1 Inverse binary relation, connection with the inverse mapping

Определение

Пусть $r \subseteq A \times B$ - бинарное отношение. Тогда **обратное отношение** к r - это отношение $r^{-1} \subseteq B \times A$, определённое как:

$$r^{-1} = \{(b, a) | (a, b) \in r\}$$

Замечание

В отличие от обратных отображений, обратные отношения всегда существуют для любого бинарного отношения.

Предложение

Если $f:A\to B$ - отображение и существует обратное к f отображение q, то $q=f^{-1}$

Доказательство

По предложению о единственности обратного отображения, достаточно проверить, что f^{-1} - обратное отображение, т.е. что $f \circ f^{-1} = id_A$ и $f^{-1} \circ f = id_B$. Проверим первое утверждение. Пусть $a \in A$, b = f(a), т.е. $(a,b) \in f$. Тогда по определению, $(b,a) \in f^{-1}$, следовательно, $(a,a) \in f^{-1} \circ f$. Это означает, что $id_A \subseteq f^{-1} \circ f$. С другой стороны, если $(a_1,a_2) \in f^{-1} \circ f$, то существует такой $b \in B$, что $(a_1,b) \in f$ и $(b,a_2) \in f^{-1}$, т.е. $(a_2,b) \in f$. Так как f инъективно, $a_1 = a_2$, поэтому $f^{-1} \circ f \subseteq id_A$. Следовательно, равенство $f \circ f^{-1} = id_A$ доказано. Второе равенство доказывается аналогично.

2 Reductions in λ -calculus: β -reduction

 β -редукция правило переписывания:

$$(\lambda x.t)s \Rightarrow_{\beta} t[x=s]$$

может применяться когда подстановка t[x=s] не создаёт конфликта имен переменных в t, т.е. когда s свободно относительно x в t.

 β -редукция - это элементарный шаг вычисления, при котором все вхождения переменной x просто заменяются на s внутри t, как только выражение $(\lambda x.t)s$ встречается в переписываемом терме. Терм вида $(\lambda x.t)s$ называется β -редексом, а результат редукции t[x=s] называется β -сокращением.

3 Structures of signature σ

Определение

Пусть $n \in \omega$ - натуральное число, A - множество. Тогда n-арное отношение на множестве A - это произвольное подмножество

$$r \subset A^n$$

- если n=2, то r бинарное отношение
- если n=1, то $r\subseteq A$ унарное отношение
- если n=3, то r называется **тернарным** отношением

Определение

Сигнатура σ - это тройка $\sigma = (P, F, \mu)$, где

- $P \cap F = \emptyset$
- *P* множество **предикатных символов** (или просто **предикатов**)
- F множество функциональных символов
- $\mu:P\cup F\to\omega$ отображение арности символов из $P\cup F$

Определение

Пусть $\sigma = (P, F, \mu)$ - сигнатура. Функциональный символ $f \in F$ называется константой, тогда и только тогда, когда $\mu(f) = 0$.

Примеры сигнатур

Сигнатура теории множеств $\sigma_{set} = (\{\in\}, \emptyset, \{(\in, 2)\})$ - единственный двухместный предикатный символ \in .

Сигнатура поля вещественных чисел $\sigma_{\mathbb{R}} = (\emptyset, \{+, \cdot, 0, 1\}, \{(+, 2), (\cdot, 2), (0, 0), (1, 0)\})$ - сигнатура, содержащая два бинарных функциональных символа + и \cdot и две константы - 0 и 1.

Соглашение

Далее арность символов сигнатуры будет обозначаться верхним индексом., т.е. s^n означает, что $\mu(s) = n$, здесь $s \in P \cup F$ - произвольный символ сигнатуры. Тогда сигнатуры σ_{set} и $\sigma_{\mathbb{R}}$ могут быть переписаны как:

- $\sigma_{set} = (\{ \in^2 \}, \emptyset)$
- $\sigma_{\mathbb{R}} = (\emptyset, \{+^2, \cdot^2, 0^0, 1^0\})$

Определение

Структура (или алгебраическая система) сигнатуры $\sigma = (P, F, \mu)$ - это пара $\mathcal{M} = (M, \nu)$, где $A \neq \emptyset$ - - произвольное непустое множество, а

$$\nu: P \cup F \to \bigcup_{n \in \omega} \mathcal{P}(M^n)$$

такое отображение, что для любого символа $s \in P \cup F$, $\mu(s) = n$

- \bullet если $s\in F,$ то $\nu(s)\subseteq M^{n+1}$ график некоторой n-местной функции всюду определённой на M
- ullet если $s\in P$, то $u(s)\subseteq M^n$ n-арное отношение на M

Отображение ν называется **интерпретацией** сигнатуры σ . Множество M называется **областью определения** или **множеством носителей** структуры \mathcal{M} .

Примеры структур

Поле действительных чисел $\mathbb{R}=(R,\nu_R)$, где

• $\nu_R(+): R^2 \to R$ - операция сложения,

- $\nu_R(\cdot): R^2 \to R$ операция умножения,
- $\nu_R(0) = 0_R$, $\nu_R(1) = 1_R$

 $0 \in \sigma_{\mathbb{R}}$ - символ, обозначающий 0 как действительное число, $1 \in \sigma_{\mathbb{R}}$ - символ для обозначения 1.

Структура, не являющаяся полем вещественных чисел $\mathbb{R}'=(R,\nu_R')$, где

- $\nu_R'(+): R^2 \to R$ умножение,
- $\nu_R'(\cdot):R^2\to R$ сложение,
- $\nu_R'(0) = 1, \, \nu_R'(1) = 2$

Это пример структуры с такой же сигнатурой $\sigma_{\mathbb{R}}$ и носителем, но не являющейся полем вещественных чисел.

Соглашение

Если рассматривать некоторую стандартную структуру (например, поле действительных чисел), тогда вместо $\mathbb{R} = (R, \nu_R)$ можно писать просто $(R, \sigma_{\mathbb{R}})$, предполагая, что для всех символов из $\sigma_{\mathbb{R}}$ существует стандартная интерпретация.

Определение

Структура (алгебраическая система) $\mathcal{G} = (G, \sigma_{mon})$ сигнатуры $\sigma_{mon} = \{\cdot^2, 1^0\}$ называется **моноидом**, тогда и только тогда, когда $\forall a, b, c \in G$:

- 1) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ ассоциативность
- 2) $a \cdot 1 = 1 \cdot a = a$ свойства 1

Определение

Структура $\mathcal{G} = (G, \sigma_{grp})$ сигнатуры $\sigma_{grp} = \sigma_{mod} \cup \{(^{-1})^1\}$ называется **группой**, тогда и только тогда, когда \mathcal{G} является моноидом и $\forall a \in G$:

3) $a \cdot a^{-1} = a^{-1} \cdot a = 1$ - свойство обратного элемента

Определение

Группа $\mathcal{G} = (G, \sigma_{grp})$ называется **абелевой** или **коммутативной**, тогда и только тогда, когда кроме аксиом 1-3 выполняется ещё одна аксиома

4) $a \cdot b = b \cdot a$ - коммутативность

Определение

Пусть A - множество. Рассмотрим множество $Bi(A) \rightleftharpoons \{f|f: A \stackrel{1:1}{\twoheadrightarrow} A\}$ - множество всех биективных отображений из A в A. Операции композиции \circ и нахождения обратного элемента (инверсии) $^{-1}$ определены на этом множестве. Следовательно, существует структура $S(A) = (Bi(A), \sigma_{grp})$:

- $1^{S(A)} \rightleftharpoons id_A$
- ullet если $f,g\in Bi(A),$ то $f\cdot^{S(A)}g \rightleftharpoons f\circ g$
- если $f \in Bi(A)$, то $f^{(-1)^{S(A)}} \rightleftharpoons f^{-1}$

Тогда S(A) - группа перестановок на множестве A.

Определение

Структура $\mathcal{R}=(R,\sigma_{rng})$ сигнатуры $\sigma_{rng}=\{+^2,\cdot^2,-^1,0^0,1^0\}$ называется **кольцом**, тогда и только тогда, когда $(R,\{+,-,0\})$ является абелевой группой, $(R,\{\cdot,1\})$ является моноидом и для любых $a,b,c\in G$ верно следующее:

- 1. $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ левая дистрибутивность
- 2. $(b+c)\cdot a=(b\cdot a)+(c\cdot a)$ правая дистрибутивность

Определение

Структура $\mathcal{F} = (F, \sigma_{fld})$ сигнатуры $\sigma_{fld} = \sigma_{rng} \cup \{(^{-1})^1\}$ называется **по- лем**, тогда и только тогда, когда \mathcal{F} является кольцом, а $(F \setminus \{0\}, \{\cdot, ^{-1}, 1\})$ абелевой группой.

Замечание

Пусть $\mathcal{A}=(A,\preceq)$ - ЧУМ. Тогда можно предположить, что \mathcal{A} - структура сигнатуры $\sigma_{ord}=\{\leq^2\}$, где \leq двухместный предикатный символ. Для любых $a,b\in A$:

$$a \leq^{\mathcal{A}} b \Leftrightarrow (a,b) \in \leq^{\mathcal{A}} \Leftrightarrow a \leq b$$