5

10

15

20

25

CLAIMS

What is claimed is:

- 1. A process for producing a blend of two or more polyethylenes, comprising the step of contacting:
 - (1) ethylene;
- (2) an active ethylene oligomerization catalyst under conditions to oligomerize at least a portion of the ethylene to one or more α -olefins of the general formula R¹⁸CH=CH₂, wherein R¹⁸ is alkyl containing an even number of carbon atoms:
- (3) a first active polymerization catalyst under conditions to copolymerize ethylene and the α -olefins generated from the active ethylene oligomerization catalyst; and
- (4) a second active polymerization catalyst under conditions to polymerize ethylene, but not readily copolymerize ethylene and α -olefins.
- 2. The process as recited in claim 1 wherein the active ethylene oligomerization catalyst is an Fe complex of a ligand of the general formula (I)

$$R^{1}$$
 R^{2}
 R^{3}
 R^{5}
 R^{7} (I)

wherein:

R¹, R² and R³ are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl or an inert functional group, provided that any two of R¹, R² and R³ vicinal to one another taken together may form a ring;

R⁴ and R⁵ are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl or an inert functional group;

R⁶ and R⁷ are each independently an aryl or substituted aryl having a first ring atom bound to the imino nitrogen, provided that:

in R⁶, a second ring atom adjacent to said first ring atom is bound to a halogen, a primary carbon group, a secondary carbon group or a tertiary carbon group; and further provided that

in R⁶, when said second ring atom is bound to a halogen or a primary carbon group, none, one or two of the other ring atoms in R⁶ and R⁷ adjacent to said first ring atom are bound to a halogen or a primary carbon group, with the remainder of the ring atoms adjacent to said first ring atom being bound to a hydrogen atom; or

5

10

15

20

in R⁶, when said second ring atom is bound to a secondary carbon group, none, one or two of the other ring atoms in R⁶ and R⁷ adjacent to said first ring atom are bound to a halogen, a primary carbon group or a secondary carbon group, with the remainder of the ring atoms adjacent to said first ring atom being bound to a hydrogen atom; or

in R⁶, when said second ring atom is bound to a tertiary carbon group, none or one of the other ring atoms in R⁶ and R⁷ adjacent to said first ring atom are bound to a tertiary carbon group, with the remainder of the ring atoms adjacent to said first ring atom being bound to a hydrogen atom.

3. The process as recited in claim 2 wherein the active ethylene oligomerization catalyst is an Fe complex of a ligand of the general formula (II):

$$R^{8}$$
 R^{10}
 R^{10}
 R^{10}
 R^{11}
 R^{12}
 R^{12}
 R^{13}
 R^{15}
 R^{14}
 R^{16}
 R^{15}
 R^{10}

5

10

15

each of R¹, R², R³, R⁴, R⁵, R⁹, R¹⁰, R¹¹, R¹⁴, R¹⁵ and R¹⁶ is independently selected from the group consisting of hydrogen, hydrocarbyl, substituted hydrocarbyl and an inert functional group; and

R⁸ is a primary carbon group, a secondary carbon group or a tertiary carbon group;

provided that:

when R⁸ is a primary carbon group none, one or two of R¹², R¹³ and R¹⁷ are independently a primary carbon group, an inert functional group or a trihalo tertiary carbon group, and the remainder of R¹², R¹³ and R¹⁷ are hydrogen; when R⁸ is a secondary carbon group, none or one of R¹², R¹³ and R¹⁷ is a primary carbon group, a secondary carbon group, a trihalo tertiary carbon group or an inert functional group, and the remainder of R¹², R¹³ and R¹⁷ are hydrogen;

when R⁸ is a tertiary carbon group all of R¹², R¹³ and R¹⁷ are hydrogen; any two of R¹, R² and R³ vicinal to one another, taken together may form a ring; and

any two of R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶ and R¹⁷ vicinal to one another, taken together may form a ring.

- 4. The process as recited in claim 1 wherein the second active polymerization catalyst is chemically different than the first active polymerization catalyst, and has little or no tendency to copolymerize ethylene and α -olefins.
- 25
- 5. The process as recited in claim 1 wherein the second active polymerization catalyst is an Fe complex of a ligand of the general formula (III):

$$R^{1}$$
 R^{2}
 R^{3}
 R^{5}
 R^{7} (III)

5

10

15

20

25

R¹, R², R³, R⁴ and R⁵ are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl, or an inert functional group, provided that any two of R¹, R² and R³ vicinal to one another, taken together may form a ring; and R⁶ and R⁷ are aryl or substituted aryl.

- 6. The process as recited in claim 1 wherein the first polymerization catalyst is a metallocene-type catalyst.
- 7. The process as recited in claim 1 wherein the oligomerization catalyst, first polymerization catalyst and second polymerization catalyst are supported.
 - 8. The process as recited in claim 7 carried out in the gas phase.
- 9. The process as recited in claim 1 wherein the polyethylenes are homopolyethylenes.
- 10. The process as recited in claim 2 wherein the second active polymerization catalyst is chemically different than the first active polymerization catalyst, and has little or no tendency to copolymerize ethylene and α -olefins.
 - 11. The process as recited in claim 10 wherein the first polymerization catalyst is a metallocene-type catalyst, and the second active polymerization catalyst is an Fe complex of a ligand of the general formula (III):

$$R^{1}$$
 R^{2}
 R^{3}
 R^{5}
 R^{7} (III)

5

10

15

20

R¹, R², R³, R⁴ and R⁵ are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl, or an inert functional group, provided that any two of R¹, R² and R³ vicinal to one another, taken together may form a ring; and R⁶ and R⁷ are aryl or substituted aryl.

- 12. A polymerization catalyst component, comprising:
- (a) an oligomerization catalyst that oligomerizes ethylene to one or more α olefins of the formula H₂C=CHR¹⁸, wherein R¹⁸ is an alkyl containing an even
 number of carbon atoms:
- (b) a first polymerization catalyst that is capable of copolymerizing ethylene and one or more α -olefins of the formula H₂C=CHR¹⁸; and
- (c) a second polymerization catalyst chemically distinct from the first polymerization catalyst, that is capable of polymerizing ethylene but does not readily copolymerize ethylene and α -olefins.
- 13. The polymerization catalyst component as recited in claim 12, further comprising (d) one or more catalyst supports onto which one or more of (a), (b) and/or (c) has been supported.
- 14. The polymerization catalyst component as recited in claim 12 wherein the ethylene oligomerization catalyst is an Fe complex of a ligand of the general formula (I)

$$R^{4}$$
 R^{6}
 R^{2}
 R^{3}
 R^{5}
 R^{7} (I)

5

10

15

20

25

R¹, R² and R³ are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl or an inert functional group, provided that any two of R¹, R² and R³ vicinal to one another taken together may form a ring;

R⁴ and R⁵ are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl or an inert functional group;

R⁶ and R⁷ are each independently an aryl or substituted aryl having a first ring atom bound to the imino nitrogen, provided that:

in R⁶, a second ring atom adjacent to said first ring atom is bound to a halogen, a primary carbon group, a secondary carbon group or a tertiary carbon group; and further provided that

in R⁶, when said second ring atom is bound to a halogen or a primary carbon group, none, one or two of the other ring atoms in R⁶ and R⁷ adjacent to said first ring atom are bound to a halogen or a primary carbon group, with the remainder of the ring atoms adjacent to said first ring atom being bound to a hydrogen atom; or

in R⁶, when said second ring atom is bound to a secondary carbon group, none, one or two of the other ring atoms in R⁶ and R⁷ adjacent to said first ring atom are bound to a halogen, a primary carbon group or a secondary carbon group, with the remainder of the ring atoms adjacent to said first ring atom being bound to a hydrogen atom; or

in R⁶, when said second ring atom is bound to a tertiary carbon group, none or one of the other ring atoms in R⁶ and R⁷ adjacent to said first ring atom are bound to a tertiary carbon group, with the remainder of the ring atoms adjacent to said first ring atom being bound to a hydrogen atom.

15. The polymerization catalyst component as recited in claim 14 wherein the ethylene oligomerization catalyst is an Fe complex of a ligand of the general formula (II):

$$R^{8}$$
 R^{10}
 R^{10}
 R^{11}
 R^{11}
 R^{12}
 R^{13}
 R^{17}
 R^{16}
 R^{15}
 R^{10}
 R^{11}
 R^{11}
 R^{11}
 R^{12}
 R^{13}
 R^{14}
 R^{15}
 R^{15}

wherein:

5

10

15

20

each of R¹, R², R³, R⁴, R⁵, R⁹, R¹⁰, R¹¹, R¹⁴, R¹⁵ and R¹⁶ is independently selected from the group consisting of hydrogen, hydrocarbyl, substituted hydrocarbyl and an inert functional group; and

R⁸ is a primary carbon group, a secondary carbon group or a tertiary carbon group;

provided that:

when R⁸ is a primary carbon group none, one or two of R¹², R¹³ and R¹⁷ are independently a primary carbon group, an inert functional group or a trihalo tertiary carbon group, and the remainder of R¹², R¹³ and R¹⁷ are hydrogen; when R⁸ is a secondary carbon group, none or one of R¹², R¹³ and R¹⁷ is a primary carbon group, a secondary carbon group, a trihalo tertiary carbon group or an inert functional group, and the remainder of R¹², R¹³ and R¹⁷ are hydrogen;

when R^8 is a tertiary carbon group all of R^{12} , R^{13} and R^{17} are hydrogen; any two of R^1 , R^2 and R^3 vicinal to one another, taken together may form a ring; and

any two of R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶ and R¹⁷ vicinal to one another, taken together may form a ring.

16. The polymerization catalyst component as recited in claim 12 wherein the second active polymerization catalyst is an Fe complex of a ligand of the general formula (III):

$$R^{2}$$
 R^{3}
 R^{5}
 R^{7} (III)

10 wherein:

R¹, R², R³, R⁴ and R⁵ are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl, or an inert functional group, provided that any two of R¹, R² and R³ vicinal to one another, taken together may form a ring; and R⁶ and R⁷ are aryl or substituted aryl.

- 17. The polymerization catalyst component as recited in claim 12 wherein the first polymerization catalyst is a metallocene-type catalyst.
- 18. The polymerization catalyst component as recited in claim 12 wherein
 the first polymerization catalyst is a metallocene-type catalyst, and the second active polymerization catalyst is an Fe complex of a ligand of the general formula
 (III):

$$R^{1}$$
 R^{4}
 R^{6}
 R^{2}
 R^{3}
 R^{5}
 R^{7} (III)

5

10

15

R¹, R², R³, R⁴ and R⁵ are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl, or an inert functional group, provided that any two of R¹, R² and R³ vicinal to one another, taken together may form a ring; and R⁶ and R⁷ are aryl or substituted aryl.

- 19. The polymerization catalyst component as recited in claim 18, further comprising (d) one or more catalyst supports onto which one or more of (a), (b) and/or (c) has been supported.
 - 20. A polymer blend comprising:
- (a) a first polyethylene that contains at least three different branches of the formula -(CH₂CH₂)_nH, wherein n is an integer of 1 or more, and
- (b) a second polyethylene that is different from the first polyethylene, in a weight ratio of about 1:4 to about 4:1 based on the total weight of the first and second polyethylenes, and provided that said second polyethylene has a melting point at least 20°C higher than said first polyethylene, or said second polyethylene has a heat of fusion at least 50 J/g greater than said first polyethylene, or both.

20

- 21. The polymer blend of claim 20 wherein the first and second polyethylenes are homopolyethylenes.
 - 22. A polymer blend comprising:
- (a) a third polyethylene having a density of less than 0.93 g/mL, containing at least 2 ethyl branches, at least 2 hexyl or longer branches and at least one bu-

tyl branch per 1000 methylene groups, and provided that said third polyethylene has fewer than 5 methyl branches per 1000 methylene groups; and

- (b) a fourth polyethylene having a density of 0.93 g/mL or more.
- 5 23. The polymer blend of claim 22 wherein the third and fourth polyethylenes are homopolyethylenes.
 - 24. A polymer blend comprising:

10

- (a) a fifth polyethylene containing about 20 to about 150 branches of the formula $-(CH_2CH_2)_nH$ per 1000 methylene groups, wherein n is an integer of 1 to 100, provided that said fifth polyethylene has less than about 20 methyl branches per 1000 methylene groups; and
- (b) a sixth polyethylene that is different from the fifth polyethylene and has a density of about 0.93 g/mL or more.
- 25. The polymer blend of claim 24 wherein the fifth and sixth polyethylenes are homopolyethylenes.