

# Network Camera Threat Model and Security Analysis (English language Protection Profile)

**Architecture & Technology Group** 

| Document number: | DEN0073 | Version: | BET00 |
|------------------|---------|----------|-------|
|                  |         |          |       |

Date of Issue: 13/02/2018

Author: Arm Ltd

Authorised by: ATG

 $\hbox{@}$  Copyright Arm Limited 2018. All rights reserved.

#### **Abstract**

Security should start with a Threat Model and Security Analysis (TMSA) that lists the assets that need protection in a system and the threats that are considered in scope. From this starting point, a step by step process can be used to establish security objectives and Security Functional Requirements (SFRs). With the inherent diversity of IoT there will be a greater need for device manufacturers to have a reference TMSA for their product. Arm has created a series of reference English language Protection Profiles for IoT products to show how this might be done in a way that is understandable by non-security experts. These security analyses are accompanied by at a glance summary documents and useful appendices that show how Arm TrustZone and CryptoIsland technology can be used to meet some of the SFRs. We hope that you find these documents useful as a starting point for creating a TMSA for your IoT device.

#### **Keywords**

Network Camera, Platform Security Architecture, PP, Protection Profile, PSA, Threat Model Security Analysis, TMSA, TrustZone

#### **Distribution list**

| Name | Function | Name | Function |
|------|----------|------|----------|
|      |          |      |          |
|      |          |      |          |

Document Number: DEN0073-Network\_Camera\_TMSA-1BET00 Version: Beta 00 Arm Non-Confidential Page 1 of 25

# **Non-Confidential Proprietary Notice**

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to Arm's customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at <a href="http://www.arm.com/company/policies/trademarks">http://www.arm.com/company/policies/trademarks</a>.

Copyright © [2018] Arm Limited (or its affiliates). All rights reserved. Arm Limited. Company 02557590 registered in England. 110 Fulbourn Road, Cambridge, England CB1 9NJ. LES-PRE-20349

Document Number: DEN0073-Network\_Camera\_TMSA-1BET00 Arm Non-Confidential

Version: Beta 00 Page 2 of 25

## Contents

| 1 ABOUT THIS DOCUMENT                                                                                                   | 6        |
|-------------------------------------------------------------------------------------------------------------------------|----------|
| 1.1 PP Identification                                                                                                   | 6        |
| 1.2 Change control                                                                                                      | 6        |
| 1.3 Current status and anticipated changes                                                                              | 6        |
| 1.4 Change history                                                                                                      | 6        |
| 1.5 References                                                                                                          | 6        |
| 1.6 Terms                                                                                                               | 7        |
| 1.7 Terminology and Definitions                                                                                         | 8        |
| 2 INTRODUCTION                                                                                                          | 8        |
| 2.1 TOE Overview                                                                                                        | 9        |
| 2.1.1 TOE Type                                                                                                          | 9        |
| <ul><li>2.1.2 TOE Usage and Major Security Features</li><li>2.1.3 Required non-TOE Hardware/Software/Firmware</li></ul> | 9<br>10  |
| 2.2 TOE Description                                                                                                     | 10       |
| 2.2.1 TOE Features                                                                                                      | 10       |
| 2.2.1.1 Hardware                                                                                                        | 10       |
| 2.2.1.2 Firmware                                                                                                        | 11       |
| <ul><li>2.2.2 TOE Operational Environment</li><li>2.2.3 TOE Life Cycle</li></ul>                                        | 11<br>11 |
| 2.2.5 TOE LITE CYCLE                                                                                                    | 11       |
| 3 CONFORMANCE CLAIMS                                                                                                    | 12       |
| 3.1 CC Conformance Claim                                                                                                | 12       |
| 3.2 Package Claim                                                                                                       | 12       |
| 3.3 PP Claim                                                                                                            | 12       |
| 3.4 Conformance Claim to this PP                                                                                        | 12       |
| 4 SECURITY PROBLEM DEFINITION                                                                                           | 12       |
| 4.1 Users and External Entities                                                                                         | 12       |
| 4.2 Assets                                                                                                              | 12       |
| 4.2.1 TSF Data                                                                                                          | 12       |
| 4.2.1.1 Camera ID                                                                                                       | 13       |

| 4.    | 2.1.2     | Firmware                                          | 13 |
|-------|-----------|---------------------------------------------------|----|
| 4.    | 2.1.3     | Firmware Certificate                              | 13 |
| 4.    | 2.1.4     | Logs                                              | 13 |
| 4.2.  | 2 Us      | er Data                                           | 13 |
| 4.    | 2.2.1     | Video Stream                                      | 13 |
| 4.    | 2.2.2     | Configuration                                     | 13 |
|       |           | Credentials                                       | 13 |
| 4.2.  | 3 Ot      | hers                                              | 14 |
| 4.    | 2.3.1     | Computing Power                                   | 14 |
|       |           | Network Bandwidth                                 | 14 |
| 4.    | .2.3.3    | Storage Space                                     | 14 |
| 4.3   | Threat    | s                                                 | 14 |
| 4.3.  |           | MPERSONATION                                      | 14 |
| 4.3.  | 2 T.N     | MITM                                              | 14 |
| 4.3.  |           | FIRMWARE_ABUSE                                    | 15 |
| 4.3.  |           | TAMPER                                            | 15 |
| 4.4   | Organi    | cational Convity Policies                         | 15 |
| 4.4.: | _         | sational Security Policies CREDENTIALS MANAGEMENT | 15 |
| 4.4.  | 1 7.0     | CREDENTIALS_IVIAINAGEIVIENT                       | 15 |
|       | Assum     |                                                   | 15 |
| 4.5.  | 1 A.      | TRUSTED_ADMIN                                     | 15 |
| 5 SE  | CURIT     | Y OBJECTIVES                                      | 16 |
|       |           |                                                   |    |
|       |           | y Objectives for the TOE                          | 16 |
| 5.1.  |           | ACCESS_CONTROL                                    | 16 |
| 5.1.  |           | SECURE_STORAGE                                    | 16 |
| 5.1.  |           | T.FIRMWARE_AUTHENTICITY                           | 16 |
| 5.1.  |           | COMMUNICATION                                     | 16 |
| 5.1.  |           | AUDIT                                             | 16 |
| 5.1.  | 6 ОТ      | SECURE_STATE                                      | 16 |
| 5.2   | Securit   | y Objectives for the Operational Environment      | 16 |
| 5.2.  | 1 OE      | CREDENTIALS_MANAGEMENT                            | 16 |
| 5.2.  | 2 OE      | T.TRUSTED_ADMIN                                   | 16 |
| 5.3   | Securit   | y Objectives Rationale                            | 17 |
| 5.3.  |           | curity Objective Rationales: Threats              | 17 |
| 5.    | 3.1.1     | Threat: T.IMPERSONATION                           | 17 |
|       |           | Threat: T.MITM                                    | 17 |
|       |           | Threat: T.FIRMWARE_ABUSE                          | 18 |
|       |           | Threat: T.TAMPER                                  | 18 |
| 5.3.  |           | curity Objective Rationales: Security Policies    | 18 |
|       | .3.2.1    | Policy: P.CREDENTIALS_MANAGEMENT                  | 18 |
| 5.3.  |           | curity Objective Rationales: Assumptions          | 18 |
|       |           | Assumption: A.TRUSTED_ADMIN                       | 18 |
| ٥.    | <u></u> _ | ·                                                 | 10 |

| 6 SECURITY RI  | EQUIREMENTS                            | 18 |
|----------------|----------------------------------------|----|
| 6.1 Security F | unctional Requirements                 | 18 |
| 6.1.1 OT.AC    | CCESS_CONTROL                          | 19 |
| 6.1.2 OT.SE    | CURE_STORAGE                           | 19 |
| 6.1.3 OT.FIF   | RMWARE_AUTHENTICITY                    | 20 |
| 6.1.4 OT.CC    | DMMUNICATION                           | 20 |
| 6.1.5 OT.AL    | JDIT                                   | 21 |
| 6.1.6 OT.SE    | CURE_STATE                             | 21 |
| 6.2 Security A | ssurance Requirements                  | 21 |
| 7 ACKNOWLE     | DGEMENTS                               | 21 |
| APPENDIX A     | SUPPORT OF SFRS BY ARM CRYPTOISLAND IP | 22 |
| APPENDIX B     | SUPPORT OF SFRS BY ARM TRUSTZONE IP    | 24 |
| APPENDIX C     | COMPATIBILITY WITH ROOT-OF-TRUST PP    | 25 |

Document Number: DEN0073-Network\_Camera\_TMSA-1BET00 Arm Non-Confidential

Version: Beta 00 Page 5 of 25

## 1 About this document

#### 1.1 PP Identification

Network Camera Protection Profile Title:

Authors: Arm Ltd CC Version: 3.1 revision 5

EAL 2 Assurance Level:

Reference:

Version Number:

Keywords: Network Camera

### 1.2 Change control

This document is tracked in SharePoint internally.

## 1.3 Current status and anticipated changes

Current Status: Beta

#### 1.4 Change history

| Release Date | Version | Comments                           |
|--------------|---------|------------------------------------|
| 10/11/2017   | 0.1     | First complete version             |
| 01/12/2017   | 0.2     | Revision after Arm comments        |
| 26/12/2017   | 0.3     | Added a TrustZone Support Appendix |
| 16/01/2018   | 0.4     | Fixes and template modification    |

#### 1.5 References

This document refers to the following documents.

| Ref    | Doc No           | Author(s) | Title                                                                                                                                        |
|--------|------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|
| [CC-1] | CCMB-2017-04-001 |           | Common Criteria for Information Technology Security Evaluation, Version 3.1, Revision 5, April 2017. Part 1: Introduction and general model. |
| [CC-2] | CCMB-2017-04-002 |           | Common Criteria for Information Technology Security Evaluation, Version 3.1, Revision 5, April 2017. Part 2: Security functional components  |

Document Number: DEN0073-Network\_Camera\_TMSA-1BET00 Arm Non-Confidential Version: Beta 00 Page 6 of 25

| [CC-3]  | CCMB-2017-04-003 |                | Common Criteria for Information Technology Security Evaluation, Version 3.1, Revision 5, April 2017. Part 3: Security assurance components |
|---------|------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| [CEM]   | CCMB-2017-04-004 |                | Common Methodology for Information Technology<br>Security Evaluation (CEM), Version 3.1, Revision 5,<br>April 2017. Evaluation methodology |
| [Comp]  |                  |                | Joint Interpretation Library, Composite product evaluation for Smart Cards and similar devices, Version 1.2, January 2012                  |
| [GPRoT] | GP_REQ_025       | GlobalPlatform | Root of Trust Definitions and Requirements, March 2017, Version 1.0.1                                                                      |

## 1.6 Terms

This document uses the following terms and abbreviations.

| Term  | Meaning                            |
|-------|------------------------------------|
| API   | Application Programming Interface  |
| СС    | Common Criteria                    |
| CPU   | Central Processing Unit            |
| EAL   | Evaluation Assurance Level         |
| LED   | Light Emitting Diode               |
| HTTPS | HyperText Transfer Protocol Secure |
| IPSec | Internet Protocol Security         |
| NTP   | Network Time Protocol              |
| OS    | Operating System                   |
| OSP   | Organisational Security Policy     |
| ОТР   | One-Time-Programmable              |
| PP    | Protection Profile                 |
| PTZ   | Pan-Tilt-Zoom                      |
| RAM   | Random Access Memory               |
| REE   | Rich Execution Environment         |
| ROM   | Read Only Memory                   |
| SFP   | Security Function Policy           |
| SFR   | Security Functional Requirement    |

Document Number: DEN0073-Network\_Camera\_TMSA-1BET00 Arm Non-Confidential Version: Beta 00 Page 7 of 25

| SoC  | System-on-Chip                |
|------|-------------------------------|
| ST   | Security Target               |
| TEE  | Trusted Execution Environment |
| TLS  | Transport Layer Security      |
| TOE  | Target of Evaluation          |
| TSF  | TOE Security Functionality    |
| TSFI | TSF Interface                 |
| TSS  | TOE Security Service          |

#### 1.7 Terminology and Definitions

- 1. The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC 2119]:
- **MUST**: This word, or the terms "REQUIRED" or "SHALL", mean that the definition is an absolute requirement of the specification.
- **MUST NOT**: This phrase, or the phrase "SHALL NOT", mean that the definition is an absolute prohibition of the specification.
- **SHOULD**: This word, or the adjective "RECOMMENDED", mean that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications must be understood and carefully weighed before choosing a different course.
- **SHOULD NOT**: This phrase, or the phrase "NOT RECOMMENDED" mean that there may exist valid reasons in particular circumstances when the particular behaviour is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behaviour described with this label.
- MAY: This word, or the adjective "OPTIONAL", mean that an item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because the vendor feels that it enhances the product while another vendor may omit the same item. An implementation which does not include a particular option MUST be prepared to interoperate with another implementation which does include the option, though perhaps with reduced functionality. In the same vein an implementation which does include a particular option MUST be prepared to interoperate with another implementation which does not include the option (except, of course, for the feature the option provides.)

## 2 Introduction

2. This section provides an overview of the TOE.

Document Number: DEN0073-Network\_Camera\_TMSA-1BET00 Arm Non-Confidential

Version: Beta 00 Page 8 of 25

#### 2.1 TOE Overview

#### 2.1.1 TOE Type

- 3. The TOE of this PP is a network-connected camera, such as used in homes and offices, with some processing capabilities to connect autonomously to a network. It may also include some local analysis of the pictures.
- 4. The TOE is a platform composed of a hardware device and a firmware implementing the network camera functionalities. The firmware itself may include a generic purpose operating system.

#### 2.1.2 TOE Usage and Major Security Features

- 5. Network cameras are used to stream live video. In order to reduce required bandwidth, this usually means that the camera will have enough computing power to encode the video stream in a compressed form.
- 6. The cameras considered in this PP require a network connection. As live video streaming requires significant bandwidth, most network cameras are either connected through a cable or through Wi-Fi, typically on a local network.
- 7. There are many possible uses for network cameras, corresponding to very different security contexts, that we can abstract as follows:
- Personal use, general purpose. From babyphones to security cameras, event detection and privacy protections are essential, but the achievable level of security assurance is limited by cost constraints.
- Enterprise, general purpose. With a traditional security camera, in a protected environment, event detection and video flow integrity are essential. Risks are limited, so the level of security assurance does not need to be maximal.
- Enterprise, high security. When a camera is highly exposed, or when it is used to protect high-value assets, the same feature are essential, but the level of security assurance must be significantly higher, even if it drives up the costs.
- 8. Despite these differences, the security features to be included in cameras are similar enough to be described in a single Protection Profile, as the appropriate security assurance can be personalized in a camera's Security Target.
- 9. The video stream and access to management and administration interfaces, network cameras include at least the following security features:
- User and admin authentication. Users must be authenticated before to access the camera, and before to modify its configuration or perform maintenance operations on it. Local and network authentication may rely on different methods and credentials.
- Authorization. Some functions are restricted to a limited number of users, and may only be available in some conditions (locally, for instance).
- Network authentication. The establishment of a network connection requires a mutual authentication between the device and the remote server or user.

Document Number: DEN0073-Network\_Camera\_TMSA-1BET00 Arm Non-Confidential Page 9 of 25 Version: Beta 00

- Encryption of video stream. The video stream can be encrypted with a key that is only shared with intended recipients (servers or users).
- Secure communication. More generally, any network communication is performed using a protocol that includes integrity and confidentiality protections.
- Log of security events. Security events are logged locally on the camera, to be made available in the forensic analysis of an attack or other suspicious event.
- Software update. The software running on the camera can be updated in order to fix vulnerabilities identified after the device's deployment.

#### 2.1.3 Required non-TOE Hardware/Software/Firmware

10. The TOE is embedded in a hardware device (the camera) that includes hardware that is not part of the TOE but that is used by the TOE, such as the sensor, the network interface or other hardware. Security functionalities shall not depend on that hardware. The ST writer shall make explicit which hardware is part of the TOE and which is not.

#### 2.2 TOE Description

11. The figure below illustrates the main components for a network camera and the TOE for this PP.



Figure 1: Network Camera TOE

#### 2.2.1 TOE Features

#### 2.2.1.1 Hardware

Document Number: DEN0073-Network\_Camera\_TMSA-1BET00 Arm Non-Confidential

Version: Beta 00 Page 10 of 25

- 12. Hardware for a Network Camera is typically composed of a SoC with hardware video encoders, flash memory, network controller (Wi-Fi and/or Ethernet) and the camera itself that may also include infrared LEDs, motors for pan-tilt-zoom or movable filters.
- 13. The SoC may support OTPs to store sensitive data, such as camera ID or secrets.

#### **2.2.1.2** Firmware

- 14. Firmware for a Network Camera is typically composed of a boot-loader, which is the first piece of code called by the ROM, an operating system, such as Linux, with drivers for controlling camera peripherals and applications running on top of this OS.
- 15. The applications may include for instance a motion sensor, a video uploader, web server for remote control of the camera.
- 16. Firmware is usually stored on a flash memory to support upgrade.

#### 2.2.2 TOE Operational Environment

17. The TOE operational environment is composed of the place this camera is used (such as office or home) and the network the camera is connected to.

#### 2.2.3 TOE Life Cycle

18. The TOE Life Cycle is as follows:

| Phase                                           | Actors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 & 2: Firmware / Software /<br>Hardware design | The network camera software developer is in charge of software development and testing.  The device manufacturer may design additional software that will be linked with the network camera in phase 4.  The network camera hardware designer is in charge of designing (part of) the processor(s) where the network camera software runs and designing (part of) the hardware security resources used by the network camera.  The silicon vendor designs the ROM code and the secure |
| 3: Silicon/chip manufacturing                   | portion of the network camera chipset.  The silicon vendor produces the chipset for the network camera device.                                                                                                                                                                                                                                                                                                                                                                        |
| 4: Software manufacturing                       | The device manufacturer is responsible for the integration, validation, and preparation of the software to load in the product that will include the network camera.                                                                                                                                                                                                                                                                                                                  |
| 5: Device manufacturing                         | The device manufacturer is responsible for the device assembly and initialization and any other operation on the device before delivery to the end user.                                                                                                                                                                                                                                                                                                                              |
| 6: Operational phase                            | The end user gets a device ready for use. The end-user personalizes TOE and network credentials prior use. The network camera may be updated if it has not been designed to be immutable.                                                                                                                                                                                                                                                                                             |

Arm Non-Confidential Version: Beta 00 Page 11 of 25

| 7: End usage termination | The end user terminates their relationship to allow device  |
|--------------------------|-------------------------------------------------------------|
| 7: End-usage termination | resale by performing a factory reset of the network camera. |

19. The TOE delivery point may occur at the end of phases 3, 4 or 5.

## **3 Conformance Claims**

#### 3.1 CC Conformance Claim

20. This Protection Profile is CC Part 2 [CC2] and CC Part 3 [CC3] conformant of Common Criteria version 3.1, revision 5.

#### 3.2 Package Claim

21. The minimum assurance level for the evaluation of a Network Camera with a TOE conformant to this PP is EAL 2.

#### 3.3 PP Claim

22. This Protection Profile does not claim conformance to any other Protection Profile.

#### 3.4 Conformance Claim to this PP

23. The conformance to this PP, required for the Security Targets and Protection Profiles claiming conformance to it, is demonstrable, as defined in CC Part 1 [CC1].

## **4 Security Problem Definition**

#### 4.1 Users and External Entities

- 24. The external entities that are considered in this PP are the User and the Admin.
- 25. The User can access the video stream after authentication.
- 26. The Admin can modify the camera configuration, perform firmware update and access logs after authentication.

#### 4.2 Assets

#### 4.2.1 TSF Data

27. The following assets contain data that belong to TSF.

Document Number: DEN0073-Network\_Camera\_TMSA-1BET00 Arm Non-Confidential Version: Beta 00 Page 12 of 25

#### 4.2.1.1 Camera ID

- 28. A unique ID to identify the device on a network, such as a MAC address.
- 29. Properties: Integrity

#### 4.2.1.2 Firmware

- 30. The camera's firmware.
- 31. Properties: Integrity, Authenticity

#### 4.2.1.3 Firmware Certificate

- 32. The cryptographic certificate used to authenticate firmware and firmware updates.
- 33. Properties: Integrity

#### 4.2.1.4 Logs

- 34. The event logs, that can be used to detect suspicious activities.
- 35. Properties: Integrity

#### 4.2.2 User Data

#### 4.2.2.1 Video Stream

- 36. The video stream produced by the camera sent over the network.
- 37. Properties: Integrity, Confidentiality

#### 4.2.2.2 Configuration

- 38. The camera's dynamic configuration, including network configuration such as the name of a WLAN network, or IP and DNS addresses and camera settings such as pan, tilt, and zoom, the events to be detected and notified.
- 39. Properties: Integrity

#### 4.2.2.3 Credentials

- 40. The authentication credentials, used for local and remote authentication, such as:
- Network credentials, to authenticate if needed on the network, for instance a Wi-Fi pre-shared key or a 802.1x certificate, to be protected in integrity and confidentiality.
- Device authentication credentials to authenticate on remote servers, to be protected in integrity and confidentiality.
- Server authentication data, such as public key certificates, to be protected in integrity.
- Session keys, used after establishment of a trusted communication channel with servers, to be protected in integrity and confidentiality.
- Administration and user credentials, to authenticate to the services provided by the network camera, either for administration or for regular use, to be protected in integrity and confidentiality.

User biometric patterns to be used in face recognition or similar algorithms, to be protected in integrity.

41. Properties: Integrity, Confidentiality

Document Number: DEN0073-Network\_Camera\_TMSA-1BET00 Arm Non-Confidential

Version: Beta 00 Page 13 of 25

#### **4.2.3** Others

42. Although assets of this section are not informational assets, but rather resources available to the TOE, they may be the direct targets of attackers.

#### 4.2.3.1 Computing Power

43. The processing capabilities of the TOE, as provided by its central and possibly graphic processing units.

#### 4.2.3.2 Network Bandwidth

44. The network resources used by the TOE to exchange data. As the TOE processes video, the volume of exchanged data may be significant.

#### 4.2.3.3 Storage Space

45. The mass storage space used by the TOE to store data. As the TOE processes video, the volume of stored data may be significant.

#### 4.3 Threats

46. An attacker is a threat agent (a person or a process acting on his/her behalf) trying to undermine the TOE security policy defined by the current ST and, hence, the TSF. The attacker especially tries to change properties of the assets defined in Section 4.2.

#### 4.3.1 T.IMPERSONATION

- 47. An attacker impersonates a legitimate user on the camera, either a regular user that can access the video stream or an admin user.
- 48. The user credentials may be obtained through default admin passwords, interception, for instance in insecure communication links, or exposed through data disclosure.
- 49. The attacker may then access video stream, modify configuration or try to modify firmware.
- 50. Assets threatened directly: Credentials Assets threatened indirectly: Video Stream, Configuration.

#### 4.3.2 T.MITM

- 51. An attacker performs a Man-In-The-Middle attack or impersonates a server the camera connects to, for instance to upload the video stream or the event logs.
- 52. The attacker may rely on insecure communication links or prior modification of the server credentials on the camera through insecure configuration.
- 53. The attacker may then access and modify Video Stream, Logs, Credentials, Configuration data.
- 54. Assets threatened directly: Credentials (Server), Logs, Video Stream, Configuration

Arm Non-Confidential Version: Beta 00 Page 14 of 25

#### 4.3.3 T.FIRMWARE ABUSE

- 55. An attacker installs a flawed version of the firmware and obtains partial or total control of the camera. The firmware may have been modified prior to the attack to include a malware or consist of an outdated version of the original firmware.
- 56. The attacker may for instance modify on the device the value of the firmware certificate used to authenticate the installed firmware or firmware updates.
- 57. Such an attack can allow for elevation of privileges, where a regular user gains access to admin privileges.
- 58. This attack can also be used to take control over the TOE resources, for instance to carry a denial-ofservice attack on other network devices, to store illegal files or to mine cryptocurrencies.
- 59. Assets threatened directly: Firmware, Firmware Certificate, Computing Power, Network Bandwidth, Storage Space.

Assets threatened indirectly: All.

#### **4.3.4 T.TAMPER**

- 60. An attacker tampers with the camera and tries to access or modify the media on which assets are stored.
- 61. This includes basic PCB attacks, after opening the camera case, such as eavesdropping buses, desoldering memory chips, use of debug interfaces.
- 62. Assets threatened directly: All.

#### 4.4 Organisational Security Policies

63. The TOE and its environment shall comply with the following organizational security policies (OSP) as security rules, procedures, practices or guidelines imposed by an organization upon its operation.

#### 4.4.1 P.CREDENTIALS\_MANAGEMENT

- 64. The Admin shall change the default passwords of the TOE, if any, prior the operational usage of the TOE.
- 65. Additionally, the Admin and the User shall ensure confidentiality of their passwords.

#### 4.5 Assumptions

66. This section describes the assumptions about the operational environment of the TOE.

#### 4.5.1 A.TRUSTED\_ADMIN

67. Admin of the TOE are assumed to follow and apply administrative guidance in a trusted manner.

Arm Non-Confidential Version: Beta 00 Page 15 of 25

## **5 Security Objectives**

#### **5.1 Security Objectives for the TOE**

#### 5.1.1 OT.ACCESS CONTROL

- 68. The TOE shall authenticate User before granting access to the Video Stream.
- 69. The TOE shall authenticate Admin before granting access the camera configuration and logs and before performing firmware update.

#### **5.1.2 OT.SECURE STORAGE**

70. The TOE shall protect integrity and confidentiality of Credentials when stored, and protect integrity of Firmware Certificate, Configuration and Logs when stored.

#### **5.1.3 OT.FIRMWARE AUTHENTICITY**

- 71. The TOE shall authenticate and verify integrity of firmware image during boot and of new firmware versions prior upgrade.
- 72. The TOE shall also reject attempts of firmware downgrade.

#### 5.1.4 OT.COMMUNICATION

73. The TOE shall be able to authenticate remote servers where Video Stream and Logs are uploaded and provide integrity and confidentiality protection for export outside of the TOE.

#### **5.1.5 OT.AUDIT**

74. The TOE shall maintain log of all significant events and allow access and analysis of these logs to authorized users only.

#### 5.1.6 OT.SECURE STATE

75. The TOE shall maintain a secure state even in case of failures, for instance failure of verification of firmware integrity.

#### 5.2 Security Objectives for the Operational Environment

#### **5.2.1 OE.CREDENTIALS MANAGEMENT**

76. Identical to P.CREDENTIALS\_MANAGEMENT (p. 15).

#### 5.2.2 OE.TRUSTED ADMIN

77. The Admin of the TOE is not careless, wilfully negligent or hostile.

Document Number: DEN0073-Network\_Camera\_TMSA-1BET00 Arm Non-Confidential Version: Beta 00 Page 16 of 25

#### **5.3 Security Objectives Rationale**

78. The following table provides an overview for security objectives coverage (TOE and its environment) and also gives an evidence for sufficiency and necessity of the defined objectives. It shows that all threats and OSPs are addressed by the security objectives and it also shows that all assumptions are addressed by the security objectives for the TOE operational environment.

|                          | OT.ACCESS_CONTROL | OT.SECURE_STORAGE | OT.FIRMWARE_AUTHENTICITY | OT.COMMUNICATION | OT.AUDIT | OT.SECURE_STATE | OE.CREDENTIALS_MANAGEMENT | OE.TRUSTED_ADMIN |
|--------------------------|-------------------|-------------------|--------------------------|------------------|----------|-----------------|---------------------------|------------------|
| T.IMPERSONATION          | Χ                 |                   |                          |                  | Х        |                 | Х                         |                  |
| T.MITM                   |                   |                   |                          | Х                |          |                 |                           |                  |
| T.FIRMWARE_ABUSE         | Х                 |                   | Х                        |                  |          | Х               |                           |                  |
| T.TAMPER                 |                   | Χ                 |                          |                  |          | Х               |                           |                  |
| P.CREDENTIALS_MANAGEMENT | Χ                 |                   |                          |                  |          |                 | Χ                         |                  |
| A.TRUSTED_ADMIN          |                   |                   |                          |                  |          |                 |                           | Х                |

Table 1: Security Objectives Rationale

79. A justification required for suitability of the security objectives to cope with the security problem definition is given below.

#### 5.3.1 Security Objective Rationales: Threats

#### 5.3.1.1 Threat: T.IMPERSONATION

80. This threat assumes that the TOE can be attacked by impersonating of a legitimate user. This threat is countered by the security objectives OT.ACCESS\_CONTROL that ensures authentication of users to access TOE functionalities and OT.AUDIT that allows for audit of TOE users activities and by the security objective on the operational environment OE.CREDENTIALS\_MANAGEMENT that ensures that no default password can be used on operational usage.

#### 5.3.1.2 Threat: T.MITM

81. This threat assumes that the TOE can be attacked by intercepting or spying communications with remote servers. This threat is countered by the security objective OT.COMMUNICATION that ensures authentication of remote servers and protection in confidentiality and integrity of exchanged data.

#### 5.3.1.3 Threat: T.FIRMWARE ABUSE

82. This threat assumes that the TOE can be attacked by modifying the firmware or installing and outdated flawed version. This threat is countered by the security objectives OT.ACCESS CONTROL that ensures that only Admin can initiate firmware upgrade, OT.FIRMWARE\_AUTHENTICITY that ensures verification of firmware authenticity prior use and prior upgrade and OT.SECURE STATE that ensures that the TOE maintains a secure state even in case of failure of verification of firmware integrity.

#### 5.3.1.4 Threat: T.TAMPER

83. This threat assumes that the TOE can be attacked by locally accessing TOE storage. This threat is countered by the security objectives OT.SECURE\_STORAGE that ensures a secure storage for TOE assets and by OT.SECURE STATE that ensures that the TOE maintains a secure state in case of failure of integrity checks.

#### 5.3.2 Security Objective Rationales: Security Policies

84. Each identified security policy in this Security Target is addressed by at least one security objective for the TOE or security objective for the operational environment. This section provides a mapping from each security policy to the security objectives and provides a rationale how the security policy is fulfilled.

#### 5.3.2.1 Policy: P.CREDENTIALS\_MANAGEMENT

85. This security policy is directly upheld by the security objective on the operational environment OE.CREDENTIALS MANAGEMENT.

#### **5.3.3** Security Objective Rationales: Assumptions

86. Each security assumption in this Security Target is addressed by at least one security objective for the operational environment. This section maps assumptions to environmental security objectives and provides a rationale how the assumption is fulfilled.

#### 5.3.3.1 Assumption: A.TRUSTED\_ADMIN

87. This security policy is directly upheld by the security objective on the operational environment OE.TRUSTED\_ADMIN.

## **6 Security Requirements**

#### **6.1 Security Functional Requirements**

- 88. This part of the ST defines the detailed security functional requirements that are satisfied by the TOE.
- 89. These requirements are derived from the Security Objectives for the TOE (Section 5.1). Each sub-section is labelled with a security objective and provides the corresponding requirements.

Document Number: DEN0073-Network\_Camera\_TMSA-1BET00 Arm Non-Confidential Version: Beta 00 Page 18 of 25 90. As defined in Section 1.7, "shall" represent mandatory requirements, while "should" denotes requirements for which there may exists valid reasons to ignore them. However, if such a requirement is ignored, the full implications must be understood and the ST shall justify any removal of such requirements.

#### 6.1.1 OT.ACCESS CONTROL

- 91. The TOE shall maintain the roles Admin and User.
- 92. The TOE shall allow authentication of users according to these roles through user-initiated interactive sessions.
- 93. Note 1: The ST writer shall explicit how credentials for user authentication are managed on the TOE. This may include techniques to prevent weak passwords and also to protect them against disclosure (for instance use of salted hashes).
- 94. The TOE shall manage a threshold for unsuccessful authentication attempts. The ST writer shall precise the actions taken is this threshold is reached.
- 95. The TOE shall require each user to be successfully authenticated before allowing any other actions on behalf of that user.
- 96. The TOE shall allow termination of user's own interactive session and automatically terminate a remote interactive session after session inactivity.
- 97. The TOE shall enforce an access control policy on TOE assets and operations based on the identity of the user requesting access. The ST writer shall define rules of this policy.
- 98. **Note 2**: This policy will typically include rules such as:

Access to Configuration, Logs, Credentials assets is only allowed to authenticated users with role Admin. Access to Firmware upgrade operations is only allowed to authenticated users with role Admin. Access to video stream assets is only allowed to authenticated users with role User.

99. The TOE shall prevent unauthorized uses of all assets. In particular, the TOE shall prevent reading of all Credentials and shall not provide an interface to do so.

#### 6.1.2 OT.SECURE\_STORAGE

- 100. The TOE shall monitor for integrity errors assets with a security need for integrity (Camera ID, Firmware, Firmware Certificate, Logs, Configuration, Credentials).
- 101. Note 3: The TOE will typically ensure integrity either with hardware based write-once mechanisms, such as OTP, or through cryptographic hash functions. In the latter case, the ST writer shall explicit the cryptographic algorithms used for secure storage and related key characteristics and random generation methods.
- 102. Upon detection of a data integrity error, the TOE shall maintain a secure state. The ST writer shall specify reaction of the TOE in this case.

Arm Non-Confidential Version: Beta 00 Page 19 of 25 103. Note 4: For assets with a security need for confidentiality (Credentials), protection of relies on access control measures (OT.ACCESS\_CONTROL). However the TOE may offer additional protection by encryption of persistent memory. The ST writer shall specify the mechanism used and related encryption techniques.

#### 6.1.3 OT.FIRMWARE\_AUTHENTICITY

- 104. The TOE shall rely on a secure boot mechanism to authenticate and verify integrity of firmware prior transferring control to the firmware.
- 105. Note 5: A secure boot will typically rely on a multi-stage boot process where the authenticity of the first stage is assumed from read-only memory and other stages with verification of cryptographic signatures with asymmetric keys. The ST writer shall explicit which signature schemes are used at the various stages, including the hash algorithm, and the size of the various parameters (e.g., modulus of 2048 bits and exponent of 32 bits for RSASSA-PSS with SHA-512). He shall also specify the list of standards that are met by the chosen schemes or none.
- 106. If the firmware is loaded from a removable media, the TOE shall use a persistent storage to store the version of the last installed firmware and compare this version to the version from the loaded firmware to prevent loading of an out-dated firmware.
- 107. Upon detection of a firmware authenticity error, the TOE shall maintain a secure state. The ST writer shall specify the action to be taken if the verification fails (cf. OT.SECURE STATE).
- 108. **Note 6**: The TOE may enter a maintenance mode where the ability to return a secure state is provided.
- 109. On firmware upgrade requests, the TOE shall first authenticate the upgrade binary based on digital signature and verify its integrity. The TOE shall also check that version of the firmware for upgrade is more recent than the firmware currently installed.
- 110. **Note 7**: The ST writer shall explicit which signature scheme is used.
- 111. Upon detection of an error during upgrade, the TOE shall revert to the version of the firmware prior the upgrade request.
- 112. The TOE should provide the ability to check availability of firmware upgrade and notify Admin.

#### 6.1.4 OT.COMMUNICATION

- 113. The TOE shall establish a trusted communication channel with remote servers prior any exchange of TSF data or User data and verify if the peer certificate is valid.
- 114. Note 8: Trusted communication channels include any of IPsec, TLS or HTTPS performed by the TOE. Validity of the peer certificate is determined by the certificate path, the expiration date, and the revocation status.
- 115. The TOE shall prevent the disclosure and modification of user data when exporting user data outside of the TOE.

Document Number: DEN0073-Network\_Camera\_TMSA-1BET00 Arm Non-Confidential Version: Beta 00 Page 20 of 25

- 116. **Note 9**: Protection of user data relies on the encryption techniques provided with the trusted communication channel. The ST writer shall explicit which encryption algorithms are used and related key sizes.
- 117. The TOE should support network authentication (e.g. Wi-Fi or IEEE 802.1X).

#### **6.1.5 OT.AUDIT**

- 118. The TOE shall maintain an audit trail of security events. Each record shall mention the nature of the event, date and time of the event and the user, if any, responsible for the event.
- 119. Note 10: The ST writer shall explicit which events are logged. This will include at least failed and successful authentication attempts, firmware upgrade requests and progress, integrity errors.
- 120. The TOE shall prevent users from deleting entries from the audit trail.
- 121. Note 11: The only audit trail operations and interfaces that should be available on the TOE are appending a line to the audit trail and export outside of the TOE.
- 122. The TOE should rely on a NTP server to provide reliable source for time stamps for the audit trail.
- 123. Note 12: If the TOE supports the use of a NTP server, the operational guidance for the TOE shall provide instructions for the Admin to configure the NTP client on the TOE.

#### 6.1.6 OT.SECURE STATE

- 124. The TOE shall maintain a secure state in case of failures, such as firmware integrity error, firmware upgrade error, RNG error, failure to establish a trusted communication channel.
- 125. **Note 13**: If the TOE should encounter a failure in the middle of a critical operation, the TOE should not just quit operating, leaving key material and user data unprotected. The ST writer shall specify
- 126. The TOE shall ensure residual information protection for credentials and session keys after they are being used.

#### **6.2 Security Assurance Requirements**

127. The current assurance package was chosen based on the pre-defined assurance packet EAL 2. EAL 2 is chosen because the threats that were chosen are consistent with an attacker of basic attack potential.

## 7 Acknowledgements

128. This document was prepared for Arm by Prove & Run http://www.provenrun.com

Document Number: DEN0073-Network\_Camera\_TMSA-1BET00 Arm Non-Confidential Version: Beta 00 Page 21 of 25

# Appendix A Support of SFRs by Arm CryptoIsland IP

129. This appendix explains how SFRs of this PP can be implemented using an Arm Cortex-A SoC embedding Arm CryptoIsland IP.

| PP Requirement                                             | Support from CryptoIsland IP                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OT.ACCESS_CONTROL                                          |                                                                                                                                                                                                                                                                                                                |
| Authentication of User and Admin                           | Secure cryptographic and RNG support. This feature can be used to support cryptographic algorithms used for authentication.                                                                                                                                                                                    |
| Access control policy on assets                            | Data protection functionalities, in particular support for asset use policy. This feature can be used to implement an access control policy on TOE assets based on the identity of the requester and additionally on the lifecycle state, the intended usage, and HW interface used for the request            |
| OT.SECURE_STORAGE                                          |                                                                                                                                                                                                                                                                                                                |
| Integrity and confidentiality protection for stored assets | Persistent trusted storage based on OTP and local storage protected by an encryption key (AES-256 key). This feature, that offers integrity and confidentiality protection, can be used to store assets. OTP will be reserved for immutable assets, such as the Camera ID, and local storage for other assets. |
| OT.FIRMWARE_AUTHENTICITY                                   |                                                                                                                                                                                                                                                                                                                |
| Verification of firmware authenticity prior boot           | Loaded SW validation functionality that authenticates loaded images based on a hardware root of trust. This feature can be used as part of the secure boot process to verify firmware during device start-up.                                                                                                  |
| Verification of firmware authenticity prior update         | SW update validation. This feature can be used to verify integrity and authenticity of firmware update image. The firmware authenticate is based on a cryptographic signature with PKI. It reports failures during the update process and fails back on the last valid image.                                  |
| Anti-rollback for firmware update                          | SW update validation. This feature can also verify freshness of firmware update image.                                                                                                                                                                                                                         |
| OT.COMMUNICATION                                           |                                                                                                                                                                                                                                                                                                                |
| Authentication of remote servers                           | Secure cryptographic and RNG support. This feature can be                                                                                                                                                                                                                                                      |
| Integrity and confidentiality                              | used to implement and support cryptographic protocols for                                                                                                                                                                                                                                                      |
| protection for exchanged assed                             | communication.  Related cryptographic keys can be stored in the persistent trusted storage provided by CryptoIsland IP.                                                                                                                                                                                        |
| Replay protection                                          | No direct support.                                                                                                                                                                                                                                                                                             |
| OT.AUDIT                                                   |                                                                                                                                                                                                                                                                                                                |
| Audit trail of security events                             | No direct support.                                                                                                                                                                                                                                                                                             |
| Protection of audit trail                                  | Persistent trusted storage functionality can be used to security store and control accesses to audit trails.                                                                                                                                                                                                   |

Document Number: DEN0073-Network\_Camera\_TMSA-1BET00 Arm Non-Confidential Version: Beta 00 Page 22 of 25

| Secure timestamp                    | No direct support.                                              |
|-------------------------------------|-----------------------------------------------------------------|
| OT.SECURE_STATE                     |                                                                 |
| Residual information protection for | No direct support.                                              |
| confidential assets                 |                                                                 |
| Protection of debug features        | Authenticated debug functionality. Debug certificates can be    |
|                                     | used to protect and activate debug features of the processor.   |
| Secure state in case of failure     | Alarm signals handling. Possible reactions include for instance |
|                                     | aborting current operation, resetting the processor,            |
|                                     | deactivating the device, zeroizing keys.                        |
| Self-tests                          | No direct support.                                              |

Document Number: DEN0073-Network\_Camera\_TMSA-1BET00 Arm Non-Confidential

Version: Beta 00 Page 23 of 25

## Appendix B Support of SFRs by Arm TrustZone IP

- 130. This appendix explains how SFRs of this PP can be implemented using an Arm Cortex-A SoC embedding Arm TrustZone IP.
- 131. The implementation make use of the Secure World provided by TrustZone to secure sensitive functions and assets and isolate them for the Normal World where the general purpose OS of the Network Camera is executed. In particular, a secure OS is required for the Secure World to support secure applications, for instance a micro-kernel or a Trusted Execution Environment (TEE).

| PP Requirement                        | Support from TrustZone IP                                         |  |  |  |
|---------------------------------------|-------------------------------------------------------------------|--|--|--|
| OT.ACCESS_CONTROL                     |                                                                   |  |  |  |
| Authentication of User and Admin      | Secure application to manage authentication credentials, to       |  |  |  |
| Access control policy on assets       | support user authentication and to control access to credentials. |  |  |  |
| OT.SECURE_STORAGE                     |                                                                   |  |  |  |
| Integrity and confidentiality         | Secure application for secure storage of assets.                  |  |  |  |
| protection for stored assets          |                                                                   |  |  |  |
| OT.FIRMWARE_AUTHENTICITY              |                                                                   |  |  |  |
| Verification of firmware authenticity | No direct support.                                                |  |  |  |
| prior boot                            |                                                                   |  |  |  |
| Verification of firmware authenticity | Secure application to manage firmware update credential and       |  |  |  |
| prior update                          | to support verification of firmware authenticity and freshness    |  |  |  |
| Anti-rollback for firmware update     | of firmware update image.                                         |  |  |  |
| OT.COMMUNICATION                      |                                                                   |  |  |  |
| Authentication of remote servers      | Secure application to manage authentication and encryption        |  |  |  |
| Integrity and confidentiality         | credentials for communication, to support authentication and      |  |  |  |
| protection for exchanged assed        | encryption.                                                       |  |  |  |
| Replay protection                     | No direct support.                                                |  |  |  |
| OT.AUDIT                              |                                                                   |  |  |  |
| Audit trail of security events        | Secure application for audit trail management, including          |  |  |  |
| Protection of audit trail             | secure storage and timestamp.                                     |  |  |  |
| Secure timestamp                      |                                                                   |  |  |  |
| OT.SECURE_STATE                       |                                                                   |  |  |  |
| Residual information protection for   | No direct support.                                                |  |  |  |
| confidential assets                   |                                                                   |  |  |  |
| Protection of debug features          | No direct support.                                                |  |  |  |
| Secure state in case of failure       | Isolation of Normal World and Secure World execution              |  |  |  |
|                                       | environments.                                                     |  |  |  |
| Self-tests                            | No direct support.                                                |  |  |  |

Document Number: DEN0073-Network\_Camera\_TMSA-1BET00 Arm Non-Confidential Version: Beta 00 Page 24 of 25

## Appendix C Compatibility with Root-of-Trust PP

- 132. The Root of Trust Protection Profile targets platforms that provide a set of trusted and basic functions or services from which an initial chain or trust can be derived. It is based on the GlobalPlatform Root of Trust Definitions and Requirements document [GPRoT]. The PP is a modular-PP, organized as a base-PP corresponding to the Root of Trust platform and PP-modules corresponding to optional security services based on top of this platform, such as authentication, confidentiality, authorization or update services.
- 133. This appendix explains how SFRs of this PP can inherit from the requirements set in the Root of Trust PP and related PP-modules.

| PP Requirement                                               | Support from a Root of Trust                                                                                                            |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| OT.ACCESS_CONTROL                                            |                                                                                                                                         |
| Authentication of User and Admin                             | Root of Trust with an Authentication Service allows authenticating users.                                                               |
| Access control policy on assets                              | Root of Trust with an Authorization Service allows enforcing an access control policy on TOE assets.                                    |
| OT.SECURE_STORAGE                                            |                                                                                                                                         |
| Integrity and confidentiality protection for stored assets   | A Root of Trust with a Confidentiality and Integrity Services allows enforcing confidentiality and integrity of storage for TOE assets. |
| OT.FIRMWARE_AUTHENTICITY                                     |                                                                                                                                         |
| Verification of firmware authenticity prior boot             | A Root of Trust with a Verification Service allows verifying the authenticity of firmware.                                              |
| Verification of firmware authenticity                        | A Root of Trust with an Update Service allows enforcing                                                                                 |
| prior update                                                 | integrity and authenticity of firmware update.                                                                                          |
| Anti-rollback for firmware update                            | No direct support.                                                                                                                      |
| OT.COMMUNICATION                                             |                                                                                                                                         |
| Authentication of remote servers                             | Root of Trust with an Authentication Service allows authenticating remote entities.                                                     |
| Integrity and confidentiality protection for exchanged assed | No direct support.                                                                                                                      |
| Replay protection                                            | No direct support.                                                                                                                      |
| OT.AUDIT                                                     |                                                                                                                                         |
| Audit trail of security events                               | No direct support.                                                                                                                      |
| Protection of audit trail                                    | No direct support.                                                                                                                      |
| Secure timestamp                                             | No direct support.                                                                                                                      |
| OT.SECURE_STATE                                              |                                                                                                                                         |
| Residual information protection for confidential assets      | No direct support.                                                                                                                      |
| Protection of debug features                                 | No direct support.                                                                                                                      |
| Secure state in case of failure                              | No direct support.                                                                                                                      |

Document Number: DEN0073-Network\_Camera\_TMSA-1BET00 Arm Non-Confidential Version: Beta 00 Page 25 of 25