2ª Lista de Cálculo de Várias Variáveis (Derivadas parciais)

1 – Determine as derivadas parciais de primeira ordem da função:

a)
$$f(x,y) = 3x - 2y^4$$
 b) $f(x,y) = x^5 + 3x^2y^3 + 3xy^4$ c) $z = xe^{3y}$ d) $f(x,t) = \sqrt{x} \ln t$

e)
$$z = (2x + 3y)^{10}$$
 f) $z = \lg xy$ g) $f(x, y) = \frac{x - y}{x + y}$ h) $f(x, y) = x^y$ i) $w = \sec \alpha + \cos \beta$

j)
$$w = \frac{e^v}{u + v^2}$$
 k) $f(r, s) = r \ln(r^2 + s^2)$ l) $f(x, t) = \arctan(x\sqrt{t})$ m) $u = t e^{\frac{w}{t}}$

n)
$$f(x, y, z) = zx - 5x^2y^3z^4$$
 o) $f(x, y, z) = x \sin(x - y)$ p) $w = \ln(x + 2y + 3z)$ q) $w = z e^{xyz}$

r)
$$u = \frac{xy}{\sin(yz)}$$
 s) $u = x^{\frac{y}{z}}$ t) $f(x, y, z, t) = xyz^2 \operatorname{tg}(yt)$ u) $f(x, y, z, t) = \frac{xy^2}{t+2z}$

v)
$$u = \sqrt{(x_1)^2 + (x_2)^2 + \dots + (x_n)^2}$$
 w) $u = \text{sen}(x_1 + 2x_2 + \dots + nx_n)$

2 – Determine as derivadas parciais indicadas: (obs: $f_x = \frac{\partial f}{\partial x}$ e $f_y = \frac{\partial f}{\partial y}$)

a)
$$f(x, y) = \ln(x + \sqrt{x^2 + y^2}); f_x(3,4)$$
 b) $f(x, y) = \arctan(\frac{x}{y}); f_x(2,3)$

c)
$$f(x, y, z) = \frac{y}{x + y + z}$$
; $f_y(2, 1, -1)$ d) $f(x, y, z) = \sqrt{\sin^2 x + \sin^2 y + \sin^2 z}$; $f_z\left(0, 0, \frac{\pi}{4}\right)$

3 – Determine todas as derivadas parciais de segunda ordem:

a)
$$f(x,y) = x^3y^5 + 3x^4y$$
 b) $f(x,y) = \text{sen}^2(mx + ny)$ com $m \in \mathcal{R}$ e $n \in \mathcal{R}$

c)
$$w = \sqrt{u^2 + v^2}$$
 d) $v = \frac{xy}{x - y}$ e) $z = \arctan tg \frac{x + y}{1 - xy}$ f) $v = e^{xe^y}$

4 - Teorema de Clairaut: "Suponha que f esteja definida em uma região R que contenha o ponto (a,b). Se as funções f_{xy} e f_{yx} forem ambas contínuas em R, então $f_{xy}(a,b) = f_{yx}(a,b)$."

Verifique que a conclusão do Teorema de Clairaut é válida, isto é, que $\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \right)$:

a)
$$u = x \operatorname{sen}(x + 2y)$$
 b) $u = x^4y^2 - 2xy^5$ c) $u = \ln \sqrt{x^2 + y^2}$ d) $u = xye^y$

5 – Determine as derivadas parciais indicadas:

a)
$$f(x,y) = 3xy^4 + x^3y^2$$
; f_{xyz} , f_{yyy}
b) $f(x,t) = x^2e^{-ct}$; f_{ttt} , f_{txx} (com $c \in \mathcal{R}$)
c) $f(x,y,z) = \cos(4x + 3y + 2z)$; f_{xyz} , f_{yzz}
d) $f(r,s,t) = r \ln(rs^2t^3)$; f_{rss} , f_{rst}

c)
$$f(x, y, z) = \cos(4x + 3y + 2z)$$
; f_{xyz} , f_{yzz} d) $f(r, s, t) = r \ln(rs^2 t^3)$; f_{rss} , f_{rst}

e)
$$u = e^{r\emptyset} \operatorname{sen} \emptyset$$
; $\frac{\partial^3 u}{\partial r^2 \partial \emptyset}$ f) $z = u\sqrt{v - w}$; $\frac{\partial^3 z}{\partial u \partial v \partial w}$ g) $w = \frac{x}{y + 2z}$; $\frac{\partial^3 w}{\partial z \partial y \partial x}$, $\frac{\partial^3 w}{\partial x^2 \partial y}$

h)
$$u=x^ay^bz^c; \frac{\partial^6 u}{\partial x\partial^2 y\partial^3 z} (\text{com } \alpha\in\mathcal{R} \ , b\in\mathcal{R} \ \text{e} \ c\in\mathcal{R})$$

6 – Use a derivação implícita para determinar a $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$

a)
$$x^2 + y^2 + z^2 = 3xyz$$
 b) $yz = \ln(x + z)$ c) $x - z = \arctan(yz)$ d) $\sin(xyz) = x + 2y + 3z$

7 – Determine $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$:

a)
$$z = f(x) + g(y)$$
 b) $z = f(x + y)$ c) $z = f(x)g(y)$ d) $z = f(xy)$ e) $z = f(\frac{x}{y})$