General ARMA(p,q) models

Shumway and Stoffer: 3.1-3.2

Introduction to autoregressive models

- Autoregression our earlier example of $x_t = x_{t-1} 0.9x_{t-2} + w_t$
- Intuitively, makes forecasting possible an exciting perpective
- More formally, a stationary process

$$x_t = \phi_1 x_{t-1} + \ldots + \phi_p x_{t-p} + \omega_t$$

is an autoregressive process of order p with $\phi_p \neq 0$.

ullet For simplicity, ω_t is Gaussian with mean zero and variance σ^2

Some remarks about an AR(p) model

• Let $\Phi(B)=1-\phi_1B-\phi_2B^2-\phi_pB^p$ be an **autoregressive operator**. It can be viewed as a polynomial in B of order p. Then the autoregressive model of order p can be written concisely as

$$\Phi(B)x_t = w_t$$

• If the mean μ of x_t is not zero, it is useful to center the series and consider the process in terms of $x_t - \mu$, e.g.

$$x_t = \alpha + \phi_1 x_{t-1} + \ldots + \phi_p x_{t-p} + \omega_t$$

where
$$\alpha = \mu(1 - \phi_1 - \ldots - \phi_p)$$

AR(1) process as easy example

• Assume p=1 and consider AR(1) process first for simplicity

$$x_t = \phi x_{t-1} + w_t \tag{1}$$

- If $|\phi| < 1$, (1) allows the infinite representation $x_t = \sum_{j=0}^{\infty} \phi^j w_{t-j}$
- Clearly, the mean of the process is $E x_t = \sum_{j=0}^{\infty} \phi^j E w_{t-j} = 0$.
- Its autocovariance function is

$$\gamma(h) = cov(x_{t+h}, x_t) = \sigma_w^2 \sum_{j=0}^{\infty} \phi^j \phi^{j+h} = \frac{\sigma_w^2 \phi^h}{1 - \phi^2}$$

As a corollary, the autocorrelation function of the AR(1) process is

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)} = \phi^h$$

for all $h \ge 0$

 \bullet Note also that $\rho(h)$ satisfies the recursive relationship $\rho(h)=\phi\rho(h-1),$ $h=1,2,\ldots$

Causality of an autoregressive process

- Representation of the AR(1) process as linear process $\sum_{j=0}^\infty \psi_j w_{t-j}$ is only possible when $|\phi|<1$
- ullet If $|\phi|>1$ we have the process that depends on the **future** and is thus non-causal; more specifically, the solution is

$$x_t = -\sum_{j=1}^{\infty} \phi^{-j} \omega_{t+j}$$

and its autocovariance is $\gamma_x(h) = \sigma_\omega^2 \phi^{-2} \phi^{-h}/(1-\phi^{-2})$

• The above makes it clear that we can define a process $y_t = \phi^{-1}y_{t-1} + v_t$ with v_t iid $N(0, \phi^{-2}\sigma_\omega^2)$ that is stochastically equal to the process x_t ; this suggests there's no need to consider non-causal autoregressive stationary processes

General stationary solution of the AR(p) model

• Represent x_t as a linear process with unknown coefficients:

$$x_t = \sum_{j=0}^{\infty} \psi_j w_{t-j} = \Psi(B) w_t$$

where the polynomial $\Psi(B) = \sum_{j=0}^{\infty} \psi_j w_{t-j}$

From the identity

$$\Phi(B)\Psi(B)w_t = w_t$$

determine the coefficients ψ_i recursively

• As an example, for AR(1) the sequence of equations is

$$\psi_1 - \phi_1 = 0$$

$$\psi_2 - \psi_1 \phi = 0$$

. . .

$$\psi_j - \psi_{j-1}\phi = 0$$

ullet Clearly, $\psi_j=\psi_{j-1}\phi$ and, thus, $\psi_j=\phi^j$

General moving average models MA(q) (moving average of order q)

• The general MA(q) process is defined as

$$x_t = w_t + \theta_1 w_{t-1} + \theta_2 w_{t-2} + \ldots + \theta_q w_{t-q}$$
 (2)

where $\theta_q \neq 0$ and w_t is a white noise

- Again, in general $w_t \sim N(0, \sigma_w^2)$
- Introduce the moving average operator $\Theta(B) = 1 + \theta_1 B + \theta_2 B^2 + \ldots + \theta_q B^q$
- Then, the concise form of (2) is

$$x_t = \Theta(B)w_t$$

An example: MA(1)

Consider

$$x_t = w_t + \theta w_{t-1}$$

• Clearly, $E x_t = 0$; moreover, it is easy to check that the autocovariance function is

$$\gamma(h) = \begin{cases} (1+\theta^2)\sigma_w^2, h = 0\\ \theta\sigma_w^2, h = 1\\ 0, |h| \ge 1 \end{cases}$$

 $\bullet\,$ Note that the autocovariance function of MA(1) cuts off at the lag 1

Non-uniqueness and invertibility of MA models

- It is easy to find out that the MA(1) processes with $\sigma_w^2=1$ and $\theta=5,$ on one hand, and $\sigma_w^2=25$ and $\theta=\frac{1}{5}$ possess the same autocovariance function
- Let us assume these processes are driven by the Gaussian white noise; then, they are $x_t=w_t+\frac{1}{5}w_{t-1},\,w_t\sim iid\,N(0,25)$ and $x_t=v_t+5v_{t-1},\,v_t\sim iid\,N(0,1).$
- All of their finite-dimensional distributions are identical → the processes themselves are identical!!!
- ullet To avoid this, it is necessary to assume that $|\theta|<1$. If this is the case, there is a unique representation of the MA(1) process as

$$w_t = \sum_{j=0}^{\infty} (-\theta)^j x_{t-j}$$

ullet Note that MA(1) process is **Always** stationary.

General invertibility condition

- ullet For general MA(q) processes, it is not easy to state the invertibility condition in terms of the moving average polynomial coefficients
- ullet However, it can be easily done in terms of the *roots* of the polynomial $\Theta(z)$ viewed as a complex variable function
- The MA(q) process is causal if and only if $\Theta(z) \neq 0$ for all $|z| \leq 1$.

Example: a general MA(q) model

- Let $x_t = \Theta(B)\omega_t$ where $\Theta(B) = 1 + \theta_1 B + \ldots + \theta_q B^q$. Clearly, $E \, x_t = 0$
- Moreover,

$$\gamma(h) = cov(x_{t+h}, x_t) = \sigma_w^2 \sum_{j=0}^{q-h} \theta_j \theta_{j+h}$$

for any $0 \le h \le q$ while it is equal to zero for any h > q

The autocorrelation is

$$\rho(h) = \frac{\sigma_w^2 \sum_{j=0}^{q-h} \theta_j \theta_{j+h}}{1 + \theta_1^2 + \dots + \theta_q^2}$$

for any $0 \le h \le q$

• The autocovariance(autocorrelation) that cuts off after q lags is the signature of an MA(q) model

General ARMA (autoregressive moving average) models

• A general ARMA(p,q) model is defined as

$$x_t = \phi_1 x_{t-1} + \ldots + \phi_p x_{t-p} + w_t + \theta_1 w_{t-1} + \ldots + \theta_q w_{t-q}$$

where $\phi_p \neq 0$ and $\theta_q \neq 0$; w_t is a white noise with $\sigma_w^2 > 0$.

In concise form it is

$$\Phi(B)x_t = \Theta(B)w_t$$

Parameter redundancy in ARMA(p,q) models

- ullet It is **always** assumed that the polynomials $\Phi(B)$ and $\Theta(B)$ do not have common factors
- ullet To ensure that the model is *causal* we require that the autoregressive polynomial $\Phi(B)$ does not have any roots inside the unit circle
- ullet To ensure that the model is *invertible* we require, likewise, that the moving average polynomial $\Theta(B)$ does not have any roots inside the unit circle

Causality of ARMA(p,q) models

• The ARMA (p,q) process x_t that satisfies

$$\Phi(B)x_t = \Theta(B)\omega_t$$

is said to be causal when it can be represented as

$$x_t = \sum_{j=0}^{\infty} \psi_j \omega_{t-j} = \Psi(B)\omega_t$$

where
$$\sum_{j=0}^{\infty} |\psi_j| < \infty$$
 and $\Psi(B) = \sum_{j=0}^{\infty} \psi_j B^j$

• **Property** The ARMA(p,q) process x_t is causal if and only if all of the roots of its autoregressive polynomial $\phi(z)$ are outside the unit circle: $\phi(z)=0$ only if |z|>1. In that case, $\psi(z)=\frac{\theta(z)}{\phi(z)}$ for any $|z|\leq 1$

Invertibility of ARMA(p,q) processes

• The ARMA (p,q) x_t process that satisfies

$$\Phi(B)x_t = \Theta(B)\omega_t$$

is said to be invertible when there exists it can be represented as

$$\pi(B)x_t = \omega_t$$

where
$$\pi(B)=\sum_{j=0}^{\infty}\pi_{j}B^{j}$$
 and $\sum_{j=0}^{\infty}|\pi_{j}|<\infty$ and

• **Property** The ARMA(p,q) process x_t is invertible if and only if all of the roots of its moving average polynomial $\theta(z)$ are outside the unit circle: $\theta(z)=0$ only if |z|>1. In that case, $\pi(z)=\frac{\phi(z)}{\pi(z)}$ for any $|z|\leq 1$