# The Constrained Minimum Spanning Tree Problem Extended Abstract by R. Ravi and M. X. Goemans

#### Emma Ahrens

Seminar zur Diskreten Optimierung, RWTH Aachen

May 27, 2021

1/34

#### **Table of Contents**

Constrained Minimum Spanning Tree Problem

Background Theory
Lagrangian Relaxation
Existence of (1,2)-Approximation

Approximation Algorithm
Check Lagrange Multiplier
Preparata's Algorithm
Megiddo's Algorithm

Conclusion



### **Table of Contents**

#### Constrained Minimum Spanning Tree Problem

Background Theory
Lagrangian Relaxation
Existence of (1,2)-Approximation

Approximation Algorithm
Check Lagrange Multiplier
Preparata's Algorithm
Megiddo's Algorithm

Conclusion





Given an undirected graph G = (V, E)

4/34



Given an undirected graph G = (V, E) and two cost functions  $w, I : E \to \mathbb{N}_{\geq 0}$ ,

4/34



Given an undirected graph G=(V,E) and two cost functions  $w,l:E\to\mathbb{N}_{\geq 0}$ , find a spanning tree T with

- minimum total weight w(T) and
- minimum total length I(T).

4/34



Given an undirected graph G=(V,E) and two cost functions  $w,l:E\to\mathbb{N}_{\geq 0},$  find a spanning tree T with

- minimum total weight w(T) and
- minimum total length I(T).

4/34



Given an undirected graph G=(V,E) and two cost functions  $w,I:E\to\mathbb{N}_{\geq 0},$  find a spanning tree T with

- minimum total weight w(T) and
- minimum total length I(T).

4/34



Given an undirected graph G=(V,E) and two cost functions  $w,I:E\to\mathbb{N}_{\geq 0},$  find a spanning tree T with

- minimum total weight w(T) and
- minimum total length I(T).
- $\Rightarrow$  Specify budget  ${\color{red} L} \in \mathbb{N}_{\geq 0}$  for the length and minimize the weight.

◆ロト→部ト→ミト→ミト ミ からぐ

### Integer Program (CMST)

S is the set of incidence vectors of spanning trees of G and

$$W = \min \sum_{e \in E} w_e x_e$$
s.t.  $x \in S$ 

$$\sum_{e \in E} l_e x_e \le L.$$

Emma Ahrens Constrained MST

5/34

## Integer Program (CMST)

S is the set of incidence vectors of spanning trees of G and

$$W = \min \sum_{e \in E} w_e x_e$$
s.t.  $x \in S$ 

$$\sum_{e \in E} l_e x_e \le L.$$

#### Theorem [AAN82]

The problem is (weakly) NP-hard.



Emma Ahrens

## Integer Program (CMST)

S is the set of incidence vectors of spanning trees of G and

$$W = \min \sum_{e \in E} w_e x_e$$
s.t.  $x \in S$ 

$$\sum_{e \in E} l_e x_e \le L.$$

#### Theorem [AAN82]

The problem is (weakly) NP-hard.

#### Theorem [RG96]

A (1,2)-approximation can be computed in polynomial runtime.



5/34

## Integer Program (CMST)

S is the set of incidence vectors of spanning trees of G and

$$W = \min \sum_{e \in E} w_e x_e$$
s.t.  $x \in S$ 

$$\sum_{e \in E} l_e x_e \le L.$$

#### Theorem [AAN82]

The problem is (weakly) NP-hard.

#### Theorem [RG96]

A (1,2)-approximation can be computed in polynomial runtime.

 $\Rightarrow$  For fixed  $\epsilon > 0$ , we can even find  $(1, 1 + \epsilon)$ -approximation.

Emma Ahrens Constrained MST May 27, 2021

5/34

## **Approximation Algorithm**

**Outpute** Lagrangian relaxation  $P_z$  of the IP

$$\ell(z) = \min \sum_{e \in E} (\underbrace{w_e + z \frac{l_e}{l_e}}) x_e - z \frac{L}{l_e}$$
s.t.  $x \in S$ .

6/34

## **Approximation Algorithm**

**Outpute** Lagrangian relaxation  $P_z$  of the IP

$$\ell(z) = \min \sum_{e \in E} \underbrace{\left( \underbrace{w_e + z I_e}_{e} \right)}_{= c_e} x_e - z L$$
s.t.  $x \in S$ .

② Use Megiddo's algorithm to compute value  $z^*$  which maximizes

$$\mathcal{L} = \max_{z>0} \ell(z)$$

and  $T_{min}$ ,  $T_{max}$  optimal for  $P_{z^*}$  with min. (resp. max.) length.



6/34

## **Approximation Algorithm**

Compute Lagrangian relaxation Pz of the IP

$$\ell(z) = \min \sum_{e \in E} \underbrace{\left( \underbrace{w_e + z l_e}_{= c_e} \right)}_{= c_e} x_e - z L$$
s.t.  $x \in S$ .

Use Megiddo's algorithm to compute value z\* which maximizes

$$\mathcal{L} = \max_{z \ge 0} \ell(z)$$

and  $T_{\min}$ ,  $T_{\max}$  optimal for  $P_{z^*}$  with min. (resp. max.) length.

Compute sequence

$$T_{min} = T_0, T_1, \ldots, T_{i-1}, T_i, \ldots, T_k = T_{max}.$$

Pick first  $T_i$  such that  $I(T_{i-1}) < L$  and  $I(T_i) \ge L$ , then

$$I(T_i) \leq L + I_{max} \leq 2L$$
 and  $w(T_i) \leq W$ .

#### **Table of Contents**

Constrained Minimum Spanning Tree Problem

Background Theory
Lagrangian Relaxation
Existence of (1,2)-Approximation

Approximation Algorithm
Check Lagrange Multiplier
Preparata's Algorithm
Megiddo's Algorithm

Conclusion



#### **Table of Contents**

Constrained Minimum Spanning Tree Problem

# Background Theory Lagrangian Relaxation

Existence of (1, 2)-Approximation

Approximation Algorithm
Check Lagrange Multiplier
Preparata's Algorithm
Megiddo's Algorithm

Conclusion



$$W = \min \sum_{e \in E} w_e x_e$$

$$s.t. \sum_{e \in E} l_e x_e \le L$$

$$x \in S.$$

Emma Ahrens Constrained MST

9/34

$$W = \min \sum_{e \in E} w_e x_e$$

$$s.t. \sum_{e \in E} l_e x_e \le L$$

$$x \in S.$$

$$\Rightarrow \qquad \ell(z) = \min \sum_{e \in E} w_e x_e + z \left( \sum_{e \in E} l_e x_e - L \right)$$

$$s.t. x \in S$$

9/34

$$W = \min \sum_{e \in E} w_e x_e$$

$$s.t. \sum_{e \in E} l_e x_e \le L$$

$$x \in S.$$

$$\Rightarrow \qquad \ell(z) = \min \sum_{e \in E} w_e x_e + z \left( \sum_{e \in E} l_e x_e - L \right)$$

$$s.t. \ x \in S$$

$$\Leftrightarrow \qquad \ell(z) = \min \sum_{e \in E} (\underbrace{w_e + z l_e}_{:=c_z(e)}) x_e - z L$$

$$s.t. \ x \in S$$

Emma Ahrens Constrained MST

9/34

$$\ell(z) = \min \sum_{e \in E} \underbrace{(w_e + zl_e)}_{:=c_z(e)} x_e - zL$$

$$s.t. \ x \in S$$

•  $\ell(z): \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$  is concave, piecewise linear



Emma Ahrens Constrained MST May 27, 2021 10/34

$$\ell(z) = \min \sum_{e \in E} \underbrace{(w_e + zl_e)}_{:=c_z(e)} x_e - zL$$

$$s.t. \ x \in S$$

- $\ell(z): \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$  is concave, piecewise linear
- $\ell(z) \leq W$  is a lower bound for CMST problem and  $\mathcal{L} := \max_{z \in \mathbb{R}_{\geq 0}} \ell(z)$  is the greatest lower bound



10/34

$$\ell(z) = \min \sum_{e \in E} \underbrace{(w_e + zl_e)}_{:=c_z(e)} x_e - zL$$

$$s.t. \ x \in S$$

- $\ell(z): \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$  is concave, piecewise linear
- $\ell(z) \leq W$  is a lower bound for CMST problem and  $\mathcal{L} := \max_{z \in \mathbb{R}_{\geq 0}} \ell(z)$  is the greatest lower bound

We obtain a set of *minimum spanning tree* problems for the cost function  $c_z: E \to \mathbb{R}_{\geq 0}, e \mapsto w_e + zl_e$  and arbitrary  $z \in \mathbb{R}_{\geq 0}$ .

◆ロト→御ト→恵ト→恵 め900

10/34















### **Table of Contents**

Constrained Minimum Spanning Tree Problem

### **Background Theory**

Lagrangian Relaxation

Existence of (1,2)-Approximation

Approximation Algorithm
Check Lagrange Multiplier
Preparata's Algorithm
Megiddo's Algorithm

Conclusion



Emma Ahrens

Define  $O_z \subseteq S$  as set of all MSTs for cost function  $c_z$ .

May 27, 2021

13/34

Emma Ahrens Constrained MST

Define  $O_z \subseteq S$  as set of all MSTs for cost function  $c_z$ .

#### Lemma

Let  $T, T' \in O_z$ . Then there exists a sequence

$$T =: T_0, T_1, \ldots, T_k, T_{k+1} := T'$$

in  $O_z$  such that  $T_i$ ,  $T_{i+1}$  differ by a single edge swap,  $i \in \{0, ..., k\}$ .

13/34

Define  $O_z \subseteq S$  as set of all MSTs for cost function  $c_z$ .

#### Lemma

Let  $T, T' \in O_z$ . Then there exists a sequence

$$T =: T_0, T_1, \ldots, T_k, T_{k+1} := T'$$

in  $O_z$  such that  $T_i$ ,  $T_{i+1}$  differ by a single edge swap,  $i \in \{0, ..., k\}$ .



13/34

Define  $O_z \subseteq S$  as set of all MSTs for cost function  $c_z$ .

#### Lemma

Let  $T, T' \in O_z$ . Then there exists a sequence

$$T =: T_0, T_1, \ldots, T_k, T_{k+1} := T'$$

in  $O_z$  such that  $T_i$ ,  $T_{i+1}$  differ by a single edge swap,  $i \in \{0, ..., k\}$ .







May 27, 2021

13/34

Emma Ahrens Constrained MST

Define  $O_z \subseteq S$  as set of all MSTs for cost function  $c_z$ .

#### Lemma

Let  $T, T' \in O_z$ . Then there exists a sequence

$$T =: T_0, T_1, \ldots, T_k, T_{k+1} := T'$$

in  $O_z$  such that  $T_i$ ,  $T_{i+1}$  differ by a single edge swap,  $i \in \{0, ..., k\}$ .







13/34

Define  $O_z \subseteq S$  as set of all MSTs for cost function  $c_z$ .

#### Lemma

Let  $T, T' \in O_z$ . Then there exists a sequence

$$T =: T_0, T_1, \ldots, T_k, T_{k+1} := T'$$

in  $O_z$  such that  $T_i$ ,  $T_{i+1}$  differ by a single edge swap,  $i \in \{0, ..., k\}$ .







Emma Ahrens Constrained MST May 27, 2021 13/34

Define  $O_7 \subseteq S$  as set of all MSTs for cost function  $c_7$ .

#### Lemma

Let  $T, T' \in O_7$ . Then there exists a sequence

$$T =: T_0, T_1, \ldots, T_k, T_{k+1} := T'$$

in  $O_z$  such that  $T_i$ ,  $T_{i+1}$  differ by a single edge swap,  $i \in \{0, ..., k\}.$ 







Emma Ahrens Constrained MST

Define  $O_7 \subseteq S$  as set of all MSTs for cost function  $c_7$ .

#### Lemma

Let  $T, T' \in O_7$ . Then there exists a sequence

$$T =: T_0, T_1, \ldots, T_k, T_{k+1} := T'$$

in  $O_z$  such that  $T_i$ ,  $T_{i+1}$  differ by a single edge swap,  $i \in \{0, ..., k\}.$ 







Emma Ahrens Constrained MST

Define  $O_7 \subseteq S$  as set of all MSTs for cost function  $c_7$ .

#### Lemma

Let  $T, T' \in O_7$ . Then there exists a sequence

$$T =: T_0, T_1, \ldots, T_k, T_{k+1} := T'$$

in  $O_z$  such that  $T_i$ ,  $T_{i+1}$  differ by a single edge swap,  $i \in \{0, ..., k\}.$ 







Emma Ahrens Constrained MST

Define  $O_z \subseteq S$  as set of all MSTs for cost function  $c_z$ .

#### Lemma

Let  $T, T' \in O_z$ . Then there exists a sequence

$$T =: T_0, T_1, \ldots, T_k, T_{k+1} := T'$$

in  $O_z$  such that  $T_i$ ,  $T_{i+1}$  differ by a single edge swap,  $i \in \{0, ..., k\}$ .







13/34

Emma Ahrens Constrained MST

#### **Theorem**

Let  $z^* \in \mathbb{R}_{\geq 0}$  be optimal s.t.  $\mathcal{L} = \ell(z^*)$ . There exists  $T \in O_{Z^*}$  with

$$w(T) \le W$$
 and  $I(T) \le L + I_{\text{max}}$ .

14/34

#### **Theorem**

Let  $z^* \in \mathbb{R}_{\geq 0}$  be optimal s.t.  $\mathcal{L} = \ell(z^*)$ . There exists  $T \in O_{z^*}$  with

 $w(T) \leq W$  and  $I(T) \leq L + I_{max}$ .

#### **Proof**

Let  $T \in O_{z^*}$ .

Emma Ahrens Constrained MST

#### **Theorem**

Let  $z^* \in \mathbb{R}_{\geq 0}$  be optimal s.t.  $\mathcal{L} = \ell(z^*)$ . There exists  $T \in O_{z^*}$  with

$$w(T) \le W$$
 and  $I(T) \le L + I_{\text{max}}$ .

#### **Proof**

Let  $T \in O_{z^*}$ . Then

$$w(T) = w(T) + z^*(I(T) - L) - z^*(I(T) - L)$$

14/34

#### **Theorem**

Let  $z^* \in \mathbb{R}_{\geq 0}$  be optimal s.t.  $\mathcal{L} = \ell(z^*)$ . There exists  $T \in O_{z^*}$  with

 $w(T) \leq W$  and  $I(T) \leq L + I_{max}$ .

#### **Proof**

Let  $T \in O_{z^*}$ . Then

$$w(T) = w(T) + z^*(I(T) - L) - z^*(I(T) - L)$$
  
=  $\ell(z^*) - z^*(I(T) - L)$ 

14/34

#### **Theorem**

Let  $z^* \in \mathbb{R}_{\geq 0}$  be optimal s.t.  $\mathcal{L} = \ell(z^*)$ . There exists  $T \in O_{Z^*}$  with

$$w(T) \le W$$
 and  $I(T) \le L + I_{\text{max}}$ .

#### **Proof**

Let  $T \in O_{z^*}$ . Then

$$w(T) = w(T) + z^*(I(T) - L) - z^*(I(T) - L)$$
  
=  $\ell(z^*) - z^*(I(T) - L) = \mathcal{L} - z^*(\underbrace{I(T) - L}_{>0})$ 

14/34

#### **Theorem**

Let  $z^* \in \mathbb{R}_{\geq 0}$  be optimal s.t.  $\mathcal{L} = \ell(z^*)$ . There exists  $T \in O_{z^*}$  with  $w(T) \leq W$  and  $I(T) \leq L + I_{\text{max}}$ .

#### **Proof**

Let  $T \in O_{z^*}$ . Then

$$w(T) = w(T) + z^*(I(T) - L) - z^*(I(T) - L)$$
  
=  $\ell(z^*) - z^*(I(T) - L) = \mathcal{L} - z^*(\underbrace{I(T) - L}_{\geq 0})$ 

and  $w(T) \le \mathcal{L} \le W \iff I(T) \ge L$ .

4 ロト 4 個 ト 4 恵 ト 4 恵 ト 9 年 9 9 9 0 0

14/34

Emma Ahrens Constrained I

#### **Theorem**

Let  $z^* \in \mathbb{R}_{\geq 0}$  be optimal s.t.  $\mathcal{L} = \ell(z^*)$ . There exists  $T \in O_{z^*}$  with

$$w(T) \leq W$$
 and  $I(T) \leq L + I_{\text{max}}$ .

#### **Proof**

Let  $T \in O_{z^*}$ . Then

$$w(T) = w(T) + z^{*}(I(T) - L) - z^{*}(I(T) - L)$$
  
=  $\ell(z^{*}) - z^{*}(I(T) - L) = \mathcal{L} - z^{*}(\underbrace{I(T) - L}_{>0})$ 

and  $w(T) \le \mathcal{L} \le W \iff I(T) \ge L$ .

 $\Rightarrow$  Show that there exists  $T \in O_{z^*}$  with  $L \leq I(T) \leq L + I_{\max}$ .

### Proof (continued)

 $\Rightarrow$  Show that there exists  $T \in O_{z^*}$  with  $L \leq I(T) \leq L + I_{max}$ .

Emma Ahrens Constrained MST

### Proof (continued)

- $\Rightarrow$  Show that there exists  $T \in O_{Z^*}$  with  $L \leq I(T) \leq L + I_{max}$ .
  - There exists  $T_{\leq} \in O_{Z^*}$  s.t.  $I(T_{\leq}) \leq L$ :

Emma Ahrens Constrained MST

### Proof (continued)

- $\Rightarrow$  Show that there exists  $T \in O_{z^*}$  with  $L \leq I(T) \leq L + I_{max}$ .
  - There exists  $T_{\leq} \in O_{Z^*}$  s.t.  $I(T_{\leq}) \leq L$ : Choose  $\epsilon > 0$  with  $O_{Z^* + \epsilon} \subseteq O_{Z^*}$  (without proof) and  $T_{\leq} \in O_{Z^* + \epsilon}$ :

Emma Ahrens Constrained MST

### Proof (continued)

- $\Rightarrow$  Show that there exists  $T \in O_{z^*}$  with  $L \leq I(T) \leq L + I_{max}$ .
  - There exists  $T_{\leq} \in O_{Z^*}$  s.t.  $I(T_{\leq}) \leq L$ : Choose  $\epsilon > 0$  with  $O_{Z^* + \epsilon} \subseteq O_{Z^*}$  (without proof) and  $T_{\leq} \in O_{Z^* + \epsilon}$ :

$$\ell(\mathbf{z}^* + \epsilon) = c_{\mathbf{z}^* + \epsilon}(\mathsf{T}_{\leq}) - (\mathbf{z}^* + \epsilon)\mathsf{L} \leq c_{\mathbf{z}^*}(\mathsf{T}_{\leq}) - \mathbf{z}^*\mathsf{L} = \ell(\mathbf{z}^*)$$

15/34

### Proof (continued)

- $\Rightarrow$  Show that there exists  $T \in O_{z^*}$  with  $L \leq I(T) \leq L + I_{max}$ .
  - There exists  $T_{\leq} \in O_{Z^*}$  s.t.  $I(T_{\leq}) \leq L$ : Choose  $\epsilon > 0$  with  $O_{Z^* + \epsilon} \subseteq O_{Z^*}$  (without proof) and  $T_{\leq} \in O_{Z^* + \epsilon}$ :

$$\ell(z^* + \epsilon) = c_{z^* + \epsilon}(T_{\leq}) - (z^* + \epsilon)L \leq c_{z^*}(T_{\leq}) - z^*L = \ell(z^*)$$
  
$$\Leftrightarrow w(T_{\leq}) + (z^* + \epsilon)(I(T_{\leq}) - L) \leq w(T_{\leq}) + z^*(I(T_{\leq}) - L)$$

Emma Ahrens Constrained MST May 27, 2021 15/34

### Proof (continued)

- $\Rightarrow$  Show that there exists  $T \in O_{z^*}$  with  $L \leq I(T) \leq L + I_{max}$ .
  - There exists  $T_{\leq} \in O_{Z^*}$  s.t.  $I(T_{\leq}) \leq L$ : Choose  $\epsilon > 0$  with  $O_{Z^* + \epsilon} \subseteq O_{Z^*}$  (without proof) and  $T_{\leq} \in O_{Z^* + \epsilon}$ :

$$\ell(z^* + \epsilon) = c_{z^* + \epsilon}(T_{\leq}) - (z^* + \epsilon)L \leq c_{z^*}(T_{\leq}) - z^*L = \ell(z^*)$$
  

$$\Leftrightarrow w(T_{\leq}) + (z^* + \epsilon)(I(T_{\leq}) - L) \leq w(T_{\leq}) + z^*(I(T_{\leq}) - L)$$
  

$$\Leftrightarrow \epsilon(I(T_{\leq}) - L) \leq 0 \Leftrightarrow I(T_{\leq}) \leq L.$$

15/34

### Proof (continued)

- $\Rightarrow$  Show that there exists  $T \in O_{z^*}$  with  $L \leq I(T) \leq L + I_{max}$ .
  - There exists  $T_{\leq} \in O_{Z^*}$  s.t.  $I(T_{\leq}) \leq L$ : Choose  $\epsilon > 0$  with  $O_{Z^* + \epsilon} \subseteq O_{Z^*}$  (without proof) and  $T_{\leq} \in O_{Z^* + \epsilon}$ :

$$\ell(z^* + \epsilon) = c_{z^* + \epsilon}(T_{\leq}) - (z^* + \epsilon)L \leq c_{z^*}(T_{\leq}) - z^*L = \ell(z^*)$$
  

$$\Leftrightarrow w(T_{\leq}) + (z^* + \epsilon)(I(T_{\leq}) - L) \leq w(T_{\leq}) + z^*(I(T_{\leq}) - L)$$
  

$$\Leftrightarrow \epsilon(I(T_{\leq}) - L) \leq 0 \Leftrightarrow I(T_{\leq}) \leq L.$$

• There exists  $T_{\geq} \in O_{z^*}$  s.t.  $I(T_{\geq}) \geq L$ : Analogous proof.

15/34

### Proof (continued)

- $\Rightarrow$  Show that there exists  $T \in O_{z^*}$  with  $L \leq I(T) \leq L + I_{max}$ .
  - There exists  $T_{\leq} \in O_{Z^*}$  s.t.  $I(T_{\leq}) \leq L$ : Choose  $\epsilon > 0$  with  $O_{Z^* + \epsilon} \subseteq O_{Z^*}$  (without proof) and  $T_{\leq} \in O_{Z^* + \epsilon}$ :

$$\ell(z^* + \epsilon) = c_{Z^* + \epsilon}(T_{\leq}) - (z^* + \epsilon)L \leq c_{Z^*}(T_{\leq}) - z^*L = \ell(z^*)$$
  

$$\Leftrightarrow w(T_{\leq}) + (z^* + \epsilon)(I(T_{\leq}) - L) \leq w(T_{\leq}) + z^*(I(T_{\leq}) - L)$$
  

$$\Leftrightarrow \epsilon(I(T_{\leq}) - L) \leq 0 \Leftrightarrow I(T_{\leq}) \leq L.$$

- There exists  $T_{\geq} \in O_{Z^*}$  s.t.  $I(T_{\geq}) \geq L$ : Analogous proof.
- Lemma: There exists sequence  $T_{\leq} = T_0, T_1, \dots, T_k, T_{k+1} = T_{\geq}$  in  $O_{z^*}$ .

(ロト 4回 ト 4 豆 ト 4 豆 ト ) 豆 り 9 0 0

15/34

### Proof (continued)

- $\Rightarrow$  Show that there exists  $T \in O_{z^*}$  with  $L \leq I(T) \leq L + I_{max}$ .
  - There exists  $T_{\leq} \in O_{Z^*}$  s.t.  $I(T_{\leq}) \leq L$ : Choose  $\epsilon > 0$  with  $O_{Z^* + \epsilon} \subseteq O_{Z^*}$  (without proof) and  $T_{\leq} \in O_{Z^* + \epsilon}$ :

$$\ell(z^* + \epsilon) = c_{z^* + \epsilon}(T_{\leq}) - (z^* + \epsilon)L \leq c_{z^*}(T_{\leq}) - z^*L = \ell(z^*)$$
  

$$\Leftrightarrow w(T_{\leq}) + (z^* + \epsilon)(I(T_{\leq}) - L) \leq w(T_{\leq}) + z^*(I(T_{\leq}) - L)$$
  

$$\Leftrightarrow \epsilon(I(T_{\leq}) - L) \leq 0 \Leftrightarrow I(T_{\leq}) \leq L.$$

- There exists  $T_{\geq} \in O_{z^*}$  s.t.  $I(T_{\geq}) \geq L$ : Analogous proof.
- Lemma: There exists sequence  $T_{\leq} = T_0, T_1, \dots, T_k, T_{k+1} = T_{\geq}$  in  $O_{z^*}$ .
- $\Rightarrow$  Show that there exists element  $T_{i+1}$  such that

$$L \leq I(T_{i+1}) \leq L + I_{\max}$$
.

Emma Ahrens Constrained MST May 27, 2021 15/34

#### **Theorem**

Let  $z^* \in \mathbb{R}_{\geq 0}$  be optimal s.t.  $\mathcal{L} = \ell(z^*)$ . There exists  $T \in O_{z^*}$  with  $w(T) \leq W$  and  $I(T) \leq L + I_{\max}$ .

Emma Ahrens Constrained MST

#### **Theorem**

Let  $z^* \in \mathbb{R}_{\geq 0}$  be optimal s.t.  $\mathcal{L} = \ell(z^*)$ . There exists  $T \in O_{z^*}$  with  $w(T) \leq W$  and  $l(T) \leq L + l_{\max}$ .

### Proof (continued)

We have  $I(T_{\leq}) \leq L$ ,  $T_{\leq} = T_0, T_1, \ldots, T_k, T_{k+1} = T_{\geq}$  and  $I(T_{\geq}) \geq L$ .

Emma Ahrens Constrained MST May 27, 2021 16/34

#### **Theorem**

Let  $z^* \in \mathbb{R}_{\geq 0}$  be optimal s.t.  $\mathcal{L} = \ell(z^*)$ . There exists  $T \in \mathcal{O}_{z^*}$  with

$$w(T) \leq W$$
 and  $I(T) \leq L + I_{\text{max}}$ .

### Proof (continued)

We have  $I(T_{\leq}) \leq L$ ,  $T_{\leq} = T_0, T_1, \dots, T_k, T_{k+1} = T_{\geq}$  and  $I(T_{\geq}) \geq L$ . If  $I(T_i) \leq L$  and  $I(T_{i+1}) \geq L$  and  $T_{i+1} = T_i - e + e'$  for  $e, e' \in E$ , then

$$I(T_{i+1}) = I(T_i - e + e') = I(T_i) - I_e + I_{e'} \le L + I_{\text{max}}.$$



16/34

### Corollary

Let  $z^* \in \mathbb{R}_{\geq 0}$  be optimal s.t.  $\mathcal{L} = \ell(z^*)$ . There exists  $T \in O_{z^*}$  with  $w(T) \leq W$  and  $l(T) \leq 2L$ .

May 27, 2021

17/34

Emma Ahrens Constrained MST

### Corollary

Let  $z^* \in \mathbb{R}_{\geq 0}$  be optimal s.t.  $\mathcal{L} = \ell(z^*)$ . There exists  $T \in O_{z^*}$  with  $w(T) \leq W$  and  $l(T) \leq 2L$ .

 $\Rightarrow$  Such a spanning tree  $T \in O_{z^*}$  is a (1,2)-approximation.

17/34

### Corollary

Let  $z^* \in \mathbb{R}_{\geq 0}$  be optimal s.t.  $\mathcal{L} = \ell(z^*)$ . There exists  $T \in \mathcal{O}_{z^*}$  with

$$w(T) \le W$$
 and  $I(T) \le 2L$ .

 $\Rightarrow$  Such a spanning tree  $T \in O_{Z^*}$  is a (1,2)-approximation.

For a fixed  $\epsilon > 0, \, \epsilon \in \mathbb{R}_{\geq 0},$  restrict edges to subset

$$E' := \{e \in E \mid l_e \le \epsilon L\} \subseteq E.$$

17/34

### Corollary

Let  $z^* \in \mathbb{R}_{\geq 0}$  be optimal s.t.  $\mathcal{L} = \ell(z^*)$ . There exists  $T \in O_{z^*}$  with

$$w(T) \le W$$
 and  $I(T) \le 2L$ .

 $\Rightarrow$  Such a spanning tree  $T \in O_{z^*}$  is a (1,2)-approximation.

For a fixed 
$$\epsilon > 0$$
,  $\epsilon \in \mathbb{R}_{\geq 0}$ , restrict edges to subset

$$E' := \{e \in E \mid I_e \leq \epsilon L\} \subseteq E.$$

### Corollary

Let  $z^* \in \mathbb{R}_{\geq 0}$  be optimal s.t.  $\mathcal{L} = \ell(z^*)$ . There exists  $T \in \mathcal{O}_{z^*}$  with

$$w(T) \le W$$
 and  $I(T) \le (1 + \epsilon)L$ .



Emma Ahrens Constrained MST May 27, 2021 17/34

### Corollary

Let  $z^* \in \mathbb{R}_{\geq 0}$  be optimal s.t.  $\mathcal{L} = \ell(z^*)$ . There exists  $T \in \mathcal{O}_{z^*}$  with

$$w(T) \le W$$
 and  $I(T) \le 2L$ .

 $\Rightarrow$  Such a spanning tree  $T \in O_{Z^*}$  is a (1,2)-approximation.

For a fixed  $\epsilon > 0, \, \epsilon \in \mathbb{R}_{\geq 0},$  restrict edges to subset

$$E' := \{e \in E \mid I_e \le \epsilon L\} \subseteq E.$$

#### Corollary

Let  $z^* \in \mathbb{R}_{\geq 0}$  be optimal s.t.  $\mathcal{L} = \ell(z^*)$ . There exists  $T \in \mathcal{O}_{z^*}$  with

$$w(T) \le W$$
 and  $I(T) \le (1 + \epsilon)L$ .

 $\Rightarrow$  We can find a  $(1, 1 + \epsilon)$ -approximation.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ◆■ める@

#### **Table of Contents**

Constrained Minimum Spanning Tree Problem

Background Theory
Lagrangian Relaxation
Existence of (1,2)-Approximation

Approximation Algorithm
Check Lagrange Multiplier
Preparata's Algorithm
Megiddo's Algorithm

Conclusion



### **Table of Contents**

Constrained Minimum Spanning Tree Problem

Background Theory
Lagrangian Relaxation
Existence of (1,2)-Approximation

# Approximation Algorithm Check Lagrange Multiplier

Preparata's Algorithm Megiddo's Algorithm

Conclusion



May 27, 2021

19/34

Emma Ahrens Constrained MST

$$L=8$$
  $z=2$   $c_z=w_e+zl_e$ 



20/34

Emma Ahrens Const

$$L=8$$
  $z=2$   $c_z=w_e+zl_e$ 



20/34

$$L=8$$
  $z=2$   $c_z=w_e+zl_e$ 



(5,1)



Emma Ahrens

$$L = 8 z = 2 c_z = w_e + zl_e$$



$$(5,1) <_{\min} (6,0) <_{\min} (6,2)$$

20/34

Emma Ahrens Constrained MST

# Optimum Spanning Tree with Minimum Length

$$L = 8 z = 2 c_z = w_e + zl_e$$



$$(5,1) \prec_{\min} (6,0) \prec_{\min} (6,2) \prec_{\min} (7,1) \prec_{\min} (7,3)$$



20/34

Emma Ahrens Constrained MST May 27, 2021

## Optimum Spanning Tree with Minimum Length

$$L = 8 z = 2 c_z = w_e + zl_e$$



$$(5,1) <_{min} (6,0) <_{min} (6,2) <_{min} (7,1) <_{min} (7,3) <_{min} (8,1) <_{min} (8,4)$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 ♀ ⊙

20/34

Emma Ahrens Constrained MST May 27, 2021

# Lexicographic Order

$$L=8$$
  $z=2$ 



$$(6,0) <_{\min} (6,2)$$



$$(6,2) <_{max} (6,0)$$

## Lexicographic Order

$$L=8$$
  $z=2$ 



$$(6,0) <_{\min} (6,2)$$

$$(c, I) <_{\min} (c', I')$$
  
if  $c < c'$   
or  $c = c'$  and  $I < I'$ 



$$(6,2) \prec_{max} (6,0)$$

$$(c, I) <_{\max} (c', I')$$
  
if  $c < c'$   
or  $c = c'$  and  $I > I'$ 



21/34

## Check Lagrange Multiplier z

#### Listing 1: check(z).

```
Input: Graph G, z \in \mathbb{R}_{\geq 0} and cost functions c_z(e), l_e : E \to \mathbb{R}_{\geq 0} Output: Two spanning trees T_{\min} and T_{\max} and a valuation of z with respect to z^*
```

- 1. Calculate tuples  $(c_z(e), l_e)$  for  $e \in E$
- 2. Sort tuples based on order  $\prec_{\min}$
- 3. Find MST  $T_{\min}$  via Prim's algorithm
- 4. Sort tuples based on order  $\prec_{\max}$
- 5. Find MST  $T_{\text{max}}$  via Prim's algorithm
- 6. If  $I(T_{min}) > L$ , then  $z < z^*$ , if  $I(T_{max}) < L$ , then  $z > z^*$ , otherwise z is an acceptable value

Emma Ahrens Constrained MST May 27, 2021 22/34

## Check Lagrange Multiplier z

#### Listing 2: check(z).

```
Input: Graph G, z \in \mathbb{R}_{\geq 0} and cost functions c_z(e), l_e : E \to \mathbb{R}_{\geq 0} Output: Two spanning trees T_{\min} and T_{\max} and a valuation of z with respect to z^*
```

- 1. Calculate tuples  $(c_z(e), l_e)$  for  $e \in E$
- 2. Sort tuples based on order  $\prec_{\min}$
- 3. Find MST  $T_{\min}$  via Prim's algorithm
- 4. Sort tuples based on order  $\prec_{\max}$
- 5. Find MST  $T_{\text{max}}$  via Prim's algorithm
- 6. If  $l(T_{min}) > L$ , then  $z < z^*$ , if  $l(T_{max}) < L$ , then  $z > z^*$ , otherwise z is an acceptable value

 $\Rightarrow$  Runtime for n = |V|, m = |E| is  $O(m + n \log(n))$  [CLRS01].

Emma Ahrens Constrained MST May 27, 2021 22/34





•  $Z := \{z \in \mathbb{R}_{\geq 0} \mid \exists e, e' \in E \text{ s.t. } c_z(e) = c_z(e')\} \text{ with } |Z| \approx m^2$ 

Emma Ahrens Constrained MST 23/34



- $Z := \{ z \in \mathbb{R}_{\geq 0} \mid \exists e, e' \in E \text{ s.t. } c_z(e) = c_z(e') \} \text{ with } |Z| \approx m^2$
- Sort in  $O(m^2 \log(m^2)) = O(m^2 \log(m))$

23/34

Emma Ahrens Constrained MST May 27, 2021



- $Z := \{z \in \mathbb{R}_{\geq 0} \mid \exists e, e' \in E \text{ s.t. } c_z(e) = c_z(e')\} \text{ with } |Z| \approx m^2$
- Sort in  $O(m^2 \log(m^2)) = O(m^2 \log(m))$
- Binary search with check(z) in  $O(\log(m^2)(m + n\log(n))) = O(\log(m)(m + n\log(n)))$



23/34

Emma Ahrens Constrained MST



- $Z := \{z \in \mathbb{R}_{\geq 0} \mid \exists e, e' \in E \text{ s.t. } c_z(e) = c_z(e')\} \text{ with } |Z| \approx m^2$
- Sort in  $O(m^2 \log(m^2)) = O(m^2 \log(m))$
- Binary search with check(z) in  $O(\log(m^2)(m + n\log(n))) = O(\log(m)(m + n\log(n)))$
- Compute sequence in  $O(n \log(n))$  [ST83]



Emma Ahrens Co



- $Z := \{z \in \mathbb{R}_{\geq 0} \mid \exists e, e' \in E \text{ s.t. } c_z(e) = c_z(e')\} \text{ with } |Z| \approx m^2$
- Sort in  $O(m^2 \log(m^2)) = O(m^2 \log(m))$
- Binary search with check(z) in  $O(\log(m^2)(m + n\log(n))) = O(\log(m)(m + n\log(n)))$
- Compute sequence in  $O(n \log(n))$  [ST83]
- $\Rightarrow$  Runtime  $O(m^2 \log(m) + \log(m)(m + n \log(n)) + n \log(n))$



23/34



- $Z := \{z \in \mathbb{R}_{\geq 0} \mid \exists e, e' \in E \text{ s.t. } c_z(e) = c_z(e')\} \text{ with } |Z| \approx m^2$
- Sort in  $O(m^2 \log(m^2)) = O(m^2 \log(m))$
- Binary search with check(z) in  $O(\log(m^2)(m + n\log(n))) = O(\log(m)(m + n\log(n)))$
- Compute sequence in  $O(n \log(n))$  [ST83]
- $\Rightarrow$  Runtime  $O(m^2 \log(m) + \log(m)(m + n \log(n)) + n \log(n))$

$$= O(m^2 \log(m) + n \log(m) \log(n))$$

# **Compare Edges**



## Compare Edges



Let  $l_e > l_{e'}$ . If the algorithm check(z) returns

- **1**  $z < z^*$ , then  $c_{z^*}(e) > c_{z^*}(e')$ ,
- ②  $z > z^*$ , then  $c_{z^*}(e) < c_{z^*}(e')$ , and
- 3 z is accepted, then  $c_{Z^*}(e) = c_{Z^*}(e')$ .

Emma Ahrens

### Compare Edges



Let  $l_e > l_{e'}$ . If the algorithm check(z) returns

- **1**  $z < z^*$ , then  $c_{z^*}(e) > c_{z^*}(e')$ ,
- 2  $z > z^*$ , then  $c_{z^*}(e) < c_{z^*}(e')$ , and
- 3 z is accepted, then  $c_{Z^*}(e) = c_{Z^*}(e')$ .
- $\Rightarrow$  Sort edges in *E* by cost  $c_{z^*}$  without knowing  $z^*$ .

◆ロト ◆昼 ト ◆ 豊 ト ◆ 豊 ・ 夕 Q (\*)

Emma Ahrens Constrained MST May 27, 2021 24/34

#### **Table of Contents**

Constrained Minimum Spanning Tree Problem

Background Theory
Lagrangian Relaxation
Existence of (1,2)-Approximation

#### Approximation Algorithm

Check Lagrange Multiplier

Preparata's Algorithm

Megiddo's Algorithm

Conclusion



m elements

| 3 4 8 | 2 | 6 | 1 |
|-------|---|---|---|
|-------|---|---|---|

4 1 9 2 3 5

. . .





#### $m \log(m)$ processors



5









log(m) steps





#### **Table of Contents**

Constrained Minimum Spanning Tree Problem

Background Theory
Lagrangian Relaxation
Existence of (1,2)-Approximation

#### Approximation Algorithm

Check Lagrange Multiplier Preparata's Algorithm

Megiddo's Algorithm

Conclusion





 $\frac{m}{m \log(m)}$  elements  $e_1 \quad e_2 \quad e_3 \quad e_4 \quad e_5 \quad e_6$ 

m elements



m elements

 $e_m$ 

| e <sub>1</sub> | e <sub>2</sub> | <i>e</i> <sub>3</sub> | e <sub>4</sub> | <b>e</b> 5 | <i>e</i> <sub>6</sub> |
|----------------|----------------|-----------------------|----------------|------------|-----------------------|
|----------------|----------------|-----------------------|----------------|------------|-----------------------|

 $|e_{m-5}| e_{m-4} |e_{m-3}| e_{m-2}$ 

 $e_{m-1}$ 

#### m elements



 $e_{m-5} \mid e_{m-4} \mid e_{m-3} \mid e_{m-2}$ 

 $e_{m-1}$   $e_m$ 

 $e_1 ? e_2$ 

e<sub>4</sub> ? e<sub>5</sub>

- $e_{m-5} ? e_{m-4} \\$
- $e_{m-2}$  ?  $e_{m-1}$

#### m elements



e<sub>1</sub> ? e<sub>2</sub>

*e*<sub>4</sub> ? *e*<sub>5</sub>

 $e_{m-5}$   $e_{m-4}$   $e_{m-3}$   $e_{m-2}$   $e_{m-1}$   $e_m$ 

 $e_{m-5}$  ?  $e_{m-4}$ 

 $e_{m-2}$  ?  $e_{m-1}$ 

 $Z_{m-5,m-4}$ 

 $Z_{m-2,m-1}$ 

#### m elements



#### m elements





#### m elements



#### m elements



e<sub>1</sub> ? e<sub>2</sub>

 $e_4$  ?  $e_5$ 



 $e_{m-5}$  ?  $e_{m-4}$ 

 $e_{m-2}$  ?  $e_{m-1}$ 



Z

#### m elements



 $e_1 < e_2$ 

 $e_4 > e_5$ 



 $e_{m-5} > e_{m-4}$ 

 $e_{m-2} < e_{m-1}$ 



 $z^*$ 

Since  $z^* \in Z$ :

29/34

# Megiddo's Algorithm

#### Since $z^* \in Z$ :

 $\Rightarrow$  Eventually we compare  $e, e' \in E$  with  $z_{e,e'} = z^*$ .

# Megiddo's Algorithm

#### Since $z^* \in Z$ :

- $\Rightarrow$  Eventually we compare  $e, e' \in E$  with  $z_{e,e'} = z^*$ .
- $\Rightarrow$  check $(z_{e,e'})$  returns  $z_{e,e'}$  is optimal, and  $T_{min}$  and  $T_{max}$ .

29/34

# Megiddo's Algorithm

#### Since $z^* \in Z$ :

- $\Rightarrow$  Eventually we compare  $e, e' \in E$  with  $z_{e,e'} = z^*$ .
- $\Rightarrow$  check( $z_{e,e'}$ ) returns  $z_{e,e'}$  is optimal, and  $T_{min}$  and  $T_{max}$ .
- $\Rightarrow$  Swapping edges, we obtain spanning tree  $T \subseteq E$  such that T is a (1,2)-approximation.

29/34

Runtime m elements



• Sort breakpoints in  $O(m \log(m) \cdot \log(m \log(m))) = O(m \log(m)^2)$ 



- Sort breakpoints in  $O(m \log(m) \cdot \log(m \log(m))) = O(m \log(m)^2)$
- Binary search with check(z) in  $O(\log(m\log(m)) \cdot (m + n\log(n))) = O(\log(m)(m + n\log(n)))$



Emma Ahrens Constrained MST



- Sort breakpoints in  $O(m \log(m) \cdot \log(m \log(m))) = O(m \log(m)^2)$
- Binary search with check(z) in  $O(\log(m\log(m)) \cdot (m + n\log(n))) = O(\log(m)(m + n\log(n)))$
- ⇒  $\log(m)$  parallel steps, hence the runtime is  $O(m\log(m)^3 + \log(m)^2(m + n\log(n)))$



Emma Ahrens Constrained MST



- Sort breakpoints in  $O(m \log(m) \cdot \log(m \log(m))) = O(m \log(m)^2)$
- Binary search with check(z) in  $O(\log(m\log(m)) \cdot (m + n\log(n))) = O(\log(m)(m + n\log(n)))$
- ⇒  $\log(m)$  parallel steps, hence the runtime is  $O(m\log(m)^3 + \log(m)^2(m + n\log(n)))$ 
  - Compute sequence in  $O(n \log(n))$  [ST83]



Emma Ahrens Constrained MST



- Sort breakpoints in  $O(m \log(m) \cdot \log(m \log(m)) = O(m \log(m)^2)$
- Binary search with check(z) in  $O(\log(m\log(m)) \cdot (m + n\log(n))) = O(\log(m)(m + n\log(n)))$
- ⇒  $\log(m)$  parallel steps, hence the runtime is  $O(m\log(m)^3 + \log(m)^2(m + n\log(n)))$
- Compute sequence in  $O(n \log(n))$  [ST83]
- $\Rightarrow \text{ Total runtime is } O(m \log(m)^3 + \log(m)^2 (m + n \log(n)) + n \log(n)) = O(m \log(m)^3 + n \log(m)^2 \log(n))$

Emma Ahrens Constrained MST May 27, 2021 30/34

# **Table of Contents**

Constrained Minimum Spanning Tree Problem

Background Theory
Lagrangian Relaxation
Existence of (1,2)-Approximation

Approximation Algorithm
Check Lagrange Multiplier
Preparata's Algorithm
Megiddo's Algorithm

#### Conclusion



Emma Ahrens

Approximation algorithm for the CMST problem:



Approximation algorithm for the CMST problem:

Compute Lagrangian relaxation

May 27, 2021

32/34

Emma Ahrens Constrained MST

Approximation algorithm for the CMST problem:

- Compute Lagrangian relaxation
- Check Lagrange multiplier via algorithm check(z)

Approximation algorithm for the CMST problem:

- Compute Lagrangian relaxation
- Check Lagrange multiplier via algorithm check(z)
- Use Megiddo's algorithm based on parallel-sorting algorithm by Preparata

32/34

Approximation algorithm for the CMST problem:

- Compute Lagrangian relaxation
- Check Lagrange multiplier via algorithm check(z)
- Use Megiddo's algorithm based on parallel-sorting algorithm by Preparata
- **1** Obtain  $z^*$  and spanning trees  $T_{min}$ ,  $T_{max}$

32/34

Approximation algorithm for the CMST problem:

- Compute Lagrangian relaxation
- Check Lagrange multiplier via algorithm check(z)
- Use Megiddo's algorithm based on parallel-sorting algorithm by Preparata
- 4 Obtain  $z^*$  and spanning trees  $T_{min}$ ,  $T_{max}$
- Find approximation via swapping edges

May 27, 2021

32/34

Emma Ahrens Constrained MST

Approximation algorithm for the CMST problem:

- Compute Lagrangian relaxation
- Check Lagrange multiplier via algorithm check(z)
- Use Megiddo's algorithm based on parallel-sorting algorithm by Preparata
- Obtain  $z^*$  and spanning trees  $T_{\min}$ ,  $T_{\max}$
- Find approximation via swapping edges

 $\Rightarrow$  The result is a  $(1, 1 + \epsilon)$ -approximation with runtime

$$O(m\log(m)^3 + n\log(m)^2\log(n)))$$



Emma Ahrens Constrained MST

Approximation algorithm for the CMST problem:

- Compute Lagrangian relaxation
- Check Lagrange multiplier via algorithm check(z)
- Use Megiddo's algorithm based on parallel-sorting algorithm by Preparata
- Obtain  $z^*$  and spanning trees  $T_{\min}$ ,  $T_{\max}$
- Find approximation via swapping edges

 $\Rightarrow$  The result is a  $(1, 1 + \epsilon)$ -approximation with runtime

$$O(m\log(m)^3 + n\log(m)^2\log(n)))$$

Thank you for your attention!



Emma Ahrens Constrained MST May 27, 2021 32/34

### References I



Comput. Oper. Res., 9(4):287–296, 1982.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, Second Edition.

The MIT Press and McGraw-Hill Book Company, 2001.

Marshall L. Fisher.

The lagrangian relaxation method for solving integer programming problems.

Manag. Sci., 50(12-Supplement):1861-1871, 2004.

# References II



Applying parallel computation algorithms in the design of serial algorithms.

J. ACM, 30(4):852-865, 1983.

Franco P. Preparata.

New parallel-sorting schemes.

IEEE Trans. Computers, 27(7):669-673, 1978.

R. Ravi and Michel X. Goemans.

The constrained minimum spanning tree problem (extended abstract). *Algorithm Theory* — *SWAT*, 1097:66–75, 1996.

Daniel Dominic Sleator and Robert Endre Tarjan.

A data structure for dynamic trees.

J. Comput. Syst. Sci., 26(3):362-391, 1983.



Emma Ahrens Constrained MST May 27, 2021 34/34