Sobel filter example

- Compute Gx and Gy, gradients of the image performing the convolution of Sobel kernels with the image
- Use zero-padding to extend the image

0	0	10	10	10
0	0	10	10	10
0	0	10	10	10
0	0	10	10	10
0	0	10	10	10
Х				

 G_{x}

 G_y

0	30	30	0	-30
0	40	40	0	-40
0	40	40	0	-40
0	40	40	0	-40
0	30	30	0	-30
0	-10	-30	-40	-30
0	-10 0	-30 0	-40 0	-30 0
	-			
0	0	0	0	0

1	0	-1		-1	-2	-1
2	0	-2		0	0	
1	0	-1		1	2	1
			'			

 h_x

У

 h_y

Sobel filter example

- Compute Gx and Gy, gradients of the image performing the convolution of Sobel kernels with the image
- Use border values to extend the image

	0	0	10	10	10
	0	0	10	10	10
	0	0	10	10	10
	0	0	10	10	10
•	0	0	10	10	10
	Х				

 G_{x}

0	40	40	0	0	
0	40	40	0	0	
0	40	40	0	0	
0	40	40	0	0	
0	40	40	0	0	
					_

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
^	^	^	0	Λ

1	0	-1	-1	-2
2	0	-2	0	0
1	0	-1	1	2

 h_y

 $\Theta = \arctan$

	0	0		ı
١	0	0		
	0	0		l
/	0	0		l
	0	0		l

 $\boldsymbol{h}_{\boldsymbol{x}}$

2

Sobel filter example

- Compute Gx and Gy, gradients of the image performing the convolution of Sobel kernels with the image
- Use border values to extend the image

0	0	0	0	0
0	0	0	0	0
10	10	10	10	10
10	10	10	10	10
10	10	10	10	10
Х				

У

	0
G_x	0
	0

0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
Λ	n	Λ	٥	Λ	Ī

	0	0	0	0	0
	-40	-40	-40	-40	-40
,	-40	-40	-40	-40	-40
	0	0	0	0	0
	0	0	0	0	0

 h_x

 h_v

$$\Theta = \arctan\left(\frac{G_y}{G_x}\right)$$

-π/2	-π/2	-π/2	-π/2	-π/2
-π/2	-π/2	-π/2	-π/2	-π/2

3

Sobel filter example

- Compute Gx and Gy, gradients of the image performing the convolution of Sobel kernels with the image
- Use border values to extend the image

0	0	0	0	10
0	0	0	10	10
0	0	10	10	10
0	10	10	10	10
10	10	10	10	10
X				

U	U	10	40	30
0	10	30	30	10
10	30	30	10	0
20	30	10	0	0
10	10	0	0	0

٠.
ν
,

Х	

0			

G	•	

0	0	-10	-20	-10
0	-10	-30	-30	-10
-10	-30	-30	-10	0
-40	-30	-10	0	0
20	10	^	^	^

1	0	-1
2	0	-2
1	0	-1

 h_{x}

-1	-2	-1	
0	0	0	
1	2	1	

 h_y

$$\Theta = \arctan\left(\frac{G_{y}}{G_{x}}\right)$$

			-π/4	-0.15π	- 0.10π	l
١		-π/4	-π/4	-π/4	-π/4	
	-π/4	-π/4	-π/4	-π/4		
1	-0.35π	-π/4	-π/4		4	
	-0.40π	-π/4				

Laplacian example

- Compute the convolution of image I with the Laplacian kernel
- Use border values to extend the image

	0	0	0	0	10
	0	0	0	10	10
	0	0	10	10	10
	0	10	10	10	10
1	10	10	10	10	10
	Х		I		

1	1	1
1	-8	1
1	1	1

У

Laplacian

	0	0	10	40	-20
	0	10	30	-30	-10
	10	30	-30	-10	0
	40	-30	10	0	0
y '	-20	-10	0	0	0

Laplacian*I

5

Erosion example

- Erode the image below using kernels S1 and S2
- Use border values to extend the image

0	0	0	0	1
0	0	0	1	1
0	0	1	1	1
0	1	0	0	1
1	1	1	1	1
х				
	0 0 0 1	0 0 0 0 0 1 1 1	0 0 0 0 0 1 0 1 0 1 1 1	0 0 0 1 0 0 1 1 0 1 0 0 1 1 1 1

1	1	1		0	1	0
1	1	1		1	1	1
1	1	1		0	1	0
					S	

fOS1

fOS2

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	0	0	0	1
0	0	0	0	1
0	0	0	0	0
0	1	0	0	1

6

Dilation example

- Erode the image below using kernels S1 and S2
- Use border values to extend the image

f⊕S1	0	0	1	1	1
	0	1	1	1	1
	1	1	1	1	1
	1	1	1	1	1
	1	1	1	1	1

1	1	1		0	1	0
1	1	1		1	1	1
1	1	1		0	1	0
S₁					S ₂	

f⊕S2

0	0	0	1	1
0	0	1	1	1
0	1	1	1	1
1	1	1	1	1
1	1	1	1	1

7

Dilation-Erosion example

f⊕S2

- Dilate then erode the image below using kernels S2
- Use border values to extend the image

0	0	0	0	1
0	0	0	1	1
0	0	1	1	1
0	1	0	0	1
 1	1	1	1	1
Х				

0	0	0	1	1
0	0	1	1	1
0	1	1	1	1
1	1	1	1	1
1	1	1	1	1

0	0	0	0	1
0	0	0	1	1
0	0	1	1	1
0	1	1	1	1
1	1	1	1	1

0 1 0 1 1 1 0 1 0 (f⊕S2)⊖S2

 S_2

8