PARIS DIDEROT

Langages et Automates (LA3)

TD6: Lemme d'itération

Exercice 1:

Pour chacun des langages suivants, dire s'il est reconnaissable ou non. Justifier.

- 1. $\{a^mb^n: m, n \in \mathbb{N}\}$
- 2. $\{a^m b^n : m < n\}$
- 3. $\{a^p : p \text{ premier}\}$
- $4. \ \{a^{2n}: n \in \mathbb{N}\}$
- $5. \{a^{n^2} : n \in \mathbb{N}\}$
- $6. \{a^{2^n} : n \in \mathbb{N}\}$
- 7. $\{a^m b^n : m > n\}$
- 8. $\{a^m b^n : m \neq n\}$
- 9. $\{uav : u, v \in \{a, b\}^*, |u| = |v|\}$
- 10. $\{a^m b^n : m + n \le 1024\}$
- 11. $\{a^3b^na^3 : n \equiv 0 \, [3]\}$
- 12. $\{a^m b^n : m \equiv n [3]\}$
- 13. $\{a^m b^n c^{m+n} : m, n \in \mathbb{N}\}$
- 14. $\{u\widetilde{u}: u \in \{a, b\}^*\}$
- 15. $\{uv\tilde{u}: u, v \in \{a, b\}^*\}$
- 16. $\{u^2 : u \in \{a, b\}^*\}$
- 17. $\{u \in \{a, b, c\}^* : |u|_a = |u|_b\}$
- 18. $\{u \in \{a, b, c\}^* : |u|_a \equiv |u|_b [3]\}$
- 19. $\{a^{n+2}b^n : n \in \mathbb{N}\}$

Exercice 2:

Soit $X = \{a, b\}$. On considère les langages $\mathcal{L} = \{a^n b^n : n \in \mathbb{N}\}$ et $\mathcal{L}' = \mathcal{L} \cup X^* ba X^*$.

- 0. Montrer que \mathcal{L} n'est pas reconnaissable.
- 1. Montrer que \mathcal{L}' vérifie la propriété du lemme d'itération.
- 2. Montrer que \mathcal{L}' n'est pas reconnaissable.