

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 1 of 58
Atty. Dkt.: 2551-101

Fig. 1

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 2 of 58
Atty. Dkt.: 2551-101

Fig. 2

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 3 of 58
Atty. Dkt.: 2551-101

Fig. 3

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 4 of 58
Atty. Dkt.: 2551-101

Fig. 4

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 5 of 58
Atty. Dkt.: 2551-101

Anti-E1 levels in NON-responders to IFN treatment

Series 1

Fig. 5

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 6 of 58
Atty. Dkt.: 2551-101

Anti-E1 levels in RESPONDERS to IFN treatment

SERIES 1

weeks after start of treatment

Fig. 6

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 7 of 58
Atty. Dkt.: 2551-101

Anti-E1 levels in patients with COMPLETE response to IFN

SERIES 2

months after start of treatment

Fig. 7

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 8 of 58
Atty. Dkt.: 2551-101

Anti-E1 levels in INCOMPLETE responders to IFN treatment

SERIES 2

Fig. 8
months after start of treatment

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 9 of 58
Atty. Dkt.: 2551-101

Anti-E2 levels in NON-RESPONDERS to IFN treatment

SERIES 1

weeks after start of treatment

Fig. 9

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 10 of 58
Atty. Dkt.: 2551-101

Anti-E2 levels in RESPONDERS to IFN treatment

SERIES 1

weeks after start of treatment

Fig.10

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 11 of 58
Atty. Dkt.: 2551-101

Anti-E2 levels in INCOMPLETE responders to IFN treatment

SERIES 2

months after start of treatment

Fig. 11

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 12 of 58
Atty. Dkt.: 2551-101

Anti-E2 levels in COMPLETE responders to IFN treatment

SERIES 2

F : finish of treatment

months after start of treatment

Fig. 12

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 13 of 58
Atty. Dkt.: 2551-101

Human anti-E1 reactivity competed with peptides

Fig. 13

Competition of reactivity of anti-E1 Mabs with peptides

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 14 of 58
Atty. Dkt.: 2551-101

Fig.14

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 15 of 58
Atty. Dkt.: 2551-101

Anti-E1 (epitope 1) levels in NON-RESPONDERS to IFN treatment

SERIES 1

weeks after start of treatment

Fig. 15

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 16 of 58
Atty. Dkt.: 2551-101

Anti-E1 (epitope 1) levels in RESPONDERS to IFN treatment

Fig. 16
Anti-E1 (epitope 1) levels in RESPONDERS to IFN treatment

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 17 of 58
Atty. Dkt.: 2551-101

Anti-E1 (epitope 2) levels in NON-RESPONDERS to IFN treatment

SERIES 1

weeks after start of treatment

Fig. 17

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 18 of 58
Atty. Dkt.: 2551-101

Anti-E1 (epitope 2) levels in RESPONDERS to IFN treatment

SERIES 1

weeks after start of treatment

Fig. 18

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 19 of 58
Atty. Dkt.: 2551-101

Competition of reactivity of anti-E2 Mabs with peptides

Fig. 19

Human anti-E2 reactivity competed with peptides

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 20 of 58
Atty. Dkt.: 2551-101

Fig. 20

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 21 of 58
Atty. Dkt.: 2551-101

Fig. 21A

5' GGCATGCAAGCTTAATTAATT3' (SEQ ID NO 1)

3'ACGTCCGTACGTTCGAATTAATTAATCGA5' (SEQ ID NO 94)

5'CCGGGGAGGCCTGCACGTGATCGAGGGCAGACACCATCACCAACCACATCACTAATAGT
TAATTAACTGCA 3' (SEQ ID NO 2)

3'CCTCCGGACGTGCACTAGCTCCGTGTGGTAGTGGTGGTAGTGATTATCAATTAATTG
5' (SEQ ID NO 95)

SEQ ID NO 3 (HCCI9A)

ATGCCCGGTTGCTCTTCTCTATCTCCTCTGGCTTACTGTCCGTGACCATTCCA
GCTTCCGCTTATGAGGTGCGCAACGTGTCGGGATGTACCATGTCACGAACGACTGCT
CCAACCTCAAGCATTGTATGAGGCAGCGGACATGATCATGCACACCCCCGGTGCCTG
GCCCTGCCTCGGGAGAACAAACTCTCCCGCTGCTGGTAGCGCTACCCCCACGCTC
GCAGCTAGGAACGCCAGCGTCCCCACCGACAATACGACGCCACGTCGATTGCTCG
TTGGGGCGGCTGCTCTGTTCCGCTATGTACGTGGGGATCTCTGCGGATCTGTCTTC
CTCGTCTCCAGCTGTTACCATCTGCCCTGCCGGCATGAGACGGTGCAGGACTGCA
ATTGCTCAATCTATCCGGCACATAACAGGTACCGTATGGCTGGATATGATGAT
GAACCTGGTCGCCTACACGGCCCTGGTGGTATCGCAGCTGCCGGATCCCACAAGCT
GTCGTGGACATGGTGGCGGGGCCATTGGGGAGTCCTGGCGGGCCTGCCTACTATT
CCATGGTGGGGAACTGGGCTAAGGTTTGATTGTGATGCTACTCTTGCTCTAATAG

SEQ ID NO 5 (HCCI10A)

ATGTTGGGTAAGGTATCGATAACCTTACATGCGGCTCGCCGACCTCGTGGGTACA
TTCCGCTCGTCGGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG
GGTTCTGGAGGAACGGCGTGAACATGCAACAGGAATTGCCCGTTGCTCTTCTCT
ATCTTCCCTTGGCTTGCTGCTGTGACCGTTCCAGCTCCGTTATGAAGTGCG
CAACGTGTCGGGATGTACCATGTCACGAACGACTGCTCCAACCTCAAGCATTGTAT
GAGGCAGCGGACATGATCATGCACACCCCCGGTGCCTGCCCTGCCTGGAGAAC
AACTCTTCCGCTGCTGGTAGCGCTACCCCCACGCTCGCAGCTAGGAACGCCAGCG
TCCCCACGACAATACGACGCCACGTCGATTGCTCGTTGGGGCGGCTGCTTCTG

Fig. 21B

TTCCGCTATGTACGTGGGGACCTCTGGGATCTGTCTCCCTCGTCTCCAGCTGTTCA
CCATCTCGCCTCGCCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCCG
CCACATAACGGGTACCGTATGGCTTGGATATGATGATGAACTGGTCGCCTACAACG
GCCCTGGTGGTATCGCAGCTGCTCCGGATCCCACAAGCTGTCGGACATGGTGGCGG
GGGCCATTGGGGAGTCCTGGCGGGTCTGCCTACTATTCCATGGTGGGGACTGGC
TAAGGTTTGATTGTGATGCTACTCTTGCTCCCTAATAG

SEQ ID NO 7 (HCCI11A)

ATGTTGGGTAAGGTATCGATACCTTACGTGCGGCTCGCCACCTCATGGGTACA
TTCCGCTCGTCGGCGCCCCCTAGGGGGTGTGCCAGAGCCCTGGCGCATGGCGTCCG
GGTTCTGGAAGACGGCGTGAACATATGCAACAGGGATTGCCCTGGTGTCTTTCTCA
TCTTCCTCTGGCTTACTGTCTGTGACCATTCCAGCTCCGCTTATGAGGTGCGC
AACGTGTCGGGATGTACCATGTCACGAACGACTGCTCCAACTCAAGCATTGTGTATG
AGGCAGCGGACATGATCATGCACACCCCCGGTGCCTGCCCTGCGTTGGGAGAAC
ACTCTCCGCTGCTGGTAGCGCTACCCCCACGCTCGCAGCTAGGAACGCCAGCGT
CCCCACTACGACAATACGACGCCACGTCGATTGCTCGTTGGGCGGCTGCTTCTGTT
CCGCTATGTACGTGGGGATCTCTGCGATCTGTCTTCCCTCGTCTCCAGCTGTTCA
ATCTCGCCTGCCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCGGCC
ACATAACAGGTACCGTATGGCTTGGATATGATGATGAACTGGTAATAG

SEQ ID NO 9 (HCCI12A)

ATGCCCGGTTGCTTTCTATCTTCCCTTGGCCCTGCTGTCTGTGACCATACCA
GCTTCCGCTTATGAAGTGCACACGTGTCGGGGTGTACCATGTCACGAACGACTGCT
CCAACTCAAGCATAGTGTATGAGGCAGCGGACATGATCATGCACACCCCCGGTGC
GCCCTGCGTTGGGAGGGCAACTCCTCCGTTGCTGGTGGCGCTCACTCCCACGCTC
GCGGCCAGGAACGCCACGTCGCCCCAACGACAATACGACGCCACGTCGATTGCTC
GTTGGGGCTGCTGTTCTGTTCCGCTATGTACGTGGGGATCTCTGCGGATCTGTTT
CCTTGTTCCCAGCTGTTCACCTCTCACCTGCCGGCATCAAACAGTACAGGACTGCA
ACTGCTCAATCTATCCGGCCATGTATCAGGTACCGCATGGCTTGGATATGATGAT
GAACTGGTCCTAATAG

SEQ ID NO 11 (HCCI13A)

ATGTCCGGTTGCTTTCTATCTTCCCTTGGCCCTGCTGTCTGTGACCATACCA
GCTTCCGCTTATGAAGTGCACACGTGTCGGGGTGTACCATGTCACGAACGACTGCT
CCAACTCAAGCATAGTGTATGAGGCAGCGGACATGATCATGCACACCCCCGGTGC

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 23 of 58
Atty. Dkt.: 2551-101

Fig. 21C

GCCCTGCCTCGGGAGGGCAACTCCTCCCGTTGCTGGGTGGCGCTCACTCCCACGCTC
GCGGCCAGGAACGCCAGCGTCCCCACAACGACAATACGACGCCACGTCGATTTGCTC
GTTGGGGCTGCTGCTTCTGTTCCGCTATGTACGTGGGGGATCTCTGCGGATCTGTTTT
CCTGTTCCAGCTGTCACCTTCTCACCTCGCCGGCATCAAACAGTACAGGACTGCA
ACTGCTCAATCTATCCCGGCCATGTATCAGGTACCGCATGGCTGGGATATGATGAT
GAACTGGTAATAG

SEQ ID NO 13 (HCCI17A)

ATGCTGGTAAGGCCATCGATAACCTTACGTGCGGCTCGCCACCTCGTGGGTACA
TTCCGCTCGTCGGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG
GGTTCTGGAAGACGGCGTGAACTATGCAACAGGAATTGCTGGTTGCTTTCTCTA
TCTTCCTCTTGGCTTACTGTCTGTCTAACCAATTCCAGCTTCCGCTTACGAGGTGCGC
AACGTGTCCGGATGTACCATGTCACGAACGACTGCTCCAACCTAACGCATTGTGTATG
AGGCAGCGGACATGATCATGCACACCCCCGGTGCCTGCCCTGCGTCCGGAGAAC
ACTCTTCCGCTGCTGGGTAGCGCTACCCCCACGCTCGCGCTAGGAACGCCAGCAT
CCCCACTACAACAATACGACGCCACGTCGATTGCTCGTTGGGGCGGCTGTTCTGTT
CCGCTATGTACGTGGGGATCTCTGCGGATCTGTCTTCCCTCGCTCCAGCTGTTCA
ATCTCGCCTCGCCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCGGCC
ACATAACGGGTACCGTATGGCTGGGATATGATGATGAACTGGTACTAATAG

SEQ ID NO 15 (HCPr51)

ATGCCCGGTTGCTTTCTATCTT

SEQ ID NO 16 (HCPr52)

ATGTTGGTAAGGTACATCGATAACCT

SEQ ID NO 17 (HCPr53)

CTATTAGGACCAGTTCATCATCATATCCCA

SEQ ID NO 18 (HCPr54)

CTATTACCAGTTCATCATCATATCCCA

SEQ ID NO 19 (HCPr107)

ATACGACGCCACGTCGATTCCAGCTGTTACCCATC

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 24 of 58
Atty. Dkt.: 2551-101

Fig. 21D

SEQ ID NO 20 (HCPr108)

GATGGTGAACAGCTGGGAATCGACGTGGCGTCGTAT

SEQ ID NO 21 (HCCI37)

ATGTTGGTAAGGTATCGATACCCCTACATGCGGCTTCGCCGACCTCGTGGGTACA
TTCCGCTCGTCGGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG
GGTTCTGGAGGAACGGCGTGAACATATGCAACAGGGAAATTGCCCGGTTGCTCTTCTCT
ATCTTCCTCTTGGCTTGCTGTCCTGTCTGACCGTTCCAGCTTCGCTTATGAAGTGCG
CAACGTGTCCGGATGTACCATGTCACGAACGACTGCTCCAACCTCAAGCATTGTGTAT
GAGGCAGCGGACATGATCATGCAACACCCCCGGTGCCTGCCCTGCCTCGGGAGAAC
AACTCTCCGCTGCTGGTAGCGCTCACCCCCACGCTCGCAGCTAGGAACGCCAGCG
TCCCCACGACAATACGACGCCACGTCGATTCCCAGCTGTTACCATCTCGCCTCG
CCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCGGCCACATAACGGGT
CACCGTATGGCTTGGATATGATGATGAACTGGTCGCCTACAACGGCCCTGGTGGTAT
CGCAGCTGCTCCGGATCCCACAAGCTGTCGGACATGGTGGGGGGCCATTGGGG
AGTCCTGGCGGGTCTGCCTACTATTCCATGGTGGGAACGGGCTAAGGTTTGATTG
TGATGCTACTCTTGCTCCCTAATAG

SEQ ID NO 23 (HCCI38)

ATGTTGGTAAGGTATCGATACCCCTACATGCGGCTTCGCCGACCTCGTGGGTACA
TTCCGCTCGTCGGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG
GGTTCTGGAGGAACGGCGTGAACATATGCAACAGGGAAATTGCCCGGTTGCTCTTCTCT
ATCTTCCTCTTGGCTTGCTGTCCTGTCTGACCGTTCCAGCTTCGCTTATGAAGTGCG
CAACGTGTCCGGATGTACCATGTCACGAACGACTGCTCCAACCTCAAGCATTGTGTAT
GAGGCAGCGGACATGATCATGCAACACCCCCGGTGCCTGCCCTGCCTCGGGAGAAC
AACTCTCCGCTGCTGGTAGCGCTCACCCCCACGCTCGCAGCTAGGAACGCCAGCG
TCCCCACGACAATACGACGCCACGTCGATTCCCAGCTGTTACCATCTCGCCTCG
CCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCGGCCACATAACGGGT
CACCGTATGGCTTGGATATGATGATGAACTGGTAA
TAG

SEQ ID NO 25 (HCCI39)

ATGTTGGTAAGGTATCGATACCCCTACATGCGGCTTCGCCGACCTCGTGGGTACA
TTCCGCTCGTCGGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG
GGTTCTGGAGGAACGGCGTGAACATATGCAACAGGGAAATTGCCCGGTTGCTCTTCTCT

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 25 of 58
Atty. Dkt.: 2551-101

Fig. 21E

ATCTTCCTTGGCTTGCTGTCCTGTCAGCGTCCAGCTTCGCTTATGAAGTGC
CAACGTGTCCGGATGTACCATGTCACGAACGACTGCTCCAAGCATTGTGTAT
GAGGCAGCGGACATGATCATGCACACCCCCGGTGCCTGCCCTGCAGCTGGAGAAC
AACTCTTCCCCTGCTGGTAGCGCTCACCCCCACGCTCGCAGCTAGGAACGCCAGCG
TCCCCACCACGACAATACGACGCCACGTCGATTCCCAGCTGTTACCATCTCGCCTCG
CCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCGGCCACATAACGGGT
CACCGTATGGCTTGGATATGATGATGAACTGGTCGCCTACAACGGCCCTGGTGGTAT
CGCAGCTGCTCCGGATCCTCTAATAG.

SEQ ID NO 27 (HCCI40)

ATGTTGGTAAGGTATCGATACCCCTACATGCGGCTCGCCACCTCGTGGGTACA
TTCCGCTCGTCGGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG
GGTCTGGAGGGACGGCGTGAACATATGCAACAGGAATTGCCCGTTGCTCTTCTCT
ATCTTCCTTGGCTTGCTGTCCTGTCAGCTCCAGCTTCGCTTATGAAGTGC
CAACGTGTCCGGATGTACCATGTCACGAACGACTGCTCCAAGCATTGTGTAT
GAGGCAGCGGACATGATCATGCACACCCCCGGTGCCTGCCCTGCAGCTGGAGAAC
AACTCTTCCCCTGCTGGTAGCGCTCACCCCCACGCTCGCAGCTAGGAACGCCAGCG
TCCCCACCACGACAATACGACGCCACGTCGATTCCCAGCTGTTACCATCTCGCCTCG
CCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCGGCCACATAACGGGT
CACCGTATGGCTTGGATATGATGATGAACTGGTCGCCTACAACGGCCCTGGTGGTAT
CGCAGCTGCTCCGGATCGTATCGAGGGCAGACACCACCACTCACTAATAG

SEQ ID NO 29 (HCCI62)

ATGGGTAAGGTATCGATACCCCTACGTGCGGATTGCCGATCTCATGGGTACATCC
CGCTCGTCGGCGCTCCGTAGGAGGGCGCAAGAGGCCCTGCGCATGGCGTGGGC
CCTTGAAGACGGATAAATTGCAACAGGAATTGCCCGTTGCTCTTCTATT
TCCTTCTCGCTCTGTTCTTGCTTAATTGCAACAGCTAGTCTAGAGTGGCGGAAT
ACGTCGGCCTCTATGTCCTTACCAACGACTGTTCAATAGCAGTATTGTGTACGAGGC
CGATGACGTTATTCTGCACACACCCGGCTGCATACCTTGTGTCAGGACGGCAATACA
TCCACGTGCTGGACCCCAGTGACACCTACAGTGGCAGTCAAGTACGTCGGAGCAACCA
CCGCTTCGATACGCAGTCATGTGGACCTATTAGTGGCGGCCACGATGTGCTCTGC
GCTCTACGTGGGTGACATGTGTGGGGCTGCTTCCCTCGTGGACAAGCCTCACGTTCA
GACCTCGTCGCCATCAAACGGTCCAGACCTGTAAGTGCCTGTAACCGAGGCCATCT
TTCAGGACATCGAATGGCTTGGATATGATGATGAACTGGTAATAG

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 26 of 58
Atty. Dkt.: 2551-101

Fig. 21F

SEQ ID NO 31 (HCCI63)

```
ATGGGTAAGGTACATCGATACCTAACGTGCGGATTGCCGATCTCATGGGTATATCC
CGCTCGTAGGCGGCCATTGGGGCGTCGCAAGGGCTCTGCACACGGTGTGAGGGT
CCTTGAGGACGGGTAACATGCAACAGGGATTACCCGGTTGCTCTTCTATCT
TTATTCTGCTCTCTCGTGTGACCGTTCCGGCCTGCAGTCCCTACCGAAATG
CCTCTGGATTATCATGTTACCAATGATTGCCAAACTCTCCATAGTCTATGAGGCA
GATAACCTGATCCTACACGCACCTGGTTGCGTGCCTGTGTCATGACAGGTAATGTGA
GTAGATGCTGGTCCAAATTACCCCTACACTGTCAGCCCCGAGCCTCGGAGCAGTCAC
GGCTCCTCTCGGAGAGCCGTTGACTACCTAGCGGGAGGGGCTGCCCTGCTCCGCG
TTATACGTAGGAGACCGTGTGGGCACTATTCTGGTAGGCCAAATGTTACAGTGGCCATGT
GGCCTGCCAGCACGCTACGGTGCAGAACTGCAACTGTTCCATTACAGTGGCCATGT
TACCGGCCACCGGATGGCATGGATATGATGATGAACGGTAATAG
```

SEQ ID NO 33 (HCPr109)

```
TGGGATATGATGATGAACGGTC
```

SEQ ID NO 34 (HCPr72)

```
CTATTATGGTGGTAAKGCCARCARCAGAGCAGGAG
```

SEQ ID NO 35 (HCCL22A)

```
TGGGATATGATGAACGGTCGCCTACAACGGCCCTGGTGGTATCGCAGCTGCTCC
GGATCCCACAAGCTGCGTGGACATGGTGGGGGGCCATTGGGAGTCCTGGCGG
GCCTCGCCTACTATTCCATGGTGGGAACTGGCTAAGGTTGGTTGATGCTACTC
TTGCGCGCGTACGGGATACCCCGTGTCAAGGAGGGCAGCAGCCTCCGATACCA
GGGGCTTGTGTCCTCTTAGCCCCGGTCGGCTCAGAAAATCCAGCTCGTAAACAC
CAACGGCAGTTGGCACATCAACAGGACTGCCCTGAACGCAACGACTCCCTCAAAC
AGGTTCTTGGCGACTATTCTACAAACACAAATTCAACTCGTCTGGATGCCAGAG
CGCTTGGCCAGCTGCGCTCCATCGACAAGTTGCTCAGGGGTGGGGTCCCCTCACTT
ACACTGAGCCTAACAGCTCGGACCAGAGGCCCTACTGCTGGCACTACGCGCCTCGACC
GTGTGGTATTGTACCCCGTCTCAGGTGTGCGGTCCAGTGTATTGCTTACCCCGAGCC
CTGTTGTGGTGGGACGACCGATGGTTGGTCCCCACGTATAACTGGGGGGCGAA
CGACTCGGATGTGCTGATTCTCAACAAACACGCGGCCGCCGAGGCAACTGGTTGGC
TGTACATGGATGAATGGCACTGGTTACCAAGACGTGTGGGGCCCCCGTCAACA
TCGGGGGGCCGGCAACAAACACCTTGACCTGCCCACTGACTGTTTCGGAAGCACCC
CGAGGCCACCTACGCCAGATGCGTTCTGGCCCTGGCTGACACCTAGGTGTATGGTT
```


Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 27 of 58
Atty. Dkt.: 2551-101

Fig. 21G

CATTACCCATATAGGCTCTGGCACTACCCCTGCACTGTCAACTTACCCATCTTCAAGGT
TAGGATGTACGTGGGGGGCGTGGAGCACAGGTTGAAGCCGCATGCAATTGGACTCG
AGGAGAGCGTTGTGACTTGGAGGGACAGGGATAGATCAGAGCTTAGCCCGCTGCTGCTG
TCTACAACAGAGTGGCAGATACTGCCCTGTTCTTACCCACCCCTGCCGGCCCTATCCA
CCGGCCTGATCCACCTCCATCAGAACATCGTGGACGTGCAATACCTGTACGGTAGG
GTCGGCGGTTGTCTCCCTTGTATCAAATGGGAGTATGTCCTGTTGCTCTTCCTTCCT
GGCAGACGCGCGCATCTGCGCCTGCTTATGGATGATGCTGCTGATAGCTAAGCTGAG
GCCGCCTTAGAGAACCTGGTGGTCCTCAATGCGGCGGCCGTGGCCGGGGCGATGGC
ACTCTTCCTCCTTGTGTTCTCTGTGCTGCCTGGTACATCAAGGGCAGGCTGGTCCC
TGGTGC GG CATACGCCTTCTATGGCGTGTGGCCGCTGCTCCTGCTCTGCTGGCCTTAC
CACACAGAGCTTATGCCTAGTAA

SEQ ID NO 37 (HCCI41)

GATCCCACAAGCTGTCGTGGACATGGTGGCGGGGGCCATTGGGAGTCCTGGCGGG
CCTCGCCTACTATTCCATGGTGGGAACTGGGCTAAGGTTTGGTTGTATGCTACTCT
TTGCCGGCGTCGACGGGCATACCCCGTGTCAAGGAGGGCAGCAGCCTCCGATACCA
GGGGCCTTGTGTCCTCTTAGCCCCGGTCGGCTCAGAAAATCCAGCTCGTAAACAC
CAACGGCAGTTGGCACATCAACAGGACTGCCCTGAAGTCAACGACTCCCTCAAAC
AGGGTTCTTGCCGCACTATTCTACAAACACAAATTCAACTCGTCTGGATGCCAGAG
CGCTTGGCCAGCTGTCGCTCCATCGACAAGTTGCTCAGGGTGGGTCCCCTCACTT
ACACTGAGCCTAACAGCTCGGACCAGAGGCCCTACTGCTGGCACTACGCCCTCGACC
GTGTGGTATTGTACCCCGTCTCAGGTGTGCGGTCCAGTGTATTGCTTACCCCGAGCC
CTGTTGGTGGGGACGACCGATGGTTGGTGTCCCCACGTATAACTGGGGGGCGAA
CGACTCGGATGTGCTGATTCTCAACAAACACGCCGCCGCGAGGCAACTGGTTGGC
TGTACATGGATGAATGGCACTGGTTACCAAGACGTGTGGGGCCCCCGTGCAACA
TCGGGGGGCCGGCAACAAACACCTTGACCTGCCCACTGACTGTTTCGGAAGCACCC
CGAGGCCACCTACGCCAGATGCCAGTGGTTCTGGCCCTGGCTGACACCTAGGTGTATGGTT
CATTACCCATATAGGCTCTGGCACTACCCCTGCACTGTCAACTTACCCATCTTCAAGGT
TAGGATGTACGTGGGGGGCGTGGAGCACAGGTTGAAGCCGCATGCAATTGGACTCG
AGGAGAGCGTTGTGACTTGGAGGGACAGGGATAGATCAGAGCTTAGCCCGCTGCTGCTG
TCTACAACAGAGTGGCAGAGTGGCAGAGCTTAATTAAATTAG

SEQ ID NO 39 (HCCI42)

GATCCCACAAGCTGTCGTGGACATGGTGGCGGGGGCCATTGGGAGTCCTGGCGGG
CCTCGCCTACTATTCCATGGTGGGAACTGGGCTAAGGTTTGGTTGTATGCTACTCT

Fig. 21H

TTGCCGGCGTCGACGGCATAACCGCGTGTCAAGGAGGGCAGCAGCCTCCGATACCA
GGGGCCTTGTGTCCTCTTACAGCCCCGGGCGCTCAGAAAATCCAGCTCGTAAACAC
CAACGGCAGTTGGCACATCAACAGGACTGCCCTGAAC TGCAACGACTCCCTCCAAAC
AGGGTTCTTGCCGCACTATTCTACAAACACAAATTCAACTCGTCTGGATGCCAGAG
CGCTTGGCCAGCTGTCGCTCCATCGACAAGTTGCTCAGGGTGGGTCCCCTCACTT
ACACTGAGCCTAACAGCTCGGACCAGAGGCCACTGCTGGCACTACGCGCTCGACC
GTGTGGTATTGTACCCCGTCTCAGGTGTGCGGTCCAGTGTATTGCTTCACCCCGAGCC
CTGTTGTGGTGGGACGACCGATCGGTTGGTGTCCCCACGTATAACTGGGGGGCGAA
CGACTCGGATGTGCTGATTCTAACAAACACGCGGCCGCGAGGCAACTGGTTCGGC
TGTACATGGATGAATGGCACTGGTTACCAAGACGTGTGGGGCCCCCGTGAACA
TCGGGGGGGCCGGAACAAACACCTTGACCTGCCCCACTGACTGTTTGGAAAGCACCC
CGAGGCCACCTACGCCAGATCGGTTCTGGGCTGGCTGACACCTAGGTGTGGTT
CATTACCCATATAGGCTCTGGCACTACCCCTGCACTGTCAACTTACCATCTCAAGGT
TAGGATGTACGTGGGGGGCGTGGAGCACAGGTTCGAAGCCGATGCAATTGGACTCG
AGGAGAGCGTTGTGACTTGGAGGACAGGGATAGATCAGAGCTTAGCCGCTGCTGCTG
TCTACAACAGGTATCGAGGGCAGACACCACCATCACCACCATCACTAATAG

SEQ ID NO 41 (HCCI43)

ATGGTGGGAAC TGGCTAAGGTTTGGTTGATGCTACTCTTGCCGGCGTCGACG
GGCATACCCCGCGTGTCAAGGAGGGCAGCAGCCTCCGATACCAGGGCCTTGTGTCCT
CTTAGCCCCGGGCGCTCAGAAAATCCAGCTCGTAAACACCAACGGCAGTTGGCAC
ATCAACAGGACTGCCCTGAAC TGCAACGACTCCCTCCAAACAGGGTTTTGCCGCAC
TATTCTACAAACACAAATTCAACTCGTCTGGATGCCAGAGCGCTTGGCCAGCTGTCG
CTCCATCGACAAGTTGCTCAGGGTGGGTCCCCTACTTACACTGAGCCTAACAGC
TCGGACCAGAGGCCCTACTGCTGGCACTACGCGCTCGACC GTGTGGTATTGTACCCG
CGTCTCAGGTGTGCGGTCCAGTGTATTGCTTACCCCGAGCCCTGTTGTGGTGGGAC
GACCGATCGGTTGGTGTCCCACGTATAACTGGGGGGCGAACGACTCGGATGTGCTG
ATTCTCAACAAACACGCGGCCGCCGAGGCAACTGGTTGGCTGTACATGGATGAATG
GCACTGGTTACCAAGACGTGTGGGGCCCCCGTGAACATCGGGGGGCCGGCA
ACAACACCTTGACCTGCCCCACTGACTGTTTGGGAAGCACCCGAGGCCACCTACGC
CAGATCGGTTCTGGGCCCTGGCTGACACCTAGGTGTGGTCAATTACCATATAGG
CTCTGGCACTACCCCTGCACTGTCAACTCACCACCATCTCAAGGTTAGGATGTACGTGG
GGCGTGGAGCACAGGTTCGAAGCCGATGCAATTGGACTCGAGGAGAGCGTTGTGA
CTTGGAGGACAGGGATAGATCAGAGCTTAGCCGCTGCTGTCTACAACAGAGTGG
CAGAGCTTAATTAATTAG

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 29 of 58
Atty. Dkt.: 2551-101

Fig. 21I

SEQ ID NO 43 (HCCI44)

ATGGTGGGAACTGGCTAAGGTTGGTGTGATGCTACTCTTGCCGGCGTCGACG
GGCATAACCGCGTGTCAAGGAGGGCAGCAGCCTCCGATACCAGGGCCTGTGTC
CTTAGCCCCGGGTCGGCTCAGAAAATCCAGCTCGTAAACACCAACGGCAGTGGC
ACATCAACAGGACTGCCCTGAAC TGCAACGACTCCCTCAAACAGGGTTCTTGCC
TATTCTACAAACACAAATTCAACTCGTCTGGATGCCAGAGCGCTTGGCAGCTG
CTCCATCGACAAGTCGCTCAGGGTGGGCTCCACTTACACTGAGCCTAACAGC
TCGGACCAGAGGCCACTGCTGGCACTACGCGCCTGACC GTGTGGTATTGTAC
CGTCTCAGGTGTGGTCCAGTGTATTGCTTACCCCCAGCCCTGTTGGTGGGAC
GACCGATCGGTTGGTCCACGTATAACTGGGGCGAACGACTCGGATGTGCTG
ATTCTCAACAAACACGCGGCCGCCGAGGCAACTGGTTCGGCTGTACATGGATGA
GCACTGGTTCACCAAGACGTGTGGGGCCCCCGTGCAACATGGGGGGCCGGCA
ACAACACCTTGACCTGCCCCACTGACTGTTT CGGAAGCACCCGAGGCCACCTAC
CAGATCGGTTCTGGCCCTGGCTGACACCTAGGTGTATGGTTCATTACCCATATAG
CTCTGGCACTACCCCTGCACTGTCAACTTACCATCTTCAAGGTTAGGATGTAC
GGCGTGGAGCACAGGTTGAAGCCGATGCAATTGGACTCGAGGAGAGCGTTGT
CTTGGAGGACAGGGATAGATCAGAGCTTAGCCGCTGCTGTCTACAACAGGTG
CGAGGGCAGACACCATACCAACCACATCAACTAATAG

SEQ ID NO 45 (HCCL64)

ATGGTGGCGGGGGCCATTGGGAGTCCTGGCGGGCTCGCCTACTATTCCATGGTGG
GGAACTGGCTAAGGTTGGTGTGATGCTACTCTTGCCGGCGTCACGGGCATAC
CCGCGTGTCAAGGAGGGCAGCAGCCTCCGATACCAGGGCCTGTGTC
CCCGGGTCGGCTCAGAAAATCCAGCTCGTAAACACCAACGGCAGTGGCACATCAAC
AGGACTGCCCTGAACTGCAACGACTCCCTCCAAACAGGGTCTTGCCGACTATTCT
ACAAACACAAATTCAACTCGTCTGGATGCCAGAGCGCTTGGCAGCTGTC
CGACAAAGTCGCTCAGGGTGGGTCCACTTACACTGAGCCTAACAGCTCGGAC
CAGAGGCCACTGCTGGCACTACGCGCCTGACC GTGTGGTATTGTACCC
AGGTGTGGTCCAGTGTATTGCTTACCCCCAGGCCCTGTTGGTGGGACGAC
TCGGTTGGTGTCCCCACGTATAACTGGGGCGAACGACTCGGATGTGCTGATT
AACAAACACGCGGCCGCCGAGGCAACTGGTTCGGCTGTACATGGATGAATGG
GGGTTACCAAGACGTGTGGGGCCCCCGTGCAACATGGGGGGCCGGCAACAAAC
ACCTTGACCTGCCCCACTGACTGTTT CGGAAGCACCCGAGGCCACCTACGCC
CGGGTTCTGGCCCTGGCTGACACCTAGGTGTATGGTTCATTACCCATATAG
GCTCTGGCACTGTCAACTTACCATCTTCAAGGTTAGGATGTACGTGGGGCG
CACTACCCCTGCACTGTCAACTTACCATCTTCAAGGTTAGGATGTACGTGGGGCG

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 30 of 58
Atty. Dkt.: 2551-101

Fig. 21J

TGGAGCACAGGTTCGAAGCCGCATGCAATTGGACTCGAGGAGAGCGTTGTGACTTGGAG
GGACAGGGATAGATCAGAGCTTAGCCCGCTGCTGCTGTCTACAAACAGAGTGGCAGATA
CTGCCCTGTTCTTCAACCACCTGCCGGCCCTATCCACCGGCCTGATCCACCTCCATCA
GAACATCGTGGACGTGCAATACTGTACGGTGTAGGGTGGCGGTGTCCTCCCTGTC
ATCAAATGGGAGTATGTCCTGTTGCTCTTCCCTCCTGGCAGACGCGCGCATCTGCGC
CTGCTTATGGATGATGCTGCTGATAGCTCAAGCTGAGGCCGCTTAGAGAACCTGGTG
GTCCTCAATGCGCGGCCGTGGCCGGGCGCATGGCACTCTTCCTTGTGTTCTT
CTGTGCTGCCTGGTACATCAAGGGCAGGCTGGTCCCTGGTGGCATACGCCCTTAT
GGCGTGTGGCCGCTGCTCCTGCTTCTGCTGGCCTTACCAACCACGAGCTTATGCCTAGTAA

SEQ ID NO 47 (HCCI65)

AATTTGGGTAAGGTATCGATACCCTTACATGCGGCTCGCCGACCTCGTGGGGTACA
TTCCGCTCGTCGGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG
GGTTCTGGAGGACGGCGTGAACTATGCAACAGGGATTGCCCCGTTGCTCTTCTCT
ATCTTCCCTTGGCTTGCTGCTCTGTGACCGTTCCAGCTTCCGCTTATGAAGTGCG
CAACGTGTCCGGATGTACCATGTCACGAACGACTGCTCCAACCTCAAGCATTGTAT
GAGGCAGCGGACATGATCATGCACACCCCCGGGTGCGTGCCCTGCGTTGGGAGAAC
AACTCTTCCCCTGCTGGTAGCGCTCACCCCCACGCTCGCAGCTAGGAACGCCAGCG
TCCCCACCACGACAATACGACGCCACGTCGATTGCTCGTTGGGCGGCTGCTTCTG
TTCCGCTATGTACGTGGGGACCTCTGCGGATCTGTCTCCTCGTCTCCAGCTGTTCA
CCATCTCGCCTCGCCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCC
CCACATAACGGTCACCGTATGGCTGGATATGATGATGAACGGTGCCTACAACG
GCCCTGGTGGTATCGCAGCTGCTCCGGATCCCACAAGCTGTCGTGGACATGGTGGCG
GGGCCATTGGGAGTCCTGGCGGGCTCGCCTACTATTCCATGGTGGGAACGGC
TAAGGTTTGGTTGTGATGCTACTCTTGCCGGCGTGCACGGCATAACCGCGTGT
GAGGGCAGCAGCCTCGATACCAGGGCCTGTTGTCCTCTTACGGGCG
TCAGAAAATCCAGCTGTAACACCAACGGCAGTTGGCACATCAACAGGACTGCC
GAACGTCAACGACTCCCTCCAAACAGGGTTCTTGCCGACTATTCTACAAACACAAA
TTCAACTCGTCTGGATGCCAGAGCGCTTGGCCAGCTGTCGCTCCATGACAAGTC
CTCAGGGTGGGTCCCCCTACTTACACTGAGCCTAACAGCTGGACCAAGAGGCC
CTGCTGGCACTACGCGCCTCGACCGTGTGGTATTGTAACCGCGTCTCAGGTGT
CCAGTGTATTGCTTACCCCCGAGCCCTGTTGTTGGGACGACCGATCGGTTGGT
CCCCACGTATAACTGGGGGGCGAACGACTCGGATGTGCTGATTCTAACAAACACGCG
CCGCCCGAGGCAACTGGTCGGCTGTACATGGATGAATGGCACTGGTTACCAAGA
CGTGTGGGGCCCCCGTGCACATGGGGGGCCGGCAACAAACACCTTGACCTG

Fig. 21K

CCACTGACTGTTTCGGAAGCACCCGAGGCCACCTACGCCAGATCGGGTTCTGGGCC
CTGGCTGACACCTAGGTGTATGGTCATTACCATATAGGCTCTGGCACTACCCCTGCA
CTGTCAACTTACCATCTTCAAGGTTAGGATGTACGTGGGGCGTGGAGCACAGGTT
CGAAGCCGCATGCAATTGGACTCGAGGAGAGCGTTGTGACTTGGAGGACAGGGATAG
ATCAGAGCTTAGCCCGCTGCTGCTGTACAACAGAGTGGCAGATACTGCCCTGTTCC
TTCACCACCTGCCGGCCCTATCCACCGGCCTGATCCACCTCCATCAGAACATCGTGG
ACGTGCAATACCTGTACGGTGTAGGGTCGGCGGTTGTCTCCCTGTCATCAAATGGGA
GTATGTCCTGTTGCTCTTCCTCTGGCAGACGCGCGCATCTGCGCCTGCTTATGGA
TGATGCTGCTGATAGCTAAGCTGAGGCCGCCTAGAGAACCTGGTGGTCCTCAATGC
GGCGGCCGTGGCCGGGGCGCATGGCACTTTCCCTGTGTTCTCTGTGCTGCCT
GGTACATCAAGGGCAGGCTGGCCCTGGTGGGCATACGCCCTATGGCGTGGCC
GCTGCTCCTGCTTCTGCTGGCCTTACCAACCACGAGCTTATGCCTAGTAAGCTT

SEQ ID NO 49 (HCCI66)

ATGAGGCACGAATCCTAAACCTCAAAGAAAAACCAAACGTAACACCAACCGCCGCCA
CAGGACGTCAAGTTCCCGGGCGGTGGTCAGATCGTTGGTGGAGTTACCTGTTGCCGC
GCAGGGGCCAGGTTGGGTGTGCGCGCGACTAGGAAGACTTCCGAGCGGTGCAAC
CTCGTGGGAGGCAGAACCTATCCCCAAGGCTGCCGACCCGAGGGTAGGGCCTGGG
CTCAGCCCGGGTACCCCTGGCCCTCTCGGCCTAGTTGGGCCCTACAGACCCCCGGCGTAGG
GCTCCTGTCACCCCGCGCTCTCGGCCTAGTTGGGCCCTACAGACCCCCGGCGTAGG
TCGCGTAATTGGTAAGGTATCGATAACCTTACATGCGGCTCGCCGACCTCGTGG
GGTACATTCCGCTCGTGGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGG
CGTCCGGTTCTGGAGGACGGCGTGAACATGCAACAGGAATTGCCCCGGTTGCTCT
TTCTCTATCTTCCCTTGGCTTGCTGTCTGACCGTTCCAGCTTCCGCTTATGAA
GTGCGCAACGTGTCCGGATGTACCATGTCACGAACGACTGCTCCAACCTCAAGCATTG
TGTATGAGGCAGCGGACATGATCATGCACACCCCCGGTGCCTGCCCTCGCTGGGA
GAACAACTCTCCGCTGCTGGTAGCGCTACCCCCACGCTCGCAGCTAGGAACGCC
AGCGTCCCCACCAACGACAATACGACGCCACGTCGATTGCTCGTTGGGGCGCTGCTT
TCTGTTCCGCTATGTACGTGGGGACCTCTGCGGATCTGTCTTCCCTCGCTCCAGCTG
TTCACCATCTGCCCTGCCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATC
CCGGCCACATAACGGGTACCGTATGGCTGGATATGATGATGAACTGGTGCCTAC
AACGGCCCTGGTGGTATCGCAGCTGCCGGATCCCACAAGCTGCGTGGACATGGTG
GCGGGGGCCATTGGGGAGTCCTGGCGGGCCTCGCCTACTATTCCATGGTGGGAACCT
GGGCTAAGGTTTGGTTGTGATGCTACTCTTGCCGGCGTCACGGGCATACCCGCGT
GTCAGGAGGGCAGCAGCCTCGATAACCAGGGCCTGTGTCCTCTTAGCCCCGGG

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 32 of 58
Atty. Dkt.: 2551-101

Fig. 21L

TCGGCTCAGAAAATCCAGCTCGAAACACCAACGGCAGTTGGCACATCAACAGGACT
GCCCTGAAC TGCAACGACTCCCTCCAAACAGGGTTCTTGC CGCACTATTCTACAAAC
ACAAATTCAACTCGTCTGGATGCCAGAGCGCTGGCCAGCTGTCGCTCCATCGACAA
GTTCGCTCAGGGGTGGGTCCCCTCACTTACACTGAGCCTAACAGCTCGGACCAGAGG
CCCTACTGCTGGCACTACGCGCCTCGACCGTGTGGTATTGTACCCGCGTCTCAGGTGT
GCGGTCCAGTGTATTGCTTCACCCCGAGCCCTGTTGGTGGGACGACCGATCGGTT
TGGTGTCCCCACGTATAACTGGGGGGCGAACGACTCGGATGTGCTGATTCTAACAAAC
ACGC GGCCCGCGAGGCAACTGGTCGGCTGTACATGGATGAATGGCACTGGTTCA
CCAAGACGTGTGGGGGCCCCCGTGC AACATCGGGGGGCCGGCAACAAACACCTTGA
CCTGCCCCACTGACTGTTT CGGAAGCACCCCGAGGCCACCTACGCCAGATGCCGTT
TGGGCCCTGGCTGACACCTAGGTGTGGTCATTACCCATATAGGCTCTGGCACTAC
CCCTGCACTGTCAACTTCAACCATCTCAAGGTTAGGATGTACGTGGGGCGTGGAGC
ACAGGTTCGAAGCCGCATGCAATTGGACTCGAGGAGAGCGTTGTGACTGGAGGACA
GGGATAGATCAGAGCTTAGCCGCTGCTGCTACAACAGAGTGGCAGATACTGCC
CTGTTCCCTCACCAACCCCTGCCGGCCCTATCCACCGGCCTGATCCACCTCCATCAGAAC
ATCGTGGACGTGCAATA CCTGTACGGTGTAGGGCGGTTGTCTCCCTTGTCA
AATGGGAGTATGTCCTGTTGCTCTCCTCTGGCAGACGCCGCATCTGCCCTGC
TTATGGATGATGCTGCTGATAGCTCAAGCTGAGGCCGCTTAGAGAACCTGGTGGTCC
TCAATGCCGGCCGTGGCCGGCGCATGGCACTCTTCCCTGGCAGACGCCGCATCTGGCG
GCTGCCCTGGTACATCAAGGGCAGGCTGGCCCTGGCGGATACGCCCTATGGCG
TGTGGCCGCTGCTCCTGCTTCTGCTGGCCTTACCAACCACGAGCTTATGCC TAGTAA

Inventor: MAERTENS, et al.
 SN 08/928,757/Sheet 33 of 58
 Atty. Dkt.: 2551-101

Fig. 22

OD measured at 450 nm
 construct

Fraction	volume	dilution	39 Type 1b	40 Type 1b	62 Type 3a	63 Type 5a
START	23 ml	1/20	2.517	1.954	1.426	1.142
FLOW THROUGH	23 ml	1/20	0.087	0.085	0.176	0.120
1	0.4 ml	1/200	0.102	0.051	0.048	0.050
2			0.396	0.550	0.090	0.067
3			2.627	2.603	2.481	2.372
4			3	2.967	3	2.694
5			3	2.810	2.640	2.154
6			2.694	2.499	1.359	1.561
7			2.408	2.481	0.347	1.390
8			2.176	1.970	1.624	0.865
9			1.461	1.422	0.887	0.604
10			1.286	0.926	0.543	0.519
11			0.981	0.781	0.294	0.294
12			0.812	0.650	0.249	0.199
13			0.373	0.432	0.239	0.209
14			0.653	0.371	0.145	0.184
15			0.441	0.348	0.151	0.151
16			0.321	0.374	0.098	0.106
17			0.525	0.186	0.099	0.108
18			0.351	0.171	0.083	0.090
19			0.192	0.164	0.084	0.087

Fig. 23

Inventor: MAERTENS, et al.
 SN 08/928,757/Sheet 35 of 58
 Atty. Dkt.: 2551-101

Fig. 24

Fraction	volume	dilution	OD measured at 450 nm			
			construct			
			39 Type 1b	40 Type 1b	62 Type 3a	63 Type 5a
20	250 μ l	1/200	0.072	0.130	0.096	0.051
21			0.109	0.293	0.084	0.052
22			0.279	0.249	0.172	0.052
23			0.093	0.151	0.297	0.054
24			0.080	0.266	0.438	0.056
25			0.251	0.100	0.457	0.048
26			3	1.649	0.722	0.066
27			3	3	2.528	0.889
28			3	3	3	2.345
29			3	3	2.849	2.580
30			2.227	1.921	1.424	1.333
31			0.263	0.415	0.356	0.162
32			0.071	0.172	0.154	0.064
33			0.103	0.054	0.096	0.057
34			0.045	0.045	0.044	0.051
35			0.043	0.047	0.045	0.046
36			0.045	0.045	0.049	0.040
37			0.045	0.047	0.046	0.048
38			0.046	0.048	0.047	0.057
39			0.045	0.048	0.050	0.057
40			0.046	0.049	0.048	0.049

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 36 of 58
Atty. Dkt.: 2551-101

Fig. 25

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 37 of 58
Atty. Dkt.: 2551-101

Fig. 26

Fig. 27

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 38 of 58
Atty. Dkt.: 2551-101

Fig.28

M 1 2 3 4 5 6

Fig.29

- Lane 1: Crude Lysate
- Lane 2: Flow through Lentil Chromatography
- Lane 3: Wash with EMPIGEN Lentil Chromatography
- Lane 4: Eluate Lentil Chromatography
- Lane 5: Flow through during concentration lentil eluate
- Lane 6: Pool of E1 after Size Exclusion Chromatography

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 39 of 58
Atty. Dkt: 2551-101

Fig. 30

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 40 of 58
Atty. Dkt.: 2551-101

NON - REDUCED

Fig. 31A

E2 + CONTAMINANTS (AGGREGATES)

REDUCED

Fig. 31B

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 41 of 58
Atty. Dkt.: 2551-101

Fig. 32

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 42 of 58
Atty. Dkt.: 2551-101

SILVER STAIN OF PURIFIED E2

1. 30 mM IMIDAZOLE WASH Ni-IMAC
2. 0.5 ug E2

Fig.33

Inventor: MAERTENS, et al.
 SN 08/928,757/Sheet 43 of 58
 Atty. Dkt.: 2551-101

No.	Ret. (ml)	Peak start (ml)	Peak end (ml)	Dur (ml)	Area (ml*mAU)	Height (mAU)
1	-0.45	-0.46	-0.43	0.04	0.0976	4.579
2	1.55	0.75	3.26	2.51	796.4167	889.377
3	3.27	3.26	3.31	0.05	0.0067	0.224
4	3.33	3.32	3.33	0.02	0.0002	0.018

Total number of detected peaks = 4
 Total Area above baseline = 0.796522 ml*AU
 Total area in evaluated peaks = 0.796521 ml*AU
 Ratio peak area / total area = 0.999999
 Total peak duration = 2.613583 ml

Fig. 34

Fig. 35A-1

Fig. 35A-2

Fig. 35A-3

Fig. 35A-4

Fig. 35A-5

Fig. 35A-6

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 45 of 58
Atty. Dkt.: 2551-101

Fig. 35A-7

Fig. 35A-8

Fig. 35B-1

Fig. 35B-2

Fig. 35B-3

Fig. 35B-4

Fig. 35B-5

Fig. 35B-6

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 47 of 58
Atty. Dkt.: 2551-101

Fig. 35B-7

Fig. 35B-8

Fig. 36A

E1 Ab

Fig. 36B

E2 Ab

Fig. 37A
Non Responders

Fig. 37C
Type 1b

S/N E1 AB ELSA

Fig. 37B
Long Term Responders

Fig. 37D
Type 3a

S/N E1 AB ELSA

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 50 of 58
Atty. Dkt.: 2551-101

Fig. 38

Relative Map Positions of
anti-E2 monoclonal antibodies

PARTIAL DEGLYCOSYLATION OF HCV E1 ENVELOPE PROTEIN

Fig.39

JAN 06 2004

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 52 of 58
Atty. Dkt.: 2551-101

PARTIAL TREATMENT OF HCV E2/E2s ENVELOPE PROTEINS BY PNGase F

Fig. 40

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 53 of 58
Atty. Dkt.: 2551-101

Fig. 41 *In Vitro* Mutagenesis of HCV E1 glycoprotein

Inventor: MAERTENS, et al.
 SN 08/928,757/Sheet 54 of 58
 Atty. Dkt.: 2551-101

Fig. 42A *In Vitro* Mutagenesis of HCV E1 glycoprotein

1. First step of PCR amplification (Gly-# and Ovr-# primers)

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 55 of 58
Atty. Dkt.: 2551-101

2. Overlap extension and nested PCR

a. Overlap extension

Fig. 42B

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 56 of 58
Atty. Dkt.: 2551-101

Fig. 43 *In Vitro* Mutagenesis of HCV E1 glycoprotein

Inventor: MAERTENS, et al.
 SN 08/928,757/Sheet 57 of 58
 Atty. Dkt: 2551-101

Fig. 44A

Fig. 44B

Inventor: MAERTENS, et al.
SN 08/928,757/Sheet 58 of 58
Atty. Dkt.: 2551-101

Fig. 45

KDa 19 67 43 29 18
! ! ! ! !

Fig. 46