# ECON 6356 International Finance and Macroeconomics

# Lecture 3 (part 3): Business Cycles in Emerging Countries - Interest Rate Shocks

Camilo Granados
University of Texas at Dallas
Fall 2023



slides
chapter 6
Interest Rate Shocks

Princeton University Press, 2017

These slides are an adjusted version of the materials for Chapter 6 of the OEM book provided by the authors

#### **Motivation**

- Interest-rate shocks are generally believed to be a major source of fluctuations for emerging countries.
- The next slide displays country interest rates and output for 7 emerging economies between 1994:Q1 and 2001:Q4.
- Why is there one interest rate per country, as opposed to just one world interest rate?
  - One reason is that each country has a different default risk, which is reflected in a country-specific interest-rate premium.
  - The most commonly-used measure of country spreads is J.P. Morgan's EMBI+ bond index (Emerging Market Bond Index).
- The figures in the next slide suggests that output and country interest rates are negatively correlated.
- **Primary References:** Neumeyer and Perri (JME, 2005) and Uribe and Yue (JIE, 2006).

### **Negative Comovement Between Interest Rates and Output**



Correlations: Argentina -0.67; Brazil -0.51, Ecuador -0.80, Mexico -0.58, Peru -0.37, The Philippines -0.02, South Africa -0.07.

#### Who Drives Whom?

- The observed negative correlation between output and the interest rate does not necessarily indicate that movements in the interest rate cause movements in output.
- Addressing this question requires a combination of data and theory.
- We will study two ways of combining data and theory:
  - 1. **SVAR analysis:** here the emphasis is in the S. Converting a simple VAR into an SVAR requires the imposition of **identifying assumptions**, which are necessarily theoretical in nature.
  - 2. Estimated DSGE model.

The main difference between these two approaches is how much weight they place on data and theory. We begin with approach (1).

## **SVAR Analysis, Uribe and Yue (2006)**

$$A\begin{bmatrix} \hat{y}_t \\ \hat{\imath}_t \\ tby_t \\ \hat{R}_t^{us} \\ \hat{R}_t \end{bmatrix} = B\begin{bmatrix} \hat{y}_{t-1} \\ \hat{\imath}_{t-1} \\ tby_{t-1} \\ \hat{R}_{t-1} \end{bmatrix} + \begin{bmatrix} \epsilon_t^y \\ \epsilon_t^i \\ \epsilon_t^{iby} \\ \epsilon_t^{rus} \\ \epsilon_t^{rus} \\ \epsilon_t^r \end{bmatrix},$$

where  $y_t$ =output,  $i_t$ =investment,  $tby_t$ =trade-balance-to-GDP ratio,  $R_t^{us}$ =U.S. interest rate, and  $R_t$ =country interest rate.

#### Identification Assumptions:

A is lower triangular  $(A(i, j) = 0 \ \forall j > i)$ .

 $R_t^{US}$  follows a univariate process  $(A(4,j) = B(4,j) = 0 \ \forall j \neq 4)$ .

- **Countries:** Argentina, Brazil, Ecuador, Mexico, Peru, The Philippines, South Africa.
- Sample Period: 1994:Q1 2001:Q4.

#### **Comments On Identification**

- A lower triangular implies that shocks to real variables (output, investment, and the trade balance) affect the country interest rate contemporaneously...
- ... but shocks to the U.S. interest rate or to the country interest rate affect real variables with a lag. This makes sense, because real variables (think about starting investment projects, hiring and firing decisions, etc.) should respond more slowly than financial variables.
- ullet Assuming that  $R_t^{us}$  is univariate is sensible because one should not expect individual emerging countries to affect interest rates in the U.S.

#### Implications of Identifying Restrictions:

- $-\epsilon_t^{rus}$  and  $\epsilon_t^r$  can be interpreted as exogenous U.S.-interest-rate and country-spread shocks, respectively.
- The identification scheme is vague about the nature of  $\epsilon_t^y$ ,  $\epsilon_t^i$ , and  $\epsilon_t^{tby}$ . This is not a problem, because our interest is to understand the effects of interest-rate shocks.

## Impulse Response To A Country-Spread Shock, $\epsilon^r_t$



## Impulse Response To A U.S. Interest-Rate Shock, $\epsilon_t^{rus}$



## Observations on Responses to $\epsilon^r_t$ and $\epsilon^{rus}_t$

- Country-spread and US-interest-rate shocks cause sizable contractions in output and investment and a sizable improvement in the trade-balance-to-GDP ratio (i.e., domestic absorption contracts relatively more than output).
- The response to US-interest-rate shocks is estimated with significant uncertainty. One reason is that by design,  $R_t^{us}$  does not vary across countries.
- US-interest-rate shocks cause a large, delayed overshooting of country spreads.

## Impulse Response To An Output Shock, $\epsilon_t^y$



## Observations on Response to $\epsilon_t^y$

- An output shock causes expansions in output and investment, and a deterioration of the trade-balance-to-GDP ratio, resembling a technology shock or a terms-of-trade shock in the SOE-RBC model.
- More importantly for the purpose of the present analysis, the output shock drives down the country spread, thus lowering the country's cost of borrowing.
- Recall that the present identification scheme is vague with respect to the precise nature of  $\epsilon_t^y$ . It could represent a mix of shocks of diverse natures, such as technology shocks, terms-of-trade shocks, etc.

# Robustness To Expanding The Temporal And Country Coverage of the Data

Expanded Time Span: 1994:Q1 to 2012:Q4.

**Expanded Country Set:** Argentina, Brazil, Bulgaria, Chile, Colombia, Ecuador, Hungary, South Korea, Malaysia, Mexico, Peru, South Africa, Thailand, Turkey, and Uruguay.

# Responses to Country-Spread and U.S.-Interest-Rate Shocks: Expanded Data



1% increase in country-spread (solid) and US-int.-rate (broken). Output and investment in % dev. from trend; TB/GDP and country int. rate in percentage point dev. from mean.

### Responses to an Output Shock: Expanded Data



1% output shock. Output and investment in % dev. from trend; TB/GDP and country int. rate in percentage point dev. from mean.

## **Observations on Robustness Analysis**

The baseline empirical results are robust to extending the temporal and crosssectional dimensions of the panel, especially along the following dimensions:

- Increases in the U.S.-interest-rate and country-spread cause contractions in output and investment.
- Increases in the U.S.-interest-rate and country-spread cause an improvement in the trade-balance-to-GDP ratio (or, equivalently, a proportionally larger contraction in domestic absorption than in output).
- U.S.-interest-rate shocks cause a delayed increase in country spreads.
- Output shocks cause an expansion in investment, a deterioration of the tradebalance-to-GDP ratio, and, more importantly, a fall in country spreads.

### **Decomposition of Forecast-Error Variances**

Let  $x_t \equiv [\hat{y}_t \, \hat{i}_t \, tby_t \, \hat{R}_t^{us} \, \hat{R}_t]'$ . Then the SVAR can be written as

$$Ax_{t+h} = Bx_{t+h-1} + \epsilon_{t+h}$$

And its  $MA(\infty)$  representation is

$$x_{t+h} = \sum_{j=0}^{\infty} C_j \epsilon_{t+h-j}$$
, with  $C_j \equiv \left(A^{-1}B\right)^j A^{-1}$ 

The forecast of  $x_{t+h}$  in t is

$$E_t x_{t+h} = \sum_{j=h}^{\infty} C_j \epsilon_{t+h-j}$$

And the associated forecast error, denoted  $FE_t^h$ , is

$$FE_t^h = \sum_{j=0}^{h-1} C_j \epsilon_{t+h-j}$$

Then the forecast-error variance at horizon h, denoted  $FEV^h$ , is

$$FEV^h = \sum_{j=0}^{h-1} C_j \Sigma_{\epsilon} C'_j$$
, where  $\Sigma_{\epsilon} \equiv E[\epsilon_t \epsilon'_t]$ 

The forecast-error variance attributable to shock i (the i-th element of  $\epsilon_t$ ), denoted  $FEV^{h,i}$ , is

$$FEV^{h,i} = \sum_{j=0}^{h-1} (C_j \Lambda_i) \Sigma_{\epsilon} (C_j \Lambda_i)',$$

where  $\Lambda_i$  is a square conformable matrix with all zeros except for diagonal element (i, i) which equals unity.

The share of forecast-error variance of variable k (i.e. k-th element of  $x_t$ ) at horizon h attributable to shock i, denoted  $SFEV_k^{h,i}$ , is given by

$$SFEV_k^{h,i} = \frac{FEV_{kk}^{h,i}}{FEV_{kk}^h},$$

where kk denotes the k-th diagonal element. This is called a forecast-error variance decomposition. As the horizon become large,  $h \to \infty$ , the forecast-error variance of variable k due to shock i converges to the unconditional variance of k due to i. The next slide presents the forecast-error variance decomposition implied by the estimated SVAR system.

## **Estimated Forecast-Error Variance Decomposition**



### **Observations on the Forecast-Error Variance Decompositions**

- ullet Jointly, country-spread and US-interest-rate shocks  $(\epsilon^r_t$  and  $\epsilon^{rus}_t)$  explain
- 30% of movements in output.
- 32% of movements in investment.
- 44% of movements in the trade-balance-to-GDP ratio.
- 85% of movements in country-spreads.
- About 60% of movements in country spreads is explained by country-spread shocks.

**Alternative Identification Scheme:** Why Not Place the Country Spread First in the SVAR System?

**SVAR Prediction Under This Specification:** Output and investment expand in response to an increase in the U.S. interest rate.

**Problematic:** It's difficult to rationalize this implication on theoretical grounds.

## **DSGE Analysis**

#### **Motivation**

- The SVAR analysis is based on loose theoretical restrictions.
- Does the propagation mechanism of interest rate shocks ( $\epsilon_t^{rus}$  and  $\epsilon_t^r$ ) implied by the estimated SVAR model concur with the one implied by an optimizing DSGE open economy model?
- If so, the identified interest-rate shocks would be more compelling since the effects they generate would be consistent with the optimizing behavior of households and firms.

**Strategy:** (1) Build a DSGE model of the open economy. (2) Feed the model with the estimated processes for  $R_t^{us}$  and  $R_t$  (the last 2 equations of the SVAR). (3) Compare the impulse responses predicted by the SVAR and DSGE models.

## The Theoretical Model (Uribe and Yue, 2006)

Open economy model with three frictions:

- Working-capital constraint on firms
- Gestation lags and convex adjustment costs in investment
- Habit formation

### **Firms and Working Capital Constraints**

$$\max F(k_t, h_t) - u_t k_t - w_t h_t \left[ 1 + \frac{\eta(R_t^d - 1)}{R_t^d} \right]$$

where  $F(\cdot, \cdot)$  is a production function,  $h_t$  =labor,  $k_t$  =capital,  $w_t$  =wage rate, and  $R_t^d$  =gross interest rate. The parameter  $\eta$  governs the strength of the working-capital constraint. The implied demand for labor is

$$F_h(k_t, h_t) = w_t \left[ 1 + \eta \left( \frac{R_t^d - 1}{R_t^d} \right) \right]$$

The working-capital constraint is a financial friction that allows for a supply-side effect of interest rate shocks.

**Intuition:** An increase in the interest rate increases the (financial) cost of labor, inducing a contraction in labor demand.

### Capital Accumulation: Gestation Lags and Convex Adjustment Costs

$$i_t = \frac{1}{4} \sum_{i=0}^{3} s_{it}.$$
 $s_{i+1t+1} = s_{it}, \quad i = 0, 1, 2$ 
 $k_{t+1} = (1 - \delta)k_t + k_t \Phi\left(\frac{s_{3t}}{k_t}\right)$ 

where  $i_t$ =investment,  $s_{it}$ =number of investment projects started in period t-i, for i=0,1,2,3 (4-period gestation lag);  $k_t$ =capital stock. Function  $\Phi(\cdot)$  captures convex adjustment costs (note that  $\Phi(\cdot)$  must be concave).

#### Households and Habit Formation

$$\max E_0 \sum_{t=0}^{\infty} \beta^t U(c_t - \mu \tilde{c}_{t-1}, h_t),$$

subject to

$$d_{t} = R_{t-1}d_{t-1} - w_{t}h_{t} - u_{t}k_{t} + c_{t} + i_{t} + \Psi(d_{t})$$

$$\lim_{j \to \infty} E_{t} \frac{d_{t+j+1}}{\prod_{s=0}^{j} R_{t+s}} \le 0$$

The function  $\Psi(d_t)$  is convex; it introduces portfolio adjustment costs and gives rise to an effective interest rate,  $R_t^d$ , satisfying

$$R_t^d = \frac{R_t}{1 - \Psi'(d_t)}.$$

## **Driving Forces**

$$\widehat{R}_{t} = 0.63\widehat{R}_{t-1} + 0.50\widehat{R}_{t}^{us} + 0.35\widehat{R}_{t-1}^{us} - 0.79\widehat{y}_{t} 
+ 0.61\widehat{y}_{t-1} + 0.11\widehat{i}_{t} - 0.12\widehat{i}_{t-1} + 0.29tby_{t} 
- 0.19tby_{t-1} + \epsilon_{t}^{r},$$

$$\hat{R}_t^{us} = 0.83 \hat{R}_{t-1}^{us} + \epsilon_t^{rus},$$

where  $\epsilon_t^r$  and  $\epsilon_t^{rus}$  are mean-zero, iid, innovations with standard deviations equal to 0.031 and 0.007, respectively.

Business Cycles in EMEs: Interest Rate Shocks

#### **Functional Forms**

$$U(c - \mu \tilde{c}, h) = \frac{\left[c - \mu \tilde{c} - \omega^{-1} h^{\omega}\right]^{1 - \gamma} - 1}{1 - \gamma}$$
$$F(k, h) = k^{\alpha} h^{1 - \alpha}$$
$$\Phi(x) = x - \frac{\phi}{2} (x - \delta)^{2}; \quad \phi > 0$$
$$\Psi(d) = \frac{\psi}{2} (d - \bar{d})^{2}$$

### **Calibrated Parameters (Quarterly)**

$$\omega = 1.45$$

$$\gamma = 2$$

$$\alpha = 0.32$$

$$R = \beta^{-1} = 1.0277$$

$$\delta = 0.025$$

$$\frac{tb}{y} = 0.02$$

### Estimating $\phi$ , $\psi$ , $\eta$ , and $\mu$

**Criterion:** Minimize the distance between empirical and theoretical impulse response functions.

Formally,  $\phi$ ,  $\psi$ ,  $\eta$ , and  $\mu$  are set so as to minimize

$$[IR^e - IR^m(\psi, \phi, \eta, \mu)]' \Sigma_{IR^e}^{-1} [IR^e - IR^m(\psi, \phi, \eta, \mu)],$$

Result of estimation:

$$\psi = 0.00042$$

$$\phi = 72.8$$

$$\eta = 1.20$$

$$\mu = 0.20$$

## **Theoretical and Estimated Impulse Response Functions**



## **Observations on the Theoretical Impulse Responses**

- The theoretical model replicates well a number of key features of the estimated IRFs:
- Output and investment contract in response to an increase in  $\epsilon_t^{rus}$  or  $\epsilon_t^r$ .
- The trade balance improves in response to an increase in  $\epsilon_t^{rus}$  or  $\epsilon_t^r$ .
- The country interest rate,  $R_t$ , displays a hump-shaped response to an increase in  $\epsilon_t^{rus}$ .
- These findings suggest that the identification assumptions imposed in the SVAR analysis are successful in isolating U.S.-interest-rate and country-spread shocks.

# **Conditional Standard Deviations Implied by the SVAR and Theoretical Models**

|                    | $\epsilon_t^{rus}$ |        | $\overline{\epsilon_t^r}$ |        | Unconditional |
|--------------------|--------------------|--------|---------------------------|--------|---------------|
| Variable           | SVAR               | Theory | SVAR                      | Theory | SVAR          |
| $\widehat{y}$      | 1.5                | 1.6    | 1.3                       | 1.3    | 3.7           |
| $\widehat{\imath}$ | 6.4                | 3.6    | 5.0                       | 2.0    | 14.2          |
| tby                | 2.1                | 1.6    | 2.0                       | 0.9    | 4.4           |
| $\widehat{R}^{us}$ | 1.3                | 1.3    | 0                         | 0      | 1.3           |
| $\widehat{R}$      | 3.8                | 3.5    | 4.7                       | 4.4    | 6.5           |

#### **Observations on Conditional Volatilities**

- SOE model does well at capturing importance of U.S.-interest-rate and countryspread shocks in explaining movements in output and country interest rates.
- The SOE model does a good job at accounting for variations in the trade balance due to U.S.-interest-rate shocks.
- But the SOE model underpredicts the volatilities of investment and the trade balance caused by country-spread shocks.
- SOE model implies that  $\epsilon_t^{rus}$  and  $\epsilon_t^r$  jointly explain 32 percent of fluctuations in output  $((1.6311^2+1.2779^2)/3.6583^2=0.32)$ , almost same as SVAR  $((1.5274^2+1.3030^2)/3.6583^2=0.30)$ . But SOE model assigns less importance to  $\epsilon_t^{rus}$  and  $\epsilon_t^r$  in accounting for variations in  $i_t$  and  $tby_t$  than does the SVAR.
- $\bullet$  Overall, identified  $\epsilon_t^{rus}$  and  $\epsilon_t^r$  shocks are sensible and economically important.

#### **Shocks to Global Risk Premia**

- What is the effect of movements in global risk premia on real and financial variables in emerging economies?
- Akinci (2013) expands the SVAR studied above to include the spread between the U.S. Baa corporate bond rate and the 20-year U.S. Treasury bond yield.
- Baa corporate bonds carry a medium degree of default risk: 13% cumulative default risk over 20 years, compared with less than 1% for Aaa rated bonds (highest rating by Moody's) and more than 70% for C rated bonds (lowest rating).

## The Augmented SVAR

$$A\begin{bmatrix} \widehat{y}_t \\ \widehat{\imath}_t \\ tby_t \\ \widehat{R}_t^{us} \\ \widehat{S}_t^{us} \\ \widehat{R}_t \end{bmatrix} = B(L)\begin{bmatrix} \widehat{y}_{t-1} \\ \widehat{\imath}_{t-1} \\ tby_{t-1} \\ \widehat{R}_{t-1}^{us} \\ \widehat{S}_{t-1}^{us} \\ \widehat{R}_{t-1} \end{bmatrix} + \begin{bmatrix} \epsilon_t^y \\ \epsilon_t^i \\ \epsilon_t^{tby} \\ \epsilon_t^{rus} \\ \epsilon_t^{sus} \\ \epsilon_t^{sus} \\ \epsilon_t^{r} \end{bmatrix},$$

 $S_t^{us} = \text{U.S.}$  corporate bond spread.

**Identification:** same as Uribe and Yue (2006). But now, pair  $[R_t^{us} S_t^{us}]'$  follows bivariate process.

 $\Rightarrow \epsilon_t^{sus}$  can be interpreted as an innovation to the U.S. risk premium.

Same interpretation as before for other innovations.

Countries: Argentina, Brazil, Mexico, Peru, South Africa, Turkey.

**Sample:** 1994:Q1 to 2011:Q3.

#### Predictions of SVAR with Global Risk Premium Shocks

- Interest rate shocks, i.e.,  $[\epsilon_t^{rus} \, \epsilon_t^{sus} \, \epsilon_t^r]$ , jointly explain 42% of the variance of output  $\Rightarrow$  reinforces the result obtained by Uribe and Yue (2006).
- The global risk-premium shock takes over the role previously played by the U.S. interest rate:  $\epsilon_t^{sus}$  explains 18% of the variance of output whereas  $\epsilon_t^{rus}$  explains only 6%.
- $\bullet$  The country spread shock,  $\epsilon_t^r$ , continues to be an important driver of aggregate fluctuations in emerging countries, accounting for 18% of the observed variance of output.
- Effects of global risk-premium shocks is mediated by the country premium: a 1 percentage point increase in  $\epsilon_t^{sus}$  raises the country premium by 1.3 percentage points.

## **Chapter Summary**

- Interest-rate shocks represent an **important driver of business cycles in emerging countries**, accounting for 30 to 42 percent of the variance of output.
- Of the 30 to 42 percent of output variance explained by interest rate shocks, half is due to a global component (U.S.-interest-rate shocks and U.S.-risk-premium shocks) and the other half is due to country-specific spread shocks.
- In response to an *increase in the interest rate*, output and investment contract and the *trade balance improves*.
- An increase in the U.S. interest rate or in the U.S. risk premium produces an overshooting in country spreads, that is, the country spread increases by more than one for one.
- The majority of movements in country spreads (more than 60 percent) is explained by country spread shocks.