

(312) 통계분석 w/ R

- t 검정, 분산분석, 타당성과 신뢰성
- 요인분석, 회귀분석
- 군집분석

R DEMO

Source : shiny_ttest.r

분석 대상 분야 (R, ML 동일)

R 통계 분석 및 결과 시각화 영역

R 통계 분석

- 공분산
- t-Test (일표본, 대응, 독립)
- ANOVA (one-way, two-way, MANOVA)
- 요인분석 (PCA/FA)
- 상관분석, 신뢰도 분석
- 단순/다중 회귀분석
- 로지스틱
- 판별분석, 군집분석

공분산, 상관계수

목적 및 절차

- library(MASS)
- x <- Cars93\$MPG.highway
- y <- Cars93\$Weight
- cov(x, y, method = c("pearson"))
- 결측치 확인 sum(is.na(x)) / sum(is.na(y))
- cor(x,y, method = c("pearson"))

```
> cov(a1, a2, method = c("pearson"))
[1] 2.1
```

분석내용 및 결과해석

• 통계량 및 검정결과

```
> a1 <- c(1:6)
> a2 <- c(2,3,4,4,5,5)
> d1 <- data.frame(a1,a2)</pre>
> cor(d1, method = "pearson") #
          a1
a1 1.0000000 0.9601829
a2 0.9601829 1.0000000
> cor(a1, a2, method = "pearson")
[1] 0.9601829
> cor.test(a1,a2,conf.level = 0.95, method =c("pearson"))
        Pearson's product-moment correlation
data: a1 and a2
t = 6.8739, df = 4, p-value = 0.002347
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.6732493 0.9957830
sample estimates:
      cor
0.9601829
```

t-test (일표본)

no

Data

liter

252

271

282

257

240

• 기술통계

- library(readxl)
- x <- read_excel("work_r/source/1_ttest.xls", col_names = TRUE)</p>
- > str(x)
- > t.test(x\$liter, mu=250)
- hist(x\$liter)

6	242	
7		One Sample t-test
8	dat	a: x\$liter
9		-4.6739, df = 299, p-value = 4.477e-06
10		ernative hypothesis: true mean is not equal to 250
11		percent confidence interval: 2.3974 246.9026
12	sam	ple estimates:
13		n of x 244.65
14	206	

Source : sta_1_t_test

t-test (일표본) - 정규 분포 곡선

xp <- x\$liter

S mids

\$ xname

Source: sta 1 t test

: chr "xp"

- attr(*, "class") = chr "histogram"

\$ equidist: logi TRUE

```
h <- hist(xp, breaks=10, col="red", xlab="Liter",
          main="Histogram with liter")
   xfit < -seq(min(xp), max(xp), length = 300)
   yfit<-dnorm(xfit,mean=mean(xp),sd=sd(xp))</pre>
   yfit <- yfit*diff(h$mids[1:2])*length(xp) # consider frequency</pre>
   lines(xfit, yfit, col="blue", lwd=2)
> str(h)
List of 6
 $ breaks : int [1:12] 190 200 210 220 230 240 250 260 270 280 ...
 $ counts : int [1:11] 7 9 11 30 71 42 60 42 25 2 ...
```

\$ density : num [1:11] 0.00233 0.003 0.00367 0.01 0.02367 ...

: num [1:11] 195 205 215 225 235 245 255 265 275 285 ...

2 9 20 Frequency 40 30 20 9 200 220 240 260 280 300 Liter

Histogram with liter

https://www.statmethods.net/graphs/density.html

t-test (대응표본)

• Data

no	before	after
1	75	73
2	74	74
3	75	76
4	75	71
5	83	76
6	77	68
7	82	75
8	62	61
9	77	68
10	82	75
11	72	70
12	75	71
13	78	71
14	71	70

• 기술통계

- library(readxl)
- x <- read_excel("work_r/source/2_pttest.xls", col_names = TRUE)</p>
- t.test(x\$before, x\$after, var.equal=T, paired=T)
- cor(x\$before, x\$after, method = "pearson")

```
Paired t-test

data: x$before and x$after

t = 9.9914, df = 99, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

2.901098 4.338902

sample estimates:

mean of the differences

3.62
```

```
> cor(x$before, x$after, method = "pearson")
[1] 0.8709572
```

Source: sta_1_t_test, 2_pttest.xls

t-test (대응표본)

summary (myd) before after no 1.00 Min. Min. :54.00 Min. :50.00 1st Qu.: 25.75 1st Qu.:71.00 1st Qu.:68.00 Median :75.00 Median : 50.50 Median :71.00 : 50.50 :73.03 :69.41 Mean Mean Mean 3rd Qu.: 75.25 3rd Qu.:77.00 3rd Qu.:74.00 :100.00 :83.00 :76.00 Max. Max. Max.

- \rightarrow x1 <- myd[, 2]
- \rightarrow str(x1)
- x1\$group = "before"
- names(x1) < -c("score", "group")</p>
- \rightarrow str(x1)

- > x2 <- myd[, 3]
- > x2\$group = "after"
- names(x2)<-c("score","group")</pre>
- > x12 <- rbind(x1, x2)
- boxplot(score~group,data=x12, main="Score by group", xlab="Groups", ylab="Scores")
- library(vioplot)
- x1 <- myd\$before</p>
- x2 <- myd\$after</p>
- vioplot(x1, x2, names=c("before", "after"), col="gold")
- title("Violin Plots of scores")

Score by group

2 t-test (독립표본)

• Data : maker (1, 2)

maker	hour
1	18
1	1 6
1	17
1	15
1	14
1	19
1	16
1	15
1	18
1	15
1	16
1	17
1	1 5
1	14

x <- read_excel("work_r/source/3_2ittest.xls", col_names = TRUE)

t.test (x\$hour ~ x\$maker)

boxplot(hour~maker,data=x, main="Score by maker", xlab="makers", ylab="hours")

Welch Two Sample t-test

data: x\$hour by x\$maker

t = 6.3744, df = 197.98, p-value = 1.265e-09

alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:

0.9737946 1.8462054

sample estimates:

mean in group 1 mean in group 2 16.35 14.94

Source: sta_1_t_test, 3_2ittest.xls

t-test distribution curve

Source: sta_1_t_test, 2_pttest.xls

one-way ANOVA

• Data : satisfaction by convenient

conv	atisfaction
2	4
3	4
3	3
4	4
4	4
1	1
3	4
3	3
3	4
3	4
4	5
1	4
4	3
3	3

Source: sta 2 anova.R / 4 oneway anova.xlsx

one-way ANOVA

```
bartlett.test(satisfaction ~ conv, data = x)
##
library(car)
leveneTest(satisfaction ~ conv, data = x)
```

```
Bartlett test of homogeneity of variances

data: satisfaction by conv

Bartlett's K-squared = 8.0954, df = 4, p-value = 0.08814
```

Source : sta_2_anova.R / 4_oneway_anova.xlsx

Two-way ANOVA

smoking	location	revenue
2	2	4
2	1	9
2	2	6
2	3	6
1	1	14
2	1	7
1	1	1 5
1	3	7
3	2	5
1	2	5
1	1	13
1	2	7
2	3	7
2	1	7
	1	7

```
x <- read_excel("work_r/source/5_twoway_anova.xlsx", col_names = TRUE)
summary(x)

x$smoking = as.factor(x$smoking)
x$location = as.factor(x$location)
str(x)

fit <- aov(revenue ~ smoking + location, data = x)
summary(fit)

fit <- aov(revenue ~ smoking + location + smoking * location , data = x)</pre>
```

수치 상이함

```
> summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)

smoking 2 1085.7 542.8 220.54 <2e-16 ***
location 2 485.4 242.7 98.61 <2e-16 ***

smoking:location 4 307.0 76.8 31.18 <2e-16 ***

Residuals 152 374.1 2.5
```

Source: sta 2 anova.R / 5 twoway anova.xlsx

요인분석 (PCA/FA)

General methods for principal component analysis

There are two general methods to perform PCA in R:

Spectral decomposition which examines the covariances / correlations between variables

Singular value decomposition which examines the covariances / correlations between individuals

The function **princomp**() uses the spectral decomposition approach. The functions **prcomp**() and **PCA**()[FactoMineR] use the singular value decomposition (SVD).

prcomp() and princomp() functions

The simplified format of these 2 functions are:

prcomp(x, scale = FALSE) princomp(x, cor = FALSE, scores = TRUE)

prcomp() name	princomp() name	Description
sdev	sdev	the standard deviations of the principal components
rotation	loadings	the matrix of variable loadings (columns are eigenvectors)
center	center	the variable means (means that were substracted)
scale	scale	the variable standard deviations (the scaling applied to each variable)
х	scores	The coordinates of the individuals (observations) on the principal components.

Source: http://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-guide/118-principal-component-analysis-in-r-promp-vs-princomp/

요인분석 (PCA/FA) – factanal

• Data : q1 ~ q15

no	q1	q2	q3
1	4	4	4
2	5	5	5
3	5	5	4
4	5	5	5
5	5	5	5
6	3	3	3
7	3	3	3
8	5	5	5
9	5	5	5
10	5	5	5
11	3	3	3
12	3	3	3
13	4	5	4
14	5	5	4

```
myd <- read_excel("work_r/source/6_pca.xls", col_names = TRUE)
str(myd)
                                                             Loadings:
                                                                Factor1 Factor2 Factor3 Factor4 Factor5
library(dplyr)
                                                                0.89
                                                                 0.94
                                                            q3
                                                                 0.92
myd <- myd %>% select(2 : 16)
                                                                        0.86
                                                             q10
                                                                        0.89
                                                            q11
fit <- factanal(myd, 5, rotation="varimax")</pre>
                                                            q12
                                                                        0.77
                                                            q7
                                                                               0.85
                                                            q8
                                                                               0.84
print(fit, digits=2, cutoff=.3, sort=TRUE)
                                                            q9
                                                                               0.75
                                                            q13
                                                                                      0.58
                                                            q14
                                                                                      0.62
Call:
                                                            q15
                                                                                      0.95
factanal(x = myd, factors = 5, rotation = "varimax")
Uniquenesses:
       q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15
0.17 0.09 0.11 0.44 0.51 0.48 0.26 0.25 0.39 0.25 0.19 0.38 0.53 0.51 0.00
                                                                             0.73
```

q4

q5

q6

	Factor1	Factor2	Factor3	Factor4	Factor5
SS loadings	2.62	2.21	2.13	1.83	1.64
Proportion Var	0.17	0.15	0.14	0.12	0.11
Cumulative Var	0.17	0.32	0.46	0.59	0.69

Test of the hypothesis that 5 factors are sufficient. The chi square statistic is 75.2 on 40 degrees of freedom. The p-value is 0.000631

0.69

0.69

요인분석 (PCA/FA) – factanal

plot factor 1 by factor 2
load <- fit\$loadings[,1:2]
plot(load,type="n") # set up plot
text(load,labels=names(myd),cex=.7) # add variable names</pre>

Source: sta_3_pca_fa.R, 6_pca.xls

요인분석 (PCA/FA) – principal

```
fit <- psych::principal(myd, rotate="varimax", nfactors=5, scores=TRUE)
print(fit$scores[1:5,]) # Scores returned by principal()
```

Source: sta_3_pca_fa.R , 6_pca.xls

Principal Components Analysis using R

Scree Plot

Source: http://faculty.missouri.edu/huangf/data/mvnotes/pca in r 2.html

요인분석 (PCA/FA) – principal

Source: http://faculty.missouri.edu/huangf/data/mvnotes/pca_in_r_2.html

신뢰도 분석

```
> alpha(Q)
Q <- data.frame(
                                                                      Reliability analysis
                                                                      Call: alpha(x = Q)
   Q1 = c(1,4,2,3,4,2,3,4,3,2),
   Q2=c(2,4,1,2,4,1,2,5,2,1),
                                                                        raw alpha std.alpha G6(smc) average r S/N ase mean sd median r
                                                                                                         0.8 12 0.042 2.6 1.1
                                                                            0.92
                                                                                      0.92
                                                                                              0.89
                                                                                                                                     0.81
   Q3=c(2,5,1,3,3,2,3,4,2,2))
                                                                                             95% confidence boundaries
                                                                       lower alpha upper
pairs(Q, panel=panel.smooth)
                                                                      0.83 0.92 1
# 2. cronbach : install.packages("psy") / alpha ()
                                                                       Reliability if an item is dropped:
library(psy)
                                                                          raw alpha std.alpha G6(smc) average r S/N alpha se var.r med.r
                                          1 2 3 4 5
                                                                                                          0.82 9.0
                                                                                                                      0.066
                                                                                                                               NA 0.82
                                                                              0.89
                                                                                        0.90
                                                                                                0.82
                                                                      Q1
cronbach(Q)
                                                                              0.87
                                                                                        0.88
                                                                                                0.78
                                                                                                          0.78 7.1
                                                                                                                      0.079
                                                                                                                               NA 0.78
                                                                      Q2
                                  Q1
                                                                              0.87
                                                                                        0.90
                                                                                                0.81
                                                                                                          0.81 8.7
                                                                                                                      0.071
                                                                                                                               NA 0.81
library(psych)
                                                                       Item statistics
                                                                          n raw.r std.r r.cor r.drop mean sd
alpha(Q)
                                              Q2
                                                                      01 10 0.92 0.93 0.87
                                                                                                      2.8 1.0
                                                                                                0.84
                                                                      02 10 0.95 0.94 0.90
                                                                                                0.86 2.4 1.4
a <- alpha(Q)
                                                                      Q3 10 0.93 0.93 0.87
                                                                                                0.84 2.7 1.2
str(a)
                                                          Q3
                                                                      Non missing response frequency for each item
a$total
                                                                                           5 miss
                                                                      01 0.1 0.3 0.3 0.3 0.0
                                                      1 2 3 4 5
                              1.0 2.0
                                   3.0
                                                                      Q2 0.3 0.4 0.0 0.2 0.1
                                                                                                0
                                                                      03 0.1 0.4 0.3 0.1 0.1
```

Source: sta 4 alpha.R, 6 pca.xls

신뢰도 분석

```
myd <- read_excel("work_r/source/6_pca.xls",
col_names = TRUE)
                                       > alpha(Q)
myd <- myd %>% select(2 : 16) # 15
                                       Reliability analysis
pairs(myd, panel=panel.smooth)
                                       Call: alpha(x = Q)
Q \leftarrow myd[, 1:3] \# q1 \sim q3
                                         raw alpha std.alpha G6(smc) average r S/N ase mean sd median r
                                             0.95
                                                       0.95
                                                               0.93
                                                                         0.87 21 0.0045 3.6 1.1
                                                                                                       0.87
alpha(Q)
                                       lower alpha upper
                                                            95% confidence boundaries
a \leftarrow alpha(Q)
                                       0.94 0.95 0.96
str(a)
          > library(psy)
                                        Reliability if an item is dropped:
          > cronbach(0)
a$total
                                          raw alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
          $`sample.size`
                                               0.94
                                                         0.95
                                                                 0.90
                                                                           0.90 17
                                                                                                 NA 0.90
                                       q1
                                                                                      0.0062
          [1] 325
                                       q2
                                               0.92
                                                         0.92 0.86 0.86 12
                                                                                      0.0087
                                                                                                 NA 0.86
                                               0.93
                                                         0.93 0.87
                                                                           0.87 13
                                                                                      0.0080
                                                                                                 NA 0.87
                                       q3
          Snumber.of.items
          [1] 3
          $alpha
          [1] 0.9527612
```

Source: sta_4_alpha.R, 6_pca.xls

신뢰도 분석

Source: sta_4_alpha.R , 6_pca.xls

상관분석 – 피어슨

```
myd <- read_excel("work_r/source/6_pca.xls",
col_names = TRUE)

myd <- myd %>% select(2 : 16)

x1 <- rowMeans(myd[, 1:3])
x2 <- rowMeans(myd[, 4:6])

cor(x1,x2)
cor.test(x1,x2)</pre>
```

Source: sta_4_alpha.R, 6_pca.xls

교차분석, chi square

• location 1,2 의 구매의사 비교

			1	
uy	mj	edu	location	gume
2.8	3	1	1	1
1	5	1	1	1
3	4	1	1	1
1.6	3	1	1	1
3.2	5	1	1	1
3	5	1	1	1
3	3	1	1	1
4.8	3	1	1	1
1	5	1	1	1
3	4	1	1	1
1.6	3	1	1	2
2	3	1	1	2
3	3	1	1	2
3	3	1	1	2

```
* CrossTable
library(readxl)
myd <-
read_excel("work_r/source/7_table_chisquare.xls",
col names = TRUE)
str(myd)
x <- myd[c("location", "gume")]
str(x)
                     > table(x)
table(x)
                              gume
                     location 1
summary(table(x))
                             1 154
                                     52
                                 7 112
                     > summary(table(x))
                     Number of cases in table: 325
                     Number of factors: 2
                     Test for independence of all factors:
                              Chisq = 143.14, df = 1, p-value = 5.488e-33
```

Source: sta_5_table.R, 7_table_chisquare.xls

단순 회귀분석

revenue	advertise
5	4
5	5
4	5
4	3
3	4
3	2
2	2
2	1
1	2
1	1
5	4
5	5
4	5
4	3

3

~ -

2

단순 회귀분석 – fit

```
> str(fit)
List of 12
$ coefficients : Named num [1:2] 0.641 0.813
  ..- attr(*, "names") = chr [1:2] "(Intercept)" "advertise"
 $ residuals : Named num [1:60] 1.105 0.292 -0.708 0.919
  ..- attr(*, "names")= chr [1:60] "1" "2" "3" "4" ...
 $ effects
             : Named num [1:60] -23.238 -9.109 -0.859 0.79
  ..- attr(*, "names") = chr [1:60] "(Intercept)" "advertise"
$ rank
         : int 2
 $ fitted.values: Named num [1:60] 3.89 4.71 4.71 3.08 3.89
  ..- attr(*, "names") = chr [1:60] "1" "2" "3" "4" ...
 $ assign : int [1:2] 0 1
 $ gr :List of 5
  ..$ qr : num [1:60, 1:2] -7.746 0.129 0.129 0.129 0.129
  ...- attr(*, "dimnames")=List of 2
  ....$ : chr [1:60] "1" "2" "3" "4" ...
  .....$ : chr [1:2] "(Intercept)" "advertise"
  ...- attr(*, "assign") = int [1:2] 0 1
  ..$ graux: num [1:2] 1.13 1.18
  ..$ pivot: int [1:2] 1 2
  ..$ tol : num 1e-07
  ..$ rank : int 2
  ..- attr(*, "class") = chr "qr"
 $ df.residual : int 58
 $ xlevels : Named list()
```

```
: language lm(formula = revenue ~ advertise, data = myd)
$ call
$ terms :Classes 'terms', 'formula' language revenue ~ advertise
 ...- attr(*, "variables") = language list(revenue, advertise)
 ....- attr(*, "factors") = int [1:2, 1] 0 1
 .... - attr(*, "dimnames")=List of 2
 .....$ : chr [1:2] "revenue" "advertise"
 .. .. .. .. .. s : chr "advertise"
 ....- attr(*, "term.labels") = chr "advertise"
 ....- attr(*, "order") = int 1
 ...- attr(*, "intercept") = int 1
 ....- attr(*, "response") = int 1
 ...- attr(*, ".Environment")=<environment: R GlobalEnv>
 ....- attr(*, "predvars") = language list(revenue, advertise)
 ...- attr(*, "dataClasses") = Named chr [1:2] "numeric" "numeric"
 .... attr(*, "names") = chr [1:2] "revenue" "advertise"
            :'data.frame': 60 obs. of 2 variables:
$ model
 ..$ revenue : num [1:60] 5 5 4 4 3 3 2 2 1 1 ...
 ..$ advertise: num [1:60] 4 5 5 3 4 2 2 1 2 1 ...
 ..- attr(*, "terms")=Classes 'terms', 'formula' language revenue ~ adve
 .... attr(*, "variables") = language list(revenue, advertise)
 .... attr(*, "factors") = int [1:2, 1] 0 1
 ..... attr(*, "dimnames")=List of 2
 ..... s: chr [1:2] "revenue" "advertise"
 .. .. .. .. .. $ : chr "advertise"
 .... attr(*, "term.labels")= chr "advertise"
```

Source: sta_6_simple_lr.R, 8_simple_lr.xls

회귀분석 – 회귀분석 통계량

• 회귀식 분산분석 : p < .05 유의하다

```
> summary(fit)
                                                    분산분석: anova (fit)
                                                                                                   > anova (fit)
                                                                                                   Analysis of Variance Table
Call:
                                                    계수: fit $ coef
lm(formula = revenue ~ advertise, data = myd)
                                                                                                   Response: revenue
                                                    잔차제곱합 : deviance( fit)
                                                                                                            Df Sum Sq Mean Sq F value
                                                                                                                                        Pr (>F)
Residuals:
                                                                                                   advertise 1 82.967 82.967 129.94 < 2.2e-16 ***
                                                    직교효과들로 이루어진 벡터: effects (fit)
   Min
           10 Median
                      30 Max
                                                                                                   Residuals 58 37.033 0.639
-1.26794 -0.70813 0.01196 0.73206 1.10526
                                                    적합된 v값으로 이루어진 벡터: fitted (fit)
                                                                                                   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Coefficients:
                                                    주 매개변수들의 분산-공분산 행렬: vcov
                                                                                                   > fit$coef
         Estimate Std. Error t value Pr(>|t|)
                                                    (fit)
                                                                                                                advertise
                                                                                                   (Intercept)
(Intercept) 0.64115 - 0.23122 - 2.773 - 0.00746 **
                                                                                                    0.6411483 0.8133971
                                                    신뢰구간: confint (fit)
advertise 0.81340 0.07136 11.399 < 2e-16 ***
                                                                                                   > deviance( fit)
                                                                                                   [1] 37.03349
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                                                   > effects ( fit )
                                                                                                   (Intercept) advertise
                                                     > confint (fit)
Residual standard error: 0.7991 on 58 degrees of freedom
                                                                                                   -23.2379001 -9.1085952 -0.8593112 0.7926100 -1.0333506 0.61
                                                                         2.5 % 97.5 %
Multiple R-squared: 0.6914, Adjusted R-squared: 0.6861
                                                     (Intercept) 0.1783071 1.103990
F-statistic: 129.9 on 1 and 58 DF, p-value: < 2.2e-16
                                                                                                    -1.3814293 -0.5554687 0.9666494 0.1406888 -0.8593112
                                                     advertise 0.6705612 0.956233
```

Source: sta_6_simple_Ir.R, 9_multivar_Ir.xlsx

다중 회귀분석

외관, 편의, 유용성과 만족감 관계

yg	pe	uy	mj
4	3	2.8	3
5	3	1	5
4.67	3	3	4
5	4	1.6	3
5	3	3.2	5
3	3.5	3	5
3	2.25	3	3
5	2.5	4.8	2.67

myd <- read_excel("work_r/source/9_multivar_lr.xlsx", col_names = TRUE) fit < Im(mj \sim yg + pe + uy, data=myd) summary(fit)

- Call: $lm(formula = mj \sim yg + pe + uy, data = myd)$
- Residuals:

Min 10 Median 30 Max -1.2192 -0.4286 -0.1199 0.3412 1.8910

Coefficients:

Estimate Std Error t value Pr(>|t|) (Intercept) 1.45830 1.19735 7.389 1.29e-12 *** .03140 4.599 6.11e-06 *** 0.14441 ре 0.28391 .04840 5.866 1.11e-08 *** 0.04542 3.824 0.000158 *** 0.17368

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6025 on 321 degrees of freedom Multiple R-squared: 0.2369, Adjusted R-squared: 0.2297

F-statistic: 33.21 on 3 and 321 DF, p-value: < 2.2e-16

predict

• Durbin-Watson ~ 2 : 잔차의 독립성

- 다중 공선성 :
- 분산팽창계수 VIF < 10
- 공차 한계

Source: sta_6_simple_lr.R, 9_multivar_lr.xlsx

다중 회귀분석 - Durbin-Watson / p-p / scatter plot

```
library(lmtest)
dwtest(mj ~ yg + pe + uy, data=myd)
```

```
> dwtest(mj ~ yg + pe + uy, data=myd)

Durbin-Watson test

data: mj ~ yg + pe + uy

DW = 1.8308, p-value = 0.06238
alternative hypothesis: true autocorrelation is greater than 0
```

Source: sta_6_simple_lr.R, 9_multivar_lr.xlsx

Source: sta_6_simple_lr.R , 9_multivar_lr.xlsx

logistic

• 지역, 학력, 구매의사 (1 구매, 2 안함)

location	edu	gume	title	mj
1	1	1	1	3
1	1	1	1	5
1	1	1	1	4
1	1	1	1	3
1	1	1	1	5
1	1	1	1	5
1	1	1	1	3
1	1	1	1	3
1	1	1	1	5
1	1	1	1	4
1	1	2	1	3
1	1	2	1	3
1	1	2	1	3
1	1	2	1	3

```
library(readxl)
myd <- read_excel("work_r/source/10_logistic.xls", col_names = TRUE)
# data cleansing: norminal
                                                 head(myd2)
library(dplyr)
                                                 # gume 0, 1
myd2 <- myd %>% select(gume, location, edu)
str(myd2)
                                                 myd2$gume <- ifelse (myd2$gume == 1 , 0, 1)
                                                 myd2$gume <- as.factor(myd2$gume)
myd2$location <- as.factor(myd$location)
myd2$edu <- as.factor(myd$edu)
                                                 str(myd2)
myd2$gume <- as.factor(myd$gume)
                                                 summary(myd2)
                                                 fit <- glm( gume ~ location + edu, data=myd2,
                                                 family = "binomial")
                                                 str(fit)
                                                 summary(fit)
```

Source: sta_7_logistic.R, 10_logistic.xls

logistic – 더미변수 / 범주형

```
Call:
                                        Call:
qlm(formula = qume ~ location + edu, family = "bind"
                                        glm(formula = gume ~ location + edu, family = "binomial", data = myd2)
Deviance Residuals:
                                        Deviance Residuals:
  Min
          10 Median
                              Max
                                            Min
                                                      10 Median
                                                                           3Q
                                                                                   Max
-2.4812 -0.7211 0.2595 0.3629 1.7172
                                        -2.6036 -0.6990 0.2620 0.3664 1.8878
Coefficients:
         Estimate Std. Error z value Pr(>|z|)
                                        Coefficients:
(Intercept) -5.4598
                 0.6564 -8.318 <2e-16 *
                                                     Estimate Std. Error z value Pr(>|z|)
location
          3.9019
                0.4246 9.189
                                <2e-16
                                        (Intercept) -1.2848
                                                                   0.2001 -6.421 1.35e-10 ***
                                0.193
                   0.2641 1.301
edu
          0.3435
                                        location2
                                                     3.9525 0.4282 9.231 < 2e-16 ***
Signif. codes: 0 \*** 0.001 \** 0.01 \*' 0.05
                                                     0.6874 0.3313 2.075 0.038 *
                                        edu2
                                                      -0.3127 0.8545 -0.366 0.714
                                        edu3
(Dispersion parameter for binomial family taken to
                                        Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
   Null deviance: 450.52 on 324 degrees of freed
Residual deviance: 284.35 on 322 degrees of freed
                                        (Dispersion parameter for binomial family taken to be 1)
AIC: 290.35
Number of Fisher Scoring iterations: 5
                                            Null deviance: 450.52 on 324 degrees of freedom
                                        Residual deviance: 281.35 on 321 degrees of freedom
                                       AIC: 289.35
                                        Number of Fisher Scoring iterations: 5
```

Source: sta_7_logistic.R, 10_logistic.xls

Source : sta_1_t_test , 2_pttest.xls

Source : sta_1_t_test , 2_pttest.xls

독립성 검정 (chi square test)

연관분석 상관분석

판별분석