Custom Subnet Masks

Problem 7

Number of needed subnets **2000**Number of needed usable hosts **15**Network Address **178.100.0.0**

Address classB	
Default subnet mask255.255.0.0	
Custom subnet mask255.255.255.224	
Total number of subnets2048	
Total number of host addresses64	
Number of usable addresses62	
Number of bits borrowed11	

Show your work for **Problem 7** in the space below.

Custom Subnet Masks

Problem 15

Number of needed usable hosts **50**Network Address **172.59.0.0**

Address classB_	
Default subnet mask	255.255.0.0
Custom subnet mask	255.255.255.224
Total number of subnets	2048
Total number of host addresses	64
Number of usable addresses	62
Number of bits borrowed	11

Show your work for <u>Problem 15</u> in the space below.

Subnetting

Problem 11

Number of needed usable hosts 8,000

Network Address 135.70.0.0

Address classB
Default subnet mask255.255.0.0
Custom subnet mask255.255.224.0
Total number of subnets16
Total number of host addresses8192
Number of usable addresses8190
Number of bits borrowed3
What is the 6th subnet range? <u>137.50.160.0 – 137.50.191.255</u>
What is the subnet number for the 7th subnet?137.50.192.0
What is the subnet broadcast address for the 3rd subnet?137.50.95.255
What are the assignable addresses for the 5th subnet?137.50.128.1 - 137.50.159.254

Show your work for <u>Problem 11</u> in the space below.

Subnetting

Problem 12

Number of needed usable hosts **45**Network Address **198.125.50.0**

Address classC	
Default subnet mask255.255.255.0	
Custom subnet mask255.255.255.192	
Total number of subnets4	
Total number of host addresses64	
Number of usable addresses62	
Number of bits borrowed2	
What is the 2nd subnet range? _198.125.50.64 - 198.125.50.127	
What is the subnet number for the 2nd subnet?198.125.50.64	
What is the subnet broadcast address for the 4th subnet?198.125.50.255	
What are the assignable addresses for the 3rd subnet?198.125.50.129 - 198.125.50.190	

Show your work for **Problem 12** in the space below.

Practical Subnetting 4

Based on the information in the graphic shown, design a network addressing scheme that will supply the <u>minimum number of subnets</u>, and allow enough extra subnets and hosts for 70% growth in all areas. Circle each subnet on the graphic and answer the questions below.

Start with the first subnet and arrange your sub-networks from the largest group to the smallest.

IP address range for New York __135.126.0.0 - 135.126.15.255___

IP address range for Washington D. C. ___135.126.16.0 - 135.126.31.255_

IP address range for Dallas __135.126.32.0 - 135.126.37.255__

IP address range for Router A to Router B serial connection __135.126.48.0 - 135.126.63.255_

IP address range for Router A to Router C serial connection __135.126.64.0 - 135.126.79.255__

Show your work for **Problem 4** in the space below.

Practical Subnetting 6

Based on the information in the graphic shown, design a network addressing scheme that will supply the <u>minimum number of subnets</u>, and allow enough extra subnets and hosts for 20% growth in all areas. Circle each subnet on the graphic and answer the questions below.

Address classA	
Custom subnet mask250.	240.0.0
Minimum number of subnets needed7_	
Extra subnets required for 20% growth22	

Total number of subnets needed = 9___9

Start with the first subnet and arrange your sub-networks from the largest group to the smallest.

```
IP address range for Technology ___10.0.0.0 - 10.15.255.255_____

IP address range for Science ___10.16.0.0 - 10.31.255.255_____

IP address range for Arts & Drama ____10.32.0.0 - 10.47.255.255_____

IP Address range Administration ____10.48.0.0 - 10.63.255.255_____

IP address range for Router A to Router B serial connection ___10.64.0.0 - 10.79.255.255____

IP address range for Router A to Router C serial connection ___10.80.0.0 - 10.95.255.255____

IP address range for Router B to Router C serial connection ___10.96.0.0 - 10.127.255.255____
```