Sprawozdanie 2

Autor: Piotr Droś, grupa 7 Prowadzący: dr. Magdalena Skurzok Termin zajęć: 28.03.2023

Streszczenie

Podczas drugich zajęć elektroniki cyfrowej skupiliśmy się na tworzeniu czwórników biernych takich, jak układ CR, czy RC, oraz analizowaliśmy ich wpływy na sygnały wejściowe.

1 Dane i zdjęcia płytki

Parametry układu (Płytka RLC nr. 04):

 $R_1=3556\Omega,$ Opór opornika 1 $R_2=463\Omega,$ Opór opornika 2 C=142,3nF, Pojemność kondensatora $L=986\mu,$ Indukcyjność cewkiH

Rysunek 1: Układ CR - zadanie 1, 2

Rysunek 2: Układ RLC - zadanie 4

2 Zadanie 1

2.1 Treść zadania

Zmontować układ różniczkujący o stałej czasowej $\tau=RC$ z przedziału 0.1 - 1 ms. Podając na wejście tego układu napięcie sinusoidalne zmierzyć stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego oraz przesunięcie fazy pomiędzy tymi sygnałami w szerokim przedziale częstotliwości (charakterystyki częstotliwościowe amplitudy i fazy). Sporządzić wykresy stosunku amplitud $\frac{U_{wy}}{U_{we}}$ oraz kąta przesunięcia fazowego w funkcji częstotliwości f. Na ich podstawie wyznaczyć dolną częstotliwość graniczną i porównać ją z wartością teoretyczną.

2.2 Część teoretyczna

• Stała czasowa RC - zwana także tau, stała czasowa [s] obwodu RC, jest równa iloczynowi rezystancji obwodu $[\Omega]$ i pojemności obwodu [F - farady]

$$\tau = RC[s]$$

• Układ CR - filtr górnoprzepustowy, układ różniczkujący. Układ składający się z kondensatora podłączonego szeregowa do wejścia oraz opornika podłączonego równolegle do wyjścia. Działanie tego układu związane jest z różniczkowaniem. W pewnych warunkach, a mianowicie przy odpowiednio dobranej, niewielkiej wartości stałej czasowej τ oraz dla tych przedziałów czasu, w których szybkość zmian napięcia U_{wy} jest niewielka, napięcie wejściowe jest w przybliżeniu proporcjonalne do pochodnej napięcia wejściowego.

Charakterystyki częstotliwościowe fazy i amplitudy takiego układu: Amplituda:

$$|T(\omega)| = \sqrt{\frac{(\frac{\omega}{\omega_0})^2}{1 + (\frac{\omega}{\omega_0})^2}}$$

Faza:

$$\phi = arctg(\frac{\omega_0}{\omega})$$

Częstotliwość graniczna:

$$f_g = \frac{1}{2\pi\tau}$$

Rysunek 3: Układ różniczkujący CR

2.3 Cześć praktyczna

Z otrzymanych danych obliczyłem stała czasową:

$$\tau = RC = 0,0001423mF*3556\Omega = 0,51ms$$

Oraz teoretyczna dolna częstotliwość graniczna:

$$f_g = \frac{1}{2\pi\tau} \approx 312, 23Hz$$

Przykładowe zdjęcia pomiarów:

MSO3012 - 09:25:59 28.03.2023

MSO3012 - 09:34:45 28.03.2023

Pomiar 1 Pomiar 3

MSO3012 - 09:54:19 28.03.2023

MSO3012 - 09:43:13 28.03.2023

Pomiar 7 Pomiar 10

Wyniki pomiarów:

	U_{we}	f	$U_{wy}\&\varphi$	
1	1V	15 Hz	45,6 mV	$86,90^{\circ}$
2	1V	35 Hz	$112 \mathrm{mV}$	83°
3	1V	60Hz	$186 \mathrm{mV}$	$78,87^{\circ}$
4	1V	130Hz	$390 \mathrm{mV}$	$66,27^{\circ}$
5	1V	200 Hz	532 mV	$53,72^{\circ}$
6	1V	270 Hz	656 mV	$46,30^{\circ}$
7	1V	312Hz	$704 \mathrm{mV}$	$44,67^{\circ}$
8	1V	350 Hz	736 mV	$37,03^{\circ}$
9	1V	650 Hz	888mV	$24,43^{\circ}$
10	1V	800Hz	920 mV	$17,83^{\circ}$
11	1V	$1.2 \mathrm{kHz}$	944 mV	$12,53^{\circ}$
12	1V	2kHz	968mV	$6,33^{\circ}$

Rysunek 7: Charakterystyka amplitudowa

Rysunek 8: Charakterystyka fazowa

Otrzymana częstotliwość dolna graniczna (7 wiersz tabelki) zgadza się z wartością otrzymaną obliczeniami teoretycznymi. Otrzymane wykresy również przypominają te teoretyczne.

3 Zadanie 2

3.1 Treść zadania

Sprawdzić odpowiedź układu różniczkującego na podawaną na wejście falę prostokątną o okresie T mniejszym, porównywalnym i większym od stałej czasowej τ . Zaobserwować odpowiedź układu na impuls trójkątny.

3.2 Część teoretyczna

Dla impulsów prostokątnych wiemy, że zachodzi:

$$u_1(t) = 0$$
, dla $t < 0 \land t > t_p$
 $u_1(t) = U$, dla $t > 0 \land t < t_p$

Poza punktami t = 0 oraz $t = t_p$:

$$\frac{du_1(t)}{dt} = 0 \implies 0 = \frac{u_2(t)}{\tau} + \frac{du_2(t)}{dt} \implies u_2(t) = -\tau \frac{du_2(t)}{dt}, \text{ gdzie } \tau = RC$$

Rozwiązując to równanie otrzymujemy:

$$u_2(t) = Ue^{\frac{-t}{\tau}}, \text{ dla } 0 < t < t_p$$

 $u_2(t) = U(1 - e^{\frac{t_p}{\tau}})e^{\frac{-t}{\tau}}$

Teoretyczne odpowiedzi na fale prostokątną:

3.3 Część praktyczna

Otrzymane przykładowe wyniki:

MSO3012 - 10:02:44 28.03.2023

Rysunek 11: $\tau = 0.2 \mathrm{T}$

MSO3012 - 09:59:14 28.03.2023

Rysunek 12: $\tau = T$

!!Nie załadowało mi się trzecie zdjęcie. Najprawdopodobniej jakiś problem z zapisanym plikiem!!

Odpowiedzi układu na impuls trójkątny:

MSO3012 - 10:05:20 28.03.2023

Rysunek 13: $\tau=T$

MSO3012 - 10:05:48 28.03.2023

Rysunek 14: $\tau=0.2T$

MSO3012 - 10:06:18 28.03.2023

Rysunek 15: $\tau = 10 \mathrm{T}$

Otrzymane sygnały są zgodne z teoretycznymi. Na zdjęciach można łatwo zaobserwować wpływ filtra na sygnał prostokątny, jak i trójkątny. Na sygnale trójkątnym świetnie widać efekt, jeżeli $\tau\approx 0.2T$

4 Zadanie 3 - impulsy sinusoidalne

4.1 Treść zadania

Przekonstruować badany układ różniczkujący na układ całkujący. Zmierzyć charakterystykę amplitudową i fazową. Wyznaczyć z nich górną częstotliwość graniczną i porównać z wartością teoretyczną.

4.2 Część teoretyczna

• Stała czasowa RC - zwana także tau, stała czasowa [s] obwodu RC, jest równa iloczynowi rezystancji obwodu $[\Omega]$ i pojemności obwodu

$$\tau = RC[s]$$

• Układ CR - filtr dolnoprzepustowy, układ całkujący. Układ składający się z opornika podłączonego szeregowo do wejścia oraz kondensatora podłączonego równolegle do wyjścia. W układzie tym napięcie wyjściowe śledzi scałkowany sygnał napięcia wejściowego, stąd nazwa układu całkującego

Charakterystyki częstotliwościowe fazy i amplitudy takiego układu: Amplituda:

$$|T(\omega)| = \sqrt{\frac{1}{1 + (\frac{\omega}{\omega_0})^2}}$$

Faza:

$$\phi = -arctg(\frac{\omega}{\omega_0})$$

Częstotliwość graniczna:

$$f_g = \frac{1}{2\pi\tau}$$

Rysunek 16: Układ całkujący RC

4.3 Część praktyczna

Taka sama co w zadaniu 1 stała czasowa:

$$\tau = RC = 0,0001423mF * 3556\Omega = 0,51ms$$

Oraz teoretyczna dolna częstotliwość graniczna:

$$f_g = \frac{1}{2\pi\tau} \approx 312, 23Hz$$

Przykładowe zdjęcia pomiarów:

Pomiar 1 Pomiar 5

Wyniki pomiarów:

	U_{we}	f	U_{wy}	φ
1	1V	14Hz	980mV	-2°
2	1V	130 Hz	900 mV	-22°
3	1V	180 Hz	856 mV	-29.95°
4	1V	280 Hz	728 mV	-43.88°
5	1V	312Hz	$696 \mathrm{mV}$	-45°
6	1V	392Hz	$608 \mathrm{mV}$	-49.90°
7	1V	462 Hz	536 mV	-54.45°
8	1V	662Hz	$420 \mathrm{mV}$	-63.53°
9	1V	908Hz	320 mV	-70°
10	1V	$1.53\mathrm{kHz}$	196 mV	-78.24°
11	1V	$2.25 \mathrm{kHz}$	134 mV	-83°
12	1V	$6.45 \mathrm{kHz}$	46.4mV	-86°

Rysunek 19: Charakterystyka amplitudowa

Rysunek 20: Charakterystyka fazowa

Otrzymana częstotliwość górna graniczna (5 wiersz tabelki) zgadza się z wartością otrzymaną obliczeniami teoretycznymi. Otrzymane wykresy również przypominają te teoretyczne.

5 Zadanie 3 - impulsy prostokątne

5.1 Treść zadania

Podając na wejście falę prostokątną o okresach z zakresu 0.5 - 10τ zaobserwować przebiegi impulsów wyjściowych.

5.2 Część teoretyczna

Dla impulsów prostokątnych wiemy, że zachodzi:

$$u_1(t) = 0, \text{ dla } t < 0 \land t > t_p$$

$$u_1(t) = U, \text{ dla } t > 0 \land t < t_p$$

$$u_1(t) = \tau \frac{du_2(t)}{dt} + u_2(t), \qquad \tau = RC$$

Rozwiązując to równanie otrzymujemy:

$$u_2(t) = U(1 - e^{\frac{-t}{\tau}}), \quad \text{dla } 0 < t < t_p$$

 $u_2(t) = U(e^{\frac{t_p}{\tau}} - 1)e^{\frac{-t}{\tau}}, \quad \text{dla } t > t_p$

Teoretyczne odpowiedzi na fale prostokątną:

5.3 Część praktyczna

Otrzymane przykładowe wyniki:

MSO3012 - 11:07:23 28.03.2023

Rysunek 23: $\tau=10\mathrm{T}$

MSO3012 - 11:07:23 28.03.2023

Rysunek 24: $\tau=T$

MSO3012 - 11:06:19 28.03.2023

Rysunek 25: $\tau = 0.1~\mathrm{T}$

5.4 Podsumowanie

Otrzymane sygnały są zgodne z teoretycznymi. Na zdjęciach można łatwo zaobserwować wpływ filtra na sygnał prostokątny.

6 Zadanie 4

6.1 Treść zadania

Zbudować czwórnik pokazany na poniższym schemacie. Zmierzyć jego charakterystykę amplitudową i fazową dla sygnałów sinusoidalnych. Wyznaczyć wartość częstotliwości rezonansowej (rezonans napięć) i porównać z wartością teoretyczną.

6.2 Część teoretyczna

• **Zjawisko rezonansu napięć** - występuje w gałęzi szeregowej RLC i polega na tym, że przy określonej częstotliwości sygnałów w obwodzie f_0 , zwanej częstotliwością rezonansową, napięcie $u_t(t)$ na cewce oraz

 $U_c(t)$ na kondensatorze są równe co do modułu, a przeciwne co do znaku, wobec czego ich suma jest równa zero.

Jeśli szeregowy obwód RLC zasilany jest ze źródła napięciowego sinusoidalnego:

$$u_t(t) = |u_m sin(\omega t + \varphi)|$$

• Czwórnik RLC - składa się z kondensatora połączonego szeregowo do wejścia układu, cewki połączonej szeregowo z kondensatorem oraz opornika połączonego równolegle do wyjścia.

Charakterystyki częstotliwościowe fazy i amplitudy takiego układu: Amplituda:

$$|T(\omega)| = \frac{R}{\sqrt{R^2 + (\omega L - (\frac{1}{\omega C})^2)}}$$

Faza:

$$T(j\omega) = \frac{U_{wy}}{U_{we}} = \frac{R}{j\omega L + \frac{1}{j\omega C} + R}$$

Częstotliwość rezonansowa:

$$f_g = \frac{1}{2\pi\sqrt{LC}}$$

Rysunek 26: Układ różniczkujący CR

Rysunek 27: Charakterystyka amplitudowa (wyżej) i fazowa (niżej)

6.3 Część praktyczna

Wyznaczyłem teoretyczną częstotliwość rezonansową układu:

$$f_t = 13443, 10Hz$$

Przykładowe zdjęcia pomiarów:

MSO3012 - 11:28:38 28.03.2023

MSO3012 - 11:45:27 28.03.2023

Pomiar 1 Pomiar 3

MSO3012 - 11:49:04 28.03.2023

Rysunek 29: Pomiar 6

Wyniki pomiarów:

	U_{we}	f	U_{wy}	φ
1	1V	170 Hz	$464 \mathrm{mV}$	60°
2	1V	470 Hz	824 mV	29°
3	$960 \mathrm{mV}$	$1.5 \mathrm{kHz}$	960 mV	10°
4	976 mV	$8.7 \mathrm{kHz}$	968 mV	1°
5	976mV	$13.44 \mathrm{kHz}$	976 mV	0°
6	976 mV	$126.3\mathrm{kHz}$	608 mV	-15°

Rysunek 30: Charakterystyka amplitudowa

Rysunek 31: Charakterystyka fazowa

Z powodu zbyt małej liczby pomiarów nie udało się odtworzyć charakterystyki teoretycznej. Wykres został przedstawiony w skali liniowej, nie logarytmicznej, co również mogło się przyczynić do takiego wyniku. Jednakże, mimo małej liczby pomiarów, jesteśmy w stanie zauważyć poprawny przebieg pomiarów, zgodny z pokazanymi na wykresie. 5 pomiar wykazał, że wartość teoretyczna częstotliwości rezonansowej się zgadza.