

ECONOMETRIA I

Curso de Ciências Econômicas

Prof. Lindomar Pegorini Daniel

ECONOMETRIA I

UNIDADE 1: INTRODUÇÃO AO MODELO DE REGRESSÃO LINEAR

Tópico 1.1 - Análise estatística básica

Aula 3 – Introdução à estatística

Prof. Lindomar Pegorini Daniel

DISTRIBUIÇÃO

V	e	n	d	a	S

Mínimo

Máximo

HISTOGRAMA

HISTOGRAMA

Vendas
14
15
16
19
19
23
23
24
25
25
25
25
25
27
27
28
29
29
29
30
32

VALOR ESPERADO

MÉDIA

Vendas
14
15
16
19
19
23
23
24
25
25
25
25
25
27
27
28
29
29
29

$$\mu = \frac{\sum_{i=1}^{N} X_i}{N}$$

$$\bar{X} = \frac{\sum_{i=1}^{N} X_i}{n}$$

MÉDIA

Vendas
14
15
16
19
19
23
23
24
25
25
25

MEDIANA

Vendas
14
15
16
19
19
23
23
24
25
25
25
25
25
27
27
28
29
29
29
30
32

MODA

Vendas
14
15
16
19
19
23
23
24
25
25
25
25 25
27
27
28
29
29
29
30
32
36

VARIÂNCIA

Vendas
14
15
16
19
19
23
23
24
25
25
25
25
25
27
27

$$\sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}$$

$$\sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N} \qquad S^2 = \frac{\sum_{i=1}^{N} (X_i - \bar{X})^2}{n - 1}$$

Populacional

Amostral

VARIÂNCIA

Vendas

Variância: 30,56

DESVIO PADRÃO

Vendas
14
15
16
19
19
23
23
24
25
25
25
25
25
27
27
28
29
29
29
30

32 36

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}}$$

$$S = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \bar{X})^2}{n-1}}$$

Amostral

DESVIO PADRÃO

Vendas
14
15
16
19
19
23
23
24

Variância: 30,56

Desvio padrão: 5,52

ASSIMETRIA

Vendas
14
15
16
19
19
23
23
24

ASSIMETRIA

CURTOSE

DISTRIBUIÇÃO NORMAL

٧	e	n	d	a	S	

média

DISTRIBUIÇÃO NORWAL

Vendas	
14	
15	
16	
19	
19	
23	
23	
24	
25	

média - 1 desvio padrão

média + 1 desvio padrão

DISTRIBUIÇÃO NORWAL

Vendas	
14	
15	
16	
19	
19	
23	
23	
24	
25	

média - 2 desvios padrão

média + 2 desvios padrão

DISTRIBUIÇÃO NORWAL

Vendas
14
15
16
19
19
23
23
24

média - 3 desvios padrão

média + 3 desvios padrão

AMOSTRA E POPULAÇÃO

12,5 11,1

população Chuva $\mu = 8,3$

AMOSTRA E POPULAÇÃO

População Chuva $\mu = 8,3$

Amostra 1
Chuva $\overline{X} = 9,2$

AMOSTRA E POPULAÇÃO

População Chuva $\mu = 8,3$

Amostra 2
Chuva $\overline{X} = 8,2$

DISTRIBUIÇÃO AMOSTRAL

[7,4, 8,0]

(8,0,8,6]

(8,6,9,2]

População Chuva $\mu = 8,3$

Amostras
Chuva $\overline{X} = 8,3$

CORRELAÇÃO

Vendas vs Panfletos

CORRELAÇÃO

CORRELAÇÃO

Panfletos	Vendas
15	10
15	13
27	15
28	17
33	18
23	11
19	13
28	15
20	17
33	18
23	12
16	14
19	15
23	17
33	18
24	12
26	14
56	29
30	17
20	12
16	14

$$\mu = 40.3$$
 $\mu = 25.3$

9	888
	UNEMAT
1	3).(6)
	0 0 0

Panfletos	Vendas
15	10
15	13
27	15
28	17
33	18
23	11
19	13
28	15
20	17
33	18
23	12
16	14
19	15
23	17
33	18
24	12
26	14
56	29
30	17
20	12
16	14

Panfletos	s Vendas
80	40
77	41
76	41
76	41
74	43
72	37
70	37
69	35
68	38
68	35
67	40
66	35
66	32
	$\overline{X} = 30.0$

$$X = 30,0$$

$$\mu$$
 = 40,3 μ = 25,3

Ho: (hipótese nula) vendas mais altas em dias com maior distribuição de panfletos podem ser explicadas pela variância normal das vendas

H₁: (hipótese alternativa) vendas mais altas em dias com maior distribuição de panfletos não podem ser explicadas apenas pela variância normal das vendas

Prof. Lindomar Pegorini Daniel

H₀: (hipótese nula) vendas mais altas em dias com maior distribuição de panfletos podem ser explicadas pela variância normal das vendas

H₁: (hipótese alternativa) vendas mais altas em dias com maior distribuição de panfletos não podem ser explicadas apenas pela variância normal das vendas

INTRODUÇÃO À ESTATÍSTICA

- Próxima atividade:
 - Atividade prática: Laboratório 3

- E-mail:
 - lindomar.pegorini@unemat.br