ASME 2020 Schematic V4 Blue Shift - HPVDT UofT

Circuit Design / PCB Layout: Catherine Kucaba / Savo Bajic Programming: Ethan Baron / Yvonne Yang / Savo Bajic

HEAD_BTN TAIL_BTN LEFT_BTN RIGHT_BTN

Light Control Buttons Pulling these lines to GND will toggle the corresponding lights. Battery Level Monitoring (main and analog sys. batt.) Uses resistor voltage dividers to bring the battery voltage (nominally 10V) down to the 3V3 level the STM32 is tolerant to. There are protection diodes for the main battery.

Connected to the digital camera and display to provide a view out of the vehicle. This view is overlaid with the datas from the sensors. Communicates with the system over USART (serial), with protection. SHDN button pulls down a pin to signal the RPi to shutdown properly.

Rotational Speed Encoders Used to determine the rotational speed of either the pedals (cadence) or wheel (encoder), using a digital interupt to change pins on the STM32. Both inputs used on the STM32 are 5V tolerant

Power connections and test points One connector to the battery.

externally.

- Another to pass power to the monitor used. - One connector for an external 5V supply if the built in one is non-functional or 5V is needed

Test points are for the power buses.

Constant current boost converters. Take in the battery voltage and boost it to generate a desired current through the LEDs.

Current set by resistors downstream of LEDs, I = 0.2/R. The 0.2 can be tweaked using the potentiometer and solder the jumper. Solder to ground to decrease the 0.2, +V to raise the 0.2.

Dimming is achieved though software by applying an approximately 1kHz PWM signal to the control pin.

TP1 TP2 TP3

Reverse Polarity Protection Over Voltage Protection First stage of protection from Kicks in based around value of D8 the battery (Currently $\overline{13V}$)

Used to prevent draining batteries too far and causing cell damage. Cutoff threshold determined by the potentiometer. Hysteresis to prevent oscillating.

Functional range proven to be up to 1.1km.

5V/4A Buck Converter Supplies power to RPi, the 3V3 comes from RPi's regulators to the system. Uses AP65450SP-13 chip and the 5V reference design in the datasheet. If there is any power fault leading up to this an appropriate LED will indicate it, otherwise the OK will light.