Materiales para Ingeniería.

Ejercicio de retroalimentación: Temas Enlaces y Electronegatividad

Resuelva lo siguiente en base a las exposiciones hechas en clase.

I. P	ara las siguientes preguntas indique el enlace de que se trate.			
	I) IONICO C) COVALENTE M) METALICO S) SECUNDARIO			
1.	Enlace primario presente en los compuestos metal – no metal			
2.	Enlace que se da entre átomos de elementos con electronegatividades similares bajas.			
3.	El enlace se da por ligeras atracciones electrostáticas entre moléculas.			
4.	Enlace primario muy fuerte, cuya fuerza de atracción es electrostática.			
	Son enlaces primarios altamente direccionales.			
	Enlace que surge por la formación de dipolos, ya sea inducidos o permanentes.			
7.	En este enlace los electrones pueden fluir libremente mediante la aplicación de estímulos externos.			
8.	Enlace primario presente en los polímeros y algunos cerámicos			
9.	Enlace que se forma mediante la transferencia de electrones de un átomo a otro.			
	 Debido a su naturaleza direccional, para describir este enlace a menudo se hace referencia al ángulo de enlace. 			
11.	Enlace primario con diferencia de electronegatividades mayor a 1.7			
12.	2 Enlace en el que existe atracción electrostática entre los electrones de valencia y los núcleos positivos.			
13.	En este enlace se pueden producir moléculas polarizadas permanentemente.			
14.	4 Se le conoce también como enlace Coulombiano.			
15.	5 Se dice que es el enlace primario menos fuerte (con menores niveles de energía de unión).			
16.	6 En este enlace un solo átomo puede atraer tantos átomos como el espacio se lo permita, es no direccional.			
17.	Al formarse este enlace se dice que los orbitales se superponen formando un nuevo orbital.			
18.	B Enlace que determina y distingue el comportamiento entre polímeros termoestables y termoplásticos.			
19.	Las moléculas diatómicas como F ₂ , Cl ₂ , H ₂ , presentan este tipo de enlace.			
20.	Enlace presente cuando se unen elementos con electronegatividades similares altas.			
	Para que se de este enlace se requieren elementos de diferentes especies (diferentes tipos de átomos)			
	Los electrones se encuentran deslocalizados en lo comúnmente se llama mar de electrones.			
23.	3 Único enlace en el que la fuerza que mantiene la unión no es electrostática			
24.	Enlace que explica y justifica la existencia de los gases nobles o inertes			
25.	Enlace que se da entre un elemento con electronegatividad alta y otro con electronegatividad baja			
II. L	Jtilizando los términos: SUPERIOR/INFERIOR y DERECHA/IZQUIERDA, indique en qué parte de la tabla			

encontramos a los elementos más electropositivos y en qué parte de la misma los más electronegativos.

¿Cuál sería el compuesto de dos elementos con mayor diferencia de electronegatividades posible? Puede usar su tabla para consultar los nombres y símbolos de los elementos.

- III. Determine el tipo de enlace que tienen los siguientes compuestos basado en el análisis por diferencia de electronegatividad: a) KCl, b) CH₄, c) F₂, d) Al₂O₃, e) MgO, f) HCl, g) H₂O, h) Al₂Cu₃, i) CuZn j) SiC
- IV. Considere el compuesto Oxido de Sodio y haga lo siguiente:
 - ⇒ Escriba las configuraciones electrónicas del oxígeno y del sodio antes de combinarse
 - ⇒ Indique el grupo y periodo de la tabla periódica al que pertenecen en base a su configuración electrónica
 - ⇒ Indique los electrones de valencia y la tendencia que tiene cada elemento al combinarse, es decir, si tiende a ceder o ganar electrones y cuántos
 - ⇒ Utilice estructuras de puntos para analizar y mostrar cómo se combinan ambos elementos para formar el compuesto. Indique el tipo de enlace del compuesto, escriba la reacción y fórmula química.
 - ⇒ Escriba las configuraciones electrónicas de los mismos después de combinarse
 - ⇒ Compare el tipo de enlace por diferencia de electronegatividades y escriba su fórmula guímica
- V. Elabore una tabla en la que resuma la relación nivel atómico-propiedades de los materiales en base, a lo estudiado en clase. A continuación, se muestran los encabezados de las columnas que formarán la tabla.

Nombre y tipo de	Categoría de materiales	Propiedades observables en los materiales atribuibles
enlace (primario/sec)	que lo presentan	al enlace (explique el porqué de la propiedad)