Assignment 2: MA3140

- **Q 1.** Let X_1, \ldots, X_n be a r.s. from a distribution having pdf (pmf) $f(x|\boldsymbol{\theta})$, where $\boldsymbol{\theta} \in \Theta$ is unknown, and let $g(\boldsymbol{\theta})$ be the estimand. In each of the following situations, find the MLE, say $\delta_M(\boldsymbol{X})$, and the UE based on the MLE, say $\delta_U(\boldsymbol{X})$. Also compare the MSEs of $\delta_M(\boldsymbol{X})$ and $\delta_U(\boldsymbol{X})$.
 - (a) $f(x|\boldsymbol{\theta}) = e^{-(x-\theta)}$, if $x > \theta$, and = 0, otherwise; $\Theta = (-\infty, \infty)$; $g(\theta) = \theta$.
 - (b) $X_1 \sim Exp(\theta)$; $\Theta = (0, \infty)$; $g(\theta) = \theta$.
 - (c) $X_1 \sim U(0,\theta)$; $\Theta = (0,\infty)$; $g(\theta) = \theta^r$, for some known positive integer r.
 - (d) $X_1 \sim N(\theta, 1)$; $\Theta = (-\infty, \infty)$; $g(\theta) = \theta^2$.
- **Q 2.** Let X_1, \ldots, X_n be a r.s. from a distribution having pdf (pmf) $f(x|\boldsymbol{\theta})$, where $\boldsymbol{\theta} \in \Theta$ is unknown, and let $g(\theta)$ be the estimand. Find CE in each of the following situations.
 - (a) $X_1 \sim U(-\theta, 2\theta); \Theta = (0, \infty); g(\theta) = \theta.$
 - (b) $X_1 \sim N(\mu, \sigma^2)$; $\boldsymbol{\theta} = (\mu, \sigma^2)$, $\Theta = (-\infty, \infty) \times (0, \infty)$; $g(\boldsymbol{\theta}) = \frac{\mu}{\sigma}$.
 - (c) Same as (b) with $g(\theta) = \mu + b\sigma$, where b is any given real number.
 - (d) $X_1 \sim Poisson(\theta); \Theta = (0, \infty); g(\theta) = e^{\theta}.$
- **Q 3.** Let X_1, \ldots, X_n be a random sample from $U(0, \theta)$ distribution, where $\theta \in \Theta = (0, \infty)$ is an unknown parameter. Of the two estimators, the M.M.E. and the M.L.E, of θ , which one would you prefer with respect to the criterion of the bias?
- **Q 4.** Let X_1 , X_2 be a r.s. from an Exponential population with mean $1/\lambda$. Define $T_1 = \frac{X_1 + X_2}{2}$ and $T_2 = \sqrt{X_1 X_2}$. Show that T_1 is unbiased and T_2 is biased. Further, prove that $MSE(T_2) \leq Var(T_1)$.
- **Q 5.** Let T_1 and T_2 be UEs of θ with respective variances σ_1^2 and σ_2^2 , and $cov(T_1, T_2) = \sigma_{12}$ (assumed to be known). Consider $T = \alpha T_1 + (1 \alpha)T_2$, $0 \le \alpha \le 1$. Show that T is unbiased and find the value of α for which Var(T) is minimized.
- **Q 6.** Let X_1 , X_2 be a r.s. from a population with density function $f(x) = \frac{x}{\theta} \exp\{-\frac{x^2}{2\theta}\}$, x > 0, $\theta > 0$. Find the CRLB for the variance of an UE of θ . Hence, derive a UMVUE for θ .

- **Q 7.** Let X_1 , X_2 be a r.s. from a population with density function $f(x) = \theta(1+x)^{-(1+\theta)}$, x > 0, $\theta > 0$. Find the CRLB for the variance of an UE of $1/\theta$. Hence, derive a UMVUE for $1/\theta$.
- **Q 8.** Let X_1, X_2 be a r.s. from a discrete population with pmf

$$P(X = -1) = \frac{1-\theta}{2}, \ P(X = 0) = \frac{1}{2}, \ P(X = 1) = \frac{\theta}{2}, \ 0 < \theta < 1.$$

Find the CRLB for the variance of an UE of θ . Show that the variance of an UE $\overline{X} + \frac{1}{2}$ is more than or equal to this bound.

- **Q** 9. Show that each of the following families is an exponential family.
 - (a) Gamma Family with either parameter α or β known or both unknown.
 - (b) Beta Family with either parameter α or β known or both unknown.
 - (c) Negative Binomial family with r known, 0 .
- **Q 10.** Check whether the following family of distributions of X is a one-parameter exponential family.
 - (a) $X \sim Cauchy(1, \theta)$.
 - (b) $X \sim Uniform[0, \theta], \theta \in (0, \infty).$