NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, MAY 21, 2004
BY BONNIE MCBRIDE AND SANFORD GORDON
REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996

OPTIONS: TP=F HP=F SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F INCD=F RKT=T FROZ=T EQL=F IONS=F SIUNIT=T DEBUGF=F SHKDBG=F DETDBG=F TRNSPT=F

TRACE= 0.00E+00 S/R= 0.000000E+00 H/R= 0.000000E+00 U/R= 0.000000E+00

Pc,BAR = 20.000000 25.000000 30.000000

Pc/P =

SUBSONIC AREA RATIOS =

SUPERSONIC AREA RATIOS =

NFZ= 1 Mdot/Ac= 0.000000E+00 Ac/At= 0.000000E+00

REACTANT WT.FRAC (ENERGY/R),K TEMP,K DENSITY EXPLODED FORMULA 0.00 0.0000 O: H2O(L) H 2.00000 O 1.00000 0.00 0.0000 O: CH3OH(L) 0.333333 0.000000E+00 C 1.00000 H 4.00000 O 1.00000 0.333333 -0.860604E+04 239.72 0.0000 O: NH3(L) N 1.00000 H 3.00000 1.000000 -0.297284E+04 298.15 0.0000 F: RP-1 С 1.00000 Н 1.95000

SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES)

LAST thermo.inp UPDATE: 9/09/04

g 7/97	*C	tpis79	*CH	g 4/02	CH2
g 4/02	CH3	g11/00	CH2OH	g 7/00	CH30
g 8/99	CH4	g 7/00	СНЗОН	srd 01	СНЗООН
g 8/99	*CN	g12/99	CNN	tpis79	*C0
g 9/99	*CO2	tpis91	COOH	tpis91	*C2
q 6/01	C2H	g 1/91	C2H2,acetylene	g 5/01	C2H2, vinylidene

4/00	011000 1	2/00	0 (011) 00	1 01	110 (00) 0011
g 4/02	CH2CO, ketene	g 3/02	O (CH) 20	srd 01	HO (CO) 20H
g 7/01	C2H3, vinyl	g 9/00	CH3CN	g 6/96	CH3CO, acetyl
g 1/00	C2H4	g 8/88	C2H4O, ethylen-o	g 8/88	CH3CHO, ethanal
g 6/00	СНЗСООН	srd 01	OHCH2COOH	g 7/00	C2H5
g 7/00	C2H6	g 8/88	CH3N2CH3	g 8/88	C2H5OH
g 7/00	СНЗОСНЗ	srd 01	CH3O2CH3	g 7/00	CCN
tpis91	CNC	srd 01	OCCN	tpis79	C2N2
g 8/00	C20	tpis79	*C3	n 4/98	C3H3,1-propynl
n 4/98	C3H3,2-propynl	g 2/00	C3H4, allene	g 1/00	C3H4, propyne
g 5/90	C3H4,cyclo-	g 3/01	C3H5,allyl	g 2/00	C3H6,propylene
g 1/00	C3H6,cyclo-	g 6/01	C3H6O,propylox	g 6/97	C3H6O, acetone
g 1/02	C3H6O,propanal	g 7/01	C3H7,n-propyl	g 9/85	C3H7,i-propyl
g 2/00	С3Н8	g 2/00	C3H8O,1propanol	g 2/00	C3H8O,2propanol
srd 01	CNCOCN	g 7/88	C302	g tpis	*C4
g 7/01	C4H2,butadiyne	g 8/00	C4H4,1,3-cyclo-	n10/92	C4H6,butadiene
n10/93	C4H6,1butyne	n10/93	C4H6,2butyne	g 8/00	C4H6,cyclo-
n 4/88	C4H8,1-butene	n 4/88	C4H8,cis2-buten	n 4/88	C4H8, tr2-butene
n 4/88	C4H8,isobutene	g 8/00	C4H8,cyclo-	g10/00	(CH3COOH) 2
n10/84	C4H9,n-butyl	n10/84	C4H9,i-butyl	g 1/93	C4H9,s-butyl
g 1/93	C4H9,t-butyl	g12/00	C4H10,n-butane	g 8/00	C4H10,isobutane
g 6/01	C4N2	g 8/00	*C5	g 5/90	C5H6,1,3cyclo-
g 1/93	C5H8,cyclo-	n 4/87	C5H10,1-pentene	g 2/01	C5H10,cyclo-
n10/84	C5H11,pentyl	g 1/93	C5H11,t-pentyl	n10/85	C5H12,n-pentane
n10/85	C5H12,i-pentane	n10/85	CH3C (CH3) 2CH3	g 2/93	C6H2
g11/00	C6H5,phenyl	g 8/00	C6H5O, phenoxy	g 8/00	C6H6
g 8/00	C6H5OH, phenol	g 1/93	C6H10,cyclo-	n 4/87	C6H12,1-hexene
g 6/90	C6H12,cyclo-	n10/83	C6H13,n-hexyl	g 6/01	C6H14,n-hexane
g 7/01	C7H7,benzyl	g 1/93	C7H8	g12/00	C7H8O,cresol-mx
n 4/87	C7H14,1-heptene	n10/83	C7H15,n-heptyl	n10/85	C7H16,n-heptane
n10/85	C7H16,2-methylh	n 4/89	C8H8,styrene	n10/86	C8H10,ethylbenz
n 4/87	C8H16,1-octene	n10/83	C8H17,n-octyl	n 4/85	C8H18,n-octane
n 4/85	C8H18,isooctane	n10/83	C9H19,n-nonyl	g 3/01	C10H8, naphthale
n10/83	C10H21,n-decyl	g 8/00	C12H9,o-bipheny	g 8/00	C12H10,biphenyl
g 6/97	*H	g 6/01	HCN	g 1/01	HCO
tpis89	HCCN	g 6/01	HCCO	g 6/01	HNC
g 7/00	HNCO	g10/01	HNO	tpis89	HNO2
g 5/99	HNO3	g 4/02	HO2	tpis78	*H2
g 5/01	HCHO, formaldehy	g 6/01	НСООН	g 8/89	H2O
g 6/99	H2O2	g 6/01	(HCOOH) 2	g 5/97	*N
g 6/01	NCO	g 4/99	*NH	g 3/01	NH2
tpis89	NH3	tpis89	NH2OH	tpis89	*NO
g 4/99	NO2	j12/64	NO3	tpis78	*N2
g 6/01	NCN	g 5/99	N2H2	tpis89	NH2NO2
g 4/99	N2H4	g 4/99	N20	g 4/99	N2O3
tpis89	N2O4	g 4/99	N205	tpis89	N3
g 4/99	N3H	g 5/97	*0	g 4/02	*OH
tpis89	*02	g 8/01	03	n 4/83	C(gr)
n 4/83	C(gr)	n 4/83	C(gr)	g11/99	H20(cr)
g 8/01	H2O(L)	g 8/01	H2O(L)		

O/F = 2.000000

	EFFECTIVE FUEL	EFFECTIVE OXIDANT	MIXTURE	
ENTHALPY	h(2)/R	h(1)/R	h0/R	
(KG-MOL) (K)/KG	-0.21270751E+03	-0.16844346E+03	-0.18319814E+03	
KG-FORM.WT./KG	bi(2)	bi(1)	bOi	
	()	` '		

FileEditor:LMP103S0907.out

* H			0.13952307E+00	0.13	733597E+00	0.13806500E+0	0
*0			0.0000000E+00	0.28	905870E-01	0.19270580E-0	1
*C			0.71550294E-01	0.10	403058E-01	0.30785470E-0	1
*N			0.0000000E+00	0.19	572704E-01	0.13048470E-0	1
POINT	ITN	Т	Н	0	С	N	
1	21	1149.066	-7.818	-35.203	-1.016	-12.342	
ADD 1	C(gr)	1146.164	-7.738	-34.798	-1.727	-12.350	

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 290.1 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	RP-1	1.0000000	-24717.700	298.150

O/F= 2.00000 %FUEL= 33.333333 R,EQ.RATIO= 6.777349 PHI,EQ.RATIO=-1.757209

	CHAMBER	THROAT
Pinf/P	1.0000	1.8073
P, BAR	20.000	11.066
T, K	1146.16	1017.40
RHO, KG/CU M	2.7315 0	1.7027 0
H, KJ/KG	-1523.20	-1931.84
U, KJ/KG	-2255.41	-2581.79
G, KJ/KG	-18613.5	-17102.2
S, KJ/(KG)(K)	14.9108	14.9108
(4 ()	40.045	10 015
M, (1/n)	13.015	13.015
MW, MOL WT	11.826	11.826
Cp, $KJ/(KG)(K)$	3.2260	3.1202
GAMMAs	1.2469	1.2575
SON VEL, M/SEC	955.5	904.0
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1299.3
CF	0.6958
Ivac, M/SEC	1623.0
Isp, M/SEC	904.0

MOLE FRACTIONS

CH4	0.12849	*CO	0.12885	*CO2	0.01530
C2H4	0.00001	C2H6	0.00002	HCN	0.00001
*H2	0.49010	H2O	0.06844	NH3	0.00052
*N2	0.07689	C(ar)	0.09138		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1162.002 -7.654 -34.428 -1.748 -12.254

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 362.6 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	RP-1	1.000000	-24717.700	298.150

O/F= 2.00000 %FUEL= 33.333333 R,EQ.RATIO= 6.777349 PHI,EQ.RATIO=-1.757209

	CHAMBER	THROAT
Pinf/P	1.0000	1.8053
P, BAR	25.000	13.848
T, K	1162.00	1032.96
RHO, KG/CU M	3.3927 0	2.1141 0
H, KJ/KG	-1523.20	-1933.98
U, KJ/KG	-2260.09	-2589.03
G, KJ/KG	-18684.6	-17189.6
S, KJ/(KG)(K)	14.7688	14.7688
$M_{,}$ (1/n)	13.111	13.111
MW, MOL WT	11.976	11.976
Cp, KJ/(KG)(K)	3.2362	3.1292
GAMMAs	1.2437	1.2542

SON VEL,M/SEC 957.3 906.4 MACH NUMBER 0.000 1.000

PERFORMANCE PARAMETERS

Ae/At 1.0000
CSTAR, M/SEC 1304.7
CF 0.6947
Ivac, M/SEC 1629.1
Isp, M/SEC 906.4

MOLE FRACTIONS

CH4	0.13644	*CO	0.13034	*CO2	0.01529
C2H4	0.00001	С2Н6	0.00002	HCN	0.00001
*H2	0.48303	H20	0.06987	NH3	0.00059
*N2	0.07784	C(gr)	0.08656		

* THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1175.184 -7.586 -34.126 -1.766 -12.175

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 435.1 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	RP-1	1.000000	-24717.700	298.150

O/F= 2.00000 %FUEL= 33.333333 R,EQ.RATIO= 6.777349 PHI,EQ.RATIO=-1.757209

CHAMBER THROAT Pinf/P 1.0000 1.8036

FileEditor:LMP103S0907.out

P, BAR	30.000	16.634
T, K	1175.18	1045.95
RHO, KG/CU M	4.0504 0	2.5232 0
H, KJ/KG	-1523.20	-1935.68
U, KJ/KG	-2263.87	-2594.90
G, KJ/KG	-18743.8	-17262.6
S, KJ/(KG)(K)	14.6535	14.6535
M, (1/n)	13.192	13.192
MW, MOL WT	12.104	12.104
Cp, KJ/(KG)(K)	3.2450	3.1371
GAMMAs	1.2410	1.2514
SON VEL, M/SEC	958.7	908.3
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1309.0
CF	0.6939
Ivac, M/SEC	1634.1
Isp, M/SEC	908.3

MOLE FRACTIONS

CH4	0.14319	*CO	0.13158	*C02	0.01530
C2H4	0.00001	C2H6	0.00003	HCN	0.00001
*H2	0.47703	H2O	0.07108	NH3	0.00065
*N2	0.07864	C(gr)	0.08248		
				NH3	0.0006

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

O/F = 4.000000

	EFFECTI	VE FUEL EF	FECTIVE OX	IDANT	MIXTURE
ENTHALPY	h (2)/R	h(1)/R		h0/R
(KG-MOL)(K)/KG	-0.21270	751E+03 -0	.16844346E	+03 -0.	17729627E+03
KG-FORM.WT./KG	bi	(2)	bi(1)		b0i
*H	0.13952	307E+00 0	.13733597E	1.00 0.	13777339E+00
*0	0.00000	000E+00 0	0.28905870E-01		23124696E-01
*C	0.71550	294E-01 0	0.10403058E-01		22632505E-01
*N	0.00000	000E+00 0	.19572704E	0.	15658164E-01
POINT ITN	T H	0	C	: 1	N

1	4	1195.905	-7.783	-34.091	-1.795	-12.370
REMOV	E C((gr)				
1	3	1199.482	-7.766	-33.855	-2.100	-12.377

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 290.1 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	RP-1	1.000000	-24717.700	298.150

O/F= 4.00000 %FUEL= 20.000000 R,EQ.RATIO= 4.936355 PHI,EQ.RATIO=-0.878605

	CHAMBER	THROAT
Pinf/P	1.0000	1.8345
P, BAR	20.000	10.902
T, K	1199.48	1044.32
RHO, KG/CU M	2.3361 0	1.4626 0
H, KJ/KG	-1474.13	-1959.43
U, KJ/KG	-2330.27	-2704.83
G, KJ/KG	-20884.7	-18859.1
S, KJ/(KG)(K)	16.1824	16.1824
M, (1/n)	11.649	11.649
MW, MOL WT	11.649	11.649
Cp, KJ/(KG)(K)	3.1784	3.0762
GAMMAs	1.2896	1.3021
SON VEL, M/SEC	1050.8	985.2
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1388.0
CF	0.7098
Ivac, M/SEC	1741.8
Isp, M/SEC	985.2

MOLE FRACTIONS

CH4	0.07836	*CO	0.17031	*CO2	0.01492
C2H6	0.00001	HCN	0.00002	*H2	0.57571
H2O	0.06922	NH3	0.00051	*N2	0.09094

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	T	Н	0	С	N
1	3	1216.654	-7.678	-33.467	-2.159	-12.283

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 362.6 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	RP-1	1.000000	-24717.700	298.150

O/F= 4.00000 %FUEL= 20.000000 R,EQ.RATIO= 4.936355 PHI,EQ.RATIO=-0.878605

1.0000	1.8324
25.000	13.643
1216.65	1060.85
2.8954 0	1.8121 0
-1474.13	-1963.01
-2337.58	-2715.89
-20969.3	-18961.7
16.0236	16.0236
11.716	11.716
11.716	11.716
3.1890	3.0857
1.2862	1.2987
1053.9	988.8
0.000	1.000
	1216.65 2.8954 0 -1474.13 -2337.58 -20969.3 16.0236 11.716 11.716 3.1890 1.2862 1053.9

PERFORMANCE PARAMETERS

Ae/At 1.0000 CSTAR, M/SEC 1395.2 CF 0.7087 Ivac, M/SEC 1750.2 Isp, M/SEC 988.8

MOLE FRACTIONS

CH4	0.08164	*CO	0.16855	*C02	0.01492
C2H4	0.00001	С2Н6	0.00001	HCN	0.00002
*H2	0.57032	H2O	0.07254	NH3	0.00058
*N2	0.09142				

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1230.993 -7.607 -33.152 -2.207 -12.206

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 435.1 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	RP-1	1.0000000	-24717.700	298.150

O/F= 4.00000 %FUEL= 20.000000 R,EQ.RATIO= 4.936355 PHI,EQ.RATIO=-0.878605

	CHAMBER	THROAT
Pinf/P	1.0000	1.8307
P, BAR	30.000	16.387
T, K	1230.99	1074.69
RHO, KG/CU M	3.4506 0	2.1590 0
H, KJ/KG	-1474.13	-1965.92
U, KJ/KG	-2343.55	-2724.95
G, KJ/KG	-21040.2	-19047.7
S, KJ/(KG)(K)	15.8945	15.8945

M, (1/n)	11.772	11.772
MW, MOL WT	11.772	11.772
Cp, $KJ/(KG)(K)$	3.1979	3.0938
GAMMAs	1.2835	1.2958
SON VEL, M/SEC	1056.3	991.8
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

1.0000
1401.1
0.7078
1757.1
991.8

MOLE FRACTIONS

CH4	0.08441	*CO	0.16706	*C02	0.01491
C2H4	0.00001	C2H6	0.00001	HCN	0.00002
*H2	0.56575	H2O	0.07535	NH3	0.00064
*N2	0.09183				

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

O/F = 6.000000

		EFFECTIVE FUEL	EFFEC	TIVE OXIDANT	MIXTURE	
ENTHALPY		h(2)/R		h(1)/R	h0/R	
(KG-MOL) (K)	/KG	-0.21270751E+03	-0.16	844346E+03	-0.17476690E	+03
KG-FORM.WT.	/KG	bi(2)		bi(1)	bOi	
* H		0.13952307E+00	0.13	733597E+00	0.13764841E	+00
*0		0.0000000E+00	0.28	905870E-01	0.24776460E	-01
*C		0.71550294E-01	0.10	403058E-01	0.19138378E	-01
*N		0.0000000E+00	0.19	572704E-01	0.16776604E	-01
POINT ITN	T	Н	0	С	N	
1 5	1239.522	-7.781	-32.967	-2.770	-12.412	

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 290.1 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	RP-1	1.000000	-24717.700	298.150

O/F= 6.00000 %FUEL= 14.285714 R,EQ.RATIO= 4.322690 PHI,EQ.RATIO=-0.585736

	CHAMBER	
Pinf/P	1.0000	1.8461
P, BAR	20.000	10.834
T, K	1239.52	1070.26
RHO, KG/CU M	2.1580 0	1.3538 0
H, KJ/KG	-1453.10	-1981.74
U, KJ/KG	-2379.87	-2781.94
G, KJ/KG	-22148.4	-19851.0
S, KJ/(KG)(K)	16.6962	16.6962
M, (1/n)	11.120	11.120
MW, MOL WT	11.120	11.120
Cp, KJ/(KG)(K)	3.1704	3.0752
GAMMAs	1.3086	1.3212
SON VEL, M/SEC	1101.3	1028.2
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1436.7
CF	0.7157
Ivac, M/SEC	1806.5
Isp, M/SEC	1028.2

MOLE FRACTIONS

CH4	0.03548	*CO	0.16271	*C02	0.01462
HCN	0.00001	*H2	0.61008	H2O	0.08359
NH3	0.00047	*N2	0.09304		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1256.464 -7.692 -32.614 -2.804 -12.318

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 362.6 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	N ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	RP-1	1.000000	-24717.700	298.150

O/F= 6.00000 %FUEL= 14.285714 R,EQ.RATIO= 4.322690 PHI,EQ.RATIO=-0.585736

	CHAMBER	THROAT
Pinf/P	1.0000	1.8441
P, BAR	25.000	13.557
T, K	1256.46	1086.46
RHO, KG/CU M	2.6756 0	1.6779 0
H, KJ/KG	-1453.10	-1985.50
U, KJ/KG	-2387.48	-2793.46
G, KJ/KG	-22222.2	-19944.4
S, KJ/(KG)(K)	16.5298	16.5298
M, (1/n)	11.181	11.181
MW, MOL WT	11.181	11.181
Cp, KJ/(KG)(K)	3.1796	3.0829
GAMMAs	1.3053	1.3179
SON VEL, M/SEC	1104.4	1031.9
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1443.9
CF	0.7147
Ivac, M/SEC	1814.9
Isp, M/SEC	1031.9

MOLE FRACTIONS

CH4	0.03834	*CO	0.16108	*CO2	0.01453
HCN	0.00002	*H2	0.60511	H2O	0.08687
NH3	0.00054	*N2	0.09351		

* THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	T	Н	0	С	N
1	3	1270.682	-7.620	-32.326	-2.833	-12.241

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 435.1 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	RP-1	1.000000	-24717.700	298.150

O/F= 6.00000 %FUEL= 14.285714 R,EQ.RATIO= 4.322690 PHI,EQ.RATIO=-0.585736

	CHAMBER	THROAT
Pinf/P	1.0000	1.8424
P, BAR	30.000	16.283
T, K	1270.68	1100.09
RHO, KG/CU M	3.1893 0	1.9995 0
H, KJ/KG	-1453.10	-1988.59
U, KJ/KG	-2393.75	-2802.95
G, KJ/KG	-22285.3	-20024.1
S, KJ/(KG)(K)	16.3945	16.3945
M, (1/n)	11.232	11.232
MW, MOL WT	11.232	11.232
Cp, KJ/(KG)(K)	3.1874	3.0897
GAMMAs	1.3025	1.3151
SON VEL, M/SEC	1106.9	1034.9
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At 1.0000

CSTAR, M/SEC	1449.8
CF	0.7138
Ivac, M/SEC	1821.8
Isp, M/SEC	1034.9

MOLE FRACTIONS

CH4	0.04077	*CO	0.15969	*C02	0.01447
HCN	0.00002	*H2	0.60089	H20	0.08966
NH3	0.00060	*N2	0.09390		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

O/F = 8.000000

ENTHAI		/KG	EFFECTIVE FUEL h(2)/R -0.21270751E+03		TIVE OXIDANT h(1)/R 844346E+03	MIXTURE h0/R -0.17336169E+03
KG-FO	RM.WT.	./KG	bi(2)		bi(1)	bOi
* H			0.13952307E+00	0.13	733597E+00	0.13757898E+00
*0			0.0000000E+00	0.28	905870E-01	0.25694107E-01
*C			0.71550294E-01	0.10	403058E-01	0.17197195E-01
*N			0.0000000E+00	0.19	572704E-01	0.17397959E-01
POINT	ITN	Т	Н	0	С	N
1	4	1279.794	-7.814	-32.150	-3.376	-12.450

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 290.1 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	RP-1	1.000000	-24717.700	298.150

O/F= 8.00000 %FUEL= 11.111111 R,EQ.RATIO= 4.015858 PHI,EQ.RATIO=-0.439302

Pinf/P P, BAR T, K RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG S, KJ/(KG) (K)	20.000 1279.79 2.0500 0 -1441.42 -2417.03 -23152.7	1.8508 10.806 1101.33 1.2871 0 -1999.31 -2838.87 -20683.0		
M, (1/n) MW, MOL WT Cp, KJ/(KG)(K) GAMMAS SON VEL,M/SEC MACH NUMBER	10.907 3.1721 1.3163 1133.2	10.907 3.0794 1.3290 1056.3		
PERFORMANCE PAR	AMETERS			
Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC		1.0000 1471.0 0.7181 1851.1 1056.3		
MOLE FRACTIONS				
CH4 HCN NH3	0.01615 0.00001 0.00041	*CO *H2 *N2	0.15721 0.62271 0.09467	0.01419 0.09464

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N 1 3 1294.862 -7.722 -31.858 -3.368 -12.353

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 362.6 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	RP-1	1.000000	-24717.700	298.150

O/F= 8.00000 %FUEL= 11.111111 R,EQ.RATIO= 4.015858 PHI,EQ.RATIO=-0.439302

	CHAMBER	THROAT
Pinf/P	1.0000	1.8490
P, BAR	25.000	13.521
T, K	1294.86	1115.73
RHO, KG/CU M	2.5446 0	1.5972 0
H, KJ/KG	-1441.42	-2002.69
U, KJ/KG	-2423.87	-2849.23
G, KJ/KG	-23188.6	-20741.3
S, KJ/(KG)(K)	16.7950	16.7950
M, (1/n)	10.958	10.958
MW, MOL WT	10.958	10.958
Cp, $KJ/(KG)(K)$	3.1799	3.0859
GAMMAs	1.3134	1.3260
SON VEL, M/SEC	1135.9	1059.5
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1477.4
CF	0.7172
Ivac, M/SEC	1858.5
Isp, M/SEC	1059.5

MOLE FRACTIONS

CH4	0.01855 *CC	0.15578	*C02	0.01410
HCN	0.00001 *H2	0.61841	H20	0.09758
NH3	0.00048 *N2	0.09508		

 $^{^{\}star}$ THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1307.750 -7.648 -31.613 -3.366 -12.274

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 435.1 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	RP-1	1.000000	-24717.700	298.150

O/F= 8.00000 %FUEL= 11.111111 R,EQ.RATIO= 4.015858 PHI,EQ.RATIO=-0.439302

	CHAMBER	THROAT
Pinf/P	1.0000	1.8475
P, BAR	30.000	16.238
T, K	1307.75	1128.07
RHO, KG/CU M	3.0358 0	1.9049 0
H, KJ/KG	-1441.42	-2005.52
U, KJ/KG	-2429.63	-2857.96
G, KJ/KG	-23224.5	-20795.7
S, KJ/(KG)(K)	16.6569	16.6569
M, (1/n)	11.003	11.003
MW, MOL WT	11.003	11.003
Cp, KJ/(KG)(K)	3.1866	3.0916
GAMMAs	1.3109	1.3235
SON VEL, M/SEC	1138.2	1062.2
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1482.7
CF	0.7164
Ivac, M/SEC	1864.7
Isp, M/SEC	1062.2

MOLE FRACTIONS

CH4	0.02063	*CO	0.15454	*CO2	0.01402
HCN	0.00002	*H2	0.61469	H20	0.10012
NH3	0.00054	*N2	0.09544		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

O/F = 10.000000

			EFFECTIVE FUEL	EFFEC	TIVE OXIDANT	MIXTURE	
ENTHAI	LPY		h(2)/R		h(1)/R	h0/R	
(KG-MC	DL) (K)	/KG	-0.21270751E+03	-0.16	844346E+03	-0.17246747E+0	3
KG-FOF	RM.WT	./KG	bi(2)		bi(1)	b0i	
* H			0.13952307E+00	0.13	733597E+00	0.13753480E+0	0
*0			0.0000000E+00	0.28	905870E-01	0.26278064E-0	1
*C			0.71550294E-01	0.10	403058E-01	0.15961898E-0	1
*N			0.0000000E+00	0.19	572704E-01	0.17793368E-0	1
POINT	ITN	Т	Н	0	С	N	
1	4	1323.662	-7.859	-31.325	-3.989	-12.491	

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 290.1 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	RP-1	1.000000	-24717.700	298.150

O/F= 10.00000 %FUEL= 9.090909 R,EQ.RATIO= 3.831759 PHI,EQ.RATIO=-0.351442

		CHAMBER	THROAT
Pir	nf/P	1.0000	1.8518
P,	BAR	20.000	10.800
T,	K	1323.66	1138.27
RHO	O, KG/CU M	1.9691 0	1.2365 0
Η,	KJ/KG	-1433.98	-2015.13
U,	KJ/KG	-2449.70	-2888.59
G,	KJ/KG	-24101.9	-21508.2
s,	KJ/(KG)(K)	17.1251	17.1251

M, (1/n)	10.835	10.835
MW, MOL WT	10.835	10.835
Cp, $KJ/(KG)(K)$	3.1807	3.0881
GAMMAs	1.3180	1.3306
SON VEL, M/SEC	1157.0	1078.1
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.00000
CSTAR, M/SEC	1500.3
CF	0.7186
Ivac, M/SEC	1888.3
Isp, M/SEC	1078.1

MOLE FRACTIONS

CH4	0.00705	*CO	0.15213	*CO2	0.01375
HCN	0.00001	*H2	0.62539	H20	0.10509
инз	0.00035	*N2	0.09622		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1335.140 -7.762 -31.117 -3.921 -12.390

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 362.6 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	RP-1	1.0000000	-24717.700	298.150

O/F= 10.00000 %FUEL= 9.090909 R,EQ.RATIO= 3.831759 PHI,EQ.RATIO=-0.351442

	CHAMBER	THROAT
Pinf/P	1.0000	1.8504
P, BAR	25.000	13.510
Т, К		
RHO, KG/CU M	2.4489 0	1.5375 0
H, KJ/KG	-1433.98	-2017.64
U, KJ/KG	-2454.84	-2896.38
G, KJ/KG	-24070.2	-21502.7
S, KJ/(KG)(K)	16.9542	16.9542
M, (1/n)	10.874	10.874
MW, MOL WT	10.874	10.874
Cp, $KJ/(KG)(K)$	3.1865	3.0930
GAMMAs	1.3157	1.3284
SON VEL, M/SEC	1158.9	1080.4
MACH NUMBER	0.000	1.000
PERFORMANCE PAR	RAMETERS	
Ae/At		1.0000
CSTAR, M/SEC		1505.0
CF		0.7179
Ivac, M/SEC		1893.8

MOLE FRACTIONS

Isp, M/SEC

CH4	0.00884	*CO	0.15104	*CO2	0.01368
HCN	0.00001	*H2	0.62213	H2O	0.10735
NH3	0.00041	*N2	0.09653		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

1080.4

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1345.480 -7.684 -30.933 -3.876 -12.309

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 435.1 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	RP-1	1.0000000	-24717.700	298.150

O/F= 10.00000 %FUEL= 9.090909 R,EQ.RATIO= 3.831759 PHI,EQ.RATIO=-0.351442

	CHAMBER	THROAT
Pinf/P	1.0000	1.8492
P, BAR	30.000	16.223
T, K	1345.48	1159.20
RHO, KG/CU M	2.9256 0	1.8363 0
H, KJ/KG	-1433.98	-2019.87
U, KJ/KG	-2459.42	-2903.33
G, KJ/KG	-24058.3	-21511.8
S, KJ/(KG)(K)	16.8150	16.8150
M, (1/n)	10.910	10.910
MW, MOL WT	10.910	10.910
Cp, KJ/(KG)(K)	3.1918	3.0976
GAMMAs	1.3137	1.3263
SON VEL, M/SEC	1160.6	1082.5
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1509.2
CF	0.7172
Ivac, M/SEC	1898.6
Isp, M/SEC	1082.5

MOLE FRACTIONS

CH4	0.01046	*CO	0.15005	*CO2	0.01361
HCN	0.00001	*H2	0.61917	H2O	0.10941
NH3	0.00048	*N2	0.09681		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.0000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS