

$$U = (1-3) \qquad U = (-7,6)$$

$$C_1 = 2C_2 \qquad C_1 \qquad U + C_2 \qquad U = 0$$

$$C_1 \neq 0 \qquad C_2 \neq 0$$

are inicarry dependent, where C13 C2 15 VM/8 (c) u = (1, 2, -3), v = (4, 5, -6)c, u + C2 - 0 C, +4C2 =0 | C, t4.0 = 0 0 = 3 = 0 0 = 0 0 = 0u, ot las - Indep-

Basis and Dimension 4.24. Determine whether or not each of the following form a basis of \mathbb{R}^3 : (a) (1, 1, 1), (1, 0, 1);(c) (1,1,1), (1,2,3), (2,-1,1);(b) (1,2,3), (1,3,5), (1,0,1), (2,3,0); (d) (1, 1, 2), (1, 2, 5), (5, 3, 4). (a and b) No, because a basis of \mathbb{R}^3 must contain exactly three elements because dim $\mathbb{R}^3 = 3$. (c) The three vectors form a basis if and only if they are linearly independent. Thus, form the matrix whose rows are the given vectors, and row reduce the matrix to echelon form: $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & -3 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 5 \end{bmatrix}$ The echelon matrix has no zero rows; hence, the three vectors are linearly independent, and so they do form a basis of \mathbb{R}^3 . α (1,1,1), (1,2,3), (2,-1,1);u, u₂ u₃, 2. U. + y. U2 + 2. U3 = 2 = -(+6=5 Lon U1 2 42 , U2

Extend $\{u_1 = (1, 1, 1, 1), u_2 = (2, 2, 3, 4)\}$ to a basis of \mathbb{R}^4 . First form the matrix with rows u_1 and u_2 , and reduce to echelon form: $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 3 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$ Then $w_1=(1,1,1,1)$ and $w_2=(0,0,1,2)$ span the same set of vectors as spanned by u_1 and u_2 . Let $u_3=(0,1,0,0)$ and $u_4=(0,0,0,1)$. Then $w_1,\,u_3,\,w_2,\,u_4$ form a matrix in echelon form. Thus, they are linearly independent, and they form a basis of \mathbf{R}^4 . Hence, $u_1,\,u_2,\,u_3,\,u_4$ also form a basis of \mathbf{R}^4 . Ø \mathcal{O} Ø