Journal Club July 20, 2021

Universität Tübingen

Jakob Schlör

machine climate learning in science

Jul 27, 2021

Variational Autoencoder Anomaly-Detection of Avalanche Deposits in Satellite SAR Imagery

Saumya Sinha* University of Colorado Boulder, USA Sophie Giffard-Roisin
ISTerre; Univ. Grenoble Alpes, Univ.
Savoie Mont Blanc, CNRS, IRD,
IFSTTAR
Grenoble, France

Fatima Karbou CNRM-GAME, Météo-France Grenoble, France

Michael Deschatres Irstea, Université Grenoble Alpes France Anna Karas CNRM-GAME, Météo-France Grenoble, France Nicolas Eckert Irstea, Université Grenoble Alpes France

Cécile Coléou CNRM-GAME, Météo-France Grenoble, France Claire Monteleoni University of Colorado Boulder, USA

Climate Informatics (2020)

In short

Question:

Avalanche detection from satellite images with limited labels.

Results:

Unsupervised-learning approach outperforms supervised methods.

Impact:

Automatically identify risk zones, stability of snow pack and improve avalanche forecasting

Motivation

- 4000 avalanches reported in French
 Alps in winter 2017-2018
- 30 people died in this winter
- Usually reported by local forest offices

Automatic detection of avalanches for remote sensing data:

- Stability of snow pack
- Identify avalanche risk zones and time periods

Remote sensing data

- SAR Imagery:
 - Sentinel 1 satellite
 - C-band (4.0 to 8.0 GHz)
 - 6-day repeat cycle
 - 20m resolution
 - Ascending and descending orbit modes
 - Backscatter characteristics over avalanche debris

topographical feature

Model of a Sentinel 1 [wikipedia]

slope

angle

aspect

Remote sensing data

SAR Imagery:

Model of a Sentinel 1 [wikipedia]

Preprocessing of data

- Consider only 3000 predefined avalanche paths
- Take difference to snow-free summer images
- Take difference to previous satellite image
- Only small amount of data is labeled
- ~1 % of the data includes avalanches

Anomaly score:

- 1) Encode new test image
- 2) Draw L samples from p(z|x) and decode
- 3) If mean reconstruction error > optimal threshold

$$\texttt{AnomalyScore}(x^i) = -\frac{1}{L} \sum_{j=1}^{L} [log(p(x^i|z^j;\theta))]$$

Method

1) Training the VAE

Unsupervised - VAE	Train VAE on unlabeled training data	
Semi-supervised - VAE	Train VAE only on image patches showing no avalanches	

2) Tune threshold using labeled validation data set

	All Alps		Haute Maurienne	
	Balanced Accuracy	F1-score	Balanced Accuracy	F1-score
Baseline	0.58	0.05	0.58	0.12
Supervised - CNN	0.53	0.10	0.53	0.12
Semi-supervised - VAE	0.59	0.11	0.6	0.23
Unsupervised - VAE	0.69	0.14	0.68	0.26

Recall:

Balanced accuracy:
$$BA = \frac{TPR + TNR}{2}$$

F1-score: $F1 = 2 \cdot \frac{PPV \cdot TPR}{PPV + TPR}$

sensitivity:
$$TPR = \frac{TP}{TP + FN}$$
specificity: $TNR = \frac{TN}{TN + FP}$
precision: $PPV = \frac{TP}{TP + FP}$

precision:
$$PPV = \frac{TP}{TP + FP}$$

Model evaluation

Method	AUC	
Method	ROC	
Supervised - CNN	70.7	
Semi-supervised - VAE	68.3	
Unsupervised - VAE	75	

Summary & Discussion

 Propose a semi-supervised approach for anomaly detection with limited amount of labels

- Unsupervised method outperforms semi-supervised VAE,
 - More trainings data
 - Noisier data

Including one-month-old avalanches improved detection ability

Open Questions

 Is there an upper limit in performance due to anomalies which do not correspond to avalanches?

Which other variables would improve detection ability?