

10/049,633

FILE 'HOME' ENTERED AT 10:16:38 ON 04 MAR 2004

=> file biosis medline caplus wpis uspatfull
'WPIS' IS NOT A VALID FILE NAME

Enter "HELP FILE NAMES" at an arrow prompt (=>) for a list of files that are available. If you have requested multiple files, you can specify a corrected file name or you can enter "IGNORE" to continue accessing the remaining file names entered.

ENTER A FILE NAME OR (IGNORE):wpids

COST IN U.S. DOLLARS

SINCE FILE ENTRY	TOTAL SESSION
------------------	---------------

FULL ESTIMATED COST

3.15

3.15

FILE 'BIOSIS' ENTERED AT 10:25:19 ON 04 MAR 2004

COPYRIGHT (C) 2004 BIOLOGICAL ABSTRACTS INC. (R)

FILE 'MEDLINE' ENTERED AT 10:25:19 ON 04 MAR 2004

FILE 'CAPLUS' ENTERED AT 10:25:19 ON 04 MAR 2004

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'WPIDS' ENTERED AT 10:25:19 ON 04 MAR 2004

COPYRIGHT (C) 2004 THOMSON DERWENT

FILE 'USPATFULL' ENTERED AT 10:25:19 ON 04 MAR 2004

CA INDEXING COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

*** YOU HAVE NEW MAIL ***

=> s immobili? (10a) nucleic acid?
3 FILES SEARCHED...

L1 9889 IMMOBILI? (10A) NUCLEIC ACID?

=> s l1 and amino? (5a) (oligo? or probe?)
4 FILES SEARCHED...

L2 1873 L1 AND AMINO? (5A) (OLIGO? OR PROBE?)

=> s l2 and (isocyanate or isothiocyanate or epoxide or aldehyde or halo?)
L3 1250 L2 AND (ISOCYANATE OR ISOTHIOCYANATE OR EPOXIDE OR ALDEHYDE OR HALO?)

=> s l3 and enzymatic synthesis
L4 55 L3 AND ENZYMATIc SYNTHESIS

=> s l4 and cleav? (5a) amino
L5 6 L4 AND CLEAV? (5A) AMINO

=> dup rem 15
PROCESSING COMPLETED FOR L5
L6 6 DUP REM L5 (0 DUPLICATES REMOVED)

=> d 16 bib abs 1-6

L6 ANSWER 1 OF 6 USPATFULL on STN
AN 2003:237907 USPATFULL
TI Compositions and methods for the therapy and diagnosis of colon cancer
IN King, Gordon E., Shoreline, WA, UNITED STATES
Meagher, Madeleine Joy, Seattle, WA, UNITED STATES
Xu, Jiangchun, Bellevue, WA, UNITED STATES

09567863

Secrist, Heather, Seattle, WA, UNITED STATES
Jiang, Yuqiu, Kent, WA, UNITED STATES
PA Corixa Corporation, Seattle, WA, UNITED STATES, 98104 (U.S. corporation)
PI US 2003166064 A1 20030904
AI US 2002-99926 A1 20020314 (10)
RLI Continuation-in-part of Ser. No. US 2001-33528, filed on 26 Dec 2001,
PENDING Continuation-in-part of Ser. No. US 2001-920300, filed on 31 Jul
2001, PENDING
PRAI US 2001-302051P 20010629 (60)
US 2001-279763P 20010328 (60)
US 2000-223283P 20000803 (60)
DT Utility
FS APPLICATION
LREP SEED INTELLECTUAL PROPERTY LAW GROUP PLLC, 701 FIFTH AVE, SUITE 6300,
SEATTLE, WA, 98104-7092
CLMN Number of Claims: 17
ECL Exemplary Claim: 1
DRWN No Drawings
LN.CNT 8531

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Compositions and methods for the therapy and diagnosis of cancer,
particularly colon cancer, are disclosed. Illustrative compositions
comprise one or more colon tumor polypeptides, immunogenic portions
thereof, polynucleotides that encode such polypeptides, antigen
presenting cell that expresses such polypeptides, and T cells that are
specific for cells expressing such polypeptides. The disclosed
compositions are useful, for example, in the diagnosis, prevention
and/or treatment of diseases, particularly colon cancer.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 2 OF 6 USPATFULL on STN
AN 2003:219631 USPATFULL
TI Full-length human cDNAs encoding potentially secreted proteins
IN Dumas Milne Edwards, Jean-Baptiste, Paris, FRANCE
Bougueleret, Lydie, Petit Lancy, SWITZERLAND
Jobert, Severin, Paris, FRANCE
PI US 2003152921 A1 20030814
AI US 2001-876997 A1 20010608 (9)
RLI Continuation-in-part of Ser. No. US 2000-731872, filed on 7 Dec 2000,
PENDING
PRAI US 1999-169629P 19991208 (60)
US 2000-187470P 20000306 (60)
DT Utility
FS APPLICATION
LREP Frank C. Eisenschenk, Ph.D., SALIWANCHIK, LLOYD & SALIWANCHIK, 2421 N.W.
41 STREET, SUITE A-1, GAINESVILLE, FL, 32606-6669
CLMN Number of Claims: 22
ECL Exemplary Claim: 1
DRWN 5 Drawing Page(s)
LN.CNT 27600

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The invention concerns GENSET polynucleotides and polypeptides. Such
GENSET products may be used as reagents in forensic analyses, as
chromosome markers, as tissue/cell/organelle-specific markers, in the
production of expression vectors. In addition, they may be used in
screening and diagnosis assays for abnormal GENSET expression and/or
biological activity and for screening compounds that may be used in the
treatment of GENSET-related disorders.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

09567863

L6 ANSWER 3 OF 6 USPATFULL on STN
AN 2003:106233 USPATFULL
TI Compositions and methods for the therapy and diagnosis of pancreatic cancer
IN Benson, Darin R., Seattle, WA, UNITED STATES
Kalos, Michael D., Seattle, WA, UNITED STATES
Lodes, Michael J., Seattle, WA, UNITED STATES
Persing, David H., Redmond, WA, UNITED STATES
Hepler, William T., Seattle, WA, UNITED STATES
Jiang, Yuqiu, Kent, WA, UNITED STATES
PA Corixa Corporation, Seattle, WA, UNITED STATES, 98104 (U.S. corporation)
PI US 2003073144 A1 20030417
AI US 2002-60036 A1 20020130 (10)
PRAI US 2001-333626P 20011127 (60)
US 2001-305484P 20010712 (60)
US 2001-265305P 20010130 (60)
US 2001-267568P 20010209 (60)
US 2001-313999P 20010820 (60)
US 2001-291631P 20010516 (60)
US 2001-287112P 20010428 (60)
US 2001-278651P 20010321 (60)
US 2001-265682P 20010131 (60)
DT Utility
FS APPLICATION
LREP SEED INTELLECTUAL PROPERTY LAW GROUP PLLC, 701 FIFTH AVE, SUITE 6300,
SEATTLE, WA, 98104-7092
CLMN Number of Claims: 17
ECL Exemplary Claim: 1
DRWN No Drawings
LN.CNT 14253
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
AB Compositions and methods for the therapy and diagnosis of cancer, particularly pancreatic cancer, are disclosed. Illustrative compositions comprise one or more pancreatic tumor polypeptides, immunogenic portions thereof, polynucleotides that encode such polypeptides, antigen presenting cell that expresses such polypeptides, and T cells that are specific for cells expressing such polypeptides. The disclosed compositions are useful, for example, in the diagnosis, prevention and/or treatment of diseases, particularly pancreatic cancer.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 4 OF 6 USPATFULL on STN
AN 2002:272801 USPATFULL
TI Compositions and methods for the therapy and diagnosis of colon cancer
IN Stolk, John A., Bothell, WA, UNITED STATES
Xu, Jiangchun, Bellevue, WA, UNITED STATES
Chenault, Ruth A., Seattle, WA, UNITED STATES
Meagher, Madeleine Joy, Seattle, WA, UNITED STATES
PA Corixa Corporation, Seattle, WA, UNITED STATES, 98104 (U.S. corporation)
PI US 2002150922 A1 20021017
AI US 2001-998598 A1 20011116 (9)
PRAI US 2001-304037P 20010710 (60)
US 2001-279670P 20010328 (60)
US 2001-267011P 20010206 (60)
US 2000-252222P 20001120 (60)
DT Utility
FS APPLICATION
LREP SEED INTELLECTUAL PROPERTY LAW GROUP PLLC, 701 FIFTH AVE, SUITE 6300,
SEATTLE, WA, 98104-7092
CLMN Number of Claims: 17
ECL Exemplary Claim: 1

09567863

DRWN No Drawings

LN.CNT 9233

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Compositions and methods for the therapy and diagnosis of cancer, particularly colon cancer, are disclosed. Illustrative compositions comprise one or more colon tumor polypeptides, immunogenic portions thereof, polynucleotides that encode such polypeptides, antigen presenting cell that expresses such polypeptides, and T cells that are specific for cells expressing such polypeptides. The disclosed compositions are useful, for example, in the diagnosis, prevention and/or treatment of diseases, particularly colon cancer.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 5 OF 6 USPATFULL on STN
AN 2002:243051 USPATFULL

TI Compositions and methods for the therapy and diagnosis of ovarian cancer
IN Algata, Paul A., Issaquah, WA, UNITED STATES
Jones, Robert, Seattle, WA, UNITED STATES
Harlocker, Susan L., Seattle, WA, UNITED STATES

PA Corixa Corporation, Seattle, WA, UNITED STATES, 98104 (U.S. corporation)

PI US 2002132237 A1 20020919

AI US 2001-867701 A1 20010529 (9)

PRAI US 2000-207484P 20000526 (60)

DT Utility

FS APPLICATION

LREP SEED INTELLECTUAL PROPERTY LAW GROUP PLLC, 701 FIFTH AVE, SUITE 6300,
SEATTLE, WA, 98104-7092

CLMN Number of Claims: 11

ECL Exemplary Claim: 1

DRWN No Drawings

LN.CNT 25718

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Compositions and methods for the therapy and diagnosis of cancer, particularly ovarian cancer, are disclosed. Illustrative compositions comprise one or more ovarian tumor polypeptides, immunogenic portions thereof, polynucleotides that encode such polypeptides, antigen presenting cell that expresses such polypeptides, and T cells that are specific for cells expressing such polypeptides. The disclosed compositions are useful, for example, in the diagnosis, prevention and/or treatment of diseases, particularly ovarian cancer.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 6 OF 6 USPATFULL on STN
AN 2002:191539 USPATFULL

TI Full-length human cDNAs encoding potentially secreted proteins
IN Milne Edwards, Jean-Baptiste Dumas, Paris, FRANCE
Bougueret, Lydie, Petit Lancy, SWITZERLAND
Jobert, Severin, Paris, FRANCE

PI US 2002102604 A1 20020801

AI US 2000-731872 A1 20001207 (9)

PRAI US 1999-169629P 19991208 (60)
US 2000-187470P 20000306 (60)

DT Utility

FS APPLICATION

LREP John Lucas, Ph.D., J.D., Genset Corporation, 10665 Sorrento Valley Road,
San Diego, CA, 92121-1609

CLMN Number of Claims: 29

ECL Exemplary Claim: 1

DRWN 5 Drawing Page(s)

LN.CNT 28061

09567863

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The invention concerns GENSET polynucleotides and polypeptides. Such GENSET products may be used as reagents in forensic analyses, as chromosome markers, as tissue/cell/organelle-specific markers, in the production of expression vectors. In addition, they may be used in screening and diagnosis assays for abnormal GENSET expression and/or biological activity and for screening compounds that may be used in the treatment of GENSET-related disorders.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

=> d his

(FILE 'HOME' ENTERED AT 10:16:38 ON 04 MAR 2004)

FILE 'BIOSIS, MEDLINE, CAPLUS, WPIDS, USPATFULL' ENTERED AT 10:25:19 ON
04 MAR 2004

L1 9889 S IMMOBILI? (10A) NUCLEIC ACID?
L2 1873 S L1 AND AMINO? (5A) (OLIGO? OR PROBE?)
L3 1250 S L2 AND (ISOCYANATE OR ISOTHIOCYANATE OR EPOXIDE OR ALDEHYDE
L4 55 S L3 AND ENZYMATIC SYNTHESIS
L5 6 S L4 AND CLEAV? (5A) AMINO
L6 6 DUP REM L5 (0 DUPLICATES REMOVED)

=> s l3 and immobil?/ti

L7 40 L3 AND IMMOBIL?/TI

=> s l7 not l6

L8 40 L7 NOT L6

=> s l8 and enzymatic synthesis

L9 0 L8 AND ENZYMATIC SYNTHESIS

=> s l3 and (isocyanate or isothiocyanate or epoxide or aldehyde or halo?) (6a)
surface?

4 FILES SEARCHED...

L10 59 L3 AND (ISOCYANATE OR ISOTHIOCYANATE OR EPOXIDE OR ALDEHYDE OR
HALO?) (6A) SURFACE?

=> s l10 and enzymatic synthesis

L11 1 L10 AND ENZYMATIC SYNTHESIS

=> d l11 bib abs

L11 ANSWER 1 OF 1 USPATFULL on STN

AN 2004:27165 USPATFULL

TI Triphosphate oligonucleotide modification reagents and uses thereof

IN Schwartz, David A., Encinitas, CA, United States

Hogrefe, Richard I., San Diego, CA, United States

PA Solulink Bioscience, Inc., San Diego, CA, United States (U.S.
corporation)

PI US 6686461 B1 20040203

AI US 2000-630627 20000801 (9)

PRAI US 2000-191186P 20000322 (60)

DT Utility

FS GRANTED

EXNAM Primary Examiner: Wilson, James O.; Assistant Examiner: Lewis, Patrick

LREP Heller, Ehrlman, White & McAuliffe LLP

CLMN Number of Claims: 9

ECL Exemplary Claim: 1

DRWN 9 Drawing Figure(s); 9 Drawing Page(s)

09567863

LN.CNT 2722

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Hydrazino, oxyamino and carbonyl-based monomers and methods for incorporation into oligonucleotides during **enzymatic synthesis** are provided. Modified oligonucleotides are provided that incorporate the monomers provided herein. Immobilized oligonucleotides and oligonucleotide conjugates that contain covalent hydrazone or oxime linkages are provided. Methods for preparation of surface bound oligonucleotides are provided. Methods for the preparation of oligonucleotide conjugates are also provided.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

09567863

=> s l3 and (isocyanate or isothiocyanate or epoxide or aldehyde or halo?) (15a)
surface?

4 FILES SEARCHED...

L12 82 L3 AND (ISOCYANATE OR ISOTHIOCYANATE OR EPOXIDE OR ALDEHYDE OR
HALO?) (15A) SURFACE?

=> s l12 and enzymatic synthesis

L13 5 L12 AND ENZYMATIC SYNTHESIS

=> s l13 not l11

L14 4 L13 NOT L11

=> dup rem l14

PROCESSING COMPLETED FOR L14

L15 4 DUP REM L14 (0 DUPLICATES REMOVED)

=> d l15 bib abs 1-4

L15 ANSWER 1 OF 4 USPATFULL on STN

AN 2003:237907 USPATFULL

TI Compositions and methods for the therapy and diagnosis of colon cancer

IN King, Gordon E., Shoreline, WA, UNITED STATES

Meagher, Madeleine Joy, Seattle, WA, UNITED STATES

Xu, Jiangchun, Bellevue, WA, UNITED STATES

Secrist, Heather, Seattle, WA, UNITED STATES

Jiang, Yuqiu, Kent, WA, UNITED STATES

PA Corixa Corporation, Seattle, WA, UNITED STATES, 98104 (U.S. corporation)

PI US 2003166064 A1 20030904

AI US 2002-99926 A1 20020314 (10)

RLI Continuation-in-part of Ser. No. US 2001-33528, filed on 26 Dec 2001,
PENDING Continuation-in-part of Ser. No. US 2001-920300, filed on 31 Jul
2001, PENDING

PRAI US 2001-302051P 20010629 (60)

US 2001-279763P 20010328 (60)

US 2000-223283P 20000803 (60)

DT Utility

FS APPLICATION

LREP SEED INTELLECTUAL PROPERTY LAW GROUP PLLC, 701 FIFTH AVE, SUITE 6300,
SEATTLE, WA, 98104-7092

CLMN Number of Claims: 17

ECL Exemplary Claim: 1

DRWN No Drawings

LN.CNT 8531

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Compositions and methods for the therapy and diagnosis of cancer,
particularly colon cancer, are disclosed. Illustrative compositions
comprise one or more colon tumor polypeptides, immunogenic portions
thereof, polynucleotides that encode such polypeptides, antigen
presenting cell that expresses such polypeptides, and T cells that are
specific for cells expressing such polypeptides. The disclosed
compositions are useful, for example, in the diagnosis, prevention
and/or treatment of diseases, particularly colon cancer.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L15 ANSWER 2 OF 4 USPATFULL on STN

AN 2003:106233 USPATFULL

TI Compositions and methods for the therapy and diagnosis of pancreatic
cancer

IN Benson, Darin R., Seattle, WA, UNITED STATES

Kalos, Michael D., Seattle, WA, UNITED STATES

09567863

Lodes, Michael J., Seattle, WA, UNITED STATES
Persing, David H., Redmond, WA, UNITED STATES
Hepler, William T., Seattle, WA, UNITED STATES
Jiang, Yuqiu, Kent, WA, UNITED STATES
PA Corixa Corporation, Seattle, WA, UNITED STATES, 98104 (U.S. corporation)
PI US 2003073144 A1 20030417
AI US 2002-60036 A1 20020130 (10)
PRAI US 2001-333626P 20011127 (60)
US 2001-305484P 20010712 (60)
US 2001-265305P 20010130 (60)
US 2001-267568P 20010209 (60)
US 2001-313999P 20010820 (60)
US 2001-291631P 20010516 (60)
US 2001-287112P 20010428 (60)
US 2001-278651P 20010321 (60)
US 2001-265682P 20010131 (60)
DT Utility
FS APPLICATION
LREP SEED INTELLECTUAL PROPERTY LAW GROUP PLLC, 701 FIFTH AVE, SUITE 6300,
SEATTLE, WA, 98104-7092
CLMN Number of Claims: 17
ECL Exemplary Claim: 1
DRWN No Drawings
LN.CNT 14253
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
AB Compositions and methods for the therapy and diagnosis of cancer, particularly pancreatic cancer, are disclosed. Illustrative compositions comprise one or more pancreatic tumor polypeptides, immunogenic portions thereof, polynucleotides that encode such polypeptides, antigen presenting cell that expresses such polypeptides, and T cells that are specific for cells expressing such polypeptides. The disclosed compositions are useful, for example, in the diagnosis, prevention and/or treatment of diseases, particularly pancreatic cancer.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L15 ANSWER 3 OF 4 USPATFULL on STN
AN 2002:272801 USPATFULL
TI Compositions and methods for the therapy and diagnosis of colon cancer
IN Stolk, John A., Bothell, WA, UNITED STATES
Xu, Jiangchun, Bellevue, WA, UNITED STATES
Chenault, Ruth A., Seattle, WA, UNITED STATES
Meagher, Madeleine Joy, Seattle, WA, UNITED STATES
PA Corixa Corporation, Seattle, WA, UNITED STATES, 98104 (U.S. corporation)
PI US 2002150922 A1 20021017
AI US 2001-998598 A1 20011116 (9)
PRAI US 2001-304037P 20010710 (60)
US 2001-279670P 20010328 (60)
US 2001-267011P 20010206 (60)
US 2000-252222P 20001120 (60)
DT Utility
FS APPLICATION
LREP SEED INTELLECTUAL PROPERTY LAW GROUP PLLC, 701 FIFTH AVE, SUITE 6300,
SEATTLE, WA, 98104-7092
CLMN Number of Claims: 17
ECL Exemplary Claim: 1
DRWN No Drawings
LN.CNT 9233
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
AB Compositions and methods for the therapy and diagnosis of cancer, particularly colon cancer, are disclosed. Illustrative compositions comprise one or more colon tumor polypeptides, immunogenic portions

09567863

thereof, polynucleotides that encode such polypeptides, antigen presenting cell that expresses such polypeptides, and T cells that are specific for cells expressing such polypeptides. The disclosed compositions are useful, for example, in the diagnosis, prevention and/or treatment of diseases, particularly colon cancer.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L15 ANSWER 4 OF 4 USPATFULL on STN
AN 2002:243051 USPATFULL
TI Compositions and methods for the therapy and diagnosis of ovarian cancer
IN Algata, Paul A., Issaquah, WA, UNITED STATES
Jones, Robert, Seattle, WA, UNITED STATES
Harlocker, Susan L., Seattle, WA, UNITED STATES
PA Corixa Corporation, Seattle, WA, UNITED STATES, 98104 (U.S. corporation)
PI US 2002132237 A1 20020919
AI US 2001-867701 A1 20010529 (9)
PRAI US 2000-207484P 20000526 (60)
DT Utility
FS APPLICATION
LREP SEED INTELLECTUAL PROPERTY LAW GROUP PLLC, 701 FIFTH AVE, SUITE 6300,
SEATTLE, WA, 98104-7092
CLMN Number of Claims: 11
ECL Exemplary Claim: 1
DRWN No Drawings
LN.CNT 25718
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
AB Compositions and methods for the therapy and diagnosis of cancer, particularly ovarian cancer, are disclosed. Illustrative compositions comprise one or more ovarian tumor polypeptides, immunogenic portions thereof, polynucleotides that encode such polypeptides, antigen presenting cell that expresses such polypeptides, and T cells that are specific for cells expressing such polypeptides. The disclosed compositions are useful, for example, in the diagnosis, prevention and/or treatment of diseases, particularly ovarian cancer.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

09567863

=> s l12 not l13
L16 77 L12 NOT L13

=> dup rem l16
PROCESSING COMPLETED FOR L16
L17 77 DUP REM L16 (0 DUPLICATES REMOVED)

=> d his

(FILE 'HOME' ENTERED AT 10:16:38 ON 04 MAR 2004)

FILE 'BIOSIS, MEDLINE, CAPLUS, WPIDS, USPATFULL' ENTERED AT 10:25:19 ON
04 MAR 2004

L1 9889 S IMMOBILI? (10A) NUCLEIC ACID?
L2 1873 S L1 AND AMINO? (5A) (OLIGO? OR PROBE?)
L3 1250 S L2 AND (ISOCYANATE OR ISOTHIOCYANATE OR EPOXIDE OR ALDEHYDE
L4 55 S L3 AND ENZYMATIC SYNTHESIS
L5 6 S L4 AND CLEAV? (5A) AMINO
L6 6 DUP REM L5 (0 DUPLICATES REMOVED)
L7 40 S L3 AND IMMOBIL?/TI
L8 40 S L7 NOT L6
L9 0 S L8 AND ENZYMATIC SYNTHESIS
L10 59 S L3 AND (ISOCYANATE OR ISOTHIOCYANATE OR EPOXIDE OR ALDEHYDE
L11 1 S L10 AND ENZYMATIC SYNTHESIS
L12 82 S L3 AND (ISOCYANATE OR ISOTHIOCYANATE OR EPOXIDE OR ALDEHYDE
L13 5 S L12 AND ENZYMATIC SYNTHESIS
L14 4 S L13 NOT L11
L15 4 DUP REM L14 (0 DUPLICATES REMOVED)
L16 77 S L12 NOT L13
L17 77 DUP REM L16 (0 DUPLICATES REMOVED)

=> s l17 and solid phase
L18 55 L17 AND SOLID PHASE

=> s l18 and nucleic acid?/ti
L19 14 L18 AND NUCLEIC ACID?/TI

=> d l19 bib abs 1-14

L19 ANSWER 1 OF 14 USPATFULL on STN
AN 2003:271029 USPATFULL
TI Method for enhancing the hybridization efficiency of target
nucleic acids using a self-addressable,
self-assembling microelectronic device
IN Sosnowski, Ronald G., Coronado, CA, UNITED STATES
Butler, William F., Carlsbad, CA, UNITED STATES
Tu, Eugene, San Diego, CA, UNITED STATES
Nerenberg, Michael I., San Diego, CA, UNITED STATES
Heller, Michael J., Encinitas, CA, UNITED STATES
Edman, Carl F., San Diego, CA, UNITED STATES
PA Nanogen, Inc., San Diego, CA, UNITED STATES, 92121 (U.S. corporation)
PI US 2003190632 A1 20031009
AI US 2002-170172 A1 20020611 (10)
RLI Continuation of Ser. No. US 1999-444539, filed on 22 Nov 1999, GRANTED,
Pat. No. US 6518022 Continuation of Ser. No. US 1997-986065, filed on 5
Dec 1997, GRANTED, Pat. No. US 6051380 Continuation-in-part of Ser. No.
US 1995-534454, filed on 27 Sep 1995, GRANTED, Pat. No. US 5849486
Continuation-in-part of Ser. No. US 1994-304657, filed on 9 Sep 1994,
GRANTED, Pat. No. US 5632957 Continuation of Ser. No. US 1997-859644,
filed on 20 May 1997, PENDING Continuation-in-part of Ser. No. US

09567863

1994-271882, filed on 7 Jul 1994, GRANTED, Pat. No. US 6017696
Continuation-in-part of Ser. No. US 1993-146504, filed on 1 Nov 1993,
GRANTED, Pat. No. US 5605662 Continuation of Ser. No. US 1996-725976,
filed on 4 Oct 1996, GRANTED, Pat. No. US 5929208 Continuation of Ser.
No. US 1996-708262, filed on 6 Sep 1996, ABANDONED

DT Utility
FS APPLICATION
LREP LYON & LYON LLP, 633 WEST FIFTH STREET, SUITE 4700, LOS ANGELES, CA,
90071
CLMN Number of Claims: 12
ECL Exemplary Claim: 1
DRWN 26 Drawing Page(s)
LN.CNT 4355

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB A self-addressable, self-assembling microelectronic device is designed and fabricated to actively carry out and control multi-step and multiplex molecular biological reactions in microscopic formats. These reactions include nucleic acid hybridizations, antibody/antigen reactions, diagnostics, and biopolymer synthesis. The device can be fabricated using both microlithographic and micro-machining techniques. The device can electronically control the transport and attachment of specific binding entities to specific microlocations. The specific binding entities include molecular biological molecules such as nucleic acids and polypeptides. The device can subsequently control the transport and reaction of analytes or reactants at the addressed specific microlocations. The device is able to concentrate analytes and reactants, remove non-specifically bound molecules, provide stringency control for DNA hybridization reactions, and improve the detection of analytes. The device can be electronically replicated.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L19 ANSWER 2 OF 14 USPATFULL on STN
AN 2003:265241 USPATFULL
TI Method for carrying out the parallel sequencing of a **nucleic acid** mixture on a surface
IN Fischer, Achim, Heidelberg, GERMANY, FEDERAL REPUBLIC OF
PI US 2003186256 A1 20031002
AI US 2002-168557 A1 20020821 (10)
WO 2000-EP13157 20001222
PRAI DE 1999-19962893 19991223
DE 2000-10051564 20001018
DT Utility
FS APPLICATION
LREP BIRCH STEWART KOLASCH & BIRCH, PO BOX 747, FALLS CHURCH, VA, 22040-0747
CLMN Number of Claims: 19
ECL Exemplary Claim: 1
DRWN 12 Drawing Page(s)
LN.CNT 1236

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The invention relates to a method for sequencing in parallel at least two different nucleic acids present in a nucleic acid mixture, characterized in that

- (a) a surface is provided, which surface possesses islands of nucleic acids of in each case the same type, i.e. tertiary nucleic acids;
- (b) counterstrands of the tertiary nucleic acids, i.e. TNCs, are provided;
- (c) the TNCs are extended by one nucleotide, with

09567863

the nucleotide at the 2'-OH position or at the 3'-OH position carrying a protecting group which prevents further extension,

the nucleotide carrying a molecular group which enables the nucleotide to be identified;

(d) the incorporated nucleotide is identified;

(e) the protecting group is removed and the molecular group of the incorporated nucleotide, which is used for identification, is removed or altered, and

(f) step (c) and subsequent steps are repeated until the desired sequence information has been obtained.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L19 ANSWER 3 OF 14 USPATFULL on STN
AN 2003:250964 USPATFULL
TI Detection of **nucleic acid** sequence differences using the ligase detection reaction with addressable arrays
IN Barany, Francis, New York, NY, UNITED STATES
Gerry, Norman P., New York, NY, UNITED STATES
Witowski, Nancy E., Edina, MN, UNITED STATES
Day, Joseph, Foster City, CA, UNITED STATES
Hammer, Robert P., Baton Rouge, LA, UNITED STATES
Barany, George, Falcon Heights, MN, UNITED STATES
PI US 2003175750 A1 20030918
AI US 2002-272152 A1 20021015 (10)
RLI Division of Ser. No. US 2000-526992, filed on 16 Mar 2000, GRANTED, Pat. No. US 6506594
PRAI US 1999-125357P 19990319 (60)
DT Utility
FS APPLICATION
LREP Michael L. Goldman, NIXON PEABODY LLP, Clinton Square, P.O. Box 31051, Rochester, NY, 14603-1051
CLMN Number of Claims: 153
ECL Exemplary Claim: 1
DRWN 46 Drawing Page(s)
LN.CNT 5589

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The present invention describes a method for identifying one or more of a plurality of sequences differing by one or more single base changes, insertions, deletions, or translocations in a plurality of target nucleotide sequences. The ligation phase utilizes a ligation detection reaction between one oligonucleotide probe, which has a target sequence-specific portion and an addressable array-specific portion, and a second oligonucleotide probe, having a target sequence-specific portion and a detectable label. After the ligation phase, the capture phase is carried out by hybridizing the ligated oligonucleotide probes to a solid support with an array of immobilized capture oligonucleotides at least some of which are complementary to the addressable array-specific portion. Following completion of the capture phase, a detection phase is carried out to detect the labels of ligated oligonucleotide probes hybridized to the solid support. The ligation phase can be preceded by an amplification process. The present invention also relates to a kit for practicing this method, a method of forming arrays on solid supports, and the supports themselves.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L19 ANSWER 4 OF 14 USPATFULL on STN

09567863

AN 2003:231985 USPATFULL
TI Products comprising a support to which nucleic acids
are fixed and their use as dna chips
IN Melnyk, Oleg, Annoeulin, FRANCE
Olivier, Christophe, Lille, FRANCE
Olivier, Nathalie, Lille, FRANCE
Hot, David, Lille, FRANCE
Huot, Ludovic, Villeneuve D'Ascq, FRANCE
Lemoine, Yves, Villeneuve D'Ascq, FRANCE
Wolowczuk, Isabelle, Lille, FRANCE
Huynh-Dinh, Tam, Paris, FRANCE
Gouyette, Catherine, Vanves, FRANCE
Gras-Masse, Helene, Merignies, FRANCE
PI US 2003162185 A1 20030828
AI US 2002-149249 A1 20021010 (10)
WO 2000-FR3427 20001207
PRAI FR 1999-15392 19991207
DT Utility
FS APPLICATION
LREP ALSTON & BIRD LLP, BANK OF AMERICA PLAZA, 101 SOUTH TRYON STREET, SUITE
4000, CHARLOTTE, NC, 28280-4000
CLMN Number of Claims: 35
ECL Exemplary Claim: 1
DRWN 9 Drawing Page(s)
LN.CNT 1900
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
AB The invention concerns products comprising a support whereon are fixed
nucleic acids and their preparation method and use as DNA support. The
invention also concerns functionalised supports, oligonucleotides and
DNA's modified in position 5' by a group selected in the group
consisting of tartaric acid, serine, threonine, their derivatives and
the α -oxoaldehyde group, and the methods for preparing them. The
invention further concerns a method for fixing a nucleic acid on a
support.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L19 ANSWER 5 OF 14 USPATFULL on STN
AN 2003:225726 USPATFULL
TI Nucleic acid biosensor diagnostics
IN Krull, Ulrich J., Mississauga, CANADA
Piunno, Paul A., Mississauga, CANADA
Hudson, Robert H.E., London, CANADA
Damha, Masad, St. Hubert, CANADA
Uddin, Andre H., Georgetown, CANADA
PI US 2003157538 A1 20030821
AI US 2003-338787 A1 20030107 (10)
RLI Continuation of Ser. No. US 2000-446222, filed on 16 Feb 2000, GRANTED,
Pat. No. US 6503711 A 371 of International Ser. No. WO 1998-CA402, filed
on 30 Apr 1998, UNKNOWN
PRAI CA 1997-2208165 19970618
US 1997-50970P 19970619 (60)
DT Utility
FS APPLICATION
LREP GREENLEE WINNER AND SULLIVAN P C, 5370 MANHATTAN CIRCLE, SUITE 201,
BOULDER, CO, 80303
CLMN Number of Claims: 30
ECL Exemplary Claim: 1
DRWN 44 Drawing Page(s)
LN.CNT 3259
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
AB A biosensor for direct analysis of nucleic acid hybridization by use of

an optical fiber functionalized with **nucleic acid** molecules and fluorescence transduction is disclosed. **Nucleic acid** probes are immobilized onto the surface of optical fibers and undergo hybridization with complementary nucleic acids introduced into the local environment of the sensor. Hybridization events are detected by the use of fluorescent compounds which bind into nucleic acid hybrids. The invention finds uses in detection and screening of genetic disorders, viruses, and pathogenic microorganisms. Biotechnology applications include monitoring of gene cultures and gene expression and the effectiveness (e.g. dose-response) of gene therapy pharmaceuticals. The invention includes biosensor systems in which fluorescent molecules are connected to the **immobilized nucleic acid** molecules. The preferred method for **immobilization of nucleic acids** is by **in-situ solid phase nucleic acid** synthesis. Control of the refractive index of the **immobilized nucleic acid** is achieved by the support derivatization chemistry and the nucleic acid synthesis. The preferred optical fiber derivation yields a DNA coating of higher refractive index than the fiber core onto the fiber surface.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L19 ANSWER 6 OF 14 USPATFULL on STN
 AN 2003:51127 USPATFULL
 TI **Nucleic acid** detection method employing oligonucleotide probes affixed to particles and related compositions
 IN Hauser, Brian, Campbell, CA, UNITED STATES
 Baier, Joerg, Foster City, CA, UNITED STATES
 Drmanac, Radoje T., Palo Alto, CA, UNITED STATES
 PI US 2003036084 A1 20030220
 AI US 2002-200723 A1 20020722 (10)
 RLI Continuation of Ser. No. US 1998-83861, filed on 21 May 1998, ABANDONED
 Continuation-in-part of Ser. No. US 1997-959365, filed on 28 Oct 1997,
 ABANDONED Continuation-in-part of Ser. No. US 1997-947779, filed on 9 Oct 1997, ABANDONED
 DT Utility
 FS APPLICATION
 LREP MARSHALL, GERSTEIN & BORUN, 6300 SEARS TOWER, 233 SOUTH WACKER, CHICAGO,
 IL, 60606-6357
 CLMN Number of Claims: 9
 ECL Exemplary Claim: 1
 DRWN No Drawings
 LN.CNT 4785

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The invention relates to oligonucleotide probes attached to discrete particles wherein the particles can be grouped into a plurality of sets based on a physical property. A different probe is attached to the discrete particles of each set, and the identity of the probe is determined by identifying the discrete particles from their physical property. The physical property includes any that can be used to differentiate the discrete particles, and includes, for example, relative or absolute location, size, fluorescence, radioactivity, electromagnetic charge, or absorbance, or label(s) may be attached to the particle such as a dye, a radionuclide, or an EML. The invention also relates to methods using the probes complexed with the discrete particles to analyze target nucleic acids.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L19 ANSWER 7 OF 14 USPATFULL on STN
 AN 2003:40541 USPATFULL

09567863

TI Method for enhancing the hybridization efficiency of target
nucleic acids using a self-addressable,
self-assembling microelectronic device
IN Sosnowski, Ronald G., Coronado, CA, United States
Butler, William F., Carlsbad, CA, United States
Tu, Eugene, San Diego, CA, United States
Nerenberg, Michael I., San Diego, CA, United States
Heller, Michael J., Encinitas, CA, United States
Edman, Carl F., San Diego, CA, United States
PA Nanogen, Inc., San Diego, CA, United States (U.S. corporation)
PI US 6518022 B1 20030211
AI US 1999-444539 19991122 (9)
RLI Continuation of Ser. No. US 1997-986065, filed on 5 Dec 1997, now
patented, Pat. No. US 6051380 Continuation-in-part of Ser. No. US
1995-534454, filed on 27 Sep 1995, now patented, Pat. No. US 5849486
Continuation-in-part of Ser. No. US 1994-304657, filed on 9 Sep 1994,
now patented, Pat. No. US 5632957 Continuation-in-part of Ser. No. US
1994-271882, filed on 7 Jul 1994, now patented, Pat. No. US 6017696
Continuation-in-part of Ser. No. US 1993-146504, filed on 1 Nov 1993,
now patented, Pat. No. US 5605662 Continuation-in-part of Ser. No. US
1996-708262, filed on 6 Sep 1996, now abandoned
DT Utility
FS GRANTED
EXNAM Primary Examiner: Marschel, Ardin H.
LREP Lyon & Lyon LLP
CLMN Number of Claims: 9
ECL Exemplary Claim: 1
DRWN 47 Drawing Figure(s); 26 Drawing Page(s)
LN.CNT 4305
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
AB A self-addressable, self-assembling microelectronic device is designed
and fabricated to actively carry out and control multi-step and
multiplex molecular biological reactions in microscopic formats. These
reactions include nucleic acid hybridizations, antibody/antigen
reactions, diagnostics, and biopolymer synthesis. The device can be
fabricated using both microlithographic and micro-machining techniques.
The device can electronically control the transport and attachment of
specific binding entities to specific microlocations. The specific
binding entities include molecular biological molecules such as nucleic
acids and polypeptides. The device can subsequently control the
transport and reaction of analytes or reactants at the addressed
specific microlocations. The device is able to concentrate analytes and
reactants, remove non-specifically bound molecules, provide stringency
control for DNA hybridization reactions, and improve the detection of
analytes. The device can be electronically replicated.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L19 ANSWER 8 OF 14 USPATFULL on STN
AN 2003:30235 USPATFULL
TI Detection of **nucleic acid** sequence differences using
the ligase detection reaction with addressable arrays
IN Barany, Francis, New York, NY, UNITED STATES
Barany, George, Falcon Heights, MN, UNITED STATES
Hammer, Robert P., Baton Rouge, LA, UNITED STATES
Kempe, Maria, Lund, SWEDEN
Blok, Herman, Wemeldinge, NETHERLANDS
Zirvi, Monib, New York, NY, UNITED STATES
PI US 2003022182 A1 20030130
AI US 2001-963698 A1 20010926 (9)
RLI Division of Ser. No. US 1997-794851, filed on 4 Feb 1997, PENDING
PRAI US 1996-11359P 19960209 (60)

09567863

DT Utility
FS APPLICATION
LREP Michael L. Goldman, NIXON PEABODY LLP, Clinton Square, P.O. Box 31051,
Rochester, NY, 14603
CLMN Number of Claims: 147
ECL Exemplary Claim: 1
DRWN 34 Drawing Page(s)
LN.CNT 4224

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The present invention describes a method for identifying one or more of a plurality of sequences differing by one or more single base changes, insertions, deletions, or translocations in a plurality of target nucleotide sequences. The method includes a ligation phase, a capture phase, and a detection phase. The ligation phase utilizes a ligation detection reaction between one oligonucleotide probe, which has a target sequence-specific portion and an addressable array-specific portion, and a second oligonucleotide probe, having a target sequence-specific portion and a detectable label. After the ligation phase, the capture phase is carried out by hybridizing the ligated oligonucleotide probes to a solid support with an array of immobilized capture oligonucleotides at least some of which are complementary to the addressable array-specific portion. Following completion of the capture phase, a detection phase is carried out to detect the labels of ligated oligonucleotide probes hybridized to the solid support. The ligation phase can be preceded by an amplification process. The present invention also relates to a kit for practicing this method, a method of forming arrays on solid supports, and the supports themselves.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L19 ANSWER 9 OF 14 USPATFULL on STN
AN 2003:13207 USPATFULL
TI Detection of nucleic acid sequence differences using
the ligase detection reaction with addressable arrays
IN Barany, Francis, 450 E. 63rd St., Apt. #12C, New York, NY, United States
10021
Gerry, Norman P., 308 E. 83 St. 1C, New York, NY, United States 10028
Witowski, Nancy E., 7224 Tara Rd., Edina, MN, United States 55439
Day, Joseph, 1147 Chess Dr., Foster City, CA, United States 94404
Hammer, Robert P., 4967 Tulane Dr., Baton Rouge, LA, United States
70808
Barany, George, 1813 Prior Ave. N., Falcon Heights, MN, United States
55113
PI US 6506594 B1 20030114
AI US 2000-526992 20000316 (9)
PRAI US 1999-125357P 19990319 (60)
DT Utility
FS GRANTED
EXNAM Primary Examiner: Whisenant, Ethan C.; Assistant Examiner: Lu, Frank W
LREP Nixon Peabody LLP
CLMN Number of Claims: 75
ECL Exemplary Claim: 1
DRWN 88 Drawing Figure(s); 46 Drawing Page(s)
LN.CNT 5007

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The present invention describes a method for identifying one or more of a plurality of sequences differing by one or more single base changes, insertions, deletions, or translocations in a plurality of target nucleotide sequences. The ligation phase utilizes a ligation detection reaction between one oligonucleotide probe, which has a target sequence-specific portion and an addressable array-specific portion, and a second oligonucleotide probe, having a target sequence-specific

09567863

portion and a detectable label. After the ligation phase, the capture phase is carried out by hybridizing the ligated oligonucleotide probes to a solid support with an array of immobilized capture oligonucleotides at least some of which are complementary to the addressable array-specific portion. Following completion of the capture phase, a detection phase is carried out to detect the labels of ligated oligonucleotide probes hybridized to the solid support. The ligation phase can be preceded by an amplification process. The present invention also relates to a kit for practicing this method, a method of forming arrays on solid supports, and the supports themselves.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L19 ANSWER 10 OF 14 USPATFULL on STN
AN 2003:6795 USPATFULL
TI **Nucleic acid biosensor diagnostics**
IN Krull, Ulrich J., 1920 Sandown Rd., Mississauga Ontario, CANADA L5M 2Z8
Piunno, Paul A., 963 Livingston Crescent, Mississauga Ontario, CANADA L4W 3V7
Hudson, Robert H. E., 389 Dundas St., Apartment 507, London Ontario, CANADA N6B 3L5
Damha, Masad, 3166 Pierre - Thomas Hurteau, St. Hubert Quebec, CANADA J3Y 8N9
Uddin, Andre H., 3665 Adams Way, Suite 1608, Mississauga Ontario, CANADA L5A 4A3
PI US 6503711 B1 20030107
WO 9858079 19981223
AI US 2000-446222 20000216 (9)
WO 1998-CA402 19980430
PRAI CA 1997-2208165 19970618
US 1997-50970P 19970619 (60)
DT Utility
FS GRANTED
EXNAM Primary Examiner: Fredman, Jeffrey
LREP Greenlee, Winner and Sullivan, P.C.
CLMN Number of Claims: 61
ECL Exemplary Claim: 1
DRWN 50 Drawing Figure(s); 44 Drawing Page(s)
LN.CNT 3538
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
AB A biosensor for direct analysis of nucleic acid hybridization by use of an optical fiber functionalized with **nucleic acid** molecules and fluorescence transduction is disclosed. **Nucleic acid** probes are **immobilized** onto the surface of optical fibers and undergo hybridization with complementary nucleic acids introduced into the local environment of the sensor. Hybridization events are detected by the use of fluorescent compounds which bind into nucleic acid hybrids. The invention finds uses in detection and screening of genetic disorders, viruses, and pathogenic microorganisms. Biotechnology applications include monitoring of gene cultures and gene expression and the effectiveness (e.g. dose-response) of gene therapy pharmaceuticals. The invention includes biosensor systems in which fluorescent molecules are connected to the **immobilized nucleic acid** molecules. The preferred method for **immobilization of nucleic acids** is by **in situ solid phase nucleic acid synthesis**. Control of the refractive index of the **immobilized nucleic acid** is achieved by the support derivatization chemistry and the nucleic acid synthesis. The preferred optical fiber derivation yields a DNA coating of higher refractive index than the fiber core onto the fiber surface.

09567863

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L19 ANSWER 11 OF 14 USPATFULL on STN
AN 2002:272800 USPATFULL
TI Detection of **nucleic acid** sequence differences using the ligase detection reaction with addressable arrays
IN Barany, Francis, New York, NY, UNITED STATES
Barany, George, Falcon Heights, MN, UNITED STATES
Hammer, Robert P., Baton Rouge, LA, UNITED STATES
Kempe, Maria, Lund, SWEDEN
Blok, Herman, Wemeldinge, NETHERLANDS
Zirvi, Monib, New York, NY, UNITED STATES
PI US 2002150921 A1 20021017
AI US 2001-986527 A1 20011109 (9)
RLI Continuation-in-part of Ser. No. US 1997-794851, filed on 4 Feb 1997, PENDING
PRAI US 1996-11359P 19960209 (60)
DT Utility
FS APPLICATION
LREP Michael L. Goldman, NIXON PEABODY LLP, Clinton Square, P. O. Box 31051, Rochester, NY, 14603
CLMN Number of Claims: 37
ECL Exemplary Claim: 1
DRWN 34 Drawing Page(s)
LN.CNT 3441

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The present invention describes a method for identifying one or more of a plurality of sequences differing by one or more single base changes, insertions, deletions, or translocations in a plurality of target nucleotide sequences. The method includes a ligation phase, a capture phase, and a detection phase. The ligation phase utilizes a ligation detection reaction between one oligonucleotide probe, which has a target sequence-specific portion and an addressable array-specific portion, and a second oligonucleotide probe, having a target sequence-specific portion and a detectable label. After the ligation phase, the capture phase is carried out by hybridizing the ligated oligonucleotide probes to a solid support with an array of immobilized capture oligonucleotides at least some of which are complementary to the addressable array-specific portion. Following completion of the capture phase, a detection phase is carried out to detect the labels of ligated oligonucleotide probes hybridized to the solid support. The ligation phase can be preceded by an amplification process. The present invention also relates to a kit for practicing this method, a method of forming arrays on solid supports, and the supports themselves.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L19 ANSWER 12 OF 14 USPATFULL on STN
AN 2002:213696 USPATFULL
TI Probe bound substrate, process for manufacturing same, probe array, method of detecting target substance, method of specifying nucleotide sequence of single-stranded **nucleic acid** in sample, and quantitative determination of target substance in sample
IN Okamoto, Tadashi, Yokohama-shi, JAPAN
Yamamoto, Nobuko, Isehara-shi, JAPAN
Suzuki, Tomohiro, Sagamihara-shi, JAPAN
PI US 2002115072 A1 20020822
US 2003198952 A9 20031023
AI US 2001-764420 A1 20010525 (9)
PRAI JP 1999-19915 19990128
DT Utility
FS APPLICATION

09567863

LREP FITZPATRICK CELLA HARPER & SCINTO, 30 ROCKEFELLER PLAZA, NEW YORK, NY,
10112

CLMN Number of Claims: 59

ECL Exemplary Claim: 1

DRWN 2 Drawing Page(s)

LN.CNT 1128

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB A probe bound substrate allowing us to quickly detect or quantify a target substance or sequence a target nucleic acid at a lower cost is provided. Specifically, there is provided a probe bound substrate in which a probe capable of specifically attaching to a target substance is bound at the first site on its surface, characterized in that a marker is bound at the second site where the first site may be specified.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L19 ANSWER 13 OF 14 USPATFULL on STN

AN 2002:50773 USPATFULL

TI Preparation of pools of nucleic acids based on representation in a sample

IN Alfenito, Mark R., Redwood City, CA, United States

PA Hyseq, Inc., Sunnyvale, CA, United States (U.S. corporation)

PI US 6355419 B1 20020312

AI US 1998-67317 19980427 (9)

DT Utility

FS GRANTED

EXNAM Primary Examiner: Marschel, Ardin H.

LREP Marshall, Gerstein & Borun

CLMN Number of Claims: 10

ECL Exemplary Claim: 1

DRWN 0 Drawing Figure(s); 0 Drawing Page(s)

LN.CNT 5347

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The invention relates to methods for preparing nucleic acid pools useful in hybridization studies. Such methods allow hybridization conditions, such as time, temperature, ionic strength, etc., to be adjusted to increase the likelihood that hybridization to the nucleic acids within each pool is within the linear range of detection (i.e., detectable but not saturating). The methods rely on pooling nucleic acids derived from a sample, based on the degree of representation within the sample, i.e., nucleic acids having similar degrees of representation within in a sample are combined into a pool. The invention also provides arrays and kits produced from pooled nucleic acids, and an improved method for identifying a nucleic acid and/or its representation in a sample.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L19 ANSWER 14 OF 14 USPATFULL on STN

AN 2001:29713 USPATFULL

TI Solid phase nucleic acid

labeling by transamination

IN Cruickshank, Kenneth A., Naperville, IL, United States

PA Vysis, Inc., Downers Grove, IL, United States (U.S. corporation)

PI US 6194563 B1 20010227

AI US 1999-277087 19990326 (9)

DT Utility

FS Granted

EXNAM Primary Examiner: Riley, Jezia

LREP Galloway, Norval B.

CLMN Number of Claims: 27

ECL Exemplary Claim: 1

DRWN No Drawings

09567863

LN.CNT 804

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The invention relates to a method for linking a detectable label to a nucleic acid by (1) providing a nucleic acid bound to a solid support, the nucleic acid having a cytidine base; (2) transaminating the cytidine base with a reactive group to form a covalent linkage between the cytidine base and the reactive group; and (3) linking a detectable label to the reactive group. The invention also includes compositions containing a labeled **nucleic acid** produced by the methods of the invention **immobilized** on a solid support, and a kit containing a solid support, a bisulfite, a reactive group, and a detectable label.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.