APP2 Oscillateurs Sinusoïdaux

Maxime Besacier – Sylvain Toru E2i4 – S7 2021-2022

Au programme aujourd'hui

- Objectifs
- Principe général : Comment se déclenche une oscillation ??
- L'importance de la distorsion
- Différentes structures d'oscillateurs

Objectifs de l'APP1

Objectif global : construire un émetteur FM pour votre radio pirate

• Objectif de l'APP2 (**4 séances + évaluation**) : réaliser un oscillateur qui permettra de générer la porteuse nécessaire à la transmission de l'information.

- Le principe général
 - Système contre réactionné

Oscillation: A une tension d'entrée nulle, on obtient en sortie une tension non nulle dont les caractéristiques dépendent des paramètres du système.

$$\frac{\mathbf{v}_{s}}{\mathbf{v}_{e}} = \infty \longrightarrow 1 + \mathbf{A}.\mathbf{B} = 0 \rightarrow \mathbf{A}.\mathbf{B} = -1$$

- Le principe général : Les conditions limites de Barkhausen
 - A(p) et B(p) sont les fonctions de transfert des systèmes direct et de retour

$$A(p).B(p) = -1 \longrightarrow \begin{cases} |A(p).B(p)| = 1 \\ Arg[A(p)] + Arg[B(p)] = (2k+1).\pi \end{cases}$$

- Le principe général
 - Origine de la tension de démarrage.

Liée à la notion de *bruit* dans les résistances: *Bruit blanc* (signal électrique possédant toutes les fréquences du spectre > 1000GHz).

Le principe général:

Lors de la mise sous tension, les tensions de bruit générées par les résistances vont être amplifiées par l'amplificateur. Ce bruit contient **toutes les fréquences** dont la pulsation \square_0 à laquelle on veut faire osciller le montage. Via la contre réaction, ce signal va être réinjecté en entrée et l'oscillation peut démarrer.

- Si à ω_0 $|A(j\omega_0)|.|B(j\omega_0)| < 1$, le signal tend à s'atténuer à chaque passage dans la boucle. Le bruit va s'atténuer
- Si à ω_0 $|A(j\omega_0)|.|B(j\omega_0)| > 1$, à chaque passage dans la boucle le bruit à ω_0 va s'amplifier. Un signal divergent à la pulsation ω_0 va apparaître en sortie
- Si à ω_0 $A(j\omega_0).B(j\omega_0) = -1$, le système sera à la limite de l'instabilité et une oscillation pourra démarrer.

Principe de la distorsion: Approximation du 1^{er} harmonique

- Soit le signal d'entrée $v_e(t) = Ve.cos(\omega_0.t)$. Si Ve est « de faible valeur » (système linéaire), alors $v_s(t) = Vs.cos(\omega_0.t+\varphi)$.
- Le gain $A = \frac{Vs}{Ve}$
- En cas de distorsion, $v_s(t) = V_1.cos(\omega_0.t) + V_2.cos(2.\omega_0.t) + V_3.cos(3.\omega_0.t) + ...$
- On défini le gain du 1^{er} harmonique $A_1 = \frac{V_1}{Ve}$
- Lorsque le niveau du signal d'entrée augmente, le signal de sortie se rapproche de plus en plus d'un signal carré dont l'amplitude V_1 du 1^{er} harmonique n'augmente plus. Le gain du 1^{er} harmonique diminue donc.

- Principe de la distorsion: Approximation au 1^{er} harmonique
- Conditions initiales: $|A_1(j\omega_0)|.|B(j\omega_0)| > 1$
- Tant que l'amplitude du signal à ω_0 est petite, on a une amplification linéaire et l'amplitude du signal de sortie augmente. Au bout d'un moment, le système sature et il y a distorsion, donc des signaux à $2.\omega_0$, $3.\omega_0$, etc... Apparaissent. Donc A_1 diminue et $|A_1(j\omega_0)|.|B(j\omega_0)| < 1$.
- Si l'amplitude du signal d'entrée diminue on retourne « vers » le régime linéaire le gain équivalent au 1^{er} harmonique augmente. $|A_1(j\omega_0)|$. $|B(j\omega_0)| > 1$

$$|A_1(j\omega_0)|.|B(j\omega_0)| = 1$$

→ Système stable dans son oscillation

Les non-linéarités

- Paramètres de caractérisation
 - La distorsion harmonique:

$$HD = \frac{V_i}{V_1} \quad i \ge 2$$

La distorsion harmonique totale

THD =
$$\frac{\sqrt{V_2^2 + V_3^2 + V_4^2 + ...}}{V_s}$$

Avec
$$V_s^2 = V_1^2 + V_2^2 + V_3^2 + V_4^2 \dots$$

la valeur efficace du signal (théorème de Parseval)

• Contrôle de l'amplitude du signal de sortie

- La qualité spectrale d'un oscillateur dépend du niveau de non linéarité.
- Naturellement, les non linéarités apparaissent lorsque l'amplificateur de l'oscillateur atteint son niveau de saturation. L'amplitude des oscillations est donc « imposée ».
- Afin de contrôler la qualité spectrale et l'amplitude des oscillations, on utilise des systèmes de contrôle de gain:
 - Thermistance
 - JFET en zone ohmique
- L'objectif est de faire diminuer la valeur du gain lorsque la tension de sortie de l'ampli augmente.

- Contrôle de l'amplitude du signal de sortie
 - Ex: Le pont de Wien: oscillateur basses fréquences

Condition de stabilité des oscillations :

- Fréquence : $\frac{1}{2\pi R.C}$

- Gain: $R_2 = 2.R_1$

• Le pont de Wien: illustration du JFET en zone ohmique

$$R_1 = 3.9k + (500k // R_{DS})$$

Finalement
$$\frac{R_2}{R_1}$$
 jusqu'à $\frac{R_2}{R_1} = 2$

• Les oscillateurs à réseau

A: Amplificateur

B: Sélection de fréquence (filtre, résonateur, Quartz, etc...)

IMPERATIF: Respecter les conditions de Barkhausen

$$|\mathbf{A}(\mathbf{p}).\mathbf{B}(\mathbf{p})| = 1$$

$$Arg[A(p)]+Arg[B(p)] = (2k+1).\pi$$

- · Les oscillateurs à réseau
- Remarque :
 - Possible rebouclage direct du réseau de réaction sur l'entrée de l'ampli.
 Adaptation de la représentation en schéma bloc:

$$\frac{\mathbf{v}_{\mathrm{s}}}{\mathbf{v}_{\mathrm{e}}} = \frac{\mathbf{A}}{1 - \mathbf{A}\mathbf{E}}$$

Conditions d'oscillation: A(p).B(p)=1

$$\begin{cases} |A(p).B(p)| = 1 \\ Arg[A(p)] + Arg[B(p)] = 2k\pi \end{cases}$$

- Les contraintes de l'APP
 - L'oscillateur doit être sinusoïdal et analogique
 - Un transistor 2n2222 est imposé pour réaliser l'oscillateur

Le planning de la séance

Durée	Tâches à réaliser durant la séance
1h	COURS D'INTRODUCTION SUR LES OSCILLATEURS SINUSOÏDAUX
2h	TRAVAIL PERSONNEL Objectif: Comprendre et approfondir le fonctionnement d'un oscillateur. Lecture des documentations techniques fournies par les tuteurs Recherche sur internet Choix de deux structures répondant au cahier des charges 1er livrable: Etablir une liste de question, que vous remettrez à votre tuteur au fil de l'eau NB: Attention à ne pas lire tous les documents de manière exhaustive, vous n'en auriez pas le temps
1h	PROMO ENTIERE Cours de restructuration Tri des questions et réponses détaillées Phase de discussion, s'assurer que tout le monde a bien compris.