Rényi divergences in quantum information theory

Anna Jenčová

Mathematical Institute, Slovak Academy of Sciences

Smolenice, 15. 10. 2024

What is a divergence?

 \bullet A "dissimilarity measure" on probability distributions: For probability distributions p,q

$$D(p||q) \equiv \text{how different } p \text{ is from } q.$$

A contrast functional:

$$D(p||q) \ge 0,$$
 $D(p||q) = 0 \iff p = q.$

- Not a metric (not necessarily symmetric)
- Other properties?

Axiomatic approach (A. Rényi, 1961)

Let
$$p = (p_1, \dots, p_m)$$
, $q = (q_1, \dots, q_m)$, $p_i \ge 0$, $q_i > 0$

A divergence D should satisfy the postulates:

- invariance under permutations: $D(\pi(p)||\pi(q)) = D(p||q)$
- continuity
- additivity: $D(p_1 \otimes p_1 || q_1 \otimes q_2) = D(p_1 || q_1) + D(p_2 || q_2)$
- \bullet generalized mean: for a continuous, strictly increasing real function g

$$D(p_1 \oplus p_2 || q_1 \oplus q_2) = g^{-1} \left(\frac{g(D(p_1 || q_1) + g(D(p_2 || q_2)))}{2} \right)$$

order: if p is not normalized

$$p_i \le q_i, \ \forall i \implies D(p||q) \ge 0, \qquad p_i \ge q_i, \ \forall i \implies D(p||q) \le 0$$

• normalization: $D(\{1\} | \{1/2\}) = 1$

Rényi divergences

There is a unique family of divergences $\{D_{\alpha}\}_{\alpha>0}$, satisfying the Rényi postulates:

$$D_{\alpha}(p||q) = \frac{1}{\alpha - 1} \log \left(\sum_{k} p_{k}^{\alpha} q_{k}^{1 - \alpha} \right), \qquad 1 \neq \alpha > 0$$
$$D_{1}(p||q) = \lim_{\alpha \to 1} D_{\alpha}(p||q) = \sum_{k} p_{k} \log \left(\frac{p_{k}}{q_{k}} \right)$$

- Fundamental quantities in information theory
- For $\alpha=1$, we get the Kullback-Leibler divergence (relative entropy, I-divergence)

Application: Asymptotic hypothesis testing

Testing simple hypothesis $H_0=p$ against simple alternative $H_1=q$:

- A test statistic: T
- Two kinds of error probabilities:

$$\alpha(T)$$
 - rejecting true $\qquad \beta(T)$ - accepting false

- · Cannot minimize both errors simultaneously
- i.i.d. repetitions: a sequence of tests $\{T_n\}$
- We can obtain $\alpha(T_n) \to 0$, $\beta(T_n) \to 0$ exponentially
- Rate of the convergence?

Stein's lemma and error exponents

Direct domain
$$\exists \ \{T_n\} \colon \beta(T_n) \approx e^{-Rn} \\ \text{and} \\ \alpha(T_n) \to 0 \\ \text{optimal exponent (largest):} \\ \alpha(T_n) \approx e^{-R'n} \\ \alpha(T_n) \approx e^{-R'n} \\ Optimal exponent (smallest): \\ \alpha(T_n) \approx e^{-R'n} \\ Optimal exponent (smallest): \\ \alpha(T_n) \approx 1 - e^{-R'n} \\ Optimal exponent (smallest): \\ \alpha(T_n) \approx 1 - e^{-R'n} \\ Optimal exponent (smallest): \\ \alpha(T_n) \approx 1 - e^{-R'n} \\ Optimal exponent (smallest): \\ \alpha(T_n) \approx 1 - e^{-R'n} \\ Optimal exponent (smallest): \\ \alpha(T_n) \approx 1 - e^{-R'n} \\ Optimal exponent (smallest): \\ \alpha(T_n) \approx 1 - e^{-R'n} \\ Optimal exponent (smallest): \\ \alpha(T_n) \approx 1 - e^{-R'n} \\ Optimal exponent (smallest): \\ \alpha(T_n) \approx 1 - e^{-R'n} \\ Optimal exponent (smallest): \\ \alpha(T_n) \approx 1 - e^{-R'n} \\ Optimal exponent (smallest): \\ \alpha(T_n) \approx 1 - e^{-R'n} \\ Optimal exponent (smallest): \\ \alpha(T_n) \approx 1 - e^{-R'n} \\ Optimal exponent (smallest): \\ \alpha(T_n) \approx 1 - e^{-R'n} \\ Optimal exponent (smallest): \\ Optimal exponen$$

Tradeoff between R and R':

- Direct domain $D_{\alpha}(p\|q)$, $\alpha \in (0,1)$
- Converse domain $D_{\alpha}(p||q)$, $\alpha > 1$

A basic property: DPI and sufficient statistics

Data processing inequality: For a transformation

 $T:\{1,\ldots,m\} \to \{1,\ldots,k\}$, with p^T , q^T induced distributions

$$D_{\alpha}(p^T \| q^T) \le D_{\alpha}(p \| q)$$

- Any reasonable divergence should satisfy DPI!

Kullback-Leibler-Csiszár Theorem: If $supp(p) \subseteq supp(q)$, $\alpha > 1$

$$D_{\alpha}(p^T || q^T) = D_{\alpha}(p || q) \iff T \text{ is a sufficient statistic for } \{p, q\} :$$

- conditional expectations $E_p[\cdot|T] = E_q[\cdot|T]$
- T contains all information needed to distinguish p from q.

Quantum divergences

Quantum information theory:

- quantum states instead of probability measures
- simplest case: density matrices

$$\rho \in M_n(\mathbb{C}), \ \rho \ge 0, \ \operatorname{Tr}\left[\rho\right] = 1$$

- general case: normal states of a von Neumann algebra
 - covers most of interesting situations
 - powerful technical tools

Quantum divergences: dissimilarity measures for quantum states

Postulates for quantum divergences?

- Postulates similar to Rényi (Müller-Lennert et al, 2013)
- In the classical case (commuting density matrices) we get the unique family of Rényi divergences $\{D_{\alpha}\}_{\alpha>0}$
- In general quantum case: no unique solution

Quantum DPI

Quantum channel: a linear map $\Phi: M_n(\mathbb{C}) \to M_m(\mathbb{C})$

• completely positive: $\mathrm{id}_k:M_k(\mathbb{C})\to M_k(\mathbb{C})$ identity map

 $\Phi \otimes \mathrm{id}_k$ is positive for any $k \geq 1$

• trace-preserving: $\operatorname{Tr}\left[\Phi(\rho)\right] = \operatorname{Tr}\left[\rho\right]$

Equivalently: $\Phi \otimes id_k$ maps states to states, for all k.

Data processing inequality for quantum divergences:

$$D(\Phi(\rho)\|\Phi(\sigma)) \le D(\rho\|\sigma)$$

for any quantum channel Φ and any pair of states ρ , σ .

An important quantum divergence

Quantum relative entropy (Umegaki, 1962)

$$S(\rho \| \sigma) = \text{Tr} \left[\rho \left(\log(\rho) - \log(\sigma) \right) \right]$$

- satisfies postulates, DPI (Lindblad, 1975)
- fundamental in quantum information theory
- operational interpretations: quantum communication, asymptotic hypothesis testing
- related to many important quantities
- entanglement measures, uncertainty relations

Petz-type (standard) quantum Rényi divergence: (Petz, 1985,1986)

$$D_{\alpha}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr} \left[\rho^{\alpha} \sigma^{1 - \alpha} \right], \qquad 1 \neq \alpha > 0$$

- satisfies postulates, DPI for $\alpha \in (0,2]$
- $\lim_{\alpha \to 1} D_{\alpha}(\rho \| \sigma) = S(\rho \| \sigma)$
- operational interpretation for $\alpha \in (0,1)$: (Audenaert et al., 2008, Nagaoka, 2006)
 - asymptotic hypothesis testing (error exponents, direct part)

Minimal (sandwiched) quantum Rényi divergence: (Müller-Lennert et al, 2013, Wilde et al, 2014)

$$\tilde{D}_{\alpha}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr} \left[\left(\sigma^{\frac{1 - \alpha}{2\alpha}} \rho \sigma^{\frac{1 - \alpha}{2\alpha}} \right)^{\alpha} \right], \qquad 1 \neq \alpha > 0$$

- satisfies postulates, DPI for $\alpha \in [1/2, \infty)$ (Frank & Lieb, 2013)
- $\lim_{\alpha \to 1} \tilde{D}_{\alpha}(\rho \| \sigma) = S(\rho \| \sigma)$
- operational interpretation for $\alpha>1$: (Mosonyi & Ogawa, 2015) asymptotic hypothesis testing (error exponents, converse part)

 $\alpha-z$ -Rényi divergence: (Jaksic et al, 2011, Audenaert & Datta, 2015)

$$D_{\alpha,z}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr} \left[\left(\sigma^{\frac{1 - \alpha}{2z}} \rho^{\frac{\alpha}{z}} \sigma^{\frac{1 - \alpha}{2z}} \right)^z \right], \qquad 1 \neq \alpha > 0, z > 0$$

- satisfies postulates, DPI if: (Zhang, 2020)
 - $-\alpha \in (0,1), \max{\{\alpha, 1-\alpha\}} \le z$
 - $-\alpha > 1$, $\max\{\frac{\alpha}{2}, \alpha 1\} \le z \le \alpha$
- $\lim_{\alpha \to 1} D_{\alpha,z}(\rho \| \sigma) = S(\rho \| \sigma), z > 1$
- Petz type: $D_{\alpha,1}(\rho \| \sigma) = D_{\alpha}(\rho \| \sigma)$
- Minimal: $D_{\alpha,\alpha}(\rho \| \sigma) = \tilde{D}_{\alpha}(\rho \| \sigma)$

Maximal Rényi divergence: (Matsumoto, 2018)

$$D_{\alpha}^{max}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr} \left[\sigma \left(\sigma^{-1/2} \rho \sigma^{-1/2} \right)^{\alpha} \right], \qquad 1 \neq \alpha > 0$$

- satisfies postulates, DPI if $\alpha \in (0,2]$
- Belawkin-Staszewski relative entropy as limit

$$\lim_{\alpha \to 1} D_{\alpha}^{max}(\rho \| \sigma) = \operatorname{Tr} \left[\rho \log \left(\rho^{1/2} \sigma^{-1} \rho^{1/2} \right) \right]$$

Extensions to von Neumann algebras

- In some infinite dimensional situations the previous definitions do not work.
- Useful also in e.g. QFT
- Technical problems: no density matrices (operators) in general, no matrix analysis tools...
- \bullet Other tools: modular theory, non-commutative $L_p\mbox{-spaces},$ complex interpolation

Extensions to von Neumann algebras

- Relative entropy (Araki, 1976)
 - relative modular operator
- Petz-type Rényi divergences (Petz, 1985)
 - relative modular operator, operator convex functions
- Minimal Rényi divergences (Berta et al, 2018, AJ 2018, 2021)
 - weighted L_p -norms, interpolation
- αz -Rényi divergences (Hiai & AJ, 2024)
 - weighted L_p -norms, variational formulas
- Maximal Rényi divergences (Hiai, 2019)
 - operator means, generalized connections

Quantum Rényi divergences and L_p -spaces

Rényi divergence: $D_{\alpha}(\rho\|\sigma) = \frac{1}{\alpha-1}\log Q_{\alpha}(\rho\|\sigma)$

• Classical case: Q-weighted L_p -norm

$$Q_{\alpha}(P||Q) = \int (dP/dQ)^{\alpha} dQ = ||dP/dQ||_{\alpha,Q}^{\alpha}$$

• Quantum sandwiched case: σ -weighted L_p -norm

$$Q_{\alpha}(\rho \| \sigma) = \operatorname{Tr} \left[\left(\sigma^{\frac{1-\alpha}{2\alpha}} \rho \sigma^{\frac{1-\alpha}{2\alpha}} \right)^{\alpha} \right] = \| \rho \|_{\alpha,\sigma}^{\alpha},$$

- For $\alpha>1$: complex interpolation norm (Kosaki, 1984) $\|\sigma^{-1/2}\rho\sigma^{-1/2}\| \text{ (operator norm), } \|\rho\|_1 \text{ (trace norm)}$
- works in general von Neumann algebras

$\alpha-z$ -Rényi divergences and L_p -spaces

Variational formula: (Kato, 2024, Hiai & AJ, 2024)

• For $\alpha > 1$, $p = \frac{z}{\alpha}$, $r = \frac{z}{1-\alpha}$:

$$Q_{\alpha,z}(\rho\|\sigma) = \inf_{a \text{ p.d.}} \left\{ \alpha \|\rho^{\frac{1}{2}} a \rho^{\frac{1}{2}}\|_{p,\rho}^p + (1-\alpha) \|\sigma^{\frac{1}{2}} a^{-1} \sigma^{\frac{1}{2}}\|_{r,\sigma}^r \right\}$$

• For $\alpha > 1$, $p = \frac{z}{\alpha}$, $q = \frac{z}{\alpha - 1}$:

$$Q_{\alpha,z}(\rho\|\sigma) \ = \ \sup_{a \geq 0} \left\{ \alpha \|\rho^{\frac{1}{2}} a \rho^{\frac{1}{2}}\|_{p,\rho}^p - (\alpha-1) \|\sigma^{\frac{1}{2}} a \sigma^{\frac{1}{2}}\|_{q,\sigma}^q \right\}$$

- Connects to the weighted $L_p\text{-norms}$ for all $\alpha,z,$ DPI holds whenever $p,q,r\geq 1$
- Extends many results to von Neumann algebras

Quantum sufficient statistics?

- Quantum statistics quantum channels
- When is a channel Φ sufficient w. r. to a set of states S?
- Conditional expectations do not exist in most situations

Sufficient quantum channels: (Petz, 1986)

A channel Φ is sufficient with respect to ${\cal S}$ if there is another channel Ψ such that

$$\Psi \circ \Phi(\rho) = \rho, \qquad \rho \in \mathcal{S}.$$

- Φ is reversible on \mathcal{S} , Ψ recovery map
- sufficient statistics in classical case

Sufficient quantum channels

Characterizations of sufficient quantum channels: (Petz, 1986, 1988)

• Petz theorem: if supp $\rho \leq \operatorname{supp} \sigma$ for all $\rho \in \mathcal{S}$

$$S(\Phi(\rho)\|\Phi(\sigma)) = S(\rho\|\sigma), \qquad \rho \in \mathcal{S}$$

• There is a universal recovery map: Φ_{σ} (Petz recovery map)

$$\Phi_{\sigma} \circ \Phi(\rho) = \rho, \qquad \rho \in \mathcal{S}$$

- structure of the states $\rho \in \mathcal{S}$, strong conditions.
- For classical statistics: $E_q[\cdot|T] = E_p[\cdot|T]$ is the Petz recovery.

Quantum Rényi divergences and sufficient channels

Assume that α, z belong to the following set:

Then Φ is sufficient w.r. to $\{\rho, \sigma\}$ if and only if (Hiai & AJ,2024)

$$D_{\alpha,z}(\Phi(\rho)\|\Phi(\sigma)) = D_{\alpha,z}(\rho\|\sigma).$$

- holds in general von Neumann algebras

Classical to quantum and in between

Classical	Classical/quantum	Quantum
discrete probability	commuting density	density matrices ρ , σ
measures p , q	matrices $ ho$, σ	in $M_n(\mathbb{C})$
probability measures	$L_{\infty}(X,\Omega,\mu)$, densi-	normal states ρ , σ of a
$P,Q\ll\mu$ on a mea-	ties $p, q \in L_1(X, \Omega, \mu)$	von Neumann algebra
sure space (X,Ω,μ)		
T:X o Y statis-	Positive trace preserv-	Quantum channel
tic, Markov kernel	ing map	$M_n(\mathbb{C}) \to M_m(\mathbb{C})$
$X \times Y \to [0,1]$		
transformation of	A Markov map	Unital normal cp map
probability measures	$L_{\infty}(X,\Omega,\mu)$ \rightarrow	$\mathcal{M} o \mathcal{N}$
	$L_{\infty}(Y,\Sigma,\nu)$	
conditional expecta-	unital projection with	Petz recovery map Φ_σ
tion $E_p[\cdot T]$	norm 1 preserving p	