

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

OF APPLIED MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

Planned Syllabus

Week	Topic	HW		
1 (9/3)	Introduction, Tensor algebra & analysis			
2 (9/10)	Description of deformation			
3 (9/17)	Description of deformation / BME Sport Day (educational break)			
4 (9/24)	Canceled			
5 (10/1)	Description of deformation			
6 (10/8)	Stress measures			
7 (10/15)	Hyperelasticity	HW 1		
8 (10/22)	1st Mid-term exam/test			
9 (10/29)	Hyperelasticity			
10 (11/5)	Hyperelasticity			
11 (11/12)	Velocity, acceleration, time derivatives			
12 (11/19)	Objectivity			
13 (11/26)	Fundamental principles			
14 (12/3)	2nd Mid-term exam/test HV			
Ratake week	Retake exams/tests 1 & 2			

www.mm.bme.hu

OF APPLIED MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

1. Tensor Algebra and Analysis

- 1. Tensor Algebra
- 2. Tensor Analysis

2. Continuum Mechanics

1. Description of deformation

- 1. Continuum concept
- 2. Configurations
- 3. Motion
- 4. Displacement
- 5. Deformation gradient
- 6. Stretch ratio
- 7. Standard 3D deformation and strain definitions
- 8. 1D deformation and strain measures
- 9. Linearization of deformation
- 10. Area changes
- 11. Volume changes
- 12. Angle changes
- 13.Isochoric/Volumetric split of the deformation gradient
- 14. Finite (large) rotations
- 15. Polar decomposition theorem
- 16.3D logarithmic strain
- 17. Generalized strain measures

2. Stress measures

- 1. 1D Engineering and Trues stress definitions
- 2. Body and surface forces
- 3. Cauchy stress tensor
- 4. 1st and 2nd Piola-Kirchhoff stress tensors
- 5. Other stress tensors
- 6. Normal and shear stresses
- 7. Deviatoric and hydrostatic stress

- 8. Stress triaxiality
- 9. Princpial stresses, principal invariants

3. Velocity, acceleration, time derivatives

- 1. Velocity and acceleration
- 2. Material time derivative
- 3. Velocity gradient, rate of deformation, spin
- 4. Rates of basic quantities

4. Objectivity

- 1. Superposed rigid body motion
- 2. Transformation of basic quantities
- 3. Objective rates
- 4. Hypoelasticity

5. Fundamental principles

- 1. Integral Theorems
- 2. Conservation of mass
- 3. Reynolds' transport theorem
- 4. Balance of linear and angular momentums
- 5. Principle of virtual work
- 6. Balance of mechanical energy

3. Hyperelasticity

- 1. Introduction
- 2. Various forms of the Hooke's law
- 3. Overview of scalar-valued tensor functions

4. Hyperelasticity

- 1. General form for the stress
- 2. Isotropic case
- 3. Incompressible isotropic case
- 4. Standard incompressible hyperelastic models
- 5. Standard homogeneous deformations
- 6. Parameter fitting
- 7. Slightly compressible hyperelastic models
- 8. Drucker stability

ENGINEERING

DEPARTMENT
OF APPLIED
MECHANICS

www.mm.bme.hu

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

4 Hyperelasticity

4.1 General form for the stress

• Small-strain (linearized deformation) formulation:

$$\sigma = \frac{\partial u}{\partial \varepsilon} \qquad stress = \frac{\partial (\text{strain energy})}{\partial (\text{strain})}$$

 $u(strain\ measure, mat.\ parameters) = \frac{1}{2}\varepsilon : \mathbf{D}^e : \varepsilon$

• Finite strain formulation:

$$S = \frac{\partial W}{\partial E}$$
strain energy per unit reference volume
$$S = \frac{\partial W}{\partial E}$$
Green-Lagrange strain

Main question: How to construct W?

 $W = W(strain\ measure, mat.parameters)$

ENGINEERING

www.mm.bme.hu

OF APPLIED
MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA $W = W(strain\ measure, mat.parameters)$

Strain/deformation tensors:

Stress tensors:

$$\sigma = \frac{1}{J} P F^{T} = \frac{1}{J} F S F^{T} = \frac{1}{J} \tau$$

$$P = J \sigma F^{-T} = F S = \tau F^{-T}$$

$$S = J F^{-1} \sigma F^{-T} = F^{-1} P = F^{-1} \tau F^{-T}$$

$$\tau = J \sigma = P F^{T} = F S F^{T} = \tau$$

OF APPLIED

MECHANICS

www.mm.bme.hu

FACULTY OF MECHANICAL ENGINEERING

DEPARTMENT OF APPLIED MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA Relation between *E* and *C* implies:

$$E = \frac{1}{2}(C - I)$$

$$C = 2E + I$$

Using the transformation rules between the stress measures, we can obtain other forms for the stress tensors:

$$S = F^{-1}P$$

$$\mathbf{P} = \mathbf{F} \frac{\partial W}{\partial \mathbf{E}}$$

$$\mathbf{P} = 2\mathbf{F} \frac{\partial W}{\partial \mathbf{C}}$$

$$S = JF^{-1}\sigma F^{-T}$$

$$\boldsymbol{\sigma} = \frac{1}{I} \boldsymbol{F} \frac{\partial W}{\partial \boldsymbol{E}} \boldsymbol{F}^T$$

$$\boldsymbol{\sigma} = \frac{2}{I} \boldsymbol{F} \frac{\partial W}{\partial \boldsymbol{C}} \boldsymbol{F}^T$$

$$\tau = J\sigma$$

$$\boldsymbol{\tau} = \boldsymbol{F} \frac{\partial W}{\partial \boldsymbol{E}} \boldsymbol{F}^T$$

$$\boldsymbol{\tau} = \boldsymbol{F} \frac{\partial W}{\partial \boldsymbol{C}} \boldsymbol{F}^T$$

www.mm.bme.hu

MECHANICS

If W is expressed with \boldsymbol{b} , then:

$$\boldsymbol{\sigma} = \frac{2}{J} \frac{\partial W}{\partial \boldsymbol{b}} \boldsymbol{b}$$

Furthermore, it can be shown, that

$$\boldsymbol{P} = \frac{\partial W}{\partial \boldsymbol{F}}$$

Conclusion: Once *W* is expressed as the function of *F* or *C* or *E* or *b* or any deformation/strain tensor, then all the stress tensors can be derived using transformation rules. But how should we define W?

FACULTY OF

MECHANICAL

 $\mathbf{P} = \frac{\partial W}{\partial \mathbf{F}} = \mathbf{F} \frac{\partial W}{\partial \mathbf{E}} = 2\mathbf{F} \frac{\partial W}{\partial \mathbf{C}}$ quantities in the respective for $\mathbf{\sigma} = \frac{1}{J} \mathbf{F} \frac{\partial W}{\partial \mathbf{E}} \mathbf{F}^T = \frac{2}{J} \mathbf{F} \frac{\partial W}{\partial \mathbf{C}} \mathbf{F}^T = \frac{2}{J} \mathbf{b} \frac{\partial W}{\partial \mathbf{b}} = \frac{2}{J} \frac{\partial W}{\partial \mathbf{b}} \mathbf{b}$

There is no "best" representation. They are equivalent but using different quantities in the representation!

$$\sigma =$$

$$\boldsymbol{\tau} = \boldsymbol{F} \frac{\partial W}{\partial \boldsymbol{E}} \boldsymbol{F}^T = 2\boldsymbol{F} \frac{\partial W}{\partial \boldsymbol{C}} \boldsymbol{F}^T = 2\boldsymbol{b} \frac{\partial W}{\partial \boldsymbol{b}} = 2 \frac{\partial W}{\partial \boldsymbol{b}} \boldsymbol{b}$$

FACULTY OF MFCHANICAL ENGINEERING

OF APPLIED MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

Copyright © Dr. Attila KOSSA

DEPARTMENT

OF APPLIED

MECHANICS

www.mm.bme.hu

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

Examples for stress formulations:

Linearized theory (small-strains):

$$\sigma = \frac{\partial u}{\partial \varepsilon}$$

Lagrangian form:

$$S = 2 \frac{\partial W}{\partial C}$$

Eulerian form:

$$\boldsymbol{\sigma} = \frac{2}{J} \frac{\partial W}{\partial \boldsymbol{b}} \boldsymbol{b}$$

Mixed form:

$$P = \frac{\partial W}{\partial F}$$

www.mm.bme.hu

OF APPLIED MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

4.2 Isotropic case

In case of isotropic behavior, W can be written using the principal invariants of the particular deformation and strain tensors:

$$W = W(I_1, I_2, I_3)$$

Denote the principal scalar invariants of *C* and *b*:

$$I_1 = \operatorname{tr} \boldsymbol{C} = \operatorname{tr} \boldsymbol{b}$$

$$I_2 = \frac{1}{2} \left(I_1^2 - \operatorname{tr}(\boldsymbol{C}^2) \right) = \frac{1}{2} \left(I_1^2 - \operatorname{tr}(\boldsymbol{b}^2) \right)$$

$$I_3 = \det \boldsymbol{C} = \det \boldsymbol{b}$$

Then, using the chain rule we find:

$$S = 2\frac{\partial W}{\partial C} = 2\left(\frac{\partial W}{\partial I_1}\frac{\partial I_1}{\partial C} + \frac{\partial W}{\partial I_2}\frac{\partial I_2}{\partial C} + \frac{\partial W}{\partial I_3}\frac{\partial I_3}{\partial C}\right) = 2\sum_{i=1}^{3} \frac{\partial W}{\partial I_i}\frac{\partial I_i}{\partial C}$$

Note, that

$$\frac{\partial I_1}{\partial \boldsymbol{C}} = \boldsymbol{I} \qquad \qquad \frac{\partial I_2}{\partial \boldsymbol{C}} = I_1 \boldsymbol{I} - \boldsymbol{C} \qquad \qquad \frac{\partial I_3}{\partial \boldsymbol{C}} = I_3 \boldsymbol{C}^{-1}$$

DEPARTMENT
OF APPLIED
MECHANICS

www.mm.bme.hu

MECHANICAL ENGINEERING

OF APPLIED

www.mm.bme.hu

MECHANICS

Copyright © Dr. Attila KOSSA To simplify the expressions, we introduce the following notations:

$$\frac{\partial W}{\partial I_1} = W_{,1} \qquad \frac{\partial W}{\partial I_2} = W_{,2} \qquad \frac{\partial W}{\partial I_3} = W_{,3}$$

Thus:

$$S = 2 \left[W_{,1} \frac{\partial I_1}{\partial \boldsymbol{C}} + W_{,2} \frac{\partial I_2}{\partial \boldsymbol{C}} + W_{,3} \frac{\partial I_3}{\partial \boldsymbol{C}} \right]$$

$$S = 2 \left[W_{,1} \boldsymbol{I} + W_{,2} (I_1 \boldsymbol{I} - \boldsymbol{C}) + W_{,3} I_3 \boldsymbol{C}^{-1} \right]$$

$$S = 2[(W_{,1} + I_1 W_{,2})I - W_{,2}C + I_3 W_{,3}C^{-1}]$$

Cauchy stress tensor:

$$\sigma = \frac{1}{J} F S F^{T} = \frac{2}{J} \left[(W_{,1} + I_{1} W_{,2}) F F^{T} - W_{,2} F C F^{T} + I_{3} W_{,3} F C^{-1} F^{T} \right]$$

$$\mathbf{F}\mathbf{C}\mathbf{F}^T = \mathbf{F}\mathbf{F}^T\mathbf{F}\mathbf{F}^T = \mathbf{b}^2$$
 $\mathbf{F}\mathbf{C}^{-1}\mathbf{F}^T = \mathbf{F}\mathbf{F}^{-1}\mathbf{F}^{-T}\mathbf{F}^T = \mathbf{I}$

$$\sigma = \frac{2}{I} [(W_{,1} + I_1 W_{,2}) b - W_{,2} b^2 + I_3 W_{,3} I]$$

ENGINEERING

OF APPLIED MECHANICS

www.mm.bme.hu

www.mm.bme.hu

MECHANICS

Copyright © Dr. Attila KOSSA

Therefore, the 2^{nd} P-K stress tensor can be written as

$$S = 2[(W_{,1} + I_1 W_{,2})I - W_{,2}C + I_3 W_{,3}C^{-1}]$$

 $I_1 = \text{tr}\boldsymbol{C} = \text{tr}\boldsymbol{b}$ Lagrangian form

$$I_2 = \frac{1}{2} \left(I_1^2 - \text{tr}(\boldsymbol{C}^2) \right) = \frac{1}{2} \left(I_1^2 - \text{tr}(\boldsymbol{b}^2) \right)$$

$$I_3 = \det \boldsymbol{C} = \det \boldsymbol{b}$$

Cauchy stress can be expressed as:

$$\sigma = \frac{2}{J} \left[(W_{,1} + I_1 W_{,2}) b - W_{,2} b^2 + I_3 W_{,3} I \right]$$

Eulerian form

$$W_{,1} = \frac{\partial W}{\partial I_1}$$

$$W_{,2} = \frac{\partial W}{\partial I_2}$$

$$W_{,3} = \frac{\partial W}{\partial I_3}$$

www.mm.bme.hu

OF APPLIED MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

Constitutive relation using the principal stretches

In this case, W is formulated as

$$W = W(\lambda_1, \lambda_3, \lambda_3)$$

The principal invariants I_1 , I_3 , I_3 can be expressed using the eigenvalues μ_1 , μ_3 , μ_3 of \boldsymbol{C} (or \boldsymbol{b}):

$$I_1 = \mu_1 + \mu_2 + \mu_3$$

$$I_2 = \mu_1 \mu_2 + \mu_1 \mu_3 + \mu_2 \mu_3$$

$$I_3 = \mu_1 \mu_2 \mu_3$$

Furthermore, we can use the identity $\mu_i = \lambda_i^2$, where λ_i with i = 1,2,3 are the principal stretches (eigenvalues of U and V).

$$I_{1} = \mu_{1} + \mu_{2} + \mu_{3} = \lambda_{1}^{2} + \lambda_{2}^{2} + \lambda_{3}^{2}$$

$$I_{2} = \mu_{1}\mu_{2} + \mu_{1}\mu_{3} + \mu_{2}\mu_{3} = (\lambda_{1}\lambda_{2})^{2} + (\lambda_{1}\lambda_{3})^{2} + (\lambda_{2}\lambda_{3})^{2}$$

$$I_{3} = \mu_{1}\mu_{2}\mu_{3} = (\lambda_{1}\lambda_{2}\lambda_{3})^{2} = J^{2}$$

DEPARTMENT OF APPLIED

MECHANICS

www.mm.bme.hu

DEPARTMENT OF APPLIED

MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

Using the chain rule, we find

$$\mathbf{S} = 2\frac{\partial W}{\partial \mathbf{C}} = 2\left(\frac{\partial W}{\partial \mu_1}\frac{\partial \mu_1}{\partial \mathbf{C}} + \frac{\partial W}{\partial \mu_2}\frac{\partial \mu_2}{\partial \mathbf{C}} + \frac{\partial W}{\partial \mu_3}\frac{\partial \mu_3}{\partial \mathbf{C}}\right) = 2\sum_{i=1}^{3} \frac{\partial W}{\partial \mu_i}\frac{\partial \mu_i}{\partial \mathbf{C}}$$

Note that

$$\frac{\partial W}{\partial \lambda_i} = \frac{\partial W}{\partial \mu_i} \frac{\partial \mu_i}{\partial \lambda_i} = \frac{\partial W}{\partial \mu_i} (2\lambda_i) \qquad \Longrightarrow \qquad \frac{\partial W}{\partial \mu_i} = \frac{1}{2\lambda_i} \frac{\partial W}{\partial \lambda_i}$$

$$\frac{\partial \mu_i}{\partial \boldsymbol{C}} = \boldsymbol{N}_i \otimes \boldsymbol{N}_i$$

 N_1, N_2, N_3 are the normalized eigenvectors of C

Substituting back, we get

$$S = 2\sum_{i=1}^{3} \frac{\partial W}{\partial \mu_{i}} \frac{\partial \mu_{i}}{\partial C} = 2\sum_{i=1}^{3} \frac{1}{2\lambda_{i}} \frac{\partial W}{\partial \lambda_{i}} N_{i} \otimes N_{i}$$

$$S = \sum_{i=1}^{3} \frac{1}{\lambda_i} \frac{\partial W}{\partial \lambda_i} N_i \otimes N_i$$

ENGINEERING

DEPARTMENT
OF APPLIED
MECHANICS

www.mm.bme.hu

OF APPLIED

www.mm.bme.hu

MECHANICS

Copyright © Dr. Attila KOSSA The normalized eigenvectors of *C* and *b* are related through the expression

$$\mathbf{n}_i = \frac{1}{\lambda_i}(\mathbf{F}\mathbf{N}_i) \qquad \qquad \mathbf{N}_i = \lambda_i(\mathbf{F}^{-1}\mathbf{n}_i)$$

$$N_i \otimes N_i = \lambda_i(F^{-1}n_i) \otimes \lambda_i(F^{-1}n_i) = \lambda_i^2(F^{-1}n_i) \otimes \lambda_i(n_iF^{-T})$$

$$N_i \otimes N_i = \lambda_i^2 F^{-1} (n_i \otimes n_i) F^{-T}$$

Thus, the stress expression can be formulated

$$S = \sum_{i=1}^{3} \frac{1}{\lambda_i} \frac{\partial W}{\partial \lambda_i} N_i \otimes N_i = \sum_{i=1}^{3} \lambda_i \frac{\partial W}{\partial \lambda_i} F^{-1} (n_i \otimes n_i) F^{-T}$$

Comparing the result with the transformation formula $S = JF^{-1}\sigma F^{-T}$, we find that

$$\boldsymbol{\sigma} = \sum_{i=1}^{3} \frac{1}{J} \lambda_{i} \frac{\partial W}{\partial \lambda_{i}} \boldsymbol{n}_{i} \otimes \boldsymbol{n}_{i}$$

www.mm.bme.hu

OF APPLIED MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

The spectral decomposition of the symmetric stress tensors S and σ :

$$\mathbf{S} = \sum_{i=1}^{3} \mathbf{S}_{i} \cdot \mathbf{N}_{i} \otimes \mathbf{N}_{i} \qquad \mathbf{\sigma} = \sum_{i=1}^{3} \mathbf{\sigma}_{i} \cdot \mathbf{n}_{i} \otimes \mathbf{n}_{i}$$

Therefore, the principal stresses can be expressed as

www.mm.bme.hu

OF APPLIED
MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA Summary:

$$S = 2[(W_{,1} + I_1 W_{,2})I - W_{,2}C + I_3 W_{,3}C^{-1}] = \sum_{i=1}^{3} \frac{1}{\lambda_i} \cdot \frac{\partial W}{\partial \lambda_i} N_i \otimes N_i$$

$$\boldsymbol{\sigma} = \frac{2}{J} \left[(W_{,1} + I_1 W_{,2}) \boldsymbol{b} - W_{,2} \boldsymbol{b}^2 + I_3 W_{,3} \boldsymbol{I} \right] = \frac{1}{J} \sum_{i=1}^{J} \lambda_i \cdot \frac{\partial W}{\partial \lambda_i} \boldsymbol{n}_i \otimes \boldsymbol{n}_i$$

$$S = \sum_{i=1}^{3} S_i \cdot N_i \otimes N_i$$

$$S_i = \frac{1}{\lambda_i} \cdot \frac{\partial W}{\partial \lambda_i}$$

$$\boldsymbol{\sigma} = \sum_{i=1}^{3} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{n}_{i} \otimes \boldsymbol{n}_{i}$$

$$\boldsymbol{\sigma}_{i} = \frac{1}{J} \lambda_{i} \cdot \frac{\partial W}{\partial \lambda_{i}}$$

Principal stresses

DEPARTMENT OF APPLIED

MECHANICS

www.mm.bme.hu

www.mm.bme.hu

OF APPLIED

MECHANICS

Copyright © Dr. Attila KOSSA

4.3 Incompressible isotropic case

• Incompressible Hooke's law:

$$\sigma = s + p = 2Ge + 3K\varepsilon_V$$

bulk modulus:
$$K = \frac{E}{3(1-2\nu)} = \infty \rightarrow \nu = 0.5$$

no volume change: $\boldsymbol{\varepsilon}_V = \mathbf{0}$

$$\mathbf{e} = \mathbf{\varepsilon} - \frac{1}{3} \operatorname{tr}[\mathbf{\varepsilon}] \mathbf{I} = \mathbf{\varepsilon}$$

$$\sigma = 2Ge + p$$

 $\sigma = 2G\varepsilon + p$

Cannot be determined from the constitutive equation

$$p \neq 0$$

www.mm.bme.hu

MECHANICS

DFPARTMENT **OF APPLIED MECHANICS**

www.mm.bme.hu

Copyright © Dr. Attila KOSSA Then, in this case:

$$\sigma =$$

$$\sigma = \text{dev}[\sigma] + \text{sph}[\sigma] = s + p$$

$$\sigma = \text{dev}[\sigma] + \text{sph}[\sigma] = s + p$$
 $\varepsilon = \text{dev}[\varepsilon] + \text{sph}[\varepsilon] = e + \varepsilon_V$

$$u = \frac{1}{2}\boldsymbol{\sigma} : \boldsymbol{\varepsilon} = \frac{1}{2}\boldsymbol{s} : \boldsymbol{e} + \frac{1}{2}\boldsymbol{p} : \boldsymbol{\varepsilon}_{\boldsymbol{V}} = \frac{1}{2}\boldsymbol{s} : \boldsymbol{e} = \frac{1}{2} (2G\boldsymbol{e}) : \boldsymbol{e} = G\boldsymbol{\varepsilon} : \boldsymbol{\varepsilon}$$

$$u = u_d + u_h$$

In the coordinate system of the principal directions:

$$u_d = G\varepsilon: \varepsilon = G(\varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^2)$$

$$\varepsilon_i = \lambda_i - 1$$

$$u_d = G(\lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 2(\lambda_1 + \lambda_2 + \lambda_3) + 3)$$

incompressible case: $\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = 0 \rightarrow \lambda_1 + \lambda_2 + \lambda_3 = 3$

$$u_d = G(\lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 3)$$

$$u_d = u_d(G, \lambda_1, \lambda_2, \lambda_3)$$

$$u = G(\lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 3)$$

DEPARTMENT **OF APPLIED MECHANICS**

www.mm.bme.hu

ENGINEERING

OF APPLIED

MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA • Incompressible Hyperelasticity:

No volume change:
$$J = 1$$

It implies that: $I_3 = (\lambda_1 \lambda_2 \lambda_3)^2 = 1$

No dependence on *J*:

$$W = W(I_1, I_2, I_3) \longrightarrow W = W(I_1, I_2)$$

Only the deviatoric stress can be obtained from the constitutive equation. *p* must be determined from the boundary conditions:

$$\sigma = \text{dev}[\sigma] + \text{sph}[\sigma] = s + p$$

$$\sigma = \text{dev}[2(W_{,1} + I_1W_{,2})b - 2W_{,2}b^2] + p$$

$$\boldsymbol{\sigma} = \operatorname{dev} \left| \sum_{i=1}^{3} \lambda_{i} \frac{\partial W}{\partial \lambda_{i}} \boldsymbol{n}_{i} \otimes \boldsymbol{n}_{i} \right| + \boldsymbol{p}$$

p = pI = ?

OF APPLIED MECHANICS

www.mm.bme.hu

OF APPLIED
MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

Alternative representation:

$$\sigma = \text{dev}[2(W_{,1} + I_1W_{,2})b - 2W_{,2}b^2] + p$$

$$p = \mathrm{sph}[\sigma]$$

$$\begin{bmatrix} \boldsymbol{p} \end{bmatrix} = \begin{bmatrix} \boldsymbol{p} & 0 & 0 \\ 0 & \boldsymbol{p} & 0 \\ 0 & 0 & \boldsymbol{p} \end{bmatrix}$$

It is deviatoric. It does not contain hydrostatic component.

$$\sigma = 2(W_{,1} + I_1 W_{,2})b - 2W_{,2}b^2 + \eta$$

It is not deviatoric.
It contains hydrostatic component too.

Unknown hydrostatic component

$$\eta \neq \operatorname{sph}[\boldsymbol{\sigma}]$$

$$[\boldsymbol{\eta}] = \begin{bmatrix} \eta & 0 & 0 \\ 0 & \eta & 0 \\ 0 & 0 & \eta \end{bmatrix}$$

$$\mathbf{p} = \operatorname{sph}[\boldsymbol{\sigma}] = \operatorname{sph}[2(W_{,1} + I_1 W_{,2})\boldsymbol{b} - 2W_{,2}\boldsymbol{b}^2] + \operatorname{sph}[\boldsymbol{\eta}]$$

www.mm.bme.hu

www.mm.bme.hu

MECHANICS

Copyright © Dr. Attila KOSSA

4.4 Standard incompressible hyperelastic models

► NEO-HOOKEAN 1 parameter

$$W(I_1) = C_{10}(I_1 - 3) = C_{10}(\lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 3)$$

incompressible Hooke's law: $u = G(\lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 3)$ $C_{10} \neq G \parallel \parallel$

MOONEY-RIVLIN2 parameters

$$W(I_1, I_2) = C_{10}(I_1 - 3) + C_{01}(I_2 - 3)$$

> YEOH 3 parameters

$$W(I_1) = C_{10}(I_1 - 3) + C_{20}(I_1 - 3)^2 + C_{30}(I_1 - 3)^3$$

► OGDEN 2*K* parameters

$$W(\lambda_1, \lambda_2, \lambda_3) = \sum_{k=1}^{K} \frac{2\mu_k}{\alpha_k^2} \left(\lambda_1^{\alpha_k} + \lambda_2^{\alpha_k} + \lambda_3^{\alpha_k} - 3\right)$$

For K = 1 and $\alpha_1 = 2$ it W = 0 degenerates to the NH model:

$$W = \frac{\mu_k}{2} (\lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 3)$$

ENGINEERING

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

There exist many more hyperelastic models !!!! For example:

Nano Materials Science

Volume 4, Issue 2, June 2022, Pages 64-82

A comparative study of 85 hyperelastic constitutive models for both unfilled rubber and highly filled rubber nanocomposite material

https://www.sciencedirect.com/science/article/pii/S2589965121000490

www.mm.bme.hu

MECHANICS

MECHANICAL

DEPARTMEN
OF APPLIED
MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

Model Name	Year	Strain Energy Function	
Woder Name	rear		MŰEGYETEM 1782
Mooney-Rivlin [49]	1940	$W = C_{10}(I_1 - 3) + C_{01}(I_2 - 3)$	BUDAPEST
Neo-Hookean [48]	1943	$W = C_{10}(I_1 - 3)$	UNIVERSITY OF
Isihara [51]	1951	$W = C_{10}(I_1 - 3) + C_{20}(I_1 - 3)^2 C_{01}(I_2 - 3)$	TECHNOLOGY
Biderman [52]	1958	$W = C_{10}(I_1 - 3) + C_{01}(I_2 - 3) + C_{20}(I_1 - 3)^2 + C_{30}(I_1 - 3)^3$	AND
James-Green-Simpson [53]	1975	$W = C_{10}(I_1 - 3) + C_{01}(I_2 - 3) + C_{11}(I_1 - 3)(I_2 - 3) + C_{20}(I_1 - 3)^2 + C_{30}(I_1 - 3)^3$	ECONOMICS
Haines-Wilson [54]	1979	$W = C_{10}(I_1 - 3) + C_{01}(I_2 - 3) + C_{11}(I_1 - 3)(I_2 - 3) + C_{02}(I_2 - 3)^2 + C_{20}(I_1 - 3)^2 + C_{10}(I_1 - 3)^2$	OF MECHANICA
		$C_{30}(I_1-3)^3$	
Yeoh [55]	1990	$W = \sum_{i=1}^{3} C_{i0} (I_1 - 3)^i$	
Lion [56]	1997	$W = C_{10}(I_1 - 3) + C_{01}(I_2 - 3) + C_{50}(I_1 - 3)^5$	
Haupt-Sedlan [57]	2001	$W = C_{10}(I_1 - 3) + C_{01}(I_2 - 3) + C_{11}(I_1 - 3)(I_2 - 3) + C_{02}(I_2 - 3)^2 + C_{30}(I_1 - 3)^3$	A SILIO
Hartmann-Neff [58]	2003	$W = \alpha(I_1^3 - 3^3) + \sum_{i=1}^{N} C_{i0}(I_1 - 3)^i + \sum_{j=1}^{N} C_{0j}(I_2^{3/2} - 3\sqrt{3})^j, N = 1, 2, 3$	FACULTY OF
Carroll [59]	2011	$W = AI_1 + BI_1^4 + CI_2^{1/2}$	MECHANICAL
Nunes [60]	2011	$W = C_1(I_1 - 3) + \frac{4}{3}C_2(I_2 - 3)^{3/4}$	ENGINEERING
Bahreman-Darijani [61]	2014	$W = A_2(I_1 - 3) + B_2(I_2 - 3) + A_4(I_1^2 - 2I_2 - 3) + A_6(I_1^3 - 3I_1I_2)$	
Zhao [62]	2019	$W = C_{-1}^{1}(I_{2}-3) + C_{1}^{1}(I_{1}-3) + C_{2}^{1}(I_{1}^{2}-2I_{2}-3) + C_{2}^{2}(I_{1}^{2}-2I_{2}-3)^{2}$	

DEPARTMENT OF APPLIED

MECHANICS

www.mm.bme.hu

ECONOMICS PROPERTY OF THE CHANGE AND THE CHANGE AN

FACULTY OF MECHANICAL ENGINEERING

DEPARTMENT OF APPLIED MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

Model Name	Year	Strain Energy Function
Knowles [65]	1977	$W=rac{\mu}{2b}igg(igg(1+rac{b(I_1-3)}{n}igg)^n-1igg)$
Swanson [66]	1985	$W = rac{3}{2} \sum_{i=1}^{N} rac{A_i}{1+lpha_i} igg(rac{I_1}{3}igg)^{1+lpha_i} + rac{3}{2} \sum_{i=1}^{N} rac{B_i}{1+eta_i} igg(rac{I_2}{3}igg)^{1+eta_i}, N = 1, 2, 3$
Yamashita-Kawabata [67]	1992	$W = C_1(I_1 - 3) + C_2(I_2 - 3) + \frac{C_3}{N+1}(I_1 - 3)^{N+1}$
Davis-De-Thomas [68]	1994	$W = rac{A}{2(1-n/2)}(I_1 - 3 + C^2)^{(1-n/2)} + k(I_1 - 3)^2$
Gregory [69]	1997	$W = rac{A}{2(1-n/2)}(I_1 - 3 + C^2)^{(1-n/2)} + rac{B}{2(1+m/2)}(I_1 - 3 + C^2)^{(1+m/2)}$
modified Gregory	2021	$W = rac{A}{1+lpha} (I_1 - 3 + M^2)^{1+lpha} + rac{B}{1+eta} (I_1 - 3 + N^2)^{1+eta}$
Beda [70]	2005	$W = \frac{C_1}{\alpha}(I_1 - 3)^{\alpha} + C_2(I_1 - 3) + \frac{C_3}{\varsigma}(I_1 - 3)^{\varsigma} + \frac{K_0}{\beta}(I_2 - 3)^{\beta}$
Amin [71]	2006	$W = C_1(I_1 - 3) + \frac{C_2}{N+1}(I_1 - 3)^{N+1} + \frac{C_3}{M+1}(I_1 - 3)^{M+1} + C_4(I_2 - 3)$
Lopez-Pamies [72]	2010	$W = \sum_{i=1}^{N} rac{3^{1-lpha_i}}{lpha_i} \mu_i(I_1^{lpha_i} - 3^{lpha_i}), N = 1, 2, 3$
gen-Yeoh [73]	2019	$W = K_1(I_1 - 3)^m + K_2(I_1 - 3)^p + K_3(I_1 - 3)^q$
Hart-Smith [74]	1966	$rac{\partial W}{\partial I_1}=G\exp[k_1\left(I_1-3 ight)^2], rac{\partial W}{\partial I_2}=Grac{k_2}{I_2}$
Veronda-Westmann [75]	1970	$W = C_1(e^{lpha(I_1-3)}-1) + C_2(I_2-3)$
Fung-Demiray [76,77]	1972	$W = \frac{\mu}{2b} (e^{b(I_1 - 3)} - 1)$
Vito [78]	1973	$W = \frac{\mu}{2b} (e^{b(\alpha(I_1-3)+(1-\alpha)(I_2-3))} - 1)$

ENGINEERING

DEPARTMENT OF APPLIED

MECHANICS

www.mm.bme.hu

DEPARTMENT OF APPLIED MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

ENGINEERING

DEPARTMENT OF APPLIED MECHANICS

www.mm.bme.hu

MECHANICAL ENGINEERING

OF APPLIED MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

Model Name	Year	Strain Energy Function
Warner [90]	1972	$W = -\frac{1}{2}\mu I_m \ln \left(1 - \frac{I_1 - 3}{I_m - 3}\right)$
Kilian [91]	1981	$W = -\mu J_L \left[\ln \left(1 - \sqrt{\frac{I_1 - 3}{J_L}} \right) + \sqrt{\frac{I_1 - 3}{J_L}} \right]$
Van der Waals [92–94]	1986	$\begin{bmatrix} \begin{pmatrix} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $
		$W=\muigg\{-(\lambda_m^2-3)[\ln(1-arTheta)+arTheta]-rac{2}{3}a\Big(rac{I-3}{2}\Big)^{\overline{2}}igg\}$
Gent [89]	1996	$W = -\frac{E}{6}(I_m - 3)\ln\left(1 - \frac{I_1 - 3}{I_m - 3}\right)$
Takamizawa-Hayashi [95]	1987	$W = -c \ln \left[1 - \left(\frac{I_1 - 2}{J_m} \right)^2 \right]$
Yeoh-Fleming [96]	1997	$W = \frac{A}{B}(I_m - 3) \left(1 - e^{-B} \frac{I_1 - 3}{I_m - 3}\right) - C_{10}(I_m - 3) \ln\left(1 - \frac{I_1 - 3}{I_m - 3}\right)$
3 Parameters Gent [97]	1999	$W = \frac{\mu}{2} \left[-\alpha (I_m - 3) \ln \left(1 - \frac{I_1 - 3}{I_m - 3} \right) + (1 - \alpha)(I_2 - 3) \right]$
Pucci-Saccomandi [98]	2002	$W = K \ln \left(\frac{I_2}{3}\right) - \frac{\mu}{2} J_m \ln \left(1 - \frac{I_1 - 3}{J_m}\right)$
Horgan-Saccomandi [99]	2004	$W = -rac{\mu}{2}J \ln \left[rac{J^2 - J^2 I_1 + J I_2 - 1}{\left(J - 1 ight)^3} ight]$
Beatty [100]	2007	$W = -c \frac{I_m(I_m-3)}{2I_m-3} \ln \left(\frac{1-(I_1-3)/(I_m-3)}{1+(I_1-3)/I_m} \right)$
Horgan-Murphy [101]	2007	$W = -rac{2\mu(I_m-3)}{c^2} \ln\left(1 - rac{\lambda_1^c + \lambda_2^c + \lambda_3^c - 3}{L-3} ight)$

DEPARTMENT OF APPLIED

MECHANICS

www.mm.bme.hu

ENGINEERING

DEPARTMENT
OF APPLIED
MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

Model Name	Year	Strain Energy Function
Valanis-Landel [102]	1967	$W=2\mu\sum_{i=1}^{3}\left[\lambda_{i}(\ln\lambda_{i}-1) ight]$
Peng-Landel [103]	1972	$W = E \sum_{i=1}^{3} \left[\lambda_i - 1 - \ln \lambda_i - \frac{1}{6} (\ln \lambda_i)^2 + \frac{1}{18} (\ln \lambda_i)^3 - \frac{1}{216} (\ln \lambda_i)^4 \right]$
Ogden [104]	1972	$W = \sum_{i=1}^{N} rac{2\mu_i}{lpha_i^2} (\lambda_1^{lpha_i} + \lambda_2^{lpha_i} + \lambda_3^{lpha_i} - 3)$
Attard [11]	2004	$W = \sum_{i=1}^{N} rac{A_i}{2i} [(\lambda_1)^{2i} + (\lambda_2)^{2i} + (\lambda_3)^{2i} - 3] + rac{B_i}{2i} [(\lambda_1)^{-2i} + (\lambda_2)^{-2i} + (\lambda_3)^{-2i} - 3], N = 1, 2, 3$
Shariff [106]	2000	$W = \sum_{i=1}^{3} \omega(\lambda_i), \omega(\lambda_i) = E \sum_{j=0}^{n} \alpha_j \varphi_j(\lambda_i)$
Arman-Narooei [107]	2014	$W = \sum_{i=1}^{N} A_i [e^{m_i(\lambda_1^{a_i} + \lambda_2^{a_i} + \lambda_3^{a_i} - 3)} - 1] + \sum_{j=1}^{N} B_j [e^{n_j(\lambda_1^{-eta_j} + \lambda_2^{-eta_j} + \lambda_3^{-eta_j} - 3)} - 1], N = 1, 2, 3$

Model Name	Year	Strain Energy Function
Continuum Hybrid [108]	2003	$W = K_1(I_1 - 3) + K_2 \ln \frac{I_2}{3} + \frac{\mu}{\alpha} (\lambda_1^{\alpha} + \lambda_2^{\alpha} + \lambda_3^{\alpha} - 3)$
Bechir-4term [109]	2006	$W = C_1^1(I_1-3) + \sum_{n=1}^2 \sum_{r=1}^2 C_n^r (\lambda_1^{2n} + \lambda_2^{2n} + \lambda_3^{2n} - 3)^r$
WFB [110]	2017	$W = \int_{1}^{L_{f}} \{F(\lambda_{1})A(\lambda_{1}e^{-BI_{1}}) + C(\lambda_{1}I_{1}^{-D})\} \left(\lambda_{1}^{2} - \frac{1}{\lambda_{1}}\right) d\lambda_{1}$

DEPARTMENT
OF APPLIED
MECHANICS

www.mm.bme.hu

FACULTY OF MECHANICAL ENGINEERING

DEPARTMENT OF APPLIED MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

2	Model Name	Year	Strain Energy Function	M Ű E G Y E T E M 1 7 8 2
	Gaussian [113]	1943	$W = \frac{1}{2}NkT(\lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 3)$	BUDAPEST
F	Affine [114–116]	1946	$W = \frac{G}{2}(\lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 3), G = vkT$	UNIVERSITY OF
,	Phantom [117,118]	1947	2	TECHNOLOGY
	Thantom [117,110]	1347	$W = rac{vkT}{2}igg(1-rac{2}{f}igg)(\lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 3), igg G_c = vkT(1-2/f)$	AND
	Edwards-Tube [119]	1967	$W = G_e(\lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 3)$	ECONOMICS
_	Slip-Link [120]	1981	$W = rac{1}{2} G_e \sum olimits_{i=1}^3 \left(rac{(1+\eta)(1-lpha^2) \lambda_i^2}{(1+\eta \lambda_i^2)(1-lpha^2 \sum_{i=1}^3 \lambda_i^2)} + \ln(1+\eta \sum_{i=1}^3 \lambda_i^2) ight)$	OF MECHANICALES
	Constrained Junctions [121,122]	1982	$W = W_{ph} + rac{ u kT}{2} \sum_t \left[\kappa rac{\lambda_t^2 - 1}{\lambda_t^2 + \kappa} + \ln \left(rac{\lambda_t^2 + \kappa}{1 + \kappa} ight) - \ln \lambda_t^2 ight]$	FACU
	Edwards-Vilgis [123]	1986	$W = rac{G_c}{2} \left[rac{(1-lpha^2)I_1}{1-lpha^2I_1} + \ln(1-lpha^2I_1) ight] + rac{1}{2} G_e \sum olimits_{i=1}^3 \left(rac{(1+\eta)(1-lpha^2)\lambda_i^2}{(1+\eta\lambda_i^2)(1-lpha^2\sum_{i=1}^3\lambda_i^2)} + \ln(1+\eta\sum_{i=1}^3\lambda_i^2) ight)$	FACULTY OF MECHANICAL
	MCC [124]	1989	$W = \frac{1}{2} \xi kT \sum_{i} (\lambda_{i}^{2} - 1) + \frac{1}{2} \mu kT \sum_{i} [B_{t} + D_{t} - \ln(1 + B_{t}) - \ln(1 + D_{t})]$	ENGINEERING
	Tube [125]	1997	$egin{aligned} B_t &= \kappa^2 (\lambda_t^2 - 1) (\lambda_t^2 + \kappa)^{-2}, D_t = \lambda_t^2 B_t / \kappa \ W &= \sum_{i=1}^3 rac{G_c}{2} (\lambda_i^2 - 1) + rac{2G_e}{eta^2} (\lambda_i^{-eta} - 1) \end{aligned}$	
	Nonaffine-Tube [126]	1997	$W = W_{ph} + W_{ent} = G_c \sum_{i=1}^3 rac{\lambda_i^2}{2} + G_e \sum_{i=1}^3 \left(\lambda_i + rac{1}{\lambda_i} ight)$	
•				DEPARTMENT

DEPARTMENT OF APPLIED MECHANICS

www.mm.bme.hu

OF APPLIED MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

Year	Strain Energy Function
1943	$W = rac{\mu N}{3} \sum_{i=1}^3 \left(\sqrt{N^{-1}} \lambda_i eta_i + \ln rac{eta_i}{\sinh eta_i} ight)$
1943	-
1993	$W = \mu N igg(eta_{chain} \lambda_{chain} + \ln rac{eta_{chain}}{\sinh eta_{chain}}igg)$
1993	$W = W_{8ch} + \sum_{i=1}^{3} rac{\mu}{2} [B_i + D_i - \ln(B_i + 1) - \ln(D_i + 1)]$
	$B_t = \kappa^2 (\lambda_t^2 - 1) (\lambda_t^2 + \kappa)^{-2} \; D_t \; = \lambda_t^2 B_t / \kappa$
1999	$W = rac{G_c}{2} \left[rac{(1-\delta^2)(I_1-3)}{1-\delta^2(I_1-3)} + \ln(1-\delta^2(I_1-3)) ight] + rac{2G_e}{eta^2} \sum olimits_{i=1}^3 (\lambda_i^{-eta}-1)$
2004	$W = \mu N \Big(\gamma \lambda_{c,r} + \ln \Big(rac{\gamma}{\sinh \gamma} \Big) \Big) + \sum_{i=1}^{3} rac{2\mu_e}{eta^2} (\lambda_i^{-eta} - 1)$
2004	$W = \mu igg(\lambda_r L^{-1}(\lambda_r) + \ln rac{L^{-1}(\lambda_r)}{\sinh L^{-1}(\lambda_r)} igg)$
2009	$W = W_{8ch} igg(rac{\lambda_1 + \lambda_2 + \lambda_3}{\sqrt{3N}} - rac{\lambda_c}{\sqrt{N}} igg) + W_{8ch} igg(rac{\lambda_c}{\sqrt{N}} igg)$
2013	$W = rac{1}{6}G_cI_1 - G_c\lambda_{ ext{max}}^2 \ln(3\lambda_{ ext{max}}^2 - I_1) + G_e\sum_i igg(\lambda_i + rac{1}{\lambda_i}igg)$
2016	$\frac{q}{}$
	$W = \mu_c \kappa n \ln rac{\sin\left(rac{\pi}{\sqrt{n}} ight)\left(rac{I_1}{3} ight)^{rac{q}{2}}}{q} + \mu_t \left[\left(rac{I_2}{3} ight)^{rac{1}{2}} - 1 ight]$
	$\sin\left(\frac{\pi}{\sqrt{n}}\left(\frac{I_1}{3}\right)^{\frac{1}{2}}\right)$
2018	$W = G_c N \ln \left(rac{3N + rac{1}{2}I_1}{3N - I_1} ight) + G_e {\sum_i} rac{1}{\lambda_i}$
	$\left(3N-I_1\right)$
	1943 1993 1993 1999 2004 2004 2009 2013 2016

DEPARTMENT
OF APPLIED
MECHANICS

www.mm.bme.hu

MECHANICAL ENGINEERING

OF APPLIED MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

Model Name	Year	Strain Energy Function
Wu-Giessen (Full Network) [139–141]	1992	$W = \frac{\mu}{3} \sqrt{N} \sum_{i=1}^{3} \left(\lambda_{i} \beta_{i} + \sqrt{N} \ln \frac{\beta_{i}}{\sinh \beta_{i}} \right) (1- ho) + \mu N \left(\lambda_{chain} \beta_{chain} + \ln \frac{\beta_{chain}}{\sinh \beta_{chain}} \right) ho$
Zuniga-Beatty [142]	2002	$W = W_{3ch}igg(1-rac{\lambda_1}{\sqrt{N_3}}igg) + W_{8ch}\sqrt{rac{\lambda_1^2+\lambda_2^2+\lambda_3^2}{3N_8}}$
Lim [143]	2005	$W = W_{Gaussian}(1-f) + fW_{8ch}$
Bechir-Chevalier [144]	2010	$W = \mu_f N_8 \left[\lambda_r \beta + \ln \left(\frac{\beta}{\sinh \beta} \right) \right] + \frac{\mu_c}{3} N_3 \sum_{j=1}^{j=3} \left[\overline{\beta}_j \overline{\lambda}_{jr} + \ln \left(\frac{\overline{\beta}_j}{\sinh \overline{\beta}_j} \right) \right]$

OF APPLIED

MECHANICS

www.mm.bme.hu

OF APPLIED MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

ABAQUS:

In FE solvers, only the basic models are available as built-in hyperealastic models

OF APPLIED MECHANICS

www.mm.bme.hu

OF APPLIED MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

ANSYS:

OF APPLIED MECHANICS

www.mm.bme.hu

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

DEPARTMENT OF APPLIED MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

4.5 Standard homogeneous deformations

UNIAXIAL

EQUIBIAXIAL

PLANAR

Idealized mechanical models

BUDAPEST

UNIVERSITY OF

TECHNOLOGY

AND

ECONOMICS

Copyright ©

Dr. Attila KOSSA

BUDAPEST UNIVERSITY OF **TECHNOLOGY AND**

ECONOMICS

FACULTY OF MECHANICAL ENGINEERING

MECHANICS

OF APPLIED

www.mm.bme.hu

Copyright © Dr. Attila KOSSA **UNIAXIAL** loading

 $x_2 = \lambda_T \cdot X_2$

 $x_3 = \lambda_T \cdot X_3$

 $[\mathbf{F}] = \begin{vmatrix} \lambda & 0 & 0 \\ 0 & \lambda_T & 0 \\ 0 & 0 & \lambda_T \end{vmatrix}$

 $[\mathbf{C}] = [\mathbf{b}] = \begin{bmatrix} \lambda^2 & 0 & 0 \\ 0 & \lambda_T^2 & 0 \\ 0 & 0 & \lambda_T^2 \end{bmatrix}$

 $I_3 = \lambda^2 \lambda_T^4$ $I = \lambda \lambda_T^2$

 $\lambda_1 = \lambda$ $N_1 = n_1 = e_1$

 $\lambda_2 = \lambda_T$ $N_2 = n_2 = e_2$

 $\lambda_3 = \lambda_T$ $N_3 = n_3 = e_3$

 $I_1 = \lambda^2 + 2\lambda_T^2$

 $I_2 = 2\lambda^2\lambda_T^2 + \lambda_T^4$

[
$$\sigma$$
] =
$$\begin{bmatrix} \sigma & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$x_1 = \lambda \cdot X_1$$

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

INCOMPRESSIBLE CASE

$$x_1 = \lambda \cdot X_1$$

$$x_2 = \lambda^{-1/2} \cdot X_2$$

$$x_3 = \lambda^{-1/2} \cdot X_3$$

$$[\mathbf{F}] = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda^{-1/2} & 0 \\ 0 & 0 & \lambda^{-1/2} \end{bmatrix}$$

$$[\mathbf{C}] = [\mathbf{b}] = \begin{bmatrix} \lambda^2 & 0 & 0 \\ 0 & \lambda^{-1} & 0 \\ 0 & 0 & \lambda^{-1} \end{bmatrix}$$

$$I_1 = \lambda^2 + 2/\lambda$$

$$I_2 = 2\lambda + \lambda^{-2}$$

$$I_3 = 1 \qquad J = 1$$

$$\lambda_1 = \lambda$$
 $N_1 = n_1 = e_1$
 $\lambda_2 = \lambda^{-1/2}$ $N_2 = n_2 = e_2$
 $\lambda_3 = \lambda^{-1/2}$ $N_3 = n_3 = e_3$

DEPARTMENT OF APPLIED

BUDAPEST

UNIVERSITY OF

TECHNOLOGY

AND

ECONOMICS

FACULTY OF

MECHANICAL

ENGINEERING

www.mm.bme.hu

MECHANICS

BUDAPEST UNIVERSITY OF TECHNOLOGY

AND ECONOMICS

FACULTY OF MECHANICAL ENGINEERING

MECHANICS

OF APPLIED

www.mm.bme.hu

Copyright © Dr. Attila KOSSA **EQUIBIAXIAL loading**

$$[\boldsymbol{\sigma}] = \begin{bmatrix} \boldsymbol{\sigma} & 0 & 0 \\ 0 & \boldsymbol{\sigma} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$x_1 = \lambda \cdot X_1$$

$$x_2 = \lambda \cdot X_2$$

$$x_3 = \lambda_T \cdot X_3$$
$$[\mathbf{F}] = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda_T \end{bmatrix}$$

$$[\mathbf{C}] = [\mathbf{b}] = \begin{bmatrix} \lambda^2 & 0 & 0 \\ 0 & \lambda^2 & 0 \\ 0 & 0 & \lambda_T^2 \end{bmatrix}$$

$$I_{1} = 2\lambda^{2} + \lambda_{T}^{2}$$

$$I_{2} = 2\lambda^{2}\lambda_{T}^{2} + \lambda^{4}$$

$$I_{3} = \lambda^{4}\lambda_{T}^{2} \qquad J = \lambda^{2}\lambda_{T}$$

$$\lambda_1 = \lambda$$
 $N_1 = n_1 = e_1$
 $\lambda_2 = \lambda$ $N_2 = n_2 = e_2$
 $\lambda_3 = \lambda_T$ $N_3 = n_3 = e_3$

INCOMPRESSIBLE CASE

$$x_1 = \lambda \cdot X_1$$

$$x_2 = \lambda \cdot X_2$$

$$x_3 = \lambda^{-2} \cdot X_3$$

$$[F] = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda^{-2} \end{bmatrix}$$

$$[\mathbf{C}] = [\mathbf{b}] = \begin{bmatrix} \lambda^2 & 0 & 0 \\ 0 & \lambda^2 & 0 \\ 0 & 0 & \lambda^{-4} \end{bmatrix}$$

$$I_1 = 2\lambda^2 + \lambda^{-4}$$

$$I_2 = 2\lambda^{-2} + \lambda^4$$

$$I_3 = 1 \qquad J = 1$$

$$\lambda_1 = \lambda$$
 $N_1 = n_1 = e_1$
 $\lambda_2 = \lambda$ $N_2 = n_2 = e_2$
 $\lambda_3 = \lambda^{-2}$ $N_3 = n_3 = e_3$

BUDAPEST

MECHANICS www.mm.bme.hu

BUDAPEST UNIVERSITY OF **TECHNOLOGY**

AND ECONOMICS

FACULTY OF MECHANICAL

MECHANICS www.mm.bme.hu

OF APPLIED

Copyright ©

PLANAR loading

$$[\boldsymbol{\sigma}] = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$[\boldsymbol{\sigma}] = \begin{bmatrix} \sigma_1 & \sigma_2 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

INCOMPRESSIBLE CASE
$$x_1 = \lambda \cdot X_1$$

$$x_{2} = 1$$

$$x_{3} = \lambda^{-1} \cdot X_{3}$$

$$\begin{bmatrix} \lambda & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$[\mathbf{C}] = [\mathbf{b}] = \begin{bmatrix} \lambda^2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \lambda^{-2} \end{bmatrix}$$
$$I_1 = \lambda^2 + \lambda^{-2} + 1$$

$$I_1 = \lambda^2 + \lambda^{-2} + 1$$

 $I_2 = I_1$
 $I_3 = 1$ $J = 1$

$$\lambda_1 = \lambda$$
 $N_1 = n_1 = e_1$
 $\lambda_2 = 1$ $N_2 = n_2 = e_2$
 $\lambda_3 = \lambda^{-1}$ $N_3 = n_3 = e_3$

BUDAPEST

UNIVERSITY OF

TECHNOLOGY

AND

ECONOMICS

MECHANICS www.mm.bme.hu

Copyright © Dr. Attila KOSSA

$$\begin{bmatrix} \boldsymbol{\sigma} \end{bmatrix} = \begin{bmatrix} 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$x_1 = \lambda \cdot X_1$$
$$x_2 = 1$$

$$x_3 = \lambda_T \cdot X_1$$

$$\begin{bmatrix} \lambda & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{F} \end{bmatrix} = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \lambda_T \end{bmatrix}$$
$$\begin{bmatrix} \lambda^2 & 0 & 0 \end{bmatrix}$$

$$[\mathbf{C}] = [\mathbf{b}] = \begin{bmatrix} \lambda^2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \lambda_T^2 \end{bmatrix}$$

$$I_1 = \lambda^2 + \lambda_T^2 + 1$$

$$I_2 = \lambda_T^2 + \lambda^2 + \lambda^2 \lambda_T^2$$

$$I_1 = \lambda^2 \lambda^2 + \lambda^2 \lambda^2 \lambda_T^2$$

$$I_3 = \lambda^2 \lambda_T^2 \qquad \qquad J = \lambda \lambda_T$$

$$\lambda_1 = \lambda$$
 $N_1 = n_1 = e_1$
 $\lambda_2 = 1$ $N_2 = n_2 = e_2$
 $\lambda_3 = \lambda_T$ $N_3 = n_3 = e_3$

Dr. Attila KOSSA

OF APPLIED MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA • The Poisson's ratio in **small-strain** theory:

$$\varepsilon = \lambda - 1$$

$$\varepsilon_T = \lambda_T - 1$$

$$\varepsilon_T = -\nu \cdot \varepsilon$$

ν is independent of strain

$$\nu = -\frac{\varepsilon_T}{\varepsilon}$$

Incompressible case: $\varepsilon_T = -0.5 \cdot \varepsilon$

• Apparent Poisson's ratio or Poisson's function in **finite strain**:

$$\lambda_T = \lambda^{-\nu}$$

$$\ln \lambda_T = \ln \lambda^{-\nu}$$

$$\ln \lambda_T = -\nu \cdot \ln \lambda$$

$$\varepsilon_T^{\text{true}} = -\nu \cdot \varepsilon^{\text{true}}$$

 ν is dependent of strain: $\nu = \nu(\lambda)$

Incompressible case:
$$\lambda_T = \lambda^{-0.5} = \frac{1}{\sqrt{\lambda}}$$

www.mm.bme.hu

www.mm.bme.hu

MECHANICS

Copyright © Dr. Attila KOSSA

For incompressible materials, the pure shear and planar tension behaviors are nearly the same at moderate strains.

https://www.youtube.com/watch?v=vovwCovZeGA

OF APPLIED MECHANICS

www.mm.bme.hu

MECHANICAL

DEPARTMENT OF APPLIED

MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA **Example:** Stress solution for the incompressible **neo-Hookean** model in uniaxial loading:

Strain energy:

$$W = C_{10}(I_1 - 3)$$
 $W_{,1} = C_{10}$

General solution for compressible case:

$$\boldsymbol{\sigma} = \frac{2}{I} [(W_{,1} + I_1 W_{,2}) \boldsymbol{b} - W_{,2} \boldsymbol{b}^2 + I_3 W_{,3} \boldsymbol{I}]$$

General solution for incompressible case reduces to:

$$\boldsymbol{\sigma} = \text{dev}[2(W_{,1} + I_1 W_{,2})\boldsymbol{b} - 2W_{,2}\boldsymbol{b}^2] + \boldsymbol{p} = 2C_{10}\text{dev}[\boldsymbol{b}] + \boldsymbol{p}$$

$$[\text{dev}[\boldsymbol{b}]] = \frac{1}{3\lambda} \begin{bmatrix} 2(\lambda^3 - 1) & 0 & 0\\ 0 & 1 - \lambda^3 & 0\\ 0 & 0 & 1 - \lambda^3 \end{bmatrix}$$

www.mm.bme.hu

MECHANICS

ENGINEERING

OF APPLIED

www.mm.bme.hu

MECHANICS

Copyright © Dr. Attila KOSSA

$$\sigma = \text{dev}[2(W_{,1} + I_1W_{,2})b - 2W_{,2}b^2] + p = 2C_{10}\text{dev}[b] + p$$

$$\begin{bmatrix} \boldsymbol{\sigma} \end{bmatrix} = \frac{2C_{10}}{3\lambda} \begin{bmatrix} 2(\lambda^3 - 1) & 0 & 0 \\ 0 & 1 - \lambda^3 & 0 \\ 0 & 0 & 1 - \lambda^3 \end{bmatrix} + \begin{bmatrix} p & 0 & 0 \\ 0 & p & 0 \\ 0 & 0 & p \end{bmatrix} = \begin{bmatrix} \sigma & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\sigma_{22} = 0 \implies p = \frac{2C_{10}}{3\lambda} (\lambda^3 - 1)$$

$$\begin{bmatrix} \boldsymbol{\sigma} \end{bmatrix} = \frac{2C_{10}}{3\lambda} \begin{bmatrix} 2(\lambda^3 - 1) & 0 & 0 \\ 0 & 1 - \lambda^3 & 0 \\ 0 & 0 & 1 - \lambda^3 \end{bmatrix} + \frac{2C_{10}}{3\lambda} (\lambda^3 - 1) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Cauchy stress: $\sigma = 2C_{10}(\lambda^2 - 1/\lambda)$

Nominal (engineering, 1st Piola-Kirchhoff) stress:

$$P = J\sigma F^{-T}$$

$$P = \sigma/\lambda = 2C_{10}(\lambda - 1/\lambda^{2})$$

ENGINEERING

OF APPLIED MECHANICS

www.mm.bme.hu

OF APPLIED MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

neo-Hookean model True stress solutions

OF APPLIED

MECHANICS www.mm.bme.hu

www.mm.bme.hu

Copyright © Dr. Attila KOSSA

neo-Hookean model Nominal stress solutions

$$P^{U} = 2C_{10}(\lambda - \lambda^{-2})$$

$$P^{B} = 2C_{10}(\lambda - \lambda^{-5})$$

$$P^{P} = 2C_{10}(\lambda - \lambda^{-3})$$

www.mm.bme.hu

MECHANICAL ENGINEERING

OF APPLIED
MECHANICS

www.mm.bme.hu

Copyright © Dr. Attila KOSSA • Stress solutions for some hyperelastic models

Notations: U: Uniaxial

B: Equibiaxial

P: Planar

NH: neo-Hookean

MR: Mooney-Rivlin

YE: Yeoh

OG: Kth-order Ogden

$$P_{U}^{YE} = 2(\lambda - \lambda^{-2})(C_{10} + 2C_{20}(\lambda^{2} + 2\lambda^{-1} - 3) + 3C_{30}(\lambda^{2} + 2\lambda^{-1} - 3)^{2})$$

$$P_{B}^{YE} = 2(\lambda - \lambda^{-5})(C_{10} + 2C_{20}(2\lambda^{2} + 2\lambda^{-4} - 3) + 3C_{30}(2\lambda^{2} + 2\lambda^{-4} - 3)^{2})$$

$$P_{P}^{YE} = 2(\lambda - \lambda^{-3})(C_{10} + 2C_{20}(\lambda^{2} + \lambda^{-2} - 2) + 3C_{30}(\lambda^{2} + \lambda^{-2} - 2)^{2})$$

$$P_{U}^{OG} = \sum_{k=1}^{K} \frac{2\mu_{k}}{\alpha_{k}} \left(\lambda^{\alpha_{k}-1} - \lambda^{-\alpha_{k}/2-1} \right) \quad P_{P}^{OG} = \sum_{k=1}^{K} \frac{2\mu_{k}}{\alpha_{k}} \left(\lambda^{\alpha_{k}-1} - \lambda^{-\alpha_{k}-1} \right)$$

$$P_B^{OG} = \sum_{k=1}^{K} \frac{2\mu_k}{\alpha_k} (\lambda^{\alpha_k - 1} - \lambda^{-2\alpha_k - 1})$$

Hooke's law: $\sigma = P = E\varepsilon = E(\lambda - 1)$

BUDAPEST
UNIVERSITY OF
TECHNOLOGY
AND
ECONOMICS

MECHANICS www.mm.bme.hu

OF APPLIED

