BUNDESREPUBLIK DEUTSCHLÄND PCT/EP03/01766

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

19 AUG 2004

REC'D 0 6 JUN 2003

WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 07 436.4

Anmeldetag:

21. Februar 2002

Anmelder/Inhaber:

Dr. Hans-Günther Machens, Lübeck/DE

Bezeichnung:

Mittel zur Induktion oder Inhibition einer Angiogenese

IPC:

A 61 K 48/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 22. April 2003 **Deutsches Patent- und Markenamt** Der Präsident

Im Auftrag

HOS

BEST AVAILABLE COPY

Az 12603 Neue Deutsche Patentanmeldung Günther Machens

10

15

Mittel zur Induktion oder Inhibition einer Angiogenese.

Die Erfindung betrifft ein Mittel zur Induktion oder Inhibition einer Angiogenese (Blutgefäßneubildung), ein Verfahren zu dessen Herstellung sowie dessen Verwendung.

Seit Hunderten von Jahren hat man versucht, die Mikrozirkulation im Lappengewebe bereits vor dem Transfer des Gewebes medikamentös (z.B. durch Hirudines), physiotherapeutisch (z.B. durch Schröpfköpfe) oder chirurgisch (z.B. durch Vorschneiden des Lappens und Belassen in situ) zu konditionieren, um dadurch ein Überleben des Gewebes nach einem Transfer sicherer machen und gleichzeitig auch größere Gewebeportionen in einer einzigen Operation übertragen zu können.

25

30

20

Durch die Einführung der Mikrochirurgie wurde dieser gesamte Bereich revolutioniert, da nunmehr Gewebe transplantiert werden konnte, welches seine eigene Durchblutung nach Anschluß der arteriellen und venösen Gefäße gleich mitbrachte. Jedoch gilt hier genau wie für den Bereich des gestielten Gewebetransfers oder bei Transplantationen von Spalt- oder Vollhaut, daß ohne ausreichende Mikrozirkulation das davon abhängige Gewebe dem Untergang anheim fällt.

Im Zeitalter der Gentechnologie ergibt sich hier ein völlig neuer therapeutischer Zugang zu diesem Problem, nämlich durch Induktion einer Neovaskularisation mittels Zelltransduktion zur Produktion angiogenetisch wirksamer Faktoren im betroffenen Gewebe.

Überraschenderweise gibt es in der Plastischen Chirurgie bisher nur wenig experimentelle Ansätze, um überhaupt die Möglichkeiten des Gentransfers für diesen Bereich zu nutzen. In den bisher erschienenen Arbeiten zur experimentellen und klinischen Transduktion von Zellen zur Produktion angiogenetisch wirksamer Faktoren war bisher noch keine direkte Relevanz für den Bereich der Plastischen Chirurgie aufgezeigt worden. Dabei dürfte die mögliche therapeutische Bedeutung solcher angiogenetisch wirksamer Substanzen gerade in diesem Bereich der Chirurgie unbestritten sein. Eine gesteuerte Einflußnahme auf die Wundheilung und das Überleben von Gewebe durch Gefäßinduktion würde nicht nur direkte klinische Bedeutung haben, sondern auch ein neues wissenschaftliches Feld zum Studium und besseren Verständnis mikrozirkulatorischer Phänomene im Gewebe unter physiologischen und pathophysiologischen Bedingungen eröffnen.

25 Daraus ergibt sich die Aufgabe der Erfindung.

15

20

30

Erfindungsgemäß wird ein Mittel zur Induktion oder Inhibition einer Angiogenese vorgeschlagen, daß isogene Körperzellen umfaßt, die mindestens ein angiogenetisches oder antiangiogenetisches Protein exprimieren. Isogene oder autologe Zellen im Sinne der Erfindung sind genetisch eineilige Zellen, die zu keiner Immuninkompatibilität nach Retransplantation führen.

Nach einer Ausführungsform der Erfindung ist in dem erfindungsgemäßen Mittel das mindestens eine angiogenetische Protein unter PDGF-A, PDGF-B, VEGF und bFGF ausgewählt.

Nach einer weiteren Ausführungsform der Erfindung ist in dem erfindungsgemäßen Mittel das mindestens eine antiangiogenetische Protein VEGFR-1.

- Die Erfindung stellt ferner ein Verfahren zur Herstellung eines erfindungsgemäßen Mittels bereit, bei dem
 - a) in einem Körper durch Fremdkörperimplantation die Bildung von isogenen Zellen ausgelöst wird,
- b) die in Schritt a) gebildeten Zellen aus dem Körper gewonnen werden,

15

25

c) die in Schritt b) gewonnenen Zellen gentechnisch, z.B. durch retroviralen, insbesondere adenoviralen, Gentransfer, so verändert werden, daß sie im Falle einer gewünschten Induktion einer Angiogenese mindestens ein angiogenetisches Protein oder im Falle einer gewünschten Inhibition einer Angiogenese mindestens ein antiangiogenetisches Protein exprimieren.

Nach einer Ausführungsform des erfindungsgemäßen Verfahrens exprimieren die in Schritt c) gewonnenen Zellen ein unter PDGF-A, PDGF-B, VEGF und bFGF ausgewähltes angiogenetisches Protein.

Nach einer weiteren Ausführungsform des erfindungsgemäßen 30 Verfahrens exprimieren die in Schritt c) gewonnenen Zellen als antiangiogenetisches Protein VEGFR-1. Die Erfindung gibt ferner die Verwendung eines erfindungsgemäßen Mittels oder eines nach einem erfindungsgemäßen Verfahren hergestellten Mittels zur Induktion oder Inhibition einer Angiogenese an.

Nach einer Ausführungsform der erfindungsgemäßen Verwendung wird ein erfindungsgemäßes Mittel oder ein nach einem erfindungsgemäßen Verfahren hergestelltes Mittel in isogenes oder autologes Gewebe des Körpers eingeführt, in dem eine Angiogenese induziert oder inhibiert werden soll.

Das erfindungsgenäß Mittel eignet sich z.B. bei Diabetikern zur Behandlung von schlecht heilendem Ulkus oder zur Behandlung von Patienten mit peripherer arterieller Verschlußkrankheit (pAVK) durch Vermehrung der Blutgefäßneubildung und zur Behandlung von Tumoren durch Verminderung derselben.

Im folgenden wird die Erfindung ohne Beschränkung des Anspruchswortlauts unter Bezugnahme auf konkrete Ausführungsformen und Arbeitsbeispiele detaillierter beschrieben.

In einer Reihe von experimentellen Untersuchungen hat der Erfinder festgestellt, daß nach beispielsweise retroviralem Gentransfer in isogene Fibroblasten der Ratte (GMFB) diese in vitro eine stabile Integration zum Beispiel des humanen Gens PDGF-A aufweisen. In vitro konnte dadurch eine bis zu 560-fach höhere Konzentration von zum Beispiel PDGF-AA, verglichen mit nicht genetisch modifizierten Fibroblasten (NMFB) erreicht werden.

Weiterhin konnte erstmals in vivo gezeigt werden, daß GMFB wie auch NMFB nach Transplantation in einem epigastrischen

30

25

15

Insellappenmodell der Ratte nachweisbar vital bleiben. Das durch GMFB produzierte PDGF-AA führte dann unter ischämischen Bedingungen in dem beschriebenen Modell zu einer sich innerhalb von 7 Tagen nach Transplantation manifestierenden Angiogenese und damit zu einer signifikant höheren Überlebensrate von ischämisch gefährdetem Lappengewebe.

In einem weiteren Versuch konnte gezeigt werden, daß die beschriebenen angiogenetischen Effekte von PDGF-AA ischämieabhängig sind und unter Normalbedingungen im nicht ischämisch gefährdeten Gewebe nicht auszulösen sind. Weitere Untersuchungen, in denen auf gentechnologische Zellmanipulationen verzichtet und statt dessen einmalige Bolusgaben von zum Beispiel VEGF165 sowie des selektiven VEGF165-Antagonisten sFLT-1 D1-D6 verwendet wurden, erbrachten zwar angiogenetische Effekte, die jedoch weit hinter den Ergebnissen der PDGF-AA-Effekte durch retroviral modifizierte Fibroblasten zurückblieben. Gleichzeitig konnte gezeigt werden, daß der in vom im Labor des Erfinders produzierte Antagonist sFLT-1 D1-D6 klinisch eine inhibitorische Wirkung auf VEGF165 hat.

Die bisher gefundenen Ergebnisse deuten darauf hin, daß in ischämischen Situationen eine funktionelle Angiogenese am ehesten durch eine temporäre Genexpression in vivo sinnvoll ist, wobei zunächst eine Induktion von VEGF165 und kombiniert mit sFLT-1 D1-D6 als selektiver Antagonist zur Negativkontrolle erfolgen soll.

Material und Methoden

25

Zellkulturen und deren genetische Modifikation

15

Fibroblasten: aus autologen Inbred-Rattenstämmen (weibliche Lewis-CRL-Ratten, Gewicht 200-215 Gramm; Charles River Laboratorien) gewonnene Fibroblastenkulturen

Virusproduzierende Zellinie: amphotrophe psi-CRIP-Verpakkungszellinie, die von murinen NIH-3T3-Fibroblasten abstammt, welche die viralen Genprodukte gag, pol und env exprimieren (R.Mulligan, Whitehead Institute of Biomedical Research, Cambridge, Mass. sowie W. Lindenmaier, Gesellschaft Biotechnologische Foschung/Baunschweig). Transduktion psi-CRIP Verpackungszellinie mit MFG Plasmid DNS, Klonierung derselben und Screening der Zellinie, welche die höchsten Virionentiter produziert (J.R.Morgan, Shriners Burns Research Laboratories, Cambridge, Mass. sowie W. Lindenmaier, Gesellschaft für Biotechnologische Foschung/Baunschweig) Fibroblasten-Zellkulturmedium: Dulbecco's modifiziertes Eagle-Medium (DMEM, hochprozentige Glucose, L-Glutamin, Natriumpyruvat 110 mg/L von Gibco BRL/ USA), FBS (fetal bovine serum = fetales Rinderkalbserum) 10 % (Fa. HtClone/ USA), Penicillin-Streptomycin 100IU/ml-100microl/ml (Fa. Böhringer), BCS (bovine calf serum = bovines Rinderkalbserum) 10 % (Fa. HtClone/USA)

PBS (Phosphatgepufferte Kochsalzlösung) bestehend aus 138 mM NaCl, 2,7 M KCl, 8,1 mM Na2HPO4, 1,5 mM KH2PO4, sterilisiert über einen 0,45-Mikrometer-Filter

EDTA - Lösung (genannt 'Versene') (=(ethhylendinitriol)30 tetraacetic acid disodium Salz, Fa. Boehringer): 5 mM in PBS
aufgelöst und über einen 0,45-Mikrometer-Filter sterilisiert

Trypsinlösung (Trypsin 1-300, Fa. ICN Biochemicals), bestehend aus 0,1 % D-Dextrose (w/v) und Trypsin 0,1 % (w/v) in PBS bei einem pH von 7,5

5 Aufbewahrungsflasche für Trypsin (25 ml , Fa. Wheaton Scientific)

Polybrene (Fa. Sigma/USA)

DMSO (Dimethyl-Sulphoxid; Fa Sigma-Aldrich; Irvine/England)

Versuchstiere und operatives Vorgehen

400 autologe Lewis-Ratten (Inbred-Stämme; weiblich) aus den Charles River Laboratories (Pittsfield NH/USA). Alle Tierversuche erfolgen streng nach den hierfür vorgesehenen Protokollarien des Universitätsklinikums Lübeck.

Silastikfolie (0,0127 mm Durchmesser; PharmElast, SF Medical 20 Hudson MA/USA)

Halskragen für Ratten als Autokannibalismusschutz (Fa. Kent Scientific/Litchfield, CT/USA)

25 Operationsinstrumentarium incl. Mikrobesteck

Aethyläther (Fisher Scientific, Fair Lawn, NJ/USA)

Ketamin (Ketanest 100 mg/ml; Fort Dodge Laboratories,
30 Iowa/USA)

Xylazin (Rampun 20 mg/ml; Bayer Corporation, Kansas/USA).

Betadine

Immunoassays und ELISA

ELISA (Enzyme Linked Immunosorbent Assay) (R&D Systems, Minneapolis/USA).

ELISA für VEGF-165, sFLT-1, PDGF-B und bFGF aus dem Labor Dr. Weich/GBFBraunschweig

Histologiefärbungen und Immunhistochemie

Haematoxylin-Eosin

Anti-Human von Willebrand Factor, IgG Fraction (Fa. Sigma, St.Louis, MO/USA)

FITC Conjugate, Anti-IgG (Fa. Sigma, St.Louis, MO/USA)

15

VEGF165-mRNS-Analyse

Die Methoden zur VEGF-mRNA - Quantifizierung sind ansich bekannt(kompetitive RT-PCR, Northern blot).

25

Fibroblastenproduktion

Autologe Rattenfibroblasten werden in 5 Tieren des oben genannten Rattenstammes gezüchtet als spätere Trägerzellen zur Expression des gewünschten Gen. Die Tiere werden hierfür anästhesiert durch intraperitoneale Injektion z.B. einer Kombination aus 0,05 mg/gm Ketamin (Ketanest 100 mg/ml; Fort Dodge Laboratories, Iowa/USA) und 0,0013 mg/gm Xylazin (Rampun 20 mg/ml; Bayer Corporation, Kansas/USA). Die spontan atmenden 30 Tiere werden von Xyphoid bis zur Leistenregion rasiert und auf einen Operationstisch plaziert.

Die Körpertemperatur wird während eines jeden Experimentes mittels eines digitalen Rektalthermometers gemessen und über eine Wärmematte bei 36 - 37 Grad Celsius konstant gehalten. Nach sterilem Abwaschen des Operationsgebietes erfolgt vom Xyphoid entlang der Linea alba nach caudal hin ein Schnitt mit dem 10er Skalpell, wobei nur die Haut und das subcutane Fettgewebe durchtrennt und die Faszie der Rektusmuskulatur belassen wird, um anschließend unter sorgfältiger Schonung der epigastrischen Hautgefäße nach beidseits lateral hin eine ungefähr 4 x 5 cm große Wundtasche zu schaffen.

In diese Tasche hinein wird eine ebenso große Silastikmembran (Silastik ist nur ein Beispiel für ein geeignetes Material, das nach der Implantation die Bildung von isogenen Fibroblasten bewirkt und sonst keine weiteren Nebenwirkungen hat) (PharmElast; SF Medical) plaziert und durch subcutane Ecknähte (6-0 Ethilon) fixiert. Diese Membran hat eine Dicke von z.B. 0,0127 mm, ist besonders weich, äußerst flexibel und wird steril verpackt geliefert. Vor Implantation der Folie wird diese sterilgewaschen. Nach Fixieren der Folie in situ erfolgt der Wundverschluß durch eine intracutane laufende 6-0 Ethilonnaht mit Versenken der Eckknoten.

Die Tiere werden über 7 Tage täglich beobachtet bei freiem Zugang zu Wasser und Nahrung, um frühzeitig Probleme in der Wundheilung aufdecken zu können. Nach diesem Zeitraum werden die Tiere wie zuvor beschrieben betäubt und die Silastikmembran, die als Fremdkörper die lokale Fibroblastenproduktion anregen sollte, mitsamt dem sich darum gebildeten Narbengewebe entfernt. Die Tiere werden eingeschläfert mittels einer intraperitonealen Überdosis des genannten Anästhesiegemisches.

Fibroblastenseparation und -züchtung

15

20

25

Das operativ gewonnene Fibroblastenkonglomerat wird sofort in DMEM bei 4 Grad Celsius bewahrt und einer möglichst raschen Verarbeitung unterzogen. Das Material wird unter sterilen Bedingungen von der Silastikmembran abgelöst. Sämtliche Arbeiten mit der Fibroblastenkultur finden in einem Labor gentechnische Sicherheitsstufe 2 statt mit Luftabzug an jedem sterilen Arbeitsplatz.

Das Material wird nun einer ausgiebigen Waschung unterzogen in insgesamt 10 Plastikbehältern mit jeweils 10 ml PBS (phosphatgepuffertes Kochsalz 0,9 %). Jeder Behälter kann steril verschlossen werden, so daß das Fibrozytenkonglomerat 10 x 60 Sekunden lang kräftig im PBS geschüttelt werden kann. Nach zweimaligem Waschen wird das Gewebe noch einmal entnommen, um letzte Bindegewebsreste und Silasikanteile, die sich demarkiert haben, unter sterilen Kautelen zu entfernen.

Danach wird das Material in eine sterile 25 ml Monovette gegeben und mit 5 ml Trypsin und 5 ml EDTA über 5 Minuten enzymatisch behandelt, um die Fibroblasten aus dem Kollagen-verband zu lösen. Die Zellen werden durch sterile Gaze gefiltert und anschließend in DMEM mit 20 %igem FBS gewaschen, um die Trypsinaktivität zu neutralisieren. Die so gewonnene Suspension wird bei 800 U/min über 5 Minuten zentrifugiert. Die Fibroblasten setzen sich am Boden ab und werden mit 10 ml DMEM aufgemischt.

20 Mikroliter der Suspension werden in einem Zellzähler (Hämocytometer) ausgezählt und der Überstand anschließend abpipettiert. Die Zellen werden dann in Brutkammern mit 75 cm²

Bodenfläche mit einer Aussaat von 5 x 10⁴ Zellen/cm² gezüchtet. Die Züchtung erfolgt in einem Medium aus DMEM, versetzt mit 100 Mikrogramm/ml Streptomycin, 100 IU/ml Penicillin, 3 Mikroliter/ml Amphotericin, 5 % FBS und 10 Mikrogramm/ml Ascorbinsäure, welche täglich zu dem Nährmedium dazugegeben wird. Das Nährmedium selbst wird alle 3 Tage gewechselt, da die Fibroblasten sich durchschnittlich einmal pro 16-18 Stunden teilen und einen entsprechenden Energiemetabolismus haben.

Wenn die Fibroblasten nahezu konfluieren, wird eine erneute Zellseparation durchgeführt. Die solchermaßen gewonnenen Zellen können anschließend neu ausgesät werden zur weiteren Züchtung neuer Zellen oder auch asserviert und eingefroren werden. Dies erfolgt durch Zellseparation und anschließende Suspension in DMEM mit 10 % FBS und entsprechendem Antibiotikazusatz. Im Falle einer Asservierung von CRIP - Zellen werden diese allerdings mit BCS-Medium suspensiert. Dem Medium wird als Kryoprotektivum die Substanz DMSO in einem Mischungsverhältnis von 1:10 beigefügt. Pro ml Medium sollten dann zwischen 1 x 10^6 Zellen enthalten sein. Anschließend werden jeweils 1-2 ml Medium/Container abgefüllt und für 24 Stunden bei - 20 Grad Celsius eingefroren. Am folgenden Tage werden die Container dann in - 80 Grad Celsius tiefgefroren, um wiederum 24 Stunden später in flüssigem Stickstoff bei -196 Grad Celsius zu verbleiben. Durch dieses schrittweise Einfrieren wird die Ausbildung von Eiskristallen in der Suspension mit daraus folgender Zellschädigung vermieden.

15

20

Produktion rekombinanter Retro- und Adenoviren und Gentransfer in die Fibroblastenkulturen

Sämtliche gentechnischen Arbeiten werden in den dafür vorgesehenen Räumlichkeiten der Sicherheitsstufe 1 und 2 nach den entsprechenden gentechnologischen Laborprotokollen durchgeführt und sind von der zuständigen Behörde für gentechnische Sicherheit genehmigt.

Der erste Schritt beim Gentransfer besteht in der Produktion eines rekombinanten Virus, welcher das zu transferierende Gen encodiert. In diesen Experimenten wird eine cDNS, welche das interessierende Protein encodiert, mittels PCR (Polymerase Chain Reaction) amplifiziert. Die entsprechenden Primer produzieren z.B. einen BspH1-Locus am Translations-Startercodon und z.B. einen BamH1-Locus am Translations-Stopcodon. Das Produkt der PCR kann dann isoliert werden durch Auftrennen des Genproduktes an den genannten Stellen und Insertion des gewonnenen Genes in die Nco1/BamH1 Loci eines viralen Vektors, genannt MFG. Die erfolgreiche Übertragung wird anschließend durch DNS-Sequenzierung überprüft.

15

20

25

30

Dieser Vektor (MFG-Plasmid DNS) stammt z.B. aus dem murinen Moloney Leukämie-Virus, enthält selbst keine viralen Gene außer denen, die zur Transkription, Verpackung, reversen Transkription, Integration und Expression des viralen Vektors mit dem darin befindlichen modifizierenden Gen notwendig sind. Um nun Virionen produzieren zu können, die diesen Vektor in Zielzellen genetisch verankern können, muß der Vektor in eine spezielle Verpackungszellinie, welche z.B. von murinen 3T3 Fibroblasten stammt, integriert werden. Die Transduktion des Vektors in die entsprechende Verpackungszellinie wird durch die Zugabe von Calciumphosphat erleichtert, da dadurch die

Zellmembranen des Verpackungszellinien temporär porös werden und dem viralen Vektor leichter Zugang zur Zelle verschaffen. Diese Verpackungszellinie (Psi- CRI) wurde speziell produziert, um die viralen Proteine pol, env und gag zu liefern, welche ihrerseits Virionen herstellen können, die den Vektor mit dem darin befindlichen modifizierenden Gen kodieren und übertragen. Die Verpackungszellinie selbst kann keine Viren herstellen , die 'wild type' Replikanten entsprechen und damit virulent sind. Stattdessen transkribiert sie die DNS des rekombinanten viralen Vektors in RNS, welche dann in die RNS des Virions integriert wird. Die Psi- CRP-Verpackungszellinie scheidet dann das Virion, also den rekombinanten Virus mitsamt modifizierendem Gen in das Zellmedium aus. Eine Transfektion der Zielzellen gelingt effektiv bei einer Menge von 1,0 - 10,0 Mio. Virionen/ml Medium. Es wird deshalb jede transfizierte Zellinie nach der höchsten Titerproduktion überprüft, um diese dann für den Gentransfer zu selektieren. Für den adenoviralen Gentransfer wird als Cosmidvektorfragment ein padcos46 RESeGFP (39155 bp) verwendet und mit der entsprechenden gewünschten Gensequenz bestückt. Selbstverständlich kann der Vektor so konstruiert werden, daß eine Genexpression nur unter gleichzeitiger Gabe einer weiteren Substanz erfolgt. Damit ist eine zeitlich gesteuerte Expression möglich. Geeignete Vektoren mit sog. "on/off"-Genfunktionen sind im Stand der Technik bekannt.

15

20

25

30

Für die Transduktion werden die gewonnenen Fibroblasten in Brutkammern mit 75 cm² Bodenfläche ausgesät und mit einem Medium aus DMEM, versetzt mit 100 Mikrogramm/ml Streptomycin, 100 IU/ml Penicillin, 3 Mikroliter/ml Amphotericin und 5% FBS. Die Aussaat der Fibroblasten erfolgt in einer niedrigen

Dichte (5 x 10^5 Zellen), um eine möglichst große Effektivität der Transduktion zu erreichen.

Am Folgetag, wenn alle Fibroblasten Kontakt mit der Bodenfläche der Brutkammer bekommen haben und sich langsam ausbreiten, wird ein Mediumwechsel vorgenommen mit Medium aus der Psi-CRIP Zellinie. In diesem Medium befinden sich 1,0 - 10,0 Mio Virionen/ml Medium, welche frisch aus dem Medium der Verpackungszellinie (Psi-CRIP) abpipettiert sind. Das Medium wird hierfür zunächst durch einen Porenfilter mit einem Porendurchmesser von 0,45 Mikrometern gefiltert, um es von Zelldebris und möglichen Kontaminantien zu befreien. Anschließend wird dem Medium die Substanz Polybrene in einer Konzentration von 8 Mikrogramm/ml beigemischt.

15

20

25

30

Polybrene ist wie Protamin und DEAE-Dextran ein kationisches Polymer, bestehend aus 1,5-Dimethyl-1,5-Diazadecamethylen-Polymethobromid, und entfaltet seine transfektionsunterstützende Wirkung dadurch, daß es an die Viruspartikel adsorbiert und gleichermaßen auch an die Oberfläche der Zielzelle, um so die elektrostatischen Abstoßungskräfte dieser beiden negativ geladenen Stoffe abzuschwächen. Zur Gewinnung ausreichend großer Mengen an Viruspartikeln müssen die Zellen der Psi -CRIP Zellinie bereits konfluent sein und ein Mediumwechsel am Vortag der Transduktion stattfinden, um eine möglichst hohe Anzahl von aktiven Viren/ml Medium zu gewährleisten. Die Viren haben bei 37 Grad Celsius im Brutschrank eine durchschnittliche halbzeitliche Lebensdauer von 6-8 Stunden Lebenszeit der Viren kann durch Senken der Brutschranktemperatur auf 32 Grad Celsius bis zum Zehnfachen verlängert und damit die Effektivität der Transduktion erheblich gesteigert werden.

Wenn die rekombinanten Viren im Medium mit Zielzellen zusammenkommen, wird das Virion an der Zelloberfläche der Fibroblasten durch spezielle Rezeptoren gebunden und entläßt das verpackte RNS Genom in das Zellinnere. Diese wird revers transkribiert und die entstehende DNS gelangt in den Zellnukleus, wo sie in das Genom der Zielzelle stabil integriert wird. Diese integrierte Kopie des rekombinanten viralen Vektors mit dem modifizierenden Gen wird an die Tochterzellen weitergegeben wie jedes andere autosomale Gen. Zudem erfolgt eine stabile regelmäßige Expression des Gens, so daß die Zielzellen nunmehr große Mengen des gewünschten Protein sezernieren.

Bei Verwendung adenoviraler Vektoren wird man eine nur temporäre Genexpression erwarten können, welche nach einigen Zellgenerationen wieder aus dem Zellgenom eliminiert werden wird.
Das Medium sollte für 24 Stunden mit den Zielzellen zusammen
belassen werden, um den Transduktionsvorgang in allen Zellen
abgeschlossen zu haben.

Das virusenthaltende Medium kann auch asserviert werden, um es zu einem späteren Zeitpunkt für eine Transduktion von Fibroblasten zu verwenden. Hierzu wird das Medium abpipettiert und auf Trockeneis schockgefroren, bis es eine gelbliche Färbung annimmt. Anschließend wird das Medium bei – 80 Grad Celsius gelagert. Man muß allerdings mit einem Verlust von 30 – 50 % Viren durch diesen Vorgang rechnen.

25

Das Wachstum der genetisch modifizierten gegenüber den unbehandelten Fibroblasten wird untersucht durch Aussaat von jeweils 5×10^5 Zellen auf 60 mm durchmessende Petrischalen

und Auszählen des Zellen in 12 - stündigem Abstand über insgesamt 4 Tage nach dem oben genannten Verfahren. Hieraus lassen sich Rückschlüsse auf die biologische Aktivität des sezernierten Proteins ziehen, da die verwendeten Substanzen mit Ausnahme von sFLT1 D1-D6 auch autokrin mitogen wirken, also die Fibroblasten, welche selbst das Protein sezernieren, zur Zellteilung anregt. Die Anzahl der Fibroblasten wird anschließend unter dem Fluoreszenzmikroskop mittels einer Zählkammer gemessen und die Vitalität der Zellen durch Evans-Blue bestimmt und mit den Kontrollen, welche aus unbehandelten Fibroblasten bestehen, verglichen.

Die Proteinexpression wird außerdem in vitro mittels ELISA-Techniken bestimmt werden. Es wird dabei eine wesentlich höhere Proteinproduktion durch die genetisch modifizierten Fibroblasten erwartet.

Die solchermaßen vorbereiteten Zellpopulationen werden nach Quantifizierung in Medium transportiert zur Durchführung der sich daran anschließenden Operation.

Operation

15

25

30

Es werden 2 Untergruppen (I und II) mit jeweils 200 Tieren gebildet. Jede Untergruppe wird wiederum in 5 Subgruppen (I.I - I.V, II.I - II.V) zu jeweils 40 Tieren dividiert. Da 4 verschiedene Faktoren getestet werden sollen (VEGF 165, VEGF 165 + sFLT-1, PDFG-B und bFGF), muß jede Subgruppe wiederum in 4 Untergruppen à 10 Tieren aufgeteilt werden. Das Körpergewicht der Tiere wird während der Versuchstage regelmäßig mittels einer digitalen Waage bestimmt.

In Gruppe I wird 1 Woche vor der eigentlichen Operation jeder Lappen am aetheranästhesierten Tier in einer Ausdehnung von 7 x 7 cm vorgezeichnet und bereits zu diesem Zeitpunkt die Lappenbehandlung vorgenommen.

Gruppe I.I erhält im vorgezeichneten Lappenbereich eine subcutane Injektion von 10 Mio. genetisch modifizierten Fibroblasten (GMFB) in 2 ml DMEM mit 10 % FBS. Die Injektion selbst erfolgt mittels einer sterilen 2 ml Spritze mit 0,4 mm durchmessender Stahlkanüle in den Panniculus carnosus zwischen äußerem Faszienblatt der Bauchwand und Subcutis. Gruppe I.II erhält im vorgezeichneten Lappenbereich eine subcutane Injektion von 10 x 10⁶ nicht-modifizierter Fibroblasten (NMFB), aufgelöst in 2 ml DMEM mit 10 % FBS. Gruppe I.III erhält eine subkutane Injektion von 2 ml DMEM mit 10 % FBS ohne Zellzusatz. Gruppe I.IV erhält eine subkutane Injektion von 2 ml NaCl 0,9 % ohne Zellzusatz. Genau eine Woche später wird die chirurgische Hebung der solchermaßen vorbereiteten Lappen durchgeführt.

20

25

30

15

In der Gruppe II erfolgt die Lappenbehandlung am Tage der Lappenhebung. Gruppe I.V und Gruppe II.V werden wie die Gruppen I.I und II.I behandelt und dienen Langzeitexperimenten. Diese Tiergruppen werden erst nach einem Beobachtungszeitraum von 6 Monaten (jeweils 5 Tiere) und 12 Monaten (jeweils 5 Tiere) getötet.

Das chirurgische Vorgehen ist in allen Untergruppen identisch. Die Tiere werden anästhesiert durch intraperitoneale Injektion einer Kombination aus 0,05 mg/gm Ratte Ketamin (Ketanest 100 mg/ml; Fort Dodge Laboratories, Iowa/USA) und 0,0013 mg/gm Ratte Xylazin (Rampun 20 mg/ml; Bayer Corpora-

tion, Kansas/USA). Die spontan atmenden Tiere werden von Xyphoid bis zur Leistenregion rasiert und auf einen Operationstisch plaziert. Die Körpertemperatur wird während eines jeden
Experimentes mittels eines digitalen Rektalthermometer gemessen und über eine Wärmematte bei 36 - 37 Grad Celsius konstant gehalten.

In jedem Tier wird ein standartisierter epigastrischer Lappen gehoben mit den Maßen 7 x 7 cm. Zunächst wird dabei die Basis des Lappens vorgeschnitten, die Femoralgefäße auf beiden Seiten aufgesucht und anschließend der Lappen inclusive Haut und Subcutis an den beiden inferioren epigastrischen Gefäßnervenbündeln vollständig gehoben, so daß die Durchblutung des Lappens allein über diese Gefäßstiele gewährleistet bleibt. Die superioren epigastrischen Gefäßstiele werden durchtrennt nach Ligatur mittels 6-0 Ethilonnaht. Ebenso wird auch für jeden Lappen das linksseitige Gefäßnervenbündel unter 2 6-0 Ethilonligaturen durchtrennt, so daß der Lappen nunmehr lediglich über die rechtsseitigen Stielgefäße ernährt wird.

Gruppe II.I und Gruppe II.V erhält im vorgezeichneten Lappenbereich eine subcutane Injektion von 10 x 10⁶ genetisch modifizierten Fibroblasten (GMFB) in 2 ml DMEM mit 10 % FBS. Die Injektion selbst erfolgt wie schon für Gruppe I.I beschrieben. Gruppe II.II erhält im vorgezeichneten Lappenbereich eine subcutane Injektion von 10 x 10⁶ nicht-modifizierter Fibroblasten (NMFB), aufgelöst in 2 ml DMEM mit 10 % FBS. Gruppe II.III erhält eine subkutane Injektion von 2 ml DMEM mit 10 % FBS ohne Zellzusatz. Gruppe II.IV erhält eine subkutane Injektion von 2 ml NaCl 0,9 % ohne Zellzusatz. Anschließend wird jeder Lappen wieder in sein Wundbett eingenäht. Hierzu werden zunächst 4 Ecknähte sowie 2 Nähte in der Me-

dianlinie mit einer 6-0 Ethilonnaht gesetzt und anschließend der ganze Lappen durch eine laufende 6-0 Ethilonnaht intracutan mit Versenken der Knoten eingenäht.

- Alle Tiere erhalten postoperativ einen Halskragen (Fa. Kent Scientific), um sie vor Autokannibalismus zu schützen. Genau eine Woche nach diesem Eingriff werden die Tiere der Gruppen I.I-I.IV und II.I-II.IV ein letztes Mal operiert. Die Lappen werden auf eine in qmm planimetrisch aufgeteilten Plastikfolie nach ihrem Anteil an vitalem und nekrotischem Lappengewebe übertragen zur späteren computergesteuerten Bildanalyse. Nach anschließendem erneuten Heben der Lappen werden die Lappenpräparate abschließend in ihrer Gesamtheit mit der darunter liegenden Muskelschicht zur weiteren histologischen, immunhistochemischen und m-RNS-analytischen Untersuchung entnommen. Zuletzt werden die Versuchstiere durch eine intraperitoneale Überdosis Ketamin getötet.
 - 6 Monate bzw. 12 Monate nach Zelltransplantation erfolgt in den Tieren der Gruppen I.V und II.V die histologische und immunhistochemische Evaluation der Langzeitergebnisse, um die Dauerfolgen nach einer gentechnologischen Manipulation im Gewebe näher untersuchen zu können.
- 25 Sämtliche Operationen finden in den von der UKL dafür vorgesehenen Räumlichkeiten der gentechnischen Sicherheitsstufe 1 statt.

Histologie, Immunhistochemie und Gewebeextraktion

Die histologische Aufarbeitung der Präparate erfolgt nach Fixation in Formaldehyd und Färbung in Hämatoxylin/Eosin. Die

20

Präparate werden zuvor in Paraffin eingebettet, mit dem Mikrotommesser in 5 Mikrometer dünne Schichten geschnitten, in Präparateplatten fixiert und einer entsprechenden Färbung unterzogen. Eine Färbung der Präparate erfolgt getrennt nach Hämatoxylin/Eosin als primäre und Gegenfärbung in der Immunhistochemie.

10 weitere Tiere aus den Gruppen I und II, deren Lappengewebe mit GMFB behandelt wurde, werden nach 6 bzw. 12 Monaten sakrifiziert und das noch verbliebene angiogenetisch veränderte Gewebe einer histologischen Untersuchung unterzogen.

Immunhistochemisch wird eine Färbung mittels Immunperoxidase für Faktor VIII (von Willebrand Faktor) mit Antiserum von Kaninchen zur Anfärbung von Endothelzellen sowie eine Chloracetatesterasefärbung zur Darstellung polymorphonukleärer Zellen durchgeführt. Zusätzlich wird eine Färbung zum Nachweis des sezernierten Proteins im Lappengewebe vorgenommen.

Das frisch entnommene Gewebe wird auf seine Produktionsfähigkeit von produziertem Protein mittels m-RNA-Analyse durch quantitative PCR-Analyse untersucht, um einen Anhalt über die Menge und Dauer der Proteinproduktion durch die GMFB zu bekommen.

Literaturverzeichnis

- 1. Genetically modified fibroblasts induce angiogenesis in the rat epigastric island flap
- 5 Machens HG, Morgan JR, Berthiaume F, Stefanovich P and Berger A

in: Biological matrices and tissue reconstruction (Ed.: Stark, Horch, Tanczos) pp. 53-59 Springer Verlag/Berlin Heidelberg New York (1997) ISDN 3-54063863-6

- 2. Genetically modified fibroblasts induce angiogenesis in the rat epigastric island flap
 Machens HG, Morgan JR, Berthiaume F, Stefanovich P, Reimer R, and Berger A
- 15 Langenbeck's Arch Surg 383: 345-350 (1998)
 - 3. Genetically modified fibroblasts induce angiogenesis in the 3 x 6 cm rat epigastric island flap.

 Machens HG, Morgan J, Weich HE, Berthiaume F, Stefanovich P, Berger A
 - Eur J Plast Surg 22: 203-209 (1999)

20

- 4. Genetically modified fibroblasts induce angiogenesis in the 3 \times 6 cm rat epigastric island flap authors' reply.
- 25 Machens HG, Morgan J, Weich HE, Berthiaume F, Stefanovich P, Berger A

Eur J Plast Surg 22: 211-212 (1999)

5. Gentherapeutische Techniken und Anwendungsmöglichkeiten in 30 der Plastischen Chirurgie Machens HG, Morgan JR, Mailänder P

Focus MUL 17: 3-10 (2000)

6. Gentherapeutische Möglichkeiten in der Plastischen Chirurgie

Machens HG, Morgan JR, Sachse C, Berger A, Mailänder P Chirurg 70: 176-181 (2000)

. 5

Patentansprüche

- 1. Mittel zur Induktion oder Inhibition einer Angiogenese, das isogene Körperzellen umfaßt, die mindestens ein angiogenetisches oder antiangiogenetisches Protein exprimieren.
- 2. Mittel nach Anspruch 1, wobei das mindestens eine angiogenetische Protein unter Platelet Derived Growth Factor A (PDGF-A), Platelet Derived Growth Factor (PDGF-B), VEGF und bFGF ausgewählt ist.
- 3. Mittel nach Anspruch 1, wobei das mindestens eine antiangiogenetische Protein VEGFR-1 ist.
- 15 4. Verfahren zur Herstellung eines Mittels nach einem der Ansprüche 1 bis 3, bei dem
 - a) in einem Körper durch Fremdkörperimplantation die Bildung von isogenen Zellen ausgelöst wird,
 - b) die in Schritt a) gebildeten Zellen aus dem Körper gewonnen werden,
 - c) die in Schritt b) gewonnenen Zellen gentechnisch so verändert werden, daß sie im Falle einer gewünschten Induktion einer Angiogenese mindestens ein angiogenetisches Protein oder im Falle einer gewünschten Inhibition einer Angiogenese mindestens ein antiangiogenetisches Protein exprimieren.
 - 5. Verfahren nach Anspruch 4, wobei die in Schritt c) gewonnenen Zellen ein unter PDGF-A, PDGF-B, VEGF und bFGF ausgewähltes angiogenetisches Protein exprimieren.

25

- 6. Verfahren nach Anspruch 4, wobei die in Schritt c) gewonnenen Zellen als antiangiogenetisches Protein VEGFR-1 exprimieren.
- 7. Verwendung eines Mittels nach einem der Ansprüche 1 bis 3 oder eines nach einem Verfahren nach einem der Ansprüche 4 bis 6 hergestellten Mittels zur Induktion oder Inhibition einer Angiogenese.
- 8. Verwendung nach Anspruch 7, bei der ein Mittel nach einem der Ansprüche 1 bis 3 oder ein nach einem Verfahren nach einem der Ansprüche 4 bis 6 hergestelltes Mittel in isogenes Gewebe des Körpers eingeführt wird, in dem eine Angiogenese induziert oder inhibiert werden soll.

Zusammenfassung

Die Erfindung betrifft ein Mittel zur Induktion oder Inhibition einer Angiogenese, ein Verfahren zu dessen Herstellung sowie dessen Verwendung.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.