Теория типов

Человек, который поспорил на 2 торта \heartsuit

Содержание

1	λ -исчисление	2
	1.1 Введение	. 2
	1.2 Числа Чёрча	
	1.3 Ромбовидное свойство и параллельная редукция	
	1.4 Порядок редукции	
	1.5 Парадокс Карри	
	1.6 Импликационный фрагмент ИИВ	
2	Просто типизированное λ -исчисление	8
	2.1 Исчисление по Карри	. 8
	2.2 Исчисление по Чёрчу	. 9
3	Связь с программированием	11
	3.1 Вывод типа	. 11
4	Интуиционистское исчисление предикатов второго порядка	13
	4.1 Логика второго порядка	. 13
	4.2 Система F	
	4.3 Экзистенциальные тип	

1 λ -исчисление

1.1 Введение

Смысла в этом нет.

Д.Г.

Определение (λ -выражение). λ -выражение — выражение, удовлетворяющее грамматике:

- (а) аппликация левоассоциативна
- (б) абстракция распространяется как можно дальше вправо

Пример.
$$((\lambda z.(z(yz)))(zx)z) = (\lambda z.z(yz))(zx)z$$

Есть понятия связанного и свободного вхождения переменной (аналогично ИП). $\lambda x.A$ связывает все свободные вхождения x в A. Договоримся, что:

- (a) Переменные x, a, b, c.
- (б) Термы (части λ -выражения) X, A, B, C.
- (в) Фиксированные переменные обозначаются буквами из начала алфавита, метапеременные из конца.

Определение (α -эквивалентность). A и B называются α -эквивалентными ($A =_{\alpha} B$), если выполнено одно из следующих условий:

- 1. $A \equiv x$ и $B \equiv x$.
- 2. $A \equiv \lambda x.P, \, B \equiv \lambda y.Q$ и $P_{[x:=t]} =_{\alpha} Q_{[y:=t]},$ где t новая переменная.
- 3. $A \equiv PQ$, $B \equiv RS$ и $P =_{\alpha} R$, $Q =_{\alpha} S$.

Пример. $\lambda x.\lambda y.xy =_{\alpha} \lambda y.\lambda x.yx.$

Доказательство.

$$\lambda y.ty =_{\alpha} \lambda x.tx \implies \lambda x.\lambda y.xy =_{\alpha} \lambda y.\lambda x.yx$$
$$tz =_{\alpha} tz \implies \lambda y.ty =_{\alpha} \lambda x.tx$$

 $tz =_{\alpha} tz$ верно по третьему условию.

Определение (β -редекс). Терм вида ($\lambda a.A$) B называется β -редексом.

$$\Pi p u м e p$$
. В выражении $(\lambda f. \underbrace{(\lambda x. \overline{f(xx)})}_{A_2} \underbrace{(\lambda x. f(xx))}_{B_2}) \underbrace{g}_{B_2}$ два β -редекса.

Определение. Множество λ -термов Λ назовём множеством классов эквивалентности Λ по $(=_{\alpha})$.

Определение (β -редукция). $A \to_{\beta} B$ (состоят в отношении β -редукции), если выполняется одно из условий:

1.
$$A \equiv PQ$$
, $B \equiv RS$ и

либо
$$P \to_{\beta} R$$
 и $Q =_{\alpha} S$ либо $P =_{\alpha} R$ и $Q \to_{\beta} S$

- 2. $A \equiv \lambda x.P, B \equiv \lambda x.Q, P \rightarrow_{\beta} Q$ (x из какого-то класса из Λ).
- 3. $A \equiv (\lambda x.P)Q, B \equiv P_{[x:=Q]}, Q$ свободно для подстановки в P вместо x.

1.2 Числа Чёрча

Хотите знать, что такое истина?

Д.Г.

$$T = \lambda x \lambda y.x$$
$$F = \lambda x \lambda y.y$$
$$Not = \lambda a.aFT$$

Похоже на тип boolean, не правда ли?

Пример.

Not
$$T = (\lambda a.aFT)T \rightarrow_{\beta} TFT = (\lambda x.\lambda y.x)FT \rightarrow_{\beta} (\lambda y.F)T \rightarrow_{\beta} F$$

Можно продолжить:

And =
$$\lambda a.\lambda b.ab$$
F
Or = $\lambda a.\lambda b.a$ Tb

Попробуем определить числа:

Определение (Чёрчевский нумерал).

$$\overline{n} = \lambda f. \lambda x. f^n x$$
, где $f^n x = \begin{cases} f\left(f^{n-1}x\right) & , n > 0 \\ x & , n = 0 \end{cases}$

Пример.

$$\overline{3} = \lambda f. \lambda x. f(f(fx))$$

Несложно определить прибавление единицы к такому нумералу:

$$(+1) = \lambda n.\lambda f.\lambda x.f(nfx)$$

Пример.

$$(+1)\overline{1} = (\lambda n.\lambda f.\lambda x.f(nfx))(\lambda f.\lambda x.fx) \rightarrow_{\beta} \lambda f.\lambda x.f((\lambda f.\lambda x.fx)fx) \twoheadrightarrow_{\beta} \lambda f.\lambda x.f(fx) = \overline{2}$$

Определение (η -эквивалентность).

$$\lambda x.fx =_{\eta} f$$

Аналог из C++: если **int** $f(\textbf{int}\ x)$, то результат её вычисления равен результату вычисления [] (**int** x) { **return** f(x); }.

Арифметические операции:

IsZero =
$$\lambda n.n(\lambda x.F)T$$

IsEven = $\lambda n.n$ Not T
Add = $\lambda a.\lambda b.\lambda f.\lambda x.af(bfx)$
Mul = $\lambda a.\lambda b.a(Add\ b)\overline{0}$
Pow = $\lambda a.\lambda b.b(Mul\ a)\overline{1}$
Pow* = $\lambda a.\lambda b.ba$

Для того, чтобы определить (-1), сначала определим "пару":

$$\langle a, b \rangle = \lambda f. fab$$

First = $\lambda p. Tp$
Second = $\lambda p. Fp$

n раз применим функцию $f(\langle a,b\rangle)=\langle b,b+1\rangle$ и возьмём первый элемент пары:

$$(-1) = \lambda n. \text{First} \left(n \left(\lambda p. \left\langle (\text{Second } p), (+1) \left(\text{Second } p \right) \right\rangle \right) \left\langle \overline{0}, \overline{0} \right\rangle \right)$$

Введём сокращение записи:

$$\lambda xy.A = \lambda x.\lambda y.A$$

Определение (Нормальная форма).

Терм A — нормальная форма (н.ф.), если в нём нет β -редексов. Нормальной формой A называется такой B, что $A \twoheadrightarrow_{\beta} B$, B — н.ф.

 \rightarrow_{β} — транзитивно-рефлексивное замыкание \rightarrow_{β} .

Утверждение 1.1. Существует λ -выражение, не имеющее н.ф.

Определение (Комбинатор). Комбинатор — λ -выражение без свободных переменных.

Определение.

$$\Omega = \omega \omega$$
$$\omega = \lambda x.xx$$

 Ω не имеет нормальной формы.

Определение (Комбинатор неподвижной точки).

$$Y = \lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$$

Определение (β -эквивалентность). $A =_{\beta} B$, если $\exists C : C \twoheadrightarrow_{\beta} A, C \twoheadrightarrow_{\beta} B$

Утверждение 1.2.

$$Yf =_{\beta} f(Yf)$$

Доказательство. (на лекции не давалось)

$$Yf =_{\beta} (\lambda f.(\lambda x.f(xx))(\lambda x.f(xx)))f$$

$$=_{\beta} (\lambda x.f(xx))(\lambda x.f(xx))$$

$$=_{\beta} f((\lambda x.f(xx))(\lambda x.f(xx)))$$

$$=_{\beta} f(Yf)$$

Таким образом, с помощью У-комбинатора можно определять рекурсивные функции.

Пример.

Fact =
$$Y(\lambda f n. \text{IsZero } n \ \overline{1} \ (\text{Mul } n \ (f \ (-1) \ n)))$$

TODO

1.3 Ромбовидное свойство и параллельная редукция

Определение (Ромбовидное свойство (diamond)). G обладает ромбовидным свойством, если какие бы ни были a, b, c, что $aGb, aGc, b \neq c$, найдётся такое d, что bGd и cGd.

 $\Pi pumep.$ (<) на натуральных числах обладает ромбовидным свойством. (>) на натуральных числах не обладает ромбовидным свойством.

β-редукция не обладает ромбовидным свойством.

Пример.

$$a = (\lambda x.xx)(Ia)$$

$$a \to_{\beta} (Ia)(Ia) = b$$

$$a \to_{\beta} (\lambda x.xx)a = c$$

$$b \to_{\beta} (Ia)a \to_{\beta} aa$$

$$b \to_{\beta} a(Ia) \to_{\beta} aa$$

$$c \to_{\beta} aa$$

Нет d, что $b \rightarrow_{\beta} d$ и $c \rightarrow_{\beta} d$.

Теорема 1.3 (Чёрча-Россера). β -редуцируемость обладает ромбовидным свойством.

Лемма 1.4. Если R обладает ромбовидным свойством, то R^* обладает ромбовидным свойством.

Доказательство. (Упражнение) ТООО

- 1. M_1RN_1 и $M_1RM_2...M_{n-1}RM_n \Rightarrow$ есть $N_2...N_n$: $N_1RN_2...N_{n-1}RN_n$ и M_nRN_n .
- 2. Покажем ромбовидное свойство.

Определение (Параллельная β -редукция). $A \rightrightarrows_{\beta} B$

- 1. $A =_{\beta} B$, to $A \rightrightarrows_{\beta} B$
- 2. $A \rightrightarrows_{\beta} B$, to $\lambda x.A \rightrightarrows_{\beta} \lambda x.B$
- 3. $P \rightrightarrows_{\beta} Q$ и $R \rightrightarrows_{\beta} S$, то $PR \rightrightarrows_{\beta} QS$
- 4. $(\lambda x.P)Q \rightrightarrows_{\beta} R_{[x:=S]}$, если $P \rightrightarrows_{\beta} R$ и $Q \rightrightarrows_{\beta} S$.

Утверждение 1.5. (\Rightarrow_{β}) обладает ромбовидным свойством.

Доказательство. (Упражнение) ТООО

Утверждение 1.6. *Если* $A \rightarrow_{\beta} B$, *mo* $A \rightrightarrows_{\beta} B$.

Утверждение 1.7. *Если* A
ightharpoonup B, *mo* A
ightharpoonup B.

Доказательство. (Упражнение) ТООО

При этом, обратное не всегда верно.

Пример.

$$(\lambda x.xx)(\lambda x.xxx) \twoheadrightarrow_{\beta} (\lambda x.xxx)(\lambda x.xxx)(\lambda x.xxx)$$
$$(\lambda x.xxx)(\lambda x.xxx) \cancel{\nearrow}_{\beta} (\lambda x.xxx)(\lambda x.xxx)(\lambda x.xxx)$$

Утверждение 1.8. Из 1.6 и 1.7 следует, что $(\rightarrow_{\beta})^* = (\rightrightarrows_{\beta})^*$.

Доказательство. Теорема Чёрча-Россера следует из 1.5 и 1.8.

Следствие 1.9. Нормальная форма для λ -выражения единственна, если существует.

Теорема 1.10 (Тезис Чёрча). Если функция вычислима с помощью механического аппарата, то она вычислима с помощью λ -выражения.

1.4 Порядок редукции

«Завтра! Завтра! Не сегодня!» — так ленивцы говорят.

Das deutsches Sprichwort

Определение.

$$K = \lambda x \lambda y.x$$

$$I = \lambda x.x$$

$$S = \lambda x y z.x z(yz)$$

I выражается через S и K: I = SKK.

Утверждение 1.11. Пусть A — замкнутое λ -выражение. Тогда найдётся выражение T, состоящее только из S, K, что $A =_{\beta} T$.

Пример. тут какой-то пример с омегой, подскажите чё там было, ТООО

Определение (Нормальный порядок редукции). Нормальным порядком редукции называется редукция самого левого β -редекса.

«Ленивые вычисления» (ну, почти, в ленивых ещё есть меморизация)

Определение (Аппликативный порядок редукции). Самый левый из самых вложенных.

«Энергичные вычисления»

Утверждение 1.12. Если нормальная форма существует, она может быть достигнута нормальным порядком редукции.

Парадокс Карри 1.5

Если это утверждение верно, то русалки существуют.

Попробуем построить логику на основе λ -исчисления. Введём комбнатор-импликацию, обозначим (\supset). Введём М.Р. и правила:

- 1. $A \supset A$
- 2. $(A \supset (A \supset B)) \supset (A \supset B)$
- 3. $A =_{\beta} B$, тогда $A \supset B$

Введём обозначение: $Y_{\supset a} \equiv Y(\lambda t.t \supset a) =_{\beta} Y(\lambda t.t \supset a) \supset a$. Построим парадокс:

- 1) $Y_{\supset a} \supset Y_{\supset a}$ (схема аксиом)
- 2) $Y_{\supset a}\supset (Y_{\supset a}\supset a)$ (можно доказа: 3) $(Y_{\supset a}\supset Y_{\supset a}\supset a)\supset (Y_{\supset a}\supset a)$ (схема аксиом) (можно доказать)
- (M.P.)
- 5) $(Y_{\supset a} \supset a) \supset Y_{\supset a}$ (третье правило)
- 6) $Y_{\supset a}$ (M.P.)
- 7) (M.P.)

Так можно доказать любое a.

Импликационный фрагмент ИИВ

Определение (импликационный фрагмент ИИВ). Рассмотрим интуиционистское исчисление высказываний.

1. Введём схему аксиом:

$$\overline{\Gamma, \varphi \vdash \varphi}$$

2. Правило введения импликации:

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$$

3. И правило удаления импликации:

$$\frac{\Gamma \vdash \varphi \to \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$$

Мы построили импликационный фрагмент ИИВ (и.ф.и.и.в).

Пример. Докажем $\varphi \to \psi \to \varphi$:

$$\frac{\overline{\varphi, \psi \vdash \varphi}}{\varphi \vdash \psi \to \varphi} \stackrel{\text{(1)}}{(2)} \\ \vdash \varphi \to (\psi \to \varphi) \qquad \text{(2)}$$

Теорема 1.13. И.ф.и.и.в полон в моделях Крипке.

Доказательство. Допишу, ТООО

Следствие 1.14. И.ф.и.и.в замкнут относительно выводимости.

Если некоторое утверждение выводится в ИИВ ($\vdash_{\mathtt{u}} \varphi$) и содержит только импликации, то оно выводится и в и.ф.и.и.в. ($\vdash_{\mathtt{u} \to} \varphi$).

2 Просто типизированное λ -исчисление

Определение (Тип). $T = \{\alpha, \beta, \gamma, \ldots\}$ — множество типов. σ, τ — метапеременные для типов. Если τ, σ — типы, то $\sigma \to \tau$ — тип.

$$\Pi ::= T \mid \Pi \to \Pi \mid \ (\Pi)$$

 (\rightarrow) правоассоциативна.

Определение (Контекст). Контекст — Γ .

$$\Gamma = \{\Lambda_1 : \sigma_1; \ \Lambda_2 : \sigma_2 \dots \Lambda_n : \sigma_n\}$$
$$|\Gamma| = \{\sigma_1, \ \sigma_2 \dots \sigma_n\}$$
$$\operatorname{dom} \Gamma = \{\Lambda_1, \ \Lambda_2 \dots \Lambda_n\}$$

2.1 Исчисление по Карри

Определение (Типизируемость по Карри). Рассмотрим исчисление со следующими правилами:

1.
$$\overline{\Gamma, x : \sigma \vdash x : \sigma} \ (x \notin \text{dom}(\Gamma))$$

$$2. \ \frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash MN : \tau}$$

$$3. \ \frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash \lambda x.M : \sigma \to \tau} \ (x \notin \mathrm{dom}(\Gamma))$$

Если λ -выражение типизируется этими трёмя правилами, то говорят, что оно типизируется по Карри.

Лемма 2.1 (subject deduction). *Если* $\Gamma \vdash M : \sigma \ u \ M \to_{\beta} N$, то $\Gamma \vdash N : \sigma$.

Следствие 2.2. $Ecnu \Gamma \vdash M : \sigma \ u \ M \twoheadrightarrow_{\beta} N, \ mo \ \Gamma \vdash N : \sigma.$

Теорема 2.3 (Чёрча-Россера). Если $\Gamma \vdash M : \sigma, M \twoheadrightarrow_{\beta} N \ u \ M \twoheadrightarrow_{\beta} P,$ тогда найдётся Q, что $N \twoheadrightarrow_{\beta} Q,$ $P \twoheadrightarrow_{\beta} Q \ u \ \Gamma \vdash Q : \sigma.$

Пример. Несколько доказательств:

1. Докажем $\lambda x.x: \alpha \to \alpha$:

$$\frac{\overline{x : \alpha \vdash x : \alpha}}{\vdash \lambda x . x : \alpha \to \alpha} (1)$$

2. Докажем $\lambda f.\lambda x.fx:(\alpha \to \beta) \to \alpha \to \beta$:

$$\frac{\frac{\Gamma \vdash f : \sigma \to \tau}{f : \sigma \to \tau; x : \sigma \vdash fx : \tau} \stackrel{(1)}{}_{}(2)}{\frac{f : \sigma \to \tau; x : \sigma \vdash fx : \tau}{f : \sigma \to \tau \vdash \lambda x. fx : \sigma \to \tau}} \stackrel{(3)}{}_{}(3)$$

3. $\Omega = (\lambda x.xx)(\lambda x.xx)$ не типизируемо: **TODO**

Лемма 2.4 (Свойство subject expansion). *Неверно, что если* $M \to_{\beta} N$, $\Gamma \vdash N : \sigma$, то $\Gamma \vdash M : \sigma$.

Например, для $Ka\Omega$.

В общем случае тип не уникален, бывает, что одновременно $\vdash \lambda x.x : \alpha \to \alpha$ и $\vdash \lambda x.x : (\beta \to \beta) \to (\beta \to \beta)$.

Определение (Сильная нормализация). Назовём исчисление сильно-нормализуемым, если любая последовательность редукций неизбежно приводит к нормальной форме (не существует бесконечной последовательности β -редукций) .

Определение (Слабая нормализация). Назовём исчисление слабо-нормализуемым, если для любого терма существует последовательность β -редукций, приводящая его к нормальной форме.

Теорема 2.5 (о сильной нормализации). Просто типизируемое λ -исчисление сильно нормализуемо. Любое просто типизируемое λ -выражение сильно нормализуемо.

ТООО это к чему и о чём вообще?

 $Ecnu \ \nu = (\alpha \to \alpha) \to (\alpha \to \alpha) \ u \ F : \nu \to \nu \to \nu, \ mo \ F - paccмampuваемый полином.$

2.2 Исчисление по Чёрчу

Определение (Типизация по Чёрчу).

$$\Lambda_{\mathbf{q}} ::= x \mid \lambda x^{\sigma} . \Lambda_{\mathbf{q}} \mid (\Lambda_{\mathbf{q}}) \mid \Lambda_{\mathbf{q}} \Lambda_{\mathbf{q}}$$

Правила:

1.
$$\overline{\Gamma, x : \sigma \vdash_{\mathsf{q}} x : \sigma} \ (x \notin \mathrm{dom}(\Gamma))$$

$$2. \ \frac{\Gamma \vdash_{^{\mathbf{q}}} M : \sigma \to \tau \quad \Gamma \vdash_{^{\mathbf{q}}} N : \sigma}{\Gamma \vdash_{^{\mathbf{q}}} MN : \tau}$$

$$3. \ \frac{\Gamma, x : \sigma \vdash_{^{\mathbf{q}}} M : \tau}{\Gamma \vdash_{^{\mathbf{q}}} \lambda x^{\sigma}.M : \sigma \to \tau} \ (x \notin \mathrm{dom}(\Gamma))$$

Определение.

$$|\Lambda_{\mathbf{q}}| = \begin{cases} x & \Lambda_{\mathbf{q}} \equiv x \\ |\Lambda_1| |\Lambda_2| & \Lambda_{\mathbf{q}} \equiv \Lambda_1 \Lambda_2 \\ \lambda x. |\Lambda| & \Lambda_{\mathbf{q}} \equiv \lambda x^{\sigma}. \Lambda \end{cases}$$

Лемма 2.7 (Subject reduction по Чёрчу). Пусть $\Gamma \vdash_{\mathbf{q}} M : \sigma \ u \ |M| \to_{\beta} N$. Тогда найдётся такое H, что |H| = N, $\Gamma \vdash_{\mathbf{q}} H : \sigma$.

Теорема 2.8 (Чёрча-Россера). Если $\Gamma \vdash_{\mathbf{q}} M : \sigma$, $|M| \twoheadrightarrow_{\beta} N$, $|M| \twoheadrightarrow_{\beta} T$. Тогда найдётся такое P, что $\Gamma \vdash_{\mathbf{q}} P : \sigma$, $N \twoheadrightarrow_{\beta} |P|$ и $T \twoheadrightarrow_{\beta} |P|$.

Лемма 2.9 (Уникальность типов). Если $\Gamma \vdash_{\mathbf{q}} M : \gamma \ u \ \Gamma \vdash_{\mathbf{q}} M : \tau, \ mo \ \sigma = \tau.$

Теорема 2.10 (о стирании).

- 1. Ecau $M \to_{\beta} N$ u $\Gamma \vdash_{\mathbf{q}} M : \sigma$, mo $|M| \to_{\beta} |N|$.
- 2. Ecsu $\Gamma \vdash_{\mathfrak{q}} M : \sigma, mo \Gamma \vdash_{\kappa} |M| : \sigma.$

Теорема 2.11 (о поднятии). *Пусть* $P \in \Lambda_{\text{ч}}, M, N \in \Lambda_{\kappa}$.

- 1. Если $M \to_{\beta} N$, |P| = M, то найдётся такое Q, что |Q| = N, $P \to_{\beta} Q$.
- 2. Если $\Gamma \vdash_{\mathsf{K}} M : \sigma$, то найдётся такое $P \in \Lambda_{\mathtt{q}}$, что $\Gamma \vdash_{\mathtt{q}} P : \sigma$, |P| = M.

ТООО комментарии про то, зачем мы это делаем.

$$\begin{split} \frac{\Gamma \vdash A : \varphi & \Gamma \vdash B : \psi}{\Gamma \vdash \langle A, B \rangle : \varphi \& \psi} \\ \frac{\Gamma \vdash R : \varphi \& \psi}{\Gamma \vdash \pi_1 R : \varphi} & \frac{\Gamma \vdash R : \varphi \& \psi}{\Gamma \vdash \pi_2 R : \psi} \end{split}$$

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} \qquad \frac{\Gamma \vdash \varphi \to \pi \quad \Gamma \vdash \psi \to \pi}{\Gamma \vdash \varphi \lor \psi \to \pi}$$

$$\frac{\Gamma \vdash A : \varphi}{\Gamma \vdash \mathrm{inj}_1 A : \varphi \lor \psi}$$

ТООО трешак какой-то пошёл :(

Теорема 2.12 (об изоморфизме Карри-Ховарда).

- 1. Пусть $\Gamma \vdash \sigma u$.ф.и.и.в., тогда найдётся такое Δ , что $|\Delta| = \Gamma$, M- такой терм, что $\Delta \vdash_{\mathbf{q}} M : \sigma$.
- 2. Пусть $\Delta \vdash_{\mathbf{q}} M : \sigma$, тогда $|\Delta| \vdash \sigma$.

Доказательство. Рассмотрим $x_{\varphi},\ \varphi\in\Gamma.\ \Gamma=\{\sigma_1,\sigma_2\ldots\},\ \uparrow\Gamma=\Delta=\{x_1:\sigma_1,x_2:\sigma_2,\ldots\}.$ Индукция по сложности доказательства σ :

База: $\overline{\Gamma, \varphi \vdash \varphi}$

- 1. $\varphi \in \Gamma$. Тогда $\overline{\Delta \vdash x_{\varphi} : \varphi}$
- 2. $\varphi \notin \Gamma$. Тогда $\overline{\Delta, x_{\varphi}: \varphi \vdash x_{\varphi}: \varphi}, x_{\varphi}$ новая переменная.

$$\Gamma, \varphi \vdash \psi$$

Переход: $\cfrac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$. По индукционному предположению $\Delta, y : \varphi \vdash M : \psi$.

$$\Delta dash M: \psi$$

 $1. \ \varphi \in \Gamma. \ \text{Тогда} \ \frac{\Delta \vdash M : \psi}{\Delta \setminus \{x_\varphi\} \vdash \lambda x_\varphi.M : \varphi \to \psi}.$

$$\Delta, x_{\varphi} : \varphi \vdash M : \psi$$

2. $\varphi \notin \Gamma$. Тогда $\frac{\Delta, x_{\varphi}: \varphi \vdash M: \psi}{\Delta \vdash \lambda x_{\varphi}.M: \varphi \to \psi}.$

TODO

3 Связь с программированием

Помните, что в λ -исчислении нет смысла? Здесь смысл отрицательный, скорее.

Д.Г.

3 задачи:

- (a) Проверка типа: верно ли $\Gamma \vdash M : \sigma$?
- (б) Вывод типа: $? \vdash M : ?$
- (в) Обитаемость типа: ? \vdash ? : σ

3.1 Вывод типа

Определение (Алгебраический терм).

$$A ::= x \mid f(A, \dots, A)$$
$$(x \in X)$$

Уравнение в алгебраических термах: A = A.

Определение (S-подстановка).

$$S: X \to A$$

 $S-\mathrm{id}$ почти везде. (везде кроме конечного количества)

 $S:A \to A$ — естественное обобщение. A_1,\ldots,A_n — термы. $S\left(f\left(A_1,\ldots,A_n\right)\right)=f\left(S(f_1),\ldots,S(f_n)\right)$

Определение. S — решение уравнения P = Q, если S(P) = S(Q) (S — унификатор).

Определение. $(S \circ T)(A) = S(T(A))$

Задача решения уравнение в алгебраических термах — унификация.

Определение. Существует $S \colon T = S \circ \mathtt{U}, \, T - \mathtt{частный}$ случай $\mathtt{U}.$

Определение. Наибольший общий унификатор U:

- 1. U(A) = U(B).
- 2. Если U(A) = U(B), то существует $S: T = S \circ U$.

Определение. Назовём две системы эквивалентными, если они имеют одно решение.

Определение. Назовём систему несовместной, если выполнено одно из условий:

- 1. в ней есть уравнение вида $f(\ldots) = g(\ldots)$.
- 2. в ней есть уравнение вида $x = \dots x \dots$

Утверждение 3.1. Для любой системы

$$\begin{cases} A_1 = B_1 \\ \vdots \\ A_n = B_n \end{cases}$$

найдётся эквивалентная ей система из одного уравнения:

$$f(A_1,\ldots,A_n)=f(B_1,\ldots,B_n)$$

(f-новый символ).

Определение. Назовём систему разрешённой, если:

- 1. все уравнения имеют вид x = A,
- 2. если $x_i = A_i$, то
 - (a) x_i не принадлежит никакому A_j .
 - (б) $x_i \neq x_j$, если $j \neq j$.

Решение по системе в разрешённой форме строится так:

$$S(x_i) = A_i$$

TODO

Утверждение 3.2. S — наибольший общий унификатор.

Утверждение 3.3. Несовместная система не имеет решений.

Рассмотрим следующие 4 преобразования:

- (a) T=x, где T не переменная $\Rightarrow x=T$
- (6) $x = x \Rightarrow \varepsilon$
- (B) s

бе

4 Интуиционистское исчисление предикатов второго порядка

Обычное λ -исчисление позволяет слишком много, просто-типизированное — слишком мало ((-1) не выразим). Хотелось бы золотую середину.

4.1 Логика второго порядка

Определение.

$$\Phi ::= (\Phi) \mid p \mid \Phi \to \Phi \mid \forall p. \Phi \underbrace{\mid \exists p. \Phi \mid \bot \mid \Phi \& \Phi \mid \Phi \lor \Phi}_{\text{сокращения}}$$

Введение кванторов:

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \forall p.\varphi} \ p \notin FV(\Gamma)$$
$$\frac{\Gamma \vdash \varphi[p := \psi]}{\Gamma \vdash \exists p.\varphi}$$

Удаление кванторов:

$$\frac{\Gamma \vdash \forall p.\varphi}{\Gamma \vdash \varphi[p := \sigma]}$$

$$\frac{\Gamma \vdash \exists p.\varphi \quad \Gamma, \varphi \vdash \psi}{\Gamma \vdash \psi} \ p \notin \text{FV}(\Gamma, \psi)$$

Сокращения:

$$\bot \equiv \forall p.p$$

$$\varphi \& \psi \equiv \forall a.((\varphi \to \psi \to a) \to a)$$

$$\varphi \lor \psi \equiv \forall a.(\varphi \to a) \to (\psi \to a) \to a$$

$$\exists x.\tau \equiv \forall a.(\forall x.\tau \to a) \to a$$

4.2 Система F

Определение (Тип в системе F).

$$x = \begin{cases} \alpha, \beta, \gamma, \dots & \text{(атомарный тип)} \\ \tau \to \sigma & \\ \forall \alpha. \tau & \text{(α--переменная)} \end{cases}$$

Определение (Исчисление по Чёрчу в системе F).

$$oldsymbol{\Lambda}::=x\mid \lambda p^{lpha}.oldsymbol{\Lambda}\mid oldsymbol{\Lambda}oldsymbol{\Lambda}$$
 (полиморфная абстракция)
$$\mid oldsymbol{\Lambda} au$$
 (переменная типа)

Правила вывода:

$$\begin{aligned} &1. \ \, \overline{\Gamma, x : \sigma \vdash x : \sigma} \ \, x \notin \mathrm{dom}(\Gamma) \\ &2. \ \, \frac{\Gamma \vdash M : \tau \to \sigma \quad \Gamma \vdash N : \tau}{\Gamma \vdash MN : \sigma} \\ &3. \ \, \frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x^\tau . M : \tau \to \sigma} \ \, (x \notin \mathrm{dom}(\Gamma)) \end{aligned}$$

$$4. \ \frac{\Gamma \vdash M : \sigma}{\Gamma \vdash \Lambda \alpha.M : \forall \alpha : \sigma} \ x \in \mathrm{FV}(\Gamma)$$

$$5. \ \frac{\Gamma \vdash M : \forall \alpha.\sigma}{\Gamma \vdash M : \sigma[\alpha := \tau]} \ (\text{подстановка типа})$$

 Π ример.

$$\begin{aligned} \Pr & 1 = \lambda x.xT \\ \Pr & 1 : \forall \alpha. \forall \beta. \alpha \& \beta \rightarrow \alpha \\ & \mathbf{TODO} \end{aligned}$$

Определение (β -редукция в F).

- (а) Типовая редукция: $(\Lambda\alpha.M^\sigma)\,\tau\to_\beta M[\alpha:=\tau]:\sigma[\alpha:=\tau]$
- (б) Классическая β -редукция: $(\lambda x^{\sigma}.M)^{\sigma\to\tau}\,Y\to_{\beta} M[x:=Y]:\tau$

Теорема 4.1 (Изоморфизм Карри-Ховарда). $\Gamma \vdash_F M : \tau \ m.u.m.m. \ |\Gamma| \vdash \tau \ в интуиционистском исчислении предикатов второго порядка.$

Теорема 4.2. *F сильно нормализуемо*.

4.3 Экзистенциальные тип