Nombre v Apellido:	Página 1 de
10111010 / 1100111000	

Física I A

Primer Parcial 05 Mayo 2016

1. Consideraciones generales

- Dispone de **tres horas** para completar el examen.
- Comience cada problema en una hoja separada. Coloque su nombre y numere todas las hojas.
- No utilice lápiz. Todas sus respuestas deben estar escritas en tinta. Si se equivoca, no use corrector ni goma, tache con una línea y/o aclare, y continúe debajo.

2. Preguntas para pensar

1. Indique cuál es la diferencia conceptual entre las expresiones

$$\Delta E_g = mg_{\oplus}h$$
 y $\Delta E_g = -GM_{\oplus}m\left(\frac{1}{R_{\oplus}+h} - \frac{1}{R_{\oplus}}\right)$

para la energía potencial gravitatoria. Indique para que situaciones son válidas cada una de las expresiones. ¿Cuándo usaría una u otra? Justifique.

- 2. Si se arrojan dos cuerpos con igual forma pero distintas masas, $m_1 > m_2$, desde la misma altura, ¿cómo serían los tiempos de llegada al piso? Justifique
- 3. Describa **todas** las transformaciones de energía que están implicadas en la caída de una hoja de un árbol al suelo.

3. Problemas

- 1. **Resortín, 3 puntos** Una bola de billar, de radio r=2 cm y densidad $\rho=2$ g cm⁻³, se encuentra apoyada sobre un resorte de constante elástica k=60 N m⁻¹. El resorte y la bola están inicialmente en equilibrio (la fuerza elástica equilibra a la fuerza de gravedad). Un agente externo, comprime al resorte una distancia $\Delta x=0.05$ m, y luego suelta la bola, la cual sale disparada al aire. Dibuje la situación planteada y luego calcule:
 - a) el peso de la bola de billar;
 - b) la altura que alcanza la bola de billar;
 - c) la velocidad inicial de la bola en el momento en la cual sale disparada;
 - d) la velocidad cuando la bola alcanza una altura de 0,03 m.

Datos útiles: $g = 9.8 \text{ m s}^{-2}$;

- 2. **Supertierra, 4 puntos** Acaba de ser descubierto un planeta en los confines del Sistema Solar, algo más grande que la Tierra, con masa $M = 5M_{\oplus}$ y $R = 1,1R_{\oplus}$, y se encuentra a una distancia de $r_f = 50$ UA del Sol. Se planea una misión de exploración, y para ello es necesario conocer ciertos datos. Entonces calcule:
 - a) Suponga que llevamos dos péndulos simples, con una longitud de $l=3\,\mathrm{m}$, y con una masa de 5 kg el primero, y 10 kg el segundo. Calcule el peso y el período de ambos péndulos sobre la superficie del planeta.
 - b) la velocidad para que un objeto pueda escapar de dicho planeta.
 - c) Un habitante de ese planeta que llegara a la Tierra, ¿podría ser considerado un superhéroe en función de su fuerza física, por ejemplo?
 - *d*) Se está construyendo una nave en órbita terrestre, a una distancia de $r_i = 1$ UA del Sol. Despreciando el efecto de la gravedad terrestre, ¿cuál sería la velocidad que necesitamos darle a esta nave para que alcance dicho planeta con velocidad $v_f = 0$?

Datos útiles:
$$G = 6.67 \times 10^{-11} \,\mathrm{N}\,\mathrm{m}^2\,\mathrm{kg}^{-2}$$
, $1\,\mathrm{UA} = 1.5 \times 10^{11} \,\mathrm{m}$. $M_\oplus = 5.97 \times 10^{24} \,\mathrm{kg}$; $R_\oplus = 6.37 \times 10^6 \,\mathrm{m}$; $M_\odot = 1.99 \times 10^{30} \,\mathrm{kg}$

- 3. **Allá lejos, 3 puntos** Una galaxia lejana se encuentra a 1000 Mpc de distancia. Imagine que un observador situado en esa galaxia está observando a la nuestra, la Vía Láctea. Entonces.
 - a) ¿qué es lo que verá aquel exo-astrónomo? ¿qué nos alejamos de él? ¿que nos acercamos a él? ¿estaría tentando a pensar que es el centro del Universo? ¿Por qué? Justifique claramente todos sus respuestas.
 - b) A partir de la Ley de Hubble, calcule la velocidad entre aquella galaxia y la vía láctea.
 - c) Calcule el valor de z correspondiente, y estime cual será el valor de la longitud de onda observada λ_a para la línea de absorción del hidrógeno H_a , con $\lambda_e = 656,3$ nm.
 - d) Si se quisiera lanzar una sonda desde la Tierra, ¿qué velocidad, aproximadamente, debería tener la sonda para alcanzar a nuestro exo-amigo? (Imagine que sólo existe la Tierra).
 - e) En un futuro muy lejano, ¿usted cree que estaríamos más cerca o más lejos de él que ahora?

Datos útiles: $H_0 = 67.3 \text{ km s}^{-1} \text{ Mpc}^{-1}$;