PREPARED BY: DATE

APPROVED BY: DATE

DISPLAY DEVICE COMPANY
SHARP CORPORATION

SPECIFICATION

FILE No. LD-28X04A

FILE No.

ISSUE: 19-Oct-16

PAGE: 26pages

APPLICABLE GROUP

DISPLAY DEVICE COMPANY

DISPLAY DEVICE COMPANY

DEVICE SPECIFICATION FOR

TFT-LCD Module

MODEL No.

LQ064X3LW01

These parts are complied with the RoHS directive.

This documentation is only for the reference.

We reserve the right to make changes in the contents described herein at any time without notice in order to improve design or reliability. Contact SHARP in order to obtain the latest specification sheets before designing your product based on this literature.

	CUSTOMER'S	APPROVAL
RY		

BY / Ohnishi

DEVELOPMENT DIVISION
BUSINESS UNIT IV
BU I
DISPLAY DEVICE COMPANY
SHARP CORPORATION

RECORDS OF REVISION

LQ064X3LW01

SPEC No.	DATE		SUMMARY	NOTE
		PAGE		
LD-28X04A	2016/10/19		First edition	
			* 0	
			10	
	·			
XV				

注意 NOTICE

〇本仕様書は弊社の著作権にかかわる内容も含まれていますので、取り扱いには充分にご注意頂くと共に、 本仕様書の内容を弊社に無断で複製しないようお願い申し上げます。

This publication is the proprietary of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

〇本仕様書に掲載されている応用例は、弊社製品を使った代表的な応用例を説明するためのものであり、 本技術資料によって工業所有権、その他権利の実施に対する保証または実施権の許諾を行うものではありません。 また、弊社製品を使用したことにより、第三者と工業所有権等にかかわる問題が発生した場合、弊社は一切その責を 負いません。

The application circuit examples in this publication are provided to explain the representative applications of SHARP's devices and are not intended to guarantee any circuit design or permit any industrial property right or other rights to be executed. SHARP takes no responsibility for any problems related to any industrial property right or a third party resulting from the use of SHARP's devices, except for those resulting directly from device manufacturing processes.

〇本製品のご使用に関しては、本仕様書に記載された使用条件及び以下の注意事項を遵守願います。本仕様書記載の使用条件あるいは以下の注意事項等を逸脱した本製品の使用等に起因する損害に関して、弊社は一切その責任を負いません。

When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.

○本製品は、一般民生用電子機器に使用されることを目的に開発・製造されたものです。

The devices in this publication are designed for general electronic equipment use.

〇本製品は、運送機器や安全装置(飛行機、電車、自動車など)、信号機、ガス漏れの検知遮断機、アラーム装置、各種安全機器などの機器に使用する場合は、適切な設計および充分な検証を実施し、信頼性・安全性をお客様にて確保するようにお願い致します。

The appropriate design measures should be taken to ensure reliability and safety when SHARP's devices are used for equipment such as:

- •Transportation control and safety equipment(i.e.,aircraft, trains, automobiles, etc.)
- Traffic signals

·Gas leakage sensor breakers

Alarm equipment

Various safety devices etc.

〇本製品は、航空宇宙機器、幹線通信機器、原子力制御機器、生命維持にかかわる医療機器などの極めて高い 信頼性・安全性が必要とされる用途への使用は意図しておりませんので、これらの用途には使用にならないで下さい。 SHARP's devices shall not be used for equipment that requires extremely high level of reliability, such as:

Aerospace equipment

- Military and space applications
- ·Nuclear power control equipment
- Medical equipment for life support

〇本製品において弊社が推奨する用途以外でご使用される場合、事前に弊社販売窓口までご連絡頂きますよう お願い致します。

Contact a SHARP representative, in advance, when intending to use SHARP's devices for any "specific" application other than those recommended by SHARP.

〇本LCDモジュールはRoHS指令2011/65/EUに準拠しております。また、RoHS指令物質及び塩化パラフィンの意図的含有はありません。

The device in the production is based on RoHS instructions 2011/65/EU.

And RoHS instructions materials and chlorinated paraffin are not included intentionally.

O本製品につきご不明な点がありましたら、事前に弊社販売窓口までご連絡頂きますようお願い致します。 Contact and consult with a SHARP representative in advance, if there are any questions about the contents of this publication.

- 目次 Contents -

No.		page
1	適用範囲 Applicable TFT-LCD module ······	4
2	概要および特徴 Overview ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3	機械的仕様 Mechanical Specifications ······	4
4	入力端子名称および機能 Input Signal Assignment ·····	5 ~ 6
5	絶対最大定格 Absolute Maximum Ratings · · · · · · · · · · · · · · · · · · ·	7
6	電気的特性 Electrical Characteristics ······	8~11
7	入力信号のタイミング特性 Timing Characteristics of Input Signal:・・・	12
8	入力信号と表示基本色および各色の輝度階調 · · · · · · · · Input Signals, Basic Display Colors and Gray Scale of Each Color	13
9	光学的特性 [初期 <mark>特性] ····································</mark>	14~15
10	表示品位 Display Qualities ······	15
11	モジュールの取り扱い Handling Instruction ·····	16 ~ 19
12	出荷形態 Packing form · · · · · · · · · · · · · · · · · · ·	20
13	製品型名表示 Marking of product name ······	21
14	信頼性項目 Reliability Test Items······	22
ig.1	外形寸法図 Outline Dimensions ······	23
ig 2	包装形態図 Packing Form ·······	24

1. 適用範囲 Applicable TFT-LCD module

本仕様書は、カラーTFT-LCDモジュールLQ064X3LW01に適用します。 This specification applies to the color TFT-LCD module LQ064X3LW01.

2. 概要および特徴 Overview

本モジュールは、アモルファス・シリコン薄膜トランジスタ[TFT: Thin Film Transistor]を用いたカラー表示可能なアクティブ・マトリックス透過型液晶ディスプレイモジュールです。カラーTFT-LCDパネル、ドライバーIC、コントロール回路、電源回路及びバックライトユニット等により構成され、インターフェイスにLVDS (Low Voltage Differential Signaling)を使用し、+3.3V直流電源、バックライト用電源を供給することにより、1024×RGB×768のパネル上に約1,677万色の図形、文字の表示が可能です。

This module is a color active matrix transmissive LCD module incorporating amorphous silicon TFT (Thin Film Transistor).

It is composed of a color TFT-LCD panel, driver ICs for controlling pixel addressing, control circuit FPC, power circuit and a backlight unit. Graphics and texts can be displayed on a 1024 x RGB x 768 dots panel with 16.77M colors by using LVDS for interface and supplying +3.3V DC power supply for TFT-LCD and and DC power supply for LED backlight. Driving circuit for LED backlight is built in this module.

3. 機械的仕様 Mechanical Specifications

項 目 Items	仕様 Specifications	単位 Unit
画面サイズ Display siz <mark>e</mark>	16.224 (6.4")	cm
有 効 表 示 <mark>領</mark> 域 Active area	129.792(H)×97.344(V)	mm
ドット 構 成 Pixel format	1024(<mark>H</mark>) × <mark>768(V)</mark> (1pixel= <mark>R+</mark> G+B dot)	pixel
アスペクト比 Aspect ratio	4:3	
画 素ピッチ Pixel pitch	0.12675(H)×0.12675(V)	mm
画 素 配 列 Pixel configurat <mark>ion</mark>	R, G, Bストライプ R,G,B stripe	
表 示 モ <i>ー</i> ド Display mo <mark>d</mark> e	ノーマリーブラック Normally black	
外形寸法※ Unit outline dimensions	153.4(W) x 122.0(H) x 9.9(D)	mm
質量 Mass	220	ъ
表面処理 Surface treatment	Anti-glare and hard-coating 3H	

※突起部を除く Protrusions are not included.

4. 入力端子名称および機能 Input Signal Assignment

4-1. TFT液晶パネル駆動部 TFT-LCD panel driving

CN1

使用コネクタ Using connector: DF14A-20P-1.25H(HIROSE)

適合コネクタ Corresponding connector: DF14-20S-1.25H(HIROSE)

搭載LVDSレシーバ Using LVDS receiver:

コントロールIC内蔵タイプ(THC63LVDF84B(ザインエレクトロニクス製)同等性能品)

Building into cotroll IC(THC63LVDF84B(Thine electronics) or Compatible product)

適合LVDSトランスミッタ Corresponding LVDS transmitter:

THC63LVDM83R(ザインエレクトロニクス製),DS90C385A(TI製)又は 同等性能品 THC63LVDM83R(Thine electronics),DS90C385A(TI) or Compatible product データマッピングはJEIDAフォーマットとなります。

Data Maping is JEIDA format.

端子	記号	機能	備考
1	VCC	+3.3V電源	
		+3.3V Pow <mark>er supply</mark> +3.3V電源	
2	VCC	+3.3V 电源 +3.3V Power supply	
	2.1.5		
3	GND	GND	
4	GND	GND	
5	RxIN0-	LVDSのCH0レシーバ信号(-) LVDS receiver signal CH0 (-)	LVDS
6	RxIN0+	LVDSのCH0レシーバ信号(+) LVDS receiver sign <mark>al</mark> CH0 (+)	LVDS
7	GND	GND	
8	RxIN1-	LVDSのCH1レシーバ信号(−) LVDS receiver signal CH1 (−)	LVDS
9	RxIN1+	LVDSのCH1レシーバ信号(+) LVDS receiver signal CH1 (+)	LVDS
10	GND	GND	
11	RxIN2-	LVDSのCH2レシーバ信号(−) LVDS receiver signal CH2 (−)	LVDS
12	RxIN2+	LVDSのCH2レシーバ信号(+) LVDS receiver signal CH2 (+)	LVDS
13	GND	GND	
14	CK IN-	LVDSのCKレシーバ信号(−) LVDS receiver signal CK (−)	LVDS
15	CK IN+	LVDSのCKレシーバ信号(+) LVDS receiver signal CK (+)	LVDS
16	GND	GND	
17	RxIN3-	LVDSのCH3レシーバ信号(−) LVDS receiver signal CH3 (−)	LVDS
18	RxIN3+	LVDSのCH3レシーバ信号(+) LVDS receiver signal CH3 (+)	LVDS
19	Reserve	No Connetion	
20	Reserve	No Connetion	
: ~ b + 20	46 CLIADD A	Il rights reserved	

4-2. LVDSインターフェイスのブロック図 LVDS interface block diagram

【Note1】 ハイ・インピーダンスで使用しないでください。 Do not use at high-impedance.

4-2. バックライト駆動部 Backlight section

CN2 使用コネクタ Using connectors : SM06B-SHLS-TF (J.S.T. Mfg. Co. Ltd) 適合コネクタ Corresponding connectors : SHLP-06V-S-B (J.S.T. Mfg. Co. Ltd)

コネクタNo	端子	記号	機能
Connector No.	Pin No.	Symbol	function
(0)	1	VDD	バックライト用電源入力 Power supply for backlight
	2	VDD	バックライト用電源入力 Power supply for backlight
CN2	3	GND	バックライト電源用グランド Ground for backlight
CIVZ	4	GND	バックライト電源用グランド Ground for backlight
	5	BL_EN	バックライトON/OFF 制御信号入力端子 ON/OFF control signal for backlight
	6	PWM	バックライト輝度調整用PWM信号入力端子 PWM signal for backlight dimming

5. 絶対最大定格 Absolute Maximum Ratings

項目 Parameter	記号 Symbol	条件 Condition	MIN	MAX	単位 Unit	備考 Remark
電源電圧	VCC	Ta=25°C	0	+4.0	V	
Supply voltage	VDD	Ta=25°C	0	+15.0	٧	
7 4 雨 C	VI1	Ta=25°C	-0.3	Vcc	٧	【Note 1】
入力電圧 Input voltage	VI2	Ta=25°C	-0.3	VDD	٧	[Note 2]
Input voltage	VI3	Ta=25°C	-0.3	+15.0	V	[Note 3]
保存温度 Storage temperature	Tstg	ı	−25	+70	°C	
動作温度 Operating temperature	Торр	ı	−20 (周囲) (Ambient)	+70(パネル <mark>表</mark> 面 表示領域) (Panel surface)	ο̂	【Note 4,5,6】

[Note 1] RxINi-/+(i=0,1,2,3), CK IN-/+

[Note 2] BL-EN

[Note 3] PWM

[Note 4]

湿度95%RH Max.(Ta≦+40℃の時)

最大湿球温度+39°C以下。(Ta>+40°Cの時)

但し、結露させないこと。

Humidity: 95%RH Max. (at Ta=<40°C)

Maximum wet-bulb temperature at 39°C or less (at Ta>40°C)

Dew condensation must be avoided as electrical current leaks will occur, causing a degradation of performance specifications.

[Note 5]

本動作温度では動作のみ保証。コントラスト、応答時間、その他の表示品位は+25℃での保証値となります。

The operating temperature guarantees only operation of the circuit. For contrast, response time and other factors related to display quality, judgment is done using the ambient temperature Ta=+25°C.

[Note 6]

モジュールのいかなる部分に関しても本定格を越えないようにしてください。

Take care not to overrun ratings above.

6. 電気的特性 Electrical Characteristics

6-1. TFT液晶パネル駆動部 TFT-LCD panel driving

 $T_a = +25$ °C

項目 Parameter		記号 Symbol	条件 Condition	最小 Min.	標準 Typ.	最大 Max.	単位 Unit	備考 Remark
電源電圧 Supply voltag	e	V _{CC}		3.0	3.3	3.6	٧	[Note1]
消費電流 Current dissipat		I_{CC}	Vcc=3.3V	1	230	360	mA	【Note2】
LVDS入力電原 Input voltage for LV		V_{L}		0	_	2.4	V	
許容入力リップル Permissive input rip		V_{RP}		-	ı	100	mV_{P-P}	Vcc=3.3V
差動入力 スレッショルド電圧	High	V_{TH}		1	1	V _{CM} +100	mV	V _{CM} =+1.2V
Differential input threshold voltage	Low	V_{TL}		V _{CM} -100	ı		mV	【Note3】
終端抵抗 Terminal resistor		R _T		_	100	AK	Ω	差動信号間 Differential input

[Note1]

0ms \langle t1 \leq 10ms 0ms \langle t2 \leq 250ms 0ms \langle t3 100ms

400ms≦ t4

200ms≦ t5 0ms≦ t6

瞬時電圧降下 Vcc-dip conditions

1) 2.5V≦Vccの時

Td≦10ms

2) Vcc<2.5Vの時

瞬時電圧降下条件は入力電圧シーケンスに準ずるものとします。

Vcc dip conditions should

also follow the Vcc turn-on/off conditions

[Note2]

標準値:白黒16 階調表示

Typical situation: 16 level gray-bar pattern.

RGBRGB RGB GS0 GS16GS32 . . GS224GS240

[Note3]

VCM: LVDSドライバのコモンモード電圧 VCM: LVDS common mode voltage

[Note4]

電流容量が規定値より小さい場合は、基盤部品のショート等が発生した際、弊社基盤側のヒューズが切れず、発煙・発火を起こす可能性が懸念されます。その際はセット側にで過電流・過電圧を抑制する保護機能を設けて頂きます様お願い致します。

When current capacity is smaller than a rated value, if cause a short circuit, it is anxious about a possibility of causing emitting smoke and ignition because the fuse by the side of our circuit does not go out.

Then, please make the protect function in set side to control excess voltage and excess current.

6-3. バックライト駆動部 Backlight driving Section

Ta=+25°C

	目 meter	記号 Symbol	Min.	Тур.	Max.	単位 Unit	備考 Remark
	電圧 voltage	VDD	DD 10.8 1		13.2	٧	[Note1]
	配流 dissipation	I DD	ı	380	460	mA	[Note2]
	Jップル電圧 ut ripple voltage	V _{RP_BL}	1	ı	200	mV _P -P	
	入力Hi電圧 High voltage	VIH_BLEN	2.1	ı	VDD	V	[Note1]
BL_EN	入力Lo電圧 Low voltage	VIL_BLEN	0.0	ı	0.4	٧	[Note3]
DL_CIN	入力リーク電流 (High) Leak current(High)	I _{IH_} BLEN	ı	ı	1.5	mA	BL_EN=VDD
	入力リーク電流 (Low) Leak current(Low)	IIL_BLEN	ı	-	1.0	μΑ	BL_EN=0V
	入力Hi電圧 High voltage	VIH_PWM	2.1	-	3.6	٧	[Note1]
PWM	入力Lo電圧 Low voltage	VIL_PWM	0.0	-	0.4	>	[Note4]
FVVIVI	入力リーク電流 (High) Leak current(High)	I _{IH_PWM}	-	1	0.4	mA	PWM=3.6V
	入力リーク電流 (Low) Leak current(Low)	IIL_PWM		-	2.0	μΑ	PWM=0V
PWM周波数 PWM frequency		fРWМ	200	-	1000	Hz	【Note5】
	Lーティー比 uty ratio	D РWM	10	-	100	%	[Morea]
	time	L	-	70,000 (Module)	-	h	【Note6】 【Reference】

【Note1】 入力電圧シーケンス On-off conditions for supply voltage

※ BL-EN端子については、VDD電源の入力可。

VDD=BL-ENで使用時は、下図に示すとおり、PWM信号を入力したままで、VDD=BL-ENのOFF/ONによるバックライトの消灯/点灯が可能です。

BL-EN tarminal may be applied VDD.

In case of "VDD=BL-EN",backlight may be Turned off and on in accordance with VDD=BL-EN off-on with continuous PWM input.(See below figure)

【Note2】消費電流 Current dissipation

Typ. value: VDD= +12V, Duty=100%

Max. value: VDD= +10.8V, PWM duty = 100%

[Note3]

適用端子BL-EN(10k Ω のプルダウン抵抗が接続されています)。 High: ON, Low: OFF BL_EN is connected by the pull-down resistor of about $10k\Omega$.

[Note4]

適用端子PWM(10k Ω のプルダウン抵抗が接続されています)。 PWM is connected by the pull-down resistor of about 10k Ω .

High: ON, Low: OFF

[Note5]

PWM fPWM = 1/t14, DPWM=t13/t14

デューティー比10%で最小輝度、デューティー比100%で最大輝度 「デューティー比に応じて輝度が可変(但し、t13≥10 µ s であること)

周波数が遅くなると、ちらつき等の表示品位の低下を招く場合があります。

PWM t14

Duty 10%: Min. Luminance
Duty 100%: Max. Luminance

Luminance changes in proportion to the duty ratio.

When the frequency slows, the display fineness might decrease.

[Note6]

Ta=25℃、調光10<mark>0%</mark>にて連続点灯した際、輝度が初期値の50%になった時。 Luminance becomes 50% of an initial value.(Ta=25℃, PWM=100%)

[Note7]

PWM信号を10ms 以上OFF する場合は、PWM 再投入時に過電流となりますので、 BL-EN 信号をリセットしてください。

When PWM signal is set "Low" more than 10ms, please turn off BL-EN.

If PWM signal is input without reset of BL-EN ,Softstart function of LED driving circuit is invalid and inrush current may occur.

7. 入力信号のタイミング特性 Timing Characteristics of Input Signals

7-1. タイミング特性 Timing characteristics

	項目 Parameter	記号 Symbol	最小 Min.	標準 Typ.	最大 Max.	単位 Unit	備考 Remark
クロック Clock	周波数 Frequency	1/Tc	60	65	80	MHz	
	水平周期	TH	_	1344	_	clock	
	Horizontal period	ΙП		20.7		μs	
ENAB	有効表示領域 Horizontal display period	THd	ı	1024	-	clock	
	垂直周期	TV	-	806	-	line	【Note1】
	Vertical period	1 V		16.7		ms	[Note1]
	有効表示領域 Vertical display period	TVd	_	768		line	

【Note1】ENAB信号のTV期間が長くなると、フリッカ等の表示品位の低下を招く可能性があります。 In case of using the long vertical period, the deterioration of display quality, flicker etc. may occur.

8. 入力信号と表示基本色および各色の輝度階調

Input Signals, Basic Display Colors and Gray Scale of Each Color

	- att-m									=	デー	タ信	号	Da	ta s	signa	al									
	色·階調 Colors &	Cuarteada	R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	В0	В1	B2	ВЗ	B4	B5	B6	В7
	Gray scale	GrayScale	LSB							MSB	LSB							MSB	LSB							MSB
	Black	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1-	1	1	1	1
٦	Green	-	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
基本色 Basic Color	Cyan	_	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
基元asic	Red	_	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u> </u>	Magenta	_	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
٥	1	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
in Re	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
赤の階調 Gray Scale of Red	1	\downarrow				,	l							,	l							,	l			
帯の See	Ţ	Ţ				,	l _			1						1										
Gray	Brighter	GS253	1	0	1	1	1	1	1	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	GS254	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS255	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
sen	1	GS1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
緑の階調 Scale of Green	Darker	GS2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
緑の階調 Scale of (1	1		-		,	l				1								,	l						
為 Sca	Ţ	Ţ										•		,	l							,	l			
Gray	Brighter	GS253	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
O	1	GS254	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Green	GS255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
en	1	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
sf Bl	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
)酷	1	\downarrow				,	l							,	l							,	l			
青の階調 Gray Scale of Blue		1				,	l							,	l							,	l			
Gray	Brighter	GS253	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1
	1	GS254	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	Blue	GS255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

0:Lowレベル電圧 Low level voltage

1:Highレベル電圧 High level voltage

各色表示用のデータ信号8ビット入力にて、各色256階調を表示し、合計24ビットのデータの組み合わせにより16,777,216色の表示が可能です。

Each basic color can be displayed in 256 gray scales from 8 bit data signals. According to the combination of total 24 bit data signals, the 16,777,216 color display can be achieved on the screen.

9. 光学的特性[初期特性] Optical specification[Initial characteristics]

Ta=+25°C, Vcc=+3.3V

	項目 Parameter		条件 Condition	Min.	Тур.	Max.	単位 Unit	備考 Remark
視角範囲 Viewing	水平 Horizontal	θ 3, θ 9	CR>10	70	80	-	Deg.	[Note1,4]
angle	垂直	θ 6	CR/10	70	80	ı	Deg.	[Note1,4]
range	Vertical	<i>θ</i> 12		70	80	ı	Deg.	
	ラスト比 st ratio	CR	最適視角方向 Viewing angle of optimal vision	600	800	-		[Note2,4]
	速度 se Time	Tr +Td		ı	35		ms	【Note3,4】
パネル面	白色色度	х	<i>θ</i> =0°	0.255	0.305	0.355		
Chromaticity of White		У	0 -0	0.280	0.330	0.380		[Note4]
	白色表面輝度 Luminance of white			260	350		cd/m²	[Note4]

※ バックライト定格点灯後(30分)後に測定します。また光<mark>学的特性測定は、下図の測定方法を</mark> 用いて暗室あるいはこれと同等な状態にて行います。調光デューティー比100%。

The measurement shall be executed 30 minutes after lighting at rating. Condition: PWM=100% The optical characteristics shall be measured in a dark room or equivalent.

(BM-5A/7 is used for Response time,

Fig.9-2 Measuring setup for Luminance, Chromaticity and Response time

BM-5A and SR-3 is used for Luminance, Contrast and Chromaticity)

[Note 1]

視角範囲の定義

Definitions of viewing angle range:

[Note 2]

コントラスト比の定義

Definition of contrast ratio:

次式にて定義します。

The contrast ratio is defined as the following.

コントラスト比[CR] Contrast (CR) = 白点表示の画面中央輝度 Luminance with all pixels white 黒点表示の画面中央輝度 Luminance with all pixels black

[Note 3]

応答速度の定義

Definition of response time

下図に示すように白及び黒状態となる信号を入力し、その時の受光器出力の時間変化にて定義します。

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

[Note 4]

画面の中央部で測定します。

This shall be measured at center of the screen.

10. 表示品位 Display Qualities

別紙出荷検査基準書を参照してください。

Please refer to the Outgoing Inspection Standard.

10. モジュールの取り扱い Handling Instruction

【モジュール取り扱いに関する注意事項とお願い】

[Handling Precautions]

a) モジュールの取り扱いはできる限り塵埃の少ない環境にて行って下さい。特に金属製の異物がモジュールに付着すると内部回路がショートして故障する可能性があります。

Treat LCD module in dustless surroundings. Metal foreign material stuck to the circuit is possible to cause a short.

b)ケーブルを入力コネクタに挿抜する時は、必ずモジュールに入力する電源や信号をOFFにしてから 行って下さい。

Be sure to turn off the power supply when insertion extraction the cable.

c) ケーブルの抜き挿し時にはモジュール側の回路部やコネクタ部に強い外力が加わらないように注意して下さい。 破損や接触不良となる可能性があります。

Be careful not to give any physical stress onto the circuit and/or the connector of LCD module when you pull/plug a cable. Physical stress will cause a break or worse connection.

d)パネル表面の偏光板は傷つき易いので、硬いものや鋭利なもので擦ったりしないよう取り扱いには十分注意して下さい。

Since the front polarizer is easily damaged, pay attention not to scratch it.

- e) 偏光板上のゴミは、静電対策が施されたイオン化エアガン等のN2ブローで吹き飛ばして下さい。 Use N2-blower such as an ionized nitrogen has anti-electrostatic when you blow dusts on Polarizer.
- f) 水滴等が長時間付着すると変色やシミの原因になりますので、すぐに、脱脂綿あるいは柔らかい布等で拭き取って下さい。

Since a long contact with water may cause discoloration or spots, wipe it with absorbent cotton or other soft cloth immediately.

g) CMOS LSIを使用していますので、取り扱い時の静電気に十分注意し、人体アースなどの配慮をして下さい。 その他、通常電子部品に対する注意事項は遵守して下さい。

Since CMOS LSI is used in this module, take care of static electricity and injure the human earth when handling. Observe all other precautionary requirements in handling components.

- h) モジュールには金属を使用しておりますので、取り扱いに時にはエッジ部に十分注意して下さい。 Be careful with the edge parts of the module which is made of metal.
- i) ガラスや微細配線部品を使用して<mark>おりますので、落</mark>としたり固いものに当てたり、強い衝撃を加えると、ワレ, カケや内部断線の原因になりますので、取り扱いには十分注意して下さい。 Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- j) パ<mark>ネル表示部はガラスが飛散しにくい</mark>構造となっていますが、万が一切断面に触れますとけがをすることがあります。 破損部を手で触らないように十分注意してください。

When the panel is broken, don't touch the glass. Although the panel is difficult to be scattered, touching the broken part may hurt your hands.

k)パネル表示部が破損した場合、パネル内の液晶が漏れる恐れがあります。もし誤って目や口に入った場合は 直ちに水で洗い落とし、医者の診断を受けてください。

Liqu<mark>id crystal contained in the panel may leak if the LCD is broken. Rinse it as soon as possible if it gets inside your eye or mouth by mistake.</mark>

I) 回路部品及びパターン部に触れないでください。回路が破損する可能性があります。また、モジュール裏面の基板保護カバー(黒テープ)の下には回路部品が配置されておりますので、基板保護カバーにも触らないでください。

Don't touch the circuit and the pattern of the board. If you touch it, the circuit may be broken. Electoric componets are placed under the PCB insulation tape (Black tape). Don't touch PCB insulation tape(black tape).

m) 直射日光など強い紫外線に長時間さらさないようにお願いします。

Do not expose to strong ultraviolet rays such as direct sunlight for a long time.

n) モジュールの廃棄については、地方自治体により規制を受ける場合があります。それぞれの自治体規制に 従って廃棄ください。

Follow the regulations when LCD module is scrapped. The government you stay may have some regulations about it.

- o) 本モジュールには、表偏光板上の傷防止用に保護ラミネートを貼っております。保護ラミネートを剥離する時は、 出来る限り使用直前に、静電気に注意しながらゆっくりと剥離ください。 〈推奨条件〉
 - アースバンドを装着の上、剥離作業をする。
 - ・除電ブロアの風を剥離部分にあてながら一定速度で2秒以上かけて剥離する。

Protection film is attached to the module surface to prevent it from being scratched .Peel the film off slowly, just before the use, with strict attention to electrostatic charges. Blow off 'dust' on the polarizer by using an ionized nitrogen.

- p) ラミネート剥離後は偏光板表面へラミネート等を貼り付けないで下さい。パネル表面偏光板の保護ラミネートを再び貼り付けて長期保管すると、偏光板表面が変質し、シミ状の外観不具合を生じる可能性があります。 After peeling laminate film off, please don't attached to the front polarizer. If you attach again and store it long time, surface of the front polarizer changes in quality and it may cause display non-uniformity issue.
- q) LCDパネルに接続されるフレックス配線エリアは腐食・断<mark>線しやすいため、</mark>素手での取り扱い<mark>や、モジュールの</mark>取り扱い時などに保存しないようにご注意ください。

It is easy to corrode and disconnect in the flex wiring area connected to the LCD panel. So be sure to store module when deal with module by hands.

【セット設計上のお願い】

[Set-Design Precautions]

- a) 故障の原因となりますので、決してモジュールを分解しないで下さい。
- Notice: Never take to pieces the module, because it will cause failure.
- b)モジュールに"ソリ"や"ネジレ"等のストレスが加わらないようにして下さい。 Be sure to design the cabi<mark>ne</mark>t so that the module can be insta<mark>l</mark>led without any extra stress such as warp or twist.
- c) モジュール取り付け部はEMIや外来ノイズに対する安定化の為、アース接続をお奨めします。 Connect GND to flame of module to stabilize against EMI and external noise.
- d) 筐体への取り付けはトルク値=0.294±0.02N·m(3.0±0.2kgf·cm)となりますが、実機による確認を十分に 行って下さい。

When install LCD modules in the cabinet, please tighten with ("torque=0.294±0.02N·m(3.0±0.2kgf·cm)"). Be sure to confirm it in the same condition as it is installed in your instrument.

- e)モジュール裏面には、回路基板がありますので、設計組み立て時にストレスが加わらない様にしてください。 ストレスが加わると回路部品が破損する恐れがあります。
 - Since there is a circuit board in the module back, stress is not added at the time of a design assembly. Please make it like. If stress is added, there is a possibility that circuit parts may be damaged.
- f) モジュール<mark>裏</mark>面に常時一定の圧力がかかると表示ムラ、表示不良などの原因となりますのでモジュール裏面を 圧迫<mark>するような構</mark>造にはしないでください。

It causes an irregular display and the defective indication, etc., when always put constant pressure on the back of the module. Please do not make the structure to press the back of the module.

g) パネル表面に保護板等をつける場合は干渉縞など画質を劣化させる事の無いよう注意して下さい。 The polarizer surface on the panel is treated with Anti-Glare for low reflection in case of attaching protective board over the LCD, be careful about the optical interface fringe etc. which degrades display quality. h) 液晶モジュール内部に細かい異物等が入ると光学部材に付着し、経時とともにムラが発生することがあります。 筐体設計時、冷却等の空気孔及び強制対流させるファン使用時には、その吸入口にも目の細かいフィルタを 取り付ける等の配慮をお願い致します。また、モジュールは防水カバーなどで保護し、塩分・水が容易に入らない 設計をお願いします。

If a minute particle enters in the module and adheres to an optical material, it may cause display non-uniformity issue, etc. Therefore, fine-pitch filters have to be installed to cooling and inhalation hole if you intend to design

- i) モジュールに局所的な温度変化が生じないように、 放熱性を考慮した部品配置・設計をお願いします。 Please design part arrangement to consider the heat dissipation not to change the local temperature for module.
- j) 本仕様書に規定されている絶対最大定格は、必ず守ってください。これを超えて使用した場合、部品の焼損・破壊や 特性の劣化の恐れがあります。周囲温度や入力信号変動、電気部品のバラツキ等も考慮の上、絶対最大定格を 超えないように設計してください。

Be sure to follow the absolute maximum rating in the specification. The design should consider the surrounding temperature, the fluctuating input signal, and tolerance of the electronic parts. Exceeding values is possible to cause worse characteristic such as burn and/or broken of the parts on LCD module.

k)推奨動作条件範囲内にて使用して下さい。この範囲を超えた場合、絶対最大定格内であっても動作は保証されません。

Be sure to use LCD module within the recommended operating conditions. Operating module out of the recommended range is not guaranteed even if it is in the absolute maximum rating.

- I) モジュールへ電源投入後の入力信号の印加、切断については、本仕様書の電源・信号電圧のシーケンスに従って設計してください。推奨外の条件で入力した場合、故障や表示劣化となる可能性があります。
 Follow the power, signal, and supply voltage sequence which the specification indicates, regarding on-off input signal after power on of LCD module.
- m)セットの使用条件に合わせて、モジュール故障時の電源回路保護装置をご検討ください。
 According to the using application, power circuit protection is recommended at module failure.
- n) モジュールからの不要<mark>輻射</mark>が周辺機器に妨害を与えないように製品化設計に際しては充分なシールド対策を お願いします。

Take enough shielding countermeasure not to interfere to peripheral electronic device by unnecessary radiation from the module.

【ご使用に関する注意事項とお願い】

[Operation Precautions]

a) 液晶パネルには、太陽光等の直射光を当てないよう使用ください。この様な環境下でご使用になる場合は、 遮光フードを設ける等ご配慮ください。液晶パネルに強い光が照射されますとパネル特性の劣化に繋がり、 表示品位が低下する事があります。

Do not expose the LCD panel to direct sunlight. Lightproof shade etc. should be attached when LCD panel is used under such environment

b) モジュールの取り扱い及び機器への組み込みに際して、酸化性または還元性ガス雰囲気中(SO2、H2Sなど)での長期ご使用や保管、また、これらの蒸気を発生する試薬、溶剤、接着剤、樹脂等の材料をLCDモジュールの周囲で使用した場合、腐食、変色、表示品位の劣化、動作異常等の原因となる為、保管・ご使用を避けて下さい。When handling LCD modules and assembling them into cabinets, please avoid that long—terms storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the modules.

Do not use the LCD module under such environment.

- c) セット側に使用している材料や包装材料から出てくるエポキシ樹脂(アミン系硬化剤)、シリコン接着剤(脱アルコール系及びオキシム系)、トレイ発泡剤(アゾ化合物)等により、偏光板への接触・非接触にかかわらず、偏光板の変質による表示の異常が起きる場合があります。貴社の使用材料との適合性を御確認下さい。
 An abnormal display by changing in quality of the polarizing plate might occur regardless of contact or no contact to the polarizing plate, because of epoxy resin (amine system curing agent) that comes out from the material and the packaging material used for the set side, the silicon adhesive (dealcoholization system and oxime system), and the tray blowing agents (azo-compound), etc. Please confirm adaptability with your employed material.
- d) クロロプレンゴムは塩素ガスを発生しLCD パネルの接続部の信頼性に影響を与えるため、使用しないでください。 Don't use polychloroprene (CR) with LCD module. It will generate chlorine gas, which will damage the reliability of the connection part on LCD panel.
- e) 長時間の固定パターン表示での使用は、残像現象が起こる場合がありますのでご注意下さい。 (残像を避けるためスクリーンセーバーをご利用ください。) Be careful when using it for long time with fixed pattern display as it may cause afterimage. (Please use a screen saver etc., in order to avoid an afterimage.)
- f) 電源OFF時、最後に描いた映像が数秒間残って徐々に消えるといった残<mark>像現象が発生する場合がありますが、</mark>本症状は液晶パネルの特性によるものでありモジュールの品位に影響を与えるものではありません。 When LCD is stopped, residual image may be occurred and disappear gradually. This is caused by attribute of LCD panel and it does not cause the damage to the LCD module.
- g) 本製品に使用しているLEDは温度に対して非常に敏感です。高温環境下で、長時間あるいは繰り返しご使用になられますと、急激に寿命が低下する可能性があります。上記のような環境下で御使用になられる際には、弊社まで御相談下さい。

The LED used for this product is very sensitive to the temperature. Luminance decreases rapidly when it is used for a long time or repeatedly under the environment of the low temperature or the module is being cooled. Please avoid the continuous or repeating use of it under such an environment.

Please consult our company when it is used under the environment like the above mentioned.

- h)液晶材料は指定された保存温度範囲以下で凍ってしまいます。また規定温度範囲内に戻った後でも、液晶材料は元の品質には戻りません。常に規定温度範囲内に液晶モジュールを維持してください。
 If stored at the temperatures lower than the rated storage temperature, the LC may freeze and it may cause LCD panel damage. If storage temperature exceeds the specified rating, the molecular orientation of the LC may change to that of a liquid, and they may not revert to their original state. Store the module in normal room temperature.
- i) 液晶材料は<mark>規定</mark>温度範囲を超えると等方性になり(液晶としての性質を失い)、元には戻りません。常に規定温度 範囲内に液晶モジュールを維持してください。 Keep LCD module in the range of the specified temperature conditions at all times. Once out of the range, liquid crystal will lose its characteristics, and it cannot recover.
- j) 長時間、高温高湿環境で使用する場合は、結露防止の配慮をお願いいたします。 Nature of dew consideration prevention is necessary when LCD is used for long time under high-temperature and high-humidity.

12. 出荷形態 Packing form

12-1. 包装形態図 Packing form figure

図2.包装形態図に示す。

Packing form is shown in Fig 2.

12-2. カートン保管条件 Carton storage conditions

- a) カートン積み上げ段数 Piling number of cartons: 5cartons
- b) 最大収納台数 Package quantity in one carton: 40pcs
- c) カートンサイズ Carton size: 396*343*240mm
- d) 総質量[1カートン 40台収納時] Total mass [One carton filled with 40 modules]:11kg
- e) カートン保管環境 Carton store environment:
 - ①温度 Temperature 0~40℃
 - ②相対湿度 Relative humidity 70%以下
 - ・保管湿度環境の平均値としては、下記条件を参考に管理願います。

夏場 温度:20~35℃ 湿度:70%以下 冬場 温度:5~15℃ 湿度:70%以下

Please refer below as average value of the environmental conditions.

Summer time Temperature: 20~35°C Humidity: 70% and below Winter time Temperature: 5~15°C Humidity: 70% and below

③直射日光 Direct sunlight

製品に直射日光が直接当たらないように、包装状態が暗室で保管願います。 Please keep the product in a dark room or cover the product to protect from direct sunlight.

4雰囲気 Atmospheric condition

腐食性ガスや揮発溶剤の発生の危険性がある場所では保管しないでください。 Please refrain from keeping the product with possible corrosive gas or volatile flux.

- ⑤結露防止に対するお願い Prevention of dew
 - ・結露を避けるため包装箱は直接床に置かず、必ずパレットか台の上に保管願います。 またパレット下側の通風を良くするために、一定方向に正しく並べてください。
 - 保管倉庫の壁から離して保管願います。
 - ・倉庫内は通風を良くするよう注意頂き、換気装置などの設置をご配慮下さい。
 - ・自然環境下以上の急激な温度変化が無きように管理願います。
 - •Don't place directly on the floor, and please store the product carton either on a wooden pallet or a stand to avoid dew condensation. In order to obtain moderate ventilation in the pallet's bottom surfaces, arrange correctly in the fixed direction.
 - Please place the product cartons away from the storage wall.
 - Be careful of the inside of a warehouse to ventilate well and please consider installation of a ventilator.
 - Manage to rapid temperature change under natural environment.

⑥保管期間 Storage period

上記保管条件にて1年以内の保管としてください。

Within above mentioned conditions, maximum storage period should be one year.

R.C.

13. 製品型名表示 Marking of product name

13-1. ラベル表示内容 Label indication

シリアル番号内容 Serial number

1桁目 1digit 生産年 Product year (例 2016年 → 6) 2桁目 2digit 生産月 Product month 1.2.3. • • • .9.X.Y.Z

3,4桁目 3,4digit 社内管理記号 Internal control symbol

5桁目 5digit 工場コード Factory code

6~10桁目 6~10digit 連番 Consecutive numbers 00001~

13-2. 包装箱表示 Packing box Label

包装箱に、①型名(LQ064X3LW01) ②出荷日付 ③モジュール数量 を表示したラベルを貼付します。 また、バーコード表示もこれに準じます。

The label that displays ①Model number(LQ064X3LW01) ②Lot number ③Quantity of module is stuck on the packing box. Moreover, the display of bar code also applies to this.

Model No: (4S) LQ064X3LW01 Barcode(1) Lot No.: (1T) 2016. 02. 01 Barcode(2) Quantity: (Q) 40 pcs Barcode (3) ユーザー品番: -プ物流用ラベルです。

- 1 Model number (LQ064X3LW01)
- 2 Lot number (DATA)
- 3 Quantity of module

RoHS規制対応済の包装箱に対しては、右図の表記を行います。

※ R.C.(RoHS Compliance)とはRoHS指令に適合していることを意味します。 当モジュールは、1台目よりRoHS指令に対応しております。

A right picture is written to the packing box of module for the RoHS restriction.

X R.C. (RoHS Compliance) means these parts have corresponded with the RoHS directive. This module corresponds from the first sample to RoHS Directive.

生産国:中国

生産国については包装箱のSHARPロゴ下に下図の表記を行います。

Country of origin: China

Country of origin is written to the packing box. (below figure is printed on the side of packing box)

MADE IN CHINA

14. 信頼性項目 Reliability Test Items

17.	后积1上块日 Re	enability rest items
No.	試験項目	試験内容
	Test item	Conditions
1	高温保存	周囲温度+70℃の雰囲気中で240h放置
	High temperature	Leaves the module at Ta=+70° C for 240h
	storage test	
2	低温保存	周囲温度-25℃の雰囲気中で240h放置
	Low temperature	Leaves the module at Ta= −25° C for 240h
	storage test	
3	高温高湿動作	パネル表面(表示領域)温度40℃, 湿度90~95%RH
	High temperature	の雰囲気中で240h動作(結露無きこと)
	& high humidity	Operates the module at Tp=+40° C; 90~95%RH for 240h
4	高温動作	パネル表面(表示領域)温度+70℃の雰囲気中で240h動作
	High temperature	Operates the module with +70°C at panel surface for 240h
	operation test	
5	低温動作	周囲温度-20℃の雰囲気中で240h動作
	Low temperature	Operates the module at Ta= −20° C for 240h
	operation test	
6	静電耐圧	±200V,200pF[0Ω] 各端子1回
	Strength against	\pm 200V, 200pF [0 Ω] One time for each terminal
7	耐衝撃性(非動	最高加速度 Max. acceleration: 490m/s ²
	作) Shock test	パルス Pulse width:11ms
	(non- operating)	正弦半波方向 Half sine wave dire <mark>ction: ±X; ±Y; ±Z</mark>
		回数:1回/1方向 Once for each direction
8	振動(非動作)	周波数範囲 Frequency:10~ <mark>57</mark> Hz/片振幅 Vibration width: <mark>0.</mark> 076m <mark>m</mark>
	Vibration test	:57~500Hz/加速度 Acceleration:9.8m/s²
	(non- operating)	掃引の割合 Sweep time: 11分間
		試験時間 Test period:X,Y,Z各方向1時間(計3時間)
		1 hour for each direction of X,Y,Z (total 3 hours)
9	熱衝撃(非動作)	-25°C~+70°C, 50サイクル [0.5h] [0.5h]
	Thermal shock	-25° C~+70° C, 50 cycle [0.5h] [0.5h]
	test	

【評価方法】標準状態において、表示品位検査条件の下、実使用上支障となる変化がないこと。

(*)標準状態:温度:15~35℃,湿度:45~75%,気圧:86~106kpaの環境(JISZ8703準拠)

[Result Evaluation Criteria]

Under the display quality test conditions with normal operation state, these shall be no change which may affect practical display function.

(*)normal operation state: Temperature: 15~35°C, Humidity: 45~75%, Atmospheric pressure: 86~106kpa

[Note1]

X, Y, Z方向の定義を示す。

The directions of X, Y, Z are defined as below:

Fig.1. Outline Dimensions

Fig2: Packing form figure