MOOC 2: Supervised Machine Learning: Regression

View Original Notion Document: https://www.notion.so/MOOC-2-Supervised-Machine-Learning-Regression-2802d55efe0c8068b9ecd6a40573fff3?source=copy_link

Module 1: Introduction to Supervised Machine Learning and Linear Regression

Giới thiệu về Supervised Machine Learning

Supervised Learning là phương pháp học máy sử dụng dữ liệu được gán nhãn (labeled data) để huấn luyện model dự đoán.

Hai loại chính của Supervised Learning:

- 1. Regression (Hồi quy)
 - Target variable (bién mục tiêu) là liên tục (continuous)
 - Ví dụ: Dự đoán giá nhà, nhiệt độ, doanh thu
- 2. Classification (Phân Ioại)
 - Target variable là phân loại (categorical)
 - Ví dụ: Phân loại email spam/không spam, nhận diện hình ảnh

Yêu cầu để xây dựng Classification Model:

- Features có thể định lượng được (quantifiable features)
- Labeled target hoặc outcome variable
- Phương pháp để đo lường độ tương đồng (similarity)

Linear Regression (Hồi quy tuyến tính)

Linear Regression mô hình hóa mối quan hệ giữa một biến liên tục (dependent variable) và một hoặc nhiều biến độc lập (independent variables).

Công thức toán học:

Simple Linear Regression:

$$y = \beta_0 + \beta_1 x + \epsilon$$

Multiple Linear Regression:

$$y=eta_0+eta_1x_1+eta_2x_2+...+eta_nx_n+\epsilon$$

Trong đó:

- y = biến phụ thuộc (dependent variable)
- β_0 = hệ số chặn (intercept)
- $\beta_1,\beta_2,...,\beta_n$ = hệ số hồi quy (coefficients)
- $x_1, x_2, ..., x_n$ = biến độc lập (independent variables)
- ϵ = sai số (error term)

Residuals (Phần dư)

Residual được định nghĩa là hiệu số giữa giá trị thực tế và giá trị dự đoá

$$\mathrm{Residual}_i = y_i - \hat{y}_i$$

Ba thước đo lỗi (Error Measures) phổ biến

1. Sum of Squared Errors (SSE)

$$SSE = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

- Tổng bình phương của các phần dư
- Càng nhỏ càng tốt

2. Total Sum of Squares (TSS)

$$TSS = \sum_{i=1}^n (y_i - ar{y})^2$$

Đo lường tổng biến thiên của data

• \bar{y} là giá trị trung bình

3. Coefficient of Determination (R2)

$$R^2 = 1 - \frac{SSE}{TSS}$$

- Thước đo mức độ fit của model
- R² càng gần 1 càng tốt (0 ≤ R² ≤ 1)
- Ý nghĩa: % biến thiên được giải thích bởi model

Code Implementation với Scikit-learn

Cài đặt thư viện:

import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, r2_score import matplotlib.pyplot as plt

Train Linear Regression Model:

```
# Import LinearRegression
from sklearn.linear_model import LinearRegression

# Khởi tạo model
LR = LinearRegression()

# Fit model với training data
LR = LR.fit(X_train, y_train)

# Hoặc viết gọn lại:
# LR = LinearRegression().fit(X_train, y_train)
```

Dự đoán (Prediction):

Dư đoán trên test set y_predict = LR.predict(X_test)

Module 2: Data Splits and Polynomial Regression

Training and Test Splits

Chia data thành training và test sets giúp bạn chọn được model có khả năng tổng quát hóa (generalize) tốt và tránh overfitting.

Mục đích của mỗi set:

Training Data

- Dùng để **fit model** (huấn luyện các parameters)
- Thường chiếm 70-80% tổng data

Test Data

- Dùng để đo lường error và performance
- Thường chiếm 20-30% tổng data
- KHÔNG được dùng trong quá trình training!

Quan sát quan trọng:

Training error có xu hướng giảm khi model phức tạp hơn

Nhưng test error có thể tăng → Dấu hiệu của overfitting!

Polynomial Regression

Polynomial terms giúp bạn capture được nonlinear effects của features trong data.

Công thức Polynomial Regression:

Degree 2 (Quadratic):

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$$

Degree n:

$$y = eta_0 + eta_1 x + eta_2 x^2 + ... + eta_n x^n + \epsilon$$

Ví dụ so sánh:

Degree	Equation	Use Case
1 (Linear)	$y=\beta_0+\beta_1 x$	Mối quan hệ tuyến tính
2 (Quadratic)	$y=\beta_0+\beta_1x+\beta_2x^2$	Đường cong parabol
3 (Cubic)	$y=eta_0+eta_1x+eta_2x^2+eta_3x^3$	Đường cong phức tạp hơn

Code Implementation - Polynomial Regression

from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression

```
from sklearn.pipeline import Pipeline
import numpy as np
import matplotlib.pyplot as plt
# Tao sample data với nonlinear relationship
np.random.seed(42)
X = np.sort(np.random.rand(100, 1) * 10, axis=0)
y = 0.5 * X**2 - 3 * X + 5 + np.random.randn(100, 1) * 5
# So sánh các polynomial degrees
degrees = [1, 2, 3, 5]
plt.figure(figsize=(12, 8))
for i, degree in enumerate(degrees, 1):
  # Tao polynomial features và fit model
  poly = PolynomialFeatures(degree=degree)
  X_poly = poly.fit_transform(X)
  model = LinearRegression()
  model.fit(X_poly, y)
  # Predict
  X_{\text{test}} = \text{np.linspace}(0, 10, 100).\text{reshape}(-1, 1)
  X_test_poly = poly.transform(X_test)
  y_pred = model.predict(X_test_poly)
  # Plot
  plt.subplot(2, 2, i)
  plt.scatter(X, y, alpha=0.5, label='Data')
  plt.plot(X_test, y_pred, color='red', linewidth=2,
        label=f'Degree {degree}')
  plt.xlabel('X')
  plt.ylabel('y')
  plt.legend()
  plt.title(f'Polynomial Regression (Degree {degree})')
plt.tight_layout()
plt.show()
```

Sử dụng Pipeline (Cách chuyên nghiệp):

```
# Tao pipeline kết hợp polynomial features và linear regression
poly_model = Pipeline([
  ('poly_features', PolynomialFeatures(degree=3)),
  ('linear_regression', LinearRegression())
1)
# Fit và predict chỉ với 2 dòng code
poly_model.fit(X_train, y_train)
y_pred = poly_model.predict(X_test)
# Đánh giá
from sklearn.metrics import r2_score, mean_squared_error
print(f"R2 Score: {r2_score(y_test, y_pred):.4f}")
print(f"RMSE: {np.sqrt(mean_squared_error(y_test, y_pred)):.4f}")
```


Lưu ý: Polynomial degree càng cao, model càng dễ bị overfitting. Cần sử dụng validation để chon degree phù hợp!

Các thuật toán mở rộng từ Linear Models

Ngoài Polynomial Regression, bạn có thể sử dụng:

- Logistic Regression Classification
- K-Nearest Neighbors (KNN) Classification/Regression
- **Decision Trees** Classification/Regression
- Support Vector Machines (SVM) Classification/Regression
- Random Forests Ensemble method
- Ensemble Methods Kết hợp nhiều models
- Deep Learning Approaches Neural Networks

Module 3: Cross Validation

Giới thiệu Cross Validation

Cross Validation là kỹ thuật chia data thành nhiều folds để đánh giá model một cách đáng tin cậy hơn, tránh phụ thuộc vào một lần split cu thể.

Ba loại Cross Validation phổ biến:

1. K-Fold Cross Validation 📊

- Chia data thành K folds bằng nhau
- Train trên K-1 folds, test trên 1 fold còn lại
- Lặp lại K lần, mỗi fold làm test set 1 lần
- Phổ biến nhất, thường dùng K=5 hoặc K=10

2. Leave-One-Out Cross Validation (LOOCV) 🎲

- Trường hợp đặc biệt: K = n (số samples)
- Mỗi lần test trên 1 sample duy nhất

• Tốn thời gian với dataset lớn

3. Stratified Cross Validation

- Đảm bảo tỷ lệ classes giống nhau ở mỗi fold
- · Quan trong với imbalanced data

Ba Ioại Data Sets trong Cross Validation

Code Implementation - Cross Validation

1. Train-Test Split cơ bản:

```
from sklearn.model_selection import train_test_split

# Chia data thành train và test (80-20)
X_train, X_test, y_train, y_test = train_test_split(
    X, y,
    test_size=0.2, # 20% cho test
    random_state=42 # Để kết quả reproducible
)

print(f"Training samples: {len(X_train)}")
print(f"Test samples: {len(X_test)}")
```

2. K-Fold Cross Validation:

```
from sklearn.model_selection import KFold, cross_val_score from sklearn.linear_model import LinearRegression

# Khởi tạo K-Fold
kfold = KFold(n_splits=5, shuffle=True, random_state=42)

# Train model và tính CV scores
model = LinearRegression()
cv_scores = cross_val_score(
    model, X, y,
    cv=kfold,
    scoring='r2' # Có thể dùng 'neg_mean_squared_error', 'r2', etc.
)

print(f"CV Scores: {cv_scores}")
print(f"Mean CV Score: {cv_scores.mean():.4f}")
print(f"Std CV Score: {cv_scores.std():.4f}")
```

3. Cross Validation với Predictions:

```
from sklearn.model_selection import cross_val_predict

# Lấy predictions từ cross validation

y_pred_cv = cross_val_predict(
    model, X, y,
    cv=5
)

# Đánh giá
from sklearn.metrics import r2_score, mean_squared_error
print(f"CV R² Score: {r2_score(y, y_pred_cv):.4f}")
print(f"CV RMSE: {np.sqrt(mean_squared_error(y, y_pred_cv)):.4f}")
```

4. GridSearchCV - Tìm Hyperparameters tốt nhất:

```
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline
# Tao pipeline
pipeline = Pipeline([
  ('poly', PolynomialFeatures()),
  ('linear', LinearRegression())
])
# Định nghĩa parameter grid
param_grid = {
  'poly_degree': [1, 2, 3, 4, 5], # Test các polynomial degrees
}
# GridSearchCV
grid_search = GridSearchCV(
  pipeline,
  param_grid,
                  #5-fold CV
  cv=5,
  scoring='r2',
```

```
verbose=1
)

# Fit và tìm best parameters
grid_search.fit(X_train, y_train)

print(f"Best Parameters: {grid_search.best_params_}")
print(f"Best CV Score: {grid_search.best_score_:.4f}")

# Sử dụng best model
best_model = grid_search.best_estimator_
y_pred = best_model.predict(X_test)
```

Tóm tắt Scikit-Learn Methods

Method	Mục đích	Output
train_test_split	Chia train/test một lần	Train & test sets
KFold	Tạo K-fold splits	Cross validation iterator
cross_val_score	Đánh giá score qua CV	Array of scores
cross_val_predict	Predictions qua CV	Out-of-bag predictions
GridSearchCV	Tìm best hyperparameters	Best model & parameters

Module 4, 5: Bias Variance Trade-off and Regularization Techniques

Bias-Variance Tradeoff

Bias-Variance Tradeoff phân tích Mean Square Error (MSE) của model thành hai thành phần: **Bias** và **Variance**.

Công thức phân tích:

 $Expected MSE = Bias^2 + Variance + Irreducible Error$

Bias (Thiên lệch)

Bias đo lường mức độ model **gần với hàm thực tế** mà chúng ta đang cố gắng mô hình hóa.

High Bias = Underfitting

Đặc điểm:

- Model quá đơn giản
- Không capture được patterns trong data
- · Kém trên cả training và test data
- Training error và test error đều cao và gần nhau

Ví dụ: Dùng linear regression cho data có quan hệ phi tuyến phức tạp

Cách cải thiện Bias:

Làm model phức tạp hơn:

- Thêm polynomial terms bậc cao hơn
- Thêm nhiều features hơn
- Sử dụng algorithms phức tạp hơn (Random Forest, Neural Networks)

Thu thập thêm data (nếu có thể)

Variance (Phương sai)

Variance đo lường **độ thay đổi** của predictions khi train trên các training sets khác nhau.

High Variance = Overfitting

Đặc điểm:

- Model quá phức tạp
- "Học thuộc" training data, kể cả noise
- Tốt trên training data, kém trên test data
- Training error thấp, nhưng test error cao

Ví dụ: Polynomial regression degree quá cao (degree 20 cho data đơn giản)

Cách cải thiện Variance:

- Làm model đơn giản hơn:
 - Giảm polynomial degree
 - Loại bỏ features không cần thiết
 - Sử dụng feature selection
- Thu thập thêm data (càng nhiều càng tốt)
- Sử dụng Regularization \(\text{(Ridge, LASSO, Elastic Net)} \)
- Cross Validation để đánh giá chính xác

Generalization and Overfitting

Ba kỹ thuật Regularization

Regularization giúp giảm overfitting bằng cách penalize (phạt) các coefficients lớn, làm cho model đơn giản hơn.

Ridge Regression (L2 Regularization)

Công thức Cost Function:

$$J(eta) = \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^p eta_j^2$$

$$J(eta) = ext{MSE} + \lambda \cdot ||eta||_2^2$$

Trong đó:

- λ (lambda) = **regularization strength** (hyperparameter)
- $||\beta||_2^2$ = sum of squared coefficients (L2 norm)

Đặc điểm của Ridge:

Penalize bình phương của coefficients

- Shrink coefficients về gần 0, nhưng không bằng 0
- Giữ lại tất cả features, chỉ minimize ảnh hưởng của features không quan trọng
- Faster to train so với LASSO
- Phù hợp khi tất cả features đều có ích phần nào

Ånh hưởng của λ:

- λ = 0: Model = Linear Regression thông thường
- λ nhỏ: Ít regularization, có thể vẫn overfit
- λ lớn: Nhiều regularization, coefficients → 0, có thể underfit
- λ optimal: Cần tìm bằng Cross Validation

Code Implementation:

```
from sklearn.linear_model import Ridge
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
# Tạo sample data
np.random.seed(42)
X = np.random.randn(100, 5)
y = 3*X[:, 0] + 2*X[:, 1] + X[:, 2] + np.random.randn(100) * 0.5
# QUAN TRONG: Scale features trước khi regularization!
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Split data
X_train, X_test, y_train, y_test = train_test_split(
  X_scaled, y, test_size=0.2, random_state=42
)
# Ridge Regression với alpha (tương đương λ)
ridge = Ridge(alpha=1.0) # alpha = \lambda
```

```
ridge.fit(X_train, y_train)

# Evaluate
train_score = ridge.score(X_train, y_train)
test_score = ridge.score(X_test, y_test)

print(f"Ridge Coefficients: {ridge.coef_}")
print(f"Train R²: {train_score:.4f}")
print(f"Test R²: {test_score:.4f}")
```

Tìm Alpha tốt nhất với Cross Validation:

```
from sklearn.linear_model import RidgeCV
# Test nhiều alpha values
alphas = np.logspace(-4, 4, 100) # 10^-4 đến 10^4
# RidgeCV tự động tìm best alpha qua CV
ridge_cv = RidgeCV(alphas=alphas, cv=5, scoring='r2')
ridge_cv.fit(X_train, y_train)
print(f"Best Alpha: {ridge_cv.alpha_:.4f}")
print(f"Best CV Score: {ridge_cv.score(X_test, y_test):.4f}")
# Visualize coefficients vs alpha
plt.figure(figsize=(10, 6))
coefs = []
for alpha in alphas:
  ridge = Ridge(alpha=alpha)
  ridge.fit(X_train, y_train)
  coefs.append(ridge.coef_)
plt.plot(alphas, coefs)
plt.xscale('log')
plt.xlabel('Alpha (\lambda)', fontsize=12)
plt.ylabel('Coefficients', fontsize=12)
plt.title('Ridge Coefficients vs Regularization Strength', fontsize=14)
plt.axvline(ridge_cv.alpha_, color='red', linestyle='--', label='Best Alpha')
```

plt.legend()
plt.grid(True, alpha=0.3)
plt.show()

Lưu ý quan trọng: Luôn **scale features** (StandardScaler) trước khi dùng regularization! Nếu không, features với scale lớn sẽ bị penalize nhiều hơn một cách không công bằng.

LASSO Regression (L1 Regularization)

LASSO = Least Absolute Shrinkage and Selection Operator

Công thức Cost Function:

$$J(eta) = \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^p |eta_j|$$

$$J(eta) = ext{MSE} + \lambda \cdot ||eta||_1$$

Trong đó:

• $||\beta||_1$ = sum of absolute values of coefficients (L1 norm)

Đặc điểm của LASSO:

- Penalize giá trị tuyệt đối của coefficients
- Set coefficients = 0 cho features không quan trọng
- Automatic feature selection
- Tạo sparse models (nhiều coefficients = 0)
- Interpretable: Dễ hiểu model hơn vì chỉ giữ lại features quan trọng
- Phù hợp khi có nhiều features không cần thiết

Code Implementation:

from sklearn.linear_model import Lasso, LassoCV from sklearn.preprocessing import StandardScaler

```
import numpy as np
import matplotlib.pyplot as plt
# Tạo data với một số features không quan trọng
np.random.seed(42)
X = np.random.randn(100, 10) # 10 features
# Chỉ 3 features đầu thực sự ảnh hưởng đến y
y = 3*X[:, 0] + 2*X[:, 1] + X[:, 2] + np.random.randn(100) * 0.5
# Scale features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Split
X_train, X_test, y_train, y_test = train_test_split(
  X_scaled, y, test_size=0.2, random_state=42
)
# LASSO Regression
lasso = Lasso(alpha=0.1)
lasso.fit(X_train, y_train)
print("LASSO Coefficients:")
for i, coef in enumerate(lasso.coef_):
  print(f" Feature {i}: {coef:.4f}")
# Đếm số features được giữ lại
non_zero = np.sum(lasso.coef_!= 0)
print(f"\nNumber of features selected: {non_zero} / {len(lasso.coef_)}")
print(f"Test R<sup>2</sup>: {lasso.score(X_test, y_test):.4f}")
```

Tìm Alpha tốt nhất:

```
# LassoCV với cross validation
alphas = np.logspace(-4, 1, 100)
lasso_cv = LassoCV(alphas=alphas, cv=5, random_state=42, max_iter=100
00)
lasso_cv.fit(X_train, y_train)
```

```
print(f"Best Alpha: {lasso_cv.alpha_:.4f}")
print(f"Number of features selected: {np.sum(lasso_cv.coef_ != 0)}")
# Visualize: Coefficients vs Alpha (LASSO Path)
from sklearn.linear_model import lasso_path
alphas_path, coefs_path, _ = lasso_path(X_train, y_train, alphas=alphas)
plt.figure(figsize=(12, 6))
plt.plot(alphas_path, coefs_path.T)
plt.xscale('log')
plt.xlabel('Alpha (\lambda)', fontsize=12)
plt.ylabel('Coefficients', fontsize=12)
plt.title('LASSO Path: Coefficients vs Regularization Strength', fontsize=14)
plt.axvline(lasso_cv.alpha_, color='red', linestyle='--',
       linewidth=2, label='Best Alpha (CV)')
plt.legend([f'Feature {i}' for i in range(X.shape[1])] + ['Best Alpha'])
plt.grid(True, alpha=0.3)
plt.show()
```

Elastic Net (L1 + L2 Regularization)

Công thức Cost Function:

$$J(eta) = ext{MSE} + \lambda_1 \sum_{j=1}^p |eta_j| + \lambda_2 \sum_{j=1}^p eta_j^2$$

Hoặc viết theo dạng có mixing parameter α :

$$J(eta) = ext{MSE} + \lambda \left(lpha ||eta||_1 + rac{1-lpha}{2} ||eta||_2^2
ight)$$

Trong đó:

- α = mixing parameter (0 $\leq \alpha \leq$ 1)
 - \circ α = 0: Pure Ridge (L2)

- \circ α = 1: Pure LASSO (L1)
- $0 < \alpha < 1$: Combination (thường dùng)

Đặc điểm của Elastic Net:

- Combines penalties từ cả L1 và L2
- Feature selection như LASSO (set coefficients = 0)
- Stability như Ridge (coefficients ít fluctuate hơn)
- Tốt khi có correlated features
- Flexible: Tune được α để điều chỉnh L1/L2 ratio

Code Implementation:

from sklearn.linear_model import ElasticNet, ElasticNetCV from sklearn.preprocessing import StandardScaler import numpy as np

```
# Tao data với correlated features
np.random.seed(42)
X = np.random.randn(100, 10)
# Tao correlation: Feature 4 tương tư Feature 0
X[:, 4] = X[:, 0] + np.random.randn(100) * 0.1
# Tao correlation: Feature 5 tương tự Feature 1
X[:, 5] = X[:, 1] + np.random.randn(100) * 0.1
y = 3*X[:, 0] + 2*X[:, 1] + X[:, 2] + np.random.randn(100) * 0.5
# Scale
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Split
X_train, X_test, y_train, y_test = train_test_split(
  X_scaled, y, test_size=0.2, random_state=42
)
# Elastic Net với alpha (λ) và l1_ratio (α trong công thức)
elastic_net = ElasticNet(
                # regularization strength (λ)
  alpha=0.1,
  I1_ratio=0.5, # mixing parameter (\alpha): 0.5 = equal L1 and L2
  random_state=42
elastic_net.fit(X_train, y_train)
print("Elastic Net Coefficients:")
for i, coef in enumerate(elastic_net.coef_):
  print(f" Feature {i}: {coef:.4f}")
print(f"\nNon-zero coefficients: {np.sum(elastic_net.coef_!= 0)}")
print(f"Test R<sup>2</sup>: {elastic_net.score(X_test, y_test):.4f}")
```

Tìm hyperparameters tốt nhất:

Ba cách hiểu Regularization

Regularization có **3 interpretations** khác nhau, tất cả đều đúng và bổ sung cho nhau!

1. Analytical Interpretation (Toán học)

Thêm penalty term vào cost function:

$$\min_{\beta} \left\{ \mathrm{MSE}(\beta) + \lambda \cdot \mathrm{Penalty}(\beta) \right\}$$

- Trade-off giữa fit data và keep coefficients small

2. **Geometric Interpretation** (Hình học)

Constraint optimization problem:

$$\min_{eta} \mathrm{MSE}(eta) \quad \mathrm{subject \ to} \quad ||eta|| \leq C$$

Ridge: Constraint region là sphere (L2 ball)

- LASSO: Constraint region là diamond (L1 ball)
- Solution = điểm MSE contours chạm constraint region

3. Probabilistic Interpretation (Xác suất)

Regularization = **Prior distribution** trên coefficients

Ridge = Gaussian prior:

$$eta_j \sim \mathcal{N}(0, au^2)$$

• Believe coefficients are normally distributed around 0

LASSO = Laplace prior:

$$p(\beta_j) \propto \exp(-\lambda |\beta_j|)$$

Believe coefficients have sharp peak at 0 (sparse)

Final Recommendations

Mẹo nhỏ:

- ♦ Start with Ridge nếu không chắc
- → Try LASSO nếu có nhiều features (>50) và nghĩ nhiều features không quan trọng
- ♦ Use Elastic Net nếu features correlated hoặc LASSO không stable
- ♦ Always use Cross Validation để chọn hyperparameters
- ◆ Always scale features trước khi regularize!