ESPACES DE CONFIGURATION ET OPÉRADES

Najib Idrissi

8 novembre 2018 @ Séminaire Géométrie et Topologie – IMJ-PRG

PARIS

SE DIDEROT

M : variété de dimension n

· Groupes de tresses

- · Groupes de tresses
- Espaces de lacets

- · Groupes de tresses
- · Espaces de lacets
- · Espaces de modules de courbes

- Groupes de tresses
- Espaces de lacets
- · Espaces de modules de courbes
- · Physique : particules en mouvement

- Groupes de tresses
- · Espaces de lacets
- · Espaces de modules de courbes
- · Physique : particules en mouvement
- · Robotique : planification de trajets

Théorie de l'homotopie : on étudie les espaces à homotopie près à l'aide d'invariants algébriques (homologie, cohomologie, groupes d'homotopie...).

Théorie de l'homotopie : on étudie les espaces à homotopie près à l'aide d'invariants algébriques (homologie, cohomologie, groupes d'homotopie...).

Rappels:

• $f,g:X \to Y$ sont homotopes $(f \sim g)$ si $\exists H_t:X \to Y, H_0=f$ et $H_1=g$;

Théorie de l'homotopie : on étudie les espaces à homotopie près à l'aide d'invariants algébriques (homologie, cohomologie, groupes d'homotopie...).

Rappels:

- $f, g: X \to Y$ sont homotopes $(f \sim g)$ si $\exists H_t: X \to Y, H_0 = f$ et $H_1 = g$;
- f est une équivalence d'homotopie si f est inversible à \sim près;

Théorie de l'homotopie : on étudie les espaces à homotopie près à l'aide d'invariants algébriques (homologie, cohomologie, groupes d'homotopie...).

Rappels:

- $f, g: X \to Y$ sont homotopes $(f \sim g)$ si $\exists H_t: X \to Y, H_0 = f$ et $H_1 = g$;
- f est une équivalence d'homotopie si f est inversible à \sim près;
- X et Y ont le même type d'homotopie s'ils sont reliés par des équivalences d'homotopie.

Théorie de l'homotopie : on étudie les espaces à homotopie près à l'aide d'invariants algébriques (homologie, cohomologie, groupes d'homotopie...).

Rappels:

- $f, g: X \to Y$ sont homotopes $(f \sim g)$ si $\exists H_t: X \to Y, H_0 = f$ et $H_1 = g$;
- f est une équivalence d'homotopie si f est inversible à \sim près;
- X et Y ont le même type d'homotopie s'ils sont reliés par des équivalences d'homotopie.

Théorie de l'homotopie réelle (/rationnelle) : on travaille à homotopie près et « modulo la torsion ».

Théorie de l'homotopie : on étudie les espaces à homotopie près à l'aide d'invariants algébriques (homologie, cohomologie, groupes d'homotopie...).

Rappels:

- $f, g: X \to Y$ sont homotopes $(f \sim g)$ si $\exists H_t: X \to Y, H_0 = f$ et $H_1 = g$;
- f est une équivalence d'homotopie si f est inversible à \sim près;
- X et Y ont le même type d'homotopie s'ils sont reliés par des équivalences d'homotopie.

Théorie de l'homotopie réelle (/rationnelle) : on travaille à homotopie près et « modulo la torsion ».

ightarrow La théorie de Sullivan (1977) montre que l'algèbre des formes de de Rham $\Omega^*_{dR}(M)$ détermine le type d'homotopie réel.

Question

Le type d'homotopie de M détermine-t-il le type d'homotopie de $\mathrm{Conf}_R(M)$? Comment « calculer » le type d'homotopie de $\mathrm{Conf}_R(M)$?

Question

Le type d'homotopie de M détermine-t-il le type d'homotopie de $\operatorname{Conf}_R(M)$? Comment « calculer » le type d'homotopie de $\operatorname{Conf}_R(M)$?

Variétés non-compactes

 $\text{Faux}: \operatorname{Conf}_2(\mathbb{R}) \not\sim \operatorname{Conf}_2(\{0\}) \text{ alors que } \mathbb{R} \sim \{0\}.$

Question

Le type d'homotopie de M détermine-t-il le type d'homotopie de $\operatorname{Conf}_R(M)$? Comment « calculer » le type d'homotopie de $\operatorname{Conf}_R(M)$?

Variétés non-compactes

Faux : $\operatorname{Conf}_2(\mathbb{R}) \not\sim \operatorname{Conf}_2(\{0\})$ alors que $\mathbb{R} \sim \{0\}$.

Variétés compactes sans bord

Longoni–Salvatore (2005) : contre-exemple (espaces lenticulaires)...

Question

Le type d'homotopie de M détermine-t-il le type d'homotopie de $\operatorname{Conf}_R(M)$? Comment « calculer » le type d'homotopie de $\operatorname{Conf}_R(M)$?

Variétés non-compactes

Faux : $Conf_2(\mathbb{R}) \not\sim Conf_2(\{0\})$ alors que $\mathbb{R} \sim \{0\}$.

Variétés compactes sans bord

Longoni–Salvatore (2005) : contre-exemple (espaces lenticulaires)... mais non simplement connexe.

Question

Le type d'homotopie de M détermine-t-il le type d'homotopie de $\operatorname{Conf}_R(M)$? Comment « calculer » le type d'homotopie de $\operatorname{Conf}_R(M)$?

Variétés non-compactes

Faux : $\operatorname{Conf}_2(\mathbb{R}) \not\sim \operatorname{Conf}_2(\{0\})$ alors que $\mathbb{R} \sim \{0\}$.

Variétés compactes sans bord

Longoni–Salvatore (2005) : contre-exemple (espaces lenticulaires)... mais non simplement connexe.

Variétés compactes sans bord simplement connexes

L'invariance homotopique reste une question ouverte.

Présentation de $H^*(\operatorname{Conf}_k(\mathbb{R}^n))$ [Arnold, Cohen]

- Générateurs : ω_{ij} de degré n-1 (pour $1 \le i \ne j \le k$)
- · Relations:

$$\omega_{ij}^2 = \omega_{ji} - (-1)^n \omega_{ij} = \omega_{ij} \omega_{jk} + \omega_{jk} \omega_{ki} + \omega_{ki} \omega_{ij} = 0$$

Présentation de $H^*(\operatorname{Conf}_k(\mathbb{R}^n))$ [Arnold, Cohen]

- Générateurs : ω_{ij} de degré n-1 (pour $1 \le i \ne j \le k$)
- · Relations:

$$\omega_{ij}^2 = \omega_{ji} - (-1)^n \omega_{ij} = \omega_{ij} \omega_{jk} + \omega_{jk} \omega_{ki} + \omega_{ki} \omega_{ij} = 0$$

Théorème (Arnold 1969)

Formalité : $H^*(\operatorname{Conf}_k(\mathbb{C})) \sim_{\mathbb{C}} \Omega^*_{\mathrm{dR}}(\operatorname{Conf}_k(\mathbb{C})), \ \omega_{ij} \mapsto \operatorname{d} \log(z_i - z_j).$

Présentation de $H^*(\operatorname{Conf}_k(\mathbb{R}^n))$ [Arnold, Cohen]

- Générateurs : ω_{ij} de degré n-1 (pour $1 \le i \ne j \le k$)
- · Relations:

$$\omega_{ij}^2 = \omega_{ji} - (-1)^n \omega_{ij} = \omega_{ij} \omega_{jk} + \omega_{jk} \omega_{ki} + \omega_{ki} \omega_{ij} = 0$$

Théorème (Arnold 1969)

Formalité: $H^*(\operatorname{Conf}_k(\mathbb{C})) \sim_{\mathbb{C}} \Omega^*_{\mathrm{dR}}(\operatorname{Conf}_k(\mathbb{C})), \ \omega_{ij} \mapsto \operatorname{d} \log(z_i - z_j).$

Théorème (Kontsevich 1999, Lambrechts-Volić 2014)

 $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) \sim_{\mathbb{R}} \Omega^*_{\mathrm{dR}}(\operatorname{Conf}_k(\mathbb{R}^n))$ pour tout $k \geq 0$ et tout $n \geq 2$.

Présentation de $H^*(\operatorname{Conf}_k(\mathbb{R}^n))$ [Arnold, Cohen]

- Générateurs : ω_{ij} de degré n-1 (pour $1 \le i \ne j \le k$)
- · Relations:

$$\omega_{ij}^2 = \omega_{ji} - (-1)^n \omega_{ij} = \omega_{ij} \omega_{jk} + \omega_{jk} \omega_{ki} + \omega_{ki} \omega_{ij} = 0$$

Théorème (Arnold 1969)

Formalité: $H^*(\operatorname{Conf}_k(\mathbb{C})) \sim_{\mathbb{C}} \Omega^*_{\mathrm{dR}}(\operatorname{Conf}_k(\mathbb{C})), \ \omega_{ij} \mapsto \operatorname{d} \log(z_i - z_j).$

Théorème (Kontsevich 1999, Lambrechts-Volić 2014)

 $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) \sim_{\mathbb{R}} \Omega^*_{\mathrm{dR}}(\operatorname{Conf}_k(\mathbb{R}^n))$ pour tout $k \geq 0$ et tout $n \geq 2$.

Conséquence

La cohomologie de $\mathrm{Conf}_k(\mathbb{R}^n)$ détermine son type d'homotopie réel.

On peut représenter $H^*(\operatorname{Conf}_k(\mathbb{R}^n))$ par des combinaisons linéaires de graphes à k sommets modulo les relations R_{ijk}

On peut représenter $H^*(\operatorname{Conf}_k(\mathbb{R}^n))$ par des combinaisons linéaires de graphes à k sommets modulo les relations R_{ijk} \leadsto on rajoute des sommets « internes » aux graphes et une différentielle qui contracte les $\stackrel{d}{\longmapsto} R_{123}$

arêtes incidentes à ces sommets :

On peut représenter $H^*(\operatorname{Conf}_k(\mathbb{R}^n))$ par des combinaisons linéaires de graphes à k sommets modulo les relations Riik → on rajoute des sommets « internes » aux graphes et une différentielle qui contracte les

arêtes incidentes à ces sommets :

Théorème (Kontsevich 1999, Lambrechts-Volić 2014 - Partie 1)

On obtient une CDGA quasi-libre **Graphs**_n(k) et un quasi-isomorphisme **Graphs**_n $(k) \xrightarrow{\sim} H^*(\operatorname{Conf}_k(\mathbb{R}^n)).$

Les relations sont satisfaites à homotopie près dans $\Omega^*(\operatorname{Conf}_k(\mathbb{R}^n))$. Comment trouver des représentants de manière systématique pour obtenir $\operatorname{Graphs}_n(k) \xrightarrow{\sim} \Omega^*(\operatorname{Conf}_k(\mathbb{R}^n))$?

Les relations sont satisfaites à homotopie près dans $\Omega^*(\operatorname{Conf}_k(\mathbb{R}^n))$. Comment trouver des représentants de manière systématique pour obtenir $\operatorname{Graphs}_n(k) \xrightarrow{\sim} \Omega^*(\operatorname{Conf}_k(\mathbb{R}^n))$?

Soit $\varphi \in \Omega^{n-1}(\operatorname{Conf}_2(\mathbb{R}^n))$ la forme volume.

Pour $\Gamma \in \mathbf{Graphs}_n(k)$ avec i sommets internes :

$$\omega(\Gamma) := \int_{\operatorname{Conf}_{k+i}(\mathbb{R}^n) \to \operatorname{Conf}_k(\mathbb{R}^n)} \bigwedge_{(ij) \in \mathcal{E}_{\Gamma}} \varphi_{ij}.$$

Les relations sont satisfaites à homotopie près dans $\Omega^*(\operatorname{Conf}_k(\mathbb{R}^n))$. Comment trouver des représentants de manière systématique pour obtenir $\operatorname{Graphs}_n(k) \xrightarrow{\sim} \Omega^*(\operatorname{Conf}_k(\mathbb{R}^n))$?

Soit $\varphi \in \Omega^{n-1}(\operatorname{Conf}_2(\mathbb{R}^n))$ la forme volume.

Pour $\Gamma \in \mathbf{Graphs}_n(k)$ avec i sommets internes :

$$\omega(\Gamma) := \int_{\operatorname{Conf}_{k+i}(\mathbb{R}^n) \to \operatorname{Conf}_k(\mathbb{R}^n)} \bigwedge_{(ij) \in \mathcal{E}_{\Gamma}} \varphi_{ij}.$$

Théorème (Kontsevich 1999, Lambrechts–Volić 2014 – Partie 2)

On obtient un quasi-isomorphisme $\omega: \mathbf{Graphs}_n(k) \xrightarrow{\sim} \Omega(\mathrm{Conf}_k(\mathbb{R}^n)).$

Les relations sont satisfaites à homotopie près dans $\Omega^*(\operatorname{Conf}_k(\mathbb{R}^n))$. Comment trouver des représentants de manière systématique pour obtenir $\operatorname{Graphs}_n(k) \xrightarrow{\sim} \Omega^*(\operatorname{Conf}_k(\mathbb{R}^n))$?

Soit $\varphi \in \Omega^{n-1}(\operatorname{Conf}_2(\mathbb{R}^n))$ la forme volume.

Pour $\Gamma \in \mathbf{Graphs}_n(k)$ avec i sommets internes :

$$\omega(\Gamma) := \int_{\operatorname{Conf}_{k+i}(\mathbb{R}^n) \to \operatorname{Conf}_k(\mathbb{R}^n)} \bigwedge_{(ij) \in \mathcal{E}_{\Gamma}} \varphi_{ij}.$$

Théorème (Kontsevich 1999, Lambrechts–Volić 2014 – Partie 2)

On obtient un quasi-isomorphisme $\omega: \mathbf{Graphs}_n(k) \xrightarrow{\sim} \Omega(\mathrm{Conf}_k(\mathbb{R}^n)).$

 Δ Je triche! Il faut compactifier $\mathrm{Conf}_k(\mathbb{R}^n)$ pour être sûr que \int converge et appliquer la formule de Stokes correctement...

COMPACTIFICATION

 ${\sf Probl\`eme}: {\sf Conf}_{\it R} \ {\sf n'est} \ {\sf pas} \ {\sf compact-pourquoi} \ {\textstyle \int} \ {\sf converge} \ ?$

COMPACTIFICATION

Problème : $\mathrm{Conf}_{\it k}$ n'est pas compact – pourquoi \int converge?

Compactification de Fulton–MacPherson $\mathrm{Conf}_k(M) \overset{\sim}{\hookrightarrow} \mathsf{FM}_M(k)$

COMPACTIFICATION

Problème : $Conf_k$ n'est pas compact – pourquoi \int converge?

Compactification de Fulton–MacPherson $\operatorname{Conf}_k(M) \overset{\sim}{\hookrightarrow} \operatorname{\mathsf{FM}}_M(k)$

M compacte sans bord \implies variété semi-algébrique stratifiée dim = nk

ANIMATION N°1

ANIMATION Nº1

ANIMATION N°2

Animation N°2

Animation N°3

Animation no3

COMPACTIFICATION OF $\operatorname{Conf}_{\mathcal{B}}(\mathbb{R}^n)$

On doit normaliser $\mathrm{Conf}_k(\mathbb{R}^n)$ pour palier la non-compacité de \mathbb{R}^n :

$$\operatorname{Conf}_k(\mathbb{R}^n) \xrightarrow{\sim} \operatorname{Conf}_k(\mathbb{R}^n) / (\mathbb{R}^n \rtimes \mathbb{R}_{>0}) \xrightarrow{\sim} \mathsf{FM}_n(k)$$

Compactification of $\mathrm{Conf}_{k}(\mathbb{R}^{n})$

On doit normaliser $\mathrm{Conf}_k(\mathbb{R}^n)$ pour palier la non-compacité de \mathbb{R}^n :

$$\operatorname{Conf}_k(\mathbb{R}^n) \xrightarrow{\sim} \operatorname{Conf}_k(\mathbb{R}^n)/(\mathbb{R}^n \rtimes \mathbb{R}_{>0}) \xrightarrow{\sim} \operatorname{\mathsf{FM}}_n(k)$$

 \implies variété semi-algébrique stratifiée $\dim = nk - n - 1$

OPÉRADES

Nouvelle structure sur FM_n : c'est une opérade! On peut « insérer » une configuration infinitésimale dans une autre :

$$\mathsf{FM}_n(k) \times \mathsf{FM}_n(l) \xrightarrow{\circ_i} \mathsf{FM}_n(k+l-1), \quad 1 \leq i \leq k$$

OPÉRADES

Nouvelle structure sur FM_n : c'est une opérade! On peut « insérer » une configuration infinitésimale dans une autre :

$$\mathsf{FM}_n(k) \times \mathsf{FM}_n(l) \xrightarrow{\circ_i} \mathsf{FM}_n(k+l-1), \quad 1 \leq i \leq k$$

Remarque

Même type d'homotopie que l'opérades des « petits disques ».

THÉORÈME COMPLET

Par fonctorialité, $H^*(\mathsf{FM}_n) = H^*(\mathrm{Conf}_{\bullet}(\mathbb{R}^n))$ et $\Omega^*(\mathsf{FM}_n)$ sont des coopérades.

THÉORÈME COMPLET

Par fonctorialité, $H^*(\mathsf{FM}_n) = H^*(\mathrm{Conf}_{\bullet}(\mathbb{R}^n))$ et $\Omega^*(\mathsf{FM}_n)$ sont des coopérades. On vérifie que Graphs_n aussi et que tout est compatible :

Théorème (Kontsevich 1999, Lambrechts-Volić 2014)

L'opérade FM_n est formelle sur $\mathbb R$:

$$\Omega^*(\mathsf{FM}_n) \xleftarrow{\sim}_{\omega} \mathsf{Graphs}_n \xrightarrow{\sim} H^*(\mathsf{FM}_n).$$

THÉORÈME COMPLET

Par fonctorialité, $H^*(\mathsf{FM}_n) = H^*(\mathrm{Conf}_{\bullet}(\mathbb{R}^n))$ et $\Omega^*(\mathsf{FM}_n)$ sont des coopérades. On vérifie que Graphs_n aussi et que tout est compatible :

Théorème (Kontsevich 1999, Lambrechts-Volić 2014)

L'opérade FM_n est formelle sur $\mathbb R$:

$$\Omega^*(\mathsf{FM}_n) \xleftarrow{\sim}_{\omega} \mathsf{Graphs}_n \xrightarrow{\sim} H^*(\mathsf{FM}_n).$$

Formalité \implies conséquences importantes, p.ex. conjecture de Deligne, quantification par déformation des variétés de Poisson...

Remarque

 $H_*(\mathsf{FM}_n)$ est l'opérade des n-algèbres de Poisson pour $n \geq 2$.

M : variété compacte sans bord

 ${\rm A} \sim \Omega({\rm M})$: CDGA qui encode le type d'homotopie de ${\rm M}$

M : variété compacte sans bord

 ${\it A} \sim \Omega({\it M})$: CDGA qui encode le type d'homotopie de ${\it M}$

$$G_A(k)$$
: modèle (conjectural) de $\mathrm{Conf}_k(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$ $\Longrightarrow := \{x_i = x_j\}$

M : variété compacte sans bord

 $A \sim \Omega(M)$: CDGA qui encode le type d'homotopie de M

$$\mathsf{G}_{\mathsf{A}}(k)$$
: modèle (conjectural) de $\mathrm{Conf}_k(\mathsf{M}) = \mathsf{M}^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$ $\Longrightarrow := \{x_i = x_i\}$

· « Générateurs » : $A^{\otimes k}$ et les ω_{ij} de $\mathrm{Conf}_k(\mathbb{R}^n)$

M : variété compacte sans bord

 $A \sim \Omega(M)$: CDGA qui encode le type d'homotopie de M

$$\mathsf{G}_{\mathsf{A}}(k)$$
: modèle (conjectural) de $\mathrm{Conf}_k(\mathsf{M}) = \mathsf{M}^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$
• « Générateurs » : $\mathsf{A}^{\otimes k}$ et les ω_{ii} de $\mathrm{Conf}_k(\mathbb{R}^n)$ $\Longrightarrow := \{x_i = x_j\}$

· relation d'Arnold + symétrie

M : variété compacte sans bord

 $A \sim \Omega(M)$: CDGA qui encode le type d'homotopie de M

$$\mathsf{G}_{\mathsf{A}}(k)$$
: modèle (conjectural) de $\mathrm{Conf}_k(\mathsf{M}) = \mathsf{M}^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$
• « Générateurs » : $\mathsf{A}^{\otimes k}$ et les ω_{ii} de $\mathrm{Conf}_k(\mathbb{R}^n)$ $\Longrightarrow := \{x_i = x_j\}$

- · relation d'Arnold + symétrie
- · $d \omega_{ij}$ tue le dual de $[\Delta_{ij}]$.

M : variété compacte sans bord

 $A \sim \Omega(M)$: CDGA qui encode le type d'homotopie de M

$$\mathsf{G}_{\mathsf{A}}(k)$$
: modèle (conjectural) de $\mathrm{Conf}_k(\mathsf{M}) = \mathsf{M}^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$
• « Générateurs » : $\mathsf{A}^{\otimes k}$ et les ω_{ii} de $\mathrm{Conf}_k(\mathbb{R}^n)$ $\Longrightarrow := \{x_i = x_j\}$

- · relation d'Arnold + symétrie
- $d \omega_{ij}$ tue le dual de $[\Delta_{ij}]$.

Exemples:

• $G_A(0) = \mathbb{R}$ est un modèle de $Conf_0(M) = \{ \varnothing \}$ \checkmark

M : variété compacte sans bord

 $A \sim \Omega(M)$: CDGA qui encode le type d'homotopie de M

$$\mathsf{G}_{\mathsf{A}}(k)$$
: modèle (conjectural) de $\mathrm{Conf}_k(\mathsf{M}) = \mathsf{M}^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$
 \cdot « Générateurs » : $\mathsf{A}^{\otimes k}$ et les ω_{ii} de $\mathrm{Conf}_k(\mathbb{R}^n)$ $\Longrightarrow := \{x_i = x_j\}$

- · relation d'Arnold + symétrie
- $d \omega_{ij}$ tue le dual de $[\Delta_{ij}]$.

Exemples:

- $G_A(0) = \mathbb{R}$ est un modèle de $\mathrm{Conf}_0(M) = \{ \varnothing \}$ \checkmark
- $G_A(1) = A$ est un modèle de $Conf_1(M) = M$ \checkmark

M : variété compacte sans bord

 $A \sim \Omega(M)$: CDGA qui encode le type d'homotopie de M

$$\mathsf{G}_{\mathsf{A}}(k)$$
: modèle (conjectural) de $\mathrm{Conf}_k(\mathsf{M}) = \mathsf{M}^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$
 \cdot « Générateurs » : $\mathsf{A}^{\otimes k}$ et les ω_{ii} de $\mathrm{Conf}_k(\mathbb{R}^n)$ $\Longrightarrow := \{x_i = x_j\}$

- · relation d'Arnold + symétrie
- $d \omega_{ij}$ tue le dual de $[\Delta_{ij}]$.

Exemples:

- $G_A(0) = \mathbb{R}$ est un modèle de $Conf_0(M) = \{ \varnothing \}$ \checkmark
- $G_A(1) = A$ est un modèle de $Conf_1(M) = M$ \checkmark
- $\mathsf{G}_\mathsf{A}(2) \sim \mathsf{A}^{\otimes 2}/(\Delta_\mathsf{A})$ devrait être un modèle de $\mathrm{Conf}_2(\mathsf{M}) = \mathsf{M}^2 \setminus \Delta$?

M : variété compacte sans bord

 $A \sim \Omega(M)$: CDGA qui encode le type d'homotopie de M

$$G_A(k)$$
: modèle (conjectural) de $\operatorname{Conf}_k(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$ $\Longrightarrow := \{x_i = x_j\}$

- · « Générateurs » : $\mathsf{A}^{\otimes k}$ et les ω_{ij} de $\mathrm{Conf}_k(\mathbb{R}^n)$
- relation d'Arnold + symétrie
- $d \omega_{ij}$ tue le dual de $[\Delta_{ij}]$.

Exemples:

- $G_A(0) = \mathbb{R}$ est un modèle de $Conf_0(M) = \{\varnothing\}$ \checkmark
- $G_A(1) = A$ est un modèle de $Conf_1(M) = M$ \checkmark
- $\mathsf{G}_\mathsf{A}(2) \sim \mathsf{A}^{\otimes 2}/(\Delta_\mathsf{A})$ devrait être un modèle de $\mathrm{Conf}_2(\mathsf{M}) = \mathsf{M}^2 \setminus \Delta$?
- $k \ge 3$: plus compliqué.

1969 [Arnold, Cohen] $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) = G_{H^*(\mathbb{D}^n)}(k)$

BREF HISTORIQUE GA

1969 [Arnold, Cohen] $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) = G_{H^*(D^n)}(k)$ 1978 [Cohen–Taylor] suite spectrale qui démarre à $G_{H^*(M)}$

```
1969 [Arnold, Cohen] H^*(\operatorname{Conf}_R(\mathbb{R}^n)) = \mathbf{G}_{H^*(D^n)}(k)
1978 [Cohen-Taylor] suite spectrale qui démarre à \mathbf{G}_{H^*(M)}
~1994 Pour les variétés projectives complexes lisses (\Longrightarrow Kähler):
```

```
1969 [Arnold, Cohen] H^*(\operatorname{Conf}_R(\mathbb{R}^n)) = \mathbf{G}_{H^*(\mathbb{D}^n)}(k)
1978 [Cohen–Taylor] suite spectrale qui démarre à \mathbf{G}_{H^*(M)}
```

~1994 Pour les variétés projectives complexes lisses (⇒ Kähler) :

• [Kříž] $G_{H^*(M)}(k)$ est un modèle de $Conf_k(M)$

- 1969 [Arnold, Cohen] $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) = G_{H^*(D^n)}(k)$
- 1978 [Cohen–Taylor] suite spectrale qui démarre à $G_{H^*(M)}$
- ~1994 Pour les variétés projectives complexes lisses (⇒ Kähler):
 - [Kříž] $G_{H^*(M)}(k)$ est un modèle de $Conf_k(M)$
 - [Totaro] la SS de Cohen–Taylor s'effondre

- 1969 [Arnold, Cohen] $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) = G_{H^*(D^n)}(k)$
- 1978 [Cohen–Taylor] suite spectrale qui démarre à $G_{H^*(M)}$
- ~1994 Pour les variétés projectives complexes lisses (⇒ Kähler):
 - \cdot [Kříž] $\mathbf{G}_{H^*(M)}(k)$ est un modèle de $\mathrm{Conf}_k(M)$
 - [Totaro] la SS de Cohen–Taylor s'effondre
- **2004** [Lambrechts–Stanley] modèle de $\mathrm{Conf}_2(\mathsf{M})$ si $\pi_{\leq 2}(\mathsf{M}) = 0$

- 1969 [Arnold, Cohen] $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) = G_{H^*(D^n)}(k)$
- 1978 [Cohen–Taylor] suite spectrale qui démarre à $G_{H^*(M)}$
- ~1994 Pour les variétés projectives complexes lisses (⇒ Kähler):
 - \cdot [Kříž] $\mathbf{G}_{H^*(M)}(k)$ est un modèle de $\mathrm{Conf}_k(M)$
 - · [Totaro] la SS de Cohen–Taylor s'effondre
- **2004** [Lambrechts–Stanley] modèle de $\mathrm{Conf}_2(\mathsf{M})$ si $\pi_{\leq 2}(\mathsf{M}) = 0$
- ~2004 [Félix–Thomas, Berceanu–Markl–Papadima] lien avec une SS de Bendersky–Gitler

- 1969 [Arnold, Cohen] $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) = G_{H^*(\mathbb{D}^n)}(k)$
- 1978 [Cohen–Taylor] suite spectrale qui démarre à $G_{H^*(M)}$
- ~1994 Pour les variétés projectives complexes lisses (⇒ Kähler):
 - \cdot [Kříž] $\mathbf{G}_{H^*(M)}(k)$ est un modèle de $\mathrm{Conf}_k(M)$
 - [Totaro] la SS de Cohen–Taylor s'effondre
- **2004** [Lambrechts–Stanley] modèle de $\mathrm{Conf}_2(\mathsf{M})$ si $\pi_{\leq 2}(\mathsf{M}) = 0$
- ~2004 [Félix–Thomas, Berceanu–Markl–Papadima] lien avec une SS de Bendersky–Gitler
 - 2008 [Lambrechts-Stanley] $H^i(G_A(k)) \cong_{\Sigma_k\text{-Vect}} H^i(\operatorname{Conf}_k(M))$

- 1969 [Arnold, Cohen] $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) = G_{H^*(D^n)}(k)$
- 1978 [Cohen–Taylor] suite spectrale qui démarre à $G_{H^*(M)}$
- ~1994 Pour les variétés projectives complexes lisses (⇒ Kähler):
 - [Kříž] $G_{H^*(M)}(k)$ est un modèle de $Conf_k(M)$
 - [Totaro] la SS de Cohen–Taylor s'effondre
- **2004** [Lambrechts–Stanley] modèle de $\mathrm{Conf}_2(\mathsf{M})$ si $\pi_{\leq 2}(\mathsf{M}) = 0$
- ~2004 [Félix–Thomas, Berceanu–Markl–Papadima] lien avec une SS de Bendersky–Gitler
 - **2008** [Lambrechts–Stanley] $H^i(G_A(k)) \cong_{\Sigma_k\text{-Vect}} H^i(\operatorname{Conf}_k(M))$
 - **2015** [Cordova Bulens] modèle de $Conf_2(M)$ si dim M = 2m

Première partie du théorème

En généralisant la preuve de Kontsevich & Lambrechts-Volić :

En généralisant la preuve de Kontsevich & Lambrechts-Volić :

Théorème (I. 2016)

Soit M une variété compacte, sans bord, simplement connexe et lisse. Alors $G_A(k)$ encode le type d'homotopie réel de $Conf_k(M)$.

En généralisant la preuve de Kontsevich & Lambrechts–Volić :

Théorème (I. 2016)

Soit M une variété compacte, sans bord, simplement connexe et lisse. Alors $G_A(k)$ encode le type d'homotopie réel de $\mathrm{Conf}_k(M)$.

Corollaires

 $M \sim_{\mathbb{R}} N \implies \operatorname{Conf}_k(M) \sim_{\mathbb{R}} \operatorname{Conf}_k(N)$ pour tout k.

En généralisant la preuve de Kontsevich & Lambrechts–Volić :

Théorème (I. 2016)

Soit M une variété compacte, sans bord, simplement connexe et lisse. Alors $G_A(k)$ encode le type d'homotopie réel de $\mathrm{Conf}_k(M)$.

Corollaires

 $M \sim_{\mathbb{R}} N \implies \operatorname{Conf}_k(M) \sim_{\mathbb{R}} \operatorname{Conf}_k(N)$ pour tout k.

On peut «tout calculer» sur \mathbb{R} pour $\operatorname{Conf}_R(M)$.

En généralisant la preuve de Kontsevich & Lambrechts–Volić :

Théorème (I. 2016)

Soit M une variété compacte, sans bord, simplement connexe et lisse. Alors $G_A(k)$ encode le type d'homotopie réel de $\mathrm{Conf}_k(M)$.

Corollaires

 $M \sim_{\mathbb{R}} N \implies \operatorname{Conf}_k(M) \sim_{\mathbb{R}} \operatorname{Conf}_k(N)$ pour tout k.

On peut «tout calculer» sur \mathbb{R} pour $\operatorname{Conf}_{R}(M)$.

Remarque

 $\dim M \leq 3$: seulement des sphères (conjecture de Poincaré) et on sait que G_A est un modèle, mais adapter la preuve de Kontsevich pose des problèmes!

MODULES SUR LES OPÉRADES

 $M \text{ parallélisée} \implies \mathsf{FM}_M = \{\mathsf{FM}_M(k)\}_{k \geq 0} \text{ est un } \mathsf{FM}_n\text{-module à droite}:$

MODULES SUR LES OPÉRADES

M parallélisée \implies $FM_M = \{FM_M(k)\}_{k\geq 0}$ est un FM_n -module à droite :

On peut réécrire :

$$G_A(k) = (A^{\otimes k} \otimes H^*(FM_n(k))/relations, d)$$

MODULES SUR LES OPÉRADES

 $M \text{ parallélisée} \implies FM_M = \{FM_M(k)\}_{k \ge 0} \text{ est un } FM_n\text{-module à droite}:$

On peut réécrire :

$$G_A(k) = (A^{\otimes k} \otimes H^*(FM_n(k))/relations, d)$$

Un peu de sottises abstraites :

Proposition

 $\chi(M)=0 \implies \mathbf{G}_{A}=\{\mathbf{G}_{A}(k)\}_{k\geq 0} \text{ est un } H^{*}(\mathbf{FM}_{n})\text{-comodule à droite.}_{20}$

VERSION COMPLÈTE DU THÉORÈME

Théorème (I. 2016)

M : variété compacte, sans bord, simplement connexe, lisse, $\dim \mathsf{M} \geq 4$

$$^{\dagger} \sin \chi(\mathrm{M}) = 0$$

[‡] si M est parallélisée

$$A \xleftarrow{\sim} R \xrightarrow{\sim} \Omega^*_{\mathrm{PA}}(M)$$

VERSION COMPLÈTE DU THÉORÈME

Théorème (I. 2016)

M : variété compacte, sans bord, simplement connexe, lisse, $\dim {\it M} \geq 4$

$$^{\dagger}\,\,\mathrm{Si}\,\,\chi(\mathrm{M})=0$$

[‡] si M est parallélisée

$$A \stackrel{\sim}{\longleftarrow} R \stackrel{\sim}{\longrightarrow} \Omega_{\mathrm{PA}}^*(M)$$

Conclusion

Non seulement on a un modèle pour chaque $\operatorname{Conf}_k(M)$, mais on a une structure plus riche si on les regarde tous ensembles.

Le modèle de Lambrechts−Stanley est petit et explicite ⇒ calculs possibles

Le modèle de Lambrechts−Stanley est petit et explicite ⇒ calculs possibles

• Espaces de plongements.

Le modèle de Lambrechts−Stanley est petit et explicite ⇒ calculs possibles

• Espaces de plongements. Schématiquement, $\operatorname{Emb}(M,N) \sim \operatorname{Mor}_{\operatorname{Conf}_{\bullet}(\mathbb{R}^n)}^h(\operatorname{Conf}_{\bullet}(M),\operatorname{Conf}_{\bullet}(N))$ [Boavida–Weiss, Turchin].

Le modèle de Lambrechts−Stanley est petit et explicite ⇒ calculs possibles

- Espaces de plongements. Schématiquement, $\operatorname{Emb}(M,N) \sim \operatorname{Mor}_{\operatorname{Conf}_{\bullet}(\mathbb{R}^n)}^h(\operatorname{Conf}_{\bullet}(M),\operatorname{Conf}_{\bullet}(N))$ [Boavida–Weiss, Turchin].
- Homologie de factorisation (espèce d'homologie où \otimes remplace \oplus). Schématiquement, $\int_M A \sim \operatorname{Conf}_{\bullet}(M) \otimes_{\operatorname{Conf}_{\bullet}(\mathbb{R}^n)}^h A$ [Francis].

Le modèle de Lambrechts−Stanley est petit et explicite ⇒ calculs possibles

- Espaces de plongements. Schématiquement, $\operatorname{Emb}(M,N) \sim \operatorname{Mor}_{\operatorname{Conf}_{\bullet}(\mathbb{R}^n)}^h(\operatorname{Conf}_{\bullet}(M),\operatorname{Conf}_{\bullet}(N))$ [Boavida–Weiss, Turchin].
- Homologie de factorisation (espèce d'homologie où \otimes remplace \oplus). Schématiquement, $\int_M A \sim \mathrm{Conf}_{\bullet}(M) \otimes_{\mathrm{Conf}_{\bullet}(\mathbb{R}^n)}^h A$ [Francis].

Théorème (I. 2018, voir aussi Markarian 2017, Döppenschmidt 2018) M variété compacte, sans bord, simplement connexe et lisse $(\dim \geq 4)$, $A = \mathscr{O}_{\mathrm{poly}}(T^*\mathbb{R}^d[1-n])$

Le modèle de Lambrechts−Stanley est petit et explicite ⇒ calculs possibles

- Espaces de plongements. Schématiquement, $\operatorname{Emb}(M,N) \sim \operatorname{Mor}_{\operatorname{Conf}_{\bullet}(\mathbb{R}^n)}^h(\operatorname{Conf}_{\bullet}(M),\operatorname{Conf}_{\bullet}(N))$ [Boavida–Weiss, Turchin].
- Homologie de factorisation (espèce d'homologie où \otimes remplace \oplus). Schématiquement, $\int_M A \sim \mathrm{Conf}_{\bullet}(M) \otimes_{\mathrm{Conf}_{\bullet}(\mathbb{R}^n)}^h A$ [Francis].

Théorème (I. 2018, voir aussi Markarian 2017, Döppenschmidt 2018) M variété compacte, sans bord, simplement connexe et lisse $(\dim \geq 4)$, $A = \mathscr{O}_{\mathrm{poly}}(T^*\mathbb{R}^d[1-n]) \implies \int_{M} A \sim_{\mathbb{R}} \mathbb{R}.$

Théorème (Campos-I.-Lambrechts-Willwacher 2018)

Variétés à bord : invariance homotopique + généralisation du modèle de Lambrechts–Stanley (et plus!) sous de bonnes conditions, notamment $\dim M \geq$ borne.

Théorème (Campos–I.–Lambrechts–Willwacher 2018)

Variétés à bord : invariance homotopique + généralisation du modèle de Lambrechts–Stanley (et plus!) sous de bonnes conditions, notamment dim *M* > borne.

Permet de calculer Conf_k par « récurrence ».

Théorème (Campos-I.-Lambrechts-Willwacher 2018)

Variétés à bord : invariance homotopique + généralisation du modèle de Lambrechts–Stanley (et plus!) sous de bonnes conditions, notamment dim M > borne.

Permet de calculer $Conf_k$ par « récurrence ».

Théorème (Campos-Ducoulombier-I.-Willwacher 2018)

Modèle pour les espaces de configuration « à repère » : structure opéradique même si la variété n'est pas parallélisée.

Théorème (Campos–I.–Lambrechts–Willwacher 2018)

Variétés à bord : invariance homotopique + généralisation du modèle de Lambrechts–Stanley (et plus!) sous de bonnes conditions, notamment dim M > borne.

Permet de calculer $Conf_k$ par « récurrence ».

Théorème (Campos-Ducoulombier-I.-Willwacher 2018)

Modèle pour les espaces de configuration « à repère » : structure opéradique même si la variété n'est pas parallélisée.

Permet de calculer les espaces de plongements et l'homologie de factorisation pour des variétés plus générales.

COMPLÉMENTAIRES DE SOUS-VARIÉTÉS

Projet en cours : calculer les espaces de configuration d'un complémentaire $N \setminus M$ où $\dim N - \dim N \ge 2$.

COMPLÉMENTAIRES DE SOUS-VARIÉTÉS

Projet en cours : calculer les espaces de configuration d'un complémentaire $N \setminus M$ où $\dim N - \dim N \ge 2$.

Motivation: conjecture d'Ayala-Francis-Tanaka

Complémentaire de nœud \leadsto : l'homologie de factorisation associée serait liée(?) à l'homologie de Khovanov.

COMPLÉMENTAIRES DE SOUS-VARIÉTÉS

Projet en cours : calculer les espaces de configuration d'un complémentaire $N \setminus M$ où $\dim N - \dim N \ge 2$.

Motivation: conjecture d'Ayala-Francis-Tanaka

Complémentaire de nœud \leadsto : l'homologie de factorisation associée serait liée(?) à l'homologie de Khovanov.

Il existe une opérade VSC_{mn} qui modélise la situation locale $\mathbb{R}^n \setminus \mathbb{R}^m$:

Théorème (I. 2018)

L'opérade VSC_{mn} est formelle sur \mathbb{R} .

MERCI DE VOTRE ATTENTION!

CES DIAPOS: https://idrissi.eu/fr