Задача 2 Вариант 1

от Татаринова Никиты Алексеевича

к 21.03.2021

Условие

Датчики псевдослучайных чисел разрабатываются так, чтобы генерируемые ими последовательности можно было считать реализациями независимых случайных величин, равномерно распределённых на единичном отрезке. Ваше задание - реализовать такой датчик и проверить генерируемую последовательность на равномерность и независимость. Выполните следующие шаги:

- 1. Рассчитайте 100 псевдослучайных чисел методом, соответстующим вашему варианту, методом средних квадратов ($z_1 = 1661$).
- 2. Приведите первые 10 чисел этой последовательности.
- 3. Постройте гистограмму с 10 столбцами для полученной последовательности.
- 4. Проверьте гипотезу о том, что последовательность имеет распределение R(0;1), критерием хи-квадрат, разбив интервал [0;1) на 10 равных интервалов.
- 5. Повторите шаги 3 и 4 для последовательности длиной в 10000 чисел.
- 6. Изучите тест перестановок и проверьте этим тестом первые 9999 вашей последовательности, разбив их на тройки.

Используйте уровень значимости 5%.

Решение

IIIar 1

Для вычисления чисел используем язык программирования C++ (исходный код в файле "random_sample_test.cpp", скриншоты кода в приложении). Используется метод generate_random_sample, в качестве параметров которому передаётся первый элемент, количесво элементов и имя файла, в который будут выводиться элементы - в данном случае, "sample100.txt".

Шаг 2

Из файла "sample100.txt" берём первые 10 элементов, являющихся искомыми: 0.1661; 0.7589; 0.5929; 0.1530; 0.3409; 0.6212; 0.5889; 0.6803; 0.2808; 0.8848

Шаг 3

Используя метод interval_distribution, в который передаются имя файла с числами и имя файла для вывода количеств чисел в каждом из интервалов, получаем файл с количествами чисел в каждом из интервалов - в данном случае, "interval_distribution100.txt". Тогда, вероятность вхождения в интервал будет равна количеству чисел в нём, делённое на 100 (суммарное количество чисел). Высота столбца будет равна полученной вероятности, поделённой на длину интервала.

Рис 2.3.1: Гистограмма распрделения 100 чисел по интервалам

Шаг 4

 H_0 - последовательность имеет распределение R(0;1), H_A - распределение отличается от R(0;1). Тогда, на основании критерия хи-квадрат выбираем следующую статистику:

$$\chi^2 = \sum_{j=1}^k \frac{(O_j - E_j)^2}{E_j} \stackrel{H_0}{\sim} \chi_{k-1}^2$$

, где O_j - наблюдаемые частоты; E_j - ожидаемые частоты. В данном случае, $k=10, E_j=10 \quad \forall j=\overline{1,k},$ а O_j хранятся в файле "interval_distribution100.txt". Тогда, получаем $\chi^2=8<16.919=\chi^2_{9;0.05}$.

В таком случае, на уровне значимости 5% гипотеза о том, что последовательность имеет распределение R(0;1), не опровергается .

Шаг 5

В этом пункте получаем 10000 чисел вместо 100. Сохраним числа в файл "sample10000.txt", количества чисел в каждом из интервалов в файл "interval_distribution10000.txt".

Рис 2.5.1: Гистограмма распрделения 10000 чисел по интервалам

Основная и альтернативная гипотезы остаются неизменными, как и статистика. Изменились только наблюдаемые частоты O_j . Тогда, получаем $\chi^2=14711.48>16.919=\chi^2_{9;0.05}$. В таком случае, на уровне значимости 5% гипотеза о том, что последовательность имеет распределение R(0;1), опровергается.

Шаг 6

Для получения троек используем метод "permutation_distribution", в который передаются имя файла с числами и имя файла для вывода количеств каждого из видов троек - в данном случае, "permutation distribution.txt".

 H_0 - элементы последовательности независимы (что возможно при равновероятном появлении троек), H_A - элементы последовательности зависимы. Тогда, на основании критерия хи-квадрат выбираем следующую статистику:

$$\chi^2 = \sum_{j=1}^k \frac{(O_j - E_j)^2}{E_j} \stackrel{H_0}{\sim} \chi_{k-1}^2$$

, где O_j - наблюдаемые частоты; E_j - ожидаемые частоты. В данном случае, k=6, $E_j=\frac{3333}{6}=555.5$ $\forall j=\overline{1,k},$ O_j хранятся в файле "permutation_distribution.txt". Тогда, получаем

$$\chi^2 = \frac{910817.5}{555.5} \approx 1639.63546 > 11.070 = \chi^2_{5;0.05}.$$

В таком случае, на уровне значимости 5% гипотеза о том, что элементы последовательности независимы, отвергается .

Приложение

Код программы

4

Названия и содержимое файлов, полученных в результате работы программы

- 1) "sample100.txt" содержит первые 100 чисел последовательности
- 2) "sample10000.txt" содержит первые 10000 чисел последовательности
- 3) "interval_distribution100.txt" содержит разбиение первых 100 чисел последовательности по интервалам $\binom{i}{10}$; $\binom{(i+1)}{10}$ $i=\overline{0,9}$
- 4) "interval_distribution10000.txt" содержит разбиение первых 10000 чисел последовательности по интервалам $\left[i/_{10};(^{i+1})/_{10}\right)$ $i=\overline{0,9}$
- 5) "permutation_distribution.txt содержит разбиение троек чисел последовательности по перестановкам их рангов