

Universidade Federal do Ceará Centro de Ciências Departamento de Computação Avaliação Parcial 3 de Métodos Numéricos Prof. Dr. João Paulo do Vale Madeiro

PARABÉRS!

Nome: Pedrs Leino Matrícula: 542114

Folias lunha

1 (TEÓRICA) A distância percorrida em metros para que um carro pare foi obtida através de experimentos e está apresentada na tabela abaixo: 7 10

	Vel (Km/h)	15	20	25	1	30	40	50
Distância (m) 16 20 34 40 60 90	Distância (m)	16	20	34	7	40	60	90

Ou seja, se o carro está correndo a 25 Km/h e o freio for acionado, ele parará após percorrer 34 m. Qual a distância percorrida até parar se o carro estiver a 45 Km/h ? Estime, utilizando um polinômio interpolador de Newton de 4º grau! Qual o erro estimado ? (2,0 pontos)

2) (TEÓRICA) Sendo $f(x,y) = \frac{1}{(x+y)^2}$, estime $I = \int_3^4 \int_1^2 f(x,y) dy dx$ com aplicações unicas da regra 1/3 de Simpson (2,0 pontos), . .

3) (PRÁTICA) A viscosidade dinâmica da água μ (10⁻³ $N.\frac{5}{m^2}$) está relacionada com a temperatura T (°C) da seguinte maneira:

			the state of the s		100	140
T	10	5	10	20	0.7975	0,6529
<u>.</u>	1.787	1,519	1,307	1,002	0,7575	0,0020

(a) Interpole todos os pontos utilizando a técnica de Lagrange para prever μ em Τ

(b) Trace o gráfico do polinômio interpolador juntamente com os pontos dados (1,0 ponto)

4) Um carro de corrida demora 79 segundos a percorrer uma pista. A velocidade do carro (em m/s) é determinada através de um radar e é apresentada desde o início da volta na seguinte tabela:

				14	- 140	48,	5	49	59	69	79
Tempo	0	0,5	1	1,3		121	5	39	44.5	58	61,5
Velocidade	62	74	73,5	60	,5 49,5	160			<u></u>	, _	7
		0.5	0.5	0.5	Limin	0.5	0.	5	10 10	, 1	0

Estime o comprimento da pista utilizando integração numérica com combinações das regras 1/3 de simpson, 3/8 de Simpson e trapézio (3,0 pontos).

$$enrs = 66 85.86 - 72,5), 100%$$
 $errs = 10.69\%$

