- **3.1** a. Show geometrically why the maximum principle holds using a "walking the dog" argument. Make it rigorous by imitating the last half of the proof of the fundamental theorem of algebra.
 - b. Use the maximum principle to prove the fundamental theorem of algebra by applying to 1/p.
- Solution a. Let f be analytic on a domain Ω and suppose there exists $z_0 \in \Omega$ such that $|f(z_0)| = \sup_{z \in \Omega} |f(z)|$. Then as f is analytic at z_0 , we can write $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ on $|z-z_0| < R$ for some R > 0. Suppose f is not identically $f(z_0)$. Let 0 < r < R such that $f(z) \neq f(z_0)$ when $0 < |z-z_0| \leq r$. We can do this because if there were no such r, then $f(z) f(z_0)$ admits a non-isolated zero, which implies that $f(z) \equiv f(z_0)$.

As f is not constant, not all a_n are 0. Let a_N be the first non-zero coefficient of f. Then

$$f(z) = f(z_0) + a_N(z - z_0)^N + a_{N+1}(z - z_0)^{N+1} + \cdots$$

Define $F(z) := f(z_0) + a_N(z - z_0)^N$ and $R(z) := \sum_{n=1}^{\infty} a_{N+i}(z - z_0)^{N+i}$. Note that R is also analytic since it is a sub-sum of f. Then by walking the dog, we have that there exists z^* such that

$$|F(z^*)| \ge |f(z_0)| + |a_N|r^N$$

 $|R(z)| \le \sum_{i=1}^{\infty} |a_{N+i}|r^{N+i} < \infty$

But then

$$|f(z^*)| = |F(z^*) + R(z^*)|$$

$$\geq ||F(z^*)| - |R(z^*)||$$

$$= |f(z_0)| + |a_N|r^N - \sum_{i=1}^{\infty} |a_{N+i}|r^{N+i}$$

$$= |f(z_0)| + |a_N|r^N \left(1 - \sum_{i=1}^{\infty} \frac{|a_{N+i}|}{|a_N|}r^i\right)$$

We can make r > 0 sufficiently small so that $1 - \sum_{i=1}^{\infty} \frac{|a_{N+i}|}{|a_N|} r^i > M$ for some M > 0. But then we get the contradiction

$$|f(z^*)| \ge |f(z_0)| + M|a_N|r^N > |f(z_0)| = \sup_{z \in \Omega} |f(z)|.$$

Hence, the maximum principle holds.

b. Let $p(z) = a_0 + \cdots + a_n z^n$, where a_0 and a_n are both non-zero. Suppose |p(z)| > 0 for all $z \in \mathbb{C}$. Then $\frac{1}{p}$ is analytic on all of \mathbb{C} .

As \mathbb{R} has the greatest lower bound property, $\inf_{z\in\mathbb{C}}|f(z)|\in\mathbb{R}$. Let m be this lower bound. Then

$$\frac{1}{|p(z)|} \le \frac{1}{m}$$

But by Liouville's theorem, $\frac{1}{p(z)}$ is constant, meaning $a_n = 0$, which is a contradiction. Hence, p(z) admits a zero in \mathbb{C} .

- **3.3** Suppose f is analytic in a connected open set U. If |f(z)| is constant on U, prove that f is constant on U. Likewise, prove that f is constant if Re f is constant.
- **Solution** As |f(z)| constant, then for all $z_0 \in U$, we have that $|f(z_0)| = \sup_{z \in U} |f(z)|$. Hence, by the maximum principle, f is constant on U.

Let M = Re f and $z_0 \in U$. Since f is analytic on U, we can write $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ for $|z - z_0| < R$ for some R > 0.

Consider $g(z) := f(z) - i \operatorname{Im} a_0$ and notice that

$$|g(z)| = \sqrt{\left(\operatorname{Re} f(z)\right)^2 + \left(\operatorname{Im} f(z) - \operatorname{Im} a_0\right)^2} \ge \operatorname{Re} f(z)$$

If Re $a_0 \neq 0$, $\frac{1}{q}$ is analytic on U. Then since $g(z_0) = \text{Re } a_0$ and

$$\frac{1}{|g(z)|} \le \frac{1}{\operatorname{Re} f(z)} = \frac{1}{\operatorname{Re} a_0},$$

then by the maximum principle, $\frac{1}{g(z)} \equiv \frac{1}{\operatorname{Re} a_0} \implies f(z) \equiv \operatorname{Re} a_0 + i \operatorname{Im} a_0 = a_0$.

If Re $a_0 = 0$, then consider $g(z) := f(z) - i \operatorname{Im} a_0 + 1$. We can apply the same argument above, but with $g(z_0) = 1$ instead to get that $g(z) \equiv 1 \implies f(z) \equiv i \operatorname{Im} a_0 = a_0$.

- **3.4** Suppose f and g are analytic on \mathbb{C} and $|f(z)| \leq |g(z)|$ for all z. Prove there exists a constant c so that f(z) = cg(z) for all z.
- **Solution** Suppose $g(z) \equiv 0$. Then $|f(z)| \le |g(z)| = 0 \implies f(z) \equiv 0$. Then in this case, c = 0.

Now assume that $g(z) \not\equiv 0$. Note that whenever g(z) = 0, we have that f(z) = 0 also. Consider

$$h(z) := \begin{cases} \frac{f(z)}{g(z)}, & g(z) \neq 0\\ 0, & g(z) = 0. \end{cases}$$

h is analytic on \mathbb{C} . Moreover, as $|f(z)| \leq |g(z)|$ for all $z, h(z) \leq 1$ in \mathbb{C} . Hence, by Liouville's theorem, $h(z) \equiv c$ for some $c \in \mathbb{C}$. Thus, f(z) = cg(z) for all $z \in \mathbb{C}$.

- **3.5** Prove that if f is non-constant and analytic on all of \mathbb{C} then $f(\mathbb{C})$ is dense in \mathbb{C} .
- **Solution** Suppose $f(\mathbb{C})$ were not dense in \mathbb{C} . Then there exists $w \in \mathbb{C}$ such that there exists r > 0 so that $B_r(w) \cap f(\mathbb{C}) = \emptyset$. In other words, $f(z) w \ge r$ for all $z \in \mathbb{C}$. Thus, $\frac{1}{f(z)-w}$ is analytic on \mathbb{C} . Moreover,

$$\left| \frac{1}{f(z) - w} \right| \le \frac{1}{r}$$

on \mathbb{C} . Then by Liouville's theorem $\frac{1}{f(z)-w}$ is constant, which implies that f is constant. This is a contradiction, so no such w exists. Hence, $f(\mathbb{C})$ is dense in \mathbb{C} .

- **3.6** Let f be analytic in \mathbb{D} and suppose |f(z)| < 1 on \mathbb{D} . Let a = f(0). Show that f does not vanish in $\{z \mid |z| < |a|\}$.
- **Solution** Consider g(z) := f(z) a. Then f(0) = 0 and f is analytic on \mathbb{D} . Thus, by the Schwarz lemma, $|f(z) a| \le |z|$. Suppose there exists z_0 such that $f(z_0) = 0$ and $|z_0| \le |a|$. Then

$$|f(z_0) - a| = |a| \le |z_0| < |a|$$

which is a contradiction. Hence, f does not vanish on $\{z \mid |z| < |a|\}$.

- **3.7** Prove that if f is a one-to-one (two-to-two!) analytic map of an open set Ω onto $f(\Omega)$ and if $z_n \in \Omega \to \partial\Omega$, then $f(z_n) \to \partial f(\Omega)$, in the sense that $f(z_n)$ eventually lies outside each compact subset of $f(\Omega)$. A function with this property is called **proper**.
- **Solution** Let $\{z_n\}_{n\geq 1}\subseteq \Omega$ be such that $z_n\neq z_m$ for all $n\neq m\geq 1$ and $z_n\xrightarrow{n\to\infty}\partial\Omega$. Since f is one-to-one, $f(n)\neq f(m)$ for all $n\neq m\geq 1$.

Suppose there exists $K \subseteq f(\Omega)$ compact such that infinitely many $f(z_n)$ lie in. Then $f(z_n)$ converges in K to a point $w \in K$. Since $w \in f(\Omega)$, there exists a unique $z_0 \in \Omega$ such that $f(z_0) = w$.

This implies that $z_n \xrightarrow{n \to \infty} z_0$, since z_0 is unique. This is a contradiction because we assumed that z_n converges outside each compact subset of Ω . Hence, f is proper.

3.8 a. Prove that φ is a one-to-one analytic map of $\mathbb D$ onto $\mathbb D$ if and only if

$$\varphi(z) = c \left(\frac{z - a}{1 - \bar{a}z} \right),$$

for some constants c and a, with |c| = 1, and |a| < 1. What is the inverse map?

b. Let f be analytic in \mathbb{D} and satisfy $|f(z)| \to 1$ as $|z| \to 1$. Prove f is rational.

Solution a. " $\Leftarrow=$ "

Let $\varphi(z) = c\left(\frac{z-a}{1-\bar{a}z}\right)$. We first show that it is one-to-one.

Let $z, w \in \mathbb{D}$ such that f(z) = f(w). Then

$$c\left(\frac{z-a}{1-\bar{a}z}\right) = c\left(\frac{w-a}{1-\bar{a}w}\right)$$
$$z - \bar{a}wz - a + |a|^2w = w - \bar{a}wz - a + |a|^2z$$
$$z - |a|^2z = w - |a|^2w$$
$$z = w$$

The last step holds since $|a| < 1 \implies 1 - |a|^2 > 0$.

 φ is one-to-one because z-a is analytic, and $1-\bar{a}z$ is analytic $\Longrightarrow \frac{1}{1-\bar{a}z}$ is analytic. This is because the only zero of $1-\bar{a}z$ occurs when $z=\frac{1}{\bar{a}}$, which lies outside of the unit disk.

Lastly, we need to show that $\varphi(\mathbb{D}) \subseteq \mathbb{D}$. Let |z| = 1. Then

$$|\varphi(z)| = \left| \frac{z - a}{1 - \bar{a}z} \right| \cdot |\bar{z}|$$

$$= \left| \frac{|z|^2 - a\bar{z}}{1 - \bar{a}z} \right|$$

$$= \left| \frac{1 - a\bar{z}}{1 - \bar{a}z} \right| = 1$$

It follows that if |z| < 1, then $|\varphi(z)| < 1$ also. Thus, $\varphi \colon \mathbb{D} \to \mathbb{D}$.

· ____ ,

Let φ be a one-to-one analytic map of $\mathbb D$ onto $\mathbb D$. Assume $\varphi(0)=0$ so that $|\varphi(z)|\leq |z|$. Then as φ is one-to-one, $F(z):=\frac{z}{\varphi(z)}$ is also analytic on $\mathbb D$. Note that $|F(z)|\geq 1$.

By exercise 7, as $|z| \to 1$, $|F(z)| \to 1$ also. Then by the maximum principle, $|F(z)| \le 1$ on \mathbb{D} . Thus, |F(z)| = 1, so $\varphi(z) = cz$ for some |c| = 1.

Pick a point $a \in \mathbb{D}$ and transform coordinates using T_a so that we get

$$\varphi(z) = cT_a = c\left(\frac{z-a}{1-\bar{a}z}\right)$$

as desired.

b. Suppose $|z| \to 1 \implies |f(z)| \to 1$. If f achieves its maximum in \mathbb{D} , then f is constant, and is obviously a rational function.

Otherwise, f attains its maximum on $\partial \mathbb{D}$ by the maximum principle. But as $|z| \to 1$, $|f(z)| \to 1$, so 1 is the maximum value of |f|.

By corollary 3.4, if $f(z_j) = 0$ for all j, we can write

$$f(z) = \prod_{j=1}^{n} \left(\frac{z - z_j}{1 - \bar{z_j}z}\right) g(z)$$

Notice that as $|z| \to 1$, $|g(z)| \to 1$ also. Thus, by the maximum principle, its maximum it 1, so $\frac{1}{g}$ is analytic. Moreover, as $|z| \to 1$, $\frac{1}{|g(z)|} \to 1$, so applying the maximum principle again, $\frac{1}{|g(z)|}$ is bounded above by 1. Thus, $|g(z)| = \lambda$, where $|\lambda = 1|$, and so

$$f(z) = \prod_{j=1}^{n} \left(\frac{z - z_j}{1 - \bar{z_j} z} \right) \lambda.$$

Hence, f is rational.