Математическая логика

Скулемовская стандартная форма

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Курс математической логики

	Наименование	Содержание раздела
Π/Π	раздела дисциплины	
1.	Введение в алгебру	Прямое произведение множеств. Соответствия и функции. Алгебры.
	логики	Функции алгебры логики. Суперпозиции и формулы. Булева Алгебра.
		Принцип двойственности. Совершенная дизъюнктивная нормальная
		форма (СДНФ). Совершенная конъюнктивная нормальная форма
		(СКНФ). Разложение булевых функций по переменным. Построение
		СДНФ для функции, заданной таблично.
2.	Минимизация	Проблема минимизации. Порождение простых импликантов.
	булевых функций	Алгоритм Куайна и Мак-Клоски. Таблицы простых импликантов.
3.	Полнота и	Замкнутые классы. Класс логических функций, сохраняющий
	замкнутость систем	константы 0 и 1. Определение и доказательство замкнутости. Класс
	логических функций	самодвойственных функций. Определение и лемма о
		несамодвойственной функции. Класс монотонных функций.
		Определение и лемма о немонотонной функции. Класс линейных
		функций. Определение и лемма о нелинейной функции.
4.	Исчисление	Общие принципы построения формальной теории. Интерпретация,
	высказываний и	общезначимость, противоречивость, логическое следствие. Метод
	предикатов	резолюций для исчисления высказываний. Понятие предиката.
		Кванторы. Алфавит. Предваренная нормальная форма. Алгоритм
		преобразования формул в предваренную нормальную форму.
		Скулемовская стандартная форма. Подстановка и унификация.
		Алгоритм унификации. Метод резолюций в исчислении предикатов.

Литература

- Зарипова Э.Р., Кокотчикова М.Г., Севастьянов Л.А. Лекции по дискретной математике: Учеб. пособие. Математическая логика. Москва: РУДН, 2014. 118 с.
- Светлов В.А., Логика: учебное пособие, изд-во: Логос, 2012 г. 429 с.
- Микони С.В., Дискретная математика для бакалавра. Множества, отношения, функции, графы. СПб., Изд-во Лань, 2013 г., 192 с.
- Горбатов В.А., Горбатов А.В., Горбатова М.В., Дискретная математика, М.: АСТ, 2014 г, 448 с.
- Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- Учебный портал РУДН, раздел «Математическая логика» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26522

Скулемовская стандартная форма

Скулемовская стандартная форма (ССФ) находится из предваренной нормальной формы (ПНФ) путем замены переменных, связанных кванторами существования на константы и соответствующие функции.

Скулемовская стандартная форма

Константы и функции, используемые для замены переменных, связанных кванторами существования называются скулемовскими функциями.

Для одной формулы F может существовать несколько ССФ.

Процедура приведения к ССФ

<u>Начало</u>: Пусть формула F находится в ПНФ $(Q_1x_1)...(Q_nx_n)M$.

<u>Шаг 1</u>: Ищем первый квантор существования, стоящий в префиксе $(Q_1x_1)...(Q_nx_n)$. Возможны 2 варианта:

Вар. А: Перед этим квантором существования нет ни одного квантора всеобщности (т.е. до этого квантора существования вообще нет кванторов). Выбираем константу $a \in D$, отличную от других констант, входящих в матрицу M. Заменяем эту переменную в матрице на константу a. Квантор существования удаляем из префикса.

6

Процедура приведения к ССФ

Вар. Б: Перед рассматриваемым квантором существования есть несколько кванторов всеобщности (пусть это будут к кванторов $\forall x_{s_1},...,\forall x_{s_k}$. Выбираем новый k-местный функциональный символ f, отличный от других функциональных символов в матрице M. Во всей матрице M заменяем переменную, связанную рассматриваемым квантором существования функцию $f(x_{s_1}, x_{s_2}, ..., x_{s_k})$ и вычеркиваем этот квантор существования из префикса.

Процедура приведения к ССФ

<u>Шаг 2</u>. Если в префиксе остались кванторы существования, повторяем процедуру, переходим к началу шага 1, иначе — получена скулемовская стандартная форма формулы F.

Конец процедуры: Построена ССФ для формулы F .

Пример

Получить ССФ формулы

$$(\exists x)(\forall y)(\forall z)(\exists u)(\forall v)(\exists w)P(x, y, z, u, v, w)$$
.

Решение:

$$(\exists x)(\forall y)(\forall z)(\exists u)(\forall v)(\exists w)P(x, y, z, u, v, w) =$$

$$= (\forall y)(\forall z)(\exists u)(\forall v)(\exists w)P(a, y, z, u, v, w) =$$

$$= (\forall y)(\forall z)(\forall v)(\exists w)P(a, y, z, f(y, z), v, w) =$$

$$= (\forall y)(\forall z)(\forall v)P(a, y, z, f(y, z), v, g(y, z, v)).$$

ДЗ 2 http://web-local.rudn.ru/web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26522