Hand-Wnitten Pruncipy Analysis MSA - Multi-Scale Approach For IBT Earlier - La Model

Empinical & Semi - Empirical Modes

Theoretical predictions x possible

Failed to realize the Full Potential of IBT. Now MSA times based on Physical, chemical effects of dose MSA - Helps to Theoretically analyze IBT La Will Play a mayor Role in the Forth come g advancements of IBT. Frankial - InF = ad+Bd2 10: KIB - Empirical d- dose of Particle Lethally :-Minimum : 255B + IDSB 2 Twists of DNA can be

what for Turnor all

~ 1 11 Avaluate at Philaded & Chemical Yield - 41 - The yield of clustered Damage (2) un aDNA Different Experiments show The ace-41 Exponential Rein. IBT + Givos Excellent Dose Localizati ¿ Empiracal Determinatios: Jield of clustered damage T as Dose of Particle! o. The = e-41 Jun Antereure ( Additional) Cell Repair MSA Analysis John IBT IBT Under Aerobic
Hypoxia Conclusion

(Nitrogen only) (Oxygen Present) Oxygen changes the Dynamics of chemical Interactions Molecular Repour 80 Damage Fixation

OER - Oxygen Enhancement Ratio.

Dose delivered under hypoxic to that undurarily

Dose derobl

Dose Hypoxic : New TTS Eqn Taking into account survival  $TTs' = e^{-41} + \frac{\infty}{2} \times \frac{4}{4} \times \frac{4}{4} = \frac{4}{4}$   $= e^{-1(1-x)41}$ X + Function of Probability of Repair Tis Deviation with Highers

X - Functional dependences on X, & Xo
They are out of some of Paper
Directly Used un the Paper

: TT s' = exp [-1(1-x0)41-x1412]

This the Basic Overview when Plotted on Log Scale. the Graph Turns out tob

TTS TTS

TTS

Dose (014)



= The Ng ANZ

## Diffusion & Travel

Effect of Reache species formed near ion paths strongly depends on their transport

Shock waves Joh Longer Propogation.

Estimale 900 Ker L'ET Bragg > Peak > Path us Independent from one Also each Ion's another

$$N_{h(n)} = \begin{cases} N_h & n \leq R_h \\ 0 & n > R_h \end{cases}$$

Uniformly Distributed.

Value 5 to 10mm as radius

No Hypoxic = 0.04.

NA Environ (Aerobic) = 0.08.

Average tethal pesions: Bo

E

i - Number of ions traverse the cell Nucless on awage.

: There us also dependere on Dose & LET

: For an R.V. of dose we get yield for Each value of Dose

Yield & Survival & dose CLOS!

Thus gives a Possibility that LOS &

MSA can be commented
Replacing the value.

$$\frac{10}{16} \frac{\text{Se}}{\text{Se}} = \frac{10}{16} \frac{\text{Se}}{\text{Se}} =$$

For Yi > Xo > X, & C.V. Surpassed

Also tells us aboit Deviation from semi-togarithy