

RAPPORT FINAL

Projet TPI

RESUME

Production d'un outil pour la génération de Dashboard sur des données massives liées à l'analyse et l'optimisation des performances opérationnelles dans un contexte d'excellence opérationnelle

Manar AFIFI Arnold perez FAHO MBATCHOU Batiste GROS

Table des matières

1 Cahier des charges	3
2 Etat de l'art :	5
3 Solutions existantes de type commercial	5
3.1. Tableau	5
3.2. Power BI	6
3.3. Qlik Sense	7
4 Solutions existantes de type Open Source	9
4.1. Grafana	9
	9
4.2. Metabase	10
4.3. Apache Superset	12
5 Résultat de l'état de l'art 1	15
6 Cahier de charges pour centraliser les données	16
7 Solutions pour les ETL	17
7.1. Airbyte	17
7.2. Talend	18
7.3. Fivetran	19
8 Comparaison des bases de données	20
9 Résultat de l'état de l'art 2	21
10 Choix de la réalisation	21
10.1 Spring Boot pour le Backend	21
10.2 PostgreSQL (Base de données)	22
10.3 Metabase (intégration de visualisations)	22
10.4 React pour le frontend	23
10.5 Airbyte : une solution moderne et modulaire pour l'intégration de données	24
10.6 Docker et Docker Compose : une infrastructure standardisée et scalable	24
11 Résultat du développement	25
11.1 Présentation de l'interface	25
11 2 Petite démo représentant quelques fonctionnalités :	25

12 Difficultés rencontrées	32
13 Architecture du projet	34
14 Conclusion	35

1 Cahier des charges

Catégorie	Sous-catégorie	Description
Contexte du Projet	- Objectif principal	Développement d'une plateforme de Dashboard pour l'analyse et l'optimisation dans l'aéronautique et la maintenance. Fournir une solution pour
	Secteurs concernés	analyser les données et optimiser les performances opérationnelles. Aéronautique,
		Maintenance industrielle.
Utilisateurs : Parties prenantes	Administrateurs	Gestion globale: utilisateurs, permissions, configuration de la plateforme.
	Les ingénieurs/ Techniciens	Suivi des tâches de maintenance et visualisation des données.
	Managers	Analyse des performances via des KPI pour la prise de décision stratégique.
Fonctionnalités Principales	Gestion des données	Intégration de données issues de capteurs IoT, bases SQL/NoSQL, Systèmes ERP
	Personnalisation	Modification des Dashboard: widgets, filtres, plages de données, des options de personnalisations pour les couleurs, polices, arrière- plan des Dashboard.
	Visualisation	Graphiques dynamiques : camemberts, histogrammes, cartes, lignes, Kanban, etc.
	Alertes et notifications	Notifications automatiques sur dépassement de seuils critiques.

	Rapports automatisés	Génération périodique de
		rapports en PDF ou Excel.
	Partage	Partage de Dashboard
		avec des équipes ou
		utilisateurs spécifiques.
	Traçabilité	Suivi des modifications
		des actions des
		utilisateurs.
Contraintes Techniques	Accessibilité	Compatibilité avec les
		ordis, mobile, et tablette.
	Temps de réponse	Chargement des
		Dashboard en moins de Ts
		secondes.
Sécurité	Confidentialité des	Chiffrement des données
	données	sensibles en transit et au
		repos.
	Gestion des accès	Contrôle basé sur les rôles
		des utilisateurs pour
		limiter les permissions.
Expérience	Ergonomie	Interface intuitive pour
		utilisateurs techniques et
		non techniques.

2 Etat de l'art:

Du cahier des charges ci-dessus, nous allons tirer les principaux critères que nous utiliserons pour évaluer les différentes solutions techniques existantes. Nous utiliserons la comparaison de ces critères pour établir un classement des solutions.

3 Solutions existantes de type commercial

3.1. Tableau

Critères	Notes/5	Description
Utilisateurs à différents	4	Gestion complète des rôles et permissions
niveaux d'accès		par utilisateur.
Gestion des données	5	Intégration multi-source : SQL, Cloud,
		application dans le cloud comme
		Salesforce.
		Nettoyage de donnée sans avoir besoin de
		coder.
Personnalisation	4,5	Création rapide des calculs puissants à
		partir de données existantes.
		L'IA est intégré pour facilité la prise de
		décision
		Des insights approfondis plus rapidement
Visualisation	5	Les data scientists peuvent intégrer et
		visualiser les résultats obtenus avec R,
		Python, MATLAB et d'autres extensions,
		pour déployer leurs modèles à l'échelle de
		l'organisation.

		Graphiques dynamiques avancés :
		camemberts, cartes, kanban,
		histogrammes, etc
Alertes et notifications	4	Alertes configurables en cas de
		dépassement de seuils critiques.
Rapports automatisés	5	Export en PDF et Excel, génération
		automatique intégrée.
Partage	5	Partage collaboratif via Tableau
		Server/Cloud.
Traçabilité	4	Suivi des modifications et actions
		utilisateur via journaux d'activité.
Accessibilité	5	Compatible avec desktop, mobile et
		tablette.
Temps de réponse	4	Temps de réponse rapide pour données de
		taille modérée.
Confidentialité des	5	Chiffrement intégré des données en transit
données		et au repos.
Gestion des accès	5	Contrôle avancé des permissions basé sur
		les rôles utilisateurs.
Ergonomie	5	Interface intuitive et facile à prendre en
		main, adaptée aux même des débutants.

3.2. Power BI

Critères	Notes/5	Description
Utilisateurs à différents	4	Gestion des permissions native via Azure
niveaux d'accès		Active Directory.
Gestion des données	4	Intégration avec SQL, NoSQL et autres
		outils de l'écosystème Microsoft.
Personnalisation	4,5	Options de personnalisation modérées
		avec des styles prédéfinis.
Visualisation	4	Options de visualisation complètes mais
		moins flexibles que Tableau.
Alertes et notifications	5	Notifications configurables via Power
		Automate pour les seuils critiques.
Rapports automatisés	5	Rapports Excel natifs, export PDF via
		plugins tiers.
Partage	4,5	Intégration native avec Microsoft Teams et
		SharePoint pour partage.
Traçabilité	5	Journaux intégrés pour suivi des
		modifications et actions utilisateur.
Accessibilité	4	Compatible avec desktop et mobile,
		support natif limité pour tablette.
Temps de réponse	4	Performances optimales dans
		l'écosystème Microsoft Azure.
Confidentialité des	5	Sécurisé avec chiffrement, conforme aux
données		normes Microsoft.
Gestion des accès	5	Gestion centralisée via Azure AD.
Ergonomie	4	Convient aux utilisateurs familiers avec
		Microsoft Office.

3.3. Qlik Sense

Critères	Notes/5	Description
Utilisateurs à différents	4	Gestion des rôles et permissions via
niveaux d'accès		l'administration de Qlik Management Console.
Gestion des données	5	Intégration multi-source : SQL, NoSQL, fichiers plats, ERP, et cloud.
Personnalisation	4	Bien que Qlik Sense offre de nombreuses options, la personnalisation graphique est plus limitée que Tableau.
Visualisation	5	Visualisation dynamique avec exploration associative et graphiques interactifs.
Alertes et notifications	4	Disponible via l'extension Qlik Alerting ou via API pour alertes avancées.
Rapports automatisés	4	Intégration native avec NPrinting, mais nécessite une licence séparée.
Partage	4	Les utilisateurs peuvent partager leurs analyses facilement dans Qlik Cloud.
Traçabilité	5	Qlik Sense fournit une bonne gestion des logs utilisateurs dans la console d'administration.
Accessibilité	5	Les dashboards sont parfaitement adaptés à différents appareils sans configuration supplémentaire.
Temps de réponse	5	Le moteur Qlik est conçu pour offrir des performances élevées même avec des datasets volumineux.
Confidentialité des données	5	Conforme aux normes de sécurité modernes, adapté aux grandes entreprises.
Gestion des accès	5	La gestion fine des accès est un atout majeur de Qlik Sense.
Ergonomie	3	Interface intuitive, mais nécessite une formation pour exploiter toutes les fonctionnalités.

4 Solutions existantes de type Open Source

4.1. Grafana

Critères	Notes/5	Description
Utilisateurs à différents	3	Gestion des rôles basique avec
niveaux d'accès		permissions définies pour chaque
		utilisateur.
Gestion des données	4	Intégration native avec des bases SQL, NoSQL, IoT, et autres sources externes.
Personnalisation	3	Options limitées pour personnaliser l'apparence graphique (thèmes prédéfinis).
Visualisation	5	Graphiques interactifs pour monitoring: barres, lignes, heatmaps, cartes. Excellente pour des analyses en temps réel avec une visualisation fluide et performante.
Alertes et notifications	5	Alertes robustes configurables (email, Slack, PagerDuty, Webhooks, etc.).

Rapports automatisés	3	Export Grafana Enterprise supporte des rapports PDF, mais c'est payant et limité dans la version open source.
Partage	3	Partage limité à des URL ou des instantanés statiques de dashboards.
Traçabilité	3	La traçabilité est limitée et dépend souvent de l'infrastructure sous-jacente.
Accessibilité	4	Interface responsive adaptée à desktop, mobile via navigateur.
Temps de réponse	5	Optimisé pour le monitoring en temps réel, même avec de grandes quantités de données.
Confidentialité des données	3	Grafana ne gère pas directement la sécurité des données, mais peut s'appuyer sur TLS et les systèmes externes.
Gestion des accès	3	Fonctionnalités de gestion des accès limitées pour des cas d'utilisation avancés.
Ergonomie	4	Grafana est adapté aux experts techniques, mais peut être intimidant pour les débutants.

4.2. Metabase

Critères	Notes/5	Description
Utilisateurs à différents niveaux d'accès	3	Gestion basique des rôles : Administrateur, Utilisateur, et Visualisateur.
Gestion des données	5	Metabase supporte les bases courantes comme MySQL, PostgreSQL, MongoDB, etc., mais est limité pour les systèmes distribués
Personnalisation	3	Personnalisation limitée aux champs visibles et filtres interactifs : Pas de contrôle avancé sur l'apparence ou les couleurs des visualisations.
Visualisation	4	Supporte des graphiques simples : barres, lignes, tableaux, cartes, etc : Convient aux besoins de visualisation de base, mais manque d'options avancées comme Kanban ou heatmaps.
Alertes et notifications	3	Alertes configurables basées sur des seuils ou conditions simples : Notifications disponibles par email, mais pas de support intégré pour Slack ou Webhooks.
Rapports automatisés	4	Export de graphiques ou tableaux en CSV, Excel, ou PDF : Rapports basiques programmables, mais fonctionnalités limitées pour des besoins avancés.
Partage	4	Les dashboards et questions peuvent être partagés via des liens ou exports.
Traçabilité	3	Pas d'audit avancé, dépend des logs système pour des suivis détaillés.

Accessibilité	4	Bien adapté à desktop et mobile, mais pas d'application dédiée pour les appareils mobiles.
Temps de réponse	4	Performances acceptables pour des bases relationnelles de taille modérée : Convient pour des datasets petits à moyens, mais ralentit avec de grands volumes de données.
Confidentialité des données	3	Pas de sécurité native comme le chiffrement des données, nécessite TLS externe.
Gestion des accès	3	Peut gérer l'accès par projet ou par utilisateur, mais reste simpliste.
Ergonomie	5	Interface conviviale, facile à utiliser même pour les non-techniciens.

4.3. Apache Superset

Critères	Notes/5	Description
Utilisateurs à différents niveaux d'accès	5	Gestion des rôles avancée via RBAC (Role- Based Access Control).
Gestion des données	5	Supporte des connecteurs variés : MySQL, PostgreSQL, Presto, BigQuery, etc.
Personnalisation	4,75	Support de thèmes et graphiques personnalisés, mais nécessite parfois du code.
Visualisation	5	Large choix de graphiques interactifs : barres, lignes, cartes, diagrammes, etc.
Alertes et notifications	4,5	Intégration possible avec Slack, Email, ou Webhooks pour des notifications avancées.
Rapports automatisés	3	Fonctionnalités basiques d'automatisation des rapports, pas aussi riches que Tableau.
Partage	4	Partage des dashboards via des liens publics ou accès restreint.

Traçabilité	3,5	La traçabilité est limitée par défaut et nécessite une configuration
		supplémentaire.
Accessibilité	4	Accessible via navigateur web avec une
		interface responsive.
Temps de réponse	4	Optimisé pour des bases SQL et data lakes
		de taille moyenne à grande.
Confidentialité des	4	Dépend de la configuration du backend et
données		des connexions chiffrées (TLS).
Gestion des accès	4	Fonctionnalités avancées pour des
		environnements collaboratifs, mais peut
		nécessiter du temps pour être configuré.
Ergonomie	4	Interface intuitive, mais nécessite une
		certaine expertise technique pour des
		visualisations avancées.

Solutions	Avantages	Inconvénients
Tableau	- Large choix de visualisations	- Coût élevé, surtout pour les
	interactives et avancées.	grandes équipes.
	- Intégration avec de multiples	- Nécessite une formation pour
	sources de données.	maîtriser les fonctionnalités
	- Facilité d'utilisation grâce à une	avancées.
	interface glisser-déposer.	- Dépendance au serveur Tableau
	- Fonctionnalités de partage et	pour des déploiements à grande
	collaboration robustes.	échelle.
	- Fonctionnalités analytiques	
	avancées.	
Power BI		- Performances limitées pour des
	- Intégration native avec Microsoft	datasets volumineux.
	365 et Azure.	- Courbe d'apprentissage pour
	- Visualisations interactives et	des analyses complexes.
	partage facilité.	- Nécessite une configuration
	- Fonctionnalités d'alertes basées	locale pour des connexions à
	sur les seuils définis.	certaines sources.
	- Idéal pour les utilisateurs de	
01:1 0	l'écosystème Microsoft.	
Qlik Sense	- Modèle de données associatif	- Licence coûteuse.
	unique permettant une exploration	- Nécessite une courbe
	libre.	d'apprentissage pour configurer
	- Intégration avec SQL, NoSQL, ERP.	des modèles complexes.
	- Visualisations interactives	- Interface utilisateur moins
	adaptées à des analyses	intuitive pour les non-
	complexes.	techniciens.
	- Support d'analyses prédictives et	
	de machine learning.	

Grafana	 Open source et gratuit (version de base). Spécialisé dans le monitoring en temps réel. Intégration avec des bases SQL, NoSQL, et flux de données (Prometheus, InfluxDB). Notifications robustes via email, Slack, PagerDuty, etc. Interface hautement personnalisable. 	 - Limité pour des visualisations complexes ou des rapports statiques. - Nécessite des plugins payants pour des fonctionnalités avancées. - Non adapté pour les utilisateurs non techniques.
Metabase	 Open source et gratuit. Interface intuitive et facile à utiliser pour les non-techniciens. Connexion rapide avec des bases relationnelles et fichiers CSV. Permet la création rapide de visualisations simples. 	 Fonctionnalités limitées pour les analyses complexes ou graphiques avancés. Pas adapté pour des charges importantes de données. Personnalisation graphique limitée (pas de thèmes avancés).
Apache Superset	 Open source et extensible. Large choix de visualisations interactives (barres, lignes, cartes, etc.). Compatible avec SQL et bases NoSQL. Notifications configurables avec intégrations externes. Extensible via plugins. 	 Courbe d'apprentissage pour les utilisateurs non techniques. Requiert des compétences techniques pour l'installation et la configuration. Moins performant pour les requêtes interactives sur des bases volumineuses.

5 Résultat de l'état de l'art 1

Critères	Tableau	Power BI	Qlik Sense	Grafana	Metabase	Apache Superset
Utilisateurs à différents niveaux	4.0	4.0	4.0	3.0	3.0	5.0
Gestion des données	5.0	4.0	5.0	4.0	5.0	5.0
Personnalisation	4.5	4.5	4.0	3.0	3.0	4.75
Visualisation	5.0	4.0	5.0	5.0	4.0	5.0
Alertes et notifications	4.0	5.0	4.0	5.0	3.0	4.5
Rapports automatisés	5.0	5.0	4.0	3.0	4.0	3.0
Partage	5.0	4.5	4.0	3.0	4.0	4.0
Traçabilité	4.0	5.0	5.0	3.0	3.0	3.5
Accessibilité	5.0	4.0	5.0	4.0	4.0	4.0
Temps de réponse	4.0	4.0	5.0	5.0	4.0	4.0
Confidentialité des	5.0	5.0	5.0	3.0	3.0	4.0
données						

Gestion des accès	5.0	5.0	5.0	3.0	3.0	4.0
Ergonomie	5.0	4.0	3.0	4.0	5.0	4.0
Score pondéré final	4.8	4.3	4.23	3.83	4.12	4.26

6 Cahier de charges pour centraliser les données

Catégorie	Sous-catégorie	Description
Contexte du Projet	Objectif principal	Mettre en place une
		solution de Data
		Warehouse pour
		centraliser, stocker, et
		analyser de grandes
		quantités de données
		provenant de sources
		hétérogènes.
	Besoins	- Consolider les données
		issues de multiples
		systèmes (bases SQL/NoSQL, IoT, ERP).
		- Fournir un accès rapide
		et fiable pour les analyses
		et visualisations de
		données.
		- Améliorer la scalabilité et
		réduire la complexité de la
		gestion des données.
Sources de données	Types de données	- Relationnelles : MySQL,
		PostgreSQL, SQL Server.
		- Non relationnelles :
		MongoDB, Cassandra,
		Firebase.
		- Données semi-
		structurées : JSON, XML.
		- Données IoT : logs de
		capteurs, flux en temps
		réel.
		- Fichiers plats : CSV,
Fonation polités	Challaga da da a f	Excel, PDF
Fonctionnalités	Stockage de données	- Capacité à gérer de
Principales		grands volumes de données (pétaoctets).
		- Historisation des
		données sur plusieurs
		années.
		difficus.

	Séparation calcul/stockage	Optimisation des ressources pour permettre un ajustement indépendant des performances de calcul et des capacités de stockage.
	Scalabilité	 Capacité à évoluer horizontalement pour répondre aux besoins croissants. Gestion automatique ou semi-automatique des ressources.
	Traitement SQL avancé	Support des requêtes complexes et analyses ad hoc pour extraire des insights décisionnels.
	Sécurité et conformité	Chiffrement des données (au repos et en transit). - Gestion des accès basée sur les rôles (RBAC). - Conformité avec les normes GDPR, SOC 2, ISO 27001.
Contraintes Techniques	Temps de réponse	Requêtes simples : < 3secondes.Requêtes complexes sur grands volumes : < 10secondes.

7 Solutions pour les ETL

7.1. Airbyte

Critères	Notes /5	Description
Types de données	5/5	Supporte SQL, NoSQL (MongoDB,
		PostgreSQL), API, fichiers plats, cloud (S3,
		Google Cloud).
Connecteurs	5/5	Plus de 300 connecteurs natifs vers bases
		de données, API, warehouses cloud.
Stockage de données	5/5	Intégration avec PostgreSQL, MongoDB,
		Snowflake, BigQuery, etc.
Séparation	5/5	Basé sur Docker et Kubernetes, scalable
calcul/stockage		indépendamment du stockage.
Scalabilité	5/5	Adapté aux architectures cloud et
		microservices, extensible facilement.
Sécurité et conformité	5/5	Chiffrement des données, conformité
		GDPR, SOC 2, gestion avancée des
		permissions.

Avantages	Inconvénients
Open-source et gratuit.	Jeune projet, documentation encore en
	évolution.
Très facile à installer et à configurer	Interface utilisateur parfois instable sur
(Docker, Kubernetes).	certaines versions.
Support natif de MongoDB et PostgreSQL.	Moins d'optimisations sur les très gros
	volumes comparé à des solutions cloud
	natives.
300+ connecteurs pour bases de	Nécessite une maintenance active pour
données, API, et fichiers.	suivre les mises à jour.

7.2. Talend

Notes /5	Description
5/5	Supporte SQL, NoSQL, API, fichiers,
	applications cloud (Salesforce, SAP).
5/5	Grand nombre de connecteurs, mais
	beaucoup nécessitent la version payante.
4/5	Compatible avec plusieurs systèmes, mais
	nécessite une configuration avancée.
3/5	Moins flexible qu'Airbyte sur la gestion des
	ressources.
4/5	Bonne, mais demande un tuning manuel.
5/5	Sécurité avancée, certifications GDPR, ISO
	27001.
4/5	Performant, mais les jobs peuvent être
	lourds à exécuter.
	5/5 5/5 4/5 3/5 4/5 5/5

Avantages	Inconvénients
Solution complète avec une grande	Version open-source limitée, nécessite
communauté.	un abonnement pour les fonctionnalités
	avancées.
Très bon support des bases SQL et	Interface moins intuitive, prise en main
NoSQL.	plus longue.
Sécurité et conformité élevées.	Déploiement plus complexe comparé à
	Airbyte.
Automatisation avancée avec des	Temps d'exécution parfois long pour les
workflows complexes.	gros flux.

7.3. Fivetran

Critères	Notes /5	Description
Types de données	4/5	Principalement orienté bases SQL, peu de support NoSQL.
Connecteurs	5/5	Très nombreux connecteurs cloud, mais payants.
Stockage de données	5/5	Intégration cloud native avec BigQuery, Snowflake, Redshift.
Séparation	5/5	Complètement découplé grâce à son
calcul/stockage		architecture cloud.
Scalabilité	5/5	Très scalable en SaaS.
Sécurité et conformité	5/5	Sécurité avancée, certifications GDPR, SOC 2.
Temps de réponse	4/5	Performant mais latence sur certaines intégrations.

Avantages	Inconvénients
Déploiement ultra-rapide, service cloud	Payant, coûteux à grande échelle.
natif.	
Excellente intégration avec Snowflake,	Moins flexible pour des pipelines
BigQuery et Redshift.	personnalisés.
Sécurité et conformité au top.	Pas de version open-source.
Maintenance simplifiée, peu	Moins adapté aux workflows complexes
d'administration requise.	et aux bases NoSQL.

8 Comparaison des bases de données

Critères	MongoDB	PostgreSQL	MySQL (SQL)	Redis (Key-
	(NoSQL)	(SQL)		Value)
Modèle de	Documents	Relationnel	Relationnel	Clés-valeurs
données	(JSON/BSON)	(tables)	(tables)	
Flexibilité du	Dynamique	Rigide (SQL)	Rigide (SQL)	Clé-Valeur
schéma	(NoSQL)			strict
Scalabilité	Horizontale	Verticale	Verticale	Extrêmement
	(sharding)	principalement	principalement	rapide en
				mémoire
Performances	Excellentes	Bonne mais	Bonne mais	Ultra-rapide en
en lecture	(indexation	dépend des	dépend des	mémoire
	optimisée)	requêtes	requêtes	
Performances	Très rapide	Plus lent avec	Plus lent avec	Ultra-rapide
en écriture	(sans	transactions	transactions	
	transactions			
	complexes)			

Support des	Partiel	Complet	Complet	Pas de
transactions	(MongoDB			transactions
ACID	4.0+)			
Stockage et	NoSQL,	SQL structuré,	SQL structuré,	Stockage en
gestion des	adapté aux	adapté aux	adapté aux	mémoire, pas
données	gros volumes	relations	relations	adapté aux
	et aux données	complexes	complexes	gros volumes
	évolutives			
Requêtage	Flexible (JSON,	Puissant (SQL,	Standard SQL	Limité
	agrégations	JSONB)		(recherches
	avancées)			par clé)

9 Résultat de l'état de l'art 2

Critères	Airbyte	Talend	Fivetran
Types de données	5.0	5.0	4.0
Connecteurs	5.0	5.0	5.0
Stockage de données	5.0	4.0	5.0
Séparation	5.0	3.0	5.0
calcul/stockage			
Scalabilité	5.0	4.0	5.0
Sécurité et conformité	5.0	5.0	5.0
Temps de réponse	5.0	4.0	4.0
Score pondéré final	5.0	4.28	4.7

10 Choix de la réalisation

10.1 Spring Boot pour le Backend

• Pourquoi Spring Boot?

Spring Boot a été choisi pour son **écosystème complet**, sa **flexibilité**, et sa **rapidité de développement**. Spring Boot facilite la création d'applications Java robustes avec une configuration minimale. Il fournit des outils et des configurations par défaut qui accélèrent le développement tout en garantissant une architecture modulaire et facilement testable.

• Avantages spécifiques :

- → API RESTful: Spring Boot permet de créer des API RESTful facilement, ce qui est idéal pour fournir des services backend pour une interface frontend basée sur React.
- → Sécurité avec Spring Security (authentification, autorisation).

→ Modulaire et testable.

10.2 PostgreSQL (Base de données)

Pourquoi PostgreSQL?

Nous avons choisi **PostgreSQL** pour sa **fiabilité**, sa **scalabilité** et ses **fonctionnalités avancées**. PostgreSQL offre des performances exceptionnelles pour les applications nécessitant des transactions complexes et des requêtes de données relationnelles. Il est parfaitement adapté pour gérer les tables complexes nécessaires au stockage des données de dashboards et d'utilisateurs.

Avantages spécifiques :

- → Support des types de données avancés : PostgreSQL permet d'utiliser des types de données complexes et des fonctionnalités comme les transactions et index avancés, utiles pour une application qui traite des données volumineuses.
- → Fiabilité et scalabilité : C'est un choix parfait pour gérer une application à grande échelle avec un grand nombre d'utilisateurs et de données.

10.3 Metabase (intégration de visualisations)

Pourquoi Metabase ?

Metabase a été choisi pour ses capacités puissantes de création de visualisations et de dashboards interactifs, sans nécessiter une expertise en programmation. Grâce à sa simplicité d'utilisation et son intégration fluide avec des bases de données comme **PostgreSQL**, Metabase permet de générer des graphiques, des cartes et des rapports basés sur les données extraites, facilitant ainsi la visualisation des informations par les utilisateurs finaux.

Avantages spécifiques de Metabase dans le projet :

1. Visualisations prêtes à l'emploi :

- Metabase offre une large gamme de visualisations prêtes à l'emploi (graphique en barres, camemberts, lignes, etc.) qui peuvent être facilement intégrées dans les dashboards.
- Ces visualisations sont automatiquement générées à partir des données stockées dans PostgreSQL, ce qui permet aux utilisateurs de rapidement comprendre les tendances, les performances et d'autres aspects clés des données sans nécessiter une configuration complexe.

2. Facilité d'intégration avec Spring Boot :

- L'intégration de Metabase avec le backend Spring Boot est facilitée par l'utilisation d'APIs RESTful. Spring Boot permet de servir des données dynamiques depuis la base PostgreSQL sous forme de requêtes API, que Metabase peut ensuite consommer pour générer des dashboards et des rapports interactifs.
- APIs RESTful permettent une communication fluide entre le serveur backend Spring Boot et le frontend Metabase, où les utilisateurs peuvent interagir en temps réel avec les données.

3. API de Metabase pour automatiser la génération de dashboards :

- Une autre grande force de Metabase est son API REST qui permet de créer, modifier et récupérer des dashboards et des cartes (visualisations). Cela permet une automatisation de la gestion des rapports, sans avoir à passer par l'interface graphique de Metabase.
- Dans le cadre de notre projet, l'utilisation de l'API Metabase permet non seulement de générer dynamiquement des dashboards basés sur les requêtes provenant de Spring Boot, mais aussi d'automatiser la mise à jour des visualisations en fonction des nouvelles données.

4. Sécurité et accessibilité:

 Metabase garantit la sécurité des données en s'intégrant avec les protocoles d'authentification déjà présents dans Spring Boot, tout en permettant de gérer l'accès aux dashboards et aux données de manière fine (utilisateurs autorisés, rôles).

10.4 React pour le frontend

Pourquoi React.js?

React a été sélectionné pour sa capacité à créer des interfaces utilisateur dynamiques et réactives. Avec React, chaque modification des données entraîne un re-rendering rapide et optimisé de l'interface sans recharger la page entière, créant ainsi une expérience fluide et réactive pour l'utilisateur.

Avantages spécifiques :

- → Composants réutilisables : React permet de créer des composants réutilisables et modulaires, ce qui rend le code plus maintenable et plus extensible.
- → Gestion de l'état avec hooks : React utilise les hooks pour gérer l'état et l'effet des composants, facilitant la gestion de l'état complexe de l'application.

10.5 Airbyte : une solution moderne et modulaire pour l'intégration de données

L'un des défis majeurs de notre projet réside dans la nécessité d'intégrer et de transformer des données issues de plusieurs sources. Pour répondre à cet enjeu, nous avons choisi Airbyte, une solution d'ETL (Extract, Transform, Load) moderne et opensource. Il permet une connexion a de nombreuse base de données et permet l'ajout de ses propres connecteurs, de plus il se configure par api.

Dans notre cas, nous allons utiliser airbyte pour transférer la base MongoDB dans la table Postegre. Airbyte dois être installé via le script ABCTL fournis. On l'ajoute donc dans le projet afin que le setup auto puisse connaître les commandes. Start.sh permet de tout télécharger et de lancer les dockers. Il appelle ensuite airbyte-setup pour configurer la connexion de mongo a postgre, les données seront actualisées toutes les 5 minutes. On peut visualiser la connection dans l'interface airbyte :

10.6 Docker et Docker Compose : une infrastructure standardisée et scalable

L'utilisation de Docker dans notre projet répond à un **double objectif** : garantir une uniformité entre les environnements de développement et de production, et simplifier le déploiement des services. En isolant chaque composant applicatif dans un conteneur dédié, Docker évite les conflits de dépendances et assure une meilleure portabilité du système.

Docker Compose joue un rôle clé dans l'orchestration de ces conteneurs, permettant ainsi de démarrer et configurer l'ensemble des services avec un simple fichier YAML. Cette approche nous assure une gestion centralisée et efficace des différents composants, qu'il s'agisse de la base de données, du backend, de l'ETL ou encore de la couche de visualisation.

11 Résultat du développement

11.1 Présentation de l'interface

L'interface du tableau de bord permet à l'utilisateur de visualiser et interagir avec les données via différents types de graphiques (barres, lignes, camemberts, etc.). Elle inclut une barre de recherche pour filtrer les dashboards et un système d'alertes intelligentes qui détecte automatiquement les anomalies dans les données. L'utilisateur peut personnaliser les axes X et Y des graphiques selon ses besoins. Des KPI (nombre d'utilisateurs, dashboards, tables) sont affichés sous forme de cartes. Le menu latéral offre un accès rapide aux différentes sections de l'application comme la gestion des utilisateurs, la création de dashboards, et l'importation de données.

Elle intègre également des fonctionnalités liées à Metabase, permettant de visualiser, créer et personnaliser des cartes (questions) et des dashboards. Grâce à l'intégration avec Metabase, l'utilisateur peut consulter des graphiques dynamiques générés directement à partir des données des cartes Metabase. Il peut également obtenir des URL d'intégration pour embarquer des cartes ou dashboards dans l'application. Le système d'alertes est également intelligent, détectant automatiquement des anomalies dans les données des cartes Metabase et affichant des notifications en fonction des valeurs aberrantes ou significatives.

11.2 Petite démo représentant quelques fonctionnalités :

Page de connexion:

Vue d'ensemble :

Importation des données :

Génération des kpi de ces données importées :

Récupération des dashboards Metabase :

Affichage des cartes Metabase et les cartes crées via notre interface :

Visualisation des dashboards:

Possibilité de modifier les données :

Importer des données pour les insérer dans la base postgreSQL et Metabase

Création des dashboards et des cartes :

Créer des alertes :

12 Difficultés rencontrées

1. Intégration entre React, Spring Boot et Metabase :

Gestion des erreurs d'API : L'utilisation de plusieurs services d'API (Spring Boot et Metabase) a entraîné des erreurs liées à des appels API non réussis, des erreurs de CORS, ou des problèmes de disponibilité du serveur Metabase. Cela a parfois ralenti l'intégration et la mise en place d'un système de gestion des erreurs robustes.

Par exemple: si les données d'une carte Metabase étaient envoyées sous un format inattendu ou si la réponse JSON contenait des erreurs, le backend Spring Boot lançait des exceptions. Nous avons dû implémenter une gestion des erreurs et des exceptions dans Spring Boot afin de capturer ces erreurs et renvoyer des réponses appropriées au frontend. Cela a impliqué l'ajout d'une gestion des exceptions globales pour garantir que les utilisateurs recevaient des messages d'erreur clairs et appropriés au lieu d'exception brutes.

2. Sécurisation des API Metabase :

 Authentification et autorisation : Metabase expose des API sensibles pour récupérer les données de ses dashboards. Gérer l'authentification et les permissions sur ces API n'a pas été une tâche simple. En l'absence de mécanismes de sécurité natifs dans Metabase pour gérer les rôles et permissions dans le cadre d'une intégration avec un backend personnalisé (Spring Boot), des efforts supplémentaires ont été nécessaires pour sécuriser l'accès aux dashboards et aux données via l'API de Metabase.

3. Difficulté d'intégration et d'affichage des cartes Metabase dans l'application

Le problème résidait dans l'intégration de l'iframe de la carte Metabase dans notre frontend React. Même après avoir ajouté la carte dans le dashboard via l'API de Metabase et avoir récupéré l'ID de la carte, l'affichage dans l'application n'était pas réussi. Cela était dû à des erreurs liées à l'URL de l'iframe, la gestion du token d'authentification pour l'intégration de Metabase dans l'iframe, ou encore un problème de CORS, empêchant le bon chargement de la carte.

Nous avons dû prendre plusieurs mesures pour résoudre ce problème, telles que :

- Vérifier que l'URL de l'iframe était correcte et contenait les paramètres nécessaires (comme les tokens d'authentification) pour permettre un affichage sans erreurs.
- Configurer Metabase pour autoriser l'intégration d'iframes via son paramétrage de sécurité.
- Ajouter des mécanismes de gestion des erreurs côté frontend pour intercepter toute erreur lors du chargement de la carte et afficher un message approprié aux utilisateurs en cas d'échec.

Cela a entraîné un travail supplémentaire pour s'assurer que l'intégration entre Metabase, l'API Spring Boot et le frontend React soit fluide, sécurisée et fonctionnelle.

13 Architecture du projet

L'architecture logicielle mise en place repose sur des technologies open-source, interopérables et entièrement configurables via API. Ce choix garantit flexibilité, évolutivité et adaptabilité à différents types de projets ou d'entreprises.

Le système capte automatiquement tout type de données dans une base MongoDB, capable de stocker des données hétérogènes. Ces données sont ensuite transférées automatiquement dans une base PostgreSQL via Airbyte, un outil ETL moderne, simple à intégrer dans un pipeline de données.

Ensuite, Metabase analyse la base PostgreSQL en détectant automatiquement les schémas et relations, ce qui permet de générer dynamiquement tous les graphiques d'analyse pertinents.

Une interface utilisateur personnalisée, développée en Spring Boot + React, permet d'interagir avec Metabase via son API : les utilisateurs peuvent visualiser, filtrer, exporter ou enregistrer les graphiques au format PDF, et enrichir l'expérience de visualisation des données de façon intuitive.

Enfin, l'ensemble de la solution est conteneurisé avec Docker, ce qui permet un déploiement rapide et reproductible sur n'importe quel environnement. Un simple fichier Start.sh permet de lancer tous les services et de configurer automatiquement l'ensemble du système.

Cette architecture constitue ainsi un pipeline complet de la donnée, allant de la captation brute à l'analyse visuelle avancée, tout en offrant une interface de pilotage simple et puissante.

14 Conclusion

L'architecture technologique adoptée repose sur des choix réfléchis visant à concilier robustesse, flexibilité et évolutivité. Spring Boot offre un cadre de développement efficace et modulaire, tandis que l'utilisation combinée de PostgreSQL et MongoDB nous permet de gérer efficacement des données relationnelles et semi-structurées. Metabase facilite l'exploitation des données et leur visualisation, rendant les analyses accessibles aux utilisateurs non techniques.

L'intégration d'Airbyte constitue un atout majeur pour la gestion des flux de données, offrant une solution d'ETL performante et adaptable aux exigences du projet. Enfin, Docker et Docker Compose garantissent une infrastructure homogène et facilement déployable, simplifiant ainsi la mise en production et l'orchestration des services.

Ces choix technologiques nous permettent d'assurer une architecture à la fois robuste et évolutive, en adéquation avec les exigences du projet et les défis futurs qu'il pourra rencontrer.