

Test

Data

1. Fundamental & Spurious Emission & Restrict band radiated emission

Horizontal

30-1000MHz

1000-3500MHz

Vertical

30-1000MHz

1000-3500MHz

2. Deactivating time

Pulse of "ON"

Date: 9.JUL.2013 16:14:24

Pulse of "OFF"

Date: 9.JUL.2013 16:23:05

3. Emission bandwidth

Date: 9.JUL.2013 16:30:45

Emission bandwidth = 50.00 kHz

1. Duty Cycle

Pulse Train of "ON"

Date: 9.JUL.2013 16:17:11

Long Pulse

Date: 9.JUL.2013 16:20:44

Short Pulse

Date: 9.JUL.2013 16:19:40

The coding have 10 long pulse and 15 short pulse.

Duty cycle= (10*0.610+15*0.210)/26.5=0.3491

As a result, the duty cycle of 0.3491 is taken into calculation.

Duty cycle correction factor =20 log (Ton/T)= 20 log 0.3491= -9.14dB

Pulse Train of "OFF"

Date: 9.JUL.2013 16:24:35

Long Pulse

Date: 9.JUL.2013 16:27:10

Short Pulse

Date: 9.JUL.2013 16:26:40

The coding have 13 long pulse and 12 short pulse.

Duty cycle= (13*0.610+12*0.210)/26.41=0.3957

As a result, the duty cycle of 0.3957 is taken into calculation.

Duty cycle correction factor =20 log (Ton/T)= 20 log 0.3957= -8.05dB