高等数学预备知识

史学睿

日期: August 10, 2020

1 函数的概念与特性

1.1 函数

1.2 反函数

设函数 y=f(x) 的定义域为 \mathbf{D} ,值域为 \mathbf{R} ,如果对于每一个 $y\epsilon R$,必存在 $x\epsilon D$,使得 y=f(x) 成立,则由此定义了一个新的函数 $x=\phi(y)$. 这个函数就成为函数 y=f(x) 的**反函数**, $x=f^{-1}(y)$,它的定义域为 \mathbf{R} ,值域为 \mathbf{D} ,相对于反函数来说,原来的函数也称为**直接函数**,以下两点需要说明:

第一,严格单调函数必有反函数,比如函数 $y=x^2(x\;\epsilon\;[0,+\infty))$ 是严格单调函数,故它有反函数 $x=\sqrt{y}$.

有反函数的必定严格单调是不对的,要根据单调定义域判断

第二,若把 $x=f^{-1}(y)$ 与 y=f(x) 的图形画在同一坐标系中,则它们完全重合. 只有 把 y=f(x) 的反函数 $x=f^{-1}(y)$ 写成 $y=f^{-1}(x)$ 之后,它们的图形才关于 y=x 对称,事实上这也是字母 x 与 y 互换的结果。

第三,求解反函数的一般步骤为:

- 求解原函数的单调区间及值域
- 求解x, 然后互换x和y

1.3 复合函数

双曲正弦函数

$$sinhx = \frac{e^x - e^{-x}}{2} \tag{1}$$

反双曲正弦函数

$$y = \ln[x + \sqrt{x^2 + 1}] \tag{2}$$

两个求导基本公式

$$\int \frac{1}{\sqrt{x^2 + 1}} dx = \ln[x + \sqrt{x^2 + 1}]$$

$$(ln[x+\sqrt{x^2+1}])' = \frac{1}{\sqrt{x^2+1}}$$

复合函数最重要的就是两个函数定义域与值域的区分, 尤其注意:

题目给出的函数定义域是否完全是正确的定义域

1.4 四种特性

1.4.1 有界性

设 f(x) 的定义域为 D , 数集 $I \in D$, 如果存在某个正数 M , 使得对任一 $x \in I$, 有 $|f(X)| \le m$, 则称 f(x) 在 I 上有界;如果这样的 M 不存在,则称 f(x) 在 I 上无界。

注 • 有界还是无界的讨论,首先要指明区间,不知区间,无论有界性

• 事实上,只要区间 I 上存在点 x_0 ,使得函数 $\lim_{x\to x_0} f(x)$ 的值为无穷大,这就叫无界

1.4.2 单调性

设 f(x) 是定义在 [-l,l] 上的任意函数,则 $F_1(x) = f(x) - f(-x)$ 必为**奇函数**; $F_2(x) = f(x) + f(-x)$ 必为**偶函数**

- 奇函数 y = f(x) 的图形关于坐标原点对称, 当 f(x) 在 x = 0 处有定义时, 必有 f(0) = 0
- 偶函数 y = f(x) 的图形源于 y 轴对称,且当 f'(0) 存在时必有 f'(0) = 0
- 函数 y = f(x) 的图形关于直线 x = T 对称的充分必要条件是

$$f(x) = f(2T - x)\vec{\boxtimes}f(T + x) = f(T - x)$$

1.4.3 奇偶性

1.4.4 周期性