Z[mm]	直径 $D_1[\mathrm{mm}]$	半径 $r_1 = (D_1 - Z)/2$ [mm]	$v_{r_1}[\mathrm{mm}]$	$v_{r_1}^2 \times 10^4 \ [mm^2]$
1	0.001	1.153	0.5760	0.0026	0.067600
2	-0.001	1.162	0.5815	0.0081	0.656100
3	-0.001	1.150	0.5755	0.0021	0.044100
4	0.009	1.151	0.5710	-0.0024	0.057600
5	0.006	1.132	0.5630	-0.0104	1.081600
sum			2.8670	0.0000	1.9070000
ave			0.5734		

表 1 $r_1(D_1)$ の測定値

したがって, r_1 の最確値は $r_1 = 0.5734[mm] = 0.05734[cm]$.

確率誤差
$$r_{r_1}$$
は、理論 (1) より、 $r_{r_1}=\pm 0.6745\sqrt{\frac{1.907000\times 10^{-4}}{5\times 4}}=\pm 0.002083[mm]=\pm 0.0002083[cm].$

 $v_{r_2}^2 \times 10^4 \ [mm^2]$ Zero 点 Z[mm] 直径 $D_2[mm]$ 半径 $r_2 = (D_2 - Z)/2$ [mm] $v_{r_2}[\mathrm{mm}]$ n 1 0.000 1.379 0.6895-0.02054.2025002 -0.0011.399 0.7000-0.01001.0000003 0.0010.73500.02506.2500001.471 4 -0.0011.4720.73650.02657.0225005 0.0001.378 0.6890-0.02104.410000

3.5500

0.7100

0.0000

22.885000

表 2 $r_2(D_2)$ の測定値

したがって, r_2 の最確値は $r_2 = 0.7100[mm] = 0.07100[cm]$.

確率誤差
$$r_{r_2}$$
は、理論 (1) より、 $r_{r_2}=\pm 0.6745\sqrt{\frac{22.88500\times 10^{-4}}{5\times 4}}=\pm 0.007215[mm]=\pm 0.0007215[cm].$

 $v_{r_3}^2 \times 10^4 \ [mm^2]$ Zero 点 Z[mm] 直径 $D_3[mm]$ 半径 $r_3 = (D_3 - Z)/2$ [mm] $v_{r_3}[\mathrm{mm}]$ n 1 0.0001.097 0.549 0.00050.002500-0.001 1.091 2 0.546-0.0020 0.0400003 0.0031.094 0.546-0.00250.062500-0.001 1.100 0.5510.0025 0.0625004 5 0.00150.022500-0.0011.098 0.5502.7400 0.0000 0.190000sum0.5480ave

表 3 $r_3(D_3)$ の測定値

したがって, r_3 の最確値は $r_3 = 0.5480[mm] = 0.05480[cm]$.

確率誤差 r_{r_3} は、理論 (1) より、 $r_{r_3}=\pm 0.6745\sqrt{\frac{0.190000\times 10^{-4}}{5\times 4}}=\pm 0.000657[mm]=\pm 0.0000657[cm].$

表 4 $r_4(D_4)$ の測定値

n	Zero 点 Z[mm]	直径 $D_4[\mathrm{mm}]$	半径 $r_4 = (D_4 - Z)/2$ [mm]	$v_{r_4}[\mathrm{mm}]$	$v_{r_4}^2 \times 10^4 \ [mm^2]$
1	0.001	1.159	0.5790	0.0021	0.044100
2	-0.001	1.142	0.5715	-0.0054	0.291600
3	-0.001	1.154	0.5775	0.0006	0.003600
4	0.000	1.152	0.5760	-0.0009	0.008100
5	-0.001	1.160	0.5805	0.0036	0.129600
sum			2.8845	0.0000	0.477000
ave			0.5769		

したがって, r_4 の最確値は $r_4 = 0.5769[mm] = 0.05769[cm]$.

確率誤差
$$r_{r_4}$$
は、理論 (1) より、 $r_{r_4}=\pm 0.6745\sqrt{\frac{0.477000\times 10^{-4}}{5\times 4}}=\pm 0.001042[mm]=\pm 0.0001042[cm].$

表 5 $r_5(D_5)$ の測定値

n	Zero 点 Z[mm]	直径 $D_5[\mathrm{mm}]$	半径 $r_5 = (D_5 - Z)/2$ [mm]	$v_{r_5}[\mathrm{mm}]$	$v_{r_5}^2 \times 10^4 \ [mm^2]$
1	0.000	1.184	0.5920	0.0049	0.240100
2	0.000	1.171	0.5855	-0.0016	0.025600
3	0.000	1.170	0.5850	-0.0021	0.044100
4	0.000	1.183	0.5915	0.0044	0.193600
5	0.003	1.166	0.5815	-0.0056	0.313600
sum			2.9355	0.0000	0.817000
ave			0.5871		

したがって, r_5 の最確値は $r_5 = 0.5871[mm] = 0.05871[cm]$.

確率誤差
$$r_{r_5}$$
は、理論 (1) より、 $r_{r_5}=\pm 0.6745\sqrt{\frac{0.817000\times 10^{-4}}{5\times 4}}=\pm 0.001363[mm]=\pm 0.0001363[cm].$

表 6 $t_1 \sim t_5$ の測定値

n	$t_1[sec]$	$t_2[sec]$	$t_3[sec]$	$t_4[sec]$	$t_5[sec]$
1	14.44	9.56	15.77	14.38	13.70
2	14.47	9.53	15.80	14.67	13.60
3	14.34	9.59	15.59	14.12	13.90
4	14.39	9.50	15.70	14.22	13.69
5	14.11	9.60	15.70	14.26	13.65
sum	71.75	47.78	78.56	71.65	68.54
ave	14.35	9.56	15.71	14.33	13.71

したがって $t_1 \sim t_5$ の最確値は,

$$t_1 = 14.35[sec].$$

$$t_2 = 9.56[sec].$$

$$t_3 = 15.71[sec].$$

$$t_4 = 14.33[sec].$$

$$t_5 = 13.71[sec].$$

表 7 $t_1 \sim t_5$ の残差

n	$v_{t_1}[sec]$	$v_{t_2}[sec]$	$v_{t_3}[sec]$	$v_{t_4}[sec]$	$v_{t_5}[sec]$
1	0.090	0.004	0.058	0.050	-0.008
2	0.120	-0.026	0.088	0.340	-0.108
3	-0.010	0.034	-0.122	-0.210	0.192
4	0.040	-0.056	-0.012	-0.110	-0.018
5	-0.240	0.044	-0.012	-0.070	-0.058
sum	0.000	0.000	0.000	0.000	0.000

表 8 t₁~t₅ の残差の 2 乗

n	$v_{t_1}^2[sec^2]$	$v_{t_2}^2[sec^2]$	$v_{t_3}^2[sec^2]$	$v_{t_4}^2[sec^2]$	$v_{t_5}^2[sec^2]$
1	81.000	0.160	33.640	25.000	0.640
2	144.000	6.760	77.440	1156.000	116.640
3	1.000	11.560	148.840	441.000	368.640
4	16.000	31.360	1.440	121.000	3.240
5	576.000	19.360	1.440	49.000	33.640
sum	818.000	69.20	262.80	1767.00	522.80

確率誤差 $r_{t_1} \sim r_{t_5}$ は、理論 (1) より、

$$r_{t_1} = \pm 0.6745 \sqrt{\frac{818.000 \times 10^{-4}}{5 \times 4}} = \pm 0.0431 [sec].$$

$$r_{t_2} = \pm 0.6745 \sqrt{\frac{69.20 \times 10^{-4}}{5 \times 4}} = \pm 0.0125 [sec].$$

$$r_{t_3} = \pm 0.6745 \sqrt{\frac{262.80 \times 10^{-4}}{5 \times 4}} = \pm 0.0245 [sec].$$

$$r_{t_4} = \pm 0.6745 \sqrt{\frac{1767.00 \times 10^{-4}}{5 \times 4}} = \pm 0.0634 [sec].$$

$$r_{t_5} = \pm 0.6745 \sqrt{\frac{522.80 \times 10^{-4}}{5 \times 4}} = \pm 0.0345 [sec].$$

表9 距離 Η の測定値

n	H[mm]	$v_H[mm]$	$v_H^2[mm^2]$
1	112.60	-0.240	576.000000
2	112.75	-0.090	81.000000
3	112.75	-0.090	81.000000
4	113.10	0.260	676.000000
5	113.00	0.160	256.000000
sum	564.20	0.000	1670.000000
ave	112.84		

したがって, H の最確値は H=112.84[mm]=11.284[cm].

確率誤差
$$r_H$$
は、理論 (1) より、 $r_H=\pm 0.6745\sqrt{\frac{1670.000000\times 10^{-4}}{5\times 4}}=\pm 0.061635[mm]=\pm 0.0061635[cm].$

表 10 小球 5 個の質量 M の測定値

n	M[g]	$v_M[g]$	$v_M^2[g^2]$
1	0.01328	-0.00022	0.048400
2	0.01343	-0.00007	0.004900
3	0.01350	0.00000	0.000000
4	0.01361	0.00011	0.012100
5	0.01368	0.00018	0.032400
sum	0.06750	0.05400	0.097800
ave	0.01350		

したがって、M の最確値は M=0.01350[g].

確率誤差
$$r_M$$
は、理論 (1) より、 $r_M=\pm 0.6745\sqrt{\frac{0.097800\times 10^{-4}}{5\times 4}}=\pm 0.00004717[g].$

表 11 液体の密度 ρ の測定値

n	浮上時 $\rho_1[g/cm^3]$	沈下時 $\rho_2[g/cm^3]$	$\rho((\rho_1 + \rho_2)/2)[g/cm^3]$	$v_{\rho}[g/cm^3]$	$v_\rho^2[g^2/cm^6]$
1	0.8770	0.8761	0.8766	0.0002	0.000625
2	0.8769	0.8760	0.8765	0.0001	0.000225
3	0.8769	0.8760	0.8765	0.0001	0.000225
4	0.8768	0.8758	0.8763	0.0000	0.000000
5	0.8760	0.8755	0.8758	-0.0005	0.003025
sum			4.3815	0.0000	0.004100
ave			0.8763		

したがって, ρ の最確値は $M=0.8763[g/cm^3]$.

確率誤差
$$r_{\rho}$$
は、理論 (1) より、 $r_{\rho}=\pm0.6745\sqrt{\frac{0.004100\times10^{-4}}{5\times4}}=\pm0.00009657370307[g/cm^3].$

物体の密度

まず、体積
$$V$$
 を求める. $V = \frac{4}{3}\pi(r_1^3 + r_2^3 + r_3^3 + r_4^3 + r_5^3)$ より、

$$V$$
 の最確値は $V = \frac{4}{3}\pi(0.05734^3 + 0.07100^3 + 0.05480^3 + 0.05769^3 + 0.05871^3) = 0.004630158874[cm^3]$.

確率誤差
$$r_V$$
は, $\frac{\partial V}{\partial r_i} = 4\pi r_i^2$ より,

$$r_V^2 = \sum_{n=1}^5 (\frac{\partial V}{\partial r_i} r_{r_i})^2 = 16\pi^2 \sum_{n=1}^5 (r_i^2 r_{r_i})^2$$

 $= 16\pi^2((0.000006847904261)^2 + (0.00003637132411)^2 + (0.000001974262396)^2 + (0.000003466787513)^2 + (0.000004698964297)^2)$

 $= 0.0000002223047422[cm^6]$

$$r_V = \pm 0.0004714920383[cm^3].$$

物体の密度
$$\sigma$$
を求める. $\sigma = \frac{M}{V}$ より,

最確値
$$\sigma$$
は $\sigma = \frac{0.01350}{0.004630158874} = 2.91566669[g/cm^3].$

確率誤差
$$r_{\sigma}$$
は, $\frac{\partial \sigma}{\partial M} = \frac{1}{V}$, $\frac{\partial \sigma}{\partial V} = -\frac{M}{V^2} = -\frac{\sigma}{V}$ より,

$$r_{\sigma}^2 = (\frac{\partial \sigma}{\partial M} r_M)^2 + (\frac{\partial \sigma}{\partial V} r_V)^2 = (0.01018686358)^2 + (0.2969042031)^2 = 0.08825587802[g^2/cm^6]$$

$$r_{\sigma} = \pm 0.2970789087[g/cm^3].$$

落下速度

各小球の落下速度 $\nu_1 \sim \nu_5$ の最確値および確率誤差を求める.

$$u = \frac{H}{t}$$
 より, $\frac{\partial \nu}{\partial H} = \frac{1}{t}$, $\frac{\partial \nu}{\partial t} = -\frac{H}{t^2} = -\frac{\nu}{t}$. これを用いて, $\nu_1 \sim \nu_5$ の最確値および確率誤差を求める.

$$\nu_1 = \frac{H}{t_1} = \frac{11.2840}{14.35} = 0.7863414634 [cm/sec].$$

$$\nu_2 = \frac{H}{t_2} = \frac{11.2840}{9.56} = 1.180828799 [cm/sec].$$

$$\nu_3 = \frac{H}{t_3} = \frac{11.2840}{15.71} = 0.7181771894 [cm/sec].$$

$$\nu_4 = \frac{H}{t_4} = \frac{11.2840}{14.33} = 0.7874389393 [cm/sec].$$

$$\nu_5 = \frac{H}{t_5} = \frac{11.2840}{13.71} = 0.8231689524[cm/sec].$$

$$r_{\nu_1}^2 = (\frac{\partial \nu_1}{\partial H} r_H)^2 + (\frac{\partial \nu_1}{\partial t_1} r_{t_1})^2 = (0.004295100109)^2 + (0.002363757301)^2 = 0.00002403523352[(cm/sec)^2].$$

 $r_{\nu_1} = 0.004902574173[cm/sec].$

$$r_{\nu_2}^2 = (\frac{\partial \nu_2}{\partial H} r_H)^2 + (\frac{\partial \nu_2}{\partial t_2} r_{t_2})^2 = (0.006449841624)^2 + (0.001550353731)^2 = 0.00004400405367[(cm/sec)^2].$$

 $r_{\nu_2} = 0.00663355513[cm/sec].$

$$r_{\nu_3}^2 = (\frac{\partial \nu_3}{\partial H}r_H)^2 + (\frac{\partial \nu_3}{\partial t_3}r_{t_3})^2 = (0.003922777913)^2 + (0.001117582965)^2 = 0.00001663717823[(cm/sec)^2].$$

 $r_{\nu_3} = 0.004078869725[cm/sec].$

$$r_{\nu_4}^2 = (\frac{\partial \nu_4}{\partial H} r_H)^2 + (\frac{\partial \nu_4}{\partial t_4} r_{t_4})^2 = (0.004301094666)^2 + (0.003483821761)^2 = 0.00003063642939[(cm/sec)^2].$$

 $r_{\nu_4} = 0.005535018463[cm/sec].$

$$r_{\nu_5}^2 = (\frac{\partial \nu_5}{\partial H} r_H)^2 + (\frac{\partial \nu_5}{\partial t_5} r_{t_5})^2 = (0.004496256679)^2 + (0.002070854717)^2 = 0.00002450476339[(cm/sec)^2].$$

$$r_{\nu_5} = 0.00495022862[cm/sec].$$

粘性係数

上記の $\nu_1 \sim \nu_5$ に対して、それぞれ粘性係数 $\eta_1 \sim \eta_5$ の最確値および確率誤差を求める.

理論(7)より,

$$\eta_1 = \frac{r_1^2(\sigma - \rho)}{\nu_1} = 1.856451736[g/(cm \cdot sec)].$$

$$\eta_2 = \frac{r_2^2(\sigma - \rho)}{\nu_2} = 1.895436429[g/(cm \cdot sec)].$$

$$\eta_3 = \frac{r_3^2(\sigma - \rho)}{\nu_2} = 1.856559927[g/(cm \cdot sec)].$$

$$\eta_4 = \frac{r_4^2(\sigma - \rho)}{\nu_4} = 1.876565177[g/(cm \cdot sec)].$$

$$\eta_5 = \frac{r_5^2(\sigma - \rho)}{\nu_5} = 1.859150900[g/(cm \cdot sec)].$$

$$\sharp \, \not \! z, \frac{\partial \eta}{\partial r} = \frac{4}{9} g \frac{r(\sigma - \rho)}{\nu}, \frac{\partial \eta}{\partial \nu} = -\frac{2}{9} g \frac{r^2(\sigma - \rho)}{\nu^2}, \frac{\partial \eta}{\partial \sigma} = \frac{2}{9} g \frac{r^2}{\nu}, \frac{\partial \eta}{\partial \rho} = -\frac{2}{9} g \frac{r^2}{\nu} \, \not \! z, \quad \ \ \downarrow 0, \quad \ \ \downarrow 0, \quad$$

$$r_{\eta_1}^2 = \left(\frac{\partial \eta_1}{\partial r_1} r_{r_1}\right)^2 + \left(\frac{\partial \eta_1}{\partial \nu_1} r_{\nu_1}\right)^2 + \left(\frac{\partial \eta_1}{\partial \sigma} r_{\sigma}\right)^2 + \left(\frac{\partial \eta_1}{\partial \rho} r_{\rho}\right)^2$$

$$= (0.1348646944)^2 + (0.0115743513)^2 + (0.270433296)^2 + (0.00008791181085)^2$$

 $= 0.09145662674[(g/(cm \cdot sec))^{2}].$

$$r_{\eta_1} = 0.302417967[g/(cm \cdot sec)].$$

$$r_{\eta_2}^2 = (\frac{\partial \eta_2}{\partial r_2} r_{r_2})^2 + (\frac{\partial \eta_2}{\partial \nu_2} r_{\nu_2})^2 + (\frac{\partial \eta_2}{\partial \sigma} r_{\sigma})^2 + (\frac{\partial \eta_2}{\partial \rho} r_{\rho})^2$$

 $= (0.3852328243)^2 + (0.0106480144)^2 + (0.2761122796)^2 + (0.00008975792129)^2$

 $= 0.2247557081[(g/(cm \cdot sec))^{2}].$

 $r_{\eta_2} = 0.4740840729[g/(cm \cdot sec)].$

$$r_{\eta_3}^2 = \left(\frac{\partial \eta_3}{\partial r_2} r_{r_3}\right)^2 + \left(\frac{\partial \eta_3}{\partial \nu_2} r_{\nu_3}\right)^2 + \left(\frac{\partial \eta_3}{\partial \sigma} r_{\sigma}\right)^2 + \left(\frac{\partial \eta_3}{\partial \rho} r_{\rho}\right)^2$$

 $= (0.04454532849)^2 + (0.01054428655)^2 + (0.2704490564)^2 + (0.00008791693418)^2$

 $= 0.07523816809[(g/(cm \cdot sec))^2].$

 $r_{\eta_3} = 0.2742957675[g/(cm \cdot sec)].$

$$r_{\eta_4}^2 = (\frac{\partial \eta_4}{\partial r_4} r_{r_4})^2 + (\frac{\partial \eta_4}{\partial \nu_4} r_{\nu_4})^2 + (\frac{\partial \eta_4}{\partial \sigma} r_{\sigma})^2 + (\frac{\partial \eta_4}{\partial \rho} r_{\rho})^2$$

 $= (0.0677671553)^2 + (0.01319063915)^2 + (0.273363264)^2 + (0.00008886427785)^2$

 $= 0.07949386231[(g/(cm \cdot sec))^{2}].$

 $r_{\eta_4} = 0.2819465593[g/(cm \cdot sec)].$

$$r_{\eta_5}^2 = (\frac{\partial \eta_5}{\partial r_{\varepsilon}} r_{r_5})^2 + (\frac{\partial \eta_5}{\partial \nu_{\varepsilon}} r_{\nu_5})^2 + (\frac{\partial \eta_5}{\partial \sigma} r_{\sigma})^2 + (\frac{\partial \eta_5}{\partial \sigma} r_{\rho})^2$$

 $= (0.08633970111)^2 + (0.01118023459)^2 + (0.270826489)^2 + (0.00008803962908)^2$

 $= 0.08092653653[(g/(cm \cdot sec))^2].$

 $r_{\eta_5} = 0.284475898[g/(cm \cdot sec)].$

 $\eta_1 \sim \eta_5$ の最確値および確率誤差をまとめた表が以下である.

表 12 液体の密度 ρ の測定値

n	η_i	r_{η_i}	$\omega_i = 1/r_{\eta_i}^2$	$\omega_i \eta_i$
	$[g/cm\cdot sec]$	$[g/cm\cdot sec]$	$[(g/cm\cdot sec)^{-2}]$	$[(g/cm \cdot sec)^{-1}]$
1	1.856451736	0.302417967	10.9341448	20.2987121
2	1.895436429	0.4740840729	4.449275208	8.433318311
3	1.856559927	0.2742957675	13.29112637	24.6757726
4	1.876565177	0.2819465593	12.57958754	23.60641593
5	1.859150900	0.284475898	12.35688617	22.97331604
sum	9.344164169	1.6172	53.61102009	99.98753498

表 12 より, η の価値平均をとる.

$$\begin{split} \eta &= \frac{\sum \omega_i \eta_i}{\sum \omega_i} = \frac{99.98753498}{53.61102009} = 1.865055632 [g/cm \cdot sec]. \\ r_\eta &= \pm \sqrt{\frac{1}{\sum \omega_i}} = \pm \sqrt{\frac{1}{53.61102009}} = \pm 0.136575552 [g/cm \cdot sec]. \end{split}$$

 $\eta = 1.865055632 \pm 0.136575552 = 1.865 \pm 0.137 [g/cm \cdot sec].$

5 考察

表 $12\ o\eta_1\sim\eta_5$ の最確値に着目すると, η_2 と η_4 が他に比べ大きかったが, η_2 に関しては確率誤差も他に比べ大きかっため, 価値平均にはあまり大きな影響がなかった.一方で, η_4 は重みが他と度程度であったため, 平均に影響を及ぼした.このようになった原因としては, 表 8 からわかるように, t_4 の計測で軽微な測定のズレ (観測者による誤差) が 混じった可能性などが挙げられる.