FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO

ANALÝZA TECHNOLÓGIÍ, DEKOMPOZÍCIA A DÁTOVÝ MODEL

VYSKLADAJ SI AVATARA

zimný semester 2015/2016 Michal Piják Károly Belokostolský Michal Rakovský János Rosztovics

Obsah

1	Anal	ýza technológií	. 3
	1.1	Výber programovacích jazykov pre serverom vykonávané skripty	. 3
	1.2	Výber programovacieho jazyka pre klientom vykonávané skripty	. 3
	1.3	Výber frameworkov	3
	1.3.3	1 Framework pre backend	. 3
	1.3.2	2 Framework pre frontend	. 3
	1.4	Výber pomocných knižníc a pluginov	4
	1.4.3	1 Pre frontend	4
	1.4.2	Pre backend	4
2	Dáto	ový model	4
3	Kom	ponenty aplikácie	5
	3.1	Schéma zapojenia komponentov	5
	3.2	Databázový uzol	6
	3.3	Frontendový uzol	. 7
	3.4	Backendový uzol	. 8

1 Analýza technológií

1.1 Výber programovacích jazykov pre serverom vykonávané skripty

Keďže vytvárame modul do už hotovej aplikácie, môžeme použiť len ten istý programovací jazyk a tým je JavaScript.

1.2 Výber programovacieho jazyka pre klientom vykonávané skripty

Na klientom vykonávané skripty sa bude používať jazyk JavaScript, pretože:

- je to najznámejší a najpoužívanejší client-side programovací jazyk
- je už použitý v aplikácii, do ktorej vytvárame tento modul
- nie je nutnosť používať dva rozdielne jazyky pre frontend a backend
- existuje množstvo kvalitných knižníc a frameworkov

1.3 Výber frameworkov

1.3.1 Framework pre backend

Pre backend vyberáme framework NodeJS, pretože už je použitý v hotovej aplikácii, do ktorej vytvárame tento modul. Výhody frameworku NodeJS:

- nízke nároky na pamäť servera
- neblokujúce I/O
- veľké množstvo knižníc a frameworkov
- veľmi dobrá dokumentácia

1.3.2 Framework pre frontend

Pre frontend nebude použitý žiaden framewok.

1.4 Výber pomocných knižníc a pluginov

1.4.1 Pre frontend

Pri tvorbe frontendu bude použitá knižnica Fabric.js, ktorá slúži na prácu s HTML5 canvasom. Hlavné výhody tejto knižnice:

- veľmi dobrá praca s canvasom
- objekty sa dajú zmenšovať zväčšovať
- celá plocha canvasu sa dá serializovať do formátu JSON alebo SVG a môže byť znovu obnovená
- podpora v NodeJS

1.4.2 Pre backend

Pri tvorbe backendu bude použitá knižnica Underscore.js. Táto knižnica obsahuje sadu užitočných funkcií na prácu s poliami, mapami, atď...

2 Dátový model

Obrázok 1: databázový model

Vysvetlivky k obrázku 1:

- PK označuje primárny kľuč tabuľky
- V zátvorkách sú označené tabuľky ktoré tvoria medzi sebou relácie

3 Komponenty aplikácie

3.1 Schéma zapojenia komponentov

Obrázok 2: Schéme zapojenia komponentov

Používateľ vidí frontend uzol, ktorý v sebe zahŕňa ďalšie komponenty. Tento uzol komunikuje s databázovým uzlom, ktorý v sebe taktiež zahŕňa iné komponenty. Používateľ posiela požiadavky na frontend uzol a ten následne query na databázový uzol. Databáza odošle výsledok (result) na frontend uzol, ktorý sa zobrazí používateľovi.

Administrátor vidí backend uzol, pričom schéma funguje rovnako ako pri používateľovi.

3.2 Databázový uzol

Databázový uzol MariaDB obsahuje komponenty pre jednotlivé tabuľky, ktoré sa skladajú z troch ďalších komponentov:

- abstrakcia riadku mapuje jeden riadok tabuľky ako objekt, ktorý uchováva dáta tohto riadku a dokáže ich upravovať, mazať a vytvárať
- abstrakcia kolekcie riadkov mapuje celý result do objektu obsahujúceho riadky tabuľky, používa rôzne filtre na upresnenie výberu a zoradenie výsledných riadkov
- abstrakcia relácií medzi tabuľkami vytvára prepojenie jednej tabuľky s inou

3.3 Frontendový uzol

Obrázok zobrazuje uzol frontendových komponentov (komponent pre stránku zobrazenú návštevníkom)

Zahŕňa komponenty plochy, menu aplikácie, objektu (grafickej plochy) a ostatných objektov, pričom:

- plocha je komponent, ktorý zobrazuje používateľom grafické objekty a umožňuje manipuláciu s nimi
- menu aplikácie je komponent, ktorý zobrazuje používateľom ovládacie prvky aplikácie, pomocou ktorých komunikuje so systémom a tým riadi chod aplikácie
- objekt (grafickej plochy) je komponent, ktorý zahŕňa grafický objekt zložený z ďalších objektov

 ostatné objekty – je komponent, ktorý zobrazuje používateľom všetky dostupné objekty, ktoré sú zobrazované na stránke s aktuálnou konfiguráciou

3.4 Backendový uzol

Obrázok zobrazuje uzol komponentov pre backend (správcovskú časť stránky), kde sa nachádzajú tieto komponenty:

- Administrácia účtu správcu je komponent, ktorý zobrazuje pre správcu stránkovanú mriežku ku konkrétnej tabuľke, ktorá má definované operácie, ako napríklad upraviť záznam v tabuľke, zmazať záznam, overiť záznam (kde záznamom je účet registrovaného používateľa) pomocou databázového API
- Editor avatara je komponent, ktorý zobrazuje všetky objekty z ktorých sa Avatar skladá a povoľuje upravovať ich parametre. Pri načítaní a ukladaní využíva databázové API

 Editor tém – je komponent, ktorý dovoľuje nahrávať a spravovať grafické témy pre vytváranie avatara. Tento komponent môže modifikovať a mazať existujúce témy, alebo pridávať nové témy kompatibilné so systémom. Komponent pritom využíva databázové API. Jeho hlavnou úlohou je správa tém v systéme, určenie tém ktoré budú zobrazované používateľom