Einführung in die Automatisierungstechnik

Studiengang: Produktionstechnik, Systems Engineering

- Vorlesung 07 -

Prof. Dr.-Ing. habil. Andreas Fischer Dr.-Ing. Gerald Ströbel

BIMAG Messtechnik, Automatisierung und Qualitätswissenschaft Bremer Institut für

Lehrziele und Gliederung

- V1 Motivation, Anwendungsbereiche, Prozesse und Methoden der Automatisierungstechnik
- V2 Automatisierung in der Produktion
- V3 Boolesche Algebra 1
- Ü1 Matlab Einführung
- V4 Bolsche Algebra 2: Graphen
- Ü2 Übung Boolsche Algebra
- V5 Fuzzy Logic
- Ü3 Fuzzy Logic
- V6 Neuronale Netze
- Ü4 Neuronale Netze
- **V7** Automatisiertes Messen und Steuern
- Ü5 Automatisiertes Messen und Steuern
- V8 Speicherprogrammierbare Steuerungen
- Ü6 Übungen und Musterklausuren

Automatisiertes Messen und Steuern - Überblick -

Messen (Sensoren, Digitalisierung, Vorverarbeitung) und Steuern (Verarbeiten der Messergebnisse, der Ergebnisse der Vorverarbeitung, Entscheidung, Berechnung der Ausgaben, Regeln) **Steuern** - Ausgabe (analoger oder digitaler Stellgrößen und Datenübertragung, digital/analog Umsetzung für Aktoren

Messen

- Messdatenaufnahme Sensoren Wandler A/D Wandler, Sensorbus (Echtzeit)
- Messdatenauswertung Hardware und Software (-Systeme und Methoden)
- Hardare FPGAs, DSP, Microcontroller
 - FPGA Field Programmable Gate Array, DSP Digitaler Signalprozessor
- Algorithmen
- Softwarewerkzeuge MatLab, LabView sowie Hardware Targets (XPC Target)
- Programmiersprache, Compiler, "Erzeugersoftware"

- Messen und Steuern -

Auflösung

- Wiederholung: Basis und Integrationstechnologien -

Programme

Steuerungen

Automatisierungselemente: Sensoren / Aktoren

Basistechniken der Automatisierung:

- Sensor- und Aktortechnik
- Sensorsysteme, Mechtronik
- Regelungstechnik
- Steuerungstechnik
- Leittechnik (PLS, PLT)
- Robotertechnik

Integrationstechniken der Automatisierung:

- Rechnertechnik
- Informationstechnik
- Kommunikationstechnik (LAN WAN RFID WLAN)
- Mensch-Maschine-Systeme
- Struktur- und Systemtechnik
- Managementtechniken

Automatisierung von Folgeprozessen (Steuerungstechnik, Robotertechnik)

Automatisierung von Fließprozessen (Regelungstechnik, Leittechnik)

- Industrielle Steuerungen in der Automatisierung -

·SPS	Speicherprogrammier-
bare S	teuerungen

• RC Robotersteuerungen

- CNC
- Computerized Numerical Control

- · AS
- Automatisierungssysteme
- •(spezialisierte Prozessrechner)

- Steuerung und Überwachung
- eines Prozesses
- von Maschinen oder Anlagen
 Echtzeit Bus Systeme
 (Feldbus, PROFIBUS)
 Dezentralisierung, WLAN,
 Mobilfunk, RFID (Industrie 4.0)
- Bewegungsprogramm
- Positionierung

(Industrie 4.0)

- Bahnsteuerung (3-D)
- Ablauffolge
 LAN (Ethernet)
 Echtzeit Bus Systeme
 (Feldbus, PROFIBUS)
 Dezentralisierung, WLAN,
 Mobilfunk, RFID
- Bearbeitungsprogramme
- Konturen (2-D) / Bahnen 3D, mehrere Achsen
- Bearbeitungskenngrößen (überwachen und steuern)
- •LAN, Feldbusse, Echtzeitkommunikation

- Prozesssteuerung
- Überwachung
- Erkennung
- Identifizieren
- Klassifizieren
- •LAN Feldbusse Echtzeitkommunikation, WLAN, Mobilfunk, NFC, RFID, (Industrie 4.0)

Einmal-Programmierung SPS Programm

Wiederholte
 Anwenderprogrammierun
 g

Bewegungsprogramm

WiederholteAnwenderprogrammierungBearbeitungsprogramm

• Einmal-Programmierung

z.B. Menügeführt

•"Funktionsorientiertes" Programm

- Messdatenverarbeitung und Steuerung -

- **Micro-Controller**: Programmierung von Micro-Computern (Controllern) als Steuerungen -
- Direkte Implementierung mit Programmiersystem (PC) oder von ausgetesteten Entwicklungen (MatLab) durch "Compiler"
- **FPGAs**: Field Programmable Gate Array ein integrierter Schaltkreis für logische Schaltungen
- der Begriff Programmierung bei FPGAs beschreibt nicht nur die Vorgabe zeitlicher Abläufe, sondern auch die Definition der gewünschten Schaltungsstruktur
- mittels Hardwarebeschreibungssprache formuliert und von einer Erzeugersoftware in ein Konfigurationsfile übersetzt
- Beschreibt wie die physikalischen Elemente im FPGA verschaltet werden sollen.
- "Konfiguration eines FPGAs"
- DSP Digitale Signalprozessoren
- aufwendige Signalverarbeitungsaufgaben mit hoher Effizienz, spezialisierter hoch-integrierter Microcomputer

NXP ARM Cortex™ Microcontroller Product Series Overview

- Messwerterfassung und Vorverarbeitung -

Sensor-Systeme:

z.B.: Laser, Laserdioden / CCD Kameras / Optik / Infrarottechnik Bildverarbeitungsmethoden (Software, Algorithmen) Analog Digital Wandler FPGAs Field Programmable Gate Array

FPGA Einsatz:

- Echtzeit-Verarbeitung von einfachen bis komplexen Algorithmen

- digitalen Signalverarbeitung (digitale Filter, DSP)
- schnellen Fourier-Transformation
- Protokoll-Implementierungen, -Konvertierung
- die Kodierung/Dekodierung von digitalen Videosignalen
- die Ver-/Entschlüsselung von Daten in Echtzeit
- Fehlerkorrekturverfahren

sind Anwendungsgebiete.

- Beispiel -Anlagen-Steuerung Kamera Aufbau der Sortieranlage Bildverarbeitung Lichtschranke Förderband Bauteil A Bauteil B Druckluftventile

- Lichtschranke erkennt neues Bauteil
- Foto vom neuen Bauteil wird ausgewertet
- je nach Bauteil wird Ventil 1 oder 2 angesteuert, um das Bauteil vom Förderband in den jeweiligen Sammelbehälter geblasen
- nicht erkannte Bauteile werden am Ende des Förderbandes gesammelt

- Beispiel Programmiersprachen -

Programmiersprache LabVIEW

- Entwicklungsumgebung speziell für Techniker, Ingenieure, Wissenschaftler
- für Mess- Steuer- und Regelsysteme
- Grafische Programmiersprache
- Maßgeschneiderte Benutzungsschnittstellen
- Grafisches Programm und Benutzungsschnittstelle bilden immer eine Einheit
- sehr umfangreiche Hardware-Integration
- Embedded-Hardware vom gleichen Hersteller

- Softwaresysteme LabView -

- Schleife für kontinuierlich laufendes Programm
- Mehrere Schleifen können parallel zueinander ausgeführt werden (Multitasking)

- Softwaresysteme LabView -

- Bedingte Verzweigung hier in Abhängigkeit eines digitalen Eingangs (entspricht IF oder CASE)
- Die einzelnen Fälle werden in jeweils eigenen Rahmen dargestellt.

- Softwaresysteme LabView -

- Verarbeitung eines eingelesenen Bildes in einem Unterprogramm KNN.vi
- (Sub-)Programme werden Virtual Instruments (VI) genannt

LabVIEW - Beispielprogramm

- Softwaresysteme LabView -

- Reihenfolge der Abarbeitung: alle Eingänge / Vorgänger müssen zuerst berechnet werden
- Besteht keine direkte Abhängigkeit, so können auch Sequenzen definiert werden

- Softwaresysteme LabView -

Beispiele für Elemente der Benutzungsschnittstelle

- Beispiel LabView: Helikoptersimulator mit 3D-Bildfunktion -

- Technologien, Standards, Protokolle, Kommunikation -

SCADA Supervisory control and data acquisition

Level 2 Prozessleitebene in der Automation (entsprechend der

Pyramide, OSA Modell)

Aufgabe: z.B. "Bedienen und Beobachten, Rezeptverwaltung

und Ausführung, Messwertarchivierung

Anwendung: Prozesssteuerung, Windenergieanlagen (WEA)

Normen: IEC 62264 führt die Bezeichnungen Level 0 bis 4 ein/

und beschäftigt sich mit der Integration Ebenen 2,3 und 4.

ISA-88.01 und ISA-95 definieren ein physisches Modell.

Bus Systeme (Kommunikation):

CAN Bus (PKW)

Feldbusse (Process field bus) PROFIBUS (DIN 19245)

seit 1999 in IEC 61158/IEC 61784 festgelegt.

Sensor Bus: AS-Interface ist in den Normen

EN 50295 und IEC 62026-2 standardisiert.

Anwendungen

Fertigungsautomatisierung, In-Prozess Messtechnik, Energiesysteme, CMS Condition monitoring (WEA)

PROFIBUS Token Ring Qulle: Cabfdb

ERP

MES

PLC

Fortrådning

SCADA

Fieldbus/sensorbus

Koncern

netværk

Fabriks netværk

Remote I/O

netværk

Fiel

- Beispiel: In-process surface inspection -

Task

- roughness characterization
- smooth technical surfaces
- running production processes
- surface velocity < 300 m/min
- plane and cylindrical objects

Objectives

- extensive surface coverage
 - large view field Ø 10 mm
 - high measuring rate > 300 Hz
- real-time measurement

Optical measuring setup

Work rolls with optically smooth surfaces

Work roll recycling and measurement

- Messtechnische Lösung - Rauheitsmessung -

Scattered light measuring setup

- wedged beam splitter plate
- camera, 2 MPixel, 340 FPS
- roughness dependent partially developed speckle patterns

FPGA → direct autocorrelation function (ACF)

optical roughness parameters Rx, Ry (slope of ACF)

Data processing

FPGA-based approach

- mean pixel intensity value from previous image
- software-based image processing (fallback, test, ...)

- Beispiel Laserschmelzen -

- Aufgabe: fast, adaptive control strategy (Schnelle Adaptive Regelung)
- Anwendung: Laserschmelzprozess mit zahlreichen Einflussgrößen
- Lösung: Integration der Regelung mit den Methoden der künstlichen Intelligenz (KI) in eine industrielle Steuerungsumgebung SPS
 - →Übertragung der Funktionalität auf ein Reaction Modul (FPGA basiert) zur Verringern der Zykluszeit, Verbesserung der Ausführungsgeschwindigkeit und Genauigkeit der Ausgaben

- Messtechnische Lösung -

Der Laserschmelzprozess

Bestimmung der **Schmelzbadgröße** (X- und Y-Koordinaten und Strahlungsintensität)

Bestimmung der **Laserleistung** (Schmelzbadgröße, Differenz zwischen Ist-/Sollwert und Scangeschwindigkeit)

- Messtechnische Lösung -

Realisierung der SPS-Programme SPS + Reaction Modul:

- FPGA-Basis
- Direkte Verbindung mit der SPS
- Eigenständige Abarbeitung des zugeordneten Programms
- Programmierung im Funktionsbaustein-Editor
- Zykluszeit abhängig von der Komplexität (minimal 1µs)

Ziel: Berechnung des Prognosewertes auf dem Reaction Modul

- Die Gesamtzeit zur Generierung des Ausgangssignals sinkt auf insgesamt ca. 15-35µm
- Einschränkungen der Genauigkeit können mit Aufwand minimiert werden

Quelle: B&R

- Messtechnische Lösung -

Einschränkungen auf dem Reaction Modul

Einschränkung	Auswirkung	Lösung
Keine Fließkommazahlen	Genauigkeit sinkt	Zusätzliche Divisionsblöcke, Datenbereich optimieren
Eingeschränkte Datenübertragung	Manuelle Einstellungen, kein automatisches Update (3 Eingänge)	Internen Speicher verwenden, Funktionalität aufteilen
Verzögerungen bei Datenübertragun- gen zwischen zwei Reaction Modulen	Zykluszeit steigt	Reaction Modul mit mehreren Eingängen verwenden
Maximaler Datenbereich DINT	Genauigkeit sinkt	Reaction Programmablauf ändern, zusätzliche Divisionsblöcke verwenden

- Messtechnische Lösung -

Überführung der Simulink-Modelle auf die SPS mit der Toolbox "B&R Automation Studio Target for Simulink"

- In Process Messtechnik beim Spanabheben -

High spatial and temporal resolution of measured deformation and strain fields even in dynamic processes

Lehrziele und Gliederung

- V1 Motivation, Anwendungsbereiche, Prozesse und Methoden der Automatisierungstechnik
- V2 Automatisierung in der Produktion
- V3 Boolesche Algebra 1
- Ü1 Matlab Einführung
- V4 Bolsche Algebra 2: Graphen
- Ü2 Übung Boolsche Algebra
- V5 Fuzzy Logic
- Ü3 Fuzzy Logic
- V6 Neuronale Netze
- Ü4 Neuronale Netze
- **V7** Automatisiertes Messen und Steuern
- Ü5 Automatisiertes Messen und Steuern
- V8 Speicherprogrammierbare Steuerungen
- Ü6 Übungen und Musterklausuren

