Cristian E Garcia Inferencia Estadística

Facultad de Ingenierías Inferencia Estadística Maestría en Inteligencia Artificial y Ciencia de Datos **Prof**. Cristian E Garcia.

Desafío 1

Condiciones:

- Subir la tarea en formato pdf en la plataforma UAO-Virtual.
- Es necesario incluir el código de R en formato R. Mostrar los resultados a partir de tablas, gráficos o indicadores que les permita dar respuesta a los planteamientos.
- Deben interpretar los resultados obtenidos en cada situación de acuerdo al contexto.
- Realizar la actividad en grupos máximo de 4 personas.

Situación 1

Para estimar la proporción desconocida $\pi(0 < \pi \le 0.50)$ de una determinada especie de peces que habita en el océano Pacífico, se aplicará el siguiente plan de muestreo. Cada uno de n(>1) barcos pesqueros capturará peces hasta capturar exactamente k(>1) peces de la especie particular de interés, y se registrará el número total de peces capturados por cada barco pesquero. Todos los peces capturados se devolverán ilesos al océano Pacífico. Para resolver dicho problema se le pide investigar 4 formas diferentes de estimar dicha proporción y comparar el desempeño de los resultados.

Plantee tres escenarios diferentes para llevar a cabo dichas estimaciones, compare para diferentes tamaños de muestra y concluya teniendo en cuenta las medidas de desempeño como el ECM.

Situación 2

Suponga que se tiene una muestra aleatoria de tamaño 2n tomada de una población X, con $E(X) = \mu \vee Var(X) = \sigma^2$. Sean:

$$\bar{X}_1 = \frac{1}{2n} \sum_{i=1}^{2n} x_i$$
 y $\bar{X}_2 = \frac{1}{n} \sum_{i=1}^{n} x_i$

Cristian E Garcia Inferencia Estadística

dos estimadores de μ .

- * ¿Cuál es el mejor estimador de μ ?
- Simule una situación con 1000 muestras de tal forma que se pueda evidenciar de manera gráfica cual de los dos estimados es mejor.

Situación 3

En una población hay un número θ de vehículos informales (llamados "piratas"), que es desconocido. Supongamos que los piratas, están numerados visiblemente en forma consecutiva:1,2,3,..., θ . Con el propósito de estimar θ , usted registra una muestra aleatoria de n piratas y anotando cada vez el número X correspondiente. Así dispone de una muestra aleatoria: $X_1, X_2, ..., X_n$. Existen varias propuestas razonables de estimadores para el número total θ de taxis, como las que se describen a continuación y que surgen de la consideración de que la distribución de la variable aleatoria X (número del carro), es uniforme discreta. Los estimadores propuestos son los siguientes:

$$\hat{\theta}_{(1)} = 2\bar{X}_n - 1$$

$$\hat{\theta}_{(2)} = X_{(n)} + X_{(1)} - 1$$

$$\hat{\theta}_{(3)} = X_{\text{max}} + \bar{d}$$

Donde \bar{d} es la media de los saltos consecutivos de los números de la muestra al ser ordenados en forma creciente. (Desarrolle \bar{d} y se simplificará la expresión)

$$\hat{\theta}_{(4)} = 2Me(X) - 1$$

$$\hat{\theta}_{(5)} = \overline{X} + 3S$$

Simule el comportamiento de cada uno de estos estimadores, R o cualquier otra opción tecnológica, variando el valor del parámetro y el tamaño de muestra n. Nos interesa compararlos especialmente en cuanto al Sesgo, la Varianza de los estimadores y también el Error Cuadrático Medio (ECM) y cualquier otro indicador que le parezca razonable.

Situación 4

Tiempos de atención entre llamadas de reclamaciones por seguros.

Cristian E Garcia Inferencia Estadística

Sean (X_1,\ldots,X_n) con densidad $\lambda e^{-\lambda x}$, $(x\geq 0),(n\geq 2).$ Sea $(S_n=\sum_{i=1}^n X_i).$ Es bien conocido que $Z=\lambda S_n$ tiene densidad:

$$f_Z(z) = \frac{z^{n-1}e^{-z}}{(n-1)!}, z \ge 0$$

- ***** Utilice esto para calcular el sesgo y el (ECM) de $\hat{\lambda} = \frac{n-1}{S_n}$.
- * Calcule El estimados de momentos y máximo verosímil para la función de densidad.