Lecture 5 **Probabilistic classifiers**

Intellectual systems (Machine Learning) Andrey Filchenkov

04.10.2018

Lecture plan

- Bayesian classification
- Non-parametric density recovery
- Parametric density recovery
- Normal discriminant analysis
- Logistic regression
- The presentation is prepared with materials of the K.V. Vorontsov's course "Machine Leaning".
- Slides are available online: goo.gl/BspjhF

Lecture plan

- Bayesian classification
- Non-parametric density recovery
- Parametric density recovery
- Normal discriminant analysis
- Logistic regression

Problem

An illness is spread among 1% of population. This illness test returns true answers in 95% of cases. Someone receives a positive result.

What is the probability, he actually suffers the illness?

Problem: options

An illness is spread among 1% of population. This illness test returns true answers in 95% of cases. Someone receives a positive result. What is the probability, he actually suffers the illness?

$$97,5\% \le x \le 100\%$$
 $95\% \le x < 97,5\%$
 $92\% \le x < 95\%$
 $81\% \le x < 92\%$
 $70\% \le x < 81\%$
 $55\% \le x < 70\%$
 $30\% \le x < 55\%$
 $x < 30\%$

Problem: answer

An illness is spread among 1% of population. This illness test returns true answers in 95% of cases. Someone receives a positive result. What is the probability, he actually suffers the illness?

$$\Pr(d = 1|t = 1) =$$

$$= \frac{\Pr(t = 1|d = 1) \Pr(d = 1)}{\Pr(t = 1|d = 1) \Pr(d = 1) + \Pr(t = 1|d = 0) \Pr(d = 0)} =$$

$$= \frac{0.95 \times 0.01}{0.95 \times 0.01 + 0.05 \times 0.99} = \mathbf{0.16}.$$

Probabilistic classification problem

Instead of an unknown target function $y^*(x)$, we will think about an unknown probability distribution on $X \times Y$ with a density p(x, y).

Simple or independent identically distributed (i.i.d.) sample is a sample, which contains ℓ random independent observations $T^{\ell} = \{(x_i, y_i)\}_{i=1}^{\ell}$.

Now we have families of distributions $\{\varphi(x, y, \theta) | \theta \in \Theta\}$ instead of algorithm models.

Problem: find an algorithm, which minimizes probability of error.

Problem statement

 $a: X \to Y$ splits X on non-overlapping domains A_y :

$$A_y = \{x \in X | a(x) = y\}.$$

Error is when object x labeled as y is classified as belonging to A_s , $s \neq y$.

Error probability: $Pr(A_s, y) = \int_{A_s} p(x, y) dx A_s$.

Error loss: $\lambda_{ys} \geq 0$, for all $(y, s) \in Y \times Y$.

Usually $\lambda_{yy} = 0$, $\lambda_y = \lambda_{ys} = \lambda_{yt} \ \forall s, t \in s \neq y, t \neq y$.

Mean risk of *a*:

$$R(a) = \sum_{y \in Y} \sum_{s \in Y} \lambda_{ys} \Pr(A_s, y).$$

The main equation

$$p(X,Y) = p(x) \Pr(y|x) = \Pr(y) p(x|y)$$

Pr(y) is **priory probability** of class y. p(x|y) is **likelihood** of class y. Pr(y|x) is **posterior probability** of class y.

Two problems

First problem: probability density recovering

Given: $T^{\ell} = \{(x_i, y_i)\}_{i=1}^{\ell}$.

Problem: find empirical estimates $\widehat{\Pr}(y)$ and $\widehat{p}(x|y)$, $y \in Y$.

Second problem: mean risk minimization

Given:

- prior probabilities Pr(y),
- likelihood $p(x|y), y \in Y$.

Problem: find classifier a, which minimizes R(a).

Maximum a posteriori probability

Let
$$Pr(y)$$
 and $p(x|y)$ be known for all $y \in Y$.

$$p(x,y) = p(x) Pr(y|x) = Pr(y) p(x|y).$$

Main idea: choose a class, in which the object is the most probable.

Maximum a posteriori probability (MAP): $a(x) = \operatorname{argmax}_{y \in Y} \Pr(y|x) = \operatorname{argmax}_{y \in Y} \Pr(y) p(x|y).$

Optimal Bayesian classifier

Theorem

If Pr(y) and p(x|y) are known, then the minimal mean risk R(a) is achieved by Bayesian classifier

$$a_{OB}(x) = \operatorname{argmin}_{s \in Y} \sum_{y \in Y} \lambda_{ys} \Pr(y) p(x|y).$$

If
$$\lambda_{yy} = 0$$
, $\lambda_y = \lambda_{ys} = \lambda_{yt} \ \forall s, t \in Y, s \neq y, t \neq y$
 $a_{OB}(x) = \operatorname{agrmin}_{y \in Y} \lambda_y \Pr(y) p(x|y)$.

Classifier $a_{OB}(x)$ is **optimal Bayesian classifier**.

Bayesian risk is minimal value of R(a).

Separating surface

Separating surface for classes a and b is locus of $x \in X$, such that maximum of Bayesian decision rule is achieved both for y = s and y = t:

$$\lambda_a \Pr(a) p(x|a) = \lambda_s \Pr(b) p(x|b).$$

Lecture plan

- Bayesian classification
- Non-parametric density recovery
- Parametric density recovery
- Normal discriminant analysis
- Logistic regression

Two subproblems

The problem is to estimate prior and posterior probabilities for each class:

$$\widehat{\Pr}(y) = ?$$

 $\hat{p}(x|y) = ?$

The first subproblem can be solved easily:

$$\widehat{\Pr}(y) = \frac{|X_y|}{\ell}, \qquad X_y = \{x_i, y_i \in T^\ell, y_i = y\}.$$

The second one is much more complex.

Instead of recovering (x|y), we will recover p(x) with

$$T^{m} = ((x_{(1)}, s), ..., (x_{(m)}, s))$$
 for each $s \in Y$.

One-dimensional case

If Pr([a, b]) is a probabilistic measure on [a, b], then

$$p(x) = \lim_{h \to 0} \frac{1}{2h} \Pr([x - h, x + h]).$$

Empirical density estimation with window of a width h

$$\widehat{p_h}(x) = \frac{1}{2mh} \sum_{i=1}^{m} [|x - x_i| < h].$$

Parzen-Rosenblatt window

Empirical density estimation with window of a width *h*:

$$\widehat{p_h}(x) = \frac{1}{2hm} \sum_{i=1}^{m} \left[\frac{x - x_i}{h} < 1 \right].$$

Parzen-Rosenblatt estimation for a window with width *h*:

$$\widehat{p_h}(x) = \frac{1}{hm} \sum_{i=1}^{m} K\left(\frac{x - x_i}{h}\right),$$

where K(r) is a kernel function.

 $\widehat{p_h}(x)$ converges to p(x).

Generalization to multidimensional case

1. If objects are described with n numeric features $f_j: X \to \mathbb{R}$, j = 1, ..., n,

$$\widehat{p_h}(x) = \frac{1}{m} \sum_{i=1}^m \prod_{j=1}^n \frac{1}{h_j} K\left(\frac{f_j(x) - f_j(x_i)}{h_j}\right).$$

2. If *X* is a (metric) space with a distance $\rho(x, x')$:

$$\widehat{p_h}(x) = \frac{1}{mV(h)} \sum_{i=1}^m K\left(\frac{\rho(x, x_i)}{h}\right),\,$$

where $V(h) = \int_X K\left(\frac{\rho(x,x_i)}{h}\right) dx$ is normalizing factor.

Multidimensional Parzen window

Estimate $\widehat{p_h}(x)$ with

$$\widehat{p_h}(x) = \frac{1}{mV(h)} \sum_{i=1}^m K\left(\frac{\rho(x, x_i)}{h}\right),\,$$

Parzen window:

$$a(x; T^{\ell}, h) = \arg\max_{y \in Y} \lambda_y \Pr(y) \ell_y^{-1} \sum_{i: y_i = y} K\left(\frac{\rho(x, x_i)}{h}\right).$$

$$\Gamma_y(x) = \lambda_y \Pr(y) \ell_y^{-1} \sum_{i:y_i=y} K\left(\frac{\rho(x,x_i)}{h}\right)$$
 is a closeness to class.

Naïve Bayesian classifier

Hypothesis (naïve): features are independent random variables with probability densities $p_j(\xi|y)$, $y \in Y$, j = 1,...,n.

Then classes likelihoods can be represented as:

$$p(x|y) = p_1(\xi_1|y) \cdot \dots \cdot p_n(\xi_n|y), \quad x = (\xi_1, \dots, \xi_n), y \in Y.$$

Naïve Bayesian classifier:

$$a(x) = \operatorname{argmax}_{y \in Y} \left(\ln \lambda_y \, \widehat{\Pr}(y) + \sum_{j=1}^n \ln \widehat{p_j}(\xi_j | y) \right).$$

Lecture plan

- Bayesian classification
- Non-parametric density recovery
- Parametric density recovery
- Normal discriminant analysis
- Logistic regression

Parametrical notation

Joint probability density for sample:

$$p(T^{\ell}) = p((x_1, y_1), ..., (x_{\ell}, y_{\ell})) = \prod_{i=1}^{\ell} p(x_i, y_i).$$

Likelihood:

$$L(\theta, T^{\ell}) = \prod_{i=1}^{\ell} \varphi(x_i, y_i, \theta).$$

MAP:

$$a_{\theta}(x) = \operatorname{argmax}_{v} \varphi(x, y, \theta).$$

Relation with empirical risk

Find logarithm:

$$-\ln L(\theta, T^{\ell}) = -\sum_{i=1}^{\ell} \ln \varphi(x_i, y_i, \theta) \to \min_{\theta}.$$

Define loss function:

$$L(a_{\theta}, x) = -\ell \ln \varphi(x, y, \theta).$$

Then empirical risk minimization problem is:

$$Q(a_{\theta}, T^{\ell}) = \frac{1}{\ell} \sum_{1}^{\ell} L(a_{\theta}, x) =$$

$$= -\frac{1}{\ell} \sum_{1}^{\ell} \ell \ln \varphi(x, y, \theta) = -\sum_{i=1}^{\ell} \ln \varphi(x_i, y_i, \theta) \rightarrow \min_{\theta}.$$

Maximum likelihood

Principle of maximum likelihood:

$$L(\theta; X^m) = \sum_{i=1}^m \ln \varphi(x_i; \theta) \to \max_{\theta},$$

Optimum for θ is achieved in a point, in which the derivate value is zero.

Principle of maximum weighted likelihood:

$$L(\theta; X^m, W^m) = \sum_{i=1}^m w_i \ln \varphi(x_i; \theta) \to \max_{\theta},$$

where $W^m = \{w_1, ..., w_m\}$ is a vector of object weights.

Maximum joint likelihood principle

$$Q(a_{\theta}, T^{\ell}) = -\sum_{i=1}^{\ell} \ln \varphi(x_i, y_i, \theta) \to \min_{\theta}.$$

$$\varphi(x_i, y_i, \theta) = p(x_i, y_i | w) p(w, \gamma),$$

 $p(x_i, y_i|w)$ is a probabilistic data model, $p(w, \gamma)$ is prior distribution of model parameters, γ is hyper-parameter.

Maximum joint likelihood principle:

$$\sum_{i=1}^{\ell} \ln p(x_i, y_i | w) + \ln p(w, \gamma) \to \max_{w, \gamma}.$$

Quadratic penalty conditions

Let $w \in \mathbb{R}^n$ is described with n-dimensional Gaussian distribution:

$$p(w;\sigma) = \frac{1}{(2\pi\sigma)^{n/2}} \exp\left(-\frac{\|w\|^2}{2\sigma}\right),\,$$

(weights are independent, their expectations are equal to zeros, their variances are the same and equal to σ).

It leads to quadratic penalty:

$$-\ln p(w; \sigma) = \frac{1}{2\sigma} ||w||^2 + \text{const}(w).$$

Lecture plan

- Bayesian classification
- Non-parametric density recovery
- Parametric density recovery
- Normal discriminant analysis
- Logistic regression

Key hypothesis

Key hypothesis: classes have *n*-dimensional normal densities:

$$p(x|y) = \mathcal{N}(x; \mu_y, \Sigma_y) = \frac{e^{-\frac{1}{2}(x - \mu_y)^{\top} \Sigma_y^{-1}(x - \mu_y)}}{\sqrt{(2\pi)^n \det \Sigma_y}},$$

where μ_y is vector of expectation of class $y \in Y$, $\Sigma_y \in \mathbb{R}^{n \times n}$ is covariance matrix for class $y \in Y$, it is symmetrical, nonsingular, positive define matrix.

Theorem on separating surface

Theorem:

If classes densities are normal

- 1) separating surface $\{x \in X | \lambda_y \Pr(y) p(x|y) = \lambda_s \Pr(s) p(x|s)\}$ is quadratic;
- 2) if $\Sigma_{y_{+}} = \Sigma_{y_{-}}$, then it is linear.

Quadratic analysis

Principle of maximum weighted likelihood:

$$L(\theta; X^m, W^m) = \sum_{i=1}^m w_i \ln \varphi(x_i; \theta) \to \max_{\theta},$$

where $W^m = \{w_1, ..., w_m\}$ is vector of object weights.

Optimum for θ is achieved in point where derivate value is zero.

Quadratic discriminant

Theorem:

Estimates for maximum weighed likelihood with $y \in Y$ are:

$$\widehat{\mu_y} = \frac{1}{W_y} \sum_{y: y_i = y} w_i x_i;$$

$$\widehat{\Sigma_y} = \frac{1}{W_y} \sum_{y: y_i = y} w_i (x - \widehat{\mu_y}) (x - \widehat{\mu_y})^\top;$$
where $W_y = \sum_{y: y_i = y} w_i.$

Quadratic discriminant:

$$a(x) = \operatorname{argmax}_{y \in Y} \left(\ln \lambda_y \Pr(y) - \frac{1}{2} \left(x - \widehat{\mu_y} \right)^{\top} \Sigma_y^{-1} \left(x - \widehat{\mu_y} \right) - \frac{1}{2} \ln \det \widehat{\Sigma_y} \right).$$

Method problems

- If $\ell_{\nu} < n$, then $\widehat{\Sigma_{\nu}}$ is singular.
- The less ℓ_y is, the less $\widehat{\Sigma_y}$ is robust.
- Estimates $\widehat{\mu_y}$ and $\widehat{\Sigma_y}$ are sensitive to noise.
- Distributions are required to be normal.

Linear discriminant analysis

Hypothesis: covariance matrices are equal

$$\widehat{\Sigma} = \frac{1}{W_y} \sum_{y: y_i = y} w_i (x - \widehat{\mu_{y_i}}) (x - \widehat{\mu_{y_i}})^{\top}.$$

Fisher's linear discriminant:

$$a(x) = \operatorname{argmax}_{y \in Y} \left(\lambda_{y} \operatorname{Pr}(y) p(x|y) \right) =$$

$$= \operatorname{argmax}_{y \in Y} \left(\ln \lambda_{y} \widehat{\operatorname{Pr}(y)} - \frac{1}{2} \widehat{\mu_{y}}^{\top} \widehat{\Sigma}^{-1} \widehat{\mu_{y}} - x^{\top} \widehat{\Sigma}^{-1} \widehat{\mu_{y}} \right) =$$

$$= \operatorname{argmax}_{y \in Y} \left(\beta_{y} + x^{\top} \alpha_{y} \right) = \operatorname{sign}(\langle x, w \rangle - w_{0}).$$

Mahalanobis distance

Theorem: error probability of Fisher's linear discriminant equals

$$R(a) = \Phi\left(-\frac{1}{2}\|\mu_1 - \mu_2\|_{\Sigma}\right),$$

where $\Phi(r) = \mathcal{N}(x; 0,1)$.

Lecture plan

- Bayesian classification
- Non-parametric density recovery
- Parametric density recovery
- Normal discriminant analysis
- Logistic regression

Bayesian classification

A distribution p(x, y) on object-answers space. Simple sample of size ℓ

$$T^{\ell} = \{(x_i, y_i)\}_{i=1}^{\ell}.$$

Bayesian classifier:

$$a_{OB}(x) = \operatorname{argmax}_{y \in Y} \lambda_y \Pr(y) p(x|y),$$

where λ_{y} is losses for class y.

Linear classifiers

Constraint: $Y = \{-1, +1\} = \{y_{-1}, y_{+1}\}$

Linear classifier:

$$a_w(x, T^\ell) = \operatorname{sign}\left(\sum_{i=1}^n w_i f_i(x) - w_0\right).$$

where $w_1, ..., w_n \in \mathbb{R}$ are features weights.

$$a_w(x, T^\ell) = \operatorname{sign}(\langle w, x \rangle).$$

Linear Bayesian classifiers

$$Q(a_{\theta}, T^{\ell}) = \frac{1}{\ell} \sum_{i=1}^{\ell} L(a_{\theta}, x) = -\sum_{i=1}^{\ell} \ln \varphi(x_i, y_i, \theta) \to \min_{\theta}.$$

Bayesian classifier for two classes:

$$a(x) = sign(\lambda_{+} \Pr(y_{+}|x) - \lambda_{-} \Pr(y_{-}|x)) =$$

$$= sign\left(\frac{p(x|y_{+})}{p(x|y_{-})} - \frac{\lambda_{-} \Pr(y_{-})}{\lambda_{+} \Pr(y_{+})}\right).$$

Separating surface

$$\lambda_{+} \Pr(y_{+}) p(x|y_{+}) = \lambda_{-} \Pr(y_{-}) p(x|y_{-})$$

is linear.

Key hypothesis

Key hypothesis: classes are defined with *n*-dimensional overdispersed exponential densities:

$$p(x|y) = \exp\left(c_y(\delta)\langle\theta_y, x\rangle + b_y(\delta, \theta_y) + d(x, \delta)\right),\,$$

where $\theta_{\gamma} \in \mathbb{R}^m$ is **shift** parameter,

 δ is **dispersion** parameter;

 b_{ν} , c_{ν} , d are some numeric functions.

Overdispersed exponential distribution family includes: uniform, normal, hypergeometric, Poisson, binominal, Γ-distribution and other.

Example: Gaussian

Let
$$\theta = \Sigma^{-1}\mu$$
; $\delta = \Sigma$.
Then

$$\mathcal{N}(x; \mu, \Sigma) = \frac{e^{-\frac{1}{2}(x-\mu)^{\top}\Sigma^{-1}(x-\mu)}}{\sqrt{(2\pi)^n \det \Sigma}} =$$

$$= \exp\left(\left(\mu^{\top}\Sigma^{-1}x\right) - \left(\frac{1}{2}\mu^{\top}\Sigma^{-1}\Sigma\Sigma^{-1}\mu\right)\right)$$

$$-\left(\frac{1}{2}x^{\top}\Sigma^{-1}x + \frac{n}{2}\ln 2\pi + \frac{1}{2}\ln|\Sigma|\right).$$

The main theorem

Theorem:

If p_y are overdispersed exponential distributions and $f_0(x) = \text{const}$, then

1) Bayesian classifier

$$a(x) = \operatorname{sign}\left(\frac{p(x|y_+)}{p(x|y_-)} - \frac{\lambda_- \operatorname{Pr}(y_-)}{\lambda_+ \operatorname{Pr}(y_+)}\right)$$

is linear:
$$a(x) = \text{sign}(\langle w, x \rangle - w_0), \ w_0 = \ln \frac{\lambda_-}{\lambda_+};$$

2) posterior probabilities of classes are:

$$Pr(y|x) = \sigma(\langle w, x \rangle y),$$

where $\sigma(s) = \frac{1}{1+e^{-s}}$, which is **logistic (sigmoid) function**.

Logarithmic loss function

$$\widetilde{Q_w}(a, T^{\ell}) = \sum_{i}^{\ell} L(a, x_i) = \sum_{i}^{\ell} \ln p(x_i, y_i; w)$$

$$p(x, y; w) = \Pr(y|x)p(x) = \sigma(\langle w, x \rangle y) \text{const}(w)$$

$$\widetilde{Q_w}(a, T^{\ell}) = \sum_{i=1}^{\ell} \ln(1 + \exp(-\langle w, x \rangle y)) \to \min_{w}.$$

That is logarithmic loss function.

Logarithmic loss function plot

Gradient descent

Derivative:

$$\sigma'(s) = \sigma(s)\sigma(-s).$$

Gradient:

$$\mu\nabla \tilde{Q}(w^{[k]}) = -\sum_{i}^{\ell} y_{i}x_{i}\sigma(-M_{i}(w)).$$

Gradient descent step:

$$w^{[k+1]} = w^{[k]} - \mu y_i x_i \sigma \left(-M_i(w^{[k]}) \right).$$