ES 220 Spring 2024

Useful Project Functions - Details and Info

Code to install:

General functions for matrix models (deterministic or stochastic)

get.lam - Returns the population growth rate (dominant eigenvalue) of a population projection matrix.

Usage: get.lam(A)

A is a projection matrix.

N. start — Returns a population size vector with individuals in each stage/age class based on the proportions found after transient dynamics ("wiggles") disappear when projecting the population (i.e. the "stable stage/age distribution"). This can be useful for providing a reasonable population size vector when starting a matrix model projection.

Usage: N.start(A, Total.N)

A is a projection matrix.

Total.N is the total population size to be distributed into each stage/age class.

get.total.N - Returns the total population size through time, summed across stage/age classes.

Usage: get.total.N(N)

N contains population size values from either a deterministic (2D array: rows = stage/age, columns = time) or stochastics (3D array: rows = stage/age, columns = time, layers = iterations) matrix model projection.

Functions for stochastic matrix models

median.N – Returns the median (of all iterations) total population size through time. In other words, this will collapse a stochastic matrix population projection into a single "line" through time such that half of the iterations resulted in population size greater than the line and half resulted in population sizes less than the line.

Usage: median.N(N, time)

N contains population size values from a stochastic model. It can either contain total population size values (2D array: rows = time, columns = iterations) or population size values for each stage/age (3D array: rows = stage/age, columns = time, layers = iterations).

time (optional) If the time argument is not included, the function will return values at all time points. If a value for time is provided (e.g. time = 5) then the function will return the median population size at the time point only. Note that the starting time is zero, and thus a value of a 5 corresponds to 5 time steps forward from the start.

extinct.prob — Returns the probability (expressed as a fraction) of the total population size decreasing below a specified minimum value.

Usage: extinct.prob(N, limit, time)

N contains population size values from a stochastic model. It can either contain total population size values (2D array: rows = time, columns = iterations) or population size values for each stage/age (3D array: rows = stage/age, columns = time, layers = iterations).

limit specifies the minimum population size value (e.g. "quasi-extinction threshold"). Any iteration that goes below this value will be considered functionally "extinct".

time (optional) specifies the time at which the population is evaluated. If the time argument is not included, the function will examine the entire period. If a value for time is provided (e.g. time = 5) then the function will calculate the probability up to that specific time. Note that the starting time is zero, and thus a value of a 5 corresponds to 5 time steps forward from the start.

remove.extinct — This function works in a similar way to extinct.prob, but rather than calculating a probability, it returns values of population sizes such that once an iteration has gone below a minimum size all future values are removed (e.g. NA, below left) or set to a specified value (e.g. zero, right):

Usage: remove.extinct(N, limit, time, replace)

N contains population size values from a stochastic model. It can either contain total population size values (2D array: rows = time, columns = iterations) or population size values for each stage/age (3D array: rows = stage/age, columns = time, layers = iterations).

limit specifies the minimum population size value (e.g. "quasi-extinction threshold"). Any iteration that goes below this value will be considered functionally "extinct".

time (optional) specifies the time at which the population is evaluated. If the time argument is not included, the function will examine the entire period. If a value for time is provided (e.g. time = 5) then the function will calculate the probability up to that specific time. Note that the starting time is zero, and thus a value of a 5 corresponds to 5 time steps forward from the start.

replace (optional) specifies the replace value for populations that have gone below the minimum threshold. If not specified then values are simply removed (replaced with NA, above left).

mat.dstoch — Projects a structured population one year into the future with demographic stochasticity. This function can replace A **%*%** N[,t] in order to evaluate survival and reproduction *on an individual basis* instead of applying mean values to all individuals. It returns the population size vector at time t+1.

Usage: mat.dstoch(A, Nt, repro.rows, repro.cols, post.breed)

A is a projection matrix.

Nt is the population size vector at time t.

repro. rows (*optional*) specifies the row(s) that contain reproduction contributions. It assumes the 1st row if not specified.

repro.cols (*optional*) specifies the colums(s) that contain reproduction contributions. It assumes all columns except for the 1st if not specified.

post.breed (optional) indicates whether the life cycle census is post-breeding (TRUE; default) or pre-breeding (FALSE).