TDT4171 - Assignment 2

Task 1

 $Fish_t$: Fish nearby $Bird_t$: Birds nearby

 $e_1 = \{birds \ nearby\}$

 $e_2 = \{birds \ nearby\}$

 $e_3 = \{ no \ birds \ neabry \}$

 $e_4 = \{ birds \ neaby \}$

 $e_5 = \{ no \ birds \ neaby \}$

 $e_6 = \{ birds neaby \}$

$$P(Fish_t) = \begin{pmatrix} 0.50\\ 0.50 \end{pmatrix}$$

$$T = P(Fish_t|Fish_{t-1}) = \begin{pmatrix} 0.80 & 0.20 \\ 0.30 & 0.70 \end{pmatrix}$$

$$\boldsymbol{B} = P(Bird_t|Fish_t) = \begin{pmatrix} 0.75 & 0.25 \\ 0.20 & 0.80 \end{pmatrix}$$

Problem a)

Problem b)

$$P(X_t|e_{1:t}), for t = 1, 2, 3, 4, 5, 6.$$

This is filtering, which shows the posterior distribution over the most recent state, given all evidence up to t = 5. Uses only past data in estimation. Solved by *filtering.py*.

Day	True	False
1	0.8209	0 . 1791
2	0.902	0.098
3	0.4852	0.5148
4	0.8165	0.1835
5	0.4313	0.5687
6	0.7997	0.2003

Problem c)

$$P(X_t|e_{1:4}), for t = 7, ..., 30.$$

This is prediction, which shows the posterior distribution over the future states for t = 7, ..., 30. This is done using the evidence up to data, i.e. for t = 1, ..., 5. Solved by *prediction.py*.

Day	True	False
7	0.6999	0.3001
8	0.6499	0.3501
9	0.625	0.375
10	0.6125	0.3875
11	0.6062	0.3938
12 13 14 15 16	0.6031 0.6016 0.6008 0.6004 0.6002 0.6001	0.3969 0.3984 0.3992 0.3996 0.3998 0.3999
18	0.6	0.4
19	0.6	0.4
20	0.6	0.4
21	0.6	0.4
22	0.6	0.4
23 24 25 26 27 28	0.6 0.6 0.6 0.6 0.6	0.4 0.4 0.4 0.4 0.4
29	0.6	0.4
30	0.6	0.4

Problem d)

$$P(X_t|e_{1:6}), for t = 0, 1, 2, 3, 4, 5.$$

This is smoothing. This shows the distribution of the past states for t = 1,...5, given evidence up present time, i.e. t = 5. Uses both past and present data in estimation. Therefore more evidence is incorporated, and a better estimation of the state at the time is available. Solved by *smoothing.py*.

Day	True	False
0 1 2 3 4		0.0863 0.0948 0.3153 0.1789

Problem e)

$$\mathop{\arg\max}_{x_1,\dots,x_{t-1}} P(x_1,\dots x_{t-1},X_t|e_{1:t})\,, for \ t=1,\dots,6$$

This is the most likely sequence, which is the sequence of states that is most likely to have generated the observations. I.e. given our observations, what is the most likely sequence of hidden states that led to the observations. Solved by *mls.py*.

Day	True	False		
1 2 3 4 5 6	0.375 0.225 0.045 0.027 0.0054 0.0032	0.0043		
Most likely sequence				
Day 2: Day 3: Day 4: Day 5:				

Task 2

 $e_1 = \{animal\ tracks, food\ gone\}$

 $e_2 = \{ no \ animal \ tracks, food \ gone \}$

 $e_3 = \{ no \ animal \ tracks, food \ not \ gone \}$

 $e_4 = \{ animal \ tracks, food \ not \ gone \}$

$$P(Animal_t) = \begin{pmatrix} 0.7\\ 0.3 \end{pmatrix}$$

$$P(Animal_t \mid Animal_{t-1}) = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{pmatrix}$$

$$P(AnimalTracks_t | Animal_t) = \begin{pmatrix} 0.7 & 0.3 \\ 0.2 & 0.8 \end{pmatrix}$$

$$P(FoodGone_t|Animal_t) = \begin{pmatrix} 0.3 & 0.7 \\ 0.1 & 0.9 \end{pmatrix}$$

Problem a)

Animal _{t-1}	P(Animal _t)	
true	0.8	
false	0.3	

Animal _t	P(AnimalTracks _t)
true	0.7
false	0.3

Animal _t		P(FoodGone _t)
	true	0.3
	false	0.1

Animal _t	P(AnimalTracks _t , FoodGone _t)
true	0.24
false	0.14

 $AnimalTracks_t \perp \perp FoodGone_t \mid \{Animal_t\}$

- $\rightarrow P(AnimalTracks_t, FoodGone_t \mid Animal_t) =$
- $= P(AnimalTracks_t | Animal_t) * P(FoodGone_t | Animal_t)$

$$= \begin{pmatrix} 0.7 & 0.3 \\ 0.2 & 0.8 \end{pmatrix} \cdot \begin{pmatrix} 0.3 & 0.7 \\ 0.1 & 0.9 \end{pmatrix} = \begin{pmatrix} 0.24 & 0.76 \\ 0.14 & 0.86 \end{pmatrix}$$

$$T = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{pmatrix}$$

Problem b)

$$P(X_t|e_{1:t}), for t = 1, 2, 3, 4.$$

Observations on matrix form:

$$O_1 = \begin{pmatrix} 0.7 & 0 \\ 0 & 0.2 \end{pmatrix} \cdot \begin{pmatrix} 0.3 & 0 \\ 0 & 0.1 \end{pmatrix} = \begin{pmatrix} 0.21 & 0 \\ 0 & 0.02 \end{pmatrix}$$

$$O_2 = \begin{pmatrix} 0.3 & 0 \\ 0 & 0.8 \end{pmatrix} \cdot \begin{pmatrix} 0.3 & 0 \\ 0 & 0.1 \end{pmatrix} = \begin{pmatrix} 0.09 & 0 \\ 0 & 0.08 \end{pmatrix}$$

$$O_3 = \begin{pmatrix} 0.3 & 0 \\ 0 & 0.8 \end{pmatrix} \cdot \begin{pmatrix} 0.7 & 0 \\ 0 & 0.9 \end{pmatrix} = \begin{pmatrix} 0.21 & 0 \\ 0 & 0.72 \end{pmatrix}$$

$$O_4 = \begin{pmatrix} 0.7 & 0 \\ 0 & 0.2 \end{pmatrix} \cdot \begin{pmatrix} 0.7 & 0 \\ 0 & 0.9 \end{pmatrix} = \begin{pmatrix} 0.49 & 0 \\ 0 & 0.18 \end{pmatrix}$$

This is filtering \rightarrow Using the forward algorithm.

$$(f_{0:0})^T = \begin{pmatrix} 0.7000 \\ 0.3000 \end{pmatrix}$$

$$(f_{0:1})^T = c_1^{-1} \begin{pmatrix} 0.21 & 0 \\ 0 & 0.02 \end{pmatrix} \cdot \begin{pmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{pmatrix} \cdot \begin{pmatrix} 0.7000 \\ 0.3000 \end{pmatrix} = c_1^{-1} \begin{pmatrix} 0.1365 \\ 0.0070 \end{pmatrix} = \begin{pmatrix} 0.9512 \\ 0.0488 \end{pmatrix}$$

$$(f_{0:2})^T = c_1^{-1} \begin{pmatrix} 0.09 & 0 \\ 0 & 0.08 \end{pmatrix} \cdot \begin{pmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{pmatrix} \cdot \begin{pmatrix} 0.9512 \\ 0.0488 \end{pmatrix} = c_1^{-1} \begin{pmatrix} 0.0698 \\ 0.0180 \end{pmatrix} = \begin{pmatrix} 0.7954 \\ 0.2046 \end{pmatrix}$$

$$(f_{0:3})^T = c_1^{-1} \begin{pmatrix} 0.21 & 0 \\ 0 & 0.72 \end{pmatrix} \cdot \begin{pmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{pmatrix} \cdot \begin{pmatrix} 0.7954 \\ 0.2046 \end{pmatrix} = c_1^{-1} \begin{pmatrix} 0.1465 \\ 0.2176 \end{pmatrix} = \begin{pmatrix} 0.4024 \\ 0.5976 \end{pmatrix}$$

$$(f_{0:4})^T = c_1^{-1} \begin{pmatrix} 0.49 & 0 \\ 0 & 0.18 \end{pmatrix} \cdot \begin{pmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{pmatrix} \cdot \begin{pmatrix} 0.4024 \\ 0.5976 \end{pmatrix} = c_1^{-1} \begin{pmatrix} 0.2456 \\ 0.0897 \end{pmatrix} = \begin{pmatrix} 0.7323 \\ 0.2677 \end{pmatrix}$$

Problem c)

$$P(X_t|e_{1:4}), for t = 5,6,7,8.$$

From problem c) we have that

$$(f_{0:4})^T = \begin{pmatrix} 0.7323 \\ 0.2677 \end{pmatrix}$$

$$t_5 \rightarrow \begin{pmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{pmatrix} \cdot \begin{pmatrix} 0.7323 \\ 0.2677 \end{pmatrix} = \begin{pmatrix} 0.6661 \\ 0.3339 \end{pmatrix}$$

$$t_6 \rightarrow \begin{pmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{pmatrix} \cdot \begin{pmatrix} 0.6661 \\ 0.3339 \end{pmatrix} = \begin{pmatrix} 0.6331 \\ 0.3669 \end{pmatrix}$$

$$t_7 \rightarrow \begin{pmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{pmatrix} \cdot \begin{pmatrix} 0.6331 \\ 0.3669 \end{pmatrix} = \begin{pmatrix} 0.6165 \\ 0.3835 \end{pmatrix}$$

$$t_8 \rightarrow \begin{pmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{pmatrix} \cdot \begin{pmatrix} 0.6165 \\ 0.3835 \end{pmatrix} = \begin{pmatrix} 0.6083 \\ 0.3917 \end{pmatrix}$$

Problem d)

$$\lim_{t \to \infty} P(X_t | e_{1:4}) = \langle 0.6, 0.4 \rangle .$$

Stationary transition matrix

$$T = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{pmatrix}$$

$$0.8 \cdot \theta_1 + 0.3 \cdot \theta_2 = \theta_1 \tag{1}$$

$$0.2 \cdot \theta_1 + 0.7 \cdot \theta_2 = \theta_2 \tag{2}$$

$$\theta_1 + \theta_2 = 1 \tag{3}$$

$$(3) \rightarrow \theta_1 = 1 - \theta_2$$

$$(1) \rightarrow \theta_1 = 1.5 \cdot \theta_2$$

$$\rightarrow (\theta_1, \theta_2) = (0.6, 0.4)$$

 \rightarrow Converges to $\langle 0.6, 0.4 \rangle$.

Problem e)

$$P(X_t|e_{1\cdot 4}), for t = 0, 1, 2, 3.$$

Observations on matrix form:

$$O_{1} = \begin{pmatrix} 0.7 & 0 \\ 0 & 0.2 \end{pmatrix} \cdot \begin{pmatrix} 0.3 & 0 \\ 0 & 0.1 \end{pmatrix} = \begin{pmatrix} 0.21 & 0 \\ 0 & 0.02 \end{pmatrix}$$

$$O_{2} = \begin{pmatrix} 0.3 & 0 \\ 0 & 0.8 \end{pmatrix} \cdot \begin{pmatrix} 0.3 & 0 \\ 0 & 0.1 \end{pmatrix} = \begin{pmatrix} 0.09 & 0 \\ 0 & 0.08 \end{pmatrix}$$

$$O_{3} = \begin{pmatrix} 0.3 & 0 \\ 0 & 0.8 \end{pmatrix} \cdot \begin{pmatrix} 0.7 & 0 \\ 0 & 0.9 \end{pmatrix} = \begin{pmatrix} 0.21 & 0 \\ 0 & 0.72 \end{pmatrix}$$

$$O_4 = \begin{pmatrix} 0.7 & 0 \\ 0 & 0.2 \end{pmatrix} \cdot \begin{pmatrix} 0.7 & 0 \\ 0 & 0.9 \end{pmatrix} = \begin{pmatrix} 0.49 & 0 \\ 0 & 0.18 \end{pmatrix}$$

This is smoothing → Using the results from forward algorithm

For backward phase we start with:

$$(b_{4:4})^{T} = \begin{pmatrix} 1.0000 \\ 1.0000 \end{pmatrix}$$

$$(b_{3:4})^{T} = \alpha \begin{pmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{pmatrix} \cdot \begin{pmatrix} 0.49 & 0 \\ 0 & 0.18 \end{pmatrix} \cdot \begin{pmatrix} 1.0000 \\ 1.0000 \end{pmatrix} = \alpha \begin{pmatrix} 0.4460 \\ 0.2240 \end{pmatrix} = \begin{pmatrix} 0.6657 \\ 0.3343 \end{pmatrix}$$

$$(b_{2:4})^{T} = \alpha \begin{pmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{pmatrix} \cdot \begin{pmatrix} 0.21 & 0 \\ 0 & 0.72 \end{pmatrix} \cdot \begin{pmatrix} 0.6657 \\ 0.3343 \end{pmatrix} = \alpha \begin{pmatrix} 0.1840 \\ 0.1965 \end{pmatrix} = \begin{pmatrix} 0.4837 \\ 0.5163 \end{pmatrix}$$

$$(b_{1:4})^{T} = \alpha \begin{pmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{pmatrix} \cdot \begin{pmatrix} 0.09 & 0 \\ 0 & 0.08 \end{pmatrix} \cdot \begin{pmatrix} 0.4837 \\ 0.5263 \end{pmatrix} = \alpha \begin{pmatrix} 0.0472 \\ 0.0376 \end{pmatrix} = \begin{pmatrix} 0.5566 \\ 0.4434 \end{pmatrix}$$

$$(b_{0:4})^{T} = \alpha \begin{pmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{pmatrix} \cdot \begin{pmatrix} 0.21 & 0 \\ 0 & 0.02 \end{pmatrix} \cdot \begin{pmatrix} 0.5566 \\ 0.4434 \end{pmatrix} = \alpha \begin{pmatrix} 0.0961 \\ 0.0296 \end{pmatrix} = \begin{pmatrix} 0.7647 \\ 0.2353 \end{pmatrix}$$

Finally, the smoothed probabilities are calculated using the forward and backward probabilities:

$$(\gamma_0)^T = \alpha \begin{pmatrix} 0.7000 \\ 0.3000 \end{pmatrix} \circ \begin{pmatrix} 0.7647 \\ 0.2353 \end{pmatrix} = \alpha \begin{pmatrix} 0.5353 \\ 0.0706 \end{pmatrix} = \begin{pmatrix} 0.8835 \\ 0.1165 \end{pmatrix}$$

$$(\gamma_1)^T = \alpha \begin{pmatrix} 0.9512 \\ 0.0488 \end{pmatrix} \circ \begin{pmatrix} 0.5566 \\ 0.4434 \end{pmatrix} = \alpha \begin{pmatrix} 0.5294 \\ 0.0216 \end{pmatrix} = \begin{pmatrix} 0.9607 \\ 0.0393 \end{pmatrix}$$

$$(\gamma_2)^T = \alpha \begin{pmatrix} 0.7954 \\ 0.2046 \end{pmatrix} \circ \begin{pmatrix} 0.4837 \\ 0.5163 \end{pmatrix} = \alpha \begin{pmatrix} 0.3847 \\ 0.1056 \end{pmatrix} = \begin{pmatrix} 0.7846 \\ 0.2154 \end{pmatrix}$$

$$(\gamma_3)^T = \alpha \begin{pmatrix} 0.4024 \\ 0.5976 \end{pmatrix} \circ \begin{pmatrix} 0.6657 \\ 0.3343 \end{pmatrix} = \alpha \begin{pmatrix} 0.2678 \\ 0.1998 \end{pmatrix} = \begin{pmatrix} 0.5727 \\ 0.4273 \end{pmatrix}$$

$$(\gamma_4)^T = \alpha \begin{pmatrix} 0.7323 \\ 0.2677 \end{pmatrix} \circ \begin{pmatrix} 1.0000 \\ 1.0000 \end{pmatrix} = \alpha \begin{pmatrix} 0.7323 \\ 0.2677 \end{pmatrix} = \begin{pmatrix} 0.7323 \\ 0.2677 \end{pmatrix}$$