COM3020J - Protocols

Dr. Anca Jurcut
E-mail: anca.jurcut@ucd.ie

School of Computer Science and Informatics University College Dublin, Ireland

Timestamps

- A timestamp T is derived from current time
- Timestamps can be used to prevent replay
 - Used in Kerberos, for example
- □ Timestamps reduce number of msgs (good)
 - A challenge that both sides know in advance
- "Time" is a security-critical parameter (bad)
 - Clocks not same and/or network delays, so must allow for clock skew — creates risk of replay
 - o How much clock skew is enough?

- Secure mutual authentication?
- Session key secure?
- Seems to be OK

- Secure authentication and session key?
- □ Trudy can use Alice's public key to find {T, K_{AB}}K_{BPub} and then...

- Trudy obtains Alice-Bob session key K_{AB}
- Note: Trudy must act within clock skew

Public Key Authentication

- Sign and encrypt with nonce...
 - o **Secure**
- Encrypt and sign with nonce...
 - o **Secure**
- Sign and encrypt with timestamp...
 - o **Secure**
- Encrypt and sign with timestamp...
 - o Insecure
- Protocols can be subtle!

- Is this "encrypt and sign" secure?
 - o Yes, seems to be OK
- Does "sign and encrypt" also work here?

Perfect Forward Secrecy

- Consider this "issue"...
 - Alice encrypts message with shared key K_{AB} and sends ciphertext to Bob
 - Trudy records ciphertext and later attacks Alice's (or Bob's) computer to recover K_{AB}
 - Then Trudy decrypts recorded messages
- Perfect forward secrecy (PFS): Trudy cannot later decrypt recorded ciphertext
 - Even if Trudy gets key K_{AB} or other secret(s)
- Is PFS possible?

Perfect Forward Secrecy

- Suppose Alice and Bob share key K_{AB}
- □ For perfect forward secrecy, Alice and Bob cannot use K_{AB} to encrypt
- Instead they must use a session key K_S and forget it after it's used
- □ Can Alice and Bob agree on session key K_S in a way that provides PFS?

Naïve Session Key Protocol

- \square Trudy could record E(K_S, K_{AB})
- If Trudy later gets K_{AB} then she can get K_S
 - Then Trudy can decrypt recorded messages
- No perfect forward secrecy in this case

Perfect Forward Secrecy

- We can use Diffie-Hellman for PFS
- Recall: public g and p

- But Diffie-Hellman is subject to MiM
- How to get PFS and prevent MiM?

Perfect Forward Secrecy

- Session key K_S = g^{ab} mod p
- Alice forgets a, Bob forgets b
- This is known as Ephemeral Diffie-Hellman
- Neither Alice nor Bob can later recover K_S
- □ Are there other ways to achieve PFS?

Mutual Authentication, Session Key and PFS

- Session key is K_S = g^{ab} mod p
- Alice forgets a and Bob forgets b
- If Trudy later gets Bob's and Alice's secrets, she cannot recover session key K_S
- Note: encryption is not required in this protocol. Signing the DH values prevents the MiM attack, while signing the nonces prevents a replay.

Authentication and TCP

TCP-based Authentication

- TCP not intended for use as an authentication protocol
- But IP address in TCP connection may be (mis)used for authentication
- Also, one mode of IPSec relies on IP address for authentication

TCP 3-way Handshake

- □ Initial sequence numbers: SEQ a and SEQ b
 - Supposed to be selected at random
- □ If not, might have problems...

TCP Authentication Attack

TCP Authentication Attack

Random SEQ numbers

Initial SEQ numbers
Mac OS X

- □ If initial SEQ numbers not very random...
- ...possible to guess initial SEQ number...
- ...and previous attack will succeed

TCP Authentication Attack

- Trudy cannot see what Bob sends, but she can send packets to Bob, while posing as Alice
- Trudy must prevent Alice from receiving Bob's response (or else connection will terminate)
- If password (or other authentication) required, this attack fails
- If TCP connection is relied on for authentication, then attack might succeed
- Bad idea to rely on TCP for authentication

Zero Knowledge Proofs

Zero Knowledge Proof (ZKP)

- Alice wants to prove that she knows a secret without revealing any info about it
- Bob must verify that Alice knows secret
 - But, Bob gains no information about the secret
- Process is probabilistic
 - Bob can verify that Alice knows the secret to an arbitrarily high probability
- An "interactive proof system"

Bob's Cave

- Alice knows secret phrase to open path between R and S ("open sarsaparilla")
- Can she convince Bob that she knows the secret without revealing phrase?

Bob's Cave

■ Bob: "Alice, come out on S side"

- Alice (quietly): "Open sarsaparilla"
- If Alice does not know the secret...

□ If Bob repeats this n times and Alice does not know secret, she can only fool Bob with probability 1/2ⁿ

Fiat-Shamir Protocol

- Cave-based protocols are inconvenient
 - o Can we achieve same effect without the cave?
- Finding square roots modulo N is difficult
 - Equivalent to factoring
- Suppose N = pq, where p and q prime
- Alice has a secret S
- □ N and $v = S^2 \mod N$ are public, S is secret
- Alice must convince Bob that she knows S without revealing any information about S

Fiat-Shamir

- □ Public: Modulus N and v = S² mod N
- □ Alice selects random r, Bob chooses e ∈ {0,1}
- □ Bob verifies: $y^2 = x \cdot v^e \mod N$
 - o Note that $y^2 = r^2 \cdot S^{2e} = r^2 \cdot (S^2)^e = x \cdot v^e \mod N$

Fiat-Shamir: e = 1

- □ Public: Modulus N and v = S² mod N
- □ Alice selects random r, Bob chooses e = 1
- □ If $y^2 = x \cdot v \mod N$ then Bob accepts it
 - And Alice passes this iteration of the protocol
- Note that Alice must know S in this case

Fiat-Shamir: e = 0

- □ Public: Modulus N and v = S² mod N
- □ Alice selects random r, Bob chooses e = 0
- \square Bob must checks whether $y^2 = x \mod N$
- "Alice" does not need to know S in this case!

Fiat-Shamir

- □ Public: modulus N and v = S² mod N
- Secret: Alice knows S
- □ Alice selects random r and commits to r by sending x = r² mod N to Bob
- Bob sends challenge e ∈ {0,1} to Alice
- □ Alice responds with y = r · Se mod N
- □ Bob checks whether $y^2 = x \cdot v^e \mod N$
 - o Does this prove response is from Alice?

Does Fiat-Shamir Work?

- If everyone follows protocol, math works:
 - o Public: $v = S^2 \mod N$
 - Alice to Bob: $x = r^2 \mod N$ and $y = r \cdot S^e \mod N$
 - o Bob verifies: $y^2 = x \cdot v^e \mod N$
- □ Can Trudy convince Bob she is Alice?
 - o If Trudy expects e = 0, she follows the protocol: send $x = r^2$ in msg 1 and y = r in msg 3
 - o If Trudy expects e = 1, she sends $x = r^2 \cdot v^{-1}$ in msg 1 and y = r in msg 3
- If Bob chooses e ∈ {0,1} at random, Trudy can only trick Bob with probability 1/2

Fiat-Shamir Facts

- □ Trudy can trick Bob with probability 1/2, but...
 - ...after n iterations, the probability that Trudy can convince Bob that she is Alice is only 1/2ⁿ
 - o Just like Bob's cave!
- \square Bob's e \in {0,1} must be unpredictable
- □ Alice must use new r each iteration, or else...
 - o If e = 0, Alice sends r mod N in message 3
 - o If e = 1, Alice sends $r \cdot S \mod N$ in message 3
 - Anyone can find S given r mod N and r · S mod N

Fiat-Shamir Zero Knowledge?

- Zero knowledge means that nobody learns anything about the secret S
 - o Public: $v = S^2 \mod N$
 - Trudy sees r² mod N in message 1
 - o Trudy sees r · S mod N in message 3 (if e = 1)
- □ If Trudy can find r from r² mod N, she gets S
 - But that requires modular square root calculation
 - If Trudy could find modular square roots, she could get S from public v
- Protocol does not seem to "help" to find S

ZKP in the Real World

- Public key certificates identify users
 - No anonymity if certificates sent in plaintext
- ZKP offers a way to authenticate without revealing identities
- ZKP supported in MS's Next Generation Secure Computing Base (NGSCB), where...
 - ...ZKP used to authenticate software "without revealing machine identifying data"
- ZKP is not just pointless mathematics!

Best Authentication Protocol?

- □ It depends on...
 - The sensitivity of the application/data
 - The delay that is tolerable
 - The cost (computation) that is tolerable
 - What crypto is supported (public key, symmetric key, ...)
 - Whether mutual authentication is required
 - Whether PFS, anonymity, etc., are concern
- ...and possibly other factors