SUPPORTING INFORMATION

Genome-wide assessment of putative endemism and phylogeography of *Cladonia sandstedei* (Ascomycota: Cladoniaceae) in the Caribbean

Joel A. Mercado-Díaz, Felix Grewe, Thorsten Lumbsch

TABLE OF CONTENTS

Appendix S1. Barcoding sequencing.	2
Appendix S2. process_radtags command-line usage	4
Appendix S4. RADseq data processing statistics	5
Appendix S5. DAPC results for a-priori and de-novo clustering at K=3 and K=4	7
Appendix S6. Genetic dissimilarity vs. geographic distance correlation analysis	9
References	10

Appendix S1. Barcoding sequencing.

Exploratory analysis of genetic divergence between Puerto Rican populations of *C. sandstedei* was carried out by generating single-locus data for three samples from Maricao and three samples from Vega Baja. This work entailed obtaining sequences for the Translation Elongation Factor 1-Alfa (EF1) and the RNA polymerase I subunit II (RPB2). Primers and PCR conditions used in this study are described in Table S1. PCR amplification and sequencing followed protocols described in Mercado-Díaz et al., (2020). Reference sequences were downloaded from GenBank or obtained from Rebecca Yahr (Table S2).

Table S1. Primers and PCR conditions used for single-locus sequencing.

Locus	Primer	Primer sequence 5'-3'	PCR protocol	Reference
Translation elongation factor 1- alpha (~ 1,000 bp)	EF1-526f EF1-1567R	GTC GTY GTY ATY GGH CAY GT ACH GTR CCR ATA	94°C for 4 mins;10 cycles: 94 °C for 30 s, 66 °C for 30 s (decreasing 1 °C per	(Rehner 2001)
Program: EF1TD		CCA CCR ATC TT	cycle), 72 °C for 90 s; 30 cycles: 94 °C for 30 s, 56 °C for 30 s, 72 °C for 90 s; 72 °C for 7 mins	
RNA polymerase II subunit 2 (RPB2) (~800 bp)	RPB2-5f	GAY GAY MGW GAT CAY TTY GG	94°C for 3 min; 34 cycles: 94°C for 45 s, 50°C for 60 s, 72°C	(Liu, Whelen, and Hall 1999)
Program: IGS52_2	RPB2-7cR	CCC ATR GCT TGY TTR CCC AT	for 90 s; 72°C for 7 min	

Table S2. Samples and GenBank accession numbers used for barcoding sequencing. Asterisks denote pending GenBank accession numbers. Exclamation marks show sequences obtained from R. Yahr that are not available in GenBank.

ID	Species	Area	EF1	RPB2
LK46	Cladonia confusa	Brazil		KP941559
Burgaz 96193	Cladonia rangiformis	Spain	JN811444	JF288838
DNA15497	Cladonia sandstedei	Maricao, PR	*	*
DNA15498	Cladonia sandstedei	Maricao, PR	*	*
DNA15499	Cladonia sandstedei	Maricao, PR	*	*
DNA15500	Cladonia sandstedei	Vega Baja, PR	*	*
DNA15501	Cladonia sandstedei	Vega Baja, PR	*	*
DNA15502	Cladonia sandstedei	Vega Baja, PR	*	*
RY1004	Cladonia subtenuis	Florida, USA	DQ490098	DQ522287

RY1123	Cladonia subtenuis	North	DQ490096	
		Carolina, USA		
RY1128	Cladonia subtenuis	North	DQ490101	
		Carolina, USA		
RY1129	Cladonia subtenuis	North	DQ490093	
		Carolina, USA		
RY1151	Cladonia subtenuis	North	DQ490095	
		Carolina, USA		
RY1189	Cladonia subtenuis	North	DQ490105	
DV1100		Carolina, USA	DO 100104	D05222206
RY1190	Cladonia subtenuis	North	DQ490104	DQ522286
RY1208	Cladonia subtenuis	Carolina, USA Georgia, USA	!	DQ522282
				,
RY1210	Cladonia subtenuis	Georgia, USA	!	DQ522283
RY1213	Cladonia subtenuis	Georgia, USA	!	DQ522284
RY1215	Cladonia subtenuis	Georgia, USA	DQ490102	
RY1216	Cladonia subtenuis	Georgia, USA	DQ490100	
RY1224	Cladonia subtenuis	Pennsylvania,	!	DQ522289
		USA		
RY909	Cladonia subtenuis	Florida, USA	DQ490103	
RY910	Cladonia subtenuis	Florida, USA	DQ490091	
RY911	Cladonia subtenuis	Florida, USA	DQ490097	
RY913	Cladonia subtenuis	Florida, USA	DQ490092	
RY941	Cladonia subtenuis	Florida, USA	DQ490094	
RY942	Cladonia subtenuis	Florida, USA	!	DQ522285
RY943	Cladonia subtenuis	Florida, USA	DQ490099	
RY999	Cladonia subtenuis	Florida, USA	!	DQ522288

Appendix S2. process_radtags command-line usage

1- Single-end sequences were already demultiplexed (ipyrad), thus *process_radtags* was only used for quality control. No barcode file required:

process_radtags -p /home/FM/jmercado/CladRad/C_sandstedei_demultiplexed_files/ -o /home/FM/jmercado/CladRad/stacks/samples_original -inline_null -e apeKI -t 55 -r -c -q

2- Paired-end sequencing quality control and demultiplexing reads (two plates):

process_radtags -P -p /home/FM/jmercado/CladRad/201113_AHLTJKDSXY/Plate1 -o /home/FM/jmercado/CladRad/stacks/Plate1 -b /home/FM/jmercado/CladRad/201113_AHLTJKDSXY/Plate1/GBS-ApeKI-1-96_barcodes2_stacks.txt -inline_null -e apeKI -t 55 -r -c -q

process_radtags -P -p /home/FM/jmercado/CladRad/201113_AHLTJKDSXY/Plate2 -o /home/FM/jmercado/CladRad/stacks/Plate2 -b /home/FM/jmercado/CladRad/201113_AHLTJKDSXY/Plate2/GBS-ApeKI-2-68_barcodes2_stacks.txt _inline_null -e apeKI -t 55 -r -c -q

Appendix S4. RADseq data processing statistics

Raw fungal reads vs. within-sample clusters

Call:

 $Im(formula = stats\$Within.sample.clusters \sim stats\$Reads.mapped.to.reference) \\ Residuals:$

Min 1Q Median 3Q Max -20900 -1916 -296 2056 10228

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.665e+04 8.076e+02 33.01 <2e-16 ***

stats\$Reads.mapped.to.reference 5.193e-02 2.239e-03 23.19 <2e-16 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

Residual standard error: 3715 on 170 degrees of freedom Multiple R-squared: 0.7599, Adjusted R-squared: **0.7584**

F-statistic: 537.9 on 1 and 170 DF, p-value: < 2.2e-16

Within-sample clusters vs. Final number of loci

Call: lm(formula = stats\$Number.of.loci ~ stats\$Within.sample.clusters)

Residuals:

Min 1Q Median 3Q Max -4347.2 -774.6 203.5 744.1 5859.6

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -8.276e+03 6.288e+02 -13.16 <2e-16 *** stats\$Within.sample.clusters 5.071e-01 1.403e-02 36.15 <2e-16 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 1387 on 170 degrees of freedom Multiple R-squared: 0.8849, Adjusted R-squared: **0.8842**

F-statistic: 1307 on 1 and 170 DF, p-value: < 2.2e-16

Appendix S5. DAPC results for a-priori and de-novo clustering at K=3 and K=4

Figure S5.1. Plot for selecting the "best" number of populations (K) based on a Bayesian information criterion. Part of the function *find.clusters* (R package "adegenet").

Figure S5.2. Results from de-novo clustering with DAPC at K=3. Upper part shows scatterplot for discriminant functions whereas the lower part show barplot with assigned membership probabilities. Each dot and bar represent an individual.

Figure S5.3. Results from de-novo clustering with DAPC at K = 5. Upper part shows scatterplot for discriminant functions whereas the lower part show barplot with assigned membership probabilities. Each dot and bar represent an individual.

Figure S5.4. Results from a-priori clustering with DAPC. Upper part shows scatterplot for discriminant functions whereas the lower part show barplot with assigned membership probabilities. Each dot and bar represent an individual.

Appendix S6. Genetic dissimilarity vs. geographic distance correlation analysis

Genetic dissimilarity and geographic distances between continental individuals were computed to assess if isolation by distance could partly explain population partitioning found using de-novo clustering with DAPC. We used the function *diss.dist* from the R package "poppr" (Kamvar, Tabima, and Grunwald 2014) to calculate pairwise allelic distances between individuals. For geographic distances, sample coordinates were tabulated and the function *distm* (fun = distGeo) from the R package "geosphere" (Hijmans 2019) was used to calculate physical distance between these samples. Matrices were converted to distance objects with the R function *as.dist.* Statistical significance of correlation was assessed using a mantel test (function *mantel* in R package "vegan" (Oksanen et al. 2019)).

We found weak correlation between genetic dissimilarity and geographic distance between continental individuals (r=0.11). However, the association between these variables was found to be significant (p=0.001) (Fig S6).

Fig S6. Correlation between geographic distance and genetic dissimilarity (as pairwise allelic differences) between continental individuals. The red line denotes the linear regression function.

References

- Hijmans, RJ. 2019. "Geosphere: Spherical Trigonometry. R Package Version 1.5-10." https://cran.r-project.org/package=geosphere.
- Kamvar, Zhian N., Javier F. Tabima, and Niklaus J. Grunwald. 2014. "Poppr: An R Package for Genetic Analysis of Populations with Clonal, Partially Clonal, and/or Sexual Reproduction." *PeerJ* 2014 (1): 1–14. https://doi.org/10.7717/peerj.281.
- Liu, Yajuan J., Sally Whelen, and Benjamin D. Hall. 1999. "Phylogenetic Relationships among Ascomycetes: Evidence from an RNA Polymerse II Subunit." *Molecular Biology and Evolution* 16 (12): 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092.
- Mercado-Díaz, Joel A., Robert Lücking, Bibiana Moncada, Todd J. Widhelm, and H. Thorsten Lumbsch. 2020. "Elucidating Species Richness in Lichen Fungi: The Genus Sticta (Ascomycota: Peltigeraceae) in Puerto Rico." *Taxon* 69 (5): 851–91. https://doi.org/10.1002/tax.12320.
- Oksanen, Author Jari, F. Guillaume Blanchet, Micheal Friendly, Roeland Kindt, Pierre Legendre, Dan McGlinn, R. B. Minchin, et al. 2019. "Vegan: Community Ecology Package." https://doi.org/ISBN 0-387-95457-0.
- Rehner, Stephen A. 2001. "Primers for Elongation Factor 1-Alpha (EF1-Alpha)." http://www.aftol.org/pdfs/EF1primer.pdf.