Knowledge engineering

KR is first and foremost about knowledge

meaning and entailment

find individuals and properties, then encode facts sufficient for entailments

Before implementing, need to understand clearly

- what is to be computed?
- why and where inference is necessary?

Example domain: soap-opera world

people, places, companies, births, marriages, divorces, deaths, events, ...

Task: KB with appropriate entailments

- what vocabulary?
- · what facts to represent?

Vocabulary

Domain-dependent predicates and functions

main question:

what are the individuals?

here: people, places, companies, ...

named individuals

john, countryTown, faultyInsuranceCorp, fic, johnQsmith, ...

basic types

Person, Place, Man, Woman, ...

attributes

Rich, Beautiful, Unscrupulous, ...

relationships

LivesAt, MarriedTo, DaughterOf, HairDresserOf, HadAnAffairWith, Blackmails, ...

functions

fatherOf, ceoOf, bestFriendOf, ...

Basic facts

Usually atomic sentences and negations

```
type facts
    Man(john),
    Woman(jane),
    Company(faultyInsuranceCorp)

property facts
    Rich(john),
    ¬HappilyMarried(jim),
    WorksFor(jim,fic)

equality facts
    john = ceoOf(fic),
    fic = faultyInsuranceCorp,
    bestFriendOf(jim) = john
```

Like a simple database

could store these facts in relational tables

Complex facts

Universal abbreviations

```
\forall y [\text{Woman}(y) \land y \neq \text{jane} \supset \text{Loves}(y, \text{john})]

\forall y [\text{Rich}(y) \land \text{Man}(y) \supset \text{Loves}(y, \text{jane})]

\forall x \forall y [\text{Loves}(x, y) \supset \neg \text{Blackmails}(x, y)]

possible to express without quantifiers
```

Incomplete knowledge

Loves(jane,john) ∨ Loves(jane,jim) which?

 $\exists x [Adult(x) \land Blackmails(x, john)]$ who?

cannot write down more complete version

Closure axioms

```
\forall x[\operatorname{Person}(x) \supset x=\operatorname{jane} \lor x=\operatorname{john} \lor x=\operatorname{jim} \ldots]

\forall x \forall y[\operatorname{MarriedTo}(x,y) \supset \ldots]

\forall x[x=\operatorname{fic} \lor x=\operatorname{jane} \lor x=\operatorname{john} \lor x=\operatorname{jim} \ldots]

limits domain of discourse

also useful to have \operatorname{jane} \neq \operatorname{john} \ldots
```

Terminological facts

General relationships among predicates. For example:

```
disjoint
```

```
\forall x [Man(x) \supset \neg Woman(x)]
```

subtype

```
\forall x [Senator(x) \supset Legislator(x)]
```

exhaustive

```
\forall x [Adult(x) \supset Man(x) \vee Woman(x)]
```

symmetry

```
\forall x \forall y [MarriedTo(x,y) \supset MarriedTo(y,x)]
```

inverse

```
\forall x \forall y  [ChildOf(x,y) \supset ParentOf(y,x)]
```

type restriction

```
\forall x \forall y [MarriedTo(x,y) \supset Person(x) \land Person(y)]
```

full definition

```
\forall x [RichMan(x) \equiv Rich(x) Man(x)]
```

Usually universally quantified conditionals or biconditionals

Entailments: 1

Is there a company whose CEO loves Jane?

 $\exists x [Company(x) \land Loves(ceoOf(x), jane)] ??$

Suppose $I \models KB$.

Then I = Rich(john), Man(john), and $I = \forall y [\text{Rich}(y) \land \text{Man}(y) \supset \text{Loves}(y,\text{jane})]$ so I = Loves(john,jane).

Also I = john = ceoOf(fic),so I = Loves(ceoOf(fic),jane).

Finally *I* |= Company(faultyInsuranceCorp), and *I* |= fic = faultyInsuranceCorp, so *I* |= Company(fic).

Thus, $I = \text{Company}(\text{fic}) \land \text{Loves}(\text{ceoOf}(\text{fic}),\text{jane}),$

and so

 $I \models \exists x \text{ [Company}(x) \land \text{Loves}(\text{ceoOf}(x),\text{jane)]}.$

Can extract identity of company from this proof

Entailments: 2

If no man is blackmailing John, then is he being blackmailed by somebody he loves?

```
\forall x[\text{Man}(x) \supset \neg \text{Blackmails}(x,\text{john})] \supset \exists y[\text{Loves}(\text{john},y) \land \text{Blackmails}(y,\text{john})] ??
```

Note: $KB = (\alpha \supset \beta)$ iff $KB \cup \{\alpha\} = \beta$

Assume: $I = KB \cup \{ \forall x [Man(x) \supset \neg Blackmails(x, john)] \}$

Show: $I = \exists y [Loves(john, y) \land Blackmails(y, john)]$

Have: $\exists x [Adult(x) \land Blackmails(x,john)]$ and $\forall x [Adult(x) \supset Man(x) \lor Woman(x)]$ so $\exists x [Woman(x) \land Blackmails(x,john)].$

Then: $\forall y [\text{Rich}(y) \land \text{Man}(y) \supset \text{Loves}(y, \text{jane})]$

and Rich(john) \(\Lambda \) Man(john)

SO Loves(john,jane)!

But: $\forall y [\text{Woman}(y) \land y \neq \text{jane} \supset \text{Loves}(y, \text{john})]$

and $\forall x \forall y [\text{Loves}(x,y) \supset \neg \text{Blackmails}(x,y)]$

SO $\forall y [\text{Woman}(y) \land y \neq \text{jane } \supset \neg \text{Blackmails}(y, \text{john})]$

and... Blackmails(jane,john)!!

Finally: Loves(john,jane) \land Blackmails(jane,john) so: $\exists y[\text{Loves(john,}y) \land \text{Blackmails}(y,\text{john})]$

Proof as sequence of sentences

What individuals?

Sometimes useful to reduce n-ary predicates to 1-place predicates and 1-place functions

- involves reifying properties: new individuals
- typical of description logics / frame languages (later)

Flexibility in terms of arity:

```
Purchases(john,sears,bike) or
Purchases(john,sears,bike,feb14) or
Purchases(john,sears,bike,feb14,$100)
```

Instead introduce purchase objects

```
Purchase(p) \land agent(p)=john \land obj(p)=bike \land source(p)=sears \land amount(p)=... \land ...
```

allows purchase to be described at various levels of detail

Complex relationships:

```
MarriedTo(x,y) vs.
PreviouslyMarriedTo(x,y) vs.
ReMarriedTo(x,y)
```

Define marital status in terms of existence of marriages and divorces.

```
Marriage(m) \wedge partner1(m)=x \wedge partner2(m)=y \wedge date(m)=... \wedge witness(m)=... \wedge ...
```

Abstract individuals

Also need individuals for numbers, dates, times, addresses, etc.

objects about which we ask wh-questions

Quantities as individuals

```
age(suzy) = 14

age-in-years(suzy) = 14

age-in-months(suzy) = 168

perhaps better to have an object for the age of Suzy,

whose value in years is 14

years(age(suzy)) = 14

months(x) = 12*years(x)

centimeters(x) = 100*meters(x)
```

Similarly with locations and times

```
instead of time(m) = "Jan 5 1992 4:47:03EST" can use time(m) = t \land year(t) = 1992 \land ...
```

Other sorts of facts

Statistical / probabilistic facts

- Half of the companies are located on the East Side.
- Most of the employees are restless.
- Almost none of the employees are completely trustworthy,

Default / prototypical facts

- Company presidents typically have secretaries intercepting their phone calls.
- Cars have four wheels.
- Companies generally do not allow employees that work together to be married.

Intentional facts

- John believes that Henry is trying to blackmail him.
- · Jane does not want Jim to think that she loves John.

Others ...