ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и технологий

Высшая школа программной инженерии

РАСЧЕТНОЕ ЗАДАНИЕ №2

Общая транспортная задача

по дисциплине «Математические методы в управлении»

Студент гр. 3530202/90202

А. М. Потапова

Преподаватель

А. А. Суханов

Осень 2022 г

Содержание

Постановка задачи	3
Ход работы	4
Решение	5
Ответ	<u>ç</u>

Постановка задачи

Имеется транспортная сеть, состоящая из 7 городов, связи между которыми задаются матрицей инцидентности (см. табл.1). Единица – есть дорога, ноль – нет дороги.

Таблица 1

0	1	Γ_{13}	0	1	0	0
0	0	1	Γ_{24}	0	0	1
0	0	0	1	Γ_{35}	Γ_{36}	Γ37
0	Γ_{42}	0	0	1	0	Γ_{47}
0	0	Γ ₅₃	0	0	1	0
0	0	0	0	0	0	1
0	0	0	0	0	0	0

Здесь і – порядковый номер студента (номер варианта) в списке группы (по алфавиту), предоставленному преподавателю.

k=0, 1, 2, ...

$$\Gamma_{13} = 1$$
, $i = 3k$

$$\Gamma_{24} = 1$$
, $i = 2k$

$$\Gamma_{35} = 1$$
, $i = 5k$

$$\Gamma_{13} = 1, i = 3k$$
 $\Gamma_{24} = 1, i = 2k$ $\Gamma_{35} = 1, i = 5k$ $\Gamma_{53} = 1, i = 5k + 4$

$$\Gamma_{13} = 0$$
 $i \neq 3k$

$$\Gamma_{24} = 0$$
 $i \neq 2k$

$$\Gamma_{25} = 0$$
 $i \neq 5k$

$$\Gamma_{13} = 0, i \neq 3k$$
 $\Gamma_{24} = 0, i \neq 2k$ $\Gamma_{35} = 0, i \neq 5k$ $\Gamma_{53} = 0, i \neq 5k + 4$

$$\Gamma_{36} = 1 - \Gamma_{13}$$
 $\Gamma_{37} = \Gamma_{13}$

$$\Gamma_{37} = \Gamma_{13}$$

$$\Gamma_{42}$$
 = 1- Γ_{24}

$$\Gamma_{42} = 1 - \Gamma_{24}$$
 $\Gamma_{47} = 1 - \Gamma_{35} - \Gamma_{53}$

Источники и стоки (интенсивность производителей и потребителей)

$$d_1 = 2i + 1$$

$$d_2 = i + 11$$

$$d_{\varepsilon} = -i$$

$$d_{c} = -(i + 4)$$

$$d_5 = -i$$
 $d_6 = -(i+4)$ $d_7 = -(i+8)$

Ограничения на пропускную способность дорог

$$r_{15} = [(i+1)/2]$$
 $r_{27} = [(i+4)/3]$

$$r_{27} = [(i + 4)/3]$$

Стоимость перевозки единицы товара по дороге (p,s)

$$C_{ps} = [6 + 5 \cos(\pi/15 (i + 4p + s))], p=1,...,7, s=1,...,7,$$
 где [•] – целая часть числа.

Требуется определить оптимальный грузопоток в сети, минимизирующий общие транспортные расходы.

Ход работы

Вариант 13

0	1	0	0	1	0	0
0	0	1	0	0	0	1
0	0	0	1	0	1	0
0	1	0	0	1	0	1
0	0	0	0	0	1	0
0	0	0	0	0	0	1
0	0	0	0	0	0	0

i	d_i	(i,j)	C_{ij}	r_{ij}
1	27	(1,2)	2	
1	27	(1,5)	5	7
2	24	(2,3)	7	
2	24	(2,7)	10	5
3	0	(3,4)	10	
3	0	(3,6)	10	
4	0	(4,2)	10	
4	0	(4,5)	9	
4	0	(4,7)	7	
5	-13	(5,6)	4	
6	-17	(6,7)	1	
7	-21	_	_	

Истоки – Перевалочные пункты – Стоки –

Решение

C_{ij}/x_o	3	5	l é	6	-	7	8	•	10	0	a			
1	28	6	19		20	14	5	7	12		27	20	6	0
2	26		17	17	18	2			10	5	24	19	2	0
9	0	7	4	-	5		0	+			7	0		
11	_		+		0	5	-	-	0	-	5	0		
в	1	3	1	7	2	1	7	2		5	63			
		6		9	1	6	- ()	- (2				
		0			1	14								
						0								
x. 5'	6	7	8	10										
1 6	0	14	7	10										
2	17	2		5										
9 7	17	~		ر ا										
11		5												H

C_{ij}/Δ_{ij}	3	5	é	5		7	8	?	10	9	U	
1	28		19	0	20		5		12	0	0	
2	26	0	17		18				10		-2	
9	0		4	-13	5	-13	0	-23			-28	
11			-		0		-	-	0	-8	-20	
	2	8	1.	9	2	0		5	1	2		

Ответ

- i = 13
- $f^* = 858$
- Схема грузоперевозок:

