BT3014: Analysis and interpretation of Biological Data

(Basic math tutorial)

1. Find the eigenvalues of the given matrix.

(A).
$$\begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$$

(A).
$$\begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$$
 (B). $\begin{bmatrix} 5 & 1 \\ 4 & 5 \end{bmatrix}$ (C). $\begin{bmatrix} 3 & 5 \\ 3 & 1 \end{bmatrix}$

(c).
$$\begin{bmatrix} 3 & 5 \\ 3 & 1 \end{bmatrix}$$

(D).
$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$

(D).
$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$
 (E).
$$\begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 3 \\ 6 & -6 & 6 \end{bmatrix}$$

2. Find one eigenvector for the given matrix corresponding to the given eigenvalue.

(A).
$$\begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$$
, $\lambda = 5$

(A).
$$\begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$$
, $\lambda = 5$ (B). $\begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix}$, $\lambda = -1$

(c).
$$\begin{bmatrix} 2 & 6 \\ 1 & 3 \end{bmatrix}$$
, $\lambda = 0$

(C).
$$\begin{bmatrix} 2 & 6 \\ 1 & 3 \end{bmatrix}$$
, $\lambda = 0$ (D). $\begin{bmatrix} 4 & 1 & 3 \\ 1 & 3 & 1 \\ 2 & 0 & 5 \end{bmatrix}$, $\lambda = 3$

3. Find f_x and f_y where f(x,y) is equal to

(A).
$$3x + 4y$$
 (B). $xy^3 + x^2y^2$ (C). $x^3y + e^x$ (D). xe^{2x+3y} (E). $e^{-x}sin(x+y)$

4. find the gradient $\left[\overrightarrow{Vf}\right]$ of a function f

(A).
$$y - x$$
 (B). $\frac{14 - x^2 - y^2}{3}$ (C). $xy + yz + xz$ (D). $x - xy + z^2$

5. Let $f(x, y, z) = xye^{x^2+z^2-5}$. Calculate the gradient of 'f' at the point (1, 3, -2)?

6. Find the Jacobian matrix of a function f given by

(A).
$$f(x,y,z) = (xy+2yz, 2xy^2z)$$
 (B). $f(x,y,z) = (xyz, y^2, x+z)$

7. Compute the Hessian matrix of a function 'f' given by

(A).
$$f(x,y) = 2xy - 5x^2 - 2y^2 + 4x - 4$$
 (B). $f(x,y) = e^{x^2 + xy + y^2}$

Answers

3. (A).
$$f_x = 3$$
, $f_y = 4$ (B). $f_x = y^3 + 2xy^2$, $f_y = 3xy^2 + 2xy$ (C). $f_x = 3x^2y + e^x$, $f_y = x^3$ (D). $f_x = 2xe^{2x+3y} + e^{2x+3y}$, $f_y = 3xe^{2x+3y}$ (E). $f_x = e^{-x}(\cos(x+y) - \sin(x+y))$, $f_y = e^{-x}\cos(x+y)$

4. (A).
$$\vec{\nabla} f(x,y) = -i + j$$
 (B). $-\frac{2}{3}xi - \frac{2}{3}yj$ (C). $\langle y + z, x + z, y + x \rangle$ (D). $\langle 1 - y, -x, 2z \rangle$

5.
$$\nabla f(x,y,z) = ((y+2x^2y)e^{x^2+z^2-5}, xe^{x^2+z^2-5}, 2xyze^{x^2+z^2-5})$$
; $\nabla f(1,3,-2) = (9,1,-12)$

6. (A).
$$y \quad x + 2z \quad 2y \\ 2y^2z \quad 4xyz \quad 2xy^2$$
 (B). $\begin{bmatrix} yz & xz & xy \\ 0 & 2y & 0 \\ 1 & 0 & 1 \end{bmatrix}$

7. (A).
$$\mathcal{H}f = \begin{bmatrix} -10 & 2 \\ 2 & -4 \end{bmatrix}$$
 (B). $\mathcal{H}f = e^{x^2 + xy + y^2} \begin{pmatrix} 2 + (2x + y)^2 & 1 + (2x + y)(x + 2y) \\ 1 + (2x + y)(x + 2y) & 2 + (x + 2y)^2 \end{pmatrix}$