

VBF H(inv) - Trigger Strategy 2015

J. Pela on behalf of the VBF H(inv) analysis members

2012 Trigger

- We ran a suite of triggers with different thresholds and variations in logic
 - With the main goal of robustness
- ▶ The trigger used for the signal region was :
- ► L1
 - ▶ MET > 40 GeV
- ► HLT
 - ▶ Di-jet pair : $p_T > 40$ GeV, fwd/bkwd, $\Delta \eta > 3.5$, $M_{jj} > 800$ GeV
 - METNoMu > 65 GeV
- Use of METNoMu provides samples of W(mu) and Z(mumu) for background estimation
- We also ran parked triggers with reduced jet pT and Mjj thresholds
 - ▶ Will not replace these in 2015

2015 Strategy

- Signal Trigger
 - ► HLT
 - As for 2012 with raised thresholds
 - Some possible additions to minimise threshold increase :
 - PU jet removal
 - ▶ QCD rejection using $\Delta \phi$ (jet, MET)
 - ► L1
 - Need to add jet conditions to reduce MET threshold
 - See next slides
- Control Trigger
 - One issue from 2012 analysis was stat. uncertainty in trigger efficiency measurement
 - Anticipate prescaled control trigger for measuring signal trigger efficiency
 - eg. di-jet + MET (with no VBF conditions)
 - Need to study requirements : sample size, thresholds, prescale

Level 1

- 2012 signal trigger seeded by L1_ETM40
 - Slow trigger turn-on results in offline threshold of 130 GeV
 - Anticipate threshold of 70 in 2015 (PU40bx25)
- Upgrades
 - ▶ L1 will be upgraded during 2015 and 2016, increasing capabilities at each step
 - Aim to study 1-2 options for each scenario (Legacy, 2015, 2016)
- Legacy

VBF selection, may be ineffective due to PU

- MET
- ▶ (Di)jet + MET + Δφ(jet, MET)
- ▶ Dijet + MET + $\Delta\eta$ (jet, jet) ? ← QCD rejection
- ► Stage 1 (2015)
 - MHT/HTT
- ► Stage 2 (2016)
 - Dijet + MET + Mjj

Invariant Mass

- ► Full L1 trigger upgrade (2016) will include invariant mass calculation
- Already shown to be useful in di-EG and di-muon triggers (L1 Upgrade TDR)

► Past studies (J Pela) have indicated this can be useful for VBF H(invisible)

Legacy system (baseline)

- ▶ We can define a baseline by just updating the seed of our HLT paths to the lowest unprescaled L1 ETM available trigger.
 - ▶ In the current draft menu this is L1_ETM70
- ▶ With the help of neutrino gun samples we can calculate VBF H(inv) signal efficiency:

L1+HLT	PU20bx25	PU40bx50	PU40bx25
L1_ETM40 + HLT_DiPFJet40_PFMETnoMu65_MJJ600VBF_LeadingJets_v	0.1079	0.1092	0.1168
L1_ETM70 + HLT_DiPFJet40_PFMETnoMu65_MJJ600VBF_LeadingJets_v	0.0761	0.0774	0.0841
L1_ETM40 + HLT_DiPFJet40_PFMETnoMu65_MJJ800VBF_AllJets_v	0.0850	0.0879	0.0920
$L1_ETM70 + HLT_DiPFJet40_PFMETnoMu65_MJJ800VBF_AllJets_v$	0.0615	0.0634	0.0677

- ▶ By raising the seed from L1 ETM40 to L1 ETM70 we lose ~30% signal efficiency.
 - ► This is a tolerable efficiency loss but we aim at improving algorithms both on the L1T and HLT sides
- We can now calculate the expected pure HLT rates for this paths.

L1+HLT	PU20bx25	PU40bx50	PU40bx25
L1_ETM40 + HLT_DiPFJet40_PFMETnoMu65_MJJ600VBF_LeadingJets_v	113.48	179.95	1903.08
L1_ETM70 + HLT_DiPFJet40_PFMETnoMu65_MJJ600VBF_LeadingJets_v	21.62	57.78	308.35
L1_ETM40 + HLT_DiPFJet40_PFMETnoMu65_MJJ800VBF_AllJets_v	78.36	127.12	1087.03
L1_ETM70 + HLT_DiPFJet40_PFMETnoMu65_MJJ800VBF_AllJets_v	18.91	42.92	263.97

- ► HLT pure rates drop significantly to ~20Hz on first scenario
 - HLT PU subtraction should further lower this rates.
- ▶ At the last PU scenario rates become too high. We can again do the exercise of raising the seed, but at this point we should have in place a better trigger with more options.

Plan

Study L1 seed options

Joao

Implement the path in HLT ConfDB

Jim

- ► Run on data / MC
 - Trigger efficiency
 - Purity after analyses cuts

Jim / Chayanit

- Rate estimates
- CPU timing measurements

Strategy & code for validation of the triggers Expansion

Expand existing VBF

how ? if not using DQM, why not ?

DQM code - Phat

- Strategy for efficiency estimates from data
 - which samples will be used ?

Single muon +

which other triggers will it rely on ?

our own control trigger

► Aim for baseline triggers & implementation by October TSG Workshop