CO₂ and Cost Impacts of a Microgrid with Electric Vehicle Charging Infrastructure: a Case Study in Southern California

Luis Fernando Enriquez-Contreras*†, Matthew Barth*†, Sadrul Ula†

*Department of Electrical and Computer Engineering

University of California, Riverside

Riverside, United States of America

lenri001@ucr.edu, barth@ece.ucr.edu

†College of Engineering, Center for Environmental Research & Technology

University of California, Riverside

Riverside, United States of America

lenri001@ucr.edu, barth@ece.ucr.edu, sula@cert.ucr.edu

Abstract—As an important part of Intelligent Transportation Systems (ITS), this paper presents a case study at the University of California, Riverside (UCR) that evaluates the effectiveness of different transportation-based microgrid configurations in reducing both carbon dioxide (CO2) emissions and electricity costs. CO2 emissions are calculated using high-resolution California Independent System Operator (CAISO) CO2 emissions data to accurately assess the environmental impact of each setup. Electric costs were also compared to determine the financial savings potential for the consumer. The results demonstrate that a peak-shaving transportation-microgrid strategy can effectively reduce CO2 emissions in the range of 24% to 38% and costs from \$27,000 to \$29,000 per year, even when considering the additional demand from 12 vehicles charging daily at the building. However, careful consideration should be given to battery sizing, as peak-shaving has diminishing returns. Doubling the battery size may only provide an additional savings of \$2,000 per year with a negligible reduction in emissions. This highlights the importance of optimizing battery capacity to maximize cost-effectiveness and environmental impact.

Index Terms—microgrids, demand response, CO₂ emissions, modelica, EV charging