On a theorem of Chernoff for quasi-analytic functions

Pritam Ganguly

Department of Mathematics
Indian Institute of Science
Bangalore-India

IISc-IISERP Joint Math 20-20 Symposium, 17th September, 2021.

Introduction: What is quasi-analyticity?

The key property of an analytic function is that it is completely determined by the values of the function and its derivatives at a single point.

Taylor series expansion of an analytic function on \mathbb{R} :

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

¹E. Borel. Leons sur les fonctions monognes uniformes d'une variable complexe. Collection de monographies sur la théorie des fonctions publiée sous la direction de M. E. Borel. GauthierVillars, Paris, 1917 4 D F 4 D F 4 D F 4 D F

Introduction: What is quasi-analyticity?

The key property of an analytic function is that it is completely determined by the values of the function and its derivatives at a single point.

Taylor series expansion of an analytic function on $\mathbb R$:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

 Borel ¹ first observed that there is a larger class of smooth functions than that of analytic functions which has this magnificent property.
 He coined the term *quasi-analytic* for such class of functions.

¹E. Borel. Leons sur les fonctions monognes uniformes d'une variable complexe. Collection de monographies sur la théorie des fonctions publiée sous la direction de M. E. Borel. GauthierVillars, Paris, 1917 ← □ ▶ ← ② ▶ ← ○ № ← ○ ○ № ← ○ ○ ◆ ○ ◆ ○ ○ ◆ ○ ○ ◆ ○ ○ ◆ ○ ○ ◆ ○ ○ ◆ ○ ○ ◆ ○ ○ ◆ ○ ○ ◆ ○ ○ ◆ ○ ○ ◆ ○ ○ ◆ ○ ○ ◆ ○ ○ ◆ ○ ○ ◆ ○

Introduction: What is quasi-analyticity?

The key property of an analytic function is that it is completely determined by the values of the function and its derivatives at a single point.

Taylor series expansion of an analytic function on $\mathbb R$:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

 Borel ¹ first observed that there is a larger class of smooth functions than that of analytic functions which has this magnificent property.
 He coined the term *quasi-analytic* for such class of functions.

Definition

A subset $\mathcal C$ of the class of all smooth functions on (a,b) is said to be Quasi-analytic if for any $f\in\mathcal C$ and $x_0\in(a,b)$, $\frac{d^n}{dx^n}f(x_0)=0$ for all $n\in\mathbb N$ implies f=0.

¹E. Borel. Leons sur les fonctions monognes uniformes d'une variable complexe. Collection de monographies sur la théorie des fonctions publiée sous la direction de M. E. Borel. GauthierVillars, Paris, 1917

$$\|\frac{d^n}{dx^n}f\|_{L^{\infty}(I)} \le Cn!A^n, \ \forall n$$

$$\|\frac{d^n}{dx^n}f\|_{L^{\infty}(I)} \le Cn!A^n, \ \forall n$$

 It is natural to ask whether relaxing growth condition on the derivatives generates quasi-analytic class.

$$\|\frac{d^n}{dx^n}f\|_{L^\infty(I)} \le Cn!A^n, \ \forall n$$

- It is natural to ask whether relaxing growth condition on the derivatives generates quasi-analytic class.
- In 1912, **Hadamard** proposed the problem of finding sequence $\{M_n\}_n$ of positive numbers such that the class $C\{M_n\}$ of smooth functions on I satisfying $\|\frac{d^n}{dx^n}f\|_{L^\infty(I)} \leq A_f^n M_n$ for all $f \in C\{M_n\}$ is a quasi-analytic class.

$$\|\frac{d^n}{dx^n}f\|_{L^{\infty}(I)} \le Cn!A^n, \ \forall n$$

- It is natural to ask whether relaxing growth condition on the derivatives generates quasi-analytic class.
- In 1912, **Hadamard** proposed the problem of finding sequence $\{M_n\}_n$ of positive numbers such that the class $C\{M_n\}$ of smooth functions on I satisfying $\|\frac{d^n}{dx^n}f\|_{L^\infty(I)} \leq A_f^n M_n$ for all $f \in C\{M_n\}$ is a quasi-analytic class.

Theorem (Denjoy-Carleman)

 $C\{M_n\}$ is a quasi-analytic class if and only if

$$\sum_{n=1}^{\infty} M_n^{-1/n} = \infty.$$

- $M_n = n!$: This actually corresponds to the class of analytic functions.
- $M_n = (\log n)^n, \ (\log n)^n (\log \log n)^n \text{ etc.}.$

- $M_n = n!$: This actually corresponds to the class of analytic functions.
- - In 1939, S. Bochner and A.E. Taylor proved a generalization of Denjoy-Carleman theorem on Rⁿ.

- **1** $M_n = n!$: This actually corresponds to the class of analytic functions.
- $M_n = (\log n)^n, \ (\log n)^n (\log \log n)^n \text{ etc.}.$
 - In 1939, **S. Bochner** and **A.E. Taylor** proved a generalization of Denjoy-Carleman theorem on \mathbb{R}^n .
 - **Notations:** Given a smooth function f on \mathbb{R}^n denote

$$D_0 f(x) := |f(x)| \text{ and } D_k f(x) = \left(\sum_{|\alpha| = k} \left| \frac{\partial^{|\alpha|} f(x)}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} ... \partial x_n^{\alpha_n}} \right|^2 \right)^{\frac{1}{2}}$$

- $M_n = n!$: This actually corresponds to the class of analytic functions.
- $M_n = (\log n)^n, \ (\log n)^n (\log \log n)^n \text{ etc.}.$
 - In 1939, **S. Bochner** and **A.E. Taylor** proved a generalization of Denjoy-Carleman theorem on \mathbb{R}^n .
 - **Notations:** Given a smooth function f on \mathbb{R}^n denote

$$D_0 f(x) := |f(x)|$$
 and $D_k f(x) = \left(\sum_{|\alpha|=k} \left| \frac{\partial^{|\alpha|} f(x)}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} ... \partial x_n^{\alpha_n}} \right|^2 \right)^{\frac{1}{2}}$

Theorem (Amer. J. Math, 1939)

Let f be a smooth function defined on a connected domain $\Omega \subset \mathbb{R}^n$ and x_0 be an interior point of Ω . Then the conditions

•
$$D_k f(x) \le m_k$$
 for all $x \in \Omega$ where $\sum_{k=1}^{\infty} m_k^{-1/k} = \infty$,

•
$$D_k f(x_0) = 0$$
 for all $k \ge 0$

imply that f is identically zero on Ω .

Theorem (P.R. Chernoff, 1978)

Let f be a smooth function on \mathbb{R}^n . Let Δ be the standard Laplacian on \mathbb{R}^n . Assume that $\Delta^m f \in L^2(\mathbb{R}^n)$ for all $m \in \mathbb{N}$ and

$$\sum_{m=1}^{\infty} \left\| \Delta^m f \right\|_2^{-\frac{1}{2m}} = \infty.$$

If f and all its partial derivatives vanish at a point x_0 , then f is identically zero.

Theorem (P.R. Chernoff, 1978)

Let f be a smooth function on \mathbb{R}^n . Let Δ be the standard Laplacian on \mathbb{R}^n . Assume that $\Delta^m f \in L^2(\mathbb{R}^n)$ for all $m \in \mathbb{N}$ and

$$\sum_{m=1}^{\infty} \left\| \Delta^m f \right\|_2^{-\frac{1}{2m}} = \infty.$$

If f and all its partial derivatives vanish at a point x_0 , then f is identically zero.

Questions:

• What happens if we replace the Laplacian by any other 2nd order operator?

Theorem (P.R. Chernoff, 1978)

Let f be a smooth function on \mathbb{R}^n . Let Δ be the standard Laplacian on \mathbb{R}^n . Assume that $\Delta^m f \in L^2(\mathbb{R}^n)$ for all $m \in \mathbb{N}$ and

$$\sum_{m=1}^{\infty} \left\| \Delta^m f \right\|_2^{-\frac{1}{2m}} = \infty.$$

If f and all its partial derivatives vanish at a point x_0 , then f is identically zero.

Questions:

- What happens if we replace the Laplacian by any other 2nd order operator?
- What would be an analogue of this result for the Laplace-Beltrami operator on Riemannian symmetric spaces (of compact and non-compact type)?
- Is this result true for the sublaplacian on the Heisenberg group?

Theorem (P.R. Chernoff, 1978)

Let f be a smooth function on \mathbb{R}^n . Let Δ be the standard Laplacian on \mathbb{R}^n . Assume that $\Delta^m f \in L^2(\mathbb{R}^n)$ for all $m \in \mathbb{N}$ and

$$\sum_{m=1}^{\infty} \left\| \Delta^m f \right\|_2^{-\frac{1}{2m}} = \infty.$$

If f and all its partial derivatives vanish at a point x_0 , then f is identically zero.

Questions:

- What happens if we replace the Laplacian by any other 2nd order operator?
- What would be an analogue of this result for the Laplace-Beltrami operator on Riemannian symmetric spaces (of compact and non-compact type)?
- Is this result true for the sublaplacian on the Heisenberg group?
- Even if we replace the vanishing condition by a stronger one, can we get similar conclusion in the setting of symmetric spaces and Lie groups?

• Let G be a connected, noncompact semisimple Lie group with finte center and K be a maximal compact subgroup. Let X = G/K be the associated Riemannian symmetric space. This a noncompact Riemannian manifold.

• Let G be a connected, noncompact semisimple Lie group with finte center and K be a maximal compact subgroup. Let X = G/K be the associated Riemannian symmetric space. This a noncompact Riemannian manifold.

```
•Example: G = SL_2(\mathbb{R}), K = SO(2) and X = SL_2(\mathbb{R})/SO(2) = H^2 = \{z \in \mathbb{C} : Im(z) > 0\} upper half space.
```

- Let G be a connected, noncompact semisimple Lie group with finte center and K be a maximal compact subgroup. Let X = G/K be the associated Riemannian symmetric space. This a noncompact Riemannian manifold.
 - **•Example:** $G = SL_2(\mathbb{R}), \ K = SO(2)$ and $X = SL_2(\mathbb{R})/SO(2) = H^2 = \{z \in \mathbb{C} : Im(z) > 0\}$ upper half space.
- Let $\mathfrak g$ and $\mathfrak k$ denote the Lie algebras of G and K respectively. Then the Cartan decomposition of $\mathfrak g$ reads as $\mathfrak g = \mathfrak k \oplus \mathfrak p$.

- Let G be a connected, noncompact semisimple Lie group with finte center and K be a maximal compact subgroup. Let X = G/K be the associated Riemannian symmetric space. This a noncompact Riemannian manifold.
 - **•Example:** $G = SL_2(\mathbb{R}), \ K = SO(2)$ and $X = SL_2(\mathbb{R})/SO(2) = H^2 = \{z \in \mathbb{C} : Im(z) > 0\}$ upper half space.
- Let $\mathfrak g$ and $\mathfrak k$ denote the Lie algebras of G and K respectively. Then the Cartan decomposition of $\mathfrak g$ reads as $\mathfrak g = \mathfrak k \oplus \mathfrak p$.
- Fix a maximal abelian subspace $\mathfrak a$ of $\mathfrak p$. The dimension of $\mathfrak a$ is called the rank of X.

- Let G be a connected, noncompact semisimple Lie group with finte center and K be a maximal compact subgroup. Let X = G/K be the associated Riemannian symmetric space. This a noncompact Riemannian manifold.
 - **•Example:** $G = SL_2(\mathbb{R}), \ K = SO(2)$ and $X = SL_2(\mathbb{R})/SO(2) = H^2 = \{z \in \mathbb{C} : Im(z) > 0\}$ upper half space.
- Let $\mathfrak g$ and $\mathfrak k$ denote the Lie algebras of G and K respectively. Then the Cartan decomposition of $\mathfrak g$ reads as $\mathfrak g = \mathfrak k \oplus \mathfrak p$.
- Fix a maximal abelian subspace $\mathfrak a$ of $\mathfrak p$. The dimension of $\mathfrak a$ is called the rank of X.
- Let $A = \exp \mathfrak{a}$ and M denote the centralizer of A in K.
- Iwasawa decomposition: G = KAN.
- Let Δ_X be the associated Laplace-Beltrami operator on X.

Theorem (Bhowmik-Pusti-Ray, Journal of Functional analysis, 2020)

Let X = G/K be a Riemannian symmetric space noncompact type. Suppose $f \in C^{\infty}(X)$ satisfies $\Delta_X^m f \in L^2(X)$ for all $m \ge 0$ and

 $\sum_{m=1}^{\infty} \|\Delta_X^m f\|_2^{-\frac{1}{2m}} = \infty$. If f vanishes on a non empty open set, then f is identically zero.

Theorem (Bhowmik-Pusti-Ray, Journal of Functional analysis, 2020)

Let X=G/K be a Riemannian symmetric space noncompact type. Suppose $f\in C^\infty(X)$ satisfies $\Delta_X^m f\in L^2(X)$ for all $m\geq 0$ and $\sum_{m=1}^\infty \|\Delta_X^m f\|_2^{-\frac{1}{2m}}=\infty$. If f vanishes on a non empty open set, then f is identically zero.

- Functions on X = G/K can be identified with the right K-invariant functions on G. Moreover, we say that a function f on G is K-biinvariant if $f(k_1gk_2) = f(g)$ for all $k_1, k_2 \in K$ and $g \in G$.
- Let D(G/K) denote the algebra of differential operators on G/K which are invariant under the (left) action of G.

Theorem (Bhowmik-Pusti-Ray, Journal of Functional analysis, 2020)

Let X=G/K be a Riemannian symmetric space noncompact type. Suppose $f\in C^\infty(X)$ satisfies $\Delta_X^m f\in L^2(X)$ for all $m\geq 0$ and $\sum_{m=1}^\infty \|\Delta_X^m f\|_2^{-\frac{1}{2m}}=\infty$. If f vanishes on a non empty open set, then f is identically zero.

- Functions on X = G/K can be identified with the right K-invariant functions on G. Moreover, we say that a function f on G is K-biinvariant if $f(k_1gk_2) = f(g)$ for all $k_1, k_2 \in K$ and $g \in G$.
- Let D(G/K) denote the algebra of differential operators on G/K which are invariant under the (left) action of G.

Theorem (Bhowmik-Pusti-Ray, IMRN, 2021)

Let X=G/K be a Riemannian symmetric space noncompact type. Suppose $f\in C^\infty(G/K)$ be a left K-invariant function on X which satisfies $\Delta_X^m f\in L^2(X)$ for all $m\geq 0$ and $\sum_{m=1}^\infty \|\Delta_X^m f\|_2^{-\frac{1}{2m}}=\infty$. If there is an $x_0\in X$ such that $Df(x_0)$ vanishes for all $D\in D(G/K)$ then f is identically zero.

• The Iwasawa decomposition on the Lie algebra side reads as $g = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$. Now we assume that X is of rank one i.e., dim $\mathfrak{a} = 1$.

- The Iwasawa decomposition on the Lie algebra side reads as $g = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$. Now we assume that X is of rank one i.e., dim $\mathfrak{a} = 1$.
- Fix a basis {H} of α. This gives rise to a left invariant vector field on G by the prescription

$$Hf(g) = \frac{d}{dt}\Big|_{t=0} f(g.\exp(tH)), g \in G.$$

- The Iwasawa decomposition on the Lie algebra side reads as $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$. Now we assume that X is of rank one i.e., $\dim \mathfrak{a} = 1$.
- Fix a basis {H} of α. This gives rise to a left invariant vector field on G by the prescription

$$Hf(g) = \frac{d}{dt} \Big|_{t=0} f(g.\exp(tH)), \ g \in G.$$

Theorem (Ganguly-Manna-Thangavelu, 2021)

Let X = G/K be a rank one symmetric space of noncompact type. Suppose $f \in C^{\infty}(X)$ satisfies $\Delta_X^m f \in L^2(X)$ for all $m \ge 0$ and

 $\sum_{m=1}^{\infty}\|\Delta_X^mf\|_2^{-\frac{1}{2m}}=\infty$. If $x_0\in X$ and $H^If(x_0)=0$ for all $I\geq 0$ then f is identically zero.

Theorem (Ganguly-Manna-Thangavelu, 2021)

Let X=G/K be a rank one symmetric space of noncompact type. Suppose $f\in C^\infty(X)$ satisfies $\Delta_X^m f\in L^2(X)$ for all $m\geq 0$ and $\sum_{m=1}^\infty \|\Delta_X^m f\|_2^{-\frac{1}{2m}}=\infty$. If $\mathbf{x}_0\in X$ and $\mathbf{H}^I f(\mathbf{x}_0)=0$ for all $I\geq 0$ then f is identically zero.

• The condition $H^lf(eK)=0$ is the counterpart of $(\frac{d}{dr})^k f(r\omega)|_{r=0}=0$ where $x=r\omega, r>0, \omega\in\mathbb{S}^{n-1}$ is the polar decomposition of $x\in\mathbb{R}^n$. Indeed, as can be easily checked

$$\left(\frac{d}{dr}\right)^{k} f(r\omega) = \sum_{|\alpha|=k} \partial^{\alpha} f(r\omega) \, \omega^{\alpha}$$

and hence $(\frac{d}{dr})^k f(r\omega)|_{r=0} = 0$ for all k if and only if $\partial^{\alpha} f(0) = 0$ for all α .

Theorem (Ganguly-Manna-Thangavelu, 2021)

Let X=G/K be a rank one symmetric space of noncompact type. Suppose $f\in C^\infty(X)$ satisfies $\Delta_X^m f\in L^2(X)$ for all $m\geq 0$ and $\sum_{m=1}^\infty \|\Delta_X^m f\|_2^{-\frac{1}{2m}}=\infty$. If $\mathbf{x}_0\in X$ and $H^If(\mathbf{x}_0)=0$ for all $I\geq 0$ then f is identically zero.

• The condition $H^lf(eK)=0$ is the counterpart of $(\frac{d}{dr})^k f(r\omega)|_{r=0}=0$ where $x=r\omega, r>0, \omega\in\mathbb{S}^{n-1}$ is the polar decomposition of $x\in\mathbb{R}^n$. Indeed, as can be easily checked

$$\left(\frac{d}{dr}\right)^{k} f(r\omega) = \sum_{|\alpha|=k} \partial^{\alpha} f(r\omega) \, \omega^{\alpha}$$

and hence $(\frac{d}{dr})^k f(r\omega)|_{r=0} = 0$ for all k if and only if $\partial^{\alpha} f(0) = 0$ for all α .

Open question

An exact analogue of Chernoff's theorem for Riemannian symmetric spaces of noncompact type without any restrictions on rank.

Compact symmetric spaces

• Let (G, K) be a compact symmetric pair and let S = G/K be the associated symmetric space. We assume that X has rank one. Let G = KAK be a Cartan decomposition of G where A is identified with (0, R) for some R > 0.

²H.-C. Wang, Two-point homogeneous spaces Ann. of Math. (2), 55 (1952), pp. 177-191.

Compact symmetric spaces

- Let (G, K) be a compact symmetric pair and let S = G/K be the associated symmetric space. We assume that X has rank one. Let G = KAK be a Cartan decomposition of G where A is identified with (0, R) for some R > 0.
- The rank one one compact symmetric spaces are completely classified by H.-C. Wang²

 $^{^2\}text{H.-C.}$ Wang, Two-point homogeneous spaces Ann. of Math. (2), 55 (1952), pp. 177-191.

Compact symmetric spaces

- Let (G, K) be a compact symmetric pair and let S = G/K be the associated symmetric space. We assume that X has rank one. Let G = KAK be a Cartan decomposition of G where A is identified with (0, R) for some R > 0.
- The rank one one compact symmetric spaces are completely classified by H.-C. Wang²
- Following Wang any compact rank one symmetric space S is one of the following:
 - ① the sphere $\mathbb{S}^q \subset \mathbb{R}^{q+1}$, q > 1;
 - ② the real projective space $P_q(\mathbb{R}), q \geq 2$;
 - **1** the complex projective space $P_I(\mathbb{C})$, $I \geq 2$;
 - 4 the quaternionic projective space $P_l(\mathbb{H})$, l > 2;
 - **1** the Cauchy projective plane $P_2(\mathbb{C}ay)$.

P. Ganguly

²H.-C. Wang, Two-point homogeneous spaces Ann. of Math. (2), 55 (1952), pp. 177-191.

Chernoff's theorem on Compact symmetric spaces

Theorem (Ganguly-Thangavelu, Adv. Math, 2021)

Let $f \in C^{\infty}(G/K)$ be such that $\Delta_S^m f \in L^2(G/K)$ for all $m \ge 0$ and satisfies the Carleman condition $\sum_{m=1}^{\infty} \|\Delta_S^m f\|_2^{-1/(2m)} = \infty$. Then f cannot vanish on any open set unless it is identically zero.

Chernoff's theorem on Compact symmetric spaces

Theorem (Ganguly-Thangavelu, Adv. Math, 2021)

Let $f \in C^{\infty}(G/K)$ be such that $\Delta_S^m f \in L^2(G/K)$ for all $m \ge 0$ and satisfies the Carleman condition $\sum_{m=1}^{\infty} \|\Delta_S^m f\|_2^{-1/(2m)} = \infty$. Then f cannot vanish on any open set unless it is identically zero.

 Without any restriction on the rank, the following weaker result is known:

Theorem (Bhowmik-Pusti-Ray, IMRN, 2021)

Let S=U/K be a Riemannian symmetric spaces of compact type and $f\in C^\infty(S)$ be K-invariant. Assume that $\sum_{m=1}^\infty \|\Delta_S^m f\|_2^{-1/(2m)}=\infty$. Then if Df(eK)=0 for all $D\in D(S)$ then f is identically zero.

Polar coordinates on rank one compact symmetric spaces

• Each rank one compact symmetric space admits appropriate polar coordinate $(\theta, \xi) \in (0, \pi) \times \mathbb{S}^{k_S}$, where \mathbb{S}^{k_S} is a unit sphere whose dimension depends on the associated symmetric space S.

Polar coordinates on rank one compact symmetric spaces

- Each rank one compact symmetric space admits appropriate polar coordinate $(\theta, \xi) \in (0, \pi) \times \mathbb{S}^{k_S}$, where \mathbb{S}^{k_S} is a unit sphere whose dimension depends on the associated symmetric space S.
- In these coordinates, the Laplace-Beltrami operator turns out to be

$$-\Delta_{\mathcal{S}} = \mathbb{L}_{\alpha,\beta} - \rho_{\mathcal{S}}(\theta) \Delta_{\mathbb{S}^{k_{\mathcal{S}}}}$$

Polar coordinates on rank one compact symmetric spaces

- Each rank one compact symmetric space admits appropriate polar coordinate $(\theta, \xi) \in (0, \pi) \times \mathbb{S}^{k_S}$, where \mathbb{S}^{k_S} is a unit sphere whose dimension depends on the associated symmetric space S.
- In these coordinates, the Laplace-Beltrami operator turns out to be

$$-\Delta_{\mathcal{S}} = \mathbb{L}_{\alpha,\beta} - \rho_{\mathcal{S}}(\theta) \Delta_{\mathbb{S}^{k_{\mathcal{S}}}}$$

• **Example:** Let $S = \mathbb{S}^q \subset \mathbb{R}^{q+1}$. Note that given $\xi \in \mathbb{S}^q$, we can write $\xi = (\cos \theta)e_1 + \xi_1'(\sin \theta)e_2 + ... + \xi_q'(\sin \theta)e_{q+1}$ for some $\theta \in (0,\pi)$ and $\xi' = (\xi_1',...,\xi_q') \in \mathbb{S}^{q-1}$ where $\{e_1,e_2,...,e_{q+1}\}$ is the standard basis for \mathbb{R}^{q+1} .

Polar coordinates on rank one compact symmetric spaces

- Each rank one compact symmetric space admits appropriate polar coordinate $(\theta, \xi) \in (0, \pi) \times \mathbb{S}^{k_S}$, where \mathbb{S}^{k_S} is a unit sphere whose dimension depends on the associated symmetric space S.
- In these coordinates, the Laplace-Beltrami operator turns out to be

$$-\Delta_{\mathcal{S}} = \mathbb{L}_{\alpha,\beta} - \rho_{\mathcal{S}}(\theta) \Delta_{\mathbb{S}^{k_{\mathcal{S}}}}$$

- Example: Let $S = \mathbb{S}^q \subset \mathbb{R}^{q+1}$. Note that given $\xi \in \mathbb{S}^q$, we can write $\xi = (\cos \theta)e_1 + \xi_1'(\sin \theta)e_2 + ... + \xi_q'(\sin \theta)e_{q+1}$ for some $\theta \in (0,\pi)$ and $\xi' = (\xi_1',...,\xi_q') \in \mathbb{S}^{q-1}$ where $\{e_1,e_2,...,e_{q+1}\}$ is the standard basis for \mathbb{R}^{q+1} .
- $\varphi:(0,\pi)\times\mathbb{S}^{q-1}\to\mathbb{S}^q$ defined by

$$\varphi(\theta, \xi') = (\cos \theta, \xi'_1 \sin \theta, \dots, \xi'_q \sin \theta)$$

induces the polar coordinate system on \mathbb{S}^q

Polar coordinates on rank one compact symmetric spaces

- Each rank one compact symmetric space admits appropriate polar coordinate $(\theta, \xi) \in (0, \pi) \times \mathbb{S}^{k_S}$, where \mathbb{S}^{k_S} is a unit sphere whose dimension depends on the associated symmetric space S.
- In these coordinates, the Laplace-Beltrami operator turns out to be

$$-\Delta_{\mathcal{S}} = \mathbb{L}_{\alpha,\beta} - \rho_{\mathcal{S}}(\theta) \Delta_{\mathcal{S}^{k_{\mathcal{S}}}}$$

- **Example:** Let $S = \mathbb{S}^q \subset \mathbb{R}^{q+1}$. Note that given $\xi \in \mathbb{S}^q$, we can write $\xi = (\cos \theta)e_1 + \xi_1'(\sin \theta)e_2 + ... + \xi_q'(\sin \theta)e_{q+1}$ for some $\theta \in (0, \pi)$ and $\xi' = (\xi_1', ..., \xi_q') \in \mathbb{S}^{q-1}$ where $\{e_1, e_2, ..., e_{q+1}\}$ is the standard basis for \mathbb{R}^{q+1} .
- $\varphi:(0,\pi)\times\mathbb{S}^{q-1}\to\mathbb{S}^q$ defined by

$$\varphi(\theta, \xi') = (\cos \theta, \xi'_1 \sin \theta, \dots, \xi'_q \sin \theta)$$

induces the polar coordinate system on \mathbb{S}^q

•
$$-\Delta_{S^q} = -\frac{\partial^2}{\partial \theta^2} - (q-1)\cot\theta \frac{\partial}{\partial \theta} - \sin^{-2}\theta \Delta_{S^{q-1}}$$

• Vanishing condition:

• Euclidean space: \mathbb{R}^n

Polar form: $(0, \infty) \times \mathbb{S}^{n-1}$

• $\partial^{\alpha} f(0) = 0$ for all $\alpha \in \mathbb{N}^n$ is equivalent to

$$\frac{d^k}{dr^k}\big|_{r=0}f(r\omega)=0 \text{ for all } \omega\in\mathbb{S}^{n-1}$$

and $k \ge 0$.

• Compact symmetric space: S Polar form: $(0, \pi) \times \mathbb{S}^{k_S}$

• Vanishing condition:

- Euclidean space: \mathbb{R}^n Polar form: $(0, \infty) \times \mathbb{S}^{n-1}$
- $\partial^{\alpha} f(0) = 0$ for all $\alpha \in \mathbb{N}^n$ is equivalent to

$$\frac{d^k}{dr^k}\Big|_{r=0}f(r\omega)=0 \text{ for all } \omega\in\mathbb{S}^{n-1}$$
 and $k\geq 0$.

- Compact symmetric space: *S* Polar form: $(0, \pi) \times \mathbb{S}^{k_S}$
- Every function f on S corresponds to a function F on $(0, \pi) \times \mathbb{S}^{k_S}$. So the natural vanishing condition would be

$$\frac{d^k}{d\theta^k}\big|_{\theta=0}F(\theta,\xi)=0,\ \forall \xi\in\mathbb{S}^{k_S},\ k\geq 0.$$

• Vanishing condition:

• Euclidean space: \mathbb{R}^n

Polar form: $(0, \infty) \times \mathbb{S}^{n-1}$

• $\partial^{\alpha} f(0) = 0$ for all $\alpha \in \mathbb{N}^n$ is equivalent to

$$\frac{d^k}{dr^k}\big|_{r=0} f(r\omega) = 0 \text{ for all } \omega \in \mathbb{S}^{n-1}$$
 and $k \ge 0$.

- Compact symmetric space: *S* Polar form: $(0, \pi) \times \mathbb{S}^{k_S}$
- Every function f on S corresponds to a function F on $(0, \pi) \times \mathbb{S}^{k_S}$. So the natural vanishing condition would be

$$\frac{d^k}{d\theta^k}\big|_{\theta=0}F(\theta,\xi)=0, \ \forall \xi\in \mathbb{S}^{k_{\xi}}, \ k\geq 0.$$

Theorem (Ganguly-Manna-Thangavelu, 2021)

Let S be a rank one Riemannian symmetric space of compact type. Suppose $f \in C^{\infty}(S)$ satisfies $\Delta_S^m f \in L^2(S)$ for all $m \ge 0$ and

$$\sum_{m=1}^{\infty} \|\Delta_S^m f\|_2^{-\frac{1}{2m}} = \infty. \text{ If the function } F \text{ on } (0,\pi) \times \mathbb{S}^{k_S} \text{ associated to } f \text{ on } S \text{ satisfies } \frac{\partial^m}{\partial \theta^m} \Big|_{\theta=0} F(\theta,\xi) = 0 \text{ for all } m \geq 0, \text{ then } f \text{ is identically zero.}$$

Heisenberg group and related operators

ullet Consider the Heisenberg group $\mathbb{H}^n:=\mathbb{C}^n imes\mathbb{R}$ equipped with the group law

$$(z,t).(w,s) := (z+w,t+s+\frac{1}{2}\operatorname{Im}(z.\bar{w})).$$

This is a step two Nilpotent Lie group where the Lebesgue measure *dzdt* plays the role of Haar measure.

Heisenberg group and related operators

• Consider the Heisenberg group $\mathbb{H}^n := \mathbb{C}^n \times \mathbb{R}$ equipped with the group law

$$(\mathbf{z},\mathbf{t}).(\mathbf{w},\mathbf{s}) := (\mathbf{z}+\mathbf{w},\mathbf{t}+\mathbf{s}+\frac{1}{2}\operatorname{Im}(\mathbf{z}.\bar{\mathbf{w}})).$$

This is a step two Nilpotent Lie group where the Lebesgue measure *dzdt* plays the role of Haar measure.

• The Heisenberg Lie algebra, \mathfrak{h}_n consists of left invariant vector fields on \mathbb{H}^n . A basis for \mathfrak{h}_n is provided by the 2n+1 vector fields

$$X_j = \frac{\partial}{\partial x_j} + \frac{1}{2} y_j \frac{\partial}{\partial t}, \ Y_j = \frac{\partial}{\partial y_j} - \frac{1}{2} x_j \frac{\partial}{\partial t}, \ j = 1, 2, ..., n, \text{ and } T = \frac{\partial}{\partial t}.$$

Heisenberg group and related operators

• Consider the Heisenberg group $\mathbb{H}^n := \mathbb{C}^n \times \mathbb{R}$ equipped with the group law

$$(\mathbf{z},\mathbf{t}).(\mathbf{w},\mathbf{s}) := (\mathbf{z}+\mathbf{w},\mathbf{t}+\mathbf{s}+\frac{1}{2}\operatorname{Im}(\mathbf{z}.\bar{\mathbf{w}})).$$

This is a step two Nilpotent Lie group where the Lebesgue measure *dzdt* plays the role of Haar measure.

• The Heisenberg Lie algebra, \mathfrak{h}_n consists of left invariant vector fields on \mathbb{H}^n . A basis for \mathfrak{h}_n is provided by the 2n+1 vector fields

$$X_j = \frac{\partial}{\partial x_j} + \frac{1}{2} y_j \frac{\partial}{\partial t}, \ Y_j = \frac{\partial}{\partial y_j} - \frac{1}{2} x_j \frac{\partial}{\partial t}, \ j = 1, 2, ..., n, \text{ and } T = \frac{\partial}{\partial t}.$$

• The **sublaplacian** on \mathbb{H}^n is defined by $\mathcal{L} := -\sum_{j=1}^{\infty} (X_j^2 + Y_j^2)$ which is given explicitly by

$$\mathcal{L} = -\Delta_{\mathbb{C}^n} - \frac{1}{4}|z|^2 \frac{\partial^2}{\partial t^2} + \sum_{j=1}^n \left(x_j \frac{\partial}{\partial y_j} - y_j \frac{\partial}{\partial x_j} \right) \frac{\partial}{\partial t}$$

where $\Delta_{\mathbb{C}^n}$ stands for the Laplacian on \mathbb{C}^n .

Chernoff's theorem on the Heisenberg group

Theorem (Bagchi-Ganguly-Sarkar-Thangavelu, 2020)

Let f be a smooth function on \mathbb{H}^n satisfying $f(z,t)=f_0(|(z,t)|)$ where $|(z,t)|=(|z|^4+t^2)^{1/4}$ is the Koranyi norm on \mathbb{H}^n . Assume that $\mathcal{L}^m f\in L^2(\mathbb{H}^n)$ for all $m\in\mathbb{N}$ and $\sum_{m=1}^\infty \|\mathcal{L}^m f\|_2^{-\frac{1}{2m}}=\infty$. If f and all its partial derivatives vanish at 0, then f is identically zero.

Chernoff's theorem on the Heisenberg group

Theorem (Bagchi-Ganguly-Sarkar-Thangavelu, 2020)

Let f be a smooth function on \mathbb{H}^n satisfying $f(z,t)=f_0(|(z,t)|)$ where $|(z,t)|=(|z|^4+t^2)^{1/4}$ is the Koranyi norm on \mathbb{H}^n . Assume that $\mathcal{L}^m f\in L^2(\mathbb{H}^n)$ for all $m\in\mathbb{N}$ and $\sum_{m=1}^\infty \|\mathcal{L}^m f\|_2^{-\frac{1}{2m}}=\infty$. If f and all its partial derivatives vanish at 0, then f is identically zero.

• Full Laplacian:

$$\Delta_{\mathbb{H}} := -\sum_{j=1}^{n} (X_j^2 + Y_j^2) - T^2.$$

Chernoff's theorem on the Heisenberg group

Theorem (Bagchi-Ganguly-Sarkar-Thangavelu, 2020)

Let f be a smooth function on \mathbb{H}^n satisfying $f(z,t)=f_0(|(z,t)|)$ where $|(z,t)|=(|z|^4+t^2)^{1/4}$ is the Koranyi norm on \mathbb{H}^n . Assume that $\mathcal{L}^m f\in L^2(\mathbb{H}^n)$ for all $m\in\mathbb{N}$ and $\sum_{m=1}^\infty \|\mathcal{L}^m f\|_2^{-\frac{1}{2m}}=\infty$. If f and all its partial derivatives vanish at 0, then f is identically zero.

• Full Laplacian:

$$\Delta_{\mathbb{H}} := -\sum_{j=1}^{n} (X_j^2 + Y_j^2) - T^2.$$

Theorem (Ganguly-Thangavelu, 2021)

Let f be a smooth function on \mathbb{H}^n such that $\Delta^m_{\mathbb{H}} f \in L^2(\mathbb{H}^n)$ for all $m \in \mathbb{N}$ and $\sum_{m=1}^{\infty} \|\Delta^m_{\mathbb{H}} f\|_2^{-\frac{1}{2m}} = \infty$. If f vanishes on a nonempty open set, then f is identically zero.

• Two very close relatives of the sublaplacian are the Hermite and special Hermite operators. and \mathcal{L} are connected via the relations:

$$\mathcal{L}(f(z)e^{it}) = e^{it}Lf(z)$$
, and $W(Lf) = W(f)H$

where

$$L = -\Delta_{\mathbb{C}^n} + \frac{1}{4}|z|^2 + i\sum_{j=1}^n (x_j \frac{\partial}{\partial y_j} - y_j \frac{\partial}{\partial x_j}), \ H = -\Delta + |x|^2.$$

• Two very close relatives of the sublaplacian are the Hermite and special Hermite operators. and \mathcal{L} are connected via the relations:

$$\mathcal{L}(f(z)e^{it}) = e^{it}Lf(z)$$
, and $W(Lf) = W(f)H$

where

$$L = -\Delta_{\mathbb{C}^n} + \frac{1}{4}|z|^2 + i\sum_{j=1}^n (x_j \frac{\partial}{\partial y_j} - y_j \frac{\partial}{\partial x_j}), \ H = -\Delta + |x|^2.$$

Theorem (Ganguly-Thangavelu, Adv. Math., 2021)

Let $f \in C^{\infty}(\mathbb{C}^n)$ (resp. $f \in C^{\infty}(\mathbb{R}^n)$) be such that $L^m f \in L^2(\mathbb{C}^n)$ (resp. $H^m f \in L^2(\mathbb{R}^n)$) for all $m \geq 0$ and satisfies the Carleman condition $\sum_{m=1}^{\infty} \|L^m f\|_2^{-1/(2m)} = \infty$. (resp. $\sum_{m=1}^{\infty} \|H^m f\|_2^{-1/(2m)} = \infty$.) Then f cannot vanish on any open set unless it is identically zero.

 Analogue of Chernoff's theorem for the sublaplacian with the stronger vanishing condition (i.e., f vanishes on any open set)

- Analogue of Chernoff's theorem for the sublaplacian with the stronger vanishing condition (i.e., f vanishes on any open set)
- Exact analogue of Chernoff's theorem for $\mathcal L$ or $\Delta_{\mathbb H}$ with a weaker vanishing condition:

$$X^{\alpha}Y^{\beta}T^{m}f(z,t)=0, \ \forall \alpha,\beta\in\mathbb{N}^{n}, m\in\mathbb{N}$$

where $X=(X_1,X_2,...,X_n)$ and X^{α} stands for $X_1^{\alpha_1}X_2^{\alpha_2}...X_n^{\alpha_n}$.

- Analogue of Chernoff's theorem for the sublaplacian with the stronger vanishing condition (i.e., f vanishes on any open set)
- Exact analogue of Chernoff's theorem for $\mathcal L$ or $\Delta_{\mathbb H}$ with a weaker vanishing condition:

$$X^{\alpha}Y^{\beta}T^{m}f(z,t)=0, \ \forall \alpha,\beta\in\mathbb{N}^{n}, m\in\mathbb{N}$$

where $X=(X_1,X_2,...,X_n)$ and X^{α} stands for $X_1^{\alpha_1}X_2^{\alpha_2}...X_n^{\alpha_n}$.

• Exact analogue of Chernoff's theorem for H and L with vanishing condition: $\partial^{\alpha} f(x_0) = 0$ for all $\alpha \in \mathbb{N}^n$.

- Analogue of Chernoff's theorem for the sublaplacian with the stronger vanishing condition (i.e., f vanishes on any open set)
- Exact analogue of Chernoff's theorem for $\mathcal L$ or $\Delta_{\mathbb H}$ with a weaker vanishing condition:

$$X^{\alpha}Y^{\beta}T^{m}f(z,t)=0, \ \forall \alpha,\beta\in\mathbb{N}^{n}, m\in\mathbb{N}$$

where $X=(X_1,X_2,...,X_n)$ and X^{α} stands for $X_1^{\alpha_1}X_2^{\alpha_2}...X_n^{\alpha_n}$.

- Exact analogue of Chernoff's theorem for H and L with vanishing condition: $\partial^{\alpha} f(x_0) = 0$ for all $\alpha \in \mathbb{N}^n$.
 - Recently for $x_0 = 0$, we have proved the result. But $x_0 \neq 0$ case is still OPEN!.

- Analogue of Chernoff's theorem for the sublaplacian with the stronger vanishing condition (i.e., f vanishes on any open set)
- Exact analogue of Chernoff's theorem for $\mathcal L$ or $\Delta_{\mathbb H}$ with a weaker vanishing condition:

$$X^{\alpha}Y^{\beta}T^{m}f(z,t)=0, \ \forall \alpha,\beta\in\mathbb{N}^{n}, m\in\mathbb{N}$$

where $X=(X_1,X_2,...,X_n)$ and X^{α} stands for $X_1^{\alpha_1}X_2^{\alpha_2}...X_n^{\alpha_n}$.

- Exact analogue of Chernoff's theorem for H and L with vanishing condition: $\partial^{\alpha} f(x_0) = 0$ for all $\alpha \in \mathbb{N}^n$.
 - Recently for $x_0 = 0$, we have proved the result. But $x_0 \neq 0$ case is still OPEN!.

Application

 Chernoff type theorems can be used to prove sharp decay for the spectral projections (associated to the operator) of functions which are allowed to vanish on an open set.

References

P. R. Chernoff, Quasi-analytic vectors and quasi-analytic functions. Bull. Amer. Math. Soc. 81 (1975), 637-646.

S. Bagchi, P. Ganguly, J. Sarkar and S. Thangavelu, On theorems of Chernoff and Ingham on the Heisenberg group, arXiv:2009.14230 (2020).

P. Ganguly and S. Thangavelu, Theorems of Chernoff and Ingham for certain eigenfunction expansions, Adv. Math, Volume 386 (2021). https://doi.org/10.1016/j.aim.2021.107815

P. Ganguly, R. Manna and S. Thangavelu, On a theorem of Chernoff on rank one Riemannian symmetric spaces, arXiv:2103.13888 (2021)

P. Ganguly and S. Thangavelu, Analogues of theorems of Chernoff and Ingham on the Heisenberg group, arXiv:2106.02704 (2021)

THANK YOU!