$$\frac{9n}{95} = \frac{9n}{35} \frac{9n}{9x} + \frac{94}{35} \frac{9n}{95}$$

EXAMPLE 5 If $u = x^4y + y^2z^3$, where $x = rse^t$, $y = rs^2e^{-t}$, and $z = r^2s\sin t$, find the value of $\partial u/\partial s$ when r = 2, s = 1, t = 0.

Aus: 192

$$\frac{dy}{dt} = ??$$

29. The temperature at a point (x, y) is T(x, y), measured in degrees Celsius. A bug crawls so that its position after t seconds is given by $x = \sqrt{1 + t}$, $y = 2 + \frac{1}{3}t$, where x and y are measured in centimeters. The temperature function satisfies $T_x(2, 3) = 4$ and $T_y(2, 3) = 3$. How fast is the temperature rising on the bug's path after 3 seconds?

The temperature at a point (x, y) is T(x, y), measured in degrees Celsius. A bug crawls so that its position after t seconds is given by $x = \sqrt{1 + t}$, $y = 2 + \frac{1}{3}t$, where x and y are measured in centimeters. The temperature function satisfies $T_x(2, 3) = 4$ and $T_y(2, 3) = 3$. How fast is the temperature rising on the bug's path after 3 seconds?

$$t=3$$
, $x=2$

$$\frac{dT}{dt}(t=2) = \frac{\partial T}{\partial x} \frac{dx}{dt} + \frac{\partial T}{\partial y} \frac{dy}{dt}$$

$$= \left(4 \frac{1}{2\sqrt{1+t}} + 3 \cdot \frac{1}{3}\right)_{t=3} = 2$$

The temperature at a point (x, y) is T(x, y), measured in degrees Celsius. A bug crawls so that its position after t seconds is given by $x = \sqrt{1 + t}$, $y = 2 + \frac{1}{3}t$, where x and y are measured in centimeters. The temperature function satisfies $T_x(2, 3) = 4$ and $T_y(2, 3) = 3$. How fast is the temperature rising on the bug's path after 3 seconds?

$$y = 2 + \frac{1}{3}t$$
 $y = 2 + (x^2 - 1)$
 $y = 2 + (x^2 - 1)$

DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR

Q(x, y, z)

DEFINITION The **directional derivative** of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if this limit exists.

blue = graph of f(xy)

Q'(x, y, 0)

in f when we start moving from p' in the direction of û.

d: find directional derivative of flan)
at pollut (xo,xo) in the direction $\hat{u} = (\cos \theta, \sin \theta) = (a, b)$ Theorems

THEOREM If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b \rangle$ and

$$D_{\mathbf{u}}f(x,y) = f_{x}(x,y)a + f_{y}(x,y)b$$

EXAMPLE 1 Find the directional derivative $D_{\bf u} f(x,y)$ if $f(x,y) = x^3 - 3xy + 4y^2$ and $\bf u$ is the unit vector given by angle $\theta = \pi/6$. What is $D_{\bf u} f(1,2)$?

$$D_{4}(x_{0},x_{0}) = \frac{34}{34} \cos 3 + \frac{34}{34} \sin 6$$

$$\frac{3t}{3x} = 3x^2 - 34$$
= 3 - 6 = -3

$$\hat{u} = \omega_s(\gamma_0) \hat{i} + \sin(\gamma_0) \hat{j}$$

$$= \underline{\sigma_s} \hat{i} + \underline{\tau} \hat{j}$$

$$\frac{94}{54} = -3x + 84 = -3 + 19 = 13$$

$$\sum_{k} f(1/2) = (-3) \omega_{s}(\%) + 13 \sin(\%) = (13 - 3\sqrt{3})/2$$

DEFINITION If f is a function of two variables x and y, then the **gradient** of f is the vector function ∇f defined by

$$\nabla f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$$

EXAMPLE 3 Find the directional derivative of the function $f(x, y) = x^2y^3 - 4y$ at the point (2, -1) in the direction of the vector $\mathbf{v} = 2\mathbf{i} + 5\mathbf{j}$.

EXAMPLE 4 If $f(x, y, z) = x \sin yz$, (a) find the gradient of f and (b) find the directional derivative of f at (1, 3, 0) in the direction of $\mathbf{v} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$.

MAXIMIZING THE DIRECTIONAL DERIVATIVE

EXAMPLE 5

- (a) If $f(x, y) = xe^y$, find the rate of change of f at the point P(2, 0) in the direction from P to $Q(\frac{1}{2}, 2)$.
- (b) In what direction does f have the maximum rate of change? What is this maximum rate of change?

EXAMPLE 6 Suppose that the temperature at a point (x, y, z) in space is given by $T(x, y, z) = 80/(1 + x^2 + 2y^2 + 3z^2)$, where T is measured in degrees Celsius and x, y, z in meters. In which direction does the temperature increase fastest at the point (1, 1, -2)? What is the maximum rate of increase?