Capstone Project - Credit Card Fraud Detection

The problem statement chosen for this project is to predict fraudulent credit card transactions with the help of machine learning models.

In this project, you will analyse customer-level data which has been collected and analysed during a research collaboration of Worldline and the Machine Learning Group.

The dataset is taken from the Kaggle website and it has a total of 2,84,807 transactions, out of which 492 are fraudulent. Since the dataset is highly imbalanced, so it needs to be handled before model building.

Business Problem Overview ¶

For many banks, retaining high profitable customers is the number one business goal. Banking fraud, however, poses a significant threat to this goal for different banks. In terms of substantial financial losses, trust and credibility, this is a concerning issue to both banks and customers alike.

It has been estimated by Nilson report that by 2020 the banking frauds would account to \$30 billion worldwide. With the rise in digital payment channels, the number of fraudulent transactions is also increasing with new and different ways.

In the banking industry, credit card fraud detection using machine learning is not just a trend but a necessity for them to put proactive monitoring and fraud prevention mechanisms in place. Machine learning is helping these institutions to reduce time-consuming manual reviews, costly chargebacks and fees, and denials of legitimate transactions.

Data Overview

```
In [1]: import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')

In [2]: #data = '/content/drive/My Drive/Colab Notebooks/Capstone/creditcard.csv'
```

In [2]: #data = '/content/drive/My Drive/Colab Notebooks/Capstone/creditcard.csv'
reading Demographic data file
data = pd.read_csv("creditcard.csv")
data.head(4)

Out[2]:

	Time	V1	V2	V3	V4	V5	V6	V7	V8	
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.

4 rows × 31 columns

In [3]: #creditcard_df overview print(data.dtypes)

Time float64 ٧1 float64 V2 float64 ٧3 float64 ۷4 float64 ۷5 float64 ۷6 float64 V7 float64 ٧8 float64 ۷9 float64 V10 float64 float64 V11 V12 float64 float64 V13 V14 float64 V15 float64 float64 V16 V17 float64 float64 V18 float64 V19 V20 float64 float64 V21 V22 float64 V23 float64 V24 float64 V25 float64 float64 V26 V27 float64 V28 float64 Amount float64 Class int64 dtype: object

In [4]: # Lets check the shape of the data set

data.shape

Out[4]: (284807, 31)

```
In [35]: #Checking Null value
         data.isnull().sum()
Out[35]: Time
                   0
         V1
                   0
         V2
                   0
         ٧3
                   0
         ٧4
                   0
         ۷5
                   0
         ۷6
                   0
         V7
                   0
         ٧8
                   0
         V9
                   0
         V10
                   0
         V11
                   0
         V12
                   0
         V13
                   0
         V14
                   0
         V15
                   0
         V16
                   0
         V17
                   0
         V18
                   0
         V19
                   0
         V20
                   0
         V21
                   0
         V22
                   0
         V23
                   0
         V24
                   0
         V25
                   0
         V26
                   0
         V27
                   0
         V28
                   0
         Amount
                   0
         Class
         dtype: int64
In [36]:
         ## checking duplicate data and removing the duplicates
         data.duplicated(subset=None, keep='first').count()
```

Out[36]: 284807

In [37]: ## checking number of unique entries across each variable data.nunique()

Out[37]: Time 124592 ٧1 275663 V2 275663 ٧3 275663 ۷4 275663 ۷5 275663 ۷6 275663 ٧7 275663 ٧8 275663 ۷9 275663 V10 275663 V11 275663 V12 275663 V13 275663 V14 275663 V15 275663 V16 275663 V17 275663 V18 275663 V19 275663 V20 275663 V21 275663 V22 275663 V23 275663 V24 275663 V25 275663 V26 275663 V27 275663 V28 275663 Amount 32767 Class 2 dtype: int64

In [38]: ## describing demographic data
data.describe(percentiles=[0.10,.25,.5,.75,.90,.95])

Out[38]:

	Time	V1	V2	V3	V4	V5
count	284807.000000	2.848070e+05	2.848070e+05	2.848070e+05	2.848070e+05	2.848070e+05
mean	94813.859575	3.919560e-15	5.688174e-16	-8.769071e-15	2.782312e-15	-1.552563e-15
std	47488.145955	1.958696e+00	1.651309e+00	1.516255e+00	1.415869e+00	1.380247e+00
min	0.000000	-5.640751e+01	-7.271573e+01	-4.832559e+01	-5.683171e+00	-1.137433e+02
10%	35027.000000	-1.893272e+00	-1.359862e+00	-1.802587e+00	-1.656329e+00	-1.302171e+00
25%	54201.500000	-9.203734e-01	-5.985499e-01	-8.903648e-01	-8.486401e-01	-6.915971e-01
50%	84692.000000	1.810880e-02	6.548556e-02	1.798463e-01	-1.984653e-02	-5.433583e-02
75%	139320.500000	1.315642e+00	8.037239e-01	1.027196e+00	7.433413e-01	6.119264e-01
90%	157640.400000	2.015409e+00	1.326635e+00	1.676173e+00	1.482807e+00	1.407893e+00
95%	164143.400000	2.081223e+00	1.808585e+00	2.062635e+00	2.566501e+00	2.098960e+00
max	172792.000000	2.454930e+00	2.205773e+01	9.382558e+00	1.687534e+01	3.480167e+01

11 rows × 31 columns

Exploratory Data Analysis

In [39]: import pandas_profiling as pf
pf.ProfileReport(data)

Overview

Dataset info

Number of variables 31 Number of observations 284807 Total Missing (%) 0.0% 67.4 MiB Total size in memory Average record size in memory Variables types 248.0 B

Numeric Categorical 0 Boolean 1 Date 0 Text (Unique) 0 Rejected 0 Unsupported 0

Warnings

Dataset has 1081 duplicate rows | Warning

Variables

Amount

Numeric

Distinct count 32767 **Unique (%)** 11.5% Missing (%) 0.0% Missing (n) 0 0.0% Infinite (%) Infinite (n) Mean 88.35 Minimum 0 Maximum 25691 Zeros (%) 0.6%

Toggle details

Class

Boolean

Distinct count 2 Unique (%) 0.0% 0.0% Missing (%) Missing (n) **Mean** 0.0017275

284315

0

492

Toggle details

Time

Numeric

Distinct count 124592 Unique (%) 43.7% Missing (%) 0.0% Missing (n) Infinite (%) 0.0% Infinite (n) 0 Mean 94814 Minimum Maximum 172790 Zeros (%)

Toggle details

V1

Numeric

Distinct count 275663 Unique (%) 96.8% Missing (%) 0.0% Missing (n) 0 Infinite (%) 0.0% Infinite (n) Mean 3.9196e-15 Minimum -56.408 Maximum 2.4549 0.0% Zeros (%)

Toggle details

V10

Numeric

Distinct count 275663 Unique (%) 96.8% Missing (%) 0.0% 0 Missing (n) 0.0% Infinite (%) Infinite (n) Mean 1.7686e-15 Minimum -24.588 23.745 Maximum 0.0% Zeros (%)

Numeric

Toggle details

V12

Numeric

Distinct count	275663
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	-1.8107e-15
Minimum	-18.684
Maximum	7.8484
Zeros (%)	0.0%

Toggle details

V13

Distinct count	275663
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	1.6934e-15
Minimum	-5.7919
Maximum	7.1269
Zeros (%)	0.0%

Numeric

Toggle details

V15

Numeric

Distinct count	275663
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	3.4823e-15
Minimum	-4.4989
Maximum	8.8777
Zeros (%)	0.0%

Toggle details

V16

Distinct count	275663
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	1.392e-15
Minimum	-14.13
Maximum	17.315
Zeros (%)	0.0%

Numeric

Distinct count	275663
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	-7.5285e-16
Minimum	-25.163
Maximum	9.2535
Zeros (%)	0.0%

Toggle details

V18

Numeric

Distinct count	t 275663
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	4.3288e-16
Minimum	-9.4987
Maximum	5.0411
Zeros (%)	0.0%
ı	

Toggle details

V19

Distinct count	275663
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	9.0497e-16
Minimum	-7.2135
Maximum	5.592
Zeros (%)	0.0%

Numeric

Toggle details

V20

Numeric

Distinct count	275663
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	5.0855e-16
Minimum	-54.498
Maximum	39.421
Zeros (%)	0.0%
l l	

Toggle details

V21

Distinct count	275663
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	1.5373e-16
Minimum	-34.83
Maximum	27.203
Zeros (%)	0.0%

Numeric

Numenc	
Distinct count	275663
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	7.9599e-16
Minimum	-10.933
Maximum	10.503
Zeros (%)	0.0%

Toggle details

V23

Numeric

Distinct count	275663
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	5.3676e-16
Minimum	-44.808
Maximum	22.528
Zeros (%)	0.0%

Toggle details

V24

Distinct count	275663
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	4.4581e-15
Minimum	-2.8366
Maximum	4.5845
Zeros (%)	0.0%

Numeric

Toggle details

V26

Numeric

Distinct count	275663
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	1.6991e-15
Minimum	-2.6046
Maximum	3.5173
Zeros (%)	0.0%

Toggle details

V27

Distinct count	275663
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	-3.6602e-16
Minimum	-22.566
Maximum	31.612
Zeros (%)	0.0%

Numeric	
Distinct count	275663
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	-1.206e-16
Minimum	-15.43
Maximum	33.848
Zeros (%)	0.0%

Toggle details

V3

Numeric

Distinct count	275663
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	-8.7691e-15
Minimum	-48.326
Maximum	9.3826
Zeros (%)	0.0%

Toggle details

V4

Distinct count	275663
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	2.7823e-15
Minimum	-5.6832
Maximum	16.875
Zeros (%)	0.0%

Numeric

Distinct count	275663
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	-1.5526e-15
Minimum	-113.74
Maximum	34.802
Zeros (%)	0.0%

Toggle details

V6

Numeric

Distinct count	
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n	0
Infinite (%)	0.0%
Infinite (n) 0
Mean	2.0107e-15
Minimum	-26.161
Maximum	73.302
Zeros (%)	0.0%
	_

Toggle details

V7

Distinct count	275663
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	-1.6942e-15
Minimum	-43.557
Maximum	120.59
Zeros (%)	0.0%

V8 Numeric **Distinct count** 275663 96.8% Unique (%) Missing (%) 0.0% 0 Missing (n) 0.0% Infinite (%) Infinite (n) **Mean** -1.927e-16 -73.217 Minimum 20.007 Maximum Zeros (%) 0.0%

Toggle details

V9 Numeric 275663 Distinct count **Unique (%)** 96.8% **Missing (%)** 0.0% Missing (n) 0.0% Infinite (%) Infinite (n) **Mean** -3.137e-15 Minimum -13.434 Maximum 15.595 Zeros (%) 0.0%

Toggle details

Correlations

Sample

Time	V1	V2	V3	V4	V5	V6	V 7

0					V4	V5	V6	V7	
U	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-

```
In [40]: import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

```
In [41]: plt.figure(figsize = (20,15))
    sns.heatmap(data.corr(), annot = True)
    plt.show()
```



```
In [42]: #plot the distribution plot of time

plt.figure(figsize=(10,8), )
plt.title('Time Variasion (Seconds)')

sns.distplot(data['Time'],color='green')
```

Out[42]: <matplotlib.axes._subplots.AxesSubplot at 0x2240e316588>

In [43]: # lets create a copy of the demographic dataset to perform EDA
data1 = pd.DataFrame(data).copy()

```
In [44]: #Tag Churners and Remove Attributes of The Churn Phase
# Checking the churn distribution
axis = (data1['Class'].value_counts()*100.0 /len(data1)).plot.pie(autopct='%.1
f%%', labels = ['1', '0'],figsize = (7,7), fontsize = 14 )
axis.set_ylabel('Class',fontsize = 14)
axis.set_title('Class Distribution Plot', fontsize = 14)

#Checking the class Rate
check = (sum(data1['Class'])/len(data1['Class'].index))*100
print(check)
```

0.1727485630620034

Class Distribution Plot

From this dataset we derive there are only 492 fraudulent transactions.

That's only 0.173% data is frund of all of the transactions in this dataset

Splitting the data into train & test data

```
In [45]: from sklearn.metrics import precision_score, recall_score
    from statsmodels.stats.outliers_influence import variance_inflation_factor
    from sklearn.metrics import confusion_matrix
    from sklearn.model_selection import train_test_split
```

```
In [46]: # Putting feature variable to X
X = data1.drop(['Class'],axis=1)
# Putting response variable to y
y = data1['Class']
# Please note, we do not need data scaling here as the data is already scaled
# Splitting the data into train and test
X_train, X_test, y_train, y_test = train_test_split(X,y, train_size=0.7,test_s
ize=0.3,random_state=100)
# lets save all the variable except the target variable
data3 = data1.drop(['Class'],1).columns
```

In [47]: # Ploting the histogram variables from the credit dataset to cross check the s kewness

fig, axes = plt.subplots(nrows=6, ncols=6,figsize=(25,15))

for i, column in enumerate(X.columns):
 sns.distplot(X[column],ax=axes[i//6,i%6])

In [48]: # Checking th train data set X_train.head()

Out[48]:

	Time	V1	V2	V3	V4	V5	V6	V7	
7610	10529.0	1.160485	0.010653	0.731921	-0.083757	-0.204162	0.309873	-0.503116	0.1
190214	128741.0	2.054237	-0.078678	-1.233161	0.183785	0.187539	-0.605905	0.102048	-0.
130590	79387.0	1.434517	-1.560173	-0.783968	-2.432927	0.578638	3.528638	-1.814737	3.0
247916	153735.0	-0.112311	1.235492	-0.312905	-0.502613	0.699869	-1.028247	0.964615	-0. ⁻
55518	46986.0	1.123477	-0.093882	0.988880	0.533433	-0.769281	-0.068741	-0.575773	0.2

5 rows × 30 columns

```
In [49]:
          # Checking th test data set
          X_test.head()
Out[49]:
                     Time
                                V1
                                         V2
                                                  V3
                                                            V4
                                                                     V5
                                                                              V6
                                                                                        V7
           49089
                   43906.0 1.229452 -0.235478 -0.627166
                                                       0.419877
                                                                1.797014
                                                                          4.069574
                                                                                  -0.896223
                                                                                            1.0
           154704 102638.0 2.016893 -0.088751 -2.989257
                                                      -0.142575
                                                                2.675427
                                                                          3.332289
                                                                                  -0.652336
                                                                                            0.7
           67247
                   52429.0 0.535093 -1.469185
                                             0.868279
                                                       0.385462 -1.439135
                                                                          0.368118 -0.499370
                                                                                            0.3
           251657 155444.0 2.128486 -0.117215 -1.513910
                                                       0.166456
                                                                0.359070
                                                                         -0.540072
                                                                                   0.116023
                                                                                           -0.2
           201903 134084.0 0.558593 1.587908 -2.368767
                                                                2.171788 -0.500419
                                                                                   1.059829 -0.2
                                                       5.124413
          5 rows × 30 columns
In [50]:
          print("Before OverSampling, counts of label '1' in Train Data Set: {}".format(
          sum(y train==1)))
          print("Before OverSampling, counts of label '0' in Train Data Set: {} \n".form
          at(sum(y_train==0)))
          print("Before OverSampling, counts of label '1' in Test Data Set: {}".format(s
          um(y_test==1)))
          print("Before OverSampling, counts of label '0' in Test Data Set: {} \n".forma
          t(sum(y_test==0)))
          Before OverSampling, counts of label '1' in Train Data Set: 350
          Before OverSampling, counts of label '0' in Train Data Set: 199014
          Before OverSampling, counts of label '1' in Test Data Set: 142
          Before OverSampling, counts of label '0' in Test Data Set: 85301
```

Model development with imbalance dataset

Logistic Regression with RFE

```
In [51]: from sklearn.linear_model import LogisticRegression
    import statsmodels.api as sm

import sklearn.metrics as metrics
    from sklearn.metrics import confusion_matrix
    from sklearn.metrics import precision_score, recall_score, precision_recall_cu
    rve,f1_score, fbeta_score, accuracy_score
```

```
In [52]: # Default Logistic regression model
    # class_weight="balanced" will take care of the class imbalance in the dataset
    logm1 = sm.GLM(y_train,(sm.add_constant(X_train)), class_weight="balanced",fam
    ily = sm.families.Binomial())
    logm1.fit().summary()
```

Out[52]: Generalized Linear Model Regression Results

Ocheralized Elifedi Model Regression Results							
Dep. Variable:		Clas	s No. O	No. Observations:			9364
Model:	GLM		М [Df Residuals:			9333
Model Family:	Binomial		al	Df Model:			30
Link Function:		log	it	S	cale:	1.0	0000
Method:		IRL	S Lo g	g-Likelih	ood:	-72	5.80
Date:	Mon, 0	6 Apr 202	0	Devia	nce:	14	51.6
Time:		20:02:2	4 P	earson (chi2:	5.75	e+06
No. Iterations:		1	2 Cova	riance T	ype:	nonro	bust
	coef	std err	z	P> z	[0.	025	0.9
const -8	.2473	0.295	-27.946	0.000	-8.	826	- 7.

	coef	std err	z	P> z	[0.025	0.975]
const	-8.2473	0.295	-27.946	0.000	-8.826	-7.669
Time	-6.096e-06	2.77e-06	-2.204	0.027	-1.15e-05	-6.76e-07
V1	0.2048	0.053	3.834	0.000	0.100	0.309
V2	-0.0747	0.067	-1.115	0.265	-0.206	0.057
V 3	-0.0662	0.065	-1.014	0.311	-0.194	0.062
V4	0.6854	0.083	8.263	0.000	0.523	0.848
V5	0.0972	0.079	1.237	0.216	-0.057	0.251
V6	-0.1082	0.090	-1.201	0.230	-0.285	0.068
V 7	-0.0986	0.082	-1.208	0.227	-0.259	0.061
V 8	-0.2002	0.040	-4.957	0.000	-0.279	-0.121
V9	-0.4619	0.127	-3.638	0.000	-0.711	-0.213
V10	-0.8623	0.114	-7.551	0.000	-1.086	-0.638
V11	-0.1698	0.100	-1.689	0.091	-0.367	0.027
V12	0.0211	0.103	0.204	0.838	-0.181	0.223
V13	-0.3442	0.102	-3.385	0.001	-0.543	-0.145
V14	-0.6182	0.076	-8.103	0.000	-0.768	-0.469
V15	-0.2032	0.108	-1.890	0.059	-0.414	0.007
V16	-0.1570	0.139	-1.130	0.258	-0.429	0.115
V17	-0.1223	0.085	-1.447	0.148	-0.288	0.043
V18	0.0533	0.150	0.355	0.722	-0.241	0.347
V19	0.1266	0.118	1.076	0.282	-0.104	0.357
V20	-0.5751	0.108	-5.316	0.000	-0.787	-0.363
V21	0.3820	0.075	5.118	0.000	0.236	0.528
V22	0.5303	0.160	3.308	0.001	0.216	0.845
V23	-0.0574	0.072	-0.798	0.425	-0.198	0.084
V24	0.0919	0.182	0.506	0.613	-0.264	0.448
V25	-0.1094	0.166	-0.661	0.509	-0.434	0.215
V26	-0.0112	0.231	-0.049	0.961	-0.463	0.441
V27	-0.8578	0.167	-5.145	0.000	-1.185	-0.531
V28	-0.3664	0.116	-3.158	0.002	-0.594	-0.139

Amount 0.0009 0.000 1.960 0.050 1.04e-07 0.002

p-value of the feauture V26 is high, lets drop it and re create the model

```
In [53]: df_col = data3.drop('V26', 1)
    X_train_sm = sm.add_constant(X_train[df_col])
    # class_weight="balanced" will take care of the class imbalance in the dataset
    logm1 = sm.GLM(y_train,X_train_sm, class_weight="balanced",family = sm.familie
    s.Binomial())
    res = logm1.fit()
    res.summary()
```

Out[53]: Generalized Linear Model Regression Results

199364	No. Observations:	Class	Dep. Variable:
199334	Df Residuals:	GLM	Model:
29	Df Model:	Binomial	Model Family:
1.0000	Scale:	logit	Link Function:
-725.80	Log-Likelihood:	IRLS	Method:
1451.6	Deviance:	Mon, 06 Apr 2020	Date:
5.72e+06	Pearson chi2:	20:02:45	Time:
nonrobust	Covariance Type:	12	No. Iterations:

					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	coef	std err	z	P> z	[0.025	0.975]
const	-8.2465	0.295	-27.982	0.000	-8.824	-7.669
Time	-6.104e-06	2.76e-06	-2.211	0.027	-1.15e-05	-6.94e-07
V1	0.2045	0.053	3.855	0.000	0.101	0.308
V2	-0.0742	0.066	-1.120	0.263	-0.204	0.056
V3	-0.0663	0.065	-1.016	0.309	-0.194	0.062
V4	0.6857	0.083	8.286	0.000	0.524	0.848
V5	0.0976	0.078	1.244	0.214	-0.056	0.251
V6	-0.1086	0.090	-1.211	0.226	-0.284	0.067
V 7	-0.0980	0.080	-1.217	0.224	-0.256	0.060
V 8	-0.2003	0.040	-4.964	0.000	-0.279	-0.121
V9	-0.4606	0.124	-3.709	0.000	-0.704	-0.217
V10	-0.8627	0.114	-7.567	0.000	-1.086	-0.639
V11	-0.1696	0.100	-1.689	0.091	-0.366	0.027
V12	0.0221	0.101	0.218	0.828	-0.177	0.221
V13	-0.3443	0.102	-3.389	0.001	-0.544	-0.145
V14	-0.6179	0.076	-8.123	0.000	-0.767	-0.469
V15	-0.2029	0.107	-1.891	0.059	-0.413	0.007
V16	-0.1576	0.138	-1.139	0.255	-0.429	0.114
V17	-0.1231	0.083	-1.484	0.138	-0.286	0.039
V18	0.0540	0.149	0.362	0.717	-0.238	0.347
V19	0.1256	0.116	1.084	0.278	-0.102	0.353
V20	-0.5746	0.108	-5.330	0.000	-0.786	-0.363
V21	0.3817	0.074	5.125	0.000	0.236	0.528
V22	0.5297	0.160	3.313	0.001	0.216	0.843
V23	-0.0575	0.072	-0.799	0.424	-0.198	0.084
V24	0.0917	0.182	0.505	0.614	-0.264	0.447
V25	-0.1105	0.164	-0.673	0.501	-0.432	0.211
V27	-0.8579	0.167	-5.143	0.000	-1.185	-0.531
V28	-0.3662	0.116	-3.157	0.002	-0.594	-0.139
Amount	0.0009	0.000	1.960	0.050	8.53e-08	0.002

p-value of the feauture V12 is high, lets drop it and re create the model

```
In [54]: df_col = df_col.drop('V12', 1)
    X_train_sm = sm.add_constant(X_train[df_col])
    # class_weight="balanced" will take care of the class imbalance in the dataset
    logm1 = sm.GLM(y_train,X_train_sm, class_weight="balanced",family = sm.familie
    s.Binomial())
    res = logm1.fit()
    res.summary()
```

Out[54]: Generalized Linear Model Regression Results

199364	No. Observations:	Class	Dep. Variable:
199335	Df Residuals:	GLM	Model:
28	Df Model:	Binomial	Model Family:
1.0000	Scale:	logit	Link Function:
-725.82	Log-Likelihood:	IRLS	Method:
1451.6	Deviance:	Mon, 06 Apr 2020	Date:
6.02e+06	Pearson chi2:	20:02:55	Time:
nonrobust	Covariance Type:	12	No. Iterations:

	coef	std err	z	P> z	[0.025	0.975]
const	-8.2438	0.294	-28.047	0.000	-8.820	-7.668
Time	-6.014e-06	2.73e-06	-2.205	0.027	-1.14e-05	-6.69e-07
V1	0.2034	0.053	3.857	0.000	0.100	0.307
V2	-0.0774	0.064	-1.209	0.227	-0.203	0.048
V3	-0.0643	0.064	-0.998	0.318	-0.190	0.062
V4	0.6796	0.077	8.831	0.000	0.529	0.830
V5	0.0935	0.076	1.233	0.218	-0.055	0.242
V6	-0.1081	0.090	-1.208	0.227	-0.284	0.067
V7	-0.1001	0.080	-1.258	0.208	-0.256	0.056
V8	-0.2007	0.040	-4.974	0.000	-0.280	-0.122
V9	-0.4624	0.123	-3.763	0.000	-0.703	-0.222
V10	-0.8558	0.109	-7.843	0.000	-1.070	-0.642
V11	-0.1689	0.100	-1.685	0.092	-0.365	0.028
V13	-0.3407	0.100	-3.410	0.001	-0.536	-0.145
V14	-0.6140	0.074	-8.347	0.000	-0.758	-0.470
V15	-0.2050	0.107	-1.919	0.055	-0.414	0.004
V16	-0.1538	0.136	-1.128	0.259	-0.421	0.113
V17	-0.1157	0.075	-1.533	0.125	-0.264	0.032
V18	0.0514	0.148	0.348	0.728	-0.238	0.341
V19	0.1252	0.116	1.084	0.278	-0.101	0.352
V20	-0.5711	0.107	-5.353	0.000	-0.780	-0.362
V21	0.3805	0.074	5.127	0.000	0.235	0.526
V22	0.5292	0.160	3.316	0.001	0.216	0.842
V23	-0.0586	0.072	-0.817	0.414	-0.199	0.082
V24	0.0922	0.181	0.508	0.612	-0.263	0.448
V25	-0.1067	0.163	-0.653	0.514	-0.427	0.214
V27	-0.8530	0.166	-5.140	0.000	-1.178	-0.528
V28	-0.3652	0.116	-3.138	0.002	-0.593	-0.137
Amount	0.0009	0.000	1.954	0.051	-2.67e-06	0.002

p-value of the feauture V18 is high, lets drop it and re create the model

```
In [55]: df_col = df_col.drop('V18', 1)
    X_train_sm = sm.add_constant(X_train[df_col])
    # class_weight="balanced" will take care of the class imbalance in the dataset
    logm1 = sm.GLM(y_train,X_train_sm, class_weight="balanced",family = sm.familie
    s.Binomial())
    res = logm1.fit()
    res.summary()
```

Dep. Variable:

Dep. vai	iable.	Cla	155 INU.	Observa	itions.	199304	
N	lodel:	GLM		Df Resi	duals:	199336	
Model Fa	amily:	Binomial		Df Model:		27	
Link Fun	ction:	lo	ogit		Scale:	1.0000	
Me	thod:	IR	LS L	og-Likeli	hood:	-725.88	
	Date: Mor	n, 06 Apr 20)20	Dev	iance:	1451.8	
	Time:	20:03	:44	Pearsor	n chi2 : 6	.05e+06	
No. Itera	tions:		12 Co	/ariance	Type: no	nrobust	
	coef	std err	z	P> z	[0.025	0.975]	
const	-8.2556	0.293	-28.215	0.000	-8.829	-7.682	
Time	-5.91e-06	2.71e-06	-2.178	0.029	-1.12e-05	-5.91e-07	
V1	0.2037	0.053	3.858	0.000	0.100	0.307	
V2	-0.0742	0.064	-1.162	0.245	-0.199	0.051	
V3	-0.0636	0.065	-0.985	0.325	-0.190	0.063	
V4	0.6811	0.077	8.848	0.000	0.530	0.832	
V5	0.0976	0.075	1.294	0.196	-0.050	0.245	
V6	-0.1098	0.090	-1.226	0.220	-0.285	0.066	
V7	-0.0995	0.080	-1.247	0.212	-0.256	0.057	
V8	-0.2005	0.040	-4.970	0.000	-0.280	-0.121	
V9	-0.4595	0.123	-3.725	0.000	-0.701	-0.218	
V10	-0.8590	0.109	-7.866	0.000	-1.073	-0.645	
V11	-0.1629	0.099	-1.649	0.099	-0.357	0.031	
V13	-0.3428	0.100	-3.431	0.001	-0.539	-0.147	
V14	-0.6164	0.073	-8.430	0.000	-0.760	-0.473	
V15	-0.2055	0.107	-1.925	0.054	-0.415	0.004	
V16	-0.1317	0.122	-1.076	0.282	-0.372	0.108	
V17	-0.1050	0.069	-1.525	0.127	-0.240	0.030	
V19	0.1353	0.112	1.209	0.227	-0.084	0.355	
V20	-0.5660	0.106	-5.340	0.000	-0.774	-0.358	
V21	0.3838	0.074	5.213	0.000	0.239	0.528	
V22	0.5337	0.159	3.365	0.001	0.223	0.845	
V23	-0.0565	0.072	-0.789	0.430	-0.197	0.084	
V24	0.0892	0.181	0.492	0.622	-0.266	0.445	
V25	-0.1055	0.164	-0.645	0.519	-0.426	0.215	
V27	-0.8539	0.166	-5.141	0.000	-1.179		
V28	-0.3646	0.116	-3.132	0.002	-0.593	-0.136	
Amount	0.0009	0.000	1.997	0.046	1.71e-05	0.002	

Class No. Observations:

199364

```
In [56]: df_col = df_col.drop('V24', 1)
    X_train_sm = sm.add_constant(X_train[df_col])
    # class_weight="balanced" will take care of the class imbalance in the dataset
    logm1 = sm.GLM(y_train,X_train_sm, class_weight="balanced",family = sm.familie
    s.Binomial())
    res = logm1.fit()
    res.summary()
```

Out[56]: Generalized Linear Model Regression Results

Dep. Variable:

Dep. vari	iable:	Class	NO. U	bservat	ions: 18	99304	
M	odel:	GLM	0	Df Residuals		99337	
Model Fa	mily:	Binomial		Df Model:		26	
Link Fund	ction:	logit		S	cale: 1	.0000	
Me	thod:	IRLS	Log	j-Likelih	ood: -7	26.00	
	Date: Mon,	06 Apr 2020		Devia	ance: 1	452.0	
•	Time:	20:03:54	Р	earson	chi2: 5.92	2e+06	
No. Iterat	ions:	12	Cova	Covariance Type: nonrobust			
	coef	std err	z	P> z	[0.025	0.975]	
const	-8.2511	0.293 -	-28.196	0.000	-8.825	-7.678	
Time	-5.929e-06	2.72e-06	-2.182	0.029	-1.13e-05	-6.03e-07	
V1	0.2035	0.053	3.848	0.000	0.100	0.307	
V2	-0.0736	0.064	-1.145	0.252	-0.199	0.052	
V3	-0.0605	0.065	-0.932	0.351	-0.188	0.067	
V4	0.6821	0.077	8.848	0.000	0.531	0.833	
V5	0.0919	0.076	1.210	0.226	-0.057	0.241	
V6	-0.1200	0.090	-1.339	0.181	-0.296	0.056	
V 7	-0.0995	0.080	-1.240	0.215	-0.257	0.058	
V8	-0.2022	0.040	-4.996	0.000	-0.282	-0.123	
V9	-0.4576	0.123	-3.719	0.000	-0.699	-0.216	
V10	-0.8537	0.109	-7.862	0.000	-1.066	-0.641	
V11	-0.1631	0.098	-1.657	0.097	-0.356	0.030	
V13	-0.3403	0.100	-3.416	0.001	-0.536	-0.145	
V14	-0.6121	0.072	-8.444	0.000	-0.754	-0.470	
V15	-0.2088	0.107	-1.960	0.050	-0.418	8.7e-06	
V16	-0.1379	0.121	-1.140	0.254	-0.375	0.099	
V17	-0.1050	0.069	-1.530	0.126	-0.239	0.029	
V19	0.1368	0.111	1.231	0.218	-0.081	0.355	
V20	-0.5695	0.106	-5.358	0.000	-0.778	-0.361	
V21	0.3819	0.073	5.200	0.000	0.238	0.526	
V22	0.5326	0.158	3.361	0.001	0.222	0.843	
V23	-0.0582	0.072	-0.809	0.418	-0.199	0.083	
V25	-0.1086	0.163	-0.664	0.506	-0.429	0.212	
V27	-0.8519	0.166	-5.123	0.000	-1.178	-0.526	
V28	-0.3640	0.117	-3.113	0.002	-0.593	-0.135	
Amount	0.0009	0.000	1.996	0.046	1.73e-05	0.002	

Class No. Observations: 199364

```
In [57]: df_col = df_col.drop('V25', 1)
    X_train_sm = sm.add_constant(X_train[df_col])
    # class_weight="balanced" will take care of the class imbalance in the dataset
    logm1 = sm.GLM(y_train,X_train_sm, class_weight="balanced",family = sm.familie
    s.Binomial())
    res = logm1.fit()
    res.summary()
```

Out[57]: Generalized Linear Model Regression Results

Dep. Variable:

Dep. vai	iable.	Class	NO. C	DSEI Va	uons.	13	99304
N	lodel:	GLM	I	Of Resid	duals:	19	99338
Model Fa	amily:	Binomial		Df N	lodel:		25
Link Fun	ction:	logit		\$	Scale:	1	.0000
Me	thod:	IRLS	Lo	g-Likelil	hood:	-7	26.22
	Date: Mon,	06 Apr 2020		Devi	ance:	1	452.4
	Time:	20:04:03	F	Pearson	chi2:	5.90	e+06
No. Iterat	tions:	12	Cova	ariance	Type:	nonr	obust
	coef	std err	z	P> z	[0.0)25	0.975]
const	-8.2954	0.286	-29.029	0.000	-8.8	355	-7.735
Time	-5.606e-06	2.68e-06	-2.093	0.036	-1.09e	-05	-3.57e-07
V1	0.2053	0.053	3.871	0.000	0.1	101	0.309
V2	-0.0709	0.066	-1.077	0.281	-0.2	200	0.058
V3	-0.0548	0.064	-0.850	0.395	-0.1	181	0.072
V4	0.6861	0.077	8.884	0.000	0.5	535	0.837
V5	0.0935	0.076	1.223	0.221	-0.0)56	0.243
V6	-0.1176	0.090	-1.313	0.189	-0.2	293	0.058
V 7	-0.1037	0.081	-1.274	0.202	-0.2	263	0.056
V8	-0.2032	0.041	-4.984	0.000	-0.2	283	-0.123
V9	-0.4526	0.123	-3.674	0.000	-0.6	694	-0.211
V10	-0.8537	0.109	-7.829	0.000	-1.0)67	-0.640
V11	-0.1608	0.098	-1.636	0.102	-0.3	353	0.032
V13	-0.3398	0.100	-3.409	0.001	-0.5	535	-0.144
V14	-0.6113	0.073	-8.420	0.000	-0.7	754	-0.469
V15	-0.2002	0.106	-1.893	0.058	-0.4	108	0.007
V16	-0.1386	0.121	-1.143	0.253	-0.3	376	0.099
V17	-0.1047	0.069	-1.522	0.128	-0.2	239	0.030
V19	0.1414	0.111	1.271	0.204	-0.0)77	0.359
V20	-0.5653	0.108	-5.259	0.000	-0.7	776	-0.355
V21	0.3837	0.074	5.200	0.000	0.2	239	0.528
V22	0.5419	0.160	3.396	0.001	0.2	229	0.855
V23	-0.0780	0.066	-1.180	0.238	-0.2	208	0.052
V27	-0.8582	0.168	-5.121	0.000	-1.1	187	-0.530
V28	-0.3761	0.115	-3.266	0.001	-0.6	602	-0.150
Amount	0.0010	0.000	2.002	0.045	2.07e	-05	0.002

Class No. Observations: 199364

```
In [58]: df_col = df_col.drop('V3', 1)
    X_train_sm = sm.add_constant(X_train[df_col])
    # class_weight="balanced" will take care of the class imbalance in the dataset
    logm1 = sm.GLM(y_train,X_train_sm, class_weight="balanced",family = sm.familie
    s.Binomial())
    res = logm1.fit()
    res.summary()
```

Out[58]: Generalized Linear Model Regression Results

Dep. Vari	iable:	Class	No. O	bservat	ions: 1	99364
M	lodel:	GLM		of Resid	luals: 1	99339
Model Fa	mily:	Binomial		Df M	odel:	24
Link Fund	ction:	logit		S	cale:	1.0000
Me	thod:	IRLS	Log	g-Likelih	nood: -7	726.58
	Date: Mon,	06 Apr 2020		Devi	ance:	1453.2
	Time:	20:04:12	Р	earson	chi2: 6.0	0e+06
No. Iterat	tions:	12	Cova	riance [·]	Type: non	robust
	coef	std err	z	P> z	[0.025	0.975]
const	-8.4107	0.253	-33.215	0.000	-8.907	-7.914
Time	-4.476e-06	2.32e-06	-1.925	0.054	-9.03e-06	8.06e-08
V1	0.1940	0.052	3.746	0.000	0.092	0.295
V2	-0.0580	0.067	-0.861	0.390	-0.190	0.074
V4	0.6941	0.077	8.980	0.000	0.543	0.846
V5	0.0739	0.076	0.974	0.330	-0.075	0.223
V6	-0.1370	0.090	-1.524	0.127	-0.313	0.039
V7	-0.1203	0.081	-1.491	0.136	-0.279	0.038
V8	-0.1966	0.042	-4.735	0.000	-0.278	-0.115
V9	-0.4506	0.123	-3.666	0.000	-0.691	-0.210
V10	-0.8691	0.107	-8.089	0.000	-1.080	-0.658
V11	-0.1384	0.095	-1.462	0.144	-0.324	0.047
V13	-0.3333	0.099	-3.350	0.001	-0.528	-0.138
V14	-0.6146	0.072	-8.484	0.000	-0.757	-0.473
V15	-0.1859	0.104	-1.788	0.074	-0.390	0.018
V16	-0.1342	0.121	-1.110	0.267	-0.371	0.103
V17	-0.0959	0.068	-1.416	0.157	-0.229	0.037
V19	0.1278	0.110	1.165	0.244	-0.087	0.343
V20	-0.5800	0.106	-5.478	0.000	-0.788	-0.372
V21	0.3730	0.073	5.117	0.000	0.230	0.516
V22	0.5242	0.158	3.318	0.001	0.215	0.834
V23	-0.0731	0.069	-1.066	0.286	-0.207	0.061
V27	-0.8679	0.165	-5.270	0.000	-1.191	-0.545
V28	-0.3814	0.118	-3.245	0.001	-0.612	
Amount	0.0011	0.001	2.109	0.035	7.66e-05	0.002

Dep. Variable: Class No. Observations: 199364

```
In [59]: df_col = df_col.drop('V2', 1)
    X_train_sm = sm.add_constant(X_train[df_col])
    # class_weight="balanced" will take care of the class imbalance in the dataset
    logm1 = sm.GLM(y_train,X_train_sm, class_weight="balanced",family = sm.familie
    s.Binomial())
    res = logm1.fit()
    res.summary()
```

Out[59]: Generalized Linear Model Regression Results

Dep. Variable:	Class	No. Observations:	199364
Model:	GLM	Df Residuals:	199340
Model Family:	Binomial	Df Model:	23
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-726.91
Date:	Mon, 06 Apr 2020	Deviance:	1453.8
Time:	20:04:17	Pearson chi2:	5.72e+06
No. Iterations:	12	Covariance Type:	nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	-8.4232	0.254	-33.116	0.000	-8.922	-7.925
Time	-4.66e-06	2.34e-06	-1.993	0.046	-9.24e-06	-7.76e-08
V1	0.1906	0.055	3.478	0.001	0.083	0.298
V4	0.6964	0.082	8.543	0.000	0.537	0.856
V5	0.1193	0.054	2.199	0.028	0.013	0.226
V6	-0.1490	0.088	-1.691	0.091	-0.322	0.024
V7	-0.1215	0.087	-1.392	0.164	-0.293	0.050
V8	-0.1891	0.041	-4.594	0.000	-0.270	-0.108
V9	-0.4069	0.114	-3.565	0.000	-0.631	-0.183
V10	-0.8612	0.111	-7.773	0.000	-1.078	-0.644
V11	-0.1436	0.095	-1.511	0.131	-0.330	0.043
V13	-0.3365	0.099	-3.395	0.001	-0.531	-0.142
V14	-0.6044	0.073	-8.280	0.000	-0.748	-0.461
V15	-0.1843	0.105	-1.763	0.078	-0.389	0.021
V16	-0.1278	0.123	-1.039	0.299	-0.369	0.113
V17	-0.1105	0.066	-1.673	0.094	-0.240	0.019
V19	0.1392	0.110	1.268	0.205	-0.076	0.354
V20	-0.5928	0.107	-5.561	0.000	-0.802	-0.384
V21	0.3581	0.071	5.066	0.000	0.220	0.497
V22	0.5306	0.159	3.344	0.001	0.220	0.842
V23	-0.0504	0.070	-0.718	0.473	-0.188	0.087
V27	-0.8467	0.164	-5.168	0.000	-1.168	-0.526
V28	-0.3661	0.123	-2.980	0.003	-0.607	-0.125
Amount	0.0014	0.000	3.031	0.002	0.000	0.002

p-value of the feauture V23 is high, lets drop it and re create the model

```
In [60]: df_col = df_col.drop('V23', 1)
    X_train_sm = sm.add_constant(X_train[df_col])
    # class_weight="balanced" will take care of the class imbalance in the dataset
    logm1 = sm.GLM(y_train,X_train_sm, class_weight="balanced",family = sm.familie
    s.Binomial())
    res = logm1.fit()
    res.summary()
```

Out[60]: Generalized Linear Model Regression Results

Dep. Variable:	Class	No. Observations:	199364
Model:	GLM	Df Residuals:	199341
Model Family:	Binomial	Df Model:	22
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-727.16
Date:	Mon, 06 Apr 2020	Deviance:	1454.3
Time:	20:04:37	Pearson chi2:	5.90e+06
No. Iterations:	12	Covariance Type:	nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	-8.4197	0.254	-33.096	0.000	-8.918	-7.921
Time	-4.691e-06	2.34e-06	-2.003	0.045	-9.28e-06	-1e-07
V1	0.2073	0.050	4.131	0.000	0.109	0.306
V4	0.6819	0.079	8.664	0.000	0.528	0.836
V5	0.1191	0.054	2.191	0.028	0.013	0.226
V6	-0.1477	0.087	-1.688	0.091	-0.319	0.024
V7	-0.1475	0.081	-1.830	0.067	-0.305	0.010
V8	-0.1827	0.040	-4.601	0.000	-0.261	-0.105
V9	-0.4238	0.111	-3.813	0.000	-0.642	-0.206
V10	-0.8547	0.109	-7.808	0.000	-1.069	-0.640
V11	-0.1464	0.095	-1.540	0.124	-0.333	0.040
V13	-0.3367	0.099	-3.393	0.001	-0.531	-0.142
V14	-0.6106	0.073	-8.400	0.000	-0.753	-0.468
V15	-0.1845	0.105	-1.764	0.078	-0.389	0.021
V16	-0.1374	0.121	-1.140	0.254	-0.374	0.099
V17	-0.1047	0.065	-1.607	0.108	-0.232	0.023
V19	0.1305	0.109	1.200	0.230	-0.083	0.343
V20	-0.6125	0.103	-5.939	0.000	-0.815	-0.410
V21	0.3525	0.069	5.087	0.000	0.217	0.488
V22	0.5157	0.157	3.291	0.001	0.209	0.823
V27	-0.8739	0.157	-5.570	0.000	-1.181	-0.566
V28	-0.3742	0.119	-3.134	0.002	-0.608	-0.140
Amount	0.0015	0.000	3.709	0.000	0.001	0.002

```
In [61]: df_col = df_col.drop('V16', 1)
    X_train_sm = sm.add_constant(X_train[df_col])
    # class_weight="balanced" will take care of the class imbalance in the dataset
    logm1 = sm.GLM(y_train,X_train_sm, class_weight="balanced",family = sm.familie
    s.Binomial())
    res = logm1.fit()
    res.summary()
```

Out[61]: Generalized Linear Model Regression Results

199364	No. Observations:	Class	Dep. Variable:
199342	Df Residuals:	GLM	Model:
21	Df Model:	Binomial	Model Family:
1.0000	Scale:	logit	Link Function:
-727.80	Log-Likelihood:	IRLS	Method:
1455.6	Deviance:	Mon, 06 Apr 2020	Date:
5.42e+06	Pearson chi2:	20:04:42	Time:
nonrobust	Covariance Type:	12	No. Iterations:

	coef	std err	z	P> z	[0.025	0.975]
const	-8.4006	0.252	-33.295	0.000	-8.895	-7.906
Time	-4.973e-06	2.32e-06	-2.143	0.032	-9.52e-06	-4.26e-07
V1	0.2124	0.049	4.318	0.000	0.116	0.309
V4	0.6858	0.079	8.729	0.000	0.532	0.840
V5	0.1207	0.054	2.226	0.026	0.014	0.227
V6	-0.1475	0.088	-1.675	0.094	-0.320	0.025
V 7	-0.1507	0.079	-1.902	0.057	-0.306	0.005
V8	-0.1806	0.039	-4.573	0.000	-0.258	-0.103
V9	-0.4096	0.111	-3.704	0.000	-0.626	-0.193
V10	-0.8804	0.107	-8.261	0.000	-1.089	-0.672
V11	-0.1451	0.095	-1.529	0.126	-0.331	0.041
V13	-0.3368	0.099	-3.395	0.001	-0.531	-0.142
V14	-0.6156	0.072	-8.538	0.000	-0.757	-0.474
V15	-0.1808	0.105	-1.724	0.085	-0.386	0.025
V17	-0.1542	0.048	-3.192	0.001	-0.249	-0.060
V19	0.1825	0.099	1.836	0.066	-0.012	0.377
V20	-0.5962	0.100	-5.950	0.000	-0.793	-0.400
V21	0.3747	0.066	5.657	0.000	0.245	0.505
V22	0.5364	0.155	3.462	0.001	0.233	0.840
V27	-0.8948	0.152	-5.877	0.000	-1.193	-0.596
V28	-0.3888	0.116	-3.361	0.001	-0.615	-0.162
Amount	0.0015	0.000	3.676	0.000	0.001	0.002

```
In [62]: df_col = df_col.drop('V11', 1)
    X_train_sm = sm.add_constant(X_train[df_col])
    # class_weight="balanced" will take care of the class imbalance in the dataset
    logm1 = sm.GLM(y_train,X_train_sm, class_weight="balanced",family = sm.familie
    s.Binomial())
    res = logm1.fit()
    res.summary()
```

Out[62]: Generalized Linear Model Regression Results

Dep. Variable:	Class	No. Observations:	199364
Model:	GLM	Df Residuals:	199343
Model Family:	Binomial	Df Model:	20
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-728.97
Date:	Mon, 06 Apr 2020	Deviance:	1457.9
Time:	20:04:47	Pearson chi2:	6.76e+06
No. Iterations:	12	Covariance Type:	nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	-8.4392	0.252	-33.473	0.000	-8.933	-7.945
Time	-4.013e-06	2.23e-06	-1.796	0.073	-8.39e-06	3.67e-07
V1	0.2035	0.049	4.139	0.000	0.107	0.300
V4	0.6896	0.079	8.719	0.000	0.535	0.845
V5	0.1170	0.054	2.171	0.030	0.011	0.223
V6	-0.1357	0.087	-1.561	0.119	-0.306	0.035
V 7	-0.1369	0.080	-1.719	0.086	-0.293	0.019
V8	-0.1794	0.039	-4.573	0.000	-0.256	-0.102
V9	-0.3753	0.109	-3.437	0.001	-0.589	-0.161
V10	-0.8566	0.107	-8.031	0.000	-1.066	-0.648
V13	-0.3309	0.099	-3.348	0.001	-0.525	-0.137
V14	-0.5642	0.064	-8.778	0.000	-0.690	-0.438
V15	-0.1818	0.105	-1.731	0.084	-0.388	0.024
V17	-0.1473	0.049	-3.038	0.002	-0.242	-0.052
V19	0.1661	0.099	1.677	0.094	-0.028	0.360
V20	-0.5630	0.101	-5.571	0.000	-0.761	-0.365
V21	0.3666	0.066	5.548	0.000	0.237	0.496
V22	0.5250	0.154	3.400	0.001	0.222	0.828
V27	-0.8506	0.155	-5.486	0.000	-1.154	-0.547
V28	-0.3733	0.116	-3.208	0.001	-0.601	-0.145
Amount	0.0014	0.000	3.388	0.001	0.001	0.002

```
In [63]: df_col = df_col.drop('V6', 1)
    X_train_sm = sm.add_constant(X_train[df_col])
    # class_weight="balanced" will take care of the class imbalance in the dataset
    logm1 = sm.GLM(y_train,X_train_sm, class_weight="balanced",family = sm.familie
    s.Binomial())
    res = logm1.fit()
    res.summary()
```

Out[63]: Generalized Linear Model Regression Results

Dep. Variable:	Class	No. Observations:	199364
Model:	GLM	Df Residuals:	199344
Model Family:	Binomial	Df Model:	19
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-730.31
Date:	Mon, 06 Apr 2020	Deviance:	1460.6
Time:	20:04:52	Pearson chi2:	6.78e+06
No. Iterations:	12	Covariance Type:	nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	-8.4636	0.252	-33.575	0.000	-8.958	-7.970
Time	-3.561e-06	2.2e-06	-1.618	0.106	-7.87e-06	7.52e-07
V1	0.1874	0.048	3.914	0.000	0.094	0.281
V4	0.6848	0.079	8.669	0.000	0.530	0.840
V5	0.1658	0.043	3.837	0.000	0.081	0.250
V 7	-0.1513	0.078	-1.935	0.053	-0.305	0.002
V8	-0.1451	0.031	-4.633	0.000	-0.207	-0.084
V9	-0.3541	0.109	-3.244	0.001	-0.568	-0.140
V10	-0.8773	0.107	-8.206	0.000	-1.087	-0.668
V13	-0.3325	0.099	-3.342	0.001	-0.527	-0.137
V14	-0.5753	0.064	-8.938	0.000	-0.701	-0.449
V15	-0.1434	0.101	-1.426	0.154	-0.340	0.054
V17	-0.1550	0.048	-3.231	0.001	-0.249	-0.061
V19	0.1522	0.097	1.575	0.115	-0.037	0.342
V20	-0.5454	0.100	-5.470	0.000	-0.741	-0.350
V21	0.3615	0.065	5.529	0.000	0.233	0.490
V22	0.4965	0.152	3.266	0.001	0.199	0.794
V27	-0.8379	0.156	-5.379	0.000	-1.143	-0.533
V28	-0.3772	0.122	-3.084	0.002	-0.617	-0.137
Amount	0.0013	0.000	3.193	0.001	0.001	0.002

```
In [64]: df_col = df_col.drop('V15', 1)
    X_train_sm = sm.add_constant(X_train[df_col])
    # class_weight="balanced" will take care of the class imbalance in the dataset
    logm1 = sm.GLM(y_train,X_train_sm, class_weight="balanced",family = sm.familie
    s.Binomial())
    res = logm1.fit()
    res.summary()
```

Out[64]: Generalized Linear Model Regression Results

Dep. Variable:	Class	No. Observations:	199364
Model:	GLM	Df Residuals:	199345
Model Family:	Binomial	Df Model:	18
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-731.31
Date:	Mon, 06 Apr 2020	Deviance:	1462.6
Time:	20:04:56	Pearson chi2:	6.47e+06
No. Iterations:	12	Covariance Type:	nonrobust

	coef	std err	z	P> z	[0.025	0.975]
const	-8.5156	0.251	-33.985	0.000	-9.007	-8.024
Time	-2.906e-06	2.15e-06	-1.352	0.176	-7.12e-06	1.31e-06
V1	0.1892	0.048	3.967	0.000	0.096	0.283
V4	0.7018	0.080	8.823	0.000	0.546	0.858
V5	0.1613	0.043	3.764	0.000	0.077	0.245
V7	-0.1474	0.078	-1.890	0.059	-0.300	0.005
V8	-0.1488	0.032	-4.707	0.000	-0.211	-0.087
V9	-0.3386	0.110	-3.081	0.002	-0.554	-0.123
V10	-0.8832	0.108	-8.163	0.000	-1.095	-0.671
V13	-0.3339	0.100	-3.352	0.001	-0.529	-0.139
V14	-0.5630	0.064	-8.735	0.000	-0.689	-0.437
V17	-0.1637	0.048	-3.413	0.001	-0.258	-0.070
V19	0.1243	0.095	1.311	0.190	-0.062	0.310
V20	-0.5334	0.100	-5.339	0.000	-0.729	-0.338
V21	0.3655	0.065	5.597	0.000	0.238	0.494
V22	0.4899	0.152	3.229	0.001	0.193	0.787
V27	-0.8269	0.157	-5.258	0.000	-1.135	-0.519
V28	-0.3688	0.118	-3.123	0.002	-0.600	-0.137
Amount	0.0012	0.000	3.047	0.002	0.000	0.002

```
In [65]: df_col = df_col.drop('V19', 1)
    X_train_sm = sm.add_constant(X_train[df_col])
    # class_weight="balanced" will take care of the class imbalance in the dataset
    logm1 = sm.GLM(y_train,X_train_sm, class_weight="balanced",family = sm.familie
    s.Binomial())
    res = logm1.fit()
    res.summary()
```

Out[65]: Generalized Linear Model Regression Results

199364	No. Observations:	Class	Dep. Variable:
199346	Df Residuals:	GLM	Model:
17	Df Model:	Binomial	Model Family:
1.0000	Scale:	logit	Link Function:
-732.17	Log-Likelihood:	IRLS	Method:
1464.3	Deviance:	Mon, 06 Apr 2020	Date:
6.64e+06	Pearson chi2:	20:05:01	Time:
nonrobust	Covariance Type:	12	No. Iterations:

	coef	std err	z	P> z	[0.025	0.975]
const	-8.5239	0.251	-33.965	0.000	-9.016	-8.032
Time	-2.867e-06	2.15e-06	-1.335	0.182	-7.08e-06	1.34e-06
V1	0.1823	0.047	3.893	0.000	0.090	0.274
V4	0.7025	0.080	8.835	0.000	0.547	0.858
V5	0.1619	0.043	3.801	0.000	0.078	0.245
V 7	-0.1389	0.077	-1.809	0.070	-0.289	0.012
V8	-0.1500	0.031	-4.889	0.000	-0.210	-0.090
V9	-0.3230	0.110	-2.942	0.003	-0.538	-0.108
V10	-0.8845	0.109	-8.103	0.000	-1.098	-0.671
V13	-0.3253	0.099	-3.273	0.001	-0.520	-0.131
V14	-0.5591	0.065	-8.635	0.000	-0.686	-0.432
V17	-0.1860	0.045	-4.123	0.000	-0.274	-0.098
V20	-0.5345	0.100	-5.333	0.000	-0.731	-0.338
V21	0.3700	0.065	5.718	0.000	0.243	0.497
V22	0.5110	0.151	3.373	0.001	0.214	0.808
V27	-0.8062	0.159	-5.063	0.000	-1.118	-0.494
V28	-0.3714	0.124	-3.000	0.003	-0.614	-0.129
Amount	0.0012	0.000	2.949	0.003	0.000	0.002

```
In [66]: df_col = df_col.drop('Time', 1)
    X_train_sm = sm.add_constant(X_train[df_col])
    # class_weight="balanced" will take care of the class imbalance in the dataset
    logm1 = sm.GLM(y_train,X_train_sm, class_weight="balanced",family = sm.familie
    s.Binomial())
    res = logm1.fit()
    res.summary()
```

Out[66]:

Generalized Linear Model Regression Results

199364	No. Observations:	Class	Dep. Variable:
199347	Df Residuals:	GLM	Model:
16	Df Model:	Binomial	Model Family:
1.0000	Scale:	logit	Link Function:
-733.06	Log-Likelihood:	IRLS	Method:
1466.1	Deviance:	Mon, 06 Apr 2020	Date:
5.55e+06	Pearson chi2:	20:05:47	Time:
nonrobust	Covariance Type:	12	No. Iterations:

	coef	std err	z	P> z	[0.025	0.975]	
const	-8.7852	0.166	-52.961	0.000	-9.110	-8.460	
V1	0.1762	0.046	3.834	0.000	0.086	0.266	
V4	0.7064	0.079	8.918	0.000	0.551	0.862	
V5	0.1512	0.042	3.584	0.000	0.069	0.234	
V7	-0.1303	0.076	-1.725	0.084	-0.278	0.018	
V8	-0.1513	0.031	-4.958	0.000	-0.211	-0.091	
V9	-0.2978	0.108	-2.764	0.006	-0.509	-0.087	
V10	-0.8851	0.109	-8.093	0.000	-1.099	-0.671	
V13	-0.3211	0.099	-3.231	0.001	-0.516	-0.126	
V14	-0.5566	0.065	-8.602	0.000	-0.683	-0.430	
V17	-0.1906	0.045	-4.217	0.000	-0.279	-0.102	
V20	-0.5182	0.099	-5.235	0.000	-0.712	-0.324	
V21	0.3566	0.063	5.637	0.000	0.233	0.481	
V22	0.4725	0.146	3.233	0.001	0.186	0.759	
V27	-0.7885	0.159	-4.960	0.000	-1.100	-0.477	
V28	-0.3702	0.126	-2.942	0.003	-0.617	-0.124	
mount	0.0011	0.000	2.808	0.005	0.000	0.002	

p-value of the feauture V7 is high, lets drop it and re create the model

```
In [67]: df_col = df_col.drop('V7', 1)
    X_train_sm = sm.add_constant(X_train[df_col])
    # class_weight="balanced" will take care of the class imbalance in the dataset
    logm1 = sm.GLM(y_train,X_train_sm, class_weight="balanced",family = sm.familie
    s.Binomial())
    res = logm1.fit()
    res.summary()
```

Out[67]: Generalized Linear Model Regression Results

Generalized Linear Model Regression Results						
Dep. Var	iable:		Class I	No. Obse	rvations:	199364
N	lodel:		GLM	Df R	esiduals:	199348
Model Fa	amily:	Bi	nomial	I	Of Model:	15
Link Fun	ction:		logit		Scale:	1.0000
Ме	thod:		IRLS	Log-Li	kelihood:	-734.63
	Date: M	on, 06 Ap	r 2020		Deviance:	1469.3
	Time:	20	:05:51	Pear	son chi2:	6.86e+06
No. Itera	tions:		12	Covariar	nce Type:	nonrobust
	coef	std err	z	P> z	[0.025	0.975]
const	-8.7403	0.164	-53.277	0.000	-9.062	-8.419
V1	0.1235	0.033	3.713	0.000	0.058	0.189
V4	0.7443	0.077	9.710	0.000	0.594	0.895
V5	0.1363	0.045	3.037	0.002	0.048	0.224
V8	-0.1729	0.030	-5.677	0.000	-0.233	-0.113
V9	-0.2275	0.102	-2.240	0.025	-0.427	-0.028
V10	-0.9086	0.111	-8.155	0.000	-1.127	-0.690
V13	-0.3369	0.099	-3.412	0.001	-0.530	-0.143
V14	-0.5465	0.066	-8.294	0.000	-0.676	-0.417
V17	-0.2236	0.042	-5.341	0.000	-0.306	-0.142
V20	-0.4018	0.078	-5.173	0.000	-0.554	-0.250
V21	0.3540	0.065	5.474	0.000	0.227	0.481
V22	0.4138	0.141	2.932	0.003	0.137	0.690
V27	-0.6779	0.157	-4.331	0.000	-0.985	-0.371
V28	-0.3248	0.114	-2.860	0.004	-0.547	-0.102

Amount 0.0005 0.000 2.414 0.016 8.47e-05 0.001

p-values looks good now, lets check VIF

```
In [68]: vif = pd.DataFrame()
          vif['Features'] = X_train[df_col].columns
          vif['VIF'] = [variance_inflation_factor(X_train[df_col].values, i) for i in ra
          nge(X_train[df_col].shape[1])]
          vif['VIF'] = round(vif['VIF'], 2)
          vif = vif.sort_values(by = "VIF", ascending = False)
          vif
Out[68]:
                       VIF
              Features
          14
               Amount 1.51
           9
                  V20 1.19
           2
                   V5 1.18
           0
                   V1 1.07
          10
                  V21 1.02
           1
                   V4 1.01
           3
                   V8 1.01
           5
                  V10 1.01
          11
                  V22 1.01
           4
                   V9 1.00
           6
                  V13 1.00
           7
                  V14 1.00
           8
                  V17 1.00
                  V27 1.00
          12
          13
                  V28 1.00
In [69]:
         # VIF also looks good , lets make predictions now on the train set
         y_train_pred = res.predict(X_train_sm)
         y_train_pred[:10]
Out[69]: 7610
                    0.000029
         190214
                    0.000127
         130590
                    0.000012
         247916
                    0.000142
                    0.000246
         55518
         147392
                    0.000029
         5549
                    0.000071
         182927
                    0.000174
         177760
                    0.000288
         266732
                    0.000378
         dtype: float64
In [70]:
         # reshape the dataframe to get an array
         y_train_pred = y_train_pred.values.reshape(-1)
         y_train_pred[:10]
```

```
Out[70]: array([2.93003752e-05, 1.26508019e-04, 1.24898233e-05, 1.41927065e-04, 2.46264845e-04, 2.88407101e-05, 7.14548782e-05, 1.73571732e-04, 2.87660597e-04, 3.77650172e-04])
```

Out[71]:

	Class	probability
0	0	0.000029
1	0	0.000127
2	0	0.000012
3	0	0.000142
4	0	0.000246

```
In [72]: ## making the predictions based on the probability with the cut-off value as
    0.1
    ## this cut-off value will be tuned later
    y_train_pred_final['predicted'] = y_train_pred_final["probability"].map(lambda
    x: 1 if x > 0.1 else 0)
    # Let's see the head
    y_train_pred_final.head()
```

Out[72]:

	Class	probability	predicted
0	0	0.000029	0
1	0	0.000127	0
2	0	0.000012	0
3	0	0.000142	0
4	0	0.000246	0

```
In [73]: # lets check the confusion metrics, accuracy, sensitivity, specificity, precis
         ion and recall of the model built
         from sklearn import metrics
         confusion = metrics.confusion_matrix(y_train_pred_final["Class"],y_train_pred_
         final["predicted"])
         print("Confusion Metrics:\n",confusion)
         TP = confusion[1,1] # true positive
         TN = confusion[0,0] # true negatives
         FP = confusion[0,1] # false positives
         FN = confusion[1,0] # false negatives
         print("\nAccuracy:{}".format(round((TP+TN)/(TP+TN+FP+FN),3)))
         print("Recall/Sensitivity:", recall_score(y_train_pred_final["Class"], y_train_p
         red_final["predicted"]))
         print("Precision:",precision_score(y_train_pred_final["Class"],y_train_pred_fi
         nal["predicted"]))
         print("Specificity:{}".format(round(TN/float(TN+FP),3)))
         print("AUC:", metrics.roc_auc_score(y_train_pred_final["Class"], y_train_pred_
         final["probability"]))
         Confusion Metrics:
          [[198956
                       58]
          67
                     283]]
```

Accuracy:0.999

Recall/Sensitivity: 0.8085714285714286

Precision: 0.8299120234604106

Specificity:1.0

AUC: 0.9799494364359148

```
In [74]:
         ## using roc_cuve from the matrics
         fpr, tpr, thresholds = metrics.roc_curve( y_train_pred_final["Class"], y_train
         _pred_final.predicted, drop_intermediate = False )
         auc_score = metrics.roc_auc_score( y_train_pred_final["Class"], y_train_pred_f
         inal["probability"] )
         plt.figure(figsize=(5, 5))
         plt.plot( fpr, tpr, label='AUC curve (area = %0.2f)' % auc_score )
         plt.plot([0, 1], [0, 1], 'r--')
         plt.xlim([0.0, 1.0])
         plt.ylim([0.0, 1.05])
         plt.xlabel('False Positive Rate or [1 - True Negative Rate]')
         plt.ylabel('True Positive Rate')
         plt.title('Receiver operating characteristic example')
         plt.legend(loc="lower right")
         plt.show()
```


y_knn_prob=knn.predict_proba(X_test)[:,1]

K Nearest Neighbors

```
In [75]: #K Nearest Neighbors
    from sklearn.neighbors import KNeighborsClassifier
In [76]: knn=KNeighborsClassifier(n_neighbors=5)
    knn.fit(X_train,y_train)
    y_knn=knn.predict(X_test)
```

```
In [77]: #metrics evaluation
    print("Confusion Matrix:\n",metrics.confusion_matrix(y_test,y_knn))
    print("Accuracy:\n",metrics.accuracy_score(y_test,y_knn))
    print("Precision:\n",metrics.precision_score(y_test,y_knn))
    print("Recall:\n",metrics.recall_score(y_test,y_knn))
    print("AUC:\n",metrics.roc_auc_score(y_test,y_knn_prob))
    auc=metrics.roc_auc_score(y_test,y_knn_prob)
Confusion Matrix:
    [185301 0]
```

```
[[85301 0]

[ 132 10]]

Accuracy:

0.9984551104244935

Precision:

1.0

Recall:

0.07042253521126761

AUC:

0.5972707088122574
```

```
In [78]: #plotting the AUC curve
    fpr,tpr,thresholds=metrics.roc_curve(y_test,y_knn_prob)
    plt.plot(fpr,tpr,'b', label='AUC = %0.2f'% auc)
    plt.plot([0,1],[0,1],'r-.')
    plt.plot(fpr,tpr)
    #plt.title('K Nearest Neighbors')
    plt.xlim([0.0,1.0])
    plt.ylim([0.0,1.0])
    plt.title('Receiver Operating Characteristic\nK Nearest Neighbors')
    plt.legend(loc='lower right')
    plt.ylabel('True Positive Rate')
    plt.xlabel('False Positive Rate')
    plt.show()
```


Decision Tree Model

```
In [79]: from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report, confusion_matrix, accuracy_
score
```

```
In [80]:
         # lets create a decision tree with default hyper parameters.
         dt_model = DecisionTreeClassifier(class_weight='balanced',max_depth=5)
         dt_model.fit(X_train, y_train)
Out[80]: DecisionTreeClassifier(ccp_alpha=0.0, class_weight='balanced', criterion='gin
         i',
                                max_depth=5, max_features=None, max_leaf_nodes=None,
                                min_impurity_decrease=0.0, min_impurity_split=None,
                                min_samples_leaf=1, min_samples_split=2,
                                min_weight_fraction_leaf=0.0, presort='deprecated',
                                random state=None, splitter='best')
         # predictions on the training dataset
In [81]:
         y_train_pred= dt_model.predict(X_train)
         y_dt=dt_model.predict(X test)
         y_dt_prob=dt_model.predict_proba(X_test)[:,1]
         #metrics evaluation
In [82]:
         print("Confusion Matrix:\n",metrics.confusion_matrix(y_test,y_dt))
         print("Accuracy:\n",metrics.accuracy_score(y_test,y_dt))
         print("Precision:\n",metrics.precision_score(y_test,y_dt))
         print("Recall:\n", metrics.recall_score(y_test,y_dt))
         print("AUC:\n", metrics.roc_auc_score(y_test,y_dt_prob))
         auc=metrics.roc_auc_score(y_test,y_dt_prob)
         Confusion Matrix:
          [[83295 2006]
              26
                   116]]
         Accuracy:
          0.9762180635043245
         Precision:
          0.05466540999057493
         Recall:
          0.8169014084507042
         AUC:
          0.8778875996863468
```


Random Forest

```
In [84]:
         from sklearn.ensemble import RandomForestClassifier
In [85]:
         rf=RandomForestClassifier(random state=3)
         rf.fit(X_train,y_train)
         y_rf=rf.predict(X_test)
         y_rf_prob=rf.predict_proba(X_test)[:,1]
In [86]:
         #Performance metrics evaluation
         print("Confusion Matrix:\n",metrics.confusion_matrix(y_test,y_rf))
         print("Accuracy:\n",metrics.accuracy_score(y_test,y_rf))
         print("Precision:\n",metrics.precision_score(y_test,y_rf))
         print("Recall:\n", metrics.recall_score(y_test,y_rf))
         print("AUC:\n",metrics.roc_auc_score(y_test,y_rf_prob))
         auc=metrics.roc_auc_score(y_test,y_rf_prob)
         Confusion Matrix:
          [[85284
                     17]
                   107]]
          [
              35
         Accuracy:
          0.9993914071369217
         Precision:
          0.8629032258064516
         Recall:
          0.7535211267605634
         AUC:
          0.9277379968961611
```

```
In [87]: ## using roc_cuve from the matrics
#plotting the AUC curve
fpr,tpr,thresholds=metrics.roc_curve(y_test,y_rf_prob, drop_intermediate = Fal
se)
plt.plot(fpr,tpr,'b', label='AUC = %0.2f'% auc)
plt.plot([0,1],[0,1],'r-.')
plt.xlim([-0.2,1.2])
plt.ylim([-0.2,1.2])
plt.title('Receiver Operating Characteristic\nRandom Forest')
plt.legend(loc='lower right')
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```


Model building with balancing Classes

Till now we have check the model with imbalance data set, Now we develop balance data set by SMOTE

```
In [88]: # Creating seperate class variable
    cls_val = data1['Class']

In [89]: #dropping the target variable from the data set
    data1.drop('Class',axis=1,inplace=True)
    data1.shape

Out[89]: (284807, 30)

In [90]: #converting them to numpy arrays
    X=np.array(data1)
    y=np.array(cls_val)
    X.shape
    y.shape

Out[90]: (284807,)
```

```
In [91]: #splitting the data set into train and test (70:30)
         from sklearn.model_selection import train_test_split
         X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.30,random_state
         print(X_train.shape,X_test.shape,y_train.shape,y_test.shape)
         (199364, 30) (85443, 30) (199364,) (85443,)
In [92]:
         #splitting the data set into train and test (80:20)
         #from sklearn.model selection import train test split
         #X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.20,random_stat
         e=1)
         #print(X_train.shape,X_test.shape,y_train.shape,y_test.shape)
In [93]:
         #applyting SMOTE to oversample the minority class
         from imblearn.over_sampling import SMOTE
         sm=SMOTE(random_state=2)
         X_sm,y_sm=sm.fit_sample(X_train,y_train)
         print(X sm.shape,y sm.shape)
         (398014, 30) (398014,)
In [94]: | print("After OverSampling, counts of label '1' in Test Data Set: {}".format(su
         m(y sm==1))
         print("After OverSampling, counts of label '0' in Test Data Set: {} \n".format
         (sum(y_sm==0)))
         After OverSampling, counts of label '1' in Test Data Set: 199007
         After OverSampling, counts of label '0' in Test Data Set: 199007
```

Logistic Regression

```
In [95]: from sklearn.linear_model import LogisticRegression
   import matplotlib.pyplot as plt
   from sklearn import metrics
```

```
In [96]: #Logistic Regression
    logreg=LogisticRegression()
    logreg.fit(X_sm,y_sm)
    y_logreg=logreg.predict(X_test)
    y_logreg_prob=logreg.predict_proba(X_test)[:,1]
```

```
In [97]: #Performance metrics evaluation
    print("Confusion Matrix:\n",metrics.confusion_matrix(y_test,y_logreg))
    print("Accuracy:\n",metrics.accuracy_score(y_test,y_logreg))
    print("Precision:\n",metrics.precision_score(y_test,y_logreg))
    print("Recall:\n",metrics.recall_score(y_test,y_logreg))
    print("AUC:\n",metrics.roc_auc_score(y_test,y_logreg_prob))
    auc=metrics.roc_auc_score(y_test,y_logreg_prob)
Confusion Matrix:
```

```
Confusion Matrix:

[[83875 1433]

[ 21 114]]

Accuracy:

0.982982807251618

Precision:

0.07369101486748546

Recall:

0.84444444444444444

AUC:

0.9578111296930165
```


K Nearest Neighbors

```
In [99]: #K Nearest Neighbors
from sklearn.neighbors import KNeighborsClassifier
```

```
In [100]: knn=KNeighborsClassifier(n_neighbors=5)
    knn.fit(X_sm,y_sm)
    y_knn=knn.predict(X_test)
    y_knn_prob=knn.predict_proba(X_test)[:,1]
```

```
In [101]:
          # Matrics Performance Evaluation
          print("Confusion Matrix:\n", metrics.confusion_matrix(y_test,y_knn))
          print("Accuracy:\n",metrics.accuracy_score(y_test,y_knn))
          print("Precision:\n", metrics.precision_score(y_test,y_knn))
          print("Recall:\n", metrics.recall_score(y_test,y_knn))
          print("AUC:\n", metrics.roc auc score(y test, y knn prob))
          Confusion Matrix:
           [[80590 4718]
                     57]]
           78
          Accuracy:
           0.9438690120899313
          Precision:
           0.01193717277486911
          Recall:
           0.42222222222222
          AUC:
           0.7143800937431078
```


Decision Tree

```
In [103]: from sklearn.tree import DecisionTreeClassifier
    from sklearn.metrics import classification_report, confusion_matrix, accuracy_
    score
```

```
In [104]:
          # lets create a decision tree with default hyper parameters.
          dt_model = DecisionTreeClassifier(class_weight='balanced', max_depth=5)
          dt_model.fit(X_sm,y_sm)
Out[104]: DecisionTreeClassifier(ccp_alpha=0.0, class_weight='balanced', criterion='gin
          i',
                                 max_depth=5, max_features=None, max_leaf_nodes=None,
                                 min_impurity_decrease=0.0, min_impurity_split=None,
                                 min_samples_leaf=1, min_samples_split=2,
                                 min_weight_fraction_leaf=0.0, presort='deprecated',
                                 random_state=None, splitter='best')
In [105]:
          # predictions on the training dataset
          #y_train_pred= dt_model.predict(X_train)
          y_dt=dt_model.predict(X_test)
          y_dt_prob=dt_model.predict_proba(X_test)[:,1]
In [106]:
          #Metrics evaluation
          print("Confusion Matrix:\n",metrics.confusion_matrix(y_test,y_dt))
          print("Accuracy:\n",metrics.accuracy_score(y_test,y_dt))
          print("Precision:\n", metrics.precision_score(y_test,y_dt))
          print("Recall:\n", metrics.recall_score(y_test,y_dt))
          print("AUC:\n", metrics.roc_auc_score(y_test,y_dt_prob))
          Confusion Matrix:
           [[84145 1163]
           20
                    115]]
          Accuracy:
           0.9861545123649684
          Precision:
           0.08998435054773082
          Recall:
           0.8518518518518519
          AUC:
           0.9102880803155105
```


Hyperparameter Tuning for DecisionTree Classifier

```
In [108]: # Let's tune hyper parameters for DecisionTree Classifier
    # GridSearchCV to find optimal max_depth
    from sklearn.model_selection import KFold
    from sklearn.model_selection import GridSearchCV
    from sklearn.model_selection import RandomizedSearchCV
```

```
# Create the parameter grid
          param_grid = {
               'max_depth': range(3, 15, 5),
               'min_samples_leaf': range(10, 150, 50),
               'min_samples_split': range(50, 150, 50),
               'criterion': ["entropy", "gini"]
          }
          n_folds = 5
          # Instantiate the grid search model
          dtree = DecisionTreeClassifier(class weight='balanced', #criterion = "qini",
                                          random state = 101)
          grid_search = RandomizedSearchCV(estimator = dtree, param_distributions = para
          m_grid,scoring='roc_auc',
                                     cv = n_folds, verbose = 1,n_jobs=-1)
          # Fit the grid search to the data
          grid_search.fit(X_sm,y_sm)
          Fitting 5 folds for each of 10 candidates, totalling 50 fits
          [Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
          [Parallel(n jobs=-1)]: Done 42 tasks
                                                  elapsed: 7.2min
          [Parallel(n_jobs=-1)]: Done 50 out of 50 | elapsed: 9.0min finished
Out[109]: RandomizedSearchCV(cv=5, error_score=nan,
                             estimator=DecisionTreeClassifier(ccp_alpha=0.0,
                                                               class_weight='balanced',
                                                               criterion='gini',
                                                               max_depth=None,
                                                               max features=None,
                                                               max_leaf_nodes=None,
                                                               min impurity decrease=0.0,
                                                               min_impurity_split=None,
                                                               min_samples_leaf=1,
                                                               min_samples_split=2,
                                                               min weight fraction leaf=
          0.0,
                                                               presort='deprecated',
                                                               random_state=101,
                                                               splitter='best'),
                             iid='deprecated', n_iter=10, n_jobs=-1,
                             param_distributions={'criterion': ['entropy', 'gini'],
                                                   'max_depth': range(3, 15, 5),
                                                   'min_samples_leaf': range(10, 150, 5
          0),
                                                   'min_samples_split': range(50, 150, 5
          0)},
                             pre dispatch='2*n jobs', random state=None, refit=True,
                             return_train_score=False, scoring='roc_auc', verbose=1)
```

In [109]:

Out[110]:

mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_min_samples_split	parar
24.026006	3.091412	0.112514	0.015244	50	
25.179380	0.405345	0.102513	0.013543	100	
65.011925	0.485211	0.112678	0.012687	50	
42.120822	0.179860	0.116011	0.017145	100	
24.796445	0.410433	0.103652	0.018528	100	
59.517178	1.849481	0.108420	0.011012	50	
65.459065	2.957018	0.107234	0.014629	50	
16.695753	0.113246	0.103911	0.007405	100	
16.817425	0.131938	0.106230	0.011720	100	
60.691331	8.836754	0.083572	0.016719	50	
	24.026006 25.179380 65.011925 42.120822 24.796445 59.517178 65.459065 16.695753 16.817425	24.026006 3.091412 25.179380 0.405345 65.011925 0.485211 42.120822 0.179860 24.796445 0.410433 59.517178 1.849481 65.459065 2.957018 16.695753 0.113246 16.817425 0.131938	24.026006 3.091412 0.112514 25.179380 0.405345 0.102513 65.011925 0.485211 0.112678 42.120822 0.179860 0.116011 24.796445 0.410433 0.103652 59.517178 1.849481 0.108420 65.459065 2.957018 0.107234 16.695753 0.113246 0.103911 16.817425 0.131938 0.106230	24.026006 3.091412 0.112514 0.015244 25.179380 0.405345 0.102513 0.013543 65.011925 0.485211 0.112678 0.012687 42.120822 0.179860 0.116011 0.017145 24.796445 0.410433 0.103652 0.018528 59.517178 1.849481 0.108420 0.011012 65.459065 2.957018 0.107234 0.014629 16.695753 0.113246 0.103911 0.007405 16.817425 0.131938 0.106230 0.011720	25.179380 0.405345 0.102513 0.013543 100 65.011925 0.485211 0.112678 0.012687 50 42.120822 0.179860 0.116011 0.017145 100 24.796445 0.410433 0.103652 0.018528 100 59.517178 1.849481 0.108420 0.011012 50 65.459065 2.957018 0.107234 0.014629 50 16.695753 0.113246 0.103911 0.007405 100 16.817425 0.131938 0.106230 0.011720 100

```
In [111]: # printing the optimal accuracy score and hyperparameters
    print("best accuracy", grid_search.best_score_)
    print(grid_search.best_estimator_)
```

```
In [112]: # model with optimal hyperparameters
          clf_gini_df = DecisionTreeClassifier(class_weight='balanced',
                                               criterion = "entropy",
                                             random_state = 101,
                                             max depth=13,
                                             min samples leaf=10,
                                             min_samples_split=100)
          clf_gini_df.fit(X_sm,y_sm)
Out[112]: DecisionTreeClassifier(ccp_alpha=0.0, class_weight='balanced',
                                 criterion='entropy', max_depth=13, max_features=None,
                                 max_leaf_nodes=None, min_impurity_decrease=0.0,
                                 min_impurity_split=None, min_samples_leaf=10,
                                 min_samples_split=100, min_weight_fraction_leaf=0.0,
                                 presort='deprecated', random_state=101, splitter='bes
          t')
In [113]: # predictions on the training dataset
          #y_train_pred= clf_gini_df.predict(X_train)
          y_dt=clf_gini_df.predict(X_test)
          y_dt_prob=clf_gini_df.predict_proba(X_test)[:,1]
In [114]:
          #Metrics evaluation
          print("Confusion Matrix:\n",metrics.confusion_matrix(y_test,y_dt))
          print("Accuracy:\n",metrics.accuracy_score(y_test,y_dt))
          print("Precision:\n", metrics.precision_score(y_test,y_dt))
          print("Recall:\n", metrics.recall_score(y_test, y_dt))
          print("AUC:\n",metrics.roc_auc_score(y_test,y_dt_prob))
          Confusion Matrix:
           [[84950
                     358]
           [
               20
                    115]]
          Accuracy:
           0.9955759980337769
          Precision:
           0.24312896405919662
          Recall:
           0.8518518518519
          AUC:
           0.928406349801764
```

```
In [115]: #plotting the AUC curve
    fpr,tpr,thresholds=metrics.roc_curve(y_test,y_dt_prob)
    plt.plot(fpr,tpr,'b', label='AUC = %0.2f'% auc)
    plt.plot([0,1],[0,1],'r-.')
    plt.xlim([-0.2,1.2])
    plt.ylim([-0.2,1.2])
    plt.title('Receiver Operating Characteristic\nDecision Tree')
    plt.legend(loc='lower right')
    plt.ylabel('True Positive Rate')
    plt.xlabel('False Positive Rate')
    plt.show()
```


Here we easily understand, AUC is good 96% but the gap between Precision 16% and Recall 78%, is much high.

Random Forest

```
In [116]: #Random Forest
    from sklearn.ensemble import RandomForestClassifier

In [117]: rf=RandomForestClassifier(random_state=3)
    rf.fit(X_sm,y_sm)
    y_rf=rf.predict(X_test)
    y_rf_prob=rf.predict_proba(X_test)[:,1]
```

```
In [118]: #Performance metrics evaluation
    print("Confusion Matrix:\n",metrics.confusion_matrix(y_test,y_rf))
    print("Accuracy:\n",metrics.accuracy_score(y_test,y_rf))
    print("Precision:\n",metrics.precision_score(y_test,y_rf))
    print("Recall:\n",metrics.recall_score(y_test,y_rf))
    print("AUC:\n",metrics.roc_auc_score(y_test,y_rf_prob))
    auc=metrics.roc_auc_score(y_test,y_rf_prob)

Confusion Matrix:
    [[85291    17]
    [    27    108]]
    Accuracy:
    0.9994850368081645
    Procision:
```

Precision: 0.864

Recall: 0.8

AUC:

0.9689061770074102

Random Forest by using criterion='entropy'

```
In [120]: #Random Forest
    from sklearn.ensemble import RandomForestClassifier
    # By using criterion='entropy'
    rf=RandomForestClassifier(criterion='entropy',random_state=3)
    rf.fit(X_sm,y_sm)
    y_rf=rf.predict(X_test)
    y_rf_prob=rf.predict_proba(X_test)[:,1]
```

```
In [121]: #Performance metrics evaluation
    print("Confusion Matrix:\n",metrics.confusion_matrix(y_test,y_rf))
    print("Accuracy:\n",metrics.accuracy_score(y_test,y_rf))
    print("Precision:\n",metrics.precision_score(y_test,y_rf))
    print("Recall:\n",metrics.recall_score(y_test,y_rf))
    print("AUC:\n",metrics.roc_auc_score(y_test,y_rf_prob))
    auc=metrics.roc_auc_score(y_test,y_rf_prob)
```

```
Confusion Matrix:

[[85289 19]

[ 26 109]]

Accuracy:
0.9994733330992591

Precision:
0.8515625

Recall:
0.8074074074074075

AUC:
0.965297770692341
```

```
In [122]: #plotting the AUC curve
    fpr,tpr,thresholds=metrics.roc_curve(y_test,y_rf_prob)
    plt.plot(fpr,tpr,'b', label='AUC = %0.2f'% auc)
    plt.plot([0,1],[0,1],'r-.')
    plt.xlim([-0.2,1.2])
    plt.ylim([-0.2,1.2])
    plt.title('Receiver Operating Characteristic\nRandom Forest')
    plt.legend(loc='lower right')
    plt.ylabel('True Positive Rate')
    plt.xlabel('False Positive Rate')
    plt.show()
```


XGBoost

```
In [123]: # import xgboost
from xgboost import XGBClassifier
```

```
In [124]:
          # XGBoost CV model
          xgc = XGBClassifier()
          xgc.fit(X_sm,y_sm)
          y_xg=xgc.predict(X_test)
          y_xg_prob=xgc.predict_proba(X_test)[:,1]
In [125]:
          #Performance metrics evaluation
          print("Confusion Matrix:\n",metrics.confusion_matrix(y_test,y_xg))
          print("Accuracy:\n", metrics.accuracy_score(y_test,y_xg))
          print("Precision:\n", metrics.precision_score(y_test,y_xg))
          print("Recall:\n", metrics.recall_score(y_test,y_xg))
          print("AUC:\n",metrics.roc_auc_score(y_test,y_xg_prob))
          auc=metrics.roc_auc_score(y_test,y_xg_prob)
          Confusion Matrix:
           [[84908
                     400]
               21
                    114]]
          Accuracy:
           0.9950727385508468
          Precision:
           0.22178988326848248
          Recall:
           0.844444444444444
          AUC:
           0.9774115232126204
```



```
In [127]:
          # import Gaussian Naive Bays
          from sklearn.naive_bayes import GaussianNB
In [128]:
          # XGBoost model
          gnb = GaussianNB()
          gnb.fit(X_sm,y_sm)
          y_gnb=gnb.predict(X_test)
          y_gnb_prob=gnb.predict_proba(X_test)[:,1]
In [129]:
          #Performance metrics evaluation
          print("Confusion Matrix:\n", metrics.confusion matrix(y test,y gnb))
          print("Accuracy:\n",metrics.accuracy_score(y_test,y_gnb))
          print("Precision:\n",metrics.precision_score(y_test,y_gnb))
          print("Recall:\n",metrics.recall_score(y_test,y_gnb))
          print("AUC:\n",metrics.roc_auc_score(y_test,y_gnb_prob))
          auc=metrics.roc_auc_score(y_test,y_gnb_prob)
          Confusion Matrix:
           [[84694
                     614]
               37
                     98]]
          Accuracy:
           0.9923808855026158
          Precision:
           0.13764044943820225
          Recall:
           0.725925925925926
          AUC:
           0.9574081888894099
In [130]:
          #plotting the AUC curve
          fpr,tpr,thresholds=metrics.roc_curve(y_test,y_gnb_prob)
          plt.plot(fpr,tpr,'b', label='AUC = %0.2f'% auc)
          plt.plot([0,1],[0,1],'r-.')
          plt.xlim([-0.2,1.2])
          plt.ylim([-0.2,1.2])
          plt.title('Receiver Operating Characteristic\nNaive Bays')
          plt.legend(loc='lower right')
          plt.ylabel('True Positive Rate')
```


plt.xlabel('False Positive Rate')

plt.show()

Recommendation for Final Model Selection on Balancing Data

Below is the overall Summary of the various model performances on various parameters

Model Name	Accuracy	Precision	Recall	AUC
Logistic Regression	98%	7%	84%	96%
K Nearest Neighbors	94%	1%	42%	71%
Decision Tree	99%	24%	86%	93%
Random Forest	99%	86%	80%	97%
XGBoost	99%	22%	84%	98%
Naive Bayes	99%	14%	73%	96%

So here we can consider Random Forest model is best model comparatively other. As it is good recall and

In []:	
L 3	