# Chemoprevention of Cancers in Smokers and Ex-Smokers

# Stephen Hecht, PhD

# Chemoprevention of Cancer in Smokers and Ex-smokers

Stephen S. Hecht, Ph.D. University of Minnesota Cancer Center

### Goal

 Discover and develop chemopreventive agents effective against tobacco induced cancer, for use in smokers and ex-smokers

# Chemotherapy and Chemoprevention

- Chemotherapy- treatment of cancer with toxic agents
- Chemoprevention treatment of precancerous lesions or earlier changes with non-toxic agents

# Rationale for chemoprevention of tobaccoinduced cancer

- Prevention of smoking initiation and efficacy of smoking cessation have stalled since 1990
- There are 47 million smokers and 45 million exsmokers in the U.S.- all at high risk for lung cancer and other tobacco-induced cancers
- · There are 1.1 billion smokers worldwide
- Chemoprevention potentially can be coupled with smoking cessation

# Scheme Linking Nicotine Addiction and Lung Cancer via Tobacco Smoke Carcinogens



# Molecular Targets

- Tobacco smoke carcinogens are targets for chemoprevention
- Targets for lung cancer prevention: BaP and NNK

## Rationale for Developing Isothiocyanates and Other Vegetable Constituents as Chemopreventive Agents for Lung Cancer

- Consistently, epidemiologic studies demonstrate that vegetable consumption is protective against lung cancer
- Hypothesis: there are cancer chemopreventive agents in vegetables
- Isothiocyanates and other vegetable constituents have good chemopreventive activity in animal models

# Structures of PEITC, BITC, and myo-inositol

PhCH2CH2N=C=S

PhCH₂N=C≈S

OH OH OH OH OH OH OH

PEITC

BITC

# Grid for Development of Chemopreventive Agents

|                                               | Rat | Mouse | Human |
|-----------------------------------------------|-----|-------|-------|
| Efficacy                                      |     |       |       |
| Mechanism                                     |     |       |       |
| Toxicity                                      |     |       |       |
| <u>, , , , , , , , , , , , , , , , , , , </u> |     |       |       |

# Grid for Development of Chemopreventive Agents-PEITC

|           | Rat                                            | Mouse                            | Human                                   |
|-----------|------------------------------------------------|----------------------------------|-----------------------------------------|
| Efficacy  | NNK                                            | NNK<br>NNK + BaP                 | ?                                       |
| Mechanism | Inhibition of activation                       | Inhibition of activation-in part | Inhibition of<br>P450s by<br>watercress |
| Toxicity  | 13 week and 2<br>year studies-3<br>umol/g diet | 3 umol/g diet<br>is non-toxic    | 160 mg/day                              |

# Grid for Development of Chemopreventive Agents-BITC

|           | Rat                           | Mouse                            | Human     |
|-----------|-------------------------------|----------------------------------|-----------|
| Efficacy  | ?                             | BaP                              | ?         |
| Mechanism | Induction of phase 2 cnzymes  | Inhibition of activation-in part | ?         |
| Toxicity  | 2.5 umol/g diet<br>(25 weeks) |                                  | 14 mg/day |

# Grid for Development of Chemopreventive Agents- myo-Inositol

|           | Rat                                      | Mouse                                  | Human                                                           |
|-----------|------------------------------------------|----------------------------------------|-----------------------------------------------------------------|
| Efficacy  | ?                                        | BaP, NNK<br>BaP + NNK<br>Tobacco smoke | ?                                                               |
| Mechanism | ?                                        | ?                                      | Reversal of<br>BPDE induced<br>inhibition of<br>differentiation |
| Toxicity  | 15 mM in<br>drinking water<br>(47 weeks) | 3% in diet                             | 20 g/day                                                        |

Stronger Con Suce Co

# Limitations of Chemoprevention of Tobacco-Related Cancer

- · Disincentive to cessation
- · Low compliance
- · Damage overwhelms agents
- Cost

# Research Priorities: Chemoprevention

- · Identify and develop effective agents
- Develop appropriate biomarkers
- · Identify susceptible individuals
- Develop a pipeline for translation of preclinical data to clinical trials

### Summary

- Chemoprevention is a potentially practical approach for reduction of cancer in smokers and ex-smokers.
- Tobacco smoke carcinogens are appropriate targets for chemoprevention.
- Mixtures of agents will be necessary for chemoprevention of tobacco-related cancer.
- Isothiocyanates and myo-inositol are appropriate constituents of this mixture based on efficacy, mechanism, toxicity

|   |   | •       |   |          |   |  |
|---|---|---------|---|----------|---|--|
|   |   |         |   |          |   |  |
|   |   |         |   |          |   |  |
|   |   |         |   |          |   |  |
|   |   | _       |   |          | - |  |
|   |   |         |   |          |   |  |
|   |   |         |   |          |   |  |
|   |   |         |   |          |   |  |
|   |   |         |   |          |   |  |
| • | - | •       |   |          | - |  |
|   |   |         | * |          |   |  |
|   |   |         |   |          |   |  |
|   |   |         |   |          |   |  |
|   |   |         |   |          |   |  |
|   |   |         |   |          |   |  |
|   |   |         |   | <u> </u> |   |  |
|   |   |         |   |          | , |  |
|   |   | <u></u> |   |          |   |  |
|   |   |         |   |          |   |  |
| • |   |         |   |          |   |  |