Temps d'arrêt

[M. Gubinelli - Controle des chaines de Markov - M1 MMD 2009/2010 - 20091020 - poly 2 - v.1]

Temps d'arrêt et propriété forte de Markov

1 Temps d'arrêt

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé muni d'une filtration $(\mathcal{F}_n)_{n\geqslant 0}$ (suite croissante des tribus) Une v.a. $T: \Omega \to \tilde{\mathbb{N}} = \mathbb{N} \cup \{+\infty\}$ est appelé un temps d'arrêt (pour la filtration $(\mathcal{F}_n)_{n\geqslant 0}$) ssi $\{T\leqslant n\}\in \mathcal{F}_n$ pour tout $n\geqslant 0$. On utilisera la convention inf $\emptyset = +\infty$.

Exemple 1. Soit $(X_n)_{n\geqslant 0}$ un processus stochastique à valeurs dans un ensemble \mathcal{X} discret et soit $(\mathcal{F}_n = \sigma(X_0, ..., X_n))_{n\geqslant 0}$ la filtration associé au processus

- Pour tout $x \in \mathcal{X}$, le temps de premier passage en $x : T_x = \inf\{n \ge 1 : X_n = x\}$ est un t.a.
- Pour tout $A \subset \mathcal{X}$, le temps d'atteint de $A : T_A = \inf\{n \ge 1 : X_n \in A\}$ est un t.a.
- Si $A \subset \mathcal{X}$ alors la v.a. $L_A = \sup\{n \ge 1 : X_n \in A\}$ n'est pas en général un t.a.

Remarque 2. Une définition équivalente de temps d'arrêt est que T est un t.a. ssi $\{T = n\} \in \mathcal{F}_n$ pour tout $n \ge 0$.

Si T est un t.a. on a que $\{T > n\} \in \mathcal{F}_n$, $\{T \geqslant n\} \in \mathcal{F}_{n-1}$, $\{T < n\} \in \mathcal{F}_{n-1}$, $\{T = +\infty\} \in \mathcal{F}_{\infty} = \sigma(\mathcal{F}_1, \mathcal{F}_2, \dots)$.

Définition 3. Si T est un t.a. on peut définir la tribu \mathcal{F}_T par

$$\mathcal{F}_T = \{ A \in \mathcal{F} : A \cap \{ T = n \} \in \mathcal{F}_n \text{ pour tout } n \geqslant 0 \}.$$

Exercice 1. Vérifier que \mathcal{F}_T est bien une tribu.

Proposition 4. Si S, T sont deux t.a. et $S(\omega) \leq T(\omega)$ pour tout $\omega \in \Omega$ alors $F_S \subseteq \mathcal{F}_T$.

Démonstration. Exercice.

Théorème 5. Soit $(X_n)_{n\geqslant 1}$ une suite iid tel que X_1 soit intégrable et T un temps d'arrêt intégrable pour la filtration associé à $(X_n)_{n\geqslant 1}$ et soit $S_n=X_1+\cdots+X_n$. Alors

$$\mathbb{E}[S_T] = \mathbb{E}[T]\mathbb{E}[X_1].$$

Démonstration. Par Fubini et par indépendance de X_k par rapport à \mathcal{F}_{k-1} on a que

$$\mathbb{E}\left[\sum_{k\geqslant 1}|X_k|\mathbb{I}_{k\leqslant T}\right] = \sum_{k\geqslant 1}\mathbb{E}\left[|X_k|\underbrace{\mathbb{I}_{k\leqslant T}}_{\in\mathcal{F}_{k-1}}\right] = \sum_{k\geqslant 1}\mathbb{E}\left[|X_k|\right]\mathbb{E}\left[\mathbb{I}_{k\leqslant T}\right]$$
$$= \mathbb{E}\left[|X_1|\right]\mathbb{E}\left[\sum_{k\geqslant 1}\mathbb{I}_{k\leqslant T}\right] = \mathbb{E}\left[|X_1|\right]\mathbb{E}\left[T\right]$$

Donc la fonction $\Omega \times \mathbb{N} \ni (\omega, k) \mapsto X_k(\omega) \mathbb{I}_{k \leqslant T(\omega)}$ est intégrable sur $\Omega \times \mathbb{N}$ par rapport à la mesure $\mathbb{P} \times \mathbb{Q}$ où \mathbb{Q} est la mesure de comptage sur \mathbb{N} ($\mathbb{Q}(\{k\}) = 1$ pour tout $k \in \mathbb{N}$), on peut refaire le calcul précèdent sans mettre la valeur absolue et on obtient

$$\mathbb{E}[S_T] = \mathbb{E}[\sum_{k \geqslant 1} X_k \mathbb{I}_{k \leqslant T}] = \sum_{k \geqslant 1} \mathbb{E}[X_1] \mathbb{E}[\mathbb{I}_{k \leqslant T}] = \mathbb{E}[X_1] \mathbb{E}[T].$$

2 Section 1

Remarque 6. L'importance de l'identité de Wald est dans le fait que T ne doit pas être indépendant de la suite $(X_n)_{n\geqslant 1}$. Par exemple on peut prendre $T=\inf\{n\geqslant 1\colon X_n>\alpha\}$ pour un certain $\alpha\in\mathbb{R}$ donnée. Alors est facile de montrer que conditionnellement à $\{T=n\}$ le vecteur (X_1,\ldots,X_n) est un vecteur iid où chaque composante à la loi de la v.a. X_1 conditionnée à l'événement $\{X_1\leqslant\alpha\}$.

Exemple 7. (PROMENADE ALÉATOIRE). Soit $(X_n)_{n\geqslant 1}$ une suite iid avec $\mathbb{P}(X_n=\pm 1)=1/2$. Fixons a<0< b et $a,b\in\mathbb{Z}$. Soit $S_n=X_1+\cdots+X_n$ et $N=\inf\{n>1: S_n\not\in]a,b[\}$. N est un t.a. pour la filtration associé aux $(X_n)_{n\geqslant 0}$. Vérifions que est intégrable. Soit L=b-a>0. Par la propriété de Markov de la suite $(S_n)_{n\geqslant 0}$ (avec $S_0=0$) et l'homogénéité on a que

$$\begin{split} \mathbb{P}(N > (n+1)L) &= \mathbb{P}(\{S_1, ..., S_{nL}\} \in]a, b[, \{S_{nL+1}, ..., S_{(n+1)L}\} \in]a, b[) \\ &= \sum_{x \in [a,b]} \mathbb{P}(\{S_1, ..., S_{nL}\} \in]a, b[, \{S_{nL+1}, ..., S_{(n+1)L}\} \in]a, b[, S_{nL} = x) \\ &= \sum_{x \in [a,b]} \mathbb{P}(\{S_1, ..., S_{nL}\} \in]a, b[, S_{nL} = x) \mathbb{P}(\{S_{nL+1}, ..., S_{(n+1)L}\} \in]a, b[|S_{nL} = x) \\ &= \sum_{x \in [a,b]} \mathbb{P}(\{S_1, ..., S_{nL}\} \in]a, b[, S_{nL} = x) \mathbb{P}(\{S_1, ..., S_L\} \in]a, b[|S_0 = x) \end{split}$$

mais

$$\mathbb{P}(\{S_1, ..., S_L\} \notin]a, b[|S_0 = x) \geqslant \mathbb{P}(S_L \notin]a, b[|S_0 = x) \geqslant \mathbb{P}(X_1 = ... = X_L = +1) = 2^{-L}$$

car la distance de $x \in [a, b]$ de l'ensemble $[a, b]^c$ est au plus L. Cela donne

$$\mathbb{P}(N > (n+1)L) \leq \sum_{x \in [a,b]} \mathbb{P}(\{S_1, ..., S_{nL}\} \in]a, b[, S_{nL} = x)(1 - 2^{-L})$$
$$= \mathbb{P}(\{S_1, ..., S_{nL}\} \in]a, b[)(1 - 2^{-L}) = \mathbb{P}(N > nL)(1 - 2^{-L})$$

et par récurrence on obtient que $\mathbb{P}(N > nL) \leq (1 - 2^{-L})^n$. Pour tout $k \geq 0$ soit n tel que $nL \leq k < (n+1)L$:

$$\mathbb{P}(N > k) \leqslant \mathbb{P}(N > nL) \leqslant (1 - 2^{-L})^n \leqslant (1 - 2^{-L})^{-1} (1 - 2^{-L})^{k/L} = (1 - 2^{-L})^{-1} c^{k/L}$$

avec $c = (1 - 2^{-L})^{1/L} < 1$ et donc

$$\mathbb{E}[N] = \mathbb{E}[\sum_{k \, \geqslant \, 0} \, \mathbb{I}_{k \, < \, N}] = \sum_{k \, \geqslant \, 0} \, \mathbb{P}(k \, < \, N) \, < \, + \, \infty$$

ce qui montre l'integrabilité de N. Par l'identité de Wald on a donc

$$\mathbb{E}[S_N] = \mathbb{E}[X_1]\mathbb{E}[N] = 0$$

car $\mathbb{E}[X_1] = 0$. Etant que $N < +\infty$ p.s. la v.a. S_N peut prendre seulement le deux valeurs a ou b:

$$0 = \mathbb{E}[S_N] = a\mathbb{P}(S_N = a) + b\mathbb{P}(S_N = b).$$

Alors

$$\mathbb{P}(S_N = a) = \frac{b}{b-a}, \qquad \mathbb{P}(S_N = b) = \frac{-a}{b-a}$$

et si l'on note $T_x = \inf\{n \ge 1: S_n = x\}$ le temps d'atteinte de x on a que pour tout a < 0 et b > 0

$$\mathbb{P}(T_a < +\infty) \geqslant \mathbb{P}(T_a < T_b) = \mathbb{P}(S_N = a) = \frac{b}{b-a}.$$

En prenant la limite pour $b \to +\infty$ on obtient que $\mathbb{P}(T_a < +\infty) = 1$ pour tout a < 0. En remarquant que le processus $(-S_n)_{n\geqslant 1}$ a la même loi que $(S_n)_{n\geqslant 0}$ (si $S_0 = 0$) on a aussi que $\mathbb{P}(T_x < +\infty) = \mathbb{P}(T_{-x} < +\infty)$ pour tout $x \in \mathbb{Z}$ et donc que $T_x < +\infty$ p.s. pour tout $x \neq 0$. De plus si $x \neq 0$ alors on doit avoir $\mathbb{E}[T_x] = +\infty$ car autrement par Wald on obtiendrais

$$x = \mathbb{E}[S_{T_x}] = \mathbb{E}[T_x]\mathbb{E}[X_1] = 0$$

 $\operatorname{car} S_{T_x} = x \text{ p.s.}$

2 Propriete de Markov forte

Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov homogène à valeurs dans l'espace discret M et de matrice de transition P. Si on considère la filtration $(\mathcal{F}_n=\sigma(X_0,\,...,\,X_n))_{n\geqslant 0}$ la propriété de Markov s'écrit

$$\mathbb{E}[\varphi(X_n,...,X_{n+k})|\mathcal{F}_n] = \mathbb{E}[\varphi(X_n,...,X_{n+k})|X_n] = \mathbb{E}_{X_k}[\varphi(X_0,...,X_k)].$$

On veut montrer la generalisation suivante de cette equation ou on remplace n par un temps aleatoire.

Théorème 8. (PROPRIETE DE MARKOV FORTE)

Soit T un t.a. Pour tout $x \in M$, conditionnelement à l'evenement $\{T < +\infty, X_T = x\}$ le processus $(X_{T+n})_{n\geq 0}$ est independant de \mathcal{F}_T et est une chaîne de Markov de matrice de transition P issue de x. En particulier sur $\{T < +\infty\}$ on a que

$$\mathbb{E}[\varphi((X_{T+n})_{n\geq 0})|\mathcal{F}_T] = \mathbb{E}_{X_T}[\varphi((X_n)_{n\geq 0})]. \tag{1}$$

pour tout $\varphi \colon \mathbb{M}^{\mathbb{Z}} \to \mathbb{R}$ mesurable et tel que $\varphi((X_{T+n})_{n \geq 0})$ soit integrable.

Démonstration. On doit montrer que pour des evenements A de la forme

$$A = \{X_T = y_0, \dots, X_{T+n} = y_n\}$$
 (2)

pour quelques $y_0, ..., y_n \in M$ et $B \in \mathcal{F}_T$ on a que

$$\mathbb{P}(A, B | T < +\infty, X_T = x) = \mathbb{P}(A | T < +\infty, X_T = x) \mathbb{P}(B | T < +\infty, X_T = x). \tag{3}$$

Or, par la proprieté de Markov usuelle:

$$\mathbb{P}(A, B, T = k, X_T = x) = \mathbb{P}(X_k = y_0, ..., X_{k+n} = y_n, X_k = x, B, T = k)$$

$$= \mathbb{P}(X_k = y_0, ..., X_{k+n} = y_n | X_k = x) \mathbb{P}(X_k = x, B, T = k)$$

$$= \mathbb{P}_x(X_0 = y_0, ..., X_n = y_n) \mathbb{P}(X_k = x, B, T = k)$$

car $B \cap \{T = k\} \in \mathcal{F}_k$. En conditionnant sur la valeur de T on a que

$$\mathbb{P}(A, B | T < +\infty, X_T = x) = \sum_{k \ge 0} \frac{\mathbb{P}(A, B, T = k, X_T = x)}{\mathbb{P}(T < +\infty, X_T = x)}$$

$$= \mathbb{P}_x(X_0 = y_0, ..., X_n = y_n) \sum_{k \ge 0} \frac{\mathbb{P}(X_k = x, B, T = k)}{\mathbb{P}(T < +\infty, X_T = x)}$$

$$= \mathbb{P}_x(X_0 = y_0, ..., X_n = y_n) \mathbb{P}(B | T < +\infty, X_T = x)$$

et en prenant $B=\Omega$ on obtient l'eq. (3). La famille des evenements de la forme (2) est un π -systeme et donc deux mesure que coincident sur ces eventements coincident aussi sur la tribu qu'ils engendre ce que dans notre cas donne $\sigma((X_{T+n})_{n\geqslant 0})$. Pour montrer l'eq. (1) on suppose que $\varphi\geqslant 0$ et on approche la fonction $\varphi((x_n)_{n\geqslant 0})$ par des fonctions simples φ_n de façon monotone: $\varphi_n\nearrow\varphi$. Si $\varphi_n((x_n)_{n\geqslant 0})=\sum_k \lambda_k 1_{(x_n)_{n\geqslant 0}\in E_k}$ alors par l'eq. (3) on a que, sur $\{T<+\infty\}$,

$$\mathbb{E}[\varphi_n((X_{T+n})_{n\geqslant 0})|\mathcal{F}_T] = \sum_k \lambda_k \mathbb{P}((X_{T+n})_{n\geqslant 0} \in E_k|\mathcal{F}_T) = \sum_k \lambda_k \mathbb{P}((X_{T+n})_{n\geqslant 0} \in E_k|X_T)$$
$$= \sum_k \lambda_k \mathbb{P}_{X_T}((X_n)_{n\geqslant 0} \in E_k) = \mathbb{E}_{X_T}[\varphi_n((X_{T+n})_{n\geqslant 0})]$$

à la limite on obtient donc la (1).