Bayesian risk classifier

Generalization

- lacktriangle By allowing to use more than one feature d dimensional feature space R_d
- 2 By allowing more than two states (categories)– $\omega_1, \ldots \omega_c$ states
- **3** By allowing more actions $\alpha_1 \dots \alpha_a$ be the finite set of a possible actions.
- By introducing loss functions

Bayesian risk classifier

Conditional Risk: Risk incurred in choosing decision α_i is

$$R(\alpha_i|x) = \sum_{j=1}^{c} \lambda(\alpha_j|\omega_j) P(\omega_j|x)$$
 (1)

The action for which risk $R(\alpha_i|x)$ is the minimum is chosen.

One-Zero loss function

Assume $\lambda(\alpha_i|\omega_j)$ written as λ_{ij} . So below we find the case as how to minimize the risk, i.e, choose the action α_i , for which $R(\alpha_i|x)$ is minimum

$$\lambda_{ij} = \begin{cases} 0 \text{ if } i == j\\ 1 \text{ otherwise} \end{cases} \tag{2}$$

$$R(\alpha_i|x) = \sum_{\forall j} \lambda(\alpha_{ij}) P(\omega_j|x)$$
 (3)

$$=\sum_{i\neq j}P(\omega_j|x)\tag{4}$$

$$= 1 - P(\omega_i|x) - - \quad \text{(one-zero loss function)} \tag{5}$$

The case when– for every correct decision, the loss function is 0 and for every incorrect decision, the error is 1, the Bayesian minimum Risk classifier is equal to Bayesian minimum Error classifier

The maximum criteria

The maximum criteria

- Bayes error classifier: The class for which the posterior probability is maximum, is chosen
- ② Bayes risk classifier: The action for which $-R(\alpha_i|x)$ is minimum

Discriminant functions

Figure: Functional structure of a general statistical pattern

Let $g_i(x)$, where $i=1,2,\ldots c$ be the set of discriminant functions. The classifier is said to assign a feature vector x to class ω_i if

$$g_i(x) \ge g_j(x)$$
, for all $j \ne i$ (6)

Discriminant functions

Let,
$$g_i(x) = P(\omega_i|x)$$
 (7)

$$= p(x|\omega_i)P(\omega_i) \tag{8}$$

or, let
$$g_i(x) = f(P(\omega_i|x))$$
 (9)

where f(.) is a function of $P(\omega_i|x)$.

$$ln(P(\omega_i|x)) = ln(p(x|\omega_i)) + ln(P(\omega_i))$$
(10)

$$g_i(x) = \ln(p(x|\omega_i)) + \ln(P(\omega_i)) \tag{11}$$

Decision region

- The discriminant functions can be written in a variety of forms, but decision rules are equivalent
- ② Assume, feature space divided into $\mathcal{R}_1, \mathcal{R}_2, \dots \mathcal{R}_c$ decision regions,
- **3** If $g_i(x) \ge g_j(x)$, for all $j \ne i$ $x \in \mathcal{R}_i$ and x will belong to class ω_i .

Decision region

Now,lets see that if the probability density function is a Normal density function, then what will be the discriminant function and the decision boundary?

Univariate probability density
 Considering a feature component x,

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right]$$
 (12)

 Multivariate probability density Considering a d-dimensional feature vector x,

$$p(x) = \frac{1}{2\pi^{d/2}|\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu)^t \Sigma^{-1}(x-\mu)\right]$$
(13)

where, Σ is the covariance matrix (14)

The class conditional probability is given as,

$$p(x|\omega_i) = \frac{1}{2\pi^{d/2}|\Sigma_i|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu_i)^t \Sigma_i^{-1}(x-\mu_i)\right]$$
(15)

Based on Equation 11,

$$g_{i}(x) = -\frac{d}{2}\ln 2\pi - \frac{1}{2}\ln |\Sigma_{i}| - \frac{1}{2}(x - \mu_{i})^{t}\Sigma_{i}^{-1}(x - \mu_{i}) + \ln P(\omega_{i})$$

$$= -\frac{1}{2}\ln |\Sigma_{i}| - \frac{1}{2}(x - \mu_{i})^{t}\Sigma_{i}^{-1}(x - \mu_{i}) + \ln P(\omega_{i})$$
 (17)

Let us examine the discriminant function and resulting classification for a number of special cases,

- **①** Case 1: When the features of class are statistically independent, i.e, $\Sigma_i = \sigma^2 I$
- ② When the features of class may not be statistically independent but the covariance matrices for all of the classes are identical, i.e, $\Sigma_i = \Sigma$
- \odot the covariance matrices are different for each class, i.e, Σ_i is arbitrary

Case 1: $\Sigma_i = \sigma^2 I$

Figure: Functional structure of a general statistical pattern

The figure signify that the variance of different components of feature vector have same variance

April 18, 2023 13 / 28

Case 1: $\Sigma_i = \sigma^2 I$

Based on Equation 17,

$$g_i(x) = -\frac{1}{2} \ln |\Sigma_i| - \frac{1}{2} (x - \mu_i)^t \Sigma_i^{-1} (x - \mu_i) + \ln P(\omega_i)$$
 (18)

$$= -\frac{1}{2\sigma^2}(x - \mu_i)^t(x - \mu_i) + InP(\omega_i) \rightarrow \text{ Putting } \Sigma_i = \sigma^2 I$$
 (19)

$$= -\frac{1}{2\sigma^2} \left[\mathbf{x}^t \mathbf{x} - 2\mathbf{x} \mu_i^t + \mu_i^t \mu_i \right] + InP(\omega_i)$$
 (20)

$$=\frac{1}{\sigma^2}\mu_i^t x - \frac{1}{2\sigma^2}\mu_i^t \mu_i + lnP(\omega_i)$$
 (21)

$$\cong w_i^t x + w_{i0} \to \text{Linear Expression}$$
 (22)

where, $w_i = \frac{1}{\sigma^2} \mu_i$ and $w_{i0} = -\frac{1}{2\sigma^2} \mu_i^t \mu_i + lnP(\omega_i)$

Case 1: $\Sigma_i = \sigma^2 I$

On the decision boundary, $g_i(x) = g_j(x)$ So, the Equation for the decision boundary will be $g(x) = g_i(x) - g_j(x)$, Therefore g(x) = 0

$$g_i(x) = -\frac{1}{2\sigma^2}(x - \mu_i)^t(x - \mu_i) + InP(\omega_i)$$
 (23)

$$g_j(x) = -\frac{1}{2\sigma^2}(x - \mu_j)^t(x - \mu_j) + InP(\omega_j)$$
 (24)

Putting the above two Equations in $g(x) = g_i(x) - g_j(x)$, we obtain the equation for decision boundary $w^t(x - x_0) = 0$, where,

$$x_0 = \frac{1}{2}(\mu_i + \mu_j) - \frac{\sigma^2}{\|\mu_i - \mu_j\|^2} ln \frac{P(\omega_i)}{P(\omega_j)} (\mu_i - \mu_j)$$
 (25)

$$w = \mu_i - \mu_i \tag{26}$$

The expression $w=\mu_i-\mu_j$, where μ_i is the mean of vectors taken from class ω_i and μ_j is the mean of vectors taken from class ω_j . Case 1 is summarized as

- In a 2-d, the decision boundary is linear,
- In a 3-d, the decision boundary is a plane,
- In multidimensional, the decision boundary is a hyperplane
- When $P(\omega_i) = P(\omega_j)$, $x_0 = \frac{1}{2}(\mu_i + \mu_j) \frac{\sigma^2}{\|\mu_i \mu_j\|^2} ln \frac{P(\omega_i)}{P(\omega_j)} (\mu_i \mu_j)$ So, the decision surface is orthogonal to line joining μ_i and μ_j
- When $P(\omega_i) > P(\omega_j)$, decision surface will be shifted towards μ_j and vice versa.

Figure 2.11: As the priors are changed, the decision boundary shifts; for sufficiently disparate priors the boundary will not lie between the means of these 1-, 2- and 3-dimensional spherical Gaussian distributions.

Case 2: $\Sigma_i = \Sigma$

Because $\Sigma_i = \Sigma$, the Equation 16 becomes,

$$g_i(x) = -\frac{d}{2}\ln 2\pi - \frac{1}{2}\ln |\Sigma| - \frac{1}{2}(x - \mu_i)^t \Sigma^{-1}(x - \mu_i) + \ln P(\omega_i)$$
 (27)

The term $-\frac{d}{2}\ln 2\pi - \frac{1}{2}\ln |\Sigma|$, is class independent, Therefore,

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^t \Sigma^{-1}(x - \mu_i) + InP(\omega_i)$$
 (28)

$$= -\frac{1}{2} \left[x^{t} \Sigma^{-1} x - 2\mu_{i}^{t} \Sigma^{-1} x + \mu_{i}^{t} \Sigma^{-1} \mu_{i} \right] + InP(\omega_{i})$$
 (29)

$$= \mu_i^t \Sigma^{-1} x - \frac{1}{2} \mu_i^t \Sigma^{-1} \mu_i] + \ln P(\omega_i)$$
 (30)

The above Equation is of the form

$$w_i^t x + w_{i0}$$
 where, (31)

$$w_i = \Sigma^{-1} \mu_i \tag{32}$$

$$w_{i0} = -\frac{1}{2}\mu_i^t \Sigma^{-1} \mu_i] + lnP(\omega_i)$$
 (33)

The decision boundary will be

$$g(x) = g_i(x) - g_j(x) = 0$$
 (34)

where, $g_i(x)$ and $g_j(x)$ is given in Equation 30. Putting Equation 30, we get,

$$g(x) = (\mu_i^t \Sigma^{-1} - \mu_j^t \Sigma^{-1}) x - \frac{1}{2} [\mu_i^t \Sigma^{-1} \mu_i - \mu_j^t \Sigma^{-1} \mu_j] + \ln \frac{P(\omega_i)}{P(\omega_j)} = 0$$
 (35)

Simplifying the above equation,

$$g(x) = w^t(x - x_0) = 0$$
 (36)

$$w = \Sigma^{-1}(\mu_i - \mu_j) \tag{37}$$

$$x_0 = \frac{1}{2}(\mu_i + \mu_j) - \frac{\ln \frac{P(\omega_i)}{p\omega_j}}{(\mu_i - \mu_i)^t \Sigma^{-1}(\mu_i - \mu_j)} (\mu_i - \mu_j)$$
(38)

◆ロト ◆団 ト ◆豆 ト ◆豆 ・ りへで

Case 2 is summarized as

- The discriminant function is linear
- when $P(\omega_i) = P(\omega_j)$,

$$x_0 = \frac{1}{2}(\mu_i + \mu_j) \tag{39}$$

The decision surface is orthogonal but may not orthogonal to the line joining μ_i and μ_j .

Case 3: $\Sigma = arbitrary$

According to Equation 16,

$$g_i(x) = -\frac{\frac{d}{2}\ln 2\pi - \frac{1}{2}\ln |\Sigma_i| - \frac{1}{2}(x - \mu_i)^t \Sigma_i^{-1}(x - \mu_i) + \ln P(\omega_i)$$
 (40)

 $-\frac{d}{2}\ln 2\pi$ is class independent but not $\frac{1}{2}\ln |\Sigma_i|$

$$g_i(x) \approx \frac{1}{2} \ln |\Sigma_i| - \frac{1}{2} (x - \mu_i)^t \Sigma_i^{-1} (x - \mu_i) + \ln P(\omega_i) - \frac{d}{2} \ln |\Sigma_i|$$
 (41)

Therefore, $g_i(x) \approx x^t A_i x + B_i^t x + C_i$, where,

$$A_i = -\frac{1}{2}\Sigma_i^{-1} \tag{42}$$

$$B_i = \Sigma_i^{-1} \mu_i \tag{43}$$

$$C_i = -\frac{1}{2} \ln|\Sigma_i| + \ln P(\omega_i) \tag{44}$$

Now, the discriminant function is quadratic

$$g_i(x) \approx x^t A_i x + B_i^t x + C_i \tag{45}$$

$$g_j(x) \approx x^t A_j x + B_j^t x + C_j \tag{46}$$

Putting the above two into $g(x) = g_i(x) - g_j(x) = 0$, we obtain the decision boundary.

Case 3 is summarized as

- the discriminant function is quadratic
- the decision boundary is quadratic

Bayes Decision Theory- Discrete

The feature vector x is discrete and binary.

$$x = \left[x_1, x_2, \dots x_d\right] \tag{47}$$

where, $x_i = 0$ or $x_i = 1$

- Given two classes, $\omega_i = 0$ or 1,
- the different components are conditionally independent.
- p_i is the probability that the feature component $x_i = 1$, given that $\omega_i = 1$,
- $p_i = P_r[x_i = 1 | \omega_1]$ and $q_i = P_r[x_i = 1 | \omega_2]$
- If $p_i > q_i$ denote that x_i is more likely to have a value 1 if $x \in \omega_1$.

Bayes Decision Theory- Discrete

• So, the class conditional probability given the d-dimensional feature vector x, will be the product of all the independent probability values

$$p(x|\omega_1) = \prod_{i=1}^d p_i^{x_i} (1 - p_i)^{1 - x_i}$$
(48)

•

$$p(x|\omega_2) = \prod_{i=1}^d q_i^{x_i} (1 - q_i)^{1 - x_i}$$
(49)