Sprawozdanie z laboratorium nr 7 "Złożoność obliczeniowa algorytmów w drzewie"

Filip Chodorowski

1 czerwca 2015

Spis treści

1	Zał	ożenia zadania	1
2	Zaimplementowane struktury		2
	2.1	Drzewo binarne	2
	2.2	Drzewo czerwono-czarne	2
3	Wyniki		3
	3.1	Porównanie dodawania elementów dla drzewa binarnego i drze-	
		wa czerwono-czarnego	3
	3.2	Porównanie wyszukiwania wszystkich elementów drzewa dla	
		drzewa binarnego i czerwono-czarnego	4
	3.3		
		wach	5
4	Wn	ioski	6

1 Założenia zadania

Zadanie polegało na zaimplementowaniu struktury drzewa binarnego i drzewa czerwono-czarnego z algorytmami dodawania i wyszukiwania elementów.

2 Zaimplementowane struktury

2.1 Drzewo binarne

Drzewo binarne posiada co najwyżej 2 kolejne węzły. Jest strukturą niezbalansowaną tzn. wysokość drzewa może być dwukrotnie większa niż wysokość minimalna. Optymistyczna teoretyczna klasa złożoności podstawowych operacji: $O(\log_2 n)$ W najgorszym przypadku drzewo binarne jest traktowane jak lista i złożoność podstawowych operacji wynosi wtedy: O(n)

2.2 Drzewo czerwono-czarne

Drzewo czerwono-czarne jest odmianą drzewa binarnego, z tego powodu każdy węzeł posiada co najwyżej 2 kolejne. Jest strukturą zbalansowaną tzn. wysokość drzewa nie może być dwukrotnie większa niż wysokość minimalna. Ostatnie węzły są liściami, które wskazują adres węzła strażnika. Teoretyczna klasa złożoności podstawowych operacji: $O(\log_2 n)$ Nie ma przypadku pesymistycznego, ponieważ drzewo jest zbalansowane.

3 Wyniki

3.1 Porównanie dodawania elementów dla drzewa binarnego i drzewa czerwono-czarnego

Drzewo binarne dodaje elementy szybciej dla rozmiaru 100,
powyżej rozmiaru 100 drzewo czerwono-czarne jest szybsze, dla 200 000 elementów jest to różnica 100 razy i tendencja nadal rośnie. W obydwu drzewach elementy o takiej samej wartości są umieszczane w kolejnym niższym węźle. W drzewie binarnym struktura nie jest balansowana, co powoduje przy większych danych złożoność: O(n)

3.2 Porównanie wyszukiwania wszystkich elementów drzewa dla drzewa binarnego i czerwono-czarnego

Czas wyszukania wszystkich elementów obydwu drzew jest tego samego rzędu. Wynika to z powtarzających się elementów w strukturach. Chociaż drzewo binarne nie jest zbalansowane to w tym konkretnym przypadku, odrzuca podczas wyszukiwania bardzo wiele elementów powtarzających się.

${\bf 3.3}$ Porównanie wyszukiwania elementu nieznajdującego się w drzewach

Czas wyszukiwania nieistniejącego elementu w drzewie jest porównywalny dla. Dla drzewa binarnego czas wykonywania zależy od wyszukiwanego elementu, a dla drzewa czerwono-czarnego nie. Złożoność wyszukiwania drzewa czerwono-czarnego: $O(\log_2 n)$

Złożoność wyszukiwania drzewa binarnego: Od $O(\log_2 n)$ do O(n)

4 Wnioski

- Drzewo czerwono-czarne ma stałą złożoność podstawowych operacji wynoszącą: $O(\log_2 n)$
- Nowe elementy o tej samej wartości w drzewie binarnym(jeśli muszą być umieszczane) lepiej umieszczać w wyższych wierzchołkach, bo inaczej trzeba wykonać dodatkowe operacje przejścia na dół struktury.
- \bullet drzewo czerwono-czarne > binarne, chyba że mamy wcześniej posortowane elementy, wtedy można wykorzystać binarne bez obawy o złożoność O(n)