[robert.campbe	11@apex wk6]\$	cat pi_mc_m	pi.out
npoints	pi	nprocs	elapsed wall-clock time
10000000	3.1418	1	1.15979
npoints	pi	nprocs	elapsed wall-clock time
10000000	3.1414	2	0.634331
npoints	pi	nprocs	elapsed wall-clock time
10000000	3.14148	4	0.348533
npoints	pi	nprocs	elapsed wall-clock time
10000000	3.14205	8	0.176174
npoints	pi	nprocs	elapsed wall-clock time
10000000	3.1419	16	0.0885261
npoints	pi	nprocs	elapsed wall-clock time
10000000	3.14146	32	0.105811

[robert.campb	ell@apex wk6]\$	cat pi_mc	_mpi.out
npoints	рi	nprocs	elapsed wall-clock time
100000000	3.14156	1	5.88974
npoints	рi	nprocs	elapsed wall-clock time
100000000	3.14137	2	3.57555
npoints	pi	nprocs	elapsed wall-clock time
100000000	3.14158	4	2.01964
npoints	рi	nprocs	elapsed wall-clock time
100000000	3.14151	8	1.24406
npoints	pi	nprocs	elapsed wall-clock time
100000000	3.14176	16	0.857434
npoints	pi	nprocs	elapsed wall-clock time
100000000	3.14177	32	0.571592

Both data sets saw massive improvements with diminishing returns as additional threads were added, with n=100,000,000 having benefitting more for each additional thread. One thing to notice is that the smaller sample size was less precise in it's result, with the 3rd decimal place fluctuating from the correct value while the larger sample size fluctuated around the 4th decimal place. As far as this lab goes, it looks like 1 additional order of magnitude of samples added an order of magnitude of precision in the result, however it did noticeably increase serial runtime (~6x). If a more precise answer is needed, even more samples would be required, which would benefit even more from parallelization.