Aufgabe 1

Für $\lambda > 0$ sei die Funktion $F : \mathbb{R} \to \mathbb{R}$ definiert durch

$$F(x) = \begin{cases} 0 & x < 0 \\ 1 - \exp(-\lambda x) & x \ge 0. \end{cases}$$

Zeigen Sie, dass F eine gültige Verteilungsfunktion ist.

Aufgabe 2

Eine Zufallsvariable X heißt (diskret) gleichverteilt auf $\{1, \ldots, n\}, n \in \mathbb{N}$, falls für ihre Zähldichte gilt, dass $\mathbb{P}(X=j)=\frac{1}{n}$ für alle $j=1,\ldots,n$. Die Zufallsvariablen X und Y seien nun unabhängig gleichverteilt auf $\{1,\ldots,n\}$. Bestimmen Sie die Zähldichte der Zufallsvariablen Z=X+Y, d.h. die Einzelwahrscheinlichkeiten $\mathbb{P}(Z=j)$ für alle j aus dem Bild von Z.

Hinweis: Zwei diskrete Zufallsvariablen X und Y heißen unabhängig, falls die Ereignisse $\{X = k\}$ und $\{Y = j\}$ unabhängige Ereignisse sind.

Aufgabe 3

Es sei $X \sim \text{Geo}(p)$, das heißt $X : \Omega \to \mathbb{N}$ ist geometrisch verteilt mit $\mathbb{P}(X = k) = p(1 - p)^{k-1}$ und $p \in (0, 1)$. Zeigen Sie, dass

$$\mathbb{P}(\{X=n+k\} \mid \{X>n\}) = \mathbb{P}(X=k) \tag{1}$$

für alle n, k > 0.

Hinweis: Man nennt (1) die "Gedächtnislosigkeit" der geometrischen Verteilung.

Besprechung von ausgewählter Themen aus der Vorlesung.