MVA - Convex Optimization DM1

Ariane ALIX

October 14th, 2019

Exercise 2.12

(a) Let $S_{\alpha,\beta,a}$ be a slab defined by $S_{\alpha,\beta} = \{x \in \mathbb{R}^n \mid \alpha \leq a^T x \leq \beta\}$.

We notice that $S_{\alpha,\beta,a} = \{x \in \mathbb{R}^n \mid \alpha \leq a^T x\} \cap \{x \in \mathbb{R}^n \mid a^T x \leq \beta\}$, and that these two sets are convex because they are halfspaces.

 $S_{\alpha,\beta,a}$ being an intersection of two convex sets, it is convex as well.

(b) Let $R_{\alpha,\beta}$ be a rectangle defined by $R_{\alpha,\beta} = \{x \in \mathbb{R}^n \mid \alpha_i \leq x_i \leq \beta_i, i = 1,...,n\}$.

$$R_{\alpha,\beta} = \bigcap_{i \in [1,n]} \{ x \in \mathbb{R}^n \mid \alpha_i \le x_i \le \beta_i \}$$
$$= \bigcap_{i \in [1,n]} (\{ x \in \mathbb{R}^n \mid \alpha_i \le x_i \}) \cap (\{ x \in \mathbb{R}^n \mid x_i \le \beta_i \})$$

Since $R_{\alpha,\beta}$ is an intersection of 2n convex sets, it is convex.

- (c) Like the two first types of sets, a wedge is an intersection of halfspaces, hence is convex.
- (d) Let S_{x_0} be defined as the set of points closer to a given point x_0 than a given set S.

$$\begin{split} S_{x_0} &= \{x \mid \|x - x_0\|_2 \leq \|x - y\|_2 \text{ for all } y \in S\} \text{ where } S \subseteq \mathbb{R}^n \\ &= \bigcap_{y \in S} \{x \mid \|x - x_0\|_2 \leq \|x - y\|_2\} \\ &= \bigcap_{y \in S} \{x \mid \sqrt{(x - x_0)^T (x - x_0)} \leq \sqrt{(x - y)^T (x - y)}\} \\ &= \bigcap_{y \in S} \{x \mid (x - x_0)^T (x - x_0) \leq (x - y)^T (x - y)\} \\ &= \bigcap_{y \in S} \{x \mid \|x\|_2^2 + \|x_0\|_2^2 - 2x^T x_0 \leq \|x\|_2^2 + \|y\|_2^2 - 2x^T y\} \\ &= \bigcap_{y \in S} \{x \mid 2x^T (y - x_0) \leq \|y\|_2^2 - \|x_0\|_2^2\} \end{split}$$

Once again, S_{x_0} is an intersection of halfspaces and is therfore convex.

- (e) We can esaily find a counter-example showing that the set is not convex; in $\mathbb R$ by choosing $S=\{0,3\}$ and $T=\{1,2\}$, we have : $\{x\mid dist(x,S)\leq dist(x,T)\}=\{x\geq \frac{3}{2}\}\cup \{x\leq \frac{1}{2}\}$ which is not convex.
 - (f) Let $S = \{x \mid x + S_2 \subset S_1\}$ where $S_1, S_2 \subset \mathbb{R}^n$ with S_1 convex. $S = \bigcap_{y \in S_2} \{x \mid x + y \in S_1\}$

Since S_1 is convex and affine transformations preserve the convexity, then the sets of the form $\{x \mid x+y \in S_1\}$ are convex. Therefore, S is convex an an intersection of convex sets.

- **(g)** We can look at two possibilities :
 - For $\theta = 1$, this case corresponds to question (d), with $x_0 = a$ and $T = \{b\}$, so it is convex.
 - For $\theta < 1$, let $S = \{x \mid \|x a\|_2 \le \|x b\|_2\}$ $S = \{x \mid (x a)^T (x a) \le \theta^2 (x b)^T (x b)\}$ $= \{x \mid \|x\|_2^2 + \|a\|_2^2 2x^T a \le \theta^2 \|x\|_2^2 + \theta^2 \|b\|_2^2 2\theta^2 x^T b\}$ $= \{x \mid (1 \theta^2) \|x\|_2^2 2x^T (a \theta^2 b) \le \theta^2 \|b\|_2^2 \|a\|_2^2\}$ $= \{x \mid (1 \theta^2) (\|x\|_2^2 \frac{2x^T (a \theta^2 b)}{(1 \theta^2)} + \|\frac{a \theta^2 b}{1 \theta^2}\|_2^2) \frac{\|a \theta^2 b\|_2^2}{1 \theta^2} \le \theta^2 \|b\|_2^2 \|a\|_2^2\} \text{ which}$ $= \{x \mid (1 \theta^2) (\|(x \frac{(a \theta^2 b)}{(1 \theta^2)}\|_2^2) \le \theta^2 \|b\|_2^2 \|a\|_2^2 + \frac{\|a \theta^2 b\|_2^2}{1 \theta^2}\}$ $= \{x \mid \|x \frac{(a \theta^2 b)}{(1 \theta^2)}\|_2^2 \le \frac{\theta^2 \|b\|_2^2 \|a\|_2^2}{1 \theta^2} + \frac{\|a \theta^2 b\|_2^2}{(1 \theta^2)^2}\}$

Exercise 3.21

- (a) The functions of the form $||A^{(i)}x b^{(i)}||$ are compositions of an affine function with the norm and are therefore convex.
- $f(x) = \max_{1,\dots,k} \|A^{(i)}x b^{(i)}\| \text{ being a point-wise maximum of those convex functions, it is convex as well.}$
- **(b)** Let f be defined as $f(x) = \sum_{i=1}^{r} |x|_{[i]}$ where $|x|_{[1]}, |x|_{[2]}, ..., |x|_{[n]}$ are the absolute values of the components of x, sorted in decreasing order.

We can also write f(x) as $f(x) = \max_{\{i_1,\dots,i_r\}} \{\sum_{i_1}^{i_r} |x|_i\}$, where the functions of the form $\sum_{i_1}^{i_r} |x|_i$ are built by choosing r different components of x. Since each of these functions is convex, f is convex too since it is their pointwise-maximum.

2

Exercise 3.32

(a) Let f and g be convex, nondecreasing (or nonincreasing), and positive functions on an interval of \mathbb{R} .

Let α be a real number such as $0 \le \alpha \le 1$.

$$f(\alpha x + (1 - \alpha)y)g(\alpha x + (1 - \alpha)y) \leq (\alpha f(x) + (1 - \alpha)f(y))(\alpha g(x) + (1 - \alpha)g(y))$$
 since f and g are convex and positive
$$= \alpha^2 fg(x) + (1 - \alpha)^2 fg(y) + \alpha(1 - \alpha)f(x)g(y) + \alpha(1 - \alpha)g(x)f(y)$$

$$= \alpha fg(x) + (1 - \alpha)fg(y) - (\alpha - \alpha^2)fg(x) - (\alpha - \alpha^2)fg(y)$$

$$+ \alpha(1 - \alpha)f(x)g(y) + \alpha(1 - \alpha)g(x)f(y)$$

$$= \alpha fg(x) + (1 - \alpha)fg(y)$$

$$+ \alpha(1 - \alpha)(f(x)g(y) + g(x)f(y) - fg(x) - fg(y))$$

$$= \alpha fg(x) + (1 - \alpha)fg(y) + \alpha(1 - \alpha)(g(x) - g(y))(f(y) - f(x))$$

$$\leq \alpha fg(x) + (1 - \alpha)fg(y)$$

since f and g are both non-decreasing (or non-increasing),

(g(x)-g(y)) and (f(y)-f(x)) have opposite signs, and their product is less than or equal to 0

We verified the Jensen's inequality for fg, showing that it is convex.

(b) Let f, g be concave functions of \mathbb{R} , positive, with one nondecreasing and the other nonincreasing. Let α be a real number such as $0 \le \alpha \le 1$.

$$f(\alpha x + (1-\alpha)y)g(\alpha x + (1-\alpha)y) \geq (\alpha f(x) + (1-\alpha)f(y))(\alpha g(x) + (1-\alpha)g(y))$$
 since f and g are concave and positive
$$= \alpha^2 fg(x) + (1-\alpha)^2 fg(y) + \alpha (1-\alpha)f(x)g(y) + \alpha (1-\alpha)g(x)f(y)$$

$$= \alpha fg(x) + (1-\alpha)fg(y) - (\alpha-\alpha^2)fg(x) - (\alpha-\alpha^2)fg(y)$$

$$+ \alpha (1-\alpha)f(x)g(y) + \alpha (1-\alpha)g(x)f(y)$$

$$= \alpha fg(x) + (1-\alpha)fg(y)$$

$$+ \alpha (1-\alpha)(f(x)g(y) + g(x)f(y) - fg(x) - fg(y))$$

$$= \alpha fg(x) + (1-\alpha)fg(y) + \alpha (1-\alpha)(g(x) - g(y))(f(y) - f(x))$$

 $> \alpha f q(x) + (1 - \alpha) f q(y)$

since f and g have different monotony, (g(x)-g(y)) and (f(y)-f(x)) have the same sign, and their product is greater than or equal to 0

Therefore, fg is concave.

(c) Let f be a convex, nondecreasing, and positive function of \mathbb{R} , and let g be a concave, nonincreasing, and positive function of \mathbb{R} .

Since g is concave, nonincreasing and positive, then $h = \frac{1}{g}$ is convex, nondecreasing and positive. Using the result of question (a), $fh = \frac{f}{g}$ is convex.

Exercise 3.36

(a) Let f be defined on \mathbb{R}^n as $f(x) = \max_{i=1,\dots,n} x_i$.

Its conjugate is written as:

$$f^{*}(y) = \sup_{x \in dom(f)} (y^{T}x - f(x))$$
$$= \sup_{x \in \mathbb{R}^{n}} (\sum_{i=1}^{n} x_{i}y_{i} - \max_{i=1,\dots,n} x_{i})$$

- If $y_i = 0$ for all i then $f^*(y) = \sup_{x \in \mathbb{R}^n} (-\max_{i=1,\dots,n} x_i) = +\infty$ (by choosing $x = u\mathbf{1}$ with $u \to -\infty$)
- If there is one index j such as $y_j < 0$, then by looking at the x of the form $x = u\mathbf{e_j}$, we have : $f^*(y) \ge sup_u(x^Ty \max(0, u)) = \sup_u(uy_j \max(0, u)) = +\infty$ when $u \to -\infty$.
- Let's admit that all the components of y are positive, and at least one is strictly positive.
 - If $\sum_{i=1}^n y_i > 1$, then by looking at the x of the form $x = u\mathbf{1}$, we have : $f^*(y) \ge \sup_u (x^T y u) = \sup_u ((\sum_{i=1}^n y_i 1)u) = +\infty$ when $u \to +\infty$.
 - If $\sum_{i=1}^n y_i < 1$, then by looking at the x of the form $x = u\mathbf{1}$, we have : $f^*(y) \ge \sup_u (x^T y u) = \sup_u ((\sum_{i=1}^n y_i 1)u) = +\infty$ when $u \to -\infty$.
 - If $\sum_{i=1}^n y_i = 1$, and by writing $X = \max_{i=1,\dots,n} x_i$ we have : $f^*(y) = \sup_{x \in \mathbb{R}^n} (x^Ty X) \leq \sup_{x \in \mathbb{R}^n} (X(\sum_{i=1}^n y_i 1)) = 0$ Since $f^*(\mathbf{0}_n) = 0$, then the conjugate is always 0 in this case.

To conclude, we can define f^* as :

$$f^*(y) = \begin{cases} 0, & \text{if } y \succ 0 \text{ and } \sum_{i=1}^n y_i = 1\\ +\infty, & \text{otherwise} \end{cases}$$

(b) Let f be defined on \mathbb{R}^n as $f(x) = \sum_{i=1}^r x_{[i]}$ the sum of the r largest components of x.

Its conjugate is written as:

$$f^*(y) = \sup_{x \in dom(f)} (y^T x - f(x))$$
$$= \sup_{x \in \mathbb{R}^n} (\sum_{i=1}^n x_i y_i - \sum_{i=1}^r x_{[i]})$$

- If $y_i = 0$ for all i then $f^*(y) = \sup_{x \in \mathbb{R}^n} (-\sum_{i=1}^r x_{[i]}) = +\infty$ (for example, by choosing $x = u\mathbf{1}$ with $u \to -\infty$)
- If there is one index j such as $y_j < 0$, then by looking at the x of the form $x = u\mathbf{e_j}$, we have : $f^*(y) \ge \sup_{u} (x^T y \sum_{i=1}^r x_{[i]})$.
 - If r < n, $\sup_{u} (uy_j \max(0, u)) = +\infty$ when $u \to -\infty$.
 - If r = n, $\sup_{u} (uy_i u) = +\infty$ when $u \to -\infty$.

- If there is one index j such as $y_j > 1$, then by looking at the x of the form $x = u\mathbf{e_j}$ with u > 0, we have $: f^*(y) \ge \sup_u (x^T y \sum_{i=1}^r x_{[i]}) = \sup_u (u(y_j 1)) = +\infty$ when $u \to +\infty$.
- Let's admit that $1 \succeq y \succ 0$.
 - If $\sum_{i=1}^n y_i > r$, then by looking at the x of the form $x = u\mathbf{1}$, we have : $f^*(y) \geq \sup_u (x^Ty ru) = \sup_u ((\sum_{i=1}^n y_i r)u) = +\infty$ when $u \to +\infty$.
 - If $\sum_{i=1}^n y_i < r$, then by looking at the x of the form $x = u\mathbf{1}$, we have : $f^*(y) \ge \sup_u (x^T y ru) = \sup_u ((\sum_{i=1}^n y_i r)u) = +\infty$ when $u \to -\infty$.
 - If $\sum_{i=1}^n y_i = r$, we have : $f^*(y) = \sup_{x \in \mathbb{R}^n} (x^T y ru) \le \sup_{x \in \mathbb{R}^n} (u(\sum_{i=1}^n y_i r)) = 0$ Since $f^*(\mathbf{0}_n) = 0$, then the conjugate is always 0 in this case.

To conclude, we can define f^* as :

$$f^*(y) = \begin{cases} 0, & \text{if } 1 \succeq y \succ 0 \text{ and } \sum_{i=1}^n y_i = r \\ +\infty, & \text{otherwise} \end{cases}$$

(c) Let f be defined on \mathbb{R} as $f(x) = \max_{i=1,...,m} (a_i x + b_i)$. We assume that the a_i are sorted in increasing order, and that none of the functions $a_i x + b_i$ is redundant, i.e., for each k there is at least one x with $f(x) = a_k x + b_k$.

Its conjugate is written as:

$$f^{*}(y) = \sup_{x \in dom(f)} (y^{T}x - f(x))$$
$$= \sup_{x \in \mathbb{R}} (xy - \max_{i=1,...,m} (a_{i}x + b_{i}))$$

- If y = 0 then $f^*(y) = \sup_{x \in \mathbb{R}^n} (-\max_{i=1,...,m} (a_i x + b_i)) = +\infty$ (obtained when $x \to -\infty$ or $x \to +\infty$, depending on the sign of the a_i).
- If $y < a_1$ then $f^*(y) = \sup_{x \in \mathbb{R}^n} (-\max_{i=1,\dots,m} ((a_i y)x + b_i)) = +\infty$ when $x \to -\infty$.
- If $y > a_m$ then $f^*(y) = \sup_{x \in \mathbb{R}^n} (-\max_{i=1,\dots,m} ((a_i y)x + b_i)) = +\infty$ when $x \to +\infty$.
- We suppose that $a_1 \leq y \leq a_m$.

We have
$$: f^*(y) = \sup_{x \in \mathbb{R}^n} (-\max_{i=1,...,m} ((a_i - y)x + b_i)).$$

To distinguish the a_i cases, we look at the break-points x_i of f. They happen at x_i when $a_ix_i + b_i = a_{i+1}x_i + b_{i+1}$,

therefore $x_i = \frac{b_{i+1} - b_i}{a_i - a_{i+1}}$ is the breakpoint between $f(x) = a_i x + b_i$ and $f(x) = a_{i+1} x + b_{i+1}$.

As a consequence, for $a_k \leq y \leq a_{k+1}$, and by distinguishing the cases $x \in [x_i, x_{i+1}]$, we can write:

$$\begin{split} f^*(y) &= \max_i (\sup_{x \in [x_i, x_{i+1}]} (-\max_{j=1, \dots, m} ((a_j - y)x + b_j))) \\ &= \max_i (\sup_{x \in [x_i, x_{i+1}]} ((y - a_{i+1})x - b_{i+1})) \\ &= (y - a_k)x_k - b_k \\ &\text{since } a_k x_k + b_k = a_{k+1} x_k + b_{k+1} \\ &\text{and } x_{i+1} \text{ maximizes the sup for when } k \geq i+1 \text{ (so we choose } i=k-1 \text{ for the max);} \\ &\text{and } x_i \text{ when } k \leq i \text{ (so we choose } i=k \text{ for the max).} \end{split}$$

To conclude, we can define f^* as :

$$f^*(y) = \begin{cases} (y - a_k) \frac{b_{k+1} - b_k}{a_k - a_{k+1}} - b_k, & \text{if } y \in [a_k, a_{k+1}] \\ +\infty, & \text{otherwise} \end{cases}$$

(d)
$$p > 1$$

Let f be defined on \mathbb{R}_{++} as $f(x) = x^p$ where p > 1.

Its conjugate is written as:

$$f^*(y) = \sup_{x \in dom(f)} (y^T x - f(x))$$
$$= \sup_{x \in \mathbb{R}_{++}} (xy - x^p)$$

- If $y \le 0$, $f^*(y) = \sup_{x \in \mathbb{R}_{++}} (x(y-x^{p-1}))$ with $(y-x^{p-1}) \le 0$. Therefore, the value of the sup is 0, reached when $x \to 0$.
- If y>0, let's define a function g_y by $g_y(x)=xy-x^p$. g_y reaches an extremum for $g_y'(x)=0$, i.e $y-px^{p-1}=0$, i.e $x=(\frac{y}{p})^{\frac{1}{p-1}}$ on \mathbb{R}_{++} . Since g_y is concave $(g_y''(x)=-p(p-1)x^{p-2}\leq 0)$ on \mathbb{R}_{++} , its sup is reached at this point.

As a consequence,

$$f^*(y) = y(\frac{y}{p})^{\frac{1}{p-1}} - (\frac{y}{p})^{\frac{p}{p-1}}$$
$$= p(\frac{y}{p})^{\frac{1}{p-1}+1} - (\frac{y}{p})^{\frac{p}{p-1}}$$
$$= (p-1)\left(\frac{y}{p}\right)^{\frac{p}{p-1}}.$$

To conclude, we can define f^* as :

$$f^*(y) = \begin{cases} (p-1) \left(\frac{y}{p}\right)^{\frac{p}{p-1}}, & \text{if } y > 0\\ 0, & \text{otherwise} \end{cases}$$

(d) p < 0

Let f be defined on \mathbb{R}_{++} as $f(x) = x^p$ where p < 0.

Its conjugate is written as:

$$f^*(y) = \sup_{x \in dom(f)} (y^T x - f(x))$$
$$= \sup_{x \in \mathbb{R}_{++}} (xy - x^p)$$

- If y>0, $f^*(y)=\sup_{x\in\mathbb{R}_{++}}(x(y-x^{p-1}))$ with $(y-x^{p-1})\to y$ when $x\to+\infty$. Therefore, the value of the sup is $+\infty$, reached when $x \to +\infty$.
- If $y \le 0$, let's define a function g_y by $g_y(x) = xy x^p$. g_y reaches an extremum for $g_y'(x)=0$, i.e $y-px^{p-1}=0$, i.e $x=-(\frac{-y}{p})^{\frac{1}{p-1}}$ on \mathbb{R}_{++} . Since g_y is concave on \mathbb{R}_{++} , its sup is reached at this point. As a consequence, $f^*(y) = -(p-1)\left(\frac{-y}{p}\right)^{\frac{p}{p-1}}$.

To conclude, we can define
$$f^*$$
 as :
$$f^*(y) = \begin{cases} -(p-1)\left(\frac{-y}{p}\right)^{\frac{p}{p-1}}, & \text{if } y \leq 0 \\ +\infty, & \text{otherwise} \end{cases}$$