Lecture 8

$<\!2016\text{-}04\text{-}27\ Wed\!>$

Contents

1	Memory Layout	1
2	Buffer Overflow	2
3	Float	2
	3.1 Fractional Binary Numbers	2
	3.1.1 example	3
	3.1.2 limitations	3
	3.2 Floating Point Representation (IEEE Standard)	3
	3.3 Normalized Values	3
	3.3.1 example	3
	• stack	
	• stack - runtime stack (8MB limit)	
	runonne souck (OVID mint)	
	• heap	
	- dynamically allocated	
	<pre>- malloc, calloc, new</pre>	
	• data	
	• text / shared library	

2 Buffer Overflow

```
typedef struct {
  int a[2];
  double d;
} struct_t;

double fun(int i) {
  volatile struct_t s;
  s.d = 3.14;
  s.a[i] = 1073741824;
  return s.d;
}
```

3 Float

3.1 Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-j}^{i} b_k \times 2^k$$

- bits to right of 'binary point' represent fractional powers of 2
- \bullet representation of rational numbers $\sum_{k=-j}^{i} b_k \times 2^k$

3.1.1 example

```
value | representation

5 + 3/4 ==> 101.11

2 + 7/8 ==> 10.111

1 + 7/16 ==> 1.0111
```

- observations
 - divide by 2 by shifting right (unsigned)
 - multiply by 2 by shifting left
 - $-\,$ number of the form 0.11111_2 are just below $1.0\,$
 - * $\sum \frac{1}{2^i}$ goes to 1.0
 - * use notation 1.0 ϵ

3.1.2 limitations

ullet can only reprsent numbers of the form $x/2^k$

3.2 Floating Point Representation (IEEE Standard)

- $\bullet\,$ numerical form (-1)s M $2^{\rm E}$
 - sign bit: s
 - significand: M
 - exponent: E

3.3 Normalized Values

• when $exp \neq 00...0$ and $exp \neq 11...1$

3.3.1 example

 15213_{10}

- \bullet as an integer 11101101101101_2
- \bullet as a float $1.1101101101101_2\times 2^{13}$
 - significand

- $*\ \mathtt{M} = 1.1101101101101_2$
- $*\ \mathtt{frac} = 110110110110100000000000_2$
- exponent
 - * E = 13
 - $*\ \mathtt{Bias} = 127$
 - $*\ \mathtt{Exp} = 140 = 10001100_2$
- result