Primeiro Projeto de Matematica Discreta

Henrique da Silva hpsilva@proton.me

14 de agosto de 2022

Sumário

1	Introdução			
2	O Codificador de texto			
	2.1	TextoParaInteiro		
	2.2	InteiroParaTexto		
		Restricoes e limitacoes		
3	A classe $BigNumber$			
	3.1	Multiplicacao de BigNumber		
	3.2			
4	Aritmetica Modular			
	4.1	AddMod		
		MulMod		
		ExpMod		
		InvMod		
5	Bus	sca por numeros primos		
		Testando os numeros dados:		
		Achando novos primos:		
6	0.8	Sistema RSA		
		Codificando numeros grandes		
	U. I	Codificultation finites		

1 Introdução

Neste relatório, vamos discutir e implementar o sistema RSA.

Para ter as ferramentas necessarias para construi-lo, primeiro precisamos construir algumas ferramentas, estas serao discutidas nas secoes 2, 3, 4, e 5.

Todos arquivos utilizados para criar este relatorio, e o relatorio em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/4thsemester/

2 O Codificador de texto

Este foi criado para transformar uma string de texto em um int, Atravez de dois metodos. TextoParaInteiro(string) e InteiroParaTexto(int).

2.1 TextoParaInteiro

Este metodo recebe um texto e o torna em um m do tipo *int* da seguinte maneira:

$$m = \sum_{i=0}^{N-1} cod(a_i) * 27^i$$
 (1)

Com a ate z sendo definidos como 1 ate 26, "espaco" sendo definido como 27.

2.2 InteiroParaTexto

Para retornar o texto, este metodo recebe um inteiro m e faz a seguinte operação:

$$a_i = cod\left(\frac{m}{27^i} \pmod{27}\right) \tag{2}$$

Para todo i que na
o faca m ser menor que 1

2.3 Restricoes e limitações

A principal restricao en que isto foi implementado usando o tipo int do C# que tem 32 bits. Porem, ja que ele contem tanto numeros positivos quanto negativos o valor maximo dele en de:

$$\frac{2^{32}}{2} - 1 = 2147483647 \tag{3}$$

Estamos codificando o texto de maneira que cada digito ocupa ate: $2^N = 27$, $N = \frac{\log 27}{\log 2}$ bits

Entao a quantidade maxima de bits ocupados en simplesmente N*L

Para o nosso caso em especifico, que o tipo int tem $2^{31} - 1$ de tamanho, ou seja, seguramente ate 31 bits. Temos que:

$$L * \frac{\log 27}{\log 2} \le 31 \tag{4}$$

Que nos da L=6, ou seja, podemos seguramente converter ate 6 caracteres para tipo int e converte-los de volta.

Vale notar, que isto en um limite inferior de seguranca. Na verdade temos 6.3 digitos disponiveis, que nos permitiria por exemplo, guardar e recuperar, uma frase de sete digitos do tipo zzzzzd, Mas para ter certeza. Tem de ser 6 ou menos digitos.

3 A classe BigNumber

Esta sera uma classe que armazenara os numeros que utilizarei para a criacao do RSA.

Utilizarei como base para meu BigNumber a classe BigInteger do C#, que tem limite de tamanho tao grande quanto couber na memoria do computador que o esta utilizando.

Para o nossos fins, queremos um BigNumber que tenha no maximo 2048 bits. Entao para todas operacoes de BigNumber incluindo a sua propria criacao, criarei um SafetySizeCheck que caso o BigNumber exceda 2048 bits, ele ira lancar uma excecao e parar o programa com a mensagem de erro apropriada.

Importante lembrar que inclui o zero no BigNumber, entao na verdade o limite superior dele fica da seguinte maneira:

$$BigNumber \le 2^{2048} - 1 \tag{5}$$

E tambem importante lembrar que todas operacoes de checagem de seguranca ocorreram *apos* a operacao ser realizada.

Ou seja, o programa permitira operacoes inseguras, desde que o BigNumber resultante desta operacao insegura nao exceda 2048 bits.

3.1 Multiplicacao de BigNumber

Aqui podemos observar o seguinte:

$$2^a * 2^b = 2^{a+b} \tag{6}$$

Entao a multiplicacao de dois BigNumber de tamanho a e b, pode no maximo nos dar um BigNumber de tamanho a+b

3.2 Soma de BigNumber

Neste caso temos o seguinte:

$$2^{a} + 2^{a} = 2 * (2^{a}) = 2^{1} * 2^{a} = 2^{a+1}$$
 (7)

Logo podemos concluir que no maximo a soma de dois numeros de tamanho N bits dara um numero de tamanho N+1 bits.

4 Aritmetica Modular

4.1 AddMod

As limitacoes aqui sao as mesmas da soma de dois BigNumber como vimos acima em (7).

A funcao AddMod pode no maximo dar um BigNumber de tamanho N+1 bits, N sendo o tamanho do maior dos dois BigNumber.

4.2 MulMod

Vimos acima em (6) as limitacoes de multiplicacao de dois BigNumber.

Entao no maximo a soma dos tamanhos em bits dos nossos BigNumber deve dar 2048 que eh o tamanho que escolhemos para o nosso BigNumber

4.3 ExpMod

No caso da exponenciacao precisamos que o produto dos tamanhos dos dois BigNumber seja menor que 2048

4.4 InvMod

Para resolver a congruencia linear utilizamos uo algoritmo de euclides extendido. E a operação de maxima ordem que utilizamos em todas operações eh a de multiplicação de BigNumber que descrevemos em (6)

Logo, nossa limitacao para garantir que nao vamos exceder os 2048 bits do BigNumber eh que a soma em pares, de a, b, e n nao exceda 2048 bits.

5 Busca por numeros primos

utilizarei o metodo de Miller Rabin para testar a primalidade dos numeros.

5.1 Testando os numeros dados:

$2^{521} - 1$	\rightarrow	primo
$2^{523}-1$	\rightarrow	nao primo
$2^{607}-1$	\rightarrow	primo

5.2 Achando novos primos:

Para achar novos numeros primos criarei um novo BigNumber de tamanho n, e testarei numeros impares menores que este BigNumber ate o teste de Miller Rabin me retornar que provavelmente en um primo.

Para adicionar um elemento de aleatoriedade. Apos checar um numero, vamos subtrair a este 2*x com x variando entre 0 e naleatoriamente.

Esta maneira de gerar numeros aleatorios, me garante que todo numero gerado tera tamanho menor do que n bits. Porem, ela me retorna numeros primos repetidos com alguma frequencia.

Com alguns testes numeros, tive a chance de aproxidamente 1 em 5000 de obter dois numeros primos identicos. O que para um sistema que sofra ataques com certeza nao seria aleatoriedade suficiente. Mas para nossos propositos de testar a criacao de um sistema RSA que nao vai sofrer ataques. Sera o suficiente.

6 O Sistema RSA

Vamos utilizar de todas ferramentas que criamos acima para montar o nosso sistema.

6.1 Codificando numeros grandes

Inicialmente, notemos que o *Codificador* de *Texto* discutido na secao dois, tinha limitação de utilizar o tipo *int* de 31 bits. Que nao sera suficiente para nossos propositos.

Entao escrevi dois novos metodos Texto-ParaBigNumber, e BigNumberParaTexto

Estes tendo as mesmas limitacoes porem alterando tamanho do nosso numero de 31 bits para 2048 bits.

Resolvendo a equação (4) para 2048, teremos que o nosso L deve se limitar a no maximo 430 caracteres.