Bus and Memory Design

Ver. 2

Professor: Yang Peng

Microprocessor

CPU and Memory

- CPU has only temporary storage, the registers, for computation
- Most data should be maintained in external memory
 - ROM (Read-Only Memory): code, const data
 - RAM (Random Access Memory): can store (after loading) your programs and data
- CPU-memory communication takes place with address, data, and control signals.

Memory Capacity

Memory capacity: $2^k \times N$

 Suppose a memory chip has 16 address lines and 8 data lines

What is the capacity of the chip?

- bits
- ______ bytes (8 bits)
- words (16 bits)
- Suppose a chip has a capacity of 2^K x 16, how many address bits and data bits?
 - address bits
 - data bits

Memory Organization

4 addresses x 4 bits/address = 16 bits = 2 bytes

Memory Extension

- Large memory chip can be constructed with several smaller size of memory chips
- AS6C4008 is an SRAM with the capacity of 19 x 8.
- CY7C187 is an SRAM with the capacity of 16 x 1.
- How to arrange CY7C187s to replace an AS6C4008 with them?

Increase Address Spaces

Increase Data Width

Increase Both

- Increase the address length
- Increase the data width

Exercise:

- Build a 2²⁴ x 32 memory using 2¹⁹ x 8 memory chips
- How many 2¹⁹ x 8 memory chips should you have?

$$(2^{24} \times 32) / (2^{19} \times 8) = 2^5 \times 4 = 128 \text{ chips}$$

24-19 = 5 additional address lines

 How many 3-to-8 decoders do you need to activate 128 CE lines?

four 8-bit chips (32 bits) in a row, 128/4 = 32 rows. Select 1 out of 32 rows, need 32/8 = 4 3-8 decoders Select 1 out of 4 decoders, need 1 3-8 decoder 5 decoders in total!

Bus and I/O

Ver. 2

Bus Organization

Example Bus Connection

- Busses were invented in order to simplify the organization and flow of data within computer systems
 - Busses allow many devices to connect to the same data path
 - Allow for efficient exchange of data between devices

Bus Collision

 Question: How do I connect outputs together and not get a short circuit?

Bus Arbitration

Bus Interface Structure: Tristate

CSS422 Lecture 14: Bus and I/O

Memory Organization

4 addresses x 4 bits/address = 16 bits = 2 bytes

Memory-Mapped I/O

- I/O ports are mapped on the memory address space
- Processor
 - Easy implementation
- Address decoding
 - More complicated
 - nWAIT is used for slow I/O devices
- OS viewpoint
 - Can't cause a trap when a user program accesses I/O ports.
 - Yet reserve I/O ports for OS accesses, using M[4:0]

Port-Mapped I/O

- I/O ports have a separate space from the memory address space.
- Processor
 - Distinguishes data access and I/O operations
 - Needs a pin distinguish I/O and data memory access, such as IO/~M
- Address decoding
 - Easy
- OS viewpoint
 - Can cause a trap when a user program executes IN and OUT

Switching between Memory and I/O Address Spaces

- IO/~M distinguishes memory and I/O address spaces.
- ~RD and ~WR are shared among system memory and I/O advices

From Microprocessors and Microcontroller 1-15 8085 Microprocessor Architecture