1

2021-Sep-1-S1

EE24BTECH11001 - ADITYA TRIPATHY

16. Let $P_1, P_2 \dots P_1 5$ be such that $i + j + k \neq 1$		ne number of distinct trian		SP_i, P_j, P_k 2021-Sep)
a) 12	b) 419	c) 443	d) 455	
17. The range of the fun	ction			
f(x) = 1	$\log_{\sqrt{3}}\left(3+\cos\left(\frac{3\pi}{4}+x\right)\right)$	$+\cos\left(\frac{\pi}{4}+x\right)+\cos\left(\frac{\pi}{4}-x\right)$	$\left(x\right) + \cos\left(\frac{3\pi}{4} - x\right)$	(1)
is:			(2	2021-Sep)
a) $(0, \sqrt{5})$	b) [-2,2]	c) $\left[\frac{1}{\sqrt{5}}, \sqrt{5}\right]$	d) [0,2]	
18. Let $a_1, a_2 \dots a_{21}$ be a	n AP such that			
	\sum_{n}^{2}	$\sum_{n=1}^{20} \frac{1}{a_n a_{n+1}} = \frac{4}{9}$		(2)
. If the sum of the A	(2	2021-Sep)		
a) 57		b) 72		
c) 48		d) 36		
19. The function $f(x)$, the	nat satisfies the condition	on		
	$f\left(x\right) =x+$	$-\int_0^{\frac{\pi}{2}} \sin x \cos y f(y) \ dy$		(3)
is:			(2	2021-Sep)
a) $x + \frac{2}{3}(\pi - 2)\sin x$	b) $x + (\pi + 2)\sin x$	c) $x + \frac{\pi}{2} \sin x$	d) $x + (\pi - 2) \sin^2 \theta$	n x
20. Let θ be the acute ar	igle between the tanger	nts to the ellipse		
		$\frac{x^2}{9} + \frac{y^2}{1} = 1$		(4)
and the circle				
		$x^2 + y^2 = 3$		(5)
at their point of inter	section in the first qua	drant. Then $\tan \theta$ is equal		2021-Sep)
a) $\frac{5}{2\sqrt{2}}$ b) $\frac{2}{\sqrt{3}}$ c) $\frac{4}{\sqrt{3}}$ d) 2				

X	-2	-1	3	4	6
Pr X = x	$\frac{1}{5}$	а	$\frac{1}{3}$	$\frac{1}{5}$	b

- 21. Let X be the random variable with distribution : If the mean of X is 2.3 and the variance of X is σ^2 then $100\sigma^2$ is equal to: (2021-Sep)
- 22. Let

$$f(x) = x^6 + 2x^4 + x^3 + 2x + 3, x \in \mathbf{R}.$$
 (6)

Then the natural number *n* for which $\lim_{x\to 1} \frac{x^n f(1) - f(x)}{x-1} = 44$ is : (2021-Sep)

- 23. If for the complex number z satisfying $|z 2 2i| \le 1$, the maximum value of |3iz + 6| is attained at a + ib, then a + b is equal to (2021-Sep)
- 24. 4. Let the points of intersections of the lines x y + 1 = 0, x 2y + 3 = 0 and 2x 5y + 11 = 0 are the mid points of the sides of a triangle ABC. Then the area of the triangle ABC is : (2021-Sep)
- 25. Let f(x) be a polynomial of degree 3 such that $f(k) = -\frac{2}{k}$ for k = 2, 3, 4, 5. Then the value of 53 10f(10) is:
- 26. All of the arrangements, with or without meaning, of the word FARMER ae written excluding any word that has two R appering together. The arrangements are listed serially in the alphabetic order as in the English dictionary. Then the serial number of the word FARMER in this list is: (2021-Sep)
- 27. If the sum of the coefficients in the expansion of $(x + y)^n$ is 4096, then the greatest coefficient in the expansion is : (2021-Sep)
- 28. If $\mathbf{a} = 2\mathbf{i} \mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = \mathbf{i} + 2\mathbf{j} 1\mathbf{k}$. Let a vector \mathbf{v} be in the plane containing \mathbf{a} and \mathbf{b} . If \mathbf{v} is perpendicular to the vector $3\mathbf{i} + 2\mathbf{j} \mathbf{k}$ and its projection on \mathbf{a} is 19 units, then $\|2\mathbf{v}\|^2$ is equl to : (2021-Sep)
- 29. Let [t] denote the greatest integer $\leq t$. The number of points where the function

$$f(x) = [x] |x^2 - 1| + \sin\left(\frac{\pi}{[x] + 3}\right) - [x + 1], x \in (-2, 2)$$
 (7)

is not continuous is : (2021-Sep)

30. A man starts walking from the point P(-3,4), touches the x-axis at R, and then turns to reach at the point Q(0,2). The man is walking at a constant speed. If the man reaches the point Q in the minimum time, then $50((PR)^2 + (RQ)^2)$ (2021-Sep)

