Lecture 4

niceguy

September 18, 2023

1 Continued...

Let $f: X \mapsto Y$. Note that for $B, Y - B \in Y$, their preimages $f^{-1}B$ and $f^{-1}(Y - B)$ are disjoint, but their union is X. (prove it yourself!)

Proposition 1.1. $f: X \mapsto Y$ is continuous iff the preimage of any closed set in Y is closed in X.

The proof follows from the statement above.

Example 1.1. Let $X \subset \mathbb{R}^2$ be the union of the closed disk with radius 1 around the origin, and the point (4,0). Let

$$f(x) = \begin{cases} 1 & x \in \text{ closed disk} \\ 0 & x = (4, 0) \end{cases}$$

Then the preimage of any closed set is closed, so f(x) is continuous.

2 Compact Sets

Let (X, d) be a metric space. We take $A \subseteq X$.

Definition 2.1 (Open Cover). An open cover of A is a collection of open sets $U_i, i \in I$ such that $A \subseteq \bigcup_{i \in I} U_i$.

Remark. Any open set A has a cover. We can take $\mathcal{U}_1 = X$, or take \mathcal{U}_i to be any open ball around a given point in A, and have a \mathcal{U}_i for every point in A.

Definition 2.2 (Compact). A set is compact iff any open cover has a finite subcover. In other words, there exists a finite number of \mathcal{U}_i (that partially forms said open cover) such that their union is also an open cover.

2.1 Properties of Compact Sets

Proposition 2.1. Any compact set is closed and bounded.

Proof. Let A be said compact set.

Boundedness: Define $A_i = \mathcal{U}(0; i)$. Then the union of A_i for $i \in \mathbb{N}$ is obviously an open cover. Then there is a subset of A_i s that is also an open cover. Hence A is bounded.

Closedness: since A is bounded, there is a point b in X-A. Then define B_i to be the closed ball containing b with radius i, and C_i be its complement. Define a sequence of B_i with $i = \frac{1}{n}, n \in \mathbb{N}$. The the intersection of all such B_i is closed and contains only b, and the union of all such C_i is open and contains all points except for b. Then the union of C_i is an open cover of A. With there being a finite subcover, we know there is a finite n such that $C_{i(n)}$ covers A, so B_i is a closed set containing a. Recall the definition of B_i . Then we have an open $B'_i = \mathcal{U}\left(b, \frac{1}{n}\right)$ that contains b. Since b is arbitrary, the complement of A is open, so A is closed.

Proposition 2.2. If A is compact, then f(A) is also compact for any continuous f.

Proof. Let B_i form an open cover of f(A). Define $A_i = f^{-1}(B_i)$. Then A_i form an open cover of A. Since A is compact, we have a finite collection of $A_i, i \in I'$ that covers A. Then the collection of B_i for $i \in I'$ is a finite subcover of B.