```
In [4]:
          # Author: Olusola Akinbode
          %matplotlib inline
          import numpy as np
          import pandas as pd
          import matplotlib as mpl
          import matplotlib.pyplot as plt
In [5]:
         data = pd.read_fwf("auto-mpg.data", na_values='?')
          data.columns=['mpg', 'cylinders', 'displacement', 'horsepower', 'weight',
In [6]:
          data.set_index('car name')
In [7]:
Out[7]:
                                                                                         model
                           mpg cylinders displacement horsepower weight acceleration
                                                                                                 origin
                                                                                           vear
                 car name
             "buick skylark
                            15.0
                                        8
                                                                                             70
                                                  350.0
                                                              165.0
                                                                   3693.0
                                                                                   11.5
                                                                                                    1
                      320"
                 "plymouth
                            18.0
                                        8
                                                  318.0
                                                                    3436.0
                                                                                             70
                                                              150.0
                                                                                   11.0
                                                                                                    1
                  satellite"
                                                                    3433.0
            "amc rebel sst"
                            16.0
                                        8
                                                  304.0
                                                              150.0
                                                                                   12.0
                                                                                             70
                                                                                                     1
               "ford torino"
                            17.0
                                                  302.0
                                                              140.0
                                                                    3449.0
                                                                                   10.5
                                                                                             70
                                                                                                     1
               "ford galaxie
                            15.0
                                        8
                                                  429.0
                                                              198.0
                                                                    4341.0
                                                                                   10.0
                                                                                             70
                                                                                                    1
                      500"
             "ford mustang
                           27.0
                                                               86.0
                                                                    2790.0
                                        4
                                                  140.0
                                                                                   15.6
                                                                                             82
                                                                                                    1
                                                               52.0
               "vw pickup"
                            44.0
                                        4
                                                  97.0
                                                                    2130.0
                                                                                   24.6
                                                                                             82
                                                                                                    2
                   "dodge
                            32.0
                                                               84.0 2295.0
                                        4
                                                  135.0
                                                                                   11.6
                                                                                             82
                                                                                                     1
                 rampage"
              "ford ranger"
                           28.0
                                        4
                                                  120.0
                                                               79.0
                                                                   2625.0
                                                                                   18.6
                                                                                             82
                                                                                                     1
                                        4
                                                               82.0 2720.0
                                                  119.0
                                                                                   19.4
                                                                                             82
                                                                                                     1
               "chevy s-10"
                           31.0
```

397 rows × 8 columns

```
print(data.head(5))
In [8]:
```

	mpg	cylin	ders	displacement	horsepower	weight	acceleration	\	
0	15.0		8	350.0	165.0	3693.0	11.5		
1	18.0		8	318.0	150.0	3436.0	11.0		
2	16.0		8	304.0	150.0	3433.0	12.0		
3	17.0		8	302.0	140.0	3449.0	10.5		
4	15.0		8	429.0	198.0	4341.0	10.0		
	model	year	origi	in	car name				
0		70		1 "buick sk	ylark 320"				
1		70		1 "plymouth	satellite"				
2		70		1 "amc	"amc rebel sst"				
2	70 1 "ford toring"								

"ford galaxie 500"

1

70

In [9]: data.plot()

Out[9]: <AxesSubplot: >

data['mpg'].plot.hist(); In [10]:

data['horsepower'].plot.hist();


```
data.origin.value_counts()
In [12]:
Out[12]:
         1
              248
               79
                70
         Name: origin, dtype: int64
```

axs = data.hist(column='mpg', by='origin')


```
In [14]: | axs = data.hist(column='mpg', by='origin')
         # axs[1].set(title='female', ylim=[0, 45])
         # axs[2].set(title='male', ylim=[0, 45])
         # axs[3].set(title='water', ylim=[0,45]);
```

```
AttributeError
                                           Traceback (most recent call las
t)
Input In [14], in <cell line: 2>()
      1 axs = data.hist(column='mpg', by='origin')
----> 2 axs[1].set(title='female', ylim=[0, 45])
      3 axs[2].set(title='male', ylim=[0, 45])
      4 axs[3].set(title='water', ylim=[0,45])
```

AttributeError: 'numpy.ndarray' object has no attribute 'set'


```
fig, ax = plt.subplots()
In [132]:
            data.plot.scatter('mpg',
                                          'horsepower', c='origin', colormap='viridis', ax=a
                                                              3.00
               225
                                                              2.75
               200
                                                              2.50
               175
                                                              2.25
             horsepower
               150
                                                              2.00 है
               125
                                                             - 1.75
               100
                                                             - 1.50
                75
                                                              - 1.25
                50
                                                              1.00
                     10
                                                40
                              20
                                    mpg
 In [68]: colors = {1: 'tab:blue', 2: 'tab:orange', 3: 'tab:brown'}
            fig, ax = plt.subplots()
            for key, group in data.groupby(by='origin'):
                 group.plot.scatter('mpg', 'horsepower', c=colors[key], label=key, ax=ax
                                                                1
               225
                                                                2
               200
                                                                3
               175
             norsepower
               150
               125
               100
                75
                50
                     10
                           15
                                                        40
                                 20
                                       25
                                                  35
                                            30
                                                              45
 In [69]:
            import seaborn as sns
```

sns.displot(x='horsepower', col='origin', data=data); In [70]:

In [71]: |sns.displot(x='horsepower', hue='origin', data=data);

In [72]: sns.displot(x='horsepower', hue='origin', data=data, multiple='stack');

In [74]: sns.boxplot(x='mpg', y='origin', data=data);

Out[87]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name	ori
0	15.0	8	350.0	165.0	3693.0	11.5	70	one	"buick skylark 320"	
1	18.0	8	318.0	150.0	3436.0	11.0	70	one	"plymouth satellite"	
2	16.0	8	304.0	150.0	3433.0	12.0	70	one	"amc rebel sst"	
3	17.0	8	302.0	140.0	3449.0	10.5	70	one	"ford torino"	
4	15.0	8	429.0	198.0	4341.0	10.0	70	one	"ford galaxie 500"	
392	27.0	4	140.0	86.0	2790.0	15.6	82	one	"ford mustang gl"	
393	44.0	4	97.0	52.0	2130.0	24.6	82	two	"vw pickup"	
394	32.0	4	135.0	84.0	2295.0	11.6	82	one	"dodge rampage"	
395	28.0	4	120.0	79.0	2625.0	18.6	82	one	"ford ranger"	
396	31.0	4	119.0	82.0	2720.0	19.4	82	one	"chevy s- 10"	

397 rows × 10 columns

```
In [88]: ax = sns.scatterplot(x='horsepower', y='mpg', data=data, hue='origin_str')
```



```
In [91]: | g = sns.heatmap(data[['mpg', 'horsepower', 'model year', 'acceleration']].c
                             annot=True)
                                                                         -1.00
                                       -0.85
                    mpg
                                                                         - 0.75
                                                                         - 0.50
              horsepower
                            -0.85
                                        1
                                                  -0.39
                                                             -0.66
                                                                         - 0.25
                                                                         - 0.00
                                       -0.39
              model year
                                                   1
                                                             0.27
                                                                          -0.25
                                                                          -0.50
                                       -0.66
             acceleration -
                                                  0.27
                                                              1
                                    horsepower model year acceleration
                            mpg
```

```
In [1]: conda env list
        # conda environments:
                                  /Users/olusolaakinbode/opt/anaconda3
        base
                                  /Users/olusolaakinbode/opt/anaconda3/envs/ensf59
        ensf592
                               * /Users/olusolaakinbode/opt/anaconda3/envs/ensf61
        ensf611
        Note: you may need to restart the kernel to use updated packages.
In [ ]:
```