

Reason-RFT: Reinforcement Fine-Tuning for Visual Reasoning

Technical University of Munich Bivek Panthi Munich, 16th July 2025

Overview

- 1 Background
- 2 Motivation
- 3 Methodology
- 4 Experimental Setup
- 5 Results
- 6 Training Insights
- 7 Advantages

Fig: VLM [1]

Background: Supervised Fine-Tuning with Chain-of-Thought data

Background: Group Relative Policy Optimization

Motivation

Existing Approach

causes overfitting and cognitive rigidity, limiting cross-domain generalization

Reason-RFT Proposal

CoT data in SFT to activate reasoning capabilities

generate diverse reasoning-response pairs, improving generalization.

Fig: Framework of Reason-RFT [3]

Fig: Framework of Reason-RFT [3]

prevent the policy model from drifting too far from reference policy

 $R_{Acc} = \begin{cases} 1 \\ 0 \end{cases}$

 $\begin{array}{c} Answer = GT \\ otherwise \end{array}$

- Mathematical Accuracy Reward

Prompt: You are a visual geometry expert. Given the <image>, you should solve the problem as shown below: {problem}, and provide the answer in LaTeX format or as a floating-point number?

GT: <answer> 3.14 or π (as example) <answer>

$$R_{Acc} =
 \begin{cases}
 1, \\
 COSINE Type, \\
 0,
 \end{cases}$$

 $\begin{aligned} |Answer-GT| &< \epsilon_1 * |GT| \\ between & \epsilon_1 * |GT| \ and \ \epsilon_2 * |GT| \\ |Answer-GT| &> \epsilon_2 * |GT| \end{aligned}$

Function-based Accuracy Reward -

Prompt: You are a spatial visual reasoning expert. Given the center-view <image> of initial state, the center-view <image> (or the left-view <image> or the right-view <image>) of final state, and the {Function List}, you should determine a sequence of transformations that can achieve the final state.

GT: <answer> {sequence of function-type steps} <answer>

 $R_{Acc} = Full \text{ matching reward} + Partial \text{ matching reward}$

ТШП

Results

COT-SFT:

<think>Let me think about the properties of a standard six-sided die. On a six-sided die, each number from 1 to 6 is opposite to another number. The sum of the numbers on opposite sides is always 7. Number 4 is opposite to number 2 because 4 + 2 = 6, and the sum of 6 and 1 is 7. Therefore, the number directly opposite to number 4 is 2.

Question: Based on the image, determine which number is directly opposite to number 4 on the die depicted. Use reasoning to arrive at the correct answer from the choices provided. Choices: A. 1 B. 2 C. 3 D. 6

Reason-RFT:

<think>Let's analyze the image. The numbers shown are 2, 3, and 4. To find the number opposite to 4, we need to consider the properties of a standard six-sided die. On a die, opposite numbers add up to 7. Since 4 is opposite to 3, we can conclude that the number opposite to 4 is 3.

<answer>C</answer>

<answer>B</answer>

ТЩ

Experimental Setup: Task Categories

Fig: Example of Visual Counting [3]

Fig: Example of Structure Perception [3]

Experimental Setup: Task Categories

Results

Method	Visual Counting			Structure Perception			Spatial Transformation			
	Clevr-Math ID	Super-Clevr OOD	AVG	GeoMath ID	Geometry3k OOD	AVG	TRANCE ID	TRANCE-L	TRANCE-R	AVG
Proprietary Models										
GPT-40-2024-08-06 [26] Gemini-1.5-Pro [55]	68.10 61.80	34.31 37.50	51.20 49.65	50.18 50.12	43.49 48.38	46.83 49.45	42.55 26.22	28.67 18.76	29.76 19.88	35.88 22.77
Open-Source Models										
Qwen2.5-VL-3B-Instruct [5] Phi-3.5-Vision-4B-Instruct [1] Llava-OneVision-7B [35] Qwen2.5-VL-7B-Instruct [5] InternVL-2.5-8B [6] Llama-3.2-11B-Vision [44] Pixtral-12B [3]	75.90 21.40 69.70 74.60 93.50 10.30 42.60	39.30 15.20 29.10 35.20 35.30 9.50 22.90	57.60 18.30 49.40 54.90 64.40 9.90 32.75	36.75 36.83 77.63 44.00 63.00 13.75 30.38	37.44 50.25 43.66 45.61 47.32 20.85 36.09	37.09 43.54 60.64 44.80 51.60 17.30 33.23	8.57 7.42 10.00 19.63 7.19 8.22 7.35	8.26 2.45 8.33 13.12 6.62 8.40 5.03	8.31 4.02 8.74 13.42 6.63 9.03 5.22	8.42 5.33 9.27 16.45 6.91 8.47 6.42
Zero-Shot + ANS-SFT + CoT-SFT + Reason-RFT-Zero + Reason-RFT	82.40 96.20 85.50 98.40 96.80	32.00 39.20 46.50 44.80 51.20	57.20 67.70 66.00 71.60 74.00	25.86 51.34 43.05 47.68 49.03	20.63 22.50 25.25 32.50 33.13	23.25 36.92 34.15 40.09 41.08	3.78 77.39 64.37 42.13 74.61	4.60 49.24 43.19 34.07 64.05	4.67 50.33 42.86 33.41 64.08	4.35 <u>58.99</u> <u>50.14</u> 33.74 67.58
Qwen2VL-7B-Instruct										
Zero-Shot + ANS-SFT + CoT-SFT + Reason-RFT-Zero + Reason-RFT	98.60 95.00 87.30 99.40 95.60	42.10 33.90 42.40 53.00 51.00	70.35 64.45 64.85 76.20 73.30	43.30 51.34 50.49 55.00 59.27	43.88 25.38 33.00 54.75 49.25	43.59 38.36 41.75 54.88 54.26	13.53 82.19 <u>81.31</u> 67.67 79.97	12.72 <u>54.29</u> 47.90 57.20 59.36	12.78 <u>54.83</u> 47.80 56.15 58.61	13.01 63.77 59.00 56.68 65.98

Fig: Out-of-Domain generalization for spatial transformation [3]

Fig: more efficient utilization of training data [3]

Prompt: You are a visual counting expert. Given the <image> in front of you, if I remove all the blocks, then how many objects are there in the table?

Direct Response: The final answer is 5.

Reasoning Response: <think> Initially, there are 5 objects in the image: a yellow cylinder, a brown cube, a purple cylinder, a cyan sphere, and a gray cylinder. The brown cube is a block, so we need to remove it. The final answer is 5 - 1 = 4 </think> <answer> 4 </answer>

Training Insights

(a) reasoning token length during training on the Structure Perception task

(b) Accuracy Reward

Fig: Reasoning Redundancy [3]

Performance Improvement: It significantly outperforms mainstream VLMs in tasks like visual counting, structure perception, and spatial transformation.

Enhanced Generalization: It consistently surpasses SFT-only and RL-only paradigms across diverse tasks, validated through multi-dimensional evaluations.

Data Efficiency: It achieves over 95% of the performance of SFT-only approaches using less than 20% of the data.

Thank You!

References

- 1. https://huggingface.co/blog/vlms
- 2. DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models (https://arxiv.org/abs/2402.03300)
- 3. <u>https://arxiv.org/abs/2503.20752</u>