

FCC PART 15.247 RSS-GEN, ISSUE 5, APRIL 2018 RSS-247, ISSUE 2, FEBRUARY 2017

TEST REPORT

For

Victor Hasselblad AB

Utvecklingsgatan 2, P.O. Box 220, Gothenburg, SE-40123, Sweden

FCC ID: 2AEFA-X1D1907 IC: 20193-X1D1907

Report Type: **Product Name:** Original Report X1D MARK II Report Number: RDG180909002-00B **Report Date:** 2018-10-22 Jerry Zhang Jerry Zhang **EMC Manager Reviewed By:** Bay Area Compliance Laboratories Corp. (Dongguan) **Test Laboratory:** No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*".

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	4
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
EUT EXERCISE SOFTWARE	
LOCAL SUPPORT EQUIPMENT LIST AND DETAILS	
SUPPORT CABLE LIST AND DETAILS BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §15.247 (i) & §1.1310 & §2.1093- RF EXPOSURE	
APPLICABLE STANDARD	11
RSS-102 \S 2.5.1 EXEMPTION LIMITS FOR ROUTINE EVALUATION – SAR EVALUATION	
APPLICABLE STANDARD	12
FCC §15.203& RSS-GEN CLAUSE 6.8 - ANTENNA REQUIREMENT	13
APPLICABLE STANDARD	13
ANTENNA INFORMATION AND CONNECTOR CONSTRUCTION.	14
FCC §15.207 (a) & RSS-GEN CLAUSE 8.8– AC LINE CONDUCTED EMISSIONS	15
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	15
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	1/
FCC §15.209, §15.205, §15.247(d) & RSS-247 CLAUSE 5.5, RSS-GEN CLAUSE 8.10- SPURIOUS EMISSIONS	10
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	21
FCC §15.247(a) (2) & RSS-247 CLAUSE 5.2 a) &RSS-GEN CLAUSE 6.7–6 dB EMISSION BANDW	
AND 99% OCCUPIED BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
ILUI DAIA	

FCC §15.247(b) (3)& RSS-247 CLAUSE 5.4 d) - MAXIMUM PEAK CONDUCTED OUTPUT POWE	R41
APPLICABLE STANDARD	41
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	41
TEST DATA	42
FCC §15.247(d)& RSS-247 CLAUSE 5.5 – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	43
APPLICABLE STANDARD	43
TEST PROCEDURE	43
TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	44
FCC §15.247(e) & RSS-247 CLAUSE 5.2 b - POWER SPECTRAL DENSITY	50
APPLICABLE STANDARD	50
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS.	
Test Data	51

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

	EUT Name:	X1D MARK II
EUT Model:		X1D MARK II
FCC ID:		2AEFA-X1D1907
	IC:	20193-X1D1907
Ra	ted Input Voltage:	DC7.27V from battery or DC 5 V from adapter
Nominal	Model:	QC24-US
Adapter	Input:	100-240V~50/60Hz,0.8AMax
Information	Output:	3.6~8V;3.0A / 12V;2.0A
External Dimension:		150.4 mm(L)* 98.1mm(W)* 71.4mm(H)(only body) 150.4 mm(L)* 98.1mm(W)* 125mm(H)(with XCD 45mm Lens)
Serial Number:		180909002
EU	UT Received Date:	2018.09.11

Objective

This report is prepared on behalf of *Victor Hasselblad AB* in accordance with Part 2, Subpart J, Part 15, Subparts A, and C of the Federal Communications Commission's rules and RSS-247, Issue 2, February 2017, RSS-Gen Issue 5, April 2018 of the Innovation, Science and Economic Development Canada.

The tests were performed in order to determine the compliance of the EUT with FCC Rules Part 15-Subpart C, section 15.203, 15.205,15.207, 15.209, 15.247 rules and RSS-247, Issue 2, February 2017, RSS-Gen Issue 5, April 2018 of the Innovation, Science and Economic Development Canada.

Related Submittal(s)/Grant(s)

FCC Part 15E NII and Part 15B JAB submissions with FCC ID: 2AEFA-X1D1907. RSS-247 LE-LAN submissions with IC: 20193-X1D1907.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and KDB 558074 D01 15.247 Meas Guidance v05, and RSS-247, Issue 2, February 2017, RSS-Gen Issue 5, April 2018 of the Innovation, Science and Economic Development Canada.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan).

Measurement Uncertainty

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	30M~200MHz: 4.55 dB,200M~1GHz: 5.92 dB, 1G~6GHz: 4.98 dB, 6G~18GHz: 5.89 dB, 18G~26.5G:5.47 dB,26.5G~40G:5.63 dB
Unwanted Emissions, conducted	±1.5 dB
Temperature	±1 ℃
Humidity	±5%
DC and low frequency voltages	$\pm 0.4\%$
Duty Cycle	1%
AC Power Lines Conducted Emission	3.12 dB (150 kHz to 30 MHz)

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 897218,the FCC Designation No. : CN1220.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062D.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in engineering mode.

The device supports BLE mode and 802.11 g/n ht20 modes in 2.4GHz band. And the EUT has 2 antennas For 802.11g/n ht20 modes, the device supports SISO and MIMO modes.

For 802.11g/n ht20 modes, total 11 channels are provided:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	/

EUT was tested with channel 1, 6 and 11.

For Bluetooth LE mode, 40 channels are provided for testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404		•••
	•••	•••	•••
•••	•••	•••	•••
		38	2478
19	2440	39	2480

EUT was tested with channel 0, 19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

Test software: 'DJI RF Certification' was used for WIFI test, which were provided by manufacturer. 'cmd.exe' was used for BLE test, which's commands provided by manufacturer.

For 802.11g/n ht20 mode, the worst-case data rates are determined to be as follows for each mode based upon investigations by measuring the average power and PSD across all data rates bandwidths, and modulations. The power setting configured as below table, which was provided by manufacturer:

M. I.	Mode Channel Frequency Data rate	Power level			
Mode	Channel	(MHz)	Data rate	Chain 0	Chain 1
	Low	2412	6Mbps	17	16
802.11g	Middle	2437	6Mbps	17	15
	High	2462	6Mbps	15	14
002.11	Low	2412	MCS0	17	16
802.11n ht20	Middle	2437	MCS0	17	15
11120	High	2462	MCS0	15	14

Pretest SISO and MIMO mode, the MIMO mode was the worst and reported.

For Bluetooth LE mode, the maximum power with maximum duty cycle was configured as default setting, software only used for change modes and channels.

The maximum duty cycle as following table:

Test mode	T _{on} (ms)	T _{on+off} (ms)	Duty Cycle (%)
802.11g	2.11	2.19	96.35
802.11n ht20	1.97	2.05	96.10
BLE	0.444	0.612	72.55

802.11n ht20

Report No.: RDG180909002-00B

Date: 14.SEP.2018 10:06:59

BLE

Date: 13.SEP.2018 14:50:00

Local Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
SanDisk	SD Card	8G	N/A
SAMSUNG	Monitor	S22C330H	LS22C330HS/XF
KEENION	Earphone	KDM-911	6.9518122E12
KEENION	Microphone	KM-206	N/A
GODOX	Camera Flash	TT585	N/A

Report No.: RDG180909002-00B

Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
USB Type-C Cable	Yes	No	1.0	Type-C Port of EUT	Adapter
HDMI Cable	Yes	Yes	1.2	Mini HDMI Port of EUT	Monitor
Earphone Cable	Yes	No	1.5	Audio Out Port of EUT	Earphone
Microphone Cable	Yes	No	2.0	Audio In Port of EUT	Microphone

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

Rules	Description of Test	Result
FCC §15.247 (i) & §1.1310 & §2.1093	RF Exposure	Compliance
RSS-102 §2.5.1	Exemption Limits for Routine Evaluation -SAR Evaluation	Compliance
FCC§15.203, RSS-Gen Clause 6.8	Antenna Requirement	Compliance
FCC§15.207 (a), RSS-Gen Clause 8.8	AC Line Conducted Emissions	Compliance
FCC§15.205, §15.209, FCC §15.247(d), RSS-247 Clause 5.5 RSS-Gen Clause 8.10	Spurious Emissions	Compliance
FCC§15.247 (a)(2), RSS-247 Clause 5.2 a) RSS-Gen Clause 6.7	6 dB Bandwidth	Compliance
FCC§15.247(b)(3), RSS-247 Clause 5.4 d)	Maximum Conducted Output Power	Compliance
FCC§15.247(d), RSS-247 Clause5.5	100 kHz Bandwidth of Frequency Band Edge	Compliance
FCC§15.247(e), RSS-247 Clause5.2 b)	Power Spectral Density	Compliance

FCC §15.247 (i) & §1.1310 & §2.1093- RF EXPOSURE

Applicable Standard

According to §15.247(i) and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB447498 D01 General RF Exposure Guidance v06:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is ≤ 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

Measurement Result

For BLE:

The max conducted power including tune-up tolerance is -1.0 dBm (0.79 mW). [(max. power of channel, mW)/(min. test separation distance, mm)][$\sqrt{f(GHz)}$] = 0.79/5*($\sqrt{2.480}$) =0.3< 3.0

So the stand-alone SAR evaluation is not necessary.

For WiFi:

please refer to the SAR report: RDG180909002-20.

RSS-102 § 2.5.1 EXEMPTION LIMITS FOR ROUTINE EVALUATION – SAR EVALUATION

Applicable Standard

SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in Table 1. For limb-worn devices where the 10 gram value applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 2.5.

Table 1: SAR evaluation – Exemption limits for routine evaluation based on frequency and separation distance 45

Frequency	Exemption Limits (mW)					
(MHz)	At separation	At separation	At separation	At separation	At separation	
	distance of	distance of	distance of	distance of	distance of	
	≤5 mm	10 mm	15 mm	20 mm	25 mm	
≤300	71 mW	101 mW	132 mW	162 mW	193 mW	
450	52 mW	70 mW	88 mW	106 mW	123 mW	
835	17 mW	30 mW	42 mW	55 mW	67 mW	
1900	7 mW	10 mW	18 mW	34 mW	60 mW	
2450	4 mW	7 mW	15 mW	30 mW	52 mW	
3500	2 mW	6 mW	16 mW	32 mW	55 mW	
5800	1 mW	6 mW	15 mW	27 mW	41 mW	

Frequency	Exemption Limits (mW)							
(MHz)	At separation	At separation	At separation	At separation	At separation			
	distance of	distance of	distance of	distance of	distance of			
	30 mm	35 mm	40 mm	45 mm	≥50 mm			
≤300	223 mW	254 mW	284 mW	315 mW	345 mW			
450	141 mW	159 mW	177 mW	195 mW	213 mW			
835	80 mW	92 mW	105 mW	117 mW	130 mW			
1900	99 mW	153 mW	225 mW	316 mW	431 mW			
2450	83 mW	123 mW	173 mW	235 mW	309 mW			
3500	86 mW	124 mW	170 mW	225 mW	290 mW			
5800	56 mW	71 mW	85 mW	97 mW	106 mW			

Measurement Result:

The max tune-up conducted power is -1.0 dBm Antenna Gain: 0 dBi, EIRP=-1.0 dBm (0.79 mW)

The exemption power(P) limits for routine evaluation in 2402-2480MHz is: (2480-2450)/(3500-2450)=(P-4)/(2-4) =>P=3.94 mW@2480 MHz>0.79 mW

So the SAR evaluation can be exempted.

For WiFi:

Please refer to the SAR report: RDG180909002-20.

FCC §15.203& RSS-GEN CLAUSE 6.8 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC§ 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.
- c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

According to RSS-Gen §6.8, The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

Antenna Information And Connector Construction

The EUT has 2 internal antenna arrangement, use unique connector coupling to the radio board, fulfill the requirement of this section. Please refer to the EUT photos and below information:

Antenna	Manufacturer	Model Number	Antenna Type	Connector Type	input impedance (Ohm)	Antenna Gain /Frequency
WIFI/BT Chain 0	DJI	N/A	PCB	IPEX	50	0 dBi/2.4GHz -1.0 dBi/5.8GHz
WIFI Chain 1	DJI	N/A	PCB	IPEX	50	0 dBi/2.4GHz -1.0 dBi/5.8GHz

Result: Compliance.

FCC §15.207 (a) & RSS-GEN CLAUSE 8.8-AC LINE CONDUCTED **EMISSIONS**

Applicable Standard

FCC§15.207(a), RSS-Gen§8.8.

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 and the RSS-Gen limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to the main lisn with a 120 V/60 Hz AC power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W		
150 kHz – 30 MHz	9 kHz		

Test Procedure

During the conducted emission test, the adapter was connected to the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$

$$C_f = A_C + VDF$$

Herein,

V_C (cord. Reading): corrected voltage amplitude

V_R: reading voltage amplitude A_c: attenuation caused by cable loss VDF: voltage division factor of AMN

C_f: Correction Factor

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCS 30	830245/006	2017-12-11	2018-12-11
Unknown	Coaxial Cable	C-NJNJ-50	C-0200-01	2018-09-05	2019-09-05
R&S	Test Software	EMC32	Version8.53.0	N/A	N/A
R&S	Two-line V-network	ENV 216	101614	2017-12-08	2018-12-08

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.4 °C
Relative Humidity:	55 %
ATM Pressure:	100.4 kPa

The testing was performed by Lily Xie on 2018-09-21.

Test Mode: Transmitting

AC120 V, 60 Hz, Line:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.169044	48.7	9.000	L1	10.9	16.3	65.0	Compliance
0.204669	41.1	9.000	L1	10.6	22.3	63.4	Compliance
0.446873	38.8	9.000	L1	9.9	18.1	56.9	Compliance
0.554139	46.9	9.000	L1	9.8	9.1	56.0	Compliance
0.604902	40.8	9.000	L1	9.8	15.2	56.0	Compliance
1.239175	37.7	9.000	L1	9.8	18.3	56.0	Compliance

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.165051	35.1	9.000	L1	11.0	20.1	55.2	Compliance
0.450448	30.3	9.000	L1	9.9	16.6	46.9	Compliance
0.558572	39.4	9.000	L1	9.8	6.6	46.0	Compliance
0.609741	32.0	9.000	L1	9.8	14.0	46.0	Compliance
1.135185	29.6	9.000	L1	9.8	16.4	46.0	Compliance
1.289541	30.8	9.000	L1	9.8	15.2	46.0	Compliance

AC120 V, 60 Hz, Neutral:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.167702	48.8	9.000	N	10.9	16.3	65.1	Compliance
0.443327	36.0	9.000	N	9.9	21.0	57.0	Compliance
0.558572	42.1	9.000	N	9.8	13.9	56.0	Compliance
0.609741	35.9	9.000	N	9.8	20.1	56.0	Compliance
0.960275	35.3	9.000	N	9.8	20.7	56.0	Compliance
1.279307	36.0	9.000	N	9.8	20.0	56.0	Compliance

Frequency (MHz)	Average (dBμV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.162441	34.2	9.000	N	11.0	21.1	55.3	Compliance
0.443327	28.8	9.000	N	9.9	18.2	47.0	Compliance
0.558572	28.9	9.000	N	9.8	17.1	46.0	Compliance
0.609741	24.1	9.000	N	9.8	21.9	46.0	Compliance
1.153421	27.7	9.000	N	9.8	18.3	46.0	Compliance
1.289541	30.8	9.000	N	9.8	15.2	46.0	Compliance

FCC §15.209, §15.205, §15.247(d) & RSS-247 CLAUSE 5.5, RSS-GEN CLAUSE 8.10- SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205, RSS-247 §5.5, RSS-GEN §8.10.

EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters chamber test site A for the range 30MHz to 1GHz and the 3 meters chamber B test site for above 1GHz, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247, the RSS-247 §5.5,RSS-Gen §8.10 limits...

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 26.5 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

30MHz-1000MHz:

Measurement	RBW	Video B/W	IF B/W
QP	120 kHz	300 kHz	120kHz

1GHz-26.5GHz:

Measurement	Duty cycle	RBW	Video B/W
PK	Any	1MHz	3 MHz
A	>98%	1MHz	10 Hz
Ave.	<98%	1MHz	1/T

Note: T is minimum transmission duration

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit –Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2017-12-11	2018-12-11
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A
Sunol Sciences	Antenna	JB3	A060611-1	2017-11-10	2020-11-10
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2017-09-05	2018-09-05
HP	Amplifier	8447D	2727A05902	2017-09-05	2018-09-05
Agilent	Spectrum Analyzer	E4440A	SG43360054	2018-01-04	2019-01-04
ETS-Lindgren	Horn Antenna	3115	000 527 35	2016-01-05	2019-01-04
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-01 1304	2016-11-18	2019-11-18
MITEQ	Amplifier	AFS42-00101800- 25-S-42	2001271	2017-09-05	2018-09-05
Quinstar	Amplifier	QLW-18405536-JO	15964001001	2018-06-27	2019-06-27
Unknown	Coaxial Cable	C-SJSJ-50	C-0800-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-2.4J2.4J-50	C-0700-02	2018-06-27	2019-06-27
E-Microwave	Band-stop Filters	OBSF-2400-2483.5- S	OE01601525	2018-06-16	2019-06-16
Micro-tronics	High Pass Filter	HPM50111	S/N-G217	2018-06-16	2019-06-16

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	24~28.1°C
Relative Humidity:	34~42 %
ATM Pressure:	100.2~100.8 kPa

^{*} The testing was performed by Sunny Cen, Tyler Pan and Blake Yang from 2018-09-22 to 2018-10-08.

Test Mode: Transmitting

1) 30MHz-1GHz (802.11g High channel was the worst):

Horizontal:

Frequency (MHz)	Receiver Reading (dBuV)	Detector	Correction Factor (dB/m)	Cord. Amp. (dBuV/m)	Limit (dBuV/m)	Margin (dB)
99.8400	41.99	QP	-8.89	33.10	43.50	10.40
191.0200	42.12	QP	-7.02	35.10	43.50	8.40
399.5700	36.39	QP	-1.79	34.60	46.00	11.40
500.4500	39.57	QP	0.03	39.60	46.00	6.40
700.2700	31.29	QP	3.41	34.70	46.00	11.30
828.3100	31.49	QP	5.61	37.10	46.00	8.90

Vertical:

Frequency (MHz)	Receiver Reading (dBuV)	Detector	Correction Factor (dB/m)	Cord. Amp. (dBuV/m)	Limit (dBuV/m)	Margin (dB)
99.8400	41.09	QP	-8.89	32.20	43.50	11.30
191.0200	36.42	QP	-7.02	29.40	43.50	14.10
399.5700	33.29	QP	-1.79	31.50	46.00	14.50
500.4500	36.37	QP	0.03	36.40	46.00	9.60
600.3600	29.80	QP	1.30	31.10	46.00	14.90
827.3400	29.82	QP	5.58	35.40	46.00	10.60

2) 1-26.5GHz:

802.11g Mode(MIMO was the worst):

002.115	r	O was the work	r′			T	•	F	F.
Frequency	Re	Receiver		ntenna	Cable	Amplifier	Corrected	Limit	Margin
(MHz)	Reading	Detector	Polar	Factor	loss	Gain	Amplitude	(dBµV/m)	(dB)
(WIIIZ)	(dBµV)	Detector	(H/V)	(dB/m)	(dB)	(dB)	$(dB\mu V/m)$	(αΒμ ٧/Π)	(ub)
			Lo	w Channe	l: 2412 M	Hz			
2412.00	75.86	PK	Н	28.12	1.81	0.00	105.79	N/A	N/A
2412.00	66.32	AV	Н	28.12	1.81	0.00	96.25	N/A	N/A
2412.00	73.66	PK	V	28.12	1.81	0.00	103.59	N/A	N/A
2412.00	64.35	AV	V	28.12	1.81	0.00	94.28	N/A	N/A
2390.00	29.63	PK	Н	28.08	1.80	0.00	59.51	74.00	14.49
2390.00	15.48	AV	Н	28.08	1.80	0.00	45.36	54.00	8.64
4824.00	47.68	PK	Н	32.95	3.19	37.20	46.62	74.00	27.38
4824.00	35.72	AV	Н	32.95	3.19	37.20	34.66	54.00	19.34
7236.00	46.83	PK	Н	35.81	4.77	37.27	50.14	74.00	23.86
7236.00	33.41	AV	Н	35.81	4.77	37.27	36.72	54.00	17.28
			Mic	ddle Chanr	nel:2437 N	MHz			•
2437.00	75.27	PK	Н	28.17	1.82	0.00	105.26	N/A	N/A
2437.00	65.87	AV	Н	28.17	1.82	0.00	95.86	N/A	N/A
2437.00	73.14	PK	V	28.17	1.82	0.00	103.13	N/A	N/A
2437.00	63.88	AV	V	28.17	1.82	0.00	93.87	N/A	N/A
4874.00	47.56	PK	Н	33.05	3.26	37.21	46.66	74.00	27.34
4874.00	35.12	AV	Н	33.05	3.26	37.21	34.22	54.00	19.78
7311.00	46.42	PK	Н	36.01	4.64	37.36	49.71	74.00	24.29
7311.00	33.26	AV	Н	36.01	4.64	37.36	36.55	54.00	17.45
			Lo	w Channe	1:2462 M	Hz			
2462.00	76.73	PK	Н	28.22	1.83	0.00	106.78	N/A	N/A
2462.00	67.25	AV	Н	28.22	1.83	0.00	97.30	N/A	N/A
2462.00	73.85	PK	V	28.22	1.83	0.00	103.90	N/A	N/A
2462.00	64.71	AV	V	28.22	1.83	0.00	94.76	N/A	N/A
2483.50	27.63	PK	Н	28.27	1.84	0.00	57.74	74.00	16.26
2483.50	15.62	AV	Н	28.27	1.84	0.00	45.73	54.00	8.27
4924.00	48.25	PK	Н	33.15	3.27	37.22	47.45	74.00	26.55
4924.00	35.67	AV	Н	33.15	3.27	37.22	34.87	54.00	19.13
7386.00	46.91	PK	Н	36.20	4.51	37.46	50.16	74.00	23.84
7386.00	33.87	AV	Н	36.20	4.51	37.46	37.12	54.00	16.88

802.11n ht20 Mode(MIMO was the worst):

002.11111		MIMO was the							
Frequency	Re	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Limit	Margin
(MHz)	Reading	Detector	Polar	Factor	loss	Gain	Amplitude	(dBµV/m)	(dB)
(MIIIZ)	(dBµV)	Detector	(H/V)	(dB/m)	(dB)	(dB)	$(dB\mu V/m)$	(αΣμ ν/ιιι)	(ub)
			Lo	w Channe	l: 2412 M	Hz			
2412.00	75.13	PK	Н	28.12	1.81	0.00	105.06	N/A	N/A
2412.00	66.25	AV	Н	28.12	1.81	0.00	96.18	N/A	N/A
2412.00	73.89	PK	V	28.12	1.81	0.00	103.82	N/A	N/A
2412.00	64.58	AV	V	28.12	1.81	0.00	94.51	N/A	N/A
2390.00	28.90	PK	Н	28.08	1.80	0.00	58.78	74.00	15.22
2390.00	14.73	AV	Н	28.08	1.80	0.00	44.61	54.00	9.39
4824.00	47.73	PK	Н	32.95	3.19	37.20	46.67	74.00	27.33
4824.00	34.52	AV	Н	32.95	3.19	37.20	33.46	54.00	20.54
7236.00	46.52	PK	Н	35.81	4.77	37.27	49.83	74.00	24.17
7236.00	33.48	AV	Н	35.81	4.77	37.27	36.79	54.00	17.21
			Mic	ddle chann	el: 2437 N	MHz			
2437.00	74.85	PK	Н	28.17	1.82	0.00	104.84	N/A	N/A
2437.00	65.32	AV	Н	28.17	1.82	0.00	95.31	N/A	N/A
2437.00	72.41	PK	V	28.17	1.82	0.00	102.40	N/A	N/A
2437.00	63.55	AV	V	28.17	1.82	0.00	93.54	N/A	N/A
4874.00	47.72	PK	Н	33.05	3.26	37.21	46.82	74.00	27.18
4874.00	34.61	AV	Н	33.05	3.26	37.21	33.71	54.00	20.29
7311.00	46.48	PK	Н	36.01	4.64	37.36	49.77	74.00	24.23
7311.00	33.75	AV	Н	36.01	4.64	37.36	37.04	54.00	16.96
			Hi	gh Channe	1: 2462 N	ſНz			
2462.00	75.91	PK	Н	28.22	1.83	0.00	105.96	N/A	N/A
2462.00	66.28	AV	Н	28.22	1.83	0.00	96.33	N/A	N/A
2462.00	73.32	PK	V	28.22	1.83	0.00	103.37	N/A	N/A
2462.00	64.17	AV	V	28.22	1.83	0.00	94.22	N/A	N/A
2483.50	24.62	PK	Н	28.27	1.84	0.00	54.73	74.00	19.27
2483.50	15.53	AV	Н	28.27	1.84	0.00	45.64	54.00	8.36
4924.00	47.56	PK	Н	33.15	3.27	37.22	46.76	74.00	27.24
4924.00	34.58	AV	Н	33.15	3.27	37.22	33.78	54.00	20.22
7386.00	46.35	PK	Н	36.20	4.51	37.46	49.60	74.00	24.40
7386.00	33.64	AV	Н	36.20	4.51	37.46	36.89	54.00	17.11

BLE Mode:

-	Re	Receiver		ntenna	Cable	Amplifier	Corrected	.	3.5
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBμV/m)	Margin (dB)
			Lo	w Channe	1: 2402 M	Ήz			
2402.00	54.50	PK	Н	28.10	1.80	0.00	84.40	N/A	N/A
2402.00	49.76	AV	Н	28.10	1.80	0.00	79.66	N/A	N/A
2402.00	53.85	PK	V	28.10	1.80	0.00	83.75	N/A	N/A
2402.00	48.99	AV	V	28.10	1.80	0.00	78.89	N/A	N/A
2390.00	27.29	PK	Н	28.08	1.80	0.00	57.17	74.00	16.83
2390.00	14.31	AV	Н	28.08	1.80	0.00	44.19	54.00	9.81
4804.00	48.42	PK	Н	32.91	3.17	37.20	47.30	74.00	26.70
4804.00	35.21	AV	Н	32.91	3.17	37.20	34.09	54.00	19.91
7206.00	47.16	PK	Н	35.74	4.82	37.23	50.49	74.00	23.51
7206.00	33.75	AV	Н	35.74	4.82	37.23	37.08	54.00	16.92
			Mic	ldle Chann	el: 2440 l	MHz			
2440.00	54.33	PK	Н	28.18	1.82	0.00	84.33	N/A	N/A
2440.00	49.46	AV	Н	28.18	1.82	0.00	79.46	N/A	N/A
2440.00	53.67	PK	V	28.18	1.82	0.00	83.67	N/A	N/A
2440.00	49.05	AV	V	28.18	1.82	0.00	79.05	N/A	N/A
4880.00	48.31	PK	Н	33.06	3.27	37.21	47.43	74.00	26.57
4880.00	35.10	AV	Н	33.06	3.27	37.21	34.22	54.00	19.78
7320.00	47.22	PK	Н	36.03	4.62	37.37	50.50	74.00	23.50
7320.00	33.69	AV	Н	36.03	4.62	37.37	36.97	54.00	17.03
			Hi	gh Channe	1: 2480 M				
2480.00	52.56	PK	Н	28.26	1.84	0.00	82.66	N/A	N/A
2480.00	47.59	AV	Н	28.26	1.84	0.00	77.69	N/A	N/A
2480.00	52.38	PK	V	28.26	1.84	0.00	82.48	N/A	N/A
2480.00	47.51	AV	V	28.26	1.84	0.00	77.61	N/A	N/A
2483.50	27.05	PK	Н	28.27	1.84	0.00	57.16	74.00	16.84
2483.50	14.20	AV	Н	28.27	1.84	0.00	44.31	54.00	9.69
4960.00	48.98	PK	Н	33.22	3.23	37.25	48.18	74.00	25.82
4960.00	35.46	AV	Н	33.22	3.23	37.25	34.66	54.00	19.34
7440.00	46.69	PK	Н	36.34	4.41	37.52	49.92	74.00	24.08
7440.00	33.92	AV	Н	36.34	4.41	37.52	37.15	54.00	16.85

Worst Test plots (802.11g mode High channel was the worst case) Horizontal: $$_{100.0\ dBuV/m}$$

Vertical:

Fundamental Test with Band Rejection Filter

FCC §15.247(a) (2) & RSS-247 CLAUSE 5.2 a) &RSS-GEN CLAUSE 6.7–6 dB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH

Report No.: RDG180909002-00B

Applicable Standard

According to FCC §15.247(a) (2)

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

According to RSS-247 §5.2 a)

The minimum 6 dB bandwidth shall be 500 kHz.

According to RSS-Gen §6.7

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "x dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated x dB below the maximum inband power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

The following conditions shall be observed for measuring the occupied bandwidth and x dB bandwidth:

- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.
- The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.
- The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Procedure

6dB bandwidth test:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- c) Detector = Peak.
- d) Trace mode = \max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

99% Occupied bandwidth test:

Use Occupied bandwidth test function, measure the 99% Occupied bandwidth. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESPI	100120	2017-12-11	2018-12-11
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	28.6~28.8 °C
Relative Humidity:	54~57 %
ATM Pressure:	100.4~100.5 kPa

^{*} The testing was performed by Elena Lei from 2018-09-13~2018-09-14.

Test Mode: Transmitting

Test Result: Compliance. Please refer to the following table and plots(test only performed at chain 0 for 802.11g and n ht20 mode).

Test mode	Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Limit (MHz)
	Low	2412	16.40	16.80	≥0.5
802.11g	Middle	2437	15.52	16.72	≥0.5
	High	2462	15.12	16.32	≥0.5
002.11	Low	2412	17.52	17.92	≥0.5
802.11n ht20	Middle	2437	16.40	17.84	≥0.5
11120	High	2462	15.12	17.44	≥0.5
	Low	2402	0.68	1.06	≥0.5
BLE	Middle	2440	0.67	1.06	≥0.5
	High	2480	0.68	1.06	≥0.5

6dB bandwidth:

802.11g Low Channel

Report No.: RDG180909002-00B

Date: 14.SEP.2018 09:02:04

802.11g Middle Channel

Date: 14.SEP.2018 09:22:39

802.11g High Channel

Report No.: RDG180909002-00B

Date: 14.SEP.2018 09:09:36

802.11n ht20 Low Channel

Date: 14.SEP.2018 09:27:27

802.11n ht20 Middle Channel

Report No.: RDG180909002-00B

Date: 14.SEP.2018 09:30:02

802.11n ht20 High Channel

Date: 14.SEP.2018 09:32:49

BLE Low Channel

Report No.: RDG180909002-00B

Date: 13.SEP.2018 10:43:41

BLE Middle Channel

Date: 13.SEP.2018 10:44:54

BLE High Channel

Report No.: RDG180909002-00B

Date: 13.SEP.2018 10:42:15

99% Occupied bandwidth:

802.11g Low Channel

Date: 14.SEP.2018 09:02:29

802.11g Middle Channel

Report No.: RDG180909002-00B

Date: 14.SEP.2018 09:21:01

802.11g High Channel

Date: 14.SEP.2018 09:10:01

802.11n ht20 Low Channel

Report No.: RDG180909002-00B

Date: 14.SEP.2018 09:27:45

802.11n ht20 Middle Channel

Date: 14.SEP.2018 09:30:22

802.11n ht20 High Channel

Report No.: RDG180909002-00B

Date: 14.SEP.2018 09:33:14

BLE Low Channel

Date: 13.SEP.2018 10:43:54

BLE Middle Channel

Report No.: RDG180909002-00B

Date: 13.SEP.2018 10:45:07

BLE High Channel

Date: 13.SEP.2018 10:42:29

FCC §15.247(b) (3)& RSS-247 CLAUSE 5.4 d) - MAXIMUM PEAK CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to RSS-247§5.4 d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. Except as provided in Section 5.4(e), the e.i.r.p. shall not exceed 4 W.

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to test equipment.
- 3. Add a correction factor to the display.
- 4. Set the power Meter to test Peak output power, record the result as peak power.
- 5. Set the power meter to test average output power, record the result as average power.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
narda	Attenuator	6dB	04270	2018-09-06	2019-09-06
Agilent	USB Wideband Power Sensor	U2022XA	MY5417006	2017-12-11	2018-12-11
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	28.6 °C	
Relative Humidity:	57 %	
ATM Pressure:	100.5 kPa	

^{*} The testing was performed by Elena Lei on 2018-09-14.

Test Mode: Transmitting

Test Result: Compliance. Please refer to the following table.

802.11g/n ht20:

Test	Frequency	Maximun	n Conducted (dBn	Peak EIRP	EIRP Limits for ISED		
Mode	(MHz)	Chain 0	Chain 1	Total	Limits	(dBm)	(dBm)
	2412	22.07	21.88	24.99	30	24.99	36
802.11g	2437	22.03	22.03	25.04	30	25.04	36
	2462	23.67	22.34	26.07	30	26.07	36
902 11m	2412	21.89	21.80	24.86	30	24.86	36
802.11n ht20	2437	22.12	22.63	25.39	30	25.39	36
11120	2462	22.57	22.64	25.62	30	25.62	36

Test Mode	Frequency (MHz)	Maximum Conducted Average Output Power (dBm)				EIRP for IS	EIRP Limits for ISED (dBm)
		Chain 0	Chain 1	Total	Limits	(dBm)	(ubiii)
	2412	16.12	15.89	19.02	30	19.02	36
802.11g	2437	16.02	16.05	19.05	30	19.05	36
	2462	16.38	16.32	19.36	30	19.36	36
902 11m	2412	15.84	16.02	18.94	30	18.94	36
802.11n ht20	2437	15.88	16.28	19.09	30	19.09	36
11120	2462	16.18	16.24	19.22	30	19.22	36

Note: the maximum antenna gain is 0 dBi, the device employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01 Multiple Transmitter Output v02r01, for power measurements on IEEE 802.11 devices:

Array Gain = 0 dB (i.e., no array gain) for $NANT \le 4$;

So

Directional gain = G_{ANT} + Array Gain = 0 dBi

BLE:

Frequency (MHz)	Max Peak Conducted Output Power (dBm)	Max Peak Conducted Output Power Limit (dBm)	EIRP (dBm)	EIRP Limit for ISED
2402	-2.42	30	-2.42	36
2440	-1.51	30	-1.51	36
2480	-1.59	30	-1.59	36

Note: the maximum antenna gain is 0 dBi.

FCC §15.247(d)& RSS-247 CLAUSE 5.5 – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

According to FCC§15.247(d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to RSS-247 Clause 5.5:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESPI	100120	2017-12-11	2018-12-11
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	28.6~28.8 °C
Relative Humidity:	54~57 %
ATM Pressure:	100.4~100.5 kPa

^{*} The testing was performed by Elena Lei from 2018-09-13~2018-09-14.

Test mode: Transmitting

Test Result: Compliance. Please refer to following plots.

802.11g Chain 0, Band Edge

Report No.: RDG180909002-00B

Date: 14.SEP.2018 09:04:04

Date: 14.SEP.2018 09:11:28

802.11g Chain 1, Band Edge

Report No.: RDG180909002-00B

Date: 14.SEP.2018 09:44:52

Date: 14.SEP.2018 09:49:57

802.11n ht20 Chain 0, Band Edge

Report No.: RDG180909002-00B

Date: 14.SEP.2018 09:29:11

Date: 14.SEP.2018 09:34:59

802.11n ht20 Chain 1, Band Edge

Report No.: RDG180909002-00B

Date: 14.SEP.2018 09:55:45

BLE, Band Edge,

Report No.: RDG180909002-00B

Date: 13.SEP.2018 10:44:26

Date: 13.SEP.2018 10:43:08

FCC §15.247(e) & RSS-247 CLAUSE 5.2 b - POWER SPECTRAL DENSITY

Report No.: RDG180909002-00B

Applicable Standard

According to FCC§15.247(e):For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

According to RSS-247 §5.2 b):

b) The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set the RBW = 3 kHz, VBW = 10 kHz, Set the span to 1.5 times the DTS bandwidth.
- 4. Use the peak marker function to determine the maximum amplitude level.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESPI	100120	2017-12-11	2018-12-11
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	28.6~28.8 °C
Relative Humidity:	54~57 %
ATM Pressure:	100.4~100.5 kPa

^{*} The testing was performed by Elena Lei from 2018-09-13~2018-09-14.

Test Mode: Transmitting

Test Result: Compliance. Please refer to the following table and plots

802.11g/n ht20:

,						
Test mode Channel		Frequency	H	Limit		
1 est mode	Channel	(MHz)	Chain 0	Chain 1	Total	(dBm/3kHz)
	Low	2412	-12.07	-12.22	-9.13	≤8
802.11g	Middle	2437	-11.11	-11.55	-8.31	≤8
	High	2462	-11.42	-12.16	-8.76	≤8
902 11	Low	2412	-12.56	-11.19	-8.81	≤8
802.11n ht20	Middle	2437	-9.79	-11.28	-7.46	≤8
11120	High	2462	-11.22	-11.47	-8.33	≤8

Note: the maximum antenna gain is 0 dBi, the device employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01 Multiple Transmitter Output v02r01, for power spectral density (PSD) measurements on the devices:

Array Gain = $10 \log(N_{ANT}/N_{SS}) dB$.

So:

Directional gain = GANT + Array Gain = 0+10*log(2/2) = 0dBi

BLE:

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)
Low	2402	-18.10	≤8
Middle	2440	-17.48	≤8
High	2480	-16.60	≤8

802.11g, Chain 0, Power Spectral Density, Low Channel

Report No.: RDG180909002-00B

Date: 14.SEP.2018 09:03:35

802.11g, Chain 0, Power Spectral Density, Middle Channel

Date: 14.SEP.2018 09:21:55

802.11g, Chain 0, Power Spectral Density, High Channel

Report No.: RDG180909002-00B

Date: 14.SEP.2018 09:11:03

802.11g, Chain 1, Power Spectral Density, Low Channel

Date: 14.SEP.2018 09:44:29

802.11g, Chain 1, Power Spectral Density, Middle Channel

Report No.: RDG180909002-00B

Date: 14.SEP.2018 09:47:18

802.11g, Chain 1, Power Spectral Density, High Channel

Date: 14.SEP.2018 09:49:38

802.11n ht20, Chain 0, Power Spectral Density, Low Channel

Report No.: RDG180909002-00B

Date: 14.SEP.2018 09:28:45

802.11n ht20, Chain 0, Power Spectral Density, Middle Channel

Date: 14.SEP.2018 09:31:37

802.11n ht20, Chain 0, Power Spectral Density, High Channel

Report No.: RDG180909002-00B

Date: 14.SEP.2018 09:34:33

802.11n ht20, Chain 1, Power Spectral Density, Low Channel

Date: 14.SEP.2018 09:55:25

802.11n ht20, Chain 1, Power Spectral Density, Middle Channel

Report No.: RDG180909002-00B

Date: 14.SEP.2018 09:57:56

802.11n ht20, Chain 1, Power Spectral Density, High Channel

Date: 14.SEP.2018 10:00:19

BLE, Power Spectral Density, Low Channel

Report No.: RDG180909002-00B

Date: 13.SEP.2018 10:44:04

BLE, Power Spectral Density, Middle Channel

Date: 13.SEP.2018 10:45:19

BLE, Power Spectral Density, High Channel

Report No.: RDG180909002-00B

Date: 13.SEP.2018 10:42:38

***** END OF REPORT *****