Lecture 26 (ch.11)

we have been talking about inference on β (and α),

the conditional mean of γ , given χ , and α single γ , at χ .

What about multiple regression (i.e. multiple γ 's)?

In going from $\gamma = \chi + \beta \times (1 + 1 perm)$ # of β 's.

to $\gamma = \alpha + \beta_1 \chi_1 + \beta_2 \chi_2 + \cdots + \beta_k \chi_k (k+1 perems)$ things generalize in a straight forward way.

Basically, all That happens is $(n-2) \longrightarrow n-(k+1)$.

This happens every where, e- γ .

- 1) The estimate of σ_e^2 is $S_e^2 = \frac{SSE}{N-(K+1)}$
- 2) The df associated with t-test changes: n-2 -> n-(h+1)
- 3) Even, CI & PI formulas are the same, except for Qt= n-(n+1) 7 = SSE \(\hat{y} \pm t \pm t^* \sqrt{\frac{3}{3}t^2} = \frac{5SE}{n-(n+1)}

In This class we did not develop a formula for Sig in multiple regression, but it does exist. As far as you are concerned, you can always get Sig from R.

Finally, don't forget that the issues of collinearity and interaction come back again when doing multiple regression.

The presence of multiple B's allows for one more (last!) test:

tho: B_=B_z = ---B_k = 0 }

Test of woodel utility.

H: At least 1 B; is to

In 7 = x+B,x,+Bzxz+--Buxu, if all B=0, then none of the predictors are useful for prediction y.

This F-test allows you to do ONE test to find out if any of The predictors are useful for predicting y. This is very useful if k is large, because it tells you if any of The predictors are useful. I.e. it tells you if There is a "needle in the hay stack," to begin with!

So, if you have a lot of possible / potential predictors, but you are not sure if any of Them are useful, what you can do is to include all of Them in The regression model, and do The F-test of model utility. IF you get a significant result (ie. p-value <a), Then There is evidence that at least one of the prodictors is useful. ITEN you can do separate tests on each of the p's to see which predictors are the useful ones. But IF The F-test comes back as non-significant, Then There is no evidence that any of The predictors are useful. THEN, you don't have to test each predictor separately.

	The main Theorem for this F-test is:
Phm:	$F = \frac{R^2/[k]}{(l-R^2)/[n-(k+1)]} = \frac{R^2/[k]}{(l-R^2)/[n-(k+1)]}$
	(1-R2)/[N-(K+1)]
	has an F- distr. with df= (k, n-(k+1))
	: p-value = Right avea under F when the is "at least ", then The p-value is just The right trail
	Then, if p-value Lx, we can reject the (Bi=Bi=================================
	infavor of H, (atleast 1 B; is not zero)
	IF The p-value La, we can start testing each of The Bi separately. Fortunately, The test for each Bi is The same as The test for a single B, except for df= n-(k+1) Erg. Suppose we want to test B3:
	Ho: B3 D Bo (e-g. 0) C.I. for B3:
	H1: B3 BB0 \n-(h+1)
	$t_{obs} = \frac{\hat{\beta}_3 - \beta_o}{S_e/\sqrt{S_{xx}}}$ $\frac{1}{S_{xx}} = \frac{\hat{\beta}_3 - \beta_o}{\sqrt{S_{xx}}}$ $\frac{1}{S_{xx}} = \frac{1}{S_{xx}} = \frac{1}{S_$
	p-value = (1,2) pr (+ [] +obj)
_1	
d	f=n-(n+1) in Table II (or IV)
	Note: eventhough we are testing ONE Bi, The of is n-(h+1)

The F-vatio that shows-up in the test of model utility, ie.
The F-vatio that shows-up in The test of model utility, ie. $F = \frac{R^2/h}{(1-R^2)/[n-(n+1)]}$, can be written in a way that resembles The
A. G. A. D. J. A. C. O. J. E. SShaturen
ANOVA F-vatio of Ch.9, ie. F= SSbetween/ SSwitzin/
In fact, The former is equal to
a) $\frac{SS_{bdween}/(k-1)}{SS_{wthin}/(n-k)}$ b) $\frac{SS_{bdween}/k}{SS_{wthin}/[n-(h+1)]}$ c) $\frac{R^2/(h-1)}{(1-R^2)/(n-k)}$
where SSbitween = SSoeplained, SSwithin = SSun explained
$F = \frac{R^2/k}{(1-R^2)/[n-(h+1)]} = \frac{\frac{SSexpl.}{SST}/k}{(1-\frac{SSexpl.}{SST})/[n-(h+1)]} = \frac{\frac{SSexpl.}{SST}/[n-(h+1)]}{\frac{SSexpl.}{SST}/[n-(h+1)]} = \frac{\frac{SSexpl.}{SST}/[n-(h+1)]}{\frac{SSwithin}{SSwithin}/[n-(h+1)]} = \frac{\frac{SSexpl.}{SSwithin}/[n-(h+1)]}{\frac{SSwithin}{SSwithin}/[n-(h+1)]}$
$\left(-\frac{SSelg!}{SST}\right)/\left(N-(h+1)\right)$ instead of $(k-1)$
SSeeph. (K SSbotween /k
SSuneral (N-(k+1)) I SC 1101 (n-k)
17 (35 Within / [n-(4+1)]
SS= Sum-Squarid = MS bitueen
MS within
MS = Mean-Squared

```
The regression equation is
durpr = -0.912 + 0.161 formconc + 0.220 catratio + 0.0112 temp + 0.102 time
                   StDev
Predictor
            Coef
                                            In This example
                               0.307
Constant
         -0.9122
                  0.8755
                         -1.04
formconc
         0.16073
                  0.06617
                         2.43
                               0.023
         0.21978
                          6.45
                              0.000
catratio
                  0.03406
                                          you are going to
         0.011226 0.004973
                               0.033
temp
                          2.26
        0.10197 0.05874
time
                          1.74 0.095
S = 0.8365 \text{ R-Sq} = 69.2\% \text{ R-Sq(adj)} = 64.3\%
                                        Learn what all These
Analysis of Variance
Source
         DF SS
         4 39.3769 9.8442 14.07 0.000
Regression
         25 17.4951 0.6998
Error
         29 56.8720
Total
         fitted model asetul?
 proble = prob (F> Fobs) = prob (F>14.04)
 According to Table VIII, If=(4,25)
 So, at any reasonable &, we can rejet the null
  hyp. (That all B: are Zero) in favor of The
  alt. (That attent one of The B: is not zero)
 I.e. The mold is useful
```

b) Estimate, in a way that conveys into about precision & reliability, We average change in durability press rating associated with a 1- degree increase in caring temperature, when all other predictors remain fixed. (if There is NO collinearity) I.e. what's the C.I for B temp 95% C.I. $\beta \pm t^* \frac{5e}{S_{xx}} = .0112 \pm 2.060 \frac{0.8365}{2.51ded}$ 0112 ± 2,060 (.004973) => this is The interval estimate for B. It's useful as it is, but we can also see That Brang to. We can build the C.I. for the other B's i C.T. form conc $(1607 \pm 2.060 (.06617) = (0.02, 0.30)$ Catratio · 2198 I " · 03406 = (0.15, 0.29) temp .0112 ± 1 .00497 = (0.001, 0.02) time 10197 ± 1, 0587 = (-0.02, 0.22)

	In part a, we found out that afterit one of The B: +0.
	To see which oness), we test each of Them!
	Ho: B: =0 vs. H: B: +0 for eali.
c)	E-g- Ho; Bformold, =0
	H1: Bounded. (#)
Se S	ton, = -(6073-0) = 2.43 Same as subjection hoster p-value=2 prob(t>tons)=2(.012) df= n-(u+1)=25 =.024 = in printout So, p-value La => formaldehyde provides useful info,
17 formaldo	p-value = 2 prob(t>tos) = 2(.012)
Tally	So, p-value La => formaldelyde provider useful info,
	In fat, look at all the p-values: look at
	023, 000, 033, 095 Last Col. of printant.
	At == 05 B +0 B+0 B= cannot tell Sumall. cate temp time
	Formald. Cont. temp time
	consistent with The condusions in part 6.
	Note these products are different from whit you would
5	Note These p-values are different from what you would get if you did y= a+B,x,, y=a+Bzxz, Etc. and tested if each of these B; are zero.
L	and tested if each of these B; are zero

	. 0		
(hw)	大い	26-	

Churles 66-1
Recall the hw problem (hw_lect14_1) where you showed that adding useless predictors to a regression model can increase R2. This time, suppose the true/pop fit is $y = 1$, (i.e., no x at all), and so a possible sample from the population
could be the following:
set.seed(123) # Use this line to make sure we all get the same answes. n = 20
y = 1 + rnorm(n,0,1)
a) In the old hw, there was one useful predictor (x1), and 4 useless predictors (x2,x3,x4,x5). Here, revise that code to have data on 10 useless predictors(and no useful predictors), fit the model y = alpha + beta1 x1 + + beta10 x10, performs the test of model utility, and perform t-tests on each of the 10 coefficients to see if they are zero. Just show
your code. By R
b) According to the F-test of model utilitt, are any of the predictors useful at alpha = 0.1?
c) According to the t-tests, are any of the predictors useful at alpha = 0.1? See the solns to make sure you understand the moral of this exercise.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.