Using Non-Linear Mixed Models for Agricultural Data

Fernando E. Miguez

Energy Biosciences Institute Crop Sciences University of Illinois, Urbana-Champaign miguez@illinois.edu

Oct 8th, 2008

Outline

- Introduction
- 2 Barley N response
- Statistical Models
- 4 Application to Meta-analysis

Objectives of Statistical Modeling

Objectives

- Develop the simplest model which still captures the structure of the data
- Interpret the model (give meaning to the parameters)
- Generate predictions (validation)

Objectives of Statistical Modeling

Objectives

- Develop the simplest model which still captures the structure of the data
- 2 Interpret the model (give meaning to the parameters)
- Generate predictions (validation)

Objectives of Statistical Modeling

Objectives

- Develop the simplest model which still captures the structure of the data
- 2 Interpret the model (give meaning to the parameters)
- Generate predictions (validation)

Non-Linear Models

- Parsimony
- 2 Interpretability
- Model the mean structure

- Flexibility
- 2 Hierarchy
- Model the error structure

Non-Linear Models

- Parsimony
- Interpretability
- Model the mean structure

- Flexibility
- 2 Hierarchy
- Model the error structure

Non-Linear Models

- Parsimony
- Interpretability
- Model the mean structure

- Flexibility
- 2 Hierarchy
- Model the error structure

Non-Linear Models

- Parsimony
- Interpretability
- Model the mean structure

- Flexibility
- 2 Hierarchy
- Model the error structure

Non-Linear Models

- Parsimony
- Interpretability
- Model the mean structure

- Flexibility
- 4 Hierarchy
- Model the error structure

Non-Linear Models

- Parsimony
- Interpretability
- Model the mean structure

- Flexibility
- 4 Hierarchy
- Model the error structure

Outline

- Introduction
- 2 Barley N response
- Statistical Models
- 4 Application to Meta-analysis

Barley N response trials

Aril Vold (1998). A generalization of ordinary yield response functions. Ecological Applications. 108:227-236.

Details

- 19 years of data, Norway
- N rates (0, 3.38, 7.76 and 11.69 g N m⁻²) raised by 20% in 1978

Agronomic Questions

- How does it respond to N?
- How does it vary among years?

Outline

- Introduction
- 2 Barley N response
- Statistical Models
- 4 Application to Meta-analysis

Basics of Statistical Models

$$y = f(x, \theta) + \epsilon$$

where,

 $y = \mathsf{observed}$

f = mean structure

x = input

 $\theta = parameters$

 $\epsilon = \mathsf{error}$

Basics of Statistical Models

$$y = f(x, \theta) + \epsilon$$

$$\mathcal{D} = \mathcal{M} + \mathcal{E}$$

where,

 $y = \mathsf{observed}$

f = mean structure

 $x = \mathsf{input}$

 $\theta = parameters$

 $\epsilon = {\sf error}$

Choosing the Mean Structure

Asymptotic Regression Model

$$y = \theta_1 + (\theta_2 - \theta_1) \times \exp(-\exp(\theta_3) \times x)$$

where, θ_1 is the maximum value of y θ_2 is the value of y for x=0. θ_3 is the growth rate of y

Barley N response trials Non-linear regression with years combined

Barley N response trials Box-plots of residuals for each year

Barley N response trials

- One single regression to all the data
 - Wide confidence intervals
 - Ignores the structure of the data

- Fitting one function for each separate year
 - Over-parameterized model
 - 3 parms \times 19 y = 57 parms

Barley N response trials

Confidence Intervals for Non-linear regressions for each year

Non-Linear Mixed Model

Asymptotic regression with random effects

$$y_{ij} = (\theta_1 + \textcolor{red}{b_{1i}}) + ((\theta_2 + \textcolor{red}{b_{2i}}) - (\theta_1 + \textcolor{red}{b_{1i}})) \times \exp(-\exp(\theta_3 + \textcolor{red}{b_{3i}}) \times x_{ij}) + \epsilon_{ij}$$
 $i = \text{the year (or experimental unit)}$ $j = \text{the N rate}$

$$\boldsymbol{b_i} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Psi}), \quad \epsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$$

$$\mathbf{\Psi} = \left[\begin{array}{ccc} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{array} \right]$$

Random Effects Dot plot for the random effects

Random Effects Scatter plot matrix for the random effects

Non-Linear Mixed Model Fixed and BLUP

Comparison of NLS and NLME

Estimate, and 95% confidence intervals for the three parameters of the asymptotic regression model (NLS) and the mixed-effects model (NLME).

Fixed term	Estimate	Lower	Upper
$ heta_1$ NLS	381	335	507
$ heta_1$ NLME	390	337	443
$ heta_2$ NLS	133	101	166
$ heta_2$ NLME	132	107	157
Irc NLS	-1.7	-2.7	-1.1
<i>Irc</i> NLME	-1.7	-1.9	-1.4
$\hat{\sigma}$ NLS	71.2		
$\hat{\sigma}$ NLME	18.8	13.8	25.6

Summary: Using NLME

- NLME are able to accommodate the mean and error structure
- NLME produce a parsimonious and easy to interpret model
- The NLME estimates are more accurate and the confidence intervals are narrower

Summary: Using NLME

- NLME are able to accommodate the mean and error structure
- NLME produce a parsimonious and easy to interpret model
- The NLME estimates are more accurate and the confidence intervals are narrower

Summary: Using NLME

- NLME are able to accommodate the mean and error structure
- NLME produce a parsimonious and easy to interpret model
- The NLME estimates are more accurate and the confidence intervals are narrower

Outline

- 1 Introduction
- 2 Barley N response
- Statistical Models
- 4 Application to Meta-analysis

Application to Meta-analysis

Meta-analysis of the effects of management factors on Miscanthus \times giganteus growth and biomass production. Miguez et al (2008) Agricultural and Forest Meteorology. 148:1280-1292.

R Code and Data

E-mail: miguez@illinois.edu

Website: https://netfiles.uiuc.edu/miguez/www

Questions?

