SES 2024 届高一下数学测验(9) 2022.5.7

班级	学号	姓名

一、填空题(每空5分,共50分)

- 1. 已知作用在坐标原点的三个力 $\overrightarrow{F_1}$ = (3,4), $\overrightarrow{F_2}$ = (2,-5), $\overrightarrow{F_3}$ = (3,1),则它们的合力的大小为
- 2. 己知向量 $\vec{a} = (2,1)$,A = (1,2),若向量 $\overrightarrow{AB} / \vec{a}$,且 $|\overrightarrow{AB}| = 2\sqrt{5}$,则 B 的坐标为______.
- 3. 已知 $P_1(4,-3), P_2(-2,6)$,若点 P 在线段 P_2P_1 的延长线上, $\left|\overrightarrow{P_1P}\right| = \frac{4}{5}\left|\overrightarrow{PP_2}\right|$,则点 P 的坐标是_______.
- 4. 若非零向量 $\vec{a} = (x, 2x)$, $\vec{b} = (-3x, 2)$,且 \vec{a} , \vec{b} 的夹角为钝角,则x的取值范围是______.
- 5. 设向量 \vec{a} 与 \vec{b} 的夹角为 θ ,且 \vec{a} = (3,3), $2\vec{b}$ \vec{a} = (-1,1),则 $\cos\theta$ = _____.
- 6. 已知 $|\vec{a}| = 6, |\vec{b}| = 4, \vec{a}$ 与 \vec{b} 的夹角为 60° ,则 $(\vec{a} + 2\vec{b})(\vec{a} 3\vec{b}) = ______$, $|\vec{a} + \vec{b}| = _____$
- 7. 若 $\vec{a} = (2,3), \vec{b} = (-4,7), \vec{a} + \vec{c} = \vec{0},$ 则 \vec{c} 在 \vec{b} 方向上的投影为______.
- 8. $\overrightarrow{A}\overrightarrow{OA} = (2,3), \overrightarrow{OB} = (-4,7), \overrightarrow{OP} = \frac{1}{3}\overrightarrow{OB} + \lambda \overrightarrow{OA}, \quad \overrightarrow{A} P \setminus A \setminus B =$ 点共线,则 $\overrightarrow{OP} =$ ______.

二、解答题(10+10+10+10+10=50分)

- 10. 已知 $\triangle ABC$ 三个顶点的直角坐标分别为A(3, 4)、B(0, 0)、C(c, 0).
 - (1) 若 $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$, 求 c 的值;
- (2)若c=5,求 $\sin \angle A$ 的值

11. $| \exists \mathbf{p} | | \vec{a} | = | \vec{b} | = 1$, $\vec{a} = | \vec{b} | \vec{a} = | \vec{b} | \vec{b} = | \vec{b} | \vec{$

12. 如图, 在梯形 ABCD 中 $\overrightarrow{AB} = \overrightarrow{a}, \overrightarrow{BC} = \overrightarrow{b},$

$$\overrightarrow{CD} = -\frac{1}{2}\overrightarrow{a}$$
,G 为对角线 AC、BD 的交点,E、

F 分别是腰 AD、BC 的中点,求向量 \overrightarrow{EF} 和 \overrightarrow{AG} 。

- 13. 已知向量 $\vec{a} = (1,2)$, $\vec{b} = (-3,2)$, 向量 $\vec{x} = k\vec{a} + \vec{b}$, $\vec{y} = \vec{a} 3\vec{b}$.
- (1) 当k为何值时,向量 $\vec{x} \perp \vec{y}$;
- (2) 若向量 \vec{x} 与 \vec{y} 的夹角为钝角,求实数k的取值范围.

- 14. 己知向量 $\vec{a} = (\sin x, \cos x), \ \vec{b} = (\sin x, \sin x), \ \vec{c} = (-1, 0).$
 - (1) 若 $x = \frac{\pi}{3}$, 求向量 \vec{a} 、 \vec{c} 的夹角 θ ;
 - (2) 若 $x \in \left[-\frac{3\pi}{8}, \frac{\pi}{4} \right]$, 函数 $f(x) = \lambda \vec{a} \cdot \vec{b}$ 的最大值为 $\frac{1}{2}$, 求实数 λ 的值.

三、附加题(10分)

- 15. 已知向量 $\vec{m} = (\sqrt{3}, 1)$, 向量 \vec{n} 是与向量 \vec{m} 夹角为 $\frac{\pi}{3}$ 的单位向量.
- (1) 求向量 \vec{n} ; (2) 若向量 \vec{n} 与向量 \vec{q} = $(-\sqrt{3},1)$ 平行,与向量 \vec{p} = $(\sqrt{3} x^2, x y^2)$ 垂直,求 $t = y^2 + 5x + 4$ 的最大值.