Elementi di teoria della Computazione (Prof.ssa De Felice) Anno Acc. 2017-2018

Prova scritta - 11 giugno 2018

Nome e Cognome, email:

Matricola:

Firma:

Spazio riservato alla correzione: non scrivere in questa tabella.

1	2	3	4	5	6	Tot.	-	7
							SI	NO

Leggere le tracce con attenzione!

Giustificare le risposte, risposte non giustificate non saranno valutate.

La domanda n.7 non concorre al raggiungimento della sufficienza, ma solo alla determinazione del voto finale.

È vietato copiare, collaborare o comunicare con altri studenti. È vietato l'utilizzo di libri, appunti o lucidi.

I risultati della prova scritta e le informazioni per la conclusione dell'esame saranno pubblicati sulla piattaforma e-learning entro il 21 giugno.

1. (15 punti)

Dato l'automa finito non deterministico $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, dove $Q = \{q_0, q_1, q_2\}$, $\Sigma = \{a, b, c\}$, $F = \{q_2\}$ e la cui funzione di transizione δ è definita dalla tabella seguente.

	a	b	$\mid c \mid$	ϵ
q_0	Ø	$\{q_1\}$	$ \begin{cases} q_2 \\ q_0, q_1 \end{cases} $	$\{q_1,q_2\}$
q_1	$\{q_0\}$	$\{q_2\}$	$\{q_0, q_1\}$	Ø
q_2	Ø	Ø	Ø	Ø

- Calcolare la ϵ -chiusura di ciascuno stato.
- Elencare tutte le stringhe di lunghezza minore o uguale a due accettate dall'automa.

2. (15 punti)

Fornire un'espressione regolare che denoti il linguaggio riconosciuto dall'automa finito deterministico $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, dove $Q = \{q_0, q_1, q_2, q_p\}$, $\Sigma = \{a, b\}$, $F = \{q_0\}$ e la cui funzione di transizione δ è definita dalla tabella seguente.

	a	b
q_0	q_1	q_0
q_1	q_2	q_p
q_2	q_0	q_1
q_p	q_p	q_p

3. (15 punti)

- (1) Definire l'operazione di concatenazione di due linguaggi.
- (2) Provare che la classe dei linguaggi regolari è chiusa rispetto all'operazione di concatenazione.

Prova scritta 2

- 4. (15 punti)
 - Enunciare il teorema di Rice.
 - Per ciascuno dei seguenti linguaggi dire se il teorema di Rice è applicabile, motivando la risposta.

 $X = \{\langle M \rangle \mid M$ è una macchina di Turing ed M accetta almeno una stringa input $\}$

 $X = \{\langle M \rangle \mid M$ è una macchina di Turing ed M si arresta su almeno una stringa input $\}$

5. (15 punti)

Data la seguente formula booleana

$$(x_1 \lor x_2 \lor x_4) \land (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_4}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$$

definire l'insieme S e l'intero t tali che $\langle S, t \rangle$ sia l'immagine di $\langle \Phi \rangle$ nella riduzione polinomiale di 3-SAT a SUBSET-SUM.

6. (15 punti)

Fornire le definizioni di riduzione polinomiale e di linguaggio NP-completo.

7. Si consideri il linguaggio

 $L = \{ \langle M \rangle \mid M \ \text{\`e} \ \text{una MdT che si arresta su 11 e non si arresta su 00} \}.$

Definire il linguaggio $HALT_{TM}$ e dimostrare che $HALT_{TM} \leq_m L$.