Mo

## 重庆市高三化学考试

本试卷满分100分,考试用时75分钟。

## 注意事项:

- 1. 答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
  - 3. 考试结束后,将本试卷和答题卡一并交回。
  - 4. 可能用到的相对原子质量: H 1 C 12 O 16 K 39 I 127 Nd 144
- 一、选择题:本题共 14 小题,每小题 3 分,共 42 分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1. 人民对美好生活的向往,就是我们的奋斗目标。下列生活中使用的物质的主要成分不是高分子材料的是

| 选项 | A        | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D           |  |
|----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| 生活 |          | CONTRACTOR OF THE STATE OF THE | The same of the sa | al.         |  |
| 中使 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |  |
| 用的 |          | AA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |  |
| 物质 | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |  |
| 名称 | 防紫外线树脂眼镜 | 大理石玉石蓝纹背景墙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 有机玻璃板                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 飞机上使用的芳砜纶纤维 |  |

2. 下列化学用语的表述错误的是

A. C<sub>2</sub> H<sub>2</sub> 的结构模型: • • • • • •

B. 2-丁烯的键线式:

C. N<sub>2</sub> 分子的电子式:: N :: N:

3. 化学与生活、社会发展息息相关,下列有关说法错误的是

A. 将一氧化碳中毒的病人移至高压氧舱,救治原理与平衡移动有关

B. K<sub>2</sub>FeO<sub>4</sub> 是一种绿色消毒剂,不仅可用于水体杀菌消毒,而且可以软化硬水

C. 医用防护服的核心材料是微孔聚四氟乙烯薄膜,其单体四氟乙烯属于卤代烃

D. 将香蕉和青苹果放在一起,青苹果更容易成熟,是因为香蕉释放的乙烯有催熟作用

0

【高三化学 第1页(共8页)】

· C QING ·

4. 下列物质的应用中,涉及氧化还原反应的是

A. 热的纯碱溶液洗涤油污

B. 含硫酸钙的卤水点制豆腐

C. 袋装食品常用铁粉和生石灰来防止食品变质

D. 食醋用于清除水壶中的少量水垢(主要成分为 CaCO<sub>3</sub>)

5. 离子键的百分数是依据电负性的差值计算出来的,差值越大,离子键的百分数越大,下列几种 化合物的化学键中离子键的百分数最大的是

A. LiF

B. AlCl<sub>3</sub>

C. MgO

D. SO<sub>3</sub>

6. 下列离子方程式与所给事实不相符的是

A. 明矾净水: Al3++3H2O ← Al(OH)3(胶体)+3H+

B. 向 AgCl 浊液中通人 H<sub>2</sub>S,浊液变黑:2AgCl+H<sub>2</sub>S ——Ag<sub>2</sub>S+2H++2Cl-

C. 向 Ca(HCO<sub>3</sub>)<sub>2</sub> 溶液中加入足量的 NaOH 溶液: Ca<sup>2+</sup> + HCO<sub>3</sub><sup>-</sup> + OH<sup>-</sup> ——CaCO<sub>3</sub> ↓ + H<sub>2</sub>O

D. 向二元弱酸亚磷酸(H<sub>3</sub>PO<sub>3</sub>)溶液中滴加过量的 NaOH 溶液: H<sub>3</sub>PO<sub>3</sub> + 2OH<sup>-</sup> === HPO<sub>3</sub><sup>2</sup> + 2H<sub>2</sub>O

7. 有机纳米管(CONTs)是通过共价键由离散分子构建块构成的延伸网状结构。在一定条件下,四氨基三蝶烯(TAT)和邻茴香醛可合成有机物 M,进一步合成有机纳米管 N。下列说法中错误的是



A. 有机纳米管 N 属于高分子化合物

B. 室温下,在水中的溶解度:TAT>M

C. 若将 N 均匀地分散在水中,形成的混合物能发生丁达尔效应

D. TAT 和邻茴香醛的核磁共振氢谱中,峰的组数相同

8. 设  $N_A$  为阿伏加德罗常数的值,下列说法正确的是

A. 30 g HCHO 和 CH<sub>3</sub>COOH 的混合物中含 H 原子数为 2N<sub>A</sub>

B. 0. 1 mol  $^{14}$ NO 和 $^{14}$ CO 的混合气体中所含的中子数为 1.  $5N_{\rm A}$ 

C. 常温下,pH=13 的 Ba(OH)<sub>2</sub> 溶液中含 OH<sup>-</sup> 的数目为 0.  $2N_A$ 

D. 23.0 g 乙醇与过量冰醋酸在浓硫酸、加热条件下反应,生成的乙酸乙酯分子数为  $0.5N_A$ 

9. 1825 年偶然地发现了组成为  $KCl \cdot PtCl_2 \cdot C_2H_4 \cdot H_2O$  的黄色晶体,其中含乙烯,配位化学确立后,证明其中存在组成为 $[PtCl_3(C_2H_4)]^-$ 的配合物,铂的配合物顺式二氯二氨合铂[常

考号

闘

答

展

K

内

狱

本

胜名

称"顺铂",化学式为 Pt(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>]具有抗癌活性。下列说法正确的是

- A. C<sub>2</sub> H<sub>4</sub> 为极性分子
- B. H<sub>2</sub>O的 VSEPR 模型为 V形
- C. Pt(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> 分子中含有 4 个 σ键
- D. NH<sub>3</sub> 分子中的 H—N—H 键的键角小于顺铂中的 H—N—H 键
- 10. 利用下列装置和试剂进行实验,设计合理且能达到实验目的的是



11. 有关晶体的结构如图所示,下列说法中错误的是



- A. CaO<sub>2</sub> 晶胞中, Ca<sup>2+</sup>的配位数为 6
- B. 氧化镁晶体中与 Mg<sup>2+</sup> 距离最近且等距的 Mg<sup>2+</sup> 有 8 个
- C. 在碘晶体中,存在非极性共价键和范德华力
- D. 在金刚石晶体中,碳原子与碳碳键(C-C)的数目之比为1:2
- 12. 栀子苷是中草药栀子实的提取产品,可用作治疗心脑血管、肝胆等疾病的原料药物,其结构 简式如图所示,下列有关说法正确的是

- A. 分子中有 4 种含氧官能团
- B. 分子中的碳原子采用的杂化方式均为 sp3 杂化
- C. 该化合物既能使酸性高锰酸钾溶液褪色,又能使溴水褪色
- D. 1 mol 该化合物最多与 5 mol NaOH 发生反应

13. 某教授团队设计了具有 Se 空位的  $Ni_3$  Se<sub>4</sub> 电极,由此设计的某种电解池如图,在 M 电极可收集到  $NH_3$  和少量  $H_2$ ,下列说法中错误的是



- A. N 电极为阳极,发生氧化反应
- B. M 电极上的电极反应之一为 NO<sub>3</sub> +6H<sub>2</sub>O+8e<sup>-</sup> = NH<sub>3</sub> ↑ +9OH<sup>-</sup>
- C. 若以铅蓄电池为电源,则 M 电极与 Pb 电极相连
- D. 当电路中有 0.4 mol 电子通过时,则生成的 NH3 在标准状况下的体积为 1.12 L
- 14. 常温下,向 20 mL 0.1 mol·L $^{-1}$ CH $_3$ COONa 溶液中滴入  $\lg \frac{c(\text{HCOOH})}{c(\text{CH}_3\text{COOH})}$ 等浓度的 HCOOH 溶液,所得溶液中  $\lg \frac{c(\text{HCOOH})}{c(\text{CH}_3\text{COOH})}$

与  $\lg \frac{c(HCOO^-)}{c(CH_3COO^-)}$  的关系如图所示。已知

 $K_a(CH_3COOH)=1.76\times10^{-5}$ ,下列说法错误的是

A.  $K_a(HCOOH) = 1.76 \times 10^{-4}$ 

B. 滴人 20 mL HCOOH 溶液后,溶液中存在:c(HCOO<sup>-</sup>)>c(CH₃COOH)

- C. 随着 HCOOH 溶液的加入, $\frac{c(\text{HCOOH}) \cdot c(\text{CH}_3\text{COOH})}{c(\text{HCOO}^-) \cdot c(\text{CH}_3\text{COO}^-)}$ 逐渐增大
- D. 滴人 20 mL HCOOH 溶液后,溶液中存在: $c(CH_3COOH)+c(OH^-)+c(CH_3COO^-)$ = $c(HCOOH)+c(Na^+)+c(H^+)$

## 二、非选择题:本题共4小题,共58分。

15. (15 分) KI 可用作制有机化合物及制药原料, 医疗上用于防治甲状腺肿和甲状腺功能亢进的手术前准备所需药物, 也可用作祛痰药。某实验小组设计制备一定量 KI 的实验(加热及夹持装置已省略)如下:



(1)实验开始前,先进行的操作为

· C QING ·

铋

内

K

袮

c(HCOO<sup>-</sup>)

- (2)仪器 a 的名称是。
- (3)实验中不能用稀硝酸代替稀硫酸的根本原因是
- (4)久置 KI 溶液易被氧化而变质,实验小组取久置 KI 溶液进行实验,如图所示。



关于溶液立即变蓝的原因,该实验小组进行了如下探究:

①提出猜想

猜想 I. 酸性条件下,空气中的 O。将 I-迅速氧化成 I。;

猜想 Ⅱ. KI 溶液久置过程中产生了 IO3, IO3 在酸性条件下与 I 反应生成 I。

②实验与结论

| 实验编号 | 实验方案                                                                                            | 实验现象             | 结论与解释                   |
|------|-------------------------------------------------------------------------------------------------|------------------|-------------------------|
| Î    | 往试管中加入 $10~\text{mL}~0.1~\text{mol} \cdot \text{L}^{-1}$ 新制 $\text{KI}$ 溶液并加入几滴淀粉溶液,,露置于室温下的空气中 | 50 min 后溶<br>液变蓝 | 猜想Ⅰ不成立                  |
| , I  | 取少量 $KIO_3$ 溶液与少量 $KI$ 溶液混合,加人 淀粉溶液,再滴加稀 $H_2SO_4$ 调节 $pH$ 至 $5$                                | 溶液立即变蓝           | 猜想Ⅱ成立。写出相关<br>反应的离子方程式: |

(5)测定 KI 的纯度;称取 0.5000 g 样品溶于水,加入稍过量硫酸酸化的  $H_2O_2$  充分反应后, 加热除去过量  $H_0O_0$ ,加入几滴淀粉溶液,用 0,2000 mol·L<sup>-1</sup>的  $Na_0S_0O_0$  标准溶液滴定  $(I_2+2S_2O_3^{2-} - S_4O_6^{2-}+2I^-)$ 

①滴定前装有标准液的滴定管排气泡时,应选择图中的 (填标号,下同)。









②若用 25.00 mL 的滴定管进行实验, 当滴定管中的液面在刻度"10"处,则管内液体的 体积。

- $a_{r} = 10,00 \text{ mL}$   $b_{r} = 15,00 \text{ mL}$
- c < 10,00 mJ
- d. >15.00 mL
- ③滴定终点时消耗 14.50 mL标准溶液,则样品的纯度为 (计算结果保留两位 有效数字)。



· C QING ·

16. (15 分)钕铁硼废料的主要成分为 Nd<sub>2</sub>Fe<sub>14</sub>B,还有少量的硅酸盐和 Al<sub>2</sub>O<sub>3</sub>。在实验室中回收 钕铁硼废料中的稀土元素的工艺流程如图所示。



已知:

- ①钕的活动性较强,能与稀酸发生置换反应;硼不与稀酸反应;
- ②室温下, $K_{sp}[Nd_2(C_2O_4)_3]=2.7\times10^{-21}$ 。

回答下列问题:

- (1)"酸溶"操作中,为提高钕的浸出率,可采取的措施有 (任写一点)。
- (2)"复盐沉淀"讨程中得到的沉淀是 Nd<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> · Na<sub>2</sub>SO<sub>4</sub> · xH<sub>2</sub>O<sub>4</sub>写出生成沉淀的化学方 程式:
- (3)"一系列操作"包括过滤、洗涤、干燥等,其中检验洗涤干净的操作是。实验室 中,"煅烧"过程可在 (填仪器名称)中进行。
- (4)"转沉"讨程中,当  $Nd^{3+}$ 完全沉淀[c( $Nd^{3+}$ )≤1×10<sup>-5</sup> mol·L<sup>-1</sup>]时,C<sub>2</sub>O<sup>2−</sup> 的最小浓度 为 mol·L<sup>-1</sup>。
- (5)针对钕铁硼废料中金属离子浸出成本高、污染大的问题,某研究团队提出采用电化学阳 极氧化技术直接浸出钕铁硼废料中的钕和铁元素,以 为阳极,Na,SO,溶液为电 解质溶液进行电解。研究表明 Na<sub>2</sub>SO<sub>4</sub>溶液不需要外加酸即可达到分离钕和铁元素的目 的,原因是  $\{ \text{已知 } K_{sp}[\text{Fe}(OH)_3] = 2.6 \times 10^{-39}, K_{sp}[\text{Nd}(OH)_3] = 1.6 \times 10^{-39}, K_{sp}[\text{Nd}(O$  $1.9 \times 10^{-21}$
- (6) 钕是最活泼的稀土金属之一, 晶体为六方晶系, 结构如图所示, 钕原子以六方最密堆积方 式连接。晶胞参数: $a=x \text{ pm}, b=x \text{ pm}, c=y \text{ pm}, \alpha=90^{\circ}, \beta=90^{\circ}, \gamma=120^{\circ}$ 。每个晶胞含 有 个钕原子,设阿伏加德罗常数的值为  $N_A$ ,则金属钕的密度为 g·cm<sup>-3</sup>(列出计算表达式)。



17. (14分)化合物 F 是一种重要的有机合成中间体,某研究小组按下列路线进行合成:



已知:
$$R_1CHO+R_2CH_2CHO \xrightarrow{NaOH} R_1CH=CCHO + H_2O$$
 R<sub>2</sub>

请回答下列问题:

- (1)有机物 B 所含的官能团名称是\_\_\_\_\_,B → C 的反应类型为\_\_\_\_\_
- (2)化合物 E 的结构简式是
- (3)写出 D→E 的化学方程式:
- (4)1 分子有机物 F 中含有的手性碳原子数为。
- (5)上述流程涉及的非金属元素中,电负性由大到小的顺序为\_\_\_\_\_,第一电离能最大的为\_\_\_\_\_(填元素符号)。
- (6)有机物 H 是 D 的同分异构体,写出符合下列条件的 H 的结构简式:\_\_\_\_\_(任写一种)。
  - ①IR 谱检测表明:分子中含有一个苯环,有 C-O-C 键,无 O-H、O-O 键。
  - ②<sup>1</sup>H-NMR 谱检测表明:分子中共有 5 种不同化学环境的氢原子。
  - ③仅含有两种官能团,其中一种为一NH2,且氨基与苯环直接相连。
- 18. (14 分)研究 CO₂资源的综合利用,对实现"碳达峰"和"碳中和"有重要意义。
  - (1)已知:
    - I.  $CO_2(g) + 3H_2(g) \Longrightarrow CH_3OH(g) + H_2O(g)$   $\Delta H_1 = -49.5 \text{ kJ} \cdot \text{mol}^{-1}$
    - $[] . CO(g) + 2H_2(g) \Longrightarrow CH_3OH(g) \Delta H_2 = -90.4 \text{ kJ} \cdot \text{mol}^{-1}$
    - $\blacksquare$ .  $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g) \Delta H_3$
    - $\bigcirc \Delta H_3 = kJ \cdot mol^{-1}$ .
    - ②一定条件下,向体积为 2 L 的恒容密闭容器中通人 1 mol  $CO_2$  和 3 mol  $H_2$ ,发生上述反应,达到平衡时,容器中  $CH_3$  OH(g)的物质的量为 0.5 mol,CO 的物质的量为 0.3 mol,此时  $H_2$  O(g)的浓度为\_\_\_\_\_ mol  $L^{-1}$  。

【高三化学 第7页(共8页)】

(2)  $CO_2$  在 Cu—ZnO 催化下,同时发生反应 I、III,此方法是解决温室效应和能源短缺问题的重要手段。保持温度 T 时,在容积不变的密闭容器中,充入一定量的  $CO_2$  及  $H_2$ ,起始及达到平衡时(t min 时恰好达到平衡),容器内各气体物质的量及总压强如下表:

|    |                 | 쓰 F 3로 /L D.   |                       |    |                     |         |
|----|-----------------|----------------|-----------------------|----|---------------------|---------|
|    | CO <sub>2</sub> | H <sub>2</sub> | CH <sub>3</sub> OH(g) | СО | H <sub>2</sub> O(g) | 总压强/kPa |
| 起始 | 0.5             | 0.9            | 0                     | 0  | 0                   | $p_0$   |
| 平衡 |                 |                | n                     |    | 0. 3                | Þ       |

若反应 I、II均达到平衡时, $p_0=1.4p$ ,则表中 n=\_\_\_\_\_\_\_; $0\sim t$  min 内, $CO_2$  的分压变化率为\_\_\_\_\_\_kPa • min<sup>-1</sup>,反应 I 的平衡常数  $K_p=$ \_\_\_\_\_(kPa)<sup>-2</sup>(用含 p 的式子表示)。

(3)CO<sub>2</sub> 催化加氢制甲烷涉及的反应主要有:

主反应: $CO_2(g)+4H_2(g)$   $\longrightarrow CH_4(g)+2H_2O(g)$   $\Delta H_4 < 0$ 

副反应: $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$   $\Delta H_3$ 

若将  $CO_2$  和  $H_2$  按体积比为 1:4 混合 ( $n_{\&}=5$  mol),匀速通人装有催化剂的反应容器中,发生反应(包括主反应和副反应)。反应相同时间, $CO_2$  转化率、 $CH_4$  和 CO 选择性随温度变化的曲线分别如图所示。





①a 点的正反应速率和逆反应速率的大小关系为  $v_{\text{E}}(a)$  \_\_\_\_\_\_(填">"、"="或"<")  $v_{\text{W}}(a)$ 。

②催化剂在较低温度时主要选择 (填"主反应"或"副反应")。

③350~400 ℃,CO₂ 转化率呈现减小的变化趋势,其原因是\_

· C QING ·