Understanding The Contra-Directional Couplers Models

March, 2019

Mustafa Hammood,

The University of British Columbia

CWDM on SOI

- Athermal filters with large bandwidth, tolerant to laser's wavelength drift, suitable for short-reach data communication
- Fabrication variations are one of the major limitations on SOI-based photonics, realizing such systems on the SOI platform is important
- Approaches on SOI include: Echelle gratings, Arrayed Waveguide Gratings (AWGs)
 [1], Mach-Zehnder lattice filters [2], and contra-directional couplers (contra-DCs)

[1] S. Pathak, E. Lambert, P. Dumon, D. V. Thourhout, and W. Bogaerts, "Compact SOI-based AWG with flattened spectral response using a MMI," 8th IEEE International Conference on Group IV Photonics, 2011.

[2] "Polarization-insensitive silicon nitride Mach-Zehnder lattice wavelength demultiplexers for CWDM in the O-band" Mikkelsen JC et al. 10.1364/OE.26.030076

Contra-directional couplers overview

- 2-Waveguide system, 4-port Device:
 - Input, through, add, drop
- side-walls corrugated, asymmetric waveguides
- Light at the phase matched wavelengths couples backwards (contra)

1500

1520

1540

Wavelength [nm]

1580

1560

1600

Contra-directional couplers design

Design parameters:

Waveguides widths, corrugations width, waveguides gap, corrugations period, Number of corrugations, apodization profile

Selected design parameters determine the figures of merit:

> Bandwidth, central wavelength, band ripple/flatness, sidelobes levels, insertion loss

Demonstrated on both E-Beam lithography and 248/193 nm deep-UV lithography [3]

[3] W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, "Contradirectional couplers in silicon-on-insulator rib waveguides," Optics Letters, vol. 36, no. 20, p. 3999, May 2011.

Contra-directional couplers applications

- CWDM (de) multiplexers [3]
- Free-spectral-range (FSR)-free DWDM (de) multiplexers [4,5]
- FSR-free WDM modulators [6]
- MDM (de) multiplexers [7]

- [3] W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, "Contradirectional couplers in silicon-on-insulator rib waveguides," Optics Letters, vol. 36, no. 20, p. 3999, May 2011.
- [4] N. Eid, R. Boeck, H. Jayatilleka, L. Chrostowski, W. Shi, and N. A. F. Jaeger, "A silicon-on-insulator microring resonator filter with bent contradirectional couplers," 2016 IEEE Photonics Conference (IPC), 2016.
- [5] N. Eid, R. Boeck, H. Jayatilleka, L. Chrostowski, W. Shi, and N. A. F. Jaeger, "FSR-free silicon-on-insulator microring resonator based filter with bent contra-directional couplers," Optics Express, vol. 24, no. 25, p. 29009, Jul. 2016.
- [6] A. Mistry, M. Hammood, H. Shoman, L. Chrostowski, N. A. F. Jaeger, "FSR-free microring modulator," 15th IEE International Conference on Group IV Photonics, 2018.
- [7] X. Zhao, Y. Wang, Q. Huang, and J. Xia, "Two-mode contra-directional coupler based on superposed grating," *Optics Express*, vol. 25, no. 3, p. 2654, Jan. 2017.

Modelling and Simulation Approaches

Full-length 3D FDTD Simulation

- Slowest: Time and resources consuming, high risk of divergence
- Accurate simulation, if your simulation converges...

EME Propagation Simulation

- Fast (er?)
- Difficult to simulate non-uniform grating profiles (not impossible)
- Difficult to simulate unconventional perturbations (i.e. sinusoidal)
- Accurate within contra-coupling wavelengths

Analytical: Coupled-mode Theory + Transfer Matrix Method

- Fastest
- Most accurate, can model every profile, and every band (self+contra)
- Requires prior knowledge of device parameters:
 - Waveguides system modes
 - Coupling coefficients / Kappa

SI-EPIC

What is: Coupling Coefficient / Kappa?

- Dependent on the waveguides geometry and structure of the perturbation gratings (strength/shape)
- Determines the bandwidth and reflectivity of the device
- The key parameter that sets coupled-mode theory model to work.

SI-EPIC

How to find Kappa? Analytically

- Can be modelled analytically using:
 - Accurate for small perturbations
 - Easily implemented for simple perturbations

$$\kappa_{11} = \frac{\omega}{4} \iint \mathbf{E}_{1}^{*}(x,y) \cdot \Delta \epsilon_{1}(x,y) \mathbf{E}_{1}(x,y) dxdy$$

$$\kappa_{12} = \frac{\omega}{4} \iint \mathbf{E}_{1}^{*}(x,y) \cdot \Delta \epsilon_{1}(x,y) \mathbf{E}_{2}(x,y) dxdy$$

$$\kappa_{21} = \frac{\omega}{4} \iint \mathbf{E}_{2}^{*}(x,y) \cdot \Delta \epsilon_{1}(x,y) \mathbf{E}_{1}(x,y) dxdy$$

$$\kappa_{22} = \frac{\omega}{4} \iint \mathbf{E}_{2}^{*}(x,y) \cdot \Delta \epsilon_{1}(x,y) \mathbf{E}_{2}(x,y) dxdy$$

SI-EPIC

How to find Kappa? Experimentally, extracted from a response

- Can be extracted from a device response/modelled experimentally using:
- Given any device response (either experimental/simulation) we can find Kappa, assuming a waveguide system (to find ng).
- Several means to extract from experimental data:
 - FWMM Method (Robi 2017)*
 - Nulls method*

SI-EPIC

PROGRAM

* Not always applicable

How to find Kappa? Simulation using Bloch boundary band-structure

- Using an infinite length, Bloch boundary band-structure simulation, we can calculate the bandwidth and wavelength of the **system's forbidden bands**
 - Self-Bragg bands at Kx = 0.5 labelled (A)
 - Contra bands at unknown Kx labelled (B)

Uncertainty of contra wavevector (Kx) means we have to sweep a large range to find where the contra-coupling forbidden band occurs. This is time and resource

consuming. Below plot is generated from

How to find Kappa? Simulation using Bloch boundary band-structure

- Can we do better, simulation time and resources wise? Interpolate the system's forbidden bands?
- Can 2 simulations at two wave-vectors to predict the location of the contrabandgap?

Test case:

rest ease.		
	Kx	Bandwidth (nm)
Actual	0.4796	5.32
Predicted	0.4794	5.88

Error <10%

How to find Kappa? Even faster? MODE EME Simulation!

- Simulate a single periodic contra-DC cell in EME
- Generate the uniform profile response
- Extract kappa from the response using the nulls method
- Feed the kappa into coupled-mode theory, transfer matrix apodized model

SI-EPIC

Contra-Directional Couplers Simulator Flow

What's new in this approach?

- Fully automated flow in Python no need for a MATLAB engine for coupledmode theory or the setup of any 3rd party tools (other than Lumerical)
- Generates an S-parameter file (.dat) for circuit simulations
- Dual polarizations: TE-TM, compact model includes two-modes support
- Two new approaches to find the bandgap and Kappa reduce FDTD simulation time from more than 5 hours to an improved, to less than a minutes. This was the simulation flow bottleneck.
- Accurately predicts and simulates the waveguide's self-reflection
- Higher level of abstraction

SI-EPIC

How to? Define physical parameters and simulation parameters

- Feed in the design parameters
 - Let the script run!


```
13 class contra_DC():
14
      def __init__(self, *args):
15
          # physical geometry parameters
16
           self.w1 = 560e-9
17
           self.w2 = 440e-9
18
           self.dW1 = 24e-9
19
           self.dW2 = 24e-9
20
           self.gap = 100e-9
21
           self.period = 318e-9
22
           self.N = 1000
23
24
           self.thick_si = 220e-9
25
26
           self.slab = False
27
           self.thick slab = 90e-9
28
           self.sinusoidal = False
30
31
           self.apodization = 10
32
33
           #behavioral parameters (leave as default
34
           self.pol = 'TE' # TE or TM
35
           self.alpha = 3
36
          self.kappa contra = 30000
37
           self.kappa_self1 = 300
                                      Optional
          self.kappa_self2 = 300
  #%% simulation parameters class constructor
  class simulation():
      def __init__(self, *args):
          # make sure range is large enouh to capture
          self.lambda_start = 1480e-9
          self.lambda end = 1600e-9
          self.resolution = 501
          self.deviceTemp = 300
          self.chipTemp = 300
```

Further improvements can be done on...

- Parameterized sidewall angle
- Model sensitivity to process variations and corner analysis
 - Conclusion: bandwidth is somewhat stable, central wavelength not quite.
- Segmented kappa: Wavelength-dependent coupling coefficient

 $\delta(\lambda_0)/\delta(\theta) = 0.63 \text{ nm/degree}$

 $\delta(\lambda_0)/\delta(H) = 0.7 \text{ nm/nm}$

SI-EPIC

Acknowledgements

 Natural Sciences and Engineering Research Council (NSERC) of Canada and Keysight Technologies for their financial support. Fabrication was done by Applied Nanotools, Alberta, Canada through the SiEPICfab consortium.

Contributors

- Wei Shi
- Mustafa Hammood
- Jonathan St-Yves
- Simon Belanger
- Dominique Charron
- Han Yun
- Xu Wang
- Ajay Mistry
- Stephen Lin