Interactive K-Means Clustering

CS8001 Visual Computing

K. Palaniappan & Josh Fraser

EECS Dept., University of Missouri

Assignment#4 K-Means Clustering Algorithm

(e) Final clustering

AK Jain, Data clustering: 50 years beyond K-means, PRL, 2010

(d) Iteration 3

Assignment #4

Stage 1: K-Means Clustering Algorithm

Num points (2D, 3D, N-d), N>3 Num true clusters, T= 5 Gaussian distributed (simulated points) K – user input, K=3

Overall complexity of distance computations per iteration O(N*K*D)

K-Means algorithm (1955)

- 1. Select an initial partition with *K* clusters; repeat steps 2 and 3 until cluster membership stabilizes.
- 2. Generate a new partition by assigning each pattern to its closest cluster center.
- 3. Compute new cluster centers.

Center selection:

Furthest away or based on distribution of distances Streaming-based reservoir sampling

Equidistant points:

Breaking ties

K-Means Clustering: Open Questions

- 1) What is a cluster?
- 2) What features should be used?
- 3) Should the data be normalized?
- 4) Does the data contain any outliers?
- How do we define the pair-wise similarity? Or what is the distance function.
- 6) How many clusters are present in the data?
- 7) Which clustering method should be used?
- 8) Does the data have any clustering tendency?
- 9) Are the discovered clusters and partition valid?

K-Means Clustering: Extensions

- Semi-supervised or few/partially labeled samples
- Weights and constraints between points
- Lower dimensional projections before applying clustering (pre-dimensionality reduction)
- Incorporating density of points during clustering
- Hierarchical clustering
- Ensemble clustering

K-Means Clustering: Extensions

Learning problems: dots correspond to points without any labels. Points with labels are denoted by plus signs, asterisks, and crosses. In (c), the must-link and cannot link constraints are denoted by solid and dashed lines, respectively (figure taken from Lange et al. (2005).

Constrained K-Means: Semi-Supervised Clustering

Semi-supervised learning. (a) Input image consisting of five homogeneous textured regions; examples of must-link (solid blue lines) and must not link (broken red lines) constraints between pixels to be clustered are specified. (b) 5-Cluster solution (segmentation) without constraints. (c) Improved clustering (with five clusters) with 10% of the data points included in the pair-wise constraints (Lange et al., 2005).

K-Means Clustering: Extensions

Reprojecting the data using the top 2 eigenvectors of graph Laplacian of the data using RBF-kernel

Two "natural" clusters missed by K-Means with K=2

Appearance vs Activity clustering of animals Heat maps with color proportional to density

Weighted partitioning with large weights assigned to

How Many Clusters: 15 Points in 2D Using Different Clustering Algorithms

(a) 15 points in 2D

How Many Clusters: 15 Points in 2D Using Different Clustering Algorithms

What will K-Means produce with K=2 or K=3?

(a) fifteen patterns; (b) minimum spanning tree of the fifteen patterns; (c) clusters from FORGY; (d) clusters from ISODATA; (e) clusters from WISH; (f) clusters from CLUSTER; (g) clusters from complete-link hierarchical clustering; and (h) clusters from Jarvis-Patrick clustering algorithm. (Dubes and Jain (1976))

"Pancake"

Uniform distribution of points K=4

Where will be the cluster centers?

"Scissors" or X

Gaussian (elliptical) distribution of points
True K=2, with overlapping clusters
Where will the cluster centers be for K=2, 3, 4?
What will be the class labels (cluster membership)
in the overlap region?

What will the K-means result be for K=7?

Edge Cases/Degenerate Conditions in K-Means

Degenerate case(s):

- K=0 (no centers)
- K=1 (one center)
- N=0 (no points)
- K>N (more centers than points)
- -What if a cluster (center) has no data points
- N>>K, with
- N Identical points
- -Termination condition
- How to break ties when two or more centers are equidistant

K-Means: Cluster Validity

Fig. 8. Cluster validity. (a) A dataset with no "natural" clustering; (b) K-means partition with K = 3.

We do not know the true labels

K-Means: Clustering Ensembles

Fig. 11. Clustering ensembles. Multiple runs of K-means are used to learn the pair-wise similarity using the "co-occurrence" of points in clusters. This similarity can be used to detect arbitrary shaped clusters.

Hierarchical Clustering

- Agglomerative (bottom-up from N to 1) or divisive (top-down from 1 to N)
- Nested clusters organized as a tree
- Interactively select K by cutting the dendrogram

Hierarchical Clustering

 Similarity between clusters: Minimum distance between any two members in each cluster, max or

Max inter-cluster distance

Average inter-cluster distance

K-Means Clustering: Careful Seeding

k-means++: The Advantages of Careful Seeding David Arthur and Sergei Vassilvitskii, 2006

For the k-means problem, we are given an integer k and a set of n data points $\mathcal{X} \subset \mathbb{R}^d$. We wish to choose k centers \mathcal{C} so as to minimize the potential function,

$$\phi = \sum_{x \in \mathcal{X}} \min_{c \in \mathcal{C}} ||x - c||^2.$$

Minimize sum of the squared errors over all K clusters (intraclass distances)

The k-means algorithm is a simple and fast algorithm for this problem, although it offers no approximation guarantees at all.

- 1. Arbitrarily choose an initial k centers $\mathcal{C} = \{c_1, c_2, \cdots, c_k\}$.
- 2. For each $i \in \{1, ..., k\}$, set the cluster C_i to be the set of points in \mathcal{X} that are closer to c_i than they are to c_j for all $j \neq i$.
- 3. For each $i \in \{1, \ldots, k\}$, set c_i to be the center of mass of all points in C_i : $c_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$.
- 4. Repeat Steps 2 and 3 until \mathcal{C} no longer changes.

It is standard practice to choose the initial centers uniformly at random from \mathcal{X} . For Step 2, ties may be broken arbitrarily, as long as the method is consistent.

The idea here is that Steps 2 and 3 are both guaranteed to decrease ϕ , so the algorithm makes local improvements to an arbitrary clustering until it is no longer possible to do so. To see Step 3 decreases ϕ , it is helpful to recall a standard result from linear algebra (see for example [2]).

K-Means++ Clustering: Careful Seeding

We propose a specific way of choosing centers for the k-means algorithm. In particular, let D(x) denote the shortest distance from a data point to the closest center we have already chosen. Then, we define the following algorithm, which we call k-means++.

- 1a. Take one center c_1 , chosen uniformly at random from \mathcal{X} .
- 1b. Take a new center c_i , choosing $x \in \mathcal{X}$ with probability $\frac{D(x)^2}{\sum_{x \in \mathcal{X}} D(x)^2}$.
- 1c. Repeat Step 1b. until we have taken k centers altogether.
- 2-4. Proceed as with the standard k-means algorithm.

We call the weighting used in Step 1b simply " D^2 weighting".

How do you sample from the pdf of squared distances?

K-Means++ Clustering: Empirical Results (2006)

	Average ϕ		$\operatorname{Minimum} \phi$		Average T	
k	k-means	k-means++	k-means	k-means++	k-means	k-means++
10	10898	5.122	2526.9	5.122	0.48	0.05
25	787.992	4.46809	4.40205	4.41158	1.34	1.59
50	3.47662	3.35897	3.40053	3.26072	2.67	2.84

Table 1: Experimental results on the *Norm-10* dataset (n = 10000, d = 5)

Synthetic dataset Norm-10: 10 "real" centers uniformly from hypercube of side length 500. Add point from Gaussian with variance 1, centered at each center for well-separated "ideal" clusters.

20 trials for each case
No special optimizations for timing

K-Means++ Clustering: Empirical Results (2006)

Synthetic dataset Norm-25: 25

"real" centers uniformly from hypercube of side length 500. Add point from Gaussian with variance 1, centered at each center for wellseparated "ideal" clusters.

	Average ϕ		Minimum ϕ		Average T	
k	k-means	k-means++	k-means	k-means++	k-means	k-means++
10	135512	126433	119201	111611	0.14	0.13
25	48050.5	15.8313	25734.6	15.8313	1.69	0.26
50	5466.02	14.76	14.79	14.73	3.79	4.21

Table 2: Experimental results on the Norm-25 dataset (n = 10000, d = 15)

1024 points in 10-D, cloud cover database from UCI Machine Learning Repository

	Average ϕ		$\operatorname{Minimum} \phi$		Average T	
k	k-means	k-means++	k-means	k-means++	k-means	k-means++
10	7553.5	6151.2	6139.45	5631.99	0.12	0.05
25	3626.1	2064.9	2568.2	1988.76	0.19	0.09
50	2004.2	1133.7	1344	1088	0.27	0.17

Table 3: Experimental results on the *Cloud* dataset (n = 1024, d = 10)

Potential values by k-means++ is 10 to 1000 times better (ie lower energy)
Speed up to 2.7 times faster

	Average ϕ		$\operatorname{Minimum} \phi$		Average T	
k	k-means	k-means++	k-means	k-means++	k-means	k-means++
10	$3.45 \cdot 10^8$	$2.31 \cdot 10^7$	$3.25 \cdot 10^8$	$1.79 \cdot 10^7$	107.5	64.04
25	$3.15 \cdot 10^8$	$2.53 \cdot 10^6$	$3.1 \cdot 10^8$	$2.06 \cdot 10^6$	421.5	313.65
50	$3.08 \cdot 10^8$	$4.67 \cdot 10^5$	$3.08 \cdot 10^8$	$3.98 \cdot 10^5$	766.2	282.9

Table 4: Experimental results on the *Intrusion* dataset (n = 494019, d = 35)

Stage 2: Challenges With/Speeding Up K-Means Clustering & Writing Good Code

- Code optimizations for feature distance computations
 - Features could be binary (Hamming) or Euclidean or mixed
 - General distance function (template) implementation
- How do you select K?
- Initial set of centers selected effects convergence rate
 - Seed points are observations in the dataset
 - Seed points are any random feature values (ie may not be an observation)
 - Distance-based selection
 - Density-based selection
- Most expensive computation distances/similarities vs metrics and triangle inequality
 - Effect of Euclidean (L2-norm) vs other Lp-norm (Taxicab L1)
- Parallelization of the distance computations
 - Multiple threads, GPU
 - Parallelize on the number of points/observations
- Reproducibility
- Profiling code
- Generalization of algorithm
 - Distance vs ordering/inequality operator
- Subsample the set of observations when N is very large (like one billion) to get a fast initial clustering and energy value

Assignment#4 K-Means Clustering Algorithm

- Part 1: 2D interactive K-Means clustering
 - Euclidean (L2) feature distance computation
 - Unique membership label (ie each point belongs to one and only one class)
 - Let the user specify K
 - For equidistant points break ties randomly
 - Visualize the evolution of the class membership of each point using colors for each iteration of K-Means loop
 - Draw the updated centroid (mean) of each cluster
 - Animate/iterate until the class labels do not change or the maximum iterations has been reached
 - Use simple test cases: 15 dots in 2D (K=2 or K=3), 2D GMM (K=6)
 - Let the user click on a cluster mean and recluster all of these observations into K_2 clusters (where K_2 can be different from K)
 - Compare the speed of K-Means with random initialization vs K-Means++ initialization (D² weighting)
 - When D>2 (or D>3) randomly select the 2 features to project and display the clustering visualization
 OR allow the user to select the two (or three) axes for display
 - Check for degenerate conditions
- Part 2: 3D interactive K-Means clustering
- Optional Part 3: nD interactive K-Means clustering

K-Means Animation

