

Nomenclatura. Oufmica

NOMENCLATURA DE QUIMICA INORGÁNICA

(Adaptado a las normas IUPAC 1990)

1 La tabla periódica

La tabla periódica se divide en grupos que se numeran de la forma recogida en la **tabla 1**. Opcionalmente se pueden usar las letras s, p, d y f para distinguir los diferentes bloques de elementos.

Se admiten los siguientes nombres colectivos para grupos de átomos: alcalinos (grupo 1, salvo H); alcalino-térreos (2, salvo Be y Mg); lantánidos y actínidos (3); calcógenos (16); halógenos (17); gases nobles (18); elementos de los grupos principales (1, 2, y 13 a 18); elementos de transición (3-11).

2 Electronegatividad

Es la medida del poder de un átomo o de un grupo de átomos para atraer electrones. La ordenación por electronegatividad de los átomos con fines de nomenclatura y formulación se recoge en la **tabla 2**.

3 Número de oxidación

El número o estado de oxidación de un átomo en una entidad molecular es un número positivo o negativo que representa la carga que quedaría en el átomo dado si los pares electrónicos de cada enlace que forma se asignan al miembro más electronegativo del par de enlace. Convencionalmente se supone que:

- a) El número de oxidación de un ión simple coincide con su carga.
- b) En un elemento, el número de oxidación de los átomos es cero.
- c) La suma de los números de oxidación de los átomos que constituyen un compuesto, multiplicados por los correspondientes subíndices, es cero.
- d) El número de oxidación del hidrógeno es I cuando se combina con elementos no metálicos y –I con cuando se combina con elementos metálicos.
- e) El número de oxidación del oxígeno es –II, salvo en peróxidos que es –I y en hiperóxidos que es –1/2. Si mediante estas reglas se obtienen números de oxidación "extraños", puede que se trate de un peróxido, de un hiperóxido, o de un derivado *tio*. También es posible que se trate de un compuesto con átomos en dos estados de oxidación distintos (por ejemplo, $Fe_3O_4 = Fe^{II}OFe^{III}_2O_3$).

4 Nombres de los átomos

En la **tabla 3** se dan los nombres y símbolos de los átomos. El nombre de los átomos se escribe con minúscula. Nótese que el W se denomina en castellano *wolframio*, aunque la literatura inglesa y la IUPAC utilizan *tungsten*. La IUPAC ha establecido un nombre sistemático y un símbolo de tres letras para los átomos con Z > 100 que no tengan nombre aprobado.

0 = nil 1 = un 2 = bi 3 = tri 4 = cuad (quad) 5 = pent 6 = hex 7 = sept 8 = oct 9 = ennPor ejemplo, el átomo 104 tiene como símbolo Unq y se nombra Unnilcuadio.

El símbolo de un átomo puede acompañarse de información complementaria, tal como se muestra:

número másico carga iónica número atómico número de átomos

Los **isótopos** de un átomo se distinguen añadiendo el número másico al nombre: ¹⁸O se nombra oxígeno–18. Los isótopos del hidrógeno son los únicos que poseen un nombre especial: protio (hidrógeno–1), deuterio (hidrógeno–2) y tritio (hidrógeno–3), que puede usarse en sus respectivos compuestos.

Para nombrar los compuestos de un elemento, se utiliza la raiz del nombre del átomo excepto para los casos señalados con † en la **tabla 3**.

5 Tipos de fórmula

Fórmula empírica.La fórmula empírica se forma por la yuxtaposición de los símbolos atómicos conlos apropiados subíndices para dar la expresión de la composición estequiométrica del compuesto en cuestión.

Fórmula molecular. La fórmula molecular de un compuesto formado por moléculas discretas, es aquella que concuerda con la masa molecular relativa.

Fórmula estructural. La fórmula estructural indica la secuencia y el ordenamiento espacial de los átomos en una molécula.

El uso de la fórmula empírica o de la fórmula molecular se basa en los siguientes criterios:

- Para sustancias que no contienen moléculas discretas (redes iónicas, metálicas, polímeros, etc.) se emplea la fórmula empírica: NaCl, Cu...
- Para las sustancias con moléculas de masa molecular relativa variable con la temperatura u otras condiciones se emplea la fórmula empírica (s en lugar de s₈, p en lugar de p₄).
- Para las sustancias formadas por moléculas discretas se emplea la fórmula molecular: Cl2, Hg2Cl2.

6 Sustancias elementales

Son las sustancias formadas por un sólo elemento.

 Las sustancias de fórmula molecular definida se nombran añadiendo el prefijo numérico apropiado (tabla 4) al nombre del átomo.

Gases monoatómicos: Xe, Kr, ... xenon, criptón, ...

H hidrógeno atómico* o monohidrógeno

 $Gases \ diat\'omicos: \qquad {\tt Cl_2, Br_2, N_2} \qquad {\tt dicloro, dibromo, dinitr\'ogeno, ...}$

H₂ hidrógeno (molecular)* o dihidrógeno

Sólidos discretos: P₄ fósforo blanco* o tetrafósforo

*Nombre vulgar.

• Las sustancias de **fórmula molecular indefinida o infinita** se nombran como el átomo.

Sólidos no discretos: Zn_x o Zn cinc (metal).

7 Principales sistemas de nomenclatura inorgánica para sustancias compuestas

a) *nomenclatura binaria* (muy adecuada para sales y sustancias simples):

NaCl cloruro de sodio $SiCl_4$ tetracloruro de silicio

b) *nomenclatura de coordinación* (para compuestos formados por "coordinación" de ligandos en torno de un átomo central):

c) *nomenclatura sustitutiva*. Procedente de la química orgánica, es muy adecuada paracompuestos moleculares del hidrógeno con boro y con los elementos de los grupos **14** a **16**. Para sus derivados, se toma como base el nombre sistemático del hidruro acabado en –ano (**tabla 5**).

8 Nombres de los iones simples

Nombres de los aniones. El nombre de un anión se forma siguiendo las siguientes reglas:

a) para grupos homoatómicos, se añade a la raiz del nombre del átomo la terminación –uro y, si fuera necesario, se coloca un prefijo multiplicativo y se añade la carga iónica entre paréntesis.

$$S^{2-}$$
 sulfuro S_2^{2-} disulfuro(2-)

En la **tabla 6** se incluyen algunos ejemplos, además de las excepciones a esta regla.

b) para grupos heteroatómicos, el nombre sistemático acaba en -ato (ver puntos 10 y 11.4.), aunque excepcionalmente acaba en -ito para en el nombre vulgar de algunos oxoaniones. La **tabla 7** incluye los nombres de iones heteroatómicos que no acaban ni en -ato ni en -ito.

$$SO_4^{2-}$$
 sulfato SO_3^{2-} sulfito OH^- hidróxido

Nombres de los cationes. El nombre de un catión se forma siguiendo las siguientes reglas:

a) El nombre de un catión formado por un sólo átomo es el mismo que el del átomo, añadiendo entre paréntesis después del nombre la carga apropiada con el signo más o el estado de oxidación.

$$Na^{+}$$
 ión sodio(1+) o ión sodio(I)* Cr^{3+} catión cromo(3+)

*La carga o el estado de oxidación se pueden omitir cuando no hay ambigüedad.

b) Los cationes de la **tabla 8** tienen nombres que terminan en -onio. Se pueden considerar derivados de los hidruros neutros de la **tabla 5** por adición de un H⁺.

$$\mathtt{NH}_3$$
 amoníaco \mathtt{NH}_4^+ amonic

- c) Los cationes de la **tabla 9** tienen nombres que terminan en –ilo. Su nombre procede del nombre vulgar de los oxoácidos correspondientes, tal como veremos más tarde.
- d) El nombre de cationes menos simples se deduce de las reglas sistemáticas dadas en el punto 10.

9 Nomenclatura binaria

Se aplica sobretodo a sustancias binarias, que son las formadas por dos clases de elementos, independientemente del número de átomos de cada clase: NaCl, N_2O_4 , $CaBr_2$.

Fórmula. Primero se escribe el componente electropositivo seguido del componente electronegativo. El orden de electronegatividad, a efectos de nomenclatura, se da en la **tabla 2**.

NaCl
$$Ca_3P_2$$
 Fe_3O_4 Sic

Nombre. El nombre se construye de la siguiente manera:

[Nombre del componente más electronegativo] de [Nombre del componente más electropositivo]

El nombre del componente más electronegativo es el que tendría si fuera un anión, mientras que el del componente más electropositivo es el que tendría si fuera un catión (ver punto 8).

Proporciones. Las proporciones de los distintos átomos o grupos de átomos se indican en el nombre por alguno de los siguientes métodos:

a) Solamente para sustancias iónicas (elementos situados en los extremos de la tabla periódica):

Carga del catión entre paréntesis (sistema de Evans-Basset):

b) Preferentemente para sustancias muy polares (metal/no metal):

Estado de oxidación del componente más electropositivo entre paréntesis (sistema de Stock):

c) Preferentemente para sustancias poco polares (no metal/no metal)

Numerales griegos.

$$N_2O_4$$
 tetraóxido de dinitrógeno

Observaciones. • No usar nomenclaturas no sistemáticas del tipo -oso, -ico o anhídrido.

• Cuidado con peróxidos e hiperóxidos.

$${\rm Na_2O_2}$$
 peróxido de sodio ${\rm NaO_2}$ hiperóxido de sodio

• Binarios de hidrógeno: Notar la diferencia entre

```
HCl(gas) cloruro de hidrógeno
```

HCl(acuoso) ácido clorhídrico O disolución acuosa de cloruro de hidrógeno

• Para los hidruros de los grupos 13-16, existen los nombres alternativos dados en la tabla 5.

Sustancias pseudobinarias. Son sustancias formadas por más de dos clases de elementos, pero que se pueden nombrar como sustancias binarias. El componente más electronegativo puede ser cualquiera de los de la **tabla 7** y el componente más electronegativo puede ser cualquiera de los de las **tablas 8, 9** y **10**.

Los grupos de las **tablas 9 y 10** tiene nombres que terminan en -ilo, que proceden del nombre vulgar del oxoácido correspondiente (ver punto 10.4). Son agrupaciones que aparecen repetidamente en compuestos diferentes y que no siempre existen libres (el nombre *radical* se reserva para los que existen libres). La carga es la que tendrían si fueran iones, pero sólo los de la **tabla 9** existen como tales iones.

 ${\rm NaNH}_2$ amiduro de sodio ${\rm NH}_4{\rm Cl}$ cloruro de amonio ${\rm SOCl}_2$ cloruro de tionilo

10 Nomenclatura de coordinación

Para sustancias menos simples se aplica la nomenclatura sistemática desarrollada inicialmente para *compuestos de coordinación* o *complejos*, aunque en ocasiones se conservan nombres no sistemáticos. La parte compleja de una sustancia puede ser catiónica, aniónica o neutra.

Fórmula. La fórmula de la parte compleja se escribe siempre de la misma forma, independientemente de si es catiónica, aniónica o neutra:

[Átomo central(orden alfabético)|Ligandos aniónicos (orden alfabético)|Ligandos neutros (orden alfabético] Ejemplos:

```
[Fe(CN)_6]^{3-} [PtCl_4(NH_3)_2] [Al(OH)(H_2O)_5]^{2+} [PtBrCl(NO_2)(NH_3)]^{-}
```

La parte compleja se escribe siempre entre corchetes. Los paréntesis, corchetes y llaves se usan en las fórmulas con las siguientes prioridades: [()], [{()}], [{{[()]}}],...

La fórmula de algunos ligandos se puede representar mediante una abreviatura (tabla 11):

$$[Co(en)_3]^{3+}$$
 en = etilenodiamina = $NH_2-CH_2-CH_2-NH_2$

Nombre. a) **Un complejo neutro** se nombra de la siguiente forma

[Nombres de los ligandos por orden alfabético|Nombre del átomo central (orden alfabético si varios)]

El número de elementos de cada clase se indica como mono, di, tri, tetra,... en primera instancia y bis, tris, tetraquis (tetrakis),... cuando los anteriores ya hayan sido utilizados o haya posibilidad de error (tabla 4).

Los ligandos no cambian su nombre con respecto a los grupos libres, excepto los de las **tablas** 12 (ligandos aniónicos) y 13 (ligandos neutros):

```
haluro \rightarrow halo \acute{o}xido \rightarrow oxo
```

El estado de oxidación del átomo central se indica por el sistema de *Stock*. Ejemplo:

```
[NiCl_2(H_2O)_4] tetraaquodicloroniquel(II)
```

Los paréntesis, corchetes y llaves se usan en los nombres con las siguientes prioridades: {{{[()]}}}.

b) Un **complejo catiónico** se nombra de la misma forma que uno neutro. La carga se puede indicar tanto por el sistema de *Stock* en el que se indica el estado de oxidación del átomo central entre paréntesis, como por el sistema de *Evans-Basset*, en el que se indica la carga del ión.

Por ejemplo:

$$[Co(NH_3)_6]^{3+}$$
 hexaaminocobalto(III) o hexaaminocobalto(3+)

c) Un **complejo aniónico** se nombra de la misma forma que uno catiónico, pero añadiendo la terminación -ato a la raíz del nombre del átomo central.

Por ejemplo:

```
[Fe(CN)_{6}]^{3-} hexacianoferrato(III) o hexacianoferrato(3-)
```

[Cationes (por orden alfabético, si hay varios)][Aniones(por orden alfabético, si hay varios)] Una sustancia iónica se nombra:

[Nombres de los aniones (orden alfabético)] de [Nombres de los cationes (orden alfabético)]. Si hay varios aniones o cationes, se nombran por orden alfabético, separándolos con un espacio.

```
\label{eq:localization} \begin{array}{lll} \operatorname{Na_3[Fe(CN)_6]} & \operatorname{hexacianoferrato(III)} \ \operatorname{de} \ \operatorname{sodio} \\ [\operatorname{Co(NH_3)_6}]\operatorname{Cl_3} & \operatorname{cloruro} \ \operatorname{de} \ \operatorname{hexaaminocobalto(III)} \\ [\operatorname{Co(NH_3)_6}]\operatorname{[Fe(CN)_6]} & \operatorname{hexacianoferrato(III)} \ \operatorname{de} \ \operatorname{hexaaminocobalto(III)} \\ [\operatorname{Co(NH_3)_6}]\operatorname{ClSO_4} & \operatorname{cloruro} \ \operatorname{sulfato} \ \operatorname{de} \ \operatorname{hexaaminocobalto(III)} \\ \end{array}
```

11 Estudio de compuestos por clases.

11.1 Ácidos binarios y pseudobinarios

Se emplea la nomenclatura binaria (punto 9).

HCl cloruro de hidrógeno HCN cianuro de hidrógeno

11.2 Ácidos derivados de aniones poliatómicos sin O ni S

Se debe emplear exclusivamente la nomenclatura sistemática.

HAuCl₄ tetracloroaurato(1-) de hidrógeno

11.3 Oxoácidos

 $\emph{F\'ormula}$. La fórmula se escribe $H_aX_bH_cO_d$ donde H_a son hidrógenos ácidos, y H_c son hidruros.

H hidruro

HO-P-O PHO(OH)₂
$$H_2PHO_3$$
 ácido fosfónico OH hidrógeno ácido

Nombre. Los nombres vulgares y la nomenclatura ácida (ver ejemplo) sólo deben emplearse para los ácidos de la **tabla 14**. Los nombres vulgares no siguen una regla fija, por lo que es mejor aprendérselos. La **tabla 15** recoge nombres vulgares que actualmente ya no son aceptados por la IUPAC pero que se usan todavía frecuentemente.

Nomenclatura_	<u>H₂SO₄</u>	<u>н₂so₃</u>
Sistemática	tetraoxosulfato(VI) de hidrógeno	trioxosulfato(IV) de hidrógeno
Vulgar	ácido sulfúrico	ácido sulfuroso
Ácida	ácido tetraoxosulfúrico(VI)	ácido trioxosulfúrico(IV)

11.4 Derivados de los oxoácidos

Por sustitución de O por O_2 , S, Se, Te, etc. o por sustitución parcial de OH por F, Cl, Br, etc. Se utiliza la nomenclatura sistemática de complejos de coordinación.

```
HSO<sub>3</sub>Cl clorotrioxosulfato(VI) de hidrógeno
```

Es posible derivar el nombre del ácido a partir del nombre vulgar del oxoácido correspondiente anteponiendo el nombre del sustituyente, aunque ésto sólo está admitido para fósforo y arsénico.

```
H_3PO_3S ácido tiofosfórico trioxotiofosfato(V) de hidrógeno
```

Por sustitución total de OH por F, Cl, Br, etc...

a) En algunos casos, el compuesto resultante es uno de los descritos en compuestos pseudobinarios y que contienen grupos de la **tabla 10**, por lo que se puede emplear la nomenclatura allí expuesta. Alternativamente, se puede usar la nomenclatura sistemática de coordinación.

```
NO_2F Fluoruro de nitrilo fluorodioxonitrógeno UO_2Cl_2 cloruro de uranilo(VI) diclorodioxouranio(VI)
```

Puede observarse que el nombre de muchos de los grupos de la **tabla 10** tiene su origen en el nombre vulgar del ácido correspondiente cambiando

```
-ico por -ilo H<sub>2</sub>CO<sub>3</sub> ácido carbónico CO carbonilo
```

```
-oso por -osilo HNO2 ácido nitroso NO nitrosilo
```

b) Cuando el compuesto está basado en un metal de transición, se puede nombrar como un compuesto de coordinación (ver punto 10) o como una sal doble (ver punto 11.5).

```
\begin{array}{lll} {\rm MoCl}_2{\rm O}_2 & {\rm dicloruro~di\acute{o}xido~de~molibdeno(VI)} & {\rm diclorodioxomolibdeno(VI)} \\ {\rm UCl}_2{\rm O}_2 & {\rm dicloruro~di\acute{o}xido~de~uranio(VI)} & {\rm diclorodioxouranio(VI)} \end{array}
```

Aniones procedentes de la total eliminación de los hidrógenos ácidos. El nombre del anión puede ser el sistemático (acabado siempre en -ato) o, si el ácido correspondiente tiene un nombre vulgar, el derivado de dicho nombre vulgar cambiando -ico por -ato y -oso por -ito.

```
\mathrm{NO}_{2}^{-} anión nitrito anión dioxonitrato(III)
```

Aniones procedentes de la parcial eliminación de los hidrógenos ácidos. Se antepone el prefijo hidrogeno-, con el numeral correspondiente, delante del nombre del anión, considerando al hidrógeno como parte de éste.

```
{\rm HCO_3}^- anión hidrogenocarbonato anión hidrogenotrioxocarbonato(IV)
```

11.5 Sales

Una sal es un compuesto químico que consiste en una combinación de cationes y aniones (sin embargo, si el catión es un hidrógeno ácido, el compuesto se llama normalmente ácido).

Sales simples. Cuando sólo hay presente una clase de catión y una clase de anión, se usa la nomenclatura para sustancias binarias.

```
NaCl cloruro de sodio Na_2SO_4 sulfato de sodio
```

Sales ácidas. Son sales en las que hay además del hidrógeno ácido hay otro catión. El hidrógeno se considera en tales casos parte del anión y se señala con el prefijo hidrogeno-.

Obsérvese que con fines de nomenclatura, los hidrógenos ácidos se consideran cationes cuando no hay otros cationes, pero parte del anión cuando hay otros cationes.

```
H<sub>2</sub>SO<sub>4</sub> tetraoxosulfato(VI) de hidrógeno H<sub>2</sub>S sulfuro de hidrógeno NaHSO<sub>4</sub> hidrogenotetraoxosulfato(VI) de sodio NaHS hidrogenosulfuro de sodio Sales dobles, triples, etc. Se nombran como las sales simples, pero ordenando alfabéticamente los cationes o aniones. Aveces, el orden de cationes o aniones en la fórmula y el nombre puede ser diferente.
```

```
Ca_5F(PO_4)_3 fluoruro tris(fosfato) de calcio
```

En las sales que contienen aniones óxido o hidróxido, éstos pueden nombrarse alternativamente colocando el prefijo oxi- o hidroxi-, respectivamente, delante del nombre del anión.

```
{
m WCl}_2{
m O}_2 dicloruro dióxido de wolframio(VI) dioxidicloruro de wolframio(VI) MgCl(OH) cloruro hidróxido de magnesio hidroxicloruro de magnesio
```

11.6 Compuestos de coordinación (complejos)

Para estos compuestos, se emplea únicamente la nomenclatura sistemática.

```
\begin{tabular}{ll} K[CrF_4O] & tetrafluorooxocromato(V) & de potasio \\ Na[B(NO_3)_4] & tetranitratoborato(III) & de sodio \\ [CuCl_2(NH_3)_2] & bis(amino)diclorocobre(II) \\ [Pt(NH_3)_4][PtCl_4] & tetracloroplatinato(II) & de tetraaminoplatino(II) \\ [Zn(H_2O)_6][SO_4] & sulfato & hexaaquocinc(II) \\ \end{tabular}
```

11.7 Compuestos de adición

Este término incluye una gran variedad de complejos y de compuestos de red. El método siguiente se aplica muy bien a compuestos de estructura incierta. En la fórmula, cada componente se separa mediante un "·" y las proporciones se indican mediante un número arábigo delante de cada componente. El nombre se forma uniendo los nombres de los compuestos individuales mediante un guión largo "—", e indicando al final las

proporciones de cada especie de la forma que se muestra en el ejemplo siguiente:

Las especies se citan en orden de número creciente (primero las menos numerosas), y, si aparecen en iguales números, por orden alfabético del primer símbolo de la fórmula. Sin embargo, el agua o los derivados del boro se colocan tradicionalmente al final.

Bibliografía

- 1 W. R. Peterson, "Formulación y nomenclatura de química inorgánica", Edunsa, Barcelona, 5ª edición, 1983, 158 páginas, ISBN 84–85257–04–9.
- 2 IUPAC, "Nomenclature of inorganic chemistry", Blacwell Scientific Publications, Oxford, **1990**, 289 páginas, ISBN 0-632-02494-1.
- 3 B. P. Block, W. H. Powell, W. C. Fernelius, "Inorganic chemical nomenclature", American Chemical Society, Washington, **1990**, 210 páginas, ISBN 0-8412-1697-5.
- 4 Real Academia de Ciencias Exactas, Físicas y Naturales, "Vocabulario Científico y Técnico", Espasa Calpe, Madrid, **1990**, 751 páginas, ISBN 84–239–5987–2.

TABLAS DE NOMENCLATURA INORGANICA

Tabla 1: Numeración de las dieciocho columnas de una Tabla Periódica convencional en su forma larga.

1 IA IA	2 IIA IIA	3 IIIA IIIB	4 IVA IVB	5 VA VB	6 VIA VIB	7 VIIA VIIB	8	9 VIIIA VIIIB	10	11 IB IB		13 IIIB IIIA	14 IVB IVA	15 VB VA	16 VIB VIA	17 VIIB VIIA	18 VIIIB VIIIA	IUPAC 1988 IUPAC 1970 Deming 1923
1 H																	2 He	1
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne	2
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	3
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu		31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	4
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe	5
55 Cs	56 Ba	57-71 La-Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn	6
87 Fr	88 Ra	89-103 Ac-Lr	104 Db	105 Jl	106 Rf	107 Bh	108 Hn	109 Mt			, <u>J</u>							7
		5	7 :	58 5	59 (60 6	61 6	62 6	3 0	64	65	66	67 6	88 6	69	70 7	71	6
		8 A	9 9	90 9	91 9	92 9	93 9	94 9	95	3d 96 Cm	97	98	99 1	00 1	01 1	02 1	_u 03 Lr	7

Tabla 2: Orden de electronegatividad aplicado en nomenclatura inorgánica.

Tabla 3: Nombres, símbolos y números atómicos de los átomos [elementos]

	G. 1 1	Número		G. 1 1	Número
Nombre	Símbolo	atómico	Nombre	Símbolo	atómico
Actinio	Ac	89	Lantano	La	57
Aluminio	Al	13	Laurencio (Unniltrio)	Lr	103
Americio	Am	95	Litio	Li	3
Antimonio ($Stibium^{\dagger}$)	Sb	51	Lutecio	Lu	71
Argon	Ar	180	Magnesio	Mg	12
Arsénico	As	33	Manganeso	Mn	25
Astato	At	85	Meitnerio	Mt	109
Azufre (Sulfur, † Theion ††)	S	16	Mendelevio	Md	101
Bario	Ba	56	Mercurio		80
Berilio	Be	4	Molibdeno	Hg Mo	42
Berquelio	Bk	97			
	Bi		Neodimio	Nd	60
Bismuto		83	Neón	Ne	10
Bohrio	Bh	107	Neptunio	Np	93
Boro	В	5	Niobio	Nb	41
Bromo	Br	35	Níquel	Ni	28
Cadmio	Cd	48	Nitrógeno	N	7
Calcio	Ca	20	Nobelio	No	102
Californio	Cf	98	Oro $(Aurum^{\dagger})$	Au	79
Carbono	C	6	Osmio	Os	76
Cerio	Ce	58	Oxígeno	0	8
Cesio	Cs	55	Paladio	Pd	46
Cinc	Zn	30	Plata $(Argentum^{\dagger})$	Ag	47
Circonio	Zr	40	Platino	Pt Pt	78
Cloro	Cl	17	Plomo (<i>Plumbum</i> [†])	Pb	82
Cobalto	Co	27	Plutonio	Pu	94
Cobre (Cuprum [†])	Cu	29	Polonio		84
Criptón	Kr	36		Po	
	Cr	24	Potasio	K	19 50
Cromo	Cr Cm		Praseodimio	Pr	59
Curio		96	Promecio	Pm	61
Disprosio	Dy	66	Protactinio	Pa	91
Dubnio	Db	104	Radio	Ra	88
Einstenio	Es	99	Radón †††	Rn	86
Erbio	Er	68	Renio !!!	Re	75
Escandio	Sc	21	Rodio	Rh	45
Estaño (<i>Stannum</i> [†])	Sn	506	Rubidio ^{†††}	Rb	37
Estroncio	Sr	38	Rutenio ^{†††}	Ru	44
Europio	Eu	63	Rutherfordio	Rf	106
Fermio	Fm	100	Samario	Sm	62
Flúor	F	9	Selenio	Se	34
Fósforo	P	15	Silicio	Si	14
Francio	Fr	87	Sodio	Na	11
Gadolinio	Gd	64	Talio	Tl	81
Galio	Ga	31	Tántalo	Ta	
Germanio	Ge	32			73
Hafnio	Hf	72	Tecnecio	Tc	43
			Teluro	Te	52
Hahnio	Hn	108	Terbio	Tb	65
Helio	He	29	Titanio	Ti	22
Hidrógeno*	H	1	Torio	Th	90
Hierro (Ferrum [†])	Fe	26	Tulio	Tm	69
Holmio	Но	67	Uranio	U	92
Indio	In	49	Vanadio	V	23
Iridio	Ir	77	Wolframio (Tungsteno)	W	74
Iterbio	Yb	70	Xenon	Xe	54
Itrio	Y	39	Yodo (Iodo)	I	53

^{*} Los isótopos del hidrógeno ¹H, ²H y ³H se llaman protio, deuterio y tritio, respectivamente. Para deuterio y tritio, se pueden usar los símbolos D y T, aunque son preferibles ²H y ³H.

† La raiz para nombrar los compuestos de estos elementos procede del nombre latino indicado.

De este nombre griego procede la raiz 'tio' para azufre.

^{†††} La raiz para nombrar los compuestos dobla la letra "r" inicial si se antepone un prefijo acabado en vocal.

Tabla 4: Prefijos numerales.

1	mono	11	undeca	21	henicosa	60	hexaconta
2	di (bis)	12	dodeca	22	docosa	70	heptaconta
3	tri (tris)	13	trideca	23	tricosa	80	octaconta
4	tetra (tetrakis)	14	tetradeca	30	triaconta	90	nonaconta
5	penta (pentakis)	15	pentadeca	31	hentriaconta	100	hecta
6	hexa (hexakis)	16	hexadeca	35	pentatriaconta		
7	hepta (heptakis)	17	heptadeca	40	tetraconta		
8	octa (octakis)	18	octadeca	48	octatetraconta		
9	nona (nonakis)	19	nonadeca	50	pentaconta		
10	deca (decakis)	20	icosa	52	dopentaconta		

Tabla 5: Nombres sistemáticos para compuestos binarios de hidrógeno (acabados en -ano).

BH_3	borano	NH_3	azano, amoníaco*	H_2O	agua*,**
CH_4	metano	PH_3	fosfano, fosfina*	H_2S	sulfano
SiH_4	silano	AsH_3	arsano, arsina*	H_2Se	selano
GeH_4	germano	SbH_3	estibano, estibina*	H_2 Te	telano
SnH_4	estannano	BiH_3	bismutano	H_2Po	polano
PbH_4	plumbano				
B_2H_6	diborano	N_2H_4	diazano, hidrazina*	H_2S_n	polisulfano (<i>n</i> =2)
Si_2H_6	disilano	N_2H_2	diazeno, diimida*	H_2S_5	pentasulfano
Si_3H_8	trisilano	P_2H_4	difosfano	H_2Se_2	diselano
Sn_2H_6	diestannano	As_2H_4	diarsano	H_2Te_2	ditelano

^{*} Nombres no sistemáticos.

Tabla 6: Nombres de aniones monoatómicos y homoatómicos incluyendo las anomalías más importantes.

H^-	hidruro	O^{2-}	óxido	N ³ -	nitruro
$^{1}H^{-}$	proturo	O_2^{2-}	dióxido(2–),* peróxido	N_{3}^{-}	trinitruro(1–),* azida
² H ⁻ , D ⁻	deuteruro	O_2^-	dióxido(1-),* hiperóxido	P ³ -	fosfuro
F-	fluoruro	O_3^-	trióxido(1-),* ozónido	As^{3-}	arseniuro
Cl-	cloruro	S ² -	sulfuro	Sb^{3-}	antimoniuro
Br ⁻	bromuro	S_2^{2-}	disulfuro(2–)	C ⁴ –	carburo
I-	yoduro	Se^{2-}	seleniuro	C_2^{2-}	dicarburo(2-),* acetiluro
I_3^-	triyoduro(1–)	Te^{2-}	telururo	Si ^{4–}	siliciuro
-				B ³ -	boruro

^{*} Nombre sistemático.

Tabla 7: Nombres de algunos aniones heteropoliatómicos no acabados en -ato.

OH-	hidróxido	NH ²⁻	imiduro
HO_2^-	hidrogenodióxido(1-)	NHOH-	hidroxia miduro
HS-	hidrogenosulfuro(1-)	$N_{2}H_{3}^{-}$	hidrazida
NH_2^-	amiduro	CN-	cianuro

^{**} Nombre sistemático: oxidano.

Tabla 8: Nombres de algunos cationes heteropoliatómicos acabados en -onio (hidruros de no metal + catión hidrógeno).

$\mathrm{NH_4}^+$	amonio	H_3O^+	oxonio	H_2F^+	fluoronio
PH_4^+	fosfonio	H_3S^+	sulfonio	H_2Cl^+	cloronio
AsH_4^+	arsonio	H_3Se^+	selenonio	H_2Br^+	bromonio
SbH_4^+	estibonio			$\mathrm{H_2I^+}$	yodonio

Tabla 9: Nombres de algunos cationes heteropoliatómicos acabados en -ilo.

NO^+	nitrosilo	UO_2^+	uranilo(V)	SO^{2+}	sulfinilo o tionilo
NO_2^+	nitrilo o nitroilo	UO_2^{2+}	uranilo(VI)	SO_2^{2+}	sulfonilo o sulfurilo

Tabla 10: Nombres de algunos grupos y radicales derivados de ácidos oxoácidos.

Radical	Nombre y Carga (const	iderado como ión)	Radical Nombre y Carga (considerado como ión)				
НО	hidroxilo	1–	ClO	clorosilo	1+		
CO	carbonilo	2+	ClO_2	clorilo	1+		
CS	tiocarbonilo	2+	ClO_3	perclorilo	1+		
NO	nitrosilo	1+		(idem para otros halógenos)			
NO_2	nitrilo o nitroilo	1+	CrO_2	cromilo	2+		
PO	fosforilo	3+	UO_2	uranilo	2+		
PS	tiofosforilo	3+	NpO_2	neptunilo	2+		
SO	sulfinilo o tionilo	2+	PuO_2	plutonilo	2+		
SO_2	sulfonilo o sulfurilo	2+		(idem para otros ac	tínidos)		
S_2O_5	disulfurilo	2+					
SeO	seleninilo	2+					
SeO_2	selenonilo	2+					

Tabla 11: Representación de nombres de ligandos mediante abreviaturas.

Су	ciclohexil*	Me	metil*	en	etilenodiamina
Et	etil*	Ph	fenil*		

^{*} Al nombrar complejos, los radicales orgánicos que actúan como ligandos pierden la o final de la terminación –ilo.

Tabla 12: Nombres especiales para ligandos aniónicos.

F-	fluoro	O^{2-}	oxo*	S ²⁻	tio*
Cl-	cloro	O_2^{2-}	peroxo*	$\mathrm{NH_2^-}$	amido
Br	bromo	OH-	hidroxo*	NH^{2-}	imido
I-	yodo	HO_2^-	hidrogenoperoxo	CN-	ciano
H-	hidruro	CH ₂ O-	metoxo*		

 Tabla 13:
 Nombres de algunos ligandos neutros.

H_2O	aquo*	N_2	dinitrógeno	$(C_6H_5)_3P$	trifenilfosfina
NH_3	amino*	CH_3NH_2	metilamina	$(CH_3)_3P$	trimetilfosfina
CO	carbonil*	$(CH_3)_3N$	trimetilamina		
NO	nitrosil*	H ₂ N-CH ₂	-CH ₂ -NH ₂ etilenodia	mina	

^{*} Nombre diferente al que presenta el grupo libre

^{*} Tambi'en pueden usarse los nombres sistem'aticos: 'oxido, di'oxido(2-), hidr'oxido, metanolato, sulfuro.

Tabla 14: Nombres vulgares para ácidos oxoácidos.

H_3BO_3	ácido bórico	H_2SO_4	ácido sulfúrico
$(HBO_2)_n$	ácido metabórico	$H_2S_2O_7$	ácido disulfúrico
H_4SiO_4	ácido ortosilícico	$H_2S_2O_3$	ácido tiosulfúrico
$(H_2SiO_3)_n$	ácido metasilícico	$H_2S_2O_6$	ácido ditiónico
H_2CO_3	ácido carbónico	$H_2S_2O_4$	ácido ditionoso
HOCN	ácido ciánico	H_2SO_3	ácido sulfuroso
HONC	ácido fulmínico	H_2CrO_4	ácido crómico
HNCO	ácido isociánico*	$H_2Cr_2O_7$	ácido dicrómico
HNO_3	ácido nítrico	HClO ₄	ácido perclórico
HNO_2	ácido nitroso	HClO ₃	ácido clórico
HPH_2O_2	ácido fosfínico	HClO ₂	ácido cloroso
H_3PO_3	ácido fosforoso	HClO	ácido hipocloroso
H_2PHO_3	ácido fosfónico	H_5IO_6	ácido ortoperyódico
H_3PO_4	ácido ortofosfórico o fosfórico	HIO_4	ácido peryódico
$H_4P_2O_7$	ácido difosfórico	HIO_3	ácido yódico
$(HPO_3)_n$	ácido metafosfórico	$HMnO_4$	ácido permangánico
$H_4P_2O_6$	ácido hipofosfórico	H_2MnO_4	ácido mangánico
H_3AsO_4	ácido arsénico		
H_3AsO_3	ácido arsenioso		

^{*} No es un oxoácido

Tabla 15: Nombres vulgares para oxoácidos, y para peroxo– y tioderivados comunes, no recomendados ya por la IUPAC pero de uso todavía frecuente.

ácido peroxonítrico	H_2SeO_4	ácido selénico
ácido peroxonitroso	H_2SeO_3	ácido selenioso
ácido nitroxílico	H_6 Te O_6	ácido (orto)telúrico
ácido hiponitroso	$HBrO_3$	ácido brómico
ácido trifosfórico	HBrO_2	ácido bromoso
ácido peroxofosfórico	HBrO	ácido hipobromoso
ácido peroxodifosfórico	HIO	ácido hipoyodoso
ácido difosforoso o pirofosforoso	HTcO ₄	ácido pertecnécico
ácido peroxosulfúrico	H_2TcO_4	ácido tecnécico
ácido peroxodisulfúrico	$HReO_4$	ácido perrénico
ácido disulfuroso o pirosulfuroso	H_2ReO_4	ácido rénico
ácido tiosulfuroso		
	ácido peroxonitroso ácido nitroxílico ácido hiponitroso ácido trifosfórico ácido peroxofosfórico ácido peroxodifosfórico ácido peroxodifosfórico ácido difosforoso o pirofosforoso ácido peroxosulfúrico ácido peroxodisulfúrico ácido disulfuroso o pirosulfuroso	ácido peroxonitroso H_2SeO_3 ácido nitroxílico H_6TeO_6 ácido hiponitroso $HBrO_3$ ácido trifosfórico $HBrO_2$ ácido peroxofosfórico $HBrO$ ácido peroxodifosfórico HIO ácido difosforoso o pirofosforoso $HTcO_4$ ácido peroxodisulfúrico H_2TcO_4 ácido peroxodisulfúrico $HReO_4$ ácido disulfuroso o pirosulfuroso H_2ReO_4

EJERCICIOS

Nombra los compuestos:

- 1 Cu₂O
- $2 H_2S$
- 3 PH₃
- $4 \text{ Na}_2\text{O}_2$
- $5 \text{ Mg}(O_2)_2$
- 6 Fe(OH)₃
- 7 KHSO₄
- $8 \text{ As}_2\text{O}_3$
- 9 BaS₂O₃
- 10 Ca(NO₃)₂
- 11 NiI₂
- 12 Ni₂(CO₃)(OH)₂
- 13 CaHPO₄
- 14 Co(PH₂O₂)₂
- 15 [Cu(NH₃)₄]Cl₂
- $16 \text{ Na}_3[AlF_6]$
- 17 $[Zn(H_2O)_4]Cl_2$
- 18 $K_{\Delta}[Fe(CN)_{6}]$
- 19 K₃[Fe(CN)₆]
- 20 $[Fe(H_2O)_3(NH_3)_3]Cl_3$
- $21 H_2S_2O_5$
- $22 \text{ H}_2\text{S}_2\text{O}_6$
- 23 MgNa₂P₂O₆
- $24 \text{ K}_{2}\text{S}_{2}\text{O}_{8}$
- 25 Na₂S₂O₂
- 26 HI
- 27 BeH₂
- 28 IF₅
- 29 XeO₃
- $30 S_2Cl_2$
- 31 Cl₂O₃
- 32 B₂Cl₄
- $^{33} P_4 O_6$
- 34 SOF₂
- $35 \text{ Mg}_3\text{N}_2$
- 36 HIO₃
- 37 HMnO₄
- 38 NH₄(OH)
- 39 ReF₂O₂
- 40 Al₂(SO₃)₃
- 41 NOCL

SOLUCIONES

Nombres de los compuestos:

óxido de cobre(I)

sulfuro de hidrógeno

fosfina

peróxido de sodio

hiperóxido de magnesio

hidróxido de hierro(III)

hidrogenosulfato de potasio

trióxido de diarsénico

tiosulfato de bario

nitrato de calcio

yoduro de níquel(II)

carbonato dihidróxido de níquel(II)

hidrogenofosfato de calcio

fosfinato de cobalto(II)

cloruro de tetraaminocobre(II)

hexafluoroaluminato(III) de sodio

cloruro de tetraaquocinc(II)

hexacianoferrato(II) de potasio

hexacianoferrato(III) de potasio

cloruro de triaminotriaquohierro(III)

ácido disulfuroso o pentaoxodisulfato(IV) de hidrógeno

ácido ditiónico

hipofosfato de magnesio y sodio

hexaoxoperoxodisulfato(VI) de potasio

tiosulfito de sodio o dioxotiosulfato(IV) de sodio

yoduro de hidrógeno

hidruro de berilio

pentafluoruro de yodo

trióxido de xenon

dicloruro de diazufre

trióxido de dicloro

tetracloruro de diboro

hexaóxido de tetrafósforo

fluoruro de sulfinilo

nitruro de magnesio

ácido yódico

ácido permangánico

hidróxido de amonio

difluoruro dióxido de renio(VI)

sulfito de aluminio

cloruro de nitrosilo

Ļ		
	42	BaCrO ₄
	43	NaHPHO ₃
	44	NH ₄ BrO ₄
	45	KLiNaPO ₄
	46	$Na_2S_2O_3 \cdot 5H_2O$
	47	HCO ₃ F
	48	$Sc(HSO_4)_3$
	49	BaBrCl
	50	NH ₄ OCN
	51	WO_3
	52	$RhCl_3 \cdot 2H_2O$
	53	WF ₄ O
	54	$Pb(NO_3)(OH)$
	55	$CaH_2P_2O_7$
	56	$\mathrm{Hg}_2\mathrm{I}_2$
	57	NO_2F
	58	NaHS ₂ O ₅
	59	H_3PO_3S
	60	HSO ₃ Cl
	61	POCl ₃
	62	${\rm K_2[Fe(CN)_5(NO)]}$
	63	$Al_2[Pd(CN)_4]_3$
	64	$[Cu(NH_3)_4]SO_4$
	65	$\text{Li}_2[\text{Pt(CN)}_6]$
	66	$(NH_4)_2[IrCl_6]$
		$[PtCl(NH_3)_3][CuC$
	68	$[Ag(NH_3)_2]_3[Co(S)]$

64 [Cu(NH₃)₄]SO₄
65 Li₂[Pt(CN)₆]
66 (NH₄)₂[IrCl₆]
67 [PtCl(NH₃)₃][CuCl₃(NH₃)]
68 [Ag(NH₃)₂]₃[Co(SCN)₆]
69 Na₃[Ag(S₂O₃)₂]
70 [V(H₂O)₆]²⁺
71 K₂[CrCl₅O]
72 [Al(OH)(H₂O)₅]₂⁺
73 [CoN₃(NH₃)₅]SO₄

76 Na₂[HgBr₂O] 77 [CoCl(NCS)(NH₃)₄](NO₃) 78 Mg[IrCl₄(NH₃)]₂ 79 [Zn(H₂O)₆](SO₄) 80 K[Co(CN)(CO)₂(NO)]

74 $[Ru(HSO_3)_2(NH_3)_4]$

75 [Ni(CO)₂(PPh₃)₂]

81 [NiCl₂(H₂O)₂] 82 K₃[FeCl₆] 83 [ReCl(CO)₅] 84 Rb[AuCl₂(CN)₂] 85 (NH₄)₂[Fe(CN)₅(NO)] cromato de bario hidrogenofosfonato de sodio tetraoxobromato(VII) de amonio fosfato de litio potasio y sodio tiosulfato de sodio—agua(1/5)

fluorotrioxocarbonato(IV) de hidrógeno hidrogenosulfato de escandio(III) bromuro cloruro de bario

cianato de amonio trióxido de wolframio

cloruro de rodio(III)—agua(1/2) tetrafluoruro óxido de wolframio(VI)

hidroxinitrato de plomo dihidrogenodifosfato de calcio voduro de mercurio(I)

yoduro de mercurio(I) fluoruro de nitrilo

hidrogenopentaoxodisulfato(IV) de sodio

ácido tiofosfórico

clorotrioxosulfato(IV) de hidrógeno

cloruro de fosforilo

pentacianonitrosilferrato(III) de potasio tetracianopaladato(II) de aluminio sulfato de tetraaminocobre(II) hexacianoplatinato(IV) de litio hexacloroiridiato(IV) de amonio

aminotriclorocuprato(II) de triaminocloroplatino(II) hexakis(tiocianato)cobaltato(III) de diaminoplata(I)

bis(tiosulfato)argentato(I) de sodio

ión hexaaquovanadio(II)

pentaclorooxocromato(V) de potasio ión pentaaquohidroxoaluminio(III) sulfato de pentaaminoazidocobalto(III) tetraaminobis(hidrogenosulfito)rutenio(II) dicarbonilbis(trifenilfosfina)níquel(0) dibromooxomercuriato(II) de sodio

nitrato de tetraaminocloroisotiocianatocobalto(III)

aminotetracloroiridiato(III) de magnesio

sulfato de hexaaquocinc(II)

dicarbonilcianonitrosilcobaltato(0) de potasio

diaquodicloroníquel(II)

hexacloroferrato(III) de potasio pentacarbonilclororrenio(I)

dicianodicloroaurato(III) de rubidio pentacianonitrosilferrato(III) de amonio

Formula los siguientes compuestos:

Fórmulas de los compuestos:

or men too promote company	_ 0_1
1 óxido de sodio	Na ₂ O
2 peróxido de bario	$\overline{\mathrm{BaO}_2}$
3 óxido de aluminio	Al_2O_3
4 ozónido de sodio	NaO_3
5 trióxido de azufre	SO_3
6 pentaóxido de dibromo	$\mathrm{Br_2O_5}$
7 fluoruro de níquel(III)	NiF_3
8 sulfuro de plata	Ag_2S
9 cloruro de aluminio y potasio	$AlKCl_4$
10 hidruro de aluminio y litio	AlLiH ₄
11 nitruro de aluminio	AlN
12 azida de sodio	NaN ₃
13 hidroxiamiduro de amonio	NH ₄ (NHC

OH) 13

14 cloruro de sulfonilo SO₂Cl₂ 15 bromuro de tionilo SOBr₂ 16 alano AlH₃ 17 fosfina PH_3 18 ditelano H_2Te_2 19 hidrogenofosfonato de sodio NaHPHO₃

20 tiosulfato de potasio y sodio KNaS₂O₃ 21 isocianato de sodio **NaNCO**

22 cianofosfinahidruronitrosilplatino(II) $[Pt(CN)(H)(NO)(PH_3)]$

23 tetratioarseniato(V) de sodio $Na_3[AsS_4]$ 24 bromuro de diaminoplata $[Ag(NH_3)_2]Br$

[CoF(H₂O)₂(NH₃)₃]Cl₂ 25 cloruro de triaminodiaquofluorocobalto(III)

26 amoniaco NH_3 27 trióxido de dinitrógeno N_2O_3 MnS 28 sulfuro de manganeso(II) 29 trisulfuro de diboro B_2S_3 HI HNO_3

30 yoduro de hidrógeno 31 ácido nítrico 32 hidróxido de cromo(II) $Cr(OH)_2$ 33 fosfato de cobalto(III) $CoPO_4$ 34 dihidrogenofosfato de potasio KH_2PO_4 35 sulfato de calcio disodio $CaNa_2(SO_4)_2$ KLiNaPO₄ 36 fosfato de litio potasio y sodio 37 tetrakis(nitrato) sulfato de aluminio $Al_2(NO_3)_4(SO_4)$

38 oxicarbonato de plomo(IV) Pb(CO₃)O 39 cloruro hidróxido de magnesio MgCl(OH) 40 hidroxinitrato de plomo(II) $Pb(NO_3)(OH)$

41 ácido peroxofosfórico H_3PO_5 42 ácido tiosulfuroso $H_2S_2O_2$ 43 clorotrioxosulfato(VI) de hidrógeno HSO₃Cl

PSCl₃

 $[\mathrm{NiCl_2(H_2O)_2}]$

6		Nomenclatura Inorgánica	Quín
44	fluoruro de nitroilo	NO_2F	
45	hexacianovanadato(I) de calcio	$Ca_{5}[V(CN)_{6}]_{2}$	
46	hexacianoferrato(II) de amonio	$(NH_4)_4[Fe(CN)_6]$	
47	nitrato de tetraaminocadmio(II)	$[Cd(NH_3)_4](NO_3)$	2
48	sulfato de hexaaquocinc(II)	$[Zn(H_2O)_6]SO_4$	
49	bis(tiosulfato)argentato(I) de potasio	$K_3[Ag(S_2O_3)_2]$	
50	triaquotriclororrodio(III)	$[RhCl_3(H_2O)_3]$	
51	triaquobromodihidroxohierro(III)	$[FeBr(OH)_2(H_2O)]$	₃]
52	hexacarbonilcromo(0)	$[Cr(CO)_{6}]$	
53	hexakis(nitrato)toriato(IV) de berilio	$Be[Th(NO_3)_6]$	
54	tetrahidroxoosmiato(II) de amonio	$(NH_4)_2[Os(OH)_4]$	
55	tetracloroargentato(III) de sodio	Na[AgCl ₄]	
56	disulfuro(2–) de molibdeno	MoS_2	
57	pentacloruro de niobio	NbCl ₅	
58	tetraóxido de rutenio	RuO_4	
59	cloruro de tetraaquodiclorotitanio(III)	$[TiCl_2(H_2O)_4]Cl$	
60	tetrafluoruro de azufre	SF_4	
61	disulfuro de carbono	CS ₂	
62	cloruro de paladio(II)	$PdCl_2$	
63	dihidroxisulfato de hafnio(IV)	$Hf(OH)_2(SO_4)$	
64	tioarseniato de plata(I)	$Ag_3[AsO_3S]$	
65	óxido de hierro(II) y titanio(IV)	FeTiO ₃	
66	dibromobis(trifenilfosfina)cobre(II)	$[CuBr_2(PPh_3)_2]$	
67	tetraoxorreniato(VI) de rubidio	$Rb_2[ReO_4]$	
68	diperoxocromato(VI) de plata(I)	$Ag_2(CrO_6)$	
69	yoduro de pentaaminonitratocobalto(III	$[Co(NO_3)(NH_3)_5]$	I_2
70	triyoduro de sodio	NaI ₃	
71	carboniltetracianomanganato(I) de sodio	$Na_3[Mn(CN)_4(CO)]$))]
72	imiduro de bario	Ba(NH)	
73	nitruro de litio	Li ₃ N	
74	ditiocarbonato de estroncio	SrCOS ₂	
75	trióxido de niobio y sodio	$NaNbO_3$	
76	clorito de bario	$Ba[ClO_2]_2$	
77	tiosulfato de calcio	CaS_2O_3	
78	hidruro de calcio	CaH ₂	
79	carbonato de pentaaquohidroxocromo(I	II) $[Cr(OH)(H_2O)_5](OH)$	CO_3
80	tetracloropaladiato(II) de amonio	$(NH_4)_2[PdCl_4]$	
81	cloruro de tiofosforilo	PSC1 ₂	

81 cloruro de tiofosforilo

82 diaquodicloroniquel(II)

NOMENCLATURA DE QUÍMICA ORGÁNICA

(Adaptado a las normas IUPAC 1979)

Dependiendo de los grupos funcionales presentes y, por tanto, de su reactividad, las sustancias orgánicas se clasifican dentro de grandes grupos que afectan al nombre de la sustancia. Estos grupos son:

1 Hidrocarburos acíclicos lineales saturados

Los nombres se forman con un término numérico (penta, hexa, etc), seguido de la terminación -ano. Los primeros hidrocarburos (metano, etano, propano y butano) son excepciones. (*Ver punto 7* en "Guía para nombrar un compuesto orgánico", página 23). Ejemplo: CH₃-CH₂-CH₂-CH₂-CH₃ pentano.

Los radicales (producto de la pérdida de un hidrógeno) se nombran sustituyendo la terminación -ano por -ilo o por sólo -il cuando el radical es un sustituyente de una molécula.

$$\text{CH}_3$$
- radical metilo; CH_3 - CH_3 - CH_3 - CH_3 - CH_2 - CH_2 - CH_3

2 Hidrocarburos acíclicos ramificados

El nombre se forma anteponiendo las denominaciones de las cadenas laterales sustituyentes (radicales) al nombre de la cadena más larga (cadena principal) que exista en la fórmula. Delante del nombre de la cadena lateral se coloca el número localizador correspondiente. La cadena principal se numera de forma que se asignen los localizadores más bajos a las cadenas laterales.

$$\begin{array}{c} ^{\text{CH}_3} \\ \mid \\ ^{\text{CH}_3-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_3} \end{array} \qquad \text{2-metilhexano y no 5-metilhexano}$$

Si hay dos o más cadenas laterales diferentes, se citan en orden alfabético. La presencia de radicales

idénticos se indica mediante el prefijo multiplicador adecuado, di-, tri-, tetra-, penta-, hexa-, hepta-, octa-, nona-, deca-, undeca-, etc, o, en caso de que pueda haber confusión, bis-, tris-, tetrakis-, pentakis-, etc.

Ver en pág. 24 (puntos 4 y 5) las reglas completas para la elección y numeración de la cadena principal.

3 Hidrocarburos no saturados lineales

Se nombran reemplazando la terminación -ano por -eno, para los dobles enlaces, y por -ino para los triples enlaces.

 ${
m CH_2=CH-CH_3}$ propeno ${
m HC}\equiv{
m CH}$ etino ${
m 0}$ acetileno

Acetileno es un nombre vulgar o no sistemático. Ver en las páginas 23-30 la lista de nombres vulgares.

Si hay más de un doble o triple enlace, las terminaciones son -adieno (dos =), -atrieno (tres =), -adiino (dos \equiv), -atriino (tres \equiv), -enino (un = y un \equiv), -adienino (dos = y un \equiv), -enodiino (un = y dos \equiv), etc.

 $CH_2=C=CH_2$ propadieno

La cadena principal se elige según los siguientes criterios, aplicados en ese orden:

- a) debe contener el mayor número de enlaces múltiples,
- b) debe ser la más larga,
- c) debe contener más dobles enlaces.

La cadena se numera de forma que los enlaces múltiples tengan los localizadores más bajos, con preferencia para los enlaces dobles.

$$CH_3-CH_2-CH=CH_2$$
 1-buteno $CH_2=CH-C\equiv CH$ 1-buten-3-ino

Los radicales se nombran cambiando la terminación -o por -ilo. Los radicales se numeran con las mismas reglas que las cadenas principales, con la diferencia que el carbono 1 siempre es el que posee una valencia libre (*punto 5*, página 25).

 $CH \equiv C - CH_2 -$ 2-propinilo $CH_3 - CH = CH -$ 1-propenilo

4 Hidrocarburos monocíclicos

Los no sustituidos, se nombran anteponiendo el prefijo ciclo al nombre del hidrocarburo correspondiente. Las insaturaciones se indican con las terminaciones -eno e -ino. La numeración sigue las mismas reglas que para los hidrocarburos lineales. Los radicales se nombran de forma similar a los de los hidrocarburos lineales.

ciclobutano 1,3-ciclopentadieno 3-ciclopentenilo
$$H_2C \longrightarrow CH_2 \ H_2C \longrightarrow CH_2$$

5 Hidrocarburos aromáticos

Se caracterizan por la presencia de dobles enlaces conjugados. En la lista de nombres vulgares (página 29) se dan los nombres de los más característicos, así como de su sistema de numeración.

Los anillos bencénicos disustituidos pueden nombrarse como orto-, meta- y para-, en vez de 1,2-, 1,3- V 1,4-.

6 Hidrocarburos con parte cíclica y parte acíclica

Cuando en una molécula coexisten una parte cíclica y otra acíclica, se considera la parte lineal como sustituyente de la cíclica cuando sólo hay un ciclo con varias cadenas unidas a él, pero al revés cuando hay una cadena con varias cadenas laterales o ciclos unidos a ella.

1-butil-1,4,4-trimetilciclohexano

$$^{\mathrm{H_{3}C}}$$
 $^{\mathrm{CH_{2}-CH_{2}-CH_{2}-CH_{3}}}$ $^{\mathrm{CH_{3}-CH_{3}-CH_{3}-CH_{3}}}$

1-fenil-2,3-dimetil-1-hexeno

1,4-diciclohexil-2-metilbutano

Alternativamente, puede usarse el criterio de tamaño:

7 Derivados halogenados

Los halógenos unidos a carbono se consideran sustituyentes de la cadena principal y se les nombra mediante el prefijo fluoro-, cloro-, bromo- o yodo-:

CH₂Cl₂ diclorometano CH₃Cl clorometano CHCl₃ triclorometano O cloroformo Otra forma de nombrarlos es como haluros de alquilo (nomenclatura radicofuncional):

CH₃Cl cloruro de metilo

Cuando todos los átomos de hidrógeno (salvo los de los grupos funcionales) han sido sustituídos por átomos de un halógeno, se pueden emplear los prefijos perfluoro-, percloro-, etc.

 $CF_3(CF_2)_3CF_3$ perfluoropentano

8 Compuestos con otros grupos funcionales

Como norma general, si hay varios grupos funcionales distintos, primero debe elegirse el grupo principal. El grupo principal es el primero que aparezca en la lista recogida en el punto 1, página 24 (primero ácidos y derivados, luego aldehidos, cetonas, alcoholes, etc.). El grupo principal fija la terminación del nombre (-oico, -ol, -ona, etc). Los demás grupos no principales se nombran como sustituyentes, colocando el prefijo adecuado.

La cadena principal debe contener el máximo número de grupos principales (punto 4, pág. 24). Su numeración se elige de forma que a éstos les correspondan los localizadores más bajos (punto 5, pág. 25).

HOCH₂-CH₂-CH₂-CH₂-CH₂-CO-CH₃

Cadena principal: heptano.

Grupo principal: -co- (cetona), sufijo -ona.

Otros grupos: -OH (alcohol), prefijo, hidroxi-.

Nombre: 7-hidroxi-2-heptanona.

Este tipo de nomenclatura se llama sustitutiva y se basa en designar mediante un sufijo el grupo principal introducido en el hidrocarburo base que llamamos cadena principal. A veces se usan otras nomenclaturas como la radicofuncional en la que la palabra que designa el grupo funcional se asocia con los nombres de los radicales que designan el resto de la molécula. En esta nomenclatura, la molécula anterior se designaría:

5-hidroxipentilmetilcetona

9 Ácidos carboxílicos

La terminación para un ácido carboxílico cuando es el grupo principal es -oico; además se coloca la palabra ácido delante del nombre. Cuando no es el grupo principal y debe nombrarse como sustituyente, el prefijo es carboxi- para el grupo -cooh. Muchos ácidos tienen nombres vulgares (ver lista en página 30).

Una nomenclatura alternativa es la que utiliza la terminación -carboxílico en lugar de -oico para indicar la presencia de un grupo -cooh sustituyendo a un hidrógeno en la cadena. El nombre de los dos últimos compuestos en esta nomenclatura sería

ácido 1,2,4-butanotricarboxílico y ácido 2,3,5-hexanotricarboxílico.

Obsérvese que, a diferencia de cuando se usa la terminación -oico, cuando se usa la terminación -carboxílico, el carbono del grupo -cooh *no* se incluye en la cadena principal ya que la terminación -carboxílico le incluye.

10 Anhídridos

Se nombran como los ácidos de los que proceden sin más que cambiar la palabra ácido por anhídrido.

$$\begin{array}{lll} {\rm CH_3-CO-0-OC-CH_3} & & {\rm anhidrido~etanoico~0~anhidrido~ac\'etico} \\ {\rm CH_3-CO-0-OC-CH_2-CH_3} & & {\rm anhidrido~ac\'etico-propi\'onoico} \end{array}$$

11 Ésteres

Cuando son el grupo principal, se nombran como procedentes de un ácido por sustitución del hidrógeno ácido por un radical. Se nombran sustituyendo la terminación -oico del ácido por -oato y se completa el nombre con el del radical.

$${
m CH_3-C00-CH_2-CH_3}$$
 etanoato de etilo ${
m 0}$ acetato de etilo

Cuando no es el grupo principal, se nombra mediante el prefijo Riloxicarbonil-, donde R es la raiz del radical, para el grupo -COOR, o mediante el prefijo (RC)oiloxi- para el grupo (RC)OO-.

12 Haluros de acilo

Se usa normalmente la nomenclatura radicofuncional. Cuando son el grupo principal, se nombran como procedentes de un ácido por sustitución del hidroxilo por un haluro. Se nombran como haluros del radical (RC)O-, cuyo nombre es (RC)oilo.

El grupo xoc- se nombra como sustituyente con el prefijo haloformil-.

13 Amidas

Cuando son el grupo principal, se nombran como procedentes de un ácido por sustitución del hidróxido por un grupo -NH₂. Se nombran sustituyendo la terminación -ico del ácido por -amida y se completa el nombre con el del radical. El prefijo para nombrar el grupo -CONH₂ cuando es un sustituyente es carbamoil-.

La sustitución de un hidrógeno unido al nitrógeno por un grupo R se indica mediante el prefijo correspondiente y el localizador -N-.

14 Nitrilos

La terminación para nombrar un nitrilo cuando es el grupo principal es -nitrilo. Cuando se consideran los compuestos R-CN como derivados de ácidos R-COOH que tienen nombres vulgares, su nombre se puede formar a partir del vulgar del ácido cambiando -ico por -nitrilo. El prefijo para nombrar el grupo -CN cuando es un sustituyente es ciano-.

 ${\rm CH_3-CN}$ acetonitrilo 0 etanonitrilo ${\rm NC-CH_2-C00-CH_3}$ 2-cianoetanoato de metilo Alternativamente, puede usarse la nomenclatura radicofuncional:

15 Aldehidos

La terminación para nombrar un aldehido cuando es el grupo principal es -al. El prefijo para nombrar el grupo -cho cuando es un sustituyente es formil-.

Una nomenclatura alternativa es la que utiliza la terminación -carbaldehido en lugar de -al para indicar la presencia de un grupo -CHO sustituyendo a un hidrógeno en la cadena. El nombre de los compuestos anteriores en esta nomenclatura sería

16 Cetonas

La terminación para nombrar una cetona cuando es el grupo principal es -ona. El prefijo para nombrar el grupo =o cuando es un sustituyente es oxo-.

En la nomenclatura alternativa radicofuncional se usa la palabra cetona, anteponiendo como prefijos los nombres de los radicales unidos al grupo CO:

$$CH_3-CO-CH_3$$
 dimetilcetona $CH_3-CO-CH_2-CH_3-CH_3$ metilpropilcetona

Cuando el grupo cetónico se encuentra unido a un anillo aromático, recibe el nombre genérico de fenona. Si el anillo es benceno, se nombran como procedentes de un ácido por sustitución del hidróxido por el grupo fenilo, sustituyendo –ico por –fenona.

17 Alcoholes y fenoles

La terminación para nombrar un alcohol cuando es el grupo principal es -o1. El prefijo para nombrar el grupo -oH cuando es un sustituyente es hidroxi-.

CH₂=CH-CH₂OH 2-propen-1-ol

 $HOCH_2-CH_2-CH_2-COOH$ ácido 4-hidroxibutanoico

Alternativamente se puede usar la nomenclatura radicofuncional:

CH₃OH alcohol metílico

Cuando el grupo alcohol se encuentra unido a un anillo aromático, recibe el nombre genérico de fenol.

18 Aminas

Cuando una amina primaria es el grupo principal, se nombra añadiendo el sufijo -amina al nombre de la cadena principal RH. Alternativamente, se puede nombrar precediendo la palabra amina con el nombre del radical R—. Esta segunda alternativa es preferible para compuestos sencillos.

Cuando el grupo principal es una amina secundaria o terciaria *simétrica*, se nombra añadiendo al nombre del radical un prefijo di- o tri-, respectivamente.

$$NH(CH_3)_2$$
 dimetilamina $N(CH_3)_3$ trimetilamina

Cuando el grupo principal es una amina *asimétrica*, los sustituyentes del N que no pertenecen a la cadena principal, se nombran como prefijos usando -N- como localizador.

$$\texttt{CH}_3\texttt{CH}_2\texttt{CH}_2\texttt{NHCH}_3 \quad \textit{N}-\texttt{metilpropilamina} \qquad \texttt{CH}_3\texttt{CH}_2\texttt{CH}_2\texttt{N}(\texttt{CH}_3)_2 \; \textit{N}, \textit{N}-\texttt{dimetilpropilamina}$$

Cuando la amina no es el grupo principal, se usa el prefijo amino- para indicar el grupo -NH2.

19 Éteres

Se suele emplear la nomenclatura radico-funcional:

$${
m CH_3-O-CH_3}$$
 éter dimetílico ${
m 0}$ dimetiléter
 ${
m CH_3-O-CH_2-CH_3}$ éter etílico ${
m y}$ metílico ${
m 0}$ etilmetiléter

20 Aniones y sus sales

Los aniones procedentes de la eliminación de un H⁺ de un alcohol o fenol se nombran sustituyendo la terminación -ol por la terminación -olato:

CH $_3$ -OH metanol CH $_3$ -O- anión metanolato C $_6$ H $_5$ -OH fenol C $_6$ H $_5$ -O- anión fenolato

Los aniones procedentes de la eliminación de un H^+ de un ácido se nombran sustituyendo la terminación -ico por la terminación -ato:

$$CH_3-COOH$$
 ácido acético CH_3-COO^- anión acetato

Los aniones procedentes de la eliminación de un H⁺ de un átomo de carbono se nombran añadiendo la terminación -uro:

$$CH_3-CH_2-CH_2-CH_3$$
 butano $CH_3-CH_2-CH_2-CH_2$ butanuro

Las sales se nombran de la forma habitual:

Bibliografía

- 1 W. R. Peterson, "Formulación y nomenclatura de química orgánica", Edunsa, Barcelona, 7ª edición, 1985, 247 páginas, ISBN 84-85257-03-0.
- 2 IUPAC, "Nomenclatura de la química orgánica, secciones A, B, C, D, E, F y H", CSIC-RSEQ, Madrid, **1987**, 565 páginas, adaptación castellana del original inglés (normas 1979), preparada por E. Fernández Alvarez y F. Fariña Pérez, ISBN 84-00-06638-3.

GUÍA RÁPIDA PARA NOMBRAR UN COMPUESTO ORGÁNICO

Lo que sigue es una guía para la nomenclatura de compuestos orgánicos a partir de su fórmula. No abarca todos los casos posibles pero sí una mayoría. Se utiliza principalmente la nomenclatura de tipo sustitutivo. Para usar esta guía, escoge una fórmula cuyo nombre te plantee dudas, contesta las preguntas que se te formulan a continuación y haz las acciones que se te indican. Los números remiten al apartado correspondiente del texto, donde se especifica más extensamente la acción a realizar. Esta guía es una ayuda para resolver los ejercicios propuestos, pero presupone que ya se conocen las herramientas básicas expuestas en las páginas anteriores.

- 1.- Elige el(los) grupo(s) principal(es), que será(n) la(s) primera(s) que aparezca(n) en la siguiente lista:
 - ácidos y derivados: R-COOH > R-CO-O-CO-R' > R-COOR' > R-COX > R-CONH₂
 - nitrilo: R-CN
 - aldehidos y cetonas: R-COH > R-CO-R'
 - alcoholes y otros: $R-OH > R-NH_2 > R-O-R'$

Algunos grupos como los halógenos nunca se nombran como grupos funcionales, sólo como sustituyentes

- 2.- Si el grupo principal es uno de las siguientes, actúa de la forma expuesta:
 - 1.- **anhídrido** [R-CO-O-CO-R']: escribe la palabra anhídrido, el nombre del ácido R-COOH (para conocer el nombre del ácido empieza el proceso desde el punto 1) y el nombre del ácido R'-COOH (si son distintos), ordenados alfabéticamente y separados por un guión. Ej.: CH₃CO-O-CO-CH₂-CH₃ anhídrido acético-propiónico.
 - 2.- éster [R-COOR']: escribe el nombre del ácido R-COOH (para conocer el nombre del ácido empieza el proceso desde el punto 1), cambiando la terminación -ico por -ato, escribe la preposición de, y, finalmente, escribe el nombre del sustituyente R' (ver el punto 12 para nombrar sustituyentes) acabándolo en -o. Ej.: CH₃-COOCH₃ acetato de metilo.
 - 3.- haluro de acilo [R-COX]: escribe el nombre del haluro (fluoruro, cloruro, etc), la preposición de y el nombre del sustituyente R-CO- (ver el punto 12 para nombrar sustituyentes) acabándolo en -o. Ej.: CH₃-COCl cloruro de etanoilo (o acetilo).
 - 4.- **amina**: [RNH₂, RR'NH o RR'R"N]: Si R es la cadena principal, escribe, sin separación entre ellos, el nombre de los sustituyentes R' y R" (ver el punto 12 para nombrar sustituyentes) por orden alfabético y , en su caso, con el prefijo multiplicativo correspondiente, el nombre del radical R, y la palabra amina. Ej.: (CH₃)₂(CH₃-CH₂)N N-dimetiletilamina.
 - 5.- éter [R-O-R'] : escribe la palabra éter seguida de los nombres de los sustituyentes R y R' (ver el punto 12 para nombrar sustituyentes) acabados en -o, ordenados alfabéticamente, y separados por la conjunción y. Ej.: CH₃-O-CH₂-CH₃ éter de etilo y metilo; CH₃-CH₂-O-CH₂-CH₃ éter dietílico.
 - 6.- sales i) derivadas de alcohol [RO-M+]: escribe el nombre del alcohol o fenol R-OH (para conocer su nombre empieza el proceso desde el punto 1) sustituyendo la terminación -ol por -olato, más la preposición de, más el nombre del catión. Ej: CH3ONA metanolato de sodio. ii) derivadas de ácido [RCOO-M+]: escribe el nombre del ácido R-COOH (para conocer su nombre empieza el proceso desde el punto 1) sustituyendo la terminación -ico por -ato, más la preposición de, más el nombre del catión. Ej: CH3COONA acetato de sodio.
- 3.- Considera el resto de grupos no principales como sustituyentes y continúa en el punto siguiente (en el punto 12 se muestra cómo nombrar los sustituyentes). Como excepción, los grupos –NH– y –O–, pueden ser considerados como –CH₂–, anteponiendo al nombre así obtenido la partícula aza u oxa con el prefijo multiplicativo y el(los) localizador(es) correspondientes. Ej.: CH₃–O–CH₂–COOH puede ser nombrado como un derivado del ácido acético [CH₃–COOH] con un sustituyente metiloxi– [CH₃–O–] lo que da el nombre de ácido metiloxiacético; o bien una cadena CH₃–CH₂–CH₂–COOH, con el-CH₂- del carbono 3 sustituido por un -O- lo que da el nombre de ácido 3-oxabutírico.
- 4.- Escoge la cadena o ciclo principal de acuerdo a los siguientes criterios, aplicándolos por este orden:
 - 1.- Debe contener el grupo principal el mayor número de veces.
 - 2.- Cuando haya una parte cíclica y otra acíclica, la cadena o ciclo principal será la que tenga el mayor

- número de sustituciones o, alternativamente, sea mayor.
- 3.- Debe contener el mayor número de dobles y triples enlaces considerados conjuntamente.
- 4.- Debe tener la mayor longitud.
- 5.- Debe contener el mayor número de dobles enlaces.
- 6.- Debe tener los localizadores más bajos posibles para los grupos principales (ver 5 para saber cómo se numera la cadena). Ordénalos de menor a mayor, para cada caso posible, y compara el número resultante. P.ej: 1,1,3,5 antes de 1,1,4,5.
- 7.- Debe tener los localizadores más bajos posibles para los enlaces múltiples.
- 8.- Debe tener los localizadores más bajos para los enlaces dobles.
- 9.- Debe tener el mayor número de sustituyentes citados como prefijos.
- 10.- Debe tener los localizadores más bajos posibles para los sustituyentes citados como prefijos.
- 11.- Debe tener el mayor número de veces el sustituyente que haya de citarse en primer lugar en orden alfabético.
- 12.- Debe tener los localizadores más bajos posibles para los sustituyentes que se citan en primer lugar en orden alfabético.
- 5.- Numera la cadena o ciclo principal de acuerdo a los siguientes criterios:
 - 1.- Algunos tipos de compuestos, como los anillos bencénicos condensados tienen un sistema especial de numeración (página 29).
 - 2.- (Sólo para radicales) El carbono que presenta la valencia libre debe tener el localizador más bajo posible (generalmente el número 1).
 - 3.- Los grupos principales deben tener el conjunto de localizadores más bajo.
 - 4.- Las insaturaciones (con preferencia de los dobles enlaces sobre los triples) deben tener el conjunto de localizadores más bajo.
 - 5.- Los sustituyentes deben tener el conjunto de localizadores más bajo.
 - 6.- Los sustituyentes, ordenados alfabéticamente, deben tener el conjunto de localizadores más bajo.
- 6.- Si la cadena principal tiene un nombre no sistemático (ver lista de nombres vulgares en páginas 28–30), puede tomarse éste, saltando las etapas 7 a 10. Los derivados de ácido (amidas, etc) y los nitrilos pueden coger la raíz del nombre vulgar del ácido, sustituyendo la terminación -ico por -amida, -nitrilo, etc. P.ej. CH₃-CN etanonitrilo 0 acetonitrilo; CH₃-CONH₂ etanamida o acetamida.
- 7.- Cuenta el número de carbonos de la cadena principal y asigna la raíz del nombre correspondiente, de acuerdo a la siguiente tabla (no olvides poner, en su caso, la palabra ciclo delante de la raíz):

UNIDADES	DECENAS	CENTENAS	EXCEPCIONES
hen	deca	hecta	met (1)
do	(i)cosa	dicta	et (2)
tri	triaconta	tricta	prop (3)
tetra	tetraconta	tetracta	but (4)
penta	pentaconta	pentacta	undec (11)
hexa	hexaconta	hexacta	
hepta	heptaconta	heptacta	
octa	octaconta	octacta	
nona	nonaconta	nonacta	

lo que da lugar a las siguientes raíces para los números de átomos de carbono especificados:

```
29 nonacos
 1 met
                           15 pentadec
 2 et
                           16 hexadec
                                                      30 triacont
                           17 heptadec
 3 prop
                                                      31 hentriacont
 4 but
                           18 octadec
                                                      32 dotriacont
                                                      33 tritriacont
                           19 nonadec
 5 pent
                           20 i cos
                                                      40 tetracont
 6 hex
                           21 henicos
                                                      50 pentacont
 7 hept
 8 \text{ oct}
                           22 docos
                                                      60 hexacont
9 non
                           23 tricos
                                                      70 heptacont
10 \, \mathrm{dec}
                           24 tetracos
                                                      80 octacont
11 undec
                           25 pentacos
                                                     90 nonacont
12 dodec
                           26 hexacos
                                                    100 \; \mathrm{hect}
                                                    132 dotriacontahect
13 tridec
                           27 heptacos
14 tetradec
                                                    456 hexapentacontatetract
                           28 octacos
```

Ej.: CH₂OH-CHOH-CH₂OH: se asignará la raíz prop CH₂OH-CH₂-CH=CH₂-CH₃: se asignará la raíz pent

- 8.- Selecciona las terminaciones adecuadas de la siguiente lista:
 - 1.- -eno si hay dobles enlaces
 - 2.- -ino si hay triples enlaces
 - 3.- -ano si no hay dobles ni triples enlaces
 - 4.- La terminación de el(los) grupo(es) principal(es):

Ej.: $CH_2OH-CHOH-CH_2OH$: se seleccionarán las terminaciones -ano y -ol $CH_2OH-CH_2-CH=CH_2-CH_3$: se seleccionarán las terminaciones -eno y -ol

9.- Coloca los localizadores correspondientes delante de cada terminación, separados por comas y entre guiones (p.ej -1,3,5-) seguidos del prefijo numeral adecuado (di,tri,etc).

```
Ej.: CH_2OH-CHOH-CH_2OH -1,2,3-triol CH_2OH-CH_2-CH=CH_2-CH_3 -3-eno y -1-ol
```

- 10.- Adiciona a la raiz obtenida en 7, las terminaciones obtenidas en 8 y 9, escribiendo todo junto sin dejar espacios. Ten en cuenta que:
 - 1.- Los localizadores de la primera terminación se colocan delante de la raíz.

```
Ej.: \texttt{CH}_2\texttt{OH-CHOH-CH}_2\texttt{OH} \quad \texttt{1,2,3-propanotriol} \quad \textbf{y no propano-1,2,3-triol}. \texttt{CH}_2\texttt{OH-CH}_2\texttt{-CH=COH-CH}_3 \quad \texttt{3-penteno-1-ol y no pent-3-eno-1-ol}.
```

2.- La -a terminal de los afijos multiplicadores se elide cuando va seguida de un prefijo o terminación que empieza por a-, o o-.

Ej.: tetramina y no tetraamina

La vocal terminal de los nombres de los compuestos fundamentales se elide cuando va seguida de una terminación que empieza por a-, i-, o- o u-.

Ej.: 3-penten-1-ol en lugar de 3-penteno-1-ol.

11.- Nombra los sustituyentes simples de la cadena principal:

$$Ej.: \begin{array}{c|c} ^{H_3C-O} \bullet H \\ \hline \\ \text{HOOC-CH-CH-CH}_2\text{-CH}_2\text{-COOH} \end{array} \qquad el \text{ grupo -OH se llama hidroxi.}$$

- 12.- Nombra los sustituyentes complejos, de acuerdo a las siguientes reglas:
 - 1.- Selecciona el tipo de sustituyente, comparándolo con la siguiente lista:

R-
$$-il$$
 -COOR $-iloxicarbonil$ R(C)ONH- $-amido$ R-O- $-iloxi$ R(C)O- $-oil$ R(C)OO- $-oiloxi$

Ej.:
$$\frac{\text{H}_3\text{C-O}}{\text{HOOC-CH-CH}_2\text{-CH}_2\text{-COOH}}$$
 contiene un sustituyente R-O-.

2.- Nombra el grupo R-, tratándolo como si fuera un compuesto R-H, y teniendo en cuenta que el grupo principal será siempre el carbono con la valencia libre, por lo que este será numerado como el número 1 y el resto de grupos serán considerados como sustituyentes.

En el ejemplo: CH₃- viene de CH₄ (metano)

3.- El nombre del sustituyente se obtiene cambiando la terminación -ano o, si acaba en -eno o -ino, sólo la -o, por las terminaciones señaladas en 12.1.

En el ejemplo: CH3O- se llama metiloxi-.

Otros ejemplos:

$${
m CH_3}$$
- metil- ${
m -COOCH_3}$ metiloxicarbonil- ${
m CH_3CONH}$ - etanamido- ${
m CH_3-O}$ - metiloxi- ${
m CH_3CO}$ - etanoil- ${
m CH_3COO}$ - etanoiloxi-

- 13.- Coloca delante del nombre de cada sustituyente, los localizadores correspondientes separados por comas y entre guiones (p.ej. -2,5,6-), seguidos del prefijo numeral correspondiente (di, tri, tetra, o bis, tris, tetraquis, si puede haber confusión). En el ejemplo: -3-hidroxi y -2-metiloxi
- 14.- Coloca los nombres de los sustituyentes, ordenados alfabéticamente, delante del nombre obtenido en 10. Los sustituyentes que, por su complejidad, puedan dar lugar a confusión, se colocan entre paréntesis. Si el compuesto es un ácido, coloca la palabra ácido delante del nombre obtenido.

$$Ej.: \begin{array}{c|c} \text{H}_3\text{C-O} & \text{OH} \\ & & | & | \\ \text{HOOC-CH-CH-CH}_2\text{-CH}_2\text{-COOH} \end{array} \qquad \text{\'acido 3-hidroxi-2-metiloxihexanodioico.}$$

ALGUNOS NOMBRES ORGÁNICOS VULGARES

HIDROCARBUROS ACÍCLICOS SATURADOS

RADICALES UNIVALENTES DE HIDROCARBUROS ACÍCLICOS SATURADOS

HIDROCARBUROS ACÍCLICOS INSATURADOS

$$CH_2 = CH_2$$
 etileno $CH \equiv CH$ acetileno $CH_2 = C = CH_2$ aleno $CH_2 = CH - C = CH_2$ isopreno*

RADICALES UNIVALENTES DE HIDROCARBUROS ACÍCLICOS INSATURADOS

$$CH_2 = CH$$
— vinilo CH_3
 $CH_2 = CH$ - CH_2 — alilo $CH_2 = C$ — isopropenilo*

^{*} Estos nombres sólo deben emplearse para los hidrocarburos o radicales sin sustituyentes

COMPUESTOS AROMÁTICOS NO SUSTITUIDOS

COMPUESTOS AROMÁTICOS SUSTITUIDOS

RADICALES UNIVALENTES COMPUESTOS AROMÁTICOS

DERIVADOS HALOGENADOS DE LOS HIDROCARBUROS

CHF ₃	fluoroformo	CHBr ₃	bromoformo
CHCl ₃	cloroformo	CHI ₃	yodoformo

ÁCIDOS CARBOXÍLICOS

ACIDOS CARBOXILICOS					
НСООН	ácido fórmico	HOOC-COOH	ácido oxálico		
CH ₃ -COOH	ácido acético	HOOC-CH ₂ -COOH	ácido malónico		
CH ₃ -CH ₂ -COOH	ácido propiónico	${\rm HOOC\text{-}CH}_2\text{-}{\rm CH}_2\text{-}{\rm COOH}$	ácido succínico		
CH ₃ -CH ₂ -CH ₂ -COOH	ácido butírico	HOOC-(CH ₂) ₃ -COOH	ácido glutárico		
HOOC	ácido maléico	HOOC H	ácido fumárico		
СООН	ácido benzoico	СООН	ácido ftálico		

ALDEHIDOS Y CETONAS

НСНО	formaldehido*	CH ₃ -CO-CH ₃	acetona
CH ₃ -CHO	acetaldehido*	CH ₃ -CH ₂ -CHO	propionaldehido*
C ₆ H ₅ -CHO	benzaldehido*	CH ₃ -CH ₂ -CH ₂ -CHO	butiraldehido*

^{*} Estos nombres proceden del nombre vulgar del respectivo ácido, cambiando "ácido —oico" por "—aldehido"

ALCOHOLES Y FENOLES

ÉTERES

EJERCICIOS

Formula los siguientes compuestos:

- 1 6,6,9-tris(1,1,2-trimetilbutil)pentadecano
- 2 4-etil-5-propiloctano
- 3 3,4,13-trimetil-
 - 6,7,11,13-tetrakis(2,3-dimetilpentil)nonadecano
- 4 radical 2-metilbutilo
- 5 4-terc-butil-7-etil-2,7-dimetildecano
- 6 radical 4-(3,3-dimetilbutil)
 - -1-etil-7-metildodecilo
- 7 5-etil-2,6-dimetil-2,3,4-octatrieno
- 8 5,7-decadien-2-ino
- 9 2-metil-6-(2-metil-1-propenil)
 - -2,7-decadien-4-ino
- 10 1,4-ciclohexadieno
- 11 1-buten-3-ino
- 12 3-ciclohexil-3-hexen-1,5-diino
- 13 3,3-dimetil-1-octen-4,7-diino
- 14 1-terc-butil-4-(1-butinil)-2-etilbenceno
- 15 radical 2-naftilo
- 16 p-diisopropilbenceno
- 17 1-metil-5-(1,3-pentadienil)naftaleno
- 18 m-diciclohexilbenceno
- 19 p-dibencilbenceno
- 20 o-diclorobenceno
- 21 1,2-dibromoetano
- 22 perclorociclohexano
- 23 2,3-difluoroperclorobutano
- 24 1,1-dibromo-4-metil-2-hexeno
- 25 bromuro de bencilo
- 26 3-hexen-1-ol
- 27 4-metilciclohexanol
- 28 fenol
- 29 1,2,3-propanotriol
- 30 radical butiloxi
- 31 metóxido de litio o metalonato de litio
- 32 éter de isobutilo e isopropilo
- 33 alcohol isopropílico o isopropanol
- 34 3,5-dimetil-2,5-heptadien-1-ol
- 35 2-penten-4-in-1-ol
- 36 2-etil-4-vinilfenol
- 37 éter difenílico

- 38 m-dimetoxibenceno
- 39 éter de ciclohexilo y ciclopentilo
- 40 4-pentenal
- 41 etanodial
- 42 4,4-dimetil-2-hexinodial
- 43 ciclopentanocarbaldehido
- 44 3-buten-2-ona
- 45 bis-2-naftilcetona
- 46 2,4-pentanodiona
- 47 1,6-difenil-2,5-hexanodiona
- 48 2,5-dimetil-3-hexanona
- 49 2,4,7-octanotriona
- 50 2,2-dimetilpropanodial
- 51 2-metil-3-pentinal
- 52 1,1,2,3-propanotetracarbaldehido
- 53 2-etil-3-ciclopentenona
- 54 ciclopentilfenilcetona
- 55 ácido butanoico
- 56 ácido 4-hexenoico
- 57 ácido 2-fenil-5-hexen-3-inoico
- 58 ácido 3-carboxi-2-metilhexanodioico
- 59 benzoato de etilo
- 60 2,6-dioxoheptanal
- 61 cloruro de acetilo
- 62 anhidrido acético-propiónico
- 63 ácido 2-butenodioico
- 64 ácido 4-etil-2-metil-2,4,6-octatrienoico
- 65 ácido 3-carboxihexanodioico
- 66 ácido 2-ciclopentenocarboxílico
- 67 formiato de terc-butilo
- 68 N-etil-N-metilpropilamina
- 69 cloruro de dimetilamonio
- 70 trimetilamina
- 71 1,3-pentanodiamina
- 72 1,2-dimetilpropilamina
- 73 Acetamida
- 74 Hexanamida
- 75 N-metilbenzamida

Nombra los siguientes compuestos:

$$\begin{array}{cccc} \text{CH}_{3} & \text{CH}_{3} \\ \text{CH}_{3} - \overset{\cdot}{\text{C}} - \text{CH}_{2} - \overset{\cdot}{\text{CH}} - \text{CH}_{3} \\ \text{CH}_{3} & \overset{\cdot}{\text{CH}}_{3} \end{array}$$

3.-
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_2 CH_2 CH_2 CH_2 CH_3 CH_3 CH_4 CH_5 CH_5 CH_6 CH_7 CH_8 CH_8 CH_8 CH_8 CH_8

4.-
$$CH_3$$
- CH_2 - CH_2 - CH_2 - CH_3

6.-
$$CH_3$$
 $CH_3-CH-C-CH_2-CH-CH_2-CH_3$ CH_3

7.-
$$CH_3$$
— $C\equiv C$ — $C\equiv C$ — $C=CH$ — $CH=CH_2$
 CH_2
 CH_2 - $C\equiv C$ - CH_3G

8.-
$$CH_3-C=C-CH_2-CH_2-CH_2-CH_3$$

 H_3C CH_2
 CH_3

11.-

12.-
$$CH_2 = CH - C \equiv C - CH_2 - CH = C - CH_3$$

 CH_3

CH₃
$$CH=CH_2$$
 CH_3 CH_2-CH_3

18.-
$$H_3C$$
 CH_2 - CH_3

26.-
$$CH_3$$
- CH = C - CH = CH - CH_2OH CH_3

29.- HOCH₂-CH₂-CH₂OH

31.- CH₃-O-CH₂-CH₃

33.- $HC≡C-CH=CH-CH_2OH$

38.- CH₂=CH-CHO

40.- HOC-CH₂-CHO

41.- HOC-CH
$$_2$$
 – CH– CH $_2$ -CH $_2$ -CH–CH $_2$ -CHO CHO

43.- CH_3 -CO- CH_2 - CH_2 - CH_3

44.-
$$CH_2$$
-CO-CH₂·CH CH_3

47.- CH₃-CO-CO-CH₃

49.- HOC-CH₂-CO-CH₂-COH

51.- HCOOH

53.- CH_3 -CH=CH- CH_2 -COOH

54.- HOOC – CH–CH₂–CH₂–COOH COOH

55.- CH₃-COOCH₃

56.- CH₃-COO-CH₂-CH₂-COOH

57.-
$$\sim$$
 COO-CH $_2$ -CH $_3$

59 CH₃-COF

- 61 HOOC-CH=CH-CH₂-C≡C-CH₃
- 62 CH₃-OOC-COO-CH₃
- 63 CH₃-CH=CH-C≡C-COOH
- 64 HOOC-CH $_2$ -C \equiv C-CH $_2$ -CH $_2$ -COOH
- 65 CH₃-CH₂-CO-CH₂-COOH
- 66 HOOC-CH $_2$ CH– CH $_2$ -COOH CHO

 CH_3 - CH_2 -CH-COO- CH_2 - CH_3

- 71 CCl₃-COCl
- 72 CH₃-NH-CH₃

 $\begin{array}{c} \text{74CH}_3\text{-CH}_2\text{-CH}_2\text{-}\text{ N-CH}_2\text{-CH}_3 \\ \text{CH}_3 \end{array}$

 $\begin{array}{c} \text{75NH}_2\text{-CH}_2\text{-CH}_2\text{-}\text{CH-CH}_2\text{-NH}_2\\ \text{NH}_2 \end{array}$

76 $(CH_3)_4N^+Cl^-$

78
 $\left\langle \right\rangle$ NH-CH₃

$$^{80}\quad \mathrm{HOC} - \hspace{-1.5cm} \overbrace{\hspace{1.5cm}} \hspace{0.5cm} - \hspace{0.5cm} \mathrm{NH}_2$$

83 CH₃-CH₂OOC-CH₂-CH₂-COO-CH₂-CH₃

COOH

- 85 HOOC CH-(CH₂)₂ CH-(CH₂)₂ CH-COOH COOH (CH₂)₃-COOH
- 86 -OC-CO-
- 87 CH₃-CH₂-OOC-CH₂-COO-CH₂-CH₃

89 CH₃-CH=CH-COOH

SOLUCIONES A LOS EJERCICIOS

Nombres de los compuestos:

- 1 2,2,4-trimetilpentano
- 2 radical 2,4-dimetilpentilo
- 3 4-etil-5-isopropil-3,4,7-trimetil-7-propil undecano
- 4 radical 2-etilbutilo
- 5 5-propilnonano
- 6 2-ciclohexil-5-ciclopropil-3,3-dimetilheptano
- 7 4-(3-pentinil)-1,3-nonadien-5,7-diino
- 8 3-etil-2-metil-2-hepteno
- 9 1,4-ciclohexadieno
- 10 radical vinilo`
- 11 5,7-decadien-2-ino
- 12 7-metil-1,6-octadien-3-ino
- 13 1,4-dimetil-1,3-ciclopentadieno
- 14 3-ciclohexil-3-hexen-1,5-diino
- 15 etilbenceno
- 16 2-etil-1-metil-4-propilbenceno
- 17 *p*-etilestireno
- 18 1-etil-2,6-dimetilnaftaleno
- 19 p-diciclohexilbenceno
- 20 radical bencilo
- 21 2,4-dicloropentano
- 22 o-diclorobenceno
- 23 4-cloro-2-penteno
- 24 perfluoropropano
- 25 2,3-dibromoperfluoropentano
- 26 4-metil-2,4-hexadien-1-ol
- 27 p-metilfenol
- 28 alcohol bencílico
- 29 1,3-propanodiol
- 30 fenolato de sodio
- 31 metoxietano o etilmetiléter
- 32 metoxibenceno o fenilmetiléter
- 33 2-penten-4-in-1-ol
- 34 etoxibenceno o etilfeniléter
- 35 éter de ciclohexilo y fenilo
- 36 p-etoxifenol
- 37 epoxietano
- 38 2-propenal
- 39 3-fenil-4-pentinal
- 40 propanodial
- 41 1,2,5,6-hexanotetracarbaldehido

- 42 ciclopentanocarbaldehido
- 43 metilpropilcetona
- 44 bencil(2-fenilpropil)cetona;1,4-difenil-2-pentanona
- 45 ciclohexanona
- 46 difenilcetona
- 47 butanodiona
- 48 2-bromo-4-cloro-3-pentil-3-ciclopentenona
- 49 3-oxopentanodial
- 50 fenilmetilcetona (acetofenona)
- 51 ácido fórmico
- 52 ciclohexanocarboxílico
- 53 ácido 4-hexenoico
- 54 ácido 1,1,3-propanotricarboxílico
- 55 acetato de metilo
- 56 ácido 3-acetiloxipropiónico
- 57 benzoato de etilo
- 58 anhídrido acético-propiónico
- 59 fluoruro de acetilo
- 60 yoduro de ciclohexanocarbonilo
- 61 ácido 2-hepten-5-inoico
- 62 oxalato de dimetilo (etanodiato de dimetilo)
- 63 ácido 4-hexen-2-inoico
- 64 ácido 3-heptindioico
- 65 ácido 3-oxopentanoico
- 66 ácido 3-formilpentanodioico
- 67 ácido p-bencenodicarboxílico
- 68 2-metilbutirato de etilo
- 69 ácido difenilacético
- 70 anhídrido ciclohexanocarboxílico (benzoico)
- 71 cloruro de percloroacetilo
- 72 dimetilamina
- 73 fenilamina
- 74 N-etil-N-metilpropilamina
- 75 1,3,5-pentanotriamina
- 76 cloruro de tetrametilamonio
- 77 ciclohexilamina
- 78 N-ciclohexilmetilamina
- 79 2-naftilamina
- 80 p-aminobenzaldehido
- 81 p-metoxifenilamina
- 82 p-aminofenol
- 83 butanodiato de dietilo (succinato de dietilo)

84 fenilacetato de fenilo

85 ácido 2,8-dicarboxi-4-(3-carboxipropil)nonadioico

86 radical oxalilo (o etanodioilo)

87 malonato de dietilo

88 ácido ftálico (o *o*-bencenodicarboxílico)

89 ácido 2-butenoico

90 bencilmetilcetona o 1-fenil-2-propanona

Fórmulas de los compuestos:

4 CH₃-CH₂-CH(CH₃)-CH₂-

7 CH₃-C(CH₃)=C=C=C(CH₂-CH₃)-CH(CH₃)-CH₂-CH₃

8 CH₃-C≡C-CH₂-CH=CH-CH=CH-CH₂-CH₃

11 H₂C=CH-C≡CH

12 $HC \equiv C - C(C_6H_{11}) = CH - C \equiv CH$

13 $H_2C=CH-C(CH_3)_2-C=C-CH_2-C=CH$

16 $(CH_3)_2$ -CH-C₆H₄-CH-(CH₃)₂

18 C_6H_{11} - C_6H_4 - C_6H_{11}

19 C_6H_5 - CH_2 - C_6H_4 - CH_2 - C_6H_5

21 CH₂Br-CH₂Br

 C_6Cl_{12}

23 CCl₃-CClF-CClF-CCl₃

24 CH₃-CH₂-CH(CH₃)-CH=CH-CHBr₂

 $25 \text{ C}_6\text{H}_5\text{-CH}_2\text{Br}$

26 CH₃-CH₂-CH=CH-CH₂-CH₂OH

27 CH₃C₆H₁₀OH

28 C₆H₅OH

29 CH₂OH-CHOH-CH₂OH

30 CH₃-CH₂-CH₂-CH₂-O-

31 CH₃O⁻Li⁺

 $32 (CH_3)_2 CH - CH_2 - O - CH(CH_3)_2$

33 (CH₃)₂CHOH

34 CH_2OH - $CH=CH(CH_3)$ - CH_2 - $C(CH_3)$ =CH- CH_3

35 CH₂OH-CH=CH-C≡CH

 $^{37} C_6 H_5 - O - C_6 H_5$

39 C_6H_{11} -O- C_5H_9

40 CHO-CH₂-CH₂-CH=CH₂

41 CHO-CHO

42 CHO-C \equiv C-C(CH₃)₂-CH₂-CHO

 $43 \text{ C}_5\text{H}_9\text{-CHO}$

44 CH₃-CO-CH=CH₂

46 CH₃-CO-CH₂-CO-CH₃

47 C₆H₅-CH₂-CO-CH₂-CH₂-CO-CH₂-C₆H₅

 $48 \text{ (CH}_3)_2\text{CH-CO-CH}_2\text{-CH(CH}_3)_2$

49 CH₃-CO-CH₂-CO-CH₂-CH₂-CO-CH₃

50 CHO-C(CH₃)₂-CHO

51 CHO-CH(CH₃)-C≡C-CH₃

52 CHO-CH₂-CH(CHO)-CH(CHO)₂

55 CH₃-CH₂-CH₂-COOH

56 CH₃-CH=CH-CH₂-CH₂-COOH

57 $CH_2=CH-C\equiv C-CH(C_6H_5)-COOH$

58 HOOC-CH(CH₃)-CH(COOH)-CH₂-CH₂-COOH

59 C₆H₅-COOCH₂-CH₃

60 CH₃-CO-CH₂-CH₂-CO-CH₂-CHO

61 CH₃COCl

62 CH₃-CO-O-OC-CH₂-CH₃

63 HOOC-CH=CH-COOH

64 HOOCC(CH₃)=CHC(CH₂CH₃)=CHCH=CHCH₃

65 HOOC-CH₂-CH(COOH)-CH₂-CH₂-COOH

67 HCOOC(CH₃)₃

68 N(CH₃)(CH₂CH₃)(CH₂CH₂CH₃)

69 [(CH₃)₂NH₂]Cl

 $70 \text{ N(CH}_3)_3$

71 CH₃-CH₂-CH(NH₂)-CH₂-CH₂-NH₂

72 (CH₃)₂CH-CH(CH₃)NH₂

73 CH₃-CO-NH₂

74 CH₃-CH₂-CH₂-CH₂-CH₂-CO-NH₂

75 C₆H₅-CO-NH-CH₃

