Algebra II (ISIM), lista 7 (30.11.2017).

Teoria: Grupy rozwiązalne.

- 1. Wyznaczyć rzędy grup obrotów własnych sześcianu i izometrii własnych sześcianu (wsk: rozważyć działanie tych grup na zbiorze wierzchołków sześcianu).
- 2. (a) Udowodnić, że grupa izometrii własnych czworościanu foremnego jest izomorficzna z grupą S_4 .
 - (b) W grupie izometrii własnych sześcianu wskazać podgrupy izomorficzne z D_4 i z $D_3.$
- 3. (a) W grupie automorfizmów liniowych przestrzeni liniowej \mathbb{R}^2 wskazać element rzędu 2 niebędacy izometrią.
 - (b)* Czy w (a) istnieje taki element rzędu 3 (zamiast 2)?
- 4. Udowodnić, że:
 - (a) Każda z grup $G^{(k)}$ jest charakterystyczną podgrupą G.
 - (b) $G^{(k+1)} \triangleleft G^k$ oraz $G^{(k)}/G^{(k+1)}$ jest abelowa.
- 5. Udowodnić, że grupa G jest rozwiązalna stopnia $\leq k \iff$ istnieje ciąg normalny grupy G długości k, o faktorach abelowych.
- 6. Dla $H_1, H_2 < G$ określamy komutant grup $[H_1, H_2]$ jako podgrupę generowaną przez komutatory $[h_1, h_2], h_1 \in H_1, h_2 \in H_2$. Załóżmy, że $H_1, H_2 \triangleleft G$. Udowodnić, że $[H_1, H_2] \subseteq H_1 \cap H_2$ i $[H_1, H_2] \triangleleft G$.
- 7. Wyznaczyć komutant grupy D_4 .
- 8. Dowieść, że (a) jeśli $f:G\to H$ jest epimorfizmem grup, to $f[G^{(k)}]=H^{(k)}$; (b) jeśli G< H, to $G^{(k)}\subseteq H^{(k)}$.
- 9. Udowodnić, że dla n > 2, $[S_n, S_n] = A_n$. (wsk. dla inkluzji \supseteq : każda permutacja jest iloczynem transpozycji, dlatego permutacje postaci (a, b)(c, d) generują A_n . Uzasadnić, że każda taka permutacja jest komutatorem.)
- 10. Sprawdzić, że grupa S_4 jest rozwiązalna.
- 11. (a) Udowodnić, ze każdy element postaci $g_1g_2 \dots g_ng_1^{-1}g_2^{-1}\dots g_n^{-1}$, gdzie $g_1,\dots,g_n\in G$, należy do komutanta grupy G.
 - (b)** Udowodnić, że każdy element grupy [G,G] jest powyższej postaci (mnie się nie udało).
- 12. Niech $T(2,\mathbb{R}) = \left\{ \begin{bmatrix} a & c \\ 0 & b \end{bmatrix} : a,b,c \in \mathbb{R}, \ a,b \neq 0 \right\}$ i $U(2,\mathbb{R}) = \left\{ \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} : a \in \mathbb{R} \right\}$.
 - (a) Sprawdzić, że $U(2, \mathbb{R} < T(2, \mathbb{R}) < GL(n, \mathbb{R})$.
 - (b) Pokazać, że $U(2,\mathbb{R}) \cong (\mathbb{R},+)$ i $U(2,\mathbb{R}) = [T(2,\mathbb{R}),T(2,\mathbb{R})]$.
 - Wywnioskować stąd, że $T(2,\mathbb{R})$ jest rozwiązalna stopnia 2.
- 13. Sprawdzić, że $Z(GL(n,\mathbb{R}))$ składa się z macierzy postaci $aI, a \in \mathbb{R} \setminus \{0\}$.