산공학회견문록

샴 네트워크 모델 기반 이상탐지

- 테이블 데이터를 이미지 데이터로 변경
- 특정 구간 별로 시계열 이미지를 구간 나눔 ※이때 나뉘는 텀은 사용자의 정의에 따라 세팅
- 샴 네트워크 모델을 활용해 특정 구간이 이상 및 이상 종류 예측 수행 ※이때 앵커 이미지는 사용자 재량

샴 네트워크 모델 기반 이상탐지

[분류성능]

VGG16

Accuracy	Macro F1 score	Recall
0.8046	0.8047	0.8582

※ 당해년도 목표치:80%

[Confusion Matrix] VGG16

	예측 값		
		정상	이상
실제 값	정상	92	32
	이상	18	109

- ✓ 정상으로 잘 분류된 정상
 - 앞 구간의 패턴들과 유사한 패턴을 보임
- ✓ 이상으로 잘못 분류된 정상
 - 앞 구간의 패턴들과 다른 패턴을 보임

[이상으로 잘 분류된 DEV]

[정상으로 잘못 분류된 DEV]

- 여러 시계열 센서 데이터를 요약할 수 있는 scatter plot 형태의 이미지로 변환 => 과거 시점과 최근 시점 간의 차이를 비교할 수 있도록 전처리 가능!
- 샴 네트워크 구조로 간단하면서 더 좋은 성능을 보이는 모델 구축 => semi/self supervised learning 또한 도입 가능!

Deep One-class Classification with Pseudo Outliers for Robust Anomaly Detection

- 기존 SVDD의 fine tunning 단계에서의 loss는 잡음 관측치의 영향을 받아 왜곡된 구체를 생성할 수 있음
- 이를 해결하기 위해 pseudo outlier 기반의 deep SVDD 방법론 제시

Deep One-class Classification with Pseudo Outliers for Robust Anomaly Detection

- 기존 오토인코더에 주로 활용되는 재구축 오차 ($\mathcal{L}re$)와 기존 deep SVDD의 손실 함수를 변형한 손실 함수($\mathcal{L}AD$)를 통해 손실 함수($\mathcal{L}T$)를 정의
- $\mathfrak{L}T$ 를 통해 도출되는 이상 탐지에 특화된 잠재 특징공간에서 초구체의 중심 c를 계산하고, 학습 과정에 따라 갱신함 (초기 초구체의 중심 c는 랜덤값으로 정의함)
- 단계별 학습 (사전 학습 + 미세 조정)없이도 단일 학습 과정을 통해 우수한 이상 탐지가 가능한 결정 경계선을 도출 가능

Deep One-class Classification with Pseudo Outliers for Robust Anomaly Detection

• 잡음 데이터에 대한 강건성을 보다 명확하게 보여주기 위해 Deep SVDD의 손실 함수를 변형하여 제안 방법론의 손실 함수를 정의함

Deep SVDD의 손실 함수
$$\mathcal{W}^* = \underset{\mathcal{W}}{argmin} \frac{1}{n} \sum_{i=1}^n (\|\phi(x_i;\mathcal{W}) - c\|^2) + \frac{\lambda}{2} \sum_{\ell=1}^L \|\mathcal{W}^\ell\|_F^2$$

제안 방법론의 손실 함수
$$\mathcal{W}^* = \underset{\mathcal{W}}{argmin}(1-\alpha)\frac{1}{n}\sum_{i=1}^n\|(x_i-\hat{x}_i)\|^2 + \alpha\{\frac{1}{n}\sum_{i=1}^n(\|(\phi(x_i;\mathcal{W})-c)\|^2)\delta_i + \frac{\lambda}{2}\sum_{\ell=1}^L\|\mathcal{W}^\ell\|_F^2\}$$

$$\begin{cases} \delta_i = 1 & \text{if } \rho_i \neq 0 \\ \delta_i = -1 & \text{if } \rho_i = 0 \end{cases}$$

- 잠재 특징공간에서 도출된 Pseudo outlier를 통해 각 데이터가 잡음 데이터에 가까운 데이터인지 아닌지를 판단하여 이를 손실 함수에 적용함
 - Pseudo outlier가 0이 아닌 데이터는 δ_i = 1을 부여 받아 오차 함수를 최소화 하기 위해 **초구체의 중심에 더 가까워지도록 매핑됨**
 - Pseudo outlier가 0인 데이터는 δ_i = -1을 부여 받아 오차 함수를 최소화 하기 위해 **초구체의 중심에서 더 멀어지도록 매핑됨**
- 이상 탐지에 특화된 손실 함수와 재구축 손실 함수를 동시에 활용함으로써 각 손실함수에서 생성되는 특징이 동시에 포함된 잠재 특징 공간을 구축 가능함

제안 방법론의 구조를 통해 도출된 잠재 특징공간에서의 상호 k-인접 이웃의 개수로 각 관측치의 Pseudo outlier를 정의

범주형 불균형이 반영된 준지도 학습을 활용한 반도체 웨이퍼 불량 패턴 검출

- 준지도학습(FixMatch[Google Research, 2020])를 활용해 wafer bin map 분류 성능 향상이 있었음
- FixMatch: pseudo-labeling과 consistency loss(unlabeled data의 raw data와 augmentation한 데이터의 softmax probability값의 차이를 줄여주는 방법으로 학습 진행)
- Consistency training을 하기 위해선 데이터에 맞는 augmentation 방법을 찾는 것이 중요
- ※ Consistency training : 다양한 형태의 데이터 변형을 학습하도록 하는 것

범주형 불균형이 반영된 준지도 학습을 활용한 반도체 웨이퍼 불량 패턴 검출

• Adsh(FixMatch + class adaptive thresholding(클래스별로 불균형 상황을 반영하여 threshold를 유연하게

조정함))[ICML, 2022]를 적용해보는 것이 이번 연구

범주형 불균형이 반영된 준지도 학습을 활용한 반도체 웨이퍼 불량 패턴 검출

- FixMatch augmentation 조합에선 Rotation + Cutout&noise 조합이 가장 성능이 좋았음
- FixMatch 와 Adsh 비교 결과, 불균형 상황(1% 데이터만 사용)이 반영되었지만 성능 개선이 보이지 않 았다
- EWMA와 같은 제약식 및 하이퍼파라미터 튜닝 시 결과 85% 정도로 성능 향상

시계열 기반 이상치 탐지 & 데이터셋 부족 문제

- 샘플 별 대조 학습 기법 기반 과대표집을 활용한 설비 상태 진단 프레임워크 : MOCO[Kaiming He, 2020] 를 활용해서 베이링 회전 데이터셋에 적용했더니 다른 오버샘플링 기법보다 성능이 좋았다 => 시계열 기반 의 설비 신호 데이터는 MOCO가 더욱 효과적이다
- Contrastive learning for time series anomaly detection using decomposition methods : 시계열 데이터를 분해한 뒤 분해된 시계열을 증강 후 대조학습을 진행하여 기존 신호와 다른 부분 찾음
- 데이터 노이즈에 강건한 표면 이상 탐지 모델 개발

: SimCLR[Google Research, 2020] 을 이용해 학습한 뒤, feature vector들의 KNN distance 평균을 구해 평균 이상이면 결함으로 탐지

이상탐지서비스 알고리즘 소개 및 기업 적용 사례

이상탐지서비스 알고리즘 소개 및 기업 적용 사례

이재훈 연구위원 LG전자 AI빅데이터담당 jae.h.lee@lge.com

https://drive.google.com/file/d/1F7ysmBHcbbSKPpBJeWfI-A7aZCLk7ObQ/view?usp=sharing

록프트 관련

ChatGPT x DALL-E 광고 창작물과 사람의 광고창작물이 고객의 구매행동에 미치는 영향 비 교 : 명품 브랜드를 중심으로

- 인공지능 기술의 활용 가능성을 파악하는 데에 의의를 가지며 이를 통해 인공지능 기술이 인간의 창의성을 대체 할 수 있는지에 대한 논의 제안
- 사람의 창작물이나 인공지능의 창작물 중 하나만 사용하는 것보다는 두 가지를 협업하거나 균형점을 찾아 결합한 결과물이 더 효과적일 것으로 판단 **Louis Vuitton** Chanel

노력하겠습니다.

인력값 요청

DALL-E한테 너가

만든 광고 문구를 표현할 수 있는 이 미지를 만들 수 있

도록 적절한 입력값

을 제시해줘

· "Prada runway

inputting such

images, DALL-E

could visually

•"Woman in

wind"

model" or "Prada

fashion sketch": By

represent the sleek

aesthetic of Prada.

billowing dress" or

"Dress flowing in the

Original

L V the truth 루이비통이 진실이다.

To be irreplaceable, one must be different 대체할 수 없는 존재가 되기 위해서는, 다른 것이어야 한다.

Elevate your style with Louis Vuitton's timeless classics. 루이비통의 영원한 클래식 제품으 스타일을 높이세요

Experience the timeless elegance of Chanel. 샤넬의 영원한 우아함을 경험하세요.

프롬프트 관련

반도체 제조 도메인 특화 지식 그래프 구축을 위한 엔티티 추출 방법 연구

- 반도체 제조 도메인 지식 그래프 구축을 위해 도메인 특화 엔티티(Domain-specific entities)를 자동으로 추출할 수 있는 방법을 탐색 (BERT, SciBERT, ChatGPT, ChatPDF)
- 2020년~2022년에 발행된 반도체 제조 도메인 특허의 초록에서 엔티티를 추출하고 그 결과를 비교•분석
 - BERT 기반 NER 모델은 대문자로 표기된 단어를 위주로 추출함 [축약어 (e.g., UV-LIGA, FinFET), 수학 기호 (e.g., α) 등]
 - FinFET과 같이 대문자로 표기된 엔티티는 잘 추출하나 "wafer"와 같이 소문자로 표기된 보통 명사 엔티티는 잘 추출하지 못함
 - SciBERT 기반 NER 모델은 소문자로 표기된 보통 명사를 위주로 추출
 - "wafer alignment"와 같은 반도체 제조 도메인 특화 엔티티를 잘 추출하지 못함
 - ChatGPT는 NER 모델이 추출하지 못했던 반도체 제조 도메인 특화 엔티티(e.g., wafer alignment)를 잘 추출했다는 점에서 ChatGPT가 NER 모델보다 나은 성능을 보임
 - 추상적 범위의 엔티티(e.g., wafer)를 추출하기도, 구체적 범위의 엔티티(e.g., wafer alignment, photoresist exposure compensation)를 추출하기도 함
 - ChatPDF는 길이가 긴 텍스트를 Input으로 받아들일 수 있다는 장점이 있으나 이를 효과적으로 연산하지는 못함
 - ChatPDF가 추출하는 키워드는 전체 문단이 아닌 소수 개의 문단에서만 등장하는 경향이 있음
 - 전체 문서에서 쿼리와 가장 관련성이 높은 몇 개의 문단을 찾은 후 이를 기반으로 답변을 생성하는 것으로 확인됨
 - →보다 정확한 검증을 위해 본 연구를 통해 추출한 엔티티 목록을 도메인 전문가와 함께 검토해볼 필요가 있음
 - → 얼마나 구체적인 범위로 엔티티를 추출할지에 대한 논의가 필요함

프롬프트 관련

Large Language Model for Healthcare: Severity classification in Triage

- 응급실 환자 데이터를 LLM(GPT) 모델에 넣어서 응급환자인지 판별할 수 있는 모델 개발
- 인풋은 테이블 컬럼값과 그에 해당하는 값을 차례로 입력
- fine-tunning 및 테스트 결과, 다음과 같은 성능을 보임

Example Prompts

- 'input: Sex 0 Age 71 Arrival mode 0 Injury 0
 Chief_complain 0 Mental 1 Pain 1 NRS_pain 2 SBP 160
 DBP 100 HR 84 RR 18 BT 36.6 Saturation 100 Length of stay_min 86 KTAS duration_min 5.0\noutput: 4',
- 'input: Sex 1 Age 56 Arrival mode 0 Injury 0
 Chief_complain 1 Mental 1 Pain 1 NRS_pain 2 SBP 137
 DBP 75 HR 60 RR 20 BT 36.5 Saturation 0 Length of stay_min 64 KTAS duration_min 3.95\noutput: 2'

GPT-3 Model

Classifier	Accuracy
Expert	0.885
Nurse	0.895

Decision Tree Classifier

Classifier	Accuracy
Expert	0.399
Nurse	0.315