





# KONKURS CHEMICZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA MAZOWIECKIEGO

# ETAP REJONOWY 29 listopada 2019 r.



### Uczennico/Uczniu:

- 1. Na rozwiązanie wszystkich zadań masz 90 minut.
- 2. Pisz długopisem/piórem dozwolony czarny lub niebieski kolor tuszu.
- **3.** Nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i napisz inną odpowiedź.
- **4.** Pisz czytelnie i zamieszczaj odpowiedzi w miejscu do tego przeznaczonym.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

| Maksymalna liczba punktów  | 40 | 100% |
|----------------------------|----|------|
| Uzyskana liczba punktów    |    | %    |
| Podpis Przewodniczącej/ego |    |      |

# <u>Uwaga:</u> w zadaniach 1.-10. wybierz prawidłową odpowiedź poprzez <u>wyraźne</u> podkreślenie <u>jednej z liter</u>: A, B, C lub D.

### **Zadanie 1.** (1 pkt)

Dokonaj analizy poniższego wykresu przedstawiającego zmiany masy fluoru-18 w przedziale czasu od 0 do 550 minut. Oszacuj, jaki jest czas połowicznego rozpadu fluoru-18.



Na podstawie: http://dydaktyka.fizyka.umk.pl/komputery\_2017/materialy

Czas połowicznego rozpadu tego radioizotopu jest równy w przybliżeniu:

- A. 50 minut.
- B. 110 minut.
- C. 220 minut.
- D. 330 minut.

### Zadanie 2. (1 pkt)

Która z wymienionych poniżej metod rozdzielenia mieszanin wykorzystuje różnice rozpuszczalności substancji w różnych rozpuszczalnikach?

- A. Krystalizacja.
- B. Ekstrakcja.
- C. Filtracja.
- D. Destylacja.

### Zadanie 3. (1 pkt)

Pewne krystaliczne ciało stałe zbudowane z jonów rozpuszczono w wodzie. Aby ustalić, jaki rodzaj kationów znajduje się w wodnym roztworze, przeprowadzono próbę płomieniową. Po wprowadzeniu drucika platynowego z próbką roztworu do płomienia palnika gazowego zaobserwowano pojawienie się płomienia barwy fiołkowej. W celu ustalenia, jaki rodzaj anionów znajduje się w wodnym roztworze, do próbki roztworu dodano roztwór kwasu azotowego(V). Zaobserwowano wydzielanie się gazu. Podkreśl tę odpowiedź, która zawiera wzór sumaryczny soli rozpuszczonej w wodzie:

- A. K<sub>2</sub>CO<sub>3</sub>.
- B. Na<sub>2</sub>CO<sub>3</sub>.
- C. CaCO<sub>3</sub>.
- D. Na<sub>2</sub>S.

### **Zadanie 4.** (1 pkt)

Do naczynia zawierającego kwas fosforowy(V) (kwas ortofosforowy) dodawano kroplami roztwór wodorotlenku potasu. Gdy stosunek molowy kwasu do wodorotlenku był równy 1:2, zakończono dodawanie roztworu wodorotlenku. Wskaż nazwę substancji, która powstanie w naczyniu po zakończeniu dodawania roztworu wodorotlenku i usunięciu rozpuszczalnika:

- A. fosforan(V) potasu.
- B. wodorofosforan(V) potasu.
- C. diwodorofosforan(V) potasu
- D. wodorotlenek potasu.

### Zadanie 5. (1 pkt)

Zrealizowano ciąg przemian opisanych schematem:

ag przemian opisanych schematem:

Al 
$$\xrightarrow{1}$$
 AlCl<sub>3</sub>  $\xrightarrow{2}$  Al(OH)<sub>3</sub>  $\xrightarrow{3}$  Na[Al(OH)<sub>4</sub>]

4

Aby zrealizować podany ciąg przemian, w miejsce cyfr 1-4 należy wpisać następujące odczynniki:

- A. gazowy chlor (odczynnik 1), roztwór wodorotlenku sodu (odczynniki 2,3,4).
- B. kwas solny (odczynnik 1), roztwór wodorotlenku sodu (odczynniki 2,3,4).
- C. kwas chlorowy(V) (odczynnik 1), roztwór wodorotlenku sodu (odczynniki 2,3,4).
- D. prawidłowe odpowiedzi zawierają punkty A. i B.

### **Zadanie 6.** (1 pkt)

Tlenek jodu(V), dzięki silnym właściwościom utleniającym, reaguje z tlenkiem węgla(II) (czadem) zgodnie z równaniem:

$$I_2O_5 + 5CO \rightarrow I_2 + 5CO_2$$

Oblicz, jaka objętość tlenku węgla(II) przereaguje w warunkach normalnych z 3,34 mg tlenku jodu(V). Załóż, że wydajność opisanej reakcji jest równa 100%, a masa molowa tlenku jodu(V) to 334 g/mol. Wynik podaj z dokładnością do dwóch miejsc po przecinku:

- A.  $1,12 \text{ dm}^3$ .
- B.  $0.22 \text{ dm}^3$ .
- C.  $1,12 \text{ cm}^3$ .
- D.  $0.22 \text{ cm}^3$ .

### **Zadanie 7.** (1 pkt)

W wodnym roztworze tlenku węgla(IV), popularnie zwanym "wodą gazowaną", substancja rozpuszczona jest substancją niepolarną, a rozpuszczalnik substancją polarną. Ponieważ pewien procent cząsteczek tlenku węgla(IV) dodatkowo reaguje z wodą, zatem rzeczywista rozpuszczalność tego gazu będzie większa niż rozpuszczalność obliczona wyłącznie dla gazów nie wchodzących w reakcje z wodą.

Na podstawie: G. W. VanLoon, S. J. Duffy, Chemia środowiska, Wydawnictwo Naukowe PWN, Warszawa 2008

Cząsteczki tlenku siarki(IV) są cząsteczkami polarnymi. Ponadto jeszcze większy procent cząsteczek tlenku siarki(IV) reaguje z wodą w porównaniu z procentem cząsteczek tlenku węgla(IV). Należy zatem oczekiwać, że w zakresie temperatur 273-353 K rozpuszczalność tlenku siarki(IV) w stosunku do rozpuszczalności tlenku węgla(IV) będzie:

- A. znacznie większa.
- B. znacznie mniejsza.
- C. równa.
- D. trudna do porównania na podstawie podanych informacji.

### Zadanie 8. (1 pkt)

Aby przygotować 200 cm³ roztworu azotanu(V) wapnia o stężeniu molowym 0,025 mol/dm³ należy odważyć:

- A. 0,82 g azotanu(V) wapnia.
- B. 0,82 mg azotanu(V) wapnia.
- C. 0,41 g azotanu(V) wapnia.
- D. 0,41 mg azotanu(V) wapnia.

### **Zadanie 9.** (1 pkt)

W tabeli podano temperatury topnienia i wrzenia substancji 1-4.

| Lp. | Wzór substancji               | Temperatura topnienia, °C | Temperatura wrzenia, °C |
|-----|-------------------------------|---------------------------|-------------------------|
| 1.  | NbCl <sub>5</sub>             | 205                       | 247,4                   |
| 2.  | NF <sub>3</sub>               | -206,8                    | -129                    |
| 3.  | NO <sub>2</sub> Cl            | -143                      | -15                     |
| 4.  | N <sub>2</sub> O <sub>4</sub> | -112                      | 21,2                    |

Na podstawie: W. Mizerski, Tablice chemiczne, Wydawnictwo Adamantan, Warszawa 2003

Spośród wymienionych w tabeli substancji 1-4 wybierz numer tej, która występuje w stałym stanie skupienia w temperaturze 0°C i ma regularnie ułożone drobiny w temperaturze 0°C. Zaznacz prawidłową odpowiedź.

- A. 1.
- B. 2.
- C. 3.
- D. 4.

### **Zadanie 10.** (1 pkt)

Aby przygotować 100 gramów roztworu wody amoniakalnej o stężeniu 5%, należy zmieszać ze sobą roztwór amoniaku o stężeniu 25% i wodę w taki sposób, aby użyć:

- A. 25 gramów roztworu amoniaku o stężeniu 25% i 75 gramów wody.
- B. 80 gramów roztworu amoniaku o stężeniu 25% i 20 gramów wody.
- C. 20 gramów roztworu amoniaku o stężeniu 25% i 80 gramów wody.
- D. 75 gramów roztworu amoniaku o stężeniu 25% i 25 gramów wody.

### **Zadanie 11.** (2 pkt)

W tabeli przedstawiono <u>w dowolnej kolejności</u> zastosowanie metali i ich właściwości umożliwiające to zastosowanie. Jeden punkt opisujący właściwości nie pasuje do żadnego wymienionego metalu.

| Zastosowanie                                            | Właściwości umożliwiające to zastosowanie                                                                                                               |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| A – implanty zębowe i endoprotezy.                      | 1 – tworzy powłoki dobrze odbijające światło.                                                                                                           |
| <b>B</b> – służy do pokrywania wnętrz stalowych puszek. | 2 – dobry przewodnik elektryczny, tani i odporny na korozję.                                                                                            |
| C – do produkcji płyt kompaktowych.                     | 3 – lekki, odporny na korozję, nie jest trujący, mało aktywny.                                                                                          |
| <b>D</b> – do produkcji kabli elektrycznych.            | <ul> <li>4 – mało aktywny, nie jest trujący, zabezpiecza inny metal przed rdzewieniem.</li> <li>5 – bardzo dobry przewodnik ciepła, topi się</li> </ul> |
|                                                         | w temperaturze 98°C.                                                                                                                                    |

Do podanych niżej metali w tabelce dopasuj ich zastosowanie i właściwości, które umożliwiają to zastosowanie wpisując litery A-D i liczby 1-5. Jeden opis właściwości nie pasuje do żadnego metalu.

| Symbol<br>metalu | Zastosowanie (litera) | Właściwości (liczba) |
|------------------|-----------------------|----------------------|
| Al               |                       |                      |
| Al               |                       |                      |
| Ti               |                       |                      |
| Sn               |                       |                      |

### **Zadanie 12.** (2 pkt)

Pierwiastkami, które w największych ilościach występują w skorupie ziemskiej są krzem oraz tlen. Skorupa ziemska zawiera między innymi krzemiany i glinokrzemiany. Przykłady takich substancji podano w tabelce poniżej. Ich wzory można zapisać wzorem sumarycznym lub tlenkowym. Napisz wzory tlenkowe dla dwóch ostatnich krzemianów.

| Liczba<br>porządkowa | Wzór sumaryczny                                                  | Wzór tlenkowy                                             |
|----------------------|------------------------------------------------------------------|-----------------------------------------------------------|
| 1.                   | CaAl <sub>2</sub> Si <sub>2</sub> O <sub>8</sub>                 | CaO · Al <sub>2</sub> O <sub>3</sub> · 2SiO <sub>2</sub>  |
| 2.                   | Mg <sub>3</sub> Al <sub>2</sub> (SiO <sub>4</sub> ) <sub>3</sub> | 3MgO · Al <sub>2</sub> O <sub>3</sub> · 3SiO <sub>2</sub> |
| 3.                   | $Mg_6Si_4O_{18}H_8$                                              |                                                           |
| 4.                   | Mg <sub>2</sub> Al <sub>4</sub> Si <sub>5</sub> O <sub>18</sub>  |                                                           |

### **Zadanie 13.** (3 pkt)

W poniższym schemacie przemiany dobierz współczynniki metodą bilansu elektronowego lub metodą bilansu jonowo-elektronowego.

Schemat przemiany w zapisie cząsteczkowym:

$$KMnO_{4(aq)} + H_2O_{2(aq)} \ + H_2SO_{4(aq)} \longrightarrow K_2SO_{4(aq)} + MnSO_{4(aq)} + O_{2(g)} + H_2O_{(c)}$$

**Uwaga:** Podając połówkowe równanie reakcji utleniania, reakcji redukcji oraz zbilansowane równanie reakcji w zapisie cząsteczkowym, możesz pominąć indeksy oznaczające stany skupienia reagentów: (g), (c) lub indeksy oznaczające wodne roztwory substancji: (aq).

| Połówkowe równanie reakcji <u>utleniania</u> :           |
|----------------------------------------------------------|
| Połówkowe równanie reakcji <u>redukcji</u> :             |
| Zbilansowane równanie reakcji (w zapisie cząsteczkowym): |
|                                                          |

### Informacja do zadań 14.-15.

Czterech uczniów postanowiło otrzymać <u>wodór</u>. Na stole laboratoryjnym każdy z uczniów miał do dyspozycji: statyw z probówkami oraz zestaw odczynników:

pył cynkowy blaszka miedziana

woda destylowana kwas chlorowodorowy stężony kwas azotowy(V)

Ponadto uczniowie mogli skorzystać z szeregu aktywności metali:

### K, Na, Mg, Al, Zn, Fe, Ni, Sn, Pb, wodór, Cu, Ag, Hg, Au

Źródło: A. Bogdańska Zarembina, E. I. Matusewicz, J. Matusewicz, Chemia 1, WSiP, Warszawa 1998

Zanim uczniowie przystąpili do wykonania doświadczenia, musieli wybrać odczynniki, które zostaną przez nich wykorzystane w celu otrzymania wodoru. Odpowiedzi uczniów zostały zebrane w **Tabeli 1**. Tylko jeden z uczniów właściwie dobrał odczynniki na potrzeby doświadczenia.

Tabela 1. Odczynniki wybrane przez poszczególnych uczniów do wykonania doświadczenia.

| Uczeń   | Odczynniki wybrane przez ucznia                         |
|---------|---------------------------------------------------------|
| Uczeń 1 | pył cynkowy, woda destylowana                           |
| Uczeń 2 | blaszka miedziana, roztwór stężonego kwasu azotowego(V) |
| Uczeń 3 | pył cynkowy, roztwór kwasu chlorowodorowego             |
| Uczeń 4 | blaszka miedziana, roztwór kwasu chlorowodorowego       |

### **Zadanie 14.** (1 pkt)

Dokonaj analizy odpowiedzi zgromadzonych w tabeli. Wskaż, który z uczniów dokonał prawidłowego wyboru? Podaj jego numer.

### **Zadanie 15.** (2 pkt)

Zapisz równanie reakcji przebiegającej podczas doświadczenia zaprojektowanego prawidłowo przez wybranego ucznia. Podaj równanie reakcji w zapisie cząsteczkowym i jonowym skróconym.

| Równanie reakcji w zapisie cząsteczkowym:            |
|------------------------------------------------------|
| Równanie reakcji w <u>zapisie jonowym skróconym:</u> |
|                                                      |

### **Zadanie 16.** (1 pkt)

Oceń prawdziwość poniższych zdań. Podkreśl literę  $\mathbf{P}$  – jeśli zdanie jest prawdziwe lub literę  $\mathbf{F}$  – jeśli zdanie jest fałszywe.

| 1. | Aby zbadać właściwości wodoru należy zbierać ten gaz nad wodą lub w probówce ustawionej dnem do góry.                             | P | F |
|----|-----------------------------------------------------------------------------------------------------------------------------------|---|---|
| 2. | W reakcji redukcji tlenku miedzi(II) do metalicznej miedzi wodór pełni funkcję utleniacza, a tlenek miedzi(II) funkcję reduktora. | P | F |

### **Zadanie 17.** (1 pkt)

Wodór można otrzymać w wyniku poniższej reakcji:

$$2Na_{(s)} + 2H_2O_{(aq)} \rightarrow 2NaOH_{(aq)} + H_{2(g)}$$

Podaj jeden powód, dla którego reakcja ta <u>nie powinna być stosowana</u> w celu otrzymania dużych objętości wodoru w laboratorium.

### Informacja do zadania 18.

Poduszki powietrzne w samochodach zawierają trzy substancje: azydek sodu (NaN<sub>3</sub>), azotan(V) potasu (KNO<sub>3</sub>) i ditlenek krzemu (SiO<sub>2</sub>). Podczas uderzenia poduszka zostaje napompowana gazem wskutek reakcji azydku sodu (NaN<sub>3</sub>) z azotanem(V) potasu (KNO<sub>3</sub>). Produktami tej reakcji są dwa stałe tlenki i gazowy pierwiastek.

Na podstawie: A. Czerwiński, A. Czerwińska, M. Jelińska-Kazimierczuk, K. Kuśmierczyk, Chemia 1, WSiP, Warszawa 2002

# Zadanie 18.1. (1 pkt) Napisz równanie reakcji przebiegającej podczas uderzenia. Podaj zapis <u>cząsteczkowy:</u> Zadanie 18.2. (1 pkt) Dokończ zdanie, wpisując jedno z dwóch określeń: wolną, szybką Reakcja opisana w informacji do zadania 18. jest reakcją ......

### Informacja do zadań 19.-20.

Uczeń przygotował wodne roztwory następujących soli o jednakowych stężeniach molowych:

- siarczanu(VI) glinu, roztwór 1,
- siarczanu(IV) potasu, roztwór 2,
- siarczku amonu, **roztwór 3**.

Roztwory te zostały wykorzystane w dwóch seriach doświadczeń: serii I oraz serii II. Podczas wykonywania doświadczeń w **serii I** do porcji roztworów 1-3 dodawano kroplami kwas chlorowodorowy (**roztwór 4**). W trakcie wykonywania doświadczeń w **serii II** do porcji roztworów 1-3 dodawano kroplami roztwór wodorotlenku baru (**roztwór 5**).

### **Zadanie 19.** (3 pkt)

Podczas dodawania kwasu chlorowodorowego do roztworów 1-3 (seria I) <u>tylko w dwóch</u> <u>probówkach</u> zanotowano zmiany: wydzielanie gazów. Wpisz do tabeli równania zachodzących reakcji lub zapisz, że w trakcie wykonywania próby reakcja nie zachodzi. Podaj zapis **cząsteczkowy i jonowy skrócony** równań reakcji chemicznych, jeśli dana przemiana zachodzi.

| Roztwór    | Równanie reakcji zachodzącej po dodaniu roztworu kwasu chlorowodorowego (roztworu 4) |
|------------|--------------------------------------------------------------------------------------|
| Roztwór 1. | Zapis cząsteczkowy:                                                                  |
|            | Zapis jonowy skrócony:                                                               |
| Roztwór 2. | Zapis cząsteczkowy:                                                                  |
|            | Zapis jonowy skrócony:                                                               |
| Roztwór 3. | Zapis cząsteczkowy:                                                                  |
|            | Zapis jonowy skrócony:                                                               |

| <b>Zadanie 20.</b> (3 pkt) |
|----------------------------|
|----------------------------|

| W trakcie dodawania roztworu wodorotlenku   | baru do roztworów | 1-3 (seria II) | we wszystkich |
|---------------------------------------------|-------------------|----------------|---------------|
| próbach serii II zanotowano objawy reakcji. |                   |                |               |

a) Ułóż równanie reakcji zachodzącej po dodaniu roztworu wodorotlenku baru do roztworu 1. Załóż, że substraty zmieszano w stosunku stechiometrycznym. Podaj zapis cząsteczkowy i jonowy skrócony takiej reakcji.

| Równanie reakcji w zapisie cząsteczkowym:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Równanie reakcji w <u>zapisie jonowym:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| b) Podaj wzór sumaryczny i nazwę gazu, który wydzielił się podczas dodania roztworu wodorotlenku baru do roztworu 3 (seria II). Wiedz, że w trakcie tego doświadczenia uniwersalny papierek wskaźnikowy zwilżony wodą i umieszczony u wylotu probówki zmienia zabarwienie z żółtego na niebieskozielone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Wzór sumaryczny i nazwa gazu:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ułóż równanie opisanej reakcji. Równanie reakcji w zapisie jonowym skróconym:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Zadanie 21.</b> (3 pkt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Do wodnego roztworu azotanu(V) miedzi(II) o barwie niebieskiej dodawano kroplami wodny roztwór wodorotlenku potasu. Zaobserwowano wytrącanie niebieskiego galaretowatego osadu ( <b>reakcja 1</b> ). Osad odsączono i podzielono na dwie części. Wykonano dwa eksperymenty. W pierwszym eksperymencie osad wyprażono. Powstał osad barwy czarnej ( <b>reakcja 2</b> ). Podczas drugiego eksperymentu osad barwy niebieskiej postanowiono roztworzyć przy pomocy roztworu kwasu siarkowego(VI) ( <b>reakcja 3</b> ). Niebieską barwę mieszaniny reakcyjnej w trakcie wykonywania reakcji 3 zaobserwowano podczas łagodnego ogrzewania mieszaniny. Ułóż równania opisanych reakcji. Podaj zapis <u>cząsteczkowy</u> .  Równanie reakcji 1 w <u>zapisie cząsteczkowym:</u> |
| Równanie reakcji 2 w <u>zapisie cząsteczkowym:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Równanie reakcji 3 w <u>zapisie cząsteczkowym:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Zadanie | 22. | (2) | pkt) |
|---------|-----|-----|------|
|---------|-----|-----|------|

| Pewien związek o wzorze sumarycznym $Bi_2Sr_2Ca_{(n-1)}Cu_nO_{(2n+4)}$ odgrywa dużą rolę w nadprzewodnictwie. Oblicz wartość indeksu n podanego związku, jeśli jego masowy skład procentowy jest następujący: $Bi-46,98\%$ , $Sr-19,79\%$ , $Ca-4,50\%$ , $Cu-14,40\%$ , $O-14,33\%$ . Przyjmij następujące masy molowe: $Bi-209$ g/mol, $Sr-88$ g/mol, $Ca-40$ g/mol, $Cu-64$ g/mol, $O-16$ g/mol. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                     |
| Wartość n:                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>Zadanie 23.</b> (2 pkt)                                                                                                                                                                                                                                                                                                                                                                          |
| Hydrat chlorek kobaltu(II)–woda(1/6) o wzorze $CoCl_2 \cdot 6H_2O$ można częściowo odwodnić. Podczas częściowego odwodnienia 5,95 g chlorku kobaltu(II)–woda(1/6) otrzymano 4,15 g nowego hydratu o wzorze $CoCl_2 \cdot xH_2O$ . Wykonaj odpowiednie obliczenia i podaj wzór otrzymanego hydratu. Przyjmij masy molowe: $Co-59$ g/mol, $Cl-35,5$ g/mol, $H_2O-18$ g/mol.                           |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                     |
| Wzór hydratu:                                                                                                                                                                                                                                                                                                                                                                                       |

### Informacja do zadań 24.1 – 24.3.

Otrzymywanie czystego boru jest trudne. Jedną z metod jest redukcja tlenku boru, B<sub>2</sub>O<sub>3</sub>, metalicznym magnezem, którego używa się w nadmiarze w stosunku do stechiometrycznej ilości tlenku boru.

### **Zadanie 24.1.** (1 pkt)

Napisz równanie otrzymywania boru opisaną powyżej metodą.

Równanie reakcji w zapisie cząsteczkowym:

.....

### **Zadanie 24.2.** (1 pkt)

Otrzymany bor jest zanieczyszczony. Podaj nazwy dwóch substancji, które zanieczyszczają bor otrzymywany powyższą metodą.

Nazwy substancji zanieczyszczające bor:

.....

### **Zadanie 24.3.** (1 pkt)

Jaką substancję należy użyć, aby usunąć zanieczyszczenia – wybierz prawidłową odpowiedź: (Zakładamy, że bor nie reaguje z taką substancją).

- A. wodę.
- B. kwas solny.
- C. wodorotlenek sodu.
- D. tlen.

## Brudnopis

| 1<br>1H<br>Wodór<br>1,01<br>2,1<br>3Li<br>Lit | 2<br>4Be<br>Beryl                             |                                  |                                       | liczba ato                       | omowa                            | 1H<br>Wodór<br>1,01<br>2,1      | masa a                         | chemiczny<br>tomowa, u<br>ujemność | y pierwiastk                     | a                               | ĵ                             | 13<br>5B<br>Bor                              | 14<br>6C<br>Wegiel                            | 15<br>7N<br>Azot                              | 16<br>gO<br>Tlen                              | 17<br>9F<br>Fluor                             | 18<br>2He<br>Hel<br>4,00<br>10Ne<br>Neon |
|-----------------------------------------------|-----------------------------------------------|----------------------------------|---------------------------------------|----------------------------------|----------------------------------|---------------------------------|--------------------------------|------------------------------------|----------------------------------|---------------------------------|-------------------------------|----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------|
| 6,94<br>1,0<br>11Na<br>Sód<br>23,00<br>0,9    | 9,01<br>1,5<br>12Mg<br>Magnez<br>24,31<br>1,2 | 3                                | 4                                     | 5                                | 6                                | 7                               | 8                              | 9                                  | 10                               | 11                              | 12                            | 10,81<br>2,0<br>13A1<br>Glin<br>26,98<br>1,5 | 12,01<br>2,5<br>14Si<br>Krzem<br>28,09<br>1,8 | 14,01<br>3,0<br>15P<br>Fosfor<br>30,97<br>2,1 | 16,00<br>3,5<br>16S<br>Siarka<br>32,07<br>2,5 | 19,00<br>4,0<br>17CI<br>Chlor<br>35,45<br>3,0 | 20,18<br>18Ar<br>Argon<br>39,95          |
| 19K<br>Potas<br>39,10<br>0,9                  | 20Ca<br>Wapú<br>40,08<br>1,0                  | 21Sc<br>Skand<br>44,96<br>1,3    | 22Ti<br>Tytan<br>47,87<br>1,5         | 23V<br>Wanad<br>50,94<br>1,7     | 24Cr<br>Chrom<br>52,00<br>1,9    | 25Mn<br>Mangan<br>54,94<br>1,7  | 26Fe<br>Zelazo<br>55,85<br>1,9 | 27Co<br>Kobalt<br>58,93<br>2,0     | 28Ni<br>Nikiel<br>58,69<br>2,0   | 29Cu<br>Miedź<br>63,55<br>1,9   | 30Zn<br>Cynk<br>65,39<br>1,6  | 31Ga<br>Gal<br>69,72<br>1,6                  | 32Ge<br>German<br>72,61<br>1,8                | 33As<br>Arsen<br>74,92<br>2,0                 | 34Se<br>Selen<br>78,96<br>2,4                 | 35Br<br>Brom<br>79,90<br>2,8                  | 36Kr<br>Krypton<br>83,80                 |
| 37Rb<br>Rubid<br>85,47<br>0,8                 | 38Sr<br>Stront<br>87,62<br>1,0                | 39 Y<br>Itr<br>88,91<br>1,3      | 40Zf<br>Cyrkon<br>91,22<br>1,4        | 41Nb<br>Niob<br>92,91<br>1,6     | 42Mo<br>Molibden<br>95,94<br>2,0 | 43Tc<br>Technet<br>97,91<br>1,9 | 44Ru<br>Ruten<br>101,07<br>2,2 | 45Rh<br>Rod<br>102,91<br>2,2       | 46Pd<br>Pallad<br>106,42<br>2,2  | 47Ag<br>Srebro<br>107,87<br>1,9 | 48Cd<br>Kadm<br>112,41<br>1,7 | 49In<br>Ind<br>114,82<br>1,7                 | 50Sn<br>Cyna<br>118,71<br>1,8                 | 51Sb<br>Antymon<br>121,76<br>1,9              | 52Te<br>Tellur<br>127,60<br>2,1               | 53I<br>Jod<br>126,90<br>2,5                   | 54Xe<br>Ksenon<br>131,29                 |
| 55Cs<br>Cez<br>132,91<br>0,7                  | 56Ba<br>Bar<br>137,33<br>0,9                  | 57La*<br>Lantan<br>138,91<br>1,1 | 72 <b>Hf</b><br>Hafn<br>178,49<br>1,3 | 73 Ta<br>Tantal<br>180,95<br>1,5 | 74W<br>Wolfram<br>183,84<br>2,0  | 75Re<br>Ren<br>186,21<br>1,9    | 76Os<br>Osm<br>190,23<br>2,2   | 77 Ir<br>Iryd<br>192,22<br>2,2     | 78Pt<br>Platyna<br>195,08<br>2,2 | 79Au<br>Zloto<br>196,97<br>2,4  | 80Hg<br>Rred<br>200,59<br>1,9 | 81 T1<br>Tal<br>204,38<br>1,8                | 82Pb<br>Olów<br>207,20<br>1,8                 | 83Bi<br>Bizmut<br>208,98<br>1,9               | 84Po<br>Polon<br>208,98<br>2,0                | 85At<br>Astat<br>209,99<br>2,2                | 86Rn<br>Radon<br>222,02                  |
| 87Fr<br>Frans<br>223,02<br>0,7                | 88Ra<br>Rad<br>226,03<br>0,9                  | 89Ac**<br>Aktyn<br>227,03        | 104Rf<br>Rutherford<br>261,11         | 105Db<br>Dubn<br>263,11          | 106Sg<br>Sesborg<br>265,12       | 107Bh<br>Bohr<br>264,10         | 108Hs<br>Has<br>269,10         | 109Mt<br>Meitner<br>268,10         | 110Ds<br>Darmstadt<br>281,10     | 111Uuu<br>Ununun<br>280         | 112Uub<br>Ununbi<br>285       | 113 Uut<br>Ununtri<br>284                    | 114Uuq<br>Ummkwad<br>289                      | 115Uup<br>Ununpent<br>288                     | 116 Uuh<br>Ununheks<br>292                    | 117Uus<br>Ununsept                            | 118Uus<br>Ununek<br>294                  |
|                                               |                                               | *)                               | 58Ce<br>Cer<br>140,12                 | 59Pr<br>Prazeodym<br>140,91      | 60Nd<br>Neodym<br>144,24         | 61Pm<br>Promet<br>144,91        | 62Sm<br>Samar<br>150,36        | 63Eu<br>Europ<br>151,96            | 64Gd<br>Gadolin<br>157,25        | 65 Tb<br>Terb<br>158,93         | 66Dy<br>Dysproz<br>162,50     | 67Ho<br>Holm<br>164,93                       | 68Er<br>Erb<br>167,26                         | 69 Tm<br>Tul<br>168,93                        | 70 Yb<br>Iterb<br>173,04                      | 71Lu<br>Lutet<br>174,97                       |                                          |
|                                               |                                               | **)                              | 90 Th<br>Tor<br>232,04                | 91Pa<br>Protsktyn<br>231,04      | 92U<br>Uran<br>238,03            | 93Np<br>Neptun<br>237,05        | 94Pu<br>Pluton<br>244,06       | 95Am<br>Ameryk<br>243,06           | 96Cm<br>Kiur<br>247,07           | 97Bk<br>Berkel<br>247,07        | 98Cf<br>Kaliforn<br>251,08    | 99Es<br>Einstein<br>252,09                   | 100Fm<br>Ferm<br>257,10                       | 101Md<br>Mendelew<br>258,10                   | 102No<br>Nobel<br>259,10                      | 103Lr<br>Lorens<br>262,11                     |                                          |

Źródło: W. Mizerski, "Tablice chemiczne", Wydawnictwo Adamantan, Warszawa 2004. Masy atomowe podano z dokładnością do dwóch miejsc po przecinku.

| Rozpuszczalność soli i wodorotlenków w wodzie w temperaturze 25 °C |    |                 |   |                 |        |     |                               |                               |      |                                |                                |                               |    |
|--------------------------------------------------------------------|----|-----------------|---|-----------------|--------|-----|-------------------------------|-------------------------------|------|--------------------------------|--------------------------------|-------------------------------|----|
|                                                                    | СГ | Br <sup>-</sup> | Γ | NO <sub>3</sub> | CH,C00 | S2- | SO <sub>3</sub> <sup>2-</sup> | SO <sub>4</sub> <sup>2-</sup> | CO2- | SiO <sub>3</sub> <sup>2-</sup> | CrO <sub>4</sub> <sup>2-</sup> | PO <sub>4</sub> <sup>3-</sup> | ОН |
| Na <sup>+</sup>                                                    | R  | R               | R | R               | R      | R   | R                             | R                             | R    | R                              | R                              | R                             | R  |
| K <sup>+</sup>                                                     | R  | R               | R | R               | R      | R   | R                             | R                             | R    | R                              | R                              | R                             | R  |
| NH <sup>+</sup>                                                    | R  | R               | R | R               | R      | R   | R                             | R                             | R    | _                              | R                              | R                             | R  |
| Cu <sup>2+</sup>                                                   | R  | R               | _ | R               | R      | N   | N                             | R                             | _    | N                              | N                              | N                             | N  |
| $Ag^{+}$                                                           | N  | N               | N | R               | R      | N   | N                             | T                             | N    | N                              | N                              | N                             | _  |
| Mg <sup>2+</sup>                                                   | R  | R               | R | R               | R      | R   | R                             | R                             | N    | N                              | R                              | N                             | N  |
| Ca <sup>2+</sup>                                                   | R  | R               | R | R               | R      | T   | N                             | T                             | N    | N                              | T                              | N                             | Т  |
| Ba <sup>2+</sup>                                                   | R  | R               | R | R               | R      | R   | N                             | N                             | N    | N                              | N                              | N                             | R  |
| Zn <sup>2+</sup>                                                   | R  | R               | R | R               | R      | N   | T                             | R                             | N    | N                              | T                              | N                             | N  |
| Al³+                                                               | R  | R               | R | R               | R      | _   | _                             | R                             | _    | N                              | N                              | N                             | N  |
| Sn <sup>2+</sup>                                                   | R  | R               | R | R               | R      | N   | _                             | R                             | _    | N                              | N                              | N                             | N  |
| Pb <sup>2+</sup>                                                   | Т  | T               | N | R               | R      | N   | N                             | N                             | N    | N                              | N                              | N                             | N  |
| Mn <sup>2+</sup>                                                   | R  | R               | R | R               | R      | N   | N                             | R                             | N    | N                              | N                              | N                             | N  |
| Fe <sup>2+</sup>                                                   | R  | R               | R | R               | R      | N   | N                             | R                             | N    | N                              | _                              | N                             | N  |
| Fe³+                                                               | R  | R               | _ | R               | R      | N   | _                             | R                             | _    | N                              | N                              | N                             | N  |

R – substancja rozpuszczalna; T – substancja trudno rozpuszczalna (strąca się ze stęż. roztworów); N – substancja nierozpuszczalna; — oznacza, że dana substancja albo rozkłada się w wodzie, albo nie została otrzymana

Źródło: W. Mizerski, "Tablice chemiczne", Wydawnictwo Adamantan, Warszawa 2004.