CS330 - Computer Organization and Assembly Language Programming

Lecture 8
-Integer Arithmetic-

Professor: Mahmut Unan – UAB CS

Agenda

- Signed Multiplication
- Booth's Algorithm

Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for $(TMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Discard w bits: w bits

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic $UMult_w(u, v) = u \cdot v \mod 2^w$

Unsigned Binary Multiplication

Figure 10.7 Multiplication of Unsigned Binary Integers

```
• 7 * 4
```

$$7 = 0111$$

$$4 = 0100$$

•
$$7 * 4$$
 0111
 $7 = 0111$ $\times 0100$
 $4 = 0100$ 0000

•
$$7 * 4$$
 0111
 $7 = 0111$ $\times 0100$
 $4 = 0100$ 0000

•
$$7*4$$
 0111

7 = 0111

 $\times 0100$

4 = 0100

 0000

0111

•
$$7 * 4$$
 0111
 $7 = 0111$ \times 0100
 $4 = 0100$ 0000
0111
 0000 0111
0011100
 $= 28$

(a) Block Diagram

С	A	Q	М	
0	0000	1101	1011	Initial Values
0 0	1011 0101	1101 1110	1011 1011	Add } First Shift Cycle
0	0010	1111	1011	Shift } Second Cycle
0	1101 0110	1111 1111	1011 1011	Add } Third Shift Cycle
1 0	0001 1000	1111 1111	1011 1011	Add } Fourth Shift Cycle

(b) Example from Figure 9.7 (product in A, Q)

Figure 10.8 Hardware Implementation of Unsigned Binary Multiplication

Signed Multiplication in C

Discard w bits: w bits

- Standard Multiplication Function
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same

Power-of-2 Multiply with Shift

Operation

- $\mathbf{u} << \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
- Both signed and unsigned

Operands: w bits

k

Examples

$$u << 5$$
 - $u << 3$ == $u * 24$

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

- $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
- Uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Booth's Algorithm

• A Q Q -1 Action

- 00 → Shift (Arithmetic Right Shift)
- 01→ Add Numbers (A=A+M), Shift
- 10→ Subtract Numbers (A=A-M), Shift
- 11 -> Shift (Arithmetic Right Shift)

Exercises

- 6*(-2)
- 5*(-4)
- 14*(-5)

Booth's Algorithm Steps

- Prepare the following values
 - Multiplicand \rightarrow M
 - Multiplier \rightarrow Q
- Calculate the two's complement
 - --M & -Q
- Decide how many bits required
 - if you need w bits to represent M or Q
 - you need w iteration
 - the result will be 2*w bits
 - A value will be A=0000...0 (number of zeros=w)
 - Q-1 value is always 0

$$6 * (-2) =$$

• A Q Q -1 Action

$$6 \rightarrow 0110 \rightarrow Multiplicand \rightarrow M$$

Unan - UAB - CS330

$$6 * (-2) =$$

A

Q

Q ₋₁

Action

$$6 \rightarrow 0110 \rightarrow Multiplicand \rightarrow M$$

$$1001$$

1

+_____

-M = 1010

$$6 * (-2) =$$

A

Action

$$6 \rightarrow 0110 \rightarrow Multiplicand \rightarrow M$$

$$1001$$

$$-M = 1010$$

$$2 \rightarrow 0010 \rightarrow Multiplier \rightarrow Q$$

1101

$$6 * (-2) =$$

• A Q Q -1 Action

Step	A	Q	Q ₋₁	Action
1	0000	1110	0	
2				
3				
4				

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	A	Q	Q ₋₁	Action
1	0000	111 <mark>0</mark>	0	00→ Shift(AR)
2				
3				
4				

Step	Α	Q	Q ₋₁	Action
1	0000	111 <mark>0</mark> 0111	<mark>0</mark> ►0	00→ Shift(AR)
2				
3				
4				

Arithmetic Right Shift → Duplicate the left most bit

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	Α	Q	Q ₋₁	Action
1	0000 0000	111 <mark>0</mark> 0111	0	00→ Shift(AR)
2	0000 1010 1101	011 <mark>1</mark> 0111 0011	0 0 1	10 → Subtract (A=A-M) A = 0000 -M = 1010 A-M=1010 Shift(AR)
3				
4				

00	Arithmetic Right Shift			
11	Arithmetic Right Shift			
01	ADD (A=A+M)+ Shift			
10	SUBTRACT (A=A-M)+Shift			

Step	A	Q	Q ₋₁	Action
1	0000 0000	111 <mark>0</mark> 0111	<mark>0</mark> 0	00→ Shift(AR)
2	0000 1010 1101	011 <mark>1</mark> 0111 0011	0 0 1	10 → Subtract (A=A-M) A = 0000 -M =1010 A-M=1010 Shift(AR)
3	1101 1110	001 <mark>1</mark> 1001	<mark>1</mark> 1	11→ Shift(AR)
4				

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	A	Q	Q ₋₁	Action
1	0000 0000	111 <mark>0</mark> 0111	<mark>0</mark> 0	00→ Shift(AR)
2	0000 1010 1101	011 <mark>1</mark> 0111 0011	0 0 1	10 → Subtract (A=A-M) A = 0000 -M =1010 A-M=1010 Shift(AR)
3	1101 1110	001 <mark>1</mark> 1001	<mark>1</mark> 1	11→ Shift(AR)
4	1110 1111	100 <mark>1</mark> 0100	<mark>1</mark> 1	11→ Shift(AR)

00	Arithmetic Right Shift	
11	Arithmetic Right Shift	
01	ADD (A=A+M)+ Shift	
10	SUBTRACT (A=A-M)+Shift	7

Step	Α	Q	Q ₋₁	Action
1	0000 0000	111 <mark>0</mark> 0111	<mark>0</mark> 0	00→ Shift(AR)
2	0000 1010 1101	011 <mark>1</mark> 0111 0011	0 0 1	10 → Subtract (A=A-M) A = 0000 -M = 1010 A-M=1010 Shift(AR)
3	1101 1110	001 <mark>1</mark> 1001	1 1	11→ Shift(AR)
4	1110 1111	100 <mark>1</mark> 0100	<mark>1</mark> 1	11→ Shift(AR)

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift 28

Example 2 \rightarrow 5 * -4

• A Q Q -1 Action

```
5 \rightarrow 0101 \rightarrow Multiplicand \rightarrow M
        1010
-M = 1011
4 \rightarrow 0100 \rightarrow Multiplier \rightarrow Q
       1011
```

A	Q	Q ₋₁	Action
0000	111 <mark>0</mark>	0	00→ Shift(AR)
		_	

4 Bits → 4Iterations Result = 8 bits

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	A	Q	Q ₋₁	Action
1	0000 0000	110 <mark>0</mark> 0110	0	00→ Shift(AR)
2				
3				
4				

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	Α	Q	Q ₋₁	Action
1	0000 0000	110 <mark>0</mark> 0110	<mark>0</mark> 0	00→ Shift(AR)
2	0000 0000	011 <mark>0</mark> 0011	<mark>0</mark> 0	00→ Shift(AR)
3				
4				

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	A	Q	Q ₋₁	Action
1	0000 0000	110 <mark>0</mark> 0110	<mark>0</mark> 0	00→ Shift(AR)
2	0000 0000	011 <mark>0</mark> 0011	<mark>0</mark> 0	00→ Shift(AR)
3	0000 1011	001 <mark>1</mark>	0	10→ Subtract A=0000 -M= 1011 A=A-M → 1011
4	1101	1001	1	Shift(AR)
4				

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	Α	Q	Q ₋₁	Action
1	0000 0000	110 <mark>0</mark> 0110	<mark>0</mark> 0	00→ Shift(AR)
2	0000 0000	011 <mark>0</mark> 0011	<mark>0</mark> 0	00→ Shift(AR)
3	0000	001 <mark>1</mark>	0	10→ Subtract A=0000 -M= 1011
	1011 1101	0011 1001	0	A=A-M → 1011 Shift(AR)
4	1101 1110	100 <mark>1</mark> 1100	<mark>1</mark> 1	11→ Shift(AR)

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	Α	Q	Q ₋₁	Action
1	0000 0000	110 <mark>0</mark> 0110	<mark>0</mark> 0	00→ Shift(AR)
2	0000 0000	011 <mark>0</mark> 0011	<mark>0</mark> 0	00→ Shift(AR)
3	0000	001 <mark>1</mark>	0	10→ Subtract A=0000 -M= 1011
	1011	0011	0	$A=A-M \rightarrow 1011$
	1101	1001	1	Shift(AR)
4	1101 1110	100 <mark>1</mark> 1100	<mark>1</mark> 1	11→ Shift(AR)

1110 1100 =-20

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Example 3 \rightarrow 14 * -5

• A Q Q _1 Action

$14 \rightarrow 01110 \rightarrow Multiplicand \rightarrow M$

Example 3 \rightarrow 14 * -5

• A Q Q -1 Action

```
14 \rightarrow 01110 \rightarrow Multiplicand \rightarrow M
         10001
-M = 10010
5 \rightarrow 00101 \rightarrow Multiplier \rightarrow Q
       11010
```

Step	A	Q	Q ₋₁	Action
1	00000	11011	0	
2				
3				
4				
5				

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	Α	Q	Q ₋₁	Action
1	00000 10010 11001	1101 <mark>1</mark> 11011 01101	0 0 1	10→ SUBTRACT (A=A-M)+Shift A = 00000 -M = 10010 A-M= 10010 Shift (AR)
2				
3				
4				
5				

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	Α	Q	Q ₋₁	Action
1	00000	1101 <mark>1</mark>	0	10→ SUBTRACT (A=A-M)+Shift A = 00000 -M = 10010
	10010 11001	11011 01101	0 1	A-M= 10010 Shift (AR)
2	11001 11100	0110 <mark>1</mark> 10110	1 1	Shift (AR)
3				
4				
5				

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	Α	Q	Q ₋₁	Action
1	00000 10010 11001	1101 <mark>1</mark> 11011 01101	0 0 1	10→ SUBTRACT (A=A-M)+Shift A = 00000 -M = 10010 A-M= 10010 Shift (AR)
2	11001 11100	0110 <mark>1</mark> 10110	1 1	Shift (AR)
3	11100 01010 00101	1011 <mark>0</mark> 10110 01011	1 0	$01 \rightarrow ADD (A=A+M)+ Shift$ $A = 11100$ $M = 01110$ $A+M= 01010 \rightarrow Actually 101010$ Shift (AR)
4				
5				

Step	Α	Q	Q ₋₁	Action
1	00000 10010 11001	1101 <mark>1</mark> 11011 01101	0 0 1	10→ SUBTRACT (A=A-M)+Shift A = 00000 -M = 10010 A-M= 10010 Shift (AR)
2	11001 11100	0110 <mark>1</mark> 10110	<mark>1</mark> 1	Shift (AR)
3	11100 01010 00101	1011 <mark>0</mark> 10110 01011	1 0	$01 \rightarrow ADD (A=A+M)+ Shift$ $A = 11100$ $M = 01110$ $A+M= 01010 \rightarrow Actually 101010$ Shift (AR)
4	00101 10111 11011	0101 <mark>1</mark> 01011 10101	0 0 1	10→ SUBTRACT (A=A-M)+Shift A = 00101 -M = 10010 A-M= 10111 Shift (AR)
5				

Step	A	Q	Q ₋₁	Action
1	00000 10010 11001	1101 <mark>1</mark> 11011 01101	0 0 1	10→ SUBTRACT (A=A-M)+Shift A = 00000 -M = 10010 A-M= 10010 Shift (AR)
2	11001 11100	0110 <mark>1</mark> 10110	1 1	Shift (AR)
3	11100 01010 00101	1011 <mark>0</mark> 10110 01011	1 0	$01 \rightarrow ADD (A=A+M)+ Shift$ $A = 11100$ $M = 01110$ $A+M=01010 \rightarrow Actually 101010$ Shift (AR)
4	00101 10111 11011	0101 <mark>1</mark> 01011 10101	0 0 1	10→ SUBTRACT (A=A-M)+Shift A = 00101 -M = 10010 A-M= 10111 Shift (AR)
5	11011 11101	1010 <mark>1</mark> 11010	1 1	Shift (AR)

Step	Α	Q	Q ₋₁	Action
1	00000 10010 11001	1101 <mark>1</mark> 11011 01101	0 0 1	10→ SUBTRACT (A=A-M)+Shift A = 00000 -M = 10010 A-M= 10010 Shift (AR)
2	11001 11100	0110 <mark>1</mark> 10110	<mark>1</mark> 1	Shift (AR)
3	11100 01010 00101	1011 <mark>0</mark> 10110 01011	1 0	$01 \rightarrow ADD (A=A+M)+ Shift$ $A = 11100$ $M = 01110$ $A+M= 01010 \rightarrow Actually 101010$ Shift (AR)
4	00101 10111 11011	0101 <mark>1</mark> 01011 10101	0 0 1	10→ SUBTRACT (A=A-M)+Shift A = 00101 -M = 10010 A-M= 10111 Shift (AR)
5	11011 11101	1010 <mark>1</mark> 11010	<mark>1</mark> 1	Shift (AR)

Figure 10.12 Booth's Algorithm for Twos Complement Multiplication

A	Q	Q ₋₁	M	Initial Values
0000	0011	0	0111	
1001	0011	0	0111	$A \leftarrow A - M$ First Shift Cycle
1100	1001	1	0111	
1110	0100	1	0111	Shift } Second Cycle
0101	0100	1	0111	$A \leftarrow A + M$ Third Shift Cycle
0010	1010	0	0111	
0001	0101	0	0111	Shift } Fourth Cycle

Figure 10.13 Example of Booth's Algorithm (7× 3)

Figure 10.14 Examples Using Booth's Algorithm

(d) $(-7) \times (-3) = (21)$

(c) $(-7) \times (3) = (-21)$

Figure 10.15 Example of Division of Unsigned Binary Integers

Figure 10.16 Flowchart for Unsigned Binary Division

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

A	Q	
0000	0111	Initial value
0000	1110	Shift
1101		Use twos complement of 0011 for subtraction
1101		Subtract
0000	1110	Restore, set $Q_0 = 0$
0001	1100	Shift
1101		
1110		Subtract
0001	1100	Restore, set $Q_0 = 0$
0011	1000	Shift
1101		
0000	1001	Subtract, set $Q_0 = 1$
0001	0010	Shift
1101		
$\overline{1110}$		Subtract
0001	0010	Restore, set $Q_0 = 0$

Figure 10.17 Example of Restoring Twos Complement Division (7/3)

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate,
 same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Why Should I Use Unsigned?

- Don't use without understanding implications
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

Why Should I Use Unsigned? (cont.)

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension