Görbe Tamás Ferenc LINEÁRIS ALGEBRA FELADATGYŰJTEMÉNY

Utolsó módosítás: 2011.09.24. © Görbe Tamás Ferenc, 2011.

Bevezetés

Ez a feladatgyűjtemény a Szegedi Egyetemi Kiadó gondozásában a Polygon Jegyzettár sorozat tagjaként megjelent Lineáris algebra fizikusoknak című egyetemi jegyzet kiegészítéseként készült. A gyűjtemény az említett könyvben kitűzött feladatokon túl számos olyan feladatot is tartalmaz, amelyek a jegyzetbe strukturális és didaktikai szempontok miatt nem kerültek be. Ilyenek például az olyan feladatok, amelyek a lineáris algebra alkalmazásaihoz tartoznak. A fejezetek és a közös feladatok számozása megegyezik a jegyzetével.

A gyűjtemény elsődleges célja a törzsanyagon túlmutató, sokszínűbb feladatok kihívását kereső hallgatók kiszolgálása. Pontosan emiatt azoknak ajánljuk, akik már az alapvető fogások, módszerek terén megfelelő jártasságra tettek szert.

Szeged, 2011. szeptember

Görbe Tamás Ferenc

Tartalom

1. Összeszámlálási alapfeladatok

- 1. Hozzuk egyszerűbb alakra a következő kifejezéseket:
- (a) $\frac{n!}{(n-1)!}$; (b) $\frac{n!}{n(n-2)!}$;
- (c) $\frac{1}{n!} + \frac{1}{(n+1)!}$;
- (d) $\frac{1}{(n-1)!} \frac{1}{(n+1)!}$; (e) $(n-3)! \cdot (n-2)$; (f) $\frac{(n+2)!}{(n-1)!} \cdot \frac{n!}{(n+3)!}$;

- (g) $\frac{n}{n+1} \cdot \frac{(n+1)!}{n!}$; (h) $n(n-3)! \frac{1}{(n-1)(n-2)!}$; (i) $\frac{(n+3)(n+2)n!}{(n+3)!}$.
- 2. Határozzuk meg, hogy hány nullára végződnek az alábbi számok!
- (a) (4!)!; (b) ((3!)!)!; (c) $(2!)! \cdot (5!)!$; (d) $\frac{(6!)!}{(5!)!}$.
- 3. Egy úszóversenyen 8 versenyző indul. Hányféle beérkezési sorrend lehetséges?
- 4. Arthur király és 5 lovagja a kerek asztal körül tanácskoznak.
- (a) Hányféle ülésrend lehetséges?
- Hányféle ülésrend lehetséges, ha Arthur király helye fix?
- 5. Hányféleképpen darabolhatunk fel egy 100 cm-es mérőszalagot 1 cm-es darabokra (ha ollónk egyszerre csak egy réteget tud elvágni)?
- 6. Egy hegyen 10 sípálya van. Ezek közül 4 zöld, 3 kék, 2 piros, és 1 fekete jelzésű.
- (a) Hányféle sorrendben lehet az összes pályán lecsúszni, ha az azonos színű pályák lényegében egyformák?
- (b) Hányféle sorrendben lehet az összes pályán lecsúszni, ha a fekete pályát hagyjuk utoljára?
- 7. Hány "szót" tudunk képezni a
- (a) FIZIKA; (b) MATEMATIKA; (c) ABRAKADABRA;

szó betűiből?

- 8. Igazoljuk, hogy
- (a) $\binom{n}{k} = \binom{n}{n-k}$; (b) $\binom{n}{k} = \frac{n}{k} \cdot \binom{n-1}{k-1}$;
- (c) $\binom{n}{k} = \frac{n-k+1}{k} \cdot \binom{n}{k-1}$; (d) $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$.
- **9.** Egy hételemű halmaznak hány négyelemű részhalmaza van?

10. Hányféleképpen olvasható ki a következő táblázatból a KOMBINATORIKA szó, ha a táblázat bal felső betűjétől indulunk, és az egyes lépésekben csak jobbra vagy lefelé léphetünk?

- 11. Egy tízfős társaságban mindenki mindenkivel kezet fog. Hány kézfogás történik?
- **12.** Hány egyenest határoznak meg egy szabályos nyolcszög csúcspontjai? A feladatot oldjuk meg az *n*-szög esetére is! Adjunk ebből formulát egy szabályos *n*-szög átlóinak számára!
- 13. Egy 25 fős csoportban 4 egyforma ajándékot osztunk ki. Hányféle ajándékozás lehetséges, ha
- (a) egy ember csak egy ajándékot kaphat?
- (b) egy ember több ajándékot is kaphat?
- 14. Egy cukrászdában 30-féle fagylaltot árulnak. Hányféleképpen lehet hármat kiválasztani?
- 15. Egy 120 résztvevős kerékpárversenyen hányféle módon alakulhat ki a három dobogós helyezés?
- 16. Hány olyan négyjegyű természetes szám van, amely csupa páros számjegyből áll?
- 17. Hányféleképpen olvasható ki a következő táblázatból az EGYETEM szó, ha a táblázat bal felső betűjéből indulunk ki, és az egyes lépéseket csak jobbra vagy lefelé tehetjük?

- 18. Egy dobókockával háromszor dobunk egymás után. Hányféle háromjegyű számot kaphatunk így?
- **19.** Hány személyi igazolvány szám készíthető 26 betű és 10 számjegy felhasználásával, ha egy személyi igazolvány szám 6 számjegyből és 2 betűből áll?
- 20. Írjuk fel a binomiális tétel segítségével a következő hatványokat:

(a)
$$(a-3)^5$$
; (b) $(2x+5)^4$; (c) $(y-1)^{10}$; (d) $(a-b)^n$.

21. Írjuk fel hatványalakban a következő összegeket:

(a)
$$x^4 - 4x^3 + 6x^2 - 4x + 1$$
; (b) $a^5 + 10a^4 + 40a^3 + 80a^2 + 80a + 32$.

22. Bizonyítsuk be a következő azonosságokat:

(a)
$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^n;$$

(b)
$$\binom{n}{0} - \binom{n}{1} + \dots + (-1)^n \binom{n}{n} = 0.$$

23. Adjunk meg egy síknak három különböző, önmagára való kölcsönösen egyértelmű leképezését.

- 24. Határozzuk meg az
- (a) PERMUTÁCIÓ; (b) LIMESZ; (c) PLANCK; (d) INTEGRÁL; szóban az inverzióban álló betűpárok számát, ha alapsorrendnek az ábécé sorrendet vesszük!
- 25. Határozzuk meg az
- (a) 645213; (b) 3421; (c) 7253416; (d) 132465; számban az inverzióban álló számpárok számát, ha alapsorrendnek a növekvő sorrendet vesszük!
- **26.*** Bizonyítsuk be, hogy az $1, 2, \dots, n$ számok tetszőleges π permutációja esetén

$$0 \le I(\pi) \le \binom{n}{2}.$$

Igaz-e, hogy tetszőleges 0 és $\binom{n}{2}$ közötti k egész számhoz létezik olyan σ permutáció, amelyre $I(\sigma) = k$?

- **27.*** Bizonyítsuk be, hogy tetszőleges véges halmaz esetén
 - (a) bármely két permutáció egymás utáni végrehajtása helyettesíthető egyetlen permutációval!
- (b) létezik olyan permutáció (*egységelem*), amelyet bármely permutáció után végrehajtva az eredmény nem változik!
- (c) bármely permutációnak van inverze, azaz egy olyan permutáció, amely "visszaállítja" az eredeti sorrendet!
- **28.** Hány 28-cal kezdődő szám képezhető a 0, 2, 4, 6, 8 számjegyekből felhasználásával, ha minden számjegyet csak egyszer használhatunk fel?
- 29. Hány olyan háromjegyű páratlan szám van, amelynek minden számjegye különböző?
- **30.** Egy 52 lapos kártyacsomagból egymás után kihúzunk 5 kártyát. Hányféleképpen lehetséges ez, ha a kihúzott lapok sorrendje nem számít, és
- (a) visszatevés nélkül húzunk?
- (b) visszatevéssel húzunk?
- 31.* Bizonyítsuk be a következő azonosságokat:

(a)
$$\frac{\binom{n}{1}}{\binom{n}{0}} + 2\frac{\binom{n}{2}}{\binom{n}{1}} + 3\frac{\binom{n}{3}}{\binom{n}{2}} + \dots + n\frac{\binom{n}{n}}{\binom{n}{n-1}} = \binom{n+1}{2};$$

(b)
$$\binom{n}{k-1} + 2\binom{n}{k} + \binom{n}{k+1} = \binom{n+2}{k+1};$$

(c)
$$\binom{n}{1} + 2\binom{n}{2} + 3\binom{n}{3} + \dots + n\binom{n}{n} = n \cdot 2^{n-1};$$

(d)
$$\binom{n}{1} - 2\binom{n}{2} + 3\binom{n}{3} - \dots + (-1)^{n-1}n\binom{n}{n} = 0;$$

(e)
$$\binom{k}{k}\binom{n-k}{0} + \binom{k}{k-1}\binom{n-k}{1} + \dots + \binom{k}{0}\binom{n-k}{k} = \binom{n}{k};$$

(f)
$$\binom{n}{0}^2 + \binom{n}{1}^2 + \binom{n}{2}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n};$$

(g)
$$\binom{n}{k} + \binom{n-1}{k} + \binom{n-2}{k} + \dots + \binom{k}{k} = \binom{n+1}{k+1}$$
.

- 32. Melyek határoznak meg permutációt az alábbiak közül? A permutációkat adjuk meg rövid formában
- (a) $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ (b) $\begin{pmatrix} a & b & c & d \\ d & d & a & b \end{pmatrix}$; (c) $\begin{pmatrix} \aleph & \hbar & \nabla & \partial & \dagger \\ \nabla & \aleph & \partial & \hbar & \dagger \end{pmatrix}$; (d) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$; (e) $\begin{pmatrix} \bigoplus & \bigodot & \bigotimes \\ \bigotimes & \bigoplus & \bigodot \end{pmatrix}$; (f) $\begin{pmatrix} \int & \iint & \iiint & \int \\ \iint & \int & \iint & \int \\ \iint & \int \\ \iint & \int & \iint & \int \\ \iint \\ \iint & \int \\ \iint \\ \iint & \int \\ \iint \\ \iint & \int$
- 33. Az alábbi permutációkat adjuk meg rövid formában és határozzuk meg bennük a ciklusok hosszát!
- $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 2 & 1 & 6 & 5 \end{pmatrix} \quad \text{(b)} \quad \begin{pmatrix} \downarrow & \stackrel{\nearrow}{\nearrow} & \stackrel{\nearrow}{\nearrow} & \downarrow \\ \downarrow & \stackrel{\nearrow}{\nearrow} & \stackrel{\searrow}{\nearrow} & \stackrel{\searrow}{\nearrow} \end{pmatrix}; \quad \text{(c)} \quad \begin{pmatrix} \bullet & \bullet & \bullet & \circ \\ \circ & \bullet & \bullet & \bullet \end{pmatrix}.$
- 34. Határozzuk meg az alábbi permutációk inverziószámát és állapítsuk meg a permutációk paritását!
- $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 2 & 5 \end{pmatrix} \quad \text{(b)} \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}; \quad \text{(c)} \quad \begin{pmatrix} A & E & K & M & T \\ M & A & T & E & K \end{pmatrix}.$
- Mennyi az alábbi permutációk inverziószáma?
- (a) $1, 3, 5, \ldots, 999, 1001, 1000, 98, \ldots, 4, 2;$
- (b) $11, 13, 15, \dots, 99, 101, 1;$
- (c) $51, 52, \ldots, 100, 1, 2 \ldots, 50$.

2. Komplex számok

- 1. Határozzuk meg az alábbi komplex számok valós, ill. képzetes részét!
- (a) 1+i; (b) 3i;

- (d) 9+9i; (e) 1,77+23i; (f) 5,38+1,66i.
- **2.** Határozzuk meg az a, b valós számokat úgy, hogy teljesüljön:

- (a) a + bi = 2 + 4i; (b) 3a + 2bi = 12 6i;(c) $2a \left(8, 5a + \frac{3}{2}bi\right) = 13 4, 5i;$ (d) $2^a (\log_3 b)i = -2i + 8.$
- 3. Írjuk kanonikus alakra az alábbi komplex számokat!
- (a) 4 + 5i + 6i;
- (b) $7i + \sqrt{-9}$;
- (c) $1+i-5-\frac{3}{4}i$; (d) $\left(\frac{6}{5}+\frac{1}{3}i\right)+\left(\frac{5}{2}+\frac{7}{4}i\right)$.
- **4.** Határozzuk meg az x, y valós számokat úgy, hogy a
- (a) (7+9i) + (x+yi) összeg valós szám legyen;
- (b) (2-5i) + (x+yi) összeg valós szám legyen;
- (c) (3+4i)+(-2x+yi) összeg tisztán képzetes szám legyen;
- (d) (4+4i)+(x+3yi) összeg tisztán képzetes szám legyen.
- 5. Végezzük el az alábbi szorzásokat!

- $\begin{array}{llll} \text{(a)} & 2i\cdot(1+5i); & \text{(b)} & (-8i)\cdot(-7i); & \text{(c)} & (2+i)\cdot(1-3i); \\ \text{(d)} & (5+3i)\cdot(2-i); & \text{(e)} & (6-i)\cdot(5+5i); & \text{(f)} & (1+i)\cdot(1-i). \end{array}$
- **6.** Határozzuk meg az x, y valós számokat úgy, hogy a
- (a) (3+4i)(x+yi) szorzat valós szám legyen;
- (b) (a+bi)(x+yi) szorzat valós szám legyen;
- (c) (a+bi)(x+yi) szorzat tisztán képzetes szám legyen;
- $(1+i)^2(x+yi)$ szorzat tisztán képzetes szám legyen.
- **7.** Számoljuk ki az i^n hatványokat, ahol n természetes szám!
- 8. Számoljuk ki az alábbi hatványokat!
- (a) $(2+3i)^2$; (b) $(\frac{1}{2}-\frac{1}{3}i)^2$; (c) $(1+2i)^3$.
- 9. Ábrázoljuk a komplex számsíkon a következő komplex számokat:

- (a) i; (b) -i; (c) 1+i; (d) -2+3i; (e) 2-i; (f) $\frac{1}{2}-\frac{1}{2}i$; (g) $\frac{3}{4}-2i$; (h) $-\sqrt{2}-\sqrt{2}i$.
- 10. A komplex számsíkon egy téglalap középpontja az origó, oldalai párhuzamosak a komplex számsík a koordinátatengelyeivel, és egyik csúcsa -5 + 3i. Írjuk fel a téglalap többi csúcsát!
- 11. Adjuk meg azokat a komplex számokat, amelyeknek konjugáltja az eredeti szám
- (a) négyzete; (b) köbe.

6 2. Komplex számok

- 12. Írjuk fel a következő komplex számokat trigonometrikus alakban!

- 13.* Legyenek $z = r \cdot (\cos \varphi + i \sin \varphi)$ és $w = s \cdot (\cos \psi + i \sin \psi)$ tetszőleges komplex számok. Igazoljuk a szorzásra, osztásra és hatványozásra vonatkozó képleteket!
- **14.** Számítsuk ki a $z \cdot w$ szorzatot és a $\frac{z}{w}$ hányadost, ha

$$z = 2\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right), \quad w = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right).$$

- 15. A komplex számsíkon egy szabályos háromszög középpontja az origó, egyik csúcsa $\frac{\sqrt{3}}{3}i$. Írjuk fel a háromszög többi csúcsát!
- 16.* A komplex számsíkon egy szabályos ötszög középpontja az origó, egyik csúcsa az 1 pontban van. Írjuk fel a ötszög többi csúcsát!
- 17. Milyen z komplex számra teljesül a következő egyenlőség:
- $\begin{array}{llll} \text{(a)} & |z|-z=1+2i; & \text{(b)} & |z|-2z=-1-8i; & \text{(c)} & 2|z|-3z=1-12i; \\ \text{(d)} & |z^*|=-4z; & \text{(e)} & z^2+|z|=0; & \text{(f)} & z^2+|z|i=i. \end{array}$

- **18.*** Milyen pozitív egész *n*-re lesz $(1+i)^n = (1-i)^n$?
- 19. Oldjuk meg a komplex számok halmazán a következő egyenleteket:
- (a) $x^3 = 1$; (b) $x^5 = 1$; (c) $x^7 = 1$; (d) $x^2 = 1 + i$.
- **20.*** Bizonyítsuk, hogy az $x^n = 1$ egyenlet gyökeinek összege 0, ha $n \ge 2!$ Más szóval lássuk be, hogy az n-edik egységgyökök ($n \ge 2$) összege nulla:

$$\varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_n = 0.$$

3. Vektorok 3D-ben

- 1. Egy kocka egyik csúcsából kiinduló élvektorok legyenek a, b, és c. Fejezzük ki a kocka többi csúcsába mutató helyvektorokat ezeknek a vektoroknak a segítségével!
- 2. Legyen $\mathbf{u} = \mathbf{a} + \mathbf{b}$ és $\mathbf{v} = \mathbf{a} \mathbf{b}$. Fejezzük ki az \mathbf{a} és \mathbf{b} vektorokkal a következő vektorokat:
- (a) $2\mathbf{u} + 3\mathbf{v}$; (b) $2\mathbf{u} 4\mathbf{v}$; (c) $\frac{1}{2}\mathbf{u} + \frac{2}{3}\mathbf{v}$; (d) $-2\mathbf{u} + 3(\mathbf{u} \mathbf{v})$.
- **3.** Az ABC háromszög oldalainak hossza a=6 cm, b=7 cm, c=8 cm. Válasszuk az A pontot a vonatkoztatási rendszer középpontjának, és a B ill. C pontokba mutató helyvektorok legyenek $\mathbf b$ és $\mathbf c$. Az A csúcsban található szög felezője a BC oldalt egy D pontban metszi. Fejezzük ki $\mathbf b$, ill. $\mathbf c$ vektorokkal a D pontba mutató helyvektort!
- 4. Egy paralelogramma négy csúcsának helyvektorai rendre $\mathbf{a}, \mathbf{b}, \mathbf{c}$ és \mathbf{d} . Bizonyítsuk be, hogy $\mathbf{a} + \mathbf{c} = \mathbf{b} + \mathbf{d}$!
- **5.** Bizonyítsuk be a koszinusztételt, vagyis azt, hogy egy a, b, c oldalhosszakkal rendelkező háromszög esetén $c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos \varphi$, ahol φ az a, b oldalak által bezárt szög.
- **6.** Határozzuk meg az **a** és **b** vektorok skaláris szorzatát, ha
- $\begin{array}{lll} \text{(a)} & |\mathbf{a}|=2, |\mathbf{b}|=3, \varphi=\frac{\pi}{6}; & \text{(b)} & |\mathbf{a}|=1, |\mathbf{b}|=1, \varphi=\frac{\pi}{4}; \\ \text{(c)} & |\mathbf{a}|=\frac{1}{2}, |\mathbf{b}|=2, \varphi=\frac{\pi}{2}; & \text{(d)} & |\mathbf{a}|=\sqrt{2}, |\mathbf{b}|=\sqrt{50}, \varphi=\frac{2\pi}{3}; \end{array}$

és φ a vektorok bezárt szöge.

- **7.*** Milyen esetekben teljesülhet az (ab)c = (ac)b egyenlőség?
- 8.* Igazoljuk, hogy a paralelogramma átlói hosszának négyzetösszege megegyezik az oldalak négyzetösszegével! (Paralelogramma-azonosság)
- 9. Állapítsuk meg a következő vektorokban x értékét úgy, hogy a megadott vektorok merőlegesek legyenek egymásra!
- (a) $\mathbf{a} \sim (2; 5; 1), \mathbf{b} \sim (-1; 0; x);$ (b) $\mathbf{a} \sim (4; 4; 1), \mathbf{b} \sim (2x 1; 3; 1);$ (c) $\mathbf{a} \sim (x; 2; 7), \mathbf{b} \sim (-x; 1; 3);$ (d) $\mathbf{a} \sim (x^2 x + 1; 2; 0), \mathbf{b} \sim \left(0; \frac{1}{2}x; \frac{1}{\sqrt{3}}\right).$
- 10.* Igazoljuk az alábbi egyenlőtlenséget! (Cauchy–Bunyakovszkij–Schwarz-egyenlőtlenség)

$$|x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2| \le \sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}$$

 $\acute{U}tmutat\acute{a}s$: Használjuk fel, hogy az **a** $\sim (x_1,y_1,z_1)$ és **b** $\sim (x_2,y_2,z_2)$ vektorok közbezárt szögének koszinusza a [-1,1] intervallumba esik.

- 11. Végezzük el a következő kifejezésekben a kijelölt műveleteket:
- (a) $(\mathbf{a} \mathbf{b}) \times (2\mathbf{a} + \mathbf{b})$; (b) $(\mathbf{a} + 3\mathbf{b}) \times (2\mathbf{a} \mathbf{b})$; (c) $(\mathbf{a} + \mathbf{b}) \times (2\mathbf{a} \mathbf{c})$.
- 12. Számítsuk ki a következő kifejezések értékét:
- (a) $(\mathbf{j} \times \mathbf{k})^2$; (b) $(\mathbf{i} \times 5\mathbf{j})^2$; (c) $[(2\mathbf{i} \mathbf{j}) \times (\mathbf{i} \times \mathbf{j})]^2$.
- 13. Adott két vektor: $\mathbf{a} \sim (1,3,-2)$, $\mathbf{b} \sim (4,-1,5)$. Számítsuk ki az \mathbf{a} , \mathbf{b} vektorok által kifeszített paralelogramma területét!
- **14.*** Adott az $\mathbf{a} \sim (2; -3; 1)$ vektor. Keressünk olyan nemnulla \mathbf{x} vektort, amelyre $|\mathbf{a} \times \mathbf{x}| = \mathbf{a} \cdot \mathbf{x}$.

8 3. Vektorok 3D-ben

- 15. Igazoljuk a következő azonosságot: $(\mathbf{a} \times \mathbf{b})^2 + (\mathbf{a} \cdot \mathbf{b})^2 = \mathbf{a}^2 \mathbf{b}^2$.
- **16.** Adott három vektor: $\mathbf{a} \sim (2; 3; 4), \ \mathbf{b} \sim (2; 3; 1), \ \text{és } \mathbf{c} \sim (1; 2; 3).$
- (a) Dönstük el, hogy az **a**, **b**, **c** vektorok komplanárisak-e?
- (b) Dönstük el, hogy az **a**, **b**, **c** vektorok milyen (bal/jobb) rendszert alkotnak?
- (c) Számítsuk ki az **a**, **b**, **c** vektorok által kifeszített tetraéder térfogatát!
- (d) Mekkora a kifeszített tetraéder a, b vektorok síkjára merőleges magassága?
- **17.** Ha $\overrightarrow{AB} = \mathbf{a} \sim (2; -1; 4)$, $\overrightarrow{BC} = \mathbf{b} \sim (6; 1; -4)$, és $\overrightarrow{CD} = \mathbf{c} \sim (1; 1; 2)$, akkor mekkora az ABCD tetraéder térfogata?
- **18.** Van-e olyan **0**-tól különböző vektor, amely merőleges az $\mathbf{a} \sim (4;2;-1)$, $\mathbf{b} \sim (1;2;-2)$, és a $\mathbf{c} \sim (5;-2;4)$ vektorok mindegyikére? Ha van ilyen, akkor egyet adjunk is meg!
- 19. Legyen $\mathbf{a} = \mathbf{i} + \mathbf{j}$, $\mathbf{b} = \mathbf{j} \mathbf{i}$, és $\mathbf{c} = \mathbf{i} + \mathbf{k}$. Komplanárisak-e az \mathbf{a} , \mathbf{b} , \mathbf{c} vektorok?
- **20.*** Az $\mathbf{a} \sim (2; -3; 1)$, $\mathbf{b} \sim (4; 2; -1)$, és $\mathbf{c} \sim (1; 0; -3)$ vektorok adottak. Számítsuk ki az
- (a) $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$; (b) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$

vektorok koordinátáit!

4. Determinánsok

- 1. Határozzuk meg az alábbi permutációk inverziószámát, paritását:
- (a) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}$; (b) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix}$; (c) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}$.
- 2. A negyedrendű determináns számolásakor mi az alábbi szorzatok előjele:
- (a) $a_{12}a_{43}a_{24}a_{32}$; (b) $a_{13}a_{22}a_{34}a_{41}$; (c) $a_{11}a_{24}a_{33}a_{42}$.
- **3.** Az n-ed rendű determináns kifejtésében milyen előjele van a mellékátlóban álló elemek szorzatának?
- 4. Csupán a determináns definíciójának felhasználásával bizonyítsuk, hogy az

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} \\ a_{41} & a_{42} & 0 & 0 & 0 & 0 \\ a_{51} & a_{52} & 0 & 0 & 0 & 0 \\ a_{61} & a_{62} & 0 & 0 & 0 & 0 \end{vmatrix}$$

determináns 0.

5. Csupán a determináns definíciójának felhasználásával számítsuk ki x^4 és x^3 együtthatóját az alábbi polinomban:

$$f(x) = \begin{vmatrix} 3x & x & 2x & 1\\ 4 & x & 2 & -1\\ 2 & 0 & 2x & 1\\ 1 & -1 & 3 & x \end{vmatrix}.$$

6. Számoljuk ki definíció szerint az alábbi determinánsokat!

(a)
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$
; (b) $\begin{vmatrix} 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{vmatrix}$; (c) $\begin{vmatrix} 2 & 7 \\ 4 & 14 \end{vmatrix}$; (d) $\begin{vmatrix} 1 & 42 & \pi \\ 0 & 1 & e \\ 0 & 0 & 1 \end{vmatrix}$.

7. Legyen $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ és $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$. Melyik vektort határozza meg az

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

formális determináns?

8. Legyenek $\mathbf{a} \sim (a_1, a_2, a_3), \mathbf{b} \sim (b_1, b_2, b_3)$ és $\mathbf{c} \sim (c_1, c_2, c_3)$ tetszőleges vektorok. Mi az

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

determináns geometriai jelentése?

10 4. Determinánsok

 $\mathbf{9}$. Válasszuk úgy meg az x valós szám értékét, hogy a determináns 0 legyen!

(a)
$$\begin{vmatrix} 5 & 2 \\ 6 & x \end{vmatrix}$$
; (b) $\begin{vmatrix} 3 & 6 & 8 \\ 11 & 7 & x - 2 \\ 8 & 1 & 5 \end{vmatrix}$; (c) $\begin{vmatrix} x^2 & x & 1 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{vmatrix}$; (d) $\begin{vmatrix} 5 - x & 31 \\ -1 & 1 - x \end{vmatrix}$.

- 10. Döntsük el a következő állítások közül melyik igaz, melyik hamis! Minden esetben indokoljuk döntésünket!
- (a) Ha egy mátrix minden eleme természetes szám, akkor a determinánsa is az.
- (b) Ha egy mátrix minden eleme racionális szám, akkor a determinánsa is az.
- (c) Ha egy $2\times 2\text{-es}$ méretű mátrix determinánsa 0, akkor az egyik sor a másik számszorosa.
- (d) Ha egy 3×3 -as méretű mátrix determinánsa 0, akkor az egyik sor a másik két sor valamelyikének számszorosa.
- (e) Ha egy egészekből álló mátrix minden eleme osztható m-mel $(m \in \mathbb{N})$, akkor a determináns is osztható m-mel.
- (f) Ha egy $n \times n$ -es méretű egészekből álló mátrix minden eleme páros, akkor a determináns 2^n -nel osztható egész szám.
- (g) Ha egy mátrix determinánsa páros szám, akkor a mátrixnak van páros eleme.
- 11.* Ha egy mátrixnak van pontosan egy eleme, amely 0, akkor a determináns számításakor hány nemnulla tag van az n! tagú összegben?
- 12.* Ha egy mátrixnak két 0 eleme van, amelyek egy oszlopban helyezkednek el, akkor a determináns számításakor hány nemnulla tag van az n! tagú összegben?
- 13. A determináns elemi tulajdonságait felhasználva számoljuk ki az alábbi determinánsokat:

(a)
$$\begin{vmatrix} -2 & 7 & 1 \\ 6 & -21 & -3 \\ 1 & 0 & -2 \end{vmatrix}$$
; (b) $\begin{vmatrix} 1 & 5 & 1 & -9 \\ 2 & -3 & 2 & 0 \\ 7 & 4 & 7 & -1 \\ 0 & -6 & 0 & 6 \end{vmatrix}$;

(c)
$$\begin{vmatrix} 1 & 2 & -3 & 7 \\ 2 & 5 & 3 & -2 \\ 4 & 10 & 8 & 6 \\ -9 & -22 & -13 & 3 \end{vmatrix};$$
 (d)
$$\begin{vmatrix} 1 & 2 & 3 & \dots & n \\ 2 & 3 & 4 & \dots & n+1 \\ 3 & 4 & 5 & \dots & n+2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n & n+1 & n+2 & \dots & 2n-1 \end{vmatrix};$$

(e)
$$\begin{vmatrix} 0 & 1 & 1 & 2 \\ 3 & 5 & 8 & 13 \\ 21 & 34 & 55 & 89 \\ 144 & 233 & 377 & 610 \end{vmatrix}$$
 (f)
$$\begin{vmatrix} 1 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & \sqrt{\frac{3}{4}} & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{\sqrt{12}} & \sqrt{\frac{4}{6}} & 0 & 0 \\ \frac{1}{2} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{24}} & \sqrt{\frac{5}{8}} & 0 \\ \frac{1}{2} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{24}} & \frac{1}{\sqrt{40}} & \sqrt{\frac{6}{10}} \end{vmatrix}$$

11

14. A determináns elemi tulajdonságait felhasználva számoljuk ki az alábbi determinánsokat:

(a)
$$\begin{vmatrix} 1 & 2 & 0 & 0 \\ 2 & 1 & 2 & 0 \\ 0 & 2 & 1 & 2 \\ 0 & 0 & 2 & 1 \end{vmatrix}$$
; (b)
$$\begin{vmatrix} 1 & i & 1 - i \\ 1 + i & i & 0 \\ -i & 0 & 1 \end{vmatrix}$$
; (c)
$$\begin{vmatrix} 17 & 27 & -3 \\ 34 & 9 & 6 \\ 51 & 18 & -12 \end{vmatrix}$$
.

15. A 156, 273, és 351 számok mindegyike osztható 13-mal. Igazoljuk, hogy

$$\begin{vmatrix} 1 & 5 & 6 \\ 2 & 7 & 3 \\ 3 & 5 & 1 \end{vmatrix}$$

is osztható 13-mal.

16.* Bizonyítsuk be, hogy ha egy n-ed rendű determinánsban az a_{ij} és a_{ji} elemek egymás komplex konjugáltjai, akkor a determináns értéke valós szám.

17. Számoljuk ki az alábbi determinánsokat:

(a)
$$\begin{vmatrix} 1111 & 111 & 11 \\ 11111 & 1111 & 111 \\ 12345 & 1234 & 123 \end{vmatrix};$$
 (b)
$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{vmatrix};$$
 (c)
$$\begin{vmatrix} 0 & a & a \\ b & 0 & a \\ b & b & 0 \end{vmatrix};$$

18. Számoljuk ki az alábbi determinánsokat:

(a)
$$\frac{1}{2} \begin{vmatrix} 1 & i \\ i & 1 \end{vmatrix}$$
; (b) $\begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{vmatrix}$; (c) $\begin{vmatrix} 1/4 & -1/4 & 1/4 \\ 1/2 & -1/6 & 1/3 \\ 1/5 & -1/3 & 1/6 \end{vmatrix}$.

19. Mindkét oldal kiszámolásával ellenőrizzük a determinánsok szorzástételét az

$$A = \begin{pmatrix} 1 & -4 & 2 \\ 0 & 5 & -1 \\ -1 & 6 & -2 \end{pmatrix} \text{ és } B = \begin{pmatrix} 3 & -1 & 0 \\ -2 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

mátrixokra.

20. Számítsuk ki a következő determináns négyzetét a determinánsok szorzástétele alapján:

$$\left| \begin{array}{ccc} 5 & 4 & 3 \\ -5 & 3 & -2 \\ 3 & 4 & 2 \end{array} \right|.$$

Ellenőrizzük a kapott eredményt!

21. Szorozzuk össze az alábbi két determinánst:

$$D_1 = \left| \begin{array}{ccc} 5 & -3 & 10 \\ 0 & 7 & 1 \\ 2 & 9 & 4 \end{array} \right|; \quad D_2 = \left| \begin{array}{ccc} -2 & 0 & 5 \\ 0 & 1 & 0 \\ 1 & 0 & 4 \end{array} \right|.$$

22. Határozzuk meg a $P_1(-3;2)$, $P_2(4;1)$ és $P_3(1;-3)$ csúcspontú háromszög területét!

12 4. Determinánsok

5. Mátrixok

1. Határozzuk meg az alábbi mátrixok méretét!

(a)
$$\begin{pmatrix} 2 & -3 & 5 \\ 1 & 0 & 3 \end{pmatrix}$$
; (b) $\begin{pmatrix} 1 & 3 \\ 4 & 2 \\ 37 & 5 \end{pmatrix}$; (c) $(x^2 - 1 \ x \ 3)$; (d) $\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$.

 ${\bf 2.}$ Határozzuk meg xés yértékét úgy, hogy az egyenlőségek fennálljanak!

(a)
$$\begin{pmatrix} 2 & x \\ y-1 & 5 \end{pmatrix} = \begin{pmatrix} 2 & -6 \\ 1 & 5 \end{pmatrix}$$
; (b) $\begin{pmatrix} x+y & 5 & 1 \\ 0 & -3 & x-2y \end{pmatrix} = \begin{pmatrix} 4 & 5 & 1 \\ 0 & -3 & -2 \end{pmatrix}$.

3. Legyen

$$A = \begin{pmatrix} 2 & 1 \\ -4 & 3 \\ 0 & 2 \end{pmatrix} \text{ és } B = \begin{pmatrix} 3 & -1 \\ 3 & 0 \\ 9 & -7 \end{pmatrix}.$$

Számoljuk ki a 2A, A+B, A-3B, -5B mátrixokat!

4. Írjuk fel a C-3iD mátrixot, ha $C=\begin{pmatrix}2-i&-1&i\\0&1+i&3\end{pmatrix}$ és $D=\begin{pmatrix}i+3&2&-4\\9i&0&5\end{pmatrix}$!

5. Számoljuk ki a következő szorzatokat:

(a)
$$\begin{pmatrix} 1 & 2 & 6 \\ -4 & 0 & -2 \end{pmatrix} \cdot \begin{pmatrix} 10 & -9 & 6 \\ -2 & -4 & -1 \\ 7 & -8 & -8 \end{pmatrix}$$
; (b) $\begin{pmatrix} -8 \\ 3 \\ -2 \\ -4 \end{pmatrix} \cdot \begin{pmatrix} 8 & 5 & -10 \end{pmatrix}$;

(c)
$$\begin{pmatrix} -8 & -7 & 6 & 7 \\ 10 & 4 & -9 & 2 \end{pmatrix} \cdot \begin{pmatrix} -5 & -3 \\ 5 & 0 \\ 4 & -7 \\ -3 & 6 \end{pmatrix}$$
; (d) $\begin{pmatrix} -9 & 6 & -2 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 4 \\ 10 \\ -1 \\ 3 \end{pmatrix}$.

6. Legyen $f(x) = x^2 - 9x - 1$ és $A = \begin{pmatrix} 2 & 5 \\ 3 & 7 \end{pmatrix}$. Számítsuk ki az $f(A) = A^2 - 9A - I$ mátrixot!

7.* Számítsuk ki a következő mátrixok *n*-edik hatványát!

(a)
$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
; (b) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$; (c) $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$; (d) $\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$.

8. Keressünk olyan 2×2 -es A, B mátrixokat, amelyekre AB = O, de $BA \neq O$.

9.* Mivel a mátrixszorzás nem kommutatív művelet, ezért általában nem igaz, hogy [A, B] = O. Határozzuk meg azokat a mátrixokat, amelyek bármely mátrixszal felcserélhetők!

10. Bizonyítsuk be, hogy ha AB = BA, akkor

(a)
$$(A+B)^2 = A^2 + 2AB + B^2$$
; (b) $A^2 - B^2 = (A-B)(A+B)$.

11. Határozzuk meg a következő mátrixok kommutátorát: $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $\begin{pmatrix} -3 & 1 \\ 0 & 5 \end{pmatrix}$.

12.* Egy x szám exponenciálisát a következő végtelen összeg segítségével is kiszámíthatjuk: $e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\cdots$. Egy A mátrix exponenciálisát az

$$e^A := I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \frac{A^4}{4!} + \cdots$$

14 5. Mátrixok

végtelen összeggel definiáljuk.

Bizonyítsuk be, hogy ha [A,B]=O, akkor $e^{A+B}=e^A\cdot e^B!$

13. Igazoljuk, hogy ferdén szimmetrikus mátrixok kommutátora is ferdén szimmetrikus!

14. Számítsuk ki az
$$(A^+)^+, (A\cdot B)^+, B^+\cdot A^+$$
 és $\left(A^++B^2\right)^\mathsf{T}$ mátrixokat, ha

$$A = \begin{pmatrix} 1+i & -2 \\ 1 & 3-2i \end{pmatrix} \text{ és } B = \begin{pmatrix} i & -i \\ 3 & 0 \end{pmatrix}.$$

15.* Igazoljuk, hogy tetszőleges $A, B \in \mathbb{F}^{n \times n}$ mátrixok esetén $\operatorname{tr}(AB) = \operatorname{tr}(BA)!$

16. Igazoljuk, hogy tetszőleges $A,B,C\in\mathbb{F}^{n\times n}$ mátrixok esetén ha AB=I, akkor $\mathrm{tr}(BCA)=\mathrm{tr}(C)!$

17.* Bizonyítsuk be, hogy az AB - BA = I egyenlőség sohasem teljesülhet!

18. Adjunk általános formulát a 2×2 -es mátrixok inverzére!

19.* Igazoljuk, hogy egy ortogonális mátrix determinánsa +1 vagy −1!

20. Határozzuk meg az alábbi mátrixok inverzét:

(a)
$$\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$$
; (b) $\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$; (c) $\begin{pmatrix} 1 & 5 & 7 \\ 0 & 3 & 1 \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$; (d) $\begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}$.

21. Számítsuk ki $\Phi(A)$ -t, ha $\Phi(X) = (I + X) \cdot (I - X)^{-1}$ és $A = \begin{pmatrix} -8 & -8 \\ 2 & -8 \end{pmatrix}$.

22.* Bizonyítsuk, hogy egy unitér mátrix determinánsának abszolút értéke 1!

23.* Határozzuk meg az $A = \begin{pmatrix} 0 & -1 & 3 & 0 & 2 \\ 2 & -4 & 1 & 5 & 3 \\ -4 & 5 & 7 & -10 & 0 \end{pmatrix}$ mátrix rangját!

6. Vektorterek

- 1. Mutassuk meg, hogy a csupa 0 komponensből álló vektor lesz a nullvektor a szám n-esek klasszikus (komponensenkénti) összeadásában!
- 2. Igazoljuk, hogy a 4. Példák valóban teljesítik a vektortér-axiómákat!
- **3.** Döntsük el, hogy a valós együtthatós polinomok $\mathbb{R}[x]$ vektorterének alábbi részhalmazai alteret alkotnak-e a valós számtest felett, ha a műveleteket a szokásos módon értelmezzük! A p polinom fokát $\deg(p)$ -vel jelöljük.

```
(a) \{p : \deg(p) = 100 \text{ vagy } p = 0\}; (b) \{p : \deg(p) < 100\};
```

- (c) $\{p: x+1 \mid p\};$ (d) $\{p: p(1)=0\};$
- (e) $\{p: p(1) = 1\};$ (f) $\{p: p \text{ együtthat\'oinak \"osszege } 0\};$
- (g) $\{p: p\text{-nek van valós gy\"oke}\};$ (h) $\{p: p\text{ egy\"utthat\'oi racion\'alis sz\'amok}\}.$
- 4. Döntsük el az alábbi állítások közül melyek igazak, melyek hamisak! Választásunkat indokoljuk!
- (a) Ha $\mathbf{v} \neq \mathbf{0}$ és $\lambda \mathbf{v} = \mu \mathbf{v}$, akkor $\lambda = \mu$;
- (b) Ha $\lambda \neq 0$ és $\lambda \mathbf{u} = \lambda \mathbf{v}$, akkor $\mathbf{u} = \mathbf{v}$;
- (c) Ha $\mathbf{u}, \mathbf{v} \neq \mathbf{0}, \ \lambda, \mu \neq 0$, és $\lambda \mathbf{u} = \mu \mathbf{v}$, akkor $\lambda = \mu$ és $\mathbf{u} = \mathbf{v}$.
- **5.** Mutassuk meg, hogy az U vektortér nullvektorából álló $\{\mathbf{0}\}$ halmaz altere U-nak.
- **6.** Igazoljuk, hogy ha U és W a V vektortér altere, akkor U+W is az.
- **7.** Igazoljuk, hogy ha U és W a V vektortér altere, akkor $U \cap W$ is az.
- **8.*** Jelölje V az n-nél nem nagyobb fokszámú polinomok vektorterét, U pedig azon legfeljebb n-ed fokú polinomok halmazát, amelyek értéke 0 a $t_1, \ldots, t_j, j < n$ pontokban. Mutassuk meg, hogy U altere V-nek.
- **9.** Az \mathbb{R}^3 valós vektortér alábbi részhalmazai közül melyek alterek?

```
(a) \{(x,y,z): x+y+z=0\}; (b) \{(x,y,z): x\cdot y+z=0\};
```

- (c) $\{(x,y,z): x+y+z=1\};$ (d) $\{(x,y,z): 2x+3y+z=0 \text{ és } x-z=0\};$
- (e) $\{(x, y, z) : x \cdot y = 0\};$ (f) $\{(x, y, z) : 3x = y\}.$
- **10.*** Legyen W altér a V vektortérben és $U\subseteq W$. Bizonyítsuk be, hogy U akkor és csak akkor altér V-ben, ha altér W-ben.
- 11. Generátorrendszert alkotnak-e az alábbi vektorrendszerek az \mathbb{R}^3 vektortérben?

```
(a) (1;1;-1), (1;-1;1), (1;0;0); (b) (1;0;-1), (0;-1;1), (-1;1;0);
```

- (c) (1;1;1), (1;1;0), (1;0;1), (0;1;1); (d) (1;1;1), (2;1;0), (1;0;-1), (0;1;2).
- 12. Döntsük el, hogy igazak-e a következő állítások! Választásunkat indokoljuk!
- (a) A valós együtthatós polinomok vektorterében:

$$x-1 \in \langle x^3-1, x^3-x, x^3-x^2, 2x^2-3x+1 \rangle;$$

(b) A valós együtthatós polinomok vektorterében:

$$x+1 \in \langle x^3-1, x^3-x, x^3-x^2, 2x^2-3x+1 \rangle;$$

(c) A valós együtthatós polinomok vektorterében:

$$x+1 \in \langle x^3-1, x^3-x, x^3-x^2, 2x^2+3x+1 \rangle;$$

(d) A valós függvények vektorterében:

$$\frac{1}{x} \in \left\langle 1, \frac{1}{1+x} \right\rangle$$
.

16 6. Vektorterek

- 13. Mutassuk meg, hogy ha az $\mathbf{x}_1, \dots, \mathbf{x}_n$ vektorok lineárisan függetlenek, akkor egyik sem nullvektor!
- 14. Tegyük fel, hogy az a, b, c, d vektorok egyike sem nulla. Mit mondhatunk a négy vektor lineáris függőségéről, ha
- (a) **a**, **b**, **c** lineárisan függő és **c**, **d** lineárisan függő?
- (b) **a**, **b**, **c** lineárisan független és **c**, **d** lineárisan függő?
- (c) d, b lineárisan független, c, d, b lineárisan függő és a, c lineárisan függő?
- 15. Döntsük el, hogy az alábbi vektorrendszerek közül melyek a lineárisan függetlenek?
- (a) (3; -2), (-16, 5; 11);
- (b) (1;0;-2), (3;-1;5), (0;7;-4);
- (c) (4; -6; 1), (-7; -2; 3), (1; 6; 1); (d) (4; 3; 7; 1), (-2; 6; 12; 1), (8; 3; -3; -4).
- 16. Adjuk meg az x paraméter értékét úgy, hogy a vektorrendszer lineárisan függő legyen!
- (a) (9;2), (-5;x);
- (b) (1;3;0), (-2;7;5), (x;-1;2);
- (c) (1;2;4), (5;x;2), (1;4;x); (d) (1;0;1;1), (2;2;1;0), (-1;2,1,2), (1;1;2;x).
- 17. Tekintsük a $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}\subset V$ vektorrendszert. Adjunk egy módszert két tetszőleges vektor felcserélésére az 1. és 2. elemi átalakítások segítségével!
- 18. Tekintsük a legfeljebb 20-ad fokú valós együtthatós polinomok szokásos vektorterét a valós test felett. Adjunk meg egy-egy bázist az alábbi alterekben. Egy általános $a_0 + a_1x + \cdots + a_{20}x^{20}$ polinomot p-vel jelölünk.
 - (b) $\{p \mid p(1) = 0\};$ (a) $\{p \mid \deg p \le 10 \text{ vagy } p = 0\};$
 - (c) $\{p \mid p \text{ együtthat\'oinak az \"osszege } 0\};$ (d) $\{p \mid p(3) = 2p(4)\}.$
- **19.*** Legyen $\mathbf{v}_1, \dots, \mathbf{v}_n$ bázis a V vektortérben és

$$\mathbf{u}_i = a_{1i}\mathbf{v}_1 + \dots + a_{ni}\mathbf{v}_n, \quad i = 1,\dots, n.$$

Bizonyítsuk be, hogy $\mathbf{u}_1, \dots, \mathbf{u}_n$ akkor és csak akkor alkot bázist V-ben, ha az a_{ij} -kből képzett n-edrendű determináns nem nulla.

- **20.** Legyenek U és W alterek V-ben, dim V=40, dim U=24 és dim W=19. Bizonyítsuk be, hogy
- **21.*** Legyenek U és W alterek V-ben. Bizonyítsuk be, hogy $\dim \langle U, W \rangle \leq \dim U + \dim W$.
- **22.** Tekintsük \mathbb{R}^3 -ben a következő bázist: $\mathbf{e}_1=(1;1;1),\ \mathbf{e}_2=(1;1;0),\ \mathbf{e}_3=(1;0;0).$ Határozzuk meg ebben a bázisban a következő vektorok koordinátáit:
 - (a) (1;2;3); (b) (-3;6;7); (c) (2;-1;0); (d) (x;y;z).
- **23.** Legyen $\mathbf{v}=(3;2;-5)$ az $\mathbf{f}_1=(1;1;0),\ \mathbf{f}_2=(1;0;1),\ \mathbf{f}_3=(1;1;1)$ bázisra vonatkoztatva. Mik \mathbf{v} koordinátái az $\mathbf{e}_1 = (1; 0; 0), \, \mathbf{e}_2 = (0; 1; 0), \, \mathbf{e}_3 = (0; 0; 1)$ bázisban?

7. Lineáris egyenletrendszerek

1. Oldjuk meg a következő kétismeretlenes lineáris egyenletrendszert!

$$\begin{cases} 2x - y = -5 \\ -x - 2y = 0 \end{cases}.$$

2. Oldjuk meg a következő háromismeretlenes lineáris egyenletrendszert!

$$\begin{cases} x + 3y + 4z = 2 \\ 2x + 6y + 6z = 2 \\ x + 4y + 3z = 1 \end{cases}$$

3. Írjuk fel a következő lineáris egyenletrendszerek bővített mátrixát!

(a)
$$\begin{cases} x_1 + x_2 + x_3 - x_4 = 2 \\ x_1 - x_2 + x_3 + x_4 = 3 \\ -2x_3 + 3x_3 - x_4 = 19 \end{cases}$$
 (b)
$$\begin{cases} x - y - z = 1 \\ 9x - y + z = 5 \\ 2x - 3y + z = -3 \end{cases}$$
.

4. Döntsük el, hogy megoldható-e a következő lineáris egyenletrendszer (Használjuk a Kronecker–Capellitételt)!

$$\begin{cases} x_1 + x_2 + x_3 - x_4 = 4 \\ 2x_1 + 2x_2 + 2x_3 - 2x_4 = 5 \\ 2x_1 - x_2 + 4x_3 = -1 \end{cases}.$$

5. Hány pontban metszi-e egymást az alábbi három sík?

$$\begin{cases} x_1 + x_2 + x_3 = 6 \\ x_1 + x_2 + x_3 = 8 \\ x_1 - x_2 + x_3 = 0 \end{cases}$$

6. Oldiuk meg a következő lineáris egyenletrendszereket

(a)
$$\begin{cases} 2x_1 - x_2 - x_3 = 4 \\ 3x_1 + 4x_2 - 2x_3 = 11 \\ 3x_1 - 2x_2 + 4x_3 = 11 \end{cases}$$
 (b)
$$\begin{cases} x_1 - 4x_2 + 5x_3 = 0 \\ 2x_1 - x_2 + 3x_3 = 0 \\ 3x_1 + 2x_2 + x_3 = 0 \end{cases}$$

7. Válasszuk meg a t valós paramétert úgy, hogy az alábbi lineáris egyenletrendszer megoldható legyen!

$$\begin{cases} 2x_1 - x_2 + x_3 + x_4 = 1\\ x_1 + 2x_2 - x_3 + 4x_4 = 2\\ x_1 + 7x_2 - 4x_3 + 11x_4 = t \end{cases}$$

8. Oldjuk meg a következő lineáris egyenletrendszert!

$$\begin{cases} x_1 - x_2 + x_3 = 4 \\ x_1 + 2x_2 + x_3 = 13 \\ 2x_1 + 4x_2 + 2x_3 = 26 \\ 4x_1 + 5x_2 + 4x_3 = 43 \end{cases}$$

9. Oldjuk meg a Cramer-szabály segítségével a következő lineáris egyenletrendszereket!

(a)
$$\begin{cases} 3x_1 + 2x_2 - x_3 = 4 \\ x_1 + x_2 - x_3 = 3 \\ 2x_1 - 5x_2 + 4x_3 = 1 \end{cases}$$
 (b)
$$\begin{cases} x_1 + x_2 + 2x_3 = -1 \\ 2x_1 - x_2 + 2x_3 = -4 \\ 4x_1 + x_2 + 4x_3 = -2 \end{cases}$$

- 10.* Adott 13 súly. Bárhogyan is veszünk el egyet, a maradék 12 súlyt fel lehet úgy pakolni a (kétkarú) mérlegre, hogy az ki legyen egyensúlyozva. Mutassuk meg, hogy ez csak úgy lehetséges, ha a súlyok mind egyformák!
- 11. Indokoljuk a Cramer-szabályt használva, hogy az elemi átalakítások miért nincsenek hatással a lineáris egyenletrendszer megoldhatóságára/megoldásaira!
- 12. Döntsük el az alábbi \mathbb{R}^4 -beli vektorokról, hogy lineárisan függetlenek-e! Ha lineárisan függők, akkor adjunk meg egy nemtriviális lineáris kombinációt, amely a $\mathbf{0}$ -t adja eredményül.

$$\begin{pmatrix} 1 \\ 2 \\ 4 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 3 \\ 5 \end{pmatrix}, \begin{pmatrix} 6 \\ 6 \\ 4 \\ 0 \end{pmatrix}.$$

13.* Döntsük el az alábbi \mathbb{C}^3 -beli vektorokról, hogy lineárisan függetlenek-e! Ha lineárisan függők, akkor adjunk meg egy nemtriviális lineáris kombinációt, amely a $\mathbf{0}$ -t adja eredményül.

$$\begin{pmatrix} 1+i \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

14. Határozzuk meg a Gauss–Jordan-elimináció segítségével az alábbi mátrix inverzét!

$$\begin{pmatrix} 2 & 1 & -3 \\ 5 & 1 & 0 \\ 4 & -8 & 1 \end{pmatrix}.$$

8. Lineáris leképezések, lineáris transzformációk

- 1. Döntsük el az alábbi leképezésekről, hogy lineárisak-e!
- (a) $\mathcal{A}: \mathbb{R} \to \mathbb{R}, x \mapsto x 1$; (b) $\mathcal{B}: \mathbb{R} \to \mathbb{R}, x \mapsto 3 \cdot x$.
- 2. Döntsük el az alábbi leképezésekről, hogy lineárisak-e!
- (a) $\mathcal{A}: \mathbb{C} \to \mathbb{R}, z \mapsto \operatorname{Re}(z);$ (b) $\mathcal{B}: \mathbb{C} \to \mathbb{R}, z \mapsto |z|$
- (c) $\mathcal{C}: \mathbb{C} \to \mathbb{R}, z \mapsto \arg(z);$ (d) $\mathcal{D}: \mathbb{C} \to \mathbb{R}, z \mapsto \max\{\operatorname{Re}(z), \operatorname{Im}(z)\};$
- (e) $\mathcal{E}: \mathbb{R} \to \mathbb{C}, x \mapsto \cos(x) + i \cdot \sin(x);$ (f) $\mathcal{F}: \mathbb{R} \to \mathbb{R}, x \mapsto -x.$
- 3. Döntsük el az alábbi leképezésekről, hogy lineárisak-e!
- (a) $A: \mathbb{R}^{n \times n} \to \mathbb{R}, A \mapsto \det(A);$ (b) $\mathcal{B}: \mathbb{R}^{n \times n} \to \mathbb{R}, A \mapsto \operatorname{tr}(A).$
- 4. Döntsük el az alábbi leképezésekről, hogy lineárisak-e!
- (a) $\mathcal{A}: \mathbb{R}^3 \to \mathbb{R}, \ \mathbf{v} \mapsto |\mathbf{v}|;$ (b) $\mathcal{B}: \mathbb{R}^n \to \mathbb{R}, \ \mathbf{v} \mapsto \max\{v_i \mid i = 1, \dots, n\}$ (c) $\mathcal{C}: \mathbb{R}^3 \to \mathbb{R}^3, \ \mathbf{v} \mapsto \mathbf{v} + \mathbf{i};$ (d) $\mathcal{D}: \mathbb{R}^3 \to \mathbb{R}, \ \mathbf{v} \mapsto \mathbf{i} \cdot \mathbf{v}$
- **5.** Adjuk meg az $\mathcal{A}: \mathbb{R}^2 \to \mathbb{R}^2$, $\mathbf{v} \mapsto A\mathbf{v}$ leképezés magterét és képterét, ahol $A = \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}$.
- 6. Adjunk meg legalább négy, a 3-dimenziós vektorok terén értelmezett lineáris transzformációt!
- **7.** Legyen $\mathcal{A}: \mathbb{R}^3 \to \mathbb{R}^2$, $(x, y, z) \mapsto (x, y)$ és $\mathcal{B}: \mathbb{R}^3 \to \mathbb{R}^2$, $(x, y, z) \mapsto (2x, y)$. Adjuk meg az $\mathcal{A} + \mathcal{B}$ és $\mathcal{A} - 3\mathcal{B}$ leképezéseket és alkalmazzuk őket az (1; -2; 3) vektorra!
- **8.** Legyen $\mathcal{A}: \mathbb{R}^2 \to \mathbb{R}^3$, $(x,y) \mapsto (-x,y,x)$ és $\mathcal{B}: \mathbb{R}^3 \to \mathbb{R}^2$, $(x,y,z) \mapsto (x,y)$. Adjuk meg az $\mathcal{A} \cdot \mathcal{B}$ leképezést és alkalmazzuk a (0;1;1) vektorra!
- **9.** Legyen $\mathcal{A}: \mathbb{R}^2 \to \mathbb{R}^2$ az origó körüli $\pi/4$ szöggel történő forgatás, $\mathcal{B}: \mathbb{R}^2 \to \mathbb{R}^2$ pedig az y = x egyenesre való tükrözés. Adjuk meg az $\mathcal{A} \cdot \mathcal{B}$ és $\mathcal{B} \cdot \mathcal{A}$ szorzatokat!
- **10.*** Legyen $\mathcal{R}_x(\pi/2) \colon \mathbb{R}^3 \to \mathbb{R}^3$ az x tengely körüli $\pi/2$ szöggel történő forgatás, $\mathcal{R}_y(\pi/2) \colon \mathbb{R}^3 \to \mathbb{R}^3$ az y tengely körüli $\pi/2$ szöggel való forgatás. Igazoljuk, hogy $\mathcal{R}_x(\pi/2) \cdot \mathcal{R}_y(\pi/2) \neq \mathcal{R}_y(\pi/2) \cdot \mathcal{R}_x(\pi/2)!$
- 11. Adjuk meg a
- (a) síkvektorokat x tengelyre tükröző
- (b) síkvektorokat origó körül $\pi/4$ szöggel elforgató
- (c) síkvektorokat origó körül φ szöggel elforgató
- (d) síkvektorokat origóra középpontosan tükröző
- (e) térbeli vektorokat a ztengely körül $\pi/3$ szöggel elforgató
- (f) térbeli vektorokat az x-y síkra vetítő

lineáris transzformáció mátrixát a standard bázisban!

- **12.** Adjuk meg az $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^{n-1}[x], (a_0, a_1, \dots, a_{n-1}) \mapsto a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$ lineáris leképezés mátrixát az $\{\mathbf{e}_i\}_{i=1}^n \subset \mathbb{R}^n$ és $\{1, x, \dots, x^{n-1}\} \subset \mathbb{R}^{n-1}[x]$ bázisokra vonatkozóan! ($\mathbb{R}^n[x]$: a legfeljebb (n-1)-ed fokú valós együtthatós polinomok vektortere, $\{\mathbf{e}_i\}_{i=1}^n$ pedig a standard bázis)
- 13. Határozzuk meg az $\mathcal{A}: \mathbb{R}^3 \to \mathbb{R}^3$, $(x,y,z) \mapsto (x-y,x+2z,x+2y-z)$ lineáris transzformáció mátrixát a standard és a $\{(3;0;0),(0;1;2),(0;1;-1)\}$ bázisban is! Számítsuk ki az (1;2;3) vektor \mathcal{A} melletti képének koordinátáit mindkét bázisban.

14. Válasszunk egy tetszőleges – a standard bázistól különböző – bázist \mathbb{R}^2 -ben és írjuk fel az alábbi e, f, g, h egyenesekre való tükrözések mátrixát ebben és a standard bázisban is. (Ez összesen nyolc 2×2 -es mátrixot jelent.)

$$\begin{array}{l} e = \{(x,0) \mid x \in \mathbb{R}\}, \quad f = \{(x,-x) \mid x \in \mathbb{R}\}, \\ g = \{(x,3x) \mid x \in \mathbb{R}\}, \ h = \{(0,x) \mid x \in \mathbb{R}\}. \end{array}$$

- **15.*** Oldjuk meg az előző feladatot azzal a módosítással, hogy tükrözés helyett merőleges vetítést alkalmazunk!
- 16. Igaz-e, hogy a síkon bármely két origó körüli forgatás hasonló?
- 17. Hasonló-e az alábbi két mátrix?

$$A = \begin{pmatrix} 1 & 2 \\ -3 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 19 & 22 \\ -15 & -17 \end{pmatrix}.$$

9. Sajátérték, sajátvektor

1. Adjuk meg

- (a) a sík x tengelyre történő tükrözésének
- (b) a sík y = x egyenesre történő tükrözésének
- (c) a sík origó körüli $\pi/4$ szögű forgatásának
- (d) a sík origó körüli φ szögű forgatásának
- (e) a sík origóra történő középpontos tükrözésének
- (f) az y tengelyre történő vetítés

sajátértékeit, sajátvektorait!

- **2.** Tekintsük a sík azon transzformációját, amely az x tengely mentén 3, az y tengely mentén pedig 2 egységgel nyújtja meg a vektorokat. Adjuk meg a transzformáció sajátértékeit, sajátvektorait!
- **3.** Adjuk meg az $\mathcal{A} \colon \mathbb{R}^3 \to \mathbb{R}^3$, $\mathbf{v} \mapsto \mathbf{v} \times \mathbf{i}$ lineáris transzformáció sajátértékeit, sajátvektorait!
- **4.** Legyen $A: V \to V$ invertálható lineáris transzformáció. Mit tudunk mondani \mathcal{A}^{-1} sajátértékeiről, sajátvektorairól?
- **5.*** Legyenek $\mathcal{A}, \mathcal{B}: V \to V$ lineáris transzformációk. Tegyük fel, hogy \mathbf{v} sajátvektora mindkét transzformációnak rendre a λ és μ sajátértékekkel. Mit mondhatunk $[\mathcal{A}, \mathcal{B}] = \mathcal{A} \cdot \mathcal{B} \mathcal{B} \cdot \mathcal{A}$ és \mathbf{v} kapcsolatáról?
- **6.** Számítsuk ki az alábbi mátrixok sajátértékeit, sajátvektorait:

(a)
$$\begin{pmatrix} 6 & 0 \\ 1 & -3 \end{pmatrix}$$
; (b) $\begin{pmatrix} 5 & 4 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & 3 \end{pmatrix}$; (c) $\begin{pmatrix} 5 & 4 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & 3 \end{pmatrix}$;

(d)
$$\begin{pmatrix} 1 & -2 \\ 4 & -3 \end{pmatrix}$$
; (e) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$; (f) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}$.

- 7. Számítsuk ki az alábbi mátrix sajátértékeit, sajátvektorait: $\begin{pmatrix} a & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, $a \in \mathbb{R}$.
- **8.** Az $\mathcal{A} \colon \mathbb{R}^3 \to \mathbb{R}^3$ lineáris transzformáció mátrixa a kanonikus bázisban

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -2 \\ 1 & 0 & 0 \end{pmatrix}.$$

Határozzuk meg a minimálpolinomot! Ellenőrizzük a kapott eredményt!

- **9.** Melyek \mathbb{R}^2 azon lineáris transzformációi, amelyek minimálpolinomja elsőfokú?
- 10. Van-e olyan 2 × 2-es valós elemű mátrix az egységmátrixon kívül, amelynek köbe az egységmátrix?
- 11. Van-e olyan 2×2 -es valós elemű mátrix az egységmátrixon kívül, amelynek az ötödik hatványa az egységmátrix?
- 12. Van-e olyan 3 × 3-as valós elemű mátrix az egységmátrixon kívül, amelynek köbe az egységmátrix?

13. Diagonalizáljuk a

(a)
$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
; (b) $\begin{pmatrix} 2 & -1 \\ -2 & 3 \end{pmatrix}$; (c) $\begin{pmatrix} 3 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 4 \end{pmatrix}$; (d) $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$;

mátrixot, azaz írjuk fel a mátrixát a sajátvektoraiból álló bázisban!

14.* Írjuk fel a

$$\begin{pmatrix} \lambda & 0 & \cdots & 0 & 0 \\ 1 & \lambda & \ddots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \ddots & \lambda & 0 \\ 0 & 0 & \cdots & 1 & \lambda \end{pmatrix}$$

mátrix karakterisztikus polinomját!

10. Lineáris funkcionálok, duális tér

- 1. Mutassuk meg, hogy a 4. Példák között szereplő összes funkcionál lineáris!
- **2.** Tekintsük az $\mathbb{R}[x]$ téren értelmezett $\alpha(p) := p''(2)$ lineáris funkcionált! Határozzuk meg az alábbi polinomok α melletti képét:
- (a) 1+x; (b) $3+x^2$; (c) $2x^3+4x^4$; (d) x^4-3x^5 .
- **3.** Tudjuk, hogy az $\mathbb{R}^{n \times n}$ vektortér standard bázisa a mátrixegységek halmaza. Adjuk meg $\mathbb{R}^{n \times n}$ duális terének standard bázisát alkotó lineáris funkcionálokat!
- **4.** Tekintsük a [0,1] intervallumon integrálható valós függvények terén értelmezett $f \mapsto \int_0^1 f(x) dx$ lineáris funkcionált és határozzuk meg az alábbi függvények értékét!
- (a) x^2 ; (b) $\sin(x) + \cos(x)$; (c) $\frac{5}{1+x^2}$; (d) x^2e^x .
- **5.** Legyen V egy n-dimenziós, \mathbb{F} test feletti vektortér $(n \in \mathbb{N})$. Láttuk, hogy ekkor V^* szintén egy n-dimenziós \mathbb{F} feletti vektortér, így képezhető a duálisa: $(V^*)^*$. Ezt nevezzük V második duálisának vagy biduálisának és V^{**} -gal jelöljük. Igazoljuk, hogy V^{**} izomorf V-vel!
- **6.*** Legyen V egy n-dimenziós $(n \in \mathbb{N})$, \mathbb{F} test feletti vektortér és $U \leq V$ egy altér V-ben. Azon $\alpha \in V^*$ lineáris funkcionálok halmazát, amelyek az U téren eltűnnek, azaz $\alpha(\mathbf{u}) = 0$ teljesül minden $\mathbf{u} \in U$ vektorra, az U tér annullátorának nevezzük és U^{\perp} -vel jelöljük. Igazoljuk az alábbi, az $U \leq V$ altér annullátorára vonatkozó állításokat:
- (a) $\dim U^{\perp} = \dim V \dim U;$
- (b) $(U^{\perp})^{\perp} \cong U;$
- (c) Ha U a $W \subset V$ halmazt tartalmazó legszűkebb altér, akkor $W^{\perp} = U^{\perp}$.

11. Bilineáris funkcionálok, ortogonalizálás

- 1. Bilineáris funkcionálok-e az alábbi függvények:
- (a) $\mathfrak{A}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, (x, y) \mapsto x \cdot y;$
- (b) $\mathfrak{B}: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, \ (\mathbf{a}, \mathbf{b}) \mapsto \mathbf{a} \cdot \mathbf{b} + 1;$
- (c) $\mathfrak{C}: \mathbb{R}[x] \times \mathbb{R}[x] \to \mathbb{R}, (f,g) \mapsto \deg(f \cdot g).$
- **2.** Adjuk meg az \mathbb{R}^3 téren definiált skaláris szorzás mátrixát a kanonikus és egy attól különböző bázisban!
- **3.** Igazoljuk, hogy az $\mathfrak{O}: V \times V \to \mathbb{R}$, $(\mathbf{v}_1, \mathbf{v}_2) \mapsto 0$ bilineáris funkcionál mátrixa bármely bázisban a nullmátrix! $(\dim(V) = n \in \mathbb{N})$
- **4.** Adjuk meg az \mathbb{R}^n téren értelmezett skaláris szorzás mátrixát a standard bázisban!
- **5.** Adjuk meg az $\mathfrak{A}: \mathbb{R}^n[x] \times \mathbb{R}^n[x] \to \mathbb{R}$, $(p,q) \mapsto p'(1) \cdot q(1)$ bilineáris funkcionál mátrixát az $\{1; x; \ldots; x^{n-1}\}$ bázisban!
- **6.** Tekintsük azt a bilineáris funkcionált, amelynek mátrixa az térbeli vektorok vektorterének standard bázisában $\begin{pmatrix} 1 & 2 & 0 \\ -1 & 2 & -4 \\ 1 & 0 & 2 \end{pmatrix}$. Mi lesz (\mathbf{i}, \mathbf{j}) és $(2\mathbf{i} + 3\mathbf{j} \mathbf{k}, -2\mathbf{j} + \mathbf{k})$ képe?
- 7. Hajtsuk végre a Gram–Schmidt ortogonalizációt az \mathbb{R}^3 vektortér

$$\{(1;2;3),(-1;0;1),(0;1;4)\}$$

bázisán, ha a bilineáris funkcionál a skaláris szorzás!

8.* Legyen a bilineáris funkcionál $\mathfrak{A}: \mathbb{R}^{2\times 2} \times \mathbb{R}^{2\times 2} \to \mathbb{R}$, $\mathfrak{A}(A,B) \mapsto \operatorname{tr}(A+B)$. Hajtsuk végre a Gram–Schmidt ortogonalizációt az $\mathbb{R}^{2\times 2}$ vektortér

$$\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\}$$

bázisán!

- **9.*** Keressünk olyan bázist \mathbb{R}^3 -ben, amelyben az $\mathfrak{A} \colon \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$, $(\mathbf{a}, \mathbf{b}) \mapsto a_1 \cdot b_3 + a_2 \cdot b_2 + a_3 \cdot b_1$ bilineáris funkcionál mátrixa diagonális, majd módosítsuk úgy a báziselemeket, hogy a mátrix főátlója csak a -1, 0 és 1 számok közül kiválasztható három szám álljon!
- **10.*** Legyen $\mathfrak{A}: V \times V \to \mathbb{R}$ egy bilineáris funkcionál és $\mathbf{d} \in V$ egy olyan vektor melyre $\mathfrak{A}(\mathbf{d}, \mathbf{d}) \neq 0$. Mutassuk meg, hogy a

$$W := \{ \mathbf{v} \in V \mid \mathfrak{A}(\mathbf{v}, \mathbf{d}) = 0 \}$$

halmaz altér V-ben.

12. Euklidészi terek

- 1. Tekintsük az \mathbb{R}^4 valós euklidészi teret az $(\mathbf{x}, \mathbf{y}) := \sum_{i=1}^4 x_i y_i$ belső szorzással. Határozzuk meg az alábbi vektorok belsőszorzatát és bezárt szögét:
- $\begin{array}{lll} \text{(a)} & \mathbf{x}=(1,0,4,-1), \ \mathbf{y}=(3,3,-2,-6); & \text{(b)} & \mathbf{x}=(0,3,-1,5), \ \mathbf{y}=(-2,1,3,0); \\ \text{(c)} & \mathbf{x}=(1,2,1,3), \ \mathbf{y}=(1,-1,-1,-1); & \text{(d)} & \mathbf{x}=(-1,1,3,0), \ \mathbf{y}=(1,0,5,3). \end{array}$
- **2.** Tekintsük az $\mathbb{R}^{3\times 3}$ valós euklidészi teret az $(A,B):=\operatorname{tr}(A^\mathsf{T}B)$ belső szorzással. Határozzuk meg az alábbi mátrixok belsőszorzatát:
- (a) $A = \begin{pmatrix} 1 & 5 & -3 \\ -4 & 1 & -1 \\ -1 & 5 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 3 & -2 \\ -3 & 4 & 2 \\ -5 & -3 & -5 \end{pmatrix}$; (b) $A = \begin{pmatrix} 3 & 0 & 3 \\ 2 & -2 & 1 \\ -3 & 4 & -3 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 3 & 0 \\ 2 & -5 & 0 \\ 0 & -4 & 3 \end{pmatrix}$.
- 3. Mutassuk meg, hogy a 3. és 14. Példákban megadott bilineáris funkcionálok valóban belső szorzatok!
- 4. Igazoljuk, hogy a vektorok távolsága rendelkezik a 8. Állításban leírt metrikus terekre megkövetelt három tulajdonsággal!
- **5.** Bizonyítsuk a 21. Állítást!
- 6. Lássuk be, hogy a 24. Példában megadott transzformáció nem normális és nincs ortonormált bázisa!
- 7. Írjuk fel a 2×2 -es komplex unitér mátrixok általános alakját!
- **8.** Legyen $A: V \to V$ egy önadjungált transzformáció. Igazoljuk, hogy
- az A-hoz tartozó $(A\mathbf{x}, \mathbf{x}) = (\mathbf{x}, A\mathbf{x})$ kvadratikus alak valós,
- (b) az A transzformáció sajátértékei valósak,
- (c) az \mathcal{A} transzformáció különböző sajátértékeihez tartozó sajátvektorok ortogonálisak!
- **9.** Tekintsük a síkbeli vektorok φ ($\varphi \neq k\pi$, $k \in \mathbb{Z}$) szögű \mathcal{R}_{φ} forgatását. Határozzuk meg \mathcal{R}_{φ} komplex sajátértékeit és komplex sajátvektorait! Adjuk meg annak a hasonlósági transzformációnak a mátrixát, amellyel \mathcal{R}_{φ} mátrixa diagonalizálható!
- 10. Mutassuk meg, hogy az adjungálás rendelkezik az alábbi tulajdonságokkal:
- $\begin{array}{lll} (a) & (\mathcal{A}^+)^+ = \mathcal{A}; & (b) & (\mathcal{A} + \mathcal{B})^+ = \mathcal{A}^+ + \mathcal{B}^+; \\ (c) & (\lambda \mathcal{A})^+ = \lambda^* \mathcal{A}^+; & (d) & (\mathcal{A}\mathcal{B})^+ = \mathcal{B}^+ \mathcal{A}^+. \end{array}$
- 11. Mutassuk meg, hogy ha az $\mathcal{A}: V \to V$ lineáris transzformáció előáll $\mathcal{A} = \mathcal{B}^+ \mathcal{B}$ alakban, akkor \mathcal{A} önadjungált.
- 12. Legyen $\mathcal{A}\colon V\to V$ egy unitér transzformáció. Igazoljuk, hogy
 - (a) az A transzformáció megőrzi a V euklidészi téren értelmezett skalárszorzatot,
 - (b) az \mathcal{A} transzformáció megőrzi a V euklidészi tér vektorainak hosszát,
 - (c) az A transzformáció sajátértékei egységnyi abszolút értékű komplex számok!

28 12. Euklidészi terek

- 13.* Igazoljuk, hogy felcserélhető önadjungált transzformációknak van közös sajátbázisa!
- **14.*** Legyenek \mathcal{A} és \mathcal{B} önadjungált projekciók (azaz $\mathcal{A}^2 = \mathcal{A} = \mathcal{A}^+$ és $\mathcal{B}^2 = \mathcal{B} = \mathcal{B}^+$). Igazoljuk, hogy az $\mathcal{A}\mathcal{B}$ transzformáció minden sajátértéke valós és a [0,1] intervallumba esik!

15. Tekintsük azt az \mathcal{A} lineáris transzformációt, amelynek mátrixa $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ a standard bázisban. Adjuk meg \mathcal{A} spektrumát és spektrális felbontását!