Foundation Calculus and Mathematical Techniques (CELEN037)

Problem Sheet 3

Topic 1: Parametric Differentiation

- 1. Using parametric differentiation, find $\frac{dy}{dx}$, where
 - (i) $x = 2\cos\theta + \cos 2\theta + 1, y = 2\sin\theta + \sin 2\theta$
 - (ii) $x = \cos^{-1} t$, $y = \sin^{-1} t$
 - (iii) $x = \frac{1}{2}\ln(1+t^2), y = \tan^{-1}t$
 - (iv) $x = e^t \cos t, y = e^t \sin t$
- 2. Find $\frac{dy}{dx}\Big|_{\theta=\frac{\pi}{4}}$, where $x=\sec^2\theta$ and $y=\sec\theta\cdot\tan\theta$.

Topic 2: Maclaurin's Series

- 3. Find the Maclaurin series expansions of the following functions:
 - (i) $f(x) = e^x \cdot \ln|1 + x|$
 - (ii) $f(x) = x \cdot \sin x$
 - (iii) $f(x) = \sin 2x + \cos 2x$
 - (iv) $f(x) = e^{\cos x}$ (up to terms x^4)
- 4. (a) Find the Maclaurin series for $(1+x)^m$, where m is not necessarily an integer.
 - (b) Use your answer to find the expansion of $\frac{1}{\sqrt{1-x^2}}$ up to the term in x^6 .
- 5. (a) Find the Maclaurin expansion of $\cos x$;
 - (b) Use the result above to show that $\cos^2 x = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n \cdot 2^{2n-1} \cdot x^{2n}}{(2n)!}$.

Topic 3: Equations of Tangents and Normal Lines

- 6. Find the equation of each tangent of the function $f(x) = x^3 + x^2 + x + 1$ which is perpendicular to the line 2y + x + 5 = 0.
- 7. Find the equation of the tangent and equation of the normal to the curve $y=x^e+e^x+\ln x$ at the point where x=e.

- 8. Find the points on the curve y(x) given by $y=x^3-6x^2+x+3$ where the tangents are parallel to the line y=x+5.
- 9. The equation of a curve is given by y(x) given by $x^2 4y^2 = 12$. Obtain the equations of (a) the tangent line and (b) the normal line to the curve at point P(4,1).

Topic 4: Newton-Raphson Method

- 10. Use the Newton-Raphson method with starting value $x_0 = 4$ to approximate the root of $x^2 + \ln x 16 = 0$, correct to 9 d.p..
- 11. Use the Newton-Raphson method with starting value $x_0 = 1$ to approximate the root of $\cos x = x$, correct to 9 d.p..
- 12. The function $f(x) = x 2 + \ln|x|$ has a root near x = 1.5, use the Newton-Raphson method to obtain a better estimate (up to 4 d.p.).
- 13. Use the Newton-Raphson method to approximate the value of $\sqrt[3]{3}$, correct to 8 d.p., by starting with $x_0 = 1.5$.

Topic 5: Increasing and Decreasing Functions

- 14. Find the intervals where $f(x) = x^3 + 4x^2 + 4x + 9$ is increasing and decreasing.
- 15. Find the intervals where $f(x) = x^2 \cdot e^{-3x}$ is increasing and decreasing.
- 16. Find the intervals where $f(x) = -x^3 + 2x^2 + 12$ is increasing and decreasing.
- 17. Find the intervals where $f(x) = x^2 \cdot \ln x$ is increasing and decreasing.

Answers

1. (i)
$$-\frac{\cos\theta + \cos 2\theta}{\sin\theta + \sin 2\theta}$$
 (ii) -1 (iii) $\frac{1}{t}$ $\frac{\sin t + \cos t}{\cos t - \sin t}$

$$2. \quad \frac{3\sqrt{2}}{4}$$

3. (i)
$$f(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{3x^5}{40} + \cdots$$
; $-1 < x \le 1$

(ii)
$$f(x) = x^2 - \frac{x^4}{3!} + \frac{x^6}{5!} - \frac{x^8}{7!} + \cdots$$

(iii)
$$f(x) = 1 + 2x - 2x^2 - \frac{4}{3}x^3 + \frac{2}{3}x^4 + \cdots$$

(iv)
$$f(x) = e\left(1 - \frac{x^2}{2} + \frac{x^4}{6} + \cdots\right)$$

4. (a)
$$1 + mx + \frac{m(m-1)}{2!}x^2 + \frac{m(m-1)(m-2)}{3!}x^3 + \cdots$$

(b)
$$1 + \frac{1}{2}x^2 + \frac{3x^4}{8} + \frac{5x^6}{16} + \cdots$$

5. (a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cdot x^{2n}}{(2n)!}$$

(b) Hint:
$$\cos^2 x = \frac{1 + \cos 2x}{2}$$

6.
$$y = 2x + 2$$
, $y = 2x + \frac{22}{27}$

- 7. Equation of the tangent line: $\left(2e^e+\frac{1}{e}\right)x-y=2e^e(e+1);$ Equation of the normal line: $ex+(2e^{e+1}+1)y=4e^{2e+1}+2e^{e+1}+2e^e+e^2+1$
- 8. The two points are: (0,3), and (4,-25)

9. (a)
$$x - y - 3 = 0$$

(b)
$$x + y - 5 = 0$$

10.
$$x \approx 3.828514482$$

11.
$$x \approx 0.739085133$$

12.
$$x \approx 1.5571$$

13.
$$\sqrt[3]{3} \approx 1.44224957$$

- 14. f is increasing on $(-\infty, -2)$ and $\left(-\frac{2}{3}, +\infty\right)$; decreasing on $\left(-2, -\frac{2}{3}\right)$.
- 15. f is decreasing on $(-\infty, 0)$; increasing on $\left(0, \frac{2}{3}\right)$.
- 16. f is increasing on $\left(0,\frac{4}{3}\right)$; decreasing on $(-\infty,0)$ and $\left(\frac{4}{3},+\infty\right)$.
- 17. f is decreasing on $\left(0,\frac{1}{\sqrt{e}}\right)$; increasing on $\left(\frac{1}{\sqrt{e}},+\infty\right)$.