

Celebrating the Establishment in Year 2024

Lecture 4: Transformers and pretraining-finetuning

CS6493 Natural Language Processing Instructor: Linqi Song

Outline

- 1. Attention
- 2. Transformer
- 3. BERT
- 4. GPT

Problems with contextualized word embeddings

- RNNs/LSTMs have long-term dependency problems, where words/tokens are processed sequentially.
 - Information loss
 - Hard to compute in parallel
- Bi-directional RNNs/LSTMs feature fusion and representation ability is weak (compared with transformers).

From ELMo to BERT

Attention – the main technique behind transformers

Attention is all you need, Google, 2017.

- Why attention?
 - To reduce the computational complexity.
 - To parallelize the computation.
 - Self-attention connects all positions in a sequence with a constant number of operations to solve the long-term dependency problem.
 - Self-attention could yield more interpretable models

What is attention?

- What is the attention mechanism
 - An analogy to human's brain, to pay more attention to more important information.
 - Map a query and a set of key-value pairs to an output, where the query, keys, values and output are all vectors.
 - The output is a weighted sum of the values, where the weight assigned to each value is computed by a compatibility function of the query with the corresponding key.

Attention in cognitive psychology and graphical design

- Cognitive psychology and graphical design
 - Which part of the screen attracts the most human attention: ad placement, news headlines, etc.
 - Visual hierarchy

Attention in NLP: aligning while translating (1)

 Machine translation: translate source sentence in a language to a target sentence in another language.

 Alignment in machine translation: relationship between source words and target words.

Attention in NLP: aligning while translating (2)

Recall the RNN-based encoder-decoder example for neural machine translation

Attention in NLP: aligning while translating (3)

 Attention intuition: each time the proposed model generates a word in a translation, it searches for a set of positions in a source sentence where the most relevant information is concentrated (Bahdanau et al. 2015).

- Do not encode all inputs into one vector: more information.
- Allow adaptive selection to which should the model attend.

Attention: formal description

• Given a query vector q, and a set of key-value pairs (all vectors) $\{(k_i, v_i)\}_{i=1}^L$, we first calculate the similarity/attention score between the query and each key:

$$s_i = similarity(\boldsymbol{q}, \boldsymbol{k}_i).$$

• Normalize the similarity score to be between 0 and 1, and they sum up to 1. These are called attention distribution. One way is to use the softmax operation.

$$a_{i} = softmax(s_{i}) = \frac{\exp(s_{i})}{\sum_{i=1}^{L} \exp(s_{i})}.$$

Compute the attention/context vector z as a weighted sum of values.

$$\mathbf{z} = \sum_{i=1}^{L} a_i \mathbf{v}_i$$
.

 Keys and values are not necessarily the same, and they could be different as well, such as in machine translations.

Attention: example

Attention: similarity calculation

Similarity/attention score calculation between the query and each key:

$$s_i = similarity(\boldsymbol{q}, \boldsymbol{k}_i).$$

- In general, every similarity measures can be used here, such as the cosine coefficient and Pearson correlation coefficient.
- Commonly used ones for neural networks:
 - Additive attention (Bahdanau et. al 2014):

$$s_i = w_3 \tanh(\boldsymbol{w}_1^T \boldsymbol{q} + \boldsymbol{w}_2^T \boldsymbol{k}_i).$$

Multiplicative attention.

$$S_i = \boldsymbol{q}^{\mathrm{T}} W \boldsymbol{k}_i$$
, where $W \in \mathbf{R}^{\mathrm{d}_q \times \mathrm{d}_k}$, with d_q, d_k being the dimensions of q and k_i .

Dot-product attention.

$$s_{i} = \boldsymbol{q}^{\mathrm{T}} \boldsymbol{k}_{i}.$$

Scaled dot-product attention.

$$s_{i} = \frac{q^{T} k_{i}}{\sqrt{d_{k}}}.$$

Scaled dot-product attention in matrix form

Q: a matrix formed by packing a set of queries

K: a matrix formed by packing a set of keys

V: a matrix formed by packing a set of values

 $d_{m{k}}$: the dimension of keys and queries

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Scaled Dot-Product Attention

Attention learns (nearly) alignment

 An example from the paper 'Neural Machine Translation by Jointly Learning to Align and Translate'

Attention is all you need: self-attention (1)

- For an input sequence of words, play attention mechanisms between every word and others (including itself).
- Features
 - Constant path length between any two positions
 - Easy to parallelize per layer

Attention is all you need: self-attention (2)

- How to construct queries, keys, and values?
 - Linear transformation from original input embeddings x_i : $q_i=x_iW^Q$, $k_i=x_iW^K$, $v_i=x_iW^V$

Attention is all you need: self-attention (3)

- Perform scaled dot-product attention between a word i and all words
- Obtain L self-attention vectors, one for each word (token).

Attention is all you need: self-attention (4)

We change these calculations into the matrix form.

Attention is all you need: multi-head self-attention (1)

- What if we choose different forms of $W^{\mathbb{Q}}$, $W^{\mathbb{K}}$, and $W^{\mathbb{V}}$?
 - Each group of $(W^{\mathbb{Q}}, W^{\mathbb{K}}, W^{\mathbb{V}})$ is called a head.
 - Increase the representation performance: different representation subspaces, model's ability to focus on different positions.

Attention is all you need: multi-head self-attention (2)

- How to combine multi-headed output together?
 - Concatenate them and use another linear transformation.

WO

Attention is all you need: multi-head self-attention (3)

In a nutshell

Attention is all you need: multi-head self-attention (4)

- Graphical view and mathematical presentations
 - \circ Linearly project the queries, keys and values h times with different, learned linear projections to $d_{\rm k}$, $d_{\rm k}$, $d_{\rm v}$ dimensions respectively.
 - On each of these projected versions, perform the attention function in parallel.
 - \circ The resulting $d_{\rm v}$ dimensional output values are concatenated and once again projected.
- Parameters: hidden size d_{model} , self-attention heads h

$$\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h) W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$$

Where the projections are parameter matrices $W_i^Q \in \mathbb{R}^{d_{\text{model}} \times d_k}$, $W_i^K \in \mathbb{R}^{d_{\text{model}} \times d_k}$, $W_i^V \in \mathbb{R}^{d_{\text{model}} \times d_v}$ and $W^O \in \mathbb{R}^{hd_v \times d_{\text{model}}}$.

Multi-head attention results illustration

- One head attention for 'it' -> more on 'the animal';
- Multi-head attention for 'it' -> 'street', 'tire', 'didn't', 'cross', 'because'.

Transformer

- Proposed by Google: Attention is All You Need (Vaswani et al., 2017)
- Main technique: multi-head self attention mechanism.
- The transformer is a novel architecture that aims to solve sequence-to-sequence tasks while handling long-range dependencies with ease.

Transformer - formal description

- Encoder: maps an input sequence of symbol representations $(x_1, x_2, ..., x_n)$ to a sequence of continuous representations $z = (z_1, z_2, ..., z_n)$
- Decoder: given z, generates an output sequence $(y_1, y_2, ..., y_m)$, one element at a time.
- At each step the model is auto-regressive, consuming the previously generated symbols as additional input.
- Stacked self-attention and point-wise, fully connected layers for both the encoder and decoder.

Transformer: attention in encoder

Encoder

- In a self-attention layer all of the keys, values and queries come from the output of the previous layer or the raw input embedding (with hidden dimension $d_{\rm model}$) in the encoder.
- Each position in the encoder can attend to all positions in the previous layer of the encoder.

Transformer: attention in decoder

Decoder

- Similarly, each position attends to all positions in the decoder up to and including that position.
- Encoder-decoder attention: keys and values come from the top encoder output; queries come from the output of the masked multi-head attention (with hidden dimension $d_{\rm model}$) in the decoder.
- Masked self-attention
 - \circ Keys, values and queries come from the output of the previous layer or the raw output embedding (with hidden dimension d_{model}) in the decoder.
 - Prevent leftward information flow to preserve the auto-regressive property. Decoder self-attention is only allowed to attend to earlier positions in the output sequence, implemented by masking out (setting to -∞) future positions (tokens).

Transformer: other details

 Each of the layers in the encoder and decoder contains a fully connected feed-forward network (FFN), which is applied to each position separately and identically.

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

- Positional encodings: input positional information of the sequence.
- Residual connection: learning the changing part
- Learned embeddings are used to convert the input tokens and output tokens to vectors of dimension $d_{\rm model}$. The same weight matrix are shared in the two embedding layers.

Positional encoding in transformer (1)

- Transformer does not contain recurrence or convolution, it does not know the order of input tokens.
- We have to let the model know the positions of the tokens explicitly
- Idea: input representation of a token is the sum of two embeddings: token and positional

Positional encoding in transformer (2)

In order to add position information (order of the sequence)

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

- pos is position (e.g., the pos-th token in a sentence) and i is the i-th element in a vector to represent each position.
- Each dimension of the positional encoding corresponds to a sinusoid.
- For any fixed offset k, PE_{pos+k} can be represented as a linear transformation of PE_{pos} . This would allow the model to easily learn to attend by relative positions.

Positional encoding in transformer (3)

BERT: Bidirectional Encoder Representations from Transformers

- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Google, 2018
- Pretrained deep bidirectional representation models from unlabeled text .
- Jointly conditioning on both left and right context in all layers.
- Can be finetuned with just one additional output layer to create models for a wide range of tasks.
- Powerful in a variety of tasks.

Task	Score	Best with BERT (from Delvin et al.)	Absolute improvement
NLU	GLUE score	80.5%	7.7%
NLI	MultiNLI accuracy	86.7%	4.6%
question-answer	SQuAD v1.1 Test F1	93.2	1.5
question-answer	SQuAD v2.0 Test F1	83.1	5.1

BERT architecture (1)

- BERT architecture consist of multi-layer bidirectional transformer encoders
- BERT model provided in the paper came in two sizes

BERT_BASE	BERT_LARGE	
Layers = 12	Layers = 24	
Hidden size = 768	Hidden size = 1024	
Self-attention heads = 12	Self-attention heads = 16	
Total parameters = 110M	Total parameters = 340M	

BERT architecture (2)

A graphical view

BERT: pretraining + finetuning

- Apart from output layers, the same architectures are used in both pre-training and fine-tuning.
- The same pre-trained model parameters are used to initialize models for different downstream tasks.
- During fine-tuning, all parameters are fine-tuned.

What contributes to BERT's success?

- Innovation in model pre-training: 2 selfsupervised tasks for pre- training instead of traditional unidirectional language models
 - Masked Language Model (MLM)
 - Next Sentence Prediction (NSP)
 - The training loss is the sum of the mean MLM likelihood and the mean NSP likelihood
- Compatibility to various tasks
 - Just fine-tune BERT Model for specific tasks to achieve state-of-the-art performance
 - BERT advances the state-of-the-art for eleven NLP tasks

BERT: input/output representation

- For a given token, its input representation is constructed by summing the corresponding token, segment, and position embeddings.
- [CLS] is a special symbol added in front of every input example.
- [SEP] is a special separator token (e.g. separating questions/answers).
- Unambiguously represent both a single sentence and a pair of sentences in one token sequence.

Pre-training BERT

- In order to pre-train BERT transformers bidirectionally, two selfsupervised tasks are proposed, namely Masked LM and Next Sentence Prediction (NSP).
- One of the reasons of BERT's success is the amount of data that it got trained on.
- The two corpuses that were used to pretain the language models are:
 - The BooksCorpus (800M words)
 - English Wikipedia (2,500M words)

Masked language modeling (MLM)

- Motivation: Enable bidirectional pre-training
- Main idea: Mask some percentage of the input tokens at random, and then predict those masked tokens.
- Details:
 - The training data generator chooses 15% of the token positions at random for prediction.
 - If the i-th token is chosen, we replace the i-th token with
 - (1) the [MASK] token 80% of the time,
 - (2) a random token 10% of the time,
 - (3) the unchanged *i*-th token 10% of the time.
 - Predict the original token via cross entropy and the final hidden vector for the i-th input token
- The masking scheme here is to reconcile the mismatch between pre-training and fine-tuning, since the [MASK] token does not appear during fine-tuning.

An illustration of MLM

Next sentence prediction (NSP)

- Motivation: understanding the relationship between two sentences (inspired by Question Answering and Natural Language Inference).
- Main idea: given a preceeding sentence A and a sentence B, judge if B is the next sentence of A.
- Details:
 - choose the sentences A and B for each pretraining example
 - o 50% of the time B is the actual next sentence that follows A (labeled as [IsNext])
 - 50% of the time it is a random sentence from the corpus (labeled as [NotNext])
- In the architecture figure, C is used for NSP prediction.

An illustration of NSP

NSP example

```
Input = [CLS] the man went to [MASK] store [SEP]

he bought a gallon [MASK] milk [SEP]
```

Label = IsNext

```
Input = [CLS] the man [mask] to the store [SEP]

penguin [MASK] are flight ##less brids [SEP]
```

Label = **NotNext**

BERT: fine-tuning (1)

- Common approach: independently encode text pairs before applying attention.
- BERT's approach: concatenate a text pair, and then encode with self-attention in order to include bidirectional cross attention between two sentences.
- For each task, simply plug in the task-specific inputs and outputs into
 BERT and fine- tune all the parameters end-to-end.
- Compared to pre-training, fine-tuning is relatively inexpensive.

BERT: fine-tuning (2)

- For classification tasks (e.g. sentiment analysis) we add a classification FFN
 for the [CLS] token input representation on top of the final output
- For Question Answering alike tasks BERT train two extra vectors that are responsible for marking the beginning and the end of the answer

BERT fine-tuning for classification

BERT fine-tuning for different tasks

- Context vector C: Take the final hidden state corresponding to the first token in the input: [CLS].
- Transform to a probability distribution of the class labels:

$$P = \operatorname{softmax}(CW^T)$$

- **Batch size**: 16, 32
- Learning rate (Adam): 5e-5, 3e-5, 2e-5
- Number of epochs: 3, 4

Experiments on BERT

BERT fine-tuning results on 11 NLP tasks

Task	Score	Best with BERT (from Delvin et al.)	Absolute improvement
NLU	GLUE score	80.5%	7.7%
NLI	MultiNLI accuracy	86.7%	4.6%
question-answer	SQuAD v1.1 Test F1	93.2	1.5
question-answer	SQuAD v2.0 Test F1	83.1	5.1

Generative Pre-training (GPT)

- Motivation: semi-supervised learning
 - Stage 1: Unsupervised learning on word-level or phrase-level
 - E.g. word embeddings
 - Stage 2: Supervised training using these word-level features
- In the method above:
 - Stage 1 is less dependent on the task related more to NLU
 - Stage 2 models may vary a lot according to different tasks
- Are there any techniques that improve the preformance of Stage 1 models that would work for most of the tasks?
 - That's the problem we hope to solve by introducing pre-training.
 - In other words, pre-training improves language understanding.

GPT framework (1)

- Multi-layer transformer decoder
 - first layer: $h_0 = UW_e + W_p$
 - the I-th layer: $h_l = transformer_block(h_{l-1}), \forall l \in [1, n]$
 - Self-supervised pre-training, similar to embdeddings such as word2Vec
 - Given tokens *U*, maximize the contextual conditional probability

$$L_1(\mathcal{U}) = \sum_i \log P(u_i|u_{i-k}, \dots, u_{i-1}; \Theta)$$

 $P(u) = \operatorname{softmax}(h_n W_e^T)$

where k is the window size; $h_n W_e^T$ is the score for each word.

Unidirectional!

GPT framework (2)

- Supervised fine-tuning
 - keep the pre-trained transformers
 - replace the final linear layer $W_{
 m e}$ with $W_{
 m v}$,
 - Given data inputs X and labels y, maximize

$$P(y|x^1,\ldots,x^m)= ext{softmax}(h_l^mW_y).$$

$$L_2(\mathcal{C})=\sum_{(x,y)}\log P(y|x^1,\ldots,x^m).$$

$$L_3(\mathcal{C})=L_2(\mathcal{C})+\lambda*L_1(\mathcal{C})$$
 auxiliary training objective

Task-specific adaptions (1)

How to adapt a single architecture to multiple input formats?

Classification (e.g. sentiment analysis)

- Given a piece of text, is it positive or negative?
- Answers: "Yes", "No"
- Answers: "Very positive", "Positive", "Neutral", "Negative", "Very negative"

Entailment

- Given a premise p and a hypothesis h, does p imply h?
- Answers: "entailment", "contradiction", or "neutral"

Similarity

- Are two sentences semantically equivalent?
- Answers: "Yes", "No"

Multiple Choice (e.g. Story Cloze)

- Given a short story and two sentences, which is the sentence that ends the story?
- Given a passage and a question, and some multiple-choice answers, which is the answer?
- Answers: A_1 , A_2 , ... A_N

Pre-trained model comparison: ELMo, GPT, and BERT

	:		
	Architecture	Pre-training	Downstream tasks
ELMo	Bi-directional LSTM language model	Unsupervised corpus. Learn both words and linguistic context features that support downstream tasks.	Feature-based tasks and task-specific models.
GPT	Uni-directional transformer decoder	Unsupervised corpus. Each specific task requires discriminative fine-tuning.	Model-based tasks and task-agnostic models.
BERT	Bi-directional transformer encoder	Unsupervised corpus. 2 unsupervised tasks: MLM and NSP. Each specific task requires discriminative fine-tuning.	Model-based tasks and task-agnostic models.

55

References

Attention and transformer:

- Attention is All You Need (Vaswani et al., 2017) https://arxiv.org/pdf/1706.03762.pdf
- https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
- Neural Machine Translation by Jointly Learning to Align and Translate (Bahdanau, 2015) https://arxiv.org/pdf/1409.0473.pdf
- Transformer: http://jalammar.github.io/illustrated-transformer/

GPT:

Improving Language Understanding by Generative Pre-Training (Radford et al., 2018) https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

BERT:

- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Delvin et al., 2019)
 https://arxiv.org/pdf/1810.04805.pdf
- https://towardsdatascience.com/understanding-entity-embeddings-and-its-application-69e37ae1501d
- https://www.slideshare.net/AbdallahBashir3/bert-176297542

BERT fine-tune code:

https://skimai.com/fine-tuning-bert-for-sentiment-analysis/

Comparison of pre-trained models:

• https://medium.com/@gauravghati/comparison-between-bert-gpt-2-and-elmo-9ad140cd1cda

Thanks for your attention!