Master Theorem

Back to Week 4

1/1 points earned (100%)

Quiz passed!

1/1 points

1.

Mark all the correct statements.

If
$$T(n) = 3T(n/2) + O(n)$$
 then $T(n) = O(n)$.

Correct Response

No, $T(n) \neq O(n)$: T(n) grows as $n^{\log_2 3}$. Since $\log_2 3 > 1$, T(n) grows faster than just n.

If
$$T(n) = 8T(n/2) + O(n^2)$$
 then $T(n) = O(n^4)$.

Correct Response

Yes, $T(n) = O(n^4)$: from the Master theorem, we know that T(n) grows no faster than $n^{\log_2 8} = n^3$. At the same time, n^3 grows slower than n^4 and hence $T(n) = O(n^3)$ and $T(n) = O(n^4)$.

If
$$T(n) = T(n/2) + O(1)$$
 then $T(n) = O(\log n)$.

Correct Response

Yes, $T(n) = O(\log n)$: this is the running time of the binary search algorithm and a recurrence relation it satisfies.

