

Chebyshev's inequality

If $S_n \sim \text{Binomial}(n, p)$ and $\epsilon > 0$, then

$$\mathbf{P}\left\{\left|\frac{S_n}{n} - \mathbf{p}\right| > \epsilon\right\} \le \frac{1}{4n\epsilon^2}$$

Chebyshev's inequality

If $S_n \sim \text{Binomial}(n, p)$ and $\epsilon > 0$, then

$$\mathbf{P}\left\{\left|\frac{S_n}{n} - \mathbf{p}\right| > \epsilon\right\} \le \frac{1}{4n\epsilon^2}$$

Slogan (THE LAW OF LARGE NUMBERS)

The probability that $\frac{S_n}{n}$ deviates from its expected value p by even a small amount tends to zero as the sample size n tends to infinity.