Energy & Environmental Science

PAPER

View Article Online
View Journal | View Issue

Cite this: Energy Environ. Sci., 2014, 7, 3061

Received 4th April 2014 Accepted 29th April 2014

DOI: 10.1039/c4ee01076k

www.rsc.org/ees

Lead-free organic-inorganic tin halide perovskites for photovoltaic applications†

Nakita K. Noel,^a Samuel D. Stranks,^a Antonio Abate,^a Christian Wehrenfennig,^a Simone Guarnera,^{bc} Amir-Abbas Haghighirad,^a Aditya Sadhanala,^d Giles E. Eperon,^a Sandeep K. Pathak,^a Michael B. Johnston,^a Annamaria Petrozza,^b Laura M. Herz^a and Henry J. Snaith*^a

Already exhibiting solar to electrical power conversion efficiencies of over 17%, organic–inorganic lead halide perovskite solar cells are one of the most promising emerging contenders in the drive to provide a cheap and clean source of energy. One concern however, is the potential toxicology issue of lead, a key component in the archetypical material. The most likely substitute is tin, which like lead, is also a group 14 metal. While organic–inorganic tin halide perovskites have shown good semiconducting behaviour, the instability of tin in its 2+ oxidation state has thus far proved to be an overwhelming challenge. Here, we report the first completely lead-free, CH₃NH₃SnI₃ perovskite solar cell processed on a mesoporous TiO₂ scaffold, reaching efficiencies of over 6% under 1 sun illumination. Remarkably, we achieve open circuit voltages over 0.88 V from a material which has a 1.23 eV band gap.

Broad context

The resource for photovoltaic solar energy, namely sun light, is ubiquitous across the globe, predictable and in excess of our required power demand by many orders of magnitude. The current solar industry is dominated by crystalline silicon, which converts sunlight to electrical energy at around 20% efficiency. The cost of silicon PV has dropped considerably over the last 5 years, and is rapidly approaching the cost of generating electricity from fossil fuels. However, PV will only emerge as the primary power source if the cost can be lowered further to become cheaper than generating electricity from coal. Organic–inorganic crystalline perovskite materials have in the last two years proliferated the PV research community and solar cells based on these materials promise to reach the same efficiencies as crystalline silicon, but at a fraction of the cost. However, the presence of lead in the semiconductor has raised questions as to whether toxicology issues will become problematic in the future for widespread deployment of this technology. Here, we have demonstrated for the first time efficient operation of an entirely lead-free perovskite solar cell, illustrating that there is no uniqueness to lead, and beckoning even higher efficiencies for non-toxic, abundant low cost solar cells.

1. Introduction

With increasing industrialisation and a growing population, the energy demands of today's society will continue to grow. Faced with a dwindling supply of fossil fuels and adverse climate change, the search for a viable source of renewable energy is ongoing. Of all available forms of renewable energy, solar

energy is one of the most promising. At present, the photovoltaic market is dominated by solar cells made of crystalline silicon. However, even in light of the major decrease in the price of crystalline silicon, the high production and installation costs lead to long payback times in most regions, decreasing the economic feasibility of widespread use.¹

As such, there has been a concerted effort to find a cheaper alternative to silicon solar cells. Recently, perovskite-based solar cells have been developed and have rapidly surpassed the efficiencies of many emerging and commercial photovoltaics, such as dye-sensitised,² organic and amorphous silicon solar cells.³ The term perovskite is given to all compounds which have the general chemical formula ABX3. Organic-inorganic metal trihalide perovskites (where A is an organic cation, B a divalent metal ion, and X a halide or any mixture thereof) such as CH3NH3PbX3, are promising alternatives to silicon, having both cheap and abundant starting materials, and being able to be manufactured by simple solution processing⁴⁻⁶ or scalable vapour phase deposition methods.^{7,8} The first report of a solar

^aClarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK. E-mail: h.snaith1@physics.ox.ac.uk

^bCenter for Nano Science and Technology@PoliMi, Instituto Italiano di Tecnologia, Via Giovanni Pascoli 70/3, 20133 Milano, Italy

Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy

^dCavendish Laboratory, Department of Physics, University of Cambridge, 19 JJ Thomson Ave, Cambridge, CB3 0HE, UK

 $[\]dagger$ Electronic supplementary information (ESI) available: Additional experimental detail, XRD and photographs of degraded CH $_3$ NH $_3$ SnI $_3$, additional cross-sectional and top view images, terahertz absorption and conductivity on 80 nm Al $_2$ O $_3$ as well as details of the terahertz modelling are all available. See DOI: 10.1039/c4ee01076k

Published on 01 May 2014. Downloaded by University of Michigan-Dearborn on 10/02/2015 15:59:50

cell incorporating a perovskite absorber was by Miyasaka and co-workers in 2009 and showed a 3.8% efficient perovskite sensitised solar cell employing a liquid electrolyte. This efficiency was further increased to 6.5% by Park *et al.* in 2011. However, due to the corrosive nature of the liquid electrolyte, the perovskite material was dissolved within a few minutes of device operation. This prompted a shift towards solid-state hole conductors and within the last two years alone, the efficiencies of perovskite solar cells have leapt from around 10% 4,5,11 to a certified 17.9% (Newport). 12

One concern with this material is the toxicity of lead, and as such, a key scientific challenge is to replace the lead in the perovskite crystal with a less toxic metal, but no successes have yet been reported. The most viable replacements for Pb in the perovskite material are Sn and Ge, also members of the group 14 metals. However, it is well known that the stability of the 2+ oxidation state decreases when moving up the group 14 elements, thus the major problem with the use of these metals is their chemical instability in the required oxidation state. Snbased perovskites in particular, have shown excellent mobilities in transistors,13 but can also be intentionally or unintentionally doped to become metallic.14,15 It has been demonstrated that when the Sn²⁺ ion is oxidised to Sn⁴⁺, the Sn⁴⁺ acts as a p-type dopant within the material in a process referred to as "selfdoping".14 To the best of our knowledge, there exists no previous report of a solar cell utilising a completely Pb-free, Snbased perovskite as the absorber layer. A recent study by Ogimi et al. reported a mixed metal, Sn-Pb perovskite which allowed tunability of the band gap of the perovskite absorber by varying the Sn to Pb ratio, indicating that Sn could be a good choice of metal ion, especially for lower band gap solar cells.16 However, the same study reported that the neat CH3NH3SnI3 perovskite does not exhibit significant photovoltaic properties, and that a minimum content of Pb is needed to stabilize Sn in its 2+ oxidation state.

Here we present materials and solar cell characterisation of photovoltaic devices employing the completely lead-free perovskite, methylammonium tin triiodide (CH₃NH₃SnI₃) as the photoactive material. Encapsulation of this material under inert atmosphere has allowed us to characterise the films and probe their performance in solar cells. We have obtained devices which yield power conversion efficiencies of greater than 6% under simulated full sunlight. We additionally derive the THz mobility and charge-carrier lifetime, which indicate that with reduction of the hole-doping density and further optimisation, this material should prove to be a viable, completely non-toxic alternative to Pb-based perovskite solar cells, with the potential to deliver even higher efficiencies. Importantly, this demonstrates that Pb-based materials are not unique in delivering efficient perovskite solar cells.

2. Results and discussion

Due to the instability of $CH_3NH_3SnX_3$ (where X=Cl, Br, I) in ambient atmosphere, we carried out all material and device processing in a nitrogen filled glovebox. We dissolved equimolar quantities of SnI_2 and CH_3NH_3I in degassed N-

dimethylformamide (DMF), and then spin-coated the solution onto the desired substrates (fluorine doped tin oxide (FTO) coated in compact TiO₂ and mesoporous TiO₂ or Al₂O₃ ^{5,17} for devices, Al₂O₃ or TiO₂ coated glass for photoluminescence measurements, and Al₂O₃ or TiO₂ coated z-cut quartz for terahertz spectroscopy samples) at 2000 rpm for 45 seconds. The dark brown, CH₃NH₃SnI₃ perovskite (Fig. S1†) was formed on the substrate during spin-coating and required no further heating to crystallise. If after formation, the film was taken out into ambient atmosphere, we observed a decolouration of the film which occurred within seconds, suggesting a rapid degradation of the material. The instability of this material in ambient conditions is likely to be derived from the inherent instability of the Sn²⁺ ion in the presence of oxygen and moisture.

Under ambient conditions, the Sn^{2+} ion will rapidly oxidise to its more stable Sn^{4+} analogue. This process will destroy the charge neutrality of the perovskite structure and cause it to break down, resulting in the formation of oxides/hydroxides of Sn and methylammonium iodide (MAI). The diffraction pattern of an air-exposed sample of $\mathrm{CH_3NH_3SnI_3}$ is shown in the ESI (see Fig. S2†). In light of this, all measurements on this material were carried out on samples which were prepared and sealed under inert atmosphere. The exceptions to this were the samples prepared for scanning electron microscopy (SEM) and terahertz spectroscopy which remained unsealed, since the imaging and measurements were carried out under vacuum.

In order to investigate the structure and purity of the material, we performed X-ray diffraction (XRD) measurements. The diffraction pattern obtained (see Fig. 1) is in good agreement with simulated and literature data, and corresponds to the tetragonal conformation of the perovskite structure. The structure is identical to that of the more widely used $CH_3NH_3PbX_3$ perovskite, showing that in this case, changing the central metal atom has not affected the overall crystal structure of the material. The lattice parameters derived from the X-ray diffractogram were a = 8.7912 Å and c = 4.4770 Å.

The optical characterization of the material is shown in Fig. 2a. The optical absorption shows a broad absorption edge at approximately 1000 nm and a broad photoluminescence peak at 980 nm. In comparison, the lead perovskite, $CH_3NH_3PbI_{3-x}Cl_x$, shows a sharper absorption edge at 770 nm, and a narrower emission spectrum which has been recently shown to be homogeneously broadened. In order to provide a good estimation of the band gap of the $CH_3NH_3SnI_3$ perovskite, we employed photo-thermal deflection spectroscopy (PDS). In Fig. 2b we show the absorption profile extracted from the PDS measurements. The Tauc plot shown in the inset shows a sharp band edge at 1.23 eV.

Unlike the Pb-based perovskite which requires heating to crystallise, the Sn perovskites crystallise at room temperature. This is actually an impediment to uniform film formation, as has previously been observed for MAPbBr₃ which also crystallises directly upon spin-coating. ^{9,22} Directly upon spin coating, the CH₃NH₃SnI₃ film crystallises, and in the case of a thin mesoporous TiO₂ layer (80 nm), large crystalline platelets can form on top of the surface in addition to the material which

Fig. 1 X-ray Diffraction (XRD) and crystal structure. (a) XRD pattern derived from a ground powder of CH₃NH₃SnI₃. (b) Simulated crystal structure of CH₃NH₃Snl₃ obtained from the diffraction pattern given in (a) showing the tetragonal conformation of the perovskite lattice.

penetrates the pores. These crystalline platelets are apparent in the scanning electron microscopy (SEM) images shown in Fig. 3a. This image displays a collection of large, 3-5 μm, randomly oriented crystals in the case of the CH₃NH₃SnI₃ perovskite films, whereas both planar heterojunction and mesosuperstructured CH₃NH₃PbI_{3-x}Cl_x perovskite films have been shown to be much smoother with a greater degree of surface coverage (see Fig. 3b).23,24 Previously, The MAPbI3-xClx films also exhibited non-uniform coverage, and sporadic formation of islands on top of the mesoporous oxide films.25 However, with controlled crystallisation it has been possible to considerably improve the film formation.21,25,26 Conversely, in the case of a thicker mesoporous layer (400 nm) as is shown in Fig. 3c, there is no visible capping layer of CH₃NH₃SnI₃ perovskite suggesting that all the crystallites are contained within the mesopores of the TiO2. A cross section of a complete device (which will be discussed later) is shown in Fig. 3d. This device is fabricated with 400 nm thick mesoporous TiO2 and in the cross section shown there does not appear to be a capping crystal. The dark region within the hole transporting material (HTM) phase is

Fig. 2 (a) Normalized steady state photoluminescence (PL) with photoexcitation at 500 nm, and absorption taken with reflectance and transmission employing an integrating sphere of the tin-based and lead-based perovskites CH₃NH₃SnI₃ and CH₃NH₃PbI_{3-x}Cl_x respectively. (b) The absorption profile of CH₃NH₃SnI₃ as determined through photo-thermal deflection spectroscopy (PDS), with the band gap of the material determined using the Tauc plot (shown in inset).21 We note that since there may be strong exciton absorption at the band edge, the Tauc plot determined band gap can only be considered an estimate

Fig. 3 Scanning Electron Microscope (SEM) images. (a) Top view of a film of CH₃NH₃SnI₃ spin-coated onto mesoporous TiO₂ (80 nm thickness). (b) Top view of a spin-coated film of CH₃NH₃PbI_{3-x}Cl_x on mesoporous TiO₂ (400 nm thickness). (c) Top view of a spin-coated film of CH₃NH₃Snl₃ on mesoporous TiO₂ (400 nm thickness). (d) Cross-sectional view of a complete device active layer composed of FTO glass/compact TiO₂ (50 nm)/mesoporous TiO₂ infiltrated with CH₃NH₃Snl₃ (400 nm)/Spiro-OMeTAD (600 nm).

likely to be a shadowing effect rather than a perovskite capping layer. Additional SEM images are shown in the ESI.†

One of the main reasons why the Pb-based perovskites perform so well in planar heterojunction and meso-superstructured configurations is the sizeable diffusion length of the charge carriers. 27,28 In the case of these materials, the PL lifetime has been determined to be a few hundred nanoseconds for CH₃NH₃PbI_{3-r}Cl_r and at least 10 ns for CH₃NH₃PbI₃. The presence of long-lived charge carriers allows these materials to operate efficiently in thin film architectures since the charges can be extracted from the device before significant recombination occurs, i.e., the diffusion length is much longer than the required thickness for complete light absorption. However, for CH₃NH₃SnI₃, we found the PL decay lifetime to be similar to the instrument response of our PicoQuant time correlated single photon counting set up in the infrared (\sim 200 ps). Such a short PL lifetime may be due to fast recombination at either defect sites within the material, or due to doped carriers resulting from the self-doping known to occur in the Sn perovskites. 14,29

To probe the photophysical properties of CH₃NH₃SnI₃ in more detail, we performed time resolved optical pump THz probe spectroscopy, which provides a contactless probe for the conductivity of the material with picosecond time-resolution. After the photoexcitation of the sample by a 40 fs laser pulse at 550 nm, a single-cycle THz pulse is incident on the sample after a well-defined time delay. By recording the photoinduced change of the transmitted THz amplitude, the transient conductivity of the thin-film sample can be reconstructed (see ESI† for details). Knowing the photoexcitation density from the visible pulse, we can also extract an effective charge carrier mobility.³⁰

In Fig. 4a, we display the transient photoinduced THz response of $CH_3NH_3SnI_3$ over a range of excitation fluences between 11 μ J cm⁻² and 108 μ J cm⁻². We note that the corresponding THz spectra are consistent with a conductivity of free carriers in the presence of localization effects, such as those arising from backscattering at crystallite boundaries (see ESI† for full details).³¹

Previous Hall measurements on ${\rm CH_3NH_3SnI_3}$ have revealed about eight times higher mobilities, μ , for electrons than for holes; therefore we expect that the transient THz response due to photoexcited carriers is dominated by free electrons. We extract an effective free carrier mobility of $\varphi\mu=1.6~{\rm cm^2~V^{-1}~s^{-1}}$, where φ is the photon-to-free-charge conversion ratio, the precise value of which is unknown (see ESI†). We note, however, that the likelihood of immediate generation of excitons as opposed to free carriers is small due to the high non-resonant excitation about 0.6 eV above the band gap energy, such that φ is likely to be close to unity.

Earlier conductivity studies on bulk ${\rm CH_3NH_3SnI_3}$ show strong levels of p-type self-doping due to the presence of ${\rm Sn}^{4+}$ impurities, on the order of ${\rm 10^{16}}$ to ${\rm 10^{18}}$ cm $^{-3}$. 14,29,32 From our THz measurements we also observe a much faster monomolecular recombination rate than that which was observed with the Pb-based ${\rm CH_3NH_3PbI_{3-x}Cl_x}$ perovskite. Therefore, assuming that the decay of the photoexcited electron

population is predominantly governed by direct recombination with photoexcited and doped holes we obtain the rate equation

$$\frac{\mathrm{d}n}{\mathrm{d}t} = -\gamma n(p+p_0) = -\gamma np - \gamma np_0 \tag{1}$$

which we fitted simultaneously to the fluence-dependent THz conductivity transients (solid lines in Fig. 4a, full details in ESI†). We note that the first term on the RHS of eqn (1) represents bimolecular recombination between photogenerated carriers, while the second term describes a monomolecular recombination between photogenerated electrons with the fixed concentration, p_0 , of dopant holes. We extract a value of $\varphi \gamma = 1.4 \times 10^{-9} \text{ cm}^3 \text{ s}^{-1}$ for the electron-hole bimolecular recombination rate constant, and a monomolecular decay constant of $\gamma p_0 = 8.08 \times 10^9 \text{ s}^{-1}$ from which we derive a hole-doping density of $\varphi^{-1}p_0 = 5.8 \times 10^{18} \text{ cm}^3$. Notably the value for p_0 is at the higher end of that reported in previous studies, consistent with a significant extent of self-doping.²⁹

With the knowledge of the charge-carrier mobility and the recombination rates, we are able to derive a charge-diffusion length of 30 nm under realistic device operating conditions (see ESI† for details). This value falls substantially short of the diffusion length of over 1 micron reported for CH₃NH₃PbI_{3-x}Cl_x,^{27,30} suggesting that the Sn-based material, as prepared here, is unlikely to function well as a solar cell absorber in a planar heterojunction architecture, and should hence require a distributed heterojunction. These measurements were taken for CH₃NH₃SnI₃ coated on 80 nm thick films of mesoporous TiO₂, similar values were obtained for CH₃NH₃SnI₃ coated upon 80 nm thick films of mesoporous Al₂O₃ (See ESI, Fig. S5†).

Since we know the effective mobility, the bimolecular recombination rate constant, and have an estimate of the background concentration of doped holes, we can extrapolate how the diffusion length would change if the background concentration of doped holes were to be decreased (see ESI† for details). In Fig. 4b, we show a graph of simulated diffusion length against photoexcited carrier concentration for five different doped hole concentrations. For comparison, a plot of the actual diffusion length of the as prepared Pb analogue (CH₃NH₃PbI_{3-r}Cl_r) is added. We show here, that if the background doping level in the CH3NH3SnI3 perovskite were to be decreased to the order of 10¹⁵ cm⁻³, then the diffusion length could increase beyond a micron in length and approach that of the very efficient Pb-based perovskite system. This result is a direct consequence of the low bi-molecular recombination rate observed for the material, which is similarly low compared to the value previously determined for the Pb-based counterpart.

Despite the slightly lower THz carrier mobility, this rate is still short of the prediction of the Langevin model by a factor $5 \times 10^4 \times \varepsilon^{-1}$, with ε being the relative permittivity of the material. Our observations clearly identify a reduction of self-doping as a promising strategy to enhance the carrier lifetime and hence, prospects for efficient photovoltaic operation.

With the knowledge of the short diffusion length, we fabricated perovskite-sensitised solar cells (PSSCs), composed of FTO coated glass/compact TiO₂/mesoporous TiO₂ (400 nm)

coated with the CH₃NH₃SnI₃/Spiro-OMeTAD/Au. The entire device was assembled in a nitrogen-filled glovebox and were transferred to the evaporator located within the glovebox, hence avoiding exposure to air. Encapsulation was subsequently performed under the same conditions using a hot melt polymer laminate with a glass coverslip, and epoxy resin to seal around the edges. This was done so that the device was exposed to negligible levels of oxygen or moisture during fabrication. The sealed cells were then removed from the glovebox and immediately measured in air. Control devices using the Pb-based perovskite as an absorber were also fabricated in the glovebox and tested in the same manner, but without encapsulation. Device performance parameters from a batch of cells, along with the current-voltage characteristics of the best devices, are presented in Fig. 5. Current-voltage characteristics for devices with varying performance are shown in the ESI.†

Fig. 4 Terahertz (THz) spectroscopy. (a) Transient terahertz photoconductivity of CH3NH3Snl3 on 80 nm thick TiO2 for a range of excitation fluences. Symbols represent experimental data while solid lines are fits to the data using the model described in the text. (b) Diffusion length (L_D) against the carrier concentration, n, for different hole doping levels as predicted from the model described in the text based on the rate constants extracted from fits to the data shown in (a) and neglecting trap-induced charge recombination. A decrease in the background level of doped holes corresponds to an increase in the diffusion length of the CH₃NH₃SnI₃ perovskite. The dash-dotted line displays the diffusion length of the related, as prepared lead-based perovskite $CH_3NH_3PbI_{3-x}Cl_x$ on mesoporous Al_2O_3 (from ref. 30) for comparison.

There is a broad spread in the performance of the CH₂NH₃SnI₃ solar cells. Here, we show that the best performing Sn-based device reaches a power efficiency of 6.4% under 1-sun illumination. Quite remarkably, for an absorber with a bandgap of 1.23 eV, the open circuit voltages reach values as high as 0.88 V in the most efficient device. The fundamental energy loss in a photovoltaic system can be taken as the difference between the bandgap and the open-circuit voltage obtained.33 For crystalline silicon solar cells, which currently dominate the market, this loss is approximately 0.35 eV, while for GaAs, our closest example of a perfectly ordered crystalline material, the loss is in the range of 0.27 eV.3,34,35 Here, the loss we estimate is only 0.35 eV in the best performing cells, which matches that of c-Si.36

Observing such high open-circuit voltages in these solar cells is unexpected considering the relatively short electron lifetime and hence diffusion length, as well as the use of mesoporous TiO₂, which has previously resulted in lower open-circuit voltages in CH₃NH₃PbI_{3-x}Cl_x solar cells.^{5,37} However, if the low diffusion length is a consequence of the fast recombination to doped carriers as we infer, then this will not necessarily impede the open-circuit voltage. The inferred high p-doping density (10¹⁸ cm⁻³) is much higher than the photo-induced charge density under full sunlight (<10¹⁵ cm⁻³ for the Pb-based perovskite).27,38 This implies that under open-circuit conditions where no holes can be swept out of the device, the quasi Fermi level for holes will be very close to the valence band edge. Provided that electrons can transfer quickly and efficiently to the TiO2, in principle the quasi Fermi level for electrons may be set by the Fermi level in the TiO2. The additional surprise is that the mesoporous TiO2 would also have to become comparably ntype doped to enable the quasi Fermi level for electrons to be close to the conduction band, which is required to sustain such a high open-circuit voltage under illumination.

In Fig. S4†, we show a zoom-in of the dark current-voltage curves, and we note that the dark current for the best device only exhibits marginally more leakage at low bias (0 to 0.6 V) than the Pb based perovskite solar cells. However, for the poorer performing cells the dark current leakage is significant, as we show in Fig. S5,† and is largely responsible for the wide spread in open-circuit voltage. It is likely that there is a range of doping densities within the as prepared and tested devices which could account for this variable dark current leakage. Evidently, this does require further investigation. While one would expect higher short-circuit currents from a low band gap system such as this, a major factor which would inhibit both the J_{sc} and the FF is the short electron diffusion length. We have identified that this is likely to be due to excessive self-doping, but with appropriate control of this phenomenon, coupled with improved control of the thin film processing, these promising, preliminary results can be greatly improved. We must note however, that even with encapsulation the devices still quickly degrade when tested under ambient conditions. Within minutes of measuring, a deeply coloured device can become completely transparent. X-ray diffraction measurements of the degraded solar cells, which we show in ESI,† indicate complete degradation of the perovskite structure. This is indicative of either our current device sealing protocol failing to prevent

Fig. 5 Current-voltage characteristics and device performance parameters. (a) The solar cell performance parameters extracted from measuring current-voltage curves under AM1.5 simulated sun light of 100 mW cm $^{-2}$ for TiO₂-based perovskite sensitized solar cells employing $CH_3NH_3SnI_3$ (Sn) and $CH_3NH_3PbI_{3-x}CI_x$ (Pb) absorbers. (b) Current-voltages curves of the best Sn-based and Pb-based devices for the batch of devices shown in (a). Light J-V curves are denoted with solid symbols and the dark I-V curves with hollow symbols. The Pb-based perovskite is shown both on TiO_2 (blue curve) and Al_2O_3 (red curve) giving short circuit currents (J_{sc}) of 19.6 mA cm⁻² and 21.9 mA cm⁻², open circuit voltages (V_{oc}) of 0.98 V and 1.04 V, fill factors (FF) of 0.60 and 0.66, and power conversion efficiencies (η) of 11.5% and 15.0% respectively. While the Snbased perovskite showed negligible photovoltaic properties on Al_2O_3 , on TiO_2 a maximum η of 6.4% was obtained, corresponding to a V_{OC} of 0.88 V, J_{sc} of 16.8 mA cm^{-2} and FF of 0.42. It is important to note that the Sn-based devices were fabricated, metal electrodes evaporated and devices sealed in a nitrogen filled glove box prior to exposing to air.

oxygen/moisture from causing device degradation or a fundamental instability of the material.

In the devices, we employ metal electrodes to extract the current, and it is not possible with our current configuration to completely seal beneath the electrodes. Hence oxygen and moisture could ingress the film through the active layer beneath the electrodes. In order to determine if complete sealing would inhibit the rapid degradation, we processed CH₃NH₃SnI₃ films on large glass substrates and scraped all the material away from the edge of the glass slides. We then completely sealed the slides with the hot-melt polymer film, a glass cover slide and edge sealed with epoxy resin. These films were subject to a continuous light soaking over a 4 month period. After 4 months the films were still visibly coloured, as we show in Fig. S1,† and there was no significant drop in their absorbance indicating that with appropriate current extraction and sealing protocol, predominant stabilisation should be possible.

3. Conclusions

In summary, we have provided the first demonstration of an efficient, completely lead-free perovskite solar cell using the Snbased perovskite, CH₃NH₃SnI₃ as the absorber layer. This shows that good photovoltaic performance and unexpectedly high open-circuit voltage is not strictly limited to lead-based perovskites. These devices yielded efficiencies of more than 6%, however the stability of CH₃NH₃SnI₃ remains a challenge. The voltage losses in the material appear to be remarkably low, suggesting that when its full potential is exploited, the efficiencies could very well approach those of c-Si and GaAs. We have determined the mobility of the as prepared films to be approximately 1.6 cm² V⁻¹ s⁻¹ and the diffusion length to be approximately 30 nm as compared to over a micron in the Pbbased perovskites, CH₃NH₃PbX₃.^{27,28,30} However, the diffusion length is limited by recombination with self-doping carriers, and if the background concentration of holes were to be decreased, then the diffusion length could approach 1 micron, opening the possibility for planar heterojunction devices. The pivotal issue is now the stabilisation of the material such that the oxidation of the Sn within the crystal is suppressed, thus reducing the doping levels of the material and enabling long term stable operation. By achieving a solution to this, we may see the performance of Sn perovskites surpassing those of the state-of-the-art Pb-based perovskites over the next few years, with a distinct toxicological advantage.

Experimental

Device fabrication

Briefly, FTO-coated glass sheets (7 Ω cm⁻¹ Pilkington) were etched with zinc powder and HCl (3 M) to obtain the required electrode pattern. The sheets were then washed with soap (2% Hellmanex in water), deionized water, acetone, and methanol, and finally treated under oxygen plasma for 10 min to remove the last traces of organic residues. All chemicals were purchased from Sigma Aldrich and used as received unless otherwise stated. A 100 nm thick compact layer of TiO₂ was then deposited on the glass using titanium isopropoxide (99.999% purity) diluted in anhydrous ethanol and sintered for 45 min at 500 °C. After the substrate was allowed to cool, a 400 nm thick layer of TiO₂ (Dyesol 18 NRT) was deposited via spin-coating at 2000 rpm for 1 min. The substrate was then resintered at 500 °C for 45 min.

The CH₃NH₃SnI₃ perovskite precursor solution was prepared by dissolving equimolar quantities of CH3NH3I and SnI2 to a concentration of 40 wt% in N-dimethylformamide (DMF). The precursor solution was then spin coated onto the TiO2 coated

substrate under inert atmosphere. The perovskite layer formed during spin coating. After formation of the perovskite layer, the hole transporting material (HTM) 2,2',7,7'-tetrakis(N,N'-di-pmethoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) was dissolved in (concentration 80 mM) with addition of additives at a concentration of 10 mM hydrogen bis(trifluoromethanesulfonyl)imide (H-TFSI) and 80 mM tertbutylpyridine (tBP).39 We note that the additives combination commonly used with spiro-OMeTAD, 15 mM of lithium bis(trifluoromethylsulfonyl)imide salt (Li-TFSI) and 70 mM of 4-tertbutylpyridine (tBP), made the CH₃NH₃SnI₃ more unstable than H-TFSI. Lastly, 50 nm thick gold electrodes were evaporated onto the devices through a shadow mask, using a thermal evaporator giving an effective active area of ~ 0.12 cm² as defined by the overlap of the gold and FTO electrodes. The devices were then sealed under inert atmosphere, using a meltable polymer and an epoxy resin.

Solar cell characterization

Solar cell performance was measured using a class AAB ABET solar simulator which was calibrated to give simulated AM 1.5 sunlight at an irradiance of 100 mW cm.⁻² The irradiance was calibrated using an NREL-calibrated KG5 filtered silicon reference cell. Current–voltage curves were recorded using a sourcemeter (Keithley 2400, USA). All solar cells were masked with a metal aperture which was used to define the active area of the devices, which in this case was 0.0625 cm².

Optical characterization

Samples for optical characterisation were prepared using a similar precursor solution as for the devices. A 1:2 dilution of Al_2O_3 nanoparticles in isopropanol was spin coated onto a glass slide, resulting in a layer which was 80 nm thick. The Snperovskite precursor solution was then spin coated onto the substrate at 2000 rpm, under inert atmosphere. After the formation of the perovskite, the slides were sealed in the same manner as the devices. The steady-state absorption spectra were acquired with a Perkin-Elmer Lambda 1050 UV/Vis/NIR spectrophotometer using an integrating sphere to account for reflection and scattering. We note however, that the films were located on the front and back of the integrating sphere for the transmission and reflection measurements and severe scattering out of the sides of the substrates escapes the integrating sphere and will hence erroneously appear as an absorption.

Steady-state photoluminescence (PL) measurements were taken using an automated spectrofluorometer (Fluorolog, Horiba Jobin-Yvon), with a 450 W Xenon lamp excitation source and liquid nitrogen cooled InGaAs NIR detector for CH₃NH₃SnI₃ samples and a photomultiplier tube detector for CH₃NH₃PbI_{3-x}Cl_x samples. The excitation wavelength was 500 nm. All spectra were corrected for instrumental response using a calibration lamp of known emissivity.

Photothermal Deflection Spectroscopy

Photothermal Deflection Spectroscopy (PDS) is a highly sensitive surface averaged absorption measurement technique. Full

details about this experiment are described elsewhere. ⁴⁰ For this measurement 300 nm thick CH₃NH₃SnI₃ perovskite layers were spin coated onto quartz substrates from the precursor solution.

THz time domain spectroscopy

Full experimental detail is given elsewhere. The optical-pump-THz-probe setup uses a Ti:sapphire regenerative amplifier to generate 40 fs pulses at 800 nm wavelength and a repetition rate of 1.1 kHz. Terahertz pulses are generated by optical rectification in 450 μ m thick (110)-GaP and detected by electro-optic sampling in a ZnTe crystal (0.2 mm (110)-ZnTe on 3 mm (100)-ZnTe). Pulses for optical excitation of the samples at a wavelength of 550 nm have been generated using an optical parametric amplifier (OPA). Optical excitation was carried out from the non-substrate side of the film. The diameters of pump and probe beam at the sample position are 4.2 mm and 1.5 mm (FWHM). Measurements have been performed with the entire THz beam path (including emitter, detector and sample) in an evacuated chamber at pressure of <10⁻¹ mbar.

Acknowledgements

This work was supported by EPSRC and the European Research Council (ERC) HYPER PROJECT no. 27988. N.N. thanks the Government of the Republic of Trinidad and Tobago for additional financial support. The authors would like to thank Dr James M. Ball for device photography and helpful discussions; Dr Martina Congiu for SEM images; and Sir Professor Richard Friend and Severin N. Habisreutinger for helpful discussions.

Notes and references

- 1 C. Steven and M. Arun, Nature, 2012, 488, 294-303.
- 2 A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin and M. Grätzel, *Science*, 2011, 334, 629–634.
- 3 M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, *Prog. Photovoltaics*, 2014, 22, 1–9.
- 4 J. A. Chang, S. H. Im, Y. H. Lee, H.-j. Kim, C.-S. Lim, J. H. Heo and S. I. Seok, *Nano Lett.*, 2012, 12, 1863–1867.
- 5 M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, *Science*, 2012, **338**, 643–647.
- 6 J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, *Nature*, 2013, 499, 316–319.
- 7 M. Liu, M. B. Johnston and H. J. Snaith, *Nature*, 2013, **501**, 305–308
- 8 O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin and H. J. Bolink, *Nat. Photonics*, 2014, **8**, 128–132.
- 9 A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, *J. Am. Chem. Soc.*, 2009, **131**, 6050–6051.
- 10 J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park and N.-G. Park, Nanoscale, 2011, 3, 4088–4093.

- 11 J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, *Nano Lett.*, 2013, **13**, 1764–1769.
- 12 N. R. E. L. (NREL), NREL, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
- 13 C. R. Kagan, D. B. Mitzi and C. D. Dimitrakopoulos, *Science*, 1999, **286**, 945–947.
- 14 Y. Takahashi, R. Obara, Z.-Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi and K. Terakura, *Dalton Trans.*, 2011, **40**, 5563–5568.
- 15 D. B. Mitzi, C. A. Feild, Z. Schlesinger and R. B. Laibowitz, *J. Solid State Chem.*, 1995, **114**, 159–163.
- 16 Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma and S. Hayase, J. Phys. Chem. Lett., 2014, 1004–1011.
- 17 J. M. Ball, M. M. Lee, A. Hey and H. Snaith, *Energy Environ. Sci.*, 2013, **6**, 1739–1743.
- 18 C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, *Inorg. Chem.*, 2013, **52**, 9019–9038.
- 19 C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston and L. M. Herz, *J. Phys. Chem. Lett.*, 2014, 1300–1306.
- 20 S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum and C. Ballif, J. Phys. Chem. Lett., 2014, 5, 1035–1039.
- 21 G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz and H. J. Snaith, *Energy Environ. Sci.*, 2014, 7, 982–988.
- 22 E. Edri, S. Kirmayer, D. Cahen and G. Hodes, *J. Phys. Chem. Lett.*, 2013, **4**, 897–902.
- 23 K. W. Tan, D. T. Moore, M. Saliba, H. Sai, L. A. Estroff, T. Hanrath, H. J. Snaith and U. Wiesner, ACS Nano, 2014, DOI: 10.1021/nn500526t.
- 24 M. Saliba, K. W. Tan, H. Sai, D. T. Moore, T. Scott, W. Zhang, L. A. Estroff, U. Wiesner and H. J. Snaith, *J. Phys. Chem. C*, 2014, DOI: 10.1021/jp500717w.

- 25 G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely and H. J. Snaith, *Adv. Funct. Mater.*, 2014, 24, 151–157.
- 26 B. Conings, L. Baeten, C. De Dobbelaere, J. D'Haen, J. Manca and H.-G. Boyen, *Adv. Mater.*, 2014, **26**, 2041–2046.
- 27 S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, *Science*, 2013, 342, 341–344.
- 28 G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar and T. C. Sum, *Science*, 2013, 342, 344–347.
- 29 Y. Takahashi, H. Hasegawa, Y. Takahashi and T. Inabe, *J. Solid State Chem.*, 2013, **205**, 39–43.
- 30 C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith and L. M. Herz, *Adv. Mater.*, 2014, **26**, 1584–1589.
- 31 H. Němec, P. Kužel and V. Sundström, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2009, **79**, 115309.
- 32 D. B. Mitzi, C. A. Feild, Z. Schlesinger and R. B. Laibowitz, *J. Solid State Chem.*, 1995, **114**, 159–163.
- 33 H. J. Snaith, Adv. Funct. Mater., 2010, 20, 13-19.
- 34 P. K. Nayak, J. Bisquert and D. Cahen, Adv. Mater., 2011, 23, 2870–2876.
- 35 P. K. Nayak and D. Cahen, Adv. Mater., 2014, 26, 1622-1628.
- 36 W. Shockley and H. J. Queisser, *J. Appl. Phys.*, 1961, **32**, 510–519.
- 37 T. Leijtens, B. Lauber, G. E. Eperon, S. D. Stranks and H. J. Snaith, *J. Phys. Chem. Lett.*, 2014, 5, 1096–1102.
- 38 V. D'Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith and A. Petrozza, *Nat. Commun.*, 2014, 5, 3586.
- 39 A. Abate, D. J. Hollman, J. Teuscher, S. Pathak, R. Avolio, G. D'Errico, G. Vitiello, S. Fantacci and H. J. Snaith, *J. Am. Chem. Soc.*, 2013, 135, 13538–13548.
- 40 A. J. Kronemeijer, V. Pecunia, D. Venkateshvaran, M. Nikolka, A. Sadhanala, J. Moriarty, M. Szumilo and H. Sirringhaus, Adv. Mater., 2014, 26, 728–733.