

Agilent 1N5711, 1N5712, 5082-2300 Series, 5082-2800 Series, 5082-2900 Schottky Barrier Diodes for General Purpose Applications

Data Sheet

Description/Applications

The 1N5711, 1N5712, 5082-2800/10/11 are passivated Schottky barrier diodes which use a patented "guard ring" design to achieve a high breakdown voltage. Packaged in a low cost glass package, they are well suited for high level detecting, mixing, switching, gating, log or A-D converting, video detecting, frequency discriminating, sampling, and wave shaping.

The 5082-2835 is a passivated Schottky diode in a low cost glass package. It is optimized for low turn-on voltage. The 5082-2835 is particularly well suited for the UHF mixing needs of the CATV marketplace.

The 5082-2300 Series and 5082-2900 devices are unpassivated Schottky diodes in a glass package. These diodes have extremely low 1/f noise and are ideal for low noise mixing, and high sensitivity detecting. They are particularly well suited for use in Doppler or narrow band video receivers.

Outline 15

Features

- Low Turn-On Voltage As Low as 0.34 V at 1 mA
- Pico Second Switching Speed
- High Breakdown Voltage Up to 70 V
- Matched Characteristics Available

DIMENSIONS IN MILLIMETERS AND (INCHES).

Maximum Ratings

Junction Operating and Storage Temperature Range	
5082-2303, -2900	60°C to +100°C
1N5711, 1N5712, 5082-2800/10/11	65°C to +200°C
5082-2835	60°C to +150°C
DC Power Dissipation	
(Measured in an infinite heat sink at $T_{CASE} = 25$ °C)	
Derate linearly to zero at maximum rated temperate	ure
5082-2303, -2900	100 mW
1N5711, 1N5712, 5082-2800/10/11	250 mW
5082-2835	150 mW
Peak Inverse Voltage	V _{BR}

Package Characteristics

	Outline 15
Lead Material	Dumet
Lead Finish	95-5% Tin-Lead
Max. Soldering Temperature	260° C for $5 \sec$
Min. Lead Strength	4 pounds pull
Typical Package Inductance	
1N5711, 1N5712:	2.0 nH
2800 Series:	2.0 nH
2300 Series, 2900:	3.0 nH
Typical Package Capacitance	
1N5711, 1N5712:	0.2 pF
2800 Series:	0.2 pF
2300 Series, 2900:	0.07 pF

The leads on the Outline 15 package should be restricted so that the bend starts at least 1/16 inch from the glass body.

Outline 15 diodes are available on tape and reel. The tape and reel specification is patterned after RS-296-D.

Electrical Specifications at $T_A = 25$ °C General Purpose Diodes

Part Number	Package Outline	Min. Breakdown Voltage V _{BR} (V)	Max. Forward Voltage V _F (mV)	$\begin{aligned} V_F &= 1 \ V \ Max. \\ at \ Forward \\ Current \\ I_F \ (mA) \end{aligned}$	Max. Reverse Leakage Current I _R (nA) at V _R (V)		Max. Capacitance C _T (pF)
5082-2800	15	70	410	15	200	50	2.0
1N5711	15	70	410	15	200	50	2.0
5082-2810	15	20	410	35	100	15	1.2
1N5712	15	20	550	35	150	16	1.2
5082-2811	15	15	410	20	100	8	1.2
5082-2835	15	8*	340	10*	100	1	1.0
Test Conditions		$I_{R} = 10 \mu A$ $*I_{R} = 100 \mu A$	$I_{\rm F} = 1 \text{ mA}$	$*V_{\rm F} = 0.45 \text{ V}$			$V_{R} = 0 V$ $f = 1.0 MHz$

Note: Effective Carrier Lifetime (τ) for all these diodes is 100 ps maximum measured with Krakauer method at 5 mA except for 5082-2835 which is measured at 20 mA.

Low 1/f (Flicker) Noise Diodes

Part Number 5082-	Package Outline	Min. Breakdown Voltage V _{BR} (V)	Max. Forward Voltage V _F (mV)	$V_F = 1 \text{ V Max.}$ at Forward $Current$ $I_F \text{ (mA)}$	Max. Reverse Leakage Current I _R (nA) at V _R (V)		$\begin{array}{c} \text{Max.} \\ \text{Capaci-} \\ \text{tance} \\ \text{C}_{\text{T}} \left(\text{pF} \right) \end{array}$
2303	15	20	400	35	500	15	1.0
2900	15	10	400	20	100	5	1.2
Test Conditions		$I_R = 10 \mu A$	$I_F = 1 \text{ mA}$				$\begin{aligned} V_{R} &= 0 \ V \\ f &= 1.0 \ MHz \end{aligned}$

Note: Effective Carrier Lifetime (τ) for all these diodes is 100 ps maximum measured with Krakauer method at 20 mA.

Matched Pairs and Quads

Basic Part Number 5082-	Matched Pair Unconnected	Matched Quad Unconnected	Batch Matched ^[1]	Test Conditions
2900				$\Delta V_{\rm F}$ at $I_{\rm F}$ = 1.0, 10 mA
2800	$5082-2804$ $\Delta V_F = 20 \text{ mV}$	$5082-2805$ $\Delta V_F = 20 \text{ mV}$		$\begin{array}{l} \Delta V_F \ at \ I_F = 0.5, 5 \ mA \\ *I_F = 10 \ mA \\ \Delta C_O \ at \ f = 1.0 \ MHz \end{array}$
2811			$5082-2826$ $\Delta V_F = 10 \text{ mV}$ $\Delta C_O = 0.1 \text{ pF}$	$\Delta V_{\rm F}$ at $I_{\rm F}$ = 10 mA $\Delta C_{\rm O}$ at f = 1.0 MHz
2835			$5082-2080$ $\Delta V_F = 10 \text{ mV}$ $\Delta C_O = 0.1 \text{ pF}$	$\Delta V_{\rm F}$ at $I_{\rm F}$ =10 mA $\Delta C_{\rm O}$ at f = 1.0 MHz

Note:

SPICE Parameters

Parameter	Units	5082-2800	5082-2810	5082-2811	5082-2835	5082-2303	5082-2900
B_{V}	V	75	25	18	9	25	10
C_{J0}	pF	1.6	0.8	1.0	0.7	0.7	1.1
$\mathbf{E}_{\mathbf{G}}$	eV	0.69	0.69	0.69	0.69	0.69	0.69
I_{BV}	A	10E-5	10E-5	10E-5	10E-5	10E-5	10E-5
I_S	A	2.2 x 10E-9	1.1 x 10E-9	0.3 x 10E-8	2.2 x 10E-8	7 x 1.0E-9	10E-8
N		1.08	1.08	1.08	1.08	1.08	1.08
R_S	Ω	25	10	10	5	10	15
P_{B}	V	0.6	0.6	0.6	0.56	0.64	0.64
P_{T}		2	2	2	2	2	2
M		0.5	0.5	0.5	0.5	0.5	0.5

^{1.} Batch matched devices have a minimum batch size of 50 devices.

Typical Parameters

Figure 1. I-V Curve Showing Typical Temperature Variation for 5082-2300 Series and 5082-2900 Schottky Diodes.

10.000

Reverse Current vs. Reverse Voltage at Various Temperatures.

Figure 3. 5082-2300 Series and 5082-2900 Typical Dynamic Resistance (RD) vs. Forward Current (I_F) .

Figure 4. 5082-2300 and 5082-2900 Typical Capacitance vs. Reverse Voltage.

Figure 5. I-V Curve Showing Typical Temperature Variation for 5082-2800 or 1N5711 Schottky Diodes.

Figure 6. (5082-2800 OR 1N5711) Typical Variation of Reverse Current (I_R) vs. Reverse Voltage (V_R) at Various Temperatures.

Figure 7. (5082-2800 or 1N5711) Typical Capacitance (C_T) vs. Reverse Voltage $(V_{\mathbf{R}})$.

Figure 8. I-V Curve Showing Typical Temperature Variation for the 5082-2810 or 1N5712 Schottky Diode.

Figure 9. (5082-2810 or IN5712) Typical Variation of Reverse Current (I_R) vs. Reverse Voltage (V_R) at Various Temperatures.

Typical Parameters, continued

Figure 10. I-V Curve Showing Typical Temperature Variation for the 5082-2811 Schottky Diode.

Figure 11. (5082-2811) Typical Variation of Reverse Current (I_R) vs. Reverse Voltage (V_R) at Various Temperatures.

Figure 12. I-V Curve Showing Typical Temperature Variations for 5082-2835 Schottky Diode.

Figure 13. (5082-2835) Typical Variation of Reverse Current $(\mathbf{I_R})$ vs. Reverse Voltage $(\mathbf{V_R})$ at Various Temperatures.

Figure 14. Typical Capacitance (C_{T}) vs. Reverse Voltage (V_{R}).

Figure 15. Typical Dynamic Resistance (R_D) vs. Forward Current (I_F) .

Diode Package Marking

1N5xxx 5082-xxxx

would be marked:

1Nx xx xxx xx yww yww

where xxxx are the last four digits of the 1Nxxxx or the 5082-xxxx part number. Y is the last digit of the calendar year. WW is the work week of manufacture.

Examples of diodes manufactured during workweek 45 of 1999:

1N5712 5082-3080

would be marked:

 1N5
 30

 712
 80

 945
 945

Part Number Ordering Information

Part Number	No. of devices	Container
5082-28xx#T25/1N57xx#T25	2500	Tape & Reel
5082-28xx#T50/ 1N57xx#T50	5000	Tape & Reel
5082-28xx/ 1N57xx	100	Antistatic bag

www.agilent.com/semiconductors

For product information and a complete list of distributors, please go to our web site.

For technical assistance call:

Americas/Canada: +1 (800) 235-0312 or

(916) 788-6763

Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (+65) 6756 2394

India, Australia, New Zealand: (+65) 6755 1939

Japan: (+81 3) 3335-8152(Domestic/International), or

0120-61-1280(Domestic Only)

Korea: (+65) 6755 1989

Singapore, Malaysia, Vietnam, Thailand, Philippines,

Indonesia: (+65) 6755 2044 Taiwan: (+65) 6755 1843 Data subject to change.

Copyright © 1999-2005 Agilent Technologies, Inc.

Obsoletes 5968-7181E June 20, 2005 5989-3338EN

