Note del corso di Geometria 1

Gabriel Antonio Videtta

24 marzo 2023

Esercitazione: la forma canonica di Jordan e gli autospazi generalizzati

Nota. Nel corso del documento, per f si intenderà un generico endomorfismo di $\operatorname{End}(V)$, e per V verrà inteso uno spazio vettoriale di dimensione finita n su un campo $\mathbb K$ algebricamente chiuso, qualora non specificato diversamente.

Sia $f \in \text{End}(V)$. Si osservino allora le seguenti catene ascendenti:

$$\{\underline{0}\} \subsetneq \operatorname{Ker} f \subsetneq \operatorname{Ker} f^2 \subsetneq \cdots \subsetneq \operatorname{Ker} f^{k-1} \subsetneq \operatorname{Ker} f^k = \operatorname{Ker} f^{k+1} = \cdots, \quad (1)$$

$$\{\underline{0}\} \subsetneq \operatorname{Im} f \subsetneq \operatorname{Im} f^2 \subsetneq \cdots \subsetneq \operatorname{Im} f^{k-1} \subsetneq \operatorname{Im} f^k = \operatorname{Im} f^{k+1} = \cdots,$$
 (2)

Sia la (1) che la (2) devono stabilizzarsi allo stesso $k \in \mathbb{N}$, per la cosiddetta decomposizione di Fitting. Sempre per tale decomposizione vale in particolare che:

$$V = \operatorname{Ker} f^k \oplus \operatorname{Im} f^k.$$

Osservazione. Si possono fare alcune osservazioni riguardo la decomposizione di Fitting.

- ▶ Sia Ker f^k che Im f^k sono f-invarianti: $\underline{v} \in \text{Ker } f^k \implies f^k(f(\underline{v})) = f(f^k(\underline{v})) = \underline{0} \implies f(\underline{v}) \in \text{Ker } f^k = \underline{v} \in \text{Im } f^k \implies \underline{v} = f^k(\underline{w}), f(\underline{v}) = f(f^k(\underline{w})) = f^k(f(\underline{w})) \in \text{Im } f^k.$
- ▶ $f|_{\text{Ker }f^k}$ è nilpotente: $(f|_{\text{Ker }f^k})^k = f^k|_{\text{Ker }f^k} = 0$.
- ▶ $f|_{\operatorname{Im} f^k}$ è invertibile: Ker $f|_{\operatorname{Im} f^k} = \operatorname{Ker} f \cap \operatorname{Im} f^k \subseteq \operatorname{Ker} f^k \cap \operatorname{Im} f^k = \{\underline{0}\}$, e quindi $f|_{\operatorname{Im} f^k}$ è iniettiva; quindi $f|_{\operatorname{Im} f^k}$ è anche invertibile, essendo un endomorfismo.
- ▶ Poiché $f|_{\operatorname{Ker} f^k}$ è nilpotente, $p_{f|_{\operatorname{Ker} f^k}}(\lambda) = \lambda^d$, dove $d = \dim \operatorname{Ker} f^k$.

Inoltre $\varphi_{f|_{\operatorname{Ker} f^k}}(\lambda) = \lambda^k$: se infatti $\varphi_{f|_{\operatorname{Ker} f^k}}(\lambda) = \lambda^t$ con t < k, varrebbe sicuramente che $f|_{\operatorname{Ker} f^k}{}^{k-1} = f^{k-1}|_{\operatorname{Ker} f^k} = 0$, ossia che Ker $f^k \subseteq \operatorname{Ker} f^{k-1}$, violando la minimalità di k, ℓ .

Dal momento che vale la decomposizione di Fitting e che $\varphi_{f|_{\operatorname{Ker} f^k}}$ e $\varphi_{f|_{\operatorname{Im} f^k}}$ sono coprimi tra loro (il primo è diviso solo da t, mentre il secondo non è diviso da t), $\varphi_f = \operatorname{mcm}(\varphi_{f|_{\operatorname{Ker} f^k}}, \varphi_{f|_{\operatorname{Im} f^k}}) = \varphi_{f|_{\operatorname{Ker} f^k}} \varphi_{f|_{\operatorname{Im} f^k}}$. Si conclude quindi che $k = \mu'_a(0)$ rispetto a φ_f , ossia la molteplicità algebrica di 0 in tale polinomio. Analogamente si osserva che $t = \mu_a(0)$ rispetto a p_f , ossia la molteplicità algebrica dell'autovalore 0 in f, e quindi che $\mu_a(0) \geq k$.

Reiterando la decomposizione di Fitting (o applicando il teorema di decomposizione primaria), si ottiene infine la seguente decomposizione di V:

$$V = \operatorname{Ker}(f - \lambda_1 \operatorname{Id})^{\mu_a(\lambda_1)} \oplus \cdots \oplus \operatorname{Ker}(f - \lambda_m \operatorname{Id})^{\mu_a(\lambda_m)},$$

dove m è il numero di autovalori di V. Si può riscrivere questa identità ponendo $n_i := \mu'_a(\lambda_i)$ in φ_f :

$$V = \operatorname{Ker}(f - \lambda_1 \operatorname{Id})^{n_1} \oplus \cdots \oplus \operatorname{Ker}(f - \lambda_m \operatorname{Id})^{n_m}.$$

Si deduce da questa identità che f è diagonalizzabile se e solo se $n_i=1$ $\forall\,i\leq m.$

Esercizio 1. Sia $A \in M(n, \mathbb{C})$ invertibile. Dimostrare allora che se A^3 è diagonalizzabile, anche A lo è.

Soluzione. Se A^3 è diagonalizzabile, per la precedente osservazione, $\varphi_{A^3}(t) = \prod_{i=1}^m (t - \lambda_i)$, dove m è il numero di autovalori distinti di A^3 . Allora, detto $p(t) = \prod_{i=1}^m (t^3 - \lambda_i)$, vale che p(A) = 0, ossia che $\varphi_A \mid p$. Dal momento che A è invertibile, anche A^3 lo è, e quindi $\lambda_i \neq 0 \ \forall i \leq m$. Poiché p è allora fattorizzato in soli termini lineari distinti, anche φ_A deve esserlo, e quindi A deve essere diagonalizzabile.