Question 2

You have three coins in your pocket, two fair ones but the third is biased with probability of heads p and tails 1-p. One coin selected at random drops on the floor, landing heads up. How likely is it that it is one of the fair coins?

Solution

Let head and tail denote the results of a drop. Define the probability space as

$$\Omega = \{ \text{head, tail} \}$$

$$\mathcal{F} = \mathcal{P}(\Omega)$$

$$\mathcal{F} = \mathcal{P}(\Omega)$$

 \mathbb{P} : the probability measure on \mathcal{F}

Let F and B denote the events of selecting a fair coin and a biased coin, respectively, then we have

$$\mathbb{P}_F(\{\text{head}\}) = \frac{1}{2}$$

$$\mathbb{P}_B(\{\text{head}\}) = p$$

Applying the principle of symmetry, we have

$$\mathbb{P}(F) = \frac{2}{3}$$

$$\mathbb{P}(B) = \frac{1}{3}$$

We know that $\{F, B\}$ is a partition of Ω , then applying the Bayes' Theorem, we have

$$\mathbb{P}_{\{\text{head}\}}(F) = \frac{\mathbb{P}_F(\{\text{head}\})\mathbb{P}(F)}{\mathbb{P}_F(\{\text{head}\})\mathbb{P}(F) + \mathbb{P}_B(\{\text{head}\})\mathbb{P}(B)} = \frac{1}{p+1}$$

Answer

$$\boxed{\mathbb{P}_{\{\text{head}\}}(F) = \frac{1}{p+1}}$$