1. Introduction

1.1. Ableitung

Funktion	Ableitung
x^a	$a \cdot x^{a-1}$
$\frac{1}{x}$	$-\frac{1}{x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
$\tan(x)$	$\frac{1}{\cos(2)^x}$

1.2. Mehrdimensionale Analysis

Häufig mit Funktionen mehrerer Variablen zu tun, die weitere Funktionen beinhalten.

$$f(x,y) = x^{2} \cdot \sin(y)$$
$$x(t) = \sin(t)$$
$$y(t) = t^{3}$$

Partielle Ableitung:

Nach x und y getrennt ableiten.

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} \big(x^2 \cdot \sin(y) \big) = 2x \cdot \sin(y)$$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial y} \big(x^2 \cdot \sin(y) \big) = x^2 \cdot \cos(y)$$

Totale Ableitung:

x(t) und y(t) in f(x, y) einsetzen und dann ableiten.

$$\frac{df}{dt}(x(t),y(t)) = \frac{d}{dt} \Big(\sin(t)^2 \cdot \sin \big(t^3\big) \Big)$$

$$= 2\sin(t)\cdot\cos(t)\cdot\sin(t^3) + \sin(t)^2\cdot\cos(t^3)\cdot3t^2$$

Altenativ mit mehrdimensionale Kettenregel möglich. Bei dieser werden die partiellen Ableitungen mit der Ableitung der Funktion multipliziert und addiert.

$$\frac{df}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dx}{dt}$$