Chapitre 8: Fonctions usuelles

Bijection et fonction réciproque

Soit $f: I \to \mathbb{R}$ une fonction. L'image de I par f est

$$f(I) = \{ f(x) \mid x \in I \}.$$

Exemple 1

Soit $f:[0;2] \to \mathbb{R}, x \mapsto x^2 + x - 2$.

Pour tout $x \in [0; 2]$, f'(x) = 2x + 1.

f' est strictement positive sur [0;2], donc f est strictement croissante:

х	0	2
f(x)	-2	4

L'image de l'intervalle [0;2] par f est

$$f([0;2]) = [-2;4].$$

Notons par ailleurs que:

- tout nombre $x \in [0;2]$ a une image dans [-2;4];
- tout nombre $y_0 \in [-2; 4]$ a un unique antécédent x_0 dans [0; 2].

Dans cette situation, on dit que f réalise une bijection de [0;2] sur [-2;4].

Définition 2

Soit $f: I \to \mathbb{R}$. On dit que f réalise une bijec- De façon plus concise : tion de *I* sur *J* si :

- ▶ tout nombre $x \in I$ a une image f(x) dans
- ▶ tout nombre $y_0 \in J$ a un unique antécédent x_0 dans I.

a. Rappel : \subset se lit « est inclus dans ».

- $ightharpoonup f(I) \subset J;^a$
- ▶ $\forall y_0 \in J$, $\exists ! x_0 \in I$, $f(x_0) = y_0$.

Exemple 2

La fonction exp réalise une bijection de] $-\infty$; $+\infty$ [sur]0; $+\infty$ [. On peut le voir

• soit sur le tableau de variations,

• soit sur la courbe représentative.

Proposition 1

Si $f: I \to \mathbb{R}$ est continue et strictement monotone, alors :

1. f(I) est un intervalle.

2. f réalise une bijection de I sur f(I).

On suppose qu'une fonction f réalise une bijection de I sur J. Tout élément $y \in J$ a un unique antécédent x dans I. On pose alors $x = f^{-1}(y)$. On dit que la fonction

$$f^{-1}: J \to I, \ y \mapsto f^{-1}(y)$$

est la réciproque de f.

Exemple 3

La fonction exp réalise une bijection de \mathbb{R} sur $]0;+\infty[$. Quelle est sa réciproque?

Pour le savoir, on prend y dans $]0;+\infty[$ et on cherche son antécédent par \exp ; autrement dit, on résout l'équation

$$e^x = y$$
.

On sait bien que la solution est

$$x = \ln y$$
,

donc la réciproque de la fonction exp est la fonction ln. Avec les notations de la définition 3, si on pose $f = \exp$, alors $f^{-1} = \ln$.

Méthode

Dans la situation où f réalise une bijection de I sur J, pour déterminer sa réciproque, on prend y dans J et on résout l'équation f(x) = y. La solution $x = \cdots$ nous donne l'expression de f^{-1} .

Proposition 2

Soit $f: I \to J$ et $g: J \to I$. La fonction f réalise une bijection de réciproque g si, et seulement si:

$$\forall x \in I, g \circ f(x) = x$$
 et $\forall y \in J, f \circ g(y) = y$.

Remarque.

La courbe d'une fonction et de sa réciproque sont toujours symétriques par rapport à la droite d'équation y = x.

Exemple 4

gente en B vaut $\frac{1}{2}$

Les fonctions exp et ln sont réciproques l'une de l'autre et l'on a bien

$$\forall x \in \mathbb{R}, \ln(e^x) = x$$
 et $\forall y \in]0; +\infty[, e^{\ln y} = y.$

Par raison de symétrie, les pentes des tangentes en A et en B sont inverses l'une de l'autre : la

pente de la tangente en A vaut a, celle de la tan-

Théorème 1

Soit f une bijection de I sur J, soit $y_0 \in J$ et soit $x_0 = f^{-1}(y_0)$. Si f est dérivable en x_0 et si $f'(x_0) \neq 0$, alors f^{-1} est dérivable en y_0 et

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}.$$

Remarques.

- Le théorème est illustré sur la figure cicontre.
- Il est plus habituel de noter x la variable. Puisque $x_0 = f^{-1}(y_0)$ dans le théorème cidessus, on peut écrire:

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

y_0 B*V*₀

Exercices 7 et 8

II. Fonctions puissances

Dans cette section, on se réfère aux propriétés de l'exponentielle et du logarithme rappelées dans le chapitre 3 et on utilise ces connaissances pour donner la définition rigoureuse des puissances. On explique par exemple ce que signifie $5^{\frac{1}{2}}$, ou 3^{0} .

Pour tout x > 0, pour tout $\alpha \in \mathbb{R}$:

$$x^{\alpha} = e^{\alpha \ln x}$$
.

Exemple 5

En prenant la définition ci-dessus : $2^3 = e^{3\ln 2}$. C'est étonnant, car cela semble très éloigné de la définition habituelle. Et pourtant, d'après les propriétés du logarithme et de l'exponentielle :

$$2^3 = e^{3\ln 2} = e^{\ln 2 + \ln 2 + \ln 2} = e^{\ln 2} \times e^{\ln 2} \times e^{\ln 2} = 2 \times 2 \times 2 = 8.$$

Ouf, on retombe bien sur la définition habituelle!

L'exemple qui précède se généralise :

Proposition 3

Pour tout x > 0, pour tout $n \in \mathbb{N}^*$: $x^n = \underbrace{x \times \cdots \times x}_{n \text{ fois}}$.

- Pour tout x > 0 : x⁰ = e^{0ln x} = e⁰ = 1.
 On retrouve sans peine toutes les propriétés des puissances (entières) que vous avez vues au collège, et qui sont généralisées dans la proposition 4 (ci-dessous).
- Pour tout x > 0, $x^{\alpha} > 0$ (puisque c'est une exponentielle).

Proposition 4

Pour tous x > 0, y > 0, $\alpha \in \mathbb{R}$, $\beta \in \mathbb{R}$:

1.
$$(xy)^{\alpha} = x^{\alpha} \times y^{\alpha}$$
. 2. $\left(\frac{x}{y}\right)^{\alpha} = \frac{x^{\alpha}}{y^{\alpha}}$. 3. $x^{\alpha+\beta} = x^{\alpha} \times x^{\beta}$. 4. $(x^{\alpha})^{\beta} = x^{\alpha\beta}$.

$$3. x^{\alpha+\beta} = x^{\alpha} \times x^{\beta}.$$

$$4. (x^{\alpha})^{\beta} = x^{\alpha\beta}$$

On démontre le point 1 (les autres points se démontrent de façon analogue) :

Démonstration (du point 1)

D'après la définition 4 et d'après les propriétés du logarithme et de l'exponentielle :

$$(xy)^{\alpha} = e^{\alpha \ln(xy)} = e^{\alpha(\ln x + \ln y)} = e^{\alpha \ln x + \alpha \ln y} = e^{\alpha \ln x} \times e^{\alpha \ln y} = x^{\alpha} \times y^{\alpha}.$$

4

L'intérêt principal de la définition 4 est de calculer x^{α} lorsque α n'est pas un entier. Voyons cela

avec des exemples:

Exemples 6

1. Combien vaut $a = 5^{\frac{1}{2}}$? Pour le savoir, on calcule a^2 en utilisant la proposition 4 :

$$a^2 = \left(5^{\frac{1}{2}}\right)^2 = 5^{\frac{1}{2} \times 2} = 5^1 = 5.$$

Or le seul nombre positif dont le carré vaut 5 est $\sqrt{5}$, donc

$$a=5^{\frac{1}{2}}=\sqrt{5}$$
.

Avec le même calcul, on démontre facilement que pour tout x > 0, $x^{\frac{1}{2}} = \sqrt{x}$.

2. $2^{\frac{1}{2}} \times 4^{\frac{1}{3}} = 2^{\frac{1}{2}} \times (2^2)^{\frac{1}{3}} = 2^{\frac{1}{2}} \times 2^{\frac{2}{3}} = 2^{\frac{1}{2} + \frac{2}{3}} = 2^{\frac{3}{6} + \frac{4}{6}} = 2^{\frac{7}{6}}$.

Remarques.

- Dans la définition 4, x est un réel strictement positif. On s'autorise également à calculer x^{α} lorsque x est strictement négatif, mais uniquement quand α est un entier, en reprenant la définition habituelle (celle du collège). On pose également $0^{\alpha} = 0$ pour tout $\alpha > 0$.
- Le point 1 des exemples 6 se généralise : si x > 0 et $n \in \mathbb{N}^*$, $\left(x^{\frac{1}{n}}\right)^n = x^{\frac{1}{n} \times n} = x^1 = x$. On dit que $x^{\frac{1}{n}}$ est la racine *n*-ième de *x*; on note $x^{\frac{1}{n}} = \sqrt[n]{x}$ (voir exercices).

Proposition 5

Soit $\alpha \in \mathbb{R}$. La fonction

$$f:]0; +\infty[\to]0; +\infty[, x \mapsto x^{\alpha}]$$

est dérivable sur $]0; +\infty[$ et

$$\forall x \in]0; +\infty[, f'(x) = \alpha x^{\alpha-1}.$$

Proposition 6

La fonction $x \mapsto x^{\alpha}$ est :

- strict. croissante sur $]0; +\infty[$ si $\alpha > 0;$
- strict. décroissante sur $]0; +\infty[$ si $\alpha < 0;$
- constante égale à 1 si $\alpha = 0$.

Proposition 7 (croissances comparées)

Soient $\alpha > 0$, $\beta > 0$.

1.
$$\lim_{x \to -20} x^{\alpha} e^{-\beta x} = 0$$

$$\lim_{x \to -\infty} x e^{\beta x} = 0$$

3.
$$\lim_{x \to +\infty} \frac{\ln x}{r^{\alpha}} = 0$$

1.
$$\lim_{x \to +\infty} x^{\alpha} e^{-\beta x} = 0$$
. 2. $\lim_{x \to -\infty} x e^{\beta x} = 0$. 3. $\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} = 0$. 4. $\lim_{x \to 0, \ x > 0} x^{\alpha} \ln x = 0$.

III. Fonctions circulaires réciproques

On commence avec la fonction arcsin, dont on détaille l'étude. On ira ensuite plus rapidement pour arccos et arctan.

éfinition 5

La restriction de la fonction sin à $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ réalise une bijection de $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ sur [-1; 1]. On appelle arcsin sa fonction réciproque. On a donc :

$$\forall y \in [-1;1], \sin(\arcsin y) = y.$$

Remarque. On note $\sin \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ la restriction de $\sin \grave{a} \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.

Exemples 7

1.
$$\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$$
, donc $\arcsin \left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$.

2.
$$\sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}$$
, donc $\arcsin\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$.

I \ Attention

On n'a pas toujours $\arcsin(\sin x) = x$! Cela n'est vrai que quand $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.

Par exemple :

$$\arcsin\left(\sin\left(\frac{4\pi}{3}\right)\right) = \arcsin\left(\sin\left(-\frac{\pi}{3}\right)\right) = -\frac{\pi}{3}$$

(on se ramène dans l'intervalle $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ pour pouvoir calculer).

Proposition 8

La fonction arcsin est dérivable sur]-1;1[et pour tout $x \in]-1;1[$:

$$(\arcsin)'(x) = \frac{1}{\sqrt{1 - x^2}}.$$

Démonstration (🍎)

Soit $y_0 \in]-1;1[$ et soit $x_0 = \arcsin(y_0)$; on a donc $x_0 \in]-\frac{\pi}{2};\frac{\pi}{2}[$.

La fonction $x \mapsto \sin x$ est dérivable en x_0 et $(\sin)'(x_0) = \cos x_0$. Or $\cos x_0 \neq 0$, $\cot x_0 \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$, donc d'après le théorème 1, arcsin est dérivable en y_0 et

$$(\arcsin)'(y_0) = \frac{1}{\cos(x_0)} = \frac{1}{\cos(\arcsin(y_0))}.$$

On a vu dans l'exercice 15 que $\cos\left(\arcsin\left(y_0\right)\right) = \sqrt{1-y_0^2}$, donc on obtient la formule attendue :

$$(\arcsin)'(y_0) = \frac{1}{\cos(\arcsin(y_0))} = \frac{1}{\sqrt{1 - y_0^2}}.$$

 \triangle arcsin n'est dérivable ni en 1, ni en -1 (les tangentes à la courbe sont verticales).

La restriction de la fonction cos à $[0;\pi]$ réalise une bijection de $[0; \pi]$ sur [-1; 1].

On appelle arccos sa fonction réciproque. On a donc:

- ► $\forall x \in [0; \pi]$, $\arccos(\cos x) = x$. ► $\forall y \in [-1; 1]$, $\cos(\arccos y) = y$.

Attention

L'ensemble de définition des fonctions arccos et arcsin n'est pas le même.

Exemples 8

1.
$$\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$$
, donc $\arccos \left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$.

2.
$$\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$$
, donc $\arccos\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$.

3.
$$\triangle$$
 $\arccos\left(\cos\left(-\frac{\pi}{4}\right)\right) = \arccos\left(\cos\frac{\pi}{4}\right) = \frac{\pi}{4}$.

Proposition 9

La fonction arccos est dérivable sur]-1;1[et pour tout $x \in]-1$;1[:

$$(\arccos)'(x) = -\frac{1}{\sqrt{1-x^2}}.$$

$$y = \cos x$$
 $y = \arccos x$

x	-1	1
$-\frac{1}{\sqrt{1-x^2}}$	-	
arccos x	π	0

▲ arccos n'est dérivable ni en 1, ni en −1

Définition 7

La restriction de la fonction tan à $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ réalise une bijection de $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ sur \mathbb{R} . On appelle arctan sa fonction réciproque. On a donc :

- $\forall x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[, \arctan(\tan x) = x.$
- ▶ $\forall y \in \mathbb{R}$, tan(arctan y) = y.

Exemples 9

- 1. $\tan \frac{\pi}{4} = 1$, donc $\arctan(1) = \frac{\pi}{4}$.
- **2. A** La fonction tan est π -périodique, donc $\arctan\left(\tan\left(\frac{3\pi}{4}\right)\right) = \arctan\left(\tan\left(-\frac{\pi}{4}\right)\right) = -\frac{\pi}{4}$.

Proposition 10

La fonction arctan est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$:

$$(\arctan)'(x) = \frac{1}{1+x^2}.$$

$y = \tan x$	$y = \arctan x$
--------------	-----------------

x	-∞	+∞
$\frac{1}{1+x^2}$	+	
arctan x	$-\frac{\pi}{2}$	$\frac{\pi}{2}$

IV. Injection, surjection, bijection

On revient sur la notion de bijection, que nous avons étudiée dans la section 1.

finition 8

Une fonction $f: I \rightarrow J$ est dite injective si deux réels distincts dans I ont des images distinctes.

De façon plus concise:

$$\forall x_1 \in I, \forall x_2 \in I, (x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2))$$

Remarque. Il revient au même de dire que tout $y_0 \in J$ a au plus un antécédent dans I

Définition 9

Une fonction $f: I \rightarrow J$ est dite surjective si tout réel dans J a au moins un antécédent dans I.

De façon plus concise:

$$\forall y_0 \in J, \ \exists x_0 \in I, \ f(x_0) = y_0.$$

Exemple 10

Soit $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$.

La fonction f n'est ni injective, ni surjective :

elle n'est pas injective, car (par exemple) -2
 et 2 ont la même image :

$$f(-2) = f(2) = 4$$
.

elle n'est pas surjective, car (par exemple)
 -1 n'a pas d'antécédent.

Soit $f:[0;+\infty[\to [0;+\infty[, x \mapsto x^2]$.

La fonction f est à la fois injective et surjective : tout $y_0 \in [0; +\infty[$ a un unique antécédent dans $[0; +\infty[$. Cet antécédent est $x_0 = \sqrt{y_0}$.

On dit que f est bijective.

On revient vers la notion de bijection :

Déf. 10

Une fonction $f:I\to J$ est dite bijective si elle est à la fois injective et surjective. Autrement dit : tout réel $y_0\in J$ a exactement un antécédent x_0 dans I. Ou de façon plus concise :

$$\forall y_0 \in J, \ \exists ! x_0 \in I, \ f(x_0) = y_0.$$

On retrouve bien la définition de la section 1.

V. Exercices

Exercice 1 (1).

Soit $f:[0;+\infty[\to\mathbb{R},\ x\mapsto e^{-x}]$.

- 1. Construire le tableau de variations de f en faisant apparaître la limite en $+\infty$.
- 2. Recopier et compléter les pointillés :

f réalise une bijection de sur

Exercice 2 (11).

Soit $f: \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \to \mathbb{R}, \ x \mapsto \sin x$.

- 1. Construire le tableau de variations de f.
- 2. Recopier et compléter les pointillés :

f réalise une bijection de sur

Exercice 3 (11).

Soit $f: \mathbb{R} \to [0; +\infty[, x \mapsto x^2]$.

La fonction f réalise-t-elle une bijection de \mathbb{R} sur $[0;+\infty[$?

Exercice 4 (11).

On reprend la fonction de l'exercice 1. Quelle est la bijection réciproque?

Exercice 5 $(\hat{\mathbf{1}})$.

Soit $f: [0; +\infty[\rightarrow \mathbb{R}, x \mapsto \ln(1+x)]$.

- 1. Construire le tableau de variations de f en faisant apparaître la limite en $+\infty$.
- 2. Recopier et compléter les pointillés :

f réalise une bijection de sur

3. Déterminer la bijection réciproque.

Exercice 6 $(\hat{\mathbf{m}})$.

Soient $f: [0; +\infty[\rightarrow [0; +\infty[, x \mapsto x^2 \text{ et } g : [0; +\infty[\rightarrow [0; +\infty[, x \mapsto \sqrt{x}.$

Prouver que les fonctions f et g sont les réciproques l'une de l'autre. Construire leurs courbes représentatives dans un même repère.

Exercice 7 (8).

Soit $y_0 \in]0; +\infty[$. En utilisant le théorème 1, prouver que la fonction ln est dérivable en y_0 et que $(\ln)'(y_0) = \frac{1}{y_0}$.

Exercice 8 (8).

Soit $y_0 \in]0; +\infty[$. En utilisant le théorème 1, prouver que la fonction $g: x \mapsto \sqrt{x}$ est dérivable en y_0 et calculer $g'(y_0)$.

Exercice 9 (11).

- 1. Prouver que les nombres suivants sont égaux :
 - $A = 2^{\frac{3}{10}} \times 2^{\frac{1}{5}}$.
 - $B = \left(2^{\frac{1}{2}}\right)^3 \times 2^{-1}$.
 - $C = \frac{4^{\frac{2}{3}}}{2^{\frac{5}{6}}}$
- **2.** Démontrer que pour tout $x \ge 0$: $x^{\frac{3}{2}} = x\sqrt{x}$.

Exercice 10 (11).

Soit $\alpha \in \mathbb{R} \setminus \{0\}$.

- 1. Calculer la dérivée de la fonction $f:]0; +\infty[\to \mathbb{R}, \ x \mapsto x^{\alpha}.$
- **2.** Construire le tableau de variations de f et calculer ses limites en 0 et en $+\infty$. On distinguera les cas $\alpha > 0$ et $\alpha < 0$.

Exercice 11.

- **1.** Soit $n \in \mathbb{N}^*$. Déterminer la réciproque de la fonction $f:]0; +\infty[\to]0; +\infty[, x \mapsto x^n]$.
- Calculer 9^{1/2} et 1000^{1/3}.

Exercice 12 (**6**).

Soit $\alpha > 0$. En utilisant l'un des résultats de croissance comparée du chapitre 3, démontrer que $\lim_{x \to +\infty} x^{\alpha} e^{-x} = 0$.

Exercice 13 (**1**).

Soit $f:]0; +\infty[\to \mathbb{R}, x \mapsto x^x.$

- 1. Prouver que $f'(x) = (\ln x + 1) x^x$ pour tout $x \in]0; +\infty[$.
- 2. Construire le tableau de variations de f. Calculer ses limites en 0 et en $+\infty$.

Exercice 14 $(\hat{\mathbf{m}})$.

Calculer:

- 1. $\arcsin\left(\frac{1}{2}\right)$.

- 4. $\arcsin\left(\sin\left(\frac{7\pi}{6}\right)\right)$. 5. $\arcsin\left(\sin\left(\frac{7\pi}{12}\right)\right)$.
- **3.** $\sin(\arcsin(0,85))$.

Exercice 15 (116).

6. $\cos(2\arcsin(0,5))$.

Soit *x* ∈ [-1;1]

- 1. Quel est le signe de $\cos(\arcsin x)$?
- 2. Compléter les pointillés :

$$\cos^2(\arcsin x) + \sin^2(\arcsin x) = \dots$$

3. En déduire que

$$\cos(\arcsin x) = \sqrt{1 - x^2}.$$

Exercice 16 ($\mathbf{\underline{m}}$).

Soit $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto \arcsin(\sin x)$.

- 1. Étudier la parité et la périodicité de f.
- **2.** Soit $x \in [0; \frac{\pi}{2}]$. Combien vaut f(x)?
- **3.** Soit $x \in \left[\frac{\pi}{2}; \pi\right]$. Encadrer πx , puis prouver que
- 4. Construire la courbe représentative de la fonction f.

Exercice 17 (**6**).

Démontrer l'égalité:

$$\arcsin\left(\frac{7}{25}\right) = \arcsin\left(\frac{4}{5}\right) - \arcsin\left(\frac{3}{5}\right).$$

Indication: Calculer le sin de chacun des deux membres.

Exercice 18 $(\hat{\mathbf{m}})$.

Calculer:

- 1. $\arccos\left(\frac{1}{2}\right)$.
 2. $\arccos\left(\cos\left(\frac{7\pi}{6}\right)\right)$.
 5. $\arccos\left(\cos\left(-\frac{5\pi}{12}\right)\right)$
 - $\cos(\arccos(0,85))$.
- **6.** $\cos(2\arccos(0,5))$.

Exercice 19 $(\hat{\mathbf{m}})$.

Soit $f : \mathbb{R} \to \mathbb{R}$, $x \mapsto \arccos(\cos x)$.

- 1. Étudier la parité et la périodicité de f.
- **2.** Soit $x \in [0; \pi]$. Combien vaut f(x)?
- Construire la courbe représentative de la fonction f.

Exercice 20 (11).

Calculer:

- 1. $\arctan(-1)$.
- 3. tan(arctan(10)).
- **2.** $\arctan(\sqrt{3})$.
- 4. $\arctan\left(\tan\left(\frac{2\pi}{2}\right)\right)$

Exercice 21.

1. Sur la figure ci-dessous, exprimer $\tan \theta$ et $\tan \alpha$ en fonction de x.

2. Compléter les pointillés : pour tout x > 0,

$$\arctan x + \arctan\left(\frac{1}{x}\right) = \dots$$