Lecture 12 Deductive Reasoning in Program Synthesis

Nadia Polikarpova

Last week

We can reason about unbounded loops using loop invariants

 Hoare logic soundly translates a program with a loop (and invariant) into three straight-line programs

We can synthesize a program with a loop by synthesizing those three straight-line programs (and the invariant)!

Can use existing synthesis techniques

Verification with transition systems

From verification to inference

Invariant inference

From verification to inference

Fix the domain
lattice → lattice search
otherwise →
combinatorial search

From inference to synthesis

Fix the domain
lattice → lattice search
otherwise →
combinatorial search

Program synthesis


```
\{pre\}
S_{i}(x, x')
\{I[x \mapsto x']\}
\{I \land G_{0}\}
G_{1} \rightarrow S_{1}(x, x')
G_{2} \rightarrow S_{2}(x, x')
\{I[x \mapsto x']\}
```

$$\begin{cases} I \land \neg c \\ S_f(x, x') \\ \{post \} \end{cases}$$

```
\exists S \ G \ I. \ \forall x.
    pre \wedge S_i \Rightarrow I'
   I \wedge G_0 \wedge G_1 \wedge S_1 \Rightarrow I'
  I \wedge G_0 \wedge G_2 \wedge S_2 \Rightarrow I'
                     Λ
I \land \neg G_0 \land S_f \Rightarrow post
synthesis condition
```

 $\exists I P. \forall x . Q(I, P, x)$

Synthesis constraints

Similar to Horn constraints but not quite

$$I \wedge G_i \wedge S_i \wedge \psi \Rightarrow I'$$

$$I \wedge G_i \wedge S_i \Rightarrow \omega$$

$$T \Rightarrow G_i \vee G_j$$

Domain for I, G_i : like in inference

Domain for
$$S_i = \{x' = e_x \land y' = e_y \land \cdots \mid e_x, e_y, \dots \in Expr\}$$

• conjunction of equalities, one per variables

Solving synthesis constraints

$$I \wedge G_i \wedge S_i \wedge \psi \Rightarrow I'$$

$$I \wedge G_i \wedge S_i \Rightarrow \omega$$

$$T \Rightarrow G_i \vee G_j$$

Can we solve this with...

- Enumerative search?
 - Sure (slow)
- Sketch?
 - Yep!
 - Look we made an unbounded synthesizer out of Sketch!
- Lattice search?
 - That's what VS3 does
 - Great for *I*, *G*, not so great for *S* (why?)

Lattice search

Verification \rightarrow inference \rightarrow synthesis

Fix the domain
lattice → lattice search
otherwise →
combinatorial search

Fix the domain
lattice → lattice search
otherwise →
combinatorial search

Map of the unit

Constraint-based synthesis

- How to solve constraints about infinitely many inputs? CEGIS
- How to encode semantics of looping / recursive programs?
 - Bounded reasoning
 - Unbounded / deductive reasoning
- Enumerative and deductive synthesis
 - How to use deductive reasoning to guide the search?

The big picture

programs that can be verified using invariant of a given form

Program verification is conservative

Not all correct programs can be verified

For synthesis, this is a feature!

Only need to explore verifiable programs

Caveats

- This can happen:
 - but if you want a verified program, there's no way around it
- We also need to search for the invariant

Deductive reasoning for synthesis

Main idea: Look for the proof to find the program

- The space of valid program derivations is smaller than the space of all programs
- The result is provably correct!

Applications:

- Constraint-based search: use loop invariants to encode the space of correct looping programs
- Enumerative search: prune unverifiable candidates early
- Deductive search: search in the space of provably correct transformations / decompositions

Deductive Synthesis

Deductive synthesis

The synthesis problem:

• Find x such that Q(a, x) whenever P(a)

Using semantic-preserving transformations, gradually rewrite the problem above into:

- Find T such that T whenever P(a)
- where T is a term that does not mention x

Toy example:

• "Find x such that x + x = 4a" \rightarrow "Find x such that 2x = 4a" \rightarrow "Find 2y such that 4y = 4a" \rightarrow "Find 2y such that y = a" \rightarrow "Find 2a such that x + x = 4a" \rightarrow "Find 2a such that x + x = 4a" \rightarrow "Find 2a such that x + x = 4a" \rightarrow "Find 2a such that x + x = 4a" \rightarrow "Find a such that a" \rightarrow "Find a" \rightarrow "Find a such that a" \rightarrow "Find a" \rightarrow "

Deductive synthesis: challenges

Define a set of transformation rules that is sound

 A solution to the transformed problem is a solution to the original problem

... and complete

All programs we care about can be derived

In most cases, multiple rules apply to a problem

Need a search strategy!

Two approaches

Transformation rules

A set of inference rules for decomposing a synthesis problem into simpler problems

- Axioms (terminal rules) for solving elementary problems
- Rules have side conditions to prove

Depth- or best-first search in the space of derivations

[Manna, Waldinger'79] [Kneuss et al.'13]

Theorem proving

Extract the program from a constructive proof of $\exists x. \forall a. P(a) \Rightarrow Q(a, x)$

- Instead of inventing custom rules, reuse an existing theorem prover
- ... but augment its rules with term extraction
- Reuse the prover's search strategy!

[Green'69] [Manna, Waldinger'80] Coq and Sketch, in some sense...

Synthesis as theorem proving: intuition

```
Axioms: 1. head(x :: xs) = x 2. tail(x :: xs) = xs
Prove: \exists l. head(l) = 5 \land tail(l) = []
head(l) = 5 \land tail(l) = []
 • Unify first conjunct with 1, substituting l \to x :: xs, x \to 5
head(5::xs) = 5 \land tail(5::xs) = []
 • Unify second conjunct with 2, substituting x \to 5, xs \to []
head(5 :: []) = 5 \land tail(5 :: []) = []
```

[Manna, Waldinger'80]

Sequent:

assertions	goals	output
$A_i(a,x)$		
	$G_i(a,x)$	$t_i(a,x)$

Meaning: if $\bigwedge_i \forall x. A_i$ holds, then $\bigvee_i \exists x. G_i$ holds

ullet and the corresponding t_i is an acceptable solution

Synthesis as theorem proving

[Manna, Waldinger'80]

Synthesis problem: "Find x such that Q(a,x) whenever P(a)"

assertions goals output P(a) Q(a,x)

Apply inference rules to add new assertions and goals

• eventually arrive to (where t does not contain x)

Τ

Inference rules

Splitting

• E.g. split assertion $A_1 \wedge A_2$ into two assertions A_1 and A_2

Transformation

- Apply a rewrite rule $s \to t$ to a subterm of assertion / goal
- Apply the unifying substitution of the rewrite to the output!

Resolution

• Let A[P], B[Q] two assertions, and let $P\theta = Q\theta$; add assertion $A[P\theta \to T] \lor B[Q\theta \to \bot]$

Induction

Introduce an induction hypothesis

Example: quotient and remainder

Specification:

```
div(i,j), rem(i,j) \Leftarrow \text{find } (q,r) \text{ s.t.} i = q * j + r   \land  0 \leq r < j where 0 \leq i \land 0 < j
```

Example: base case

			outputs	
	assertions	goals	div(i,j)	rem(i,j)
	$1. \ 0 \le i \land 0 < j$			
		2. i = q * j + r	q	r
and-split 1	$3.0 \le i$ $4.0 < j$			
trans 2 $0 * v \rightarrow 0$ $[q \rightarrow 0, v \rightarrow j]$		$5. i = 0 + r \land 0 \le r < j$	0	r
trans 5 $0 + v \rightarrow v$ $[v \rightarrow r]$		$6. i = r \land 0 \le r < j$	0	r
resolve 6 & $v = v$ $[v \rightarrow i, r \rightarrow i]$		$7. \ 0 \le i < j$	0	i
resolve 7 & 3		8. <i>i</i> < <i>j</i>	0	i

Example: step case

					outputs	
		assertic	ns	goals	div(i,j)	rem(i,j)
		$3.0 \le i$	4. 0 < <i>j</i>	2. i = q * j + r	q	r
trans 2 $(u + 1) * v \rightarrow u$ $[q \rightarrow q' + 1, u - c]$				9. $i = q' * j + j + r \land 0 \le r < j$	q' + 1	r
				$10. i - j = q' * j + r \land 0 \le r < j$	q' + 1	r
induction	$0 \le u \land u = div$	$0 < (i,j) \Rightarrow 0 < v \Rightarrow 0 < v + v + v $ $vem(u,v) < v < v < v < v < v < v < v < v < v <$	rem(<mark>u,v</mark>)			
resolve 10 a	$\rightarrow i - j, v \rightarrow j$			12. $(i - j, j) < (i, j) \land$ $0 \le i - j \land 0 < j$	div(i-j,j) +	- 1 rem(i – j, j
				13. $\neg (i < j)$		

Example: put them together

	assertions	goals	div(i,j) outputs $rem(i,j)$	
		8. <i>i</i> < <i>j</i>	0	i
		13. $\neg (i < j)$	div(i-j,j)+1	rem(i-j,j)
resolve 8 & 13 []		13. T	if $i < j$ then 0 else $div(i - j, j) + 1$	if $i < j$ then i else $rem(i - j, j)$