Xiangbei Liu

OBJECTIVE

Machine learning researcher with a strong engineering background and broad expertise in machine learning, including generative models, natural language processing, and data-driven optimization, seeking a Machine Learning Engineer opportunity. Passionate about bridging cutting-edge research with real-world applications, delivering robust and scalable solutions for complex challenges.

EDUCATION

Dartmouth College, Ph.D. Candidate in Engineering

Awarded Dean's Fellowship (Thayer School of Engineering, Sept 2022)

University of California, San Diego (UCSD), M.S. in Mechanical Engineering

GPA 3.88/4.0

Dalian University of Technology (DUT), B.S. in Mechanical Engineering

GPA 3.64/4.0, Graduated in the top 5% of the class

Aug 2022 – Expected Jun 2026 Hanover, NH Sept 2020 - Aug 2022 San Diego, CA Sept 2016 - Jun 2020

SKILLS

Languages: Python, C++, C, SQL, JavaScript, MATLAB, APDL, R

Tools: PyTorch, Tensorflow, Git, Docker, CUDA, AWS, ANSYS, Abaqus, LabView, SolidWorks, AutoCAD, SLA, SEM, EDS

EXPERIENCE

Research Assistant, Thayer School of Engineering, Dartmouth College

Aug 2022 - Present

Dalian, China

- Devising an NLP-inspired transformer model to predict material properties of high-entropy alloy (Funded by Sandia)
- Designed transfer learning strategies to accelerate metamaterial property calculations, achieving the same accuracy while using only 5% of the data, and built a JavaScript-based web page to visualize the design
- Invented a few-shot learning-based variational autoencoder, effectively utilizing an extremely unbalanced dataset, leading to a **130-fold** increase in generative efficiency (*Funded by NSF*)
- Developed a genetic algorithm to optimize titanium processing parameters, improving mechanical properties by 50%
- Designed, prototyped, and 3D printed piezoelectric and thermoelectric materials and devices, achieving a **10× increase** in sensitivity and **66% higher** energy harvesting efficiency (*Funded by NASA*)

Research Assistant, Jacobs School of Engineering, UCSD

Sept 2020 – Aug 2022

- Devised a reconstruction-error-minimizing generative adversarial network for airfoil shape parameterization, achieving **over 20%** improvement in capturing the design space of real airfoils (*Funded by NASA*)
- Implemented a modified Sobolev-trained neural network to predict aerodynamic coefficients for airfoil designs, improving predictive accuracy by 16% compared to the benchmark model
- Collaborated on developing an open-source framework for non-matching isogeometric shell coupling, utilizing FEniCS on Linux and ensuring deployment compatibility with Docker
- Developed the API and implementation code for a Python-C++ integrated package of a parametrically-driven geometry modeler for generating unstructured meshes and streamlining the eVTOL design process (*Funded by NASA*)

Undergraduate Researcher, University of California, Irvine

Sept 2019 - June 2020

- 3+1 Study Abroad Program, GPA: 3.78/4.0
- Implemented real-time trajectory control and navigation algorithms for UAVs
- · Conducted microfabrication and mechanical characterization of micro-resonators for semiconductor and MEMS applications

Undergraduate Researcher, School of Mechanical Engineering, DUT

Sept 2017 - Mar 2019

- Implemented a MATLAB backpropagation neural network to predict long-term population distribution geographical spread of speakers for ten languages; awarded *Honorable Mention in Interdisciplinary Contest in Modeling (USA)*
- Engineered a lightweight gantry for obstacle avoidance and target capture and programmed using an STM32 microcontroller; awarded Second-class Prize in National College Mechanical Innovation Design Competition (China)

SELECTED PUBLICATIONS (Cited 56 times)

Liu, X., Zhao, H., et al. (2024). Few-shot learning-based generative design of metamaterials with zero Poisson's ratio. Materials & Design, 113224.

Ruh, M. L., **Liu, X.**, et al. (2023). Airfoil shape parameterization using reconstruction-error-minimizing generative adversarial networks. In AIAA AVIATION 2023 Forum (p. 3722).

Zhao, H., **Liu, X.**, et al. (2022). An open-source framework for coupling non-matching isogeometric shells with application to aerospace structures. Computers & Mathematics with Applications, 111, 109-123.

COMMUNITY INVOLVEMENT

Vice President of Client Network & Outreach, Dartmouth Graduate Consulting Group

Sept 2023 - Present

• Developed a sustainable business model for an Al-clone video creation platform and expanded the client network

Manager and Coordinator, Thayer Gear

Sept 2022 – Present

Managing B2B sales of branded merchandise to the Thayer School community and increased sales 10-fold