

Bölüm 1: Akış Diyagramları

JAVA ile Nesne Yönelimli Programlama

- Algoritma, bir problemi çözmek veya belirli bir görevi gerçekleştirmek için adım adım talimatlar içeren bir plan.
- Akış Diyagramları, algoritmanın adımlarını, adımlar arasındaki bağlantıları ve kontrol mekanizmalarını görsel bir şekilde temsil eder.

Temel Elemanlar

Başlangıç, Bitiş

Hesaplama , İşlem , Atama

Döngü

Giriş , Çıkış

Yazdır

- İşlemler adım adım belirlenir.
- Adımlar mantıklı bir sırayla yerleştirilir.
- Tüm işlemler akış çizgileri ile birbirine bağlanır.
- Koşullu ifadeler ile karar noktaları belirlenir.

- Karmaşık süreçleri basitleştirir.
- Hata ve iyileştirmeleri belirlemeye yardımcı olur.
- Süreçleri belgelemede, raporlamada kullanılır.

- Algoritma işlem adımları sıralı bir şekilde gerçekleşir.
- Koşullara bağlı olarak farklı işlem adımlarına yönelinebilir.
- Belirli bir koşul sağlandığı sürece bazı adımlar tekrarlanır.

- Yapılacak işlerin (komutlar) art arda mantıksal bir sıra ile dizilmesidir.
- Basit: Sade ve anlaşılır bir akışı temsil eder.
- Kolay Bakım: Hata ayıklama ve kodun anlaşılması kolaydır.
- Bağlamdan Bağımsız: İşlemler bağımsız olarak sıralanabilir.
- Geri Dönüş Yok: Bir işlem başladığında geri dönüş mümkün değildir.

- Klavyeden girilen iki sayının toplamını ekrana yazma
- Algoritma
 - 1. Başla
 - 2. İlk sayıyı oku
 - 3. İkinci sayıyı oku
 - 4. İki sayıyı topla, sonuç'a ata
 - 5. Sonuç'u ekrana yaz
 - 6. Bitir

- İhtimallerden birinin seçildiği akış türüdür.
- Karar Noktası (K): Bir koşul sorusu bulunur.
- Evet'e Göre Akış (P): Sorunun cevabı evet ise, P işlemi yönünde bir akış
- Hayır'a Göre Akış (Q): Cevap hayırsa, Q işlemi yönünde bir akış izlenir.
- Esneklik: Koşullara göre farklı şekillerde davranabilme yeteneği.
- Karar Verme Yetisi: Koşullara bağlı işlemleri gerçekleştirme yetisi.
- Kod Kontrolü: Durumları kontrol etmek ve buna göre işlem yapmak.

Koşullu Akış (Conditional Flow)

- Verilen sayının tek/çift olduğunu ekrana yazdırma
- Algoritma
 - 1. Başla
 - 2. Sayıyı oku
 - 3. Sayı mod 2 al, sonuç'a ata
 - 4. Sonuç 0 ise 5'e git, değilse 6'ya git
 - 5. Ekrana çift yaz, 7'ye git
 - 6. Ekrana tek yaz
 - 7. Bitir

Tekrarlı Akış

- İşlemlerin birden çok defa tekrar ettiği akış şemalarıdır.
- Koşullara Bağlı Döngüler: Koşul sağlandığı sürece tekrar eder.
- Belirli Sayıda Tekrarlar: Belirli bir sayıda tekrarın gerçekleşmesini sağlar.
- Sonsuz Döngüler: Koşul sürekli sağlandığı için işlemler sürekli tekrarlar.
- Verimli: Belirli işlemleri tekrar etme ve kodu optimize etme yeteneği.
- Dinamik: Programın değişen koşullara uyum sağlama yeteneği.
- Kod Tekrarını Önleme: İşlemleri tekrar etmek için kodun tekrar yazılmasına gerek yoktur.

Tekrarlı Akış

IN ANALY IN

- 1'den 10'a kadar olan sayıları yazdırma
- Algoritma
 - 1. Başla
 - 2. Sayaç = 1
 - 3. 10'dan küçükse, 4'e git, değilse 7'ye git
 - 4. Yaz sayaç
 - 5. Sayaç 1 arttır
 - 6. 3'e git
 - 7. Bitir

Döngüye Özel Akış

- 1'den 10'a kadar olan sayıları yazdırma
- Algoritma
 - 1. Başla
 - 2. Döngü 1'den 10'a kadar
 - 3. Yaz döngü değişkeni
 - 4. Döngü sonu
 - 5. Bitir

SON