

Machine Learning and Decision-Making

ADI @ LEI/3º, MiEI/4º - 2º Semestre Filipe Gonçalves, Inês Alves, Cesar Analide

Quality Measures

- Clustering
 - Clustering Pipeline
 - The Elbow Method
- Quality measures
- Hands On

Quality Measures

Clustering Pipeline

Clustering Pipeline

THE ELBOW METHOD

Quality Measures

Clustering Pipeline

THE ELBOW METHOD

Quality Measures

Quality Measures

Clustering

THE ELBOW METHOD Quality Measures Hands On

Clustering

THE ELBOW METHOD

Quality Measures

Quality Measures

Clustering

THE ELBOW METHOD

Quality Measures

e <u>E</u> dit <u>H</u> i	lite <u>N</u> avigation	<u>V</u> iew					
able "default" - Rows: 30 Spec - Columns: 7 Properties Flow Variables							
Row ID	Id	D SepalLe	D SepalW	D PetalLe	D PetalWi	S Species	S Cluster
Row9	10	4.9	3.1	1.5	0.1	Iris-setosa	duster_1
Row20	21	5.4	3.4	1.7	0.2	Iris-setosa	duster_1
Row28	29	5.2	3.4	1.4	0.2	Iris-setosa	duster_1
Row29	30	4.7	3.2	1.6	0.2	Iris-setosa	duster_1
Row31	32	5.4	3.4	1.5	0.4	Iris-setosa	duster_1
Row33	34	5.5	4.2	1.4	0.2	Iris-setosa	duster_1
Row39	40	5.1	3.4	1.5	0.2	Iris-setosa	duster_1
Row42	43	4.4	3.2	1.3	0.2	Iris-setosa	duster_1
Row43	44	5	3.5	1.6	0.6	Iris-setosa	duster_1
Row45	46	4.8	3	1.4	0.3	Iris-setosa	duster_1
Row73	74	6.1	2.8	4.7	1.2	Iris-versicolor	duster_0
Row76	77	6.8	2.8	4.8	1.4	Iris-versicolor	duster_0
Row80	81	5.5	2.4	3.8	1.1	Iris-versicolor	duster_0
Row85	86	6	3.4	4.5	1.6	Iris-versicolor	duster_0
Row86	87	6.7	3.1	4.7	1.5	Iris-versicolor	cluster_0
Row88	89	5.6	3	4.1	1.3	Iris-versicolor	duster_0
Row91	92	6.1	3	4.6	1.4	Iris-versicolor	cluster_0
Row92	93	5.8	2.6	4	1.2	Iris-versicolor	duster_0
Row94	95	5.6	2.7	4.2	1.3	Iris-versicolor	cluster_0
Row96	97	5.7	2.9	4.2	1.3	Iris-versicolor	duster_0
Row102	103	7.1	3	5.9	2.1	Iris-virginica	duster_2
Row 105	106	7.6	3	6.6	2.1	Iris-virginica	duster_2
Row110	111	6.5	3.2	5.1	2	Iris-virginica	duster_2
Row114	115	5.8	2.8	5.1	2.4	Iris-virginica	duster_0
Row121	122	5.6	2.8	4.9	2	Iris-virginica	duster_0
Row132	133	6.4	2.8	5.6	2.2	Iris-virginica	duster_2
Row134	135	6.1	2.6	5.6	1.4	Iris-virginica	cluster_2
Row140	141	6.7	3.1	5.6	2.4	Iris-virginica	duster_2
Row144	145	6.7	3.3	5.7	2.5	Iris-virginica	duster_2
Row148	149	6.2	3.4	5.4	2.3	Iris-virginica	duster 2

THE ELBOW METHOD

Quality Measures

THE ELBOW METHOD

Quality Measures

Quality Measures

The Elbow Method

Quality Measures

THE ELBOW METHOD

24

Makes use of currentIteration Flow Variable made available Calculates a error metric to define the k of k-Means. by the Counting Loop Start: (MSE) to quantify k! currentIteration Adds one because it starts at 0! What matters Java Edit Variable Counting Loop Start Loop End Iteration starts at 0... create k Variable to 12 iterations Calculate MSE k-Means Table Column k: 1-12

Quality Measures

Table Column

ੂ ਪਹ ▶

Group data

12 iterations

k: 1-12

k-Means

Flhow

Quality Measures

The Elbow Method

QUALITY MEASURES

Quality Measures MAE, MSE and RMSE

The Elbow Method

QUALITY MEASURES

Hands On

MAE

Mean Absolute Error measures the average magnitude of the errors in a set of predictions, without considering their direction.

MSE

Mean Squared Error consists of the average of squared differences between the prediction and the actual observation, without considering their direction

RMSE

Root Mean Squared Error consists of the square root of the average of squared differences between the prediction and the actual observation, without considering their direction

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

$$MSE = \frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

Where n is the number of observations, and y_j and \hat{y}_j are the actual observation and the predicted value, respectively.

The Elbow Method QUALITY MEASURES Hands On

Distance from each point to the centroid of the cluster it belongs to!

Quality Measures for Clustering

The Elbow Method The Elbow Method 36 **QUALITY MEASURES**

Normalization and Elbow Method What matters Java Edit Variable Scatter Plot Counting Loop Start Loop End 0.00 **→** 🔡 , -0-Iteration starts ... Variable to Group data 12 iterations k-Means Calculate MSF Table Column Flhow Find the Elbow

The two outputs of the k-Means node:

(1) Input data labeled with the cluster;

Hands On

(2) The created clusters and centroids.

QUALITY MEASURES

Hands On

Observation with id Row0 was assigned to cluster 3. Its value for comedy is 0.077. How far is it from the centroid's center of cluster 3 (0.107)? And for the other genres?

How far is this observation from the centroid of the cluster?

The Elbow Method **QUALITY MEASURES** Hands On

We may use MSE, MAE or RMSE to compute this error metric, i.e., how far are records from the centroid's of their cluster.

Input: The input data labeled with the cluster they belong.

Input: The created clusters and centroids.

$$MSE = \frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2$$

QUALITY MEASURES

The Elbow Method QUALITY MEASURES Hands On

Quality Measures for Clustering View the Elbow

The Elbow Method QUALITY MEASURES Hands On

Quality Measures for Clustering View the Elbow

The Elbow Method QUALITY MEASURES Hands On

Quality Measures for Clustering Finding the Elbow ... Automatically

The Elbow Method 46 **QUALITY MEASURES** Hands On

Quality Measures for Clustering Finding the Elbow ... Automatically

The Elbow Method QUALITY MEASURES Hands On

Quality Measures for Clustering Finding the Elbow ... Automatically

Hands On

The Elbow Method Quality Measures HANDS ON

