Lista de Exercícios 2.1

- 1. Num experimento para comparar 5 tratamentos com 6 observações para cada um deles, foi calculada a soma de quadrados entre os tratamentos 8.07 e a soma de quadrados do erro 25.33. Ao nível de significância de 10%, existe evidência para rejeitar que as 5 médias são iguais?
- 2. A seguinte tabela foi construída a partir de um experimento balanceado com um único fator.

Fonte de variação	gl	Soma de quadrados	Quadrados médios	F_{obs}
Tratamentos	a	b	c	d
Erro	e	1368.00	45.60	
Total	34	1774.74		

- (i) Calcule a, b, c, d e e; (ii) Quantos tratamentos tinha o experimento? Quantas observações por tratamento?; (iii) Com base nessa tabela, existe evidência para concluir que pelo menos duas das verdadeiras médias dos tratamentos são diferentes? Use $\alpha = 0.10$ e calcule também o p-valor do teste.
- 3. A seguinte tabela mostra o resultado de um experimento para comparar a efetividade de 6 inseticidas de tipo spray que foram aplicados em 12 ensaios cada um. Ao final de cada ensaio, a variável resposta é o número de insetos que permanecem vivos na amostra correspondente (esse conjunto de dados está disponível no **R**, basta digitar InsectSprays).

\mathbf{Spray}	$\operatorname{Contagens}$											
$\overline{\mathbf{A}}$	10	7	20	14	14	12	10	23	17	20	14	13
\mathbf{B}	11	17	21	11	16	14	17	17	19	21	7	13
\mathbf{C}	0	1	7	2	3	1	2	1	3	0	1	4
\mathbf{D}	3	5	12	6	4	3	5	5	5	5	2	4
${f E}$	3	5	3	5	3	6	1	1	3	2	6	4
\mathbf{F}	11	9	15	22	15	16	13	10	26	26	24	13

Analise os dados de forma a responder se existe diferença entre a efetividade dos 6 tipos de spray e, se existir, quais seriam os tipos diferentes. Use $\alpha=0.05$ para todos os testes e intervalos de confiança necessários. Verifique graficamente ou de outra forma se os supostos de homoscedasticidade (variâncias iguais dentro de cada spray) e normalidade são adequados para esses dados.

4. (Bussab e Morettin). A seção de treinamento de uma empresa quer saber qual de três métodos de ensino é mais eficaz. O encarregado de responder a essa pergunto pode dispor de 24 pessoas para verificar a hipótese. Ele as dividiu em três grupos de oito pessoas, de modo aleatório, e submeteu cada grupo a um dos métodos. Após o treinamento os 24 participantes foram submetidos a um mesmo teste, cujos resultados estão na tabela abaixo (quanto maior a nota, melhor o resultado). Quais seriam as conclusões sobre os métodos de treinamento?

Método 1	Método 2	Método 3		
3 8	4 7	6 7		
5 4	4 4	7 9		
2 3	3 2	8 10		
4 9	8 5	6 9		
$\sum_{j} y_{1,j} = 38$	$\sum_{j} y_{2,j} = 37$	$\sum_{j} y_{3,j} = 62$ $\sum_{i} y_{3,i}^{2} = 396$		
$\sum_{j} y_{1,j}^2 = 224$	$\sum_{j}^{3} y_{2,j}^2 = 199$	$\sum_{j}^{7} y_{3,j}^2 = 396$		

5. (Devore). Seis amostras para cada um de quatro tipo de cereais foram analizadas para determinar o conteúdo de tiamina, resultando nos seguintes dados (em $\mu g/g$):

Trigo	5.2	4.5	6.0	6.1	6.7	5.8
Cevada	6.5	8.0	6.1	7.5	5.9	5.6
Milho	5.8	4.7	6.4	4.9	6.0	5.2
Aveia	8.3	6.1	7.8	7.0	5.5	7.2

Esses dados sugerem que o verdadeiro conteúdo médio de tiamina é diferente para pelo menos dois dos quatro tipos de cereais? Use $\alpha = 0.05$.

- **6.** No modelo de Análise da Variância a um fator, mostre que $E(QM_{erro}) = \sigma^2$ quaisquer sejam as médias dos tratamentos.
- 7. No modelo de Análise da Variância a um fator, explique porque espera-se que o QM_{trat} seja maior do que o QM_{erro} quando pelo menos duas médias dos tratamentos são diferentes.

Algumas Soluções

```
1. F_{obs} \doteq 1.991, F_{4,25;0.10} \doteq 2.184, portanto não rejeitamos H_0. O p-valor é P(F_{4,25} >
F_{obs}) \doteq 0.127.
2. (i) e = 30, a = 4, b = 406.74, c = 101.685, d = 2.230; (ii) I = 5 tratamentos,
J=7 replicações; (iii) F_{4,30;0.10} \doteq 2.142 < 2.230 \doteq F_{obs}, portanto temos evidência para
rejeitar H_0 (pelo menos duas médias são diferentes); o p-valor é P(F_{4,30} > F_{obs}) \doteq 0.089.
4.
> metodo<-as.factor(rep(c(1,2,3),times=c(8,8,8)))
> nota<-c(3,8,5,4,2,3,4,9,
+ 4,7,4,4,3,2,8,5,
+ 6,7,7,9,8,10,6,9)
> summary(aov(nota~metodo))
             Df Sum Sq Mean Sq F value Pr(>F)
                 50.08 25.042
                                    6.053 0.0084 **
metodo
Residuals
             21
                 86.87
                           4.137
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
5.
> cereal <- as. factor(rep(c(1,2,3,4), times=c(6,6,6,6)))
> tiamina<-c(5.2,4.5,6.0,6.1,6.7,5.8,
+ 6.5,8.0,6.1,7.5,5.9,5.6,
+ 5.8,4.7,6.4,4.9,6.0,5.2,
+ 8.3,6.1,7.8,7.0,5.5,7.2)
> summary(aov(tiamina~cereal))
             Df Sum Sq Mean Sq F value Pr(>F)
                         2.9944
                                    3.957 0.0229 *
cereal
              3 8.983
Residuals
             20 15.137
                         0.7568
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```