Applied Machine Learning!!!

W207 Section 9
Rasika Bhalerao
rasikabh@berkeley.edu

Aug 23: Welcome! Nov 8 and 22: No classes

Schedule

Supervised learning methods

	Sync	Topic		
2	Aug 30	Linear Regression / Gradient Descent		
3	Sep 6	Feature Engineering		
4	Sep 13	Logistic Regression		
5	Sep 20	Multiclass classification / Eval Metrics		
6	Sep 27	Neural Networks		
7	Oct 4	KNN, Decision Trees, Ensembles		

Unsupervised learning methods

	Sync	Topic	
8	Oct 11	KMeans and PCA	
9	Oct 18	Text Embeddings	
10	Oct 25	CNNs	
11	Nov 1	EDA, Real data, Baselines	
12	Nov 15	Fairness / Ethics	
13	Nov 29	Fancy Neural Networks	
14	Dec 6	Final Presentations	

Assignment Schedule

Due Date	Assignment
Aug 28	HW1
Sep 4	HW2
Sep 11	HW3
Sep 18	HW4
Sep 25	HW5
Oct 2	HW6
Oct 16	Group project baseline
Oct 23	HW8
Nov 6	HW9
Nov 20	HW10
Dec 4	Final project notebook + presentation

Don't forget to sign up for final project groups by week 4!

https://docs.google.com/document/d/1R3J_X1Rz6WP8eMQ2c yMC0wAr5iQdhMK_httdoNO6L0w/edit?usp=sharing

Behavior expectations

- Healthy disagreement is expected
- Be mindful of one another's schedules
- Be a good listener
- Have fun in a professional manner
- Share related real-world experience
- Ask questions when something is confusing
- Keep it 100 but be respectful
- Be open-minded to new ideas in the real world and when coding
- On time for group meetings

What do we use linear regression for? What

do we use gradient descent for?

They both look like this:

one needs an iterative process? Why?

Which one can we solve for directly? Which

View options (at the top) \rightarrow Annotate

Async Practice Quiz Questions (vote!)

Modern machine learning typically uses:	Logic	Numerical optimization
The input to the loss function is a mapping of parameters to values.	True	False
The loss function for any training data is minimized when its value is 0.	True	False
Gradient descent will always converge.	True	False
The gradient is computed separately for each parameter.	True	False

Relationship between income and education

Based on the data and regression line, what is:

the actual income for the individual with 7

\$5000

the predicted income for an individual with 7 graphs years of education?

\$35000

What is the total cost for these three data points:

given the model $Y_i = \beta X_i$ and squared error cost function for:

$$\beta = 0$$
: $((1-0)^2 + (2-0)^2 + (3-0)^2)^{\frac{1}{2}}$

$$\beta = 0.5$$
: $((1-0.5)^2 + (2-1)^2 + (3-1.5)^2)^{\frac{1}{2}}$

$$\beta$$
 = 1: ((1-1)² + (2-2)² + (3-3)²)^{1/2}

Four key components for any gradient descent

- Model
 - Area = $x(5-x) = 5x-x^2$
- Parameters
 - 0 X
- Cost function
 - \circ 100 (5x x^2)
- Objective
 - Minimize cost function

Example: what is the largest rectangular area we can enclose using a string of length 10?

In this example, our "training data" is just one point, (10, 100).

What are local minima? How can we avoid

them?

When do we stop iterating?

When do we stop iterating?

Experts: when validation error isn't improving

Hyperparameters

- Learning rate
- Batch size
- Epochs

What are they? How do we pick values for them?

What are the differences between using gradient descent for (nonlinear) regression and using it for classification?

Notebook!

To access later:

https://github.com/MIDS-W207/rasikabh/blob/main/live_sessions/Week2.ipynb