# **Uber Trip Analysis Using Python**

#### **About The DataSet**

The dataset consists of 6 files which is related to Trip details and Pickups details of Uber Taxi for Month April-2014 to Sept.-2014. This dataset contain various details of Uber Trips.

#### **Objective of This Data Analysis**

The objective of this Analysis as follow:-

1) To find out the Most Busy Hours of Trips, 2) Most Busy Day of Uber Taxi etc

#### **STEP 1 - Importing Necessary Python Libraries**

```
In [1]: import pandas as pd # for the data processing,CSV file reading and Data cleaning
import numpy as np # for the N-dimensional array and linear algebra
import plotly.express as px # to visualize a variety of types of data
from datetime import datetime
from plotly.offline import iplot # to display the plot when working on offline
import plotly
plotly.offline.init_notebook_mode(connected=True)
```

#### STEP 2 - Loading Dataset and making single Dataset/DataFrame

• Reading all the 6 file and merging all file in single data frame.

```
In [2]: apr=pd.read_csv("C:/Users/Lenovo/OneDrive/Desktop/Choice-Data/Uber/uber-raw-data-apr14.csv")
    may=pd.read_csv("C:/Users/Lenovo/OneDrive/Desktop/Choice-Data/Uber/uber-raw-data-may14.csv")
    june=pd.read_csv("C:/Users/Lenovo/OneDrive/Desktop/Choice-Data/Uber/uber-raw-data-jun14.csv")
    july=pd.read_csv("C:/Users/Lenovo/OneDrive/Desktop/Choice-Data/Uber/uber-raw-data-jul14.csv")
    aug=pd.read_csv("C:/Users/Lenovo/OneDrive/Desktop/Choice-Data/Uber/uber-raw-data-aug14.csv")
    sep=pd.read_csv("C:/Users/Lenovo/OneDrive/Desktop/Choice-Data/Uber/uber-raw-data-sep14.csv")

In [3]: apr["Month"]="Apr"
    may["Month"]="Apr"
    may["Month"]="July"
    aug["Month"]="July"
    aug["Month"]="Sep"

In [4]: #Now concatenating the all data in one DataFrame called as df
    df = pd.concat([apr,may,june,july,aug,sep],axis=0)
    df.head()
```

# Out[4]:

|   | Date/Time        | Lat     | Lon      | Base   | Month |
|---|------------------|---------|----------|--------|-------|
| 0 | 4/1/2014 0:11:00 | 40.7690 | -73.9549 | B02512 | Apr   |
| 1 | 4/1/2014 0:17:00 | 40.7267 | -74.0345 | B02512 | Apr   |
| 2 | 4/1/2014 0:21:00 | 40.7316 | -73.9873 | B02512 | Apr   |
| 3 | 4/1/2014 0:28:00 | 40.7588 | -73.9776 | B02512 | Apr   |
| 4 | 4/1/2014 0:33:00 | 40.7594 | -73.9722 | B02512 | Apr   |

#### STEP 3 - Basic Descriptions of the Data and handling Null values

```
In [7]: | df.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 4534327 entries, 0 to 1028135
          Data columns (total 5 columns):
               Column
                           Dtype
           0
               Date/Time object
                           float64
           1
               Lat
           2
                           float64
               Lon
           3
               Base
                           object
           4
                           object
               Month
          dtypes: float64(2), object(3)
          memory usage: 207.6+ MB
In [8]: | df['Date/Time'] = pd.to_datetime(df['Date/Time'], errors='coerce')
In [9]: |df.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 4534327 entries, 0 to 1028135
          Data columns (total 5 columns):
           #
               Column
                           Dtype
               -----
           0
               Date/Time datetime64[ns]
           1
               Lat
                           float64
                           float64
           2
               Lon
           3
               Base
                           object
                           object
           4
               Month
          dtypes: datetime64[ns](1), float64(2), object(2)
          memory usage: 207.6+ MB
In [10]: |df['weekday']=df['Date/Time'].dt.day_name()
          df['day']=df['Date/Time'].dt.day
          df['hour']=df['Date/Time'].dt.hour
          df['minute']=df['Date/Time'].dt.minute
In [11]: | df.head()
Out[11]:
                     Date/Time
                                                      Month weekday day hour minute
                                  Lat
                                          Lon
                                                 Base
          0 2014-04-01 00:11:00 40.7690 -73.9549
                                               B02512
                                                                              0
                                                              Tuesday
                                                                                     11
                                                         Apr
                                                                        1
           1 2014-04-01 00:17:00 40.7267 -74.0345 B02512
                                                              Tuesday
                                                                        1
                                                                              0
                                                                                    17
                                                         Apr
           2 2014-04-01 00:21:00 40.7316 -73.9873 B02512
                                                                              0
                                                                                    21
                                                         Apr
                                                              Tuesday
           3 2014-04-01 00:28:00 40.7588 -73.9776 B02512
                                                              Tuesday
                                                                              0
                                                                                    28
                                                         Apr
           4 2014-04-01 00:33:00 40.7594 -73.9722 B02512
                                                              Tuesday
                                                                              0
                                                                                    33
                                                         Apr
                                                                        1
In [12]: | df.duplicated().sum()
Out[12]: 82581
          Duplicate pickups do exist in the data set but we not know the accuracy of a pickup's Latitude/Longitude or Time, these pickups may be just have
          happened around the same time and around the same location. Therefore, due to not any conclusive reason here, we will assume that duplicate
          pickups are valid.
         df.describe().T
In [13]:
Out[13]:
                                                            25%
                                                                    50%
                                                                            75%
                     count
                                mean
                                           std
                                                                                     max
              Lat 4534327.0 40.739261
                                       0.039950
                                                39.6569
                                                         40.7211
                                                                 40.7422
                                                                          40.7610
                                                                                  42.1166
             Lon 4534327.0 -73.973019
                                       0.057267 -74.9290 -73.9965 -73.9834 -73.9653 -72.0666
             day 4534327.0 15.943368
                                       8.744902
                                                 1.0000
                                                          9.0000
                                                                 16.0000
                                                                          23.0000
                                                                                  31.0000
            hour 4534327.0 14.218310
                                       5.958759
                                                 0.0000
                                                         10.0000
                                                                 15.0000
                                                                          19.0000
                                                                                  23.0000
           minute 4534327.0 29.400709 17.322384
                                                 0.0000
                                                        14.0000
                                                                 29.0000
                                                                          44.0000
                                                                                  59.0000
In [14]:
          num pickups = df.shape[0]
          num_days = len(df[['Month', 'day']].drop_duplicates())
          daily_avg = np.round(num_pickups/num_days, 0)
          stats_raw = 'Number of Pickups: {}\nNumber of Days: {}\nAvg Daily Pickups: {}'
          print(stats_raw.format(num_pickups, num_days, daily_avg))
          Number of Pickups: 4534327
          Number of Days: 183
```

Avg Daily Pickups: 24778.0

```
In [15]: df.head()
```

Out[15]:

|   | Date/Time                    | Lat     | Lon      | Base   | Month | weekday | day | hour | minute |
|---|------------------------------|---------|----------|--------|-------|---------|-----|------|--------|
| ( | 2014-04-01 00:11:00          | 40.7690 | -73.9549 | B02512 | Apr   | Tuesday | 1   | 0    | 11     |
| • | 2014-04-01 00:17:00          | 40.7267 | -74.0345 | B02512 | Apr   | Tuesday | 1   | 0    | 17     |
| 2 | 2 2014-04-01 00:21:00        | 40.7316 | -73.9873 | B02512 | Apr   | Tuesday | 1   | 0    | 21     |
| ; | <b>3</b> 2014-04-01 00:28:00 | 40.7588 | -73.9776 | B02512 | Apr   | Tuesday | 1   | 0    | 28     |
| 4 | <b>1</b> 2014-04-01 00:33:00 | 40.7594 | -73.9722 | B02512 | Apr   | Tuesday | 1   | 0    | 33     |

# **Uber Trip Data Analysis and Visualization**

Q.1. Which days of the week have the highest trip/fare? Why do you think that particular day receives the highest trip request?

```
In [16]: weekday = df[['Month', 'weekday']].groupby(['weekday']).value_counts().reset_index()
    weekday.columns = ['weekday', 'Month','Total Trip']
    weekday.head()
```

Out[16]:

|   | weekday | Month | Total Trip |
|---|---------|-------|------------|
| 0 | Friday  | Sep   | 160380     |
| 1 | Friday  | Aug   | 148674     |
| 2 | Friday  | May   | 133991     |
| 3 | Friday  | June  | 105056     |
| 4 | Friday  | July  | 102735     |

```
In [17]: weekday_1 = df[['weekday']].groupby(['weekday']).value_counts().reset_index()
    weekday_1.columns = ['weekday','Total Trip']
    weekday_1.head()
```

Out[17]:

|   | weekday  | Total Trip |
|---|----------|------------|
| 0 | Friday   | 741139     |
| 1 | Monday   | 541472     |
| 2 | Saturday | 646114     |
| 3 | Sunday   | 490180     |
| 4 | Thursday | 755145     |

In [18]: fig = px.bar(weekday, x='weekday',y='Total Trip',text\_auto='.2s',title="Total trip per weekday using month data",color='Month')
fig.update\_traces(textfont\_size=12, textangle=0, textposition="outside", cliponaxis=False)
fig.show()

## Total trip per weekday using month data



In [19]: fig = px.bar(weekday\_1, x='weekday',y='Total Trip',text\_auto='.2s',title="Total Pickup per weekday")
fig.update\_traces(textfont\_size=12, textangle=0, textposition="outside", cliponaxis=False)
fig.show()

## Total Pickup per weekday



#### **Conclusion for Question-1**

The Most Pickups happened most during Thursdays and after Thursdays, Fridays closely follow. Even more interesting is the fact that more pickups occurred during Tuesdays and Wednesdays than on Saturdays or Sundays. Uber being used as a means to get to work during the week could be a possible explanation but, unfortunately, the purpose of these pickups is not available in the data.

#### Q.2. Find day wise busy hours for uber and why?



In [21]: hour\_pickup = df[['hour','Month']].groupby(['hour']).value\_counts().reset\_index()
hour\_pickup.columns = ['hour','Month','Total Hourly Trip']
hour\_pickup

#### Out[21]:

|     | hour | Month | Total Hourly Trip |
|-----|------|-------|-------------------|
| 0   | 0    | Sep   | 24133             |
| 1   | 0    | Aug   | 21451             |
| 2   | 0    | July  | 17953             |
| 3   | 0    | June  | 14514             |
| 4   | 0    | May   | 13875             |
|     |      |       |                   |
| 139 | 23   | Aug   | 33609             |
| 140 | 23   | July  | 29346             |
| 141 | 23   | May   | 24836             |
| 142 | 23   | June  | 24182             |
| 143 | 23   | Apr   | 20649             |
|     |      |       |                   |

144 rows × 3 columns

## Total trip per Hour using month data



```
In [23]: hour_pickup_weekly = df[['hour','weekday']].groupby(['hour']).value_counts().reset_index()
hour_pickup_weekly.columns = ['hour','weekday','Total Hourly Trip weekly']
hour_pickup_weekly
```

#### Out[23]:

|     | hour | weekday   | Total Hourly Trip weekly |
|-----|------|-----------|--------------------------|
| 0   | 0    | Sunday    | 32877                    |
| 1   | 0    | Saturday  | 27633                    |
| 2   | 0    | Friday    | 13716                    |
| 3   | 0    | Thursday  | 9293                     |
| 4   | 0    | Wednesday | 7644                     |
| ••• |      |           |                          |
| 163 | 23   | Thursday  | 27764                    |
| 164 | 23   | Wednesday | 18146                    |
| 165 | 23   | Tuesday   | 14869                    |
| 166 | 23   | Sunday    | 12166                    |
| 167 | 23   | Monday    | 11811                    |
|     |      |           |                          |

168 rows × 3 columns

# Total trip per Hour using weekday data



```
In [25]: hourly_pickups = df[['hour']].groupby(['hour']).value_counts().reset_index()
hourly_pickups.columns = ['hour','Total pickups']
hourly_pickups.head()
```

#### Out[25]:

|   | hour | Total pickups |
|---|------|---------------|
| 0 | 0    | 103836        |
| 1 | 1    | 67227         |
| 2 | 2    | 45865         |
| 3 | 3    | 48287         |
| 4 | 4    | 55230         |

# Hourly Total picups/Trip



#### **Conclusion for Question-2**

- 1) The highest number of trips by hour is 336190 trip, that corresponds to the peak hour 17:00. Also from the plot, we can observe that between 12–4am, there is a gradual drop in pickups, then a steep increase between 4–8am before it starts to drop steadily and flattens between 9am-12pm. It then steadily rises after that to reach its peak at most days is between 4–8pm then it decreases steadily again throughout the night to the next morning, apart from on Fridays and saturdays night between 8–11pm when there is a slight increase.
- 2) We can say that the majority of Uber's clients are workers.
- Q.3. How many trips were completed or canceled? Why do you think that % trip was canceled?

#### **Conclusion for Question-3**

As per the above details of the column names, there is no information regarding the status of a journey or trip which was completed or canceled. There is also no other relevant information available. So, here we are not able to find out how many trips were completed or cancelled from the above dataset information.