Описание и обработка данных.

Для анализа выбран набор данных о подержанных автомобилях в Великобритании. Всего в датасете 6267 объявлений о продаже автомобиля марки «Skoda». Набор данных содержит информацию о модели, годе выпуска, цене, трансмиссии, пробеге, типе топлива, дорожном налоге, расходе топлива и объеме двигателя. Повторяющиеся списки и столбцы в данных не содержаться.

▲ model =	# year =	# price =	▲ transmission =	# mileage =	▲ fuelType =	# tax
Octavia	2017	10550	Manual	25250	Petrol	150
Citigo	2018	8200	Manual	1264	Petrol	145
Octavia	2019	15650	Automatic	6825	Diesel	145
Yeti Outdoor	2015	14000	Automatic	28431	Diesel	165
Superb	2019	18350	Manual	10912	Petrol	150
Yeti Outdoor	2017	13250	Automatic	47005	Diesel	145
Superb	2019	15250	Manual	14850	Petrol	145
Octavia	2019	18950	Automatic	5850	Diesel	150
Kodiaq	2019	29900	Automatic	2633	Petrol	150

Рисунок 1. Первые 9 строк датасета.

Рисунок 2. Гистограммы распределения по годам (А) и по цене (В).

Целевым признаком выбрана цена автомобиля. Все остальные признаки были выбраны входными, кроме признака «Модель». Далее все входные признаки были бинаризованы.

1. Год выпуска. Год выпуска был преобразован в два признака: >2010года, > 2017 года. Первые 10 строк получившего датасета представлены на рисунке 3.

	price	transmission	mileage	fuelType	 mpg	engineSize	year_2010	year_2017
	10550	Manual	25250	Petrol	54.3	1.4	1	
1	8200	Manual	1264	Petrol	67.3	1.0	1	1
2	15650	Automatic	6825	Diesel	67.3	2.0	1	1
3	14000	Automatic	28431	Diesel	51.4	2.0	1	
4	18350	Manual	10912	Petrol	40.9	1.5	1	1
5	13250	Automatic	47005	Diesel	51.4	2.0	1	
6	15250	Manual	14850	Petrol	40.9	1.5	1	1
7	18950	Automatic	5850	Diesel	50.4	2.0	1	1
8	29900	Automatic	2633	Petrol	31.4	2.0	1	1
	18990	Manual	20000	Petrol	43.5	2.0	1	

Рисунок 3.

2. Пробег. Признак пробег был разделен на следующие признаки: >15000, >50000, >10000, >200000. Фрагмент полученного датасета приведен на рисунке 4.

	J							
	price	transmission	fuelType	tax	mileage_1	mileage_2	mileage_3	mileage_4
0	10550	Manual	Petrol	150	1		1	1
1	8200	Manual	Petrol	145	0		0	0
2	15650	Automatic	Diesel	145	0	0	0	0
3	14000	Automatic	Diesel	165	1		1	1
4	18350	Manual	Petrol	150	0		1	0
5	13250	Automatic	Diesel	145	1		1	1
6	15250	Manual	Petrol	145	0	0	1	0
7	18950	Automatic	Diesel	150	0		0	0
8	29900	Automatic	Petrol	150	0		0	0
9	18990	Manual	Petrol	150	1		1	0

Рисунок 4.

3. Расход топлива. Данный признак разделен на следующие признаки: >57, >70. Фрагмент полученного датасета приведен на рисунке 5.

		transmission			 	1 ,		
						rreage_+ mb	5_+ "	"P6_2
0	10550	Manual	Petrol	150	1	1	0	0
1	8200	Manual	Petrol	145	0	0	1	0
2	15650	Automatic	Diesel	145	0	0	1	0
3	14000	Automatic	Diesel	165	1	1	0	0
4	18350	Manual	Petrol	150	1	0	0	0
5	13250	Automatic	Diesel	145	1	1	0	0
6	15250	Manual	Petrol	145	1	0	0	0
7	18950	Automatic	Diesel	150	0	0	0	0
8	29900	Automatic	Petrol	150	0	0	0	0
9	18990	Manual	Petrol	150	1	0	0	0

Рисунок 5

- 4. Объем двигателя. Признак бинаризован в соответствии со средним медианным значением равным 1,45.
- 5. Налог. Признак бинаризован в соответствие со средним медианным значением равным 144.

- 6. Тип топлива. Бинаризован в соответствии: бензин(Petrol)=1, дизель (Diesel) = 0.
- 7. Трансмиссия. Бинаризован в соответствии: механика(Manual)=1, автомат (Automatic) = 0.
- 8. Цена. Признак выбран как целевой. Бинаризован в соответствии со средним медианным значением, для того что бы обучение проходило для примерно одинакового количества положительных и отрицательных исходов. Среднее медианное значение равно 12998.

На рисунке 6 представлен датасет после бинаризации всех признаков.

Рисунок 6.

Первичная работа с данными.

- Для проверки качества классификации на имеющихся данных, данные были разделены случайным образом на обучающую и тестовую выборки в соотношении 80% на 20%, соответственно.
- Обучающая выборка была разделена на разделена на 2 класса: $K_{positive}$ и $K_{negative}$ в соответствии со значением целевого признака.

Алгоритм 1. (simple_classifer)

Простой и быстрый алгоритм. Описание классифицируемого объекта из тестовой выборки сравнивается по очереди с описанием каждого примера из положительного контекста. В соответствии с размером пересечения классифицируемому объекту добавляется нормированный голос за положительную классификацию. Далее каждый классифицируемый объект сравнивается по очереди с описанием каждого примера из отрицательного контекста и, в соответствии с размером пересечения, классифицируемому объекту добавляется нормированный голос за отрицательную классификацию. Последним шагом является сравнение вычисленных голосов и принятие решения.

$$S^{+} = S^{+} + \frac{|g' \cap g'_{+}|}{|g'|}$$
$$S^{-} = S^{-} + \frac{|g' \cap g'_{-}|}{|g'|}$$

Где g – классифицируемый объект, g_+ , g_- - объекты из положительной и отрицательной выборки.

Accuracy: 0.7877094972067039

ROC AUC: 0.7879507850041529

True Positive: 476

True Negative: 511

False Positive: 111

False Negative: 155

Precision: 0.8109028960817717

Recall: 0.7543581616481775

Рисунок 7. Вывод при работе алгоритма 1.

Алгоритм 2.

Более сложный и медленный алгоритм. Вначале формируются пересечения описания классифицируемого объекта в описания из «+» и «-» контекстов. После для каждого пересечения проверяется количество вложений данного пересечения в описания примеров противоположенного контекста, то есть для положительного контекста в отрицательном, а для отрицательного в положительном. Далее вводиться порог, с учетом которого будет проходить голосование. Если количество вложений не преодолевает порог, то данный пример из положительного контекста «голосует» за классифицируемый объект. Аналогично, для примеров из отрицательного контекста. Далее суммы голосов нормируются. Классификация происходит уже по сравнению нормированных голосов.

$$if \frac{|g' \cap g'_{+/-} \subseteq g'_{+/-}|}{|G_{-/+}|} < C, then \ votes(+|-)+=1$$

$$\frac{votes(+)}{|G_{+}|} <> \frac{votes(-)}{|G_{-}|}$$

Так как алгоритм является трудоемким и входные данные имеют большой объем, было решено оценивать размер поддержки путем случайного выбора объектов из выборки. Также решено исследовать зависимость

точности классификации от размера выборки. Тем самым можно найти баланс между временем счета и качеством приближения. В таблице 1 представлено значение точности в зависимости от значений порога (по горизонтали) и выбранного количества объектов выборки, в процентах (по вертикали).

Таблица 1.

	0.001	0.01	0.1	0.3	0.4	0.5	0.7	0.8	1	2
5	0.565	0.65	0.771	0.803	0.814	0.81	0.789	0.794	0.796	0.79
10	0.543	0.62	0.779	0.82	0.817	0.806	0.791	0.793	0.794	0.79
20	0.521	0.636	0.776	0.821	0.817	0.810	0.79	0.79	0.794	0.791
30	0.514	0.632	0.774	0.825	0.812	0.806	0.790	0.79	0.794	0.791
40	0.513	0.642	0.775	0.822	0.815	0.810	0.789	0.79	0.793	0.79

В процессе анализа работы алгоритмов выяснилось, что наиболее оптимальным пороговым значением является порог равный 0.3 при этот случайно выбирались 30% выборки. Этот порог и был выбран для дальнейшего сравнения алгоритмов.

pros= 0.3 coef 0.3

Accuracy: 0.825219473264166 ROC AUC: 0.8251019108280255

True Positive: 485

True Negative: 549

False Positive: 79

False Negative: 140

Precision: 0.8599290780141844

Recall: 0.776

Рисунок 8. Вывод при работе алгоритма 2.

Результаты работы алгоритма 1 и алгоритма 2 представлены в таблице 2.

Таблица 2.

	Алгоритм 1	Алгоритм 2 при пороге 0.3
Accuracy	0.787	0.825
Roc AUC	0.787	0.825
True positive	476	485
True negative	511	549

False positive	111	79
False negative	155	140
Precision	0.81	0.859
Recall	0.754	0.776

Сравнение с другими известными алгоритмами.

Также в процессе выполнения задания было решено произвести сравнение со следующими алгоритмами: метод k-ближайших соседей, наивный байесовский метод, дерево решений. Все вышеперечисленные алгоритмы использовались со стандартными параметрами. Результаты работы всех алгоритмов приведены в таблице 3.

	A 1120011734 1	Алгоритм 2	k-NN	Naïve	Decision
	Алгоритм 1	при пороге 0,3		Bayes	True
Accuracy	0.787	0.825	0.889	0.601	0.892
Roc AUC	0.787	0.825	0.887	0.582	0.892
True positive	476	485	591	646	585
True negative	511	549	530	108	534
False positive	111	79	67	489	63
False negative	155	140	66	11	72
Precision	0.81	0.859	0.898	0.569	0.902
Recall	0.754	0.776	0.899	0.983	0.89

По итогу работы можно сделать следующие выводы. Алгоритм 2 дает большую точность предсказания, чем алгоритм 1, но в свою очередь является более ресурсоемким, то есть требует длительных вычислений и задействует большую память. Решить эту проблему удалось с помощью случайного выбора объектов из выборки, то есть проходить не по всем объектам датасета, а по случайно выбранным в меньшем количестве. Для выбранного датасета, наилучшем порогом для второго алгоритма является порог 0,3 при этом выбраны 30 % из всех объектов. Тем самым найдено не плохое приближение и сэкономлено время. Алгоритм k-ближайших соседей и алгоритм дерево решений не сильно отличаются по точности от второго алгоритма, но все же работают лучше. Наивный байесовский метод показал наименьшую точность из всех проверенных алгоритмов.