31 January 2012 -- Computer Architectures -- part 2/2

Name, Matricola

Question 1

Considering the MIPS64 architecture presented in the following:

- Integer ALU: 1 clock cycle
- Data memory: 1 clock cycle
- FP multiplier unit: pipelined 8 stages
- FP arithmetic unit: pipelined 4 stages
- FP divider unit: not pipelined unit that requires 10 clock cycles
- branch delay slot: 1 clock cycle, and the branch delay slot is not enable
- forwarding is enabled
- it is possible to complete instruction EXE stage in an out-of-order fashion.
- o and using the following code fragment, show the timing of the presented loop-based program and compute how many cycles does this program take to execute?

	.data	
V1:	.double "100 values"	
V2:	.double "100 values"	
V3:	.double "100 values"	
V4:	.double "100 zeros"	
V5:	.double "100 zeros"	

.text

main:	daddui r1,r0,0
	daddui r2,r0,100
loop:	l.d f1,v1(r1)
•	l.d f2,v2(r1)
	l.d f3,v3(r1)
	mul.d f4,f1,f2
	s.d f4, v4(r1)
	add.d f5,f1,f2
	mul.d f2,f1,f3
	add.d f1,f5,f2
	s.d f1,v5(r1)
	daddui r1,r1,8
	daddi r2,r2,-1
	bnez r2,loop
	Halt

comments	Clock cycles
r1← pointer	5
r2 <= 100	1
$f1 \ll v1[i]$	1
$f2 \ll v2[i]$	1
f3 <= v3[i]	1
$f4 \leftarrow v1[i]*v2[i]$	8
v4[i] ← f4	1
$f5 \leftarrow v1[i]+v2[i]$	0
$f2 \leftarrow v1[i]*v3[i]$	2
$f1 \leftarrow v1[i] + v2[i] + v1[i] * v3[i]$	4
v5[i] ← f1	1
r1 ← r1 + 8	1
r2 ← r2 - 1	1
	2
	1
	2406

Total

31 January 2012 -- Computer Architectures -- part 2/2

Name, Matricola

Question 2

Considering the same loop-based program, and assuming the following processor architecture for a superscalar MIPS64 processor implemented with multiple-issue and speculation:

- issue 2 instructions per clock cycle
- jump instructions require 1 issue
- handle 2 instructions commit per clock cycle
- timing facts for the following separate functional units:
 - i. 1 Memory address 1 clock cycle
 - ii. 1 Integer ALU 1 clock cycle
 - iii. 1 Jump unit 1 clock cycle
 - iv. 1 FP multiplier unit, which is pipelined: 8 stages
 - v. 1 FP divider unit, which is not pipelined: 10 clock cycles
 - vi. 1 FP Arithmetic unit, which is pipelined: 4 stages
- Branch prediction is always correct
- There are no cache misses
- There are 2 CDB (Common Data Bus).
- Complete the table reported below showing the processor behavior for the 2 initial iterations.

_)		
		l	

# iteration		Issue	EXE	MEM	CDB x2	COMMIT x2
1	l.d f1,v1(r1)	1	2m	3	4	5
1	l.d f2,v2(r1)	1	3m	4	5	6
1	l.d f3,v3(r1)	2	4m	5	6	7
1	mul.d f4,f1,f2	2	6x		14	15
1	s.d f4,v4(r1)	3	5m			15
1	add.d f5,f1,f2	3	6a		10	16
1	mul.d f2,f1,f3	4	7x		15	16
1	add.d f1,f5,f2	4	16a		20	21
1	s.d f1,v5(r1)	5	6m			21
1	daddui r1,r1,8	5	6i		7	22
1	daddi r2,r2,-1	6	7 i		8	22
1	bnez r2,loop	7	9j			23
2	l.d f1,v1(r1)	8	9m	10	11	23
2	l.d f2,v2(r1)	8	10m	11	12	24
2	l.d f3,v3(r1)	9	11m	12	13	24
2	mul.d f4,f1,f2	9	13x		21	25
2	s.d f4,v4(r1)	10	12m			25
2	add.d f5,f1,f2	10	13a		17	26
2	mul.d f2,f1,f3	11	14x		22	26
2	add.d f1,f5,f2	11	23a		27	28
2	s.d f1,v5(r1)	12	13m			28
2	daddui r1,r1,8	12	13i		14	29
2	daddi r2,r2,-1	13	14i		15	29
2	bnez r2,loop	14	16j			30