In the Claims:

Please cancel claims 1-64 and 70-74, amend claims 67 and 69, and add new claims 75-100 as follows:

1-64. (Cancelled)

- 65. (Original) A system for manufacturing a planarizing slurry used in planarization of microelectronic-device substrate assemblies, comprising:
- a first feed line for containing a flow of a first solution having a plurality of first abrasive particles;
- a second feed line for containing a separate flow of a second solution having a plurality of second abrasive particles, the first abrasive particles being different than the second abrasive particles;
- a first removal unit coupled to the first feed line to selectively remove a first type of selected abrasive particles from the first abrasive particles; and
- a combination feed line operatively coupled to the first removal unit and the second feed line for containing a combined flow of the first and second solutions after removing the first type of selected abrasive particles from the first solution.
- 66. (Original) The system of claim 65 wherein the first removal unit comprises a first filtration unit.
- 67. (Amended) The system of claim 66 wherein the first filtration unit comprises a filter that removes abrasive particles having a particles size greater than approximately 0.3 [[-1.0]] μm.
- 68. (Original) The system of claim 65, further comprising a second removal unit coupled to the second feed line to selectively remove a second type of selected abrasive particles from the second abrasive particles, and wherein the combination feed line is coupled to the second removal unit to contain a combined flow of the first and second solutions after

removing the first and second types of selected abrasive particles from the first and second solutions.

69. (Amended) The system of claim 68 wherein:

the first filtration unit comprises a filter that removes abrasive particles having a particles size greater than approximately [[0.4]] $0.3 \mu m$; and

the second filtration unit comprises a filter that removes abrasive particles having a particles size greater than approximately $0.050 \, \mu m$.

70-74. (Cancelled)

- 75. (New) The system of claim 65 wherein the first removal unit comprises a first filtration unit that removes abrasive particles having a particle size greater than approximately $0.8 \mu m$.
- 76. (New) The system of claim 65 wherein the first removal unit comprises a first filtration unit that removes abrasive particles having a particle size greater than approximately 1.0 μm.
- 77. (New) The system of claim 68 wherein the second removal unit comprises a first filtration unit that removes abrasive particles having a particle size greater than approximately 0.15 µm.
- 78. (New) The system of claim 68 wherein the second removal unit comprises a first filtration unit that removes abrasive particles having a particle size greater than approximately 0.05 µm.

79. (New) The system of claim 69 wherein:

the first filtration unit comprises a filter that removes abrasive particles having a particle size greater than approximately $1.0 \mu m$; and

the second filtration unit comprises a filter that removes abrasive particles having particle size greater than approximately $0.05~\mu m$.

80. (New) The system of claim 69 wherein:

the first filtration unit comprises a filter that removes abrasive particles having a particle size greater than approximately $1.0~\mu m$; and

the second filtration unit comprises a filter that removes abrasive particles having particle size greater than approximately $0.15~\mu m$.

81. (New) The system of claim 69 wherein:

the first filtration unit comprises a filter that removes abrasive particles having a particle size greater than approximately 0.8 µm; and

the second filtration unit comprises a filter that removes abrasive particles having particle size greater than approximately $0.05~\mu m$.

82. (New) The system of claim 69 wherein:

the first filtration unit comprises a filter that removes abrasive particles having a particle size greater than approximately $0.8~\mu m$; and

the second filtration unit comprises a filter that removes abrasive particles having particle size greater than approximately $0.15 \mu m$.

83. (New) The system of claim 69 wherein:

the first filtration unit comprises a filter that removes abrasive particles having a particle size greater than approximately 0.3 µm; and

the second filtration unit comprises a filter that removes abrasive particles having particle size greater than approximately $0.05~\mu m$.

84. (New) The system of claim 69 wherein:

the first filtration unit comprises a filter that removes abrasive particles having a particle size greater than approximately $0.3~\mu m$; and

the second filtration unit comprises a filter that removes abrasive particles having particle size greater than approximately $0.15~\mu m$.

- 85. (New) The system of claim 65 further comprising a mixing unit configured to mix the combined flow of the first and second solutions.
- 86. (New) The system of claim 65 further comprising a conduit through which the combined flow of the first and second solutions is passed to provide a turbulent zone for mixing the combined flow.
- 87. (New) The system of claim 65 further comprising a volume control unit configured to mix 1-99% by volume of the first filtered solution with 1-99% by volume of the second solution.
- 88. (New) The system of claim 87 wherein the volume control unit is configured to alter a mix ratio of the first filtered solution and the second solution during a single polishing cycle.
- 89. (New) The system of claim 88 wherein the volume control unit is configured to change from a first mix ratio of the first filtered solution and the second solution to a second mix ratio of the first filtered solution and the second solution.
- 90. (New) A system for manufacturing a planarizing slurry used in planarization of microelectronic-device substrate assemblies, comprising:
- a first feed line for containing a flow of a first solution having a plurality of first abrasive particles;

a second feed line for containing a separate flow of a second solution having a plurality of second abrasive particles, the first abrasive particles being different than the second abrasive particles;

a first filtration unit coupled to the first feed line to selectively remove a first type of selected abrasive particles from the first abrasive particles; and

a combination feed line operatively coupled to the first removal unit and the second feed line for containing a combined flow of the first and second solutions after removing the first type of selected abrasive particles from the first solution;

at least one of a mixer configured to mix the combined flow and a conduit through which the combined flow is passed to form a turbulent zone; and

a slurry dispenser coupled to the combination feed line to dispense the abrasive slurry from the combination line.

91. (New) The system of claim 90, further comprising a second filtration unit coupled to the second feed line to selectively remove a second type of selected abrasive particles from the second abrasive particles, and wherein the combination feed line is coupled to the second filtration unit to contain a combined flow of the first and second solutions after removing the first and second types of selected abrasive particles from the first and second solutions.

92. (New) The system of claim 91 wherein:

the first filtration unit comprises a filter that removes abrasive particles having a particle size greater than approximately $0.3~\mu m$; and

the second filtration unit comprises a filter that removes abrasive particles having particle size greater than approximately 0.05 µm.

93. (New) The system of claim 92 wherein:

the first filtration unit comprises a filter that removes abrasive particles having a particle size greater than approximately $1.0~\mu m$; and

the second filtration unit comprises a filter that removes abrasive particles having particle size greater than approximately $0.05 \mu m$.

94. (New) The system of claim 92 wherein:

the first filtration unit comprises a filter that removes abrasive particles having a particle size greater than approximately 1.0 µm; and

the second filtration unit comprises a filter that removes abrasive particles having particle size greater than approximately $0.15 \mu m$.

95. (New) The system of claim 92 wherein:

the first filtration unit comprises a filter that removes abrasive particles having a particle size greater than approximately 0.8 µm; and

the second filtration unit comprises a filter that removes abrasive particles having particle size greater than approximately $0.05~\mu m$.

96. (New) The system of claim 92 wherein:

the first filtration unit comprises a filter that removes abrasive particles having a particle size greater than approximately $0.8~\mu m$; and

the second filtration unit comprises a filter that removes abrasive particles having particle size greater than approximately 0.15 µm.

97. (New) The system of claim 92 wherein:

the first filtration unit comprises a filter that removes abrasive particles having a particle size greater than approximately $0.3~\mu m$; and

the second filtration unit comprises a filter that removes abrasive particles having particle size greater than approximately $0.15~\mu m$.

98. (New) The system of claim 90 further comprising a volume control unit configured to mix 1-99% by volume of the first filtered solution with 1-99% by volume of the second solution..

- 99. (New) The system of claim 98 wherein the volume control unit is configured to alter a mix ratio of the first filtered solution and the second solution during a single polishing cycle.
- 100. (New) The system of claim 99 wherein the volume control unit is configured to change from a first mix ratio of the first filtered solution and the second solution to a second mix ratio of the first filtered solution and the second solution.