Name	KAIRA MILANI FITRIA
NPM	2221210065
Subject	Artificial Intelligence and Pattern Recognittion
Assignment	5

Task:

Analisis entropy dan information gain dari dataset tennis. Kemudian gambarkan bagaimana decision treenya (gambar tangan dan simulasi weka), dan buatkan decision rulenya.

Jawab:

1. Isi dataset Tennis

outlook	temperature	humidity	wind	play
sunny	hot	high	weak	no
sunny	hot	high	strong	no
overcast	hot	high	weak	yes
rainy	mild	high	weak	yes
rainy	cool	normal	weak	yes
rainy	cool	normal	strong	no
overcast	cool	normal	strong	yes
sunny	mild	high	weak	no
sunny	cool	normal	weak	yes
rainy	mild	normal	weak	yes
sunny	mild	normal	strong	yes
overcast	mild	high	strong	yes
overcast	hot	normal	weak	yes
rainy	mild	high	strong	no

Features: Outlook, Temperature, Humidity, Wind

Label: **play** (output)

Class: Yes, No (nilai untuk label)

2. Menghitung entropy

outlook	temperature	humidity	wind	play
sunny	hot	high	weak	no
sunny	hot	high	strong	no
overcast	hot	high	weak	yes
rainy	mild	high	weak	yes
rainy	cool	normal	weak	yes
rainy	cool	normal	strong	no
overcast	cool	normal	strong	yes
sunny	mild	high	weak	no
sunny	cool	normal	weak	yes
rainy	mild	normal	weak	yes
sunny	mild	normal	strong	yes
overcast	mild	high	strong	yes
overcast	hot	normal	weak	yes
rainy	mild	high	strong	no

Jumlah baris data = 14

Yes (+) = 9

No (-) = 5

Entropy (S) = $-p_{+} \log_2 p_{+} - p_{-} \log_2 p_{-}$

Name	KAIRA MILANI FITRIA
NPM	2221210065
Subject	Artificial Intelligence and Pattern Recognittion
Assignment	5

Entropy (S) = $-p_{(yes)} log_2 p_{(yes)} - p_{(no)} log_2 p_{(no)}$

Entropy (S) = $-(9/14) \log_2 (9/14) - (5/14) \log_2 (5/14)$

Entropy (S) = -(-0.41) - (-0.53)

Entropy (S) = **0.94**

Nilai kategori untuk masing-masing fitur

a. Outlook (Sunny, Overcast, Rainy)

outlook	temperature	humidity	wind	play
sunny	hot	high	weak	no
sunny	hot	high	strong	no
overcast	hot	high	weak	yes
rainy	mild	high	weak	yes
rainy	cool	normal	weak	yes
rainy	cool	normal	strong	no
overcast	cool	normal	strong	yes
sunny	mild	high	weak	no
sunny	cool	normal	weak	yes
rainy	mild	normal	weak	yes
sunny	mild	normal	strong	yes
overcast	mild	high	strong	yes
overcast	hot	normal	weak	yes
rainy	mild	high	strong	no

Jumlah Sunny = 5 Yes (+) = 2 No (-) = 3

Jumlah Rain = 5 Yes (+) = 3 No (-) = 2

Jumlah Overcast = 4 Yes (+) = 4 No (-) = 0

Entropy (Outlook=Sunny) = $-p_{(yes)} \log_2 p_{(yes)} - p_{(no)} \log_2 p_{(no)}$

Entropy (Outlook=Sunny) = $-(2/5) \log_2 (2/5) - (3/5) \log_2 (3/5)$

Entropy (Outlook=Sunny) = **0.971**

Entropy (Outlook=Rain) = $-p_{(yes)} \log_2 p_{(yes)} - p_{(no)} \log_2 p_{(no)}$

Entropy (Outlook=Rain) = - $(3/5) \log_2 (3/5) - (2/5) \log_2 (2/5)$

Entropy (Outlook=Rain) = 0.971

Entropy (Outlook=Overcast) = $-p_{(yes)} \log_2 p_{(yes)} - p_{(no)} \log_2 p_{(no)}$

Entropy (Outlook=Overcast) = - $(4/4) \log_2 (4/4) - (0/4) \log_2 (0/4)$

Entropy (Outlook=Overcast) = 0

Name	KAIRA MILANI FITRIA
NPM	2221210065
Subject	Artificial Intelligence and Pattern Recognittion
Assignment	5

b. Temperature (Hot, Mild, Cool)

outlook	temperature	humidity	wind	play
sunny	hot	high	weak	no
sunny	hot	high	strong	no
overcast	hot	high	weak	yes
rainy	mild	high	weak	yes
rainy	cool	normal	weak	yes
rainy	cool	normal	strong	no
overcast	cool	normal	strong	yes
sunny	mild	high	weak	no
sunny	cool	normal	weak	yes
rainy	mild	normal	weak	yes
sunny	mild	normal	strong	yes
overcast	mild	high	strong	yes
overcast	hot	normal	weak	yes
rainy	mild	high	strong	no

Jumlah Hot	= 4
Yes (+)	= 2
No (-)	= 2
Jumlah Mild	= 6
Yes (+)	= 4
No (-)	= 2
Jumlah Cool	= 4
Yes (+)	= 3
No (-)	= 1

Entropy (Temperature=Hot) = $-p_{(yes)} log_2 p_{(yes)} - p_{(no)} log_2 p_{(no)}$

Entropy (Temperature=Hot) = - $(2/4) \log_2 (2/4) - (2/4) \log_2 (2/4)$

Entropy (Temperature=Hot) = 1

Entropy (Temperature=Mild) = $-p_{(yes)} \log_2 p_{(yes)} - p_{(no)} \log_2 p_{(no)}$

Entropy (Temperature=Mild) = - $(4/6) \log_2 (4/6) - (2/6) \log_2 (2/6)$

Entropy (Temperature=Mild) = **0.918**

Entropy (Temperature=Cool) = $-p_{(yes)} \log_2 p_{(yes)} - p_{(no)} \log_2 p_{(no)}$

Entropy (Temperature=Cool) = - $(3/4) \log_2 (3/4) - (1/4) \log_2 (1/4)$

Entropy (Temperature=Cool) = **0.811**

c. Humidity (High, Normal)

outlook	temperature	humidity	wind	play
sunny	hot	high	weak	no
sunny	hot	high	strong	no
overcast	hot	high	weak	yes
rainy	mild	high	weak	yes
rainy	cool	normal	weak	yes
rainy	cool	normal	strong	no
overcast	cool	normal	strong	yes
sunny	mild	high	weak	no
sunny	cool	normal	weak	yes
rainy	mild	normal	weak	yes
sunny	mild	normal	strong	yes
overcast	mild	high	strong	yes
overcast	hot	normal	weak	yes
rainy	mild	high	strong	no

= 1

No (-)

Name	KAIRA MILANI FITRIA
NPM	2221210065
Subject	Artificial Intelligence and Pattern Recognittion
Assignment	5

Entropy (Humidity=High) = $-p_{(yes)} \log_2 p_{(yes)} - p_{(no)} \log_2 p_{(no)}$

Entropy (Humidity=High) = $-(3/7) \log_2 (3/7) - (4/7) \log_2 (4/7)$

Entropy (Humidity=High) = **0.985**

Entropy (Humidity=Normal) = $-p_{(yes)} \log_2 p_{(yes)} - p_{(no)} \log_2 p_{(no)}$

Entropy (Humidity=Normal) = - (6/7) \log_2 (6/7) - (1/7) \log_2 (1/7)

Entropy (Humidity=Normal) = 0.591

d. Wind (Strong, Weak)

outlook	temperature	humidity	wind	play
sunny	hot	high	weak	no
sunny	hot	high	strong	no
overcast	hot	high	weak	yes
rainy	mild	high	weak	yes
rainy	cool	normal	weak	yes
rainy	cool	normal	strong	no
overcast	cool	normal	strong	yes
sunny	mild	high	weak	no
sunny	cool	normal	weak	yes
rainy	mild	normal	weak	yes
sunny	mild	normal	strong	yes
overcast	mild	high	strong	yes
overcast	hot	normal	weak	yes
rainy	mild	high	strong	no

Entropy (Wind=Weak) = $-p_{(yes)} \log_2 p_{(yes)} - p_{(no)} \log_2 p_{(no)}$

Entropy (Wind=Weak) = $-(6/8) \log_2 (6/8) - (2/8) \log_2 (2/8)$

Entropy (Wind=Weak) = **0.811**

Entropy (Wind=Strong) = $-p_{(yes)} \log_2 p_{(yes)} - p_{(no)} \log_2 p_{(no)}$

Entropy (Wind=Strong) = $-(3/6) \log_2 (3/6) - (3/6) \log_2 (3/6)$

Entropy (Wind=Strong) = 1

3. Menghitung information gain

Gain (S,A) = Entropy(S) - $\sum_{v \in values(A)} |S_v|/|S|$ Entropy(S_v)

a. Outlook (Sunny, Overcast, Rainy)

Entropy(S) = 0.94

Entropy (Outlook=Sunny) = 0.971

Entropy (Outlook=Rainy) = 0.971

Entropy (Outlook=Overcast) = 0

Name	KAIRA MILANI FITRIA
NPM	2221210065
Subject	Artificial Intelligence and Pattern Recognittion
Assignment	5

Gain (S,Outlook) = 0.94 - (5/14)*0.971 - (5/14)*0.971 - (4/14)*0**Gain (S,Outlook) = 0.246**

b. Temperature (Hot, Mild, Cool)

Entropy(S) = 0.94

Entropy (Temperature=Hot) = 1

Entropy (Temperature=Mild) = 0.918

Entropy (Temperature=Cold)= 0.811

Gain (S,Temperature) = 0.94 - (4/14)*1 - (6/14)*0.918 - (4/14)*0.811**Gain (S,Temperature)= 0.029**

c. Humidity (High, Normal)

Entropy(S) = 0.94 Entropy (Humidity=High) = 0.985 Entropy (Humidity=Normal) = 0.591

Name	KAIRA MILANI FITRIA
NPM	2221210065
Subject	Artificial Intelligence and Pattern Recognittion
Assignment	5

Gain (S,Humidity) = 0.94 - (7/14)*0.985 - (7/14)*0.591

Gain (S, Humidity) = 0.152

d. Wind (Strong, Weak)

Entropy(S) = 0.94 Entropy (Wind= Strong) = **1** Entropy (Wind = Weak) = **0.811**

Gain (S,Wind) = 0.94 - (8/14)*0.811 - (6/14)*1

Gain (S, Wind) = 0.048

Information Gain masing-masing fitur:

Gain (S,Outlook) = 0.246

Gain (S, Temperature)= 0.029 Gain (S, Humidity) = 0.152

Gain (S, Wind) = 0.048

(Nilai information gain terbesar akan menjadi root/pangkal dari decision treenya, yaitu Outlook)

4. Membuat Decision Tree (Algoritma ID3)

Entropy (Outlook=Sunny) = 0.971

Uji untuk mengisi simpul dengan mencari nilai gain pada masingmasing feature :

Name	KAIRA MILANI FITRIA
NPM	2221210065
Subject	Artificial Intelligence and Pattern Recognittion
Assignment	5

outlook	temperature	temperature humidity wind		play	
sunny	hot	high	weak	no	
sunny	hot	high	strong	no	
overcast	hot	high	weak	yes	
rainy	mild	high	weak	yes	
rainy	cool	normal	weak	yes	
rainy	cool	normal	strong	no	
overcast	cool	normal	strong	yes	
sunny	mild	high	weak	no	
sunny	cool	normal	weak	yes	
rainy	mild	normal	weak	yes	
sunny	mild	normal	strong	yes	
overcast	mild	high	strong	yes	
overcast	hot	normal	weak	yes	
rainy	mild	high	strong	no	

Gain (S_{sunny}, Temperature) = Entropy(Sunny) - I(Temperature)

- = Entropy(Sunny) -2/5*Entropy(Temperature=Hot -
- 2/5*Entropy(Temperature=Mild) -1/5*Entropy(Temperature=Cool)
- = $(-(2/5) \log 2 (2/5) (3/5) \log 2 (3/5)) 2/5*(-(0/2) \log 2 (0/2) (0/2) \log 2 (0/2)) 2/5*(-(1/2) \log 2 (1/2) (1/2) \log 2 (1/2)) 1/5*(-(1/1) \log 2 (1/1) (0/0) \log 2 (0/0))$
- = 0.970 (2/5)0.0 (2/5)1.0 (1/5)0.0

= 0.570

outlook	temperature	humidity	wind	play	
sunny	hot	high	weak	no	
sunny	hot	high	strong	no	
overcast	hot	high	weak	yes	
rainy	mild	high	weak	yes	
rainy	cool	normal	weak	yes	
rainy	cool	normal	strong	no	
overcast	cool	normal	strong	yes	
sunny	mild	high	weak	no	
sunny	cool	normal	weak	yes	
rainy	mild	normal	weak	yes	
sunny	mild	normal	strong	yes	
overcast	mild	high	strong	yes	
overcast	hot	normal	weak	yes	
rainy	mild	high	strong	no	

Gain (S_{sunny}, Humidity)

- = Entropy(Sunny) I(Humidity)
- = Entropy(Sunny) -3/5*Entropy(Humidity=High) -2/5*Entropy(Humidity=Normal)
- = $(-(2/5) \log 2 (2/5) (3/5) \log 2 (3/5)) -3/5*(-(0/3) \log 2 (0/3) (3/3) \log 2 (3/3)) -2/5*(-(2/2) \log 2 (2/2) (0/0) \log 2 (0/0))$
- = 0.970 (3/5)0.0 (2/5)0.0
- = 0.970

Name	KAIRA MILANI FITRIA
NPM	2221210065
Subject	Artificial Intelligence and Pattern Recognittion
Assignment	5

outlook	temperature humidity wind		play		
sunny	hot	high	weak	no	
sunny	hot	high	strong	no	
overcast	hot	high	weak	yes	
rainy	mild	high	weak	yes	
rainy	cool	normal	weak	yes	
rainy	cool	normal	strong	no	
overcast	cool	normal	strong	yes	
sunny	mild	high	weak	no	
sunny	cool	normal	weak	yes	
rainy	mild	normal	weak	yes	
sunny	mild	normal	strong	yes	
overcast	mild	high	strong	yes	
overcast	hot	normal	weak	yes	
rainy	mild	high	strong	no	

Gain (S_{sunny}, Wind) = Entropy(Sunny) - I(Wind)

- = Entropy(Sunny) -2/5*Entropy(Wind=Strong) -3/5*Entropy(Wind=Weak)
- $= (-(2/5) \log 2 (2/5) (3/5) \log 2 (3/5)) -2/5*(-(1/2) \log 2 (1/2) (1/2) \log 2 (1/2))$
- -3/5*(-(1/3) log2 (1/3) (2/3) log2 (2/3))
- = **0.970** -(2/5)**1.0** -(3/5)0.918

= 0.0192

Gain (S_{sunny} , Temperature) = 0.570 Gain (S_{sunny} , Humidity) = 0.970 Gain (S_{sunny} , Wind) = 0.019

Entropy (Outlook=Overcast) = 0 Sehingga langsung ke play (yes/no)

Name	KAIRA MILANI FITRIA
NPM	2221210065
Subject	Artificial Intelligence and Pattern Recognittion
Assignment	5

Entropy (Outlook=Rainy) = 0.971

Uji untuk mengisi simpul dengan mencari nilai gain pada masingmasing feature :

outlook	temperature	humidity	wind	play	
sunny	hot	high	weak	no	
sunny	hot	high	strong	no	
overcast	hot	high	weak	yes	
rainy	mild	high	weak	yes	
rainy	cool	normal	weak	yes	
rainy	cool	normal	strong	no	
overcast	cool	normal	strong	yes	
sunny	mild	high	weak	no	
sunny	cool	normal	weak	yes	
rainy	mild	normal	weak	yes	
sunny	mild	normal	strong	yes	
overcast	mild	high	strong	yes	
overcast	hot	normal	weak	yes	
rainy	mild	high	strong	no	

Gain (S_{rain} , Temperature) = Entropy(Rain) - I(Temperature)

- = Entropy(Rain) -0/5*Entropy(Temperature=Hot -
- 3/5*Entropy(Temperature=Mild) -2/5*Entropy(Temperature=Cool)
- = $(-(3/5) \log 2 (3/5) (2/5) \log 2 (2/5)) 0/5*(-(0/0) \log 2 (0/0) (0/0) \log 2 (0/0)) 3/5*(-(2/3) \log 2 (2/3) (1/3) \log 2 (1/3)) 2/5*(-(1/2) \log 2 (1/2)) \log 2 (1/2))$
- = 0.970 (0/5)0.0 (3/5)0.918 (2/5)1

= 0.0192

Name	KAIRA MILANI FITRIA
NPM	2221210065
Subject	Artificial Intelligence and Pattern Recognittion
Assignment	5

outlook	temperature	erature humidity wind		play	
sunny	hot	high	weak	no	
sunny	hot	high	strong	no	
overcast	hot	high	weak	yes	
rainy	mild	high	weak	yes	
rainy	cool	normal	weak	yes	
rainy	cool	normal	strong	no	
overcast	cool	normal	strong	yes	
sunny	mild	high	weak	no	
sunny	cool	normal	weak	yes	
rainy	mild	normal	weak	yes	
sunny	mild	normal	strong	yes	
overcast	mild	high	strong	yes	
overcast	hot	normal	weak	yes	
rainy	mild	high	strong	no	

Gain (S_{rain}, Wind) = Entropy(Rain) - I(Wind)

- = Entropy(Rain) -2/5*Entropy(Wind=Strong) -3/5*Entropy(Wind=Weak)
- = $(-(3/5) \log 2 (3/5) (2/5) \log 2 (2/5)) -2/5*(-(0/0) \log 2 (0/0) (0/0) \log 2 (0/0)) -3/5*(-(3/3) \log 2 (3/3) (0/3) \log 2 (0/3))$
- = 0.970 (2/5)0.0 (3/5)0.0

= 0.970

Gain (S_{sunny} , Temperature) = 0.0192 Gain (S_{sunny} , Wind) = 0.970

Hasil Decision Tree:

Name	KAIRA MILANI FITRIA
NPM	2221210065
Subject	Artificial Intelligence and Pattern Recognittion
Assignment	5

Simulasi Weka:

=== Summary ===									
Correctly Classified Instances		1		25	8				
Incorrectly Clas	sified In	stances	3		75	8			
Kappa statistic			-0.5						
Mean absolute er	ror		0.75	5					
Root mean square	d error		0.86	6					
Relative absolut	e error		150	8					
Root relative sq	uared err	or	164.31	.68 %					
Total Number of	Instances		4						
=== Detailed Acc	TP Rate FP Rate				F-Measure			PRC Area	Class yes
	0.000	0.500	0.000	0.000	0.000	-0.577	0.250	0.500	no
Weighted Avg.	0.250	0.750	0.167	0.250	0.200	-0.577	0.250	0.458	
=== Confusion Ma	trix ===								
a b < class 1 1 a = yes 2 0 b = no	ified as								

Name	KAIRA MILANI FITRIA
NPM	2221210065
Subject	Artificial Intelligence and Pattern Recognittion
Assignment	5

Decision Rule:

Rule 1:

IF (Outlook=Sunny) AND (Humidity=Normal) THEN (Play=Yes)

Outlook = Sunny ^ Humidity=Normal

Rule 2:

IF (Outlook=Sunny) AND (Humidity=High) THEN (Play=No)

Outlook = Sunny v Humidity=High

Rule 3:

IF (Outlook=Overcast) THEN (Play=Yes)

Outlook=Overcast

Rule 4:

IF (Outlook=Rain) AND (Wind=Weak) THEN (Play=Yes)

Outlook=Rain ^ Wind=Weak

Rule 5:

IF (Outlook=Rain) AND (Wind=Strong) THEN (Play=No)

Outlook=Rain v Wind=Strong

Decision rule secara keseluruhan adalah:

(Outlook = Sunny ^ Humidity=Normal) v (Outlook=Overcast) v (Outlook=Rain ^ Wind=Weak)