Do Now: Triangle congruence proofs

1. Given $\triangle ABP$ and $\triangle JKP$ with $\angle A \cong \angle J$. P bisects \overline{AJ} . Prove $\triangle ABP \cong \triangle JKP$.

Statement

- 1) $\triangle ABP$, $\triangle JKP$
- 2) _____
- 3) _____
- 4) $\angle APB \cong \angle JPK$
- 5) _____
- 6) $\triangle ABP \cong \triangle JKP$

Reason

- 1) Given
- 2) Given
- 3) Given
- 4)
- 5) Definition of a bisector
- 6) _____
- 2. Apply the translation $(x,y) \to (x-1,y+3)$ to the point A(0,-4).
- 3. What is the image of B(4,3) under a reflection across the x-axis?
- 4. State the translation that would map C(1,5) onto C'(4,3).
- 5. Express the result to the nearest thousandth.

(a)
$$\sin 30^{\circ} =$$

(c)
$$\sin 28^{\circ} =$$

(b)
$$\tan 45^{\circ} =$$

(d)
$$\cos 25^{\circ} =$$

6. Given right $\triangle ABC$ with $AC=12, BC=5, AB=13, \, m\angle C=90^{\circ}.$ Express each trig ratio as a fraction.

(a) $\sin A =$

(c) $\sin B =$

(b) $\cos A =$

- (d) $\tan B =$
- 7. Given right $\triangle ABC$ with $m \angle C = 90^{\circ}$, $m \angle A = 30^{\circ}$, and AB = 12.

(a) Find AC.

(b) Find BC.

Exit Note: Triangle congruence proof & transformations assessment

1. Given $\triangle QRP$ and $\triangle STP$ with $\overline{QP} \cong \overline{SP}$. P is the midpoint \overline{RT} . Prove $\triangle QRP \cong \triangle STP$.

Statement

- 1) $\triangle QRP$, $\triangle STP$
- 2) _____
- 3) _____
- 4) $\angle QPR \cong \angle SPT$
- 5) _____
- 6) $\triangle QRP \cong \triangle STP$

Reason

- 1) Given
- 2) Given
- 3) Given
- 4) _____
- 5) Definition of a midpoint
- 6) _____
- 2. Apply the translation $(x,y) \rightarrow (x+1,y+6)$ to the point A(-5,3).
- 3. What is the image of B(2,5) under a reflection across the y-axis?
- 4. State the translation that would map C(2, -3) onto C'(5, -4).