TD - Séries de Fourier

Amphi A

Exercice 1

Calculez les coefficients de Fourier (exponentiels et trigonométriques) de $f: x \mapsto 2e^{-3ix} + 3e^{2017ix}$ et $g: x \mapsto \cos(x)^3 - 2\sin(2x)$.

Exercice 2

Soit f une fonction 2π periodique. On note $(c_n)_{n\in\mathbb{Z}}$ ses coefficients de Fourier exponentiels, $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 1}$ ses coefficients de Fourier trigonométriques.

- **1.** Montrez que si f est paire, alors $b_n = 0$ pour tout $n \in \mathbb{N}^*$ et que si f est impaire, alors $a_n = 0$ pour tout $n \in \mathbb{N}$.
- 2. Que dire des coefficients exponentiels dans chacun de ces deux cas, si l'on suppose en plus que f est à valeurs réelles?
- **3.** On suppose que f est $2\pi/N$ périodique, pour un entier $N \in \mathbb{N}^*$. Montrez que pour tout $n \in \mathbb{Z}$,

$$n \not\equiv 0 \bmod N \Longrightarrow c_n = 0$$

4. On suppose f continue. Montrez la réciproque des questions 1 et 3.

Correction.

1. Supposons que f soit paire. Soit $n \in \mathbb{N}^*$. La fonction $t \mapsto f(t)\sin(nt)$ est donc impaire, d'où

$$b_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt = 0.$$

De même, si f est impaire, alors pour tout $n \in \mathbb{N}$, $t \mapsto f(t)\cos(nt)$ est paire, donc son intégrale entre $-\pi$ et π est nulle. Donc $a_n(f) = 0$.

2. On a les formules (à connaître ou à savoir retrouver rapidement) pour tout $n \ge 1$

$$c_n(f) = \frac{1}{2}(a_n(f) - ib_n(f))$$
$$c_{-n}(f) = \frac{1}{2}(a_n(f) + ib_n(f))$$

et $c_0(f) = 2a_0(f)$. Si f est à valeurs réelles, ses coefficients de Fourier trigonométriques sont réels. Donc si f est paire alors ses coefficients de Fourier exponentiels sont réels. Si f est impaire, ses coefficients de Fourier exponentiels sont imaginaires purs et $c_0(f) = 0$.

3. Soit

$$\begin{split} c_n(f) &= \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-nit} dt = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-nit} dt \\ &= \frac{1}{2\pi} \sum_{k=0}^{N-1} \int_{2k\pi/N}^{2(k+1)\pi/N} f(t) e^{-nit} dt \\ &= \frac{1}{2\pi} \sum_{k=0}^{N-1} \int_0^{2\pi/N} f\left(t + \frac{2k\pi}{N}\right) \exp\left(-ni\left(t + \frac{2k\pi}{N}\right)\right) dt \qquad \text{(par changement de variable)} \\ &= \frac{1}{2\pi} \sum_{k=0}^{N-1} \int_0^{2\pi/N} f(t) \exp\left(-ni\left(t + \frac{2k\pi}{N}\right)\right) dt \qquad \text{(par periodicit\'e de } f) \\ &= \frac{1}{2\pi} \int_0^{2\pi/N} f(t) \exp(-nit) \sum_{k=0}^{N-1} \exp\left(-\frac{2kn\pi}{N}i\right) dt \end{split}$$

Maintenant, si $n \not\equiv 0 \mod N$ alors $e^{-i2n\pi/N} \not\equiv 1$. En appliquant la formule donnant la somme des termes d'une suite géométrique:

$$\sum_{k=0}^{N-1} \exp\left(-\frac{2kn\pi}{N}i\right) = \frac{1 - e^{-2niN\pi/N}}{1 - e^{-2ni\pi/N}} = 0$$

D'où $c_n(f) = 0$.

4. Non faisable avec les outils vus en cours.

Exercice 3

Déterminez les solutions 2π -périodiques de l'équation différentielle

$$y''(x) + e^{ix}y(x) = 0$$

Correction.

Analyse. Soit f une solution 2π -périodique de l'équation. On a donc $f''(x) = -e^{ix}f(x)$ pour tout $x \in \mathbb{R}$. Par une récurrence immédiate, f est de classe C^{∞} sur \mathbb{R} . On a donc pour $n \in \mathbb{Z}$

$$c_n(f'') = inc_n(f') = -n^2c_n(f)$$

f'' et $h: x \mapsto -e^{ix} f(x)$ sont égales: elles ont donc les même coefficients de Fourier. Calculons

$$c_n(h) = -\frac{1}{2\pi} \int_0^{2\pi} f(t)e^{it-nit}dt = -c_{n-1}(f)$$

 $c_n(f'') = c_n(h)$ donc

$$n^2 c_n(f) = c_{n-1}(f)$$

On a donc $c_{-1}(f) = 0^2 c_0(f) = 0$. Puis $c_{-2}(f) = (-1)^2 c_{-1}(f) = 0$ et plus généralement pour $n \ge 1$

$$c_{-n}(f) = 0$$

Pour $n \geq 1$, on a par récurrence immédiate

$$c_n(f) = \frac{1}{n^2}c_{n-1} = \frac{1}{n^2} \cdot \frac{1}{(n-1)^2}c_{n-1}(f) = \dots = \frac{1}{(n!)^2}c_0(f)$$

On note $a = c_0(f) \in \mathbb{C}$. f est de classe \mathcal{C}^1 (donc \mathcal{C}^1 par morceaux et continue), sa série de Fourier converge normalement donc simplement vers elle sur \mathbb{R} . Donc

$$\forall x \in \mathbb{R}, f(x) = a \sum_{n=0}^{+\infty} \frac{1}{(n!)^2} e^{inx}$$

Synthèse. Réciproquement si f est de la forme

$$x \mapsto a \sum_{n=0}^{+\infty} \frac{1}{(n!)^2} e^{inx}$$

pour un $a \in \mathbb{C}$. Toutes les séries dérivées de la série ci-dessus convergent normalement donc uniformément sur \mathbb{R} , f est donc \mathcal{C}^{∞} sur \mathbb{R} et pour $x \in \mathbb{R}$

$$f''(x) = a \sum_{n=0}^{+\infty} \frac{1}{(n!)^2} (in)^2 e^{inx} = -a \sum_{n=1}^{+\infty} \frac{1}{((n-1)!)^2} e^{inx} = -a \sum_{n=0}^{+\infty} \frac{1}{(n!)^2} e^{i(n+1)x} = -e^{ix} f(x)$$

f est donc une solution 2π periodique de l'équation différentielle.

Conclusion: L'ensemble des solutions 2π périodiques de l'équation différentielle est donc

$$\left\{ x \mapsto a \sum_{n=0}^{+\infty} \frac{1}{(n!)^2} e^{inx} \mid a \in \mathbb{C} \right\}$$

Exercice 4

Soit $f \in \mathcal{C}^0([0, 2\pi], \mathbb{C})$ telle que $\forall n \in \mathbb{Z}, \left| \int_0^{2\pi} f(t) e^{int} dt \right| \leq 2^{-|n|}$. Montrez que f est de classe \mathcal{C}^{∞} .

Exercice 5: Signal en dents de scie.

On considère la fonction f, 2π -périodique définie par $\begin{cases} f(0) = 0 \\ \forall t \in]0, 2\pi[, f(t) = \pi - t] \end{cases}$

- 1. Calculez les coefficients de Fourier exponentiels de f. En déduire les coefficients de Fourier trigonométriques
- **2.** Écrire la somme partielle d'ordre n de la série de Fourier de f.
- 3. Montrez que pour tout $x \in]0, 2\pi[$, $\sum_{n=1}^{+\infty} \frac{\sin(nx)}{n} = \frac{\pi x}{2}$
- **4.** Montrez que $\zeta(2) = \sum_{n=0}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.
- 5. On considère F, la primitive de f nulle en 0. Montrez que F est 2π -périodique, continue et \mathcal{C}^1 par morceaux.
- **6.** Calculez les coefficients de Fourier de F.
- 7. Montrez que $\zeta(4) = \sum_{1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.

Correction.

1. On trouve pour $c_0(f) = 0$ et pour $n \in \mathbb{Z}^*$

$$c_n(f) = \frac{-i}{n}$$

Donc $a_0 = 0$ et pour $n \ge 1$,

$$\begin{cases} a_n(f) = c_n(f) + c_{-n}(f) = 0 \\ b_n(f) = i(c_n(f) - c_{-n}(f)) = \frac{2}{n} \end{cases}$$

2. On écrit alors, à l'aide des coefficients de Fourier les sommes partielles: pour tout $t \in \mathbb{R}$,

$$S_n(f)(t) = \sum_{\substack{k \neq 0 \\ k = -n}}^{n} \frac{-i}{k} e^{ikt} = \sum_{k=1}^{n} \frac{2}{k} \sin(kt)$$

3. On applique le théorème de Dirichlet en $t \in]0, 2\pi[$ à f qui est bien \mathcal{C}^1 par morceaux et continue en t:

$$f(t) = \sum_{k=1}^{n} \frac{2}{n} \sin(kt)$$

or $f(t) = \pi - t$ par définition, d'où le résultat.

4. On applique le théorème de Parseval à f (qui est vrai pour les fonctions continues par morceaux, même si le cours ne le donne que pour les fonctions C^0 et C^1 par morceaux):

$$\frac{1}{2} \sum_{k=1}^{+\infty} \frac{4}{k^2} = \frac{1}{2\pi} \int_0^{2\pi} f(t)^2 dt$$

3

ce qui donne (après calcul de l'intégrale de droite) le résultat.

5. F est une primitive d'une fonction continue par morceaux, elle est donc continue, \mathcal{C}^1 par morceaux.

$$F(x+2\pi) = \int_0^{x+2\pi} f(t)dt = \int_0^x f(t)dt + \int_x^{x+2\pi} f(t)dt = \int_0^x f(t)dt + \int_0^{2\pi} f(t)dt = \int_0^x f(t)dt = F(x)$$

F est donc 2π -périodique.

6. F est continue, C^1 par morceaux. Par le théorème du cours: $c_n(f) = inc_n(F)$ donc pour $n \in \mathbb{Z}^*$, $c_n(F) = \frac{1}{n^2}$. Il reste à calculer $c_0(F)$. On calcule, par intégration par parties (F est continue, C^1 par morceaux)

$$c_0(F) = \frac{1}{2\pi} \int_0^{2\pi} F(t)dt = \frac{1}{2\pi} \left[tF(t) \right]_0^{2\pi} - \frac{1}{2\pi} \int_0^{2\pi} tf(t)dt$$

$$= F(2\pi) - \frac{1}{2\pi} \int_0^{2\pi} (\pi t - t^2)dt$$

$$= F(0) - \frac{1}{2\pi} \left[\pi \frac{t^2}{2} - \frac{t^3}{3} \right]_0^{2\pi}$$

$$= \frac{\pi^2}{3}$$

On en déduit les coefficients trigonométriques: $a_0(F)=2c_0(F)=\frac{2\pi^2}{3}$ et pour $n\geq 1$

$$\begin{cases} a_n(F) &= c_n(F) + c_{-n}(F) = \frac{2}{n^2} \\ b_n(F) &= i(c_n(F) - c_{-n}(F)) = 0 \end{cases}$$

7. On applique le théorème de Parseval à F (qui est bien continue, C^1 par morceaux comme dans le théorème du cours).

$$\sum_{n=-\infty}^{+\infty} |c_n(F)|^2 = \frac{1}{2\pi} \int_0^{2\pi} F(t)^2 dt$$

La somme de gauche vaut

$$\left(\frac{\pi^2}{3}\right)^2 + 2\sum_{n=1}^{+\infty} \frac{1}{n^4}$$

Pour calculer l'intégrale de doite, on commence par calculer F. Pour $x \in [0, 2\pi]$

$$F(x) = \int_0^x (\pi - t)dt = \pi x - \frac{x^2}{2}$$

Donc $F(x)^2 = \pi^2 x^2 - \pi x^3 + \frac{x^4}{4}$. On peut donc calculer

$$\frac{1}{2\pi} \int_0^{2\pi} F(t)^2 dt = \frac{1}{2\pi} \left[\pi^2 \frac{t^3}{3} - \pi \frac{t^4}{4} + \frac{t^5}{20} \right]_0^{2\pi} = \frac{1}{2\pi} \left(\frac{8\pi^5}{3} - \frac{16\pi^5}{4} + \frac{32\pi^5}{20} \right) = \frac{4\pi^4}{3} - 2\pi^4 + \frac{4\pi^4}{5}$$

$$= \frac{2\pi^4}{15}$$

On a donc

$$\left(\frac{\pi^2}{3}\right)^2 + 2\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{2\pi^4}{15}$$

donc finalement $\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.$

Exercice 6: Signal triangulaire.

En considérant la fonction f, 2π -périodique définie par $\forall t \in [-\pi, \pi], f(t) = \pi - 2|t|$, montrez (en vous inspirant de l'exercice 5)

$$\zeta(2) = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
 et $\zeta(4) = \sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$

Exercice 7: Théorème de Fejer.

Soit $f: \mathbb{R} \to \mathbb{C}$, continue, 2π -périodique. On note $S_n(f)$ la somme partielle d'ordre n de la série de Fourier de f. On rappelle que le noyau de Dirichlet est défini par $D_n(x) = \sum_{k=-n}^n e^{kix}$ pour $x \in \mathbb{R}$ et que pour

 $x \notin 2\pi \mathbb{Z}$ on a $D_n(x) = \frac{\sin((n+\frac{1}{2})x)}{\sin\frac{x}{2}}$. On rappelle que l'on a alors $S_n(x) = \frac{1}{2\pi} \int_0^{2\pi} f(t) D_n(x-t) dt$.

$$\sigma_n(f) = \frac{1}{n} \sum_{k=0}^{n-1} S_k(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t) K_n(x-t) dt$$

où $K_n = \frac{1}{n} \sum_{k=0}^{n-1} D_k$ est le noyau de Fejer.

- 1. Montrez que K_n vérifie les propriétés suivantes:
 - (i) pour $n \in \mathbb{N}^*$ et $x \notin 2\pi \mathbb{Z}$, $K_n(x) = \frac{\sin^2(\frac{nx}{2})}{n\sin^2(\frac{x}{2})}$.
 - (ii) K_n est 2π -périodique, paire, positive.
 - (iii) $\frac{1}{2\pi} \int_{-\pi}^{\pi} K_n = 1.$
 - (iv) $\forall \epsilon \in]0, \pi[, \int_{\epsilon}^{\pi} K_n \xrightarrow[n \to \infty]{} 0.$
- 2. Montrez que $\sigma_n(f)$ converge uniformément vers f sur \mathbb{R} .

Exercice 8: Phénomène de Gibbs.

On reprend la fonction f de l'exercice 5. On note $S_n(f)$ la somme partielle d'ordre n de sa série de Fourier.

- 1. Montrez que $S_n(f)\left(\frac{\pi}{n}\right) \xrightarrow[n\to\infty]{} 2\int_0^{\pi} \frac{\sin(x)}{x} dx$.
- **2.** On donne $2\int_0^\pi \frac{\sin(x)}{x} dx \simeq 3.7$. Interprétez.

Correction.

1. On a calculé à l'exercice 5 que pour tout $x \in \mathbb{R}$:

$$S_n(f)(x) = 2\sum_{k=1}^n \frac{\sin(kx)}{k}$$

On a donc

$$S_n(f)\left(\frac{\pi}{n}\right) = 2\sum_{k=1}^n \frac{\sin\left(\frac{k\pi}{n}\right)}{k} = 2\sum_{k=1}^n \frac{\sin\left(\frac{k\pi}{n}\right)}{\frac{k\pi}{n}} \cdot \frac{\pi}{n}$$

On reconnaît une somme de Riemann approximant l'intégrale $\int_0^{\pi} \frac{\sin(x)}{x} dx$. $x \mapsto \frac{\sin(x)}{x}$ est bien un fonction continue sur [0,1] que l'on peut prolonger en une fonction continue sur [0,1] car $\frac{\sin(x)}{x} \xrightarrow[x \to 0]{} 1$. On a donc

$$\sum_{k=1}^{n} \frac{\sin\left(\frac{k\pi}{n}\right)}{\frac{k\pi}{n}} \cdot \frac{\pi}{n} \xrightarrow[n \to \infty]{} \int_{0}^{\pi} \frac{\sin(x)}{x} dx$$

D'où
$$S_n(f)\left(\frac{\pi}{n}\right) \xrightarrow[n \to \infty]{} 2 \int_0^{\pi} \frac{\sin(x)}{x} dx.$$

2. On a sup $|f| = \pi \simeq 3.14$. Par contre, vu la question précédente sup $|S_n(f)|$ ne peut pas tendre vers sup |f|car sup $|S_n(f)| \ge S_n(f)(\pi/n) \xrightarrow[n \to \infty]{} 3.7...$

 $S_n(f)$ ne converge donc pas uniformément vers f sur \mathbb{R} . La courbe de $S_n(f)$ présente même des "pics" qui se situent à plus de $\simeq 3.7 - 3.14 \simeq 0.5$ au dessus de la courbe de f, lorsque n est grand. (Faire un dessin).

Exercice 9

Soit $\lambda \in \mathbb{R}$. Trouvez toutes les fonctions $f(2\pi)$ -périodiques, dérivables sur \mathbb{R} vérifiant

$$\forall t \in \mathbb{R}, \ f'(t) = f(t+\lambda) \tag{1}$$

Correction.

Analyse. Soit f une solution 2π périodique de (1). f est alors par une récurrence immédiate de classe \mathcal{C}^{∞} . D'après (1), les coefficients de Fourier de f' sont les mêmes que ceux de $h: t \mapsto f(\lambda + t)$. On a d'une part, pour tout $n \in \mathbb{Z}$

$$c_n(f') = inc_n(f)$$

On calcule d'autre part

$$\begin{split} c_n(h) &= \frac{1}{2\pi} \int_0^{2\pi} f(t+\lambda) e^{-int} dt \\ &= \frac{1}{2\pi} \int_{\lambda}^{2\pi+\lambda} f(t) e^{-int+ni\lambda} dt \qquad \text{(par changement de variable)} \\ &= e^{ni\lambda} \frac{1}{2\pi} \int_{\lambda}^{2\pi+\lambda} f(t) e^{-int} dt \\ &= e^{ni\lambda} c_n(f) \end{split}$$

On a donc, pour tout $n \in \mathbb{Z}$,

$$inc_n(f) = c_n(f') = c_n(h) = e^{i\lambda n}c_n(f)$$

On passe cette égalité au module:

$$|n||c_n(f)| = |c_n(f)|$$
 et donc $(|n|-1)|c_n(f)| = 0$

Donc si $n \notin \{-1, 1\}$, $c_n(f) = 0$. Pour n = 1 on a

$$ic_1(f) = e^{i\lambda}c_1(f)$$
 et donc $(i - e^{i\lambda})c_1(f) = 0$

de même $(i + e^{-i\lambda})c_{-1}(f) = 0$. On va donc distinguer 2 cas.

Cas 1: $\lambda \not\equiv \frac{\pi}{2}$ modulo 2π

Alors $c_1(f) = c_{-1}(f) = 0$. Donc f est nulle car sa série de Fourier est nulle et converge vers f en tout point par le théorème de Dirichlet (f est \mathcal{C}^0 et \mathcal{C}^1 par morceaux).

Cas 2: $\lambda \equiv \frac{\pi}{2}$ modulo 2π

Alors comme f est somme de sa série de Fourier (par Dirichlet), si on pose $\alpha = c_1(f)$ et $\beta = c_{-1}(f)$ on a donc

$$\forall x \in \mathbb{R}, \ f(x) = \alpha e^{ix} + \beta e^{-ix}$$

Synthèse.

Cas 1: $\lambda \not\equiv \frac{\pi}{2}$ modulo 2π

Dans ce cas la fonction nulle est bien solution.

Cas 2: $\lambda \equiv \frac{\pi}{2}$ modulo 2π Dans ce cas $e^{i\lambda}=i$. Soient $\alpha,\beta\in\mathbb{C}$. On définit

$$\forall x \in \mathbb{R}, \ f(x) = \alpha e^{ix} + \beta e^{-ix}$$

on a donc, pour $x \in \mathbb{R}$

$$f'(x) = \alpha i e^{ix} - \beta i e^{-ix} = \alpha e^{i\lambda} e^{ix} + \beta e^{-i\lambda} e^{-ix} = f(x+\lambda)$$

f est donc bien solution du problème.

Conclusion:

Si $\lambda \in \frac{\pi}{2} + 2\pi \mathbb{Z},$ alors l'ensemble des solutions est

$$\left\{ x \mapsto \alpha e^{ix} + \beta e^{-ix} \mid \alpha, \beta \in \mathbb{C} \right\}$$

Sinon, c'est $\{x \mapsto 0\}$.

Exercice 10: (*).

Soit f une fonction de classe \mathcal{C}^{∞} sur \mathbb{R} , 2π -périodique, de moyenne nulle. Montrez que f'' + f admet au moins 4 zéros sur $[0, 2\pi]$

