\mathcal{M} athématiques $\mathcal{C}i\mathbf{R}^2$

Consignes

- ullet Cette épreuve de ullet h contient ullet X ullet questions équipondérées indépendantes.
- L'usage de la calculatrice non programmable est **permis** bien que fort peu utile.
- Le but d'une évaluation est de vérifier que vous savez dire des choses sensées sur les sujets proposés; exprimez-vous!
- Et surtout : amusez-vous bien ©

On définit une loi de composition interne \star sur \mathbf{R} par

$$a \star b := a \cdot b + a + b$$
.

- a) Montrer que \mathbf{R} muni de \star est un monoïde (en précisant bien qui est le neutre).
- b) Vérifier que la fonction $\varphi: (\mathbf{R}, \star) \to (\mathbf{R}, \cdot)$ définie par $\varphi(x) = x + 1$ est un isomorphisme.
- c) Déterminer quels sont les éléments symétrisables dans (\mathbf{R}, \star) et expliciter une formule pour leur symétrique.

Dans cette question, un domaine désigne une région connexe de C contenant un disque de rayon > 0.

a) Soit exp la fonction exponentielle complexe et $\ell(z)$ une fonction analytique sur un domaine $\mathcal{D} \subseteq \mathbf{C}$ satisfaisant $\exp(\ell(z)) = z$ pour tout $z \in \mathcal{D}$.

Montrer que Re $\ell(z) = \ln |z|$. Que dire de sa partie imaginaire?

- b) Montrer que ℓ est solution de l'équation différentielle $z \ell'(z) = 1$ et en déduire sa représentation en série entière au voisinage de tout point $z_0 \neq 0$ (en précisant son rayon de convergence).
- c) Sur l'ensemble \mathcal{X} des paires (\mathcal{D}, f) où \mathcal{D} est un domaine et $f : \mathcal{D} \to \mathbf{C}$ une fonction analytique sur \mathcal{D} , on définit

$$(\mathcal{D}_1, f_1) \preceq (\mathcal{D}_2, f_2) \iff \mathcal{D}_1 \subseteq \mathcal{D}_2 \text{ et } f_1(z) = f_2(z) \text{ pour tout } z \in \mathcal{D}_1.$$

Est-une relation d'ordre sur \mathcal{X} ?

- a) Dans le groupe symétrique S_3 : exprimer explicitement chaque élément en termes de $\alpha = (1\ 2)$ et $\beta = (2\ 3)$.
- b) Soit G un groupe à 6 éléments et $a \in G$ qui ne commute pas avec tous les autres. Montrer que a est d'ordre 2.
- c) Conclure : tout groupe non commutatif à 6 éléments est isomorphe à S_3 . Y en a-t-il des commutatifs?

Culture générale (bonus): comment se nomme cette charmante petite boule de poils?