本试卷适应范围

南京农业大学试题纸

人工智能 学院 2021 级 本科生

2021~2022 学年 第一学期 课程类型: 必修 试卷类型: A

课程号 MATH2103

课程名 数学分析 I

5 学分

学号		姓名		班级	
题号	_	二	三	总分	签名
得分					
一 埴空販武	<u> </u> 选择题(每题 3 分,	 . 计 30 分. 选择题			
	0)= 				
	$\frac{1}{1+2x}-\sqrt{x^2-2x^2}$		•		
・函数 <i>f</i> (x)连	E续且有 $\lim_{x\to 2} \frac{f(x)}{x^2-4}$	=1,则函数在点	x=2 处的导数为	हा $f'(2) = $	·
. 若(1,2)是	曲线 $y = ax^2 + bx^3$	的拐点,则函数	$ty = ax^2 + bx^3 / tx$	=处	取得极大值.
· 若e ^{-x} 是f(x	()的一个原函数,则	$\iint \int f'(x)dx = \underline{\qquad}$			
. <i>x</i> →+∞时	一函数形式的迫敛性	生定理 :			
. 确界原理:_					
. 若点 x ₀ 是函	的数 $f(x)$ 的间断点	$ar{x}_{0}$ 必定也	2是函数	的间断点	
(A).	$(f(x))^3$; (B).	$(f(x))^2$; (C)). $ f(x) $; (D)	$\sin f(x)$.	
. 函数 $f(x)$ =	$= x $ 在 $x=0$ 处_	•			
(A).	不连续;		(B).连续但	且不可导;	
(C).	可导但导函数不	连续;	(D).可导且	L导函数连续.	

- (A). 如果函数 f(x) 在点 x_0 处的左右导数都存在,则函数 f(x) 在 x_0 点处可导 .
- (B). 由于 $x \to 0$ 时 $\sin x \sim x$,所以 $\lim_{x \to 0} \frac{x \sin x}{x^3} = \lim_{x \to 0} \frac{x x}{x^3} = \lim_{x \to 0} \frac{0}{x^3} = 0$.
- (C). $(-\infty, +\infty)$ 上可导的周期函数的导函数仍是周期函数.

10. 下列论断中正确的是 .

(D). 对于著名的Heaviside 函数 $H(x) = \begin{cases} 0, x \le 0 \\ 1, x > 0 \end{cases}$,存在函数G(x),使得G'(x) = H(x).

- 二. 解答题 I.(每题 7 分, 计 28 分)
- 11. 求极限 $\lim_{n\to\infty}\left(\frac{2n+3}{3n+1}\right)^n$.

12. 设a > 0, b > 0.试证明椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 上点 (x_0, y_0) 处的切线方程为 $\frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1$.

13. 计算不定积分 $\int \frac{1}{\sqrt{\left(1+x^2\right)^3}} dx$.

14. 若 $\lim_{x\to 0} \frac{\sin 3x + xf(x)}{x^3} = 0$,试计算 $\lim_{x\to 0} \frac{3 + f(x)}{x^2}$.

系主任 杨涛

出卷人 朱震球

- 三. 解答题 II (15~18 题每题 9 分, 19 题 6 分, 计 42 分)
- 15. 设 $f(x) = \lim_{n \to \infty} \left(\frac{n-x}{n+x} \right)^{\frac{n}{2}}$, 试计算不定积分 $\int x f(x) dx$.

16. 设函数 f(x) 在 $\left(-\infty, +\infty\right)$ 上有定义, $\forall x, y \in \left(-\infty, +\infty\right)$ 有 f(x+y) = f(x) + f(y) + 2xy,已知 f(x) 在 x = 0 处可导, f'(0) = 1.试证明:函数 f(x) 在 $\left(-\infty, +\infty\right)$ 上可导,并由此求出函数 f(x) 的表达式 .

17. 设 $a_n = 1 - \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{\left(-1\right)^{n-1}}{n^2}$, 试运用 Cauchy 收敛准则证明数列 $\left\{a_n\right\}$ 收敛 .

18.	(1).	求证:x>	0 时有-	$\frac{x}{+x}$	< ln(1+	x) < x	; ;
-----	------	-------	-------	----------------	---------	--------	-----

$$(2).设x_n = \left(1 + \frac{1}{n^2}\right)\left(1 + \frac{2}{n^2}\right)\left(1 + \frac{3}{n^2}\right)\cdots\left(1 + \frac{n}{n^2}\right),证明数列\{x_n\}收敛,并求出 \lim_{n \to \infty} x_n.$$

19. 证明:给定圆的内接正n边形 $(n \ge 3)$ 的面积随着n 的增加而增加.