TD 1 2013 - 2014

Processus stochastiques en temps discret

TD 1 - Rappels des notions des convergences et propriétés des espérances conditionnelles

19 septembre 2013

Si vous repérez des erreurs dans les feuilles d'exercices ou si vous avez des questions, n'hésitez pas à m'envoyer un mail à l'adresse suivante : jhihhuang.li@gmail.com

Rappel. Soit (X_n) une suite de variables aléatoires. On a les convergences suivantes :

- 1. Convergence monotone : si $X_n \geq 0$ et $X_n \uparrow X$, alors $\mathbb{E}[X_n] \uparrow \mathbb{E}[X]$.
- 2. Lemme de Fatou : si $X_n \ge 0$, alors $\mathbb{E}[\liminf X_n] \le \liminf \mathbb{E}[X_n]$.
- 3. Convergence dominée : s'il existe Z une variable aléatoire avec $\mathbb{E}[Z] < \infty$, $|X_n| \le |Z|$ et $X_n \to X$ p.s., alors $\mathbb{E}[X_n] \to \mathbb{E}[X]$.

Rappel. Soient X et Y deux variables aléatoires.

1. Inégalité de Jensen : si $\phi : \mathbb{R} \to \mathbb{R}$ est une fonction convexe, alors

$$\mathbb{E}[\phi(X)] \ge \phi(\mathbb{E}[X]).$$

2. Inégalité de Hölder : si $p,q \in [1,\infty[$ tels que $\frac{1}{p} + \frac{1}{q} = 1,$

$$\mathbb{E}[|XY|] \leq \mathbb{E}[|X|^p]^{\frac{1}{p}} \mathbb{E}[|Y|^q]^{\frac{1}{q}}.$$

Exercice 1.1. On étudie les différentes notions des convergences.

- 1. Définir la convergence presque sûre, la convergence en probabilité, la convergence dans \mathbb{L}^p pour p > 1 et la convergence en loi.
- 2. Vrai ou faux? Si l'assertion est vraie, démontrez-la; si elle est fausse, trouvez un contre-exemple. Ici, les X_n et X sont des variables aléatoires et p > 1.
 - (a) Si $X_n \xrightarrow{\text{p.s.}} X$, alors $X_n \xrightarrow{\text{(P)}} X$.
 - (b) Si $X_n \xrightarrow{(P)} X$, alors $X_n \xrightarrow{\text{p.s.}} X$.
 - (c) Si $X_n \xrightarrow{\mathbb{L}^1} X$, alors $X_n \xrightarrow{\text{p.s.}} X$.
 - (d) Si $X_n \xrightarrow{\text{p.s.}} X$, alors $X_n \xrightarrow{\mathbb{L}^1} X$.
 - (e) Si $X_n \xrightarrow{(P)} X$, alors $X_n \xrightarrow{\mathbb{L}^1} X$.
 - (f) Si $X_n \xrightarrow{\mathbb{L}^1} X$, alors $X_n \xrightarrow{(P)} X$.
 - (g) Si $X_n \xrightarrow{\mathbb{L}^1} X$, alors $X_n \xrightarrow{\mathbb{L}^p} X$.
 - (h) Si $X_n \xrightarrow{\mathbb{L}^p} X$, alors $X_n \xrightarrow{\mathbb{L}^1} X$.

TD 1 2013 - 2014

- (i) Si $X_n \xrightarrow{\text{p.s.}} X$, alors $X_n \xrightarrow{\text{(loi)}} X$.
- (j) Si $X_n \xrightarrow{(P)} X$, alors $X_n \xrightarrow{(loi)} X$.
- (k) Si $X_n \xrightarrow{\mathbb{L}^1} X$, alors $X_n \xrightarrow{\text{(loi)}} X$.
- 3. Faire un schéma récapitulatif pour mieux visualiser les implications entre les convergences.

Exercice 1.2. (X_n) est une suite de variables aléatoires. On supppose qu'il existe une variable aléatoire X telle que pour tout $\epsilon > 0$,

$$\sum_{n} \mathbb{P}(|X_n - X| > \epsilon) < \infty.$$

Montrer que $X_n \xrightarrow{\text{p.s.}} X$.

Exercice 1.3. (X_n) est une suite de variables aléatoires qui converge en loi vers une constante c. Montrer qu'elle converge en probabilité.

Exercice 1.4 (propriétés des espérances conditionnelles).

Soient \mathcal{F} une tribu et \mathcal{G} une sous-tribu de \mathcal{F} . Soit $X \in \mathbb{L}^1(\mathcal{F})$. Montrer les propriétés suivantes :

- 1. Espérance : $\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]] = \mathbb{E}[X]$ p.s.
- 2. Linéarité : si $a_1, a_2 \in \mathbb{R}$, alors $\mathbb{E}\left[a_1X_1 + a_2X_2 \mid \mathcal{G}\right] = a_1\mathbb{E}\left[X_1 \mid \mathcal{G}\right] + a_2\mathbb{E}\left[X_2 \mid \mathcal{G}\right]$ p.s.
- 3. Positivité : si $X \ge 0$ p.s., alors $\mathbb{E}[X \mid \mathcal{G}] \ge 0$ p.s.
- 4. Convergence monotone : si $X_n \geq 0$ et $X_n \uparrow X$, alors $\mathbb{E}[X_n \mid \mathcal{G}] \uparrow \mathbb{E}[X \mid \mathcal{G}]$ p.s.
- 5. Lemme de Fatou : si $X_n \geq 0$, alors $\mathbb{E}[\liminf X_n \mid \mathcal{G}] \leq \liminf \mathbb{E}[X_n \mid \mathcal{G}]$ p.s.
- 6. Convergence dominée : si $X_n \xrightarrow{\text{p.s.}} X$ et qu'il existe $Z \in \mathbb{L}^1(\mathcal{F})$ telle que pour tout $n, |X_n| \leq Z$ p.s., alors $\mathbb{E}[X_n \mid \mathcal{G}] \xrightarrow{\text{p.s.}} \mathbb{E}[X \mid \mathcal{G}]$.
- 7. Inégalité de Jensen : si $\phi : \mathbb{R} \to \mathbb{R}$ est une fonction convexe et $\phi(X) \in \mathbb{L}^1$, alors

$$\mathbb{E}\left[\phi(X) \mid \mathcal{G}\right] \geq \phi(\mathbb{E}\left[X \mid \mathcal{G}\right]) \text{ p.s.}$$

En particulier, $||\mathbb{E}[X \mid \mathcal{G}]||_p \leq ||X||_p$ pour $p \geq 1$.

- 8. Restriction : si \mathcal{H} est une sous-tribu de \mathcal{G} , alors $\mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{G}\right]\mid\mathcal{H}\right]=\mathbb{E}\left[X\mid\mathcal{H}\right]$ p.s.
- 9. Si Z est \mathcal{G} -mesurable bornée, alors $\mathbb{E}\left[ZX\mid\mathcal{G}\right]=Z\mathbb{E}\left[X\mid\mathcal{G}\right]$ p.s. Cela est encore vrai si

$$-p>1, \frac{1}{p}+\frac{1}{q}=1, X\in \mathbb{L}^p(\mathcal{F}), Z\in \mathbb{L}^q(\mathcal{G})$$
 ou

- $-X \ge 0, Z \ge 0, \mathbb{E}[X] < \infty, \mathbb{E}[ZX] < \infty.$
- 10. \mathcal{H} est une tribu indépendante de $\sigma(\sigma(X), \mathcal{G})$, alors $\mathbb{E}[X \mid \sigma(\mathcal{G}, \mathcal{H})] = \mathbb{E}[X \mid \mathcal{G}]$ p.s. En particulier, si X est indépendante de \mathcal{H} , $\mathbb{E}[X \mid \mathcal{H}] = \mathbb{E}[X]$ p.s.