MAT 226B Large Scale Matrix Computation Final Project

Ahmed Mahmoud

March, 22nd 2020

Problem 1:

- (a)
- (b)
- (c)

Problem 2:

Here we are required to find an efficient way to compute q=Mv and $q=M^Tv$ for $v\in\mathbb{C}^n$ where $M=(A-s_0E)^{-1}E$. We can compute the matrix-vector multiplication efficiently using LU factorization. We first can write the multiplication as

$$q = (A - s_0 E)^{-1} E v = \underbrace{(A - s_0 E)^{-1}}_{W} \underbrace{E v}_{f}$$

$$q = W^{-1} f \quad \Rightarrow \quad W q = f \quad \Rightarrow \quad \underbrace{P D^{-1} W Q}_{LU} \underbrace{Q^{T} q}_{d} = P D^{-1} f$$

Thus, we can fist solve $Lc=PD^{-1}f$ for $c\in\mathbb{C}^n$ via forward substitution, then solve Ud=c for $d\in\mathbb{C}^n$ via backward substitution, and finally set q=Qd.

We can use the same LU factorization to compute $q=M^Tv$ efficiently. We first not that transposing the LU factorization for a given matrix W is $U^TL^T=Q^TW^TD^{-T}P^T$ We can write this multiplication as

$$q = ((A - s_0 E)^{-1} E)^T v = E^T \underbrace{(A - s_0 E)^{-T} v}_{g}$$

$$g = W^{-T} v \quad \Rightarrow \quad W^T g = v \quad \Rightarrow \quad \underbrace{Q^T W^T D^{-T} P^T}_{U^T L^T} \underbrace{(D^{-T} P^T)^{-1} g}_{d} = Q^T v$$

Thus, we can first solve $U^Tc=Q^Tv$ for c via forward substitution, then solve $L^Td=c$ for d via backward substitution, and then set $g=D^{-T}P^Td$. Finally, we multiply g from the left by E^T to get g. The functions Mv and transposeMv implements these operations as discussed. d^o

Problem 3:

The leading 2k moments $\mu_j = c^T M^j r$ for $j = 0, 1, \dots, 2k-1$ can be computing as follows. Let $f_j = M^j r$. It is easy to see that $f_j = M f_{j-1}$ from which we can compute the moment at j as $\mu_j = c^T f_j$ and compute f_j recursively. We can use the same LU factorization to compute r and used the function Mv to compute f_j . The function compute Moments compute the moments as discussed here.