IKERKETA OPERATIBOA TALDE LANA

Janire Arana, Emma Manna, Maialen Ruiz eta Gorka Ortiz

PROBLEMA

$$Max z = 2x_1 + 4x_2 + \frac{5}{2}x_3$$

$$non 3x_1 + 4x_2 + 2x_3 \le 600$$

$$2x_1 + x_2 + 2x_3 \le 400$$

$$x_1 + 3x_2 + 3x_3 \le 300$$

$$x_1, x_2, x_3 \ge 0$$

- Ebatzi problema Simplex algoritmoa erabiliz.
- Problema primalaren taula optimoa erabiliz, problema dualaren soluzioa lortu.
- Problema duala idatzi eta osagarrizko lasaitasuna erabiliz ebatzi.
- Posiblea al da *Simplex* metodoa erabiliz problema duala ebaztea?

1. Ebazpena *Simplex* algoritmoa erabiliz

$$\begin{aligned} Max \ z &= 2x_1 + 4x_2 + \frac{5}{2}x_3 \\ non \ 3x_1 + 4x_2 + 2x_3 &\leq 600 \\ 2x_1 + x_2 + 2x_3 &\leq 400 \\ x_1 + 3x_2 + 3x_3 &\leq 300 \\ x_1, x_2, x_3 &\geq 0 \end{aligned}$$

$$Max z = 2x_1 + 4x_2 + \frac{5}{2}x_3$$

$$non 3x_1 + 4x_2 + 2x_3 + x_4 = 600$$

$$2x_1 + x_2 + 2x_3 + x_5 = 400$$

$$x_1 + 3x_2 + 3x_3 + x_6 = 300$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

1. Problema forma estandarrean adierazi

2. Hasierako soluzio bideragarria

$$A = \begin{pmatrix} 3 & 4 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 1 & 3 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$x_B = (x_4, x_5, x_6) \to B = I \to x_B = B^{-1} \cdot b = b = (600, 400, 300)$$

 $x_N = (x_1, x_2, x_3) = (0, 0, 0)$

Coin	Aoin	$B^{-1} \cdot b$	2	4	2,5	0	0	0
			$\boldsymbol{x_1}$	x_2	x_3	x_4	x_5	x_6
0	x_4	600	3	4	2	1	0	0
0	<i>x</i> ₅	400	2	1	2	0	1	0
0	x_6	300	1	3	3	0	0	0
- 0		z_j	0	0	0	0	0	0
Z	z = 0		-2	-4	-2,5	0	0	0

3. Hasierako *Simplex* taula

4. Irizpideak

Coin	Aoin	$B^{-1} \cdot b$	2	4	2,5	0	0	0
			x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆
0	x_4	600	3	4	2	1	0	0
0	x_5	400	2	1	2	0	1	0
0	x_6	300	1	3	3	0	0	0
z = 0		z_j	0	0	0	0	0	0
		$z_j - c_j$	-2	-4	-2,5	0	0	0

 $\exists W_j < 0 \rightarrow JARRAITU$

SARTZE - IRIZPIDEA: $W_j = \min k = z_K - C_K = \min\{-2, -4, -2.5\} = -4 \rightarrow x_2$ oinarrira sartzen da.

 $IRTETZE - IRIZPIDEA: \min k \left\{ \frac{x_{Bk}}{y_{ik}} / y_{ik} > 0 \right\} = \left\{ \frac{600}{4}, \frac{400}{1}, \frac{300}{3} \right\} = 100 \rightarrow x_6 \ irtetzen \ da.$

5. Simplex taulan beharrezkoak diren aldaketak egin

Bigarren taula

$$\begin{cases} e_{3B} \leftarrow \frac{1}{3} e_3 \\ e_{2B} \leftarrow e_2 - e_{3B} \\ e_{1B} \leftarrow e_1 - 4 e_{3B} \end{cases}$$

Coin	Aoin	$B^{-1} \cdot b$	2	4	2,5	0	0	0
Coin		B . D	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆
0	<i>x</i> ₄	200	1,667	0	-2	1	0	-1,33
0	<i>x</i> ₅	300	1,667	0	1	0	1	-0,33
4	x_2	100	0,333	1	1	0	0	0,333
-	z = 400		1,333	4	4	0	0	1,333
Ζ =	400	$z_j - c_j$	-0,67	0	1,5	0	0	1,333

6. Irizpideak

Coin	Aoin	$B^{-1} \cdot b$	2	4	2,5	0	0	0
Coin			x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆
0	x_4	200	1,667	0	-2	1	0	-1,33
0	x_5	300	1,667	0	1	0	1	-0,33
4	x_2	100	0,333	1	1	0	0	0,333
	z = 400		1,333	4	4	0	0	1,333
Z -			-0,67	0	1,5	0	0	1,333

 $\exists W_i < 0 \rightarrow JARRAITU$

SARTZE - IRIZPIDEA: $W_j = \min k = z_K - C_K = \min\{-0.67, 1.5, 1.33\} = -0.67$ $\rightarrow x_1$ oinarrira sartzen da.

 $IRTETZE - IRIZPIDEA: \min k \left\{ \frac{x_{Bk}}{y_{ik}} / y_{ik} > 0 \right\} = \left\{ \frac{200 \cdot 3}{5}, \frac{300 \cdot 3}{5}, 100 \cdot 3 \right\}$ = 120 $\rightarrow x_4$ irretzen da.

7. Simplex taulan beharrezk oak diren aldaketak egin

Hirugarren taula

$$\begin{cases} e_{1B} \leftarrow \frac{3}{5}e_{1} \\ e_{2B} \leftarrow e_{2} - \frac{5}{3}e_{1B} \\ e_{3B} \leftarrow e_{3} - \frac{1}{3}e_{1B} \end{cases}$$

Coin	Aoin	$B^{-1} \cdot b$	2	4	2,5	0	0	0
Coin			x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆
2	<i>x</i> ₁	120	1	0	-1,2	0,6	0	-0,8
0	x_5	100	0	0	3	-1	1	1
4	x_2	60	0	1	1,4	-0,2	0	0,6
	z = 480		2	4	3,2	0,4	0	0,8
Z –			0	0	0,7	0,4	0	0,8

8. Soluzioa

Coin	Aoin	$B^{-1} \cdot b$	2	4	2,5	0	0	0
			x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆
2	x_1	120	1	0	-1,2	0,6	0	-0,8
0	x_5	100	0	0	3	-1	1	1
4	x_2	60	0	1	1,4	-0,2	0	0,6
z = 480		z_{j}	2	4	3,2	0,4	0	0,8
		$z_j - c_j$	0	0	0,7	0,4	0	0,8

 $\forall W_j \geq 0 \rightarrow \textit{GELDITU}, optimoa\ lortu\ dugu.$

Gainera, soluzio optimoa bakarra da oinarrizkoak ez diren aldagaien kostu murriztuak $\neq 0$ direlako.

Soluzioa:

$$x_1^* = 120$$
; $x_2^* = 60$; $x_3^* = 0$; $x_4^* = 0$; $x_5^* = 100$; $x_6^* = 0$; $z^* = 480$

2. Ekuazio primaletik dualaren soluzioa lortu

TAULA OPTIMOA ERABILIZ

$$Max z = 2x_1 + 4x_2 + \frac{5}{2}x_3$$

$$non 3x_1 + 4x_2 + 2x_3 \le 600$$

$$2x_1 + x_2 + 2x_3 \le 400$$

$$x_1 + 3x_2 + 3x_3 \le 300$$

$$x_1, x_2, x_3 \ge 0$$

Min
$$z = 600y_1 + 400y_2 + 300y_3$$

non $3y_1 + 2y_2 + y_3 \ge 2$
 $4y_1 + y_2 + 3y_3 \ge 4$
 $2y_1 + 2y_2 + 3y_3 \ge \frac{5}{2}$
 $y_1, y_2, y_3 \ge 0$

1. Primaletik duala lortu

2. Simplex metodoaren azken taula

Coin	Aoin	$B^{-1} \cdot b$	2	4	2,5	0	0	0
Coin			x_1	x_2	x_3	x_4	x_5	x_6
2	x_1	120	1	0	-1,2	0,6	0	-0,8
0	x_5	100	0	0	3	-1	1	1
4	x_2	60	0	1	1,4	-0,2	0	0,6
	z = 480		2	4	3,2	0,4	0	8,0
Z -			0	0	0,7	0,4	0	0,8

Soluzio optimoa:

$$y_1^* = \frac{2}{5}$$
; $y_2^* = 0$; $y_3^* = \frac{4}{5}$; $z^* = 600 * \frac{2}{5} + 300 * \frac{4}{5} = 480$

3. Ekuazio primaletik dualaren soluzioa lortu

OSAGARRIZKO LASAITASUNA

$$\begin{aligned} Max \ z &= 2x_1 + 4x_2 + \frac{5}{2}x_3 \\ non \ 3x_1 + 4x_2 + 2x_3 &\leq 600 \\ 2x_1 + x_2 + 2x_3 &\leq 400 \\ x_1 + 3x_2 + 3x_3 &\leq 300 \\ x_1, x_2, x_3 &\geq 0 \end{aligned}$$

Min
$$z = 600y_1 + 400y_2 + 300y_3$$

non $3y_1 + 2y_2 + y_3 \ge 2$
 $4y_1 + y_2 + 3y_3 \ge 4$
 $2y_1 + 2y_2 + 3y_3 \ge \frac{5}{2}$
 $y_1, y_2, y_3 \ge 0$

OSAGARRIZKO LASAITASUNA

1. Primaletik duala lortu

Min
$$z = 600y_1 + 400y_2 + 300y_3$$

non $3y_1 + 2y_2 + y_3 - y_4 = 2$
 $4y_1 + y_2 + 3y_3 - y_5 = 4$
 $2y_1 + 2y_2 + 3y_3 - y_6 = \frac{5}{2}$
 $y_1, y_2, y_3, y_4, y_5, y_6 \ge 0$

OSAGARRIZKO LASAITASUNA

2.Dulala lasaiera aldagaiekin

OSAGARRIZKO LASAITASUNA

3. Soluzio duala planteatu

$$x^{T} = (x_{1}, x_{2}, x_{3})$$
 $y^{T} = (y_{1}, y_{2}, y_{3})$ $(x^{h})^{T} = (x_{4}, x_{5}, x_{6})$ $(y^{h})^{T} = (y_{4}, y_{5}, y_{6})$

• Ekuazioak:

$$1. x_{1} \cdot y_{4} = 0$$

$$2. x_{2} \cdot y_{5} = 0$$

$$3. x_{3} \cdot y_{6} = 0$$

$$4. x_{4} \cdot y_{1} = 0$$

$$5. x_{5} \cdot y_{2} = 0$$

$$6. x_{6} \cdot y_{3} = 0$$

$$x_1^* = 120$$
; $x_2^* = 60$; $x_3^* = 0$; $x_4^* = 0$; $x_5^* = 100$; $x_6^* = 0$; $z^* = 480$

OSAGARRIZKO LASAITASUNA

4.1. Primalaren soluziotik abiatuz, ahal diren ekuazioak ebatzi

1.
$$x_1 \cdot y_4 = 0 \rightarrow 120 \cdot y_4 = 0 \rightarrow y_4 = 0$$

2. $x_2 \cdot y_5 = 0 \rightarrow 60 \cdot y_5 = 0 \rightarrow y_5 = 0$
3. $x_3 \cdot y_6 = 0$
4. $x_4 \cdot y_1 = 0$
5. $x_5 \cdot y_2 = 0 \rightarrow 100 \cdot y_2 = 0 \rightarrow y_2 = 0$

 $6. x_6 \cdot y_3 = 0$

OSAGARRIZKO LASAITASUNA

4.2. Dualean ordezkapenak egin eta faltadiren balioak lortu

Min
$$z = 600y_1 + 400y_2 + 300y_3$$

non $3y_1 + 2y_2 + y_3 - y_4 = 2$
 $4y_1 + y_2 + 3y_3 - y_5 = 4$
 $2y_1 + 2y_2 + 3y_3 - y_6 = \frac{5}{2}$
 $y_1, y_2, y_3, y_4, y_5, y_6 \ge 0$

$$y_2^* = 0$$
; $y_4^* = 0$; $y_5^* = 0$

$$\begin{cases} 3y_1 + y_3 = 2 \\ 4y_1 + 3y_3 = 4 \\ 2y_1 + 3y_3 - y_6 = \frac{5}{2} \end{cases} = \begin{cases} -9y_1 - 3y_3 = -6 \\ 4y_1 + 3y_3 = 4 \\ -5y_1 = -2 \rightarrow y_1 = \frac{2}{5} \end{cases}$$

1.
$$3 \cdot \frac{2}{5} + y_3 = 2 \rightarrow y_3 = \frac{4}{5}$$

2. $2 \cdot \frac{2}{5} + 3 \cdot \frac{4}{5} - y_6 = \frac{5}{2} \rightarrow y_6 = \frac{7}{10}$

Soluzio optimoa:

$$y_1^* = \frac{2}{5}$$
; $y_2^* = 0$; $y_3^* = \frac{4}{5}$; $y_4^* = 0$; $y_5^* = 0$; $y_6^* = \frac{7}{10}$; $z^* = 480$

4. Dualetik primalera

SIMPLEX DUAL METODOA

Min
$$z = 600y_1 + 400y_2 + 300y_3$$

non $3y_1 + 2y_2 + y_3 \ge 2$
 $4y_1 + y_2 + 3y_3 \ge 4$
 $2y_1 + 2y_2 + 3y_3 \ge \frac{5}{2}$

$$Min z = 600y_1 + 400y_2 + 300y_3$$

$$non 3y_1 + 2y_2 + y_3 - y_4 = 2$$

$$4y_1 + y_2 + 3y_3 - y_5 = 4$$

$$2y_1 + 2y_2 + 3y_3 - y_6 = \frac{5}{2}$$

$$y_1, y_2, y_3, y_4, y_5, y_6 \ge 0$$

LASAIERA ALDAGAIAK GEHITU

1.Dulala lasaiera aldagaiekin

$$Min z = 600y_1 + 400y_2 + 300y_3$$

$$non 3y_1 + 2y_2 + y_3 - y_4 = 2$$

$$4y_1 + y_2 + 3y_3 - y_5 = 4$$

$$2y_1 + 2y_2 + 3y_3 - y_6 = \frac{5}{2}$$

$$y_1, y_2, y_3, y_4, y_5, y_6 \ge 0$$

$$\begin{aligned} & Min \ z = 600y_1 + 400y_2 + 300y_3 \\ & non \ -3y_1 - 2y_2 - y_3 + y_4 = -2 \\ & -4y_1 - y_2 - 3y_3 + y_5 = -4 \\ & -2y_1 - 2y_2 - 3y_3 + y_6 = -\frac{5}{2} \\ & y_1, y_2, y_3, y_4, y_5, y_6 \ge 0 \end{aligned}$$

PROBLEMA OROKORTU

2. Dulala lasaiera aldagaiekin, identitatea lortu ahal izateko

3. Simplex metodoaren lehen taula

Coin Aoin	$B^{-1} \cdot b$	600	400	300	0	0	0	
Colit	Cotti Aotti	D 'U	y ₁	y_2	<i>y</i> ₃	<i>y</i> ₄	y ₅	y_6
0	y ₄	-2	-3	-2	-1	1	0	0
0	y_5	-4	-4	-1	-3	0	1	0
0	y_6	-2,5	-2	-2	-3	0	0	1
z = 0		z_j	0	0	0	0	0	0
		$z_j - c_j$	-600	-400	-300	0	0	0

$$\exists k: x_{DK} < 0 \rightarrow JARRAITU$$

* $\underline{\mathsf{IRTETZE}}\cdot \mathsf{IRIZPIDEA}: \max\{\,|x_{DK}|\,/\,x_{DK}<0\,\} = \,\max\{\,|-2|,\,|-4|,\,|-5/2|\,\,\} = 4\,\,\cdots>\,y_5\,\,atera$

Eragiketak:
$$\begin{cases} e_{2b} = -\frac{1}{3} * e_3 \\ e_{1b} = e_1 + e_{2b} \\ e_{3b} = e_3 + 3 * e_{2b} \end{cases}$$

4. Simplex metodoaren bigarren taula

Coin	Coin Aoin	$B^{-1} \cdot b$	600	400	300	0	0	0
Coin			y ₁	y_2	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅	<i>y</i> ₆
0	y ₄	- 2/3	- 5/3	- 5/3	0	1	- 1/3	0
300	<i>y</i> ₃	4/3	4/3	1/3	1	0	- 1/3	0
0	y ₆	3/2	2	-2	0	0	-1	1
	z = 400		400	100	300	0	-100	0
Ζ =			-200	-300	0	0	-100	0

$$\exists k: x_{DK} < 0 \rightarrow JARRAITU$$

- * <u>SARTZE-IRIZPIDEA</u>: min $\{\frac{|Z_K C_K|}{|a_{in}|} / a_{in} < 0\} = \min \{\frac{|-200|}{|-5/3|}, \frac{|-300|}{|-5/3|}, \frac{|-100|}{|-1/3|}\} = 100 --> y_1 \ sartu$

Eragiketak:
$$\begin{cases} e_{1b} = -\frac{3}{5}*e_1\\ e_{2b} = e_2 - \frac{4}{3}*e_{1b}\\ e_{3b} = e_3 - 2*e_{1b} \end{cases}$$

5. Simplex metodoaren azken taula

Coin Aoin	$B^{-1} \cdot b$	600	400	300	0	0	0	
		y_1	y_2	<i>y</i> ₃	<i>y</i> ₄	y_5	<i>y</i> ₆	
600	<i>y</i> ₁	2/5	1	1	0	- 3/5	1/5	0
300	y_3	4/5	0	-1	1	4/5	- 3/5	0
0	y_6	7/10	0	0	-2	- 8/5	1/5	1
z = 480		\mathbf{z}_{j}	600	300	300	-120	-60	0
		$z_j - c_j$	0	-100	0	-120	-60	0

$$\forall x_{DK} > 0 \rightarrow GELDITU$$

Bideragarritasuna lortu egin da. Ondorioz,problema dualaren soluzio optimoa lortu dugu:

$$z^* = 480,$$

 $y_1 = \frac{2}{5}, \qquad y_3 = \frac{4}{5}, \qquad y_6 = \frac{7}{10}, \qquad y_2 = 0, \qquad y_4 = 0, \qquad y_5 = 0$