uhuru dataset

Luna L Sanchez Reyes

2022-10-04

1. Describing the data that we are using

We are using the dataset from this study

Add a picture of an Acacia

2. Read the data set into R.

2.1 Get the working directory of my R chunks The working directory of an Rmd file is not the same as the working directory of the Rstudio project you are in. We can check that by running the following.

How do I test where the computer is?

```
r_proj_wd <- "/Users/lunasare/Desktop/data-science-course/fall-2022"
r_chunk_wd <- getwd()
r_proj_wd == r_chunk_wd

## [1] FALSE
r_chunk_wd</pre>
```

[1] "/Users/lunasare/Desktop/data-science-course/fall-2022/documents"

As you can see, the working directory from my R project and the one used in my R chunks in an Rmd file are not the same.

The working directory of an R chunk is equal to the path where the Rmd file is in, in my case, it is r_chunk_wd. This is nested withing my project directory, keep this in mind for when you have to provide the path of a file ;)

```
acacia <- read.csv(file = "../data-raw/ACACIA_DREPANOLOBIUM_SURVEY.txt", sep = "\t")
acacia</pre>
```

2.2 Read the data set into R and create an object

```
##
       SURVEY YEAR SITE BLOCK TREATMENT
                                                       ID HEIGHT AXIS1 AXIS2 CIRC
                                               PLOT
## 1
            1 2012 SOUTH
                               1
                                     TOTAL SITOTAL
                                                     581
                                                            2.25
                                                                  2.75
                                                                         2.15 20.0
## 2
            1 2012 SOUTH
                               1
                                     TOTAL S1TOTAL
                                                     582
                                                            2.65
                                                                  4.10
                                                                         3.90 28.0
            1 2012 SOUTH
                                     TOTAL S1TOTAL 3111
## 3
                               1
                                                             1.5
                                                                  1.70
                                                                         0.85 17.0
## 4
            1 2012 SOUTH
                               1
                                     TOTAL S1TOTAL 3112
                                                            2.01
                                                                  1.80
                                                                         1.60 12.0
## 5
            1 2012 SOUTH
                               1
                                     TOTAL S1TOTAL 3113
                                                            1.75
                                                                  1.84
                                                                         1.42 13.0
            1 2012 SOUTH
                                     TOTAL S1TOTAL 3114
                                                            1.65
                                                                         0.85 15.0
## 6
                               1
                                                                  1.62
## 7
            1 2012 SOUTH
                               1
                                     TOTAL S1TOTAL 3115
                                                             1.2
                                                                  1.95
                                                                         0.90 9.0
## 8
            1 2012 SOUTH
                               1
                                     TOTAL S1TOTAL 3199
                                                            1.45
                                                                  2.00
                                                                         1.75 12.2
## 9
            1 2012 SOUTH
                               1
                                      MESO
                                            S1MESO
                                                     941
                                                            1.87
                                                                  2.15
                                                                         1.82 13.0
## 10
            1 2012 SOUTH
                               1
                                      MESO
                                             S1MESO
                                                     942
                                                            2.38
                                                                  5.55
                                                                         4.82 35.0
## 11
            1 2012 SOUTH
                                      MES<sub>0</sub>
                                             S1MESO
                                                     943
                                                            2.58 4.90 4.24 24.0
                               1
```

##	12	1	2012	SOUTH	1	MESO	S1MESO	944	2.65	3.75	3.10 27.0
##				SOUTH	1	MESO	S1MESO	946	2.35	2.34	2.05 20.0
	14			SOUTH	1	MESO	S1MESO	947	1.88	2.10	1.85 28.0
	15			SOUTH	1	MESO	S1MESO		2.32	3.05	2.63 30.0
	16			SOUTH	1	MESO	S1MESO		2.39	2.21	2.10 13.0
	17			SOUTH	1	MESO	S1MESO		2.2	1.80	1.50 10.0
	18			SOUTH	1	MESO	S1MESO		1.05	0.90	0.55 8.0
	19			SOUTH	1	MESO	S1MESO		2	1.25	1.20 10.0
	20			SOUTH	1	MESO	S1MESO		1.28	1.14	1.00 10.0
##				SOUTH	2	OPEN	S20PEN	341	dead	NA	NA NA
##				SOUTH	2		S2TOTAL		1.4	2.50	2.15 18.0
##				SOUTH	2		S2TOTAL	101	1.9	3.31	2.65 15.0
##				SOUTH	2		S2TOTAL	102	1.75	2.70	2.55 16.0
##				SOUTH	2		S2TOTAL	103	1.73	2.75	2.30 16.0
##				SOUTH	2		S2TOTAL	103	2.7	4.05	4.00 35.2
##				SOUTH	2		S2TOTAL	104	2.02	2.85	1.49 17.0
##				SOUTH	2		S2TOTAL	103	1.9	3.10	2.85 19.0
##				SOUTH	2		S2TOTAL	100	1.85	2.45	1.90 19.0
##				SOUTH	2		S2TOTAL	110	1.65	1.90	1.54 17.0
##				SOUTH	2	_	S2TOTAL	111		2.35	1.45 14.0
##				SOUTH	2		S2TOTAL	113	1.4 2.5	3.25	2.30 22.0
##				SOUTH	2	_	S2TOTAL	115		5.40	4.50 33.0
##				SOUTH	2	_	S2TOTAL	116	2.05 2.26	3.50	3.10 33.0
##				SOUTH	2	_	S2TOTAL	117	2.26		2.30 20.0
				SOUTH		_				2.40	
##				SOUTH	2		S2TOTAL S2TOTAL	118	1.8	3.15	2.55 22.0
##					2				1.85	2.00	2.27 20.0
	38			SOUTH	2		S2TOTAL		1.5	2.15	1.80 15.0
	39			SOUTH	2		S2TOTAL		1.87	2.34	2.05 13.0
##				SOUTH	2		S2TOTAL		1.58	1.28	0.75 11.0
##				SOUTH	2		S2TOTAL		2.05	2.10	1.75 17.0
##				SOUTH	2		S2TOTAL		1.75	2.45	3.28 16.0
##				SOUTH	2		S2TOTAL		1.49	1.50	1.45 13.0
##				SOUTH	2		S2TOTAL S2TOTAL		1.28	2.00	0.90 10.0
##					2	_			1.49	2.35	1.65 13.0 0.95 11.0
##	47			SOUTH	2 2		S2TOTAL		1.07	1.20 1.25	
				SOUTH	2		S2TOTAL		1.48		
##				SOUTH	_		S2TOTAL		1.25	1.25	0.90 10.0
##				SOUTH	2		S2TOTAL			1.41	1.40 14.0
##				SOUTH	2		S2TOTAL		1.6	1.60	
##				SOUTH	2		S2TOTAL			1.20	
##				SOUTH SOUTH	2		S2TOTAL			1.49	1.20 8.0
##					2		S2TOTAL		1.5	1.50	1.50 14.0
## ##				SOUTH	2		S2TOTAL			1.65	
##				SOUTH	2		S2TOTAL			1.13	1.20 10.0
##				SOUTH SOUTH	2		S2TOTAL		1.25	1.25	0.90 10.0
					2		S2TOTAL		1.1	1.20	1.10 10.0
## ##				SOUTH SOUTH	2		S2TOTAL S2TOTAL		2.2	2.70	2.40 25.0 1.25 10.0
					2				1.45	1.65	
##				SOUTH	2		S2TOTAL		1.6	2.45	2.10 13.0
##				SOUTH	2		S2TOTAL		1.55	2.40	1.80 13.0
##				SOUTH	2		S2TOTAL			2.40	2.15 13.0
##				SOUTH	2		S2TOTAL			1.20	
##				SOUTH	2		S2TOTAL			1.90	
##	05	1	2012	SOUTH	2	IUTAL	S2TOTAL	1259	1.2	1.90	1.65 12.0

##	66	1	2012	SOUTH	2	TOTAL.	S2T0TAL	1260	1.05	1.10	1.00 9.0
##				SOUTH	2		S2TOTAL		1.8	2.60	2.40 15.0
##	68	1	2012	SOUTH	2		S2TOTAL		1.2	1.00	0.95 7.0
##				SOUTH	2		S2TOTAL		1.75	1.40	1.10 10.0
##				SOUTH	2		S2TOTAL		1.45	3.10	1.80 10.0
##				SOUTH	2		S2TOTAL		1.17	1.20	1.10 5.0
	72			SOUTH	2		S2TOTAL		2.15	3.10	2.58 22.0
##				SOUTH	2		S2TOTAL		1.7	1.70	1.40 12.0
	74			SOUTH	2		S2TOTAL		1.98	2.85	2.70 12.0
##				SOUTH	2		S2TOTAL		1.26	1.95	1.75 17.0
##				SOUTH	2		S2TOTAL		1.11	1.95	1.50 10.0
##				SOUTH	2		S2TOTAL		1.14	1.32	1.05 10.0
##	•			SOUTH	2		S2TOTAL		1.26	1.60	1.40 10.0
##				SOUTH	2		S2TOTAL		1.3	1.40	0.80 10.0
##				SOUTH	2		S2TOTAL				1.35 13.0
##				SOUTH	2		S2TOTAL		1.29	1.44 1.35	1.15 7.0
				SOUTH					1.31		
##					2		S2TOTAL		1.15	1.70	1.28 10.0
##				SOUTH	2		S2TOTAL		1.87	3.40	1.85 15.0
##				SOUTH	2	_	S2TOTAL		1.47	2.10	1.61 8.0
##				SOUTH	2	_	S2TOTAL		1.05	1.79	1.50 10.0
##				SOUTH	2		S2TOTAL		2.1	4.90	3.75 25.0
##				SOUTH	2		S2TOTAL		1.99	1.80	1.35 13.0
##				SOUTH	2		S2TOTAL		1.42	1.90	1.80 14.0
##				SOUTH	2		S2TOTAL		1.5	2.11	1.75 12.0
##				SOUTH	2		S2TOTAL		1.06	1.05	0.85 4.0
##				SOUTH	2		S2TOTAL		1.49	1.50	1.15 13.0
##				SOUTH	2		S2T0TAL		1.8	1.60	1.50 14.0
##				SOUTH	2		S2TOTAL		1.93	1.74	1.20 14.0
##				SOUTH	2		S2TOTAL		1.2	1.60	1.30 10.0
##				SOUTH	2		S2TOTAL		1.65	1.25	1.10 11.0
##				SOUTH	2		S2TOTAL		1.52	1.49	1.10 12.0
##				SOUTH	2		S2TOTAL		1.43	2.05	1.54 13.0
##	98			SOUTH	2	_	S2TOTAL		1.25	1.40	1.25 13.0
##				SOUTH	2		S2TOTAL		1.88	2.65	2.64 20.0
	100			SOUTH	2		S2TOTAL		1.03	1.40	0.60 13.0
	101			SOUTH	2		S2TOTAL		1.1	1.30	1.20 10.0
	102			SOUTH	2		S2TOTAL		1.4	1.05	1.00 10.0
	103			SOUTH	2		S2TOTAL		1.05	1.55	0.90 10.0
	104			SOUTH	2	TOTAL	S2TOTAL	3193	1.18	1.20	1.00 7.0
##	105			SOUTH	2	TOTAL	S2TOTAL	3194	1.4	1.30	1.85 13.0
##	106			SOUTH	2	TOTAL	S2TOTAL	3195	1.37	2.67	2.19 19.0
##	107	1	2012	SOUTH	2	TOTAL	S2T0TAL	3196	1.32	2.15	1.55 11.0
##	108	1	2012	SOUTH	2	MEGA	S2MEGA	182	1.55	2.20	1.20 20.0
##	109			SOUTH	2	MEGA	S2MEGA	183	1.3	1.80	0.90 8.0
##	110			SOUTH	2	MEGA	S2MEGA	184	1.24	1.20	1.20 25.0
##	111			SOUTH	2	MEGA	S2MEGA	185	1.5	2.10	1.75 16.0
##	112	1	2012	SOUTH	2	MEGA	S2MEGA	186	1.65	2.50	2.20 15.0
##	113	1	2012	SOUTH	2	MEGA	S2MEGA	187	2.17	2.00	1.20 15.0
##	114	1	2012	SOUTH	2	MEGA	S2MEGA	188	1.28	1.60	1.50 10.0
##	115	1	2012	SOUTH	2	MEGA	S2MEGA	189	1.07	1.50	1.50 10.0
##	116	1	2012	SOUTH	2	MEGA	S2MEGA	190	0.67	1.00	0.80 8.0
##	117	1	2012	SOUTH	2	MEGA	S2MEGA	191	0.68	0.70	0.60 4.0
##	118	1	2012	SOUTH	2	MEGA	S2MEGA	192	1.87	1.60	1.40 9.0
##	119	1	2012	SOUTH	2	MEGA	S2MEGA	193	1.35	1.90	1.50 14.0

##	120	1	2012	SOUTH	2	MEGA	S2MEGA	194	1.75	2.10	2.10 15.0
##	121	1	2012	SOUTH	2	MESO	S2MES0	462	1.75	3.30	2.50 23.0
##	122	1	2012	SOUTH	2	MESO	S2MES0	463	1.64	2.30	2.00 14.0
##	123	1	2012	SOUTH	2	MESO	S2MES0	2138	1.42	0.90	0.80 10.0
##	124	1	2012	SOUTH	3	OPEN	S30PEN	1301	dead	NA	NA NA
##	125	1	2012	SOUTH	3	OPEN	S30PEN	1302	0.9	1.30	1.10 11.0
##	126	1	2012	SOUTH	3	TOTAL	S3TOTAL	1061	dead	NA	NA NA
##	127	1	2012	SOUTH	3	TOTAL	S3TOTAL	1062	1.8	2.60	2.60 15.0
	128			SOUTH	3		S3TOTAL		2.47	3.10	2.20 18.0
	129			SOUTH	3		S3TOTAL		2.15	1.60	1.10 17.0
	130			SOUTH	3		SSTOTAL		1.7	2.50	2.15 15.0
	131			SOUTH	3		SSTOTAL		1.9	1.80	1.50 20.0
	132			SOUTH	3		SSTOTAL		1.95	2.10	1.90 13.0
	133			SOUTH	3		SSTOTAL		1.8	1.70	1.40 13.0
	134			SOUTH	3		SSTOTAL		1.4	2.00	1.60 14.0
	135			SOUTH	3		SSTOTAL		1.4	1.30	1.20 7.0
	136			SOUTH	3		SSTOTAL		1.75	1.20	1.10 13.0
				SOUTH			SSTOTAL				
	137				3	_	SSTOTAL		1.28	1.50	0.95 4.0
	138			SOUTH	3	_			1	1.40	1.20 4.0
	139			SOUTH	3	_	SSTOTAL		1.45	1.50	1.30 10.0
	140			SOUTH	3	_	SSTOTAL		1	1.00	0.75 8.0
	141			SOUTH	3		SSTOTAL		1.03	1.00	0.90 6.0
	142			SOUTH	3		SSTOTAL		1.51	2.00	1.80 12.0
	143			SOUTH	3		SSTOTAL		1.17	1.10	0.90 10.0
	144			SOUTH	3		SSTOTAL		1.33	1.90	1.85 14.0
	145			SOUTH	3		SSTOTAL		1.3	1.10	0.85 8.0
	146			SOUTH	3		SSTOTAL		1.13	1.10	0.90 10.0
	147			SOUTH	3		SSTOTAL		1.58	1.40	1.40 13.0
	148			SOUTH	3		SSTOTAL		1.06	1.40	1.00 5.0
	149			SOUTH	3		SSTOTAL		1.05	1.40	0.95 7.0
	150			SOUTH	3		S3TOTAL		1.45	1.60	1.10 6.0
	151			SOUTH	3		S3TOTAL		1.15	1.10	0.90 5.0
	152			SOUTH	3		S3TOTAL		1.42	1.45	1.30 13.0
	153			SOUTH	3		S3TOTAL		1.02	1.20	1.00 8.0
##	154	1	2012	SOUTH	3	TOTAL	S3TOTAL	2177	1.4	1.20	1.00 9.0
##	155	1	2012	SOUTH	3	TOTAL	S3TOTAL	2178	1.45	2.10	2.05 15.0
##	156	1	2012	SOUTH	3	MESO	S3MES0	1421	1.95	2.20	1.60 13.0
##	157			SOUTH	3	MESO	S3MES0	1422	dead	NA	NA NA
##		FLOWERS		S FRUITS	ANT						
##	1	() (10	CS						
##	2	() (150	TP						
##	3	2	2 :	1 50	TP						
##	4	() (75	CS						
##	5	() (20	CS						
##	6	() (0 0	E						
##	7	() (0 0	CS						
##	8	() (25	CS						
##	9	() (0 0	TP						
##	10	() (50	TP						
##		() (5	CS						
##		() (60	TP						
##	13	() (60	TP						
##	14	2	2 (60	CS						
##				0 0	CS						

## 16	0	0	0	TP
## 17	0	0	0	TP
## 18	0	0	0	CS
## 19	0	0	0	CM
## 20	0	0	0	TP
## 21	NA	NA	NA	
## 22	0	0	5	CS
## 23	0	0	45	CS
## 24	40	50	35	CS
## 25	8	2	65	CS
## 26	0	0	20	TP
## 27	0	0	70	CS
## 28	0	0	125	CM
## 29	0	0	200	CM
## 30	0	0	10	CS
## 31	0	0	0	CS
## 32	0	0	35	TP
## 33	0	0	300	CM
## 34	2	2	100	CS
## 35	0	0	30	CM
## 36	0	0	50	TP
## 37	0	0	10	CM
## 38	0	0	25	CS
## 39	0	0	15	TP
## 40	0	0	0	TP
## 41	0	0	15	TP
## 42	0	0	0	TP
## 43	0	0	40	TP
## 44	0	0	0	TP
## 45	0	0	15	CM
## 46	0	0	0	CM
## 47	0	0	0	TP
## 48	0	0	0	TP
## 49	0	0	1	TP
	0	0	20	TP
## 50 ## 51	0	0	0	TP
## 51	0	0	0	TP
## 52	0	0		
			20	TP
## 54 ## 55	0	0	0	TP
## 55 ## 56	0	0	0	CN
## 56	0	0	0	CN
## 57	0	0	0	TP
## 58	0	0	5	TP
## 59	0	0	0	TP
## 60	0	0	25	TP
## 61	0	0	25	TP
## 62	0	0	20	TP
## 63	0	0	0	TP
## 64	0	0	10	CS
## 65	1	0	25	CS
## 66	0	0	0	TP
## 67	0	0	10	TP
## 68	0	0	0	TP
## 69	0	0	0	TP

## 70	0	0	0	TP
## 71	0	0	0	TP
## 72	0	0	0	CS
## 73	0	0	0	CS
## 74	0	0	25	AB_TP
## 75	0	0	0	TP
## 76	0	0	0	TP
## 77	0	0	0	TP
## 78	0	0	0	CS
## 79	0	0	0	CS
## 80	0	0	0	CS
## 81	0	0	0	CS
## 82	0	0	5	CS
## 83	6	0	0	CS
## 84	0	0	0	CS
## 85	0	0	1	CS
## 86	0	0	25	CS
## 87	0	0	0	CS
## 88	0	0	0	CS
## 89	0	0	10	CS
## 90	0	0	0	CS
## 91	0	0	35	CS
## 92	0	0	0	CS
## 93	0	0	0	CS
## 94	0	0	0	CS
## 95	0	0	0	CS
## 96	0	0	20	CS
## 97	0	0	0	CS
## 98	0	0	0	CM
## 99	0	0	100	CM
## 100	0	0	0	CS
## 101	0	0	0	CS
## 102	0	0	0	CS
## 103	0	0	0	CM
## 104	0	0	0	TP
## 105	0	0	30	CS
## 106	0	0	50	TP
## 107	0	0	10	CS
## 108	0	0	0	CS
## 109	0	0	15	CS
## 110	0	0	10	CS
## 111	5	0	200	CS
## 112	0	0	80	CS
## 113	0	0	150	TP
## 114	0	0	40	TP
## 115	0	0	60	TP
## 116	0	0	0	CS
## 117	0	0	0	TP
## 118	0	0	40	CS
## 119	0	0	20	CS
## 120	0	0	75	TP
## 120 ## 121	0	0	20	CM
## 122	0	0	0	TP
## 123	0	0	0	E
"# 120	U	J	J	نا

##	124	NA	NA	NA	
##	125	0	0	0	TP
##	126	NA	NA	NA	
##	127	0	0	50	TP
##	128	0	0	0	TP
##	129	0	0	0	TP
##	130	0	0	2	TP
##	131	0	0	25	TP
##	132	0	0	0	TP
##	133	0	0	0	TP
##	134	0	0	0	TP
##	135	0	0	0	TP
##	136	0	0	0	TP
##	137	0	0	0	TP
##	138	0	0	0	TP
##	139	0	0	0	TP
##	140	0	0	0	TP
##	141	0	0	0	TP
##	142	0	0	0	TP
##	143	0	0	0	TP
##	144	0	0	0	TP
##	145	0	0	0	TP
##	146	0	0	0	TP
##	147	0	0	0	TP
##	148	0	0	8	TP
##	149	0	0	0	TP
##	150	0	0	0	TP
##	151	0	0	0	TP
##	152	0	0	0	TP
##	153	0	0	0	TP
##	154	0	0	0	TP
##	155	0	0	20	TP
##	156	0	0	2	CS
##	157	NA	NA	NA	

3. Explore the data set

head(acacia)

```
SURVEY YEAR SITE BLOCK TREATMENT
                                        PLOT
                                               ID HEIGHT AXIS1 AXIS2 CIRC
## 1
         1 2012 SOUTH
                          1
                                TOTAL S1TOTAL 581
                                                    2.25 2.75 2.15
                                                                       20
## 2
         1 2012 SOUTH
                                TOTAL S1TOTAL 582
                                                    2.65 4.10 3.90
                                                                       28
## 3
         1 2012 SOUTH
                                TOTAL S1TOTAL 3111
                                                    1.5 1.70 0.85
                                                                       17
                          1
         1 2012 SOUTH
                                TOTAL S1TOTAL 3112
## 4
                          1
                                                    2.01 1.80 1.60
                                                                       12
## 5
         1 2012 SOUTH
                          1
                               TOTAL S1TOTAL 3113
                                                    1.75 1.84 1.42
                                                                       13
## 6
         1 2012 SOUTH
                          1
                               TOTAL S1TOTAL 3114
                                                    1.65 1.62 0.85
                                                                       15
## FLOWERS BUDS FRUITS ANT
## 1
          0
               0
                     10
                         CS
## 2
          0
                    150
                         TP
               0
## 3
          2
               1
                     50
                        TP
## 4
          0
               0
                     75 CS
## 5
          0
               0
                     20 CS
## 6
          0
                     0
               0
                         E
```

SURVEY YEAR SITE BLOCK ## Min. :2012 Min. :1.000 Min. :1 Length: 157 1st Qu.:1 1st Qu.:2012 Class :character 1st Qu.:2.000 ## Median :1 Median:2012 Mode :character Median :2.000 Mean :1 Mean :2012 Mean :2.089 ## 3rd Qu.:2012 ## 3rd Qu.:1 3rd Qu.:2.000 :2012 :3.000 ## Max. :1 Max. Max. ## ## TREATMENT PLOT TD HEIGHT Length: 157 : 101 ## Length:157 Min. Length: 157 1st Qu.:1062 ## Class :character Class : character Class : character Mode :character Mode :character Median:1301 Mode :character ## ## :1743 Mean ## 3rd Qu.:3118 ## Max. :3199 ## AXIS2 CIRC **FLOWERS** AXIS1 ## ## Min. :0.700 Min. :0.550 Min. : 4.00 Min. : 0.0000 1st Qu.: 0.0000 ## 1st Qu.:1.400 1st Qu.:1.100 1st Qu.:10.00 ## Median :1.800 Median :1.490 Median :13.00 Median: 0.0000 ## Mean :1.972 Mean :1.636 Mean :13.76 Mean : 0.4444 3rd Qu.:2.350 3rd Qu.:2.000 3rd Qu.:16.00 3rd Qu.: 0.0000 ## ## Max. :5.550 Max. :4.820 Max. :35.20 Max. :40.0000 ## NA's :4 NA's NA's :4 NA's :4 :4 ## BUDS FRUITS ANT Min. : 0.0000 Min. : 0.00 ## Length: 157 1st Qu.: 0.0000 1st Qu.: 0.00 Class : character ## Median : 0.0000 Median: 0.00 ## Mode :character Mean : 0.3595 Mean : 20.03 ## 3rd Qu.: 0.0000 3rd Qu.: 25.00 :50.0000 Max. :300.00 ## Max. NA's ## NA's :4 :4 colnames(acacia) "TREATMENT" "PLOT" [1] "SURVEY" "YEAR" "BLOCK" "SITE" ## [7] "ID" "HEIGHT" "AXIS2" "CIRC" "AXIS1" "FLOWERS" ## [13] "BUDS" "FRUITS" "ANT" rownames (acacia) ## [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "14" "16" [13] "13" "15" "17" "18" "19" "20" "21" "22" "23" "24" ## [25] "25" "26" "27" "28" "29" "30" "31" "32" "33" "34" "35" "36" [37] "37" "38" "39" "40" "41" "42" "43" "44" "45" "46" "47" "48" ## [49] "49" "50" "52" "53" "54" "55" "56" "57" "58" "59" ## "51" "60" "69" "70" "67" "71" "72" [61] "61" "62" "63" "64" "65" "66" "68" ## "74" "76" "77" "78" "79" "80" ## [73] "73" "75" "81" "82" "83" "90" "93" "94" "95" ## [85] "85" "86" "87" "88" "89" "91" "92" ## [97] "97" "98" "99" "100" "101" "102" "103" "104" "105" "106" "107" "108" ## [109] "109" "110" "111" "112" "113" "114" "115" "116" "117" "118" "119" "120" [121] "121" "122" "123" "124" "125" "126" "127" "128" "129" "130" "131" "132" ## [133] "133" "134" "135" "136" "137" "138" "139" "140" "141" "142" "143" "144"

summary(acacia)

```
## [145] "145" "146" "147" "148" "149" "150" "151" "152" "153" "154" "155" "156"
## [157] "157"
class(acacia$SURVEY)
## [1] "integer"
# the sapply function alloes to apply a function to a list of objects
# a data frame is a list of vectors of the same length
sapply(acacia, class)
##
        SURVEY
                      YEAR
                                   SITE
                                               BLOCK
                                                       TREATMENT
                                                                         PLOT
##
                  "integer" "character"
                                          "integer" "character" "character"
     "integer"
##
                    HEIGHT
                                  AXIS1
                                               AXIS2
                                                            CIRC
                                                                      FLOWERS
            TD
##
     "integer" "character"
                              "numeric"
                                           "numeric"
                                                       "numeric"
                                                                    "integer"
                    FRUITS
          BUDS
                                    ANT
##
##
     "integer"
                  "integer" "character"
View(acacia)
```

Make sure that everything that is a number is actually typeof numeric or double or integer.

One way to do this is with the function summary, and checking at the type of data on each column visually.

Another way is using the typeof() function:

```
typeof(acacia[,"HEIGHT"])
```

```
## [1] "character"
```

```
acacia$HEIGHT
```

```
##
    [1] "2.25" "2.65" "1.5" "2.01" "1.75" "1.65" "1.2"
                                                        "1.45" "1.87" "2.38"
##
    [11] "2.58" "2.65" "2.35" "1.88" "2.32" "2.39" "2.2"
                                                        "1.05" "2"
   [21] "dead" "1.4" "1.9" "1.75" "1.8" "2.7" "2.02" "1.9" "1.85" "1.65"
##
   [31] "1.4" "2.5" "2.05" "2.26" "2.13" "1.8" "1.85" "1.5" "1.87" "1.58"
##
   [41] "2.05" "1.75" "1.49" "1.28" "1.49" "1.07" "1.48" "1.25" "1.41" "1.6"
##
    [51] "1.2" "1.49" "1.5" "1.65" "1.13" "1.25" "1.1" "2.2" "1.45" "1.6"
##
##
   [61] "1.55" "1.5" "1.03" "2.14" "1.2" "1.05" "1.8" "1.2" "1.75" "1.45"
   [71] "1.17" "2.15" "1.7" "1.98" "1.26" "1.11" "1.14" "1.26" "1.3" "1.29"
##
   [81] "1.31" "1.15" "1.87" "1.47" "1.05" "2.1" "1.99" "1.42" "1.5" "1.06"
   [91] "1.49" "1.8" "1.93" "1.2" "1.65" "1.52" "1.43" "1.25" "1.88" "1.03"
##
## [101] "1.1" "1.4" "1.05" "1.18" "1.4" "1.37" "1.32" "1.55" "1.3" "1.24"
## [111] "1.5" "1.65" "2.17" "1.28" "1.07" "0.67" "0.68" "1.87" "1.35" "1.75"
## [121] "1.75" "1.64" "1.42" "dead" "0.9" "dead" "1.8" "2.47" "2.15" "1.7"
## [131] "1.9" "1.95" "1.8" "1.4" "1"
                                           "1.75" "1.28" "1"
                                                               "1.45" "1"
## [141] "1.03" "1.51" "1.17" "1.33" "1.3" "1.13" "1.58" "1.06" "1.05" "1.45"
## [151] "1.15" "1.42" "1.02" "1.4" "1.45" "1.95" "dead"
```

We identified a column that has problematic data. We need to fix it!

Cleaning our raw data

3.2 Assigning NA to missing/incorrect values

We are going to read the data table again, but we are gonna assign NA to the "dead" value that we do not want in our "HEIGHT" column.

Let's check if this worked:

```
acacia$HEIGHT
```

```
[1] 2.25 2.65 1.50 2.01 1.75 1.65 1.20 1.45 1.87 2.38 2.58 2.65 2.35 1.88 2.32
    [16] 2.39 2.20 1.05 2.00 1.28
                                    NA 1.40 1.90 1.75 1.80 2.70 2.02 1.90 1.85 1.65
    [31] 1.40 2.50 2.05 2.26 2.13 1.80 1.85 1.50 1.87 1.58 2.05 1.75 1.49 1.28 1.49
   [46] 1.07 1.48 1.25 1.41 1.60 1.20 1.49 1.50 1.65 1.13 1.25 1.10 2.20 1.45 1.60
   [61] 1.55 1.50 1.03 2.14 1.20 1.05 1.80 1.20 1.75 1.45 1.17 2.15 1.70 1.98 1.26
   [76] 1.11 1.14 1.26 1.30 1.29 1.31 1.15 1.87 1.47 1.05 2.10 1.99 1.42 1.50 1.06
   [91] 1.49 1.80 1.93 1.20 1.65 1.52 1.43 1.25 1.88 1.03 1.10 1.40 1.05 1.18 1.40
## [106] 1.37 1.32 1.55 1.30 1.24 1.50 1.65 2.17 1.28 1.07 0.67 0.68 1.87 1.35 1.75
## [121] 1.75 1.64 1.42
                          NA 0.90
                                    NA 1.80 2.47 2.15 1.70 1.90 1.95 1.80 1.40 1.00
## [136] 1.75 1.28 1.00 1.45 1.00 1.03 1.51 1.17 1.33 1.30 1.13 1.58 1.06 1.05 1.45
## [151] 1.15 1.42 1.02 1.40 1.45 1.95
```

typeof(acacia\$HEIGHT)

```
## [1] "double"
```

class(acacia\$HEIGHT)

```
## [1] "numeric"
```

4. Visualize our data

For this, we are using the ggplot2 package. Let's install it and load it:

```
# install.packages("ggplot2")
library(ggplot2)
```

Now we are gonna create our first plotting layer with the function ggplot.

colnames(acacia)

```
[1] "SURVEY"
                      "YEAR"
                                   "SITE"
                                                "BLOCK"
                                                              "TREATMENT"
                                                                          "PLOT"
    [7] "ID"
                      "HEIGHT"
                                   "AXIS1"
                                                "AXIS2"
                                                              "CIRC"
                                                                           "FLOWERS"
## [13] "BUDS"
                      "FRUITS"
                                   "ANT"
```

```
acacia$CIRC
```

```
##
     [1] 20.0 28.0 17.0 12.0 13.0 15.0 9.0 12.2 13.0 35.0 24.0 27.0 20.0 28.0 30.0
   [16] 13.0 10.0 8.0 10.0 10.0
                                   NA 18.0 15.0 16.0 16.0 35.2 17.0 19.0 19.0 17.0
    [31] 14.0 22.0 33.0 33.0 20.0 22.0 20.0 15.0 13.0 11.0 17.0 16.0 13.0 10.0 13.0
   [46] 11.0 9.0 10.0 14.0 13.0 14.0 8.0 14.0 20.0 10.0 10.0 10.0 25.0 10.0 13.0
   [61] 13.0 13.0 10.0 13.0 12.0 9.0 15.0 7.0 10.0 10.0 5.0 22.0 12.0 12.0 17.0
   [76] 10.0 10.0 10.0 10.0 13.0 7.0 10.0 15.0 8.0 10.0 25.0 13.0 14.0 12.0 4.0
   [91] 13.0 14.0 14.0 10.0 11.0 12.0 13.0 13.0 20.0 13.0 10.0 10.0 10.0 7.0 13.0
## [106] 19.0 11.0 20.0 8.0 25.0 16.0 15.0 15.0 10.0 10.0 8.0 4.0 9.0 14.0 15.0
## [121] 23.0 14.0 10.0
                         NA 11.0
                                   NA 15.0 18.0 17.0 15.0 20.0 13.0 13.0 14.0 7.0
## [136] 13.0 4.0
                  4.0 10.0 8.0 6.0 12.0 10.0 14.0 8.0 10.0 13.0 5.0
## [151] 5.0 13.0 8.0 9.0 15.0 13.0
                                        NA
```

The ggplot function creates a blank canvas. The canvas contains our data, and the variables that we want to plot.

A scatter plot can be created with the function geom_point()

colors()

##	[1]	"white"	"aliceblue"	"antiquewhite"
##	[4]	"antiquewhite1"	"antiquewhite2"	"antiquewhite3"
##	[7]	"antiquewhite4"	"aquamarine"	"aquamarine1"
##	[10]	"aquamarine2"	"aquamarine3"	"aquamarine4"
##	[13]	"azure"	"azure1"	"azure2"
##	[16]	"azure3"	"azure4"	"beige"
##	[19]	"bisque"	"bisque1"	"bisque2"
##	[22]	"bisque3"	"bisque4"	"black"
##	[25]	"blanchedalmond"	"blue"	"blue1"
##	[28]	"blue2"	"blue3"	"blue4"
##	[31]	"blueviolet"	"brown"	"brown1"
##	[34]	"brown2"	"brown3"	"brown4"
##	[37]	"burlywood"	"burlywood1"	"burlywood2"
##	[40]	"burlywood3"	"burlywood4"	"cadetblue"
##	[43]	"cadetblue1"	"cadetblue2"	"cadetblue3"
##	[46]	"cadetblue4"	"chartreuse"	"chartreuse1"
##	[49]	"chartreuse2"	"chartreuse3"	"chartreuse4"
##	[52]	"chocolate"	"chocolate1"	"chocolate2"
##	[55]	"chocolate3"	"chocolate4"	"coral"
##	[58]	"coral1"	"coral2"	"coral3"
##	[61]	"coral4"	"cornflowerblue"	"cornsilk"
##	[64]	"cornsilk1"	"cornsilk2"	"cornsilk3"
##	[67]	"cornsilk4"	"cyan"	"cyan1"
##	[70]	"cyan2"	"cyan3"	"cyan4"
##	[73]	"darkblue"	"darkcyan"	"darkgoldenrod"
##	[76]	"darkgoldenrod1"	"darkgoldenrod2"	"darkgoldenrod3"
##	[79]	"darkgoldenrod4"	"darkgray"	"darkgreen"
##	[82]	"darkgrey"	"darkkhaki"	"darkmagenta"
##	[85]	"darkolivegreen"	"darkolivegreen1"	"darkolivegreen2"
##	[88]	"darkolivegreen3"	"darkolivegreen4"	"darkorange"
##	[91]	"darkorange1"	"darkorange2"	"darkorange3"
##	[94]	"darkorange4"	"darkorchid"	"darkorchid1"
##	[97]	"darkorchid2"	"darkorchid3"	"darkorchid4"
##	[100]	"darkred"	"darksalmon"	"darkseagreen"
##	[103]	"darkseagreen1"	"darkseagreen2"	"darkseagreen3"
##	[106]	"darkseagreen4"	"darkslateblue"	"darkslategray"
##	[109]		"darkslategray2"	"darkslategray3"
		"darkslategray4"	"darkslategrey"	"darkturquoise"
		"darkviolet"	"deeppink"	"deeppink1"
		"deeppink2"	"deeppink3"	"deeppink4"
		"deepskyblue"	"deepskyblue1"	"deepskyblue2"
		"deepskyblue3"	"deepskyblue4"	"dimgray"
		"dimgrey"	"dodgerblue"	"dodgerblue1"
		"dodgerblue2"	"dodgerblue3"	"dodgerblue4"
		"firebrick"	"firebrick1"	"firebrick2"
		"firebrick3"	"firebrick4"	"floralwhite"
		"forestgreen"	"gainsboro"	"ghostwhite"
		"gold"	"gold1"	"gold2"
		"gold3"	"gold4"	"goldenrod"
		"goldenrod1"	"goldenrod2"	"goldenrod3"
		"goldenrod4"	"gray"	"gray0"
		"gray1"	"gray2"	"gray3"
πĦ	[TO#]	8 - ay -	51 uy 2	grayo

##	[157]	"gray4"	"gray5"	"gray6"
##	[160]	"gray7"	"gray8"	"gray9"
##	[163]	"gray10"	"gray11"	"gray12"
##	[166]	"gray13"	"gray14"	"gray15"
##	[169]	"gray16"	"gray17"	"gray18"
##	[172]	"gray19"	"gray20"	gray21"
##	[175]	"gray22"	"gray23"	"gray24"
##	[178]	"gray25"	"gray26"	"gray27"
##	[181]	"gray28"	"gray29"	"gray30"
##	[184]	"gray31"	"gray32"	"gray33"
##	[187]	"gray34"	"gray35"	"gray36"
##	[190]	"gray37"	"gray38"	"gray39"
##	[193]	"gray40"	"gray41"	"gray42"
##	[196]	"gray43"	"gray44"	"gray45"
##	[199]	"gray46"	"gray47"	"gray48"
##	[202]	"gray49"	"gray50"	gray51"
##	[205]	"gray52"	"gray53"	"gray54"
##	[208]	"gray55"	"gray56"	"gray57"
##	[211]	"gray58"	"gray59"	"gray60"
##	[214]	"gray61"	"gray62"	"gray63"
##	[217]	"gray64"	"gray65"	"gray66"
##	[220]	"gray67"	"gray68"	"gray69"
##	[223]	"gray70"	"gray71"	"gray72"
##	[226]	"gray73"	"gray74"	"gray75"
##	[229]	"gray76"	"gray77"	"gray78"
##	[232]	"gray79"	"gray80"	gray81"
##	[235]	"gray82"	"gray83"	"gray84"
##	[238]	"gray85"	"gray86"	"gray87"
##	[241]	"gray88"	"gray89"	"gray90"
##	[244]	"gray91"	"gray92"	"gray93"
##	[247]	"gray94"	"gray95"	"gray96"
##	[250]	"gray97"	"gray98"	"gray99"
##	[253]	"gray100"	"green"	"green1"
##	[256]	"green2"	"green3"	"green4"
##	[259]	"greenyellow"	"grey"	"grey0"
##	[262]	"grey1"	"grey2"	"grey3"
##	[265]	"grey4"	"grey5"	"grey6"
	[268]	"grey7"	"grey8"	"grey9"
##	[271]	"grey10"	"grey11"	"grey12"
##	[274]	"grey13"	"grey14"	"grey15"
##	[277]	"grey16"	"grey17"	"grey18"
##	[280]	"grey19"	"grey20"	"grey21"
##	[283]	"grey22"	"grey23"	"grey24"
##	[286]	"grey25"	"grey26"	"grey27"
##	[289]	"grey28"	"grey29"	"grey30"
##	[292]	"grey31"	"grey32"	"grey33"
##	[295]	"grey34"	"grey35"	"grey36"
##	[298]	"grey37"	"grey38"	"grey39"
##	[301]	"grey40"	"grey41"	"grey42"
##	[304]	"grey43"	"grey44"	"grey45"
##	[307]	"grey46"	"grey47"	"grey48"
##	[310]	"grey49"	"grey50"	"grey51"
##	[313]	"grey52"	"grey53"	"grey54"
##	[316]	"grey55"	"grey56"	"grey57"

```
"grey60"
   [319] "grey58"
                                  "grev59"
   [322]
##
         "grey61"
                                  grey62"
                                                           "grey63"
         "grey64"
   [325]
                                  "grey65"
                                                           "grey66"
   [328]
         "grey67"
                                  "grey68"
                                                           "grey69"
##
         "grey70"
                                  grey71"
##
   [331]
                                                           "grey72"
   [334]
##
         "grey73"
                                  "grey74"
                                                           "grey75"
   [337]
##
         "grey76"
                                  "grey77"
                                                           "grey78"
                                                           grey81"
##
   [340]
         "grey79"
                                  grey80"
##
   [343]
         "grey82"
                                  grey83"
                                                           "grey84"
   [346]
##
         "grey85"
                                  "grey86"
                                                           "grey87"
   [349]
         "grey88"
                                  grey89"
                                                           "grey90"
   [352]
                                  grey92"
                                                           "grey93"
##
         "grey91"
         "grey94"
##
   [355]
                                  "grey95"
                                                           "grey96"
   [358]
##
         "grey97"
                                  "grey98"
                                                           "grey99"
   [361]
                                  "honeydew"
                                                           "honeydew1"
##
         "grey100"
##
   [364]
         "honeydew2"
                                  "honeydew3"
                                                           "honeydew4"
   [367]
##
         "hotpink"
                                  "hotpink1"
                                                           "hotpink2"
   [370] "hotpink3"
                                  "hotpink4"
                                                           "indianred"
   [373] "indianred1"
                                  "indianred2"
                                                           "indianred3"
##
   [376] "indianred4"
                                  "ivory"
                                                           "ivory1"
##
   [379] "ivory2"
                                  "ivory3"
                                                           "ivory4"
   [382] "khaki"
                                  "khaki1"
                                                           "khaki2"
                                  "khaki4"
                                                           "lavender"
## [385]
         "khaki3"
   [388]
         "lavenderblush"
                                  "lavenderblush1"
                                                           "lavenderblush2"
## [391] "lavenderblush3"
                                  "lavenderblush4"
                                                           "lawngreen"
  [394] "lemonchiffon"
                                  "lemonchiffon1"
                                                           "lemonchiffon2"
## [397]
         "lemonchiffon3"
                                  "lemonchiffon4"
                                                           "lightblue"
   [400] "lightblue1"
                                                           "lightblue3"
##
                                  "lightblue2"
## [403] "lightblue4"
                                  "lightcoral"
                                                           "lightcyan"
  [406] "lightcyan1"
                                  "lightcyan2"
                                                           "lightcyan3"
##
   [409]
         "lightcyan4"
                                  "lightgoldenrod"
                                                           "lightgoldenrod1"
   [412]
         "lightgoldenrod2"
                                  "lightgoldenrod3"
                                                           "lightgoldenrod4"
   [415] "lightgoldenrodyellow"
                                  "lightgray"
                                                           "lightgreen"
  [418] "lightgrey"
##
                                  "lightpink"
                                                           "lightpink1"
   [421]
         "lightpink2"
                                  "lightpink3"
                                                           "lightpink4"
   [424]
         "lightsalmon"
                                                           "lightsalmon2"
##
                                  "lightsalmon1"
  [427]
         "lightsalmon3"
                                  "lightsalmon4"
                                                           "lightseagreen"
## [430] "lightskyblue"
                                  "lightskyblue1"
                                                           "lightskyblue2"
   [433]
         "lightskyblue3"
                                  "lightskyblue4"
                                                           "lightslateblue"
   [436] "lightslategray"
                                  "lightslategrey"
                                                           "lightsteelblue"
##
   [439] "lightsteelblue1"
                                  "lightsteelblue2"
                                                           "lightsteelblue3"
   [442]
         "lightsteelblue4"
                                  "lightyellow"
                                                           "lightyellow1"
                                  "lightyellow3"
   [445]
         "lightyellow2"
                                                           "lightyellow4"
                                  "linen"
##
   [448]
         "limegreen"
                                                           "magenta"
## [451]
                                  "magenta2"
         "magenta1"
                                                           "magenta3"
## [454]
                                  "maroon"
         "magenta4"
                                                           "maroon1"
##
   [457]
         "maroon2"
                                  "maroon3"
                                                           "maroon4"
  [460]
                                  "mediumblue"
         "mediumaquamarine"
                                                           "mediumorchid"
  [463]
         "mediumorchid1"
                                  "mediumorchid2"
                                                           "mediumorchid3"
                                  "mediumpurple"
## [466]
         "mediumorchid4"
                                                           "mediumpurple1"
## [469]
                                  "mediumpurple3"
                                                           "mediumpurple4"
         "mediumpurple2"
## [472]
         "mediumseagreen"
                                  "mediumslateblue"
                                                           "mediumspringgreen"
## [475]
         "mediumturquoise"
                                  "mediumvioletred"
                                                           "midnightblue"
## [478] "mintcream"
                                  "mistyrose"
                                                           "mistyrose1"
```

##	[481]	llmi atrono a o O ll	llmi atronogo 211	llmiatrrnaga (III
	[484]	"mistyrose2" "moccasin"	"mistyrose3" "navajowhite"	"mistyrose4"
	[487]	"navajowhite2"	"navajowhite3"	"navajowhite1" "navajowhite4"
	[490]	=	"navyblue"	"oldlace"
	[493]	"navy" "olivedrab"	"olivedrab1"	"olivedrab2"
	[496]	"olivedrab3"	"olivedrab4"	
##	[499]			"orange"
##		"orange1"	"orange2"	"orange3"
##	[502]	"orange4"	"orangered"	"orangered1"
##	[505]	"orangered2" "orchid"	"orangered3" "orchid1"	"orangered4" "orchid2"
	[508]	"orchid3"	"orchid4"	
##	[511]			"palegoldenrod"
##	[514]	"palegreen"	"palegreen1"	"palegreen2"
##	[517]	"palegreen3"	"palegreen4"	"paleturquoise"
##	[520]	"paleturquoise1"	"paleturquoise2"	"paleturquoise3"
##	[523]	"paleturquoise4"	"palevioletred"	"palevioletred1"
##	[526]	"palevioletred2"	"palevioletred3"	"palevioletred4"
##	[529]	"papayawhip"	"peachpuff"	"peachpuff1"
##	[532]	"peachpuff2"	"peachpuff3"	"peachpuff4"
##	[535]	"peru"	"pink"	"pink1"
##	[538]	"pink2"	"pink3"	"pink4"
##	[541]	"plum"	"plum1"	"plum2"
##	[544]	"plum3"	"plum4"	"powderblue"
##	[547]	"purple"	"purple1"	"purple2"
##	[550]	"purple3"	"purple4"	"red"
##	[553]	"red1"	"red2"	"red3"
##	[556]	"red4"	"rosybrown"	"rosybrown1"
##	[559]	"rosybrown2"	"rosybrown3"	"rosybrown4"
##	[562]	"royalblue"	"royalblue1"	"royalblue2"
##	[565]	"royalblue3"	"royalblue4"	"saddlebrown"
##	[568]	"salmon"	"salmon1"	"salmon2"
##	[571]	"salmon3"	"salmon4"	"sandybrown"
##	[574]	"seagreen"	"seagreen1"	"seagreen2"
##	[577]	"seagreen3"	"seagreen4"	"seashell"
##	[580]	"seashell1"	"seashell2"	"seashell3"
##	[583]	"seashell4"	"sienna"	"sienna1"
##	[586]	"sienna2"	"sienna3"	"sienna4"
##	[589]	"skyblue"	"skyblue1"	"skyblue2"
##	[592]	"skyblue3"	"skyblue4"	"slateblue"
##	[595]	"slateblue1"	"slateblue2"	"slateblue3"
##	[598]	"slateblue4"	"slategray"	"slategray1"
##	[601]	"slategray2"	"slategray3"	"slategray4"
##	[604]	"slategrey"	"snow"	"snow1"
##	[607]	"snow2"	"snow3"	"snow4"
##	[610]	"springgreen"	"springgreen1"	"springgreen2"
##	[613]	"springgreen3"	"springgreen4"	"steelblue"
##	[616]	"steelblue1"	"steelblue2"	"steelblue3"
##	[619]	"steelblue4"	"tan"	"tan1"
##	[622]	"tan2"	"tan3"	"tan4"
##	[625]	"thistle"	"thistle1"	"thistle2"
##	[628]	"thistle3"	"thistle4"	"tomato"
##	[631]	"tomato1"	"tomato2"	"tomato3"
		"tomato4"	"turquoise"	"turquoise1"
##	[637]	"turquoise2"	"turquoise3"	"turquoise4"
##		"violet"	"violetred"	"violetred1"

```
## [643] "violetred2"
                                 "violetred3"
                                                        "violetred4"
## [646] "wheat"
                                 "wheat1"
                                                         "wheat2"
                                 "wheat4"
## [649] "wheat3"
                                                        "whitesmoke"
## [652] "yellow"
                                 "yellow1"
                                                        "yellow2"
## [655] "yellow3"
                                 "yellow4"
                                                        "yellowgreen"
?pch
ggplot(data = acacia, mapping = aes(x = CIRC, y = HEIGHT)) +
 geom_point(size = 1, color = "tomato", alpha = 0.8, shape = 11) +
 labs(x = "Circumference", y = "Height", title = "Data from UHURU Acacia survey")
```

Warning: Removed 4 rows containing missing values (geom_point).

Data from UHURU Acacia survey

To rescale the plotting of the axis to log scale we use the function scale_y_log_10() and scale_x_log10():

```
ggplot( data = acacia, mapping = aes(x = CIRC, y = HEIGHT)) +
geom_point(size =1, color = "purple", alpha = 0.4) +
scale_x_log10() +
scale_y_log10()
```

Warning: Removed 4 rows containing missing values (geom_point).

Grouping data:

We have the information on experimental treatment in the column named "TREATMENT":

acacia\$TREATMENT

```
[1] "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "MESO"
   [10] "MESO" "MESO" "MESO" "MESO" "MESO" "MESO" "MESO" "MESO" "MESO"
##
    [19] "MESO" "MESO" "OPEN" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL"
   [28] "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL"
##
   [37] "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL"
   [46] "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL"
##
   [55] "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL"
   [64] "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL"
##
   [73] "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL"
##
   [82] "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL"
   [91] "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL"
##
  [100] "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "MEGA"
               "MEGA" "MEGA" "MEGA" "MEGA" "MEGA" "MEGA" "MEGA"
  [109] "MEGA"
  [118] "MEGA" "MEGA" "MEGA" "MESO" "MESO" "MESO" "OPEN" "OPEN" "TOTAL"
  [127] "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL"
## [136] "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL"
## [145] "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL" "TOTAL"
## [154] "TOTAL" "TOTAL" "MESO" "MESO"
```

Let's add information about treatment to our plot:

```
ggplot(data = acacia, mapping = aes (x = CIRC, y = HEIGHT, color = TREATMENT)) + geom_point(size = 2, alpha = 0.5)
```

Warning: Removed 4 rows containing missing values (geom_point).

Subplots or facets

The function to cxreate subplots by a third variable is called facet_wrap()

```
ggplot(data = acacia, mapping = aes(x = CIRC, y = HEIGHT, color = TREATMENT)) +
  geom_point() +
  facet_wrap(~TREATMENT)
```

Warning: Removed 4 rows containing missing values (geom_point).

A little interpretation of what is going on here

How to test these hypotheses?

Model fitting functions

```
The geom_smooth() function alloes to fit linear models to a set of points
```

```
ggplot(data = acacia, mapping = aes(x = CIRC, y = HEIGHT, color = TREATMENT, linetype = TREATMENT)) +
  geom_point() +
  geom_smooth(method = "loess") +
 facet_wrap(~TREATMENT)
```

- ## `geom_smooth()` using formula 'y ~ x'
- ## Warning: Removed 4 rows containing non-finite values (stat_smooth).
- ## Warning: Removed 4 rows containing missing values (geom_point).

Histograms and barplots

For bar plots we use the geom_bar() function:

```
ggplot(data = acacia, aes(x = TREATMENT)) +
  geom_bar()
```


If we want to see the distribution of a continuous variable we use the geom_histogram() function:

```
ggplot(data = acacia, mapping = aes(x = HEIGHT, fill = TREATMENT)) +
geom_histogram(bins = 20, color = "black")
```

Warning: Removed 4 rows containing non-finite values (stat_bin).

Layer multiple data from the same or different data sets

Save images as files

```
ggsave(filename = "acacia_by_treatment.pdf", width = 5, height = 3)

## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

## Warning: Removed 4 rows containing non-finite values (stat_smooth).

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

## Warning: Removed 4 rows containing non-finite values (stat_bin).

## Warning: Removed 4 rows containing missing values (geom_point).
```

Exercise 1

```
ggplot(data = acacia, mapping = aes(x = CIRC, y = AXIS1, color = ANT)) +
  geom_point() +
  labs(x = "Circumference", y = "Canopy Diameter") +
  facet_wrap(~ANT) +
    geom_smooth()

## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

## Warning: Removed 4 rows containing non-finite values (stat_smooth).

## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
```

parametric, : span too small. fewer data values than degrees of freedom.

```
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : at 9.975
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : radius 0.000625
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : all data on boundary of neighborhood. make span bigger
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : pseudoinverse used at 9.975
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : neighborhood radius 0.025
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : reciprocal condition number 1
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : at 15.025
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : radius 0.000625
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : all data on boundary of neighborhood. make span bigger
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : There are other near singularities as well. 0.000625
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : zero-width neighborhood. make span bigger
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : zero-width neighborhood. make span bigger
## Warning: Computation failed in `stat_smooth()`:
## NA/NaN/Inf in foreign function call (arg 5)
```

Warning: Removed 4 rows containing missing values (geom_point).

Exercise 2.

```
ggplot(data = acacia, mapping = aes(x = ANT)) +
  geom_bar()
```


Warning: Removed 4 rows containing non-finite values (stat_bin).

Warning: Removed 4 rows containing non-finite values (stat_bin).

Removed 4 rows containing non-finite values (stat_bin).

