V44 - Röntgenreflektometrie

Michael Gutnikov michael.gutnikov@udo.edu Lasse Sternemann lasse.sternemann@udo.edu

Abgegeben am 10.12.2021

Inhaltsverzeichnis

1		Durchführung					
	1.1	Versuchsaufbau	3				
	1.2	Kalibrierung des Reflektionsaufbaus	4				
		Refelektionsmessung					
	1.4	Scan-Parameter	7				
2	Aus	Auswertung					
	2.1	Vermessung des Röntgenstrahls	8				
	2.2	Bestimmung des Geometriewinkels	9				
	2.3	Auswertungs des Reflektivitätsscans	11				

1 Durchführung

1.1 Versuchsaufbau

Der Aufbau zur Untersuchung von Oberflächen mit Hilfe von Röntgenreflekometrie setzt sich aus drei Hauptbestandteilen zusammen, die den in Abbildung 1 dargestellten komerziellen Röntgenreflekometrie-Aufbau D8 bilden. Die Quelle der Röntgenstrahlung stellt eine Röntgenröhre mit Kupferanoden dar und ist wie der Detektor um den Probentisch rotierbar. Die Röntgenröhre wird mit einer Beschleunigungsspannung von 40 keV betrieben und sendet zunächst einen divergierenden Strahl aus, der das gesamte Röntgenspektrum enthält. Da jedoch nur eine bestimmte Wellenlängenkomponente genutzt werden soll, wird der Strahl auf einen Göbel-Spiegel gerichtet. Dieser kollimiert den Strahl aufgrund seiner parabolischen Form und ist gleichzeitig dazu in der Lage den Strahl zu monochromatisieren. Dies wird über eine Schichtung von Spiegelebenen in definierten Abständen erreicht, sodass nur die gewünschte Wellenlänge die Bragg-Bedingung erfüllt und konstruktiv interferiert. Zur Positionierung der Probe wird ein in x-, y- und z-Richtung beweglicher Probentisch genutzt, auf dem die Probe aufliegt. Eine konzeptionelle Darstellung des Aufbaus ist in Abbildung 2 dargestellt. Alle Komponenten werden über das Programm XRD Commander angesteuert und auch die Zählraten des Detektor werdden mit diesem Programm aufgenommen und anschließend ausgewertet.

Abbildung 1: Foto des D8-Laborrefraktometers, das zur Röntgenrefletivitätsmessung genutzt wird. Entnommen aus [1]

Abbildung 2: Der konzeptionelle Aufbau zur Untersuchung der Probe durch Röntgenreflekometrie. Die Röntgenquelle enthält eine Röntgenröhre und einen Göbelspiegel. Der Probentisch ist in x-, y- und z-Richtung verschiebbar. Zur Variation des 2θ -Winkels sind die Röntgenquelle und der Detektor um den Probentisch rotierbar.

1.2 Kalibrierung des Reflektionsaufbaus

Um eine optimale Refelektionsmessung durchführen zu können, muss die Probe, wie in Abbildung ... dargestellt zunächst halb in den Strahlengang gefahren sein und exakt parallel zum Strahl liegen, der von der Röntgenquelle zum Detektor läuft, die ebenfalls entlang einer Linie ausgerichtet sein müssen. Um diese Messgeometrie zu garantieren müssen mehrere Scans durchgeführt werden. Diese werden konzeptionell erklärt und die exakten Scan-Parameter in Tabelle 1 aufgelistet.

Abbildung 3: Die zur Justage gewünschte Messgeometrie, bei der die Probe parallel zum Strahl halb in diesem liegt und Röntgenquelle sowie Detektor auf einer Linie liegen. Entnommen aus [1]

Zu Beginn wird die Röntgenröhre auf einen Winkel von $\alpha_i = 0^{\circ}$ gestellt und die Probe aus dem Strahlengang gefahren. Dann fährt der Detektor in einem **Detektorscan** einen geringen Winkelbereich um 0° herum ab und misst dabei die Intensität. Dabei sollte sich ein Gauß-Profil ergeben, aus dem der Winkel bestimmt wird, bei dem Röntgenquelle und Detektor genau entlang einer Quelle liegen. Dieser Winkel wird als neue Referenz gesetzt.

Nachem die Probe per Augenmaß in x- und y-Richtung so zentriert wurde, dass sie vom Strahl getroffen wird, wird ein **z-Scan** durchgeführt. Bei diesem wird die Probe langsam in den Strahlengang gefahren und währenddessen wieder die Intensität gemessen. Aus der resultierenden Kurve, in der die Intensität gegen die z-Koordinate aufgetragen ist, wird die z-Koordinate gewähöt, bei der die Intensität auf die halbe maximale Intensität abgesunken ist. Bei dieser Koordinate befindet sich die Probe halb im Strahlengang.

Um die Parallelität der Probe zum Strahl zu garantieren, folgt ein **Rockingscan**. Die Probe befindet sich in halber Abschattung und Detektor sowie Röntgenquelle erhöhen beziehungsweise verringern ihren Winkel zur Probe, sodass 2θ konstant bleibt. Dies entspricht einer Drehung der Probe im Strahl. Die dabei vermessende Intensität sollte ein Dreieck ergeben, dessen Maximum als $2\theta = 0^{\circ}$ gewählt wird. Wenn eine der Flanken des Dreiecks stärker fällt als die andere Flanke, muss die y-Position der Probe angepasst werden. Bei einem gleichschekligen Dreieck mit Maximum bei $2\theta = 0^{\circ}$ ist die parallel Ausrichtung der Probe zum Strahl erreicht.

Da die Winkeländerung des Strahlverlaufs die Abschattung des Strahls durch die Probe verändert haben kann, wird ein erneuter **z-Scan** analog zum Ersten durchgeführt.

Anschließend wird ein weiterer **Rockingscan** bei einem Winkel von $2\theta = 0.3^{\circ}$ durchgeführt, um anschließend anhand eines Intensitätpeaks die Ein- und Ausfallswinkel von 0.15° für Röntgenquelle und Detektor zu bestimmen.

Um bei der Refelektionsmessung die Probe möglichst komplett mit dem Strahl zu treffen, muss die z-Position auch für einen Winkel von $2\theta \neq 0^{\circ}$ justiert werden. Dazu wird ein Winkel von $2\theta = 0,3^{\circ}$ eingestellt und erneut ein **z-Scan** um die zuvor bestimmte z-Position halber Abschattung durchgeführt. Die Intensitätsmessung soll ein Maximum liefern dessen z-Position als neue Position für die letztendlichen Messungen gewählt wird und die mittlere Geometrie aus Abbildung 4 garantiert.

Abbildung 4: Die möglichen Geometrien für einen Winkel von $2\theta \neq 0^{\circ}$. Die Mittlere ist die gewünschte Geometrie, bei der die maximale Probenfläche getroffen wird. Entnommen aus [1]

1.3 Refelektionsmessung

Nach der vorangegangenen Justierung wird ein **Reflektivitätsscan** durchgeführt, bei dem der Ein- beziehungsweise Ausfallswinkel von Röntgenquelle und Detektor konstant sind, während 2θ variiert wird. So wird die reflektierte Intensität für verschiedene 2θ und damit verschiedene Impulsüberträge in z-Richtung vermessen. Da es neben der Reflexion auch zu diffuser Streuung kommt, muss diese als auftretender Hintergrund vermessenn werden. Dazu wird der Ausfallswinkel des Detektors um $0,1^{\circ}$ vom Einfallswinkel der Röntgenröhre variiert $\alpha_{\rm f}=\alpha_{\rm f}+0,1^{\circ}$ und ein Scan mit denselben Parametern des Reflektivitätsscans durchgeführt.

1.4 Scan-Parameter

Tabelle 1: Die für die verschiedenen Scans verwendeten Parameter. Die z-Position ist nur eine relative Größe zur Justierung und die Einheit daher beliebig. Bearbeitet aus [1]

Typ	Messbereich	Schrittweite	Messdauer/Messpunkt [s]
Detektorscan	-0.5° bis 0.5°	0.02°	1
z-Scan	-1 bis 1	$0,\!04$	1
Rockingscan $2\theta = 0^{\circ}$	-1° bis 1°	0.04°	1
z-Scan	-0.5 bis 0.5	0,02	1
Rockingscan $2\theta = 0.3^{\circ}$	0° bis $0,3^{\circ}$	$0{,}005^{\circ}$	1
z-Scan $2\theta = 0.3^{\circ}$	-0.5 bis 0.5	$0,\!02$	1
Reflektivitätsscan	0° bis 2.5°	$0{,}005^{\circ}$	5

2 Auswertung

2.1 Vermessung des Röntgenstrahls

Die Intensitäten aus dem Detektorscan werden zunächst gegen die zugehörigen Winkel aufgetragen. An diese, in Grafik 5 zu sehende, Verteilung wird eine Gauß-Kurve der Form

$$f(\alpha) = \frac{\mathbf{A}}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\alpha - \alpha_0)^2}{2\sigma^2}\right)$$

mit den Parametern

- 1. $\sigma = 0.0451^{\circ}$
- 2. $\alpha_0 = -0.0014^{\circ}$
- 3. $A = 102336,14^{\circ}$

angepasst.

Aus der Standardabweichung σ wird die volle Breite bei halbem Maximum

$$\mathrm{FWHM} = 2\sigma\sqrt{2\ln(2)} = 0.1062^\circ$$

und aus der Standardabweichung sowie der Amplitude A die maximale Intensität des Röntgenstrahls

$$I_0 = 905520\,89\,\frac{\mathrm{Counts}}{\mathrm{s}}$$

bestimmt.

Abbildung 5: Die beim Detektorscan gemessene Intensität ist gegen den Messwinkel aufgetragen, sodass sich die Halbwertsbreite des Strahls sowie dessen maximale Intensität über eine Gauß-Anpassung ermitteln lassen.

2.2 Bestimmung des Geometriewinkels

Bei kleinen Einfallswinkeln trifft der Röntgenstrahl auch neben die Probe, sodass die maximal mögliche reflektierte Intensität abfällt. Dies soll für Winkel kleiner dem Geometriewinkel korrigiert werden. Dieser wird zunächst über den ersten Rockingscan bestimmt. Die dabei aufgenommene Intensität wird gegen den Einfallswinkeln α aufgetragen. Der Geometriewinkel $\alpha_{\rm g}$ kann zu Beginn der ansteigenden Intensitätsflanke und am Ende der absteigenden Intensitätsflanke abgelesen werden. Der Mittelwert aus den abgelesenen und in Grafik 6 eingezeichneten Winkeln ergibt sich zu

$$\overline{\alpha_{\rm g, grafisch}} = 0.64^{\circ}$$
.

Abbildung 6: Die gemessene Intensität ist gegen den Winkel der Verdrehung der Probe relativ zum Strahl aufgetragen, sodass sich an dem Flankenanfang bzw. Flankenende der Geometriewinkel ablesen lässt.

Parallel kann der Winkel auch aus der Länge der Probe in y-Richtung $D=20\,\mathrm{mm}$ und des Strahldurchmesser $d_0=22\,\mathrm{mm}$ bestimmt werden. Dieser wird direkt aus dem ersten z-Scan abgelesen, dessen gemessene Intensitäten gegen die z-Position in Grafik 7 aufgetragen sind. Über diese Methode ergibt sich der Geometriewinkel zu

$$\alpha_{\rm g,\; math} = \arcsin\left(\frac{d_0}{D}\right) = 0.63^{\circ}.$$

Abbildung 7: Die Intensität ist gegen die z-Position der Probe aufgetragen. Zusätzlich ist auch die Ableitung dieses Verlaufs eingezeichnet, um die eingezeichnete Strahlbreite besser bestimmen zu können.

2.3 Auswertungs des Reflektivitätsscans

Zur Bestimmung der Diffusion und der kritischen Winkel der beiden Materialien sowie der Schichtdicke des Polystyrols muss der Reflektivitätsscan detailliert ausgewertet werden. Zunächst wird von der im Reflektivitätsscan gemessenen Intensität die Intensität, die durch diffuse Streuung entsteht, abgezogen und so eine tatsächliche Reflektivität

$$R_{\rm exp} = \frac{I_{\rm R} - I_{\rm diffus}}{I_0 \cdot 5}$$

bestimmt. Diese wird durch Normierung auf die fünffache maximale Intensität I_0 berechnet, da in der Messung zur Bestimmung der maximalen Intensität für 1s und im Reflektivitätsscan für 5s gemessen wurde. Anschließend wird diese Reflektivität durch den Geometriefaktor für Winkel kleiner dem Geometriewinkel korrigiert und so die korrigierte Reflektivität

$$R_{\rm exp,\;cor} = \frac{R_{\rm exp}}{\rm G} \qquad {\rm mit} \qquad {\rm G} = 1 \quad {\rm f\"{u}r} \quad \alpha_{\rm i} \gtrsim \alpha_{\rm G} \qquad {\rm und} \qquad {\rm G} = \frac{D\sin\left(\alpha_{\rm i}\right)}{d_0} \quad {\rm f\"{u}r} \quad \alpha_{\rm i} < \alpha_{\rm G}$$

berechnet. Die gemessene Reflektivität $R_{\rm exp}$ und die korrigierte Reflektivität $R_{\rm exp,\ cor}$ sind in Abbildung 8 dargestellt. Zusätzlich ist auch die über Formel REFERENZ mit den Werten

- 1. $\lambda = 1.54 \,\text{Å}$
- 2. $\alpha_{\rm c} = 0.223^{\circ}$
- 3. $\mu = 14\,100\,1/\mathrm{m}$

berechnete Fresnel-Reflektivität $R_{\rm F, Si, theo}$ von Silizium eingezeichnet. Diese ist wie zu erwarten für Winkel kleiner dem kritischen Winkel gleich eins und fällt danach ab.

Abbildung 8: Darstellung der gemessenen Reflektivität $R_{\rm exp}$ und deren durch den Korreturfaktor G angepassten Verlauf $R_{\rm exp,\;cor}$, an den die rekursiv über den Parratt-Algorithmus berechnete Reflektivität $R_{Parratt}$ angepasst wird. Aus dem Abstand der eingezeichneten Minima kann die Schichtdicke des Polystyrols bestimmt werden. Zusätzlich sind die kritsichen Winkel für Silizium $\alpha_{\rm c,\;Si}$ und Polystyrol $\alpha_{\rm c,\;PS}$ sowie der theoretische Verlauf der Fresnel-Reflektivität für eine einzelne Siliziumoberfläche $R_{\rm F,\;Si,\;theo}$ eingezeichnet.

Zur ersten Abschätzung der Schichtdicke werden die eindeutigen Minima der Kiessig-Oszillationen in der Kurve der korrigierten Reflektivität über das Python-Paket SciPy

ermittelt und der mittlere Abstand dieser untereinander bestimmt:

$$\overline{\Delta\alpha_{\rm i}} = (0.503 \pm 0.011)^{\circ}$$

Über Formel REFERENZ lässt sich die Schichtdicke $z_{\rm PS}$ des Polystyrols so zu

$$z_{\rm PS} = (865 \pm 19) \,\text{Å}$$
 (1)

bestimmen.

Anschließend wird die Reflektivität für ein System einer Polystyrol-Schicht auf einem Silizium-Substrat über den Parratt Algorithmus simuliert.

Die notwendigen Parameter der Polystyrol-Schichtdicke z_2 , der Rauigkeit des Übergangs von Luft zu Polystyrol σ_1 und des Übergangs von Polystyrol zu Silizium σ_2 sowie der Dispersion von Polystyrol δ_2 und Silizium δ_3 werden händsich varriert, bis die rekursiv über die Formeln REFERENZEN berechnete Reflektivität bestmöglich mit der gemessenen übereinstimmt. Dazu wird zunächst die Polystyrol-Schichtdicke auf den bereits berechneten Wert 1 gesetzt. Anschließend werden die Dispersionen angepasst, um die Kiessieg-Oszillationen und die kritischen Winkel zu rekonstruieren. Abschließend werden die Rauigkeiten der Schichten angepasst, um den Verlauf der Einhüllenden für größere Winkel anzugleichen. Die in Abbildung 8 dargestellte Anpassung $R_{Parratt}$ wurde mit den folgenden Parameteren berechnet:

1.
$$z_2 = 866,0 \,\text{Å}$$

2.
$$\sigma_1 = 1{,}080 \cdot 10^{-9} \, 1/\text{Å}$$

3.
$$\sigma_2 = 7,056 \cdot 10^{-10} \, 1/\text{Å}$$

4.
$$\delta_2 = 9,000 \cdot 10^{-7}$$

5.
$$\delta_3 = 6.840 \cdot 10^{-6}$$

Aus den Dispersionen werden die kritischen Winkel für Polystyrol und Silizium über

$$\alpha_{\rm c} = \sqrt{2\delta}$$

zu

1.
$$\alpha_{\rm c. PS} = 0.0769^{\circ}$$

2.
$$\alpha_{\rm c. Si} = 0.2119^{\circ}$$

bestimmt.

Literatur

 $[1] \quad \text{TU Dortmund. } \textit{Versuchsanleitung V44-R\"{o}ntgenreflektometrie. 2022}.$