Probabilistic Scene Understanding using Virtual Reality and Markov Logic Networks

Dominik Dieckmann

Institute for Artificial Intelligence University Bremen

18.12.2018

Autonomous Robots in Houshold Environments

- perception component
 - detect objects
 - analyse objects
- reasoning component
 - identify/classify objects based on their visual cues
 - needs to be trained

Creation of Training Data

time and resource intensive:

- manually creating scenarios and images
- no groundtruth
- \rightarrow synthetic images from a game engine

System Setup

- list of objects, classes and scenarios
- ► UNREAL ENGINE to create *Unreal Images*
- ► ROBOSHERLOCK analysis the images
- ► learn a Markov Logic Network
- classify the objects in the images

Unreal Engine

- photorealism
- rendering in realtime
- open source

Unreal Images

- Assets
 - scanned 3D-models of the objects
 - kitchen environment
- URoboVision plugin
 - create RGBD image from a scene
 - create ObjectImage and ObjectMap
 - send them to ROBOSHERLOCK
- RSpawnBox class
 - visual representation of scene space
 - rotates camera around the scene

Unreal Images

- ▶ 114 scenes
- ▶ 2 5 objects per scene
- ▶ 5 viewpoints per scene
- only objects of one scenario per scene
- ▶ total of 570 images

RoboSherlock

- ▶ based on *UIMA*
- segments images and creates object hypotheses
- annotates attributes of the hypotheses

Perceptionpipeline

Annotates the following attributes:

- color
- size
- shape
- goggles_{Logo, Text, Product}
- instance
- object

UnrealGTAnnotator

Annotates the groundtruth by:

- counting the color of pixels in the ObjectImage
- looking up the corresponding asset
- looking up the groundtruth for that asset
- setting the groundtruth

Markov Logic Networks

- consists of formulas and real-valued weights
- describes a Markov Network with a joint probability distribution
- is able to:
 - model relations between objects
 - compensate inconsistencies
 - reason about every aspect represented in the model
- used Toolbox: PRACMLN

PR2 Looking at Things

Experiments:

- ► ROBOSHERLOCK + MLNs
- ▶ 50 images
- 21 object categories
- 4 scenarios

Results:

- Annotators are complementary
- classification rate of 69%

Experiments

MLN model:

Experiments

some results

Conclusion

it just works